UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

TAREA 4. Análisis Funcional y Aplicaciones I. 525401. Segundo Semestre 2006.

Sea Ω un abierto de \mathbb{R}^N dotado de la medida de Lebesgue dx. Para $1 \leq p \leq \infty$, se define

$$W^{1,p}(\Omega) = \{ f \in L^p(\Omega) \mid \nabla f \in L^p(\Omega)^N \},$$

donde ∇f es la derivada en el sentido de distribuciones. Sea además $||f||_{W^{1,p}} = ||f||_{L^p} + \sum_{i=1}^N \left\| \frac{\partial f}{\partial x_i} \right\|_{L^p}$.

- 1. Pruebe que $W^{1,p}(\Omega)$ es un espacio de Banach, es decir completo para la norma $\|\cdot\|_{W^{1,p}}$.
- 2. Pruebe que $W^{1,p}(\Omega)$ es separable para $1 \leq p < \infty$ y que es reflexivo para $1 .

 Indicación. Use el Teorema de Eberlein-Šmulian (ver Brezis) o bien pruebe que <math>W^{1,p}(\Omega)$ es un espacio uniformemente convexo para demostrar la reflexividad.
- 3. Usando un argumento de truncatura, y el producto de convolución por una función *Mollifier*, pruebe que $C_c^{\infty}(\mathbb{R}^N)$ (conjunto de las funciones de clase \mathcal{C}^{∞} a soporte compacto en \mathbb{R}^N) es denso en $W^{1,p}(\mathbb{R}^N)$.

Estudie la demostración del teorema de Ascoli (ver por ejemplo Limaye, pag. 19), y la demostración del Teorema de M.Riesz-Frechet-Kolmogorov (ver por ejemplo Brezis, pag. 72).

Estudie la demostración de la Proposición IX.3 del libro de Brezis (página 153-154) que caracteriza a los espacios $W^{1,p}(\Omega)$.

4. Pruebe usando usando lo anterior que toda sucesión acotada en $W^{1,p}(\Omega)$ (con $1 \le p \le \infty$) posee una subsucesión convergente fuerte en $L^p(\omega)$ para todo ω relativamente compacto en Ω . Más exactamente verifique gracias a la Proposición IX.3 que dicha sucesión verifica las hipótesis del Teorema de M.Riesz-Frechet-Kolmogorov.

Estudie la demostración del Teorema de Morrey (página 166, Brezis).

- 5. Sea una sucesión $(u_n)_{n\in\mathbb{N}}$ acotada en $W^{1,p}(\Omega)$ con p>N. Usando el Teorema de Morrey, pruebe que dicha sucesión verifica las hipótesis del Teorema de Ascoli, y deduzca que existe una subsucesión $(u_{n_k})_{k\in\mathbb{N}}$ que converge uniformemente en $\omega\subset\Omega$ compacto de \mathbb{R}^N .
- 6. Estudie el enunciado del Teorema de Rellich-Kondrachov (página 169, Brezis), y diga que relación tiene con lo que acaba de probar en 4. y 5., y diga en que sentido este Teorema generaliza el Teorema de Rellich visto en clases para los espacios $H^m(\Omega)$.

Fecha de Entrega: 3 de Noviembre de 2006.

MSC/msc

(18-Octubre-2006)