Stratified-Medium Sound Speed Profiling for CPWC Ultrasound Imaging

Derrell D'Souza, MASc candidate

Supervisor: Dr. Daler Rakhmatov

Department of Electrical and Computer Engineering
University of Victoria

June 17, 2020

Outline

- Background and Contribution
- Proposed SOS Profiling Approach
- Computational Considerations
- Evaluation Results
- Conclusion and Future Work

Coherent Plane Wave Compounding (CPWC)

High resolution compounded frame

Phase-shift migration for PW imaging [1]

- Let the layers be indexed by l = 1, 2,, L
- Let $d_{(l)}$ and $c_{(l)}$ denote the thickness and sound speed of layer l, respectively
- Let $\pmb{\theta} = \{\theta_w, w = 1, 2,, W\}$ be the plane wave angles used
- PSM gives the wavefield at the time of explosion $P_{\theta}(x,z,t=0)$ using the recorded wavefield at the surface $P_{\theta}(x,z=0,t)$

Motivation

- Existing PSM is sensitive to speed and thickness mismatches
- In a stratified inhomogenous medium, errors in top layers propagate down to lower layers causing increased error in lower layers
- Incorrect sound speed and layer thickness values can result in overmigration or undermigration
- Can cause misregistration of point targets, poor contrast, degraded resolution, etc.

Our objective is to estimate the **SOS profile**, i.e., speed and thickness values of each layer in the stratified medium, and use these values to carry out PSM for image reconstruction.

Our contribution

Some of the related existing approaches:

- Krucker *et al.* [2] estimated the average sound speed using ray acoustics, where overlapping nonzero-angle images obtained using different speeds were automatically registered over a zero-angle image to achieve maximum correlation
- Qu et al. [3] relied on speckle analysis to estimate the average sound speed using the same pre-beamformed data with different assumed speeds to identify the image with the best focus quality

Our two-stage layer-by-layer approach:

- The first stage produces a sound speed estimate using cosine similarity metric, and the second stage produces a thickness estimate using boundary detection
- We use only raw RF data corresponding to two PW emission angles
- It enables self-calibrated migration of multi-angle raw RF data

Problem formulation

- Let $\mathbf{c}_{(l)} = \{c_{(l)}^{\min}, c_{(l)}^{\min} + \Delta c_{(l)}, c_{(l)}^{\min} + 2\Delta c_{(l)},, c_{(l)}^{\max}\}$ represent a set of distinct sound speed values for a given layer l
- Let $\mathbf{d}_{(l)} = \{d_{(l)}^{\min}, d_{(l)}^{\min} + \Delta d_{(l)}, d_{(l)}^{\min} + 2\Delta d_{(l)},, d_{(l)}^{\max}\}$ represent a set of distinct thickness values for a given layer l
- Let $\{\theta_a, \theta_b | \theta_a = 0^{\circ}, \theta_b \in \theta, \theta_a \neq \theta_b\}$ represent the two angles used for SOS profiling

The layer-by-layer sound speed estimation problem can be stated as follows:

Inputs: $\Psi_{\theta_a}(k_x, Z_{(l)}, f), \ \Psi_{\theta_b}(k_x, Z_{(l)}, f), \ \mathbf{c}_{(l)}, \ d_{(l)}^{\max}$

Output: $c_{(l)}^* \in \mathbf{c}_{(l)}$

Objective: Max
$$\rho\left(\mathbf{s}_{\theta_a}(c_{(l)}^*), \mathbf{s}_{\theta_b}(c_{(l)}^*)\right) = \frac{\mathbf{s}_{\theta_a}(c_{(l)}^*) \cdot \mathbf{s}_{\theta_b}(c_{(l)}^*)}{\|\mathbf{s}_{\theta_a}(c_{(l)}^*)\|_2 \cdot \|\mathbf{s}_{\theta_b}(c_{(l)}^*)\|_2}$$

Problem formulation (cont'd)

- $\rho\left(\mathbf{s}_{\theta_a}(c^*_{(l)}), \mathbf{s}_{\theta_b}(c^*_{(l)})\right)$ represents the *cosine similarity* between two vectors $\mathbf{s}_{\theta_a}(c^*_{(l)})$ and $\mathbf{s}_{\theta_b}(c^*_{(l)})$
- $\{\mathbf{s}_{\theta_k}, k \in \{a, b\}\}$ are obtained from migrated data $P_{\theta_k}(x, \hat{z}, t = 0)$ by performing a vectorization operation $\mathbf{V}\{.\}$

For thickness estimation, we apply a certain boundary detection operation $\mathbf{B}\{.\}$ on $P^*_{\theta_a}(x,\hat{z},t=0)$ (obtained using sound speed estimate $c^*_{(l)}$) over the depth range from $Z_{(l)}+d^{\min}_{(l)}$ to $Z_{(l)}+d^{\max}_{(l)}$.

