抽象代数笔记 环, 交换环

EndlieDownAHell

2023年7月9日

环的一些例子

定义 1 具有两个运算的代数系统 $(R, +, \cdot)$, 若能使得 (R, +) 为一 Abel 群, (R, \cdot) 为一半群, 且满足分配律 $(a+b)\cdot(c+d)=ac+ad+bc+bd$, 则称 R 为一个环, 假若 (R, \cdot) 具有幺元, 称 R 为幺环¹.

自然 R 中具有乘法逆元者组成一个群, 称为 R 的单位元群, 记作 R^* , 若 $R^* = R - \{0\}$, 则称 R 为除环或体.

乘法若满足交换律, R 便是交换环, 若不存在非零的 $a,b \in R$ 使得 ab = 0, 称 R 是无零 因子环.

无零因子的交换幺环被称为整环.

例 1 取定环 R 与有限群 G, 则形式和 $\sum_{g_k \in G} a_k g_k, a_k \in R$ 的全体按下面的规定生成一个环, 记作 R[G], 称为 G 关于 R 的群环:

$$\sum_{k=1}^{n} a_k g_k = \sum_{k=1}^{n} b_k g_k \Leftrightarrow a_k \equiv b_k$$

$$\sum_{k=1}^{n} a_k g_k + \sum_{k=1}^{n} b_k g_k = \sum_{k=1}^{n} (a_k + b_k) g_k$$

$$\left(\sum_{i=1}^{n} a_i g_i\right) \left(\sum_{j=1}^{n} a_j g_j\right) = \sum_{i,j=1}^{n} a_i b_j g_i g_j$$

命题 1 R 为无零因子环当且仅当消去律在 R 里成立.

Proof. 若 R 无零因子, 考虑 ax = ay, 有 a(x - y) = 0, 当 $a \neq 0$ 时, 立即确定 $x - y = 0 \Leftrightarrow x = y$, 消去律便是成立的.

另外的, 当 R 满足消去律时, 若非零的 a, b 满足 ab = 0, 依照消去律, 从 ab = a0 = 0 立即要知道 b = 0, 这是矛盾的, 于是 R 无零因子.

定义 2 $R' \subset R$ 被称为 R 的一个子环, 若其为 R 的加法子群, 且 $1 \in R'$, 关于乘法封闭. $I \subset R$ 为 R 的左理想, 若 I 为 R 的加法子群, 且 $RI \subset I$, 同样的, 若 $IR \subset I$, 称 I 为 R 的右理想, 既是左理想, 又是右理想的理想被称为环的双边理想, 简称理想.

¹这本教材默认环都是幺环,后面我也就沿用这个约定了.

 $I_1 \cap I_2 = \{x \in R \mid x \in I_1, I_2\}$ 被称为理想 I_1, I_2 的交. $I_1 + I_2 = \{a + b \mid a \in I_1, b \in I_2\}$ 被称为 I_1, I_2 的和. $I_1I_2 = \left\{\sum_{i=1}^n x_i y_i \mid x_i \in I_1, y_i \in I_2\right\}$ 被称为理想 I_1, I_2 的积.

 $I_1/I_2 = \{x \in R \mid xI_2 \subset I_1\}$ 被称为 I_1, I_2 的商.

特殊的, 0/I 被称为 I 的左零化子 $Ann_L(I)$, 类似的可以记 $textAnn_L(x), x \in R$.

命题 2 R 中全体理想关于理想乘法构成一个乘法幺半群, 其恒等元便是 R.

Proof. 普通计算不难验证 $(I_1I_2)I_3$ 与 $I_1(I_2I_3)$ 分别是由全体 $(x_iy_i)z_i$ 与 $x_i(y_iz_i)$ 通过 加和生成的, 其中 x_i, y_i, z_i 分别在 I_1, I_2, I_3 中, 则对结合律的验证, 只是下面的普通等式的结果:

$$\forall x_i \in I_1, y_i \in I_2, z_i \in I_3, (x_i y_i) z_i = x_i (y_i z_i)$$

对于幺元的假定, 取定 R 本身作为一个理想, 则对于任意的理想 I, 生成 RI 的成员是全体 $rx,r\in R,x\in X$, 一方面, 我们知道取定 r=e 时, 立即推定 $I\subset RI$, 另一方面, I 作为 R 的双边理想, 立即表明了 $RI\subset I$ 的成立, 于是 RI=I=IR, 这便是命题的全部证明.

定义 3 交换环 R 理想 I 的根 \sqrt{I} 被定义为 $\sqrt{I} = \{x \in R \mid x^n \in I, \text{ for a given } n \in \mathbb{N}^*\}.$

命题 3 取定交换环 R 上理想 I_1, I_2, I , 有

(i) $\sqrt{I} \supset I$

Proof. 你还想看证明? 打这段废话我都不想打证明.

(ii)
$$\sqrt{\sqrt{I}} = \sqrt{I}$$

Proof. 我们先来证明 \sqrt{I} 是一个理想, 为此查看 $x, y \in \sqrt{I}$, 若 $x^n, y^m \in I$ (不妨假定 m > n), 则 $(xy)^m = x^m y^m \in I$, 于是 $xy \in \sqrt{I}$.

对于加法, 取定 $x, y \in \sqrt{I}$, 只需证明 $x - y \in \sqrt{I}$.

首先, 注意到 0x = (0+0)x = 0x + 0x, 立即有 $\forall x \in R, 0x = 0$, 于是

$$(x - x)y = x + (-x)y = 0, x(y - y) = xy + x(-y) = 0$$

 $\Rightarrow (-x)y = x(-y) = -xy$

这便启示着我们

$$(x-y)^{2m} = \sum_{k=0}^{2m} C_{2m}^k x^k y^{2m-k}$$

这式子中, k, 2m-2k 中总有一项大于 m, 从而 x^k, y^{2m-k} 总有一项在 I 中, 注意到 $RI \subset I$, 则 $x^k y^{2m-k} \in I$, 这便导出了 $(x-y)^{2m} \in I$, 于是 $x-y \in \sqrt{I}$.

现在, 还需要证明 $R\sqrt{I} \subset I$, 这是 $RI \subset I$ 的直接结果: $(rx)^m = r^m x^m \in RI \subset I \Rightarrow rx \in \sqrt{I}$.

证明的结束需要我们证明 $\sqrt{\sqrt{I}}=\sqrt{I}$,这工作留待读者未来某个患上阿尔兹海默的午后进行.

(iii)
$$\sqrt{I_1 \cap I_2} = \sqrt{I_1 I_2} = \sqrt{I_1} \cap \sqrt{I_2}$$
.

Proof. $x \in \sqrt{I_1}$, 则 $x^m \in I_1$, $x \in \sqrt{I_2}$, 则 $x^n \in I_2$, 于是 $x^{mn} \in I_1$, I_2 , 这使得 $x \in \sqrt{I_1 \cap I_2}$. $x \in \sqrt{I_1 \cap I_2}$, 则 $x^k \in I_1$, I_2 , 于是 $x \in \sqrt{I_1}$, $\sqrt{I_2}$.

若 $z \in \sqrt{I_1 I_2}$, 则 $z^n \in I_1 I_2$, 考虑到 $I_1 I_2 \subset I_1 R$, $R I_2 \subset I_1$, I_2 , $z \in \sqrt{I_1}$, $\sqrt{I_2}$. 另外的, 若 $z \in \sqrt{I_1}$, $\sqrt{I_2}$, 则 $z^m \in I_1$, $z^n \in I_2$, $z^m z^n \in I_1 I_2 \Rightarrow z \in \sqrt{I_1 I_2}$.

(iv) $\sqrt{I} = R$ 当且仅当 I = R.

Proof. $\sqrt{R} = R$ 是自然的,假若 $\sqrt{I} = R$ 则 $\forall r \in R, r^n \in I$,于是 $r = r^{-n+1}r^n \in RI \subset I$,即得 I = R.

