

An ε -Best-Arm Identification Algorithm for Fixed-Confidence and Beyond

Université de Lille

Marc Jourdan, Rémy Degenne and Emilie Kaufmann Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189-CRIStAL, F-59000 Lille, France

Motivation

Goal: Identify one item that has a good enough average return.

Two main approaches:

- control the error and minimize the sampling budget (fixed-confidence) or
- control the sampling budget and minimize the error (fixed-budget).
 - ⚠ Too restrictive for many applications!
- This paper: guarantees at any time on the candidate answer!

ε -Best-arm identification (ε -BAI)

K arms: $\nu_i \in \mathcal{D}$ is the 1-sub-Gaussian distribution of arm $i \in [K]$ with mean μ_i .

Goal: identify one of the ε -good arms $\mathcal{I}_{\varepsilon}(\mu) = \{i \mid \mu_i \geq \mu_{\star} - \varepsilon\}$ with $\mu^{\star} = \max_i \mu_i$.

Algorithm: at time n,

- Recommendation rule: recommend the candidate answer $\hat{\imath}_n$
- Sampling rule: pull arm I_n and observe $X_n \sim \nu_{I_n}$.

Fixed-confidence: given an error/confidence pair $(\varepsilon, \delta) \in \mathbb{R}_+ \times (0, 1)$, define a stopping time $\tau_{\varepsilon, \delta}$ which is (ε, δ) -PAC, i.e. $\mathbb{P}_{\nu}(\tau_{\varepsilon, \delta} < +\infty, \hat{\imath}_{\tau_{\varepsilon, \delta}} \notin \mathcal{I}_{\varepsilon}(\mu)) \leq \delta$, and Minimize the **expected sample complexity** $\mathbb{E}_{\nu}[\tau_{\varepsilon, \delta}]$.

Fixed-budget: given an error/budget pair $(\varepsilon, T) \in \mathbb{R}_+ \times \mathbb{N}$,

Minimize the probablity of ε -error $\mathbb{P}_{\nu}(\hat{\imath}_T \notin \mathcal{I}_{\varepsilon}(\mu))$ at time T.

Anytime: Minimize the expected simple regret $\mathbb{E}_{\nu}[\mu^{\star} - \mu_{\hat{\imath}_n}]$ at any time n.

Lower bound on the expected sample complexity

- ? What is the best one could achieve?
- Degenne and Koolen (2019): For all (ε, δ) -PAC algorithms and all Gaussian instances with $\mu \in \mathbb{R}^K$, $\liminf_{\delta \to 0} \mathbb{E}_{\nu}[\tau_{\varepsilon, \delta}]/\log(1/\delta) \geq T_{\varepsilon}(\mu)$ where

$$T_{\varepsilon}(\mu) = \min_{i \in \mathcal{I}_{\varepsilon}(\mu)} \min_{\beta \in (0,1)} T_{\varepsilon,\beta}(\mu,i) , \quad T_{\varepsilon,\beta}(\mu,i)^{-1} = \max_{w \in \Delta_K, w_i = \beta} \min_{j \neq i} \frac{1}{2} \frac{(\mu_i - \mu_j + \varepsilon)^2}{1/\beta + 1/w_j} .$$

Top Two sampling rule: EB-TC $_{arepsilon_0}$ with fixed eta or IDS proportions

Input: slack $\varepsilon_0 > 0$, proportion $\beta \in (0,1)$ (only for fixed proportions).

Set
$$\hat{\imath}_n \in \arg\max_{i \in [K]} \mu_{n,i}$$
, $B_n = \hat{\imath}_n$ and $C_n \in \arg\min_{i \neq B_n} \frac{\mu_{n,B_n} - \mu_{n,i} + \varepsilon_0}{\sqrt{1/N_{n,B_n} + 1/N_{n,i}}}$;

Update $\bar{\beta}_{n+1}(B_n,C_n)$ where [fixed] $\bar{\beta}_{n+1}(i,j)=\beta$ or [IDS] $\beta_n(i,j)=\frac{N_{n,j}}{N_{n,i}+N_{n,j}}$;

Set $I_n = C_n$ if $N_{n,C_n}^{B_n} \le (1 - \bar{\beta}_{n+1}(B_n, C_n))T_{n+1}(B_n, C_n)$, otherwise set $I_n = B_n$;

Output: next arm to sample I_n and next recommendation $\hat{\imath}_n$.

