

robotron

**RAUSCHGENERATOR
03004**

**VEB ROBOTRON-MESSELEKTRONIK
>OTTO SCHÖN< DRESDEN**

Technische Beschreibung und Bedienungsanleitung

**RAUSCHGENERATOR
03004**

**VEB ROBOTRON-MESSELEKTRONIK > OTTO SCHÖN < DRESDEN
DDR-8012 Dresden, Lingnerallee 3, Postschließfach 211**

Diese Bedienungsanleitung enthält nur Angaben, die sich auf den Rauschgenerator beziehen.

Bedienungshinweise sowie Eigenschaften, die im Zusammenhang mit den übrigen Funktionsblöcken von Interesse sind, werden in den Bedienungsanleitungen der Standardgeräte erläutert.

Meßplatzbeschreibungen sowie Applikationshinweise enthält das Handbuch "Meßplätze der Schall- und Schwingungsmeßtechnik", das vom VEB ROBOTRON-MESSELEKTRONIK "OTTO SCHÖN" Dresden bezogen werden kann.

I n h a l t s v e r z e i c h n i s

1. Anwendungsgebiet	8
2. Lieferumfang	9
3. Technische Daten	10
4. Aufbau und Arbeitsweise	12
4.1. Aufbau	12
4.2. Theoretische Grundlagen	12
4.3. Arbeitsweise	15
5. Vorbereitung zum Betrieb und Betriebsanleitung	17
5.1. Allgemeines	17
5.2. Funktionszweck der Bedienungs- und Anschlußelemente	17
5.3. Einstellung und Anschluß des Gerätes	18
5.4. Inbetriebnahme	21
6. Elektrische Schaltung	21
7. Reparaturhinweise	24
8. Lager- und Transportbedingungen	26
Position der Bauelemente: Bild 7 (Seitenansicht)	27
Diagramm: Überschreitungswahrscheinlichkeit w	28
Schaltteilliste	SL1 bis SL5
Position der Bauelemente: Leiterplatte 577 898.1	Anlage
Stromlaufplan 1 Rauschgenerator 03 004	Anlage
Stromlaufplan 2 Rauschgenerator 03 004	Anlage

Bild 1
RAUSCHGENERATOR 03 004
Vorderansicht
Bedienungselemente

Рис. 1
ГЕНЕРАТОР ШУМА 03 004
Вид спереди
Элементы управления

Fig. 1
03 004 NOISE GENERATOR
Front View
Control Elements

Erläuterungen zu Bild 1

1 Schalter WEISS/ROSA	S 1/577 904.1
2 Dämpfungseinsteller "fein"	R 1
3 Dämpfungsschalter "grob"	S 1/577 907.4

Erläuterungen zu Bild 2

- 1 Rauschgenerator 03 004
- 2 Blindplatte
- 3 Systemgehäuse 04 012
- 4 Netzteil 04 003

Rauschgenerator, komplett
Bestell-Nr. 577 918.7

Bild 2
RAUSCHGENERATOR KOMPL.
Vorderansicht

Рис.2
ГЕНЕРАТОР ШУМА КОМПЛ.
Вид спереди

Fig.2
NOISE GENERATOR COMPL.
Front View

1. Anwendungsgebiet

Der Rauschgenerator 03 004 ist ein Funktionsblock des Meßgerätesystems der Akustik und Schwingungstechnik. Das Gerät dient als Spannungsquelle zur Erzeugung von stochastischen Vorgängen mit kontinuierlichem Spektrum. Derartige Rauschsignale können mit Vorteil für elektroakustische und schwingungstechnische Meß- und Prüfaufgaben verwendet werden.

In Verbindung mit Terz- und Oktavfiltern lassen sich u. a. frequenzabhängige Körper- und Luftschalldämmungen, Nachhallzeiten und Schallverteilungen messen.

Mit Hilfe der Rauschsignale kann man spezielle Eigenschaften von

- mechanischen Anlagen, wie Fahrzeugen und Servosystemen,
- elektrischen Schaltungen, z. B. Regelkreisen und Lautsprechern,
- mechanischen und elektrischen Bauelementen durch Messung der Ermüdungskurven

untersuchen.

Weitere Anwendungsmöglichkeiten sind:

- Untersuchungen von nichtlinearen Verzerrungen in Verstärkerkern und Übertragungssystemen,
- physiologische Untersuchungen zum Studium der Lautstärkebildungsgesetze sowie der Lästigkeits- und Schadenswirkung von Schall auf den Menschen,
- Simulierung der Kanalbelegung in der Trägerfrequenztechnik,
- allgemeine Untersuchung stochastischer Prozesse.

Der Frequenzbereich des Rauschgenerators 03 004 reicht vom tiefen Infraschallbereich bis weit in das Gebiet des Ultraschalls.

Der Rauschgenerator 03 004 kann mit Zweikanalschaltern, steuerbaren Generatoren, Filtern, Drehtischen, Regel- und Anzeigeteilen, digitalen Auswertegeräten und dergleichen zu

kompletten Meßplätzen für manuelle und automatische Auswertung zusammengeschaltet werden.

Somit läßt sich der Rauschgenerator 03 004 im Rahmen der Lärmbekämpfung, der Raum- und Bauakustik, der Schwingungsmeßtechnik und der allgemeinen NF-Meßtechnik einsetzen.

Der Rauschgenerator wird als Einschub oder als komplettes Gerät mit Netzteil im Systemgehäuse geliefert. Der Einschub läßt sich in Standardgeräte des Meßgerätesystems der Schall- und Schwingungsmeßtechnik einbauen.

2. Lieferumfang

Gestelleinschub

- 1 Rauschgenerator 03 004, ZAK-Nr. 138 78 20 001 214302,
mit:
 - 1 Systemkabel SS-BNC 1,6, 04 016
 - 1 Bedienungsanleitung für den Rauschgenerator 03 004
 - 1 Garantiekarte

Gestelleinschub, komplett mit Systemgehäuse und Netzteil

- 1 Rauschgenerator (komplett), ZAK-Nr. 138 78 20 001 214257,
mit:
 - 1 Systemkabel SS-BNC 1,6, 04 016
 - 1 Netzanschlußkabel 2/3 SHAG, 77 094
 - 3 Blindplatten (40 mm) 590 036.6
 - 2 G-Schmelzeinsätze T 630 TGL 0-41571
 - 1 Bedienungsanleitung für den Rauschgenerator 03 004
 - 1 Bedienungsanleitung für Systemgehäuse 04 012/04 013 und Netzteil 04 003/04 014
 - 1 Übersicht "Ergänzungsgeräte und -teile des Meßgerätesystems der Schall- und Schwingungsmeßtechnik"

3. Technische Daten

Die technischen Daten werden nur garantiert, wenn der Rauschgenerator 03 004 in einem Systemgehäuse 04 012 oder 04 013 zusammen mit dem Netzteil 04 014 oder 04 003 betrieben wird.

