

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-110957

(43)Date of publication of application: 23.04.1999

(51)Int.CI.

G11B 31/00

(21)Application number: 09-267476

(71)Applicant: SONY CORP

(22)Date of filing:

30.09.1997

(72)Inventor: KOYA TAKASHI

(54) TRANSCEIVER AND METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To shorten a standby time when a slave equipment is turned on and to receive instantly a signal that one among plural slave equipments receives when it is turned off by making a control means of a master equipment to detect source on/off information of the slave equipment and controlling the reproducing means and the signal processing means of the master equipment when on information is detected based on the reproducing related information of the master equipment when off information is detected.

SOLUTION: A receiving antenna 311 receives a transmission signal transmitted from the transmission antenna 18 of the master equipment 10 to supply it to a receiving circuit 321. The receiving circuit 321 two phase PSK demodulates the transmission signal supplied from the receiving antenna 311 to supply it to a signal processing part 331. In a transmission/reception system, since the signal processing part 16 is provided in the master equipment 10 side, and the signal processing part 331 or 332 is provided in the slave

equipment 301 or 302 side, when the data are read by the error correction circuit of the master equipment 10, the error correction circuit corrects an error at a data transmission time. Thus, a relatively large foreign noise is dealt with also, and error correction power is improved.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平11-110957

(43)公開日 平成11年(1999) 4月23日

(51) Int.Cl.6

G11B 31/00

識別記号

503

FΙ G11B 31/00

503A

審査請求 未請求 請求項の数10 OL (全 11 頁)

(21)出願番号

特顯平9-267476

(22)出願日

平成9年(1997)9月30日

(71)出願人 000002185

ソニー株式会社

東京都品川区北品川6丁目7番35号

(72)発明者 小屋 隆志

東京都品川区北品川6丁目7番35号 ソニ

一株式会社内

(74)代理人 弁理士 小池 晃 (外2名)

(54) 【発明の名称】 送受信装置及び方法

(57)【要約】

【課題】 遠隔操作によるチェンジャーシステムの親機 では、子機の内の一が一旦電源をオフにすると、電源オ フ直前にどのCDのどのトラックの曲を受信していたか というような、上記子機用の親機における再生関連情報 を記憶していなかった。

【解決手段】 コントローラ21は、信号処理部16で 所定の信号処理が施された信号から現在再生している光 ディスクに関連する情報、すなわち再生関連情報を生成 すると共に、受信アンテナ20によって受信された遠隔 操作信号を解読する。レジューム用RAM91及び9 2は、コントローラ21で生成した再生関連情報を子機 の数に対応させて記憶する。

【特許請求の範囲】

【請求項1】 遠隔操作により親機と複数の子機との間で信号を送受信する送受信装置において、

上記親機は、

上記信号の再生手段と、

この再生手段で再生された信号に所定の信号処理を施す 信号処理手段と、

この信号処理からの信号を送信する送信手段と、

上記再生手段と上記信号処理手段と上記送信手段とを制 御する制御手段とを備え、

上記子機は、

上記親機から伝送されてくる上記信号を受信する受信手 段と

上記受信手段で受信された信号に所定の信号処理を施す 信号処理手段と、

上記受信手段と上記信号処理手段とを制御する制御手段 とを備えてなり、

上記親機の上記制御手段は上記子機の電源オン/オフ情報を検出し、上記オフ情報検出時の親機の再生関連情報に基づいて、上記オン情報検出時の上記親機の再生手段と上記信号処理手段を制御することを特徴とする送受信装置。

【請求項2】 上記親機は、ディスク状記録媒体に記録された信号を上記再生手段により再生し、この再生信号に上記信号処理手段で信号処理を施し、この信号を送信手段により無線信号として、上記複数の子機に送信することを特徴とする請求項1記載の送受信装置。

【請求項3】 上記再生手段は、上記ディスク状記録媒体から再生RF信号を得る再生アンプと、この再生アンプが得たトラッキングエラー信号とフォーカスエラー信号を用いて上記ディスク状記録媒体に対するピックアップのトラッキングサーボ及びフォーカシングサーボを行うサーボ回路であることを特徴とする請求項2記載の送受信装置。

