1. Какъв е моделът на следните неща (локален или глобален):

индукция на дърво на решения - глобален

naïve bayes - глобален

kNN - локален

невронна мрежа - глобален

- 2. Кой е коренът на дървото при дадена (примерна) таблица:
 - a. F1
 - b. F2
 - с. F3 output би трябвало да е класът

d.

F1	F2	F3	Output
а	b	С	+
С	а	С	+
а	а	С	-
С	С	a	-
а	b	b	-

- e. Output
- 3. Кой атрибут ще сложите за корен на дървото?
 - a. F1
 - b. F2
 - c. F3
 - d. Output

F1	F2	F3	Output
a	а	а	+
С	b	С	+
С	а	С	+
а	а	b	-
С	b	а	-
С	b	b	-

- 4. Може ли персептронът да реализира XOR?
 - а. да
 - b. **не**
- 5. Кое твърдение се отнася за ансамбловото учене (Ensemble learning)?
 - а) използват се различни алгоритми и се прави гласуване
 - б) използват се различни извадки от тестови данни и се прави гласуване
 - в) използват се к члена и се гласува
- 6. Кои от следните алгоритми спадат към йерархичните модели?
 - a. kNN
 - b. Agglomerative learning
- 7. Кои от следните алгоритми спадат към ученето с учител (supervised learning)?
 - a. ID3
 - b. DBSCAN
 - c. kNN
 - d. kMeans
 - e. C4.5
- 8. Кои от следните твърдения се отнасят за асоциативните правила?
 - a. минимален support
 - b. минимален confidence
- 9. Кои от следните не са верни за асоциативното учене?
 - а) резултатът от косинуса на ъгъла между данните
- 10. Кой от следните алгоритми за обучение се явява мързелив
 - а. Индукция на дърво на решенията
 - b. учене основано на примери
 - с. линейна регресия
 - d. k-means
- 11. Посочете правилното твърдение за обратното разпространение на грешката (Error Backpropagation)
 - а. използва се при обучението на еднослойна невронна мрежа (perception)
 - b. използва се при обучението на еднослойна и многослойна невронна мрежа
 - с. не се използва при обучението на невронни мрежи
 - d. използва се при обучението на многослойна невронна мрежа
- 12. Кое от следните обучаващи се множества не може да бъде разделено на дърво на решенията на 2 нива

- a. (i)
- b. (ii)
- c. (iii)
- d. (iv)
- 13. Кое от следните обучаващи се множества може да бъде правилно разделено от персептрона?

Отбележете едно или повече

- a. (i)
- b. (ii)
- c. (iii)
- d. (iv)
- 14. При ученето на дърво на решенията, по кой принцип избираме една от множеството допустими хипотези
 - а. на Фишер

- b. на Окам
- с. на Тюринг
- d. на Бейс
- 15. При ученето на дърво на решенията, по кой принцип избираме една от множеството съвместими хипотези
 - а. на Марков
 - b. на Окам
 - с. на Тюринг
 - d. на Бейс
- 16. Каква е основната цел на кастренето (pruning) на дърво на решенията
 - а. Да направи дървото по-компактно
 - ь. Да повишим точността върху обучаващото множество
 - с. Да намалим пространството от хипотези, в които търсим
 - d. Да предотврати прекомерно нагаждане към обучаващите примери (over-fitting)
- 17. Изводът чрез изброяване (inference by enumeration) се основава на:
 - а. условните автомарности между автомарните събития
 - b. пълното съвместно разпределение на автомарните събития
 - с. доказателства, получени от автомарните събития
 - d. единствено от автомарните събития
- 18. Ансамблово учене (Ensemble learning) е:
 - а. от множество обучаващи се примера се избира представителна извадка (k на брой примера), така наречения парламент, който после се използва за обучение
 - b. Учене на няколко класификатора, като се използва един и същи учещ алгоритъм, но с различни тегла на примерите в обучаващото множество. После тези класификатори вземат решение с гласуване.
 - с. Учене на няколко класификатора, използвайки различни алгоритми за учене, които вземат решение с гласуване