Rauschspektren

- Weißes Rauschen	2 Hz bis 20 kHz } umschalt-
	2 Hz bis 200 kHz } bar
- Rosa Rauschen (-3 dB/Oktave)	2 Hz bis 200 kHz

Ausgangsgrößen

Nenn-Ausgangsspannung (bei Leerlauf)	1 V
Grobeinstellung in 10-dB-Schritten	0 bis -60 dB
Feineinstellung	0 bis -12 dB Toleranz: +1,5 bis -3 dB
Innenwiderstand R_I	50 Ω
zulässiger Lastwiderstand R_L	$\geq 600 \Omega$
Amplitudenverteilung nach Gauß	
- für Ausgangspegel ≤ 0 dB	mindestens 4 $\tilde{\mu}$
- für Ausgangspegel ≤ -6 dB	mindestens 8 $\tilde{\mu}$

Grund- und Zusatzfehler

Abweichung vom idealen Spektrum

- Weißes Rauschen	2 Hz bis 5 Hz $\leq \pm 1,5$ dB
	5 Hz bis 100 kHz $\leq \pm 0,5$ dB
	100 kHz bis 200 kHz $\leq \pm 1,5$ dB
- Rosa Rauschen	2 Hz bis 20 Hz $\leq \pm 2$ dB
	20 Hz bis 100 kHz $\leq \pm 1$ dB
	100 kHz bis 200 kHz $\leq \pm 2$ dB

Ausgangsspannungsfehler in Abhängigkeit

- von der Temperatur	$\leq 1,5\% / 10$ K vom Endwert
- von der Netzspannung	$\leq 1\%$ vom Endwert im angegebenen Netzspannungsbereich und bei unterschiedlicher Belastung des Netzteiles

Weitere Angaben

Stromversorgung (durch das
Netzteil 04 014 oder 04 003) 220 V ± 22 V, 50 Hz ± 1 Hz
erforderliche Betriebs-
spannungen

± 21 V unstabilisiert

$\leq 1,5$ W

0 bis +50 °C

max. 90 %

max. $4 \cdot 10^3$ Pa

-25 bis +55 °C

Mechanische Festigkeit
nach TGL 14 283/09 und
TGL 200-0057/03

G I
Eb 6-15-8000

Schutzklasse nach
TGL 21 366

I

Schutzgrad n. TGL RGW 778

IP 20
Sicherheitsvorschriften und
Hinweise im Abschnitt 5.1
beachten!

Schutzzüge geprüft gemäß
ASVO-Schutzzüge-
(GBL. der DDR Teil I
Nr. 36 vom 14.12.77)

Funkstörung nach
TGL 20 885 und TGL 20 886

F 1 und F 3

Abmessung (B x H x T)
Masse

40 mm x 160 mm x 300 mm
etwa 1 kg

4. Aufbau und Arbeitsweise

4.1. Aufbau

Der Rauschgenerator 03 004 ist als 40 mm breiter Gestelleinschub ausgeführt.

Die elektrische Schaltung ist auf eine große Leiterplatte und auf drei Subleiterplatten aufgeteilt. Die Bedienungselemente befinden sich an der Frontplatte. Sämtliche Anschlüsse sind an der Rückseite des Gestelleinschubes angeordnet. Die Lage der Leiterplatten, der Bedienungs- und der Anschlußelemente ist dem Bild 7 zu entnehmen.

4.2. Theoretische Grundlagen

Das Rauschsignal im Rauschgenerator 03 004 wird durch die Eigenbewegung bzw. Bewegungsschwankungen der Ladungsträger (thermisches Rauschen) eines Widerstandes erzeugt. Das Spektrum umfaßt theoretisch den Frequenzbereich von 0 bis ∞ . Der Begriff "Weißes Rauschen" entstand als Analogie zum weißen Licht, das ebenfalls ein breites Frequenzspektrum aufweist.

Rauschsignale sind stochastische Prozesse und lassen sich nach Methoden der statistischen Signaltheorie behandeln. Zum besseren Verständnis sollen einige Begriffe erläutert werden, wobei auf exakte mathematische Ableitung verzichtet wird.

Jedem zufälligen Ereignis A läßt sich eine reelle, nicht negative Zahl zwischen 0 und 1 zuordnen, die man die Wahrscheinlichkeit $w(A)$ des zufälligen Ereignisses A nennt. Tritt A mit Sicherheit ein, ist $w = 1$; tritt es mit Sicherheit nicht ein, ist $w = 0$. In unseren Betrachtungen ist das zufällige Ereignis der Amplitudenwert der Rauschspannung zu einem bestimmten Zeitpunkt, d. h., es besteht keine vorausschaubare Beziehung zwischen Momentanamplitudenwert der Rauschspannung und der Zeit. Es läßt sich jedoch die Wahrscheinlichkeit $w(u, u + \Delta u)$ dafür angeben, daß sich der Momentanamplitudenwert in den Grenzen zwischen u und $u + \Delta u$

bewegt. Vollzieht man den Grenzübergang zu differentiell kleinen Amplitudenintervallen Δu , dann erhält man die Wahrscheinlichkeitsdichte $W(u)$:

$$W(u) = \lim_{\Delta u \rightarrow 0} \frac{w(u) - w(u + \Delta u)}{\Delta u}$$

mit $W(u)$ = Wahrscheinlichkeitsdichte

$w(u)$ = Wahrscheinlichkeit, mit der ein beliebiger Momentanamplitudenwert die Amplitude u überschreitet

$w(u + \Delta u)$ = Wahrscheinlichkeit, mit der die Amplitude $u + \Delta u$ von Momentanamplitudenwerten überschritten wird.

Wird die Wahrscheinlichkeitsdichte über alle möglichen Amplitudenwerte integriert, so ist der Integralwert 1. Dieser Wert sagt aus, daß man mit Sicherheit bei Vorhandensein aller möglichen Amplitudenwerte einen bestimmten Amplitudenwert findet.

Eine sehr bekannte Wahrscheinlichkeitsdichtekurve in normierter Form ist die Glockenkurve nach Gauß. Sie wird auch als Normalverteilung bezeichnet, wobei gilt:

$$W(u) = \frac{1}{\tilde{u}\sqrt{2\pi}} \exp - \frac{u^2}{2\tilde{u}^2}$$

mit \tilde{u} = Effektivwert der Rauschspannung.

Diese Funktion ist im Bild 3b dargestellt. Sie gibt die "Amplitudenverteilung" an.

Bei verschiedenen Anwendungsfällen ist jedoch nicht die Wahrscheinlichkeit für das Auftreten eines bestimmten Momentanwertes (Amplitudenverteilung) wichtig, sondern die Wahrscheinlichkeit dafür, daß dieser Momentanwert innerhalb vorgegebener Grenzen überschritten wird.

Die Überschreitungswahrscheinlichkeit w als Funktion von $\frac{u}{\tilde{u}}$ für Momentanwerte bis zum 3,9fachen Effektivwert bei Rauschen ist in Bild 3c dargestellt (s. auch Diagramm auf S. 28).

Bild 3

- a) Rauschsignal
- b) Amplitudenspektrum nach Gauß
- c) Überschreitungs-wahrscheinlichkeit

'Farbiges' Rauschen ist wieder als Analogie zum Licht zu sehen und bedeutet das Herausfiltern von speziellen Spektren.

Beim Rosa Rauschen nimmt der Spannungspegel mit wachsender Frequenz um 3 dB/Oktave ab. Rosa Rauschen wird bei akustischen Messungen mit Terz- und Oktavfiltern verwendet.

Bei diesen Filtern verdoppelt sich die Bandbreite, wenn die Mittenfrequenz um den Faktor 2 vergrößert wird, d. h., sie haben eine konstante relative Bandbreite. Würden diese Filter an eine Rauschquelle mit konstanter Energieverteilung über der Frequenz (Weißes Rauschen) angeschlossen, so würde sich bei Frequenzbereichsumschaltung der Bezugswert der Anzeige laufend ändern. Das Weiße Rauschen wird durch ein RC-Filter (Rosa-Filter) mit -3 dB/Oktave vorverzerrt. Dadurch ist die Energieverteilung gleichbleibend pro Terz (oder Oktave) oder jedem beliebigen Frequenzband mit konstanter relativer Bandbreite $\frac{\Delta f}{f}$.

