MATH 415 – Lecture 37 Review for Exam 3

Thursday 30 July 2015

Orthogonal projection

- Orthogonal projection
- Least Squares

- Orthogonal projection
- Least Squares
- Gram-Schmidt

- Orthogonal projection
- Least Squares
- Gram-Schmidt
- Determinants

- Orthogonal projection
- Least Squares
- Gram-Schmidt
- Determinants
- Eigenvalues and eigenvectors

- Orthogonal projection
- Least Squares
- Gram-Schmidt
- Determinants
- Eigenvalues and eigenvectors
- Diagonalization

Orthogonal Projection

$$\mathbf{x} = c_1 \mathbf{v}_1 + \ldots + c_n \mathbf{v}_n$$
 with $c_j =$

$$\mathbf{x} = c_1 \mathbf{v}_1 + \ldots + c_n \mathbf{v}_n$$
 with $c_j =$

$$\mathbf{x} = c_1 \mathbf{v}_1 + \ldots + c_n \mathbf{v}_n$$
 with $c_j = \frac{\langle \mathbf{x}, \mathbf{v}_j \rangle}{\langle \mathbf{v}_j, \mathbf{v}_j \rangle}$.

$$\mathbf{x} = c_1 \mathbf{v}_1 + \ldots + c_n \mathbf{v}_n$$
 with $c_j = \frac{\langle \mathbf{x}, \mathbf{v}_j \rangle}{\langle \mathbf{v}_j, \mathbf{v}_j \rangle}$.

$$\hat{\mathbf{x}} = c_1 \mathbf{v}_1 + \ldots + c_n \mathbf{v}_n$$
 with $c_i =$

$$\mathbf{x} = c_1 \mathbf{v}_1 + \ldots + c_n \mathbf{v}_n$$
 with $c_j = \frac{\langle \mathbf{x}, \mathbf{v}_j \rangle}{\langle \mathbf{v}_j, \mathbf{v}_j \rangle}$.

$$\hat{\mathbf{x}} = c_1 \mathbf{v}_1 + \ldots + c_n \mathbf{v}_n$$
 with $c_i =$

$$\mathbf{x} = c_1 \mathbf{v}_1 + \ldots + c_n \mathbf{v}_n$$
 with $c_j = \frac{\langle \mathbf{x}, \mathbf{v}_j \rangle}{\langle \mathbf{v}_j, \mathbf{v}_j \rangle}$.

$$\hat{\mathbf{x}} = c_1 \mathbf{v}_1 + \ldots + c_n \mathbf{v}_n$$
 with $c_j = \frac{\langle \mathbf{x}, \mathbf{v}_j \rangle}{\langle \mathbf{v}_i, \mathbf{v}_i \rangle}$.

$$\mathbf{x} = c_1 \mathbf{v}_1 + \ldots + c_n \mathbf{v}_n$$
 with $c_j = \frac{\langle \mathbf{x}, \mathbf{v}_j \rangle}{\langle \mathbf{v}_j, \mathbf{v}_j \rangle}$.

 Suppose that V is a subspace of W and x is in W, then the orthogonal projection of x onto V is given by

$$\hat{\mathbf{x}} = c_1 \mathbf{v}_1 + \ldots + c_n \mathbf{v}_n$$
 with $c_j = \frac{\langle \mathbf{x}, \mathbf{v}_j \rangle}{\langle \mathbf{v}_j, \mathbf{v}_j \rangle}$.

• The basis $\mathbf{v}_1, \dots, \mathbf{v}_n$ has to be orthogonal for this formula!!

$$\mathbf{x} = c_1 \mathbf{v}_1 + \ldots + c_n \mathbf{v}_n$$
 with $c_j = \frac{\langle \mathbf{x}, \mathbf{v}_j \rangle}{\langle \mathbf{v}_j, \mathbf{v}_j \rangle}$.

$$\hat{\mathbf{x}} = c_1 \mathbf{v}_1 + \ldots + c_n \mathbf{v}_n$$
 with $c_j = \frac{\langle \mathbf{x}, \mathbf{v}_j \rangle}{\langle \mathbf{v}_j, \mathbf{v}_j \rangle}$.

