CUADERNOS DE MATEMÁTICA DE LA ESCUELA POLITÉCNICA NACIONAL

HOLGER CAPA SANTOS

SERIES TEMPORALES

La ciencia y el arte de los pronósticos

Cuaderno de Matemática No. 10

SERIES TEMPORALES: LA CIENCIA Y EL ARTE DE LOS PRONÓSTICOS HOLGER CAPA SANTOS

Responsable de la Edición: ? Revisión técnica: ?

Asistentes: Andrés Merino **Portada**: Andrés Merino

Registro de derecho autoral No. ISBN:

Publicado por la Unidad de Publicaciones de la Facultad de Ciencias de la Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito, Ecuador.

Primera edicion: 2015 Primera impresion: 2015

© Escuela Politécnica Nacional 2015

Índice general

1	Mod	delos de F	Heteroscedasticidad Condicional	3
	1.1	Modelos	Arch–Garch Simétricos	3
	1.2	Modelos	GARCH asimétricos	5
	1.3	Metodol	ogía de la Modelición	7
	1.4	Ejemplos	s con Heteroscedasticidad Condicional	8
2	Mod	delos Mul	ltivariantes de Series Temporales	11
	2.1	Procesos	Estacionarios	11
		2.1.1 P	Proceso estrictamente estacionario	11
		2.1.2 P	Proceso débilmente estacionario	11
	2.2	Matrices	s de Correlación Cruzada (Cross-Correlation)	12
		2.2.1 D	Dependencia Lineal	13
	2.3	Modelos	s de Vectores Autoregresivos (VAR)	17
		2.3.1 E	El caso bivariante	17
		2.3.2 R	Representación general de un VAR	19
	2.4	Represer	ntación VARMA de una Serie Multivariante	21
		2.4.1 L	a representación VMA	21
		2.4.2 R	Representación lineal de un VAR(p)	21
		2.4.3 L	a representación VARMA	23
	2.5	Formula	ción de un modelo VAR	24
		2.5.1 E	Sstimación	24
		2.5.2 D	Determinación del número de retardos	25
		2.5.3 D	Diagnóstico y validación del modelo	26
	2.6	Prediccio	ón	29
Ín	dice .	Alfabético	0	31

Índice de figuras

1.1	FAC y FACP estimadas residuales del Modelo 3 para la SVM	8
1.2	FAC y FACP estimadas de los residuos cuadráticos del Modelo 3 para la SVM	8
1.3	FAC y FACP estimadas residuales del Modelo 3-ARCH(1) para la SVM	9
1.4	FAC y FACP estimadas de los residuos cuadráticos del Modelo 3-ARCH(1) para la SVM	9
2.1	Correlaciones cruzadas entre X_{1t} y X_{2t}	16
2.2	Correlaciones cruzadas entre X_{1t} y X_{3t}	16
2.3	Correlaciones cruzadas entre X_{2t} y X_{3t}	17

Índice de tablas

1.1	Información sobre los coeficientes del Modelo 3 para la SVM	8
1.2	nformación estadística para el Modelo 3-ARCH(1) para la SVM	9
2.1	Resumen de estadísticas y matrices de correlación cruzada para X_{1t} , X_{2t} y X_{3t}	15

Notaciones

E(.) : Esperanza matemática de una variable aleatoria.

V(.): Varianza de una variable aleatoria.

Cov(.,.): Covarianza de dos variables aleatorias.

 $N(\mu, \sigma^2)$: Distribución normal con media μ y varianza σ^2 .

: Denota un estimador del parámetro estadístico que se encuentra bajo el

símbolo.

c : De manera general, representa a una constante numérica.

i.i.d : Representa a la frase: independientes e idénticamente distribuidas.

i.i.d (0,1): Variables aleatorias independientes e idénticamente distribuidas con esperan-

za matemática 0 y varianza 1.

 $\gamma(l)$: Función de autocovarianza de orden l.

 $\rho(l)$: Función de autocorrelación de orden l.

r(l): Función de autocorrelación parcial de orden l.

 1_A : Función indicatriz sobre el conjunto A.

 $L_c^2(\Omega)$: Espacio de variables aleatorias de Ω en C, de cuadrado integrable.

 $L_c^2(E)$: Espacio de funciones medibles de E en C, de cuadrado integrable.

 Σ : Matriz de varianzas - covarianzas

 Σ_u : Matriz de varianzas – covarianzas residuales

: Significa: por tanto

Capítulo 1

Modelos de Heteroscedasticidad Condicional

1.1 Modelos Arch-Garch Simétricos

En esta sección, se presentará un breve resumen de la teoría desarrollada alrededor de los modelos ARCH – GARCH, los cuales determinan un patrón de comportamiento estadístico para la varianza condicional, denominados modelos Auto-Regresivos con Heteroscedasticidad Condicional.

El análisis de series temporales económicas, tradicionalmente se ha centrado en el estudio de modelos para la media condicional en los que se asume que la varianza condicional es constante; en este caso se dice que existe homoscedasticidad. Si este no fuera el caso, se estaría enfrentado un problema de no estacionariedad de la serie.

En 1982, Robert Engle revolucionó los modelos de volatilidad introduciendo el estudio de las estructuras cuadráticas, ampliando así la visión de la metodología Box–Jenkins, en la cual los modelos lineales de tipo ARIMA admiten que las innovaciones son un ruido blanco, con media cero y varianza constante.

Los modelos de volatilidad condicional son importantes por el papel que juega el riesgo y el concepto de incertidumbre en el desarrollo de las teorías modernas de modelos financieros, que relacionan de forma directa el riesgo con la volatilidad. Estos modelos permiten relacionar el valor de la varianza condicional (no constante) en función del conjunto de información disponible en periodos anteriores; están específicamente diseñados para modelar y pronosticar varianzas condicionales.

Definición 1.1. *Un Modelo ARCH*(r) *se define por:*

$$Z_t = \sqrt{h_t} u_t$$

$$h_t = \alpha_0 + \alpha_1 Z_{t-1}^2 + \ldots + \alpha_r Z_{t-r}^2$$

donde los (u_t) son independientes e idénticamente distribuidos con media cero y varianza uno (i.i.d. (0,1)), $\alpha_0 > 0$ y $\alpha_i \ge 0$ para i > 0.

En la práctica se supone que $u_t \sim N(0,1)$ o que siguen una distribución t-student. Los coeficientes α_i deben satisfacer ciertas condiciones (en general no negatividad: $\alpha_0 > 0$ y

 $\alpha_i \ge 0$ para i > 0 y $\sum_{i=1}^r \alpha_i < 1$), dependiendo del tipo de restricciones que se coloquen sobre el proceso Z_t .

Las restricciones de signo de los coeficientes de la ecuación de varianza garantizan que la varianza condicional sea positiva en todos los períodos. Lo que se necesita es que, una vez que se haya estimado el modelo, genere una serie de varianzas positiva, lo que puede suceder aún si algunos de los coeficientes α_i fueran negativos. Esto se puede considerar como un contraste de validez del modelo.

Por la propia definición, a valores grandes de Z_t les siguen otros valores grandes de la serie.

 h_t es la varianza condicional de Z_t dado Z_s , s < t.

Observación 1.1. Se puede demostrar que un proceso ARCH(r) implica que se puede representar X_t^2 como un proceso AR(r), con residuos que no son gaussianos. Además, el coeficiente de apuntamiento (curtosis) es mayor que 3, por lo cual las colas de la distribución serán más pesadas que en la distribución normal.

Definición 1.2. *Un modelo* GARCH(r,s), está definido por:

$$Z_t = \sqrt{h_t} u_t$$

$$h_t = \alpha_0 + \sum_{i=1}^r \alpha_i Z_{t-i}^2 + \sum_{i=1}^s \beta_i h_t$$

donde los u_t son i.i.d. (0,1) con $\alpha_0 > 0$, $\alpha_i \ge 0$, $\beta_i \ge 0$ para i > 0 y

$$\sum_{i=1}^{r} \alpha_i + \sum_{i=1}^{s} \beta_i < 1$$

Como en el caso de los modelos ARCH, usualmente se supone que los u_t son normales o siguen una distribución t-student.

Las restricciones de no negatividad impuestas sobre los coeficientes en la definición son para asegurarse que la varianza no llegue a tomar un valor negativo. Además, en algunos casos se pueden encontrar condiciones menos restrictivas para estos coeficientes, que aseguren que la varianza sea positiva.

Observación 1.2. Se puede demostrar que un proceso GARCH(rs) implica que se puede representar Z_t^2 como un proceso ARMA(rs), con residuos que no son gaussianos (más precisamente con residuos que representan una diferencia martingala). También, en este caso, el coeficiente de apuntamiento (curtosis) es mayor que 3, por lo cual las colas de la distribución serán más pesadas que en la distribución normal.

