자연어처리

hreeee@yonsei.ac.kr 강사 백혜림

이수업에서 다루고자하는 것

자연어처리 8

- 언어 모형의 개념
- 형태소 분석/품사 태깅
- 언어 리소스의 종류와 구축 방법
- 구문 분석/감성 분석
- 모호성과 해결방법

자연어 처리기술의이해 8

- Question & Answering 시스템
- 텍스트 자동 분류 및 텍스트 자동 생성
- 소셜 미디어 분석
- 대화형 에이전트/· 기계번역

자연어처리 시스템의 이해 8

- 딥러닝/리커런트 뉴럴 네트워크
- seq2seq

기계학습과 자연어처리 시스템 16

- 오픈 툴킷을 이용한 자연어 처리
- 엘라스틱 서치 기초 사용법
- 엘라스틱 서치를 활용한 문서검색 구현

자연어처리 오픈소스 프로젝트 16

- SyntaxNet/KoNLPy
- NLTK/twitter tokenizer/· gensim

이수업에서 다루고자하는 것

자연어처리 8

- 언어 모형의 개념
- 형태소 분석/품사 태깅
- 언어 리소스의 종류와 구축 방법
- 구문 분석/감성 분석
- 모호성과 해결방법

자연어 처리기술의이해 8

- Question & Answering 시스템
- 텍스트 자동 분류 및 텍스트 자동 생성
- 소셜 미디어 분석
- 대화형 에이전트/· 기계번역

자연어처리 시스템의 이해 8

- 딥러닝/리커런트 뉴럴 네트워크
- seq2seq

기계학습과 자연어처리 시스템 16

- 오픈 툴킷을 이용한 자연어 처리
- 엘라스틱 서치 기초 사용법
- 엘라스틱 서치를 활용한 문서검색 구현

자연어처리 오픈소스 프로젝트 16

- SyntaxNet/KoNLPy
- NLTK/twitter tokenizer/· gensim

KPMG차장님과 다룰 예정 (토요일)

7월에 있을 자연어처리 프로젝트

이수업에서 다루고자하는 것

자연어처리 8

- 언어 모형의 개념
- 형태소 분석/품사 태깅
- 언어 리소스의 종류와 구축 방법
- 구문 분석/감성 분석
- 모호성과 해결방법

자연어 처리기술의이해 8

- Question & Answering 시스템
- 텍스트 자동 분류 및 텍스트 자동 생성
- 소셜 미디어 분석
- 대화형 에이전트/ 기계번역

자연어처리 시스템의 이해 8

- 딥러닝/리커런트 뉴럴 네트워크
- seq2seq

기계학습과 자연어처리 시스템 16

- 오픈 툴킷을 이용한 자연어 처리
- 엘라스틱 서치 기초 사용법
- 엘라스틱 서치를 활용한 문서검색 구현

자연어처리 오픈소스 프로젝트 16

- SyntaxNet/KoNLPy
- NLTK/twitter tokenizer/· gensim

기존 7일 구성 > <mark>9일</mark> 재편성

이론 위주 > 이론 + 실습병행

수식보다는 코드로 진행

KPMG차장님과 다룰 예정 (토요일)

7월에 있을 자연어처리 프로젝트

6월 2021

7월 2021 일 월 화 수 목 금 토 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

일 요 일	월요일	화 요 일	수요일	목요일	금요일	토요일
		1	2	3	4	5
6	7	8	9	10	11	12
13	14	15	16	17	18	19
20	21	22	23	24	25	26
27	28	29	30			
						7calendar.com/kr/

수강생분들께 바라는 점

- 수식은 완벽히 이해 못해도 됩니다.
 - 나중에 또 보면 되니까
 - 큰 그림부터 잡고 갑시다.
- 혼자 따로 꼭 구현 해보세요.
 - 코드 읽어드릴 때는 다들 잘 따라옵니다.
 - 하지만 본인이 직접 짜보지 않으면, 절대 본인의 것이 되지 않습니다.

Introduction to Natural Language Processing

What is Language?

- 언어에 대한 정의는 여러가지 시도가 있었다. 아래는 그러한 예의 일부이다.
 - 1) 사람들이 자신의 머리 속에 있는 생각을 다른 사람에게 나타내는 체계.
 - 2) 사물, 행동, 생각, 그리고 상태를 나타내는 체계.
 - 3) 사람들이 자신이 가지고 있는 생각을 다른 사람들에게 전달하는 데 사용하는 방법.
 - 4) 사람들 사이에 공유되는 의미들의 체계.
 - 5) 문법적으로 맞는 말의 집합(절대적이 아님).
 - 6) 언어 공동체 내에서 이해될 수 있는 말의 집합.

