Управление динамическим качеством автоматических систем на основе формализма линейно-квадратичной оптимизации

А. Б. Филимонов

МИРЭА – Российский технологический университет e-mail: filimon_ab@mail.ru

e-mail: nbfilimonov@mail.ru

Аннотация. Разрабатывается методология аппроксимационной коррекции управляемых динамических систем. Желаемый результат коррекции задается эталонной моделью. В предлагаемых схемах динамической коррекции применяется формализм линейно-квадратичной оптимизации.

Ключевые слова: синтез систем управления; качество управления; динамическая коррекция; эталонная модель; линейно-квадратичная оптимизация

I. ЛИНЕЙНО-КВАДРАТИЧНЫЙ ТРЕНД» В СОВРЕМЕННОЙ АВТОМАТИКЕ

Проблема качества процессов управления, несмотря на давнюю историю развития, до сих пор остается важнейшей развивающейся в теории и практике автоматических систем. Более того. приходится констатировать, что В исследованиях последних десятилетий в известной мере утрачена преемственность с интуитивно ясными и технически содержательными классическими представлениями о качестве процессов управления, выработанными отечественной автоматики [1]. Заметим, что исторически первые представления динамическом качестве формировались в 40-х годах XX в. в терминах прямых качества показателей регулирования, времени устойчивости перерегулирования, степени колебательности и др.

В современной автоматике при синтезе автоматических систем все большую популярность находят требования не желаемого или допустимого, а оптимального качества процесса управления синтезируемой системы [2]. При этом безраздельное господство получили квадратичные критерии оптимальности, породившие класс линейноквадратичных (ЛК) задач управления и являющиеся исходными в ставшем уже классическим методе аналитического конструирования оптимальных регуляторов (АКОР) Калмана-Летова. Здесь критерий качества задается в виде интегральной квадратичной формы от тех или иных показателей действительного переходного процесса, либо от невязки (рассогласования) действительного и желаемого (эталонного) переходных процессов системы и требуется обеспечить максимальную их близость (см., например, [2, с. 379-382; 3, с. 483-484; 4, с. 240-242; 5, с. 704-705]).

Н. Б. Филимонов

Московский государственный университет

им. М.В. Ломоносова

Однако, несмотря на чрезвычайную популярность и видимые достоинства, методология квадратичной оптимизации процессов управления неоднократно подвергалась резкой критике со стороны ведущих отечественных и зарубежные ученых [6]. Так, еще Беллман (R.E. Bellman) достаточно аргументировано утверждал, что введение интегрального квадратичного критерия - «вопрос математического удобства и часто диктуется желанием применить для решения задачи аналитические методы и получить решение в явном виде», а, касаясь задачи АКОР, особо подчеркивал, что данной «менее важной задачей» часто заменяют исходную, «более реалистичную задачу» оптимизации.

В настоящей работе предлагается новый метод синтеза автоматического регулирования (CAP), на динамической коррекции объекта основанный управления [7], которая осуществляется посредством применения формализма ЛК-задач оптимизации. В основе решаемой задачи коррекции лежит идея постулирования желаемых динамических свойств синтезируемой системы в виде заданной эталонной модели скорректированного объекта. Алгоритмизация задач коррекции базируется на формализме ЛК-задач управления, причем оптимизируемые интегральные квадратичные функционалы служат мерой отклонения формируемых переходных характеристик каналов регулирования от эталонных значений.

Предлагаемый метод показывает возможность конвергенции классической концепции прямых показателей качества процессов регулирования и методологии АКОР.

II. Задача динамической коррекции объекта Управления

Один из действенных способов решения задач управления заключается в их *декомпозиции* на две подзадачи: предварительной динамической коррекции объекта и формирования закона управления для

скорректированного объекта. Данную идею воплощает блок-схема САУ, представленная на рис. 1. Здесь управляющее устройство (УУ) состоит из двух блоков: блока коррекции (БК), исправляющего динамику объекта в соответствии с заданной эталонной динамической моделью, и блока управления (БУ), реализующего закон управления для скорректированного объекта.

Рис. 1.

