# Lasse9 Programmation réseau Tel Quel

Fouad Bouarourou

**ENSIAS** 

24 dec 2017

- Qeustions
  - Modèle tcp/ip
  - les adresses ip
  - couche application , sockets
  - couche application,port client/serveur,sockets
- Code
  - Fork()
  - select()

- Qeustions
  - Modèle tcp/ip
  - les adresses ip
  - couche application, sockets
  - couche application,port client/serveur,sockets
- Code
  - Fork()
  - select()

## tcp/ip



- couche 1 :Hub répéteur ,concentrateur
- couche 2 :switch ,commutateur
- couche 3 : routage, passerelle=gateway , ospf , rip....
- couche 4 : couche transport elle fait le controle de fiabilité ,soit TCP soit UDP
  - TCP :(fiable, non rapide) fiable elle fait la correction des erruers et le transfert de packets sans corruption, pertes, rordonnancement, duplication, n'est pas rapide.
  - UDP :(rapide non fiable) n'est pas fiable, mais rapide, on l'utilise dans le la diffusion en direct.

## tcp/ip

- deux machines peuvent communiquer localement en utilisant juste les adresses MAC .
- les collisions existent car le support de communication est partagé .
- le fichier /etc/protocols contient les protocoles(tcp, udp, ospf ..) et leurs indentifiants . tcp : 6 udp : 17 c'est identifiant est placé dans le champ protocol dans un packet IP .



field specifies the size of the header (this also coincides with the offset to the data). The minimum value for this field is 5,[11] which indicates a length of 5 x

- min de packet IP : 20 octets ,et le max 60 octets si la taille de packet est inféreur 60 octets on ajoute le bourrage(padding)
- le fichier /etc/hosts contient la résolution DNS .

32 bits = 160 bits = 20 bytes. As a 4-bit field, the maximum value is 15 words (15 x 32 bits, or 480 bits = 60 bytes)

- Qeustions
  - Modèle tcp/ip
  - les adresses ip
  - couche application , sockets
  - couche application,port client/serveur,sockets
- Code
  - Fork()
  - select()

### ip publique privée

- IPv4 est codée sur 4 octets.
- IPv6 est codée sur 16 octets.
- découpage des adresses ip .



- NAT : NAT statique, on fixe une adresse publique pour chaque adresse prive. On n'conomise donc rien.
- PAT: (aka port address translation (PAT), IP masquerading, NAT overload and many-to-one NAT) associe n adresses prives une seule adresse publique. Ainsi, on peut connecter n machines en n'utilisant qu'une seule adresse publique. On conomise donc des adresses.

- Qeustions
  - Modèle tcp/ip
  - les adresses ip
  - couche application , sockets
  - couche application,port client/serveur,sockets
- Code
  - Fork()
  - select()

client-serveur



- la couche 3 : permet de connecter deux machines ayant des adresses ip .
- la couche 4 : couche application permet de connecter deux applications ayant des indentifiants qui sont les ports .

- un port est nombre qui indentifie une application qui utilise le réseau et qui tourne dans une machine.
- port serveur : doit etre connu, pour que le cient puisse lui envoyer sa requete, voila une liste des port les plus utilisés

| Port     | Service name                               | Transport protocol |
|----------|--------------------------------------------|--------------------|
| 20, 21   | File Transfer Protocol (FTP)               | TCP                |
| 22       | Secure Shell (SSH)                         | TCP and UDP        |
| 23       | Telnet                                     | TCP                |
| 25       | Simple Mail Transfer Protocol (SMTP)       | TCP                |
| 50, 51   | IPSec                                      |                    |
| 53       | Domain Name Server (DNS)                   | TCP and UDP        |
| 67, 68   | Dynamic Host Configuration Protocol (DHCP) | UDP                |
| 69       | Trivial File Transfer Protocol (TFTP)      | UDP                |
| 80       | HyperText Transfer Protocol (HTTP)         | TCP                |
| 110      | Post Office Protocol (POP3)                | TCP                |
| 119      | Network News Transport Protocol (NNTP)     | TCP                |
| 123      | Network Time Protocol (NTP)                | UDP                |
| 135-139  | NetBIOS                                    | TCP and UDP        |
| 143      | Internet Message Access Protocol (IMAP4)   | TCP and UDP        |
| 161, 162 | Simple Network Management Protocol (SNMP)  | TCP and UDP        |
| 389      | Lightweight Directory Access Protocol      | TCP and UDP        |
| 443      | HTTP with Secure Sockets Layer (SSL)       | TCP and UDP        |

- les ports serveurs sont inférieurs à 1024 il existe des eexceptions par exemple mysql:3306.
- lorsque une application(navigateur ...) veut utiliser le réseau le système lui affecte un port alatoirement en dehors de 1024.
- port est codé sur 2 octets .

- Qeustions
  - Modèle tcp/ip
  - les adresses ip
  - couche application, sockets
  - couche application,port client/serveur,sockets
- 2 Code
  - Fork()
  - select()

voir le cours

- Qeustions
  - Modèle tcp/ip
  - les adresses ip
  - couche application, sockets
  - couche application,port client/serveur,sockets
- 2 Code
  - Fork()
  - select()

```
la fonction select permet de "monitorer" un ensemble de descripteurs de fichier
et detecter des eventuels changements sur ce descripteurs (par exemple , un descripteur de fchier vient de subir un
changement par un client qui vient d'envoyer un requete)
select=(int n+1,fd_set *fds,null,null,null);
fds = poniteur qui pointe sur l'ensemble des fichier descripteur à monitorer ,
avec n = le fichier descripteur maximal parmi l'ensemble *fds.
la fonction : FD ISSET(int fd, fd set* fds) permet de vérifier si fd appartient à l'ensemble fds ou non,
s'il appartient îl retourne 1 sinon îl retourne 0 .
FD SET(int fd, fd set* fds) ajouter le descripteur de fichier fd à l'ensemble fds .
-s'i un des fichiers descripteurs parmi fds a subi un changement la fonction select retourne le nombre de
descripteurs de fichiers qui ont subi ce changement , et îl change l'ensemble fds de telle façons qu'il contient juste
les fichiers descripteurs qui ont subi ce changement , donc après le retourne de la fonction select l'ensemble fds est changé et il contient
juste les fichiers descripteurs qui ont subi ce changement .
c'est pour cela qu'on utilise souvent la fonction FD ISSET(int* fd, fd set* *fds) après la fonction select pour détecter les changements.
```