CS 5003: Parameterized Algorithms

Lectures 32-33

Krithika Ramaswamy

IIT Palakkad

Trees

Undirected connected acyclic graphs

- * Many problems that are NP-hard in general graphs are polynomial-time solvable in trees
 - * Longest Path, Minimum Vertex Coloring
 - * Minimum Feedback Vertex Set, Maximum Clique
 - * Maximum Independent Set
 - * Minimum Dominating Set

Treewidth

- * A measure of how close a graph is to a tree
- * A tree decomposition of a graph G is a pair (T,B) where T is a tree and B: $V(T) \rightarrow 2^{V(G)}$ satisfies the following
 - * For each vertex v in G, there is a node x in V(T) such that v is in B(x)
 - * For each edge $e=\{u, v\}$ in G, there is a node x in V(T) such that u are v are in B(x)
 - * For each vertex v in G, the set $\{x \in V(T) : v \in B(x)\}$ induces a connected graph
- * The sets B(x) for node x in T are referred to as bags of the decomposition

Treewidth

- * Width of a tree decomposition $T = w(T) = \max \{|B(x)| : x \in V(T)\} 1$
- * Treewidth of G, $tw(G) = min\{w(T) : T \text{ is a tree decomposition of } G\}$
- * An optimal tree decomposition of G is a tree decomposition of G of width tw(G).
- If G is a tree, then tw(G) <= 1</p>

Treewidth of Trees - Intuition

Treewidth of Trees - Intuition

Computing Treewidth

- * Width of a tree decomp $T = w(T) = \max \{|B(x)| : x \in V(T)\} 1$
- * Treewidth of G, tw(G) = min {w(T): T is a tree decomp of G}
- * An optimal tree decomp of G is a tree decomp of G of width tw(G)
- Computing tw(G) is NP-hard in general
- * A brute-force algorithm
 - * Given G, enumerate all pairs (T, B) s.t T is a tree and B: $V(T) \rightarrow 2^{V(G)}$
 - * Check if (T, B) is a tree decomposition of G
 - * Output tree decomposition (T, B) that has minimum width

How many nodes are there in T?

Computing Treewidth

Definition: A simple tree decomposition (T, B) is one where there is no pair of distinct nodes x and y in T such that $B(x) \subseteq B(y)$

Lemma: Any simple tree decomposition (T, B) of G satisfies IV(T)I <= IV(G)I.

Theorem: For any G, there is an opt tree decomposition that is simple.

Algorithm to compute tw and opt tree decomp

- Given G, enumerate all pairs (T, B)
 - * T is a tree on at most IV(G)| nodes (<= n(n² choose n-1) choices)
 - * B: $V(T) \rightarrow 2^{V(G)} (<= (2^n)^n \text{ choices})$
 - * Check if (T, B) is a tree decomposition of G (polynomial time)
- * Output tree decomposition (T, B) that has minimum width

20(n^2) time algorithm

Simple Tree Decomposition

Lemma: Any simple tree decomposition (T, B) of G satisfies IV(T)I <= IV(G)I.

- * Root Tatr
- * For each vertex v in G, let C(v) denote the node in T that is closest to r
- * Claim: For each node x in T, there is a vertex v in G such that C(v) = x.
 - Suppose not.
 - * Let x be a node in T for which there is not vertex v in G with C(v) = x
 - * If x = r then $B(r) = \emptyset$ implying that (T, B) is not simple
 - * If $x \neq r$ then let y be the parent of x
 - * Consider $v \in B(x)$,
 - * There is a node z(v) in T with C(v) = z(v)
 - * z(v) is closer to r than x and $v \in B(z(v))$
 - * Then, $v \in B(y)$
 - * Thus, $B(x) \subseteq B(y)$ implying that (T, B) is not simple

Computing Simple Optimal Tree Decompositions

Lemma: There is a polynomial time algorithm that given a tree decomposition (T, B) of G, outputs a simple tree decomposition (T', B') such that for every node x' in T', there is a node x in T with B(x) = B'(x').

Contracting an edge of a tree decomposition

* Results in another tree decomposition

Computing Simple Optimal Tree Decompositions

Lemma: There is a polynomial time algorithm that given a tree decomposition (T, B) of G, outputs a simple tree decomposition (T', B') such that for every node x' in T', there is a node x in T with B(x) = B'(x').

- * Initialize (T', B') = (T, B)
- * As long as there is an edge $\{x, y\}$ in T' with B' $\{x\} \subseteq B'(y)$
 - * Contract {x, y}
- * Output (T', B')

Claim: (T', B') is simple

- * Suppose not. Let x and y be distinct nodes in T' such that $B'(x) \subseteq B'(y)$
- Let P denote the path from x to y in T' and let x' be the vertex succeeding x in P
- * As B'(x) \subseteq B'(y), by the property of tree decompositions, for each vertex v in G with $v \in B'(x)$, we have $v \in B'(x')$
- * $\{x, x'\}$ is an edge in T' with B'(x) \subseteq B'(y) (Algorithm would have contracted $\{x, x'\}$)

Computing Treewidth

Proposition 14.21 (Seymour and Thomas (1994); Bodlaender (1996); Feige et al. (2008); Fomin et al. (2015a); Bodlaender et al. (2016a)). Let G be an n-vertex graph and k be a positive integer. Then, the following algorithms to compute treewidth exist.

- There exists an algorithm running in time $\mathcal{O}(1.7347^n)$ to compute $\mathrm{tw}(G)$.
- There exists an algorithm with running time $2^{\mathcal{O}(k^3)}n$ to decide whether an input graph G has treewidth at most k.
- There exists an algorithm with running time $2^{\mathcal{O}(k)}n$ that either decides that the input graph G does not have treewidth at most k, or concludes that it has treewidth at most 5k.
- There exists a polynomial time approximation algorithm with ratio $\mathcal{O}(\sqrt{\log \operatorname{tw}(G)})$ for treewidth.
- If G is a planar graph then there is a polynomial time approximation algorithm with ratio $\frac{3}{2}$ for treewidth. Furthermore, if G belongs to a family of graphs that exclude a fixed graph H as a minor, then there is a constant factor approximation for treewidth.

We remark that all the algorithms in this proposition also compute (in the same running time) a tree decomposition of the appropriate width. For example, the third algorithm either decides that the input graph G does not have treewidth at most k or computes a tree decomposition of width at most 5k.