(v)
$$\sqrt{I_1 + I_2} = \sqrt{\sqrt{I_1} + \sqrt{I_2}}$$

Proof. 若
$$z \in \sqrt{I_1 + I_2}$$
, 则 $z^n = x^1 + y^1, x^1 \in I_1, y^1 \in I_2$, 于是 $z \in \sqrt{\sqrt{I_1} + \sqrt{I_2}}$. 若 $z \in \sqrt{\sqrt{I_1} + \sqrt{I_2}}$, 则 $z^k = x + y, x^n \in I_1, y^m \in I_2$, 则 $z^{2km} = (x + y)^{2m} \in I_1 + I_2$, 于是 $z \in \sqrt{I_1 + I_2}$.

几个典型的环

整环

定义 4 取定 $\{a_n\} \in R$, 记 $\langle \overrightarrow{a_n} \rangle$ 为含有 $\{a_n\}$ 的全体 (左) 理想的交, 称为由 $\{a_n\}$ 生成的 (左) 理想.

命题 4 取定整环 R, 则 $Ra=Rb,a,b\neq 0$ 当且仅当存在乘法可逆的 x 使得 $a=xb,x\neq 0$.

Proof. 若 b = xa, 立即 $x = a^{-1}b$, 则 $b \in Ra, a \in Rb$, 于是 $Rb \subset RRa \subset Ra$, $Ra \subset RRb \subset Rb$, 这便是 Ra = Rb.

若 Ra = Rb, 即得 a = cb, b = da, 也即是 a = cda, 考虑到 R 是无零因子环, 即刻得知 cd = 1, 这便指明了 c, d 的可逆性, 于是命题得证.

体与域

除环若交换便是域.

命题 5 环 R 成体当且仅当方程 ax = b 针对非零的 a 总有解.

Proof. 这样的方程在除环中的可解性是显然的, 现在假定这样的方程有解, 针对方程 ax=1, 假定其解为 a', 再看方程 a'x=1, 取定其解为 a'', 则 a''=aa'a''=a, 于是我们能够断言 aa'=a'a=1, 即得 R 成体.

局部环

定义 5 称环 R 的左理想 M 是极大的, 若 $M \neq R$, 且从 $M \subsetneq N \subset R$ 只能得到理想 N = R.

一个环的极大左理想若是唯一的, 称其为一个局部环.

命题 6 取定环 R, 若左理想 $M \neq R$ 使得 R-M 中成员均可逆, 则 M 极大且 R 为局部环.

Proof. 取定 R 的一个真左理想 I, 若 I 中元素可逆, 立即确定 IR = R, 故而 I 中元素 必然不可逆, 现在确定 R - M 均是可逆的, 则 M 的极大性自然不在话下.

命题 7 取定环 R 的极大理想 M, 若 1+M 总可逆, R 是局部环.

Proof. 取定 N 为 R 的另一个极大左理想,则有 $a \in N, a \notin M$,依照 M 的极大性,立即认定了 M 添加 a 后即刻得到 R,这便指明了存在 $m \in M$ 使得 1 = m + ax,于是 $1 - m = ax \in 1 + M$ 可逆,然而 ax 在 N 中,依照 N 为真左理想这个假定,这是矛盾的,于是再无其他极大左理想 N.

主理想环

称 Ra, aR, RaR 为 R 的主左、右、双边理想, 若交换环 R 的理想均是主理想, 称 R 为主理想环.

von Neumann 正则环

若对任意的 a 总有 $x \in R$ 使得 axa = a, 称 R 是 von Neumann 正则的, Boolean 环 $(\forall a \in R, a^2 = a)$ 便是 von Neumann 正则的.

命题 8 von Neumann 正则环的有限生成左理想总是主左理想, 且生成元总是幂等的.

Proof. 先来证明主理想的生成元总是幂等的, 为此取定 Ra, 则有 x 使得 axa = a, 于是 axax = ax, 这说明了 ax 是幂等的, 注意到 $a = a(xa) \in Rxa$, $xa = (xax)a \in Ra$, 便有 Ra = Rxa, 则 Ra 的一个生成元是幂等的.

对定理的另外一部分应用归纳法, 只需证明 Ra+Rb 总是主理想, 从前不妨要求 $a^2=a$, 于是

$$r_1a + r_2b(1-a) = (r_1a - r_2b)a + r_2b \in Ra + Rb$$

$$r_1a + r_2b = r_1a + r_2b + r_2ba^2 - r_2ba = (r_1 + r_2ba)a + r_2b(1-a) \in Ra + Rb$$

于是 Ra + Rb = Ra + Rb(1-a), 将 Rb(1-a) 替换为幂等元 Rf 生成的理想, 这便意味着存在 r_0 使得 f = rb(1-a), 于是 $fa = rb(a-a^2) = 0$, 取定 g = (1-a)f, 于是

$$g^{2} = (1 - a)f(1 - a)f$$

$$= (1 - a)(f - fa)f$$

$$= (1 - a)f^{2} = (1 - a)f = g$$

$$ga = (1 - a)fa = 0, ag = (a - a^{2})f = 0$$

又注意到

$$rg = [r(1-e)]f \in Rf$$

$$rf = [rr_0b](1-e)f \in Rg$$

则 Rg = Rf, 这便是 Ra + Rb = Ra + Rg, 又知道

$$r(a+g) = ra + rg \in Ra + Rg$$

$$r_1a + r_2g = (r_1a + r_2g)(a+g) \in R(a+g)$$

于是 Ra + Rb = R(a + g), 为一主理想.

环同态与商环

取定环 R_1, R_2 , 满足下述条件的环间映射 f 被称为环同态:

$$f(a_1 + a_2) = f(a_1) + f(a_2), f(a_1a_2) = f(a_1)f(a_2)$$

注意到 f 可视为 $(R_1, +_1), (R_2, +_2)$ 间的群同态, 这同态的核被称为环同态 f 的核.

取定环 R 上理想 I, 则作为加法群而言, 存在商群 R/I, 在其上构作乘法 (x+I)(y+I) = xy + I, 则 R/I 构成一个环, 不难确认自然映射 $f: R \to R/I$, $a \to a + I$ 确为一环同态.

命题 9 取定环同态 $g:R\to R'$ 与 R 上理想 $I\subset \mathrm{Ker} g$, 则存在唯一同态 $g_*:R/I\to R'$ 使得如下图表交换:

Proof. 这只是商集泛性质的简单结果.

定理 10 取定环同态 $g: R \to R'$, 则 $g(R) \simeq R/\mathrm{Ker}g$.

取定环同态 $g: R \to R'$ 与 R' 的一个理想 S', 取定 $S = g^{-1}(S')$, 则 $R/S \simeq R'/S'$. 取定环 R 的理想 I, J, 则 $I + J/I \simeq R/(I \cap J)$.

Proof. 是的, $\operatorname{Ker} g, g^{-1}(S')$ 均构成 R 的一个理想, 但是我不想去证, 顺带着鸽掉了命题的全部证明, 你自去按照群的情况去证明罢.

定义 6 取定环 R, 其上有理想 I, 对于 $S \subset R$, $S \equiv 0 \pmod{I}$ 意味着 $S \subset I$.

另外的, 若 $x-y \in I$, 则称 $x \equiv y \pmod{I}$, 假若 $I \not\in \langle a \rangle$ 生成的主理想, 则也可记为 $x \equiv y \pmod{a}$.

如此一来, 我们对同态 $f: R \to R/I$ 有了新的表述: f(x) = f(y) 也即是 $x \equiv y \pmod{I}$, 因而商环也被称为剩余类环.

命题 11 取定特征 n 非零的环¹, 若 R 无零因子, n 为素数, 取定 $\varphi: \mathbb{Z} \to R, m \to m1$, 则 $\mathrm{Ker} \varphi = \langle n \rangle$.

Proof. 若是 n = pq, 则 n1 = pq1 = (p1)(q1) = 0, 前面宣称 R 无零因子, 则只能 p1 或 q1 为 0, 这与 n 作为特征的最小性是矛盾的.

取定 $m \in \text{Ker}\varphi$, 则 m1 = 0, 注意到我们对 n 的假设, 必然有 $n \mid m$, 于是 $m \in \langle n \rangle$. \square

¹关于环特征的定义,请你自己去查吧,我又怎会知道.

定理 12 任意环 R 均可嵌入幺环 S 中, 且 char S 可以是 0, 也可以是 char R.

