Ибрагимов Д. Н.

Лекции по курсу "МАТЕМАТИЧЕСКАЯ СТАТИСТИКА"

Верстка — Гординский Д. М.

Contents

И	точники	7
1	Многомерное нормальное распределение	8
	Замечание	8
	1.1 Лемма 1	8
	1.2 Определение 1	8
	1.3 Лемма 2	8
	1.4 Лемма 3	9
	1.5 Лемма 4	9
	Замечание	9
	1.6 Определение 2	9
	Замечание	9
	1.7 Лемма 5	10
	Доказательство	10
	Замечание	10
	1.8 Определение 3	10
	1.8.1 Доказательство леммы 3	10
	1.8.2 Доказательство леммы 4	11
	Замечание	11
	Замечание	11
2	Теорема о нормальной корреляции	12
	2.1 Определение 1	12
	2.2 Основные свойства условного М. О	12
	2.2.1 Свойство 1	12
	2.2.2 Свойство 2	12
	2.2.3 Свойство 3	12
	2.2.4 Свойство 4	12
	2.2.5 Свойство 5	12
	2.3 Лемма 1	13
	Доказательство	13
	Замечание	13
	2.4 Определение 2	13
	2.5 Определение 3	13
	1	13
	Доказательство	13
	2.7 Теорема 2 (О нормальной корреляции)	14
	Доказательство	14
	Замечание	15
3	Виды сходимости последовательностей случайных величин	16
J	3.1 Определение 1	16
	3.2 Определение 2	16
	3.3 Определение 3	16
	3.4 Определение 4	16
	3.5 Пример 1	16
	• •	
	3.6 Пример 2	17

	3.7	Пример 3		 				 	17
	3.8	Пример 4							
	3.9	Пример 5							
		ечание							
		Лемма 1							
	5.10	Доказательство							
	9 11	Лемма 2 (Неравенство Маркова)							
	3.11	· /							
	2.10	Доказательство							
	3.12	Следствие 1							
		Доказательство							
	3.13	Следствие 2 (Неравенство Чебышёва)							
		Доказательство							
	3.14	Лемма 3							
		Доказательство							
	3.15	Теорема 1 (Бореля — Кантелли)		 					19
		Доказательство		 					19
	3.16	Лемма 4		 				 	20
		Доказательство		 				 	20
	Замо	ечание		 				 	20
4	Зак	он больших чисел							22
	4.1	Определение 1		 				 	22
	4.2	Определение 2		 				 	22
	4.3	Теорема 1 (Закон Больших Чисел Чебышёва)		 				 	22
		Доказательство							
	4.4	Теорема 2 (Закон Больших Чисел Колмогорова)							
	Замо	ечание							
	4.5	Теорема 3							
	1.0	Доказательство							
	4.6	Следствие 1							
	4.0	Доказательство							
	1 7	Теорема 4							
	4.7	——————————————————————————————————————							
		ечание							
	4.8	Следствие 2							
		Доказательство	 •	 	 •	 ٠	 ٠	 •	23
5	Hor	тральная предельная теорема (ЦПТ)							24
9									24 24
	5.1	Определение 1							24
	5.2	Лемма 1							
	5.3	Лемма 2							
		Доказательство							
	5.4	Доказательство леммы 5.1							25
		ечание							
	5.5	Определение 2		 				 	25
	5.6	Теорема 1 (Центральная предельная)		 					25
		Доказательство		 				 	25
	5.7	Следствие 1 (Теорема Муавра - Лапласа)		 				 	26

CONTENTS

	Доказательство	26
	5.8 Пример 1	26
	5.9 Теорема 2 (Ляпунова)	27
	Замечание	27
	5.10 Теорема 3 (Неравенство Берри-Эссеена)	27
	Замечание	27
	5.11 Пример	27
6	Выборка и ее характеристики	28
	6.1 Определение 1	28
	6.2 Определение 2	28
	6.3 Определение 3	28
	Замечание	28
	6.4 Определение 4	28
		28
	Замечание	28
	6.6 Определение 6	28
	6.7 Определение 7	28
	6.8 Лемма 1	29
	Доказательство	29
	6.9 Следствие 1	29
	6.10 Определение 8	29
	6.11 Теорема 1 (Мостеллера)	29
	6.12 Определение 9	29
	Замечание	29
	6.13 Свойства $\hat{F}_n(x)$	30
	Замечание	30
	6.14 Определение 10	31
	Замечание	31
	Выборочные моменты	32
	6.15 Определение 1	$\frac{32}{32}$
	6.16 Определение 2	$\frac{32}{32}$
	6.17 Определение 3	32
	6.18 Свойства выборочных моментов	32
7	Ogyopyy to pogypo to royy a pogypo	34
'	Основные распределения в статистике	34
	Точечные оценки	
	7.1 Определение 1	34
	7.2 Свойства распределения $\chi^2(n)$	34
	7.3 Определение 2	35
	7.4 Свойства распределения $t(n)$	35
	7.5 Определение 3	36
	7.6 Свойства распределения $F(n;m)$	36
	7.7 Определение 4	37
	7.8 Определение 5	38
	Замечание	38
	7.9 Определение 6	38
	7 10. Определение 7	38

CONTENTS

	7.11 Определение 8	38
	7.12 Определение 9	38
	Замечание	38
	7.13 Определение 10	38
	7.14 Пример	38
	7.15 Теорема 1	39
	Доказательство	39
8	Эффективные оценки 4	ا 0
0		ŧ0 10
	1 11	ŧ0 10
		ŧ∪ 11
		±⊥ 11
		±1 11
		11
		11
		11
	1 1	12
		12
		12
		12
		13
	8.11 Пример 3	13
9	Методы построения точеченых оценок 4	4
Ŭ	Метод максимального правдоподобия	
		14
		14
		14
		15
	• •	15
		15
		15
		16
	1	16
		16
		₽0 16
	1	16 16
		16
	1 1	16 17
	1 1	17 17
	<u> </u>	+ 1

10 Интервальные оценки				48
10.1 Определение 1		 		. 48
10.2 Определение 2		 		. 48
10.3 Определение 3		 		. 48
Замечание		 		. 48
Построение доверительного интервала на основе центральной статистики				
10.4 Определение 4				
Замечание				
10.5 Определение 5				
10.6 Лемма 1		 		
Доказательство				
10.7 Теорема 1 (ФИШЕРА)				
Доказательство				
10.8 Пример 3				
10.9 Пример 4		 		. 51
44 TI				
11 Проверка статистических гипотез				53
11.1 Определение 1				
11.2 Определение 2				
11.3 Определение 3				
11.4 Примеры				
Замечание				
11.5 Определение 4				
11.6 Определение 5				
11.7 Определение 6				
11.8 Определение 7				
Замечание				
11.9 Определение 8				
11.10Определение 9				
Замечание				
Критерий согласия Колмогорова				
Критерий согласия хи-квадрат Пирсона				
11.11Теорема 1				
Замечание				
Проверка гипотезы о значении параметра	•	 	•	. 56
12 Метод наименьших квадратов				57
12.1 Определение 1				
12.2 Определение 2				
12.3 Определение 3				
12.4 Теорема 1 (Гаусса-Маркова)				
Доказательство				
Замечание				
Нормальная регрессия				
12.5 Определение 4				
12.6 Лемма 1				
Доказательство				
12.7 Лемма 2				
	•	 	•	

CONTENTS

Доказательство	. 59
12.8 Следствие 1	. 59
Доказательство	. 59
12.9 Лемма 3	. 59
Доказательство	. 60
12.10Определение 5	. 60
12.11Лемма 4	. 60
Доказательство	. 60
12.12Лемма 5	. 60
Доказательство	. 60
12.13Лемма 6	. 60
Доказательство	. 61
12.14Лемма 7	. 61
Доказательство	. 61
12.15Лемма 8	. 62
Доказательство	. 62
Замечание	. 62
Критерий Фишера	. 62

Источники

- Ивченко Г. И., Медведев Ю. И. "Математическая статистика", изд. "Высшая школа", 1984
- Кибзун А. И., Наумов А. В., Горяинова Е. Р. "Теория вероятностей и математическая статистика. Базовый курс с примерами и задачами", изд "ФИЗМАТЛИТ", 2013
- Панков А. Р., Платонов Е. Н. "Практикум по математической статистике", изд. "МАИ", 2006

1 Многомерное нормальное распределение

Замечание

Вектор $X = (X_1, \dots, X_n)^T$ называется **случайным**, если X_1, \dots, X_n — случайные величины (далее **с.в**), определенные на одном вероятностном пространстве.

Через $M[X] = m_X$ обозначим вектор математического ожидания:

$$M[X] = m_X = \begin{pmatrix} M[X_1] \\ \vdots \\ M[X_n] \end{pmatrix}$$

Через K_x обозначим ковариационную матрицу с.в X:

$$K_X = \begin{pmatrix} \operatorname{cov}(X_1, X_1) & \dots & \operatorname{cov}(X_1, X_n) \\ \vdots & \ddots & \vdots \\ \operatorname{cov}(X_n, X_1) & \dots & \operatorname{cov}(X_n, X_n) \end{pmatrix}$$

1.1 Лемма 1

Пусть $K_X \in \mathbb{R}^{n \times n}$ — ковариационная матрица с.в X. Тогда:

- 1. $K_X \ge 0$, r.e. $\forall x \in \mathbb{R}^n \setminus \{0\}, x^T K_X x \ge 0$;
- 2. $K_X^T = K_X$

1.2 Определение 1

Случайный вектор $X=(X_1,\dots,X_n)^T$ называется **невырожденным нормальным** вектором:

$$X \sim N(m_X, K_X)$$

если совместная плотность вероятности имеет вид:

$$f_X(x) = ((2\pi)^n \det K_X)^{\frac{-1}{2}} \exp\{\frac{-1}{2}(x-m_X)^T K_X^{-1}(x-m_X)\}$$

где
$$m_X \in \mathbb{R}^n, K_X \in \mathbb{R}^{n \times n}, K_X > 0, K_X^T = K_X$$

1.3 Лемма 2

Пусть X — невырожденный нормальный вектор с параметрами m_X и K_X .

Тогда $M[X] = m_X$, а K_X — ковариационная матрица X.

Рассмотрим основные свойства многомерного нормального распределения.

1.4 Лемма 3

Пусть $X \sim N(m_X, K_X), A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m.$ Тогда:

$$Y = AX + b \sim N(m_Y, K_Y),$$

$$m_Y = Am_X + b,$$

$$K_Y = AK_XA^T.$$

1.5 Лемма 4

Пусть $X \sim N(m_X, K_X)$.

Тогда компоненты вектора X независимы тогда и только тогда, когда они некоррелированы.

Замечание

Доказательство данных утверждений при помощи аппарата функций распределения и плотности довольно сложно. Поэтому рассмотрим аппарат характеристических функций.

1.6 Определение 2

Пусть $X = (X_1, ..., X_n)^T$ — случайный вектор.

Тогда *характеристической функцией* называется:

$$\psi_X(\lambda) = M[e^{i\lambda^T X}] = \int_{\mathbb{R}^n} e^{i\lambda^T X} dF_X(x)$$

Замечание

Характеристическая функция определена для любого случайного вектора или с.в. Если с.в **дискретная**, то:

$$\psi_X(\lambda) = \sum_{k=1}^\infty e^{i\lambda X_k} p_k$$

Если с.в абсолютно непрерывная, то

$$\psi_X(\lambda) = \int\limits_{\mathbb{D}} e^{i\lambda X} f_X(x) dx$$

В этом случае $\psi_X(\lambda)$ является *преобразованием Фурье* f_X .

Поскольку преобразование Фурье взаимно однозначно, а f_X однозначно определяет распределение, то характеристическая функция $\psi_X(x)$ также однозначно определяет распределение с.в X.

Причем:

$$f_X(x) = \frac{1}{(2\pi)^n} \int\limits_{\mathbb{R}^n} e^{-i\lambda^T X} \psi_X(\lambda) d\lambda$$

1.7 Лемма 5

Пусть X — случайный вектор, $A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n$. Тогда:

1. для
$$Y = AX + b$$

$$\psi_Y(\lambda) = e^{i\lambda^T b} \psi_X(A^T \lambda)$$

2. компоненты вектора X **независимы** тогда и только тогда, когда

$$\psi_Y(\lambda) = \prod_{k=1}^n \psi_{X_k}(\lambda_k)$$

Доказательство

$$1. \ \psi_Y(\lambda) = M[e^{i\lambda^T Y}] = M[e^{i\lambda^T AX} e^{i\lambda^T b}] = e^{i\lambda^T b} M[e^{i(A^T\lambda)^T X}] = e^{i\lambda^T b} \psi_X(A^T\lambda)$$

$$\begin{aligned} 2. \ \ \psi_X(\lambda) &= \int\limits_{\mathbb{R}} \dots \int\limits_{\mathbb{R}} e^{i(\lambda_1 x_1 + \dots + \lambda_n x_n)} f_X(x_1, \dots, x_n) dx_1 \cdot \dots \cdot dx_n \overset{\mathrm{H/3}}{=} \int\limits_{\mathbb{R}} \dots \int\limits_{\mathbb{R}} e^{i\lambda_1 x_1} \cdot \dots \cdot e^{i\lambda_n x_n} \cdot f_{X_1}(x) \cdot \dots \cdot f_{X_n} dx_1 \cdot \dots \cdot dx_n = \int\limits_{\mathbb{R}} e^{i\lambda_1 x_1} f_{x_1}(x_1) dx_1 \cdot \dots \cdot \int\limits_{\mathbb{R}} e^{i\lambda_n x_n} f_{x_n}(x_n) dx_n = \prod_{k=1}^n \psi_{X_k}(\lambda_k) \end{aligned}$$

Замечание

При помощи характеристической функции можно дать другое определение нормального распределения. В том числе для вырожденного K_X .

1.8 Определение 3

Случайный вектор X называется **нормальным**: $X \sim N(m_X, K_X)$, если:

$$\psi_X(\lambda) = \exp\{i\lambda^T m_X - \frac{1}{2}\lambda^T K_X \lambda\}$$

1.8.1 Доказательство леммы 3

В силу Леммы 5, п.1

$$\begin{split} \psi_Y(\lambda) &= e^{i\lambda^T b} \psi_X(A^T \lambda) = e^{i\lambda^T b} \exp\{i\lambda^T A m_x - \frac{1}{2} \lambda^T A K_X A^T \lambda\} = \\ &= \exp\{i\lambda^T \underbrace{(A m_x + b)}_{m_Y} - \frac{1}{2} \lambda^T \underbrace{(A K_X A^T)}_{K_Y} \lambda\} \end{split}$$

1.8.2 Доказательство леммы 4

Пусть X_i,\dots,X_n попарно некоррелированы. Тогда $\mathrm{cov}(X_i,X_j)=0,\,i\neq 0,$ т.е. :

$$\begin{split} K_x &= diag(\sigma_{X_1}^2, \dots, \sigma_{X_n}^2) = \\ &= \begin{pmatrix} \sigma_{X_1}^2 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_{X_n}^2 \end{pmatrix} \end{split}$$

$$\begin{split} \psi_X(\lambda) &= \exp\{i\lambda_1 m_{X_1} + \dots + i\lambda_n m_{X_n} - \tfrac12 \lambda^T K_X \lambda\} = \exp\{i\lambda_1 m_{X_1} + \dots + i\lambda_n m_{X_n} - \tfrac12 (\lambda_1^2 \sigma_{X_1}^2 + \dots + \lambda_n^2 \sigma_{X_n}^2)\} = \prod_{k=1}^n \exp\{i\lambda_k m_{X_k} - \tfrac12 \lambda_k^2 \sigma_{K_k}^2\} = \prod_{k=1}^n \psi_{X_k}(\lambda_k). \end{split}$$

Откуда с учетом Леммы 5, п.1 $X_1, \dots, X_n \stackrel{k=1}{-}$ н/з.

Пусть X_1,\dots,X_n — н/з. Тогда X_1,\dots,X_n попарно некоррелированы. \blacksquare

Замечание

Поскольку K_X — невырожденная, симметрическая и положительноопределенная, то существует $S \in \mathbb{R}^{n \times n}$ — ортогональная (т. е. $S^T = S^{-1}$) такая, что:

$$S^T K_X S = \Lambda = diag(\lambda_1, \dots, \lambda_n)$$

где $\lambda_i > 0, i = \overline{1,n}$

Определим матрицу $\Lambda^{-\frac{1}{2}}=diag(\lambda_1^{-\frac{1}{2}},\dots,\lambda_n^{-\frac{1}{2}}).$

Рассмотрим вектор

$$Y = \Lambda^{-\frac{1}{2}} S^T (X - m_X)$$

Тогда $A=\Lambda^{-\frac{1}{2}}S^T, b=-\Lambda^{-\frac{1}{2}}S^Tm_X.$

В силу Леммы 3:

$$\begin{split} m_Y &= A m_X + b = \Lambda^{-\frac{1}{2}} S^T m_X - \Lambda^{-\frac{1}{2}} S^T m_X = 0, \\ K_Y &= A K_X A^T = \Lambda^{-\frac{1}{2}} S^T K_X S \Lambda^{-\frac{1}{2}} = I, \end{split}$$

т. е.
$$Y \sim N(0, I)$$
.

При помощи невырожденного линейного преобразования с.в. X может быть преобразован в стандартный нормальный вектор.

Верно и обратное:

$$X = m_X + S\Lambda^{\frac{1}{2}}Y,$$

откуда следует Лемма 2

2 Теорема о нормальной корреляции

2.1 Определение 1

Условным математическим ожиданием абсолютно непрерывного случайного вектора X относительно абсолютно непрерывного случайного вектора Y называется:

$$M[X\mid Y]=\int\limits_{-\infty}^{+\infty}xf_{X\mid Y}(x\mid Y)dx,$$
где $f_{X\mid Y}(x\mid Y)=\frac{f_z(x,Y)}{f_y(Y)},z=\binom{X}{Y}$

2.2 Основные свойства условного М. О.

