Aggregatable Subvector Commitments for Stateless Cryptocurrencies

Alin Tomescu¹

@alinush407

Justin Drake² @drakefjustin Ittai Ahraham¹

@ittaia

Dankrad Feist²

@dankrad

Vitalik Buterin²

@VitalikButerin

Dmitry Khovratovich²

@Khovr

¹VMware Research, ²Ethereum Foundation

September 14th, 2020

Miners rely on state to validate transactions and blocks.

Miners rely on state to validate transactions and blocks.

Miners rely on state to validate transactions and blocks.

Miners rely on state to validate transactions and blocks.

Validation state can be very large:

Miners rely on state to validate transactions and blocks.

Validation state can be very large:

· Hundreds of GBs in Ethereum

Miners rely on state to validate transactions and blocks.

Validation state can be very large:

- · Hundreds of GBs in Ethereum
- · GBs in Bitcoin

Miners rely on state to validate transactions and blocks.

Validation state can be very large:

- · Hundreds of GBs in Ethereum
- · GBs in Bitcoin

This poses scalability challenges:

Miners rely on state to validate transactions and blocks.

Validation state can be very large:

- · Hundreds of GBs in Ethereum
- · GBs in Bitcoin

This poses scalability challenges:

Consensus via sharding

Miners rely on state to validate transactions and blocks.

Validation state can be very large:

- · Hundreds of GBs in Ethereum
- · GBs in Bitcoin

This poses scalability challenges:

- Consensus via sharding
- Barrier to entry for P2P nodes

Miners rely on state to validate transactions and blocks.

Validation state can be very large:

- · Hundreds of GBs in Ethereum
- · GBs in Bitcoin

This poses scalability challenges:

- Consensus via sharding
- · Barrier to entry for P2P nodes
- · DoS attacks

• Constant-sized, aggregatable and updatable proofs

- Constant-sized, aggregatable and updatable proofs
- Constant-sized update keys

- Constant-sized, aggregatable and updatable proofs
- Constant-sized update keys
- Quasilinear-time proof pre-computation, via Feist-Khovratovich (FK) technique [FK20]

- · Constant-sized, aggregatable and updatable proofs
- Constant-sized update keys
- Quasilinear-time proof pre-computation, via Feist-Khovratovich (FK) technique [FK20]
- Previous work is either: non-aggregatable

- · Constant-sized, aggregatable and updatable proofs
- Constant-sized update keys
- Quasilinear-time proof pre-computation, via Feist-Khovratovich (FK) technique [FK20]
- Previous work is either: non-aggregatable, or has linear-sized update keys

- · Constant-sized, aggregatable and updatable proofs
- Constant-sized update keys
- Quasilinear-time proof pre-computation, via Feist-Khovratovich (FK) technique [FK20]
- **Previous work** is either: non-aggregatable, or has linear-sized update keys, or is based on less efficient, hidden-order groups

- Constant-sized, aggregatable and updatable proofs
- Constant-sized update keys
- Quasilinear-time proof pre-computation, via Feist-Khovratovich (FK) technique [FK20]
- **Previous work** is either: non-aggregatable, or has linear-sized update keys, or is based on less efficient, hidden-order groups

- Constant-sized, aggregatable and updatable proofs
- Constant-sized update keys
- Quasilinear-time proof pre-computation, via Feist-Khovratovich (FK) technique [FK20]
- **Previous work** is either: non-aggregatable, or has linear-sized update keys, or is based on less efficient, hidden-order groups

Additionally,

• New security definition for KZG batch proofs, proven secure under n-SBDH

- Constant-sized, aggregatable and updatable proofs
- Constant-sized update keys
- Quasilinear-time proof pre-computation, via Feist-Khovratovich (FK) technique [FK20]
- **Previous work** is either: non-aggregatable, or has linear-sized update keys, or is based on less efficient, hidden-order groups

- New security definition for KZG batch proofs, proven secure under n-SBDH
- Publicly-derivable parameters from "powers-of-tau" parameters

- · Constant-sized, aggregatable and updatable proofs
- Constant-sized update keys
- Quasilinear-time proof pre-computation, via Feist-Khovratovich (FK) technique [FK20]
- **Previous work** is either: non-aggregatable, or has linear-sized update keys, or is based on less efficient, hidden-order groups

- New security definition for KZG batch proofs, proven secure under n-SBDH
- Publicly-derivable parameters from "powers-of-tau" parameters
 - Keeps trusted setup simple

- Constant-sized, aggregatable and updatable proofs
- Constant-sized update keys
- Quasilinear-time proof pre-computation, via Feist-Khovratovich (FK) technique [FK20]
- **Previous work** is either: non-aggregatable, or has linear-sized update keys, or is based on less efficient, hidden-order groups

- New security definition for KZG batch proofs, proven secure under n-SBDH
- Publicly-derivable parameters from "powers-of-tau" parameters
 - · Keeps trusted setup simple
 - Keeps parameters updatable

- Constant-sized, aggregatable and updatable proofs
- Constant-sized update keys
- Quasilinear-time proof pre-computation, via Feist-Khovratovich (FK) technique [FK20]
- **Previous work** is either: non-aggregatable, or has linear-sized update keys, or is based on less efficient, hidden-order groups

- New security definition for KZG batch proofs, proven secure under n-SBDH
- Publicly-derivable parameters from "powers-of-tau" parameters
 - · Keeps trusted setup simple
 - Keeps parameters updatable
- Subtleties of VC-based stateless cryptocurrencies

- Constant-sized, aggregatable and updatable proofs
- Constant-sized update keys
- Quasilinear-time proof pre-computation, via Feist-Khovratovich (FK) technique [FK20]
- **Previous work** is either: non-aggregatable, or has linear-sized update keys, or is based on less efficient, hidden-order groups

- New security definition for KZG batch proofs, proven secure under n-SBDH
- Publicly-derivable parameters from "powers-of-tau" parameters
 - · Keeps trusted setup simple
 - Keeps parameters updatable
- Subtleties of VC-based stateless cryptocurrencies
 - · Keeping track of transaction counters

