

Handbuch

HIMax®

X-AO 16 51

Analoges Ausgangsmodul

Alle in diesem Handbuch genannten HIMA Produkte sind mit dem Warenzeichen geschützt. Dies gilt ebenfalls, soweit nicht anders vermerkt, für weitere genannte Hersteller und deren Produkte.

HIQuad[®], HIQuad[®]X, HIMax[®], HIMatrix[®], SILworX[®], XMR[®], HICore[®] und FlexSILon[®] sind eingetragene Warenzeichen der HIMA Paul Hildebrandt GmbH.

Alle technischen Angaben und Hinweise in diesem Handbuch wurden mit größter Sorgfalt erarbeitet und unter Einschaltung wirksamer Kontrollmaßnahmen zusammengestellt. Bei Fragen bitte direkt an HIMA wenden. Für Anregungen, z. B. welche Informationen noch in das Handbuch aufgenommen werden sollen, ist HIMA dankbar.

Technische Änderungen vorbehalten. Ferner behält sich HIMA vor, Aktualisierungen des schriftlichen Materials ohne vorherige Ankündigungen vorzunehmen.

Alle aktuellen Handbücher können über die E-Mail-Adresse documentation@hima.com angefragt werden.

© Copyright 2019, HIMA Paul Hildebrandt GmbH Alle Rechte vorbehalten.

Kontakt

HIMA Paul Hildebrandt GmbH Postfach 1261 68777 Brühl

Tel.: +49 6202 709-0
Fax: +49 6202 709-107
E-Mail: info@hima.com

Revisions-	Änderungen	Art der Änderung		
index		technisch	redaktionell	
4.00	Erstausgabe des Handbuchs zu SILworX V4	Х	Х	
10.00	Aktualisierte Ausgabe zu SILworX V10	X	Х	

X-AO 16 51 Inhaltsverzeichnis

Inhaltsverzeichnis

1	Einleitung	5
1.1	Aufbau und Gebrauch des Handbuchs	5
1.2	Zielgruppe	5
1.3	Darstellungskonventionen	6
1.3.1	Sicherheitshinweise	6
1.3.2	Gebrauchshinweise	7
1.4	Safety Lifecycle Services	8
2	Sicherheit	9
2.1	Bestimmungsgemäßer Einsatz	9
2.1.1	Umgebungsbedingungen	9
2.1.2	ESD-Schutzmaßnahmen	9
2.2	Restrisiken	9
2.3	Sicherheitsvorkehrungen	9
3	Produktbeschreibung	10
3.1	Sicherheitsfunktion	10
3.1.1	Reaktion im Fehlerfall	10
3.2	Lieferumfang	10
3.3	Typenschild	11
3.4	Aufbau	12
3.4.1	Blockschaltbild	12
3.4.2 3.4.3	Anzeige Modul-Statusanzeige	13 15
3.4.4	Systembusanzeige	16
3.4.5	E/A-Anzeige	16
3.5	Produktdaten	17
3.6	Connector Boards	19
3.6.1	Mechanische Codierung von Connector Boards	19
3.6.2	Codierung Connector Boards X-CB 014 5X Mono Connector Boards mit Schraubklemmen	20
3.6.3 3.6.4	Klemmenbelegung Mono Connector Board mit Schraubklemmen	21 22
3.6.5	Connector Boards mit Kabelstecker	23
3.6.6	Steckerbelegung Connector Board mit Kabelstecker	24
3.7	Systemkabel X-CA 011	25
3.7.1	Codierung Kabelstecker	26
4	Inbetriebnahme	27
4.1	Montage	27
4.1.1	Beschaltung nicht benutzter Ausgänge	27
4.2	Einbau und Ausbau des Moduls	28
4.2.1	Montage eines Connector Boards	28
4.2.2	Modul einbauen und ausbauen	30

HI 801 186 D Rev. 10.00 Seite 3 von 50

Inhaltsverzeichnis X-AO 16 51

4.3	Konfiguration des Moduls in SILworX	32
4.3.1 4.3.2 4.3.3 4.3.4 4.3.5	Register Modul Register E/A-Submodul AO16_51 Register E/A-Submodul AO16_51: Kanäle Beschreibung Submodul-Status [DWORD] Beschreibung Diagnose-Status [DWORD]	33 34 35 36 36
4.4	Anschlussvarianten	37
4.4.1 4.4.2 4.4.3 4.4.4	Einkanalige Ausgangsverschaltung Regelung Anschluss über Field Termination Assembly Verhalten bei HART-Kommunikation	37 38 39 39
5	Betrieb	40
5.1	Bedienung	40
5.2	Diagnose	40
6	Instandhaltung	41
6.1	Instandhaltungsmaßnahmen	41
7	Außerbetriebnahme	42
8	Transport	43
9	Entsorgung	44
	Anhang	45
	Glossar	45
	Abbildungsverzeichnis	46
	Tabellenverzeichnis	47
	Index	48

Seite 4 von 50 HI 801 186 D Rev. 10.00

X-AO 16 51 1 Einleitung

1 Einleitung

Das vorliegende Handbuch beschreibt die technischen Eigenschaften des Moduls und seine Verwendung. Das Handbuch enthält Informationen über die Installation, die Inbetriebnahme und die Konfiguration in SILworX.

1.1 Aufbau und Gebrauch des Handbuchs

Der Inhalt dieses Handbuchs ist Teil der Hardware-Beschreibung des programmierbaren elektronischen Systems HIMax.

Das Handbuch ist in folgende Hauptkapitel gegliedert:

- Einleitung
- Sicherheit
- Produktbeschreibung
- Inbetriebnahme
- Betrieb
- Instandhaltung
- Außerbetriebnahme
- Transport
- Entsorgung

Zusätzlich sind die folgenden Dokumente zu beachten:

Dokument	Inhalt	Dokumenten-Nr.
HIMax Systemhandbuch	Hardware-Beschreibung HIMax System	HI 801 000 D
HIMax Sicherheitshandbuch	Sicherheitsfunktionen des HIMax Systems	HI 801 002 D
Kommunikationshandbuch	Beschreibung der Kommunikation und Protokolle	HI 801 100 D
SILworX Online-Hilfe (OLH)	SILworX Bedienung	-
SILworX Erste Schritte Handbuch	Einführung in SILworX	HI 801 102 D

Tabelle 1: Zusätzlich geltende Handbücher

Die aktuellen Handbücher können über die E-Mail-Adresse <u>documentation@hima.com</u> angefragt werden. Für registrierte Kunden stellt HIMA die Produktdokumentationen unter https://www.hima.com/de/downloads/ bereit.

1.2 Zielgruppe

Dieses Dokument wendet sich an Planer, Projekteure und Programmierer von Automatisierungsanlagen sowie Personen, die zu Inbetriebnahme, Betrieb und Wartung der Anlagen und Systeme berechtigt sind. Vorausgesetzt werden spezielle Kenntnisse auf dem Gebiet der sicherheitsbezogenen Automatisierungssysteme.

HI 801 186 D Rev. 10.00 Seite 5 von 50

1 Einleitung X-AO 16 51

1.3 Darstellungskonventionen

Zur besseren Lesbarkeit und zur Verdeutlichung gelten in diesem Dokument folgende Schreibweisen:

Fett Hervorhebung wichtiger Textteile.

Bezeichnungen von Schaltflächen, Menüpunkten und Registern im

Programmierwerkzeug, die angeklickt werden können.

Kursiv Parameter und Systemvariablen, Referenzen.

Courier Wörtliche Benutzereingaben.

RUN Bezeichnungen von Betriebszuständen (Großbuchstaben). Kap. 1.2.3 Querverweise sind Hyperlinks, auch wenn sie nicht besonders

gekennzeichnet sind.

Im elektronischen Dokument (PDF): Wird der Mauszeiger auf einen Hyperlink positioniert, verändert er seine Gestalt. Bei einem Klick springt

das Dokument zur betreffenden Stelle.

Sicherheits- und Gebrauchshinweise sind besonders gekennzeichnet.

1.3.1 Sicherheitshinweise

Um ein möglichst geringes Risiko zu gewährleisten, sind die Sicherheitshinweise unbedingt zu befolgen.