【請求項4】 上記親機は、複数のディスク状記録媒体を収納し、そのうちの一枚を選択的に上記再生手段により再生することを特徴とする請求項2記載の送受信装置。

【請求項5】 上記再生手段は、上記ディスク状記録媒体から再生RF信号を得る再生アンプと、この再生アン 40 プが得たトラッキングエラー信号とフォーカスエラー信号を用いて上記ディスク状記録媒体に対するピックアップのトラッキングサーボ及びフォーカシングサーボを行うサーボ回路と、上記子機から供給されるディスク状記録媒体の選択制御信号に応じて所望のディスクを選択する選択機構とを備えてなることを特徴とする請求項4記載の送受信装置。

【請求項6】 上記再生関連情報は、上記複数のディスク状記録媒体のうちの一枚を認識するディスク情報であることを特徴とする請求項4記載の送受信装置。

【請求項7】 上記再生関連情報は、上記複数のディスク状記録媒体のうちの一枚のディスクのトラック情報であることを特徴とする請求項4記載の送受信装置。

【請求項8】 上記親機は、上記制御手段が上記子機の オフ情報を検出したときの親機の再生関連情報を記憶手 段に記憶することを特徴とする請求項1記載の送受信装 置。

【請求項9】 上記親機は、上記複数の子機の数に対応 した数の上記記憶手段を備えることを特徴とする請求項 8記載の送受信装置。

【請求項10】 遠隔操作により親機と複数の子機との間で信号を送受信する送受信方法において、

上記親機には上記子機の電源オン/オフ情報を検出させ、上記オフ情報検出時の親機の再生関連情報に基づいて、上記オン情報検出時の上記親機の再生処理と信号処理とを制御することを特徴とする送受信方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、遠隔操作通信により親機と複数の子機との間で信号を送受信する送受信装 置及び方法に関する。

[0002]

【従来の技術】コンパクトディスク(以下、CDという。)に記録された音声データの読み取りと、その音声データに基づく音の再生を別々に離れた場所で行うことがある。例えば、CDに記録された音声データを読み取り、それに基づいて伝送信号を生成する送信部を親機としてマスタールームに設け、この親機となる送信部から送信される伝送信号を受信し、その伝送信号に基づいて音声信号を再生する複数の受信部を複数の子機として複数のサブルームに設けるような場合である。この場合、伝送信号は、遠隔操作通信によりケーブルや無線で親機となる送信部から子機となる受信部に伝送される。

【0003】また、上記親機となる送信部が多数のCDの内から、上記子機となる受信部の遠隔操作により、一枚のCDを選択して再生し、その再生信号を上記受信部、又は複数の受信部に伝送する、遠隔操作によるチェンジャーシステムも考えられるようになった。

[0004]

50

【発明が解決しようとする課題】ところで、遠隔操作によるチェンジャーシステムの上記親機となる送信部では、上記子機となる受信部の内の一が一旦電源をオフにすると、電源オフ直前にどのCDのどのトラックの曲を受信していたかというような、上記子機用の親機における再生関連情報を記憶していなかった。

【0005】上記子機の内の一が電源オン時に、他の子機で上記信号を受信していないのであれば、上記親機のドライブは一台であるので、続きを聞きたいというユーザに対しては、上記再生関連情報に基づいて、子機の電源オフ時に聞いていたCDをドライブに自動的にセット

し、トラックの近傍にピックアップを位置させることに より、再生の待ち時間を短縮することができる。

【0006】しかし、上述したように、上記親機では上記子機用の再生関連情報を記憶していなかったので、続きを聞きたいというユーザに対しては、改めて所定のCDをドライブにセットし、ピックアップをトラック上に移動させなければならなかった。このため、再生開始までの待ち時間が長かった。

【0007】本発明は、上記実情に鑑みてなされたものであり、複数の子機の内の一が電源オフ時に受信していた信号を、該子機が電源オン時に待ち時間を短縮して直ぐに受信することができる送受信装置及び方法の提供を目的とする。

[0008]

【課題を解決するための手段】本発明に係る送受信装置は、上記課題を解決するために、親機の制御手段に子機の電源オン/オフ情報を検出させ、上記オフ情報検出時の親機の再生関連情報に基づいて、上記オン情報検出時の上記親機の再生手段と上記信号処理手段を制御させる。

