TEORIA DE CONJUNTOS I

OBJETIVOS:

- Establecer correctamente la noción de conjunto y su notación.
- Utilizar adecuadamente los símbolos de pertenencia e inclusión y representar los conjuntos adecuadamente.
- Reconocer los conjuntos especiales y determinar su correspondiente cardinal.
- Resolver problemas utilizando los Diagramas de Veen-Euler y Lewis Carroll.

Noción de Conjunto

Concepto no definido del cual se tiene una idea subjetiva y se le asocian ciertos sinónimos tales como colección, agrupación o reunión de objetos abstractos o concretos denominados "integrantes" u elementos susceptibles de ser comparados.

Ejemplos:

- Los días de la semana
- Los países del continente americano.
- Los jugadores de un equipo de fútbol.

Notación

Generalmente se denota a un conjunto con símbolos que indiquen superioridad y a sus integrantes u elementos mediante variables o letras minúsculas separadas por comas y encerrados con llaves.

Ejemplo: $A = \{los días de la semana\}$

 $B = \{a, e, i, o, u\}$

Relación de Pertenencia (\in)

Se establece esta relación sólo de "integrante" a conjunto y expresa si el integrante indicado forma parte o no del conjunto considerado.

"....pertenece a": \in "... no pertenece a ..": \notin

Esto quiere decir que dado un "integrante u elemento" y un conjunto

Integrante ∈ conjunto u elemento ∉

Ejemplo: $C = \{1,2, \{1,2\}, 5, 16\}$

• 2 ∈ C

• 8 ∉ C

• $\{1,2\} \in C$

• {5} ∉ C

incorrecto

Determinación de un Conjunto

Consiste en precisar correctamente que "elementos" forman parte del conjunto. Puede hacerse de 2 formas:

a) Por Extensión o forma tabular.

Cuando se indica generalmente a todos y cada uno de los integrantes

Ejemplo: $A = \{a, e, i, o, u\}$

 $C = \{2,4,6,8\}$

Es evidente que el orden en el cual son listados los "elementos" del conjunto no afecta el hecho de que pertenece a él.

De este modo en el conjunto

A = {a,e,i,o,u} = {a,o,u,i,e}

No todos los conjuntos pueden ser
expresados por extensión,
entonces se recurre a otra forma
de determinación.

b) Por Comprensión o forma constructiva

Cuando se enuncia una propiedad que caracteriza a todos los elementos del conjunto, de tal manera que cada objeto que goza de la propiedad pertenece al conjunto y todo elemento del conjunto goza de la propiedad mencionada.

CONJUNTOS NUMERICOS

1. <u>Conjunto de los números</u> naturales

$$\begin{split} & \text{IN} = \{1,2,3,4....\} \text{ EJM } 17 \in \text{IN} \\ & \text{IN}_0 = \text{IN}^* = \{0,1,2,3,....\} \\ & \text{Observación} \end{split}$$

Cero (0) es natural

2. <u>Conjunto de los Números</u> Enteros

$$\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$$

 $\frac{3}{8} \notin \mathbb{Z}, -24 \in \mathbb{Z}$

3. <u>Conjunto de los Números</u> <u>Racionales</u>

Q = {a/b / a
$$\in \mathbb{Z} \land b \in \mathbb{Z} \in b \neq 0$$
}
3 \in Q porque : 3 = $\frac{3}{1}$

$$0.5 \in Q \text{ porque } 0.5 = \frac{5}{10}$$

0,333...
$$\in$$
 Q porque 0,333... $=\frac{1}{3}$
 $\pi = 3,141592... \notin$ Q porque $\pi \neq \frac{a}{b}$

Aplicación I

Dado el conjunto

B =
$$\{1, \pi, \{\pi\}, 2 \{1\}, \{1,2\}, 3\}$$

Indicar que proposiciones son verdaderas o falsas

Aplicación II

Determinar por extensión y comprensión los siguientes conjuntos

$$P = \{2, 6, 12, 20,..., 10100\}$$

$$Q = \{3x+1/x \in \mathbb{Z} \land -3 < x < 3\}$$

Cardinal de un Conjunto

Se llama Número Cardinal de un conjunto A a la clase de los conjuntos coordinables con A (es decir el número cardinal es una clase de equivalencia). Vulgarmente se acostumbra a señalar que el número cardinal, es el número de elementos del conjunto A y se denota como n (A) ó card (A)

Ejemplo:

$$A = \{3, 6, 9, 12, 15\}$$
 entonces $n(A) = 5$
 $P = \{2,2,3,3,3,5,7\}$ entonces $n(P) = 4$

Número Ordinal

Teniendo en cuenta una disposición de los elementos dentro del conjunto del cual forman parte, cada uno determina su número ordinal como el lugar que ocupa en el orden establecido.

