CS251 HW1

1.

1.1 C

For the first loop, it runs n times. Inside of every first loop, it will run n^2 times. Therefore, in total, there will be around $n*n^2 = n^3$ times. Based on the definition of O: f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n). $O(n^3)$ is the answer.

1.2 C

For the first loop, it runs for n times. Inside of every first loop, it will run for i times. Therefore, the total number is: 1+2+3+...+n. There will be $\frac{1}{2}n(1+n)=\frac{1}{2}n^2+\frac{1}{2}n$ times. Based on the definition of O: f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n). O(n^2) is the answer.

1.3 B

For the first loop, it runs for around $\log_2 n$ times. Inside of every first loop, it will run for n times. Therefore, the total number is: $nlog_2 n$. There will be $\frac{1}{2}n(1+n)=\frac{1}{2}n^2+\frac{1}{2}n$ times. Based on the definition of O: f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n). O(nlogn) is the answer.

1.4 A

For every call of this recursive function, it will call one more function (when n is not equal to 1). Therefore, the total number of repetition is n. Based on the definition of O: f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n). O(n) is the answer.

1.5 B

For loop 1, the first loop runs for n times. Inside of the first loop, it will run for $\log_2 n$ times. For loop 2, it will run for n times. In total, there will be $nlog_2n + n$ times. Based on the definition of O: f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n). O(nlogn) is the answer.

2.

2.1 B

Since $n! > 3^n$, based on the definition of O: f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n). O(n!) is the answer.

2.2 A

 $\sum_{i=0}^{2n} 5i + i^2 = \frac{2n(n+1)(2n+1)}{6} + P(n^2) \sim n^3$. Therefore, based on the definition of Ω : f(n) is $\Omega(g(n))$ if f(n) is asymptotically greater than or equal to g(n). $\Omega(n^3)$ is the answer.

- 3. n should be the number of worst case. Since the cards are unsorted, if we search from one end, where the search target is in the other end, we need n times to find the object.
- 4.

$$2^{N} > N^{3} > N^{2}logN > N^{2} > Nlog^{2}N > 10NlogN^{2} \ge NlogN > N > \log^{2}N > 5logN$$

 $\ge logN^{2} \ge logN > 37 = 2$

Since the function growth rate is not affected by constant factors or lower-order terms, we can eliminate the constant scalars in sorting this list. For $10NlogN^2 = 20NlogN \sim NlogN$, it is the same growth rate as NlogN. Also for $5logN \sim logN$, $logN^2 = 2logN \sim logN$, they have the same growth rate.

5.

a.

AboveAvg1 is better.

In AboveAvg1, the first loop will run for n times. The second loop will also run for n times. Therefore, the complexity is O(n).

In AboveAvg2, the outside loop will run for n times. For every time in the outside loop, a inside loop will run for n times. Therefore, the complexity is $O(n^2)$. In conclusion, AboveAvg1 is better since $O(n) < O(n^2)$.

b.

EvensFirst2 is better.

For EvensFirst1, the first loop and the second loop will all run for n times. There will be 2n times together.

For EvensFirst2, the loop will run for n times.

Therefore, EvensFirst2 is better.