DM-TD martingale

Exercice 1 Soit $(Y_n)_{n\geq 1}$ une suite de variable aléatoire positive indépendante. On suppose que pour tout $n\geq 1$, $Y_n\in L^1$ et $\mathbb{E}(Y_n)=1$. Soit $\mathcal{F}_0=\{\emptyset,\Omega\}$ et $\mathcal{F}_n=\sigma(Y_k,k\leq n)$ pour tout $n\geq 1$. Posons $X_0=1$ et $X_n=\prod_{i=1}^n Y_k$.

- 1. Montrer que X est une martingale par rapport à la filtration \mathcal{F} . En déduire que $(\sqrt{X_n})_{n\geq 0}$ est une sur-martingale par rapport à la même filtration.
- 2. On suppose que

$$\prod_{k=1}^{\infty} \mathbb{E}(\sqrt{Y_k}) = 0.$$

Etudier la convergence et donner la limite de la suite $(\sqrt{X_n})$. En déduire la convergence p.s. de la suite $(X_n)_{n\geq 0}$. Converge-t-elle dans L^1 ?

3. On suppose maintenant que

$$\prod_{k=1}^{\infty} \mathbb{E}(\sqrt{Y_k}) > 0.$$

Montrer que $(\sqrt{X_n})$ est une suite de Cauchy dans L^2 . En déduire que (X_n) est une suite de Cauchy dans L^1 et ainsi qu'elle converge dans L^1 .

Exercice 2 Soit X_i des v.a. i.i.d. dans L^1 et soit au un temps d'arrêt borné. Montrer que

$$\mathbb{E}(\sum_{i=1}^{\tau} X_i) = \mathbb{E}(\tau)\mathbb{E}(X_1),$$

on pourra utiliser la variable aléatoire: $Y_n = \sum_{i=1}^n X_i - n\mathbb{E}(X_1)$.

Montrer aussi que

$$\mathbb{E}((\sum_{i=1}^{\tau} X_i - \tau \mathbb{E}(X_1))^2) = \mathbb{E}(\tau) \operatorname{Var}(X_1).$$

Et dans le cas général lorsque τ n'est pas borné et $\mathbb{E}(\tau) < \infty$, on peut montrer que

$$\mathbb{E}(X_n \mathbb{1}_{\tau > n}) = \mathbb{E}(X_1) \mathbb{P}(\tau \ge n).$$

Exercice 3 Soit (E, \mathcal{F}, μ) un espace de probabilité. Supposons que la tribu \mathcal{F} soit engendrée, aux ensemble de mesure nulle près, par une famille dénombrable d'ensembles. Soit K un opérateur borné de $L^1(\mu)$ dans $L^\infty(\mu)$ de norme c, c'est à dire que pour toute $f \in L^1(\mu)$,

$$||Kf||_{\infty} \le c||f||_1.$$

Le but de cet exercice est de montrer l'existence de la densité de K, i.e. une fonction $k: E \times E \to \mathbb{R}$, majorée $\mu \otimes \mu$ -p.s. par c et telle que pour tout $x \in E$,

$$Kf(y) = \int_{E} f(y)k(x,y)d\mu(y).$$

- 1. Montrer qu'il existe une suite croissante de tribus \mathcal{F}_n finies dont la réunion engendre \mathcal{F} .
- 2. Posons $K_n f = \mathbb{E}(Kf|\mathcal{F}_n)$. Montrer que K_n est un opérateur borné de $L^1(\mu)$ dans $L^{\infty}(\mu)$ de norme c. Montrer aussi que $K_n f$ converge p.s. et dans L^1 vers une limite que l'on déterminera.
- 3. Montrer que

$$K_n f = \sum_{n=1}^{p_n} \mathbb{1}_{A_n^p} \mu_n^p(f),$$

où μ_n^p sont des formes linéaire continue sur $L^1(\mu)$.

- 4. En déduire que l'opérateur K_n est à densité par rapport à la mesure μ .
- 5. En montrant que k_n est une martingale sur $E \times E$ et conclure.

Exercice 4 Soit (Ω, \mathcal{A}) un espace mesurable. On suppose que \mathcal{A} est engendré par une suite dénombrable d'ensemble $(A_n)_{n\geq 0}$. Pour tout n, on note $\mathcal{F}_n=\sigma(A_i,0\leq i\leq n)$. Soit $\mathbb P$ une probabilité sur (Ω,\mathcal{A}) et $\mathbb Q$ une mesure positive bornée sur le même espace absolument continue par rapport à $\mathbb P$.

1. Montrer que pour tout $\varepsilon > 0$, il existe $\eta > 0$ tel que

$$\forall A \in \mathcal{A}, \mathbb{P}(A) > \eta \Rightarrow \mathbb{Q}(A) < \varepsilon.$$

2. Montrer qu'il existe une partition finie $(A_{n,i})_{1 \leq i \leq m_n}$ de Ω engendrant la tribu \mathcal{F}_n . On pose

$$X_n = \sum_{i=1}^{m_n} \frac{\mathbb{Q}(A_{n,i})}{\mathbb{P}(A_{n,i})} \mathbb{1}_{A_{n,i}}$$

où l'on donne la valeur 0 aux rapport 0/0.

3. Montrer que (X_n) est une martingale pour la filtration \mathcal{F}_n . Montrer que (X_n) est uniformément intégrable. On pourra utiliser la première question et montrer que

$$\mathbb{Q}(X_n > a) = \int_{X_n > a} X_n d\mathbb{P}.$$

4. Montrer le théorème de Radon-Nicodym.