Számítógépes Grafika

Hajder Levente

hajder@inf.elte.hu

Eötvös Loránd Tudományegyetem Informatikai Kar

2017/2018. II. félév

◆□ > ◆□ > ◆ = > ◆ = > ○ へ ○

Hajder Levente hajder@inf.elte.hu

Számítógépes Grafika

A fény és anyagok

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek Buckatérkép Színmodellek

A fény és anyagok

- A fény elektromágneses hullám
- Az anyagokat olyan színűnek látjuk, amilyen színű fényt visszavernek
 - A visszaverés egyaránt függ az anyag és a megvilágítás "színétől"
- Különböző anyagok különböző módon viselkednek a fénnyel szemben

Tartalom

- A fény és anyagok
 - Anyagok
 - Fényforrás modellek
 - Fény-felület kölcsönhatás
 - Fényvisszaverési modellek
 - Buckatérkép
 - Színmodellek

Hajder Levente hajder@inf.elte.hu

Számítógépes Grafika

A fény és anyagok

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek

Buckatérkép Színmodellek

Tartalom

- A fény és anyagok
 - Anyagok
 - Fényforrás modellek
 - Fény-felület kölcsönhatás
 - Fényvisszaverési modellek
 - Buckatérkép
 - Színmodellek

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek Buckatérkép Színmodellek

Felületek osztályozása

- Emittáló felületek
 - Fénykibocsátó felületek emittáló anyagnak hívjuk
 - Ezeket hívjuk fényforrásoknak, ilyen a Nap, a lámpa stb.
- Diffúz felületek
 - A diffúz vagy matt felületeket minden irányból nézve ugyanolyan színűnek látjuk
 - Ilyen például a frissen meszelt fal vagy a homok stb.
 - A diffúz felület a beérkező fénysugár energiáját minden irányban azonos intenzitással veri vissza

4 D > 4 B > 4 E > 4 E > E 990

Hajder Levente hajder@inf.elte.hu

Számítógépes Grafika

Anyagok

A fény és anyagok

Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek Buckatérkép Színmodellek

Felületek osztályozása

- Áttetsző felületek
 - Ezek a beérkező fény nagy részét magukba engedik, de csak kis része lép ki az anyagból
 - Pl. tej, bőr
- Anizotróp felületek
 - A felületet a tengelye körül forgatva, a beeső és visszaverődő szögeket tartva is változik a színe
 - Mint például a CD

A fény és anyagok

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek Buckatérkép

Felületek osztályozása

- Spekuláris felületek
 - Tükröző felületek, az ideális fénytörés irányába verik vissza nagyrészt a beérkező fényt
- Átlátszó felületek
 - Ezeken a felületeken áthalad a fény, a beérkező fénysugár energiájának java részét áteresztik

(ロ) (部) (注) (注) 注 り(○)

Hajder Levente hajder@inf.elte.hu

Számítógépes Grafika

A fény és anyagok

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek Buckatérkén

Tartalom

- A fény és anyagok
 - Anyagok
 - Fényforrás modellek
 - Fény-felület kölcsönhatás
 - Fényvisszaverési modellek
 - Buckatérkép
 - Színmodellek

Anyagok Fényforrás modellek Fény-felület kölcsönhatás

Fényvisszaverési modellek Buckatérkép . Színmodellek

Fényforrás modellek

Fény

A fény elektromágneses hullám

- Ambiens fény
- Irány fényforrás
- Pont fényforrás
- Reflektorfény (spotlight)

◆□ > ◆□ > ◆ = > ◆ = > ○ へ ○

Hajder Levente hajder@inf.elte.hu

Számítógépes Grafika

A fény és anyagok

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek Buckatérkép . Színmodellek

Fényforrás modellek

Ambiens fény

- Fénysugarak minden irányba egyenlő mértékben világítanak
- Távolság az intenzitást nem befolyásolja

A fény és anyagok

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek Buckatérkép Színmodellek

Fényforrás modellek

Fény

A fény elektromágneses hullám

Absztrakt fényforrások

- Ambiens fény
- Irány fényforrás
- Pont fényforrás
- Reflektorfény (spotlight)

Hajder Levente hajder@inf.elte.hu

Számítógépes Grafika

A fény és anyagok

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek Buckatérkép Színmodellek

Fényforrás modellek

Irány fényforás

- Fénysugarak párhuzamosak
- Távolsággal a fény intenzitása nem csökken

Anyagok
Fényforrás modellek
Fény-felület kölcsönhatá

Fény-felület kölcsönhatás Fényvisszaverési modellek Buckatérkép Színmodellek

Fényforrás modellek

Pont fényforrás

- Egy adott pontból indulnak ki a fénysugarak
- Fizika: a távolság négyzetével fordítottan arányos a fény intenzitás
- Szimulációkban a fakulást (falloff) meg lehet adni skaláris, lineáris, kvadratikus tagokkal

