Министерство науки и высшего образования РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Уфимский государственный авиационный технический университет»

Кафедра Высокопр оизводительных вычислительных технологий и систем

ОТЧЁТ

к расчетно-графической работе по дисциплине «Теория случайных процессов и математическая статистика»

Группа ПМ- 453	Фамилия И.О.	Подпись	Дата	Оценка
Студент	Шамаев И.Р.			
Принял	Маякова С.А.			

Задание 1.

Данные температур приведены за 1.08.2020 по 31.08.2020 (г. Бавлы)

Вариационный ряд дневных температур: 20, 23, 22, 19, 30, 32, 32, 17, 14, 18,21,20, 20, 16, 22, 15, 17, 12, 16, 18, 14, 16, 20, 23, 26, 25, 29, 29, 28, 22, 24

Максимальное значение: 32.

Минимальное значение: 12.

Таблица 1. Статистическое распределение для выборки дневных температур.

X _i	n_i	X_i	n_i	X_i	n_i	X_i	n_i	X_i	n_i
12	1	17	2	21	1	25	1	30	1
14	2	18	2	22	3	26	1	32	2
15	1	19	1	23	2	28	1		
16	3	20	4	24	1	29	2		

Таблица 2. Распределение относительных частот.

Xi	W_i	X _i	W_i	X _i	W_{i}	X _i	W_i	X _i	W_{i}
12	0,032	17	0,065	21	0,032	25	0,032	30	0,032
14	0,065	18	0,065	22	0,097	26	0,032	32	0,065
15	0,032	19	0,032	23	0,065	28	0,032		
16	0,097	20	0,129	24	0,032	29	0,065		

Задание 2.

 $M_{01}=20.$

Медиана.
$$m_e = \frac{21+22}{2} = 21,5.$$

Размах варьирования. $R = x_{max} - x_{min} = 32 - 12 = 20$.

Построим эмпирическую функцию.

Задание 3.

Объем выборки: 31

$$F^{i}(x)=0, x \leq 12.$$

$$F^{i}(x) = \frac{1}{31} = \frac{1}{31} = 0.032, 12 < x \le 14.$$

$$F^{i}(x) = \frac{1+2}{31} = \frac{3}{31} = 0.097, 14 < x \le 15.$$

$$F^{i}(x) = \frac{1+2+1}{31} = \frac{4}{31} = 0.13, 15 < x \le 16.$$

$$F^{i}(x) = \frac{1+2+1+3}{31} = \frac{7}{31} = 0.23, 16 < x \le 17.$$

$$F^{i}(x) = \frac{1+2+1+3+2}{31} = \frac{9}{31} = 0.29, 17 < x \le 18.$$

$$F^{i}(x) = \frac{1+2+1+3+2+2}{31} = \frac{11}{31} = 0.35, 18 < x \le 19.$$

$$F^{i}(x) = \frac{1+2+1+3+2+2+1}{31} = \frac{12}{31} = 0.39, 19 < x \le 20.$$

$$F^{i}(x) = \frac{1+2+1+3+2+2+1+4}{31} = \frac{16}{31} = 0.52,20 < x \le 21.$$

$$F^{i}(x) = \frac{1+2+1+3+2+2+1+4+1}{31} = \frac{17}{31} = 0.55,21 < x \le 22.$$

$$F^{i}(x) = \frac{1+2+1+3+2+2+1+4+1+3}{31} = \frac{20}{31} = 0.645,22 < x \le 23.$$

$$F^{i}(x) = \frac{1+2+1+3+2+2+1+4+1+3+2}{31} = \frac{22}{31} = 0.71, 23 < x \le 24.$$

$$F^{i}(x) = \frac{1+2+1+3+2+2+1+4+1+3+2+1}{31} = \frac{23}{31} = 0.74, 24 < x \le 25.$$

$$F^{i}(x) = \frac{1+2+1+3+2+2+1+4+1+3+2+1+1}{31} = \frac{24}{31} = 0.77, 25 < x \le 26.$$

$$F^{i}(x) = \frac{1 + 2 + 1 + 3 + 2 + 2 + 1 + 4 + 1 + 3 + 2 + 1 + 1 + 1}{31} = \frac{25}{31} = 0.81, 26 < x \le 28.$$

$$F^{i}(x) = \frac{1+2+1+3+2+2+1+4+1+3+2+1+1+1+1}{31} = \frac{26}{31} = 0.84, 28 < x \le 29.$$

$$F^{i}(x) = \frac{1+2+1+3+2+2+1+4+1+3+2+1+1+1+2}{31} = \frac{28}{31} = 0.9,29 < x \le 30.$$

$$F^{i}(x) = \frac{1 + 2 + 1 + 3 + 2 + 2 + 1 + 4 + 1 + 3 + 2 + 1 + 1 + 1 + 1 + 2 + 1}{31} = \frac{29}{31} = 0.935, 30 < x \le 32.$$

$$F^{i}(x)=1, x>32.$$

Эмпирическая функция распределения.

Задание 4.

Построим полигоны частот и относительных частот.

Полигон частот.

