# **Numerical Analysis**

## established about 4'000 years ago

- 2. Методи розв'язання нелінійних рівнянь
  - 2.1. Метод ділення навпіл
  - 2.2. Метод простої ітерації
  - 2.3. Метод релаксації
  - 2.4. Метод Ньютона (метод дотичних)
  - 2.5. Збіжність методу Ньютона

# 2. Методи розв'язання нелінійних рівнянь

*Постановка задачі*. Нехай маємо рівняння f(x) = 0,  $\bar{x}$  — його розв'язок, тобто  $f(\bar{x}) = 0$ .

Задача розв'язання цього рівняння розпадається на етапи:

- Існування та кількість коренів.
- Відділення коренів, тобто розбиття числової вісі на інтервали, де знаходиться один корінь.
- Обчислення кореня із заданою точністю  $\varepsilon$ .

Для розв'язання перших двох задач використовуються методи математичного аналізу та алгебри, а також графічний метод. Далі розглядаються методи розв'язання третього етапу.

# 2.1. Метод ділення навпіл

#### Література:

• Самарский, Гулин, стор. 191: djvu, pdf;

• Волков, стор. 189-190: djvu, pdf.

Припустимо на [a, b] знаходиться лише один корінь рівняння

$$f(x) = 0$$

для  $f(x) \in C[a,b]$ , який необхідно визначити. Нехай  $f(a) \cdot f(b) < 0$ .

Припустимо, що f(a)>0, f(b)<0. Покладемо  $x_1=\frac{a+b}{2}$  і підрахуємо  $f(x_1)$ . Якщо  $f(x_1)<0$ , тоді шуканий корінь  $\bar x$  знаходиться на інтервалі  $(a,x_1)$ . Якщо ж  $f(x_1)>0$ , то  $\bar x\in (x_1,b)$ . Далі з двох інтервалів  $(a,x_1)$  і  $(x_1,b)$  вибираємо той, на границях якого функція f(x) має різні знаки, знаходимо точку  $x_2$  — середину вибраного інтервалу, підраховуємо  $f(x_2)$  і повторюємо вказаний процес.

В результаті отримаємо послідовність інтервалів, що містять шуканий корінь  $\bar{x}$ , причому довжина кожного послідуючого інтервалу вдвічі менше попереднього.

Цей процес продовжується до тих пір, поки довжина отриманого інтервалу  $(a_n,b_n)$  не стане меншою за  $b_n-a_n<2\varepsilon$ . Тоді  $x_{n+1}$ , як середина інтервалу  $(a_n,b_n)$ , пов'язане з  $\bar{x}$  нерівністю

$$|x_{n+1} - \bar{x}| < \varepsilon.$$

Ця умова для деякого n буде виконуватись за теоремою Больцано-Коші. Оскільки

$$|b_{k+1} - a_{k+1}| = \frac{|b_k - a_k|}{2},$$

TO

$$|x_{n+1} - \bar{x}| \le \frac{b-a}{2^{n+1}} < \varepsilon.$$

Звідси отримаємо нерівність для обчислення кількості ітерацій n для виконання умови (2):

$$n = n(\varepsilon) \ge \left[\log\left(\frac{b-a}{\varepsilon}\right)\right] + 1.$$

Степінь збіжності — лінійна, тобто геометричної прогресії з знаменником q=1/2.

- Переваги методу: простота, надійність.
- **Недоліки методу:** низька швидкість збіжності; метод не узагальнюється на системи.

## 2.2. Метод простої ітерації

Література:

- Самарский, Гулин, стор. 191–193: djvu, pdf;
- Волков, стор. 172–184: djvu, pdf.

Спочатку рівняння

$$f(x) = 0$$

замінюється еквівалентним

$$x = \varphi(x)$$
.

Ітераційний процес має вигляд

$$x_{n+1} = \varphi(x_n), \quad n = 0, 1, \dots$$

Початкове наближення  $x_0$  задається.

Для збіжності велике значення має вибір функції  $\varphi(x)$ . Перший спосіб заміни рівняння полягає в відділенні змінної з якогось члена

рівняння. Більш продуктивним є перехід від рівняння (6) до (7) з функцією  $\varphi(x) = x + \tau(x) \cdot f(x)$ , де  $\tau(x)$  — знакостала функція на тому відрізку, де шукаємо корінь.

**Означення**: Кажуть, що ітераційний метод збігається, якщо  $\lim_{k\to\infty}x_k=\bar{x}$ .

Далі  $U_r = \{x \colon |x-a| \le r\}$  відрізок довжини 2r з серединою в точці a.

З'ясуємо умови, при яких збігається метод простої ітерації.

