Chapter ML:III

III. Decision Trees

- Decision Trees Basics
- □ Impurity Functions
- □ Decision Tree Algorithms
- Decision Tree Pruning

ML:III-72 Decision Trees © STEIN/LETTMANN 2005-2018

ID3 Algorithm [Quinlan 1986] [CART Algorithm]

Characterization of the model (model world) [ML Introduction]:

- \square X is a set of feature vectors, also called feature space.
- \Box C is a set of classes.
- $\neg c: X \to C$ is the ideal classifier for X.
- $D = \{(\mathbf{x}_1, c(\mathbf{x}_1)), \dots, (\mathbf{x}_n, c(\mathbf{x}_n))\} \subseteq X \times C \text{ is a set of examples.}$

Task: Based on D, construction of a decision tree T to approximate c.

ID3 Algorithm [Quinlan 1986] [CART Algorithm]

Characterization of the model (model world) [ML Introduction]:

- \square X is a set of feature vectors, also called feature space.
- \Box C is a set of classes.
- $c: X \to C$ is the ideal classifier for X.
- $D = \{(\mathbf{x}_1, c(\mathbf{x}_1)), \dots, (\mathbf{x}_n, c(\mathbf{x}_n))\} \subseteq X \times C \text{ is a set of examples.}$

Task: Based on D, construction of a decision tree T to approximate c.

Characteristics of the ID3 algorithm:

1. Each splitting is based on one nominal feature and considers its complete domain. Splitting based on feature A with domain $\{a_1, \ldots, a_k\}$:

$$X = \{ \mathbf{x} \in X : \mathbf{x}|_A = a_1 \} \cup \ldots \cup \{ \mathbf{x} \in X : \mathbf{x}|_A = a_k \}$$

2. Splitting criterion is the information gain.

ID3 Algorithm [Mitchell 1997] [algorithm template]

ID3(D, Attributes, Target)

- 1. Create a node t for the tree.
- 2. Label t with the most common value of Target in D.
- If all examples in D are positive, return the single-node tree t, with label "+".
 If all examples in D are negative, return the single-node tree t, with label "-".
- 4. If Attributes is empty, return the single-node tree t.

Otherwise:

- 5. Let A* be the attribute from Attributes that best classifies examples in D. Assign t the decision attribute A*.
- 6. For each possible value "a" in A* do:
 - \Box Add a new tree branch below t, corresponding to the test A* = "a".
 - □ Let D a be the subset of D that has value "a" for A*.
 - □ If D_a is empty:
 Then add a leaf node with label of the most common value of Target in D.
 Else add the subtree ID3(D_a, Attributes \ {A*}, Target).
- 7. Return t.

ID3 Algorithm (pseudo code) [algorithm template]

ID3(*D*, *Attributes*, *Target*)

- 1. t = createNode()
- 2. label(t) = mostCommonClass(D, Target)
- 3. IF $\forall \langle \mathbf{x}, c(\mathbf{x}) \rangle \in D : c(\mathbf{x}) = c$ THEN return(t) ENDIF
- 4. IF Attributes = \emptyset THEN return(t) ENDIF
- 5.
- 6.

7.

ID3 Algorithm (pseudo code) [algorithm template]

ID3(*D*, *Attributes*, *Target*)

- 1. t = createNode()
- 2. label(t) = mostCommonClass(D, Target)
- 3. IF $\forall \langle \mathbf{x}, c(\mathbf{x}) \rangle \in D : c(\mathbf{x}) = c$ THEN return(t) ENDIF
- 4. IF Attributes = \emptyset THEN return(t) ENDIF
- 5. $A^* = \operatorname{argmax}_{A \in \mathit{Attributes}}(\mathit{informationGain}(D, A))$

6.

7.

