Introduction

In this note(s), I will work with a matrix A with m rows and n columns. A can be viewed as a function that maps a vector, \vec{v} , in \mathbb{R}^n to $A\vec{v}$ in \mathbb{R}^m . I have two, closely related, goals for this note concerning this matrix A. The first is to prove the Rank Nullity Theorem, N = Dim(Range(A)) + Dim(Nullspace(A)). And the second is to discus decomposing the domain of A (viewed as a function), \mathbb{R}^n , as the direct sum of the nullspace of A and any complementary subspace to it in \mathbb{R}^n . Note that for the second goal, one such complementary subspace to the nullspace is the rowspace, its orthogonal complement in \mathbb{R}^n .

Axler proof

Key idea: Redundancy and NullSpace $A\vec{u}=A\vec{v}\Rightarrow A\vec{u}-A\vec{v}=\vec{0}\Rightarrow A(\vec{u}-\vec{v})=0$ Where last implication follows from linearity. So if $\vec{u}\neq\vec{v}$, I have found a non-trivial vector in the nullspace of $A,\vec{u}-\vec{v}$.