MAE 399 - Análise de dados e Simulação Prof. Fábio Machado Lista 6 - 9/06/2019

- 1. Considere uma sequência de v.a.i.i.d. $\{X_i\}_{i\in\mathbb{N}}$, com distribuição exponencial de média $1\ (\lambda=1)$ e suas somas parciais, $S_n=\sum_{i=1}^n X_i$, com $S_0=0$. Considere o processo de contagem $N(t)=\max\{n:S_n\leq t\}$, ou seja, um Processo de Poisson. Em particular, $N(t)\sim \mathcal{P}(\lambda t)$, sendo $\mathbb{E}(N(t))=Var(N(t))=\lambda t$.
 - a. Considere 1.000 simulações para as trajetórias de N(t), para $t \in [0, 100]$. Para cada $n \in \{10, 20, \dots, 100\}$ encontre os percentis 0, 05 e 99,5 para os valores observados de S_n . Apresente estes valores em uma tabela.
 - b. Apresente em um só gráfico
 - i) a trajetória de 5 simulações,
 - ii) os valores da tabela do item a,
 - iii) os valores estimados para os mesmos percentis pelo Teorema Central do Limite,
 - iv) a função $\mathbb{E}(N(t))$.
- 2. Além do Processo de Poisson (N(t)) definido no item 1, considere agora uma sequência de v.a.i.i.d. $\{Y_i\}_{i\in\mathbb{N}}$, com distribuição U[0,1], e o Processo de Poisson Composto (ou com Recompensa), $R(t) = \sum_{i=1}^{N(t)} Y_i$. Em particular $\mathbb{E}(R(t)) = \lambda t \mathbb{E}(Y_1)$ e $Var(R(t)) = \lambda t \mathbb{E}(Y_1^2)$.
 - a. Considere 1.000 simulações para as trajetórias de R(t), para $t \in [0, 100]$. Para cada $T \in \{10, 20, \dots, 100\}$ encontre os percentis 0, 05 e 99, 5 para os valores observados de R(t). Apresente estes valores em uma tabela.
 - b. Apresente em um só gráfico
 - i) a trajetória de 5 simulações,
 - ii) os valores da tabela do item a,
 - iii) os valores estimados para os mesmos percentis pelo TCL,
 - iv) a função $\mathbb{E}(N(t))$.