

Unit 4 卡诺图

张英涛 计算机科学与技术学院 哈尔滨工业大学

4. 卡诺图

- ■布尔函数的最简形式
- 多变量卡诺图
- ■填写卡诺图
- ▶卡诺图化简法

布尔函数的最简形式

■ 使用AND门、OR门来实现一个函数时,实现该函数的 代价与所用 逻辑门的个数、输入个数直接相关

布尔函数的最简形式

布尔函数的最简形式

最简表达式标准:

- ① 逻辑门的数量最少
- ② 逻辑门的输入个数最少

与最小项(最大项)表达式不同

- 最简表达式不一定是唯一的.
- 但最简表达式的实现代价是相同的(逻辑门的数量相同、输入变量的个数相同)

4. 卡诺图

■布尔函数的最简形式

- 多变量卡诺图
- ■填写卡诺图
- ■卡诺图化简法

■单元格对应的最小项,按格雷码摆放

■任何两个相邻单元格对应的最小项只有一个变

量取值不同

1. 两变量卡诺图

图	A	0	1
	0	0	1
	1	2	3
	·		

$\backslash \mathbf{B}$		
A	0	1
0	0	0
1	1	1

	\overline{B}	В		
\overline{A}	$\overline{A} \overline{B}$	$\overline{A} B$		
\boldsymbol{A}	\overline{AB}	A B		
(a)				

$$F = A\overline{B} + AB = \sum m(2,3)$$

2. 三变量卡诺图

3. 四变量卡诺图

CD AB	00	01	11	10
00	0	1	3	2
01	4	5	7	6
11	12	13	15	14
10	8	9	11	10

4. 五变量卡诺图

CDE AB	000	001	011	010	110	111	101	100
00	0	1	3	2	6	7	5	4
01	8	9	11	10	14	15	13	12
11	24	25	27	26	30	31	29	28
10	16	17	19	18	22	23	21	20
					l I			

4. 五变量卡诺图

X ₄ X ₅ X ₂ X ₃ 00	00	01	11	10
00	0	1	3	2
01	4	5	7	6
11	12	13	15	14
10	8	9	11	10

3	/	U	01	20	21	23	
13	15	14	11	28	29	31	
9	11	10	10	24	25	27	
$x_1 =$	0				$x_1 =$	1	

4. 卡诺图

- 开关函数的最简形式
- 多变量卡诺图

- ■填写卡诺图
- ■卡诺图化简法

① 已知真值表

真值表

ABC	F
000	0
001	0
010	0
011	1 √
100	0
101	1 √
110	1 √
111	1 √

② 已知标准与或式 $F = \Sigma m^3 (3,5,6,7)$

① 已知真值表

真值表

ABC	F
000	0 √
001	0 √
010	0 √
011	1
100	0 🗸
101	1
110	1
111	1

② 已知标准与或式

$$F = \Sigma m^3 (3,5,6,7)$$

③ 已知标准或与式

$$F = \Pi M^3 (0, 1, 2, 4)$$

$$= AB(C+\overline{C})+BC(A+\overline{A})+AC(B+\overline{B})$$

A BC	00	01	11	10
0				
1				

$$= AB(C+\overline{C})+BC(A+\overline{A})+AC(B+\overline{B})$$

A BC	00	01	11	10
0	0	0	1	0
1	0	1	1	1

F=
$$(\overline{A \oplus B}) (C+\overline{D})$$

= $\overline{A} \oplus \overline{B} + (\overline{C}+\overline{D})$
= $\overline{A} \overline{B} + AB + \overline{C} \overline{D}$
 $\overline{A} \overline{B} = \underline{0000} + \underline{0001} + \underline{0010} + \underline{0011}$
 $0 \quad 1 \quad 2 \quad 3$
 $AB = \underline{1100} + \underline{1101} + \underline{1110} + \underline{1111}$
 $12 \quad 13 \quad 14 \quad 15$
 $\overline{C} \overline{D} = \underline{0000} + \underline{0100} + \underline{1000} + \underline{1000}$
 $0 \quad 1 \quad 1 \quad 1 \quad 1$
 $0 \quad 1 \quad 0 \quad 0 \quad 0$
 $0 \quad 1 \quad 1 \quad 1 \quad 1$
 $0 \quad 1 \quad 0 \quad 0 \quad 0$
 $0 \quad 1 \quad 1 \quad 1 \quad 1$
 $0 \quad 1 \quad 0 \quad 0 \quad 0$

