High resolution CT-based characterization analysis of idiopathic pulmonary fibrosis

Yuwen Zhang

Supervised by: Prof. Merryn Tawhai

Dr. Alys Clark

Dr. Haribalan Kumar

Background

- Idiopathic pulmonary fibrosis (IPF) is a chronic and life-threatening disease
- Cause is unknown
- Aetiology remains elusive
- Progression is variable and unpredictable

Background

- ➤ HRCT is an essential tool in evaluating lung disease
- Associates with the presence of a usual interstitial pneumonia (UIP) pattern on HRCT (ATS/ERS criteria)
- ➤ Honeycomb, reticular, ground-glass
- combined IPF and emphysema (CPFE)

Summary of published work

- Radiological quantitiative analysis:
 Adaptive multiple feature method (AMFM), mean lung attenuation (MLA),
 texture-based computer aided diagnosis scoring system
- Clinial functional measurement:
 Pulmonary functional tests (PFTs), airway resistance/tissue compliance,
 ventilation/perfusion ration

Few researches involves in combining spatial distribution of abnormalities with functional data.

No established quantitative tools exist to assess the progression of IPF

Aim: Develop a new method for quantitative assessment of the IPF lung that brings together volumetric imaging, pulmonary function tests, and computational models for lung function.

Imaging and clinical data

Description	
Age years	43-82
Females/Males	3/5
Slice thickness	1.25-3.00mm
Scan month interval	5-20 month
Slice resolution	512*512
Number of slice	65-160

The clinical data used in this study comprised HRCT images obtained from 8 patients diagnosed with IPF at Auckland City Hospital, Auckland, New Zealand.

Pulmonary parenchymal classification

CALIPER (Computer-Aided Lung Informatics for Pathology Evaluation and Ratings) software. Mayo Clinic (Rochester, MN, USA)

Each parenchymal voxel was classfied into the following characteristic CT patterns: normal (N), reticular (R), honeycomb (HC), ground-glass (GG), mild low attenuation areas (LAA), moderate LAA and severe LAA. Emphysema: Hounsfield Unit is under -950.

Color labelled classification result of case 7 on IPF HRCT by CALIPER. (a) Transverse plane. (b) Coronal plane. (c) Sagittal plane. (d) 3D color labelled lung.

Normalization of classified data

- Lung mesh: bi-cubic Hermite finite element surface mesh (left lung: 35 nodes and 44 elements; right lung: 50 nodes and 62 elements)
- Statistical shape model (SSM): 30 healthy normal subjects (15 males and 15 females), principal component analysis (PCA)

Density analysis

- Fibrosis usually has a consistently higher tissue density (0.34/0.41 for reticular/ground-glass) compared to normal tissue (0.2752) over time
- In contrast, emphysema has lower density (0.0784)

Spatial distribution analysis

Emphysema

 Emphysema mostly located in upper lobes (73%)

Heterogeneity analysis

- Fractal dimension for density: fitting a straight line for the relationshape between coefficient of variance (COV) and shamping window size.
- FD = 1 gradient of log-log curve
- Hererogeneity didn't change too much over time.

SSM based shape analysis

- The first principal SSM mode relates to the anteroposterior diameter of the lung, and the ratio of apical and basal diameters
- The first principal SSM mode (>20% of the shape variation in normal lungs) is significantly different between IPF and normal.
- For IPF subjects, the first mode has a strong relationship with fibrosis percent.

IPF patient-specific airway tree geometry

IPF patient-specific ventilation analysis

Reference FRC –TLC: set muscle pressure

 abnormalities on volumetric data are not sufficient to explain increased lung stiffness

IPF patient-specific gas exchange analysis

Perfusion analysis:

- parameterize the model inputs
- generate vessel geometry matching on airway tree
- reduce the vessel radius of disease labelled region

V/Q ration distribution

Future work

- > Transfer factor: aveolar-capillary membrane area, thickness
- > Forced expiratory model combined with FEV1, FVC results
- Tissue mechanical model combined with density and shape analysis results
- Predict IPF development at an early stage

Thank you

