Government Spending

Roxanne Salinas & Reisa Widjaja STA6853 Group 3 (Dr. Tripathi)

Introduction

Textbook Exercise 9.5

- 9.5 Subjects in a GSS were asked their opinions about government spending on the environment (E), health (H), assistance to big cities (C), and law enforcement (L). The data are shown at the text website, with outcome categories 1 = too little, 2 = about right, 3 = too much. For the homogeneous association model, Table 9.19 shows some results, including the two-factor estimates for the EH association for coding by which estimates at category 3 of each variable equal 0.
 - a. Test the model goodness of fit, and interpret.
 - b. Report the estimated EH conditional odds ratio for the (i) too much and too little categories, (ii) too much and about right categories, and (iii) about right and too little categories.
 - c. Table 9.20 reports $\{\hat{\lambda}_{eh}^{EH}\}$ when parameters sum to zero within rows and within columns, and when parameters are zero in the first row and first column. Show

how these yield the estimated *EH* conditional odds ratio for the too much and too little categories. Construct a confidence interval for that odds ratio. Interpret.

Parameter Information

Subject were asked their opinions on government spending.

- n=597 participants
- 4 categorical variables

Category	Rating		
E=environment	1=too little		
H=health	2=about right		
C=big city assistance	3=too much		
L=law enforcement			

Data

```
***** [Table9.5, page370] *****;
data problem9 5;
 input E C H L count @@;
 datalines;
 3 3 3 3 3
```

The Homogeneous Association Model

$$log\left(\mu_{hijk}\right) = \lambda + \lambda_h^E + \lambda_i^H + \lambda_j^C + \lambda_k^L + \lambda_{hi}^{EH} + \lambda_{hj}^{EC} + \lambda_{hk}^{EL} + \lambda_{ij}^{HC} + \lambda_{ik}^{HL} + \lambda_{jk}^{CL}$$

- Association between any 2 categories
- Model has no 3-factor or
 4-factor interaction term

Conditional dependence of the variables indicated given two variables that are not present are held constant.

The Homogeneous Association Model

$$log\left(\mu_{hijk}\right) = \lambda + \lambda_h^E + \lambda_i^H + \lambda_j^C + \lambda_k^L + \lambda_{hi}^{EH} + \lambda_{hj}^{EC} + \lambda_{hk}^{EL} + \lambda_{ij}^{HC} + \lambda_{ik}^{HL} + \lambda_{jk}^{CL}$$

- Used the 3rd level as the reference for the model
- We used the maximum likelihood parameter given by SAS
- The total amount of non-redundant parameters is 33

$$HIJK=1+(H-1)+(I-1)+(J-1)+(K-1)+(H-1)(I-1)+(H-1)(I-1)+(H-1)(J-1)$$

 $+(H-1)(K-1)+(I-1)(J-1)+(I-1)(K-1)+(J-1)(K-1)$

```
*** Homogenous Association Model;

proc genmod data=problem9_5;

class E(ref='3') H(ref='3') C(ref='3') L(ref='3')/ param=ref;

model count = E C H L E*H E*C E*L H*C H*L C*L/ dist=poi lrci type3 residuals obstats;

title 'Homogenours Association Model';

output out=pred p=exp1;run;quit;
```

Testing the model goodness of fit (9.5a)

 H_0 : the fitted model fits well H_1 : the fitted model does not fit well

- Deviance G²=31.6695, df=48
- Pearson Chi-Squares X^2 =26.5224, df=48
- p-values $> \alpha = 0.05$
- Fail to reject H_0 . The model fits well.

Criteria For Assessing Goodness Of Fit							
Criterion	DF	Value	Value/DF				
Deviance	48	31.6695	0.6598				
Scaled Deviance	48	31.6695	0.6598				
Pearson Chi-Square	48	26.5224	0.5526				
Scaled Pearson X2	48	26.5224	0.5526				
Log Likelihood		1284.9404					
Full Log Likelihood		-119.2515					
AIC (smaller is better)		304.5030					
AICC (smaller is better)		352.2477					
BIC (smaller is better)		383.5198					

Estimated EH conditional odds ratio (9.5b)

We are interested in the association between a subject rating about the government spending on the Environment and Health.

