5 Ряды Фурье. Полнота и базисность ортонормированных систем

Опр. Пусть $\{e_k\}_{k=1}^{\infty}$ – ортонормированная система в евклидовом (унитарном) пространстве E. Pядом Фурье элемента $f \in E$ по системе $\{e_k\}_{k=1}^{\infty}$ называется ряд

$$\sum_{k=1}^{\infty} (f, e_k) e_k, \tag{5.1}$$

где (f,e_k) – коэффициенты Фурье.

Таким образом, элементу $f \in E$ мы сопоставили его ряд Фурье (5.1). Главный вопрос, конечно, заключается в том, сходится ли этот ряд и верно ли, что

$$f = \sum_{k=1}^{\infty} (f, e_k) e_k.$$

Начнем с доказательства важного утверждения, которое часто называют минимальным свойством коэффициентов Φ урье.

Лемма 5.1. *Частичная сумма ряда Фурье*

$$S_N(f) = \sum_{k=1}^{N} (f, e_k)e_k$$

является ортогональной проекцией элемента f на подпространство $L_N = \text{span}\{e_1, e_2, \dots, e_N\}$ и обладает следующим свойством:

$$||f||^2 - \sum_{k=1}^N |(f, e_k)|^2 = ||f - S_N(f)||^2 \le ||f - S_N||^2 \quad \forall \ S_N \in L_N.$$
 (5.2)

Доказательство. Заметим, что

$$f = S_N(f) + (f - S_N(f)),$$
 где $S_N(f) \in L_N, f - S_N(f) \in L_N^{\perp}.$

То, что $f - S_N(f) \in L_N^{\perp}$ следует из того, что

$$(f - S_N(f), e_j) = (f, e_j) - \sum_{k=1}^{N} (f, e_k)(e_k, e_j) = (f, e_j) - (f, e_j) = 0$$

для всех $1 \leqslant j \leqslant N$.

Таким образом, частичная сумма ряда Фурье $S_N(f)$ является ортогональной проекцией элемента f на L_N . Поэтому

$$||f - S_N(f)|| \le ||f - S_N|| \quad \forall S_N \in L_N.$$
 (5.3)

Кроме того, из ортогональности $S_N(f)$ и $f - S_N(f)$ следует

$$||f||^2 = ||S_N(f)||^2 + ||f - S_N(f)||^2,$$

то есть справедливо равенство

$$||f||^2 = \sum_{k=1}^{N} |(f, e_k)|^2 + ||f - S_N(f)||^2.$$
 (5.4)

Из (5.3) и (5.5) следует (5.2).

Лемма доказана.

Замечание 5.1. Обратим внимание на то. что величина $||f - S_N(f)||$ не убывает с ростом N.

Следствие 5.1. Справедливо неравенство Бесселя

$$\sum_{k=1}^{\infty} |(f, e_k)|^2 \leqslant ||f||^2. \tag{5.5}$$

Доказательство. Из равенства

$$||f||^2 = \sum_{k=1}^N |(f, e_k)|^2 + ||f - S_N(f)||^2.$$

следует, что

$$\sum_{k=1}^{N} |(f, e_k)|^2 \le ||f||^2 \quad \forall N \ge 1.$$

Следовательно ряд $\sum_{k=1}^{\infty} |(f, e_k)|^2$ сходится и справедливо неравенство Бесселя.

Следствие доказано.

Следствие 5.2. Справедливо следующее свойство коэффициентов Фурье:

$$(f, e_k) \to 0$$
 при $k \to \infty$.

Замечание 5.2. Обратим внимание на то, что равенство

$$||f||^2 - \sum_{k=1}^N |(f, e_k)|^2 = ||f - S_N(f)||^2$$

говорит о том, что $S_N(f) \to f$ при $N \to \infty$, то есть f разлагается в ряд Фурье

$$f = \sum_{k=1}^{\infty} (f, e_k) e_k,$$

тогда и только тогда, когда справедливо равенство

$$||f||^2 = \sum_{k=1}^{\infty} |(f, e_k)|^2.$$

Это равенство принято называть равенством Парсеваля.