Далее рассматривается класс линейных стационарных динамических объектов, описываемых в переменных состояния уравнениями вида

$$\dot{\mathbf{x}} = \mathbf{A}_0 \mathbf{x} + \mathbf{B}_0 \mathbf{u} \,, \tag{1}$$

$$\mathbf{y} = \mathbf{C}_0 \mathbf{x} \,, \tag{2}$$

где $t \ge 0$, $\mathbf{u} \in \mathbf{R}^r$ — управляющий вход, $\mathbf{x} \in \mathbf{R}^n$ — состояние, $\mathbf{y} \in \mathbf{R}^m$ — управляемый выход объекта, причем полагаем, что $1 < m \le r$, $\mathbf{A}_0 \in \mathbf{R}^{n \times n}$, $\mathbf{B}_0 \in \mathbf{R}^{n \times r}$, $\mathbf{C}_0 \in \mathbf{R}^{m \times n}$.

Передаточная матрица объекта по каналу «вход-выход» равна

$$\mathbf{W}_0(s) = \mathbf{C}_0 (\mathbf{E}_n s - \mathbf{A}_0)^{-1} \mathbf{B}_0,$$

где ${\bf s}$ — комплексная частота, ${\bf E}_n$ — единичная матрица n-го порядка.

Назначение САУ – отработка уставки $\mathbf{v}^*(t)$:

$$\mathbf{y}(t) \approx \mathbf{y}^*(t)$$
,

в соответствии с заданными требованиями качества процессов управления.

Действие БК будем оценивать по реакции скорректированного объекта на тестовый сигнал

$$\mathbf{v}(t) = \mathbf{v}(0) \neq 0 \ (t > 0)$$
. (3)

Полагаем, что данный сигнал генерируется *задатчиком*, описываемым дифференциальным уравнением

$$\dot{\mathbf{v}} = 0$$
.

Желаемую динамику выхода скорректированного объекта зададим эmалонной моделью (ЭМ) порядка $n_{
m M}$:

$$\dot{\mathbf{x}}_{\mathbf{M}} = \mathbf{A}_{\mathbf{M}} \mathbf{x}_{\mathbf{M}} + \mathbf{B}_{\mathbf{M}} \mathbf{v} \,, \tag{4}$$

$$\mathbf{y}_{\mathbf{M}} = \mathbf{C}_{\mathbf{M}} \mathbf{x}_{\mathbf{M}} + \mathbf{D}_{\mathbf{M}} \mathbf{v}, \tag{5}$$

где $\mathbf{x}_{M} \in \mathbf{R}^{n_{M}}$ — состояние, $\mathbf{y}_{M} \in \mathbf{R}^{m}$ — выход эталонной модели; \mathbf{A}_{M} , \mathbf{B}_{M} , \mathbf{C}_{M} , \mathbf{D}_{M} — числовые матрицы соответствующих размеров.

Полагаем, что ЭМ устойчива, так что реакция выхода на постоянное входное воздействие (3) устанавливается на постоянном уровне, т.е.

$$\lim_{t\to\infty}\dot{\mathbf{y}}_{\mathrm{M}}(t)=0.$$

Расхождение между выходом скорректированного объекта и выходом эталонной модели выражает *невязка*

$$\delta \mathbf{y}(t) = \mathbf{y}(t) - \mathbf{y}_{\mathbf{M}}(t)$$
.

Динамическая коррекция объекта должна обеспечивать требование:

$$\delta \mathbf{y}(t) \approx 0$$
. (6)

Введем малый положительный параметр ү:

$$0 < \gamma << 1. \tag{7}$$

Точность приближения (6) будем оценивать следующим интегральным квадратичным критерием (здесь || ... || обозначает евклидову норму вектора):

$$J_{y}^{\gamma} = \int_{0}^{\infty} e^{-2\gamma t} \| \delta \mathbf{y}(t) \|^{2} dt, \qquad (8)$$

а интенсивность управляющих воздействий - критерием

$$J_{u}^{\gamma} = \int_{0}^{\infty} e^{-2\gamma t} \| \mathbf{u}(t) \|^{2} dt.$$
 (9)

Весовой множитель $e^{-2\gamma t}$ обеспечивает сходимость функционалов (8) и (9) для класса *ограниченных* функций, позволяя рассматривать установившиеся режимы в САУ с *ненулевой* асимптотикой процессов $\delta \mathbf{y}(t)$ и $\mathbf{u}(t)$.

