

1
2
3
4
5
6
7
8 IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

9
10 TITLE: IMPROVED METHOD FOR CUSTOM
11 IMPRINTING PLASTIC IDENTIFIER
12 TAGS

13
14 INVENTOR: WILLIAM E. McCoy, CHARLES
15 BACKULA, WILLIAM L. NABORS,
16 DENNIS APANA

1

2 BACKGROUND OF THE INVENTION

3

4 1. Field of The Invention

5 The present invention relates to plastic identifier tags,
6 such as ear tags used for cattle identification, and processes
7 for their manufacturer.

8

9 2. Background Information

10 Custom-imprinted plastic tags are used in a variety of
11 contexts to identify and/or track items or commodities. This
12 is particularly true in the cattle industry where plastic "ear
13 tags" are used to distinguish cattle of one herd or group from
14 those of others. Merely differentiating the colors of plastic
15 ear tags is not sufficient to adequately identify ownership of
16 cattle, in part, because there are insufficient tag colors
17 available to provide unique identifiers for each owner's
18 cattle, even, for example, in the context of one, large cattle
19 handling facility. Therefore, uniquely identifying indicia
20 (numerals, letters, and/or logos) are printed on plastic tag
21 blanks.

22 The most cost-effective process for printing plastic ear
23 tag blanks has heretofore involved "hot stamping" images

1 through the use of thermal film ("hot stamp foil"). Using
2 this process, a sufficiently heated, metallic stamp block
3 exhibiting a raised character (a numeral or letter, for
4 example) is pressed against a plastic tag blank with a segment
5 of hot stamp foil positioned therebetween. The thermal "ink"
6 from the hot stamp foil which overlies the raised character on
7 the stamp block is transferred to and thermally welded onto
8 the plastic tag blank.

9
10
11
12
13
14
15
16
17
18
19
20
The hot stamping process has worked well for a number of
years, but has certain drawbacks. As already mentioned, hot
stamping involves having metallic stamp blocks with raised
indicia for transferring the desired images to tag blanks.
This, in turn, eliminates any degree of flexibility and
spontaneity in choosing and printing images on tag blanks,
particularly custom logos, etc. If a custom design is to be
printed on a tag blank, a custom stamp block must be produced,
often at significant expense relative to the cost of the other
elements of tag production. In addition, in the case of
producing individually numbered tags, stamp blocks must be
changed for each successive tag blank which is hot stamped.

21 Because of the requirement for changing out stamp blocks
22 as numbers or images are changed from one tag blank printing
23 step to another, persons involved in printing plastic tag

1 blanks are exposed to notable hazards as they manually remove
2 and replace the stamp blocks in close proximity to the
3 dangerously hot surfaces and components of the hot stamp
4 machines.

5 Clearly, other methods for transferring images onto
6 plastic tag blanks would be faster, simpler, safer to workers,
7 and much more cost-effective. Such methods would include
8 traditional means by which letters and images are applied to
9 plastic surfaces and other industries. However, such
10 conventional methods do not produce images which are durable
11 enough to survive the typical environment in which plastic
12 identifier tags (cattle ear tags, for example) are used. To
13 date, no one has suggested or provided a method by which
14 plastic identifier tags may simply be "printed" in any faster,
15 cheaper, and safer manner than the conventional hot stamp
16 process, while still producing a suitably durable image.

17 In view of the above, it would well serve the custom
18 imprinted plastic tag industry and its end users to provide an
19 improved process for printing plastic tag blanks, which
20 process obviates the use of heated metallic stamp blocks, yet
21 still applies indicia which is sufficiently durable to satisfy
22 the needs of end users. In addition to eliminating the use of
23 heated metallic stamp blocks with the associated cost and

1 worker hazards such a new process would also ideally provide
2 substantially enhanced flexibility in choosing indicia which
3 would be applied to plastic tag blanks and would involve a
4 degree of simplicity of operation as to make practical the
5 printing of plastic tag blanks by end-users (something which
6 is practically prohibitive in view of equipment costs,
7 difficulties for end users in acquiring needed stamp blocks,
8 and user hazards as are all associated with conventional hot
9 stamp machine technology).

10

11 SUMMARY OF THE INVENTION

12 It is an object of the present invention to provide an
13 improved method for printing plastic identifier tags.

14 It is another object of the present invention to provide
15 an improved method for printing plastic identifier tags, which
16 method obviates the need for metallic stamp blocks (with
17 indicia appearing in relief on a stamping face thereof) to
18 impart images onto plastic tag blanks.

19 It is another object of the present invention to provide
20 an improved method for printing plastic identifier tags, which
21 method, when compared to conventional hot stamp printing
22 processes, is more cost-effective, is safer for end users or
23 tag vendor employees, and provides greater flexibility in

1 image selections, yet produces an end product with printed
2 indicia of at least similar durability as that produced
3 through conventional hot stamp processes.

4 It is another object of the present invention to provide
5 an improved method for printing plastic identifier tags, which
6 method facilitates substantially greater flexibility in
7 choosing and printing images onto plastic tag blanks when
8 compared to conventional hot stamp methods for printing such
9 items.

10 It is another object of the present invention to provide
11 a method for printing plastic identifier tags, which method
12 substantially reduces costs associated with printing custom
13 images onto plastic tag blanks when compared to conventional
14 hot stamp methods for printing such items.

15 In satisfaction of these and related objectives, the
16 present invention provides an improved method and process for
17 printing plastic tag blanks for producing plastic identifier
18 tags (such as cattle ear tags). The present method eliminates
19 the need for metallic print blocks and their associated cost,
20 cumbersome exchange during image changes, hazards associated
21 with their handling, and inflexibility of image selection and
22 printing. The present method, in turn, affords substantial
23 flexibility in image selection and printing, is extremely

1 cost-effective, and is of a simplicity which will facilitate
2 tag printing at an end user level.

