Μάθημα 1.2: <u>Πράξεις στα Συστ</u>ήματα Αρίθμησης

Δημήτρης Ψούνης

Περιεχόμενα Μαθήματος

Δημήτρης Ψούνης, ΠΛΗ 10, Μάθημα 1.2: Πράξεις στα Συστήματα Αρίθμησης

Α. Θεωρία

1. Πρόσθεση στα Συστήματα Αρίθμησης

- 1. Πρόσθεση στο Δεκαδικό Σύστημα
- 2. Πρόσθεση στο Δυαδικό Σύστημα
- 3. Πρόσθεση στο Οκταδικό Σύστημα
- 4. Πρόσθεση στο Δεκαεξαδικό Σύστημα
- 5. Πρόσθεση σε Άλλα Συστήματα

2. Αφαίρεση στα Συστήματα Αρίθμησης

- 1. Αφαίρεση στο Δεκαδικό Σύστημα
- 2. Αφαίρεση στο Δυαδικό Σύστημα
- 3. Αφαίρεση στο 8δικό και 16δικό Σύστημα
- 4. Αφαίρεση σε Άλλα Συστήματα

3. Πολλαπλασιασμός και Διαίρεση

- 1. Πολλαπλασιασμός στα Συστήματα Αρίθμησης
- 2. Διαίρεση στα Συστήματα Αρίθμησης

4. Αναπαράσταση Αριθμών στην Μνήμη του Υπολογιστή

- 1. Bits, Bytes και Απεικόνιση στη Μνήμη
- 2. Μήκος Λέξης
- 3. Αναπαράσταση Αρνητικών με Μέτρο
- 4. Αναπαράσταση Αρνητικών με Συμπλήρωμα ως Προς 1
- 5. Αναπαράσταση Αρνητικών με Συμπλήρωμα ως Προς 2

5. Αφαίρεση με Τεχνική Συμπληρώματος ως Προς 2

- 1. Αφαίρεση στο Δυαδικό Σύστημα Αρίθμησης
- 2. Αφαίρεση σε Άλλα Σύστημα Αρίθμησης

Ασκήσεις

Δημήτρης Ψούνης, ΠΛΗ 10, Μάθημα 1.2: Πράξεις στα Συστήματα Αρίθμησης

1. Πρόσθεση στα Συστήματα Αρίθμησης

1. Πρόσθεση στο Δεκαδικό Σύστημα Αρίθμησης

- Λίγα λόγια για την **πρόσθεση** στο **δεκαδικό** σύστημα αρίθμησης
 - Οι δύο αριθμοί που προσθέτουμε καλούνται προσθετέοι
 - Το αποτέλεσμα είναι το άθροισμα των αριθμών

Μεθοδολογία (από το δημότικο):

- Γράφουμε τους αριθμούς τον ένα κάτω απ' τον άλλο με ευθυγράμμιση στην ίδια τάξη ψηφίων (υποδιαστολή).
- Κάνουμε την πρόσθεση από δεξιά προς τα αριστερά.
- Σε περίπτωση που το άθροισμα είναι μεγαλύτερο του 10 μεταφέρουμε κρατούμενο 1 μονάδα (συμβολίζει μια 10-άδα) στην αμέσως αριστερή στήλη και καταγράφουμε το αποτέλεσμα.

<u>Παράδειγμα:</u> (5649)₁₀ +(184)₁₀

Άρα: $(5649)_{10} + (184)_{10} = (5833)_{10}$

Δημήτρης Ψούνης, ΠΛΗ 10, Μάθημα 1.2: Πράξεις στα Συστήματα Αρίθμησης

www.psounis.gr

Α. Θεωρία

1. Πρόσθεση στα Συστήματα Αρίθμησης

2. Πρόσθεση στο Δυαδικό Σύστημα Αρίθμησης

- Στην πρόσθεση στο δυαδικό σύστημα αρίθμησης
 - Η διαφορά με το δεκαδικό σύστημα είναι ότι το κρατούμενο συμβολίζει μια 2-άδα

Μεθοδολογία:

- Επειδή προκύπτουν αθροίσματα 3 ψηφίων (2 προσθετέοι και κρατούμενο) ισχύουν τα εξής:
 - $0 + 0 = (0)_{10} = (0)_2$: Άθροισμα 0 (όχι κρατούμενο)
 - $0 + 0 + 1 = (1)_{10} = (1)_2$: Άθροισμα 1 (όχι κρατούμενο)
 - 0 + 1 + 1 = (2)₁₀ = (10)₂ : Άθροισμα 0 (κρατούμενο 1)
 - 1+1+1=(3)₁₀=(11)₂: Άθροισμα 1 (κρατούμενο 1)

Παράδειγμα 1: (110110)₂ + (11100)₂

$$(+) \frac{111110110}{1110010}$$

Παράδειγμα 2: (1011.01)₂ + (10.111)₂

$$\begin{array}{c}
10\overline{11}.01\\
10\overline{11}.01\\
\underline{}_{(+)} 10.111\\
1110.001
\end{array}$$

