

ICE – Institutos de Ciências Exatas DEMAT – Departamento de Matemática

CÁLCULO 1 - SEMANA 2

Componente Curricular:

IC241 - CÁLCULO I (90h) - Turma: 02 (2020.1) IC241 - CÁLCULO I (90h) - Turma: 07 (2020.1)

Prof. Roseli Alves de Moura

FUNÇÃO COMPOSTA E INVERSA – Teoria e Exercícios

Função composta

Dadas duas funções f e g, a composta de g com f, indicada por gof, é definida por gof(x) = g[f(x)]. A função f é a função interna e g a externa na composição.

O <u>domínio</u> de gof é formado pelos pontos $x \in D_f$ tais que $\operatorname{Im} f \subseteq D_g$.

De modo semelhante define-se a composição na outra ordem: $f \circ g(x) = f[g(x)]$.

Exemplos:

1) Dadas $f(x) = x^2 - 1$ e $g(x) = \sqrt{x}$. A composta g0f é: $g[f(x)] = g[x^2 - 1] = \sqrt{x^2 - 1}$. Observe que o domínio <u>natural</u> de f é \Re , de g é $\{x \mid x \ge 0\}$ e de gof é $\{x \mid x \le -1 \ ou \ x \ge 1\}$. Como $D_{gof} \subset D_f$ e as imagens desses valores por f estão em D_g , ele é também o domínio da composição.

2) Sejam $f(x) = \sqrt{x}$ e $g(x) = \sqrt{x^4 - 1}$. A composta gof é: $g[f(x)] = g[\sqrt{x}] = \sqrt{x^2 - 1}$. Observe que o domínio natural de f é $\{x \mid x \geq 0\}$ e de g é $\{x \mid x \leq -1 \ ou \ x \geq 1\}$. Qual seria então o domínio da composição visto que a expressão da composta é a mesma do exemplo anterior? A resposta seria: $\{x \mid x \geq 1\}$ pois só para esses valores $\operatorname{Im} f \subset D_g$.

Exercícios:

1) Sejam f(x) = 2x - 3 e $g(x) = \sqrt{x+1}$. Encontre: $g \circ f e f \circ f$.

2) Dadas as funções:
$$f(x) = \begin{cases} x^2 & se \ 0 \le x \le 1 \\ 0 & se \ x < 0 \ ou \ x > 1 \end{cases}$$
 e $g(x) = \begin{cases} 2x & se \ 0 \le x \le 1 \\ 1 & se \ x < 0 \ ou \ x > 1 \end{cases}$. Encontre fog.

3) Determinar g(x), nos seguintes casos:

a)
$$f[g(x)] = x e f(x) = 2x + 3$$

b)
$$g[f(x)] = 1 - 2x e f(x) = x + 1$$

Resoluções:

Funções compostas

1)
$$g(f(x)) = \sqrt{2x-3+1} = \sqrt{2x-2}$$

 $f(f(x)) = 2(2x-3) - 3 = 4x - 9$
[1 se x < 0]

2)
$$f(g(x)) = \begin{cases} 4x^2 & \text{se } 0 \le x \le \frac{1}{2} \\ 0, & \text{se } \frac{1}{2} < x \le 1 \\ 1, & \text{se } x > 1 \end{cases}$$

3) a)
$$f(g(x)) = 2 \cdot g(x) + 3 = x \Rightarrow g(x) = \frac{x-3}{2}$$

b)
$$g(x) = a.x + b \ e \ g(f(x)) = af(x) + b = a(x+1) + b = -2x + 1 \Rightarrow \begin{cases} a = -2 \\ a + b = 1 \Rightarrow b = 3 \end{cases}$$

Função Inversa

Seja $f:A\to R$ uma função injetora, isto é, $\forall x_1,x_2\in A,\,x_1\neq x_2\Rightarrow f(x_1)\neq f(x_2)$. Faça $B=\mathrm{Im}\,f$. A função $g:B\to A$ é a inversa de f e vice-versa se, e somente se, $fog(x)=x, \forall x\in B$ e $gof(x)=x, \forall x\in A$. Indica-se a inversa por f^{-1} .

