- 1. Pour tout $n_0 \in \mathbb{N}^*$, que peut-on dire de la suite $(\frac{1}{n}(a_1 + ... + a_{n_0}))_{n \in \mathbb{N}^*}$?
- 2. Pour tout $n \in \mathbb{N}^*$, exprimer $b_n l$ en fonction des $a_i l$, avec i = 1, ..., n.
- 3. Soit $\epsilon > 0$ et des réels $x_1, ..., x_k$ tels que $x_1, ..., x_k \in]-\epsilon, +\epsilon[$. Montrer pour tout entier $m \geqslant k$, on a $\frac{1}{m}(x_1 + ... + x_k) \in]-\epsilon, +\epsilon[$.
- 4. Montrer que si la suite $(a_n)_{n\in\mathbb{N}}$ converge vers une limite finie l, alors la suite $(b_n)_{n\in\mathbb{N}}$ converge également vers l.
- 5. La réciproque est-elle vraie?
- 6. Que peut-on dire si la suite $(a_n)_{n\in\mathbb{N}^*}$ tend vers $+\infty$?

1/
$$(a_1)_1$$
 $(V \Rightarrow \{a_1, 1 \ge 0\}$ borne $\exists m, M$
 $\Rightarrow m \le \frac{1}{n} \sum_{i=1}^{n} a_i \le M$

donc $\frac{1}{n} \sum_{i=1}^{n} a_i$ borne e

2/ $b_n - \ell = \frac{1}{n} \sum_{i=1}^{n} a_i - \ell = \frac{1}{n} \left(\sum_{i=1}^{n} a_i - n \ell \right) = \frac{1}{n} \sum_{i=1}^{n} a_i - \ell \right)$

3| $a_1 \notin J \cdot \mathcal{E}, \mathcal{E}[\iff -\mathcal{E} < x_i < \mathcal{E}]$
 $\Rightarrow -n \mathcal{E} < \sum_{i=1}^{n} x_i < \mathcal{E}$
 $\Rightarrow -2 < \frac{1}{n} \sum_{i=1}^{n} x_i < \mathcal{E}$

4)
$$a_n \rightarrow l \Rightarrow \forall \le > 0 \exists N \quad l- \le < a_n < l+ \ge \forall n > N$$

$$\Rightarrow \qquad - \le < a_n - l < \ge \forall n > N$$

$$\Rightarrow \qquad - \le < b_n - l < \ge \forall n > N$$

$$\Rightarrow \qquad b_n \rightarrow l$$

$$5/a_{h}=(-1)^{h}$$
 $b_{n}=\begin{cases} -1/n & n \text{ impair} \\ 0 & n \text{ pair} \end{cases}$

$$b_{n} = \frac{1}{N} \sum_{N}^{N-1} a_{n} + \frac{1}{N} \sum_{N}^{n} a_{n}$$

$$\Rightarrow \frac{1}{N} S + \frac{1}{N} (n-N) M$$

$$= 0(\frac{1}{N}) + (1-0(\frac{1}{N})) M \Rightarrow M$$

$$Donc \exists N' tq b_{n} \geqslant M-1 \forall n \geqslant N'$$

$$(-\bar{a}-d \forall M'=M-1 \exists N' \geqslant N tq b_{n} \geqslant M'$$

$$\Rightarrow b_{n} \Rightarrow + \infty$$