Analyse du Marché des Téléphones Mobiles au Ghana : Tendances, Préférences et Prix

Contexte

Ce jeu de données contient des informations sur les téléphones mobiles disponibles au Ghana, y compris des détails sur divers modèles de téléphones, leurs spécifications et leurs prix. Les données ont été collectées par web scraping, offrant une vue d'ensemble complète du marché des téléphones mobiles au Ghana.

Caractéristiques principales :

Marque et modèle : Le jeu de données comprend des détails sur divers modèles de téléphones provenant de différentes marques, permettant aux utilisateurs d'explorer une large gamme d'options.

Spécifications: Des spécifications détaillées des téléphones sont fournies, telles que la compatibilité avec une carte SD, la configuration de l'appareil photo principal, la résolution, le type d'écran, la configuration des cartes SIM, le système d'exploitation, les options de couleur, et bien plus encore.

Informations géographiques: Les utilisateurs peuvent filtrer et analyser le jeu de données en fonction des régions et des localisations au Ghana, ce qui permet de comprendre la disponibilité des différents modèles de téléphones dans des zones spécifiques.

Matériel et logiciel : Les caractéristiques matérielles essentielles telles que la taille de l'écran (en pouces), la capacité de la batterie (en mAh), le stockage (en Go), la RAM (en Go) et la résolution de la caméra selfie (en MP) sont incluses.

Prix : Le jeu de données fournit également des informations sur les prix (en Cedis ghanéens - ¢), permettant aux utilisateurs de comparer le coût des différents modèles de téléphones.

```
In [4]: import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    plt.style.use('ggplot')
    import seaborn as sns
    import warnings
    warnings.filterwarnings('ignore')
In [5]: df = pd.read csv("Mobile-Phones.csv")
```

In [6]:	df	.head()								
Out[6]:		brand	model	sd_card	main_camera	resolution	display	sim_card	os	color
	0	Samsung	Galaxy S10	yes	3 Cameras: 12, 12, 16 MP	1440 x 3040	AMOLED	Single	Android	White
	1	Samsung	Galaxy Note 20 Ultra	yes	3 Cameras: 108, 12, 12 MP	1440 x 3088	AMOLED	Dual	Android	Bronze
	2	Samsung	Galaxy A54 5G	yes	3 Cameras: 50, 12, 5 MP	1080 x 2340	Super AMOLED	Dual	Android	Black
	3	Tecno	Camon 20 Pro	no	2 Cameras: 64, 2 MP	1080 x 2400	AMOLED	Dual	Android	Black
	4	Samsung	Galaxy S22 Ultra	no	4 Cameras: 108, 10, 10, 12 MP	1400 x 3088	AMOLED	Dual	Android	Black
	4									•
In [7]:	df	.shape								
Out[7]:	(3	600, 17)								

Analyse Exploratoire des Données

Voici quelques questions intéressantes que nous pouvons explorer dans ce jeu de données :

Analyse de marché: Vous pouvez analyser le jeu de données pour obtenir des informations sur la popularité des différentes marques et modèles de téléphones au Ghana. Cela peut aider les entreprises à prendre des décisions éclairées sur les téléphones à stocker et à promouvoir.

Préférences des consommateurs : Étudiez les spécifications et les données de prix pour comprendre les fonctionnalités les plus recherchées par les consommateurs au Ghana. Cela peut être utile pour le développement de produits et les stratégies marketing.

Informations régionales : Les informations géographiques dans le jeu de données permettent d'analyser les variations régionales des préférences en matière de téléphones. Vous pouvez identifier les modèles de téléphones les plus populaires dans certaines régions.

Tendances des prix : Analysez les données sur les prix pour identifier les tendances tarifaires des différentes marques et modèles. Cela peut aider les consommateurs à trouver les meilleures offres et les entreprises à fixer des prix compétitifs.

Quelles sont les marques et modèles de téléphones les plus populaires au Ghana ? : Comprendre quelles marques et quels modèles sont préférés par les consommateurs peut aider les entreprises à choisir les produits à stocker et à promouvoir.