Notación:

Ord (x) : número ordinal de x
$$S = \{7, a, \Delta, 13\} \rightarrow \text{ ord (a)} = 2, \text{ ord } (\Delta) = 3$$

Cuantificadores

a) **Universal**: Se denota por " \forall " y se lee "para todo" o "para cualquier" Si P(x) es una función proposicional, , " \forall x \in A; P(x)" es una proposición que será verdadera cuando para todos los valores de x \in a se cumpla P(x)

Ejemplo:

Si A =
$$\{2,4,6,8\}$$

P(x) = x es un número par
P(y) = $3y - 2 > 4$
Luego $\forall x \in A: x \text{ es un } \# \text{ par (V)}$
 $\forall y \in A: 3y - 2 > 4 \text{ (F)}$

b. Existencial. Se denota por " \exists " y se lee "existe por lo menos un" Si P(x) es una función proposicional, " $\exists x \in A/P(x)$ " es una proposición

que será verdadera si existe por lo menos un elemento de A, que cumple P(x)

Ejemplo

Si: B = $\{7,5,4,1\}$

P(x) = x es un número impar

 $P(y) = (y-4)^2 = 4$

Luego:

 $\exists x \in B/x \text{ es impar } (V)$

 $\exists y \in B/(y-4)^2 = 4 (F)$

Negación de los Cuantificadores

$$\sim (\forall x \in A : P(x)) \equiv \exists x \in A/\sim P(x)$$

 $\sim (\exists x \in A / P(x)) \equiv \forall x \in A: \sim P(x)$

Diagramas de Venn - Euler

Es la representación geométrica de un conjunto mediante una región de plano limitado por una figura geométrica cerrada en cuyo interior se indican los "elementos" que forman el conjunto

Diagrama (Lewis - Carroll)

Su verdadero nombre es Charles-Dogston autor de "Alicia en el país de las Maravillas" utilizando un lenguaje lógico – matemático utiliza el Diagrama en conjuntos disjuntos haciendo partición del universo.

Diagrama Lineal - Hasse

Utiliza segmentos de línea y es utilizado en conjuntos transfinitos e infinitos

Diagrama Lineal Diagrama Hasse

Relación de Inclusión (⊂)

Subconjunto \subset Conjunto \subset Conjunto

Se dice que un conjunto está incluido en un segundo conjunto, cuando todos los "elementos" del primero forman parte del segundo conjunto.

⊂: "incluido o contenido"
A ⊂ B: "A esta contenido en B"
"A es subconjunto en B"
"B contiene a A"

Observación:

El vacío está incluído en cualquier conjunto.

Conjuntos comparables

Se dice que dos conjuntos son comparables cuando por lo menos uno de ellos está incluido en el otro.

$$A \subseteq B \Leftrightarrow (A \subset B \land A \neq B) \lor (B \subset A \land B \neq A)$$

Ejemplo: Dados los conjuntos: $A = \{3,5\}$ $B = \{1,2,3,4,5,6,7\}$ $C = \{2,4,6,7\}$ $D = \{4,7\}$

Son conjuntos comparables: A y B B y C; B y D; C y D

Conjuntos Iguales

Se dice que dos conjuntos son iguales cuando ambos poseen los mismos "elementos".

$$A = B \Leftrightarrow A \subset B \land B \subset A$$

Ejemplo:

 $A = \{3n + 2/n \in \mathbb{Z}, 1 \le n \le 4\}$ $B = \{5,14,8,11\}$ Se observa A = B

Aplicación

Dados los conjuntos A y B guales y C y D iguales donde

 $A = \{a+2, a+1\}$ $C = \{b+1, c+1\}$ $B = \{7-a, 8-a\}$ $D = \{b+2, 4\}$ Hallar: a+b+c

Conjuntos Disjuntos o Ajenos

Dos conjuntos se denominan disjuntos cuando no poseen ningún elemento en común Ejemplo:

 $C = \{x / x \text{ es un hombre}\}\$ $D = \{x / x \text{ es una mujer}\}\$ \therefore C y D son disjuntos

- Si dos conjuntos son disjuntos ambos serán diferentes.
- Si dos conjuntos son diferentes entonces no siempre serán disjuntos.

Ejemplo:

 $E = \{5,2,a,b\}$, $F = \{4,3,c,d\}$ $E \ y \ F \ son \ disjuntos \rightarrow E \ne F$ $G = \{1,3,c,d,7\}$, $H = \{2,8,e,f,c\}$ $G \ne H \ pero \ G \ y \ H \ no \ son \ disjuntos$

<u>Conjuntos Coordinables o</u> <u>Equipotentes</u>

Dos conjuntos serán coordinables cuando se pueda establecer una correspondencia uno a uno entre todos y cada uno de los elementos del primer conjunto con los del segundo conjunto. A dicha correspondencia se le denomina biunívoca y como consecuencia de estos se tiene que las cardinales de estos conjuntos son iguales (si son finitos).

