Mathematical Proofs

CHAPTER 1 – EXERCISE SOLUTIONS AND NOTES LASSE HAMMER PRIEBE

Table of Contents

Section 1: Statements	3
Exercises	3
Section 2: The Negation of a Statement	5
Exercises	5
Section 3: The Disjunction and Conjunction of Statements	6
Notes	θ
Exercises	θ
Section 4: The Implication	7
Notes	
Exercises	
Section 5: More on Implications	
Notes	
Exercises	
Section 6: The Biconditional	10
Notes	10
Exercises	11
Section 7: Tautologies and Contradictions	14
Notes	14
Exercises	14
Section 8: Logical Equivalence	15
Notes	15
Exercises	15
Section 9: Some Fundamental Properties of Logical Equivalence	17
Notes	
Exercises	18
Section 10: Quantified Statements	19
Exercises	19
Section 11: Characterizations	22
Exercises	
Additional Eversions	

Section 1: Statements

- 1) Which of the following sentences are statements? Indicate their truth value.
 - a) The integer 123 is prime.
 - i) False
 - b) The integer 0 is even
 - i) True
 - c) Is 5 * 2 = 10?
 - i) Not a statement
 - d) $x^2 4 = 0$
 - i) Not a statement
 - e) Multiply 5x + 2by 3
 - i) Not a statement
 - f) 5x + 3 is an odd integer
 - i) Not a statement
 - g) What an impossible question!
 - i) Not a statement
- 2) Consider the sets A, B, C and D below. Which of the following statements are true? Give an explanation for each false statement.

$$A = \{1, 4, 7, 10, 13, 16, ...\}; B = \{x \in \mathbb{Z}: x \text{ is odd}\}$$

 $C = \{x \in \mathbb{Z}: x \text{ is prime and } x \neq 2\}; D = \{1, 2, 3, 5, 8, 13, 21, 34, 55, ...\}$

- a) $25 \in A$
 - i) True, since an integer n can be found such that 1 + 3n = 25
- b) $33 \in D$
 - i) False, since $33 \notin D$
- c) $22 \notin A \cup D$
 - i) False, since $22 \in A$
- d) $C \subseteq B$
 - i) True, since all prime numbers except 2 are odd
- e) $\emptyset \in B \cap D$
 - i) False, since the neither B or D contains the empty set \emptyset .
- f) 53 ∉ *C*
 - i) False since 53 is a prime thus $53 \in C$
- 3) Which of the following statements are true? Give an explanation for each false statement.
 - a) $\emptyset \in \emptyset$
 - i) False, since the empty set Ø has no elements
 - b) $\emptyset \in \{\emptyset\}$
 - i) True.
 - c) $\{1,3\} = \{3,1\}$
 - i) True (sets are unordered)
 - d) $\emptyset = \{\emptyset\}$
 - i) False since the empty set \emptyset is not equal to the set containing the empty set $\{\emptyset\}$

- e) $\emptyset \subset \{\emptyset\}$
 - i) True
- f) $1 \subseteq \{1\}$
 - i) False since 1 is not a set
- 4) Consider the open sentence P(x): $x(x-1) = 6 \rightarrow x^2 x = 6 : x \in \mathbb{R}$
 - a) For what values of x is P(x) a true statement?
 - i) $\{3, -2\}$
 - b) For what values of x is P(x) a false statement?
 - i) $\mathbb{R} \{3, -2\}$
- 5) For the open sentence P(x): $3x 2 > 4 : x \in \mathbb{Z}$ determine:
 - a) For what values of x is P(x) a true statement?
 - i) $\{x \in \mathbb{Z} : x > 2\}$
 - b) For what values of x is P(x) a false statement?
 - i) $\{x \in \mathbb{Z} : x \le 2\}$
- 6) For the open sentence P(A): $A \subseteq \{1, 2, 3\}$ over $S = P(\{1, 2, 4\})$ determine.
 - a) All $A \in S$ for which P(A) is true
 - i) P(A) is true for all $A \in P(\{1,2\})$
 - b) All $A \in S$ for which P(A) is false
 - i) P(A) is false for all $A \in \{x + \{4\} : x \in P(\{1,2\})\}$
 - c) All $A \in S$ for which $A \cap \{1,2,3\} = \emptyset$
 - i) $A = \{4\}$
- 7) Let P(n): n and n+2 are primes. Be an open statement over the domain \mathbb{N} . Find six positive integers n for which P(n) is true. If $n \in \mathbb{N}$ such that P(n) is true, then the two integers n, n+2 are called twin primes. It has been conjectured that there are infinitely many twin primes.
 - a) $n = \{3, 5, 11, 17, 29, 41, \dots\}$
- 8) Let $P(n): \frac{n^2 + 5n + 6}{2}$ is even
 - a) Find a set S_1 of three integers, such that P(n) is an open sentence over the domain S_1 and P(n) is true for each $n \in S_1$
 - i) $S_1 = \{1, 2, 5\}$
 - b) Find a set S_s of three integers, such that P(n) is an open sentence over the domain S_2 and P(n) is false for each $n \in S_2$
 - i) $S_2 = \{3, 4, 7\}$
- 9) Find an open sentence P(n) over the domain $S = \{3, 5, 7, 9\}$ such that P(n) is true for half of the integers in S and false for the other half.
 - a) P(n): n < 6

- 10) Find two open sentences P(n) and Q(n), both over the domain $S = \{2, 4, 6, 8\}$, such that P(2) and Q(2) are both true, P(4) and Q(4) are both false, P(6) is true and Q(6) is false, while P(8) is false and Q(8) is true.
 - a) $P(n): \frac{n}{2}$ is uneven
 - b) $Q(n): n \in \{2, 8\}$

Section 2: The Negation of a Statement Exercises

- 11) State the negation of each statement.
 - a) $\sqrt{2}$ is a rational number
 - i) $\sqrt{2}$ is not a rational number
 - b) 0 is not a negative integer
 - i) 0 is a negative integer
 - c) 111 is a prime number
 - i) 111 is not a prime number
- 12) Complete the truth table.

Р	Q	~P	~Q
Т	Т	F	F
T	F	F	T
F	Т	Т	F
F	F	T	T

- 13) State the negation of each of the following statements
 - a) The real number r is at most $\sqrt{2}$
 - i) The real number r is larger than $\sqrt{2}$
 - b) The absolute value of the real number a less than 3
 - i) The absolute value of the real number a is at least 3
 - c) Two angles of the triangle are 45°
 - i) At most one of the triangles angles is 45°
 - d) The area of the circle is at least 9π
 - i) The area of the circle is less than 9π
 - e) Two sides of the triangle have the same lengths
 - i) The sides of the triangle are of different lengths
 - f) The point P in the plane lies outside of the circle C
 - i) The point P in the plane lies inside the circle C
- 14) State the negation of each of the following statements
 - a) At least two of my library books are overdue
 - i) At most one of my library books is overdue
 - b) One of my two friends misplaced his homework assignment

- i) One of two my friends did not misplace his homework assignment
- c) No one expected that to happen
 - i) Some expected that to happen
- d) It's not often that my instructor teaches that course
 - i) It's often that my instructor teaches that course
- e) It's surprising that two students received the same exam score
 - i) It's not surprising that two students received the same exam score

Section 3: The Disjunction and Conjunction of Statements Notes

$$P \text{ or } Q \rightarrow P \lor Q$$

 $P \text{ and } Q \rightarrow P \land Q$

Exercises

15) Complete the truth table.