Y a-t-il des variations régionales dans les préférences en matière de téléphones ? : Certaines marques ou certains modèles sont-ils plus performants dans des régions spécifiques du Ghana ? Cela peut aider à élaborer des stratégies de marketing régional. Quelles sont les fonctionnalités et spécifications clés que les consommateurs privilégient ? : L'analyse des données de spécifications peut révéler les fonctionnalités les plus importantes pour les consommateurs, telles que la qualité de l'appareil photo, la capacité de stockage ou la durée de vie de la batterie.

Comment les prix et la popularité sont-ils corrélés ? : Les téléphones plus chers ont-ils une plus grande part de marché ou les consommateurs préfèrent-ils des options plus abordables ? Cela peut orienter les stratégies de tarification.

Quel est le paysage concurrentiel en termes de prix ? : Les entreprises peuvent utiliser les données de prix pour comparer leurs prix à ceux de la concurrence et effectuer des ajustements si nécessaire.

Y a-t-il des tendances saisonnières dans les ventes de téléphones ? : En analysant les données historiques, les entreprises peuvent identifier les fluctuations saisonnières de la demande et planifier des promotions et des stocks en conséquence.

Quels systèmes d'exploitation sont préférés par les consommateurs ? : Comprendre si les consommateurs privilégient Android ou iOS peut orienter le développement d'applications et la compatibilité des produits.

Comment les options de couleur influencent-elles les décisions d'achat ? : L'analyse des préférences en matière de couleur peut aider les entreprises à décider quelles variantes de couleur stocker en plus grande quantité.

Popularité des marques

```
In [10]: fig = px.histogram(df, x = 'brand')
fig.show()
```


Nous pouvons clairement voir dans ce graphique que la marque de téléphone la plus populaire de loin au Ghana est **Samsung**. D'autres marques comme Apple, Huawei et Google sont également populaires, mais elles sont très loin derrière Samsung en termes de popularité.

Voyons quel modèle est le plus populaire pour chaque marque.

Popularité des Modèles

```
In [11]: | df.groupby(['brand', 'model'])['model'].value_counts()
Out[11]: brand
                 model
         Apple
                 iPhone 11
                                             51
                 iPhone 11 Pro
                                             19
                                             56
                 iPhone 11 Pro Max
                 iPhone 12
                                             10
                 iPhone 12 Pro
                                              5
         Xiaomi Redmi Note 11
                                             2
                 Redmi Note 11 SE (India)
                                             1
                 Redmi Note 11R
                 Redmi Note 12
                                              1
                 Redmi Note 7
         Name: count, Length: 404, dtype: int64
In [12]: brand_model_counts = df.groupby(['brand', 'model']).size().reset_index(name
         brand_model_counts
```

Out[12]:

	brand	model	Counts
0	Apple	iPhone 11	51
1	Apple	iPhone 11 Pro	19
2	Apple	iPhone 11 Pro Max	56
3	Apple	iPhone 12	10
4	Apple	iPhone 12 Pro	5
399	Xiaomi	Redmi Note 11	2
400	Xiaomi	Redmi Note 11 SE (India)	1
401	Xiaomi	Redmi Note 11R	1
402	Xiaomi	Redmi Note 12	1
403	Xiaomi	Redmi Note 7	5

404 rows × 3 columns

```
In [13]: most_popular_model = brand_model_counts.groupby('brand')['Counts'].idxmax()
most_popular_models_df= brand_model_counts.loc[most_popular_model]

#Creating the bar chart...

fig = px.bar(most_popular_models_df, x = 'brand', y = 'Counts', text = 'mode
fig.show()
```

Most Popular Phone Model for Each Brand in Ghana Phone Ma

On peut voir que le modèle le plus populaire de la marque Samsung est le **Galaxy S10 Plus**, et comme la marque Samsung est la plus populaire sur le marché ghanéen, si vous souhaitez entrer sur ce marché, vous devriez vendre le Galaxy S10 Plus. Cependant, si vous souhaitez vendre des téléphones Apple, il faudrait opter pour l'**iPhone X**, et si vous préférez vendre des téléphones Google, choisissez le **Pixel 3XL**.

