FUNCTIONAL DEPENDENCY THEORY

CS121: Introduction to Relational Database Systems Fall 2014 – Lecture 19

Last Lecture

- Normal forms specify "good schema" patterns
- □ First normal form (1NF):
 - All attributes must be atomic
 - Easy in relational model, harder/less desirable in SQL
- Boyce-Codd normal form (BCNF):
 - Eliminates redundancy using functional dependencies
 - Given a relation R and a set of dependencies F
 - □ For all functional dependencies $\alpha \to \beta$ in F^+ , where $\alpha \cup \beta \subseteq R$, at least one of these conditions must hold:
 - $\blacksquare \alpha \rightarrow \beta$ is a trivial dependency
 - lacksquare lpha is a superkey for $\it R$

Last Lecture (2)

- Can convert a schema into BCNF
- □ If R is a schema not in BCNF:
 - □ There is at least one nontrivial functional dependency $\alpha \to \beta \in F^+$ such that α is not a superkey for R
- Replace R with two schemas:

$$(\alpha \cup \beta)$$

 $(R - (\beta - \alpha))$

 May need to repeat this decomposition process until all schemas are in BCNF

Functional Dependency Theory

- Important to be able to reason about functional dependencies!
- Main question:
 - What functional dependencies are implied by a set F of functional dependencies?
- Other useful questions:
 - Which attributes are functionally determined by a particular attribute-set?
 - What minimal set of functional dependencies must actually be enforced in a database?
 - Is a particular schema decomposition lossless?
 - Does a decomposition preserve dependencies?

Rules of Inference

- □ Given a set F of functional dependencies
 - Actual dependencies listed in F may be insufficient for normalizing a schema
 - Must consider all dependencies <u>logically implied</u> by F
- For a relation schema R
 - \square A functional dependency f on R is logically implied by F on R if every relation instance r(R) that satisfies F also satisfies f
- Example:
 - \square Relation schema R(A, B, C, G, H, I)
 - Dependencies:

$$A \rightarrow B$$
, $A \rightarrow C$, $CG \rightarrow H$, $CG \rightarrow I$, $B \rightarrow H$

□ Logically implies: $A \rightarrow H$, $CG \rightarrow HI$, $AG \rightarrow I$

Rules of Inference (2)

- Axioms are rules of inference for dependencies
- This group is called Armstrong's axioms
- \square Greek letters α , β , γ , ... represent attribute sets
- □ Reflexivity rule: If α is a set of attributes and $\beta \subseteq \alpha$, then $\alpha \to \beta$ holds.
- Augmentation rule:
 - If $\alpha \to \beta$ holds, and γ is a set of attributes, then $\gamma \alpha \to \gamma \beta$ holds.
- □ Transitivity rule: If $\alpha \to \beta$ holds, and $\beta \to \gamma$ holds, then $\alpha \to \gamma$ holds.

Computing Closure of F

Can use Armstrong's axioms to compute F^+ from F \Box F is a set of functional dependencies

```
repeat

for each functional dependency f in F^+

apply reflexivity and augmentation rules to f

add resulting functional dependencies to F^+

for each pair of functional dependencies f_1, f_2 in F^+

if f_1 and f_2 can be combined using transitivity

add resulting functional dependency to F^+

until F^+ stops changing
```

Armstrong's Axioms

- Axioms are sound
 - They don't generate any incorrect functional dependencies
- Axioms are complete
 - \blacksquare Given a set of functional dependencies F, repeated application generates all F^+
- \Box F^+ could be <u>very</u> large
 - LHS and RHS of a dependency are subsets of R
 - \square A set of size *n* has 2^n subsets
 - \square $2^n \times 2^n = 2^{2n}$ possible functional dependencies in R!

More Rules of Inference

- Additional rules can be proven from Armstrong's axioms
 - \blacksquare These make it easier to generate F^+
- Union rule:

If $\alpha \to \beta$ holds, and $\alpha \to \gamma$ holds, then $\alpha \to \beta \gamma$ holds.