ID3 Algorithm (pseudo code) [algorithm template]

```
ID3(D, Attributes, Target)
   1. t = createNode()
   2. label(t) = mostCommonClass(D, Target)
   3. IF \forall \langle \mathbf{x}, c(\mathbf{x}) \rangle \in D : c(\mathbf{x}) = c THEN return(t) ENDIF
        IF Attributes = \emptyset THEN return(t) ENDIF
   5. A^* = \operatorname{argmax}_{A \in Attributes}(\operatorname{informationGain}(D, A))
        FOREACH a \in A^* DO
            D_a = \{ (\mathbf{x}, c(\mathbf{x})) \in D : \mathbf{x}|_{A^*} = a \}
            IF D_a = \emptyset THEN
           ELSE
               createEdge(t, a, ID3(D_a, Attributes \setminus \{A^*\}, Target))
            ENDIF
         ENDDO
        return(t)
```

ML:III-78 Decision Trees

ID3 Algorithm (pseudo code) [algorithm template]

```
ID3(D, Attributes, Target)
  1. t = createNode()
  2. label(t) = mostCommonClass(D, Target)
  3. IF \forall \langle \mathbf{x}, c(\mathbf{x}) \rangle \in D : c(\mathbf{x}) = c THEN return(t) ENDIF
        IF Attributes = \emptyset THEN return(t) ENDIF
  5. A^* = \operatorname{argmax}_{A \in Attributes}(\operatorname{informationGain}(D, A))
        FOREACH a \in A^* DO
           D_a = \{ (\mathbf{x}, c(\mathbf{x})) \in D : \mathbf{x}|_{A^*} = a \}
           IF D_a = \emptyset THEN
              t' = createNode()
              label(t') = mostCommonClass(D, Target)
              createEdge(t, a, t')
           ELSE
              createEdge(t, a, ID3(D_a, Attributes \setminus \{A^*\}, Target))
           ENDIF
        ENDDO
        return(t)
```

ML:III-79 Decision Trees © STEIN/LETTMANN 2005-2018

Remarks:

- "Target" designates the feature (= attribute) that is comprised of the labels according to which an example can be classified. Within Mitchell's algorithm the respective class labels are '+' and '-', modeling the binary classification situation. In the pseudo code version, Target may contain multiple (more than two) classes.
- Step 3 of of the ID3 algorithm checks the purity of D and, given this case, assigns the unique class c, $c \in dom(Target)$, as label to the respective node.

ID3 Algorithm: Example

Example set D for mushrooms, implicitly defining a feature space X over the three dimensions color, size, and points:

	Color	Size	Points	Eatability
1	red	small	yes	toxic
2	brown	small	no	eatable
3	brown	large	yes	eatable
4	green	small	no	eatable
5	red	large	no	eatable

ID3 Algorithm: Example (continued)

Top-level call of ID3. Analyze a splitting with regard to the feature "color":

$$D|_{\mathsf{color}} = egin{array}{c|c} \hline toxic & eatable \\ \hline red & 1 & 1 \\ brown & 0 & 2 \\ green & 0 & 1 \\ \hline \end{array}$$

$$2 \qquad \rightarrow \qquad |D_{\mathsf{red}}| = 2, \ |D_{\mathsf{brown}}| = 2, \ |D_{\mathsf{green}}| = 1$$

Estimated a-priori probabilities:

$$p_{\text{red}} = \frac{2}{5} = 0.4$$
, $p_{\text{brown}} = \frac{2}{5} = 0.4$, $p_{\text{green}} = \frac{1}{5} = 0.2$

ID3 Algorithm: Example (continued)

Top-level call of ID3. Analyze a splitting with regard to the feature "color":

$$D|_{ ext{color}} = egin{array}{c|c} & ext{toxic} & ext{eatable} \\ \hline red & 1 & 1 \\ ext{brown} & 0 & 2 \\ ext{green} & 0 & 1 \\ \hline \end{array}$$

0 2
$$\rightarrow$$
 $|D_{\text{red}}| = 2, |D_{\text{brown}}| = 2, |D_{\text{green}}| = 1$