Modelos IGARCH

Este modelo fue descrito originalmente por Engle y Bollerslev (1986). Si el modelo polinomial AR del modelo GARCH tiene una raíz unitaria, se tiene un modelo IGARCH. Los modelos IGARCH son modelos GARCH con una raíz unitaria. Estos modelos tienen la característica que los impactos de los choques al cuadrado sobre Z_t^2 son persistentes; esto se

puede expresare por:

$$\eta_{t-i} = Z_{t-i}^2 - h_{t-i}, \quad \text{para } i > 0$$

Definición 1.3. *Un modelo IGARCH*(r,s), se define por:

$$Z_{t} = \sqrt{h_{t}} u_{t}$$

$$h_{t} = \alpha_{0} + \sum_{i=1}^{r} \alpha_{i} Z_{t-i}^{2} + \sum_{j=1}^{s} (1 - \beta_{j}) h_{t-j}$$

tal que,

$$\sum_{j=1}^{s} \beta_j + \sum_{i=1}^{r} \alpha_i = 1$$

Como en el caso de los modelos ARCH, usualmente se supone que los u_t son normales o siguen una distribución t-student.

Los modelos IGARCH son un caso específico dentro de la familia de los "modelos con varianza persistente" en los que la información actual (en el instante "t") es importante para realizar predicciones óptimas con cualquier horizonte temporal.

1.2 Modelos GARCH asimétricos

Una característica de los modelos GARCH, dado que la varianza depende fundamentalmente de valores cuadráticos pasados, es que la volatilidad que generan frente a cambios positivos o negativos inesperados de la variable (piénsese en retornos de inversiones), dan una respuesta simétrica a estos. Sin embargo, se ha probado empíricamente que la reacción que tiene la volatilidad o varianza condicional de muchas variables financieras a este tipo de cambios es asimétrica; es decir, existe diferencia en la respuesta de la volatilidad de la variable, dependiendo de si el cambio es positivo o negativo.

Con el fin de modelar esta respuesta asimétrica se han desarrollado una variedad de modelos asimétricos; los más representativos son los modelos EGARCH, TARCH, PARCH.

Modelos EGARCH

Las restricciones de no negatividad para asegurar la positividad de la varianza en los modelos GARCH en muchas ocasiones son difíciles de lograr. Nelson (1991) propuso los modelos EGARCH (*Exponential GARCH*), como solución a este problema; éstos, además, incorporan efectos asimétricos.

Definición 1.4. *Un modelo* EGARCH(r, s), se define por:

$$Z_{t} = \sqrt{h_{t}} u_{t}$$

$$\ln (h_{t}) = \alpha_{0} + \sum_{j=1}^{s} \beta_{j} \ln (h_{t-j}) + \sum_{i=1}^{r} (\alpha_{i} |u_{t}| + \gamma_{i} u_{t})$$

Nótese que el lado izquierdo de la ecuación es el logaritmo de la varianza condicional; esto implica que su efecto es exponencial y garantiza que las predicciones de ésta serán no

negativas. Cuando $\gamma_i \neq 0$, el efecto asimétrico deber incorporarse al Modelo GARCH.

Obsérvese también que se puede escribir $\frac{Z_t}{\sqrt{h_t}}$ en lugar de u_t , en las fórmulas anteriores.

Como en el caso de los modelos ARCH, usualmente se supone que los u_t son normales o siguen una distribución t-student.

Modelos TARCH

Los modelos TARCH (*Threshold ARCH*) fueron introducidos independientemente por Zakoian (1990) y Glosten, Jaganathan y Runklen (1993), por lo que también se conocen como GJR–GARCH. Estos modelos incluyen una variable adicional d_t , que determina el carácter asimétrico del modelo.

Definición 1.5. *Un modelo* TARCH(r,s)*, se define por:*

$$Z_{t} = \sqrt{h_{t}} u_{t}$$

$$h_{t} = \alpha_{0} + \sum_{i=1}^{r} \alpha_{i} Z_{t-i}^{2} + \gamma Z_{t-1}^{2} d_{t-1} + \sum_{j=1}^{s} \beta_{j} h_{t-j}$$

donde los u_t son i.i.d. (0,1) con $\alpha_0 > 0$, $\alpha_i \ge 0$, $\beta_j \ge 0$ para i,j > 0 y $\gamma \ne 0$

$$d_t = \begin{cases} 1, & \text{si } Z_t < 0 \\ 0, & \text{si } Z_t \ge 0 \end{cases}$$

Si $\gamma = 0$ se pierde el efecto asimétrico del modelo.

En este modelo, las malas noticias ($Z_t < 0$) y las buenas noticias ($Z_t \ge 0$) (piénsese otra vez en retornos), tienen efectos diferentes sobre la varianza condicional.

Modelos PARCH

Los modelos PARCH (*Power* ARCH) desarrollados independientemente por Taylor (1986) y Schwert (1989), introducen la desviación estándar a los modelos ARCH; donde se modela la desviación estándar en lugar de la varianza. Este modelo fue generalizado por Ding y otros (1993).

En el modelo PARCH, el parámetro de potencia δ de la desviación estándar puede ser estimado antes que impuesto y los parámetros opcionales γ se agregan para capturar la asimetría dentro de los datos.

Definición 1.6. *Un modelo PARCH*(r,s)*, se define por:*

$$Z_t = \sqrt{h_t} u_t$$

$$h_t^{\delta} = \alpha_0 + \sum_{i=1}^r \alpha_i (|u_{t-i}| - \gamma_i u_{t-i})^{\delta} + \sum_{j=1}^s \beta_j h_{t-j}^{\delta}$$

donde $\delta > 0$, es el parámetro del término de la potencia. γ_i se dicen los parámetros de apalancamiento.

En series de valores simétricos $\gamma_i=0$ para todo i. Nótese que si $\delta=1$ y $\gamma_i=$ para todo i, el modelo PARCH es simplemente una especificación GARH estándar. Si los $\gamma_i=0$ se pierde el efecto asimétrico del modelo.

Los modelos GARCH asimétricos, se estiman por el método de máxima verosimilitud condicional, por lo cual se requiere de ciertos supuestos acerca del comportamiento de los errores. Por lo general, se suponen i.i.d con distribución normal o incluso con una distribución t-student.

1.3 Metodología de la Modelición

El objetivo es encontrar un modelo que represente adecuadamente a los datos históricos de una determinada variable, combinando especificaciones tanto para la media como para la varianza condicional. Los tipos de modelos que se considerarán serán los ARIMA – GARCH, de tal manera que la media condicional de la serie sea descrita por un modelo del tipo ARIMA y su varianza condicional por uno de la familia de modelos ARCH – GARCH o de sus extensiones asimétricas PARCH, TARCH y EGARCH. La modelación se realizará utilizando el paquete EViews.

El primer paso es, por tanto, modelar la serie de datos por un modelo del tipo ARIMA o incluso SARIMA, con lo que se obtiene un modelo para la media condicional de la serie.

Luego de haberse eliminado toda correlación lineal en la serie, se debe indagar si existe heteroscedasticidad condicional residual, para lo cual deben analizarse los residuos estandarizados estimados al cuadrado; el correleograma correspondiente, permite llevar a cabo un análisis gráfico de identificación, para ver si algún valor es estadísticamente diferente de cero, y por tanto, existe autocorrelación en su forma residual cuadrática.

Si se verifica la existencia de heteroscedasticadad condicional en los residuos, se rechaza el supuesto de la varianza constante; se intentará entonces obtener una especificación para la varianza condicional, a través de la modelación de los residuos estimados obtenidos por el modelo ARIMA, mediante un modelo del tipo ARCH – GARCH o sus extensiones asimétricas.

Inicialmente se mantiene la estructura para la media condicional, obtenida por el modelo ARIMA, pero esta puede modificarse con la nueva especificación. Los residuos estimados deben analizarse, tanto en su forma simple como en la cuadrática, para eliminar toda evidencia de autocorrelación lineal (deben aceptarse como un ruido blanco).

La estimación y verificación permiten encontrar uno o varios modelos que cumplan las condiciones que se impusieron en la modelación ARIMA; es decir, todos los coeficientes deben ser significativos; las raíces de los polinomios característicos, tanto de la parte autoregresiva como de la media móvil, deben estar fuera del círculo unidad, para así asegurar la estacionariedad e invertibilidad del proceso. Además, los coeficientes de la ecuación de la varianza condicional deben satisfacer las restricciones de no negatividad para la varianza (modelos ARCH – GARCH).

Para la verificación de la presencia de una estructura ARIMA en los residuos (simples o cuadráticos) pueden utilizarse la FAC y la FACP; además, también se debe realizar la prueba global (estadístico *Q*) de Box – Pierce – Ljung.

Una vez que un modelo ha sido estimado y ha superado las diversas verificaciones, se convierte en un instrumento útil para las predicciones de valores futuros. Como en la modelación ARIMA, si varios modelos son plausibles, se elige entre estos al mejor, mediante

los criterios ya citados previamente.

MA(13)

1.4 Ejemplos con Heteroscedasticidad Condicional

Aunque los datos de las ventas que se vienen utilizando no corresponden al ámbito financiero, sirven muy bien para ilustrar la modelación para la varianza condicional. En esta ocasión se adoptará el Modelo 3 con el cual se modeló la media condicional (SARIMA). La Figura 4.2 no permite aceptar la hipótesis de que la serie tenga una varianza constante.