【0009】上記親機の制御手段は、電源オフ時にレジューム機能により記憶されている再生関連情報を、電源オン時に直ぐに知ることができる。

【0010】また、本発明に係る送受信方法は、上記課題を解決するために、親機に上記子機の電源オン/オフ情報を検出させ、上記オフ情報検出時の親機の再生関連情報に基づいて、上記オン情報検出時の上記親機の再生処理と信号処理とを制御する。

[0011]

【発明の実施の形態】以下、本発明に係る送受信装置及 30 び方法の実施の形態について図面を参照しながら説明する。

【0012】この実施の形態は、遠隔操作通信により親機となる送信部と二つの子機となる受信部との間でオーディオ信号を送受信する送受信システムである。また、この送受信システムは、本発明に係る送受信方法により上記オーディオ信号を送受信している。

【0013】図1に示すように、親機となる送信部10は、複数の光ディスク D_1 、 D_2 、 D_3 ・・・ D_n を収納しているディスク収納部11と、このディスク収納部11から選択的に所望のディスク D_i を取り出してドライブの再生位置にローディングする搬送機構12と、この搬送機構12によりローディングされた所望の光ディスク D_i をチャッキングした後に回転駆動するスピンドルモータ13と、このスピンドルモータ13によって回転された光ディスク D_i にレーザ光を照射し、その反射光によって情報を読み取るピックアップ14と、このピックアップ14により光ディスク D_i から検出された情報から再生 R_i F信号、トラッキングエラー信号、フォーカスエラー信号等を再生する R_i Fアンプ15と、この R_i Fア

ンプ15からの再生RF信号に所定の信号処理を施す信 号処理部16と、この信号処理部16で所定の信号処理 が施された信号に所定の変調処理を施す送信回路17 と、この送信回路17からの変調信号を無線信号として 送信する送信アンテナ18と、上記RFアンプ15から の上記トラッキングエラー信号、フォーカスエラー信号 から各種サーボ駆動信号を生成してフォーカス及びトラ ッキングを制御し、またスピンドルモータ13を制御す るサーボ回路19と、後述する子機からの遠隔操作信号 を受信する受信アンテナ20と、上記信号処理部16で 所定の信号処理が施された信号から現在再生している光 ディスクに関連する情報、すなわち再生関連情報を生成 すると共に、受信アンテナ20によって受信された遠隔 操作信号を解読するコントローラ21と、コントローラ 21で生成した再生関連情報を子機の数に対応させて記 憶するレジューム用RAM91及び92と、コントローラ 21で解読された遠隔操作信号に応じて所望のディスク を選択するためのディスク選択ドライバ22と、このデ イスク選択ドライバ22によって駆動され、搬送機構1 2を上記ディスク収納部11の上記所望の光ディスクの 収納位置に移動させるモータ23とを備えている。ここ で、コントローラ21は、レジューム用RAM91及び 92に記憶された上記再生関連情報に応じて、上記サー ボ回路19とディスク選択ドライバ22の動作を制御す る。また、コントローラ21は、上記再生関連情報を信 号処理部16に戻して、上記伝送信号に付加するサブコ ードデータ内に書き込ませる。この送信部10は、主電 源24の他、コントローラ21内に図示しない補助電源 を備えている。

【0014】また、上記子機となる受信部301及び3 02は、送信部10から無線信号として伝送されてくる 信号を受信する受信アンテナ311及び312と、この受 信アンテナ311及び312で受信した伝送信号を復調す る受信回路321及び322と、この受信回路321及び 3 22 で受信された信号に所定の信号処理を施す信号処 理部331及び332と、この信号処理部331及び332 からの信号を増幅する増幅器341及び342と、この増 幅器341及び342からの増幅信号を音声として出力す るスピーカ351及び352と、ユーザの操作を受け付け る操作部361及び362と、この操作部361及び362 におけるユーザ操作に応じて上記送信部10に送る遠隔 操作信号を生成すると共に、上記送信部10から上記伝 送信号に付加されて伝送されてきたサブコードデータを 解読するコントローラ371及び372と、このコントロ ーラ371及び372によって生成された遠隔操作信号を 無線信号として送信する送信アンテナ381及び38 2と、上記コントローラ371及び372で解読されたサ ブコードデータに応じた上記再生関連情報を表示する表 示部391及び392と、電源401及び402とを備えて なる。