- Constant-sized, aggregatable and updatable proofs
- Constant-sized update keys
- Quasilinear-time proof pre-computation, via Feist-Khovratovich (FK) technique [FK20]
- **Previous work** is either: non-aggregatable, or has linear-sized update keys, or is based on less efficient, hidden-order groups

- New security definition for KZG batch proofs, proven secure under n-SBDH
- Publicly-derivable parameters from "powers-of-tau" parameters
 - · Keeps trusted setup simple
 - Keeps parameters updatable
- Subtleties of VC-based stateless cryptocurrencies
 - · Keeping track of transaction counters
 - Verifiable update keys

- Constant-sized, aggregatable and updatable proofs
- Constant-sized update keys
- Quasilinear-time proof pre-computation, via Feist-Khovratovich (FK) technique [FK20]
- **Previous work** is either: non-aggregatable, or has linear-sized update keys, or is based on less efficient, hidden-order groups

- New security definition for KZG batch proofs, proven secure under n-SBDH
- Publicly-derivable parameters from "powers-of-tau" parameters
 - · Keeps trusted setup simple
 - Keeps parameters updatable
- Subtleties of VC-based stateless cryptocurrencies
 - · Keeping track of transaction counters
 - Verifiable update keys
 - · DoS attacks on new user registration

Thank you!

Paper is too long? Read our blogpost!

https://alinush.github.io/2020/05/06/aggregatable-subvector-commitments-for-stateless-cryptocurrencies.html

Appendix

Outline

Appendix

Previous Work

Background

Kate-Zaverucha-Goldberg (KZG) Polynomial Commitments

VCs from KZG Commitments to Lagrange Polynomials

Our Techniques

```
Updating Proofs (Case i = j
```

Updating Proofs (Case i ≠ j

Aggregating Proofs into Subvector Proofs

Extras

Table 1: Asymptotic comparison to previous (aS)VCs. n is the size of the vector \vec{v} .

(aS)VC scheme	Public	Proof	Update	Digest	Aggr. b	Prove
(as/vc scheme	parameters	size	key size	update	proofs	all

Table 1: Asymptotic comparison to previous (aS)VCs. n is the size of the vector \vec{v} .

(aS)VC scheme	Public	Proof	Update	Digest	Aggr. <i>b</i>	Prove
	parameters	size	key size	update	proofs	all
Merkle trees [Mer88]	1	log n	×	×	×	n

Table 1: Asymptotic comparison to previous (aS)VCs. n is the size of the vector \vec{v} .

(aS)VC scheme	Public parameters	Proof size	Update key size	Digest update	Aggr. <i>b</i> proofs	Prove all
Merkle trees [Mer88]	1	log n	×	×	×	n
CDHK [CDHK15]	n	1	n	V	×	n ²
CPZ [CPZ18]	n	logn	log n	V	×	n log n
TCZ [TCZ ⁺ 20,Tom20]	n	log n	log n	V	×	n log n
Pointproofs [GRWZ20]	n	1	n	~	$b_{\mathbb{G}}$	n ²

Table 1: Asymptotic comparison to previous (aS)VCs. n is the size of the vector \vec{v} .

(aS)VC scheme	Public parameters	Proof size	Update key size	Digest update	Aggr. <i>b</i> proofs	Prove all
Merkle trees [Mer88]	1	log n	×	×	×	n
CDHK [CDHK15]	n	1	n	V	×	n ²
CPZ [CPZ18]	n	log n	log n	V	×	n log n
TCZ [TCZ ⁺ 20,Tom20]	n	log n	log n	~	×	n log n
Pointproofs [GRWZ20]	n	1	n	~	$b_{\mathbb{G}}$	n ²
BBF [BBF19]	1	1 _{G2}	×	×	b log n _{G2}	n log n _{G2}
CFG ₁ [CFG ⁺ 20]	1	1 _{G?}	×	×	$b \log b \log n_{G_2}$	n log² n _{G?}

Table 1: Asymptotic comparison to previous (aS)VCs. n is the size of the vector \vec{v} .

(aS)VC scheme	Public parameters	Proof size	Update key size	Digest update	Aggr. <i>b</i> proofs	Prove all
Merkle trees [Mer88]	1	log n	×	×	×	n
CDHK [CDHK15]	n	1	n	V	×	n ²
CPZ [CPZ18]	n	log n	log n	V	×	n log n
TCZ [TCZ ⁺ 20,Tom20]	n	log n	log n	V	×	n log n
Pointproofs [GRWZ20]	n	1	n	~	$b_{\mathbb{G}}$	n ²
BBF [BBF19]	1	1 _{G2}	×	×	b log n ₆₂	n log n _G ,
CFG ₁ [CFG ⁺ 20]	1	1 _{G2}	×	×	$b \log b \log n_{G_2}$	n log² n
CFG ₂ [CF13,LM19,CFG ⁺ 20]	1	1 _{G?}	1 _{G?}	~	$b \log^2 b_{G_?}$	$n \log^2 n_{G_?}$

Table 1: Asymptotic comparison to previous (aS)VCs. n is the size of the vector \vec{v} .

(aS)VC scheme	Public parameters	Proof size	Update key size	Digest update	Aggr. <i>b</i> proofs	Prove all
Merkle trees [Mer88]	1	log n	×	×	×	n
CDHK [CDHK15]	n	1	n	V	×	n ²
CPZ [CPZ18]	n	log n	log n	V	×	n log n
TCZ [TCZ ⁺ 20,Tom20]	n	log n	log n	~	×	n log n
Pointproofs [GRWZ20]	n	1	n	~	$b_{\mathbb{G}}$	n ²
BBF [BBF19]	1	1 _{G?}	×	×	b log n _{G2}	n log n _{G2}
CFG ₁ [CFG ⁺ 20]	1	1 _{G2}	×	×	$b \log b \log n_{G_2}$	n log² n _{G2}
CFG ₂ [CF13,LM19,CFG ⁺ 20]	1	1 _{G?}	1 _{G?}	~	$b \log^2 b_{G_?}$	n log² n _{G?}
Our aSVC	n	1	1	v	$b \lg^2 b_{\mathbb{F}} + b_{\mathbb{G}}$	n log n

Unlike schemes based on hidden-order groups [CF13, LM19, BBF19, CFG⁺20], we have:

Unlike schemes based on hidden-order groups [CF13, LM19, BBF19, CFG⁺20], we have:

Trusted setup

Unlike schemes based on hidden-order groups [CF13, LM19, BBF19, CFG⁺20], we have:

- Trusted setup
- No incremental aggregation & no dis-aggregation [CFG⁺20]

Unlike schemes based on hidden-order groups [CF13, LM19, BBF19, CFG⁺20], we have:

- Trusted setup
- No incremental aggregation & no dis-aggregation [CFG⁺20]
- No space-time trade-off for proof pre-computation [BBF19, CFG⁺20]

Outline

Appendix

Previous Work

Background

Kate-Zaverucha-Goldberg (KZG) Polynomial Commitments

VCs from KZG Commitments to Lagrange Polynomials

Our Techniques

```
Updating Proofs (Case i = j
```

Updating Proofs (Case i ≠ j

Aggregating Proofs into Subvector Proofs

Extras

Fix *n*-SDH public parameters $\left(g^{\tau^i}\right)_{0 \le i \le n}$ such that trapdoor $\tau \in \mathbb{F}_p$ is unknown.

Fix n-SDH public parameters $\left(g^{\tau^i}\right)_{0 \le i \le n}$ such that trapdoor $\tau \in \mathbb{F}_p$ is unknown.

Committing: Given $\phi \in \mathbb{F}_p[X]$

Fix n-SDH public parameters $\left(g^{\tau^i}\right)_{0 \le i \le n}$ such that trapdoor $\tau \in \mathbb{F}_p$ is unknown.

Committing: Given
$$\phi \in \mathbb{F}_p[X]$$
, where $\phi(X) = \sum_{i=0}^n \phi_i X^i = \langle \phi_0, \phi_1, \dots, \phi_n \rangle$

Fix n-SDH public parameters $\left(g^{\tau^i}\right)_{0 \le i \le n}$ such that trapdoor $\tau \in \mathbb{F}_p$ is unknown.

Committing: Given $\phi \in \mathbb{F}_p[X]$, where $\phi(X) = \sum_{i=0}^n \phi_i X^i = \langle \phi_0, \phi_1, \dots, \phi_n \rangle$ of degree $\leq n$:

Fix n-SDH public parameters $\left(g^{\tau^i}\right)_{0 \le i \le n}$ such that trapdoor $\tau \in \mathbb{F}_p$ is unknown.

Committing: Given $\phi \in \mathbb{F}_p[X]$, where $\phi(X) = \sum_{i=0}^n \phi_i X^i = \langle \phi_0, \phi_1, \dots, \phi_n \rangle$ of degree $\leq n$:

$$c\left(\phi\right) = g^{\phi(\tau)} \tag{1}$$

(2)

Fix *n*-SDH public parameters $\left(g^{\tau^i}\right)_{0 \le i \le n}$ such that trapdoor $\tau \in \mathbb{F}_p$ is unknown.

Committing: Given $\phi \in \mathbb{F}_p[X]$, where $\phi(X) = \sum_{i=0}^n \phi_i X^i = \langle \phi_0, \phi_1, \dots, \phi_n \rangle$ of degree $\leq n$:

$$c\left(\phi\right) = g^{\phi(\tau)} \tag{1}$$

$$= (g^{\tau^n})^{\phi_n} (g^{\tau^{n-1}})^{\phi_{n-1}} \dots (g^{\tau})^{\phi_1} (g)^{\phi_0}$$
 (2)

Fix *n*-SDH public parameters $(g^{\tau^i})_{0 \le i \le n}$ such that trapdoor $\tau \in \mathbb{F}_p$ is unknown.

Committing: Given $\phi \in \mathbb{F}_p[X]$, where $\phi(X) = \sum_{i=0}^n \phi_i X^i = \langle \phi_0, \phi_1, \dots, \phi_n \rangle$ of degree $\leq n$:

$$c\left(\phi\right) = g^{\phi(\tau)} \tag{1}$$

$$= (g^{\tau^n})^{\phi_n} (g^{\tau^{n-1}})^{\phi_{n-1}} \dots (g^{\tau})^{\phi_1} (g)^{\phi_0}$$
 (2)

Homomorphism: For all field elements a, b and polynomials $\phi(X), \psi(X)$, we have:

Fix *n*-SDH public parameters $\left(g^{\tau^i}\right)_{0 \le i \le n}$ such that trapdoor $\tau \in \mathbb{F}_p$ is unknown.

Committing: Given $\phi \in \mathbb{F}_p[X]$, where $\phi(X) = \sum_{i=0}^n \phi_i X^i = \langle \phi_0, \phi_1, \dots, \phi_n \rangle$ of degree $\leq n$:

$$c\left(\phi\right) = g^{\phi(\tau)} \tag{1}$$

$$= (g^{\tau^n})^{\phi_n} (g^{\tau^{n-1}})^{\phi_{n-1}} \dots (g^{\tau})^{\phi_1} (g)^{\phi_0}$$
 (2)

Homomorphism: For all field elements a, b and polynomials $\phi(X), \psi(X)$, we have:

$$c\left(a\cdot\phi+b\cdot\psi\right)=g^{a\cdot\phi(\tau)+b\cdot\psi(\tau)}\tag{3}$$

Fix *n*-SDH public parameters $\left(g^{\tau^i}\right)_{0 \le i \le n}$ such that trapdoor $\tau \in \mathbb{F}_p$ is unknown.

Committing: Given $\phi \in \mathbb{F}_p[X]$, where $\phi(X) = \sum_{i=0}^n \phi_i X^i = \langle \phi_0, \phi_1, \dots, \phi_n \rangle$ of degree $\leq n$:

$$c\left(\phi\right) = g^{\phi(\tau)} \tag{1}$$

$$= (g^{\tau^n})^{\phi_n} (g^{\tau^{n-1}})^{\phi_{n-1}} \dots (g^{\tau})^{\phi_1} (g)^{\phi_0}$$
 (2)

Homomorphism: For all field elements a, b and polynomials $\phi(X), \psi(X)$, we have:

$$c\left(a\cdot\phi+b\cdot\psi\right)=g^{a\cdot\phi(\tau)+b\cdot\psi(\tau)}\tag{3}$$

$$= \left(g^{\phi(\tau)}\right)^a \left(g^{\psi(\tau)}\right)^b \tag{4}$$

(5)

Fix n-SDH public parameters $\left(g^{\tau^i}\right)_{0 \le i \le n}$ such that trapdoor $\tau \in \mathbb{F}_p$ is unknown.

