Tarefas UD02 Bloque 01

Administración de sistemas operativos

Unidade Didáctica 01: Administración de procesos do sistema

Nome: Rubén Apelidos: Rey Feal

Data: 22/10/2024

Índices

Índice

Tarefa 1. Cuestións curtas sobre procesos	1
Tarefa 2. Estados dun proceso	
Tarefa 3. Memoria virtual	
Tarefa 4. Siglas	13

Tarefa 1. Cuestións curtas sobre procesos

1. En cantos estados ao mesmo tempo pode estar un proceso? Razoa a resposta.

En 1, por que:

El proceso puede cambiar de estado cuantas veces sea necesario, pero nunca puede estar en más de un estado a la vez.

2. Investiga que se entende como un **fork** cando se traballa con procesos e como se relaciona iso co PID e PPID.

Operación del sistema que crea un proceso hijo idéntico al padre, con un nuevo PID y estableciendo el PPID suyo como el PID del padre.

3. Diferencia entre proceso orfo e proceso zombi. Cales crees que son máis perigosos para o funcionamento do SO se empezan a proliferar en gran cantidade.

En el huérfano, su padre ha finalizado y el adquiere el PID de su padre, mientras que el zombie es un proceso que deberia haber terminado pero el proceso padre lo mantiene vivo, son debidos a errores de programaciñon y son los mas peligrosos

- 4. Que comando ou aplicación empregas para ver os procesos e coñecer o PID e o PPID (se é posible) en Windows e en GNU/Linux. Pega en cada caso unha captura de pantalla onde se vexa esa información:
 - Comando/aplicación en Windows (ademais do campo PID, explica o resto de datos/campos que se ve na captura):

Powershell -> Get-Process

Handles -> Identificadores únicos que un proceso utiliza para interactuar con objetos del sistema

NPM(K) -> Memoria asignada al proceso

PM(K) -> Memoria que puede moverse entre la RAM y el disco

WS(K) -> Cantidad de memoria RAM que el proceso está utilizando activamente en ese momento en kilobytes (K)

CPU(s) -> Tiempo total de CPU que ha consumido el proceso, medido en segundos.

Id -> Identity Number

SI -> Session Identifier es el número de sesión al que pertenece el proceso.

Process Name -> nombre del Proceso

 Comando/aplicación en GNU/Linux (ademais do campo PID, explica o resto de datos/campos que se ve na captura):

TOP

PID -> Process ID

USER -> Usuario

PR -> Prioridad

NI -> Nice

VIRT -> Memoria

RES -> Memoria

SHR -> Memoria

S -> Estado

%CPU -> porcentage CPU

%MEM -> porcentage Memoria

TIME+ -> Tiempo

COMMAND -> Nombre Comando

5. Que información se almacena no PCB (siglas en inglés)? Crea unha táboa na que se indique o nome do campo que se garde, unha pequena explicación e un exemplo (cando sexa posible e teña sentido):

Nome do Campo	Explicación	Exemplo
PID	Identificador único del proceso	Mysql = 3306
ESTADO	Estado actual do proceso	running
CONTADOR	Direccion proxima instruccion	0x0043AF
REGISTRO	Valores de registros de la CPU	0x12AB34
INFO MEMORIA	Detalles sobre la memoria	4KB
LISTA FICHEROS	Lista de ficheros abiertos	/usr/bin
PRIORIDAD	Valor que indica la prioridad de	ALTA / MEDIA / BAJA -51
	un proceso	
CPU : TIEMPO	Cantidad de tiempo CPU	25 s
GESTIÓN ENTRADA / SAIDA	Estado dispositivos de entrada y	DISPOSITIVO ENTRADA
	salida	
DESCRIPCIÓN	Información adicional	
SEÑALES	Señales que puede recibir un	
	proceso	

- 6. Cando se produce un cambio de contexto nos procesos? En que consiste? Que pasa cando se producen moitos cambios de contexto continuados no tempo?
- 1 Ocurre cuando el sistema operativo suspende un proceso en ejecución y lo reemplaza por otro, generalmente por razones de planificación o eventos externos como interrupciones.
- 2 Implica guardar el estado del proceso actual (registros, contador de programa, etc.) en su PCB y restaurar el estado del nuevo proceso para que continúe su ejecución.
- 3 Si ocurren continuadamente, aumenta la sobrecarga del sistema, ya que cada cambio consume recursos, reduciendo la eficiencia y el rendimiento.

