CAMINHOS MÍNIMOS

 $\mathsf{MO417}$ - Complexidade de Algoritmos I

Santiago Valdés Ravelo https://ic.unicamp.br/~santiago/ ravelo@unicamp.br

Caminhos mínimos com uma origem

Problema do Caminho Mínimo

Considere um par (G, w) em que:

- ► G é um grafo direcionado.
- \blacktriangleright w associa um peso w(u, v) para cada aresta (u, v).

Estamos interessados nos seguintes problemas:

- Problema do caminho mínimo entre dois vértices:
 Dados s e t, encontrar um caminho de peso mínimo de s a t.
- Problema dos caminhos mínimos com mesma origem:
 Dado s, encontrar um caminho de peso mínimo de s a v para
 TODO vértice v de G.

Exemplo: grafo direcionado acíclico

V	a	b	C	d	е	f
$dist(\mathbf{b}, \mathbf{v})$	∞	0	2	6	5	3

Exemplo: grafo direcionado sem arestas negativas

V	a	b	С	d	е	f	
dist(b, v)	8	0	5	7	11	9	

Exemplo: grafo direcionado com arestas negativas

V	a	b	С	d	е
dist(b , <i>v</i>)	2	0	7	-2	4

Representando caminhos mínimos

A saída é similar à da busca em largura a partir de s:

- ▶ Para cada $\mathbf{v} \in \mathbf{V[G]}$, associamos um **PREDECESSOR** $\pi[\mathbf{v}]$.
- O vetor π induz uma ÁRVORE DE CAMINHOS
 MÍNIMOS com raiz em s.
- Um caminho de s a v na árvore é um caminho mínimo de s a v no grafo G.

Definição

Problema (Caminhos mínimos com mesma origem)

Entrada: Um grafo direcionado acíclico G = (V, E), com peso w nas arestas e um vértice de origem s.

Saída: Um vetor d com d[v] = dist(s,v) para $v \in V$ e um vetor π definindo uma **ÁRVORE DE CAMINHOS MÍNIMOS**.

Subestrutura ótima de caminhos mínimos

Teorema

Seja (G, w) um grafo direcionado **SEM CICLOS NEGATIVOS** e seja

$$P = (\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_k})$$

um caminho mínimo de v_1 a v_k . Então para quaisquer índices i, j com $1 \le i \le j \le k$, o subcaminho

$$P_{ij} = (\mathbf{v_i}, \mathbf{v_{i+1}}, \dots, \mathbf{v_j})$$

é um caminho mínimo de vi a vi.

Subestrutura ótima de caminhos mínimos

A subestrutura ótima NÃO vale se o grafo tiver CICLOS NEGATIVOS:

- (a, b, c) é um caminho mínimo de a a c com peso 1 + 1 = 2.
- Mas, (a,b) NÃO é um caminho mínimo de a a b.
- (a,c,b) é um caminho mínimo de a a b com peso 3-4=-1.

Algoritmos baseados em relaxação

Veremos algoritmos com as seguintes características:

- 1. Inicializam $d \in \pi$ com uma sub-rotina INITIALIZE-SINGLE-SOURCE.
- 2. Alteram d e π apenas com uma sub-rotina Relax.

Esses algoritmos mantêm algumas invariantes:

- Existe um caminho de s a v com peso d[v].
- Esse caminho pode ser recuperado por meio π .
- Assim, d[v] é sempre MAIOR OU IGUAL a dist(s,v).
- ▶ Queremos que no final valha d[v] = dist(s,v).

Inicialização

Algoritmo: Initialize-Single-Source(G, s)

1 para cada $v \in V[G]$

$$2 \quad | \quad d[v] \leftarrow \infty$$

$$\begin{array}{c|c}
2 & d[v] \leftarrow \infty \\
3 & \pi[v] \leftarrow \text{NIL}
\end{array}$$

4
$$d[s] \leftarrow 0$$

Relaxação

Tenta melhorar a estimativa d[v] examinando (u,v).

Algoritmo: Relax(u, v, w)

1 se
$$d[v] > d[u] + w(u, v)$$

2 | $d[v] \leftarrow d[u] + w(u, v)$
3 | $\pi[v] \leftarrow u$

Relaxação dos vizinhos

Em cada iteração o algoritmo seleciona um vértice \mathbf{u} e para cada vizinho \mathbf{v} de \mathbf{u} aplica $\text{Relax}(\mathbf{u}, \mathbf{v}, w)$.

