

Algebra (Computer Science)

Bonus Exercises: Week 2

Exercise 1. Let $\mathcal{R} = (A, A, R)$ be a homogeneous binary relation. We say that \mathcal{R} is *antisymmetric* if for any $x, y \in A$ we have the implication:

$$x\mathcal{R}y$$
 and $y\mathcal{R}x \Rightarrow x = y$

Give 3 examples of antisymmetric relations, defined on different sets and find all the homogeneous binary relations on a set A that are both symmetric and antisymmetric.

Exercise 2. Let (G, +) be an abelian group and $H \leq G$ a subgroup of G. We define the following relation on G:

$$x \rho_H y \stackrel{\text{def}}{\iff} x - y \in H$$

Prove that ρ_H is an equivalence relation on G and describe its quotient set G/ρ_H . What happens if G is not abelian?

Exercise 3. Let G = (V, E) be a directed graph, where V is the set of vertices and $E \subseteq \{(x, y) | x, y \in V\}$ is the set of edges (loops are allowed). We define on V the binary relation:

$$\forall x,y \in V: x \sim y \iff (x,y) \in E$$

For each of the properties: **reflexivity**, **symmetry**, **transitivity**, **anti-symmetry**, draw a directed graph with 5 vertices, for which \sim satisfies the respective property, but not the other 3.

Draw a directed graph G with 10 vertices, for which \sim is an equivalence relation and explain/describe what the quotient set G/\sim is.

Exercise 4. We define on $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ the following relation:

$$(a,b) \sim (c,d) \iff ad = bc$$

Show that it is an equivalence relation and describe its quotient set $\frac{\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})}{\sim}$

Exercise 5. Let \mathbb{E} be the set of points in the geometric plane. On \mathbb{E}^2 (the set of pairs of points) we define the following relation (called **equipollence**):

 $(A,B) \sim (C,D) \stackrel{\text{def}}{\Longleftrightarrow}$ the segments [AD] and [BC] have the same midpoint

Prove that \sim is an equivalence relation and find its quotient set \mathbb{E}^2/\sim . What do the elements of this quotient set represent (geometrical interpretation)?

Exercise 6. Let \mathbb{R}^3 be the three-dimensional Euclidean space. We define on it the following relation:

$$(x_1, y_1, z_1) \sim (x_2, y_2, z_2) \iff \exists \alpha \in \mathbb{R} : (x_1, y_1, z_1) = \alpha \cdot (x_2, y_2, z_2)$$

Show that \sim is an equivalence relation on \mathbb{R}^3 and describe the quotient set $\frac{\mathbb{R}^3\setminus\{0\}}{\sim}$ (geometrical interpretation).