Tutorial 3

Hadoop Streaming using MapReduce Model

To demonstrate how the Hadoop streaming utility can run Python code as a MapReduce application on the Hadoop cluster, the **WordCount** application can be implemented as two Python programs: (mapper.py and reducer.py). mapper.py is the Python code that implements the logic in the map phase of **WordCount**. It reads data from **stdin**, splits the lines into words, and outputs each word with its intermediate count to **stdout**.

Create a folder Tutorial_3 on Ubuntu Desktop or any other folder name of your choice and write the Python code in the following files named as mapper.py and reducer.py. The below screenshot showed the commands to create the folder (Tutorial_3) on Ubuntu Desktop. Then create the file mapper.py and type the code and similarly for reducer.py.

```
hduser@muhammad-VM: ~/Desktop/Tutorial_3 Q = - U ×

hduser@muhammad-VM:~$ pwd

/home/hduser

hduser@muhammad-VM:~$ cd Desktop

hduser@muhammad-VM:~/Desktop$ mkdir Tutorial_3

hduser@muhammad-VM:~/Desktop$ cd Tutorial_3/

hduser@muhammad-VM:~/Desktop/Tutorial_3$ nano mapper.py

hduser@muhammad-VM:~/Desktop/Tutorial_3$ nano reducer.py

hduser@muhammad-VM:~/Desktop/Tutorial_3$ nano reducer.py
```

Part I: WordCount Frequency

1) Type the following Python code in the files in the Ubuntu VM using **nano/ gedit** editor as mentioned in the screenshot.

```
hduser@muhammad-VM: ~/Desktop/Tutorial_3
 GNU nano 6.2
                                     mapper.pv
import sys
for line in sys.stdin:
       words = line.split()
       for word in words:
                  Write the key-value pair to stdout to be processed by
               print('{0}\t{1}'.format(word, 1))
               Write Out ^W Where Is
                                       ^K Cut
                                                       Execute
                                                                    Location
  Help
               Read File ^\ Replace
                                          Paste
                                                       Justify
                                                                     Go To Line
```

symbol represents the comments in the Python.

reducer.py

```
hduser@muhammad-VM: ~/Desktop/Tutorial_3
                                                                                        GNU nano 6.2
                                           reducer.py *
import sys
curr_word = None
curr_count = 0
for line in sys.stdin:
         word, count = line.split('\t')
         count = int(count)
         if word == curr_word:
                   curr_count += count
                                  and its number of occurrences as a key-value
                   if curr_word:
                            print('{0}\t{1}'.format(curr_word, curr_count))
                  curr_word = word
curr_count = count
if curr_word == word:
         print('{0}\t{1}'.format(curr_word, curr_count))
               ^O Write Out <sup>^W</sup> Where Is
^R Read File <mark>^\</mark> Replace
                                             ^K Cut
^U Paste
   Help
Exit
                                                                             ^C Location
^/ Go To Line
                                                              ^T Execute
                                                                 Justify
```

2) Before hadoop streaming, we provide the executable privileges to mapper.py and reducer.py files by using the command. (Check Tutorial 1 for further details).

\$chmod 700 mapper.py \$chmod 700 reducer.py

```
hduser@muhammad-VM:~/Downloads/Tutorial_3/
hduser@muhammad-VM:~/Downloads$ cd Tutorial_3/
hduser@muhammad-VM:~/Downloads/Tutorial_3$ ls -l
total 144
-rw----- 1 hduser hadoopgroup 135287 Feb 25 2022 britney-spears.txt
-rw----- 1 hduser hadoopgroup 426 Feb 25 2022 mapper.py
-rw------ 1 hduser hadoopgroup 744 Feb 25 2022 reducer.py
hduser@muhammad-VM:~/Downloads/Tutorial_3$ chmod 700 mapper.py
hduser@muhammad-VM:~/Downloads/Tutorial_3$ chmod 700 reducer.py
hduser@muhammad-VM:~/Downloads/Tutorial_3$ ls -l
total 144
-rw------ 1 hduser hadoopgroup 135287 Feb 25 2022 britney-spears.txt
-rwx------ 1 hduser hadoopgroup 426 Feb 25 2022 mapper.py
-rwx------ 1 hduser hadoopgroup 744 Feb 25 2022 reducer.py
hduser@muhammad-VM:~/Downloads/Tutorial_3$
```