Ejemplo

A = {Lima, Caracas, Bogota, Santiago} B = {Perú, Venezuela, Colombia, Chile}

Se observa que es posible establecer la correspondencia biunívoca:

".... es capital de"
De ahí que A y B son coordinables,

Clases de Conjuntos

luego: n(A) = n(B)

Los conjuntos se clasifican teniendo en cuenta la cantidad de elementos diferentes que poseen según esto tenemos:

<u>Finito</u>: Si posee una cantidad limitada de "elementos" es decir el proceso de contar sus diferentes elementos termina en algún momento.

Ejemplo:

 $\begin{aligned} &N = \{3n+2 \ / \ n \in \mathbb{Z} \land 1 \le n \le 4\} \\ &N \text{ es finito pues } n \ (N) = 4 \\ &P = \{x/x \text{ es un día de la semana}\} \\ &P \text{ es finito pues } n \ (U) = 7 \\ &\underline{\text{Infinito}} \text{: Si posee una cantidad ilimitada de "elementos". Ejm:} \\ &M = \{x/x \in Q \land 1 < x \le 2\} \\ &M \text{ es infinito pues } n \ (M) = \dots? \end{aligned}$

Conjuntos Especiales

<u>Vacío o Nulo</u>. Es aquel conjunto que carece de "elementos".
 Notación φ; { }.
 Eim.:

 $A = \{x/o < x < 5 \land x^2 = 100\} = \{\} = \emptyset$

*
$$\forall A : \phi \subset A$$

* $\phi \neq \{\phi\}$
* $\phi \neq \{\{\}\}$

2. <u>Unitario o Singleton</u> (singular) Es aquel conjunto que tiene un solo elemento.

$$B = \{x/x > 0 \land x^2 = 9\} = \{3\}$$

Aplicación: Si los siguientes conjuntos son unitarios e iguales, calcule a + b + c.

$$A = \{(2a + b); c\}$$

 $B = \{(2c - 7); (5b + 2)\}$

3. <u>Universal</u>: Es un conjunto referencial para el estudio de una situación particular, que contiene a todos los conjuntos considerados. No existe un conjunto universal absoluto y se le denota generalmente por U.

Ejemplo:

A =
$$\{2,6,10,12\}$$

B = $\{x+3/x \text{ es impar } \land 0 < x < 10\}$

Podrán ser conjuntos universales para A y B

$$U = \{x/x \in \mathbb{I}N \land x < 13\}$$

$$U = \{0,2,4,6,8,....\}$$

4. <u>Conjunto de Conjuntos</u>: También se le denomina familia de conjuntos o clase de conjuntos y es aquel conjunto cuyos elementos son todos conjuntos.

$$C = \{\{2,3\}, \{3\}, \{a\}, \{6,b\}, \phi\}$$

 $D = \{\{a,b,c\}, \{2,3,6\}, \{6\}, c, 8\}$
Se observa que:

C es familia de conjuntos D no es familia de conjuntos

5. <u>Potencia</u>

El <u>Conjunto de Potencia de A,</u> llamado también "<u>Conjunto de Partes de A</u>", es aquel que está formado por todos los subconjuntos posibles que posee el conjunto A. Notación P(A)

Ejemplo:
$$A = \{x,y\}$$

 $P(A) = \{\phi, \{x\}, \{y\}, \{x,y\}\}$
 $n(P(A)) = 4$
* Los subconjuntos ϕ , $\{x\}$, $\{y\}$ son denominados propios.

$$N^{o}$$
 subconj. = $n (P(A)) = 2^{n(A)}$

Ejemplo:

B = {x/x es primo y x < 10}
B = {2,3,5,7}
$$\rightarrow$$
 n (B) = 4
 $\begin{bmatrix} N^{o} \text{ subconjuntos} \\ \text{de B} \end{bmatrix}$ = 2^{4} = 16

$$N^{o}$$
 subconj. = $2^{n(A)} - 1$
Propios A

$$\begin{bmatrix} N^{\circ} \text{ subconjuntos} \\ \text{propios de B} \end{bmatrix} = 2^4 - 1 = 15$$

6. <u>Par Ordenado</u>

Es un conjunto de 2 elementos para los cuales se considera el orden en que están indicados.

Notación (a, b)

Se lee "par ordenado a, b"

a: 1º componente b: 2º componente

$$(a,b) = (c,d) \Leftrightarrow a = c \wedge b = d$$

OPERACIONES CON CONJUNTOS

<u>Unión (U)</u>: La unión de 2 o más conjuntos es aquel conjunto conformado por la agrupación de todos los elementos de los conjuntos que intervienen.

$$A \cup B = \{x/x \in A \lor x \in B\}$$

$$U$$

$$A \cup U$$

$$B$$

Ejemplo:
$$A = \{2,3,5\}, B = \{1,7,5\}$$

 $\therefore A \cup B = \{2,3,5,1,7\}$

Si:
$$A \subset B \rightarrow A \cup B = B$$

Intersección (\cap) La intersección de los conjuntos A y B es el conjunto formado por todos los elementos que pertenecen a "A" y "B" a la vez.

