HW2 Econometrics 3

 $Matthew\ Aaron\ Looney$ 10/04/2017

Problem 2

Problem 2. Censoring/Truncation. Greene (2007) analyzed the default behavior and monthly behavior of a large sample of credit card users (13,444).

(2.1)

Estimate the following model

 $\log spend = \beta_1 + \beta_2 \ln income + \beta_3 Age + \beta_4 Adepcnt + \beta 5ownrent + \varepsilon$

Table 1: Regression output used to answer Problem 2 $\,$

	Dependent variable:			
	LOGSPEND		NA	
	OLS	$censored \\ regression$	$Heckman \ selection$	
	(1)	(2)	(3)	
Ln_income	1.121***	1.117***	0.907***	
	(0.033)	(0.033)	(0.162)	
AGE	-0.015***	-0.014^{***}	-0.014***	
	(0.001)	(0.001)	(0.002)	
ADEPCNT	-0.027**	-0.027**	0.016	
	(0.011)	(0.011)	(0.034)	
OWNRENT	-0.203***	-0.201***	-0.281***	
	(0.030)	(0.030)	(0.065)	
logSigma		0.296***		
		(0.007)		
Constant	-3.363***	-3.340***	-1.419	
	(0.243)	(0.246)	(1.458)	
Observations	10,499	10,499	13,444	
\mathbb{R}^2	0.105		0.105	
Adjusted R ²	0.104		0.104	
Log Likelihood		-18,012.210		
Akaike Inf. Crit.		36,036.430		
Bayesian Inf. Crit.		36,079.980		
ρ			-0.608	
Inverse Mills Ratio			-0.878(0.646)	
Residual Std. Error	1.330 (df = 10494)		, ,	
F Statistic	306.358^{***} (df = 4; 10494)			
Note:		*p<0.1; **p<0.05; ***p<0.01		

(2.1.a)

Using OLS. What is the effect of 10% increase in income on credit card expenditure?

We will need to employ a Censored (Tobit) Regression and calculate the Partial Effects.

• Since we are dealing with log-log we can simply multiply the paramater estimate on income by ten, which gives 11.2120776. So a 10% increase in income is estimated to increase credit card spending by 11.2120776%.

(2.1.b)

Using Censored regression. What is the effect of 10% increase in income on credit card expenditure?

The general formulation for the Tobit Model (Greene 7th. ed., pg 848):

$$\begin{aligned} {y_i}^* &= {x_i}'\beta + \varepsilon_i \\ {y_i} &= 0 \\ {y_i} &= {y_i}^* \quad \begin{cases} \text{if } {y_i}^* \leqslant 0 \\ \text{if } {y_i}^* \geqslant 0 \end{cases} \end{aligned}$$

The censored regression model is a generalisation of the standard Tobit model. The dependent variable can be either left-censored, right-censored, or both left-censored and right-censored, where the lower and/or upper limit of the dependent variable can be any number:

$$y_i^* = x_i'\beta + \varepsilon_i \tag{1}$$

$$y_{i} = \begin{cases} a & \text{if } y_{i}^{*} \leq a \\ y_{i}^{*} & \text{if } a < y_{i}^{*} < b \\ b & \text{if } y_{i}^{*} \geq b \end{cases}$$
 (2)

Here a is the lower limit and b is the upper limit of the dependent variable. If $a = -\infty$ or $b = \infty$, the dependent variable is not left-censored or right-censored, respectively.

Censored regression models (including the standard Tobit model) are usually estimated by the Maximum Likelihood (ML) method. Assuming that the disturbance term ε follows a normal distribution with mean 0 and variance σ^2 , the log-likelihood function is

$$\log L = \sum_{i=1}^{N} \left[I_i^a \log \Phi \left(\frac{a - x_i' \beta}{\sigma} \right) + I_i^b \log \Phi \left(\frac{x_i' \beta - b}{\sigma} \right) + \left(1 - I_i^a - I_i^b \right) \left(\log \phi \left(\frac{y_i - x_i' \beta}{\sigma} \right) - \log \sigma \right) \right],$$
(3)

where $\phi(\cdot)$ and $\Phi(\cdot)$ denote the probability density function and the cumulative distribution function, respectively, of the standard normal distribution, and I_i^a and I_i^b are indicator functions with

$$I_i^a = \begin{cases} 1 & \text{if } y_i = a \\ 0 & \text{if } y_i > a \end{cases} \tag{4}$$

$$I_i^b = \begin{cases} 1 & \text{if } y_i = b \\ 0 & \text{if } y_i < b \end{cases} \tag{5}$$

The log-likelihood function of the censored regression model~(3) can be maximised with respect to the parameter vector $(\beta', \sigma)'$ using standard non-linear optimisation algorithms.

The proper Partial Effects formula:

$$\frac{\partial E[y|x]}{\partial x} = \beta \Pr{ob[a < y^* < b]}$$

Where I compute the partial effect at each observation and then compute the mean.

The parginal effect of Ln_income on LOGSPEND is 1.1169911. Therefore, a 10% increase of income is estimated to increase credit card spending by 11.169911.

(2.1.c)

Using Heckman Two-Step Estimator. What the is effect of 10% increase in income on credit card expenditure? 11.240879