Support Vector Machine

Importing Important Libraries

```
In [53]: import pandas as pd
from matplotlib import pyplot as plt
%matplotlib inline
```

Importing Dataset from sklearn Library

```
In [54]: from sklearn.datasets import load_iris
In [55]: iris = load_iris()
```

Column's in Iris Dataset

```
In [56]: dir(iris)
Out[56]: ['DESCR',
    'data',
    'data_module',
    'feature_names',
    'filename',
    'frame',
    'target',
    'target_names']
```

Feature's in Iris Dataset

Creating a DataFrame from Data

```
In [58]: df = pd.DataFrame(iris.data,columns=iris.feature_names)
    df.head()
```

Out[58]:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
	0	5.1	3.5	1.4	0.2
	1	4.9	3.0	1.4	0.2
	2	4.7	3.2	1.3	0.2
	3	4.6	3.1	1.5	0.2
	4	5.0	3.6	1.4	0.2

Adding Target Column to the DataFrame

```
In [59]: df["target"] = iris.target
    df.head()
```

Out[59]:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
	0	5.1	3.5	1.4	0.2	0
	1	4.9	3.0	1.4	0.2	0
	2	4.7	3.2	1.3	0.2	0
	3	4.6	3.1	1.5	0.2	0
	4	5.0	3.6	1.4	0.2	0

Exploring the Target Set

In [60]: iris.target_names

11 13 Car Sec_Itames

Out[60]: array(['setosa', 'versicolor', 'virginica'], dtype='<U10')</pre>

In [80]: df[df.target==0].head()

Out[80]:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	flower_name
	0	5.1	3.5	1.4	0.2	0	setosa
	1	4.9	3.0	1.4	0.2	0	setosa
	2	4.7	3.2	1.3	0.2	0	setosa
	3	4.6	3.1	1.5	0.2	0	setosa
	4	5.0	3.6	1.4	0.2	0	setosa

In [81]: df[df.target==1].head()

Out[81]:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	flower_name
	50	7.0	3.2	4.7	1.4	1	versicolor
	51	6.4	3.2	4.5	1.5	1	versicolor
	52	6.9	3.1	4.9	1.5	1	versicolor
	53	5.5	2.3	4.0	1.3	1	versicolor
	54	6.5	2.8	4.6	1.5	1	versicolor

In [82]: df[df.target==2].head()

Out[82]:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	flower_name
	100	6.3	3.3	6.0	2.5	2	virginica
	101	5.8	2.7	5.1	1.9	2	virginica
	102	7.1	3.0	5.9	2.1	2	virginica
	103	6.3	2.9	5.6	1.8	2	virginica
	104	6.5	3.0	5.8	2.2	2	virginica

Adding Target Name to the Data Frame

Out[64]:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	flower_name
	0	5.1	3.5	1.4	0.2	0	setosa
	1	4.9	3.0	1.4	0.2	0	setosa
	2	4.7	3.2	1.3	0.2	0	setosa
	3	4.6	3.1	1.5	0.2	0	setosa
	4	5.0	3.6	1.4	0.2	0	setosa

Visualization of Data

Creating 3 Different DataFrame from Orignal DataFrame

```
In [65]: df0 = df[df.target==0]
    df1 = df[df.target==1]
    df2 = df[df.target==2]
```

Creating Scatter Plot with "sepal length (cm)", "sepal width (cm)" as X and Y Axis

```
In [66]: plt.scatter(df0["sepal length (cm)"],df0["sepal width (cm)"],color="red",marker="+")
    plt.scatter(df1["sepal length (cm)"],df1["sepal width (cm)"],color="green",marker="*")
    plt.xlabel("sepal length (cm)")
    plt.ylabel("sepal width (cm)")
```

```
Out[66]: Text(0, 0.5, 'sepal width (cm)')
```


Creating Scatter Plot with "petal length (cm)", "petal width (cm)" as X and Y Axis

```
In [67]: plt.scatter(df0["petal length (cm)"],df0["petal width (cm)"],color="red",marker="+")
    plt.scatter(df1["petal length (cm)"],df1["petal width (cm)"],color="green",marker="*")
    plt.xlabel("petal length (cm)")
    plt.ylabel("petal width (cm)")
```

Out[67]: Text(0, 0.5, 'petal width (cm)')

Creating Dependent and Independent Variable

```
In [68]: X = df.drop(["target","flower_name"], axis = "columns")
X.head()
```

Out[68]:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
	0	5.1	3.5	1.4	0.2
	1	4.9	3.0	1.4	0.2
	2	4.7	3.2	1.3	0.2
	3	4.6	3.1	1.5	0.2
	4	5.0	3.6	1.4	0.2

```
In [69]: y = df.target
y.head()
```

Out[69]: 0 0 1 0 2 0 3 0 4 0

Name: target, dtype: int32

Train Test Split

```
In [70]: from sklearn.model_selection import train_test_split
In [71]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
In [72]: len(X_train), len(X_test)
Out[72]: (120, 30)
```

Importing SVM Model

```
In [73]: from sklearn.svm import SVC
In [74]:
         model = SVC()
         Fitting the Model
In [75]:
         model.fit(X_train, y_train)
Out[75]:
         ▼ SVC
         SVC()
         Predicting Result from Model
In [76]:
         model.predict([[5.1,3.5,1.4,0.2]]) #Values from iris DataFrame with index=0
         C:\Users\iamri\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\base.py:409:
         UserWarning: X does not have valid feature names, but SVC was fitted with feature names
           warnings.warn(
Out[76]: array([0])
In [77]: model.predict([[7.0,3.2,4.7,1.4]]) #Values from iris DataFrame with index=50
         C:\Users\iamri\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\base.py:409:
         UserWarning: X does not have valid feature names, but SVC was fitted with feature names
           warnings.warn(
Out[77]: array([1])
In [78]:
         model.predict([[6.3,3.3,6.0,2.5]]) #Values from iris DataFrame with index=100
         C:\Users\iamri\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\base.py:409:
         UserWarning: X does not have valid feature names, but SVC was fitted with feature names
           warnings.warn(
Out[78]: array([2])
         Score of Model
```

In [79]: model.score(X_train, y_train)

Out[79]: 0.991666666666667