FMPH227 project

Daniel Zoleikhaeian, Keren Hu

2023-12-02

```
library(MASS)
library(class)
library(glmnet)
##
        Matrix
## Loaded glmnet 4.1-8
library(compareGroups)
library(methods)
library(tree)
library(randomForest)
## randomForest 4.7-1.1
## Type rfNews() to see new features/changes/bug fixes.
library(leaps)
library(Rfast)
##
        Rcpp
##
        {\tt RcppZiggurat}
##
        RcppParallel
##
       'RcppParallel'
##
## The following object is masked from 'package:Rcpp':
##
##
       LdFlags
##
## Rfast: 2.1.0
```

```
I I
                                                                                                  / /
## |
## |
                       | |
## | |\ \
                       III
                                                                                      1 1
## | | \ \
                       1 1
                       1 1
                       ##
##
      'Rfast'
## The following objects are masked from 'package:class':
##
##
       knn, knn.cv
library(ggplot2)
##
##
      'ggplot2'
## The following object is masked from 'package:randomForest':
##
##
       margin
setwd("D:/Users/Karen/Desktop/FMPH227/Project")
heart <- read.csv("heart_failure_clinical_records_dataset.csv")</pre>
heart$DEATH_EVENT <- as.factor(heart$DEATH_EVENT)</pre>
xnams <- c("age", "anaemia", "creatinine_phosphokinase", "diabetes",</pre>
            "ejection_fraction", "high_blood_pressure", "platelets",
           "serum_creatinine", "serum_sodium", "sex", "smoking")
fmla <- as.formula(paste("DEATH_EVENT ~ ", paste(xnams, collapse= "+")))</pre>
heart <- heart[, -12]
# PCA to collapse the predictor variables into 2 dimensions
labels <- heart$DEATH EVENT</pre>
pr.out=prcomp(heart[,xnams], scale=TRUE)
# Plotting the Results
df_pc12 <- data.frame(PC1 = pr.out$x[,1],</pre>
                       PC2 = pr.out$x[,2],
                       Death_indicator = heart$DEATH_EVENT)
p <- ggplot(df_pc12,aes(x=PC1,y=PC2,col=Death_indicator)) + geom_point() + ggtitle('Death among Patient</pre>
```



```
names(pr.out)

## [1] "sdev"  "rotation" "center"  "scale"  "x"

pr.var <- pr.out$sdev^2
pve <-pr.var/sum(pr.var)

sum(pve[1:2])</pre>
```

[1] 0.2780344

```
# Demographic description
tab1 <- compareGroups( DEATH_EVENT~ ., data = heart)
restab <- createTable(tab1)
export2md(restab, caption = "Demographic characteristics of study participants")</pre>
```

Warning in max(positions): max -Inf

Table 1: Demographic characteristics of study participants

	0 1		p.overall
	N=203	N=96	
age	58.8 (10.6)	65.2 (13.2)	< 0.001
anaemia	0.41(0.49)	0.48 (0.50)	0.257
$creatinine_phosphokinase$	540 (754)	670 (1317)	0.369
diabetes	0.42(0.49)	0.42(0.50)	0.973
ejection_fraction	$40.3\ (10.9)$	33.5(12.5)	< 0.001
high_blood_pressure	0.33(0.47)	0.41(0.49)	0.180
platelets	266657 (97531)	256381 (98526)	0.399
serum_creatinine	1.18(0.65)	1.84(1.47)	< 0.001
serum_sodium	137(3.98)	135 (5.00)	0.002
sex	0.65 (0.48)	0.65 (0.48)	0.941
smoking	0.33(0.47)	$0.31\ (0.47)$	0.828

```
# logistic
logis.fit <- glm(fmla,data = heart, family=binomial)
summary(logis.fit)

##
## Call:
## glm(formula = fmla, family = binomial, data = heart)
##</pre>
```

```
## Deviance Residuals:
##
      Min
                1Q
                     Median
                                  30
                                          Max
## -2.3184 -0.7692 -0.4436
                              0.8293
                                       2.4880
##
## Coefficients:
##
                             Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                                                  1.079 0.280625
                            4.964e+00 4.601e+00
## age
                            5.569e-02 1.313e-02
                                                   4.241 2.23e-05 ***
                            4.179e-01 3.009e-01
## anaemia
                                                   1.389 0.164904
## creatinine_phosphokinase 2.905e-04 1.428e-04
                                                   2.034 0.041907 *
## diabetes
                            1.514e-01
                                       2.974e-01
                                                   0.509 0.610644
## ejection_fraction
                           -7.032e-02 1.486e-02 -4.731 2.23e-06 ***
## high_blood_pressure
                            4.189e-01 3.061e-01
                                                  1.369 0.171092
## platelets
                           -7.094e-07 1.617e-06 -0.439 0.660857
                            6.619e-01 1.734e-01
## serum_creatinine
                                                   3.817 0.000135 ***
## serum_sodium
                           -5.667e-02 3.338e-02 -1.698 0.089558 .
## sex
                           -3.990e-01 3.508e-01 -1.137 0.255394
## smoking
                            1.356e-01 3.486e-01
                                                 0.389 0.697300
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 375.35 on 298 degrees of freedom
## Residual deviance: 294.28 on 287 degrees of freedom
## AIC: 318.28
```