$$A \cap B = \{x/x \in A \land x \in B\}$$

Ejemplo:
$$A = \{2,3,4,5,6\}$$

 $B = \{4,6,7,9\}$
 $\therefore A \cap B = \{4,6\}$

Si
$$A \subset B \rightarrow A \cap B = A$$

Si A y B son disjuntos, $A \cap B = \phi$

<u>Diferencia</u> (-) El conjunto diferencia (A-B) es aquel que esta formado únicamente por los elementos que pertenecen a A pero no pertenecen a B.

$$A - B = \{x/x \in A \land x \notin B\}$$

Ejemplo
$$A = \{2,4,5,6,7,8\}$$

 $B = \{1,3,6,7,9\}$
 $\therefore A - B = \{2,4,5,8\}$
 $B - A = \{1,3,9\}$

Si A
$$\subset$$
 B \rightarrow A \triangle B = B - A
Si A y B disjuntos, A \triangle B = A U B

Diferencia Simétrica

La diferencia simétrica de dos conjuntos A y B es el conjunto formado por todos los elementos que pertenecen a A o B pero no a ambos.

$$A \triangle B = \{x/x \in (A \cup B) \land x \notin (A \cap B)\}$$

Ejemplo:

$$A = \{8,7,6,5,4,2\}$$

$$B = \{9,7,6,3,1\}$$

$$A \triangle B = \{2,4,5,8,1,3,9\}$$

Si A
$$\subset$$
 B \rightarrow A \triangle B = B - A
Si A y B disjuntos, A \triangle B = A U B

Complemento de A ($\mathcal{C}A$, A^c , \overline{A} , A')

El complemento de A es el conjunto formado por los elementos que pertenecen al conjunto universal U pero no al conjunto A.

$$A^c = A' = \{x/x \in U \land x \notin A\} = U - A$$

Ejemplo

<u>Conjunto Producto o Producto</u> <u>Cartesiano (X)</u>

Dados dos conjuntos A y B se define el conjunto producto como:

$$A \times B = \{(a,b)/a \in A \land b \in B\}$$

Leyes del Algebra de Conjuntos

- 1. <u>Idempotencia</u> $A \cup A = A$ $A \cap A = A$
- 2. Conmutativa $A \cup B = B \cup A$ $A \cap B = B \cap A$
- 3. Asociativa $(A \cup B) \cup C = A \cup (B \cup C)$ $(A \cap B) \cap C = A \cap (B \cap C)$
- 4. Distributiva $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

- 5. De Morgán $(A \cup B)' = A' \cap B'$ $(A \cap B)' = A' \cup B'$
- 6. Del Complemento $A \cup A' = U$ $A \cap A' = \phi$ (A')' = A
- 7. <u>De la Unidad</u> $A \cup U = U$ $A \cap U = A$ $A \cup \phi = A$ $A \cap \phi = \phi$
- 8. De Absorción $A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$ $A \cup (A' \cap B) = A \cup B$ $A \cap (A' \cup B) = A \cap B$
- 9. <u>Diferencia</u> $A B = A \cap B'$
- 10. Adicional $(U)' = \phi$ $(\phi)' = U$

PROBLEMAS RESUELTOS

Dados los conjuntos unitarios
 A = {90, a.b}
 B = {a+b, 23}
 Hallar la diferencia entre a y b

<u>Resolució</u>n

Dados que los conjuntos A y B Son unitarios se debe cumplir: A = $\{90, a.b\}$ \therefore a.b = 90(1) B = $\{23, a+b\}$ \therefore a+b = 23 ...(2)

Resolviendo:

$$a = 18$$
; $b = 5$; $a - b = 3$

2. Hallar el cardinal de A si $A = \{0,1,1,2,3,5,8,....55\}$

Resolución

: n(A) = 10

Observamos en los elementos del conjunto A
Se verificará la suma de 2 términos consecutivos da como resultado el tercer término.
0,1,1,2,3,5,8,13,21,34,55

3. Dado el conjunto
$$A = \{5,3 \{3\}, 7, \{9,11\}, 14\}$$
 ¿Cuántas proposiciones son verdaderas?
$$I. 5 \in A \qquad IV. \{3\} \subset A$$

$$II. \{\{3\}\} \subset A \qquad V. \{9,11\} \subset A$$

Resolución

III. $\{7,14\} \in A$

I. $5 \in a(V)$ II. $\{\{3\}\} = A(V)$

III. 7,14 ∈ A (F) ya que la relación ∈ se da sólo entre integrante (singular y su conjunto)

VI. $\phi \subset A$

IV. {3} ⊂ A (V)
 V. {9,11} ⊂ A (F)
 Puesto que {9,11} es un integrante para A y la relación integrante conjunto se da solo en pertenencia

VI. φ ⊂ A (V)

Puesto que el conjunto vacío está incluido en cualquier conjunto

4. Si A = B Calcular a^b A = {3a-8, 44} B = {10, b^a - 20}

Resolución

Si A = B ${3a - 8, 44} = {10, b^a - 20}$ $3a - 8 = 10 \rightarrow 3a = 18 \rightarrow a = 6$ $44 = b^a - 20 \rightarrow b^a = 64$

Reemplazando:
$$b^6 = 64 = 2^6$$

 $a = 6$
 $b = 2$

 $\therefore a^b = 6^2 = 36 \text{ Rpta.}$

5. ¿Cuántos subconjuntos propios tiene el conjunto M?

