UNISONIC TECHNOLOGIES CO., LTD

LM317A

LINEAR INTEGRATED CIRCUIT

MEDIUM CURRENT 1.2V TO 37V ADJUSTABLE VOLTAGE **REGULATOR**

DESCRIPTION

The UTC LM317A is an adjustable 3-terminal positive voltage regulator, designed to supply 1.5A of output current with voltage adjustable from 1.2V ~ 37V.

FEATURES

- * Output voltage adjustable from 1.2V ~ 37V
- * Output current in excess of 1.5A
- * Internal thermal overload protection
- * Internal short circuit current limiting
- * Output transistor safe area compensation

ORDERING INFORMATION

Ordering Number		Dookogo	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
-	LM317AG-AA3-R	SOT-223	ADJ	0	I	Tape Reel	
LM317AL-TA3-T	LM317AG-TA3-T	TO-220	ADJ	0	I	Tube	
LM317AL-TF2-T	LM317AG-TF2-T	TO-220F2	ADJ	0	I	Tube	
LM317AL-TN3-R	LM317AG-TN3-R	TO-252	ADJ	0	I	Tape Reel	
LM317AL-TQ2-R	LM317AG-TQ2-R	TO-263	ADJ	0	I	Tape Reel	
LM317AL-TQ2-T	LM317AG-TQ2-T	TO-263	ADJ	0	I	Tube	
LM317AL-TQ3-R	LM317AG-TQ3-R	TO-263-3	ADJ	0	I	Tape Reel	
LM317AL-TQ3-T	LM317AG-TQ3-T	TO-263-3	ADJ	0	I	Tube	

Note: Pin Assignment: I: V_{IN} O: Vout

- (1) R: Tape Reel, T: Tube
- (2) AA3: SOT-223, TA3: TO-220, TF2: TO-220F2

TN3: TO-252, TQ2: TO-263, TQ3: TO-263-3

(3) G: Halogen Free and Lead Free, L: Lead Free

MARKING

www.unisonic.com.tw 1 of 5

■ BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATINGS	UNIT
Input-Output Voltage Differential	V_{IN} - V_{OUT}	40	V
Power Dissipation	P_{D}	Internally limited	
Junction Temperature	T_J	+125	°C
Operating Temperature	T _{OPR}	-40 ~ +85	°C
Storage Temperature	T _{STG}	-65 ~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT
	SOT-223		140	°C/W
Junction to Ambient	TO-220/TO-220F2	ӨЈА -	50	°C/W
	TO-252		103	°C/W
	TO-263/TO-263-3		62.5	°C/W
	SOT-223		23.5	°C/W
Junction to Case	TO-220/TO-263 TO-263-3	Өлс	5	°C/W
	TO-220F2		8	°C/W
	TO-252		12	°C/W

■ ELECTRICAL CHARACTERISTICS

(V_{IN}-V_{OUT}=5V, I_{OUT}=0.5A, P_{MAX}=20W, T_A=25°C, unless otherwise specified.)

PARAMETER	PARAMETER SYMBOL TEST CONDITIONS		TIONS	MIN	TYP	MAX	UNIT
		3V≤V _{IN} -V _{OUT} ≤40V, I _{OUT} =100mA		IVIIIN	0.01		%/V
Line Regulation	AVOUT/VOUT	$3V \leq V_{\text{IN}} - V_{\text{OUT}} \leq 4UV$	I _{OUT} = IUUIIIA		0.01	0.04	70/ V
Load Regulation	ΔV_{OUT}	10mA≤I _{OUT} ≤1.5A	V _{OUT} ≤5V		5	25	mV
Load Negulation			V _{OUT} ≥5V		0.1	0.5	%
Adjustable Pin Current	I_{ADJ}				50	100	μΑ
Adjustable Pin Current Change	ΔI_{ADJ}	$3V \le V_{IN} - V_{OUT} \le 40V$, $10mA \le I_{OUT} \le 500mA$			0.2	5	μA
Reference Voltage	V_{REF}	$3V \le V_{IN}-V_{OUT} \le 40V$, $10mA \le I_{OUT} \le 1.5A$, $P_D < P_{MAX}$		1.20	1.25	1.30	V
Temperature Stability		$T_{MIN} \le T_J \le T_{MAX}$			0.7		%/V _{OUT}
Minimum Load Current for Regulation	I _{L(MIN)}	V _{IN} -V _{OUT} =40V				4.5	mA
Maximum Output Current	I _{O(MAX)}	$V_{IN}-V_{OUT}=40V, P_D \le P_{MAX}$		0.3	0.4		Α
Maximum Output Current		V_{IN} - V_{OUT} =15 V , P_D < P_{MAX}		1.5	2.2		Α
RMS Noise vs. %of V _{OUT}	eN	10H _Z ≤f≤10KH _Z			0.003		%/V _{OUT}
Diamle Dejection	RR	V _{OUT} =10V,f=120H _Z	C _{ADJ} =0		65		dB
Ripple Rejection			C _{ADJ} =10µF	66	80		dB

■ APPLICATION CIRCUITS

 V_{OUT} =1.25V×(1+R2/R1)+ I_{ADJ} ×R2

C1 is required when regulator is located an appreciated distance from power supply. Co is needed to improve transient response.

Fig.1 Programmable voltage regulator

Fig.3 Soft Start Application

Fig.2 Regulator with On-off control

$$\begin{split} & I_{O(MAX)} = (\frac{V_{REF}}{R1}) + I_{ADJ} = \frac{1.25V}{R1} \\ & I_{O(MIN)} = (\frac{V_{REF}}{R1 + R2}) + I_{ADJ} = \frac{1.25V}{R1 + R2} \end{split}$$

Fig.4 Constant Current Application

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.