Time Dilation in a 3D Superfluid Æther Model

Based on Vortex Core Rotation and Ætheric Flow

Omar Iskandarani

Independent Researcher, Groningen, The Netherlands ORCID: 0009-0006-1686-3961 DOI: 10.5281/zenodo.15566319

Contents

1	Keystone Constant Relations in VAM
	A.1 Planck's Constant from Æther Tension
	A.2 Photon Energy: $E = hv \dots $
	A.3 Bohr (or Sommerfeld) Radius
	A.4 Newton's Constant
	A.5 Consequences

1 Introduction

Main Section 1

Symbol	Quantity	Value	Unit	Uncertainty
C_e	Vortex-Tangential Velocity	$1.0938456 \times 10^6\mathrm{m/s}$	1	
G	Gravitational Constant	$6.6743000 \times 10^{-11} \mathrm{m}^3/\mathrm{kg/s^2}$	2	
α	Fine-Structure Constant	7.2973526×10^{-3}	3	
$ ho_{ m e}^{ m core}$	Æther Core Density	3.8934358×10^{18}	kg/m ³	+
$ ho_{ m ee}$	Æther Vacuum Density	7.0000000×10^{-7}	kg/m ³	+
$F_{\mathbf{æ}}^{\mathrm{max}}$	Maximum Æther Force	2.9053507×10^{1}	N	+
$F_{ m gr}^{ m max}$	Maximum Gravitational Force	3.0256389×10^{43}	N	+
γ	Helicity-Mass Coupling Constant	5.9010000×10^{-3}	(dimensionless)	+
r_c	Vortex-Core Radius	$1.4089702 \times 10^{-15}$	m	exact
С	Speed of Light	2.9979246×10^{8}	m/s	exact
G	Newtonian Gravitational Constant	$6.6743000 \times 10^{-11}$	$m^3/kg/s^2$	2.2×10^{-5}
h	Planck Constant	$6.6260702 \times 10^{-34}$	Js	exact
α	Fine-Structure Constant	7.2973526×10^{-3}	(dimensionless)	1.6×10^{-10}
R_e	Classical Electron Radius	2.8179403×10^{-15}	m	1.3×10^{-24}
α_g	Gravitational Coupling Constant	$1.7518000 \times 10^{-45}$	(dimensionless)	exact
μ_0	Vacuum Magnetic Permeability	1.2566371×10^{-6}	N/A ²	exact
ϵ_0	Vacuum Electric Permittivity	8.8541878×10^{-12}	F/m	exact
Z_0	Vacuum Impedance	3.7673031×10^2	Ω	1.6×10^{-10}
ħ	Reduced Planck Constant	$1.0545718 \times 10^{-34}$	Js	exact
L_p	Planck Length	1.6162550×10^{-35}	m	1.1×10^{-5}
M_p	Planck Mass	2.1764340×10^{-8}	kg	1.1×10^{-5}
t_p	Planck Time	$5.3912470 \times 10^{-44}$	S	1.1×10^{-5}
T_p	Planck Temperature	1.4167840×10^{32}	K	1.1×10^{-5}
q_p	Planck Charge	$1.8755460 \times 10^{-18}$	С	exact
E_p	Planck Energy	1.9560000×10^9	J	exact

Table 1: Core constants in the Vortex Æther Model (VAM) and classical physics. † indicates VAM-defined constants with theoretical precision.

