Question	Answer	Marks	Guidance
(a)	Using the correct process find the scalar product of direction vectors of l and \mathbf{OA}	M1	(1, 5, 6). $(-1, 2, 3) = -1.1 + 5.2 + 6.3 = -1 + 10 + 18$
	Using the correct process for the moduli, divide the scalar product by the product of the moduli and find the inverse cosine of the result	M1	Their scalar product $\div \left[\sqrt{(1^2 + 5^2 + 6^2)} \sqrt{((-1)^2 + 2^2 + 3^2)} \right].$ Angle = $\cos^{-1} \frac{27}{\sqrt{62}\sqrt{14}}$.
	Obtain answer 23.6°.	A1	AWRT 23.6°. 23.5889°. Radians 0.412 scores A0 (0.4117).
		3	
(b)	Taking a general point P on l , state AP (or PA) in component form, e.g. $(3 - \lambda, -5 + 2\lambda, -5 + 3\lambda)$	B1	Note: $(4, 1, 0)$ or $(4, 1, 1)$, for $4\mathbf{i} + \mathbf{k}$ is not MR, but M1 possible.
	Either equate scalar product of AP and direction vector of l to zero and solve for λ or use Pythagoras in a relevant triangle and solve for λ	M1	$(3 - \lambda, -5 + 2\lambda, -5 + 3\lambda)$. $(-1, 2, 3) = 0$ $-3 -10 -15 + \lambda + 4\lambda + 9\lambda = 0$ or let $\mathbf{OQ} = (4, 0, 1)$ so $\mathbf{AQ} = (3, -5, -5)$, $\mathbf{QP} = (-\lambda, 2\lambda, 3\lambda)$, $\mathbf{AP} = (3 - \lambda, -5 + 2\lambda, -5 + 3\lambda)$ hence $3^2 + (-5)^2 + (-5)^2 = (3 - \lambda)^2 + (-5 + 2\lambda)^2 + (-5 + 3\lambda)^2 + (-\lambda)^2 + (2\lambda)^2 + (3\lambda)^2$ Other alternative approaches are possible, e.g. minimise AP or AP^2 , either by completing the square or by differentiating.
	Obtain $\lambda = 2$	A1	$\lambda = 2$
	State that the position vector \mathbf{OP}^* of the foot is $2\mathbf{i} + 4\mathbf{j} + 7\mathbf{k}$	A1	OE Condone coordinates.
		4	

Question	Answer	Marks	Guidance
(c)	Set up a correct method for finding the position vector of the reflection of A in l	M1	For all methods, allow a sign error in one component only: $\mathbf{OA'} = \mathbf{OP}^* + (\mathbf{OP}^* - \mathbf{OA})$ $their(2,4,7) + (their 2,4,7-1,5,6)$ or $\mathbf{OA'} = \mathbf{OP}^* - (\mathbf{OA} - \mathbf{OP}^*)$ $their(2,4,7) - (1,5,6-their 2,4,7)$ or $\mathbf{OA'} = \mathbf{OA} + 2(\mathbf{OP}^* - \mathbf{OA})$ $\begin{pmatrix} 1+2(their 2-1) \\ 5+2(their 4-5) \\ 6+2(their 7-6) \end{pmatrix}$ or midpoint $\mathbf{OP}^* = (\mathbf{OA} + \mathbf{OA'})/2$ with their λ value substituted. $\frac{1+x}{2} = their 2$ $\frac{5+y}{2} = their 4$ $\frac{6+z}{2} = their 7$
	Obtain answer $3\mathbf{i} + 3\mathbf{j} + 8\mathbf{k}$ or $3\left(\mathbf{i} + \mathbf{j} + \frac{8}{3}\right)$	A1	OE Condone coordinates x = 3, y = 3, z = 8 A1. No method shown and correct answer 2/2.
		2	