# Wind Turbine Condition Monitoring System Marketing Research









Suri Ganeriwala & Juli Hamlet

SpectraQuest Inc. Richmond, VA



#### Outline:

- Introductory comments and motivation
- What is Condition monitoring
- Current Companies offering CMS
- SpectraQuest Advantage
- Marketing Research General Guidelines-our objectives



#### Introduction

- Generation of Energy is a prime factor for socioeconomic development
- Increasing demand of energy can not be completely fulfilled by
   Fossil Fuel based energy generation
- Non Conventional energy has tremendous potential as it can play a big roll in fulfilling the future energy requirement
- Development of modern technology is making the Non
   Conventional energy an efficient source of energy



#### Wind turbine production is one of the fastest growing industries





#### Wind Turbine Operation/Maintenance Cost





## Wind Turbine Failure Types

- Gearboxes and drive trains have an annual failure frequency of ~0.10, and take an average 7 days to repair
- ❖ Composite rotor blades are also a common failure type with an annual failure frequency or ~0.15
- Source: "Blade reliability initiative", Paul Veers, Sandia National Labs





## Wind Power Map in USA





#### **INSIDE NACELLE**





## Why monitor machinery?

- Prevent catastrophic failure & significant damage
   Avoid loss of life, environmental harm, economic loss
- Stop unscheduled outages
   Optimize Production Assurance
- Reduce repair time and spare parts inventory
   Lengthen Predictive Maintenance
- Reduce scrap and raw material consumption
   Increase producQuality Control



## Condition Monitoring:

Condition Based Maintenance (CBM) promises to deliver improved maintainability and operational availability of rotating machinery while reducing lifecycle costs.

#### The three critical components of CBM are:

- 1. Fault detection
- 2. Diagnostics: Determining exactly what is wrong
- 3. Prognostics: Determining fault severity and predicting remaining life



# **Condition Monitoring**

Three main steps: data acquisition, data processing and maintenance decision-making.





# Types of Monitoring



# Choose based on:

- Safety
- Failure Modes
- Equipment Criticality



#### Wind Turbine Simulator





# Bearing Accelerometer Placement







# **Current Companies Offering CMS**

- ❖ Bently Nevada (GE)
- Commtest (GE)
- Bruel & Kjaer Vibro
- Emerson Electric / CSI
- Rockwell Automation
- SKF Condition Monitoring / SKF Reliability Systems
- ❖ 01dB
- DLI Engineering/Azima
- National Instruments
- Pruftechnik



#### **Vibration Monitoring Equipment Market** ■ Bently Nevada 15% ■ SKF Condition Monitoring and Vibrometer Alliance 6% □ Rockwell Automation Entek 42% **IRD** 7% □ Emerson Process CSI ■ Bruel & Kjaer Vibro 10% ■ Shinkawa Electric 10% Corporation 10% Others



# Vibration Monitoring Equipment

#### Online

| Real-time Monitoring:                          | Embedded Protection:                        |
|------------------------------------------------|---------------------------------------------|
| network based nodes reporting                  | machine shut-down based on                  |
| trends and alarms                              | key measurements                            |
| •Distributed channels (4-100's)                | •High reliability                           |
| <ul> <li>Most visualization options</li> </ul> | <ul> <li>Most widely used scheme</li> </ul> |
| •\$15k to \$60k                                | •\$5k to \$\$25k                            |

#### Offline

| Handheld/Portable: walk-<br>around monitoring | Portable Diagnostics: boxes used for detailed test |
|-----------------------------------------------|----------------------------------------------------|
| •2 to 4 channels                              | •4 to 24 channels                                  |
| •FFT display                                  | •Lots of analysis and display                      |
| •\$5k to \$25k                                | •\$5k to \$50k                                     |



# CSI/Emersion Electric – Models 1910 & 2130

- ❖ 1910 Spectrum Analyzer
  - ❖ 21 V input
  - ❖ 72 dB dynamic range
  - ❖ 12-bit A/D
- 2130 Machine Health Analyzer
  - ❖ 16 bit A/D
  - ❖ 96 dB dynamic range
  - Order Tracking, Coastdown, Bearing analysis





