FECS 55 Homework4

YUZHAN JIANG

= (BOA) Vec (x)

: Vec $(AXB^T) = (BBA)$ vec (X) where $A \in F$, $X \in F$, $B \in C$ By Knonecker Andlust definition: By Knonecker Transco Mynamia. $B \otimes A = \begin{bmatrix} b_{11} A \cdots b_{1n} A \\ \vdots & \vdots \\ b_{q_{1}} A \cdots b_{q_{n}} A \end{bmatrix}$ $2s \quad q \quad p \times mn \quad black \quad matrix$ Let $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots \\ b_{q_{1}} & \cdots & b_{q_{n}} A \end{bmatrix}$ $X = \begin{bmatrix} x_{1} & \cdots & x_{n} \\ \vdots & \vdots & \vdots \\ b_{q_{1}} & \cdots & b_{q_{n}} A \end{bmatrix}$ $b = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & \cdots & b_{2n} \\ \vdots & \vdots & \vdots \\ b_{q_{1}} & \cdots & b_{q_{n}} A \end{bmatrix}$ The kth column of AXBT is; B7 = bin bki beit] $(A \times B^{T}): A = A \times b^{T}_{K} = A = A \times b^{T}_{(a)} \times b^{T}_{(a)}$ $= \begin{bmatrix} b^{*}_{K,1} & A & b^{*}_{K,$ Vec(x) = ([bk,1, bk,1 ... bk,n] &A) Vec(x) = (bx (A). vax $(A \times B^{T}) = \begin{bmatrix} (A \times B^{T}) : , 1 \\ (A \times B^{T}) : , 2 \end{bmatrix} = \begin{bmatrix} (b_{1} \otimes A) & \text{Vec}(x) \\ (b_{2} \otimes A) & \text{Vec}(x) \end{bmatrix} = \begin{bmatrix} b_{1} \otimes A \\ b_{2} \otimes A \end{bmatrix} \text{ we } (x)$

and $(Ax)B^T = \begin{bmatrix} a_{x11} & ... & a_{x1n} \end{bmatrix}$ $also requires nxnxn = n^3 scalar multiplications$

So there are total 212 operations

B\(\text{A} \) requires = $(1 \cdot n^2) \cdot n^2 = n^4$ multiplications

(B\(\text{A} \) \) \(\text{lequires} \) = $\begin{bmatrix} b_1 A \\ b_2 A \end{bmatrix} \begin{bmatrix} x_{1,2} \\ x_{2,n} \end{bmatrix}$ requires $n^2 \cdot n^2 = n^4$ multiplications

So there one total $2n^4$ multiplications for (BOA) Vec(x)

Therefore, Vec (AXB⁷) takes fewer muliplications

۵. (a) Firstly, we find the eigenvalues of 13 = A+ xx let det (B-NI)=0 det (A+ xx-λI)=0 where A-AI is invertiable by the property, detCI-xy')= - y'x det (A+XX-AI) = det((A-XI)(I+(A-XI)'XX')] = $det \overline{C}(A-\lambda I)$] $det(I+(A-\lambda I)^{-1}xx')$ = $det E(A-\lambda I)$] (H $\chi(A-\lambda I)^{T}\chi$) Since $det(A-\Lambda I)$ cannot be 0. $(H \times (A-\Lambda I)^{-1} \times) = 0$ $\times'(A-\lambda I)'x = -1$ let $\times \in F^{N}$ $\times (A - \lambda I)^{-1} \times = [\times_{1} \times_{2} \dots \times_{n}]$ $\begin{bmatrix} \lambda - A_{11} & 0 & \dots & 0 \\ \lambda - A_{21} & \dots & \lambda - A_{nn} \\ \vdots & \ddots & \ddots & \lambda - A_{nn} \end{bmatrix} \begin{bmatrix} x_{1} \\ \vdots \\ x_{n} \end{bmatrix} = -1$:. $\frac{x^2}{\lambda - A_{11}} + \frac{x^2}{\lambda - A_{22}} + \dots + \frac{x^{n^2}}{\lambda - A_{mn}} = 1$ Where $A_{11}, A_{22} \cdot \dots \cdot A_{nn}$ are the eigenvolves of (b) $A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ and $X = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$:. A11=1 and A22=2, A33=3 are eigenvalues of A $\frac{1}{\lambda-1} + \frac{1}{\lambda-2} + \frac{1}{\lambda-3} = 1$ $\frac{(\lambda-2)(\lambda-3)+(\lambda-1)(\lambda-3)+(\lambda-1)(\lambda-2)}{(\lambda-1)(\lambda-2)(\lambda-3)}=0$ $\frac{2\lambda^2 - 9\lambda + 9 + \lambda^2 - 3\lambda + 2}{(\lambda + \lambda)(\lambda - 2)(\lambda - 3)} = 0$ -1 $\lambda^3 - 9\lambda^2 + 23\lambda - 17 = 0$ by Wing Julia's Polynomials. IL :. n=1.32, 12=2.46, 13=5.2

