Complex Analysis Homework 7

Colin Williams

November 9, 2020

Question 4

Each of the following integrals is zero where $\gamma(a,r)$ denotes the circle with center at a and radius r. Give a reason or evaluate the integral in each case.

(a)
$$\int_{\gamma(1,1)} \frac{1}{z-3} dz$$
,

• If we let $\Omega = D(1, 1.5)$ be a convex set, then $\frac{1}{z-3}$ is holomorphic in Ω (since the only discontinuity, $z=3 \notin \Omega$). Furthermore, $\gamma^* \subset \Omega$, so we can apply Cauchy's Integral Theorem for Convex Sets to conclude this integral is equal to 0.

(b)
$$\int_{\gamma(i,4)} \frac{1}{(z-3)^2} dz$$
,

• Recall Cauchy's Integral Formula (for derivatives) that states

$$\int_{\gamma(a,r)} \frac{f(z)}{(z-z_0)^{n+1}} dz = \frac{2\pi i}{n!} f^{(n)}(z_0) \quad \text{for all } z_0 \in D(a,r) \subset U, \text{ for } U \text{ an open set and } f \text{ analytic in } U$$

In our case, $n=1, a=i, r=4, z_0=3 \in D(i,4), f(z)\equiv 1$. Thus, the integral we are interested in is

$$\int_{\gamma(a,r)} \frac{1}{(z-3)^2} dz = \frac{2\pi i}{n!} f'(3) = 0$$

since $f'(z) \equiv 0$ for all z.

(c)
$$\int_{\gamma(0.1)} z|z|^4 dz,$$

• I will compute this integral by definition of the path integral:

$$\int_{\gamma(0,1)} z|z|^4 dz = \int_0^{2\pi} e^{it} |e^{it}|^4 (e^{it})' dt$$

$$= i \int_0^{2\pi} e^{2it} dt$$

$$= \frac{i}{2i} e^{2it} \Big|_{t=0}^{t=2\pi}$$

$$= \frac{1}{2} (e^{4\pi i} - e^0)$$

$$= \frac{1}{2} (1 - 1) = 0$$

(d)
$$\int_{\gamma(1,1)} (1+e^{-z})^{-1} dz$$
,

• This function is discontinuous at $z = ik\pi$ for k an odd integer. However, within the disk $\Omega = D(1, 1.5)$, there does not exist any of these such points. Thus, $(1 + e^{-z})^{-1}$ is holomorphic in Ω and also $\gamma^* \subset \Omega$. Furthermore, since Ω is a convex set, we can apply Cauchy's Integral Theorem for Convex Sets to conclude that this integral is equal to zero.

1