Casos do problema de caminhos mínimos

Veremos três algoritmos baseados em relaxação para tipos de subcasos diferentes do Problema de caminhos mínimos:

- 1. APLICAÇÃO DE ORDENAÇÃO TOPOLÓGICA: G é acíclico:
- ALGORITMO DE DIJKSTRA: (G, w) não tem arestas de peso negativo.
- 3. ALGORITMO DE BELLMAN-FORD: (G, w) pode ter arestas de peso negativo, mas não contém ciclos negativos.

CAMINHOS MÍNIMOS EM GRAFOS ACÍCLICOS

Caminhos mínimos em grafos acíclicos

Problema

Entrada: Um grafo direcionado acíclico G = (V, E), uma função de peso w nas arestas e um vértice origem s.

Saída: Um vetor d com d[v] = dist(s,v) para $v \in V$ e um vetor π definindo uma **ÁRVORE DE CAMINHOS MÍNIMOS**.

Caminhos mínimos em grafos acíclicos

Exemplo

Algoritmo

Algoritmo: DAG-SHORTEST-PATHS(G, w, s)

- 1 ordene topologicamente os vértices de G
- 2 Initialize-Single-Source(G, s)
- 3 para cada u na ordem topológica
- para cada $v \in Adj[u]$
- 5 $\mathbb{L} \text{Relax}(u, v, w)$
- 6 devolva d, π

Linha(s)	Tempo total
1	O(V+E)
2	O(V)
3-5	O(V+E)

Complexidade de DAG-SHORTEST-PATHS: O(V + E).

Correção

- ► Há diversas estratégias para demonstrar que DAG-SHORTEST-PATHS esteja correto.
- Vamos demonstrar algumas propriedades que valem porque o algoritmo é baseado em relaxação.
- Essas propriedades também serão úteis para analisar os outros algoritmos depois.

Propriedade de algoritmos baseados em relaxação

Ao longo de um algoritmo baseado em relaxação sempre vale:

- Limite superior: Vale d[v] ≥ dist(s,v) e, tão logo d[v] alcança dist(s,v), nunca mais muda.
- Inexistência de caminho: Se não existe caminho de s a v, então $d[v] = \infty$.
- ▶ Subgrafo de predecessores: Se $d[v] < \infty$, então o subgrafo dos predecessores induzido por π é um caminho de peso d[v].
- Convergência: Se p é um caminho mínimo de s até v terminando com a aresta (u,v) e d[u] = dist(s,u), então ao relaxar (u,v), d[v] = dist(s,v), que nunca mais muda.
- Relaxamento de caminho: Se p = (v₀, v₁,..., v_k) é um caminho mínimo de s = v₀ a v_k e relaxamos as arestas de p na ordem (v₀, v₁), (v₁, v₂), ..., (v_{k-1}, v_k), então d[v_k] = dist(s, v_k). A propriedade vale mesmo se tivermos realizado quaisquer outras relaxações durante a execução.

Correção de DAG-SHORTEST-PATHS

- Seja v um vértice e suponha que $p = (v_0, v_1, ..., v_k)$ é um caminho mínimo de $s = v_0$ a $v = v_k$.
- Como v_0, v_1, \ldots, v_k aparecem em ordem na ordenação topológica, as arestas $(v_0, v_1), \ldots, (v_{k-1}, v_k)$ são relaxadas em ordem.
- Logo, pela propriedade do **Relaxamento de caminho**, o algoritmo computa corretamente d[v] = dist(s,v) para cada $v \in V$.

Também é fácil ver que π define uma árvore de caminhos mínimos. Por quê?

Perguntas

Vamos fazer alguns exercícios?

Exercício 1

Como se resolve o problema de encontrar um caminho de peso **MÁXIMO** de **s** a **t** em um grafo direcionado acíclico (G, w)?

Exercício 2

Como se resolve o problema do caminho mínimo de $\bf s$ a $\bf t$ em **TEMPO LINEAR** para um grafo direcionado em que todas as arestas têm o mesmo peso C>0?

Algoritmo de Dijkstra

Sobre o algoritmo

Veremos agora um algoritmo para caminhos mínimos em grafos que podem conter ciclos, mas **SEM ARESTAS DE PESOS NEGATIVO**.

O algoritmo também é BASEADO EM RELAXAÇÃO.