4.3. Arbeitsweise

Die prinzipielle Arbeitsweise des Rauschgenerators 03 004 geht aus Bild 4 hervor.

Der Breitbandverstärker (1) verstärkt die Rauschspannung des Widerstandes R_1 . Der Regelverstärker (2) wird über die Regelstufe (3) so gesteuert, daß am Ausgang der Mischstufe (4) immer $\tilde{u} = \text{konst.}$ ist. Das Ausgangssignal des Mixers ist das in die NF-Lage umgesetzte breitbandige Rauschen von (1). Die Oszillatorkennfrequenz (5) ist $f = 550 \text{ kHz}$.

In der Filterstufe (6) kann wahlweise ein Sallen-und-Key-Tiefpass 200 kHz/20 kHz bzw. ein Rosa-Filter in den Signalweg geschaltet werden. Mit dem Feinregler (7) ist eine kontinuierliche Absenkung des Ausgangspegels um maximal -12 dB möglich. Die Endstufe (8) gewährleistet bei einem Lastwiderstand $R_L \geq 600 \Omega$ noch eine exakte Amplitudenspektrum nach Gauß bei um etwa 8% reduzierter Ausgangsspannung.

Durch die Anordnung des Grobteilers (9) am Ausgang wird bei Absenkung des Signalpegels auch eine eventuell überlagerte Offsetspannung entsprechend vermindert.

Bild 4

Blockschaltbild des Rauschgenerators 03 004

- 1 Breitbandverstärker mit Rauschquelle
- 2 Regelverstärker
- 3 Regelstufe
- 4 Mischstufe
- 5 Oszillatator
- 6 Schalter WEISS/ROSA
- 7 Ausgangsspannungsregler "fein"
- 8 Endverstärker
- 9 Ausgangsspannungsteiler "grob"

An der Buchse X 1 kann das Rauschsignal abgenommen werden. Die maximale Ausgangsspannung ist $\tilde{u} = 1 \text{ V}$, bei einer symmetrischen Amplitudenverteilung nach Gauß bis $\frac{\tilde{u}}{u} = 4$.

Dieser Wert wird theoretisch nur während 0,01 % der Beobachtungszeit überschritten. Daher kann man annehmen, daß alle vorkommenden Rauschamplituden unverzerrt übertragen werden.

5. Vorbereitung zum Betrieb und Betriebsanleitung

5.1. Allgemeines

Steht der Rauschgenerator unkomplettiert als Einschub zur Verfügung, ist er in ein entsprechendes Systemgehäuse mit Netzteil (siehe Abschnitt 2.2.) einzuschieben. Zuvor sind eventuell vorhandene Blindplatten im Gehäuse zu entfernen und die Plastschienen zur Führung des Gestelleinschubs im Systemgehäuse oben und unten einzusetzen.

Achtung! Zur Gewährleistung des Berührungsschutzes sind alle unbesetzten Einschubplätze an der Vorder- und Rückseite des Systemgehäuses durch Blindplatten abzudecken!

5.2. Funktionszweck der Bedienungs- und Anschlußelemente

Die Bedienungselemente sind auf der Vorderseite des Rauschgenerators angebracht (Bild 1). Der Ausgang befindet sich an der Rückseite des Gestelleinschubs. Die beiden Schalter, der Dämpfungsregler und die BNC-Buchse haben folgende Funktionen:

Schalter WEISS/ROSA

Zur Wahl der Rauschspektren

- Rauschen WEISS 20 kHz
- Rauschen WEISS 200 kHz
- Rauschen ROSA 200 kHz

Die Zahlen geben jeweils die obere Grenzfrequenz (Welligkeit $\leq 0,5 \text{ dB}$ bei Sinus) des gewählten Bereiches an. Die untere Grenzfrequenz ist in allen drei Bereichen $f_u = 2 \text{ Hz}$.

Dämpfungsregler "fein"

Zur Einstellung des Ausgangspegels kontinuierlich von 0 bis -12 dB. Bei Rechtsanschlag des Reglers ist die Dämpfung 0 dB.

577 907.4														
S1	1	2	3	4	a	b	5	6	7	8	9	10	11	12
-60 dB	•													
-50		•												
-40			•											
-30				•										
-20					•									
-10						•								
0							•							

577 904.1																
S1	1	2	3	4	a	b	5	6	7	c	d	8	9	10	11	12
20K WEISS	•				•					•						
200K WEISS						•										
200K ROSA							•									

Kontakt geschlossen
Контакт закрыт
Contact closed

Stromlaufplan
Электрическая схема
Wiring Diagram

Anschlüsse auf die Lötseite gesehen
Вид на выводы со стороны пайки
View of Solder Tags

SC 236, SC 239
E BC

A K SAY 32

C
B
E
BC 177 A, SF 137 D

Мерпункт 7
Точка замера 7
Test Point 7

03 004

RAUSCHGENERATOR
ШУМОВОЙ ГЕНЕРАТОР
NOISE GENERATOR

Ansicht Lötseite

Вид на выводы со стороны пайки

Soldering End View

1 Meßpunkt 1

Stromlaufplan

Электрическая схема

Wiring Diagram

1

RAUSCHGENERATOR 03 004

ШУМОВОЙ ГЕНЕРАТОР

NOISE GENERATOR

Ansicht Bestückungsseite Вид со стороны оснащения View of Insertion End

Position der Bauelemente

Leiterplatte, komplett 577 898.1
Печатная плата, компл.

RAUSCHGENERATOR 03 004
ШУМОВОЙ ГЕНЕРАТОР
NOISE GENERATOR

Dämpfungsschalter "grob"

Zum Absenken des Ausgangspegels in 10-dB-Schritten bis -60 dB. In der Schalterstellung 0 dB (Rechtsstellung) ist der Pegel maximal. Der Innenwiderstand des Rauschgenerators bleibt stets konstant ($R_i = 50 \Omega$).

BNC-Buchse Ausgang X 1

Zur Entnahme des Rauschsignals.

5.3. Einstellung und Anschluß des Gerätes

Der Rauschgenerator ist entsprechend den Erfordernissen des Meßplatzes mit den zum Lieferumfang der Funktionsblöcke gehörenden Kabeln an den in der Meßkette folgenden Funktionsblock bzw. das folgende Gerät anzuschließen. Dann wird das Gerät, in dem der Rauschgenerator eingesetzt ist, an das Netz angeschlossen.

Das für die Messung erforderliche Rauschspektrum wird gewählt.

Mit dem Dämpfungsschalter "grob" lassen sich folgende Pegelwerte der Ausgangsspannung einstellen:

Pegel in dB	0	-10	-20	-30	-40	-50	-60
Effektivwert der Ausgangsspannung in mV	1000	316	100	31,6	10	3,16	1,0

Diese Zuordnung gilt dann, wenn der Einsteller "fein" am Rechtsanschlag steht. Die Zwischenwerte lassen sich mit dem Einsteller "fein" einstellen.

Sollte für spezielle Messungen eine symmetrische Gauß-Verteilung bis $\frac{u}{\sqrt{2}} = 8$ notwendig sein, so ist mit dem Dämpfungssregler "fein" der Ausgangspegel um -6 dB abzusenken (Mittelstellung). Mit dem Dämpfungsschalter "grob" kann die Amplitudenverteilung nicht beeinflußt werden.

oft ist es nötig, mittels nachgeschalteter Filter aus dem Rauschspektrum bestimmte Teilbereiche herauszufiltern bzw. auszublenden.