 $M = \{x/x \in \mathbb{Z} ; -7 < 4 x + 1 < 21\}$

Resolución

-7 < 4x + 1 < 21 -8 < 4x < 20 $-2 < x < 5 \rightarrow x = -1, 0, 1, 2, 3, 4$

$$M \, = \, \{\text{-1,0,1,2,3,4}\} \, \to \, n \, \, (M) \, = \, 6$$

No sub conjuntos $= 2^{n(M)}-1 = 2^6-1 = 63$ Rpta. propios de M

6. Indicar el cardinal del conjunto

$$R = \left\{ x / \sqrt{\frac{x+1}{3}} \, \epsilon \, Z^+, x < 17 \right\}$$

Resolución

Para calcular el cardinal del conjunto R. Habrá que saber cuantos valores toma x de acuerdo a las restricciones dadas en el conjunto R.

Para x < 17 y que verifique que

$$\sqrt{\frac{x+1}{3}} \, \epsilon \, Z^+ \text{ entonces } x = 2, \, 11$$

solamente

Luego R = $\{2,11\} \rightarrow n(R) = 2$ Rpta.

- 7. Dados el conjunto $A = \{a \}$, $\{\emptyset\},\emptyset\}$ cuántas de las siguientes proposiciones son verdaderas.
- I. $\{a\} \in A \land \{a\} \subset A$
- II. $\{a\} \subset A \land \{\{a\}\} \in A$
- III. $\{\emptyset\} \subset A \land \{\{\emptyset\}\} \in A$
- IV. $\emptyset \subset A \land \emptyset \in A$
- V. $\{a,\emptyset\} \subset A \land \{\{a\},\{\emptyset\}\}\} \subset A$

Resolución

I.
$$\{a\} \in A \land \{a\} \subset A$$
; $p \land q$ (V)
$$P \qquad q \qquad V \land V$$

II.
$$\{a\} \subset A \land \{\{a\}\} \in A ; p \land q (F)\}$$

$$P \qquad q \qquad V \land F$$

III.
$$\{\emptyset\} \subset A \land \{\{\emptyset\}\} \in A ; p \land q (F)\}$$

$$P \qquad q \qquad V \land F$$

IV.
$$\emptyset \subset A \land \emptyset \in A$$
; $p \land q$ (V)

V.
$$\{a,\emptyset\} \subset A \land \{\{a\},\{\emptyset\}\}\} \subset A p \land q$$
 (V)

Rpta. 3 son verdaderas

En un salón de clase de 100 alumnos, hay diez hombres provincianos, hay 40 mujeres limeñas y el número de mujeres provincianas excede en 10 a número de hombre limeños.

¿Cuántos hombre hay en el aula?

Resolución

Utilizando diagrama CARROLL

Provincianos	Limeños	
10	Х	Hombres
X+10	40	Mujeres
	U: 100	

Del Total

$$10 + x + x + 10 + 40 = 100$$

$$2x+60 = 100 \rightarrow x = 20$$

- \therefore no hombres = 10 + x = 30 Rpta
- 9. Un conjunto tiene 1024 subconjunto en total. ¿Cuántos subconjuntos de 6 elementos tendrá?

Resolución

Sabemos que:

 N^o subconjuntos de $A = 2^{n(A)}$

Por datos:

$$\underbrace{1024}_{f} = 2^{n(A)}$$

 $2^{10} = 2^{n(A)}$ entonces n (A) = 10

 $\begin{array}{c} \text{ ... No Subconjuntos} \\ \text{ de 6 elementos} \end{array} \quad C_6^{\,n(A)}$

$$C_6^{10} = \frac{10!}{(10-6)! \, 6!} = \frac{10!}{4! \, 6!}$$

TEORIA DE CONJUNTOS II

OBJETIVOS:

- Realizar correctamente operaciones entre conjuntos
- Utilizar de manera eficaz las leyes del álgebra de conjuntos.
- Resolver problemas utilizando los diagramas de Veen-Eulery Lewis Carroll.

Operaciones con Conjuntos

I. Unión o Reunión

La unión de dos conjuntos "A" y "B" es el conjunto formado por la agrupación de todos los elementos de "A" con todos los elementos de "B".

Notación A \cup B, (A \cup B)

Simbólicamente se define

$$A \cup B = \{x/x \in A \ v \ x \in B\}$$

Posiciones relativas para 2 conjuntos A y B

 $\rightarrow A \cup B$

Observación: Si $B \subset A \rightarrow A \cup B = A$

Propiedades:

- $A \cup B = B \cup A$ (Conmutativa)
- $A \cup (B \cup C) = (A \cup B) \cup C$ (Asociativa)
- $A \cup A = A$ (Idempotencia)
- $A \cup U = U$
- $A \cup \phi = A$ (Elemento Neutro)

II. Intersección

La intersección de 2 conjuntos A y B es el conjunto formado por los elementos que pertenecen a los dos conjuntos a la vez.

