PHASE-1

STUDENT NAME: SIVA JENANI S

REGISTER NUMBER: 422623104002

INSTITUTION: UNIVERSITY COLLEGE OF ENGINEERING PANRUTI

DEPARTMENT: COMPUTER SCIENCE AND ENGINEERING

DATE OF SUBMISSION: 29.04.2025

1. Problem Statement

- Social media has become a powerful medium where people express their emotions.
- Unstructured data from platforms like Twitter can reveal public sentiment about sensitive topics like mental health.
- There is a growing need to automatically detect and understand these emotional signals at scale.

2. Objectives of the Project

- To collect real-time tweets related to mental health using Twitter API v2.
- To preprocess and clean tweet data for analysis.
- To classify tweets into Positive, Negative, or Neutral emotions using sentiment analysis.
- To visualize sentiment trends and provide insights.

To lay the groundwork for potential deployment in mental health monitoring tools.

3. Scope of the Project

- Focused on English-language tweets related to mental health.
- Uses keyword-based tweet extraction (e.g., "mental health").
- Employs basic NLP techniques with TextBlob for sentiment classification.
- Short-term scope: sentiment detection.
- Long-term potential: real-time emotional monitoring, mental health dashboards, integration with chatbots, etc.

4. Data Resources

- Primary Source: Twitter API v2
- Query Used: "mental health -is:retweet lang:en"
- Volume: 50 most recent tweets
- Fields Collected: Text content of tweets
- tweets

5. High-Level Methodology

Data Collection

- Twitter API v2 via Tweepy.
- Fetch tweets related to mental health (non-retweets, English).

Data Cleaning

Remove URLs, mentions, hashtags, special characters.

Convert text to lowercase for normalization.

Exploratory Data Analysis (EDA)

- Distribution of sentiment categories (positive, negative, neutral).
- Word frequency analysis (optional improvement).

Feature Engineering

- Not applicable in basic TextBlob sentiment analysis (already has built-in features).
- Future improvements: TF-IDF, word embeddings.

Model Building

TextBlob for rule-based sentiment scoring using polarity.

Model Evaluation

- Limited as it's rule-based (no train/test split).
- Could add manual evaluation or benchmark against labeled datasets.

Visualization & Interpretation

- Count plot of sentiment categories using Seaborn.
- First few tweets and their associated sentiments displayed in a table.

Deployment (Optional/Future Scope)

- Could deploy as a Flask API, Streamlit app, or integrate with dashboards.
- Real-time sentiment tracking for public awareness or organization use.

Tools and Technologies

Programming Language

Python: powerful for data manipulation, NLP, and visualization.

Notebook/IDE

 Google Colab: cloud-based notebook for coding, visualization, and sharing.

Libraries

- tweepy to interact with Twitter API.
- textblob for sentiment analysis.
- pandas for data manipulation.
- matplotlib & seaborn for visualizing data.

Optional Tools for Deployment

Flask / Streamlit – for creating web apps.

Heroku / Render – for deploying apps online.

Docker – for containerization (advanced use case).

7. Results & Visualization

- Bar chart showing the number of tweets per sentiment category.
- Example tweet table with sentiment classification.

8. Conclusion & Future Work

Successfully demonstrated emotion detection in social media data.

•	
	Shows potential for tracking public sentiment on mental health.
	O P
•	Future improvements:
	 Use of deep learning models like BERT.

- Larger datasets for training & testing.
- o Real-time dashboard or alert system.

9. Team Members and Roles

Team Member Roles

MADHUMATHIS Project Lead, Twitter API Integration.

SIVA JENANI S Sentiment analysis logic, Data cleaning.

KAVIYA P Exploratory data analysis, Model building.

DHANUSH M Presentation Design, Deployment Research.

RAGAVAN R Report Writing, Visualization.