Una posibilidad para amortiguar los efectos de varianza no constante es utilizar la transformación logaritmo o, en general, la transformación de Box y Cox; sin embargo, en esta ocasión se tratará de modelar directamente la varianza a través de los Modelos ARCH-GARCH o sus extensiones asimétricas.

En la Tabla 4.1 y en las figuras 4.1 y 4.2 se presentan la información estadística y residual para el Modelo 3 de la SVM:

Variable	Coefficient	Std. Error	<i>t</i> -Statistic	Prob.
C	156.1661	34.82541	4.484257	0.0000
AR(1)	0.325909	0.107494	3.031876	0.0033
AR(12)	-0.335945	0.114892	-2.924008	0.0045

0.111556

4.307611

0.0000

0.480540

Tabla 1.1: Información sobre los coeficientes del Modelo 3 para la SVM

Figura 1.1: FAC y FACP estimadas residuales del Modelo 3 para la SVM

Figura 1.2: FAC y FACP estimadas de los residuos cuadráticos del Modelo 3 para la SVM

Se observan fuertes correlaciones entre los residuos cuadráticos estandarizados estimados, por lo cual se hace necesaria la modelación de la varianza condicional del Modelo 3.

En general, es difícil establecer el orden para los modelos ARCH-GARCH. Lo usual es probar los modelos con parámetros (1,0), (1,1), (1,2) o (2,2). Para este caso se empezó probando con el modelo ARCH(1); los resultados aparecen en la Tabla 4.2 y el las Figuras 4.3 y 4.4.

Variable	Coefficient	Std. Error	z-Statistic	Prob.
C	115.3958	36.57140	3.155355	0.0016
AR(1)	0.483776	0.103019	4.695993	0.0000
AR(12)	-0.449722	0.078830	-5.704935	0.0000
MA(13)	0.798959	0.041313	19.33915	0.0000
	Variano	e Equation		
C	16129.50	3530.889	4.568113	0.0000
$RESID(-1)^2$	0.610436	0.249248	2.449115	0.0143
R-squared	0.335639	Mean de	pendent var	157.1548
Adjusted R-square	d 0.310726	S.D. dep	endent var	258.2531
S.E. of regression	214.4082	Akaike info criterion		13.23093
Sum squared resid	d 3677671.	Schwar	z criterion	13.40456
Log likelihood	-549.6992	Hannan-0	Quinn criter.	13.30073
Durbin-Watson sta	t 2.201103			
Inverted AR Roots	,96 – ,24 <i>i</i>	,96 + ,24 <i>i</i>	,71 + ,65 <i>i</i>	,71 – ,6.
	,28 — ,89 <i>i</i>	,28 + ,89i	-,21+,90i	-,21-,9
	-,63-,66i	-,63+,66i	-,87 + ,24 i	-,87-,2
nverted MA Roots	.9524i	.95 + .24i	.7465i	.74 + .65
	,35 + ,92i	,35 - ,92i	-,12-,98i	-,12+,9
	-,56-,81i	-,56+,81i	-,87 $+$,46 i	-,87-,8
	,98			

Tabla 1.2: nformación estadística para el Modelo 3-ARCH(1) para la SVM

Figura 1.3: FAC y FACP estimadas residuales del Modelo 3-ARCH(1) para la SVM

Figura 1.4: FAC y FACP estimadas de los residuos cuadráticos del Modelo 3-ARCH(1) para la SVM

Las Figuras 4.3 y 4.4 evidencian que existen problemas ya no solo en los residuos cuadráticos, sino también en los residuos simples. En la figura 4.4, la FACP en el orden 13 es significativo (y cercano a la estacionalidad 12); por lo cual, se decidió incluir un término AR(13) en el Modelo 3; esto tampoco solucionó totalmente la falta de independencia de los residuos cuadráticos. Luego, de algunas pruebas se encontró como modelo final aquel que contiene términos c, SAR(12), MA(12) y AR(13) para la media (se lo llamará Modelo 4) y ARCH(1) para la varianza. Los resultados se muestran en la Tabla 4.3 y en las Figuras 4.5 y 4.6.

Capítulo 2

Modelos Multivariantes de Series Temporales

Una serie temporal multivariante es un proceso estocástico $(X_t)_{t\in Z}$, con X_t un vector donde cada componente se define como una serie temporal univariante. En este documento se utilizará la notación de vectores como columnas. Así se denota:

$$X_t = (X_{1t}, \dots, X_{kt})'$$
 el vector de k series univariantes en el instante t

Lo importante de tratar series multivariantes es que, a más de considerar simultáneamente observaciones de dos o más series univariantes, también se puede analizar las correlaciones existentes entre ellas; esto evidentemente enriquece el análisis, aunque los procesos operativos serán más complejos que en el caso univariante.

2.1 Procesos Estacionarios

Para poder estimar las características de los procesos se necesita suponer que son estables a lo largo del tiempo; esto implica, que son estacionarios.

2.1.1 Proceso estrictamente estacionario

Un proceso estocástico multivariado $(X_t)_{t\in\mathbb{Z}}$, con $X_t = (X_{1t}, \dots, X_{kt})'$, es estrictamente estacionario (o fuertemente estacionario) si las distribuciones conjuntas de cualquier conjunto finito de variables se mantienen por saltos.

Es decir, si:

$$F_{t_{1+l},...,t_{k+l}}(x_{t_1+l},...,x_{t_{k+l}}) = F_{t_1,...,t_k}(x_{t_1},...,x_{t_k})$$

Para todo $k \in N$ y para todo $t_1, \ldots, t_k, l \in Z$

Donde, F_{t_1,\dots,t_k} denota la distribución conjunta de X_{t_1},\dots,X_{t_k}

2.1.2 Proceso débilmente estacionario

Un proceso estocástico multivariado $(X_t)_{t \in \mathbb{Z}}$, con $X_t = (X_{1t}, \dots, X_{kt})'$, se dice que es *débilmente estacionario* si sus momentos de primer y segundo orden son invariantes en el tiempo

(no dependen de t); es decir:

- 1. $E(X_t) = \mu \quad \forall t$ (el vector media es constante).
- 2. $Cov(X_t, X_{t-l}) = E\left[(X_t \mu)(X_{t-l} \mu)'\right] = \Gamma_l \quad \forall t$; es decir, la matriz de *covarianzas cruzadas* entre X_t y X_{t-l} es independiente de t (solo depende del salto l).

La media μ es un vector k-dimensional compuesto por las esperanzas de las componentes de X_t . La matriz de covarianzas cruzadas es de orden k*k.

El i-ésimo elemento de la diagonal de Γ_0 es la varianza de X_{it} ; mientras que, el elemento (i,j) de Γ_0 es la covarianza entre X_{it} y X_{jt} . El elemento (i,j) de Γ_l es la covarianza entre X_{it} y $X_{j,t-l}$.

Observación 2.1. Se puede demostrar que si un proceso $(X_t)_{t\in Z}$ es débilmente estacionario entonces también lo será cada una de sus componentes.

2.2 Matrices de Correlación Cruzada (Cross-Correlation)

En lo que sigue se considera que $(X_t)_{t\in Z}$ es estacionaria.

Sea D una matriz diagonal de orden k*k compuesta por las desviaciones estándar de X_{it} para $i=1,\ldots,k$, que se denota por: $D=diag\left\{\sqrt{\Gamma_{11}(0)},\ldots,\sqrt{\Gamma_{kk}(0)}\right\}$. La matriz de correlaciones cruzadas de X_t se define como:

$$\rho_0 \equiv [\rho_{ij}(0)] = D^{-1}\Gamma_0 D^{-1}$$

De manera particular, el elemento (i, j) de ρ_0 es:

$$\rho_{ij}(0) = \frac{\Gamma_{ij}(0)}{\sqrt{\Gamma_{ii}(0)\Gamma_{jj}(0)}} = \frac{Cov(X_{it}, X_{jt})}{de(X_{it})de(X_{jt})},$$

donde, de (.) es la desviación estándar.

 $\rho_{ij}(0)$ es el coeficiente de correlación lineal entre X_{it} y X_{jt} . En el análisis de series de tiempo, dicho coeficiente se conoce como de concurrencia (en el mismo instante). Es fácil ver que:

- i) $\rho_{ii}(0) = \rho_{ii}(0)$
- ii) $-1 \le \rho_{ii}(0) \le 1$
- iii) $\rho_{ii}(0) = 1$

Así, ρ (0) es una matriz simétrica con 1 en la diagonal.

Hay que mencionar que las matrices Γ_l contienen las **relaciones en retardo** entre las componentes de las series. Por lo tanto, las matrices de correlación cruzada se utilizan para medir la fuerza de la dependencia lineal entre las series de tiempo.

