

Statistical Inference and PGM

A Short Lecture on Statistical Machine Learning

Sajad Azami & Taher Ahmadi

Foundations of Data Mining
CEIT - Amirkabir University of Technology

sajjadaazami@gmail.com 14Taher@gmail.com

Spring 2017

Outlines

- Context Definition
- General SML Concepts and CDF Estimation
- Models and Statistical Inference
- Conditional Independence
- PGM
- Applications
- References

Why Statistics is Important?

Figure 1.2: Examples of handwritten digits from U.S. postal envelopes.

Introduction Background Statistical Inference PGM Application References

Why Statistics is Important?

TECHNOLOGY

For Today's Graduate, Just One Word: Statistics

By STEVE LOHR AUG. 5, 2009

Introduction Background Statistical Inference PGM Application References

Where Are We?

Why Statistical Models?

- Partial discovery of state of the world
- Noisy observation(blood test)
- Phenomena not covered by our models(diseases)
- Inherent stochasticity

Probability Theory

PGM

Statistics vs Probability

es >

Distribution(Review)

providing a *relative likelihood* that the value of the random variable would equal that sample

right-continuous, non-decreasing normalized

Introduction Background Statistical Inference PGM Application References

Joint Distribution

Intelligence(I): low, high

Difficulty(D): easy, hard

Grade(G): A, B, C

12 Independence Parameters

I	D	G	Prob.
i ⁰	ďo	9 ¹	0.126
i ^o	ďo	g²	0.168
i ^o	d⁰	g³	0.126
i ^o	d¹	g^1	0.009
i ⁰	d¹	g²	0.045
i ⁰	d¹	g ³	0.126
i ¹	ď°	g^1	0.252
i ¹	ďº	g²	0.0224
i ¹	d⁰	g³	0.0056
i ¹	d¹	g ¹	0.06
i ¹	d¹	g²	0.036
· i ¹	d¹	g ³	0.024

Some Basic Concepts: WLLN

Sample Mean converges in **Probability** to E(X)

If
$$X_1, \dots, X_n$$
 are IID
$$then \ \overline{X}_n \xrightarrow{P} \mu$$

Trials

Introduction Background Statistical Inference PGM Application References

Some Basic Concepts: CLT

Probability statements about Sample Mean can be approximated using a Normal distribution

$$Z_n \equiv \frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} \leadsto Z$$

Introduction

PGM

Estimation

We have samples, we want to know about data generating process(CDF)

Introduction Background Statistical Inference PGM Application References

13

Estimation

We have samples, we want to know about data generating process(CDF)

Statistical Inference: the process of deducing properties of an underlying distribution by analysis of data

- Hypothesis Testing and p-values
- Deriving Estimates(That's why normal dist. is important)

References 14

Statistical Inference

Frequentist Inference

Bayesian Inference

- Point Estimation
- Confidence Sets

Application References 15

Frequentist Inference: Point Estimation

Providing a single "best guess" of some quantity of interest

Imagine tossing a fair coin and estimate p

3 16

Frequentist Inference: Confidence Sets

A 1-a confidence interval for a parameter θ (a is usually set to 0.05 so that we have 95% CI)

Interpretation:

0 1.0 10

- Repeat experiment and CI will contain true values 95% of the time
- Construct CI over time and 95% of CI's will trap the true value

Application References

Bootstrap

A nonparametric method for estimating standard errors and computing confidence intervals

- 1. Draw bootstrap samples n times
- 2. Compute statistic of interest as T_n
- Repeat 1 and 2, B times to get T_n,1 ... T_n,B
- 4. se <= sqrt(variance(Tboot))

References

Interval Types

Normal Interval

Percentile Interval

Pivotal Interval

 $C_n = \left(2\widehat{\theta}_n - \widehat{\theta}_{1-\alpha/2}^*, \ 2\widehat{\theta}_n - \widehat{\theta}_{\alpha/2}^*\right)$

$$T_n \pm z_{\alpha/2} \, \, \widehat{\mathsf{se}}_{\,\mathrm{boot}}$$

$$C_n = \left(\theta_{\alpha/2}^*, \; \theta_{1-\alpha/2}^*\right)$$

Application References 19

Interval Types

```
Normal <- (th.hat - 2*se, th.hat + 2*se)

percentile <- (quantile(Tboot, .025), quantile(Tboot, .975))

pivotal <- (2*th.hat-quantile(Tboot, .975), 2*th.hat-quantile(Tboot, .025))
```

Bayesian Inference

- 1. Choose a prior distribution(flat, improper)
- 2. Choose a statistical model that reflects our beliefs about x
- 3. Update beliefs and form the **posterior** after observing data

Application

Bayesian Inference

We had **Naive Bayes** as an example of probabilistic models, with strong (naive) independence assumptions between the features

Application References

Bayesian Inference

We had **Naive Bayes** as an example of probabilistic models, with strong (naive) independence assumptions between the features

What if we don't want to assume strong independence?

