Snowpack Group Updates

W210 Capstone Feb 1(or 8), 2022

EJ Haselden, Eddie Salinas, Kieffer Thomas

Proposed Outline

- Data/Repo Review
 - "all_data.pkl"
 - Lat/Lon
 - Satellite/Map/Image Data
- Models
 - LSTM-base-model-1b-bestmodel (Predict Groundwater Discharge ("catdef"))
 - "catdef" ?=? "Discharge"?
 - GCP GPU acquisition (SSH headaches)
- Stakeholder Engagement/Interaction
- Ideas for Next Steps & Strategy

col_name	col_type	dim	meaning	units
Year	<class 'int'=""></class>	1	year of data	?
Month	<class 'int'=""></class>	1	month of data	?
SCA	<class 'int'=""></class>	1	Star Camera Assembly (SCA) Precisely determines the two satellite's orientation by tracking them relative to the position of the stars. https://earth.esa.int/eogateway/missions/grace	?
Landsat_Image	<pre><class 'pil.image.image'=""></class></pre>	(480, 480)	????	?
BW_SCA_Image	<pre><class 'pil.image.image'=""></class></pre>	(570, 660)	????	?
olor_SCA_Image	<pre><class 'pil.image.image'=""></class></pre>	(570, 660)	????	?
catdef	<class 'numpy.ndarray'></class 	(33, 37)	catchment deficit (catdef); The model prognostic catchment deficit (catdef) [Ducharne et al., 2000] is defined as the average depth of water that would need to be added in order to bring the catchment to saturation and is directly related to the unconfined mean groundwater table depth. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2015WR018417	kg/(m^(2)*h)
rzexc	<class 'numpy.ndarray'></class 	(33, 37)	root-zone excess (rzexc); Root-zone excess (rzexc) is defined as the amount of water in the root-zone layer (0- 100 cm) in excess of the water that would be present if the entire soil moisture profile were in equilibrium. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2015WR018417; see also https://aimesproject.org/wp- content/uploads/2021/06/Girotto_AIMES_v2.pdf	?
evap	<pre><class 'numpy.ndarray'=""></class></pre>	(33, 37)	????	?
srfexc	<pre><class 'numpy.ndarray'=""></class></pre>	(33, 37)	Surface excess (srfexc) is similarly defined as rzexc but for the surface layer (0-5 cm) https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2015WR018417	?
sfmc	<class 'numpy.ndarray'></class 	(33, 37)	Surface soil moisture content https://journals.ametsoc.org/view/journals/hydr/22/5/JHM-D-20-0228.1.xml	?
capac	<pre>'numpy.ndarray'></pre>	(33, 37)	????	?
Snowf	<class 'numpy.ndarray'></class 	(33, 37)	777	?
Rainf	<pre><class 'numpy.ndarray'=""></class></pre>	(33, 37)	???	?
prmc	<pre><class 'numpy.ndarray'=""></class></pre>	(33, 37)	Profile soil moisture content https://journals.ametsoc.org/view/journals/hydr/22/5/JHM-D-20-0228.1.xml	?
sumwesn	<pre><class 'numpy.ndarray'=""></class></pre>	(33, 37)	???	?
runoff	<pre> <class 'numpy.ndarray'=""></class></pre>	(33, 37)	????	?
Tair	<class 'numpy.ndarray'></class 	(33, 37)	??? air temperature??? https://essd.copernicus.org/preprints/essd-2020-28/essd-2020-28-manuscript-version2.pdf	?
RainfC	<pre><class 'numpy.ndarray'=""></class></pre>	(33, 37)	Rain from Convection (RainfC) (paper)	?
rzmc	<class 'numpy.ndarray'></class 	(33, 37)	Root-zone soil moisture content https://journals.ametsoc.org/view/journals/hydr/22/5/JHM-D-20-0228.1.xml	?