 $A\rho\alpha$: $(110110)_2 + (11100)_2 = (1010010)_2$

Άσκηση 1: Εκτελέστε τις προσθέσεις στο δυαδικό σύστημα αρίθμησης:

$$I.$$
 $(1101)_2 + (11010)_2$

$$II. (110.001)_2 + (110.01101)_2$$

III.
$$(110)_2 + (11.0011)_2$$

Α. Θεωρία

1. Πρόσθεση στα Συστήματα Αρίθμησης

Δημήτρης Ψούνης, ΠΛΗ 10, Μάθημα 1.2: Πράξεις στα Συστήματα Αρίθμησης

2. Πρόσθεση στο Δυαδικό Σύστημα Αρίθμησης (Ασκήσεις)

Άσκηση 2: Εκτελέστε την ακόλουθη πρόσθεση του δυαδικού συστήματος και επαληθεύστε το αποτέλεσμα μέσω του δεκαδικού συστήματος.

$$(10010)_2 + (111)_2$$

Δημήτρης Ψούνης, ΠΛΗ 10, Μάθημα 1.2: Πράξεις στα Συστήματα Αρίθμησης

Α. Θεωρία

- 1. Πρόσθεση στα Συστήματα Αρίθμησης
- 3. Πρόσθεση στο Οκταδικό Σύστημα Αρίθμησης
- Στην πρόσθεση στο οκταδικό σύστημα αρίθμησης
 - Η διαφορά με το δεκαδικό σύστημα είναι ότι το κρατούμενο συμβολίζει μια 8-άδα

Μεθοδολογία:

- Όταν θα αθροίζουμε δύο οκταδικά ψηφία το αποτέλεσμα θα βγει το πολύ 15 (7+7+1).
- Ο ακόλουθος πίνακας ελαχιστοποιεί τα λάθη:

Άθροισμα				
Αποτέλεσμα				
0 ←				
1 ←	9			
2 ←				
3 ←	— 11			
4 ←	— 12			
5 ←				
6 ←	— 14			
7 ←	 15			
V	→			

Π.χ.

· Αν το άθροισμα βγει 6 τότε γράφουμε στο αποτέλεσμα 6 και το κρατούμενο είναι 0

Κρατούμενο 0

Αν το άθροισμα βγει 14 τότε γράφουμε στο απότέλεσμα 6 και το κρατούμενο είναι 1

Κρατούμενο 1

Α. Θεωρία

- 1. Πρόσθεση στα Συστήματα Αρίθμησης
- 2. Πρόσθεση στο Οκταδικό Σύστημα Αρίθμησης

Δημήτρης Ψούνης, ΠΛΗ 10, Μάθημα 1.2: Πράξεις στα Συστήματα Αρίθμησης

Άρα:
$$(57.07)_8 + (11.231)_8 = (70.321)_8$$

Κρατούμενο 1

Κρατούμενο 0

1. Πρόσθεση στα Συστήματα Αρίθμησης

2. Πρόσθεση στο Οκταδικό Σύστημα Αρίθμησης (Ασκήσεις)

Άσκηση 1: Εκτελέστε τις προσθέσεις στο οκταδικό σύστημα αρίθμησης:

$$I. (712.07)_8 + (6.17)_8$$

$$II. (777.77)_8 + (1.01)_8$$

III.
$$(523)_8 + (675)_8$$

Α. Θεωρία

1. Πρόσθεση στα Συστήματα Αρίθμησης

2. Πρόσθεση στο Οκταδικό Σύστημα Αρίθμησης (Ασκήσεις)

Άσκηση 2: Εκτελέστε την ακόλουθη πρόσθεση του οκταδικού συστήματος και επαληθεύστε το αποτέλεσμα μέσω του δεκαδικού συστήματος.

$$(137)_8 + (52)_8$$

Δημήτρης Ψούνης, ΠΛΗ 10, Μάθημα 1.2: Πράξεις στα Συστήματα Αρίθμησης

www.psounis.

11

Α. Θεωρία

1. Πρόσθεση στα Συστήματα Αρίθμησης

- 4. Πρόσθεση στο Δεκαεξαδικό Σύστημα Αρίθμησης
- Στην πρόσθεση στο δεκαεξαδικό σύστημα αρίθμησης
 - Η διαφορά με το δεκαδικό είναι ότι το κρατούμενο συμβολίζει μια 16-άδα

Μεθοδολογία:

- Όταν θα αθροίζουμε δύο δεκεαξαδικά ψηφία το αποτέλεσμα θα βγει το πολύ 31 (15+15+1).
- Ο ακόλουθος πίνακας ελαχιστοποιεί τα λάθη:

Π.χ.:

- Αν το άθροισμα βγει 5 τότε
 - το αποτέλεσμα είναι 5 και το κρατούμενο 0
- Αν το άθροισμα βγει 12 τότε
 - το αποτέλεσμα είναι C και το κρατούμενο 0
- Αν το άθροισμα βγει 18 τότε το αποτέλεσμα είναι 2 και το κρατούμενο 1
- Αν το άθροισμα βγει 28 τότε
 - το αποτέλεσμα είναι C και το κρατούμενο 1

Α. Θεωρία

- 1. Πρόσθεση στα Συστήματα Αρίθμησης
- 4. Πρόσθεση στο Δεκαεξαδικό Σύστημα Αρίθμησης

