Marks and Channels

Visual Encoding

how to systematically analyze idiom structure?

- marks & channels
 - marks: represent items or links
 - channels: change appearance of marks based on attributes

Marks for Items

• Basic geometric elements

• 3D mark, volume, rarely used

Marks for Links

Containment can be Nested

Channels

- control appearance of marks
 - proportional to or based on attributes
- many names
 - visual channels
 - visual variables
 - retinal channels
 - visual dimensions

Visual Encoding

- analyze idiom structure
 - as combination of marks and channels

Redundant Encoding

- multiple channels
 - sends stronger message
 - but uses up channels

Spot the Problem

https://twitter.com/ChaseThomason/status/1118478036507164672

When to use which channel?

expressiveness

match channel type to data type

effectiveness

some channels are better than others

Channels

Channels: Matching Types

expressiveness principle

- match channel and data characteristics
 - magnitude for ordered
 - how much? which rank?
 - identity for categorical
 - what?

Channels: Matching Types

expressiveness principle

- match channel and data characteristics
 - magnitude for ordered
 - how much? which rank?
 - identity for categorical
 - what?

Channels: Rankings

match channel and data characteristics effectiveness principle

encode most important attributes with highest ranked channels

Channels: Rankings

Marks: Constrained vs Encodable

math view: geometric primitives have dimensions

- constraint view: mark type constrains what else can be encoded
 - points: 0 constraints on size, can encode more attributes w/ size & shape
 - lines: 1 constraint on size (length), can still size code other way (width)
 - areas: 2 constraints on size (length/width), cannot use size code or shape code

Channel Effectiveness

- Accuracy:
 - how precisely can we tell the difference between encoded items?
- Discriminability:
 - how many unique steps can we perceive?
- Separability:
 - is our ability to use this channel affected by another one?
- Popout:
 - can things jump out using this channel?

Accuracy: Fundamental Theory

- length is accurate: linear
- others magnified or compressed
 - exponent characterizes

- S = sensation
- I = intensity

Accuracy: Visualization Experiments

 [Crowdsourcing Graphical Perception: Using Mechanical Turk to Assess Visualization Design. Heer and Bostock. Proc ACM Conf. Human Factors in Computing Systems (CHI) 2010, p. 203–212.]

Discriminability: How many usable steps?

- must be sufficient for number of attribute levels to show
 - linewidth: few bins but salient

Separability vs. Integrality

Position + Hue (Color)

Fully separable

Size
+ Hue (Color)

Some interference

Width + Height

Some/significant interference

Red + Green

Major interference

Group Discussion: Marks / Channel?

https://archive.nytimes.com/www.nytimes.com/interactive/2013/05/25/sunday-review/corporate-taxes.html