$Module\ 2A003: M\'ethodes\ math\'ematiques\ pour\ la$ m'ecanique

Examen du 20 Février 2017

Exercice 1

On considère l'espace vectoriel $E = \mathbb{R}^3$ et sa base canonique (e_1, e_2, e_3) , avec $e_1 = (1,0,0)$, $e_2 = (0,1,0)$, $e_3 = (0,0,1)$. On définit les vecteurs $u = e_1 + e_2 + 2e_3$, $v = 3e_2 + 2e_3$.

1. Montrer que les vecteurs u, v et e_3 forment une base de E. Donner la matrice de passage, notée P, de la base (e_1, e_2, e_3) à la base (u, v, e_3) .

Soit f l'endomorphisme dont la matrice dans la base canonique est :

$$A = \left(\begin{array}{rrr} -2 & -1 & 2\\ -15 & -6 & 11\\ -14 & -6 & 11 \end{array}\right)$$

- 2. Déterminer le noyau et l'image de f.
- 3. Calculer f(u), f(v) et $f(e_3)$ dans la base (e_1,e_2,e_3) .
- 4. Déterminer T la matrice de f dans la base (u, v, e_3) . Quelle relation y a-t-il entre A, T, P?
- 5. Exprimer f(u), f(v) et $f(e_3)$ dans la base (u, v, e_3) .
- 6. Montrer que $(T-I)^n=0, \, \forall n\geq 3.$ En déduire que $(A-I)^n=0, \, \forall n\geq 3.$
- 7. En utilisant le résultat précédent, exprimer A^n à l'aide du binôme de Newton en fonction de n, I, A et A^2 .

Corrigé

1. La matrice de (u, v, e_3) dans la base canonique est

$$P = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 1 & 3 & 0 \\ 2 & 2 & 1 \end{array}\right)$$

La matrice est triangulaire, de termes diagonaux non nuls. Son déterminant est égal à $3 \neq 0$. La matrice est donc de rang 3 ce qui prouve que (u, v, e_3) est une famille libre. L'espace vectoriel $Vect(u, v, e_3)$ est de dimension 3 qui est la dimension de \mathbb{R}^3 . Il s'en suit $Vect(u, v, e_3) = \mathbb{R}^3$. La matrice P est également la matrice de passage de la base (e_1, e_2, e_3) à la base (u, v, e_3) .

2. Le noyau de f est défini comme :

$$Ker(f) = \{x = (x_1, x_2, x_3) \in \mathbb{R}^3 \text{ tel que } f(x) = 0\}$$

et c'est aussi le noyau de la matrice A. Calculons le déterminant de A:

$$det(A) = \begin{vmatrix} -2 & -1 & 2 \\ -15 & -6 & 11 \\ -14 & -6 & 11 \end{vmatrix} = \begin{vmatrix} 0 & -1 & 2 \\ -4 & -6 & 11 \\ -3 & -6 & 11 \end{vmatrix} = \begin{vmatrix} 0 & -1 & 0 \\ -4 & -6 & -1 \\ -3 & -6 & -1 \end{vmatrix} = \begin{vmatrix} -4 & -1 \\ -3 & -1 \end{vmatrix} = 1 \neq 0$$

On en déduit que le rang de f est 3, d'où

$$dim(Im(f)) = 3$$
 et $dim(Ker(f)) = 0$

Comme dim(Ker(f)) = 0 on déduit que $Ker(f) = \{0\}$. L'application est injective. Par définition,

$$Im(f) = \{ y = (y_1, y_2, y_3) \in \mathbb{R}^3 \text{ tel que } \exists x = (x_1, x_2, x_3) \in \mathbb{R}^3 \text{ avec } f(x) = y \}$$

Comme dim(Im(f)) = 3 on déduit aussi que $Im(f) = \mathbb{R}^3$ car Im(f) est un sous espace vectoriel de \mathbb{R}^3 de dimension 3.