Committing: Given $\phi \in \mathbb{F}_p[X]$, where $\phi(X) = \sum_{i=0}^n \phi_i X^i = \langle \phi_0, \phi_1, \dots, \phi_n \rangle$ of degree $\leq n$:

$$c\left(\phi\right) = g^{\phi(\tau)} \tag{1}$$

$$= (g^{\tau^n})^{\phi_n} (g^{\tau^{n-1}})^{\phi_{n-1}} \dots (g^{\tau})^{\phi_1} (g)^{\phi_0}$$
 (2)

Homomorphism: For all field elements a, b and polynomials $\phi(X)$, $\psi(X)$, we have:

$$c\left(a\cdot\phi+b\cdot\psi\right)=g^{a\cdot\phi(\tau)+b\cdot\psi(\tau)}\tag{3}$$

$$= \left(g^{\phi(\tau)}\right)^a \left(g^{\psi(\tau)}\right)^b \tag{4}$$

$$= c(\phi)^a c(\psi)^b \tag{5}$$

Represent vector \vec{v} with a polynomial ϕ s.t. $\phi(i) = v_i$:

Represent vector \vec{v} with a polynomial ϕ s.t. $\phi(i) = v_i$:

$$\phi(X) = \sum_{i=0}^{n-1} v_i \cdot L_i(X)$$
 (6)

(7)

Represent vector \vec{v} with a polynomial ϕ s.t. $\phi(i) = v_i$:

$$\phi(X) = \sum_{i=0}^{n-1} v_i \cdot L_i(X) \tag{6}$$

$$L_i(X) = \prod_{\substack{j \in [0,n) \\ j \neq i}} \frac{X - j}{i - j} \tag{7}$$

Represent vector \vec{v} with a polynomial ϕ s.t. $\phi(i) = v_i$:

$$\phi(X) = \sum_{i=0}^{n-1} v_i \cdot L_i(X) \tag{6}$$

$$L_{i}(X) = \prod_{\substack{j \in [0,n) \\ j \neq i}} \frac{X - j}{i - j} \tag{7}$$

Applying the KZG homomorphism to Equation (6):

Represent vector \vec{v} with a polynomial ϕ s.t. $\phi(i) = v_i$:

$$\phi(X) = \sum_{i=0}^{n-1} v_i \cdot L_i(X) \tag{6}$$

$$L_{i}(X) = \prod_{\substack{j \in [0,n) \\ j \neq i}} \frac{X - j}{i - j} \tag{7}$$

Applying the KZG homomorphism to Equation (6):

$$c\left(\phi\right) = \prod_{i=0}^{n-1} c\left(L_i\right)^{v_i} \tag{8}$$

Represent vector \vec{v} with a polynomial ϕ s.t. $\phi(i) = v_i$:

$$\phi(X) = \sum_{i=0}^{n-1} v_i \cdot L_i(X) \tag{6}$$

$$L_{i}(X) = \prod_{\substack{j \in [0,n) \\ j \neq i}} \frac{X - j}{i - j} \tag{7}$$

Applying the KZG homomorphism to Equation (6):

$$c\left(\phi\right) = \prod_{i=0}^{n-1} c\left(L_i\right)^{v_i} \tag{8}$$

Note: Public parameters include commitments $c(L_i)$.

Represent vector \vec{v} with a polynomial ϕ s.t. $\phi(i) = v_i$:

$$\phi(X) = \sum_{i=0}^{n-1} v_i \cdot L_i(X)$$
 (6)

$$L_i(X) = \prod_{\substack{j \in [0,n) \\ j \neq i}} \frac{X - j}{i - j} \tag{7}$$

Applying the KZG homomorphism to Equation (6):

$$c\left(\phi\right) = \prod_{i=0}^{n-1} c\left(L_i\right)^{\nu_i} \tag{8}$$

Note: Public parameters include commitments $c(L_i)$. Can derive from $g^{\tau'}$'s.

Assume v_i changed to $v_i + \delta_i$.

Assume v_i changed to $v_i + \delta_i$. Old polynomial was:

$$\phi(X) = \sum_{i=0}^{n-1} v_i \cdot L_i(X) \tag{9}$$

Assume v_i changed to $v_i + \delta_i$. Old polynomial was:

$$\phi(X) = \sum_{i=0}^{n-1} v_i \cdot L_i(X) \tag{9}$$

Updated polynomial will be:

$$\phi'(X) = \phi(X) + \delta_i L_i(X) \tag{10}$$

Assume v_i changed to $v_i + \delta_i$. Old polynomial was:

$$\phi(X) = \sum_{i=0}^{n-1} v_i \cdot L_i(X) \tag{9}$$

Updated polynomial will be:

$$\phi'(X) = \phi(X) + \delta_i L_i(X) \tag{10}$$

Updated commitment will be:

$$c(\phi') = c(\phi) \cdot c(L_i)^{\delta_i}$$
(11)

Updating the Digest = Updating Polynomial & Updating Commitment

Assume v_i changed to $v_i + \delta_i$. Old polynomial was:

$$\phi(X) = \sum_{i=0}^{n-1} v_i \cdot L_i(X) \tag{9}$$

Updated polynomial will be:

$$\phi'(X) = \phi(X) + \delta_i L_i(X) \tag{10}$$

Updated commitment will be:

$$c(\phi') = c(\phi) \cdot c(L_i)^{\delta_i}$$
(11)

Thus, for our purposes, each upk_i will include $c(L_i)$.

A proof π_i for v_i must convince that $\phi(i) = v_i$

A proof π_i for v_i must convince that $\phi(i) = v_i \Leftrightarrow \phi \mod (X - i) = v_i$.

