Energy Saving Room Scheduling System for Smart Hotels

E. Denicia, E. Sansebastiano, R. Caravelli

Group Project Università degli Studi di Genova Scuola Politecnica

Ambience Intelligence: Decision Taking Processes

July, 2016

- Motivation
- Modelling
- Optimisation
- Experiments, results and discussion

- Motivation
- Modelling

Introduction

Objective

Scope of the topic

- Publications:
 - Elsevier: Energy Conversion and Management
 - Elsevier:Energy and Buildings
 - Elsevier: Data Processing: Automated hotel systems
 - IOS Press: Journal of Ambient Intelligence and Smart Environments
- Books:
 - Intelligent decisions
 - Smart environments
- Investment:
 - EU (27% 2030)
 - Smart environments: Tip of the iceberg
- Robotics:
 - Domotic effects
 - Provider utility against local consumer management

Real Questions

• Questions:

- Existing software?
- How does it work?
- Any rejections?
- Room assignment?
- Any optimisation used before?
- How to estimate your demand?
- Choice of prices?
- Maintenance costs?

Real Answers: Genova

- Estimation of demand?
 - Not generally
 - Prefer external analysis
- Room assignment?
 - Random
 - Based on client assignment
 - Istat

- Optimisation ever used?
 - A few aware of profit optimisation
 - Absolutly no energy involvement

- Motivation
- Modelling
- Optimisation
- 4 Experiments, results and discussion

Basic principle up to the first order

$$q_{tot_t} = \Sigma q_{k_t} + \Sigma q_{h_t} + \Sigma q_{vent_t} + \Sigma q_{sun_t} + q_{pump_t}$$
 $q_{tot_t} = \rho V c_p \frac{dT}{dt}$ (1)

- Blueprint approach
- Parameter identification (reality or simulation)
- Norm: UNI/TS 11300 (20±2 °C)

Blueprint: Generality

 Parameters: Dimensional characteristics and thermal characteristics

- Control proposal: ON-OFF Controller
- Adjacency proposal: Lumped parameter

Blueprints proposed

Hotel 1

Parameter Identification

$$\begin{split} \hat{T}_{i,t+1} &= \frac{1}{c_i} \left[\sum_{i \sim j \bigcup e} (\hat{T}_{i,t} - \hat{T}_{j,t}) + K_U u_{i,t} + q_{i,t}^S + \hat{T}_{i,t} \right] + S_P \\ u_{i,t} &= u_{i,t-1} + K_{U,i}(e_{i,t} - e_{i,t-1}) \end{split}$$

$$e_{i,t} = T_{sp,t} - T_{i,t}$$

$$\forall i \mid 0 = 1...n_r$$

$$\forall t \mid t = 1...P$$

$$\begin{array}{ll} \theta^* = \arg\min_{\substack{\theta \in \mathbb{R} \\ \text{s.t.}}} & (T_{i,t} - \hat{T}_{i,t})^2 \\ \text{s.t.} & \theta \geq 0 \\ S_p = 0 \end{array} \tag{3}$$

(2)

- Motivation
- Modelling
- Optimisation
- Experiments, results and discussion

Rooms Assignment Problem

$$\begin{aligned} Y^* &= \max_{\substack{X_{d,r} \\ \text{s.t.}}} & \sum_{d \in D} \sum_{r \in R_d} Y_{d,r} x_{d,r} \\ &\text{s.t.} & \sum_{r \in R_{dn}} x_{d,r} = 1 \ \forall d \in D \\ & x_{d,r} + x_{k,r} \leq 1 \ \forall d \in D, \ \forall k \in D_a \\ & \text{and} \ \forall r \in R_d \cap R_k \end{aligned}$$

TABLE: Levels of daily profits used as a marketing strategy $Y_{d,r}$

Request	Low	Room type Medium	High
Low	9	7	2
Medium	0	22	17
High	0	0	72

Energy optimisation problem

$$E^{*} = \min_{\substack{X_{d,r} \\ \text{s.t.}}} \quad \sum_{t \in T} \sum_{i \in R} u_{i,t}$$

$$\text{s.t.} \quad \sum_{r \in R_{din}} x_{d,r} = 1 \ \forall d \in D$$

$$x_{d,r} + x_{k,r} \leq 1 \ \forall d \in D, \ \forall k \in D_{d}$$

$$\text{and} \ \forall r \in R_{d} \cap R_{k}$$

$$z_{i,t} = \sum_{\substack{t_{0}^{in} \leq t \leq t_{0}^{out}}} x_{d,r} \ \forall r \in R,$$

$$\forall t \in T_{1}$$

$$\hat{T}_{i,t+1} = \frac{1}{c_{i}} (\sum_{i \sim j \cup e} (\hat{T}_{i,t} - \hat{T}_{j,t}) + K_{u} u_{i,t} + q_{i,t}^{S} + \hat{T}_{i,t})$$

$$T_{i,1} = \hat{T}_{i,1}$$

$$u_{i,t} \geq 0$$

$$u_{i,t} \geq (T_{sp} - T_{i,t}) - M(1 - z_{i,t})$$

$$z_{i,t} \geq z_{j,t} \geq 1 - M(1 - z_{k,t}) \ \forall j \in R_{s} \in Y_{t}$$

$$(4)$$

Group P 2015

- Motivation
- 2 Modelling
- Optimisation
- Experiments, results and discussion

Instances generation

- Demand:
 - 30%
 - 50%
 - 65%
- Types of rooms:
 - High:10%
 - Medium:30%
 - Basic:60%
- 10 instances used:
 - Revenue optimisation
 - 5: Equivalent revenue solutions
 - 1: Energy consumption minimisation
- Time horizon: 14 days
- Figure of merit: RPD

Hotel 1: Final occupancy

Hotel 2: Final occupancy

RPD and Conclusions

TABLE: Relative percentage difference (RPD)

	30%	50%	65%
Hotel 1.1	5.2	6.7	5.6
Hotel 1.2	2.9	9.5	5.2
Hotel 2.1	27	1.5	17

- Energy optimisation:
 - Biased to maximal revenue
 - Clustering growing solutions in time prefered
- Savings:
 - Structural dependence
 - Orientation to the sun
- Proposal:
 - High level rooms in warmest locations

THANK YOU FOR YOUR ATTENTION