Check that the python code is working correctly or not. Use the following Linux command on Ubuntu terminal/ shell as mentioned below

This shows that the syntax of the python code is correct. If you are facing difficulty in writing the Python code, you can download the files from Moodle and copy them into Tutorial_3 folder.

3) The MapReduce framework's streaming functionality is one of the properties that can be configured in Hadoop using the mapred-site.xml file. Without writing a Java code, Hadoop Streaming is a tool that lets you design and execute MapReduce tasks using arbitrary executables as the mapper and/or reducer. Before the execution of Hadoop streaming, you must update mapred-site.xml file in the folder at the location /usr/local/hadoop/etc/hadoop/

Comment the already written property in the mapred.xml file and write the below mentioned code. The file after update looks like as mentioned below

nano /usr/local/hadoop/etc/hadoop/mapred-site.xml

Comment the previous property in the **mapred-site.xml** file and append as the three new properties for Hadoop environment as shown in the above screenshot. These are essential for the execution of Hadoop streaming jobs.

4) Download a text input file from the Moodle named as **britney-spears.txt** (Song lyrics). This file will store in the Downloads folder in Ubuntu VM automatically. Move this text file from your Downloads folder into **hdfs** for Map Reduce streaming jobs. The steps to move the file from Downloads folder to the "user1" folder on **hdfs** is shown below

```
hduser@muhammad-VM: ~/Downloads/Tutorial_3
hduser@muhammad-VM:~/Downloads/Tutorial_3$ jps
7443 NameNode
8071 NodeManager
7594 DataNode
7947 ResourceManager
9579 Jps
7775 SecondaryNameNode
hduser@muhammad-VM:~/Downloads/Tutorial_3$ hadoop fs -ls /
hduser@muhammad-VM:~/Downloads/Tutorial_3$ hadoop fs -mkdir /user1
hduser@muhammad-VM:~/Downloads/Tutorial_3$ hadoop fs -ls /
Found 1 items
drwxr-xr-x
             - hduser supergroup
                                          0 2024-01-30 23:28 /user1
hduser@muhammad-VM:~/Downloads/Tutorial_3$ ls
britney-spears.txt mapper.py reducer.py
hduser@muhammad-VM:~/Downloads/Tutorial_3$ hadoop fs -put ./britney-spears.txt /user1
hduser@muhammad-VM:~/Downloads/Tutorial_3$ hadoop fs -ls /user1
Found 1 items
                                     135287 2024-01-30 23:28 /user1/britney-spears.txt
-rw-r--r-- 1 hduser supergroup
 duser@muhammad-VM:~/
```

```
$cd Downloads
$hadoop fs -put ./britney-spears.txt /user1
$hadoop fs -ls /user1
```

If the **user1** is not present on hadoop distributed file system (hdfs), create a folder **user1** on the Hadoop distributed file system using the command.

