Quality Control and Statistics

- Medical Lab Scientists rely on data
 - How to interpret numbers
 - "Descriptive Statistics"
 - Mean Median and Mode
 - These numbers describe the overall data set
 - In Gaussian distribution these are all the same

 After we know what the data set is, we must know more about how it is spread out

• CV = $\frac{\sigma}{x}$ × 100 Measure of precision

- Not every data set will have "normal distribution" about the mean
 - It is important to see when data sets do not fit this curve

- Much of what we know about how well methods work is based off of a "reference method"
 - The best known method produces a "known" or "true" value that is taken to be 100% accurate

- Correlation Coefficient (r)
 - Strength of relationship
 - Should be >.98
- Any deviation from the
 - 1:1 line (reference method) is due to error
 - Random error- unpredictable but ever present
 - With increasing sample size the impact of random error is decreased

- Bias
 - It can be difficult to see a bias if it is subtle or not present across measuring range
 - This one is kind of obvious

- Systematic error- consistently moves measurements in one direction
 - Constant systematic error
 - Y-intercept constant +6
 - Proportional systemic error
 - Slope indicates underestimation
 - As value increases so does difference

- Why test the test?
 - Method evaluation and validation

FIGURE 3-10 A flowchart on the process of method selection, evaluation, and monitoring. (Adapted from Westgard JO, Quam E, Barry T. Basic QC Practices: Training in Statistical Quality Control for Healthcare Laboratories. Madison, WI: Westgard Quality Corp.; 1998.)

- How to choose a method
 - The ability of a method to diagnose disease (or exclude one) is what we care about when selecting a method
 - Sensitivity vs specificity
 - Trade-off, as sensitivity increases generally the specificity will decrease

Understanding Sensitivity and specificity

	People who we know have a condition	People who we know do not have a condition				
People who tested positive	True Positives	False positives				
People who tested negative	False negatives	True Negatives				

- Sensitivity: True positives / (true positives + false negatives)
- Specificity: True negatives /(true negatives + false positives)
- Next level of statistics PPV and NPV
 - PPV-if you test positive what is the likelihood you have a condition
 - NPV- if you do not test positive how sure are we that you don't have disease

- PPV = True positives / (True + False positives)
- NPV = True negative / (True + False negatives)

 Evaluate this method for spec. sens. PPV and NPV

	People having heart attacks	People not having heart attacks
cTnT > 0.030 ng/mL	254	15
cTnT < 0.030 ng/mL	7	812

Sensitivity: 97%

Specificity:98%

PPV: 94%

NPV: 99%

Quality Control or QC

- Reliability (what do we want in a method)
 - Repeatable
 - Accurate
 - Precise
 - Trustworthy
 - Consistent

- Every lab must establish Quality Assurance Plan (QAP)
 - This must detect, control, and prevent occurrence of errors
- Quality Assurance is more than QC
 - Covers preanalytic, analytic, and post analytic phases

- Preanalytic controls
 - Physicans must order
 - Patient prep. i.e. fasting, 24 hr collection etc
 - Patient ID
 - Specimen acquisition, transport, processing and storage

- Analytic controls
 - What methodologies are chosen
 - Standardization and calibration techniques
 - Documentation of linearity and variability
 - Monitoring insturmentation, reagents
 - This is where QC comes in

- Postanalytic controls
 - Notify of critical values
 - HIPAA maintained
 - Maintain records of values

- Regular monitoring of tests
 - Analyze controls along with patient specimens
 - Internal QC
 - Monitor linearity
 - Ensure test limits met
 - External QC
 - Prof. Testing
 - QC samples

- Standard Deviation
 - Material assayed for 20 days
 - Establish mean and SD

- Accuracy and Precision
 - Accuracy: Closeness of agreement between measured value of analyte and its TRUE value
 - Precision: Ability to produce same value for replicate measurements

Accurate Precise Not Accurate Precise Accurate
Not Precise

Not Accurate Not Precise

- Materials to measure accuracy:
 - Calibrator
 - Standards
 - Assayed Material
 - Reestablish the true values
- Materials to measure precision:
 - Unassayed QC
 - Patients from other instruments

TSH CalCheck 5 CURA Cobas®

REF 05917824 160

CalCheck 5 Lot: 183507

Reagent Pack Lot 120341 for Elecsys 2010, MODULAR ANALYTICS E170, cobas e 411, cobas e 601 and cobas e 602 analyzers Reagent Pack Lot 124433 for Elecsys 2010, MODULAR ANALYTICS E170, cobas e 411, cobas e 601 and cobas e 602 analyzers Reagent Pack Lot 128649 for Elecsys 2010, MODULAR ANALYTICS E170, cobas e 411, cobas e 601 and cobas e 602 analyzers Reagent Pack Lot 137811 for Elecsys 2010, MODULAR ANALYTICS E170, cobas e 411, cobas e 601 and cobas e 602 analyzers Reagent Pack Lot 143583 for Elecsys 2010, MODULAR ANALYTICS E170, cobas e 411, cobas e 601 and cobas e 602 analyzers Reagent Pack Lot 159557 for Elecsys 2010, MODULAR ANALYTICS E170, cobas e 411, cobas e 601 and cobas e 602 analyzers Reagent Pack Lot 188368 for Elecsys 2010, MODULAR ANALYTICS E170, cobas e 411, cobas e 601 and cobas e 602 analyzers Reagent Pack Lot 190074 for Elecsys 2010, MODULAR ANALYTICS E170, cobas e 411, cobas e 601 and cobas e 602 analyzers

Level	Value	Range	Unit
Check 1	≤ 0.010	≤ 0.010	μIU/mL
Check 2	1.97	1.62 - 2.32	μIU/mL
Check 3	48.0	40.8 - 55.2	μIU/mL
Check 4	81.0	68.9 - 93.2	μlU/mL
Check 5	> 100	90.1 -> 100	μIU/mL

COBAS, COBAS E and ELECSYS are trademarks of Roche.

