Список определений и формулировок, которые нужно знать для сдачи зачёта

22 декабря 2014 г.

1 Проективное пространство $\mathbb{R}P^n$.

Пусть V - (конечномерное) векторное пространство размерности dim V=n+1. Введем отношение эквивалентности на $V\setminus\{0\}$ следующим образом: $x\sim y\Leftrightarrow \exists \lambda\neq 0: x=\lambda y$. Обозначим $P(V)=(V\setminus\{0\})/_{\sim}$ фактор-множество относительно \sim . P(V) называется проективным пространством над V. Тогда, если $V=\mathbb{R}^{n+1},\ P(\mathbb{R}^{n+1}):=\mathbb{R}P^n$.

2 Двойственное пространство к линейному пространству, двойственное линейное отображение.

Пусть V - векторное пространство над полем \mathbb{F} . Рассмотрим $\mathcal{L}(V \mapsto \mathbb{R})$ - множество линейных функционалов на V. Его можно снабдить структурой векторного пространства над \mathbb{F} следующим образом:

1.
$$\forall f, g \in \mathcal{L}(V \mapsto \mathbb{R}), x \in V \ (f+g)(x) = f(x) + g(x)$$

2.
$$\forall f \in \mathcal{L}(V \mapsto \mathbb{R}), \lambda \in \mathbb{F}, x \in V \ \lambda f(x) = f(\lambda x)$$

Получившееся векторное пространство обозначается V^* и называется сопряженным, или двойственным векторным пространством.

Пусть $\mathcal{A}: V \mapsto W$ - линейное отображение. Тогда сопряженным к \mathcal{A} называется отображение $\mathcal{A}^*: W^* \mapsto V^*$, действующий следующим образом: $\forall \varepsilon \in W^*, v \in V \ (\mathcal{A}^*\varepsilon)(v) = \varepsilon(\mathcal{A}v)$. Его линейность проверяется непосредственно.

3 Тензорное произведение векторных пространств (любое определение).

Пусть U, V, W - векторные пространства. Рассмотрим $\otimes : U \times V \mapsto W$ - билинейное отображение. Для краткости везде далее будем писать $x \otimes y := \otimes (x,y)$. Тогда пара (W,\otimes) называется тензорным произведением U на V, если $\{e_i \otimes f_j\}$ - базис W, где $\{e_i\}, \{f_j\}$ - базисы U, V соответственно. Обозначение: $U \otimes V$.

Утверждение. $U \otimes V$ существует и единственно с точностью до изоморфизма.

Утверждение. Пусть $\varphi: U \times V \mapsto Z$ - билинейное отображение. Тогда (W, \otimes) — тензорное произведение U на $V \Leftrightarrow существует$ и единственно линейное отображение $\psi: W \mapsto Z: \varphi(u, v) = \psi(u \otimes v)$.

Утверждение. Если $U,\ V$ - векторные пространства. $\mathcal{L}(U \times V \mapsto \mathbb{R}) \cong U^* \otimes V^* \cong (U \otimes V)^*$.

4 Пространства $\operatorname{Tens}_q^p(V)$. Операции над тензорами: сложение, умножение, свёртка, симметрирование, альтернирование.

Определение. $\operatorname{Tens}_q^p(V) = \underbrace{V \otimes \ldots \otimes V}_p \otimes \underbrace{V^* \otimes \ldots \otimes V^*}_q$ называется пространством тензоров типа (p,q) над V, или пространством тензоров, p раз контравариантных и q раз ковариантных.

Если $\{e_i\}$ - базис $V, \{\varepsilon^i\}$ — двойственный к нему базис V^* . Тогда $\mathrm{Tens}_q^p(V) = < e_{i_1} \otimes \ldots \otimes e_{i_p} \otimes \varepsilon^{j_1} \otimes \ldots \otimes \varepsilon^{j_q} \mid i_1,\ldots,i_p,j_1,\ldots,j_q \in \overline{1,n}>$. Каждый тензор $T \in \mathrm{Tens}_q^p(V)$ можно записать в координатах $T = T_{i_1,\ldots,i_p}^{i_1,\ldots,i_p}e_{i_1} \otimes \ldots \otimes e_{i_p} \otimes \varepsilon^{j_1} \otimes \ldots \otimes \varepsilon^{j_q}$.