Table 9.19	Soft	ware	Outp	ut (Based or	n SAS) fo	r Fitting M	odel For E	xercise 9.5	;
		С	riter	ia For As	sessing	Goodness	Of Fit		
		Crit	erio	n	DF	Value	Value/	DF	
		Devi	ance		48	31.6695	0.659	8	
		Pear	son	Chi-Square	48	26.5224	0.552	6	
		Log	Like:	lihood		1284.9404			
					Stand	lard	Wald 95	8	Chi-
Parameter			DF	Estimate	Err	or Con	fidence	Limits	Square
e*h	1	1	1	2.1425	0.55	66	1.0515	3.2335	14.81
e*h	1	2	1	1.4221	0.60	34	.2394	2.6049	5.55
e*h	2	1	1	0.7294	0.56	67 -	0.3813	1.8402	1.66
e*h	2	2	1	0.3183	0.62	11 -	0.8991	1.5356	0.26

Estimated EH conditional odds ratio (9.5b)

Since we used the 3rd level as the reference, we are able to obtain estimates for

$$\lambda_{11}^{EH}$$
 λ_{12}^{EH} λ_{21}^{EH} λ_{22}^{EH}

All other parameters are redundant.

Analysis Of Maximum Likelihood Parameter Estimates									
Parameter		DF		Estimate	Standard Error	Likelihood f Confidence		Wald Chi-Square	Pr > ChiSq
E*H	1	1	1	2.1425	0.5566	1.0132	3.2209	14.81	0.0001
E*H	1	2	1	1.4221	0.6034	0.2148	2.6069	5.55	0.0184
E*H	1	3	0	0.0000	0.0000	0.0000	0.0000	94	-
E*H	2	1	1	0.7294	0.5667	-0.4194	1.8265	1.66	0.1980
E*H	2	2	1	0.3183	0.6211	-0.9248	1.5346	0.26	0.6084
E*H	2	3	0	0.0000	0.0000	0.0000	0.0000	114	-
E*H	3	1	0	0.0000	0.0000	0.0000	0.0000		
E*H	3	2	0	0.0000	0.0000	0.0000	0.0000	14	

Estimated EH conditional odds ratio for the too much (3) and too little (1) (9.5b.i)