Number of Fisher Scoring iterations: 5

```
logis.fit.step <- step(logis.fit, direction = "backward", trace = 0)</pre>
logis.pred <- predict(logis.fit.step, type = "response")</pre>
# logis.fit.sub <- regsubsets(fmla, data = heart, numax = 14)
# summary(logis.fit.sub)
# cbind( Cp = summary(logis.fit.sub)$cp,
          r2 = summary(logis.fit.sub) rsq,
#
      Adj r2 = summary(logis.fit.sub)$adjr2,
#
      BIC =summary(logis.fit.sub)$bic
# )
tbl <- table(heart$DEATH_EVENT,logis.pred>0.5)
crrcls <- (tbl[1,1] + tbl[2,2])/sum(tbl)</pre>
sens \leftarrow tbl[2,2]/(tbl[2,1] + tbl[2,2])
spec \leftarrow tbl[1,1]/(tbl[1,1] + tbl[1,2])
ppv \leftarrow tbl[2,2]/(tbl[1,2] + tbl[2,2])
npv <- tbl[1,1]/(tbl[1,1] + tbl[2,1])</pre>
Accuracy.logis <- c(crrcls,sens,spec,ppv,npv)</pre>
dd <- data.frame(Accuracy.logis,</pre>
                  row.names = c("Correct Classification",
                                 "Sensitivity", "Specificity",
                                  "Positive Predictive Value",
                                  "Negative Predictive value"))
# # LDA
# lda.fit <- lda(fmla,data = heart)</pre>
# lda.pred <- predict(lda.fit,heart)</pre>
# tbl <- table(heart$DEATH_EVENT, lda.pred$posterior[,2]>0.5)
# crrcls <- (tbl[1,1] + tbl[2,2])/sum(tbl)
\# sens \leftarrow tbl[2,2]/(tbl[2,1] + tbl[2,2])
# spec <- tbl[1,1]/(tbl[1,1] + tbl[1,2])
# ppv <- tbl[2,2]/(tbl[1,2] + tbl[2,2])
# npv \leftarrow tbl[1,1]/(tbl[1,1] + tbl[2,1])
# dd$Accuracy.lda <- c(crrcls,sens,spec,ppv,npv)</pre>
#
# # QDA
# qda.fit <- qda(fmla,data = heart)</pre>
# qda.pred <- predict(qda.fit,heart)</pre>
# tbl <- table(heart$DEATH_EVENT, qda.pred$posterior[,2]>0.5)
# crrcls <- (tbl[1,1] + tbl[2,2])/sum(tbl)
\# sens \leftarrow tbl[2,2]/(tbl[2,1] + tbl[2,2])
# spec <- tbl[1,1]/(tbl[1,1] + tbl[1,2])
# ppv \leftarrow tbl[2,2]/(tbl[1,2] + tbl[2,2])
# npv \leftarrow tbl[1,1]/(tbl[1,1] + tbl[2,1])
# dd$Accuracy.qda <- c(crrcls,sens,spec,ppv,npv)
##k-NN
```

```
##k=6

xxx <- as.matrix(heart[,xnams])
yyy <- heart$DEATH_EVENT

knn.res <- knn.cv(x=xxx, y=yyy, nfolds = 10, stratified = FALSE, k=1:10, type = "C")
plot(1:10, knn.res$crit, type = "b", xlab = "k", ylab = "Accuracy")
grid()</pre>
```



```
# k=6 is best
knn.pred <- class::knn(heart[,xnams], heart[,xnams],heart$DEATH_EVENT, k=which.max(knn.res$crit))

tbl <- table(knn.pred, heart$DEATH_EVENT)
crrcls <- (tbl[1,1] + tbl[2,2])/sum(tbl)
sens <- tbl[2,2]/(tbl[2,1] + tbl[2,2])
spec <- tbl[1,1]/(tbl[1,1] + tbl[1,2])
ppv <- tbl[2,2]/(tbl[1,2] + tbl[2,2])
npv <- tbl[1,1]/(tbl[1,1] + tbl[2,1])
dd$Accuracy.knn <- c(crrcls,sens,spec,ppv,npv)</pre>
round(dd,3)
```

```
## Accuracy.logis Accuracy.knn
## Correct Classification 0.759 0.799
## Sensitivity 0.469 0.670
```

```
## Specificity 0.897 0.870
## Positive Predictive Value 0.682 0.740
## Negative Predictive value 0.781 0.828
```

```
#RIDGE and LASSO fit
# some variable are not significant, and we want to
xxx <- as.matrix(heart[,xnams])</pre>
yyy <- heart$DEATH_EVENT</pre>
gridd <- exp(seq(2,-6,-0.5)) ##lambda values
##ridge fit
rdg.fit <- glmnet(xxx,yyy,family="binomial",alpha=0,lambda=gridd)</pre>
##lasso fit
lso.fit <- glmnet(xxx,yyy,family="binomial",alpha=1,lambda=gridd)</pre>
##cross-validation to select lambda
set.seed(2446)
cv.rdgeg <- cv.glmnet(xxx,yyy,family="binomial",alpha=0,</pre>
                       lambda=gridd,nfolds=10,
                       type.measure="class")
cv.lsoeg <- cv.glmnet(xxx,yyy,family="binomial",alpha=1,</pre>
                       lambda=gridd,nfolds=10,
                       type.measure="class")
par(mfrow=c(1,2))
plot(cv.rdgeg, main= "Ridge")
plot(cv.lsoeg, main="Lasso")
```