#### Теорема 1: Якщо

$$\max_{x \in [a,b] = U_r} |\varphi'(x)| \le q < 1$$

то метод простої ітерації збігається і має місце оцінка

$$|x_n - \bar{x}| \le \frac{q_n}{1 - q} \cdot |x_0 - x_1| \le \frac{q^n}{1 - q} \cdot (b - a).$$

*Доведення:* Нехай  $x_{k+1}, x_k \in U_r$ . Тоді

$$\begin{split} |x_{k}-x_{k-1}| &= \|\varphi(x_{k})-\varphi(x_{k-1})\| = \\ &= \|\varphi^{'}(\xi_{k})\cdot(x_{k}-x_{k-1})\| \leq \\ &\leq \|\varphi^{'}(\xi_{k})\|\cdot\|x_{k}-x_{k-1}\| \leq \\ &\leq q\cdot\|x_{k}-x_{k-1}\| = \dots \\ &= q^{k}\cdot\|x_{1}-x_{0}\|, \end{split}$$

де  $\xi_k = x_k + \theta_k \cdot (x_{k+1} - x_k)$ , а у свою чергу  $0 < \theta_k < 1$ . Далі

$$\begin{split} |x_{k+p} - x_k| &= |x_{k+p} - x_{k+p-1} + \ldots + x_{k+1} - x_k| = \\ &= |x_{k+p} - x_{k+p-1}| + \ldots + |x_{k+1} - x_k| \le \\ &\le \left(q^{k+p-1} + q^{k+p-2} + \ldots + q^k\right) \cdot |x_1 - x_0| = \\ &= \frac{q^k - q^{k+p-1}}{1 - q} \cdot |x_1 - x_0| \xrightarrow[k \to \infty]{} 0. \end{split}$$

Бачимо що  $\{x_k\}$  — фундаментальна послідовність. Значить вона збіжна. При  $p \to \infty$  в (12) отримуємо (10).  $\square$ 

Визначимо кількість ітерацій для досягнення точності  $\varepsilon$ . З оцінки в теоремі 1 отримаємо

$$|x_n - \bar{x}| \le \frac{q^n}{1 - a} \cdot (b - a) < \varepsilon,$$

звідки безпосередньо маємо

$$n(\varepsilon) = n \ge \left[ \frac{\ln\left(\frac{\varepsilon(1-q)}{b-a}\right)}{\ln q} \right] + 1.$$

Практично ітераційний процес зупиняємо при:  $|x_n-x_{n-1}|<\varepsilon$ . Але ця умова не завжди гарантує, що  $|x_n-\bar x|<\varepsilon$ .

**Зауваження**: Умова збіжності методу може бути замінена на умову Ліпшиця

$$|\varphi(x) - \varphi(y)| \le q \cdot |x - y|, \quad 0 < q < 1.$$

• **Переваги методу:** простота; при q < 1/2 — швидше збігається ніж метод ділення навпіл; метод узагальнюється на системи.

• **Недоліки методу:** при q > 1/2 збігається повільніше ніж метод ділення навпіл; виникають труднощі при зведенні f(x) = 0 до  $x = \varphi(x)$ .

### 2.3. Метод релаксації

Література:

• Самарский, Гулин, стор. 192–193: djvu, pdf.

Якщо в методі простої ітерації для рівняння  $x = x + \tau \cdot f(x) \equiv \varphi(x)$  вибрати  $\tau(x) = \tau = {\rm const}$ , то ітераційний процес приймає вигляд

$$x_{n+1} = x_n + \tau \cdot f(x_n),$$

де k=0,1,2,3..., а  $x_0$  — задано. Метод можна записати у вигляді

$$\frac{x_{k+1} - x_k}{\tau} = f(x_k), \quad k = 0, 1, \dots$$

Оскільки  $\varphi'(x) = 1 + \tau \cdot f'(x)$ , то метод збігається при умові

$$|\varphi'(x)| = |1 + \tau \cdot f'(x)| \le q < 1.$$

Нехай  $f^{'}(x) < 0$ , тоді (8) запишеться у вигляді:  $-q \leq 1 + \tau \cdot f^{'}(x) \leq q < 1$ . Звідси

$$f'(x) \le 1 + q < 2k\tau,$$

i

$$0<\tau<\frac{2}{|f^{'}(x)|}.$$

Поставимо задачу знаходження au, для якого  $q=q( au) o \min$  . Для того, щоб вибрати оптимальний параметр au, розглянемо рівняння для похибки  $z_k=x_k-\bar x$ .