\$hadoop fs -mkdir /user1

5) Now the input file (**britney-spears.txt**) is ready for the Hadoop streaming, type the following command as mentioned below highlighted with an arrow

```
hduser@muhammad-VM: ~/Downloads/Tutorial_3
 duser@muhammad-VM:~/Downloads/Tutorial_3$ jps
7443 NameNode
8071 NodeManager
10057 Jps
 7594 DataNode
7947 ResourceManager
 7775 SecondaryNameNode
                    d-VM:~/Downloads/Tutorial_3$ hadoop fs -ls /user1
                                                     135287 2024-01-30 23:28 /user1/britney-spears.txt
.al_3$ hadoop jar $HADOOP_HOME/share/hadoop/tools/lib/hadoop-streaming-3.3.6.jar
                  1 hduser supergroup
 nduser@muhammad
mapper ./mapper.py -reducer ./reducer.py -input /user1/britney-spears.txt -output /output1
2024-01-30 23:49:09,191 INFO impl.MetricsConfig: Loaded properties from hadoop-metrics2.properties
2024-01-30 23:49:09,303 INFO impl.MetricsSystemImpl: Scheduled Metric snapshot period at 10 second(s). 2024-01-30 23:49:09,303 INFO impl.MetricsSystemImpl: JobTracker metrics system started
2024-01-30 23:49:09,324 WARN impl.MetricsSystemImpl: JobTracker metrics system already initialized!
2024-01-30 23:49:09,515 INFO mapred.FileInputFormat: Total input files to process : 1
2024-01-30 23:49:09,581 INFO mapreduce.JobSubmitter: number of splits:1 2024-01-30 23:49:09,696 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_local673283289_0001
2024-01-30 23:49:09,696 INFO mapreduce.JobSubmitter: Executing with tokens: [] 2024-01-30 23:49:09,803 INFO mapreduce.Job: The url to track the job: http://localhost:8080/2024-01-30 23:49:09,804 INFO mapreduce.Job: Running job: job_local673283289_0001 2024-01-30 23:49:09,807 INFO mapred.LocalJobRunner: OutputCommitter set in config null
 2024-01-30 23:49:09,808 INFO mapred.LocalJobRunner: OutputCommitter is org.apache.hadoop.mapred.FileOutputCommitter
2024-01-30 23:49:09,811 INFO output.FileOutputCommitter: File Output Committer Algorithm version is 2
 2024-01-30 23:49:09,811 INFO output.FileOutputCommitter: FileOutputCommitter skip cleanup _temporary folders under out
put directory:false, ignore cleanup failures: false
```

6) The separate command for Hadoop streaming from the above screenshot is mentioned below

```
hduser@muhammad-VM:~/Downloads/Tutorial_3$ hadoop jar $HADOOP_HOME/share/hadoop/tools/lib/hadoop-streaming-3.3.6.jar
-mapper ./mapper.py -reducer ./reducer.py -input /user1/britney-spears.txt -output /output1
```

Note: The last part of the message will be displayed after the successful execution of Hadoop streaming job as mentioned below

7) The output of the Hadoop streaming job will be stored in the output folder (named as "output1" in the above command) on the Hadoop cluster. It is not possible to reuse or rewrite into the output1 folder name on hdfs. It is necessary for either creating a new folder name or delete the existing one and start over.

You can display the contents of the files by using the following commands as mentioned below using a dotted-dashed arrow as shown in the screenshot.

The wordcount example using Hadoop streaming is successfully completed as clearly illustrated in the output as clearly shown in the screenshot.

You have finished a successful execution of Hadoop streaming job. Now you can consider a large data input file and count the frequency of various words.

- If you would like to see the details of Hadoop cluster, you can explore further details of hadoop cluster by using localhost:9870 on the web browser (mozilla firefox or google chrome on Ubuntu VM). Explore different options of hadoop in the browser.
 - 8) If you would like download the processed data from the hdfs drive to local drive for your continuous assessment. You can use the following commands as mentioned below

```
$cd /home/hduser/Desktop/Tutorial_3/
$hadoop fs -ls /output1
```

This command will copy the folder from hdfs to your local Tutorial_3 folder on Ubuntu VM.

```
$hadoop fs -copyToLocal /output1 ./
$1s
$cd output1
$cat part-00000
```

