NAVIGATION ALGORITHM VALIDATION REPORT

NAVIGATION ALGORITHM VALIDATION R

NaviFloor Robotics, Inc.

Document ID: NAV-VAL-2023-Q4

Date: December 15, 2023

Classification: Confidential

1. EXECUTIVE SUMMARY

This validation report documents the comprehensive testing and verification procedures conducted on NaviFloor Robotics' proprietary navigation algorithms.

specifically focusing on the Multi-Surface Adaptive Navigation System (MS version 4.2.1. Testing was performed between September 15, 2023, and Dec 2023, at the NaviFloor Technical Center in Austin, Texas.

2. TESTING METHODOLOGY

2.1 Testing Environment

Primary test facility: 45,000 sq ft controlled environment

-

Secondary validation: 3 partner facilities (manufacturing, warehouse, distrib

-

Surface types tested: concrete, epoxy, metal grating, composite flooring

-

Environmental conditions: 18-30°C, 30-70% humidity

- - 2 -

Lighting conditions: 50-2000 lux

2.2 Test Parameters

-

Navigation accuracy threshold: ±5mm

-

Path optimization efficiency: >98%

_

Obstacle detection range: 0.1-15m

-

Real-time processing latency: <50ms

-

Multi-robot coordination accuracy: ±25mm

3. ALGORITHM COMPONENTS VALIDATED

3.1 Core Navigation Functions

- LiDAR-based SLAM (Simultaneous Localization and Mapping) - Dynamic path planning - Obstacle avoidance - Multi-surface transition handling - Fleet coordination protocols

3.2 Safety Systems

-

Emergency stop protocols

_

Collision prediction algorithms

-

Human detection and avoidance

-

Zone restriction enforcement

-

Safety perimeter maintenance

4. TEST RESULTS

4.1 Performance Metrics

Navigation accuracy achieved: ±3.2mm (exceeds specification)

-

Path optimization efficiency: 99.3%

-

Obstacle detection accuracy: 99.97%

-

Processing latency (average): 32ms

-

Battery efficiency impact: +12% improvement

4.2 Edge Cases

-

Sudden lighting changes: 100% success rate

- 6-

Surface transition handling: 99.8% success rate

_

Multiple obstacle scenarios: 99.9% success rate

-

Network interruption recovery: 100% success rate

_

Emergency stop response: 100% success rate

5. COMPLIANCE VERIFICATION

5.1 Safety Standards

_

ISO/TS 15066:2016 (Robots and robotic devices)

-

ANSI/RIA R15.06-2012

-

EN ISO 13849-1:2015

-

IEC 61508 (SIL 2 certification)

_

UL 1740 requirements

5.2 Performance Standards

-

ASTM F3200-19 (Standard Practice for AMRs)

-

VDA 5050 compliance

-

IEEE 1872-2015 (Robot Task Representation)

- 8 -

ISO/IEC 25010:2011 (Software Quality)

6. VALIDATION CONCLUSIONS

The MSANS v4.2.1 navigation algorithm has successfully met or exceeded a specified performance criteria and safety requirements. Notable achievement include:

_

99.99% successful mission completion rate

-

Zero safety incidents during 10,000+ hours of testing

-

15% improvement in path optimization vs. previous version

- -9-

30% reduction in computational resource usage

_

Successfully validated across all target environment types

7. RECOMMENDATIONS

7.1 Deployment Requirements

-

Minimum sensor calibration frequency: Weekly

_

Environmental mapping updates: Bi-weekly

-

System health checks: Daily

-

Fleet coordination server: Redundant configuration required

-

Network latency requirement: <100ms

7.2 Operating Parameters

-

Maximum recommended fleet size: 50 units

-

Operating temperature range: 5-40°C

-

Maximum recommended payload: 1,500kg

_

Minimum aisle width: 1.8m

-

Maximum operational speed: 2.0 m/s

8. CERTIFICATION

This validation report certifies that MSANS v4.2.1 meets all specified requirements for commercial deployment in industrial environments. Testing conducted under the supervision of:

Dr. Elena Kovacs

Chief Research Officer

NaviFloor Robotics, Inc.

Marcus Depth

Chief Technology Officer

NaviFloor Robotics, Inc.

9. LEGAL DISCLAIMER

This report is confidential and proprietary to NaviFloor Robotics, Inc. The

information contained herein is based on testing conducted under specific

conditions and should not be considered a guarantee of performance under a

circumstances. Implementation of the navigation system must comply with a

applicable safety regulations and operating procedures. NaviFloor Robotics,

assumes no liability for implementations that deviate from specified paramet

or operating conditions.

Document End

Version: 1.0

Last Updated: December 15, 2023