Задачу синтеза БК можно формализовать посредством ограничения или минимизации критериев (8), (9). В наиболее общей постановке это будет задача двухкритериальной оптимизации вида (g > 0):

$$J^{\gamma} = gJ^{\gamma}_{\nu} + J^{\gamma}_{\mu} \rightarrow \min$$
,

или то же самое, но с учетом (8), (9):

$$J^{\gamma} = \int_{0}^{\infty} e^{-2\gamma t} (g \| \delta \mathbf{y}(t) \|^{2} + \| \mathbf{u}(t) \|^{2}) dt \rightarrow \min . \quad (10)$$

Оптимизационный аспект структурно-параметрического синтеза БК показывает, что рассматриваемый тип динамической коррекции объекта по своему смыслу является аппроксимационным.

Предлагаемую структуру БК отражает рис. 2.

Функционирование БК подчиняется уравнениям

$$\mathbf{u} = -(\mathbf{K}_1 \, \mathbf{x} + \mathbf{K}_2 \, \mathbf{x}_{\mathbf{M}} + \mathbf{K}_3 \mathbf{v}) ,$$
 (11)

$$\dot{\mathbf{x}}_{\mathbf{M}} = \mathbf{A}_{\mathbf{M}} \mathbf{x}_{\mathbf{M}} + \mathbf{B}_{\mathbf{M}} \mathbf{v} \,, \tag{12}$$

где $\mathbf{K}_1 \in \mathbf{R}^{r \times n}$, $\mathbf{K}_2 \in \mathbf{R}^{r \times n_{\mathrm{M}}}$, $\mathbf{K}_3 \in \mathbf{R}^{r \times m}$ – матричные настроечные параметры БК; парой $({f A}_M, {f B}_M)$ обозначено звено, реализующее уравнение состояния (4) ЭМ.

Задача синтеза БК сводится к нахождению закона управления (11), оптимального в смысле критерия (10).

Рис. 2.

Базовая ЛК-задача управления

Рассмотрим систему S порядка $N = n + n_{\mathbf{M}} + m$:

$$\dot{\mathbf{x}} = \mathbf{A}_0 \mathbf{x} + \mathbf{B}_0 \mathbf{u} \,, \tag{13}$$

$$\dot{\mathbf{x}}_{\mathbf{M}} = \mathbf{A}_{\mathbf{M}} \mathbf{x}_{\mathbf{M}} + \mathbf{B}_{\mathbf{M}} \mathbf{v}, \tag{14}$$

$$\dot{\mathbf{v}} = 0$$
, (15)

$$\delta \mathbf{y} = \mathbf{C}_0 \mathbf{x} - \mathbf{C}_M \mathbf{x}_M - \mathbf{D}_M \mathbf{v} . \tag{16}$$

Она описывает динамику состояний объекта эталонной модели, формирование сигналов $\mathbf{v}(t)$ и $\delta \mathbf{y}(t)$.

Сформируем вектор состояния системы S:

$$\mathbf{z} = \begin{bmatrix} \mathbf{x} \\ \mathbf{x}_{\mathrm{M}} \\ \mathbf{v} \end{bmatrix}. \tag{17}$$

Тогда уравнения (13)–(16) можно записать в форме:

$$\dot{\mathbf{z}} = \mathbf{A}\mathbf{z} + \mathbf{B}\mathbf{u} \,, \tag{18}$$

$$\delta \mathbf{y} = \mathbf{C}\mathbf{z} \ . \tag{19}$$

В соответствии с (17) матрицы А, В, С имеют блочную структуру (нулевые блоки оставлены пустыми), пред-ставленную следующими выражениями:

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_0 & & & \\ & & \mathbf{A}_M & \mathbf{B}_M \\ & & & \mathbf{B}_M \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} \mathbf{B}_0 \\ & & \\ & & \end{bmatrix},$$

$$\mathbf{C} = \begin{bmatrix} \mathbf{C}_0 & | -\mathbf{C}_M & | -\mathbf{D}_M \end{bmatrix}.$$

