

Спецкурс: системы и средства параллельного программирования

Отчёт № 4 Параллельный алгоритм умножения матрицы на вектор. Разработка параллельной МРІ программы и исследование ее эффективности

Работу выполнила Домрачева Д. А.

Постановка задачи и формат данных

Задача:

Разработать параллельную программу с использованием технологии MPI, реализующую алгоритм умножения плотной матрицы на вектор $A \times b = c$. Тип данных – double. Провести исследование эффективности разработанной программы на системе Blue Gene/P.

Формат командной строки:

<имя файла матрицы A> <имя файла вектора b> <имя файла вектора c>

Формат файла с матрицей:

Матрица представляются в виде бинарного файла следующего формата:

Тип	Значение	Описание	
Число типа int	N — натуральное число	Число строк матрицы	
Число типа int	<i>М</i> – натуральное число	Число столбцов матрицы	
Массив чисел типа double	$N{ imes}M$ элементов	Массив элементов матрицы	

Элементы матрицы хранятся построчно. Формат файла с вектором аналогичен, M=1.

Описание алгоритма

Математическая постановка:

Алгоритм умножения матрицы на вектор можно представить в следующем виде: $c_i = \sum_{j=1}^N A_{ij} \cdot b_j$ для каждого элемента матрицы.

Результаты выполнения

Суммарное время работы процессов:

N	M	mapping	32	64	128	256	512
512	512	standard	0.00355	0.00362	0.00391	0.00462	0.006108
1024	1024	standard	0.01464	0.01471	0.01485	0.01492	0.016013
2048	2048	standard	0.06147	0.0644	0.06457	0.06497	0.065456
4096	4096	standard	0.268282	0.2676	0.30657	0.30685	0.307643
4096	1024	standard	0.05664	0.05838	0.058507	0.05876	0.056831
1024	4096	standard	0.05535	0.06103	0.073465	0.08127	0.089912
512	512	random	_	_	_	_	0.006078
1024	1024	random	_	_	_	_	0.016015
2048	2048	random	_	_	_	_	0.0655138
4096	4096	random	_	_	_	_	0.30766
4096	1024	random	_	_	_	_	0.0568612
1024	4096	random	_	_	_	_	0.089911

Максимальное время:

N	M	mapping	32	64	128	256	512
512	512	standard	0.0001115	0.000058	0.00003128	0.00001847	0.00001256
1024	1024	standard	0.000461	0.000231	0.0001168	0.0000672	0.00003196
2048	2048	standard	0.002014	0.00101	0.000505	0.0002541	0.00012867
4096	4096	standard	0.009567	0.004786	0.002395	0.0011992	0.00060147
4096	1024	standard	0.00182	0.000912	0.000459	0.0002308	0.00011203
1024	4096	standard	0.00173	0.000954	0.000574	0.0003122	0.0001878
512	512	random	_	_	_	_	0.00001247
1024	1024	random	_	_	_	_	0.000032
2048	2048	random	_	_	_	_	0.0001286
4096	4096	random	_	_	_	_	0.0006015
4096	1024	random	_	_	_	_	0.00011206
1024	4096	random	_	_	_	_	0.0001854

Ускорение $S(n)=T_1(n)/T_p(n)$:

N	M	mapping	32	64	128	256	512
512	512	standard	30.42	58.48	108.43	183.64	270.05
1024	1024	standard	30.57	61.01	120.66	209.71	440.95
2048	2048	standard	30.32	60.45	120.91	240.3	474.54
4096	4096	standard	27.88	55.73	111.38	223.78	443.5
4096	1024	standard	30.95	61.78	122.75	244.11	502.18
1024	4096	standard	31.85	62.91	114.7	210.89	350.58

Эффективность $E(n) = T_1(n) / (p \cdot T_p(n))$:

N	M	mapping	32	64	128	256	512
512	512	standard	0.95	0.913	0.847	0.717	0.527
1024	1024	standard	0.955	0.953	0.942	0.822	0.861
2048	2048	standard	0.947	0.944	0.945	0.939	0.927
4096	4096	standard	0.871	0.87	0.87	0.874	0.866
4096	1024	standard	0.967	0.965	0.959	0.953	0.981
1024	4096	standard	0.995	0.983	0.896	0.824	0.685

Суммарное время работы процессов:

Максимальное время работы:

Ускорение:

Эффективность:

Выводы

С ростом количества процессов, выполняющих задачу, наблюдается линейный рост ускорения. Снижение эффективности при умножении матрицы 512×512 на соответствующий вектор можно объяснить тем, что накладных расходов на пересылку данных становится больше, чем непосредственно вычислений. Снижение ускорения при умножении матрицы 1024×4096 на соответствующий вектор по сравнению с матрицей 4096×1024 можно объяснить наличием операции сбора данных для суммирования MPI_Reduce. Влияния мэппинга на время работы программы выявлено не было.