に供給する。

【0015】次に、親機10と子機301及び302の詳細な構成と動作について以下に説明する。

【0016】先ず親機10のディスク収納部11は、D1~Dnまでの例えばn枚の光ディスクを収納することができる。このディスク収納部11に収納されている各光ディスクは、それぞれ搬送機構12によって選択的に取り出され、所望の光ディスクDiとして示すようにスピンドルモータ13に接続するチャッキング位置にローディングされる。

【0017】ローディングされた光ディスクDiは、チ 10 ヤッキング位置にセットされた後、スピンドルモータ1 3によって回転される。このとき、スピンドルモータ1 3は、サーボ回路19によってスピンドルサーボがかけられている。

【0018】ピックアップ14は、スピンドルモータ13によって回転されている光ディスクDiに対してレーザ光を照射し、ディスクに記録されている情報を読み取る。ピックアップ14は、レーザ光出力手段としてのレーザダイオード、偏向ビームスプリッタや対物レンズ等からなる光学系、及び反射光を検出するためのディテクタ等を搭載している。対物レンズは図示しない2軸機構によってディスク半径方向及びディスクに接離する方向に変位可能に保持されている。また、このピックアップ14は図示しないスレッド機構によりディスク半径方向に駆動される。

【0019】再生動作によって、ピックアップ14により光ディスクDiから検出された情報は、RFアンプ15に供給される。RFアンプ15はピックアップ14から供給された情報の演算処理により、再生RF信号、トラッキングエラー信号、フォーカスエラー信号等を抽出する。そして、このRFアンプ15で抽出された再生RF信号は、信号処理部16に供給される。

【0020】信号処理部16は、図2に示すように、再生RF信号をEFM (eight to fourteen modulation) 復調するEFMデコーダ25と、エラー訂正処理を行うエラー訂正回路26と、このエラー訂正回路26でエラー訂正された再生RF信号にエラー訂正用符号を付加するECC付加回路27と、このECC付加回路27でECCが付加された再生RF信号を再びEFM変調するEFMエンコーダ28と、このEFMエンコーダ28でEFM変調された再生RF信号に帯域制限を施すLPF29とを備える。

【0021】通常、光ディスクDiには、16ビットに 量子化され、読み出し時にエラー訂正を行うためのエラー訂正用符号であるECCが付加された音声データ等が EFM変調されて記録されている。

【0022】先ず、EFMデコーダ25は、RFアンプ 15から供給される再生RF信号をEFM復調する。そ して、このEFMデコーダ25は、EFM復調した音声 データをエラー訂正回路26に供給する。エラー訂正回 50 路26は、ピックアップ14が光ディスクDiから情報を読み取る時に発生するデータ読み取り時のエラーを上記記録時に付加されたECCを用いて訂正する。さらに、エラー訂正回路26は、エラー訂正した音声信号をECC付加回路27は、エラー訂正回路26から供給される音声データにECCを付加し、この音声データをEFMエンコーダ28

【0023】EFMエンコーダ28は、ECC付加回路27から供給される音声データを再びEFM変調する。このとき、データ読み出し時のエラーは、既にエラー訂正回路26において訂正されているので、ここでEFM変調される音声データには、データ読み出し時のエラーは含まれていない。そして、EFMエンコーダ28は、EFM符号化された音声データをLPF29に供給する。LPF29は、EFMエンコーダ28から供給される音声データを帯域制限するとともに、この帯域制限した音声データを送信回路11に供給する。

【0024】送信回路17は、LPF29から供給される音声データを、所定の変調、例えば2相PSK (Phase Shift Keying) により変調し、これにより得られる伝送信号を送信アンテナ18を介して子機301又は302に送信する。

【0025】また、この信号処理部16では、再生RF信号から上記サブコードデータを取り出し、コントローラ21に供給する。

【0026】例えば、光ディスクとして一般的なコンパクトディスク(CD)では、単に音楽の再生ができるだけでなく、同時に使い勝手をよくするための付加情報として、曲の番号、インデックス、時間などの情報を、さらには文字、グラフィックなどを入れるサブコードが決められている。フレーム同期7.35kHz毎に1バイトのデータを入れることができるが、データを取りやすくするために、98フレームを単位とする図3に示すようなサブコードフレームとしている。

