1. In a bag of marbles, there are two disjoint events: A represents selecting a red marble, and B represents selecting a blue marble. The probability of selecting a red marble is $P(A)=\frac{1}{4}$, and the probability of selecting a blue marble is $P(B)=\frac{1}{4}$.

What is the probability of selecting either a red or a blue marble, $P(A \cup B)$, from the bag?

- $\bigcap P(A \cup B) = \frac{2}{3}$
- $\bigcap P(A \cup B) = \frac{1}{12}$
- $\bigcap P(A \cup B) = \frac{5}{12}$
- **●** $P(A \cup B) = \frac{7}{12}$
- $\textbf{2.} \quad \text{You throw 10 fair coins, what is the probability that coins $\textbf{do not result in all heads}$?}$

1 point

1 point

0

 $\frac{10^2-1}{10^2}$

0

 $\frac{1}{10^2}$

0

 $\frac{1}{2^{10}}$

•

- $\frac{2^{10}-1}{2^{10}}$
- 3. In a room, there are 200 people: 30 people only like soccer, 100 people only like basketball, and 70 people like both soccer and basketball.

1 point

What is the probability that a randomly selected person likes **basketball given they like soccer?**

Hint: Find P(B|S) , where B is the event of liking basketball and S is the event of liking soccer.

•

 $\frac{7}{10}$

 \circ

 $\frac{7}{20}$

0

 $\frac{1}{2}$

0

- 3
- 4. Imagine there is a disease that impacts 1% of the population. Researchers devised a test so that people with the disease test positive 95% of the time. People who do not have the disease test negative 90% of the time. If an individual receives a positive test result for the disease, what is the probability that they truly have the disease or P(sick[test_{pos}))?

1 point

Hint: In the description above, you were given P(sick), probability for true positive (or $P(\text{test}_{\text{pos}}|\text{sick}))$, and probability for true negative (or $P(\text{test}_{\text{neg}}|\text{not sick})$). Use this information to find P(not sick) and $P(\text{test}_{\text{neg}}|\text{not sick})$.

Remember that Bayes' Theorem is $P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$. Also, remember that you may write $P(B) = P(B|E) \cdot P(E) + P(B|\text{not } E) \cdot P(\text{not } E)$, where E is any event and not E = E'.

- 8.76%
- O 90%
- O 15.58%
- O 42.76%
- 5. Which of the following are examples of continuous random variables? Select all that apply.
- 1 point

- Temperature in degrees Celsius.
- ✓ Time taken to run a 100-meter race.
- Number of cars passing through a toll booth in an hour.
- Number of students in a classroom.
- Number of goals scored in a soccer match.
- Weight of a package.
- Height of students in a class.
- 6. You roll a six-sided die 20 times and want to find the probability that the number 4 appears exactly 7 times. Which of the following equations correctly represents the probability distribution for this scenario?

1 point

- 0
- $P(X=4) = \binom{20}{4} \cdot \left(\frac{1}{6}\right)^4 \cdot \left(\frac{5}{6}\right)^{16}$

$$P(X=7) = \binom{20}{7} \cdot \left(\frac{1}{6}\right)^7 \cdot \left(\frac{5}{6}\right)^{13}$$

$$P(X=7) = \binom{20}{7} \cdot \left(\frac{1}{6}\right)^{13} \cdot \left(\frac{5}{6}\right)^{7}$$

$$P(X=7) = \binom{20}{7} \cdot \left(\frac{1}{6}\right)^7 \cdot \left(\frac{5}{6}\right)^7$$

7. Imagine you are tasked with modeling the heights of individuals in a diverse country. Which probability distribution would be most suitable for capturing the patterns in the heights of the population?

1 point

- O Binomial Distribution
- Normal Distribution
- O Uniform Distribution
- 8. A taxi cab service analyzes the number of passengers in its daily rides. The table and graph below show the number of passengers, X, in a single taxi cab and the observed probabilities at a randomly selected time.

1 point

Number of passengers xi	0	1	2	3	4	5	6
Probability, pi	0.10	0.25	0.25	0.15	0.15	0.05	0.05

Probability distribution of number of passengers

What is the probability that a randomly selected taxi ride will have less than or equal to 3 passengers?

$$\bigcirc \ P(X \leq 3) = 0$$

$$\bigcirc P(X \leq 3) = 0.25$$

$$\bigcirc \ P(X \leq 3) = 0.40$$

$$\bigcirc P(X \leq 3) = 0.60$$

$$P(X \le 3) = 0.75$$

9. A taxi cab service analyzes the number of passengers in its daily rides. The table and graph below show the number of passengers, X, in a single taxi cab and the observed probabilities at a randomly selected time.

1 point

Number of passengers xi	0	1	2	3	4	5	6			
Probability, pi	0.10	0.25	0.25	0.15	0.15	0.05	0.05			
Probability distribution of number of passengers										

Select the correct Cumulative Distribution Function (CDF) based on the observed probabilities.

0	Number of passengers(x)	0	1	2	3	4	5	6
	Cumulative probability (Fx)	0.10	0.35	0.35	0.5	0.65	0.7	0.75

0	Number of passengers(x)	0	1	2	3	4	5	6	
	Cumulative probability (Fx)	1	0.90	0.65	0.4	0.25	0.1	0.05	

 Consider the graph below, depicting four normal, or Gaussian, distributions labeled normal_A in blue, normal_B in orange, normal_C in green, and normal_D in red.

 1 point

Select all statements that are true based on the provided graph.

 $\mu_{normal_D} > \mu_{normal_C}$

 $\sigma_{\text{normal_D}} > \sigma_{\text{normal_A}}$

 $\sigma_{normal_C} > \sigma_{normal_B}$

 $\label{eq:mormal_A} \ \ \, \mu_{normal_A} > \mu_{normal_B}$