Notación: A \cap B, (A \cap B) Simbólicamente se define: $A \cap B = \{x/x \in A \land x \in B\}$

Observación: ∧ equivale y: Intersección

Posiciones relativas para 2 conjuntos "A" y "B"

 $A \cap B = \phi$

 $\mathsf{A} \cap \mathsf{B}$

Observación:

- Si $B \subset A \rightarrow A \cap B = B$
- Si A y B son conjuntos disjuntos \rightarrow A \cap B = ϕ

Propiedades:

- $A \cap B = B \cap A$ (Conmutativa)
- $A \cap (B \cap C) = (A \cap B) \cap C$ (Asociativa)
- $A \cap A = A$ (Idempotencia)
- $A \cap U = A$
- A \cap ϕ = ϕ (Elemento Neutro)

Propiedades Complementarias

Distributiva

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Absorción

$$A \cup (A \cap B) = A$$

$$A \cap (A \cup B) = A$$

$$A \cup (A' \cap B) = A \cup B$$

$$A \cap (A' \cup B) = A \cap B$$

$$(\mathsf{A} \cup \mathsf{B}) \subset \mathsf{C} \Leftrightarrow \mathsf{A} \subset \mathsf{C} \ \mathsf{y} \ \mathsf{B} \subset \mathsf{C}$$

$$\mathsf{A} \subset \mathsf{B} \ \mathsf{y} \ \mathsf{C} \subset \mathsf{D} \Rightarrow (\mathsf{A} \cup \mathsf{C}) \subset (\mathsf{B} \cup \mathsf{D})$$

Si:

Diferencia III.

La diferencia de 2 conjuntos A y B (en ese orden) es el conjunto formado por los elementos que pertenecen a "A" pero no a "B"

Notación: A - B

Se lee: "A pero no B" (solo A)

Simbólicamente

 $A - B \{x/x \in A \land x \notin B\}$

Observación:

Si $A \neq B \rightarrow A - B \neq B - A$

Si $A = B \rightarrow A - B = B - A = \phi$

Posiciones Relativas para 2 conjuntos A y B

Observación:

- Si B \subset A \rightarrow B A = ϕ
- Si A y B son disjuntos

$$A - B = A \quad ; \quad B - A = B$$

Ejm:

IV. Diferencia Simétrica

La diferencia simétrica de dos conjuntos A y B es el conjunto formado por los elementos a "A" o "B" pero no a ambos. Notación: A Δ B Simbólicamente se define:

$$A \triangle B = \{x/x \in (A - B) \lor X \in (B - A)\}$$

$$O$$

$$A \triangle B = \{x/x \in A \lor X \in B \land X \notin A \cap B\}$$

Observación:

Si B \subset A \rightarrow A Δ B = A - B

Si A y B son conjuntos disjuntos

 $A \triangle B = A \cup B$

Propiedades

- $\bullet \qquad \mathsf{A} \mathrel{\Delta} \mathsf{B} = (\mathsf{A} \mathsf{B}) \cup (\mathsf{B} \mathsf{A})$
- $A \triangle B = (A \cup B) (A \cap B)$

$$\bullet \qquad \mathsf{A} \mathrel{\Delta} \mathsf{A} = \mathsf{\phi}$$

$$\bullet \qquad \mathsf{A} \ \Delta \ \phi = \mathsf{A}$$

Ejm:

$$A = \{2,3,4\} B = \{4,5,3\}$$
 A \(\Delta \ B = \{2,5\}

V. Complemento

El complemento de A es el conjunto formado por los elementos que pertenecen al conjunto universal **U** pero no a "A".

Notación: A´, A, Ac, CA

Simbólicamente:

$$A' = \{x/x \in U \land x \notin A\} = U - A$$

Diagrama

Observación:

$$\mathcal{C}_{B}^{A} = B - A$$

Propiedades

Involución

2.
$$\phi' = \mathbf{U}$$
$$\mathbf{U}' = \phi$$

3.
$$A - B = A \cap B'$$

4.
$$A \cup A' = U$$

 $A \cap A' = \phi$

5. <u>Leyes de Morgan</u>

$$(A \cup B)' = A' \cap B'$$

 $(A \cap B)' = A' \cup B'$

6. <u>Caso particular de la Absorción</u>

$$A' \cup (A \cap B) = A' \cup B$$

 $A' \cap (A \cup B) = A' \cap B$

Observación

1.
$$n(\phi) = 0$$

2.
$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

3. Si A y B son conjuntos disjuntos
$$n(A \cup B) = n(A) + n(B)$$

4.
$$n (A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(A \cap C) - n(B \cap C) + n(A \cap B \cap C)$$

Par Ordenado

Es un conjunto que tiene dos elementos (no necesariamente diferentes), en la cual interesa el ordenamiento de estos elementos llamados también componentes

Propiedad:

Dos pares ordenados son iguales si y solo si sus respectivos elementos son iguales.

