```
In [1]: # Import necessary libraries
    from deap import algorithms, base, creator, tools
    import random
    import matplotlib.pyplot as plt

# Step 1: Define the problem (Maximizing the sum of bits)

# Create fitness class (maximize)
    creator.create("FitnessMax", base.Fitness, weights=(1.0,)) #Creates a Fitness class for maximizing a value

# Create individual class (list of bits)
    creator.create("Individual", list, fitness=creator.FitnessMax)
    #Creates Individual class based on list, but also attaches fitness attribute.
In [2]: # Step 2: Set up the toolbox
```

```
In [2]: # Step 2: Set up the toolbox
toolbox = base.Toolbox() #Toolbox: Stores all your operations (generate individuals, mutate, etc).

# Attribute generator: define how to initialize one gene (either 0 or 1)
toolbox.register("attr_int", random.randint, 0, 1)

# Structure initializers
# Define 'individual' to be a list of 100 random 0s and 1s
toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_int, n=100)

# Define 'population' to be a list of individuals
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
```

```
In [3]: # Step 3: Define the evaluation function
    #Evaluation: Sum up all the 1s (more 1s = better fitness). Return as tuple because DEAP expects that.

def evalOneMax(individual):
    return sum(individual), # Comma makes it a tuple

toolbox.register("evaluate", evalOneMax) #Tell DEAP to use this function to evaluate individuals.

# Register the genetic operators
toolbox.register("mate", tools.cxTwoPoint) # Crossover
toolbox.register("mutate", tools.mutFlipBit, indpb=0.05) # Mutation (flip each bit with probability 0.05)
toolbox.register("select", tools.selTournament, tournsize=3) # Selection (tournament of size 3)
```

```
In [4]: # Step 4: Main program
        def main():
            random.seed(64) # For reproducibility
            # Create an initial population of 300 individuals
            pop = toolbox.population(n=300)
            # Define statistics to be collected Track average, minimum, and maximum fitness at each generation.
            stats = tools.Statistics(lambda ind: ind.fitness.values)
            stats.register("avg", lambda x: sum(v[0] for v in x) / len(x))
            stats.register("min", lambda x: min(v[0] for v in x))
            stats.register("max", lambda x: max(v[0] for v in x))
            # Run the evolutionary algorithm
            pop, logbook = algorithms.eaSimple(pop, toolbox,
                                               cxpb=0.5, # Crossover probability
                                               mutpb=0.2, # Mutation probability
                                               ngen=40, # Number of generations
                                               stats=stats,
                                               verbose=True)
        # eaSimple:cxpb=0.5: 50% chance for crossover.mutpb=0.2: 20% chance for mutation. ngen=40: Run for 40 generation
        # Returns: New evolved population.
        #Logbook: All statistics over generations.
            # Print the best individual
            best_ind = tools.selBest(pop, 1)[0]
            print("\nBest Individual: ", best_ind)
            print("Fitness of Best Individual: ", best_ind.fitness.values[0])
            # Step 5: Plotting the results
            gen = logbook.select("gen")
            max_fitness_values = logbook.select("max")
            avg_fitness_values = logbook.select("avg")
            plt.plot(gen, max_fitness_values, label='Max Fitness')
            plt.plot(gen, avg_fitness_values, label='Avg Fitness')
            plt.xlabel('Generation')
            plt.ylabel('Fitness')
```

```
plt.title('Evolution of Fitness Over Generations')
plt.legend()
plt.grid()
plt.show()

if __name__ == "__main__":
    main()
```

	_			
gen	nevals	avg	min	max
0	300	50.4933	34	64
1	181	54.8333	44	66
2	191	58.4567	47	68
3	199	60.9533	52	68
4	167	62.96	47	71
5	175	64.99	57	73
6	168	66.9333	58	74
7	187	68.9167	59	76
8	171	70.8867	62	76
9	155	72.69	62	80
10	171	74.1233	64	82
11	191	75.64	65	82
12	171	77.18	69	84
13	173	78.7667	69	84
14	185	79.9067	72	86
15	205	81.4433	72	88
16	163	82.6767	74	88
17	175	83.6833	76	88
18	181	84.8067	74	90
19	179	85.6233	74	91
20	178	86.58	78	91
21	173	87.2533	78	91
22	155	88.06	79	92
23	187	88.37	80	92
24	184	89.2767	82	94
25	198	89.7767	80	95
26	185	90.6233	80	96
27	160	91.62	82	96
28	182	92.45	83	97
29	171	93.2933	84	97
30	184	94.1433	84	97
31	161	94.91	85	98
32	181	95.4633	85	99
33	177	96.02	88	99
34	182	96.7733	88	99
35	177	97.0433	86	100
36	161	97.3567	88	100
37	178	97.9167	90	100
38	176	98.4	87	100
39	202	98.2467	88	100
40	180	98.8333	90	100

each individual has 100 bits (because n=100), so:

Best possible fitness = 100

In []: