Математический анализ 1. Тема 2: функции нескольких переменных. Лекция 2.1 Пространство \mathbb{R}^n и его подмножества. Последовательности точек \mathbb{R}^n

1 ноября 2023 г.

Пространство \mathbb{R}^n

Линейное, евклидово, нормированное пространства \mathbb{R}^n

Подмножества \mathbb{R}^n

Шары и сфера

Последовательности точек и их пределы

Теорема о покоординатной сходимости последовательностей из \mathbb{R}^n

Открытые и замкнутые множества в \mathbb{R}^n

Ограниченные, компактные, связные множества

Выпуклые множества

Пространство \mathbb{R}^n

Напоминание: \mathbb{R}^n – это множество всех упорядоченных наборов из n вещественных чисел

$$\mathbb{R}^n = \underbrace{\mathbb{R} \times \ldots \times \mathbb{R}}_{n} = \{ \boldsymbol{x} = (x_1, \ldots, x_n) : x_1, \ldots, x_n \in \mathbb{R} \}.$$

Элементы множества \mathbb{R}^n часто называют **точками** или **векторами** и обозначают заглавными буквами латинского алфавита, возможно с индексами: A, B_1, C_{21} и т.п. или полужирными строчными буквами латинского алфавита, возможно с индексами: \mathbf{x}, \mathbf{v}_1 и т.п.

Для любых векторов $\mathbf{x}=(x_1,\dots,x_n)$, $\mathbf{y}=(y_1,\dots,y_n)$ из \mathbb{R}^n и числа $lpha\in\mathbb{R}$ определены две операции

$${f x}+{f y}=(x_1+y_1,\dots,x_n+y_n)$$
 (сложение), $\alpha {f x}=(\alpha x_1,\dots,\alpha x_n)$ (умножение на вещественное число)

Как следствие, рекуррентно определены линейные комбинации векторов $\mathbf{x}_1=(x_{11},\ldots,x_{1n}),\ldots,\mathbf{x}_k=(x_{k1},\ldots,x_{kn})$:

$$\alpha_1 \mathbf{x}_1 + \ldots + \alpha_k \mathbf{x}_k = (\alpha_1 x_{11} + \ldots + \alpha_k x_{k1}, \ldots, \alpha_1 x_{1n} + \ldots + \alpha_k x_{kn})$$

для любых чисел (коэффициентов) $\alpha_1, \dots, \alpha_k \in \mathbb{R}$. С этими операциями \mathbb{R}^n становится линейным пространством (подробнее в курсе линейной алгебры).

Для любых векторов $\mathbf{x}=(x_1,\dots,x_n)$ и $\mathbf{y}=(y_1,\dots,y_n)$ из \mathbb{R}^n вводится операция скалярного произведения

$$(\mathbf{x},\mathbf{y})=x_1y_1+\ldots+x_ny_n.$$

Для линейного пространства \mathbb{R}^n с операцией скалярного произведения выполнены аксиомы евклидова пространства (подробнее в курсе линейной алгебры): для всех $\mathbf{x}, \mathbf{y}, \mathbf{w} \in \mathbb{R}^n$ и чисел $\alpha, \beta \in \mathbb{R}$

- 1. $(\mathbf{x}, \mathbf{y}) = (\mathbf{y}, \mathbf{x})$ (симметричность),
- 2. $(\alpha \mathbf{x} + \beta \mathbf{y}, \mathbf{w}) = \alpha(\mathbf{x}, \mathbf{w}) + \beta(\mathbf{y}, \mathbf{w})$ (линейность по первому аргументу),
- 3. $({\bf x},{\bf x})\geqslant 0$, причем $({\bf x},{\bf x})=0\Leftrightarrow {\bf x}={\bf 0}$ (положительная определенность).

Из первых двух свойств следует, что скалярное произведение линейно и по второму аргументу:

$$(\mathbf{w}, \alpha \mathbf{y} + \beta \mathbf{y}) = \alpha(\mathbf{w}, \mathbf{x}) + \beta(\mathbf{w}, \mathbf{y}),$$

для всех $\mathbf{x}, \mathbf{y}, \mathbf{w} \in \mathbb{R}^n$ и чисел $\alpha, \beta \in \mathbb{R}$.

