Домашнее задание 7

№1

Отрезок, проходящий через середины двух сторон треугольника является его средней линией и равен половине третьей стороны. В данной задаче маленький треугольник состоит из средних линий большого треугольника, значит каждая его сторона в два раза меньше, значит его периметр тоже в два раза меньше и равен $\frac{28}{2} = 14$.

ABCD — произвольный четырёхугольник E — точка пересечения диагоналей F — произвольная точка

Докажем, что сумма расстояний AE + EC + DE + EB от вершин ABCD до E минимальна. Пусть для некоторой точки F сумма расстояний AF + FC + DF + FB меньше. Запишем неравенства треугольника для $\triangle AFC$ и $\triangle DFB$:

$$AF + FC \ge AC$$

 $DF + FB > DB$

Сложим эти неравенства:

$$AF + FC + DF + FB \ge AC + DB = AE + EC + DE + EB$$

Таким образом, сумма расстояний до произвольной точки F не меньше суммы расстояний до E, значит сумма расстояний от вершин до точки E минимальна. Причём неравенства насыщаются только при $F \in AC$ и $F \in BD$ т.е. F = E, значит такая точка единственна.

TOP — произвольный острый или прямой угол M — произвольная точка внутри угла

 $MC\bot OT,\quad MD\bot OP$ — перпендикуляры из M к сторонам угла $KC=CM,\quad ND=DM$ — точки K и M симметричны относительно $OT,\ N$ и M — относительно OP $A=KN\cap OT,\quad B=KN\cap OP$ — искомые точки $P_{\triangle MAB}=MA+AB+BM=KA+AB+BN$

F, H – некоторые точки на сторонах угла

Докажем, что $P_{\triangle MAB}$ не может быть меньше:

$$P_{\triangle MAB} = KA + AB + BN = KB + BN \leq KH + HN \leq KF + FH + HN \quad \forall F \forall H$$

Если угол тупой, то A = B = O.

№4

Диагональ разбивает четырёхугольник на два треугольника. Длина диагонали не может равняться 7.5 т.к. неравенство треугольника выполняется только для $7.5 \le 5 + 2.8$, но тогда для другой пары сторон получится $7.5 \le 1 + 2$. Также длина диагонали не может равняться 5 т.к. даже если парой стороны с длиной 7.5 является наименьшая сторона длины 1, то для другой пары сторон получится $5 \le 2 + 2.8$. Стороны длины 1 и 2 тоже не могут быть диагоналями т.к. 7.5 - 1 и 7.5 - 2 больше всех остальных сторон. Значит, диагональ равна 2.8; такое возможно:

$$1+2>2.8$$
, $1+2.8>2$, $2.8+2>1$
 $5+7.5>2.8$, $7.5+2.8>5$, $2.8+5>7$

Токмаков Александр, ФКН, группа БПМИ165 Домашнее задание 7

№5

Точка, наименее удалённая от вершин четырёхугольника — пересечение его диагоналей. Значит, длина кратчайшей системы дорог равна сумме длин диагоналей и равна $2 \cdot 4 \cdot \sqrt{2} > 11 \quad (128 > 121)$. Такую систему дорог построить нельзя.

№6

Не верно. Рассмотрим $\triangle ABC$ со сторонами AB=2, BC=3, $AC=\frac{9}{2}$ (такой треугольник существует) и подобный ему $\triangle A_1B_1C_1$ с коэффициентом $\frac{3}{2}$, $A_1B_1=3$, $B_1C_1=\frac{9}{2}$, $A_1C_1=\frac{27}{4}$. Три угла одного треугольника равны трём углам другого, и две стороны одного равны двум сторонам другого, но третьи стороны разные, значит треугольники не равны.