ESCAPE ANALYSIS

TOMO KAZAHAYA AND REBECCA CHEN

1. Definitions

1.1. **Intuition.** In **let** x = v **in** e, the value v escapes if it is used outside e. We will consider the lambda calculus:

$$e \in Exp$$
 ::= $x \mid \lambda x. \ e \mid e \ e$
 $v \in Val$::= $\lambda x. \ e$
 $x \in Var$ a set of identifiers

in which the equivalent expression is $(\lambda x. e) v$. So v - an abstraction - escapes if it is applied outside e.

1.2. Modifying the time-stamped $CESK^*$ machine. This section draws heavily from [1, 2].

A state of the time-stamped $CESK^*$ machine consists of an expression, an environment that maps variables to addresses, a store that maps addresses to closures or continuations, a continuation pointer, and a time.

$$\zeta \in \Sigma = Exp \times Env \times Store \times Addr \times Time$$

$$\rho \in Env = Var \rightarrow Addr$$

$$\sigma \in Store = Addr \rightarrow Val \times Exp + Kont$$

$$\kappa \in Kont ::= \mathbf{mt} \mid \langle \mathbf{ar}, e, \rho, a \rangle \mid \langle \mathbf{fn}, v, \rho, a \rangle \mid$$

$$a \in Addr \qquad \text{an infinite set}$$

$$t \in Time \qquad \text{an infinite set}$$

Functions alloc and tick return a fresh address in the store and the next time, respectively:

$$alloc: \Sigma \to Addr \ tick: \Sigma \to Time$$

For an expression e, the initial state is given by the inj function:

$$inj(e) = \langle e, \emptyset, [a_0 \mapsto \mathbf{mt}], a_0, t_0 \rangle.$$

Figure 1 shows the transition rules. Rule 4, in which an abstraction is applied, is the crucial one. We need to check whether λx . e has escaped as well as somehow store the information that v escapes if it

$$\frac{\zeta \longrightarrow \zeta', \text{ where } a' = alloc(\zeta), t' = tick(\zeta)}{1 \quad \langle x, \rho, \sigma, a, t \rangle \longrightarrow} \\
\langle v, \rho_v, \sigma, a, t' \rangle \text{ where } \langle v, \rho_v \rangle = \sigma(\rho(x)) \\
2 \quad \langle e_1 e_2, \rho, \sigma, a, t \rangle \longrightarrow} \\
\langle e_1, \rho, \sigma[a' \mapsto \langle \mathbf{ar}, e_2, \rho, a \rangle], a', t' \rangle \\
\langle v, \rho, \sigma, a, t \rangle \longrightarrow} \\
3 \quad \text{if } \sigma(a) = \langle \mathbf{ar}, e, \rho_{\kappa}, a_{\kappa} \rangle \\
\langle e, \rho_{\kappa}, \sigma[a' \mapsto \langle \mathbf{fn}, v, \rho, a_{\kappa} \rangle], a', t' \rangle} \\
4 \quad \text{if } \sigma(a) = \langle \mathbf{fn}, \lambda x. \ e, \rho_{\kappa}, a_{\kappa} \rangle \\
\langle e, \rho_{\kappa}[x \mapsto a'], \sigma[a' \mapsto \langle v, \rho \rangle], a_{\kappa}, t' \rangle$$

Figure 1. Transitions of the time-stamped $CESK^*$ machine

is applied after the evaluation of e has finished. What we do is tag v with a_{κ} , the address of the continuation that we will go to when we are done evaluating e:

$$Val ::= \lambda x. \ e \mid (\lambda x. \ e)^a$$

The new transition rules are in Figure 2. In Rule 4a, v is tagged with

$\zeta \longrightarrow \zeta'$, where $a' = alloc(\zeta), t' = tick(\zeta)$	
1	$\langle x, \rho, \sigma, a, t \rangle \longrightarrow$
	$\langle x, \rho, \sigma, a, t \rangle \longrightarrow \langle v, \rho_v, \sigma, a, t' \rangle \text{ where } \langle v, \rho_v \rangle = \sigma(\rho(x))$ $\langle e_1 e_2, \rho, \sigma, a, t \rangle \longrightarrow \langle e_1, \rho, \sigma[a' \mapsto \langle \mathbf{ar}, e_2, \rho, a \rangle], a', t' \rangle$ $\langle v, \rho, \sigma, a, t \rangle \longrightarrow \text{if } \sigma(a) = \langle \mathbf{ar}, e, \rho_\kappa, a_\kappa \rangle$ $\langle e_1, e_2, \sigma[a' \mapsto \langle \mathbf{fr}, v, e, a_\kappa \rangle] = \langle \mathbf{ar}, e', t' \rangle$
2	$\langle e_1 e_2, \rho, \sigma, a, t \rangle \longrightarrow$
	$\langle e_1, \rho, \sigma[a' \mapsto \langle \mathbf{ar}, e_2, \rho, a \rangle], a', t' \rangle$
	$\langle v, \rho, \sigma, a, t \rangle \longrightarrow$
3	if $\sigma(a) = \langle \mathbf{ar}, e, \rho_{\kappa}, a_{\kappa} \rangle$
	$(e, \rho_{\kappa}, o[a \mapsto \langle \mathbf{m}, v, \rho, a_{\kappa} \rangle], a, t)$
4	if $\sigma(a) = \langle \mathbf{fn}, v_{\kappa}, \rho_{\kappa}, a_{\kappa} \rangle, v_{\kappa} = \lambda x_{\kappa}. e_{\kappa} \text{ or } (\lambda x_{\kappa}. e_{\kappa})^{a_{\text{abs}}}$
4a	if $v = \lambda x$. e
	$\langle e_{\kappa}, \rho_{\kappa}[x_{\kappa} \mapsto a'], \sigma[a' \mapsto \langle v^{a_{\kappa}}, \rho \rangle], a_{\kappa}, t' \rangle$
4b	$if v = (\lambda x. e)^{a_v}$
	$\langle e_{\kappa}, \rho_{\kappa}[x_{\kappa} \mapsto a'], \sigma[a' \mapsto \langle v, \rho \rangle], a_{\kappa}, t' \rangle$

FIGURE 2. Transitions of the modified time-stamped $CESK^*$ machine

the continuation pointer when it is put into the store for the first time. Rule 4b preserves the tag on a v that was previously put into the store and read out again. In both rules, the abstraction v_k that is applied escapes if it has a tag $a_{\rm abs}$ that is not reachable in σ from a_{κ} , where reachability is defined as follows:

Let $a, a' \in Addr$ and $\sigma \in Store$.

$$a \longrightarrow_{\sigma} a' := \text{``}\sigma(a) = \langle \mathbf{ar}, _, _, a' \rangle \text{ or } \sigma(a) = \langle \mathbf{fn}, _, _, a' \rangle \text{'`}$$

$$\text{``}a' \text{ is reachable in } \sigma \text{ from } a\text{''} := a \longrightarrow_{\sigma}^{*} a'$$

Note that any address is reachable from itself.

REFERENCES

- [1] Abstract Register Machines. Lecture notes at http://www.seas.harvard.edu/courses/cs152/2015sp/ (accessed October 2015).
- [2] D. Van Horn and M. Might. Abstracting Abstract Machines. International Conference on Functional Programming 2010, 51—62 (September 2010).