Возникает потребность в линейном пространстве \mathbb{R}^n вводить и другие скалярные произведения и тем самым задавать другие евклидовы нормы.

(Евклидовой) длиной вектора $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$ называется число

$$|\mathbf{x}| = \sqrt{(\mathbf{x}, \mathbf{x})} = \sqrt{x_1^2 + \ldots + x_n^2}.$$

Теорема (неравенство Коши-Буняковского)

$$|(\mathbf{x}, \mathbf{y})| \leqslant |\mathbf{x}| \cdot |\mathbf{y}|$$
 для всех $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

В подробной записи это неравенство имеет вид

$$|x_1y_1 + \ldots + x_ny_n| \le \sqrt{x_1^2 + \ldots + x_n^2} \sqrt{y_1^2 + \ldots + y_n^2}$$

для любых чисел $x_1, \ldots, x_n, y_1, \ldots, y_n$.

Доказательство. Для всех вещественных чисел t выполнено

$$0 \leq |t\mathbf{x} + \mathbf{y}|^2 = (t\mathbf{x} + \mathbf{y}, t\mathbf{x} + \mathbf{y}) = (\mathbf{x}, \mathbf{x})t^2 + 2(\mathbf{x}, \mathbf{y})t + (\mathbf{y}, \mathbf{y}).$$

Поэтому дискриминант этого квадратного трехчлена (при $(\mathbf{x},\mathbf{x})=0$ он вырождается в аффинную функцию) неположительный:

$$4(\mathbf{x}, \mathbf{y})^2 - 4(\mathbf{x}, \mathbf{x})(\mathbf{y}, \mathbf{y}) \leqslant 0.$$

(Евклидовым) расстоянием между точками $\mathbf{x}=(x_1,\dots,x_n)$ и $\mathbf{y}=(y_1,\dots,y_n)$ из \mathbb{R}^n называется число

$$|\mathbf{x} - \mathbf{y}| = \sqrt{(x_1 - y_1)^2 + \ldots + (x_n - y_n)^2}.$$

Теорема (неравенство треугольника для евклидовой нормы)

Для всех $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ выполнено неравенство $|\mathbf{x} + \mathbf{y}| \leq |\mathbf{x}| + |\mathbf{y}|$. \bigstar Доказательство. С помощью неравенства Коши-Буняковского

$$|\mathbf{x}+\mathbf{y}|^2 = (\mathbf{x}+\mathbf{y}, \mathbf{x}+\mathbf{y}) = |\mathbf{x}|^2 + 2(\mathbf{x}, \mathbf{y}) + |\mathbf{y}|^2 \le |\mathbf{x}|^2 + 2|\mathbf{x}| \cdot |\mathbf{y}| + |\mathbf{y}|^2 = (|\mathbf{x}| + |\mathbf{y}|)^2$$
.

Линейное пространство \mathbb{R}^n с операцией длины (нормы) вектора $\|\mathbf{x}\| = |\mathbf{x}|$ удовлетворяет трем аксиомам нормированного пространства: для всех $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ и $\alpha \in \mathbb{R}$

- 1. $\|\mathbf{x}\| \geqslant 0$, причем $\|\mathbf{x}\| = 0 \Leftrightarrow \mathbf{x} = \mathbf{0}$,
- 2. $\|\alpha \mathbf{x}\| = |\alpha| \cdot \|\mathbf{x}\|$ (положительная однородность),
- 3. $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ (неравенство треугольника).

Другие часто употребимые нормы в \mathbb{R}^n :

$$\|\mathbf{x}\| = |\mathbf{x}|_{\infty} = \max_{1 \le i \le n} |x_i|, \ \|\mathbf{x}\| = |\mathbf{x}|_1 = |x_1| + \ldots + |x_n|.$$

Легко видеть, что они тоже удовлетворяют аксиомам нормы.

