Mathematical Engineering - A.Y. 2022-23

Real and Functional Analysis - Written exam - July 12, 2023

Exercise 1. Consider the measure space $([0, +\infty), \mathcal{L}([0, +\infty)))$ with the Lebesgue measure. Define the sequence of functions $\{f_n\}_{n\in\mathbb{N}}$ by

$$f_n(x) = \frac{e^{-nx} + n^2 e^{-x}}{n + n^2 + (1 + n^2)x^2}, \quad x \in [0, +\infty), \quad n \in \mathbb{N}.$$

- (1) Study the convergence a.e. of the sequence $\{f_n\}_{n\in\mathbb{N}}$.
- (2) Study the convergence in $L^1([0,+\infty))$ of the sequence $\{f_n\}_{n\in\mathbb{N}}$.
- (3) Consider the sequence $g_n(x) = f_n(x) + \chi_{[n,n+1]}$. Study the convergence in $L^1([0,+\infty))$ of the sequence $\{g_n\}_{n\in\mathbb{N}}$.

Solution.

(1) Let $x \in (0, +\infty)$

$$f_n(x) = \frac{e^{-nx} + n^2 e^{-x}}{n + n^2 + (1 + n^2)x^2} = \frac{\frac{e^{-nx}}{n^2} + e^{-x}}{1 + \frac{1}{n} + \frac{(1 + n^2)}{n^2}x^2} \longrightarrow \frac{e^{-x}}{1 + x^2} \quad \text{for } n \to +\infty$$

Therefore the sequence $\{f_n\}_{n\in\mathbb{N}}$ converges to the function $f(x)=\frac{e^{-x}}{1+x^2}$ almost everywhere in $[0,\infty).$

(2) In order to show that the sequence $\{f_n\}_{n\in\mathbb{N}}$ converges in $L^1([0,+\infty))$ to the function f, we are going to use the dominated convergence theorem. We first observe that for each $n \in \mathbb{N}$, we have

$$n + n^2 + (1 + n^2)x^2 \ge n^2 + (1 + n^2)x^2 \ge n^2(1 + x^2)$$

and

$$e^{-nx} + n^2 e^{-x} = n^2 \left(\frac{e^{-nx}}{n^2} + e^{-x} \right) \le n^2 (1 + e^{-x})$$

Therefore we have

$$|f_n(x)| = \frac{e^{-nx} + n^2 e^{-x}}{n + n^2 + (1 + n^2)x^2} \le \frac{n^2(1 + e^{-x})}{n^2(1 + x^2)} = \frac{1 + e^{-x}}{1 + x^2} \le \frac{2}{1 + x^2}$$

Letting $g(x) = \frac{2}{1+x^2}$ and observing that $g \in L^1([0,+\infty))$, we get that the sequence $\{f_n\}_{n\in\mathbb{N}}$ converges in $L^1([0,+\infty))$ to f, thanks to the dominated convergence theorem.

(3) Let $h_n(x) = \chi_{[n,n+1]}(x)$. The sequence $\{h_n\}_{n\in\mathbb{N}}$ converges almost everywhere to $h(x) \equiv 0$. Indeed, for every $x \in [0, +\infty)$, there exists $n_0 \in \mathbb{N}$ such that n > x for every $n \geq n_0$, which implies $h_n(x) = 0$ for every $n \geq n_0$. Notice that the sequence $\{h_n\}_{n \in \mathbb{N}}$ does not converge in $L^1([0,+\infty))$. Indeed, the candidate limit is h, which has norm zero, and

$$||h_n||_1 = \int_n^{n+1} 1 dx = 1$$

for every $n \in \mathbb{N}$. Hence the sequence $\{h_n\}_{n\in\mathbb{N}}$ does not converge in $L^1([0,+\infty))$. Finally, suppose by contradiction that the sequence $\{g_n\}_{n\in\mathbb{N}}$ converges in $L^1([0,+\infty))$. Observing that $h_n = g_n - f_n$, and that $\{f_n\}_{n \in \mathbb{N}}$ converges in $L^1([0, +\infty))$ by item (1), we would obtain the convergence in $L^1([0,+\infty))$ of the sequence $\{h_n\}_{n\in\mathbb{N}}$, which is a contradiction. We conclude that $\{g_n\}_{n\in\mathbb{N}}$ does not converge in $L^1([0,+\infty))$.