Étudions maintenant les spécifications des téléphones pour voir lesquelles sont préférées par les consommateurs.

Analyse des spécifications

1. SD CARD

```
In [14]: ## Sd Card...
fig = px.pie(df, names = 'sd_card')
fig.update_layout(
    title="Distribution of 'sd_card' Values",
    title_x=0.5, # Set title_x to 0.5 to center the title horizontally
    title_y=0.95, # Adjust title_y to position the title vertically
)
fig.show()
```

Distribution of 'sd_card' \

D'accord, donc il y a en fait plus de téléphones avec carte SD sur le marché que de téléphones sans carte SD. Cependant, la différence n'est pas si grande, donc on ne peut pas vraiment dire que la présence ou l'absence de carte SD est un facteur déterminant pour le succès d'un téléphone sur le marché ghanéen.

2. Camera

In [15]: df.head()

Out[15]:

	brand	model	sd_card	main_camera	resolution	display	sim_card	os	color
0	Samsung	Galaxy S10	yes	3 Cameras: 12, 12, 16 MP	1440 x 3040	AMOLED	Single	Android	White
1	Samsung	Galaxy Note 20 Ultra	yes	3 Cameras: 108, 12, 12 MP	1440 x 3088	AMOLED	Dual	Android	Bronze
2	Samsung	Galaxy A54 5G	yes	3 Cameras: 50, 12, 5 MP	1080 x 2340	Super AMOLED	Dual	Android	Black
3	Tecno	Camon 20 Pro	no	2 Cameras: 64, 2 MP	1080 x 2400	AMOLED	Dual	Android	Black
4	Samsung	Galaxy S22 Ultra	no	4 Cameras: 108, 10, 10, 12 MP	1400 x 3088	AMOLED	Dual	Android	Black
4									>

In [17]: df.head()

Out[17]:

	brand	model	sd_card	main_camera	resolution	display	sim_card	os	color
0	Samsung	Galaxy S10	yes	3 Cameras: 12, 12, 16 MP	1440 x 3040	AMOLED	Single	Android	White
1	Samsung	Galaxy Note 20 Ultra	yes	3 Cameras: 108, 12, 12 MP	1440 x 3088	AMOLED	Dual	Android	Bronze
2	Samsung	Galaxy A54 5G	yes	3 Cameras: 50, 12, 5 MP	1080 x 2340	Super AMOLED	Dual	Android	Black
3	Tecno	Camon 20 Pro	no	2 Cameras: 64, 2 MP	1080 x 2400	AMOLED	Dual	Android	Black
4	Samsung	Galaxy S22 Ultra	no	4 Cameras: 108, 10, 10, 12 MP	1400 x 3088	AMOLED	Dual	Android	Black
4									•

Out[18]:

	camera_count	count
0	1.0	1038
1	3.0	914
2	2.0	870
3	4.0	409
4	5.0	5

```
In [19]: #Let's see which number of cameras is the most present in our dataset...
fig = px.bar(camera_count_df, x = 'camera_count', y='count', title="Distrib
fig.update_yaxes(title="Number of Cameras")
fig.update_xaxes(title="Count")
```

Distribution of Number of Cameras

Nous pouvons observer que les téléphones avec un seul appareil photo sont les plus populaires sur le marché ghanéen, suivis par les téléphones équipés de trois appareils photo. Les téléphones dotés de deux appareils photo sont également très populaires. Bien que des téléphones avec quatre appareils photo soient présents sur le marché, leur prévalence est relativement plus faible. Notamment, les téléphones équipés de cinq appareils photo sont assez rares sur le marché ghanéen, avec seulement cinq unités disponibles dans l'ensemble du marché.

```
In [20]: mean_price = round(df.groupby('camera_count')['price($\psi)'].mean()).reset_inde
mean_price
```

Out[20]:

		camera_count	price(¢)
-	0	1.0	2353.0
	1	2.0	3087.0
	2	3.0	4580.0
	3	4.0	4697.0
	4	5.0	4530.0

```
In [21]: #Let's see on average which types of phones cost most
fig = px.bar(mean_price, x = 'camera_count', y = 'price($)', title = 'Average fig.show()
```