2.2.1 Свойство 1

$$\boxed{ M[C\mid Y] = C }$$
 Доказательство
$$M[C\mid Y] = \int\limits_{-\infty}^{+\infty} Cf_{X\mid Y}(x\mid Y) dx = \frac{C\int\limits_{-\infty}^{+\infty} f_z(x,Y) dx}{f_Y(Y)} = C \frac{f_Y(Y)}{f_Y(Y)} = C. \ \blacksquare$$

2.2.2 Свойство 2

$$\boxed{ \begin{split} \underline{M[X\varphi(Y)|Y] &= \varphi(Y)M[X\mid Y]} \\ \underline{\textbf{Доказательство}} \\ M[\varphi(Y)X\mid Y] &= \int\limits_{-\infty}^{+\infty} \varphi(Y)Xf_{X\mid Y}(x\mid Y)dx = \varphi(Y)\int\limits_{-\infty}^{+\infty} xf_{X\mid Y}(x\mid Y)dx = \\ &= \varphi(Y)M[X\mid Y]. \end{split} }$$

2.2.3 Свойство 3

$$\boxed{M[\alpha X_1 + \beta X_2 \mid Y] = \alpha M[X_1 \mid Y] + \beta M[X_2 \mid Y]}$$

2.2.4 Свойство 4

Пусть
$$X,Y$$
 — независимые. Тогда $M[X\mid Y]=M[X]$ Доказательство
$$M[X\mid Y]=\int\limits_{-\infty}^{+\infty}xf_{X\mid Y}(x\mid Y)dx=\int\limits_{-\infty}^{+\infty}x\frac{f_{z}(x,Y)}{f_{Y}(Y)}dx=\int\limits_{-\infty}^{+\infty}x\frac{f_{X}(x)f_{Y}(Y)}{f_{Y}(Y)}dx=M[X]. \blacksquare$$

2.2.5 Свойство 5

$$\boxed{M[M[X\mid Y]]=M[X]}$$
 (формула повторного М. О.)

$$\frac{ \underline{\mathcal{H}} \text{оказательство}}{M[M[X\mid Y]] = \int\limits_{-\infty}^{+\infty} M[X\mid Y] f_Y(y) dy} = \int\limits_{-\infty}^{+\infty} f_Y(y) \int\limits_{-\infty}^{+\infty} x f_{X|Y}(x\mid y) dx dy = \int\limits_{-\infty}^{+\infty} \int\limits_{-\infty}^{+\infty} x \frac{f_Y(y) f_z(x,y)}{f_Y(y)} dy dx = \int\limits_{-\infty}^{+\infty} x \int\limits_{-\infty}^{+\infty} f_z(x,y) dy dx = \int\limits_{-\infty}^{+\infty} x f_X(x) dx = M[X].$$

2.3 Лемма 1

Пусть X, Y — случайные векторы с конечными вторыми моментами. Тогда: $M[(X - \hat{X})\varphi(Y)^T] = 0$ где $\hat{X} = M[X \mid Y]$

Доказательство

$$\begin{array}{l} M[(X-\hat{X})\varphi(Y)^T] = M[X\varphi(Y)^T] - M[M[X\mid Y]\varphi(Y)^T] = \\ = \text{по Cвойству 2} = M[X\varphi(Y)^T] - M[M[X\varphi(Y)^T\mid Y]] = \text{по Свойству 5} = M[X\varphi(Y)^T] - M[X\varphi(Y)^T] = 0. \end{array}$$

Замечание

Если рассмотреть евклидово пространство $\mathbb{L}_2(\Omega)$ со скалярным произведением:

$$(X,Y) = M[X \cdot Y]$$

то условное M. O. — оператор ортогонального проектирования X на подпространство, порождаемое Y.

2.4 Определение 2

Оценкой X **по наблюдениям** Y называется любая измеримая функция $\varphi(Y)$.

2.5 Определение 3

 $extbf{Ouehka}\,\hat{X}\,$ называется $extbf{c.k.-onmumaльной}\,$ оценкой X, если для любой другой оценки \tilde{X} верно

$$M[|X-\hat{X}|^2]\leqslant M[|X-\tilde{X}|^2]$$

2.6Теорема 1

 $M[X \mid Y] = c.\kappa$ -оптимальная оценка X по наблюдениям Y.

Доказательство

$$\begin{split} &M[|X-\tilde{X}|^2] = M[|X-\hat{X}+\hat{X}-\tilde{X}|^2] = M[|X-\hat{X}|^2] + 2M[(X-\hat{X})^T(\hat{X}-\tilde{X})] + M[|\hat{X}-\tilde{X}|^2] \stackrel{*}{=} \\ &\text{Поскольку по определению } \tilde{X} - \hat{X} = \varphi(Y), \text{ то в силу } \underbrace{\text{Леммы } 2.1 \ M[(X-\hat{X})^T(\tilde{X}-\hat{X})] = 0.}_{=M[|X-\hat{X}|^2] + M[|\hat{X}-\tilde{X}|^2] \geqslant M[|X-\hat{X}|^2]. \end{split}$$

Теорема 2 (О нормальной корреляции)

Пусть

$$\begin{pmatrix} X \\ Y \end{pmatrix} \sim N \left(\begin{pmatrix} m_X \\ m_Y \end{pmatrix}, \begin{pmatrix} K_X & K_{XY} \\ K_{XY}^T & K_Y \end{pmatrix} \right)$$

Тогда

1.
$$Law(X \mid Y) = N(\mu(Y), \Delta),$$

где

$$\mu(Y) = M[X \mid Y] = m_X + K_{XY}K_Y^{-1}(Y - m_Y)$$

$$\Delta = K_X - K_{XY} K_Y^{-1} K_{YX}$$

$$2. \ M[|X-\mu(Y)|^2] = tr(K_X - K_{XY}K_Y^{-1}K_{YX})$$

Доказательство

Рассмотрим линейное преобразование Y:

$$\mu(Y)=m_X+K_{XY}K_Y^{-1}(Y-m_Y)$$

В силу Леммы 1.3

$$\begin{split} X - \mu(Y) &= (I - K_{XY} K_Y^{-1}) \begin{pmatrix} X \\ Y \end{pmatrix} - m_X + K_{XY} K_Y^{-1} m_Y \sim N(\mu, K) \\ \mu &= (I - K_{XY} K_Y^{-1}) \begin{pmatrix} m_X \\ m_Y \end{pmatrix} - m_X + K_{XY} K_Y^{-1} m_Y = 0 \\ K &= (I - K_{XY} K_Y^{-1}) \begin{pmatrix} K_X & K_{XY} \\ K_{XY}^T & K_Y \end{pmatrix} \begin{pmatrix} I \\ -(K_{XY} K_Y^{-1})^T \end{pmatrix} = \\ &= \left(K_X - K_{XY} K_Y^{-1} K_{XY}^T & K_{XY} - K_{XY} K_Y^{-1} K_Y \right) \begin{pmatrix} I \\ K_Y^{-1} K_{XY}^T \end{pmatrix} = \\ &= K_X - K_{XY} K_Y^{-1} K_{XY}^{-1} = \Delta \end{split}$$

 $\mathrm{cov}(X \, - \, \mu(Y), Y) \ = \ \mathrm{cov}(X, Y) \, - \, \mathrm{cov}(\mu(Y), Y) \ = \ \mathrm{cov}(X, Y) \, - \, \mathrm{cov}(K_{XY} K_Y^{-1} Y \, + \, m_X \, - \, m_X$ $K_{XY}K_Y^{-1}m_Y,Y) = \mathrm{cov}(X,Y) - K_{XY}K_Y^{-1}\mathrm{cov}(Y,Y) = K_{XY} - K_{XY}K_Y^{-2}K_Y = 0$ т.е. $X - \mu(Y)$ и Y некорреливаны

Тогда в силу Леммы 1.4, п.2 $X - \mu(Y)$ и Y независимы. Построим характеристическую

функцию условного распределения
$$X$$
 относительно Y :
$$\psi_{X\mid Y}(\lambda\mid Y) = \int\limits_{\mathbb{R}^n} e^{i\lambda^T X} f_{X\mid Y}(x\mid Y) dx = M[e^{i\lambda^T X}\mid Y] = M[e^{i\lambda^T (X-\mu(Y))}e^{i\lambda^T \mu(Y)}\mid Y] \stackrel{*}{=}$$

в силу Свойства 2 УМО и независимости
$$X-\mu(Y)$$
 и $Y=M[e^{i\lambda^T(X-\mu(Y))}\mid Y]\cdot M[e^{i\lambda^T\mu(Y)}\mid Y]=M[e^{i\lambda^T(X-\mu(Y))}]e^{i\lambda^T\mu(Y)}=\psi_{X-\mu(Y)}(\lambda)e^{i\lambda^T\mu(Y)}=\exp\{-\frac{1}{2}\lambda^T\Delta\lambda\}\cdot\exp\{i\lambda^T\mu(Y)-\frac{1}{2}\lambda^T\Delta\lambda\}$

т.е. Условное распределение нормальное:

$$X(Y \sim N(\mu(Y), \Delta)$$

Вычислим с.к. ошибку:

$$M[|X - \mu(Y)|^2] = M[\Delta X_1^2 + \Delta X_2^2 + \dots + \Delta X_n^2] = \sum_{k=1}^n M[\Delta X_k^2] = \sum_{k=1}^n D[\Delta X_k] = \sum_{k=1}^n \Delta_{kk} = tr\Delta.$$

Замечание

- 1. Из Теоремы о нормальной корреляции следует, что в $\it rayccosckom$ случае с.к. оптимальная оценка является $\it nuneŭhoŭ$.
- 2. Если X и Y nesaeucumu, то с.к.-оптимальная оценка m_X .
- 3. С.к.-оптимальная оценка **несмещенная**, т.к. $M[X \mu(Y)] = 0$.

3 Виды сходимости последовательностей случайных величин

3.1 Определение 1

Говорят, что $\{X_n\}_{n=1}^{\infty}$ образует *последовательность случайных величин*, если $\forall N \in \mathbb{N}$ X_n определены на одном вероятностном пространстве.

3.2 Определение 2

Говорят, что последовательность с.в. $\{X_n\}_{n\in\mathbb{N}}$ *сходится по вероятности* к с.в. X, если $\forall \varepsilon>0$:

$$\lim_{n \to \infty} P(|X_n - X| \leqslant \varepsilon) = 1$$

ИЛИ

$$\lim_{n \to \infty} P(|X_n - X| > \varepsilon) = 0$$

3.3 Определение 3

Говорят, что последовательность с.в. $\{X_n\}_{n\in\mathbb{N}}$ *сходится почти наверное* к с.в. X, если

$$P(\{\omega: X_n(\omega) \xrightarrow{n \to \infty} X(\omega)\}) = 0$$

ИЛИ

$$P(\{\omega: X_n(\omega) \stackrel{n \to \infty}{\longrightarrow} X(\omega)\}) = 1$$

3.4 Определение 4

Говорят, что последовательность с.в. $\{X\}_{n\in\mathbb{N}}$ *сходится в среднем квадратическом* к с.в. X, если

$$M[|X_n-X|^2] \stackrel{n\to\infty}{\longrightarrow} 0$$

3.5 Пример 1

Пусть $\{X_n\}_{n\in\mathbb{N}}$ — случайная последовательность.

$$X \sim \begin{pmatrix} 0 & n \\ 1 - \frac{1}{n^2} & \frac{1}{n^2} \end{pmatrix}$$

 $P(\{\omega: \lim_{n\to\infty} X_n(\omega)\neq 0\}) = P(\{\omega: \forall N\in\mathbb{N}, \exists n\geqslant N: X_n(\omega)=n\}) = P(\prod_{N=1}^\infty \sum_{n=N}^\infty \{\omega: X_n(\omega)=n\}) \stackrel{*}{=} n\}) \stackrel{*}{=}$

1.
$$\sum_{n=N+1}^{\infty} \{\omega : X_n(\omega) = n\} \subset \sum_{n=N}^{\infty} \{\omega : X_n(\omega) = n\}$$

$$2. \ P(\textstyle\sum_{n=N}^{\infty}\{\omega:X_n(\omega)=n\})\leqslant \textstyle\sum_{n=N}^{\infty}P(\{\omega:X_n(\omega)=n\})=\sum_{n=N}^{\infty}\frac{1}{n^2}\overset{n\to\infty}{\longrightarrow}0,$$

T.K.
$$\sum_{n=1}^{\infty} \frac{1}{n^2} < \infty$$

Тогда в силу *аксиомы непрерывности* $\stackrel{*}{=} 0$, т.е. $X_n \stackrel{\text{п.н.}}{\longrightarrow} 0$

3.6 Пример 2

Рассмотрим ту же последовательность. Выберем $\varepsilon > 0$

$$P(|X_n-0|\leqslant \varepsilon) = \begin{cases} 1, & \varepsilon\geqslant n & \stackrel{n\to\infty}{\longrightarrow} 1\\ 1-\frac{1}{n^2}, & \varepsilon\in(0;n) & \stackrel{}{\longrightarrow} 1 \end{cases}$$

Тогда $X_n \stackrel{P}{\longrightarrow} 0$

3.7 Пример 3

Рассмотрим ту же последовательность:

$$M[|X_n-0|^2]=M[X_n^2]=0^2(1-\tfrac{1}{n^2})+n^2\tfrac{1}{n^2}=1 \overset{n\to\infty}{\longrightarrow} 0$$
 Тогда $X_n\overset{\text{с.у.}}{\longrightarrow} 0$

3.8 Пример 4

Пусть $f_{nk}:[0;1] \longrightarrow \{0;1\}, n \in \mathbb{N}, k = \overline{1,n},$

$$f_{n,k} = \begin{cases} 0, & t \notin \left[\frac{k-1}{n}; \frac{k}{n}\right], \\ 1, & t \in \left[\frac{k-1}{n}; \frac{k}{n}\right]. \end{cases}$$

Пусть $X \sim R(0;1)$. Рассмотрим последовательность с.в. $X_{nk} = f_{nk}(X)$. $\forall \omega \in \Omega X(\omega) \in [0;1]$. Тогда $\forall n \in \mathbb{N}, \exists k = \overline{1,n}$ такое, что $X(\omega) \in [\frac{k-1}{n};\frac{k}{n}]$. Т.е. если $\varepsilon = \frac{1}{2}$, то $\forall n \in \mathbb{N}$ найдется $k = \overline{1,n}$ такой, что

$$|f_{nk}(X(\omega)) - 0| > \varepsilon$$

Тогда $X_{nk}(\omega) \xrightarrow{n \to \infty} 0$, т.е.

$$\{\omega: \lim_{n,k\to\infty} X_{nk}(\omega) = 0\} = \emptyset$$

$$X_{nk} \overset{\text{\tiny II.}}{\longrightarrow} 0$$

При этом $\forall \varepsilon > 0$

$$R(|X_{nk}-0|>\varepsilon)=\begin{cases} 0, & \varepsilon\geqslant 1,\\ P(X\in [\frac{k-1}{n}, & \frac{k}{n}]), \varepsilon\in (0;1) \end{cases}=\begin{cases} 0, & \varepsilon\geqslant 1, & \underset{n\to\infty}{n\to\infty} 0\\ \frac{1}{n}, & \varepsilon\in (0;1) \end{cases}$$

$$X_{nk} \stackrel{P}{\longrightarrow} 0$$

$$\begin{split} M[|X_{nk}-0|^2] &= M[X_{nk}] = M[f_{nk}(X)] = \int\limits_0^1 f_{nk}(x) \underbrace{f_X(x)}_1 dx = \int\limits_0^1 f_{nk}(x) dx = \int\limits_{\frac{k-1}{n}}^{\frac{k}{n}} 1 dx = \frac{1}{n} \xrightarrow{n \to \infty} 0 \\ X_{nk} \xrightarrow{\text{c.k}} 0 \end{split}$$

3.9 Пример 5

Рассмотрим последовательность с.в.
$$Y_{n_1k} = nK_{n_1k}$$
 Тогда $Y_{n_1k} \stackrel{\text{п.н.}}{\longrightarrow} 0$. $\forall \varepsilon > 0$.
$$P(|Y_{n_1k} - 0| > \varepsilon) = \begin{cases} 0, & \varepsilon \geqslant n, \\ P(X \in [\frac{k-1}{n}; \frac{k}{n}]), & \varepsilon \in (0; n) \end{cases} = \begin{cases} 0, & \varepsilon \geqslant n, & n \to \infty \\ \frac{1}{n}, & \varepsilon \in (0; n) \end{cases} \stackrel{n \to \infty}{\longrightarrow} 0$$

$$Y_{n_1k} \stackrel{P}{\longrightarrow} 0$$

$$M[|Y_{n_1k} - 0|^2] = M[n^2 X_{nk}^2] = n^2 M[X_{nk}] = n \stackrel{P}{\longrightarrow} \infty$$

$$Y_{n_1k} \stackrel{c. \not \sim}{\longrightarrow} 0$$

Замечание

Согласно определению для исследования на сходимость нужно знать совместное распределение с.в. X_n и X, а для случая cxodumocmu почти наверное совместное распределение всей последовательности $\{X_n\}_{n\in\mathbb{N}}$ и X. Поэтому исследование на сходимость иначе, чем к детерминированной константе, довольно проблематично.

3.10 Лемма 1

Пусть
$$X_n \xrightarrow{\text{п.н.}} X$$
. Тогда $X_n \xrightarrow{P} X$.

