第六章课外练习及参考答案

选择题:

曲线 $y = |\ln x|$ 与直线 $x = \frac{1}{2}$, x = e 及 y = 0 所围成 1 的区域的面积S=(

- (A) $2(1-\frac{1}{a})$; (B) $e-\frac{1}{a}$;
- (C) $e + \frac{1}{a}$; (D) $\frac{1}{-+1}$.

2、曲线 $r = \sqrt{2} \sin \theta$ 与 $r^2 = \cos 2\theta$ 所围图形公共部分 的面积S=():

- (A) $\frac{\pi}{12} + \frac{1 \sqrt{3}}{2}$; (B) $\frac{\pi}{24} + \frac{\sqrt{3} 1}{4}$;
- (C) $\frac{\pi}{12} + \frac{\sqrt{3}-1}{2}$; (D) $\frac{\pi}{6} + \frac{1-\sqrt{3}}{2}$.

3、曲线 $x = a\cos^3\theta$, $y = a\sin^3\theta$ 所围图形的面积

- S = ();
- (A) $\frac{3}{32}\pi a^2$; (B) $\frac{3}{8}\pi a^2$;
- (C) $\frac{1}{2}a^2$; (D) $\frac{1}{16}\pi a^2$.

4、由球面 $x^2 + y^2 + z^2 = 9$ 与旋转锥面 $x^2 + y^2 = 8z^2$ 之 间包含z轴的部分的体积V=();

- (A) 144π ; (B) 36π ;
- (C) 72π :
- (D) 24π .

5、用一平面截半径为广的球,设截得的部分球体高

为h(0 < h < 2r)体积为V,则V = ():

(A) $\frac{\pi h^2}{3} (2r - h)^{\frac{1}{3}} (3r - h)^{\frac{1}{3}}$

(C) $\pi h^2 (2r-h)$; (D) $\frac{\pi h^2}{4} (3r-h)$

- 6、曲线 $y = x^2 2x + 4$ 上点 $M_0(0,4)$ 处的切线 M_0 与曲线 $y^2 = 2(x-1)$ 所围图形的面积 S = ();
 - (A) $\frac{9}{4}$; (B) $\frac{4}{9}$;
 - (C) $\frac{13}{12}$; (D) $\frac{21}{4}$.
- 7、抛物线 $y^2 = 2px$, (p > 0) 自点 (0,0) 至点 $\frac{p}{2}$, p

的一段曲线弧长L=(

- (A) $\frac{p}{2} \left[\sqrt{2} + \ln(1 + \sqrt{2}) \right] + p \ln p$;
- (B) $\frac{1}{p} \left[\frac{p}{2} \sqrt{2} + \frac{p^2}{2} \ln(1 + \sqrt{2}) \right]$;
- (C) $\frac{p}{2}[\sqrt{2} + \ln p(1+\sqrt{2})]$;
- (D) $\frac{p}{2}[\sqrt{2} + \ln(1 + \sqrt{2})]$.
- 二、在区间[1,e]内求 x_0 , 使 $y=\sqrt{\ln x}$, y=0, v=1及 $x=x_0$ 所围成两块面积之和为最小。
- 三 、设曲边梯形是由连续曲线 y = f(x) f(x) > 0, x轴与两直线x=a,x=b所围成的,求证:存在 直线 $x = \xi$ $(\xi \in (a,b))$ 将曲边梯形的面积平分.

参考答案

- -, 1. A; 2. D; 3.B; 4. D; 5.B; 6.D; 7.A
- $x_0 = e^{\frac{1}{4}}$
- 三、证 (如图)设 $F(x) = \int_a^x f(t) dt \ x \in [a, b]$,

:: F'(x) = f(x) > 0, :: F(x)在[a, b]上连续且单增,所以 $m = \min\{F(x)\} = F(a) = 0$,

$$M = \max\{F(x)\} = F(b) = \int_{a}^{b} f(x) dx > 0$$

于是
$$0 < \frac{1}{2} \int_a^b f(x) dx < M$$
.

由介值定理可知在(a,b)内至少存在一点 ξ , 使

$$F(\xi) = \int_a^{\xi} f(x) dx = \frac{1}{2} \int_a^b f(x) dx,$$

故直线 $x = \xi$ 将曲边梯形的面积平分。(证毕)