UAV Autonomous Landing

Team Expeditus

SDSMT MCS

December 8, 2015

Introduction

UAV Autonomous Landing Project

Team Expeditus

Jonathan Dixon, Dylan Geyer, Christopher Smith, Steven Huerta

Sponsor

Dr. Larry Pyeatt

Project Overview

Goal

- receive a set of waypoints
- autonomously take-off
- navigate through waypoints
- return to launch pad
- land on the pad with the correct orientation

Limitations

- landing platform is a fixed position
- landing platform is a stable, horizontal surface
- environment is ideal(no wind, gps available, no obstacles)

User Stories

• User 1(U-1):

As a user, I want to communicate the waypoints to the UAV.

Owner 1(0-1):

As an owner, I want the UAV to autonomously take-off from the landing pad.

• Owner 2(O-2):

As an owner, I want the UAV to autonomously navigate through a set of waypoints.

Owner 3(O-3):

As an owner, I want the UAV to autonomously return to the location of the landing pad.

Owner 4(O-4):

As an owner, I want the UAV to autonomously land on the landing pad without damaging the craft.

• Owner 5(O-5):

As an owner, I want the UAV to autonomously land on the landing pad with the correct orientation.

	Task	Task
	No.	
Ì	1	Review previous method/interface for communicating coordinat
	2	Review code that communicates with quadrotor
ĺ	3	Review code that allows a user to input waypoints

	Task	Task
	No.	
Ì	1	Review previous method/interface for communicating coordinat
	2	Review code that communicates with quadrotor
ĺ	3	Review code that allows a user to input waypoints

	Task	Task
	No.	
Ì	1	Review previous method/interface for communicating coordinat
	2	Review code that communicates with quadrotor
ĺ	3	Review code that allows a user to input waypoints

	Task	Task
	No.	
Ì	1	Review previous method/interface for communicating coordinat
	2	Review code that communicates with quadrotor
ĺ	3	Review code that allows a user to input waypoints

	Task	Task
	No.	
Ì	1	Review previous method/interface for communicating coordinate
ĺ	2	Review code that communicates with quadrotor
ĺ	3	Review code that allows a user to input waypoints

	Task	Task
	No.	
Ì	1	Review previous method/interface for communicating coordinat
	2	Review code that communicates with quadrotor
ĺ	3	Review code that allows a user to input waypoints

	Task	Task
	No.	
Ì	1	Review previous method/interface for communicating coordinat
	2	Review code that communicates with quadrotor
ĺ	3	Review code that allows a user to input waypoints

Hardware Requirements

- ODroid XU4
- Pixhawk Flight Controller
- GPS peripheral
- Camera
- Battery
- UAV(Frame, Motors, ESCs, Power Distribution Board)

Software Requirements

- Maylink
- OpenCV
- Robot Operating System(ROS) Indigo/Jade Distro
- Ubuntu 14.04

Sprint 1

Sprint 1 - Successes

- Revised project scope
- Product Backlog User Stories
- Setup Development Environment
- Review previous years hardware and software

Sprint 1 - Setbacks

- Previous years UAV unusable
- Previous years flight code unusable

Sprint 2

Sprint 2 - Successes

- Visual Homography Code repurposed
- Created simulation environment
- Ordered parts for new Hex-copter

Sprint 2 - Setbacks

Simulation only supports manual control

Sprint 3

Sprint 3 - Successes

- Many SITL simulations
- Working image homography code
- Assembled Frame, Motors, ESC's

Sprint 3 - Setbacks

- Pixhawk delayed 2 weeks, build not completed
- SITL simulations rejected waypoint files

Architecture

PLACE HOLDER FOR THIS STUFF: Architecture, Design, Technical Aspects, Data structures, Data ow, Communications, Tools

UAV Design & Tech Specs

Visual Homography Design & Tech Specs

Simulation Design & Tech Specs

Testing

PLACE HOLDER FOR THIS STUFF: Unit or Component Testing, System Testing, System Integration, Remaining backlog, Revised goals and Revised Deliverable

UAV Testing

Manual Flight Autonomous Flight

Visual Homography Landing Testing

Integration

Remaining Backlog

Revised Goals

Successes and Issues

PLACE HOLDER FOR THIS STUFF: Successes (goals met), Issues or problems (goals not met), Risk Analysis, Risk Mitigation, Timeline, Budget/costs, Intellectual Property Aspects, Licensing

Successes

Parts are now in!!

Issues

Parts are now in!! (Our UAV build has been delayed by a semester) Simulation integration issues

Large Dependencies (If someone's awesomely helpful interface fails or is buggy, we need to address how we can work around it).

Risk Analysis

Risk Mitigation

IP & Licensing

Prototypes and Demos

PLACE HOLDER FOR THIS STUFF: Demos!!

END