

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра системного анализа

Отчёт по практикуму

Динамическое программирование и процессы управления

Студент 415 группы Егоров К. Ю. Руководитель практикума к.ф.-м.н., доцент И.В. Востриков

Содержание

1	Об эллипсоидах и сумме Минковского	3
2	Внешняя оценка суммы эллипсоидов	5
3	Внутренняя оценка суммы эллипсоидов	7
4	Внешняя оценка элипсоилозначного интеграла	11

1 Об эллипсоидах и сумме Минковского

Определение 1. Назовём эллипсоидом множество

$$\mathcal{E}(q, Q) = \{x \in \mathbb{R}^n : \langle x - q, Q^{-1}(x - q) \rangle \leq 1\},$$
 где $Q = Q^T > 0.$

Утверждение 1. Опорная функция и опорный вектор эллипсоида имеют вид:

$$\rho(l \mid \mathcal{E}(q, Q)) = \langle l, q \rangle + \langle l, Ql \rangle^{1/2},$$
$$x(l) = q + \frac{Ql}{\langle l, Ql \rangle^{1/2}}.$$

Доказательство.

Будем доказывать для случая q = 0. Иначе — аналогично.

Так как по определению $\rho(l\,|\,A)=\sup_{x\in A}\langle l,\,x\rangle$, то мы должны решать задачу максимизации скалярного произведения $\langle l,\,x\rangle$ при условии, что $\langle x,\,Q^{-1}x\rangle=1$. Запишем функцию Лагранжа для этой задачи:

$$\mathcal{L}(l, x, \lambda) = \langle l, x \rangle + \lambda(\langle x, Q^{-1}x \rangle - 1).$$

Тогда

$$\frac{\partial \mathcal{L}}{\partial x} = l + 2\lambda Q^{-1}x = 0 \quad \Longrightarrow \quad x(l) = -\frac{1}{2\lambda}Ql.$$

Подставим получившееся выражение для опорного вектора в условие:

$$\left\langle -\frac{1}{2\lambda}Ql, -\frac{1}{2\lambda}Q^{-1}Ql \right\rangle = 1 \implies \lambda = -\frac{1}{2}\langle l, Ql \rangle^{1/2} \implies x(l) = \frac{Ql}{\langle l, Ql \rangle^{1/2}}.$$

В таком случае опорная функция в направлении $l \neq 0$ равна

$$\rho(l \mid \mathcal{E}(0, Q)) = \left\langle l, \frac{Ql}{\langle l, Ql \rangle^{1/2}} \right\rangle = \langle l, Ql \rangle^{1/2}.$$

Определение 2. Суммой Минковского множеств A и B называется множество

$$A + B = \{ x = a + b : a \in A, b \in B \}.$$

Замечание 1. Сумма эллипсоидов, вообще говоря, не является эллипсоидом. В этом можно убедиться на следующем примере:

$$\mathcal{E}\left(0, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}\right) + \mathcal{E}\left(0, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\right) = [0, 1] \times [0, 1].$$

Утверждение 2. Опорная функция суммы Минковского равна сумме опорных функций каждого из множеств, то есть

$$\rho\left(l \mid \sum_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} \rho\left(l \mid A_i\right).$$

Рис. 1: Эллипсоид с центром $q=\begin{bmatrix}1\\2\end{bmatrix}$ и матрицей $Q=\begin{bmatrix}5&3\\3&2\end{bmatrix}$.

Рис. 2: Сумма двух эллипсоидов.

2 Внешняя оценка суммы эллипсоидов

Теорема 1. Для суммы Минковского эллипсоидов справедлива следующая внешняя оценка

$$\sum_{i=1}^{n} \mathcal{E}(q_i, Q_i) = \bigcap_{\|l\|=1} \mathcal{E}(q_+(l), Q_+(l)),$$

где

$$q_{+}(l) = \sum_{i=1}^{n} q_{i},$$

$$Q_{+}(l) = \sum_{i=1}^{n} p_{i} \cdot \sum_{i=1}^{n} \frac{Q_{i}}{p_{i}}, \quad \text{ede } p_{i} = \langle l, Q_{i} l \rangle^{1/2}.$$

Доказательство.

Будем доказывать для случая $q_i=0,\ i=\overline{1,\ n}.$ Случай с произвольными центрами — аналогично.