Р	Q	~Q	$P \wedge (\sim Q)$
Т	Т	F	F
Т	F	Т	Т
F	Т	F	F
F	F	Т	F

- 16) For the sets A and B, consider the statements...
 - a) False
 - b) True
 - c) False
 - d) False
 - e) True
- 17) Let P: 15 is odd and Q: 21 is prime
 - a) True
 - b) False
 - c) False
 - d) True
- 18) $P(A): A \cap \{2, 4, 6\} = \emptyset$ and $Q(A): A \neq \emptyset$
 - a) $P(A) \land Q(A) = True \ when \ A \in \{1, 3, 5\}$
 - b) $P(A) \lor \sim Q(A)$) = True when $A \in \{1, 3, 5\}$ or $A = \emptyset$
 - c) $\sim P(A) \land \sim Q(A) = True \ when \ A = \{\}$

Section 4: The Implication

Notes

Table 1 - Implication truth table

Р	Q	P => Q
True	True	True
True	False	False
False	True	True
False	False	True

Exercises

- 19) Consider the statements P: 17 is even and Q: 19 is prime. Write each statement in words and indicate whether it is true or false.
 - a) $\sim P$: 17 is odd (True)
 - b) $P \vee Q$: 17 is even or 19 is prime (True 19 is prime)
 - c) $P \wedge Q$: 17 is even and 19 is prime (False 17 is odd)
 - d) $P \Rightarrow Q$: If 17 is even, then 19 is prime (True 19 is prime)

20) For statements P and Q, construct a truth table for $(P \Rightarrow Q) \Rightarrow (P)$

P => Q	~P	(P => Q) => (~P)
True	False	False
False	False	True
True	True	True
True	True	True

- 21) Consider the statements $P: \sqrt{2}$ is rational and $Q: \frac{22}{7}$ is rational. Write each of the following statements in words and indicate whether it is true or false.
 - a) $P \Rightarrow Q$: If $\sqrt{2}$ is rational, then $\frac{22}{7}$ is rational (True)
 - b) $Q \Rightarrow P$: If $\frac{22}{7}$ is rational, then $\sqrt{2}$ is rational (False $\sqrt{2}$ is not rational)
 - c) $(\sim P) \Rightarrow (\sim Q)$: If $\sqrt{2}$ is irrational, then $\frac{22}{7}$ is irrational (False $-\frac{22}{7}$ is not irrational)
 - d) $(\sim Q) \Rightarrow (\sim P)$: If $\frac{22}{7}$ is irrational, then $\sqrt{2}$ is irrational (True $\sqrt{2}$ is irrational)
- 22) Consider the statements:

$$P:\sqrt{2}$$
 is rational. $Q:\frac{2}{3}$ is rational. $R:\sqrt{3}$ is rational.

- a) $(P \land Q) \Rightarrow R$: If $\sqrt{2}$ and $\frac{2}{3}$ are rational, then $\sqrt{3}$ is rational (True $\sqrt{2}$ is not rational)
- b) $(P \land Q) \Rightarrow (\sim R)$: If $\sqrt{2}$ and $\frac{2}{3}$ are rational, then $\sqrt{3}$ is irrational (True $\sqrt{2}$ is not rational)
- c) $((\sim P) \land Q) \Rightarrow R$: If $\sqrt{2}$ is irrational and $\frac{2}{3}$ is rational, then $\sqrt{3}$ is rational (False $\sqrt{3}$ is not rational)

- d) $(P \lor Q) \Rightarrow (\sim R)$: If $\sqrt{2}$ or $\frac{2}{3}$ is rational, then $\sqrt{3}$ is irrational (True $\sqrt{3}$ is irrational)
- 23) Suppose that $\{S_1, S_2\}$ is a partition of a set S and $x \in S$. Which of the following are true?
 - a) If we know that $x \notin S_1$ then x must belong to S_2 . (True)
 - b) It's possible that $x \notin S_1$ and $x \notin S_2$. (False)
 - c) Either $x \notin S_1$ or $x \notin S_2$. (True)
 - d) Either $x \in S_1$ or $x \in S_2$. (True)
 - e) It's possible that $x \in S_1$ and $x \in S_2$. (False)
- 24) Two sets A and B are nonempty disjoint subsets of a set S. If $x \in S$, then which of the following are true?
 - a) It's possible that $x \in A \cap B$. (False A and B are disjoint)
 - b) If x is an element of A, then x can't be an element of B. (True A and B are disjoint)
 - c) If x is not an element of A, then x must be an element of B. (False It is possible that $A \cup B \neq S$)
 - d) It's possible that $x \notin A$ and $x \notin B$. (True It's possible that $A \cup B \neq S$)
 - e) For each nonempty set C, either $x \in A \cap C$ or $x \in B \cap C$. (False It is possible that $A \cup B \neq S$)
 - f) For some nonempty set C, both $x \in A \cup C$ and $x \in B \cup C$. (True if C contains x, False otherwise)
- 25) A college student makes the following statement: If I receive an A in both Calculus I and Discrete Mathematics this semester, then I'll take either Calculus II or Computer Programming this summer.

P: A in Calculus I and Discrete Mathematics Q: Takes Calculus II or Computer Programming

- a) P is false and Q is true. (True)
- b) P is true and Q is false. (False)
- c) P is false and Q is true. (True)
- d) P is true and Q is true. (True)
- e) P is false and Q is false. (True)
- 26) A college student makes the following statement: If I don't see my advisor today, then I'll see her tomorrow.

P: Don't see advisor today

0: See advisor tomorrow

- a) P is true and Q is false. (False)
- b) P is false and Q is true. (True)
- c) P is true and Q is true AND P is false and Q is false. (True)
- d) P is true and Q is false. (False)
- 27) The instructor of a computer science class announces...
 - a) Alice => Ben
 - b) Ben => Cindy
 - c) Cindy => Don

- d) The two students who attend are Cindy and Don
- 28) Consider the statement (implication): If Bill takes Sam to the concert, then Sam will take Bill to dinner.

P: Bill takes Sam to concert Q: Sam takes bill to dinner

- a) Q only if P. (False P can be false and Q true and the implication still holds)
- b) Either ${}^{\sim}P$ or Q. (False The ${}^{\sim}P$ \wedge Q scenario is also true)
- c) P is true. (False Q doesn't happen)
- d) P is true and Q is true. (True)
- e) P is true and Q is false. (False)
- f) P is false. (True)
- g) P is false. (True)
- 29) Let P and Q be statements. Which of the following implies that $P \vee Q$ is false?
 - a) $(\sim P) \vee (\sim Q)$ is false. (False P or Q can be true)
 - b) $(\sim P) \vee Q$ is true. (False Q can be true)
 - c) $(\sim P) \land (\sim Q)$ is true. (True both P and Q must be false)
 - d) $Q \Rightarrow P$ is true. (False P or Q can be true)
 - e) $P \wedge Q$ is false. (False one of them can be true)

Section 5: More on Implications

Notes

 \mathbb{R} : Real numbers (all real numbers)

 \mathbb{Q} : Rational numbers

 \mathbb{N} : Natural numbers (positive integers, starting from 1) \mathbb{Z} : Integers (positive and negative including 0)

Exercises

- 30) Consider the open sentences P(n): 5n + 3 is prime. And Q(n): 7n + 1 is prime. Both over the domain \mathbb{N} . State in words.
 - a) $P(n) \Rightarrow Q(n)$: If 5n + 3 is prime, then 7n + 1 is prime.
 - b) $P(2) \Rightarrow Q(2)$: If 13 is prime, then 15 is prime. (False 15 is not prime)
 - c) $P(6) \Rightarrow Q(6)$: if 33 is prime, then 43 is prime. (True 33 is not prime)
- 31) In each of the following, two open sentences P(x) and Q(x) over a domain S are given.

Determine all $x \in S$ for which $P(x) \Rightarrow Q(x)$ is a true statement.

- a) $P(x): |x| = 4; Q(x): x = 4; S = \{-4, -3, 1, 4, 5\}$
 - i) $S_{true} = \{-3, 1, 4, 5\}$
- b) P(x): $x^2 = 16$; Q(x): |x| = 4; $S = \{-6, -4, 0, 3, 4, 8\}$
 - i) $S_{true} = \{-6, -4, 0, 3, 4, 8\}$ aka true for all $x \in S$
- c) $P(x): x > 3; Q(x): 4x 1 > 12; S = \{0, 2, 3, 4, 6\}$
 - i) $S_{true} = \{0, 2, 3, 4, 6\}$ aka true for all $x \in S$

32) In each of the following, two open sentences P(x) and Q(x) over a domain S are given.

Determine all $x \in S$ for which $P(x) \Rightarrow Q(x)$ is a true statement.