Handelt es sich um Frequenzen < 20 kHz, kann die obere Grenzfrequenz mit dem Schalter WEISS/ROSA auf 20 kHz eingestellt werden.

Am Ausgang des Rauschgenerators steht dann eine höhere effektive Rauschspannung zur Verfügung.

Dabei ist die Anpassung zu beachten. Der Rauschgenerator hat einen Innenwiderstand $R_i = 50 \Omega$. Besteht keine Übereinstimmung zwischen dem Innenwiderstand des Generators und der Impedanz des Verbrauchers, so kann zur Anpassung ein Vierpol zwischengeschaltet werden.

Der Wellenwiderstand des Vierpols muß eingangsseitig dem Innenwiderstand R_i des Generators entsprechen. Ausgangsseitig ist er entsprechend der Impedanz des Verbrauchers auszulegen (siehe Bild 5).

Bild 5

Anpassung durch Widerstandsnetzwerk

Es gilt $R_1 = \sqrt{Z(Z - R_i)}$ und $R_2 = R_i \sqrt{\frac{Z}{Z - R_i}}$; dabei ist die Dämpfung des Vierpols

$$\text{a/dB} = 20 \lg \frac{R_1 + Z}{Z}$$

Bei Anschluß von Filtern ergibt sich die Rauschleistung P_F in einem Teilbereich (Δf) des Gesamtspektrums ($P_{\text{ges}}, \Delta f_{\text{ges}}$) wegen der Kontinuität der Energieverteilung zu

$$P_F = P_{\text{ges}} \cdot \frac{\Delta f_F}{\Delta f_{\text{ges}}},$$

Δf_F = Filterbandbreite,

und daraus erhält man die effektive Rauschspannung am Filterausgang:

$$\tilde{u}_F = \tilde{u}_{\text{ges}} \sqrt{\frac{\Delta f_F}{\Delta f_{\text{ges}}}}.$$

Filter besitzen keine ideal steilen Flanken. Dies sollte durch berücksichtigt werden, daß man einen "effektiven" Übertragungsfaktor definiert. Der glockenförmigen Filterkurve wird ein Rechteck derart eingeschrieben, daß es die Breite des Filter-Durchlaßbereiches einnimmt und dieselbe "Rauschleistung" umhüllt wie das Filter selbst (siehe Bild 6).

Bild 6

Schematische Darstellung zur Berechnung der effektiven Rauschspannung

Dabei sei: b^2 = Quadrat des Übertragungsfaktors

$[b(f)]^2$ = gegebene Kurve für Quadrat des Übertragungsfaktors

b_{eff}^2 = Quadrat des wirksamen Übertragungsfaktors

f_u, f_o = Filtergrenzfrequenzen

Man erhält

$$b_{\text{eff}}^2 = \frac{1}{f_o - f_u} \int_0^\infty [b(f)]^2 df \quad \text{und daraus die}$$

Spannung am Filterausgang zu

$$\tilde{u}_F^* = b_{\text{eff}} \cdot \tilde{u}_F = b_{\text{eff}} \cdot \tilde{u}_{\text{ges}} \sqrt{\frac{\Delta f_F}{\Delta f_{\text{ges}}}}$$

\tilde{u}_F = effektive Rauschspannung am Ausgang eines idealen Filters

\tilde{u}_F^* = effektive Rauschspannung am Ausgang eines realen Filters.

Die Filter unserer Produktion haben folgende Dämpfungswerte:

Oktavfilter 01 016

Grunddämpfung	0 dB ± 0,5 dB
effektive Grunddämpfung	0 dB ± 0,6 dB

Terz-Oktav-Filter 01 017

Grunddämpfung	0 dB ± 0,5 dB
effektive Grunddämpfung	0 dB ± 0,8 dB

5.4. Inbetriebnahme

Mit dem Netzschalter O/I des Netzteils wird das Gerät eingeschaltet.

6. Elektrische Schaltung

6.1. Rauschquelle, Bandpaß- und Regelverstärker (577 901.7)

Eine sehr zuverlässige Quelle für Weißes Rauschen sind ohmsche Widerstände. Die effektive Rauschspannung, die ein Widerstand in einem bestimmten Frequenzbereich erzeugt, ist nach Nyquist

$$\tilde{u}_R = 2 \sqrt{kTR \Delta f},$$

mit k = Boltzmannkonstante
 T = absolute Temperatur
 Δf = Frequenzbereich
 R = Widerstand.

Der Widerstand $R 1$ liefert eine effektive Rauschspannung $\tilde{u}_R \approx 25 \mu V$. Dieses Nutzsignal wird im Bandpaßverstärker $V 1$, $V 2$ verstärkt. Dabei wird mit den Schaltelementen $C 3$, $R 6$ und $C 5$ die untere Grenzfrequenz festgelegt. Die obere Grenzfrequenz wird durch $C 1$ und $C 2$ bestimmt. Der nachgeschaltete Regelverstärker hebt den Signalpegel so an, daß am Ausgang der Mischstufe stets ein Rauschsignal mit $\tilde{u} = \text{konstant}$ vorhanden ist. Die Transistoren $V 5$, $V 6$ sind Impedanzwandler. Die gesamte Baugruppe ist gegen HF-Störeinstrahlung abgeschirmt.

6.2. Oszillator, Misch- und Regelstufe, Filter, Endverstärker-Stabilisierung (577 898.1)

Der Schaltkreis $A 2$ ist als spannungsgesteuerter Oszillator geschaltet.

Mit dem Regler $R 32$ erfolgt die Frequenzeinstellung.

Die Mischstufe mit dem Schaltkreis $A 1$ ist ein Multiplikator mit symmetrischen Eingängen. Die Eingangsspannungen sind $\tilde{u} \approx 10 \text{ mV}$. Mit dem Regler $R 48$ wird der Signaleingang und mit dem Regler $R 43$ der Oszillatoreingang symmetriert. Die Null-Unterdrückung für beide Eingänge ist größer als 40 dB. Der Mischstufe folgt ein Breitbandverstärker mit $V 15$ bis $V 18$. Sein Ausgangssignal wird konstant gehalten, indem über die Regelstufe mit $V 11$ bis $V 14$ (Mittelwertbildung) eine entsprechende Steuerspannung für den Regelverstärker (577 901.7) abgeleitet wird.

Die Transistorstufe $V 19$, $V 20$ ist ein umschaltbarer Sallen- und Key-Tiefpaß. Die Grenzfrequenzen sind 200 bzw. 20 kHz.

Der an der Frontplatte angeordnete Regler $R 1$ "fein" gestattet an dieser Stelle eine kontinuierliche Pegelabsenkung bis -12 dB. Mit dem Umschalter $S 1$ (WEISS/ROSA, 577 904.1) kann Rosa bzw. Weißes Rauschen eingeschaltet werden. Bei Rosa Rauschen wird ein entsprechend dimensioniertes RC-Netzwerk mit Operationsverstärker $A 3$ zur Pegangleichung eingeschaltet. Um hohe Scheitelfaktorwerte zu garantieren, hebt erst der Endverstärker mit $V 21$ bis $V 25$ das Rauschsignal nochmals um 15 dB an.

Die positive Betriebsspannung des Rauschgenerators wird in der Transistorstufe $V 1$ bis $V 6$ stabilisiert. Eine genaue Einstellung der Ausgangsspannung erfolgt mit dem Regler $R 16$. Diese Stufe dient gleichzeitig als Referenzquelle für die aus $V 7$ bis $V 10$ bestehende Stabilisierungsschaltung für die negative Betriebsspannung.

