Piotr Durniat

I rok, Fizyka Wtorek, 8:00-10:15 Data wykonania pomiarów: 06.05.2025

Prowadząca: dr Iwona Mróz

Ćwiczenie nr 29

Anomalia rozszerzalności cieplnej wody

Spis treści

1	Wstęp teoretyczny	2
2	Opis doświadczenia	2
3	Opracowanie wyników pomiarów3.1 Tabele pomiarowe	3
4	Ocena niepewności pomiarowych 4.1 Niepewność pomiaru temperatury	4 4
5	Wnioski	4
6	$\mathbf{W}\mathbf{y}\mathbf{k}\mathbf{res}\mathbf{y}$	5

- 1 Wstęp teoretyczny
- 2 Opis doświadczenia
- 3 Opracowanie wyników pomiarów
- 3.1 Tabele pomiarowe

T [°C]	h [mm]				
	Seria 1 Seria 2				
11.0	80	71			
10.8	77	70			
10.6	75	68			
10.4	74	66			
10.2	72	64			
10.0	69	62			
9.8	68	60			
9.6	66	58			
9.4	64	56		56	
9.2	63	55		55	
9.0	61	54			
8.8	61	51			
8.6	60	51			
8.4	56	49			
8.2	55	48			
8.0	53	46			
7.8	52	44			
7.6	51	44			
7.4	50	43			
7.2	49	41			
7.0	47	40			
6.8	46	39			
6.6	45	37			
6.4	5.4 44				
6.2	43	36 40			
6.0	6.0 42				
5.8	42	36 34			
	5.6 42				
5.4	40	32			
5.2	40	32			
5.0	39 < 3				
4.8	38	< 30			
4.6	38	< 30			
4.4	38	< 30			
4.2	37	< 30			
4.0 37		< 30			
3.8 37		< 30			
3.6 37		< 30			
3.4	37	< 30			

$T [^{\circ}C]$	h [mm]		
	Seria 1	Seria 2	
3.2	37	< 30	
3.0	37	< 30	
2.8	37	30	
2.6	37	30	
2.4	38	30	
2.2	38	32	
2.0	38	33	
1.8	39	34	
1.6	39	34	
1.4	40	35	
1.2	40	36	
1.0	41	37	
0.8	41	38	
0.6	42	39	
0.4	43	40	
0.2	43	41	

Tabela 1: Wyniki pomiarów wysokości słupa wody w zależności od temperatury

Średnica wewnętrzna kapilary wynosi d = 1,7 mm.

3.2 Zmiana objętości wody

Na podstawie zmierzonej wysokości słupa wody obliczono objętość wody w kapilarze według wzoru:

$$V = V_{\text{kolby}} + \pi \cdot \frac{d^2}{4} \cdot h \tag{1}$$

gdzie d=1,7 mm jest średnicą wewnętrzną kapilary, a h jest wysokością słupa wody, $V_{\rm kolby}=300\cdot 10^{-6}$ m³ jest objętością kolby. Obliczono również zmianę objętości ΔV względem objętości minimalnej (dla temperatury

Obliczono również zmianę objętości ΔV względem objętości minimalnej (dla temperatury 4°C):

$$\Delta V = V - V_{4^{\circ}C} \tag{2}$$

Tabela 2: Wartości objętości wody oraz zmiany objętości (wybrane temperatury)