- a) $P(x): x 3 = 4; Q(x): x \ge 8; S = \mathbb{R}$
 - i) True for $x \neq 7$
- b) $P(x): x^2 \ge 1; Q(x): x \ge 1; S = \mathbb{R}$
 - i) True for x > -1
- c) $P(x): x^2 \ge 1; Q(x): x \ge 1; S = \mathbb{N}$
 - i) True for all $x \in S$
- d) $P(x): x \in [-1, 2]; Q(x): x^2 \le 2; S = [-1, 1]$
 - i) True for all $x \in S$ since Q(x) is true for all $x \in S$
- 33) In each of the following, two open sentences P(x, y) and Q(x, y) are given, where the domain of both x and y is \mathbb{Z} . Determine the truth value of $P(x, y) \Rightarrow Q(x, y)$ for the given values of x and ...
 - a) $P(x,y): x^2 y^2 = 0$; Q(x,y): x = y; $(x,y) \in \{(1,-1), (3,4), (5,5)\}$
 - i) True for $(x, y) \in \{(3,4), (5,5)\}$
 - b) P(x,y): |x| = |y|; Q(x,y): x = y; $(x,y) \in \{(1,2), (2,-2), (6,6)\}$
 - i) True for $(x, y) \in \{(1,2), (6,6)\}$
 - c) $P(x,y): x^2 + y^2 = 1; Q(x,y): x + y = 1; (x,y) \in \{(1,-1), (-3,4), (0,-1), (1,0)\}$
 - i) True for $(x, y) \in \{(1, -1), (-3, 4), (1, 0)\}$
- 34) Each of the following describes an implication. Write the implication in the form "if, then."
 - a) If a point on the straight line is given by 2y + x 3 = 0 and x is an integer, then y an integer.
 - b) If n is odd then n^2 is odd.
 - c) If 3n + 7 is even and $n \in \mathbb{Z}$, then n is odd.
 - d) If f(x) = cosx, then f'(x) = -sinx
 - e) If the circumference of C is 4π , then the area of C is 4π
 - f) If n^3 is even, then n is even.

Section 6: The Biconditional

Notes

Biconditional:
$$(P \Rightarrow Q) \land (Q \Rightarrow P) = P \Leftrightarrow Q$$

Р	Q	P => Q	Q => P	$P \Leftrightarrow Q$
Т	Т	Т	Т	Т
Т	F	F	Т	F
F	T	Т	F	F
F	F	Т	T	T

The biconditional $P \Leftrightarrow Q$ is often stated as: P = Q

- 35) Let P: 18 is odd and Q: 25 is even. State $P \Leftrightarrow Q$ in words. Is $P \Leftrightarrow Q$ true or false?
 - a) 18 is odd if and only if 25 is even.
 - b) True (both are false)
- 36) Let P(x): x is odd and Q(x): x^2 is odd. Be open sentences over the domain \mathbb{Z} . State $P(x) \Leftrightarrow Q(x)$ in two ways: (1) using "if and only if" and (2) using "necessary and sufficient".
 - a) x is odd if and only if x^2 is odd
 - b) x being odd is a necessary and sufficient condition for x^2 being odd
- 37) For the open sentences P(x): |x-3| < 1; Q(x): $x \in \{2,4\}$. Over the domain \mathbb{R} , state the biconditional $P(x) \Leftrightarrow Q(x)$ in two different ways.
 - a) |x 3| < 1 if and only if $x \in \{2,4\}$
 - b) The condition |x-3| < 1 is necessary and sufficient for $x \in \{2,4\}$
- 38) Consider the open sentences: P(x): x = -2; Q(x): $x^2 = 4$ over the domain $S = \{-2, 0, 2\}$. State each of the following in words and determine all values of $x \in S$ for which the resulting statement is true.
 - a) $\sim P(x)$
 - i) $x \neq -2$
 - ii) True for all $x \in \{0, 2\}$
 - b) $P(x) \vee Q(x)$
 - i) $x = -2 \text{ or } x^2 = 4$
 - ii) True for all $x \in \{-2, 2\}$
 - c) $P(x) \wedge Q(x)$
 - i) x = -2 and $x^2 = 4$
 - ii) True for x = -2
 - d) $P(x) \Rightarrow Q(x)$
 - i) If x = -2 then $x^2 = 4$
 - ii) True for all $x \in S$
 - e) $Q(x) \Rightarrow P(x)$
 - i) If $x^2 = 4$ then x = -2
 - ii) True for $x \in \{-2, 0\}$
 - f) $P(x) \Leftrightarrow Q(x)$
 - i) x = -2 if and only if $x^2 = 4$
 - ii) True for all $x \in \{-2, 0\}$
- 39) For the following open sentences P(x) and Q(x) over domain S, determine all values of $x \in S$ for which the biconditional $P(x) \Leftrightarrow Q(x)$ is true.
 - a) P(x): |x| = 4; Q(x): x = 4; $S = \{-4, -3, 1, 4, 5\}$
 - i) True for all $x \in \{-3, 1, 4, 5\}$
 - ii) Alt. notation: True for all $x \in S \{-4\}$
 - b) $P(x): x \ge 3$; Q(x): 4x 1 > 12; $S = \{0,2,3,4,6\}$
 - i) True for all $x \in \{0, 2, 4, 6\}$

- ii) Alt. notation: True for all $x \in S \{3\}$
- c) $P(x): x^2 = 16; Q(x): x^2 4x = 0; S = \{-6, -4, 0, 3, 4, 8\}$
 - i) True for all $x \in \{-6, 3, 4, 8\}$
 - ii) Alt. notation: True for all $x \in S \{-4, 0\}$
- 40) In each of the following, two open sentences P(x,y) and Q(x,y) are given, where the domain of both x and y is \mathbb{Z} . Determine the truth value of $P(x,y) \Leftrightarrow Q(x,y)$ for the given values of x and
 - a) $P(x,y): x^2 y^2 = 0; Q(x,y): x = y; (x,y) \in \{(1,-1), (3,4), (5,5)\}$
 - i) True for all $(x, y) \in \{(3,4), (5,5)\}$
 - b) $P(x,y): |x| = |y|; Q(x,y): x = y; (x,y) \in \{(1,2), (2,-2), (6,6)\}$
 - i) True for all $(x, y) \in \{(1,2), (6,6)\}$
 - c) $P(x,y): x^2 + y^2 = 1; Q(x,y): x + y = 1; (x,y) \in \{(1,-1), (-3,4), (0,-1), (1,0)\}$
 - i) True for all $(x, y) \in \{(1, -1), (1, 0)\}$
- 41) Determine all values of n in the domain $S = \{1,2,3\}$ for which the following is a true statement: A necessary and sufficient condition for $\frac{n^3+n}{2}$ to be even is that $\frac{n^2+n}{2}$ is odd.
 - - i) $\frac{2}{2}$ is even and $\frac{2}{2}$ is odd. (False)

 - i) $\frac{10}{2}$ is even and $\frac{6}{2}$ is odd. (False) c) n=3
 - - i) $\frac{90}{3}$ is even and $\frac{12}{3}$ is odd (True both are false)
- 42) Determine all values of n in the domain $S = \{2,3,4\}$ for which the following is a true statement: The integer $\frac{n(n-1)}{2}$ is odd if and only if $\frac{n(n+1)}{2}$ is even.
 - a) n = 2
 - i) $\frac{2}{2}$ is odd if and only if $\frac{6}{2}$ is even. (False)
 - - i) $\frac{6}{2}$ is odd if and only if $\frac{12}{2}$ is even. (True)
 - - i) $\frac{12}{2}$ is odd if and only if $\frac{20}{2}$ is even. (False)

43) Let $S = \{1,2,3\}$. Consider the following open sentences over the domain S. Determine three distinct elements a, b, c in S such that...

$$P(n): \frac{(n+4)(n+5)}{2} \text{ is odd}$$

$$Q(n)$$
: $2^{n-2} + 3^{n-2} + 6^{n-2} > (2.5)^{n-1}$

- a) $P(a) \Rightarrow Q(a)$ is false
 - i) P(1) is true and Q(1) is false
 - ii) a = 1
- b) $Q(b) \Rightarrow P(b)$ is false
 - i) P(3) is false and Q(3) is true
 - ii) b = 3
- c) $P(a) \Leftrightarrow Q(a)$ is true
 - i) P(2) is true and Q(2) is true
 - ii) c = 2
- 44) Let $S = \{1,2,3,4\}$. Consider the following open sentences over the domain S. Determine four distinct elements a, b, c, d in S such that...

