(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 24. Juni 2004 (24.06.2004)

PCT

(10) Internationale Veröffentlichungsnummer WO 2004/052797 A1

- (51) Internationale Patentklassifikation⁷: C03B 5/02, 5/193
- (21) Internationales Aktenzeichen: PCT/EP2003/013576
- (22) Internationales Anmeldedatum:

2. Dezember 2003 (02.12.2003)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

- (30) Angaben zur Priorität: 102 57 049.3 6. Dezember 2002 (06.12.2002) DE
- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von AU, GB, IE, IL, IN, JP, KP, KR, NZ, SG, US, ZA): SCHOTT GLAS [DE/DE]; Hattenbergstrass 10, 55122 Mainz (DE).
- (71) Anmelder (nur für AU, BB, BF, BJ, BZ, CF, CG, CI, CM, GA, GB, GD, GE, GH, GM, GN, GQ, GW, IE, IL, IN, KE, KG, KP, KR, KZ, LC, LK, LR, LS, MG, ML, MN, MW, MZ, NE, NZ, SD, SG, SL, SN, SZ, TD, TG, TT, TZ, UG, VN, ZA, ZM, ZW): CARL-ZEISS-STFTUNG TRADING AS SCHOTT GLAS [DE/DE]; Hattenbergstrasse 10, 55122 Mainz (DE).
- (71) Anmelder (nur für BB, BF, BJ, BZ, CF, CG, CI, CM, GA, GD, GE, GH, GM, GN, GQ, GW, JP, KE, KG, KZ, LC, LK, LR, LS, MG, ML, MN, MR, MW, MZ, NE, SD, SL, SN, SZ, TD, TG, TT, TZ, UG, VN, ZM, ZW): CARL-ZEISS-STIFTUNG [DE/DE]; 89518 Heidenheim an der Brenz (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): LEISTER, Michael [DE/DE]; Am Wäldchenloch 9, 55257 Budenheim (DE).

KOLBERG, Uwe [DE/DE]; Henry-Moisand-Strasse 19a, 55124 Mainz (DE). KIEFER, Werner [DE/DE]; Jupiterweg 19, 55126 Mainz (DE). NÜTTGENS, Sybill [DE/DE]; Sandweg 9, 60316 Frankfurt (DE). PENKERT, Alexander [DE/DE]; Simon-Veil-Strasse 3a, 65197 Wiesbaden (DE). WOLFF, Silke [DE/DE]; Huckinger Strasse 47a, 42499 Hückeswagen (DE). SURGES, Nicole [DE/DE]; Grabenstrasse 3, 55424 Münster-Sarmsheim (DE).

- (74) Anwalt: HERDEN, Andreas; Blumbach, Kramer & Partner Gbr, Alexandrastrasse 5, 65187 Wiesbaden (DE).
- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: METHOD FOR PRODUCING BOROSILICATE GLASS, BORATE GLASS AND CRYSTALLISING MATERIALS CONTAINING BORON

(54) Bezeichnung: VERFAHREN ZUR HERSTELLUNG VON BOROSILICATGLÄSERN, BORATGLÄSERN UND KRISTAL-LISIERENDEN BORHALTIGEN WERKSTOFFEN

(57) Abstract: The aim of the invention is to produce low-alkali materials with a high degree of purity and homogeneity. This is achieved by a method for producing a low-alkali material containing borate, according to which a molten product containing boron is directly heated in a unit by induction, using an electromagnetic alternating field. The molten product contains as a constituent at least one metal oxide, whose metal ions are at least bivalent and whose molar material fraction is at least 25 molar % and whereby the ratio of the molar material fractions of silicon dioxide to borate in the molten product is less than or equal to 0.5.

(57) Zusammenfassung: Um alkaliarme werkstoffe mit hoher Reinheit und Homogenität herstellen zu können, sieht die Erfindung ein Verfahren zur Herstellung eines borathaltigen alkaliarmen Werkstoffes vor, bei welchem ein borhaltiges Schmelzgut in einem Aggregat mit einem elektromagnetischen Wechselfeld direkt induktiv beheizt wird und wobei das Schmelzgut als Bestandteil zumindest ein Metalloxid, dessen Metallionen zwei- oder höherwertig sind, mit einem Stoffmengenanteil von zumindest 25 mol % aufweist, und wobei das Verhältnis der molaren Stoffmengen von Siliziumdioxid zu Borat im Schmelzgut kleiner oder gleich 0,5 ist.

10/537752 T/EP2003/013576

0 6 JUN 2005

Verfahren zur Herstellung von Borosilicatgläsern, Boratgläsern und kristallisierenden borhaltigen Werkstoffen

Beschreibung

10

Die Erfindung betrifft ein Verfahren zum Herstellen von borhaltigen Werkstoffen. Insbesondere betrifft die Erfindung ein Verfahren zur Herstellung borhaltiger, alkaliarmer Werkstoffe mittels induktiver Beheizung des Schmelzguts.

In der Technik werden Borosilicatgläser wegen ihrer guten chemischen Resistenz und ihrer relativ geringen Wärmeausdehnung als Laborglas, für Ampullen in der Pharmaindustrie und als Glühlampengläser verwendet. Diese Gläser besitzen einen hohen SiO₂-Gehalt von 73 - 86 %, einen B₂O₃-Gehalt von 6 - 13%, einen Al₂O₃-Gehalt von 1 - 5% und einen Alkaligehalt von 2 - 9% (Mol %).

Bei den optischen Gläsern kann der B₂O₃-Gehalt auch über 13% liegen und bis auf über 75 mol % ansteigen. Der hohe B₂O₃ -Gehalt bewirkt hohe Abbézahlen, d.h. eine geringe Lichtzerstreuung. Diese Gläser finden daher in Linsensystemen Verwendung zur Korrektur der chromatischen Aberration.

Gläser, die als Netzwerkbildner nur oder in überwiegendem Maße B_2O_3 besitzen, werden analog den Silicatgläsern Boratgläser genannt. Die Borosilicatgläser enthalten als

Netzwerkbildner sowohl SiO_2 als auch B_2O_3 und liegen in ihrer Zusammensetzung somit zwischen den Silicat- und den Boratgläsern.

Die Borosilicatgläser mit einem niedrigen B2O3 - Gehalt, insbesondere bei unter 15% B,O,, unterscheiden sich gegenüber Borosilicat- und Boratgläsern mit einem hohen B₂O₃ - Gehalt (über 15% B₂O₃) deutlich in ihren physikalischen, chemischen und optischen Eigenschaften. So weisen die Borosilicatgläser mit dem hohen B2O3-Gehalt und 10 die Boratgläser üblicherweise eine sehr steile Viskositätskurve mit hoher Transformationstemperatur Ta, aber niedriger Verarbeitungstemperatur VA und somit niedrigen Einschmelz- und Läutertemperaturen auf. Die optische Lage dieser Gläser ist bei sehr hohen Abbezahlen 15 angesiedelt, und die chemische Beständigkeit ist im allgemeinen deutlich schlechter als bei den Borosilicatgläsern mit niedrigem B,O,-Gehalt und den Silicatgläsern.

20

25

Es kommen bei den Borosilicatgläser und den Boratgläsern mit hohem B_2O_3 -Gehalt im allgemeinen auch keine oder nur wenige Prozente von Alkalioxiden zum Einsatz, da sie zum einen aufgrund des Viskositätsverlaufs zum Einschmelzen nicht benötigt werden und zum anderen die chemische Beständigkeit noch weiter verschlechtern. Auch für die angestrebten hohe Abbezahlen sind mit alkalioxdhaltigen Boratgläsern nicht erreichbar.

30 Glasschmelzen von Silicatgläser und Borosilicatgläser mit hohem B₂O₃-Gehalt haben den Nachteil, dass sie chemisch sehr aggressiv sind. Es sei hier nur auf den Borsäureaufschluss in der chemischen Analytik verwiesen.

Silicatgläser und Borosilicatgläser mit niedrigem B_2O_3 -Gehalt lassen sich gut in keramischen Feuerfestmaterialien schmelzen. Für optische Anwendungen werden jedoch meistens höhere Anforderungen an die Lichttransmission und damit verbunden an die Reinheit der Gläser gestellt. Silicatgläser und Borosilicatgläser mit niedrigem B_2O_3 -Gehalt für optische Anwendungen werden daher oft in Platingefäßen oder in Kieselglasapparaturen hergestellt.

10

15

Im Gegensatz zu den Silicatgläsern und Borosilicatgläsern mit niedrigem B_2O_3 -Gehalt greifen die Borosilicat- und Boratgläser mit hohem B_2O_3 -Gehalt die Kieselglasaggregate so stark an, daß sich in der Glasschmelze leicht SiO_2 -Schlieren bilden. Diese SiO_2 -Schlieren lassen sich selbst bei intensivem Rühren nicht mehr vollständig auflösen. Kritischer ist auch, daß durch das gelöste SiO_2 die Eigenschaften der Borosilicat- und Boratgläser mit hohem B_2O_3 -Gehalt zum Teil erheblich verändert werden.

20

25

Als weitere Folgen des starken Angriffs des
Feuerfestmaterials ergeben sich, neben der deutlichen
Verschlechterung der Eigenschaften und der Homogenität,
sehr kurze Standzeiten der Kieselglasapparaturen, was
erhebliche Kosten verursacht. Zum einen entstehen Kosten
für die Erneuerung der Kieselglasaggregate und zum anderen
durch den wiederholten Stillstand der Produktion.

Die Borosilicat- und Boratgläser mit hohem B₂O₃ - Gehalt

30 greifen aber nicht nur die Kieselglasaggregate an, sondern auch Platingeräte. Auch durch das gelöste Platin werden die Eigenschaften der Gläser deutlich verschlechtert. Je nach Oxidationszustand der Glasschmelze enthält die Glasschmelze

metallische Platinteilchen oder Platin-Ionen. Die färbenden Platin-Ionen erniedrigen die Transmission dieser Gläser insbesondere im Ultraviolettbereich in einem Maße, welches für viele Anwendungen nicht mehr vertretbar ist.

5

10

15

20

25

30

Der starke chemische Angriff der Borosilicat- und Boratgläser mit hohem B_2O_3 - Gehalt führt dazu, daß diese nach herkömmlichen Schmelzverfahren geschmolzenen optischen Gläser für einige Anwendungen nicht mehr den gestiegenen technischen Anforderungen bezüglich der Transmission und Homogenität genügen.

Darüber hinaus entstehen durch den erhöhten chemischen Angriff der Gläser auf die Edelmetall-Schmelzaggregate oder die keramischen Schmelzaggregate erhebliche Zusatzkosten, die einen breiten Einsatz dieser Gläser behindert.

Der Erfindung liegt somit die Aufgabe zugrunde, ein Verfahren anzugeben mit welchem es ermöglicht wird, borhaltige, insbesondere borathaltige, alkaliarme Werkstoffe, wie etwa alkaliarme oder sogar alkalifreie Borosilicatgläser mit hohem B₂O₃-Gehalt und Boratgläser hoher Reinheit und Homogenität beziehungsweise alkaliarme/ alkalifreie kristallisierende borathaltige Werkstoffe oder Gemenge für derartige Werkstoffe zu schmelzen und die Werkstoffe so in hochreiner Form herzustellen.

