Year 12 Mathematics Extension 2 TRIALS 2006 – Suggested Solutions (LK)

	Solutions to Questions	Marking Scheme	Comments
Que	stion 1		
(a)	$\int \frac{2x}{1+2x} dx = \int 1 - \frac{1}{1+2x} dx$	1 for changing the integral	
	$= x - \frac{1}{2} \ln 1 + 2x + c$	1 correct integration	
(b)	Let the Lee brothers be L_1 and L_2 Let the Abey brothers be A_1 , A_2 and A_3 . Then there are 10 others. \therefore # possibilities is 365 ways. $ \begin{array}{c cccc} \hline L & A & \text{Others} \\ \hline 1 & 0 & 10 \\ \hline 1 & 1 & 9 \\ \hline 1 & 2 & 8 \\ \hline 0 & 1 & 10 \\ \hline 0 & 2 & 9 \end{array} $ $ \therefore 2 + 60 + 270 + 3 + 30 = 365 [\text{using } {}^nC_r]$	1 for correct answer 2 for justification	
(c)	$\lim_{x \to -5} \frac{\sqrt{20 - x} - 5}{5 + x} \times \frac{\sqrt{20 - x} + 5}{\sqrt{20 - x} + 5}$ $= \lim_{x \to -5} \frac{20 - x - 25}{(5 + x)(\sqrt{20 - x} + 5)}$	1 for multiplying by conjugate	
	$= \lim_{x \to -5} \frac{-1}{\sqrt{20 - x} + 5}$ $= -\frac{1}{10}$	1 correct simplification & answer	

	Solutions to Questions	Marking Scheme	Comments
Question 1 continued			
(d)	$(1+z)^8 = \binom{8}{0} + \binom{8}{1}z + \binom{8}{2}z^2 + \dots + \binom{8}{7}z^7 + \binom{8}{8}z^8$	1 correct expansion	
	Let $z = 1$ then $2^8 = \binom{8}{0} + \binom{8}{1} + \binom{8}{2} + \dots + \binom{8}{8}$	1 correct substitution of $z = 1$ and the correct answer.	
	$\therefore \text{ sum of coefficients} = 2^8 \text{ or } 256.$		
(e) (i)	Since $3x^2 - y^2 = 12$ then we get $6x - 2y \frac{dy}{dx} = 0 \therefore \frac{dy}{dx} = \frac{3x_1}{y_1} \text{ at } T.$	1 correct differential 1 gradient at <i>T</i> .	
	$\therefore \text{ equation of tangent: } y - y_1 = \frac{3x_1}{y_1}(x - x_1)$	1 correct tangent equation	
(ii)	since this tangent meets the line $x = 1$		
	$\therefore y = \frac{3x_1 - 12}{y_1} \& \text{ since } F(4, 0)$		
$\therefore F$	$M_{\text{grad}} = -\frac{(x_1 - 4)}{y_1} \& FT_{\text{grad}} = \frac{y_1}{x_1 - 4}$	1 + 1 for correct gradients	
	$M \times FT = -1$:: $FM \perp FT$.	1 correct justification of $FM \perp FT$.	

Solutions to Questions	Marking Scheme	Comments
Question 2		
(a)(i) $z = 2 \operatorname{cis}(-\frac{\pi}{4})$	1 for modulus 1 for argument	
(ii) $z^{22} = \left[2cis\left(-\frac{\pi}{4}\right)\right]^{22}$ by De Moivre's Theorem $= 2^{22} \left[\cos\left(-\frac{22\pi}{4}\right) + i\sin\left(-\frac{22\pi}{4}\right)\right]$	1 correct use of De Moivre's theorem	
$=2^{22}\left[\cos\left(\frac{11\pi}{2}\right)-i\sin\left(\frac{11\pi}{4}\right)\right]$	1 correct simplification	
$=2^{22}(0-i)=2^{22}i.$	1 correct answer	
$= 2^{22} (0i) = 2^{22} i.$ (b)(i) Since $a^2 + b^2 > 2ab$ then similarly	1 correctly writing the other two	
$a^2 + c^2 > 2ac$ and $b^2 + c^2 > 2bc$.	inequalities.	
$\therefore 2(a^2 + b^2 + c^2) > 2(ab + bc + ac)$	1 correct inequality	
$\therefore a^2 + b^2 + c^2 > ab + bc + ac \text{ as required}$		
(ii) Since $a + b + c = 6$ Then $(a + b + c)^2 = 36$		
$\therefore a^2 + b^2 + c^2 + 2ab + 2bc + 2ac = 36$	1 correct expansion	
But from part (i) $a^2 + b^2 + c^2 > ab + bc + ac$ $\therefore a^2 + b^2 + c^2 + 2ab + 2bc + 2ac > 3(ab + bc + ac)$	•	
$\therefore 36 > 3(ab + bc + ac)$	1 correct substitution	
$\therefore ab + bc + ac < 12 \text{ as required.}$		

