Lecture 14

Stem Cells, Cancer and Therapy (3-0-0-6)

Rajkumar P. Thummer

"O" Block - Room 006; BSBE

Phone: 3208;

Email: rthu@iitg.ac.in

Dr. Rajkumar P Thummer

Assistant Professor

Department of Biosciences and Bioengineering

IIT Guwahati

Guwahati

Types of stem cells

Adult Stem Cells

Adult stem cells

(most common)

Adult Stem Cell Locations

Hematopoietic Stem Cells (HSCs) Differentiation

Isolation of adult stem cells

Components of the Immune System – Immune Cells

Innate vs Adaptive Immunity

Isolation of adult stem cells

Bone marrow

neural Stelli Cells (NSCS) Dillerentiation

https://captivatebio.com/what-are-neural-stem-cells/

Mesenchymal Stem Cells (MSCs) Differentiation

Mesenchymal Stem Cells (MSCs) Differentiation

vitro expansion

Mesenchymal stem cells derived from Wharton's jelly:

Comparative phenotype analysis between tissue and in

DOI: <u>10.3233/BME-2012-0714</u>

Source · PubMed

Talar Margossian · Dic Reppel · Nehman Makdissy · Show all 6 authors ·

Céline Huselstein

Fig. 1. Isolation of Wharton's jelly from human umbilical cord. (A) Cord removed from T75 flask and washed with alcohol. (B) Insertion of the clamp into the umbilical vein. (C) Longitudinal incision in the wall of the cord. (D and E) Detachment of the umbilical vein. (F) Withdraw of umbilical arteries. (G) Pieces of Wharton's jelly after removal of arteries and vein. (H) Cut into small pieces of 2–3 mm. (I) Distribution of pieces in six well plates. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/BME-2012-0714.)

Adipose-derived Sterii Celis (ADSCS) Dillerentiation

Isolation of adult stem cells

Isolation of adult stem cells

Isolation of spermatogonial stem cells

Isolation of spermatogonial stem cells

Limitations of multipotent (adult/tissue) stem cells

□ No ethical issues (consent required)
 □ Immune rejection (only when transplanted from different patient)
 □ Multipotent
 □ are scarce
 □ difficult to obtain pure populations
 □ difficult to maintain these pure population of cells

indefinitely in culture; limited life-span

Pluripotent stem cell vs Multipotent Stem Cell		
	Pluripotent Stem Cell (PSCs) Embryonic Stem Cell (ESC) Induced Pluritpotent Stem Cell (iPSC)	Multipotent Stem Cell (MSC) Adult Stem Cells (Hematopoietic Stem Cells; Mesenchymal Stem Cells, Neural Stem Cells, etc.
Potency	Pluripotent (differentiates into all cell types)	Multipotent (differentiates into limited number of cell type
Biomedical	Vast	Limited

Potential Proliferation Unlimited (immortal) Limited Life-span

capacity

Proliferation Slow compared to PSC (asymmetric division) Fast (symmetric division) rate

Embryo or Artificially reprogrammed

-can be cancerous

Grown relatively easily in culture ... one

-ESCs are controversial as destruction of

requires large amount of cells for cell therapy

embryo is involved (but not in case of iPSCs)

Derived from

Availability

Ethics ...

Cancerous

Adult human body

-Non-controversial ...

-Mostly non-cancerous

populations

Are scarce and difficult to obtain pure

Three Key Facts About Stem Cells

- The defining characteristic of a stem cell is that it can self-renew or differentiate.
- Stem cells enable the body to grow, repair and renew.
- There are three types of stem cells:

Differentiation (Specializing)

Specialized cell (e.g. muscle cell)

Self-Renewal (Copying)

Stem cell

Tissue Stem Cells

In the fetus, baby and throughout life.

Found throughout the body, each type gives rise to at least one type of more specialized cell.

For example, blood stem cells are found in the bone marrow.

Embryonic Stem Cells

The cells inside are the inner cell mass.

These cells, then grown in the lab, are called *embryonic stem cells.*

0000000000000

factors are added to differentiate the ES cells into any cell type.

Induced Pluripotent Stem Cells (iPS)

Genetically reprogrammed

O Pluripotent cell
('embryonic-like')

iPS cells are grown in the lab.

Varying factors are added to differentiate the iPS cells into any cell type.

© EuroStemCell www.eurostemcell.org

Embryonic stem cells and iPS cells are *pluripotent*; they can generate all the specialized cells of the body.