Доказательство

$$0 = P(\{\omega: \lim_{n\to\infty} X_n(\omega) \neq X(\omega)\}) = P(\{\omega: \exists \varepsilon > 0 \forall N \in \mathbb{N} \exists n \geqslant N: |X_n(\omega) - X(\omega)| > \varepsilon\}) = P(\sum_{\varepsilon>0} \prod_{N=1}^\infty \sum_{n=N}^\infty \{\omega: |X_n(\omega) - X(\omega)| > \varepsilon\}) \geqslant P(\prod_{N=1}^\infty \sum_{n=N}^\infty \{\omega: |X_n(\omega) - X(\omega)| > \varepsilon'\}), \ \forall \varepsilon' > 0$$
 Тогда $0 = P(\prod_{N=1}^\infty \sum_{n=N}^\infty \{\omega: |X_n(\omega) - X(\omega)| > \varepsilon\}),$
$$\sum_{n=N+1}^\infty \{\omega: |X_n(\omega) - X(\omega)| > \varepsilon\} \subset \sum_{n=N}^\infty \{\omega: |X_n(\omega) - X(\omega)| > \varepsilon\}$$

В силу аксиомы непрерывности:

$$\begin{split} 0 = \lim_{N \to \infty} P(\sum_{n=N}^{\infty} \{\omega : |X_n(\omega) - X(\omega)| > \varepsilon\}) \geqslant \lim_{N \to \infty} P(\{\omega : |X_N(\omega) - X(\omega)| > \varepsilon\}) \\ X_N & \stackrel{P}{\longrightarrow} X \end{split}$$

3.11 Лемма 2 (Неравенство Маркова)

Пусть
$$P(X \ge 0) = 1$$
, $M[X] < \infty$. Тогда $\forall \varepsilon > 0$

$$P(X > \varepsilon) \leqslant \frac{M[X]}{\varepsilon}$$

Доказательство

$$M[X] = \int\limits_0^{+\infty} x dF_X(x) \geqslant \int\limits_{\varepsilon}^{+\infty} x dF_X(x) \geqslant \varepsilon \int\limits_{\varepsilon}^{+\infty} dF_X(x) = \varepsilon P(X > \varepsilon). \ \blacksquare$$

3.12 Следствие 1

Пусть $M[X^k] < \infty$. Тогда $\forall \varepsilon > 0$:

$$P(|X| > \varepsilon) \leqslant \frac{M[|X|^k]}{\varepsilon^k}$$

Доказательство

$$P(|X|>\varepsilon)=P(|X|^k>\varepsilon^k)\leqslant \frac{M[|X|^k]}{\varepsilon^k}.$$

3.13 Следствие 2 (Неравенство Чебышёва)

Пусть $M[X^2] < \infty$. Тогда

$$P(|X - M[X]| > \varepsilon) \leqslant \frac{D[X]}{\varepsilon^2}$$

Доказательство

$$P(|X-M[X]|>\varepsilon)\leqslant \frac{M[|X-M[X]|^2]}{\varepsilon^2}=\frac{D[X]}{\varepsilon^2}.$$
 \blacksquare

3.14 Лемма 3

Пусть
$$X_n \xrightarrow{\text{с.к.}} X$$
. Тогда $X_n \xrightarrow{P} X$.

Доказательство

$$P(|X_n-X|>\varepsilon)\leqslant \tfrac{M[|X_n-X|^2]}{\varepsilon^2}\overset{n\to\infty}{\longrightarrow} 0. \ \blacksquare$$

3.15 Теорема 1 (Бореля — Кантелли)

Пусть
$$A_1,\dots,A_n\subset\Omega,B=\prod\limits_{N=1}^\infty\sum\limits_{n=N}^\infty A_n.$$
 Тогда

1. Если
$$\sum_{n=1}^{\infty} P(A_n) < \infty$$
, то $P(B) = 0$;

2. Если
$$A_1,\dots,A_n$$
 независимы в совокупности и $\sum\limits_{n=1}^{\infty}P(A_n)=\infty$, то $P(B)=1.$

Доказательство

1.
$$P(B) = P(\prod_{N=1}^{\infty} \sum_{n=N}^{\infty} A_n) \stackrel{*}{=}$$

т.к.
$$\sum_{n=N+1}^{\infty}A_n\subset\sum_{n=N}^{\infty}A_n, \text{ то } no \text{ } aксиоме \text{ } непрерывности} \ \stackrel{*}{=} \ \lim_{N\to\infty}P(\sum_{n=N}^{\infty}A_n) \leqslant \lim_{N\to\infty}\sum_{n=N}^{\infty}P(A_n)=0, \text{ т.к. } \sum_{n=1}^{\infty}P(A_n)<\infty$$

$$2. \ P(B) = \cdots = \lim_{N \to \infty} P(\sum_{n=N}^{\infty} A_n) = \lim_{N \to \infty} (1 - P(\prod_{n=N}^{\infty} \overline{A}_n)) = 1 - \lim_{N \to \infty} P(\prod_{M=N}^{\infty} \prod_{n=N}^{M} \overline{A}_n) \stackrel{*}{=}$$

т.к.
$$\prod_{n=N}^{M+1} \overline{A}_n \subset \prod_{n=N}^M \overline{A}_n, \text{ то по } \textit{аксиоме непрерывности}$$

$$\stackrel{*}{=} 1 - \lim_{N \to \infty} \lim_{M \to \infty} P(\prod_{n=N}^M \overline{A}_n) = 1 - \lim_{N \to \infty} \lim_{M \to \infty} \prod_{n=N}^M (1 - P(A_n)) = 1 - \lim_{N \to \infty} \lim_{M \to \infty} \prod_{n=N}^M e^{\ln(1 - P(A_n))} = 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \stackrel{*}{\geqslant}$$
 т.к.
$$\ln(1 - t) = -t - \frac{t^2}{2} - \frac{t^3}{3} - \frac{t^4}{4} - \dots < -t, \text{ то}$$

$$\stackrel{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{-\sum_{n=N}^M P(A_n)} = 1 - \lim_{n \to \infty} 0 = 1. \quad \blacksquare$$

3.16 Лемма 4

Пусть $X_n \stackrel{P}{\longrightarrow} X$,

$$\sum_{n=1}^{\infty}P(|X_n-X|>\varepsilon)<\infty$$

Тогда $X_n \stackrel{\text{п.н.}}{\longrightarrow} X$

Доказательство

В силу Теоремы $3.1 \ \forall \varepsilon > 0$

$$P(\prod_{N=1}^{\infty}\sum_{n=N}^{\infty}\{\omega:|X_n-X|>\varepsilon\})=0$$

Тогла

$$P(\{\omega: \lim_{n\to\infty} X_n X_n(\omega) \neq X(\omega)\}) = P(\{\omega: \exists \varepsilon > 0, \forall N \in \mathbb{N} \exists n \geqslant N: |X_n(\omega) - X(\omega)| > \varepsilon\}) = P(\{\omega: \exists M \in \mathbb{N}, \forall N \in \mathbb{N} \exists n \geqslant N: |X_n(\omega) - X(\omega)| > \frac{1}{M}\}) = P(\sum_{M=1}^{\infty} \prod_{N=1}^{\infty} \sum_{n=N}^{\infty} \{\omega: |X_n - X| > \frac{1}{M}\}) \leqslant \sum_{M=1}^{\infty} P(\prod_{N=1}^{\infty} \sum_{n=1}^{\infty} \sum_{n=N}^{\infty} \{\omega: |X_n - X| > \frac{1}{M}\}) = 0. \quad \blacksquare$$

Замечание

1.

$$\begin{array}{ccc} X_n \stackrel{\text{\tiny C.K.}}{\longrightarrow} X \implies X_n \stackrel{P}{\longrightarrow} X \\ \text{ИЛИ} \\ X_n \stackrel{\text{\tiny I.H.}}{\longrightarrow} X \implies X_n \stackrel{P}{\longrightarrow} X \end{array}$$

- 2. В силу теоремы Рисса (функциональный анализ) если $X_n \stackrel{P}{\longrightarrow} X$, то существует подпоследовательность $\{X_{n_k}\}_{k\in\mathbb{N}}: X_{n_k} \stackrel{\text{п.н.}}{\underset{k\to\infty}{\longrightarrow}} X$
- 3. В силу теоремы о мажорирующей сходимости, если $X_n \stackrel{P}{\longrightarrow} X$ и $\exists Y$ с.в.: $|X_n| \leqslant Y, M[Y^2] < \infty,$ то $X_n \stackrel{\text{с.к.}}{\longrightarrow} X$

3 ВИДЫ СХОДИМОСТИ ПОСЛЕДОВАТЕЛЬНОСТЕЙ СЛУЧАЙНЫХ ВЕЛИЧИН

4. Также из функционального анализа известно, что операция предела (по мере, почти наверное, в средне квадратическом) замкнута относительно линейных операций и непрерывных преобразований.

Закон больших чисел

Определение 1

Выборкой объема n будем называть с.в. $Z_n = (X_1, \dots, X_n)^T$, где X_1, \dots, X_n — независимые

Через $F_k(x)$ обозначим функцию распределения k-го элемента выборки.

Если $F_k = F_1, k = \overline{2,n}$, то выборка называется **однородной**.

4.2 Определение 2

 $m{B}$ ыборочным $m{cped}$ ним \overline{X}_n выборки Z_n называется $\overline{X}_n = rac{1}{n}\sum_{i=1}^n X_k$

Теорема 1 (Закон Больших Чисел Чебышёва)

Пусть Z_n — однородная выборка, $M[X_k^2] < \infty$.

Тогда
$$\overline{X}_n \xrightarrow{\text{с.к.}} m_X, \overline{X}_n \xrightarrow{P} m_X$$

Доказательство

$$M[|\overline{X}_n-m_X|^2]=M[|\overline{X}_n-M[\overline{X}_n]|^2]=D[\overline{X}_n]=\tfrac{1}{n^2}D[\sum_{k=1}^nX_k]=\tfrac{nD[X_1]}{n^2}\overset{n\to\infty}{\longrightarrow}0$$

T.e. по определению $\overline{X}_n \stackrel{\text{с.к.}}{\longrightarrow} m_X$.

С учетом Леммы 3.3 $\overline{X}_n \stackrel{P}{\longrightarrow} m_X$.

Теорема 2 (Закон Больших Чисел Колмогорова)

Пусть Z_n — однородная выборка, $M[X_k]=m_X<\infty.$ Тогда $\overline{X}_n \overset{\text{п.н.}}{\longrightarrow} m_X$

Тогда
$$\overline{X}_n \stackrel{\text{п.н.}}{\longrightarrow} m_X$$

Замечание

 \overline{X}_n сходится почти наверное и по вероятности к m_X , если оно существует, и в среднем квадратичном, если существует дисперсия.

4.5Теорема 3

Пусть Z_n — неоднородная выборка, $M[X_k]=m_X<\infty, D[X_k]=D_k\leqslant D_{max}<\infty,$ где $k\in\mathbb{N}$ Тогда $\overline{X}_n\stackrel{\text{с.к.}}{\longrightarrow} m_X, \overline{X}_n\stackrel{P}{\longrightarrow} m_X.$

Доказательство

$$M[|\overline{X}_n-m_X|^2]=M[|\overline{X}_n-M[\overline{X}_n]|^2]=D[X_n]=\frac{1}{n^2}\sum_{k=1}^nD_k\leqslant\frac{nD_{max}}{n^2}=\frac{D_{max}}{n}\overset{n\to\infty}{\longrightarrow}0$$

Т.о. $\overline{X}_n \stackrel{\text{с.к.}}{\longrightarrow} m_X$. Тогда в силу Леммы 3.3 $\overline{X}_n \stackrel{P}{\longrightarrow} m_X$.

4.6 Следствие 1

Пусть Z_n — neoднородная выборка, $D[X_k]=D_k\leqslant D_{max}<\infty, k\in\mathbb{N}.$ Тогда $\overline{X}_n-\frac{1}{n}\sum_{k=1}^n m_{X_k}\stackrel{\mathrm{c.k.}}{\longrightarrow}0, \overline{X}_n-\frac{1}{n}\sum_{k=1}^n m_{X_k}\stackrel{P}{\longrightarrow}0.$

Доказательство

$$\overline{X}_n - \frac{1}{n} \sum_{k=1}^n m_{X_k} = \frac{1}{n} \sum_{k=1}^n (X_k - m_{X_k}) = \frac{1}{n} \sum_{k=1}^n Y_k$$
, где $M[Y_k] = 0, D[Y_k] = D[X_k] \leqslant D_{max} < \infty$ Тогда \overline{Y}_k удовлетворяет условиям Теоремы 4.3.

4.7 Теорема 4

Пусть Z_n — неоднородная выборка, $M[X_k] = m_X < \infty, D[X_k] = D_k < \infty,$

$$\sum_{k=1}^{n} \frac{D[X_k]}{k^2} < \infty$$

Тогда

$$\overline{X}_n \stackrel{\text{\tiny II.H.}}{\longrightarrow} m_X$$

Замечание

Условие Теоремы 4 более мягкое, чем условие Теоремы 3. Пусть $D[X_k]\leqslant D_{max}, k\in\mathbb{N}.$ Тогда

$$\sum_{k=1}^{n} \frac{D[X_k]}{k^2} \leqslant \sum_{k=1}^{n} \frac{D_{max}}{k^2} = \frac{\pi^2 D_{max}}{\sigma} < \infty$$

4.8 Следствие 2

Пусть N(A) — число появления события A в серии из N независимых опытов. Тогда

$$\frac{N(A)}{N} \xrightarrow{\text{\tiny II.H.}} P(A), \frac{N(A)}{N} \xrightarrow{\text{\tiny C.K.}} P(A)$$

Доказательство

По условию $N(A)\sim Bi(N;P(A))$. Тогда $\exists X_1,\dots,X_n\sim Be(P(A))$ — независимые с.в. При этом $M[X_1]=P(A),D[X_1]=P(A)(1-P(A))\leqslant \frac14.$ Тогда в силу Теоремы 4

$$\frac{N(A)}{N} = \frac{1}{N} \sum_{k=1}^{N} X_k \xrightarrow{\text{\tiny C.K.}} P(A)$$

в силу Теоремы 2

$$\frac{N(A)}{N} = \frac{1}{N} \sum_{k=1}^{N} X_k \xrightarrow{\text{\tiny I.H.}} P(A)$$

5 Центральная предельная теорема (ЦПТ)

Замечание

Сходимости $c.\kappa.$, n.н. и P в общем случае исследования предполагают либо знание совместного распределения элементов последовательности, либо наличие точкой функциональной зависимости от $\omega \in \Omega$.

Как правило, в теории вероятностей это неизвестно, а с.в. описываются при помощи их распределений, а не как функции. При этом если у двух величин совпадают распределения, то это вовсе не значит, что они равны.

Поэтому довольно важным является вид сходимости *по распределению*, т.е. в смысле "описательного инструмента" с.в.

5.1 Определение 1

Говорят, что последовательность с.в. $\{X_n\}_{n\in\mathbb{N}}$ *сходится по распределению* к с.в. X, если

$$F_{X_n}(x) \stackrel{n \to \infty}{\longrightarrow} F_X(x), \, \forall x$$
 — точки непрерывности $F_X(x).$

5.2 Лемма 1

Пусть
$$X_n \stackrel{P}{\longrightarrow} X$$
. Тогда $X_n \stackrel{d}{\longrightarrow} X$

5.3 Лемма 2

Пусть
$$X_n \stackrel{d}{\longrightarrow} X, Y_n \stackrel{P}{\longrightarrow} C$$
 Тогда $X_n + Y_n \stackrel{d}{\longrightarrow} X + C$

Доказательство

Пусть
$$C=0,\ x_0$$
 — точка **непрерывности** $F_X(x)$. Тогда $\forall \varepsilon>0$
$$F_{X_n+Y_n}(x_0)=P(X_n+Y_n\leqslant x_0)=\underbrace{P(\{X_n+Y_n\leqslant x_0\}\{|Y_n|>\varepsilon\})}_{p_1}+\underbrace{P(\{X_n+Y_n\leqslant x_0\}\{|Y_n|\leqslant\varepsilon\})}_{p_2}$$
 $0\leqslant p_1\leqslant P(|Y_n|>\varepsilon)\overset{n\to\infty}{\longrightarrow}0$
$$p_2=P(\{X_n+Y_n\leqslant x_0\}\{-\varepsilon\leqslant Y_n\leqslant\varepsilon\})\overset{*}{\leqslant}$$

$$\begin{cases} X_n+Y_n\leqslant x_0\\ -\varepsilon\leqslant Y_n\leqslant\varepsilon \end{cases} \implies \begin{cases} X_n+Y_n\leqslant x_0\\ -\varepsilon\leqslant -Y_n\leqslant\varepsilon \end{cases} \implies X_n\leqslant x_0+\varepsilon$$

$$\overset{*}{\leqslant} P(X_n \leqslant x_0 + \varepsilon) = F_{X_n}(x_0 + \varepsilon)$$

$$p_2 \geqslant P(\{\varepsilon + X_n \leqslant x_0\} \{ -\varepsilon \leqslant Y_n \leqslant \varepsilon \}) \overset{*}{\geqslant}$$

$$P(AB) = P(A) - P(A \backslash B) \geqslant P(A) - P(\overline{B})$$

$$\stackrel{*}{\geqslant} P(\varepsilon+X_n\leqslant x_0)-P(|Y_n>\varepsilon)=F_{X_n}(x_0-\varepsilon)-P(|Y_n|>\varepsilon)$$
 Т.о. $F_{X_n}(x_0-\varepsilon)-P(|Y_n|>\varepsilon)\leqslant F_{X_n+Y_n}(x_0)\leqslant F_{X_n}(x_0+\varepsilon)+p_1$ Выберем $\varepsilon>0$ так, чтобы $(x_0-\varepsilon;x_0+\varepsilon)$ было областью непрерывности $F_X(x)$

Тогда $\lim_{n\to\infty}F_{X_n}(x_0\pm\varepsilon)=F_X(x_0\pm\varepsilon)$

$$F_{X_n}(x_0-\varepsilon)\leqslant \varliminf_{n\to\infty}F_{X_n+Y_n}(x_0)\leqslant \varlimsup_{n\to\infty}F_{X_n+Y_n}(x_0)\leqslant F_X(x_0+\varepsilon)$$

Возьмем предел по $\varepsilon \to 0$. В силу непрерывности $F_X(x)$ в $x_0 \lim_{\varepsilon \to 0} F_X(x_0 \pm \varepsilon) = F_X(x_0)$ Откуда $F_X(x_0) = \lim_{\epsilon \to 0} F_{X_n + Y_n}(x_0)$, т.е.

$$X_n + Y_n \stackrel{d}{\longrightarrow} X$$

Пусть $C \neq 0$. Тогда $Y_n - C = \tilde{Y} \stackrel{P}{\longrightarrow} 0$,

$$X_n + C = \tilde{X}_n \xrightarrow{d} X + C = \tilde{X}$$

Получаем $X_n + Y_n = \tilde{X}_n + \tilde{Y}_n \stackrel{d}{\longrightarrow} \tilde{X} = X + C.$ \blacksquare

5.4 Доказательство леммы 5.1

$$X_n=(X_n-X)+X,$$
где $X\stackrel{d}{\longrightarrow} X, X_n-X\stackrel{P}{\longrightarrow} 0.$ В силу Леммы 5.2 $X_n=(X_n-X)+X\stackrel{d}{\longrightarrow} X+0=X.$ \blacksquare

Замечание

Из meopuu $npeoбразования
 Фурье следует, что <math display="inline">X_n \stackrel{d}{\longrightarrow} X$ тогда и только тогда, когда $\psi_{X_n}(\lambda) \stackrel{n \to \infty}{\longrightarrow} \psi_X(\lambda), \lambda \in \mathbb{R}$

5.5 Определение 2

Последовательность с.в. $\{X_n\}_{n\in\mathbb{N}}$ называется $\pmb{acumnmomuчecku}$ нормальной, если $X_n \stackrel{d}{\longrightarrow} X$, где $X \sim N(m; \sigma^2)$

5.6 Теорема 1 (Центральная предельная)

Пусть $\{X_n\}_{n\in\mathbb{N}}$ — последовательность независимых и одинаково распределенных с.в., причем

$$M[X_1]=m_X, D[X_1]=\sigma_X^2$$

Тогда

$$S_n = \frac{\sum\limits_{k=1}^n X_n - nm_X}{\sigma_X \sqrt{n}} \stackrel{d}{\longrightarrow} N(0;1)$$

Доказательство

Обозначим через $Y_k=rac{X_k-m_X}{\sigma_X\sqrt{n}}$ Тогда $\sum\limits_{k=1}^n Y_k$, где Y_1,\dots,Y_n — независимые с.в.

