BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

103 22 012.7

Anmeldetag:

16. Mai 2003

Anmelder/Inhaber:

ROBERT BOSCH GMBH, 70469 Stuttgart/DE

Bezeichnung:

Durchflusssensor mit verbessertem

Betriebsverhalten

IPC:

G 01 F, F 02 D

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 17. Februar 2004

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

il Juliay

8 1331380443

Remus

A 9161 06/00 EDV-L 5 14.05.2003 Robert Bosch GmbH, 70442 Stuttgart

Durchflusssensor mit verbessertem Betriebsverhalten

4

10

Stand der Technik

Die Erfindung betrifft einen sogenannten Heißfilm
Luftmassensensor, wie er beispielsweise zur Bestimmung der
von einer Brennkraftmaschine angesaugten Luftmasse
eingesetzt wird. Bei diesen Heißfilm-Luftmassensensoren,
nachfolgend als Durchflusssensoren bezeichnet, werden ein
oder mehrere Heizwiderstände auf eine vorgegebene

Temperatur durch Anlegen einer elektrischen Spannung
aufgeheizt. Die Temperatur des oder der Heizwiderstände
liegt in der Regel um einen festen Betrag über der
Umgebungstemperatur.

30

Um die Temperatur des Heizwiderstands regeln zu können, sind zwei Temperatursensoren erforderlich. Ein erster Temperatursensor ist in unmittelbarer Nähe des Heizwiderstands angeordnet und erfasst die Temperatur des Heizwiderstands, während ein zweiter Temperatursensor die Umgebungstemperatur erfasst. Beide Temperatursensoren werden in der Regel als Widerstandstemperatursensoren ausgeführt. Aus den unterschiedlichen Widerständen des ersten und des zweiten Temperatursensors kann die Temperaturdifferenz zwischen Umgebungstemperatur und

Heizwiderstand bestimmt werden. Dazu benutzt man in der Regel eine Brückenschaltung. Die Brückenspannung dieser Meßbrücke wird einem nachgeschalteten Regler, der als Differentialverstärker ausgeführt sein kann, als Istwert der Temperaturdifferenz zwischen Heizwiderstand und Umgebungstemperatur zugeführt.

Aufgrund von Umwelteinflüssen und der Drift der einzelnen Widerstände kommt es im Laufe der Zeit zu Veränderungen des Betriebsverhaltens der Brückenschaltung, welche sich nachteilig auf die Genauigkeit des Ausgangssignals der Brückenschaltung auswirkt. Infolgedessen werden auch die vom Durchflusssensor bereitgestellten Ausgangssignale verfälscht, was von den nachgeschalteten

Auswerteschaltungen nicht erkannt werden kann.

Vorteile der Erfindung

5

15

30

Bei einem erfindungsgemäßen Durchflusssensor mit mindestens einem Heizwiderstand und mit einer Brückenschaltung mit mehreren Brückenwiderständen und einem Spannungs- oder Stromregler, wobei der Heizwiderstand auf einem Chip angeordnet ist, wird erfindungsgemäß vorgesehen, dass auch die Brückenwiderstände auf dem Chip angeordnet sind.

Dadurch unterliegen alle Brückenwiderstände denselben Umwelteinflüssen und Driften, so dass die Auswirkungen der Widerstandsdriften auf das Ausgangssignal der Brückenschaltung dadurch erheblich reduziert wird. Dadurch ist die Genauigkeit des erfindungsgemäßen Durchflusssensors über dessen gesamte Lebensdauer nahezu konstant.

Erfindungsgemäße Varianten sehen vor, dass die Brückenschaltung vier Brückenwiderstände aufweist, von denen mindestens einer als Trimmwiderstand ausgeführt ist.

Es hat sich weiter als vorteilhaft erwiesen, wenn die Temperaturregelung des Heizwiderstands durch einen Differenzverstärker erfolgt, wobei die zu verstärkende Spannungsdifferenz von der bereits erwähnten Brückenschaltung geliefert wird.

10

In weiterer erfindungsgemäßer Ausgestaltung des Durchflusssensors ist vorgesehen, dass der Abgleich der Brückenwiderstände über die Regelung der Offset-Spannung des Differenzverstärkers erfolgt.

15

Der erfindungsgemäß Durchflusssensor kann vorteilhafterweise zur Luftmassenmessung von Brennkraftmaschinen eingesetzt werden.

Weitere Vorteile und vorteilhafte Ausgestaltungen der Erfindung sind der nachfolgenden Zeichnung sowie deren Beschreibung entnehmbar.

30

Zeichnung

Es zeigt die

einzige Figur einen Schaltplan eines Messelements eines erfindungsgemäßen Durchflusssensors, anhand dessen die erfindungsgemäße Ausgestaltung des Durchflusssensors erläutert wird.

Beschreibung des Ausführungsbeispiels

In der einzigen Figur ist der Schaltplan eines erfindungsgemäßen Durchflusssensors dargestellt. Der Durchflusssensor besteht aus einem Messelement mit einer Brückenschaltung 1 und einem Heizwiderstand R_{H} sowie einem Differenzverstärker 3.

5

10

30

Die Brückenschaltung 1 besteht aus vier Brückenwiderständen R_{LF} , R_{HF} , R_{TU} und R_4 . Der Brückenwiderstand R_{HF} ist ein Widerstandstemperatursensor, welcher in unmittelbarer Nähe des Heizwiderstands R_H auf einem Chip (nicht dargestellt) angeordnet ist. Über den temperaturabhängigen Widerstand des Brückenwiderstands R_{HF} wird die Temperatur des Heizwiderstandes R_H ermittelt.

Der Brückenwiderstand R_{LF} ist ebenfalls ein Widerstandtemperatursensor, der auf dem Chip (nicht dargestellt) mit Abstand zu dem Heizwiderstand R_H angeordnet ist. Mit dem Brückenwiderstand R_{LF} wird die Temperatur T_{amb} der Umgebungsluft, bevor sie den Heizwiderstand R_H erreicht und von diesem erwärmt wird, gemessen. Die Differenz der Widerstände der Brückenwiderstände R_{HF} und R_{LF} ist somit ein Maß für die Temperaturdifferenz zwischen dem Heizwiderstand R_H und der Umgebungstemperatur T_{amb}.

Bei herkömmlichen Messelementen sind nur der Heizwiderstand R_{H} sowie die Temperatursensoren R_{HF} und R_{LF} auf dem Chip angeordnet. Die zwei weiteren Brückenwiderstände R_{Tu} und R_{4} sind bei konventionellen Messelementen außerhalb des Chips angeordnet. Deshalb unterliegen die Widerstände R_{HF} und R_{LF} sowie die weiteren Brückenwiderstände R_{Tu} und R_{4} anderen Umwelteinflüssen, was im Laufe der Zeit zum unterschiedlichen Driften der Widerstände führt. Erfindungsgemäß ist nun vorgesehen, auch die

Brückenwiderstände R_{Tü} und R₄ auf dem Chip anzuordnen, so dass alle Widerstände der Brückenschaltung 1 den gleichen Umwelteinflüssen ausgesetzt sind. Infolgedessen verringert sich die Drift des Ausgangssignals der Brückenschaltung aufgrund von Änderungen der ohmschen Widerstände der Brückenwiderstände R_{HF}, R_{LF}, R_{Tü} und R₄ erheblich. Dies bedeutet, dass das Ausgangssignal des erfindungsgemäßen Messelementes während der gesamten Lebensdauer des Messelements von nahezu konstanter Genauigkeit und Güte ist.

Die elektrischen Anschlüsse des Chips (nicht dargestellt) sind in der einzigen Figur mit den Buchstaben A, B, C, D und E bezeichnet.

15

Die Spannung in der Diagonalen der Messbrücke 1 kann an den Anschlüssen A und B des nicht dargestellten Chips abgegriffen werden. Diese Brückenspannung wird dem Differenzverstärker 3 zugeführt, dessen Ausgangssignal eine Heizspannung UH ist. Die Ausgangsspannung UH ist ein Maß für die über den Heizwiderstand RH strömende Luftmasse. Gleichzeitig wird über die Ausgangsspannung UH die Heizleitung des Heizwiderstands RH geregelt.

