ITERATIVE METHODS FOR SIMPLE ROOTS

August 30, 2021

1 Introduction

We consider the methods for determining the roots of the equation

$$f(x) = 0 (1)$$

which may be given explicitly as a polynomial of degree n in x or f(x) may be defined as a transcendental function.

There are two types of methods that can be used to find the roots of the equation (1).

- 1. Direct methods: These methods give the exact value of the roots in a finite number of steps. These methods determine all the roots at the same time.
- 2. Iterative methods: These methods are based on the idea of successive approximations. Starting with one or more initial approximations to the root, we obtain a sequence of iterates x_k which in the limit converges to the root. These methods determine one or two roots at a time.

2 Iterative methods for simple roots

Definition: A root ξ is called a simple root of f(x) = 0, if $f(\xi) = 0$ and $f'(\xi) \neq 0$. Then, we can also write $f(x) = (x - \xi)g(x)$, where g(x) is bounded and $g(\xi) \neq 0$.

2.1 Bisection Method

If the function f(x) satisfies $f(a_0)f(b_0) < 0$, then the equation f(x) = 0 has at least one real root or an odd number of real roots in the interval (a_0, b_0) . If $m_1 = \frac{1}{2}(a_0 + b_0)$ is the mid point of this interval, then the root will lie either in the interval (a_0, m_1) or in the interval (m_1, b_0) provided that $f(m_1) \neq 0$. If $f(m_1) = 0$, then m_1 is the required root. Repeating this procedure a number of times, we obtain the bisection method

$$m_{k+1} = a_k + \frac{1}{2}(b_k - a_k), \quad k = 0, 1, \dots$$

where

$$(a_{k+1}, b_{k+1}) = \begin{cases} (a_k, m_{k+1}), & \text{if } f(a_k)f(m_{k+1}) < 0\\ (m_{k+1}, b_k), & \text{if } f(m_{k+1})f(b_k) < 0 \end{cases}$$

We take the midpoint of the last interval as an approximation to the root. This method always converges, if f(x) is continuous in the interval [a, b] which contains the root.

Algorithm

- 1. Choose initial guesses x_0 and x_1 such that $f(x_0)f(x_1) < 0$
- 2. Choose pre-specified tolerable error ϵ .
- 3. Calculate new approximated root as $x_2 = \frac{(x_0 + x_1)}{2}$
- 4. Calculate $f(x_0)f(x_2)$
 - (a) if $f(x_0)f(x_2) < 0$ then $x_0 = x_0$ and $x_1 = x_2$
 - (b) if $f(x_0)f(x_2) > 0$ then $x_0 = x_2$ and $x_1 = x_1$
 - (c) if $f(x_0)f(x_2) = 0$ then goto (8)
- 5. if $|f(x_2)| > \epsilon$ then goto (3) otherwise goto (6)
- 6. Display x_2 as root.
- 7. Stop.

2.2 Secant Method

In this method, we approximate the graph of the function y = f(x) in the neighbourhood of the root by a straight line (secant) passing through the points (x_{k-1}, f_{k-1}) and (x_k, f_k) , where $f_k = f(x_k)$ and take the point of intersection of this line with the x-axis as the next iterate. We thus obtain

$$x_{k+1} = x_k - \frac{x_k - x_{k-1}}{f_k - f_{k-1}} f_k, \ k = 1, 2, \dots$$

or

$$x_{k+1} = \frac{x_{k-1} f_k - x_k f_{k-1}}{f_k - f_{k-1}}, \ k = 1, 2, \dots$$

where x_{k-1} and x_k are two consecutive iterates. In this method, we need two initial approximations x_0 and x_1 . This method is also called the *chord* method. The order of the method is obtained as

$$p = \frac{1}{2}(1+\sqrt{5}) \approx 1.62$$

If the approximations are chosen such that $f(x_k-1)f(x_k) < 0$ for each k, then the method is known as Regula-Falsi method and has linear (first order) rate of convergence. Both these methods require one function evaluation per iteration.

Algorithm

- 1. Start
- 2. Define function as f(x)
- 3. Input initial guesses x_0 and x_1 , tolerable error (ϵ) and maximum iteration (N)
- 4. Initialize iteration counter i=1
- 5. If $f(x_0) = f(x_1)$ then print "Mathematical Error" and goto (11) otherwise goto (6)
- 6. Calcualte $x_2 = x_1 \frac{(x_1 x_0)}{f(x_1) f(x_0)} * f(x_1)$
- 7. Increment iteration counter i = i + 1
- 8. If i >= N then print "Not Convergent" and goto (11) otherwise goto (9)
- 9. If $|f(x_2)| > \epsilon$ then set $x_0 = x_1$, $x_1 = x_2$ and goto (5) otherwise goto (10)
- 10. Print root as x_2
- 11. Stop

2.3 Newton-Raphson method

In this method, we approximate the graph of the function y = f(x) in the neighbourhood of the root by the tangent to the curve at the point (x_k, f_k) and take its point of intersection with the x-axis as the next iterate. We have the Newton-Raphson method as

$$x_{k+1} = x_k - \frac{f_k}{f'_k}, \quad k = 0, 1, \dots$$

and its order is p = 2. This method requires one function evaluation and one first derivative evaluation per iteration.