Model 2130



# SKF Condition Monitoring – Marlin/Microlog

- ❖ Input Voltage Range: 25 V peak AC, +/- 50 VDC
- ❖ 14 bit A/D
- 20 kHz signal bandwidth
- ❖ 80 dB dynamic range
- ❖ 60 dB of gain
- ❖ 6 MB (Flash 4 MB) memory



CMXA50

- Connectors: BNC (3) input, output, and tachometer/phase and multi-pin D connector.
- ❖ Tachometer: Minimum pulse amplitude 2 Vpp, 10% rise/fall time, minimum 0.1 ms pulse width



# Bently Nevada (Part of GE) – 3500 Series

- Over 24 modules
  - Vibration
  - Dynamic Pressure
  - ❖ Temperature
  - Process Variables
- Keyphasor input module:
  - **♦**+0.8 to -21 V
  - Input range of 1 to 1,200,000 rpm
  - ❖ Signal range of 0.017 to 20 kHz



# Bently Nevada (Part of GE) – System One SW

- Current version: 5.0
- Process optimization
- Alarming, trending
- Exception reporting
- Web server
- SQL connectivity
- Equipment covered:
  - Turbomachinery
  - Compressors
  - Wind Turbines
- "RulePaks" with stored diagnostics information



# **Blade Monitoring**





## **Blade Test Setup**

Thirteen accelerometers were attached to the surface of the blade.

The blade was *impacted* with an instrumented hammer at *each end* and in the *middle*.





## **Industry Trends**

- Equipment Vendor Consolidation
  - Consolidation has resulted in the acquisition of some of the key industry players by larger entities
- Shift from Offline to Online Monitoring
  - Increasing need for Integration of Condition Monitoring systems with Plant Asset Management systems and CMMS towards monitoring of total asset health
- Demand for Vibration Consulting and Services
  - Industry downturn and pursuit of cost optimization has resulted in manpower reduction in maintenance departments of organizations.



#### **Technology Trends**

- Tight integration into PAM/CMMS using standard communications protocols
- Internet as enabler
  - Ethernet/networked vibration systems
- PC-centric vibration monitoring systems
  - More widely accepted than in other industrial applications
- Advancements in sensor technology
  - ❖ TEDS = simplified setup & increased accuracy



## SpectraQuest Unique Expertise

#### CMS:

- We already have individual components of a CMS
- We have advanced signal processing algorithms to ACCURATELY diagnose and predict failure time to schedule repair
- Access to the latest technology being developed by customers using test beds supplied by SQi

#### Inspection & Training:

We will also provide a new inspection and blade monitoring system (none exist today), Training SQi CAN offer a Total Solution



# SpectraQuest Condition Monitoring System "WindQuest"

#### Wind Turbine Stations

Sensors
Data acquisition/communicator









WIND FARM DATA LAN



#### Wind Farm Control Room

Site Configuration Alarms Trends Report Generation



#### INTERNET CONNECTION



#### Database Server

History data Site information Backups



Trends
Report Generation
Problem Diagnositics
In-depth Data Analysis





# Online Monitoring and Alarming

- Location -> Machine train -Sensor level conditions
- Color-coded Wind Turbine status
- User-customizable monitoring criteria, and alarm levels
- Click to view sensors' current values, waveforms or spectra
- User-customizable raw data storing criteria



Wind Turbine Measurement Configuration



## System Structure

- On-site data acquisition/communication hardware
- Online monitoring/alarming, data archiving/trending, and reporting generation
- Advanced analysis software for analyst to perform in-depth diagnosis
- Remote monitoring and diagnostics capabilities
- Host Database server



## Market Research Objectives

- Market Potential/Size
- How to enter market, are there any barriers?
- Market analyses (types of industries)
- Distribution Channels (Own sales office, Representatives, Distributors/Dealers)
- Representative Agreement, and other legal issues
- Competitors and their products
  - Pricing, sales/distribution structure, how do they market
  - Comparison of features, strengths



#### **THANKS**

SpectraQuest Inc.
8201 Hermitage Rd, Richmond, VA
www.spectraquest.com

Tell: (804) 261-3300

Fax: (804) 261-3303

suri@spectraquest.com

