#2-F2017

Likelihood and Maximum Likelihood Estimates

- ullet A r.v. Y_i has a density $f(y_i; heta) = f(y_i|X_i^T, heta)$, where X_i is deterministic.
- The joint density of $\mathbf{Y} = (Y_1, \dots, Y_n)$ is

$$f(\mathbf{y}; \theta) = f(\mathbf{y}|\mathbf{X}, \theta) = \prod_{i=1}^{n} f(y_i|X_i^T, \theta).$$

• The likelihood function of θ is denoted

$$L(\theta) = L(\theta|\mathbf{Y}) = \prod_{i=1}^{n} f(y_i|X_i^T, \theta).$$

The log-likelihood is

$$l(\theta) = l(\theta|\mathbf{Y}) = \log L(\theta|\mathbf{Y}).$$

ullet NOTE: If X_i is random, need to consider a distribution of X_i too.

1

STAT 635-GLM-Lecture Notes 2, Likelihood and MLE, Fall 2017

Maximum Likelihood Estimators (MLE)

• An Maximum Likelihood Estimator (MLE) is an maximizer of the likelihood function $L(\theta|\mathbf{Y})$, denoted as $\hat{\theta}$, i.e.

$$L(\hat{\theta}) = \max_{\theta \in \Theta} L(\theta),$$

where Θ is a parameter space.

- \circ NOTE: MLE is also an maximizer of the log-likelihood, $l(\theta)$.
- o How to compute MLE? Solve the following equations:

$$\frac{\partial}{\partial \theta_j} l(\theta) = 0, \quad , j = 1, \qquad , p,$$

where $\theta = (\theta_1, \dots, \theta_p)$; or

$$\frac{\partial}{\partial \theta}l(\theta) = 0.$$

MLE: Example I

• $Y_i \sim Exp(\lambda)$, where $f(y_i; \lambda) = \lambda e^{-\lambda y_i}$ for $i = 1, \dots, n$. Find an MLE of λ .

For
$$\chi_i \sim E \times p(x)$$
, $y_i \ge 0$
Likelihood function $L(x) = TL - f(y_i; \lambda)$
 $l(\lambda) = Log L(\lambda) = \sum_{i=1}^{n} og f(y_i; \lambda)$
 $= \sum_{i=1}^{n} (log \lambda - \lambda y_i)$
 $= n log \lambda$ $\lambda = \frac{n}{\lambda} - \sum_{i=1}^{n} y_i = 0$.

$$\frac{\partial \mathcal{L}}{\partial \lambda} = \frac{1}{\lambda} - \sum_{i=1}^{n} J_i = 0.$$

$$MLE: \quad \hat{\chi} = \frac{1}{2}J_i = \frac{1}{2}.$$

_

STAT 635-GLM-Lecture Notes 2, Likelihood and MLE, Fall 2017

MLE: Example II

- Data: Tropical cyclones, see D&B, Table 1.2 on page 15, 3rd Edtion.
- The table shows the number of tropical cyclones in Northeastern Australia in 13 successive seasons (1956-7 through 1968-9).

Season:	1	2	3	4	5	6	7	8	9	10	11	12	13
Cyclones	6	5	4	6	6	3	12	7	4	2	6	7	4

• Let Y_i denote the number in season $i,\ i=1,\cdots,13$. Suppose $Y_i\sim {\sf Poi}(\theta)$. Then the log-likelihood function is

$$l(\theta) = \sum_{i=1}^{13} l_i = \sum_{i=1}^{13} (y_i \log \theta - \theta - \log y_i!) \text{ or } l^*(\theta) = \sum_{i=1}^{13} (y_i \log \theta - \theta),$$

The MLE of θ is $\hat{\theta} = \bar{y} = 72/13 = 5.538$.

 An alternative approach is to use numerical methods such as Newton-Raphson or bisection methods. See SAS code Table1_3 sas.

Bisection Algorithm

- Step 1. Take $\theta^{(1)}=5$ and $\theta^{(2)}=6$ as initial values.
- Step 2: Take approximations $\theta^{(k)}$ for k=3,4,are the average values of the two previous estimates of θ with the largest value of $l^*(\theta)$. e.g., $\theta^{(6)} = \frac{1}{2}(\theta^{(5)} + \theta^{(3)}).$
- Step 3: Repeat Step 2 until the algorithm converges. For example, if $|\theta^{(k)} - \theta^{(k-1)}| < 0.01$ (correct to 2 decimal places), stop.

