

-5-Lemma 2. = Pcj) = - = = Pcj1) = Pc1) & Pc21 & ... E Pan Han Hiz Hij Haji Hin Min I Suppose that: index set (α) $i, \in I$ (6) $\exists j' \geq j$ such that $P(j') \leq \frac{1}{n-j'+j}$ Then G = 1 for the Simestest G Let $k = \max_{i \in I} \{i \in I, i \in I, l \in j'\}$. By $(a) \cdot K$ exists and finite. Then $exists = p_{cj'} = \frac{1}{n-j'+1} = \frac{1$ $\frac{2}{1+|2i_{ji+1}...in3} = |b_{ij}| definition of k| =$ For by definition $i_{k} \in \mathcal{I}$.

Let $a = 1/i_{j}$. $i_{k-1} \in \mathcal{I}$ $f = 1/i_{j}$ $f = 1/i_{k+1}$. $f = 1/i_{k+1}$ $f = 1/i_{k+1}$. Then $f = 1/i_{k+1} = 1/i_{k+1}$ $f = 1/i_{k+1} = 1/i_{k+1}$ = (a+1)(b+1) By definition of Simes procedure 47 = 1 $\Rightarrow \text{Reject } H_{cj} \iff \exists j \text{ such that } p_{cj'} \triangleq \frac{\lambda}{n-j'+1}$ closure principle (closing simes) this procedure controls $\Rightarrow \text{ principle } \text{ controls}$

This procedure is known as Hochberg's pro-6-cedure.

Step-Down vs. Step-Up Procedures

Holm

j=0

j=n Hoch berg j=nwhile $p_{ij} > \frac{1}{n-j+1}$ do j=j-1while $p_{(j+1)} = \frac{d}{n-j} do$ end Reject Hu. His Reject Has. Hoy Example: $p_1 = \dots = p_n = \mathcal{L} \quad \Longrightarrow \quad \forall j$ p(j) < d => => Holm's procedure rejects nothing => j \(\delta \) p(n) \(> \delta \) - FAISE - Hoch berg procedure rejects everything. In general, step-igs procedures can be more proverful than step-down procedures. Holm j = 1while $p_{(j)} \leq \frac{1}{n-j+1}$ do $\frac{j=j+1}{\text{end}}$ Reject $H_{(1)}$ --- $H_{(j-1)}$ Step-up procedures are more liberal than stepdown procedures. But Mochberg procedure can be applied in the case when si are independent

FDR (False Diseasery Rate) Ho Ame il V no No false T S n-no n-R R RFDP (False discovery proportion): $PDP = \frac{V}{R} \mathcal{L}_{R \geq 13} = \begin{bmatrix} \frac{V}{R}, & \text{if } R \geq 1 \\ 0, & \text{otherwise} \end{bmatrix}$ FDP 15 unobserved random variable - proportion of false discoveries among all discoveries FDR (False discovery rate) FDR = E (FDP) = E (& 1/18>13) Controlling the FDR allows us to control & across many repetitions of an experiment, but it does not say as much as FWER about a single experiment. let us show that FDR is a weaker notion of control than FWER. Properties of the FDR!

1. Under the global null, the FDR is equivalent to the FWER. T When the global null is true then S=0 \Longrightarrow V=R $\Rightarrow FDP = \begin{bmatrix} 1, & if & V \ge 1 \\ 0, & otherwise \end{bmatrix} = 1 \{ 1 \ge 1 \} \Rightarrow$

-2-
=> FDR = E (FDP) = E11(V>13 = P(V>1)
=> FDR = E (FDP) = E 1/4 v > 13 = P(V > 1) Conclusion: FDR control => weak FWER control
2. FOR & FWER.
B) if R>1 => / V < R => × < 1/ =>
$8) if R>1 \Rightarrow /V \leq R \Rightarrow \frac{1}{R} \leq 1/2 \Rightarrow 0 = 0$ $\Rightarrow \frac{1}{R} \leq 1/2 \Rightarrow 0 = 0$ $if V=0 \Rightarrow 0 = 0$ $if V>13 \Rightarrow \frac{1}{R} \leq 1$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\Rightarrow E_{R}^{V} \leq E I \{ v > 1 \} = P(V > 1) $
Conclusion: FIER control => FDR control
Benjamini - Nochberg procedure (BH)
BH(2) - Benjamini - Hochberg procedure at level
Let us order p-values:
$p_{(i)} \leq p_{(i)} \leq \ldots \leq p_{(n)}$ and fix $\lambda \in \Sigma_0, 1J$.
Let io be the largest i such that past in 2.
$\dot{c}_0 = \max\{\dot{c}: p_{ci}\} \leq \frac{c}{n}\lambda \dot{c}$
→ Reject Hais i i \(\xeta\) io.
Theorem 1: For independent test statisties
(=> p1-pn are mutually independent)
Theorem 1: For independent test statisties (=> p_1-p_n are mutually independent) BH(d) controls = FDR at level d:
$FDR = \frac{no}{n} \angle \leq \angle$
1. Theorem 1 trolds for all configurations of the hypotheses
hypotheses