Proof. 视 R 为加法群, 取 $S = R \oplus \mathbb{Z}$, 在 S 上定义乘法为

$$(r_1, m_1)(r_2, m_2) = (r_1r_2 + m_1r_2 + m_2r_1, m_1m_2)$$

不难确定 S 以 (0,1) 为幺元, 且 char S=0, 所需的嵌入同态是 $r \to (r,0)$.

再考虑 $R \oplus \mathbb{Z}_{charR}$, 其上如法炮制的定义乘法¹, 这便是我们所需的特征为 n 的环. \square

交换环

以后我们都假设所讨论的环是交换的.

环 R 的理想 P 被称为素理想, 若从 $xy \in P$ 能够得到 x, y 必有一者在 P 中.

取定自然同态 $R \to R/P$, 则 P 为素理想当且仅当 R/P 为整环: (x+P)(y+P) = xy+P, 若 xy+P=0+P, 则 $xy\in P$, 故而 x,y 中必有一在 P 中, 于是 x+P=P 或 y+P=P, 这便说明了 R/P 是整环.

命题 13 极大理想都是素理想.

Proof. 取定环 R 的极大理想 M, 若 $xy \in M$, 当 $x \notin M$, 便知道 M + Rx 是真包含 M 的理想, 也即是 R, 从而可以实现

$$1 = m + rx, m \in M, r \in R$$

从而 $y = my + rxy \in M$.

命题 14 交换环 R 的理想 M 是极大的, 当且仅当 R/M 成一个域.

Proof. 取定非零的 $x+M \in R/M$, 则 $x \notin M$, 从而 M+Rx 真包含着 M, 也即是 R, 从而有

$$rx = 1 - m, m \in M, r \in R$$

于是 (r+M)(x+M) = 1+M, 则 $x+M \in R/M$ 总有逆元, 进而 R/M 是域.

若 R/M 为域, 取定 N 真包含 M, 有 $x \in N-M$, 便知道 x+M 在 R/M 中非零, 从而有 y 使得 (x+M)(y+M)=1+M, 也即是 $xy+m=1, m \in M$, 则

$$\forall r \in R, r = rm + rxy \in N$$

从而 $N \supset R$, 便只能是 N = R, 则 M 是极大理想.

定理 15 环 R 中全体素理想的交是 R 中幂零元 2 的全体.

Proof. $a^{n-1}a = 0 \in P$, 则要么 $a \in P$, 要么 $a^{n-1} \in P$, 对于后者, 如法炮制之前的步骤, 即能够证明幂零根在 P 中.

取定非幂零的 r, 取定 N_r 是那些无法将 r 的各个幂次全包含的理想, 依据 Zorn 引理取定 N_r 的极大元 P, 我们来证明这理想是素理想:

取定 $a,b \notin P$, 则 P+a, P+b 必然将 P 真包含, 考虑到我们已经设定了 P 的极大性, 则 a+P,b+P 应当存在 r^n,r^m , 于是能够断言 ab+P 中存在 r^{m+n} , 然而 $r^{m+n} \notin P$, 这便意味着 $P \subseteq ab+P$, 也即是 $ab \notin P$, 从而 P 为素理想.

¹初等数论, 强而有力, 强而有力啊!!

 $^{^{2}}a^{n}=0$ for a given $n\in\mathbb{N}$.

命题 16 取定 $f: R \to R'$ 为环同态, R' 中有素理想 P', 则 $f^{-1}(P)$ 同样是 R 的素理想.

Proof. 你知道我要说什么. □

注 1 取定满同态 $f: R \to R'$, 则从我们的同构基本定理, 有

$$R/f^{-1}(M') \simeq R'/M'$$

若 M' 为素理想 (极大理想), R'/M' 成整环 (域), 于是 $R/f^{-1}(M')$ 成整环 (域), 从而 $f^{-1}(M')$ 为素理想 (极大理想).

命题 17 (中国剩余定理) 取定环 R, I_1, \dots, I_n 是两两互素的理想 $(I_i + I_j = R, i \neq j)$, 则针对任意的一组 x_1, \dots, x_n , 存在 x 使得下面的同余方程组成立:

$$x \equiv x_i \pmod{I_i}$$

Proof. 对于 n=2 的情形, 取定 $a_1 \in I_1, a_2 \in i_2$, 使得 $a_1+a_2=1$, 要求 $x=a_2x_1+a_1x_2$, 则有

$$x - x_1 = a_1(x_2 - x_1) \in I_1, x - x_2 = a_2(x_2 - x_1) \in I_2$$

于是命题成立.

对于 $n \ge 2$ 的情形, 取定 $a_i \in I_1, b_i \in I_i$, 使得 $a_i + b_i = 1$, 立即确定 $\prod_{i=2}^n (a_i + b_i) = 1$, 且

在
$$I_1 + \prod_{i=2}^n I_i$$
 之中, 于是 $I_1 + \prod_{n=2}^n I_i = R$.

按照 n=2 的情形, 能够找到 y_1 使得 $y_1\equiv 1\pmod{I_1},\ y_1\equiv 0\pmod{\prod_{i=2}^n I_i}$, 也即是

$$y_1 \equiv 1 \pmod{I_1}, y_1 \equiv 0 \pmod{I_j}, j \neq 1$$

重复上述方法, 即刻得到 $y_i \equiv 1 \pmod{I_i}$, $y_i \equiv 0 \pmod{I_j}$, $j \neq i$, 再取 $x = \sum_{i=1}^n x_i y_i$, 命题已 经成立.

推论 18 同态 $f:R\to\prod_{i=1}^nR/I_i,x\to(x+I_1,\cdots,x+I_n)$ 从前立即是满的, 只需要解方

程组 $x \equiv x_i \pmod{I_i}$ 即可, 其中 x_i 遍历 R/I_i 的各大代表元. 这同态的核, 自然是 $\bigcap_{i=1}^n$, 于是存在同构

$$R/\bigcap_{i=1}^{n}I_{i}\simeq\prod_{i=1}^{n}R/I_{i}$$

其中式子右端的积是笛卡尔积.

例 2 分解正整数 n 为 $n=\prod_{i=1}^m p_i^{\varepsilon_i}$, 理想 $\langle p_i^{\varepsilon_i} \rangle$ 与 $\langle p_j^{\varepsilon_j} \rangle$ 自然是互素的,考虑到 $\bigcap_{i=1}^m \langle p_i^{\varepsilon_i} \rangle$ 正是 $\langle n \rangle$ 从而依据推论 18 得到

$$\mathbb{Z}_n \simeq \prod_{i=1}^m \mathbb{Z}/\langle p_i^{\varepsilon_i} \rangle$$

记 $\varphi(x) = |\mathbb{Z}_n^*|$, 将上面的同构视为群同构, 不难得出 $\varphi(n) = \prod_{i=1}^m \varphi(p_i^{\varepsilon_i})$.

定义 7 环 R 诣零根 N 是环的全体幂零元形成的理想, 也即是其所有素理想的交集, 另外的, 环 R 的全体极大理想的交 J 被称为 Jacobson 根, 自然有 $N \subset J$.

命题 19 除 0 以外, R/N 不存在幂零元.1

命题 20 x ∈ J 当且仅当 1 - xy 对 R 中的全体 y 都是可逆的.

Proof. 取非可逆的 1 - xy, 则 R(1 - xy) 将是一个真理想, 这便意味着 1 - xy 在某个极大理想中, 这时候再假定 $x \in J \subset M$, 将得到 $1 = (1 - xy) + xy \in M$ 这一令人尴尬的结论, 这是不礼貌的.

取定 $x \notin J$, 也便是 x 不在某个极大理想 M 中, 则知道 M 与 Rx 互素, 从而能够取定 $m \in M, r \in R$ 使得 m + rx = 1, 从而 $1 - rx \in M$, 这样的 1 - rx 必然不能是可逆的, 于是命题得证.

取定一族环 $\{R_{i\in I}\}$,将这些环视为加群,得到群直积 $\prod_{i\in I}R_i$,为其上的元素配备乘法 $rr'=(r_ir'_i)_{i\in I}$,立即使得 $\prod_{i\in I}R_i$ 又是一个环,称为这些环的积,取定 $\prod_{i\in I}R_i$ 的子环 R 使得到 达各个 R_i 的投影同态均是满同态,这子环被称为 $\{R_i\}$ 的亚直积.