Edsger Wybe Dijkstra (11/05/1930 - 06/08/2002)

Principais áreas de atuação:

- Algoritmos em grafos.
- Programação concorrente e distribuída.
- Sistemas operacionais.
- Compiladores e linguagens de programação.

Publicação

- 1957 M. Leyzorek, R.S. Gray, A.A. Johnson, W.C. Ladew, S.R. Meaker, R.M. Petry e R.N. Seitz. Investigation of model techniques First annual report 6 June 1956 1 July 1957 A study of model techniques for communication systems, Case Institute of Technology, Cleveland, Ohio.
- 1958 G.B. Dantzig. On the shortest route through a network, The RAND Corporation, Santa Monica, California.
- 1959 E.W. Dijkstra. A note on two problems in connexion with graphs, Numerische Mathematik.

Problema

Problema

Entrada: Um grafo direcionado G = (V, E), uma função de peso w nas arestas (sem arestas de peso negativo) e um vértice origem s.

Saída: Um vetor d com d[v] = dist(s,v) para $v \in V$ e um vetor π definindo uma **ÁRVORE DE CAMINHOS** MÍNIMOS.

O algoritmo

```
Algoritmo: DIJKSTRA(G, w, s)
```

```
1 INITIALIZE-SINGLE-SOURCE(G, s)
2 S \leftarrow \emptyset
3 Q \leftarrow V[G] enquanto Q \neq \emptyset
4 u \leftarrow \text{EXTRACT-MIN}(Q)
5 S \leftarrow S \cup \{u\}
6 para cada v \in Adj[u]
7 \text{RELAX}(u, v, w)
```

- 8 devolva d, π
 - O conjunto Q é implementado como uma fila de prioridade com chave d.
 - O conjunto S não é realmente necessário, mas simplifica a análise do algoritmo.

Exemplo

Correção do algoritmo

Precisamos provar que algoritmo está correto, temos que mostrar que, quando o algoritmo termina:

- 1. d[v] = dist(s,v) para todo $v \in V[G]$ e
- 2. π induz uma ÁRVORE DE CAMINHOS MÍNIMOS.

Observe que:

- DIJKSTRA é baseado em relaxação.
- Pela propriedade do **Subgrafo de predecessores**, sabemos que o vetor π induz uma árvore que testemunha d.
- Assim, basta mostrar que de fato d[v] = dist(s,v).

Invariante

Iremos mostrar que no no início de cada iteração da linha 4 no algoritmo DIJKSTRA, vale d[x] = dist(s,x) para cada $x \in S$.

- Inicialização. No início, S=∅, então a invariante vale trivialmente.
- Manutenção.
 - Suponha que a invariante vale para S no início da iteração.
 - Nessa iteração, DIJKSTRA escolhe um vértice u com menor d[u] em Q e o adiciona a S.
 - ▶ Queremos mostrar que a invariante vale para $S \cup \{u\}$.
 - ▶ Basta verificar que neste instante $d[\mathbf{u}] = \text{dist}(\mathbf{s}, \mathbf{u})$.

Demonstração

Sejam:

- P um caminho mínimo de s a u (i.e., com peso dist(s,u)).
- y o primeiro vértice de P que não pertence a S
- x o vértice em P que precede y.

Suponha que $d[\mathbf{u}] > \operatorname{dist}(\mathbf{s},\mathbf{u})$:

Pela hipótese de indução, d[x] = dist(s,x) pois $x \in S$. Logo,

$$\begin{array}{ll} d[\mathbf{y}] & \leq & d[\mathbf{x}] + w(\mathbf{x}, \mathbf{y}) \text{ (pois relaxamos } (\mathbf{x}, \mathbf{y})) \\ & = & \operatorname{dist}(\mathbf{s}, \mathbf{x}) + w(\mathbf{x}, \mathbf{y}) \\ & \leq & w(P) = \operatorname{dist}(\mathbf{s}, \mathbf{u}) < d[\mathbf{u}]. \end{array}$$

- ▶ Mas, d[y] < d[u] contraria a escolha de u.
- Portanto, $d[\mathbf{u}] \leq \operatorname{dist}(\mathbf{s}, \mathbf{u})$.

Concluindo que $d[\mathbf{u}] = \text{dist}(\mathbf{s}, \mathbf{u})$ (propriedade de **Limite superior**).

