

ARCHITECTURE MODEL AND ANALYSIS OF CYBER PHYSICAL SYSTEMS

(PART I – MODELIING AND ANALYSIS OF CYBER PHYSICAL SYSTEMS)

Submitted to Professor ANDREA CECCARELLI

THYMIO PLATOONING

Version – V1

Cheriya Puthan Veettil Muhammed Irfan Matricular - 7127908

Table of content

1.	1. Introduction 3	
	1.1.	Purpose
	1.2.	References
2.	Overall	Description 3
3.	Require	ements 4
	_	Use Case Diagram
	3.2.	High level Use Cases
4.	System	Features –Viewpoints 8
	4.1.	System Features
	4.2.	System Features
	4.3.	System Features
5.	Test Ca	ses 11
6.	Project	Glossary 12

1. Introduction

1.1. Purpose

This project is aimed at realization of various thymio operating scenarios such as platooning, collision and simulation using Thymio simulator. The system of system under observation is composed of four thymio robots and a virtual map of a road with a roundabout traffic system. Two bidirectional circles in roundabout and external road map for other 2 thymio's considered for this experiment.

1.2. References

➤ Ref 1: http://wiki.thymio.org/en:asebalanguage

➤ Ref 2: https://wiki.thymio.org/en:asebastdnative

➤ Ref 3: https://wiki.thymio.org/en:asebaplayground

➤ Lecture Slides

2. Overall Description

The system of system is under observation is composed of four thymios. Each thymio further is composed of several sensors, actuators which enable it to send and receive critical information such as proximity distance, thymio speed, temperature. In this project intend to use several specific sensors and actuators for our desired test scenarios.

The thymio's are programmed in ASEBA language. The simulation is carried out in a special environment which requires curating of a custom map on which our thymio's can run and simulate desired scenarios. The map must be incorporated in the playground file and only then the required environment can be loaded to simulate the desired scenarios.

SOS: Road Traffic

The system simulates a typical traffic scenario where one vehicle intends to take over another vehicle. The DMV (Decision Making vehicle) checks for nearby hindrances (If any) such as another vehicle, roadblocks, vehicles coming from the opposite lane, estimates their speed, adjust self-speed and make a move.

Thymios are Named Thymio1, Thymio2, Thymio3, and Thymio4.

Given thymios utilize proximity sensor and accelerometer to calculate the presence of another thymio in front of it and adjust its speed accordingly to initiate a move-in/move-out or stop process/running.

3. Requirements

3.1. Use Case Diagram

Here the use case is essentially a list of the main functionalities, and the related factors.

System

3.2. High level Use Cases

High Level Use Case – 1:

Use Case	Thymio platooning
Actor	Thymio1, Thymio2, Thymio3,
	Thymio4
Description	Thymio1, Thymio2, Thymio3,
	Thymio4 realize a platoon by
	following a safe distance among
	them.

Extended Use Case

Use Case	Thymio platooning
Actor	Thymio1, Thymio2, Thymio3,
	Thymio4
Description	Thymio3 decided to overtake
	Thymio4, Thymio2, Thymio1 and
	respectively. Thymio1, Thymio2
	and Thymio3 are running on the
	given track. Thymio3 spot other
	thymio's on path it performed the
	overtaking feature and changed lane
	for some time and once overtaking
	is complete on side lane the
	overtaking thymio comes back to
	the original lane and starts running
	again.
	The preceding thymios Thymio1,
	Thymio2 and Thymio4, now
	becomes the followers and
	realize a platoon keeping a safe
	distance.
Pre-Condition	There must be a thymio in the front
	to overtake and realize a
	platoon.

Post Condition	Thymios are follow the path safe.
Assumption	Collision free running and
	overtaking.
Success Path	
Alternate Path	Thymio3 fails to overtake that is it
	will unfollow the path. Thymio will
	stop running.
Trigger	
Created On	18/01/2024
Created By	Muhammed Irfan
Revised on	N/A
Revised by	N/A

High Level Use Case – 2:

Use Case	Collision
Actor	Thymio1, Thymio2, Thymio3,
	Thymio4
Description	Thymio will collide back-side and
_	on time of overtake.

Extended Use Case:

Use Case	Collision
Actor	Thymio1, Thymio2, Thymio3,
	Thymio4
Description	Thymio will collide back-side or
	front side.
Pre-Condition	Two thymios following the
	same/different path violate the
	properties.
Post Condition	Thymios will undergo for collision.
Assumption	Thymio will violate the properties.
Success Path	Thymio's undergo collision.

Alternate Path	thymios fail-safe and stops working
	immediately upon violating the
	property.
Trigger	N/A malfunctioning.
Created On	18/01/2024
Created By	Muhammed Irfan
Revised on	N/A
Revised by	N/A

High Level Use Case – 3:

Use Case	Safe failure: Stop working of
	thymios if it loses the track and
	reaches white ground.
Actor	Thymio1, Thymio2, Thymio3,
	Thymio4
Description	the thymios stop working when they
	leave the black paths and encounter
	white flat surface.