命题 21 环 R 是 $\{R_{i\in I}\}$ 的亚直积当且仅当存在 R 中的一族理想 $\{I_{i\in I}\}$ 满足 $\bigcup_{i\in I}I_i=0$ 且 $R_i\simeq R/I_i, i\in I$.

Proof. 当 R 是 $\{R_i\}$ 的亚直积时, 即能够取得 R 到 R_i 的诸多满同态 σ_i , 这便指明了

$$R/\mathrm{Ker}\sigma_i \simeq R_i$$

考虑 $r \in \bigcap_{i \in I} \operatorname{Ker} \sigma_i$, 则

$$\sigma_i(r) = \sigma_i[(r_i)_{i \in I}] = r_i = 0$$

从而 $r_i \equiv 0$, 便只能是 r = 0.

相反的, 假若确有环 R 的理想 $\{I_i\}$ 满足那般条件, 考虑到如下的交环图表:

要求 r 遍历 R, 得到的有序组 $(r_i)_{i\in I}$ 自然组成了 $\{R_i\}$ 的一个亚直积 $^2R'$, 我们来证明其与 R 同构,为此选取同态映射为 $\sigma: r \to (r_i)_{i\in I}$, 注记已经把情况说明了个七七八八了,稍微注意下 $r \in \operatorname{Ker}\sigma$, 这个 r 被 σ 指去了 $(0)_{i\in I}$, 这样的 r 必然是恒成立着 $r+I_i \in I_i$ 的,也便是 $r \in I_i$, 然而我们又已经假设了 $\bigcap_{i \in I} I_i = 0$, 至于这意味着什么,买杯杨枝甘露自己去想吧. \square

¹想看证明的先去睡一觉

 $^{^2}$ 这次好心告诉下你们细节,首先同态的复合是同态 $(r_i$ 下标 i 其实是个把 $r \in R$ 映入 R_i 的同态,不会还没人知道吧),所以 $(r_i)_{i \in I} + (r_i')_{i \in I} = ((r+r')_i)_{i \in I}$,这样成子环就不是问题了,再考虑到 $r \to r + I_i$ 是满射, $r + I_i \to r_i$ 甚至是同构,取定 $\sigma_i: (r_i)_{i \in I} \to r_i$ 作为满足要求的映射就能证完了,感谢 Lo-fi 让我今晚好心情吧.

局部化

取定交换环 R, 取定 S < R 在乘法交换幺半群意义上成立, 则 S 被很粗暴了当地命名 为"乘法封闭子集",现在我们利用这 S 整点活:

在 $R \times S$ 上引入关系

$$(a,s) \sim (b,t) \Leftrightarrow \exists u \in S, u(ta-sb) = 0$$

对这关系的自反性有疑虑的读者我邦邦锤你两拳,对对称性有疑虑的读者请把第六页的 title 和下面的第一句话朗读并背诵一百遍, 至于传递性, 当 $(a,s) \sim (b,t)$, $(b,t) \sim (c,u)$ 时, 有

$$v(ta - sb) = 0, w(ub - tc) = 0$$

于是 wuv(ta - sb) = 0, svw(ub - tc) = 0, 加和之, 你要是忘了这是个什么环我也没办法:

$$tvw(ua - sc) = 0$$

现在便是 $(a,s) \sim (c,u)$, 于是我们成功给出了 $R \times S$ 的一个划分, (a,s) 的等价类被形式地 记为 $\frac{a}{s}$, 商集被形式地记为 $S^{-1}R$. 现在定义加法与乘法:

$$\frac{a}{s} + \frac{b}{t} = \frac{at + bs}{st}, \frac{a}{s} \cdot \frac{b}{t} = \frac{ab}{st}$$

我们下面来证明这运算与代表元的选取无关, 考虑到两个运算的对称性, 证明一侧的结论也 足够了, 现在取定 $(a,s) \sim (\mathfrak{a},\mathfrak{s})$, 首先确定着 $r(a\mathfrak{s}-\mathfrak{a}s)=0$ 的成立, 于是

$$\frac{a}{s} + \frac{b}{t} = \frac{at + bs}{st}, \frac{\mathfrak{a}}{\mathfrak{s}} + \frac{b}{t} = \frac{\mathfrak{a}t + b\mathfrak{s}}{\mathfrak{s}t}$$
$$\frac{a}{s} \cdot \frac{b}{t} = \frac{ab}{st}, \frac{\mathfrak{a}}{\mathfrak{s}} \cdot \frac{b}{t} = \frac{\mathfrak{a}b}{\mathfrak{s}t}$$

为证明 $\frac{at+bs}{st} = \frac{\mathfrak{a}t+b\mathfrak{s}}{\mathfrak{s}t}, \frac{ab}{\mathfrak{s}t} = \frac{\mathfrak{a}b}{\mathfrak{s}t}$, 只需找到 r, γ 使得

$$r[\mathfrak{s}t(at+b\mathfrak{s})-st(\mathfrak{a}t+b\mathfrak{s})]=0, \gamma(ab\mathfrak{s}t-st\mathfrak{a}b)=0$$

也即是 $t^2r(a\mathfrak{s}-s\mathfrak{a})=0, bt\gamma(a\mathfrak{s}-s\mathfrak{a})=0,$ 还觉得不成立的我给你邦邦两拳. 取定环同态 $\varphi_S:R\to S^{-1}S, a\to \frac{a}{1}$, 构做范畴 M, 其对象是环同态 $f:R\to R'$, 使得 f(S) 全体均是 R' 里的可逆元, 对象间态射是使得如下图表交换的同态 $g:R'\to R''$:

我们来指出 $\varphi_s: R \to S^{-1}R$ 在这范畴中所具有的泛性质, 首先查看交换图:

先来证明这映射是良定义的, 为此考察 $\frac{a}{s} = \frac{a'}{s'}$, 则有 r 使得 r(as' - a's) = 0, 两边施加 f, 即得

$$f(r)[f(a)f(s') - f(a')f(s)] = 0$$

考虑到 f(r) 可逆, 即得 f(a)f(s') = f(a')f(s), 这便是我们所需要的.

对于环同态的成立, 注意到下面的式子即可:

$$\begin{split} h\left(\frac{a}{s} + \frac{b}{t}\right) &= h\left(\frac{at + bs}{st}\right) = f(at + bs)f^{-1}(st) \\ &= f(a)f^{-1}(s) + f(b)f^{-1}(t) = h\left(\frac{a}{s}\right) + h\left(\frac{b}{t}\right) \\ h\left(\frac{a}{s} \cdot \frac{b}{t}\right) &= h\left(\frac{as}{bt}\right) = f(ab)f^{-1}(st) \\ &= f(a)f(s)^{-1}f(b)f^{-1}(t) = h\left(\frac{a}{s}\right)h\left(\frac{b}{t}\right) \end{split}$$

对于唯一性, 假定还有这样的 h' 满足条件, 立即得出

$$h'\left(\frac{1}{a}\right) = h \circ \varphi_s(a) = f(a)$$
$$h'\left(\frac{1}{s}\right) = h'\left[\left(\frac{1}{s}\right)^{-1}\right] = h'\left(\frac{s}{1}\right)^{-1} = f(s)^{-1}$$

于是
$$h'\left(\frac{a}{s}\right) = h'\left(\frac{1}{s} \cdot \frac{a}{1}\right) = h'\left(\frac{a}{1}\right) \cdot h'\left(\frac{1}{s}\right) = f(a)f^{-1}(s) = h\left(\frac{a}{s}\right).$$

当 R 为整环时, 注意到 $\varphi_s\left(\frac{a}{1}\right)=0$ 仅当 $\frac{a}{1}=\frac{0}{1}$, 也即存在着非零的 r 使得 ra=a, 然而环无零因子, 于是只能 a=0, 从而 $\operatorname{Ker}\varphi_s=\left\{\frac{0}{1}\right\}$, 这便说明了 φ_s 是单的.

例 3 取定环 R, R^* 为其可逆元的全体, 若 R 为域, 则有 $R^{*-1}R = R$.

