2 Marks Questions:

1. Construct the logic circuit of a 2:1 mux using only two input NAND gates. How many gates are required? Briefly justify your answer.

Solution:

Function Table:

Selection	Output
Input (s)	
0	Α
1	В

• A and B are data input lines

Equation

$$Y = (s' A + s B)$$

With NAND gates

$$Y = ((s'A)'(sB)')' = ((s'A)'(sB)')'$$

Circuit Diagram

Number of NAND gates required are 3+1(to complement S)

2: Implement NOT gate, AND gate, and OR gate using 2:1 MUX. Show the truth table.

Solution:

Implementation of NOT gate

Implementation of AND gate:

Implementation of OR Gate

3: Implement Decoder for the equation $f(x, y, z) = \sum (1, 2, 4, 7)$

Solution:

		Binary Decoder
		Y_7
		Y ₆
x y z	Output	$x - I_2 \frac{Y_5}{Y_4}$
0 0 0	0	$y - I_1 \qquad Y_3$
0 0 1	1	$z - \frac{I_0}{I_0} = \frac{13}{Y_2}$
0 1 0	1	Y_{I}
0 1 1	0	Y_0
1 0 0	1	
1 0 1	0	
1 1 0	0	\bigvee
1 1 1	1	

4: List few comparison of Combinational logic circuit and sequential Logic Circuit Solution:

Combinational Logic Circuit

- It has one or more inputs and one or more outputs.
- Its output is determined by the present values of inputs only.
- It does not have a memory.
- It does not have a feedback path.
- -Its operation can be described by the truth table.

- It does not have a clock signal.
- It does not depend upon clock transition.
- The circuit is more simpler.
- It is built usling basic gates like, NOT, NAND, AND, OR etc
- Its examples are substaractor, adders, Multilplexers and demultiplexers.

Sequential Logic Circuit:

- -It has one or more inputs and one or more outputs.
- Its output is determined by the present values of input as well as the past values of output.
- It has a memory
- It has a feedback path
- -Its operation can be described by truth table and timing diagram
- It may be or may not have a clock signal.
- Its action is governed by clock transition
- The circuit is more complex
- It is built using basic gates and combinational gates.
- Its examples include flip flops , shift registers.

5: Given the input waveforms shown in Figure , sketch the output, Q, of an SR latch.

6. Write the transition conditions for w at the arrows in the state diagram.

Solution:

6 Marks

1: Implement MUX for the following equation $F(x, y) = \sum_{i=0}^{\infty} (0, 1, 3)$

2: Implement MUX for the equation $F(x, y, z) = \sum (1, 2, 6, 7)$

Solution:

x	v	z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

3: Construct 8:1 MUX using two-4:1 MUX and one 2:1 MUX

Solution:

4: Design 4:16 decoder using two 3:2 decoder

 $\ensuremath{\mathbf{5}}\xspace$. Write a minimized Boolean equation for the function performed by the circuit

$$Y = A + \overline{C \oplus D} = A + CD + \overline{CD}$$