

Lecture 2: crystal structures

EEE 6212 - Semiconductor Materials

2

Lecture 2: crystal structures

- close packing of spheres in 3D cubic vs. hexagonal stacking
- concept of lattice, unit cell and Miller indices
- lattice planes, Weiss zone law and calculation of angles
- symmetry operations
- definition of a crystal as lattice ⊗ motif
- the 14 Bravais lattices
- semiconductor crystals

3

Cubic vs. hexagonal stacking sequences

most efficient way to stack equally sized spheres in 2D: each touches 6 neighbouring spheres, forming layer A

2 types of hollows are formed: B & C

in 3D, the 2nd layer can be stacked on top of either B sites (shown) or C sites

EEE 6212 - Semiconductor Materials

4

Cubic vs. hexagonal stacking sequences

most efficient way to stack equally sized spheres in 2D: each touches 6 neighbouring spheres, forming layer A

2 types of hollows are formed: B & C

in 3D, the 2nd layer can be stacked on top of either B sites (shown) or C sites

the 3rd layer can be stacked upon B using again either A sites

rhombus in top view

-> AB(ABAB): hexagonal

11

Weiss zone law

applications:

1. Find direction [uvw] common to two planes $(h_1k_1\ell_1)$ and $(h_2k_2\ell_2)$ using the cross-product (in any crystal):

```
\begin{array}{l} h_1 u + k_1 v + \ell_1 w = 0 \\ \text{and} \\ h_2 u + k_2 v + \ell_2 w = 0 \\ \text{yields:} \\ [uvw] = [k_1 \ell_2 - k_2 \ell_1, \ \ell_1 h_2 - \ell_2 h_1, \ h_1 k_2 - h_2 k_1] = (h_1 k_1 \ell_1) \ \boldsymbol{x} \ (h_2 k_2 \ell_2) \end{array}
```

2. Find angles between lattice directions (vectors) $\underline{\boldsymbol{p}}=[u_1v_2w_1]$ & $\underline{\boldsymbol{q}}=[u_2v_2w_2]$ for orthogonal axes using the dot product:

```
cos θ = [u_1u_2a^2 + v_1v_2b^2 + w_1w_2c^2]/[(u_1^2a^2 + v_1^2b^2 + w_1^2c^2)(u_2^2a^2 + v_2^2b^2 + w_2^2c^2)]^{\frac{1}{2}}
= \underline{p} \cdot \underline{q}/(pq)
(& angles between planes are the angles between their normals!)
```


EEE 6212 - Semiconductor Materials

12

Shape of the unit cell defines 7 lattice systems

The lattice systems are distinguished according to the form of their unit cells. We have the following 7 lattice systems: a = b = c / c

- 1. cubic
- 2. tetragonal
- 3. orthorhombic
- 4. hexagonal
- 5. rhombohedral
- 6. monoclinic
- 7. triclinic

where the symmetry decreases from top to bottom.

orthornomise $a \neq b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$ $a = b \neq c$ $\alpha = \beta = 90^{\circ}; \gamma = 120^{\circ}$ a = b = c $\alpha = \beta = \gamma < 120^{\circ} \neq 90^{\circ}$ $a \neq b \neq c$ $\alpha = \gamma = 90^{\circ} \neq \beta$ $a \neq b \neq c$ $\alpha = \gamma = 90^{\circ} \neq \beta$ $a \neq b \neq c$ $\alpha = \gamma = 90^{\circ} \neq \beta$

 $a = b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$

13

The 4 most important lattice systems

	Crystal system	Interplanar spacing of the (hkl) plane
cubic	a = b = c / $\alpha = \beta = \gamma = 90^{\circ}$	$\frac{1}{d^2} = \frac{1}{a^2} (h^2 + k^2 + l^2) \qquad d_{hkl} = a / \sqrt{h^2 + k^2 + \ell^2}$
tetragonal	$a = b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$	$\frac{1}{d^2} = \frac{1}{a^2} \left(h^2 + k^2 \right) + \frac{1}{c^2} l^2$
	$a \neq b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$	$\frac{1}{d^2} = \frac{1}{a^2} h^2 + \frac{1}{b^2} k^2 + \frac{1}{c^2} l^2$
hexagonal	$a = b \neq c$ $\alpha = \beta = 90^{\circ}; \gamma = 120^{\circ}$	$\frac{1}{d^2} = \frac{4}{3a^2}(h^2 + hk + k^2) + \frac{1}{c^2}l^2$