2. BH(2) threshold is adaptive. 3. Under the global mill BH(2) controls FWER (by theorem 1). On the other hand, BH(2) fails to control FWER In a strong sense, (see the example for Simes modedure) 4. Comparison to Mochberg's procedure: Hochberg's : $i_0 = max(i : p_{cij} \leq \frac{\alpha}{n-i+j})$ P(1) € ... € P(n) ; $i_0 = \max(i : \rho_{ii} \leq \frac{i}{n} \alpha)$ $\frac{i/n}{\sqrt{n-i+1}} = \frac{i}{n} \frac{n-i+1}{-i} = \frac{i}{n} \left(1 - \frac{i-1}{n}\right) = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{i}{n} \frac{\sin \sin n}{n}$ => BH(d) is approximately i times more liberal than Hochberg's procedure. When it's small and about of times larger when $i \approx \frac{n}{2}$ Something the viewpoint of power 1). If $n_0 = 0$. (all Hoi are not true) $\Rightarrow V = 0$. $\Rightarrow FDR = E \times 1_{R \ge 1} = 0 = \frac{n_0}{n} \lambda$. Proof of the theorem 1. $2) n_0 \ge 1$. Vi = 11 1 Hio 13 rejected 3 => FDP = \frac{V}{R} 11 \(R \ge 13 \) = \frac{\sqrt{i}}{i\infty} \frac{\sqrt{i}}{R} \frac{\sqrt{i}}{R} \(R \ge 13 \) Ho= {i: Hoi o is true} For all i e flo: Vi 1/R = 13 are identically distributed since p-values under the have the same (uniform) distribution.

 $= E(FDP) = \sum_{i \in \mathcal{P}_0} E \frac{V_i}{R} 1_{iR > 13} = n_0 E \frac{V_i}{R} 1_{iR > 13}$ => it is enough to show that EVi 1/213 = 2 (Vie Sto). $\frac{Vi}{R} = \frac{1}{4} \frac{1}{R} = \frac{2}{13} = \frac{2}{K} \frac{Vi}{K} = \frac{1}{4} \frac{1}{12} \frac{1}{R} = \frac{1}{12} \frac{1}{$ 1) R=k (we have k rejections) => => Vi = 1/1100 1s rejected3 = 1/1pi < kd3. $p_{i} \leq p_{(\kappa)} \leq k \lambda$ 2) let R(pi - 0) be the number of rejections we would get from BH(L) If we changed pi to O(keeping all the rest the same). P1... Pi-1, Pi, Pi+1, -.. Pn Then $\sum_{k=1}^{n} \frac{V_i}{k} \frac{1}{4} (R = k) = \sum_{k=1}^{n} \frac{V_i}{k} \frac{1}{4} (R(p_i \rightarrow 0) = k)$ if $V_i = 0 \implies true$ if $V_i = 1 \implies p_i \le KL \implies p_i \to 0$ does not increase the number of rejections since pi already below the rejection threshold whenever $V_i = 1$]

Consider $F_i = 5 \, \ell \, p_1, \dots, p_{i-1}, p_{i+1}, \dots, p_n \cdot j - 5 - al-$ get a_i generated all p-values besides p_i .

 $E\left(\frac{V_i}{R} 1 | \{R \ge 13\} / \mathcal{F}_i\right) = \sum_{k=1}^n E\left(\frac{V_i}{R} 1 | \{R = k3\} / \mathcal{F}_i\right) =$ $= \sum_{k=1}^{n} E\left(\frac{V_{i}}{k} - \frac{1}{2}(R(n \rightarrow 0) = k \cdot 3) - \frac{V_{i}}{k} - \frac{V_{i}}{n}\right)$ $= \sum_{k=1}^{n} f_{k} \left(1 + \sum_{i=1}^{n} \frac{1}{n} + \sum_{i=1}^{n} \frac{1$ $= \sum_{k=1}^{n} \frac{1}{k} \int \left\{ R(p_i \rightarrow 0) - k^3 \cdot E(f) \left\{ p_i \in k^3 \right\} \right\} =$ ore independent does not depend on Fi =>

are independent == = E / Apicks == Pipicks = Z + 1 (R(pi-so) k3 Pipi < Kd3 = $= \sum_{n=1}^{n} \int \left\{ R(p_i \rightarrow 0) = Ky = \frac{1}{n} \right\}$ Proof of the last part without

the notion of E(/F). $\forall 2_1 \cdot \cdot \cdot z_{i+1}, z_{i+1}, \ldots, z_n \in \Sigma_{0,1} I$ E (1/2 1/2 = 13 : 1/2 1/25 = 2,3) = = Z E (1 LR = K3) [7 1 (p, 52, 3) = $= \sum_{k=1}^{n} E\left(\frac{v_{i}}{k} = 1/(R(p_{i} \rightarrow 0) = k), \frac{1}{1/2} = \frac{1}{1/2}, \frac{1}{1/2},$ = = = # = 1 < pi < k 3 1 (R(pi - 10) = k 3 1/7 1/ps = 2,3 =

| p1...p, are mutually independent => |=> $4p_i \leq \frac{k+1}{n}$ and $\frac{1}{n}$ $\frac{1}{n}$ are independent. = 2 1 E 1(pi = K+ 3 E 1 (R(pi > 0) = K3)7. 1(pj = 33 = $P(p_i \leq K \neq j = K \neq j$ $=\frac{2}{n}\sum_{k=1}^{n}\frac{1}{E}\int_{\mathbb{R}(p_{1}\rightarrow03=k)}\int_{\mathbb{R}^{+}}\int_{\mathbb{R$ $= \frac{2}{n} \frac{1}{5 + 1} \frac{1}{1} \left\{ p_j \in Z_j \right\}$ =) $E = \frac{V_i}{R} \int_{R^{2}} \frac{1}{j + i} \int_{1}^{R} \frac{1}{i} p_i = 2, 3 = \frac{1}{n} E \int_{1 \neq i}^{R} \int_{1}^{R} \frac{1}{i} p_j = 2, 3$ for all $z_1 \dots z_{k-1}, z_{i+1} \dots z_k \in Lo_{i}$ $=) \quad E \quad \forall c \quad f_{\{R>13} = \frac{1}{n}.$ Remark: In the proof we only used that and that {pi; le Ho} and {pj: j € Ho} are independent