Subject Code			Name of the Subject								L	Т	P	С	
			DATABASE MANAGEMENT SYSTEM						EM	3	0	1	4	-	
Course Educational Objectives															.1
Pre -Red	quisite	: A stu	dent sh	ould h	ave ba	sic ide	a on p	rogran	nming	and file	system	s.			
CEO 1	Gain a good understanding of the architecture and functioning of Database Management														
	Systems as well as associated tools and techniques.														
CEO 2	Understand and apply the principles of data modeling using Entity Relationship and develop a														
	good database design.														
GE 02	** 1		. 1	6.0		1.0			/COX						
CEO3	Understand the use of Structured Query Language (SQL) and its syntax														
CEO4	Apply Normalization techniques for effective database design.														
Course	Outco	mes: l	Jpon si	uccess	ful coi	npletio	on of t	his coi	urse, si	tudents s	hould	be able	e to:		
	Identify and Classify the concepts of Database Management system, Data models and architect													cture	
CO1	of database, ER to Relational mapping concepts.														
	Applying The constraints in database using different query languages like:- relational algebra and														
CO2	calculus <i>implementing</i> the Data definition and data manipulate languages in Database.														
CO3	Compare the different normal forms to Apply normalization process to construct consistent Database.														
G0.4	Design and Develop the Database with concurrency control and recovery strategies to make														
CO4	complete Database without confliction and anomalies in concurrent access environment.														
CO5	Deve	elop ef	ficient	storage	e schei	me of s	saving	and re	trievin	g Record	ds and	Files			
	Develop efficient storage scheme of saving and retrieving Records and Files														
CO6	Apply the principles of database transaction management, database recovery and security.														
					(CO-PO	& PS	SO Ma	pping	:					
COs				F		RAMM	IE OU	TCOM	1ES				PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	1	1												
CO2	3	2	1												
CO3	2	1	1												<u> </u>
CO4	2	1	2												<u> </u>
CO5	2	1	2												<u> </u>
CO6	3	2	1												
Avg.	2.5	1.33	1.33				 X7T T	ADII				<u> </u>			<u> </u>
						<u> </u>	YLL	ABUS	•						

UNIT:1 (6 Hours)

Introduction to database Systems: advantages of database system over traditional file system, Basic concepts & Definitions, Database users, Database Language, Database System Architecture, Schemas, Sub Schemas, & Instances, database constraints, 3-level database architecture, Data Abstraction, Data Independence, Mappings, Structure, Components & functions of DBMS, Data models.

Entity-Relationship model: Basic concepts, Design process, Constraints, Keys, Design issues, E-R Diagrams, weak entity sets, Extended E-R features – generalization, specialization, aggregation, Reduction to E-R database schema.

UNIT:2 (10 Hours)

Relational Query Languages: Relational Operations. Relational Algebra, Selection and projection set operations, renaming, Joins, Division, Examples of Algebra overviews, Relational calculus, Tuple relational Calculus, Domain relational calculus, Extended relation algebra operation

UNIT:3 (10 Hours)

Normalization: Introduction, non-loss decomposition and functional dependencies, First, Second, and third normal forms – dependency preservation, Boyce-Codd normal form. Higher Normal Forms - Introduction, Multi-valued dependencies and fourth normal form, Join dependencies and fifth normal form

UNIT:4 (10 Hours)

Transaction Concept: Transaction properties (ACID), Transaction State, Schedules, Serializability (Conflict Serializability and View Serializability), Need for Concurrency, Concurrency Control-Lock based control, time stamping Protocol, Two Phase Locking, Dead lock in DBMS

Recovery and Atomicity: Log Based Recovery, Transaction Logs and Shadow Paging, Types of Recovery Techniques in DBMS, Rollback/Undo Recovery Technique, Commit/Redo Recovery Technique, Checkpoint Recovery, Backup Techniques

UNIT:5 (6 Hours)

Detailed Storage Architecture: Storage Strategies: Detailed Storage Architecture, Storing Data, Magnetic Disk, RAID, Other Disks, Magnetic Tape, Storage Access, File & Record Organization, File Organizations & Indexes, Order Indices, B+ Tree Index Files, Hashing Data Dictionary

Teaching Methods: Chalk& Board/ PPT/Video Lectures

Text Books:

- 1. Sudarshan, Korth: Database System Concepts, 6th edition, McGraw-Hill Education
- 2. Elmasari&Navathe: Fundamentals of Database System, Pearson Education.

Reference Books:

- 1. Elmasari&Navathe: Fundamentals of Database System, Pearson Education.
- 2. Ramakrishnan: Database Management Systems, McGraw-Hill Education.
- 3. Andrew S. Tanenbaum: Modern Operating Systems, 3rd Edition, Pearson Education.
- 4. Terry Dawson, Olaf Kirch: Linux Network Administrator's Guide, 3rd Edition O'Reilly