Diese Aufgabe wird bereits in höchst überraschend einfacher Weise durch ein wie in Anspruch 1 angegebenes Verfahren gelöst. Vorteilhafte Weiterbildungen des Verfahrens sind in den Unteransprüchen angegeben.

Dementsprechend wird bei dem erfindungsgemäßen Verfahren zur Herstellung eines borathaltigen alkaliarmen Werkstoffes in einem Aggregat mit einem elektromagnetischen Wechselfeld direkt induktiv beheizt, wobei das Schmelzgut als Bestandteil zumindest ein Metalloxid, dessen Metallionen zwei- oder höherwertig sind mit einem Stoffmengenanteil von zumindest 25 mol % aufweist und wobei das Verhältnis der Stoffmengen von Siliziumdioxid zu Borat im Schmelzgut kleiner oder gleich 0,5 ist.

10

25

30

5

Als elektromagnetisches Wechselfeld ist dabei besonders ein Hochfrequenzfeld geeignet, mit welchem sich große Energiemengen induktiv in eine Schmelze eintragen lassen.

Die Erfinder haben überraschend erkannt, dass borhaltige Schmelzen, wie insbesondere solche aus alkaliarmen oder alkalifreien Borosilicatgläsern mit hohem B₂O₃-Gehalt und alkaliarme oder alkalifreie Boratgläser dann mit Hochfrequenz ankoppeln, wenn das Molverhältnis von B₂O₃ / (B₂O₃ + SiO₂) > 0,5 ist, wenn also das Verhältnis der Stoffmengen von Siliziumdioxid zu Borat im Schmelzgut kleiner oder gleich 0,5 ist.

Diese Erkenntnis war um so überraschender, als selbst alkalihaltige Borosilicatgläser mit niedrigem B₂O₃-Gehalt deren Molverhältnis von B₂O₃ / (B₂O₃ + SiO₂) < 0,5 ist, nur bei hohen Temperaturen oder in der Praxis gar nicht ankoppeln. Gegen das Schmelzen von Borosilicatgläser mit hohem B₂O₃-Gehalt und Boratgläsern in mit elektromagnetischer Hochfrequenzenergie beheizten Skulltiegeln spricht zum einen die eigentlich zu erwartende geringe Ankopplungsfähigkeit der alkaliarmen/alkalifreien Borosilicatgläser mit hohem B₂O₃-Gehalt und der Boratgläser

mit elektromagnetischen Wechselfeldern, und zum anderen die Gefahr des Durchbruchs der Glasschmelze bedingt durch die sehr niedrige Viskosität dieser Gläser und die damit verbundene Gefahr von Überschlägen.

5

10

Eine Erklärung für das Phänomen, daß die erfindungsgemäßen Schmelzen entgegen der Erwartung doch an ein elektromagnetisches Hochfrequenzfeld ankoppeln, könnte sein, dass bei einem Molverhältnis von B_2O_3 / (B_2O_3 + SiO_2) < 0,5 das SiO_2 als Netzwerkbildner dominiert und erst bei einem Molverhältnis von B_2O_3 / (B_2O_3 + SiO_2) > 0,5 das B_2O_3 die Struktur bestimmt.

Aus dem Artikel "Inorganic Glass-Forming Systems von H.

Rawson, Academic Press London and New York 1967, Seite 107
ist bekannt, dass Aluminoborat-Systeme hervorragende
elektrische Isolationseigenschaften aufweisen. Diese Gläser
besitzen sogar einen höheren elektrischen Widerstand als
"fused silica". Das bedeutet, das diese Gläser in festem

Zustand eine extrem schlechte elektrische Leitfähigkeit
aufweisen. Überraschend zeigt sich aber, daß sich solche
Gläser, sofern sie eine wie in Anspruch 1 angegebene
Zusammensetzung aufweisen, dennoch mit Hochfrequenz
ankoppeln und sich mit dem erfindungsgemäßen Verfahren

herstellen lassen.

Die direkte induktive Beheizung der Schmelze mittels eines hochfrequenten Wechselfeldes ermöglicht die Herstellung besonders reiner Werkstoffe, da kein unmittelbarer Kontakt der Schmelze mit dem Material einer Heizvorrichtung vorhanden ist. Außerdem werden Verunreinigungen, wie etwa Rückstände und Verbrennungsprodukte, die bei der

Verbrennung organischer Brennstoffe in der Oberofenatmosphäre entstehen können, vermieden.

Als Ankopplung der Schmelze an das elektromagnetische Wechselfeld, wie insbesondere in Form eines Hochfrequenzfeldes wird in diesem Zusammenhang verstanden, daß der Energieeintrag in die Schmelze durch induktive Kopplung größer als der Energieaustrag aus der Schmelze durch die Wärmeabfuhr ist. Erst wenn eine Schmelze also an das Hochfrequenzfeld ankoppelt, ist überhaupt eine Erwärmung oder Aufrechterhaltung der Schmelze durch Hochfrequenzbeheizung möglich.

Silicatgläser und insbesondere Aluminosilicatgläser mit einem hohen Alkaligehalt besitzen eine ausreichende elektrische Leitfähigkeit und koppeln daher gut mit Hochfrequenz an, während alkaliarme Silicatgläser erst bei sehr hohen Temperaturen oder gar nicht an ein elektromagnetisches Wechselfeld ankoppeln.

. 20

25

5

10

15

Im allgemeinen nimmt die elektrische Leitfähigkeit mit steigender Temperatur zu. Aber die hoch borsäurehaltigen Gläser können nicht sehr hoch erhitzt werden, da sonst die Alkaliborate oder die Borsäure stark verdampfen und sich damit die Zusammensetzung unkontrolliert verändert. Unter anderem kann dies zu einer unerwünschten Knotenbildung führen.

Es ist zu erwarten, daß Borosilicatgläser mit niedrigem

B₂O₃-Gehalt bei gleich hohem Alkali-Gehalt bereits deutlich
schlechter als Silicatgläser an ein elektromagnetisches
Feld ankoppeln, da die Beweglichkeit der Alkaliionen in der
Glasstruktur durch das Boroxid behindert wird. Dies zeigt

25

30

sich auch daran, dass Borosilicatgläsern im Gegensatz zu den Aluminosilicatgläsern für den chemischen Ionenaustausch schlecht geeignet sind. Die Ankopplung von Boratgläsern wird dementsprechend noch schlechter oder ist gar nicht mehr möglich, wenn solche Gläser alkaliarm oder alkalifrei sind. Erst das erfindungsgemäße Verfahren ermöglicht in überraschender Weise dennoch die Ankopplung borathaltiger Schmelzen an ein Hochfrequenzfeld.

Derraschend zeigt sich dabei der Effekt, daß diese Schmelzen ankoppeln, wenn Borat gegenüber Siliziumoxid der überwiegende Netzwerkbildner ist, wenn also im Falle von Borosilicatgläsern der Stoffmengenanteil von Borat den des Siliziumoxids übertrifft. In diesem Falle können dann auch die sonst für eine Ankopplung hinreichende Leitfähigkeit der Schmelze wichtigen Alkaliionen durch andere Metallionen ersetzt werden. Es hat sich gezeigt, daß dabei ein Stoffmengenanteil von 25% von Oxiden mit zwei- oder mehrwertigen Metallionen, wie beispielsweise

Erdalkalioxiden ausreicht.

Als borathaltige Werkstoffe sind dabei insbesondere alkaliarme hochborsäurehaltigen Borosilicatgläsern, Boratgläser, sowie auch kristallisierende borathaltige Werkstoffe geeignet, um mit dem erfindungsgemäßen Verfahren hergestellt zu werden.

Obwohl die Metalloxide mit einwertigen Metallen, wie insbesondere Alkalioxide die Leitfähigkeit der Gläser und damit das Ankoppelverhalten deutlich erhöhen, kann der Stoffmengenanteil alkalimetallhaltiger Verbindungen im Schmelzgut, wie insbesondere der Stoffmengenanteil der einwertigen Metalloxide vorteilhaft auf kleiner oder gleich

0,5 % beschränkt werden, um die physikalischen und chemischen Eigenschaften der Gläser zu verbessern, ohne daß die Schmelze ihre Ankoppelbarkeit verliert.

Es sei hier darauf hingewiesen, dass bei den
Borosilicatgläsern mit hohem B₂O₃-Gehalt und Boratgläsern
das Ankoppelverhalten für das erfindungsgemäße Schmelzen
mit Hochfrequenzbeheizung besser ist, wenn den Alkaligehalt
über 0,5 % liegt. Ein besonders gute Ankopplung wird
bereits mit etwa 2% Stoffmengenanteil alkalihaltiger
Verbindungen erreicht. Als alkaliarme Schmelze wird
insbesondere eine derartige Schmelze mit einem
Stoffmengenanteil von Alkaliverbindungen von höchstens 2 %,
bevorzugt von höchstens 0,5 % verstanden.

15

20

25

30

Zum erfindungsgemäßen Schmelzen von Keramiken und Gläsern können neben den herkömmlichen keramischen Tiegeln oder den Edelmetallgefäßen insbesondere auch Skulltiegel eingesetzt werden. Besonders geeignete Vorrichtungen zur Durchführung des erfindungsgemäßen Herstellungsverfahrens werden dabei unter anderem in der früheren deutschen Anmeldung der Anmelderin mit der Anmeldenummer 102 44 807.8 beschrieben, deren Offenbarungsgehalt vollumfänglich auch zum Gegenstand der vorliegenden Erfindung gemacht wird. Geeignete Skulltiegel sind auch beispielsweise aus der EP 0 528 025 B1 bekannt.

Die Skulltiegel umfassen eine gekühlte Tiegelwandung. Diese kann beispielsweise zylindrisch und aus einem Kranz von vertikalen Rohren, vorzugsweise Metallrohre, aufgebaut sein. Als Kühlfluid wird bevorzugt Wasser eingesetzt. Es ist jedoch auch die Kühlung mit anderen Kühlfluiden, wie beispielsweise mit Luft oder einem Aerosol möglich.

Zwischen einander benachbarten Rohren verbleiben Schlitze. Auch der Tiegelboden kann aus Rohren aufgebaut sein. An ihren Enden sind die Rohre an vertikale Rohre zur Kühlmittelzufuhr beziehungsweise zur Kühlmittelabfuhr angeschlossen.

Die Beheizung erfolgt durch eine Induktionsspule, welche die Tiegelwandung umgibt und über welche elektromagnetische Energie, vorzugsweise in Form eines elektromagnetischen Hochfrequenzfeldes in den Tiegelinhalt einkoppelbar ist.

Gemäß einer bevorzugten Ausführungsform wird ein Wechselfeld mit einer Frequenz im Bereich von 50 kHz bis 1500 kHz zur direkten induktiven Beheizung der Schmelze verwendet. Hierbei werden vorteilhaft die postalisch zugelassenen Frequenzen, wie etwa 386 kHz in Deutschland verwendet. Die Wahl einer geeigneten Frequenz hängt außerdem vom Fassungsvermögen des verwendeten Tiegels ab. Mit steigender Frequenz sinkt die Eindringtiefe des Feldes in die Schmelze. Daher sind für große Tiegel eher niedrigere Frequenzen und für kleinere Tiegel höhere Frequenzen vorteilhaft, um eine hinreichend hohe Heizleistung auch in der Mitte des Tiegels zu erreichen.

