Linear Algebra

----Simple Note

Wu Yutian

2021.10.9

前言

在继微积分的简明笔记之后,同时也开始了线性代数的重新学习,并为后面的矩 阵论的学习打好基础。

在线性代数的学习过程中主要参考了《Linear Algebra Done Right》这本书,另外同时也参考了它的中文版《线性代数应该这么学》,这本书不同于国内的教材,从向量空间的角度阐述了整个线性代数的知识体系,被国外很多学校作为教材,是一本很经典的书。另外还有一本和它名字很像的书,叫做《Linear Algebra Done Wrong》同样也是被广泛推荐的一本书,后续应该也会看一下,再对这份笔记进行补充。但是由于我手上有《Linear Algebra Done Right》的中文版,因此就从这本书开始看起,笔记的体系结构也是以此书为依据的。

Wu Yutian 2021.10.9

目录

1	Vector Space				
	1.1	\mathbb{R}^n 与 C^n	1		
	1.2	, 前量卒间	1		

Chapter 1

Vector Space

1.1 R^n 与 C^n

组(List)的概念: 长度为 n 的组是 n 个有顺序的元素,用逗号隔开并且两端用括号包起来。

组与集合的不同:组中的元素是有顺序的并且允许重复,而集合中没有顺序,并且元素不能重复。

定义 0: 0 表示长度为 n 且所有坐标都是 0 的组, 即:

$$0 = (0, 0, ..., 0)$$

1.2 向量空间

向量空间 V 在加法和标量乘法下封闭。

定义 1.2.1. 向量空间就是带有加法和标量乘法的集合 V, 满足如下性质:

交换性 (commutativity)

对所有 $u, v \in V$, 都有 u + v = v + u;

结合性 (associativity)

对所有
$$u, v, w \in V$$
 都有 $(u+v)+w=u+(v+w);$
对所有 $v \in V$ 和 $a, b \in F$ 都有 $(ab)v=a(bv);$

加法单位元 (additive identity)

存在元素 $0 \in V$ 使得对所有的 $v \in V$ 都有 v + 0 = v; 加法逆元 (additive inverse)

对每个 $v \in V$ 都存在 $w \in V$ 使得 v + w = 0;

乘法单位元 (numltiplicative indentity)

对所有 $v \in V$ 都有 1v = v;

分配性质 (distributive properties)

对所有 $a \in F$ 和 $u, v \in V$ 都有 a(u+v) = au + av;对所有 $a, b \in F$ 和 $v \in V$ 都有 (a+b)v = av + bv;