Proposed SOS profiling method

Proposed SOS profiling method (cont'd)

Figure: Downward extrapolation during SOS profiling.

Sound speed estimation

- 1. Apply PSM to $\{\Psi_{\theta_k}(k_x,Z_{(l)},f),k\in\{a,b\}\}$, to extrapolate from $Z_{(l)}$ to $Z_{(l)}+d_{(l)}^{\max}$ to get $P_{\theta_k}(x,\hat{z},t)$
- 2. Apply $V\{.\}$ to convert $P_{\theta_k}(x,\hat{z},0)$ to vector $\mathbf{s}_{\theta_k}(c^i_{(l)})$. This can be done in two ways:
 - a) $P_{\theta_k}(x,\hat{z},0)$ is **summed** across the x-axis to form a z-axis vector
 - b) $P_{\theta_k}(x,\hat{z},0)$ is **stacked** into a vector by concatenating its columns
- 3. Compute cosine similarity $\rho\left(\mathbf{s}_{\theta_a}(c_{(l)}^i), \mathbf{s}_{\theta_b}(c_{(l)}^i)\right)$
- The above operations are performed for each sound speed value $c^i_{(l)}$ in $\mathbf{c}_{(l)}$, yielding a vector of cosine similarities $\mathbf{r}_{(l)}$
- The index of maximum value in ${f r}_{(l)}$ gives the location of sound speed estimate $c_{(l)}^*$ in vector ${f c}_{(l)}$

Layer thickness estimation (using beamformed data)

Line detection:

- 1. Restrict \hat{z} in $P^*_{\theta_a}(x,\hat{z},0)$ to the depth range $[Z_{(l)}+d^{\min}_{(l)},Z_{(l)}+d^{\max}_{(l)}]$
- 2. Perform max-normalization, averaging, binary thresholding, and morphological processing
- 3. Apply Hough transform to detect z-axis location corresponding to the end-of-layer boundary giving estimate $d_{(l)}^*$

Peak detection:

- 1. Restrict \hat{z} in $P^*_{\theta_a}(x,\hat{z},0)$ to the depth range $[Z_{(l)}+d^{\min}_{(l)},Z_{(l)}+d^{\max}_{(l)}]$
- 2. Sum restricted $P^*_{\theta_a}(x,\hat{z},0)$ along the x-axis to get vector $s_{\theta_a}(\hat{z})$
- 3. Find the peak position in this vector which gives us $d_{(l)}^{st}$

Computational considerations

- If Ψ_{θ_k} is of size $P \times Q$, then each $\Delta \hat{z}$ within l entails $P \times Q$ complex multiplications
- For most values in $\Psi_{p,q}=\Psi_{\theta_k}(k_x,0,f)$ we can skip phase shifting since they have relatively small magnitude
- We use cumulative sum vector $[\sigma_s]_{S\times 1}$ of the sorted vector $[\psi_r]_{S\times 1}$ ($S=P\times Q$ elements of $|\Psi_{p,q}|^2$, arranged in decreasing order of their values):

$$\sigma_s = \sum_{r=1}^s \psi_r$$

– Given the total energy $E=\sigma_S=\sum_{p,q}|\Psi_{p,q}|^2$, we define the threshold energy $T_e=\eta E$, where η is a fraction of energy to be retained in the spectrum

Computational considerations (cont'd)

– We find the first element in the cumulative sum vector $[\sigma_s]_{S\times 1}$, denoted by $\bar{\sigma}$, such that $\bar{\sigma}>T_e$, which gives us a binary threshold matrix \mathbf{T} to accompany $\Psi_{p,q}$:

$$\mathbf{T}(p,q) = \begin{cases} 0, & \text{if } |\Psi_{p,q}|^2 < \bar{\sigma} \\ 1, & \text{otherwise} \end{cases}$$

Operation	Computational complexity
2D Fourier transform	$O(N_x N_t \log(N_x N_t))$
Phase shifting	$O(N_x N_t^2) \to O(N_1 N_t)$
1D inverse Fourier transform	$O(N_x N_t \log(N_x))$
Linear interpolation	$O(N_x N_t)$
End-of-layer phase shift	$O(N_x N_t L) \to O(N_1 L)$
Cosine similarity	$O(N_x N_t N_c)$
Peak-based boundary detection	$O(N_x N_t)$

Note: N_1 is the number of 1's in matrix T(p, q).