Demonstração

Para terminar a demonstração, observe que:

- ▶ Após a última iteração, S é o conjunto dos vértices atingíveis por s.
- Por **Inexistência de caminho**, se um vértice v não é atingível, então $d[v] = \infty$.
- ▶ Portanto, para todo $\mathbf{v} \in \mathbf{V}$, vale $d[\mathbf{v}] = \operatorname{dist}(\mathbf{s}, \mathbf{v})$.

DIJKSTRA precisa de arestas com peso não negativo

Na demonstração, supomos que **NÃO HÁ ARESTAS NEGATIVAS**

- ▶ Se a hipótese não valer, o algoritmo de Dijkstra pode falhar.
- Encontre um grafo com arestas negativas para o qual o algoritmo de Dijkstra NÃO funciona (exercício).
- Existe um exemplo com 4 vértices, com apenas uma aresta negativa e sem ciclos de peso negativo.

Complexidade de tempo

Depende de como a fila de prioridade Q é implementada:

▶ Operações Insert, Extract-Min, Decrease-Key.

Observe que:

- ▶ Os passos Initialize-Single-Source e $Q \leftarrow V[G]$ escondem chamadas a Insert.
- ▶ RELAX esconde chamada a DECREASE-KEY.

Linha(s)	Tempo total		
1–3	$ V $ chamadas a ${ m INSERT}$		
5	$ V $ chamadas a $\operatorname{Extract-Min}$		
8	E chamadas a Decrease-Key		

Complexidade de Dijkstra:

 $O(|V| \times \text{Insert} + |V| \times \text{Extract-Min} + |E| \times \text{Decrease-Key}).$

Complexidade de tempo

Total: $O(|V| \times INSERT + |V| \times EXTRACT-MIN + |E| \times DECREASE-KEY)$

Tipo de fila	Insert	EXTRACT-MIN	Decrease-Key	TOTAL
Vetor	O(1)	<i>O</i> (<i>V</i>)	O(1)	$O(V^2)$
Min-Heap	$O(\log V)$	$O(\log V)$	$O(\log V)$	$O((V+E)\log V)$
Fibonacci	O(1)	$O(\log V)$	O(1)	$O(V \log V + E)$

Algoritmo de Bellman-Ford

Arestas vs ciclos de peso negativo

- O algoritmo de Dijkstra resolve o Problema dos Caminhos Mínimos quando (G, w) NÃO TEM ARESTAS DE PESO NEGATIVO.
- Puando (G, w) possui arestas negativas, o algoritmo de Dijkstra não funciona.
- Uma das dificuldades com arestas negativas é a possível existência de CICLOS DE PESO NEGATIVO ou simplesmente ciclos negativos.

Ciclos negativos — uma dificuldade

- ► O Problema dos Caminhos Mínimos para instâncias com ciclos negativos é NP-**DIFÍCIL**.
 - Acreditamos que **NÃO** existem algoritmos eficientes para resolver problemas NP-difíceis.
 - Assim, vamos nos restringir ao Problema de Caminhos Mínimos SEM CICLOS NEGATIVOS.
- ► Um algoritmo que resolve o problema restrito é o algoritmo de Bellman-Ford, que também é baseado em relaxação.

Definição do problema

Problema

Entrada: Um grafo direcionado G = (V, E), uma função de peso w nas arestas e um vértice origem s.

Saída: FALSE, se existe um ciclo negativo atingível a partir de s. Caso contrário, além de TRUE, também devolve um vetor d com d[v] = dist(s,v) para $v \in V$ e um vetor π definindo uma **ÁRVORE DE CAMINHOS MÍNIMOS**.

Ideia do algoritmo de Bellman-Ford

Relaxamento de caminho: Para QUALQUER caminho mínimo (v_0, v_1, \ldots, v_k) , queremos relaxar (v_0, v_1) , (v_1, v_2) , \ldots , (v_{k-1}, v_k) em ordem.

- 1. Executamos RELAX para todas as arestas: $\Rightarrow (v_0, v_1)$ relaxada.
- 2. Executamos novamente $\ensuremath{\mathrm{RELAX}}$ para todas as arestas:
 - \Rightarrow (v_0, v_1), (v_1, v_2) relaxadas em ordem.
- 3. Executamos novamente Relax para todas as arestas:
 - \Rightarrow $(v_0, v_1), (v_1, v_2), (v_2, v_3)$ relaxadas em ordem.
- Repetimos esse passo até |V| − 1 vezes. Por quê?
 ⇒ (v₀, v₁), (v₁, v₂), ..., (v_{k-1}, v_k) relaxadas em ordem.