Affichage

Out[24]:

	display	count
0	IPS LCD	635
1	Super AMOLED	588
2	AMOLED	580
3	OLED	355
4	Super Retina OLED	230
5	P-OLED	214
6	Retina IPS LCD	165
7	TFT	142
8	IPS	59
9	P-OLED+	22
10	Dynamic AMOLED	17
11	PLS LCD	14
12	PLS	5
13	Monochrome	3
14	G-OLED	1
15	Super LCD3	1
16	TN	1
17	Retina IPS	1
18	Dynamic AMOLED / Dynamic AMOLED	1

```
In [25]: fig = px.bar(display_df, x = 'display', y = 'count', orientation = 'h', titl
fig.show()
```

Phone Display Technology

En regardant ce graphique, nous pouvons voir que les cinq technologies d'affichage les plus courantes sur le marché des téléphones au Ghana sont : IPS LCD, Super AMOLED, AMOLED, OLED, Super Retina OLED. Si vous recherchez des téléphones avec Dynamic AMOLED / Dynamic AMOLED, Retina IPS, TN, Super LCD3, G-OLED, Monochrome, PLS, il sera très difficile de les trouver car il y en a très peu dans l'ensemble du marché.

SIM CARD

```
In [26]: df['sim_card'].unique()
Out[26]: array(['Single', 'Dual', 'Nano-SIM', nan], dtype=object)
```

Je vais supposer que la valeur 'nan' dans ce cas signifie que le téléphone n'a pas de carte SIM. Remplaçons-la par 'Pas de carte SIM' pour être plus précis.

```
In [27]: df['sim_card'] = df['sim_card'].fillna('No Sim Card')
```

```
In [28]: df['sim_card'].unique()
Out[28]: array(['Single', 'Dual', 'Nano-SIM', 'No Sim Card'], dtype=object)
```

Voyons la répartition sur le marché :

SIM CARD REPARTITION

Les téléphones avec double carte SIM occupent la plus grande part du marché, suivis des téléphones avec une seule carte SIM.

Système d'exploitation

Je ne suis pas sûr si j'ai tort, mais je pense qu'il n'y a pas de différence entre 'iOS' et 'IOS', ainsi qu'entre 'Windows' et 'Windows Mobile'. Je vais combiner le nombre de 'iOS' et 'IOS' en une seule valeur appelée 'IOS', et 'Windows' et 'Windows Mobile' en 'Windows'.

```
In [35]: fig = px.pie(df, names = 'os', title = 'Operating Sytem Share')
fig.show()
```

Operating Sytem Share

Nous pouvons clairement voir que le système d'exploitation Android domine le marché avec une très grande marge, suivi par l'iOS, qui est également présent mais très loin derrière Android. Les autres systèmes d'exploitation sont également présents, mais ils sont vraiment rares.

Out[36]:

	min	max	mean	std
os				
5000	1950.0	1950.0	1950.000000	NaN
Android	170.0	25000.0	2984.855769	2441.891638
Harmony	3350.0	4200.0	3787.500000	347.311100
IOS	680.0	26650.0	5267.347826	4152.450414
Java	110.0	110.0	110.000000	NaN
Nucleus OS	389.0	389.0	389.000000	NaN
Symbian	250.0	250.0	250.000000	NaN
Windows	220.0	300.0	260.000000	56.568542

Nous pouvons voir que le téléphone le plus cher sur le marché est un téléphone iOS, et que en moyenne, les téléphones iOS sont plus chers que les téléphones Android.