La matriz de correlación cruzada de X_t con X_{t-1} se define como:

$$\rho_l \equiv \left[\rho_{ij}(l)\right] = D^{-1}\Gamma_l D^{-1}$$

donde, D es la matriz diagonal de las desviaciones estándar de las series individuales. De la definición se tiene:

$$\rho_{ij}\left(l\right) = \frac{\Gamma_{ij}(l)}{\sqrt{\Gamma_{ii}\left(0\right)\Gamma_{jj}\left(0\right)}} = \frac{Cov\left(X_{it}, X_{j,t-l}\right)}{de\left(X_{it}\right)de(X_{jt})} = \frac{Cov\left(X_{it}, X_{jt-l}\right)}{de\left(X_{it}\right)de(X_{jt-l})}$$

que es el coeficiente de correlación lineal entre X_{it} y $X_{j,t-l}$. Cuando l>0, este coeficiente de correlación mide la dependencia lineal de X_{it} con respecto $X_{j,t-l}$ (X_{t-l} ocurre con anterioridad al instante t). Consecuentemente, si ρ_{ij} (l) \neq 0 y l>0, se dice que la serie X_{jt} conduce a la serie X_{it} con retardo l.

Similarmente, $\rho_{ji}(l)$ mide la dependencia lineal de X_{jt} con respecto a $X_{i,t-l}$ y se puede decir que la serie X_{it} conduce a la serie X_{jt} , con retardo l, si $\rho_{ij}(l) \neq 0$ y l > 0.

Se pueden mencionar las siguientes propiedades cuando l>0:

- 1. En general, ρ_{ij} (l) $\neq \rho_{ji}$ (l) para $i \neq j$, porque los dos coeficientes de correlación miden diferentes relaciones lineales entre las series. Por lo tanto, Γ_l y ρ_l son, generalmente, no simétricas.
- 2. Utilizando Cov(X,Y) = Cov(Y,X) y suponiendo que las series son estacionarias, se tiene:

$$Cov(X_{it}, X_{j,t-l}) = Cov\left(X_{j,t-l}, X_{it}\right) = Cov\left(X_{jt}, X_{i,t+l}\right) = Cov\left(X_{jt}, X_{i,t-(-l)}\right)$$

Así que $\Gamma_{ij}(l) = \Gamma_{ji}(-l)$, donde $\Gamma_{ji}(-l)$ es el elemento (j,i) de Γ_{-l} ; la igualdad se cumple para $1 \le i, j \le k$. Es decir, $\Gamma_l = \Gamma_{-l}'$.

2.2.1 Dependencia Lineal

Considérense las matrices de correlación cruzada $\{\rho(l)|l=0,1,2,\ldots\}$ de una serie temporal vectorial estacionaria; éstas contienen la siguiente información:

- 1. Los elementos de la diagonal de la matriz de correlación cruzada $\rho_{ii}(l)$ son las funciones de autocorrelación de X_{it} .
- 2. El elemento fuera de la diagonal $\rho_{ij}(0)$ mide la relación lineal de concurrencia entre X_{it} y X_{jt} .
- 3. Para l > 0, el elemento fuera de la diagonal $\rho_{ij}(l)$ mide la dependencia lineal de X_{it} con respecto a $X_{j,t-l}$.

Por lo tanto, si $\rho_{ij}(l)=0$ para todo l>0, X_{it} no depende linealmente de ningún valor del pasado $X_{j,t-l}$.

Resumen e interpretación.

En general, la relación lineal entre dos series de tiempo X_{it} y X_{jt} puede resumirse en la siguiente forma:

- 1. X_{it} y X_{jt} no tienen relación lineal si $\rho_{ij}(l) = \rho_{ji}(l) = 0$, $\forall l \geq 0$.
- 2. X_{it} y X_{it} están al mismo tiempo correlacionadas si ρ_{ii} (0) \neq 0.
- 3. X_{it} y X_{jt} no tienen relación de avance-retardo si ρ_{ij} (l) = 0 y ρ_{ji} (l) = 0, $\forall l > 0$. En este caso, se dice que las series son desacopladas.
- 4. Existe una *relación unidireccional* desde X_{it} hacia X_{jt} si $\rho_{ij}(l) = 0$, $\forall l > 0$, pero $\rho_{ji}(v) \neq 0$ para algún v > 0. En este caso, X_{it} no depende de ningún valor del pasado de X_{it} , pero X_{it} depende de algún valor del pasado de X_{it} .
- 5. Existe una relación de retroalimentación entre X_{it} y X_{jt} si $\rho_{ij}(l) \neq 0$ para algún l > 0 y $\rho_{ji}(v) \neq 0$ para algún v > 0.

Las formulaciones anteriores son suficientes para analizar la dependencia lineal entre series temporales. Un enfoque más informativo para estudiar las relaciones entre las series temporales es construir un modelo multivariante para las series, porque un modelo correctamente especificado considera simultáneamente el número de series y las correlaciones cruzadas de las mismas.

En la práctica se utilizan los estimadores de las matrices antes mencionadas; en particular para $\Gamma(l)$:

$$\hat{\Gamma}\left(l\right) = \frac{1}{T} \sum_{t-l+1}^{T} \left(X_{t} - \bar{X}\right) \left(X_{t-l} - \bar{X}\right)', \quad l \ge 0$$

donde,

T: número de observaciones

$$\bar{X} = \frac{\left(\sum\limits_{t=1}^{T} X_t\right)}{T}$$
 : vector de medias muestrales

y para $\rho(l)$:

$$\hat{\rho}\left(l\right) = \hat{D}^{-1}\hat{\Gamma}_{X}\left(l\right)\hat{D}^{-1}, \quad l \ge 0$$

donde,

 \hat{D} : Es la matriz diagonal de orden (k*k) que contiene las desviaciones estándar muestrales del vector X_t en la diagonal.

Ejemplo 2.1. Se consideran tres series de datos económicos de un país sudamericano: el producto interno bruto (PIB), denotada por (X_{1t}) ; el consumo interno (CI), denotada por (X_{2t}) y la demanda final interna (DFI), denotada por (X_{3t}) . Se dispone de 56 datos trimestrales, desde noviembre de 2010 hasta junio de 2015 (Ver Anexo D.1). Para efectos de comparaciones se trabajará únicamente con los primeros 50 datos y se guardarán los 6 restantes para comparar con predicciones posteriores (enero 2015 - junio de 2015). Se desea estimar las matrices de correlaciones cruzadas de las series.

Resolución.

Las matrices de correlación cruzada se las construyen de manera manual, considerando cada escenario de posibles combinaciones entre las variables; así, en este caso, se obtiene:

a) Estadísticos descriptivos de x_{1t} , X_{2t} y X_{3t} .

	Media	Mediana	Máximo	Mínimo	Desv. Est.	Asimetría	Curtosis
$\overline{X_{1t}}$	96,52	89,79	165,31	49,79	34,15	0,35	1,92
X_{2t}	78,10	73,72	126,01	43,05	24,89	0,31	1,84
X_{3t}	98,71	92,34	166,66	50,51	34,48	0,30	1,87

b) Matrices de correlación cruzada

	retardo 1			retardo 2			retardo 3		
$\overline{X_{1t}}$	0,94	0,94	0,94	0,87	0,88	0,87	0,81	0,82	0,81
X_{2t}	0,93	0,94	0,94	0,87	0,88	0,87	0,80	0,81	0,81
X_{3t}	0,93	0,94	0,94	0,87	0,88	0,87	0,80	0,81	0,81

c) Representación simplificada

Tabla 2.1: Resumen de estadísticas y matrices de correlación cruzada para X_{1t}, X_{2t} y X_{3t}

Para representar a las matrices de correlación cruzada, se utiliza la forma gráfica simplificada , que utiliza el hecho que $2/\sqrt{T}$ (0,28 en este caso) es el valor crítico de la correlación muestral con nivel de significación del 5 %, bajo la suposición que X_t es un ruido blanco:

- "+" representa a los coeficientes de correlación que son mayores o iguales a $2/\sqrt{T}$.
- "-" representa a los coeficientes de correlación que son menores o iguales que $-2/\sqrt{T}$.
- "." Representa a los coeficientes que se encuentran entre a $-2/\sqrt{T}$ y $2/\sqrt{T}$.

Es fácil ver que las correlaciones cruzadas son significativas en los primeros tres retardos. En algunos paquetes estadísticos se puede encontrar el cálculo de las matrices de correlación cruzada. En Eviews, por ejemplo, se presenta la siguiente salida:

Figura 2.1: Correlaciones cruzadas entre X_{1t} y X_{2t}

Figura 2.2: Correlaciones cruzadas entre X_{1t} y X_{3t}

Figura 2.3: Correlaciones cruzadas entre X_{2t} y X_{3t}

Como se puede observar, los valores calculados por el paquete son aquellos que están en la diagonal segundaria de las matrices calculadas manualmente. Para poder completar la matriz, se puede, ver a partir de la fórmula de cálculo que las $\hat{\rho}_{ii}(l)$ corresponden a las autocorrelaciones simples de orden l de cada serie univariante dentro de X_t .

2.3 Modelos de Vectores Autoregresivos (VAR)

Este tipo de modelos no pertenecen a los modelos estocásticos desarrollados por Box y Jenkins; sin embargo, la representación VAR se puede considerar como la generalización de los modelos autoregresivos al caso multivariante.