Закон управления (11) представим в виде

$$\mathbf{u} = -\mathbf{K}\mathbf{z} , \qquad (20)$$

где в соответствии с (17) К - блочная матрица:

$$\mathbf{K} = [\mathbf{K}_1 \mid \mathbf{K}_2 \mid \mathbf{K}_3]. \tag{21}$$

Из (19) следует равенство

$$g \| \delta \mathbf{v} \|^2 = \mathbf{z}^{\mathrm{T}} \mathbf{O} \mathbf{z} \,, \tag{22}$$

где Q - симметрическая неотрицательно определенная матрица:

$$\mathbf{Q} = g \mathbf{C}^{\mathrm{T}} \mathbf{C} \tag{23}$$

Используя (22), преобразуем критерий (10) к виду

$$J^{\gamma} = \int_{0}^{\infty} e^{-2\gamma t} \left(\mathbf{z}^{\mathrm{T}}(t) \mathbf{Q} \mathbf{z}(t) + \| \mathbf{u}(t) \|^{2} \right) dt \rightarrow \min . \quad (24)$$

Рассмотрим вспомогательную систему S:

$$\hat{\mathbf{x}} = (\mathbf{A}_0 - \gamma \mathbf{E}_n) \hat{\mathbf{x}} + \mathbf{B}_0 \hat{\mathbf{u}}, \qquad (25)$$

$$\hat{\mathbf{x}} = (\mathbf{A}_0 - \gamma \mathbf{E}_n) \hat{\mathbf{x}} + \mathbf{B}_0 \hat{\mathbf{u}},$$

$$\hat{\mathbf{x}}_{\mathbf{M}} = (\mathbf{A}_{\mathbf{M}} - \gamma \mathbf{E}_{n_{\mathbf{M}}}) \hat{\mathbf{x}}_{\mathbf{M}} + \mathbf{B}_{\mathbf{M}} \hat{\mathbf{v}},$$
(25)

$$\hat{\hat{\mathbf{v}}} = -\gamma \hat{\mathbf{v}} , \qquad (27)$$

где $\hat{\mathbf{x}} \in \mathbf{R}^n$, $\hat{\mathbf{x}}_{\mathbf{M}} \in \mathbf{R}^{n_{\mathbf{M}}}$, $\hat{\mathbf{v}} \in \mathbf{R}^m$, $\hat{\mathbf{u}} \in \mathbf{R}^r$ – управляющий вход.

Вводя вектор состояние системы S:

$$\hat{\mathbf{z}} = \begin{bmatrix} \hat{\mathbf{x}} \\ \hat{\mathbf{x}}_{\mathbf{M}} \\ \hat{\mathbf{v}} \end{bmatrix},$$

из (25)-(27) получим ее уравнения состояния в виде

$$\hat{\hat{\mathbf{z}}} = \hat{\mathbf{A}}\hat{\mathbf{z}} + \mathbf{B}\hat{\mathbf{u}}, \qquad (28)$$

где

$$\hat{\mathbf{A}} = \mathbf{A} - \gamma \mathbf{E}_{N} \,. \tag{29}$$

Из (29) следует, что спектр системы \$ получается сдвигом спектра системы S влево на малую величину (7).

Установим связь между динамическими процессами в системах S и S.

Предложение 1. Система S приводится к системе S посредством следующей замены переменных:

$$\mathbf{z}(t) = e^{\gamma t} \hat{\mathbf{z}}(t) , \quad \mathbf{u}(t) = e^{\gamma t} \hat{\mathbf{u}}(t) .$$
 (30)

Таким образом, соотношения (30) устанавливают взаимно однозначное соответствие между управляемыми движениями систем S и S.

Подстановка выражений (30) в критерий (24) приводит к оптимизационной задаче для системы S:

$$J^{0} = \int_{0}^{\infty} (\widehat{\mathbf{z}}^{\mathrm{T}}(t)\mathbf{Q}\widehat{\mathbf{z}}(t) + \|\widehat{\mathbf{u}}(t)\|^{2})dt \to \min.$$
 (31)

Отсюда вытекает следующее предложение.

Предложение 2. Исходная задача ЛК-оптимизации процессов управления (24) в системе S эквивалентна стационарной задаче ЛК-оптимального управления \hat{S} по критерию (31).

Наконец, необходимо ответить на вопрос разрешимости решаемой задачи оптимизации.