Propriedades:

- P1) f é invertível se, e somente se, toda reta paralela ao eixo x interceptar seu gráfico no máximo em um ponto.
- P2) Os gráficos de f e de sua inversa g são simétricos em relação à primeira bissetriz.

Simbolicamente:

$$y = g(x) \Leftrightarrow x = f(y)$$
.

Nem toda função admite inversa. Porém podemos fazer restrição conveniente no domínio para que a função "restrita" admita inversa.

Exemplo: A função $f(x) = (x-1)^2$ não admite inversa em \Re . Mas para $x \ge 1$, tem a seguinte inversa $x = 1 + \sqrt{y}$, $y \ge 0$ e para $x \le 1$, a seguinte inversa $x = 1 - \sqrt{y}$, $y \ge 0$. O usual é trocar x e y na fórmula da inversa.

Alguns exemplos de funções definidas por inversão:

- 1) $y = arcsenx \Leftrightarrow seny = x$; $x \in [-1,1]$ e $y \in [\frac{-\pi}{2}, \frac{\pi}{2}]$.
- 2) $y = \arctan x \Leftrightarrow \tan y = x$; $x \in \Re e \ y \in \left[\frac{-\pi}{2}, \frac{\pi}{2} \right]$.
- 3) $y = \operatorname{arccot} x = \frac{\pi}{2} \arctan x$; $y \in]0, \pi[$.
- 4) $y = \ln x \Leftrightarrow e^y = x$; $x \in [0, +\infty)$ [e $y \in \Re$.

Não confundir!

Arc cotg

Seno / Arcsen/Arccos

Exercícios

1) Dê o domínio de

a)
$$y = arcsen(\ln x)$$
 b) $y = arcsec x = arccos(\frac{1}{x})$.

- 2) Seja $f(x) = \arctan x$. Mostre que: $f\left(\frac{x+y}{1-x.y}\right) = f(x) + f(y)$.
- 3) Determine um domínio ("mais amplo possível"), no qual $f(x) = x^2 + 2x + 2$ seja invertível e ache essa inversa. Resoluções:
- II) Funções inversas

1) a)
$$-1 \le \ln x \le 1 \Rightarrow \frac{1}{e} \le x \le e \Rightarrow D_f = [e^{-1}, e]$$

$$\text{b) } x\neq 0, \ -1\leq \frac{1}{x}\leq 1 \Rightarrow x\geq 1 \ ou \ x\leq -1 \Rightarrow D_f = \left]-\infty,-1\right] \cup \left[1,+\infty\right[$$

2)
$$\begin{cases} f(x) = \arctan x \Rightarrow x = \tan f(x) \\ f(y) = \arctan y \Rightarrow y = \tan f(y) \end{cases}$$
$$\frac{x+y}{1-x\cdot y} = \frac{\tan f(x) + \tan f(y)}{1-\tan f(x) \cdot \tan f(y)} = \tan[f(x) + f(y)] \Rightarrow f(x) + f(y) = \arctan\left(\frac{x+y}{1-x\cdot y}\right)$$

3)
$$f(x) = x^2 + 2x + 2 = (x+1)^2 + 1 = y$$

O gráfico dessa parábola é simétrico em relação à reta vertical: x = -1. Para $x \ge -1$ tem um ramo invertível.

A inversa é:
$$x = -1 + \sqrt{y-1}$$
. Logo $g(x) = -1 + \sqrt{x-1}$

Extras:

- 1) Determinar g(x) nos seguintes casos:
 - a) h[g(x)] = 2 2x, f(x) = 3x + 1 e f[h(x)] = 2x 5 Resp. g(x) = -3x + 6
 - b) f(x) = 7 2x, f(g(x)) = 7x + 5 Resp. g(x) = 1 7x/2
 - c) f(x) = 7 2x, g(f(x)) = 7x + 5 Resp. g(x) = 19 2x
 - d) $f(x) = e^x$, $f(g(x)) = x^2 + 1$ Resp. $g(x) = \ln(x^2 + 1)$
 - e) $f(x) = \ln x$, com x >0, g(f(x)) = 5x Resp. $g(x) = 5e^x$