1/3/2019 3.8. Tradeoffs

3.8 Tradeoffs

A particular desired behavior, like adding two 4-bit numbers, may have alternative circuit implementations. A **tradeoff** is a d that improves one implementation metric while worsening another. An implementation **metric** is a measurement of an imp goodness. A common circuit metric is a circuit's size, with smaller size being better. Another is circuit delay, with less delay Unfortunately, decreasing size usually increases delay, representing a tradeoff. Other common metrics include power and c

In contrast to a tradeoff, a design decision that improves some metric(s) without worsening any others is called an optimiz

1/3/2019 3.8. Tradeoffs

Consider implementing a particular behavior. Indicate whether implementation B is a tradeoff compared to implementation A. (Units are intentionally omitted for this generic example).	
1) A's size is 100, delay is 2. B's size is 60, delay is 4.	•
O Tradeoff	
O Not a tradeoff	
2) A's size is 100, delay is 2. B's size is 80, delay is 2.	•
O Tradeoff	
O Not a tradeoff	

Multiple approaches exist for determining circuit size. One approach estimates transistors, assuming every gate input requ transistors, and ignoring inverters for simplicity. A 2-input gate requires 2 inputs · 2 trans/input = 4 transistors. A 3-input gare 6 transistors. A 4-input gate: 8 transistors.

Wires also contribute to size, but ignoring wires as above is a common approximation.

Although each gate may have a unique delay and wires also have delay, a quick approach for approximating circuit delay or number of gates from a circuit's inputs to output, known as **gate delays**. Inverters are ignored for simplicity.

If multiple paths exist from inputs to output, the circuit's delay is the longest path, called the circuit's critical path.

Real gates have differing delays. A 3-input gate has slightly longer delay than a 2-input gate. Wires also have delay. But cou as above is a common approximation.

PARTICIPATION ACTIVITY

3.8.3: Circuit size and delay.

Determine size in units of transistors, and delay in units of gate-delays.

1/3/2019 3.8. Tradeoffs

1)	Size	of	(a)
1)	Size	OΤ	(a

transistors

Check Show answer

2) Size of (b)

transistors

Check Show answer

3) Size of (c)

transistors

Check Show answer

4) Delay of (b)

gate-delays

Check Show answer

5) Delay of (c)

gate-delays

Check Show answer

Size and delay can be estimated directly from an equation. Ex: y = abc + def has a 3-input AND for abc, another 3-input ANI input OR, so size is $3 \cdot 2 + 3 \cdot 2 + 2 \cdot 2 = 16$ transistors. The circuit has a column of AND gates followed by an OR, so delay is 2

PARTICIPATION ACTIVITY

3.8.4: Estimating size and delay from an equation.

- 1) y = a. Size = ___ transistors?
 - 0 0
 - **O** 2
- 2) y = ab. Size = ___ transistors?
 - 0 4
 - 0 8
- 3) y = ab + bc. Size = ___ transistors?
 - 0 8
 - **O** 12
- 4) y = ab + bc. Delay = ___ gate-delays?
 - 0
 - **O** 2
- 5) y = a'b'. Size = ___ transistors?
 - 0 4
 - 0 6
- 6) y = ab + a'b'. Delay = ___ gate-delays?
 - **O** 2
 - **O** 3

- 7) y = a + bcd. Size = ___ transistors?
 - **O** 10
 - **O** 12
- 8) y = a + b + cd. Size = ___ transistors?
 - **O** 10
 - **O** 12
- Provide feedback on this section