EEE 6212 - Semiconductor Materials

14

The 4 most important lattice systems

Crystal system $a = b = c / $ $\alpha = \beta = \gamma = 90^{\circ}$ $a = b \neq c $ $\alpha = \beta = \gamma = 90^{\circ}$	Angle ϕ between $(h_1k_1l_1)$ and $(h_2k_2l_2)$ $\cos \phi = \frac{h_1h_2 + k_1k_2 + l_1l_2}{\{(h_1^2 + k_1^2 + l_1^2)(h_2^2 + k_2^2 + l_2^2)\}^{1/2}} = \frac{\underline{d}h_1k_1\ell_1 \cdot \underline{d}h_2k_2\ell_2}{ dh_1k_1\ell_1 dh_2k_2\ell_2 }$
$\alpha = \beta = \gamma = 90^{\circ}$ $a = b \neq c$	
1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	$\frac{1}{a^2}(h_1h_2 + k_1k_2) + \frac{1}{c^2}l_1l_2$
$a \neq b \neq c$	$\cos \phi = \frac{1}{\left[\left\{ \frac{1}{a^2} (h_1^2 + k_1^2) + \frac{1}{c^2} l_1^2 \right\} \left\{ \frac{1}{a^2} (h_2^2 + k_2^2) + \frac{1}{c^2} l_2^2 \right\} \right]^{1/2}}$
$\alpha = \beta = \gamma = 90^{\circ}$	$\cos \phi = \frac{\frac{1}{a^2} h_1 h_2 + \frac{1}{b^2} k_1 k_2 + \frac{1}{c^2} l_1 l_2}{(1 + \frac{1}{a^2} l_1 l_2 + \frac{1}{a^2} l_1 l_2 + \frac{1}{a^2} l_1 l_2}$
$a = b \neq c$ $\alpha = \beta = 90^{\circ}; \gamma = 120^{\circ}$	$\cos \phi = \frac{a}{\left\{ \left(\frac{1}{a^2} h_1^2 + \frac{1}{b^2} k_1^2 + \frac{1}{c^2} l_1^2 \right) \left(\frac{1}{a^2} h_2^2 + \frac{1}{b^2} k_2^2 + \frac{1}{c^2} l_2^2 \right) \right\}^{1/2}}$
	$\cos\phi = \frac{h_1h_2 + k_1k_2 + \frac{1}{2}(h_1k_2 + k_1h_2) + \frac{3}{4}\frac{a^2}{c^2}l_1l_2}{\left\{\left(h_1^2 + k_1^2 + h_1k_1 + \frac{3}{4}\frac{a^2}{c^2}l_1^2\right)\left(h_2^2 + k_2^2 + h_2k_2 + \frac{3}{4}\frac{a^2}{c^2}l_2^2\right)\right\}^{1/2}}$
	$a \neq b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$ $a = b \neq c$ $\alpha = \beta = 90^{\circ}; \gamma = 120^{\circ}$

15

The 4 most important lattice systems

	Crystal system	Angle ρ between directions $[u_1v_1w_1]$ and $[u_2v_2w_2]$
cubic	a = b = c / $\alpha = \beta = \gamma = 90^{\circ}$	$\cos \rho = \frac{u_1 u_2 + v_1 v_2 + w_1 w_2}{\{(u_1^2 + v_1^2 + w_1^2)(u_2^2 + v_2^2 + w_2^2)\}^{1/2}}$
	$a = b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$	$\cos \rho = \frac{a^2(u_1u_2 + v_1v_2) + c^2w_1w_2}{\left[\left\{a^2(u_1^2 + v_1^2) + c^2w_1^2\right\}\left\{a^2(u_2^2 + v_2^2) + c^2w_2^2\right\}\right]^{1/2}}$
	$a \neq b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$	$\cos \rho = \frac{a^2 u_1 u_2 + b^2 v_1 v_2 + c^2 w_1 w_2}{\{(a^2 u_1^2 + b^2 v_1^2 + c^2 w_1^2)(a^2 u_2^2 + b^2 v_2^2 + c^2 w_2^2)\}^{1/2}}$
hexagonal	$a = b \neq c$ $\alpha = \beta = 90^{\circ}; \gamma = 120^{\circ}$	$\cos \rho = \frac{u_1 u_2 + v_1 v_2 - \frac{1}{2} (u_1 v_2 + v_1 u_2) + \frac{c^2}{a^2} w_1 w_2}{\left\{ \left(u_1^2 + v_1^2 - u_1 v_1 + \frac{c^2}{a^2} w_1^2 \right) \right\}^{1/2}} \times \left(u_2^2 + v_2^2 - u_2 v_2 + \frac{c^2}{a^2} w_2^2 \right) \right\}^{1/2}$