Color

Color Popularity

La **couleur noire** est la plus présente sur le marché, suivie de la **couleur dorée**. D'autres couleurs comme le **blanc et le bleu** sont également assez présentes. Si vous recherchez des couleurs telles que **bronze**, **vert**, **gris**, **rose**, **jaune**, **orange**, vous pouvez les trouver, mais les données indiquent qu'elles sont vraiment rares sur le marché. Les autres couleurs, à l'exception de celles mentionnées précédemment, sont également assez populaires.

```
In [39]: df_color_price = round(df.groupby('color')['price($)'].mean().reset_index())
df_color_price
```

Out[39]:

	color	price(¢)
0	Black	3321.0
1	Blue	3238.0
2	Bronze	5501.0
3	Gold	3617.0
4	Gray	3184.0
5	Green	5175.0
6	Orange	3250.0
7	Other	3402.0
8	Pink	4398.0
9	Purple	4719.0
10	Red	4058.0
11	Rose Gold	2359.0
12	Silver	3394.0
13	White	3287.0
14	Yellow	3442.0

```
In [40]: fig = px.bar(df_color_price, x = 'price($)', y = 'color', orientation = 'h')
fig.show()
```


Nous pouvons constater qu'en moyenne, les téléphones de couleur **bronze, verte** et **violette** sont les plus chers.

Screen Size

```
In [41]: df['screen_size(inch)'].nunique()
Out[41]: 37
In [42]: fig = px.scatter(df, x = 'screen_size(inch)', y = 'price($)')
    fig.show()
```


Il n'y a pas de relation évidente entre la taille de l'écran (en pouces) et le prix.

```
In [43]: fig = px.histogram(df, x = 'screen_size(inch)', title = 'Most Common Screen
fig.show()
```

Most Common Screen Size

La plupart des téléphones sur le marché ont une taille d'écran comprise entre 6,08 pouces et 6,12 pouces.

Battery

```
In [45]: #Let's see how the price change in respect to the battery...
fig = px.scatter(df, x = 'battery(mAh)', y = 'price($)', title = 'Battery vs
fig.show()
```

Battery vs Price

Not obvious relationship between the Battery and the Phone's price.

```
In [46]: #Most popular Battery Capacity
fig = px.histogram(df, x = 'battery(mAh)', title = 'Battery Popularity')
fig.show()
```

Battery Popularity

Nous pouvons constater que les téléphones avec une batterie comprise entre **5000 mAh et 5099 mAh** sont les plus fréquents sur le marché, suivis par ceux avec une batterie entre **4000 mAh** et **4099 mAh**.

Storage

```
In [47]: #Let's see how the price change in respect to the phone storage...
fig = px.scatter(df, x = 'storage(GB)', y = 'price($)', title = 'Storage vs
fig.show()
```

Storage vs Price

Encore une fois, il n'y a pas de relation évidente entre la capacité de stockage du téléphone et son prix.

```
In [48]: #Most popular Battery Capacity
fig = px.histogram(df, x = 'storage(GB)', title = 'Most Common Storage Capac
fig.show()
```

Most Common Storage Capacity

Interprétation: La plupart des téléphones sur le marché ghanéen ont une capacité de stockage comprise entre **120 Go** et **129 Go**. C'est particulièrement avantageux pour un téléphone (je pense).

In [49]: df.head()

Out[49]:

	brand	model	sd_card	main_camera	resolution	display	sim_card	os	color
0	Samsung	Galaxy S10	yes	3 Cameras: 12, 12, 16 MP	1440 x 3040	AMOLED	Single	Android	White
1	Samsung	Galaxy Note 20 Ultra	yes	3 Cameras: 108, 12, 12 MP	1440 x 3088	AMOLED	Dual	Android	Bronze
2	Samsung	Galaxy A54 5G	yes	3 Cameras: 50, 12, 5 MP	1080 x 2340	Super AMOLED	Dual	Android	Black
3	Tecno	Camon 20 Pro	no	2 Cameras: 64, 2 MP	1080 x 2400	AMOLED	Dual	Android	Black
4	Samsung	Galaxy S22 Ultra	no	4 Cameras: 108, 10, 10, 12 MP	1400 x 3088	AMOLED	Dual	Android	Black
4									•

RAM

```
In [50]: #Let's see how the price change in respect to the phone's ram...
fig = px.scatter(df, x = 'ram(GB)', y = 'price($)', title = 'RAM vs Price')
fig.show()
```

RAM vs Price

Encore une fois, il n'y a pas de relation évidente.

```
In [51]: #Most Common RAM Capacity
fig = px.histogram(df, x = 'ram(GB)', title = 'Most Common RAM Capacity')
fig.show()
```

Most Common RAM Capacity

La plupart des téléphones sur le marché ont 8 Go de RAM, suivis de près par les téléphones avec 4 Go de RAM, puis ceux avec 6 Go de RAM. Les téléphones avec 12 Go de RAM sont présents mais moins nombreux, et ceux avec 16 Go de RAM sont vraiment rares sur le marché, avec seulement six unités disponibles.