【0027】したがって、7.35kHz/98=75Hzがサブコードフレームの繰り返し周波数となる。そして、サブコードの同期信号として、EFM変調で使われなかったパターンを二つ選んで S_0 、 S_1 とし、サブコードシンクとして使っている。サブコードデータは、8ビットのそれぞれに対して、P, Q, R, S, T, U, Wと名付けて各ビット毎に96ビットのシリアルデータとして意味づけている。

【0028】P, Qに関してはすべてのCDで使われているが、R~WはオプションとしてさらにECCを付加し、文字やグラフィックが入れられるようになっている。P, Qは、アクセス等の管理のために用いられるが、Pはトラックとトラックの間のポーズ部分を示しているのみで、より細かい制御はQデータによって行われる。

【0029】Qデータの96ビットは、図4に示すようなフォーマットにより規定されている。コントロールCNTの4ビットQ1~Q4は、オーディオのチャンネル数、エンファシス、CD-ROMの識別などに用いられる。次のアドレスADRの4ビットQ5~Q8は、QデータDQのためのコントロールビットとなる。このアドレスADR4ビットが「0001」である場合は、続くQg~Q80までの72ビットのQデータDQは図5に示すようなフォーマットとなる。

【0030】なお、この図5には、音楽信号中とリード 10 アウトエリアでのデータ形式を示す。 先ず、トラックナンバTNOには、音楽信号中であれば「01」~「9 9」までのトラック番号、或いはミュージック番号が書き込まれる。 リードアウトエリアであれば、「AA」とされる。 続いてインデックス X として各トラックをさらに細分化することができる情報が書き込まれる。

【0031】そして、トラック内の経過時間としてMIN(分)、SEC(秒)、FRAME(フレーム番号)が示される。さらに、AMIN, ASEC, AFRAMEとして、絶対時間アドレスが分(AMIN)、秒(ASEC)、フレーム番号(AFRAME)として書き込まれている。

【0032】コントローラ21では、上記Qデータからトラック番号や、再生経過時間情報を読み出し、上記再生関連情報の生成に用いる。また、上記再生関連情報となるディスク番号については、ディスク収納部11における収納位置を示す情報から生成しておけばよい。そして、上記ディスク番号については、上記Qデータの書き換え可能領域に書き込み、上記子機301又は302に伝送する。子機301や子機302では、1秒毎に変化する時間表示に支障がない程度ならQデータが上記再生関連情報に書き換えられていても問題とならない。

【0033】また、コントローラ21は、子機 30_1 又は 30_2 から供給される遠隔操作信号から所望の光ディスク D_i を選択するための選択制御信号、トラックジャンプ制御信号、シーク制御信号等を生成し、ディスク選択ドライバ22やサーボ回路19に供給し、ディスク選択ドライバ22やサーボ回路19の動作を制御する。

【0034】サーボ回路19は、RFアンプ15から供給されるトラッキングエラー信号、フォーカスエラー信号や、コントローラ21からのトラックジャンプ指令、シーク指令、スピンドルモータ13の回転速度検出情報等により各種サーボ駆動信号を発生させ、2軸機構及びスレッド機構を制御してフォーカス及びトラッキング制御を行い、またスピンドルモータを制御する。

【0035】また、ディスク選択ドライバ22は、子機301又は302の操作部361又は362を介してユーザにより所望のディスクが選択されたとき、或いはレジューム用RAM91又は92から上記再生関連情報が読み出されて、所望の光ディスクをドライブにセットするとき50

に、搬送モータ23を駆動し、搬送機構12をそのディスク番号に設定されている収納位置に移動させる。そして、そこに収納されている光ディスクDiを取り出し、スピンドルモータ13に接続されているチャッキング部にローディングさせる。

【0036】また、コントローラ21は、子機301又は302の電源401又は402のオン/オフを、コントローラ371又は372と、送信アンテナ381又は382と、受信アンテナ20を介して遠隔操作信号として受信し検出する。

【0037】そして、例えば、コントローラ21が子機301の電源401のオフ情報を検出したときには、RAM91に親機10の再生関連情報、例えば、光ディスクDiの上記ディスク収納部11での収納番号や、トラック番号を記憶する。

【0038】その後、コントローラ21が子機301の電源401のオン情報を検出したときには、他の子機302の電源402がオフになっていることを条件に、RAM91から上記再生関連情報を読み出し、この再生関連情報に基づいてディスク選択ドライバ22を使って搬送モータ23を駆動し、ディスク収納部11から電源オフ時に再生していた光ディスクDiをローディングし、スピンドルモータ13にチャッキングし、さらにピックアップ14をトラック上に位置させる。なお、この動作の詳細については後述する。