Определение. Тензор называется симметричным, если при перестановке любых двух индексов одного типа его координата не меняется, и кососимметричным, если она при этом меняет знак.

Операции над тензорами

1. Линейная комбинация

Пусть $T, S \in \text{Tens}_q^p(V)$, $\alpha, \beta \in \mathbb{R}$. Тогда $\alpha T + \beta S \in \text{Tens}_q^p(V)$, где $(\alpha T + \beta S)_{j_1,\dots,j_q}^{i_1,\dots,i_p} = \alpha T_{j_1,\dots,j_q}^{i_1,\dots,i_p} + \beta S_{j_1,\dots,j_q}^{i_1,\dots,i_p}$.

2. Произведение тензоров

Пусть
$$T \in \operatorname{Tens}_q^p(V)$$
, $S \in \operatorname{Tens}_s^r(V)$. Тогда $T \otimes S \in \operatorname{Tens}_{q+s}^{p+r}(V)$, причем $(T \otimes S)_{j_1,\dots,j_{q+s}}^{i_1,\dots,i_{p+r}} = T_{j_1,\dots,j_q}^{i_1,\dots,i_p} S_{j_{q+1},\dots,j_{q+s}}^{i_{p+1},\dots,i_{p+r}}$.

3. Перестановка индексов

Пусть $\sigma \in S_p, \tau \in S_q$, где S_n - симметрическая группа порядка $n, T \in \mathrm{Tens}_q^p(V)$. Тогда $R_\tau^\sigma T \in \mathrm{Tens}_q^p(V)$, где $(R_\tau^\sigma T)_{j_1,\ldots,j_q}^{i_1,\ldots,i_p} = T_{j_{\tau(1)},\ldots,j_{\tau(q)}}^{i_{\sigma(1)},\ldots,i_{\sigma(p)}}$.

4. Свертка

Пусть
$$T\in \operatorname{Tens}_q^p(V), t\in \overline{1,p}, s\in \overline{1,q}$$
. Тогда $C_s^tT\in \operatorname{Tens}_{q-1}^{p-1}(V),$ где $(C_s^tT)_{j_1,\ldots,j_{s-1},j_{s+1},\ldots,j_q}^{i_1,\ldots,i_{t-1},i_{t+1},\ldots,i_p}=\sum_{m=1}^{\dim V}T_{j_1,\ldots,j_{s-1},m,j_{s+1},\ldots,j_q}^{i_1,\ldots,i_{t-1},m,i_{t+1},\ldots,i_p}.$

5. Симметрирование

Пусть $T \in \operatorname{Tens}_q^p(V)$. Тогда $SymT \in \operatorname{Tens}_q^p(V)$, где $(SymT)_{j_1,\dots,j_q}^{i_1,\dots,i_p} = \frac{1}{q!} \sum_{\sigma \in S_q} T_{j_{\sigma(1)},\dots,j_{\sigma(q)}}^{i_1,\dots,i_p}$. Аналогичную операцию можно делать и с верхними индексами.

6. Альтернирование

Пусть
$$T \in \operatorname{Tens}_q^p(V)$$
. Тогда $AltT \in \operatorname{Tens}_q^p(V)$, где $(AltT)_{j_1,\dots,j_q}^{i_1,\dots,i_p} = \frac{1}{q!} \sum_{\sigma \in S_q} (-1)^{\sigma} T_{j_{\sigma(1)},\dots,j_{\sigma(q)}}^{i_1,\dots,i_p}$. Аналогичную операцию можно делать и с верхними индексами.

5 Гладкое многообразие, многообразие с краем, подмногообразие, ориентируемое многообразие.