Selfie Camera

```
In [52]: #Let's see how the price change in respect to the phone's ram...
fig = px.scatter(df, x = 'selfie_camera(MP)', y = 'price($)', title = 'Selfifig.show()
```

Selfie Camera vs Price

Pas de relation évidente.

```
In [53]: #Most Selfie Camera
fig = px.histogram(df, x = 'selfie_camera(MP)', title = 'Most Common Selfie
fig.show()
```

Most Common Selfie Camera

La plupart des téléphones sur le marché ont une caméra selfie d'environ 8 MP, suivis par les téléphones avec 10 MP. Les téléphones avec une caméra de 40 MP sont vraiment rares sur le marché.

```
In [54]: df.head()
```

Out[54]:

	brand	model	sd_card	main_camera	resolution	display	sim_card	os	color
0	Samsung	Galaxy S10	yes	3 Cameras: 12, 12, 16 MP	1440 x 3040	AMOLED	Single	Android	White
1	Samsung	Galaxy Note 20 Ultra	yes	3 Cameras: 108, 12, 12 MP	1440 x 3088	AMOLED	Dual	Android	Bronze
2	Samsung	Galaxy A54 5G	yes	3 Cameras: 50, 12, 5 MP	1080 x 2340	Super AMOLED	Dual	Android	Black
3	Tecno	Camon 20 Pro	no	2 Cameras: 64, 2 MP	1080 x 2400	AMOLED	Dual	Android	Black
4	Samsung	Galaxy S22 Ultra	no	4 Cameras: 108, 10, 10, 12 MP	1400 x 3088	AMOLED	Dual	Android	Black
4									•

Perspectives Régionales

Dans cette partie, je vais essayer d'examiner quelques perspectives régionales telles que :

- Quel est le prix moyen pour chaque région,
- La marque de téléphone la plus populaire pour chaque région,
- Le modèle de téléphone le plus populaire pour chaque région,
- Quel pourcentage de téléphones se trouve dans chaque région ?

Mean Price for Each Region

Out[55]:

	region	price(¢)
0	Ashanti	2871.0
1	Eastern Region	1550.0
2	Greater Accra	3476.0

```
In [56]: fig = px.histogram(df_region, x = 'price($)', y = 'region')
fig.show()
```


Nous pouvons voir qu'en moyenne, les téléphones sont plus chers dans la région du **Greater Accra**.

Popularité des Modèles de Téléphones

Voyons maintenant quelle marque de téléphone est la plus populaire dans chaque région et quel modèle de téléphone est le plus populaire dans chaque région.

In [57]: brand_region_count = df.groupby(['brand', 'region']).size().reset_index(name
brand_region_count

Out[57]:

	brand	region	Counts
0	Apple	Ashanti	9
1	Apple	Eastern Region	1
2	Apple	Greater Accra	794
3	Bontel	Greater Accra	2
4	Google	Ashanti	22
5	Google	Greater Accra	239
6	HTC	Greater Accra	1
7	Honor	Greater Accra	1
8	Huawei	Ashanti	22
9	Huawei	Greater Accra	269
10	Infinix	Greater Accra	61
11	Itel	Greater Accra	40
12	LG	Ashanti	14
13	LG	Greater Accra	220
14	Meizu	Greater Accra	1
15	Motorola	Ashanti	2
16	Motorola	Greater Accra	7
17	Nokia	Greater Accra	30
18	OnePlus	Greater Accra	12
19	Орро	Ashanti	6
20	Орро	Greater Accra	21
21	Other Brand	Greater Accra	8
22	Realme	Ashanti	1
23	Realme	Greater Accra	1
24	Samsung	Ashanti	120
25	Samsung	Greater Accra	1539
26	Tecno	Greater Accra	127
27	Vivo	Greater Accra	8
28	X-Tigi	Greater Accra	2
29	Xiaomi	Ashanti	1
30	Xiaomi	Greater Accra	19

```
In [58]: | most_popular_brand = brand_region_count.groupby('region')['Counts'].idxmax()
         most_popular_brand
Out[58]: region
         Ashanti
                            24
         Eastern Region
                            1
         Greater Accra
                            25
         Name: Counts, dtype: int64
In [59]: |most_popular_brands_df = brand_region_count.loc[most_popular_brand]
         most_popular_brands_df
Out[59]:
                            region Counts
                brand
          24 Samsung
                            Ashanti
                                      120
           1
                Apple Eastern Region
                                        1
                                     1539
          25 Samsung
                       Greater Accra
In [60]: fig = px.bar(most_popular_brands_df, x = 'region', y = 'Counts', text = 'br
         fig.show()
```

Most Popular Brand Per Region

Nous pouvons clairement voir sur ce graphique que la marque la plus populaire dans la région de Greater Accra est Samsung, la marque la plus populaire dans la région d'Ashanti est également Samsung, et enfin la marque la plus populaire dans la région

de l'Est est Apple. Il est également étrange de constater qu'il n'y a pratiquement aucune autre marque dans la région de l'Est ; la seule marque présente est Apple, avec seulement

In [61]: model_region_count = df.groupby(['brand', 'model', 'region']).size().reset_i
model_region_count

Out[61]:

	brand	model	region	Counts
0	Apple	iPhone 11	Greater Accra	51
1	Apple	iPhone 11 Pro	Greater Accra	19
2	Apple	iPhone 11 Pro Max	Greater Accra	56
3	Apple	iPhone 12	Greater Accra	10
4	Apple	iPhone 12 Pro	Greater Accra	5
498	Xiaomi	Redmi Note 11	Greater Accra	2
499	Xiaomi	Redmi Note 11 SE (India)	Greater Accra	1
500	Xiaomi	Redmi Note 11R	Greater Accra	1
501	Xiaomi	Redmi Note 12	Greater Accra	1
502	Xiaomi	Redmi Note 7	Greater Accra	5

503 rows × 4 columns

In [62]: most_popular_model_region = model_region_count.groupby(['region'])['Counts']
 most_popular_model_region

Out[62]: region

Ashanti 323 Eastern Region 25 Greater Accra 35

Name: Counts, dtype: int64

In [63]: most_popular_models_df = model_region_count.loc[most_popular_model_region]
 most_popular_models_df

Out[63]:

	brand	model	region	Counts
323	Samsung	Galaxy A53 5G	Ashanti	8
25	Apple	iPhone 6s	Eastern Region	1
35	Apple	iPhone X	Greater Accra	85

```
In [64]: fig = px.bar(most_popular_models_df, x = 'region', y = 'Counts', text = 'mod
fig.show()
```


Nous pouvons voir sur ce graphique que le modèle de téléphone le plus populaire dans la région de Greater Accra est l'iPhone X, dans la région d'Ashanti c'est le Samsung Galaxy A53 5G, et dans la région de l'Est c'est l'iPhone 6s.

Percentages of phones in each region

```
In [65]: phones_percentage_df = df.groupby('region')['model'].count().reset_index()
    phones_percentage_df['percentages'] = round(((phones_percentage_df['model']
    phones_percentage_df
```

Out[65]:

	region	model	percentages
0	Ashanti	197	5.0
1	Eastern Region	1	0.0
2	Greater Accra	3402	94.0

In [66]: fig = px.histogram(phones_percentage_df, x = 'region', y = 'model', title =
fig.show()

In [67]: df.head()