EEE 6212 - Semiconductor Materials

16

Symmetry operations in a crystal

The symmetry operations of a crystal lattice are:

- 1. translation (per definition of periodicity)
- 2. rotational symmetry around an n-fold axis
 - a) n=2: diads
- or C₂
- b) n=3: triads
- or C₃
- c) n=4: tetrads
- or C_4
- d) n=6: hexads
- or C₆
- 3. inversion symmetry around a point = point symmetry (sign: 1)
- 4. roto-inversion symmetry = 2.& 3. combined (signs: $\overline{2}$ = plane with mirror symmetry (m); $\overline{3}$, $\overline{4}$ or $\overline{6}$)

18

Symmetry operations define 7 crystal systems

Each crystal system possesses one or more symmetry elements that impose a given shape of unit cell onto the lattice:

1. cubic four triads parallel {111}
2. tetragonal one tetrad along [001]

3. orthorhombic three mutually perpendicular diads

4. hexagonal one hexad along [001]
5. trigonal* one triad along [001]
6. monoclinic one diad along [010]

7. triclinic none

where again the symmetry decreases from top to bottom.

*Note the trigonal <u>crystal</u> system ($a=b\neq c$, $\alpha=\beta=90^\circ$, $\gamma=120^\circ$) here replaces the rhombohedral <u>lattice</u> system (a=b=c, $\alpha=\beta=\gamma\neq90^\circ$), which itself is a sub-set of the trigonal system. Quartz is trigonal but not rhombohedral!

19

Definition of crystal

A crystal consists of a lattice on which a motif of a certain symmetry is repeated periodically, i.e.

crystal = lattice ⊗ motif

example in 2D: hexagon with triade

23

Semiconductor crystals

1. diamond (C, Si, Ge, α-Sn)

consists of two face-centred cubic crystals shifted by ½ of the body diagonal; all 8 atoms are identical and connected via 4 neighbours via bonds forming tetrahedra.

space group 227: $Fd\overline{3}m$ 1 atom at corners: 8 x $^{1}/_{8}$

3 atoms at centre of faces: 6 x ½ 4 atoms at tetrahedral sites: 4 x 1

EEE 6212 - Semiconductor Materials

24

Semiconductor crystals

a=0.542nm (c-ZnS) 0.565nm (GaAs), 0.587nm (InP), 0.648nm (InSb), 0.450nm (c-GaN), 2. sphalerite or zinc blende (ZnS, GaP, InP, GaAs, AlAs, InAs, GaSb, InSb, ZnSe, HgTe,...) consists of two face-centred cubic crystals shifted by ¼ of the body diagonal; both sub-lattices are occupied by different atoms which again are tetrahedrally connected to their 4 neighbours.

space group 216: F43m
1 atom at corners: 8 x 1/8
3 atoms at centre of faces: 6 x 1/2
4 atoms at tetrahedral sites: 4 x 1

Semiconductor crystals

a=0.381nm, c=0.623nm (h-ZnS), a=0.319nm, c=0.519nm (h-GaN), 3. wurtzite (ZnS, GaN, ZnO, BeO,...) consists of two hexagonal crystals (dihexagonal pyramidal) shifted by 3 / $_{8}$ c (+ δ) along \underline{c} -axis; both sub-lattices are occupied by different atoms which again are tetrahedrally connected to their 4 neighbours.

space group 186: P6₃mc

- 1 atom at corners (0, 0,0)
- 1 atom at position $(\frac{1}{3}, \frac{2}{3}, \frac{1}{2})$
- 1 atom at position (0,0,3/8)
- 1 atom at position $({}^{1}/_{3}, {}^{2}/_{3}, {}^{7}/_{8})$

EEE 6212 - Semiconductor Materials

26

Summary

- · hexagonal and cubic structures only differ in their stacking sequence
- unit cell is the smallest box periodically repeated in a crystal lattice
- Miller indices describe planes (hkl) and directions [uvw] in a lattice
- Weiss zone equation states which planes lie in a zone axis, i.e. are perpendicular to a certain direction
- common direction for two planes can be calculated by cross-product
- shape of the unit cell defines 7 lattice systems
- symmetry operations defines 7 crystal systems (similar to above), of which the one with the highest symmetry is the cubic system
- a crystal is given by a motif repeated on a lattice
- there are 14 Bravais lattices defined by symmetry and centerings
- semiconductors crystallise in diamond, sphalerite or wurtzite structure