Firm-borne Financial Contagion: When Rollover Risk Ripples

Fabian Greimel
University of Amsterdam

University of Vienna | January 25, 2024

Financial networks

Financial sector	
1	2
3	4

Financial networks

Financial networks

Acemoglu et al. (2015)

Acemoglu et al. (2015)

Acemoglu et al. (2015)

Elliott, Georg, and Hazell (2021)

Acemoglu et al. (2015)

Elliott, Georg, and Hazell (2021)

This paper

In a nutshell

Research question

Can financial shocks propagate through a common borrower?

Model (adapted from Acemoglu et al., 2015)

- Firm F needs long-term and short-term funding
- provided by multiple banks
 (Brunnermeier and Oehmke (2013), Kolm et al. (2018))

Mechanism

- 1. Bank *S* refuses to rollover short-term debt
- 2. Firm F suspends long-term debt service (to avoid bankruptcy)
- 3. Bank ${\it L}$ suffers from this suspension

Literature

- Financial contagion & Optimal financial networks e.g. Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015), Elliott, Georg, and Hazell (2021), Donaldson, Piacentino, and Yu (2022)
 - → new propagation mechanism
- Rollover risk
 - e.g. Acharya, Gale, and Yorulmazer (2011), He and Xiong (2012), Eisenbach (2017),
 - → implications for financial stability
- Maturity rat race & Staggered Debt
 - e.g. Brunnermeier and Oehmke (2013) & Kolm, Laux, and Lóránth (2018)
 - → implications for financial stability
- Transmission from financial to real sector
 - e.g. Huber (2018), Chodorow-Reich and Falato (2022), Cingano, Manaresi, and Sette (2016)
 - provide theoretical mechanism

- Financial contagion & Optimal financial networks e.g. Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015), Elliott, Georg, and Hazell (2021), Donaldson, Piacentino, and Yu (2022)
 - → new propagation mechanism
- Rollover risk
 - e.g. Acharya, Gale, and Yorulmazer (2011), He and Xiong (2012), Eisenbach (2017),
 - → implications for financial stability
- Maturity rat race & Staggered Debt
 - e.g. Brunnermeier and Oehmke (2013) & Kolm, Laux, and Lóránth (2018)
 - implications for financial stability
- Transmission from financial to real sector
 - e.g. Huber (2018), Chodorow-Reich and Falato (2022), Cingano, Manaresi, and Sette (2016)
 - → provide theoretical mechanism

- Financial contagion & Optimal financial networks e.g. Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015), Elliott, Georg, and Hazell (2021), Donaldson, Piacentino, and Yu (2022)
 - → new propagation mechanism
- Rollover risk
 - e.g. Acharya, Gale, and Yorulmazer (2011), He and Xiong (2012), Eisenbach (2017),
 - → implications for financial stability
- Maturity rat race & Staggered Debt
 - e.g. Brunnermeier and Oehmke (2013) & Kolm, Laux, and Lóránth (2018)
 - → implications for financial stability
- Transmission from financial to real sector
 - e.g. Huber (2018), Chodorow-Reich and Falato (2022), Cingano, Manaresi, and Sette (2016)
 - provide theoretical mechanism

- Financial contagion & Optimal financial networks e.g. Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015), Elliott, Georg, and Hazell (2021), Donaldson, Piacentino, and Yu (2022)
 - → new propagation mechanism
- Rollover risk
 - e.g. Acharya, Gale, and Yorulmazer (2011), He and Xiong (2012), Eisenbach (2017),
 - → implications for financial stability
- Maturity rat race & Staggered Debt
 - e.g. Brunnermeier and Oehmke (2013) & Kolm, Laux, and Lóránth (2018)
 - → implications for financial stability
- Transmission from financial to real sector
 - e.g. Huber (2018), Chodorow-Reich and Falato (2022), Cingano, Manaresi, and Sette (2016)
 - → provide theoretical mechanism

Model

Overview

- n banks, one firm F
- · banks provide share of
 - short-term funding σ_i
 - long-term funding λ_i

$$\left(\sum_{i} \sigma_{i} = \sum_{i} \lambda_{i} = 1\right)$$

Equilbrium concept

Payment equilibrium (Eisenberg and Noe,

2001; Acemoglu et al., 2015)

Overview

- n banks, one firm F
- · banks provide share of
 - short-term funding σ_i
 - long-term funding λ_i

$$\left(\sum_{i} \sigma_{i} = \sum_{i} \lambda_{i} = 1\right)$$

Equilbrium concept

Payment equilibrium (Eisenberg and Noe,

2001; Acemoglu et al., 2015)