Δημήτρης Ψούνης, ΠΛΗ 10, Μάθημα 1.2: Πράξεις στα Συστήματα Αρίθμησης

 $Aρα:(16F1)_{16} + (5739)_{16} = (6E2A)_{16}$

Παράδειγμα 1: $(AA.81)_{16} + (1C.802)_{16}$ $(+) \qquad \textbf{1C.802}$

Άρα: $(AA.81)_{16} + (1C.802)_{16} = (C7.012)_{16}$

C7.012

1. Πρόσθεση στα Συστήματα Αρίθμησης

4. Πρόσθεση στο Δεκαεξαδικό Σύστημα Αρίθμησης (Ασκήσεις)

Άσκηση 1: Εκτελέστε τις προσθέσεις στο 16δικό σύστημα αρίθμησης:

$$I.$$
 (AA)₁₆ +(BC)₁₆

$$II. \quad (19B.A2)_{16} + (0.FE)_{16}$$

III.
$$(DEF)_2 + (FED)_2$$

Α. Θεωρία

1. Πρόσθεση στα Συστήματα Αρίθμησης

4. Πρόσθεση στο Δεκαεξαδικό Σύστημα Αρίθμησης (Ασκήσεις)

Άσκηση 2: Εκτελέστε την ακόλουθη πρόσθεση του 16δικού συστήματος και επαληθεύστε το αποτέλεσμα μέσω του δεκαδικού συστήματος.

$$(2A)_{16} + (3B)_{16}$$

Δημήτρης Ψούνης, ΠΛΗ 10, Μάθημα 1.2: Πράξεις στα Συστήματα Αρίθμησης

Α. Θεωρία

1. Πρόσθεση στα Συστήματα Αρίθμησης

5. Πρόσθεση σε άλλα Συστήματα Αρίθμησης

- Εντελώς αντίστοιχα σε οποιοδήποτε άλλο σύστημα αρίθμησης:
 - Η διαφορά με το δεκαδικό είναι ότι το κρατούμενο συμβολίζει μια b-άδα όπου b είναι η βάση του συστήματος αρίθμησης

Μεθοδολογία:

- Αντίστοιχα θα ισχύει ότι το άθροισμα θα είναι το πολύ (b-1)+(b-1)+1=2b-1
- Ο πίνακας θα έχει μία στήλη από 0 έως b-1 και μία στήλη από b έως 2b-1

Άσκηση: Εκτελέστε τις ακόλουθες προσθέσεις:

$$I. (311.13)_4 + (23.21)_4$$

$$II. (712.66)_9 + (83.771)_9$$

Δημήτρης Ψούνης, ΠΛΗ 10, Μάθημα 1.2: Πράξεις στα Συστήματα Αρίθμησης

Α. Θεωρία

2. Αφαίρεση στα Συστήματα Αρίθμησης

1. Αφαίρεση στο Δεκαδικό Σύστημα Αρίθμησης

- Λίνα λόνια νια την αφαίρεση στο δεκαδικό σύστημα αρίθμησης
 - Αφαιρούμε από το μειωτέο τον αφαιρετέο
 - Το αποτέλεσμα είναι η διαφορά των αριθμών

Μεθοδολογία

- Γράφουμε τον αφαιρετέο κάτω από το μειωτέο με ευθυγράμμιση στην ίδια τάξη ψηφίων (υποδιαστολή).
- Κάνουμε την αφαίρεση από δεξιά προς τα αριστερά.
- Σε περίπτωση που το ψηφίο του μειωτέου είναι μικρότερο από το ψηφίο του αφαιρετέου
 - Προσθέτουμε μια δεκάδα στο τρέχον ψηφίο του μειωτέου
 - Προσθέτουμε μια μονάδα στο αριστερό ψηφίο του αφαιρετέου

Παράδειγμα: (3549)₁₀ -(378)₁₀ Διόρθωση Μειωτέου Μειωτέος Διόρθωση Αφαιρετέου Αφαιρετέος

Διαφορά

Άρα: $(3549)_{10} - (378)_{10} = (3171)_{10}$

2. Αφαίρεση στα Συστήματα Αρίθμησης

1. Αφαίρεση στο Δεκαδικό Σύστημα Αρίθμησης

Μεθοδολονία:

Την ίδια διαδικασία κάνουμε αν ο αφαιρετέος έχει κι άλλα ψηφία μεγαλύτερα από αυτά του αφαιρετέου προσέχοντας τις διορθώσεις

Παράδεινμα:

$$(3249)_{10} - (378)_{10}$$

$$\begin{array}{c}
3\cancel{2}\cancel{4}\cancel{9} \\
(-)^{\cancel{3}}\cancel{7}\cancel{8} \\
2871
\end{array}$$

Άρα:
$$(3249)_{10} - (378)_{10} = (2871)_{10}$$

Παράδεινμα:

$$(3079)_{10} - (288)_{10}$$

$$\text{Άρα: } (3249)_{10} - (378)_{10} = \qquad \text{Άρα: } (3079)_{10} - (288)_{10} = \\
 (2871)_{10} \qquad (2791)_{10}$$

Παράδειγμα:

$$(300079)_{10} - (288)_{10}$$

Άρα:
$$(300079)_{10} - (288)_{10} = (299791)_{10}$$

Α. Θεωρία

2. Αφαίρεση στα Συστήματα Αρίθμησης

1. Αφαίρεση στο Δεκαδικό Σύστημα Αρίθμησης (Ασκήσεις)