В силу Леммы 1.5

$$\psi_{S_n}(\lambda) = \psi_Y(\lambda,\lambda,\dots,\lambda) = \prod_{k=1}^n \psi_{Y_k}(\lambda) = \psi_{Y_1}^n(\lambda) = \psi^n(\frac{\lambda}{\sigma_X\sqrt{n}})$$

где $\psi(\lambda)$ — характеристическая функция X_k-m_X .

$$\psi(0) = M[e^{i0(X_k - m_X)}] = M[1] = 1$$

$$\psi'(0) = M[i(X_k - m_X)e^{i0(X_k - m_X)}] = M[X_k - m_X]i = 0$$

$$\begin{array}{l} \psi(0) = M[e^{i0(X_k - m_X)}] = M[1] = 1 \\ \psi'(0) = M[i(X_k - m_X)e^{i0(X_k - m_X)}] = M[X_k - m_X]i = 0 \\ \psi''(0) = -M[(X_k - m_X)^2e^{i0(X_k - m_X)}] = -M[(X_k - m_X)^2] = -\sigma_X^2 \end{array}$$

Тогда согласно формуле Тейлора

$$\psi(\lambda) = \psi(0) + \psi'(0)\lambda + \psi''(0)\frac{\lambda^2}{2} + o(\lambda^2) = 1 - \frac{\sigma_X^2}{2}\lambda^2 + o(\lambda^2)$$

$$\begin{split} \psi(\lambda) &= \psi(0) + \psi'(0)\lambda + \psi''(0)\frac{\lambda^2}{2} + o(\lambda^2) = 1 - \frac{\sigma_X^2}{2}\lambda^2 + o(\lambda^2) \\ \text{Рассмотрим } \ln \psi_{S_n}(\lambda) &= n \ln \psi(\frac{\lambda}{\sigma_X\sqrt{n}}) = n \ln(1 - \frac{\lambda^2}{2n} + o(\frac{\lambda^2}{\sigma_X^2n})) = n(-\frac{\lambda^2}{2n} + o(\frac{\lambda^2}{\sigma_X^2n}) + o(-\frac{\lambda^2}{2n} + o(\frac{\lambda^2}{\sigma_X^2n})) \\ &= n \ln(1 - \frac{\lambda^2}{2n} + o(\frac{\lambda^2}{\sigma_X^2n})) = n(-\frac{\lambda^2}{2n} + o(\frac{\lambda^2}{\sigma_X^2n}) + o(-\frac{\lambda^2}{2n} + o(\frac{\lambda^2}{\sigma_X^2n})) \\ &= n \ln(1 - \frac{\lambda^2}{2n} + o(\frac{\lambda^2}{\sigma_X^2n})) = n(-\frac{\lambda^2}{2n} + o(\frac{\lambda^2}{\sigma_X^2n}) + o(-\frac{\lambda^2}{2n} + o(\frac{\lambda^2}{\sigma_X^2n})) \\ &= n \ln(1 - \frac{\lambda^2}{2n} + o(\frac{\lambda^2}{\sigma_X^2n})) = n(-\frac{\lambda^2}{2n} + o(\frac{\lambda^2}{\sigma_X^2n})) \\ &= n \ln(1 - \frac{\lambda^2}{2n} + o(\frac{\lambda^2}{2n} + o(\frac{\lambda^2}{2n})) \\ &= n \ln(1 - \frac{\lambda^2}{2n} + o(\frac{\lambda^2}{2n} + o(\frac{\lambda^2}{2n})) \\ &= n \ln(1 - \frac{\lambda^2}{2n} + o(\frac{\lambda^2}{2n} + o($$

$$\begin{split} o(\frac{\lambda^2}{\sigma_X^2 n}))) &= n(-\frac{\lambda^2}{2n} + o(\frac{\lambda^2}{2n})) = -\frac{\lambda^2}{2n} + \frac{o(\frac{\lambda^2}{\sigma_X^2 n})}{\frac{\lambda^2}{\sigma_X^2 n}} \cdot \frac{\lambda^2}{2} \stackrel{n \to \infty}{\to} -\frac{\lambda^2}{2}, \\ \psi_{S_n}(\lambda) \stackrel{n \to \infty}{\to} e^{-\frac{\lambda^2}{2}} \end{split}$$

где $\psi_Y(\lambda) = e^{-\frac{\lambda^2}{2}}$ по определению является $xapaкmepucmuческой функцией <math>Y \sim N(0;1)$ Тогда $S_n \stackrel{d}{\longrightarrow} Y \sim N(0;1)$.

5.7 Следствие 1 (Теорема Муавра - Лапласа)

Пусть $X_n \sim Bi(n;p)$ Тогда

$$\frac{X_n - np}{\sqrt{np(1-p)}} \stackrel{d}{\longrightarrow} N(0;1)$$

Доказательство

Т.к. $X_n \sim Bi(n;p)$, то существуют **независимые** $\tilde{X}_1,\dots,\tilde{X}_n \sim Be(p)$ такие, что

$$X_n = \sum_{k=1}^n \tilde{X}_k, M[\tilde{X}_k] = p = m_X, D[\tilde{X}_k] = p(1-p) = \sigma_X^2$$

Тогда в силу Теоремы 1:

$$\frac{\sum\limits_{k=1}^{n} \tilde{X}_k - nm_X}{\sigma_X \sqrt{n}} \stackrel{d}{\longrightarrow} N(0; 1). \quad \blacksquare$$

5.8 Пример 1

Вычислить вероятность того, что при n = 1000 подбрасываниях монета упадет "орлом" от 400 до 600 раз.

Пусть X — число выпавших "орлов". Тогда $X \sim Bi(1000; \frac{1}{2})$. По формуле Бернулли

$$P(X \in [400; 600]) = \sum_{k=400}^{600} C_{1000}^k \frac{1}{2^{1000}}$$

Оценим данную величину с помощью ЦПТ.

В силу Теоремы 1 и Следствия

$$\frac{X-n\frac{1}{2}}{\sqrt{n\frac{1}{2}(1-\frac{1}{2})}}\stackrel{d}{\longrightarrow} N(0;1)$$

 $P(400\leqslant X\leqslant 600)=P(\tfrac{400-500}{\sqrt{250}}\leqslant \tfrac{X-nm_X}{\sigma_X\sqrt{n}}\leqslant \tfrac{600-500}{\sqrt{250}})\approx \Phi_0(\tfrac{100}{5\sqrt{10}})-\Phi_0(-\tfrac{100}{5\sqrt{10}})=2\Phi_0(2\sqrt{10})\approx 2\Phi_0(2\sqrt{10})$

Теорема 2 (Ляпунова) 5.9

Пусть $\{X_n\}_{n\in\mathbb{N}}$ — последовательность nesaeucumux с.в., $M[X_n]=m_{X_n}, D[X_n]=m_{X_n}$ $\sigma_{X_n}^2, M[|X_n - m_{X_n}|^3] = C_n^3 < \infty$

При этом
$$\frac{(\sum\limits_{k=1}^n C_k^3)^{\frac{1}{3}}}{(\sum\limits_{k=1}^n \sigma_{X_k}^2)^{\frac{1}{2}}} \stackrel{n \to \infty}{\longrightarrow} 0$$
 (Условие Ляпунова)

Тогда
$$\frac{(\sum\limits_{k=1}^n X_k - M[\sum\limits_{k=1}^n X_k]}{\sqrt{D[\sum\limits_{k=1}^n X_k]}} \stackrel{d}{\underset{n \to \infty}{\longrightarrow}} \sim N(0;1)$$

Замечание

Для аппроксимации точности использования ЦПТ используется неравенство Берри-Эссеена

Теорема 3 (Неравенство Берри-Эссеена)

Пусть $\{X_n\}_{n\in\mathbb{N}}$ — последовательность независимых и одинаково распределенных с.в.

$$M[X_n] = m_X, D[X_n] = \sigma_X^2, M[|X_n - m_X|^3] = \rho < \infty$$

Тогда $\forall x \in \mathbb{R}$ и $n \in \mathbb{N}$

$$|P(\frac{\sum\limits_{k=1}^{n}X_{k}-nm_{X}}{\sigma_{X}\sqrt{n}})-(\frac{1}{2}+\Phi_{0}(x))|\leqslant\frac{C_{0}\rho}{\sigma_{X}^{3}\sqrt{n}}$$

Замечание

Точное значение константы C неизвестно.

По текущим данным (2010 г.) $C_0 \le 0.4784$

5.11 Пример

Оценим точность решения в предыдущем примере: $\sigma_X^2 = \frac{1}{4}, n = 1000, m_X = \frac{1}{2}, X_n \sim$

$$\begin{split} \rho &= M[|X_n - m_X|^3] = |0 - \tfrac{1}{2}|^3 \cdot \tfrac{1}{2} + |1 - \tfrac{1}{2}|^3 \cdot \tfrac{1}{2} = \tfrac{1}{8} \\ \text{Тогда погрешность составит для двухстороннего нер-ва:} \\ \frac{2C_0\rho}{\sigma_X^3\sqrt{n}} &= \tfrac{2\cdot 0.4784 \cdot \tfrac{1}{8}}{\tfrac{1}{64} \cdot \sqrt{1000}} \approx 0.03 \end{split}$$

$$\frac{2C_0\rho}{\sigma_X^3\sqrt{n}} = \frac{2\cdot0.4784\cdot\frac{1}{8}}{\frac{1}{64}\cdot\sqrt{1000}} \approx 0.03$$

6 Выборка и ее характеристики

6.1 Определение 1

Выборкой называется $Z_n = (X_1, \dots, X_n)^T$ независимый вектор с.в. Если все X_1, \dots, X_n одинаково распределены, а F(x) — функция распределения, то говорят, что Z_n — однородная выборка, порожденная распределением F(x)

6.2 Определение 2

Реализацией выборки $Z_n \in \mathbb{R}^n$ называется *неслучайный* вектор $z_n = Z_n(\omega),$ состоящий из реализаций элементов выборки $X_k, k = \overline{1,n}.$

6.3 Определение 3

Множество S всех возможных реализаций выборки Z_n называют выборочным пространством

Замечание

Обычно распределение, порождающее выборку, известно неточно.

$$F_X = F_X(x;\theta)$$

Задача состоит в построении оценки θ по элементам выборки.

6.4 Определение 4

С.в. $\varphi(Z_n)$, где $\varphi:S\to\mathbb{R}$ — измерима, называется **статистикой**.

6.5 Определение 5

 \pmb{k} -ой порядковой статистикой называется k-е по величине значение элемента выборки $Z_n = (X_1, \dots, X_n)^T$ и обозначается $X^{(k)}$

Замечание

 $X^{(k)}$ является функцией от всей выборки, т.к. при различных $\omega \in \Omega$ $X^{(k)}$ будет совпадать по значению с разными X_i .

6.6 Определение 6

Набор порядковых статистик $X^{(1)}, \dots, X^{(n)}$ называется вариационным рядом.

6.7 Определение 7

$$X^{(1)} = \min_{k = \overline{1,n}} X_k, X^{(n)} = \max_{k = \overline{1,n}} X_k.$$

6.8 Лемма 1

Пусть однородная выборка Z_n порождена распределением F(x). Тогда функция распределения $X^{(k)}$ имеет вид:

$$F_{(k)}(x) = P(X^{(k)} \leqslant x) = \sum_{i=k}^{n} C_n^i (F(x))^i (1 - F(x))^{n-i}$$

Доказательство

Рассмотрим с.в. Y, равную числу элементов выборки, не превосходящих x. Тогда $Y \sim Bi(n; F(x))$.

$$F_{(k)}(x) = P(X^{(k)} \leqslant x) = P(Y \geqslant k) = \sum_{i=k}^{n} C_n^i (F(x))^i (1 - F(x))^{n-i}$$
.

6.9 Следствие 1

$$F_{(1)}(x) = 1 - (1 - F(x))^n,$$

$$F_{(n)}(x) = (F)^n.$$

6.10 Определение 8

Выборочным квантилем уровня $\alpha \in (0;1)$ называется порядковая статистика $\chi^{([n\alpha]+1)}$

6.11 Теорема 1 (Мостеллера)

Пусть X — абсолютно непрерывная с.в., x_{α} — точка гладкости $f_X(x), f_X(x_{\alpha}) > 0$ Тогда $(X^{([n\alpha]+1)} - x_{\alpha})\sqrt{\frac{nf_X^2(x_{\alpha})}{p(1-p)}} \stackrel{d}{\longrightarrow} N(0;1)$

6.12 Определение 9

Выборочной функцией распределения называется статистика $\hat{F}_n(x)$:

$$\hat{F}_n(x) = \begin{cases} \frac{1}{n} \max\{k = \overline{1,n}: X^{(k)} \leqslant x\}, & x \geqslant X^{(1)}, \\ 0, & x < X^{(1)} \end{cases}$$

Замечание

Фактически $\hat{F}_n(x)$ — частота события $\{X\leqslant x\}$, которая используется для оценки вероятности $F(x)=P(X\leqslant x)$.

6.13 Свойства $\hat{F}_n(x)$

1.
$$n \cdot \hat{F}_n(x) \sim Bi(n; F(x))$$

$$2. \ \boxed{M[\hat{F}_n(x)] = F(x)}$$

$$3. \left| \sup_{x \in \mathbb{R}} |\hat{F}_n(x) - F(x)| \stackrel{\text{\tiny II.H.}}{\longrightarrow} 0 \right|$$

(Теорема Гливенко - Кантелли)

4.
$$\boxed{M[(\hat{F}_n(x)-F(x))^2] = \frac{F(x)(1-F(x))}{n} \leqslant \frac{1}{4n}}$$

$$5. \ \left| |\hat{F}_n(x) - F(x)| \stackrel{\text{c.k.}}{\longrightarrow} 0 \right|$$

6.
$$\frac{\hat{F}_n(x) - F(x)}{\sqrt{F(x)(1 - F(x))}} \sqrt{n} \xrightarrow{d} N(0; 1)$$

(Следует из теоремы Муавра - Лапласа)

Замечание

 $\hat{F}_n(x)$ при увеличении n равномерно приближается к F(x), при этом точность приближения можно оценить при помощи свойств **4** и **6**.

 $\underline{\Gamma}$ истограмма. На основе реализации вариационного ряда построим разбиение $\mathbb{R}-\infty=t_0<\overline{t_1< t_2<\cdots}< t_l< t_{l+1}=+\infty,$

$$t_1\leqslant x^{(1)},t_l>x(n).$$

Как правило, длина интервалов разбиения выбирается одинаковой:

$$h_k = t_{k+1} - t_k = \frac{t_l - t_1}{l - 1}, k = \overline{1, l - 1}$$

Вычислим частоту попадания элементов выборки в k-й интервал: $\hat{p}_k = \frac{n_k}{n}$, где n_k — число элементов выборки, попавших в $[t_k; t_{k+1}), k = \overline{0,l}$ Заметим, что $\hat{p}_0 = \hat{p}_l = 0$.

6.14 Определение 10

Гистограммой называется функция:

Замечание

Если плотность вероятности $f_X(x)$ непрерывна и ограничена, а число разрядов гистограммы l_n удовлетворяет условию: $l_n \longrightarrow +\infty, \frac{n}{l_n} \longrightarrow +\infty,$ то

$$\hat{f}_n(x) \stackrel{P}{\longrightarrow} f_X(x)$$

Т.е. гистограмма является статистической аппроксимацией функции плотности вероятности.

