

Théorie des Graphes Fermetures, Connexité, Coupes

Fabrice Theoleyre

theoleyre@unistra.fr http://www.theoleyre.eu

VERS LA CONNEXITÉ

Distance, chemin & chaine

Notion de connexité

- Topologie (maths)
 - ❖ d'un seul tenant

❖ Je peux connecter deux sommets en restant dans mon graphe

Chaines dans les graphes non orientés (1)

Arêtes consécutives

- (s,t) et (s',t') sont consécutives ssi t=s'
- G=(S,A) un graphe non orienté
 - u,v ∈ S deux sommets
 - une chaine de u à v = une suite finie $(c_i)_{i=0}^t$ telle que

♦
$$t \ge 0$$
, $c_0 = u$, $c_t = v$

❖
$$\forall i \in [0, t-1], (c_i, c_{i+1}) \in A$$

Définitions

- Circuit = chaine de u vers lui même
- Boucle = circuit d'un seul arc
- Chaine simple (adbgdc)

❖
$$\forall i,j \in [0,t-1] \ i \neq j, (c_i,c_{i+1}), (c_j,c_{j+1}) \in c, c_i = c_j \Rightarrow c_{i+1} \neq c_{j+1}$$

- N'utilisant que des arêtes différentes
- Chaine élémentaire (abd)

❖
$$\forall i, j \in [0, t-1] \ i \neq j, (c_i, c_{i+1}) \in c \land (c_j, c_{j+1}) \in c, \ c_i \neq c_j$$

N'utilisant que des sommets différents

Chaines dans les graphes non orientés (2)

Propriétés

- S'il existe une chaine de x à y alors
 - ❖ il existe une chaine de y à x (symétrie)
 - ❖ il existe une chaine élémentaire de x à y

Distance entre deux sommets

- Nombre de sommets dans le plus court chemin entre u et v 1
- soit $\sigma(u, v)$ l'ensemble des chemins entre u et v
- $d(u,v) = Min_{c \in \sigma(u,v)}(|c|-1)$

Chemins dans les graphes orientés

- Chemin = la transposition des chaines aux graphes orientés
 - u,v ∈ S deux sommets
 - Un chemin de u à v = une suite finie ordonnée $(c_i)_{i=0}^t$ telle que

♦
$$t \ge 0$$
, $c_0 = u$, $c_t = v$

❖
$$\forall i \in [0, t-1], (c_{i,}, c_{i+1}) \in A$$

- Le chemin n'est pas obligatoirement symétrique!
 - ❖ E.g. mon trajet dans les deux sens ne passe pas forcément par les mêmes arcs

Composantes connexes (1)

- Soit G=(S,A), il s'agit alors des classes d'équivalences de S suivant ~G
 - Plus formellement sur (S, ~G), il s'agit :
 - ❖ des ensembles $\forall x \in S, [x] \sim_G = \{y \in S \mid \exists chaine c(x, y) \text{ dans G}\}$
 - · graphe faiblement connexe
 - Il existe une chaine entre toute paire de sommets
 - (on ne regarde pas le sens des arcs)
 - Graphe fortement connexe
 - ❖ Il existe un **chemin** entre toute paire de sommets
 - ❖ sa fermeture transitive est complète, elle forme une clique
 - intuitivement, il existe un chemin entre toutes paires de sommets dans le graphe
 - Composante connexe
 - Sous-graphe connexe maximal pour l'inclusion

Composantes connexes (2)

- Graphe biconnexe ?
 - Il existe toujours deux chemins / chaines
 - Extension à la k-connexité
- Découpage en composantes connexes
 - Notion d'isthme
 - ❖ Si on enlève cette arête → plus de connexité
 - Point d'articulation
 - Sommet dont le retrait augmente le nombre de composantes connexes
 - ❖ Notion de coupe (cf. juste après)
- Calcul des composantes fortement connexes
 - algorithme de Tarjan (linéaire en |A| ou |S|)
 - algorithme de Kosaraju : plus simple à prouver que Tarjan mais moins efficace
 - Idées d'algorithmes efficaces ?

Détection d'isthmes (ou ponts)

- Comment trouver les isthmes dans un graphe ?
 - Suppression d'une arête

 augmentation du nb. de composantes connexes

- Approche naïve
 - 1. Suppression d'une arête
 - 2. Le graphe est-il connexe ? (BFS)
 - 3. Remets l'arête
 - 4. Complexité : O(E * (V + E)) avec une liste d'adjacence
- Implémentation plus efficace ?

FERMETURES

Fermetures

Fermeture Réflexive

 Pour un graphe G=(S,A), il s'agit du graphe Gr=(S,Ar) tel que

$$A_r = A \cup \{(x, x) \mid x \in S\}$$

- ❖ J'ajoute une boucle sur chaque sommet
- Algorithme ?
 - Codage matriciel
 - Union du graphe R et de la diagonale de X

Fermeture Symétrique

- J'ajoute une arête inverse
- Définition formelle ?

