

SECOND SEMESTER 2018-2019

Course Handout (Part - II) Date: 07-01-2019

In addition to Part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : CHEM F327

Course Title : Electrochemistry: Fundamentals and Applications

Instructor-in-Charge : Balaji Gopalan

Scope and Objective of the Course:

The course aims at covering fundamental topics in electrochemistry, with broad classification of the entire subject into the domains viz., electrode processes, electron-transfer kinetics, mass transfer, voltammetry, impedance etc. Starting with the fundamental principles and their applications, the ultimate purpose of this course is to provide a comprehensive survey of different areas e.g. Photovoltaics, Electro-catalysis, Electrosensors, Corrosion etc. for industry and academic research in the field of electrochemistry. Different electrochemical instruments will be covered to provide structural information about the electrode and surface microscopic methods.

Textbooks:

1. A. J. Bard and L. R. Faulkner 'Electrochemical Methods: Fundamentals and Applications', 2nd Edition, (John Wiley & Sons, Inc., Copyright 2001).

Reference books

- 1. Bard, A. J., Ed., (from Vol. 19 with I. Rubinstein), "Electroanalytical Chemistry," Marcel Dekker, New York, 1966-1998.
- 2. Bockris, J. O'M., and B. E. Conway, et al., Eds., "Modern Aspects of Electrochemistry," Plenum, New York, 1954-1997.

Course Plan:

Lec ture No.	Learning objectives	Topics to be covered	Learning Outcomes	Chapter in the Text Book
1-4	Introduction and Overview of Electrode Processes	Electrochemical cells and reactions, working, reference, and counter electrode, electrolyte, overpotential, Faradaic and nonfaradaic Processes, capacitance, electrical double layer, and double-layer capacitance	Apply oxidation- reduction concepts to electron transfer process in electrochemical systems. Relate electrode reactions with electrode potentials and vice versa.	Ch: 1, p.2-17

5-8	Flactrochomical	Drimary and secondary collegyarious	Demonstrate reactions	Ch: 1 n 10 20
j 5-δ	Electrochemical Cells	Primary and secondary cells, various electrochemical experiment, factors affecting electrode reaction, cell resistance, mass transfer, coupled reversible and irreversible reactions	Demonstrate reactions taking place in different electrochemical cells, analyze factors affecting the emf of the cells.	Ch: 1, p.18-30, p.36-38
	D-44'-1 J			Ch. 2 - 44 52
9-	Potentials and Thermodynamics of Cells	Electrochemical thermodynamics, cell emf, formal potentials, electrochemical potential, liquid junction potentials, conductance, mobility, junction of two immiscible liquids, and selective electrodes	Apply thermodynamic principles to calculate cell emf and liquid junction potentials	Ch: 2, p.44-53, p.60-68, p.73- 79
12- 15	Kinetics of Electrode Reactions	The Arrhenius equation and potential energy surfaces, transition state theory, electrode reactions, kinetics, Butler-Volmer model, implications of the Butler-Volmer model, and Tafel plots	Explain factor affectingh: electrode kinetics, demonstrate electrode kinetics with Butler-Volmer analytical model	CH:3, p.88-100, p.103
16- 18	Multistep Mechanism	Electron transfer in rate-determining step, quasireversible and irreversible multistep process, charge transfer, and Marcus theory	Interpret fundamentals of electron transfer process using Marcus theory	Ch: 3, p.107- 124
19- 21	Mass Transfer by Migration & Diffusion	General mass transfer equation, migration, diffusion, and Fick's laws of diffusion	Outline electrode kinetics by mass transfer and diffusion	Ch: 4, p.137- 139, p.146-150
22- 25	Basic Potential Step Methods	Overview, detection, potential step under diffusion control, idea of ultramicroelectrodes (UME)	Select electrodes for different measurements	Ch: 5, p.156- 161, p.168-170, p.207- 217
26- 28	Potential Sweep Methods	Introduction, reversible system, peak current and potential, irreversible system, quasireversible system, cyclic voltammetry (CV), and multicomponent system	Illustrate CV technique, Analyze electrode process using voltammetry	Ch: 6, p.226- 231, p.234-240, p.243 (partly self-study)
29- 30	Concepts of Impedance	Various types, Faradaic impedance, kinetic parameters, electrochemical impedance, cyclic ac voltammetry, instrument for impedance	Interpret effects due to Faradaic impedance	Ch: 10, p.368- 370, 377, 398, 406
31- 32	Instrumentation:	Potentiostats, Scanning tunneling microscopy (STM), scanning electrochemical microscopy (SECM), its applications	Explain basic principle or operating STM, SECM, AFM	Ch: 15 & 16, p.640 (partly ss) p.659-676
33- 37	Applications: Photoelectrochem istry and ECL	Photoelectrochemistry, Electron transfer at semiconductors, semiconductor electrodes, photoeffects, photovoltaic cells	Explain basic principles of photo-electrochemistry and photovoltaic cells	Ch: 18, p.736- 743, p.745-760, Class notes, self-study
38- 40	Applications: medical device, electroplating and corrosion	Applications of electrochemistry in medical technology and diagnostic devices, electroplating and prevention to corrosion	Outline application of electrochemical methods for industrial applications	Class notes, self-study

Evaluation Scheme:

Component	Duration	Weightage (%)	Date & Time	Nature of Component
Mid-Semester Test	1.5hr	30	11/3 9.00 - 10.30AM	Closed Book
Comprehensive Exam	3hr	45	01/05 FN	Closed Book
Quiz*	continuous	25		Open Book

There will be a total of **15 surprise quizzes**. Best TEN will be considered for evaluation purposes.

Chamber Consultation Hour: will be announced latter

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Notices: Notices, if any, concerning the course will be displayed on CMS.

Make-up Policy: Make up would be considered only for genuine reasons.

Instructor-In charge

Balaji Gopalan