Decomposition rule:

If $\alpha \to \beta \gamma$ holds, then $\alpha \to \beta$ holds and $\alpha \to \gamma$ holds.

Pseudotransitivity rule:

If $\alpha \to \beta$ holds, and $\gamma\beta \to \delta$ holds, then $\alpha\gamma \to \delta$ holds.

Attribute-Set Closure

- lacktriangle How to tell if an attribute-set lpha is a superkey?
 - \blacksquare If $\alpha \rightarrow R$ then α is a superkey.
 - $lue{}$ What attributes are functionally determined by an attribute-set α ?
- □ Given:
 - Attribute-set α
 - Set of functional dependencies F
 - $lue{}$ The set of all attributes functionally determined by lpha under \it{F} is called the closure of lpha under \it{F}
 - \square Written as α^+

Attribute-Set Closure (2)

- lacktriangle It's easy to compute the closure of attribute-set lpha !
 - Algorithm is very simple
- Inputs:
 - \blacksquare attribute-set α
 - set of functional dependencies F

Attribute-Set Closure (3)

- $lue{}$ Can easily test if α is a superkey
 - $lue{}$ Compute α^+
 - lacksquare If $R\subseteq lpha^+$ then lpha is a superkey of R
- Can also use with functional dependencies
 - $\square \alpha \rightarrow \beta$ holds if $\beta \subseteq \alpha^+$
 - Find closure of α under F; if it contains β then $\alpha \rightarrow \beta$ holds!
 - \blacksquare Can compute F^+ with attribute-set closure too:
 - For each $\gamma \subseteq R$, find closure γ^+ under F
 - We know that $\gamma \rightarrow \gamma^+$
 - For each subset $S \subseteq \gamma^+$, add functional dependency $\gamma \to S$

Attribute-Set Closure Example

- \square Relation schema R(A, B, C, G, H, I)
 - Dependencies:

$$A \rightarrow B$$
, $A \rightarrow C$, $CG \rightarrow H$, $CG \rightarrow I$, $B \rightarrow H$

- □ Is AG a superkey of R?
- \Box Compute $(AG)^+$
 - \square Start with $\alpha^+ = AG$
 - \blacksquare A \rightarrow B, A \rightarrow C cause α^+ = ABCG
 - \square CG \rightarrow H, CG \rightarrow I cause α^+ = ABCGHI
- \square AG is a superkey of R!

Attribute-Set Closure Example (2)

- \square Relation schema R(A, B, C, G, H, I)
 - Dependencies:

$$A \rightarrow B$$
, $A \rightarrow C$, $CG \rightarrow H$, $CG \rightarrow I$, $B \rightarrow H$

- \square Is AG a candidate key of R?
 - A candidate key is a minimal superkey
 - Compute attribute-set closure of all proper subsets of superkey; if we get R then it's not a candidate key
- Compute the attribute-set closures under F
 - $\square A^+ = ABCH$
 - $\Box G^+ = G$
- AG is indeed a candidate key!

BCNF Revisited

- \square BCNF algorithm states, if R_i is a schema not in BCNF:
 - There is at least one nontrivial functional dependency $\alpha \rightarrow \beta$ such that α is not a superkey for R_i
- □ Two points:
 - $\square \alpha \rightarrow \beta \in F^+$, not just in F
 - \blacksquare For R_i , only care about func. deps. where $\alpha \cup \beta \in R_i$
- \square How do we tell if R_i is not in BCNF?
 - \square Can use attribute-set closure under F to find if there is a dependency in F^+ that affects R_i
 - lacksquare For each proper subset $lpha \subset \mathit{R}_{i}$, compute $lpha^{+}$ under F
 - □ If α^+ doesn't contain R_i , but α^+ does contain any attributes in $R_i \alpha$, then R_i is <u>not</u> in BCNF

BCNF Revisited (2)

- □ If α^+ doesn't contain R_i , but α^+ does contain any attributes in R_i α , then R_i is not in BCNF
- \Box If α^+ doesn't contain R_i , what do we know about α with respect to R_i ?
 - \square α is not a candidate key of R_i
- \square If α^+ contains attributes in $R_i \alpha$:
 - $\blacksquare \text{ Let } \beta = R_i \cap (\alpha^+ \alpha)$
 - We know there is some non-trivial functional dependency $\alpha \rightarrow \beta$ that holds on R_i
- □ Since $\alpha \rightarrow \beta$ holds on R_i , but α is not a candidate key of R_i , we know that R_i cannot be in BCNF.

BCNF Example

- □ Start with schema R(A, B, C, D, E), and $F = \{A \rightarrow B, BC \rightarrow D\}$
- □ Is R in BCNF?
 - Obviously not.
 - □ Using $A \rightarrow B$, decompose into $R_1(\underline{A}, B)$ and $R_2(A, C, D, E)$
- □ Are we done?
 - □ Pseudotransitivity rule says that if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$
 - \square AC \rightarrow D also holds on R_2 , so R_2 is not in BCNF!
 - \square Or, compute $\{AC\}^+ = ABCD$. Again, R_2 is not in BCNF.

Database Constraints

- Enforcing database constraints can easily become very expensive
 - Especially CHECK constraints!
- Best to define database schema such that constraint enforcement is <u>efficient</u>
- Ideally, enforcing a functional dependency involves only one relation
 - Then, can specify a key constraint instead of a multitable CHECK constraint!

Example: Personal Bankers

- Bank sets a requirement on employees:
 - Each employee can work at only one branch
 - \blacksquare emp_id \rightarrow branch_name
- Bank wants to give customers a personal banker at each branch
 - At each branch, a customer has only one personal banker
 - (A customer could have personal bankers at multiple branches.)
 - □ cust_id, branch_name → emp_id

Personal Bankers

□ E-R diagram:

Relationship-set schemas:

```
works_in(emp_id, branch_name)
cust_banker_branch(cust_id, branch_name, emp_id, type)
```

Personal Bankers (2)

Schemas:

```
works_in(emp_id, branch_name)
cust_banker_branch(cust_id, branch_name, emp_id, type)
```

- Is this schema in BCNF?
 - emp_id → branch_name
 - cust_banker_branch isn't in BCNF
 - emp_id isn't a candidate key on cust_banker_branch
 - □ cust_banker_branch repeats branch_name unnecessarily, since emp_id → branch_name
- Decompose into two BCNF schemas:
 - \blacksquare works_in already has (emp_id, branch_name) ($\alpha \cup \beta$)
 - □ Create cust_banker(cust_id, emp_id, type) $(R (\beta \alpha))$

Personal Bankers (3)

■ New BCNF schemas:

```
works_in(emp_id, branch_name)
cust_banker(cust_id, emp_id, type)
```

- A customer can have one personal banker at each branch, so both cust_id and emp_id must be in the primary key
- □ Any problems with this new BCNF version?
 - Now we can't <u>easily</u> constrain that each customer has only one personal banker at each branch!
 - Could still create a complicated CHECK constraint involving multiple tables...

Preserving Dependencies

- The BCNF decomposition doesn't preserve this dependency:
 - □ cust_id, branch_name → emp_id
 - Can't enforce this dependency within a single table
- In general, BCNF decompositions are not dependency-preserving
 - Some functional dependencies are not enforceable within a single table
 - Can't enforce them with a simple key constraint, so they are more expensive
- Solution: Third Normal Form

