

سلسلة تمارين محلولة ــــــالجزء الثانى

2020

تمرین رقم 01

كمل الجدول التالي.

(Ox / Red) الثنائية	أكسدة أم إرجاع	المعادلة النصفية
		$Fe^{2+}(aq) + \dots \rightarrow Fe(s)$
(F^{3+}/Fe)	أكسدة	
		$I^-(aq) \rightarrow I_2(aq) + \dots$
$\left(\ldots H_{2}\right)$		$\mathrm{H}^{+}(aq) \rightarrow$
$\left(S_{2} O_{3}^{2-}/S_{4} O_{6}^{2-}\right)$	إرجاع	

تمري*ن* رقم 02

أكتب معادلة التفاعل أكسدة إرجاع بناءا على المعادلتين النصفيتين للأكسدة والإرجاع لكل تحول كيميائي : أ $\left(Ag^+ + NO_3^ight)(aq)$.

 (Ag^+/Ag) و (Cu^{2+}/Cu) :

. $(2Na^+ + S_2O_3^{2-})(aq)$ و محلول ثيوكبريتات الصوديوم اليود اليود

 $.\left(\mathrm{S_4\,O_6^{\,2-}}\,/\,\mathrm{S_2\,O_3^{2-}}\right)$ و $\left(\mathrm{I_2}/\,\mathrm{I^-}\right)$: يعطى:

 $\cdot \left(H_{2}O_{2} / H_{2}O\right)$ و $\left(O_{2} / H_{2}O_{2}\right)$ يعطى: $\left(H_{2}O_{2} / H_{2}O\right)$ و $\left(H_{2}O_{2} / H_{2}O\right)$

. د_تفاعل بين حمض الأكساليك $H_2C_2O_4(aq)$ و محلول برمنغنات البوتاسيوم $K^+ + MnO_4^-$) في وسط حمضي . (MnO_4^-/Mn^{2+}) ، $(CO_2/H_2C_2O_4)$.

تمرين رقم 33

أكتب المعادلتين للأكسدة والإرجاع مع استنتاج الثنائيتين (Ox/Red) الداخلتين في التفاعل أكسدة _ إرجاع التالي: $Cr_2O_7^{2-}(aq) + 3H_2C_2O_4(aq) + 8 H^+(aq) \rightarrow 3Cr^{3+}(aq) + 6CO_2(g) + 7H_2O(1)$

تمرين رقم 04

نغمر قطعة من الألمنيوم النقي Al(s) ڪتلتها $m=810\,mg$ في محلول حمض ڪلور الماء Al(s) نغمر قطعة من الألمنيوم النقي $V=100\,m$ فيحدث تحول ڪيميائي يؤدي إلى انطلاق غاز ثنائي الهيدروجين $V=100\,m$ وتشڪل شوارد الألمنيوم $H_2(g)$.

. الداخلتين في التفاعل ($Ox \ / \ \mathrm{Re} \ d$) الداخلتين في التفاعل الشائيتين الأكسدة والارجاع مع تحديد الثنائيتين الم

2_ استنتج معادلة التفاعل أكسدة ارجاع.

3 ـ انشئ جدول تقدم التفاعل.

له فوجدنا الدراسة التجريبية من تحديد حجم غاز ثنائي الهيدروجين المنطلق عند نهاية التفاعل فوجدنا $V_f(H_2)=180\ mL$

أ-احسب قيمة التقدم الأعظمي x_{\max} ، ثم حدد المتفاعل المحد علما أن التفاعل تام .

ب-أحسب التركيز المولي C لمحلول حمض كلور الماء.

جــأجد قيمة التركيز المولي للمزيج لشوارد $Al^{3+}(aq)$ عند نهاية التفاعل.

تمرين رقم05

ل منه، المحصول (S_1) البيكرومات البوتاسيوم (aq)(aq)(aq)، و ذلك بإذابة كتلة m منه، المحصول (S_1) منه، المحصول $V_0=100$ و حجمه $V_0=100$ و حجمه $C_1=0,2$ و حجمه $C_1=0,2$

الستعملة في تحضير المحلول (S_1) المستعملة في تحضير المحلول.

