QoS

QoS

Quality of Service

Tecnologías de Red en Internet

¿Qué es QoS?

- Una colección de técnicas que permite a las aplicaciones o usuarios solicitar o recibir un determinado nivel de de servicio predecible en términos de:
 - Ancho de banda (throughput)
 - Retardo (delay)
 - Variación de retardo (jitter)
 - Pérdida de paquetes (*)
- Dos arquitecturas propuestas en IPv4 para brindar QoS:
 - IntServ o Servicios Integrados
 - DiffServ o Servicios Diferenciados

QoS - IntServ

- Flujo: IP origen y destino, protocolo, puerto origen y destino
- Opera sobre flujos individuales reservando recursos suficientes en los routers de extremo a extremo, para satisfacer los requerimientos de QoS del mismo.
- Puede trabajar unicast o multicast
- Un router debe ser capaz de proveer la QoS adecuada para cada flujo.
- Es necesario un protocolo para reservar los recursos que se requieren a lo largo de la ruta.

IntServ - RSVP (RFC 2205)

- RSVP (Resource Reservation Protocol)
- Reserva en una dirección (sentido)
- La reserva de recursos al router es definida por el receptor
- Dos mensajes básicos
 - Path message (Fuente a el/los destinos)
 - Reservation message (del destino a el/las fuentes)
- Siguen la ruta definida por el sistema de ruteo. No es un protocolo de ruteo.
- Flexible para cambio de rutas o grupos dinámicos

RSVP - PATH

H1 quiere iniciar una sesión con 137.194.1.1

RSVP - RSV

RSVP

RSVP - PATH

- Se envía desde la fuente.
- Especifica el tráfico de la fuente.
- Genera un "soft state" en cada router donde se identifica la sesión y la dirección IP del salto previo.
- Se envía al siguiente router según la tabla de ruteo.
- Recorre el/los caminos hasta llegar a el/los destinatarios.
- Puede transportar una descripción de las capacidades de los nodos (la QoS que efectivamente se puede brindar).

RSVP-RESV

- Lo envía el destinatario.
- Indica las características del tráfico a recibir (ejemplo HD o full HD).
- Sigue la ruta inversa al PATH correspondiente.
- Cada router chequea al recibir el RESV si:
 - existen las autorizaciones correspondientes
 - existen los recursos solicitados
- Si alguna de las condiciones anteriores falla se envía al destinatario un ResvErr.
- Si las condiciones tienen éxito:
 - se configura el clasificador y el scheduler
 - se envía un mensaje RESV al nodo anterior

RSVP - Bloques

RSVP - Resumen

- Antes de crear una sesión desde la fuente al receptor, el receptor debe comunicarse con la fuente por un mecanismo fuera de banda.
- La reserva se hace efectiva en el mensaje RESV.
- Las reservas son en el "plano de control" (reserva vs control).
- ¿Que sucede con el tráfico best effort sin reservas?
- Directamente sobre IP (protocol 46)
- El paquete IP lleva la opción IP Router Alert (RFC 2113) para que los routers revisen el paquete y no conmuten.
- Requiere refrescar el estado "soft state"
- Problemas de escalabilida, pocas implementaciones.

Conceptos de QoS

- Scheduler:
- Clasifier:
- Admision Control:
- Policy Control:

DiffServ - Servicios Diferenciados

- Busca la diferenciación de servicios en IP de manera escalable y gestionable.
- Agrega el tráfico en conjuntos "grandes" (en vez de flujos).
- IP: se utilizan 6 bits del TOS para DSCP (Differentiated Service Code Point)
- Asignar una marca (DSCP) al ingresar el tráfico a la red, luego cada enrutador en el camino toma acciones de acuerdo a la marca.

DiffServ - IPv4

1 byte		1 byte	1 byte	1 byte	
Vers.	IHL	TOS	Total Length		
Identification			Flags	FO	
TTL Prot		Protocol	Header Checksum		
Source IPv4 address (4 bytes)					
Destination IPv4 address (4 bytes)					
Options			Padding		

DiffServ - IPv6

Type Of Service vs Precedence IPv4

RFC 791 (IP precedence) – traducción sencilla a 802.1p

	_						
7	6	5	4	3	2	1	0
7		5	4	3	2	1	0
7	6	5	4	3	2	1	0

Class Selector Codepoints

Drop Precedence

RFC 2481

(ECN)

RFC 2474 (DiffServ)

PHB RFC 2597 y 2598

TOS IP (8 bits)

Ι.							
l	CSx	Significado histórico	Uso generalizado				
	111	Network Control	Tráfico de control				
	110	Internetwork Control	(ej: routing)				
	101	CRITIC/ECP	Voz				
	100	Flash Override	Vconf., streaming				
	011	Flash	Call signaling				
	010	Immediate	Libres para clasificar tráfico de datos				
	001	Priority	tráfico de datos				
	000	Routine	default				

DiffServ

- DSCP: PHB (per hop behaivour).
- PHB define el tratamiento en cada nodo.
- El DSCP es seteado en la frontera y en los routers internos es examinado para asociar el PHB.
- La mayor complejidad residirá en los nodos exteriores.
- Requiere Service Level Agreement (SLA) (estático o dinámico)
 - Es un contrato entre un cliente y un proveedor de servicio
 - Especifica el tráfico que el cliente puede mandar
 - Especifica el compromiso del ISP con el cliente para los tráficos dentro y fuera del acuerdo
 - Otras consideraciones contractuales (ej: penalizaciones)

Arquitectura de un nodo Exterior

- El clasificador: selecciona paquetes de acuerdo a ciertos criterios y los redirecciona.
 - MF (MultiField)
 - BA (Behaviour Aggregate) basado en el DS.
- El acondicionador de tráfico: Traffic Profile.