Bei Strömen $\geq 60 \text{ mA}$ wirken die Transistoren $V 4$ bzw. $V 9$ als Überstromsicherung und schalten die entsprechende Stabilisierung ab.

6.3. Schalter WEISS/ROSA (577 904.1)

Mit den 4 Teilebenen des Schalters werden realisiert:

- Tiefpaßumschaltung 200/20 kHz
- Umschaltung WEISS-ROSA
- Einschaltung der Rosa-Filtergrunddämpfung bei WEISS, $R 1$ bis $R 3$ bilden das entsprechende Dämpfungsnetzwerk.

6.4. Ausgangsspannungsteiler "grob" (577 907.4)

Der Ausgangsspannungsteiler ist nach dem Endverstärker angeordnet, damit bei größeren Pegeländerungen auch eine eventuell vorhandene Offsetspannung entsprechend verändert wird.

Die Subleiterplatte enthält nur die Schalteinheit des Schalters.

7. Reparaturhinweise

Der Rauschgenerator arbeitet wartungsfrei. Treten Störungen auf, die vom Anwender nicht selbst behoben werden können, ist der Rauschgenerator an das Herstellerwerk oder - im Ausland - an die zuständige Service-Werkstatt einzusenden. Kleinere Störungen lassen sich vom Anwender selbst beseitigen. Die nachfolgend angegebenen Hinweise dienen zum Auffinden der defekten Baugruppe und eventueller Störungen in der Verdrahtung oder an den Bedienungselementen.

7.1. Überprüfen des Signalweges

Bei eventuell auftretenden Fehlern ist zuerst der Signalweg an Hand der Stromlaufpläne zu verfolgen. Dazu wird ein elektronisches Voltmeter (möglichst mit Effektivwertanzeige) oder ein Oszilloskop benutzt.

Achtung! Der Betrieb des Rauschgenerators außerhalb des Systemgehäuses darf nur über ein Adapterkabel erfolgen. Die separate Masseleitung (Schutzleiter) ist aus Sicherheitsgründen vor der Inbetriebnahme unbedingt in die zentrale Massebuchse des Systemgehäuses zu stecken.

Der zu überprüfende Signalweg ist:

Ausgangsbuchse X 1

Ausgangsteiler "grob" (Stellung 0 dB)

Eingang Endstufe (C 41)

Schalter WEISS/ROSA 20 kHz, WEISS

Dämpfungsregler "fein" (Anschluß X 2), Rechtsanschlag

Können die in der nachfolgenden Tabelle 1 angegebenen Pegelwerte nicht gemessen werden, liegt ein Fehler in der Spannungsstabilisierung, in der Mischstufe, im Oszillator, in der Regelstufe mit dem Regelverstärker, oder im Bandpaßverstärker vor.

In diesem Falle (außer Spannungsstabilisierung) sollte der Rauschgenerator an den Hersteller oder die zuständige Service-

Werkstatt eingeschickt werden. Nach der Reparatur dieser Schaltungsteile sind umfangreiche Einstell- und Prüfarbeiten notwendig, um die technischen Daten zu garantieren.

Tabelle 1

	HU X 1	577 907.4 X 6	577 898.1 C 41	577 904.1 X 7	Meßpunkt 9
WEISS 20 kHz	1 V	1 V	0,145 V	76 mV	76 mV
WEISS 200 kHz	1 V	1 V	0,145 V	27 mV	27 mV

Zur einfachen Überprüfung von Schalter WEISS/ROSA, Rosa Filter und Endstufe kann die Verbindung Dämpfungsregler "fein" (R 1 - X 2) aufgetrennt werden und in R 1 eine Spannung U_e mit $f = 2$ kHz eingespeist werden.

Es gelten dann die Werte nach Tabelle 2.

Tabelle 2

	Meßpunkt 9 U_e	577 898.1 C 41	577 907.4 X 6	HU X 1
WEISS 20 kHz	300 mV	145 mV	1 V	1 V
WEISS 200 kHz	850 mV	145 mV	1 V	1 V
ROSA 200 kHz	500 mV (2 kHz)	145 mV	1 V	1 V

7.2. Stabilisierungsschaltung V 1 bis V 10 (577 898.1)

Die vom Netzteil 04 003 abgegebenen unstabilisierten Versorgungsspannungen sind zu überprüfen, ebenso die stabilisierten Ausgangsspannungen der Stabilisierungsschaltung.

Kontakt	Sollspannung	Grenzwerte
Eingangsspannungen unstabilisiert	X 1 : 29 X 1 : 15	+21 V -21 V
		+18 bis +28,5 V -18 bis -28,5 V
Ausgangsspannungen stabilisiert	Meßpunkt (1) (2)	+15,000 V } -15,000 V }
		Toleranz ±20 mV

Durch Ändern der Eingangsspannung bzw. der Netzspannung im angegebenen Toleranzbereich und gleichzeitige Kontrolle der Ausgangsspannung kann der Stabilisierungsbereich der Schaltung überprüft werden. Die sichere Funktion der Überstromsicherung kann durch Anschalten eines zusätzlichen Lastwiderstandes $R \leq 300 \Omega$ (1 W) getestet werden.

8. Lager- und Transportbedingungen

Lagerung und Transport dürfen in Originalverpackung nur innerhalb eines Temperaturbereiches von -25°C bis $+55^{\circ}\text{C}$ erfolgen. Die Bedingungen unterteilen sich in die folgenden Bereiche:

-25°C bis $+30^{\circ}\text{C}$	relative Luftfeuchte $\leq 95\%$ (95 % bei 30°C entspricht einem Dampfdruck über Wasser von $4 \cdot 10^3 \text{ Pa}$)
$+30^{\circ}\text{C}$ bis $+55^{\circ}\text{C}$	konstante absolute Luftfeuchte, Maximalwert entsprechend dem Wert der relativen Luftfeuchte = 95 % bei 30°C .

Erläuterungen zu Bild 7

- 1 Leiterplatte, vollständig 577 898.1
- 2 Leiterplatte 1 577 901.7
- 3 Leiterplatte 2 577 904.1
- 4 Leiterplatte 3 577 907.4

