Non Linear Programming: Homework 2

vishvAs vAsuki

February 3, 2010

1 2.12 Identification of convex sets

1.1 Hint

For problem 2.12, give a brief justification for each of your answers. With the possible exception of part (g), you shouldn't need more than a sentence or two.

1.2 a

A slab, $\{x : \alpha \leq a^T x \leq \beta\}$, is convex. This is because it is the intersection of two half-spaces, which are convex sets.

1.3 b

A rectangle, $\{x : \alpha_i \leq x_i \leq \beta_i\}$, is convex. It is the intersection of convex sets. This is because it is the intersection of halfspaces formed by vertical and horizontal hyperplanes, which are convex sets.

1.4 c

A wedge, which is in the interesection of two halfspaces, is convex as it is the intersection of two convex sets.

1.5 d

Consider the set S of points which are closer to a given point p than to a given set Y. It is the intersection of halfspaces, or in degenerate cases, even the entire space. So, it is convex.

1.6

Take sets S and T. Consider the set X of points closer to S than to T. Note that $S \subseteq X$. This is not convex. Consider S and T to be 2 concentric rings in \mathbb{R}^2 . Acknowledgement. Got this example from discussion with nAgarAjan naTarAjan.

1.7 f

Take the set $X = \{x : x + S_2 \subseteq S_1\}$, with S_1 convex. This set is convex. If S_2 is larger than S_1 , $X = \emptyset$. Else, we can use the definition of convexity to show that X is convex.

1.8 g

Take the set $X = \{x : ||x - a|| \le \theta ||x - b||\}$, with $a \ne b$ and $\theta \in [0, 1]$. Consider the boundary cases: at $\theta = 1$, X is a halfspace, and at $\theta = 0$, it is a line. For intermediate values, it seems to be a hyperbola-like. By geometric intuition, I conjecture that this is a convex set.

2 2.17 (parts b and c only). Image of polyhedral sets under perspective function

2.1 Hint

Be careful on problem 2.17! Each has three different possibilities depending upon specific values of f, g, or h.

$$P(C) = \{v/t : (v,t) \in C, t > 0\}.$$

2.2 b Hyperplane

 $C = \left\{ (v,t) : f^Tv + gt = h \right\}; f,g \neq 0.$ $P(C) = \left\{ v : tf^Tv = h - gt, \forall t > 0 \right\}. \text{ If } g > 0 \text{: } P(C) = \left\{ v : tf^Tv \leq h \right\}. \text{ This is a halfspace below the hyperplane } f^Tv = h. \text{ If } g < 0 \text{: } P(C) = \left\{ v : tf^Tv \geq h \right\}. \text{ This is a halfspace above the hyperplane } f^Tv = h.$

2.3 c Halfspace

$$C = \{(v,t): f^Tv + gt \le h\}; f,g \ne 0.$$

 $P(C) = \{v: tf^Tv \le h - gt, \forall t > 0\}.$ Depending on whether g is +ve or -ve, P(C) becomes the same halfspaces described in part (b).

3 2.19: Preimages of convex sets under linear fractional functions.

3.1 The problem setup

$$f(x) = \frac{(Ax+b)}{c^Tx+d}$$
, $dom(f) = \{x : c^Tx + d > 0\}$.

3.2 a Halfspace

 $C = \left\{ y : g^T y \le h \right\}, g \ne 0.$

$$g^{T}f(x) \leq h$$

$$g^{T}\frac{(Ax+b)}{c^{T}x+d} \leq h$$

$$(g^{T}Ax+g^{T}b) \leq h(c^{T}x+d)$$

$$g^{T}Ax \leq h(c^{T}x+d)-g^{T}b$$

So, $f^{-1}(C) = \{x : g^T A x \le h(c^T x + d) - g^T b\}$, a halfspace.

3.3 b Polyhedron

 $C=\{y:Gy\leq h\}.$ Look at C as an intersection of halfspaces $C_i=\left\{y:g_{i,:}^Ty\leq h_i\right\},g_{i,:}\neq 0.$ Using the previous result, we have:

$$f^{-1}(C_i) = \left\{ x : g_i^T \cdot Ax \le h_i(c^T x + d) - g^T b \right\} f^{-1}(C) = \bigcap_i f^{-1}(C_i). \tag{1}$$

The inverse image is also a polyhedron.