Solutions to Questions	Marking Scheme	Comments
Question 2 continued		
(c)(i) $I_n = \frac{1}{n!} \int_0^1 x^n e^{-x} dx$, $n \ge 0$ By integration by parts		
$= \frac{1}{n!} \left[-x^n e^{-x} \right]_0^1 - \frac{1}{n!} \int_0^1 \left[-nx^{n-1} e^{-x} \right] dx$	1+1 marks	
$= \frac{1}{n!} \left[-e^{-1} \right] + \frac{n}{n!} \int_{0}^{1} \left[x^{n-1} e^{-x} \right] dx$	1 mark	
$= -\frac{e^{-1}}{n!} + \frac{1}{(n-1)!} \int_{0}^{1} \left[x^{n-1} e^{-x} \right] dx$		
$=I_{n-1}-\frac{e^{-1}}{n!} \text{ as required.}$		
(ii) $I_4 = I_3 - \frac{e^{-1}}{4!} = I_2 - \frac{e^{-1}}{3!} - \frac{e^{-1}}{4!}$		
$= I_1 - \frac{e^{-1}}{2!} - \frac{e^{-1}}{3!} - \frac{e^{-1}}{4!}$ $= I_0 - \frac{e^{-1}}{1!} - \frac{e^{-1}}{2!} - \frac{e^{-1}}{3!} - \frac{e^{-1}}{4!}$	1 up to this line	
$= \frac{1}{0!} \int_{0}^{1} e^{-x} dx - \frac{e^{-1}}{1!} - \frac{e^{-1}}{2!} - \frac{e^{-1}}{3!} - \frac{e^{-1}}{4!}$	r	
$= -[e^{-x}]_0^1 - e^{-1} \left(\frac{41}{24}\right)$	1 for this line	
$=1-\frac{65}{24e}$	1 correct answer	

Solutions to Questions	Marking Scheme	Comments
Question 3 continued (ii) $y = e^{f(x)}$		
(ii) $y = e^{f(x)}$	1 shape	
	1 asymptote / turning point	
$(iii)y = \ln(f(x))$		
	1 shape	
	1 x intercept / asymptote	
(b) $(x^2 - 5)(x^2 + 3)$ over rational field $(x - \sqrt{5})(x + \sqrt{5})(x - 3i)(x + \sqrt{3}i)$ over complex field	1 correct factorization 1 correct factorisation	

	Solutions to Questions	Marking Scheme	Comments
Que	stion 3 continued		
(c)			
(d)	$\int_{0}^{\frac{\pi}{2}} \frac{1 - \tan x}{1 + \tan x} dx = \int_{0}^{\frac{\pi}{2}} \frac{\cos x - \sin x}{\cos x + \sin x} dx$	1 correct conversion to sin & cos	
	$= \left[\ln\left \cos x + \sin x\right \right]_0^{\frac{\pi}{2}}$	1 correct integration + answer	
	= 0		

Solutions to Questions	Marking Scheme	Comments
Question 4		
(a) $T \le 20 \times 9.8$ But $T = m \omega^2 r$	$1 T \leq 20 \times 9.8$	
$\therefore m \omega^2 r \leq 20 \times 9.8$		
$\therefore 4 \times \omega^2 \times \frac{1}{2} \leq 20 \times 9.8$		
$\therefore \omega^2 \le 98 \text{ rads/ sec}$	1	
$\therefore \omega \le \sqrt{98} \times 60 \times \frac{1}{2\pi} \text{ revs / min}$	1 converting to revs/ min & correct answer	
∴ greatest no. of revolutions 94 revs/ min		
(b) $\int_{a}^{a^{2}} \frac{dx}{x \ln x} = [\ln(\ln x)]_{a}^{a^{2}}$	1 correct integration	
$= \ln \left(\ln a^2 \right) - \ln(\ln a)$		
$= \ln\left(\frac{\ln a^2}{\ln a}\right)$ $= \ln 2$	1 correct use of log. Rule 1 correct answer	