The screenshot for the above-mentioned commands is shown below.

```
hduser@muhammad-VM: ~/Downloads/Tutorial_3/output1
hduser@muhammad-VM:~/Downloads/Tutorial_3$ ls
britney-spears.txt mapper.py reducer.py
         nuhammad-VM:~/Downloads/Tutorial_3$ hadoop fs -ls /output1
Found 2 items
                                                0 2024-01-30 23:49 /output1/_SUCCESS 24095 2024-01-30 23:49 /output1/part-00000
                1 hduser supergroup
-rw-r--r--
-rw-r--r--
               1 hduser supergroup
hduser@muhammad-VM:~/Downloads/Tutorial_3$ hadoop fs -copyToLocal /output1 ./
hduser@muhammad-VM:~/Downloads/Tutorial_3$ ls
britney-spears.txt mapper.py output1 reducer.py hduser@muhammad-VM:~/Downloads/Tutorial_3$ cd output1/
hduser@muhammad-VM:~/Downloads/Tutorial_3/output1$ ls
part-00000 _SUCCESS hduser@muhammad-VM:~/Downloads/Tutorial_3/output1$ cat part-00000
"Because
"But
          2
"Can
'Ladies 1
"hey,
'Cause 35
'Cause,
 Most
 Til
 You
          13
'bout
         20
 cause
 Cross
```

Now create another folder in Tutorial 3 and named as "top10".

Part II: Top10 Design Pattern

1) Download the folder **top10** MapReduce Design pattern from the Moodle. Unzip the folder and move the folder to **Tutorial_3** on Ubuntu Desktop as shown below.

When you open **top10** folder inside **Tutorial_3**, three files (Mapper, Reducer Python files and text file) are present as shown below

Right click inside the folder and open the terminal as shown below

2) Ater successful completion of MapReduce job, the following screenshot shows that **output2** folder is created on **hdfs**. We can display the output by using the hadoop \$1s command.

```
hduser@muhammad-VM: ~/Desktop/Tutorial_3/top10
                          Reduce input groups=4
Reduce shuffle bytes=521
Reduce input records=10
                          Reduce output records=10
                          Spilled Records=20
Shuffled Maps =1
                         Failed Shuffles=0
Merged Map outputs=1
GC time elapsed (ms)=8
Total committed heap usage (bytes)=559415296
            Shuffle Errors
                          BAD ID=0
                          CONNECTION=0
                          IO_ERROR=0
                         WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
            File Input Format Counters
Bytes Read=19362
            File Output Format Counters
Bytes Written=495
2023-08-22 20:14:22,021 INFO streaming.StreamJob: Output directory: /output2
 duser@muhammad-VM:~/Desktop/Tutorial_3/top10$ hadoop fs -ls /output2
Found 2 items
                                                              0 2023-08-22 20:14 /output2/_SUCCESS

495 2023-08-22 20:14 /output2/part-00000

3/top10$ hadoop fs -cat /output2/part-00000

12 71 1 "pontiac safari (sw)"

14 73 1 "chevrolet impala"
- rw- r - - r - -
                     1 hduser supergroup
                     1 hduser supergroup
 rw-r--r--
            8
                          400
                                       175
                                                    5140
                          400
                                       150
                                                    4997
11
12
12
12
12
13
13
                          383
                                       180
                                                    4955
                                                                                                         "dodge monaco (sw)
                                                                              73
73
73
71
                                                                                                         "mercury marquis brougham"
"buick electra 225 custom"
                          429
455
            8
                                       198
                                                    4952
                                                                  11.5
            8
                                                    4951
                                                                 11
12.5
                                       225
                          400
                                       167
                                                    4906
                                                                                                         "ford country
                                                                                                         "ford country squire (sw)"
"ford country squire (sw)"
"chrysler new yorker brougham"
"hi 1200d"
                          400
                                       170
                                                    4746
                          440
                                       215
                                                    4735
                                                                              73
70
            8
                                                                  11
                                       193
                                                    4732
                                                                  18.5
            8
                          350
                                       150
                                                    4699
                                                                  14.5
                                                                                                         "buick century luxus (sw)"
```

3) The output is based on the top 10 records based on the dataset as shown in the above screenshot.

References:

- https://hadoop.apache.org/docs/current/hadoop-streaming/HadoopStreaming.html
- https://github.com/Virksaabnavjot/Mapreduce-Python/tree/master