• After 9 iterations (k=9), $\hat{\theta}\approx 5.54$, and $l^*(0^{(k)})=51.24$ $l^*(0)$ differs from l(0) by a Constant. For Figure on the left, see Fig.1.2, page 16 in textbook and Figure 1-2. sas

Study the Sas code

1 proc IML

2. SAS Macro Variable, e.s., see SAS-Mairo-Var. pdf

5

STAT 635-GLM-Lecture Notes 2, Likelihood and MLE, Fall 2017

	· · · · · · · · · · · · · · · · · · ·		- program: see Table 1-3.R or Table 1-3.5as.
$_{-}k$	$\theta^{(k)}$	$l^*(\theta)$	_
1	5	50.878	Exampl to calculate 0(6)
2	6	51.007	Example to the
3	5.5	51.242 *	[(- - - - - - - - -
4	5.75	51.192	$\leftarrow 5.75 \left[\frac{6+5.5}{2} = 5.75 = 0^{(4)} \right]$
5	5.625	51.235 *	the the the
6	5.5625	51.243*	$\leftarrow 5.5625 \left[= 0^{(6)} = \frac{1}{2} \left(0^{(5)} + 0^{(3)} \right) = \frac{5.5 + 5.625}{2} = 5.5625 \right]$
7	5.5313	51.24354	
8	5.5469	51.24352	In SAS interface,
9	5.5391	51.24361	To see the results, -> Left Panel
			- Results

-> HTML or Text Format To see the generated data sets:

-> Left Panel

-> Explorer

-> Work (default 6 folder)

-> e.s., Fig1-1

MLE (continued)

Score function:

$$U(\theta) = \frac{\partial}{\partial \theta} l(\theta).$$

• Score equation:

$$U(\theta) = 0.$$

- Very often MLE is the root of score equations.
- \circ Suppose $U(\hat{\theta})=0.$ Then the variance of MLE $\hat{\theta}$ can be estimated by the inverse of

$$-\frac{\partial^2}{\partial\theta\partial\theta^T}l(\theta)\left|_{\theta=\hat{\theta}}\right.$$

o Note: MLE may be found at the boundary of Θ , and we may not have the nice results listed above. But in this course, all the (log) likelihood functions are concave, i.e., the 2nd derivative of $l(\theta)$ (Hessian matrix H) is negative definite (or -H positive definite).

7

STAT 635-GLM-Lecture Notes 2, Likelihood and MLE, Fall 2017

MLE (continued)

• Information Matrix for θ , if Y_i 's are iid,

$$\begin{split} I_n(\theta) &= E[U(\theta)U(\theta)^T] = \sum_{i=1}^n E[U_i(\theta)U_i(\theta)^T] \\ &= nE[U_1(\theta)U_1(\theta)^T] = nI(\theta), \\ \text{or} \\ &= -E\left[\frac{\partial^2}{\partial\theta\partial\theta^T}l(\theta)\right] = -\sum_{i=1}^n E\left[\frac{\partial^2}{\partial\theta\partial\theta^T}l_i(\theta)\right] \\ &= -nE\left[\frac{\partial^2}{\partial\theta\partial\theta^T}l_1(\theta)\right], \end{split}$$

where $I(\theta)$ is called the information matrix for a single observation.

It is seen that
$$E[U_{1}(0) \ U_{1}(0)^{T}] = E\left[\frac{\partial l_{1}(0)}{\partial \theta} \left(\frac{\partial l_{1}(0)}{\partial \theta}\right)^{T}\right] = -E\left[\frac{\partial^{2} l_{1}(0)}{\partial \theta \partial \theta^{T}}\right]$$

MLE (continued)

Observed Information Matrix:

$$\hat{I}_n(heta) = \sum_{i=1}^n U_i(heta) U_i(heta)^T$$
 or
$$= -\sum_{i=1}^n rac{\partial^2}{\partial heta \partial heta^T} l_i(heta),$$

This is the observed information matrix for all observations and $\hat{I}(\theta) = \frac{1}{n}\hat{I}_n(\theta)$. This is an average observed information for all observations

