Formale Grundlagen der Informatik II 6. Übungsblatt

Fachbereich Mathematik Prof. Dr. Martin Otto SoSe 2015 8. Juli 2015

Julian Bitterlich, Felix Canavoi, Kord Eickmeyer, Daniel Günzel

Aufgabe G1 (Quiz)

(i) Gegeben seien die folgenden ungerichteten Graphen G = (V, E):

In welchen der obigen Graphen gelten welche der nachfolgenden FO-Sätze?

- (a) $\forall x \forall y (\neg (x = y) \leftrightarrow Exy)$
- (b) $\exists x \exists y \exists z (\neg(x=y) \land \neg(y=z) \land \neg(x=z) \land Exy \land Eyz \land \neg Ezx)$
- (c) $\exists x \exists y \neg (x = y) \land \forall x \forall y (\neg (x = y) \rightarrow \neg Exy)$
- (d) $\exists x \forall y (x = y)$
- (ii) Welche der folgenden Aussagen sind richtig?
 - (a) Für jede im Sequenzkalkül \mathcal{SK} ableitbare Sequenz $\Gamma \vdash \Delta$ gilt $\Gamma \models \delta$ für jedes $\delta \in \Delta$.
 - (b) Für jede im Sequenzkalkül \mathcal{SK} ableitbare Sequenz $\Gamma \vdash \Delta$ gilt $\Gamma \models \delta$ für ein $\delta \in \Delta$.
 - (c) Für jede im Sequenzkalkül \mathcal{SK} ableitbare Sequenz $\Gamma \vdash \Delta$ gilt $\Gamma \models \bigvee \Delta$.
 - (d) Falls $\Phi \models \varphi$ für eine Satzmenge $\Phi \subseteq \mathrm{FO}_0(S)$ und eine Formel $\varphi \in \mathrm{FO}_0(S)$ gilt, dann ist die Sequenz $\Gamma \vdash \varphi$ für jedes endliche $\Gamma \subseteq \Phi$ in \mathcal{SK} ableitbar.
 - (e) Falls $\Phi \vdash \varphi$ in \mathcal{SK} für eine Satzmenge $\Phi \subseteq FO_0(S)$ und einen Satz $\varphi \in FO_0(S)$ ableitbar ist, dann gilt $\Phi \models \varphi$.

Aufgabe G2 (Resolutionskalkül)

Im Folgenden seien Q, R und S Relationssymbole und f ein Funktionssymbol passender Stelligkeit.

(i) Wir betrachten die Formelmenge $\Phi_1 := \{\varphi_1, \varphi_2, \varphi_3, \varphi_4\}$, wobei

$$\begin{split} \varphi_1 &:= \forall x \forall y \forall z (Rxy \lor Rxz \lor Ryz), \\ \varphi_2 &:= \forall x \forall y \forall z ((Rxy \land Ryz) \to Rxz), \\ \varphi_3 &:= \forall x \forall y (Rxy \to Rfxfy) \text{ und} \\ \varphi_4 &:= \forall x \neg Rxf fx. \end{split}$$

Machen Sie sich klar, dass und warum Φ_1 unerfüllbar ist. Weisen Sie dann ausgehend von Ihren Überlegungen mittels Grundinstanzen-Resolution formal nach, dass Φ_1 unerfüllbar ist.

(ii) Zeigen Sie, dass die folgende Formelmenge unerfüllbar ist:

$$\Phi_2 := \{ \forall x \forall y ((Qy \land Rxy) \to Sy), \forall x \forall y ((Sx \land Rxy) \to \neg Qy), \forall x \exists y (Rxy \land Qy) \}$$

Aufgabe G3 (Sequenzenkalkül)

Leiten Sie die folgenden Sequenzen in SK^+ ab.

- (a) $\forall x \forall y f x = f y \vdash \exists x f x = x$
- (b) $\forall x \forall y \forall z ((Rxy \land Ryz) \rightarrow Rxz) \land \forall x \neg Rxx \vdash \forall x \forall y (Rxy \rightarrow \neg Ryx)$

Aufgabe G4 (Horn-Sätze)

Ein (gleichheitsfreier) nicht negativer universeller Horn-Satz ist ein Satz der Form

$$\forall x_1 \cdots \forall x_n [(\alpha_1 \wedge \cdots \wedge \alpha_m) \to \beta],$$

wobei $\alpha_1, \ldots, \alpha_m, \beta$ (gleichheitsfreie) atomare Formeln sind. Dabei ist m = 0, also ein Satz der Form $\forall x_1 \cdots \forall x_n \beta$, auch erlaubt; β muss jedoch vorkommen. Ein (gleichheitsfreier) negativer universeller Horn-Satz hat die Gestalt

$$\forall x_1 \cdots \forall x_n \neg (\alpha_1 \wedge \cdots \wedge \alpha_m)$$

mit (gleichheitsfreien) Atomen $\alpha_1, \ldots, \alpha_m$.

- (i) Wir betrachten eine Datenbank mit genealogischen Daten. Diese modellieren wir als Struktur $\mathcal{D}=(P,V,M)$, wobei der Träger P die Menge aller gespeicherten Personen ist und wir binäre Relationen V und M haben für die Beziehungen "ist Vater von" und "ist Mutter von". Erstellen Sie eine Menge Φ von nicht negativen universellen Horn-Sätzen über der Signatur $S=\{V,M,G\}$, so dass in der Erweiterung (\mathcal{D},G) von \mathcal{D} , welche minimal für Φ ist, die Relation G die Bedeutung "haben einen gemeinsamen Vorfahren" hat.
- (ii) Beweisen Sie, dass jede Menge Φ von nicht negativen universellen Horn-Sätzen ein Herbrand-Modell $\mathcal{H} = (\mathcal{T}_0(S), (R)_{R \in S})$ besitzt, welches minimal für Φ in dem Sinne ist, dass für jedes Modell $\mathcal{H}' = (\mathcal{T}_0(S), (R')_{R \in S})$ gilt

$$R_1 \subseteq R'_1, \ldots, R_n \subseteq R'_n$$
.

(iii) Finden Sie das minimale Herbrand-Modell der Sätze

$$Pc$$
, $\forall x(Px \to Pfxx)$.

(iv) (Extra:) Sei Φ_+ eine Menge nicht negativer universeller Horn-Sätze und Φ_- eine Menge negativer universeller Horn-Sätze. Zeigen Sie, dass die Vereinigung $\Phi_+ \cup \Phi_-$ genau dann erfüllbar ist, wenn jede Formel aus Φ_- im minimalen Herbrand-Modell von Φ_+ gilt.