$$\mathbf{F} = (\mathbf{A} \oplus \mathbf{C}) \cdot \mathbf{\bar{B}} (\mathbf{A} \mathbf{\bar{C}} \mathbf{\bar{D}} + \mathbf{\bar{A}} \mathbf{C} \mathbf{\bar{D}})$$

$$\mathbf{F} = \overline{\mathbf{A} \oplus \mathbf{C}} + \overline{\mathbf{B}} (\mathbf{A} \overline{\mathbf{C}} \overline{\mathbf{D}} + \overline{\mathbf{A}} \overline{\mathbf{C}} \overline{\mathbf{D}})$$

$$= A \odot C + A \overline{B} \overline{C} \overline{D} + \overline{A} \overline{B} C \overline{D}$$

$$= \mathbf{AC} + \mathbf{\bar{A}\bar{C}} + \mathbf{A\bar{B}\bar{C}\bar{D}} + \mathbf{\bar{A}\bar{B}C\bar{D}}$$

$$= 1010 + 1011 + 1110 + 11111 + 0000 + 0001 + 0100 +$$

$$0100 + 0101 + 1010 +$$

CD B	00	01	11	10
00	1	1	0	1
01	1	1	0	0
11	0	0	1	1
10	1	0	1	1

卡诺图的属性

基于卡诺图的逻辑运算

卡诺图的属性

4. 卡诺图

- ■布尔函数的最简形式
- 多变量卡诺图
- ■填写卡诺图

逻辑函数的表示方法

■ 对于不多于4变量的逻辑函数的简化和运算,卡诺图非常有效

化简方法

- ■代数法
- ■卡诺图法—— 图形法化简逻辑函数

$$F(A,B,C) = \overline{A}BC + ABC = BC(\overline{A} + A) = BC$$

化简方法

卡诺图化简法

从一个卡诺图中可以读取:

- 最简与或式(AND-OR)
- 最简或与式(OR-AND)
- 最简与或非式(AND-OR-NOT)
- 带无关项的卡诺图化简

步骤①: 画圈

- a).将相邻为1的小方格圈在一起。 (小方格的个数 必须为 2^m, m=0,1,2...)
- b).圈越大越好
- c).小方格可以重复使用

相邻:紧靠在一起的、 行列首尾的、 对称的

相邻: 紧靠在一起的、 行列首尾的、

二变量卡诺图的典型合并情况

三变量卡诺图的典型合并情况

相邻: 紧靠在一起的、 行列首尾的、 对称的

四变量卡诺图的典型合并情况

相邻: 紧靠在一起的、 行列首尾的、 对称的

x_4x_5 x_2x_3	00	01	11	10	x_4x_5 x_2x_3	00	01	11	10
00	0	1	3	2	00	16	17	19	18
01	4	5	7	6	01	20	21	23	22
11	12	13	15	14	11	28	29	31	30
10	8	9	11	10	10	24	25	27	26
$x_1 = 0$ $x_1 = 1$ 五变量卡诺图									

例:	DEF		0.01	011	010	110	444	101	100
	ABC	000	001	011	010	110	111	101	100
	000	1			1	1			1
	001		1	1					
	011				1				1
	010	1			1	1			1
	110	1			1	1		1	1
	111		1	1					
	101		1	1					
	100	1			1	1			1

六变量卡诺图

例:	DEF ABC	000	001	011	010	110	111	101	100
	000	1			1	1			1
	001		1	1					
	011				1				1
	010	1			1	1			1
	110	1			1	1		1	1
	111		1	1					
	101		1	1					
	100	1			1	1			1

六变量卡诺图

步骤②:每个圈代表一个与项

变量取值不同——消去 观察 变量取值相同

步骤③:将所有的与项相加

$$F = \bar{A}\bar{C} + AC + \bar{B}\bar{D}$$

$$F = \bar{a}\bar{b} + b\bar{c} + ac$$

$$F = \bar{a}\bar{c} + \bar{b}c + ab$$

小结

- 一个卡诺圈中的小方格满足以下规律:
- 1)卡诺圈中的小方格的数目为 2^m , m为整数且 $m \le n$;
- 2) 2^m个小方格含有m个不同变量和(n-m)个相同变量;
- 3) 2^m个小方格可用(n-m)个变量的''与项''表示,该''与项'' 由这些最小项中的相同变量构成。
- 4) 当m=n时,卡诺圈包围整个卡诺图,可用1表示,即n个变量的全部最小项之和为1。