STAT 635-GLM-Lecture Notes 2, Likelihood and MLE, Fall 2017

MLE (continued)

- Some properties:
 - $\circ E[U(\theta)] = 0.$
 - \circ Suppose Y_i are iid and $I(\theta)$ exists. Then

Average of all
$$\subset \hat{I}(\theta) \to_p I(\theta)$$
. \Longrightarrow Expectation of a single observation

- \circ Under regularity conditions, the MLE $\hat{\theta}$ has the following properties:
 - By the law of large number, $* \hat{\theta} \rightarrow_p \theta.$

*
$$\theta \to_p \theta$$
.

* $\sqrt{n}(\hat{\theta} - \theta) \to_d MVN(0, I^{-1}(\theta))$.

By the law of large

$$\hat{1}(\theta) = \frac{1}{n} \hat{1}_n(\theta)$$

$$= \frac{1}{n} \underbrace{\sum_{i=1}^n U_i(\theta) U_i^{T}(\theta)}_{t}$$

 \rightarrow $E[u_i(0) u_i^{\mathsf{T}}(0)], when <math>n \rightarrow \infty$

MLE (continued)

• e.g., Linear regression: Suppose that $Y_i \sim N(X_i^T \beta, \sigma^2)$ and Y_1 ,

independent. Denote
$$\theta = (\beta^T, \sigma^2)^T$$
i. Likelihood $f(y_i; o) = \frac{1}{\sqrt{2\pi}} \frac{1}{5} \exp\left\{-\frac{1}{25^2}(y_i - x_i^T \beta)\right\}$

$$L(0) = \prod_{i=1}^{N} f(y_i; \theta) = \frac{1}{(2\pi)^{n/2} (6^2)^{n/2}} \exp \left\{ -\frac{1}{26^2} \sum_{i=1}^{N} (y_i - \chi_i^T \beta) \right\}$$

ii. Log-likelihood
$$\ell(0) = \log L(0) = \frac{n}{\sum_{i=1}^{n} \log f(y_i; 0)} = -\frac{n}{2} \log (2\pi) - \frac{n}{2} \log (5^2)$$

