Spring-2020-CS-18200-LE1 Homework 2

Abhi Gunasekar

TOTAL POINTS

100 / 100

QUESTION 1

1 Problem 1 16 / 16

√ - 0 pts Correct

- 16 pts Blank
- 3 pts Missing at most 2 steps of reasoning
- 6 pts Missing at most 3 steps of reasoning
- 9 pts Missing at most 4 steps of reasoning
- 12 pts Major errors in reasoning

QUESTION 2

2 Problem 2 24 / 24

√ - 0 pts Correct

- 24 pts Blank Answer
- 6 pts 3 or less missing or incorrect steps
- 12 pts 4 to 6 missing or incorrect steps
- 18 pts 7 or more missing or incorrect steps

QUESTION 3

3 Problem 3 20 / 20

√ - 0 pts Correct

- 2 pts minor mistake
- 4 pts major mistake/did not show how to obtain/did not mention rule of inference/2 or more wrong conclusion
 - 20 pts blank
 - 3 pts 1 conclusion missing/wrong

QUESTION 4

4 Problem 4 16 / 16

√ - 0 pts Correct

- 2 pts minor mistake in proof by contraposition (
 not p --> not q instead of not q --> not p, etc)
- 2 pts minor mistake in proof by contradiction (assumed 3n+2 is odd and n is even, etc)
 - 4 pts major mistake in proof by contraposition(did

not assume n is odd, etc)

- 4 pts major mistake in proof by contradiction (did not use proof by contradiction, etc)
 - 8 pts Proof by Contraposition blank
 - 8 pts Proof by Contradiction blank

QUESTION 5

5 Problem 5 14 / 14

√ - 0 pts Correct

- 1 pts Minor mistake in argument
- 3 pts Major mistake in argument
- 4 pts Missing case/equivalency not fully

established

- 14 pts Blank
- 7 pts Insufficient proof

QUESTION 6

6 Problem 6 10 / 10

- 7 pts failed to prove
- **0 pts** In this problem, giving one example would be sufficient.
 - 10 pts Blank
 - 1 pts Minor mistake
 - 0 pts 1/2 is a rational number.
 - **0 pts** actually xy can be rational if x is zero.

Abhishek Gunasekar 02/05/2020

Homework 2 Answers

1 Problem 1: (16 Points)

 $\forall x[(P(x) \land Q(x))] \land (\exists x)(Q(x)) \rightarrow (\exists x)(P(x))$

1. $\forall x[(P(x) \land Q(x))]$

2. $P(c) \wedge Q(c)$

3. $\exists x(Q(x))$

4. Q(c)

5. P(c)

6. $\exists x (P(x))$

∴ QED

Premise 1

Universal Instantiation on 1.

Premise 2

Existential Instantiation on 2.

Simplification on 2.

Existential Generalization on 5.

1 Problem 1 16 / 16

- 16 pts Blank
- 3 pts Missing at most 2 steps of reasoning
- 6 pts Missing at most 3 steps of reasoning
- 9 pts Missing at most 4 steps of reasoning
- 12 pts Major errors in reasoning

2 Problem 2: (24 Points)

 $\forall x (P(x) \rightarrow (Q(x) \land S(x)) \land \forall x (P(x) \land R(x)) \rightarrow \forall x (R(x) \land S(x))$ 1. $\forall x (P(x) \rightarrow (Q(x) \land S(x))$ Premise 1 2. $P(c) \rightarrow Q(c) \land S(c)$ Universal Instantiation on 1. 3. $\forall x(P(x) \land R(x))$ Premise 2. 4. $P(c) \wedge R(c)$ Universal Instantiation on 3. 5. P(c) Simplification on 4. 6. $Q(c) \wedge S(c)$ Modus Ponens on 2. 7. S(c) Simplification on 6. 8. R(c) Simplification on 4. 9. $S(c) \wedge R(c)$ Conjunction on 7 and 8. Universal Generalization on 9. 10. $\forall x(R(x) \land S(x))$

