상황 정보를 이용한 딥러닝 기반 전력수요예측

2018.11.07

Advisor: Professor 최원익

전승주

Department of Information and Communication Engineering, Inha University

목차

- 1. 설계블록도
- 2. 데이터 선정 · 수집 · 가공
- 3. DNN 모델
- 4. RNN-LSTM 모델
- 5. 성능평가
- 6. 향후 계획

설계블록도

- 데이터 선정
- 1) 시간정보 월, 일, 요일, 시간, 휴일여부
- 2) 기상정보 기온, 풍속, 습도, 증기압, 일사량
- 3) 과거 전력 수요 일별 최대전력, 시간별 현재수요

• 데이터 수집

1) 시간정보

일별: 2006.01.01~2018.09.30 (4642일)

시간별: 2012.06.01.00~2018.09.30.23 (55513시간)

2) 기상정보

기상자료개방포털 : https://data.kma.go.kr/data/

지역별: 서울, 대전, 대구, 광주, 부산

기온, 풍속, 습도, 증기압, 일사량

3) 과거 전력 수요 전력통계정보시스템: http://epsis.kpx.or.kr/epsisnew/ 일별 최대전력 시간별 현재전력수요

• 데이터 가공

1) 빈 데이터

수집한 데이터의 빈 값을 채우기 위해 전·후 1개의 데이터(총 2개의 데이터)의 평균값으로 대체

2) 대표 기상정보

전국 단위의 대표 기상정보로 변환하기 위한 가중치

지역	서울	대전	대구	광주	부산
가중치(%)	50.0	10.0	12.0	8.0	20.0

출처: 신이레, 윤상후 (2016). 전력수요예측을 위한 기상정보 활용성평가

• 데이터 가공

3) normalization

① 주기성을 갖는 시간정보 월, 일, 요일, 시간 정보는 특정 범위에서 값이 반복되는 **주기성**을 갖는다. 0~1값으로 만들기 위해 단순히 max값으로 나누는 방식은 주기의 경계에서 큰 값의 변화를 가져온다. 즉 주기성을 반영하지 못한다.

예를 들어, 일 정보를 $\frac{1}{30}$, $\frac{2}{30}$, ..., $\frac{30}{30}$ 와 같이 바꾸면 $\frac{30}{30}$ 에서 $\frac{1}{30}$ 로 바뀔 때 실제로 하루 차이이지만 큰 값의 변화가 생긴다.

• 데이터 가공

3) normalization

① 주기성을 갖는 시간정보 시간정보의 주기성을 반영하기 위해 sin, cos함수를 이용하였다.

$$y = 0.25\sin\frac{2\pi}{30}x + 0.25\cos\frac{2\pi}{30}x$$

일 정보의 한 달 길이를 고려하여 수식에 반영하였고, 월, 요일, 시간 정보에 대하여도 마찬가지 방식으로 값을 변환하였다.

출처: https://stats.stackexchange.com/questions/126230/optimal-construction-of-day-feature-in-neural-networks

• 데이터 가공

3) normalization

② 기상정보와 전력수요정보 feature scaling의 대표적인 2가지 방식 min-max scaling vs standardization

 $\frac{x - min}{\max - min} \qquad \frac{x - mean}{stddev}$

샘플데이터에 대한 성능 평가 후 min-max scaling 방식을 선택

최종데이터 형태

월	일	시	요일	휴일여	기온(°C)	풍속(m/s)	습도(%)	증기압(hPa)	일사(MJ/m2)	현재수요(MW)
0,25	0,796515	0,75	0,200638	0	0,629707	0,173596672	0,6714450859	0,4189181153	0	0,26973344918
0,25	0,796515	0,806186	0,200638	0	0,619403	0,125155924	0,7005780339	0,4180868107	0	0,23988548342
0,25	0,796515	0,841506	0,200638	0	0,611751	0,123700622	0,7271676292	0,4215307867	0	0,24028198656
0,25	0,796515	0,853553	0,200638	0	0,608796	0,150103949	0,7424277448	0,4244403526	0	0,23354161287
0,25	0,796515	0,841506	0,200638	0	0,599856	0,152598751	0,7595375714	0,4192150097	0	0,2381178526
0,25	0,796515	0,806186	0,200638	0	0,593454	0,102702702	0,7902890164	0,4246184893	0	0,24545810589
0,25	0,796515	0.75	0,200638	0	0,593189	0,189604988	0,778265895	0,4180274318	0.013732193341	0,25362607074
0,25	0,796515	0.676777	0,200638	0	0,607167	0,162785861	0,722080924	0,4117332688	0.071794869749	0,27764058509
0.25	0.796515	0.591506	0.200638	0	0.635162	0.112889812	0.6605780339	0.4210557555	0.21150996548	0.30165509944

