

Class 6 Hydrocarbons

Valence bond theory
Hybridisation
Structure and bonding
Nomenclature
Hydrocarbons- Alkanes

References

Blackman A, Bottle S, Schmid G, Mocerino M and Wille U (2019a), *Chemistry*, 4th edn, John Wiley & Sons, Milton, Qld.

Blackman A, Southam D, Lawrie G, Williamson N, Thompson C and Bridgeman A (2019b), *Chemistry: core concepts*, 2nd edn, John Wiley & Sons, Milton, Qld.

DEAKIN COLLEGE

Valence Bond Theory

Conventions of the orbital overlap model

Each electron in a molecule is assigned to a specific orbital.

No two electrons in a molecule have identical descriptions (Pauli).

The electrons in molecules occupy the lowest energy orbital available (Aufbau).

Only the valence orbitals are needed to describe bonding.

Valence Bond Theory

Orbital overlap

Atomic orbitals combine to form bonding orbitals.

Consider the hydrogen molecule, H₂.

As 2 hydrogen atoms approach each other, the overlap of their 1s orbitals increases.

Source: Blackman et al. (2019:343).

Hybridisation of atomic orbitals

- Hybrid orbitals are combinations of atomic orbitals.
- The process by which we combine them is called hybridisation.

Valence bond theory

sp³ hybrid orbitals in methane

Electron configuration of carbon $1s^22s^22p^2$

Valence orbitals are 2s and 2p orbitals

They are mixed to form a new hybrid orbital

 sp^3 ($\frac{1}{4}s$ character – $\frac{3}{4}p$ character)

sp³ hybrid orbitals in methane

In terms of energy energy of sp^3 hybrid orbital must be $\frac{1}{4} E_{2s} + \frac{3}{4} E_{2p}$

COLLEGE DEAKIN

Valence bond theory

sp³ hybrid orbitals in methane

Methane forms from orbital overlap between the hydrogen 1s orbitals and each of the sp^3 hybrid orbitals of carbon atom

sp³ hybridisation is not limited to carbon

sp² hybrid orbitals in boron trifluoride, BF₃

Electron configuration of boron $1s^22s^22p^1$

(1/3 s character – 2/3 p character)
Source: Blackman et al. (2019:349).

Valence bond theory

sp hybrid orbitals in beryllium dihydride, BeH₂

Electron configuration of beryllium $1s^22s^2$

($\frac{1}{2}s$ character – $\frac{1}{2}p$ character)

Multiple bonds Procedure:

- Determine the Lewis structure
- Use the Lewis structure to determine the type of hybridisation of an atom
- Construct the σ bond framework
- Add the π bonds

Valence bond theory

Multiple bonds - ethene

Double bond

Each carbon atom is sp^2 hybridised

Orbital picture of bonding

Multiple bonds – ethyne

 $H-C\equiv C-H$

Orbital picture of bonding one σ bond and two π bonds

Representations of molecules

Chemical formulae

The relative number of each type of atom present in a substance is shown.

Molecular formula

Chemical formula that refers to a discrete molecule.

Covalent compounds

Carbon first, followed by hydrogen and then the remaining elements in alphabetical order, e.g., C_2H_6O , C_4H_9BrO

DEAKIN DEAKIN

Structural Formulae

Carbon is a tetravalent element — this means it forms a <u>total</u> of 4 bonds when bonded to other atoms in a molecule.

These bonds may be single, double or triple bonds.

Structural formulae are useful in organic chemistry.

Representations of molecules

There are two types of shorthand structural formulae:

- 1. condensed structural formulae
- 2. line structures

Condensed structural formulae

The constituent atoms are arranged in bonded groups, the actual bonds are not drawn.

dimethyl ether CH₃OCH₃ ethanol CH₃CH₂OH

Structural Formulae

Structural formulae are essential to distinguish between isomers.

Isomers are molecules with the same chemical formula but different structural formula.

Representations of molecules

Line structures

Use the following guidelines:

All bonds except C-H bonds are shown as lines.

Each line represents two electrons being shared.

C-H bonds and H atoms attached to carbon are not shown in the line structure.

Single bonds are shown as 1 line; double bonds are shown as 2 lines; triple bonds are shown as 3 lines.

Carbon atoms are not labelled.

All other atoms are labelled with their elemental symbols.

3D Structures

Lines represent bonds in the plane of the page.

Dotted lines or dashed wedges represent bonds going behind the plane of the page.

Solid wedges are bonds coming out of the plane of the page.