 $\frac{}{2}$

A Case Study ...

Estimating 3D Human Poses From 2D Images

Introduction Background Statistical Inference PGM Application References 2

Reconstructing Articulated 3D Human Poses

PGM

Graph Terminology

Node, Edge, Directed/Undirected edge,

Neighbor, Parent-Child, Node degree, Indegree, Outdegree,

Subgraph, Complete subgraph (clique), Maximal clique,

Path, trail, Cycle(Loop), Tree, Forest, DAG, PDAG

Introduction Background Statistical Inference PGM Application References

26

Directed Graphical Models or Bayes Networks

- Directed Acyclic Graph
 - A compact and modular representation of the joint distribution using the chain rule for Bayes network
- Conditional Probability Distribution (CPD)
 - The conditional independence assumptions between vertices

Introduction Background Statistical Inference PGM Application References

Graphical Models

- Representation
 - Directed & Undirected
 - Resoning
- Learning
 - Structure
 - Parameters
- Inference
 - Exact
 - Approximate

Graphical Models

PGM Application References

Reasoning Patterns

- Causal
- Evidential
- Inter Causal

Causal vs Evidential Reasoning

PGM

>3

Inter-Causal Reasoning

Explaining AwayPhenomenon

Fig x.x Intercausal Reasoning

References

Some Concepts

- Factorization
- I-Maps & P-Maps & I-Equivalents
- Active Trail (of influence)
- V-Structure
- D-Separation

References

Naive-Bayes Example

Naïve Bayes: N words which have been observed, Class unobserved

$$P(C, X_1, X_2, ... X_n) = P(C) \prod_{i=2}^{n} P(X_i | C)$$

PGM

nces > 34

Structure Learning

Using:

- Data set
- Domain Knowledge

P(A,B) = P(A)P(B)

Constraint-Based

- null hypothesis testing : Pearson chi-square test $x^2 = \sum_{E}^{n} \frac{\left(O_i E_i\right)^2}{E}$ Graph skeleton and Finding I-maps

Score-Based

- The likelihood score
- The Bayesian score

$$score_{l}\left(G:D\right)=M\sum_{i=1}^{n}I_{\hat{p}}\left(X_{i};Pa_{X_{i}}^{G}\right)-M\sum_{i}H_{\hat{p}}\left(X_{i}\right)$$

Introduction Background Statistical Inference **PGM** Application References

Parameter Learning

Parameters are CPD's of Random Variables in PGM

- Maximum Likelihood Estimation
- Bayesian Statistics

References

Application

Structure

References

Structure

References 3

Application

Parameters

$$P(V) = \prod_{i=1}^{n} P(V_i \mid pa(V_i)),$$

$$L_D(\theta) = \log \left\{ \prod_{l=1}^{N} P(V_1[l], \dots, V_n[l] \mid \theta) \right\}$$

$$= \sum_{i=1}^{n} \sum_{l=1}^{N} \log P(V_i[l] \mid pa_i(V_i(l)), \theta).$$

$$\hat{\theta} = \arg \max_{\theta} L_D(\theta) 0$$

Introduction Background Statistical Inference **PGM** Application References

Inference

rences 40

Real World Application

References

References

- Wasserman, L., 2013. All of statistics: a concise course in statistical inference.
 Springer Science & Business Media.
- Koller, D. and Friedman, N., 2009. Probabilistic graphical models: principles and techniques. MIT press.
- Wang, Y.K. and Cheng, K.Y., 2010. A two-stage Bayesian network method for 3D human pose estimation from monocular image sequences. EURASIP Journal on Advances in Signal Processing, 2010, p.12.
- Ramakrishna, V., Kanade, T. and Sheikh, Y., 2012. Reconstructing 3d human pose from 2d image landmarks. Computer Vision–ECCV 2012, pp.573-586.

Introduction Background Statistical Inference PGM Application References 4

Thanks for your attention. Any Questions?