출처: https://ko.wikipedia.org/wiki/%EC%96%B8%EC%96%B4

정보 전달

Interface to Artificial Intelligence

• 사람의 생각(의도, 정보)을 컴퓨터에게 전달하는 방법

Naïve Interface

- 사람이 이해할 수 있지만, 엄격한 문법과 모호성이 없는 형태의 전달 방식
- 인공 언어
 - e.g. 프로그래밍 언어

BetterInterface

- 사람이 실제 사용하는 형태에 가까운 전달 방식
- 자연 언어

What is Natural Language Processing?

- 자연어(Natural Language)란?
 - <u>자연어</u> 혹은 <u>자연 언어</u>는 사람들이 일상적으로 쓰는 언어를 인공적으로 만들어진 언어인 <u>인공어</u>와 구분하여 부르는 개념 (출처: 위키피디아)
- Natural Language Processing
 - 사람이 이해하는 자연어를 컴퓨터가 이해할 수 있는 값으로 바꾸는 과정 (NLU)
 - 더 나아가 컴퓨터가 이해할 수 있는 값을 사람이 이해하도록 바꾸는 과정 (NLG)

Research Area

NLP vs Others

Artificial Intelligence 삼대장 (+ 1?)

- Computer Vision
 - Image Recognition
 - Object DetectionImage Generation

 - Super Resolution
- Natural Language Processing
 - Text Classification
 - Machine Translation
 - Summarization
 - Question Answering
- Speech Processing
 - Speech Recognition (STT)
 - Speech Synthesis (TTS)
 - Speaker Identification

Reinforcement Learning

NLP vs Others

Natural Language Processing

- Discrete value를 다룸
 - 단어, 문장
- 분류 문제로 접근할 수 있음
- 샘플의 확률 값을 구할 수 있음

- 문장 생성 (자연어 생성)
 - auto-regressive 속성을 지님
 - GAN 적용 불가

Other Fields (e.g. Computer Vision)

- Continuous value를 다룸
 - 이미지, 음성
- 문제에 따라 접근 방식이 다름
- 샘플의 확률 값을 구할 수 없음

- 이미지 생성
 - auto-regressive 속성 없음
 - GAN 적용 가능

Also, NLP research requires

- Domain Knowledge
 - 언어적 지식 필요
 - e.g. 한국어는 어떠한 언어적 특성을 지니는가?
- Nasty Preprocessing
 - Task에 따른 정제(normalization) 과정 필요

NLP with Deep Learning

<Traditional NLP>vs <NLP with Deep Learning>

Traditional NLP

- 단어를 symbolic 데이터로 취급
- 여러 sub-module을 통해 전체 구성

NLP with Deep Learning

- 단어를 continuous value로 변환
- End-to-end 시스템 추구

Traditional NLP의 특징

• Symbolic 기반 접근

전통적인 심볼릭 기반 접근 방법	딥러닝 기반 접근 방법
이산적(discrete), 심볼릭 공간	연속적(continuous), 신경망 공간
사람이 인지하기 쉬움	사람이 이해하기 어려움
디버그 용이	디버깅 어려움
연산 속도 느림	연산 속도 빠름
모호성과 유의성에 취약함	모호성과 유의성에 강인함
여러 서브 모듈이 폭포수 형태를 취하므로 특징 추출에 노력이 필요함	end-to-end 모델을 통한 성능 개선과 시스템 간소화 가능

- 여러 단계의 Sub-module 구성
 - 무거움
 - 각 모듈의 오류가 이후 모듈에 영향을 끼침 (error propagation)

NLP System with Deep Learning

Paradigm Shift in Natural Language Processing

- 효율적인 Embedding을 통한 성능 개선
 - 단어, 문장, 컨텍스트 임베딩
- End-to-end 구성으로 인한 효율/성능 개선
 - 가볍고, 빠르다.
- 결국 기계번역의 경우, 다른 분야에 비해 가장 먼저 성공적인 상용화

What makes NLP difficult?

원문	<mark>차</mark> 를 마시러 공원에 가던 <mark>차</mark> 안에서 나는 그녀에게 <mark>차</mark> 였다.
G*	I was kicking her in the car that went to the park for tea.
M*	I was a car to her, in the car I had a car and went to the park.
N*	I got dumped by her on the way to the park for tea.
K*	I was in the car going to the park for tea and I was in her car.
S*	I got dumped by her in the car that was going to the park for a cup of tea.

중의성 해소(word sense disambiguation)

원문	<mark>차</mark> 를 마시러 공원에 가던 <mark>차</mark> 안에서 나는 그녀에게 <mark>차</mark> 였다.
G*	I was kicking her in the car that went to the park for tea.
M*	I was a car to her, in the car I had a car and went to the park.
N*	I got dumped by her on the way to the park for tea.
K*	I was in the car going to the park for tea and I was in her car.
S*	I got dumped by her in the car that was going to the park for a cup of tea.

