PRUŽNOSŤ A PEVNOSŤ

- je to mechanika poddajných telies
- budeme zisťovať druh a veľkosť deformácií telies, voliť vhodný materiál a navrhovať rozmery súčiastok

Teleso môže byť zaťažené:

- vonkajšími silami tiaž telesa, užitočné zaťaženie (zaťažením sa každá súčiastka hoci len nebadateľne deformuje)
- vnútornými silami pôsobia medzi molekulami

Vplyvom vnútorných síl má teleso schopnosť do určitej miery
odporovať vplyvom vonkajších síl – <mark>pevnosť materiálu.</mark>
Pri zaťažení sa teleso deformuje tak dlho, kým nie sú vnútorné sily
v rovnováhe s vonkajšími.
Keď po odľahčení teleso nadobudne pôvodný tvar hovoríme o
doplň 1 (prvý polrok!)
Po prekročení medze pružnosti nastávajú
polrok!)

Keď vonkajšie sily premôžu vnútorné sily, poruší sa celistvosť – súčiastka sa poškodí.

Na obrázku je vidieť, ako zdvíhacie zariadenie unesie bezproblémovo náklad s hmotnosťou, ktorá neprekračuje jeho maximálnu nosnosť. V prípade zvýšenia hmotnosti nákladu vzniknú v konštrukcii veľké vnútorné sily, ktoré sú príčinou napätia. Každý konštrukčný materiál má určenú tabuľkovú hodnotu maximálneho napätia, po prekročení ktorého dochádza k narušeniu konštrukcie. Túto hodnotu nazývame medzou pevnosti.

DRUHY NAMÁHANIA

Prepisat',

prekreslit' a

vediet'!!!

Súčiastka pred zafažením	Súčiastka po zatažení	Poloha sily (momentu) vzhľadom na prierez	Zafaženie	Napātie	Prierez (modul)
s	↓ F	ŤAH sila pôsobí v osi, kolmo na prierez, smerom von z prierezu	F	σ _t	s
S	F F	TLAK sila pôsobí v osi, kolmo na prierez, smerom do prierezu	F	σ_{d}	s
S	F	STRIH sila pôsobí kolmo na os a leží v priereze	F	τ,	s
	SF	OHYB moment (F . r) pôsobi kolmo na prierez	M _o	σο	W _o
S	F	KRÚTENIE moment (F . r) pôsob v priereze	į M _κ	τ _k	W.

DRUHY DEFORMÁCIÍ

Pôsobením vonkajších síl sa telesá vždy deformujú – pri ťahu naťahujú, pri tlaku stláčajú, pri ohybe ohýbajú atď.

Každá deformácia pozostáva z :

1. z dĺžkovej zmeny

2. zo skosenia – zmeny pravouhlosti

Obr. 3.4

teleso

skosenie

Aby sme zjednotili a upresnili dĺžkovú deformáciu, vylúčime vplyv pôvodnej dĺžky telesa zavedením pojmu pomerné predĺženie ε (epsilon).

$$\varepsilon = \frac{\Delta l}{l_0}$$

 Δ - delta $\Delta l = l - l_0$ - absolútne predĺženie l_0 - pôvodná dĺžka l - dĺžka po zaťažení

pomerné posunutie (skos) - (epsilon).

$$\mathbf{\gamma} = rac{\Delta l}{l_0}$$

PRÍKLAD:

Tiahlo malo pôvodnú dĺžku 2m. Vplyvom zaťaženia sa predĺžilo na dĺžku 2,0015m. Aké je pomerné predĺženie? Aké je skutočné (absolútne) predĺženie?

NAMÁHANIE ŤAHOM, TLAKOM

Jednou rukou ťahajte ukazovák druhej ruky. To, čo cítite vo vnútri ukazováka je napätie. Tou istou silou ťahajte malíček. Kedy cítite väčšie napätie? Čo z toho môžete usúdiť?

Podiel vnútornej sily a prierezu, v ktorom sila pôsobí, sa nazýva

<u>napätie</u>.

Pri namáhaní na ťah/tlak sú sila aj napätie <u>kolmé</u> na prierez.

Sila F kolmá na prierez vyvolá normálové napätie:

$$\sigma = \frac{F}{S}$$
 (MPa = $\frac{N}{mm^2}$) - MPa - pretože rozmery súčiastok v strojárstve sa udávajú v mm.

Normálové napätie predstavuje väzbu, ktorá bráni časticiam

telesa <u>oddialiť</u> sa od seba.

Pri ťahu/tlaku je napätie rozložené rovnomerne.

 σ_t – napätie v ťahu

 $\sigma_{\rm d}$ – napätie v ťahu

Pri ako namáhaní je ešte rovnomerné rozloženie napätia? Pri akom nerovnomerné?

<u>Dovolené napätie</u> – najväčšie napätie, ktoré môžeme v určitom priereze, s prihliadnutím na kvalitu materiálu a prevádzkové podmienky, pripustiť.

Označujeme ho $\sigma_{\rm D}$ a indexom druhu namáhania ($\sigma_{\rm Dt}$ - dovolené napätie v ťahu).

skutočné napätie ≤ dovolené napätie

$$\sigma_{\rm t} \leq \sigma_{
m Dt}$$

PRÍKLAD:

Vypočítajte normálové napätie v kruhovom priereze s priemerom 30mm, keď F = 10kN.

Ťahová skúška

ZOPAKOVAŤ Z STN 1. POLROK!!!

- Po prekročení akej medze nastávajú trvalé deformácie?
- V ktorom bode je najvyššie napätie, ktoré materiál vydrží?
- Po akú medzu je závislosť napätia a predĺženie priamo úmerné?
- Čo znamená medza klzu?