取定整环 R, S 为其全体非零元, 则 $S^{-1}R$ 生成一个域, 这域被称为 R 的商域或分式域. 取定环 R 及其上素理想 P, 则 $P^{c-1}R$ 有唯一的极大理想 $P^{c-1}P$, 证明如下:

自然 $P^{c-1}P$ 是 $P^{c-1}R$ 的真理想, 取定 $\frac{b}{t} \in P^{c-1}R - P^{c-1}P$, 立即确定 $b \in P^c$, 从而 $\frac{b}{t}$ 可逆, 于是再不能有其他真理想含有 $P^{c-1}P$ 以外的元素, 否则这理想中将出现 $\frac{1}{1}$, 使其生成为 R, 这便说明 $P^{c-1}R$ 的所有理想只能被 $P^{c-1}P$ 包含, 则其为唯一的极大理想.

局部环 $P^{c-1}R$ 被记为 R_P , 称为 R 在 P 处的局部化.

一般来说, 在环同态 $f:R\to R'$ 中, 理想 $I\subset R$ 的象 f(I) 不一定是 R' 的理想, 为此我们需要做出扩充, 这扩充的结果 R'f(I) 被称为 I 的扩理想.

命题 22 (i) $S^{-1}R$ 中的理想总可表为关于 φ_s 的扩理想.

- (ii) 对于 R 中理想 I, 成立 $\bigcup_{s \in S} (I:s) = \varphi_s^{-1}[\varphi_s(I)].$
- (iii) 对应关系 $P \to S^{-1}R \cdot \varphi_s(P)$ 是 R 中与 S 无交的素理想与 $S^{-1}R = S^{-1}P$ 上素理想的 ——对应.

Proof. 对于 (i), 取定 $S^{-1}R$ 上的一个理想 I, 我们来证明 $S^{-1}R\varphi[\varphi^{-1}(I)] = I$, 右对左的包含是显然的, 考虑 $\frac{x}{s} = \frac{x}{1} \cdot \frac{1}{s} \in I$, 立即有 $\frac{x}{1} \in I$, 从而 $x \in \varphi_s^{-1}(I)$, 于是我们能够声称

$$\frac{x}{s} = \frac{x}{1} \cdot \frac{1}{s} \in \varphi_s[\varphi^{-1}(I)]S^{-1}R$$

从而 $I \subset \varphi_s[\varphi_s^{-1}(I)]S^{-1}R$, 这也即是我们要证的式子.

对于 (ii),左包含右是容易验证的,现在取定 $x\in \varphi_s^{-1}[\varphi_s(I)]$,即得 $\frac{x}{1}=\frac{i}{s}$ 对某个 $i\in I, s\in S$ 成立,这便声称着 (xs-i)t=0 对某个 $t\in S$ 成立,从而得到 $xst=it\in I$,于是 $x\in (I:st)\subset \bigcup (I:s)$.

对于命题 (iii), 从命题 16, $S^{-1}R$ 中素理想自有 R 中的对应素理想, 对于 R 中的素理想 P, R/S 成整环, 记 S 在 R/P 中的像为 S/P, 下面几个式子则说明了 $S^{-1}R/S^{-1}P \simeq (S/P)^{-1}(R/P)$:

$$\frac{r_1}{s_1} + S^{-1}P + \frac{r_2}{s_2} + S^{-1}P = \frac{r_1s_2 + r_2s_1}{s_1s_2} + S^{-1}P$$

$$\frac{r_1 + P}{s_1 + P} + \frac{r_2 + P}{s_2 + P} = \frac{(r_1 + P)(s_2 + P) + (r_2 + P)(s_1 + P)}{(s_1 + P)(s_2 + P)} = \frac{r_1s_2 + r_2s_1 + P}{s_1s_2 + P}$$

$$\left(\frac{r_1}{s_1} + P\right)\left(\frac{r_2}{s_2} + P\right) = \frac{r_1r_2}{s_1s_2}$$

$$\frac{r_1 + P}{s_1 + P} \cdot \frac{r_2 + P}{s_2 + P} = \frac{(r_1 + P)(r_2 + P)}{(s_1 + P)(s_2 + P)} = \frac{r_1r_2 + P}{s_1s_2 + P}$$

对于 $(S/P)^{-1}(R/P)$, 仅当 $S \cap P = \emptyset$ 时, 其才具有正常的整环结构, 于是仅当 P 与 S 无交时, $S^{-1}P$ 是 $S^{-1}R$ 的素理想.

链条件

取定部分序集 Σ. 则如下两个条件是等价的:

- (i) 针对 Σ 中的递增 (递减) 序列 $x_1 \le x_2 \le \cdots (x_1 \ge x_2 \ge \cdots)$, 总存在正整数 n 使得 $x_n = x_{n+1} = \cdots$
- (ii) Σ 的非空子集中总具有极大元 (极小元).

将 Σ 视为环 R 理想的全体, 偏序由包含关系 \subset 给出, 则 (i) 被称为理想的升, 降链条件, (ii) 被称为理想的极大, 极小条件, 相应的环被称为 Noether 环与 Artin 环.

例 4 Z 是 Noether 环, 但不是 Artin 环, 相应的非稳定降链为

$$\langle a \rangle \subset \langle a^2 \rangle \subset \cdots \subset \langle a^n \rangle \subset \cdots$$

有限环既是 Noether 环. 也是 Artin 环.

域 F 上无穷多未定元的多项式环 $F[x_1, x_2, \cdots]$ 既不是 Noether 环, 也不是 Artin 环, 相应的非稳定升降链为

$$\langle x_1 \rangle \supset \langle x_1^2 \rangle \supset \cdots \supset \langle x_1^n \rangle \supset \cdots$$

 $\langle x_1 \rangle \subset \langle x_1, x_2 \rangle \subset \cdots \subset \langle x_1, \cdots, x_n \rangle \subset \cdots$

定理 23 环 R 为 Noether 环当且仅当其理想均是有限生成的.

Proof. 当 R 为 Noether 环时, 将理想 I 的所有有限生成子理想构作为自然非空的 Σ , 于是能为 Σ 取得一个极大元 N_0 , 这 N_0 必然是 I, 否则再取定 $x \in I - N_0$, $N_0 + Rx$ 将要是 Σ 中大于 N_0 的又一个元素, 这是矛盾的, 于是只能 $N_0 = I$.

当 R 的理想均是有限生成的,考虑理想升链 $I_1 \subset I_2 \subset \cdots$,生成相应的理想 $I = \bigcup I_n$,这理想自然也是有限生成的,取定第一个包含这些生成元的理想 I_n ,现在我们便确定这理想升链是稳定的.

命题 **24** 若 R 是 Noether 环, 并能建立满同态 $\varphi: R \to R'$, 则 R' 也是 Noether 环.

Proof. 由于 φ 是满的, 取定 R' 中理想 I', 则 $\varphi^{-1}(I')$ 为 R 中理想, 从而也是有限生成的, 即

$$\varphi^{-1}(I') = \langle a_1, \cdots, a_n \rangle$$

于是 $I' = \langle \varphi(a_1), \cdots, \varphi(a_n) \rangle$ 同样是有限生成的, 故而 R' 也是 Noether 环.

命题 25 取定 Noether 环 R 及其一个乘法封闭子集 S, 则 $S^{-1}R$ 也是 Noether 环

Proof. 取定环同态 $f:R\to S^{-1}R,r\to \frac{r}{1}$, 对于 $S^{-1}R$ 的一个理想 \mathcal{I} , 将其成员 $\frac{r}{s}$ 的全体 r 集结为 R 的一个子集 I, 这子集自然是一个理想,则其具有有限生成 x_1,\cdots,x_n ,由于 \mathcal{I} 立即可表为 $S^{-1}RI=S^{-1}I$,故而 \mathcal{I} 也便是有限生成的,相应的生成元为 $\frac{x_1}{1},\cdots,\frac{x_n}{1}$.

定理 26 若 R 是 Noether 环, R 上多项式环 R[x] 也是 Noether 环.