Hajder Levente hajder@inf.elte.hu

Számítógépes Grafika

A fény és anyagok

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek Buckatérkép Színmodellek

Tartalom

- A fény és anyagok
 - Anyagok
 - Fényforrás modellek
 - Fény-felület kölcsönhatás
 - Fényvisszaverési modellek
 - Buckatérkép
 - Színmodellek

A fény és anyagok

Anyagok
Fényforrás modellek
Fény-felület kölcsönhatás
Fényvisszaverési modellek
Buckatérkép

Fényforrás modellek

Reflektorfény (spotlight)

- Egy adott pontból indulnak ki a fénysugarak
- A fénnyalábot egy kör alapú végtelen gúla határozza meg
- A távolság négyzetével fordítottan arányos a fény intenzitás (valóságban)

Hajder Levente hajder@inf.elte.hu

Számítógépes Grafika

A fény és anyagok

Anyagok Fényforrás modellek **Fény-felület kölcsönhatás** Fényvisszaverési modellek Buckatérkép Színmodellek

BRDF

- Legyen Lⁱⁿ egy adott irányból a felület egy pontjára beérkező, L pedig az onnan visszavert fény intenzitása
- Jelölje I a fényforrás felé mutató egységvektort, v a nézőpont felé mutató egységvektort, n pedig a felületi normálist az adott pontban. A θ legyen az n és I által bezárt szög
- Ekkor a kétirányú visszaverődéses eloszlási függvény, BRDF (bi-directional reflection distribution function) a következő:

$$f_r(\mathbf{I}, \mathbf{v}) = \frac{L}{L^{in} \cos \theta}$$

<ロ > ← □

Anyagok Fényforrás modellek

Fény-felület kölcsönhatás

Fényvisszaverési modellek

Buckatérkép . Színmodellek

Jelölések

- $\mathbf{v} := \omega$ a nézeti irány, azaz a szem/kamera fele mutató vektor
- I := $-\omega'$ a megvilágító, a fényt "adó" pont fele mutató vektor, ekkor a beesési irány $-\mathbf{I} (= \omega')$
- n a felületi normális
- v, l, n egységvektorok
- θ a l és a n által bezárt szög

◆□▶ ◆□▶ ◆豆▶ ◆豆 ◆ ○ ○ ○

◆□▶ ◆□▶ ◆豆▶ ◆豆 ◆ ○ ○ ○

Hajder Levente hajder@inf.elte.hu

Számítógépes Grafika

A fény és anyagok

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Buckatérkén Színmodellek

Ideális visszaverődés

Visszaverődési törvény

A beesési irány (-1), a felületi normális (\mathbf{n}) , és a kilépési irány (r) egy síkban van, valamint a beesési szög (θ) megegyezik a visszaverődési szöggel (θ').

A fény és anyagok

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek Buckatérkép

Helmholtz-törvény

- Helmholtz-féle szimmetria: a fénysugár megfordítható
- Azaz: $f_r(\omega', \omega) = f_r(\omega, \omega')$
- Ez két dologért is jó:
 - Garantálja, hogy végsősoron a radiancia csökken.
 - Nézhetjük "visszafelé" a sugarakat.

◆ロ ト ◆ 個 ト ◆ 差 ト ◆ 差 ・ 夕 Q ②

Hajder Levente hajder@inf.elte.hu

Számítógépes Grafika

A fény és anyagok

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek Buckatérkén Színmodellel

Ideális visszaverődés

- Az ideális tükör csak az r tükörirányba ver vissza.

$$f_r(\mathbf{x}, \mathbf{v}, \mathbf{l}) = k_r \frac{\delta(\mathbf{r} - \mathbf{v})}{\cos \theta}$$

- δ a *Dirac-delta* függvény, ami egy általánosított függvény, amely minden nemnulla paraméterre nullát ad, de a valós számok felett vett integrálja 1.
- A k_r visszaverődési együttható a *Fresnel-együttható*. Ez függ az anyag törésmutatójából, és az elektromos vezetési képességéből származik.
- A Fresnel-együttható a visszavert és beeső energia hányadát fejezi ki.

