	Welcome to Stock Market Analysis project! In this portfolio project I have done an analysis on stocks from five different companies in healthcare industry over the stock data for one year time period. I have used pandas to get stock information from yahoo Finance, visualize different aspects of it, and finally I have analyzed the risk of a stock, based on its previous performance history. I have also used Monte Carlo method to predict future stock price. In the projects the following questions will be answerd through analysis and visualization. 1.) What was the change in price of the stock over time?
In [5]:	 2.) What was the daily return of the stock on average? 3.) What was the correlation between different stocks' closing prices? 4.) What was the correlation between different stocks' daily returns? 5.) How much value do we put at risk by investing in a particular stock? 6.) How can we attempt to predict future stock behavior? #Importing Libraries for the Analysis
	<pre>import pandas as pd from pandas import Series, DataFrame import numpy as np # For Visualization import matplotlib.pyplot as plt import seaborn as sns sns.set_style('whitegrid') %matplotlib inline # For time stamps from datetime import datetime # For division fromfuture import division</pre>
In [6]:	# For reading data for Yahoo Finance import pandas_datareader as dr Creating dataframe for each companies in Health Care industry with the data taken from Yahoo finance within the period '2021-07-10'-'2022-07-10' Healthcare Industry companies: United Health Group Incorporated(UNH), Eli & Lily (LLY), Johnson & Johnson (J&J), Pfizer(PFE), Novo Nordisk(NVO) UNH=dr.get_data_yahoo('UNH', start='2021-07-10', end='2022-07-10') LLY=dr.get_data_yahoo('LLY', start='2021-07-10', end='2022-07-10') JNJ=dr.get_data_yahoo('JNJ', start='2021-07-10', end='2022-07-10') PFE=dr.get_data_yahoo('PFE', start='2021-07-10', end='2022-07-10') NVO=dr.get_data_yahoo('NVO', start='2021-07-10', end='2022-07-10')
In [8]: In [10]: Out[10]:	health_list=['UNH','LLY','JNJ','PFE','NVO'] for stock in health_list: globals()[stock]=dr.get_data_yahoo(stock,start='2021-07-10',end='2022-07-10') PFE.head() High Low Open Close Volume Adj Close Date 2021-07-12 40.250000 39.599998 39.660000 39.759998 24513000.0 38.451939
In [11]: Out[11]:	2021-07-14
	mean 469.266694 459.537051 464.126215 464.661076 3.076912e+06 461.428653 std 39.791978 38.122297 38.861917 39.129624 1.261639e+06 40.336668 min 393.690002 383.119995 389.339996 387.010010 1.284200e+06 383.246979 25% 425.169998 419.580002 422.049988 423.134995 2.409400e+06 417.555054 50% 473.179993 462.000000 467.190002 468.410004 2.977400e+06 465.368378 75% 499.970001 488.504990 494.005005 495.050003 3.535400e+06 492.562622 max 553.289978 539.000000 545.500000 546.010010 1.586110e+07 544.069763 In stock we see two columns, closing price and adjusted closing price. The closing price refers to the price the stock was traded at last whereas Adjusted closing price is the closing price adjusted for corporate actions such as dividend payouts, stock splits, or the issuance of more shares.