【0039】次に、子機301及び子機302の詳細な構成と動作について説明する。なお、ここでは、子機301についてのみ説明するが子機302も同様である。

【0040】受信アンテナ311は、親機10の送信アンテナ18から送信された伝送信号を受信し、受信回路321に供給する。受信回路321は、受信アンテナ311から供給される伝送信号を2相PSK復調し、信号処理部331に供給する。

【0041】信号処理部331は、図6に示すように、上記受信回路321で復調された信号から音声データを抽出するLPF45と、このLPF45により得られた音声データをEFM復調するEFMデコーダ46と、EFMデコーダ46と、EFMデコーダ46から供給される音声データにエラー訂正処理を施すエラー訂正回路47と、エラー訂正処理された音声データをアナログ音声信号に変換するD/A変換器48とを備える。

【0042】受信回路321で2相PSK復調された信号はLPF45に供給される。LPF45は、2相PSK復調された信号から音声データを抽出し、EFMデコーダ46に供給する。EFMデコーダ46は、LPF45から供給される音声データをEFM復調し、EFM復調された音声データをエラー訂正回路47に供給する。

【0043】エラー訂正回路47は、信号伝送中に重畳 した外来雑音によるエラーを、親機10のECC付加回 路27で音声データに付加されたECCを用いて訂正す る。光ディスクDiからのデータ読み取り時のエラーは、上述の通り、既に親機10のエラー訂正回路26で訂正されている。そして、エラー訂正回路47は、再生された音声データをD/A変換器48に供給する。

【0044】 D/A変換器48は、音声データをアナログ音声信号に変換し、このアナログ音声信号を増幅器341で増幅されたアナログ音声信号は、スピーカ351に供給され、ここから光ディスクD₁に記録された音声データに基づく音が発せられる。

【0045】このように、上記送受信システムでは、親機10側には信号処理部16を、子機301又は302側には信号処理部331又は332を備えているので、親機10のエラー訂正回路26でデータ読み取り時のエラーを訂正し、子機301又は302のエラー訂正回路47では、データ伝送時のエラーを訂正する。このため、比較的大きな外来雑音にも対応でき、エラー訂正能力を高めることができる。

【0046】また、子機301のコントローラ371は、操作部361におけるユーザ操作に応じて親機10に送信アンテナ381を介して送る上記遠隔操作信号を生成すると共に、親機10から上記音声データに付加されて伝送されてきたサブコードを解読する。このサブコードには、親機10のコントローラ21で上述したように上記再生関連情報が書き込まれる。

【0047】操作部361は、例えば、キースイッチを備えてなり、ユーザによる操作に応じて親機10で再生する光ディスクの番号や、トラック番号を指定する。また、電源401のオン/オフ指定も行う。

【0048】表示部391は、例えば液晶モニタからなり、ユーザによる操作部361での操作内容をインタラクティブに確認のため表示すると共に、電源オフ後に再度オンにしたときの、親機10での再生状態、すなわちスピンドルモータ13にチャッキングされている光ディスクの番号や、ピックアップ14が位置するトラック番号などを上記サブコードデータに書き込まれた再生関連情報に応じて表示する。

【0049】次に、上記送受信システムの動作を図7及び図8のフローチャートを用いて説明する。ここでは、光ディスクのディスク収納部11上でのディスク番号を 40上記再生関連情報とする。特にトラック番号については触れていないが、1曲だけが記録された光ディスクを想定している。図7は、親機10内部のレジューム用RAM91及び92に、子機301及び302の動作状態に応じて上記ディスク番号を書き込む動作を説明するフローチャートである。

【0050】先ず、ステップS1で、親機10が子機3 01又は302からの遠隔操作信号(選択制御信号)に応じて光ディスクをディスク選択ドライバ22、搬送モータ23、搬送機構12を使ってチェンジしたときには、 ステップS2に進み、チェンジしたディスク番号をD=iとする。

【0051】次に、ステップS3で子機nを1 (例えば、子機301)とし、ステップS4で子機301の電源401がオンであるか否かを判断する。このステップS4で子機301の電源401がオンであることを遠隔操作信号(電源オン/オフ信号)により判断したときには、レジューム用RAM91に光ディスク番号iをk(n)=iとして記憶させる。