Άσκηση: Εκτελέστε τις ακόλουθες πράξεις του δεκαδικού συστήματος αρίθμησης

$$I. (10.16)_{10} - (8.396)_{10}$$

$$II.$$
 $(112)_{10}$ $-(181)_{10}$

III.
$$-(121)_{10} - (189)_{10}$$

Δημήτρης Ψούνης, ΠΛΗ 10, Μάθημα 1.2: Πράξεις στα Συστήματα Αρίθμησης

Α. Θεωρία

2. Αφαίρεση στα Συστήματα Αρίθμησης

2. Αφαίρεση στο Δυαδικό Σύστημα Αρίθμησης

- Στην αφαίρεση στο δυαδικό σύστημα αρίθμησης όταν το ψηφίο του μειωτέου είναι μικρότερο από το ψηφίο του αφαιρετέου:
 - Προσθέτουμε μια δυάδα στο ψηφίο του μειωτέου.
 - Προσθέτουμε μία μονάδα στο αριστερό ψηφίο του αφαιρετέου.

Μεθοδολονία

- Καλό θα είναι στις διορθώσεις που παριστούμε να βάζουμε τα ισοδύναμα δεκαδικά.
- Οι πιο έμπειροι ας το αναπαραστήσουν με δυαδικό!

Παράδειγμα: $(1101)_2 - (110)_2$

Άρα:
$$(1101)_2 - (110)_2 = (111)_2$$

Δημήτρης Ψούνης, ΠΛΗ 10, Μάθημα 1.2: Πράξεις στα Συστήματα Αρίθμησης

Α. Θεωρία

2. Αφαίρεση στα Συστήματα Αρίθμησης 1. Αφαίρεση στο Δεκαδικό Σύστημα Αρίθμησης

Άρα:
$$(1001)_2 - (111)_2 = (10)_2$$

Άρα:
$$(1010)_2 - (101)_2 = (101)_2$$

Άρα:
$$(101.001)_2 - (11.1001)_2 = (1.1001)_2$$

2. Αφαίρεση στα Συστήματα Αρίθμησης

2. Αφαίρεση στο Δυαδικό Σύστημα Αρίθμησης (Ασκήσεις)

Άσκηση 1: Εκτελέστε τις ακόλουθες αφαιρέσεις του δυαδικού συστήματος αρίθμησης

$$I. (1010.11)_2 - (111.101)_2$$

$$II. (1000)_2 - (11.0001)_2$$

III.
$$(11.01)_2 - (100.101)_2$$

Α. Θεωρία

2. Αφαίρεση στα Συστήματα Αρίθμησης

3. Αφαίρεση στο Οκταδικό και Δεκαεξαδικό Σύστημα Αρίθμησης

- Στην αφαίρεση στο οκταδικό σύστημα αρίθμησης, δουλεύουμε αντίστοιχα με το δεκαδικό, αλλά:
 - Προσθέτουμε μια οκτάδα στο ψηφίο του μειωτέου.
 - Προσθέτουμε μία μονάδα στο αριστερό ψηφίο του αφαιρετέου.
- Στην αφαίρεση στο 16δικό σύστημα αρίθμησης, δουλεύουμε αντίστοιχα με το δεκαδικό, αλλά:
 - Προσθέτουμε μια δεκαεξάδα στο ψηφίο του μειωτέου.
 - Προσθέτουμε μία μονάδα στο αριστερό ψηφίο του αφαιρετέου.

Μεθοδολογία

- Στο 16δικό βοηθάει να ανάγουμε πρώτα τα γράμματα στα ισοδύναμα δεκαδικά.
- Οι πράξεις που προκύπτουν γίνονται πάντα στο δεκαδικό.

Άρα: $(732)_8 - (64)_8 = (646)_8$

Άρα: $(CAA)_{16} - (2F)_{16} = (C7B)_{16}$

Δημήτρης Ψούνης, ΠΛΗ 10, Μάθημα 1.2: Πράξεις στα Συστήματα Αρίθμησης

Α. Θεωρία

2. Αφαίρεση στα Συστήματα Αρίθμησης

3. Αφαίρεση στο Οκταδικό και Δεκαεξαδικό Σύστημα Αρίθμησης (Ασκήσεις)

Άσκηση: Εκτελέστε τις ακόλουθες αφαιρέσεις

$$I. (71.01)_8 - (16.54)_8$$

$$II.$$
 (A. 1)₁₆ $-(1. A)_{16}$

III.
$$(2BB.FA)_{16} - (F8.AC)_{16}$$

Α. Θεωρία

2. Αφαίρεση στα Συστήματα Αρίθμησης

4. Αφαίρεση σε άλλα Συστήματα Αρίθμησης

Δημήτρης Ψούνης, ΠΛΗ 10, Μάθημα 1.2: Πράξεις στα Συστήματα Αρίθμησης

- Εντελώς αντίστοιχα σε οποιοδήποτε άλλο σύστημα αρίθμησης κάνουμε την αφαίρεση από αριστερά προς τα δεξιά:
- Αν το ψηφίο του μειωτέου είναι μικρότερο από το ψηφίο του αφαιρετέου:
 - Προσθέτουμε b μονάδες στο τρέχον ψηφίο του μειωτέου
 - Προσθέτουμε μία μονάδα στο αριστερό του τρέχοντος ψηφίο του αφαιρετέου

Άσκηση: Εκτελέστε τις ακόλουθες προσθέσεις:

$$I.$$
 (311.13)₄ -(23.21)₄

$$II. (712.66)_9 - (83.771)_9$$

3. Πολλαπλασιασμός και Διαίρεση

- 1. Πολλαπλασιασμός στα Συστήματα Αρίθμησης
- Ο συνήθης υπολογιστικός τρόπος για να γίνει ένας πολλαπλασιασμός είναι μέσω διαδοχικών προσθέσεων
- Οι προσθέσεις γίνονται στο σύστημα αρίθμησης που είναι οι αριθμοί.