Estimated a-priori probabilities:

$$p_{\text{red}} = \frac{2}{5} = 0.4, \quad p_{\text{brown}} = \frac{2}{5} = 0.4, \quad p_{\text{green}} = \frac{1}{5} = 0.2$$

Conditional entropy values for all attributes:

$$\begin{array}{rcl} H(C \mid {\rm color}) & = & -(\,0.4 \cdot (\frac{1}{2} \cdot \log_2 \frac{1}{2} + \frac{1}{2} \cdot \log_2 \frac{1}{2}) \, + \\ & & 0.4 \cdot (\frac{0}{2} \cdot \log_2 \frac{0}{2} + \frac{2}{2} \cdot \log_2 \frac{2}{2}) \, + \\ & & 0.2 \cdot (\frac{0}{1} \cdot \log_2 \frac{0}{1} + \frac{1}{1} \cdot \log_2 \frac{1}{1}) \,) \, = \, 0.4 \\ \\ H(C \mid {\rm size}) & \approx & 0.55 \\ H(C \mid {\rm points}) & = & 0.4 \end{array}$$

Remarks:

The smaller $H(C \mid feature)$ is, the larger becomes the information gain. Hence, the difference
$H(C)-H(C\mid \textit{feature})$ needs not to be computed since $H(C)$ is constant within each
recursion step.

☐ In the example, the information gain in the first recursion step becomes maximum for the two features "color" and "points".

ID3 Algorithm: Example (continued)

Decision tree before the first recursion step:

The feature "points" was chosen in Step 5 of the ID3 algorithm.

ID3 Algorithm: Example (continued)

Decision tree before the second recursion step:

The feature "color" was chosen in Step 5 of the ID3 algorithm.

ID3 Algorithm: Example (continued)

Final decision tree after second recursion step:

Break of a tie: choosing the class "toxic" for D_{green} in Step 6 of the ID3 algorithm.

ML:III-87 Decision Trees © STEIN/LETTMANN 2005-2018

ID3 Algorithm: Hypothesis Space

ID3 Algorithm: Inductive Bias

Inductive bias is the rigidity in applying the (little bit of) knowledge learned from a training set for the classification of unseen feature vectors.

Observations:

- □ Decision tree search happens in the space of *all* hypotheses.
- To generate a decision tree, the ID3 algorithm needs per branch at most as many decisions as features are given.

ID3 Algorithm: Inductive Bias

Inductive bias is the rigidity in applying the (little bit of) knowledge learned from a training set for the classification of unseen feature vectors.

Observations:

- Decision tree search happens in the space of all hypotheses.
 - → The target concept is a member of the hypothesis space.
- To generate a decision tree, the ID3 algorithm needs per branch at most as many decisions as features are given.
 - no backtracking takes place
 - → *local* optimization of decision trees

ID3 Algorithm: Inductive Bias

Inductive bias is the rigidity in applying the (little bit of) knowledge learned from a training set for the classification of unseen feature vectors.

Observations:

- Decision tree search happens in the space of all hypotheses.
 - → The target concept is a member of the hypothesis space.
- To generate a decision tree, the ID3 algorithm needs per branch at most as many decisions as features are given.
 - → no backtracking takes place
 - → *local* optimization of decision trees

Where the inductive bias of the ID3 algorithm becomes manifest:

- Small decision trees are preferred.
- Highly discriminative features tend to be closer to the root.

Is this justified?

