Protocolos de enrutamiento II

Programación y administración de redes - Semana 10

Grado en Ingeniería Informática

Departamento de Informática. Universidad de Jaén

Objetivos

General

Conocer los protocolos de enrutamiento interior y exterior más usados en la actualidad en Internet: OSPF y BGP

Específicos

- Conocer las características esenciales del protocolo OSFP
- Saber cómo funciona OSPF jerárquico
- Identificar los dos modos de funcionamiento del protocolo BGP
- Diferenciar las distintas tareas a cargo de BGP y sus mensajes
- Comparar los escenarios de uso de los distintos algoritmos de enrutamiento y el impacto que tienen

Protocolos de enrutamiento - Recordatorio

Finalidad

Crear y mantener las tablas de enrutamiento en los router para que el protocolo IP pueda realizar el trabajo de reenvío

Detalles

- Tipos de protocolos
 - Internos: se usan entre redes pertenecientes a un sistemas autónomo
 - Externos: facilitan la comunicación entre redes de distintos sistemas autónomos
- Protocolos de enrutamiento interno
 - **RIP**: sencillo, para redes pequeñas Ya lo conocemos
 - **OSPF:** complejo, para redes más grandes
- Protocolos de enrutamiento externo
 - BGP: compuesto de dos subalgoritmos llamados iBGP y eBGP

RIP Routing Information Protocol

OSPF
Open Shortest Path First

BGP Border Gateway Protocol

El protocolo OSPF Open Shortest Path First

El protocolo OSPF - Introducción

Objetivo

Desarrollado para sustituir a RIP solventando sus limitaciones

Características

- Algoritmo de estado del enlace:
 - Descubrir los routers vecinos y averiguar sus direcciones mediante mensajes HELLO
 - Construir un paquete (que se envía sobre datagramas IP) que incluya toda la información anterior y enviarlo a todos los nodos de la red (mediante inundación)
 - Calcular el camino más corto para cada router (algoritmo de Dijkstra)
- **Ventajas** sobre RIP:
 - Seguridad: todos los mensajes OSPF están autentificados (para prevenir intrusos)
 - Redundancia: se permiten múltiples caminos con el mismo coste (solo un camino en RIP)
 - Métricas: se consideran varias métricas de coste para distintos objetivos, por ejemplo: coste bajo para el enlace por satélite si se requiere rendimiento pero coste alto si se requiere para tiempo real
 - Soporte integrado unidifusión y multidifusión (MOSPF)

El protocolo OSPF - Funcionamiento

Procesamiento en los equipos

- Los mensajes de OSPF pueden ser de distintos tipos:
 - **1.** Paquete Hello, lo envía un router OSPF por todas sus interfaces para descubrir otros routers entre sus vecinos
 - 2. Paquete DBD (Database Description), usado para verificar si la tabla de enlaces de un router está sincronizada con las de sus vecinos
 - **3. Paquete LSR** (*Link State Requests*), petición de los vecinos de información sobre algún enlace del que el *router* no tiene información completa
 - **4. Paquete LSU** (*Link State Update*), se usa como respuesta a un vecino tras un LSR y también como paquete que se envía por inundación para anunciar cambios en un *router*
 - **5.** Paquete LSAck (Link State Acknowledgment), lo envían los router OSPF que han recibido un LSU para confirmar que cuentan con la nueva información
- Estos mensajes se encapsulan directamente en un datagrama IP con el código de protocolo 89, definiendo OSPF su propio formato de segmento en lugar de usar los servicios de TCP o UDP

El protocolo OSPF - Jerárquico

Se usa en grandes redes, estructurándolas en áreas interconectadas mediante una red troncal

El protocolo OSPF - Jerárquico

Conceptos

- Dos niveles de jerarquía: área local y troncal
 - El protocolo OSPF se ejecuta independientemente en cada área y en la troncal que une a las áreas
 - Cada router dentro de un área conocerá las distancias a todos los demás routers de su área y las distancias a otras áreas/redes de otras áreas, pero no de sus nodos internos
- Routers de frontera de área: "resumen" distancias a otras redes a los routers de su misma área, anuncian a otros routers de Frontera de área
- Routers troncales: ejecutan rutados de OSPF limitados al troncal (y con los frontera)
- Routers frontera: conectan con otros SAs