 (S_1) عط البروتوكول التجرببي المستعمل في تحضير المحلول (S_1)

الم نحقق مزيجا ستوكيومتريا، و ذلك بمزج حجما قدره V_1 من محلول بيكرومات البوتاسيوم، مع حجم قدره V_1 من محلول حمض الأكساليك $(H_2C_2O_4)(aq)$ تركيزه المولي C_2 مجهول، مع إضافة قطرات من حمض الكبريت المركز.

الله المعادلتين النصفيتين للأكسدة و الإرجاع، ثم استنتج معادلة تفاعل الأكسدة الإرجاعية، علما أن الثنائيتين الداخلتين في التفاعل: $(Cr_2O_7^{2-}/Cr^{3+})$ و $(CO_2/H_2C_2O_4)$.

ب أنشئ جدول تقدم هذا التفاعل.

ك مكنتنا الدراسة تجريبية من تحديد قيمة كمية مادة شوارد $\left(Cr^{3+}\right)$ المتشكلة عند نهاية التفاعل 2

 $n_f\left(Cr^{3+}\right) = 4m \ mol$

 x_{max} التقدم الأعظمي . x_{max}

 C_1 أحسب قيمة الحجم V_1 لبيكرومات البوتاسيوم، و قيمة التركيز المولي C_2 لحمض الأكساليك.

. أحسب حجم غاز ${\cal CO}_2$ المنطلق عند نهاية التفاعل

5 أحسب قيمة التركيز المولي لشوارد البوتاسيوم K^+ في المزيج التفاعلي.

المعطيات:

. $V_m = 24 L$. mol^{-1} : هو: شرطي التجربة هو ، $M\left(K_2 C r_2 O_7\right) = 294 \, g$. mol^{-1}

تمرين رقم 06

من محلول ليود البوتاسيوم $(K^+ + I^-)(aq)$ تركيزه $V_1 = 100 \, mL$ تركيزه I

المولي $(C_1 = 0,1 \mod L^{-1})$ مع حجم قدره $V_2 = 100 \mod L$ من محلول الماء الأكسيجيني $(H_2O_2)(aq)$ تركيزه المولي $V_2 = 100 \mod L$ مع حجم قدره المولي التالية: مع إضافة قطرات من حمض الكبريت المركز، فيحدث تحول كيميائي ينمذج بمعادلة التفاعل التالية: $2I^-(aq) + H_2O_2(aq) + 2H^+(aq) = I_2(aq) + 2H_2O(l)$

1. أكتب المعادلتين النصفيتين للأكسدة و الإرجاع، مع استنتاج الثنائيتين (Ox /Red) الداخلتين في التفاعل.

2 أنشئ جدول تقدم التفاعل.

II لتحديد كمية مادة ثنائي اليود I_2) المتشكلة في المزيج عند نهاية التفاعل، نأخذ من المزيج السابق حجما قدره V=20mL قدره V=20mL و نضيف له قليلا من صمغ النشأ، و نعايره بواسطة محلول ثيوكبريتات الصوديوم قدره V=20mL و نضيف له قليلا من صمغ النشأ، و نعايره بواسطة محلول ثيوكبريتات الصوديوم V=20mL و نضيف له قليلا من V=20mL و نصيف له قليلا من V=20mL و نعايره المولي V=20mL و نعايره المولي V=20mL و نعايره المولي V=20mL و نعايره المولي المولي V=20mL و نعايره المولي المولي V=20mL

قدره $V_E=12\,m$ من محلول ثيوكبريتات الصوديوم.

1- أرسم التركيب التجريبي المستعمل في هذه المعايرة، مع إرفاقه بالبيانات اللازمة.

2. أكتب معادلة تفاعل المعايرة إعتمادا على المعادلتين النصفيتين للأكسدة و الإرجاع، علما أن الثنائيتين الداخلتين في التفاعل هما: $(S_4O_6^{2-}/S_2O_3^{2-})$.

. التكافؤ. $n_E\left(I_2\right)$ عند التكافؤ. التكافؤ. التكافؤ. التكافؤ.

