Using Jupyter Notebooks on HPC systems

UM Fall HPC/Cloud Workshop Grigory Shamov, October 15, 2025

Why the talk is about Jupyter on HPC?

- There exists a lot of uses for dynamic languages like Python, R, Julia
 - JuPyteR (formerly iPython) is a popular debugging/Data analysis / collaboration tool
 - https://jupyter.org/
- HPC has high performance hardware and software

NVIDIA (and AMD) GPUs; Fast Interconnect; Large memory nodes, etc. Scalable, parallel File Systems (VAST, CEPH, DDN Infinia) or local SSD NVMe

- Uses of JuPyteR in HPC?
 - Interactive jobs, debugging
 - Visualization, data analysis requiring larger memory, GPUs
 - "Moving compute closer to data"
- Why not using Jupyter in HPC?
 - Batch processing is more efficient, can be done concurrently

This talk is about using our HPC infra

- HPC presents users with its own issues: Batch Jobs and Software Modules
 - How to run Jupyter on HPC as a job? Interactively?
 - How to access/manage Jupyter software
 - Tools specific for dealing with HPC Lmod modules
 - How to handle Notebooks Kernels (for Python(s), R, Julia, etc.)?
 - Virtual environments
 - Module dependencies
 - Containers?

Working with Notebooks in HPC 1.

- A Jupyter notebook / Jupyter lab is in practice a Web server.
 - Typically users would start it on a PC/laptop as jupyter lab
 - Would start a browser and show a notebook
- How to scale it up? How to use it on powerful servers like HPC or cloud
- Can be started manually on a login node and/or interactive job
 - Needs Python packages: jupyter, ipython, etc.
 - Need to manage software dependencies (modules, pip, virtualenv)
 - Spans remote and local systems
 - Need to "SSH tunnel" the web server connection
 - Or have a browser on the remote server which is less useful

Working with Notebooks in HPC 1.

Can be started manually on a login node and/or interactive job

```
ssh to a node; or start an interactive job with salloc
module load python/...; i
install jupyterlab in a virtualenv, or a conainer; start the notebook
jupyter-notebook --ip 0.0.0.0 --no-browser --port 8765
ssh -fNL 8765:g333:8765 yourusername@bison.hpc.umanitoba.ca
Then point the browser to a https://localhost:8765
```


Working with Notebooks 2

- A notebook is a Web server. It can be started automatically;
- The connection between the Notebook server can be "proxied" automatically
 - So that computation is done by a computing backend (HPC, cloud, etc.)

- JupyterHub is a web server that starts notebooks and proxies them automatically
 - Google Colab is a powerful cloud platform: https://colab.research.google.com/
 - PIMS provides SyZyGy (which uses DRAC cloud) https://umanitoba.syzygy.ca
 - Magic Castle and JupyterHub on (some) new DRAC systems

- OpenOnDemand is a Web portal that starts interactive jobs and proxies them automatically
 - Supports Jupyter notebooks too! Provided on Grex and (some) new DRAC systems

JupyterHub and/or OpenOnDemand

System	JupyterHub ?	OpenOnDemand ?
Fir (SFU)	jupyterhub.fir.alliancecan.ca	
Nibi (Sharcnet, UWaterloo)		ondemand.sharcnet.ca
Rorqual (CQ, Montreal)	jupyterhub.rorqual.alliancecan.ca	
Trillium (SciNet, UofT)		ondemand.scinet.utoronto.ca
MagicCastle	jupyter.demo.hpc.umanitoba.ca	
Grex		ood.hpc.umanitoba.ca

Notebooks, kernels and packages

- A notebook is a Web server.
- The server is written in Python and JS; provides interfaces with "Cells"
 - Code cells; Markdown documentation cells
- What does runs in the cells? "Kernels".
 - Kernels support a particular language (R, Python, Julia, etc.)
 - Many kernels have to be "installed" on user level
 - Some are available as Lmod modules on CC software stack
- How to manage kernels? Per-user command line tools (jupyter and corresp Language).

```
pip install ipykernel jupyter && python -m ipykernel install -user -name=my_python3
```

jupyter kernelspec list; or jupyter kernelspec uninstall my_my_python3; etc.

More information: https://um-grex.github.io/grex-docs/specific-soft/jupyter-notebook/

Managing Python dependencies with pip

- Dependencies: Pip handles (mostly) Python dependencies, relying on OS for non-Python ones
 - a. Unlike conda, uv etc, that would package all binary dependencies as well.
 - b. HPC folks like to provide their own optimized binary software: load "modules"!
- Repositories: pip fetches packages from https://pypi.org/ or a local repository.
 - a. On CCEnv, each and every package must be repackaged to their "wheelhouse".
 - b. On local software stack SBEnv, manylinux wheels can be used from pypi.org
- Installation destination: in particular when invoked in a Jupyter notebook cell.
 - a. user's home directory \$HOME/.local/{bin,lib,share} . (Grex)
 - b. Throw-away virtual environment under \$SLURM_TMPDIR (Alliance HPC, MagicCastle)
 - c. Explicit virtualenv (create, activate and install): best method. Needs a Jupyter kernel added.

Exercise: data analysis with Pandas

We will load some Eventbrite registration data (anonimized!) and analyze using the Pandas Python package

- Load necessary modules in Jupyter; using LMod tab.
- Get a Jupyter kernel for Python with JupyterLab launcher
 - a. As an exercise, can create/install kernel in a virtualenv
 - b. Or pick from a module.
- Import packages
- Use a notebook to load the data and analyze
- Hands-on exercise : copy the materials and open notebooks in JupyterLab notebook
 - a. On Grex: cp -r /global/software/ws-oct2025/jupyter_pandas ~
 - b. On Magic Castle: cp -r /home/shared/ws-oct2025/jupyter_pandas ~

