Coordinate Hit-and-run

Amit Rajaraman

July 19, 2022

- Introduction
- Character Theory
- Fourier analysis

Case study: Abelian groups

- Introduction
- Character Theory
- Fourier analysis

4 Case study: Abelian groups

Representations

Definition 1 (Representation)

A representation of a group G is a homomorphism $\varphi: G \to GL(V)$ for some finite-dimensional vector space V over \mathbb{C} .

Representations

Definition 1 (Representation)

A representation of a group G is a homomorphism $\varphi: G \to \operatorname{GL}(V)$ for some finite-dimensional vector space V over \mathbb{C} . The degree of φ is the dimension of V.

Representations

Definition 1 (Representation)

A representation of a group G is a homomorphism $\varphi: G \to \operatorname{GL}(V)$ for some finite-dimensional vector space V over \mathbb{C} . The degree of φ is the dimension of V.

Representations can be thought of as group actions $G \to S_X$, with the additional specification that the images are not just bijections, they are isomorphisms.

Equivalence of representations

We would like that representations are the same even when expressed over different bases of V.

Equivalence of representations

We would like that representations are the same even when expressed over different bases of V.

Definition 2 (Equivalence)

Two representations $\varphi: G \to \operatorname{GL}(V)$ and $\psi: G \to \operatorname{GL}(W)$ are said to be equivalent if there exists an isomorphism (an equivalence) $T: V \to W$ such that $\psi_g = T\varphi_g T^{-1}$ for all $g \in G$. If this is the case, we write $\varphi \sim \psi$.

5 / 18

Equivalence of representations

We would like that representations are the same even when expressed over different bases of V.

Definition 2 (Equivalence)

Two representations $\varphi: G \to \operatorname{GL}(V)$ and $\psi: G \to \operatorname{GL}(W)$ are said to be equivalent if there exists an isomorphism (an equivalence) $T: V \to W$ such that $\psi_g = T\varphi_g T^{-1}$ for all $g \in G$. If this is the case, we write $\varphi \sim \psi$.

$$V \xrightarrow{\varphi_{\mathsf{g}}} V$$

$$\downarrow_{\mathsf{T}} \qquad \downarrow_{\mathsf{T}}$$

$$W \xrightarrow{\psi_{\mathsf{g}}} W$$

Irreducible representations

Definition 3 (Invariant subspace)

Let $\varphi: G \to GL(V)$ be a representation. A subspace $W \le V$ is said to be G-invariant with respect to φ if for all $g \in G$ and $w \in W$, $\varphi_g(W) = W$.

Note that if $W \leq V$ is a G-invariant subspace, then $\varphi|_W : G \to GL(W)$ defined by $(\varphi|_W)_g(w) = \varphi_g(w)$ is a representation!

Definition 4 (Irreducible representation)

A non-zero representation $\varphi: G \to \mathrm{GL}(V)$ is said to be *irreducible* if the only G-invariant subspaces of V are 0 and V.

6 / 18

Amit Rajaraman Coordinate Hit-and-run July 19, 2022

Direct sum

Definition 5 (Direct sum)

Amit Rajaraman

Let $\varphi^{(1)}: G \to \operatorname{GL}(V_1)$ and $\varphi^{(2)}: G \to \operatorname{GL}(V_2)$ be representations. Then, their (external) *direct sum* is the representation $\varphi^{(1)} \oplus \varphi^{(2)}: G \to \operatorname{GL}(V_1 \oplus V_2)$ defined by

$$\left(\varphi^{(1)} \oplus \varphi^{(2)}\right)_{\mathcal{g}} (v_1, v_2) = \left(\varphi_{\mathcal{g}}^{(1)}(v_1), \varphi_{\mathcal{g}}^{(1)}(v_2)\right)$$

for all $g \in G$ and $(v_1, v_2) \in V_1 \oplus V_2$.

The above is more natural to picture using matrices.

If $V_1=\operatorname{GL}_m(\mathbb C)$ and $V_2=\operatorname{GL}_n(\mathbb C)$ above, then each $\varphi_g^{(i)}$ can be expressed as a matrix. The matrix in $\operatorname{GL}_{m+n}(\mathbb C)$ corresponding to their direct sum is then given by

$$\left(\varphi^{(1)} \oplus \varphi^{(2)}\right)_{g} = \begin{pmatrix} \varphi_{g}^{(1)} & \\ & \varphi_{g}^{(2)} \end{pmatrix},$$

7 / 18

More on decomposing representations

Definition 6 (Complete Reducibility)

Let G be a group. A representation $\varphi: G \to \operatorname{GL}(V)$ is said to be completely reducible if $V = V_1 \oplus \cdots \oplus V_n$ where each V_i is G-invariant and $\varphi|_{V_i}$ is irreducible for each i.

