This is not graded on correctness, merely the attempt. Please upload your solutions through the google form.

Number Theory Proofs

Exercise 1. Prove the following theorem: Let a, b, and c be integers. If a|b, then a|bc.

Exercise 2. Prove the following theorem: Let a, b, c, d, and n be integers with $n \not \in 0$. If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $a + b \equiv c + d \pmod{n}$.

Hint: It isn't sufficient to say that you can add the equations together, think about what it means for values to be congruent in this manner.

Exercise 3. Prove the following theorem: Let a, b, c, and n be integers with n > 0. If $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, the $a \equiv c \pmod{n}$

Bonus

Exercise 4. Prove the following theorem: A natural number n is prime if and only if for all primes $p \leq \sqrt{n}$, p does not divide n.