	d.	Намираме k най-близките съседни примери от обучаващото множество, които вземат решение с гласуване
19.	Какъв	модел учи всеки един от следните алгоритми (глобален (g) или локален (l))
		i. Учене основано на примери (kNN)
		іі. Наивен Бейсов класификатор
	b.	11,21
	C.	1 l, 2 g
	d.	1 g, 2 l
	e.	1 g, 2 g
20.	Какъв	модел учи всеки един от следните алгоритми (глобален (g) или локален (l))
		і. Невронна мрежа
		іі. Индукция на дърво на решенията
	b.	11,21
	C.	1 l, 2 g
	d.	1 g, 2 l
	e.	1 g, 2 g
21.	Кой от	изброените клъстерни алгоритми изгражда йерархичен модел отдолу нагоре
	a.	агломеративен
	b.	нито един от изброените
	c.	йерархичен k-means
	d.	k-means ++
22.	началі	лото (от началното състояние към целта (Progressive)) и обратно (от целта към ното състояние (Regressive)) търсене се използват само за строене изцяло) наредени планове
	a.	истина
	b.	лъжа

23. Причинно-следствена връзка (casual link) при частично наредените планове се означава

A -p-> B

и означава:

- а. Между А и В трябва да има друго действие С, което да дава резултат р
- b. А трябва да се изпълни преди В
- с. Изпълнението на В трябва да започне непосредствено след изпълнението на А
- d. Не може да има действие C между A и B, което да отменя р

24. Алгоритъмът k-means e:

- а. лаком алгоритъм
- b. оптимален алгоритъм
- с. алгоритъм използващ търсене в дълбочина с възврат
- d. глобално търсещ алгоритъм

25. Алгоритъмът k-means e:

- а. локално търсещ алгоритъм
- b. оптимален алгоритъм
- с. алгоритъм използващ търсене в дълбочина с възврат
- d. глобално търсещ алгоритъм
- 26. Кое от следните множества от примери съдържа шум
 - a. (i)
 - b. (ii)
 - c. (iii)

	X_1	X_2	Y	
	1	1	+	
(i)	4	2	_	
	4	5	_	
	5	5	+	

	X_1	X_2	Y
	1	1	+
(ii)	5	5	-
	4	5	_
	5	5	+

	X_1	X_2	Y
	1	1	+
(iii)	4	2	-
	4	5	+
	5	5	+

27. Какво е частично нареден план?

http://fmi.wikidot.com/ai05 ctrl+f частично наредени планове

- 28. Кое от следните множества от примери е линейно разделимо
 - a. (i)
 - b. (ii)
 - c. (iii)

	X_1	X_2	Y
	1	1	+
(i)	4	2	_
	4	5	-
	5	5	+

	A_1	Λ_2	Y
	1	1	+
(ii)	5	5	-
	4	5	-
	5	5	+

	X_1	X_2	Y
	1	1	+
(iii)	4	2	_
	4	5	+
	5	5	+

- 29. Кое от изброените клъстерни алгоритми изгражда йерархичен модел отгоре надолу
 - a. k-means++
 - b. йерархичен k-means
 - с. агломеративен
 - d. нито един от изброените
- 30. PCA (Principal component analysis)
 - а. Решава класификационна задача
 - Намалява размерността на пространството от примери
 - с. Решава регресионна задача
 - d. Свежда примерите до представителна извадка с по-малък размер
- 31. Ученето основано на примери (instance based learning) (kNN) може да бъде определено като
 - і. мързеливо учене
 - іі. учене по аналогия
 - b. И двете твърдения са верни
 - с. Твърдение 1 е вярно, а 2 е невярно
 - d. Твърдение 2 е вярно, а 1 невярно

- е. И двете твърдения не са верни
- 32. За k-means са дадени 2 твърдения:
 - і. трябва да се направят няколко произволни рестартирания
 - іі. строи йерархичен класификатор
 - b. И двете твърдения са верни
 - с. Твърдение 1 е вярно, а 2 е невярно
 - d. Твърдение 2 е вярно, а 1 невярно
 - е. И двете твърдения не са верни
- 33. Дадена е следната контекстно-свободна граматика, където X* означава 0 или повече срещания Това не е за НАС това е от NLP

```
S \rightarrow NP \ VP
S \rightarrow first \ S \ then \ S
NP \rightarrow Determiner \ Modier \ Noun \ | \ Pronoun \ | \ Proper \ Noun
VP \rightarrow Intransitive \ Verb
VP \rightarrow Intransitive \ Verb
VP \rightarrow Copula \ Adjective
VP \rightarrow Copula \ Adjective
Verb \rightarrow Smelled \ | \ was
Verb \rightarrow Smelled \ | \
```