- 1) 일별
- ① Input & Output data

Parameter	Explanation	Number
У	예측일 전력수요 예측 값	1
x_1, x_2, \dots, x_n	과거 n일동안 전력수요	n
x_{n+1}, \dots, x_{n+5}	예측 전일 기상정보 (기온, 풍속, 습도, 증기압, 일사량)	5
x_{n+6}, \dots, x_{n+9}	예측일 월, 일, 요일, 휴일여부	4

- 1) 일별
- 1) Input & Output data
 - · data set 구성 코드

```
train set = np.loadtxt('C:\exercise data\\train value min max scalar4 .csv', delimiter=',', usecols=range(10))
test_set = np.loadtxt('C:\exercise_data\\test_value_min_max_value4_.csv', delimiter=',', usecols=range(10))
train dataX = []
train dataY = []
test dataX = []
test dataY = []
i = past load num
num = len(train set)
while i < num:
   if train_set[i][9]==0:
       i+=1
       continue
   tempX = []
   tempY = []
   for j in range(9):
       if j>=0 and j<4:
          tempX.append(train_set[i][j]) 시간정보(x_{n+6},...,x_{n+9})
       else:
                                                                                                     n = 30
          _{\mathsf{tempX.append(train\_set[i-1][j])}}기상정보(\chi_{n+1},...,\chi_{n+5})
                                                                                                     trainX: 3621 X 39
   for k in range(past load num):
       tempX.append(train_set[i-past_load_num+k][9]) 과거전력수요 (x_1, x_2, ..., x_n)
                                                                                                     trainY: 3621 X 1
   train dataX.append(tempX)
                                예측전력수요 (label, y )
                                                                                                     testX: 959 X 39
   tempY.append(train_set[i][9])
   train dataY.append(tempY)
   print(i)
                                                                                                     testY: 959 X 1
   i+=1
```

Advisor : Prof. 최원익

- 1) 일별
- ② Neural Net 구조 (n=30)

- 2) 시간별
- ① Input & Output data

Parameter	Explanation	Number
$y_1, y_2,, y_{24}$	24시간 전력수요 예측 값	24
x_1, x_2, \dots, x_{24n}	과거 n일동안 시간별 전력수요	24n
$x_{24n+1}, \dots, x_{24n+120}$	예측 전일 시간별 기상정보 (기온, 풍속, 습도, 증기압, 일사량)	120
$x_{24n+121}, \dots, x_{24n+125}$	예측일 월, 일, 요일, 시간, 휴일여부	5

DNN 모넬

2) 시간별

- Input & Output data
 - · data set 구성 코드

```
train_set = np.loadtxt('C:\exercise_data\\original_hours_4_train.csv', delimiter=',', usecols=range(12))
    test_set = np.loadtxt('C:\exercise_data\\original_hours_4_test.csv', delimiter=',', usecols=range(12))
    train_dataX = []
    train dataY = []
    test_dataX = []
    test_dataY = []
    i = past load num
    num = len(train set)
    while i <= num-24:
       for t in range(24):
           if train_set[i+t][11]==0:
              i+=24
              continue
       tempX = []
       tempY = []
       for n in range(24):
           for j in range(11):
              if j==0:
                                             시간정보 (x_{24n+121}, ..., x_{24n+125})
              elif n==0 and j<=5:
                  tempX.append(train set[i+n][j])
                                                                                                            n=5
              elif j>=6:
                  tempX.append(train_set[i-24+n][j]) 기상정보 (x_{24n+1},...,x_{24n+120})
                                                                                                            trainX: 2034 X 245
       for k in range(past_load_num):
                                                     과거전력수요 (x_1, x_2, ..., x_{24n})
                                                                                                            trainY: 2034 X 24
           tempX.append(train_set[i-past_load_num+k][11])
       train_dataX.append(tempX)
                                                                                                            testX: 268 X 245
       for m in range(24):
                                                                                                            testY: 268 X 24
                                        예측전력수요 (label, y_1, y_2, ..., y_{24})
           tempY.append(train_set[i+m][11])
       train dataY.append(tempY)
       #print(i)
201
       i+=24
```