Полигон относительных частот.

Задание 5.

Построим гистограммы частот и относительных частот для интервалов:

$$[12+(i-1)*h,12+i*h],h=4,i=1,2...6$$

Гистограмма частот

Гистограмма относительных частот.

Задание 6.

Вариационный ряд ночных температур: 19, 20, 20, 19, 18, 18, 18, 19, 19, 19, 20, 21, 20, 21, 20, 17, 18, 20, 18, 18, 17, 17, 15, 15, 17, 15, 15, 16, 14, 15, 13

Максимальное значение: 21.

Минимальное значение: 13.

Таблица 3. Статистическое распределение для выборки ночных температур.

X	i	13	14	15	16	17	18	19	20	21
n	i	1	1	5	1	4	6	5	6	2

Таблица 4. Распределение относительных частот.

X _i	13	14	15	16	17	18	19	20	21
W_{i}	0,032	0,032	0,161	0,032	0,129	0,194	0,161	0,194	0,065

Задание 7.

Для дневного ряда:

Выборочное среднее. $\widehat{m}_x \triangleq \frac{1}{31} \sum_{i=1}^{31} x_i \approx 21,29$

Выборочная дисперсия.
$$\widehat{d}_x \triangleq \frac{1}{31} \sum_{i=1}^{31} (x_i - \widehat{m}_x)^2 \approx 29,24$$

Исправленная дисперсия.
$$\frac{n}{n-1}*\hat{d}_x=30,21$$

Среднее абсолютное отклонение.
$$\theta = \frac{1}{31} \sum_{i=1}^{31} |x_i - \widehat{m}_x| = 4,45$$

Коэффициент вариации.
$$V = \frac{\sqrt{\widehat{d}_x}}{\widehat{m_x}} = 25,4\%$$

Для ночного ряда:

Выборочное среднее.
$$\widehat{m}_x \triangleq \frac{1}{31} \sum_{1}^{31} x_i \approx 17,77$$

Выборочная дисперсия.
$$\widehat{d}_x \triangleq \frac{1}{31} \sum_{i=1}^{31} (x_i - \widehat{m}_x)^2 \approx 4$$
,5

Исправленная дисперсия.
$$\frac{n}{n-1}*\hat{d}_x=$$
64,65

Среднее абсолютное отклонение.
$$\theta = \frac{1}{31} \sum_{i=1}^{31} |x_i - \widehat{m}_x| \ \dot{c} 1,76$$

Коэффициент вариации.
$$V = \frac{\sqrt{\widehat{d}_x}}{\widehat{m}_x} = 11,93\%$$

Днем рассеяние температур относительно выборочного среднего значения больше

Задание 8

Коэффициент корреляции.
$$\widehat{r}_{xy} \triangleq \frac{\sum_{i=1}^{31} (x_i - m_x) (y_i - m_y)}{31 \sqrt{d_x d_y}} = 0,914.$$

Задание 9

Метод моментов.

$$a^* = \overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i n_i = 21,29,$$

 $\sigma^i = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2 n_i} = 5,41.$

Метод правдоподобия.

$$L(a,\sigma) = \prod_{i=1}^{31} f(x_i, a, \sigma) = \frac{1}{(\sigma\sqrt{2\pi})^n} \exp\left(\frac{-1}{2} \sum_{i=1}^{31} \frac{(x_i - a)^2}{\sigma^2}\right)$$
$$\ln L(a,\sigma) = -n\ln\sigma - n\ln\sqrt{2\pi} - \frac{1}{2\sigma^2} \sum_{i=1}^{31} (x_i - a)^2$$

Условия экстремума
$$\frac{\partial \ln L}{\partial a} = \frac{1}{\sigma^2} \sum_{i=1}^{31} (x_i - a) = 0,$$

$$\frac{\partial \ln L}{\partial \sigma} = \frac{-n}{\sigma} + \frac{1}{\sigma^3} \sum_{i=1}^{31} (x_i - a)^2 = 0,$$

$$\begin{cases} \sum_{i=1}^{31} (x_i - a) = 0 \\ \frac{1}{\sigma^2} \sum_{i=1}^{31} (x_i - a)^2 = 31 \end{cases}$$

$$\begin{cases} \sum_{i=1}^{31} x_i = 31 a \\ \frac{1}{31} \sum_{i=1}^{31} (x_i - a)^2 = \sigma^2 \end{cases}$$

$$a^* = \overline{x} = \frac{1}{31} \sum x_i = 21,29,$$

 $\sigma^i = \sqrt{\frac{1}{31} \sum |x_i - \overline{x}|^2} = 5,41.$

Оценки, полученные методами моментов и правдоподобия, равны.

Задание 10

Выборочная средняя \overline{x} = 21.29, "исправленное" среднее квадратическое отклонение s = 5.496,

$$\overline{x} - \frac{t_{\gamma}s}{\sqrt{n}} = 21,29 - \frac{1,697*5,496}{\sqrt{31}} = 19,615$$

$$\overline{x} + \frac{t_{\gamma}s}{\sqrt{n}} = 21,29 + \frac{1,697*5,496}{\sqrt{31}} = 22,965,$$

Итак, с надежностью 0,95 неизвестный параметр а заключен в доверительном интервале 19,615<*a*<22,965.