SOS profiling in CPWC imaging

- Nine-angle CPWC data produced by the K-WAVE simulation of ultrasound propagation in the three-layer medium, mimicking tissue-bone-tissue layer arrangment
- True values of sound speed: 1540 m/s, 3198 m/s, and 1540 m/s, respectively
- True values of thickness: 5 mm, 7 mm, and 51 mm, respectively

Case	Vectorization method	Boundary detection method
1	Stacking	Line detection in migrated data
2	Summing	Line detection in migrated data
3	Stacking	Peak detection in migrated data
4	Summing	Peak detection in migrated data
5	Stacking	Line detection in raw data
6	Summing	Line detection in raw data
7	Stacking	Peak detection in raw data
8	Summing	Peak detection in raw data

Table: Different cases for SOS profiling in CPWC imaging.

SOS profiling in CPWC imaging (cont'd)

Figure: Migration results using estimated SOS profile, case 4. (a) True SOS profile, (b) Original (PWPSM), (c) Low-cost (LCPWPSM).

SOS profiling in CPWC imaging (cont'd)

Layer	Original				Low-cost			
	Speed		Thickness		Speed		Thickness	
	est.,	error,	est.,	error,	est.,	error,	est.,	error,
	m/s	%	mm	%	m/s	%	mm	%
I	1550	0.65	5.00	0.00	1550	0.65	5.00	0.00
П	3320	3.81	6.78	3.14	3260	1.93	6.78	3.14
Ш	1510	1.94	51.66	0.43	1530	0.65	51.66	0.43

Table: Estimated speed and thickness, case 4

Structural similarity index (SSIM)								
Case 1 2 3 4 5 6 7 8							8	
Original	0.944	0.944	0.947	0.964	0.962	0.945	0.961	0.935
Low-cost	0.941	0.940	0.945	0.958	0.956	0.940	0.956	0.931

Table: CPWC image SSIM when using estimated vs. true SOS profile.

Conclusion

Average error in estimates (%)								
Estimation	Evaluation	PWPSM	LCPWPSM	SAPSM	LCSAPSM	single-layer		
type	type					CPWC		
Speed	Stacking	1.36	1.46	_	_	0.60		
Speed	Summing	1.01	1.22	_	_	0.88		
Thickness	Line detection	1.38	1.40	0.48	0.48	_		
Thickness	Peak detection	1.59	1.59	0.51	0.51	_		
Thickness	Beamformed data	1.42	1.43	0.45	0.45	_		
Thickness	Raw RF data	1.52	1.53	0.54	0.54	_		

- Overall speed estimation errors are within 4% for PWPSM and LCPWPSM and within 1% for single-layer CPWC imaging using PW Stolt's migration
- Overall thickness estimation errors are within 4% for PWPSM and LCPWPSM and within 0.6% for SAPSM and LCSAPSM

Conclusion and Future work

Future work

- Investigating methods to adaptively determine the energy threshold settings
- Investigating efficient polar approximations during downward extrapolation
- Merging sound speed and thickness estimation into a single optimization problem
- Using deep learning approaches to reconstruct migrated data

References

- [1] M. Albulayli, "Migration-based image reconstruction methods for plane-wave ultrasound imaging," Ph.D. dissertation, University of Victoria, Victoria, Canada, 2018.
- [2] J. Krucker, J. B. Fowlkes, and P. L. Carson, "Sound speed estimation using automatic ultrasound image registration," *IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control*, vol. 51, no. 9, pp. 1095–1106, 2004.
- [3] X. Qu, T. Azuma, J. T. Liang, and Y. Nakajima, "Average sound speed estimation using speckle analysis of medical ultrasound data," *International Journal of Computer Assisted Radiology and Surgery*, vol. 7, no. 6, pp. 891–899, 2012.

Thank You