Advisor : Prof. 최원익

- 2) 시간별
- ② Neural Net 구조 (n=5)

Advisor : Prof. 최원익

- 1) 일별
- ① Input & Output data

Parameter	Explanation	Number	Dimension
у	예측일 전력수요 예측 값	1	1X1
x_1, x_2, \dots, x_n	과거 n일동안 일별 월, 일, 요일, 휴일여부, 기상정보(5), 전력수요	n	nX10

- 1) 일별
- 1) Input & Output data
 - · data set 구성 코드

n=7

trainX: 3644 X 7 X 10

trainY: 3644 X 1

testX: 982 X 7 X 10

testY: 982 X 1

1) 일별 ② Neural Net 구조 (n=7) Fully y Connected Layer h_6 h_2 h_7 h_1 **LSTM LSTM** LSTM **LSTM** x_6 x_1 x_2 χ_7

Advisor : Prof. 최원익

- 2) 시간별
- ① Input & Output data

Parameter	Explanation	Number	Dimension
y_1, y_2, \dots, y_{24}	24시간 전력수요 예측 값	24	1X24
x_1, x_2, \dots, x_{24n}	과거 n일동안 시간별 월, 일, 요일, 휴일여부, 기상정보(5), 전력수요	24n	24nX10

- 2) 시간별
- 1) Input & Output data
 - · data set 구성 코드

```
# build datasets
def build_dataset(time_series, seq_length):
    dataX = []
    dataY = []
    num = len(time_series)
    i=0
    while i <= num-hseq length-24:
        for t in range(24):
            if time_series[i+hseq_length+t][11]==0:
                i+=24
                continue
        _x = time_series[i:i+hseq_length, 1:12] \chi_1, \chi_2, ..., \chi_{24n}
        y = []
        for j in range(24):
            j in range(24):
_y.append(time_series[i+hseq_length+j][-1]) y_1, y_2, ..., y_{24}
n=5
        print(_x, "->", _y)
                                                                          trainX: 2034 X 120 X 11
        dataX.append( x)
        dataY.append( y)
                                                                          trainY: 2034 X 24
        i+=24
                                                                          testX: 268 X 120 X 11
    return np.array(dataX), np.array(dataY)
                                                                          testY: 268 X 24
```

RNN-LSTM 모델 y_1 2) 시간별 y_2 ② Neural Net 구조 (n=5) Fully Connected y_3 Layer y_{24} (h_{119}) h_{120} h_1 h_2 **LSTM LSTM LSTM LSTM** (x_{119}) x_{120} x_1 x_2

Advisor : Prof. 최원익

• MAPE (Mean Absolute Percentage Error) 예측의 오차율을 측정하기 위해 MAPE 이용

mape (%) =
$$\frac{1}{n} \sum_{t=1}^{n} \left| \frac{A_t - F_t}{A_t} \right| \times 100$$

• 일벽 DNN RNN 모덱

2018-2 Capstone Design in ICT

• 시간별 DNN, RNN 모델

• DNN (일별)

전력수요가 높은 여름과 겨울에 상대적으로 오차율이 크다

• RNN (일별)

DNN에 비해 균등하게 오차율 이 분포하고 있는 것을 알 수 있다.

향후계획

- 1) PCA, Autoencoder 등을 통한 차원 축소
- 2) ARIMA 등 통계적 모형과 비교
- 3) 계절별 성능평가
- 4) RNN 변형 모델 시도