1 — Introduction

Explanation of problem space: need and motivation demonstrated with examples.

What are exceptions? How are they typed? What have approaches been before?

van Bakel and the $\lambda^{\rm try}$ -calculus is different approach. $\lambda^{\rm try}$ already compared to the 'classical- cal...

Exceptions have been done but unnamed or dispatch on type. $\lambda^{\rm try}$ introduces exceptions with names.

Features of computer programs are discovered twice: by logicians and by computer scientists.[?] Exceptions have been mapped to continuations which have been mapped to classical logic. What about a calculus that models exceptions directly? HOw does it behave?

1.1 Solution

Use van Bakel's translation of $\lambda^{\rm try}$ to $\lambda\mu$. Define a translation from $\lambda\mu$ to CDC, which closely models Haskell's syntax. Write a CDC interpreter for generating derivations that can be transcribed into proofs. Investigate properties of $\lambda\mu$ translation. Use this translation to find a translation from $\lambda^{\rm try}$ to lmu. Implement $\lambda^{\rm try}$ directly in Haskell by following this.

1.2 Contributions

This paper makes the following contributions:

- Haskell interpreter for a calculus of delimited continuations, CDC, written by SPJ
- Translation of $\lambda\mu$ to CDC along with proof of soundness and completeness with respect to mu reduction.
- A translation of λ^{try} to CDC.
- A proof of concept implementation of λ^{try} in Haskell, based on this translation.

 \bullet The specification for a language extension for named exceptions in Haskell, based on $\lambda^{\rm try}.$

Bibliography

- [1] Philippe de Groote. A cps-translation of the lambda-μ-calculus. In Trees in Algebra and Programming CAAP'94, 19th International Colloquium, Edinburgh, U.K., April 11-13, 1994, Proceedings, pages 85–99, 1994.
- [2] R. Kent Dybvig, Simon L. Peyton Jones, and Amr Sabry. A monadic framework for delimited continuations. J. Funct. Program., 17(6):687– 730, 2007.
- [3] Jean-Yves Girard, Yves Lafont, and Paul Taylor. *Proofs and Types*. Cambridge University Press, 1989.
- [4] Michel Parigot. Lambda-my-calculus: An algorithmic interpretation of classical natural deduction. In Logic Programming and Automated Reasoning, International Conference LPAR'92, St. Petersburg, Russia, July 15-20, 1992, Proceedings, pages 190-201, 1992.
- [5] Steffen van Bakel. λ^{try} : exception handling with failure and recovery, 2015. Unpublished paper on formally modelling exception handling in the λ -calculus.
- [6] Philip Wadler. Propositions as types. Commun. ACM, 58(12):75–84, 2015.