3.4 c Ellipsoid

 $C=\left\{y:y^TP^{-1}y\leq 1\right\},P\in S^n_{++}.$

$$f(x)^T P^{-1} f(x) \le h$$

 $(Ax+b)^T P^{-1} (Ax+b) \le h(c^T x+d)^2$

So, $f^{-1}(C) = \{x : (Ax+b)^T P^{-1}(Ax+b) \le h(c^T x+d)^2\}$, some ellipsoid in \mathbb{R}^m . Note that this ellipsoid is displaced from 0.

3.5 d Solution set of linear matrix inequality

 $C = \{y : \sum y_i A_i \le B\}; A_i, B \in S^p.$

Let 1_i be an $n \times p^2$ matrix with ith row being 1's and all other elements being 0. Let $h(A_i)$ be the vector derived by stacking up the elements of A_i in any some way. Let $A = [h(A_1)..h(A_n)]$. So, $C = \{y : Ay \le h(B)\}$.

This is a polyhedron. As described in answer to a previous question, $f^{-1}(C)$ is also a polyhedron.

4 2.20 or 2.22: +ve solutions of linear equations

Lemma 4.0.1. $\forall x : Ax = b \implies c^T x = d \text{ iff } \exists l : c = A^T l, d = b^T l.$

Proof. If $\exists l: c = A^T l, d = b^T l$, we have that, $\forall x: Ax = b, c^T x = l^T Ax = l^T b = d$.

The proving the implication in the reverse direction is more interesting. Suppose that $\forall x: Ax = b \implies c^Tx = d$. Take any x_n in the null space of A; ie: $Ax_n = 0$. If Ax = b, we have that $A(x + x_n) = b$. So, we also have that $c^T(x + x_n) = d$. So, c is orthogonal to the null space of A. But, the component of R^m orthogonal to this is just the row space of A, which is $R(A^T)$. So, c can be expressed as a linear combination of A's rows: $\exists l: c = A^T l$. Thence, we also derive $l^Tb = l^TAx = c^Tx = d$.

Notation. When we use inequalities with vectors, we mean to use elementwise inequalities.

Theorem 4.0.2. pa: There exists x satisfying x > 0, Ax = b. pb: $\nexists l : A^T l \ge 0$, $A^T l \ne 0$, $b^T l \le 0$. Then $pa \equiv pb$.

Proof. Consider $\neg pa$. Suppose that $\exists l: A^T l = c \geq 0, b^T l = d \leq 0$. Then, using the lemma proved earlier, we see that this is equivalent to saying $\forall x: Ax = b \implies c^T x = d \leq 0 \implies \neg(x > 0)$. So, $\neg pa \equiv \neg pb$.

5 2.23 Strict separability

The following are disjoint closed non-strictly separable convex sets.

$$A = \{x : x \in R^2, x_2 \le 1\}.$$

$$B = \{x : x \in R^2, x_2 \ge 1/x_1\}.$$

Acknowledgement. Heard this example from nAgarAjan naTarAjan.

6 2.24 Supporting hyperplanes

6.1 a

 $S = \left\{x \in R_+^2 : x_1 x_2 \ge 1\right\}. \text{ Boundary of S, } bnd(S) = \left\{x \in R_+^2 : x_1 x_2 = 1\right\}.$ Take halfspaces defined by supporting hyperplanes at $x \in bnd(S)$: $H(x) = \left\{y \in R_+^2 : \frac{(y_2 - x_2)}{y_1 - x_1} \ge -x_1^{-2}\right\}.$ Then, $S = \cap_{x \in bnd(S)} H(x)$.

6.2 b

 $C = \{x \in R^n : ||x||_{\infty} \le 1\}$. Boundary $bnd(C) = \{x : \max(x) = 1\}$. Take $x \in bnd(C)$. Then, $\forall i : x_i = 1$, define $H_i = \{y \in R^n : y_i = 1\}$. These are the supporting hyperplanes of C at x.