Прежде всего, отметим, что закон управления (20) для системы S с помощью соотношений (30) преобразуется в закон управления для системы \hat{S} :

$$\hat{\mathbf{u}} = -\mathbf{K}\hat{\mathbf{z}} \ . \tag{32}$$

Предложение 3. Если объект (1), (2) является вполне управляемым, эталонная модель (4), (5) - устойчива, то оптимизационная задача (10) разрешима.

Обоснуем данное предложение. В силу предложения 2 вопрос разрешимости оптимизационной задачи (18), (24) сводится к вопросу разрешимости задачи (28), (31). Заметим, что система S состоит из трех подсистем, представленных уравнениями (25)-(27). Из полной управляемости объекта следует, что подсистема (25) вполне управляема. Подсистемы (26), (27) хотя и неуправляемы, но являются устойчивыми. Таким образом, система S стабилизируема, т.е. посредством действия стабилизирующих обратных связей возможно добиться ее устойчивости. В этом случае функционал в (31) будет конечные значения, что гарантирует принимать существование оптимума (10).

Замечание. Приведем еще одно соображение в пользу излагаемого подхода к формализации задачи динамической коррекции - применении критериев качества (8), (9) с параметризацией (7) и последующем сведении исходной оптимизационной задачи к эквивалентной стационарной ЛК-задаче.

Пусть время установления переходных процессов в скорректированном объекте не превышает величины T, причем $\gamma T <<1$. Сравним движения систем S и S, полагая, что их начальные состояния совпадают:

$$\hat{\mathbf{z}}(0) = \mathbf{z}(0)$$
.

Сравнение уравнений (13)–(15) и (25)–(27) показывает, что управляемые динамические процессы в системах \hat{S} и \hat{S} практически не будут отличаться на временном интервале $0 < t \le T$. В частности, согласно (27) сигнал $\hat{\mathbf{v}}(t)$ является экспоненциальным

$$\hat{\mathbf{v}}(t) = \hat{\mathbf{v}}(0) \exp(-\gamma t)$$
,

но в силу (7) это – слабозатухающий (т.е квазистационарный) сигнал, который практически совпадает с постоянным сигналом (3) при $0 < t \le T$.

Решение стационарной ЛК-задачи (28), (31) дает линейный закон управления (32) с матрицей ${\bf K}$ вида

$$\mathbf{K} = \mathbf{B}^{\mathrm{T}} \mathbf{P}$$
.

где $\mathbf{P} \in \mathbf{R}^{N \times N}$ — симметрическая матрица, являющаяся решением алгебраического матричного уравнения Риккати

$$\mathbf{P}\mathbf{B}\mathbf{B}^{\mathrm{T}}\mathbf{P}-\mathbf{P}\widehat{\mathbf{A}}-\widehat{\mathbf{A}}^{\mathrm{T}}\mathbf{P}-\mathbf{O}=0$$
.

Разбивая полученную матрицу **K** согласно (21) на блоки размеров $r \times n$, $r \times n_{\rm M}$ и $r \times m$, находим искомые матричные параметры **K**₁, **K**₂ и **K**₃ БК (11), (12).

Необходимая настройка БК осуществляется посредством подходящего выбора весового коэффициента g в структуре весовой матрицы (23).

Предложение 3. Пусть объект (1), (2) является вполне управляемым, а эталонная модель (4), (5) устойчива. Тогда посредством выбора больших значений весового коэффициента g: g >> 1, отклик $\delta \mathbf{y}(t)$ возможно сделать сколь угодно малым в смысле метрики функционального пространства $L_{2}[0,\infty)$:

$$J_{y}^{\gamma} = \int_{0}^{\infty} e^{-2\gamma t} \|\delta \mathbf{y}(t)\|^{2} dt \leq \varepsilon_{y},$$

где ϵ_{ν} – заданная малая положительная величина.

Данное предложение имеет принципиальное значение, поскольку гарантирует возможность эффективной настройки БК.

IV. РЕДУКЦИЯ ЗАДАЧ РЕГУЛИРОВАНИЯ НА ОСНОВЕ СХЕМ АППРОКСИМАЦИОННОЙ КОРРЕКЦИИ

Построение САУ по схеме динамической коррекции каналов управления (рис. 1) позволяет упростить задачу регулирования — она решается применительно к эталонной модели скорректированного объекта. Если же динамический порядок эталонной модели меньше порядка модели, т.е. $n_{\rm M} < n$, то динамическая коррекция объекта порождает еще один благоприятный эффект — снижение размерности задачи регулирования.

