Communicating with Data – Intro to Tableau

Dr. Ab Mosca (they/them)

Plan for Today

- Introduction to Tableau
- Lab pt. 1 Getting started:
 - Connecting to a data file
 - Creating views
 - Using "Show Me": a recommender system for views
- Lab pt. 2 Exploring other datasets
- Discussion (time permitting)

Reminder

- hwo1 is released today!
 (https://amoscao1.github.io/SDS-CS109/ >
 Homework > hwo1)
- Due next Thursday (09/19) at midnight
 - You have extensions if you need them, but you MUST tell me if you're taking one
 - Revise and resubmit also exists!
- Work alone or with a partner (you choose!)

**I won't always remind you there is a homework released/due, make sure you stay up to date with the course schedule! **

Introduction to Tableau

- A drag-and-drop tool for mapping data dimensions onto visual dimensions
- Today we will learn:
 - How to load data into Tableau
 - A little bit about how Tableau organizes data
 - How to tell Tableau which facets of the data to display, and how

What is the au ?

- Visualization and business analytics software with a strong focus on relational data
- Idea originally developed at Stanford University
- Now owned by Salesforce

What is + a b | e a u ?

- Visualization and business analytics software with a strong focus on **relational data**
- Idea originally developed at Stanford University
- Now owned by Salesforce

What's relational data?

```
airlines
                        #> # A tibble: 16 × 2
                        #>
                            carrier name
                        #>
                            <chr> <chr>
  airports
  \#>\# A tibble: 1,458 × 8
  #>
      faa
                                            lat
                                                  lon
                                                       alt
                                                           tz dst
            name
                                                                       tzone
                                          <dbl> <dbl> <dbl> <dbl> <chr> <chr>
  #> <chr> <chr>
planes
\#>\# A tibble: 3,322 × 9
#>
     tailnum year type
                                     manufacturer model engines seats speed engine
#>
     <chr> <int> <chr>
                                     <chr>
                                                 <chr>
                                                         <int> <int> <int> <chr>
weather
#> # A tibble: 26,115 × 15
    origin year month day hour temp dewp humid wind dir wind speed wind gust
#>
    <chr> <int> <int> <int> <dbl> <dbl> <dbl><</pre>
#>
                                                      <dbl>
                                                                 <dbl>
                                                                          <dbl>
            2013
                                   39.0
                                         26.1
                                                        270
#> 1 EWR
                                              59.4
                                                                 10.4
                                                                             NA
#> 2 EWR
            2013
                                2 39.0
                                         27.0
                                              61.6
                                                        250
                                                                 8.06
                                                                             NA
#> 3 EWR
            2013
                                3 39.0
                                         28.0
                                              64.4
                                                        240
                                                                 11.5
                                                                             NA
            2013
                                              62.2
#> 4 EWR
                                4 39.9
                                         28.0
                                                        250
                                                                 12.7
                                                                             NA
#> 5 EWR
            2013
                                5 39.0
                                         28.0
                                             64.4
                                                        260
                                                                 12.7
                                                                             NA
                                6 37.9
            2013
                                         28.0
                                              67.2
                                                        240
                                                                 11.5
#> 6 EWR
                                                                             NA
\#> \# i 26.109 \text{ more rows}
```

Relational Data

Main Window: New Workbook

Main Window: with Data and Views

Data Types

• All data fields are assigned one of the following types:

lcon	Description
Abc	Text values
	Date values
≅	Date & Time values
#	Numerical values
T / _F	Boolean values (relational only)
•	Geographic values (used with maps)

• Occasionally the auto-detected type is wrong; this can be manually overridden using the menu

Main Window: with Data and Views

Data Roles: Dimensions

- In general, any field containing qualitative or categorical information is treated as a dimension (e.g. text, dates)
- In relational data, dimensions are the independent variables
- Data can be aggregated using the values of a dimension
- When added as rows/columns, dimensions produce headers

Data Roles: Measures

- In general, any field containing quantitative information is treated as a measure (e.g. numerical data, etc.)
- In relational data, measures are the dependent variables
- The values of a measure are a function of one or more dimensions
- When added as rows/columns, measures produce axes

Tableau basics

Data Roles: Dimensions vs. Measures

measure

Which is which?

dimension

total number of students in each house

Main Window: with Data and Views

21 Available Views

Tableau basics

- Tables
- Maps
- Pie charts
- Bar charts
- Treemaps
- Circle views
- Line charts
- Area charts
- Combination charts
- Scatterplots
- Histograms
- Box-and-whisker plots
- Gantt
- Bullet plots
- Packed circles

Lab pt. 1: Getting Started

Connecting to a Data File

Connecting to a Data File

Creating Views

Drag a dimension to "Columns"

Drag a dimension to "Rows"

Drag a measure onto "Text"

Further refine by subdividing

From Text Table to Bar Chart

Dual encoding using color

Creating a new sheet

Using "Show Me": a VIS recommender

Using "Show Me": a VIS recommender

Using "Show Me": a VIS recommender

Questions?

Tableau basics

Lab pt. 2: Exploring Other Datasets

Your turn!

- Form groups of 2
- Choose a dataset of interest to you from this list: goo.gl/kcbqfc
- Create two visualizations in Tableau that show something interesting in the dataset
 - They must show different variables
 - They must be different visual encodings
- Link the two visualization to create a story
- Pair up with another group
- Let the other group view your visualization without any explanation from you
- Provide feedback to each other
 - What are two specific things you saw that you liked?
 - What are two specific things you would have done differently?

Discussion

- What are some of Tableau's strengths? Weaknesses?
- What are your initial thoughts after using it?

Tableau basics