Wenn die Widerstände R_{Tü} und R₄ auch auf dem Chip angeordnet werden, bietet es sich an, sie aus der gleichen Widerstandsschicht wie den Heizwiderstand R_H sowie die anderen Brückenwiderstände R_{HF} und R_{LF} herauszuätzen. In Folge dessen sind die Widerstände R_{Tü} und R₄ nicht einstellbar, so dass die Anpassung der Brückenschaltung 1 durch die Einstellung einer Offsetspannung am Differenzverstärker 3 erfolgen kann. Die Offsetspannung des Differenzverstärkers 3 wird durch einen verstellbaren Widerstand R₅ eingestellt.

Über die elektrischen Anschlüsse A bis E wird der Chip (nicht dargestellt) mit einer Auswerteschaltung, insbesondere dem Differenzverstärker 3 und einer Spannungsversorgung elektrisch verbunden.

5

10

wenn ein zweiter Regelkreis (nicht dargestellt) vorgesehen wird, kann auch die Strömungsrichtung der Luft erkannt werden. Eine solche Ausführungsform arbeitet nach dem sogenannten Doppelheizerprinzip.

5 14.05.2003 Robert Bosch GmbH, 70442 Stuttgart

10 Ansprüche

30

- 1. Durchflusssensor mit mindestens einem Heizwiderstand (R_H) und mit einer Brückenschaltung (1) mit mehreren Brückenwiderständen $(R_{LF},\ R_{HF},\ R_{TU},\ R_4)$ und einem Spannungs-
- oder Stromregler zur Regelung der Temperatur des Heizwiderstands ($R_{\rm H}$), wobei der Heizwiderstand ($R_{\rm H}$) auf einem Chip angeordnet ist, dadurch gekennzeichnet, dass auch die Brückenwiderstände ($R_{\rm LF}$, $R_{\rm HF}$, $R_{\rm Tu}$, $R_{\rm 4}$) auf dem Chip angeordnet sind.
- 20 2. Durchflusssensor nach Anspruch 1, dadurch gekennzeichnet, dass die Brückenschaltung (1) vier Brückenwiderstände ($R_{\rm LF}$, $R_{\rm HF}$, $R_{\rm TU}$, R_4) aufweist.
 - 3. Durchflusssensor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass mindestens einer der
- 25 Brückenwiderstände als Trimmwiderstand ($R_{T\ddot{u}}$) ausgeführt ist.
 - 4. Durchflusssensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Temperaturregelung des Heizwiderstands $(R_{\rm H})$ durch einen Differenzverstärker (3) erfolgt.
 - 5. Durchflusssensor nach Anspruch 4, dadurch gekennzeichnet, dass der Abgleich der Brückenwiderstände

 $(R_{\text{LF}},\ R_{\text{HF}},\ R_{\text{Tü}},\ R_{4})$ über die Offset-Spannung des Differenzverstärkers (3) erfolgt.

- 6. Durchflusssensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein zweiter Regelkreis vorhanden ist, und dass durch den Vergleich der Ausgangsgrößen der zwei Regelkreise die Strömungsrichtung des zu messenden Mediums erkannt wird.
- 7. Durchflusssensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Durchflusssensor zur Messung der von einer Brennkraftmaschine angesaugten Luftmasse eingesetzt wird.

5

14.05.2003 Robert Bosch GmbH, 70442 Stuttgart

10 <u>Durchflusssensor mit verbessertem Betriebsverhalten</u>

Zusammenfassung

- Es wird ein Durchflusssensor vorgeschlagen, bei dem alle Brückenwiderstände einer Brückenschaltung (1) zusammen mit einem Heizwiderstand ($R_{\rm H}$) auf einem Chip angeordnet sind, so dass das Driften der Brückenwiderstände ($R_{\rm HF}$, $R_{\rm LF}$, $R_{\rm T\bar{u}}$ und R_4) nur noch einen sehr geringen Einfluss auf das
- 20 Ausgangssignal der Brückenschaltung, welches an den elektrischen Anschlüssen A und B abgegriffen werden kann, hat. (Figur)