五变量卡诺图

$$F = f(x_1 x_2 x_3 x_4 x_5)$$

x_4	x_5			
x_2x_3	00	01	11	10
00	16	17	19	18
01	20	21	23	22
11	28	29	31	30
10	24	25	27	26
•		v =	<u> </u>	

 $F = \Sigma \text{ m}(0,1,4,5,6,11,12,14,16,20,22,28,30,31)$

六变量卡诺图

例:

F=C'F'+B'CD'F + ACD'F+ A'BD'EF' + A'BDE'F' + ABC'DE'

39

化简方法

卡诺图化简法

从一个卡诺图中可以读取:

■ 最简与或式(AND-OR)

- 最简或与式(OR-AND)
- 最简与或非式(AND-OR-NOT)
- 带无关项的卡诺图化简

2. 最简或与式

步骤①: 画圈

- a).将相邻为0的小方格圈在一起。 (小方格的个数必须为 2^m, m=0,1,2...)
- b).圈越大越好
- c).小方格可以重复使用

相邻:紧靠在一起的、行列首尾的、对称的

\C]				
AB\	00	01	11	10
00	1	0	0	1
01	1	1	1	1
11	1	1_	1	1
10	1	0	0	1
•			4	-

2. 最简或与式

步骤②:每个圈代表一个和项

观察

变量取值相同

C'+D

0: 原变量

1: 反变量

B+D

2. 最简或与式

步骤③:将所有的和项相乘

$$F = (A + C) \cdot (\overline{A} + \overline{C}) \cdot (B + D)$$

化简方法

卡诺图化简法

从一个卡诺图中可以读取:

- 最简与或式(AND-OR)
- 最简或与式(OR-AND)

- 最简与或非式(AND-OR-NOT)
- 带无关项的卡诺图化简

3. 最简 与或非式

步骤 ①:读 \overline{F} 的与或式

方法:同于最简与或式,但关注"0"

$$F = \overline{AB} + \overline{BC} + \overline{AC}$$

步骤②:对F求反

化简方法

卡诺图化简法

从一个卡诺图中可以读取:

- 最简与或式(AND-OR)
- 最简或与式(OR-AND)
- 最简与或非式(AND-OR-NOT)

■ 带无关项的卡诺图化简

例 1:数据判断与操作:

输入 X is 4-bits BCD8421 code, 若 X≥5, 输出 F=1

AB CD	00	01	11	10
00	0	0	Φ	1
01	0	1	Φ	1
11	0	1	Φ	Φ
10	0	1	Ø	•

F=A+BD+BC

例 2:

4-bit 二进制串转换为余-3码

二进制	余-3 码	二进制	余-3码
W X Y Z	A B C D	WXYZ	A B C D
0 0 0 0	0 0 1 1	1 0 0 0	1 0 1 1
0 0 0 1	0 1 0 0	1 0 0 1	1 1 0 0
0 0 1 0	0 1 0 1	1 0 1 0	Ф
0 0 1 1	0 1 1 0	1 0 1 1	Ф
0 1 0 0	0 1 1 1	1 1 0 0	Ф
0 1 0 1	1 0 0 0	1 1 0 1	Ф
0 1 1 0	1 0 0 1	1 1 1 0	Ф
0 1 1 1	1 0 1 0	1 1 1 1	Ф

 $0101,0110,0111,1000,1001 \rightarrow 1$ $1010,1011,1100,1101,1110,1111 \rightarrow \Phi$ $0001,0010,0011,0100,1001 \rightarrow 1$ $1010,1011,1100,1101,1110,1111 \rightarrow \Phi$

A:

WX YZ	00	01	11	10
00			Ф	1
01		1	Φ	1
11		1	Φ	Φ
10		1	Ø	ø

B:

WX YZ	00	01	11	10
00		1	Ф	
01	1		Φ	1
11	1		Φ	Φ
10	1		Φ	Φ

$$A=W+XZ+XY$$

$$B = \overline{X}Z + \overline{X}Y + X\overline{Y}\overline{Z}$$

C:

WX YZ	00	01	11	10
00	1	1	Φ	1
01			Φ	
11	1	1	Φ	Φ
10			Φ	Φ

D:

	WX YZ	00	01	11	10
	00	1	1	Φ	1
	01			Φ	
Ī	11			Φ	Φ
	10	1	1	Φ	Φ

$$C = \overline{Y}\overline{Z} + YZ$$

$$D=\overline{Z}$$

4. 卡诺图

- 布尔函数的最简形式
- 多变量卡诺图
- ■填写卡诺图
- ▶卡诺图化简法