Изречението the red red rose rose rose може да бъде генерирано от дадената граматик а. Посочете дали твърдението е грешно или не

- а. Истина
- b. Лъжа
- 34. Дадена е следната контекстно-свободна граматика, където X* означава 0 или повече срещания Това не е за НАС това е от NLP

```
S \rightarrow NP \ VP
S \rightarrow first \ S \ then \ S
NP \rightarrow Determiner \ Modier \ Noun \ | \ Pronoun \ | \ Proper \ Noun
VP \rightarrow Intransitive \ Verb
VP \rightarrow Intransitive
```

Изречението she was a violet violet може да бъде генерирано от дадената граматика. Посочете дали твърдението е грешно или не

- а. Истина
- b. Лъжа
- 35. Посочете кои алгоритми спадат към учене без учител (Unsupervised learning)
 - a. kMeans
 - b. C4.5
 - c. kNN
 - d. ЕМ-алгоритъм
 - e. DBSCAN
 - f. ID3
- 36. Дадена е Бейсова мрежа, където А-Е са булеви променливи

Каква е вероятността всичките булеви променливи да са true

- a. 0.0024
- b. 0.00144
- c. 0.03
- d. 0.08
- 37. Ако Температура е условно независима от Главоболие при дадена диагноза Грип, то вярно или невярно е всяко едно от твърденията
 - i. Р(Главоболие , Температура | Грип) = Р(Главоболие | Грип)Р(Температура | Грип)
 - іі. Р(Температура | Главоболие, Грип) = Р(Температура | Грип)
 - b. вярно, вярно
 - с. вярно, невярно
 - d. невярно, вярно
 - е. невярно, невярно
- 38. Ако Температура е условно независима от Главоболие при дадена диагноза Грип, то вярно или невярно е всяко едно от твърденията
 - і. Р(Главоболие | Температура, Грип) = Р(Главоболие | Грип)

- ii. Р(Грип | Главоболие, Температура) = Р(Грип)Р(Главоболие | Грип)Р(Температура | Грип) / Р(Температура)Р(Грип)
- b. вярно, вярно
- с. вярно, невярно
- d. невярно, вярно
- е. невярно, невярно
- 39. Ако Температура е условно независима от Главоболие при дадена диагноза Грип, то вярно или невярно е всяко едно от твърденията
 - i. Р(Температура|Главоболие, Грип) = Р(Температура|Грип)Р(Температура|Главоболие)
 - ii. Р(Температура, Главоболие | Грип) = Р(Т|Грип)Р(Температура | Главоболие)
 - b. вярно, вярно
 - с. вярно, невярно
 - d. невярно, вярно
 - е. невярно, невярно
- 40. Индукция на дървото ID3 учи локален модел
 - а. вярно
 - b. невярно
- 41. Невронната мрежа учи локален модел
 - а. истина
 - b. лъжа
- 42. При обучение на логистична регресия се използва метод на градиентно изкачване
 - а. истина
 - b. лъжа
- 43. Може ли "изключващо или" хог да се реализира с невронна мрежа с едно скрито ниво?
 - а. да
 - b. **не**
- 44. Кой от изброените клъстерни алгоритми изгражда нейерархичен модел?
 - а. Агломеративен
 - b. bisecting k-means
 - с. нито един от изброените
 - d. k-means
- 45. Правото (от началното състояние към целта (Progressive)) и Обратното (от целта към началното състояние (Regressive)) търсене се използват само за строене на изцяло (totally) наредени планове.
 - а. Истина
 - б. Лъжа

- 46. Логистичната регресия предполага условна независимост на атрибутите/характеристиките
 - а. Истина
 - b. Лъжа

47. Дадени са съвместните вероятности

Positive

circle square
red 0.2 0.02
blue 0.02 0.01

Negative

red 0.05 0.3 blue 0.2 0.2

Пресметнете

P(positive | red ^ circle)

- a. 0.25
- b. 0.80
- c. 0.57
- d. 0.20
- 48. За k-means алгоритъма са дадени следните 2 твърдения:
 - і. Трябва да се направят няколко произволни рестартирания

- іі. Строи йерархичен класификатор
- b. Твърдение 1 е вярно, твърдение 2 невярно
- с. Двете твърдения са неверни
- d. Твърдение 1 е невярно, твърдение 2 вярно
- е. Твърдения 1 и 2 са верни