<u>Παράδειγμα 1:</u> (4) ₁₀ × (5) ₁₀				
	(+)	5 5	< 1 ^η φορά < 2 ^η φορά	
	(+)	10 5	< 3 ^η φορά	
	(+)	15 5	<−−− 4 ^η φορά	
		20		
$A\rho\alpha:(4)_{10}\times(5)_{10}=(20)_{10}$				

 $A\rho\alpha$: $(100)_2 \times (101)_2 = (10100)_2$

Α. Θεωρία

3. Πολλαπλασιασμός και Διαίρεση

- 2. Διαίρεση στα Συστήματα Αρίθμησης
- Ο συνήθης υπολογιστικός τρόπος για να γίνει μία διαίρεση είναι μέσω διαδοχικών αφαιρέσεων
- Οι αφαιρέσεις γίνονται στο σύστημα αρίθμησης που είναι οι αριθμοί.

Άρα: $(17)_{10} / (5)_{10} = (3)_{10}$ με υπόλοιπο διαίρεσης ίσο με το 2

 Π αράδειγμα 2: $(10001)_2/(101)_2$ 10001 101 1η αφαίρεση 1100 101 (-)2^η αφαίρεση 111 101 (-)3^η αφαίρεση 10 -STOP. Αριθμός<101

Άρα: (10001)₂ /(101)₂=(11)₂ με υπόλοιπο διαίρεσης ίσο με το (10)2

Δημήτρης Ψούνης, ΠΛΗ 10, Μάθημα 1.2: Πράξεις στα Συστήματα Αρίθμησης

Α. Θεωρία

4. Αναπαράσταση Αριθμών στον Υπολογιστή

- 1. Bits, Bytes και Απεικόνιση Αριθμών στην μνήμη
- Μπορούμε (για την ώρα) να οραματιστούμε την μνήμη του υπολογιστή σαν μια ταινία που έχει χώρους αποθήκευσης για δυαδικά ψηφία.
- Ένα δυαδικό ψηφίο (που έχει τιμή 0 ή 1) καλείται bit. Αποτελεί τη μικρότερη μονάδα αποθήκευσης πληροφορίας στους υπολογιστές.
- 8 διαδοχικά bits αποτελούν 1 byte.
 - Ιστορικά 1 byte χρησίμευε για την αποθήκευση ενός χαρακτήρα στην μνήμη σύμφωνα με τον πίνακα ASCII σε παλιότερα συστήματα.
 - Ό.τι βλέπουμε στον υπολονιστή είναι τελικά κωδικοποιημένο στο δυαδικό σύστημα αρίθμησης.

Δημήτρης Ψούνης, ΠΛΗ 10, Μάθημα 1.2: Πράξεις στα Συστήματα Αρίθμησης

Α. Θεωρία

- 4. Αναπαράσταση Αριθμών στον Υπολογιστή
- 1. Bits, Bytes και Απεικόνιση Αριθμών στην μνήμη

Н

Ο πίνακας ASCII στους πρώτους υπολογιστές κωδικοποιούσε σύμβολα σε bytes!

Παράδειγμα: Η λέξη: 01001000 01000101 01011100 01011100 01000001 01010011 S

4. Αναπαράσταση Αριθμών στον Υπολογιστή

2. Μήκος Λέξης

- Για την ομαδοποίηση των bits χρησιμοποιούμε τον όρο μήκος λέξης (πόσα bits ομαδοποιούμε).
 Κάθε υπολογιστής έχει συγκεκριμένο μήκος λέξης (συνηθέστερα 1 byte)
 - Ένα byte έχει μήκος λέξης = 8

Έτσι σε ένα υπολογιστή με μήκος λέξης 8:

- Μπορούμε να αναπαραστήσουμε 28 αριθμούς
- Αν θέλουμε να αναπαραστήσουμε φυσικούς αριθμούς, μπορούμε να αναπαραστήσουμε από το 0 έως το 28-1 (δηλαδή από το 0 έως το 255)

Σε μια κωδικοποίηση αριθμών κατά σύμβαση λέμε ότι το αριστερότερο είναι το **περισσότερο σημαντικό ψηφίο** (Most Significant Bit – MSB) και το δεξιότερο είναι το **λιγότερο σημαντικό ψηφίο** (Least Significant Bit – LSB)

Α. Θεωρία

4. Αναπαράσταση Αριθμών στον Υπολογιστή

Δημήτρης Ψούνης, ΠΛΗ 10, Μάθημα 1.2: Πράξεις στα Συστήματα Αρίθμησης

2. Μήκος Λέξης

- Οι αριθμοί αναπαρίστανται σε έναν υπολογιστή με τόσα bits όσα και το μήκος λέξης του υπολογιστή.
 - Αν απαιτούνται λιγότερα bits από το μήκος λέξης τότε συμπληρώνουμε από αριστερά με μηδενικά.
 - Αν απαιτούνται περισσότερα bits από το μήκος λέξης έχουμε υπερχείλιση (overflow) και χάνονται τα bits που υπερβαίνουν το μήκος λέξης από αριστερά.