Die Sicherheitshinweise im Dokument sind wie folgt dargestellt.

- Signalwort: Warnung, Vorsicht, Hinweis.
- Art und Quelle des Risikos.
- Folgen bei Nichtbeachtung.
- Vermeidung des Risikos.

Die Bedeutung der Signalworte ist:

- Warnung: Bei Missachtung droht schwere K\u00f6rperverletzung bis Tod.
- Vorsicht: Bei Missachtung droht leichte K\u00f6rperverletzung.
- Hinweis: Bei Missachtung droht Sachschaden.

A SIGNALWORT

Art und Quelle des Risikos! Folgen bei Nichtbeachtung. Vermeidung des Risikos.

HINWEIS

Art und Quelle des Schadens! Vermeidung des Schadens.

Seite 6 von 50 HI 801 186 D Rev. 10.00

X-AO 16 51 1 Einleitung

1.3.2 Gebrauchshinweise Zusatzinformationen sind nach folgendem Beispiel aufgebaut: An dieser Stelle steht der Text der Zusatzinformation. Nützliche Tipps und Tricks erscheinen in der Form: TIPP An dieser Stelle steht der Text des Tipps.

HI 801 186 D Rev. 10.00 Seite 7 von 50

1 Einleitung X-AO 16 51

1.4 Safety Lifecycle Services

HIMA unterstützt Sie in allen Phasen des Sicherheitslebenszyklus der Anlage: Von der Planung, der Projektierung, über die Inbetriebnahme, bis zur Aufrechterhaltung der Sicherheit.

Für Informationen und Fragen zu unseren Produkten, zu Funktionaler Sicherheit und zu Automation Security stehen Ihnen die Experten des HIMA Support zur Verfügung.

Für die geforderte Qualifizierung gemäß Sicherheitsstandards, führt HIMA produkt- oder kundenspezifische Seminare in eigenen Trainingszentren, oder bei Ihnen vor Ort durch. Das aktuelle Seminarangebot zu Funktionaler Sicherheit, Automation Security und zu HIMA Produkten finden Sie auf der HIMA Webseite.

Safety Lifecycle Services:

Onsite+ / Vor-Ort-In enger Abstimmung mit Ihnen führt HIMA vor Ort Änderungen oder Engineering Erweiterungen durch. Startup+/ HIMA ist verantwortlich für die Planung und Durchführung der Vorbeugende vorbeugenden Wartung. Wartungsarbeiten erfolgen gemäß der Wartung Herstellervorgabe und werden für den Kunden dokumentiert. Lifecycle+/ Im Rahmen des Lifecycle-Managements analysiert HIMA den Lifecycleaktuellen Status aller installierten Systeme und erstellt konkrete Management Empfehlungen zu Wartung, Upgrade und Migration. Hotline+ / 24-h-HIMA Sicherheitsingenieure stehen Ihnen für Problemlösung rund **Hotline** um die Uhr telefonisch zur Verfügung. Fehler, die nicht telefonisch gelöst werden können, werden von Standbv+ / 24-h-Rufbereitschaft HIMA Spezialisten innerhalb vertraglich festgelegter Zeitfenster bearbeitet.

Logistic+/ 24-h- ErsatzteilserviceHIMA hält notwendige Ersatzteile vor und garantiert eine schnelle und langfristige Verfügbarkeit.

Ansprechpartner:

Safety Lifecycle https://www.hima.com/de/unternehmen/ansprechpartner-weltweit/

Technischer Support https://www.hima.com/de/produkte-services/support/

Seminarangebot https://www.hima.com/de/produkte-services/seminarangebot/

Seite 8 von 50 HI 801 186 D Rev. 10.00

X-AO 16 51 2 Sicherheit

2 Sicherheit

Sicherheitsinformationen, Hinweise und Anweisungen in diesem Dokument unbedingt lesen. Das Produkt nur unter Beachtung aller Richtlinien und Sicherheitsrichtlinien einsetzen.

Dieses Produkt wird mit SELV oder PELV betrieben. Vom Produkt selbst geht kein Risiko aus. Einsatz im Ex-Bereich nur mit zusätzlichen Maßnahmen erlaubt.

2.1 Bestimmungsgemäßer Einsatz

HIMax Komponenten sind zum Aufbau von sicherheitsbezogenen Steuerungssystemen vorgesehen.

Für den Einsatz der Komponenten im HIMax System sind die nachfolgenden Bedingungen einzuhalten.

2.1.1 Umgebungsbedingungen

Die in diesem Handbuch genannten Umgebungsbedingungen sind beim Betrieb des HIMax Systems einzuhalten. Die Umgebungsbedingungen sind in den Produktdaten aufgelistet.

2.1.2 ESD-Schutzmaßnahmen

Nur Personal, das Kenntnisse über ESD-Schutzmaßnahmen besitzt, darf Änderungen oder Erweiterungen des Systems oder den Austausch von Komponenten durchführen.

HINWEIS

Schäden am HIMax System durch elektrostatische Entladung!

- Für die Arbeiten einen antistatisch gesicherten Arbeitsplatz benutzen und ein Erdungsband tragen.
- Bei Nichtbenutzung Komponente elektrostatisch geschützt aufbewahren, z. B. in der Verpackung.

2.2 Restrisiken

Von einem HIMA System selbst geht kein Risiko aus.

Restrisiken können ausgehen von:

- Fehlern in der Projektierung
- Fehlern im Anwenderprogramm
- Fehlern in der Verdrahtung

2.3 Sicherheitsvorkehrungen

Am Einsatzort geltende Sicherheitsbestimmungen beachten und vorgeschriebene Schutzausrüstung tragen.

HI 801 186 D Rev. 10.00 Seite 9 von 50

3 Produktbeschreibung

Das X-AO 16 51 ist ein analoges NonSIL-Ausgangsmodul und für den Einsatz im programmierbaren elektronischen System (PES) HIMax bestimmt.

Das Modul ist mit 16 analogen Ausgängen mit einem Nennbereich von 4 ... 20 mA ausgestattet.

Die analogen Ausgänge eignen sich zum Anschluss von ohmschen, induktiven und kapazitiven Lasten nach EN 61131-2.

Die Ausgänge des Ausgangsmoduls X-AO 16 51 sind galvanisch nicht getrennt und können daher nicht redundant verschaltet werden. Für eine Redundanzverschaltung von analogen Ausgängen muss das sicherheitsbezogene Ausgangsmodul X-AO 16 01 verwendet werden.

Das Modul ist rückwirkungsfrei, dies beinhaltet speziell EMV, elektrische Sicherheit, Kommunikation zu X-SB und X-CPU, und das Anwenderprogramm.

Modul und Connector Board sind mechanisch codiert, siehe Kapitel 3.6.1. Die Codierung schließt den Einbau eines nicht passenden Moduls aus.

Die Normen, nach denen die Module und das HIMax System geprüft und zertifiziert sind, können dem HIMax Sicherheitshandbuch HI 801 002 D entnommen werden.

Das Modul ist auf allen Steckplätzen im Basisträger einsetzbar, ausgenommen auf den Steckplätzen für die Systembusmodule, näheres im Systemhandbuch HI 801 000 D.

Das Modul kann zusammen mit sicherheitsbezogenen Modulen und anderen Non-SIL-Modulen in einem Basisträger betrieben werden. Eine redundante Verschaltung von sicherheitsbezogenen und NonSIL-Modulen ist nicht erlaubt.

3.1 Sicherheitsfunktion

Das Modul führt keine sicherheitsbezogenen Funktionen aus.

Parameter und Status dieses Moduls dürfen nicht für Sicherheitsfunktionen verwendet werden.

3.1.1 Reaktion im Fehlerfall

Bei einem Modulfehler werden alle Ausgänge abgeschaltet.

Bei Ausfall der Systembusse werden die Ausgänge energielos geschaltet.

Das Modul aktiviert die LED *Error* auf der Frontplatte.

3.2 Lieferumfang

Das Modul benötigt zum Betrieb ein passendes Connector Board. Bei Verwendung eines Field Termination Assembly (FTA) wird ein Systemkabel benötigt, um das Connector Board mit dem FTA zu verbinden. Die Connector Boards, Systemkabel und FTAs gehören nicht zum Lieferumfang des Moduls.