Tetrahedral

4 bonds around a single carbon atom

Functional Groups

Organic compounds are composed mainly of carbon and hydrogen.

Functional groups are a characteristic feature of organic molecules that behave in a predictable way.

They are an atom or group of atoms that give the molecule its chemical properties.

They are a way to classify families of organic compounds.

$$CH_3CH = CH_2$$

alkyne
$$-c = c$$

$$-c \equiv c - H - c \equiv c - H$$

aromatic

alkyl halide
$$-\ddot{C} - \ddot{\ddot{x}}$$
: $X = F, Cl, Br, I$ (haloalkane)

$$X = F, Cl, Br, I$$

DEAKIN COLLEGE

Alkanes

Single bonds between carbon atoms

mean that all carbon atoms are tetrahedral with all bond angles approximately 109.5°

Alkanes: Nomenclature

Constitutional isomerism in alkanes

These compounds have the same chemical formula but their atoms are bonded in a different order.

They can usually be distinguished by their different physical properties, such as melting or boiling point.

DEAKIN DEAKIN COLLEGE

Organic Chemistry

Representation of Organic Structures

Chains formed by carbon atoms may be branched:

Organic Chemistry

Representation of Organic Structures

 Compounds containing rings of carbon atoms are also common:

cyclopropane

cyclohexane

DEAKIN DEAKIN COLLEGE

Classification of C and H atoms

• The terms primary, secondary, tertiary and quaternary are used in organic chemistry to describe carbon atoms.

A primary (1°) C atom has one other C atom bonded to it.

R means the rest of the molecule.

Classification of C and H atoms

• The terms primary, secondary, tertiary and quaternary are used in organic chemistry to describe carbon atoms.

A secondary (2°) C atom has two other C atoms bonded to it.

DEAKIN DEAKIN

Classification of C and H atoms

• The terms primary, secondary, tertiary and quaternary are used in organic chemistry to describe carbon atoms.

A tertiary (3°) C atom has three other C atoms bonded to it.

DEAKIN DEAKIN

Classification of C and H atoms

• The terms primary, secondary, tertiary and quaternary are used in organic chemistry to describe carbon atoms.

A quaternary (4°) C atom has four other C atoms bonded to it.

DEAKIN DEAKIN COLLEGE

Alkanes

IUPAC nomenclature

The names of all alkanes end in -ane e.g., methane (CH₄), ethane (C₂H₆)

The general molecular formula for alkanes is

$$C_nH_{2n+2}$$

Nomenclature: Alkanes

Molecules containing only carbon and hydrogen atoms joined by single bonds are alkanes.

They are referred to as saturated hydrocarbons.

You must learn these!

Prefix	Number of carbon atoms
meth-	1
eth-	2
prop-	3
but-	4
pent-	5
hex-	6
hept-	7
oct-	8
non-	9
dec-	10

Nomenclature: Organic Compounds

Prefix:

shows the number of carbons in the parent chain

Infix:

shows the nature of the carbon bonding in the parent chain

Suffix:

shows the functional group(s) present in the compound

Infix	Nature of carbon—carbon bonds in the parent chain
-an-	all single bonds
-en-	one or more double bonds
-yn-	one or more triple bonds

Suffix	Class of compound
-е	hydrocarbon
-ol	alcohol
-al	aldehyde
-one	ketone
-oic acid	carboxylic acid

Nomenclature: Organic Compounds

Functional group	Name of group	Found in	R =
R—O	hydroxyl	alcohols	С
$\stackrel{\text{O}}{\underset{\text{R}}{\nearrow}}$	carbonyl	aldehydes	C or H
O N R	carbonyl	ketones	С
OH OH	carboxyl	carboxylic acids	C or H

Some common functional groups,
Names are based on the parent molecule.

Organic Chemistry

Naming Organic Compounds

1 Find the longest carbon chain in the molecule and use the name of that chain as the parent name.

Organic Chemistry

Naming Organic Compounds

2 Number the carbon atoms in the longest chain beginning at the end nearest the first branch point.

This will enable the lowest combination of numbers to be used.

Organic Chemistry

Naming Organic Compounds

3 Identify and number the substituents according to their point of attachment to the main chain.

If there are two substituents on the same carbon, assign them both the same number.

Organic Chemistry

Naming Organic Compounds

4 Write the name as a single word, using hyphens to separate the different prefixes and using commas to separate numbers.

If two or more different substituents are present, name them in alphabetical order.