Remarks:

- Let A_j be the finite domain (the possible values) of feature A_j , $j=1,\ldots,p$, and let C be a set of classes. Then, a hypothesis space H that is comprised of all decision trees corresponds to the set of all functions h, h: $A_1 \times \ldots \times A_p \to C$. Typically, $C = \{0,1\}$.
- ☐ The inductive bias of the ID3 algorithm is of a different kind than the inductive bias of the candidate elimination algorithm (version space algorithm):
 - The underlying hypothesis space H of the candidate elimination algorithm is incomplete.
 H corresponds to a coarsened view onto the space of all hypotheses since H contains
 only conjunctions of attribute-value pairs as hypotheses.
 However, this restricted hypothesis space is searched completely by the candidate
 elimination algorithm. Keyword: restriction bias
 - 2. The underlying hypothesis space H of the ID3 algorithm is complete. H corresponds to the set of all discrete functions (from the Cartesian product of the feature domains onto the set of classes) that can be represented in the form of a decision tree. However, this complete hypothesis space is searched incompletely (following a preference). Keyword: preference bias or search bias
- ☐ The inductive bias of the ID3 algorithm renders the algorithm robust regarding noise.

CART Algorithm [Breiman 1984] [ID3 Algorithm]

Characterization of the model (model world) [ML Introduction]:

- $\ \square$ X is a set of feature vectors, also called feature space. No restrictions are presumed for the features' measurement scales.
- \Box C is a set of classes.
- $\neg c: X \to C$ is the ideal classifier for X.
- $D = \{(\mathbf{x}_1, c(\mathbf{x}_1)), \dots, (\mathbf{x}_n, c(\mathbf{x}_n))\} \subseteq X \times C \text{ is a set of examples.}$

Task: Based on D, construction of a decision tree T to approximate c.

CART Algorithm [Breiman 1984] [ID3 Algorithm]

Characterization of the model (model world) [ML Introduction]:

- X is a set of feature vectors, also called feature space.
 No restrictions are presumed for the features' measurement scales.
- \Box C is a set of classes.
- $\neg c: X \to C$ is the ideal classifier for X.
- $D = \{(\mathbf{x}_1, c(\mathbf{x}_1)), \dots, (\mathbf{x}_n, c(\mathbf{x}_n))\} \subseteq X \times C \text{ is a set of examples.}$

Task: Based on D, construction of a decision tree T to approximate c.

Characteristics of the CART algorithm:

- 1. Each splitting is binary and considers one feature at a time.
- 2. Splitting criterion is the information gain or the Gini index.

CART Algorithm (continued)

- 1. Let A be a feature with domain A. Ensure a finite number of binary splittings for X by applying the following domain partitioning rules:
 - If A is nominal, choose $A' \subset A$ such that $0 < |A'| \le |A \setminus A'|$.
 - If A is ordinal, choose $a \in A$ such that $x_{\min} < a < x_{\max}$, where x_{\min} , x_{\max} are the minimum and maximum values of feature A in D.
 - If A is numeric, choose $a \in \mathbf{A}$ such that $a = (x_k + x_l)/2$, where x_k , x_l are consecutive elements in the ordered value list of feature A in D.

ML:III-95 Decision Trees

CART Algorithm (continued)

- 1. Let A be a feature with domain A. Ensure a finite number of binary splittings for X by applying the following domain partitioning rules:
 - If A is nominal, choose $A' \subset A$ such that $0 < |A'| \le |A \setminus A'|$.
 - If A is ordinal, choose $a \in A$ such that $x_{\min} < a < x_{\max}$, where x_{\min} , x_{\max} are the minimum and maximum values of feature A in D.
 - If A is numeric, choose $a \in A$ such that $a = (x_k + x_l)/2$, where x_k , x_l are consecutive elements in the ordered value list of feature A in D.
- 2. For node t of a decision tree generate all splittings of the above type.
- 3. Choose a splitting from the set of splittings that maximizes the impurity reduction $\Delta \iota$:

$$\Delta \iota(D(t), \{D(t_L), D(t_R)\}) = \iota(t) - \frac{|D_L|}{|D|} \cdot \iota(t_L) - \frac{|D_R|}{|D|} \cdot \iota(t_R),$$

where t_L and t_R denote the left and right successor of t.

CART Algorithm (continued)

Illustration for two numeric features, i.e., the feature space X corresponds to a two-dimensional plane:

By a sequence of splittings the feature space X is partitioned into rectangles that are parallel to the two axes.