Die Beschreibung der Connector Boards erfolgt in Kapitel 3.6, die der Systemkabel in Kapitel 3.7. Die FTAs sind in eigenen Handbüchern beschrieben.

Seite 10 von 50 HI 801 186 D Rev. 10.00

3.3 Typenschild

Das Typenschild enthält folgende wichtige Angaben:

- Produktname
- Prüfzeichen
- Barcode (2D-Code oder Strichcode)
- Teilenummer (Part-No.)
- Hardware-Revisionsindex (HW-Rev.)
- Betriebssystem-Revisionsindex (OS-Rev.)
- Versorgungsspannung (Power)
- Ex-Angaben (wenn zutreffend)
- Produktionsjahr (Prod-Year:)

Bild 1: Typenschild exemplarisch

HI 801 186 D Rev. 10.00 Seite 11 von 50

3.4 Aufbau

Das Modul ist mit 16 analogen Stromausgängen (0/4 ... 20 mA) ausgestattet, die nicht galvanisch von der Versorgungsspannung und den übrigen Kanalpaaren getrennt sind. Der analoge Stromwert wird durch einen D/A Wandler eingestellt.

Das Prozessorsystem des E/A-Moduls steuert und überwacht die E/A-Ebene. Die Daten und Zustände des E/A-Moduls werden über den redundanten Systembus den Prozessormodulen übermittelt. Der Systembus ist aus Gründen der Verfügbarkeit redundant ausgeführt. Die Redundanz ist nur gewährleistet, wenn beide Systembusmodule in den Basisträger gesteckt und in SILworX konfiguriert wurden.

3.4.1 Blockschaltbild

Das folgende Blockschaltbild zeigt die Struktur des Moduls:

Bild 2: Blockschaltbild des Moduls

Seite 12 von 50 HI 801 186 D Rev. 10.00

3.4.2 Anzeige

Nachfolgende Abbildung zeigt die Frontansicht des Moduls mit den LEDs:

Bild 3: Anzeige

Die Leuchtdioden zeigen den Betriebszustand des Moduls an.

HI 801 186 D Rev. 10.00 Seite 13 von 50

Die LEDs des Moduls sind in drei Kategorien unterteilt:

- Modul-Statusanzeige (Run, Error, Stop, Init)
- Systembusanzeige (A, B)
- E/A-Anzeige (AO 1 ... 16, Field)

Nach dem Zuschalten der Versorgungsspannung erfolgt immer ein LED-Test, bei dem alle LEDs für mindestens 2 s leuchten. Bei zweifarbigen LEDs erfolgt während des Tests einmalig ein Farbwechsel.

Definition der Blinkfrequenzen

In der folgenden Tabelle sind die Blinkfrequenzen definiert:

Definition	Blinkfrequenz
Blinken1	Lang (600 ms) an, lang (600 ms) aus.
Blinken2	Kurz (200 ms) an, kurz (200 ms) aus, kurz (200 ms) an, lang (600 ms) aus.
Blinken-x	Ethernet-Kommunikation: Aufblitzen im Takt der Datenübertragung.

Tabelle 2: Blinkfrequenzen der LEDs

Einige LEDs signalisieren Warnungen (Ein) und Fehler (Blinken1), siehe nachfolgende Tabellen. Die Anzeige von Fehlern hat Priorität gegenüber der Anzeige von Warnungen. Bei der Anzeige von Fehlern können Warnungen nicht angezeigt werden.

Seite 14 von 50 HI 801 186 D Rev. 10.00

3.4.3 Modul-Statusanzeige

Diese LEDs sind oben auf der Frontplatte angeordnet.

LED	Farbe	Status	Bedeutung		
Run	Grün	Ein	Modul im Zustand RUN, Normalbetrieb.		
		Blinken1	Modul im Zustand		
			STOPP / BS WIRD GELADEN		
		Aus	Modul nicht im Zustand RUN,		
			weitere Status LEDs beachten.		
Error	Rot	Ein	Systemwarnung, z. B.:		
			Fehlende Lizenz für Zusatzfunktionen		
			(Kommunikationsprotokolle), Testbetrieb.Temperaturwarnung		
		Blinken1	Systemfehler, z. B.:		
		Dillikorri	 Durch Selbsttest festgestellter interner Modulfehler, 		
			z. B. Hardware-Fehler oder Fehler der		
			Spannungsversorgung.		
			Fehler beim Laden des Betriebssystems		
		Aus	Kein Fehler festgestellt		
Stop	Gelb	Ein	Modul im Zustand		
			STOPP / GÜLTIGE KONFIGURATION		
		Blinken1	Modul in einem der folgenden Zustände:		
			 STOPP / FEHLERHAFTE KONFIGURATION 		
			STOPP / BS WIRD GELADEN		
		Aus	Modul nicht im Zustand STOPP,		
			weitere Status LEDs beachten.		
Init	<mark>Gelb</mark>	Ein	Modul im Zustand INIT		
		Blinken1	Modul in einem der folgenden Zustände:		
			LOCKED CTORP / PO WIPP OF LAPEN		
		Δ	STOPP / BS WIRD GELADEN		
		Aus	Modul in keinem der beschriebenen Zustände,		
			weitere Status LEDs beachten.		

Tabelle 3: Modul-Statusanzeige

HI 801 186 D Rev. 10.00 Seite 15 von 50

3.4.4 Systembusanzeige

Die LEDs für die Systembusanzeige sind mit Sys Bus gekennzeichnet.

LED	Farbe	Status	Bedeutung
А	A Grün Ein		Physikalische und logische Verbindung zum Systembusmodul in Steckplatz 1
		Blinken1	Keine Verbindung zum Systembusmodul in Steckplatz 1
	Gelb	Blinken1	Physikalische Verbindung zum Systembusmodul in Steckplatz 1 hergestellt
			Keine Verbindung zu einem (redundanten) Prozessormodul im Systembetrieb
В	Grün	Ein	Physikalische und logische Verbindung zum Systembusmodul in Steckplatz 2
		Blinken1	Keine Verbindung zum Systembusmodul in Steckplatz 2
	Gelb	Blinken1	Physikalische Verbindung zum Systembusmodul in Steckplatz 2 hergestellt
			Keine Verbindung zu einem (redundanten) Prozessormodul im Systembetrieb
A+B	Aus	Aus	Keine physikalische und keine logische Verbindung zu den Systembusmodulen in Steckplatz 1 und 2.

Tabelle 4: Systembusanzeige

3.4.5 E/A-Anzeige

Die LEDs der E/A-Anzeige sind mit *Channel* überschrieben.

LED	Farbe	Status	Bedeutung
AO	Gelb	Ein High-Pegel liegt an, Strom ≥ 4 mA	
1 16		Blinken2 Kanalfehler, Strom ungleich Einstellwert	
		Aus	Low-Pegel liegt an, Strom < 4 mA
Field	Rot	Aus	Ohne Funktion!