$$\begin{split} \log(\hat{\theta}_{13}) &= \log\left(\frac{\mu_{11jk}\mu_{33jk}}{\mu_{13jk}\mu_{31jk}}\right) = \log(\mu_{11jk}) + \log(\mu_{33jk}) - \log(\mu_{13jk}) - \log(\mu_{31jk}) \\ &= \hat{\lambda} + \hat{\lambda}_{1}^{E} + \hat{\lambda}_{1}^{H} + \hat{\lambda}_{j}^{C} + \hat{\lambda}_{k}^{L} + \hat{\lambda}_{11}^{EH} + \hat{\lambda}_{1j}^{EC} + \hat{\lambda}_{1k}^{EL} + \hat{\lambda}_{1j}^{HC} + \hat{\lambda}_{1k}^{HL} + \hat{\lambda}_{jk}^{CL} \\ &+ \hat{\lambda}_{1}^{E} + \hat{\lambda}_{1}^{H} + \hat{\lambda}_{1}^{C} + \hat{\lambda}_{k}^{EH} + \hat{\lambda}_{13}^{EC} + \hat{\lambda}_{1k}^{EL} + \hat{\lambda}_{1j}^{HC} + \hat{\lambda}_{1k}^{HL} + \hat{\lambda}_{jk}^{CL} \\ &+ \hat{\lambda}_{1}^{E} + \hat{\lambda}_{1}^{H} + \hat{\lambda}_{1}^{C} + \hat{\lambda}_{k}^{L} + \hat{\lambda}_{13}^{EH} + \hat{\lambda}_{1j}^{EC} + \hat{\lambda}_{1k}^{EL} + \hat{\lambda}_{1j}^{HC} + \hat{\lambda}_{1k}^{HL} + \hat{\lambda}_{jk}^{CL} \\ &- (\hat{\lambda} + \hat{\lambda}_{1}^{E} + \hat{\lambda}_{1}^{H} + \hat{\lambda}_{1}^{C} + \hat{\lambda}_{k}^{L} + \hat{\lambda}_{13}^{EH} + \hat{\lambda}_{1j}^{EC} + \hat{\lambda}_{1k}^{EL} + \hat{\lambda}_{1j}^{HC} + \hat{\lambda}_{1k}^{HL} + \hat{\lambda}_{jk}^{CL}) \\ &- (\hat{\lambda} + \hat{\lambda}_{3}^{E} + \hat{\lambda}_{1}^{H} + \hat{\lambda}_{1}^{C} + \hat{\lambda}_{k}^{L} + \hat{\lambda}_{31}^{EH} + \hat{\lambda}_{3j}^{EC} + \hat{\lambda}_{3k}^{EL} + \hat{\lambda}_{1j}^{HC} + \hat{\lambda}_{1k}^{HL} + \hat{\lambda}_{jk}^{CL}) \\ &- (\hat{\lambda} + \hat{\lambda}_{3}^{E} + \hat{\lambda}_{1}^{H} + \hat{\lambda}_{1}^{C} + \hat{\lambda}_{k}^{L} + \hat{\lambda}_{31}^{EH} + \hat{\lambda}_{3j}^{EC} + \hat{\lambda}_{3k}^{EL} + \hat{\lambda}_{1j}^{HC} + \hat{\lambda}_{1k}^{HL} + \hat{\lambda}_{jk}^{CL}) \\ &- (\hat{\lambda} + \hat{\lambda}_{3}^{E} + \hat{\lambda}_{1}^{H} + \hat{\lambda}_{1}^{C} + \hat{\lambda}_{k}^{L} + \hat{\lambda}_{31}^{EH} + \hat{\lambda}_{3j}^{EC} + \hat{\lambda}_{3k}^{EL} + \hat{\lambda}_{1j}^{HC} + \hat{\lambda}_{1k}^{HL} + \hat{\lambda}_{jk}^{CL}) \\ &- (\hat{\lambda} + \hat{\lambda}_{3}^{E} + \hat{\lambda}_{1}^{H} + \hat{\lambda}_{1}^{C} + \hat{\lambda}_{2k}^{EL} + \hat{\lambda}_{31}^{EC} + \hat{\lambda}_{3k}^{EC} + \hat{\lambda}_{3k}^{EL} + \hat{\lambda}_{1j}^{HC} + \hat{\lambda}_{1k}^{HL} + \hat{\lambda}_{jk}^{CL}) \\ &- (\hat{\lambda} + \hat{\lambda}_{3}^{E} + \hat{\lambda}_{1}^{H} + \hat{\lambda}_{1}^{C} + \hat{\lambda}_{2k}^{EC} + \hat{\lambda}_{3k}^{EC} + \hat$$

$$\hat{\theta}_{13} = e^{\hat{\lambda}_{11}^{EH} + \hat{\lambda}_{33}^{EH} - \hat{\lambda}_{13}^{EH} - \hat{\lambda}_{31}^{EH}} = e^{2.1425 + 0 - 0 - 0} = e^{2.1425} = 8.5207$$

 $=\hat{\lambda}_{11}^{EH}+\hat{\lambda}_{23}^{EH}-\hat{\lambda}_{13}^{EH}-\hat{\lambda}_{21}^{EH}$

Estimated EH conditional odds ratio for the too much (3) and too little (1) (9.5b.i)

$$\hat{\theta}_{13} = e^{\hat{\lambda}_{11}^{EH} + \hat{\lambda}_{33}^{EH} - \hat{\lambda}_{13}^{EH} - \hat{\lambda}_{31}^{EH}} = e^{2.1425 + 0 - 0 - 0} = e^{2.1425} = 8.5207$$

$$E = \frac{1}{1} \quad 2.1425 \quad 1.4221 \quad 0$$

$$E = \frac{1}{1} \quad 2.1425 \quad 1.4221 \quad 0$$

	1	2.1425	1.4221	0
Interpretation:	2	0.7294	0.3183	0
	3	0	0	0
While holding the subject's opinions on government spending for	bıg (city assi	stance	
and law enforcement constant, participants are 8.5207 times more	like	ly to ag	ree that	

the government has been spending too little on the environment and health issue than the participants who think the government was spending too much.