(c) (i) $\partial V = 2\pi xy \partial x$	1 showing correct volume of slice	
$\therefore \text{ Total volume} = \int_{0}^{\frac{\pi}{2}} 2\pi x (\cos^2 x - \cos 2x) dx$	1 correct integral + limits	
$=\int_{0}^{\frac{\pi}{2}}2\pi(x-x\cos^{2}x)dx$	1 correct simplified integral	
$= \frac{1}{2}x^2 - \frac{1}{2}x\left(x + \frac{1}{2}\cos 2x\right)_0^{\frac{\pi}{2}}$	1 correct use of IBP	
$=\frac{\pi^2}{8} - \frac{1}{2} \left(\frac{\pi^2}{8} - \frac{1}{4} - \frac{1}{4} \right)$	1 correct integration by parts	
$= \left(\frac{\pi^3}{8} + \frac{\pi}{2}\right) \text{ units}^3$	1 correct answer in terms of π .	
$(d) \int_{0}^{4} \cos x \left(e^{x} - e^{-x}\right) dx$		Note: students do not need to physically find
Since cos x is an EVEN function & $e^x - e^{-x}$ is an ODD function, EVEN \times ODD \rightarrow ODD	1 + 1 for correct justification	the integral!
$\therefore \int_{-4}^{4} \cos x \left(e^x - e^{-x}\right) dx = 0$	1 correct answer	

Solutions to Questions	Marking Scheme	Comments
Question 5		
(a) (i) $\frac{x^4}{x^2 + 1} = A(x^2 - 1) + \frac{B}{x^2 + 1}$ Let $x = 0 \Rightarrow B - A = 0$ Let $x = 1 \Rightarrow \frac{1}{2} = \frac{1}{2} \times B$ $\therefore B = 1 \text{ and } A = 1$	1 substituting a reasonable x values1 correct answers for A and B.	
$(ii) \qquad \int_0^1 x^3 \tan^{-1} x \ dx$		
$= \left[\frac{x^4}{4} \tan^{-1} x\right]_0^1 - \frac{1}{4} \int_0^1 \frac{x^4}{1+x^2} dx$	1 + 1 for integration by parts	
$= \frac{\pi}{16} - \frac{1}{4} \left[\frac{x^3}{3} - x + \tan^{-1} x \right]_0^1$	1 for integration	
π 1 π	1 substitution	
$= \frac{\pi}{16} + \frac{1}{6} - \frac{\pi}{6}$ $= \frac{1}{6}$	1 correct answer	

Solutions to Questions	Marking Scheme	Comments
Question 5 continued		
(b)(i) particle moving upwards & acceleration is acting		
downwards : $a = -\frac{k}{x^2}$		
When $x = R$, $a = g$ $\therefore k = gR^2.$	1 for finding k in terms of g and R .	
$\therefore \frac{d}{dx} \left(\frac{1}{2} v^2 \right) = \frac{-gR^2}{x^2} \text{ since } a = \frac{d}{dx} \left(\frac{1}{2} v^2 \right)$	1 for finding a in terms of g and R	
$\therefore \frac{1}{2}v^2 = \frac{gR^2}{x} + c$	1 integration	
Now when $x = R$, $v = u$ initially $\therefore c = \frac{1}{2}u^2 - gR$	1 for <i>c</i>	
$\therefore v^2 = u^2 - 2gR + \frac{2gR^2}{x}$ (ii) when $u = \sqrt{2gR} \rightarrow v^2 = \frac{2gR^2}{x}$	$1 v^2$ equation	
$\therefore v = \frac{dx}{dt} = \sqrt{\frac{2gR^2}{x}}, v > 0$ $\therefore \frac{dt}{dx} = \frac{\sqrt{x}}{\sqrt{2gR^2}}$		
$\therefore \frac{1}{dx} - \frac{1}{\sqrt{2gR^2}}$ $\therefore t = \int_{R}^{4R} \frac{x^{\frac{1}{2}}}{\sqrt{2gR^2}} dx = \frac{1}{\sqrt{2gR^2}} \left[\frac{2}{3} x^{\frac{3}{2}} \right]_{R}^{4R}$	1 for $\frac{dt}{dx}$	
$\therefore t = \frac{14}{3} \sqrt{\frac{R}{2g}}$ $\sqrt{2gR} \sqrt{2gR} \sqrt{3} $	1 correct integration for t	
3 √2 <i>g</i>	1 correct answer	