- The basis $\mathbf{v}_1, \dots, \mathbf{v}_n$ has to be orthogonal for this formula!!
- This decomposes $\mathbf{x} = \hat{\mathbf{x}} + \mathbf{x}^{\perp}$, where

$$\mathbf{x} = c_1 \mathbf{v}_1 + \ldots + c_n \mathbf{v}_n$$
 with $c_j = \frac{\langle \mathbf{x}, \mathbf{v}_j \rangle}{\langle \mathbf{v}_j, \mathbf{v}_j \rangle}$.

$$\hat{\mathbf{x}} = c_1 \mathbf{v}_1 + \ldots + c_n \mathbf{v}_n$$
 with $c_j = \frac{\langle \mathbf{x}, \mathbf{v}_j \rangle}{\langle \mathbf{v}_j, \mathbf{v}_j \rangle}$.

- The basis $\mathbf{v}_1, \dots, \mathbf{v}_n$ has to be orthogonal for this formula!!
- This decomposes $\mathbf{x} = \hat{\mathbf{x}} + \mathbf{x}^{\perp}$, where

$$\mathbf{x} = c_1 \mathbf{v}_1 + \ldots + c_n \mathbf{v}_n$$
 with $c_j = \frac{\langle \mathbf{x}, \mathbf{v}_j \rangle}{\langle \mathbf{v}_j, \mathbf{v}_j \rangle}$.

$$\hat{\mathbf{x}} = c_1 \mathbf{v}_1 + \ldots + c_n \mathbf{v}_n$$
 with $c_j = \frac{\langle \mathbf{x}, \mathbf{v}_j \rangle}{\langle \mathbf{v}_j, \mathbf{v}_j \rangle}$.

- The basis $\mathbf{v}_1, \dots, \mathbf{v}_n$ has to be orthogonal for this formula!!
- This decomposes $\mathbf{x} = \underbrace{\hat{\mathbf{x}}}_{\text{in } V} + \underbrace{\mathbf{x}^{\perp}}_{\text{in } V^{\perp}}$, where the error \mathbf{x}^{\perp} is orthogonal to V.

$$\mathbf{x} = c_1 \mathbf{v}_1 + \ldots + c_n \mathbf{v}_n$$
 with $c_j = \frac{\langle \mathbf{x}, \mathbf{v}_j \rangle}{\langle \mathbf{v}_j, \mathbf{v}_j \rangle}$.

$$\hat{\mathbf{x}} = c_1 \mathbf{v}_1 + \ldots + c_n \mathbf{v}_n$$
 with $c_j = \frac{\langle \mathbf{x}, \mathbf{v}_j \rangle}{\langle \mathbf{v}_j, \mathbf{v}_j \rangle}$.

- The basis $\mathbf{v}_1, \dots, \mathbf{v}_n$ has to be orthogonal for this formula!!
- This decomposes $\mathbf{x} = \underbrace{\hat{\mathbf{x}}}_{\text{in } V} + \underbrace{\mathbf{x}^{\perp}}_{\text{in } V^{\perp}}$, where the error \mathbf{x}^{\perp} is orthogonal to V. (This decomposition is unique.)

What is the orthogonal projection of $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$ onto Span $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}$?

What is the orthogonal projection of $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$ onto Span $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}$?

Solution

The projection is $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$.

What is the orthogonal projection of $\begin{bmatrix} 3\\1\\-2 \end{bmatrix}$ onto

$$\mathsf{Span}\left\{ \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1 \end{bmatrix} \right\}?$$

What is the orthogonal projection of $\begin{bmatrix} 3\\1\\-2 \end{bmatrix}$ onto

$$\mathsf{Span}\left\{ \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1 \end{bmatrix} \right\}?$$

Solution (First try:)

$$\frac{\left\langle \begin{bmatrix} 3 \\ 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \right\rangle}{\left\langle \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \right\rangle} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + \frac{\left\langle \begin{bmatrix} 3 \\ 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \right\rangle}{\left\langle \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \right\rangle} \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

What is the orthogonal projection of $\begin{bmatrix} 3\\1\\-2 \end{bmatrix}$ onto

$$\mathsf{Span}\left\{ \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1 \end{bmatrix} \right\}?$$

Solution (First try:)

$$\frac{\left\langle \begin{bmatrix} 3 \\ 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \right\rangle}{\left\langle \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \right\rangle} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + \frac{\left\langle \begin{bmatrix} 3 \\ 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \right\rangle}{\left\langle \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \right\rangle} \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

Orthogonal Projection

000000000

What is the orthogonal projection of $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$ onto

$$\mathsf{Span}\left\{ \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1 \end{bmatrix} \right\}?$$

Solution (First try:)

$$\frac{\left\langle \begin{bmatrix} 3 \\ 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \right\rangle}{\left\langle \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \right\rangle} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + \frac{\left\langle \begin{bmatrix} 3 \\ 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \right\rangle}{\left\langle \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \right\rangle} \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

Is the projection $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$?