$$-\frac{1}{25^2} \sum_{i=1}^{n} (y_i - \chi_i^T \beta)^2$$

iii. MLEs of
$$\beta$$
 and σ^2

$$U(0) = \frac{\partial U(0)}{\partial \theta} = \begin{cases} \frac{\partial U(0)}{\partial \beta} = -\frac{1}{26^2} \sum_{i=1}^{n} 2(-\chi_i)(y_i - \chi_i T_{\beta}) = 0 \\ \frac{\partial U(0)}{\partial \theta} = -\frac{n}{2} \frac{1}{6^2} + \frac{1}{2(6^2)^2} \sum_{i=1}^{n} (y_i - \chi_i T_{\beta})^2 = 0 \end{cases} \Rightarrow \begin{cases} n 6^2 = \sum_{i=1}^{n} (y_i - \chi_i T_{\beta})^2 \\ \frac{n}{26^2} = -\frac{n}{2} \frac{1}{6^2} + \frac{1}{2(6^2)^2} \sum_{i=1}^{n} (y_i - \chi_i T_{\beta})^2 = 0 \end{cases} \Rightarrow \begin{cases} n 6^2 = \sum_{i=1}^{n} (y_i - \chi_i T_{\beta})^2 \\ \frac{n}{26^2} = \sum_{i=1}^{n} (y_i - \chi_i T_{\beta})^2 = 0 \end{cases} \Rightarrow \begin{cases} n 6^2 = \sum_{i=1}^{n} (y_i - \chi_i T_{\beta})^2 \\ \frac{n}{26^2} = \sum_{i=1}^{n} (y_i - \chi_i T_{\beta})^2 = 0 \end{cases} \Rightarrow \begin{cases} n 6^2 = \sum_{i=1}^{n} (y_i - \chi_i T_{\beta})^2 \\ \frac{n}{26^2} = \sum_{i=1}^{n} (y_i - \chi_i T_{\beta})^2 = 0 \end{cases} \Rightarrow \begin{cases} n 6^2 = \sum_{i=1}^{n} (y_i - \chi_i T_{\beta})^2 \\ \frac{n}{26^2} = \sum_{i=1}^{n} (y_i - \chi_i T_{\beta})^2 = 0 \end{cases} \Rightarrow \begin{cases} n 6^2 = \sum_{i=1}^{n} (y_i - \chi_i T_{\beta})^2 \\ \frac{n}{26^2} = \sum_{i=1}^{n} (y_i - \chi_i T_{\beta})^2 = 0 \end{cases} \Rightarrow \begin{cases} n 6^2 = \sum_{i=1}^{n} (y_i - \chi_i T_{\beta})^2 \\ \frac{n}{26^2} = \sum_{i=1}^{n} (y_i - \chi_i T_{\beta})^2 = 0 \end{cases} \Rightarrow \begin{cases} n 6^2 = \sum_{i=1}^{n} (y_i - \chi_i T_{\beta})^2 \\ \frac{n}{26^2} = \sum_{i=1}^{n} (y_i - \chi_i T_{\beta})^2 = 0 \end{cases} \Rightarrow \begin{cases} n 6^2 = \sum_{i=1}^{n} (y_i - \chi_i T_{\beta})^2 \\ \frac{n}{26^2} = \sum_{i=1}^{n} (y_i - \chi_i T_{\beta})^2 = 0 \end{cases} \Rightarrow \begin{cases} n 6^2 = \sum_{i=1}^{n} (y_i - \chi_i T_{\beta})^2 \\ \frac{n}{26^2} = \sum_{i=1}^{n} (y_i - \chi_i T_{\beta})^2 = 0 \end{cases} \Rightarrow \begin{cases} n 6^2 = \sum_{i=1}^{n} (y_i - \chi_i T_{\beta})^2 \\ \frac{n}{26^2} = \sum_{i=1}^{n} (y_i - \chi_i T_{\beta})^2 = 0 \end{cases} \Rightarrow \begin{cases} n 6^2 = \sum_{i=1}^{n} (y_i - \chi_i T_{\beta})^2 \\ \frac{n}{26^2} = \sum_{i=1}^{n} (y_i - \chi_i T_{\beta})^2 = 0 \end{cases} \Rightarrow \begin{cases} n 6^2 = \sum_{i=1}^{n} (y_i - \chi_i T_{\beta})^2 \\ \frac{n}{26^2} = \sum_{i=1}^{n} (y_i - \chi_i T_{\beta})^2 = 0 \end{cases} \Rightarrow \begin{cases} n 6^2 = \sum_{i=1}^{n} (y_i - \chi_i T_{\beta})^2 \\ \frac{n}{26^2} = \sum_{i=1}^{n} (y_i - \chi_i T_{\beta})^2 = 0 \end{cases} \Rightarrow \begin{cases} n 6^2 = \sum_{i=1}^{n} (y_i - \chi_i T_{\beta})^2 \\ \frac{n}{26^2} = \sum_{i=1}^{n} (y_i - \chi_i T_{\beta})^2 = 0 \end{cases} \Rightarrow \begin{cases} n 6^2 = \sum_{i=1}^{n} (y_i - \chi_i T_{\beta})^2 \\ \frac{n}{26^2} = \sum_{i=1}^{n} (y_i - \chi_i T_{\beta})^2 = 0 \end{cases} \Rightarrow \begin{cases} n 6^2 = \sum_{i=1}^{n} (y_i - \chi_i T_{\beta})^2 \\ \frac{n}{26^2} = \sum_{i=1}^{n} (y_i - \chi_i T_{\beta})^2 = 0 \end{cases} \Rightarrow \begin{cases} n 6^2 = \sum_{i=1}^{n} (y_i - \chi_i T_{\beta})^2 \\ \frac{n}{26^2} = \sum_{i=1}^{n} (y_i - \chi_i T_{\beta})^2 = 0 \end{cases} \Rightarrow \begin{cases} n 6^2 = \sum_{i=1}^{n} (y_i - \chi_i T_{\beta})^2 \\ \frac{n}{26^2} = \sum_{i=1}^{n} (y$$