Распишем квадрат опорной функции эллипсоида $\mathcal{E}(0, Q_{+}(l))$:

$$\rho^{2}(l \mid \mathcal{E}(0, Q_{+}(l))) = \sum_{i=1}^{n} \langle l, Q_{i}l \rangle + \sum_{i < j} \left\langle l, \left(\frac{p_{i}}{p_{j}}Q_{j} + \frac{p_{j}}{p_{i}}Q_{i}\right)l \right\rangle \geqslant$$

$$\geqslant \left\{\frac{a+b}{2} \geqslant \sqrt{ab}\right\} \geqslant \sum_{i=1}^{n} \langle l, Q_{i}l \rangle + 2\sum_{i < j} \langle l, Q_{i}l \rangle^{1/2} \langle l, Q_{j}l \rangle^{1/2} =$$

$$= \left(\sum_{i=1}^{n} \langle l, Q_{i}l \rangle^{1/2}\right)^{2} = \rho^{2} \left(l \mid \sum_{i=1}^{n} \mathcal{E}(0, Q_{i})\right).$$

Таким образом, получили, что для любого $l \neq 0$

$$\sum_{i=1}^{n} \mathcal{E}(0, Q_i) \subseteq \mathcal{E}(0, Q_+(l)),$$

причем, так как равенство опорных функций достигается при $p_i=\langle l,\,Q_il\rangle^{1/2}$, то в направлении $l\neq 0$ эллипсоид $\mathcal{E}(0,\,Q_+)$ касается суммы $\sum_{i=0}^n \mathcal{E}(0,\,Q_i)$.

Рис. 3: Эллипсоидальные аппроксимации для 10 направлений.

Рис. 4: Эллипсоидальные аппроксимации для 100 направлений.

3 Внутренняя оценка суммы эллипсоидов

Определение 3. Сингулярным разложением матрицы $A \in \mathbb{R}^{n \times m}$ называется представление матрицы в виде

$$A = V \Sigma U^*,$$

где

$$V \in \mathbb{R}^{n \times n} : V^* = V^{-1},$$

$$U \in \mathbb{R}^{m \times m} : U^* = U^{-1},$$

$$\Sigma = \operatorname{diag}\left(\sigma_1, \dots, \sigma_{\min\{n, m\}}\right) \in \mathbb{R}^{n \times m} : \sigma_1 \geqslant \sigma_2 \geqslant \dots \geqslant \sigma_{\min\{n, m\}}.$$

Теорема 2. Сингулярное разложение $A = V \Sigma U^*$ существует для любой комплексной матрицы A. Если матрица A вещественная, то матрицы V, Σ и U также можно выбрать вещественными.

Теорема 3. Старшее сингулярное число σ_1 матрицы $A = V \Sigma U^*$ является её нормой.

Определение 4. Назовём линейное преобразование \mathcal{A} *ортогональным*, если оно сохраняет скалярное произведение, то есть

$$\langle \mathcal{A}(x), \mathcal{A}(y) \rangle = \langle x, y \rangle.$$

Теорема 4. Необходимым и достаточным условием ортогональности линейного преобразования \mathcal{A} в конечномерном пространстве является унитарность матрицы преобразования A, то есть

$$A^* = A^{-1}$$
.

Утверждение 3. Для произвольных векторов $a, b \in \mathbb{R}^n$ таких, что ||a|| = ||b||, существует матрица ортогонального преобразования, переводящего a b.

Доказательство.

Построим сингулярное разложение для векторов a и b:

$$a = V_a \Sigma_a u_a, \qquad b = V_b \Sigma_b u_b,$$

причем $V_a, V_b \in \mathbb{R}^{n \times n}$ — унитарные матрицы, $u_a, u_b \in \{-1, 1\} \in \mathbb{R}^1$,

$$\Sigma_a = [\sigma_a, 0, \dots, 0]^{\mathrm{T}} \in \mathbb{R}^{n \times 1}, \quad \Sigma_b = [\sigma_b, 0, \dots, 0]^{\mathrm{T}} \in \mathbb{R}^{n \times 1}, \quad \sigma_a, \sigma_b > 0.$$

Согласно Теореме 4 $\sigma_a = \sigma_b$. Тогда преобразуем выражение для вектора b:

$$b = V_b \Sigma_b u_b = V_b (V_a^{\mathrm{T}} V_a) \Sigma_b u_b = V_b V_a^{\mathrm{T}} V_a \left(\Sigma_a \frac{\sigma_b}{\sigma_a} \right) \left(u_a \frac{u_b}{u_a} \right) =$$

$$= V_b V_a^{\mathrm{T}} \frac{\sigma_b \cdot u_b}{\sigma_a \cdot u_a} V_a \Sigma_a u_a = \left(V_b V_a^{\mathrm{T}} \frac{\sigma_b \cdot u_b}{\sigma_a \cdot u_a} \right) a.$$

Так как произведение унитарных матриц есть унитарная матрица, теорема доказана.