Anyagok Fényforrás modellek **Fény-felület kölcsönhatás** Fényvisszaverési modelle Buckatérkép

Buckatérkép Színmodellek

Visszaverődési irány

- Általános esetben, egy v beeső vektorból a visszaverődési- vagy tükörirány:
- $\mathbf{v}_r = \mathbf{v} 2\mathbf{n}(\mathbf{n} \cdot \mathbf{v})$
- Mivel $\cos \theta = -\mathbf{n} \cdot \mathbf{v}$
- Mindez csak akkor igaz, ha n és v vektorok egységnyi hosszúak!
- Általános esetben:

$$\mathbf{v}_r = \mathbf{v} + 2\mathbf{n}\cos\theta$$

←□ → ←□ → ← □ → ← □ → ○ へ ○

Hajder Levente hajder@inf.elte.hu

Számítógépes Grafika

A fény és anyagok

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek Buckatérkép Színmodellek

Ideális törés

Snellius-Descartes törvény

A beesési irány (-I), a felületi normális (**n**), és a törési irány (**t**) egy síkban van, valamint $\eta = \frac{\sin \theta}{\sin \theta'}$, ahol η az anyagok relatív törésmutatója.

Néhány törésmutató

- Vákuum 1.0
- Levegő 1.0003
- Víz 1.3333
- Üveg 1.5
- Gyémánt 2.417

A fény és anyagok

Hajder Levente hajder@inf.elte.hu

Anyagok Fényforrás modellek **Fény-felület kölcsönhatás** Fényvisszaverési modellek Buckatérkép Színmodellek

Számítógépes Grafika

Anyagok

Buckatérkép

A beesési irány (-I), a felületi normális (n), és a törési irány (t)

egy síkban van, valamint $\eta = \frac{\sin \theta}{\sin \theta'}$, ahol η az anyagok relatív

A fény és anyagok

Fényforrás modellek

Fény-felület kölcsönhatás

Fényvisszaverési modellek

Ideális törés

Ideális törés

törésmutatója.

Vákuum 1.0

Víz 1.3333

• Üveg 1.5

Levegő 1.0003

Gyémánt 2.417

Snellius-Descartes törvény

- Jelölje t az ideális törési irányt.
- Az ideális tükörhöz hasonlóan kapjuk:

$$f_r(\mathbf{x}, \mathbf{v}, \mathbf{I}) = k_t \frac{\delta(\mathbf{t} - \mathbf{v})}{\cos \theta}$$

Anyagok Fényforrás modellek Fény-felület kölcsönhatás

Buckatérkép . Színmodellek

Ideális törés

- Jelölje t az ideális törési irányt.
- Az ideális tükörhöz hasonlóan kapjuk:

$$f_r(\mathbf{x}, \mathbf{v}, \mathbf{l}) = k_t \frac{\delta(\mathbf{t} - \mathbf{v})}{\cos \theta}$$

◆□ > ◆□ > ◆ = > ◆ = > ○ へ ○

Hajder Levente hajder@inf.elte.hu

Számítógépes Grafika

A fény és anyagok

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek

Buckatérkén . Színmodellek

Tartalom

- A fény és anyagok
 - Anyagok
 - Fényforrás modellek
 - Fény-felület kölcsönhatás
 - Fényvisszaverési modellek
 - Buckatérkép
 - Színmodellek

A fény és anyagok

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek Buckatérkép

 $\vec{v} + \vec{n}\cos\alpha$

Törési irány

- Snellius-Descartes törvény: $\eta = \frac{\sin \alpha}{\sin \beta}$
- $\mathbf{v}_t = \mathbf{n}_{\perp} \sin \beta \mathbf{n} \cos \beta$
- $\mathbf{n}_{\perp} = \frac{\mathbf{v} + \mathbf{n} \cos \alpha}{\sin \alpha}$
- ullet ${f v}_t = rac{{f v}}{\eta} + {f n} \left(rac{\cos lpha}{\eta} \cos eta
 ight)$
- $\bullet \cos \beta = \sqrt{1 \sin^2 \beta} =$

Hajder Levente hajder@inf.elte.hu

<ロト 4回 → * 4 差 ト 4 差 ト 差 り Q @ Számítógépes Grafika

 $\vec{n}_{\perp}\sin\beta$

 $-\vec{n}\cos \beta$

 \vec{n}_{\perp}

A fény és anyagok

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek Buckatérkép Színmodellek

Lambert-törvény

- Optikailag durva, diffúz felületek leírására jó.
- Feltételezés: a visszavert fénymennyiség nem függ a nézeti iránytól.
- Helmholtz-törvényt miatt akkor a bejövő iránytól sem függhet, azaz konstans:

$$f_r(\mathbf{x},\mathbf{v},\mathbf{l})=k_d$$

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek

Buckatérkén

Spekuláris visszaverődés - Phong modell

- A tükörirányban intenzíven visszaverő, de attól távolodva gyorsan elhaló "csillanás" adható meg vele.
- Legyen ϕ az **r** tükörirány és a **v** nézeti irány által bezárt szög.
- Ekkor $\cos \phi = \mathbf{r} \cdot \mathbf{v}$
- Olyan függvényt keresünk, ami $\phi = 0$ -ra nagy, de gyorsan elhal.

$$f_r(\mathbf{x}, \mathbf{v}, \mathbf{l}) = k_s \frac{\cos^n \phi}{\cos \theta}$$

Nem szimmetrikus!