9. And 92 are two orthonormal vectors, and b some fixed vector in \mathbb{R}^7 (a) let $\mathbb{A} = [9, 92]$ and $\mathbb{X} = [\beta]$ $\mathbb{A} \times = 39 + \beta92$

By formula, the linear least squares estimate that minimize $||Ax-b||_2$ Where $x = A^Tb$

SVD of
$$A = \sum_{i=1}^{2} | \mathcal{V}_i e_i^{T}|$$
 where e_i is the unit nector

$$i$$
, $A^T = \sum_{i=1}^{2} e_i q_{i-1}^T$

Therefore,
$$X = \sum_{i=1}^{2} e_{i}q_{i}^{T}b = \begin{bmatrix} e_{1}q_{1}^{T}b \\ e_{2}q_{2}^{T}b \end{bmatrix}$$

(b)
$$\gamma = b - 29, -\beta92 = b - Ax$$

= $b - AA^{\dagger}b$
= $b(I - AA^{\dagger})$

$$A'(b-Ax)=0$$
 implies that:

P4: $A \in F^{(NeV)}$, $b \in F^{(N)}$ and $x \in F^{(N)}$.

At is Moore-Penrise pseudo-inverse of A. By the ded of orthogonal nectors, $((I - A^{\dagger}A)x)' \cdot (A^{\dagger}b) = x'(I - A^{\dagger}A)' \cdot (A^{\dagger}b)$ $= x'(I - (A^{\dagger}A))' \cdot A^{\dagger}b$ $= x'(I - (A^{\dagger}A)) \cdot A^{\dagger}b$ (by properties of Moore-Penrise inverse) $= x'(A^{\dagger} - A^{\dagger}AA^{\dagger})b$ $= x'(A^{\dagger} - A^{\dagger})b$ (By properties of Moore-Penrise messe) = 0Therefore, $(I - A^{\dagger}A)x$ and $A^{\dagger}b$ are orthogonal vectors

P5, 1.(a) - f(x) = | Ax-b| Va EC31], x1. x2E V. $f(\alpha X_1 + (1-\delta) X_2) \leq \partial f(x_1) + (1-\delta) f(x_2)$ $||A(\Delta x_1 + (1-d)x_2) - b|| \leq \frac{\lambda}{2} ||Ax_1 - b||_{\frac{1}{2}} + (1-\delta) ||Ax_2 - b||_{\frac{1}{2}}$ CThis is what me need to prove) | ACOX,+(1-2)x2) - b| = | | OAX,+(1-0) AX2- b12 = | | dax1+(1-d)ax2-b(d+1-d) |2. $= ||\partial(Ax_1-b) + (1-a)(Ax_2-b)||_{2}$ < | | d(AX1-b) | + | 1(1-d) (Ax2-b) 2 (By the triangle inequality) $= \frac{1}{2} \left| |Ax_1 - b||_2 + (|-2|) \int |Ax_2 - b||_2$ Therefore, fox) = | 1 Ax-b | is a convex function (b) prove that $\sigma(x)$ is a Convex function of the elements of the MxN motion xSuppose there are two matrix $A / B \in F^{MKN}$, $\sigma(A + (I-b)B) \in \Delta \sigma(A) + (I-b)\sigma(B)$ (this is What we need to prove) $\nabla_{1}(\partial A + (1-\partial)\beta) = \max_{\|A\|_{2}=1} \|(\partial A + (1-\partial)\beta)u\|_{2} \qquad \text{CBy hint})$ = max /1 dAn + (1-2) Bul/2 (By the triangle inequality) $= \frac{\partial}{\partial x} || Au| + (1-\delta) \max_{x \in \mathbb{R}} || Pw|_{\lambda}$ = 2 of (A) + (1-3) of (B) (By hint) ., σ,(x) is a convex function

(b)

	Constant Fit	Linear Fit	Affine Fit€	Quadratic Fit←	↩			
8	502.8000000000	0←	453.8597721297	451.1144442860	₽			
	0007←	100	1073←	2084←				
	4		4	4				
	0←1	7.013164556962	0.923400525854	1.058444733541	₽			
		026←	515↔	3572←				
		4	4	←				
	0←3	0←3	0€	-0.00111696586	₽			
				42307817 <				
				₽				
4								

As the plot shown, the coefficients of the least square error polynomial approximation of the data b for degree = 15 and degree = 2 are the same.

When noises are addled, the least square error polynomial approximation pass through each sample doita.

(2)

	polynomial degree:←	d = 2←	d = 15€	()			
-	Residual norm Ax(b) - b 2	3502105199189893€	0,0001622183167221819	↩			
	noiseless (a)←						
	Residual norm Ax(y) - y 2	6.1910692087245234	1047. 7135994720524	↩			
	noisy (b)€						
	Fitting error Ax(b) − b 2 [←]	4.641460505926311	4.6414605059263114	()			
ı	e						

(d)

Since A1x = [A2 A2:15], it implies that R(A2) \(\in \text{R(A15)} \)

The residual norm for degree 2 is smaller than that degree of 15