Lecture 5 Exercises

Exercise 5.1. Compute the Laplacian Δ for \mathbb{D} and \mathbb{H} .

	ds^2	$-\Delta$
\mathbb{D}	$4(dx^2 + dy^2)$	$(1-x^2-y^2)^2 \left(\partial^2 + \partial^2 \right)$
	$(1-x^2-y^2)^2$	$\frac{1}{4}$ $\left(\frac{\partial x^2}{\partial x^2} + \frac{\partial y^2}{\partial y^2}\right)$
H	$\frac{dx^2 + dy^2}{y^2}$	$y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right)$

Exercise 5.2. Consider the following subgroups of $SL(2,\mathbb{R})$:

•
$$K = \left\{ \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}, \theta \in \mathbb{R} \right\}.$$

$$\bullet \ A = \left\{ \left(\begin{array}{cc} \lambda & 0 \\ 0 & \lambda^{-1} \end{array} \right), \lambda > 0 \right\}$$

$$\bullet \ N = \left\{ \left(\begin{array}{cc} 1 & t \\ 0 & 1 \end{array} \right), t \in \mathbb{R} \right\}$$

For any $g \in SL(2,\mathbb{R})$ there exists a unique $(k,a,n) \in K \times A \times N$ such that g = kan.

Exercise 5.3. Let Γ be a discrete subgroup of $\mathrm{PSL}(2,\mathbb{R})$. For a hyperbolic $P \in \Gamma$, the centralizer $Z(P) = \{g \in \Gamma : gP = Pg\}$ is an infinite cyclic group.

Exercise 5.4. The video at https://www.youtube.com/watch?v=ajDx_HCMIBg is intended to visualize the action of two hyperbolic elements g_0 and $g_0g_3g_4$ on the unit disk, where

$$g_k = \begin{bmatrix} \xi^2 & e^{ik\pi/4}\sqrt{2}\xi \\ e^{-ik\pi/4}\sqrt{2}\xi & \xi^2 \end{bmatrix}, \qquad \xi = \sqrt{1+\sqrt{2}}.$$

Explain the computations required to produce it.

Exercise 5.5. Let $F = \Gamma \setminus \mathbb{H}$ be a compact hyperbolic surface. A geodesic of F is obtained as the image under the canonical projection of a geodesic of \mathbb{H} . A closed geodesic on F is the projection of a geodesic of \mathbb{H} preserved by a non-trivial element $\gamma \in \Gamma$. Two constant speed parametrizations $\alpha, \alpha' : S^1 = \mathbb{R}/\mathbb{Z} \to F$ of a closed geodesic are equivalent if $\alpha'(t) = \alpha(t+c)$ for some constant c. An oriented closed geodesic is an equivalence class of closed parametrized geodesics. Then there is a bijection between the set of conjugacy classes of hyperbolic elements in Γ and the set of oriented closed geodesics on F.

The video at https://www.youtube.com/watch?v=06pv6X8gaQQ shows an oriented prime closed geodesic on the Bolza surface. What is the corresponding primitive hyperbolic conjugacy class? Find a representative.

Exercise 5.6 (optional). Let $F = \Gamma \backslash \mathbb{H}$ be a compact hyperbolic surface of genus $g \geq 2$. Check that $\operatorname{area}(F) = 4\pi(g-1)$.

Exercise 5.7. Derive Weyl's law:

$$N(\lambda) \sim \frac{\operatorname{area}(F)}{4\pi} \lambda, \qquad \lambda \to \infty,$$

where

$$N(\lambda) = \#\{j : \lambda_j \le \lambda\}.$$

Exercise 5.8 (optional). Prove that

$$\Phi(0) = \frac{1}{4\pi} \int_{-\infty}^{\infty} rh(r) \tanh(\pi r) dr.$$

Exercise 5.9. Let $P_0(z) = \lambda_0 z$, $\lambda_0 > 1$ and $P(z) = \lambda z$ with $\lambda = \lambda_0^n, n \in \mathbb{Z}_{>0}$.

- 1. The fundamental domain for the cyclic group $\langle P_0 \rangle$ is $\{z \in \mathbb{H} : 1 < y < \lambda_0\}$.
- 2. Show that

$$\int_{[1 \leq \operatorname{Im}(z) \leq \lambda_0]} k(\lambda z, z) d\mu(z) = \frac{\ln \lambda_0}{\lambda^{1/2} - \lambda^{-1/2}} g(\ln \lambda).$$