T-test

Chao Cheng

August 2, 2022

1 Basic knowledge

 $\phi(x)$ and $\Phi(x)$ are pdf and cdf of standard normal distribution, respectively. We use Z to represent a random variable that follows standard normal distribution and z_{α} the lower α quantile of standard normal distribution. Therefore

$$P(Z \le z_{\alpha}) = \Phi(z_{\alpha}) = \alpha.$$

Theorem 1. Let x_1, \dots, x_n be a random sample from a population with mean μ and variance $\sigma^2 < \infty$. Then

- 1. $E\bar{x} = \mu$.
- 2. $\operatorname{Var}\bar{x} = \sigma^2/n$.

3.
$$ES^2 = \sigma^2$$
, where $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$.

Theorem 2. Let x_1, \dots, x_n be a random sample from $N(\mu, \sigma^2)$. Then

- 1. $\bar{X} \sim N(\mu, \sigma^2/n)$.
- 2. \bar{X} is independent of S^2 .
- 3. $(n-1) S^2/\sigma^2$ follows a chi-squared distribution with n-1 degree of freedom.

2 One-sample test

Consider a random sample x_1, \dots, x_n from $N(\mu, \sigma^2)$. The likelihood is

$$f(x_1, \dots, x_n) = \prod_{i=1}^n (2\pi\sigma^2)^{-1/2} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right)$$
$$= (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{\sum_{i=1}^n (x_i - \mu)^2}{2\sigma^2}\right).$$

We propose the test

$$H_0: \mu = \mu_0 \quad \mathbf{v.s} \quad H_1: \mu \neq \mu_0$$

2.1 variance known

Construct LRT

$$LR = \frac{\max_{\mu \in H_0} f(x_1, \dots, x_n | \mu)}{\max_{\mu \in H_0 \cup H_1} f(x_1, \dots, x_n | \mu)} = \frac{f(x_1, \dots, x_n | \mu = \mu_0)}{f(x_1, \dots, x_n | \mu = \bar{x})} = \exp\left(-\frac{(\bar{x} - \mu_0)^2}{2\sigma^2/n}\right)$$

Therefore rejecting H_0 when LR is smaller than some constant C is equivalent to rejecting H_0 when $|\bar{x} - \mu_0|$ is larger than some other constant C. Hence

Reject Region:
$$\{\bar{x}: |\bar{x}-\mu_0| > C\}$$

2.1.1 Decide C from α

From definition of α we know that C in the reject region is chosen such that

$$P(|\bar{x} - \mu_0| > C|H_0 \text{ is true }) \leq \alpha.$$

But to fully utilize the test, we choose to use equal sign instead of \leq . Therefore

$$P(|\bar{x} - \mu_0| > C|\mu = \mu_0) = \alpha.$$

Note that $\bar{x} \sim N(\mu, \sigma^2/n)$. Then under the condition $\mu = \mu_0$,

$$\frac{\bar{x} - \mu_0}{\sqrt{\sigma^2/n}} \sim N(0, 1).$$

Therefore we propose the reject region for H_0 being

$$\left| \frac{\bar{x} - \mu_0}{\sqrt{\sigma^2/n}} \right| \ge z_{1-\alpha/2}.$$

2.1.2 Power at given underlying μ

The power (the probability to reject H_0 , when H_1 is true) of the proposed test procedure for any given underlying $\mu \neq \mu_0$ is computed as

$$P\left(\left|\frac{\bar{x}-\mu_0}{\sqrt{\sigma^2/n}}\right| \ge z_{1-\alpha/2}\right)$$

$$=P\left(\frac{\bar{x}-\mu_0}{\sqrt{\sigma^2/n}} \le z_{\alpha/2}\right) + P\left(\frac{\bar{x}-\mu_0}{\sqrt{\sigma^2/n}} \ge z_{1-\alpha/2}\right)$$

$$=P\left(\frac{\bar{x}-\mu}{\sqrt{\sigma^2/n}} \le z_{\alpha/2} + \frac{\mu_0-\mu}{\sqrt{\sigma^2/n}}\right) + P\left(\frac{\bar{x}-\mu}{\sqrt{\sigma^2/n}} \ge z_{1-\alpha/2} + \frac{\mu_0-\mu}{\sqrt{\sigma^2/n}}\right)$$

$$=P\left(Z \le z_{\alpha/2} + \frac{\mu_0-\mu}{\sqrt{\sigma^2/n}}\right) + P\left(Z \ge z_{1-\alpha/2} + \frac{\mu_0-\mu}{\sqrt{\sigma^2/n}}\right)$$

Here we use the fact that $\frac{\bar{x}-\mu}{\sqrt{\sigma^2/n}} \sim N\left(0,1\right)$

- 2.2 variance unknown
- 3 Two sample test
- 3.1 Two-sample, variance known
- 3.2 Two-sample, variance unknown but equal
- 3.3 Two-sample, variance unknown and unequal