A proof π_i for v_i must convince that $\phi(i) = v_i \Leftrightarrow \phi \mod (X - i) = v_i$.

$$q_i(X) = \frac{\phi(X) - v_i}{X - i} \tag{12}$$

(13)

A proof π_i for v_i must convince that $\phi(i) = v_i \Leftrightarrow \phi \mod (X - i) = v_i$.

$$q_i(X) = \frac{\phi(X) - v_i}{X - i} \tag{12}$$

$$\pi_i = c\left(q_i\right) = g^{q_i(\tau)} \tag{13}$$

A proof π_i for v_i must convince that $\phi(i) = v_i \Leftrightarrow \phi \mod (X - i) = v_i$.

$$q_i(X) = \frac{\phi(X) - v_i}{X - i} \tag{12}$$

$$\pi_i = c\left(q_i\right) = g^{q_i(\tau)} \tag{13}$$

To verify, use pairings:

A proof π_i for v_i must convince that $\phi(i) = v_i \Leftrightarrow \phi \mod (X - i) = v_i$.

$$q_i(X) = \frac{\phi(X) - v_i}{X - i} \tag{12}$$

$$\pi_i = c\left(q_i\right) = g^{q_i(\tau)} \tag{13}$$

To verify, use pairings:

$$e(c(\phi)/g^{v_i},g) = e(\pi_i,g^{\mathsf{T}}/g^i) \Leftrightarrow \tag{14}$$

(15)

A proof π_i for v_i must convince that $\phi(i) = v_i \Leftrightarrow \phi \mod (X - i) = v_i$.

$$q_i(X) = \frac{\phi(X) - v_i}{X - i} \tag{12}$$

$$\pi_i = c\left(q_i\right) = g^{q_i(\tau)} \tag{13}$$

To verify, use pairings:

$$e(c(\phi)/g^{v_i},g) = e(\pi_i,g^{\tau}/g^i) \Leftrightarrow$$
 (14)

$$\phi(\tau) - v_i = q_i(\tau)(\tau - i) \tag{15}$$

Outline

Appendix

Previous Work

Background

Kate-Zaverucha-Goldberg (KZG) Polynomial Commitments

VCs from KZG Commitments to Lagrange Polynomials

Our Techniques

```
Updating Proofs (Case i = j
```

Updating Proofs (Case $i \neq j$

Aggregating Proofs into Subvector Proofs

Extras

We know $\pi'_i = c(q'_i)$, where:

We know $\pi'_i = c(q'_i)$, where:

$$q_i'(X) = \frac{\phi'(X) - (v_i + \delta_i)}{X - i}$$
 (16)

We know $\pi'_i = c(q'_i)$, where:

$$q'_{i}(X) = \frac{\phi'(X) - (v_{i} + \delta_{i})}{X - i}$$

$$= \frac{\left(\phi(X) + \delta_{i}L_{i}(X)\right) - v_{i} - \delta_{i}}{X - i}$$
(16)

$$=\frac{\left(\phi(X)+\delta_{i}L_{i}(X)\right)-v_{i}-\delta_{i}}{X-i}\tag{17}$$

(18)

(19)

We know $\pi'_i = c(q'_i)$, where:

$$q'_{i}(X) = \frac{\phi'(X) - (v_{i} + \delta_{i})}{X - i}$$
(16)

$$=\frac{\left(\phi(X)+\delta_{i}L_{i}(X)\right)-v_{i}-\delta_{i}}{X-i}$$
(17)

$$= \frac{\phi(X) - v_i}{X - i} - \frac{\delta_i(L_i(X) - 1)}{X - i}$$
 (18)

(19)

We know $\pi'_i = c(q'_i)$, where:

$$q_i'(X) = \frac{\phi'(X) - (v_i + \delta_i)}{X - i}$$
(16)

$$=\frac{\left(\phi(X)+\delta_{i}L_{i}(X)\right)-v_{i}-\delta_{i}}{X-i}\tag{17}$$

$$= \frac{\phi(X) - v_i}{X - i} - \frac{\delta_i(L_i(X) - 1)}{X - i}$$
 (18)

$$q_i'(X) = q_i(X) + \delta_i \left(\frac{L_i(X) - 1}{X - i} \right)$$
(19)

We know $\pi'_i = c(q'_i)$, where:

$$q_{i}'(X) = \frac{\phi'(X) - (v_{i} + \delta_{i})}{X - i}$$
(16)

$$=\frac{\left(\phi(X)+\delta_{i}L_{i}(X)\right)-v_{i}-\delta_{i}}{X-i}\tag{17}$$

$$= \frac{\phi(X) - v_i}{X - i} - \frac{\delta_i(L_i(X) - 1)}{X - i}$$
 (18)

$$q_i'(X) = q_i(X) + \delta_i \left(\frac{L_i(X) - 1}{X - i} \right)$$
 (19)

Applying KZG homomorphism, it follows that:

We know $\pi'_i = c(q'_i)$, where:

$$q_i'(X) = \frac{\phi'(X) - (v_i + \delta_i)}{X - i}$$
 (16)

$$=\frac{\left(\phi(X)+\delta_{i}L_{i}(X)\right)-v_{i}-\delta_{i}}{X-i}\tag{17}$$

$$= \frac{\phi(X) - v_i}{X - i} - \frac{\delta_i(L_i(X) - 1)}{X - i}$$
 (18)

$$q_i'(X) = q_i(X) + \delta_i \left(\frac{L_i(X) - 1}{X - i} \right)$$
(19)

Applying KZG homomorphism, it follows that:

$$\pi_i' = c\left(q_i'\right) = c\left(q_i\right) \cdot c\left(\frac{L_i(X) - 1}{X - i}\right)^{\delta_i} \tag{20}$$

We know $\pi'_i = c(q'_i)$, where:

$$q'_{i}(X) = \frac{\phi'(X) - (v_{i} + \delta_{i})}{X - i}$$
(16)

$$=\frac{\left(\phi(X)+\delta_{i}L_{i}(X)\right)-v_{i}-\delta_{i}}{X-i}\tag{17}$$

$$= \frac{\phi(X) - v_i}{X - i} - \frac{\delta_i(L_i(X) - 1)}{X - i}$$
 (18)

$$q_i'(X) = q_i(X) + \delta_i \left(\frac{L_i(X) - 1}{X - i} \right)$$
(19)

Applying KZG homomorphism, it follows that:

$$\pi_i' = c\left(q_i'\right) = c\left(q_i\right) \cdot c\left(\frac{L_i(X) - 1}{X - i}\right)^{\delta_i} \tag{20}$$

Thus, each upk_i must include $c\left(\frac{L_i(X)-1}{X-i}\right)$.

