Harold's Statistical Distributions Cheat Sheet

22 October 2022

PDF Selection Tree to Describe a Single Population

Discrete Definitions

Term	Definition	Description
Random Variable	X	A rule that assigns a number to every outcome in the sample space, S. $X(a,b)=a+b=r$ Example: Sum of a pair of dice $X(2,4)=2+4=6$ Derived from a probability experiment with different probabilities for each X. Used in discrete or finite PDFs.
Event	X = r $X(s) = r$	An event assigns a value to the random variable X with probability: $P(X=r)$ Example: Sum of a pair of dice $P(X=6) = \frac{5}{36}$
Distribution	The distribution of a random variable is the set of all pairs $(r, p(X = r))$ such that $r \in X(S)$.	Set of all outcomes with their probabilities. $(r, p(X=r))$ Example: Sums of all pair of dice $\left\{ \left(2, \frac{1}{36}\right), \left(3, \frac{1}{18}\right), \dots, \left(12, \frac{1}{36}\right) \right\}$
Sum of Probabilities	$\sum_{r \in X(S)} P(X = r) = 1$	A random variable has some fractional probability value for every outcome in the sample space.
Histogram	P(D=r) 0.180 0.160 0.140 0.120 0.100 0.080 0.060 0.040 0.020 0.000 2	a 4 5 6 7 8 9 10 11 12
PMF	Probability Mass Function	Discrete, Qualitative
PDF	Probability Density Function	Continuous, Quantitative

Discrete Probability Mass Functions (Qualitative)

Probability Mass Function (PMF)	Mean	Standard Deviation			
Uniform Discrete Distribution	$\frac{1}{n}$	b X			
$P(X=x) = \frac{1}{b-a+1}$	$\mu = \frac{a+b}{2}$	$\sigma = \sqrt{\frac{(b-a)^2}{12}}$			
Conditions	 All outcomes are consecutive. All outcomes are equally likely. Not common in nature. 				
Variables	a = minimum b = maximum				
TI-84	NA				
Example	Tossing a fair die (n = 6)				
Online PDF Calculator	http://www.danielsoper.com/statcal	c3/calc.aspx?id=102			

Probability Mass Function (PMF)	Mean	Standard Deviation				
Binomial Distribution	Binomial distribution with n = 15 and p = 0.2					
$X \sim B(n, p) = B(k; n, p) =$ $P(X = k) = \binom{n}{k} p^{k} (1 - p)^{n-k}$	$\mu_x = np$	$\sigma_x = \sqrt{np(1-p)} = \sqrt{npq}$ $np \ge 10 \text{ and } nq \ge 10$				
where $\binom{n}{k} = {}_{n}C_{k} = \frac{n!}{k! (n-k)!}$ $P(X=k) \approx \frac{1}{\sqrt{npq}} \cdot \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{1}{2} \frac{(k-np)^{2}}{npq}}$	$\mu_{\widehat{p}} = p$					
$P(X = k) \approx \frac{1}{\sqrt{npq}} \cdot \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{1}{2} \frac{(k-np)^2}{npq}}$	Use for large $n\ (>15)$ to approximate binomial distribution.					
Conditions	 n is fixed. The probabilities of success (p) and failure (q) are constant. Each trial is independent. 					
Variables	n = fixed number of trials p = probability that the designated (Symmetric if $p = 0.5$) X = Total number of times the even	_				
TI-84	For one x value: [2 nd] [DISTR] A:binompdf(n,p,x) P [2 nd] [DISTR] B:binomcdf(n,p,x) F	7				
11-04	For a range of x values [j,k]: [2^{nd}] [DISTR] A:binompdf([ENTER] n, p, [\downarrow] [\downarrow] [ENTER] [STO>] [2^{nd}] [3] (=L3) [ENTER] [$\rightarrow \rightarrow$ MATH] 5:sum(L3,j+1,k+1) Larry's batting average is 0.260. If he's at bat four times, what is the					
Example	probability that he gets exactly two hits? Solution: n = 4, p = 0.26, x = 2 binompdf(4,0.26,2) = 0.2221 = 22.2%					
Online PDF Calculator	http://stattrek.com/online-calculat					

Geometric Distribution	Geometric p=0.3 0.25 0.25 0.15 0.15 0.05 1 2 3 4 5 6 7 8 9					
$P(X \le x) = q^{x-1}p = (1-p)^{x-1}p$ $P(X > x) = q^x = (1-p)^x$	$\mu = E(X) = \frac{1}{p} \qquad \qquad \sigma = \frac{\sqrt{q}}{p} = \sqrt{\frac{1-p}{p^2}}$					
	 A series of independent trials with the same probability of a given event. Probability that it takes a specific amount of trials to get a success. Can answer two questions: a) Probability of getting 1st success on the nth trial b) Probability of getting success on ≤ n trials Since we only count trials until the event occurs the first time, there no need to count the nCx arrangements, as in the binomi distribution. 					
Variables	p = probability that the event occur X = # of trials until the event <u>occurs</u>	9				
TI-84	[2 nd] [DISTR] E:geometpdf(p, x) [2 nd] [DISTR] F:geometcdf(p, x)	$P(X = x)$ $P(X \le x)$				
Example Online PDF Calculator	Suppose that a car with a bad starter can be started 90% of the time by turning on the ignition. What is the probability that it will take three tries to get the car started? Solution: $p = 0.90, X = 3$ geometpdf(0.9, 3) = 0.009 = 0.9% http://www.calcul.com/show/calculator/geometric-distribution					