3

4 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

5 Imprinted plastic tags for identifying property (plastic
6 ear tags for cattle, for example) are well-known. These tags
7 are today typically made of polyurethane and are available
8 from a number of suppliers, the supplier presently with the
9 greatest market share being Temple Tag, Inc. of Little River,
10 Texas. The present method involves use of conventional
11 plastic ear tag blanks, and in no way requires changes to such
12 substrate.

13 Clearly, printing a plastic tag blank with a conventional
14 computer ink jet printer would in no way provide a
15 sufficiently durable image for end-use. However, the current
16 inventors have discovered that just such an image can be
17 "welded" to the plastic tag blank in such a way as to produce
18 an exceptionally durable image.

19 The present inventors have discovered that one may "weld"
20 an ink jet printed image onto a plastic tag blank by first
21 placing polyester film (72 gauge/19 microns for the preferred
22 mode of the present process) over the printed image. The
23 polyester film is, in the preferred mode of the present

1 process, in the form of an elongate strip which will pass
2 linearly through a processing machine as sequential tags are
3 processed and serves as a carrier to move processed tags from
4 the machine to a collecting bin.

5 To the juxtaposed polyester film and printed plastic tag
6 blank is pressed a heated platen. The preferred mode of the
7 present process involves using an aluminum platen which is
8 coated with a .125 thick, 60 durometer silicone coating. The
9 coated platen is to be heated to between 350°F and 400°F and
10 pressed against the film/tag pairing using approximately 20
11 pounds of pressure.

12 The present inventors have discovered that the described
13 process melts a small amount of a plastic tag's polyurethane
14 material. This small portion of polyurethane (trapped by the
15 overlying polyester film) disperses over the surface of the
16 tag, including that portion with the ink jet-printed image.
17 After heat and pressure is removed, this dispersed
18 polyurethane solidifies as a substantially impermeable coating
19 over the printed image, thereby rendering the image virtually
20 as durable as the plastic tag member itself.

21 The ability to print images on plastic tag blanks affords
22 numerous advantages over conventional hot stamp tag printing
23 processes. As will be evident to anyone who uses a computer

1 and ink jet printer (or any other type of computer, graphics-
2 capable printer) to any typical degree, one may design and
3 print limitless image variations using a computer and ink jet
4 printer combination. In addition, any number of software
5 packages will provide for printing of sequential numbers or
6 letters, and even bar codes. Therefore, anything that can be
7 readily printed with a computer and attached the jet printer
8 can now quickly and easily be applied to a plastic tag blank.

9
10
11
12
13
14
15
16
The present method obviates the need for custom produced
metallic print blocks and in during the associated delays in
being able to print custom images. Because changing numbers,
letters, images, etc. merely involves changing that which the
computer sends to the printer, vendor workers and end users
need never so closely handle dangerously heated components as
is necessary when changing images in association with a
conventional hot stamp process.

17 Because end users of plastic tags (cattle ranchers and
18 feed lot operators, for example) can be provided user-friendly
19 software packages for printing their tags, along with (if
20 desired) pre-loaded image files with the end-users' custom
21 logos, etc., end-user use of the present process for printing
22 plastic identification tags is highly feasible and will be
23 viable from a cost standpoint.

1 Clearly, the conventional ink jet printer will not, in
2 its original, retail form, have suitable carriers for holding
3 plastic tag blanks during their printing. However,
4 modifications of existing printers for permitting the printing
5 of nonstandard media is well within the knowledge and skill
6 sets of computer hardware modifiers, and need not be detailed
7 here are to provide an enabling disclosure. Once suitable
8 carriers are provided for the jet printers selected for use
9 with the present process, printing proceeds substantially as
10 if mere paper sheets were being printed sequentially with
11 desired images thereon.

12 Also evident is the fact that devices used to apply the
13 heat and pressure to the juxtaposed tag blank and plastic film
14 pairing can be of a wide range of complexity and automation.
15 In theory (if not in practicality) one could practice the
16 present method through use of a conventional clothing iron.
17 However, it is envisioned that some degree of automation and
18 custom-designed machinery will be desirable. Such machinery
19 must merely include a sufficiently heated flat surface of
20 dimensions sufficient to fully cover the printed portion of a
21 printed tag blank and some mechanism for pressing the heated
22 surface against the juxtaposed pairing of printed tag blank
23 and plastic film. More elaborate mechanisms may include

1 automated advancing of plastic film which is fed from a reel
2 and after heat sealing is advanced beyond the sealing position
3 to carry completed tags to collecting bins. In any event, the
4 machinery used to carry out the present method is not part of
5 the present invention (although such may be the subject of a
6 later, continuation-in-part patent application). Rather the
7 invention, at present, is of the method which, at its heart,
8 involves heat sealing, or "welding," printer-deposited images
9 (whether of ink or suitable paint) onto plastic tag blanks
10 using a heated surface which is pressed onto the plastic tag
11 blank with an intervening film, the film serving to entrap and
12 force the redepositing of the melted plastic material to form
13 an encapsulated shield which will protect the printed image
14 after processing.

15 Although the invention has been described with reference
16 to specific embodiments, this description is not meant to be
17 construed in a limited sense. Various modifications of the
18 disclosed embodiments, as well as alternative embodiments of
19 the inventions will become apparent to persons skilled in the
20 art upon the reference to the description of the invention.
21 It is, therefore, contemplated that the appended claims will
22 cover such modifications that fall within the scope of the
23 invention.