Then, $\begin{cases}
\hat{\beta} = \left[\sum_{i=1}^{n} x_i \chi_i^{\top}\right]^{-1} \sum_{i=1}^{n} \chi_i y_i \\
\hat{\beta}^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \chi_i^{\top} \beta)^2
\end{cases}$ Let $\chi = \begin{pmatrix} \chi_i^{\top} \\ \chi_z^{\top} \\ \vdots \\ \chi_n^{\top} \end{pmatrix}$, then

STAT 635-GLM-Lecture Notes 2, Likelihood and MLE, Fall 2017

For inference,
$$\widehat{\beta} \sim \mathcal{N}(\beta, \widehat{\Sigma}),$$
where
$$\widehat{\Xi} = \{ I_n(\widehat{\delta}) \}_{(1)}^{-1}$$

$$\{ I_n(\widehat{\delta}) \}^{-1} = \{ (x^T x)^{-1} \delta^2 \}_{(2)}^{-1}$$

$$\begin{cases}
I_n(\hat{o}) \xi_{(i)} \\
= (x^T x)^T \hat{\sigma}^2
\end{cases}$$

Since 0 or 62

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - \hat{x}_i \hat{\beta})^2$$
to estimate it

iv. Score function
$$U_{i}(\theta) = \begin{pmatrix} \frac{\partial \ell_{i}(\theta)}{\partial \beta} \\ \frac{\partial \ell_{i}(\theta)}{\partial \beta} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sigma^{2}} \chi_{i} (y_{i} - \chi_{i}^{T}\beta) \\ -\frac{1}{26^{2}} + \frac{1}{2(\sigma^{2})^{2}} (y_{i} - \chi_{i}^{T}\beta)^{2} \end{pmatrix}$$

iv. Information matrix
$$\frac{\partial \ell l_{i}(\theta)}{\partial \theta^{T}} = \frac{\partial^{2} \ell_{i}(\theta)}{\partial \theta \partial \theta^{T}} = \begin{pmatrix} -\frac{1}{\sigma^{2}} \chi_{i} \chi_{i}^{T}, -\frac{1}{(\sigma^{2})^{2}} \chi_{i} (y_{i} - \chi_{i}^{T} \beta) \\ \frac{1}{(\sigma^{2})^{2}} \chi_{i}^{T} (y_{i} - \chi_{i}^{T} \beta), \frac{1}{2(\sigma^{2})^{2}} - \frac{1}{(\sigma^{2})^{3}} (y_{i} - \chi_{i}^{T} \beta)^{2} \end{pmatrix}$$

iv. Information matrix

For all the observations, the observed information matrix is $\widehat{T}_{n}(0) = \sum_{i=1}^{n} \frac{\partial^{2}}{\partial \theta \partial \theta^{T}} \{i(0)\}$

$$T_{n}(0) = \sum_{i=1}^{n} \frac{\partial}{\partial \theta} \frac{\partial}{\partial t} \left(v_{i}(\theta) \right)$$

$$= \left(\frac{1}{\sigma^{2}} \sum_{i=1}^{n} \chi_{i} \chi_{i}^{T}, \frac{1}{(\sigma^{2})^{2}} \sum_{i=1}^{n} \chi_{i}(y_{i} - \chi_{i}^{T} \beta) \right)$$

$$= \left(\frac{1}{(\sigma^{2})^{2}} \sum_{i=1}^{n} \chi_{i}^{T} (y_{i} - \chi_{i}^{T} \beta), \frac{-n}{2(\sigma^{2})^{2}} + \frac{1}{(\sigma^{2})^{3}} \sum_{i=1}^{n} (y_{i} - \chi_{i}^{T} \beta) \right)$$

$$= \left(\frac{1}{(\sigma^{2})^{2}} \sum_{i=1}^{n} \chi_{i}^{T} (y_{i} - \chi_{i}^{T} \beta), \frac{-n}{2(\sigma^{2})^{2}} + \frac{1}{(\sigma^{2})^{3}} \sum_{i=1}^{n} (y_{i} - \chi_{i}^{T} \beta) \right)$$

$$= \left(\frac{1}{(\sigma^{2})^{2}} \sum_{i=1}^{n} \chi_{i}^{T} (y_{i} - \chi_{i}^{T} \beta), \frac{-n}{2(\sigma^{2})^{2}} + \frac{1}{(\sigma^{2})^{3}} \sum_{i=1}^{n} (y_{i} - \chi_{i}^{T} \beta) \right)$$