Probability Mass Function (PMF)	Mean	Standard Deviation			
Poisson Distribution	Poisson Distribution 0.40				
$P(X = x) = \frac{\lambda^x e^{-\lambda}}{x!}, x = 0,1,2,3,4,$	$\mu = E(X) = \lambda$	$\sigma = \sqrt{\lambda}$			
Conditions	Events occur independently, at some average rate per interval of time/space.				
Variables	λ = average rate X = total number of times the even There is no upper limit on X	t occurs			
TI-84	[2 nd] [DISTR] C:poissonpdf(λ, X) $P(X = x)$ [2 nd] [DISTR] D:poissoncdf(λ, X) $P(X \le x)$				
Example	Suppose that a household receives, on the average, 9.5 telemarketing calls per week. We want to find the probability that the household receives 6 calls this week. Solution: $\lambda = 9.5, X = 6$ poissonpdf(9.5, 6) = 0.0764 = 7.64%				
Online PDF Calculator	http://stattrek.com/online-calculat	or/poisson.aspx			

Bernoulli	
tnomial	See http://www.d.nccu.odu/~cow.6/documents/A.nrobability.and
Hypergeometric	http://www4.ncsu.edu/~swu6/documents/A-probability-and- statistics-cheatsheet.pdf
Negative Binomial	

Continuous Probability Density Functions (Quantitative)

Probability Density Function (PDF)	Mean	Standard Deviation				
Normal Distribution / Gaussian Distribution / Bell-Shaped Curve	0.4 0.3 0.2 0.1 0.1% 13.6% 13.6% 13.6% 13.6% 13.6% 13.6% 13.6% 13.6% 13.6% 13.6%					
$X \sim \mathcal{N}(\mu, \sigma^2) = \mathcal{N}(x; \mu, \sigma^2) =$						
$\Phi(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$	$\mu = E(x) = \mu$	$\sigma = \sigma$				
Special Case: Standard Normal $Z \sim \mathcal{N}(0,1) = \mathcal{N}(x;0,1)$	$\mu = 0$	$\sigma = 1$				
z-Score of a Sample	$z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$					
Conditions	 Symmetric, unbounded, bell-shaped. No data is perfectly normal. Instead, a distribution is approximately normal. 					
Variables	μ = mean (= median = mode) σ = standard deviation x = observed value (all real number	rs)				
TI-84	Have scores, need area: $f(x) = P(X = x)$ z-scores: [2 nd] [DISTR] 1:normalpdf(z, 0, 1) x-scores: [2 nd] [DISTR] 1:normalpdf(x, μ , σ) Have boundaries, need area: $F(x) = P(X \le x)$ z-scores: [2 nd] [DISTR] 2:normalcdf(left-bound, right-bound)					
	x-scores: [2 nd] [DISTR] 2:normalcdf(left-bound, right-bound, μ , σ) Have area, need boundary: z-scores: [2 nd] [DISTR] 3:invNorm(area to left) x-scores: [2 nd] [DISTR] 3:invNorm(area to left, μ , σ)					

	<pre>import scipy.stats as st</pre>
	mean, sd, z = 0, 1, 1.5 print(st.norm.cdf(z, mean, sd)) # P(z <= 1.5) print(st.norm.sf(z, mean, sd)) # P(z >= 1.5)
Python	mean, sd, x = 55, 7.5, 62 print(st.norm.cdf(x, mean, sd)) # P(x <= 62)
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	# P(49 < t < 60)
	<pre>print(st.norm.cdf(60, mean, sd) - st.norm.cdf(49, mean, sd))</pre>
	Suppose the mean score on the math SAT is 500 and the standard
	deviation is 100. What proportion of test takers earn a score between
	650 and 700?
Example	
	Solution:
	left-boundary = 650, right boundary =700, μ = 500, σ = 100
	normalcdf(650, 700, 500, 100) = 0.0441 = ~4.4%
Online PDF Calculator	http://davidmlane.com/normal.html

