Reimagining SerDes for Scalable AI: Architectures, Bottlenecks, and Breakthroughs

Phani Suresh Paladugu

Synopsys

Conf42.com Kube Native 2025

Session Agenda

1

2

AI Workload Impact on Interconnect Design

How training and inference workloads shape SerDes requirements

Signal Integrity at Multi-Gigabit Rates

Challenges at 112G/224G PAM4+ environments

3

4

SerDes Architecture Trade-offs

Balancing power, throughput, design approach, and specialization

Future Directions in SerDes for AI

Emerging Technologies

The AI Compute Explosion

Modern AI training models show exponential growth in compute demands:

- GPT-4: ~1.8 quintillion FLOPs for training
- Model sizes doubling every 3 to 4 months since 2018
- Training times rising to weeks or months despite parallelization
- Memory bandwidth requirements increasing 20-30% annually

This growth trajectory places extreme pressure on interconnect, memory technologies to deliver more bandwidth at lower latency and power.

SerDes in the AI Era: Conflicting Demands

Ultra-high Data Rates

112G PAM4 becoming baseline requirements, with 224G PAM4 on horizon

Signal Integrity Challenges

Increasing losses, reflections, crosstalk in copper channels at multi-GHz

Power Constraints

Target efficiency of < 4-5 pJ/bit while supporting higher frequencies

AI Workload Patterns

Bursty traffic, asymmetric bandwidth needs, collective operations

These conflicting requirements create a design paradox that demands innovative approaches beyond traditional SerDes architectures.

AI Workload Impact on Interconnect Design

Training Workloads

- All-to-all communication patterns for parameter distribution
- Sustained high-bandwidth data movement during backpropagation
- High sensitivity to latency spikes that can stall pipeline
- Rising bisection bandwidth demands for model parallelism

Inference Workloads

- Bursty traffic patterns with variable load intensity
- Often memory-bound rather than compute-bound
- Stricter tail latency requirements (e.g., <5ms for real-time applications)
- Asymmetric bandwidth needs (more reads than writes)

These distinct workload characteristics require specialized SerDes design approaches that align with the communication patterns of modern AI systems.

Signal Integrity at Multi-Gigabit Rates

Key Challenges at 112G/224G

- Channel loss exceeding 40-45dB at Nyquist frequency
- Increasing inter-symbol interference (ISI)
- Reflections from impedance discontinuities
- Crosstalk from adjacent channels
- Stringent jitter budgets (< 0.1 UI)
- Amplitude noise sensitivity in PAM4 (3× worse than NRZ)

As we move toward 224G and beyond, traditional equalization techniques reach fundamental limits, requiring novel approaches to maintain signal integrity.

Innovation Frontiers in SerDes Design

DSP-Augmented PAM4

Advanced DSP techniques including FFE (Feed-Forward Equalization) with 7+ taps, DFE (Decision Feedback Equalization) with 15+ taps, and sophisticated CTLE (Continuous Time Linear Equalization) designs enable robust signal recovery.

Adaptive Equalization

Real-time adaptation algorithms
that continuously optimize
equalization parameters based on
channel conditions, utilizing
techniques like LMS (Least Mean
Squares) and sign-sign algorithms.

Machine Learning for SerDes

ML-based calibration and adaptation that can predict optimal SerDes parameters based on channel characteristics, reducing time-to-lock by 40-60% compared to traditional methods.

Advanced CDR & Coding Techniques

Next-Generation CDR Approaches

- Digital Bang-Bang Phase Detectors with enhanced phase resolution (< 1ps)
- Multi-phase sampling for improved jitter tolerance
- Frequency-domain CDR techniques resistant to SSC (Spread Spectrum Clocking)
- Hybrid analog-digital CDR architectures balancing power and performance

Forward Error Correction

- Reed-Solomon FEC providing 6-7dB coding gain
- Low-Density Parity-Check (LDPC) codes with iterative decoding
- Tailored coding schemes for AI traffic patterns

Architectural Trade-offs in SerDes Design

Power vs. Throughput

Modern designs target <4-5 pJ/bit at 112G/224G

PAM4 rates. Achieving both requires

architectural innovation in:

- Analog front-end simplification
- Process node optimization (5nm/3nm/2nm)
- Adaptive power scaling based on workload

Analog vs. Digital

Increasing shift toward digital-dominant designs:

- 70-80% digital logic in modern SerDes
- Enables process scaling benefits
- Facilitates adaptation and calibration
- Allows more sophisticated signal processing

Reconfigurability

Flexible SerDes architectures supporting:

- Multiple protocols
- Adaptive rate negotiation
- Power/performance operating points
- Forward compatibility with emerging standards

The Power Challenge

Power efficiency is now the primary constraint in SerDes design for Al applications. With power budgets of 5-20W per chip dedicated to I/O, innovations focus on:

Circuit Techniques

- Supply VoltageScaling (0.7-0.8V)
- Adaptive biasing schemes
- Clock gating on inactive lanes

Architecture Optimizations

- Workload-aware power states
- Power islands to save power
- Simplified analog front-ends

System-Level Approaches

- Link utilization monitoring
- Dynamic frequency scaling
- Thermal-awareFloorplan/Placement

Holistic Solution Strategies

Workload Analysis

Traffic pattern profiling across various AI models identified 70% of communication in collective operations (all-reduce, all-gather).

Signal and Power Integrity

Build end to end models including package, PCB, connector, cable for system level simulations and come up with package design constraints.

مهم

Architecture

Implemented heterogeneous SerDes design: Power and Latency optimized Ethernet 112G/224G and PCIe Gen7/6, CXL, UALink Solutions for Scale out and Scale up networks.

Physical Design

Optimized solutions for NS and EW with 4 lane and 8 lane configurations to meet multiple lane requirements for High Performance Computing applications. Optimized bump placements to ease the system design

Future Directions in SerDes for AI

Emerging Technologies

- **448G ethernet solutions:** To Address next generation scale out requirements with optimized performance, power, area
- **Silicon Photonics Integration:** Hybrid electrical-optical SerDes enabling longer reach, higher bandwidth interconnects for AI
- Co-Packaged Optics: Moves optics closer to the switch/AI accelerator die to reduce electrical channel loss, eliminating electrical SerDes for long-reach communications
- **SerDes for Advanced Packaging:** High density, low latency SerDes for stacking AI accelerators, HBM and Chiplets in 3D.

These technologies promise 5-8× improvements in bandwidth density while reducing power by 2-3× compared to current electrical SerDes.

Key Takeaways

AI workloads fundamentally reshape SerDes requirements

Understanding traffic patterns, bandwidth asymmetry, and collective operations is essential for optimized design.

Signal integrity requires increasingly sophisticated approaches

DSP-augmented designs, adaptive equalization, and ML-based tuning are becoming standard rather than optional.

Power efficiency and latency are key design constraints

Future designs must achieve <4 pJ/bit while delivering 224G+ data rates to meet AI scaling demands.

Heterogeneous SerDes architectures are the future

AI SoCs will incorporate specialized SerDes optimized for different interfaces and traffic patterns rather than one-size-fits-all solutions.

Thank You