Talk 9 Global Construction: Siegal Eisenstein family

Recall through Talk I-Talk 8, we have choosen Siègel Sections at each places. This guès a Siègel Eisenstein series $E_D^{Si\acute{e}g}$ and computed the Whitlaker integrals

§ 9.1 Siegal Eisenstein senès and ils normalization

Pleall the local sections we used to pullback

· Archemediain places :
$$f_{\nu}^{\text{sig}}(q,z) := \mu(g,i)^{-k} |\mu(g,i)|^{k-2z-n}$$

Then we can define a global Siegal section as

$$f_{\mathcal{D}}^{\text{Sigg}} := \bigotimes_{\mathcal{D}} f_{\mathcal{D}}^{\text{Sigg}} \bigotimes_{\mathcal{D}} f_{\mathcal{D}}^{\mathcal{O}} \otimes f_{\mathcal{D}}^{\text{Sigg}} \otimes f_{\mathcal{D}}^{\mathcal{O}, \mathbf{X}}$$

To construct the Siegal Eisenstein family, we need to normalize for to

- · make the whittaker integrals interpolatable: add normalization factor Bo
- . fit the pullback integrals : modification at Zram and "⊗ T(det(-1)"

(1) Reall the Whittaker integrals $z:=z_k$

· archnedian places:

$$W_{\beta}\left(d\log(y,y^{*}); f_{\nu}^{\text{lie}}, 3_{k}\right) = \begin{cases} 0 & \text{det } \beta \leq 0 \\ C_{\nu}(n,k) \delta_{\nu}(n,z) e_{\nu}\left(i \operatorname{Tr}(\beta y y^{*})\right) \left(\det \beta\right)^{k-n} \left(\det y^{k}\right)^{k} & \text{det } \beta > 0 \\ & \text{here } y \text{ should be } y^{\text{su}}, \text{ but we can a priori adjust it } \end{cases}$$

· Imramified planes:

$$W_{\beta}\left(\operatorname{diag}(y,y^{*});f_{0}^{*},3\right) = \overline{\zeta}(\operatorname{dot}y)\left|\operatorname{dot}y_{\overline{y}}\right|_{0}^{-2\beta+\frac{n}{2}} \overline{D}_{0}^{-n(n-1)} h_{\nu,y^{*}\beta y}\left(\overline{\zeta}(w)g_{\nu}^{-2\beta-n}\right)$$

$$\times \frac{\overline{\prod_{i=r}^{n-1} L(2\beta+i-n+1)} \overline{\zeta}(\eta_{k/F}^{i})}{\overline{\prod_{i=r}^{n-1} L(2\beta+n-1)} \overline{\zeta}(\eta_{k/F}^{i})}$$

$$W_{\beta}((A_{A}); f^{sieg}, g) = \overline{\zeta}(dot A) | dot A \overline{A} |^{-\delta + \frac{n}{2}} 1_{Harmg(O_{F})}(\beta^{A})$$

$$\times$$
 vol \cdot $\left(\operatorname{tr}_{F_{\mathcal{U}}}^{K_{\mathcal{U}}}\left(\frac{\operatorname{Tr}\overline{\beta_{4_{1}}^{A}}}{\overline{X}}+\frac{\operatorname{Tr}\beta_{4_{1}}^{A}}{X}+\frac{\operatorname{Tr}\beta_{3_{2}}^{A}}{\overline{Y_{\overline{Y}}}}\right)\right)$

where $\beta^A := A^{\times}\beta A$. This is the \mathfrak{G} -case and \diamondsuit -case is similar