Определение. (X, \mathscr{T}) — хаусдорфово, если

$$\forall x, y \in X, x \neq y, \exists U, V \in \mathcal{T} : x \in U, y \in V \quad U \cap V = \emptyset.$$

Определение. Гладкое многообразие размерности n — это пара (X, \mathscr{A}) , где X — хаусдорфово, со счетной базой топологическое пространство, а \mathscr{A} — атлас, т. е. $\mathscr{A} = \{(U_{\alpha}, \varphi_{\alpha})\}_{\alpha \in A}$, где

- $U_{\alpha} \subset X$ открытое,
- $\bigcup_{\alpha \in A} U_{\alpha} = X$,
- $\varphi_{\alpha}:U_{\alpha}\to V_{\alpha}\subset\mathbb{R}^n$ ($\varphi_{\alpha}-$ гомеоморфизм в область)
- $\forall \alpha, \beta \in A$ $\varphi_{\beta} \circ \varphi_{\alpha}^{-1} : \varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \varphi_{\beta}(U_{\alpha} \cap U_{\beta})$ является бесконечно гладким.

Определение. Пусть N — многообразие размерности n.

Говорят, что $M \leq N-nod$ многообразие N размерности m, если $\forall x \in M \ \exists (U,\varphi)$ — карта на $N, x \in U$ и $\exists f = \left(f^1, \ldots, f^{n-m}\right) : \varphi(U) \to \mathbb{R}^{n-m}$ — гладкие функции, такие, что $\varphi(U \cap M) = \{x \in \varphi(U) : f(x) = 0\}$, причем

$$\operatorname{rk}\left(\frac{\partial f^j}{\partial x^k}\right) = n - m$$

Определение. (С лекции) n-мерное гладкое многообразие называется многообразием с краем, если для каждой карты $(U_{\alpha}, \varphi_{\alpha}), \ \varphi_{\alpha} : U_{\alpha} \mapsto V_{\alpha} \subseteq \mathbb{R}^n \ V_{\alpha}$ — либо диск $D^n = \{(x^1)^2 + \dots (x^n)^2 < 1\}$, либо $D^n \cap \{x_n \geqslant 0\}$. При этом, если координатный гомеоморфизм φ_{α} отображает точку в границу V_{α} , то она называется точкой края.

Определение. (Адекватное) n-мерное гладкое многообразие называется многообразием с краем, если для каждой карты $(U_{\alpha}, \varphi_{\alpha}), \ \varphi_{\alpha} : U_{\alpha} \mapsto V_{\alpha} \subseteq \mathbb{R}^n_+ \ V_{\alpha}$ — открытое в \mathbb{R}^n_+ множество, а $\forall \alpha, \beta \in A$ $\varphi_{\beta} \circ \varphi_{\alpha}^{-1} : \varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \varphi_{\beta}(U_{\alpha} \cap U_{\beta})$ — бесконечно гладкие в смысле дифференцирования по \mathbb{R}^n_+ функции. При этом, если какая-то из локальных координат точки $P \in M = 0$, то она называется точкой края.

Утверждение. Край n-мерного гладкого многообразия является гладким многообразием размерности n-1. Он обозначается ∂M .

Определение. Говорят, что на многообразии (M,\mathscr{A}) задана *ориентация*, если для каждой пары $(U_{\alpha},\varphi_{\alpha})\in\mathscr{A}$ задано число $\varepsilon_{\alpha}=\pm 1$, причем

$$\operatorname{sgn}\left[\det\left(\frac{\partial x_{\alpha}^{i}}{\partial x_{\beta}^{j}}\right)\right] = \varepsilon_{\alpha} \cdot \varepsilon_{\beta}.$$

Определение. Многообразие M называется *ориентируемым*, если на нем можно задать ориентацию.

Утверждение. Если M — многообразие c краем, то и ∂M является ориентируемым многообразием.