$$= \left(\frac{1}{(\sigma^{2})^{2}} \sum_{i=1}^{n} \chi_{i}^{T} (y_{i} - \chi_{i}^{T} \beta), \frac{-n}{2(\sigma^{2})^{2}} + \frac{1}{(\sigma^{2})^{3}} \sum_{i=1}^{n} (y_{i} - \chi_{i}^{T} \beta) \right)$$

$$= \left(\frac{1}{(\sigma^{2})^{2}} \sum_{i=1}^{n} \chi_{i}^{T} (y_{i} - \chi_{i}^{T} \beta), \frac{-n}{2(\sigma^{2})^{3}} + \frac{1}{(\sigma^{2})^{3}} \sum_{i=1}^{n} (y_{i} - \chi_{i}^{T} \beta) \right)$$

$$= \left(\frac{1}{(\sigma^{2})^{2}} \sum_{i=1}^{n} \chi_{i}^{T} (y_{i} - \chi_{i}^{T} \beta), \frac{-n}{2(\sigma^{2})^{3}} + \frac{1}{(\sigma^{2})^{3}} \sum_{i=1}^{n} (y_{i} - \chi_{i}^{T} \beta) \right)$$

$$= \left(\frac{1}{(\sigma^{2})^{2}} \sum_{i=1}^{n} \chi_{i}^{T} (y_{i} - \chi_{i}^{T} \beta), \frac{-n}{2(\sigma^{2})^{3}} + \frac{1}{(\sigma^{2})^{3}} \sum_{i=1}^{n} (y_{i} - \chi_{i}^{T} \beta) \right)$$

$$= \left(\frac{1}{(\sigma^{2})^{2}} \sum_{i=1}^{n} \chi_{i}^{T} (y_{i} - \chi_{i}^{T} \beta), \frac{-n}{2(\sigma^{2})^{3}} + \frac{1}{(\sigma^{2})^{3}} \sum_{i=1}^{n} (y_{i} - \chi_{i}^{T} \beta) \right)$$

$$= \left(\frac{1}{(\sigma^{2})^{2}} \sum_{i=1}^{n} \chi_{i}^{T} (y_{i} - \chi_{i}^{T} \beta), \frac{-n}{2(\sigma^{2})^{3}} + \frac{1}{(\sigma^{2})^{3}} \sum_{i=1}^{n} (y_{i} - \chi_{i}^{T} \beta) \right)$$

$$= \left(\frac{1}{(\sigma^{2})^{2}} \sum_{i=1}^{n} \chi_{i}^{T} (y_{i} - \chi_{i}^{T} \beta), \frac{-n}{2(\sigma^{2})^{3}} + \frac{1}{(\sigma^{2})^{3}} \sum_{i=1}^{n} \chi_{i}^{T} (y_{i} - \chi_{i}^{T} \beta) \right)$$

$$= \left(\frac{\frac{1}{\sigma^2} \cancel{x}^{\intercal} \cancel{x}}{\frac{1}{(\sigma^2)^2} \cancel{x}^{\intercal} \cancel{\xi}} + \frac{1}{(\sigma^2)^3} \cancel{\xi}^{\intercal} \cancel{\xi}\right),$$

$$I_n(0) = \mathbb{E}[\hat{I}_n(0)]$$

$$= \left(\frac{1}{\sigma^2} \sqrt[4]{7} \times O\right)$$

$$= \begin{pmatrix} \frac{1}{\sigma^2} & \sqrt{1} & \sqrt{2} & \sqrt{2} \\ \sqrt{2} & \frac{n}{2(\sigma^2)^2} \end{pmatrix}_{n}$$

a constant and use

Newton-Raphson Algorithm

- Step 1. Take θ^0 as initial value. $\left(\begin{array}{c} \frac{\partial^2 \ell(\theta)}{\partial \theta \partial \theta^T} \Big|_{\theta = \theta^k} \end{array}\right)^{-1}$ Step 2: Update θ^k by $\theta^{k+1} = \theta^k + [\hat{I}_n(\theta^k)]^{-1} U(\theta^k).$
- Step 3: Repeat Step 2 until the algorithm converges.
- HW redo Example II, data for tropical cyclones.