Tarefa 2. Estados dun proceso

1. Crea un diagrama de estados (por exemplo, con LibreOffice Draw) do modelo de 7 estados. Insíreo ou pégao a continuación:

2. Agora cubre a seguinte táboa con todo os casos posibles do diagrama anterior (púxose como exemplo a primeira liña):

Estado actual	Acción	Estado seguinte	Descrición
Novo	Entrar	Preparado e suspendido	Tras executar a aplicación/servizo creando o proceso Novo, este pasa a cola de Preparado e suspendido na memoria secundaria
Preparado y suspendido	Cargar a memoria	Preparado	El proceso se carga desde la memoria secundaria a la memoria principal, quedando listo para ejecutarse.
Preparado	Asignar CPU	En ejecución	El sistema operativo asigna la CPU al proceso, comenzando su ejecución.
En ejecución	Finaliza su ejecución	Terminado	El proceso completa su ejecución y libera los recursos asignados.
En ejecución	Operación de E/S iniciada	Bloqueado	El proceso solicita una operación de E/S y queda bloqueado mientras espera que la operación se complete.
Bloqueado	Operación de E/S completada	Preparado	La operación de E/S finaliza, el proceso queda listo para volver a ejecutarse.
En ejecución	Expira el tiempo de CPU	Preparado	El sistema operativo realiza un cambio de contexto por expiración de tiempo, y el proceso vuelve a "Preparado".

Estado actual	Acción	Estado seguinte	Descrición
Bloqueado	Suspender	Bloqueado y suspendido	El proceso bloqueado se traslada a la memoria secundaria, quedando en estado de "Bloqueado y suspendido".
Bloqueado y suspendido	Cargar a memoria principal	Bloqueado	El proceso bloqueado se carga nuevamente en la memoria principal pero sigue esperando por un recurso.
Preparado	Suspender	Preparado y suspendido	El proceso preparado pasa a la memoria secundaria, en estado de "Preparado y suspendido".
Bloqueado	Desbloquea r (sin suspensión)	Preparado	El proceso bloqueado se desbloquea y vuelve al estado "Preparado" sin haber sido suspendido.
Preparado y suspendido	Reanudar (tras suspensión)	Preparado	El proceso suspendido en "Preparado y suspendido" se carga nuevamente en memoria principal y queda listo.
Bloqueado y suspendido	Recurso disponible	Preparado y suspendido	El proceso suspendido se desbloquea y se traslada al estado de "Preparado y suspendido".

Tarefa 3. Memoria virtual

Investiga sobre que é a memoria virutal ou memoria de intercambio, e responde ás seguintes cuestións:

1. Que diferencia a memoria virtual da memoria principal/RAM?

Características	RAM	Memoria Virtual
Función	Almacena datos temporales para acceso más rápido.	Expande la capacidade de la RAM para ejecutar más programas.
Velocidad	Muy rápida.	Más lenta.
Volatilidad	Pierde los datos al apagar el equipo.	Temporal y no guarda datos de forma permanente.
Capacidad	Limitada a la cantidad de RAM instalada.	Depende del espacio en el disco, virtualmente "ilimitada".
Impacto en el Rendimiento	Esencial para un buen rendimiento.	Reduce el rendimiento cuando se usa, debido a la diferencia de velocidad entre la RAM y el disco.

