Approximation Final Work

Eldad Kronfeld

Contents

	Theoretical Question			
	1.1	Background	2	
	1.2	Question	2	
	Practical question			
	2.1	Background	3	
References			3	

1 Theoretical Question

1.1 Background

Definition 1. Let f be a continuous function on the interval [a,b], and let p be a polynomial approximation. An alternating set on f, p is defined to be a sequence of points $x_0, ..., x_{n-1}$ such that:

- $a \le x_0 < ... < x_{n-1} \le b$.
- $f(x_i) p(x_i) = (-1)^i E$ for i = 0, 1, ..., n 1.

where either E = ||f - p|| or E = -||f - p||. The number n is the length of the alternating set.

Theorem 1.1. Let $f \in C[a.b]$, and suppose that $p = p_n^*$ is the best approximation of f out of $P_n[x]$, that is

$$||f - p||_{\infty} \le ||f - q||_{\infty} \text{ for all } q \in P_n[x]$$

$$\tag{1}$$

Then, there is an alternating set for f - p consisting of at least n + 2 points.

1.2 Question

prove that the best approximation polynomial is unique using Theorem (1.1).

Proof. The theorem is trivial if f is polynomial of degree $\leq n$, so we assume that is not true. to show the uniqueness, suppose that both p_n, q_n are polynomials of best approximation, and we will show that they are equal. Note that $\frac{(p_n+q_n)}{2}$ is also a polynomial of best approximation because:

$$\left\|f - \frac{(p_n + q_n)}{2}\right\| = \left\|\frac{(f - p_n)}{2} \frac{(f - q_n)}{2}\right\| \le \frac{1}{2} \left\|f - p_n\right\| + \frac{1}{2} \left\|f - q_n\right\| = \pm E$$

therefore, there are n+2 points at which:

$$\frac{f - p_n}{2} + \frac{f - q_n}{2} = \pm E$$

At each of those alternating points both $f - p_n$ and $f - q_n$ are equal to $\pm E$ then we can say that at each of the n + 2 points:

$$(f(x_i) - p_n(x_i)) - (f(x_i) - q_n(x_i)) = 0$$
 for each of the alternating point, $i = 1..n + 2$

Since both p_n, q_n are polynomials of degree \leq n then they must be identical, therefore p_n is unique.

2 Practical question

2.1 Background

Definition 2. the *Chebyshev center*[1] of a bounded set $Q \subseteq X$ with non-empty interior is the center of the smallest ball that encloses the entire of the set Q, and the radius is:

$$r = \inf\{\sup\{\|x - y\| : x \in Q\} : y \in X\}$$

The Chebyshev center is described as the solution to the following optimization problem:

$$\min_{\hat{x},r} \quad r$$
 s.t. $\|\hat{x} - x\| \le r$ for all $x \in Q$
$$r \ge 0$$
 (2)

References

[1] Lieven Vandenberghe Stephen Boyd. *Convex Optimization*. Cambridge University Press, 2004. Chap. 8, pp. 416–418. ISBN: 978-0-521-83378-3. URL: https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf#page=430.