XI.3 Quantiles de la loi du χ^2

Soit X_n une v.a. de loi $\chi^2(n)$, on pose

$$\int_x^{\infty} \frac{1}{2^{n/2} \Gamma(n/2)} y^{\frac{n}{2}-1} e^{-y/2} dy = \mathbb{P}(X_n \ge x) = \alpha.$$

$n \setminus \alpha$	0.990	0.975	0.950	0.900	0.100	0.050	0.025	0.010	0.001
		0.0.0	0.000	0.500	0.100	0.000	0.020	0.010	0.001
1	0.0002	0.0010	0.0039	0.0158	2.71	3.84	5.02	6.63	10.83
2	0.02	0.05	0.10	0.21	4.61	5.99	7.38	9.21	13.82
3	0.11	0.22	0.35	0.58	6.25	7.81	9.35	11.34	16.27
4	0.30	0.48	0.71	1.06	7.78	9.49	11.14	13.28	18.47
5	0.55	0.83	1.15	1.61	9.24	11.07	12.83	15.09	20.52
6	0.87	1.24	1.64	2.20	10.64	12.59	14.45	16.81	22.46
7	1.24	1.69	2.17	2.83	12.02	14.07	16.01	18.48	24.32
8	1.65	2.18	2.73	3.49	13.36	15.51	17.53	20.09	26.12
9	2.09	2.70	3.33	4.17	14.68	16.92	19.02	21.67	27.88
10	2.56	3.25	3.94	4.87	15.99	18.31	20.48	23.21	29.59
						-0.01	20.10	20:21	20.00
11	3.05	3.82	4.57	5.58	17.28	19.68	21.92	24.72	31.26
12	3.57	4.40	5.23	6.30	18.55	21.03	23.34	26.22	32.91
13	4.11	5.01	5.89	7.04	19.81	22.36	24.74	27.69	34.53
14	4.66	5.63	6.57	7.79	21.06	23.68	26.12	29.14	36.12
15	5.23	6.26	7.26	8.55	22.31	25.00	27.49	30.58	37.70
16	5.81	6.91	7.96	9.31	23.54	26.30	28.85	32.00	39.25
17	6.41	7.56	8.67	10.09	24.77	27.59	30.19	33.41	40.79
18	7.01	8.23	9.39	10.86	25.99	28.87	31.53	34.81	42.31
19	7.63	8.91	10.12	11.65	27.20	30.14	32.85	36.19	43.82
20	8.26	9.59	10.85	12.44	28.41	31.41	34.17	37.57	45.31
21	8.90	10.28	11.59	13.24	29.62	32.67	35.48	38.93	40.00
22	9.54	10.28	12.34	14.04	30.81	33.92	36.78	38.93 40.29	46.80
23	10.20	11.69	13.09	14.85	32.01	35.17	38.08		48.27
24	10.86	12.40	13.85	15.66	33.20	36.42	39.36	41.64	49.73
25	11.52	13.12	14.61	16.47	34.38	37.65	39.30 40.65	42.98 44.31	51.18
26	12.20	13.84	15.38	17.29	35.56	38.89	40.05	44.31 45.64	52.62
27	12.88	14.57	16.15	18.11	36.74	40.11	43.19	45.04 46.96	54.05
28	13.56	15.31	16.93	18.94	37.92	41.34	44.46	48.28	55.48 56.89
29	14.26	16.05	17.71	19.77	39.09	42.56	45.72	49.59	
30	14.95	16.79	18.49	20.60	40.26	43.77	46.98	50.89	58.30 59.70
				20.00	20.20	30.11	4U.9G	90.08	09.10

Lorsque n>30, on peut utiliser l'approximation $\sqrt{2\chi^2(n)}-\sqrt{2n-1}\stackrel{\text{Loi}}{\simeq}\mathcal{N}(0,1)$ (voir l'exercice VI.12).