Выборочные моменты

6.15 Определение 1

Bыборочным начальным и центральным моментами называется соответственно статистики:

$$\begin{split} \hat{\nu}_r(n) &= \tfrac{1}{n} \sum_{k=1}^n X_k^r \\ \mathbf{M} \\ \hat{\mu}_r(n) &= \tfrac{1}{n} \sum_{k=1}^n (X_k - \hat{\nu}_1(n))^r \end{split}$$

6.16 Определение 2

Выборочным средним и **выборочной дисперсией** называются соответственно статистики:

$$\begin{split} \overline{X}_n &= \hat{\nu}_1(n) = \tfrac{1}{n} \sum_{k=1}^n X_k \\ \mathbf{M} \\ \hat{d}_X(n) &= \hat{S}^2(n) = \hat{\mu}_2(n) = \tfrac{1}{n} \sum_{k=1}^n (X_k - \overline{X})^2 \end{split}$$

6.17 Определение 3

Пусть $Z_n=(X_1,\dots,X_n)^T$ и $V_n=(Y_1,\dots,Y_n)^T$ — выборки, порожденные распределениями F_X и F_Y соответственно. Тогда выборочным коэффициентом корреляции называется:

$$\hat{r}_{XY} = \frac{\sum\limits_{k=1}^{n} (X_k - \overline{X}_n)(Y_k - \overline{Y}_k)}{n\sqrt{\hat{d}_X \cdot \hat{d}_Y}}$$

6.18 Свойства выборочных моментов

$$1. \ \overline{M[\hat{\nu}_r(n)] = \nu_r, r \in \mathbb{N}}$$

Доказательство

$$M[\hat{\nu}_r(n)] = \frac{1}{n} \sum_{k=1}^n M[X_k^r] = \frac{1}{n} n \nu_r$$
.

2. Если
$$M[X^r] < \infty$$
, то $\hat{\nu}_r(n) \stackrel{\text{п.н.}}{\longrightarrow} \nu_r$

Доказательство

3.
$$\Big|$$
 Если $M[X^r] < \infty$, то $\hat{\mu}_r(n) \xrightarrow{\text{п.н.}} \mu_r$

Доказательство

$$4. \ \overline{D[\overline{X}_n] = \frac{1}{n}D[X]}$$

Доказательство

 $\overline{\mathrm{C}}$ учетом независимости X_1,\dots,X_n

$$D[X\overline{X}_n] = D[\frac{1}{n} \sum_{k=1}^n X_k] = \frac{1}{n^2} \sum_{k=1}^n D[X_k] = \frac{nD[X]}{n^2}. \blacksquare$$

5.
$$M[\hat{d}_X(n)] = \frac{n-1}{n}D[X]$$

Доказательство

6.
$$\left[\frac{\overline{X}_n - m_X}{\sigma_X} \sqrt{n} \stackrel{d}{\longrightarrow} N(0; 1) \right]$$

Доказательство

 $\overline{\mathrm{T.к.}}\ X_1,\ldots,X_n$ независимые, $M[X_k]=m_k,D[X_k]=\sigma_X^2,k\in\mathbb{N},$ то в силу Теоремы 5.1:

$$\frac{\sum\limits_{k=1}^{n}X_{k}-nm_{X}}{\sigma_{X}\sqrt{n}}=\frac{\frac{1}{n}\sum\limits_{k=1}^{n}X_{k}-m_{X}}{\frac{\sigma_{X}}{\sqrt{n}}}\stackrel{d}{\longrightarrow}N(0;1)$$

7.
$$\left| \frac{\hat{d}_X(n) - \sigma_X^2}{\sqrt{\mu_4 - \mu_2}} \sqrt{n} \stackrel{d}{\longrightarrow} N(0; 1) \right|$$

7 Основные распределения в статистике

Точечные оценки

7.1 Определение 1

Пусть X_1,\dots,X_n — независимые с.в. Тогда

$$Y = \sum_{k=1}^{n} X_k^2 \sim \chi^2(n)$$

имеет *распределение хи-квадрат* с *n* степенями свободы.

7.2 Свойства распределения $\chi^2(n)$

1. Y имеет плотность вероятности

$$f_Y(x;n) = \begin{cases} \frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})} x^{\frac{n}{2}-1} e^{-\frac{x}{2}}, & x > 0\\ 0, & x \leqslant 0 \end{cases}$$

где $\Gamma(z)=\int\limits_0^{+\infty}y^{z-1}e^{-y}dy$ — гамма-функция.

2. У имеет характеристическую функцию

$$\psi_Y(\lambda) = (1-2\lambda i)^{\frac{n}{2}}$$

3.
$$Y \sim \chi^2(n), M[Y] = n, D[Y] = 2n$$

4. Пусть $n \ / \$ з $Y_1 \sim \chi^2(n_1), \dots, Y_k \sim \chi^2(n_k).$ Тогда

$$\sum_{k=1}^n Y_i \sim \chi^2(\sum_{k=1}^n n_i)$$

5.

$$\frac{Y-n}{\sqrt{2n}} \stackrel{d}{\longrightarrow} N(0;1)$$

6. Пусть Z_n порожденная распределением $N(m_X,\sigma_X^2)$. Тогда если

$$\hat{d}_X = \frac{1}{n} \sum_{k=1}^n (X_k - \overline{X}_n)^2,$$

$$\text{TO } \frac{n\hat{d}_X}{n} \sim \chi^2(n-1)$$

то $\frac{n\hat{d}_X}{\sigma_X^2}\sim \chi^2(n-1).$ (Доказательство приведено далее в теореме Фишера)

7.3 Определение 2

Пусть $X_0, X_1, \dots, X_n \sim N(0;1)$ — независимые с.в.. Тогда с.в.

$$Y = \frac{X_0}{\sqrt{\frac{1}{n}\sum\limits_{k=1}^n X_k^2}} \sim t(n)$$

имеем распределение Стьюдента с п степенями свободы.

7.4 Свойства распределения t(n)

1. У имеет плотность вероятности

$$f_{x;n} = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{\pi n} \Gamma(\frac{n}{2})} (1 + \frac{x^2}{n})^{-\frac{n+1}{2}}$$

2. $Y \sim t(n), M[Y] = 0, n \ge 2$

$$D[Y] = \frac{n}{n-2}, n > 2$$

- 3. t(1) = C распределение Коши
- 4. $Y \sim t(n), Y \stackrel{d}{\longrightarrow} N(0; 1)$
- 5. Пусть Z_n порождена распределением $N(m_X; \sigma_X^2)$. Тогда

$$\frac{\overline{X}_n - m_X}{\sqrt{\hat{d}_X}} \cdot \sqrt{n-1} \sim t(n-1)$$

(Доказательство приведено далее в теореме Фишера)

7.5 Определение 3

Пусть $X \sim \chi^2(n), Y \sim \chi^2(m)$ — независимые с.в. Тогда с.в. $V = \frac{Xm}{Yn} \sim F(n;m)$ имеет **Распределение Фишера** с n и m степенями свободы.

7.6 Свойства распределения F(n; m)

1. V имеет плотность вероятности

$$f_V(x,n,m) = \begin{cases} \frac{\Gamma(\frac{m+m}{2})}{\Gamma(\frac{m}{2})\cdot\Gamma(\frac{m}{2})} n^{\frac{n}{2}} m^{\frac{n}{2}} \frac{x^{\frac{n}{2}-1}}{(m+nx)^{\frac{n+m}{2}}}, & x>0\\ 0, & x\leqslant 0 \end{cases}$$

2. $V \sim F(n; m), M[V] = \frac{m}{m-2}, m > 2,$

$$D[V] = \frac{2m^2(m+n-2)}{n(m-2)^2(m-4)}, m > 4$$

3. Пусть $Z_n=(X_1,\dots,X_n)^T$ и $W_m=(Y_1,\dots,Y_m)^T$ — однородные выборки, порожденные распределениями $N(m_X;\sigma^2)$ и $N(m_Y;\sigma^2)$.

Тогда если Z_n и W_n независимы,

$$V = \frac{\frac{1}{n-1} \sum\limits_{k=1} n(X_k - \overline{X}_n)^2}{\frac{1}{m-1} \sum\limits_{k=1} n(Y_k - \overline{Y}_m)^2} \sim F(n-1; m-1)$$

(Данный факт следует из свойства θ распределения $\chi^2(n)$)

7.7 Определение 4

 $\pmb{\Pi}$ араметром $\theta \in \mathbb{R}^n$ распределения с.в. X называется любая числовая характеристика, входящая в $F_x(x,\theta)$ явно.

7.8 Определение 5

Точечной оценкой неизвестного параметра θ называется произвольная статистика $\hat{\theta}(Z_n)$.

Замечание

Оценка $\hat{\theta}(Z_n)$ является с.в. На практике используется ее реализация.

7.9 Определение 6

 ${\it O}$ иенка $\hat{ heta}(Z_n)$ называется несмещенной, если

$$M[\hat{\theta}] = \theta$$

7.10 Определение 7

Оценка $\hat{\theta}(Z_n)$ называется ${\it cocmosme. nenoŭ},$ если

$$\hat{\theta} \stackrel{P}{\longrightarrow} \theta$$

7.11 Определение 8

Оценка $\hat{\theta}(Z_n)$ называется ${\it cunbho}$ ${\it cocmosmenbhoŭ}$, если

$$\hat{\theta} \stackrel{\text{\tiny II.H.}}{\longrightarrow} \theta$$

7.12 Определение 9

Оценка $\hat{\theta}(Z_n)$ называется ${\it c.к.}$ ${\it cocmosmeльной},$ если

$$\hat{\theta} \stackrel{\text{c.k.}}{\longrightarrow} \theta$$

Замечание

- 1. Из свойств \overline{X}_n следует, что \overline{X}_n несмещенная и сильносостоятельная оценка m_X .
- 2. Из свойств \hat{d}_X следует, что \hat{d}_X смещенная и сильносостоятельная оценка m_X .

7.13 Определение 10

Hесмещенная оценка $\hat{\theta}^*(Z_n)$ называется эффективной, если $\forall \hat{\theta}(Z_n)$ — несмещенной оценки верно, что

$$D[\hat{\theta}^*(Z_n)] \leqslant D[\hat{\theta}(Z_n)]$$

7.14 Пример

Пусть $M[\overline{X}]<\infty$. Тогда \overline{X} — сильно состоятельная оценка m_X . Если $D[\overline{X}]<\infty$, то \overline{X} — $c.\kappa$.-состоятельная оценка m_X

(Доказательство следует из ЗБЧ)

7.15 Теорема 1

Пусть $\hat{\theta}_1, \hat{\theta}_2, -c.\kappa$.-оптимальные оценки параметра θ . Тогда

$$\hat{\theta}_1 = \hat{\theta}_2$$

Доказательство

Т.к. $\hat{\theta}_1$ и $\hat{\theta}_2$ оптимальны, то $D[\hat{\theta}_1] = D[\hat{\theta}_2] = d$. Пусть $\hat{\theta}_3 = \frac{1}{2}(\hat{\theta}_1 + \hat{\theta}_2)$. Тогда $D[\hat{\theta}_3] = \frac{1}{4}D[\hat{\theta}_1 + \hat{\theta}_2] = \frac{1}{4}(D[\hat{\theta}_1] + [D\hat{\theta}_2] + 2\mathrm{cov}(\hat{\theta}_1, \hat{\theta}_2)) = \frac{1}{2}(d + \mathrm{cov}(\hat{\theta}_1, \hat{\theta}_2)) \leqslant \frac{1}{2}(d + |\mathrm{cov}(\hat{\theta}_1, \hat{\theta}_2)|) \leqslant \frac{1}{2}(d + \sqrt{D[\hat{\theta}_1] \cdot D[\hat{\theta}_2]}) = d$

Тогда в силу оптимальности $\hat{\theta}_1$ и $\hat{\theta}_2$

$$D[\hat{\theta}_3] = d$$

 $d=D[\hat{ heta}_3]=rac{1}{2}(d+\cos(\hat{ heta}_1,\hat{ heta}_2)),\,\cos(\hat{ heta}_1,\hat{ heta}_2)=d=\sqrt{D[\hat{ heta}_1]\cdot D[\hat{ heta}_2]},$ т.е. в неравенстве Коши-Буняковского достигается равенство. Следовательно,

$$\hat{\theta}_1 = \alpha \hat{\theta}_2 + \beta, \alpha > 0$$

$$\begin{cases} M[\hat{\theta}_1] = \alpha M[\hat{\theta}_2] + \beta \\ D[\hat{\theta}_1] = \alpha^2 D[\hat{\theta}_2] \end{cases} \implies \begin{cases} \theta = \alpha \theta + \beta \\ d = \alpha^2 d \end{cases} \implies \begin{cases} \beta = 0 \\ \alpha = 1 \end{cases}$$

Окончательно, $\hat{\theta}_1 = \hat{\theta}_2$.

8 Эффективные оценки

Обозначим через $f(x;\theta)$ плотность вероятности с.в. X, порождающей **выборку** в абсолютно непрерывном случае или **функцию** в дискретном случае. В силу критерия независимости функция

$$L(z_n;\theta) = \prod_{k=1}^n f(x_k;\theta)$$

является nлотностью вероятности с.в. Z_n .

8.1 Определение 1

 $L(z_n;\theta)$ при фиксированном $z_n\in S$ и переменной θ называется $\pmb{\phi}$ ункцией $\pmb{\eta}$ правдоподобия.

Замечание

Далее будем полагать, что $\theta \in \mathbb{R}^1$.

8.2 Определение 2

Распределение с.в. X называется **регулярным**, если

- 1. $\sqrt{f(x;\theta)}$ дифференцируема по θ почти для всех x.
- 2. $i(\theta)=\int\limits_{-\infty}^{+\infty}(\frac{\partial \ln f(x;\theta)}{\partial \theta})^2f(x;\theta)dx$ конечна, непрерывна по θ и положительна.

Замечание

Далее будем предполагать, что выборка Z_n порождена perynaphым pacnpedenenuem.

8.3 Определение 3

Случайная величина

$$U(Z_n;\theta) = \frac{\partial \ln L(Z_n;\theta)}{\partial \theta} = \sum_{k=1}^n \frac{\partial \ln f(x;\theta)}{\partial \theta}$$

называется вкладом выборки Z_n

8.4 Лемма 1

Пусть распределение регулярное. Тогда

$$M[U(Z_n;\theta)] = 0$$

Доказательство

В силу условия нормировки

$$\int\limits_{\mathbb{R}^n}L(z_n;\theta)d_{X_1},\dots,d_{X_n}=1$$

С учетом условий регулярности $0 = \frac{\partial}{\partial \theta} \int\limits_{\mathbb{R}^n} L(z_n;\theta) d_{X_1}, \dots, d_{X_n} = \int\limits_{\mathbb{R}^n} \frac{\partial L(z_n;\theta)}{\partial \theta} d_{X_1}, \dots, d_{X_n} = \int\limits_{\mathbb{R}^n} \frac{\partial \ln L(z_n;\theta)}{\partial \theta} L(z_n;\theta) d_{X_1}, \dots, d_{X_n} = M[U(Z_n;\theta)]. \quad \blacksquare$

8.5 Определение 4

Информацией Фишера о параметре θ , **содержащейся в выборке** Z_n , называют

$$I_n(\theta) = D[U(Z_n;\theta)] \stackrel{\text{peryn.}}{=} M[U^2(Z_n;\theta)]$$

 $i(\theta)=M[(rac{\partial \ln f(x;\theta)}{\partial heta})^2]$ называется количеством информации Фишера, содержащимся в одном наблюдении.

Замечание

Из определения $U(Z_n;\theta)$ и *независимости* элементов выборки следует, что $I_n(\theta)=n\cdot i(\theta),$ т.е. количество информации **вырастает пропорционально объему выборки**.

8.6 Лемма 2

Пусть $f(x;\theta)$ дважеды непрерывно дифференцируема по θ . Тогда

$$i(\theta) = -M[\frac{\partial^2 \ln f(X_1; \theta)}{\partial \theta^2}]$$

Доказательство

$$U(X_1;\theta) = \frac{\partial \ln f(X_1;\theta)}{\partial \theta}. \text{ C yqetom } \overline{\text{Леммы }} 1$$

$$0 = \frac{\partial}{\partial \theta} M[U(X_1;\theta)] = \frac{\partial}{\partial \theta} \int\limits_{-\infty}^{+\infty} \frac{\partial \ln f(x;\theta)}{\partial \theta} f(x;\theta) dx = \int\limits_{-\infty}^{+\infty} \frac{\partial^2 \ln f(x;\theta)}{\partial \theta^2} f(x;\theta) dx + \int\limits_{-\infty}^{+\infty} \frac{\partial \ln f(x;\theta)}{\partial \theta} \cdot \frac{\partial \ln f(x;\theta)}{\partial \theta} dx = \int\limits_{-\infty}^{+\infty} \frac{\partial^2 \ln f(x;\theta)}{\partial \theta^2} f(x;\theta) dx + \int\limits_{-\infty}^{+\infty} \frac{\partial \ln f(x;\theta)}{\partial \theta} dx = M[\frac{\partial^2 \ln f(x;\theta)}{\partial \theta^2}] + i(\theta). \blacksquare$$

8.7 Пример 1

Пусть $X \sim N(\theta; \sigma^2)$.

$$\begin{split} f(x;\theta) &= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-\frac{(x-\theta)^2}{2\sigma^2}\} \\ U(X_1;\theta) &= \frac{\partial}{\partial \theta} (-\frac{1}{2} \ln(2\pi\sigma^2) - \frac{(x-\theta)^2}{2\sigma^2}) = \frac{X_T \theta}{\sigma^2} \\ &\frac{\partial^2 \ln f(x;\theta)}{\partial \theta^2} = -\frac{1}{\sigma^2} \end{split}$$

С учетом Леммы 2

$$i(\theta) = -M[-\frac{1}{\sigma^2}] = \frac{1}{\sigma^2}$$

8.8 Пример 2

Рассмотрим нерегулярную модель.

$$X \sim R(0; \theta)$$

Здесь из множества $\int\limits_0^\theta \frac{1}{\theta} dx = 1$ не следует, что $\int\limits_0^\theta \frac{\partial}{\partial \theta} (\frac{1}{\theta}) dx = 0$, т.к. при диффференцировании по θ появляется еще одно слагаемое:

$$\frac{\partial}{\partial \theta} \int_{0}^{\theta} \frac{1}{\theta} dx = \frac{1}{\theta} + \int_{0}^{\theta} \frac{\partial}{\partial \theta} (\frac{1}{\theta}) dx$$

Теорема 1 (Неравенство Рао-Крамера)

Пусть распределение $F(x;\theta)$, порождающее выборку Z_n регулярно. Тогда для любой несмещенной оценки $\hat{\theta}$ верно неравенство:

$$D[\hat{\theta}(Z_n)] \geqslant \frac{1}{I_n(\theta)} = \frac{1}{ni(\theta)}$$

При этом равенство достигается лишь в том случае, если

$$\theta(Z_n) - \theta = a(\theta) \cdot U(Z_n; \theta)$$
, где

 $a(\theta)$ — некоторая функция от θ

Доказательство

В силу несмещенности $\hat{\theta}$

$$M[\hat{\theta}] = \int\limits_{\mathbb{R}^n} (z_n) L(z_n;\theta) dx_1, \dots, dx_n = \theta$$

В силу регулярности и Леммы 1
$$1 = \frac{\partial}{\partial \theta}(\theta) = \frac{\partial}{\partial \theta}M[\hat{\theta}] = \int\limits_{\mathbb{R}^n}\hat{\theta}(z_n)\frac{\partial L(z_n;\theta)}{\partial \theta}dx_1,\dots,dx_n = \int\limits_{\mathbb{R}^n}\hat{\theta}(z_n)\frac{\partial \ln L(z_n;\theta)}{\partial \theta}\cdot L(z_n;\theta)dx_1,\dots,dx_n = \int\limits_$$

$$M[\hat{\theta}U(Z_n;\theta)] = M[(\hat{\theta}-0)(U(Z_n;\theta)-\theta)] + \theta \cdot M[U(Z_n;\theta)] = \mathrm{cov}(\hat{\theta},U(Z_n;\theta))$$

Откуда с учетом неравенства Коши-Буняковского

$$1^2 \leqslant D[\hat{\theta}] \cdot D[U(Z_n;\theta)] = D[\hat{\theta}] \cdot I_n(\theta)$$

Причем равенство достигается в том и только том случае, когда $\hat{\theta} = a(\theta)U(Z_n;\theta) + b(\theta)$ Ho с учетом Леммы 1 $b(\theta) = 0$.