Підставивши  $x_k = x + z_k$  в (16), отримаємо

$$z_{k+1} = z_k + \tau \cdot f(x + z_k).$$

В припущені  $f(x) \in C^1([a,b])$  з теореми про середнє маємо

$$\begin{split} f(\bar{x} + z_k) &= f(\bar{x}) + z_k \cdot f'(\bar{x} + \theta \cdot z_k) = \\ &= z_k \cdot f'(\bar{x} + \theta \cdot z_k) = z_k \cdot f'(\xi_k), \end{split}$$

тобто

$$z_{k+1} = z_k + \tau \cdot f'(\xi_k) \cdot z_k.$$

Звідси

$$|z_{k+1}| \leq |1+\tau \cdot f^{'}(\xi_k)| \cdot |z_k| \leq \max_{U} |1+\tau \cdot f^{'}(\xi_k)| \cdot |z_k|.$$

А тому

$$|z_{k+1}| \le \max \left\{ |1 - \tau M_1|, |1 - \tau m_1| \right\} \cdot |z_k|,$$

де

$$m_1 = \min_{[a,b]} |f'(x)|, \quad M_1 = \max_{[a,b]} |f'(x)|$$

Таким чином, задача вибору оптимального параметра зводиться до знаходження au, для якого функція

$$q(\tau) = \max \left\{ |1 - \tau M_1|, |1 - \tau m_1| \right\}$$

приймає мінімальне значення:  $q(\tau) \to \min$ .



З графіка видно, що точка мінімуму визначається умовою  $|1-\tau M_1| = |1-\tau m_1|$ . Тому

$$1 - \tau_0 m_1 = \tau_0 M_1 - 1 \implies \tau_0 = \frac{2}{M_1 - m_1} < \frac{2}{|f'(x)|}.$$

При цьому значенні au маємо

$$q(\tau_0) = \rho_0 = \frac{M_1 - m_1}{M_1 + m_1}.$$

Тоді для похибки вірна оцінка

$$|x_n - \bar{x}| \le \frac{\rho_0^n}{1 - \rho_0} \cdot (b - a) < \varepsilon.$$

Кількість ітерацій

$$n = n(\varepsilon) \ge \left| \frac{\frac{\ln (\varepsilon(1-\rho_0))}{b-a}}{\ln \rho_0} \right| + 1.$$

**Задача 1**: Дати геометричну інтерпретацію методу простої ітерації для випадків:

$$0 < \varphi'(x) < 1;$$
  $-1 < \varphi'(x) < 0;$   $\varphi'(x) < -1;$   $\varphi'(x) > 1.$ 

**Задача 2**: Знайти оптимальне  $au = au_0$  для методу релаксації при  $f^{'}(x) > 0$ .

#### 2.4. Метод Ньютона (метод дотичних)

Література:

- Самарский, Гулин, стор. 193-194: djvu, pdf.
- Березин, Жидков, том. II, стор. 135-140: djvu, pdf.

Припустимо, що рівняння f(x)=0 має простий дійсний корінь  $\bar{x}$ , тобто  $f(\bar{x})=0, f^{'}(x)\neq 0$ . Нехай виконуються умови:  $f(x)\in C^{1}([a,b]), f(a)\cdot f(b)<0$ . Тоді

$$0 = f(\bar{x}) = f(x_k + \bar{x} - x_k) = f(x_k) + f'(\xi_k) \cdot (x - x_k),$$

де  $\xi_k=x_k+\theta_k\cdot(\bar{x}-x_k)$ ,  $0<\theta_k<1$ ,  $\xi_k\approx x_k$ . Тому наступне наближення виберемо з рівняння

$$f(x_k) + f'(x_k) \cdot (x_{k+1} - x_k) = 0.$$

Звідси маємо ітераційний процес

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)},$$

де  $k = 0, 1, 2, ...; x_0$  — задане.

Метод Ньютона ще називають методом лінеаризації або методом дотичних.

## Задача 3: Дати геометричну інтерпретацію методу Ньютона.

Метод Ньютона можна інтерпретувати як метод простої ітерації з

$$\varphi(x) = x - \frac{f(x)}{f'(x)},$$

тобто

$$\tau(x) = -\frac{1}{f^{'}(x)}.$$

Тому

$$\varphi'(x) = 1 - \frac{f'(x) \cdot f'(x) - f(x) \cdot f''(x)}{(f'(x))^2} = \frac{f(x) \cdot f''(x)}{(f'(x))^2}.$$

Якщо  $\bar{x}$  — корінь f(x), то  $\varphi^{'}(x)=1$ . знайдеться окіл кореня, \end{equation}

$$|\varphi'(x)| = \left| \frac{f(x) \cdot f''(x)}{(f'(x))^2} \right| < 1.$$

Це означає, що збіжність методу Ньютона залежить від вибору  $x_{\mathbf{0}}.$ 

**Недолік** методу Ньютона: необхідність обчислювати на кожній ітерації не тільки значення функції, а й похідної.

Модифікований метод Ньютона позбавлений цього недоліку і має вигляд:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_0)}, \quad k = 0, 1, 2, \dots$$

Цей метод має лише лінійну збіжність:  $|x_{k+1} - x| = O(|x_k - \bar{x}|)$ .

