Lezione 3 Geometria I

Federico De Sisti2024-03-21

1 Nella lezione precedente...

Abbiamo introdotto i sottospazi affini di (A, V) come i sottospazi del tipo

$$p + W$$
 $W \subseteq V$ sottospazio vettoriale.

Ricordiamo anche che $p + W = q + W \Leftrightarrow \overrightarrow{PQ} \in W$

2 Nuova lezione

Osservazione

Se $\Sigma_1=p_1+W_1, \ \ _2=p_2+W_2$ sono sottospazi affini , la loro intersezione, se non vuota, è un sottospazio affine. Infatti $p\in\Sigma_1\cap\Sigma_2$

$$\Sigma_1 \cap \Sigma_2 = p + W_1 \cap W_2.$$

Lemma 1

$$\begin{array}{l} \overrightarrow{\emptyset} \neq S \subset A & p,q \in S \\ H_p = \{\overrightarrow{px} \mid x \in S\} \ H_q = \{\overrightarrow{qy} \mid y \in S\} \\ Allora < H_p > = < H_q > e \ p + < H_p > = q + < H_q > \\ (sottospazio \ generato \ da \ S) \end{array}$$

Dimostrazione

$$\begin{array}{l} V_0 = \overrightarrow{pq} \quad v_0 \in H_p \quad -v_0 = \overrightarrow{qp} \in H_q \\ H_p \ni \overrightarrow{px} = \overrightarrow{pq} + \overrightarrow{qx} = v_0 + \overrightarrow{qx} \in < H_q > \\ H_p \subseteq < H_q > \ \Rightarrow \ < H_p > \subseteq < H_q > \\ H_q \ni \overrightarrow{qy} = \overrightarrow{qp} + \overrightarrow{py} \in < H_q > \Rightarrow < H_q > \subseteq < H_p > \\ Quindi \quad iH_p > = < H_q > \\ \overrightarrow{pq} \in < H_p > = < H_q > \\ p + < H_p > = q + < H_q > \end{array}$$

Nomenclatura 1

 Σ_1, Σ_2 sottospazi affini

 $\Sigma_1 \vee \Sigma_2 := sottospazio generato da \Sigma_1 \cup \Sigma_2.$

Lemma 2

Siano
$$\Sigma_i = p_i + W_i$$
, $i = 1, 2$ sottospazi affini. Allora (a) $\Sigma_1 \cap \Sigma_2 \neq \emptyset \Leftrightarrow \overrightarrow{p_1 p_2} \in W_1 + W_2$
(b) $\Sigma_1 \vee \Sigma_2 = p_1 + (W_1 + W_2 + \langle \overrightarrow{p_1 p_2} \rangle)$

Dimostrazione

$$\overrightarrow{p_1x} \in \overrightarrow{p_1p_2} + W_2 \quad (\overrightarrow{p_1x} = \overrightarrow{p_1p_2} + \overrightarrow{p_2x}).$$

Dunque la giacitura di $\Sigma_1 \vee \Sigma_2$ è

$$W_1 + W_2 + \langle \overrightarrow{p_1} \overrightarrow{p_2} \rangle$$
.

Posizioni Reciproche di sottospazi affini

Definizione 1

Siano Σ_1, Σ_2 sottospazi affini di (A, V) di giacitura rispettivamente W_1, W_2 $Diciamo\ che$

- 1) Σ_1, Σ_2 sono **incidenti**, se $\Sigma_1 \cap \Sigma_2 \neq \emptyset$
- $(2)\Sigma_1, \Sigma_2$ sono **paralleli** se $W_1 \subseteq W_2$ p $W_2 \subseteq W_1$
- 3) Σ_1, Σ_2 sono **sghembi** se $\Sigma_1 \cap \Sigma_2 = \emptyset$ e $W_1 \cap W_2 = \{0\}$

Osservazione

Queste posizioni non sono mutuamente esclusive e non costituiscono tutte le possibilità

Esercizi Elementari 4

Esercizio 1

Dire se $p = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$ appartiene alla retta per $\begin{pmatrix} 1 \\ 5 \\ 4 \end{pmatrix}$ e direzione $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ Svolgimento Scriviamo l'equazione parametrica della retta

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 5 \\ 4 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

$$\begin{pmatrix} 1\\0\\2 \end{pmatrix} = \begin{pmatrix} 1\\5\\4 \end{pmatrix} + t \begin{pmatrix} 1\\1\\1 \end{pmatrix} \qquad \begin{cases} t = 0\\t = -5 \end{cases}$$

alternativamente avrei potuto cercare le coordinate cartesiane

Esercizio 2

Scrivere le equazioni parametriche e cartesiane per il piano contenente

$$A = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, B = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, C = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$$

$$P = A + t\overrightarrow{AB} + s\overrightarrow{AC}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + s \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + s \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

$$\left(\begin{smallmatrix} x_1-1\\x_2\\x_3\end{smallmatrix}\right)\in<\left(\begin{smallmatrix} 0\\1\\0\end{smallmatrix}\right),\left(\begin{smallmatrix} 0\\1\\1\end{smallmatrix}\right)>$$

$$\det \left(\begin{smallmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ x_1-1 & x_2 & x_3 \end{smallmatrix} \right) = 0 \quad \Rightarrow \quad x_1 = 1$$

Esercizio 3

Scrivere equazioni per il piano identificato dalla retta
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + t \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
e dal punto $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

Svolgimento

modo 1, scelgo due punti distinti sulla retta e riduco al punto precedente

modo 2, sia
$$q = \begin{pmatrix} 1\\2\\3 \end{pmatrix}$$
, $v = \begin{pmatrix} 0\\1\\0 \end{pmatrix}$ e $O = \begin{pmatrix} 0\\0\\0 \end{pmatrix}$

consider il piano
$$P = q + tv + s\overrightarrow{Oq}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{3} \end{pmatrix} + t \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + s \begin{pmatrix} \frac{1}{2} \\ \frac{1}{3} \end{pmatrix}$$

$$det \begin{pmatrix} x_1 - 1 & x_2 - 2 & x_3 - 3 \\ 0 & 1 & 0 \\ 1 & 2 & 3 \end{pmatrix} = 0$$

$$3(x_1 - 1) - (x_3 - 3) = 0$$

$$3(x_1-1)-(x_3-3)=0$$

$$3x_1 - x_2 = 0$$

Fascio di piani di asse una retta r è l'insieme dei piani che contengono r

$$r = \begin{cases} a_1 x_1 + a_2 x_2 + a_3 x_3 + a_4 = 0\\ b_1 x_1 + b_2 x_2 + b_3 x_3 + b_4 = 0 \end{cases}$$

Equazione del fascio

$$\lambda(a_1x_1 + a_2x_2 + a_3x_3 + a_4) + \mu(b_1x_1 + b_2x_2 + b_3x_3 + b_4) = 0 \quad \lambda, \mu \in \mathbb{K}.$$

Ogni piano del fascio si ottiene con una coppia $(\lambda,\mu)\in\mathbb{K}^2$. Coppie proporzioneali per un fattore non nulla invidiano lo stesso piano