Out[67]:

	brand	model	sd_card	main_camera	resolution	display	sim_card	os	color
0	Samsung	Galaxy S10	yes	3 Cameras: 12, 12, 16 MP	1440 x 3040	AMOLED	Single	Android	White
1	Samsung	Galaxy Note 20 Ultra	yes	3 Cameras: 108, 12, 12 MP	1440 x 3088	AMOLED	Dual	Android	Bronze
2	Samsung	Galaxy A54 5G	yes	3 Cameras: 50, 12, 5 MP	1080 x 2340	Super AMOLED	Dual	Android	Black
3	Tecno	Camon 20 Pro	no	2 Cameras: 64, 2 MP	1080 x 2400	AMOLED	Dual	Android	Black
4	Samsung	Galaxy S22 Ultra	no	4 Cameras: 108, 10, 10, 12 MP	1400 x 3088	AMOLED	Dual	Android	Black
4									•

```
In [68]: fig = px.pie(df, names = 'region', title = 'Percentage Of Phone in Each Regi
fig.show()
```

Percentage Of Phone in Each Region

Nous pouvons voir que le marché des téléphones au Ghana est principalement situé dans la Région de la Grande Accra. Donc, si vous cherchez un téléphone, il y a de fortes chances que vous puissiez le trouver dans la Région de la Grande Accra. D'autres régions comme Ashanti ont également quelques téléphones mais pas en quantité suffisante, seulement environ cinq pour cent de l'ensemble du marché des téléphones. Il y a pratiquement aucun téléphone dans la Région de l'Est. Si vous cherchez un téléphone et que vous vous trouvez dans la Région de l'Est, il vaut mieux vous rendre dans la Région de la Grande Accra ou à Ashanti.

In [69]: df[df['model'] == 'Galaxy S10']

Out[69]:

	brand	model	sd_card	main_camera	resolution	display	sim_card	os	coloı
0	Samsung	Galaxy S10	yes	3 Cameras: 12, 12, 16 MP	1440 x 3040	AMOLED	Single	Android	White
123	Samsung	Galaxy S10	yes	3 Cameras: 12, 12, 16 MP	1440 x 3040	AMOLED	Single	Android	Othei
143	Samsung	Galaxy S10	yes	3 Cameras: 12, 12, 16 MP	1440 x 3040	AMOLED	Single	Android	Othei
227	Samsung	Galaxy S10	yes	3 Cameras: 12, 12, 16 MP	1440 x 3040	AMOLED	No Sim Card	Android	Black
446	Samsung	Galaxy S10	yes	3 Cameras: 12, 12, 16 MP	1440 x 3040	AMOLED	Single	Android	Black
3390	Samsung	Galaxy S10	yes	3 Cameras: 12, 12, 16 MP	1440 x 3040	Dynamic AMOLED	No Sim Card	Android	Black
3450	Samsung	Galaxy S10	yes	3 Cameras: 12, 12, 16 MP	1440 x 3040	Dynamic AMOLED	No Sim Card	Android	Black
3455	Samsung	Galaxy S10	yes	3 Cameras: 12, 12, 16 MP	1440 x 3040	Dynamic AMOLED	No Sim Card	Android	White
3497	Samsung	Galaxy S10	yes	3 Cameras: 12, 12, 16 MP	NaN	NaN	Dual	Android	Black
3504	Samsung	Galaxy S10	yes	3 Cameras: 12, 12, 16 MP	1440 x 3040	AMOLED	No Sim Card	Android	Blue
66 rows × 18 columns									

Les tendances de prix

Voyons comment le prix des téléphones varie d'une région à l'autre.

```
In [*]: phone_models = df['model'].unique()

# Create a separate plot for each phone model
for model in phone_models:
    filtered_data = df[df['model'] == model]

fig = px.bar(
    filtered_data,
    x='region',
    y='price(¢)',
    title=f'Price Variation for {model} by Region',
    labels={'price': 'Average Price', 'region': 'Region'}
)

fig.show()
```


Nous pouvons voir sur ces graphiques que lorsque un téléphone est disponible dans plusieurs régions, son prix varie considérablement, et généralement, le téléphone est plus cher dans la région du Grand Accra que dans les autres régions.

END