Lat/Long Data Identified


```
lat file="./data/CA GRACE DA/csv/LAT.csv"
lon file="./data/CA GRACE DA/csv/LON.csv"
lat df=pd.read csv(lat file)
print(f"Latitude shape {lat df.shape}")
lon df=pd.read csv(lon file)
print(f"longitutde shape {lon df.shape}")
print("latitude data")
print(lat df.to numpy(copy=True))
print("longitude data")
print(lon df.to numpy(copy=True))
Latitude shape (33, 37)
longitutde shape (33, 37)
latitude data
[[42.565 42.565 42.565 ... 42.565 42.565 42.565]
[42.185 42.185 42.185 ... 42.185 42.185 42.185]
 [41.808 41.808 41.808 ... 41.808 41.808 41.808]
 [31.956 31.956 31.956 ... 31.956 31.956 31.956]
[31.625 31.625 31.625 ... 31.625 31.625 31.625]
 [31.295 31.295 31.295 ... 31.295 31.295 31.295]]
longitude data
[[-125.66 -125.29 -124.92 ... -112.97 -112.59 -112.22]
 [-125.66 -125.29 -124.92 ... -112.97 -112.59 -112.22]
 [-125.66 -125.29 -124.92 ... -112.97 -112.59 -112.22]
 [-125.66 -125.29 -124.92 ... -112.97 -112.59 -112.22]
 [-125.66 -125.29 -124.92 ... -112.97 -112.59 -112.22]
```

[-125.66 -125.29 -124.92 ... -112.97 -112.59 -112.22]]

LSTM-base-model-1b-bestmodel (Predict Groundwater Discharge ("catdef"))

evap	prmc	rzmc	RainfC	rzexc	Snowf	catdef	capac	runoff	sfmc	snov	snowcap_offset_1	snowcap	month
644.21295	198.172161	194.840829	17.374478	707.258484	76.347303	308444.087	10.807113	621.445111	176.212138	***	2.977106e+11	2.979813e+11	1.0
980.11345	211.130071	207.005523	87.382864	562.804908	315.991364	284341.677	11.538916	546.750853	191.026888		2.979813e+11	2.835708e+11	2.0
1406.39418	212.279017	207.414268	60.586443	29.251186	174.247548	279964.037	13.538214	554.630849	183.253912		2.835708e+11	3.262106e+11	3.0
1582.06131	/config	v ~/.ssh	snow.cs	nes=5 disc	boseli	adver	21.18 She	757.990836	177.384923		3.262106e+11	3.253270e+11	4.0
2021.60086	2011129	, , , , , , , , , , , , , , , , , , , ,		=	ow.csv <=	disc_sn	11.06 ==>	328.847681	158.130730	***	3.253270e+11	3.315039e+11	5.0
					arge, snow				***				
742.89978					087,29798 677,28357			24.193515	65.524266		3.213242e+11	3.126091e+11	8.0
	3.0,279964.037,326210606328.0							17512327.0		3.126091e+11	2.936131e+11	9.0	
			78657.0	97,3253269	605999999	,284377.	4.0		5087669.0		2.936131e+11	2.987715e+11	10.0
ı			<==	sh/config	salina/.s	/home/e	==>		594940.0		2.987715e+11	2.881262e+11	11.0
				,9	,		Hos		51564.0		2.881262e+11	2.976233e+11	12.0
					liveInter								
					liveCount								
				val 10	liveInter	ServerA	e.						

LSTM-base-model-1b-bestmodel (Predict Groundwater Discharge ("catdef"))

```
: model = RNN(input_size=inputsize, hidden_size=40, num_layers=1, class_size=1, dropout=0.5, rnn_type='lstm')
model

: RNN(
    (rnn): LSTM(3, 40, batch_first=True)
    (dropout): Dropout(p=0.5, inplace=False)
Inputs
```


- month
- rzmc
- snowcap offset 3

Output

Catdef

I was able to run it *only* in a container on a GPU-equipped GCP node

Year-Over-Year Trends of Water Measurements

 Highlights seasonality of water table and runoff measurements (and worsening drought conditions)

Correlation Between Image Darkness and Water Measurements

Understanding Problem Space and Domain Expert Conversations

- "The snow/groundwater connection is not as direct as the snow/streamflow connections, but it is there. E.g., the amount of groundwater pumping ends up depending on how much streamflow occurs in a given year because when surface water supplies and deliveries are down, people in the Central Valley turn to groundwater to fill in." - Michael Dettinger, Climate Science LLC

 Upcoming Feb. 7: Discussion with Alvar Escriva-Bou, Public Policy Institute of California

Water Table Prediction from Snow Cap

Annual Cycle Offsets

CA Water Boards (Hydrologic Regions)

Water Regions wrt Water Table Heatmap

Water Table Heatmap Simplified to Water Regions