In [12]: Out[12]:	#Having a look thorugh plot of the Adj closing price of United Health Group UNH['Adj Close'].plot(legend=True, figsize=(10, 4)) <axessubplot:xlabel='date'> Adj Close 480 480 480 480 480 480 480 48</axessubplot:xlabel='date'>
<pre>In [13]: Out[13]:</pre>	UNH['Volume'].plot(legend=True, figsize=(10,5)) plt.legend(['UNH1']) plt.title('Stocks Volume traded over the period') # visibly in July 2022 there is a huge peak in the stock volume being traded for UNH Tayt(0.5 = 1.0 = 1Stocks Volume traded ever the period')
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
<pre>In [14]: In [15]: Out[15]:</pre>	<pre>UNH['Daily Return'] = UNH['Adj Close'].pct_change() # Then we'll plot the daily return percentage UNH['Daily Return'].plot(figsize=(12,4),legend=True,linestyle='',marker='o')</pre>
	0.04 -0.02 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04
<pre>In [16]: Out[16]:</pre>	# We use the dropna() here, otherwise the NaN values can't be read by seaborn sns.distplot(UNH['Daily Return'].dropna(),bins=100,color='blue') # Could have also done: #AAPL['Daily Return'].hist() C:\Users\17470\AppData\Roaming\Python\Python310\site-packages\seaborn\distributions.py:2619: FutureWarning: 'distplot' is a deprecated function and will be removed in a future version. Please adapt your code to use either 'displot' (a figure-level function with similar flexibility) or 'histplot' (an axes-level function for histograms). warnings.warn(msg, FutureWarning) <axessubplot:xlabel='daily return',="" ylabel="Density"> ### Density is a deprecated function and in a future version. Please adapt your code to use either 'displot' (a figure-level function with similar flexibility) or 'histplot' ### Application of the properties of t</axessubplot:xlabel='daily>
In [17]: Out[17]:	14 12 10 10 11 11 11 11 11 11 11 11 11 11 11
In [18]: In [19]:	<pre>closing_df=dr.get_data_yahoo(health_list,start='2021-07-10',end='2022-07-10')['Adj Close'] closing_df.head()</pre>
Out[19]:	Date 2021-07-12 410.553650 232.729950 165.252945 38.451939 85.311806 2021-07-13 413.020660 232.029831 165.048203 38.345562 85.370918 2021-07-14 409.270752 233.065247 166.169525 38.635693 85.646751 2021-07-15 414.510742 228.253067 164.170654 38.771084 86.306786 2021-07-16 414.165375 229.229309 163.907394 39.022533 87.341164
In [21]: Out[21]:	Symbols UNH LLY JNJ PFE NVO Date 2021-07-12 NaN NaN NaN NaN NaN 2021-07-13 0.006009 -0.003008 -0.001239 -0.002766 0.000693 2021-07-14 -0.009079 0.004462 0.004462 0.003504 0.003231 2021-07-15 -0.00833 0.004277 -0.001604 0.006485 0.011985
<pre>In [22]: Out[22]:</pre>	# Comparing UnitedHealth Group Incorporated to itself should show a perfectly linear relationship sns.jointplot('UNH','UNH',health_returns,kind='scatter',color='seagreen') C:\Users\T470\AppData\Roaming\Python\Python310\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword arg s: x, y, data. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will r esult in an error or misinterpretation. warnings.warn(<seaborn.axisgrid.jointgrid 0x1e792c67070="" at=""></seaborn.axisgrid.jointgrid>
	0.04 0.02 0.00 -0.02
In [23]:	# We'll use joinplot to compare the daily returns of United Health group and Johnson & Johnson j=sns.jointplot('UNH','JNJ',health_returns,kind='scatter') C:\Users\T470\AppData\Roaming\Python\Python\Python\Site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword arg s: x, y, data. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will r esult in an error or misinterpretation. warnings.warn(
	0.05 0.04 0.03 0.02 2 0.01 0.00
<pre>In [24]: In [25]: Out[25]:</pre>	<pre>sns.set(font_scale=1.5) health_returns[['UNH','JNJ']].corr(method='pearson') Symbols UNH JNJ</pre>