El protocolo BGP - Introducción

Objetivo

Facilitar el enrutamiento entre distintos sistemas autónomos. En la actualidad es prácticamente el único protocolo externo

Uso

 El protocolo BGP lo usan los router que se encuentran en la frontera con otros sistemas autónomos

El protocolo BGP - Funcionamiento

BGP utiliza Protocolo de vector de rutas:

- Parecido al protocolo de vector de distancias
- Un router frontera solo envía información (anuncios) a routers frontera a los que está directamente conectados
- La información/anuncios que envía un router de frontera son rutas completas (una secuencia de SAs)
- Rutas BGP siempre incluyen redes (SAs), no host individuales
- Cada SA tiene un número oficial en Internet (ver material de la pasada semana)

El protocolo BGP - Modos de funcionamiento

- Dos subprotocolos:
 - eBGP (external BGP): el que hasta ahora hemos llamado BGP, usado para comunicar entre sí los router frontera entre los SA
 - iBGP (internal BGP): utilizado por los routers de borde para enviar/recibir información al/del resto de los routers de su sistema autónomo

El protocolo BGP - Tareas de un router BGP

- Recepción y filtrado de anuncios de ruta desde los vecinos directamente conectados
 - Por ejemplo se pueden filtrar (desechar) los anuncios que lleguen y contengan una ruta hacia un destino pasando por tu propio SA

Selección de ruta

- Una ruta está compuesta por pares (SA, Siguiente_Router)
- Cuando se reciben diferentes anuncios para un mismo destino el administrador puede fijar políticas donde se indiquen preferencias para enviar datos a través de un SA u otro
- Si no se fijan políticas se seguirá el camino más corto
- Envío de anuncios de ruta al vecindario
 - Otro elemento importante es que en BGP también se puede controlar la información que llevarán los anuncios que se enviarán a los router vecinos
 - De esta manera se decide el tráfico que se enrutará hacia un SA

El protocolo BGP - Ejemplo

- A,B y C son redes de proveedores
- X, W, Y son clientes (de redes de proveedor) y conectan a hogares
- Primer ejemplo:
 - Si X no quiere enrutar de B hacia C ... no anunciará a B una ruta hacia C.
- Segundo ejemplo
 - A anuncia a B el camino AW.
 - B anuncia a X el camino BAW.
 - ¿Debería anunciar B a C el camino BAW?
 - Normalmente no, ya que B solo quiere enrutar tráfico de sus clientes (y C no es un cliente)

El protocolo BGP - Mensajes

- El intercambio de mensajes usando el protocolo BGP se apoya en el servicio de transporte del protocolo TCP (puerto 179)
- Tipos de mensajes:
 - OPEN (abre): abre una conexión TCP al otro extremo y autentifica al emisor
 - UPDATE (actualiza): anuncia un nuevo camino o elimina al antiguo
 - KEEPALIVE (sigo vivo): mantiene la conexión viva en ausencia de UPDATES;
 también como petición de reconocimiento de mensajes OPEN
 - NOTIFICATION (notificación): informa de mensajes enviados anteriormente;
 también para cerrar la conexión

Actividad – El protocolo BGP

Exploración de la actividad BGP

- Abre en tu navegador web la dirección <u>https://stat.ripe.net/special/bgplay</u>
- Introduce la dirección 150.214.0.0/16 y pulsa Intro
- Aparecerá el estado inicial que tenía la configuración BGP de esa red, normalmente para un periodo de dos días
- Cada nodo es un AS. Sitúa el ratón sobre cualquiera de ellos para observar cómo llega hasta el AS de origen (CICA)
- En la parte inferior hay una línea temporal que muestra los cambios que se han producido en esa configuración
- Haz clic sobre cualquiera de los eventos para observar en la gráfica cómo cambió la configuración. En la parte superior se describe el evento que provocó dicho cambio
- En la parte superior derecha tienes unos controles que permiten la reproducción de todos los eventos desde el momento inicial hasta la actualidad
- ¿Qué cambios importantes observas en la configuración BGP en ese periodo?