$$P(n): \frac{n(n-1)}{2}$$
 is even
 $Q(n): 2^{n-2} - (-2)^{n-2}$ is even
 $R(n): 5^{n-1} + 2^n$ is prime

Table 2 - Results of P(n), Q(n) and R(n) given n in $\{1, 2, 3, 4\}$

	I		
n	P(n)	Q(n)	R(n)
	, ,	, ,	, ,
1	0	1	3
	True	False	True
2	1	0	9
	False	True	False
3	3	4	33
	False	True	False
4	6	0	141
	True	True	False

- a) $P(a) \Rightarrow Q(a)$ is false
 - i) $a \in \{1\} \to a = 1$
- b) $Q(b) \Rightarrow P(b)$ is true
 - i) $b \in \{1, 4\} \rightarrow b = 4$
- c) $P(c) \Leftrightarrow R(c)$ is true
 - i) $c \in \{1, 2, 3\} \rightarrow c = 2$
- d) $Q(d) \Leftrightarrow R(d)$ is false
 - i) $d \in \{1, 2, 3, 4\} \rightarrow d = 3$

- 45) Let P(n): $2^n 1$ is a prime; Q(n): n is a prime. Be open sentences over the domain $S = \{2,3,4,5,6,11\}$. Determine all values of $n \in S$ for which $P(n) \Leftrightarrow Q(n)$ is a true statement.
 - a) $2: 2^2 1$ is a prime if and only if 2 is a prime
 - i) True (both statements are true)
 - b) $3: 2^3 1$ is a prime if and only if 3 is a prime
 - i) True (both statements are true)
 - c) $4:2^4-1$ is a prime if and only if 4 is a prime
 - i) True (both statements are false)
 - d) $5: 2^5 1$ is a prime if and only if 5 is a prime
 - i) True (both statements are true)
 - e) $6: 2^6 1$ is a prime if and only if 6 is a prime
 - i) True (both statements are false)
 - f) $11:2^{11}-1$ is a prime if and only if 11 is a prime
 - i) False $(2^{11} 1)$ is not a prime but 11 is)
 - g) Conclusion: True for all $n \in S \{11\}$

Section 7: Tautologies and Contradictions

<u>Notes</u>

Tautology: A compound statement which is always true, e. g. $P \lor \sim P$ Contradiction: A compound statement which is always false, e. g. $P \land \sim P$

Exercises

46) For statements P and Q, show that $P \Rightarrow (P \lor Q)$ is a tautology

Р	Q	$(P \lor Q)$	$P \Rightarrow (P \lor Q)$
Т	Т	Т	Т
Т	F	Т	Т
F	Т	Т	Т
F	F	F	Т

47) For statements P and Q, show that $(P \land (\sim Q)) \land (P \land Q)$ is a contradiction

Р	Q	$P \wedge Q$	$P \wedge (\sim Q)$	$(P \land (\sim Q)) \land (P \land Q)$
Т	Т	Т	F	F
Т	F	F	Т	F
F	Т	F	F	F
F	F	F	F	F

- 48) For statements P and Q, show that $(P \land (P \Rightarrow Q)) \Rightarrow Q$ is a tautology. Then state the compound statement in words. (This is an important logical argument form, called **modus ponens.**)
 - a) If P is true and P implies Q, then Q is true.

Р	Q	$P \Rightarrow Q$	$P \wedge (P \Rightarrow Q)$	$(P \land (P \Rightarrow Q)) \Rightarrow Q$
Т	Т	T	Т	T
Т	F	F	F	T
F	Т	T	F	Т
F	F	T	F	T

- 49) For statements P, Q and R, show that $((P \Rightarrow Q) \land (Q \Rightarrow R)) \Rightarrow (P \Rightarrow R)$ is a tautology. Then state this compound statement in words. (This is another important logical argument form, called **syllogism**.)
 - a) If P implies Q and Q implies R, then P implies R

	a) in implies & and & implies it, then i implies it						
Р	Q	R	$(P \Rightarrow Q)$	$(Q \Rightarrow R)$	$(P \Rightarrow Q) \land (Q \Rightarrow R)$	$(P \Rightarrow R)$	$((P \Rightarrow Q) \land (Q \Rightarrow R)) \Rightarrow \cdots$
Т	Т	Т	Т	T	T	T	Т
Т	Т	F	T	F	F	F	Т
Т	F	Т	F	T	F	T	Т
Т	F	F	F	T	F	F	Т
F	Т	Т	T	T	T	T	Т
F	Т	F	T	F	F	T	Т
F	F	Т	Т	T	T	T	Т
F	F	F	T	T	T	T	Т

- 50) Let R and S be compound statements involving the same compound statements. If R is a tautology and S is a contradiction, then what can be said of the following?
 - a) $R \vee S$ is true, since R is always true
 - b) $R \wedge S$ is false, since S is always false
 - c) $R \Rightarrow S$ is false, since 'true \Rightarrow false' is false
 - d) $S \Rightarrow R$ is true, since 'false $\Rightarrow true'$ is true

Section 8: Logical Equivalence

Notes

Logical equivalence: $P \Rightarrow Q \equiv (\sim P) \lor Q$

- 51) For statements P and Q, the implication $(\sim P) \Rightarrow (\sim Q)$ is called the inverse of the implication $P \Rightarrow Q$.
 - a) Use a truth table to show that these statements are not logically equivalent

Р	Q	$P \Rightarrow Q$	$(\sim P) \Rightarrow (\sim Q)$
Т	Т	Т	T
Т	F	F	T
F	Т	Т	F
F	F	Т	Т

b) Find another implication that is logically equivalent to $(\sim P) \Rightarrow (\sim Q)$ and verify your answer

i)
$$P \lor (\sim Q) \equiv Q \Rightarrow P \equiv (\sim P) \Rightarrow (\sim Q)$$

Р	Q	$(\sim P) \Rightarrow (\sim Q)$	<i>P</i> ∨ (~ <i>Q</i>)	$Q \Rightarrow P$
Т	Τ	T	T	T
Т	F	T	T	Т
F	Т	F	F	F
F	F	Т	Т	Т

- 52) Let P and Q be statements.
 - a) Is $\sim (P \vee Q)$ logically equivalent to $(\sim P) \vee (\sim Q)$? Explain.
 - i) They are logically equivalent since each statement is only true when both Q and P are false, and true otherwise.
 - b) What can you say about the biconditional $\sim (P \vee Q) \Leftrightarrow ((\sim P) \vee (\sim Q))$?
 - i) The biconditional is a tautology since $\sim (P \vee Q) \equiv ((\sim P) \vee (\sim Q))$
- 53) For statements P, Q and R, use a truth table to show that each of the following pairs of statements is logically equivalent.

a) $(P \land Q) \Leftrightarrow P \text{ and } P \Rightarrow Q$

		<u> </u>	C	
Р	Q	$P \wedge Q$	$(P \land Q) \Leftrightarrow P$	$P \Rightarrow Q$
Т	Т	Т	Т	Т
Т	F	F	F	F
F	Т	F	Т	Т
F	F	F	Т	Т

 $P \Rightarrow (Q \lor R) \ and \ (\sim Q) \Rightarrow ((\sim P) \lor R)$

Р	Q	R	$Q \vee R$	$P \Rightarrow (Q \lor R)$	$(\sim P) \vee R$	$(\sim Q) \Rightarrow ((\sim P) \vee R)$		
Т	Τ	Τ	Т	T	Т	Т		
Т	Т	F	T	T	F	T		
Т	F	Т	Т	Т	Т	Т		
Т	F	F	F	F	F	F		
F	Т	Т	T	Т	Т	Т		
F	Т	F	Т	Т	Т	Т		
F	F	Т	T	T	Т	T		
F	F	F	F	Т	Т	T		

54) For statements P and Q, show that $(\sim Q) \Rightarrow (P \land (\sim P))$ and Q are logically equivalent

Р	Q	$P \wedge (\sim P)$	$(\sim Q) \Rightarrow (P \land (\sim P))$
Т	Т	F	Т
Т	F	F	F
F	T	F	Т
F	F	F	F

55) For statements P, Q and R, show that $(P \lor Q) \Rightarrow R$ and $(P \Rightarrow R) \land (Q \Rightarrow R)$ are logicall	у
eguivalent	

Р	Q	R	$P \lor Q$	$(P \lor Q) \Rightarrow R$	$P \Rightarrow R$	$Q \Rightarrow R$	$(P \Rightarrow R) \land (Q \Rightarrow R)$
Т	Т	Т	T	Т	T	Т	Т
Т	Т	F	T	F	F	F	F
Т	F	Т	T	T	T	T	Т
Т	F	F	T	F	F	Т	F
F	Т	Т	T	Т	T	Т	Т
F	Т	F	T	F	T	F	F
F	F	Т	F	Т	Т	T	Т
F	F	F	F	T	T	T	Т

- 56) Two compound statements S and T are composed of the same component statements P, Q and R. If S and T are not logically equivalent, then what can we conclude from this?
 - a) $S \Leftrightarrow T$ is not a tautology
- 57) Five compound statements S_1 , S_2 , S_3 , S_4 and S_5 are all composed of the same component statements P and Q whose truth tables have identical first and fourth rows. Show that at least two of these five statements are logically equivalent.