Es decir:

$$(a,b) = (c,d) \Leftrightarrow a = c \wedge b = d$$

Ejemplo:

Aplicación

$$Si(x + y, 13) = (31, x-y)$$

Hallar:
$$\frac{x}{y}$$

Resolución

Si
$$(x + y; 13) = (31; x - y)$$

 $x + y = 31$
 $x - y = 13$

$$\therefore x = \frac{31 + 13}{2} = 22$$

$$y = \frac{31 - 13}{2} = 9$$

Luego:
$$\frac{x}{y} = \frac{22}{9}$$
 Rpta.

Producto Cartesiano

Dados 2 conjuntos A y B no nulos se denomina producto cartesiano de A y B $(A \times B)$ en ese orden, al conjunto formado por todos los pares ordenados (a,b) tal que las primeras componentes pertenecen al conjunto a y las segundas componentes al conjunto B.

$$A \times B = \{a,b/a \in A \land b \in B\}$$

Ejemplo: Dados los conjuntos A y B

$$A = \{a, b\}$$

 $B = \{c,d\}$

Forma Tabular:

а	(a,c)	(a,d)
b	(b,c)	(b,d)

С	(c,a)	(c,b)
d	(d,a)	(d,b)

$$A \times B = \{(a,c), (a,d), (b,c), (b,d)\}\$$

 $B \times A = \{(c,a), (c,b), (d,a), (d,b)\}\$

Observamos que:

- 1. A $x B \neq B x A$ en general
- 2. $A \times B = B \times A \Leftrightarrow A = B$
- 3. $n(A \times B) = n(A) \times n(B)$ A y B son conjuntos finitos
- 4. $n [AxB-BxA]=n [AxB]-n[AxB \cap Bx A]$

Propiedades

- a. $A \times (B \cap C) = (A \times B) \cap (A \times C)$
- b. $A \times (B \cup C) = (A \times B) \cup (A \times C)$
- c. $A \times (B C) = (A \times B) (A \times C)$
- d. Si: $A \subset B \Rightarrow A \times C \subset B \times C$, $\forall C$
- e. Si: $A \subset B \ y \ C \subset D$

Interpretación de Regiones Sombreadas

"Sólo A", "exclusivamente A" o "únicamente A". (A - B)

[&]quot;Ocurre A o B"; A \cup B

[&]quot;Al menos uno de ellos" o

[&]quot;Por lo menos uno de ellos"

 $A \cap B$, "ocurre A y B" "Ocurre ambos sucesos a la vez" "Tanto A como B"

"Ocurre solo uno de ellos" "Únicamente uno de ellos"

"Exactamente uno de ellos"

"Ocurre exactamente dos de ellos" "Sucede únicamente dos de ellos"

 $(B \cup C) - A$ (ocurre B o C pero no A)

PROBLEMAS RESUELTOS

1. Dados los conjuntos

$$A = \{6,\{2\}, \{\phi\}\} y$$

$$B = \{\phi, \{\phi\}, \{\{2\}\}, \{\{6\}\}\}\$$

Hallar $P(A) \cap B$

Resolución

Como A = $\{6,\{2\},\{\emptyset\}\}$

$$\Rightarrow P(A) = \begin{cases} \{6\}, \{\{2\}\}, \{\{\phi\}\} \\ \{6, \{2\}\}, \{6, \{\phi\}\}, \{\{2\}, \{\phi\}\} \end{cases} \\ A, \phi \end{cases}$$

Además
$$B = \{\phi, \{\phi\}, \{\{2\}\}, \{6\}\}$$

Luego: $P(A) \cap B = \{\phi, \{\{2\}\}, \{6\}\}\}$ Rpta.

2. Dado el conjunto A

$$A = \{1, 2, \{2\}, \{1, 2\}\}\$$

Indicar el valor de verdad de las siguientes afirmaciones

I.
$$\{1,\{2\}\}\subset A$$

II.
$$\{\{1,\{2\}\}\}\}\in P(P(A))$$

III.
$$\{\phi, \{2\}\} \in P(A)$$

- a) VVV b) VFV d) FVV e) VVF
 - c) VFF

- d) FVV

Resolución

Analizando cada caso

I. $\{1,\{2\}\}\subset A$ $\Rightarrow \underbrace{1 \in A} \land \{2\} \in A = Verdadero$

II.
$$\{\{1,\{2\}\}\}\in P(P(A))$$

 $\Rightarrow \{\{1,\{2\}\}\}\subset P(A)$

$$\equiv \{1,\{2\}\} \in P(A)$$

$$\equiv \{1,\{2\}\} \subset P(A)$$

$$\equiv \{1, \{2\}\} \subset A$$

$$= \{1, \{2\}\} \subset A$$

$$= \underbrace{1 \in A \land \{2\}}_{} \in A = Verdadero$$

III.
$$\{\phi, \{2\}\} \in P(A)$$

$$\Rightarrow \{\phi, \{2\}\} \subset A$$

$$\equiv \phi \in A \land \{2\} \in A \equiv Falso Rpta. E$$

- 3. De un grupo de 100 alumnos, 49 no llevan el curso de Aritmética, 53 no llevan álgebra y 27 no llevan álgebra ni aritmética. ¿Cuántos alumnos llevan uno de los cursos?
 - a) 56 b) 54 c) 52 d) 50 e) 48

