```
# Reads the Auto data
import pandas as pd
# use pandas to read the data
auto_df = pd.read_csv("Auto.csv")
# output the first few rows
print(auto_df.head())
# output the dimensions of the data
print(auto_df.shape)
       mpg cylinders displacement horsepower weight acceleration year \
    0 18.0
                           307.0 130 3504 12.0 70.0
               8
      15.0
                   8
                             350.0
                                          165
                                                3693
                                                             11.5
                                                                  70.0
    2 18.0
                            318.0
                                        150
                                                            11.0 70.0
                                              3436
                   8
                                                           12.0 70.0
    3 16.0
                            304.0
                                        150 3433
                   8
                            302.0
                                         140 3449
    4 17.0
                  8
                                                            NaN 70.0
       origin
          1 chevrolet chevelle malibu
    0
    1
           1
                  buick skylark 320
    2
                    plymouth satellite
           1
                     amc rebel sst
    3
           1
    4
           1
                          ford torino
    (392, 9)
# Data exploration with code
# describe() method on the 'mpg' column with comments indicating the range and average of each column
mpg_desc = auto_df['mpg'].describe()
print("MPG column description:")
print(mpg_desc)
print("----")
print(f"MPG column range: {mpg_desc['min']} to {mpg_desc['max']}")
print(f"Average MPG: {mpg desc['mean']}")
# describe() method on the 'weight' column with comments indicating the range and average of each column
weight_desc = auto_df['weight'].describe()
print("\nWeight column description:")
print(weight_desc)
print("----")
print(f"Weight column range: {weight_desc['min']} to {weight_desc['max']}")
print(f"Average weight: {weight_desc['mean']}")
# describe() method on the 'year' column with comments indicating the range and average of each column
year_desc = auto_df['year'].describe()
print("\nYear column description:")
print(year_desc)
print("----")
print(f"Year column range: {year_desc['min']} to {year_desc['max']}")
print(f"Average year: {year_desc['mean']}")
    MPG column description:
    count 392.000000
            23.445918
    mean
    std
              7.805007
             9.000000
    min
    25%
            17.000000
             22.750000
    50%
    75%
             29.000000
    max
             46.600000
    Name: mpg, dtype: float64
    _____
    MPG column range: 9.0 to 46.6
    Average MPG: 23.445918367346938
    Weight column description:
    count
            392.000000
            2977.584184
    mean
    std
             849.402560
            1613.000000
    min
```

```
25%
             2225,250000
    50%
             2803.500000
             3614.750000
    75%
             5140.000000
    max
    Name: weight, dtype: float64
    Weight column range: 1613.0 to 5140.0
    Average weight: 2977.5841836734694
    Year column description:
    count
             390.000000
              76.010256
    mean
    std
              3.668093
    min
              70.000000
    25%
              73.000000
    50%
              76.000000
    75%
              79.000000
              82.000000
    max
    Name: year, dtype: float64
    Year column range: 70.0 to 82.0
    Average year: 76.01025641025642
# Explore data types
# check the data types of all columns
print("Data types before conversion:")
print(auto_df.dtypes)
# change the cylinders column to categorical (use cat.codes)
auto_df['cylinders'] = auto_df['cylinders'].astype('category').cat.codes
# change the origin column to categorical (don't use cat.codes)
auto_df['origin'] = auto_df['origin'].astype('category')
# verify the changes with the dtypes attribute
print("\nData types after conversion:")
print(auto_df.dtypes)
    Data types before conversion:
                   float64
    cylinders
                     int.64
    displacement
                    float64
    horsepower
                   int64
    weight
                     int64
                  float64
    acceleration
    year
                   float64
    origin
                     int64
                    object
    name
    dtype: object
    Data types after conversion:
                    float64
    cylinders
    displacement
                    float.64
                     int64
    horsepower
    weight
                      int64
                     float64
    acceleration
    year
                     float64
    origin
                    category
    name
                      object
    dtype: object
# Deal with NAs
# delete rows with NAs
auto df.dropna(inplace=True)
# output the new dimensions
print("New dimensions:")
print(auto_df.shape)
    New dimensions:
    (389, 9)
```

```
# Modify columns
# make a new column, mpg_high, and make it categorical:
auto_df['mpg_high'] = (auto_df['mpg'] > auto_df['mpg'].mean()).astype(int)
auto_df['mpg_high'] = auto_df['mpg_high'].astype('category')
# delete the mpg and name columns (delete mpg so the algorithm doesn't just learn to predict mpg high from mpg)
auto_df.drop(['mpg', 'name'], axis=1, inplace=True)
# output the first few rows of the modified data frame
print(auto_df.head())
       cylinders displacement horsepower weight acceleration year origin \
    0
               4
                         307.0
                                       130
                                              3504
                                                             12.0 70.0
    1
               4
                         350.0
                                       165
                                               3693
                                                             11.5 70.0
                                                                             1
    2
               4
                          318.0
                                        150
                                               3436
                                                             11.0 70.0
                                                             12.0 70.0
                         304.0
                                               3433
    3
               4
                                       150
                                                                             1
                          454.0
    6
                                       220
                                               4354
                                                              9.0 70.0
                                                                             1
      mpg_high
             0
    1
             0
             0
    3
             0
    6
             0
# Data exploration with graphs
import seaborn as sns
import matplotlib.pyplot as plt
# seaborn catplot on the mpg high column
sns.catplot(data=auto_df, x='mpg_high', kind='count')
plt.title('Distribution of High and Low MPG Vehicles')
plt.xlabel('High MPG (1) or Low MPG (0)')
plt.show()
# seaborn relplot with horsepower on the x axis, weight on the y axis, setting hue or style to mpg_high
sns.relplot(data=auto_df, x='horsepower', y='weight', hue='mpg_high')
plt.title('Horsepower vs. Weight with High/Low MPG Highlighted')
plt.show()
# seaborn boxplot with mpg high on the x axis and weight on the y axis
sns.boxplot(data=auto_df, x='mpg_high', y='weight')
plt.title('Distribution of Vehicle Weights by High/Low MPG')
plt.xlabel('High MPG (1) or Low MPG (0)')
plt.ylabel('Vehicle Weight')
plt.show()
# for each graph, write a comment indicating one thing you learned about the data from the graph
# Graph 1 - There are about the same amount of distribution with slightly more low than high
# Graph 2 - The distribution is linear with both weight and horse power.
\# Graph 3 - In terms of distribution, the low has a higher average and range.
```


