Activité 5: La contraction musculaire

La contraction d'un muscle squelettique, à l'origine d'un mouvement volontaire, nécessite un travail cellulaire. Les cellules musculaires effectuent ce travail en transformant l'énergie chimique des molécules organiques en énergie mécanique.

Comment les cellules musculaires convertissent-elle l'énergie chimique des molécules organiques en énergie mécanique ?

1: Observez une préparation de fibres musculaires dilacérées au microscope et utilisez le document A que vous compléterez et légenderez pour montrer que la contraction des cellules musculaires est liée à des déplacements à l'échelle moléculaire (déplacements que vous décrirez)

Aide: Informez vous sur la constitution des fibres musculaires. Comparez un sarcomère contracté / décontracté

- 2: Utilisez les documents pages 52 53 pour montrer que la contraction musculaire nécessite de l'ATP, et préciser les différents rôles de l'ATP lors de l'activité musculaire.
- 3: Exploitez les documents pages 54 55 et le document ci contre pour mettre en évidence une régénération de l'ATP dans la cellule musculaire dont vous expliquerez les modalités.

Variation de la composition chimique d'un muscle frais				
	Avant contraction	Après contraction		
Glycogène (forme de stockage du glucose)	10,8 g / kg de muscle	8 g / kg de muscle		
ATP	4 à 6 mmol/kg	4 à 6 mmol/kg		

Lors d'un exercice physique de forte intensité, l'organisme consomme 500 g d'ATP par minute.

Dans un muscle frais, la réserve d'ATP de 4 à 6 mmol/kg représente 0,25 à 0,42 % de la masse du muscle

Thème 2: Énergie et cellule vivante

Activité 5: La contraction musculaire

La contraction d'un muscle squelettique, à l'origine d'un mouvement volontaire, nécessite un travail cellulaire. Les cellules musculaires effectuent ce travail en transformant l'énergie chimique des molécules organiques en énergie mécanique.

Comment les cellules musculaires convertissent-elle l'énergie chimique des molécules organiques en énergie mécanique ?

1: Observez une préparation de fibres musculaires dilacérées au microscope et utilisez le document A que vous compléterez et légenderez pour montrer que la contraction des cellules musculaires est liée à des déplacements à l'échelle moléculaire (déplacements que vous décrirez)

Aide: Informez vous sur la constitution des fibres musculaires. Comparez un sarcomère contracté / décontracté

- 2: Utilisez les documents pages 52 53 pour montrer que la contraction musculaire nécessite de l'ATP, et préciser les différents rôles de l'ATP lors de l'activité musculaire.
- 3: Exploitez les documents pages 54 55 et le document ci contre pour mettre en évidence une régénération de l'ATP dans la cellule musculaire dont vous expliquerez les modalités.

Variation de la composition chimique d'un muscle frais				
	Avant contraction	Après contraction		
Glycogène (forme de stockage du glucose)	10,8 g / kg de muscle	8 g / kg de muscle		
ATP	4 à 6 mmol/kg	4 à 6 mmol/kg		

Lors d'un exercice physique de forte intensité, l'organisme consomme 500 g d'ATP par minute.

Dans un muscle frais, la réserve d'ATP de 4 à 6 mmol/kg représente 0,25 à 0,42 % de la masse du muscle

Thème 2: Énergie et cellule vivante

Activité 5: La contraction musculaire

La contraction d'un muscle squelettique, à l'origine d'un mouvement volontaire, nécessite un travail cellulaire. Les cellules musculaires effectuent ce travail en transformant l'énergie chimique des molécules organiques en énergie mécanique.

Comment les cellules musculaires convertissent-elle l'énergie chimique des molécules organiques en énergie mécanique 2

1: Observez une préparation de fibres musculaires dilacérées au microscope et utilisez le document A que vous compléterez et légenderez pour montrer que la contraction des cellules musculaires est liée à des déplacements à l'échelle moléculaire (déplacements que vous décrirez)

Aide: Informez vous sur la constitution des fibres musculaires. Comparez un sarcomère contracté / décontracté

- 2: Utilisez les documents pages 52 53 pour montrer que la contraction musculaire nécessite de l'ATP, et préciser les différents rôles de l'ATP lors de l'activité musculaire.
- 3: Exploitez les documents pages 54 55 et le document ci contre pour mettre en évidence une régénération de l'ATP dans la cellule musculaire dont vous expliquerez les modalités.

Variation de la composition chimique d'un muscle frais			
	Avant contraction	Après contraction	
Glycogène (forme de stockage du glucose)	10,8 g / kg de muscle	8 g / kg de muscle	
ATP	4 à 6 mmol/kg	4 à 6 mmol/kg	

Lors d'un exercice physique de forte intensité, l'organisme consomme 500 g d'ATP par minute.

Dans un muscle frais, la réserve d'ATP de 4 à 6 mmol/kg représente 0,25 à 0,42 % de la masse du muscle