Resolución

Sea A: Aritmética

X : Algebra

$$n(A') = 49 \rightarrow n (A) = 100 - 49 = 51$$

 $n(X') = 53 \rightarrow n (B) = 100 - 53 = 47$

Gráficamente

Llevan un solo curso

Por dato:

$$c + 27 = 49 \rightarrow c = 22$$

 $a + 27 = 53 \rightarrow a = 26$
Luego $a + c = 48$

Rpta. E

- 4. Durante un examen se observó en un aula que 15 alumnos miraban al techo y no usaban lentes, 10 usaban lentes y resolvían el examen. El número de alumnos que usaban lentes y miraban al techo era el doble de los que resolvían el examen y no usaban lentes. Si en el salón había 85 alumnos. ¿Cuántos resolvían su examen? (considere que los que no resolvían su examen miraban al techo)
 - a) 20 b) 25 c) 24 d) 30 e) 36

Resolución: Gráficamente:

Resuelven examen Miran al techo

En total:

$$3a + 25 = 85$$

$$3a = 60$$

$$a = 20$$

∴ Resuelven el examen 30 **Rpta. D**

5. Dados los conjuntos A, B y C

$$A = \{1,2,3,4,5,6,\dots,21,22\}$$

$$B = \{x \in A / x \text{ es un número primo}\}\$$

$$C = \{x \in A \mid x \text{ es un número impar}\}\$$

Y las proposiciones:

I.
$$B \triangle C = \{1,2,9,15,21\}$$

II (B
$$\cap$$
 C) tiene "7 elementos"

III
$$n(C - B) - n(B - C) = 2$$

IV.
$$n [A - (B \cup C)] = 9$$

Son verdaderas:

- a) I, II y III b) I, III, IV
- c) II, III y IV d) I, II y IV
- e) I y II

Resolución

$$A = \{1,2,3,4,5,6,....,21,22\}$$

$$\mathsf{B} = \{2,3,5,7,11,13,17,19\}$$

$$C = \{1,3,5,7,9,11,13,15,17,19,21\}$$

Graficando

Α

Luego:

I.
$$B \triangle C = \{1,2,9,15,21\} :: (V)$$

II
$$n(B \cap C) = 7 : (V)$$

III.
$$n(C-B) - n(B-c) = 2$$

$$4 1 = 3 : (F)$$

IV.
$$n(A - (B - C)) = 9 : (F)$$

$$n(A - (B \cup C)) = 10$$
 Rpta. E

6. Si

$$A = \{x \text{ es impar } /6 < x \le 11\}$$

$$\mathsf{B} \, = \, \left\{ \frac{3n-1}{2} \in Z/0 < n < 7 \right\}$$

Calcular n $[P[(A \times B) - (B \times A)]]$

- a) 2²⁰
- b) 2²²

c) 2²⁴

d) 2²⁶ e) 2²⁸

Resolución:

$$A = \{7,9,11\}$$

$$\mathsf{B} \, = \, \left\{ \frac{3n-1}{2} \in \mathbb{Z} / -\frac{1}{2} < \frac{3n-1}{2} < 10 \right\}$$

$$B = \{0,1,2,3,....,9\}$$

$$n[AxB - BxA] = n[AxB] - n[AxB \cap B \times A]$$

$$n[AxB - BxA] = 3 \times 10 - 2 \times 2 = 26$$

$$n[P[AxB - BxA]] = 2^{26}$$

- 7. De 308 personas interrogadas, se determinó que el número de los que leen solamente "EL AMAUTA" y "EL VOCERO" es:
- * $\frac{1}{3}$ de los que leen solo "EL AMAUTA"
- * $\frac{1}{4}$ de los que leen solo "EL MERCURIO"
- * $\frac{1}{7}$ de los que leen solo "EL VOCERO"
- * $\frac{1}{3}$ de los que leen "EL AMAUTA" y "EL VOCERO"
- * $\frac{1}{6}$ de los que leen "EL VOCERO" y el "MERCURIO" solamente.
- * $\frac{1}{12}$ de los que leen "EL AMAUTA" o "EL MERCURIO" pero no "EL VOCERO"

Si todas las personas interrogadas leen al menos uno de estos diarios. ¿Cuántas de estas personas leen o bien "EL AMAUTA" o bien "EL VOCERO"?

- a) 110
- b) 121
- c) 132
- d) 99
- e) 120

Resolución:

Gráficamente:

$$28a = 308$$