Exercise Session 04

Exercise 1.

Consider the following recurrence $T(n) = T(2n/3) + \Theta(1)$. Prove that $T(n) = O(\lg n)$.

Exercise 2.

Consider the following recurrence:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ T(n-1) + \Theta(n) & \text{if } n > 1 \end{cases}$$

Prove that $T(n) = O(n^2)$ using the substitution method.

Exercise 3.

Consider the following recurrence:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n \le 1\\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil - 1) + \Theta(n) & \text{if } n > 1 \end{cases}$$

Use the substitution method to prove that $T(n) = O(n \lg n)$.

Hint: be careful when you choose the base case because n = 0 and n = 1 may not work

Exercise 4.

The factorial of n, is usually recursively defined as

$$n! = \begin{cases} 1 & \text{if } n = 0, \\ n \cdot (n-1)! & \text{if } n > 0 \end{cases}$$

- (a) Prove that $n! = \Omega(2^n)$.
- (b) Prove that $n! = O(n^n)$.
- (c) Prove that $\lg n! = O(n \lg n)$.

★ Exercise 5.

Consider the recurrence T(n) = T(9n/10) + T(n/10) + cn where c is a constant such that c > 0. Prove that $T(n) = O(n \lg n)$.