Определение. Если M — ориентированное гладкое многообразие размерности n, $\mathscr{A} = \{(U_{\alpha}, \varphi_{\alpha} = (x_{\alpha}^{1}, \dots, x_{\alpha}^{n}))\}_{\alpha \in A}$ — атлас карт на нем, то ориентация ∂M , задаваемая атласом $\{U_{\alpha} \cap \partial M, (x_{\alpha}^{1}, \dots, x_{\alpha}^{n-1})\}_{\alpha \in A}$, называется ориентацией, согласованной с ориентацией на M.

6 Касательное пространство к многообразию.

Пусть M - гладкое многообразие, $\dim M=n,\ P_0\in M$. Тогда касательным вектором к M в точке P_0 называется соответствие, которое каждой локальной системе координат $(x_\alpha^1,\dots,x_\alpha^n)$ сопоставляет набор чисел $(\xi_\alpha^1,\dots,\xi_\alpha^n)$, для каждой пары локальных координат $(x_\alpha),(x_\beta)$ удовлетворяющих соотношению: $\xi_\alpha^i=\frac{\partial x_\alpha^i}{\partial x_\beta^j}\xi_\beta^j$. Числа $(\xi_\alpha^1,\dots,\xi_\alpha^n)$ называются координатами касательного вектора в локальной

системе координат (x_{α}) , а соотношение - тензорным законом преобразования координат касательного вектора при замене локальных координат. Множество всех касательных векторов к многообразию M в точке P_0 называется касательным пространством в точке P_0 и обозначается $T_{P_0}(M)$. Оно является векторным пространством размерности n. Совокупность всех касательных векторов к M, т.е. $\bigcup_{P_0 \in M} T_{P_0}(M)$, называется касательным расслоением M и обозначается T(M).

7 Гладкие тензорные поля (определение, в том числе формула пересчёта из одних координат в другие).

Определение. Говорят, что на гладком многообразии M задано гладкое тензорное поле типа (p,q) ранга p+q, если $\forall P\in M$ задан $T(x)\in \mathrm{Tens}_q^p(T_P(M))$, причем в любой локальной системе координат $T_{j_1...j_q}^{i_1...i_p}$ — гладкие функции, где $T(x)=T_{j_1...j_q}^{i_1...i_p}\frac{\partial}{\partial x^{i_1}}\otimes\ldots\otimes\frac{\partial}{\partial x^{i_p}}\otimes dx^{j_1}\otimes\ldots\otimes dx^{j_q}$, т.е. в качестве базиса $T_P(M)$ выбираются $\{\frac{\partial}{\partial x^i}\}$, в качестве базиса $T_P^*(M):=(T_P(M))^*-\{dx^i\}$.

Утверждение. Формула преобразования координат гладкого тензорного поля T типа (p,q):

$$T_{j_1'\cdots j_q'}^{i_1'\cdots i_p'}(x) = \frac{\partial x^{i_1'}}{\partial x^{i_1}} \cdots \frac{\partial x^{i_p'}}{\partial x^{i_p}} \frac{\partial x^{j_1}}{\partial x^{j_1'}} \cdots \frac{\partial x^{j_q}}{\partial x^{j_q'}} T_{j_1\cdots j_q}^{i_1\cdots i_p}(x)$$

8 Дифференциальные формы на многообразии. Операция дифференцирования.

Определение. Дифференциальная форма ω на многообразии M порядка (степени) k — это кососимметричное тензорное поле типа (0,k). $\deg \omega := k$; говорят, что ω - k-форма.

$$\omega = \sum_{i_1 < \dots < i_k} \omega_{i_1 \dots i_k} dx^{i_1} \wedge \dots \wedge dx^{i_k}$$

Определение. Внешней производной (дифференциалом) формы $\omega = f dx^{i_1} \wedge \ldots \wedge dx^{i_k}$ называется форма

$$d\omega = df \wedge dx^{i_1} \wedge \ldots \wedge dx^{i_k} := \sum_l \frac{\partial f}{\partial x^l} dx^l \wedge dx^{i_1} \wedge \ldots \wedge dx^{i_k}.$$

Для формы $\omega = \sum_{i_1,\dots,i_k} w_{i_1,\dots,i_k} dx^{i_1} \wedge \dots \wedge dx^{i_k}$ дифференциал определяется исходя из свойства линейности, а именно $d\omega = \sum_{i_1,\dots,i_k} d(w_{i_1,\dots,i_k} dx^{i_1} \wedge \dots \wedge dx^{i_k}) = d(w_{i_1,\dots,i_k}) dx^{i_1} \wedge \dots \wedge dx^{i_k}$.