Orthogonal Projection

000000000

What is the orthogonal projection of $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$ onto

$$\mathsf{Span}\left\{ \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1 \end{bmatrix} \right\}?$$

Solution (First try:)

$$\frac{\left\langle \begin{bmatrix} 3 \\ 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \right\rangle}{\left\langle \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \right\rangle} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + \frac{\left\langle \begin{bmatrix} 3 \\ 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \right\rangle}{\left\langle \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \right\rangle} \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

Is the projection $\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$?No!

Orthogonal Projection

000000000

What is the orthogonal projection of $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$ onto

$$\mathsf{Span}\left\{ \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1 \end{bmatrix} \right\}?$$

Solution (First try:)

$$\frac{\left\langle \begin{bmatrix} 3 \\ 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \right\rangle}{\left\langle \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \right\rangle} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + \frac{\left\langle \begin{bmatrix} 3 \\ 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \right\rangle}{\left\langle \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \right\rangle} \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

Is the projection $\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$?No! Wrong approach!!

Orthogonal Projection

000000000

What is the orthogonal projection of $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$ onto

$$\mathsf{Span}\left\{ \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1 \end{bmatrix} \right\}?$$

Solution (First try:)

$$\frac{\left\langle \begin{bmatrix} 3 \\ 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \right\rangle}{\left\langle \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \right\rangle} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + \frac{\left\langle \begin{bmatrix} 3 \\ 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \right\rangle}{\left\langle \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \right\rangle} \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

Is the projection $\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$?No! Wrong approach!! (This is because the

basis is not orthogonal.)

Form orthogonal basis first:

Form orthogonal basis first:

Form orthogonal basis first:
$$\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \implies \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Form orthogonal basis first:
$$\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \implies \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \text{ (for }$$

instance, using Gram-Schmidt)

Form orthogonal basis first:
$$\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \implies \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ (for

instance, using Gram-Schmidt)

Then compute:

$$\frac{\left\langle \begin{bmatrix} 3\\1\\-2 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0 \end{bmatrix} \right\rangle}{\left\langle \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0 \end{bmatrix} \right\rangle} \begin{bmatrix} 1\\-1\\0 \end{bmatrix} +$$

Form orthogonal basis first:
$$\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \implies \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ (for

instance, using Gram-Schmidt)

Then compute:

$$\frac{\left\langle \begin{bmatrix} 3 \\ 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \right\rangle}{\left\langle \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \right\rangle} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + \frac{\left\langle \begin{bmatrix} 3 \\ 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\rangle}{\left\langle \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\rangle} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = 0$$

Solution (Corrected:)

Form orthogonal basis first: $\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \implies \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ (for

instance, using Gram-Schmidt)
Then compute:

$$\frac{\left\langle \begin{bmatrix} 3\\1\\-2 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0 \end{bmatrix} \right\rangle}{\left\langle \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0 \end{bmatrix} \right\rangle} \begin{bmatrix} 1\\-1\\0 \end{bmatrix} + \frac{\left\langle \begin{bmatrix} 3\\1\\-2 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\rangle}{\left\langle \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\rangle} \begin{bmatrix} 0\\0\\1 \end{bmatrix} = \begin{bmatrix} 1\\-1\\0 \end{bmatrix} + (-2) \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

Answer:
$$\begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}$$
.

What is the projection matrix corresponding to orthogonal

projection onto Span
$$\left\{ \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix} \right\}$$
?

What is the projection matrix corresponding to orthogonal projection onto Span $\left\{ \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix} \right\}$?

Solution

The projection matrix is $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.

What is the projection matrix corresponding to orthogonal projection onto Span $\left\{ \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix} \right\}$?

Solution

The projection matrix is $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.

What is the projection matrix corresponding to orthogonal projection onto Span $\left\{ \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix} \right\}$?

Solution

The projection matrix is $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.

What would Gram-Schmidt do?

What is the projection matrix corresponding to orthogonal projection onto Span $\left\{ \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix} \right\}$?

Solution

The projection matrix is $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$ What would Gram-Schmidt do? $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}.$

What is the orthogonal projection of $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ onto $\operatorname{Span}\left\{ \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix} \right\}$?

What is the orthogonal projection of $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ onto $Span \left\{ \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix} \right\}$?

Solution

The projection is
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}.$$

• The space of all nice functions with period 2π has the natural inner product $\langle f,g\rangle=\int_0^{2\pi}f(x)g(x)\mathrm{d}x.$

• The space of all nice functions with period 2π has the natural inner product $\langle f,g\rangle=\int_0^{2\pi}f(x)g(x)\mathrm{d}x.$

• The space of all nice functions with period 2π has the natural inner product $\langle f, g \rangle = \int_0^{2\pi} f(x)g(x) dx$. [in $\mathbb{R}^n : \langle \mathbf{x}, \mathbf{y} \rangle = x_1y_1 + \ldots + x_ny_n$]

- The space of all nice functions with period 2π has the natural inner product $\langle f,g\rangle=\int_0^{2\pi}f(x)g(x)\mathrm{d}x$. [in $\mathbb{R}^n:\langle \mathbf{x},\mathbf{y}\rangle=x_1y_1+\ldots+x_ny_n$]
- The functions

$$1, \cos(x), \sin(x), \cos(2x), \sin(2x), \dots$$

are orthogonal basis for this space.

- The space of all nice functions with period 2π has the natural inner product $\langle f, g \rangle = \int_0^{2\pi} f(x)g(x) dx$. [in $\mathbb{R}^n : \langle \mathbf{x}, \mathbf{y} \rangle = x_1y_1 + \ldots + x_ny_n$]
- The functions

$$1, \cos(x), \sin(x), \cos(2x), \sin(2x), \dots$$

are orthogonal basis for this space.

 Expanding a function f(x) in this basis produces its Fourier series

$$f(x) = a_0 + a_1 \cos(x) + b_1 \sin(x) + a_2 \cos(2x) + b_2 \sin(2x) + \dots$$

How do we compute the norm (length) of cos(2x)?

How do we compute the norm (length) of cos(2x)?

Solution

How do we compute the norm (length) of cos(2x)?

Solution

How do we compute the norm (length) of cos(2x)?

Solution

$$||\cos(2x)||^2 = \langle\cos(2x),\cos(2x)\rangle =$$

How do we compute the norm (length) of cos(2x)?

Solution

$$||\cos(2x)||^2 = \langle\cos(2x),\cos(2x)\rangle = \int_0^{2\pi}\cos(2x)^2dx = \pi$$

How do we compute the norm (length) of cos(2x)?

Solution

The length of any vector v is always $\sqrt{\langle v, v \rangle}$. So,

$$||\cos(2x)||^2 = \langle\cos(2x),\cos(2x)\rangle = \int_0^{2\pi}\cos(2x)^2dx = \pi$$

You don't need to know how to compute this integral.

How do we compute the norm (length) of cos(2x)?

Solution

The length of any vector v is always $\sqrt{\langle v,v\rangle}$. So,

$$||\cos(2x)||^2 = \langle\cos(2x),\cos(2x)\rangle = \int_0^{2\pi} \cos(2x)^2 dx = \pi$$

You don't need to know how to compute this integral. But, you should be able to find the norm (length) of a function!

How do we compute the norm (length) of cos(2x)?

Solution

The length of any vector v is always $\sqrt{\langle v, v \rangle}$. So,

$$||\cos(2x)||^2 = \langle\cos(2x),\cos(2x)\rangle = \int_0^{2\pi} \cos(2x)^2 dx = \pi$$

You don't need to know how to compute this integral. But, you should be able to find the norm (length) of a function! Lengths of other functions work the same way!

If $f(x) = a_0 + a_1 \cos(x) + b_1 \sin(x) + a_2 \cos(2x) + b_2 \sin(2x) + \dots$ how can we compute b_2 ?

If
$$f(x) = a_0 + a_1 \cos(x) + b_1 \sin(x) + a_2 \cos(2x) + b_2 \sin(2x) + \dots$$

how can we compute b_2 ?