Tabelle 5: E/A-Anzeige

Seite 16 von 50 HI 801 186 D Rev. 10.00

3.5 Produktdaten

Allgemein			
Versorgungsspannung	24 VDC, -15 +20 %, $w_s \le 5$ %,		
	SELV, PELV		
Maximale Versorgungsspannung	30 VDC		
Stromaufnahme	250 mA bei 24 VDC (Ausgänge abgeschaltet)		
	560 mA bei 24,0 VDC (Ausgänge belastet)		
Stromaufnahme pro Kanal	23 mA		
Zykluszeit des Moduls	2 ms		
Schutzklasse	Schutzklasse III nach IEC/EN 61131-2		
Umgebungstemperatur	0 +60 °C		
Lagertemperatur	-40 +85 °C		
Feuchtigkeit	Max. 95 % relative Feuchte, nicht kondensierend		
Verschmutzung	Verschmutzungsgrad II nach IEC/EN 60664-1		
Aufstellhöhe	< 2000 m		
Schutzart	IP20		
Abmessungen (H x B x T) in mm	310 x 29,2 x 230		
Masse	Ca. 1,2 kg		

Tabelle 6: Produktdaten

Bild 4: Ansichten

HI 801 186 D Rev. 10.00 Seite 17 von 50

Analoge Ausgänge		
Anzahl der analogen Ausgänge	16 Die analogen Ausgänge sind untereinander und zu der Versorgungsspannung nicht galvanisch getrennt.	
Nennbereich	4 20 mA	
Gebrauchsbereich	0 22,5 mA	
Digitale Auflösung	16 Bit	
Wert des LSB	≤ 2 µA	
Ohmsche Belastung	Max. 600 Ω	
Induktive Belastung	Max. 1 mH	
Kapazitive Belastung	Max. 100 μF parallel zur ohmschen Last	
Leitungsbruch-Schwelle	≥ 18,5 V	
Einschwingzeit	5 ms	
Messtechnische Genauigkeit		
Typische Messtechnische Genauigkeit bei 25 °C	±0,2 % vom Endwert	
Messtechnische Genauigkeit über gesamten Temperaturbereich	±0,8 % vom Endwert	
Temperaturkoeffizient	±0,05 %/K vom Endwert	
Messtechnische Genauigkeit bei HART-Kommunikation	±2 % vom Endwert	
Linearitätsfehler	±0,1 % vom Endwert	

Tabelle 7: Technische Daten der analogen Ausgänge

Seite 18 von 50 HI 801 186 D Rev. 10.00

3.6 Connector Boards

Ein Connector Board verbindet das Modul mit der Feldebene. Modul und Connector Board bilden zusammen eine funktionale Einheit. Vor dem Einbau des Moduls Connector Board auf dem vorgesehenen Steckplatz montieren.

Folgende Connector Boards sind für das Modul verfügbar:

Connector Board	Beschreibung
X-CB 014 51	Mono Connector Board mit Schraubklemmen
X-CB 014 53	Mono Connector Board mit Kabelstecker

Tabelle 8: Verfügbare Connector Boards

3.6.1 Mechanische Codierung von Connector Boards

E/A-Module und Connector Boards sind ab Hardware-Revisionsindex (HW-Rev.) 10 mechanisch codiert. Durch die Codierung werden fehlerhafte Bestückungen ausgeschlossen und damit Rückwirkungen auf redundante Module und das Feld verhindert. Zusätzlich dazu hat eine fehlerhafte Bestückung keinen Einfluss auf das HIMax System, da nur in SILworX korrekt konfigurierte Module in RUN gehen.

E/A-Module und die zugehörigen Connector Boards sind mit einer mechanischen Codierung in Form von Keilen versehen. Die Codierkeile in der Federleiste des Connector Boards greifen in Aussparungen der Messerleiste des E/A-Modulsteckers ein, siehe Bild 5.

Codierte E/A-Module können nur auf die zugehörigen Connector Boards aufgesteckt werden.

HI 801 186 D Rev. 10.00 Seite 19 von 50

Bild 5: Beispiel einer Codierung

Codierte E/A-Module können auf uncodierte Connector Boards gesteckt werden. Uncodierte E/A-Module können nicht auf codierte Connector Boards gesteckt werden.

3.6.2 Codierung Connector Boards X-CB 014 5X

Folgende Tabelle zeigt die Position der Codierkeile am E/A-Modulstecker:

a7	a13	a20	a26	c7	c13	c20	c26
X	X		X			X	

Tabelle 9: Position der Codierkeile

Seite 20 von 50 HI 801 186 D Rev. 10.00

3.6.3 Mono Connector Boards mit Schraubklemmen

Mono

X-CB 014 51

1 E/A-Modulstecker

2 Anschluss Feldseite (Schraubklemmen)

Bild 6: Connector Boards mit Schraubklemmen

HI 801 186 D Rev. 10.00 Seite 21 von 50

3.6.4 Klemmenbelegung Mono Connector Board mit Schraubklemmen

Pin-Nr.	Bezeichnung	Signal	Pin-Nr.	Bezeichnung	Signal
1	01a	AO1+	1	02a	AO2+
2	01b	AO1-	2	02b	AO2-
3	03a	AO3+	3	04a	AO4+
4	03b	AO3-	4	04b	AO4-
5	05a	AO5+	5	06a	AO6+
6	05b	AO5-	6	06b	AO6-
7	07a	AO7+	7	08a	AO8+
8	07b	AO7-	8	08b	AO8-
Pin-Nr.	Bezeichnung	Signal	Pin-Nr.	Bezeichnung	Signal
Pin-Nr.	Bezeichnung 09a	Signal AO9+	Pin-Nr.	Bezeichnung 10a	Signal AO10+
	-			-	
1	09a	AO9+	1	10a	AO10+
1 2	09a 09b	AO9+ AO9-	1 2	10a 10b	AO10+ AO10-
1 2 3	09a 09b 11a	AO9+ AO9- AO11+	1 2 3	10a 10b 12a	AO10+ AO10- AO12+
1 2 3 4	09a 09b 11a 11b	AO9+ AO9- AO11+ AO11-	1 2 3 4	10a 10b 12a 12b	AO10+ AO10- AO12+ AO12-
1 2 3 4 5	09a 09b 11a 11b 13a	AO9+ AO9- AO11+ AO13+	1 2 3 4 5	10a 10b 12a 12b 14a	AO10+ AO10- AO12+ AO12- AO14+

Tabelle 10: Klemmenbelegung Mono Connector Board mit Schraubklemmen

Der Anschluss der Feldseite erfolgt mit Klemmensteckern, die auf die Stiftleisten des Connector Boards aufgesteckt werden.

Die Klemmenstecker besitzen folgende Eigenschaften:

Anschluss Feldseite					
Klemmenstecker	4 Stück, 8-polig				
Leiterquerschnitt	0,2 1,5 mm ² (eindrähtig) 0,2 1,5 mm ² (feindrähtig) 0,2 1,5 mm ² (mit Aderendhülse)				
Abisolierlänge	6 mm				
Schraubendreher	Schlitz 0,4 x 2,5 mm				
Anzugsdrehmoment	0,2 0,25 Nm				

Tabelle 11: Eigenschaften der Klemmenstecker

Seite 22 von 50 HI 801 186 D Rev. 10.00

3.6.5 Connector Boards mit Kabelstecker

Mono

X-CB 014 53

- 1 E/A-Modulstecker
- Anschluss Feldseite (Kabelstecker Reihe 1)

- Anschluss Feldseite (Kabelstecker Reihe 32)
- 4 Codierung für Kabelstecker

Bild 7: Connector Board mit Kabelstecker

HI 801 186 D Rev. 10.00 Seite 23 von 50

3.6.6 Steckerbelegung Connector Board mit Kabelstecker

Zu diesem Connector Board stellt HIMA vorgefertigte Systemkabel bereit, siehe Kapitel 3.7. Die Kabelstecker und das Connector Board sind codiert.

1 Steckerbelegung!

Die folgende Tabelle beschreibt die Steckerbelegung der Kabelstecker des Systemkabels.

Die Aderkennzeichnung ist gemäß IEC 60304 ausgeführt. Es werden die Farbkurzzeichen gemäß IEC 60757 verwendet.

Daiba	С		b		а		
Reihe	Signal	Farbe	Signal	Farbe	Signal	Farbe	
1					_	YEBK	
2					Interne	GNBK	
3					Verwend- ung ¹⁾	YERD	
4					dilg	GNRD	
5							
6							
7							
8							
9							
10							
11							
12							
13							
14							
15							
16							
17	AO16+	YEBU	AO16-	GNBU			
18	AO15+	YEPK	AO15-	PKGN			
19	AO14+	YEGY	AO14-	GYGN			
20	AO13+	BNBK	AO13-	WHBK			
21	AO12+	BNRD	AO12-	WHRD			
22	AO11+	BNBU	AO11-	WHBU			
23	AO10+	PKBN	AO10-	WHPK			
24	AO9+	GYBN	AO9-	WHGY			
25	AO8+	YEBN	AO8-	WHYE			
26	AO7+	BNGN	AO7-	WHGN			
27	AO6+	RDBU	AO6-	GYPK			
28	AO5+	VT	AO5-	BK			
29	AO4+	RD	AO4-	BU			
30	AO3+	PK	AO3-	GY			
31	AO2+	YE	AO2-	GN			
32	AO1+	BN	AO1-	WH			
1) Die A	Die Adern müssen einzeln isoliert werden! Eine weitere Verwendung ist verboten!						