Задание 11

Основная гипотеза:

$$H_0: m_X = \frac{T_{min} + T_{max}}{2} = 22$$

Альтернативная гипотеза:

$$H_1: m_X \neq 22$$

Выберем для проверки гипотезы статистику:

$$Z = \frac{(m_X - m_0)\sqrt{n-1}}{\sqrt{\widehat{d}_X}}$$

В данной задаче n=31, $m_0=22$, $m_x=21$, 29, $\widehat{d}_x\approx 29$, 24. Распределением $F(\mathbf{z}|H_0)$ статистики Z при справедливости H_0 является распределение Стьюдента S(n-1).

Таким образом, доверительная область G имеет вид
$$G = [-73,5;73,5]$$

$$z = \frac{(21,29-22)\sqrt{30}}{\sqrt{29,24}} \approx -0.7191678$$

 $z \in G$, и с уровнем доверия $1 - \alpha = 0,96$ гипотеза H_0 выполняется.

Задание 12

Основная гипотеза:

$$H_0: \sigma_x^2 = (T_{max} - T_{min})^2 = 400$$

Альтернативная гипотеза:

$$H_1: \sigma_x^2 \neq 400$$

Выберем для проверки гипотезы статистику:

$$Z = \frac{n \, \widehat{d}_x}{\sigma_0^2}$$

В данной задаче $n\!=\!31$, $\sigma_0^2\!=\!400$, , $\widehat{d}_x\!\approx\!29$, 24. Распределением $F(z|H_0)$ статистики Z при справедливости H_0 является распределение $\aleph^2(30)$. Таким образом, доверительная область G имеет вид $G\!=\![17.9083;44.8336]$

$$z = \frac{31 \times 29,24}{400} = 2,26$$

 $z \not\in G$, и с уровнем доверия $1-\alpha = 0$, 96 гипотеза H_0 не выполняется.

Задание 13

Выборочное среднее для дневной температуры $m_x = 21, 29$.

Выборочная дисперсия $d_x = 29,24$.

Вычислим гипотетические вероятности p_k , $k = \overline{1$, 6 , попадания гауссовской СВ X в интервалы Δ_k по формуле $p_k = h \cdot \frac{1}{\sqrt{2\pi\,d_x}} * \exp\{-\frac{\left(x_k - m_x\right)^2}{2\,d_x}\}$,

 X_k – середина интервала Δ_k , h - длина интервала.

\triangle_k	12-16	16-20	20-24	24-28	28-32	32-36
p_k	0,12	0,25	0,29	0,20	0,08	0,02
n_k	4	8	10	3	4	2

Вероятность попадания в интервал $\triangle_0 = (-\infty, 14)$ равна $p_0 = 0.042$, в интервал $\triangle_7 = 0.042$. Вычисляя реализацию z статистики Z, получим

$$z=n p_0+\sum_{1}^{6} \frac{(n_k-n p_k)^2}{n p_k}+n p_7\approx 8,85$$

При справедливости гипотезы статистика Z имеет распределение $\chi 2$. Тогда критическая область имеет вид $G \ \bar{\ } = (x_{0.95}(5), +\infty) = (11.071, +\infty)$, а доверительная область G = [1,145;11,071].

Так как вычисленное по выборке значение статистики попадает в доверительную область, с вероятностью 0,95 можно утверждать, что дневная температура подчиняется нормальному распределению.

Так как дневная температура подчиняется нормальному распределению, эксцесс $E_{\it k}$ =0,23117

Асимметрия $A_s = 0,408612$.

Задание 14

Для проверки гипотезы воспользуемся критерием хи-квадрат.

Вычислим значение z по формуле,

$$z = n \left(\sum_{i=1}^{s} \sum_{j=1}^{r} \frac{n_{ij}^{2}}{n_{xi} n_{yj}} - 1 \right)$$

где n = 31, s = 5, r = 6, n_{xi} – приведены в последнем столбце таблицы, а числа n_{yj} – в последней строке, получим z= 34,84447.

День	12-16	16-20	20-24	24-28	28-32	32-36	Сумма
Ночь							
13-15	2	0	0	0	0	0	2
15-17	1	0	5	0	0	0	6
17-19	1	5	1	1	2	0	10
19-21	0	3	3	2	1	2	11
21-23	0	0	1	0	1	0	2
Сумма	4	8	10	3	4	2	31

При справедливости гипотезы H_0 статистика Z имеет распределение хи-квадрат с числом степеней свободы m = (r-1)(s-1) = 20. Тогда, если взять уровень доверия $1-\alpha = 0.95$, а доверительный интервал $G = \left[x_{0,025}(20), x_{0,975}(20)\right] = \left[9.6 \,; 34.17\right]$.

Так как вычисленное по выборке значение статистики не попадает в доверительную область, то с вероятностью 0,95 гипотеза о независимости дневной и ночной температур отвергается.