Algorithm

- 1. Define function as f(x)
- 2. Define first derivative of f(x) as g(x)
- 3. Input initial guess (x_0) , tolerable error (ϵ) and maximum iteration (N)
- 4. Initialize iteration counter i = 1
- 5. If $g(x_0) = 0$ then print "Mathematical Error" and goto (11) otherwise goto (6)
- 6. Calcualte $x_1 = x_0 \frac{f(x_0)}{g(x_0)}$
- 7. Increment iteration counter i = i + 1
- 8. If i >= N then print "Not Convergent" and goto (11) otherwise goto (9)
- 9. If $|f(x_1)| > \epsilon$ then set $x_0 = x_1$ and goto (5) otherwise goto (10)
- 10. Print root as x_1
- 11. Stop

Example: Find the interval of equation $x^3 - x - 4 = 0$. in which the smallest positive root lies and also, determine the roots correct to two decimal places using the bisection method.

Solution:

We find f(0) = -4, f(1) = -4, f(2) = 2.

Therefore, the root lies in the interval (1, 2). The sequence of intervals using the bisection method is obtained as

k	a_{k-1}	b_{k-1}	m_k	$f(m_k)f(a_{k-1})$
1	1	2	1.5	> 0
2	1.5	2	1.75	> 0
3	1.75	2	1.875	< 0
4	1.75	1.875	1.8125	> 0
5	1.75	1.8125	1.78125	> 0
6	1.78125	1.8125	1.796875	< 0
7	1.78125	1.796875	1.7890625	> 0
8	1.7890625	1.796875	1.792969	> 0
9	1.792969	1.796875	1.794922	> 0
10	1.794922	1.796875	1.795898	> 0.

After 10 iterations, we find that the root lies in the interval (1.795898, 1.796875). Therefore, the approximate root is m = 1.796387. The root correct to two decimal places is 1.80.

Example: Given the following equation : $x^4 - x - 10 = 0$, determine the initial approximations for finding the smallest positive root. Use these to find the root correct to three decimal places with the following methods:

(a) Secant method, (b) Regula-Falsi method, (c) Newton-Raphson method.

Solution:

We find that f(0) = -10, f(1) = -10, f(2) = 4.

Hence, the smallest positive root lies in the interval (1, 2).

The Secant method gives the iteration scheme

$$x_{k+1} = x_k - \frac{x_k - x_{k-1}}{f_k - f_{k-1}} f_k, \ k = 1, 2, \dots$$

With $x_0 = 1$, $x_1 = 2$, we obtain the sequence of iterates

$$x_2 = 1.7143, \ x_3 = 1.8385, \ x_4 = 1.8578, \ x_5 = 1.8556, \ x_6 = 1.8556.$$

The root correct to three decimal places is 1.856.

The Regula-Falsi method gives the iteration scheme

$$x_{k+1} = x_k - \frac{x_k - x_{k-1}}{f_k - f_{k-1}} f_k, \ k = 1, 2, \dots$$

and $f_k f_{k-1} < 0$.

With $x_0 = 1$, $x_1 = 2$, we obtain the sequence of iterates

$$x_2 = 1.7143,$$
 $f(x_2) = -3.0776,$ $\xi \in (x_1, x_2),$
 $x_3 = 1.8385,$ $f(x_3) = -0.4135,$ $\xi \in (x_1, x_3),$
 $x_4 = 1.8536,$ $f(x_4) = -0.0487,$ $\xi \in (x_1, x_4),$
 $x_5 = 1.8554,$ $f(x_5) = -0.0045,$ $\xi \in (x_1, x_5),$
 $x_6 = 1.8556.$

The root correct to three decimal places is 1.856.

The Newton-Raphson method gives the iteration scheme

$$x_{k+1} = x_k - \frac{f_k}{f'_k}, \quad k = 0, 1, \dots$$

With $x_0 = 2$, we obtain the sequence of iterates

$$x_1 = 1.8710, \ x_2 = 1.8558, \ x_3 = 1.8556.$$

Hence, the root correct to three decimal places is 1.856.

2.4 Fixed point Iteration

Fixed point : A point, say, s is called a fixed point if it satisfies the equation x = g(x).

Fixed point Iteration: The transcendental equation f(x) = 0 can be converted algebraically into the form x = g(x) and then using the iterative scheme with the recursive relation

$$x_{i+1} = g(x_i), \quad i = 0, 1, 2, \dots,$$

with some initial guess x_0 is called the fixed point iterative scheme.

Algorithm : Given an equation f(x) = 0

- 1. Convert f(x) = 0 into the form x = g(x)
- 2. Let the initial guess be x_0
- 3. Compute

$$x_{i+1} = g(x_i), \quad i = 0, 1, 2, \dots,$$

4. Repeat till $|x_{i+1} - g(x_i)| \le \epsilon$ (where i is the iteration number)

Example : Find a root of $x^4 - x - 10 = 0$

Solution:

Consider another function $g(x) = (x+10)^{1/4}$ and the fixed point iterative scheme

$$x_{i+1} = (x_i + 10)^{1/4}, \quad i = 0, 1, 2, \dots$$

let the initial guess x_0 be 1.0, 2.0 and 4.0

i	0	1	2	3	4	5	6
x_i	1.0	1.82116	1.85424	1.85553	1.85558	1.85558	
x_i	2.0	1.861	1.8558	1.85559	1.85558	1.85558	
x_i	4.0	1.93434	1.85866	1.8557	1.85559	1.85558	1.85558