BMMS2633 ADVANCED DISCRETE MATHEMATICS Academic Year 2023/24

Session 202305

Question 1

a) (i) 33

(ii) Binary tree

(iii) Fully parenthesized $\left[9 \div \left(8 - (2+3) \right) \right] \times \left[1 + (5 \times 2) \right]$

(iv) Postorder search: 9 8 2 3 + $-\div$ 1 5 2 \times + \times

b) (i) G P B K R F M C A S D

(ii) Expected number of comparisons

 $=\frac{34}{11}$

(iii) Preorder search: G B A F C D P K M R S

Postorder search: A D C F B M K S R P G

c)

Minimum total weight = 23

Question 2

a) (i)
$$\langle v_o \rangle ::= a \langle v_o \rangle \mid a \langle v_1 \rangle$$

$$\langle v_1 \rangle ::= b c \langle v_1 \rangle \mid d e \langle v_2 \rangle \mid d \langle v_2 \rangle \mid f f \langle v_1 \rangle$$

$$\langle v_2 \rangle ::= e \langle v_3 \rangle \mid b \langle v_1 \rangle$$

$$\langle v_3 \rangle ::= e$$

aabcdee is a syntactically correct sentence.

(iv) Regular expression = a*a (bc \vee ff)* (de \vee d) [b(bc \vee ff)* (de \vee d)]* ee

Question 2

(b) (i) State transition table of f_{0110}

	f_{0110}
S_0	S_2
S_1	S_3
S_2	S_3
S_3	S_0
S_4	S_2
S_5	S_3

(ii)

	S_0	S ₄	S_1	S_2	S ₃	S ₅
0	S_3	S ₃	S_0	S_4	S_2	S ₄
1	S_1	S_2	S ₄	S_0	S ₃	S ₅

(iv)

(v) Input string 11011 is accepted by M and M/R since S_3 and $[S_3]$ are acceptance states.

Question 3

- a) (i) * is not a valid binary operation defined on \mathbb{R} .
 - (ii) * is not a valid binary operation defined on \mathbb{Z} .
- b) * is commutative on \mathbb{R} Since $(p * q) * r \neq p * (q * r)$, the binary operation on \mathbb{R} defined by (3pq - 2) is not associative.
- c) (i) a = ub = w
 - (ii) Identity element is *t*.
 - (iii) Inverse of s is s
 Inverse of t is t
 Inverse of u is u
 Inverse of w is w

Question 4

a) (i)

W	e(w)
00	00000
01	01011
10	10101
11	11110

- (ii) The minimum distance of this (2, 5) encoding function $e_H = 3$.
- (iii)

Coset leader	Syndrome		
10000	101		
01000	011		
00100	100		
00001	001		

- (iv) (1) d(11101) = 10
 - (2) d(11010) = 11

Question 4

b) (i)

Letter, (x_i)	W	M	С	Е	О	L	P
Probability, $P(x_i)$	0.18	0.01	0.03	0.26	0.11	0.21	0.20
Codeword, C_i	000	00111	00110	01	0010	10	11

(ii) Average code length, L(C) = 2.52 bits

Entropy
$$H(x) = 2.4563$$

Efficiency =
$$0.9747$$

The efficiency of this code is 97.47%