3. On obtient f(u) dans la base (e_1, e_2, e_3) en faisant le produit matriciel Au dans la base (e_1, e_2, e_3) :

$$Au = \begin{pmatrix} -2 & -1 & 2 \\ -15 & -6 & 11 \\ -14 & -6 & 11 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$

Par conséquent $f(u) = e_1 + e_2 + 2e_3 = u$ (u est invariant par f).

$$Av = \begin{pmatrix} -2 & -1 & 2 \\ -15 & -6 & 11 \\ -14 & -6 & 11 \end{pmatrix} \begin{pmatrix} 0 \\ 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 4 \end{pmatrix}$$

d'où $f(v) = e_1 + 4e_2 + 4e_3$.

$$Ae_3 = \begin{pmatrix} -2 & -1 & 2 \\ -15 & -6 & 11 \\ -14 & -6 & 11 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 11 \\ 11 \end{pmatrix}$$

d'où $f(e_3) = 2e_1 + 11e_2 + 11e_3$.

4. La matrice de f dans la base (u, v, e_3) est $T = P^{-1}AP$.

$$P^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ -1/3 & 1/3 & 0 \\ -4/3 & -2/3 & 1 \end{pmatrix}$$

d'où

$$T = \left(\begin{array}{ccc} 1 & 1 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{array}\right)$$

5. On obtient f(u) dans la base (u, v, e_3) en faisant le produit matriciel Tu dans la base (u, v, e_3) :

$$Tu = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

donc f(u) = u.

$$Tv = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

donc f(u) = u + v.

$$Te_3 = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$$

 $donc f(u) = 2u + 3v + e_3.$

6. On observe que T = I + N, avec

$$N = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{pmatrix} \qquad N^2 = \begin{pmatrix} 0 & 0 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad N^3 = 0$$

donc $N^r = 0$ pour $r \ge 3$.

N étant la matrice dans la base (u, v, e_3) de f - Id, il en résulte que g = f - Id est nilpotent et donc $A - I_3$ = la matrice dans la base canonique de (f - Id) est nilpotente.

$$(A - I_3)^k = 0, \quad k \ge 3$$

On pose $B = A - I_3$, avec B, I_3 permutables. La formule du binôme s'applique et donne :

$$A^{n} = (I_{3} + B)^{n} = I_{3} + nB + \frac{n(n-1)}{2}B^{2}$$
$$A^{n} = I_{3} + n(A - I_{3}) + \frac{n(n-1)}{2}(A^{2} - 2A + I_{3})$$

Exercice 2

Soit E l'ensemble des matrices carrées de taille 3 à coefficients réels de $M_3(\mathbb{R})$ de la forme :

$$M = \left(\begin{array}{ccc} 0 & a & a \\ b & 0 & a \\ b & b & 0 \end{array}\right), \quad a, b \in \mathbb{R}$$

- 1. E est-il un sous-espace vectoriel de $M_3(\mathbb{R})$?
- 2. Soit $\varphi(\lambda)$ le polynôme caractéristique de M. Calculer $\varphi(\lambda)$.
- 3. On se place dans le cas a=b non nuls. Ecrire l'expression de $\varphi(\lambda)$ dans ce cas particulier.
 - i) Calculer les valeurs propres de M et les espaces des vecteurs propres associés.
 - ii) Montrer que M est diagonalisable et déterminer la matrice diagonale M' correspondante.
- 4. On se place maintenant dans le cas $a \neq b$. Montrer qu'on peut exprimer $\varphi(\lambda)$ sous la forme :

$$\varphi(\lambda) = -\frac{a(\lambda+b)^3 - b(\lambda+a)^3}{a-b} \tag{1}$$

i) En utilisant l'identité remarquable suivante

$$x^{3} - y^{3} = (x - y)(x^{2} + xy + y^{2})$$

calculer les valeurs propres de M sur \mathbb{C} .

- ii) Sans faire le calcul des vecteurs propres, déterminer si M est diagonalisable sur \mathbb{C} et donner sa matrice diagonale si elle existe.
- iii) Que peut-on dire quand à l'existence d'une matrice diagonale sur \mathbb{R} ?

