

Implementing EDF Scheduler

Name: mohamed mohamed taha

Email: mohamed.ismail.mohamed.taha@gmail.com

Verifies system implementation with the EDF scheduler

Using Analytical Methods

1/ System Hyperperiod

Task	Periodicity
Button 1 Monitor	50
Button 2 Monitor	50
Periodic Transmitter	100
UART Transmitter	20
Load 1 Simulation	10
Load 2 Simulation	100

1/ System Hyperperiod

```
Hyperperiod = Least Common Multiplier of all tasks periodicities Hyperperiod = LCM (50, 50, 100, 20, 10, 100) Hyperperiod = 100
```

2/ CPU Load

Task	Execution Time	Occurrence During Hyperperiod
Button 1 Monitor	29 us	2
Button 2 Monitor	29 us	2
Periodic Transmitter	93 us	1
UART Transmitter	30 us	5
Load 1 Simulation	5 us	10
Load 2 Simulation	12 us	1

2/ CPU Load

Utilization = Total Execution Time During Hyperperiod / Hyperperiod

$$U = [(29u*2)+(29u*2)+(93u*1)+(30u*5)+(5m*10)+(12m*1) / 100m] * 100\% = 62\%$$

Using Rate Monotonic Utilization Bound:

$$U \le n[2 (1/n) - 1]$$

U = 0.623&& Urm = 0.734
Therefore U < Urm

The system is feasible (Schedulable).

Using Time Demand Analysis

Wi(t) = ei +
$$\sum_{k=0}^{i-1} [Pk]ek$$

critical instant = 100ms

Task	Execution Time	Periodicity
Button 1 Monitor	29 us	50
Button 2 Monitor	29 us	50
Periodic Transmitter	93 us	100
UART Transmitter	30 us	20
Load 1 Simulation	5 us	10
Load 2 Simulation	12 us	100

Task 1: Button 1 Monitor (E: 29us, P: 50ms, Provided Time=50ms)

$$w3~(50) = 29\mu + (50/10)~5m + (50/20)~30\mu = 25.~059~ms$$
, $w(50) = 25.~059 < 50$

Button 1 Monitor task is schedulable

Task 2: Button 2 Monitor (E: 29us, P: 50ms, Provided Time=50ms)

$$w$$
 4 (50) = 29 μ + (50/10) 5 m + (50/20) 30 μ + (50/50)29 μ = 25. 087 ms w (50) = 25. 087 < 50

Button 2 Monitor task is schedulable

Task 3: Load 1 Simulation (E: 5ms, P: 10ms, Provided Time=10ms)

$$w1$$
 (10) = 5 m + 0 = 5, w (10) = 5 < 10

Load 1 Simulation task is schedulable.

Task 4: UART Receiver (E: 30us, P: 20ms, Provided Time=20ms)

$$w2(20) = 30\mu + (20/10) 5m = 10.03 ms, w(20) = 10.03 < 20$$

UART Receiver task is schedulable.

Task 5: Periodic Transmitter (E: 93 us , P: 100ms, Provided Time=100ms)

$$w5\ (100) = 93\mu + (100/10)\ 5m + (100/20)\ 30\mu + (100/50)29\mu + (100/50)29\mu = 50.\ 359\ ms$$

$$w(100) = 50.359 < 100$$

Periodic Transmitter task is schedulable

Task 6: Load 2 Simulation (E: 12ms, P: 100ms, Provided Time=100ms)

$$w6\ (100) = 12m + (100/10)5m + (100/20)30\mu + (100/50)29\mu + (100/50)29\mu + (100/100)93\mu$$

$$w(100) = 62.452 < 100$$

Load 2 Simulation Task is schedulable.

System is Schedulable

SIMSO Offline Simulator

Kiel Simulator

lame	Value	Туре
✓ L1_inTime	0x0013570F	uint
L2_inTime	0x0013526B	uint
Rx_inTime	0x00135713	uint
✓ Tx_inTime	0x00134DBD	uint
cpu_load	63	uint
	0x000C37D2	uint
T1TC	0x001357C0	ulong