T [°C]	$V_1 [\mathrm{m}^3]$	$V_2 [\mathrm{m}^3]$	$\Delta V_1 [\mathrm{m}^3]$	$\Delta V_2 [\mathrm{m}^3]$
11,0	$3,0018 \cdot 10^{-4}$	$3,0016 \cdot 10^{-4}$	$9,76\cdot10^{-8}$	$9,31\cdot10^{-8}$
10,0	$3,0016 \cdot 10^{-4}$	$3,0014 \cdot 10^{-4}$	$7,26\cdot10^{-8}$	$7,26\cdot10^{-8}$
9,0	$3,0014 \cdot 10^{-4}$	$3,0012 \cdot 10^{-4}$	$5,45\cdot10^{-8}$	$5,45\cdot10^{-8}$
8,0	$3,0012 \cdot 10^{-4}$	$3,0010 \cdot 10^{-4}$	$3,63\cdot10^{-8}$	$3,63\cdot10^{-8}$
7,0	$3,0011 \cdot 10^{-4}$	$3,0009 \cdot 10^{-4}$	$2,27\cdot10^{-8}$	$2,27\cdot10^{-8}$
6,0	$3,0010 \cdot 10^{-4}$	$3,0008 \cdot 10^{-4}$	$1,36\cdot10^{-8}$	$1,36\cdot10^{-8}$
5,0	$3,0009 \cdot 10^{-4}$	$3,0007 \cdot 10^{-4}$	$4,54\cdot10^{-9}$	$4,54 \cdot 10^{-9}$
4,0	$3,0008 \cdot 10^{-4}$	$3,0007 \cdot 10^{-4}$	$0,00\cdot10^{-8}$	$0.00 \cdot 10^{-8}$
3,0	$3,0008 \cdot 10^{-4}$	$3,0007 \cdot 10^{-4}$	$2,27\cdot10^{-9}$	$4,54 \cdot 10^{-9}$
2,0	$3,0009 \cdot 10^{-4}$	$3,0007 \cdot 10^{-4}$	$4,54\cdot10^{-9}$	$9,08 \cdot 10^{-9}$
1,0	$3,0009 \cdot 10^{-4}$	$3,0008 \cdot 10^{-4}$	$6,81\cdot10^{-9}$	$1,13\cdot10^{-8}$
0,2	$3,0010\cdot10^{-4}$	$3,0009 \cdot 10^{-4}$	$9,08 \cdot 10^{-9}$	$1,36\cdot10^{-8}$

Pełne dane objętości dla wszystkich pomiarów przedstawiono na wykresie (Rys. 1). Można zauważyć, że woda osiąga najmniejszą objętość (największą gęstość) w okolicy temperatury 4°C, co potwierdza zjawisko anomalii rozszerzalności cieplnej wody.

3.3 Względna zmiana gęstości

Względna zmiana gęstości wody w temperaturze 10°C względem maksymalnej gęstości. Na podstawie wykresu (Rys. 1) woda osiąga największą gęstość w temperaturze 4°C.

$$V_{10^{\circ}C} = 300 \cdot 10^{-6} + \frac{\pi \cdot 0,0017^{2} \cdot 0,037}{4} = 0.00030008 \text{ m}^{3}$$

$$V_{4^{\circ}C} = 300 \cdot 10^{-6} + \frac{\pi \cdot 0,0017^{2} \cdot 0,069}{4} = 0.0003001 \text{ m}^{3}$$

$$\frac{\rho(T = 4^{\circ}C) - \rho(T = 10^{\circ}C)}{\rho_{T=4^{\circ}C}} = \frac{\frac{m}{V(4^{\circ}C)} - \frac{m}{V(10^{\circ}C)}}{\frac{m}{V(4^{\circ}C)}}$$

$$= \frac{V_{10^{\circ}C} - V_{4^{\circ}C}}{V_{10^{\circ}C}} = \frac{0.0003001 - 0.00030008}{0.0003001} = 0.00024 = 2,4 \cdot 10^{-4}$$

4 Ocena niepewności pomiarowych

4.1 Niepewność pomiaru temperatury

Do pomiaru temperatury użyto termometru elektronicznego o niepewności maksymalnej $\Delta_d T = 0.1$ °C. Niepewność standardową oszacowano za pomocą metody typu B:

$$u(t) = \frac{\Delta_d T}{\sqrt{3}} = \frac{0.1}{\sqrt{3}} \approx 0.0577 \,^{\circ}\text{C}$$
 (3)

4.2 Niepewność pomiaru wysokości słupa cieczy

Wysokość słupa wody w kapilarze była odczytywana z niepewnością maksymalną $\Delta_d h = 0,001\,\mathrm{m}$. Niepewność standardową oszacowano za pomocą metody typu B:

$$u(h) = \frac{\Delta h}{\sqrt{3}} = \frac{0,001}{\sqrt{3}} \approx 0,00058 \,\mathrm{m}$$
 (4)

Wykres razem z niepewnościami przedstawiono na Rys. 2.

5 Wnioski

6 Wykresy

Rysunek 1: Wysokość słupa wody oraz zmiana objętości wody w zależności od temperatury.

Rysunek 2: Wysokość słupa wody oraz zmiana objętości wody w zależności od temperatury z uwzględnieniem niepewności.

Literatura