Comparación entre algoritmos de enrutamiento

• Políticas:

- Inter-SA: la administración quiere controlar el enrutado de su tráfico, quién enruta a través de su red, o a través de quién se enruta
- Intra-AS: una única administración, por lo que no se precisan decisiones políticas, solo se busca el camino más corto

• Escala:

- Dentro de un SA puede interesar tener una entrada para cada destino
- Para nodos fuera de un SA solo interesa conocer el camino más corto hacia la red donde está el destino

Actividad 1 - Tablas de rutas

Objetivo

Crear las tablas de rutas que corresponden a los equipos A, B, C y el router R1 partiendo del esquema facilitado

Tablas de rutas óptimas

- Tras crear las **tablas de rutas iniciales**, a partir del esquema, determina si esas tablas son óptimas o no y, en caso necesario, ajústalas
- Una tabla de rutas óptima es aquella que tiene el menor número de entradas posible
- Las tablas de rutas se optimizan agrupando entradas que tienen una salida común teniendo en cuenta su red de destino y su máscara

Actividad 2 - Topología de red desde tablas de rutas

Objetivo

Obtener la topología de una red conociendo las tablas de rutas de varios de sus dispositivos

Destination

10.0.1.0

default

Gateway

hulk.ujaen.es

p8610EdD1-178.u 0.0.0.0

Tablas de rutas del equipo A

```
0 eth0
                                 255.255.255.0
                                                                         0 eth1
                                                                         0 lo
default
                p8610EdD1-178.u 0.0.0.0
                                                                         0 eth0
Destination
                                                  Flags Metric Ref
                                                                       Use Iface
                Gateway
                                 Genmask
                hulk.ujaen.es
                                                                         0 eth0
150.214.178.0
```

255.255.255.0

255.0.0.0

Flags Metric Ref

UG

Tablas de rutas del equipo B

- A partir de la información facilitada en las tablas deduce qué tipo de equipo es A y qué tipo de equipo es B
- Deduce las IP que corresponderían a hulk.ujaen.es y a p8610EdD1-178.ujaen.es
- Dibuja un borrador del esquema de red, ve añadiéndole información y rehazlo completando lo que falte

Use Iface

0 eth0

0 eth0

0 eth0

0 10

Cuestiones clave

Qué deberías saber

Al inicio de este tema se planteaban unos objetivos específicos que deberían permitirte **responder a las siguientes cuestiones** clave

Cuestiones

- ¿En qué contextos usaríamos los protocolos OSPF y BGP?
- ¿Cómo opera OSPF en grandes redes con la configuración jerárquica?
- ¿Qué mensajes usa OSPF y cómo se envían a través de Internet?
- ¿Cuál es el funcionamiento de BGP y sus dos variantes eBGP e iBGP?
- ¿Qué tareas corresponden a BGP y qué mensajes usa para acometerlas?
- ¿Cuáles son las implicaciones en las políticas de enrutamiento de cada tipo de protocolo?

Material adicional

Descripción

Para ampliar tus conocimientos sobre los contenidos de esta semana te recomendamos que consultes los recursos indicados a continuación.

Recursos

- Capítulo 5 La capa de red: el plano de control, del libro Redes de computadoras
 7ED disponible en formato digital en la BUJA (recuerda identificarte para poder
 acceder a leerlo desde tu navegador), concretamente hasta las secciones 5.3 y
 5.4
- TCP/IP Routing protocols en el recurso electrónico The TCP/IP Guide, en cuyos apartados Interior Routing Protocols y Exterior Gateway/Routing Protocols encontrarás información sobre OSPF y BGP entre otros protocolos de enrutamienot
- Requirements for IP Version 4 Routers en el <u>RFC 1812</u>, en cuyo índice encontrarás la ubicación de los protocolos de enrutamiento y, en particular, las secciones 7.2.2 y 7.3.2 dedicadas a los protocolos OSPF y BGP

Material adicional

Además ...

Otros recursos que pueden resultarte de interés para entender cómo opera Internet a nivel global

Recursos

- Internet es un conjunto de SA que se componen de redes WAN y LAN. En <u>upload.wikimedia.org/wikipedia/commons/c/c3/Internet map 4096.png</u> puedes examinar visualmente Internet en un mapa que muestra todas esas redes
- Los SA se interconectan en lo que se denominan habitualmente puntos neutros o IXP (Internet Exchange Point). En www.internetexchangemap.com tienes un mapa de la distribución de IXP a nivel mundial. Examina los existentes en nuestro país
- Uno de los principales puntos neutros en España es el de Espanix, en cuya web
 puedes ver (<u>www.espanix.net/es/partners.html</u>) la lista de sistemas autónomos que
 interconecta. Observa la columna AS donde se indica el número de SA