· p-adic places:

$$W_{\beta}(\left(\begin{smallmatrix}A\\A^{-\frac{1}{4}}\end{smallmatrix}\right),\ \beta^{\alpha},\ \xi) = (\tau^{-\frac{1}{4}})\left(d\sigma^{\beta}\right)\left|d\sigma^{\beta}\right|_{\mathcal{V}}^{2\delta}\mathcal{G}(\tau^{\prime})^{n}C_{n}((\tau^{-1})^{\prime},-\xi)\underbrace{\Phi_{\delta}((\beta^{A})^{\pm})}_{\text{Hermitop}}(\beta^{A})$$

$$\times C_{\delta}(d\sigma^{A})\left|d\sigma^{\beta}\right|_{\mathcal{V}}^{2\delta}\mathcal{G}(\tau^{\prime})^{n}C_{n}((\tau^{-1})^{\prime},-\xi)\underbrace{\Phi_{\delta}((\beta^{A})^{\pm})}_{\text{Hermitop}}(\beta^{A})$$

So we define the normalization factor Bo for the Eigenstein datum $\mathcal{D} = \S \pi, \tau, \Sigma \S$

$$\mathcal{B}_{\mathfrak{D}} = \prod_{\substack{\nu \mid \infty \\ \infty - \text{planes}}} (C_{\nu}(n,k) \delta_{\nu}(n,z))^{-1} \cdot \prod_{\substack{n-1 \\ \infty - \nu \mid \infty}} \sum_{\substack{\nu \mid \infty \\ \infty - \nu \mid \infty}} (C_{\nu}(n,k) \delta_{\nu}(n,z))^{-1} \cdot \prod_{\substack{n-1 \\ \infty - \nu \mid \infty}} \sum_{\substack{\nu \mid \infty \\ \infty - \nu \mid \infty}} (C_{\nu}(n,k) \delta_{\nu}(n,z))^{-1} \cdot \prod_{\substack{n-1 \\ \infty - \nu \mid \infty}} \sum_{\substack{\nu \mid \infty \\ \infty - \nu \mid \infty}} (C_{\nu}(n,k) \delta_{\nu}(n,z))^{-1} \cdot \prod_{\substack{n-1 \\ \infty - \nu \mid \infty}} \sum_{\substack{\nu \mid \infty \\ \infty - \nu \mid \infty}} (C_{\nu}(n,k) \delta_{\nu}(n,z))^{-1} \cdot \prod_{\substack{n-1 \\ \infty - \nu \mid \infty}} \sum_{\substack{\nu \mid \infty \\ \infty - \nu \mid \infty}} (C_{\nu}(n,k) \delta_{\nu}(n,z))^{-1} \cdot \prod_{\substack{n-1 \\ \infty - \nu \mid \infty}} \sum_{\substack{\nu \mid \infty \\ \infty - \nu \mid \infty}} (C_{\nu}(n,k) \delta_{\nu}(n,z))^{-1} \cdot \prod_{\substack{n-1 \\ \infty - \nu \mid \infty}} \sum_{\substack{\nu \mid \infty \\ \infty - \nu \mid \infty}} (C_{\nu}(n,k) \delta_{\nu}(n,z))^{-1} \cdot \prod_{\substack{n-1 \\ \infty - \nu \mid \infty}} \sum_{\substack{\nu \mid \infty \\ \infty - \nu \mid \infty}} (C_{\nu}(n,k) \delta_{\nu}(n,z))^{-1} \cdot \prod_{\substack{n-1 \\ \infty - \nu \mid \infty}} \sum_{\substack{\nu \mid \infty \\ \infty - \nu \mid \infty}} (C_{\nu}(n,k) \delta_{\nu}(n,z))^{-1} \cdot \prod_{\substack{n-1 \\ \infty - \nu \mid \infty}} \sum_{\substack{\nu \mid \infty \\ \infty - \nu \mid \infty}} (C_{\nu}(n,k) \delta_{\nu}(n,z))^{-1} \cdot \prod_{\substack{n-1 \\ \infty - \nu \mid \infty}} \sum_{\substack{\nu \mid \infty \\ \infty - \nu \mid \infty}} (C_{\nu}(n,k) \delta_{\nu}(n,z))^{-1} \cdot \prod_{\substack{n-1 \\ \infty - \nu \mid \infty}} \sum_{\substack{\nu \mid \infty \\ \infty - \nu \mid \infty}} (C_{\nu}(n,k) \delta_{\nu}(n,z))^{-1} \cdot \prod_{\substack{n-1 \\ \infty - \nu \mid \infty}} \sum_{\substack{\nu \mid \infty \\ \infty - \nu \mid \infty}} (C_{\nu}(n,k) \delta_{\nu}(n,z))^{-1} \cdot \prod_{\substack{n-1 \\ \infty \rightarrow \infty}} \sum_{\substack{n-1 \\ \infty \rightarrow \infty}} (C_{\nu}(n,k) \delta_{\nu}(n,z))^{-1} \cdot \prod_{\substack{n-1 \\ \infty \rightarrow \infty}} \sum_{\substack{n-1 \\ \infty \rightarrow \infty}}$$

and define Egg as the Eisenstein series associated to Bo. f. Then by preming results.

. And for $\beta \in G_{n,A}$, we have

$$\begin{split} \mathbb{E}_{\mathcal{B},\beta} \left(\left(\begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \right) &= \text{a constant independent of } \tau \left(\begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\ &\times \left(\tau \begin{smallmatrix} A \\ & A \end{smallmatrix} \right) \\$$

So recall the definition of \$\mathbb{T}_2, it suffices to "interpolate the Hecke characters in families"! A more conviewed perspectie is from measures.

89.2 p-adic interpolations

Let L be a finite extension of Qp that is fixed throughout.

- Let $H = \prod_{v \mid p} GL_r \times GL_s$ be a group scheme / Z_p . Recall $H(Z_p)$ is the Galois group of the Igusa tower over the ordinary locus of the toroidal compactified Shumra vanety.
- . Let T/Zp be the diagonal torus of H?
- · Define the weight algebra as the completed group algebra $\Lambda r.s := O_L \mathbb{I} T (1+p\mathbb{Z}_p) \mathbb{I}$. As $T(1+p\mathbb{Z}_p)$ acts on the Igusa scheme, the space of p-adic modular forms on Gu(r,s) has a structure of $\Lambda r.s-algebra$.

Characters:

Let $\underline{k}=(C_{s+1},\cdots,C_{s+r};C_1,\cdots,C_s)$ be a weight (in the sense of Wau). Then we can associate it with a character of $\top(1+p\mathbb{Z}_p)$ as

$$[\underline{k}] \cdot \operatorname{diag} (t_1, \cdots, t_r, t_{r+1}, \cdots, t_{r+s}) = t_1^{C_{s+1}} \cdots t_r^{C_{s+r}} t_{r+1}^{-C_1} \cdots t_{r+s}^{-C_s}$$

. Fix a finte order character χ_0 on $\top(\mathbb{F}_p) \stackrel{\sim}{\leftarrow} \top(\frac{\mathbb{Z}_p}{p\mathbb{Z}_p}) \stackrel{\leftarrow}{\longleftarrow} \top(1+p\mathbb{Z}_p)$ as the torsion part of $\top(1+p\mathbb{Z}_p)$, throughout.

Then we define a $\overline{\mathbb{Q}_p-point}$ φ of $\underline{Spee}\Lambda$ (i.e. φ : $\Lambda_{r,s} \longrightarrow \overline{\mathbb{Q}_p}$) to be anithmetic if $\exists \ \underline{k} = (0, \cdots, 0, k, \cdots, k)$ s.t. φ is given by a character $\chi_0 \chi_{\varphi}[\underline{k}]$ for some $\chi_0 \varphi$ of order and conductor power of φ , and $\chi_0 \varphi$. Here $\chi_0 \varphi$ is called the weight of φ , denoted by $\chi_0 \varphi$.

Note: In [Wau15, p2022], $k \ge 2(a+b+i)$, this is wierd? I guess from Talk& that this should be k > r+s+i?

Remark: Here we can regard X_{φ} as a character of $T(\mathbb{Z}_p)$ that is trivial on the torsion part $T(\mathbb{F}_p)$, while X_0 is the effect on the torsion.

The fairly of Eisenstein datum:

There are various ways to define a fairly of Eisenstein datum. The differences are not essential. We take [Wanzo, Defn 7:37 as a starting point, at the same time look at [Wan 15, Defn 5:3].

 $\underline{\text{Dofinthou}}: A \text{ family of Eisenstein datum is a tuple } \mathbb{D} = (L, \mathbb{T}, f', \tau_0, \chi_0):$

- . LIQUIS a finite extension, used to define Aris.
- · I is a normal domain over Mrs which is also a finite Mrs-module.
- . If is an II-adic Hida fairly of cuspidal ordinary eigenforms on U(r.s)
- . To is a finite order character of $A\tilde{k}/K^{\times}$ whose conductors at princes above p divide (p).
- · Xo as above.

Then we define the <u>Iwasawa algebra</u> $\Lambda_{\mathbb{D}} := \mathbb{I} \underset{\mathcal{O}}{\otimes} \Lambda_{\mathcal{K}}, \quad \Lambda_{\mathcal{K}} := \mathcal{O}_{\mathcal{L}} \mathbb{I}_{\mathcal{K}} \mathbb{I}_{\mathcal{K}}$

For the character To, we deform it into p-adic family as $T := To \cdot \Sigma_K$, where $\Sigma_K : totological character$ Calk $\longrightarrow T_K \longrightarrow \Lambda_K \longrightarrow \Lambda_D$ abelian

Galab Treck

Axi Axi

Kxi Axi

Kxi Axi

Figure 1. The control of t

Let ϕ be a $\bigcirc \phi$ -point of Spec MD. Then $\mathcal{T}_{\phi}:=\phi \circ_{\mathbf{T}}$ is the specialization of \mathbf{T} at ϕ Denote $\mathbb{D}_{\phi}:=(\pi_{\phi_{\phi}},\mathcal{T}_{\phi},\Sigma_{\phi})$ as the specialization of \mathbb{D} at ϕ . It is an Eisenstein datum potentially.

Doto: Let of be a @-point of Spec MD.

(1) it is called <u>anithmetic</u> if ϕ_{\pm} is anthwatic (i.e. its image in Ars is anithmetic) of weight k_{+} and $\phi(y^{+}) = (1+p)^{\frac{k_{+}}{2}} f_{+} , \quad \phi(y^{-}) = (1+p)^{\frac{k_{+}}{2}} f_{-} .$

(2) moreover if the specialization f_{φ} is classical and generates an irreducible cuspidal autorep π_{φ} of u(r,s), and $(\pi_{\varphi}, \tau_{\varphi})$ is generic, we call φ a generic point.

Dente X gen := the set of generic arithmetic points. It is a dense subset of SpeeND. (I cannot see why? Does this require p to be sufficiently large?).

Theorem: There exists a p-adic measure $\mathbb{E}_{\mathbb{D}}^{Sieg} \in \text{Meas}(T(1+p\mathbb{Z}_p) \times T_k, V_{U(r+s+i)})$ such that for every $\varphi \in \mathcal{X}^{gen}$, $\mathbb{E}_{\mathbb{D}}^{Sieg}(\varphi) = \mathbb{E}_{\mathbb{D}_{\varphi}}^{Sieg}$.

Proof: Recall we computed $E_{D_{\phi}}^{Sl\acute{e}g}$ $\left(\begin{pmatrix}A\\A^{-*}\end{pmatrix}\right)$ as the β -th coefficient of the β -expansion of $E_{D_{\phi}}^{Sr\acute{e}g}$ at the cusps indexed by diag (A,A^{-*}) , as

$$\begin{array}{c} \text{End} \\ \text{End} \\ \text{Por} \\ \text{Por$$

Then the -parts are interpolated by the 8-measures in Meas($T(1+pZp) \times Tk$, O_L). The convolution of these 8-measures guies an element in Meas($T(1+pZp) \times Tk$, O_L) interpolating Esieg. Then we see that there exists a p-ade measure

By b-expansion principle and Kunner conguences, En & Meas (TXTK, Vull+s+1)).