1

EE5609: Matrix Theory Assignment 13

Lt Cdr Atul Mahajan MTech Artificial Intelligence AI20MTECH13001

Download codes from

https://github.com/Atul 191/EE5609/Assignment13

1 Question

Which of the following matrices has the same row space as the matrix $\begin{pmatrix} 4 & 8 & 4 \\ 3 & 6 & 1 \\ 2 & 4 & 0 \end{pmatrix}$?

1)
$$\begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

2) $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
3) $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

 $4) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$

2 Solution

Statement	Solution
Given Matrix	$\begin{pmatrix} 4 & 8 & 4 \\ 3 & 6 & 1 \\ 2 & 4 & 0 \end{pmatrix} \tag{2.0.1}$
Definition	For Vector Space; it allows any addition or multiplication of vectors so that the result remains in space

	Refer(2.0.1), we proceed to have a Row Reduced Echelon Form	
	$\begin{pmatrix} 4 & 8 & 4 \\ 3 & 6 & 1 \\ 2 & 4 & 0 \end{pmatrix} \xrightarrow{R_1 \leftarrow R_3} \begin{pmatrix} 1 & 2 & 0 \\ 3 & 6 & 1 \\ 4 & 8 & 4 \end{pmatrix} $ (2.0.2)	
Solution	$= \begin{pmatrix} 1 & 2 & 0 \\ 3 & 6 & 1 \\ 4 & 8 & 4 \end{pmatrix} \xrightarrow{R_3 \leftarrow \frac{R_3}{4}} \begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & -2 \\ 1 & 2 & 1 \end{pmatrix} $ (2.0.3)	
	$= \begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & -2 \\ 1 & 2 & 1 \end{pmatrix} \xrightarrow{R_3 \leftarrow R_3 - R_1} \begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & -2 \end{pmatrix} $ (2.0.4)	
	$= \begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & -2 \end{pmatrix} \xrightarrow{R_3 \leftarrow R_3 + 2R_2} \begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} $ (2.0.5)	
Correct Answer	So we conclude that Option 1 is correct	

Table1:Solution