

Les Ensembles de Nombres

Leçon

2nde

o Les Nombres entiers naturels

- Un nombre entier naturel est un nombre entier qui est positif.
- L'ensemble des nombres entiers naturels est noté N.
- Exemples : $0 \in \mathbb{N}$; $3 \in \mathbb{N}$; $112 \in \mathbb{N}$ / $-2 \notin \mathbb{N}$; $3,9 \notin \mathbb{N}$; $\pi \notin \mathbb{N}$; $\frac{4}{3} \notin \mathbb{N}$ (\in signifie « appartient » et \notin signifie « n'appartient pas »)

Les Nombres entiers relatifs

- Un nombre entier relatif est un nombre entier qui est positif ou négatif.
- L'ensemble des nombres entiers relatifs est noté Z.
- Exemples: $3 \in \mathbb{Z}$; $-2 \in \mathbb{Z}$ / $3.9 \notin \mathbb{Z}$; $\pi \notin \mathbb{Z}$; $4/3 \notin \mathbb{Z}$

o Les Nombres décimaux

- Un nombre décimal est un nombre qui s'écrit avec un nombre fini de chiffres après la virgule.
- Il s'écrit également sous la forme $\frac{a}{10^p}$, (avec *a* entier et *p* entier naturel)
- L'ensemble de tous les nombres décimaux est noté D.
- Exemples: $0.27 \in \mathbb{D}$; $3 \in \mathbb{D}$; $\frac{-3}{2} \in \mathbb{D}$ / $\pi \notin \mathbb{D}$; $\frac{1}{3} \notin \mathbb{D}$; $\sqrt{3} \notin \mathbb{D}$;

o Les Nombres rationnels

- Un nombre rationnel est un nombre sous la forme **d'un quotient** $\frac{a}{b}$ (avec a et b entier relatifs, et b non nul).
- L'ensemble de tous les nombres rationnels est noté Q.
- Exemples : $0.27 \in \mathbb{Q}$; $-3 \in \mathbb{Q}$; $1/3 \in \mathbb{Q}$ / $\pi \notin \mathbb{Q}$; $\sqrt{5} \notin \mathbb{Q}$;

Les Nombres réels

- C'est l'ensemble de tous les nombres utilisés en classe de seconde.
- L'ensemble des nombres réels est noté R.
- On note aussi \mathbb{R}^+ l'ensemble des nombres réels positifs, \mathbb{R}^- l'ensemble des nombres réels négatifs et \mathbb{R}^* l'ensemble des nombres réels sauf zéro.
- Exemples : $0,27 \in \mathbb{R}$; $-3 \in \mathbb{R}$; $\frac{1}{3} \in \mathbb{R}$; $\pi \in \mathbb{R}$; $\sqrt{5} \in \mathbb{R}$; $7 \in \mathbb{R}$;

Remarque:

Tous les nombres de l'ensemble des entiers naturels $\mathbb N$ (nombres entiers positifs) appartiennent à l'ensemble des entiers relatifs $\mathbb Z$.

Cela revient à énoncer que l'ensemble $\mathbb N$ est inclus dans l'ensemble $\mathbb Z$

On note : $\mathbb{N} \subset \mathbb{Z}$.

De la même manière on a : $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{D} \subset \mathbb{Q} \subset \mathbb{R}$

Fiche réalisée par Nicolas DURAND, responsable pédagogique mathématiques.

Exercices

Exercice 1 : Indiquer, dans chacun des cas, si le nombre appartient ou pas à chacun des ensembles proposés en rajoutant dans chaque case : € ou €

	N	Z	D	Q	${\mathbb R}$
3					
$\frac{18}{3}$					
2 x 10 ⁻²					
22 5					
$-\frac{28}{34}$					
$\frac{5}{6}$					
$\frac{\pi}{5}$					
$\sqrt{1,44}$					
$ \begin{array}{c c} \sqrt{1,44} \\ -\sqrt{64} \end{array} $					

Exercice 2 : Indiquer si les affirmations suivantes sont vraies ou fausses.

- 1. Tout nombre réel est un nombre rationnel.
- 2. 0,5 est un nombre rationnel.
- 3. Le carré d'un nombre irrationnel n'est jamais rationnel.
- 4. Il n'existe aucun nombre réel qui ne soit pas un nombre décimal.
- 5. Le quotient de deux nombres décimaux non nuls est également un nombre décimal.
- 6. L'inverse d'un nombre décimal peut être un nombre entier.
- 7. Il existe deux nombres rationnels dont la somme est un nombre entier.

Fiche réalisée par Nicolas DURAND, responsable pédagogique mathématiques.

<u>Exercice 3.</u> Dans chacun des cas, indiquer le plus petit ensemble de nombres auquel le nombre appartient.

- **a.** $\frac{72}{6}$
- **b.** $\frac{8}{5}$
- **C.** $\frac{21}{12}$
- **d.** $-\frac{28}{7}$
- **e.** $\frac{9}{27}$

Corrigés

<u>Exercice 1 :</u> Indiquer, dans chacun des cas, si le nombre appartient ou pas à chacun des ensembles proposés.

	N	Z	D	Q	R
7	€	€	€	€	€
$\frac{18}{3}$ (=6)	€	€	€	€	€
2 x 10 ⁻² (=0,02)	€/	€	€	€	€
152 (=30,4)	€	€	€	€	€
-√81 (= -9)	€/	€	€	€	€
$\frac{\pi}{6}$	€	€	€	€	€
√1,69 (=1,3)	€/	€	€	E	€
$\frac{5}{6}$	€	€	€	€	€

Exercice 2: Indiquer si les affirmations suivantes sont vraies ou fausses.

1. Tout nombre réel est un nombre rationnel.

Fausse: π est un nombre réel qui n'est pas rationnel.

2. 0.5 est un nombre rationnel.

Vraie: 0,5 est un nombre décimal et **D** est inclus dans **Q**.

3. Le carré d'un nombre irrationnel (non rationnel) n'est jamais rationnel.

Fausse: $\sqrt{2}$ est un nombre irrationnel dont le carré vaut 2. Or 2 est un entier naturel donc un nombre rationnel.

4. Il n'existe aucun nombre réel qui ne soit pas un nombre décimal.

Fausse: $\frac{1}{3}$ est un nombre réel et n'est pas un nombre décimal.

5. Le quotient de deux nombres décimaux non nuls est également un nombre décimal.

Fausse: $\frac{2}{3}$ est le quotient de deux nombres décimaux non nuls et pourtant ce n'est pas un nombre décimal.

6. L'inverse d'un nombre décimal peut être un nombre entier.

Vraie: L'inverse de $\frac{1}{2}$ est 2 qui est un nombre entier.

7. Il existe deux nombres rationnels dont la somme est un nombre entier.

Vraie : par exemple $\frac{1}{3} + \frac{2}{3} = 1$ ou 4+5=9

Exercice 3. Dans chacun des cas, indiquer le plus petit ensemble de nombres auquel le nombre appartient.

a.
$$\frac{72}{6} = 12 \in \mathbb{N}$$

b.
$$\frac{8}{5}$$
 = 1,6 \in **D**

c.
$$\frac{21}{12}$$
 = 1,75 \in **D**

d.
$$-\frac{28}{7} = -4 \in \mathbb{Z}$$

e.
$$\frac{9}{27} = \frac{1}{3} \in \mathbb{Q}$$