Estimated EH conditional odds ratio for the too much (3) and about right (2) (9.5b.ii)

$$\log(\hat{\theta}_{23}) = \log\left(\frac{\hat{\mu}_{22jk}\hat{\mu}_{38jk}}{\hat{\mu}_{28jk}\hat{\mu}_{82jk}}\right) = \log(\hat{\mu}_{22jk}) + \log(\hat{\mu}_{33jk}) - \log(\hat{\mu}_{23jk}) - \log(\hat{\mu}_{32jk})$$

$$= \hat{\lambda}_{22}^{EH} + \hat{\lambda}_{33}^{EH} - \hat{\lambda}_{23}^{EH} - \hat{\lambda}_{32}^{EH}$$

$$\hat{\theta}_{23} = e^{\hat{\lambda}_{22}^{EH} + \hat{\lambda}_{38}^{EH} - \hat{\lambda}_{28}^{EH} - \hat{\lambda}_{32}^{EH}} = e^{0.3183 + 0 - 0 - 0} = e^{0.3183} = 1.3748$$
Interpretation:
$$E = \frac{1}{1 + 2.1425 + 1.425}$$

$$= \frac{1}{2 + 2.1425 + 1.425}$$

$$= \frac$$

Zero	for Third L	evel
	H	
1	2	3
2.1425	1.4221	0
0.7294	0.3183	0
0	0	0
	1 2.1425	1 2 2.1425 1.4221

While holding the subject's opinions on government spending for big city assistance and law enforcement constant, participants are 1.3748 times more likely to agree that the government has been spending the right amount on the environment and health issue than the participants who think the government was spending too much.

Estimated EH conditional odds ratio for the about right (2) and too little (1) (9.5b.iii)

$$\log(\hat{\theta}_{12}) = \log\left(\frac{\hat{\mu}_{11jk}\hat{\mu}_{22jk}}{\hat{\mu}_{12jk}\hat{\mu}_{21jk}}\right) = \log(\hat{\mu}_{11jk}) + \log(\hat{\mu}_{22jk}) - \log(\hat{\mu}_{12jk}) - \log(\hat{\mu}_{21jk})$$

$$= \hat{\lambda}_{11}^{EH} + \hat{\lambda}_{22}^{EH} - \hat{\lambda}_{12}^{EH} - \hat{\lambda}_{21}^{EH}$$

$$\hat{\theta}_{12} = e^{\hat{\lambda}_{11}^{EH} + \hat{\lambda}_{22}^{EH} - \hat{\lambda}_{12}^{EH} - \hat{\lambda}_{21}^{EH}} = e^{2.1425 + 0.3183 - 1.4221 - 0.7294} = e^{0.3093} = 1.362$$

$$E = \frac{1}{1} \quad 2 \quad 3$$

$$1 \quad 2.1425 \quad 1.4221 \quad 0$$

$$2 \quad 0.7294 \quad 0.3183 \quad 0$$

Interpretation:

While holding the subject's opinions on government spending for big city assistance and law enforcement constant, participants are 1.362 times more likely to agree that the government has been spending too little on the environment and health issue than the participants who think the government the right amount

Estimated CL conditional odds ratio (extra)

From the same homogeneous association model, we can find the estimated conditional odds ratio between any pairs of variables (e.g.: big city assistance (C) & law enforcement (L), while holding E & H as constant)