[1] 0.0820850 0.1353353

```
log(c(cv.rdgeg$lambda.min,cv.rdgeg$lambda.1se))
```

[1] -2.5 -2.0

```
##Coeff at "best" lambda
coef(cv.rdgeg,s="lambda.min")
```

```
## 12 x 1 sparse Matrix of class "dgCMatrix"
##
## (Intercept)
                              4.273624e+00
## age
                              3.347040e-02
## anaemia
                              2.257373e-01
## creatinine_phosphokinase
                             1.577768e-04
## diabetes
                              5.848502e-02
## ejection_fraction
                             -3.963952e-02
## high_blood_pressure
                              2.651457e-01
## platelets
                             -4.515352e-07
## serum_creatinine
                             3.999138e-01
```

```
## serum_sodium
                            -4.608717e-02
## sex
                            -1.532914e-01
## smoking
                             9.474076e-03
##Coeff at lambda + 1SE
coef(cv.rdgeg,s="lambda.1se")
## 12 x 1 sparse Matrix of class "dgCMatrix"
## (Intercept)
                             3.834191e+00
                             2.757704e-02
## age
## anaemia
                             1.804542e-01
## creatinine_phosphokinase 1.246216e-04
## diabetes
                            3.940739e-02
## ejection_fraction -3.203018e-02
## high_blood_pressure 2.196873e-01
## platelets -3.993189e-07
## serum_creatinine
                            3.325017e-01
## serum_sodium
                           -4.130068e-02
                            -1.066390e-01
## sex
## smoking
                            -6.106674e-03
###Variables (and coefficients) at optimal $\lambda$s for LASSO:
##Coeff at "best" lambda
c(cv.lsoeg$lambda.min,cv.lsoeg$lambda.1se)
## [1] 0.03019738 0.03019738
log(c(cv.lsoeg$lambda.min,cv.lsoeg$lambda.1se))
## [1] -3.5 -3.5
coef(cv.lsoeg,s="lambda.min")
## 12 x 1 sparse Matrix of class "dgCMatrix"
## (Intercept)
                             1.312048e+00
## age
                             3.433664e-02
## anaemia
## creatinine_phosphokinase 2.849715e-05
## diabetes
## ejection_fraction
                            -4.460490e-02
## high_blood_pressure
                           5.478457e-02
## platelets
## serum_creatinine
                             4.363465e-01
## serum_sodium
                            -2.336767e-02
## sex
## smoking
```

```
##Coeff at lambda + 1SE
coef(cv.lsoeg,s="lambda.1se")
## 12 x 1 sparse Matrix of class "dgCMatrix"
                               1.312048e+00
## (Intercept)
## age
                               3.433664e-02
