MATH 6320

Theory of Functions of a Real Variable Fall 2024

First name:	Last name:	Points:

Assignment 8, due Thursday, November 7, 11:30am

Please staple this cover page to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Let f be a measurable complex-valued function on a locally compact Hausdorff space X with a Borel measure μ . Let for $w \in \mathbb{C}$, $\varepsilon > 0$,

$$A_{w,\varepsilon} = \{x \in X : |f(x) - w| < \varepsilon\}$$

and

$$R_f = \{ w \in \mathbb{C} : \text{ for each } \varepsilon > 0, \mu(A_{w,\varepsilon}) > 0 \}.$$

Show that R_f is a closed subset of \mathbb{C} .

Problem 2

A step function on $\mathbb R$ is a finite linear combination of characteristic functions of bounded intervals in $\mathbb R$. Let m be the Lebesgue measure and let $f\in L^1(m)$. Show that for any $\varepsilon>0$, there is a step function g such that $\int |f-g|dm<\varepsilon$. Hint: First prove this for a function f which is bounded and for which $A:\{x\in\mathbb R:f(x)\neq 0\}$ has finite measure $m(A)<\infty$. Then use that for a general f, $f\chi_B$ has these properties where $B=\{x\in\mathbb R:\frac{1}{n}\leq |f(x)\leq n\}$ and consider $n\to\infty$.

Problem 3

Let $f \in L^1(m)$, where m is the Lebesgue measure on $\mathbb R$ For $t \in \mathbb R$, let $f_t : x \mapsto f(x-t)$. Show that

$$\lim_{t\to 0}\int |f_t-f|dm=0.$$

Hint: Use the preceding problem.