MATH 2 Lecture Notes

Tejas Patel

Tuesday, 14 January, 2025

Contents

Chapter 1	2
1.1 Terminology	
1.2 Some Mathematical Models	2
Example Problems with Solutions	4
2.1	

Chapter 1 1

1.1 **Terminology**

Definition A differential equation is an equation containing the derivatives or differentials of one or more dependent variables, with respect to one or more independent variables.

- · An Ordinary Differential Equation (ODE) involves only ordinary derivatives
- · A Partial Differential Equation (PDE) involves partial derivatives.

Definition The order of a DE is the order of the highest-order derivative that appears in the DE

Notation $F(x, y, \frac{dy}{dx}, \frac{d^2y}{dx^2})$ Definition A linear DE is any DE that can be written in form:

 $a_0(x)y + a_1(x)y' + a_2(x)y'' \cdots + a_n(x)y^{(n)} = b(x)$

For a DE to be linear:

- 1. Y and all of its derivatives much be of the 1st degree
- 2. Any term that does not include y or any of its derivatives must be a function of x

1.2Some Mathematical Models

I. Free-falling body

Goal: Find s(t).

2

Set up a differential equation in S, model it, then solve

$$ma = mg$$

$$\frac{d^2s}{dt^2} = g$$

$$v = \frac{ds}{dt}, g = \frac{dv}{dt}$$

 $v=\frac{ds}{dt}, g=\frac{dv}{dt}$ What if there is air resistance. Assume force scales linear with velocity

$$\frac{dv}{dt} = g - \frac{kv}{m} \rightarrow \frac{dv}{dt} = g - \frac{k}{m} \cdot \frac{ds}{dt}$$

II: Series Circuit

Voltage drops:
$$V = L \frac{dI}{dt}, V = L \frac{d^2q}{dt^2}$$

$$V = IR, V = R \frac{dq}{dt}$$

$$V = \frac{q}{C}$$

$$E(t) = L \frac{d^2q}{dt^2} + R \frac{dq}{dt} + \frac{q}{C}$$

III: Population Growth

P=P(t)= population at time t — use exponential model $\frac{dp}{dt}\propto P\rightarrow \frac{dp}{dt}=kP\rightarrow =Ce^{kt} \text{ where C is the initial population}$

IV: Population Growth with Finite Capacity

"Carrying Capacity"

2 Example Problems with Solutions

2.1

$$\frac{dy}{dx} = y^2 + 2xy$$