MI-PB-2

Diferenciální odběrová analýza, možnosti obrany. Vliv operací, dat a šumu implementovaného šifrovacího algoritmu na naměřený signál spotřeby.

Vlastnosti signálu

Spotřeba logických hradel závisí na aktivitě obvodu -- intenzitě výpočtu a vnitřních hodnotách.

Komponenty bodu P v průběhu spotřeby:

- ullet $P_{
 m op}$: operačně závislá (typicky využito SPA)
- ullet $P_{
 m data}$: datově závislá (typicky využito DPA)
- ullet $P_{
 m el.\ noise}$: elektronický šum
- ullet $P_{
 m const}$: konstantní komponenta

$$P_{\text{total}} = P_{\text{op}} + P_{\text{data}} + P_{\text{el. noise}} + P_{\text{const}}$$

Pouze část $P_{
m op} + P_{
m data}$ je využitelná pro útok:

$$P_{\rm op} + P_{\rm data} = P_{\rm exploitable} + P_{\rm sw.\ noise}$$

 $(P_{
m sw.\ noise}$ - *switching noise* = datově nebo operačně závislá komponenta, která ale není využitelná zvolenou metodou útoku)

$$P_{\text{total}} = P_{\text{exploitable}} + P_{\text{sw. noise}} + P_{\text{el. noise}} + P_{\text{const}}$$

Signal to noise ratio:

$$ext{SNR} = rac{ ext{var(signal)}}{ ext{var(noise)}} = rac{ ext{var}(P_{ ext{exploitable}})}{ ext{var}(P_{ ext{sw. noise}} + P_{ ext{el. noise}})}$$

Závisí na metodě útoku

Hodně měření, průměrování naměřených průběhů, snižuje SNR

Differential Power Analysis (DPA)

DPA: více naměřených průběhů spotřeby, analýza v jednotlivých bodech časové osy přes všechny

1 z 5 17.05.2020 12:33

průběhy

Základní myšlenka:

- ullet Zvolit vnitřní hodnotu šifry v, která **závisí na datech a tajném klíči:** v=f(d,k)
- Naměřit průběhy spotřeby: tvorba matice ${f T}=(t_{ij})$ během šifrování dat d_i (j udává počet vzorků v jednom průběhu)
- ullet Sestavit matici ${f V}=(v_{ij})$ hypotetických hodnot uvnitř šifry pro všechny možné hodnoty klíče a hodnoty vstupních dat
- ullet Pomocí modelu spotřeby vytvořit z matice ${f V}$ matici ${f H}=(h_{ij})$ hypotetické spotřeby (aplikace modelu spotřeby na naždou hodnotu v matici ${f V}$)
- Statisticky vyhodnotit, která hypotetická hodnota klíče nejlépe sedí na naměřené hodnoty v každý individuální čas

DPA na AES

Vnitřní hodnota šifry:

Typicky $v = \operatorname{SBOX}(d \oplus k)$ (hodnota po prvním AddRoundKey a SubBytes)

Naměření průběhů spotřeby:

Matice T

Matice hypotetických vnitřních hodnot:

$$\mathbf{V}$$
, kde $\mathbf{V}_{ij} = \mathrm{SBOX}(d_i \oplus k_j)$

Možné modely spotřeby:

- ullet Hammingova váha: $HW(x)=\# ext{ jedniček v binárním zápisu } x$
- ullet Hammingova vzdálenost: $HD(x,y)=HW(x\oplus y)$ (počet rozdílných bitů)
- Single-bit: hodnota jednoho zvoleného bitu (např LSb)

Matice hypotetické spotřeby:

$$\mathbf{H}$$
, kde $\mathbf{H}_{ij} = \mathrm{model}(\mathbf{V_{ij}})$

Vyhodnocení modelu spotřeby a naměřených průběhů:

- Pearsonova korelace matice ${f T}$ a matice ${f T}$ ($ho_{X,Y}=rac{{
 m cov}(X,Y)}{\sqrt{{
 m var}X{
 m var}Y}}$) -- klíč je tam, kde je maximální
- Rozdíl průměrů (při binárních modelech, např. single bit):

 $\mathbf{M}_1 = (m_{1ij})$, kde $m_{1ij} =$ průměr počtu jedniček v každém sloupci matice \mathbf{V}

2 z 5 17.05.2020 12:33

$${f M}_0=(m_{0ij})$$
, kde $m_{0ij}=$ průměr počtu nul v každém sloupci matice ${f V}$
Statistika ${f R}={f M}_1-{f M}_0$