Exercise 1:

1) Let
$$x \in [0;+\infty)$$
.
$$\int_{n}^{\infty} (x) = \frac{e^{-nx} + n^{2}e^{-x}}{n + n^{2} + (1 + n^{2})x^{2}} = \frac{e^{-nx}}{n + n^{2} + (1 + n^{2})x^{2}} + \frac{n^{2}e^{-x}}{n + n^{2} + (1 + n^{2})x^{2}}$$

$$\int_{n}^{\infty} (x) = \frac{e^{-nx}}{n + x^{2} + n^{2}(1+x^{2})} + \frac{n^{2}e^{-x}}{n + x^{2} + n^{2}(1+x^{2})} = \frac{e^{-nx}}{n + x^{2} + n^{2}(1+x^{2})} + \frac{e^{-x}}{n + x^{2} + n^{2}(1+x^{2})}$$

$$\xrightarrow{n \to \infty} 0 \qquad \xrightarrow{n \to +\infty} \frac{e^{-x}}{1+x^{2}}$$

So
$$\{f_n\}_n$$
 converges to f pointwisely, so a.e. in $[o; t\infty)$.

27 If
$$\{dn\}_n$$
 CV in $L^1([o;too))$, it is to the some limit f .

$$\|\{f_n-f\|_{L^1} = \int_0^{+\infty} |\{f_n(x)-f(x)\}| dx = \int_0^{+\infty} \left|\frac{e^{-nx}+n^2e^{-x}}{n+n^2+(1+n^2)x^2} - \frac{e^{-x}}{n+n^2}\right| dx$$

$$S_0: |h(N)| \leq \frac{n^{2}(1+e^{-n})}{n^{2}(1+n^{2})} \leq \frac{2}{1+n^{2}} \leq g(n)$$

We have: f_u are all neume in $L([0]+\infty)$; $f_n \longrightarrow f$ are $\ln[0]+\infty$; and $\ln F(N)$, $|f_n(x)| \leq f(n) \forall x \in [0]+\infty$.

by then can apply the DCT:

$$\lim_{n\to +\infty} \int_{0}^{+\infty} |f_{n}(x) - f_{n}(x)| dx = \int_{0}^{+\infty} \lim_{n\to +\infty} |f_{n}(x) - f_{n}(x)| dx$$

$$= 0 \quad \text{a.e. in } [0] + \infty$$

$$= 0 \quad \text{d.e. } [0$$

$$\int_{0}^{+\infty} \left| \int_{0}^{+\infty} \left|$$

So, e.e: $|f_n(n)-f_n(n)|=0$ So, a.e: $f_n(n):f(n)$ So: $\int f_n(n)dx = \int f(n)dx$ So: $\int f_n(n)-f_n(n)dn = 0$ ork. **Exercise 2.** Consider the sequence $\{x_n\}_{n\in\mathbb{N}}$ with $x_n\in\ell^\infty$ for any $n\in\mathbb{N}$, defined by

$$x_n = (x_n^{(k)})_{k \in \mathbb{N}}, \text{ with } x_n^{(k)} := \begin{cases} (-1)^k, & \text{if } k \le n \\ 0, & \text{otherwise} \end{cases}$$

- (1) Is the sequence $\{x_n\}_{n\in\mathbb{N}}$ bounded in ℓ^{∞} ? Justify the answer.
- (2) Compute the pointwise limit of the sequence $\{x_n\}_{n\in\mathbb{N}}$.
- (3) Denote by x the pointwise limit of the sequence $\{x_n\}_{n\in\mathbb{N}}$. Does $\{x_n\}_{n\in\mathbb{N}}$ converge weak* to x in ℓ^{∞} ? Justify the answer.

Solution.

(1) For any $n \in \mathbb{N}$, we have

$$||x_n||_{\infty} = \sup_k |x_n^{(k)}| = 1,$$

hence

$$\sup_{n} \|x_n\|_{\infty} = 1$$

so that we get the boundedness of $\{x_n\}_{n\in\mathbb{N}}$ in ℓ^{∞} .

(2) We first observe that

$$x_1 = (-1, 0, 0, \dots)$$

 $x_2 = (-1, 1, 0, 0, \dots)$
 $x_3 = (-1, 1, -1, 0, 0, \dots).$

Therefore for each fixed $k \in \mathbb{N}$, $x_n^{(k)} = (-1)^k$ for every $n \ge k$. Thus, the sequence $\{x_n\}_n$ converges pointwisely to $x = (x^{(k)})_{k \in \mathbb{N}} = ((-1)^k)_{k \in \mathbb{N}}$, as $n \to +\infty$.

(2) Since $\ell^{\infty} \simeq (\ell^1)^*$, x_n converges weakly* to x in ℓ^{∞} , as $n \to +\infty$, if and only if

$$\left| \sum_{k=1}^{\infty} x_n^{(k)} y^{(k)} - \sum_{k=1}^{\infty} x^{(k)} y^{(k)} \right| \to 0, \quad \text{for any } y = (y^{(k)})_{k \in \mathbb{N}} \in \ell^1.$$

Let $y \in \ell^1$ be arbitrarily fixed, we have

$$\left| \sum_{k=1}^{\infty} x_n^{(k)} y^{(k)} - \sum_{k=1}^{\infty} x^{(k)} y^{(k)} \right| = \left| \sum_{k=n+1}^{\infty} (-1)^k y^{(k)} \right| \le \sum_{k=n+1}^{\infty} \left| y^{(k)} \right| \to 0$$

indeed this is the remainder of a convergent series $(y \in \ell^1)$.

