Homework 5

Problem 19

Matrix elements of spin 1/2 operator $\hat{S}_{\mathbf{n}} = \mathbf{n} \cdot \hat{\mathbf{S}}$ in $|\pm \mathbf{x}\rangle$ basis form 2×2 matrix

$$\hat{S}_{\mathbf{n}} = \begin{pmatrix} \langle +\mathbf{x} | \, \hat{S}_{\mathbf{n}} | + \mathbf{x} \rangle & \langle +\mathbf{x} | \, \hat{S}_{\mathbf{n}} | - \mathbf{x} \rangle \\ \langle -\mathbf{x} | \, \hat{S}_{\mathbf{n}} | + \mathbf{x} \rangle & \langle -\mathbf{x} | \, \hat{S}_{\mathbf{n}} | - \mathbf{x} \rangle \end{pmatrix}.$$

Find this matrix and verify that it yields the correct commutator $[\hat{S}_{\mathbf{y}}, \hat{S}_{\mathbf{z}}] = i\hbar \hat{S}_{\mathbf{x}}$.

Problem 20

Because spin 1/2 operator $\hat{S}_{\mathbf{n}}$ has only two eigenvalues, any function of this operator can be written as the first-degree polynomial $\hat{f}(\hat{S}_{\mathbf{n}}) = c_0 \hat{1} + c_1 \hat{S}_{\mathbf{n}}$. Find this polynomial for $\hat{f}(\hat{S}_{\mathbf{n}}) = e^{-i\theta \hat{S}_{\mathbf{n}}/\hbar}$, where θ is a real dimensionless number.

Problem 21

Show that for spin 1/2 operators $(\mathbf{a} \cdot \hat{\mathbf{S}})(\mathbf{b} \cdot \hat{\mathbf{S}}) = \alpha \hat{\mathbb{1}} + \beta \cdot \hat{\mathbf{S}}$, where α and β are, respectively, a scalar and a vector that you need to find.

Problem 22

(a) Evaluate $\Delta S_{\mathbf{n}_1}$, $\Delta S_{\mathbf{n}_2}$, and $\langle [\hat{S}_{\mathbf{n}_1}, \hat{S}_{\mathbf{n}_2}] \rangle \equiv \langle \mathbf{n} | [\hat{S}_{\mathbf{n}_1}, \hat{S}_{\mathbf{n}_2}] | \mathbf{n} \rangle$ for spin 1/2 in the state $|\mathbf{n}\rangle$. Feel free to use the relations

$$\langle \mathbf{a} \cdot \mathbf{S} \rangle_{\mathbf{n}} = \langle \mathbf{n} | \mathbf{a} \cdot \hat{\mathbf{S}} | \mathbf{n} \rangle = \frac{\hbar}{2} (\mathbf{a} \cdot \mathbf{n}), \quad \Delta_{\mathbf{n}} (\mathbf{a} \cdot \mathbf{S}) = \frac{\hbar}{2} | \mathbf{a} \times \mathbf{n} |, \quad \left[\mathbf{a} \cdot \hat{\mathbf{S}}, \mathbf{b} \cdot \hat{\mathbf{S}} \right] = i \hbar (\mathbf{a} \times \mathbf{b}) \cdot \hat{\mathbf{S}}.$$

(b) Verify that the expressions obtained in part (a) obey the uncertainty relation

$$\Delta S_{\mathbf{n}_1} \Delta S_{\mathbf{n}_2} \geq \frac{1}{2} \left| \left\langle [\hat{S}_{\mathbf{n}_1}, \hat{S}_{\mathbf{n}_2}] \right\rangle \right|.$$

Suggestion: As you will discover, part (b) reduces to demonstrating a certain relation between unit dimensionless vectors \mathbf{n} , \mathbf{n}_1 , and \mathbf{n}_2 . This can be done, for example, by switching to the spherical polar coordinates with $\mathbf{z} = \mathbf{n}$.