Standard Normal Distribution Table: Positive Values (Right Tail) Only

Z	+0.00	+0.01	+0.02	+0.03	+0.04	+0.05	+0.06	+0.07	+0.08	+0.09
0.0	0.50000	0.50399	0.50798	0.51197	0.51595	0.51994	0.52392	0.52790	0.53188	0.53586
0.1	0.53980	0.54380	0.54776	0.55172	0.55567	0.55966	0.56360	0.56749	0.57142	0.57535
0.2	0.57930	0.58317	0.58706	0.59095	0.59483	0.59871	0.60257	0.60642	0.61026	0.61409
0.3	0.61791	0.62172	0.62552	0.62930	0.63307	0.63683	0.64058	0.64431	0.64803	0.65173
0.4	0.65542	0.65910	0.66276	0.66640	0.67003	0.67364	0.67724	0.68082	0.68439	0.68793
0.5	0.69146	0.69497	0.69847	0.70194	0.70540	0.70884	0.71226	0.71566	0.71904	0.72240
0.6	0.72575	0.72907	0.73237	0.73565	0.73891	0.74215	0.74537	0.74857	0.75175	0.75490
0.7	0.75804	0.76115	0.76424	0.76730	0.77035	0.77337	0.77637	0.77935	0.78230	0.78524
0.8	0.78814	0.79103	0.79389	0.79673	0.79955	0.80234	0.80511	0.80785	0.81057	0.81327
0.9	0.81594	0.81859	0.82121	0.82381	0.82639	0.82894	0.83147	0.83398	0.83646	0.83891
1.0	0.84134	0.84375	0.84614	0.84849	0.85083	0.85314	0.85543	0.85769	0.85993	0.86214
1.1	0.86433	0.86650	0.86864	0.87076	0.87286	0.87493	0.87698	0.87900	0.88100	0.88298
1.2	0.88493	0.88686	0.88877	0.89065	0.89251	0.89435	0.89617	0.89796	0.89973	0.90147
1.3	0.90320	0.90490	0.90658	0.90824	0.90988	0.91149	0.91308	0.91466	0.91621	0.91774
1.4	0.91924	0.92073	0.92220	0.92364	0.92507	0.92647	0.92785	0.92922	0.93056	0.93189
1.5	0.93319	0.93448	0.93574	0.93699	0.93822	0.93943	0.94062	0.94179	0.94295	0.94408
1.6	0.94520	0.94630	0.94738	0.94845	0.94950	0.95053	0.95154	0.95254	0.95352	0.95449
1.7	0.95543	0.95637	0.95728	0.95818	0.95907	0.95994	0.96080	0.96164	0.96246	0.96327
1.8	0.96407	0.96485	0.96562	0.96638	0.96712	0.96784	0.96856	0.96926	0.96995	0.97062
1.9	0.97128	0.97193	0.97257	0.97320	0.97381	0.97441	0.97500	0.97558	0.97615	0.97670
2.0	0.97725	0.97778	0.97831	0.97882	0.97932	0.97982	0.98030	0.98077	0.98124	0.98169
2.1	0.98214	0.98257	0.98300	0.98341	0.98382	0.98422	0.98461	0.98500	0.98537	0.98574
2.2	0.98610	0.98645	0.98679	0.98713	0.98745	0.98778	0.98809	0.98840	0.98870	0.98899
2.3	0.98928	0.98956	0.98983	0.99010	0.99036	0.99061	0.99086	0.99111	0.99134	0.99158
2.4	0.99180	0.99202	0.99224	0.99245	0.99266	0.99286	0.99305	0.99324	0.99343	0.99361
2.5	0.99379	0.99396	0.99413	0.99430	0.99446	0.99461	0.99477	0.99492	0.99506	0.99520
2.6	0.99534	0.99547	0.99560	0.99573	0.99585	0.99598	0.99609	0.99621	0.99632	0.99643
2.7	0.99653	0.99664	0.99674	0.99683	0.99693	0.99702	0.99711	0.99720	0.99728	0.99736
2.8	0.99744	0.99752	0.99760	0.99767	0.99774	0.99781	0.99788	0.99795	0.99801	0.99807
2.9	0.99813	0.99819	0.99825	0.99831	0.99836	0.99841	0.99846	0.99851	0.99856	0.99861
3.0	0.99865	0.99869	0.99874	0.99878	0.99882	0.99886	0.99889	0.99893	0.99896	0.99900
3.1	0.99903	0.99906	0.99910	0.99913	0.99916	0.99918	0.99921	0.99924	0.99926	0.99929
3.2	0.99931	0.99934	0.99936	0.99938	0.99940	0.99942	0.99944	0.99946	0.99948	0.99950
3.3	0.99952	0.99953	0.99955	0.99957	0.99958	0.99960	0.99961	0.99962	0.99964	0.99965
3.4	0.99966	0.99968	0.99969	0.99970	0.99971	0.99972	0.99973	0.99974	0.99975	0.99976
3.5	0.99977	0.99978	0.99978	0.99979	0.99980	0.99981	0.99981	0.99982	0.99983	0.99983
3.6	0.99984	0.99985	0.99985	0.99986	0.99986	0.99987	0.99987	0.99988	0.99988	0.99989
3.7	0.99989	0.99990	0.99990	0.99990	0.99991	0.99991	0.99992	0.99992	0.99992	0.99992
3.8	0.99993	0.99993	0.99993	0.99994	0.99994	0.99994	0.99994	0.99995	0.99995	0.99995
3.9	0.99995	0.99995	0.99996	0.99996	0.99996	0.99996	0.99996	0.99996	0.99997	0.99997
4.0	0.99997	0.99997	0.99997	0.99997	0.99997	0.99997	0.99998	0.99998	0.99998	0.99998
4.1	0.99998	0.99998	0.99998	0.99998	0.99998	0.99998	0.99998	0.99998	0.99999	0.99999
4.2	0.99999	0.99999	0.99999	0.99999	0.99999	0.99999	0.99999	0.99999	0.99999	1.00000

