제14장 분산에 대한 추정과 검정

분산에 대한 추정과 검정

- 모집단이 정규분포일 때
 - X² 분포를 이용
- ㅇ 모집단이 정규분포가 아닐 때
 - 표본자료의 변환(transform)을 통해 정규분 포와 유사한 형태로 변환한다.
 - 비모수통계방법 사용: jackknife 방법

하나의 모집단의 분산에 대한 추정과 검정(1)

- o s²의 표본분포
 - 모집단이 정규분포이고 분산이 δ²인 모집단에서 n개 의 표본을 무작위로 추출하면

$$\frac{(n-1)s^2}{\delta^2} \sim x^2(n-1)$$

단,
$$s^2 = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}$$

- x²(n-1)은 자유도가 n-1인 x²분포
 - 연속확률분포로 모수는 자유도 v(누)
 - $\circ x^{2}(v)$ 로 표기하고 x^{2} 값은 항상 양수
 - 오른쪽 꼬리를 가진 비대칭분포
 - 자유도가 커지면 정규분포에 접근
- P.315 그림 14.1 참고

하나의 모집단의 분산에 대한 추정과 검정(2)

ο 모집단분산 δ²에 대한 신뢰구간추정

$$\frac{(n-1)s^2}{\delta^2} = x^2(n-1)$$
분포를 따르므로 x^2 분포의

백분위수의 정의에 따라 다음과 같이 쓸 수 있다.

$$P\left[x^{2}(\frac{\alpha}{2};n-1) \le \frac{(n-1)s^{2}}{\delta^{2}} \le x^{2}(1-\frac{\alpha}{2};n-1)\right] = 1-\alpha$$

p.317 그림14.3 참고

$$P\left[\frac{(n-1)s^{2}}{x^{2}(1-\frac{\alpha}{2};n-1)} \le \delta^{2} \le \frac{(n-1)s^{2}}{x^{2}(\frac{\alpha}{2};n-1)}\right] = 1-\alpha$$

- p.317 예제 14.1
- \circ 모집단분산 δ^2 에 대한 가설검정
 - P. 319 예제 14.2

두 모집단의 분산의 비교(1)

- o 두 모집단의 분산이 같은지의 여부
 - 두 모집단의 분산의 차이에 대해서가 아니라 비율에 의하여 추정과 검정(F분포)
 - 두 모집단이 정규분포라는 가정
 - 표본은 두 모집단에서 독립적을 추출되었다고 가정
- o F분포
 - F분포는 연속확률변수로서 두 가지 양의 비율로 나타나며, 분자와 분모에 해당하는 두 개의 자유도(df)를 가진다.
 - F분포는 항상 양의 값을 가지며 오른쪽 꼬리를 가진 비대칭 분포
 - P.321 그림 14.5 참조

두모집단분산의비율: $\frac{\delta_2^2}{\delta_1^2}$

 $F(v_1, v_2)$ v_1 :분자의자유도, v_2 :분모의자유도

$$F(a; v_1, v_2) = \frac{1}{F(1-a; v_2, v_1)}$$

두 모집단의 분산의 비율에 대한 추정

분산이 δ_1^2 과 δ_2^2 인 정규모집단으로부터 n_1 과 n_2 개의 표본을 독립적으로 추출하면 s^2/S^2

$$\frac{s_1^2 / \delta_1^2}{s_2^2 / \delta_2^2} = F(n_1 - 1, n_2 - 1)$$

단,
$$s^2 = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}$$

F분포의 백분위수의 정의에 따라 다음과 같이 쓸 수 있다.

$$P\left[F\left(\frac{\alpha}{2}; n_{1}-1, n_{2}-1\right) \leq \frac{s_{1}^{2} / \delta_{1}^{2}}{s_{2}^{2} / \delta_{2}^{2}} \leq F\left(1-\frac{\alpha}{2}; n_{1}-1, n_{2}-1\right)\right] = 1-\alpha$$

p.323그림참조

$$P \left[F\left(\frac{\alpha}{2}; n_2 - 1, n_1 - 1\right) \cdot \frac{s_1^2}{s_2^2} \le \frac{\delta_1^2}{\delta_2^2} \le F\left(1 - \frac{\alpha}{2}; n_2 - 1, n_1 - 1\right) \cdot \frac{s_1^2}{s_2^2} \right] = 1 - \alpha$$

 $\dfrac{\delta_{\rm l}^2}{\delta_{\rm 2}^2}$ 에 대한 신뢰구간 양쪽 값이 모두 1보다 크게나오면 $\delta_{\rm l}^2$ 이 $\delta_{\rm 2}^2$ 보다 크다.

신뢰구간 양쪽 값이 모두 1보다 작게나오면 δ_1^2 이 δ_2^2 보다 작다.

신뢰구간에1이 포함되어 있으면 차이가 있다고 할 수 없다.

p.324 예제14.3

두 모집단의 분산의 비율에 대한 가설검정

ㅇ 단측검정의 예

$$H_0: \delta_1^2 \le \delta_2^2$$
 $H_1: \delta_1^2 > \delta_2^2$ 위 가설은 다음과 같이 나타낼 수 있다. δ^2

$$H_0: \frac{\delta_1^2}{\delta_2^2} \le 1$$
 $H_1: \frac{\delta_1^2}{\delta_2^2} > 1$

$$\frac{\delta_{\rm l}^2}{\delta_{\rm 2}^2}$$
을 검정하기 위해서는 먼저표본분산 $\frac{s_{\rm l}^2}{s_{\rm 2}^2}$ 을 계산

$$\frac{\delta_1^2}{\delta_2^2} = 1 일 때, \stackrel{\text{<--}}{=} \delta_1^2 = \delta_2^2 - \frac{s_1^2}{s_2^2} = F(n_1 - 1, n_2 - 1)$$

그러므로 결정규칙은 다음과 같다.

만약
$$\frac{s_1^2}{s_2^2} \le F(1-\alpha; n_1-1, n_2-1), H_0$$
를 선택

만약
$$\frac{s_1^2}{s_2^2} > F(1-lpha; n_1-1, n_2-1), H_1$$
을 선택

o P.326 예제 14.4