

本科实验报告

课程名称: 数字逻辑设计

姓 名: 王伟杰

学院: 计算机学院

系: 软件工程

专 业: 软件工程

学 号: 3210106034

指导教师: 马德

2022年 9月 12日

浙江大学实验报告

课程名称:	数字逻辑设计			实验类型:		
实验项目名称:	常用电子仪器的使用					
学生姓名:	王伟杰	专业:软件	-工程	学号:	<u>32101</u>	06034
同组学生姓名:		张书维		_指导老师	币:	马德
实验抽占.	车 4-500	实验日期.	2022	年 o	日	12 ⊟

一、实验目的

- 1.1 认识常用电子器件
- **1.2** 学会数字示波器、数字信号发生器(函数信号发生器)、直流稳压电源、万用表等常用电子仪器的使用
 - 1.3 掌握用数字示波器来测量脉冲波形及幅度和频率的参数
 - 1.4 掌握万用表测量电压、电阻及二极管的通断的判别

二、操作方法与实验步骤

- **2.1** 测量实验箱中的直流电源:信号发生器的频率通过频率波段开关、和微调旋钮调到 100Hz、10kHz 和 100kHz。信号发生器的输出信号线与示波器的信号连在一起,地线与地线连在一起。
 - 2.1 用示波器测量正弦波信号。
- **2.3** 测量YB1638型函数信号发生器输出电压。信号发生器输出接入万用表,红接正,负接负,万用表在 AC 档,并选用适当量程,通过调节幅度旋钮,使万用表显示 3V 有效值。随后将信号发生器输出接入到示波器中,读取峰峰值,有效值为读数的 1/2√2。
 - 2.4 测量二极管的单向导通特性。

三、实验数据记录和处理

测量实验箱中的直流电源

直流稳压电源输出	示波器读数	灵敏度	示波器折算值	万用表读数
+5V	2.4Div	2.0V/Div	4.8V	5.02V

用示波器测量正弦波信号

	函数发生器输出	示波器读数/Div	灵敏度	实测值	实测值2
幅度		4.95	1.00/V/Div	4.95V	
周期/频率	100Hz	9.99	1.00/ms/Div	9.99ms	101.01Hz
幅度		4.95	1.00/V/Div	4.95V	
周期/频率	10kHz	2.00	50µs/Div	100µs	10.00kHz
幅度		4.95	1.00/V/Div	4.95V	
周期/频率	100kHz	2.00	5µs/Div	100µs	100.00kHz

测量YB1638型函数信号发生器输出电压

函数发生器输出频率	示波器读取值	示波器读取值	折算有效值	万用表读取值
1kHz	4.95Div	1 V / Div	1.75V	1.763V

测量二极管的单向导通特性

二极管正向导通时二极管读数	二极管反向截止时二极管读数
0.602	1.

四、实验结果与分析

4.1 测量实验箱中的直流电源。

误差为4.4%左右,误差并不大。这些误差说明了测量过程中可能会有损失。

4.1 用示波器测量正弦波信号。

三组实验误差并不大,电压的损失可能是信号发生器输出误差,或者是传输过程中有一定损失。

4.3 测量YB1638型函数信号发生器输出电压。

在1kHz的函数发生器输出频率下,通过示波器测量出的输出电压是1.75V,实际万用表读数为1.763V,误差在0.73%,说明在此频率下信号测量会有一定的误差。

4.4 测量二极管的单向导通特性。

正向导通时万用表读数为0.602,反向截止时万用表读数为"1.",说明此时电路无法导通。

五、讨论、心得

在本次实验中,我们刚开始进行实验时并没有清楚各个仪器的使用方法,在系统学习后能够正确操作它们。后来也发生了信号并不能正确显示的问题,我们发现是没有开启示波器的AUTO功能。

这次实验虽然项目比较多,但都比较简单,我们在实验中了解了信号发生器、万用表、示波器等的用途,掌握了它们的使用方式。