	Zero	for Third L	evel
		L	
C	1	2	3
1	1.8741	1.0366	0
2	1.9371	1.823	0
3	0	0	0

$$\begin{split} \hat{\theta}_{13} &= e^{\hat{\lambda}_{11}^{CL} + \hat{\lambda}_{88}^{CL} - \hat{\lambda}_{18}^{CL} - \hat{\lambda}_{81}^{CL}} = e^{1.8741 + 0 - 0 - 0} = e^{1.8741} = 6.515 \\ \hat{\theta}_{23} &= e^{\hat{\lambda}_{22}^{CL} + \hat{\lambda}_{88}^{CL} - \hat{\lambda}_{28}^{CL} - \hat{\lambda}_{82}^{CL}} = e^{1.823 + 0 - 0 - 0} = e^{1.823} = 6.1904 \\ \hat{\theta}_{12} &= e^{\hat{\lambda}_{11}^{CL} + \hat{\lambda}_{22}^{CL} - \hat{\lambda}_{12}^{CL} - \hat{\lambda}_{21}^{CL}} = e^{1.8741 + 1.823 - 1.0366 - 1.9371} = e^{0.7234} = 2.0801 \end{split}$$

More on the estimated EH odds ratio (9.5c) Sum to Zero Constraints

Sum to Zero Constraints:

The parameter estimates sum to zero within rows and within columns.

The conditional odds ratio for too much (3) and too little (1) is same as the one we calculated before.

Sum to Zero Constraints H							
E	I	2	3				
1	0.509	0.166	-0.676				
2	-0.065	-0.099	0.163				
3	-0.445	-0.068	0.513				

$$log\left(\hat{\theta}_{13}\right) = \lambda_{11}^{EH} + \lambda_{33}^{EH} - \lambda_{13}^{EH} - \lambda_{31}^{EH} = 0.509 + 0.513 - (-0.676) - (-0.445) = 2.143$$

$$\hat{\theta}_{13} = e^{2.143} = 8.5207$$

More on the estimated EH odds ratio (9.5c) Sum to Zero Constraints

Similarly,

The conditional odds ratio for too much (3) and about right (2)

$$log\left(\hat{\theta}_{23}\right) = \lambda_{22}^{EH} + \lambda_{33}^{EH} - \lambda_{23}^{EH} - \lambda_{32}^{EH} = -0.099 + 0.513 - 0.163 - (-0.068) = 0.319$$

$$\hat{\theta}_{23} = e^{0.319} = 1.3748$$

The conditional odds ratio for about right (2) and too little (1)

$$log\left(\hat{\theta}_{12}\right) = \lambda_{11}^{EH} + \lambda_{22}^{EH} - \lambda_{12}^{EH} - \lambda_{21}^{EH} = 0.509 + (-0.099) - 0.166 - (-0.065) = 0.309$$

$$\hat{\theta}_{12} = e^{0.309} = 1.362$$

More on the estimated EH odds ratio (9.5c) Zero for the First Level

Zero for the First Level:

= setting the 1st level as reference (instead of 3rd level previously)

```
\begin{array}{l} \hat{\theta}_{13} = e^{\hat{\lambda}_{38}^{EH}} = e^{2.142} = 8.5207 \\ \hat{\theta}_{23} = e^{\hat{\lambda}_{22}^{EH} + \hat{\lambda}_{88}^{EH} - \hat{\lambda}_{28}^{EH} - \hat{\lambda}_{82}^{EH}} = e^{0.309 + 2.142 - 1.413 - 0.720} = e^{0.318} = 1.374 \\ \hat{\theta}_{12} = e^{\hat{\lambda}_{22}^{EH}} = e^{2.309} = 1.362 \end{array}
```

```
*** Homogenous Association Model;

proc genmod data=problem9_5;
class E(ref='1') H(ref='1') C(ref='1') I (ref='1') / param=ref;
model count = E C H L E*H E*C E*L H*C H*L C*L/ dist=poi lrci type3 residuals obstats;
title 'Homogenours Association Model';
output out=pred p=exp1;run;quit;
```

More on the estimated EH odds ratio (9.5c) Zero for the First Level

$$\hat{\theta}_{23} = e^{\hat{\lambda}_{22}^{EH} + \hat{\lambda}_{88}^{EH} - \hat{\lambda}_{28}^{EH} - \hat{\lambda}_{82}^{EH}} = e^{0.309 + 2.142 - 1.413 - 0.720} = e^{0.318} = 1.374$$

