Resumo de aula 11

Teorema do Valor Médio

Seja f uma função que satisfaça as seguintes hipóteses:

- 1. f é contínua no intervalo fechado [a, b]
- 2. f é diferenciável no intervalo aberto (a,b)

Então existe um número c em (a, b) tal que

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

ou de maneira equivalente,

$$f(b) - f(a) = f'(c)(b - a)$$

Geometricamente, este teorema conta-nos que se s é uma reta passando pelos pontos (a, f(a)) e (b, f(b)), então existirá pelo menos um ponto (c, f(c)), com a < c < b, tal que a reta tangente ao gráfico de f, neste ponto, é paralela à reta s. Como $\frac{f(b)-f(a)}{b-a}$ é inclinação (coeficiente angular) de s e f'(c) o de T, $\frac{f(b)-f(a)}{b-a} = f'(c)$

Teste Crescente / Decrescente

Seja f uma função contínua num intervalo I, que pode ser aberto ou fechado.

- (a) Se f'(x) > 0 para todo x interior a I, então f é crescente em I.
- (b) Se f'(x) < 0 para todo x interior a I, então f é decrescente em I.

Demonstração: Precisamos provar que quaisquer que sejam x_1 e x_2 em I, com $x_1 < x_2$, temos $f(x_1) < f(x_2)$.

Sejam então x_1 e x_2 em I, com $x_1 < x_2$, por hipótese, f é contínua em $[x_1, x_2]$ e derivável em (x_1, x_2) . Logo, pelo Teorema do Valor Médio, existe um número c entre x_1 e x_2 tal que

$$f(x_2) - f(x_1) = f'(c)(x_2 - x_1)$$

Agora f'(c) > 0 por hipótese e $x_2 - x_1 > 0$. Assim, o lado direitoda equação acima é positivo, e logo $f(x_2) - f(x_1) > 0$ ou $f(x_1) < f(x_2)$. Isso mostra que f é crescente. A parte (b) é provada de maneira análoga.

Exemplo 0.1. Encontre o intervalo onde a função $f(x) = x^2$ é crescente e o intervalo onde ela é decrescente.

Solução:

Exemplo 0.2. Encontre o intervalo onde a função $f(x) = x^3$ é crescente e o intervalo onde ela é decrescente.

Solução:

Concavidade

Se o gráfico de f estiver acima de todas as suas tangentes no intervalo I, então ele é chamado de côncavo para cima em I. Se o gráfico de f estiver abaixo de todas as suas tangentes no intervalo I, então ele é chamado de côncavo para baixo em I.

Teste de concavidade

- (a) Se f''(x) > 0 para todo x em I, então o gráfico de f é côncavo para cima em I.
- (b) Se f''(x) < 0 para todo x em I, então o gráfico de f é côncavo para baixo em I.

Ponto de inflexão

Um ponto P na curva y=f(x) é conhecido como ponto de inflexão se f é contínua no ponto e a curva mudar de côncava para cima para côncava para baixo ou vice-versa em P.

Exemplo 0.3. Encontre o intervalo de concavidade da função $f(x)=x^2$ e pontos de inflexão.

Solução:

Exemplo 0.4. Encontre o intervalo de concavidade da função $f(x)=x^3$ e pontos de inflexão.

Solução:

Observamos que existem 4 formatos sobre gráfico de função.

Processos para esboçar gráfico de polinômio

 1^0 Estudar os sinais de f'(x) e f''(x) ao mesmo eixo x.

 2^0 Estudar os formatos de curvas em cada intervalo de x.

 3^0 Calcular os valores de y cujos x são importantes no sentido que nos quais mudam concavidade ou crescimento/decrescimento da curva.

4º Esboçar o gráfico.

Exemplo 0.5. Esboce o gráfico de $f(x) = 2 + 3x - x^3$ Solução:

Exemplo 0.6. Esboce o gráfico de $f(x) = x^3 - 3x$ Solução: