

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:

Docket No. 25740-02A

Feng-Tso Chien

Serial No.: To be assigned

Date Filed: Concurrently herewith

Title: Power Mosfet Device With Reduced Snap-Back and
Being Capable of Increasing Avalanche-Breakdown
Current Endurance, and Method of Manufacturing
Same

Box Patent Application
U.S. Patent and Trademark Office
P.O. Box 2327
Arlington, VA 22202

PRELIMINARY AMENDMENT

Prior to issuing a first office action, please amend the application as follows:

IN THE CLAIMS

Please add new claims 3-8 as follows:

3. (New) A power MOSFET device comprising:

an N⁺ silicon substrate;

a gate electrode;

an N⁻ epitaxial layer formed above said N⁺ silicon substrate, at least a portion of which is intermediate the N⁺ silicon substrate and the gate electrode;

a P⁻ well implanted in the N⁻ epitaxial layer;

a source contact region, etched into the P⁻ well, and formed of an N⁺ doped well and a P⁺ doped well, wherein the P⁺ doped well interfaces the N⁻ epitaxial layer and the P⁻ well, and the N⁺ doped well is spaced apart from and located above the P⁺ doped well;

whereby the snap-back is reduced and the avalanche-breakdown current endurance is increased.

4. (New) A method of manufacturing a power MOSFET device, comprising the steps of:

forming an N⁻ epitaxial layer on an N⁺ silicon substrate;
forming a gate layer above the N⁻ epitaxial layer;
implanting a P⁻ dopant to form a P⁻ well in the N⁻ epitaxial layer;

forming an N⁺ source region above the P⁻ well;
etching the N⁺ source region and implanting a P⁺ dopant to form a P⁺ well, wherein the P⁺ well interfaces the N⁻ epitaxial layer and the P⁻ well, and the N⁺ source region is spaced apart from and located above the P⁺ well;

depositing a glass layer; and
performing a metalization of the source contact and forming a drain contact;

whereby the snap-back is reduced and the avalanche-breakdown current endurance is increased.

5. (New) The method as claimed in claim 4, wherein the formation of the gate layer comprises the steps of:

etching a field oxide and growing a gate oxide layer;
depositing a polysilicon layer on the gate oxide layer,
performing photomasking and etching the polysilicon layer.

6. (New) The method as claimed in claim 4, including the steps of applying a photomask of N⁺ dopant and implanting N⁺ dopant to form the N⁺ source region above the P⁻ well.

7. (New) The method as claimed in claim 4, including the steps of producing a photoresist prior to etching the N⁺ source region and removing the photoresist after the P⁺ well is formed.

8. (New) The method as claimed in claim 4, wherein the glass layer is comprised of boro-phospho silicate glass.

REMARKS

This Preliminary Amendment is being filed concurrently with a new U.S. application. Consideration and allowance of the application, including newly presented claims 3-8, are respectfully requested.

Early and favorable action is earnestly requested.

Respectfully submitted,

By: Arthur G. Schaier

Arthur G. Schaier, Reg. 37,715
Attorney for Applicant(s)
Carmody & Torrance LLP
50 Leavenworth Street
P.O. Box 1110
Waterbury, CT 06721-1110
(203) 575-2629