Они эквивалентны евклидовой норме:

$$|\mathbf{x}|_{\infty} \leqslant |\mathbf{x}| \leqslant \sqrt{n} |\mathbf{x}|_{\infty}, \quad \frac{1}{\sqrt{n}} |\mathbf{x}|_{1} \leqslant |\mathbf{x}| \leqslant \mathbf{x}|_{1} \quad$$
для всех $\mathbf{x} \in \mathbb{R}^{n}.$

Однако им не соответствуют никакие скалярные произведения

Шары и сфера

В пространстве \mathbb{R}^n (с обычной евклидовой нормой) открытый шар радиуса r с центром в точке $\mathbf{a}=(a_1,\dots,a_n)$ – это

$$B_r(\mathbf{a}) = \{ \mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n : |\mathbf{x} - \mathbf{a}| = \sqrt{(x_1 - a_1)^2 + \dots + (x_n - a_n)^2} < r \},$$

замкнутый шар радиуса r с центром в точке \mathbf{a} – это

$$\overline{B}_r(\mathbf{a}) = \{ \mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n : |\mathbf{x} - \mathbf{a}| = \sqrt{(x_1 - a_1)^2 + \dots + (x_n - a_n)^2} \le r \},$$

сфера радиуса r с центром в точке \mathbf{a} – это

$$S_r(\mathbf{a}) = {\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n : |\mathbf{x} - \mathbf{a}| = \sqrt{(x_1 - a_1)^2 + \dots + (x_n - a_n)^2} = r}.$$

Замечание

Если вместо обычной евклидовой нормы в \mathbb{R}^n используется другая, то открытый шар будет иметь форму, далекую от привычной. Например, это так для норм $|\mathbf{x}|_{\infty} = \max_{1\leqslant i\leqslant n} |x_i|$ и $|\mathbf{x}|_1 = |x_1|+\ldots+|x_n|$ \bigstar .

Последовательности точек и их пределы

(Бесконечной) последовательностью (элементов множества \mathbb{R}^n) называется любая функция $\mathbf{x}: \mathbb{N} \to \mathbb{R}^n$. Пишут $\mathbf{x}(k) = \mathbf{x}_k$, всю последовательность часто обозначают через (\mathbf{x}_k) .

Определение. Пусть (\mathbf{x}_k) – последовательность элементов \mathbb{R}^n . Если существует точка $\mathbf{a} \in \mathbb{R}^n$ такая, что **числовая** последовательность $|\mathbf{x}_k - \mathbf{a}|$ бесконечно малая, т.е. $\lim_{k \to \infty} |\mathbf{x}_k - \mathbf{a}| = 0$,

то последовательность $\{\mathbf x_k\}$ называется **сходящейся**, а точка $\mathbf a$ — ее **пределом**, и при этом пишут $\mathbf x_k o \mathbf a$ при $k o \infty$ или $\lim_{k o \infty} \mathbf x_k = \mathbf a$.

Подробнее это означает, что для любого (сколь угодно малого) $\varepsilon>0$ найдется (достаточно большой) номер $N=N(\varepsilon)$ такой, что

$$|\mathbf{x}_k - \mathbf{a}| < \varepsilon$$
 при всех $k \geqslant N(\varepsilon)$.

Теорема.

- 1. Если существует $\lim_{n \to \infty} \mathbf{x}_n = \mathbf{a}$, то предел \mathbf{a} единствен.
- 2. Если существуют $\lim_{n\to\infty}\mathbf{x}_n=\mathbf{a}$ и $\lim_{n\to\infty}\mathbf{y}_n=\mathbf{b}$, то для любых чисел α и β существует $\lim_{n\to\infty}(\alpha\mathbf{x}_n+\beta\mathbf{y}_n)=\alpha\mathbf{a}+\beta\mathbf{b}$.
- 3. Если существуют $\lim_{n\to\infty}\mathbf{x}_n=\mathbf{a}$ и $\lim_{n\to\infty}\mathbf{y}_n=\mathbf{b}$, то существует и $\lim_{n\to\infty}(\mathbf{x}_n,\mathbf{y}_n)=(\mathbf{a},\mathbf{b}).$

Доказательства несложные, полезно дать их самостоятельно.