**Задача 4**: Дати геометричну інтерпретацію модифікованого методу Ньютона.

В методі Ньютона, для якого  $f^{'}(x_k)$  замінюється на

$$\frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$

дає метод січних:

$$x_{k+1} = x_k - \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})} \cdot f(x_k),$$

де  $k = 1, 2, ..., x_0, x_1$  — задані.

Задача 5: Дати геометричну інтерпретацію методу січних.

## 2.5. Збіжність методу Ньютона

Література:

• Самарский, Гулин, стор. 199-202: djvu, pdf.

**Теорема 1**: Нехай  $f(x) \in C^2([a,b]); \bar{x}$  простий дійсний корінь рівняння

$$f(x)=0.$$

і  $f^{'}(x) \neq 0$  при  $x \in U_r = \left\{x \colon |x - \bar{x}| < r \right\}$ . Якщо

$$q = \frac{M_2 \cdot |x_0 - \bar{x}|}{2m_1} < 1,$$

де

$$m_1 = \min_{U_r} |f'(x)|, \quad M_2 = \max_{U_r} |f''(x)|,$$

то для  $x_0 \in U_r$  метод Ньютона

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

збігається і має місце оцінка

$$|x_n - \bar{x}| \le q^{2^{n-1}} \cdot |x_0 - \bar{x}|.$$

3 (46) маємо

$$\begin{aligned} x_{k+1} - \bar{x} &= x_k - \frac{f(x_k)}{f^{'}(x_k)} - \bar{x} = \\ &= \frac{(x_k - \bar{x}) \cdot f^{'}(x_k) - f(x_k)}{f^{'}(x_k)} = \frac{F(x_k)}{f^{'}(x_k)}, \end{aligned}$$

де  $F(x) = (x - \bar{x})f'(x) - f(x)$ , така, що

- $F(\bar{x}) = 0;$
- $F'(x) = (x \bar{x}) \cdot f''(x)$ .

Тоді

$$F(x_k) = F(\bar{x}) + \int_{x}^{x_k} F'(t) dt = \int_{x}^{x_k} (t - \bar{x}) \cdot f''(t) dt.$$

Так як  $(t - \bar{x})$  не міняє знак на відрізку інтегрування, то скористаємося теоремою про середнє значення:

$$F(x_k) = f'(\xi_k) \int_{x}^{x_k} (t - \bar{x}) dt = \frac{(x_k - x)^2}{2} \cdot f'(\xi_k),$$

де  $\xi_k = \bar{x} + \theta_k \cdot (x_k - \bar{x})$ , де  $0 < \theta_k < 1.3$  (48), (50) маємо

$$x_{k+1} - \bar{x} = \frac{(x_k - \bar{x})^2}{2f'(x_k)} \cdot f''(\xi_k).$$

Доведемо оцінку (46) за індукцією. Так як  $x_0 \in U_r$ , то

$$|\xi_0 - \bar{x}| = |\theta_0 \cdot (x_0 - \bar{x})| < |\theta_0| \cdot |x_0 - \bar{x}| < r$$

звідси випливає  $\xi_0 \in U_r$ .

Тоді $f''(\xi_0) \leq M_2$ , тому

$$|x_1 - \bar{x}| \le \frac{(x_0 - \bar{x})^2 \cdot M_2}{2m_1} = \frac{M_2 \cdot |x_0 - \bar{x}|}{2m_1} \cdot |x_0 - \bar{x}| = q \cdot |x_0 - \bar{x}| < r,$$

тобто  $x_1 \in U_r$ .

Ми довели твердження (47) при n=1. Нехай воно справджується при n=k

$$\begin{split} |x_k - \bar{x}| &\leq q^{2^k - 1} \cdot |x_0 - \bar{x}| < r, \\ |\xi_k - \bar{x}| &= |\theta_k \cdot (x_k - \bar{x})| < r. \end{split}$$

Тоді  $x_k, \xi_k \in U_r$ .