Eléments de Corrigé

1. On vérifie facilement que si $M_1, M_2 \in E$ alors $(\alpha M_1 + M_2) \in E$.

$$M_1 = \begin{pmatrix} 0 & a_1 & a_1 \\ b_1 & 0 & a_1 \\ b_1 & b_1 & 0 \end{pmatrix}, \quad M_2 = \begin{pmatrix} 0 & a_2 & a_2 \\ b_2 & 0 & a_2 \\ b_2 & b_2 & 0 \end{pmatrix}$$

$$\Rightarrow \alpha M_1 + M_2 = \begin{pmatrix} 0 & \alpha a_1 + a_2 & \alpha a_1 + a_2 \\ \alpha b_1 + b_2 & 0 & \alpha a_1 + a_2 \\ \alpha b_1 + b_2 & \alpha b_1 + b_2 & 0 \end{pmatrix}$$

2. Par calcul direct on trouve

$$\varphi(\lambda) = -\lambda^3 + 3ab\lambda + ab(a+b)$$

- 3. Si a = b, on factorise facilement $\varphi(\lambda) = (a + \lambda)^2 (2a \lambda)$
 - i) Les valeurs propres de $\varphi(\lambda)$ sont $\lambda_1 = -a$ (valeur propre double) et $\lambda_2 = 2a$ (valeur propre simple). L'espace propre associé à λ_1 est $E_{\lambda_1} = \{(x,y,z) \in \mathbb{R}^3, \ x+y+z=0\}$ (qui est un plan donc espace de dimension 2). L'espace propre associé à λ_2 est $E_{\lambda_2} = \{(x,y,z) \in \mathbb{R}^3, \ x=y=z=0\}$ (qui est une droite donc espace de dimension 1).
 - ii) M est diagonalisable car les valeurs propres sont réelles et les sous espaces propres ont la même dimension que l'ordre de multiplicité des valeurs

propres.
$$M' = \begin{pmatrix} -a & 0 & 0 \\ 0 & -a & 0 \\ 0 & 0 & 2a \end{pmatrix}$$

4. On calcule

$$(a-b)\varphi(\lambda)=-a(\lambda^3+3b^2\lambda+3b\lambda^2+b^3)+b(\lambda^3+3a^2\lambda+3a\lambda^2+a^3)=-a(\lambda+b)^3+b(\lambda+a)^3$$
 d'où l'égalité de l'énoncé.

i) On résout $\varphi(\lambda) = 0$, ce qui implique $a(\lambda + b)^3 - b(\lambda + a)^3 = 0$. En utilisant l'identité remarquable on factorise facilement

$$(\sqrt[3]{a}(\lambda+b))^3 - (\sqrt[3]{b}(\lambda+a))^3 = (\sqrt[3]{a}(\lambda+b) - \sqrt[3]{b}(\lambda+a))$$

$$((\sqrt[3]{a}(\lambda+b))^2 + \sqrt[3]{a}(\lambda+b)\sqrt[3]{b}(\lambda+a) + (\sqrt[3]{b}(\lambda+a))^2)$$

dont les solutions sont $\lambda_1 = \frac{\sqrt[3]{b}a - \sqrt[3]{a}b}{\sqrt[3]{a} - \sqrt[3]{b}}$ et λ_2 et λ_3 sont des racines complexes conjuguées.

- ii) Le polynôme a trois racines distinctes sur \mathbb{C} donc M est diagonalisable. Sa matrice diagonale est constitué des valeurs propres sur la diagonale principale $\lambda_1, \lambda_2, \lambda_3$.
- iii) Le polynôme n'a qu'une racine réelle donc la matrice n'est pas diagonalisable sur \mathbb{R} .

Exercice 3

Soit A une matrice carrée d'ordre n. Quelle est la relation entre det(A) et det(-A)? Montrer que toute matrice carrée A antisymétrique ($^tA = -A$) d'ordre n avec n impair est singulière (n'admet pas de matrice inverse).

Corrigé

 $det(-A) = (-1)^n det(A)$ $^tA = -A$ implique $det(^tA) = det(-A) = (-1)^n det(A) = -det(A)$ car n est impair. Mais $det(A) = det(^tA)$, donc det(A) = -det(A) d'où det(A) = 0 donc A singulière.