Having constructed the HOMFLY-PT link polynomial from Markov traces on the Hecke algebras of the symmetric groups, we analyze general traces from a character-theoretic viewpoint, in the setting of general symmetric algebras. The main reference is Chapter 7 of Geck–Pfeiffer's book.

9.1.

Fix a commutative ring A with unity. Given any A-module E, we write E^{\vee} to denote the module dual to E.

Fix an associative algebra H over A. Let Z(H) denote its center. We will always assume that $A \subseteq Z(H)$.

For any A-module E, an E-valued trace on H is a A-linear map $\tau: H \to E$ such that $\tau(xy) = \tau(yx)$ for all $x, y \in H$.

Example 9.1. Any H-module M that is free of finite rank over A defines an A-valued trace χ_M called its *character*: $\chi_M(x) = \operatorname{tr}_A(x \mid M)$ for all $x \in H$.

Let [H, H] be the additive subgroup of H generated by all commutators [x, y] := xy - yx. It is a Z(H)-module, hence an A-module. The quotient H/[H, H] is called the *cocenter* of H. By construction, an A-linear map out of H is a trace if and only if it factors through the map $H \to H/[H, H]$, which could be called the *universal trace* on H.

Remark 9.2. Our [H, H] is not the commutator ideal of H, which some texts denote by the same notation. The quotient of H by its commutator ideal is its abelianization, which is usually smaller than its cocenter.

9.2.

Henceforth, we assume that H is free of finite rank as an A-module. We say that an A-valued trace τ on H is *symmetrizing*, and that (H, τ) forms a *symmetric algebra* over A, if and only if the symmetric bilinear pairing

(9.1)
$$H \otimes H \to A$$
$$(x, y) \mapsto \tau(xy)$$

is nondegenerate. Explicitly, this means: If $\tau_x \in H^{\vee}$ denotes the functional

$$\tau_x(y) = \tau(xy),$$

then the map that sends $x \mapsto \tau_x$ is an isomorphism of modules $H \stackrel{\sim}{\to} H^{\vee}$.

For convenience, let $\mathcal{T}(H) \subseteq H^{\vee}$ denote the module of A-valued traces on H. Unwinding the definitions, we see:

Proposition 9.3. If $\tau: H \to A$ is symmetrizing, then:

(1) The pairing (9.1) descends to a nondegenerate pairing

$$Z(H) \otimes H/[H,H] \to A$$
.

(2) The map $x \mapsto \tau_x$ restricts to an isomorphism of modules $Z(H) \xrightarrow{\sim} \mathcal{T}(H)$.

To describe the inverse to the map in (2), let $(e_i)_i$, $(f_i)_i$ be ordered A-linear bases for H that are dual under (9.1). This means $\tau(e_i f_j)$ equals 1 when i = j and 0 when $i \neq j$.

Proposition 9.4. For any $x \in H$, we have $x = \sum_i \tau(xe_i) f_i$.

Proof. If y denotes the right-hand side, then $\tau_x(e_i) = \tau_y(e_i)$ for all i, whence $\tau_x = \tau_y$, whence x = y.

Corollary 9.5. The inverse to the map in Proposition 9.3(2) sends a trace χ to the element $z_{\chi} := \sum_{i} \chi(e_{i}) f_{i}$.

Observe that for any traces $\chi, \psi \in \mathcal{T}(H)$, we have

$$\psi(z_{\chi}) = \sum_{i} \chi(e_i) \psi(f_i) = \sum_{i} \psi(f_i) \chi(e_i) = \chi(z_{\psi}).$$

This leads us to consider the symmetric bilinear pairing

$$(-,-)_{\tau}: \mathcal{T}(H) \otimes \mathcal{T}(H) \to A$$

for which $(\chi, \psi)_{\tau}$ is the element above. It turns out that we have all seen an example of this pairing before.

Example 9.6. Let Γ be any finite group, and take $H = A\Gamma$, its group algebra over A. Let $e \in \Gamma$ be the identity. Then there is a symmetrizing trace τ on H defined by $\tau(e) = 1$ and $\tau(g) = 0$ for all $g \neq e$. If $(g_i)_i$ is any ordering of the elements of Γ , then $(g_i^{-1})_i$ is the dual ordered basis under (9.1). Therefore,

$$(\chi, \psi)_{\tau} = \sum_{g \in \Gamma} \chi(g) \psi(g^{-1}).$$

We conclude that when A is a field whose characteristic does not divide $|\Gamma|$, then $(-,-)_{\tau}$ is a rescaling of the usual pairing $(-,-)_{\Gamma}$ on class functions on Γ .

9.3.

Based on the last example, we might hope that the representations of symmetric algebras are as clean as those of finite groups. It turns out that if $(-,-)_{\tau}$ is nondegenerate, then they are, in fact, semisimple.

In what follows, we keep A, H, τ , and the dual (ordered) bases $(e_i)_i, (f_i)_i$ as above. We will write the H-action on H-modules as a right action, both

to be consistent with Geck–Pfeiffer and because we will later take H to be an Iwahori–Hecke algebra, which previously acted on $R_{e,1}$ from the right.

