Lehramt Mathe Vorlesung 4 Semester 1 !Achtung noch unvollständig!

Paul Wolf

November 26, 2019

Contents

1	Vorab	1
2	1.2.14 Satz:	2
3	1.2.15 Definition:	2
4	1.2.16 Satz:	2
5	1.2.17 Definitionen: (Binomialkoeffizienten)	2
6	1.2.19 Satz: (Rekursionsformel für die Binomialkoeffiziente)	3
7	1.2.20 Definition:	3
8	1.2.21 Satz:	3

1 Vorab

Prinzip der vollständigen Induktion:

- Eine Aussage A(1) ist richtig (Induktionsanfang IA)
- Aus A(n) folgt A(n-1) (Induktionsschritt IS)(Oder aus $A(1)\dots A(n)$ folgt A(n-1))

Manchmal will man Aussagen $A(n), n \in \mathbb{Z}, z \geq \mathbb{N}$ zeigen. Dann muss man A(n) als wahr nachweisen und dann zeigen, dass aus A(n) wieder A(n+1) für $n \geq \mathbb{N}$ folgt. Ein Fall für die vollständige Induktion ist:

2 1.2.14 Satz:

Für jedes $n \in \mathbb{N}$ gilt:

$$1 + 2 + \ldots + n = \sum_{\nu=1}^{n} \nu = \frac{n(n+1)}{2}$$

Beweis (vollständige Induktion):

1. Induktionsanfang (IA):

$$n=1, \sum_{\nu=1}^{n} \nu=1=\frac{1(1+1)}{2}$$

2. Induktionsschritt (IS):

$$\sum_{\nu}^{n} \nu = \frac{1(1+1)}{2} \text{ (Induktions annahme)}$$

z.z
$$\sum_{\nu}^{n} +1\nu = \frac{(n+1)(n+1-1)}{2}$$

3. Es gilt:

Es gilt:
$$\sum_{\nu=0}^{n} +1\nu = n+1 + \sum_{\nu=0}^{n} = (n+1) + \frac{(n)(n+1)}{2} = \frac{2(n+1)+n(n+1)}{2} = \frac{(n+1)(2+n)}{2} = \frac{(n+1)(n-1+1)}{2}$$

3 1.2.15 Definition:

Für $n \in \mathbb{N}_{\mathbb{O}}$ gilt:

$$0! := 1$$

$$n! := 1 * 2 * \dots = \prod_{\nu=1}^{n} \nu , n \ge 1$$

$$0! = 1; 1! = 1; 2! = 2; 3! = 6; 4! = 24$$
 etc.

4 1.2.16 Satz:

Ist $n \in \mathbb{N}$, dann hat die Menge $\prod_n := S_n := \{\pi : \{1, n\} \to \{1, \dots, n\} : \pi \text{ bijektiv}\}$ n! Elemente. S_n heißt auch meist Permutationsgruppe/Geometrische Gruppe.

1.2.17 Definitionen: (Binomialkoeffizienten)

Es seien $n, \nu \in \mathbb{N}_{\mathbb{O}}$.

$$\binom{n}{0} := 1$$
 (gelesen: n über 0)

$$\binom{n}{\nu}:=\frac{n(n-1\dots(n-\nu+1))}{1*2*\dots*\nu}=\prod\limits_{k=1}^{\nu}\frac{n-k-1}{k}$$
 (für $\nu\geq 1$ gelesen Enn über Nü)

6 1.2.19 Satz: (Rekursionsformel für die Binomialkoeffiziente)

Ist $n \in \mathbb{N}_{\mathbb{O}}, \nu \in \mathbb{N}$, dann gilt:

$$\binom{n}{\nu-1} + \binom{n}{\nu} = \binom{n+1}{\nu}$$

Beweis:

- 1. Fall $1 \leqslant \nu \leqslant n$: Dann gilt nach 1.2.18, dass $\binom{n}{\nu-1} + \binom{n}{\nu} = \frac{n!}{(\nu-1)!(n-1-\nu)!} + \frac{n!}{\nu!(n+1)!} = \frac{n!\nu}{\nu!(n+1-\nu)!} + \frac{n!(n+1-\nu)}{\nu!(n+1-\nu)!} = \frac{n!(\nu+n+1-\nu)}{\nu!(n+1-\nu)!} = \binom{n+1}{\nu}$
- 2. Fall $\nu = n + 1$: $\binom{n}{\nu 1} + \binom{n}{\nu} = 0 = \binom{n+1}{\nu}$

7 1.2.20 Definition:

Ist A eine endliche Menge, so sei |A| := #A die Anzahl der Elemente von A. Ist A nicht endlich, so schreibt man $|A| := \#A = +\infty$

8 1.2.21 Satz:

Es sei $n \in \mathbb{N}$, dann gilt für alle $\nu \in \mathbb{N}_{\mathbb{O}}$, dass

$$|\{M \subset \{1,\ldots,n\} : |M| = \nu\}| = \binom{n}{\nu}$$

Die Anzahl der k-elementigen Teilmenge einer n-elementigen Menge ist $\binom{n}{\nu}$

Beispiel ($n = 3, \nu = 2$):

$$|\{M \subset \{1,2,3\} : |M| > 2\}| = |\{1,2\},\{1,3\},\{2,3\}| = 3$$

$$\binom{n}{3} = \frac{3!}{2!(3-2)} = \frac{6}{2*1} = 3$$

Insbesondere ist $\binom{n}{k} \in \mathbb{N}_{\mathbb{O}}$ für alle $n, \nu \in \mathbb{N}_{\mathbb{O}}$

Beweis