Firm I: Assumptions

- Cobb-Douglas production technology $F(K,L) = K^{\alpha}L^{1-\alpha}$ (capital and labor)
- ullet price taker and CRS \Longrightarrow zero profit \Longrightarrow no equity
- wages paid before production (short-term loan)
- capital financed using long-term loan

From a dynamic setting ...

```
take out short-term loan
pay workers

t produce, sell
repay short-term loan
service long-term debt
```

From a dynamic setting ...

```
t \text{ take out short-term loan} \\ pay workers \\ t \\ produce, sell \\ repay short-term loan \\ service long-term debt \\ t+1 \\ t+1 \\ t \\ t+1 \\ t \\ t+1
```

From a dynamic setting ...

From a dynamic setting ...

... to a static model

Firm III: Cashflow

- long-term debt service $\delta = \alpha R$
- wages $W = (1 \alpha)R$
- short-term debt
 - take out $q\pi = W$
 - repay $\pi = \frac{W}{q} = \frac{1-\alpha}{q}R$
- reliance on short-term debt $1-\alpha$

- adapted from Acemoglu et al. (2015)
 - · new: short-term loans
 - · hidden: interbank (part of other)
 - · missing: liquidation
- promised cashflows taken as given (previous actions)

- adapted from Acemoglu et al. (2015)
 - new: short-term loans
 - hidden: interbank (part of other)
 - · missing: liquidation
- promised cashflows taken as given (previous actions)
- if shocks happen promises might be broken

- adapted from Acemoglu et al. (2015)
 - · new: short-term loans
 - hidden: interbank (part of other)
 - · missing: liquidation
- promised cashflows taken as given (previous actions)
- if shocks happen promises might be broken
 - first: refuse to rollover short-term debt

- adapted from Acemoglu et al. (2015)
 - new: short-term loans
 - hidden: interbank (part of other)
 - · missing: liquidation
- promised cashflows taken as given (previous actions)
- if shocks happen promises might be broken
 - first: refuse to rollover short-term debt
 - then: default on other promised payments

Short-term loan not rolled over
 suspend debt service.

Short-term loan not rolled over
 suspend debt service.

- Short-term loan not rolled over
 suspend debt service.
- ullet assume Bank S doesn't rollover at all

- Short-term loan not rolled over
 suspend debt service.
- ullet assume Bank S doesn't rollover at all
- L provides more of long-term debt \implies stronger effect

- Short-term loan not rolled over
 suspend debt service.
- ullet assume Bank S doesn't rollover at all
- L provides more of long-term debt
 ⇒ stronger effect
- S provides more of short-term debt \implies stronger effect

Results

- assume Bank S withdraws all short-term debt
- Firm loses $\sigma_S \cdot q\pi$

- assume Bank S withdraws all short-term debt
- Firm loses $\sigma_S \cdot q\pi$
- Firm reduces debt service by

$$\Delta \delta = \sigma_S q \pi$$

- assume Bank S withdraws all short-term debt
- Firm loses $\sigma_S \cdot q\pi$
- Firm reduces debt service by

$$\Delta \delta = \min\{\sigma_S q\pi, \delta\}$$

- assume Bank S withdraws all short-term debt
- Firm loses $\sigma_S \cdot q\pi$
- Firm reduces debt service by $\Delta \delta = \min\{\sigma_S q\pi, \delta\}$
- Bank L bears

$$\Delta \delta_L = \lambda_L \Delta \delta$$

- assume Bank S withdraws all short-term debt
- Firm loses $\sigma_S \cdot q\pi$
- Firm reduces debt service by $\Delta \delta = \min\{\sigma_S q\pi, \delta\}$
- Bank L bears

$$\Delta \delta_L = \lambda_L \Delta \delta$$
$$= \lambda_L \min\{\sigma_S q(1 - \alpha), \alpha\} R$$

- assume Bank S withdraws all short-term debt
- Firm loses $\sigma_S \cdot q\pi$
- Firm reduces debt service by $\Delta \delta = \min\{\sigma_S q\pi, \delta\}$
- Bank L bears

$$\Delta \delta_L = \lambda_L \Delta \delta$$
$$= \lambda_L \min\{\sigma_S q(1 - \alpha), \alpha\} R$$

Proposition

The suspension of debt service payments to Bank L is maximal at $\lambda_L = \sigma_S = 1$ and $\alpha = \frac{\sigma_S q}{1 + \sigma_S q}$.