By the above observations, we get the weak* convergence of the sequence $\{x_n\}_{n\in\mathbb{N}}$ to $x\in\ell^{\infty}$.

 $\{x_n\}_{n\in\mathbb{N}}\subset \ell^\infty$. $\forall h\in\mathbb{N}, x_n=(x_n^{(k)})_{k\in\mathbb{N}}, \text{ with } x_n^{(k)}:=\{-1\}^k$ if $k\in\mathbb{N}$ 1) For any $n\in\mathbb{N}$, we have $\|x_n\|_{b_n}=\sup_{k\in\mathbb{N}}\|x_n^{(k)}\|_{b_n}=1$.

So $\sup_{n\in\mathbb{N}}\|x_n\|_{\infty}=1$. So $\|x_n\|_{b\in\mathbb{N}}$ is bounded in ℓ^∞ .

2) We can see that $\forall k > n$, $\chi_n^{(h)} \ge 0$. $\exists So: \forall k \in \mathbb{N}, \ \alpha_n^{(h)} \xrightarrow{n \to +\infty} (-1)^h$.

 $\{x_n\}_{n\in\mathbb{N}}$ pointwisely converges to $x=(-1)^k\}_{k\in\mathbb{N}}$.

3) "We can idntify (12)" and 100"

$$\left| \sum_{h=1}^{\infty} x_h^{(h)} y_h^{(h)} - \sum_{h=1}^{\infty} x_h^{(h)} y_h^{(h)} \right| = \left| \sum_{h=2}^{\infty} (x_1 h y_h^{(h)} - \sum_{h=1}^{\infty} (x_2 h y_h^{(h)}) - \sum_{h=1}^{\infty} (x_1 h y_h^{(h)}) - \sum_{h=1}^{\infty} (x_2 h y_h^{(h)}) - \sum_{h=1}^{\infty} (x_1 h y_h^{(h)}) - \sum_{h=1}^{\infty} (x_1$$

Exercise 3. Let $X = \ell^2$ and consider the linear operator $T: X \to X$ defined by

$$[T(x)]^{(k)} := \begin{cases} x^{(1)} - x^{(2)}, & \text{if } k = 1\\ \\ \frac{x^{(k+1)}}{2}, & \text{if } k \ge 2 \end{cases} \quad \forall x = (x^{(k)})_{k \in \mathbb{N}} \in X.$$

- (1) Prove that T is continuous.
- (2) Is T surjective? Is T injective? Justify the answers.
- (3) Is T compact? Justify the answer.

Solution.

(1) Let $x \in X$, we have

$$||T(x)||_{2}^{2} = \sum_{k=1}^{+\infty} |[T(x)]^{(k)}|^{2} = |x^{(1)} - x^{(2)}|^{2} + \sum_{k=3}^{+\infty} \frac{|x^{(k)}|^{2}}{4}$$

$$\leq 2|x^{(1)}|^{2} + 2|x^{(2)}|^{2} + \sum_{k=3}^{+\infty} |x^{(k)}|^{2}$$

$$\leq 2||x||_{2}^{2},$$

where the inequality at the second row comes by Young's inequality. Thus we obtain

$$||Tx||_2 \le \sqrt{2} ||x||_2.$$

This proves the boundedness of the operator T; since T is linear, it is a continuous operator.

(2) Surjectivity: T is surjective, indeed let y be an arbitrary element of ℓ^2 and let us prove that there exists $x \in \ell^2$ such that y = T(x). Given $y = (y^{(1)}, y^{(2)}, y^{(3)}, y^{(4)}, \dots)$, it is sufficient to take

$$x = (2y^{(1)}, y^{(1)}, 2y^{(2)}, 2y^{(3)}, \dots),$$

so that

$$T(x) = \left(2y^{(1)} - y^{(1)}, \frac{2y^{(2)}}{2}, \frac{2y^{(3)}}{2}, \dots\right) = (y^{(1)}, y^{(2)}, y^{(3)}, \dots) = y.$$

Injectivity: T is not injective, indeed if we take x = (1, 1, 0, ...) then T(x) = (0, 0, 0, ...). Hence, $x \in \ker(T)$, so that $\ker T \neq \{0\}$.

(3) Since X is an infinite dimensional Banach space and T is surjective, T cannot be compact (cf. open mapping theorem).