Bild 7

RAUSCHGENERATOR 03 004

Seitenansicht

Position der Bauelemente und Baueinheiten

Рис.7

ГЕНЕРАТОР ШУМА 03 004

Вид сбоку

Расположение деталей и узлов

Fig. 7

03 004 NOISE GENERATOR

Side View

Component Location and Sub-Assemblies

577 904.1

577 907.4

0 Leiterplatte
Печатная плата
Printed circuit board

Ansicht Bestückungsseite
Вид со стороны оснащения
View of Insertion End

Position der Bauelemente
Расположение деталей
Component Location

Ansicht Bestückungsseite
Вид со стороны оснащения
View of Insertion End

577 901.7

Position der Bauelemente
Расположение деталей
Component Location

Leiterplatte
Печатная плата
A Printed circuit board

Schalteilliste		Спецификация деталей схемы		List of Circuit Elements			
Kurz-bez.	MKD-Sach-Nr.	Bezeichnung	Standardbezeichnung	Bemerkungen			
Kр. обозн.	MKD-№ детали	Наименование	Обозначение по норме	Примечания			
Item	MKD-Code-Number	Designation	Standard Specification	Notes			
Rauschgenerator 03 004							
Leiterplatte, vollständig							
	577 898.1	Leiterplatte, vollständig					
	577 901.7	Leiterplatte 1					
	577 904.1	Leiterplatte 2					
	577 907.4	Leiterplatte 3					
R 1	807 675.0	Schichtdrehwiderstand	1 kΩ 1-20 A2-665 TGL 9100				
X 1	813 474.5	HF-Steckdose	21-2 TGL 200-3800				
Leiterplatte, vollständig 577 898.1							
A 1	818 520.8	Schaltkreis	B 222 D D-TGL 35 55				
A 2	814 089.7	Schaltkreis	D 100 D-TGL 26 152				
A 3	818 570.6	Schaltkreis	B 109 D-TGL 28 873				
C 1 und							
C 2	812 716.8	Kondensator	SDVU 10/S-MKD-S 5043				
C 3 und							
C 4	818 750.7	Elyt-Kondensator	47/16 TGL 7198-IS				
C 5 und							
C 6	801 163.0	KS-Kondensator	1000/5/25 TGL 5155				
C 7	819 069.7	KT-Kondensator	0,047/10/160 TGL 200-8424				
C 8	804 510.0	MKC1-Kondensator	2,2/20/100 TGL 200-8447				
C 9	804 508.6	MKC1-Kondensator	0,47/20/100 TGL 200-8447				
C 10 bis							
C 13	801 163.0	KS-Kondensator	1000/5/25 TGL 5155				
C 14	803 336.3	Elyt-Kondensator	5/15 TGL 7198-IS				
C 15	818 021.1	Kondensator	EDVU-NP 0-22/10 TGL 24 100				
C 16 und							
C 17	818 560.1	Kondensator	EDVU-N 150-68/10 TGL 24 100				
C 18 und							
C 19	815 118.4	Kondensator	SDVO-N 750-100/10-400				
C 20	818 560.1	Kondensator	TGL 24 099				
C 21	813 935.6	Kondensator	EDVU-N 150-68/10 TGL 24 100				
C 22	814 221.4	Kondensator	SDVO-NP 0-6,8/10-400				
C 23	801 213.3	KS-Kondensator	TGL 24 099				
C 24	816 192.4	Kondensator	EDVU-N 750-220/10 TGL 24 100				
C 25	801 210.0	KS-Kondensator	470/5/63 TGL 5155				
C 26	818 558.7	Kondensator	EDVU-N 750-56/10 TGL 24 100				
C 27	804 423.7	KS-Kondensator	270/5/63 TGL 5155				
C 28	814 692.5	KS-Kondensator	EDVU-N 150-27/10 TGL 24 100				
C 29	818 529.7	Elyt-Kondensator	10000/1/25 TGL 200-8404				
C 30	818 556.2	KS-Kondensator	33000/1/25 TGL 5155				
C 31	818 557.0	KS-Kondensator	56000/1/25 TGL 200-8404				
C 32	818 555.4	KS-Kondensator	27000/1/25 TGL 200-8404				
C 33	818 082.2	Kondensator	EDVU-N 150-100/10 TGL 24 100				
C 34 und							
C 35	813 408.7	KT-Kondensator	0,1/5/160 TGL 200-8424				
C 36	808 357.3	KT-Kondensator	0,01/10/160 TGL 200-8424				
C 36	809 648.1	KT-Kondensator	0,022/10/160 TGL 200-8424 für Abgleich				
C 37	816 008.0	Kondensator	SDVO-NP 0-3,9/20-400				
C 38 und			TGL 24 099				
C 39	815 040.7	KT-Kondensator	0,47/5/160 TGL 200-8424				
C 40	807 672.6	KT-Kondensator	0,033/10/160 TGL 200-8424				
C 41	810 704.3	T-Kondensator	47/6 TGL 200-8519				
C 42	814 419.3	Kondensator	SDVU 47/S-MKD-S 5043				
C 43	814 224.7	Kondensator	EDVU-V-1/20 TGL 24 100				
C 44	815 645.3	Kondensator	SDVO-NP 0-22/10-400				
R 1	818 046.1	Schichtwiderstand	TGL 24 099				
R 2	817 553.6	Schichtwiderstand	6,8 kΩ 2 % 250.207 TK 200				
			TGL 8728				
			820 Ω 2 % 250.207 TK 200				
			TGL 8728				

Kurz-bez.	MKD-Sach-Nr.	B e n e n u n g	Standardbezeichnung	Bemerkungen
R 3	818 551.3	Schichtwiderstand	2,2 kΩ 2 % 250.207 TK 200	TGL 8728
R 4	818 530.4	Schichtwiderstand	8,2 kΩ 2 % 250.207 TK 200	TGL 8728
R 5	814 521.7	Drahtwiderstand	470 Ω 5 % 22.616 TGL 200-8041	TGL 8728
R 6	817 018.7	Schichtwiderstand	47 Ω 2 % 250.207 TK 200	TGL 8728
R 7	818 537.8	Schichtwiderstand	82 Ω 2 % 250.207 TK 200	TGL 8728
R 8	816 937.8	Schichtwiderstand	8,2 kΩ 2 % 250.207 TK 200	TGL 8728
R 9	818 046.1	Schichtwiderstand	6,8 kΩ 2 % 250.207 TK 200	TGL 8728
R 10	814 521.7	Drahtwiderstand	470 Ω 5 % 22.616 TGL 200-8041	TGL 8728
R 11	818 530.4	Schichtwiderstand	8,2 kΩ 2 % 250.207 TK 200	TGL 8728
R 12	817 695.5	Schichtwiderstand	100 Ω 2 % 250.207 TK 200	TGL 8728
R 13	818 553.8	Schichtwiderstand	5,6 kΩ 2 % 250.207 TK 200	TGL 8728
R 14	818 552.1	Schichtwiderstand	2,7 kΩ 2 % 250.207 TK 200	TGL 8728
R 15	818 551.3	Schichtwiderstand	2,2 kΩ 2 % 250.207 TK 200	TGL 8728
R 16	803 186.8	Schichtdrehwiderstand	S 500 Ω 1-05-554 TGL 11 886	
R 17	818 551.3	Schichtwiderstand	2,2 kΩ 2 % 250.207 TK 200	TGL 8728
R 18	819 067.2	Schichtwiderstand	15,5 kΩ 2 % 250.207 TK 200	TGL 8728
R 19	816 160.2	Schichtwiderstand	15 kΩ 2 % 250.207 TK 200	TGL 8728
R 20	803 188.4	Schichtdrehwiderstand	S 1 kΩ 1-05-554 TGL 11 886	
R 21	816 940.0	Schichtwiderstand	36 kΩ 2 % 250.207 TK 200	TGL 8728
R 22	816 158.8	Schichtwiderstand	20 kΩ 2 % 250.207 TK 200	TGL 8728
R 23	818 552.1	Schichtwiderstand	2,7 kΩ 2 % 250.207 TK 200	TGL 8728
R 24	800 621.5	Schichtwiderstand	1,2 MΩ 5 % 25.311 TGL 8728	
R 25	816 937.8	Schichtwiderstand	8,2 kΩ 2 % 250.207 TK 200	TGL 8728
R 26	800 623.1	Schichtwiderstand	1,5 MΩ 5 % 25.311 TGL 8728	
R 27	814 541.8	Schichtwiderstand	20 kΩ 2 % 250.207 TK 100	TGL 8728
R 28	803 200.8	Schichtdrehwiderstand	S 50 kΩ 1-05-554 TGL 11 886	
R 29	818 548.2	Schichtwiderstand	510 Ω 2 % 250.207 TK 200	TGL 8728
R 30	818 531.2	Schichtwiderstand	10 Ω 2 % 250.207 TK 200	TGL 8728
R 31	816 166.8	Schichtwiderstand	3,6 kΩ 2 % 250.207 TK 200	TGL 8728
R 32	803 192.3	Schichtdrehwiderstand	S 5 kΩ 1-05-554 TGL 11 886	
R 33	814 621.8	Schichtwiderstand	300 Ω 2 % 250.207 TK 100	TGL 8728
R 34 und R 35	818 254.3	Schichtwiderstand	5,6 kΩ 1 % 250.207 TK 100	TGL 8728
R 36	818 568.3	Schichtwiderstand	5,1 kΩ 2 % 250.207 TK 200	TGL 8728
R 37	818 532.0	Schichtwiderstand	24 Ω 2 % 250.207 TK 200	TGL 8728
R 38	818 568.3	Schichtwiderstand	5,1 kΩ 2 % 250.207 TK 200	TGL 8728
R 39	818 532.0	Schichtwiderstand	24 Ω 2 % 250.207 TK 200	TGL 8728
R 40	815 626.0	Schichtwiderstand	22 kΩ 1 % 250.207 TK 100	TGL 8728
R 41	815 614.8	Schichtwiderstand	3 kΩ 1 % 250.207 TK 100	TGL 8728
R 42	816 996.4	Schichtwiderstand	4,7 kΩ 2 % 250.207 TK 200	TGL 8728
R 43	803 190.7	Schichtdrehwiderstand	S 2,5 kΩ 1-05-554 TGL 11 886	
R 44	816 996.4	Schichtwiderstand	4,7 kΩ 2 % 250.207 TK 200	TGL 8728
R 45	818 545.8	Schichtwiderstand	200 Ω 2 % 250.207 TK 200	TGL 8728
R 46 und R 47	817 919.5	Schichtwiderstand	2,7 kΩ 1 % 250.207 TK 100	TGL 8728