We know $\pi'_i = c(q'_i)$, where:

$$q_{i}'(X) = \frac{\phi'(X) - (v_{i} + \delta_{i})}{X - i}$$
 (16)

$$=\frac{\left(\phi(X)+\delta_{i}L_{i}(X)\right)-v_{i}-\delta_{i}}{X-i}\tag{17}$$

$$= \frac{\phi(X) - v_i}{X - i} - \frac{\delta_i(L_i(X) - 1)}{X - i}$$
 (18)

$$q_i'(X) = q_i(X) + \delta_i \left(\frac{L_i(X) - 1}{X - i} \right)$$
(19)

Applying KZG homomorphism, it follows that:

$$\pi_i' = c\left(q_i'\right) = c\left(q_i\right) \cdot c\left(\frac{L_i(X) - 1}{X - i}\right)^{\delta_i} \tag{20}$$

Thus, each upk_i must include $c\left(\frac{L_i(X)-1}{X-i}\right)$. Can derive these from g^{T^i} 's!

$$q_i'(X) = \frac{\phi'(X) - v_i}{X - i}$$
 (21)

$$q_i'(X) = \frac{\phi'(X) - v_i}{X - i}$$
 (21)

$$=\frac{\left(\phi(X)+\delta_{j}L_{j}(X)\right)-v_{i}}{X-i}$$
(22)

Once again, we know $\pi'_i = c(q'_i)$, where:

$$q_i'(X) = \frac{\phi'(X) - v_i}{X - i}$$
 (21)

$$=\frac{\left(\phi(X)+\delta_{j}L_{j}(X)\right)-v_{i}}{X-i}$$
(22)

$$= \frac{\phi(X) - v_i}{X - i} - \frac{\delta_j L_j(X)}{X - i}$$
 (23)

(24)

$$q_i'(X) = \frac{\phi'(X) - v_i}{X - i}$$
 (21)

$$=\frac{\left(\phi(X)+\delta_{j}L_{j}(X)\right)-v_{i}}{X-i}\tag{22}$$

$$= \frac{\phi(X) - v_i}{X - i} - \frac{\delta_j L_j(X)}{X - i}$$
 (23)

$$q_i'(X) = q_i(X) + \delta_j \left(\frac{L_j(X)}{X - i} \right)$$
 (24)

Once again, we know $\pi'_i = c(q'_i)$, where:

$$q_i'(X) = \frac{\phi'(X) - v_i}{X - i}$$
 (21)

$$=\frac{\left(\phi(X)+\delta_{j}L_{j}(X)\right)-v_{i}}{X-i}$$
(22)

$$= \frac{\phi(X) - v_i}{X - i} - \frac{\delta_j L_j(X)}{X - i}$$
 (23)

$$q_i'(X) = q_i(X) + \delta_j \left(\frac{L_j(X)}{X - i} \right)$$
 (24)

Applying KZG homomorphism, it follows that:

Once again, we know $\pi'_i = c(q'_i)$, where:

$$q_i'(X) = \frac{\phi'(X) - v_i}{X - i}$$
 (21)

$$=\frac{\left(\phi(X)+\delta_{j}L_{j}(X)\right)-v_{i}}{X-i}$$
(22)

$$= \frac{\phi(X) - v_i}{X - i} - \frac{\delta_j L_j(X)}{X - i}$$
 (23)

$$q_i'(X) = q_i(X) + \delta_j\left(\frac{L_j(X)}{X - i}\right) \tag{24}$$

Applying KZG homomorphism, it follows that:

$$\pi_i' = c\left(q_i'\right) = c\left(q_i\right) \cdot c\left(\frac{L_j(X)}{X - i}\right)^{\delta_j} \tag{25}$$

Once again, we know $\pi'_i = c(q'_i)$, where:

$$q_i'(X) = \frac{\phi'(X) - v_i}{X - i} \tag{21}$$

$$=\frac{\left(\phi(X)+\delta_{j}L_{j}(X)\right)-v_{i}}{X-i}\tag{22}$$

$$= \frac{\phi(X) - v_i}{X - i} - \frac{\delta_j L_j(X)}{X - i}$$
 (23)

$$q_i'(X) = q_i(X) + \delta_j \left(\frac{L_j(X)}{X - i} \right)$$
 (24)

Applying KZG homomorphism, it follows that:

$$\pi'_{i} = c\left(q'_{i}\right) = c\left(q_{i}\right) \cdot c\left(\frac{L_{j}(X)}{X - i}\right)^{\delta_{j}} \tag{25}$$

Problem: To update any π_i after a change to j, need $c\left(\frac{L_j(X)}{X-i}\right)$, $\forall i \neq j$

Once again, we know $\pi'_i = c(q'_i)$, where:

$$q_i'(X) = \frac{\phi'(X) - v_i}{X - i} \tag{21}$$

$$=\frac{\left(\phi(X)+\delta_{j}L_{j}(X)\right)-v_{i}}{X-i}$$
(22)

$$= \frac{\phi(X) - v_i}{X - i} - \frac{\delta_j L_j(X)}{X - i}$$
 (23)

$$q_i'(X) = q_i(X) + \delta_j \left(\frac{L_j(X)}{X - i} \right)$$
 (24)

Applying KZG homomorphism, it follows that:

$$\pi'_{i} = c\left(q'_{i}\right) = c\left(q_{i}\right) \cdot c\left(\frac{L_{j}(X)}{X - i}\right)^{\delta_{j}} \tag{25}$$

Problem: To update any π_i after a change to j, need $c\left(\frac{L_j(X)}{X-i}\right)$, $\forall i \neq j \Rightarrow O(n)$ -sized upk_j .