To start, there is a version of Weyl's unitarization trick for symmetric algebras: namely, Geck–Pfeiffer Lem. 7.1.10.

Proposition 9.7. For any H-modules M, M', there is an A-linear map

$$I = I_{M,M'} : \operatorname{Hom}_A(M,M') \to \operatorname{Hom}_H(M,M').$$

Explicitly, $I(\phi)(m) = \sum_i \phi(m \cdot e_i) \cdot f_i$ for all $m \in M$. Moreover, $I_{M,M'}$ is independent of the choice of $(e_i)_i$, $(f_i)_i$.

Proof of the first claim. We must show that for all $m \in M$ and $x \in H$, we have $I(\phi)(m \cdot x) = I(\phi)(m) \cdot x$. Let $a_{i,j} \in A$ be the unique scalars such that $xe_i = \sum_j a_{i,j}e_j$ for all i. By Proposition 9.4,

$$f_j x = \sum_i \tau(f_j x e_i) f_i = \sum_{i,k} a_{i,k} \tau(f_j e_k) f_i = \sum_i a_{i,j} f_i \quad \text{for all } j.$$

Therefore,

$$\sum_{i} \phi(m \cdot xe_i) \cdot f_i = \sum_{i,j} \phi(m \cdot e_j) \cdot a_{i,j} f_i = \sum_{j} \phi(m \cdot e_j) \cdot f_j x,$$

as desired. \Box

9.4.

Using the "averaging" operators $I_{M,M'}$, it is possible to generalize much of classical character theory from finite groups to symmetric algebras. To save time, we will omit proofs, merely pointing out the classical parallels. Henceforth:

- We assume that A is an integral domain with field of fractions K. We set $KH = K \otimes_A H$.
- We only consider KH-modules that have finite dimension over K.

Extending τ to a K-valued trace on KH, we see that it defines a symmetrizing trace on KH as well.

We now focus on KH. The following result, Geck–Pfeiffer Lemma 7.1.11, generalizes Maschke's theorem for a finite group Γ , since $I(\mathrm{id}_V) = |\Gamma| \mathrm{id}_V$ for any representation V of Γ .

Theorem 9.8 (Gaschütz–Ikeda). Let V be a KH-module. Then V is projective over KH if and only if $\mathrm{id}_V = I(\phi)$ for some $\phi \in \mathrm{End}_K(V)$.

Schur's lemma says that if V is a simple KH-module, then $\operatorname{End}_{KH}(V)$ is a division algebra over K. Given such V, we say that V is *split* over K if and only if $\operatorname{End}_{KH}(V) \simeq K \operatorname{id}_{V}$. The following result, combining Geck–Pfeiffer Theorem 7.2.1 and Corollary 7.2.2, generalizes Schur orthogonality for matrix coefficients.

Theorem 9.9. If V is a simple KH-module split over K, then there is a (unique) element \mathbf{s}_V such that

$$I(\phi) = \mathbf{s}_V \operatorname{tr}(\phi) \operatorname{id}_V \quad \text{for all } \phi \in \operatorname{End}_K(V).$$

It only depends on the isomorphism class of V as a KH-module.

In particular, if V' is another such KH-module and $\rho: KH \to \operatorname{Mat}_n(K)$, resp. $\rho': KH \to \operatorname{Mat}_{n'}(K)$ is the action on V, resp. V' in a fixed basis, then

$$\sum_{i} \rho(e_i)_{k,l} \rho'(f_i)_{k',l'} = \begin{cases} \mathbf{s}_V & V = V' \text{ and } (k,l) = (l',k'), \\ 0 & \text{else.} \end{cases}$$

By Geck–Pfeiffer Exercise 7.4, a simple KH-module V split over K is determined by its character χ_V . The following result, Geck–Pfeiffer Corollary 7.2.4, generalizes Schur orthogonality for characters.

Corollary 9.10. Let V, V' be simple KH-modules split over K. Then

$$(\chi_V, \chi_{V'})_{\tau} = \begin{cases} \mathbf{s}_V \dim(V) & V \simeq V' \text{ as } KH\text{-modules}, \\ 0 & \text{else}. \end{cases}$$

In particular, $\mathbf{s}_V = \frac{1}{\dim(V)} \sum_i \chi_V(e_i) \chi_V(f_i)$.

The following result, combining Geck–Pfeiffer Theorem 7.2.6 and Proposition 7.2.7, describes when KH is semisimple, and recovers Artin–Wedderburn in this case.