Доведемо (47) для n = k + 1.3 (51) маємо

$$\begin{split} |x_{k+1} - \bar{x}| &\leq \frac{|x_k - \bar{x}|^2 \cdot M_2}{2m_1} \leq \\ &\leq \left(q^{2^k - 1}\right)^2 \cdot \frac{|x_0 - \bar{x}|^2 \cdot M_2}{2m_1} = \\ &= q^{2^{k+1} - 2} \cdot \frac{|x_0 - \bar{x}| \cdot M_2}{2m_1} \cdot |x_0 - \bar{x}| = \\ &= q^{2^{k+1} - 1} \cdot |x_0 - \bar{x}|. \end{split}$$

Таким чином (47) справджується для n=k+1. Значить (47) виконується і для довільного n. Таким чином  $x_n \to -x$ .  $\square$ 

З (47) маємо оцінку кількості ітерацій для досягнення точності arepsilon

$$n \ge \left[\log_2\left(1 + \frac{\ln\left(\frac{\varepsilon}{b-a}\right)}{\ln q}\right)\right] + 1.$$

Кажуть, що ітераційний метод має степінь збіжності т, якщо

$$|x_{k+1} - \bar{x}| = O(|x_k - \bar{x}|^m).$$

Для методу Ньютона

$$|x_{k+1} - \bar{x}| = \frac{|x_k - \bar{x}|^2 | \cdot f''(\xi_k)|}{2 |f'(x_k)|}.$$

Звідси випливає, що

$$|x_{k+1} - \bar{x}| = O(|x_k - \bar{x}|^2).$$

Значить степінь збіжності методу Ньютона m=2. Для методу простої ітерації і ділення навпіл m=1.

**Теорема 2**: Нехай  $f(x) \in C^2([a,b])$  та x простий корінь рівняння f(x) = 0 ( $f^{'}(x) \neq 0$ ). Якщо  $f^{'}(x) \cdot f^{''}(x) > 0$  ( $f^{'}(x) \cdot f^{''}(x) < 0$ ) то для методу Ньютона при  $x_0 = b$  послідовність наближень  $\{x_k\}$  монотонно спадає (монотонно зростає при  $x_0 = a$ ).

#### Задача 6: Довести теорему 2 при

- $f'(x) \cdot f''(x) > 0$ ;
- $\bullet \quad f'(x) \cdot f''(x) < 0.$

**Задача 7**: Знайти степінь збіжності методу січних [Калиткин Н.Н., Численные методы, с. 145–146]

Якщо  $f(a) \cdot f''(a) > 0$  та f''(x) не міняє знак, то потрібно вибирати  $x_0 = a$ ; при цьому  $\{x_k\} \uparrow \bar{x}$ .

Якщо  $f(b) \cdot f''(b) > 0$ , то  $x_0 = b$ ; маємо  $\{x_k\} \downarrow \bar{x}$ . Пояснення на рисунку 2:



**Зауваження 1**: Якщо  $\bar{x}$  — p-кратний корінь тобто

$$f^{(m)}(\bar{x}) = 0, \quad m = 0, 1, ..., p-1; \quad f^{(p)}(x) \neq 0,$$

то в методі Ньютона необхідна наступна модифікація

$$x_{k+1} - x_k - p \cdot \frac{f(x_k)}{f'(x_k)}$$

i

$$q = \frac{M_{p+1} \cdot |x_0 - \bar{x}|}{m_p \cdot p \cdot (p+1)} < 1.$$

**Зауваження 2**: Метод Ньютона можна застосовувати і для обчислення комплексного кореня

$$z_{k+1} = z_k - \frac{f(z_k)}{f'(z_k)}$$

В теоремі про збіжність

$$q = \frac{|x_0 - \bar{x}| M_2}{2m_1},$$

де

$$m_1 = \min_{U_r} |f'(z)|, \quad M_2 = \max_{U_r} f''(z)|.$$

Тут |z| — модуль комплексного числа.

## Переваги методу Ньютона:

- висока швидкість збіжності;
- узагальнюється на системи рівнянь;
- узагальнюється на комплексні корені.

#### Недоліки методу Ньютона:

- на кожній ітерації обчислюється не тільки  $f(x_k)$ , а і похідна  $f^{'}(x_k)$ ;
- збіжність залежить від початкового наближення  $x_0$ , оскільки від нього залежить умова збіжності

$$q = \frac{M_2 |x_0 - \bar{x}|}{2m_1} < 1;$$

• потрібно, щоб  $f(x) \in C^2([a, b])$ .

Назад до лекцій

Назад на головну

#### numerical-analysis is maintained by csc-knu.

© 2019 Київський національний університет імені Тараса Шевченка, Андрій Риженко, Скибицький Нікіта