8.10 Определение 5

Оценка $\hat{\theta}^*(Z_n)$, для которой достигается равенство в неравенстве Рао-Крамера называется эффективной

Замечание

В силу Теоремы 1 эффективная оценка является оптимальной. А с учетом Теоремы 7.1 эффективная оценка единственна

8.11 Пример 3

Пусть
$$X \sim N(\theta; \sigma^2)$$

$$U(Z_n; \theta) = \sum_{k=1}^n \frac{\partial \ln f(X_k; \theta)}{\partial \theta} = \sum_{k=1}^n \frac{X_k - \theta}{\sigma^2} = \frac{n}{\sigma^2} (\overline{X}_n - \theta)$$

Пусть $X = N(\theta, \theta)$ $U(Z_n; \theta) = \sum_{k=1}^n \frac{\partial \ln f(X_k; \theta)}{\partial \theta} = \sum_{k=1}^n \frac{X_k - \theta}{\sigma^2} = \frac{n}{\sigma^2} (\overline{X}_n - \theta)$ T.o. $a(\theta) = \frac{\sigma^2}{n}$. Тогда $a(\theta)U(Z_n; \theta) = \overline{X}_n - \theta$, откуда следует, что \overline{X}_n — эффективная

9 Методы построения точеченых оценок

Метод максимального правдоподобия

9.1 Определение 1

 \pmb{O} ценкой максимального правдоподобия heta называют

$$\hat{\theta} = \underset{\theta}{argmax} L(Z_n; \theta)$$

Замечание

1. В силу монотонности функции $\ln x$ справедливо представление:

$$\hat{\theta} = \mathop{argmax}_{\theta} L(Z_n; \theta) = \mathop{argmax}_{\theta} \ln L(Z_n; \theta)$$

2. Если $L(Z_n;\theta)$ — гладкая и максимум по θ достигается внутри множества возможных значений θ , то θ можно вычислить из ypashehus npasdonodofus

$$U(Z_n; \theta) = \frac{\partial \ln L(z_n; \theta)}{\partial \theta} = 0$$

3. Из Теоремы 8.1 следует, что $\hat{\theta}$ будет также эффективной оценкой.

9.2 Пример 1

Рассмотрим случайную величину $X \sim N(m; \sigma^2)$ с неизвестными m и σ^2 :

$$\begin{split} \theta &= (m;\sigma^2)^T \\ L(Z_n;\theta) &= \prod_{k=1}^n \frac{1}{\sqrt{2\pi\theta_2}} e^{-\frac{(X_k-\theta_1)^2}{2\theta_2}} \\ \ln L(Z_k;\theta) &= \sum_{k=1} n(-\frac{1}{2}\ln(2\pi) - \frac{1}{2}\ln\theta_2 - \frac{(X_k-\theta_1)^2}{2\theta_2}) \\ \begin{cases} \frac{\partial \ln L(Z_n;\theta)}{\partial \theta_1} &= \sum_{k=1}^n \frac{(X_k-\theta_1)}{\theta_2} = \frac{1}{\theta_2}(n\overline{X}_n - n\theta_1) = 0 \\ \frac{\partial \ln L(Z_n;\theta)}{\partial \theta_2} &= \sum_{k=1}^n (\frac{(X_k-\theta_1)^2}{2\theta_2^2} - \frac{1}{2\theta_2}) = \frac{1}{2\theta_2}(n\hat{d}_X(n) - n\theta_2) = 0 \end{cases} \\ \begin{cases} \hat{\theta}_1 &= \overline{X}_n \\ \hat{\theta}_2 &= \hat{d}_Y(n) \end{cases} \end{split}$$

9.3 Пример 2

Пусть $X \sim R(\theta_1; \theta_2)$. В этом случае $L(Z_n; \theta)$ не является непрерывной:

$$L(Z_n;\theta) = \prod_{k=1}^n f_X(X_k;\theta) = \begin{cases} 0, & \exists k = \overline{1,n}: X_k \notin [\theta_1;\theta_2] \\ \frac{1}{(\theta_2 - \theta_1)^n}, & \forall k = \overline{1,n}: X_k \in [\theta_1;\theta_2] \end{cases}$$

Тогда оценка максимального правдоподобия не может быть вычислена из уравнений правдоподобия. Хотя $\hat{\theta}$ существует:

$$L(Z_n;\theta) = \begin{cases} 0, & \min_{k=\overline{1,n}} X_k < \theta_1 || \max_{k=\overline{1,n}} X_k > \theta_2 \\ \frac{1}{(\theta_2 - \theta_1)^n}, & \theta_1 \leqslant \min_{k=\overline{1,n}} X_k \leqslant \max_{k=\overline{1,n}} X_k \leqslant \theta_2 \end{cases}$$

Откуда $L(Z_n;\theta)$ возрастает по θ_1 и убывает по θ Тогда $\hat{\theta}_1=\min_{k=\overline{1,n}}X_k=X^{(1)}, \hat{\theta}_1=\max_{k=\overline{1,n}}X_k=X^{(n)}$

Замечание

Для МП-оценок выполняется принцип инвариантности:

Пусть $q(\theta)$ — биективное отображение.

Тогда МП-оценка $\hat{g}(Z_n) = g(\hat{\theta}(Z_n)).$

Действительно,

$$\sup L(Z_n;\theta) = \sup L(Z_n;g^{-1}(g))$$

$$\sup_{\theta} L(Z_n;\theta) = \sup_{g} L(Z_n;g^{-1}(g))$$
 Тогда $g^{-1}(\hat{g}) = \hat{\theta},$ т.е. $\hat{g} = g(\hat{\theta})$

9.4 Пример 3

Пусть $X \sim N(\theta_1; \theta_2)$. Требуется оценить $F_X(x_0) = \frac{1}{2} + \Phi_0(\frac{x_0 - \theta_1}{\theta_2})$. Рассмотрим биективное отображение

$$g(\theta_1;\theta_2) = \begin{pmatrix} \frac{1}{2} + \Phi_0(\frac{x_0 - \theta_1}{\theta_2}) \\ \theta_2 \end{pmatrix}$$

Тогда

$$\hat{g}(Z_n) = \begin{pmatrix} \frac{1}{2} + \Phi_0(\frac{x_0 - \overline{X}_n}{\sqrt{\hat{d}_X}(n)}) \\ \sqrt{\hat{d}_X(n)} \end{pmatrix}$$

 $X_0 \in \mathbb{R}$

Замечание

Для решения уравнений правдоподобия часто используются численные методы

9.5 Теорема 1

Пусть распределение с.в. X, порождающей выборку Z_n , регулярно.

Функция правдоподобия $L(z_n;\theta)$ имеет единственный достижимый максимум по $\theta \forall z_n \in S, n \in \mathbb{N}$. Тогда

- 1. МП-оценка $\hat{\theta}$ состоятельна;
- 2. Если $\left| \frac{\partial^k f(x;\theta)}{\partial \theta^k} \right| \leqslant g_k(x), \forall \theta$, где

$$\int\limits_{\mathbb{R}}g_1(x)dx<\infty,\int\limits_{\mathbb{R}}g_2(x)dx<\infty,\int\limits_{\mathbb{R}}g_3(x)f(x;\theta)dx\leqslant C\leqslant\infty,\text{ а функция }i(\theta)=\int\limits_{\mathbb{R}}(\frac{\partial\ln f(x;\theta)}{\partial\theta})^2f(x;\theta)dx$$
 конечна и положительна $\forall\theta,$ то

- $2.1~M[\hat{ heta}]
 ightarrow heta$ (асимптотически несмещенность)
- $2.2 \ \hat{\theta}$ сильно состоятельна;

$$2.3 \sqrt{ni(\theta)}(\hat{\theta} - \theta) \stackrel{d}{\longrightarrow} N(0; 1)$$

Асимптотическая нормальная

Метод моментов

9.6 Определение 2

Пусть $\theta=(\theta_1,\dots,\theta_r)^T,$ а для распределения $F_X(x;\theta),$ порождающего выборку $Z_n,M[X^r]<\infty$

Тогда

$$\begin{cases} \nu_1(\theta) = & \hat{\nu}_1(n) \\ \vdots & \vdots \\ \nu_r(\theta) = & \hat{\nu}_r(n) \end{cases}$$

называется системой метода моментов.

9.7 Определение 3

Решение системы метода моментов

$$\hat{\theta}_i = \varphi_i(\hat{\nu}_1(n), \dots, \hat{\nu}_r(n)), i = \overline{1, r}$$

называется оценкой метода моментов.

9.8 Теорема 2

Пусть функции $\varphi_1, \dots, \varphi_r$, определяющие оценку метода моментов *непрерывные* и биективные. Тогда оценка метода моментов **состоятельна**.

Доказательство

Доказательство следует из **состоятельности** статистик $\hat{\nu}_i(n)$.

9.9 Пример 1

$$X \sim N(\theta_1; \theta_2)$$
. Тогда $\hat{\theta}_1 = \overline{X}_n, \hat{\theta}_2 = \hat{d}_X(n)$

9.10 Пример 2

 $X \sim R(\theta_1; \theta_2)$. Тогда

$$\begin{cases} \overline{X}_n = \frac{\theta_1 + \theta_2}{2} \\ \hat{d}_X(n) = \frac{(\theta_2 - \theta_1)^2}{12} \end{cases} \quad \begin{cases} \theta_1 + \theta_2 = 2\overline{X}_n \\ \theta_2 - \theta_1 = 2\sqrt{\hat{d}_X(n)}\sqrt{3} \end{cases} \quad \begin{cases} \theta_1 = \overline{X}_n - \sqrt{3\hat{d}_X(n)} \\ \theta_2 = \overline{X}_n + \sqrt{3\hat{d}_X(n)} \end{cases}$$

Замечание

Метод моментов **трудноприменим**, если *теоретические моменты не удается* вычислить явно.

10 Интервальные оценки

10.1 Определение 1

Пусть выполнено условие:

$$P(\hat{\theta}_1(Z_n) \leqslant \theta \leqslant \hat{\theta}_2(Z_n)) = 1 - \alpha$$

для некоторого распределения параметром $F_x(x;\theta)$. Тогда интервал $[\hat{\theta}_1(Z_n);\hat{\theta}_2(Z_n)]$ — называется **доверительным интервалом** или **интервальной оценкой** параметра θ уровня надежности $1-\alpha$.

10.2 Определение 2

Доверительный интервал называется *центральным*, если верно условие:

$$P(\theta \leqslant \hat{\theta}_1(Z_n)) = P(\theta \geqslant \hat{\theta}_2(Z_n)) = \frac{\alpha}{2}$$

10.3 Определение 3

Доверительный интервал называется *правосторонним* или *левосторонним*, если выполнено условие:

$$P(\theta \geqslant \hat{\theta}_2(Z_n)) = \alpha$$
или $P(\theta \leqslant \hat{\theta}_1(Z_n)) = \alpha$

Замечание

1. Можно визуализировать интервальную оценку следующим образом:

2. Интервальную оценку можно рассматривать в качестве оценки погрешности точеченой оценки $\hat{\theta}(Z_n)$, если строить доверительный интервал в форме:

$$[\hat{\theta}(Z_n) - \varepsilon_1; \hat{\theta}(Z_n) + \varepsilon_2]$$

где $\varepsilon_1, \varepsilon_2 > 0$.

Построение доверительного интервала на основе центральной статистики

10.4 Определение 4

Статистика $G(Z_n; \theta)$ называется **центральной**, если G непрерывна и строго монотонна по $\theta, \forall z_n \in S$, а ее распределение **не зависит** от θ .

Если распределение $F_G(Z_n;\theta)$ известно, то можно подобрать числа g_1,g_2 такие, что $P(g_1\leqslant G(Z_n;\theta)\leqslant g_2)=1-\alpha.$

Например, для центрального доверительного интервала $g_1=G_{\frac{\alpha}{2}},g_2=G_{1-\frac{\alpha}{2}}$ — квантили уровней $\frac{\alpha}{2}$ и $1-\frac{\alpha}{2}$.

Если $G(Z_n;\theta)$ монотонно возрастает по θ , то можно перейти к эквивалентному неравенству:

$$P(G^{-1}(Z_n;g_1)\leqslant\theta\leqslant G^{-1}(Z_n;g_2)=1-\alpha$$

Тогда границы интервальной оценки имеют вид:

$$\hat{\theta}_1(Z_n) = G^{-1}(Z_n;g_1), \hat{\theta}_2(Z_n) = G^{-1}(Z_n;g_2)$$

Замечание

Построение центральных статистик **довольно сложно**. В связи с чем зачастую используют **асимптотические распределения**, которые в силу ЦПТ тесно связаны с нормальным распределением.

10.5 Определение 5

Матрица $C \in \mathbb{R}^{n \times n}$ называется **ортогональной**, если $C^T = C^{-1}$.

10.6 Лемма 1

Пусть $C \in \mathbb{R}^{n \times n}$ — ортогональная матрица, $C_{1j} = \frac{1}{\sqrt{n}}, j = \overline{1,n}$. Тогда

1.
$$\sum_{k=1}^{n} C_{jk} \cdot C_{ik} = 0, j \neq i; i, j = \overline{1, n}$$

2.
$$\sum_{k=1}^{n} C_{ik}^2 = 1, i = \overline{1, n}$$

3. Если
$$y = Cx$$
, то $||y|| = ||x||$

4.
$$\sum_{k=1}^{n} C_{ik} = 0, i = \overline{2, n}$$

Доказательство

Пункты 1 и 2 следуют из тождества

$$C^T \cdot C = I$$

3.
$$\|y\|^2 = (y, y) = (Cx, Cx) = (x, C^TCx) = (x, x) = \|x\|^2$$

4. Рассмотрим свойство 1 для i = 1. Тогда

$$0 = \sum_{k=1}^{n} C_{1k} \cdot C_{ik} = \sum_{k=1}^{n} \frac{1}{\sqrt{n}} C_{ik} = \frac{1}{\sqrt{n}} \sum_{k=1}^{n} C_{ik}$$

10.7 Теорема 1 (ФИШЕРА)

Пусть Z_n — однородная выборка, порожденная распределением $N(m_X; \sigma_X^2)$. Тогда

1.
$$\frac{\overline{X}_n - m_X}{\sigma_X} \sqrt{n} \sim N(0; 1)$$

2.
$$\frac{n\hat{d}_X(n)}{\sigma_X^2} \sim \chi(n-1)$$

$$3. \ \ \frac{\overline{X}_n - m_X}{\sqrt{\hat{d}_X(n)}} \sqrt{n-1} \sim t(n-1)$$

4. \overline{X}_n и $\hat{d}_X(n)$ независимы

Доказательство

.1)
$$\frac{\overline{X}_n - m_X}{\sigma_X} \sqrt{n} = \sum_{k=1}^n \frac{1}{\sigma_X \sqrt{n}} X_k - \frac{m_X \sqrt{n}}{\sigma_X} = \left(\frac{1}{\sigma_X \sqrt{n}} + \frac{1}{\sigma_X \sqrt{n}} + \dots + \frac{1}{\sigma_X \sqrt{n}}\right) \cdot Z_n - \frac{m_X \sqrt{n}}{\sigma_X}.$$

Т.к.
$$Z_n \sim N(\begin{pmatrix} m_X \\ \vdots \\ m_X \end{pmatrix}; \sigma_X^2 I),$$
 то в силу Леммы 1.3

$$rac{\overline{X}_n - m_X}{\sigma_X} \sqrt{n} \sim N(m; \sigma^2)$$
, где $m = (rac{1}{\sigma_X \sqrt{n}} \dots rac{1}{\sigma_X \sqrt{n}}) egin{pmatrix} m_X \\ dots \\ m_X \end{pmatrix} - rac{m_X \sqrt{n}}{\sigma_X} = 0$

$$\sigma^2 = (\frac{1}{\sigma_X \sqrt{n}} \dots \frac{1}{\sigma_X \sqrt{n}}) \sigma^2 I \cdot \begin{pmatrix} \frac{1}{\sigma_X \sqrt{n}} \\ \vdots \\ \frac{1}{\sigma_X \sqrt{n}} \end{pmatrix} = 1$$

.2) Построим матрицу $C \in \mathbb{R}^{n \times n}$ так, чтобы $C_{1j} = \frac{1}{\sqrt{n}}, j = \overline{1,n};$ остальные строки выберем

так, чтобы векторы
$$\begin{pmatrix} C_{11} \\ \vdots \\ C_{1n} \end{pmatrix}, \begin{pmatrix} C_{21} \\ \vdots \\ C_{2n} \end{pmatrix}, \dots, \begin{pmatrix} C_{n1} \\ \vdots \\ C_{nn} \end{pmatrix} \in \mathbb{R}^n$$

образовывали *ортонормированный* базис, что возможно, т.к. вектор $\begin{pmatrix} C_{11} \\ \vdots \\ C_{1n} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{n}} \\ \vdots \\ \frac{1}{\sqrt{n}} \end{pmatrix}$

всегда можно дополнить до ортонормированного базиса.