25 · ·

30

10

15

20

Ein Skulltiegel arbeitet im wesentlichen wie folgt: Der Tiegel wird mit Gemenge oder Scherben oder einem Gemisch von beidem befüllt. Das Glas beziehungsweise die Glasschmelze müssen zunächst vorgeheizt werden, um eine elektrische Mindestleitfähigkeit der Glasschmelze zu erreichen. Ist die Kopplungstemperatur erreicht, dann kann die weitere Energiezufuhr über die Einstrahlung von Hochfrequenzenergie erfolgen.

10

15

20

25

Der Vorteil des Schmelzens durch direkte induktive
Beheizung in einem Skulltiegel liegt darin, dass sich an
den gekühlten Wänden, wie etwa Wänden aus wassergekühlten
Metallrohren eine Skullschicht aus arteigenem Material
bilden kann. Dadurch wird nicht nur ein Kontakt der
Schmelze mit einer Heizvorrichtung sondern auch mit der
Tiegelwandung vermieden. Somit können in einem derartigen
Tiegel besonders reine Werkstoffe erschmolzen werden, da
kein Eintrag von Fremdmaterial, wie beispielsweise färbende
Ionen aus der Wandung in die Schmelze vorhanden ist.

Die Skullschicht bildet sich an den gekühlten Rohren aus. Zwischen den Rohren dringt die Glasschmelze etwas in den Zwischenraum ein bis sie von beiden Seiten soweit abgekühlt ist, daß sich ebenfalls eine dünne Glasschicht ausbildet und die Lücke zwischen den Rohren schließt. Ist der Abstand zwischen den Metallrohen zu weit oder ist die Skullschicht zu dünn, kann es dazu kommen, daß die Skullschicht dem Druck der Glasschmelze nicht mehr widerstehen kann, so daß das Glas zwischen den Metallrohren ausfließt.

Das Schmelzen mit einem induktiv beheizten Skulltiegel wird bevorzugt zum Schmelzen von Kristallen oder von hochschmelzenden Gläsern eingesetzt. Beim Schmelzen von Kristallen besteht die Skullschicht aus leicht angesintertem Kristallpulver und bei Gläsern bildet sich eine glasige oder kristalline Schicht aus.

30 Um mit Hochfrequenz in einem Skulltiegel schmelzen zu können, muss die Energie, die durch die Hochfrequenz in die Glasschmelze eingetragen wird, größer sein, als die Energie, die durch Strahlung oder Wärmeabfuhr, über die

25

30

Skullschicht und die gekühlten Wände des Skulltiegels abgeführt wird. Dies ist nur dann der Fall, wenn die Glasschmelze eine ausreichende elektrische Leitfähigkeit und damit ein ausreichend gutes Ankopplungsverhalten besitzt.

Borosilicatgläser mit hohem B,O,-Gehalt und Boratgläser weisen im Gegensatz zu den Silicatgläsern und den Borosilicatqläsern mit niedrigem B,O,-Gehalt bei der Schmelztemperatur eine extrem niedrige Viskosität auf. 10 Diese Borosilicatgläser mit hohem B,O,-Gehalt und die Boratgläser sind sehr kurz. Dies bedeutet, daß der Übergang vom hochviskosen in den niedrigviskosen Zustand in einem sehr engen Temperaturintervall stattfindet. Bei der 15 Schmelztemperatur sind diese Gläser daher ähnlich dünnflüssig wie Wasser. Bei diesen niedrigen Viskositäten ist zu erwarten, daß sich nur eine sehr dünne Skullschicht ausbildet die dem Gewicht der Schmelze nicht widerstehen kann und es dadurch zum Durchbruch der Schmelze kommt. Unter einem Durchbruch der Schmelze wird hier ein Auslaufen 20 der Glasschmelze zwischen den wassergekühlten Metallrohren eines Skulltiegels verstanden.

Die Erfinder haben erkannt, daß dieses Ausfließen um so kritischer ist, je dünnflüssiger die Glasschmelze ist. Es hat sich gezeigt, daß bei hochschmelzenden Gläsern bei einem größeren Abstand der Metallrohre die Schmelze relativ tief in den Zwischenraum zwischen den Metallrohren eindringt und noch eine Skullschicht zwischen den Metallrohren ausbilden.

Bei dünnflüssigen Glasschmelzen kann die Fließgeschwindigkeit zwischen der Glasschmelze zwischen den Metallrohren so hoch, dass die Wärmeabfuhr über die Metallrohre nicht mehr ausreicht, um den Glasstrom zu stoppen und eine Skullschicht zu bilden.

5 Wird ein Skultiegel für das Schmelzen eines "kurzen"
borathaltigen Werkstoffes verwendet, so ist also ein
geringer Abstand der Metallrohre des Tiegels vorteilhaft,
um das Durchbrechen der Schmelze zu verhindern. Dennoch muß
zwischen den Rohren noch ein gewisser Abstand vorhanden
10 sein, um unter anderem eine Abschirmung des
Hochfrequenzfeldes zu vermeiden.

Besonders für hochschmelzende, hochviskose Schmelzen kann dazu ein Zwischenraum von 5mm oder kleiner gewählt werden.

15

20

30

Es hat sich gezeigt, dass ein Auslaufen insbesondere von Borosilicatgläsern mit hohem B_2O_3 -Gehalt und Boratgläsern wirkungsvoll verhindert werden kann, wenn der Abstand zwischen den gekühlten Rohren des Skulltiegels kleiner/gleich 4 mm, vorzugsweise kleiner/gleich 3,5 mm beträgt. Für zähere Gläser wird vorzugsweise der größere Abstand gewählt.

Der Abstand wird vorteilhaft um so geringer gewählt, je niedriger die Viskosität der Glasschmelze ist.

Die Abstände zwischen den Metallrohren können nicht beliebig klein gewählt werden, da zum einen die Herstellung des Skulltiegels, d.h. das Verlöten oder Verschweißen der Metallrohre immer schwieriger wird und zum anderen die Gefahr von Überschlägen zwischen den Metallrohren zunimmt. Es hat sich gezeigt, dass ein Abstand zwischen den Metallrohren von größer/gleich 2mm, vorzugsweise von

größer/gleich 2.5 mm am günstigsten sowohl für die Herstellung als auch für das Beherrschen der Überschläge ist.

5 Um beide Bedingungen erfüllen zu können ist es von Vorteil, wenn der Abstand zwischen den Rohrwandungen der Metallrohre zwischen 2 mm und 4mm, vorzugsweise zwischen 2,5 mm und 3,5 mm liegt. Bei sehr niedrigschmelzenden Gläsern ist dabei eher ein Abstand von 2,5mm vorteilhaft.

10

15

20

Beim Schmelzen von Gläsern kann es darüber hinaus zu Überschlägen in der Schmelze von einem gekühlten Metallrohr zum nächsten kommen. Diese Gefahr ist um so größer je geringer die isolierende Wirkung der Skullschicht ist. Bei sehr dünnflüssigen Schmelzen ist aufgrund der dünnen Skullschicht diese Gefahr dementsprechend besonders groß. Insbesondere bei Borosilicatgläsern mit hohem B₂O₃-Gehalt und Boratgläsern, die beide im allgemeinen nur dünne Skullschichten aufbauen, besteht die Neigung zu Überschlägen zwischen den Metallrohren. Der Überschlag erfolgt über die Glasschmelze und die dünne Skullschicht. Die Wahrscheinlichkeit eines Überschlages wird um so größer, je dünner die Skullschicht und um so geringer ihr elektrischer Widerstand der Skullschicht ist.

25

30

Wie bereits erwähnt, soll die Skullschicht nicht nur das Auslaufen der Glasschmelze, sondern auch einen Überschlag zwischen den Metallrohren über die Glasschmelze verhindern. Die Isolationswirkung ist um so größer, je dicker die Skullschicht und je größer der Abstand zwischen den gekühlten Metallrohren ist.

Versuche haben gezeigt, daß für die beanspruchten Gläser die Dicke der Skullschicht und der beanspruchte Abstand zwischen den Metallrohren oft nicht ausreicht um einen Überschlag über die Glasschmelze zu vermeiden.

5

10

Überschläge zwischen den Metallrohren lassen sich aber vorteilhaft in einfacher Weise dadurch vermeiden, daß die Metallrohre insbesondere im Bereich der Induktionsspule zur Emission des elektromagnetischen Wechselfelds, wie beispielsweise einer Hochfrequenzspule kurzgeschlossen werden. Durch den Kurzschluß wird vermieden, daß sich zwischen den Rohren im elektromagnetischen Wechselfeld große Potentialdifferenzen aufbauen können.

- Die Erfinder haben weiterhin erkannt, daß es beim Schmelzen in einem Skulltiegel einen sehr engen Zusammenhang zwischen der Viskosität der Glasschmelze, dem Auslaufen der Glasschmelze und den Überschlägen in der Schmelze gibt.
- Es hat sich überraschender Weise gezeigt, dass es für einen Zusammensetzungsbereich von niedrigschmelzenden Borosilicatgläsern mit hohem B₂O₃-Gehalt und Boratgläsern möglich ist, beim erfindungsgemäßen Schmelzen mit einem Skulltiegel, einen Bereich für den Abstand zwischen den gekühlten Metallrohren zu finden, bei dem die Glasschmelze noch nicht ausfließt und Überschläge mit Hilfe zusätzlicher Maßnahmen verhindert werden können.

Versuche haben gezeigt das die beanspruchten

30 Borosilicatgläser mit hohem B₂O₃-Gehalt und Boratgläser nur
eine sehr dünne Skullschicht ausbilden und daher sehr stark
zum Auslaufen der Schmelze neigen.

Die Erfinder haben erkannt, dass die Überschläge nicht nur von der Skullschicht und dem Abstand der Metallrohre abhängt, sondern auch von der elektrischen Leitfähigkeit der verwendeten Metallrohre.

Insbesondere bei der Verwendung von wassergekühlten, hoch elektrisch leitfähigen Rohren, wie beispielsweise bei Kupferrohren reicht eine Kurzschlussstelle aus. Aufgrund der hohen Leitfähigkeit können sich keine großen Potentialdifferenzen zwischen den Rohren aufbauen, wenn diese wenigstens eine Kurzschlussstelle aufweisen, beziehungsweise, wenn die Metallrohre an jeweils einer Stelle kurzgeschlossen werden.

15

20

25

30

10

5

Kommen andererseits Rohre mit einer schlechteren Leitfähigkeit, wie etwa Rohre aus Inconel anstelle der Kupferrohre zum Einsatz, dann sind zwei Kurzschlussstellen vorteilhaft, wobei diese bevorzugt an den Enden der Rohre angeordnet sind, beziehungsweise, wobei die Metallrohre jeweils an ihren Enden kurzgeschlossen werden.

Ein weiteres Ziel der Erfindung ist die Herstellung von hochreinen Borosilicatgläser und Boratgläser mit hohem B_2O_3 -Gehalt.

