

Definition. $\gamma:(\alpha,\beta)\to\mathbb{R}^2$

Definition. $\gamma:(\alpha,\beta)\to\mathbb{R}^2,\ unit\ speed\$ parametrization $\|\ddot{\gamma}(t)\|$

Definition. $\gamma:(\alpha,\beta)\to\mathbb{R}^2,\ unit\ speed\$ parametrization $\|\ddot{\gamma}(t)\|$ is the curvature

Definition. $\gamma:(\alpha,\beta)\to\mathbb{R}^2,\ unit\ speed\$ parametrization $\|\ddot{\gamma}(t)\|$ is the curvature, denoted $\kappa(t)$, at $\gamma(t)$

Definition. $\gamma:(\alpha,\beta)\to\mathbb{R}^2,\ unit\ speed\$ parametrization $\|\ddot{\gamma}(t)\|$ is the curvature, denoted $\kappa(t)$, at $\gamma(t)$

Definition. $\gamma:(\alpha,\beta)\to\mathbb{R}^2$, unit speed parametrization $\|\ddot{\gamma}(t)\|$ is the curvature, denoted $\kappa(t)$, at $\gamma(t)$

$$\gamma(t) = (r\cos(t), r\sin(t))$$

Definition. $\gamma:(\alpha,\beta)\to\mathbb{R}^2$, unit speed parametrization $\|\ddot{\gamma}(t)\|$ is the curvature, denoted $\kappa(t)$, at $\gamma(t)$

$$\gamma(t) = (r\cos(t), r\sin(t))$$

Definition. $\gamma:(\alpha,\beta)\to\mathbb{R}^2$, unit speed parametrization $\|\ddot{\gamma}(t)\|$ is the curvature, denoted $\kappa(t)$, at $\gamma(t)$

$$\gamma(t) = (r\cos(t/r), r\sin(t/r))$$

Definition. $\gamma:(\alpha,\beta)\to\mathbb{R}^2$, unit speed parametrization $\|\ddot{\gamma}(t)\|$ is the curvature, denoted $\kappa(t)$, at $\gamma(t)$

Example.

$$\gamma(t) = (r\cos(t/r), r\sin(t/r))$$

Definition. $\gamma:(\alpha,\beta)\to\mathbb{R}^2$, unit speed parametrization $\|\ddot{\gamma}(t)\|$ is the curvature, denoted $\kappa(t)$, at $\gamma(t)$

Example.

$$\gamma(t) = (r\cos(t/r), r\sin(t/r))$$

$$\dot{\gamma}(t) = (-r/r\sin(t/r), r/r\cos(t/r))$$

Definition. $\gamma:(\alpha,\beta)\to\mathbb{R}^2$, unit speed parametrization $\|\ddot{\gamma}(t)\|$ is the curvature, denoted $\kappa(t)$, at $\gamma(t)$

Example.

$$\gamma(t) = (r\cos(t/r), r\sin(t/r))$$

$$\dot{\gamma}(t) = (-r/r\sin(t/r), r/r\cos(t/r))$$

Definition. $\gamma:(\alpha,\beta)\to\mathbb{R}^2$, unit speed parametrization $\|\ddot{\gamma}(t)\|$ is the curvature, denoted $\kappa(t)$, at $\gamma(t)$

Example.

$$\gamma(t) = (r\cos(t/r), r\sin(t/r))$$

now unit speed $\dot{\gamma}(t) = (\sin(t/r), r/r\cos(t/r))$

Definition. $\gamma:(\alpha,\beta)\to\mathbb{R}^2$, unit speed parametrization $\|\ddot{\gamma}(t)\|$ is the curvature, denoted $\kappa(t)$, at $\gamma(t)$

Example.

$$\gamma(t) = (r\cos(t/r), r\sin(t/r))$$

$$\dot{\gamma}(t) = (\sin(t/r), r/r\cos(t/r))$$

$$\ddot{\gamma}(t) = (-1/r\cos(t/r), -1/r\sin(t/r))$$

Definition. $\gamma:(\alpha,\beta)\to\mathbb{R}^2$, unit speed parametrization $\|\ddot{\gamma}(t)\|$ is the curvature, denoted $\kappa(t)$, at $\gamma(t)$

Example.

$$\gamma(t) = (r\cos(t/r), r\sin(t/r))$$

$$\dot{\gamma}(t) = (\sin(t/r), r/r\cos(t/r))$$

$$\ddot{\gamma}(t) = (-1/r\cos(t/r), -1/r\sin(t/r))$$

Definition. $\gamma: (\alpha, \beta) \to \mathbb{R}^2$, unit speed parametrization $\|\ddot{\gamma}(t)\|$ is the curvature, denoted $\kappa(t)$, at $\gamma(t)$

Example.

$$\gamma(t) = (r\cos(t/r), r\sin(t/r))$$

now unit speed $\dot{z}(t) = (\sin(t/n), \pi/n \cos(t/n))$

$$\dot{\gamma}(t) = (\sin(t/r), r/r\cos(t/r))$$

$$\ddot{\gamma}(t) = (-1/r\cos(t/r), -1/r\sin(t/r))$$
$$\|\ddot{\gamma}(t)\| = 1/r$$

Definition. $\gamma: (\alpha, \beta) \to \mathbb{R}^2$, unit speed parametrization $\|\ddot{\gamma}(t)\|$ is the curvature, denoted $\kappa(t)$, at $\gamma(t)$

Example.

$$\gamma(t) = (r\cos(t/r), r\sin(t/r))$$

now unit speed $\dot{z}(t) = (\sin(t/n), \pi/n \cos(t/n))$

$$\dot{\gamma}(t) = (\sin(t/r), r/r\cos(t/r))$$

$$\ddot{\gamma}(t) = (-1/r\cos(t/r), -1/r\sin(t/r))$$
$$\|\ddot{\gamma}(t)\| = 1/r$$

Definition. $\gamma:(\alpha,\beta)\to\mathbb{R}^2,\ unit\ speed\$ parametrization $\|\ddot{\gamma}(t)\|$ is the curvature, denoted $\kappa(t)$, at $\gamma(t)$

Example.

$$\gamma(t) = (r\cos(t/r), r\sin(t/r))$$

now unit speed $\dot{\gamma}(t) = (\sin(t/r), r/r\cos(t/r))$

$$\ddot{\gamma}(t) = (-1/r\cos(t/r), -1/r\sin(t/r))$$

$$\kappa(t) = ||\ddot{\gamma}(t)|| = 1/r$$

Exercise. Show that the curvature at any point of any line

Definition. $\gamma:(\alpha,\beta)\to\mathbb{R}^2$, unit speed parametrization $\|\ddot{\gamma}(t)\|$ is the curvature, denoted $\kappa(t)$, at $\gamma(t)$

Example.

$$\gamma(t) = (r\cos(t/r), r\sin(t/r))$$

now unit speed

$$\dot{\gamma}(t) = (\sin(t/r), r/r\cos(t/r))$$

$$\ddot{\gamma}(t) = (-1/r\cos(t/r), -1/r\sin(t/r))$$

$$\kappa(t) = ||\ddot{\gamma}(t)|| = 1/r$$

Exercise. Show that the curvature at any point of any line is 0.