Valore assoluto

• Definizione

$$|x| \to \begin{cases} x &, & per \ x \ge 0 \\ -x &, & per \ x < 0 \end{cases}$$
 Ovvero:
$$|x| \to \begin{cases} x \ge 0 \\ x \end{cases} \cup \begin{cases} x < 0 \\ -x \end{cases}$$

Esempio pratico:

$$|3x-1| \rightarrow \begin{cases} 3x-1 \ge 0 \\ 3x-1 \end{cases} \cup \begin{cases} 3x-1 < 0 \\ -(3x-1) \end{cases} \rightarrow \begin{cases} x \ge \frac{1}{3} \\ 3x-1 \end{cases} \cup \begin{cases} x < \frac{1}{3} \\ -3x+1 \end{cases}$$

Ovvero divido l'equazione in cui si trovava |3x-1| in due parti:

- la parte in cui $x \ge \frac{1}{3}$, in cui scrivo (3x 1)
- la parte in cui $x < \frac{1}{3}$, in cui scrivo (-3x+1)

• Equazioni con il valore assoluto

1) Equazioni con un solo valore assoluto ed un polinomio (caso generale)

$$|A| = B \to \left\{ \begin{matrix} A \geq 0 \\ A = B \end{matrix} \cup \left\{ \begin{matrix} A < 0 \\ A = -B \end{matrix} \right. \right.$$

2) Equazioni con un solo valore assoluto ed un polinomio (caso particolare con un numero al secondo membro)

Con n positivo al secondo membro	Con n negativo al secondo membro	Con n = 0 al secondo membro
$ A = n \to A = n \cup A = -n$	$ A = -n \to \emptyset$	$ A = 0 \to A = 0$

3) Equazioni con 2 o più valori assoluti

$$|A| + |B| = C \rightarrow \text{si studia il segno di A e B}$$

 \downarrow

- 3.1) Si risolvono le disequazioni A >0, B > 0, e si rappresentano sul grafico le soluzioni (per comodità, per questo esempio, chiamiamo $x > \alpha$ le soluzioni di A > 0, $x > \beta$ le soluzioni di B > 0)
- 3.2) Osservando il grafico si trovano N sistemi da calcolare (tanti quante le sezioni che si creano)

In questo esempio ci sono 2 valori (α, β) , che, guardando il grafico dei segni, formano 3 "zone", quindi 3 sistemi. Ogni sistema è definito da:

- \circ La zona (es. $\alpha \le x \le \beta$)
- L'equazione di partenza, in cui A e B presentano il segno + o a seconda che siano positive o negative in quella zona.

$$\begin{cases} x < \alpha \\ (-A) + (-B) = C \end{cases} \quad \cup \quad \begin{cases} \alpha \le x \le \beta \\ (+A) + (-B) = C \end{cases} \quad \cup \quad \begin{cases} x > \beta \\ (+A) + (+B) = C \end{cases}$$

• Disequazioni con valore assoluto

1) Disequazioni con un solo valore assoluto ed un polinomio (caso generale)

Con ">"
$$|A| > B \to \begin{cases} A \ge 0 \\ A > B \end{cases} \cup \begin{cases} A < 0 \\ -A > B \end{cases}$$

$$|A| \ge B \to \begin{cases} A \ge 0 \\ A > B \end{cases} \cup \begin{cases} A < 0 \\ -A \ge B \end{cases}$$

Con "<"
$$|A| < B \rightarrow \begin{cases} A \ge 0 \\ A < B \end{cases} \cup \begin{cases} A < 0 \\ -A < B \end{cases}$$

$$|A| \le B \rightarrow \begin{cases} A \ge 0 \\ A \le B \end{cases} \cup \begin{cases} A < 0 \\ -A \le B \end{cases}$$

2) Disequazioni con un solo valore assoluto ed un polinomio (caso particolare con un numero al secondo membro)

Con n positivo al secondo membro	Con n negativo al secondo membro	Con n = 0 al secondo membro	
$ A > n \to A < -n \cup A > n$	$ A > -n \to \forall x \in \mathbb{R}$	$ A > 0 \rightarrow A \neq 0$	
$ A \ge n \to A \le -n \cup A \ge n$	$ A \ge -n \to \forall x \in \mathbb{R}$	$ A \ge 0 \ \to \ \forall x \in \mathbb{R}$	
$ A < n \to \begin{cases} A < n \\ A > -n \end{cases}$	$ A < -n \to \emptyset$	$ A < 0 \rightarrow \emptyset$	
$ A \le n \to \begin{cases} A \le n \\ A \ge -n \end{cases}$	$ A \le -n \to \emptyset$	$ A \le 0 \ \to \ A = 0$	

3) Disequazioni con 2 o più valori assoluti

Procedimento identico a quello per le Equazioni con 2 o più valori assoluti. Cambia solo la presenza del "≶" al posto dell' "=" all'interno delle equazioni dei sistemi.

$$|A| + |B| \leq C$$

 \downarrow

- 3.1) Si risolvono le disequazioni A > 0, B > 0, e si rappresentano sul grafico le soluzioni (per comodità, per questo esempio, chiamiamo $x > \alpha$ le soluzioni di A > 0, $x > \beta$ le soluzioni di B > 0)
- 3.2) Osservando il grafico si trovano N sistemi da calcolare (tanti quante le sezioni che si creano)

In questo esempio ci sono 2 valori (α, β) , che, guardando il grafico dei segni, formano 3 "zone", quindi 3 sistemi. Ogni sistema è definito da:

- La zona (es. $\alpha \le x \le \beta$)
- L'equazione di partenza, in cui A e B presentano il segno + o a seconda che siano positive o negative in quella zona.

$$\begin{cases} x < \alpha \\ (-A) + (-B) \le C \end{cases} \quad \cup \quad \begin{cases} \alpha \le x \le \beta \\ (+A) + (-B) \le C \end{cases} \quad \cup \quad \begin{cases} x > \beta \\ (+A) + (+B) \le C \end{cases}$$