SRM INSTITUTE OF SCIENCE AND TECHNOLOGY, RAMAPURAM DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ANSWER KEY SUBMISSION

Date of Exam & Session Course Name	11/08/23 COMPUTER VISION	Category of Exam Course Code	CLA1 18CSE390T
Name of the Faculty submitting	Dr.S.DEEPA	Date of submission of Answer Key	11/08/23
Department to which the Faculty belongs to	CSE	Total Marks	25

PART A (10x1=10) ANSWER ALL THE QUESTIONS

Q.No	MCQ Question	Marks	со	BL	PI
	A. A can be recorded using a normal light source.				
	a) Holograph				
1.	b) Photography	1	/ 1	1	2.5.1
	c) Holography d) Photograph		\		
	The translation distances (dx, dy) is called as		+	+	_
- 1	a) Translation vector				
2.	b) Shift vector	1	1	2	1.2.1
	c) Both Translation vector and shift vector	•	'	-	1,2.1
	d) Neither Translation vector nor shift vector				
	In 2D-translation, a point (x, y) can move to the new position				
	(x', y') by using the equation				
	a) $x'=x+dx$ and $y'=y+dx$				
3.	b) $x'=x+dx$ and $y'=y+dy$	1	1		4.7.1
	c) $X'=x+dy$ and $Y'=y+dx$				
	d) X'=x-dx and y'=y-dy				
	To generate a rotation , we must specify				
	a) Rotation angle 🗆				
	b) Distances dx and dy	1	1	1	1.2.1
	c) Rotation distance				
	d) All of the mentioned				

Signature of the Faculty

	SRM INSTITUTE OF SCIENCE AND TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE AND EN	, ram a Igineef	PUR RING	AM	
5.	DEPARTMENT OF COMPUTER 5 Which transformation distorts the shape of an object such that the transformed shape appears as if the object were composed of internal layers that had been caused to slide over each other? a) Rotation b) Scaling up c) Scaling down d) Shearing	1	1	2	4.7.1

PART-B (2x4=8)ANSWER ALL THE QUESTIONS

Q.No.	Question	Mark s	СО	BL	PI
6.	Analyse Photometric image formation and explain about Light scatters when it hits a surface.	4	1	3	2.5.1
	Light is emitted by one or more light sources and is then reflected from an object's surface. A portion of this light is directed towards the camera. This simplified model ignores multiple reflections, which often occur in real-world scenes	7		3	2.3.1
7.	Elaborate in detail about discrete cosine transform in Fourier transform The discrete cosine transform (DCT) helps separate the image into parts (or spectral sub-bands) of differing importance (with respect to the image's visual quality). The DCT is similar to the discrete Fourier transform: it transforms a signal or image from the spatial domain to the frequency domain. T(I.I) F(U.V.)	4	l	3	2.5.1

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY, RAMAPURAM DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

PART-C (1x12= 12) ANSWER ANY ONE OF THE FOLLOWING QUESTIONS

	0.No.	Question	Marks	CO	BL	PI
	0.110.	Discuss about point operators in image processing	5			
		transforms.				
	8.a	 ❖ Pixel transforms x is in the D-dimensional domain of the functions (usually D = 2 for images) and the functions f and g operate over some range, which can either be scalar or vector-valued, e.g., for color images or 2D motion For discrete images, the domain consists of a finite number of pixel locations, x = (i, j), and we can write g(i, j) = h(f(i, j)) ❖ Color transforms Adding the same value to each color channel not only increases the apparent intensity of each pixel, it can also affect the pixel's hue and saturation Chromaticity coordinates or even simpler color ratios can first be computed and then used after receivable in the 		1	1 1:	2.5.1
	0.11	first be computed and then used after manipulating the luminance Y to re-compute a valid RGB image with the same hue and saturation. Compositing and matting	12			2.3.1
		* Compositing and matting Compositing equation $C = (1-\alpha)B + \alpha F$. The images are				
		taken from a close-up of the region of the hair in the upper right part of the lion				
		This operator attenuates the influence of the background image B by a factor $(1-\alpha)$ and then adds in the color (and opacity) values corresponding to the foreground layer F				
		It is convenient to represent the foreground colors in premultiplied form, i.e. αF				
		But, when matting using local color consistency, the pure un-multiplied foreground colors F are used, since these				
		remain constant (or vary slowly) in the vicinity of the object edge (OR)				
		Explain briefly about Geometric primitives and		-		
		transformations with neat diagram				
		Geometric Primitives				
	8.b	 2D points can also be represented using homogeneous coordinates, 	12	1	2 2	2.6.1
		$\widetilde{\mathbf{x}} = (\widetilde{\mathbf{x}}, \widetilde{\mathbf{y}}, \widetilde{\mathbf{w}}) \in \mathbf{P}^2$				
L	The	• 2D Lines can also be represented using	0			

Course Code :18CSE390T

Page No.3 of 4

Signature of the Faculty

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY, RAMAPURAM DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

3D Plane coordina correspondence	teous coording can also be a tes, $\tilde{m} = (a, m)$ and $\tilde{x} \cdot \tilde{m} = ax + b$ as	represer b, c, d) equation	nted as homo), with a n	geneous
Transformation	Matrix	# DoF	Preserves	Icon
translation	$\begin{bmatrix} \mathbf{I} & \mathbf{t} \end{bmatrix}_{2 \times 3}$	2	orientation	
rigid (Euclidean)		3	lengths	\Diamond
similarity	$\begin{bmatrix} s\mathbf{R} & \mathbf{t} \end{bmatrix}_{2 \times 3}$	4	angles	\Diamond
affine	$\left[\mathbf{A} ight]_{2 imes3}$	6	parallelism	
projective	$[ilde{\mathbf{H}}]$	8	straight lines	

HOD CSE STATE

S. Day