EIGENFACES NO PARAMÉTRICAS

TRABAJO FINAL CM0896 – ESTADÍSTICA NO PARAMÉTRICA MIGUEL ANGEL MEJÍA MUÑOZ

INTRODUCCIÓN

- Realizar el desarrollo de la técnica de Eigenfaces usando métodos no paramétricos.
- Transformación del conjunto de imágenes al conjunto de eigenvectores
 - Centrados en Media
 - Centrados en Mediana
 - Covarianza basada en Correlación Spearman y MAD

EIGENFACES - DEFINICIÓN

- Reducir el espacio de características de un conjunto de imágenes para simplificar las computaciones de este mismo usando los eigen-vectores de la matriz de covarianza resultante de las imágenes.
- Se les llama eigen-faces, dado que estas muestran formas similares a rostros, los cuales corresponden a las características faciales que se abstraen del conjunto.

PRELIMINARES – DATOS UTILIZADOS

Paisajes

Mujeres

Hombres

^{*}Imágenes son transformadas a escala de grises para ser representadas como una matriz bi-dimensional **Imágenes tomadas de las bases de datos de ImageNet para paisajes, y Faces94 para los rostros

PRELIMINARES – PRUEBAS DE PROFUNDIDAD DATOS ORIGINALES

OLS Regression Results

Dep. Variable:	У	R-squared:	0.484
Model:	OLS	Adj. R-squared:	0.484
Method:	Least Squares	F-statistic:	3299.
Date:	Tue, 26 May 2020	Prob (F-statistic):	0.00
Time:	20:29:44	Log-Likelihood:	34037.
No. Observations:	3521	AIC:	-6.807e+04
Df Residuals:	3519	BIC:	-6.806e+04
Df Model:	1		

	coef	std err	t	P> t	[0.025	0.975]
const	0.5216	0.008	62.674	0.000	0.505	0.538
x1	0.4782 	0.008 	57.439 =======	0.000 	0.462 	0.495
Omnibus:		20.	891 Durbin	ı-Watson:		0.347

nonrobust

Prob(Omnibus):	0.000	Jarque-Bera (JB):	21.086
Skew:	0.187	Prob(JB):	2.64e-05
Kurtosis:	3.067	Cond. No.	6.44e+04

0.79773 0.79973 0.79943 0.79943 0.79943 0.79943 0.79943 0.79943 0.79943 0.79943 0.79943 0.79943 0.79943 0.79943 0.79943 0.79943 0.79943 0.79943 0.79943

Warnings:

Covariance Type:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 6.44e+04. This might indicate that there are strong multicollinearity or other numerical problems.

PRELIMINARES – IMÁGENES MEDIAY MEDIANA

PRELIMINARES – DISTANCIAS DATOS

CÁLCULO MATRICES DE COVARIANZA

Datos centrados en la media

Datos centrados en la mediana

Covarianza robusta basada en Spearman y MAD

Objetivo de ésta investigación

CÁLCULO DE EIGENFACES

PRUEBAS DE PROFUNDIDAD DATOS TRANSFORMADOS

Covarianza tradicional

OLS.	Regrection	Raculte

=============			
Dep. Variable:	y	R-squared:	0.396
Model:	OLS	Adj. R-squared:	0.396
Method:	Least Squares	F-statistic:	2306.
Date:	Tue, 26 May 2020	Prob (F-statistic):	0.00
Time:	03:28:45	Log-Likelihood:	32506.
No. Observations:	3521	AIC:	-6.501e+04
Df Residuals:	3519	BIC:	-6.500e+04
Df Model:	1		
Covariance Type:	nonrobust		

Covariance	Type:	nonrobu	ıst			
	coef	std err	t	P> t	[0.025	0.975]
const x1	0.3767 0.6232	0.013 0.013	29.038 48.025	0.000 0.000	0.351 0.598	0.402 0.649
Omnibus: Prob(Omnibu Skew: Kurtosis:	s):	235.8 0.6 0.6 3.2	000 Jarque 579 Prob(J	*		0.260 283.523 2.71e-62 6.50e+04

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 6.5e+04. This might indicate that there are strong multicollinearity or other numerical problems.