Тогда C удовлетворяет условиям Леммы 1.

Рассмотрим $Y = \frac{1}{\sigma_X} CZ_n$. Тогда $Y \sim N(m_Y; K_Y)$, где в силу Леммы 1.3 и Леммы 1, п.4:

$$m_Y = \frac{1}{\sigma_X} C(\sigma_X^2 I) \frac{1}{\sigma_X} C^T = CIC^T = CC^T = I$$

Т.о. Y_1, \dots, Y_n — **некоррелированные** нормальные с.в.

Тогда в силу Леммы 1.4 Y_1,\dots,Y_n независимы

$$\frac{n\hat{d}_X(n)}{\sigma_X^2} = \frac{1}{\sigma_X^2} \sum_{k=1}^n (X_k - \overline{X}_n)^2 = \frac{1}{\sigma_X^2} \sum_{k=1}^n (X_k^2 - 2X_k \overline{X}_n + \overline{X}_n^2) = \frac{1}{\sigma_X^2} (\sum_{k=1}^n X_k^2 - 2n \overline{X}_n (\frac{1}{n} \sum_{k=1}^n X_k) + \frac{1}{n} \sum_{k=1}^n (X_k - \overline{X}_n)^2 = \frac{1}{n$$

$$n\overline{X}_n^2$$
 = $\frac{1}{\sigma_X^2} \sum_{k=1}^n X_k^2 - \frac{n}{\sigma_X^2} \overline{X}_n^2 \stackrel{*}{=}$

$$Y_1=rac{1}{\sigma_X\sqrt{n}}(X_1+\cdots+X_n)=rac{\sqrt{n}}{\sigma_X}\overline{X}_n$$
. Тогда с учетом Леммы 1

$$\stackrel{*}{=} \frac{1}{\sigma_X^2} \|Z_n\|^2 - Y_1^2 = \frac{1}{\sigma_X^2} \|CZ_n\|^2 - Y_1^2 = \|\frac{1}{\sigma_X} Z_n\|^2 - Y_1^2 = \|Y\|^2 - Y_1^2 = \sum_{k=1}^n Y_k^2 - Y_1^2 = \sum_{k=2}^n Y_k^2, \text{ где } Y_k^2 = \sum_{k=1}^n Y_k^2 - Y_1^2 = \sum_{k=2}^n Y_k^2 + \sum_{k=2}^n Y_k^2 + \sum_{k=2}^n Y_k^2 - Y_1^2 = \sum_{k=2}^n Y_k^2 - Y_1^2 - Y_1^2 - Y_1^2 = \sum_{k=2}^n Y_k^2 - Y_1^2 - Y_1^$$

 $Y_k \sim N(0;1), k = \overline{2,n}$. Тогда по определению

$$\frac{n\hat{d}_X(n)}{\sigma_X^2} = \sum_{k=2}^n Y_k^2 \sim \chi^2(n-1)$$

.4) Заметим, что $\overline{X}_n=\frac{\sigma_X}{\sqrt{n}}Y_1=\varphi(Y_1)$, где Y_1 и $(Y_2,\dots,Y_n)^T$ независимы. Тогда независимы также $\varphi(Y_1)$ и $\psi(Y_2,\dots,Y_n)$, т.е. \overline{X}_n и $\hat{d}_X(n)$

независимы также
$$\varphi(Y_1)$$
 и $\psi(Y_2,\dots,Y_n)$, т.е. \overline{X}_n и $\hat{d}_X(n)$.3) $\frac{\overline{X}_n - m_X}{\sqrt{\hat{d}_X(n)}} \sqrt{n-1} = \frac{\frac{\sigma_X}{\sqrt{n}} Y_1 - m_X}{\sqrt{\frac{\sigma_X^2}{n} \sum_{k=2}^n Y_k^2}} \sqrt{n-1} = \frac{Y_1 - \frac{m_X \sqrt{n}}{\sigma_X}}{\sqrt{\frac{1}{n-1} \sum_{k=2}^n Y_k^2}} \sim t(n-1)$, т.к.

$$Y_1 - rac{m_X \sqrt{n}}{\sigma_X} \sim N(0;1)$$
 и $Y_1, (Y_2, \dots, Y_n)^T$ независимы. $lacktriangle$

10.8 Пример 3

Построить интервальную оценку θ по однородной выборке Z_n , порожденной распределением $N(\theta;\sigma_X^2)$, если σ_X^2 неизвестна, уровня надежности $1-\alpha$

В силу Теоремы Фишера

$$G(Z_n;\theta) = \frac{\overline{X}_n - \theta}{\sqrt{\hat{d}_X(n)}} \sqrt{n-1} \sim (n-1)$$

Тогда

$$1-\alpha=P(t_{\frac{\alpha}{2}}(n-1)\leqslant\frac{\overline{X}_n-\theta}{sqrt\widehat{d}_X(n)}\sqrt(n-1)\leqslant t_{1-\frac{\alpha}{2}}(n-1))=P(\overline{X}_n-\sqrt{\frac{\widehat{d}_X(n)}{n-1}}t_{1-\frac{\alpha}{2}}(n-1)\leqslant\theta\leqslant\overline{X}_n+\sqrt{\frac{\widehat{d}_X(n)}{n-1}}t_{1-\frac{\alpha}{2}}(n-1))$$

Тогда интервальная оценка имеет вид:

$$[\overline{X}_n - \sqrt{\frac{\widehat{d}_X(n)}{n-1}} t_{1-\frac{\alpha}{2}}(n-1); \overline{X}_n + \sqrt{\frac{\widehat{d}_X(n)}{n-1}} t_{1-\frac{\alpha}{2}}(n-1)]$$

Заметим, что \overline{X}_n — *точечная оценка* θ — лежит в середине интервала. При этом длина интервала $2\sqrt{\frac{\hat{d}_X(n)}{n-1}}t_{1-\frac{\alpha}{2}}(n-1)$ возрастает по σ_X^2 и убывает по α и n.

10.9 Пример 4

Пусть выборка Z_n порождена распределением $R(0;\theta)$. Пусть

$$G(Z_n;\theta) = (\frac{X^{(n)}}{\theta})^n$$

 $F_G(x)=P((\frac{X^{(n)}}{\theta})^n\leqslant x)=P(X^{(n)}\leqslant\theta\sqrt[n]{x})=F_{(n)}(\theta\sqrt[n]{x})\stackrel{*}{=}$ в силу Следствия 6.1

$$\overset{*}{=} (F_X(\theta\sqrt[n]{x}))^n = \begin{cases} 1^n, & \theta\sqrt[n]{x} \geqslant \theta, \\ 0^n, & 0 \leqslant 0, \\ -(\frac{\theta\sqrt[n]{x}-0}{\theta-0})^n, & 0 \leqslant (0;\theta) \end{cases} = \begin{cases} 1, & x \geqslant 1, \\ 0, & x \leqslant 0, \\ x, & 0 < x < 1 \end{cases} \implies G(Z_n;\theta) \sim R(0;1)$$

Тогда $G_{\frac{\alpha}{2}} = \frac{\alpha}{2}, G_{1-\frac{\alpha}{2}} = 1 - \frac{\alpha}{2},$

$$1-\alpha=P(\frac{\alpha}{2}\leqslant (\frac{X^{(n)}}{\theta})^n\leqslant 1-\frac{\alpha}{2})=P(X^{(n)}(1-\frac{\alpha}{2})^{-\frac{1}{2}}\leqslant \theta\leqslant X^{(n)}(\frac{\alpha}{2})^{-\frac{1}{n}})$$

Интервальная оценка имеет вид:

$$[X^{(n)}(1-\frac{\alpha}{2})^{-\frac{1}{n}};X^{(n)}(\frac{\alpha}{2})^{-\frac{1}{n}}]$$

Заметим, что точечная МП-оценка $\hat{\theta}(Z_n) = X^{(n)}$ не лежит внутри интервала.

11 Проверка статистических гипотез

11.1 Определение 1

Статистической гипотезой H называется любое предположение относительно закона распределения с.в. X, порождающей выборку Z_n .

11.2 Определение 2

Проверяемая гипотеза H_0 называется *основной*. Конкурирующая с H_0 гипотеза H_1 называется *альтернативой*.

11.3 Определение 3

Стапистическим критерием или **критерием согласия** называется правило, в соответствии с которым по реализации выборки $z_n=Z_n(\omega)$ принимается или отвергается гипотеза H_0 .

11.4 Примеры

Гипотеза о виде распределения

Пусть F_X — распределение, порождающее выборку Z_n, F — некоторая заданная функция распределения, $\mathbb F$ — некоторый заданный класс функций распределения.

Например,
$$F(x) = \frac{1}{2} + \Phi(x-1)$$
, $\mathbb{F} = \{F(x) = \frac{1}{2} + \Phi(\frac{x-m}{\sigma}) : m \in \mathbb{R}, \sigma > 0\}$

Тогда можно рассмотреть

$$H_0:F_X(x)=F(x), x\in\mathbb{R}$$
или $H_0:F_X\in\mathbb{F}$

Гипотеза однородности

Пусть задано k выборок $Z_{n_1}^1, \dots, Z_{n_k}^k$.

Требуется определить, образуют ли они единую однородную выборку.

Если $F_i(x)$ — функция распределения, порождающая выборку $Z^i_{n_i}$, то

$$H_0: F_1(x) = \cdots = F_k(x)$$

Гипотеза независимости

Пусть Z_n^1, Z_n^2 — однородные выборки, порождаемые с.в. X и Y соответственно с функциями распределения F_X и F_Y .

Через
$$F_{X,Y}(x,y) = F_X(x) \cdot F_Y(y); x,y \in \mathbb{R}$$

Замечание

Для проверки гипотезы H_0 используется специальные статистики $T(Z_n)$, характеризующие отклонение наблюдения от теоретического предположения.

11.5 Определение 4

Обозначим через G множество всех возможных значений статистики T:

$$G = \{t : t = T(z_n), z_n \in S\}$$

11.6 Определение 5

Построим разбиение G на **доверительную область** $G_{\circ\alpha}$ **и критическую область** $G_{|\alpha}$ так, чтобы

$$G_{\circ \alpha} \cup G_{|\alpha} = G$$

$$G_{\circ \alpha} \cap G_{|\alpha} = \emptyset$$

 $P(T(z_n) \in G_{|\alpha}|H_0) \leqslant \alpha, P(T(Z_n) \in G_{\circ \alpha}|H_0) \geqslant 1-\alpha$ для некоторого $\alpha \in (0;1).$

Если H_0 принимается в случае, когда $T(Z_n)\in G_{|\alpha}$, то α называется $\emph{уровнем}$ значимости критерия.

11.7 Определение 6

Ошибкой <u>первого</u> **рода** называется событие, когда H_0 верна, но она *отвергается* $T(z_n) \in G_{|\alpha}, \overline{H_0}$ верно.

11.8 Определение 7

Ошибкой <u>второго</u> **рода** называется событие, когда H_0 неверно, но она *принимается* $T(z_n) \in G_{\circ\alpha}$, $\overline{H_0}$ неверно.

Замечание

- 1. Если H_0 принимается, то это не значит, что H_0 верно. Это значит, что наблюдения $z_n = Z_n(\omega)$ согласуется с гипотезой H_0 .
- 2. Для построения доверительной и критической областей необходимо знать

$$Law(T(Z_n)|H_0)$$

а также задать уровень значимости α

3. Структура критической области $G_{|\alpha}$ определяется алтернативой H_1

11.9 Определение 8

Пусть \mathbb{F} — множество всех распределений $T(Z_n)$, удовлетворяющих альтернативе H_1 . Тогда функцией мощности критерия $W: \mathbb{F} \to [0;1]$ называется

$$W(F) = P(T(Z_n) \in G_{|\alpha|} Law(T(Z_n)) = F_{|\alpha|}$$

Значение W(F) называется мощностью критерия при альтернативе F.

11.10 Определение 9

Критерий называется **несмещенным**, если $W(F) > \alpha, \forall F \in \mathbb{F}$.

Замечание

- 1. Для построения W(F) необходимо знать $Law(T(Z_n)|F)$, что не всегда доступно.
- 2. Качество критерия определяется функцией мощности: чем выше мощность, тем чаще критерий отвергает H_0 , если она *неверна*.

Критерий согласия Колмогорова

 $H_0: F_X(x) = F(x), x \in \mathbb{R}$ $H_1: F_X(x_0) \neq F(x_0)$ для некоторого $x_0 \in \mathbb{R}$

$$T(Z_n) = \sup_{x \in \mathbb{R}} |\hat{F}_n(x) - F(x)|$$

Данный критерий применяется для *непрерывных* F(x).

 $Law(T(Z_n)|H_0)$ известно. Для малых $n \in \mathbb{N}$ соответствующие квантили берутся из таблиц. При больших $n \in \mathbb{N}$ используют асимптотическую аппроксимацию:

$$F_{\sqrt{n}T(Z_n)|H_0}(x) \overset{n \to \infty}{\longrightarrow} K(x) = \begin{cases} \sum\limits_{k=-\infty}^{+\infty} (-1)^k e^{-2k^2x^2}, & x > 0 \\ 0, & x \leqslant 0 \end{cases}$$

K(x) — функция распределения Колмогорова

Критерий согласия хи-квадрат Пирсона

Пусть для выборки Z_n построено разбиение \mathbb{R} :

$$-\infty = t_0 < t_1 < t_2 < \dots < t_l < t_{l+1} = +\infty,$$
где $t_1 \leqslant X^{(1)}, t_l > X^{(n)}.$

На построенном разбиении построим гистограмму:

$$\hat{f}_n(x) = \begin{cases} 0, & x \in (t_0, t_1) \cup [t_l; t_{l+1}), \\ \hat{p}_k, & x \in [t_k; t_{k+1}), k = \overline{1, l-1} \end{cases}$$

Пусть $p_k = P(X \in [t_k; t_{k+1})|H_0) = F(t_{k+1}) - F(t_k), k = \overline{0, l}.$

Статистика критерия Пирсона имеет вид:

$$T_{\chi^2}(Z_n) = n \cdot \sum_{k=0}^l \frac{(\hat{p}_k - p_k)^2}{p_k}$$

где $\hat{p}_0 = \hat{p}_l = 0$.

11.11 Теорема 1

Пусть $p_k \in (0;1), k = \overline{0,l}$. Тогда

$$Law(T_{\chi^2}(Z_n)|H_0) \stackrel{n \to \infty}{\longrightarrow} \chi^2(l)$$

Замечание

- 1. Высокая точность приближения законом $\chi^2(l)$ достигается при $l\geqslant 5$ и $n\geqslant 50$.
- 2. Если у $F(x; \theta_1, \dots, \theta_5)$ теоретической функции распределения есть s неизвестных параметров, то

$$Law(T_{\chi^2}(Z_n)|H_0) \stackrel{n \to \infty}{\longrightarrow} \chi^2(l-s)$$

Проверка гипотезы о значении параметра

Рассматривается выборка Z_n , порожденная распределением $N(m_X; \sigma_X^2)$

Рассмотрим $H_0: m_X = m_0$ против

 $H_1: m_X
eq m_0, H_2: m_X > m_0, H_3: m_X < m_0$ 1 случай: G_X^2 известна

$$T(Z_n) = \frac{(\overline{X}_n - m_0)}{\sigma_X} \sqrt{n}, Law(T(Z_n)|H_0) = N(0; 1)$$

$$G_{1\alpha}=(-\infty;u_{\frac{\alpha}{2}})\cup(u_{1-\frac{\alpha}{2}};+\infty)$$

$$G_{2\alpha}=(u_{1-\alpha};+\infty),G_{3\alpha}=(-\infty;U_{\alpha})$$

 $\mathbf{2}$ случай: G_X^2 неизвестна

$$T(Z_n) = \frac{(\overline{X}_n - m_0)}{\sqrt{\hat{d}_X(n)}} \sqrt{n-1}, Law(T(Z_n)|H_0) = t(n-1)$$

$$G_{1\alpha}=(-\infty;t_{\frac{\alpha}{2}}(n-1))\cup(t_{1-\frac{\alpha}{2}}(n-1);+\infty)$$

$$G_{2\alpha}=(t_{1-\alpha}(n-1);+\infty),G_{3\alpha}=(-\infty;t_{\alpha}(n-1))$$

Рассмотрим $H_0:\sigma_X^2=\sigma_X^2$ против

 $H_1:\sigma_X^2\neq\sigma_0^2$

1 случай: m_X известна

$$T(Z_n) = \frac{\sum\limits_{k=1}^n (X_k - m_X)}{\sigma_0^2}, Law(T(Z_n)|H_0) = \chi^2(n)$$

2 случай: m_X неизвестна

$$T(Z_n) = \frac{n\hat{d}_X(n)}{\sigma_0^2}, Law(T(Z_n)|H_0) = \chi^2(n-1)$$

12 Метод наименьших квадратов

В рамках регрессионного анализа рассматривается задача восстановления зависимости $Y=\varphi(x)$ по набору наблюдений Y_1,\dots,Y_n , которые предполагаются **защищенными**.