## anaemia
## creatinine_phosphokinase 2.849715e-05
## diabetes
## ejection fraction
                              -4.460490e-02
## high_blood_pressure
                              5.478457e-02
## platelets
                              4.363465e-01
## serum_creatinine
## serum sodium
                              -2.336767e-02
## sex
## smoking
# predict from ridge and lasso
ridge.pred <- predict(cv.rdgeg, s=cv.rdgeg$lambda.min, newx = xxx,</pre>
                        type = "response")
tbl <- table(heart$DEATH_EVENT,ridge.pred>0.5)
crrcls <- (tbl[1,1] + tbl[2,2])/sum(tbl)</pre>
sens \leftarrow tbl[2,2]/(tbl[2,1] + tbl[2,2])
spec \leftarrow tbl[1,1]/(tbl[1,1] + tbl[1,2])
ppv \leftarrow tbl[2,2]/(tbl[1,2] + tbl[2,2])
npv \leftarrow tbl[1,1]/(tbl[1,1] + tbl[2,1])
dd$Accuracy.ridge <- c(crrcls,sens,spec,ppv,npv)</pre>
lasso.pred <- predict(cv.lsoeg, s=cv.lsoeg$lambda.min, newx = xxx,</pre>
                        type = "response")
tbl <- table(heart$DEATH_EVENT,lasso.pred>0.5)
crrcls <- (tbl[1,1] + tbl[2,2])/sum(tbl)</pre>
sens \leftarrow tbl[2,2]/(tbl[2,1] + tbl[2,2])
spec \leftarrow tbl[1,1]/(tbl[1,1] + tbl[1,2])
ppv \leftarrow tbl[2,2]/(tbl[1,2] + tbl[2,2])
npv \leftarrow tbl[1,1]/(tbl[1,1] + tbl[2,1])
dd$Accuracy.lasso <- c(crrcls,sens,spec,ppv,npv)</pre>
library(tree)
set.seed(2023)
t1 <- tree(fmla, heart)</pre>
cv.heart <- cv.tree(t1,FUN = prune.misclass, K=10)</pre>
plot(cv.heart$size,cv.heart$dev,type="b",cex=0.63) # best tree has 6 terminal nodes
```



```
t1.pruned <- prune.tree(t1,best=6)

plot(t1.pruned)
text(t1.pruned,pretty=0)</pre>
```



```
# tree primarily uses serum_creatinine, ejection fraction, and age
# serum_creatinine and ejection fraction are used the most
summary(t1.pruned)
```

```
##
## Classification tree:
## snip.tree(tree = t1, nodes = c(8L, 10L, 9L, 7L))
## Variables actually used in tree construction:
## [1] "serum_creatinine" "ejection_fraction" "age"
## Number of terminal nodes: 6
## Residual mean deviance: 0.8974 = 262.9 / 293
## Misclassification error rate: 0.2074 = 62 / 299
# getting the in-sample testing characteristics
probs <- predict(t1.pruned, heart)</pre>
yhat <- ifelse(probs[,1] > 0.5, 0, 1)
tbl <- table(heart$DEATH_EVENT, yhat)</pre>
crrcls \leftarrow (tbl[1,1] + tbl[2,2])/sum(tbl)
sens \leftarrow tbl[2,2]/(tbl[2,1] + tbl[2,2])
spec \leftarrow tbl[1,1]/(tbl[1,1] + tbl[1,2])
ppv \leftarrow tbl[2,2]/(tbl[1,2] + tbl[2,2])
npv \leftarrow tbl[1,1]/(tbl[1,1] + tbl[2,1])
dd$Accuracy.tree <- c(crrcls,sens,spec,ppv,npv)</pre>
```