Теорема

Свойство сходимости последовательности векторов $\mathbf{x}_k=(x_{k1},\dots,x_{kn})$: $\lim_{\substack{k\to\infty\\\mathbf{cxo}\mathbf{d}}}\mathbf{x}_k=\mathbf{a}=(a_1,\dots,a_n)$ эквивалентно свойству ее покоординатной сходимости

$$\lim_{k\to\infty} x_{k1} = a_1, \dots, \lim_{k\to\infty} x_{kn} = a_n.$$

Доказательство. Справедливы элементарные неравенства

$$\max_{1 \leqslant i \leqslant n} |x_i| \leqslant |\mathbf{x}| = \sqrt{x_1^2 + \ldots + x_n^2} \leqslant \sqrt{n} \max_{1 \leqslant i \leqslant n} |x_i|.$$

Применив их к $\mathbf{x} = \mathbf{x}_k - \mathbf{a}$, получим

$$\max_{1 \leqslant i \leqslant n} |x_{ki} - a_i| \leqslant |\mathbf{x}_k - \mathbf{a}| \leqslant \sqrt{n} \max_{1 \leqslant i \leqslant n} |x_{ki} - a_i|.$$

Если $|\mathbf{x}_k-\mathbf{a}| \to 0$ при $k \to \infty$, то в силу левого неравенства и $|x_{ki}-a_i| \to 0$ при $k \to \infty$ для всех $i=1,\dots,n$. Наоборот, если $|x_{ki}-a_i| \to 0$ при $k \to \infty$ для всех $i=1,\dots,n$, то $\max_{1 \leqslant i \leqslant n} |x_{ki}-a_i| \to 0$ и в силу правого неравенства $|\mathbf{x}_k-\mathbf{a}| \to 0$ при $k \to \infty$.

Предыдущую теорему можно легко доказать и с применением данной теоремы.

Примеры для последовательностей в \mathbb{R}^2 .

- ▶ Пусть $\mathbf{x}_k = \left(\frac{2k+1}{3k+2}, \frac{3k+2}{2k+1}\right)$. Тогда $\lim_{k \to \infty} \mathbf{x}_k = \left(\lim_{k \to \infty} \frac{2k+1}{3k+2}, \lim_{k \to \infty} \frac{3k+2}{2k+1}\right) = \left(\frac{2}{3}, \frac{3}{2}\right).$
- $lack \square$ Пусть ${f x}_k=\left(rac{1}{k},\cos(\pi k)
 ight)$. Тогда $\lim_{k o\infty}{f x}_k$ не существует, поскольку не существует $\lim_{k o\infty}\cos(\pi k)$.

Открытые и замкнутые множества в \mathbb{R}^n

Определение

Пусть множество $U\subset\mathbb{R}^n$. Тогда его дополнение есть множество $U^c=\{\mathbf{x}\in\mathbb{R}^n:\mathbf{x}\notin U\}=\{\mathbf{x}\in\mathbb{R}^n\setminus U\}.$

Утверждение

- 1. Для любого множества $U \subset \mathbb{R}^n$ выполнено $(U^c)^c = U$.
- 2. Для любого семейства $(U_{\alpha})_{\alpha \in I}$ множеств в \mathbb{R}^n , где I произвольное множество индексов, верны формулы

2.1
$$\left(\bigcup_{\alpha \in I} U_{\alpha}\right)^{c} = \bigcap_{\alpha \in I} U_{\alpha}^{c}$$
,
2.2 $\left(\bigcap_{\alpha \in I} U_{\alpha}\right)^{c} = \bigcup_{\alpha \in I} U_{\alpha}^{c}$.

В частности, верны законы де Моргана $(U \cup V)^c = U^c \cap V^c \ \ \text{и} \ (U \cap V)^c = U^c \cup V^c.$

Определения

Рассмотрим множество $U \subset \mathbb{R}^n$.

- ▶ Точка ${\bf x}$ называется **внутренней точкой** множества U, если существует ε -окрестность $B_\varepsilon({\bf x})$ точки ${\bf x}$, целиком лежащая в U (т.е. $B_\varepsilon({\bf x})\subset U$).
- ightharpoonup Точка m x называется внешней точкой множества U, если она является внутренней точкой дополнения U^c множества U.
- ▶ Точка ${\bf x}$ называется **граничной точкой** множества U, если каждая ее ε -окрестность содержит точки как из U, так из U^c . Если в некоторой окрестности точки ${\bf x} \in U$ нет других точек из U, то такая точка называется изолированной точкой U.
- Множество всех граничных точек множества U называется его границей и обозначается через ∂U .
- Множество всех внутренних точек множества U называется его внутренностью и обозначается символом $\operatorname{Int} U$.
- lacktriangledown Множество U называется **открытым**, если ${
 m Int}\, U=U$, т.е. если каждая точка ${f x}\in U$ является внутренней точкой множества U.
- lacktriangle Множество $\overline{U}=U\cup\partial U$ называется **замыканием** множества U.
- ▶ Множество U называется **замкнутым**, если $\overline{U}=U$, иначе говоря, $\partial U\subset U$, т.е. если U содержит все свои граничные точки.