Внимание: последнее утверждение использовать на свой страх и риск, но это единственное известное мне объяснение, почему в определении форма записана именно так.

Определение. Внешней производной (дифференциалом) формы $\omega = \sum_{i_1 < \ldots < i_k} \omega_{i_1 \ldots i_k} dx^{i_1} \wedge \ldots \wedge dx^{i_k}$ называется форма $d\omega$, такая, что

$$(d\omega)_{j_1...j_{k+1}} = \sum_{s=1}^{k+1} (-1)^{s-1} \frac{\partial \omega_{j_1...j_{s-1}j_{s+1}...j_{k+1}}}{\partial x^{j_s}}.$$

Утверждение. Определения эквивалентны.

Утверждение. $d^2 = 0$.

Утверждение. d не зависит от системы координат.

Определение. ω называется замкнутой, если $d\omega = 0$.

Определение. ω называется точной, если $\exists \alpha : \omega = d\alpha$.

9 Формула Стокса.

Определение. Пусть M - n-мерное гладкое ориентированное многообразие, ω - внешняя дифференциальная форма степени n, причем $\operatorname{supp} \omega$ компактен и целиком лежит в U_{α} - карте M с координатами $(x_{\alpha}^1,\ldots,x_{\alpha}^n)$ и ориентацией ε_{α} . Тогда в карте U_{α} эта форма имеет вид $f(x_{\alpha}^1,\ldots,x_{\alpha}^n)dx_{\alpha}^1\wedge\cdots\wedge dx_{\alpha}^n$. В этом случае интегралом ω по M называют

$$\int_{M} \omega = \varepsilon_{\alpha} \int_{U_{\alpha}} \dots \int_{U_{\alpha}} f(x_{\alpha}^{1}, \dots, x_{\alpha}^{n}) dx_{\alpha}^{1} \dots dx_{\alpha}^{n}$$

Определение. Пусть X - метрическое пространство, $\{U_{\alpha}\}$ - его конечное открытое покрытие. Тогда существуют такие функции $\varphi_{\alpha}: X \mapsto \mathbb{R}$, что

- 1. $\forall \alpha \ \forall x \in X \ 0 \leqslant \varphi_{\alpha}(x) \leqslant 1$
- 2. supp $\varphi_{\alpha} \subseteq U_{\alpha}$
- 3. $\forall x \in X \sum_{\alpha} \varphi_{\alpha}(x) = 1$

Система функций $\{\varphi_{\alpha}\}$, удовлетворяющих этим условиям, называется разбиением единицы, подчиненным покрытию $\{U_{\alpha}\}$.

Определение. Пусть M - n-мерное ориентированное гладкое многообразие с краем, ω - внешняя дифференциальная n-форма с компактным носителем, $\{\varphi_{\alpha}\}$ - подчиненное атласу $M\bigcup_{\alpha}U_{\alpha}$ разбиение единицы. Тогда интегралом ω по M называют

$$\int_{M} \omega = \sum_{U_{\alpha}} \varphi_{\alpha} \omega$$

Формула Стокса

Пусть M - n-мерное ориентированное гладкое многообразие с краем ∂M с согласованной ориентацией, ω - внешняя дифференциальная форма степени n-1 с компактным носителем. Тогда выполняется

$$(-1)^n \int_{M} d\omega = \int_{\partial M} \omega$$

10 Риманова метрика. Поднятие и опускание индекса. Форма объёма, согласованная с метрикой (формулировка).