Podemos verificar se o grafo contém **CICLOS NEGATIVOS** executando mais uma vez:

► Se algum valor d[v] diminuir, então há ciclo negativo.

Exemplo

a b c d e d 180 0 ∞ ∞ ∞ ∞

Ordem: (a,c),(a,d),(a,e),(c,d),(c,e),(d,b),(d,e),(e,a),(b,a),(b,c).

7

O algoritmo de Bellman-Ford

```
Algoritmo: Bellman-Ford(G, w, s)
```

```
1 INITIALIZE-SINGLE-SOURCE (G, s)
2 para i \leftarrow 1 até |V[G]| - 1
```

3 para cada
$$(u, v) \in E[G]$$

4
$$\mathbb{L}$$
 RELAX (u, v, w)

5 para cada $(u, v) \in E[G]$

6 se
$$d[v] > d[u] + w(u, v)$$

devolva FALSE

8 devolva TRUE, d, π

Complexidade de tempo: O(VE)

Teorema

BELLMAN-FORD devolve:

- FALSE, se existe um ciclo negativo atingível a partir de s.
- ► TRUE, caso contrário; neste caso devolve também:
 - ▶ Um vetor d com d[v] = dist(s,v) para $v \in V$.
 - Um vetor π definindo uma ÁRVORE DE CAMINHOS MÍNIMOS.

Primeiro, suponha que não há ciclos negativos atingíveis por s.

Considere $\mathbf{v} \in \mathbf{V[G]}$ e os valores de d e π após o primeiro laço:

- ▶ Se v não é atingível, $d[v] = \infty$ (por Inexistência de caminho).
- ► Senão, existe caminho mínimo $(v_0, v_1, ..., v_k)$ de $s = v_0$ a $v = v_k$.
- ► Como $k \le |V| 1$, então (v_0, v_1) , (v_1, v_2) , ..., (v_{k-1}, v_k) foram relaxadas **NESTA ORDEM**.
- Por Relaxamento de caminho, d[v] = dist(s,v).
- Também, por **Sugrafo de predecessores**: π induz um caminho mínimo de s a v.

Também temos que mostrar que nesse caso Bellman-Ford devolve TRUE.

- Considere d imediatamente após o primeiro laço.
- Nesse instante, d[v] = dist(s,v) para todo vértice v.
- Por **Convergência**, sabemos que *d* nunca mais muda.
- Portanto, o teste da linha 6 falha sempre.
- Concluindo que o algoritmo devolve TRUE.

Suponha agora que (G, w) contenha **CICLO NEGATIVO** alcançável por s.

Queremos mostrar que o algoritmo devolve FALSE:

► Seja $C = (\mathbf{v_0}, \mathbf{v_1}, \dots, \mathbf{v_k} = \mathbf{v_0})$ um ciclo tal que

$$w(C) = \sum_{i=1}^k w(\mathbf{v_{i-1}}, \mathbf{v_i}) < 0.$$

- Suponha, por contradição que o algoritmo devolve TRUE.
- ► Como relaxamos cada aresta (v_{i-1}, v_i):

$$d[\mathbf{v_i}] \le d[\mathbf{v_{i-1}}] + w(\mathbf{v_{i-1}}, \mathbf{v_i}).$$

Somando as desigualdades anteriores para cada aresta do ciclo, temos:

$$\sum_{i=1}^k d[\mathbf{v}_i] \leq \sum_{i=1}^k (d[\mathbf{v}_{i-1}] + w(\mathbf{v}_{i-1}, \mathbf{v}_i))$$

$$= \sum_{i=1}^k d[\mathbf{v}_{i-1}] + \sum_{i=1}^k w(\mathbf{v}_{i-1}, \mathbf{v}_i).$$

- ► Como $\mathbf{v_0} = \mathbf{v_k}$, temos que $\sum_{i=1}^k d[\mathbf{v_i}] = \sum_{i=1}^k d[\mathbf{v_{i-1}}]$.
- ► Logo, $0 \le \sum_{i=1}^k w(\mathbf{v_{i-1}}, \mathbf{v_i}) = w(C)$.
- ► Mas isso é uma contradição, pois C é ciclo negativo.
- Concluindo que, nesse caso, o algoritmo devolve FALSE.

Caminhos mínimos

 $\mathsf{MO417}$ - Complexidade de Algoritmos I

Santiago Valdés Ravelo https://ic.unicamp.br/~santiago/ ravelo@unicamp.br