In [26]: Out[26]:	UNH 1.000000 0.500324 JNJ 0.500324 1.000000 # We can simply call pairplot on our DataFrame for an automatic visual analysis of all the comparisons sns.set(font_scale=1.5) sns.pairplot(health_returns.dropna()) <seaborn.axisgrid.pairgrid 0x1e792d7bd00="" at=""> 0.05</seaborn.axisgrid.pairgrid>
	U.10 0.10 0.05 0.00 → I
	-0.05 0.050 0.025 0.000 -0.025
	0.10 0.05 0.00 -0.05 0.05 0.00
In [27]: Out[27]:	0.00 0.05 0.0 0.1 0.00 0.05 0.0 0.1 -0.05 0.00 0.05 NVO health_returns[['LLY','NVO']].corr(method='pearson')
In [28]:	<pre># Set up our figure by naming it returns_fig, call PairPLot on the DataFrame returns_fig = sns.PairGrid(health_returns.dropna()) # Using map_upper we can specify what the upper triangle will look like. returns_fig.map_upper(plt.scatter,color='purple') # We can also define the lower triangle in the figure, inclufing the plot type (kde) or the color map (BluePurple) returns_fig.map_lower(sns.kdeplot,cmap='cool_d') # Finally we'll define the diagonal as a series of histogram plots of the daily return returns_fig.map_diag(plt.hist,bins=30)</pre>
Out[28]:	Seaborn.axisgrid.PairGrid at 0x1e78e377c70> 5 6 7 8 9 0.00 0.01
	0.05 R _{0.00}
In [29]:	# Let's go ahead and use sebron for a quick correlation plot for the daily returns #sns.corrplot(health_returns.dropna(), annot=True) sns.heatmap(health_returns.corr(), cmap="Y1GnBu", annot=True)
Out[29]:	<pre><axessubplot:xlabel='symbols', ylabel="Symbols"> ### 1</axessubplot:xlabel='symbols',></pre>
In [30]:	Just as from the PairPlot we see here numerically and visually that Johnson & Johnson and Eli lily & Company had the strongest correlation of daily stock return. It's also interesting to see that all the companies from the industry are positively correlated with JNJ and LLY being the highest correlation and Novo nordisk and Pfizer lowest pearson correlation value. Now that we've done some daily return analysis, let's go ahead and start looking deeper into actual risk analysis. sns.set_style('whitegrid') sns.set(font_scale=1) # Let's start by defining a new DataFrame as a clenaed version of the original tech_rets DataFrame rets = health_returns.dropna() area = np.pi*20 plt.scatter(rets.mean(), rets.std(),alpha = 0.5,s = area)
	<pre># Set the x and y limits of the plot. plt.ylim([0.01,0.025]) plt.xlim([-0.003,0.004]) #Set the plot axis titles plt.xlabel('Expected returns') plt.ylabel('Risk') for label, x, y in zip(rets.columns, rets.mean(), rets.std()): plt.annotate(label, xy = (x, y), xytext = (50, 50), textcoords = 'offset points', ha = 'right', va = 'bottom', arrowprops = dict(arrowstyle = '-', connectionstyle = 'arc3,rad=-0.3'))</pre>
	0.024 PFE NVO 0.022 LLY 0.020 0.018 0.016 0.014 0.012 0.010 -0.003 -0.002 -0.001 0.000 0.001 0.002 0.003 0.004
In [31]:	<pre># We use of dropna() here, otherwise the NaN values can't be read by seaborn sns.distplot(UNH['Daily Return'].dropna(),bins=100,color='purple')</pre>
Out[31]:	C:\Users\T470\AppData\Roaming\Python\Python310\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning) <axessubplot:xlabel='daily return',="" ylabel="Density"> 50 40 20 20 20 40 40 40 40 40 4</axessubplot:xlabel='daily>
In [32]: Out[32]:	# To ger the risk value of stock we use quantile. # The 0.05 empirical quantile of daily returns rets['UNH'].quantile(0.05) -0.023516431110474197 The 0.05 empirical quantile of daily returns is at -0.023. That means that with 95% confidence, our worst daily loss will not exceed 2.3%. If we have a
<pre>In [33]: Out[33]: In [34]:</pre>	10000dollarinvestment, our one — day5230. so we with 95% confidence we can say we only going to lose 230outof10000 investment. rets['LLY'].quantile(0.05) -0.023589604810083202 # Set up our time horizon days = 365 # Now our delta dt = 1/days # Now let's grab our mu (drift) from the expected return data we got for AAPL mu = rets.mean()['UNH']