Определение. Говорят, что на гладком многообразии M задана риманова метрика, если $\forall P \in M$ в $T_P(M)$ задано положительно определенное симметричное скалярное произведение, причем в каждой локальной системе координат (x_α) его матрица является гладкой функцией от (x_α) .

Замечание: из требований симметричности и положительной определенности следует невырожденность матрицы скалярного произведения. Также достаточно требовать гладкости в одной системе координат, в остальных свойство также выполнится, поскольку M - гладкое многообразие.

Пусть $T \in \operatorname{Tens}_q^p(V)$, g — риманова метрика на V, что по определению означет, что $g \in \operatorname{Tens}_2^0(V)$, g - симметричный тензор. Тогда $R \in \operatorname{Tens}_{q+1}^{p-1}(V)$, где $R_{j_1,\ldots,j_q,s}^{i_1,\ldots,i_{p-1}} = g_{s,i_p} T_{j_1,\ldots,j_q}^{i_1,\ldots,i_p}$. Эта операция называется опусканием индекса.

Определение. Тензор $h \in \operatorname{Tens}_0^2(V)$ назовем обратным к g, если $h^{ij}g_{jk} = \delta_k^i$.

Тогда матрица h - обратная к матрице g. $R \in \mathrm{Tens}_{q-1}^{p+1}(V)$, где $R_{j_1,\dots,j_{q-1}}^{i_1,\dots,i_p,s} = h^{s,j_q}T_{j_1,\dots,j_q}^{i_1,\dots,i_p}$. Эта операция называется поднятием индекса.

Определение. Пусть M — гладкое многообразие, ω — n-форма, причем $\forall x \in M \ \omega \mid_x \neq 0$. Тогда ω называется формой объема на M.

Утверждение. Если M-n-мерное ориентируемое риманово многообразие, $\{e_i\}_{i=1}^n-$ ортонормированный положительно ориентированный базис касательного пространства, то такая форма объема ω , что $\omega(e_1,\ldots,e_n)=1$, существует и единственна. Она называется формой объема, согласованной с (римановой) метрикой на M.

11 Кривизна и кручение кривых в \mathbb{R}^2 и \mathbb{R}^3 , репер Френе (в том числе система дифференциальных уравнений для него).

Определение. Пусть s — длина дуги кривой γ от некоторой фиксированой точки. Тогда s называется натуральным параметром, а уравнение γ r(s) = (x(s), y(s)) называется натуральной парамертизацией.

Утверждение. В натуральной параметризации $|\frac{dr}{ds}| = 1$.

Определение. Пусть кривая γ параметризована наутральным параметром s. Тогда ее кривизной в точке s называется $k(s) = |\frac{d^2 r(s)}{ds^2}|$. Обратная величина называется радиусом крвиизны в точке s и обозначается $R(s) = \frac{1}{k(s)}$.

Утверждение. Пусть кривая γ параметризована параметром t, не обязательно натуральным. Тогда $k(t) = \frac{|[\dot{r} \times \ddot{r}]|}{|\dot{r}|^3}$, где $[a \times b] = a_x b_y - a_y b_x$ - псевдовекторное произведение.

Определение. Пусть кривая задана в натуральной параметризации. Положим $v(s) = \frac{dr}{ds}, \ n(s) = \frac{d^2r/ds^2}{|d^2r/ds^2|}. \ (v(s), n(s))$ называютмя репером Френе в данной точке.

Утверждение. $v(s) \perp n(s)$.

Утверждение. (Формулы Френе)
$$\frac{dv(s)}{ds} = k(s)n(s), \ \frac{dn(s)}{ds} = -k(s)v(s).$$

Определение. Пусть γ — гладкая кривая в \mathbb{R}^n , $r(s), s \in [a,b]$ — ее натуральная параметризация, причем $\forall s \in [a,b] \frac{dr}{ds}, \ldots, \frac{d^nr}{ds^n}$ линейно независимы. Построим в кажой точке s ортонормированный репер следующим образом. Положим $\tau_1 = \frac{dr}{ds}$. τ_k выберем как произвольный единичный вектор, ортогональный пространству, базисом которого являются $\tau_1, \ldots, \tau_{k-1}$. Получившийся репер (τ_1, \ldots, τ_n) называется репером Френе.