Пример. Параметры объекта: n = 3, m = r = 1;

$$\mathbf{A}_0 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & -0.5 & 1 \\ 0 & 0 & -1 \end{bmatrix}, \quad \mathbf{B}_0 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{C}_0 = \begin{bmatrix} 1.5 & 0 & 0 \end{bmatrix}.$$

Его передаточная функция

$$W_0(s) = \mathbf{C}_0 (\mathbf{E}_n s - \mathbf{A}_0)^{-1} \mathbf{B}_0 = \frac{3}{s(s+1)(2s+1)}.$$

Примем следующую эталонную модель динамики скорректированного объекта:

$$W_{\rm M}(s) = \frac{1}{s+1}$$
.

Результат расчета БК для $\gamma = 0{,}001$ и $g = 10^4$:

$$\mathbf{K}_1 = [150,00 \ 51,57 \ 9,20], \ K_2 = -68,69, \ K_3 = -30,30.$$

Рис. 3 иллюстрирует результат динамической коррекции. На нем представлены переходные характеристики скорректированного объекта и эталонной модели, т.е. их реакции y(t) и $y_{\rm M}(t)$ на единичную ступеньку: v=1(t). Видно, что фактическая переходная характеристика близка к эталонной.

В БУ реализуем ПИ-закон управления с передаточной функцией:

$$W_R(s) = k_P + \frac{k_I}{s}$$
.

Выберем следующую настройку регулятора:

$$k_P = 0.6$$
; $k_I = 1$.

В этом случае эталонной передаточной функции скорректированного объекта отвечает передаточная функция замкнутой системы

$$\hat{W}(s) = \frac{0.6s + 1}{s^2 + 1.6s + 1}$$

с полюсами, равными $-0.8\pm0.6i$.

На рис. 4 представлены фактическая (сплошная линия) и эталонная (пунктир) переходные характеристики САУ, т.е. реакции y(t) и $\hat{y}(t)$ на единичную ступеньку: $y^* = 1(t)$, а также разница между ними $\Delta y(t)$.

Рис. 3.

Рис. 4.

Таким образом, фактическая переходная характеристика замкнутой системы близка к эталонной. Заметим, что спектр синтезированной САУ

 $\Lambda = \{\,-\,0.8243\pm0.6124\,i;\,-\,2.1746\pm4.4937\,i;\,-\,5.7070\,\,\}\;,$ т.е. доминирующие полюса замкнутой системы блики к полюсам желаемой передаточной функции $\hat{W}(s)$.

Список литературы

- [1] Солодовников В.В., Филимонов Н.Б. Динамическое качество систем автоматического регулирования. М.: МВТУ им. Н.Э. Баумана, 1987.
- [2] Филимонов Н.Б. Проблема качества процессов управления: смена оптимизационной парадигмы // Мехатроника, автоматизация, управление. 2010. № 12. С. 2-11.
- [3] Справочник по теории автоматического управления / Под ред. А.А. Красовского. М.: Наука, 1987.
- [4] Машиностроение. Энциклопедия в 40 тт. Т. І-4. Автоматическое управление. Теория / Е.А. Федосов, А.А. Красовский, Е.П. Попов и др. Под общ. ред. Е.А. Федосова. М.: Машиностроение, 2000.
- [5] Современная прикладная теория управления. В 3-х чч. Ч. І. Оптимизационный подход в теории управления / Под ред. А.А. Колесникова. Таганрог: Изд-во ТРТУ, 2000.
- [6] Методы классической и современной теории автоматического управления. В 5-ти тт. Т. 4. Теория оптимизации систем автоматического управления / Под ред. К.А. Пупкова и Н.Д. Егупова. М.: Изд-во МГТУ им. Н.Э. Баумана, 2004.
- [7] Филимонов А.Б., Филимонов Н.Б. Динамическая коррекция процессов регулирования методом линейно-квадратичной оптимизации // Мехатроника, автоматизация, управление. 2011. № 5. С. 9-14.