Tabelle 12: Steckerbelegung der Kabelstecker des Systemkabels

Seite 24 von 50 HI 801 186 D Rev. 10.00

3.7 Systemkabel X-CA 011

Das Systemkabel X-CA 011 verbindet das Connector Board X-CB 014 53 mit dem Field Termination Assembly.

Allgemein	
Kabel	LIYCY-TP 18 x 2 x 0,25 mm ²
Leiter	Feindrähtig
Mittlerer Außendurchmesser (d)	Ca. 12,7 mm,
	max. 20 mm für alle Systemkabel-Typen
Mindestbiegeradius	
fest verlegt	5 x d
frei beweglich	10 x d
Brennverhalten	Flammwidrig und selbstverlöschend nach
	IEC 60332-1-2, -2-2
Länge	8 30 m
Farbcodierung	In Anlehnung an DIN 47100, siehe Tabelle 12.

Tabelle 13: Kabeldaten

1 Identische Kabelstecker

Bild 8: Systemkabel X-CA 011 01 n

Das Systemkabel ist in folgenden Standardlängen lieferbar:

Systemkabel	Beschreibung	Länge	Gewicht
X-CA 011 01 8	Codierte Kabelstecker	8 m	2,5 kg
X-CA 011 01 15	beidseitig.	15 m	4,5 kg
X-CA 011 01 30		30 m	9 kg

Tabelle 14: Verfügbare Systemkabel

HI 801 186 D Rev. 10.00 Seite 25 von 50

3.7.1 Codierung Kabelstecker

Die Kabelstecker sind mit drei Codierstiften ausgerüstet. Damit passen die Kabelstecker nur in Connector Boards und FTAs mit den entsprechenden Aussparungen, siehe Bild 7.

Seite 26 von 50 HI 801 186 D Rev. 10.00

X-AO 16 51 4 Inbetriebnahme

4 Inbetriebnahme

Dieses Kapitel beschreibt die Installation und die Konfiguration des Moduls sowie dessen Anschlussvarianten. Für weitere Informationen siehe HIMax Systemhandbuch HI 801 000 D.

4.1 Montage

Bei der Montage sind folgende Punkte zu beachten:

- Betrieb nur mit zugehörigen Lüfterkomponenten, siehe Systemhandbuch HI 801 000 D.
- Betrieb nur mit zugehörigem Connector Board, siehe Kapitel 3.6.
- Das Modul einschließlich seiner Anschlussteile ist so zu errichten, dass mindestens Schutzart IP20 gemäß EN 60529:1991 + A1:2000 erreicht wird.

HINWEIS

Beschädigung durch falsche Beschaltung!

Nichtbeachtung kann zu Schäden an elektronischen Bauelementen führen. Die folgenden Punkte sind zu beachten.

- Feldseitige Stecker und Klemmen
 - Bei Anschluss der Stecker und Klemmen an die Feldseite auf geeignete Erdungsmaßnahmen achten.
 - Für jeden Messeingang ein verdrilltes Adernpaar des abgeschirmten Kabels verwenden.
 - Die Abschirmung ist beidseitig aufzulegen. Auf der Seite des Moduls ist die Abschirmung auf die Kabel-Schirmschiene aufzulegen (Schirmanschlussklemme SK 20 oder gleichwertig einsetzen).
 - HIMA empfiehlt, bei mehrdrahtigen Leitungen Leitungsenden mit Aderendhülsen zu versehen. Die Anschlussklemmen müssen zum Unterklemmen der verwendeten Leitungsquerschnitte geeignet sein.

4.1.1 Beschaltung nicht benutzter Ausgänge

Nicht benutzte Ausgänge dürfen offen bleiben und müssen nicht abgeschlossen werden. Zur Vermeidung von Kurzschlüssen im Feld ist es nicht zulässig, Leitungen mit auf der Feldseite offenen Enden an den Connector Boards anzuschließen.

HI 801 186 D Rev. 10.00 Seite 27 von 50

4 Inbetriebnahme X-AO 16 51

4.2 Einbau und Ausbau des Moduls

Dieses Kapitel beschreibt den Austausch eines vorhandenen oder das Einsetzen eines neuen Moduls.

Beim Ausbau des Moduls verbleibt das Connector Board im HIMax Basisträger. Dies vermeidet zusätzlichen Verdrahtungsaufwand an den Anschlussklemmen, da alle Feldanschlüsse über das Connector Board des Moduls angeschlossen werden.

4.2.1 Montage eines Connector Boards

Werkzeuge und Hilfsmittel:

- Schraubendreher Kreuz PH 1 oder Schlitz 0,8 x 4,0 mm.
- Passendes Connector Board.

Connector Board einbauen:

- 1. Connector Board mit der Nut nach oben in die Führungsschiene einsetzen (siehe hierzu nachfolgende Zeichnung). Die Nut am Stift der Führungsschiene einpassen.
- 2. Connector Board auf der Kabelschirmschiene auflegen.
- Mit den unverlierbaren Schrauben am Basisträger festschrauben. Zuerst die unteren, dann die oberen Schrauben eindrehen.

Connector Board ausbauen:

- 1. Unverlierbare Schrauben vom Basisträger losschrauben.
- 2. Connector Board unten von der Kabelschirmschiene vorsichtig anheben.
- 3. Connector Board aus der Führungsschiene herausziehen.

Bild 9: Einsetzen des Mono Connector Boards, exemplarisch

Seite 28 von 50 HI 801 186 D Rev. 10.00

X-AO 16 51 4 Inbetriebnahme

Bild 10: Festschrauben des Mono Connector Boards, exemplarisch

Montageanleitung gilt ebenso für redundante Connector Boards. Je nach Typ des Connector Boards wird eine entsprechende Anzahl von Steckplätzen belegt. Die Anzahl der unverlierbaren Schrauben ist vom Typ des Connector Boards abhängig.

HI 801 186 D Rev. 10.00 Seite 29 von 50

4 Inbetriebnahme X-AO 16 51

4.2.2 Modul einbauen und ausbauen

Dieses Kapitel beschreibt den Einbau und Ausbau eines HIMax Moduls. Ein Modul kann eingebaut und ausgebaut werden, während das HIMax System in Betrieb ist.

HINWEIS

Beschädigung von Steckverbindern durch Verkanten! Nichtbeachtung kann zu Schäden an der Steuerung führen. Modul stets behutsam in den Basisträger einsetzen.

Werkzeuge und Hilfsmittel:

- Schraubendreher, Schlitz 0,8 x 4,0 mm.
- Schraubendreher, Schlitz 1,2 x 8,0 mm.

Module einbauen:

- 1. Abdeckblech des Lüftereinschubs öffnen:
 - ☑ Verriegelungen auf Position *open* stellen.
 - ☑ Abdeckblech nach oben klappen und in Lüftereinschub einschieben.
- Modul an Oberseite in Einhängeprofil einsetzen, siehe
- 3. Modul an Unterseite in Basisträger schwenken und mit leichtem Druck einrasten lassen, siehe 2.
- 4. Modul festschrauben, siehe 3.
- 5. Abdeckblech des Lüftereinschubs herausziehen und nach unten klappen.
- 6. Abdeckblech verriegeln.

Module ausbauen:

- 1. Abdeckblech des Lüftereinschubs öffnen:
 - ☑ Verriegelungen auf Position open stellen
 - ☑ Abdeckblech nach oben klappen und in Lüftereinschub einschieben
- 2. Schraube lösen, siehe 3.
- 3. Modul an Unterseite aus Basisträger schwenken und mit leichtem Druck nach oben aus Einhängeprofil herausdrücken, siehe 2 und 1.
- 4. Abdeckblech des Lüftereinschubs herausziehen und nach unten klappen.
- 5. Abdeckblech verriegeln.