원문	나는 철수를 안 때렸다.
1	철수는 맞았지만, 때린 사람이 나는 아니다.
2	나는 누군가를 때렸지만, 그게 철수는 아니다.
3	나는 누군가를 때린 적도 없고, 철수도 맞은 적이 없다.

문장 내 정보의 부족으로 인한 모호성이 발생

원문	나는 철수를 안 때렸다.
1	철수는 맞았지만, 때린 사람이 나는 아니다.
2	나는 누군가를 때렸지만, 그게 철수는 아니다.
3	나는 누군가를 때린 적도 없고, 철수도 맞은 적이 없다.

원문	선생님은 울면서 돌아오는 우리를 위로 했다.
1	(선생님은 울면서) 돌아오는 우리를 위로 했다.
2	선생님은 (울면서 돌아오는 우리를) 위로 했다.

문장 내 정보의 부족이 야기한 구조 해석의 문제

원문	선생님은 울면서 돌아오는 우리를 위로 했다.
1	(선생님은 울면서) 돌아오는 우리를 위로 했다.
2	선생님은 (울면서 돌아오는 우리를) 위로 했다.

Why Language has Ambiguity?

- 언어는 마치 생명체와 같이 진화하며, 특히 효율성을 극대화 하는 방향으로 진화
- 따라서 최대한 짧은 문장 내에 많은 정보를 담고자 한다.
 - 정보량이 낮은 내용(context)은 생략
 - 여기에서 모호함(ambiguity)이 발생
- 생략된 context를 인간은 효율적으로 채울 수 있지만, 기계는 이러한 task에 매우 취약함.

Paraphrase

Paraphrase

번호	문장 표현
1	여자가 김치를 어떤 남자에게 집어 던지고 있다.
2	여자가 어떤 남자에게 김치로 때리고 있다.
3	여자가 김치로 싸대기를 날리고 있다.
4	여자가 배추 김치 한 포기로 남자를 때리고 있다.
5	여자가 김치를 사용해 남자를 때리고 있다.
6	남자가 여자에게 김치로 싸대기를 맞고 있다.
7	남자가 여자로부터 김치로 맞고 있다.

Paraphrase

문장의 표현 형식은 다양하고, 비슷한 의미의 단어들이 존재하기 때문에

번호	문장 표현 paraphrase의 문제가 존재
1	여자가 김치를 어떤 남자에게 집어 던지고 있다.
2	여자가 어떤 남자에게 김치로 때리고 있다.
3	여자가 김치로 싸대기를 날리고 있다.
4	여자가 배추 김치 한 포기로 남자를 때리고 있다.
5	여자가 김치를 사용해 남자를 때리고 있다.
6	남자가 여자에게 김치로 싸대기를 맞고 있다.
7	남자가 여자로부터 김치로 맞고 있다.

Discrete, not Continuous

- 이산 값을 갖는 자연어는 사람의 입장에서 인지가 쉬울 수 있으나, 기계의 입장에서는 매우 어려운 값.
- One-hot 인코딩으로 표현된 값은 유사도나 모호성을 표현할 수 없다.
 - 서로 다른 One-hot 벡터끼리의 유사도나 거리는 모두 동일하다.
- 따라서, 아래의 질문에 대답할 수 없다.
 - <파랑>과 <핑크> 중에서 <빨강>에 가까운 단어는 무엇인가?
 - 하지만 사람의 어휘 체계는 계층적 구조를 띄고 있다.
- 또한 높은 차원으로 표현되어 매우 sparse하게 된다.

Discrete, not Continuous

- 이산 값을 갖는 자연어는 사람의 입장에서 인지가 쉬울 수 있으나, 기계의 입장에서는 매우 어려운 값.
- One-hot 인코딩으로 표현된 값은 유사도나 모호성을 표현할 수 없다.
 - 서로 다른 One-hot 벡터끼리의 유사도나 거리는 모두 동일하다.
- 따라서, 아래의 질문에 대답할 수 없다.
 - <파랑>과 <핑크> 중에서 <빨강>에 가까운 단어는 무엇인가?
 - 하지만 사람의 어휘 체계는 계층적 구조를 띄고 있다.
- 또한 높은 차원으로 표현되어 매우 sparse하게 된다.

딥러닝에서는 Word Embedding을 통해 해결 Word Embedding을 통해 해결

Summary

- Ambiguity
- Paraphrase
- Discrete, not Continuous

What makes Korean NLP more difficult?

