Амплитудная дифракционная решётка. Работа 4.4.1

Каспаров Николай, Б01-304

March 1, 2025

Цель работы: исследовать зависимость видности интерференционной картины от разности хода интерферирующих лучей и от их поляризации.

В работе используются: Не-Ne лазер, интерферометр Майкельсона с подвижным зеркалом, фотодиод с усилителем, осциллограф C1-76, поляроид, линейка.

Теория

Гелий-неоновый лазер

Лазер представляет собой интерферометр Φ абри-Перо – газовую трубку с двумя параллельными зеркалами. Для лазера длиной L резонансные частоты удовлетворяют условию

$$f_m = \frac{c}{\lambda_m} = \frac{mc}{2L}. (1)$$

Условие генерации может выполняться для нескольких колебаний с частотами f_m , расположенными в диапазоне генерации $2\Delta F$. При этом генерируются сразу несколько волн – modos, межмодовое расстояние которых определяется формулой

$$\Delta \nu = f_{m+1} - f_m = \frac{c}{2L}.\tag{2}$$

Число мод можно оценить по соотношению

$$N \approx 1 + \frac{2\Delta F}{\Delta \nu}.\tag{3}$$

Видимость

Видимость интерференционной картины определяется выражением

$$\gamma = \frac{I_{max} - I_{min}}{I_{max} + I_{min}},\tag{4}$$

где I_{max} и I_{min} – максимальная и минимальная интенсивности вблизи выбранной точки. Видимость можно представить в виде произведения трёх функций, зависящих от параметров установки:

$$\gamma = \gamma_1 \gamma_2 \gamma_2$$
.

Функция γ_1 учитывает соотношение интенсивностей интерферирующих лучей:

$$\gamma_1 = \frac{2\sqrt{\delta}}{1+\delta},\tag{5}$$

где $\delta = \frac{B_m^2}{A_m^2}$, а A_m и B_m – амплитуды лучей, определяемые устройством разделения света. Функция γ_2 описывает влияние разности хода и спектрального состава излучения:

$$\gamma_2 = \frac{\sum_n A_n^2 \cos \frac{2\pi \Delta \nu n l}{c}}{\sum_n A_n^2},$$

где l — разность хода, $\Delta \nu$ — межмодовое расстояние, A_n^2 — интенсивности мод. В непрерывном пределе для гауссовой линии излучения с полушириной ΔF получаем

$$\gamma_2 = e^{-\left(\frac{\pi\Delta Fl}{c}\right)^2},$$

при этом полуширина зависимости определяется выражением

$$l_{1/2} = \frac{c}{\pi \Lambda F} \sqrt{\ln 2} \approx \frac{0.26c}{\Lambda F}.$$
 (6)

Функция γ_3 учитывает разность в поляризации лучей:

$$\gamma_3 = |\cos \alpha|,\tag{7}$$

где α – угол между плоскостями поляризаций.

1 Ход работы

1.1 Измерение видности при нулевой разности хода ($V_2 = 1$)

При установке нулевой разности хода (при пледе L=16 см) измеряются величины h_1, h_2, h_3 и h_4 на экране осциллографа при изменении угла поляризации от $\beta=0^\circ$ до $\beta=180^\circ$. Результаты приведены в таблице 1.

Угол (°)	0	30	50	70	90	110	130	150	180
h_1	1.0	1.5	1.5	1.6	1.2	0.7	0.5	1.1	1.2
h_2	1.6	1.6	1.7	3.4	3.2	3.2	3.2	3.2	2.6
h_3	0.9	1.0	1.4	3.4	3.5	2.8	3.2	2.7	1.0
h_4	4.2	5.1	4.8	6.2	5.7	5.1	4.4	6.0	4.7

Таблица 1: Измерение видности при нулевой разности хода

На основе измеренных значений вычисляется \mathcal{V}_3 для каждого случая, после чего строится график зависимости от β и проводится сравнение с теоретическими зависимостями $\mathcal{V}_3 = \cos \beta$ и $\mathcal{V}_3 = \cos^2 \beta$. Из-за высокой погрешности измерений график $\mathcal{V}_3(\beta)$, по-видимому, ближе к зависимости $\cos \beta$, что указывает на линейную поляризацию излучения.

Рисунок 2: Зависимость $\mathcal{V}_3(\beta)$

1.2 Измерение видности при постоянном угле поляризации

При установке оптимального угла поляризации, обеспечивающего максимальную видность, перемещается блок $_2$, изменяя разность хода x. Аналогичным образом измеряются величины h_1 , h_2 , h_3 и h_4 на экране осциллографа. Результаты фиксируются в таблице, а затем строится график зависимости \mathcal{V}_2 от L. Параметры δ , \mathcal{V} и \mathcal{V}_1 вычисляются по приведённым выше формулам.

