A way around the exploration-exploitation dilemma

Erik J Peterson

Research fellow | CoAxLab Carnegie Mellon University robotpuggle.com

Should I exploit an available reward, or explore to try and find more rewards?

• Exploration is the problem.

- Exploration is an intractable problem.
 - There is no optimal solution.
 - Only average solutions.[4, 1, 2, 3].

• An average life is full of regret.

The average country singer.

- An average life is full of regret, *G*.
- Where $G = V^* V_a$

Our goal.

 $\boldsymbol{\cdot}$ To lead a life of no regret.

Our goal.

- \cdot To lead a life of no regret, G=0
- ...for all $s \in S$, $a \in A$ and $t \le T$.

- Find rewards
- •
- •

- · Find rewards
- •
- •

- · Find rewards
- · Learn about their niche
- · Learn about other animals

- · Find rewards
- They are curious

Curiosity is not a luxury.

 $\boldsymbol{\cdot}$ If you do not learn about your niche, you die.

Big conjecture #1.

Information is fundamentally valuable.

Big conjecture #2.

Exploration for reward is never needed. The only exploratory behavior an animal needs is that which builds its world model.

Ad hoc curiosity.

- Novelty
- · Counts/Successors
- · Information gain
- Entropy
- State prediction

Reinforcement learning

- Reward learning has made progress because it has a clear objective:
 - max ∑_T R

Goal.

- $\boldsymbol{\cdot}$ Curiosity learning needs a clear and common objective:
 - max $\sum_T E$

What is E?

- · Novelty?
- · Counts/Successors?
- · Information gain?
- Mutual information?
- · State prediction?

What is E?

- · Novelty?
- · Counts/Successors?
- · Information gain?
- Mutual information?
- · State prediction?
- Free energy?

A minimum	definition.
-----------	-------------

 $\boldsymbol{\cdot}$ At an absolute minimum what do we need to value information ?

What do we need to value information?

1. A world

- 1. A world
- 2. Actions

- 1. A world
- 2. Actions
- 3. A memory

- 1. A world
- 2. Actions
- 3. A memory \Leftrightarrow world model

- 1. A world, Sⁿ
- 2. Actions A^m
- 3. A memory, M^k

What does a memory need to be a memory?

1. Finite

- 1. Finite
- 2. It must remember

- 1. Finite
- 2. It must remember
- 3. It must recall

- 1. Finite
- 2. It must remember
- 3. It must recall
- 4. It must forget

- 1. Finite, M^k
- 2. It must remember, $f: s, M \rightarrow M'$ where $s \in S$
- 3. It must recall, $g: s, M \rightarrow \hat{s}$
- 4. It must forget, $f^{-1}: s, M' \to M$

- 1. Finite, M^k
- 2. It must remember, $f: s, M \to M'$ where $s \in S$
- 3. It must recall, $g: s, M \rightarrow \hat{s}$
- 4. It must forget, $f^{-1}: s, M' \to M$
- 5. Made of real numbers, $M \in \mathbb{R}$

Commonalities?

- Novelty
- · Counts/Successors
- · Information gain
- · Mutual information
- · State prediction
- · Value comes from how memory changes?

Axiom 1.

Axiom (Axiom of Change)The value of information E depends only on the total distance M moves by making observation s.

Minimal distance d.

- Let $\delta = d(m, m')$, where $m \in M$ and $m' \in M'$
- \cdot $\delta \geq 0$
- $\sum \delta = 0$ only if M = M'
- (*d* is a pre-metric)

Total distance $||\Delta||$.

- The total distance is the norm of $\Delta\text{, }||\Delta||$
- Where $\Delta = \{\delta_1, \delta_2, ..., \delta_K\}$

Total distance $|\Delta|$.

- The total distance is the norm of Δ , $||\Delta||$
- Where $\Delta = \{\delta_1, \delta_2, ..., \delta_K\}$
- Let $E \equiv ||\Delta||$

What is *E*.

Axiom 1 \rightarrow $||\Delta||$.

Choose $\{M, f, g, d\}$.

•

- · A novelty world model:
 - · $M \in \mathbb{R}^n$
 - f, g: add s, returns 1 if no s
 - · $d: |m m'|^1$ (the l1 norm or Manhattan distance)

- · A count-based world model:
 - $M \in \mathbb{Z}^n$
 - $\cdot f, g$: counts s, returns counts of s
 - $d: |m m'|^1$

- · A compressed world model:
 - $W^c < \mathbb{R}^n$
 - f, g: lossy encoder, returns \hat{s}
 - $d:\sqrt{|w-w'|^2}$ euclidean distance on weight parameters, W

- A compressed world model:
 - · Linear regression (regularized)
 - · GAN
 - · VAE

- · An episodic world model:
 - · $M \in \mathbb{R}^n$
 - f, g: store s, recall s
 - $d:\sqrt{|m-m'|^2}$

- · An categorization world model:
 - $W^c < \mathbb{R}^n$
 - f,g: categorize s, recall category of s
 - $d: |m m'|^1$ or
 - $\cdot d: \sqrt{|w-w'|^2}$ euclidean distance on weight parameters, W

- · An categorization world model:
 - · Clustering (e.g., K-means)
 - · Classification (e.g., SVM, Random Forrest)

- A Bayesian world model:
 - $M \in \mathbb{R}^{nm}$
 - f, g: Bayes rule
 - $d \approx KL divergence$

Axiom 2.

Axiom (Axiom of Equilibrium)To be valuable an observation s must be learnable by M.