Organic Chemistry

Naming Organic Compounds

If two or more identical substituents are present, use the prefixes *di-*, *tri-*, *tetra-* to indicate how many.

Alkanes

Free rotation about carbon-carbon single bonds leads to an infinite number of

conformations

Staggered conformation is most stable (lowest energy) e.g., ethane

DEAKIN COLLEGE

Alkanes

Eclipsed conformation is least stable (highest energy) e.g., ethane

Source: Blackman et al. (2019:796).

side view turned almost on end

DEAKIN DEAKIN

Alkanes

Physical properties of alkanes

Alkanes are nonpolar compounds with weak interactions (dispersion forces) between molecules.

Boiling points will increase with size of molecule.

alkanes with 1–4 C atoms are gases alkanes with 5–17 C atoms are liquids alkanes with >18 C atoms are waxy solids

Alkanes

Physical properties of alkanes

melting point and density

average density 0.7 g/mL (1-10 carbons)

isomeric alkanes

different physical properties, e.g., branched chain isomers will have lower boiling points

than their straight chain counterparts.

DEAKIN COLLEGE DEAKIN

Alkanes: Formulae and Naming

Name	Molecular formula	Condensed structural formula	Melting point (°C)	Boiling point (°C)	Density of liquid (g mL ⁻¹ at 0 °C) ^(a)
methane	$\mathrm{CH_4}$	$\mathrm{CH_4}$	-182	-164	(a gas)
ethane	C_2H_6	$\mathrm{CH_{3}CH_{3}}$	-183	-88	(a gas)
propane	C_3H_8	$\mathrm{CH_{3}CH_{2}CH_{3}}$	-190	-42	(a gas)
butane	C_4H_{10}	$\mathrm{CH_{3}}(\mathrm{CH_{2}})_{2}\mathrm{CH_{3}}$	-138	0	(a gas)
pentane	C_5H_{12}	$\mathrm{CH_{3}}(\mathrm{CH_{2}})_{3}\mathrm{CH_{3}}$	-130	36	0.626
hexane	C_6H_{14}	$\mathrm{CH_{3}}(\mathrm{CH_{2}})_{4}\mathrm{CH_{3}}$	-95	69	0.659
heptane	C_7H_{16}	$\mathrm{CH_{3}}(\mathrm{CH_{2}})_{5}\mathrm{CH_{3}}$	-90	98	0.684
octane	C_8H_{18}	$\mathrm{CH_{3}(CH_{2})_{6}CH_{3}}$	-57	126	0.703
nonane	C_9H_{20}	$\mathrm{CH_{3}(CH_{2})_{7}CH_{3}}$	-51	151	0.718
decane	$C_{10}H_{22}$	$\mathrm{CH_{3}}(\mathrm{CH_{2}})_{8}\mathrm{CH_{3}}$	-30	174	0.730

⁽a) For comparison, the density of H_2O is 1 g mL^{-1} at 4 $^{\circ}C.$

Source: Blackman et al. (2019:794).

Alkanes

Cycloalkanes

carbon-carbon single bonds in a ring five-membered and six-membered rings are the most common

general formula: C_nH_{2n}

COLLEGE DEAKIN

Alkanes

cis-trans isomerism in cycloalkanes arrangement of atoms in space that cannot be changed by rotation around sigma bonds

DEAKIN COLLEGE CEAKIN

Saturated Hydrocarbons

Cycloalkanes

- Cyclohexane occurs widely in nature
- The most stable conformation is the chair conformation with all bond angles 109.5°.

DEAKIN COLLEGE DEAKIN

Boiling Points of Pentanes

Boiling points of alkanes are low, but increase with larger molecules due to increased dispersion forces.

Branched alkanes have lower boiling points than their straight chain isomers.

Cycloalkanes with the same number of C atoms have higher boiling points than their open chain counterparts.

Comparison of Boiling Points of Alkanes and Cycloalkanes with Five Carbons				
Formula	Name	Boiling Point (°C)		
Cycloalkanes				
	cyclopentane	49		
CH ₃	methylcyclobutane	36.3		
Continuous alkane				
CH ₃ —CH ₂ —CH ₂ —CH ₃	pentane	36		
Branched alkanes				
CH ₃				
CH ₃ —CH—CH ₂ —CH ₃	2-methylbutane	28		
CH ₃ CH ₃ CH ₃ CH ₃	dimethylpropane	10		
Copyright © 2007 Pearson Benjamin Cummings. All rights	reserved.			