Algorithme ?

```
Pour u,v in S
Si C[u,v] ou C[v,u]
C[v,u] = 1;
C[u,v] = 1;
Fsi
Fpour
```


Fermetures (suite)

Fermeture Transitive

• la plus petite relation transitive contenant la relation de départ

$$R^+ = \bigcup_{k \ge 1} R^k$$

- Définition formelle ?
 - Définition « graphe »
 - R₁=R
 - $R_{i+1} = R_i \cup \{ (x, z) | \exists y \in S, (x, y) \in R_i, (y, z) \in R \}$
 - Définition « matricielle »
 - *G*₀ la matrice identité
 - G_1 la matrice d'adjacence de G
 - $\forall k \in [2..n], G_k[i,j] = G_{k-1}[i,j] \lor (G_{k-1}[i,k] \land G_{k-1}[k,j])$

Notation

- A⁺: fermeture transitive
- A* : fermeture transitive réflexive

$$A^* = \bigcup_{k \ge 0} A^k$$

Algorithme de Floyd-Warshall

- En réalité algorithme de Roy (antériorité)
- Principe
 - Calcule la fermeture à partie de la matrice d'adjacence C
 - A l'étape k
 - Calcule un chemin passant par tous les sommets {0..k}
 - * k augmente pour couvrir tous les sommets
 - Programmation dynamique

On parcourt seulement les sommets de 0 à k-1

Algorithme de Floyd-Warshall

Principe

- Calcule une suite de graphes $G_0, ..., G_n$
- $G_0 = G$
- G_k a une arête dirigée (i,j) si G possède un chemin de v_i à v_j via des sommets appartenant à l'ensemble $\{v_l\}_{l \in [0,k]}$
- $G_n = G^*$ (fermeture transitive)

Pseudo code

```
pour k de 1 à n
  ❖ pour i de 1 à n

    Si C(i,k)

             » pour j de 1 à n
                   » Si C(k,j) alors C(i,j) = vrai
  retourner C
```

Complexité?

O(n^3) en temps, O(n^2) en espace

Algorithme de Floyd-Warshall

Exemple

Fermeture transitive & graphes

- La relation ~G définie sur l'ensemble des sommets S d'un graphe non orienté G=(S,A) par x ~G y ssi il existe une chaine de x à y dans G est une relation d'équivalence sur S
 - Preuve
 - ❖ Symétrie
 - Transitivité
 - Réflexive

Symétrie et Propriétés

- Le symétrique d'un graphe G⁻¹ =(S,A⁻¹) est tel que A⁻¹={(x,y) ∈ S² |(y,x) ∈ A}
 - $\sim \forall x \in S, R^{-1}(x) = \{y \in S \mid x \in R(y)\}$
- Lien entre graphe et relation
 - Un graphe est symétrique si sa relation A l'est
 - Un graphe est antisymétrique si sa relation A l'est
 - · etc.
- Identique pour les fermetures
 - notion de symétrisé = (A ou A⁻¹), un graphe non orienté
 - Fermeture Transitive = Graphes complets (cliques) si connexité <u>forte</u> (une seule composante fortement connexe)

QUELQUES OPÉRATEURS

Caractérisant un graphe

Coupe

- Coupe = créer 2 partitions (disjointes) de G(S,A)
 - Choisir une couleur pour chaque sommet (rouge ou noir)

$$\diamond S = V_1 \cup V_2 \text{ et } V_1 \cap V_2 = \emptyset$$

- Coupe C
 - ❖ Ensemble des arêtes $C = \{(u, v) | u \in V_1 \land v \in V_2\}$
- Poids de la coupe = somme des poids des arêtes de la coupe
- $Poids = |(u, v)| u \in V_1, v \in V_2, (u, v) \in A|$
- Analogie avec les graphes biparti
 - Le graphe G(V,C) représente un graphe biparti

Coupe Maximum

MAX-CUT

- Coupe au moins aussi grande que toutes les autres coupes
- **NP-Complet**
 - 21 problèmes de Karp

Extensions

- Graphe pondéré : somme des poids des arêtes de la coupe
- k-coupe: partition jusqu'à k composantes

Coupe Minimum

MIN-CUT

- 1 partition en 2 ensembles minimisant le poids de la coupe
- Chaque ensemble a une cardinalité strictement positive

EXPLORATION D'UN GRAPHE

Notion de parcours

Exploration d'un graphe

- Passer par tous les sommets
 - Une et une seule fois
- Parcours en profondeur
 - Depth First Search (DFS)
 - Parcours récursif
 - J'explore dans une direction jusqu'à aboutir à une impasse
 - ❖ Plus d'arête
 - ❖ Ou sommet déjà explore
- parcoursProfondeur(G, moi)
 - 1. Marquer (moi)
 - 2. Pour tout sommet s non marqué voisin de moi dans G
 - 1. parcoursProfondeur(G, s)

Exemple de parcours en Profondeur

En partant de b

b,a,c,d,g,e,f

Parcours en Largeur

- Breadth First Search (BFS)
 - j'explore tous mes voisins, puis les voisins de mes voisins, etc.
 - Parcours itératif aisé
- ParcoursLargeur(graph, racine)
 - 1. InitialiserListeFIFO(I)
 - 2. marquer(racine)
 - 3. empilerListe(I, racine)
 - 4. Tant que I est non vide
 - 1. Elem = dépilerListe (I)
 - Pour tout voisin non marqué de elem dans G
 - 1. EmpilerListe(f, voisin)
 - 2. Marquer(voisin)

Exemple de parcours en Largeur

En partant de b

b,a,d,g,c,f,e