Oppgave 1

1) Vi har matrisen

$$A = \begin{bmatrix} 5 & 2 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

og vektoren

$$\mathbf{b} = \begin{bmatrix} 3 \\ 2 \\ 2 \end{bmatrix}.$$

Den augmenterte matrisen $\begin{bmatrix} A & \mathbf{b} \end{bmatrix}$ er inkonsistent og følgelig er $\mathbf{b} \notin \text{Col} A$.

2) Eksempel på 4×3 matrise med rank(A) = 1:

$$\begin{bmatrix} 2 & 3 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

- 3) Vi har at $A^2 = I$ er inverterbar per definisjon inverterbar med $A^{-1} = A$.
- 4) A er en 5×6 matrise og da vil Col $A \in \mathbb{R}^5 \neq \mathbb{R}^3$. Vi har at dim Nul(A) = antall kolonner - rank(A) = 6 - 3 = 3.
- 5) Vi har at rank(A) = antall kolonner dim Nul(A) = 5 2 = 3.
- 6) Vektoren **x** er vist i figuren:

7) Vi har at $[x]_{\mathcal{B}} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$.

8) Utfører rekkeoperasjoner på matrisen

$$\begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 & 1 & -2 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 & -2 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}.$$

Det gir at

$$A^{-1} = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}.$$

Oppgave 2

Vi har at (I-A)=I og $(I-A)^{-1}=I$. Det gir $(I-A)(I-A)^{-1}=I^2=I$ og $(I-A)^{-1}(I-A)=I^2=I$. Da følger det per definisjon av inverterbarhet at (I-A) er inverterbar med $(I-A)^{-1}=I+A+A^2+\ldots+A^{p-1}$.