PRUEBAS DE PROFUNDIDAD DATOS TRANSFORMADOS

Covarianza centrada en mediana

OLS Regression Results

Dep. Variable:			у	R-squ	uared:		0.383
Model:			OLS	Adj.	R-squared:		0.383
Method:		Least Squ	ares	F-sta	ntistic:		2183.
Date:		Tue, 26 May	2020	Prob	(F-statistic):		0.00
Time:		03:2	8:46	Log-L	ikelihood:		32225.
No. Observatio	ons:		3521	AIC:			-6.445e+04
Df Residuals:			3519	BIC:			-6.443e+04
Df Model:			1				
Covariance Typ	oe:	nonro	bust				
============							
	coef			t	P> t	[0.025	0.975]
const	0.3665				0.000	0.340	0.393
x1	0.6334	0.014	46	.727	0.000	0.607	0.660
Omnibus:		254	.186	Dunhi	in-Watson:		0.251
Prob(Omnibus):			.000		ue-Bera (JB):		305.621
Skew:			.708				4.32e-67
Kurtosis:		3	.277	Cond.	NO.		6.27e+04

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 6.27e+04. This might indicate that there are strong multicollinearity or other numerical problems.

PRUEBAS DE PROFUNDIDAD DATOS TRANSFORMADOS

Covarianza robusta basada en Spearman y MAD

OLS Regression Results

Dep. Varia	ble:		y R-squa	ared:		0.638	0.9998 -
Model:		0	LS Adj. I	R-squared:		0.638	
Method:		Least Squar	es F-stat	tistic:		6197.	
Date:	T	ue, 26 May 20	20 Prob	(F-statistic)	:	0.00	0.9997 -
Time:		03:28:	46 Log-Li	ikelihood:		29801.	
No. Observ	ations:	35	21 AIC:			-5.960e+04	
Df Residua	ls:	35	19 BIC:			-5.958e+04	0 9996
Df Model:			1				
Covariance	Type:	nonrobu	st				
							0 9995 -
	coef	std err	t	P> t	[0.025	0.975]	0.3333
const	-0.0657	0.014	-4.851	0.000	-0.092	-0.039	
x1	1.0657	0.014	78.721	0.000	1.039	1.092	0.9994 -
			=======				
Omnibus:		684.0		n-Watson:		0.325	0.0003
Prob(Omnib	ous):	0.0		e-Bera (JB):		150.146	0.5553
Skew:		9.1	46 Prob(`	1B):		2.49e-33	

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.14e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Datos Originales

Eigen-faces centradas en media

Eigen-faces centradas en mediana

Eigen-faces covarianza robusta

CLASIFICACIÓN – RESULTADOS, EXACTITUD

	Datos Oi	riginales	Eigen-faces cen	tradas en media	Eigen-faces centr	adas en mediana	Eigen-faces cov	Eigen-faces covarianza robusta	
Modelo	Validación	Prueba	Validación	Prueba	Validación	Prueba	Validación	Prueba	
Discriminante Lineal	96.4489%	94.3343%	95.1705%	95.7507%	92.7557%	93.7677%	94.8864%	95.7507%	
Regresión Logística	98.2955%	98.0170%	96.4489%	96.6006%	95.8807%	95.1841%	96.8750%	96.6006%	
Bosque Aleatorio	97.3011%	97.4504%	98.4375%	96.3173%	98.5795%	97.4504%	97.4432%	96.6006%	

^{*}Se señalan los valores más altos de la métrica para dicho modelo en validación y pruebas

