x	1 < x < 2	2 < x < 3	3 < x < 4	4 < x < 5
Rate of change of $g(x)$	Positive, Increasing	Negative, Increasing	Positive, Decreasing	Negative, Decreasing

1.) Given a table that gives characteristics of the rates of change of the function g(x).

a.) Describe the behavior of the graph of g(x) for all $x \in (3,4)$. Justify your answer. On (3,4), the rate of change of g(x) is pos. and dec. \therefore g(x) is increasing and concave down

b.) For what values of x does the graph of g have a relative extrema? Be specific and justify your answer. The rate of change of g(x) changes from $pos \cdot to neg \cdot \therefore Rel. Max at <math>x = 2$, x = 4. The rate of change of g(x) changes from neg. to $pos \cdot \therefore Rel. Hin at <math>x = 3$.

c.) For what values of x does the graph of g have a point of inflection? Justify your answer. The rate of change of g(x) changes from inc. to dec. (or dec. to inc.) : P, 0.1 at x=3

2.) Given the graph of a polynomial function f(x):

fw changes from a.) For what values of x does the graph of f have a local minimum? Justify your answer. Lec. to inc.

.) For what values of x is the graph of f concave up? Justify your answer. Rate of change
$$\frac{a^{\frac{1}{2}}}{x^{\frac{1}{2}}} = \frac{x^{\frac{1}{2}}}{x^{\frac{1}{2}}} = \frac{x^$$

cubic polynamial => triple root

a parabola => double root

:-
$$f(x) = (x+3)(x+1)^3(x-2)^3$$

b.) For what values of x is the graph of f concave up? Justify your answer. Rate of change of f(x) is increasing $x \in (-\infty, -\frac{5}{2}) \cup (-1,1) \cup (2,\infty)$ Imagine drawing secant lines in these intervals (they are all above the curve) But this is not a complete justification (Frate of change is inc. /dec) (is the camplete justification)