Paths foward: Multiple and logistic regression

Stat 340: Bayesian Statistics

Example

- Barberan and Leff (2019) published data on dust samples taken from the ledges above doorways in the continental US.
- Bioinformatics processing detects the presence or absence of 763 species (technically operational taxonomic units) of fungi.
- The log of the number of fungi species present in the sample, which is a measure of species richness.
- Our objective: determine which factors influence a home's species richness.

Data

For each home, eight explanatory variables (i.e. covariates) are included in this example:

Variable	Description
lnspecies	natural log of the number of fungi species present in the sample
long	longitude
lat	latitude
temp	annual mean temperature of the location
precip	annual mean precipitation of the location
NPP	net primary productivity (rate at which all the autotrophs in an ecosystem produce net useful chemical energy)
elev	elevation
house	indicator that the house is a single-family home
bedrooms	number of bedrooms in the home

Multiple regression model

Sampling model: $Y_i|x_1,\ldots,x_p \overset{ ext{ind}}{\sim} \mathcal{N}(\mu_i,\ \sigma^2)$

Link function: $\mu_i = \beta_0 + \beta_1 x_{i1}, + \cdots + \beta_p x_{ip}$

Priors: We need to place a prior on each coefficient, β_i , and σ

JAGS implementation

```
mlr_string <- "model{</pre>
## Sampling model
for(i in 1:n) {
  y[i] ~ dnorm(mu[i], invsigma2)
 mu[i] <- beta0 + beta1 * temp[i] + beta2 * precip[i]</pre>
## Weakly informative priors
beta0 ~ dnorm(0, 0.0025)
beta1 ~ dnorm(0, 0.0025)
beta2 ~ dnorm(0, 0.0025)
invsigma2 ~ dgamma(0.001, 0.001)
sigma <- pow(invsigma2, -1/2)
}"
```

JAGS implementation

Be sure that there are no NAs in the data set

```
mlr_data <- list(
   y = homes$lnspecies,
   temp = homes$temp,
   precip = homes$precip,
   n = nrow(homes)
)</pre>
```

JAGS implementation

```
mlr_posterior <- run.jags(
   mlr_string,
   n.chains = 3,
   data = mlr_data,
   monitor = c("beta0", "beta1", "beta2", "sigma"),
   adapt = 1000,
   burnin = 5000,
   sample = 5000,
   thin = 30,
   silent.jags = TRUE
)</pre>
```

Posterior summary

```
print(mlr_posterior, digits = 3)
```

```
##
## JAGS model summary statistics from 15000 samples (thin = 30; chains = 3; ad
##
##
         Lower95 Median Upper95 Mean SD
                                                 Mode MCerr MC%ofSD SS
                   6.15
                          6.25
                                 6.15 0.0484
## beta0
           6.06
                                                 6.16 0.000441
                                                                 0.9 12
         -0.0285 -0.0228 -0.0168 -0.0228 0.00297 -0.0227 2.49e-05 0.8 14
## beta1
## beta2 0.000725 0.00162 0.00255 0.00162 0.000465 0.00161 3.95e-06 0.9 13
                  0.368 0.385
                                                                 0.8 14
## sigma
        0.353
                               0.369 0.00801 0.368 6.67e-05
##
##
   AC.300 psrf
         0.00959
## beta0
## beta1 0.013
## beta2 -0.00824
## sigma -0.00702
##
## Total time taken: 42.2 seconds
```

Logistic regression

Arthritis clinical trial

A double-blind clinical trial investigated a new treatment for rheumatoid arthritis

We'll focus on a subset of the variables:

Variable	Description			
Better	whether the drug improved symptoms 1 = yes, 0 = no			
Treatment	Placebo or Treated			
Sex	Male or Female			
Age	Age in years			

Logistic regression model

Sampling model: $Y_i|x_1,\ldots,x_p \overset{ ext{ind}}{\sim} \mathrm{Bern}(p_i)$

Link function: $\log \left(\frac{p_i}{1-p_i} \right) = eta_0 + eta_1 x_{i1}, + \dots + eta_p x_{ip}$

Priors: We need to place a prior on each coefficient, β_j

Data preparation

Load and manipulate data

```
arthritis <- read.csv("http://aloy.rbind.io/data/arthritis.csv")
```

JAGS needs numeric variables, so convert factors to indicators

```
arthritis <- arthritis %>%
  mutate(
  Treatment = as.numeric(Treatment == "Treated"),
  Sex = as.numeric(Sex == "Male")
)

data_list <- list(
  Y = arthritis$Better,
  Treatment = arthritis$Treatment,
  Sex = arthritis$Sex,
  Age = arthritis$Age,
  n = nrow(arthritis)
)</pre>
```

Model fitting

```
# Logistic regression specification
model_string <- "model{</pre>
## Sampling model
for(i in 1:n){
  Y[i] ~ dbern(p[i])
  logit(p[i]) <- beta0 + beta_sex * Sex[i] + beta_age * Age[i] +</pre>
      beta_trt * Treatment[i]
## Priors
beta0 ~ dnorm(0,0.001)
beta_sex \sim dnorm(0,0.001)
beta_age ~ dnorm(0,0.001)
beta_trt ~ dnorm(0,0.001)
}"
```

Model fitting

```
# Compile model
logistic_model <- run.jags(
  model_string,
  data = data_list,
  monitor = c("beta0", "beta_sex", "beta_age", "beta_trt"),
  n.chains = 3,
  sample = 5000,
  thin = 30,
  silent.jags = TRUE)</pre>
```

Results

term	Mean	SD	2.5%	97.5%
beta0	-3.22	1.21	-5.75	-0.99
beta_sex	-1.57	0.62	-2.86	-0.43
beta_age	0.05	0.02	0.01	0.10
beta_trt	1.86	0.55	0.81	3.00

$$e^{\widehat{eta}_{
m sex}}=0.2078664$$

• For subjects in the same treatment group of the same age, the odds of improved symptoms are 0.21 times lower (i.e. about 79% lower) for males than females.

Results

term	Mean	SD	2.5%	97.5%
beta0	-3.22	1.21	-5.75	-0.99
beta_sex	-1.57	0.62	-2.86	-0.43
beta_age	0.05	0.02	0.01	0.10
beta_trt	1.86	0.55	0.81	3.00

$$e^{\widehat{eta}_{
m age}}=1.0533767$$

• For subjects in the same treatment group of the same sex, a one-year increase in age is associated with an increase in the odds of improved symptoms by a factor of 1.05 (i.e. about a 5% increase).

Results

term	Mean	SD	2.5%	97.5%
beta0	-3.22	1.21	-5.75	-0.99
beta_sex	-1.57	0.62	-2.86	-0.43
beta_age	0.05	0.02	0.01	0.10
beta_trt	1.86	0.55	0.81	3.00

$$e^{\widehat{eta}_{ ext{treat}}} = 6.4467075$$

• For subjects of the same sex and age, the odds of improved symptoms are 6.45 times higher (i.e. about 645% higher) for the treatment group than the placebo group.