Once again, we know $\pi_i' = c(q_i)$, where:

$$q_i'(X) = \frac{\phi'(X) - v_i}{X - i} \tag{21}$$

$$=\frac{\left(\phi(X)+\delta_{j}L_{j}(X)\right)-v_{i}}{X-i}$$
(22)

$$= \frac{\phi(X) - v_i}{X - i} - \frac{\delta_j L_j(X)}{X - i} \tag{23}$$

$$q_i'(X) = q_i(X) + \delta_j \left(\frac{L_j(X)}{X - i} \right)$$
 (24)

Applying KZG homomorphism, it follows that:

$$\pi_i' = c\left(q_i'\right) = c\left(q_i\right) \cdot c\left(\frac{L_j(X)}{X - i}\right)^{\delta_j} \tag{25}$$

Problem: To update any π_i after a change to j, need $c\left(\frac{L_j(X)}{X-i}\right)$, $\forall i \neq j \Rightarrow O(n)$ -sized upk_j .

Solution: Compute $c\left(\frac{L_i(X)}{X-i}\right)$ in O(1) time from information in upk_i and upk_j .

Let
$$A(X) = \prod_{i \in [0,n)} (X - i)$$
.

Let $A(X) = \prod_{i \in [0,n)} (X - i)$. Then:

$$\frac{L_j(X)}{X - i} = \frac{1}{A'(j)} \cdot \frac{A(X)}{(X - j)(X - i)}$$
 (26)

Next, use **partial fraction decomposition** to rewrite:

Let $A(X) = \prod_{i \in [0,n)} (X - i)$. Then:

$$\frac{L_j(X)}{X - i} = \frac{1}{A'(j)} \cdot \frac{A(X)}{(X - j)(X - i)}$$
 (26)

Next, use partial fraction decomposition to rewrite:

$$\frac{A(X)}{(X-i)(X-j)} = \frac{1}{i-j} \cdot \frac{A(X)}{X-i} + \frac{1}{j-i} \cdot \frac{A(X)}{X-j}$$
 (27)

Let $A(X) = \prod_{i \in [0,n)} (X - i)$. Then:

$$\frac{L_j(X)}{X - i} = \frac{1}{A'(j)} \cdot \frac{A(X)}{(X - j)(X - i)}$$
 (26)

Next, use partial fraction decomposition to rewrite:

$$\frac{A(X)}{(X-i)(X-j)} = \frac{1}{i-j} \cdot \frac{A(X)}{X-i} + \frac{1}{j-i} \cdot \frac{A(X)}{X-j}$$
 (27)

Now, replacing Equation (27) into Equation (26):

$$\frac{L_j(X)}{X-i} = \frac{1}{A'(j)} \cdot \left(\frac{1}{i-j} \cdot \frac{A(X)}{X-i} + \frac{1}{j-i} \cdot \frac{A(X)}{X-j}\right) \tag{28}$$

Let $A(X) = \prod_{i \in [0,n)} (X - i)$. Then:

$$\frac{L_j(X)}{X - i} = \frac{1}{A'(j)} \cdot \frac{A(X)}{(X - j)(X - i)} \tag{26}$$

Next, use partial fraction decomposition to rewrite:

$$\frac{A(X)}{(X-i)(X-j)} = \frac{1}{i-j} \cdot \frac{A(X)}{X-i} + \frac{1}{j-i} \cdot \frac{A(X)}{X-j}$$
 (27)

Now, replacing Equation (27) into Equation (26):

$$\frac{L_j(X)}{X-i} = \frac{1}{A'(j)} \cdot \left(\frac{1}{i-j} \cdot \frac{A(X)}{X-i} + \frac{1}{j-i} \cdot \frac{A(X)}{X-j}\right) \tag{28}$$

As a result:

Let $A(X) = \prod_{i \in [0, n)} (X - i)$. Then:

$$\frac{L_j(X)}{X - i} = \frac{1}{A'(j)} \cdot \frac{A(X)}{(X - j)(X - i)}$$
 (26)

(28)

Next, use partial fraction decomposition to rewrite:

$$\frac{A(X)}{(X-i)(X-j)} = \frac{1}{i-j} \cdot \frac{A(X)}{X-i} + \frac{1}{j-i} \cdot \frac{A(X)}{X-j}$$
 (27)

Now, replacing Equation (27) into Equation (26):

$$\frac{L_j(X)}{X-i} = \frac{1}{A'(j)} \cdot \left(\frac{1}{i-j} \cdot \frac{A(X)}{X-i} + \frac{1}{j-i} \cdot \frac{A(X)}{X-j}\right)$$

As a result:

$$c\left(\frac{L_j(X)}{X-i}\right) = \left(c\left(\frac{A(X)}{X-i}\right)^{\frac{1}{i-j}} \cdot c\left(\frac{A(X)}{X-j}\right)^{\frac{1}{j-i}}\right)^{\frac{1}{A'(j)}}$$
(29)

Let $A(X) = \prod_{i \in [0,n)} (X - i)$. Then:

$$\frac{L_j(X)}{X - i} = \frac{1}{A'(j)} \cdot \frac{A(X)}{(X - j)(X - i)}$$
 (26)

(27)

(28)

(29)

Next, use **partial fraction decomposition** to rewrite:

$$\frac{A(X)}{(X-i)(X-i)} = \frac{1}{i-i} \cdot \frac{A(X)}{X-i} + \frac{1}{i-i} \cdot \frac{A(X)}{X-i}$$

Now, replacing Equation (27) into Equation (26):

$$\frac{L_j(X)}{X-i} = \frac{1}{A'(i)} \cdot \left(\frac{1}{i-i} \cdot \frac{A(X)}{X-i} + \frac{1}{i-i} \cdot \frac{A(X)}{X-i} \right)$$

As a result:

$$C\left(\frac{L_j(X)}{X-i}\right) = \left(C\left(\frac{A(X)}{X-i}\right)^{\frac{1}{i-j}} \cdot C\left(\frac{A(X)}{X-i}\right)^{\frac{1}{j-i}}\right)^{\frac{1}{A'(j)}}$$

Thus, each upk_i must include $c\left(\frac{A(X)}{X-i}\right)$ and A'(i).

