



Miguel Mancias
Richard Groves

## Overview & Responsibilities

| Name           | Responsibilities                                                                           |
|----------------|--------------------------------------------------------------------------------------------|
| Richard Groves | Design/build machine frame.<br>Implement cube solving algorithm.<br>Spec/order components. |
| Miraal Manada  | Implement camera for cube detection. Implement stepper control.                            |
| Miguel Mancias | Implement navigation buttons and LCD display.                                              |



## BOM

| Item                    | Unit Price | Qty | Ext Price |  |  |
|-------------------------|------------|-----|-----------|--|--|
| 0-48VDC Power Supply    | \$ 39.99   | 1   | \$ 39.99  |  |  |
| 5VDC Power Supply       | \$ 18.99   | 1   | \$ 18.99  |  |  |
| Fuse Block              | \$ 9.99    | 1   | \$ 9.99   |  |  |
| 2A Fuses                | \$ 0.13    | 6   | \$ 0.78   |  |  |
| Push Buttons            | \$ 0.48    | 5   | \$ 2.40   |  |  |
| Transistors             | \$ 0.38    | 2   | \$ 0.76   |  |  |
| LED Strip               | \$ 5.94    | 1   | \$ 5.94   |  |  |
| Stepper Motors          | \$ 10.99   | 6   | \$ 65.94  |  |  |
| Stepper Drives          | \$ 2.89    | 6   | \$ 17.34  |  |  |
| Microcontroller         | \$ 21.28   | 1   | \$ 21.28  |  |  |
| Camera                  | \$ 34.99   | 1   | \$ 34.99  |  |  |
| PLA Filament            | \$ 12.59   | 1   | \$ 12.59  |  |  |
| LCD Display w/ Backpack | \$ 24.95   | 1   | \$ 24.95  |  |  |
| 100uF Capacitors        | \$ 0.14    | 6   | \$ 0.86   |  |  |
| Total                   |            |     | \$ 256.80 |  |  |

Machine Design





Motor Mount - Top



Motor Mount - Main



Machine Base



Camera Mount



Camera Mounting Bolt



Coupler - Cube



Coupler - Motor



Coupler - Retainer Clip

### I/O

- Motors
  - GPIOA.0-9&11-12: Step and Direction for each motor.
  - GPIOA.14: Motor Sleep.
- Comms
  - GPIOC.10: UART to LCD Display
  - GPIOE.12-15: SPI to Camera.
  - GPIOG.7-8: LPUART to Laptop
- Miscellaneous
  - GPIOC.13, GPIOE.6&10, GPIOF.1&9&15: Buttons
  - o GPIOD.15: LED Strip On/Off

## **Function List**











#### **Cube Basics**

- 6 faces with 9 stickers (54 total stickers)
- 20 moving pieces (8 corners, 12 edges)
- Corner pieces have 3 possible orientations
- Edge pieces have 2 possible orientations
- 43,252,003,274,489,856,000 permutations
- All permutations can be solved within 20 moves (God's Number)



$$Total \ Permutations = \frac{8! \times 3^7 \times 12! \times 2^{11}}{3 \times 2 \times 2}$$







## Cube Solving-Move Codes

U U' D D' R R'

L L' F F' B B'

- Face Moves
  - L, R, F, B, U, D(Left, Right, Front, Back, Up Down)
  - 90° Clockwise Turn
- Modifiers
  - 0 2
- 180° Turn
- o '(prime)
  - Counterclockwise Turn
  - Applies to 90° or 180° Turns

# Cube Solving-Algorithms



- Iterative Deepening A\* (IDA\*)
  - Iterate through all 1-move solutions to the cube.
  - If the cube isn't solved, iterate through all 2-move solutions to the cube. Etc....
- Move Pruning
  - $\circ$  FF+F = F'
  - $\circ$  F+F' = NULL
- Kociemba's Two Phase Algorithm
  - There is a cube state subset (G1) that all cube permutations can be moved to.
  - Phase 1 Use IDA\* to get to G1
  - Phase 2 Use IDA\* to solve the cube

# Camera-Comms & Config

- Arucam Mega-5MP
  - SPI Protocol
  - 8MHz SCK (suggested)
  - JPEG, RGB, YUV Output formats
  - Automatic focus, brightness, contrast and saturation control
  - 12 selectable resolutions
    - From 96x96 to 2592x1944







## Camera-Color Detection

- Normalize RGB values.
- Find similarity of each pixels RGB vector with each predefined colors' vector. (dot product)
- Find the greatest similarity, and classify the pixel as the associated predefined color.



### **Motor Control**



#### Menu Structure

```
typedef void (*functionPointer)();
typedef struct menuitem menuitem;

struct menuitem {
    const char *name;
    menuitem *parent; // pointer to parent menu
    menuitem **menuitems; // array of menu items, NULL terminated
    functionPointer handler; // handler for this node (optionally null)
};
```

#### Menu Structure

```
menuitem* newMenuItem(menuitem* parentMenu, char *strName, int numMenuItems, int arrayPos) {
      /**
           Creates top or sub menu.
            parentMenu: menuitem parent, or top menu for created menu
            strName:
                          name of menu (or submenu)
           numMenuItems: number of <u>submenus</u> for created menu
            arravPos:
                          used to indicate index of parent's submenu array
       * /
     menuitem* newMenuItem = (menuitem*) malloc(sizeof(menuitem)); // assigning size to memory
     memset(newMenuItem, 0, sizeof(menuitem)); // make sure memory is set to 0
      newMenuItem->menuitems = (menuitem**) calloc(sizeof(menuitem*), numMenuItems); // assigning submenu size
      newMenuItem->name = strName;
     if (parentMenu) {
            parentMenu->menuitems[arrayPos] = newMenuItem; // assigning newMenu to parentmenuitems (submenus)
            newMenuItem->parent = parentMenu; // assigning newMenu's parent
     return newMenuItem;
```

## Menu Logic

| State | 0    | 1    | 2     | 4    | 8      | 16     | 32     | 64     | 128    | 256    |  |
|-------|------|------|-------|------|--------|--------|--------|--------|--------|--------|--|
| Name  | Main | Help | Motor | Auto | MotorR | MotorL | MotorU | MotorD | MotorF | MotorB |  |

#### Lessons Learned

#### **Richard**

- Don't trust manufacturers to have good documentation. Even if their products are popular. (I'm looking at you Arducam :)
- A Quality Cube = Less Headaches



#### Miguel

- Through-holes are not to be trusted
- Test proper connection before assuming there's an issue with the code
- Minimize variable checks

# Questions?