2.3.1 El caso bivariante

Una representación VAR bivariante es aquella que consideran dos variables X_{1t} y X_{2t} . Cada una de ellas se expresa en función de sus propios valores del pasado y de los del presente y del pasado de la otra variable. Por ejemplo, se va a representar el modelo VAR bivariante de orden p = 3 [VAR (3)]; se escribe:

$$X_{1t} = v_1 + \sum_{i=1}^{3} b_{1i} X_{1t-i} + \sum_{i=1}^{3} c_{1i} X_{2t-i} - d_1 X_{2t} + u_{1t}$$

$$X_{2t} = v_2 + \sum_{i=1}^{3} b_{2i} X_{1t-i} + \sum_{i=1}^{3} c_{2i} X_{2t-i} - d_2 X_{1t} + u_{2t}$$

Las variables X_{1t} y X_{2t} son estacionarias; las perturbaciones u_{1t} y u_{2t} son ruidos blancos de varianzas constantes y no correlacionados. Se puede ver inmediatamente la gran can-

tidad de parámetros a estimar (aquí 16 coeficientes), con los problemas típicos de pérdida de grados de libertad. Hay que tomar en cuenta que X_{1t} tiene un efecto inmediato en X_{2t} y recíprocamente. Este sistema inicial se denomina *forma estructural* de la representación VAR. Su *forma matricial*, se expresa como:

$$BX_t = v + \sum_{i=1}^{3} \tilde{A}_i X_{t-i} + u_t$$

con:

$$B = \begin{bmatrix} 1 & d_1 \\ d_2 & 1 \end{bmatrix} \quad X_t = \begin{bmatrix} X_{1t} \\ X_{2t} \end{bmatrix} \quad v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \quad \tilde{A}_i = \begin{bmatrix} b_{1i} & c_{1i} \\ b_{2i} & c_{2i} \end{bmatrix} \quad u_t = \begin{bmatrix} u_{1t} \\ u_{2t} \end{bmatrix}$$

Para obtener la *forma estándar* de un modelo VAR, se multiplica la ecuación anterior por B^{-1} (que se supone existe); es decir, se expresa por:

$$X_{1t} = v_1^0 + \sum_{i=1}^3 a_{1i}^1 X_{1t-i} + \sum_{i=1}^3 a_{1i}^2 X_{2t-i} + \vartheta_{1t}$$

$$X_{2t} = v_2^0 + \sum_{i=1}^3 a_{2i}^1 X_{1t-i} + \sum_{i=1}^3 a_{2i}^2 X_{2t-i} + \vartheta_{2t}$$

En esta especificación, los errores θ_{1t} y θ_{2t} son funciones de las innovaciones u_{1t} y u_{2t} ; en efecto, de $\theta = B^{-1}u$, se obtiene:

$$\vartheta_{1t} = \frac{(u_{1t} - d_1 u_{2t})}{(1 - d_1 d_2)} \text{ y } \vartheta_{2t} = \frac{(u_{2t} - d_2 u_{1t})}{(1 - d_1 d_2)}$$

Se puede ver que:

$$E\left(\vartheta_{1t}\right)=0; \quad E\left(\vartheta_{2t}\right)=0; \quad E\left(\vartheta_{1t}\vartheta_{1t-i}\right)=0; \quad E\left(\vartheta_{2t}\vartheta_{2t-i}\right)=0$$

Por lo tanto, los elementos de cada familia de errores tienen esperanza nula y son no correlacionados. Además:

$$E\left(\vartheta_{1t}^{2}\right) = \frac{\left(\sigma_{u_{1}}^{2} + d_{1}^{2}\sigma_{u_{2}}^{2}\right)}{\left(1 - d_{1}d_{2}\right)^{2}}; \quad E\left(\vartheta_{2t}^{2}\right) = \frac{\left(\sigma_{u_{2}}^{2} + d_{2}^{2}\sigma_{u_{1}}^{2}\right)}{\left(1 - d_{1}d_{2}\right)^{2}}$$

Donde $\sigma_{u_1}^2$ y $\sigma_{u_2}^2$ son las varianzas de u_1 y u_2 , respectivamente. Así, la varianza de los errores es constante (independiente del tiempo). Además:

$$E(\vartheta_{1t}\vartheta_{2t}) = -\frac{(d_2\sigma_{u_1}^2 + d_1\sigma_{u_2}^2)}{(1 - d_1d_2)^2}$$

Si $d_1 = d_2 = 0$, las variables X_{1t} y X_{2t} no tienen ninguna influencia sincrónica entre sí, pues los errores ϑ_{1t} y ϑ_{2t} serían no correlacionados. En caso contrario, los errores ϑ_{1t} y ϑ_{2t} estarían correlacionados y por tanto, una variación de uno de estos errores en un instante dado tiene impacto en el otro.

Proposición 2.1. El modelo VAR no permite distinguir entre variables endógenas (variables propias del fenómeno estudiado) y exógenas (variables externas que ayudan a explicar las

variables endógenas).

2.3.2 Representación general de un VAR

Notación. Un modelo VAR a k variables con p retardos se denota VAR(p).

La generalización de la representación VAR a k variables con p retardos se escribe en su forma estándar como:

$$X_t = v_0 + A_1 X_{t-1} + A_2 X_{t-2} + \ldots + A_p X_{t-p} + u_t$$

donde,

$$X_{t} = \begin{bmatrix} X_{1,t} \\ X_{2,t} \\ \vdots \\ X_{k,t} \end{bmatrix}; \quad v_{0} = \begin{bmatrix} v_{1}^{0} \\ v_{2}^{0} \\ \vdots \\ v_{k}^{0} \end{bmatrix}; \quad A_{i} = \begin{bmatrix} a_{1i}^{1} & \dots & a_{1i}^{k} \\ \vdots & \ddots & \vdots \\ a_{ki}^{1} & \dots & a_{ki}^{k} \end{bmatrix}; \quad u_{t} = \begin{bmatrix} u_{1t} \\ u_{2t} \\ \vdots \\ u_{kt} \end{bmatrix}$$

 u_t es el vector compuesto por los ruidos blancos de cada una de las k ecuaciones del modelo.

Se denota por: $\sum_{u} = E(u_t u_t')$, la matriz desconocida, de dimensión k, de varianzascovarianzas de los errores.

Esta representación puede escribirse mediante el operador de retardo B, como:

$$(I - A_1 B - A_2 B^2 - \ldots - A_p B^p) X_t = v_0 + u_t$$
, o también: $A(B) X_t = v_0 + u_t$

donde, el operador de retardo B se define de la siguiente manera:

$$B^i X_t = X_{t-i}, \quad i = 1, 2, \dots$$

 $B^0 X_t = X_t$

2.3.2.1 Estabilidad de un VAR

Considérese un modelo VAR(1):

$$X_t = v_0 + A_1 X_{t-1} + u_t$$

Se dice que un VAR(1) es estable si todos los valores propios de A_1 son de valor absoluto menor que 1; lo que se puede expresar también por:

$$\det(I_k - A_1 z) \neq 0$$
, para $|z| \leq 1$

Esto implica que todas las raíces del polinomio característico están fuera del círculo unidad.

2.3.2.2 Representación de un proceso VAR(p) en la forma de VAR(1)

Un proceso VAR(p) se puede escribir como un proceso VAR(1) si se plantea en la siguiente forma:

$$X_t = A_0 + AX_{t-1} + U_t$$

donde,

$$X_{t} = \begin{pmatrix} X_{t} \\ X_{t-1} \\ \vdots \\ X_{t-p+1} \end{pmatrix}_{kp*1} X_{t} = \begin{pmatrix} X_{1t} \\ X_{2t} \\ \vdots \\ X_{kt} \end{pmatrix}_{k*1} A_{0} = \begin{pmatrix} v_{0} \\ 0_{k*1} \\ \vdots \\ 0_{k*1} \end{pmatrix}_{kp*1} U_{t} = \begin{pmatrix} (u_{t})_{k*1} \\ 0_{k*1} \\ \vdots \\ 0_{k*1} \end{pmatrix}_{kp*1}$$

$$A = \begin{pmatrix} A_1 & A_2 & \dots & A_{p-1} & A_p \\ I_k & 0 & \dots & 0 & 0 \\ 0 & I_k & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & I_k & 0 \end{pmatrix}_{kp*kp}$$

Lo importante de esta representación es que para obtener las propiedades de los procesos VAR, es suficiente con probarlas para una VAR(1)

2.3.2.3 Procesos VAR(p) estables

Se dice que un VAR(p) es estable si:

$$\det\left(I_{kp}-Az\right)\neq0$$
, para $|z|\leq1$

Además, se puede demostrar que:

$$\det (I_{kp} - Az) = \det (I - A_1z - A_2z^2 - \dots - A_pz^P)$$

Observación 2.2. Se puede demostrar que si un proceso VAR(1) es estable, entonces es estacionario.