Примеры.

▶ Только два множества — все пространство \mathbb{R}^n и пустое множество \varnothing — одновременно открыты и замкнуты.

Открытость и замкнутость множества \mathbb{R}^n очевидны, поскольку arepsilon-окрестность любой точки $\mathbf{x} \in \mathbb{R}^n$ и граница любого множества $U \subset \mathbb{R}^n$ являются подмножествами \mathbb{R}^n . Отдельно можно заметить, что $\partial \mathbb{R}^n = \varnothing$.

Открытость множества \varnothing следует из логических соображений (каждая точка пустого множества, как несуществующий объект, обладает любыми свойствами). Далее, множество \varnothing замкнуто, поскольку $\partial\varnothing=\varnothing$ и, значит, $\varnothing=\varnothing\cup\partial\varnothing$.

- lack Замыкание открытого шара $B_r(\mathbf{x}) = \{\mathbf{y} \in \mathbb{R}^n : |\mathbf{x} \mathbf{y}| < r\}$ есть замкнутый шар $\overline{B}_r(\mathbf{x}) = \{\mathbf{y} \in \mathbb{R}^n : |\mathbf{x} \mathbf{y}| \leqslant r\}$. Граница открытого шара $B_r(\mathbf{x})$ и замкнутого шара $\overline{B}_r(\mathbf{x})$ есть сфера $S_r(\mathbf{x}) = \{\mathbf{y} \in \mathbb{R}^n : |\mathbf{x} \mathbf{y}| = r\}$.
- ightharpoonup В пространстве \mathbb{R}^1

$$\partial(a,b)=\partial[a,b)=\partial(a,b]=\partial[a,b]=\{a,b\},$$
 замыкания $(a,b),[a,b),(a,b],[a,b]=[a,b],$ Int $((a,b))=$ Int $([a,b))=$ Int $([a,b))=$ Int $([a,b])=$ Int $([a,b])=$

Отрезок [a,b] замкнут, интервал (a,b) открыт, полусегменты [a,b) и (a,b] не открыты и не замкнуты.

▶ $\partial U = \partial U^c$ для любого $U \subset \mathbb{R}^n$.

Основные свойства открытых и замкнутых множеств Теорема

- 1. Множество $U \subset \mathbb{R}^n$ открыто тогда и только тогда, когда его дополнение U^c замкнуто.
 - Наоборот, множество $U\subset\mathbb{R}^n$ замкнуто тогда и только тогда, когда его дополнение U^c открыто.
- 2. Для любого семейства открытых множеств $(U_{\alpha})_{\alpha \in I}$ из \mathbb{R}^n (I любое множество индексов) множество $\bigcup_{\alpha \in I} U_{\alpha}$ открыто.

Для любого семейства замкнутых множеств $(U_{\alpha})_{\alpha\in I}$ из \mathbb{R}^n множество $\bigcup_{\alpha\in I}U_{\alpha}$ замкнуто.

- 3. Для любого конечного семейства открытых множеств U_1,\dots,U_K из \mathbb{R}^n множество $\bigcap_{k=1}^K U_k$ открыто.
 - Для любого **конечного** семейства замкнутых множеств U_1,\dots,U_K из \mathbb{R}^n множество $\bigcap\limits_{k=1}^K U_k$ замкнуто.
- 4. Множество $U \subset R^n$ замкнуто тогда и только тогда, когда для любой сходящейся последовательности (\mathbf{x}_k) точек из U ее предел также принадлежит U.

Замечание.