Solutions to Questions	Marking Scheme	Comments
Question 6		
(a) 4 players There are 4C_1 ways of choosing the team Then we need four players of the 10: ${}^{10}C_4$ ways The 5 th player is chosen from the remaining 30 in ${}^{30}C_1$ way		
: total number of ways = ${}^{4}C_{1} \times {}^{10}C_{4} \times {}^{30}C_{1} = 25200$	1 correct answer + 1 justification	
5 players → ${}^{4}C_{1} \times {}^{10}C_{5} = 1008$ ways ∴ p(at least 4 players from same team)	1 correct answer	
$=\frac{25200+1008}{\binom{40}{5}}=\frac{1}{25}$	1 correct probability	
(b)		
Q θ T_1 θ T_2 θ		

Solutions to Questions	Marking Scheme	Comments
Question 6 continued		
(b) (i) By trig. $R = l\sin\theta$ and $h = 2l\cos\theta$.	$1 \sin\theta$ and $\cos\theta$ relationships	
Resolving forces:		
Vertically: $0 = mg + T_2 \cos \theta - T_1 \cos \theta$.	1 vertical force	
$\therefore mg = (T_1 - T_2)\cos\theta. \implies \mathbb{O}$		
Horizontally: $m \omega^2 r = T_1 \sin \theta + T_2 \sin \theta$	1 horizontal force	
$\therefore m(l\sin\theta) \ \omega^2 = (T_1 + T_2)\sin\theta. \implies \Box$		
From ① $\rightarrow T_1 - T_2 = \frac{mg}{\cos \theta} = \frac{2mgl}{h}$		
From $\Box \rightarrow T_1 + T_2 = ml \omega^2$	1 rearrangements of equation	
	1 correct addition & simplification	
(ii) $\Box - \odot \Rightarrow T_2 = ml \left(\frac{1}{2} \omega^2 - \frac{g}{h} \right)$ (iii) String <i>PS</i> (hence <i>PQ</i>) will only remain stretched is	1 for answer	
$T_2 > 0 :: \left(\frac{1}{2}\omega^2 - \frac{g}{h}\right) > 0$	1 knowing $T_2 > 0$	
$\therefore \omega > \sqrt{\frac{2g}{h}}$	1 showing answer is true	
(iv) If $T_1: T_2 = 2: 1$ then $\omega^2 = \frac{6g}{h}$	1 getting ω^2	
$\therefore \ \omega = \sqrt{\frac{6g}{h}} \ \therefore \text{ period of motion} = \frac{2\pi}{\omega} = \frac{2\pi}{\sqrt{\frac{h}{6\pi}}}$	1 for ω + 1 period	
$\sqrt{6g}$		

Solutions to Questions	Marking Scheme	Comments
Question 7		
(a)(i) $\alpha^3 + \beta^3 + \gamma^3 = (\alpha + \beta + \gamma)^3 + 3\alpha\beta\gamma$	(1) correct relationship	
$\therefore (\alpha + \beta + \gamma)^3 + 3\alpha\beta\gamma$ $= (\alpha + \beta + \gamma)(\alpha^2 + \beta^2 + \gamma^2 - \alpha\beta - \alpha\gamma - \beta\gamma) + 3\alpha\beta\gamma$ $= 0 + 3(-q) = -3q$	(1) correct expansion (1) correct answer	
(ii) Let $X = \frac{\alpha}{\beta \gamma} = \frac{\alpha^2}{\alpha \beta \gamma} = -\frac{\alpha^2}{q}$ $\therefore \alpha^2 = -qX$ But $\alpha^3 + p\alpha + q = 0$ as α is a root	(1) a^2 equation	
$\therefore -qX\alpha + p\alpha + q = 0$ $(qX - p)\alpha = q$ $(qX - p)^{2}a^{2} = q^{2}$	(1)	
$\therefore (qX - p)^2(-qX) = q^2$ $\therefore X(qX - p)^2 = -q$	(1) correct solution	
(b) (i) ∴ gradient of normal at P is t^2 ∴ equation is given by $\left(y - \frac{c}{t}\right) = t^2(x - ct)$	(1) correct gradient & use of point – gradient formula.	
Which leads to the required equation. (ii) $N\left(\frac{c-tc^3}{t(t^2-1)}, \frac{c-tc^3}{t(t^2-1)}\right)$	(1) correct coordinates.	
(iii) $\tan \angle NOP = \begin{vmatrix} 1 + \frac{1}{t^2} \\ 1 - \frac{1}{t^2} \end{vmatrix} = \begin{vmatrix} 1 + t^2 \\ t^2 - 1 \end{vmatrix} = \begin{vmatrix} 1 + t^2 \\ 1 - t^2 \end{vmatrix}$	 (1) Finding angles + (1) conclusion ∴ ΔONP is isosceles (equal base angles) 	Can also show PN = OP
$\tan \angle ONP = \left \frac{1 + t^2}{1 - t^2} \right \therefore \angle NOP = \angle ONP$		