Horsepower vs. Weight with High/Low MPG Highlighted

Distribution of Vehicle Weights by High/Low MPG

```
5000 -
```

```
# Train/test split
from sklearn.model_selection import train_test_split
```

```
# 80/20
# use seed 1234 so we all get the same results
# train /toot V data frames consists of all rev
```

train /test X data frames consists of all remaining columns except mpg_high
X = auto df.drop(['mpg high'], axis=1)

X = auto_df.drop(['mpg_high'], axis=
y = auto_df['mpg_high']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1234)

output the dimensions of train and test

```
print('Train dimensions:', X_train.shape, y_train.shape)
print('Test dimensions:', X_test.shape, y_test.shape)
    Train dimensions: (311, 7) (311,)
    Test dimensions: (78, 7) (78,)
                               High MDC (1) and any MDC (0)
# Logistic Regression
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report
# train a logistic regression model using solver lbfgs
logreg = LogisticRegression(solver='lbfgs')
logreg.fit(X_train, y_train)
# test and evaluate
y pred = logreg.predict(X test)
# print metrics using the classification report
print(classification_report(y_test, y_pred))
                  precision
                               recall f1-score
                                                   support
               0
                       0.98
                                 0.80
                                           0.88
                                                        50
                                 0.96
                       0.73
                                            0.83
                                                        28
                                                        78
        accuracy
                                            0.86
       macro avg
                       0.85
                                  0.88
                                            0.85
                                                        78
                       0.89
                                 0.86
                                            0.86
                                                        78
    weighted avg
    /usr/local/lib/python3.9/dist-packages/sklearn/linear_model/_logistic.py:458: ConvergenceWarning: lbfgs failed to
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    Increase the number of iterations (max iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
# Decision Tree
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import classification report
from sklearn.tree import plot tree
import matplotlib.pyplot as plt
# train a decision tree
tree = DecisionTreeClassifier(random_state=1234)
tree.fit(X_train, y_train)
# test and evaluate
y pred = tree.predict(X test)
# print the classification report metrics
print(classification_report(y_test, y_pred))
# plot the tree
fig, ax = plt.subplots(figsize=(12, 12))
plot tree(tree, filled=True, feature names=X.columns, class names=['0', '1'], ax=ax)
plt.show()
```