Recall that $\hat{\theta}_{23} = \frac{\hat{\pi}_{22}\hat{\pi}_{33}}{\hat{\pi}_{23}\hat{\pi}_{32}}$

$$\log(\hat{\theta}_{23}) = \log\left(\frac{\hat{\pi}_{22}\hat{\pi}_{33}}{\hat{\pi}_{23}\hat{\pi}_{32}}\right) + \log\left(\frac{\hat{\pi}_{11}\hat{\pi}_{33}}{\hat{\pi}_{13}\hat{\pi}_{31}}\right) - \log\left(\frac{\hat{\pi}_{11}\hat{\pi}_{32}}{\hat{\pi}_{12}\hat{\pi}_{31}}\right) - \log\left(\frac{\hat{\pi}_{11}\hat{\pi}_{23}}{\hat{\pi}_{13}\hat{\pi}_{21}}\right) = \log\left(\frac{\hat{\pi}_{22}\hat{\pi}_{33}}{\hat{\pi}_{23}\hat{\pi}_{32}}\right)$$

Local conditional odds ratio

Estimated Probability Cells

$\hat{\pi}_{11}$	$\hat{\pi}_{12}$	$\hat{\pi}_{13}$
$\hat{\pi}_{21}$	$\hat{\pi}_{22}$	$\hat{\pi}_{11}$
$\hat{\pi}_{31}$	$\hat{\pi}_{32}$	$\hat{\pi}_{33}$

Confidence Interval for EH conditional odds ratio for the too much (3) and too little(1) (9.5c continued)

Zero for the 3rd Level:

$$\log(\hat{\theta}_{13}) = \hat{\lambda}_{11}^{EH}$$

95% C.I. for $\hat{\theta}_{13}$ is $[e^{1.0132}, e^{3.2209}]$

= [2.7544, 25.0507]

Analysis Of Maximum Likelihood Parameter Estimates											
Parameter		DF	DF	DF	DF	Estimate	Standard Error	Likelihood F Confidence		Wald Chi-Square	Pr > ChiSq
E*H	1	1	1	2.1425	0.5566	1.0132	3.2209	14.81	0.0001		
E*H	1	2	1	1.4221	0.6034	0.2148	2.6069	5.55	0.0184		
E*H	1	3	0	0.0000	0.0000	0.0000	0.0000				
E*H	2	1	1	0.7294	0.5667	-0.4194	1.8265	1.66	0.1980		
E*H	2	2	1	0.3183	0.6211	-0.9248	1.5346	0.26	0.6084		
E*H	2	3	0	0.0000	0.0000	0.0000	0.0000		9.		
E*H	3	1	0	0.0000	0.0000	0.0000	0.0000				
E*H	3	2	0	0.0000	0.0000	0.0000	0.0000				

Confidence Interval for EH conditional odds ratio for the too much (3) and too little(1) (9.5c continued)

Zero for the 3rd Level:

$$\log(\hat{\theta}_{13}) = \hat{\lambda}_{11}^{EH}$$

95% C.I. for $\hat{\theta}_{13}$ is $[e^{1.0132}, e^{3.2209}]$
= $[2.7544, 25.0507]$

Interpretation:

We are 95% confident the true conditional odds ratio between too little and too much lies between 2.7544 and 25.0507. Since the entire interval is greater than one, this means that the subjects are more likely to say the government is spending too little on the environment and health than say they are spending too much

Marginal Table EH

show us how a subject's opinion on how much the government spends on the environment relates to how much the government spends on health given their opinions on government spending for big city assistance and law enforcement is held constant

		Health				
		Too Little	About Right	Too Much		
Environment	Too Little	335	95	14		
	About Right	81	33	14		
	Too Much	18	10	7		

$$\hat{\theta}_{EH_{13}} = \frac{335(7)}{14(18)} = \frac{2345}{112} = 20.94$$

$$\hat{\theta}_{EH_{23}} = \frac{33(7)}{14(10)} = \frac{231}{140} = 1.65$$

$$\hat{\theta}_{EH_{12}} = \frac{335(33)}{95(81)} = \frac{11055}{7695} = 1.44$$

Marginal OR

$$\hat{\theta}_{EH_{13}} = \frac{335(7)}{14(18)} = \frac{2345}{112} = 20.94$$

		Health				
		Too Little	About Right	Too Much		
Environment	Too Little	335	95	14		
	About Right	81	33	14		
	Too Much	18	10	7		

Interpretation:

The odds of a participant claiming the government spent too little on health would also claim the government spent too little on the environment is 20.94 times the odds of claiming the government spent too little on health but spent too much on the environment.