Probability Density Function (PDF)	Mean	Standard Deviation					
Student's t Distribution	This distribution was first studied by Willi pseudonym <i>Student</i> . It has a wider spreadeviation.	•					
Degrees of Freedom	df = degrees of freedom = $n-1$ A positive whole number that indicates the number of values in a calculation can e.g., $df = 1$ means 1 equation 2 unknow $\lim_{y \to \infty} tpdf(x, df) = normalpdf(x)$	ı vary.					
$P(v) = \frac{\Gamma\left(\frac{v+1}{2}\right)}{\sqrt{v\pi} \Gamma\left(\frac{v}{2}\right)} \left(1 + \frac{v}{2}\right)$	$-\frac{x^2}{v}\right)^{\frac{-(v+1)}{2}} \qquad \mu = E(x) = 0 \text{ (always)}$	$\sigma = 0$					
Where the Gamma funct $\Gamma(s) = \int_0^\infty t^{s-1}e^{-t} dt$	$\Gamma(n) = (n-1)!$	$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$					
t-Score of a Sample	$t = \frac{\bar{x} - \mu}{\frac{S}{\sqrt{n}}}$						
Conditions	• Is typically used: 1. With small sample sizes or 2. When the population standard deviation is unknown • Similar in shape to the normal distribution. $Z \sim \mathcal{N}(0,1)$ • Used for inference about means (Use χ^2 for variance).						
Variables	x = observed value df = degrees of freedom = n - 1						
TI-84							

	<pre>import scipy.stats as st</pre>				
	mean, sd, t, $df = 0$, 1, -0.25 , 30				
	<pre>print(st.t.cdf(t, df, mean, sd)) # P(t <= -0.25)</pre>				
Python	<pre>print(st.t.sf(t, df, mean, sd)) # P(t >= 1.5)</pre>				
	# P(49 < t < 60)				
	<pre>print(st.t.cdf(60, df, mean, sd) - st.t.cdf(49, df, mean, sd))</pre>				
	print (st.t.ppf(0.135, df, mean, sd)) # $P(t < t^*) = p = 0.135$				
	print (st.t.isf(0.405, df, mean, sd)) # $P(t > t^*) = p = 0.405$				
	Suppose scores on an IQ test are normally distributed, with a population mean of				
	100. Suppose 20 people are randomly selected and tested. The standard deviation in				
	the sample group is 15. What is the probability that the average test score in the				
	sample group will be at most 110?				
Example	Sumple group will be at most 110:				
	Solution:				
	n=20, df=20-1=19, μ = 100, \bar{x} =110, s = 15				
	tcdf(-1E99, (110-100)/(15/sqrt(20)), 19) = 0.996 = ~99.6%				
Online PDF Calculator	http://keisan.casio.com/exec/system/1180573204				

Student's t Distribution Table:

Cum. Prob.	t.50	t.75	t _{.80}	t _{.85}	t.90	<i>t</i> .95	t.975	t _{.99}	t.995	t _{.999}	t.9995
1-tail α	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
2-tails α	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001
df											
1	0.0000	1.0000	1.3764	1.9626	3.0777	6.3138	12.7062	31.8205	63.6567	318.3088	636.6192
2	0.0000	0.8165	1.0607	1.3862	1.8856	2.9200	4.3027	6.9646	9.9248	22.3271	31.5991
3	0.0000	0.7649	0.9785	1.2498	1.6377	2.3534	3.1824	4.5407	5.8409	10.2145	12.9240
4	0.0000	0.7407	0.9410	1.1900	1.5332	2.1318	2.7764	3.7469	4.6041	7.1732	8.6103
5	0.0000	0.7267	0.9195	1.1558	1.4759	2.0150	2.5706	3.3649	4.0321	5.8934	6.8688
6	0.0000	0.7176	0.9057	1.1342	1.4398	1.9432	2.4469	3.1427	3.7074	5.2076	5.9588
7	0.0000	0.7111	0.8960	1.1192	1.4149	1.8946	2.3646	2.9980	3.4995	4.7853	5.4079
8	0.0000	0.7064	0.8888	1.1081	1.3968	1.8595	2.3060	2.8965	3.3554	4.5008	5.0413
9	0.0000	0.7027	0.8834	1.1000	1.3830	1.8331	2.2622	2.8214	3.2498	4.2968	4.7809
10	0.0000	0.6998	0.8791	1.0931	1.3722	1.8125	2.2281	2.7638	3.1693	4.1437	4.5869
11	0.0000	0.6974	0.8755	1.0877	1.3634	1.7959	2.2010	2.7181	3.1058	4.0247	4.4370
12	0.0000	0.6955	0.8726	1.0832	1.3562	1.7823	2.1788	2.6810	3.0545	3.9296	4.3178
13	0.0000	0.6938	0.8702	1.0795	1.3502	1.7709	2.1604	2.6503	3.0123	3.8520	4.2208
14	0.0000	0.6924	0.8681	1.0763	1.3450	1.7613	2.1448	2.6245	2.9768	3.7874	4.1405
15	0.0000	0.6912	0.8662	1.0735	1.3406	1.7531	2.1314	2.6025	2.9467	3.7328	4.0728
16	0.0000	0.6901	0.8647	1.0711	1.3368	1.7459	2.1199	2.5835	2.9208	3.6862	4.0150
17	0.0000	0.689	0.8633	1.0690	1.3334	1.7396	2.1098	2.5669	2.8982	3.6458	3.9651
18	0.0000	0.6884	0.8620	1.0672	1.3304	1.7341	2.1009	2.5524	2.8784	3.6105	3.9216
19	0.0000	0.6876	0.8610	1.0655	1.3277	1.7291	2.0930	2.5395	2.8609	3.5794	3.8834
20	0.0000	0.6870	0.8600	1.0640	1.3253	1.7247	2.0860	2.5280	2.8453	3.5518	3.8495
21	0.0000	0.6864	0.8591	1.0627	1.3232	1.7207	2.0796	2.5176	2.8314	3.5272	3.8193
22	0.0000	0.6858	0.8583	1.0614	1.3212	1.7171	2.0739	2.5083	2.8188	3.5050	3.7921
23	0.0000	0.6853	0.8575	1.0603	1.3195	1.7139	2.0687	2.4999	2.8073	3.4850	3.7676
24	0.0000	0.6848	0.8569	1.0593	1.3178	1.7109	2.0639	2.4922	2.7969	3.4668	3.7454
25	0.0000	0.6844	0.8562	1.0584	1.3163	1.7081	2.0595	2.4851	2.7874	3.4502	3.7251
26	0.0000	0.6840	0.8557	1.0575	1.3150	1.7056	2.0555	2.4786	2.7787	3.4350	3.7066
27	0.0000	0.6837	0.8551	1.0567	1.3137	1.7033	2.0518	2.4727	2.7707	3.4210	3.6896
28	0.0000	0.6834	0.8546	1.0560	1.3125	1.7011	2.0484	2.4671	2.7633	3.4082	3.6739
29	0.0000	0.6830	0.8542	1.0553	1.3114	1.6991	2.0452	2.4620	2.7564	3.3962	3.6594
30	0.0000	0.6828	0.8538	1.0547	1.3104	1.6973	2.0423	2.4573	2.7500	3.3852	3.6460
40	0.0000	0.6807	0.8507	1.0500	1.3031	1.6839	2.0211	2.4233	2.7045	3.3069	3.5510
50	0.0000	0.6794	0.8489	1.0473	1.2987	1.6759	2.0086	2.4033	2.6778	3.2614	3.4960
60	0.0000	0.6786	0.8477	1.0455	1.2958	1.6706	2.0003	2.3901	2.6603	3.2317	3.4602
70	0.0000	0.6780	0.8468	1.0442	1.2938	1.6669	1.9944	2.3808	2.6479	3.2108	3.4350
80	0.0000	0.6776	0.8461	1.0432	1.2922	1.6641	1.9901	2.3739	2.6387	3.1953	3.4163
90	0.0000	0.6772	0.8456	1.0424	1.2910	1.6620	1.9867	2.3685	2.6316	3.1833	3.4019
100	0.0000	0.6770	0.8452	1.0418	1.2901	1.6602	1.9840	2.3642	2.6259	3.1737	3.3905
1000	0.0000	0.6747	0.8420	1.0370	1.2824	1.6464	1.9623	2.3301	2.5808	3.0984	3.3003
$\infty \rightarrow z$	0.0000	0.6745	0.8416	1.0364	1.2816	1.6449	1.9600	2.3263	2.5758	3.0902	3.2905
	0%	50%	60%	70%	80%	90%	95%	98%	99%	99.8%	99.9%
	Confidence Level C										

