

Using Spatial Information to Detect Lead Pipes

The Problem: Lead Pipes

- When ingested, lead is poisonous to humans
 - Children are particularly vulnerable
- Lead water pipes were widely used in U.S.
 - Banned by EPA in 1986
 - Pre-existing lead pipes still prevalent

Why is lead hard to find?

- City records are unreliable
- Digging is expensive

BlueConduit's Innovation

 Collected detailed data on homes in Flint, working with city and residents

pid int64	Property Zip Code float64	Owner Type object	Owner State object	Homestead object	Homestead Percent float64	HomeSEV int64	Land Value int64
4012482018	48503	Private	MI	Yes	100	18400	932
4013226009	48503	Private	MI	Yes	100	11800	420
4012476011	48503	Private	FL	No	0	0	602
4012481022	48503	Private	MI	Yes	50	4550	781
4013226025	48503	Private	MI	Yes	100	12800	510

BlueConduit's Innovation

Used machine learning to predict copper/lead.

- Flint's initial digging:
 - 15% Hit Rate
- BlueConduit's digging:
 - 81% Hit Rate

BlueConduit's ModelXGBoost

Evaluation:

- Hit Rate Curve
- City Savings

BlueConduit's Model

XGBoost

<u>Important Features</u>

- Age of home
- City record of copper
- Hydrant type
- Home value

Our Project: Problem

- BlueConduit's model does not use spatial info.
- Adding lat / longitude features does not help their model

Our Project: Motivation

- Lead prevalence varies greatly by neighborhood.
- Home locations encode info about their construction, development, and materials.
- Neighborhood info should help model in <u>some way</u>.

Our Task

Explore whether using spatial information can improve BlueConduit's model.

 Evaluate using hit rate curve and city savings for Flint dataset

What we tried

What worked

What worked Let's explore this method **Diffusion**

Flint

1925 Becker St.

All these homes have lead pipes

BlueConduit's Model: Predicted Lead Probabilities

BlueConduit's Model: Predicted Lead Probabilities

BlueConduit's Model: Predicted Lead Probabilities

- City records inaccurately coded home as having copper pipes.
- Normally, copper pipe records are accurate.
- Fooled the model.

- First Dig

Dig Queue

鱼鱼鱼鱼鱼鱼鱼鱼鱼鱼鱼鱼鱼鱼鱼鱼鱼鱼鱼 - Last Dig

- First Dig

6666666666666666666666666

Dig Queue

Place in queue: 9,136

- With limited dig budget, may never get to 1925 Becker.
 - Waste funds on digging non-lead homes first.

Place in queue:

 More efficient for dig crews to dig up all homes in a single area (rather than travel around).

 We're missing a really efficient dig opportunity

Diffusion

1. Find road distances

(pipes follow roads, so road distance encodes infrastructure distance)

Diffusion

2. Create a graph

Diffusion

2. Create a graph

0.96 0.99 0.99 0.96 0.99 0.99 0.31 0.98 0.99 0.93

Diffusion

3. Take the baseline prediction probabilities and...

0.94 0.96 0.95 0.92 0.94 0.98 0.56

Diffusion

3. Take the baseline prediction probabilities and...

Diffuse them

1925 Becker advanced <u>502</u> places in the dig queue!

500 digs

→ **\$1.5** million

Dig crew digs <u>all</u> homes in the same area. Saves more \$\$\$ by reducing travel time/costs.

Becker...

It's not just 1925

Because of diffusion, on average ...

 Lead homes climbed 327 positions in the dig queue.

 Non-lead homes fell 195 positions in the dig queue.

Because of diffusion ...

53% of lead homes climbed in the dig queue.

 79% of non-lead homes fell in the dig queue.

Changes in Dig Order after Diffusion

Change in Dig Order (positive = moving up in dig queue)

Change in Lead Probability Among Uncertain Homes

(baseline probability 30%-70%)

Change in Probability of Lead (positive = higher prob of lead)

Change in Dig Order Among Uncertain Homes

(baseline probability 30%-70%)

Hit Rate Curve is Lifted

Savings Over BlueConduit's Baseline

Homes with lead that rose in dig order

Homes without lead that fell in dig order

What This Looks Like In Flint

- Homes in city center (high lead density) rose in dig order
- Homes in suburbs (low lead density) fell in the dig order

Which census tracts are most impacted by diffusion?

Census tract 9

SAY/DEPICT THIS BETTER

Census Tract 23

Very low confidence (p-value 0.84)

Median age:

Negative correlation (Spearman coeff -0.2)

Low confidence (p-value 0.22)

Residential Building Value:

Negative correlation (Spearman coeff -0.4)

High confidence (p-value 0.01)

120000

140000

Spearman Correlation between ACS estimated % Population Black and priority shift SpearmanrResult(correlation=-0.034497066031792874, pvalue=0.8393730489436638)

Spearman Correlation between ACS estimated Median Age and priority shift

Conclusions

- Spatial information can improve lead pipe predictions.
- Best performance when ...
 - Encode distance using roads
 - Allow for information sharing between neighbors

Future Work

- Only use diffusion probabilities among initially uncertain homes.
- Test if results generalize to cities other than Flint.
- Explore other graph smoothing methods beyond diffusion.