교착어

종류	대표적 언어	특징
교착어	한국어, 일본어, 몽골어	어간에 접사가 붙어 단어를 이루고 의미와 문법적 기능이 정해짐
굴절어	라틴어, 독일어, 러시아어	단어의 형태가 변함으로써 문법적 기능이 정해짐
고립어	영어, 중국어	어순에 따라 단어의 문법적 기능이 정해짐

교착어: 접사 추가에 따른 의미 파생

원형	피동	높임	과거	추측	전달		결과
잡						+다	잡다
잡	+==					+다	잡히다
잡	+ō	+시				+다	잡히시다
잡	+==	+시	+었			+다	잡히셨다
잡			+았(었)			+다	잡았다
잡				+겠		+다	잡겠다
잡					+더라		잡더라
잡		+==	+었			+다	잡혔다
잡		+==	+었	+겠		+다	잡혔겠다
잡	+5	+었	+겠		+더라		잡혔겠더라
잡			+았(었)	+겠		+다	잡았겠다
•••							erro.
잡	+5	+시	+았(었)	+겠	+더라		잡히시었겠더라

교착어: 유연한 단어 순서 규칙

번호	문장	정상여부
1.	나는 밥을 먹으러 간다.	0
2.	간다 나는 밥을 먹으러.	0
3.	먹으러 간다 나는 밥을.	0
4.	밥을 먹으러 간다 나는.	О
5-	나는 먹으러 간다 밥을.	O
6.	나는 간다 밥을 먹으러.	0
7.	간다 밥을 먹으러 나는.	О
8.	간다 먹으러 나는 밥을.	O
9.	먹으러 나는 밥을 간다.	X
10.	먹으러 밥을 간다 나는.	x
11.	밥을 간다 나는 먹으러.	X
12.	밥을 나는 먹으러 간다.	О
13.	나는 밥을 간다 먹으러.	X
14.	간다 나는 먹으러 밥을.	0
15.	먹으러 간다 밥을 나는.	0
16.	밥을 먹으러 나는 간다.	0

모호한 띄어쓰기

- 근대 이전까지 동양권 언어에는 띄어쓰기가 존재하지 않았음
 - 서양에서는 중세시대에 띄어쓰기가 확립됨
- 따라서, 아직 우리나라 말은 여전히 띄어쓰기와 궁합을 맞추는 중
 - 전 국립언어원장님도 어려워하시는 띄어쓰기 참고: https://news.chosun.com/site/data/html_dir/2013/05/21/2013052103173.html
- 왜? 띄어쓰기가 어지간히 틀려도 잘 알아듣기 때문

평서문과 의문문의 차이 부재

언어	평서문	의문문
영어	I ate my lunch.	Did you have lunch?
한국어	점심 먹었어.	점심 먹었어?

주어 부재

언어	평서문	의문문
영어	I ate my lunch.	Did you have lunch?
한국어	점심 먹었어.	점심 먹었어?

한자 기반의 언어

- 표의 문자인 한자를 표음 문자인 한글로 wrapping함
 - 표의 문자: 의미 또는 사물의 형상을 글씨로 나타냄
 - 표음 문자: 사람이 말하는 소리, 음성을 글씨로 나타냄
- Wrapping 과정에서 정보의 손실 발생

茶 vs 車

단어 중의성으로 인한 문제 발생 사례

• '차'의 hidden representation

극악 난이도 한국어 NLP

- 한글은 굉장히 늦게 만들어진 문자
 - 따라서 기존 다른 문자들의 장점을 흡수
 - 굉장히 과학적으로 만들어짐
- 효율이 극대화 되었기 때문에 더욱 어려운 것
- 앞으로 우리는 자연어처리 전반 뿐만 아니라, 한국어에 적용하였을 때의 특성과 문제도 다룰 것

History of Neural NLP

Overview

Before Deep Learning

Before Sequence-to-Sequence

After Sequence-to-Sequence with Attention

Era of Attention

Pretraining and Fine-tuning

Before Deep Learning

- 전형적인 NLP application의 구조
 - 여러 단계의 sub-module로 구성되어 복잡한 디자인을 구성
 - 매우 무겁고 복잡하여 구현 및 시스템 구성이 어려운 단점
 - 각기 발생한 error가 중첩 및 가중되어 error propagation

Before Sequence-to-Sequence

Word Embedding

• [Mikolov et al., 2013]

Text Classification

• [Kim, 2014]

Text to Numeric values

After Sequence-to-Sequence with Attention

• Beyond "text to numeric".

Era of Attention

Transformer by End-to-End Attention

Figure 1: The Transformer - model architecture.

Everything can be done by Attention.

출처: http://jalammar.github.io/illustrated-gpt2/

BERTology: Pretraining and Fine-tuning

• Big Language Models mainly based on Transformer

What is Next?

- Open Domain Dialogue System
- Combining with Knowledge Graphs

Appendix

• Another version...

Recent Trends