2 Problem 2 24 / 24

- 24 pts Blank Answer
- 6 pts 3 or less missing or incorrect steps
- 12 pts 4 to 6 missing or incorrect steps
- 18 pts 7 or more missing or incorrect steps

3 Problem 3: (20 Points)

The predicates needed for this question can be defined as follows:

- x is an insect can be represented by the predicate I(x).
- x has six legs can be represented by the predicate L(x).
- x eats y can be represented by the predicate E(x,y)

Given the above declaration, the premises as given in the handout can be described as:

- Premise 1: $\forall x(I(x) \rightarrow L(x))$.
- Premise 2: I(dragonfly)
- Premise 3: \neg L(spider)
- Premise 4: E(spider, dragonfly)

And from the premises, we can draw three conclusions.

- 1. Dragonflies have six legs: L(dragonfly)
- 2. Spider is not an insect $(\neg I(spider))$
- 3. There exists some insect that is eaten by a spider: $\exists y (E(x,y) \land I(y))$

The conclusions above can be derived using rules of inference as follows:

• Conclusion 1:

1. $\forall x(I(x) \rightarrow L(x))$	Premise 1
2. I(dragonfly)	Premise 2
3. $I(dragonfly) \rightarrow L(dragonfly)$	Universal instantiation on 1
4. L(dragonfly)	Modus Ponens on 3

• Conclusion 2:

1.	$\forall x(I(x) \to L(x))$	Premise 1
2.	¬L(Spider)	Premise 3
3.	$I(Spider) \rightarrow L(Spider)$	Universal Instantiation on 1
4.	¬I(Spider)	Modus tollens on 2 and 3

• Conclusion 3:

1.	E(Spider, Dragonfly)	Premise 1
2.	I(dragonfly)	Premise 2
3.	E(spider, dragonfly)	Conjunction on 1 and 3
4.	$\exists y (E(x,y) \land I(y))$	Existential Generalization

3 Problem 3 20 / 20

- 2 pts minor mistake
- 4 pts major mistake/did not show how to obtain/did not mention rule of inference/2 or more wrong conclusion
- 20 pts blank
- 3 pts 1 conclusion missing/wrong

4 Problem 4 (16 Points)

Prove that if n is an integer and 3n + 2 is even, then n is even using

• A proof by contraposition

```
If 3n+2 is even, then n is even is of the form p\to q. It's contrapositive would be \neg q\to \neg p So, the contrapositive can be translated as if n is odd, then 3n+2 is odd. Let's assume an odd number n to be 2k+1 where k is some real integer, then 3n+2=3(2k+1)+2 =6k+3+2 =6k+4+1 =2(3k+2)+1 =2(k')+1 where k' is another real integer, implying that 3n+2 is odd.
```

= 2(R) + 1 where R is another real integer, implying that 3R + 2 is odd. \therefore If 3n+2 is even, then n is even because the contrapositive is proven to be true above.

∴ QED.

• A proof by contradiction

Assume 3n + 2 is even and n is odd, then given that n is odd, n = 2k + 1 where k is some real integer. Then 3n + 2 = 3(2k + 1) + 2 = 6k + 5 = 2(3k + 2) + 1 = 2(k') + 1 where k' is another real integer, implying that 3n + 2 is odd.

Therefore 3n + 2 is odd. This is a clear contradiction to the original statement 3n + 2 is even.

4 Problem 4 16 / 16

- 2 pts minor mistake in proof by contraposition (not p --> not q instead of not q --> not p, etc)
- 2 pts minor mistake in proof by contradiction (assumed 3n+2 is odd and n is even, etc)
- 4 pts major mistake in proof by contraposition(did not assume n is odd, etc)
- 4 pts major mistake in proof by contradiction (did not use proof by contradiction, etc)
- 8 pts Proof by Contraposition blank
- 8 pts Proof by Contradiction blank

5 Problem 5: (14 Points)

Let 5.1, 5.2, 5.3 represent p1, p2, and p3 respectively, then to prove that they are logically equivalent we need to show p1 \rightarrow p2, p2 \rightarrow p3, and p3 \rightarrow p1

<u>Definition of a Rational Number:</u> The real number r is rational if there exists integers p and q with $q \neq 0$ such that r = p / q

1. Proving $p1 \rightarrow p2$

If x is irrational, then 3x + 2 is irrational.