Third Normal Form

- Slightly weaker than Boyce-Codd normal form
 - Preserves more functional dependencies
 - Also allows more repeated information!
- □ Given:
 - Relation schema R
 - Set of functional dependencies F
- \square R is in 3NF with respect to F if:
 - For all functional dependencies $\alpha \to \beta$ in F^+ , where $\alpha \subseteq R$ and $\beta \subseteq R$, at least one of the following holds:
 - $\blacksquare \alpha \rightarrow \beta$ is a trivial dependency
 - lacksquare lpha is a superkey for $\it R$
 - lacktriangle Each attribute A in eta lpha is contained in a candidate key for R

Third Normal Form (2)

- New condition:
 - \blacksquare Each attribute A in β α is contained in a candidate key for R
- A general constraint:
 - \blacksquare Doesn't require a single candidate key to contain all attributes in β α
 - \blacksquare Just requires that each attribute in β α appears in some candidate key in R
 - ...possibly even different candidate keys!

Personal Banker Example

- Our non-BCNF personal banker schemas again:
 - works_in(emp_id, branch_name)
 - cust_banker_branch(<u>cust_id</u>, <u>branch_name</u>, emp_id, type)
- Is this schema in 3NF?
 - \blacksquare emp_id \rightarrow branch_name
 - □ cust_id, branch_name → emp_id
- works_in is in 3NF (emp_id is the primary key)
- What about cust_banker_branch?
 - Both dependencies hold on cust_banker_branch
 - emp_id → branch_name, but emp_id isn't the primary key
 - cust_id, branch_name → emp_id; is emp_id part of any candidate key on cust_banker_branch?

Personal Banker Example (2)

- Look carefully at the functional dependencies:
 - Primary key of cust_banker_branch is (cust_id, branch_name)
 - { cust_id, branch_name } → cust_banker_branch (all attributes)
 (constraint arises from the E-R diagram & schema translation)
 - (Also specified this constraint: cust_id, branch_name → emp_id)
 - We also know that emp_id → branch_name
 - Pseudotransitivity rule: if $\alpha \rightarrow \beta$ and $\gamma\beta \rightarrow \delta$, then $\alpha\gamma \rightarrow \delta$
 - \blacksquare { emp_id } \rightarrow { branch_name }
 - { cust_id, branch_name } → cust_banker_branch
 - Therefore, { emp_id, cust_id } → cust_banker_branch also holds!
 - (cust_id, emp_id) is a candidate key of cust_banker_branch
- So cust_banker_branch is in fact in 3NF
 - (And we need to enforce this second candidate key too...)

Canonical Cover

- Given a relation schema, and a set of functional dependencies F
- Database needs to enforce F on all relations
 - Invalid changes should be rolled back
- F could contain a lot of functional dependencies
 - Dependencies might even logically imply each other
- Want a minimal version of F, that still represents all constraints imposed by F
 - Should be more efficient to enforce minimal version

Canonical Cover (2)

- \square A canonical cover F_c for F is a set of functional dependencies such that:
 - \Box F logically implies all dependencies in F_c
 - $\Box F_c$ logically implies all dependencies in F
 - $lue{}$ Can't infer any functional dependency in F_c from other dependencies in F_c
 - \blacksquare No functional dependency in F_c contains an extraneous attribute
 - \blacksquare Left side of all functional dependencies in F_c are unique
 - There are no two dependencies $\alpha_1 \rightarrow \beta_1$ and $\alpha_2 \rightarrow \beta_2$ in F_c such that $\alpha_1 = \alpha_2$

Extraneous Attributes

- □ Given a set F of functional dependencies
 - \blacksquare An attribute in a functional dependency is <u>extraneous</u> if it can be removed from F without affecting closure of F
- \square Formally: given F, and $\alpha \rightarrow \beta$
 - □ If $A \subseteq \alpha$, and F logically implies $(F \{\alpha \rightarrow \beta\}) \cup \{(\alpha A) \rightarrow \beta\}$, then A is extraneous
 - □ If $A \subseteq \beta$, and $(F \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta A)\}$ logically implies F, then A is extraneous
 - i.e. generate a new set of functional dependencies F' by replacing $\alpha \to \beta$ with $\alpha \to (\beta A)$
 - See if F' logically implies F