Note that even an irreducible representation is completely reducible. All we desire is that it can be "decomposed" into the direct sum of irreducible representations.

Definition 7 (Decomposability)

A non-zero representation φ is said to be *decomposable* if $V=V_1\oplus V_2$ for some non-zero *G*-invariant subspaces $V_1, V_2 \leq V$. Otherwise, φ is said to be *indecomposable*.

Recall that a matrix $U \in GL_n(\mathbb{C})$ is said to be unitary if $U^*U = I_n$.

Definition 8 (Unitary)

Let V be an inner product space. A representation $\varphi: G \to GL(V)$ is said to be *unitary* if φ_g is unitary for every $g \in G$.

Lemma 9

Any representation of a finite group G is equivalent to a unitary representation.

Maschke's Theorem

Theorem 10 (Maschke's Theorem)

Every representation of a finite group is completely reducible.

- Introduction
- 2 Character Theory
- Fourier analysis

4 Case study: Abelian groups

Definition 11 (Morphism)

Let $\varphi: G \to \operatorname{GL}(V)$ and $\rho: G \to \operatorname{GL}(W)$ be representations. A morphism from φ to ρ is a linear map $T: V \to W$ such that the following diagram commutes for all $g \in G$.

$$V \xrightarrow{\varphi_{g}} V$$

$$\downarrow T \qquad \qquad \downarrow T$$

$$W \xrightarrow{\rho_{g}} W$$

The set of all morphisms from φ to ρ is denoted $\text{Hom}_{\mathcal{G}}(\varphi, \rho)$.

Moreover, note that if T is an isomorphism (between V and W) in the above, it is an equivalence.

Amit Rajaraman Coordinate Hit-and-run July 19, 2022 12 / 18

Lemma 12

Let φ, ρ be irreducible representations of a group G.

- (a) If $\varphi \nsim \rho$, $\operatorname{Hom}_{\mathcal{G}}(\varphi, \rho) = 0$.
- (b) $\operatorname{Hom}_{G}(\varphi, \varphi) = \{\lambda I : \lambda \in \mathbb{C}\}.$

Corollary 13

Let $\varphi^{(1)}, \dots, \varphi^{(s)}$ be pairwise inequivalent irreducible representations of G. Set

$$\varphi = \underbrace{\varphi^{(1)} \oplus \cdots \oplus \varphi^{(1)}}_{m_1} \oplus \cdots \oplus \underbrace{\varphi^{(s)} \oplus \cdots \oplus \varphi^{(s)}}_{m_s}.$$

Then, dim $\operatorname{Hom}_G(\varphi^{(r)}, \varphi) = m_r$ for each r.

13 / 18

Amit Rajaraman Coordinate Hit-and-run July 19, 2022

The group algebra

Definition 14

Let G be a group. Define the group algebra $L(G) = \mathbb{C}^G$. We endow it with the inner product

$$\langle f_1, f_2 \rangle = \frac{1}{|G|} \sum_{g \in G} f_1(g) \overline{f_2(g)}.$$

14 / 18

Amit Rajaraman Coordinate Hit-and-run July 19, 2022

Theorem 15

Let $\varphi: G \to U_n(\mathbb{C})$ and $\rho: G \to U_m(\mathbb{C})$ be inequivalent irreducible unitary representations of a group G. Then,

(a)
$$\langle \varphi_{ij}, \rho_{kl} \rangle = 0$$
.

(b)
$$\langle \varphi_{ij}, \varphi_{kl} \rangle = \begin{cases} 1/n, & (i,j) = (k,l), \\ 0, & \text{otherwise.} \end{cases}$$

In particular, the set $\{\varphi_{ij}: 1 \leq i, j \leq n\} \cup \{\rho_{kl}: 1 \leq k, l \leq m\}$ is a linearly independent set.

Amit Rajaraman Coordinate Hit-and-run July 19, 2022 15 / 18

Theorem 16

Let G be a (finite) group.

- (a) There are finitely many equivalence classes of irreducible representations of G.
- (b) Let $\varphi^{(1)}, \ldots, \varphi^{(s)}$ be a transversal of unitary irreducible representations of G. Set $d_i = \deg \varphi^{(i)}$. Then, the set of functions

$$\{\sqrt{d_k}\varphi_{ij}^{(k)}: 1 \leq k \leq s, 1 \leq i, j \leq d_k\}$$

is orthonormal.

16 / 18

Amit Rajaraman Coordinate Hit-and-run July 19, 2022

- Introduction
- Character Theory

4 Case study: Abelian groups

- Introduction
- Character Theory
- Fourier analysis

4 Case study: Abelian groups