Es wurde überraschend festgestellt, dass unter anderem die sehr aggressiven Borosilicatgläser mit hohem B₂O₃-Gehalt und Boratgläser die Metallrohre sogar durch die dünne Skullschicht hindurch angreifen, oder daß auch Reaktionen der Skullschicht mit dem Material der Rohre des Skulltiegels auftreten können. Auch oberhalb der Glasschmelze können die Rohre, insbesondere solche aus

Metall durch die Verdampfungsprodukte und das Gemenge dieser Gläser angegriffen werden.

Werden an die optischen Gläser extrem hohe Anforderungen bezüglich Transmission und damit der Reinheit der Schmelze gestellt, dann ist es insbesondere bei der Schmelze von Borosilicatgläsern und Borat-Gläsern mit hohem B₂O₃-Gehalt von Vorteil, wenn die wassergekühlten Metallrohre Rohre aus Platin, einer Platinlegierung oder Aluminium umfassen, oder die Rohre wie zum Beispiel solche aus Kupfer, Messing oder Inconel werden mit Platin oder einer Platinlegierung beschichtet.

Für die erfindungsgemäß geschmolzenen Gläser und Werkstoffe hat sich auch bewährt, die Rohre mit Kunststoff, vorzugsweise mit einem fluorhaltigen Kunststoff zu beschichten, da die fluorhaltigen Schichten auch von den sehr aggressiven Gläsern nicht angegriffen werden, wie in DE 100 02 019 gezeigt wurde, deren Offenbarungsgehalt vollumfänglich auch zum Gegenstand der vorliegenden Erfindung gemacht wird.

Die Gemenge der Borosilicatgläser mit hohem B_2O_3 -Gehalt und Boratgläser neigen sehr stark zur Verstaubung. Die starke Verstaubung ist aus der Sicht des Umweltschutzes in hohem Maße unerwünscht. Die starke Verstaubung einzelner Komponenten führt aber auch zu Brechwertschwankungen, die durch Nachkorrigieren des Gemenges nicht in ausreichendem Maße ausgeglichen werden können.

30

10

15

20

25

Erfindungsgemäß kann die Verstaubung des Gemenges stark unterdrückt werden, wenn das Gemenge in Form von Pellets zugegeben wird.

15

20

25

30

In der Glasindustrie ist zwar das Pelletieren von Gemenge bekannt. Das Ziel für das Pelletieren an technischen Wannen ist aber, die Wärme des Schmelzofens zurück zu gewinnen. Im allgemeinen gibt es bei technischen Gläsern keine großen Probleme bezüglich der Verstaubung.

Der Einsatz von Pellets ist in der Glasindustrie noch umstritten, da sich die Kosten für das Pelletieren in den meisten Fällen nicht lohnen.

Die Erfinder haben aber überraschend festgestellt, dass bei einem Gemenge, dass im wesentlichen aus Oxiden oder Silicaten besteht, die Pellets direkt in die Glasschmelze eingerührt werden können. Durch das direkte Einrühren der Pellets in die Glasschmelze kann die Verstaubung beim Einschmelzen des Gemenges extrem stark herabgesetzt werden. Die starke Herabsetzung der Verstaubung beim Einschmelzen in einem Skulltiegel wird darauf zurück geführt, dass die Pellets durch die sehr hohe Konvektion im Skulltiegel sehr schnell in die Glasschmelze eintauchen und so von der Glasschmelze umgeben werden.

Es wurde weiterhin überraschend gefunden, daß durch den Einsatz der Pellets anstelle von losem Gemenge neben der Verminderung der Verstaubung auch die Einschmelzzeit wesentlich verringert und dadurch der Durchsatz wesentlich erhöht werden kann. Dies führt außerdem dazu, daß aufgrund der geringeren Verweilzeit des Schmelzguts im Aggregat das Verdampfen leichter flüchtiger Komponenten und damit nachteilige stöchiometrische Veränderungen während des Herstellungsprozesses vermindert werden kann. Bei sehr hohen Anforderungen bezüglich Homogenität sollte eine

starke Verdampfung von Komponenten der Schmelze weitgehend unterdrückt werden, so daß der Einsatz von Pellets insbesondere auch zur Herstellung hochwertiger Gläser, wie beispielsweise von optischen Gläsern von Vorteil ist.

5

10

15

20

25.

Eine weitere Steigerung des Durchsatzes kann vorteilhaft dadurch erreicht werden, indem die Schmelze während des Aufschmelzens von Gemenge gerührt wird. Dies kann beispielsweise in einem Einschmelzteil eines Skulltiegels vorgenommen werden.

Eine gute Rührwirkung läßt sich insbesondere auch dadurch erreichen, indem ein Gas in die Schmelze eingeblasen wird. Auf diese Weise kann die Schmelze berührungslos gerührt werden, so daß ein Eintrag von Fremdionen oder Reaktionen mit der Oberfläche eines Rührers vermieden werden.

So kann beispielsweise in das Aggregat, wie beispielsweise in einen Skulltiegel ein Bubblingrohr in die Schmelze eingeführt oder eingesetzt und durch eine Düse des Bubblingrohrs ein Gas in die Schmelze eingeblasen werden. Bei dem Eintragen von Gas in die Schmelze muß jedoch darauf geachtet werden, welche chemische Reaktionen ablaufen können. Beim Einleiten von sauerstoffhaltigem Gas kann es zur Aufoxidation der Glasschmelze kommen.

Vorteilhaft kann das erfindungsgemäße Verfahren auch das Läutern des Schmelzguts umfassen, um Blasen im erfindungsgemäß hergestellten Werkstoff zu vermeiden.

Zur Durchführung des erfindungsgemäßen Verfahrens kann das Gemenge sowohl diskontinuierlich, als auch kontinuierlich im Aggregat geschmolzen werden.

30

Insbesondere beim kontinuierlichen Schmelzen kann das Einschmelzen von Gemenge und Läutern entweder in ein und dem selben Tiegel erfolgen oder in zumindest zwei hintereinander geschalteten Tiegeln oder Aggregaten.

Vorzugsweise werden Skulltiegel verwendet, da sie ein Schmelzen im eigenen Material ermöglichen und so besonders reine Werkstoffe erzeugt werden können.

Durch das Heizen mit Hochfrequenz entsteht in einem Tiegel, insbesondere jedoch in einem Skulltiegel ein starker Temperaturgradient zwischen Wandbereich und Tiegelmitte.

Durch diesen Temperaturgradient entsteht ein Auftrieb und es kommt zur Konvektion in der Schmelze, durch welche die Schmelze im Randbereich nahe den Wänden nach unten gezogen wird. Dadurch ist es auch vorteilhaft möglich, insbesondere in einem Skulltiegel sowohl das Einschmelzen des Gemenges als auch das Läutern durchzuführen. Bei der Abwärtsbewegung wird das Gemenge aufgeschmolzen und während der

Aufwärtströmung geläutert.

Insbesondere bei schwerer aufschmelzenden Gläsern oder zur Erzielung höherer Durchsätze ist es zweckmäßig, für das Einschmelzen und Läutern zwei getrennte Tiegel oder Aggregate zu verwenden. Da der stärkere chemische Angriff beim Einschmelzen erfolgt, sollte zumindest der Einschmelztiegel ein Skulltiegel sein. Bei sehr hohen Reinheitsforderungen kann auch der Läutertiegel aus einem Skulltiegel bestehen. Es ist möglich, zwei Skulltiegel hintereinander zu schalten.

Mit dem erfindungsgemäßen Verfahren ist auch die Herstellung von Lanthanborosilicat-Gläsern möglich. Diese 5.

.20

25

Gläser werden auch als Lanthan-Kron-, Lanthan-Flint- oder Lanthan-Schwerflint-Gläser bezeichnet. Die erfindungsgemäß hergestellten Gläser zeichnen sich bei ihren optischen Eigenschaften gegenüber bekannten Gläsern insbesondere durch eine deutlich verbesserte Transmission aus und können mit dem Verfahren außerdem auch zu niedrigeren Kosten hergestellt werden.

Da alle Computerprogramme zur Berechnung von speziellen

Linsensystemen auf die im Handel befindlichen Gläser und
deren Eigenschaften abgestimmt sind, ist es vorteilhaft,
für die erfindungsgemäße Herstellung von Gläsern für
derartige Linsensysteme deren Zusammensetzung so zu wählen,
daß die optischen Eigenschaften, wie Brechungsindex und

Dispersion mit denen im Handel befindlicher Gläser
übereinstimmen.

Neben der Glasstruktur spielen auch die Netzwerkwandler für das Ankoppelverhalten eine wichtige Rolle. Am wichtigsten für das Ankoppelverhalten sind die zweiwertigen und dreiwertigen Metalloxide. Die Zusammensetzung des Schmelzguts wird gemäß einer Ausführungsform der Erfindung vorteilhaft so gewählt, daß die Konzentration an zweiwertigen und dreiwertigen Metalloxiden, beziehungsweise deren Stoffmengenanteil im Schmelzgut zumindest 25 mol % beträgt.

Während bei den Boratgläsern und den kristallisierenden borathaltigen Werkstoffen der Gehalt an Al₂O₃, Ga₂O₃ und In₂O₃ in Summe 25 % betragen kann, sollte insbesondere bei Borosilicatgläsern mit hohem B₂O₃-Gehalt der Gehalt der Netzwerkbildner Al₂O₃, Ga₂O₃ und In₂O₃ in Summe 10% nicht überschreiten.

M(VI) = Mo, W.

Gemäß einer Ausführungsform des erfindungsgemäßen Verfahrens wird ein borathaltiger, alkaliarmer Werkstoff, wie insbesondere ein alkaliarmes oder alkalifreies

- hochborsäurehaltigen Borosilicatglas oder ein Boratglas oder ein kristallisierender borathaltiger Werkstoff hergestellt, wobei zur Herstellung des Werkstoffe eine Zusammensetzung des borathaltigen Schmelzguts gewählt wird, bei welcher:
- 10 B_2O_3 zu 15 bis 75 mol %, SiO_2 zu 0 bis 40 mol %, Al_2O_3 , Ga_2O_3 , In_2O_3 zu 0 bis 25 mol %, $\Sigma M(II)O, M_2(III)O_3$ zu 15 bis 85 mol %, $\Sigma M(IV)O_2, M_2(V)O_5, M(VI)O_3$ 0 zu 20 mol %, und
- 15 $\Sigma M(I)_2O$ zu weniger als 0,50 mol % vorhanden sind, und wobei $X(B_2O_3)$ >0,50 ist, mit $X(B_2O_3) = B_2O_3/(B_2O_3 + SiO_2)$,
- 20 M(I) =Li,Na,K,Rb,Cs,
 M(II) = Mg, Ca, Sr, Ba, Zn, Cd, Pb, Cu,
 M(III) = Sc, Y, 57La-71Lu, Bi,
 M(IV) = Ti, Zr, Hf,
 M(V) = Nb, Ta,

Mit dem Summenzeichen " Σ " wird dabei die Summe aller nach dem Summenzeichen aufgelisteten Stoffmengenanteile bezeichnet. Die Prozentangaben sind Stoffmengenanteile in mol %. $X(B_2O_3) = B_2O_3/(B_2O_3 + SiO_2)$ bezeichnet weiterhin den Molenbruch der Stoffmengenanteile der Netzwerkbildner B_2O_3 zu SiO_2 .

Weitere Oxide der Elemente des Periodensystems (Ge, P, Sn, Farboxide), sowie Läutermittel in den üblichen Mengen sind je nach Anwendung möglich, aber für die Eigenschaften des Werkstoffes und die Ankoppelfähigkeit der Schmelze nicht essentiell.

Innerhalb dieses Zusammensetzungsbereiches wird insbesondere zur Herstellung glasartiger Werkstoffe, wie hoch borsäurehaltige Borosilikatgläser oder Boratgläser dabei die Zusammensetzung der Schmelze vorteilhaft so gewählt, daß der Stoffmengenanteil von B₂O₃ 15 bis 75 mol % beträgt und der Molenbruch X(B₂O₃) > 0,52 ist. Besonders bevorzugt wird für die Zusammensetzung des Schmelzguts der Anteil von B₂O₃ im Bereich zwischen 20 bis 70 mol %, der Anteil von \(\Sigma M(II)O, M_2(III)O_3\), also der Summe der Stoffmengenanteile von Oxiden mit zwei- und dreiwertigen Metallionen im Bereich zwischen 15 bis 80 mol %, und X(B₂O₃) > 0,55 gewählt.

20

30

5

Innerhalb der oben angegebenen Bereiche von
Zusammensetzungen des borhaltigen Schmelzguts ist weiterhin
ein Zusammensetzungsbereich für die optischen Eigenschaften
der Gläser besonders vorteilhaft, bei welchen im Schmelzgut

25 der Anteil von

 B_2O_3 28 bis 70 mol %, der Anteil von $B_2O_3 + SiO_2$ 50 bis 73 mol %, der Anteil von Al_2O_3 , Ga_2O_3 , In_2O_3 0 bis 10 mol % und der Anteil von $\Sigma M(II)O, M_2(III)O_3$ 27 bis 50 mol % beträgt, und $X(B_2O)$ >0.55 ist.

Besonders bevorzugt wird dabei zur Herstellung von hochborsäurehaltigen Borosilicatgläsern und Boratgläsern

eine Zusammensetzung des Schmelzguts bewählt, bei welcher: B,O, zu 36 bis 66 mol %, SiO, zu 0 - 40 mol %, $B_{2}O_{3} + SiO_{2}$ zu 55-68 mol%, Al_2O_3 , Ga_2O_3 , In_2O_3 . zu 0 - 2 mol %, $\Sigma M(II)O_1M_2(III)O_3$ zu 27 bis 40 mol %, und zu 0 bis 15 mol % vorhanden ist $\Sigma M(IV)O_2, M_2(V)O_5, M(VI)O_3$ und $X(B_2O_3)$ >0,65 beträgt.

10

15

25

30

Gemäß einer weiteren Ausführungsform der Erfindung, die besonders zur Herstellung von hochborsäurehaltigen Borosilicatgläsern und Boratgläsern für optische Anwendungen geeignet ist, wird die Zusammensetzung des Schmelzguts so gewählt, daß der Stoffmengenanteil von:

 B_2O_3 45 bis 66 mol %, von SiO_2 0 bis 12 mol %, von $B_2O_3 + SiO_2$ 55 bis 68 mol %, von Al_2O_3 , Ga_2O_3 , In_2O_3 0 bis 0,5 mol %, von

20 $\Sigma M(II)O$ 0 bis 40 mol %, von $\Sigma M_2(III)O_3$ 0 bis 27 mol %, von $\Sigma M(II)O,M_2(III)O_3$ 27 bis 40 mol %, und von

 $\Sigma M(IV)O_2, M_2(V)O_5, M(VI)O_3$ 0 bis 15 mol % beträgt. Dabei werden die Stoffmengenanteile von B_2O_3 und SiO_2 außerdem so gewählt, daß $X(B_2O_3) > 0.78$ ist. Bei dieser Variante des Verfahrens werden als zweiwertige Metallionen, M(II) insbesondere Mg, Ca, Sr, Ba, Zn, Cd, Pb zugesetzt. Die Transmission der damit erhaltenen optischen Gläser kann ferner dadurch verbessert werden, indem das Schmelzgut kein stark färbendes CuO aufweist. Die Netzwerkwandler PbO und CdO sind hinsichtlich ihrer Toxischen Wirkung bekannt. Es ist daher vorteilhaft und teilweise sogar vom Gesetzgeber

30

verlangt auf diese Komponenten beim Zusammensetzen der Schmelze zu verzichten und PbO- und CdO-freie Zusammensetzungen zu wählen.

Wird eine Zusammensetzung des Schmelzguts gewählt, bei welchem:

 B_2O_3 zu 30 bis 75 mol %,

 SiO_2 zu < 1 mol %,

 Al_2O_3 , Ga_2O_3 , In_2O_3 zu 0 bis 25 mol %,

10 $\Sigma M(II)O, M_2(III)O_3$ zu 20 bis 85 mol %, und

 $\Sigma M(IV)O_2, M_2(V)O_5, M(VI)O_3$ zu 0 bis 20 mol %, vorhanden sind, und wobei das Verhältnis der Stoffmengen von Borat und Siliziumoxid so gewählt wird, daß $X(B_2O_3) > 0.90$ ist, so lassen sich beispielsweise neben Boratgläsern auch kristallisierende borhaltige Werkstoffe, wie insbesondere

Glaskeramiken mit dieser Ausführungsform des erfindungsgemäßen Verfahrens herstellen.

Gemäß einer weiteren Ausführungsform des Verfahrens, die besonders für die Herstellung kristallisierender borhaltiger Werkstoffe, wie etwa Glaskeramiken wird eine Zusammensetzung des Schmelzguts gewählt, bei welcher die Stoffmengenanteile von

 B_2O_3 20 bis 50 mol %, von

25 SiO₂ 0 bis 40 mol %, von

 Al_2O_3 , Ga_2O_3 , In_2O_3 0 bis 25 mol %, von

 $\Sigma M(II)O, M_2(III)O_3$ 15 bis 80 mol %, und von

 $\Sigma M(IV)O_2, M_2(V)O_5, M(VI)O_3$ 0 bis 20 mol %, betragen, und

wobei $X(B_2O_3)$ >0,52 ist.

Vorteilhaft kann bei dieser Ausführungsform des erfindungsgemäßen Verfahrens, um eine gute Ankopplung zu erreichen, die Zusammensetzung des Schmelzguts so gewählt werden, daß $X(B_2O_3) > 0.55$ ist.

Die Ankopplung einer derartigen Schmelze läßt sich dabei 5 noch verbessern, wenn die Stoffmengenanteile von

 $\Sigma M(II)O$

15 bis 80 mol % und

 $M_2(III)O_3$

0 bis 5 mol % im Schmelzgut betragen, und

 $X(B_2O_3)$

>0,60 ist.

- Gemäß noch einer vorteilhaften Variante dieses Verfahrens wird der Stoffmengenanteil von Substanzen aus einer Gruppe, die $\mathrm{Al_2O_3}$, $\mathrm{Ga_2O_3}$ und $\mathrm{In_2O_3}$ umfaßt, außerdem so gewählt, daß er 5 mol % nicht überschreitet.
- Besonders bevorzugt wird eine Variante dieser
 Ausführungsform des erfindungsgemäßen Verfahren, bei
 welchem der Stoffmengenanteil von Substanzen aus einer
 Gruppe, die Al₂O₃, Ga₂O₃ und In₂O₃ umfaßt, 3 mol % nicht
 überschreitet und bei welchem der Stoffmengenanteil von
- $\Sigma M(II)$ O in der Schmelze im Bereich von 15 bis 80 mol % liegt, wobei M(II) aus einer Gruppe ausgewählt wird, die Σn , Pb und Cu umfaßt. Dabei wird die Σn schmelze außerdem so gewählt, daß Σn 0,65 ist.
- 25 Gemäß einer weiteren Ausführungsform wird für das Schmelzgut eine Zusammensetzung gewählt, bei welcher die Stoffmengenanteile von:

 B_2O_3

20 bis 50 mol %, von

SiO,

0 bis 40 mol %, von

30 Al₂O₃

0 bis 3 mol %, von

ΣZnO, PbO, CuO

15 bis 80 mol %, von

Bi₂O₃

0 bis 1 mol %, und von

 $\Sigma M(IV)O_2, M_2(V)O_5, M(VI)O_3$ 0 bis 0,05 mol % betragen. Bei dieser Ausführungsform wird die Zusammensetzung außerdem so gewählt, daß $X(B_2O_3)$ > 0,65 ist.

Gemäß einer bevorzugten Variante dieser Ausführungsform des Verfahrens werden folgende Stoffmengenanteile gewählt:

 B_2O_3

20 bis 50 mol %,

SiO,

0 bis 40 mol %,

Al₂O₃

0 bis 3 mol %,

10 Σ zno, Pbo, Cuo

15 bis 80 mol %,

 Bi_2O_3

0 bis 1 mol %, und

 $\Sigma M(IV)O_2, M_2(V)O_5, M(VI)O_3$ 0 bis 0,05 mol %. Dabei werden die Stoffmengenanteile von Borat und Siliziumoxid vorteilhaft so gewählt, daß $X(B_2O_3) > 0,65$ ist.

15

Die Erfindung wird nachfolgend anhand einiger Beispiele weiter ausgeführt.

Beispiel 1:

20

25

Für die Ankopplungsversuche wurden die Gläser in einem 30 1 Skulltiegel getestet. Hierzu wurde das Gemenge in den Skulltiegel eingegeben und mit einem Brenner aufgeschmolzen. Nach dem Aufschmelzen wird die Hochfrequenz eingeschaltet und der Brenner ausgeschaltet. Die Glasschmelze wird danach mit der Hochfrequenz weiter erhitzt. Lässt sich die Glasschmelze auf höhere Temperaturen aufheizen, dann koppelt das Glas mit der Hochfrequenz an.

Ist das nicht möglich oder koppelt die Hochfrequenz nicht gut ein, sodass die Glasschmelze wieder abkühlt, dann gilt die Glasschmelze als nicht ankoppelbar.

- 5 Koppelt die Glasschmelze aus, dann ist die durch den Skulltiegel und die Glasoberfläche abgegebene Wärmemenge größer als die durch die Hochfrequenz eingekoppelte Energie.
- In der Tabelle 1 sind Beispiele von Borosilicatgläsern mit hohem B_2O_3 Gehalt und Boratgläser aufgeführt, die nicht ankoppeln.

Tabelle 1: Nichtkoppelnde Gläser, Angaben in Mol %.

	•		•			
Glas	. 1	2 .	. <u>.</u>	. 4	5	
Oxid				·		
B ₂ O ₃	18	25	32,5	28	80.	
SiO ₂	60	52	44,5	32,5	-	
Al ₂ O ₃	2	2,5	2,5		-	
PbO	20	20,5	20.5	· <u>-</u>		
La ₂ O ₃		·	_	4,5	. –	
BaO	. –	-	-	34,4	20	
TiO ₂	-		<u>-</u>	_	-	
ZrO ₂		<u>-</u>	-	0,4	-	
WO ₃	-		_	0,04	-	
Sb ₂ O ₃	-			0,06	-	
Summe	100	100	100	100	100	

15

B ₂ O ₃ /	0,23	0,32	0,42	0,46	. 1,00
B ₂ O ₃ + SiO ₂	·				·

Bei den nichtkoppelnden Gläsern 1 bis 4 liegt das Verhältnis der Stoffmengen von Borat zu Siliziumoxid unterhalb von 0,5. Dementsprechend ist bei diesen Gläsern Siliziumoxid der überwiegende Netzwerkbildner. Aufgrund der nicht oder nur in geringen Mengen vorhandenen Alkaliionen und dieses Stoffmengenverhältnisses von Borat, B₂O₃ zu Siliziumoxid, SiO₂, ist eine induktive Ankopplung dieser Schmelzen an das Hochfrequenzfeld im Skulltiegel nicht möglich. Beim Glas 5 der Tabelle 1 ist zwar Borat der einzige Netzwerkbildner, jedoch liegt der Stoffmengenanteil von Metalloxid, dessen Metallionen zwei- oder höherwertig sind, bei lediglich 20%. Auch damit ist die Leitfähigkeit der Schmelze für eine Ankopplung in einem Skulltiegel nicht ausreichend.

In der Tabelle 2 handelt es sich mit den Beispielen 6 bis 8 um Grenzfälle von Borosilicat - und Boratgläsern mit hohem B₂O₃ - Gehalt, bei denen die experimentellen Bedingungen 20 sehr sorgfältig gewählt werden müssen, um noch eine Ankopplung zu erreichen. So ist eine Temperatur von > 1300°C, eine hohe Spannung an der die Hochfrequenz induzierenden Spule und eine ausreichende Leistung des Hochfrequenzgenerators nötig um eine ausreichende 25 Energiemenge einzukoppeln. Andererseits sollte die Temperatur nicht zu hoch gewählt werden, um ein Verdampfen von B₂O₃ zu vermeiden. Das hat die Folge, dass das Prozessfenster für diese Gläser sehr klein sein kann.

Tabelle 2: - Grenzfälle von koppelnden Gläsern (Angaben in mol %)

Glas	6	7 .	8 .
Oxid			
B ₂ O ₃	75	34	40
SiO ₂		32	36,5
Al ₂ O ₃		· -	2,5
PbO			21
La ₂ O ₃		2	-
BaO	25	31	· - .
ZrO2		0,9	_
Sb ₂ O ₃		0,1	-
Summe		100	100
B ₂ O ₃ /	1,00	0,52 ·	0,52
B ₂ O ₃ +SiO ₂			

In der Tabelle 3 sind Beispiele an Borosilicatgläsern und Boratgläsern mit hohem B_2O_3 - Gehalt zusammengestellt, die problemlos mit Hochfrequenz ankoppeln und in einem Skulltiegel geschmolzen werden können.

10 Tabelle 3: Koppelnde Gläser (Angaben in mol %)

Glas	9	10	11	12	13	14.	1.5	16	.17	18
Oxid							j			
B ₂ O ₃	34	26	22,5	40	52	60	65,5	. 50	62	31,7
SiO₂	-	12.6	9	36,5	11,5	4	-	9	·	-

								•		
Al ₂ O ₃	-		. 2.	2,5	-	-	-	-	-	13,9
PbO	66	1	23,5	. 21	-		-	- .	- :	
ZnO .	-	60	36		5	7,5	-	5	_	
La₂O₃	-	-	· - ·		18,5	13,5		20	-	
Y ₂ O ₃	-		-	-	4,5	-	-	5,5°		
CaO	-	_	_	·	-	11	21	-	-	-
BaO .	-	-	-	- ,	-	-	-	-	38	48,8
TiO₂	-	_	-		0,5	-	· -	_	_	-
ZrO ₂	-	_	-	· _	8	4	1,5	· 9	-	5,6
Nb ₂ O ₅	-		-	-	-		:	1.	· -	-
Ta ₂ O ₅		-	-	-	-	-	-	0,5	_	-
Nd ₂ O ₃		-	· -	-	-		9	-		- ·
Pr ₂ O ₃	-	_	-		· -		3	-		
CuO	· _		. 7	-				-	· -,	
CeO ₂		0,25	-	-	-		-			-
As ₂ O ₃	-	· -	-	-	-		0,02	_	-	
Sb ₂ O ₃		0,15	-	-	0,04	0,02	-	0,05	-	· _
Summe	10.0	100	100	100	100,	100,	100,	100,	100	100
·. ·					04	02	02 -	05	٠.	
B ₂ O ₃ /	1,00	0,67	0,71	0,52	0,82	0,94	1,00	0,85	1,00	1.00
B ₂ O ₃ +SiO ₂										
{	1,00	0,67	0,71	0,52	0,62	0,94	1,00	0,85	1,00	

Beispiel 2:

5 An dem ankopplungsfähigen Glas 14 der Tabelle 3 wird beispielhaft die Verbesserung der Lichttransmission durch den Einsatz der Skullschmelztechnik in Verbindung mit der Hochfrequenzbeheizung gegenüber der konventionellen Schmelze in einem Platintiegel gezeigt.

Es wurde ein optisches Glas aus der Familie der Lanthanborosilcat-Gläser in einem mit Platin beschichteten Edelstahlskulltiegel geschmolzen. Folgende Schmelzparameter wurden verwendet:

Einlegen: 1240-1260°C

10 Läutern:1280°C

15

25

Abstehen:1240-1200°C

Guss: ca. 1200°C im Tiegel; ca. 1100°C im Speiser
Die Schmelze wurde in Formen verschiedener Geometrien
gegossen (Scheiben, Stäbe, Riegel) und von 650°C auf
Raumtemperatur gekühlt.

Folgende Werte wurden gemessen:

$$nd = 1,71554;$$
 (1,71300)

$$vd = 53,41;$$
 (53,83)

20
$$\Delta Pq$$
, $F = -0.0084$; (-0.0083)

$$\tau$$
i (400nm; 25mm) = 0,972; (0,94).

Dabei bezeichnet nd den Brechungsindex bei der Fraunhoferschen Linie d bei $\lambda = 587,5618$ nm, ν_d ist die Abbe'sche Zahl bei dieser Fraunhofer'schen Linie. $\Delta P_{g,F}$ entspricht der Anomalie der relativen Teildispersion $P_{g,F}$ gemessen an den Fraunhofer'schen Linien g und F. ti bezeichnet die Reintransmission.

Die in Klammern angegebenen Referenzwerte wurden an einem Glas der selben Zusammensetzung gemessen, dass mit der

herkömmlichen Schmelztechnologie d.h. in einem induktiv beheizten Platin-Tiegel geschmolzen wurde.

Die Verbesserung ist daran zu erkennen, dass die

Reintransmission im blauen Spektralbereich entscheidend angestiegen ist. Absorptionen im Blauen verursachen einen gelblichen Farbstich, so dass bei Beobachtungs-Anwendungen wie Photographie, Mikroskopie und Fernrohren eine möglichst geringe Absorption gewünscht ist. Die Abweichungen bei Brechwert und Abbezahl sind durch die etwas höheren Verstaubungsrate der neuen Technologie bedingt und lassen sich durch Feineinstellungen am Gemenge oder durch den Einsatz von Pellets an Stelle von losem Gemenge leicht korrigieren.

15

20

25

30

Ein kontinuierlicher Schmelzversuch mit dem gleichen Glas unter folgenden Schmelzbedingungen:

Einschmelzen in einem Hochfrequenz beheizten Skulltiegel bei 1280 °C. Nach der Läuterung in einer Platinläuterkammer bei 1400 °C ergaben sich folgende Werte:

nd = 1,70712; (1,71300) vd = 53,68; (53,83) Δ Pg,F = -0,0084 (-0,0084) τ i (400nm; 25mm) = 0,965 (0,94) τ i (365nm; 25mm) = 0,831 (0,72).

Die in Klammern angegebenen Referenzwerte beziehen sich wie oben auf Meßwerte an einem Glas der selben Zusammensetzung, dass mit einem induktiv beheizten Platin-Tiegel geschmolzen wurde.

Hier wurde der für viele UV-Anwendungen charakteristische Wert der Transmission bei 365 nm mit bestimmt. Diese Wellenlänge entspricht einer wichtigen Emissionslinie von Hg-Dampflampen, die für viele Anwendungen genutzt wird. Die Lichtausbeute bei dieser Wellenlänge kann bei einem erfindungsgemäß hergestellten Glas gegenüber einem aus dem Stand der Technik bekannten Glas um 0,111 oder 15% gesteigert werden, was zu einem deutlichen Produktvorteil führt. Man erkennt des weiteren an der Brechwertabweichung zu niedrigeren Werten die Möglichkeiten der oben angesprochenen Korrekturmaßnahmen.

Für die Gläser nach Beispiel 2 sind die Komponenten B_2O_3 und Ln_2O_3 (Ln = Sc, Y, La, Gd, Yb, Lu) charakteristisch. Sie können in einem weiten Konzentrationsbereich variiert werden. Alle anderen Komponenten sind optional und können um weitere ergänzt werden. Es können hiermit optische Gläser der Familien LaK, LaF, und LaSF in einem weiten Brechwert- und Abbezahlbereich realisiert werden.

20

25

10

15

Beispiel 3:

Anhand einer Schmelze des ankopplungsfähigen Glases 8 der Tabelle 2 wird gezeigt, dass die Abstände zwischen den wassergekühlten Metallrohren < 4mm , vorzugsweise < 3,5 mm sein sollten, um ein Auslaufen der Glasschmelze zu verhindern.

In einem 10 Liter Skulltiegel, dessen Metallrohre einen
30 Abstand von maximal 4,5 mm betrugen, wurde Gemenge
eingelegt und zunächst mit einem Brenner aufgeschmolzen.
Nachdem die erste Gemengeeinlage aufgeschmolzen war, wurde
die Hochfrequenz eingeschaltet und der Brenner

10

ausgeschaltet. Ab jetzt erfolgte das Einschmelzen des Gemenges ausschließlich durch die Hochfrequenz. Nachdem der Skulltiegel etwa zu dreiviertel voll war mit Glasschmelze, kam es zu einem Durchbruch der Glasschmelze. Die Glasschmelze lief zwischen zwei wassergekühlten Metallrohren sehr schnell aus.

In einem zweiten Versuch wurde ein Skulltiegel verwendet dessen Metallrohre einen Abstand von 3,5 mm aufwiesen. Der Versuch wurde wie oben beschrieben wiederholt. Der Skulltiegel konnte ohne Probleme mit Gemenge vollgeschmolzen werden, ohne dass es zu einem Durchbruch der Glasschmelze kam.

15 Beispiel 4:

In der beigefügten Figur ist ein Diagramm dargestellt, welches die Veränderung der Leitfähigkeit einer Schmelze mit einer Zusammensetzung des Schmelzguts, bei welcher das Verhältnis der molaren Stoffmengen von Siliziumdioxid zu Borat im Schmelzgut kleiner als 0,5 ist, dargestellt. Dabei wurde der Strom durch die Schmelze und die zur Erzielung des Stroms angelegte Spannung gemessen. Die Meßwerte sind als Funktion des Stoffmengenanteils von BaO, also einem Metalloxid mit zweiwertigen Metallionen aufgetragen.

25

30

20

Anhand des Diagramms ist zu erkennen, daß sich bei einem Stoffmengenanteil von 25 Mol % BaO eine sprunghafte Steigerung des Stroms durch die Schmelze zeigt. Ab diesem Stoffmengenanteil kommt es dann auch zu einer starken Abnahme der zur Erzielung dieses Stroms notwendigen Spannung und damit zu einer weiteren Erhöhung der Leitfähigkeit der Schmelze. Aufgrund dieses in der Figur beispielhaft für BaO gezeigten Effektes ist es möglich,

erfindungsgemäß ab einem Stoffmengenanteil zwei- oder mehrwertiger Metalloxide von 25% oder mehr auch Schmelzen anzukoppeln, bei welchen das Verhältnis der molaren Stoffmengen von Siliziumdioxid zu Borat im Schmelzgut kleiner als 0,5 ist.

Patentansprüche

- 1. Verfahren zur Herstellung eines borathaltigen
 alkaliarmen Werkstoffes, wobei ein borhaltiges
 Schmelzgut in einem Aggregat mit einem
 elektromagnetischen Wechselfeld direkt induktiv
 beheizt wird und wobei das Schmelzgut als Bestandteil
 zumindest ein Metalloxid, dessen Metallionen zweioder höherwertig sind, mit einem Stoffmengenanteil von
 zumindest 25 mol % aufweist, und wobei das Verhältnis
 der molaren Stoffmengen von Siliziumdioxid zu Borat im
 Schmelzgut kleiner oder gleich 0,5 ist.
- 15 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Schmelze mit einem Hochfrequenzfeld direkt induktiv beheizt wird.
- 3. Verfahren gemäß Anspruch 1 oder 2, dadurch
 20 gekennzeichnet, daß die Schmelze mit einem
 elektromagnetischen Wechselfeld mit einer Frequenz im
 Bereich von 50 kHz bis 1500 kHz direkt induktiv
 beheizt wird.
- 25 4. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der borathaltige alkaliarme Werkstoff ein hochborsäurehaltiges Borosilicatglas, ein Boratglas oder einen borathaltigen Werkstoff umfasst.
 - 5. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der Stoffmengenanteil

alkalihaltiger Verbindungen im Schmelzgut kleiner als 2%, bevorzugt kleiner als 0,5% ist.

- 6. Verfahren nach einem der vorstehenden Ansprüche,
 dadurch gekennzeichnet, daß das Aggregat einen
 Skulltiegel umfaßt, in welchem das Schmelzgut
 geschmolzen wird.
- 7. Verfahren nach Anspruch 6, wobei das Schmelzgut in
 einem Skulltiegel geschmolzen wird, dessen Wandung
 gekühlte Rohre umfassen, die so zueinander beabstandet
 sind, daß die Rohrwandungen einem Abstand zwischen 2mm
 bis 4mm vorzugsweise 2,5mm bis 3,5mm einnehmen.
- 15 8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß die gekühlten Rohre des Skulltiegels insbesondere im Bereich einer Hochfrequenzspule zur Emission des elektromagnetischen Wechselfelds kurzgeschlossen sind.
 - 9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß die Rohre an jeweils einer Stelle kurzgeschlossen werden.
- 25 10. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß die Rohre jeweils an ihren Enden kurzgeschlossen werden.
- 11. Verfahren nach einem der Ansprüche 6 bis 10, dadurch

 gekennzeichnet, daß die gekühlten Rohre Rohre aus

 Platin, einer Platinlegierung oder Aluminium umfassen.

10

25

30

12. Verfahren nach einem der Ansprüche 6 bis 11, dadurch gekennzeichnet, dass die Rohre des Skulltiegels mit einer Schicht aus Platin oder einer Platinlegierung beschichtet sind.

13. Verfahren nach einem der Ansprüche 6 bis 12, dadurch gekennzeichnet, daß die Rohre des Skulltiegels mit Kunststoff, insbesondere mit fluorhaltigem Kunststoff beschichtet sind.

- 14. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß Gemenge in Form von Pellets zugegeben wird.
- 15 15. Verfahren gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Schmelze während des Aufschmelzens des Gemenges gerührt wird.
- 16. Verfahren gemäß einem der vorstehenden Ansprüche,
 20 dadurch gekennzeichnet, daß ein Gas in die Schmelze eingeblasen wird.
 - 17. Verfahren nach Anspruch 15 oder 16, dadurch gekennzeichnet, daß ein Bubblingrohr in die Schmelze eingeführt und durch eine Düse des Bubblingrohrs ein Gas in die Schmelze eingeblasen werden.
 - 18. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das Schmelzgut geläutert wird.
 - 19. Verfahren gemäß Anspruch 18, dadurch gekennzeichnet, daß in zumindest zwei hintereinander geschalteten

10

15

20

Aggregaten das Gemenge eingeschmolzen und geläutert wird.

- 20. Verfahren gemäß Anspruch 18 dadurch gekennzeichnet, daß Gemenge im selben Aggregat eingeschmolzen und geläutert wird.
- 21. Verfahren gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das Schmelzgut im Aggregat diskontinuierlich einschmolzen wird.
 - 22. Verfahren gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das Schmelzgut im Aggregat kontinuierlich eingeschmolzen wird.

23. Verfahren gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Schmelzgut eine Zusammensetzung aufweist, bei welcher:

 B_2O_3 zu 15 bis 75 mol %, SiO_2 zu 0 bis 40 mol %, Al_2O_3 , Ga_2O_3 , In_2O_3 zu 0 bis 25 mol %, $\Sigma M(II)O_1M_2(III)O_3$ zu 15 bis 85 mol %, $\Sigma M(IV)O_2,M_2(V)O_5,M(VI)O_3$ zu 0 bis 20 mol %, und $\Sigma M(I)_2O$ zu <0,50 mol %, vorhanden

25 sind und wobei

 $X(B_2O_3)$ >0,50 beträgt,

mit

 $X(B_2O_3) = B_2O_3/(B_2O_3 + SiO_2),$

M(I) =Li,Na,K,Rb,Cs,

30 M(II) = Mg, Ca, Sr, Ba, Zn, Cd, Pb, Cu,
M(III) = Sc, Y, ⁵⁷La-⁷¹Lu, Bi,

M(IV) = Ti, Zr, Hf,

M(V) = Nb, Ta, M(VI) = Mo, W.

- Verfahren gemäß Anspruch 23, dadurch gekennzeichnet, dass im Schmelzgut der Anteil von B_2O_3 15 bis 75 mol % beträgt und $X(B_2O_3) > 0,52$ ist.
- 25. Verfahren gemäß Anspruch 23 oder 24, wobei im Schmelzgut der Anteil von $B_2O_3 \qquad \qquad 20 \text{ bis } 70 \text{ mol } \$, \text{ der Anteil von}$ $\Sigma M(II)O, M_2(III)O_3 \qquad 15 \text{ bis } 80 \text{ mol } \$ \text{ beträgt, und}$ $X(B_2O_3) > 0.55 \text{ ist.}$
- Verfahren gemäß einem der Ansprüche 23 bis 25, dadurch gekennzeichnet, dass im Schmelzgut der Anteil von B_2O_3 28 bis 70 mol %, der Anteil von $B_2O_3 + SiO_2$ 50 bis 73 mol %, der Anteil von Al_2O_3 , Ga_2O_3 , In_2O_3 0 bis 10 mol % und der Anteil von $\Sigma M(II)O, M_2(III)O_3$ 27 bis 50 mol % beträgt, und $\Sigma M(B_2O)$ >0,55 ist.
- 27. Verfahren nach Anspruch 26, dadurch gekennzeichnet, dass für das Schmelzgut eine Zusammensetzung gewählt wird, bei welcher:

 B_2O_3 zu 36 bis 66 mol %, SiO_2 zu 0 bis 40 mol %, $B_2O_3 + SiO_2$ zu 55 bis 68 mol%, Al_2O_3 , Ga_2O_3 , In_2O_3 zu 0 bis 2 mol %,

 $\Sigma M(II)O, M_2(III)O_3$ zu 27 bis 40 mol %, $\Sigma M(IV)O_2, M_2(V)O_5, M(VI)O_3$ zu 0 bis 15 mol % vorhanden ist, und

X (B,O,)

>0,65 beträgt

Verfahren gemäß einem der vorstehenden Ansprüche, 28. insbesondere zur Herstellung von hochborsäurehaltigen Borosilicatgläsern und Boratgläsern für optische Anwendungen,

dadurch gekennzeichnet,

dass das Schmelzgut die folgende Zusammensetzung aufweist:

45 bis 66 mol %, 10 B_2O_3 0 bis 12 mol %, SiO, 55 bis 68 mol %, $B_2O_3 + SiO_2$ Al_2O_3 , Ga_2O_3 , In_2O_3 0 bis 0,5 mol %,

0 bis 40 mol %, $\Sigma M(II)O$

0 bis 27 mol %, $\Sigma M_2(III)O_3$ 15

> 27 bis 40 mol %, $\Sigma M(II)O, M_2(III)O_3$

0 bis 15 mol %, und wobei $\Sigma M(IV) O_2, M_2(V) O_5, M(VI) O_3$

>0,78 beträgt, $X(B_2O_3)$

mit M(II)=Mg, Ca, Sr, Ba, Zn, Cd, Pb.

20

25

Verfahren gemäß einem der vorstehenden Ansprüche, 29. insbesondere zur Herstellung von Boratgläsern und kristallisierenden borhaltigen Werkstoffen, dadurch gekennzeichnet, dass das Schmelzgut eine Zusammensetzung aufweist, bei welcher die Anteile von

30 bis 75 mol %, von B_2O_3

< 1 mol %, von SiO,

0 bis 25 mol %, von Al₂O₃, Ga₂O₃, In₂O₃

20 bis 85 mol %, und von $\Sigma M(II)O, M_2(III)O_3$

 $\Sigma M(IV)O_2, M_2(V)O_5, M(VI)O_3$ 0 bis 20 mol % betragen, und 30 wobei

> > 0,90 ist. $X(B_2O_3)$

30. Verfahren gemäß einem der vorstehenden Ansprüche, insbesondere zur Herstellung von kristallisierendem borathaltigem Werkstoff,

dadurch gekennzeichnet,

daß das Schmelzgut eine Zusammensetzung aufweist, bei welcher:

 B_2O_3 zu 20 bis 50 mol %, SiO_2 zu 0 bis 40 mol %, O_3 zu 0 bis 25 mol %, O_4 zu 0 bis 25 mol %, O_5 zu 15 bis 80 mol %, O_5 zu 15 bis 80 mol %, O_5 zu 15 bis 20 mol % vorhanden sind, und wobei O_5 xu 0 bis 20 mol % vorhanden O_5 xu 0 bis 20 mol % vorhanden

15

5

- 31. Verfahren gemäß Anspruch 30, dadurch gekennzeichnet, daß $X(B_2O_3) > 0.55$ ist.
- 32. Verfahren gemäß Anspruch 30 oder 31, dadurch
 gekennzeichnet, dass die Stoffmengenanteile
 ΣM(II) 0 15 bis 80 mol % und
 M₂(III) O₃ 0 bis 5 mol % betragen, und
 X(B₂O₃) >0,60 ist.
 - 25 33. Verfahren gemäß einem der Ansprüche 30 bis 32, dadurch gekennzeichnet, daß der Stoffmengenanteil von Substanzen aus einer Gruppe, die Al₂O₃, Ga₂O₃ und In₂O₃ umfaßt, 5 mol % nicht überschreitet.
 - 30 34. Verfahren gemäß einem der Ansprüche 30 bis 33, dadurch gekennzeichnet, dass die Zusammensetzung des Schmelzguts so gewählt wird, dass der

15

25

30

Stoffmengenanteil von Substanzen aus einer Gruppe, die Al_2O_3 , Ga_2O_3 und In_2O_3 umfasst, 3 mol % nicht überschreitet und bei welcher der Stoffmengenanteil von $\Sigma M(II)O$ im Bereich von 15 bis 80 mol % liegt, und wobei $X(B_2O_3)$ > 0,65 ist, mit M(II)=Zn, Pb, Cu.