▶ Пересечение $\bigcap_{\alpha\in I}U_\alpha$ счетного семейства $(U_\alpha)_{\alpha\in I}$ открытых подмножеств пространства \mathbb{R}^n может не быть открытым. Пример:

$$\bigcap_{n\in\mathbb{N}} \left(-\frac{1}{n}, 1 + \frac{1}{n} \right) = [0, 1].$$

lacktriangle Объединение $\bigcup_{lpha\in I}U_lpha$ счетного семейства $(U_lpha)_{lpha\in I}$ замкнутых подмножеств пространства \mathbb{R}^n может не быть замкнутым. Пример:

$$\bigcup_{n\in\mathbb{N}} \left[\frac{1}{n}, 1 - \frac{1}{n} \right] = (0, 1).$$

С помощью последовательностей можно дать эквивалентное определение **граничной точки** множества: точка ${\bf a}$ называется граничной для множества U, если существуют последовательности точек $({\bf x}_k)$ из U и $({\bf y}_k)$ из U^c такие, что $\lim_{n \to \infty} {\bf x}_k = \lim_{k \to \infty} {\bf y}_k = {\bf a}$.

? Эквивалентное определение предельной точки множества таково: точка а называется предельной для множества U, если существует последовательность точек (\mathbf{x}_k) из U такая, что $\mathbf{x}_k \neq \mathbf{a}$ и $\lim_{k \to \infty} \mathbf{x}_k = \mathbf{a}$.

Доказательство. Докажем для примера первые утверждения всех пунктов 1–3.

- 1. Пусть U открытое множество. Если $U=\mathbb{R}^m$, то $U^c=\varnothing$. Если $U\neq\mathbb{R}^m$, то $U^c\neq\varnothing$. Если $\mathbf{a}\in\partial U^c$, то в любой сколь угодно малой окрестности \mathbf{a} имеются как точки из U, так и из $\mathbb{R}^m\backslash U$. Поэтому \mathbf{a} не может являться внутренней точкой U, \mathbf{a} т.к. U открытое множество, то $\mathbf{a}\not\in U$. Значит, $\mathbf{a}\in U^c$ и U^c замкнутое множество.
- 2. Пусть $\mathbf{a}\in\bigcup_{\alpha\in I}U_{\alpha}$, тогда $\mathbf{a}\in U_{\alpha(\mathbf{a})}$ при некотором $\alpha(\mathbf{a})\in I$. Если U_{α} открытое множество для всех $\alpha\in I$, то а входит в $U_{\alpha(\mathbf{a})}$, а поэтому и в $\bigcup_{\alpha\in I}U_{\alpha}$, вместе с некоторой $\varepsilon(\mathbf{a})$ -окрестностью. Следовательно, $\bigcup_{\alpha\in I}U_{\alpha}$ открытое множество.
- 3. Пусть $\mathbf{a}\in\bigcap_{i=1}^KU_i$, тогда $\mathbf{a}\in U_i$ для всех $i=1,\ldots,K$. Если U_i открытое множество для всех $i=1,\ldots,K$, то \mathbf{a} входит в U_i вместе с некоторой $\varepsilon_i(\mathbf{a})$ -окрестностью. Тогда \mathbf{a} входит в $\bigcap_{i=1}^KU_i$ с $\varepsilon(\mathbf{a})$ -окрестностью при $\varepsilon(\mathbf{a}):=\min_{1\leqslant i\leqslant K}\varepsilon_i(\mathbf{a})$. Следовательно, $\bigcap_{i=1}^KU_i$ открытое множество.

Определения. 1. Множество $U\subset\mathbb{R}^n$ называется ограниченным, если оно содержится в некотором шаре $B_r(0)$, т.е. $|\mathbf{x}|\leqslant r$ при всех $\mathbf{x}\in U$ и некотором r>0.

Иначе оно называется **неограниченным**. Иными словами, если для любого номера N найдется $\mathbf{x} \in U$ такой, что $|\mathbf{x}| > N$.

- 2. Замкнутое и ограниченное множество $U \subset \mathbb{R}^n$ называется компактным множеством (или просто компактом).
- 3. Множество $U\subset\mathbb{R}^n$ называется **связным**, если любые две точки $\mathbf{x},\mathbf{y}\in U$ можно соединить непрерывной кривой, лежащей в U, т.е. если существует вектор-функция $\mathbf{f}=(f_1,\ldots,f_n):[0,1]\to\mathbb{R}^n$ такая, что:
 - 1. $\mathbf{f}(0) = \mathbf{x}, \ \mathbf{f}(1) = \mathbf{y},$
 - 2. $\mathbf{f}(t) \in U$ для всех $t \in [0, 1]$,
 - 3. функции f_1, \dots, f_n непрерывны на [0, 1].

Примеры.