Seite 30 von 50 HI 801 186 D Rev. 10.00

X-AO 16 51 4 Inbetriebnahme

- 1 Einsetzen/Herausschieben
- 2 Einschwenken/Ausschwenken

3 Befestigen/Lösen

Bild 11: Modul einbauen und ausbauen

Abdeckblech des Lüftereinschubs während des Betriebs des HIMax Systems nur kurz (< 10 min) öffnen, da dies die Zwangskonvektion beeinträchtigt.

HI 801 186 D Rev. 10.00 Seite 31 von 50

4 Inbetriebnahme X-AO 16 51

4.3 Konfiguration des Moduls in SILworX

Das Modul wird im Hardware-Editor des Programmierwerkzeugs SILworX konfiguriert.

Bei der Konfiguration folgende Punkte beachten:

 Zur Diagnose des Moduls und der Kanäle können die Systemparameter zusätzlich zum Kanalwert im Anwenderprogramm ausgewertet werden. Nähere Informationen zu den Systemparametern sind in den Tabellen ab Kapitel 4.3.1zu finden.

Zur Auswertung der Systemparameter im Anwenderprogramm müssen den Systemparametern globale Variable zugewiesen werden. Diesen Schritt im Hardware-Editor in der Detailansicht des Moduls durchführen.

Die nachfolgenden Tabellen enthalten die Systemparameter des Moduls in derselben Reihenfolge wie im Hardware-Editor.

TIPP

Zur Umwandlung der Hexadezimalwerte in Bitfolgen eignet sich z. B. der Taschenrechner von Windows[®] in der entsprechenden Ansicht.

Wird ein Kanal bei 0 mA eingeschaltet z.B. nach einem Leitungsbruch, kann es bei besonderen Aktoren zu einer Anstiegsverzögerung des Ausgangsstroms kommen.

Kann der eingestellte Stromwert innerhalb eines AO-Modul-Zyklus nicht erreicht werden, reagiert das AO-Modul mit der Abschaltung des betroffenen Kanals.

Um die Abschaltung eines Kanals zu vermeiden, müssen diese Aktoren in Stufen über mindestens zwei AO-Modul-Zyklen eingeschaltet werden (z. B. erster Zyklus 4 mA, zweiter Zyklus eingestellter Stromwert).

Seite 32 von 50 HI 801 186 D Rev. 10.00

X-AO 16 51 4 Inbetriebnahme

4.3.1 Register **Modul**

Das Register **Modul** enthält die folgenden Systemparameter des Moduls:

Systemparameter	Datentyp	S 1 ⁾	R/W	Beschreibung		
Name			W	Name des Moduls		
Störaustastung	BOOL	N	W	Störaustastung durch Prozessormodul zulassen (Aktiviert/Deaktiviert). Standardeinstellung: Aktiviert Das Prozessormodul verzögert die Fehlerreaktion auf eine transiente Störung bis zur Sicherheitszeit. Der letzte gültige Prozesswert bleibt für das Anwenderprogramm bestehen. Details zur Störaustastung siehe Systemhandbuch HI 801 000 D.		
Systemparameter	Datentyp	S 1 ⁾	R/W	Beschreibung		
Die folgenden State verwendet werden.		neter k	önnen g	globalen Variablen zugewiesen und im Anwenderprogramm		
Modul OK	BOOL	Z	R	TRUE: Fehlerfrei Mono-Betrieb: Kein Modulfehler. Redundanzbetrieb: Mindestens eines der redundanten Module hat keinen Modulfehler (ODER-Logik). FALSE: Modulfehler, Kanalfehler eines Kanals (keine externen Fehler), Modul ist nicht gesteckt. Parameter Modul-Status beachten!		
Modul-Status	DWORD	N	R	Status des Moduls		
Wodar Status	BWORD		'`	Codierung Beschreibung		
				0x00000001 Fehler des Moduls ²⁾		
				0x00000002 Temperaturschwelle 1 überschritten		
				0x00000004 Temperaturschwelle 2 überschritten		
				0x00000008 Temperaturwert fehlerhaft		
				0x00000010 Spannung L1+ fehlerhaft		
				0x00000020 Spannung L2+ fehlerhaft		
				0x00000040 Interne Spannungen fehlerhaft		
				0x80000000 keine Verbindung zum Modul, oder Modul in STOP 2)		
				Diese Fehler haben Auswirkung auf den Status Modul OK und müssen nicht extra im Anwenderprogramm ausgewertet werden.		
Zeitstempel [µs]	DWORD	N	R	Mikrosekunden-Anteil des Zeitstempels. Zeitpunkt der Messung der analogen Eingänge		
Zeitstempel [s]	DWORD	N	R	Sekunden-Anteil des Zeitstempels. Zeitpunkt der Messung der analogen Eingänge		
1) Systemparameter wird vom Betriebssystem sicherheitsbezogen behandelt, ja (J) oder nein (N).						
, ,						

Tabelle 15: Register Modul im Hardware-Editor

HI 801 186 D Rev. 10.00 Seite 33 von 50

4 Inbetriebnahme X-AO 16 51

4.3.2 Register **E/A-Submodul AO16_51**

Das Register E/A-Submodul AO16_51 enthält die folgenden Systemparameter:

Systemparameter	Datentyp	S 1 ⁾	R/W	Beschreibung		
Name			W	Name des Moduls		
Systemparameter	Datentyp	S 1 ⁾	R/W	Beschreibung		
Die folgenden Status und verwendet werden.	Die folgenden Status und Parameter können globalen Variablen zugewiesen und im Anwenderprogramm					
Diagnose-Anfrage	DINT	N	W	Zur Anforderung eines Diagnosewerts muss über den Parameter <i>Diagnose-Anfrage</i> die entsprechende ID (Codierung siehe 4.3.5) an das Modul gesendet werden.		
Diagnose-Antwort	DINT	N	R	Sobald die <i>Diagnose-Antwort</i> die ID der <i>Diagnose-Anfrage</i> (Codierung siehe 4.3.5) zurückliefert, enthält der <i>Diagnose-Status</i> den angeforderten Diagnosewert.		
Diagnose-Status	DWORD	N	R	Angeforderter Diagnosewert gemäß Diagnose- Antwort. Im Anwenderprogramm können die IDs der Diagnose-Anfrage und der Diagnose-Antwort ausgewertet werden. Erst wenn beide die gleiche ID enthalten, enthält der Diagnose-Status den angeforderten Diagnosewert.		
Hintergrundtest-Fehler	BOOL	N	R	TRUE: Hintergrundtest fehlerhaft FALSE: Hintergrundtest fehlerfrei		
Restart bei Fehler	BOOL	J	W	Jedes E/A-Modul, das aufgrund von Fehlern dauerhaft abgeschaltet ist, kann durch den Parameter Restart bei Fehler wieder in den Zustand RUN überführt werden. Dazu den Parameter Restart bei Fehler von FALSE auf TRUE stellen. Das E/A-Modul führt einen vollständigen Selbsttest durch und nimmt nur dann den Zustand RUN ein, wenn kein Fehler entdeckt wurde. Standardeinstellung: FALSE		
Submodul OK	BOOL	J	R	TRUE: Kein Submodulfehler, keine Kanalfehler. FALSE: Submodulfehler; Kanalfehler (auch externe Fehler) eines Kanals Parameter Submodul-Status beachten!		
Submodul-Status	DWORD	N	R	Bitcodierter Status des Submoduls (Codierung siehe 4.3.4)		
1) Systemparameter wird vom Betriebssystem sicherheitsbezogen behandelt, ja (J) oder nein (N).						

Tabelle 16: Register E/A-Submodul AO16_51 im Hardware-Editor

Seite 34 von 50 HI 801 186 D Rev. 10.00

X-AO 16 51 4 Inbetriebnahme

4.3.3 Register **E/A-Submodul AO16_51: Kanäle**

Das Register **E/A-Submodul AO16_51: Kanäle** enthält die folgenden Systemparameter für jeden analogen Ausgang.

Den Systemparametern mit -> können globale Variablen zugewiesen und im Anwenderprogramm verwendet werden. Die Werte ohne -> müssen direkt eingegeben werden.

