Test sets:

Test 1 - trivial solution, one tetris piece, intial state == goal state

Test 2 - non-trivial solution, multiple tetris pieces, no ratations required

Test 3 - non-trivial solution, multiple tetris pieces, one rotation required

Test 4 - non-trivial solution, multiple tetris pieces, multiple rotations required

Test 5 - no solution

Comparison of time efficiency

	Test 1	Test 2	Test 3	Test 4	Test 5
solve_1	0,00005405	0,03461161	0,03429115	0,03410394	0,00006855
solve_2	0,00004611	0,00990312	0,00336778	0,00414944	0,00004961
solve_3	0,00004554	0,31921389	1,48191979	54,53873172	0,00029697
solve_4	0,00004404	0,02161384	0,18251874	1,31812940	0,00098591

To eliminate the influence of hardware on correctness of the results, these tests were run ten times and the values shown are the averages of each test run time.

In **bold** are the results that had no solution.

Time is represented in seconds.

Conclusion:

As visible from the results, we can conclude that in general performance of solve_2 is more time efficient than the performance of solve_1 and that performance of solve_4 is more efficient than the performance of solve_3. It also appears that solve_2 is the most efficient to solve no rotation problems.

However, we can see some deviations from this statement especially when it comes to solving trivial or no solution problems.