Παράδειγμα: Να κωδικοποιηθούν σε υπολογιστή με μήκος λέξης 8 (1 byte) οι αριθμοί: 254, 12, 515

Απάντηση:

- Ισχύει (254)₁₀= (11111110)₂. Άρα ο αριθμός με μήκος λέξης 8 κωδικοποιείται: 11111110
- Ισχύει (12)₁₀= (1100)₂. Άρα ο αριθμός με μήκος λέξης 8 κωδικοποιείται: 00001100
- Ισχύει (515)₁₀= (100000011)₂. Άρα ο αριθμός με μήκος λέξης 8 κωδικοποιείται: 00000011 άρα έχουμε υπερχείλιση (δεν κωδικοποιήθηκε σωστά ο αριθμός)

Δημήτρης Ψούνης, ΠΛΗ 10, Μάθημα 1.2: Πράξεις στα Συστήματα Αρίθμησης

www.psounis.gr

Α. Θεωρία

4. Αναπαράσταση Αριθμών στον Υπολογιστή

2. Μήκος Λέξης

Άσκηση: Να αναπαρασταθούν οι παρακάτω φυσικοί αριθμοί σε υπολογιστή με μήκος λέξης 8. Σε ποιες περιπτώσεις έχουμε υπερχείλιση (overflow);

- *I.* (16)₁₀
- //. (F0)₁₆
- III. $(477)_8$

Α. Θεωρία

4. Αναπαράσταση Αριθμών στον Υπολογιστή

3. Αναπαράσταση Αρνητικών με Μέτρο

- Για την αναπαράσταση αρνητικών ακέραιων αριθμών προτείνονται 3 τρόποι:
 - Ο 1ος τρόπος είναι η αναπαράσταση μέτρου.

Ο τρόπος αυτός δεν χρησιμοποιείται στην πράξη!

Δημήτρης Ψούνης, ΠΛΗ 10, Μάθημα 1.2: Πράξεις στα Συστήματα Αρίθμησης

• Το αριστερότερο bit (MSB) παίζει το ρόλο προσήμου (0 για το (+) και 1 για το (-))

00000000 = +0Έτσι σε ένα υπολογιστή με μήκος λέξης 8: 00000001 = +100000010 = +200000011 = +3θετικοί ακέραιοι 011111100 = +124Αριθμός Πρόσημο 01111101 = +125011111110 = +12610000000 = -0 Μπορούμε να αναπαραστήσουμε 28-2 =254 αριθμούς 10000001 = Οι 127 θα είναι οι θετικοί και οι 127 θα είναι 10000010 = -2οι αρνητικοί ακέραιοι. 10000011 = -3αρνητικοί ακέραιοι Πρόβλημα! 111111100 = -124• Το 0 αναπαρίσταται δύο φορές 11111101 = • Τη μία με θετικό πρόσημο και την άλλη με 111111110 = -12611111111 = αρνητικό πρόσημο.

01111101 =

01111110 =

10000001 =

10000010 = -125

10000011 = -124

111111100 = -3

111111101 = -2

11111110 =

11111111 =

αρνητικοί

ακέραιοι

01111111

Α. Θεωρία

4. Αναπαράσταση Αριθμών στον Υπολογιστή

- 3. Αναπαράσταση Αρνητικών με Συμπλήρωμα ως προς 2
- Για την αναπαράσταση αρνητικών ακέραιων αριθμών προτείνονται 3 τρόποι:
 - Ο 3ος τρόπος είναι η αναπαράσταση συμπληρώματος ως προς 2.
 - Κανόνας: «Υπολογίζουμε το συμπλήρωμα ως προς 1 και προσθέτουμε μια μονάδα»

Δημήτρης Ψούνης, ΠΛΗ 10, Μάθημα 1.2: Πράξεις στα Συστήματα Αρίθμησης

• Τη μία με θετικό πρόσημο και την άλλη με

Α. Θεωρία

Πρόβλημα!

4. Αναπαράσταση Αριθμών στον Υπολογιστή

Το πρόβλημα αυτό ξεπερνιέται με την τεχνική συμπληρώματος ως προς 2!

3. Αναπαράσταση Αρνητικών με Συμπλήρωμα ως προς 2

- Τέλος, αν μας δίνεται μία λέξη και μας πουν ότι είναι το συμπλήρωμα ως προς 2 ενός αριθμού, τότε για να υπολογίσουμε ποιος αρνητικός αριθμός είναι:
 - Υπολογίζουμε το συμπλήρωμα ως προς 2 του αριθμού και υπολογίζουμε το μέτρο του.
 - Βάζουμε αρνητικό πρόσημο.

• Το 0 αναπαρίσταται δύο φορές

αρνητικό πρόσημο.