Axiom 2.

Learnable:

- 1. With every (re)observation of s, M should change.
- 2. The change in M must eventually reach a learned equilibrium.

Axiom 2.

- Learnable \approx gradient
- $\mathbb{E}\big[\nabla^2 M\big] \leq 0$

How to maximize?

Recall: $E \equiv ||\Delta||$

Goal: $\max \sum_T E$

Is it enough?

Recall:

- · A minimal memory
- · Axiom of change
- · Axiom of equilibrium

It is.

The Bellman equation is the optimal learning rule for E.

$$V_{\pi_E}^* = \begin{bmatrix} E + \operatorname{argmax}_{a \in A} E' \mid S, M, f, g, d \end{bmatrix}$$

· (Proof by induction on M; M has optimal substructure.)

Value during optimal play.

Reward and information value.

Progress.

- 1. Information is fundamental
- 2. An axiomatic definition for information value, E
 - · A minimal memory
 - · A minimal distance
 - · Value is the total distance the memory moves
- 3. Proven how to maximize *E*, optimally
 - Every time step *t* is greedy; always pick the biggest distance.

Goal.

- \cdot Curiosity learning has a clear and common objective:
 - max $\sum_T E$

The dilemma.

Should I exploit an available reward, or explore to try find more rewards?

The dilemma.

- · Reward is fundamentally valuable
- Information is fundamentally valuable

The dilemma.

- · Reward is fundamentally valuable
- · Information is fundamentally valuable
- Reward ⇔ Information?

Information is not a reward?

- · Rewards are a conserved resource.
- · Information is not.

Information is not a reward?

- Reward value is fixed(-ish).
- · Information value is *never* fixed when learning.

Big conjecture #3.

Information is not a reward.

Information is not a reward.

No:

- $\cdot R + E$
- $R + \beta I$
- R + novelty

Now we have two problems....

Learn:

- 1. An action policy π_R to $\max \sum_T R$
- 2. An action policy π_E to $\max \sum_T E$

Now we have two problems....

Learn:

- 1. An action policy π_R to $\max \sum_T R$
- 2. An action policy π_E to $\max \sum_T E$

Dual value learning

Solution:

$$\pi^{\pi} = \begin{cases} \pi_{E}^{*} & : E > R \\ \pi_{R} & : E \le R \end{cases}$$

Dual value learning

Solution:

$$\pi^{\pi} = \begin{cases} \pi_{E}^{*} &: E - \eta > R \\ \pi_{R} &: E - \eta \leq R \end{cases}$$
 subject to the constraints
$$R \in \{0,1\}$$

$$p(R = 1) < 1$$

$$E - \eta \geq 0$$

$$\text{choose } E_{0} > 0$$

(Proof by induction; it's a classic scheduling problem)

Optimality of π^{π} .

Search:

- If M is complete in S,
- then S is searched completely and exhaustively

Optimality of π^{π} .

Reward:

- If π_R^* and $M \leftarrow R$,
- $\boldsymbol{\cdot}$ then $\max \sum_{T} R$ (or $\max \sum_{T} \gamma^{t} R)$

Optimality of π^{π} .

No regret:

- G = 0 for all $a \in A$ and $s \in S$
- (Every choice is greedy in π^{π})

Progress.

- There is a no regret way to solve exploration-exploitation problems. It:
- · Learns a world model
 - · Works for nearly any world model
- · Can find the best reward policy
 - · Works for *nearly* on reinforcement learning rule
- Is strictly deterministic

Progress.

Theoretical promises often fail in practice.

n-armed bandits.

n-armed bandits.

Table 1. Artificial agents.

Agent	Exploration mechanism
Dual value	Our algorithm (Eq 5).
E-greedy	With probability $1 - \epsilon$ follow a greedy policy. With probability ϵ follow a random policy.
Annealed e-greedy	Identical to E-greedy, but ϵ is decayed at fixed rate.
Bayesian reward	Use the KL divergence as a weighted intrinsic reward, sampling actions by a soft-max policy. $\sum_T R_t + \beta E_t$
Random	Action are selected with a random policy (no learning)

n-armed bandits.

Do humans value information equally?

The bitjoy bandit task.

Bitjoy.

Human behavioral performance (n = 24).

Conclusions.

- Do animals explore to get more reward?
- Then optimality is at best average.

Conclusions.

- · Do animals explore to learn more?
- Then there is a solution to all exploration-exploitation problems. It has
 - · no regret,
 - · learns a world model, and
 - can always find the most rewarding path*.

Future work.

- · Artificial intelligence
- · Animal behavior

Open science.

```
Paper biorxiv.org/content/10.1101/671362

Code github.com/CoAxLab/infomercial

Talk github.com/parenthetical-e/dilemma-talk-irvine
-2019
```

Thank you!

Hire me!

robotpuggle.com

References i

P. Dayan and T. J. Sejnowski.

Exploration bonuses and dual control.

Machine Learning, 25(1):5-22, Oct. 1996.

C. Findling, V. Skvortsova, R. Dromnelle, S. Palminteri, and V. Wyart.

Computational noise in reward-guided learning drives behavioral variability in volatile environments.

Preprint, Neuroscience, Oct. 2018.

S. I. Gershman.

Deconstructing the human algorithms for exploration.

Cognition, 173:34-42, Apr. 2018.

References ii

S. Thrun and K. Möller.

Active Exploration in Dynamic Environments.

Advances in neural information processing systems, pages 531–538, 1992.