◆□▶ ◆□▶ ◆豆▶ ◆豆 ◆ ○ ○ ○

Hajder Levente hajder@inf.elte.hu

Számítógépes Grafika

A fény és anyagok

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek Buckatérkén

Színmodellek

Spekuláris visszaverődés - Phong-Blinn modell

• Legyen h a nézeti irány és a megvilágító pont fele mutató vektorok felezővektora.

$$\mathbf{h} = \frac{\mathbf{v} + \mathbf{I}}{\|\mathbf{v} + \mathbf{I}\|}$$

- Legyen δ a **h** és az **n** normálvektor által bezárt szög.
- Ekkor $\cos \delta = \mathbf{h} \cdot \mathbf{n}$

$$f_r(\mathbf{x}, \mathbf{v}, \mathbf{l}) = k_s \frac{\cos^n \delta}{\cos \theta}$$

 Nagyon hasonló az egyszerű Phong modellhez, kicsit gyorsabban számítható.

◆□▶ ◆□▶ ◆豆▶ ◆豆 ◆ ○ ○ ○

A fény és anyagok

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek

Buckatérkén

Spekuláris visszaverődés - Phong modell

n=5

n = 25

n = 50

<ロ > ← 回

Hajder Levente hajder@inf.elte.hu

Számítógépes Grafika

A fény és anyagok

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek Buckatérkén

Spektrális képszintézis

- Különböző hullámhosszú fény máshogy viselkedik a felületeken.
- Színérzet a látható tartományban levő elektromágneses hullámok integrálja a három érzékelőnek megfelelően.
- Fényjelenségeket minden hullámhosszon külön kellene nézni.
 - Rendkívül számításigényes.
 - R,G,B komonensekkel jól közelíthetjük.

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek Buckatérkép

Színmodellek

Tartalom

- Anyagok
- Fényforrás modellek
- Fény-felület kölcsönhatás
- Fényvisszaverési modellek
- Buckatérkép

Színmodellek

◆□ > ◆□ > ◆ = > ◆ = > ○ へ ○

Hajder Levente hajder@inf.elte.hu

Számítógépes Grafika

A fény és anyagok

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek Buckatérkép Színmodellel

Érdes felületek képzése

- Durva pozíció + finom normálvektorok jó közelítés, ha
 - a felület nagyjából folytonos
 - mélységingadozás kicsi a felületen
- Mélység megadás képként: buckatérkép (bump map)
 - Textúraleképzéshez hasonlóan, képként szokás megadni
 - Buckatérkép leírhatja a mélységváltozást vagy a normálvektorokat (3D: 3 színkomponens).

A fény és anyagok

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek Buckatérkép

Érdes felületek képzése

- Érdes felületek rengeteg poligonnal (háromszöghálóval) képezhetők.
 - Modell bonyolult, nehéz módosítani.
 - Renderelést lassítja.
- Trükk: egyszerű modellhez finom sűrű normálvektormezőt adunk meg

Hajder Levente hajder@inf.elte.hu

Számítógépes Grafika

A fény és anyagok

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek Buckatérkép

Esettanulmány: narancs

• Példa (eredeti modell, buckatérkép, új modell):

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek Buckatérkép Színmodellek

Tartalom

- A fény és anyagok
 - Anyagok
 - Fényforrás modellek
 - Fény-felület kölcsönhatás
 - Fényvisszaverési modellek
 - Buckatérkép
 - Színmodellek

◆□ > ◆□ > ◆ = > ◆ = > ○ へ ○

Hajder Levente hajder@inf.elte.hu

Számítógépes Grafika

A fény és anyagok

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek Buckatérkép Színmodellek

Színmodellek

- Monitor színmodellje: RGB
- Majdnem az összes látható szín kikeverhető

A fény és anyagok

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek Buckatérkép Színmodellek

Színmodellek

• Fény: elektromágneses hullám

• Emberi szem által látható fény: alapszínek keveréséből

Alapszínek: szivárvány színei

<ロ > → □

Hajder Levente hajder@inf.elte.hu

Számítógépes Grafika

A fény és anyagok

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek Buckatérkép Színmodellek

Színmodellek

- "Emberibb" színmodell: HSL (HSB,HSV)
- Három komponens: hue (színárnyalat), saturation (telítettség), lightness (fényesség)

Hajder Levente hajder@inf.elte.hu