Proof. 取定 R[x] 的一个理想 I, 其中全体多项式的首项系数竟然构成了 R 中的一个理想, 进而也是有限生成的, 记其生成元为 a_1, \dots, a_n , 再取多项式 f_1, \dots, f_n 分别以其为首项系数, 这组多项式生成的理想被记为 N, 且记 $\{f_n\}$ 最高的次数为 r.

对于任意的 $f \in I$, $\deg f > r$, 由于其首项系数自然可表为 a_1, \cdots, a_n 的线性组合, 从而通过乘以补足所差次数的方式, 我们总可抹去大于 r 次的项, 换言之, f 可被表为 f = n + g 的形式, 其中 $n \in N$, $\deg g < r$.

现在, 所有的工作被我们转移到了次数小于 r 的多项式上, 对于次数为 r-1 的多项式, 其首项系数再次构成一个理想, 于是乎同样的伎俩使得我们将工作转移到了 r-1 以下的多项式.

至此, 说明 I 有限生成的工作已经结束.

推论 27 第次推广之, 我们能够证明 Noether 环 R 上的多元多项式环 $R[x_1, \dots, x_n]$ 为 — Noether 环.

Noether 环的准素分解

定义 8 环 R 中理想 q 被称为准素的, 若 $xy \in q$ 仅当 $x \in q$ 或 $y^n \in q$.

命题 28 对于准素理想 q 而言, \sqrt{q} 是包含 q 最小素理想.

Proof. 取定素理想 $P \supset q$, 若 $x \in \sqrt{q}$, 则 $x^n \in q \subset P$, 这便递归地导出了 $x \in P$, 故 而对于任意包含着 q 的素理想 P, 均有 $^1\sqrt{q} \subset P$, 再来证明 \sqrt{q} 是素的, 为此取定 $xy \in \sqrt{q}$, 于是 $x^ny^n \in q$, 便只能是 $x^n \in q$ 或 $y^{nm} \in q$, 两者均导出了 x 或 y 在 \sqrt{q} 中, 自然其是素的.

¹这个命题其实对不准素的理想也是成立的, 但是不知道为什么这本书这么晚才提, 还当成是一个普通引理.

另外的, 若 $P = \sqrt{q}$, 也称 $q \neq P$ 准素的, $P \neq q$ 相伴的素理想, 而下面一条命题勾勒的几个要素已经足以确定理想间的准素关系:

命题 29 取定 P,q 为 R 的两个理想, q 为 P 准素的, 当且仅当

- (i) $q \subset P$
- (ii) $ab \in q$, $a \notin q$, $y \in P$
- (iii) 若 $b \in P$, 则有 $b^n \in q$.

Proof. 正向命题显然, 现在假定所列举的情况成立, 我们先来证明 q 是准素的, 为此假定 $xy \in q$, 若 $a \in q$, 当然很好, 否则将要 $b \in P$, 此时 $b^n \in q$, 于是 q 又是准素的.

再来证明 P 是素理想,为此取定 $xy \in P$,则 $x^ny^n \in q$,若 $x^ny^{n-1} \notin q$,则 $y \in P$,于是 P 是素的,否则 $x^ny^{n-1} \in q$,则考虑 $x^{n-1}y^{n-1}$,若其不在 q 中,是 $x \in P$,从而 P 是素的,否则就要查看 $x^{n-1}y^{n-1}$,如此这般重复,只剩下 $xy \in q$ 的情形,从 (ii) 简直不要太好.

考虑 $a^n \in q$, 若 $a \in q \subset P$, 我都不想说什么了, 另外的情况是 $a \notin q$, $a^{n-1} \in P$, 已经证明了 P 的素性, 便能递归地说明 $a \in P$, 于是得到 $P = \sqrt{q}$, 这便宣告全部证明的结束. \square

定义 9R 中理想 I 是既约理想, 若

$$I = I_1 \cap I_2 \Rightarrow I = I_1 \text{ or } I = I_2$$

命题 30 若 q_1, \dots, q_n 均是 P 准素的, $\bigcap_{i=1}^n q_i$ 也将是 P 准素的.

Proof. n > 2 的情形递归证明即可,我们现在便来证明 n = 2 的情形,为此需验证 $q_1 \cap q_2$ 满足上一命题所要求的.

- 1. Obviously $q_1 \cap q_2 \subset P$.
- 2. 若 $ab \in q_1 \cap q_2, a \notin q_1 \cap q_2$, 不妨就假定 $a \notin q_1$, 于是 $b \in q_1 \subset P$.
- 3. $b \in P$, 则 $b^m \in q_1, b^n \in q_2$, 于是 $b^{nm} \in q_1 \cap q_2$.

命题 31 Noether 环的既约理想总是准素的.

Proof. 不难证明, 环 R 中理想 I 既约 (准素) 当且仅当 R/I 中 $\langle 0 \rangle$ 既约 (准素), 为此, 我们只需验证¹: Noether 环中零理想若是既约的, 便是准素的.

取定 $xy = 0, y \neq 0$, 考虑 x^n 的零化子, 不难推知下面一个理想升链:

$$\operatorname{Ann}(x) \subset \operatorname{Ann}(x^2) \subset \cdots$$

所讨论的理想升链在 Noether 环中, 取其极大元为 $Ann(x^n)$, 于是能够断言 $\langle x^n \rangle \cap \langle y \rangle = \langle 0 \rangle$, 依据在于, 若是 $a \in \langle x^n \rangle$, 其首先具有形式 bx^n , 此时再有 $a \in \langle y \rangle$, 则 ax = 0, 也便使得 $bx^{n+1} = 0$, 故 $b \in Ann(x^{n+1}) = Ann(x^n)$, 从而又知 $bx^n = 0 = a$, 也即是 $\langle x^n \rangle \cap \langle y \rangle = \langle 0 \rangle$.

已经假设了 $\langle 0 \rangle$ 是既约的, 且 $\langle y \rangle \neq 0$, 便只能 $x^n = 0$, 于是乎 $\langle 0 \rangle$ 是准素的, 命题至此 宣告成立.

¹我希望你还没忘记 Noether 环是可以通过满同态传递属性的

命题 32 Noether 环中理想是有限个既约理想的交.

Proof. 若命题不真, 便令诸反例构成非空理想族, 这理想族有极大元 N, 又是可约的, 于是成立 $N = I \cap J$, 其中 I, J 均可表为有限多既约理想的交, 那么 N 又要是有限既约理想的交, 矛盾, 则原命题成立.

定义 10 环 R 中, 理想 I 的准素分解指的是如下形式:

$$I = \bigcap_{i=1}^{n} q_i$$

其中 q_i 均是准素的. 若相伴 q_i 的素理想 P_i 各不相同, 且 $\bigcap_{j \neq i} q_j \not\subseteq q_i$, 则称这分解是不可缩短的, 极小的.

命题 31,32 向我们保证了准素分解的存在性, 命题 30 则说明了极小准素分解的存在性.

例 5 取 R = F[x, y], 再取理想 $q = \langle x, y^2 \rangle$, 则 $R/q \simeq F[y]/\langle y^2 \rangle$, 查看 R/q 中的零因子, 将具有形式 $k_1x + k_2y^{2n+1}$, 于是总是幂零的, 故而 q 是准素的, 相应的 $\sqrt{q} = \langle x, y \rangle$.

再令 $I = \langle x^2, xy \rangle$, 则 $I = \langle x \rangle \cap \langle x^2, y^2, xy \rangle$, $\langle x \rangle$ 为素理想, 自然是准素的, 另外的, $\langle x^2, y^2, xy \rangle$ 是 $\langle x, y \rangle$ 准素的, 于是 I 具有准素分解.

 \mathbb{Z} 中, 对于素理想 $\langle p \rangle$, $\langle p^n \rangle$ 总是准素的, 然而在

$$R = \left\{ \sum_{k=0}^{n} a_k x^k \middle| a_1 \mod 3 = 0 \right\}$$

之中, $P = \langle 3x, x^2, x^3 \rangle$ 是素理想, 而 $P^2 = \langle 9x^2, 3x^3, x^4, x^5, x^6 \rangle$ 却不是准素的, 原因在于, $9x^2 \in P^2$, 然而 $x^2 \notin P^2$, $9^n \notin P^2$.