4. أ. جد كمية مادة ثنائي اليود $n\left(I_{2}\right)$ الكلية المتشكلة في المزيج السابق.

ب استنتج قيمة التقدم الأعظمي x_{max} ، ثم حدد المتفاعل المحد.

 C_2 جـ جد قيمة التركيز المولي

المعطيات: صمغ النشاء + محلول ثنائي اليود (I_2) يعطي لنا اللون الأزرق.

تمرین رقم 01:

(Ox / Red) الثنائية	أكسدة أم إرجاع	المعادلة النصفية
(Fe^{2+}/Fe)	إرجاع	$Fe^{2+}(aq) + 2\overline{e} \rightarrow Fe(s)$
(F^{3+}/Fe)	أكسدة	$Fe(s) \rightarrow Fe^{3+}(aq) + 3e^{-}$
(I_2/I^-)	أكسدة	$2 \operatorname{I}^{-}(aq) \to I_{2}(aq) + 2 \overline{e}$
$\left(\mathrm{H^{+}/H_{2}}\right)$	أكسدة	$2 \operatorname{H}^{+}(aq) \rightarrow H_{2}(g) + 2\overline{e}$
$\left(S_4 O_6^{2-} / S_2 O_3^{2-}\right)$	إرجاع	$S_4O_6^{2-}(aq) + 2e \rightarrow 2S_2O_3^{2-}(aq)$

تمرین رقم 02

$$. \left(Cu^{2+}/Cu\right): Cu(s) \to Cu^{2+}(aq) + 2e^{-\frac{1}{2}}$$

$$. \left(Ag^{+}/Ag\right): \left(Ag^{+}(aq) + 1e^{-\frac{1}{2}} \to Ag(s)\right) \times 2: E^{-\frac{1}{2}}$$

$$. \left(Ag^{+}/Ag\right): \left(Ag^{+}(aq) + 1e^{-\frac{1}{2}} \to Ag(s)\right) \times 2: E^{-\frac{1}{2}}$$

$$. \left(S_{4}O_{6}^{2-}/S_{2}O_{3}^{2-}\right): 2S_{2}O_{3}^{2-}(aq) \to S_{4}O_{6}^{2-}(aq) + 2e^{-\frac{1}{2}}$$

$$. \left(S_{4}O_{6}^{2-}/S_{2}O_{3}^{2-}\right): 2S_{2}O_{3}^{2-}(aq) \to S_{4}O_{6}^{2-}(aq) + 2e^{-\frac{1}{2}}$$

$$. \left(I_{2}/I^{-}\right): I_{2}(aq) + 2e^{-\frac{1}{2}} \to 2I^{-}(aq): E^{-\frac{1}{2}}$$

$$. \left(I_{$$

$$\cdot \left(O_2 \ / \ H_2O_2 \right) : H_2O_2 (aq) \to O_2 (g) + 2 \, \mathrm{H}^+ (aq) + 2 \, e^-$$
 جـ المعادلة النصفية للأرجاع: $\left(H_2O_2 \ / \ H_2O\right) : H_2O_2 (aq) + 2 \, \mathrm{H}^+ (aq) + 2 \, e^- \to 2 H_2O (l)$ المعادلة النصفية للإرجاع: $2H_2O_2 (aq) = O_2 (g) + 2H_2O (l) : 2H_2O_2 (aq) = O_2 (g) + 2H_2O (l)$ معادلة أكسدة إرجاع: $2H_2O_2 (aq) = O_2 (g) + 2H_2O (l) : 2H_2O_2 (aq) = 0$