2. Cando se emprega esta memoria virtual/intercambio?

Cuando la memoria RAM está cerca de ocuparse entera o ya está completamente ocupada.

3. Que é o ficheiro/partición de paxinación?

Es una área específica del disco duro que el sistema operativo reserva para funcionar como memoria virtual.

4. Que pasa cando se empeza a usar gran cantidade de memoria virtual?

Empeora el rendimiento.

5. Segundo as recomendacións dos desenvolvedores de SSOO, cal debería ser o tamaño da memoria virtual?

Windows = [Tamaño inicial] x 2 = [Tamaño máximo]. (Opción 10)

Linux = Lo habitual es utilizar entre 1 y 2 veces el tamaño de la RAM. (Linux/Windows)

- 6. Localiza, empregando unha ferramenta gráfica (facendo unha captura de imaxe), a cantidade de memoria virtual dispoñible e emprega en cada un dos seguintes sistemas operativos, explicando os datos que se amosan:
 - Mircrosoft Windows:
 - Captura:

- Explicación:
- o GNU/Linux (indica a distribución e contorna gráfica que empregas)
 - Captura:

- Explicación:
- 7. Repite os pasos anteriores, pero agora empregando comandos:
 - Mircrosoft Windows:
 - Comando e resultado:

systeminfo

```
:\Program Files (x86)\VMware\VMware Player\bin>systeminfo
  Nombre del sistema operativo:
/ersión del sistema operativo;
                                                                                                                    Microsoft Windows 10 Education
10.0.19045 N/D Compilación 19045
 version del sistema operativo: 10.0.19045 N/D Compilación i
Fabricante del sistema operativo: Microsoft Corporation
Configuración del sistema operativo: Estación de trabajo miembro
Fipo de compilación del sistema operativo: Multiprocessor Free
Propiedad de: german
                                                                                                                   multiprocessor Free
german
RUP
00328-20460-01880-AA303
27/06/2024, 12:45:51
30/10/2024, 8:25:10
Dell Inc.
OptiPlex 7010
x64-based PC
   rganización registrada:
organización registrada.

Id. del producto:

Fecha de instalación original:

Tiempo de arranque del sistema:

Fabricante del sistema:

Modelo el sistema:

Tipo de sistema:
                                                                                                                     1 Procesadores instalados.
[01]: Intel64 Family 6 Model 58 Stepping 9 GenuineIntel ~3401 Mhz
Dell Inc. A14, 10/06/2013
    rocesador(es)
 Versión del BIOS:
Directorio de Windows:
Directorio de sistema:
                                                                                                                     C:\Windows
C:\Windows\system32
                                                                                                                    C:\windows\systems2
\Device\HarddiskVolume1
es;Español (internacional)
es;Español (tradicional)
(UTC+01:00) Bruselas, Copenhague, Madrid, París
Dispositivo de arranque:
Configuración regional del sistema:
Idioma de entrada:
Zona horaria:
 Zona horaria:
Cantidad total de memoria física:
Memoria física disponible:
Memoria virtual: tamaño máximo:
Memoria virtual: disponible:
Memoria virtual: en uso:
                                                                                                                    16.271 MB
8.842 MB
                                                                                                                     18.703 MB
10.235 MB
8.468 MB
  bicación(es) de archivo de paginación:
Cominio:
                                                                                                                     C:\pagefile.sys
iesrodolfoucha.es
                                                                                                                    C.\pager1E.Sys
iesrodolfoucha.es
\\VCONTROLADOR
9 revisión(es) instaladas.
[01]: KB5037587
[02]: KB5037592
[03]: KB5011048
[04]: KB5011048
[06]: KB5015684
[06]: KB5039211
[07]: KB5014032
[08]: KB5032907
[09]: KB5037995
4 Tarjetas de interfaz de red instaladas.
[01]: Intel(R) 82579LM Gigabit Network Connection Nombre de conexión: Ethernet
DHCP habilitado: Sí
Servidor DHCP: 172.30.1.4
Direcciones IP
  Servidor de inicio de sesión:
Revisión(es):
Tarjeta(s) de red:
                                                                                                                     Direcciones IP
[01]: 172.21.32.15
[02]: fe80::7ecf:3ae0:74b0:f892
[02]: VirtualBox Host-Only Ethernet Adapter
Nombre de conexión: Ethernet 2
DHCP habilitado: No
                                                                                                                                      Direcciones IP
                                                                                                                                      [01]: 192.168.56.1
[02]: fe80::5ea7:4ae7:67ce:2ac9
                                                                                                                     [03]: VMware Virtual Ethernet Adapter for VMnet1
Nombre de conexión: Ethernet 3
DHCP habilitado: No
                                                                                                                     Direcciones IP

[01]: 192.168.192.1

[02]: fe80::6524:c45b:665d:3344

[04]: VMware Virtual Ethernet Adapter for VMnet8
Nombre de conexión: Ethernet 4

DHCP habilitado: No
                                                                                                                                     Direcciones IP
[01]: 192.168.126.1
[02]: fe80::1fb1:d459:2a1a:8c09
                                                                                                                    Extensiones de modo de monitor de VM: Sí
Se habilitó la virtualización en el firmware: Sí
Traducción de direcciones de segundo nivel: Sí
La prevención de ejecución de datos está disponible: Sí
Requisitos Hyper-V:
                                                                                                                                                                                                                                                                                                             UCACIÓN
```