precision	recall	f1-score	support
0.96	0.92	0.94	50
0.87	0.93	0.90	28
		0.92	78
0.91	0.92	0.92	78
0.93	0.92	0.92	78
	0.96 0.87	0.96 0.92 0.87 0.93 0.91 0.92	0.96 0.92 0.94 0.87 0.93 0.90 0.92 0.92


```
Neural Network (15 points)
rom sklearn.neural network import MLPClassifier
rom sklearn.metrics import classification report
train a neural network, choosing a network topology of your choice
n1 = MLPClassifier(hidden_layer_sizes=(10, 10), activation='relu', solver='adam', max_iter=1000, random_state=1234)
n1.fit(X_train, y_train)
test and evaluate
_pred1 = nn1.predict(X_test)
Evaluate model
rint("First Neural Network:")
rint(classification_report(y_test, y_pred1))
train a second network with a different topology and different settings
n2 = MLPClassifier(hidden_layer_sizes=(20, 20), activation='logistic', solver='lbfgs', max_iter=5000, random_state=1234
n2.fit(X_train, y_train)
test and evaluate
_pred2 = nn2.predict(X_test)
```

```
rint("Second Neural Network:")
rint(classification_report(y_test, y_pred2))
```

compare the two models and why you think the performance was same/different there are different iterrations showing and trying different methods and therefore, they differ in results.

```
First Neural Network:
               precision
                             recall f1-score
                                                  support
            0
                     0.64
                                1.00
                                           0.78
                                                        50
            1
                     0.00
                               0.00
                                           0.00
                                                        2.8
    accuracy
                                           0.64
                                                        78
   macro avg
                     0.32
                               0.50
                                           0.39
                                                        78
weighted avg
                     0.41
                                0.64
                                           0.50
                                                        78
Second Neural Network:
               precision
                             recall f1-score
                                                  support
            0
                     0.00
                               0.00
                                           0.00
                                                        50
                     0.36
                               1.00
                                           0.53
                                                        28
            1
                                                        78
                                           0.36
    accuracy
                                0.50
                                           0.26
                                                        78
   macro avg
                     0.18
                                           0.19
                                                        78
weighted avg
                     0.13
                               0.36
```

_warn_prf(average, modifier, msg_start, len(result))

```
/usr/local/lib/python3.9/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision _warn_prf(average, modifier, msg_start, len(result))
```

```
Accuracy Recall (0) Recall (1) Precision (0) Precision (1)
                                           0.80
#Logistic Regression
                                 0.86
                                                       0.96
                                                                   0.98
                                                                                 0.73
#Decision Tree
                                 0.92
                                           0.92
                                                       0.93
                                                                   0.96
                                                                                 0.87
#Neural Network (ReLU)
                                 0.64
                                           1.00
                                                       0.00
                                                                   0.64
                                                                                 0.00
                                           0.00
                                                       1.00
#Neural Network (logistic)
                                 0.36
                                                                   0.00
                                                                                 0.36
# From the graph we can see that the decision tree had the best acuracy, followed by the logistic regression,
# then the neural network RELU, and finally the Neural network logistic.
# Fortunately for us, decision tree didn't over fit the data causing performance, therefore it was the best.
# The data is linear, and therefore the logistic regression represents that.
# As for Neural networks, I believe with more tuning it would perform better as they often do.
```

```
# I think I might be bias on which I prefer, but I strongly prefer skit-learning. This is because at my
# previous internship, I was taught to work with it. I was also taught to work with the libraries used in the project.
# That being said, I do still like R, as I find it easier to do things, but skit-learning, is by far my favorite.
```