Утверждение. (Формулы Френе) Пусть (τ_1, \ldots, τ_n) - репер Френе. Тогда $\exists k_2(s), \ldots, k_n(s)$ - глад-кие функции такие, что:

$$\begin{cases} \frac{d\tau_1(s)}{ds} = k_2(s)\tau_2(s) \\ \frac{d\tau_2(s)}{ds} = -k_2(s)\tau_1(s) + k_3(s)\tau_3(s) \\ \dots \\ \frac{d\tau_{n-1}(s)}{ds} = -k_{n-1}(s)\tau_{n-2}(s) + k_n(s)\tau_n(s) \\ \frac{db(s)}{ds} = -k_n(s)\tau_{n-1}(s). \end{cases}$$

Определение. В \mathbb{R}^3 репер Френе имеет вид (v, n, b), где $v(s) = \frac{dr}{ds}$, $n(s) = \frac{d^2r/ds^2}{|d^2r/ds^2|}$, $b(s) = [v(s) \times n(s)]$. В этом случае $k_2(s)$ называется кривизной и обозначается k(s), а $k_3(s)$ - кручением и обозначается k(s).

Утверждение. Для кривизны и кручения в произвольной параметризации справедливы формулы $k(t) = \frac{|[\dot{r} \times \ddot{r}]|}{|\dot{r}|^3}, \ \varkappa(t) = \frac{(\dot{r}, \ddot{r}, \ddot{r})}{|[\dot{r} \times \ddot{r}]|^2}.$

12 Первая и вторая квадратичные формы поверхности в \mathbb{R}^n , главные направления и главные кривизны. Гауссова и средняя кривизна.

Определение. Пусть $V \subseteq \mathbb{R}^n$, причем dimV = n-1, т.е. V - гиперповерхность, заданная набором гладких функций $r(u^1,\dots,u^{n-1})$. Тогда первой квадратичной формой называется форма $ds^2 \mid_{V} = \sum_{k,p=1}^{n-1} g_{kp}(u) du^k du^p$, где $g_{kp}(u) = \langle \frac{\partial r}{\partial u^k}, \frac{\partial r}{\partial u^p} \rangle$. Она задает скалярное произведение на $T_P(V)$: $\forall a,b \in T_P(V) < a,b >= g_{kp}a^kb^p$.

Определение. Пусть V — гиперповерхность в \mathbb{R}^n , заданная набором гладких функций $r(u^1,\dots,u^{n-1})$. Пусть n — вектор нормали в точке P, т.е. единичный вектор, ортогональный поверхности, $a\in T_P(V)$ — произвольный касательный вектор. Определим $Q(a)=<\frac{\partial^2 r}{\partial u^i\partial u^j}a^ia^j, n>$. Тогда второй квадратичной формой называется симметричная билинейная форма, определяемая выражением $\forall a,b\in T_P(V)$ $Q(a,b)=\frac{Q(a+b)-Q(a)-Q(b)}{2}$. В одних и тех же координатах матрицы этих квадратичной и билинейной форм совпадают: $(q_{ij})=(<\frac{\partial^2 r}{\partial u^i\partial u^j},n>)$.

Определение. Пусть V — гиперповерхность в \mathbb{R}^n . Тогда $\forall P \in V$ существует ортонормированный базис $T_P(V)$ $\{e_1,\ldots,e_{n-1}\}$ такой, что $g(e_i,e_j)=\delta^i_j,\ Q(e_i,e_j)=\begin{cases} 0,&i\neq j\\ \lambda_i,&i=j \end{cases}$. e_i называются главными направлениями, λ_i — главными кривизнами. $H(P)=\sum_i \lambda_i(P)$ называется средней кривизной в точке $P,\ K(P)=\prod_i \lambda_i(P)$ — гауссовой кривизной в точке P.