In [35]:	<pre># Now let's grab the volatility of the stock from the std() of the average return sigma = rets.std()['UNH'] def stock_monte_carlo(start_price, days, mu, sigma): ''' This function takes in starting stock price, days of simulation, mu, sigma, and returns simulated price array''' # Define a price array price = np.zeros(days) price[0] = start_price # Schok and Drift shock = np.zeros(days) drift = np.zeros(days)</pre>
In [36]:	<pre># Run price array for number of days for x in range(1,days): # Calculate Schock shock[x] = np.random.normal(loc=mu * dt, scale=sigma * np.sqrt(dt)) # Calculate Drift drift[x] = mu * dt # Calculate Price price[x] = price[x-1] + (price[x-1] * (drift[x] + shock[x])) return price UNH1=np.round(UNH.loc[:,:],decimals=2) UNH</pre>
Out[36]:	Date 2021-07-12 416.39994 410.30998 411.019989 416.040009 2802600.0 410.553619 NaN 2021-07-13 419.690002 415.709991 416.380005 418.540009 2948900.0 413.020660 0.006009 2021-07-14 422.529999 413.350006 420.769989 414.739990 3538700.0 409.270721 -0.009079 2021-07-15 421.730011 407.200012 411.910004 420.04998 3546500.0 414.510742 0.012803 2021-07-16 422.290009 417.640015 421.359985 419.700012 2625400.0 414.165375 -0.000833
	2022-07-05 511.00000 492.250000 507.640015 505.239990 3029600.0 505.239990 -0.023502 2022-07-06 517.409973 504.299988 505.640015 515.289978 2506700.0 515.289978 0.019892 2022-07-07 517.299988 512.229980 515.250000 514.380005 2385400.0 514.380005 -0.001766 2022-07-08 528.369995 511.010010 512.309998 518.630005 3092100.0 518.630005 0.008262 251 rows × 7 columns # Get start price from UNH.head() start_price = 411.02 for run in range(100): plt.plot(stock_monte_carlo(start_price, days, mu, sigma)) plt.xlabel("Days") plt.xlabel("Days") plt.ylabel("Price")
Out[37]:	plt.ylabel("Price") plt.title('Monte Carlo Analysis for United Health Group') Text(0.5, 1.0, 'Monte Carlo Analysis for United Health Group') Monte Carlo Analysis for United Health Group 425 420 415 410 405
In [38]:	# Set a large numebr of runs runs = 10000 # Create an empty matrix to hold the end price data simulations = np.zeros(runs) # Set the print options of numpy to only display 0-5 points from an array to suppress output np.set_printoptions(threshold=5)
In [39]:	<pre>for run in range(runs): # Set the simulation data point as the last stock price for that run simulations[run] = stock_monte_carlo(start_price, days, mu, sigma)[days-1]; # Now we'lll define q as the 1% empirical qunatile, this basically means that 99% of the values should fall between here q = np.percentile(simulations, 1) # Now let's plot the distribution of the end prices plt.hist(simulations, bins=200) # Using plt.figtext to fill in some additional information onto the plot # Starting Price plt.figtext(0.6, 0.8, s="Start price: \$%.2f" %start_price)</pre>
	<pre># Mean ending price plt.figtext(0.6, 0.7, "Mean final price: \$%.2f" % simulations.mean()) # Variance of the price (within 99% confidence interval) plt.figtext(0.6, 0.6, "VaR(0.99): \$%.2f" % (start_price - q,)) # Display 1% quantile plt.figtext(0.15, 0.6, "q(0.99): \$%.2f" % q) # Plot a line at the 1% quantile result plt.axvline(x=q, linewidth=4, color='r') # Title plt.title(u"Final price distribution for UnitedHealth Group Stock after %s days" % days, weight='bold');</pre>
	Final price distribution for UnitedHealth Group Stock after 365 days 175
	Now we have looked at the 1% empirical quantile of the final price distribution to estimate the Value at Risk for the UnitedHealth Group, which looks to be $13.14 for every investment of 411.02$ (the price of one inital United Heath Group stock). The value at risk is \$397.88