Extended Use Case:

Use Case	Safe failure: Stop working of
	thymios if it loses the track and
	reaches white ground.
Actor	Thymio1, Thymio2, Thymio3,
	Thymio4.
Description	Thymio will collide back-side or
	front-side.
Pre-Condition	The thymios must follow the back
	path.
Post Condition	the thymios stop working when they
	land on the white sucrose, that is the
	velocity becomes zero.
Assumption	The thymios have moved-out of the
	black path and reached white

	surface and the velocity has become
	zero.
Success Path	Thymios leave the black path
	(Move-out) and encounter white
	lane outside the track, upon
	detecting the flat white surface the
	velocity reaches zero as sensors
	detect no movable surface.
Alternate Path	The thymios doesn't stop upon
	detecting the white flat surface and
	continue to run on white surface as
	well.
Trigger	disengagement from black path and
	engagement at white ground.
Created On	18/01/2024
Created By	Muhammed Irfan
Revised on	N/A
Revised by	N/A

High Level Use Case – 4:

Use Case	Thymio overtake.
Actor	Thymio3 overtakes Thymio1 and
	Thymio4.
Description	Thymio3 successfully overtakes
_	Thymio1 and Thymio4.

Extended Use Case:

Use Case	Thymio overtake.
Actor	Thymio1, Thymio2, Thymio3:
	primary, Thymio4.
Description	Thymio3 detects the presence of
	Thymio1 and Thymio3 in front of it
	and performs proximity detection
	using its sensors, once it senses that
	the thymio's are in front, it performs

	the path change action i.e. move-out of the present path. Upon changing the path, it moves forwards with an increased velocity and upon realizing a safe move-in opportunity and space it performs move-in.
Pre-Condition	There must be a Thymio1 or Thymio4 in front of Thymio4 to initiate a overtake process.
Post Condition	Thymio3 successfully performs move-in and becomes the leader performing the successful overtake.
Assumption	There is no other thymio involved in this scenario to cause complicate the proper working of thymios in this case.
Success Path	Thymio3 successfully performs move-out and move-in and becomes the leader.
Alternate Path	Thymio3 fails to successfully overtake and encounters a forced stop or undergoes collision.
Trigger	Proximity sensor catches the presence of another thymio in front of it and initiates the path change: Move-out.
Created On	18/01/2024
Created By	Muhammed Irfan
Revised on	N/A
Revised by	N/A

4. System Features –Viewpoints

This system under observation is composed of Four Thymio which perform various activities at different positions and circumstances. Mentioned below are few services and features offered by the thymio's (all thymio not perform same functionality).

4.1. System Features 1: Overtake

This feature is Exclusive only to Thymio Thymio3 and. Mentioned thymios observe a leader thymio in front of it and initiate a move-out process. Upon successfully changing the path and moving ahead of the leader thymio in the other path Thymio3 perform a detection using a proximity sensor, once thymio has detected it is now safe to change, it performs the move-in and overtakes the thymio observed by it.

Before

After

4.2. System Features 2: Platoon Realization

This feature is exercised under specific circumstances, thymio's realize a platoon by following the leader with distance. This feature is only exercised when the trailing thymio overtakes the thymio in front and becomes the new leader and other thymio keeps follow them.

4.3. System Features 3: Safe-Failure

All the thymio's are specifically programmed with this feature, it is expected form the thymios to carry out their movement on the designed black path, however under some circumstances if the thymio happens to leave that path and finds itself on white ground it must stop working as the sensor will stop giving any reading and velocity of that thymio will reach Zero.

Collision Scenario

5. Test Cases

Test	Test Case	Process	Test Data	Expected	Result	Pass/
case	Scenario			Outcome		Fail
ID						
T1	Successful	As	Proximity	Thymio	As	Pass
	overtaking		sensor	-	Expected	

		described in 4.1	readings	overtake s the leading Thymio.		
T2	Collision	Thymios violate the property and bump into each other.	Proximity sensor reading overridden.	Thymios collide into each other.	As Expected	Pass
Т3	Safe- Failure	Thymios stop working upon reaching a white ground.	sensor reading, accelerome ter reading reaches zero.	Thymio stops working on reaching a white ground.	As Expected	Pass

6. Project Glossary

Platoon: A group of two or more automated cooperative vehicles in path, maintaining a close distance

Velocity: A constant speed as maintained by the vehicle.

Decision Making Vehicle: the vehicle who decides to join a platoon/leave a platoon/ move in move-out.

Follower: Each vehicle that is following behind a member of the platoon, being every vehicle except the leading vehicle, when the system is in platoon mode.

Leader: The first vehicle of the platoon under observation

Move-in: A path change performed by vehicles from current path to adjacent path.

Move-out: A path change performed by vehicle from the present path to the adjacent path.