 $(N_{n,i}, \mu_{n,i})$: number of pulls and empirical mean of arm i before time n. $T_n(i,j)$: number of selection of the leader/challenger pair (i,j) before time n. $N_{n,i}^i$: number of pulls of arm j when selecting pair (i,j) before time n.

(ε, δ) -PAC sequential test

- ? How to obtain a (ε, δ) -PAC sequential test for 1-sub-Gaussian distributions ?
- **GLR**_{ε} stopping rule: recommend $\hat{\imath}_n \in \arg \max_{i \in [K]} \mu_{n,i}$ and stop at time

$$\tau_{\varepsilon,\delta} = \inf\{n > K \mid \min_{i \neq \hat{\imath}_n} \frac{\mu_{n,\hat{\imath}_n} - \mu_{n,i} + \varepsilon}{\sqrt{1/N_{n,\hat{\imath}_n} + 1/N_{n,i}}} \ge \sqrt{2c(n-1,\delta)}\}, \tag{1}$$

with $c(n, \delta) \simeq \log(1/\delta) + 2\log\log(1/\delta) + 4\log(4 + \log(n/2))$.

Asymptotic confidence guarantees

Theorem 1. Let $\varepsilon \geq 0$ and $\varepsilon_0 > 0$. Combined with GLR_{ε} stopping (1), the $EB-TC_{\varepsilon_0}$ algorithm satisfies that, for all $\nu \in \mathcal{D}^K$ with mean μ such that $|i^*(\mu)| = 1$,

- IDS: $\limsup_{\delta \to 0} \mathbb{E}_{\nu}[\tau_{\varepsilon,\delta}]/\log(1/\delta) \leq T_{\varepsilon_0}(\mu)D_{\varepsilon,\varepsilon_0}(\mu)$,
- fixed $\beta \in (0,1)$: $\limsup_{\delta \to 0} \mathbb{E}_{\nu}[\tau_{\varepsilon,\delta}]/\log(1/\delta) \leq T_{\varepsilon_0,\beta}(\mu)D_{\varepsilon,\varepsilon_0}(\mu)$, where $D_{\varepsilon,\varepsilon_0}(\mu) = (1 + \max_{i \neq i^{\star}}(\varepsilon_0 \varepsilon)/(\mu_{\star} \mu_i + \varepsilon))^2$.

Corollary 1. Let $\varepsilon > 0$. Combined with GLR_{ε} stopping (1), the EB- TC_{ε} algorithm with IDS (resp. fixed β) proportions is **asymptotically** (resp. β -)**optimal** in fixed-confidence ε -BAI for Gaussian distributions.

Finite confidence guarantees

Theorem 2. Let $\delta \in (0,1)$ and $\varepsilon_0 > 0$. Combined with GLR_{ε_0} stopping (1), the $EB-TC_{\varepsilon_0}$ algorithm with fixed $\beta = 1/2$ satisfies that, for all $\nu \in \mathcal{D}^K$ with mean μ ,

$$\mathbb{E}_{\nu}[\tau_{\varepsilon_0,\delta}] \leq \inf_{\varepsilon \in [0,\varepsilon_0]} \max \{T_{\mu,\varepsilon_0}(\delta,\varepsilon) + 1, S_{\mu,\varepsilon_0}(\varepsilon)\} + 2K^2, \quad \textit{where}$$

 $\limsup_{\delta \to 0} \frac{T_{\mu,\varepsilon_0}(\delta,0)}{\log(1/\delta)} \le 2|i^{\star}(\mu)|T_{\varepsilon_0,1/2}(\mu), S_{\mu,\varepsilon_0}(\frac{\varepsilon_0}{2}) = \mathcal{O}(K^2|\mathcal{I}_{\varepsilon_0/2}(\mu)|\varepsilon_0^{-2}\log\varepsilon_0^{-1}).$

Key result: Let $\delta \in (0,1)$, n > K. Let $\mathcal{E}_{n,\delta}$ be a concentration event with $\mathbb{P}_{\nu}(\mathcal{E}_{n,\delta}^{\complement}) \leq K^2 \delta$. Under the event $\mathcal{E}_{n,\delta}$, for all $\varepsilon \geq 0$, we have

$$\sum_{i \in \mathcal{I}_{\varepsilon}(\mu)} \sum_{j} T_n(i,j) \ge n - 8H_{\mu,\varepsilon_0}(\varepsilon) \log(n^2/\delta) - 3K^2 - 1,$$

where $H_{\mu,\varepsilon_0}(0) = \mathcal{O}(K\min\{\Delta_{\min},\varepsilon_0\}^{-2})$ and $H_{\mu,\varepsilon_0}(\varepsilon_0/2) = \mathcal{O}(K/\varepsilon_0^2)$.