Symbol	Quantity	Value	Unit	Uncertainty
е	Elementary Charge	1.6021766×10^{-19}	С	exact
R_{∞}	Rydberg Constant	1.0973732×10^7	1/m	1.1×10^{-12}
a_0	Bohr Radius	$5.2917721 \times 10^{-11}$	m	1.6×10^{-10}
M_e	Electron Mass	$9.1093837 \times 10^{-31}$	kg	3.1×10^{-10}
M _{proton}	Proton Mass	$1.6726219 \times 10^{-27}$	kg	3.1×10^{-10}
M _{neutron}	Neutron Mass	$1.6749275 \times 10^{-27}$	kg	5.1×10^{-10}
k_B	Boltzmann Constant	$1.3806490 \times 10^{-23}$	J/K	exact
R	Gas Constant	8.314 462 6	J/(mol K)	exact
$\frac{1}{\alpha}$	Fine Structure Constant Reciprocal	1.3703600×10^2	(dimensionless)	1.6×10^{-10}
f_c	Electron Compton Frequency	1.2355900×10^{20}	Hz	1.0×10^{-10}
Ω_c	Electron Compton Angular Frequency	7.7634407×10^{20}	rad/s	1.0×10^{-10}
λ_c	Compton Wavelength (electron)	$2.4263102 \times 10^{-12}$	m	1.0×10^{-10}
λ_{proton}	Compton Wavelength (proton)	$1.3214099 \times 10^{-15}$	m	4×10^{-25}
Φ_0	Magnetic Flux Quantum	$2.0678339 \times 10^{-15}$	Wb	exact
φ	Golden Ratio	1.618 034 0	(dimensionless)	7.3×10^{-22}
eV	Electron Volt	1.6021766×10^{-19}	J	exact
G_F	Fermi Coupling Constant	1.1663787×10^{-5}	GeV^{-2}	6×10^{-12}
ER_{∞}	Rydberg Energy	$2.1798724 \times 10^{-18}$	J	1.1×10^{-12}
fR_{∞}	Rydberg Frequency	3.2898420×10^{15}	Hz	1.1×10^{-12}
σ	Stefan–Boltzmann Constant	5.6703744×10^{-8}	$W/m^2/K^4$	exact
b	Wien Displacement Constant	2.8977720×10^{-3}	m K	exact
k_e	Coulomb Constant	8.9875518×10^9	$N m^2/C^2$	exact

Table 2: Quantum and particle-scale constants relevant for VAM and atomic physics.

A Keystone Constant Relations in VAM

Throughout the main text we defined the three primitive æther parameters

$$F_{\text{max}}$$
, r_c , C_e , (1)

and showed how they fix all familiar quantum and gravitational constants. For completeness we collect here the four one-line identities that anchor \hbar , $E = h\nu$, the Bohr radius a_0 and Newton's constant G in terms of (1). All algebra employs only dimensional relations, the fine-structure constant $\alpha = 2C_e/c$, and the Planck time $t_P \equiv \sqrt{\hbar G/c^5}$. Figures quoted use the canonical numerics of Tab. 1.

A.1 Planck's Constant from Æther Tension

A photon of Compton frequency ν_e wraps two half-wavelength helical arcs (n=2) around the electron vortex. Matching angular momenta and adopting a Hookean core gives

$$h = \frac{4\pi F_{\text{max}} r_c^2}{C_e} = 6.626\,070 \times 10^{-34} \,\text{Js};$$
 (2)

see Sec. 3.1.

A.2 Photon Energy: E = hv

Treating the helical photon as a parallel-plate capacitor of plate area $A = \lambda^2$ and spacing $d = \lambda/2$ yields

$$C = 2\varepsilon_0 \lambda,$$

$$E = \frac{Q^2}{2C} = \frac{e^2}{4\varepsilon_0 C_e} \nu = h\nu,$$
 (3)

where $e^2/4\varepsilon_0 C_e = h$ follows from Eq. (2) plus $\alpha = 2C_e/c$.

A.3 Bohr (or Sommerfeld) Radius

Combining Eq. (2) with $\alpha = 2C_e/c$ gives

$$a_0 = \frac{\hbar}{m_e c \alpha} = \frac{F_{\text{max}} r_c^2}{m_e C_e^2} = 5.291772 \times 10^{-11} \text{ m.}$$
 (4)

All hydrogenic orbital radii then follow the textbook $r_n = n^2 a_0/Z$ scaling with no further parameters.

A.4 Newton's Constant

Eliminating \hbar between Eq. (2) and the Planck-time identity $t_p^2 = \hbar G/c^5$ yields

$$G = F_{\text{max}} \alpha \frac{(ct_P)^2}{m_e^2} = \frac{C_e c^5 t_P^2}{2F_{\text{max}} r_c^2} = 6.67430 \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}.$$
 (5)

Either form in Eq. (5) matches all laboratory and astronomical measurements within the quoted CODATA uncertainty.

A.5 Consequences

A single triad (F_{max} , r_c , C_e) locks \hbar , a_0 , $h\nu$, and G. Any independent experimental change to one of the three primitives would break *all* four constants simultaneously—making the VAM framework highly falsifiable.