Let $A(X) = \prod_{i \in [0, n)} (X - i)$. Then:

$$\frac{L_j(X)}{X - i} = \frac{1}{A'(j)} \cdot \frac{A(X)}{(X - j)(X - i)}$$
 (26)

Next, use partial fraction decomposition to rewrite:

$$\frac{A(X)}{(X-i)(X-i)} = \frac{1}{i-i} \cdot \frac{A(X)}{X-i} + \frac{1}{i-i} \cdot \frac{A(X)}{X-i}$$

Now, replacing Equation (27) into Equation (26):

$$\frac{L_j(X)}{X-i} = \frac{1}{A'(j)} \cdot \left(\frac{1}{i-j} \cdot \frac{A(X)}{X-i} + \frac{1}{j-i} \cdot \frac{A(X)}{X-j}\right)$$

As a result:

$$C\left(\frac{L_j(X)}{X-i}\right) = \left(C\left(\frac{A(X)}{X-i}\right)^{\frac{1}{i-j}} \cdot C\left(\frac{A(X)}{X-i}\right)^{\frac{1}{j-i}}\right)^{\frac{1}{A'(j)}}$$

Thus, each upk_i must include $c\left(\frac{A(X)}{X-i}\right)$ and A'(i). Can derive from g^{T^i} 's!

(27)

(28)

Given many $(\pi_i)_{i \in I}$, can aggregate into succinct **subvector proof** π_I .

Given many $(\pi_i)_{i\in I}$, can aggregate into succinct **subvector proof** π_I .

Given many $(\pi_i)_{i\in I}$, can aggregate into succinct **subvector proof** π_I .

High-level ideas, thanks to Drake and Buterin:

• Each π_i is a commitment to quotient q_i of division $\frac{\phi(X)}{X-i}$

Given many $(\pi_i)_{i\in I}$, can aggregate into succinct **subvector proof** π_I .

- Each π_i is a commitment to quotient q_i of division $\frac{\phi(X)}{X-i}$
- π_{I} is a commitment to quotient q_{I} of division $\frac{\phi(X)}{\prod_{i \in I}(X-i)}$ (see [KZG10])

Given many $(\pi_i)_{i \in I}$, can aggregate into succinct **subvector proof** π_I .

- Each π_i is a commitment to quotient q_i of division $\frac{\phi(X)}{X-i}$
- π_I is a commitment to quotient q_I of division $\frac{\phi(X)}{\prod_{i \in I}(X-i)}$ (see [KZG10])
- Compute c_i 's such that $\frac{1}{\prod_{i \in I} (X i)} = \sum_{i \in I} c_i \frac{1}{X i}$

Given many $(\pi_i)_{i \in I}$, can aggregate into succinct **subvector proof** π_I .

- Each π_i is a commitment to quotient q_i of division $\frac{\phi(X)}{X-i}$
- π_I is a commitment to quotient q_I of division $\frac{\phi(X)}{\prod_{i \in I}(X-i)}$ (see [KZG10])
- Compute c_i 's such that $\frac{1}{\prod_{i \in I}(X-i)} = \sum_{i \in I} c_i \frac{1}{X-i}$
- Then, $q_i(X) = \sum_{i \in I} c_i \cdot q_i(X)$

Given many $(\pi_i)_{i \in I}$, can aggregate into succinct **subvector proof** π_I .

- Each π_i is a commitment to quotient q_i of division $\frac{\phi(X)}{X-i}$
- π_I is a commitment to quotient q_I of division $\frac{\phi(X)}{\prod_{i \in I}(X-i)}$ (see [KZG10])
- Compute c_i 's such that $\frac{1}{\prod_{i \in I} (X i)} = \sum_{i \in I} c_i \frac{1}{X i}$
- Then, $q_i(X) = \sum_{i \in I} c_i \cdot q_i(X)$
- Thus, $\pi_I = \prod_{i \in I} \pi_i^{c_i}$

Outline

Appendix

```
Previous Work
```

Background

Kate-Zaverucha-Goldberg (KZG) Polynomial Commitments

VCs from KZG Commitments to Lagrange Polynomials

Our Techniques

```
Jpdating Proofs (Case i = j
```

Updating Proofs (Case i ≠ j

Aggregating Proofs into Subvector Proofs

Extras

References i

Dan Boneh, Benedikt Bünz, and Ben Fisch.
Batching Techniques for Accumulators with Applications to IOPs and Stateless Blockchains.

In CRYPTO'19, 2019.

Jan Camenisch, Maria Dubovitskaya, Kristiyan Haralambiev, and Markulf Kohlweiss.

Composable and Modular Anonymous Credentials: Definitions and Practical

Constructions.

In ASIACRYPT'15, 2015.

Dario Catalano and Dario Fiore.

Vector Commitments and Their Applications.
In PKC'13, 2013.

References ii

Matteo Campanelli, Dario Fiore, Nicola Greco, Dimitris Kolonelos, and Luca Nizzardo.

Vector Commitment Techniques and Applications to Verifiable Decentralized

Storage, 2020.

https://eprint.iacr.org/2020/149.

Alexander Chepurnoy, Charalampos Papamanthou, and Yupeng Zhang. Edrax: A Cryptocurrency with Stateless Transaction Validation, 2018. https://eprint.iacr.org/2018/968.

Dankrad Feist and Dmitry Khovratovich.

Fast amortized Kate proofs, 2020.

https://github.com/khovratovich/K

https://github.com/khovratovich/Kate.

References iii

- Sergey Gorbunov, Leonid Reyzin, Hoeteck Wee, and Zhenfei Zhang.
 Pointproofs: Aggregating Proofs for Multiple Vector Commitments, 2020.
 https://eprint.iacr.org/2020/419.
- Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg.

 Constant-Size Commitments to Polynomials and Their Applications.
 In ASIACRYPT'10, 2010.
- Russell W. F. Lai and Giulio Malavolta. **Subvector Commitments with Application to Succinct Arguments.**In CRYPTO'19, 2019.

References iv

Ralph C. Merkle.

A Digital Signature Based on a Conventional Encryption Function.

In Carl Pomerance, editor, *CRYPTO '87*, pages 369–378, Berlin, Heidelberg, 1988. Springer Berlin Heidelberg.

Alin Tomescu, Robert Chen, Yiming Zheng, Ittai Abraham, Benny Pinkas, Guy Golan Gueta, and Srinivas Devadas.

Towards Scalable Threshold Cryptosystems.

In IEEE S&P'20, May 2020.

Alin Tomescu.

How to Keep a Secret and Share a Public Key (Using Polynomial Commitments).

PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2020.