Рисунок 3: Зависимость $\mathcal{V}_3(\beta)$

Таблица 2: Измерение видности при постоянном угле поляризации

L (см)	h_1	h_2	h_3	h_4	\mathcal{V}	δ	\mathcal{V}_1	\mathcal{V}_2
89	0.8	0.6	1	2	0.33	1.33	0.99	0.34
78.5	1	1.2	0.9	3.6	0.60	0.83	1.00	0.60
84	0.8	1	0.8	3	0.58	0.80	0.99	0.58
82	0.8	1	0.6	3	0.67	0.80	0.99	0.67
81	0.8	1.2	0.7	3.5	0.67	0.67	0.98	0.68
80	0.8	1.4	0.8	3.8	0.65	0.57	0.96	0.68
79	0.8	1.2	0.7	3.2	0.64	0.67	0.98	0.65
78	0.8	0.8	0.6	2.8	0.65	1.00	1.00	0.65
76	0.8	0.6	0.6	2.4	0.60	1.33	0.99	0.61
73	0.4	0.3	0.4	1.2	0.50	1.33	0.99	0.51
70	0.4	0.5	0.7	1.4	0.33	0.80	0.99	0.34
65	0.4	0.4	0.8	1	0.11	1.00	1.00	0.11
58	1	1	1.8	2.1	0.08	1.00	1.00	0.08
51	1	1.4	2	2.9	0.18	0.71	0.99	0.19
45	1	1.4	1.8	3	0.25	0.71	0.99	0.25
40	1	0.7	1.6	1.8	0.06	1.43	0.98	0.06
35	1	1.3	2	2.2	0.05	0.77	0.99	0.05
30	1	1	1.8	2.4	0.14	1.00	1.00	0.14
25	1	0.9	1.2	2.6	0.37	1.11	1.00	0.37
20	1	1	0.7	2.2	0.52	1.00	1.00	0.52
18	1	0.2	0.6	1.8	0.50	5.00	0.75	0.67
17	1	0.4	0.4	1.2	0.50	2.50	0.90	0.55
16	1	0.4	0.5	1.2	0.41	2.50	0.90	0.46
15	1	0.2	0.5	1.9	0.58	5.00	0.75	0.78
13	1	0.3	0.6	1.2	0.33	3.33	0.84	0.40
10	1	0.4	0.7	1	0.18	2.50	0.90	0.20
8	1	0.2	0.8	1.6	0.33	5.00	0.75	0.45

Построение графика зависимости \mathcal{V}_2 от L позволяет сопоставить экспериментальные данные с теоретическими моделями.

Рисунок 4: Зависимость V_2 от L

Для определения конфигурации лазера экспериментальные данные сопоставляются с теоретическими зависимостями.

Рисунок 5: Зависимость \mathcal{V}_2 от L

Согласно теории, разность

$$\Delta_2 - \Delta_1 = 2L_0,$$

где L_0 — расстояние между зеркалами оптического резонатора лазера. Таким образом,

$$L_0 = (66 \pm 4) \text{ cm}.$$

Межмодовое расстояние определяется как

$$\Delta \nu_m = \frac{c}{2L} = (2.27 \pm 0.14) \cdot 10^8 \, \, \text{Гц},$$

а полуширина кривой из графика:

$$l_{1/2} = (10 \pm 3) \text{ cm},$$

что соответствует разности хода

$$\Delta_{l1/2}=2l_{1/2}=(20\pm6)~{
m cm}.$$

Наконец, вычислен диапазон частот генерации мод:

$$\Delta F = (9.0 \pm 2.7) \cdot 10^8 \text{ } \Gamma \text{H},$$

а число генерируемых лазером мод:

$$n = (5 \pm 2).$$

2 Вывод

Проведённый эксперимент позволил определить спектральные характеристики амплитудной дифракционной решётки, а также оценить угловую дисперсию и разрешающую способность лазерного прибора. В результате были получены следующие значения: расстояние между зеркалами резонатора $L_0=(66\pm4)$ см, межмодовое расстояние $\Delta\nu_m=(2.27\pm0.14)\cdot 10^8$ Гц, диапазон частот генерации мод $\Delta F=(9.0\pm2.7)\cdot 10^8$ Гц и число генерируемых мод $n=(5\pm2)$. Анализ зависимости видности интерференционной картины от разности хода и поляризации подтвердил, что лазерное излучение имеет линейную поляризацию. Экспериментальные результаты согласуются с теоретическими расчётами, что свидетельствует о корректности используемых моделей, а дальнейшее улучшение точности измерений позволит уточнить полученные значения.