Exercise 3:

$$X=l^2$$
 and consider the linear operator $T:X\to X$ defined by:
$$\left[T(x)\right]^{(k)}:=\begin{cases} x^{(1)}-x^{(2)} & \text{if } k=1\\ \frac{x^{(k+1)}}{2} & \text{if } ky_2 \end{cases} \mid \forall x=(x^{(k)})_{k\in\mathbb{N}} \in X.$$

1) · As mentionned, T is linear.

· T continuous: we can show that T is bounded.

Let
$$x \in \ell^2$$
. $\left\| T x \right\|_2^2 = \sum_{k=1}^{100} \left| (T x)^{(k)} \right|^2 = \sum_{k=2}^{100} \left| \frac{x^{(k+1)}}{2} \right|^2 + \left| (x^{(k)}_{-1})^{(k)} \right|^2$

$$\leq \frac{1}{4} \sum_{k=3}^{100} \left| x^{(k)} \right|^2 + \left| x^{(1)}_{-1} x^{(2)} \right|^2$$

$$\leq \sum_{k=3}^{100} \left| x^{(k)} \right|^2 + 2\left| x^{(1)} \right|^2 + 2\left| x^{(2)} \right|^2 \leq 2 \left\| x \right\|_{\ell^2}^2$$

Thus: $\|Tx\|_2 \le \sqrt{2} \|x\|_2$.
T is bounded. Therefore: T is continuous.

2) . Injectivity: Let
$$x = (1, 1, 0, 0, ...) \neq Q_{2}$$

$$x \in \ell^{2} \text{ clearly since } \sum_{k=1}^{\infty} |x^{(k)}|^{2} = 2 = ||x||_{2}^{2}.$$
We have: $Tx = (0, 0, 0, ...) = 0_{\ell^{2}}$ whereas
$$x \neq 0. S_{0} \text{ ker}(T) \neq \{0_{\ell^{2}}\}. \text{ By this observation:}$$

Tis not injective.

$$x \in \ell^2$$
: $x = (2y^{(2)}, y^{(2)}, 2y^{(2)}, 2y^{(3)}, ...)$

So $||x||_{\ell^2}^2 = \sum_{k=1}^{+\infty} |x^{(k)}|^2 = 4\sum_{k=2}^{+\infty} |y^{(k)}|^2 - 3|y^{(2)}|^2 < +\infty$

So $x \in \ell^2$. As a conclusion:

 $||x||_{\ell^2}^2 = \sum_{k=2}^{+\infty} |y^{(k)}|^2 + \sum_{k=2}^{+\infty} |y^{(k)}|^2 < +\infty$

$$\begin{array}{lll} & e_{n}^{(n)} = \left| \begin{array}{c} 1 & \text{if } i = n \\ 0 & \text{otherwise} \end{array} \right|^{2} & \text{Te}_{n}^{(n)} = \left| \begin{array}{c} 0 & \text{jointhistice} \\ \end{array} \right|^{2} & \text{Te}_{n}^{(n)} = \left| \begin{array}{c} 0 & \text{jointhistice} \\ \end{array} \right|^{2} & \text{Te}_{n}^{(n)} = \left| \begin{array}{c} 0 & \text{jointhistice} \\ \end{array} \right|^{2} & \text{Te}_{n}^{(n)} = \left| \begin{array}{c} 0 & \text{jointhistice} \\ \end{array} \right|^{2} & \text{Te}_{n}^{(n)} & \text{$$

We conclude that T is not a impact operator.

Gregotion: Since X is an infinite dimensional breach space and

Theory

Question 1. (4 points) State and prove the theorem of absolute continuity of the Lebesgue integral.

Solution. See Lecture 12.

Question 2. (4 points) Let (X, A) be a measurable space. Prove or disprove the following statements:

- (1) $A \in \mathcal{A} \Leftrightarrow \chi_A \in \mathcal{M}(X, \mathcal{A});$
- (2) $f \in \mathcal{M}(X, \mathcal{A}) \Leftrightarrow f_{\pm} \in \mathcal{M}(X, \mathcal{A});$
- (3) $f \in \mathcal{M}(X, \mathcal{A}) \Leftrightarrow |f| \in \mathcal{M}(X, \mathcal{A}).$

Solution. See Lectures 5 and 6.

Question 3. (4 points) State the Banach-Alaoglu theorem. State and prove the variant of the Banach-Alaoglu theorem in reflexive spaces.

Solution. See Lecture 22.

Question 4. (4 points) Let $T: H \to H$ be a linear and bounded operator on the Hilbert space H.

- (i) Write the definitions of:
 - (1) T is symmetric;
 - (2) T is compact;
 - (3) resolvet set and spectrum of T.
- (ii) State the spectral theorem for T.

Solution. See Lectures 22 and 24.