12.1 Определение 1

Линейной регрессионной моделью называется класс линейных по набору неизвестных параметров $\theta \in \mathbb{R}^s$ функций:

$$\varphi(x;\theta) = \theta_1 \varphi_1(x) + \dots + \theta_s \varphi_s(x)$$

12.2 Определение 2

Схемой Гаусса-Маркова называется модель наблюдения линейной регрессионной модели при наличии случайных ошибок наблюдения:

$$Y_k = \theta_1 \varphi_1(x) + \dots + \theta_s \varphi_s(x_k) + \varepsilon_k, k = \overline{1, n}$$

ИЛИ

$$Y = X\theta + E, \text{ где } X = \begin{pmatrix} \varphi_1(x_1) & \dots & \varphi_s(x_1) \\ \vdots & \ddots & \vdots \\ \varphi_1(x_n) & \dots & \varphi_s(x_n) \end{pmatrix} \in \mathbb{R}^{n \times s}$$

$$\theta = (\theta_1, \dots, \theta_s)^T \in \mathbb{R}^s, Y = (Y_1, \dots, Y_s)^T \in \mathbb{R}^n$$

$$E = (\varepsilon_1, \dots, \varepsilon_n)^T \in \mathbb{R}^n$$

где X называется perpeccuohhoй матрицей. Предполагается, что

$$M[E] = 0, K_E = \sigma^2 \cdot I$$

12.3 Определение 3

MHK-оценкой вектора θ называется

$$\hat{\theta}(Y) = \underset{\theta}{argmin}(Y - X\theta)^T(Y - X\theta) = \underset{\theta}{argmin}(\sum_{k=1}^n (Y_k - \theta_1 \varphi_1(x_k) - \dots - \theta_s \varphi_s(x_k))^2)$$

12.4 Теорема 1 (Гаусса-Маркова)

Пусть матрица $X \in \mathbb{R}^{n \times s}$ такая, что $det(X^TX) \neq 0$ Тогда

1. МНК-оценка $\hat{\theta}(Y)$ существует, **единственна** и определяется соотношением:

$$\hat{\theta}(Y) = (X^T X)^{-1} X^T Y$$

2. МНК-оценка $\hat{\theta}(Y)$ несмещенная обладает наименьшей дисперсией в классе линейных по Y и несмещенных оценок по координатам.

3. Ковариационная матрица $\hat{\theta}$ имеет вид

$$K_{\hat{\theta}} = \sigma^2 (X^T X)^{-1}$$

Доказательство

1.

 $J(\theta)$ — квадратичная функция. При этом $H_J=2X^TX$ — матрица Гессе невырождена и положительно определена:

Пусть $x \in \mathbb{R}^s \setminus \{0\}$. Тогда $x^T(2X^TX)x = 2(Xx, Xx) > 0$.

Т.о. $J(\theta)$ имеем $e\partial uнственный экстремум$ — точку **минимума**, которая может быть найдена из необходимых условий:

$$\nabla_{\theta}J(\theta) = -(2Y^TX)^T + 2X^T \cdot X\theta = 0$$

$$\hat{\theta} = (X^TX)^{-1}X^TY$$

$$2. \ M[\hat{\theta}] = M[(X^TX)^{-1}X^TY] = (X^TX)^{-1}X^TM[X\theta + E] = (X^TX)^{-1}X^TX\theta + (X^TX)^{-1}X^TM[E] = 0$$

Рассмотрим произвольную несмещенную линейную оценку $\tilde{\theta}=AY$, где $A\in\mathbb{R}^{s\times n}$ Тогда $\forall \theta\in\mathbb{R}^s$

$$\theta = M[\tilde{\theta}] = M[AX\theta + AE] = AX\theta + AM[E] = AX\theta$$

Откуда AX = I

$$\begin{split} K_{\tilde{\theta}} &= M[(\tilde{\theta} - \theta)(\tilde{\theta} - \theta)^T] = M[(AY - \theta)(AY - \theta)^T] = [(\mathcal{A}\!X\!\theta - AX - \theta)(\mathcal{A}\!X\!\theta - AE - \theta)^T] \overset{AX = I}{=} \\ M[AEE^TA^T] &= AK_EA^T = \sigma^2AA^T \\ AA^T &= (A - ((X^TX)^{-1}X^T) + ((X^TX)^{-1}X^T))(A - (X^TX)^{-1}X^T + (X^TX)^{-1}X^T)^T = \\ (A - (X^TX)^{-1}X^T)(A - (X^TX)^{-1}X^T)^T + (A - (X^TX)^{-1}X^T)X(X^TX)^{-1} + (X^TX)^{-1}X^T(A - (X^TX)^{-1}X^T)^T + (X^TX)^{-1}X^TX(X^TX)^{-1} = (A - (X^TX)^{-1}X^T)(A - (X^TX)^{-1}X^T)^T + \\ AX(X^TX)^{-1} &= (A - (X^TX)^{-1}X^TX(X^TX)^{-1} + (X^TX)^{-1}X^TA^T - (X^TX)^{-1}X^TX(X^TX)^{-1} + \\ (X^TX)^{-1} &\stackrel{AX = I}{=} (A - (X^TX)^{-1}X^T)(A - (X^TX)^{-1}X^T)^T + (X^TX)^{-1} \end{split}$$

т.к. $(A - (X^TX)^{-1}X^T)(A - (X^TX)^{-1}X^T)^T \geqslant 0$, то все ее диагональные элементы, которые и определяют $D[\theta_k], k = \overline{1,s}$, **неотрицательны**. Тогда *минимальное* значение $D[\theta_k], \forall k = \overline{1,s}$ достигается, если

$$(A - (X^T X)^{-1} X^T)(A - (X^T X)^{-1} X^T)^T = 0$$
, T.e.

$$A = (X^T X)^{-1} X^T$$

ИЛИ

$$\hat{\theta} = \hat{\theta}$$

3. Если положить $A = (X^T X)^{-1} X^T$ то из (*) следует, что

$$K_{\hat{\theta}} = \sigma^2(X^TX)^{-1}X^TX(X^TX)^{-1} = \sigma^2(X^TX)^{-1}. \ \blacksquare$$

Замечание

Теорема 1 гарантирует свойства МНК-оценки для любых коррелированных шумов.

Нормальная регрессия

12.5 Определение 4

Схема Гаусса-Маркова называется **нормальной регрессией**, если $E \sim N(0; \sigma^2 I)$.

12.6 Лемма 1

В нормальной регрессии

$$\hat{\theta} \sim N(\theta; \sigma^2(X^T X)^{-1})$$

Доказательство

Доказательство следует из Леммы 1.3 и Теоремы 1 п.2, п.3. ■

12.7 Лемма 2

В нормальной регрессии МНК-оценка и МП-оценка совпадают

Доказательство

В силу Леммы 1.3 $Y \sim N(X\theta; \sigma^2 I)$

Тогда функция правдоподобия по определению имеет вид

$$L(y;\theta) = f_Y(y;\theta) = \frac{1}{(2\pi)^{\frac{n}{2}}\sqrt{\det(\sigma^2 I)}} \exp\{-\frac{1}{2\sigma^2}(y-X\theta)^T(y-X\theta)\}$$

откуда $\underset{\theta}{argmax}L(Y;\theta) = \underset{\theta}{argmin}(Y-X\theta)^T(Y-X\theta) = \hat{\theta}.$ \blacksquare

12.8 Следствие 1

В нормальной регрессии МНК-оценка $\hat{\theta}$ **эффективна**, т.е. *оптимальна* в классе всех *несмещенных* оценок.

Доказательство

Доказательство следует из Леммы 2 и Теоремы 8.1. ■

12.9 Лемма 3

В нормальной регрессии МП-оценка σ^2 имеет вид

$$\hat{\sigma}^2 = \frac{1}{n} \|Y - X\hat{\theta}\|$$

Доказательство

$$\begin{split} \ln L(Y;\theta;\sigma^2) &= -\frac{n}{2}\ln(2\pi) - \frac{n}{2}\ln\sigma^2 - \frac{(Y-X\theta)^T(Y-X\theta)}{2\sigma^2}, \\ & \begin{cases} \frac{\partial \ln L(Y;\theta;\sigma^2)}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{(Y-X\theta)^T(Y-X\theta)}{2(\sigma^2)^2} = 0, \\ \nabla_{\theta} \ln L(Y;\theta;\sigma^2) = -\frac{1}{2\sigma^2}(-2X^TY + 2X^TX\theta) = 0 \end{cases} \end{split}$$

Откуда $\hat{\theta} = (X^T X)^{-1} X^T Y$ — МНК-оценка,

$$\hat{\sigma}^2 = \frac{1}{n} (Y - X\hat{\theta})^T (Y - X\hat{\theta})$$

12.10Определение 5

Вектором остатков называется

$$\hat{E} = Y - X\hat{\theta}$$

12.11 Лемма 4

В нормальной регрессии $\hat{E} \sim N(0; \sigma^2(I - X(X^TX)^{-1}X^T))$

Доказательство

$$\hat{E} = Y - X \hat{\theta} = X \theta + E - X (X^T X)^{-1} X^T (X \theta + E) = X \theta + E - X (X^T X)^{-1} X^T X \theta - X (X^T X)^{-1} X^T E = (I - X (X^T X)^{-1} X^T) E.$$

Тогда в силу Леммы 1.3
$$m_{\hat{E}}=0$$
 $K_{\hat{E}}=(I-X(X^TX)^{-1}X^T)\sigma^2I(X-X(X^TX)^{-1}X^T)^T=\sigma^2(I-2X(X^TX)^{-1}X^T+X(X^T)^{-1}X^TX(X^TX)^{-1}X^T)=\sigma^2(I-(X(X^TX)^{-1}X^T)).$

12.12 Лемма 5

В нормальной регрессии $\hat{\theta}$ и \hat{E} независимы

Доказательство

В силу Леммы 1.4 достаточно показать, что $\hat{\theta}$ и \hat{E} некоррелированы.

$$K_{\hat{\theta}\hat{E}} = \text{cov}(\hat{\theta}, Y - X\hat{\theta}) = \text{cov}(\hat{\theta}, Y) - \text{cov}(\hat{\theta}, \hat{\theta}) \cdot X^T \stackrel{*}{=}$$

с учетом Леммы 1 и Теоремы 1

$$\stackrel{*}{=} \operatorname{cov}((X^TX)^{-1}X^TY,Y) - \sigma^2(X^TX)^{-1}X^T = (X^TX)^{-1}X^T\operatorname{cov}(X\theta + E, X\theta + E) - \sigma^2(X^TX)^{-1}X^T = (X^TX)^{-1}X^T\sigma^2I - \sigma^2(X^TX)^{-1}X^T = 0. \quad \blacksquare$$

12.13 Лемма 6

В нормальной регрессии

$$\frac{\|\hat{E}\|^2}{\sigma^2} = n \cdot \frac{\hat{\sigma}^2}{\sigma^2} \sim \chi^2(n-s)$$

Доказательство

Пусть $E_0 = \frac{E}{\sigma}$ Тогда $E_0 \sim N(0; I)$ $\frac{\|\hat{E}\|^2}{\sigma^2} = \frac{1}{\sigma^2} \|Y - X(X^TX)^{-1}X^TY\|^2 = \frac{1}{\sigma^2} \|X\theta + E - X(X^TX)^{-1}X^TX\theta - X(X^TX)^{-1}X^TE\|^2 = \frac{1}{\sigma^2} \|(I - X(X^TX)^{-1}X^T)E\|^2 = E_0^TAE_0, \text{ где}$ $A = (I - X(X^TX)^{-1}X^T)^T(I - X(X^TX)^{-1}X^T) = I - 2X(X^TX)^{-1}X^T + X(X^TX)^{-1}X^TX(X^TX)^{-1}X^T = I - 2X(X^TX)^{-1}X^T + I - 2X(X^T$ $I - X(X^{T}X)^{-1}X^{T}$. Откуда следует, что $A^{2} = A$.

Т.к. $A^T=A$ и $A\geqslant 0$, то все собственные значения $\lambda_1,\dots,\lambda_n\in\mathbb{R}$ неотрицательны, а переход в нормальный жорданов базис описывается ортогональным преобразованием C:

$$C^T = C^{-1}, A = C^T diag(\lambda_1, \dots, \lambda_n) C$$

Тогда

$$A^2 = C^T diag(\lambda_1^2, \dots, \lambda_n^2) C$$

Из $A^2=A$ следует, что $\lambda_i=\lambda_i^2, i=\overline{1,n},$ т.е. $\lambda_i\in\{0;1\}$ Тогда

$$\Lambda = \begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{pmatrix} = \begin{pmatrix} 1 & \dots & 0 \\ \vdots & 1 & \vdots \\ 0 & \dots & 0 \end{pmatrix}$$

где m = rgA

$$\frac{\|\hat{E}\|^2}{\sigma^2}=E_0^TC^T\cdot \Lambda CE_0=\sum\limits_{i=1}^n ilde{arepsilon}_i^2,$$
 где с учетом Леммы 1.3

$$CE_0 = (\tilde{\varepsilon}_1, \dots, \tilde{\varepsilon}_n) \sim N(0, CIC^T) = N(0; I)$$

Т.о. по определению $\frac{\|\hat{E}\|^2}{\sigma^2}\sim \chi^2(m)$ Т.к. $tr(AB)=tr(BA), \forall A,B^T\in\mathbb{R}^{n\times m},$ то

$$tr(A) = tr(C^T\Lambda C) = tr(CC^T\Lambda) = tr(\Lambda) = m = rgA$$

$$m = tr(I - X(X^TX)^{-1}X^T) = n - tr(X(X^TX)^{-1}X^T) = n - tr(X^TX(X^TX)^{-1}) = n - tr(I - X(X^TX)^{-1}X^T) = n - tr(X^TX(X^TX)^{-1}) = n - tr(I - X(X^TX)^{-1}X^T) = n - tr(I - X(X^TX)^T) = n -$$

n-s.

12.14 Лемма 7

В нормальной регрессии

$$\frac{\hat{\theta}_k - \theta_k}{\|\hat{E}\| \sqrt{\alpha_k}} \cdot \sqrt{n-s} \sim t(n-s)$$

где α_k — элемент на главной диагонали матрицы $(X^TX)^{-1}$

Доказательство

Из Леммы 1 следует, что $\hat{\theta}_k \sim N(\theta_k, \sigma^2 \alpha_k)$

Тогда

$$\frac{\hat{\theta}_k - \theta_k}{\sigma \sqrt{\alpha_k}} \sim N(0;1)$$

С учетом определения распределения Стьюдента и Леммы 5, и Леммы 6

$$\frac{\hat{\theta}_k - \theta_k}{\|\hat{E}\|\sqrt{\alpha_k}} \cdot \sqrt{n-s} = \frac{\frac{\hat{\theta}_k - \theta_k}{\sigma\sqrt{\alpha_k}}}{\sqrt{\frac{1}{n-s}}\frac{\|\hat{E}\|^2}{\sigma^2}} \sim t(n-s). \ \blacksquare$$

12.15Лемма 8

В нормальной регрессии

$$\frac{\varphi(x;\hat{\theta}_k)-\varphi(x;\theta_k)}{\|\hat{E}\|\sqrt{\alpha_k}}\cdot\sqrt{n-s}\sim t(n-s), \text{ где}$$

$$\alpha(x)=(\varphi_1(x),\dots,\varphi_s(x))(X^TX)^{-1}\begin{pmatrix}\varphi_1(x)\\\vdots\\\varphi_s(x)\end{pmatrix}, x\in\mathbb{R}$$

Доказательство

Из Леммы 1 следует, что

$$\varphi(x; \hat{\theta}) = \hat{\theta}\varphi_1(x) + \dots + \hat{\theta}_s\varphi_s(x) \sim N(\varphi(x; \theta); \alpha(x)\sigma^2)$$

Тогда

$$\frac{\varphi(x;\hat{\theta}_k)-\varphi(x;\theta_k)}{\sigma_{\star}/\sigma_{\star}} \sim N(0;1)$$

Гогда
$$\frac{\varphi(x;\hat{\theta}_k) - \varphi(x;\theta_k)}{\sigma\sqrt{\alpha_k}} \sim N(0;1).$$
 С учетом лемм 5 и 6, определения Стьюдента
$$\frac{\varphi(x;\hat{\theta}_k) - \varphi(x;\theta_k)}{\|\hat{E}\|\sqrt{\alpha_k}} = \frac{\frac{\varphi(x;\hat{\theta}_k) - \varphi(x;\theta_k)}{\sigma\sqrt{\alpha_k}}}{\sqrt{\frac{1}{n-s}\frac{\|\hat{E}\|^2}{\sigma^2}}} \sim t(n-s). \ \blacksquare$$

Замечание

Леммы 6, 7, 8 позволяют построить доверительные интервалы для $\theta_1, \dots, \theta_s, \sigma^2, \varphi(x; \theta)$. Для построения точеченой оценки θ_1,\dots,θ_s и $\varphi(x;\theta)$ используется Теорема 1, для точечной

Зачастую в качестве $\varphi_k(x)$ рассматривают $\varphi_k(x) = x^{k-1}$. Однако порядок многочлена s, как правило, несмещен. Для его определения можно использовать критерий Фишера:

Критерий Фишера

$$H_0: \theta_k = 0$$

$$H_1:\theta_k\neq 0$$

$$T(Y) = \frac{\hat{\theta}_k^2}{\alpha_k \|\hat{E}\|^2} (n-s)$$

где α_k — k-й элемент на главной диагонали матрицы $(X^TX)^{-1}$.

$$Law(T(Y)|H_0) = F(1,n-s)$$

$$G_{\circ \alpha} = [0; F_{1-\alpha}(1; n-s))$$

$$G_{|\alpha} = [F_{1-\alpha}(1; n-s); +\infty)$$