Arquitectura de un nodo Exterior

- Traffic Profile: Descripción del tráfico, definido como los parámetros de un balde con goteo o un balde de tokens.
- In-profile vs Out-of-profile :
- In-profile puede ser mandado sin ningún otro procesamiento o marcado o remarcado.
- Out-of-profile
 - Reshaped
 - Remarked
 - Dropped

Componentes del acondicionador de tráfico:

Meter: realiza mediciones temporales del conjunto de paquetes seleccionados por el clasificador contra el TCA (Traffic Conditioning Agreement).

Marker: marca el campo DS con un código particular asociándolo a un BA particular.

Shaper: retarda algunos o todos los paquetes para que cumplan con el traffic profile.

Dropper: descarta algunos o todos los paquetes para que cumplan con el traffic profile.

Tecnologías de Red en Internet

Arquitectura de un nodo interior

- PHB: es una descripción del comportamiento de reenvío observado exteriormente (caja negra)
- Verifico la marca de DSCP/DS y en base a ello asigno a una cola.
- Hace referencia a como un nodo asignan los recursos al tráfico agregado.
- Puede ser implementado por diferentes mecanismos:
 - Garantizar un X% del ancho de banda de un link.
 - Garantizar un Y% del ancho de banda de un link, el tráfico excedente, recibe proporcionalmente un reparto de los recursos libres.
 - Colas de prioridad estricta de un tráfico por sobre otros.

PHB

- PHBs:
 - Best-Effort (BE, codepint 0) o Default PHB
 - Assured Forwarding (AFxy RFC 2597)
 - Expedited Forwarding (EF RFC 2598)

DiffServ - PHB - EF

- Alta prioridad: pocas pérdidas, baja latencia, bajo jitter, bw garantizado. DSCP recomendado 101110 (46)
- La tasa mínima de salida asegurada en todo router al agregado de paquetes EF debería ser mayor a la tasa máxima de entrada.

$$\frac{\lambda \text{ packets/s}}{\text{Min } \mu > \text{Max } \lambda}$$

- Debe ser servido al menos a la tasa configurada (µ, medida en un intervalo), independiente del tráfico no-EF
- Implementación : Colas con prioridades, WFQ, etc.
- El objetivo es que el flujo agregado vea siempre (o casi) la cola vacía.

DiffServ – PHB – Assured Forwarding (AF)

- 4 clases de PHBs (AF1x, AF2x, AF3 y AF4x) independientes
- Cada AF tiene una reserva en cada nodo (BW, buffer)
- Cada AF tiene 3 probabilidades de descarte (drop)

DSCP xxxyy0 : xxx la clase, yy la drop precedence

Drop precedence alta implica mayor probabilidad de descarte

- No hay relación entre probabilidades de descarte de clases diferentes
- A cada clase se le debe asignar una cantidad mínima de recursos y puede obtener más si hay exceso

 $p_L \le p_M \le p_H$

Drop	Class 1	Class 2	Class 3	Class 4	Drop prob.
Low	001010	010 <mark>01</mark> 0	011010	100 <mark>01</mark> 0	p_L
	AF11	AF21	AF31	AF41	
Medium	001100	010100	011100	100100	рм
	AF12	AF 22	AF32	AF42	
High	001110	010110	011110	100110	рн
	AF13	AF23	AF33	AF43	

DiffServ - Schedulers

- Ejemplo Weigth Round Robin
- Otros: strict priority

DiffServ – RED (Random Early Detection)

- Existe la alternativa de remarcar DSCP en vez de descartar.
- El buffer es único, puedo utilizar diferentes umbrales y probabilidades de descarte.
- El buffer es único para todos los DSCP.
- Los DSCP puede ir a diferentes colas de salida.

DiffServ – RED In/Out Profile (RIO)

DiffServ y MPLS

- Los LSRs no ven el DSCP
- Bits "EXP" definidos en RFC 3270 : "Multi-Protocol Label Switching (MPLS) Support of Differentiated Services"
- Son 6 bits para DSCPs y solo 3 bits en el campo EXP de MPLS
- Mapear varios PHBs del DSCP a un mismo valor EXP: PHB Scheduling Class (PSC). Es posible remarcar de otras formas.
- Dentro de MPLS el PHB se define por los bits EXP.
- El paquete IP no pierde el DSCP.

PHB y Ethernet

- ¿Qué sucede cuando en el camino hay dispositivo que solo trabajan en capa 2?
- El campo de prioridad en 802.1Q es análogo al DSCP
- Solo 8 valores frente a los 64 DSCPs.
- Los conmutadores ethernet suelen soportar una cola de prioridad (EF) y una serie de colas con pesos (AF)
- Los puntos de ingreso y egreso son dispositivos que ven el valor de DSCP, deben "mapearlo" a la combinación de p-bit adecuada.