S1	S2	S3	S4	S5
Т	Т	Т	Т	Т
Т	Т	F	F	Х
Т	F	Т	F	Х
F	F	F	F	F

Section 9: Some Fundamental Properties of Logical Equivalence

Notes

Theorem 18

- (1) Commutative Laws
 - (a) $P \lor Q \equiv Q \lor P$
 - (b) $P \wedge Q \equiv Q \wedge P$
- (2) Associative Laws

(a)
$$P \lor (Q \lor R) \equiv (P \lor Q) \lor R$$

(b)
$$P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$$

(3) Distributive Laws

(a)
$$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$$

(b)
$$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$$

(4) De Morgan's Laws

(a)
$$\sim (P \vee Q) \equiv (\sim P) \wedge (\sim Q)$$

(b)
$$\sim (P \land Q) \equiv (\sim P) \lor (\sim Q)$$

Theorem 21

(1) For statements P and Q,

(a)
$$\sim (P \Rightarrow Q) \equiv P \land (\sim Q)$$

(b)
$$\sim (P \Leftrightarrow Q) \equiv (P \land (\sim Q)) \lor (Q \land (\sim P))$$

- 58) Verify the following laws stated in Theorem 18:
 - a) Let P, Q and R be statements. Then $P \vee (Q \wedge R) \equiv (P \vee Q) \wedge (P \vee R)$
 - i) The first statement is true if P or Q and R, or all three are true. Equivalently statement two is true only if both of the parenthesized statements are true. This requires either P to be true (since a P is in both statements), or Q and R to be true (since there is one of each in the statements). Thus the second statement is also true if P or Q and R, or all three are true.
 - b) Let P and Q be statements. Then $\sim (P \vee Q) \equiv (\sim P) \wedge (\sim Q)$
 - i) The first statement is true only if P and Q are false. We can easily see that this is the case for statement two as well.
- 59) Write negations of the following open sentences.
 - a) Either x=0 or y=o
 - i) Using De Morgan's Law (a): Both $x \neq 0$ and $y \neq 0$
 - b) The integers a and b are both even
 - i) Using De Morgan's Law (b): Either the integer a is odd or the integer b is odd.
- 60) Consider the implication: If x and y are even, then xy is even.
 - a) State the implication using "only if": x and y are even only if xy is even
 - b) State the converse of the implication: xy is even only if x and y are even
 - c) State the implication as a disjunction: x and y are odd or xy is even

Theorem 17:
$$P \Rightarrow Q \equiv (\sim P) \vee Q$$

- d) State the negation of the implication as a conjunction: x and y are even and xy is odd
- 61) For a real number x, let P(x): $x^2 = 2$ and Q(x): $x = \sqrt{2}$. State the negation of the biconditional $P \Leftrightarrow Q$ in words.
 - a) Biconditional: $x^2 = 2$ if and only if $x = \sqrt{2}$
 - b) Negation: $\sim (P \Leftrightarrow Q) \equiv (P \land (\sim Q)) \lor (Q \land (\sim P))$, using De Morgan's Law (b)
 - c) Result: Either both $x^2 = 2$ and $x \neq \sqrt{2}$, or both $x = \sqrt{2}$ and $x^2 \neq 2$
- 62) Let P and Q be statements. Show that $[(P \lor Q) \land \sim (P \land Q)] \equiv \sim (P \Leftrightarrow Q)$

Р	Q	$(P \lor Q)$	$(P \wedge Q)$	$(P \lor Q) \land \sim (P \land Q)$	$\sim (P \Leftrightarrow Q)$
Τ	Т	T	Т	F	F
Τ	F	T	F	Т	T
F	Т	Т	F	Т	Т
F	F	F	F	F	F

- 63) Let $n \in \mathbb{Z}$. For which implication is its negation the following? The integer 3n+4 is odd and 5n-6 is even
 - a) The negated statement has the form $P \wedge Q$
 - i) P: 3n + 4 is odd; Q: 5n 6 is even
 - b) Using Theorem 21 (a): $\sim (P \Rightarrow Q) \equiv P \land (\sim Q)$
 - c) Thus the original implication is: If 3n + 4 is odd, then 5n 6 is odd.

- 64) For which biconditional is its negation the following? n^3 and 7n + 2 are odd or n^3 and 7n + 2 are even
 - a) The negated statement has the form: $(P \land (\sim Q)) \lor (Q \land (\sim P))$
 - i) $P: n^3$ is odd; 0: 7n + 2 is even
 - b) Using Theorem 21 (b): $\sim (P \Leftrightarrow Q) \equiv (P \land (\sim Q)) \lor (Q \land (\sim P))$
 - c) Thus the original biconditional is: n^3 is odd if and only if 7n + 2 is even

Section 10: Quantified Statements

- 65) Let S denote the set of odd integers and let P(x): $x^2 + 1$ is even; Q(x): x^2 is even be open sentences over the domain S. State $\forall x \in S, P(x)$ and $\exists x \in S, Q(x)$ in words.
 - a) For every odd integer x, the integer $x^2 + 1$ is even.
 - b) An odd integer x exists, such that the integer x^2 is even.
- 66) Define an open sentence R(x) over some domain S and then state $\forall x \in S, R(x)$ and $\exists x \in S, R(x)$
 - a) Definitions: R(x): 2x + 1 is prime; S: The set of integers \mathbb{Z}
 - b) $\forall x \in S, R(x)$: For every integer x, the integer 2x + 1 is prime
 - c) $\exists x \in S, R(x)$: For some integer x, the integer 2x + 1 is prime
- 67) State the negations of the following quantified statements, where all sets are subsets of some universal set U.
 - a) $\forall A \in U, A \cap \overline{A} = \emptyset$
 - i) Negation: $\exists A \in U, A \cap \overline{A} \neq \emptyset$
 - b) $\exists A \in U, \bar{A} \subseteq A$
 - i) Negation: $\forall A \in U, \bar{A} \nsubseteq A$
- 68) State the negations of the following quantified statements:
 - a) For every rational number r, the number 1/r is rational.
 - i) There exists a rational number r, such that the number 1/e is not rational.
 - b) There exists a rational number r, such that $r^2 = 2$.
 - i) For every rational number r, $r^2 \neq 2$
- 69) Let P(n): $\frac{5n-6}{3}$ is an integer. Be an open sentence over the domain \mathbb{Z} . Determine, with explanations, whether the following statements are true.
 - a) $\forall n \in \mathbb{Z}, P(n)$
 - i) False, since "P(1): $-\frac{1}{2}$ is an integer" is false.
 - b) $\exists n \in \mathbb{Z}, P(n)$
 - i) True, since "P(3): 3 is an integer" is true.
- 70) Determine the truth value of each of the following statements.
 - a) $\exists x \in \mathbb{R}, x^2 x = 0$; True (e.g. $1^2 1 = 0$)

