Chapter 7. Time Complexity

Def Let M be a deterministic TM that halts on all inputs. The running time of M is a function $f: N \rightarrow N$, where f cn) is the maximum # of steps that M uses on any input of length n.

Def fcn) is Ocgan) if there exists constant c, and integer no such that, for $n \ge n_0$, $f(n) \le C \cdot g(n).$

Intuitively, g(n) is an upper bound for fcn) — up
to some constant factor when n is large.

Exercise $-f_{1}(n) = 3n^{2}$, $g_{1}(n) = n^{3}$ $-f_{2}(n) = 3n^{2}$, $g_{2}(n) = n^{2}$

Is fico = O(gico)? Why?

Try to spend 10 minutes.

Answer: $(D + f(cn)) = O(g_1(n))$ as we can find C=3, $n_0=1$ such that $f(n)=3n^2 \le 3 \cdot n^3$, when $n \ge 1$.

(2) $f_2(n) = O(g_2(n))$ as we can find C=3, $n_0=1$ such that $f_2(n)=3n^2 \le 3 \cdot n^2$, when $n \ge 1$.

Note: $f_2(n) > g_2(n)$ when $n \ge 1$.

In reality, when one uses O-notation, usually one has to make the bound (e.g. g.:(11)) as small as possible.

- Def TIME (ton) = { L | L is a language decided by an O(ton) time TM}

Example

STA &

S Total

... <u>Strik</u>

.. PATH & TIME (n2)

one more example:

Given an array of sorted real numbers, and an interval of length S, use the minimum # of such intervals to cover these real numbers

ACII, ACII, ---, ACNI.

output.

50, opt = 3.

requirement: Solve this problem as fast as you can. We'll Gover the solution later.

CLASS P: P= U TIME (nk)

P = all problems which can be solved in polynomial time.

For instance, Sorting & TIME(n/ogn)
linear search & TIME(n).