Kurz-bez.	MKD-Sach-Nr.	B e n e n u n g	Standardbezeichnung	Bemerkungen
R 48	803 206.5	Schichtdrehwiderstand	S 250 kΩ 1-05-554 TGL 11 886	
R 49	813 845.1	Schichtwiderstand	1 MΩ 5 % 25.207 TGL 8728	
R 50	816 159.6	Schichtwiderstand	18 kΩ 2 % 250.207 TK 200	TGL 8728
R 51 und R 52	816 936.1	Schichtwiderstand	6,8 kΩ 1 % 250.207 TK 100	TGL 8728
R 53	816 937.8	Schichtwiderstand	8,2 kΩ 2 % 250.207 TK 200	TGL 8728
R 54	803 190.7	Schichtdrehwiderstand	S 2,5 kΩ 1-05-554 TGL 11 886	
R 55	815 634.0	Schichtwiderstand	51 kΩ 1 % 250.207 TK 100	TGL 8728
R 56	815 676.7	Schichtwiderstand	3,9 kΩ 2 % 250.207 TK 200	TGL 8728
R 57	816 160.2	Schichtwiderstand	15 kΩ 2 % 250.207 TK 200	TGL 8728
R 58	816 151.4	Schichtwiderstand	47 kΩ 2 % 250.207 TK 200	TGL 8728
R 59	815 634.0	Schichtwiderstand	51 kΩ 1 % 250.207 TK 100	TGL 8728
R 60	816 162.7	Schichtwiderstand	10 kΩ 2 % 250.207 TK 200	TGL 8728
R 61	817 551.1	Schichtwiderstand	680 Ω 2 % 250.207 TK 200	TGL 8728
R 62	818 533.7	Schichtwiderstand	39 Ω 2 % 250.207 TK 200	TGL 8728
R 63 und R 64	813 837.1	Schichtwiderstand	10 kΩ 2 % 250.207 TK 100	TGL 8728
R 65	816 160.2	Schichtwiderstand	15 kΩ 2 % 250.207 TK 200	TGL 8728
R 66	816 969.1	Schichtwiderstand	4,3 kΩ 2 % 250.207 TK 200	TGL 8728
R 67	818 545.8	Schichtwiderstand	200 Ω 2 % 250.207 TK 200	TGL 8728
R 68	818 546.6	Schichtwiderstand	240 Ω 2 % 250.207 TK 200	TGL 8728
R 69	815 605.1	Schichtwiderstand	270 Ω 1 % 250.207 TK 100	TGL 8728
R 70	818 536.1	Schichtwiderstand	75 Ω 0,5 % 250.207 TK 100	TGL 8728
R 71	814 542.6	Schichtwiderstand	100 kΩ 0,5 % 250.207 TK 100	TGL 8728
R 72	814 620.1	Schichtwiderstand	300 Ω 0,5 % 250.207 TK 100	TGL 8728
R 73	817 916.2	Schichtwiderstand	820 Ω 0,5 % 250.207 TK 100	TGL 8728
R 74	817 857.1	Schichtwiderstand	2,3 kΩ 0,5 % 250.207 TK 100	TGL 8728
R 75	814 299.5	Schichtwiderstand	7,5 kΩ 0,5 % 250.207 TK 100	TGL 8728
R 76	818 554.6	Schichtwiderstand	36 kΩ 0,5 % 250.207 TK 100	TGL 8728
R 77	814 542.6	Schichtwiderstand	100 kΩ 0,5 % 250.207 TK 100	TGL 8728
R 78	815 605.1	Schichtwiderstand	270 Ω 1 % 250.207 TK 100	TGL 8728
R 79	817 554.4	Schichtwiderstand	1,5 kΩ 2 % 250.207 TK 200	TGL 8728
R 80	817 018.7	Schichtwiderstand	47 Ω 2 % 250.207 TK 200	TGL 8728
R 81	815 621.1	Schichtwiderstand	15 kΩ 1 % 250.207 TK 100	TGL 8728
R 82	816 149.1	Schichtwiderstand	56 kΩ 2 % 250.207 TK 200	TGL 8728
R 83	816 181.1	Schichtwiderstand	36 Ω 2 % 250.207 TK 200	TGL 8728
R 84	816 162.7	Schichtwiderstand	10 kΩ 2 % 250.207 TK 200	TGL 8728
R 85	816 145.0	Schichtwiderstand	68 kΩ 2 % 250.207 TK 200	TGL 8728
R 86	803 186.8	Schichtdrehwiderstand	S 500 Ω 1-05-554 TGL 11 886	
R 87	818 547.4	Schichtwiderstand	270 Ω 2 % 250.207 TK 200	TGL 8728
R 88	818 550.5	Schichtwiderstand	1,2 kΩ 2 % 250.207 TK 200	TGL 8728
R 89	815 611.5	Schichtwiderstand	1 kΩ 1 % 250.207 TK 100	TGL 8728
R 90	818 544.1	Schichtwiderstand	180 Ω 2 % 250.207 TK 200	TGL 8728