Explicación:

El comando systeminfo es una herramienta útil para obtener información detallada sobre la configuración y el estado de un sistema Windows. Es especialmente útil para administradores de sistemas y técnicos que necesitan hacer un diagnóstico rápido o recopilar información del sistema

- GNU/Linux (indica a distribución e contorna gráfica que empregas)
 - Comando e resultado:

HTOP

Explicación:

es una herramienta potente y fácil de usar para monitorizar y gestionar procesos en sistemas Linux. Su interfaz visual y su capacidad para interactuar con los procesos hacen que sea una opción popular entre los administradores de sistemas y los usuarios avanzados.

8. Cales son as principais diferencias que observas na forma de almacenar e manexar a memoria virtual entre Windows e GNU/Linux?

Linux ofrece maior personalización e visibilidade no manexo da memoria virtual, mentres que Windows xestiona a memoria de forma máis automática e menos transparente, reflexando así as distintas filosofías de diseño de ambos os sistemas operativos.

9. Configura a memoria virtual de Windows de forma que esta sexa 1,5 veces o tamaño da memoria principal. Indica os pasos seguindo, facendo as capturas de pantalla que vexas necesarias.

10. Aínda que a partición swap se adoita definir durante a instalación dun GNU/Linux, tamén hai a posibilidade de definir un swap file similar ao sistema empregado por Microsoft Windows. Investiga como facelo, e aplícao a unha das distribucións que teñas dispoñibles indicando os pasos/comandos usados. No último paso, pega unha captura no que se vexa claramente os sistemas swaps dispoñibles.

```
eu@rubenrf:~$ sudo fallocate -l 4g /swapfile
[sudo] Contrasinal de eu:
eu@rubenrf:~$ sudo chmod 600 /swapfile
eu@rubenrf:~$ sudo mkswap /swapfile
Setting up swapspace version 1, size = 4 GiB (4294963200 bytes)
sen etiqueta, UUID=57c8756d-a85a-48e7-a528-1b8fd9b85358
eu@rubenrf:~$ sudo swapon /swapfile
```


Tarefa 4. Siglas

Busca e traduce as seguintes siglas **relacionados coa UD**:

	Siglas	Significado	Tradución
1	PID Process Identifier		ID de Proceso
2	2 PPID Parent Process Identifier		ID do Proceso Pai
3	PCB Process Control Block		Bloque de Control do Proceso
4	TCB Thread Control Block		Bloque de Control do Fío