Probability Density Function (PDF)	Mean	Standard Deviation			
F Distribution	2.5 2 1.5 1 0.5 0 1 This distribution is also known as S the Fisher–Snedecor distribution (Snedecor).	nedecor's F distribution or			
Parameters	$d_1, d_2 > 0$ degrees of freedom				
$P(x) = \frac{\sqrt{\frac{(d_1 x)^{d_1} d_2^{d_2}}{(d_1 x + d_2)^{d_1 + d_2}}}}{x B\left(\frac{d_1}{2}, \frac{d_2}{2}\right)}$	$\mu = \frac{d_2}{(d_2 - 2)}$ $for d_2 > 2$	$\sigma = \frac{d_2}{(d_2 - 2)} \sqrt{\frac{2(d_1 + d_2 - 2)}{d_1(d_2 - 4)}}$ $for d_2 > 4$			
Conditions	 The F-distribution with d₁ and d₂ degrees of freedom is the distribution of X =				
Variables	x = observed value				
TI-84	[2 nd] [DISTR] 9: fpdf(x, v_{num} , v_{denom}) $f(x) = P(X = x)$ [2 nd] [DISTR] 0: fcdf(- ∞ , t, v_{num} , v_{denom}) $F(x) = P(X \le x)$				
Example					
Online PDF Calculator	https://stattrek.com/online-calculator/f-distribution.aspx				

Probability Density Function (PDF)	Mean Standard Deviation				
Gamma Distribution	0.4 0.3 0.2 0.1 0 2 4 6 8	$k = 1.0, \ \theta = 2.0$ $k = 2.0, \ \theta = 2.0$ $k = 3.0, \ \theta = 2.0$ $k = 5.0, \ \theta = 1.0$ $k = 9.0, \ \theta = 0.5$ $k = 7.5, \ \theta = 1.0$ $k = 0.5, \ \theta = 1.0$ ous version of the discrete factorial			
Parameters	function, n!. $k > 0$ shape $\theta > 0$ scale				
$f(x) = \frac{1}{\Gamma(k) \ \theta^k} \ x^{k-1} \ e^{-\frac{x}{\theta}}$	$\mu = k\theta$	$\sigma = \sqrt{k} \; \theta$			
Where the Gamma function $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$	$\Gamma(n)=(n-1)!$	Where the Gamma function $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$			
Conditions	 The <u>exponential distribution</u>, <u>Erlang distribution</u>, and <u>chi-square distribution</u> are special cases of the gamma distribution. The gamma distribution is the <u>maximum entropy probability distribution</u> (both with respect to a uniform base measure and with respect to a 1/x base measure) for a random variable X for which E[X] = kθ = α/β is fixed and greater than zero, and E[In(X)] = ψ(k) + In(θ) = ψ(α) - In(β) is fixed (ψ is the <u>digamma function</u>). 				
Variables	x = observed value				
TI-84	GAMFUNC (Gamma function) PRGMGAMDSTR (Gamma distribution function) PRGM				
Example					
Online PDF Calculator	https://keisan.casio.com/exec/syst	<u>tem/1180573217</u>			

Probability Density Function (PDF)	Mean	Standard Deviation		
Chi-Square Distribution	$p = \Pr[X \ge \chi^2]$ χ^2 Skewed-right (above) have fewer values to the right, and median < mean.			
$\chi^{2}(x,k) = \frac{1}{2^{\frac{k}{2}} \Gamma(\frac{k}{2})} x^{\frac{k}{2}-1} e^{\frac{-x}{2}}$	$\mu = E(X) = k$ $\mu = \sqrt{2}\Gamma \frac{\left(\frac{k+1}{2}\right)}{\Gamma\left(\frac{k}{2}\right)}$ $Mode = \sqrt{k-1}$	$\sigma^{2} = \sqrt{2k}$ $\sigma^{2} = k - \frac{2\Gamma\left(\frac{k+1}{2}\right)^{2}}{\Gamma\left(\frac{k}{2}\right)^{2}}$		
Conditions	 Used for inference about variance in categorical distributions. Used when we want to test the independence, homogeneity, and "goodness of fit" to a distribution. Used for counted data. 			
Variables	x = observed value v = df = degrees of freedom = n - 1			
TI-84	[2 nd] [DISTR] 7: χ^2 pdf(x, ν) $f(x) = P(X = x, k)$ [2 nd] [DISTR] 8: χ^2 cdf(x, ν) $F(x) = P(X \le x, k)$			
Example	χ^2 pdf() is only used to graph the function.			
Online PDF Calculator	https://stattrek.com/online-calculator/chi-square.aspx			

Uniform	
Log-Normal	
Multivariate Normal	
F	
Exponential	See
Gamma	http://www4.ncsu.edu/~swu6/documents/A-probability-and-
Inverse Gamma	<u>statistics-cheatsheet.pdf</u>
Dirichlet	
Beta	
Weibull	
Pareto	