【0052】そして、ステップS6に進み、n=n+1、すなわち子機nを子機302として、ステップS7で合計2台という子機の数(M)よりnが大きくなるまでステップS4からの処理を繰り返す。このため、子機302の電源402がオンであれば、レジューム用RAM92にも光ディスク番号i をk (n) = i として記憶させる。

【0053】ここまでは、例えば二つの子機301及び302が共に電源がオンであり、RAM91及び92に上記再生関連情報としての光ディスク番号iが共に記憶された状態を示している。すなわち、親機10で再生しているディスク番号iの光ディスクを二つの子機301及び302で共に受信して、二人のユーザが聞いている場合である。

【0054】これに対して、ステップS4で子機301 又は302のいずれかのみがオンであった場合には、レ ジューム用RAM91又は92のいずれか一方にのみ上記 光ディスク番号iが記憶されることになる。

【0055】次に、上記図7のフローチャートによりレジューム用RAM91又は92に記憶された上記再生関連情報としての光ディスク番号iを使っての、この送受信システムの動作を図8のフローチャートを用いて説明する。

【0056】先ず、ステップS11では、子機n、例えば子機301から、親機10の主電源24のオン要求があったか否かをコントローラ21が判断する。具体的には、子機301の操作部361を使ってユーザが電源401を入れた後、親機10の主電源24もオンにしたいという要求をしたか否かを判断する。なお、子機10の電源401がオンとなったか否かのみを判断してもよい。

【0057】ステップS11で主電源24のオン要求があったときには、ステップS12に進み、主電源24のオン/オフを確認する。ここで、主電源24がオフであれば、ステップS12及びステップS13を通してオンにする。

【0058】そして、ステップS14でレジューム用RAM91のk(n)=Dを読み込む。D=iであったので、ステップS15ではディスク番号iの光ディスクをディスク選択ドライバ22、搬送モータ23、搬送機構12を使ってディスク収納部11からスピンドルモータ13のチャッキング部に搬送してセットする。

【0059】次に、ステップS16では、電源オフ時に再生していたディスク番号iの光ディスクを親機10のドライブがセットしている旨を、子機301に上記サブコードデータに書き込んで伝送し、表示部391に表示させる。

【0060】すなわち、子機301が電源オフ後に、再度電源オンとなったとき、他の子機302の電源402がオフになっていることを条件(ステップS12での判断で主電源12がオフとなっていたため)に、RAM91から上記再生関連情報を読み取り、この再生関連情報に基づいてディスク選択ドライバ22を使って搬送モータ23を駆動し、ディスク収納部11から電源オフ時に再生していた光ディスクDiをローディングし、スピンドルモータ13にチャッキングし、さらにピックアップ14をトラック上に位置させ、そして、その旨を表示部391に表示させる。このため、複数の子機の内の一が電源オフ時に受信していた音声信号を、該子機が電源オン時に待ち時間を短縮して直ぐに受信できる。

【0061】また、この図8に示すフローチャートにおいて、ステップS12で主電源がオンになっており、ス 20 テップS17で他の子機302がディスクを再生中であるときには、ステップS18に進む。

【0062】このステップS18では、子機301用のレジューム用RAM91のk(n)=Dを読む。そして、ステップS19で親機10で再生中のディスクと、ステップS18で読み込んだレジューム用RAM91のk(n)=Dとを比較し、ステップS17で再生中と判断したディスクが上記ディスク番号iのディスクであるか否かを比べる。ここで、YES、すなわち子機302でもディスク番号iの光ディスクからの音声信号を受信していると判断すると、子機301に対しては、ステップS16に示すように、ディスク番号iのディスクがセットされている旨を表示部391に表示させる。

【0063】また、ステップS19で再生中のディスクは、レジューム用RAM9」に記憶されたk(n) = i と同じではないと判断すると、ステップS20に進み、子機30」の表示部39」に、他のディスクを再生中の旨を表示させる。

