1

Assignment 16

Yenigalla Samyuktha EE20MTECH14019

Abstract—This document solves a problem on Jordan form of a complex matrix.

Download all latex-tikz codes from

https://github.com/EE20MTECH14019/EE5609/ tree/master/Assignment 16

1 Problem

How many possible Jordan forms are there for a 6×6 complex matrix with characteristic polynomial $(x + 2)^4 (x - 1)^2$?

2 Solution

Parameter	Description	
A_M	Algebraic multiplicity of characteristic value λ in the characteristic polynomial, also equal to the size of Jordan block for that eigen value	
G_M	Geometric multiplicity determines the number of Jordan subblocks in a Jordan block for λ .	
$\mathbf{J}_{(x-\lambda)^k}$	Jordan block corresponding to the eigen value λ and k is the multiplicity of λ in the minimal polynomial determines size of largest Jordan sub-block.	

TABLE 1: Parameters

Feature	Explanation	
Characteristic Polynomial	$(x+2)^4 (x-1)^2 (2.0.1)$	
Algebraic Multiplicity, A_M	For $\lambda = -2$, $A_M = 4$ (2.0.2) For $\lambda = 1$, $A_M = 2$ (2.0.3)	
Minimal Polynomial	$p = (x+2)^a (x-1)^b , a \le 4, b \le 2 $ (2.0.4)	
Possibilities of minimal polynomial	From equation (2.0.4), there are 8 different minimal polynomials possible.	
Jordan Form	$\mathbf{J} = \begin{pmatrix} -2 & * & 0 & 0 & 0 & 0 \\ 0 & -2 & * & 0 & 0 & 0 \\ 0 & 0 & -2 & * & 0 & 0 \\ 0 & 0 & 0 & -2 & * & 0 \\ 0 & 0 & 0 & 0 & 1 & * \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} $ $\text{where } * \text{ can be either 1 or 0}$	
Number of possibilities of Jordan canonical forms	From Table 3, there are $5 \times 2 = 10$ different Jordan forms possible.	
Jordan Form corresponding to $p = (x + 2)^2 (x - 1)$	One minimal polynomial can correspond to more than one Jordan forms. For example, minimal polynomial $p = (x+2)^2 (x-1)$ can correspond to two different Jordan forms namely, $\mathbf{J} = \begin{pmatrix} -2 & 1 & 0 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 & 0 & 0 \\ 0 & 0 & -2 & 1 & 0 & 0 \\ 0 & 0 & 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \mathbf{J} = \begin{pmatrix} -2 & 1 & 0 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 & 0 & 0 \\ 0 & 0 & -2 & 0 & 0 & 0 \\ 0 & 0 & 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$ $(2.0.6)$	

TABLE 2: Parameters

Factor	Possible Jordan blocks	G_M
(x+2)	$\mathbf{J}_{(x+2)} = \begin{pmatrix} -2 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & -2 \end{pmatrix}$	4
(x + 2)	$\mathbf{J}_{(x+2)^2} = \begin{pmatrix} -2 & 1 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & -2 \end{pmatrix}$	3
	$\mathbf{J}_{(x+2)^2} = \begin{pmatrix} -2 & 1 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & -2 & 1 \\ 0 & 0 & 0 & -2 \end{pmatrix}$	2
	$\mathbf{J}_{(x+2)^3} = \begin{pmatrix} -2 & 1 & 0 & 0 \\ 0 & -2 & 1 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & -2 \end{pmatrix}$	2
	Possible Jordan blocks $ \mathbf{J}_{(x+2)} = \begin{pmatrix} -2 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & -2 \end{pmatrix} $ $ \mathbf{J}_{(x+2)^2} = \begin{pmatrix} -2 & 1 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & -2 \end{pmatrix} $ $ \mathbf{J}_{(x+2)^2} = \begin{pmatrix} -2 & 1 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & -2 & 1 \\ 0 & 0 & 0 & -2 \end{pmatrix} $ $ \mathbf{J}_{(x+2)^3} = \begin{pmatrix} -2 & 1 & 0 & 0 \\ 0 & -2 & 1 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & -2 \end{pmatrix} $ $ \mathbf{J}_{(x+2)^4} = \begin{pmatrix} -2 & 1 & 0 & 0 \\ 0 & -2 & 1 & 0 \\ 0 & 0 & -2 & 1 \\ 0 & 0 & 0 & -2 \end{pmatrix} $ $ \mathbf{J}_{(x+2)^4} = \begin{pmatrix} -2 & 1 & 0 & 0 \\ 0 & -2 & 1 & 0 \\ 0 & 0 & -2 & 1 \\ 0 & 0 & 0 & -2 \end{pmatrix} $	1
(x-1)	$\mathbf{J}_{(x-1)} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	2
	$\mathbf{J}_{(x-1)^2} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$	1

TABLE 3: Possible Jordan Blocks