IZ I NI -				Beschreibung
Kanal-Nr.			R	Kanalnummer, fest vorgegeben
Prozesswert [REAL] ->	REAL	J	R	Der <i>Prozesswert</i> wird mit Hilfe der zwei Stützstellen 4 mA und 20 mA auf den Ausgangsstromwert abgebildet. Ist der <i>Prozesswert</i> gleich dem Ausgangsstrom 4 20 mA oder wird der Kanal nicht verwendet, müssen die beiden Stützstellen auf die Standardeinstellungen 4 mA = 4.0 und 20 mA = 20.0 gesetzt sein.
				Liegt der Prozesswert 0.0 zwischen den beiden Stützstellen, führt dies zu einem Ausgangsstrom. Selbst dann, wenn keine Globale Variable mit dem Parameter <i>Prozesswert</i> [REAL] -> verbunden ist!
				Beispiel: Wertebereich einer physikalische Größe (-60+60) auf Ausgangsstrom abbilden.
				Stützstelle 4 mA = -60.0 und Stützstelle 20 mA = +60.0. Bei Prozesswert 0.0 ist der Ausgangsstrom = 12 mA
4 mA	REAL	J	W	Stützstelle am unteren Skalenendwert (4 mA) des Kanals. Es ist der Wert des Prozesswertes anzugeben, für den 4 mA am Ausgang ausgegeben werden soll. Ist der Prozesswert gleich dem Ausgangsstrom 4 20 mA oder wird der Kanal nicht verwendet, muss die Standardeinstellung 4.0 eingetragen sein. Standardeinstellung: 4.0
20 mA	REAL	J	W	Stützstelle am oberen Skalenendwert (20 mA) des Kanals. Es ist der Wert des Prozesswertes anzugeben, für den 20 mA am Ausgang ausgegeben werden soll. Ist der Prozesswert gleich dem Ausgangsstrom 4 20 mA oder wird der Kanal nicht verwendet, muss die Standardeinstellung 20.0 eingetragen sein. Standardeinstellung: 20.0
-> Kanal OK [BOOL]	BOOL	J	R	TRUE: Fehlerfreier Kanal Der Ausgangswert ist gültig. FALSE: Fehlerhafter Kanal. Der Ausgangswert wird auf 0 gesetzt. rheitsbezogen behandelt, ja (J) oder nein (N).

Tabelle 17: Register E/A-Submodul AO16_51: Kanäle im Hardware-Editor

HI 801 186 D Rev. 10.00 Seite 35 von 50

4 Inbetriebnahme X-AO 16 51

4.3.4 Beschreibung **Submodul-Status [DWORD]**

Folgende Tabelle beschreibt die Codierung des Parameters Submodul-Status:

Codierung	Beschreibung		
0x00000001	Fehler der Hardware-Einheit (Submodul)		
0x00000002	Reset eines E/A-Busses		
0x00000004	Fehler bei der Initialisierung der Hardware		
0x00000008	Fehler bei der Überprüfung der Koeffizienten		
0x00000010	Erste Temperaturschwelle überschritten (Warntemperatur)		
0x00000020	Zweite Temperaturschwelle überschritten (Grenztemperatur)		
0x00000040	Modul ist wegen Überstrom abgeschaltet		
0x00000080	Rücksetzten der Chip-Select Überwachung		

Tabelle 18: Codierung Submodul-Status [DWORD]

4.3.5 Beschreibung **Diagnose-Status [DWORD]**

Folgende Tabelle beschreibt die Codierung des Parameters Diagnose-Status:

ID	Beschreibung				
0	Diagnosewerte werden nacheinander angezeigt.				
100	Bitkodierter Te	mperaturstatus			
	0 = normal				
	Bit0 = 1 : Temp	peraturschwelle 1 überschritten			
		peraturschwelle 2 überschritten			
	Bit2 = 1 : Temp	peraturmessung fehlerhaft			
101	Gemessene Te	emperatur (10 000 Digit/ °C)			
200	Bitkodierter Sp	annungsstatus			
	0 = normal				
	Bit0 = 1 : L1+ (24 V) ist fehlerhaft				
	Bit1 = 1 : L2+ (24 V) ist fehlerhaft				
201	Nicht verwendet!				
202					
203					
300	Komparator 24 V Unterspannung (BOOL)				
10011016	Kanalstatus der Kanäle 1 16				
	Codierung	Beschreibung			
	0x0001	Fehler der Hardware-Einheit (Submodul) aufgetreten			
	0x0002	Kanalfehler wegen internem Fehler			
	0x0200 Limit Werte sind über- oder unterschritten.				

Tabelle 19: Codierung Diagnose-Status [DWORD]

Seite 36 von 50 HI 801 186 D Rev. 10.00

X-AO 16 51 4 Inbetriebnahme

4.4 Anschlussvarianten

Dieses Kapitel beschreibt die technisch richtige Beschaltung des Moduls. Die folgenden aufgeführten Anschlussvarianten sind zulässig.

Die Verschaltung der Ausgänge erfolgt über Connector Boards.

4.4.1 Einkanalige Ausgangsverschaltung

Bei der Verschaltung nach Bild 12 kann das Connector Board X-CB 014 51 (mit Schraubklemmen) verwendet werden.

Bild 12: Einkanalige Verschaltung

HI 801 186 D Rev. 10.00 Seite 37 von 50

4 Inbetriebnahme X-AO 16 51

4.4.2 Regelung

Es gibt eine physikalische Kopplung zwischen dem Aktor des analogen Ausgangs (AO) und dem Messwertaufnehmer des analogen Eingangs (AI). Die Messdaten des AI werden in dem Prozessormodul zu den neuen Stelldaten für den AO verarbeitet.

Bild 13: Regelungsverschaltung

1 Verzögerungen durch die Prozessdatenverarbeitung der HIMax Steuerung sind zu berücksichtigen.

Seite 38 von 50 HI 801 186 D Rev. 10.00

X-AO 16 51 4 Inbetriebnahme

4.4.3 Anschluss über Field Termination Assembly

Der Anschluss über das Field Termination Assembly X-FTA 002 01 erfolgt wie in Bild 14 dargestellt. Für weitere Informationen siehe Handbücher X-FTA 002 01 und X-FTA 009 02L.

Es wird das Connector Board X-CB 014 53 (mit Kabelstecker) verwendet.

Bild 14: Anschluss über Field Termination Assembly

4.4.4 Verhalten bei HART-Kommunikation

1

Zur HART-Kommunikation kann ein HART-Handheld parallel zum Aktor angeschlossen werden. Die durch die HART-Kommunikation bedingten Stromschwankungen werden vom analogen Ausgang weitgehend ausgeregelt, so dass der Restfehler vom eingestellten Strom maximal 2 % vom Endwert beträgt.

Erhöhter Restfehler bei HART-Kommunikation. HART-Terminal sofort nach der Diagnose entfernen!

Bild 15: HART-Handheld parallel zu Transmitter und Ausgangsmodul

HI 801 186 D Rev. 10.00 Seite 39 von 50

5 Betrieb X-AO 16 51

5 Betrieb

Das Modul wird in einem HIMax Basisträger betrieben und erfordert keine besondere Überwachung.

5.1 Bedienung

Die Bedienung an dem Modul selbst ist nicht vorgesehen.

Eine Bedienung z. B. Forcen der analogen Ausgänge, erfolgt vom PADT aus. Einzelheiten hierzu in der Dokumentation von SILworX.

5.2 Diagnose

Der Zustand des Moduls wird über die LEDs auf der Frontseite des Moduls angezeigt, siehe Kapitel 3.4.2.

Die Diagnosehistorie des Moduls kann zusätzlich mit dem Programmierwerkzeug SILworX ausgelesen werden. In den Kapiteln 4.3.4 und 4.3.5 sind die wichtigsten Diagnosestatus beschrieben.

Wird ein Modul in einen Basisträger gesteckt, erzeugt es während der Initialisierung Diagnosemeldungen, die auf Fehlfunktionen wie falsche Spannungswerte hinweisen.

Diese Meldungen deuten nur dann auf einen Fehler des Moduls hin, wenn sie nach dem Übergang in den Systembetrieb auftreten.

Seite 40 von 50 HI 801 186 D Rev. 10.00

X-AO 16 51 6 Instandhaltung

6 Instandhaltung

Defekte Module sind gegen intakte Module des gleichen Typs oder eines zugelassenen Ersatztyps auszutauschen.

