<u>Definition</u> 3.16. A function $m : (a,b) \rightarrow \mathbb{R}$ is <u>admissible</u> if it is continuous and the following holds.

Whenever $a \le c < d \le b$ such that $m(x) \neq 0$ for $x \in (c,d)$ and m(c) = 0 or $c = a = -\infty$ and m(d) = 0 or $d = b = +\infty$, then $\int_{-C}^{Z} 1/|m(x)| dx = \int_{-Z}^{d} 1/|m(x)| dx = \infty$ for $z \in (c,d)$.

<u>Note</u>: If m is admissible and a > $-\infty$, then m(a) = 0; similary, if b < ∞ , then m(b) = 0. Moreover every Lipschitz continuous function is admissible.

Theorem 3.17. Let $m:(a,b)\to\mathbb{R}$ be a continuous function. The operator δ_m is generator of an automorphism group on $C_0(a,b)$ if and only if m is admissible.

In that case $D_O(\delta_m):=\{f\in D(\delta_m): f \text{ is differentiable on (a,b)}\}$ is a core of δ_m .

Additional properties. If m is admissible, then the flow ϕ defining the group generated by δ_m can be described explicitely:

The set $\{x \in (a,b) : m(x) \neq 0\}$ is the union of a finite or countable number of disjoint intervals (a_n,b_n) $(n \in J)$. Let

$$c_n \in (a_n, b_n)$$
 and $q_n(x) := \int_{c_n}^x 1/m(y) dy$ $(x \in (a_n, b_n), n \in J)$.

Since m is admissible , \textbf{q}_n is a homeomorphism from $(\textbf{a}_n,\textbf{b}_n)$ onto $\mathbb R$. Now the flow ϕ is defined by

(3.22)
$$\phi(t,x) = \begin{cases} x & \text{if } m(x) = 0 \\ q_n^{-1}(q_n(x)+t) & \text{if } x \in (a_n,b_n) \end{cases}$$

We first prove a special case of Theorem 3.17.

<u>Proposition</u> 3.18. Suppose that $m(x) \neq 0$ for all $x \in (a,b)$. Then δ_m is the generator of a group on $C_O(a,b)$ if and only if m is admissible. In that case the group generated by δ_m is similar to the translation group on $C_O(\mathbb{R})$.