تمرین رقم 03:

$$. \left(CO_2 \ / \ H_2C_2O_4\right) \ \text{easign} \ H_2C_2O_4(aq) \to 2CO_2(g) + 2 \ \text{H}^+(aq) + 2e^{-\frac{1}{2}} \ \text{easign} \ H_2C_2O_4(aq) \to 2CO_2(g) + 2 \ \text{H}^+(aq) + 2e^{-\frac{1}{2}} \ \text{easign} \ H_2C_2O_4(aq) + 14 \ \text{H}^+(aq) + 6e^{-\frac{1}{2}} \to 2Cr^{3+}(aq) + 7H_2O(1) \ \text{easign} \ \text{easign} \ H_2C_2O_7^{2-}(aq) + 14 \ \text{H}^+(aq) + 6e^{-\frac{1}{2}} \to 2Cr^{3+}(aq) + 7H_2O(1) \ \text{easign} \ \text{easign} \ H_2C_2O_7^{2-}(aq) + 14 \ \text{H}^+(aq) + 6e^{-\frac{1}{2}} \to 2Cr^{3+}(aq) + 7H_2O(1) \ \text{easign} \$$

تمرين رقم: 04

الداخلتين في التفاعل:
$$(Ox \ / \ \text{Re} \ d)$$
 الداخلتين في التفاعل: المعادلتين النصفيتين للأكسدة والارجاع مع تحديد الثنائيتين $(Al^{3+}(aq)/Al(s))$. $(Al^{3+}(aq)/Al(s))$: $(Al^{3+}(aq)+3e)$.

. $\left(H_3O^+(aq)/H_2(g)\right)$: $2H_3O^+(aq)+2\stackrel{-}{e}\to H_2(g)+2H_2O(l)$: المعادلة النصفية للارجاع: المتنتاج معادلة التفاعل أكسدة ارجاع: 2 استنتاج معادلة التفاعل أ

 $\cdot \left(Al \; (s) \rightarrow Al^{3+} (aq) + 3 \stackrel{-}{e} \right) \times 2 \; :$ المعادلة النصفية للأكسدة

 $\cdot \left(2H_3O^+(aq) + 2\overset{-}{e} \to H_2(g) + 2H_2O(l)\right) \times 3$ المعادلة النصفية للإرجاع: 3

 $2Al(s) + 6H_3O^+(aq) = 2Al^{3+}(aq) + 3H_2(g) + 6H_2O(l)$ معادلة أكسدة إرجاع:

3_جدول تقدم التفاعل:

حالت	تقدم التفاعل ب mol	$2Al(s) + 6H_3O^+(aq) = 2Al^{3+}(aq) + 3H_2(g) + 6H_2O(l)$				
ابتدائيت	x = 0	n ₀₁	n ₀₂	0	0	بالــــزيادة
انتقاليت	x	$n_{01}-2x$	$n_{02} - 6x$	2 x	3 <i>x</i>	بالــــزيادة
نهائيت	x_{max}	$n_{01} - 2x_{\text{max}}$	$n_{02} - 6x_{\text{max}}$	$2x_{\text{max}}$	$3x_{\text{max}}$	بالــــزيادة

4- أحساب قيمة التقدم الأعظمي 4-

$$x_{
m max} = rac{n_f(H_2)}{3}$$
 . ومنه: $n_f(H_2) = 3x_{
m max}$ ومنه: الحالة النهائية الحالة النهائية ومنه:

.
$$n_f(H_2) = \frac{V_f(H_2)}{V_M}$$
 ومنه: $n_g = \frac{V_g}{V_M}$ ولدينا أيضا:

.
$$x_{\text{max}} = \frac{180 \cdot 10^{-3}}{3 \times 24} = 2,5 \cdot 10^{-3} \, mol$$
 تے ج $x_{\text{max}} = \frac{V_f(H_2)}{3V_M}$ وعلیہ:

ـ تحديد المتفاعل المحد:

$$n_{01}-2\,x_{
m max}~=0$$
 نفرض أن $Al\left(s
ight)$ هو المتقاعل المحد أي:

$$\frac{810 \cdot 10^{-3}}{27} - 2 \times 2,5 \cdot 10^{-3} = 25 \cdot 10^{-3} \ mol$$
 ومنه: $n_{01} - 2x_{\max} = \frac{m}{M(Al)} - 2x_{\max} \neq 0$ وعليه: $n_{01} - 2x_{\max} \neq 0$

