第四章 随机变量的数字特征

- 1. 数学期望
- 2. 随机变量的方差
- 3. 协方差、相关系数和矩
- 4. 多维正态随机变量

一. n 维正态随机变量

定义: $设n维随机变量(X_1, X_2, \cdots, X_n)$ 的协方差矩阵 $C = (C_{ij})$ 是n阶正定对称矩阵,其联合概率密度为

注: 1)
$$E(X_i) = \mu_i$$
 $D(X_i) = \sigma_i^2$

$$2) \quad \operatorname{cov}(X_i, X_j) = \sigma_i \sigma_j \rho_{ij}$$

二.重要结论

- 1. 有限个相互独立的正态随机变量的线性函数 仍服从正态分布
 - (1) $X\sim N(\mu,\sigma^2)\Rightarrow aX+b\sim N(a\mu+b,a^2\sigma^2)$ 例3.4.7
 - (2) $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$ ⇒ $X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$ 例3.4.11

二.重要结论

2. (X_1, \dots, X_n) 服从n维正态分布 \Leftrightarrow X_1, \dots, X_n 的任意线性组合 $L_1X_1 + \dots + L_nX_n$ 服从正态分布,其中系数 L_1, \dots, L_n 不全为0.

* $(X,Y) \sim N(\mu_1, \sigma_1^2; \mu_2, \sigma_2^2; \rho) \Rightarrow$ X $\sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2)$ 例3.1.10

二.重要结论

 $3.(X_1, \dots, X_n)$ 服从n维正态分布, Y_1, \dots, Y_m 是 X_1, \dots, X_n 的线性组合 \Rightarrow Y_1, \dots, Y_m 是m维正态分布随机变量。

二.重要结论

- 4. (X_1, \dots, X_n) 服从n维正态分布,且相互独立 $\Leftrightarrow X_1, \dots, X_n$ 不相关(协方差阵为对角阵) * $(X, Y) \sim N(\mu_1, \sigma_1^2; \mu_2, \sigma_2^2; \rho)$, X与Y相互独立 $\Rightarrow \rho = 0$ (即X与Y不相关)
 - 例3.2.5、例4.4.6

[典型习题:三章25题、四章21题]

A	a	alpha	N	v	nu
B	ß	beta		ξ	xi
$ oldsymbol{arGamma} $	y	gamma	0	0	omicron
1	$\boldsymbol{\delta}$	delta	П	π	pi
E	3	epsilon	P	p	rho
Z	5	zeta	$\sum_{i=1}^{n}$	σ	sigma
H	η	eta	T	τ	tau
0	$\boldsymbol{\theta}$	theta	Y	\boldsymbol{v}	upsilon
I	1	iota	Φ	$\boldsymbol{\varphi}$	phi
K	K	kappa	X	χ	chi
1	λ	lambda	Ψ	Ψ	<i>psi</i>
M	μ	mu	Ω	W	omega

全国大学生数学建模竞赛1997年赛题

A题 零件的参数设计

一件产品由若干零件组装而成,标志产品 性能的某个参数取决于这些零件的参数。零 件参数包括标定值和容差两部分。进行成批 生产时,标定值表示一批零件该参数的平均 值,容差则给出了参数偏离其标定值的容许 范围。若将零件参数视为随机变量,则标定 值代表期望值,在生产部门无特殊要求时, 容差通常规定为均方差的 3 倍。

全国大学生数学建模竞赛1997年赛题

A题 零件的参数设计

进行零件参数设计,就是要确定其标定值 和容差。这时要考虑两方面因素:一是当各 零件组装成产品时,如果产品参数偏离预先 设定的目标值,就会造成<mark>质量损失</mark>,偏离越 大. 损失越大: 二是零件容差的大小决定了 其制造成本,容差设计得越小,成本越高。 试通过如下的具体问题给出一般的零件参 数设计方法。

全国大学生数学建模竞赛1997年赛题

A题 零件的参数设计

粒子分离器某参数 (记作 y) 由7 个零件的 参数 (记作 x1, x2, ...x7) 决定, 经验公式 为:

$$y = 174.42 \times \left(\frac{x_1}{x_5}\right) \times \left[\frac{x_3}{x_2 - x_1}\right]^{0.85} \times 1$$

$$y = 174.42 \times \left(\frac{x_1}{x_5}\right) \times \left[\frac{x_3}{x_2 - x_1}\right]^{0.85} \times \sqrt{\frac{1 - 2.62 \times \left[1 - 0.36 \times \left(\frac{x_4}{x_2}\right)^{-0.56}\right]^{\frac{3}{2}} \times \left(\frac{x_4}{x_2}\right)^{1.16}}{x_6 \times x_7}}$$

全国大学生数学建模竞赛1997年赛题

A题 零件的参数设计

y 的目标值(记作 y0 为1.50。 当y偏离 1.00±y 时,产品为次品,质量损失为 1,000(元); 当y偏离 3.00±y 时,产品为废品,损失为 9,000(元)。

全国大学生数学建模竞赛1997年赛题

A题 零件的参数设计

零件参数的标定值有一定的容许变化范围;容差分为 A、 B、 C 三个等级,用与标定值的相对值表示,A 等为 \pm 1%,B 等为 \pm 5%,C 等为 \pm 10%。7个零件参数标定值的容许范围,及不同容差等级零件的成本(元)如下表(符号/表示无此等级零件):

全国大学生数学建模竞赛1997年赛题

	标定值容许范围	C 等	B等	A 等
X_1	[0. 075, 0. 125]	/	25	/
X_2	[0. 225, 0. 375]	20	50	/
X ₃	[0. 075, 0. 125]	20	50	200
X_4	[0. 075, 0/125]	50	100	500
X ₅	[1. 125, 1. 875]	50	/	/
X ₆	[12, 20]	10	25	100
X_7	[0. 5625, 0. 935]	/	25	100

全国大学生数学建模竞赛1997年赛题

A题 零件的参数设计

现进行成批生产,每批产量 1,000 个。在原设计中,7个零件参数的标定值为:

$$X_1 = 0.1,$$
 $X_2 = 0.3,$ $X_3 = 0.1,$ $X_4 = 0.1,$ $X_5 = 1.5,$ $X_6 = 16,$ $X_7 = 0.75$

容差均取最便宜的等级。

请你综合考虑y偏离y₀造成的损失和零件成本,重新设计零件参数(包括标定值和容许差),与原设计比较,总费用降低了多少。