35. Verfahren gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß für das Schmelzgut eine Zusammensetzung gewählt wird, bei welcher:

10 B_2O_3 zu 20 bis 50 mol %, SiO_2 zu 0 bis 40 mol %, Al_2O_3 zu 0 bis 3 mol %, $\Sigma ZnO, PbO, CuO$ zu 15 bis 80 mol %, Bi_2O_3 zu 0 bis 1 mol %, und

 $\Sigma M(IV)O_2, M_2(V)O_5, M(VI)O_3$ zu 0 bis 0,05 mol % vorhanden sind, und wobei $X(B_2O_3) > 0,65$ ist.

Verfahren gemäß Anspruch 35, dadurch gekennzeichnet,
 daß eine Zusammensetzung des Schmelzguts gewählt wird,
 bei welcher die Stoffmengen von

 B_2O_3 20 bis 42 mol %, von SiO_2 0 bis 38 mol %, von $\Sigma ZnO, PbO$ 20 bis 68 mol %, von

CuO 0 bis 10 mol %, von
ΣZnO, PbO, CuO 20 bis 68%, und von

 $\mathrm{Bi}_2\mathrm{O}_3$ 0 bis 0,1 mol % betragen, und

 $X(B_2O_3) > 0,65 \text{ ist.}$

wobei

37. Verfahren gemäß einem der Ansprüche 1 bis 36, dadurch gekennzeichnet, daß eine Zusammensetzung des

T/EP2003/013576

Schmelzguts gewählt wird, die frei von PbO und CdO ist.

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C03B5/02 C03B5/193 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 CO3B Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with Indication, where appropriate, of the relevant passages Category 5 X WO 01 53222 A (KOLBERG UWE ; SCHOTT GLAS 1-7 11-14. (DE); ZEISS STIFTUNG (DE); KUNERT CHRISTI) 26 July 2001 (2001-07-26) 18-37 8-10, Y page 1, line 7-17 15-17 page 5, line 12 page 6, 11ne 17 8-10 WO 01 14265 A (LENTES FRANK THOMAS ; KIEFER Υ WERNER (DE); RAEKE GUIDO (DE); SCHOTT)
1 March 2001 (2001-03-01) page 9, line 16-22 Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-ments, such combination being obvious to a person skilled in the art. "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date dalmed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the International search report 10 March 2004 29/03/2004 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016 Creux, S

In tion Application No
PCT/EP 03/13576

- in	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.		
C.(Continu Category °				
Calegory *	Oile of the control o			
Υ	DATABASE WPI Section Ch, Week 200328 Derwent Publications Ltd., London, GB; Class K07, AN 2003-285834 XP002273086 & KR 2002 050 331 A (KOREA ELECTRIC POWER CORP), 27 June 2002 (2002-06-27) abstract	15-17		
P,X	EP 1 275 619 A (SCHOTT GLAS ;ZEISS STIFTUNG (DE)) 15 January 2003 (2003-01-15)	1-14, 18-37		
Y	insbesondere Beispiel 1 - the whole document	15-17		
	NEZHENTSEV V V ET AL: "MELTING OPTICAL GLASSES IN HIGH-FREQUENCY FURNACES" GLASS AND CERAMICS, CONSULTANTS BUREAU. NEW YORK, US, vol. 45, no. 5/6, 1 May 1988 (1988-05-01), pages 182-185, XP000007924 ISSN: 0361-7610 the whole document			

Intentional Application No PCT/EP 03/13576

Patent document cited in search report		Publication date	Patent family member(s)			Publication date	
WO 0153222	A	26-07-2001	DE	10002019	C1	15-11-2001	
			AT	245608	T	15-08-2003	
			ΑU	3167301	Α	31-07-2001	
			CN	1395546	T	05-02-2003	
		•	DE	50100415	D1	28-08-2003	
			EΑ	3539		26-06-2003	
			MO	0153222		26-07-2001	
		•	EP	1250294	A1	23-10-2002	
			JP	2003520179	T	02-07-2003	
			US	2003048829	A1	13-03-2003	
WO 0114265	Α	01-03-2001	DE	19939772	C1	03-05-2001	
	•		AT	231824	T	15-02-2003	
			ΑU	6442400	Α	19-03-2001	
			CA	2381238	A1	01-03-2001	
			CN	1367761	T	04-09-2002	
			DE		D1	06-03-2003	
			WO		A1	01-03-2001	
			EP		A1	22-05-2002	
			JP	2003507311	T	25-02-2003	
			US	6577667	B1	10-06-2003	
KR 2002050331	Α	27-06-2002	NONE	•			
EP 1275619	Α	15-01-2003	DE	10133469	A1	06-02-2003	
			EP	1275619	A2	15-01-2003	
			JP		Α	12-03-2003	
			US	2003051510	A1	20-03-2003	

INTERNATIONALER RECHERCHENBERICHT

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 C03B5/02 C03B5/193 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK B. RECHERCHIERTE GEBIETE Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 CO3B Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) EPO-Internal, WPI Data C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Telle Betr. Anspruch Nr. Kategorie^o 1-7, 11-14, X WO 01 53222 A (KOLBERG UWE ; SCHOTT GLAS (DE); ZEISS STIFTUNG (DE); KUNERT CHRISTI) 18 - 3726. Juli 2001 (2001-07-26) 8-10. Seite 1, Zeile 7-17 15-17 Seite 5, Zeile 12 Seite 6, Zeile 17 WO 01 14265 A (LENTES FRANK THOMAS ; KIEFER 8-10 Y WERNER (DE); RAEKE GUIDO (DE); SCHOTT) 1. März 2001 (2001-03-01) Seite 9, Zeile 16-22 Weltere Veröffentlichungen sind der Fortsetzung von Feld C zu enhahmen Siehe Anhang Patentfamille "T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist * Besondere Kategorien von angegebenen Veröffentlichungen "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden *L° Veröffentlichung, die geeignet ist, einen Priorit\u00e4tsanspruch zweifelhaft erschelnen zu lassen, oder durch die das Ver\u00f6fentlichungsdatum einer anderen im Recherchenbericht genannten Ver\u00f6fentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahellegend ist ausgerunry

'O" Veröffentlichung, die sich auf eine mündliche Offenbarung,
eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

'P" Veröffentlichung, die vor dem Internationalen Anmeldedatum, aber nach
dem beanspruchten Prioritätsdatum veröffentlicht worden ist "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist Datum des Abschlusses der Internationalen Recherche Absendedatum des Internationalen Recherchenberichts 10. März 2004 29/03/2004 Name und Postanschrift der Internationalen Recherchenbehörde Bevollmächtigter Bediensteter

Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016

Creux. S

		03/135/6		
Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komme	nden Telle	Betr. Anspruch Nr.		
DATABASE WPI Section Ch, Week 200328 Derwent Publications Ltd., London, GB; Class K07, AN 2003-285834 XP002273086 & KR 2002 050 331 A (KOREA ELECTRIC POWER CORP), 27. Juni 2002 (2002-06-27) Zusammenfassung		15-17		
EP 1 275 619 A (SCHOTT GLAS ;ZEISS STIFTUNG (DE))		1-14, 18-37		
insbesondere Beispiel 1 das ganze Dokument		. 15–17		
NEZHENTSEV V V ET AL: "MELTING OPTICAL GLASSES IN HIGH-FREQUENCY FURNACES" GLASS AND CERAMICS, CONSULTANTS BUREAU. NEW YORK, US, Bd. 45, Nr. 5/6, 1. Mai 1988 (1988-05-01), Seiten 182-185, XP000007924 ISSN: 0361-7610 das ganze Dokument				
	DATABASE WPI Section Ch, Week 200328 Derwent Publications Ltd., London, GB; Class K07, AN 2003-285834 XP002273086 & KR 2002 050 331 A (KOREA ELECTRIC POWER CORP), 27. Juni 2002 (2002-06-27) Zusammenfassung EP 1 275 619 A (SCHOTT GLAS ;ZEISS STIFTUNG (DE)) 15. Januar 2003 (2003-01-15) —insbesondere Beispiel 1 — das ganze Dokument NEZHENTSEV V V ET AL: "MELTING OPTICAL GLASSES IN HIGH-FREQUENCY FURNACES" GLASS AND CERAMICS, CONSULTANTS BUREAU. NEW YORK, US, Bd. 45, Nr. 5/6, 1. Mai 1988 (1988-05-01), Seiten 182-185, XP000007924 ISSN: 0361-7610	DATABASE WPI Section Ch, Week 200328 Derwent Publications Ltd., London, GB; Class K07, AN 2003-285834 XP002273086 & KR 2002 050 331 A (KOREA ELECTRIC POWER CORP), 27. Juni 2002 (2002-06-27) Zusammenfassung EP 1 275 619 A (SCHOTT GLAS ;ZEISS STIFTUNG (DE)) 15. Januar 2003 (2003-01-15) —insbesondere Beispiel 1 — das ganze Dokument NEZHENTSEV V V ET AL: "MELTING OPTICAL GLASSES IN HIGH-FREQUENCY FURNACES" GLASS AND CERAMICS, CONSULTANTS BUREAU. NEW YORK, US, Bd. 45, Nr. 5/6, 1. Mai 1988 (1988-05-01), Seiten 182-185, XP000007924 ISSN: 0361-7610		

Intercionares Aktenzeichen
PCT/EP 03/13576

lm Recherchenbericht Ingeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
WO 0153222	A	26-07-2001	DE AT AU CN DE . EA WO EP JP US	10002019 C1 245608 T 3167301 A 1395546 T 50100415 D1 3539 B1 0153222 A1 1250294 A1 2003520179 T 2003048829 A1	15-11-2001 15-08-2003 31-07-2001 05-02-2003 28-08-2003 26-06-2003 26-07-2001 23-10-2002 02-07-2003 13-03-2003
WO 0114265	A	01-03-2001	DE AT AU CA CN DE WO EP JP	19939772 C1 231824 T 6442400 A 2381238 A1 1367761 T 50001187 D1 0114265 A1 1206417 A1 2003507311 T 6577667 B1	03-05-2001 15-02-2003 19-03-2001 01-03-2001 04-09-2002 06-03-2003 01-03-2001 22-05-2002 25-02-2003 10-06-2003
KR 2002050331	A	27-06-2002	KEINE		
EP 1275619	A	15-01-2003	DE EP JP US	10133469 A1 1275619 A2 2003073128 A 2003051510 A1	06-02-2003 15-01-2003 12-03-2003 20-03-2003

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
П ожитер.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.