. $H_3O^+(aq)$ موجود بالزيادة وعليه المتفاعل المحد هي شوارد $Al\left(s\right)$

ب-حساب التركيز المولي C لمحلول حمض كلور الماء:

$$.cV=6x_{
m max}$$
 ومنه: $n_{02}-6x_{
m max}=0$ ومنه: $\left(\!H_3O^+(aq)
ight)$ لدينا

.
$$c = 0,15mol/L$$
 ای: $c = \frac{6 \times 2,5.10^{-3}}{100.10^{-3}} = 0,15mol/L$ ای: $c = \frac{6 \times 2,5.10^{-3}}{V}$

جـ التركيز المولى للمزيج لشوارد (aq) عند نهاية التفاعل:

$$[Al^{3+}]_f = \frac{2x_{\max}}{V}$$
 . آي: $[Al^{3+}]_f V = 2x_{\max}$ ومنه: $n_f(Al^{3+}) = 2x_{\max}$

$$\left[Al^{3+}\right]_{f}=0.05mol/L$$
: قـع $\left[Al^{3+}\right]_{f}=rac{2 imes2.5\cdot10^{-3}}{100\cdot10^{-3}}=0.05\,mol/L$

تمرين رقم 05:

(S_1) الستعملة في تحضير المحلول الماد الكتلة mالستعملة الكتلة الكتلة الكتلة الكتلة الكتلة الماد الكتلة الكتلة

.
$$m=0,2\times0,1\times294=5,88g$$
 تــع: $m=C_1V_0M$ نـع: $m=0,2\times0,1\times294=5,88g$ قــع: $m=C_1V_0M$ نــع: $m=0,2\times0,1\times294=5,88g$

(S_1) البروتوكول التجربي المستعمل في تحضير المحلول (2

بواسطة ميزان الكتروني حساس مضبوط نزن الكتلة g=5,88 من مسحوق بيكرومات البوتاسيوم.

بالاعتماد على قمع نضيف الكتلة g=5,88 g إلى حوجلة عيارية سعتها m = 100 فيها m = 30 من الماء المقطر مع الرج.

- نكمل بالماء المقطر حتى نصل لخط العيار مع الرج المستمر.

على ملصقة نكتب اسم المحلول (S_1) وتركيزه المولي $C_1=0.2\,mol$ مع سد فوهة الحوجلة.

II. 1-أالمعادلتين النصفيتين للأكسدة والإرجاع، ثم استنتاج معادلة تفاعل الأكسدة الإرجاعية:

$$(CO_2/H_2C_2O_4): (H_2C_2O_4(aq) \rightarrow 2CO_2(g) + 2H^+ + 2e^-) \times 3$$
 : المعادلة النصفية للأكسدة : 3

$$\left(Cr_2O_7^{2-}/Cr^{3+}\right)$$
: $Cr_2O_7^{2-}(aq)+14H^+(aq)+6e^- \to 2Cr^{3+}(aq)+7H_2O(l)$: المعادلة النصفية للأرجاع:

$$Cr_2O_7^{2-}(aq) + 3H_2C_2O_4(aq) + 8H^+(aq) = 2Cr^{3+}(aq) + 6CO_2(aq) + 7H_2O(l)$$
 بيد جدول تقدم هذا التفاعل:

الحالة	تقدم التفاعل	$Cr_{2}O_{7}^{2-} + 3H_{2}C_{2}O_{4} + 8H^{+} = 2Cr^{3+} + 6CO_{2} + 7H_{2}O$					
	mol ب						
الابتدائيت	x = 0	n_{01}	n_{02}	بالزيادة	0	0	بالزيادة
الانتقالية	X	$n_{01} - x$	$n_{02} - 3x$	بالزيادة	2 <i>x</i>	6 x	بالزيادة
النهائية	\mathcal{X}_{\max}	$n_{01} - x_{\text{max}}$	$n_{02} - 3x_{\text{max}}$	بالزيادة	$2x_{\text{max}}$	$6x_{\text{max}}$	بالزيادة

 $n_f(Cr^{3+})=2x_{
m max}$ عند الحالة النهائية نجد: $x_{
m max}$ من جدول تقدم التفاعل عند الحالة النهائية.