定理 33 假定环 R 中理想 I 具有如下两个极小的准素分解:

$$I = \bigcap_{i=1}^{n} q_i, I = \bigcap_{i=1}^{m} q_i'$$

则 m=n, 且与之相对应的素理想组 $\{P_n\}$, $\{P'_m\}$ 全同.

Proof. 素理想集合 $\{P_n\} \cup \{P'_m\}$ 中必然有一极大元, 不妨定为 P_1 , 我们来证明 $P_1 \subset \{P'_m\}$. 如若不然, 还要有 $^1q_1 \nsubseteq P'_i$, 考虑商环 (q'_i,q_1) , 一方面 $q'_i \subset (q'_i,q_1)$ 自然成立, 另一方面, 假若存在 x 使得

$$xq_1 \subset q_i', x \notin q_i'$$

对于 $b \in q_1$ 将有 $xb \in q_i'$, 进而引出 $b^n \in q_i'$, 这立即是在宣称 $b \in P_i'$, 然而 $b \in q_1$, 遍历 q_1 中元素, 这势必导致矛盾, 于是我们有理由宣称

$$(q_i', q_1) = q_i'$$

从而
$$(I:q_1) = \left(\bigcap_{i=1}^m q_i':q_1\right) = \bigcap_{i=1}^m (q_i':q_1) = \bigcap_{i=1}^m q_i' = I.$$

然而, 依照 P_1 的极大属性, 与前类似的手段, 我们还能确信 $(q_j:q_1)=q_j, j>2$, 于是 $(I:q_1)$ 还有如下的表出:

$$(I:q_1) = \left(\bigcap_{i=1}^n q_i:q_1\right) = \bigcap_{i=1}^n (q_i:q_1) = \bigcap_{i=2}^m q_i$$

 $^{^{1}}$ 再次希望你还没忘记 $P_{1}=\sqrt{q_{1}}$ 是包含 q_{1} 最小素理想

这是在说 q_1, \dots, q_n 是可缩短的, 这与假设矛盾, 因而 $P_1 \subset \{P'_m\}$, 不妨就记为 $P_1 = P'_1$. 现在, P_1 就成为了 $q_1 \cap q'_1$ 的伴随素理想, 如此, 即得

$$(q:q_1\cap q_2)=q, q\in \{q_2,\cdots,q_n,q_2',\cdots,q_n'\}$$

于是

$$(I:q_1\cap q_2) = \bigcap_{i=2}^n q_i = \bigcap_{i=1}^m q_i'$$

于是我们来到了 n-1 的情形, 这使得我们能够应用数学归纳法证明命题的剩余部分. \square

顺带一提, $\{P_n\}$ 的唯一性使得我们将其称为 I 的伴随素理想组.

命题 34 取定具有准素分解的两个理想 I,J, 则 (I:J)=I 当且仅当 J 不被 I 的伴随 理想组包含

Proof. 设 I 的极小准素分解为 $I = \bigcap_{i=1}^{n} q_i$, 若 $J \nsubseteq P_i$, 即得 $(q_i : J) = q_i$, 于是

$$(I:J) = \left(\bigcap_{i=1}^{n} q_i:J\right) = I$$

对于反向的命题,从式子 $J^{k+1} \subset J^k$ 中我们不难推知 $(I,J^k) \subset (I,J^{k+1})$,另外的,假若 $aJ^{k+1} \subset I$,我们便知道 aJ^k 的全体成员都在 (I,J) = I 之中,从而有 $a \in (I,J^k)$,于是反向的包含式 $(I,J^{k+1}) \subset (I,J)$ 同样成立,故而我们可递归地得到

$$(I,J^k)=I$$

现在, 若是 J 在 I 的某个伴随素理想之中, 不妨就叫它 P_1 , 此时便有 m 使得 $J^m \subset P_1^m \subset q_1$. 于是

$$\left(\bigcap_{i=2}^n q_i\right)J^m\subset J^m\cap \left(\bigcap_{i=2}^n q_i\right)\subset \bigcap_{i=1}^n q_i=I$$

这便是在说 $\bigcap_{i=2}^n q_i \subset (I,J^m) = I$,与我们预设的极小准素分解矛盾,于是反向的命题也是成立的.

注 2 假定 I,J 的伴随素理想组分别是 $\{P_n\},\{P'_m\}$,若 $J \subset P_i$,立即有 $\prod_{j=1}^n q'_j \subset P_i$,考虑到 P_i 的素理想属性,总能取到某个 $q'_j \subset P_i$,故而 $P'_j \subset P_i$. 相反的,若是 $P'_j \in P_i$,立马要有 $J \subset q'_i \subset P'_i \subset P_i$.

于是我们结论: (I,J) = I 当且仅当 J 的任意伴随素理想不在 I 的任意伴随素理想中.

定义 11 在准素分解式 $I = \bigcap_{i=1}^{n} q_i$ 中,若与部分组 $\{q_{i_t}\}$ 相伴的素理想不包含部分组以外理想的伴随素理想,便称这理想组的交是 I 的一个孤立分量,特殊的,对于单个理想的情形,称之为孤立准素分量.

定理 35 若理想 I 具有如下两种准素分解:

$$I = \bigcap_{i=1}^{n} q_i = \bigcap_{i=1}^{n} q_i'$$

若 J 是前一分解的一个孤立分量, 而 J' 是后一分解中具有相同的伴随素理想组的孤立分量, 则 J=J', 换言之, 孤立分量由理想 I 的诸多伴随素理想组决定, 也便由 I 决定.

Proof. 于是我们改写 I 为 $I = J \cap L = J' \cap L'$, 则 $L \cap L'$ 的伴随素理想不在 J, J' 的伴随素理想中,于是依照命题 34 得到

$$(J:L\cap L')=J, (J':L\cap L')=J'$$

$$(I:L\cap L')=(J:L\cap L')\cap (L:L\cap L')=J$$

$$(I:L\cap L')=(J':L\cap L')\cap (L':L\cap L')=J'$$
 于是 $J=J'$.

Artin 环的一些结论

定理 36 Artin 环 R 的素理想都是极大的, 进而环中的 Jacobson 根与诣零根是一致的.

Proof. 取定 P 为 R 的一个素理想, 则 R/P 为整环, 考虑理想降链

$$I_1/P \supset I_2/P \supset \cdots$$

其中各个理想中等价类的代表元也组成了 R 中理想降链

$$I_1 \supset I_2 \supset \cdots$$

下面的理想降链必然是稳定的,于是上面的理想降链也是稳定的,从而 R/P 实际为一 Artin 整环.

取 $x + P \in R/P, x + P \neq P$, 依照链条件存在 n 使得 $\langle (x + P)^n \rangle = \langle (x + P)^{n+1} \rangle$, 从而能够取得 $y + P \in R/P$ 使得 $(x + P)^{n+1}(y + P) = (x + P)^n$, 于是 (x + P)(y + P) = 1 + P, 我们便为 x + P 找到了逆元, 这使得 R/P 构成域, 进而 P 是极大理想.

定理 37 Artin 环的极大理想个数有限.

Proof. 取极大理想的有限交构成集合, 这集合必然有极小元 $\bigcap_{i=1}^{\tau} M_i$, 于是, 针对任意极大理想 M, 总有

$$M \cap \left(\bigcap_{i=1}^r M_i\right) = \bigcap_{i=1}^r M_i$$

从而 $M\supset\prod_{i=1}^{'}M_{i}$,进而存在着 $M_{i}\subset M$,又 M_{i} 极大,便是 $M=M_{i}$,于是极大理想是有限个的.

定理 38 Artin 环中, 诣零根 N 是幂零的.

Proof. 这环中降链 $N \supset N^2 \cdots$ 是稳定的, 取末端为 N^k , 若 $N^k \neq 0$, 考虑使得 $JN^k \neq 0$ 的 J 生成的集合 Σ , 由于 $N^{2k} = N^k \neq 0$, Σ 非空, 进而其有极小元为主理想, 记为 $\langle x \rangle$, 则 $xN^k \neq 0$, 于是 $(xN^k)N^k = xN^k \neq 0$, 从而, $xN^k \subset \langle x \rangle$, 再由极小属性, 则是 $xN^k = \langle x \rangle$, 进而得到表出 $x = xy, y \in N^k$ 即得

$$x = xy = (xy)y = xy^2 \cdots = xy^n = \cdots$$

然而 $y \in N^k \subset N$, 则存在 $y^k = 0$, 进而推出了 $x = xy^k = 0$, 这与 $xN^k \neq 0$ 矛盾, 从而只能 $N^k = 0$.