Corollary 9.11. A simple KH-module V split over K is projective if and only if $\mathbf{s}_V \neq 0$. In particular, if H is split over K, then:

- (1) The following are equivalent:
 - (a) KH is semisimple as an algebra.
 - (b) $\mathbf{s}_V \neq 0$ for all simple KH-modules V.
 - (c) The pairing $(-,-)_{\tau}$ on $\mathcal{T}(KH)$ is nondegenerate.
- (2) In the situation of (1), we have

$$\tau = \sum_{V} \frac{1}{\mathbf{s}_{V}} \chi_{V} \text{ in } \mathcal{T}(KH),$$

$$1 = \sum_{V} e_{V} \text{ in } KH, \qquad \text{where } e_{V} = \frac{1}{\mathbf{s}_{V}} \sum_{i} \chi_{V}(e_{i}) f_{i}$$

and the sums run over isomorphism classes of simple KH-modules. The e_V are primitive orthogonal idempotents of KH.

Example 9.12. Fix a finite Coxeter group W. Fix an integral domain A' containing $\mathbb{Z}[q^{-1}]$, with field of fractions K_0 . Take $A = A'[x^{\pm 1}]$, so that K = K'(x), and take

$$H = A' \otimes_{\mathbf{Z}} H_W(\mathsf{x}) = A \otimes_{\mathbf{Z}[\mathsf{x}^{\pm 1}]} H_W(\mathsf{x}),$$

where $H_W(x)$ is the Hecke algebra of W over $\mathbb{Z}[x^{\pm 1}]$. Then H has the A-linear basis $(\sigma_w)_{w \in W}$. There is a symmetrizing trace τ on H defined by $\tau(\sigma_e) = 1$ and $\tau(\sigma_w) = 0$ for all $w \neq e$. Under this trace, $(\sigma_{w^{-1}})_w$ is the ordered basis dual to $(\sigma_w)_w$. We deduce that for any simple KH-module V, we have

$$\mathbf{s}_V = \frac{1}{\dim(V)} \sum_w \chi_V(\sigma_w) \chi_V(\sigma_{w^{-1}}).$$

It remains to describe when KH is semisimple, and in this case, to classify its simple modules.

9.5.

To conclude, we explain the general form of the Tits deformation theorem giving a criterion for: (1) KH_W to be semisimple, and (2) the existence of a bijection between irreducible characters of W and characters of simple modules over KH_W . For this we need some machinery that is usually presented in the setting of modular representation theory.

Let R(KH) be the Grothendieck group of (finite-dimensional) KH-modules, and let $R^+(KH) \subseteq R(KH)$ be the semiring of classes represented by actual, not virtual, modules. There is a map

$$p_K: R^+(KH) \to (1 + \mathsf{t}K[\mathsf{t}])^H$$

that sends [V] to the collection of characteristic polynomials for elements of H acting on V:

$$p_K(V) = (\det_K (1 - \mathsf{t} x \mid V))_{x \in H}.$$

Lemma 9.13 (Brauer–Nesbitt). If the characters χ_V form a linearly independent subset of $\mathcal{T}(KH)$ as we run over simple KH-modules V, then p_H is injective.

Lemma 9.14. If A is integrally closed, then p_K factors through Maps(H, A[t]).

Let B be another integral domain, say with field of fractions L, and let φ : $A \to B$ be a surjective ring homomorphism. Then we can form $BH = B \otimes_A H$ and $LH = L \otimes_B BH$. Let $R(LH), R^+(LH), p_L$ be defined similarly to $R(KH), R^+(KH), p_K$.

Theorem 9.15. Suppose that A is integrally closed and LH is split over L. Then there is a unique additive map $d_{\varphi}: R^+(KH) \to R^+(LH)$ such that the following diagram commutes:

$$R^{+}(KH) \xrightarrow{p_{K}} (1 + tA[t])^{H}$$

$$d_{\varphi} \downarrow \qquad \qquad \downarrow \varphi$$

$$R^{+}(LH) \xrightarrow{p_{L}} (1 + tL[t])^{H}$$

Explicitly, if $\mathcal{O} \subseteq K$ is a valuation ring containing A, and k is its residue field, then there is an embedding $L \to k$. If LH is split over L, then $R^+(LH) = R^+(kH)$. The map d_{φ} above sends [V] to the class of the image in k of any H-stable, full \mathcal{O} -lattice in V, viewed as an element of $R^+(LH)$.

Theorem 9.16 (Tits Deformation). *In the setup above, suppose furthermore that KH is split and LH is semisimple. Then:*

- (1) KH is also semisimple.
- (2) d_{φ} induces a bijection between simple KH-modules up to isomorphism and simple LH-modules up to isomorphism.

Example 9.17. Keep the setup of Example 9.12. Let B = A', so that L = K', and let $\varphi : A \to B$ be the map that sends $x \mapsto q^{1/2}$.

If A' is integrally closed, then so is A by Gauss's lemma. So if A' is integrally closed and K'W is split semisimple as a K'-algebra, then Tits's deformation theorem applies, giving us a bijection between Irr(W) and the set of simple KH-modules up to isomorphism.

It turns out that if W is crystallographic, then we can take $K' = \mathbf{Q}$. If W is merely a finite Coxeter group, then we can take K' to be the totally real number field generated by the character values of all characters of W.