Continuous Probability Distribution Functions

Cumulative Distribution Function (CDF)	Mean	Standard Deviation		
$P(X \le x) = \int_{-\infty}^{x} f(x) dx$	If $f(x) = \Phi(x)$ (the Normal PDF), then no exact solution is known. Use z-tables or web calculator (http://davidmlane.com/normal.html)			
$\int_{-\infty}^{\infty} f(x) dx = 1$	The area under the curve is always equal to exactly 1 (100% probability).			
Integral of PDF = CDF (Distribution)	$F(x) = \int_{-\infty}^{x} f(x) dx$	Use the density function $f(x)$, not the distribution function $F(x)$, to		
Derivative of CDF = PDF (Density)	$f(x) = \frac{dF(x)}{dx}$	calculate $E(X)$, $Var(X)$ and $\sigma(X)$.		
Expected Value (Mean)	$E(X) = \int_{a}^{b} x f(x) dx$			
Needed to calculate Variance	$E(X^2) = \int_a^b x^2 f(x) dx$			
Variance		$Var(X) = E(X^2) - E(X)^2$		
Standard Deviation		$\sigma(X) = \sqrt{Var(X)}$		

Discrete Distributions

	Notation ¹	$F_X(x)$	$f_X(x)$	$\mathbb{E}\left[X\right]$	$\mathbb{V}\left[X ight]$	$M_X(s)$
Uniform	$\mathrm{Unif}\left\{ a,\ldots,b\right\}$	$\begin{cases} 0 & x < a \\ \frac{\lfloor x \rfloor - a + 1}{b - a} & a \le x \le b \\ 1 & x > b \end{cases}$	$\frac{I(a < x < b)}{b - a + 1}$	$\frac{a+b}{2}$	$\frac{(b-a+1)^2-1}{12}$	$\frac{e^{as} - e^{-(b+1)s}}{s(b-a)}$
Bernoulli	$\mathrm{Bern}(p)$	$(1-p)^{1-x}$	$p^{x} \left(1 - p\right)^{1 - x}$	p	p(1-p)	$1 - p + pe^s$
Binomial	$\mathrm{Bin}(n,p)$	$I_{1-p}(n-x,x+1)$	$\binom{n}{x}p^x \left(1-p\right)^{n-x}$	np	np(1-p)	$(1 - p + pe^s)^n$
Multinomial	$\operatorname{Mult}\left(n,p\right)$		$\frac{n!}{x_1! \dots x_k!} p_1^{x_1} \dots p_k^{x_k} \sum_{i=1}^k x_i = n$	np_i	$np_i(1-p_i)$	$\left(\sum_{i=0}^{k} p_i e^{s_i}\right)^n$
Hypergeometric	$\mathrm{Hyp}\left(N,m,n\right)$	$\approx \Phi\left(\frac{x - np}{\sqrt{np(1 - p)}}\right)$	$\frac{\binom{m}{x}\binom{m-x}{n-x}}{\binom{N}{x}}$	$rac{nm}{N}$	$\frac{nm(N-n)(N-m)}{N^2(N-1)}$	N/A
Negative Binomial	$\mathrm{NBin}(n,p)$	$I_p(r,x+1)$	$ \binom{x+r-1}{r-1} p^r (1-p)^x $	$r\frac{1-p}{p}$	$r\frac{1-p}{p^2}$	$\left(\frac{p}{1-(1-p)e^s}\right)^r$
Geometric	$\mathrm{Geo}\left(p\right)$	$1 - (1 - p)^x x \in \mathbb{N}^+$	$p(1-p)^{x-1} x \in \mathbb{N}^+$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{p}{1 - (1 - p)e^s}$
Poisson	$Po(\lambda)$	$e^{-\lambda} \sum_{i=0}^{x} \frac{\lambda^i}{i!}$	$\frac{\lambda^x e^{-\lambda}}{x!}$	λ	λ	$e^{\lambda(e^s-1)}$

 $\underline{http://www4.ncsu.edu/^swu6/documents/A-probability-and-statistics-cheatsheet.pdf}$