En general, se puede demostrar que un proceso VAR(p) es estacionario si el polinomio definido a partir de la expresión: $det (I - A_1z - A_2z^2 - ... - A_pz^P)$ tiene sus raíces fuera del círculo unidad del plano complejo; es decir:

$$det\left(I - A_1z - A_2z^2 - \ldots - A_pz^p\right) \neq 0 \forall z talque |z| \leq 1$$

Ejemplo 2.2. Determine si el siguiente modelo es estacionario.

$$\begin{bmatrix} X_{1t} \\ X_{2t} \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \end{bmatrix} + \begin{bmatrix} 0.8 & 0.9 \\ 0.7 & 0.7 \end{bmatrix} \begin{bmatrix} X_{1t-1} \\ X_{2t-1} \end{bmatrix} + \begin{bmatrix} u_{1t} \\ u_{2t} \end{bmatrix}$$

Resolución.

Se tiene que:

$$det\left(\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right] - \left[\begin{array}{cc} 0.8 & 0.9 \\ 0.7 & 0.7 \end{array}\right]z\right) = 1 - 1.5z - 0.07z^2, \text{ entonces} \qquad \begin{aligned} z_1 &= -16.17 \\ z_2 &= -15.97 \end{aligned}$$

Las dos raíces son superiores a 1 en valor absoluto; por lo tanto, el proceso es estable; lo que implica que es estacionario.

2.4 Representación VARMA de una Serie Multivariante

2.4.1 La representación VMA

Un modelo media móvil vectorial de orden q ($VMA\left(q\right)$ por sus siglas en inglés), tiene la siguiente forma:

$$X_t = m_0 + u_t - M_1 u_{t-1} - \dots - M_q u_{t-q}$$
 o $X_t = m_0 + M(B) u_t$

donde.

 m_0 : Es un vector de dimensión k constante.

 M_i : Son matrices de dimensión k * k.

 $M(B) = I - M_1 B - \dots - M_q B^q$ es el polinomio matriz MA en términos del operador de retardo B.

 $\{u_t\}_{t\in Z}$: Es un ruido blanco multidimensional.

De manera similar al caso univariante, los procesos VMA(q) son débilmente estacionarios, siempre que la matriz de covarianzas (Σ_u) de u_t exista. Si se toma la esperanza de X_t , se tiene:

$$\mu = E(X_t) = m_0$$

Así, el vector constante m_0 es el vector media de X_t para un modelo VMA.

Se define $\tilde{X}_t = X_t - m_0$ como el proceso corregido en media VAR(q). Cuando se tiene un proceso VMA(q) y considerando el hecho de que los $\{u_t\}$ no están correlacionados, se obtiene:

- 1. $Cov(\tilde{X}_t, u_t) = \Sigma_u$
- 2. $\Gamma_0 = \Sigma_u + M_1 \Sigma_u M_1' + \ldots + M_q \Sigma_u M_q'$
- 3. $\Gamma_l = 0 \text{ si } l > q$
- 4. $\Gamma_l = \sum_{j=l}^q M_j \Sigma_u M_{j-l}'$ si $1 \le l \le q$, donde $M_0 = -I$

Dado que $\Gamma_l = 0$ para l > q, las matrices de correlación cruzada de un proceso VMA(q) satisfacen:

$$\rho_1 = 0, l > q$$

2.4.2 Representación lineal de un VAR(p)

Cuando se analizaron las series temporales univariantes, se mostró que bajo ciertas condiciones un proceso AR(1) se puede representar como un proceso lineal. De la misma manera,

para las series multivariantes se puede representar, en particular, un VAR(1) como un proceso lineal (se dice que es la representación lineal del proceso). Un modelo con esta forma permite medir el impacto en los valores presentes de una variación de innovaciones (o choques).

Sea X_t un VAR(1) estable:

$$X_t = v_0 + A_1 X_{t-1} + u_t$$

Si se realizan sustituciones repetidas en el proceso hasta el i-ésimo paso, se obtiene:

$$\begin{split} X_t &= v_0 + A_1 \left(v_0 + A_1 X_{t-2} + u_{t-1} \right) + u_t = \left(I + A_1 \right) v_0 + A_1^2 X_{t-2} + \left(A_1 u_{t-1} + u_t \right) \\ X_t &= v_0 + A_1 \left(\left(I + A_1 \right) v_0 + A_1^2 X_{t-3} + A_1 u_{t-2} + u_{t-1} \right) + u_t \\ &= \left(I + A_1 + A_1^2 \right) v_0 + A_1^3 X_{t-3} + \left(A_1^2 u_{t-2} + A_1 u_{t-1} + u_t \right) \\ \vdots \\ X_t &= \left(I + A_1 + \ldots + A_1^i \right) v_0 + A_1^{i+1} X_{t-i} + \sum_{i=0}^i A_1^j u_{t-j}, \quad i = 0, 1, 2, \ldots \end{split}$$

Por definición, $A^0 = I$.

Como el VAR es estable, se cumple que:

$$(I + A_1 + \ldots + A_1^i) v_0 \to (I - A_1)^{-1} v_0$$
 si $i \to \infty$

Además, $A_1^{i+1} \to 0$ rápidamente; así, se lo puede ignorar. Por lo tanto, se obtiene la siguiente representación:

$$X_t = (I - A_1)^{-1} v_0 + \sum_{i=0}^{\infty} A_1^i u_{t-i}$$

La generalización a un proceso VAR(p) se la realiza aplicando la representación de un VAR(p) como un VAR(1). Así, se obtiene:

$$X_t = \mu + \sum_{i=0}^{\infty} M_i u_{t-i}$$

donde,

$$\mu = (I - A_1 - A_2 - \dots - A_p)^{-1} v_0$$

$$M_i = \sum_{j=1}^{\min(p,i)} A_j M_{i-j} \quad i = 1, 2, \dots \quad y \quad M_0 = I$$

Las matrices M_i aparecen como un "factor de impacto", a través de las cuales se analiza el efecto de un choque a lo largo de todo el proceso.

Observación 2.3.

- 1. Así, se obtiene que si un proceso VAR(p) es estable, tiene una representación lineal estacionaria.
- 2. No se profundiza sobre la modelación VMA(q) porque no está implementada en los

programas comerciales usuales.

Ejemplo 2.3. Considérese el proceso VMA (1):

$$X_t = \mu + u_t - M_1 u_{t-1} = \mu + u_t - M u_{t-1}$$

donde, por simplicidad, se ha quitado el subíndice de M_1 . Este modelo puede escribirse explícitamente como:

$$\left[\begin{array}{c}X_{1t}\\X_{2t}\end{array}\right] = \left[\begin{array}{c}\mu_1\\\mu_2\end{array}\right] + \left[\begin{array}{c}u_{1t}\\u_{2t}\end{array}\right] - \left[\begin{array}{c}m_{11}&m_{12}\\m_{21}&m_{22}\end{array}\right] \left[\begin{array}{c}u_{1t-1}\\u_{2t-1}\end{array}\right]$$

Se dice que la serie de retardos (X_t) solo depende del presente y del pasado de $\{u_t\}$. Por lo tanto, el modelo es de memoria finita.

El parámetro m_{12} denota la dependencia lineal de X_{1t} con $u_{2,t-1}$ en la presencia de $u_{1,t-1}$. Si $m_{12}=0$, X_{1t} no depende de los retardos de u_{2t} y, entonces tampoco, de los retardos de X_{2t} . De manera similar, si $m_{21}=0$, X_{2t} no depende de los valores pasados de X_{1t} . Los elementos fuera de la diagonal de M muestran la dependencia entre las componentes de las series.

Para este ejemplo, se pueden clasificar las relaciones entre X_{1t} y X_{2t} así:

- 1. Son series desacopladas si $m_{12} = m_{21} = 0$.
- 2. Hay una relación dinámica unidireccional de X_{1t} sobre X_{2t} si $m_{12}=0$, pero $m_{21}\neq 0$ y viceversa.
- 3. Hay una relación de retroalimentación entre X_{1t} y X_{2t} si $m_{12} \neq 0$ y $m_{21} \neq 0$.

Finalmente, la correlación actual entre los m_{ij} (coeficientes estimados para el modelo VMA) es la misma que entre los u_{it} . La descripción previa se puede generalizar para un modelo VMA(q).

2.4.3 La representación VARMA

La representación VAR puede generalizarse (es una aplicación multivariante del teorema de descomposición de Wold (1954)), por analogía con los procesos ARMA(pq).

$$X_t = A_0 + A_1 X_{t-1} + A_2 X_{t-2} + \ldots + A_p X_{t-p} + u_t + M_1 u_{t-1} + M_2 u_{t-2} + \ldots + M_q u_{t-q}$$

Se trata de un proceso ARMA multivariante que se denota: VARMA.

Las condiciones de estacionariedad son análogas a las de un proceso ARMA univariante:

- Un proceso VAR es siempre invertible; es lineal (por ende estacionario) cuando es estable.
- Un proceso VMA es siempre estacionario. Es invertible si las raíces del polinomio característico asociado a M(z) están fuera del círculo unitario complejo.

• Las condiciones de estacionariedad e invertibilidad de un VARMA están dadas, respectivamente, por la parte VAR y la parte VMA del VARMA.

La generalización de los modelos ARMA encuentra nuevos temas que no ocurren en el desarrollo de los modelos VAR y VMA. Uno de ellos es el *problema de identificación*. A diferencia de los modelos ARMA, los modelos VARMA pueden no estar definidos de manera única.