Numerical Inputs (taken from Tab. 1): $F_{\text{max}} = 29.053507 \,\text{N}$, $r_c = 1.40897017 \times 10^{-15} \,\text{m}$, $C_e = 1.09384563 \times 10^6 \,\text{m s}^{-1}$, $m_e = 9.10938356 \times 10^{-31} \,\text{kg}$, $t_P = 5.391247 \times 10^{-44} \,\text{s}$.

The author first encountered the capacitor-wavelength derivation in a 2011 YouTube clip attributed to Lane Davis [lan]. 's 2010 PDF later provided the written source used here.

B The Role of C_e^2 in VAM Dynamics

In the Vortex Æther Model (VAM), the constant C_e — the core tangential swirl velocity — plays a role analogous to the speed of light c in relativity. It governs the scale at which internal vortex motion couples to inertial effects, mass, and time evolution. Its square, C_e^2 , appears throughout the theory as a natural denominator wherever kinetic, energetic, or gravitational effects emerge.

1. Interpretation of C_e^2

- **Inertia Coupling:** Swirl-induced mass depends on energy-like terms normalized by C_e^2 , mirroring $E = mc^2$ in special relativity.
- Time Dilation: Local time is modified by swirl velocity as:

$$d\tau = dt \cdot \sqrt{1 - \frac{\omega^2 r^2}{C_e^2}}$$

- **Swirl Mass Generation:** Energy per unit volume from vortex motion ($\sim \frac{1}{2}\rho v^2$) is converted to mass via C_e^2 .
- **Gravitational Coupling:** Appears in the VAM expression for *G*, derived from vortex coupling:

 $G \sim \frac{C_e c^5 t_p^2}{2F_{
m max} r_c^2}$

Thus, C_e^2 is fundamental to scaling rotational energy into inertial and gravitational analogues in the VAM framework.

2. Table of Expressions Involving C_e^2

Expression	Physical Meaning	VAM Role
$\frac{r_c}{C_e^2}$	Core radius over swirl velocity squared	Temporal inertia scaling
$\frac{\frac{r_c}{C_e^2}}{\frac{F_{\max}}{C_e^2}}$	Max force per swirl energy unit	Force-mass-energy coupling
$\frac{1}{2}\rho v^2/C_e^2$	Energy density to mass conversion	Inertial mass from kinetic field
$\frac{\omega^2 r^2}{C_e^2} \\ 8\pi \rho_{r_c^3}$	Time dilation correction	Vortex-clock slowdown
$\frac{8\pi\rho_{r_c^3}}{C_e}$	VAM prefactor	Total mass contribution per vortex

Table 3: Representative appearances of C_e^2 in core VAM expressions.

3. Symbolic Equivalence $C_e^2 \leftrightarrow c^2$

VAM exhibits a direct analogue to relativistic dynamics where C_e^2 plays the same role as c^2 :

Time Dilation Analogy:

Special Relativity:
$$d\tau = dt \cdot \sqrt{1 - \frac{v^2}{c^2}}$$

VAM Swirl Clock: $d\tau = dt \cdot \sqrt{1 - \frac{v_{\rm swirl}^2}{C_e^2}}$, $v_{\rm swirl} = \omega r$

Mass-Energy Equivalence:

Relativity:
$$E = mc^2$$

VAM: $E = mC_e^2 \Rightarrow m = \frac{\frac{1}{2}\rho v^2}{C_e^2}$

Gravitational Redshift Analogy:

GR:
$$g_{tt} \approx 1 + \frac{2\Phi}{c^2}$$

VAM: $g_{tt}^{\text{eff}} \approx 1 - \frac{v^2}{C_e^2}$

Quantity	Relativistic (GR)	VAM Equivalent
Limiting speed	С	C_e
Mass-energy conversion	$E = mc^2$	$E = mC_e^2$
Time dilation	$\sqrt{1-v^2/c^2}$	$\sqrt{1-v^2/C_e^2}$
Gravitational potential scaling	Φ/c^2	v^2/C_e^2

Table 4: Mapping of relativistic quantities to their vortex-based analogues in VAM.

Summary Equivalence Table: We conclude that:

$$C_e^2 \longleftrightarrow c^2$$

This symbolic equivalence formalizes the deep analogy between relativistic spacetime curvature and the VAM framework of swirl-induced gravitational behavior.

../references