© 2016, Roche Diagnostics

PRECISION

Roche Diagnostics GmbH, Sandhofer Strasse 116, D-68305 Mannheim www.roche.com

Distribution in USA by: Roche Diagnostics, Indianapolis, IN US Customer Technical Support 1-800-428-2336

												,					
СНЕМ	TBIL	ALB	BUN	CA	CHOL	CL	CO2	CREAT	GLU	HDL	K	MG	NA	PHOS	TP	TRIG	TECH ID
LIMITS ±	0.2 or 20%	0.4 or 10%	2 or 9%	0.4 or 5%	4 or 10%	2 or 5%	3 or 15%	0.04 or 10%	6or 10%	4 or 15%	0.5	0.2 or 10%	4	0.2 or 10%	0.2 or 5%	4 or 5%	
N756A/N1			20	7.6		103	24	1.50	103	31	7-1		144		6.2		an
N756B/N2	0.5	3.1	22	- 7.7	114	102	23	1.5%	107		71	20	144	3.4		105	Cy
N766A/N3			21.	7.7		104	23	1.49	106	30	7.2		146		60		4
N766B/N4	0.5	3.2	21	7.4	110	104	23	1.49	107		7.2	20	145	34		104	Ci
S756A/S1			20	7.7		104	22	1.45	105	30	7.2		145		60		Ca
S756B/S2	. 0.5	3.1	21.	76	110	105	22	1.49	105		7.1	1.9	146	3.4	(98/10) on
S766A/S3		5-4-16-	70	76		104	22	1.52	106	30	71		145		(5.8/3		an
S766B/S4	0.5	3.2	21	7.6	1/2	104	22	1.53	105		72	1.9	145	3.3		100	9
							g g							100	17	79/	-,,
VAR.	10	0.1	2	0.3	4	45%	2	40%	4	1	0.1	0.1	2	0.1	51	# 30	4164
																1.4	. =

PRECISION.

QC values

- Abnormal and normal values
- Range representative of assay
- Calculating the SDs

- CV = $\frac{\sigma}{\overline{x}} \times 100$ (a universal SD language)
- Measures of precision

QC Values

- O How is CV useful?
 - Example:
 - Potassium QC

Level 1: $\bar{x} = 2.6 \sigma = 0.1 \text{CV} = 3.85\%$

Level 3: $\bar{x} = 7.7 \sigma = 0.2 \text{CV} = 2.60\%$

Cholesterol QC

Level 1: $\bar{x} = 105 \sigma = 5 \text{ CV} = 4.76\%$

Level 3: $\bar{x} = 273 \sigma = 9 \text{ CV} = 3.30\%$

Practice

• Let's evaluate the precision of 2 methods:

	Method 1	Method 2
\overline{x}	100 units	138 units
σ	25 units	31 units
CAŝ	25	23

More precise

Control Situations

- What does it take to be out of control?
 - Any value greater than ±3 SD
 - Both Levels greater than ±2 SD
 - One Control < ±2 SD and another between ±2-3 SD
 - This is acceptable once every 20 days under LJ rules
 - Trends: In/decreasing for 6 consecutive days on both levels
 - Shift: All controls on one side of mean for 6 consecutive days on both levels

Shifts & Trends

- Why shift?
 - Improper storage of standard
 - New standard prepared incorrectly
 - Reagent shifted to new level of activity (enzymes at a different temperature)
 - Timer is not working properly
 - Different lot of reagent or standard

Shifts & Trends

- Why Trend?
 - Gradual deterioration of standard or reagent
 - Continued temp. instability (evap, damage)
 - Protein accumulation

QC

- What is it good for?
 - Alerts tech a problem exists
 - Does not ID problem
 - Does not fix problem
 - Troubleshooting should ID and fix the problem

Other QC

- Cumulative Summary Control Chart
 - Used in coagulation-hematology
- Moving Averages
 - Also used in heme, how stable the average for patient analytes is, if it is moving too much it's a problem
- Westgard Multi-Rule Control Chart
 - The Modern interpretation of LJ charts

Westgard Rules

- 1_{2S}-Warning, 1 control >2 SD
- \circ 1₃₅- Fail 1 control >3 SD
- 2_{2S}- Fail 2 consecutive controls > 2 SD
 - Also if both levels are >2 SD once
- R_{4S}- Range between levels greater than 4
 SD
- 4_{1S}-Fail when 4 consecutive exceed same
 SD
- 10_x-Fail when 10 consecutive are on same side of mean