CLASIFICACIÓN – RESULTADOS, PRECISIÓN

		Datos O	riginales	Eigen-faces cent	Eigen-faces centradas en media		adas en mediana	Eigen-faces covarianza robusta	
	Modelo	Validación	Prueba	Validación	Prueba	Validación	Prueba	Validación	Prueba
	Discriminante Lineal	100%	100%	96.2025%	97.2973%	95.0617%	97.2222%	97.4359%	97.4359%
Paisajes	Regresión Logística	98.7805%	100%	89.8876%	89.1304%	89.1304%	91.1111%	90.8046%	88.6364%
	Bosque Aleatorio	98.7013%	100%	100%	100%	100%	100%	98.6842%	97.2222%
	Discriminante Lineal	96.9035%	94.6809%	95.8106%	96.0289%	94.4954%	95.5882%	95.1264%	96.0289%
Hombres	Regresión Logística	98.5158%	98.5240%	98.4848%	99.6169%	98.0989%	98.4615%	97.9439%	98.1273%
	Bosque Aleatorio	96.8978%	97.0909%	97.9742%	95.3571%	98.1550%	96.7391%	97.2527%	96.7391%
	Discriminante Lineal	90.8046%	88.3721%	89.4737%	92.3077%	78.2051%	80%	90.2778%	91.8919%
Mujeres	Regresión Logística	96.3855%	93.0233%	90.8046%	86.9565%	89.5349%	81.2500%	96.3415%	95.2381%
	Bosque Aleatorio	98.7342%	97.4359%	100%	100%	100%	100%	97.5610%	95.1220%
	Discriminante Lineal	95.9027%	94.3510%	93.8289%	95.2113%	89.2541%	90.9368%	94.2800%	95.1189%
Promedio	Regresión Logística	97.8939%	97.1824%	93.0590%	91.9013%	92.2547%	90.2742%	95.0300%	94.0006%
	Bosque Aleatorio	98.1111%	98.1756%	99.3247%	98.4524%	99.3850%	98.9130%	97.8326%	96.3611%

^{*}Se señalan los valores más altos de la métrica para dicho modelo en validación y pruebas

CLASIFICACIÓN – RESULTADOS, EXHAUSTIVIDAD (RECALL)

		Datos Or	riginales	Eigen-faces cent	Eigen-faces centradas en media		Eigen-faces centradas en mediana		Eigen-faces covarianza robusta	
	Modelo	Validación	Prueba	Validación	Prueba	Validación	Prueba	Validación	Prueba	
	Discriminante Lineal	74%	61%	83%	78%	84%	76%	83%	83%	
Paisajes	Regresión Logística	88%	85%	87%	89%	89%	89%	86%	85%	
	Bosque Aleatorio	83%	85%	88%	78%	91%	87%	82%	76%	
	Discriminante Lineal	100%	100%	99%	100%	97%	97%	99%	100%	
Hombres	Regresión Logística	100%	100%	98%	97%	97%	96%	98%	98%	
	Bosque Aleatorio	100%	100%	100%	100%	100%	100%	100%	100%	
	Discriminante Lineal	99%	95%	85%	90%	76%	90%	81%	85%	
Mujeres	Regresión Logística	100%	100%	99%	100%	96%	97%	99%	100%	
	Bosque Aleatorio	97%	95%	100%	93%	97%	93%	100%	97%	
	Discriminante Lineal	91%	85%	89%	89%	86%	88%	88%	89%	
Promedio	Regresión Logística	96%	95%	95%	95%	94%	94%	94%	94%	
	Bosque Aleatorio	93%	93%	96%	90%	96%	93%	94%	91%	

^{*}Se señalan los valores más altos de la métrica para dicho modelo en validación y pruebas

CONCLUSIONES

- A pesar de la carga de multidimensionalidad, la información espacial que corresponde a los datos originales se mantiene respecto a los cálculos de distancia pixel a pixel entre cada imágen, por lo que los datos originales, a pesar de representar una serie de computaciones más costosas, conlleva a una de las mejores clasificaciones.
- Las pruebas no paramétricas de pertenencia a la misma población es un excelente determinante para los conjuntos de imágenes, dado que mantiene la información espacial por el cálculo de las distancias pixel a pixel.
- La representación en un espacio reducido, aunque puede llevar a tener unas métricas inferiores que al usar el espacio original, dados los métodos correctos puede llegar a alcanzar niveles de desempeño tolerables, tomando en cuenta la relación entre la reducción del espacio y la pérdida de información.
- Los modelos de clasificación no paramétricos responden de manera más apropiada que los modelos paramétricos, mostrando la robustez de los mismos y cómo estos se presentan balanceados a la hora de clasificar conjuntos de datos con desbalance de clases.
- Para una próxima investigación se sugiere explorar la creación de espacios de eigen-caras con distintas matrices de covarianza no paramétricas: Modificada por Ledoit-Wolff, Co-median, Máxima Kurtosis, etc.

MUCHAS GRACIAS

¿Preguntas?