例 6 \mathbb{Z}_{p^n} , $F[x]/\langle f^n\rangle(f)$ 为既约多项式) 均是局部 Artin 环,从而唯一的素理想也是极大理想,又是幂零的,然而取定 $R=F[x_1,x_2,\cdots]/\langle x_1^2,x_2^2,\cdots\rangle$,这环中的素理想只能是 $\langle x_1,x_2,\cdots\rangle$,却并不是 Artin 环,原因在于存在如下的理想降链: $\langle x_1,\cdots\rangle\supset\langle x_2,\cdots\rangle\supset\cdots$

引理 39 若 $I_1 \perp I_2$, 则 $I_1^m \perp I_2^m$, $I_1 \cap I_2 = I_1 \cdot I_2$.

Proof. 于是能够取得 $i \in I, j \in J$ 使得 i + j = 1, 进而 $(i + j)^m = 1$, 在交换环中应用二项式定理, 再应用理想的吸收律即证 $I_1^m \perp I_2^m$.

显然 $I_1I_2 \subset I_1 \cap I_2$, 对于 $x \in I_1 \cap I_2$, 取定 i+j=1, 于是 $x=xi+xj \in I_1I_2$, 故而 $I_1I_2=I_1 \cap I_2$.

定理 40 Artin 环 R 是有限个局部 Artin 环的积, 且积在同构意义下唯一.

Proof. 假定 $\{M_n\}$ 是 R 的诸多极大理想,参照定理 36,38,便知道针对着特定的 k 成立 $\prod_{i=1}^n M_i^k = 0$,又 M_i^k 彼此互素,于是

$$\prod_{i=1}^n M_i^k = \bigcap_{i=1}^n M_i^k$$

于是依照中国剩余定理, 有如下的同构:

$$R \simeq \prod_{i=1}^{n} R/M_i^k$$

其中 R/M_i^k 均为 Artin 局部环, 于是存在性成立.

对于唯一性,假若 $R \simeq \prod_{i=1}^n R_i$,其中 R_i 均是局部 Artin 环,取定投影 $\varphi_i: R \to R_i$,自然 Ker φ_i 彼此互素,且交为 0,取 P_i 为 R_i 唯一的极大素理想,则 $\varphi_i^{-1}(P_1)$ 是 R 的极大素理想. 故而 Ker φ_i 是 $\varphi_i^{-1}(P_i)$ 准素的,且 $0 = \bigcap_{i=1}^n \operatorname{Ker}\varphi_i$ 是零理想的极小准素分解. $\varphi^{-1}(P_i)$ 彼此 互素,故而是 $\langle 0 \rangle$ 的孤立素理想,因而 Ker φ_i 均是孤立的,依照定理 35,其由 R 决定,进而 $R_i \simeq R/\operatorname{Ker}\varphi_i$ 也便是唯一的.

推论 41 假定 R 的诣零根为 N, 则 R/N 是有限个域的积, 且积在同构意义下唯一.

分式理想、环的谱

分式理想

定义 12 令 R 为一整环,于是我们得到一个乘法封闭集 $S = R - \{0\}$,进而生成的分式 环 $F = S^{-1}R$ 便是一个域,我们称为 R 的商域,

若有 $\beta \in R$ 使得 F 的非零理想 X 满足 $\beta X \subset R$, 则称 X 为 R 的分式理想.

R 自带的理想自然也是分式理想, 因而也称为整理想. 取定 $\{\beta_n\} \subset F$, 如下的理想不难验证成一分式理想:

$$\langle \beta_1, \cdots, \beta_n \rangle = \sum_{i=1}^n R\beta_i$$

命题 42 若 R 成一 Noether 环,则其分式理想均是有限生成的.

Proof. 取 X 为 R 的一个分式理想, 取定相应的 β , 不难验证 βX 成 R 中理想, 进而是有限生成的, 记 $\beta X = \langle b_1, \cdots, b_n \rangle$, 于是

$$X = \left\langle \frac{b_1}{\beta}, \cdots, \frac{b_n}{\beta} \right\rangle$$

从而命题成立.

针对 R 的分式理想 X, 还可以取定理想 $X^{-1}=\{y\in F\mid yX\subset R\}$, 若 $XX^{-1}=R$, 则 称 X 是可逆的.

环的谱

定义 13 取定环 R, 记 Spec R 为 R 中素理想的全体, 并称其元素为点.

取 I 为 R 的理想, 令

$$V(I) = \{P \subset \mathrm{Spec} R \mid I \subset P\}$$

称其为 SpecR 中的闭子集.

命题 43 以 V(I) 为闭集, $\operatorname{Spec} R$ 构成一个拓扑, 称为 Зариски 拓扑, 因而也称其为环 R 的素谱.

Proof. 先来证明

$$V(I_1) \cup V(I_2) = V(I_1I_2)$$

为此, 若 $I_1I_2 \subset P$, 则起码有 $I_1 \subset P$ 或 $I_2 \subset P$, 于是 $V(I_1I_2) \subset V(I_1) \cup V(I_2)$, 对于反向的式子, 注意到 $I_1I_2 \subset I_1$, I_2 即可.

另外的, 取定理想族 $\{I_{\alpha \in A}\}$, 显然成立

$$\bigcap_{\alpha \in A} V(I_{\alpha}) = V\left(\sum_{\alpha \in A} V_{\alpha}\right)$$

最后, 考虑到 $\emptyset = V(R), V(0) = \operatorname{Spec} R$, 命题已经成立.

针对 $E \subset R$, 记 V(E) 为 E 生成理想的闭子集, SpecR 中开集具有形式

$$\operatorname{Spec} R - V(E) = X - \bigcap_{a \in E} V(a) = \bigcup_{a \in E} \operatorname{Spec} R - V(a)$$

于是我们有 Зариски 拓扑的一组拓扑基 $Spec R - V(a), a \in R$, 被称为 Spec R 的主开集.

定理 $44 \operatorname{Spec} R$ 是拟紧的.

Proof. 针对主开集完成证明即可. 注意到

$$\operatorname{Spec} R = \bigcup_{a \in R} \operatorname{Spec} R - V(a) = \operatorname{Spec} R - \bigcap_{a \in R} V(a) = \operatorname{Spec} R - V\left(\sum_{a \in R} Ra\right)$$

然而又有 $\operatorname{Spec} R = \operatorname{Spec} R - V(R)$,于是 $V(R) = R\left(\sum_{a \in R} Ra\right)$,若 $R \neq \sum_{a \in R} Ra$,则要有 R的某个极大理想 $M \supset \sum_{a \in R} Ra$,然而

$$M \in \operatorname{Spec} R = \operatorname{Spec} - V\left(\sum_{a \in R} Ra\right)$$

又有
$$\sum_{a \in R} Ra \nsubseteq M$$
, 矛盾, 于是 $R = \sum_{a \in R} Ra$.

由此, 1 具有表出
$$\sum_{i=1}^{n} r_1 a_i$$
, 即得 $R = \sum_{i=1}^{n} R a_i$, 于是 $\operatorname{Spec} R = \bigcup_{i=1}^{n} \operatorname{Spec} R - V(a_i)$.

取定 f 为环同态 $R \to R'$, 若 $P' \in \operatorname{Spec} R'$, 立即得到 $f^{-1}(P) \in \operatorname{Spec} R$, 从而我们能够生成映射 $f_*: \operatorname{Spec} R' \to \operatorname{Spec} R$, $P' \to f^{-1}(P)$, 取定 $\operatorname{Spec} R$ 中闭集 V(I), $f_*^{-1}[V(I)] = V[f(I)R']$, 于是 f_* 连续.

另外的, 不难证明 $(fg)_* = f_*g_*$, 且 $\mathrm{id}_{R_*} = \mathrm{id}_{\mathrm{Spec}R}$, 故而 Spec_* , 生成了交换环范畴到拓扑范畴间的反变函子.