

SRN

		 	 	 _	_		
SRN	İ					'	

	b	The open loop transfer function of a unity feedback control system is as given below $G(s) = \frac{K}{s(s+8)}$	10				
		(i) Determine the steady state error coefficients K_p , K_v & K_a given K = 200.					
		(ii) Determine steady state error e_{ss} when the input is $r(t) = 2t$.					
		(iii) If the error is to be reduced by 5%, for the same ramp input, determine the new value of K.	Ì				
		(iv) For K = 100 and unit step input, determine t_r , t_s and peak overshoot.					
Q3	а	Sketch root locus for a control system whose open loop transfer function is given by	10				
	-	v					
		$G(s) = \frac{\kappa}{s(s^2 + 36)}$					
		Find out the range of K for stability. What are the intercepts of the root locus with the					
		jω axis ?					
	b	Consider the block diagram of a control system given below. Determine K for stability given K > 0. What is the physical interpretation of a negative value of K?	10				
		+ (7) K					
		$R(s) \longrightarrow (s+2)(0.5s+1)(s+1) \longrightarrow Y(s)$					
		- (3+2)(0.33+1)(3+1)					
		1/(0.005s + 1)					
* -							
Q4	а	Draw the Bode plot for the control system with open loop transfer function given	10				
		below for K=1. Determine gain and phase margins. What is the effect of increasing K					
		on the gain and phase margins?					
		$G(s) = \frac{K}{s(s^2 + 5s + 4)}$					
		_(* , * + , +)					
	b	Draw the Nyquist plot for an open loop transfer function given below assuming K = 1	10				
		$G(s) = \frac{K(s+1)^2}{s(s-1)}$					
		3(3 1)					
		What should be the minimum value of K for stability.					
OF		36	10				
Q5	а	Consider an open loop transfer function $G(s) = \frac{30}{s(s+2)(s+3)}$. What is the minimum	10				
		e_{ss} achievable for a unit ramp function? Design a lag compensator for the system to					
		ensuring $\phi_m=40^\circ$. Make necessary assumptions & approximations.	<u> </u>				
	b	The state equation and output equations are $\dot{X} = AX + BU$ and $Y = CX$ where	10				
		$A = \begin{bmatrix} -5 & 1 \\ -4 & 0 \end{bmatrix} B = \begin{bmatrix} 0 \\ 1 \end{bmatrix} C = \begin{bmatrix} 1 & 0 \end{bmatrix} X(0) = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$					
		Evaluate the following					
		(i) Transfer function (ii) State transition matrix					
L		(iii) Is the system controllable? (iv) Is the system observable?					