פליפה דודה ויינברג

ת.ז. 341299881

תרגיל 6 ילק תאורטי

בסיס

נבדוק שלושה מקרי בסיס שונים.

נניח ש-0 len(lst)=0. מזה נובע שהפונקציה תיכנס לתנאי הראשון $.start=0,\ end=0$ ש-1 של הפונקציה תיכנס לתנאי הראשון .start=0

start < end- בקריאה len(lst) = 1. בקריאה הראשונה של הפונקציה נקבל ש-len(lst) = 1 שייך שייך len(lst) = 1 שייך נניח שייך לרשימה שרק איבר אחד, לא num הפונקציה לא תיכנס לתנאי הראשון. אז נסמן num = (start + end)//2 = 0. אם num שייך לרשימה שרק איבר אחד, לא num = lst[0] בסוף. num < lst[0] או ש-num > lst[0], כלומר נקבל ש-num = lst[0].

כרגע נניח ש-1 len(lst)=0, end=1 ש-len(lst)=1. בקריאה הראשונה של הפונקציה נקבל num ש-len(lst)=1 אם num לא שייך לרשימה אז נקבל num הפונקציה לא תיכנס לתנאי הראשון. אז נסמן $m_1=(start+end)/2=0$ אם $m_1=(start+end)/2=0$ ש- $m_1=(start+end)$ מזה נובעים שני מקרים: $mum\neq lst[0]$

- $start=m_1+1=t$ הפונקציה השניה ברקורסיה. בקריאה השני ותחזור לתנאי השני לתנאי השני הפונקציה תיכנס לתנאי השני ותחזור להתחלה ברקורסיה. בקריאה השני האנוך אם $start=m_1+1=t$ הפונקציה תיכנס לתנאי הראשון ונקבל talse בסוף.
- $start=0=1,\ end=1,\ end$ הפונקציה השניה נקבל התחלה ברקורסיה. בקריאה השניה נקבל הענאי השלישי ותחזור להתחלה ברקורסיה. בקריאה השניה על המלישי השלישי ותחזור להתחלה ברקורסיה. בקריאה השניה און $start=0=1,\ end=1,\ end$

הנחת האינדוקציה

len(lst) = k- כלומר עבור איניח שהאלגוריתם נכון עבור רשימה באורך k, כלומר עבור וליתם נכון עבור רשימה

צעד האינדוקציה

k+1 נוכיח עבור רשימה של אורך

נפריד בין מקרים.

- $.start=0,\ end=k+1$ י נניח שייך לרשימה ונניח מקומו בדיוק באמצע. בקריאה הראשונה של הפונקציה נקבל א בדיוק באמצע. המספר מופיע $.m=(start+end)\ //2=(k+1)\ //2$ מסמן אז נסמן $.m=(start+end)\ //2=(k+1)\ //2$ בסוף. מהנחת האינדוקציה נקבל שהפונקציה לא תיכנס לאף תנאי ונקבל .num=lst[m] בסוף. בדיוק באמצע הרשימה, כלומר .num=lst[m]
- נניח ש-num שייך לרשימה ונניח שהוא בחלק הימיני שלה, כלומר המספר מופיע בימינו של אמצע הרשימה. בקריאה הראשונה של הפונקציה נקבל ש- $start = 0,\ end = k+1$. כיוון ש- $start = 0,\ end = k+1$ הראשון. אז נסמן של הפונקציה נקבל ש- $start = 0,\ end = k+1$ בימינו של אמצע הרשימה נקבל ש- $start = 0,\ end = k+1$. כיוון שהמספר מופיע בימינו של אמצע הרשימה נקבל ש- $start = 0,\ end = 1$. כיוון שהמספר פעמים עד של בימינו של אמצע החזור להתחלה ברקורסיה מספר פעמים עד ש- $start = 0,\ end = 1$. אז בקריאה האחרונה הפונקציה לא תיכנס לאף תנאי ונקבל $start = 0,\ end = 1,\ end$
- נניח ש-num שייך לרשימה ונניח שהוא בחלק השמאלי שלה, כלומר המספר מופיע בשמאלו של אמצע הרשימה. בקריאה הראשונה של הפונקציה נקבל ש- $start = 0,\ end = k+1$ כיוון ש- $start = 0,\ end = k+1$ הפונקציה נקבל ש- $start = 0,\ end = k+1$. כיוון שהמספר מופיע בשמאלו של אמצע הרשימה נקבל ש- $start = 0,\ end = (start + end)//2 = (k+1)//2$ מהנחת האינדוקציה נקבל שהפונקציה תחזור להתחלה ברקורסיה מספר פעמים עד ש- $start = 0,\ end$ אז בקריאה האחרונה הפונקציה לא תיכנס לאף תנאי ונקבל $start = 0,\ end$ בסוף.