Testing Extraneous Attributes

- Given relation schema R, and a set F of functional dependencies that hold on R
- \square Attribute A in $\alpha \rightarrow \beta$
- □ If $A \subseteq \alpha$ (i.e. A is on left side of the dependency), then let $\gamma = \alpha \{A\}$
 - \blacksquare See if $\gamma \rightarrow \beta$ can be inferred from F
 - \square Compute γ^+ under F
 - $lue{}$ If $eta\subseteq\gamma^+$, then A is extraneous in lpha

Testing Extraneous Attributes (2)

- Given relation schema R, and a set F of functional dependencies that hold on R
- \square Attribute A in $\alpha \rightarrow \beta$
- □ If $A \subseteq \beta$ (on right side of the dependency), then try the altered set F'
 - $\blacksquare F' = (F \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta A)\}$
 - \square See if $\alpha \rightarrow A$ can be inferred from F'
 - $lue{}$ Compute $lpha^+$ under F'
 - lacksquare If α^+ includes A, then A is extraneous in β

Computing Canonical Cover

 \square A simple way to compute the canonical cover of F

```
repeat

apply union rule to replace dependencies in F_c of form

\alpha_1 \to \beta_1 and \alpha_1 \to \beta_2 with \alpha_1 \to \beta_1 \beta_2

find a functional dependency \alpha \to \beta in F_c with an extraneous attribute

/* Use F_c for the extraneous attribute test, not F !!! */

if an extraneous attribute is found, delete it from \alpha \to \beta

until F_c stops changing
```

Canonical Cover Example

- \square Functional dependencies F on schema (A, B, C)
 - $\blacksquare F = \{ A \rightarrow BC, B \rightarrow C, A \rightarrow B, AB \rightarrow C \}$
 - \blacksquare Find F_c
- \square Apply union rule to $A \rightarrow BC$ and $A \rightarrow B$
 - Left with: $\{A \rightarrow BC, B \rightarrow C, AB \rightarrow C\}$
- \square A is extraneous in AB \rightarrow C
 - \square B \rightarrow C is logically implied by F (obvious)
 - □ Left with: $\{A \rightarrow BC, B \rightarrow C\}$
- \Box C is extraneous in $A \rightarrow BC$
 - Logically implied by $A \rightarrow B$, $B \rightarrow C$
- $\square F_c = \{ A \rightarrow B, B \rightarrow C \}$

Another Canonical Cover Example

- \square Functional dependencies F on schema (A, B, C, D)
 - \blacksquare $F = \{ A \rightarrow B, BC \rightarrow D, AC \rightarrow D \}$
 - \blacksquare Find F_c
- \square Satisfies some of our constraints for F_c ...
 - No functional dependency has extraneous attributes
 - All dependencies have a unique lefthand side
- □ Problem:
 - □ Can infer $AC \rightarrow D$ from the other two dependencies (pseudotransitivity)
 - \square Could argue that D is extraneous in AC \rightarrow D (a bit weird)
 - Or, just argue that the entire dependency is extraneous

Canonical Covers

- A set of functional dependencies can have multiple canonical covers!
- Example:
 - $\square F = \{ A \rightarrow BC, B \rightarrow AC, C \rightarrow AB \}$
 - Has several canonical covers:
 - $\blacksquare F_c = \{ A \rightarrow B, B \rightarrow C, C \rightarrow A \}$
 - $\blacksquare F_c = \{ A \rightarrow B, B \rightarrow AC, C \rightarrow B \}$
 - $\blacksquare F_c = \{ A \rightarrow C, C \rightarrow B, B \rightarrow A \}$
 - $\blacksquare F_c = \{ A \rightarrow C, B \rightarrow C, C \rightarrow AB \}$
 - $F_c = \{ A \rightarrow BC, B \rightarrow A, C \rightarrow A \}$