Bounding the total effect on Bank ${\cal L}$

- $\Delta \delta_L$ is a first round effect $\lambda_L \min \{ \sigma_S q \pi, \delta \}$
- total effect :

Bounding the total effect on Bank ${\cal L}$

- $\Delta \delta_L$ is a first round effect $\lambda_L \min \{ \sigma_S q \pi, \delta \}$
- total effect : $\lambda_L \min{\{\bar{\chi}q\pi, \delta\}}$
 - firm might lose more short-term loans $\bar{\chi} \in [\sigma_L, 1]$

Bounding the total effect on Bank ${\cal L}$

- $\Delta \delta_L$ is a first round effect $\lambda_L \min \{ \sigma_S q \pi, \delta \}$
- total effect : $\lambda_L \min\{\bar{\chi}q\pi, \delta\} \sigma_L q\pi$
 - firm might lose more short-term loans $\bar{\chi} \in [\sigma_L, 1]$
 - Bank L can use short-term debt as buffer: $\sigma_L q\pi \in [0, (1-\sigma_S)q\pi]$

Bounding the total effect on Bank ${\it L}$

- $\Delta \delta_L$ is a first round effect $\lambda_L \min \{ \sigma_S q \pi, \delta \}$
- total effect : $\lambda_L \min\{\bar{\chi}q\pi, \delta\} \sigma_L q\pi$
 - firm might lose more short-term loans $\bar{\chi} \in [\sigma_L, 1]$
 - Bank L can use short-term debt as buffer: $\sigma_L q\pi \in [0, (1-\sigma_S)q\pi]$

Take-away

Firm-borne financial contagion can be significant if ...

- ... the firm relies on both long-term and short-term debt $(0 \ll \alpha \ll 1)$
- ... there is one major provider of short-term debt (Bank S had high σ_S)
- ... there is one major provider of long-term debt (Bank L has high λ_L)

Outlook

Next steps

- additional channel: liquidation of long-term debt Acemoglu et al. (as in 2015)
- dealing with firm default
- make firm size matter (need multiple borrowers per firm)
- · assess relevance of the mechanism in the data
 - maturity structure of firms loans (α)
 - different maturities by different lenders? (σ_S vs λ_L)

Summary

Summary

Can financial shocks propagate through a common borrower?

Model (adapted from Acemoglu et al., 2015)

- Firm F needs long-term and short-term funding
- provided by multiple banks

Mechanism: Rollover Risk Ripples

Significant transmission if

- ullet S is important short-term lender
- ullet L is important long-term lender

Literature i

- ACEMOGLU, D., A. OZDAGLAR, AND A. TAHBAZ-SALEHI (2015): "Systemic Risk and Stability in Financial Networks," *American Economic Review*, 105, 564–608.
- ACHARYA, V. V., D. GALE, AND T. YORULMAZER (2011): "Rollover Risk and Market Freezes," *Journal of Finance*, 66, 1177–1209.
- BRUNNERMEIER, M. K. AND M. OEHMKE (2013): "The Maturity Rat Race," Journal of Finance, 68, 483–521.
- CHODOROW-REICH, G. AND A. FALATO (2022): "The loan covenant channel: How bank health transmits to the real economy," *Journal of Finance*, 77, 85–128.
- CINGANO, F., F. MANARESI, AND E. SETTE (2016): "Does Credit Crunch Investment Down? New Evidence on the Real Effects of the Bank-Lending Channel," *Review of Financial Studies*, 29, 2737–2773.

Literature ii

- DONALDSON, J. R., G. PIACENTINO, AND X. YU (2022): "Systemic Risk in Financial Networks Revisited: The Role of Maturity," .
- EISENBACH, T. M. (2017): "Rollover risk as market discipline: A two-sided inefficiency," *Journal of Financial Economics*, 126, 252–269.
- EISENBERG, L. AND T. H. NOE (2001): "Systemic Risk in Financial Systems," Management Science, 47, 236–249.
- ELLIOTT, M., C.-P. GEORG, AND J. HAZELL (2021): "Systemic risk shifting in financial networks," *Journal of Economic Theory*, 191, 105157.
- HE, Z. AND W. XIONG (2012): "Rollover Risk and Credit Risk," *Journal of Finance*, 67, 391–429.

Literature iii

HUBER, K. (2018): "Disentangling the Effects of a Banking Crisis: Evidence from German Firms and Counties," *American Economic Review*, 108, 868–898.

KOLM, J., C. LAUX, AND G. LÓRÁNTH (2018): "Debt Maturity Structure and Liquidity Shocks," Available at SSRN 3307398.

Back-up slides

Back-up 1

bla

Back-up 2

bla bla