Следствие 1. Далее под ортогональным преобразованием из вектора a в вектор b таких, что $\|a\| = \|b\|$, будем понимать

$$\operatorname{Orth}(a, b) = u_a u_b V_b V_a^{\mathrm{T}}.$$

Утверждение 4. Для суммы Минковского эллипсоидов справедлива следующая оценка

$$\sum_{i=1}^{n} \mathcal{E}(q_i, Q_i) = \bigcup_{\|l\|=1} \mathcal{E}(q_{-}(l), Q_{-}(l)),$$

где

$$q_{-}(l) = \sum_{i=1}^{n} q_{i},$$

$$Q_{-}(l) = Q_{*}^{T}(l)Q_{*}(l), \quad Q_{*}(l) = \sum_{i=1}^{n} S_{i}(l)Q_{i}^{1/2},$$

$$S_{i}(l) = \operatorname{Orth}(Q_{i}^{1/2}l, \lambda_{i}Q_{1}^{1/2}l), \quad \lambda_{i} = \frac{\langle l, Q_{i}l \rangle^{1/2}}{\langle l, Q_{1}l \rangle^{1/2}}.$$

Доказательство.

Будем доказывать для случая $q_i=0,\ i=\overline{1,\ n}$. Случай с произвольными центрами — аналогично.

Итак рассмотрим эллипсоид $\mathcal{E}_{-} = \mathcal{E}(0, Q_{-}), Q_{-} = Q_{*}^{\mathrm{T}}Q_{*},$

$$Q_* = \sum_{i=1}^n S_i Q_i^{1/2},$$

где S_i — некоторые унитарные матрицы. Распишем квадрат опорной функции этого эллипсоида:

$$\rho^2(l \mid \mathcal{E}_-) = \langle l, Q_- l \rangle = \langle Q_* l, Q_* l \rangle = \sum_{i=1}^n \langle l, Q_i l \rangle + \sum_{i \neq j} \left\langle S_i Q_i^{1/2} l, S_j Q_j^{1/2} l \right\rangle \leqslant$$

≤ {Неравенство Коши–Буняковского} ≤

$$\leqslant \sum_{i=1}^{n} \langle l, Q_i l \rangle + \sum_{i \neq j} \langle l, Q_i l \rangle^{1/2} \langle l, Q_j l \rangle^{1/2} = \left(\sum_{i=1}^{n} \langle l, Q_i l \rangle^{1/2} \right)^2 = \rho^2 \left(l \left| \sum_{i=1}^{n} \mathcal{E}(q_i, Q_i) \right| \right).$$

Таким образом, получили, что $\mathcal{E}_- \subseteq \sum_{i=1}^n \mathcal{E}(q_i, Q_i)$.

Заметим, что равенство в последней формуле при фиксированном направлении $l \neq 0$ достигается при

$$S_i Q_i^{1/2} l = \lambda_i S_1 Q_1^{1/2} l,$$

где λ_i — произвольные неотрицательные константы. Если положить $S_1=I,$ а λ_i выбирать, исходя из условий нормировки ($\|Q_i^{1/2}l\|=\|\lambda_iQ_1^{1/2}l\|$):

$$\lambda_i = \frac{\langle l, Q_i l \rangle^{1/2}}{\langle l, Q_1 l \rangle^{1/2}},$$

то получим утверждение теоремы.

Рис. 5: Эллипсоидальные аппроксимации для 10 направлений.

Рис. 6: Эллипсоидальные аппроксимации для 100 направлений.

Рис. 7: Эллипсоидальные аппроксимации для 50 направлений.

4 Внешняя оценка элипсоидозначного интеграла

Обобщим полученную внешнюю оценку на случай интеграла Римана от эллипсоидальнозначной функции $\mathcal{E}(t): t \to \mathcal{E}(q(t),Q(t))$. Итак, требуется построить оценку для следующего множества:

$$I=\mathcal{E}_0+\int\limits_{t_0}^t\mathcal{E}(au)\,d au,$$
 где $\mathcal{E}_0=\mathcal{E}(q_0,\,Q_0).$

Под интегралом Римана в данном случае понимаем предел последовательности частичных сумм

$$I_N = \mathcal{E}_0 + \sum_{k=1}^N \mathcal{E}(au_k)(au_{k+1} - au_k)$$

по метрике Хаусдорфа при диаметре Δ разбиения $t_0 = \tau_1 < \tau_2 < \ldots < \tau_N = t$, стремящемся к нулю независимо от выбора самого разбиения (если, конечно, этот предел существует).

Замечание 2. Расстоянием Хаусдорфа между двумя непустыми компактными множествами X и Y называют минимальное число r такое, что замкнутая r-окрестность X содержит Y, а также замкнутая r-окрестность Y содержит X.