Полнота и базисность ортонормированных систем

Напомним, что система элементов $\{e_k\}_{k=1}^{\infty} \subset E$ называется полной в E, если замыкание линейной оболочки span $(\{e_k\}_{k=1}^{\infty})$ совпадает с E.

Другими словами, система $\{e_k\}_{k=1}^{\infty}$ полна, если для каждого $f \in E$ и для каждого $\varepsilon > 0$ существует конечная линейная комбинация элементов системы $S_N = \sum_{k=1}^N \alpha_k e_k$ такая, что $\|f - S_N\| < \varepsilon$.

Теорема 5.1. Ортонормированная система $\{e_k\}_{k=1}^{\infty}$ полна тогда и только тогда, когда для каждого элемента $f \in E$ его ряд Фурье по системе $\{e_k\}_{k=1}^{\infty}$ сходится к f, то есть если

$$f = \sum_{k=1}^{\infty} (f, e_k) e_k \quad \forall f \in E.$$

Доказательство. Если для каждого $f \in E$ его ряд Фурье по системе $\{e_k\}_{k=1}^{\infty}$ сходится к f, то для всякого $\varepsilon > 0$ Найдется N такой, что $\|f - S_N(f)\| < \varepsilon$. Следовательно система $\{e_k\}_{k=1}^{\infty}$ полна.

Пусть система $\{e_k\}_{k=1}^{\infty}$ полна. Тогда для всякого $f \in E$ и для всякого $\varepsilon > 0$ существует линейная комбинация $S_N = \sum\limits_{k=1}^N \alpha_k e_k$, для которой $\|S_N - f\| < \varepsilon$. Тогда в силу минимального свойства коэффициетов Фурье и Замечания 5.1

$$||S_n(f) - f|| \le ||S_N(f) - f|| \le ||S_N - f|| < \varepsilon \quad \forall n \ge N.$$

Это означает, что ряд Фурье сходится к f.

Теорема доказана.

Следствие 5.3. Ортонормированная система полна тогда и только тогда, когда она является базисом.

Следствие 5.4. Во всяком сепарабельном гильбертовом пространстве *H* существует ортонормированный базис.

Доказательство. В силу теоремы 2.4 в H существует ортонормированная полная система. В силу предыдущего следствия эта система является базисом.

Теорема 5.2. Ортонормированная система $\{e_k\}_{k=1}^{\infty}$ полна тогда и только тогда, когда для всех $f \in E$ верно равенство Парсеваля

$$\sum_{k=1}^{\infty} |(f, e_k)|^2 = ||f||^2.$$
 (5.6)

Доказательство. См. замечание 5.1.

Теорема 5.3. В гильбертовом пространстве H ортонормированная система $\{e_k\}_{k=1}^{\infty}$ полна тогда и только тогда, когда

$$(\{e_k\}_{k=1}^{\infty})^{\perp} = O. (5.7)$$

Доказательство. Если система $\{e_k\}_{k=1}^{\infty}$ полна, то она образует базис в H. Пусть $f \in (\{e_k\}_{k=1}^{\infty})^{\perp}$. Тогда

$$f = \sum_{k=1}^{\infty} (f, e_k)e_k = 0.$$

Пусть теперь $\{e_k\}_{k=1}^{\infty}$ обладает свойством (5.7). Положим $L=\overline{\mathrm{span}(\{e_k\}_{k=1}^{\infty})}$ и заметим, что

$$x \in L^{\perp} \Rightarrow x \in (\{e_k\}_{k=1}^{\infty})^{\perp} = O \Rightarrow L^{\perp} = O.$$

Из разложения

$$H = L \oplus L^{\perp}$$
.

следует, что H=L, то есть система $\{e_k\}_{k=1}^{\infty}$ полна.

Теорема доказана.