round(dd,3)

```
Accuracy.logis Accuracy.knn Accuracy.ridge
## Correct Classification
                                       0.759
                                                    0.799
                                                                    0.759
## Sensitivity
                                       0.469
                                                    0.670
                                                                    0.354
## Specificity
                                       0.897
                                                    0.870
                                                                    0.951
## Positive Predictive Value
                                       0.682
                                                    0.740
                                                                    0.773
## Negative Predictive value
                                       0.781
                                                    0.828
                                                                    0.757
                             Accuracy.lasso Accuracy.tree
## Correct Classification
                                       0.763
                                                     0.793
## Sensitivity
                                                     0.802
                                       0.375
## Specificity
                                       0.946
                                                     0.788
## Positive Predictive Value
                                       0.766
                                                     0.642
## Negative Predictive value
                                       0.762
                                                     0.894
dd <- round(dd,3)
knitr::kable(dd,align = "c", caption = "Accuracy for 5 models", format = "simple")
```

Table 2: Accuracy for 5 models

	Accuracy.logis	Accuracy.knn	Accuracy.ridge	Accuracy.lasso	Accuracy.tree
Correct Classification	0.759	0.799	0.759	0.763	0.793
Sensitivity	0.469	0.670	0.354	0.375	0.802
Specificity	0.897	0.870	0.951	0.946	0.788
Positive Predictive Value	0.682	0.740	0.773	0.766	0.642
Negative Predictive value	0.781	0.828	0.757	0.762	0.894

```
best.fit <- glm (data=heart,
             DEATH_EVENT~age+creatinine_phosphokinase+ejection_fraction+high_blood_pressure+serum_crea
             family = binomial)
summary(best.fit)
##
## glm(formula = DEATH_EVENT ~ age + creatinine_phosphokinase +
      ejection_fraction + high_blood_pressure + serum_creatinine +
##
##
      serum_sodium, family = binomial, data = heart)
##
## Deviance Residuals:
##
      Min
                    Median
                1Q
                                 3Q
                                         Max
## -2.2936 -0.7625 -0.4830
                             0.8238
                                      2.5145
## Coefficients:
##
                            Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                           4.2167350 4.4885461
                                                 0.939
                                                          0.348
                           0.0531381 0.0127147
                                                 4.179 2.92e-05 ***
## creatinine_phosphokinase 0.0002227 0.0001361
                                                 1.636
                                                          0.102
                          ## ejection_fraction
## high_blood_pressure
                           0.4751499 0.2976117
                                                1.597
## serum_creatinine
                           0.6535260  0.1662640  3.931  8.47e-05 ***
```

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 375.35 on 298 degrees of freedom
## Residual deviance: 298.16 on 292 degrees of freedom
## AIC: 312.16
##
## Number of Fisher Scoring iterations: 5

Model <- c("Logistic", "Ridge", "LASSO", "K-NN", "Class Tree")
Test_err <- c(0.2720, 0.2718, 0.2703, 0.4416, 0.3004)
res <- data.frame(Model, Test_err)
knitr::kable(res, align = "c", caption = "LOO Bootstrap Error for 5 models", format = "simple")</pre>
```

-0.0516233 0.0327201 -1.578

serum_sodium

Table 3: LOO Bootstrap Error for 5 models

Model	Test_err
Logistic	0.2720
Ridge	0.2718
LASSO	0.2703
K-NN	0.4416
Class Tree	0.3004