Ποιον αρνητικό αριθμό κωδικοποιεί η λέξη 11111001 σε υπολογιστή με μήκος λέξης 8 Λύση:

Έχουμε:

- Ο αριθμός είναι : 11111001 Το συμπλήρωμα ως προς 1: 00000110
- Το συμπλήρωμα ως προς 2:0000111

Άρα ο αριθμός είναι: $(-7)_2$

Δημήτρης Ψούνης, ΠΛΗ 10, Μάθημα 1.2: Πράξεις στα Συστήματα Αρίθμησης

Α. Θεωρία

4. Αναπαράσταση Αριθμών στον Υπολογιστή

3. Αναπαράσταση Αρνητικών με Συμπλήρωμα ως προς 2

Άσκηση 1: Βρείτε την αναπαράσταση ως προς 2 των παρακάτω αρνητικών δυαδικών αριθμών σε μορφή συμπληρώματος ως προς 2 σε υπολογιστή με μήκος λέξης 4 και υπολογιστή με μήκος λέξης 8:

$$I. \quad (-5)_{10}$$

$$II.$$
 $(-31)_{10}$

III.
$$(-1F)_{16}$$

4. Αναπαράσταση Αριθμών στον Υπολογιστή

3. Αναπαράσταση Αρνητικών με Συμπλήρωμα ως προς 2

Άσκηση 2: Έστω υπολογιστής με μήκος λέξης 8 που οι αρνητικοί αριθμοί είναι αποθηκευμένοι με συμπλήρωμα ως προς 2. Σε ποιους δεκαδικούς αριθμούς αντιστοιχούν οι ακόλουθες λέξεις:

- I. 00000101
- II. 10100101
- III. 11100111

Α. Θεωρία

5. Αφαίρεση με Τεχνική Συμπληρώματος

- 1. Αφαίρεση στο Δυαδικό με Συμπλήρωμα ως προς 2
- Με το συμπλήρωμα ως προς 2 έχουμε την δυνατότητα να κάνουμε εύκολα πράξεις προσημασμένων ακεραίων στο δυαδικό:
 - Προετοιμάζουμε τους αριθμούς με βάση το μήκος λέξης
 - Οι αρνητικοί απεικονίζονται με συμπλήρωμα ως προς 2
 - Όλες οι πράξεις γίνονται προσθέσεις!
 - Τυχόν κρατούμενο αγνοείται

Άσκηση: Κάνετε τις πράξεις 15+17, 15-17, -15+17, -15-17 με την τεχνική του συμπληρώματος ως προς 2 σε υπολογιστή με μήκος λέξης 8 δυαδικών ψηφίων. Επαληθεύστε το αποτέλεσμα στο δεκαδικό σύστημα

Λύση: Προεργασία:

Ο αριθμός 15 είναι: 00001111	Ο αριθμός 17 είναι: 00010001
Ο αριθμός -15:	Ο αριθμός -17:
 Το συμπλήρωμα ως προς 2 :11110001 Άρα ο αριθμός -15 είναι: 11110001 	 Το συμπλήρωμα ως προς 2 :11101111 Άρα ο αριθμός -17 είναι: 11101111

Δημήτρης Ψούνης, ΠΛΗ 10, Μάθημα 1.2: Πράξεις στα Συστήματα Αρίθμησης

Α. Θεωρία

5. Αφαίρεση με Τεχνική Συμπληρώματος

1. Αφαίρεση στο Δυαδικό με Συμπλήρωμα ως προς 2

1.7 Αφαίρεση στο Δοασίκο με Ζομπληρωμά ως προς Σ		
Συνεπώς: $(15)_{10} + (17)_{10} = (00001111)_2 + (00010001)_2$	Συνεπώς: $(15)_{10} - (17)_{10} = (15)_{10} + (-17)_{10}$ $(00001111)_2 + (11101111)_2$	
00001111	1 1 1 1 1 Το αποτέλεσμα είναι: 11111110 Το συμπλήρωμα ως προς 1	
(+) 00010001	(+) 11101111 το συμπλήρωμα ως προς 2 0000001	
00100000	11111110 Αρα ο αριθμός στο 10δικό 2	
Άρα: $(15)_{10} + (17)_{10} = (00100000)_2 = (32)_{10}$	Άρα: $(15)_{10} + (-17)_{10} = (11011110)_2 = (-2)_{10}$	
Συνεπώς: $-(15)_{10} + (17)_{10} = (-15)_{10} + (17)_{10}$ $(11110001)_2 + (00010001)_2$	Συνεπώς: $-(15)_{10} - (17)_{10} = (-15)_{10} + (-17)_{10}$ $(11110001)_2 + (11101111)_2$	
11110001	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
(+) 00010001	(+) 11101111 Το συμπλήρωμα ως προς 2 ο100000 Αρα ο αριθμός στο 10δικό	
X 00000010	11100000 32	
Άρα: $(-15)_{10}$ + $(17)_{10}$ = $(00000010)_2$ = $(2)_{10}$	\triangle ρα: $(-15)_{10} + (-17)_{10} = (11100000)_2 = (-32)_{10}$	