Solutions to Questions	Marking Scheme	Comments
Question 7 continued		
(c) (i) $y = \frac{4}{x} - x$	(1) correct shape	
	(1) correct roots & Asymptotes	
(ii) $y = \sqrt{f(x)}$	(1) + (1) for each arm	

Solutions to Questions	Marking Scheme	Comments
Question 8		
(a)(i) Since $y = x \tan \theta - \frac{gx^2 \sec^2 \theta}{2V^2}$ (÷ by $gsec^2 \theta / 2V^2$)		
$\therefore x^2 - \frac{2V^2 \tan \theta}{g \sec^2 \theta} x = \frac{-2V^2}{g \sec^2 \theta} y$	(1)	
By completing the square:		
$\therefore x^2 - \frac{2V^2}{g}\sin\theta\cos\theta x + \left(\frac{V^2}{g}\sin\theta\cos\theta\right)^2$	(1) completing the square	
$= \frac{-2V^2 \cos^2 \theta}{g} y + \frac{V^4}{g^2} \sin^2 \theta \cos^2 \theta$		
$\therefore \left[x - \frac{V^2}{g} \sin \theta \cos \theta \right]^2 = -\frac{2V^2 \cos^2 x}{g} \left[y - \frac{V^2}{2g} \sin^2 \theta \right]$	(1) putting in the form $(x - h)^2 = 4a(y - k)$.	
Which is of the form $(x - h)^2 = 4a(y - k)$.		
(ii) The focal length is $\frac{1}{4} \times -\frac{2V^2 \cos^2 \theta}{g} = \frac{V^2 \cos \theta}{2g}$	(1) focal length	
Horizontal range when $y = 0$		
$\therefore x \tan \theta - \frac{gx^2 \sec^2 \theta}{2V^2} = 0 \implies x \left(\tan \theta - \frac{gx \sec^2 \theta}{2V^2} \right) = 0$		
$\therefore \text{ ignore } x = 0 \text{ , then } x = \frac{V^2 \sin 2\theta}{g} \therefore \text{ since } \frac{2V^2 \cos \theta}{2g} = \frac{V^2 \sin 2\theta}{g}$	(1) for RANGE	
we get $\cos\theta = \sin 2\theta = 2\sin\theta \cos\theta$; $\cos\theta \neq 0$		
$\therefore \sin\theta = \frac{1}{2} \implies \theta = \frac{\pi}{3}$	(1) answer	

Solutions to Questions	Marking Scheme	Comments
Question 8 continued		
(b)(i) $\frac{1}{2}(p+q) \ge \sqrt{pq}$. RTP $\frac{1}{4}(p+q)^2 - pq \ge 0$ LHS = $\frac{1}{4}(p^2 + 2pq + q^2 - 4pq)$	(1) mark	
$= \frac{1}{4} \left(p - q \right)^2 \ge 0$	(1) mark	
(ii) $\frac{1}{2}(p+q) \ge \sqrt{pq}$. now ÷ by $\sqrt{q} > 0$	(1) mark	
$\Rightarrow \frac{1}{2} \left(\frac{p}{\sqrt{q}} + \frac{q}{\sqrt{q}} \right) \ge \sqrt{p}$		
$\Rightarrow \frac{1}{2} \left(\frac{p}{\sqrt{q}} + \sqrt{q} \right) \ge \sqrt{p}$ as required		
(c)(i) see attached		