CEE 6400 FINAL SOCUTION

1. a) Sufficient in fo for A. Prostley Taylor and to combinating Baned Dreguin sentere tempuateur

7-4

J 5 m - 2

a = 1,26

$$e_s[T] = 0.601$$
 Sep $\left(\frac{17.3 T}{T + 237.3}\right)$

well T = ZZC

es = 2,6515 kPa

$$\Delta = \frac{4098 \, e_5}{(237.3+1)^2} = 0.1616 \, kR \, e^{-1}$$

CCarBinATION / PENMAN

$$P_{a} = \frac{P}{R_{a}T} = \frac{85 \times 10^{3}}{287.04 \times (273 + 22)} \frac{N m}{7 \log^{-1} 10^{-1} 10^{-1} 10^{-1}}$$

$$K_{E} = \frac{0.622 \times 0.4^{2} \times 1.003}{85}$$
 en $\left(\frac{2}{0.0003}\right)^{2}.1000$

$$= \frac{1.51 \times 10^{-8} \times 2.5 \times (2.65 - 1.23)}{\text{kg}}$$

$$= 5.39 \times 10^{-8} \text{ ms}^{-1}$$

Eq = mus / day 4.66

2. a) 29 cm above water toble

b)
$$\psi = \psi_q \left(\frac{0}{\eta}\right)^{-1/6}$$

$$\frac{0}{\eta} = \left(\frac{\psi}{\eta}\right)^{-1/6}$$

$$O(29) = n = 0.4$$

$$O(t=50) = 0.4 \times \left(\frac{50}{29}\right)^{-1/3}$$

$$= 0.37$$

$$O(t=120) = 0.4 + (\frac{120}{29})^{-1/3}$$

$$= 0.327 - at seutone$$

c)
$$D = \int_{z_{1}}^{z_{2}} (n - 0) dz$$

$$= \int_{z_{1}}^{z_{2}} (n - n) \left(\frac{z}{|\psi_{0}|}\right)^{-1/b} dz$$

$$= n \left(\frac{z_{1} - z_{1}}{|\psi_{0}|}\right)^{-1/b} \left(\frac{z_{1} - 1/b}{|z_{1}|}\right)^{-1/b}$$

$$= n \left(\frac{z_{2} - z_{1}}{|z_{1}|} - \left(\frac{1}{|\psi_{0}|}\right)^{-1/b}\right)^{-1/b} \left(\frac{z_{2}}{|z_{2}|} - z_{1}\right)^{-1/b}$$

$$h = 0.4$$

$$z_{1} = 29 \text{ cm}$$

$$z_{2} = 120 \text{ cm}$$

$$|\psi_{0}| = 29 \text{ cm}$$

$$b = 7$$

$$1 - \frac{1}{b} = 0.857$$

$$h = 4.22 \text{ cm}$$

d) In filtra from excess rouelf occurs when the infiltration rate is limiting. Mathomatically with so runosf r= u-fe_ safenation excess renoff occess when the soil profese safenotes. This would cooke have it more thom 4.22 can of votes unfolfocted. Upon sofunction all rambole because renoll

than the Esp T ge of 0.29 m or 29 cm.

39) Di = arange les = i flu g dA
From the arange & the figure

7 = 8

b) $K = K_0 e^{-f^2}$ f = 3.125

Se of 7 = 0-5

K = 12 e 3.125 +0.5 = 2,5 m/hr

of z=1

K= 0.527 m/hr

of t=2

K = 0.0237 4/hr

2.5 1 0.5 2.5 2 0.02

c) across soil moisters office? $\bar{D} = \bar{Z}_w O_e = 1.3 \times 0.25$ = 0.325 m

113

111/1

d) Equ 88

$$t = 70 e^{-5/m} e^{-\lambda}$$
 $t = 70 e^{-5/m} e^{-\lambda}$
 $t = 70 e^{-5/m} e^{-\lambda}$
 $t = 3.84 e^{-0.325/0.08} e^{-8}$
 $t = 2.216 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} = 4.00 \times 10^{6}$
 $t = 2.46 \times 10^{-5} =$

= 0.0469

g) at and of 56m 5 cm less infelholes in non solenoted areas so D = 0.325 - 0.05 = 0.275 mwith their D Solenoted theoreted of $\frac{9}{5}$ = $8 + \frac{0.275}{0.08} = \frac{11.44}{9}$ Solenoted area $\frac{13-11.44}{0.2} + 0.1 = 0.078$ = 7.8%

h) Runge from solerated and = 400 + 10 m² + 0,0469 + 0.05 = 938000 m³

Renoff from once that solvales, resing holf of 0.05 m rundle deep to line .

= 400 × 106 × (0.078 - 0.0469) × 0.025

= 312000 m³

Total Rundle = 1250 × 10 m³