- b) $\forall n \in \mathbb{N}, n+1 \ge 2$; True (\mathbb{N} is all positive integers ≥ 1 and $1+1 \ge 2$)
- c) $\forall x \in \mathbb{R}, \sqrt{x^2} = x$; False (False for all negative numbers)
- d) $\exists x \in \mathbb{Q}, 3x^2 27 = 0$; True (for -3 and 3)
- e) $\exists x \in \mathbb{R}, \exists y \in \mathbb{R}, x + y + 3 = 8$; True (e.g. x = 2 and y = 3)
- f) $\forall x, y \in \mathbb{R}, x + y + 3 = 8$; False (e.g. $1 + 1 + 3 \neq 8$)
- g) $\exists x, y \in \mathbb{R}, x^2 + y^2 = 9$; True (e.g. $1^2 + 3^2 = 9$)
- h) $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x^2 + y^2 = 9$; False (e.g. $1^2 + 1^2 \neq 9$)
- 71) The statement: "For every integer m, either $m \le 1$ or $m^2 \ge 4$ " can be expressed using a quantifier as: $\forall m \in \mathbb{Z}, m \le 1$ or $m^2 \ge 4$. Do this for the following two statements.
 - a) There exists integers a and b such that both ab < 0 and a + b > 0.
 - i) $\exists a, b \in \mathbb{Z}, ab < 0 \text{ and } a + b > 0$
 - b) For all real numbers x and y, $x \neq y$ implies that $x^2 + y^2 > 0$.
 - i) $\forall x, y \in \mathbb{R}, (x \neq y) \Rightarrow (x^2 + y^2 > 0)$
 - c) Express in words the negations of the statements in (a) and (b).
 - i) For all integers a and b, either $ab \ge 0$ or $a + b \le 0$. (De Morgan's Law b)
 - ii) Real numbers x and y exists, such that $x \neq y$ and $x^2 + y^2 \leq 0$. (Theorem 21)
 - d) Using quantifiers, express in symbols the negations of the statements in both (a) and (b).
 - i) $\forall a, b \in \mathbb{Z}, ab \ge 0 \text{ or } a + b \le 0$
 - ii) $\exists x, y \in \mathbb{R}, x \neq y \text{ and } x^2 + y^2 \leq 0$
- 72) Let P(x) and Q(x) be open sentences where the domain of the variable x is S. Which of the following implies that $(\sim P(x)) \Rightarrow Q(x)$ is false for some $x \in S$?
 - a) $P(x) \wedge Q(x)$ is false for all $x \in S$.
 - i) This does not, e.g. P can be true and Q false for all $x \in S$, thus the original statement would never be false.
 - b) P(x) is true for all $x \in S$.
 - i) This does not, since the original statement would always be true.
 - c) Q(x) is true for all $x \in S$.
 - i) This does not, since the original statement would always be true.
 - d) $P(x) \vee Q(x)$ is false for some $x \in S$.
 - i) **This**, since this implies that P and Q will be false at the same time for some $x \in S$, which in turn implies that the original statement will be false for some (since true \Rightarrow false is false).
 - e) $P(x) \land (\sim Q(x))$ is false for all $x \in S$.
 - i) This does not, since it just implies that (P, Q) is never (true, false), which means that the original statement is never $false \Rightarrow false$ (which is true for implications).
- 73) Let P(x) and Q(x) be open sentences where the domain of the variable x is T. Which of the following implies that $P(x) \Rightarrow Q(x)$ is true for all $x \in T$?
 - a) $P(x) \land Q(x)$ is false for all $x \in S$.
 - i) This does not, since it is possible that P is true and Q is false.
 - b) Q(x) is true for all $x \in S$.
 - i) This, since the implication will always be true.
 - c) P(x) is false for all $x \in S$.

- i) This, since the implication will always be true.
- d) $P(x) \land (\sim Q(x))$ is true for some $x \in S$.
 - i) This does not (It is the negation of the original implication).
- e) P(x) is true for all $x \in S$.
 - i) This does not, since Q may be false and thus the original implication is false.
- f) $(\sim P(x)) \land (\sim Q(x))$ is false for all $x \in S$.
 - i) This does not, since this statement is false even though both P and Q are false.
- 74) Consider the open sentence: P(x, y, z): $(x 1)^2 + (y 2)^2 + (z 2)^2 > 0$. Where the domain of each of the variables x, y and z is \mathbb{R} .
 - a) Express the quantified statement $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, \forall z \in \mathbb{R}, P(x, y, z)$ in words.
 - i) For all real numbers x, y and z, $(x-1)^2 + (y-2)^2 + (z-2)^2 > 0$.
 - b) Is the quantified statement in (a) true or false? Explain.
 - i) It is false since P(1,2,2) = 0
 - c) Express the negation of the quantified statement in (a) in symbols.
 - i) $\exists x, y, z \in \mathbb{R}, \sim P(x, y, z)$
 - d) Express the negation of the quantified statement in (a) in word.
 - i) Real numbers x, y and z exists, such that $(x-1)^2 + (y-2)^2 + (z-2)^2 \le 0$
 - e) Is the negation of quantified statement in (a) true or false? Explain.
 - i) It is true since the original statement was false. $(P(1,2,2) \le 0)$
- 75) Consider the quantified statement: For every $s \in S$ and $t \in S$, st 2 is prime. Where the domain $S = \{3,5,11\}$ and P(s,t): st 2 is prime.
 - a) Express this quantified statement in symbols.
 - i) $\forall s, t \in S, P(s, t)$
 - b) Is the quantified statement (a) true or false? Explain.
 - i) P(3,3) = P(3,3) = 7 is prime (true)
 - ii) P(3,5) = P(5,3) = 13 is prime (true)
 - iii) P(3,11) = P(11,3) = 31 is prime (true)
 - iv) P(5,11) = P(11,5) = 53 is prime (true)
 - v) P(11,11) = P(11,11) = 119 is prime (false)
 - vi) In summary: the quantified statement is true for all combinations of s and t except (11,11), thus the statement is false.
 - c) Express the negation in symbols.
 - i) $\exists s, t \in S, \sim (P(s, t))$
 - d) Express the negation in words.
 - i) Numbers s and t in the domain S exists, such that st 2 is not prime.
 - e) Is the negation true or false? Explain.
 - i) It is true since the original is false ("P(11,11) is not prime" is true)
- 76) Let A be the set of circles in the plane with center (0, 0) and let B be the set of circles in the plane with center (1, 1). Furthermore, let $P(C_1, C_2)$: C_1 and C_2 have exactly two points in common. Be an open sentence where the domain of C_1 is A and the domain of C_2 is B.
 - a) Express the following quantified statement in words: $\forall C_1 \in A, \exists C_2 \in B, P(C_1, C_2)$.

- i) For every circle C_1 in the plane with center (0, 0) there exists some circle C_2 in the plane with center (1, 1), such that C_1 and C_2 have exactly two points in common.
- b) Express the negation of the statement in symbols.
 - i) $\exists C_1 \in A, \forall C_2 \in B, (\sim P(C_1, C_2))$
- c) Express the negation in words.
 - i) A circle C_1 in the plane with center (0, 0) exists, such that every circle C_2 in the plane with center (1,1), C_1 and C_2 have exactly two points in common.
- 77) For a triangle T, let r(T) denote the ratio of the length of the longest side of T to the length of the smallest side of T. Let A denote the set of all triangles and let $P(T_1, T_2)$: $r(T_2) \ge r(T_1)$. Be an open sentence where the domain of both T_1 and T_2 is A.
 - a) Express the following quantified statement in words: $\exists T_1 \in A, \forall T_2 \in A, P(T_1, T_2)$
 - i) There exists a triangle T_1 such that for every triangle T_2 , $r(T_2) \ge r(T_1)$.
 - b) Express the negation in symbols.
 - i) $\forall T_1 \in A, \exists T_2 \in A, \sim P(T_1, T_2)$
 - c) Express the negation in words.
 - i) For every triangle T_1 , there exists a triangle T_2 such that $r(T_2) < r(T_1)$.
- 78) Consider the open sentence P(a,b): $\frac{a}{b} < 1$. Where the domain of a is $A = \{2,3,5\}$ and the domain of b is $B = \{2,4,6\}$.
 - a) State the quantified statement: $\forall a \in A, \exists b \in B, P(a, b)$. In words.
 - i) For every integer a in A, there exists an integer b in B such that a/b < 1.
 - b) Show the statement is true.
 - i) For a=2: P(2,4) is less than 1
 - ii) For a=3: P(3,4) is less than 1
 - iii) For a=5: P(5,6) is less than 1
 - iv) Thus a number b exists for every a, such that the statement is true.
- 79) Consider the open sentence Q(a, b): a b < 0, where the domain of a is $A = \{3, 5, 8\}$ and the domain of b is $B = \{3, 6, 10\}$.
 - a) State the quantified statement $\exists b \in B, \forall a \in A, Q(a, b)$ in words.
 - i) There exists an integer b in B such that for every integer a in A, a b < 0.
 - b) Show the quantified statement (a) is true.
 - i) When b is 10, the statement is true for all values of a. Thus b in B can be indeed be found to make the statement true for all a's.
 - ii) 3-10=-7; 5-10=-5; 8-10=-2