Experiments

Figure 1: Stopping time on (a) random instances (K=20) with $\mu_1=1$, $\mu_i\sim\mathcal{U}([0,0.9)$ for all $i\geq 6$, otherwise $\mu_i\sim\mathcal{U}([0.9,1])$ and (b) "two-groups" instances (K=10) with $(\mu^\star,\Delta_2)=(0.6,0.2)$.

Beyond fixed-confidence guarantees

Anytime guarantees on

- the probability of ε -error and
- the expected simple regret.

Theorem 3. Let $\varepsilon_0 > 0$. The EB-TC_{ε_0} algorithm with fixed proportions $\beta = 1/2$ satisfies that, for all $\nu \in \mathcal{D}^K$ with mean μ , for all $n > 5K^2/2$,

$$\forall \varepsilon \geq 0, \quad \mathbb{P}_{\nu} \left(\hat{\imath}_{n} \notin \mathcal{I}_{\varepsilon}(\mu) \right) \leq \exp \left(-\Theta \left(\frac{n}{H_{i_{\mu}(\varepsilon)}(\mu, \varepsilon_{0})} \right) \right),$$

$$\mathbb{E}_{\nu} \left[\mu_{\star} - \mu_{\hat{\imath}_{n}} \right] \leq \sum_{i \in [C_{\nu} - 1]} (\Delta_{i+1} - \Delta_{i}) \exp \left(-\Theta \left(\frac{n}{H_{i}(\mu, \varepsilon_{0})} \right) \right),$$

where $H_1(\mu, \varepsilon_0) = K(2\Delta_{\min}^{-1} + 3\varepsilon_0^{-1})^2$ and $H_i(\mu, \varepsilon_0) = \Theta(K/\Delta_{i+1}^{-2})$ for all i > 1.

Notation: distinct mean gaps $0=\Delta_1<\Delta_2<\cdots<\Delta_{C_{\mu}}<\Delta_{C_{\mu}}+1=+\infty$ where $C_{\mu}=|\{\mu_i\mid i\in [K]\}|$. For all $\varepsilon\geq 0$, let $i_{\mu}(\varepsilon)=i$ if $\varepsilon\in [\Delta_i,\Delta_{i+1})$.

Other guarantees:

Unverifiable sample complexity

$$\mathbb{P}_{\nu}\left(\forall n > U_{i_{\mu}(\varepsilon),\delta}(\mu,\varepsilon_{0}), \ \hat{\imath}_{n} \in \mathcal{I}_{\varepsilon}(\mu)\right) \geq 1 - \delta$$

where $U_{i,\delta}(\mu,\varepsilon_0) =_{\delta\to 0} 8H_i(\mu,\varepsilon_0)\log(1/\delta) + \mathcal{O}(\log\log(1/\delta))$.

• Constant cumulative regret in the decoupled exploration/exploitation setting.

Experiments

Figure 2: (a) Stopping time on instances $\mu_i = 1 - ((i-1)/(K-1))^{0.3}$ for varying K. (b) Simple regret on instance $\mu = (0.6, 0.6, 0.55, 0.45, 0.3, 0.2)$ fors EB-TC_{ε_0} with slack $\varepsilon_0 = 0.1$ and fixed $\beta = 1/2$.

Note: GLR $_{\varepsilon}$ stopping (1) with $(\varepsilon, \delta) = (10^{-1}, 10^{-2})$. T3C, EB-TCI, TTUCB, TaS, FWS, DKM are modified for ε -BAI.

Conclusion

- 1. Easy to implement, computationally inexpensive and versatile algorithm.
- 2. Good empirical performance for the sample complexity and simple regret.
- 3. Asymptotic and finite confidence upper bound on the expected sample complexity. Asymptotic (β -)optimality in ε -BAI for Gaussian distributions.
- 4. Anytime upper bounds on the uniform ε -error and the simple regret.