МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Лабораторная работа 3.4.2

Закон Кюри-Вейсса

Выполнил:

Гисич Арсений

Б03-102

1 Аннотация

В данной работе проводится исследование зависимости магнитной восприимчивости гадолиния, который является ферромагнетиком, от температуры. Исследование проведено для температур от 14 до 40 °C. На основании этой зависимости вычисляется точка Кюри гадолиния.

2 Теоретические сведения

Вещества с отличными от нуля атомными магнитными моментами обладают парамагнитными свойствами. Внешнее магнитное поле ориентирует магнитные моменты, которые в отсутствие поля располагались в пространстве хаотическим образом. Однако при $T \to 0$ тепловое движение всё меньше препятствует магнитным моментам атомов ориентироваться в одном направлении при сколь угодно слабом внешнем поле. В ферромагнетиках — под влиянием обменных сил — это происходит при понижении температуры не до абсолютного нуля, а до температуры Кюри Θ_K . Оказывается, что у ферромагнетиков магнитная восприимчивость должна удовлетворять закону Кюри-Вейсса:

$$\chi \propto \frac{1}{T - \Theta_p},\tag{1}$$

где Θ_p — температура, близкая к температуре Кюри, так как при $T \approx \Theta_K$ формула (1) недостаточна точна.

3 Методика измерений

Схема установки для проверки справедливости закона Кюри-Вейсса показана на рис. 1. Исследуемый ферромагнитный образец (гадолиний) расположен внутри пустотелой катушки самоиндукции, которая служит индуктивностью колебательного контура, входящего в состав LC -автогенератора.

Рис. 1: Схема экспериментальной установки

Гадолиний является хорошим проводником электрического тока, а рабочая частота генератора достаточно велика ($\sim 50~\rm k\Gamma u$), поэтому для уменьшения вихревых токов образец изготовлен из мелких кусочков размером $\sim 0,5~\rm km$. Катушка 1 с образцом помещена в стеклянный сосуд 2, залитый трансформаторным маслом. Масло предохраняет образец от окисления и способствует ухудшению электрического контакта между отдельными

частичками образца. Кроме того, оно улучшает тепловой контакт между образцом и термостатируемой (рабочей) жидкостью 3 в термостате. Ртутный термометр 4 используется для приближённой оценки температуры. Температура образца регулируется с помощью термостата 5.

Магнитная восприимчивость образца χ определяется по изменению самоиндукции катушки. Обозначив через L самоиндукцию катушки с образцом и через L_0 – её самоиндукцию в отсутствие образца, получим

$$(L-L_0)\propto \chi$$
.

При изменении самоиндукции образца меняется период колебаний автогенератора:

$$\tau = 2\pi\sqrt{LC}$$
,

где C — ёмкость контура автогенератора. Период колебаний в отсутствие образца определяется самоиндукцией пустой катушки:

$$\tau_0 = 2\pi \sqrt{L_0 C}.$$

Итак, закон Кюри-Вейсса справедлив, если выполнено соотношение:

$$\frac{1}{\chi} \propto (T - \Theta_p) \propto \frac{1}{\tau^2 - \tau_0^2}.$$

Измерения проводятся в интервале температур от 14 °C до 40 °C.

4 Используемое оборудование

- 1. катушка самоиндукции с образцом из гадолиния;
- 2. термостат;
- 3. частотомер;
- 4. цифровой вольтметр;
- 5. LC-автогенератор;
- 6. термопара медь-константан;

5 Результаты измерений и обработка данных

Результаты измерений периода колебаний τ , ЭДС термопары ΔU и температуры термостата T представлены в таб. 1. Период колебаний без образца $\tau_0=8,252~m\kappa c$. Температурный коэффициент термопары $k^{-1}=24~\frac{^{\circ}\mathrm{C}}{^{MB}}$.

τ , κc	$\delta_{ au}, \mathcal{M}\kappa c$	$T,^{\circ} C$	$\delta_T, ^{\circ} \mathrm{C}$	ΔU , MB	$\delta_{\Delta U}, {}_{\mathcal{M}}B$
10,068	0,001	14,04	0,01	-0,012	0,001
9,955	0,001	16,03	0,01	-0,017	0,001
9,753	0,001	18,03	0,01	-0,014	0,001
9,433	0,001	20,03	0,01	-0,015	0,001
9,042	0,001	22,01	0,01	-0,016	0,001
8,747	0,001	24,02	0,01	-0,017	0,001
8,609	0,001	26,01	0,01	-0,017	0,001
8,534	0,001	28,01	0,01	-0,015	0,001
8,488	0,001	30,00	0,01	-0,017	0,001
8,453	0,001	32,00	0,01	-0,017	0,001
8,429	0,001	34,00	0,01	-0,018	0,001
8,409	0,001	36,01	0,01	-0,016	0,001
8,395	0,001	38,00	0,01	-0,016	0,001
8,383	0,001	40,00	0,01	-0,017	0,001

Таблица 1: Результаты измерения зависимости периода колебаний LC-генератора от температуры образца

Полученный график зависимости $\frac{1}{\tau^2-\tau_0^2}=f(T)$ представлен на рис. 2.

Рис. 2: График зависимости $\frac{1}{\tau^2-\tau_0^2}$ от температуры

Экстраполяция даёт значение парамагнитной точки Кюри $\Theta_p=17,96\pm0,03$ °C. Оценочное значение ферромагнитной точки Кюри — $\Theta_K=15\pm2$ °C. Эта точка находится приблизительно в том месте, где график выходит на прямую и уходит в 0. В данном случае

график выходит на прямую, но не доходит до 0. Вероятно, имеет место систематическая погрешность.

6 Обсуждение результатов и выводы

В данной работе была исследована температурная зависимость магнитной восприимчивости гадолиния выше точки Кюри. Также была рассчитана парамагнитная точка Кюри для данного металла.

Полученное значение парамагнитной точки Кюри:

$$\Theta_p = 17,96 \pm 0,03 \, ^{\circ}\text{C}$$

Данное значение существенно отличается от табличного (20,2 °C). Основной вклад в погрешность вносит погрешность определения температуры образца. Расхождение может быть вызвано неравномерным нагревом установки и сосуда с образцом. Как и предполагалось законом Кюри-Вейсса, данная температура выше ферромагнитной точки Кюри, которая равна 16 °C. Также, данное значение согласуется с оценочным, полученным из графика.