1. Пусть есть множество множеств $\{\{1,2,3,4\},\{3,4,5,6\}\}$. Дополните эту систему до:

- 1. (Минимального полукольца) В полукольце должно быть пустое множество $\emptyset \implies$ множество становится $\{\{1,2,3,4\},\{3,4,5,6\},\emptyset\}$
 - В полукольце есть пересечение любых двух элементов \implies множество становится $\{\{1,2,3,4\},\{3,4,5,6\},\emptyset,\{3,4\}\}$

В полукольце для каждого элемента есть разбиение на элементы из полукольца \implies множество становится

 $\{\{1,2,3,4\},\{3,4,5,6\},\emptyset,\{3,4\},\{1,2\},\{5,6\}\}$ - это минимальное полукольно.

2. (Минимального кольца) Любое кольцо - полукольцо.

Значит $\{\{1,2,3,4\},\{3,4,5,6\},\emptyset,\{3,4\},\{1,2\},\{5,6\}\}$ содержится и в кольне

Для любых двух элементов из кольца в кольце содержится их симметрическая разность \implies множество становится

$$\{\{1,2,3,4\},\{3,4,5,6\},\emptyset,\{3,4\},\{1,2\},\{5,6\},\{1,2,5,6\},\{1,2,3,4,5,6\}\}$$

3. (Минимальной алгебры) Полученное нами кольцо

 $\{\{1,2,3,4\},\{3,4,5,6\},\emptyset,\{3,4\},\{1,2\},\{5,6\},\{1,2,5,6\},\{1,2,3,4,5,6\}\}$ является алгеброй.

В данном случае единицей является элемент $\{1,2,3,4,5,6\}$ - он лежит во множестве и пересечение любого элемента с ним дает сам элемент.

2. Доказать, что:

1. Пересечение произвольной непустой системы колец является кольцом (возможно, состоящим лишь из пустого множества):

Проверим, что это кольцо, опираясь на определение кольца:

- (a) Если во множестве есть элементы A, B, то в нем есть $A \cap B$: От противного: предположим, что в пересечение попали элементы A, B, но не $A \cap B$. Т.к. A, B лежат в пересечении, они принадлежат каждому из колец. Но если A, B лежат в кольце, то и $A \cap B$ лежит в кольце. Значит, в каждом кольце есть $A \cap B \implies$ в пересечение колец есть $A \cap B$. Получаем противоречие.
- (b) Если во множестве есть элементы A,B, то в нем есть $A\triangle B$: Также как и с предыдущим подпунктом преположением от противного приходим к выводу, что если A,B лежат в пересечение, то и $A\triangle B$ лежит в пересечение колец.

- (c) Отдельным пунктом выделим, что система не пуста: Т.к. кольцо является и полукольцом, в нем есть \emptyset . Значит, и в пересечении колец будет лежать хотя бы \emptyset , ведь оно есть в каждом кольце.
- 2. Пересечение произвольной непустой системы σ -колец является σ -кольцом:
- 3. Пересечение непустой (конечной) системы алгебр с одной и той же единицей является алгеброй:

Алгебра - кольцо с единицей. Уже доказано выше, что пересечение колец - кольцо. Т.к. единица(назовем ее E) в каждой алгебре одна и та же, она войдет и в пересечение. И в итоговом кольце E также будет едининцей:

От противного: если $\exists A$ из полученного кольца, такой что $A \cap E \neq A$, то этот элемент принадлежит и всем алгебрам. Но в них $A \cap E = A$ - что войдет и в пересечние. Получаем противоречие.