Δημήτρης Ψούνης, ΠΛΗ 10, Μάθημα 1.2: Πράξεις στα Συστήματα Αρίθμησης

www nsounis ar

Α. Θεωρία

5. Αφαίρεση με Τεχνική Συμπληρώματος

1. Αφαίρεση στο Δυαδικό με Συμπλήρωμα ως προς 2

Άσκηση: Να εκτελέσετε την πράξη $(52)_{10}-(71)_{10}$ χρησιμοποιώντας την μέθοδο του συμπληρώματος ως προς 2. Θεωρήστε ότι οι δυαδικοί αριθμοί αναπαριστώνται με 8 δυαδικά ψηφία (bits)

Δημήτρης Ψούνης, ΠΛΗ 10, Μάθημα 1.2: Πράξεις στα Συστήματα Αρίθμησης

Α. Θεωρία

5. Αφαίρεση με Τεχνική Συμπληρώματος

2. Αφαίρεση σε άλλα Συστήματα με Τεχνική Συμπληρώματος

- Στο δυαδικό σύστημα για τον υπολογισμό του συμπληρώματος ως προς 2:
 - Αντιστρέφαμε τα bits (ή ισοδύναμα κάναμε την πράξη 1-Ψ, όπου Ψ το ψηφίο)
 - Προσθέταμε μια μονάδα
- Αντίστοιχα στο 8δικό σύστημα για τον υπολογισμό του συμπληρώματος ως προς 8:
 - Κάνουμε την πράξη 7-Ψ όπου Ψ το ψηφίο (συμπλήρωμα ως προς 7)
 - Προσθέτουμε μία μονάδα (και έχουμε το συμπλήρωμα ως προς 8)
- Αντίστοιχα στο 16δικό σύστημα για τον υπολογισμό του συμπληρώματος ως προς 16:
 - Κάνουμε την πράξη 15-Ψ όπου Ψ το ψηφίο (συμπλήρωμα ως προς 15)
 - Προσθέτουμε μία μονάδα (και έχουμε το συμπλήρωμα ως προς 16)
- κ.ο.κ. και έχουμε την απεικόνιση των αρνητικών αριθμών στο αντίστοιχο σύστημα.
 - Έπειτα για τις πράξεις, ισχύουν τα ακριβώς ίδια με το 2δικό σύστημα αρίθμησης

Λύση:

Το 32 στο δεκαεξαδικό είναι: $(20)_{16}$ Με μήκος λέξης ίσο με το 4: $(0020)_{16}$ Το Συμπλήρωμα ως προς 15: $(FFDF)_{16}$ Το Συμπλήρωμα ως προς 16: $(FFE0)_{16}$

Α. Θεωρία

5. Αφαίρεση με Τεχνική Συμπληρώματος

2. Αφαίρεση σε άλλα Συστήματα με Τεχνική Συμπληρώματος

Παράδειγμα 2: Να γίνει η πράξη το $(32)_{16}$ – $(7F)_{16}$ στο δεκαεξαδικό σύστημα με μήκος λέξης 4 και την τεχνική του συμπληρώματος ως προς 16. Επαληθεύστε μέσω του δεκαδικού συστήματος αρίθμησης.

Λύση:

Μειωτέος: $(32)_{16} = \mathbf{3} \times 16^1 + \mathbf{2} \times 16^0 = 48 + 2 = (50)_{10}$ Αφαιρετέος: $(7F)_{16} = \mathbf{7} \times 16^1 + \mathbf{15} \times 16^0 = 112 + 15 = (127)_{10}$

Δημήτρης Ψούνης, ΠΛΗ 10, Μάθημα 1.2: Πράξεις στα Συστήματα Αρίθμησης

Ο Μειωτέος με Μήκος Λέξης 4: 0032 Ο Αφαιρετέος με Μήκος Λέξης 4: 007**F**

Απεικόνιση του $(-7F)_{16}$ Ο Μειωτέος είναι: $(007F)_{16}$ (+)

Το Συμπλήρωμα ως προς 15: (FF80)₁₆ Το Συμπλήρωμα ως προς 16: (FF81)₁₆ Άρα:

FFB3

0032

FF81

Το αποτέλεσμα είναι αρνητικός άρα θα υπολογίσουμε το συμπλήρωμα ως προς 16:

O αριθμός είναι: $(FFB3)_{16}$

Το Συμπλήρωμα ως προς 15: (004C)₁₆ Το Συμπλήρωμα ως προς 16: (004D)₁₆

Συνεπώς το αποτέλεσμα είναι: $-(4D)_{16} = -(4 \times 16^1 + 13 \times 16^0) = -(64 + 13) = -(77)_{10}$

Δημήτρης Ψούνης, ΠΛΗ 10, Μάθημα 1.2: Πράξεις στα Συστήματα Αρίθμησης

Α. Θεωρία

5. Αφαίρεση με Τεχνική Συμπληρώματος

2. Αφαίρεση σε άλλα Συστήματα με Τεχνική Συμπληρώματος

Άσκηση: Να εκτελέσετε την πράξη $(1F)_{16} - (3A)_{16}$

- Ι. Απευθείας στο Δεκαεξαδικό
- ΙΙ. Με μετατροπή στο Δυαδικό και την τεχνική του συμπληρώματος ως προς 2
- ΙΙΙ. Με Μετατροπή στο Δεκαδίκό
- ΙV. Με χρήση της τεχνικής συμπληρώματος ως προς 16.

Για το ερώτημα (ΙΙ) θεωρήστε μήκος λέξης 8, για το ερώτημα (ΙV) μήκος λέξης 4