Kurz-bez.	MKD-Sach-Nr.	B e n e n n u n g	Standardbezeichnung	Bemerkungen
R 91	816 160.2	Schichtwiderstand	15 kΩ 2 % 250.207 TK 200 TGL 8728	
R 92	818 254.3	Schichtwiderstand	5,6 kΩ 1 % 250.207 TK 100 TGL 8728	
R 93 und				
R 94	818 534.5	Schichtwiderstand	39 Ω 2 % 250.207 TK 200 TGL 8728	
R 95 und				
R 96	813 863.6	Schichtwiderstand	100 Ω 0,5 % 250.207 TK 100 TGL 8728	
R 97	814 616.2	Schichtwiderstand	160 Ω 0,5 % 250.207 TK 100 TGL 8728	
R 98	818 538.6	Schichtwiderstand	115 Ω 0,5 % 250.207 TK 100 TGL 8728	
R 99	818 539.4	Schichtwiderstand	140 Ω 0,5 % 250.207 TK 100 TGL 8728	
R 100	818 543.3	Schichtwiderstand	170 Ω 0,5 % 250.207 TK 100 TGL 8728	
R 101	817 890.8	Schichtwiderstand	220 Ω 0,5 % 250.207 TK 100 TGL 8728	
R 102	818 539.4	Schichtwiderstand	140 Ω 0,5 % 250.207 TK 100 TGL 8728	
R 103	818 535.3	Schichtwiderstand	65 Ω 0,5 % 250.207 TK 100 TGL 8728	
R 104 und				
R 105	813 854.8	Schichtwiderstand	10 kΩ 0,5 % 250.207 TK 100 TGL 8728	
R 106	817 908.2	Schichtwiderstand	120 Ω 0,5 % 250.207 TK 100 TGL 8728	
R 107	814 615.4	Schichtwiderstand	150 Ω 0,5 % 250.207 TK 100 TGL 8728	
R 108	818 539.4	Schichtwiderstand	140 Ω 0,5 % 250.207 TK 100 TGL 8728	
R 109	818 543.3	Schichtwiderstand	170 Ω 0,5 % 250.207 TK 100 TGL 8728	
R 110	817 890.8	Schichtwiderstand	220 Ω 0,5 % 250.207 TK 100 TGL 8728	
R 111	818 539.4	Schichtwiderstand	140 Ω 0,5 % 250.207 TK 100 TGL 8728	
R 112	814 612.1	Schichtwiderstand	62 Ω 0,5 % 250.207 TK 100 TGL 8728	
V 1	808 298.2	Transistor	BC 177 A	
V 2	804 392.7	Transistor	SF 126 D-TGL 200-8439	
V 3 bis				
V 6	818 569.1	Transistor	SC 236 D-TGL 27 147	
V 7	808 298.2	Transistor	BC 177 A	
V 8 und				
V 9	818 569.1	Transistor	SC 236 D-TGL 27 147	
V 10	804 392.7	Transistor	SF 126 D-TGL 200-8439	
V 11 und				
V 12	818 569.1	Transistor	SC 236 D-TGL 27 147	
V 13 und				
V 14	808 298.2	Transistor	BC 177 A	
V 15 und				
V 16	818 521.6	Transistor	SC 239 F-TGL 27 147	
V 17	808 298.2	Transistor	BC 177 A	
V 18	818 569.1	Transistor	SC 236 D-TGL 27 147	
V 19 und				
V 20	807 679.1	Transistor	SF 137 D-TGL 200-8140	
V 21 und				
V 22	818 521.6	Transistor	SC 239 F-TGL 27 147	
V 23	808 298.2	Transistor	BC 177 A	
V 24	807 679.1	Transistor	SF 137 D-TGL 200-8140	
V 25	808 298.2	Transistor	BC 177 A	
V 26 und				
V 27	814 975.1	Diode	SZK 21/1 TGL 27 338 L2/4	
V 28 bis				
V 30	807 293.1	Schaltdiode	SAY 32 TGL 200-8466 L2/4	
V 32 und				
V 32	812 634.3	Diode	SZK 21/6,8 TGL 27 338 L2/4	
V 33 und				
V 34	807 293.1	Schaltdiode	SAY 32 TGL 200-8466 L2/4	
V 35	812 753.7	Diode	SZK 21/5,1 TGL 27 338 L2/4	
V 36 bis				
V 40	807 293.1	Schaltdiode	SAY 32 TGL 200-8466 L2/4	
X 1	809 527.1	Steckerleiste	4620-04 CZ-AGPD 30	
X 2 bis				
X 6	807 421.8	Lötöse	101/10 TGL 0-41 496	
X 7 bis				
X 13	804 236.4	Anschlußelement		

Kurz-bez.	MKD-Sach-Nr.	B e n e n n u n g	Standardbezeichnung	Bemerkungen
<u>Leiterplatte 1 577 901.7</u>				
C 1	814 224.7	Kondensator	EDVU-V-1/20 TGL 24 100	
C 2	818 559.5	Kondensator	EDVU-N 150-47/10 TGL 24 100	
C 3	815 651.7	KS-Kondensator	1500/5/25 TGL 5155	
C 4	812 716.8	Kondensator	SDVU 10/S-MKD-S 5043	
C 5	813 462.4	Kondensator	SDVU 4,7/S-MKD-S 5043	
C 6	812 716.8	Kondensator	SDVU 10/S-MKD-S 5043	
C 7	818 561.8	Kondensator	SDVU-Y 4,7/50-400 TGL 24 099	
R 1	814 556.3	Schichtwiderstand	33 kΩ 2 % 250.207 TK 100 TGL 8728	
R 2	814 541.8	Schichtwiderstand	20 kΩ 2 % 250.207 TK 100 TGL 8728	
R 3	813 833.0	Schichtwiderstand	1,2 kΩ 2 % 250.207 TK 100 TGL 8728	
R 4	814 658.0	Schichtwiderstand	18 kΩ 2 % 250.207 TK 100 TGL 8728	
R 5	816 162.7	Schichtwiderstand	10 kΩ 2 % 250.207 TK 200 TGL 8728	
R 6	814 621.8	Schichtwiderstand	300 Ω 2 % 250.207 TK 100 TGL 8728	
R 7	814 231.0	Schichtwiderstand	3,9 kΩ 2 % 250.207 TK 100 TGL 8728	
R 8	816 160.2	Schichtwiderstand	15 kΩ 2 % 250.207 TK 200 TGL 8728	
R 9 und				
R 10	817 644.0	Schichtwiderstand	6,2 kΩ 2 % 250.207 TK 200 TGL 8728	
R 11	803 186.8	Schichtdrehwiderstand	S 500 Ω 1-05-554 TGL 11 886	
R 12	816 993.1	Schichtwiderstand	150 Ω 2 % 250.207 TK 200 TGL 8728	
R 13 und				
R 14	818 549.0	Schichtwiderstand	1,1 kΩ 2 % 250.207 TK 200 TGL 8728	
R 15	818 550.5	Schichtwiderstand	1,2 kΩ 2 % 250.207 TK 200 TGL 8728	
R 16 und				
R 17	816 166.8	Schichtwiderstand	3,6 kΩ 2 % 250.207 TK 200 TGL 8728	
V 1	817 773.0	Transistor	KP 303 B	
V 2	808 296.2	Transistor	BC 177 A	
V 3 bis				
V 6	807 911.8	Transistor	SP 216 D-TGL 26 819	
V 7	818 569.1	Transistor	SC 236 D-TGL 27 147	
X 1 bis				
X 6	564 598.6	Platte		
<u>Leiterplatte 2 577 904.1</u>				
R 1	818 523.2	Schichtwiderstand	2,4 kΩ 2 % 250.207 TK 200 TGL 8728	
R 2	816 970.6	Schichtwiderstand	9,1 kΩ 2 % 250.207 TK 200 TGL 8728	
R 3	818 524.0	Schichtwiderstand	2,1 kΩ 2 % 250.207 TK 200 TGL 8728	
S 1	818 507.2	Schaltebene	A4 MK-MKD-S 5052	
X 1	577 910.5	Platte		
X 2 bis				
X 6	564 598.6	Platte		
X 7	577 910.5	Platte		
<u>Leiterplatte 3 577 907.4</u>				
S 1	818 564.2	Schaltebene		
X 1	577 910.5	Platte		
X 2 bis				
X 7	564 598.6	Platte		
X 8	577 910.5	Platte		
A2-1 MK-MKD-S 5052				