【0064】一方、上記ステップS17で親機10がディスクを再生中でないと判断すると、コントローラ21は、ステップS21でレジューム用RAM91のk

(n) =D=iを読む。すなわち、主電源24はオンになっているが、現在、他の子機30 $_2$ がオンになっていないことを示すので、ステップS21ではレジューム用RAM $_2$ 1からk(n) =D=iを読み込み、ステップS22でディスク選択ドライバ22、搬送モータ23、搬送機構12を使ってディスク収納部11からディスク番号iの光ディスクDiを搬送し、スピンドルモータ13に繋がるチャッキング部にセットして、その旨を子機30 $_1$ の表示部3 $_2$ 1に表示させる。

【0065】したがって、子機301が電源オフ後に、再度電源オンとなったとき、他の子機302の電源402がオフになっていることを条件(ステップS17での判断でディスクを再生中ではないとなっていたため)に、RAM91から上記再生関連情報を読み取り、この再生関連情報に基づいてディスク選択ドライバ22を使って搬送モータ23を駆動し、ディスク収納部11から電源オフ時に再生していた光ディスクDiをローディングし、スピンドルモータ13にチャッキングし、さらにピックアップ14をトラック上に位置させ、そして、その旨を表示部391に表示できる。このため、複数の子機の内の一が電源オフ時に受信していた音声信号を、該子機が電源オン時に待ち時間を短縮して直ぐに受信できる。

【0066】また、他の子機が電源オンであり、親機にディスク番号iではない光ディスクを再生させているときには、その旨を子機の表示部に表示させる。また、他の子機が親機にディスク番号iの光ディスクを再生させているときには、その旨を子機の表示部に表示させる。これにより、子機を上記オーディオ信号の受信に用いるユーザは、現在、親機が再生している光ディスクを知ることができるし、聞きたいオーディオ信号については待ち時間無しで直ぐに聞くことができる。

【0067】なお、本実施の形態の送受信システムは、 子機を2台としたが、もっと多くの子機を用いてもよい。

【0068】また、親機となる送信部では光ディスクを再生して、再生オーディオ信号を子機となる受信部に無線信号として伝送したが、ラジオ放送を受信する受信部を親機として、複数の子機となる受信部にラジオ放送のオーディオ信号を受信させるようにしてもよい。この場合に、上記再生関連情報としては、ラジオ放送のバンド、例えばAM, FM, TVか、又は局に関する情報が扱える。また、テレビジョン放送を受信するテレビジョン受信機を親機として、複数の子機となる受信部に上記親機からのテレビジョン放送を受信させるようにしてもよい。この場合には、局に関する情報が上記再生関連情報となる。

【0069】また、複数の光ディスクから所望の一枚を 選択するディスクチェンジー機能を備える送信部ではな く、一枚の光ディスクを再生するだけの送信部でもよ い。

【0070】また、オーディオ用の光ディスクだけではなく、オーディオ及びビデオデータが記録されている光ディスクを、再生して送信する親機でもよい。

【0071】また、上記レジューム用のRAMは、子機の数だけ親機の内部に設けたが、子機側に各々設けるようにしてもよい。

[0072]

50

【発明の効果】本発明に係る送受信装置及び方法は、複

数の子機の内の一が電源オフ時に受信していた信号を、 該子機が電源オン時に待ち時間を短縮して直ぐに受信す ることができる。

【図面の簡単な説明】

【図1】本発明に係る送受信装置及び方法の実施の形態 となる送受信システムのブロック図である。

【図2】上記図1に示した実施の形態を構成する親機内部の信号処理部の詳細な構成を示すブロック図である。

【図3】サブコードデータのフレーム構成を示す図である。

【図4】サブコードデータの内のQチャンネルのフォーマット図である。

【図5】上記Qチャンネルの内のQデータ72ビットのフォーマット図である。

【図6】上記図1に示した実施の形態を構成する子機内

部の信号処理部の詳細な構成を示すブロック図である。

14

【図7】上記実施の形態で、レジューム用RAMに再生 関連情報としてのディスク番号を書き込む動作を説明す るための図である。

【図8】上記上記実施の形態の全体的な動作を説明するための図である。

【符号の説明】

91,92 レジューム用RAM、10 送信部(親機)、11 ディスク収納部、12 搬送機構、14 ピックアップ、15 RFアンプ、16 信号処理部、19 サーボ回路、21 コントローラ、22 ディスク選択ドライバ、24 主電源、301,302 受信部(子機)、331,332 信号処理部、371,372 コントローラ

【図2】

【図3】

【図4】

【図5】

【図6】