• Vzdálenost průměrů: Rozdíl průměrů dělený směrodatnou odchylkou

Obrana proti DPA - skrývání

Cíl: skrýt $P_{
m op}$ a $P_{
m data}$ tak, aby bylo minimalizováno $P_{
m exploitable}$

Spotřeba energie by měla být nezávislá na operacích a vnitřních datech:

- Konstantní spotřeba
- Náhodná spotřeba

Skrývání v čase

DPA potřebuje zarovnané průběhy spotřeby \Rightarrow úmyslné rozházení průběhů (zpřeházení operací, vkládání dummy operací -- náhodných NOPů, vícero HW hodin)

Útok:

- Zarovnání naměřených průběhů -- pattern matching
 - o Volba patternu (části průběhu)
 - o Pattern se hledá ve všech průbězích, ty se pak posunou, aby na sebe patterny seděly
- Trace preprocessing:
 - o Integrace průběhů -- součet několika po sobě jdoucích hodinových cyklů
 - $\circ \ \, \text{Convoluce, FFT, } ...$

Skrývání v amplitudě

Vyovnání nebo randomizace spotřeby pro všechny operace \Rightarrow snížení SNR

Minimalizace signálu:

$$\mathrm{var}(P_{\mathrm{exploitable}})
ightarrow 0$$

Všechny operace potřebují stejné množství energie -- speciální knihovny

Maximalizace šumu:

3 z 5

$$\operatorname{var}(P_{ ext{sw. noise}} + P_{ ext{el. noise}}) o \infty$$

Náhodná aktivita hradel převýší spotřebu operací

Několik operací paralelně

Generátory šumu

Útok:

Útok na speciální logiku (chyby v paměťových buňkách, logických funkcích)

Maskování

Randomizací způsobuje nezávislost spotřeby na vnitřních hodnotách

Logické maskování:

- Aplikace logické funkce s náhodnou maskou na vnitřní hodnotu (např. vnitřní hodnota ⊕ maska)
- ullet Lineární funkce: $f(x\oplus m)=f(x)\oplus f(m)$
- ullet Nelineární funce: SBOX -- $S_m(x\oplus m)=S(x)\oplus m'$, kde m je vstupní maska a m' výstupní
 - \circ Při sekvenčním zpracovávání hodnot $x\oplus m$ a m hrozí vyrušení: $HD(m,x\oplus m)=HW(x)$

Aritmetické maskování:

- Podobné jako logické, ale využívá aritmetické funkce:
 - \circ multiplikativní homomorfismus RSA: $(ab)^d \equiv a^db^d \pmod n$
 - \circ ekvivaltentní exponenty RSA: $c^d \equiv c^{d+k\varphi(n)} \pmod n$

Implementace:

- Maskovací tabulky
- Random precharging:
 - \circ inicializovat registr R na R=m
 - \circ vnitřní hodnota nahrána do registru: R=v
 - \circ únik $HD(v,m)=HW(v\oplus m)$

AES:

- ullet AddRoundKey: klíč maskován m, data do AddRoundKey maskovány $k\oplus m$
- ullet SubBytes: upravený SBOX -- $S_m(x\oplus m)=S(x)\oplus m'$
- ShiftRows: nemaskuje se

4 z 5 17.05.2020 12:33

 MixColumns: jiná maska pro každý řádek stavu (v operaci se xoruje, takže by se jedna maska vyrušila)

Útok:

- Second order DPA:
 - \circ Místo jedné vnitřní hodnoty v je pracováno s dvěma (maskovanými stejnou neznámou maskou).
 - Vnitřní hodnoty se musí objevit v různých operacích
 - Preprocessing průběhů:
 - Hodnoty jsou v různých hodinových cyklech: kombinace bodů
 - Hodnoty jsou ve stejném cyklu: Preprocessing každého bodu zvlášť

Kombinace bodů:

- ullet Na průběhu odhadnout interval, kde se nejspíš nachází dvě sledované operace s hodnotami u a v
- ullet Kombinace bodů intervalu pomocí funkce $\operatorname{pre}(t_x,t_y)\Rightarrow$ vznikne matice $ilde{\mathbf{V}}$ (kombinace každého bodu s každým)
- Pokud pre symetrická, stačí část nad diagonálou
- Návrhy na pre:

$$egin{array}{ll} \circ t_x \cdot t_y \ \circ |t_x - t_y| \ \circ (t_x + t_y)^2 \ \circ ext{FFT} \end{array}$$

ullet S maticí $ilde{\mathbf{V}}$ se provede klasicky DPA jako s \mathbf{V} -- využití sdruženého rozdělení dvou hodnot, v DPA je s nimi pracováno jako s jednou $w=u\oplus v$

5 z 5