.
$$x_{\text{max}} = \frac{4 \times 10^{-3}}{2} = 2 \times 10^{-3} \, \text{mol}$$
 تے ج $x_{\text{max}} = \frac{n_f(Cr^{3+})}{2}$

 C_2 حساب قيمة الحجم V_1 لبيكرومات البوتاسيوم، و قيمة التركيز المولي C_2 لحمض الأكساليك: نعلم أن المنابع ستكيمونة ي أي:

$$\begin{cases} V_{1} = \frac{x_{\text{max}}}{C_{1}} \\ C_{2} = \frac{3x_{\text{max}}}{V_{2}} \end{cases} \stackrel{\text{i.s.}}{=} \begin{cases} C_{1}V_{1} - x_{\text{max}} = 0 \\ C_{2}V_{2} - 3x_{\text{max}} = 0 \end{cases} \stackrel{\text{i.s.}}{=} \begin{cases} n_{01} - x_{\text{max}} = 0 \\ n_{02} - 3x_{\text{max}} = 0 \end{cases}$$

.
$$C_2 = \frac{3 \times 2 \times 10^{-3}}{60 \times 10^{-3}} = 0,1 mol/L$$
 و $V_1 = \frac{2 \times 10^{-3}}{0,2} = 10^{-2} L = 10 mL$ يت-ع:

النطلق عند نهاية التفاعل: CO_2 المنطلق عند نهاية التفاعل: 4

$$V_{f}(CO_{2}) = 6x_{\text{max}} V_{m}$$
 : الدينا:
$$\begin{cases} n_{f}(CO_{2}) = 6x_{\text{max}} \\ V_{m} \end{cases} = 6x_{\text{max}} = 6x_{\text{max}} = 6x_{\text{max}}$$
 الدينا:
$$\begin{cases} n_{f}(CO_{2}) = \frac{V_{f}(CO_{2})}{V_{m}} \end{cases}$$

. $V_f(CO_2) = 6 \times 2 \times 10^{-3} \times 24 = 288 \times 10^{-3} L = 288 \ mL$ تـع:

5. حساب قيمة التركيز المولى لشوارد البوتاسيوم K^+ في المزيج التفاعلي:

$$\begin{bmatrix} K^+ \end{bmatrix} = \frac{n_0(K^+)}{V_T} = \frac{\begin{bmatrix} K^+ \end{bmatrix}_0 V_1}{(V_1 + V_2)} = \frac{2C_1 V_1}{(V_1 + V_2)}$$
: ندینا:
$$\cdot \begin{bmatrix} K^+ \end{bmatrix} = \frac{2 \times 0, 2 \times 10}{(10 + 60)} = 5, 7 \times 10^{-2} \ mol/L :$$

تمرين رقم 06:

T

الداخلتين في التفاعل: $(Ox/{ m Re}d)$ الداخلتين في التفاعل: $(Dx/{ m Re}d)$

2 جدول تقدم التفاعل:

الحالة	تقدم التفاعل	$2I^{-}(aq) + H_{2}O_{2}(aq) + 2H^{+}(aq) = I_{2}(aq) + 2H_{2}O(l)$				
	mol ب				2 , ,	
الابتدائية	x = 0	n_{01}	n_{02}	بـــالزيادة	0	بــالزيادة
الانتقالية	X	$n_{01} - 2x$	$n_{02}-x$	بــالزيادة	х	بــالزيادة
النهائية	x_{max}	$n_{01} - 2x_{\text{max}}$	$n_{02} - x_{\text{max}}$	بـــالزيادة	x_{max}	بــالزيادة

_*II*

1-التركيب التجريبي المستعمل في هذه المعايرة، مع ارفاقه بالبيانات اللازمة:

الاسم الموافق للعنصر	رقـم الـبيان
سحاحة مدرجة.	1
محلول ثيوكبريتات الصوديوم.	2
صنبور .	3
بیشر.	4
الحامل.	5
المحلول المعايكر.	6
قطعة ممغناطيسية.	7
مخلاط مغناطيسي.	8

2 معادلة تفاعل المعايرة إعتمادا على المعادلتين النصفيتين للأكسدة والإرجاع:

.
$$\left(S_4O_6^{2-}/S_2O_3^{2-}\right):2S_2O_3^{2-}(aq)\to S_4O_6^{2-}(aq)+2\stackrel{-}{e}:1$$
 المعادلة النصفية للأرجاع . $\left(I_2(aq)/I^-(aq)\right):I_2(aq)+2\stackrel{-}{e}\to 2I^-(aq):1$ المعادلة النصفية للأرجاع . $I_2(aq)+2S_2O_3^{2-}(aq)=2I^-(aq)+S_4O_6^{2-}(aq):1$ معادلة تفاعل المعايرة (أكسدة ارجاع):

ياعند التكافؤ: $n_E\left(I_2\right)$ بدلالة V_E و عند التكافؤ: $n_E\left(I_2\right)$ بدلالة كا عند التكافؤ:

حالة	تقدم التفاعل ب mol	$I_2(aq) + 2S_2O_3^{2-}(aq) = 2I^-(aq) + S_4O_6^{2-}(aq)$			$+ S_4 O_6^{2-}(aq)$
التكافؤ	x_E	$n_{E}(I_{2}) - x_{E}$ $n_{2} - 2x_{E}$ $2x_{E}$ x_{E}			

عند التكافؤ يتحقق مزيج ستكيومتري أي:

.
$$n_{E}(I_{2}) = \frac{n_{2}}{2} = \frac{CV_{E}}{2}$$
 أي:
$$\begin{cases} x_{E} = n_{E}(I_{2}) \\ x_{E} = \frac{n_{2}}{2} \end{cases}$$
 ومنه:
$$\begin{cases} n_{E}(I_{2}) - x_{E} = 0 \\ n_{2} - 2x_{E} = 0 \end{cases}$$

4. أـ إجاد كمية مادة ثنائي اليود $n\left(I_{2}\right)$ الكلية المتشكلة في المزيج السابق:

.
$$n(I_2) = 10 \times n_E(I_2)$$
 .
 أي: $n(I_2) = \frac{200 \times n_E(I_2)}{20}$ ومنه: $n(I_2) = \frac{200 \times n_E(I_2)}{20}$ ومنه: $n(I_2) = \frac{n_E(I_2)}{20}$.
 فدينا: $n(I_2) = \frac{n_E(I_2)}{20}$

$$n(I_2) = \frac{10 \times CV_E}{2}$$
 وعليه:

.
$$n(I_2) = \frac{10 \times 5 \times 10^{-2} \times 12 \times 10^{-3}}{2} = 3 \times 10^{-3} \, \text{mol}$$
 . $n(I_2) = \frac{10 \times 5 \times 10^{-2} \times 12 \times 10^{-3}}{2} = 3 \times 10^{-3} \, \text{mol}$

ب استنتاج قيمة التقدم الأعظمي : x

. $x_{\rm max} = 3 \times 10^{-3} \ mol$: اينا من جدول تقدم التفاعل $n(I_2) = x_{\rm max}$: لدينا من جدول تقدم التفاعل

 $n_{01} - 2x_{\max} = 0$: أي: أداكان (I^{-}) متفاعل محد: أي: أيد المتفاعل المحد: إذا كان

$$0.1 \times 0.1 - 2 \times 3.10^{-3} \neq 0$$
 تـع: $C_1 V_1 - 2 x_{\text{max}} = 0$

. $H_2O_2(aq)$. وعليه: I^- موجود بالزيادة في المزيج عند نهاية التفاعل وبالتالي المتفاعل المحد هو $C_2(aq)$. حــ قيمة التركيز المولى C_2 :

$$C_2V_2=x_{
m max}$$
 ومنه: $H_2O_2(aq)$ الدينا $H_2O_2(aq)$ متفاعل محد: $C_2=rac{3 imes 10^{-3}}{100 imes 10^{-3}}=3 imes 10^{-2}$ متفاعل محد: $C_2=rac{x_{
m max}}{V_2}$ الدينا روينا روينا ومنه: $C_2=rac{x_{
m max}}{V_2}$