Section 11: Characterizations

- 80) Give a definition of each of the following and the state a characterization of each.
 - a) Two lines in the plane are perpendicular
 - i) Definition: Two lines in the plane are perpendicular if they intersect at a 90° angle.
 - ii) Characterization: Two lines in the plane are perpendicular if and only if the slopes of the lines are opposite reciprocals.
 - b) A rational number

- i) Definition: A rational number is a real number that can be expressed as a fraction of two integers.
- ii) Characterization: A real number r is rational if and only if it is not irrational.
- 81) Define an integer n to be odd if n is not even. State a characterization odd integers.
 - a) An integer n is odd if and only if $\frac{n+1}{2}$ is an integer. b) An integer n is odd if and only in n^2 is odd.
- 82) Define a triangle to be isosceles if it has two equal sides. Which of the following statements are characterizations of isosceles triangles? If a statement is not a characterization of isosceles triangles, then explain why.
 - a) If a triangle is equilateral, then it is isosceles.
 - This is not a characterization, but an implication in the form $P \Rightarrow Q$, and a triangle being isosceles does not necessitate it being equilateral.
 - b) A triangle T is isosceles if and only if T has two equal sides.
 - i) This is not a characterization because it is equal to the definition.
 - c) If a triangle has two equal sides, then it is isosceles.
 - i) This is an implication.
 - d) A triangle T is isosceles if and only if T is equilateral.
 - i) This is a characterization.
 - e) If a triangle has two equal angles, then it is isosceles.
 - i) This is an implication.
 - f) A triangle T is isosceles if and only if T has two equal angles.
 - i) This is a characterization.
- 83) By definition, a right triangle is a triangle one of whose angles is a right angle. Also, two angles in a triangle are complementary if the sum of their degrees is 90°. Which of the following statements are characterizations of a right triangle? If a statement is not a characterization of a right triangle, then explain why.
 - a) A triangle is a right triangle if and only if two of its sides are perpendicular.
 - i) Characterization.
 - b) A triangle is a right triangle if and only if it has two complementary angles.
 - i) Characterization (since it follows that the remaining angle is 90°).
 - c) A triangle is a right triangle if and only if its area is half of the product of the lengths of some pair of its sides.
 - i) Characterization (the two sides perpendicular to each other, other triangles use height and base).
 - d) A triangle is a right triangle if and only if the square of the length of its longest side equals to the sum of the squares of the lengths of the two smallest sides.
 - i) Characterization (Pythagoras).
 - e) A triangle is a right triangle if and only if twice of the area of the triangle equals the area of some triangle.
 - i) False, this must be the case for other kinds of triangles as well.

- 84) Two distinct lines in the plane are defined to be parallel if and only if they don't intersect. Which of the following is a characterization of parallel lines?
 - a) Two distinct lines l_1 and l_2 are parallel if and only if any line l_3 that is perpendicular to l_1 is also perpendicular to l_2 .
 - i) Characterization.
 - b) Two distinct lines l_1 and l_2 are parallel if and only if any line distinct from l_1 and l_2 that doesn't intersect l_1 also doesn't intersect l_2 .
 - i) Characterization since this means that the third line is also parallel to the lines.
 - c) Two distinct lines l_1 and l_2 are parallel if and only if whenever a line l intersects l_1 in an acute angle α , then l also intersects l_2 at an acute angle α .
 - i) Characterization.
 - d) Two distinct lines l_1 and l_2 are parallel if and only if whenever a point P is not on l_1 , the point P is not on l_2 .
 - i) Not a characterization since the lines can be offset from each other.

Additional Exercises

85) Construct a truth table for $P \land (Q \Rightarrow (\sim P))$

Р	Q	$Q \Rightarrow (\sim P)$	$P \land (Q \Rightarrow (\sim P))$
Т	Т	F	F
Т	F	Т	Т
F	Т	Т	F
F	F	Т	F

- 86) Given that the implication $(Q \lor R) \Rightarrow (\sim P)$ is false and Q is false, determine the truth values of R and P.
 - a) The only scenario in which an implication is false is: $true \Rightarrow false$.
 - b) Thus, R and P must be true.
- 87) Find a compound statement involving the component statements P and Q that has the truth table given below.

Р	Q	~Q	
Т	Т	F	Т
Т	F	Т	Т
F	Т	F	F
F	F	Т	T

- a) $P \vee (\sim Q)$
- 88) Determine the truth value of each of the following quantified statements:
 - a) $\exists x \in \mathbb{R}, x^3 + 2 = 0$
 - i) True, e.g. $-\sqrt[3]{2}$
 - b) $\forall n \in \mathbb{N}, 2 \geq 3 n$
 - i) True.
 - c) $\forall x \in \mathbb{R}, |x| = x$
 - i) False (negative numbers)

- d) $\exists x \in \mathbb{Q}, x^4 4 = 0$
 - i) False (solutions, e.g. $\sqrt{2}$, are irrational)
- e) $\exists x, y \in \mathbb{R}, x + y = \pi$
 - i) True, e.g. $0 + \pi$.
- f) $\forall x, y \in \mathbb{R}, x + y = \sqrt{x^2 + y^2}$
 - i) False (negative numbers)
- 89) Rewrite each of the implications below using (1) only if and (2) sufficient.
 - a) If a function f is differentiable, then f is continuous
 - i) The function f is differentiable only if f is continuous
 - ii) The function f being differentiable is sufficient for f being continuous.
 - b) If x = -5, then $x^2 = 25$
 - i) The number x = -5 only if $x^2 = 25$
 - ii) x = -5 is sufficient for $x^2 = 25$
- 90) Let P(n): $n^2 n + 5$ is a prime. Be an open sentence over a domain S.
 - a) Determine the truth values of the quantified statements $\forall n \in S, P(n)$ and $\exists n \in S, \sim P(n)$ for $S = \{1, 2, 3, 4\}$
 - i) $\forall n \in S, P(n)$ is true
 - (1) P(1) = 5 is a prime
 - (2) P(2) = 5 is a prime
 - (3) P(3) = 11 is a prime
 - (4) P(4) = 17 is a prime
 - ii) $\exists n \in S, \sim P(n)$ is false because its negation is true
 - b) Determine the truth values of the quantified statements $\forall n \in S, P(n)$ and $\exists n \in S, \sim P(n)$ for $S = \{1, 2, 3, 4, 5\}$
 - i) $\exists n \in S, \sim P(n)$ is true for n = 5
 - ii) $\forall n \in S, P(n)$ is false because its negation is true
 - c) How are the statements in (a) and (b) related?
 - i) They are negations of each other
- 91) For statements P, Q and R, show that:
 - a) $((P \land Q) \Rightarrow R) \equiv ((P \land (\sim R)) \Rightarrow (\sim Q))$
 - i) $((P \land Q) \Rightarrow R)$
 - Theorem 21-a
 - Theorem 18-4-b (De Morgan's Laws)
 - Theorem 18-1-a (and 18-2-a)
 - ii) $(\sim (P \land Q) \lor R)$ iii) $((\sim P) \lor (\sim Q) \lor R)$ iv) $((\sim P) \lor R \lor (\sim Q))$ v) $(\sim (P \land (\sim R)) \lor (\sim Q))$ Theorem 18-4-b (De Morgan's Laws)
 - $vi) \left(\left(P \wedge (\sim R) \right) \Rightarrow (\sim Q) \right)$ Theorem 21-a
 - b) $((P \land Q) \Rightarrow R) \equiv ((Q \land (\sim R)) \Rightarrow (\sim P))$
 - i) $((P \land Q) \Rightarrow R)$
 - ii) $(\sim (P \land Q) \lor R)$ Theorem 21-a
 - iii) $((\sim P) \vee (\sim Q) \vee R)$ Theorem 18-4-b (De Morgan's Laws)

iv)
$$((\sim Q) \lor R \lor (\sim P))$$
 Theorem 18-1-a (and 18-2-a)
v) $(\sim (Q \land (\sim R)) \lor (\sim P))$ Theorem 18-4-b (De Morgan's Laws)
vi) $((Q \land (\sim R)) \Rightarrow (\sim P))$ Theorem 21-a