Zum Austauschen von Modulen sind die Bedingungen im Systemhandbuch HI 801 000 D zu beachten.

6.1 Instandhaltungsmaßnahmen

Im Zuge der Produktpflege entwickelt HIMA die Betriebssysteme von Modulen weiter. HIMA empfiehlt, geplante Anlagenstillstände zu nutzen um eine aktuelle Betriebssystemversionen auf die Module zu laden.

Die Betriebssystemversionen von Modulen werden im SILworX Control Panel angezeigt. Die Typenschilder zeigen die Version des ausgelieferten Stands, siehe Kapitel 3.3.

Bevor Betriebssysteme auf Module geladen werden, müssen die Kompatibilitäten und Einschränkungen der Betriebssystemversionen auf das System geprüft werden. Dazu sind die jeweils gültigen Release-Notes zu beachten. Betriebssysteme werden mit SILworX auf Module geladen, die sich dazu im Zustand STOPP befinden müssen.

HI 801 186 D Rev. 10.00 Seite 41 von 50

7 Außerbetriebnahme X-AO 16 51

7 Außerbetriebnahme

Das Modul durch Ziehen aus dem Basisträger außer Betrieb nehmen. Einzelheiten dazu im Kapitel *Einbau und Ausbau des Moduls*.

Seite 42 von 50 HI 801 186 D Rev. 10.00

X-AO 16 51 8 Transport

8 Transport

Zum Schutz vor mechanischen Beschädigungen die Komponenten in Verpackungen transportieren.

Die Komponenten immer in den originalen Produktverpackungen lagern. Diese sind gleichzeitig ESD-Schutz. Die Produktverpackung allein ist für den Transport nicht ausreichend.

HI 801 186 D Rev. 10.00 Seite 43 von 50

9 Entsorgung X-AO 16 51

9 Entsorgung

Industriekunden sind selbst für die Entsorgung außer Dienst gestellter Hardware verantwortlich. Auf Wunsch kann mit HIMA eine Entsorgungsvereinbarung getroffen werden.

Alle Materialien einer umweltgerechten Entsorgung zuführen.

Seite 44 von 50 HI 801 186 D Rev. 10.00

X-AO 16 51 Anhang

Anhang

Glossar

Begriff	Beschreibung		
Al	Analog Input: Analoger Eingang		
AO	Analog Output: Analoger Ausgang		
ARP	Address Resolution Protocol: Netzwerkprotokoll zur Zuordnung von Netzwerkadressen		
	zu Hardwareadressen		
COM	Kommunikation (-modul)		
CRC	Cyclic Redundancy Check: Prüfsumme		
DI	Digital Input: Digitaler Eingang		
DO	Digital Output: Digitaler Ausgang		
EMV	Elektromagnetische Verträglichkeit		
EN	Europäische Normen		
ESD	Electrostatic Discharge: Elektrostatische Entladung		
FB	Feldbus		
FBS	Funktionsbausteinsprache		
HW	Hardware		
ICMP	Internet Control Message Protocol: Netzwerkprotokoll für Status- und		
	Fehlermeldungen		
IEC	Internationale Normen für die Elektrotechnik		
LS/LB	Leitungsschluss/Leitungsbruch		
MAC	Media Access Control: Hardware-Adresse eines Netzwerkanschlusses		
PADT	Programming and Debugging Tool (nach IEC 61131-3): PC mit SILworX		
PELV	Protective Extra Low Voltage: Funktionskleinspannung mit sicherer Trennung		
PES	Programmable Electronic System: Programmierbares Elektronisches System		
R	Read: Auslesen einer Variablen		
Rack-ID	Identifikation eines Basisträgers (Nummer)		
rückwirkungsfrei	Eingänge sind für rückwirkungsfreien Betrieb ausgelegt und können in Schaltungen mit Sicherheitsfunktionen eingesetzt werden.		
R/W	Read/Write: Spaltenüberschrift für Art von Systemvariable		
SB	Systembus (-modul)		
SELV	Safety Extra Low Voltage: Schutzkleinspannung		
SFF	Safe Failure Fraction: Anteil der sicher beherrschbaren Fehler		
SIL	Safety Integrity Level (nach IEC 61508)		
SILworX	Programmierwerkzeug		
SNTP	Simple Network Time Protocol (RFC 1769)		
SRS	System.Rack.Slot: Adressierung eines Moduls		
SW	Software		
TMO	Timeout		
W	Write: Variable wird mit Wert versorgt, z. B. vom Anwenderprogramm		
WD	Watchdog: Funktionsüberwachung für Systeme. Signal für fehlerfreien Prozess		
WDZ	Watchdog-Zeit		
W _S	Scheitelwert der Gesamt-Wechselspannungskomponente		

HI 801 186 D Rev. 10.00 Seite 45 von 50

Anhang X-AO 16 51

Abbildur	ngsverzeichnis	
Bild 1:	Typenschild exemplarisch	11
Bild 2:	Blockschaltbild des Moduls	12
Bild 3:	Anzeige	13
Bild 4:	Ansichten	17
Bild 5:	Beispiel einer Codierung	20
Bild 6:	Connector Boards mit Schraubklemmen	21
Bild 7:	Connector Board mit Kabelstecker	23
Bild 8:	Systemkabel X-CA 011 01 n	25
Bild 9:	Einsetzen des Mono Connector Boards, exemplarisch	28
Bild 10:	Festschrauben des Mono Connector Boards, exemplarisch	29
Bild 11:	Modul einbauen und ausbauen	31
Bild 12:	Einkanalige Verschaltung	37
Bild 13:	Regelungsverschaltung	38
Bild 14:	Anschluss über Field Termination Assembly	39
Bild 15:	HART-Handheld parallel zu Transmitter und Ausgangsmodul	39

Seite 46 von 50 HI 801 186 D Rev. 10.00

X-AO 16 51 Anhang

Tabellenv	verzeichnis	
Tabelle 1:	Zusätzlich geltende Handbücher	5
Tabelle 2:	Blinkfrequenzen der LEDs	14
Tabelle 3:	Modul-Statusanzeige	15
Tabelle 4:	Systembusanzeige	16
Tabelle 5:	E/A-Anzeige	16
Tabelle 6:	Produktdaten	17
Tabelle 7:	Technische Daten der analogen Ausgänge	18
Tabelle 8:	Verfügbare Connector Boards	19
Tabelle 9:	Position der Codierkeile	20
Tabelle 10:	Klemmenbelegung Mono Connector Board mit Schraubklemmen	22
Tabelle 11:	Eigenschaften der Klemmenstecker	22
Tabelle 12:	Steckerbelegung der Kabelstecker des Systemkabels	24
Tabelle 13:	Kabeldaten	25
Tabelle 14:	Verfügbare Systemkabel	25
Tabelle 15:	Register Modul im Hardware-Editor	33
Tabelle 16:	Register E/A-Submodul AO16_51 im Hardware-Editor	34
Tabelle 17:	Register E/A-Submodul AO16_51: Kanäle im Hardware-Editor	35
Tabelle 18:	Codierung Submodul-Status [DWORD]	36
Tabelle 19:	Codierung Diagnose-Status [DWORD]	36

HI 801 186 D Rev. 10.00 Seite 47 von 50

Anhang X-AO 16 51

Index

Blockschaltbild	12	HART-Kommunikation	39
Connector Board		Modul-Statusanzeige	15
mit Kabelstecker	23	Produktdaten	
mit Schraubklemmen	21	Modul	17
Diagnose	40	Sicherheitsfunktion	10
E/A-Anzeige	16	Technische Daten	
Systembusanzeige	16	Ausgänge	18

Seite 48 von 50 HI 801 186 D Rev. 10.00

HANDBUCH **X-AO 16 51**

HI 801 186 D

Für weitere Informationen kontaktieren Sie:

HIMA Paul Hildebrandt GmbH

Albert-Bassermann-Str. 28 68782 Brühl, Germany

Telefon: +49 6202 709-0 Fax +49 6202 709-107 E-Mail: info@hima.com

Erfahren Sie online mehr über HIMax:

