Exercise Sheet 02 Operator Algebras

Contributors: Valentin Hock, Linus Mußmächer, Minona Schäfer

May 22, 2023

2.3 Quasi-nilpotent elements

Consider the space ℓ^2 and the operator

$$T: \ell^2 \to \ell^2, (x_0, x_1, \dots) \mapsto \left(0, \frac{x_1}{2}, \frac{x_2}{2^2}, \dots, \frac{x_k}{2^k}\right)$$

in the Banach algebra of (normed) operators on ℓ^2 . Then we have ||T||=1/2 and

$$T^{2}(x_{0}, x_{1}, \dots) = \left(0, \frac{0}{2}, \frac{x_{0}}{2^{1+2}}, \frac{x_{1}}{2^{2+3}, \dots}\right)$$

as well as

$$T^{n}(x_{0}, x_{1}, \dots) = \left(\underbrace{0, 0, \dots, 0}_{n \text{ zeroes}}, \frac{x_{0}}{2^{1+2+\dots+n}}, \frac{x_{1}}{2^{2+3+\dots+(n+1)}}, \dots\right).$$

Then $T^n(1,0,\ldots)=(0,\ldots,0,1/2^{\frac{n(n+1)}{2}},0,\ldots)\neq (0,0,\ldots)$ and T is therefore not nilpotent. Furthermore, we can calculate the norm of T:

$$||T^{n}(x_{0}, x_{1}, \dots)|| = \sum_{k=n}^{\infty} \left| \frac{x_{k-n}}{2^{\sum_{i=0}^{n} k+i}} \right| \le \frac{1}{2^{\frac{n(n+1)}{2}}} \sum_{k=0}^{\infty} |x_{k}| = \frac{1}{2^{\frac{n(n+1)}{2}}} ||(x_{0}, x_{1}, \dots)||$$

and equality holds for $(x_0, x_1, \dots) = (1, 0, 0)$ as seen above. Thus, $||T^n|| = \frac{1}{2^{\frac{n(n+1)}{2}}}$. Then

$$\lim_{n \to \infty} \|T^n\|^{\frac{1}{n}} = \lim_{n \to \infty} \left(\frac{1}{2^{\frac{n(n+1)}{2}}}\right)^{\frac{1}{n}} = \lim_{n \to \infty} \frac{1}{2^{\frac{n+1}{2}}} = 0$$

so T is quasi-nilpotent.

Assume the Banach algebra \mathcal{A} is generated by a quasi-nilpotent element a. Then every element can be represented as a^k , so the algebra is commutative because $a^m a^n = a^{m+n} = a^n a^m$. Then for any $b \in \mathcal{A}$, we have

$$\lim_{n \to \infty} \|b^n\|^{\frac{1}{n}} = \lim_{n \to \infty} \|a^{nk}\|^{\frac{1}{n}} \le \lim_{n \to \infty} (\|a^n\|^{\frac{1}{n}})^k = 0^k = 0.$$

Now, let $\varphi \in \Omega(\mathcal{A})$ be an element of the spectrum of \mathcal{A} , that is, a non-zero homomorphism $\varphi : \mathcal{A} \to \mathbb{C}$. Because φ is non-zero (on a fixed element $b \in \mathcal{A}$), we have $\|\varphi\| > 0$ and for any $n \in \mathbb{N}$ the following holds:

$$|\varphi(b)| = |\varphi(b)^n|^{\frac{1}{n}} = |\varphi(b^n)|^{\frac{1}{n}} \le \underbrace{\|\varphi\|^{\frac{1}{n}}}_{\to 1} \underbrace{\|b^n\|^{\frac{1}{n}}}_{\to 0} \to 0$$

But this implies $\varphi(b) = 0$, a contradiction. Therefore, the spectrum $\Omega(\mathcal{A})$ must be empty.

2.9 Topological zero divisors

We consider two cases:

• First, let X be non-compact. Then we have $\inf_{x\in X} |f(x)| = 0$, because if it were $\varepsilon > 0$ we would have $X = \{x \in X \mid |f(x)| \ge \varepsilon\}$ non-compact and thus $f \notin C_0(X)$. Therefore, we need only prove $\zeta(f) = 0$.

Choose any $\varepsilon > 0$ define $K := \{x \in X \mid |f(x)| \ge \varepsilon\}$. Because $\inf_{x \in X} |f(x)| = 0$, there exists an $x_0 \in X$ for which $|f(x_0)| < \varepsilon$ holds (and thus $x_0 \notin K$). Because K is compact, it is closed and thus $X \setminus K$ is open. Choose an open, pre-compact neighborhood U_0 of x_0 in $X \setminus K$ and set $K' = X \setminus U_0$. The set $\{x_0\}$ is compact, and K' is closed, so Uryson's Lemma yields the existence of a function $b: X \to \mathbb{C}$ (with ||b|| = 1) (in $C_0(X)$) with $b(x_0) = 1$ and $b|_{K'} \equiv 0$. Then for $x \in K \subseteq K'$, we have $|(fb)(x)| = |f(x)| \cdot |b(x)| = |f(x) \cdot 0 < \varepsilon$. For $x \in K^{\complement}$, it follows that $|(fb)(x)| = |f(x)| \cdot |b(x)| < \varepsilon \cdot 1 = \varepsilon$ and thus $||fb|| < \varepsilon$. This shows $\zeta(f) = \inf_{b \in C_0(X), ||b|| = 1} ||fb|| = 0$.

So if X is not compact, $\zeta(f) = \inf_{x \in X} |f(x)| = 0$ holds and every $f \in C_0(X)$ is a topological zero divisor.

• Now, let X be a compact Hausdorff space and $f \in C_0(X)$. If f is non-invertible, we have $0 \in f(X)$ and thus $\inf_{x \in X} |f(x)| = 0$. In this case, we can argue as we did in the first point and thusly show $\zeta(f) = 0$ in much the same way.

Consider now an invertible f with $\inf_{x \in X} |f(x)| = k > 0$. We conclude

$$\left\|\frac{1}{f}\right\| = \sup_{x \in X} \frac{1}{|f(x)|} = \frac{1}{\inf_{x \in X} |f(x)|} = \frac{1}{k},$$

so for any $b \in C_0(X)$ with ||b|| = 1 we have $||f \cdot b|| \cdot ||\frac{1}{f}|| \ge ||f \cdot b \cdot \frac{1}{f}|| = ||b|| = 1$, so $||f \cdot b|| \ge k$ and therefore $\zeta(f) \ge k$.

Choose now any $\varepsilon > 0$. Then $K := \{x \in X \mid |f(x)| \geq k + \varepsilon\}$ is compact and $K \neq X$ (or k would not be the infimum of |f(x)|). Just like in the first bullet point, we can choose $x_0 \in X \setminus K$ and fitting neighborhoods to get the existence of a function b fulfilling ||b|| = 1, $||bf|| < k + \varepsilon$ and $b \in C_0(X)$. Therefore, $\zeta(f) \leq k$ and thus $\zeta(f) = k > 0$. This also shows that the (invertible) element f is not a topological zero divisor.

To summarize, we have proven $\zeta(f)=\inf_{x\in X}f(x)$ for any $f\in C_0(X)$, that f is a topological zero divisor in a compact space always and in a non-compact space if and only if it is invertible. It remains to show that in a commutative C^* -algebra $\mathscr{A}, f\in \mathscr{A}$ is a topological zero divisor if and only if $0\in\sigma(f)$. As \mathscr{A} is commutative, we can employ the Gelfand Representation (1.3.6) and conclude that \mathscr{A} can be embedded in the algebra $C_0(\Omega(\mathscr{A}))$ by Γ , and $\sigma(f)=\inf \hat{f}$ (because \mathscr{A} is unital, or $\sigma(f)$ would not be defined). Then $0\in\sigma(f)\Leftrightarrow 0\in\inf \hat{f}\Leftrightarrow f$ is non-invertible, and because $\Omega(\mathscr{A})$ is compact (as \mathscr{A} is unital), this is equivalent to f being a topological zero divisor.