We can prove this using contraposition:

Contrapositive would be $\neg p2 \rightarrow \neg p1$

If 3x + 2 is rational, then x is rational.

$$3x + 2 = p/q$$

x = (1/3) ((p/q) - 2)

x = (1/3) ((p - 2q)/q)

x = (p - 2q)/(3q)

x = (p')/(q') where p' and q' are integers.

 \therefore x is rational and p1 \rightarrow p2 is proven through contrapositive.

2. Proving $p2 \rightarrow p3$

If 3x + 2 is irrational, then x/2 is irrational.

We can prove this using contraposition:

Contrapositive would be $\neg p3 \rightarrow \neg p2$

If x/2 is rational, then 3x + 2 is rational.

$$(x/2) = p/q$$

x = (2p)/q

3x + 2 = 3(2p/q) + 2

$$3x + 2 = (6p/q) + 2$$

$$3x + 2 = (6p + 2q)/(q)$$

3x + 2 = (p')/(q') where p' and q' are integers.

 \therefore 3x + 2 is rational and p2 \rightarrow p3 is proven through contrapositive.

3. Proving $p3 \rightarrow p1$

If (x/2) is irrational, then x is irrational.

We can prove this using contraposition:

Contrapositive would be $\neg p1 \rightarrow \neg p3$

If x is rational, then x/2 is rational

$$x = p/q$$

$$(x/2) = (1/2)(p/q)$$

$$(x/2) = (p/2q)$$

(x/2) = (p'/q') where p' and q' are integers.

 \therefore x/2 is rational and p3 \rightarrow p1 is proven through contrapositive.

Definition

Definition

Definition

Since the propositions p1 \rightarrow p2, p2 \rightarrow p3, p3 \rightarrow p1 are each proven using contraposition, the propositions about the real number x represented by 5.1, 5.2, 5.3 are said to be logically equivalent to each other.

6 Problem 6: (10 Points)

Prove? There is a rational number x and an irrational number y such that xy is irrational.

Let's assume x to be 1 and y to be $\sqrt{2}$, which we clearly know to be irrational as mentioned by the proof in slide 14 in lecture slides Chapter1p3_5. Therefore the product of x and y, xy in particular would be $\sqrt{2}$ as well, implying that it is also irrational.

- \div It is proven that there exists a rational and an irrational number whose product is irrational.
- ∴ QED.

5 Problem 5 14 / 14

- 1 pts Minor mistake in argument
- **3 pts** Major mistake in argument
- 4 pts Missing case/equivalency not fully established
- 14 pts Blank
- 7 pts Insufficient proof

Since the propositions p1 \rightarrow p2, p2 \rightarrow p3, p3 \rightarrow p1 are each proven using contraposition, the propositions about the real number x represented by 5.1, 5.2, 5.3 are said to be logically equivalent to each other.

6 Problem 6: (10 Points)

Prove? There is a rational number x and an irrational number y such that xy is irrational.

Let's assume x to be 1 and y to be $\sqrt{2}$, which we clearly know to be irrational as mentioned by the proof in slide 14 in lecture slides Chapter1p3_5. Therefore the product of x and y, xy in particular would be $\sqrt{2}$ as well, implying that it is also irrational.

- \div It is proven that there exists a rational and an irrational number whose product is irrational.
- ∴ QED.

6 Problem 6 10 / 10

- 7 pts failed to prove
- **0 pts** In this problem, giving one example would be sufficient.
- 10 pts Blank
- 1 pts Minor mistake
- **0 pts** 1/2 is a rational number.
- **0 pts** actually xy can be rational if x is zero.