- 92) For a fixed integer n, use Exercise 91 to restate the following implication in two different ways: If n is a prime and n > 2, then n is odd. (P: n is a prime; Q: n > 2; R: n is odd.)
 - a) If n is a prime and n is even, then $n \leq 2$.
 - b) If n > 2 and n is even, then n is not a prime.
- 93) For fixed integers n and m, use Exercise 91 to restate the following implication in two different ways: If m is even and n is odd, then m + n is odd. (P: m is even; Q: n is odd; R: m + n is odd.)
 - a) If m is even and m + n is even, then n is even.
 - b) If n is odd and m + n is even, then m is odd.
- 94) For a real-valued function f and a real number x, use Exercise 91 to restate the following implication in two different ways:

If
$$f'(x) = 3x^2 - 2x$$
 and $f(0) = 4$, then $f(x) = x^3 - x^2 + 4$
a) If $f'(x) = 3x^2 - 2x$ and $f(x) \neq x^3 - x^2 + 4$, then $f(0) \neq 4$.
b) If $f(0) = 4$ and $f(x) \neq x^3 - x^2 + 4$, then $f'(x) \neq 3x^2 - 2x$.

- 95) For the set $S = \{1, 2, 3\}$, give an example of three open sentences P(n), Q(n) and R(n), each over the domain S, such that (1) each of P(n), Q(n) and R(n) is a true statement for exactly two elements of S, (2) all of the implications $P(1) \Rightarrow Q(1), Q(2) \Rightarrow R(2)$ and $R(3) \Rightarrow P(3)$ are true, and (3) the converse of each implication in (2) is false.
 - a) (3) the converse of the implications have to be false, thus P(1), Q(2) and R(3) must be false, while Q(1), R(2) and P(3) must be true.
 - i) Thus: P(n) must be a sentence that is false for n = 1, and true for all $n \in S \{1\}$
 - ii) Q(n) must be a sentence that is false for n=2, and true for all $n \in S-\{2\}$
 - iii) R(n) must be a sentence that is false for n=3, and true for all $n \in S-\{3\}$
 - b) Final sentences for (1), (2) and (3):
 - i) P(n): n = 2 or n = 3
 - ii) Q(n): n = 1 or n = 3
 - iii) R(n): n = 1 or n = 2
- 96) Do there exist a set S of cardinality 2 and a set $\{P(n), Q(n), R(n)\}$ of three open sentences over the domain S, such that (1) the implications $P(a) \Rightarrow Q(a), Q(b) \Rightarrow R(b), R(c) \Rightarrow P(c)$ are true, where $a, b, c \in S$ and (2) the converses of the implications in (1) are false? Necessarily, at least two of these elements a, b and c of S are equal.
 - a) (2) the converse of the implications have to be false, thus P(a), Q(b) and R(c) must be false, while Q(a), R(b) and P(c) must be true.
 - i) Thus: P(n) must be a sentence that is false for n=a, and true for n=c, thus $a\neq c$ and a=b or b=c since the cardinality of the set is 2.
 - ii) Q(n) must be a sentence that is false for n=b, and true for n=a, thus $a\neq b$. Combining this knowledge with previous (i): b=c

- iii) R(n) must be true for n = b and false for n = c, but this contradicts the previous claims, and thus a cardinality of 2 is too little for this logic to be possible.
- b) Conclusion: No, there does not exists a set of cardinality 2 for (1) and (2).
- 97) Let $A = \{1, 2, ..., 6\}$ and $B = \{1, 2, ..., 7\}$. For $x \in A$, let P(x): 7x + 4 is odd. For $y \in B$, let Q(y): 5y + 9 is odd. Let $S = \{(P(x), Q(y)): x \in A, y \in B, P(x) \Rightarrow Q(y) \text{ is } false\}$.
 - a) What is |S|?
 - i) P(x) is true for $x \in A \{2, 4, 6\}$
 - ii) Q(y) is true for $y \in B \{1, 3, 5, 7\}$
 - iii) The combinations of (P(x), Q(y)) must be false for $P(x) \Rightarrow Q(y)$, thus P(x) must be true and Q(y) must be false.
 - iv) Thus the possible combinations are (P(1), Q(y)): $y \in \{1, 3, 5, 7\} + (P(3), Q(y))$: $y \in \{1, 3, 5, 7\} + (P(5), Q(y))$: $y \in \{1, 3, 5, 7\}$
 - v) This totals 12 different combinations, thus |S| = 12.
- 98) Let P(x, y, z) be an open sentence, where the domain of x, y and z are A, B, and C, respectively.
 - a) State the quantified statement $\forall x \in A, \forall y \in B, \exists z \in C, P(x, y, z)$ in words.
 - i) For every x in A and y in B, a z exists such that P(x, y, z) is true.
 - b) State the quantified statement $\forall x \in A, \forall y \in B, \exists z \in C, P(x, y, z)$ in words for P(x, y, z): x = yz
 - i) For every x in A and y in B, a z exists such that x = yz.
 - c) Determine whether the quantified statement in (b) is true when $A = \{4, 8\}, B = \{2, 4\}$ and $C = \{1, 2, 4\}$.
 - i) P(4,2,2) is true, P(4,4,1) is true, P(8,2,4) is true and P(8,4,2) is true
 - ii) Conclusion: the quantified statement in (b) is true.
- 99) Let P(x, y, z) be an open sentence, where the domains of x, y and z are A, B and C respectively.
 - a) Express the negation of $\forall x \in A, \forall y \in B, \exists z \in C, P(x, y, z)$ in symbols.
 - i) $\exists x \in A, \exists y \in B, \forall z \in C, \sim P(x, y, z)$
 - b) Express the negation in words.
 - i) There exists some x in A and some y in B, such that for every z in C, P(x, y, z) is true.
 - c) Determine whether $\exists x \in A, \exists y \in B, \forall z \in C, \sim P(x, y, z)$ is true when P(x, y, z): x + z = y. For $A = \{1,3\}, B = \{3,5,7\}$ and $C = \{0,2,4,6\}$
 - i) First of all $\sim P(x, y, z)$: $x + z \neq y$
 - ii) $\sim P(1, 3, 2)$ is false
 - iii) $\sim P(1, 5, 4)$ is false
 - iv) $\sim P(1,7,6)$ is false
 - v) $\sim P(3, 3, 0)$ is false
 - vi) $\sim P(3, 5, 2)$ is false
 - vii) $\sim P(3,7,4)$ is false
 - viii) Conclusion: an x in A and a y in B does not exists such that for all z in C the statement is true, thus the negated expression is false.

- 100) Write each of the following using "if, then".
 - a) A sufficient condition for a triangle to be isosceles is that it has two equal angles.
 - i) If a triangle is isosceles, then it has two equal angles.
 - b) Let C be a circle of diameter $\sqrt{\left(\frac{2}{\pi}\right)}$. Then the area of C is $\frac{1}{2}$.
 - i) If the diameter of a circle C is $\sqrt{\left(\frac{2}{\pi}\right)}$, then the area of C is $\frac{1}{2}$.
 - c) The 4th power of every odd integer is odd.
 - i) If an integer n is odd, then the 4th power of n is odd.
 - d) Suppose that the slope of a line I is 2. Then the equation of I is y = 2x + b for some real number b.
 - i) If the slope of a line I is 2, then the equation of I is y = 2x + b for some real number b.
 - e) Whenever a and b are nonzero rational numbers, a/b is a nonzero rational number.
 - i) If a and b are nonzero rational numbers, then a/b is a nonzero rational number.
 - f) For every three integers, there exist two of them whose sum is even.
 - i) If x, y and z are integers, then there exists two of them whose sum is even.
 - g) A triangle is a right triangle if the sum of two of its angles is 90°.
 - i) If the sum of two angles of a triangle T is 90, then T is a right triangle.
 - h) The number $\sqrt{3}$ is irrational.
 - i) If a real number $n = \sqrt{3}$, then n is irrational.