- ightharpoonup Замкнутый шар $\overline{B}_r(\mathbf{x})=\{\mathbf{y}\in\mathbb{R}^n: |\mathbf{x}-\mathbf{y}|\leqslant r\},\ r>0$ есть компактное и множество.
- п-мерный замкнутый прямоугольный параллелепипед

$$[a_1,b_1]\times[a_2,b_2]\times\ldots\times[a_n,b_n],$$

где $a_1 < b_1, \ a_2 < b_2, \ \dots, \ a_n < b_n,$ есть компактное множество. В частности, таков сегмент в $\mathbb{R}^1.$

ightharpoonup В \mathbb{R}^1 связные множества — это промежутки, и только они.

Свойства компактных множеств

Теорема

Пусть $U \subset \mathbb{R}^n$. Тогда следующие свойства эквивалентны:

- 1. U есть компактное множество.
- 2. Из любой последовательности (\mathbf{x}_k) точек из U можно выделить подпоследовательность, сходящуюся к некоторой точке из U.
- 3. Из каждого открытого покрытия множества U можно выделить его конечное подпокрытие. Подробнее говоря, если $U \subset \bigcup_{\alpha \in I} U_{\alpha}$, где U_{α} открытые множества, I произвольное множество индексов, то $U \subset U_{\alpha_1} \cup \ldots \cup U_{\alpha_k}$ для некоторых $\alpha_1, \ldots \alpha_k \in I$.

Следствие (теорема Больцано-Вейерштрасса для пространства \mathbb{R}^n). Из любой ограниченной последовательности точек пространства \mathbb{R}^n можно выделить сходящуюся подпоследовательность.

Эту теорему легко вывести и последовательным n-кратным применением соответствующей теоремы для числовых последовательностей.

Пример. Любое замкнутое ограниченное множество U можно покрыть открытыми шарами $B_{r(\mathbf{x})}(\mathbf{x})$ с какими-либо радиусами $r(\mathbf{x}) > 0$, где \mathbf{x} пробегает U. В силу указанной теоремы существует конечное покрытие U некоторыми шарами $B_{r(\mathbf{x}_1)}(\mathbf{x}_1), \ldots, B_{r(\mathbf{x}_k)}(\mathbf{x}_k)$.

Выпуклые множества

Определение. Множество $U\subset\mathbb{R}^n$ называется выпуклым, если вместе с каждыми двумя точками $\mathbf{x},\mathbf{y}\in U$ оно содержит соединяющий их отрезок $[\mathbf{x},\mathbf{y}]=\{t\mathbf{x}+(1-t)\mathbf{y}:0\leqslant t\leqslant 1\}.$

Каждое выпуклое множество U связно. Обратное неверно.

Упражнение. Какие из изображенных на рисунке связных множеств выпуклые?

Экономический пример. Пусть имеются блага S_1,\dots,S_n с ценами $p_1>0,\dots,p_n>0.$ Пусть P>0 — бюджетное ограничение. Тогда бюджетное множество — это

$$W = \{ \mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n : x_1 \ge 0, \dots, x_n \ge 0, \ p_1 x_1 + \dots + p_n x_n \le P \}.$$

В векторной форме $W = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{x} \geqslant 0, \ (\mathbf{p}, \mathbf{x}) \leqslant P \}$, где $\mathbf{p} = (p_1, \dots, p_n)$ – вектор цен.

Это множество замкнуто, ограничено (⇒ компактно) и выпукло. ★

Упражнение. Какие из указанных множеств в \mathbb{R}^n являются открытыми, замкнутыми, компактными, связными, выпуклыми:

- 1. Открытый шар.
- 2. Замкнутый шар
- 3. Сфера.
- 4. Множество, состоящее из двух непересекающихся открытых шаров.
- 5. Множество, состоящее из двух непересекающихся замкнутых шаров.
- 6. Множество, состоящее из сферы и ее центра.
- 7. Сферический слой множество, получаемое из замкнутого шара удалением открытого шара с тем же центром, но меньшего радиуса. Что изменится, если удалять аналогичный, но замкнутый шар?

Упражнение. Докажите, что график функции f, заданной на сегменте [a,b], является компактным множеством в \mathbb{R}^2 тогда и только тогда, когда функция f непрерывна на [a,b].

Может ли быть компактным множеством в \mathbb{R}^2 график функции f, заданной на интервале (a,b)?