Ejemplo 2.4. Considere un modelo bivariante VMA(1):

$$\begin{bmatrix} X_{1t} \\ X_{2t} \end{bmatrix} = \begin{bmatrix} u_{1t} \\ u_{2t} \end{bmatrix} - \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} u_{1,t-1} \\ u_{2,t-1} \end{bmatrix}$$

Es *idéntico* al modelo bivariante VAR(1):

$$\begin{bmatrix} X_{1t} \\ X_{2t} \end{bmatrix} - \begin{bmatrix} 0 & -2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} X_{1,t-1} \\ X_{2,t-1} \end{bmatrix} = \begin{bmatrix} u_{1t} \\ u_{2t} \end{bmatrix}$$

La equivalencia de los modelos se puede examinar fácilmente componente. Es decir, para el modelo VMA(1) se tiene:

$$X_{1t} = u_{1t} - 2u_{2,t-1}$$
 y $X_{2t} = u_{2t}$

Por otro lado, para el modelo VAR(1) se tiene:

$$X_{1t} + 2X_{2,t-1} = u_{1t}$$
 y $X_{2t} = u_{2t}$

De los modelos se puede ver que:

$$X_{2,t-1} = u_{2,t-1}$$

Luego, los modelos para X_{1t} son idénticos. Este tipo de problema de identificación es inofensivo porque cualquiera de los modelos puede ser utilizado en una aplicación real. Sin embargo, existen casos en los que esta situación si se convierte en un problema y hay que tener en cuenta muchas restricciones para poder estimar un modelo VARMA.

2.5 Formulación de un modelo VAR

Los parámetros de un proceso VAR pueden estimarse solamente en las series temporales estacionarias. Se conoce que muchas series pueden volverse estacionarias a través de un proceso de diferenciación (en el caso de una tendencia determinista o una estacionalidad) o a través de una transformación de las variables (por ejemplo, una transformación logarítmica) en ciertos casos con heteroscedasticidad.

2.5.1 Estimación

En el caso de un proceso VAR, las ecuaciones pueden estimarse por MCO independientemente una de la otra (o por un método de máxima verosimilitud).

Sea el modelo VAR(p) estimado:

$$X_t = \hat{A}_0 + \hat{A}_1 X_{t-1} + \hat{A}_2 X_{t-2} + \ldots + \hat{A}_p X_{t-p} + \hat{u}_t$$

siendo, \hat{u}_t el vector de dimensión (k,1) de componentes $\hat{u}_{1t}, \hat{u}_{2t}, \dots, \hat{u}_{kt}$.

Se denotará por $\hat{\Sigma}_{u,p}$ la matriz de varianzas covarianzas estimada de los residuos del modelo. Para cualquier orden p, se define por:

$$\hat{\Sigma}_{u,p} = \frac{1}{T - kp - 1} \sum_{t=p+1}^{T} \hat{u}_t \left(\hat{u}_t\right)', \quad p \ge 0$$

2.5.2 Determinación del número de retardos

El mayor problema que debe enfrentarse a la hora de estimar los modelos VAR es el de la determinación del número de retardos a incluir en la estimación; suele realizarse en forma cuantitativa, analizando los resultados de la estimación y comparando los resultados obtenidos entre distintos modelos alternativos, ya que no es frecuente encontrar evidencias teóricas al respecto.

Los criterios comúnmente utilizados para la selección entre modelos alternativos son el criterio informativo de Akaike (AIC), el criterio de información bayesiano (BIC), que también se conoce como el criterio de Schwarz (SC) o el criterio de Hanan-Quinn (HQ).

Para el caso de la representación VAR, estos criterios se pueden utilizar para determinar el orden p del modelo. EL proceso de selección del orden de la representación consiste en estimar todos los modelos VAR para retardos de 0 a p_0 (p_0 es el máximo retardo admisible por la teoría económica o por los datos disponibles y se fija de antemano). Los estadísticos AIC(p), SC(p) y HQ(p) para el caso multivariante tienen las siguientes expresiones:

$$AIC(p) = \ln\left[\left|\sum_{u}\right|\right] + \frac{2k^{2}p}{T}$$

$$SC(p) = \ln\left[\left|\sum_{u}\right|\right] + \frac{k^{2}p\ln(T)}{T}$$

$$HQ(p) = \ln\left[\left|\sum_{u}\right|\right] + \frac{2k^{2}p\ln(\ln(T))}{T}$$

donde,

k= número de variables del sistema.

T= número de observaciones.

p= número de retardos.

 \sum_{u} = matriz de varianzas covarianzas de residuos del modelo con retardo p (fijo).

Otro criterio utilizado para determinar el retardo del modelo, es la razón de máxima verosimilitud. Para utilizar este criterio, es necesario que el vector de las innovaciones ten-

ga una distribución normal; el logaritmo de la función de verosimilitud tiene la siguiente expresión:

 $l = -\frac{Tp}{2} \left(1 + \ln \left(2\pi \right) \right) - \frac{T}{2} \ln \left[\left| \hat{\sum}_{u} \right| \right]$

Observación 2.4. El retardo p que minimice la mayor cantidad de los criterios de AIC, HQ, BIC; o, maximice el logaritmo de la función de verosimilitud, se retiene. En la práctica se aconseja que $p \le 5$, debido a que valores superiores implican incorporar una gran cantidad de parámetros.

También se puede utilizar el estadístico M(p) para probar la hipótesis nula H_0 : El modelo es un VAR (contra la alternativa, H_1 : El modelo es un VAR(p-1).

Este estadístico se define por:

$$M(p) = -\left(T - k - p - \frac{3}{2}\right) \ln \left[\frac{\left|\hat{\Sigma}_{u,p}\right|}{\left|\hat{\Sigma}_{u,p-1}\right|}\right]$$

donde,

 $\hat{\Sigma}_{u,j}$ =matriz de varianzas covarianzas del modelo con retardo j. M(p) sigue asintóticamente una distribución Ji-cuadrado con k^2 grados de libertad.

2.5.3 Diagnóstico y validación del modelo

Un buen punto de partida para la verificación de que el modelo estimado es el adecuado, es la significación de los parámetros estimados, para no tener parámetros no deseados o parámetros que no aportan al modelo. Por otro lado, esto puede ser engañoso, porque los parámetros estimados de un modelo pobre pueden ser también significativos. Por lo tanto, no se debe depender exclusivamente de la significación de los parámetros para evaluar el modelo.

Como en la mayoría de situaciones de modelación, la forma de evaluación se realiza a través del comportamiento de los residuos. Si el modelo es una representación adecuada de un proceso generado por las series de tiempo, los residuos no deben tener ninguna tendencia significativa ni patrón.

Una forma de observar esto es considerar los elementos individuales de la matriz de autocorrelación de los vectores de residuos. Otra forma es el uso del estadístico *Portmanteau*, que se analizará posteriormente.

2.5.3.1 Matrices de autocorrelación multivariante

Sea $\{u_t\}$ un ruido blanco k-dimensional con matriz de covarianza Σ_u y su correspondiente matriz de correlación R_u . La matriz de autocovarianza y la matriz de autocorrelación muestral de $\{u_t\}$ con respecto al retardo i están dadas por:

$$\hat{C}_i = \frac{1}{T} \sum_{t=i+1}^{T} \hat{u}_i \hat{u}'_{t-i} \quad i = 0, 1, \dots; i < T$$

$$\hat{R}_i = V_u^{-\frac{1}{2}} \hat{C}_i V_u^{-\frac{1}{2}} \quad i = 0, 1, \dots; i < T$$

donde, T es el número de observaciones de las series de tiempo y $V_u^{-\frac{1}{2}}$ es una matriz diagonal (k*k) con el inverso de la raíz cuadrada de los elementos de la diagonal de C_0 en su diagonal.

Sea
$$R_l^* = (R_1, ..., R_l)'$$
.

2.5.3.2 La prueba "Portmanteau"

La prueba de bondad de ajuste para los residuos de Box-Pierce (1970), la prueba *Portmanteau*, fue extendida a modelos VAR multivariante por Hosking (1980) y Li-McLeod (1981). Esta prueba determina si las autocorrelaciones residuales, sobre un retardo específico, son estadísticamente nulos.

La hipótesis que se prueba es:

$$H_0: R_l^* = (R_1, \dots, R_l)' = 0$$
 contra $H_a: R_l^* = (R_1, \dots, R_l)' \neq 0$

Si no se rechaza la hipótesis nula, se puede asumir que los residuos se comportan como un ruido blanco y, por lo tanto, es adecuado el modelo ajustado.