Continuous Distributions

	Notation	$F_X(x)$	$f_X(x)$	$\mathbb{E}\left[X ight]$	$\mathbb{V}\left[X ight]$	$M_X(s)$
Uniform	$\mathrm{Unif}(a,b)$	$\begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a < x < b \\ 1 & x > b \end{cases}$	$\frac{I(a < x < b)}{b - a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{sb} - e^{sa}}{s(b-a)}$
Normal	$\mathcal{N}\left(\mu,\sigma^2 ight)$	$\Phi(x) = \int_{-\infty}^{x} \phi(t) dt$	$\phi(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$	μ	σ^2	$\exp\left\{\mu s + \frac{\sigma^2 s^2}{2}\right\}$
Log-Normal	$\ln\mathcal{N}\left(\mu,\sigma^2 ight)$	$\frac{1}{2} + \frac{1}{2}\operatorname{erf}\left[\frac{\ln x - \mu}{\sqrt{2\sigma^2}}\right]$	$\frac{1}{x\sqrt{2\pi\sigma^2}}\exp\left\{-\frac{(\ln x - \mu)^2}{2\sigma^2}\right\}$	$e^{\mu+\sigma^2/2}$	$(e^{\sigma^2} - 1)e^{2\mu + \sigma^2}$	
Multivariate Normal	$\operatorname{MVN}\left(\mu,\Sigma\right)$		$(2\pi)^{-k/2} \Sigma ^{-1/2} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$	μ	Σ	$\exp\left\{\mu^T s + \frac{1}{2} s^T \Sigma s\right\}$
Student's t	$\mathrm{Student}(\nu)$	$I_x\left(rac{ u}{2},rac{ u}{2} ight)$	$\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\Gamma\left(\frac{\nu}{2}\right)}\left(1+\frac{x^2}{\nu}\right)^{-(\nu+1)/2}$	0	0	
Chi-square	χ_k^2	$\frac{1}{\Gamma(k/2)}\gamma\left(\frac{k}{2},\frac{x}{2}\right)$	$\frac{1}{2^{k/2}\Gamma(k/2)}x^{k/2}e^{-x/2}$	k	2k	$(1-2s)^{-k/2} \ s < 1/2$
F	$\mathrm{F}(d_1,d_2)$	$I_{\frac{d_1x}{d_1x+d_2}}\left(\frac{d_1}{2},\frac{d_1}{2}\right)$	$\frac{\sqrt{\frac{(d_1x)^{d_1}d_2^{d_2}}{(d_1x+d_2)^{d_1+d_2}}}}{xB\left(\frac{d_1}{2},\frac{d_1}{2}\right)}$	$\frac{d_2}{d_2-2}$	$\frac{2d_2^2(d_1+d_2-2)}{d_1(d_2-2)^2(d_2-4)}$	
Exponential	$\mathrm{Exp}\left(\beta\right)$	$1 - e^{-x/\beta}$	$\frac{1}{\beta}e^{-x/\beta}$	β	eta^2	$\frac{1}{1-\beta s} \left(s < 1/\beta \right)$
Gamma	$\operatorname{Gamma}\left(\alpha,\beta\right)$	$\frac{\gamma(\alpha,x/\beta)}{\Gamma(\alpha)}$	$\frac{1}{\Gamma(\alpha)\beta^{\alpha}}x^{\alpha-1}e^{-x/\beta}$	lphaeta	$lphaeta^2$	$\left(\frac{1}{1-\beta s}\right)^{\alpha} (s < 1/\beta)$
Inverse Gamma	$\operatorname{InvGamma}\left(\alpha,\beta\right)$	$\frac{\Gamma\left(\alpha,\frac{\beta}{x}\right)}{\Gamma\left(\alpha\right)}$	$\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{-\alpha - 1} e^{-\beta/x}$	$\frac{\beta}{\alpha-1} \; \alpha > 1$	$\frac{\beta^2}{(\alpha-1)^2(\alpha-2)^2} \ \alpha > 2$	$\frac{2(-\beta s)^{\alpha/2}}{\Gamma(\alpha)}K_{\alpha}\left(\sqrt{-4\beta s}\right)$
Dirichlet	$\mathrm{Dir}\left(\alpha\right)$		$\frac{\Gamma\left(\sum_{i=1}^{k} \alpha_i\right)}{\prod_{i=1}^{k} \Gamma\left(\alpha_i\right)} \prod_{i=1}^{k} x_i^{\alpha_i - 1}$	$\frac{\alpha_i}{\sum_{i=1}^k \alpha_i}$	$\frac{\mathbb{E}\left[X_{i}\right]\left(1-\mathbb{E}\left[X_{i}\right]\right)}{\sum_{i=1}^{k}\alpha_{i}+1}$	
Beta	$\mathrm{Beta}\left(\alpha,\beta\right)$	$I_x(lpha,eta)$	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	$1 + \sum_{k=1}^{\infty} \left(\prod_{r=0}^{k-1} \frac{\alpha+r}{\alpha+\beta+r} \right) \frac{s^k}{k!}$
Weibull	$\mathrm{Weibull}(\lambda,k)$	$1 - e^{-(x/\lambda)^k}$	$\frac{k}{\lambda} \left(\frac{x}{\lambda} \right)^{k-1} e^{-(x/\lambda)^k}$	$\lambda\Gamma\left(1+rac{1}{k} ight)$	$\lambda^2 \Gamma\left(1+\frac{2}{k}\right) - \mu^2$	$\sum_{n=0}^{\infty} \frac{s^n \lambda^n}{n!} \Gamma\left(1 + \frac{n}{k}\right)$
Pareto	$Pareto(x_m, \alpha)$	$1 - \left(\frac{x_m}{x}\right)^{\alpha} \ x \ge x_m$	$\alpha \frac{x_m^{\alpha}}{x^{\alpha+1}} x \ge x_m$	$\frac{\alpha x_m}{\alpha - 1} \ \alpha > 1$	$\frac{x_m^{\alpha}}{(\alpha-1)^2(\alpha-2)} \ \alpha > 2$	$\alpha(-x_m s)^{\alpha} \Gamma(-\alpha, -x_m s) \ s < 0$