Marginal OR

$$\hat{\theta}_{EH_{23}} = \frac{33(7)}{14(10)} = \frac{231}{140} = 1.65$$

		Health				
		Too Little	About Right	Too Much		
Environment	Too Little	335	95	14		
	About Right	81	33	14		
	Too Much	18	10	7		

Interpretation:

The odds of a participant claiming the government spent right amount on health would also claim the government the right amount on the environment is 1.65 times the odds of claiming the government spent the right amount on health but spent too much on the environment

Marginal OR

$$\hat{\theta}_{EH_{12}} = \frac{335(33)}{95(81)} = \frac{11055}{7695} = 1.44$$

		Health				
		Too Little	About Right	Too Much		
Environment	Too Little	335	95	14		
	About Right	81	33	14		
	Too Much	18	10	7		

Interpretation:

The odds of a participant claiming the government spent too little on health would also claim the government spent too little on the environment is 1.44 times the odds of claiming the government spent the too little on health but spent the right amount on the environment.

Looking for a better model (extra)

- Homogeneous Association Model:
 - o (EH, EC, CL, EL, HC, HL, CL)
- Backward elimination to remove factor interactions
 - (EH, EC, CL, EL, HC, HL, CL)
 - (EH, EC, CL, EL, HC, HL, CL)
- No interaction term model
 - \circ (E, H, C, L)
- Three-factor interactions terms
 - (EH, EC, CL, EL, HC, HL, CL, EHC, EHL, HCL, ECL)

Looking for a better model (extra)

• Compare models by AIC

Model	Homogenous Association -EL		Homogenous Association -EL -HC		No interaction		Three factor interaction					
Criterion	DF	Value	Value/DF	DF	Value	Value/DF	DF	Value	Value/DF	DF	Value	Value/DF
Deviance	52	34.1026	0.6558	56	39.4112	0.7038	72	124.3443	1.7270	16	8.5237	0.5327
Scaled Deviance	52	34.1026	0.6558	56	39.4112	0.7038	72	124.3443	1.7270	16	8.5237	0.5327
Pearson Chi-Square	52	29.1564	0.5607	56	34.0851	0.6087	72	281.9375	3.9158	16	6.8176	0.4261
Scaled Pearson X2	52	29.1564	0.5607	56	34.0851	0.6087	72	281.9375	3.9158	16	6.8176	0.4261
Log Likelihood		1283.7238			1281.0695			1238.6030			1296.5132	
Full Log Likelihood		-120.4680			-123.1224			-165.5889			-107.6786	Ţ
AIC (smaller is better)		298.9361			296.2447			349.1778			345.3573	
AICC (smaller is better)		333.0537			319.8811			351.7130			917.3573	
BIC (smaller is better)		368.3751			356.1059			370.7279			500.9965	

Conclusion

- 1. Homogeneous Association Model
- 2. Estimated EH conditional odds ratio won't change by different parameter estimations methods
- 3. 95% C.I. for the conditional odds ratio can be calculated from the 95% C.I of the estimated parameters.

	Zero	for Third L	evel
		H	
E	1	2	3
1	2.1425	1.4221	0
2	0.7294	0.3183	0
3	0	0	0

	Sum	to Zero Const H	raints
E	ı	2	3
1	0.509	0.166	-0.676
2	-0.065	-0.099	0.163
3	-0.445	-0.068	0.513

	Zero for First Level H					
E	I	2	3			
1	0	0	0			
2	0	0.309	1.413			
3	0	0.720	2.142			