Считаем, что функции $q(\tau)$ и $Q(\tau)$ непрерывны на отрезке $t_0 \leqslant \tau \leqslant t$, и выберем равномерное разбиение этого отрезка с шагом $\frac{1}{N}$. Воспрользуемся тем фактом, что

$$k \cdot \mathcal{E}(q, Q) = \mathcal{E}(k \cdot q, k^2 \cdot Q).$$

Тогда для N-ой интегральной суммы мы уже знаем верхнюю оценку $\mathcal{E}_N^+ = \mathcal{E}(q_N^+, \, Q_N^+(l))$. Причём в силу непрерывности

$$q_N^+ \xrightarrow[N \to \infty]{} q^+ = q_0 + \int_{t_0}^t q(\tau) d\tau, \tag{1}$$

$$Q_N^+ \xrightarrow[N \to \infty]{} Q^+ = \left(p_0 + \int_{t_0}^t p(\tau) d\tau \right) \left(\frac{Q_0}{p_0} + \int_{t_0}^t \frac{Q(\tau)}{p(\tau)} d\tau \right), \tag{2}$$

где $p(\tau) = \langle l, Q(\tau)l \rangle^{1/2}, p_0 = \langle l, Q_0l \rangle^{1/2}.$

Подведём промежуточный итог: нам уже было известно, что

$$\rho(l \mid \mathcal{E}_N^+[l_0]) \geqslant \rho(l \mid I_N) \quad \forall l, l_0 \neq 0,$$

$$\rho(l_0 \mid \mathcal{E}_N^+[l_0]) = \rho(l_0 \mid I_N) \quad \forall l_0 \neq 0.$$

Теперь же в силу непрерывности опорной функции мы переходим к пределу в этих соотношениях, и получаем

$$\rho(l \mid \mathcal{E}^+[l_0]) \geqslant \rho(l \mid I) \quad \forall l, l_0 \neq 0,$$

$$\rho(l_0 \mid \mathcal{E}^+[l_0]) = \rho(l_0 \mid I) \quad \forall l_0 \neq 0,$$

где $\mathcal{E}^+[l] = \mathcal{E}(q^+,\,Q^+(l))$. Таким образом получили, что

$$I = \mathcal{E}_0 + \int_{t_0}^t \mathcal{E}(\tau) d\tau = \bigcap_{\|l\|=1} \mathcal{E}^+[l].$$

В последнюю очередь мы получим дифференциальные соотношения для параметров оценки q+ и Q+(l). Для этого продифференцируем ранее полученные значения. Итак из выражения (1) для q^+ получили следующую задачу Коши:

$$\dot{q}^+(t) = q^+(t)$$
$$q(t_0) = q_0$$

Теперь продифференцируем Q^+ :

$$\dot{Q}^{+}(t) = p(t) \left(\frac{Q_0}{p_0} + \int_{t_0} t \frac{Q(\tau)}{p(\tau)} d\tau \right) + \left(p_0 + \int_{t_0}^t p(\tau) d\tau \right) \frac{Q(t)}{p(t)}.$$

Если ввести обозначение

$$\pi(t) = \frac{p(t)}{p_0 + \int\limits_{t_0}^t p(\tau) d\tau},$$

то перейдём к виду

$$\dot{Q}^{+}(t) = \pi(t)Q^{+}(t) + \frac{1}{\pi(t)}Q(t).$$

Теперь заметим, что

$$\left\langle l, \left(\frac{Q_0}{p_0} + \int_{t_0}^t \frac{Q(\tau)}{p(\tau)} d\tau \right) l \right\rangle = \left\langle l, \frac{Q_0 l}{\langle l, Q_0 l \rangle^{1/2}} \right\rangle + \int_{t_0}^t \left\langle l, \frac{Q(\tau) l}{\langle l, Q(\tau) l \rangle^{1/2}} \right\rangle d\tau =$$

$$= p_0 + \int_{t_0}^t p(\tau) d\tau,$$

то есть из выражения (2) следует

$$p_0 + \int_{t_0}^t p(\tau) d\tau = \langle l, Q^+(t)l \rangle^{1/2}.$$

Таким образом, итоговая задача Коши для Q^+ выглядит так:

$$\dot{Q}^{+}(t) = \frac{\langle l, Q(t)l \rangle^{1/2}}{\langle l, Q^{+}(t)l \rangle^{1/2}} Q^{+}(t) + \frac{\langle l, Q^{+}(t)l \rangle^{1/2}}{\langle l, Q(t)l \rangle^{1/2}} Q(t)$$

$$Q(t_{0}) = Q_{0}$$

Список литературы

[1] Kurzhanski A. B., Varaiya P. $Dynamics\ and\ Control\ of\ Trajectory\ Tubes.$ Birkhauser, 2014.