

IDENTIFICATION DU COMPORTEMENT D'UN SYSTEME PREDICTION DE LA STABILITE

CONTROL'X

1 Presentation

1.1 Objectifs

Les objectifs de ces deux séances de TP sont :

- □ analyser le système;
- ☐ identifier le comportement fréquentiel et temporel du système
- prédire les limites de la stabilité

1.2 Contexte pédagogique

Modéliser:

- Mod 2 : Proposer un modèle de connaissance et de comportement
- Mod 3 : Valider un modèle.

1.3 Évaluation des écarts

Au cours de ce TP on se préoccupera d'analyser les écarts entre les performances mesurées et les performances simulées.

Problématique : comment identifier le comportement d'un SLCI ?

Le compte rendu sera à faire sous forme d'un poster à effectuer sur le mini-tableau blanc.

2 MODELE DE COMPORTEMENT - IDENTIFICATION FREQUENTIELLE

Activité	1 : Coordinateur, Modélisateur, Expérimentateur
	Découvrir le fonctionnement du système.
	Valider un critère du cahier des charges.
	Réaliser la chaîne fonctionnelle.
Synthès	ie

□ Indiquer l'erreur statique et le temps de réponse à 5%. Activité 2 : Expérimentateur Modélisateur Coordinateur

ExpérimentateurModélisateurCoordinateurRéaliser les relevés expérimentaux
permettant de tracer le diagramme
de Bode en boucle ouverte.Dans la feuille Excel, déterminer les
formules permettant le tracé du
diagramme de Bode.Dans le compte-rendu, donner le
protocole expérimental permettant
de tracer un diagramme de Bode.

Remarque:

Les mesures	se feront en	boucle ouverte.

☐ Les coefficients du correcteur seront fixés à Kp=0,5, Ki=0, Kd=0.

Le coordinateur réalise la chaîne fonctionnelle du système.

- ☐ Au moins 8 relevés avec des sinusoïdes de périodes comprises entre 0,04s et 2s et d'amplitude 5V.
- ☐ Il faudra observer approximativement 8 périodes.

Synthèse

Le modélisateur et l'expérimentateur ajoutent le diagramme de Bode au compte-rendu.

Activité 3 : Coordinateur, Modélisateur, Expérimentateur

En utilisant le diagramme de Bode, proposer une fonction de transfert en Boucle Ouverte du système.

Synthèse

Indiquer la FTBO retenue.

Activité 4 : Coordinateur, Modélisateur, Expérimentateur

- ☐ En utilisant le diagramme de Bode expérimental, déterminer à partir de quel gain dans le Boucle ouverte le système devient instable (marge de gain nulle).
- Renseigner ce gain dans le correcteur et vérifier l'instabilité en boucle fermée.

Synthèse

Donner le gain proportionnel à la limite de la stabilité.

3 Modele de comportement – Identification temporelle

Activité 5 :		
Expérimentateur	Modélisateur	Coordinateur
Réaliser une réponse à un échelon en	Dans la feuille Excel, déterminer les	Dans le compte-rendu, donner le
boucle fermée et relever les	formules permettant la détermination	protocole expérimental permettant
grandeurs caractéristiques	des paramètres canoniques.	déterminer les paramètres
nécessaires à une identification		canoniques.
temporelle.		

Remarque

Afin de ne pas saturer la commande du moteur, il sera nécessaire d'avoir un mouvement de faible amplitude (échelon de 20mm).

Les coefficients du correcteur seront fixés à Kp=0,5, Ki=

Synthèse

Donner la fonction de transfert en boucle fermée identifié grâce à la réponse temporelle.

4 COMPARAISON DES MODELES

Activité 6 : Coordinateur, Modélisateur, Expérimentateur

- En utilisant Matlab-Simulink :
 - implémenter la FTBO issue de la réponse fréquentielle et réaliser le bouclage ;
 - implémenter en parallèle al FTBF issue de la réponse temporelle.
- ☐ Réaliser la comparaison des deux modèles et commenter.

Synthèse

Réaliser une comparaison qualitative des 2 modèles et d'un essai sur une réponse indicielle.

5 INFLUENCE DES CORRECTEURS

5.1 Influence du correcteur proportionnel

Activité 7 : Coordinateur, Modélisateur, Expérimentateur

☐ En utilisant uniquement un correcteur proportionnel et en l'augmentant progressivement, analyser l'influence du gain proportionnel sur la réponse indicielle.

5.2 Influence du correcteur intégral

Activité 8 : Coordinateur, Modélisateur, Expérimentateur

- ☐ En utilisant uniquement un gain proportionnel faible et en augmentant progressivement, le coefficient Ki, analyser l'influence sur la réponse indicielle.
- □ Pour cette activité on prendre **Kp=100**, **Kd=0**, **Ki=0,1** à **5**.

5.3 Influence du correcteur dérivé

Activité 9 : Coordinateur, Modélisateur, Expérimentateur

- ☐ En utilisant uniquement un gain dérivateur en boucle ouverte, analyser l'effet du correcteur sur la phase.
- □ Pour cette activité on prendre **Kp=0**, **Kd=1d**, **Ki=0**.

6 CONCLURE

Synthèse

- ☐ Comparer les 2 modèles avec un essai et analyser les écarts.
- ☐ Analyser l'influence des différents correcteurs.