Part I - A

1. $x=(2n+1)\pi$	2. 2A	3. B	$ \sqrt{\frac{GM}{R_E + h}} $ $ - \sqrt{\frac{GM}{R_E}} $	$ \begin{array}{c} 5. \\ \underline{GMm} \\ R_E + h \\ \underline{-GMm} \end{array} $	6. B	$\frac{7.}{(\rho_{Hg}-\rho)h_2}$	8. C
9. f+3	10. 45°	$11. \\ 5\omega^3 A^2 / k$	$ \frac{\sqrt{R_E + 2h}}{12.} $ $ 10\pi\omega^2 A^2 / k $	$R_{E} + 2h$ 13. $2\pi \sqrt{\frac{m(k_{1} + k_{2})}{k_{1}k_{2}}}$	$14.$ $2\pi\sqrt{\frac{m}{(k_1+k_2)}}$	15. $20Log \frac{r_2}{r_1}$	16. -3Gm²/l

$Part\ I-B$

1.	2.	3.	4.	5.	6.	7.	8.				
$\begin{array}{c c} 1. \\ -3Gm^2/l \end{array}$	$(\rho_{H_{\varrho}}-\rho)h_2$	$5\omega^3A^2/k$	$10\pi\omega^2 A^2/k$	В	C	f+3	GM				
	$\frac{-\sigma}{\rho}$						$\sqrt{R_E + h}$				
	,						$-\sqrt{\frac{GM}{R_E+2h}}$				
							$-\sqrt{R_E+2h}$				
9.	10.	11.	12.	13.	14.	15. $x=(2n+1)\pi$	16.				
GMm	В	$2\pi\sqrt{\frac{m(k_1+k_2)}{k_1+k_2}}$	$2\pi\sqrt{\frac{m}{(k_1+k_2)}}$	45°	r_2	$x=(2n+1)\pi$	2A				
$\overline{R_E + h}$		$k_1 k_2$	$\mathbf{V}(k_1 + k_2)$		$\frac{20Log}{r}$						
GMm					-1						
$-\frac{1}{R_E+2h}$											
L											

Part II

1. (a) For the satellite
$$\sum F = ma$$
 $\frac{GmM_E}{r^2} = \frac{mv_0^2}{r}$
$$v_0 = \left(\frac{GM_E}{r}\right)^{1/2}$$

(b) Conservation of momentum in the forward direction for the exploding satellite:

$$\left(\sum mv\right)_i = \left(\sum mv\right)_f$$

$$5mv_0 = 4mv_i + m0$$

$$v_i = \frac{5}{4}v_0 = \left[\frac{5}{4}\left(\frac{GM_E}{r}\right)^{\frac{1}{2}}\right]$$

(c) With velocity perpendicular to radius, the orbiting fragment is at perigee. Its apogee distance and speed are related to r and v_i by $4mrv_i = 4mr_fv_f$ and $\frac{1}{2}4mv_i^2 - \frac{GM_E4m}{r} = \frac{1}{2}4mv_f^2 - \frac{GM_E4m}{r_f}$. Substituting $v_f = \frac{v_i r}{r_f}$ we have $\frac{1}{2}v_i^2 - \frac{GM_E}{r} = \frac{1}{2}\frac{v_i^2 r^2}{r_f^2} - \frac{GM_E}{r_f}$. Further, substituting $v_i^2 = \frac{25}{16}\frac{GM_E}{r}$ gives

$$\frac{25}{32} \frac{GM_E}{r} - \frac{GM_E}{r} = \frac{25}{32} \frac{GM_E r}{r_f^2} - \frac{GM_E}{r_f}$$
$$\frac{-7}{32r} = \frac{25r}{32r_f^2} - \frac{1}{r_f}$$

Clearing of fractions, $-7r_f^2 = 25r^2 - 32rr_f$ or $7\left(\frac{r_f}{r}\right)^2 - 32\left(\frac{r_f}{r}\right) + 25 = 0$ giving $\frac{r_f}{r} = \frac{+32 \pm \sqrt{32^2 - 4(7)(25)}}{14} = \frac{50}{14} \text{ or } \frac{14}{14}. \text{ The latter root describes the starting point. The outer end of the orbit has } \frac{r_f}{r} = \frac{25}{7}; \qquad r_f = \frac{25r}{7}.$

2. (a) Suppose the flow is very slow:
$$\left(P + \frac{1}{2} \rho v^2 + \rho g y \right)_{\text{river}} = \left(P + \frac{1}{2} \rho v^2 + \rho g y \right)_{\text{rim}}$$

$$P + 0 + \rho g 500 = P_0 + 0 + \rho g 1500$$

ans: $P = P_0 + 10000\rho$

(b) The volume flow rate is

$$10\frac{m^3}{s} = \pi \frac{d^2 v}{4}, \rightarrow ans : v = \frac{40}{\pi d^2}$$

(c) Imagine the pressure as applied to stationary water at the bottom of the pipe:

$$P + 0 + \rho g 500 = P_0 + \frac{1}{2}\rho v^2 + \rho g 1500$$

$$P = P_0 + 10000\rho + \frac{1}{2}\rho \left(\frac{40}{\pi d^2}\right)^2 \rightarrow ans = \frac{1}{2}\rho \left(\frac{40}{\pi d^2}\right)^2$$

3. (a)
$$F = -2T \frac{y}{\sqrt{L^2 + y^2}} \approx -2T \frac{y}{L}$$

(b)
$$F = ma \rightarrow -2T \frac{y}{L} = m \frac{d^2y}{dt^2} \rightarrow -\frac{2T}{mL} y = m \frac{d^2y}{dt^2} \rightarrow \omega = \sqrt{\frac{2T}{mL}}$$

4.
$$I = \frac{1}{2}\rho\omega^2 s_{\text{max}}^2 v = 2\pi^2 \rho v f^2 s_{\text{max}}^2$$

(a)
$$\frac{I_2}{I_1} = \frac{2\pi^2 \rho v f'^2 s_{\text{max}}^2}{2\pi^2 \rho v f^2 s_{\text{max}}^2} \rightarrow I_2 = \frac{f'^2}{f^2} I_1$$

(a)
$$\frac{I_2}{I_1} = \frac{2\pi^2 \rho v f'^2 s_{\text{max}}^2}{2\pi^2 \rho v f^2 s_{\text{max}}^2} \rightarrow I_2 = \frac{f'^2}{f^2} I_1$$

(b) $\frac{I_2}{I_1} = \frac{2\pi^2 \rho v (f/2)^2 (2s_{\text{max}})^2}{2\pi^2 \rho v f^2 s_{\text{max}}^2} \rightarrow I_2 = I_1$