La prueba multivariante *Portmanteau* propuesta por Hosking (1980) considera el estadístico:

$$Q(l) = T \sum_{i=1}^{l} tr \left(\hat{C}_{i}' \hat{C}_{0}^{-1} \hat{C}_{i} \hat{C}_{0}^{-1} \right)$$

Este estadístico tiene aproximadamente una distribución Ji-Cuadrada con $k^2(l-p)$ grados de libertad bajo la hipótesis nula, donde pes el orden estimado del modelo VAR (p) y l es el número de retardos incluidos en la prueba para la significación total. Ljung-Box (1978) propusieron una modificación que conduce a propiedades mejores en el caso univariante; Hosking considera una modificación similar para el caso multivariante. El estadístico modificado de la prueba Portmanteau está dado por:

$$Q'(l) = T^{2} \sum_{i=1}^{l} (T - i)^{-1} tr \left(\hat{C}'_{i} \hat{C}_{0}^{-1} \hat{C}_{i} \hat{C}_{0}^{-1} \right)$$

2.5.3.3 Prueba de Breusch - Godfrey o Prueba del Multiplicador de Lagrange (LM)

Se utiliza para detectar autocorrelación de cualquier orden, especialmente en aquellos modelos con o sin variables dependientes retardadas. Permite determinar si existe correlación en los residuos hasta un determinado orden.

Se realiza la siguiente prueba de hipótesis:

$$H_0: \rho_l = 0$$
, contra $H_a: \rho_l \neq 0$,

donde, *l* es el orden del modelo VAR ajustado.

El estadístico utilizado para la prueba es:

$$LM = TR^2$$

donde, T el número de observaciones y R^2 corresponde a la bondad de ajuste de la regresión auxiliar entre las variables y los residuos.

Este estadístico, bajo H_0 , sigue asintóticamente una distribución Ji-cuadrado con l grados de libertad, χ_l^2 .

2.5.3.4 Prueba de Jarque-Bera

Es una prueba asintótica de normalidad para grandes muestras. La prueba de Jarque-Bera (JB) considera la relación entre los coeficientes de asimetría y apuntamiento de los residuos de la ecuación estimada y los correspondientes de una distribución normal, de forma tal que si estas relaciones son suficientemente diferentes se rechazará la hipótesis nula de normalidad.

Se realiza la siguiente prueba de hipótesis:

 H_0 : los residuos siguen una distribución normal multivariante

 H_1 : los residuos no siguen una distribución normal multivariante

Este estadístico se basa en las medidas de apuntamiento (*curtosis*) y la asimetría a través de la transformación de Mahalanobis.

La i-ésima componente del vector de asimetría estimado, se calcula de la siguiente manera:

$$as_{i} = \frac{\frac{1}{T} \sum_{j=1}^{T} \hat{v}_{ij}^{3}}{\frac{1}{T} \sum_{j=1}^{T} \left(\hat{v}_{ij}^{2}\right)^{3/2}} = \frac{\sum_{j=1}^{T} \hat{v}_{ij}^{3}}{\sum_{j=1}^{T} \left(\hat{v}_{ij}^{2}\right)^{3/2}}$$

La i-ésima componente del vector de apuntamiento estimado se calcula de la siguiente manera:

$$k_i = \frac{\frac{1}{T} \sum_{j=1}^{T} \hat{v}_{ij}^4}{\frac{1}{T} \sum_{j=1}^{T} \left(\hat{v}_{ij}^2\right)^2} = \frac{\sum_{j=1}^{T} \hat{v}_{ij}^4}{\sum_{j=1}^{T} \left(\hat{v}_{ij}^2\right)^2}$$

 \hat{v}_{ij} son los elementos de la matriz \hat{V} , que se define de la siguiente manera:

$$\hat{V} = \hat{U} S_{\hat{H}}^{-1}$$

donde, \hat{U} es la matriz de los residuos obtenidos a través de la estimación de las variables utilizando el método de mínimos cuadrados; mientras que $S_{\hat{U}}$ es una matriz triangular superior tal que:

$$\hat{U}'\hat{U} = S_{\hat{U}}'S_{\hat{U}} \quad \text{y} \quad (\hat{U}'\hat{U})^{-1} = S_{\hat{U}}^{-1}(S_{\hat{U}}^{-1})'$$

2.6 Predicción 29

En este caso, \hat{V} es la matriz ortogonalizada de los residuos estimados; es decir, as_i y k_i corresponden a la asimetría y el apuntamiento individual estimados, respectivamente.

Entonces, se define a la asimetría y al apuntamiento estimados de la distribución de la serie multivariante como:

$$AS = (as_1, \dots, as_T)'(as_1, \dots, as_T)$$

 $K = (k_1 - 3, \dots, k_T - 3)'(k_1 - 3, \dots, k_T - 3)$

El estadístico utilizado para la prueba es:

$$JB = T \left[\frac{AS}{6} + \frac{K}{24} \right]$$

Este estadístico se compara con una distribución Ji-Cuadrada con 2T grados de libertad.

2.6 Predicción

Con los coeficientes estimados del modelo, se puede calcular la predicción para un horizonte *h*, dada la información hasta el período T; por ejemplo, para un VAR (1) se tiene:

$$\hat{X}_T(1) = \hat{v}_0 + \hat{A}_1 X_T$$

Al horizonte de 2 períodos, la predicción es:

$$\hat{X}_{T}(2) = \hat{v}_{0} + \hat{A}_{1}\hat{X}_{T}(1) = \hat{v}_{0} + \hat{A}_{1}\hat{v}_{0} + \hat{A}_{1}^{2}X_{T}$$

Al horizonte de 3 períodos, la predicción se escribe:

$$\hat{X}_{T}(3) = \hat{v}_{0} + \hat{A}_{1}\hat{X}_{T}(2) = \left(I + \hat{A}_{1} + \hat{A}_{1}^{2}\right)\hat{v}_{0} + \hat{A}_{1}^{3}X_{T}$$

$$\hat{X}_{T}(h) = \hat{v}_{0} + \hat{A}_{1}\hat{X}_{T}(h-1) = \left(I + \hat{A}_{1} + \ldots + \hat{A}_{1}^{h-1}\right)\hat{v}_{0} + \hat{A}_{1}^{h}X_{T}, \quad h \ge 0$$

Cuando $h \to \infty$, la previsión tiende a un valor constante (estado estacionario) puesto que $\hat{A}_1^i \to 0$ si $i \to \infty$ y existe el límite de $\sum_{j=0}^{\infty} \hat{A}_1^j$, que es igual a $\left(I - \hat{A}_1\right)^{-1}$. Por tanto:

$$\hat{X}_{T}(h) \rightarrow (I - \hat{A}_{1})^{-1} \hat{v}_{0}$$
 cuando $h \rightarrow \infty$

El error de predicción al horizonte h viene dado por:

$$e_T(h) = X_{T+h} - \hat{X}_T(h)$$

En particular, para h=1 y h=2, se tiene:

$$e_T(1) = u_{T+1}$$

 $e_T(2) = u_{T+2} + A_1 u_{T+1}$

En general, para el horizonte h, se tiene:

$$e_T(h) = \sum_{i=0}^{h-1} A_1^i u_{T+h-i}$$

La esperanza del error de predicción es nula. La matriz de varianza-covarianza del error de predicción es:

$$\sum_{u} (h) = E \left[\left(\sum_{i=0}^{h-1} A_1^i u_{T+h-i} \right) \left(\sum_{i=0}^{h-1} A_1^i u_{T+h-i} \right)' \right]$$

La varianza-covarianza estimada viene dada por:

$$\hat{\sum}_{u}(h) = E \left[\left(\sum_{i=0}^{h-1} \hat{A}_{1}^{i} \hat{u}_{T+h-i} \right) \left(\sum_{i=0}^{h-1} \hat{A}_{1}^{i} \hat{u}_{T+h-i} \right)' \right]$$

Luego,

$$\hat{\sum}_{T}(h) = M_{0} \hat{\sum}_{u} M'_{0} + M_{1} \hat{\sum}_{u} M'_{1} + \dots + M_{h-1} \hat{\sum}_{u} M'_{h-1}$$

donde M_ison las matrices de la representación VMA.

Por lo tanto, se tiene:

$$M_1 = \hat{A}_1;$$
 $M_2 = \hat{A}_1 M_1 + \hat{A}_2 M_0 = \hat{A}_1^2 + \hat{A}_2;$ $M_3 = \hat{A}_1 M_2 + \hat{A}_2 M_1 + \hat{A}_3 M_0 = \hat{A}_1^3 + \hat{A}_1 \hat{A}_2 + \hat{A}_2 \hat{A}_1 + \hat{A}_3$

La varianza del error de predicción para cada una de las predicciones de las k variables $\left(\hat{\sigma}_{i}^{2}(h)\right)$ se lee sobre la primera diagonal de la matriz $\hat{\Sigma}_{u}(h)$. El intervalo de predicción al nivel $(1-\alpha)$ está dado por: $\hat{X}_{iT}(h)\pm z_{1-\frac{\alpha}{2}}\hat{\sigma}_{i}(h)$ donde $z_{1-\frac{\alpha}{2}}$ es el cuantil de orden $(1-\alpha/2)$ de la ley normal.

Índice alfabético

```
ARCH
    Definición, 3
    Restricciones, 4
Dependencia lineal multivariante, 13
EGARCH
    Definición, 5
GARCH
    Definición, 4
IGARCH
    Definición, 4
Matriz
    Correlaciones cruzadas, 12
PARCH
    Definición, 6
Relaciones en retardo, 12
TARCH
    Definición, 6
```