Master of Science Course in Mechanical Engineering Politecnico di Milano - Bovisa Campus

CONTROL OF MECHANICAL SYSTEMS

Prof. Edoardo Sabbioni (Lecturer)

Francesco Paparazzo (Training Assistant)

Academic Year 2024/2025 - 1st Semester

CRUISE CONTROL

The figure below shows the longitudinal dynamics of a vehicle. Aim of the exercise is to implement a regulator to control the speed of the vehicle v by means of a torque T_M .

The forces acting on the vehicle system are:

- The control torque T_M
- the drag force F_{drag}
- the rolling resistance F_{RR}
- the damping of the drive shaft $(\dot{\theta}_T r_1 \text{ and } \dot{\theta}_D r_2)$
- the inertia at rotation of the tires $(4J_{wheel}\ddot{\theta}_{wheel})$
- the inertia at rotation of the motor $(J_{motor}\ddot{\theta}_M)$
- the inertia at motion of the vehicle $(M\dot{v})$
- the gravitational force (Mg)

PART 1

The drag force can be calculated according to the following formula:

$$F_{drag} = \frac{1}{2} \rho_{air} A_{front} C_x v_{relative}^2$$

Assuming that $v > v_{wind}$ and that the direction of these vectors is the one depicted in the picture, it holds that:

$$v_{relative} = v + v_{wind}$$

The rolling resistance force can be expressed as:

$$F_{RR} = C_{RR} Mgcos(\alpha)(1 + k_{RR}v)$$

System data

M	1500	[kg]
J_{wheel}	1	[kgm ²]
J_{M}	0.05	[kgm ²]
α	5	[°]
R	0.35	[m]
r_{I}	0.005	[Nms/rad]
r ₂	0.005	[Nms/rad]
k_t	∞	[Nm/rad]
$ au_{I}$	3	-
$ au_2$	1	-
$ ho_{air}$	1.225	[kg/m ³]
	2.2	$[m^2]$
C_{x}	0.3	-
C_{RR}	0.01	-
k_{RR}	0.0002	[s/m]
	J_{wheel} J_{M} α R r_{1} r_{2} k_{t} τ_{1} τ_{2} ρ_{air} A_{front} C_{x} C_{RR}	$\begin{array}{c cccc} J_{wheel} & 1 & & \\ J_{M} & 0.05 & & \\ \hline \alpha & 5 & & \\ R & 0.35 & & \\ \hline r_{l} & 0.005 & & \\ \hline r_{2} & 0.005 & & \\ \hline k_{t} & \infty & & \\ \hline \tau_{l} & 3 & & \\ \hline \tau_{2} & 1 & & \\ \hline \rho_{air} & 1.225 & & \\ \hline A_{front} & 2.2 & & \\ \hline C_{x} & 0.3 & & \\ \hline C_{RR} & 0.01 & & \\ \hline \end{array}$

Consider the system without the actuator, under the assumption of a non-deformable drive shaft $(k_t = \infty)$, the system has 1 d.o.f.: the speed of the vehicle v. Assuming small oscillations around the steady state condition: $v_0 = 15 \frac{m}{s}$ and $v_{wind,0} = 3.5 \frac{m}{s}$:

- 1. Write the linearized equation of motion of the system putting in evidence the generalized mass (m*), the generalized stiffness (k*) and the generalized damping (c*)
- 2. Calculate the torque $T_{M,0}$ at steady state condition.
- 3. Write the expression of the transfer functions

$$G(s) = \frac{v}{T_M} \text{ and } D(s) = \frac{v}{v_{wind}}$$

- 4. Calculate the poles of the transfer function G(s) by using MATLAB.
- 5. Draw the Bode diagrams of the transfer function G(s) by using MATLAB.

PART 2

Let's suppose that the torque T_M (t) is governed by a PI regulator having transfer function R(s).

6. Check the stability of the feed-back control system considering the different cases that may arise based on the regulator time constant T_i (MatLab commands *margin*, *nyquist*, *rlocus*).

After selecting the time constants of the PI regulator:

7. draw the Bode diagrams of the open loop transfer function H(s) = R(s)G(s), draw the Bode diagrams of the closed loop transfer functions

$$L_D(s) = \frac{v}{v_{wind}}$$

- 8. analyse the performances of the feedback control system (MatLab commands *bandwidth*, *step*) for different values of the proportional gain k_p.
- 9. assuming that the reference time history for the wind force is the one shown in the figure below, check the performances of the feed-back control system in the time domain by using Simulink.

$$Speed_{wind}(t) = \frac{5}{1 + e^{-5(t-1.5)}} + 4e^{-\frac{(t-7)^2}{2 \cdot 0.3^2}}$$