Solution

 $b_2 \sin(2x)$ is the orthogonal projection of f onto the span of $\sin(2x)$.

If
$$f(x) = a_0 + a_1 \cos(x) + b_1 \sin(x) + a_2 \cos(2x) + b_2 \sin(2x) + \dots$$

how can we compute b_2 ?

Solution

 $b_2 \sin(2x)$ is the orthogonal projection of f onto the span of $\sin(2x)$.

If
$$f(x) = a_0 + a_1 \cos(x) + b_1 \sin(x) + a_2 \cos(2x) + b_2 \sin(2x) + \dots$$

how can we compute b_2 ?

Solution

 $b_2 \sin(2x)$ is the orthogonal projection of f onto the span of $\sin(2x)$. Hence:

$$b_2 = \frac{\langle f(x), \sin(2x) \rangle}{\langle \sin(2x), \sin(2x) \rangle} =$$

If
$$f(x) = a_0 + a_1 \cos(x) + b_1 \sin(x) + a_2 \cos(2x) + b_2 \sin(2x) + \dots$$

how can we compute b_2 ?

Solution

 $b_2 \sin(2x)$ is the orthogonal projection of f onto the span of $\sin(2x)$. Hence:

$$b_2 = \frac{\langle f(x), \sin(2x) \rangle}{\langle \sin(2x), \sin(2x) \rangle} = \frac{\int_0^{2\pi} f(x) \sin(2x) dx}{\int_0^{2\pi} \sin^2(2x) dx}$$

If
$$f(x) = a_0 + a_1 \cos(x) + b_1 \sin(x) + a_2 \cos(2x) + b_2 \sin(2x) + \dots$$

how can we compute b_2 ?

Solution

 $b_2 \sin(2x)$ is the orthogonal projection of f onto the span of $\sin(2x)$. Hence:

$$b_2 = \frac{\langle f(x), \sin(2x) \rangle}{\langle \sin(2x), \sin(2x) \rangle} = \frac{\int_0^{2\pi} f(x) \sin(2x) dx}{\int_0^{2\pi} \sin^2(2x) dx}$$

Projections onto the span of an other function work the same way!

If
$$f(x) = a_0 + a_1 \cos(x) + b_1 \sin(x) + a_2 \cos(2x) + b_2 \sin(2x) + \dots$$

how can we compute b_2 ?

Solution

 $b_2 \sin(2x)$ is the orthogonal projection of f onto the span of $\sin(2x)$. Hence:

$$b_2 = \frac{\langle f(x), \sin(2x) \rangle}{\langle \sin(2x), \sin(2x) \rangle} = \frac{\int_0^{2\pi} f(x) \sin(2x) dx}{\int_0^{2\pi} \sin^2(2x) dx}$$

Projections onto the span of an other function work the same way! Again, you should be able to project functions onto the span of a function!

Least Squares

 \iff $\hat{\mathbf{x}}$ is such that $A\hat{\mathbf{x}} - \mathbf{b}$ is as small as possible.

 $\iff \hat{\mathbf{x}}$ is such that $A\hat{\mathbf{x}} - \mathbf{b}$ is as small as possible.

 $\iff A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$ (the normal equations)

 \iff $\hat{\mathbf{x}}$ is such that $A\hat{\mathbf{x}} - \mathbf{b}$ is as small as possible.

 $\iff A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$ (the normal equations)

The projection of **b** on the column space of A is then just $A\hat{\mathbf{x}}$.

 \iff $\hat{\mathbf{x}}$ is such that $A\hat{\mathbf{x}} - \mathbf{b}$ is as small as possible.

 $\iff A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$ (the normal equations)

The projection of **b** on the column space of A is then just $A\hat{\mathbf{x}}$.

Example

Find the least squares line for the data points (2,1), (5,2), (7,3), (8,3).

 \iff $\hat{\mathbf{x}}$ is such that $A\hat{\mathbf{x}} - \mathbf{b}$ is as small as possible.

 $\iff A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$ (the normal equations)

The projection of **b** on the column space of A is then just $A\hat{\mathbf{x}}$.

Example

Find the least squares line for the data points (2,1), (5,2), (7,3), (8,3).

 \iff $\hat{\mathbf{x}}$ is such that $A\hat{\mathbf{x}} - \mathbf{b}$ is as small as possible.

 $\iff A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$ (the normal equations)

The projection of **b** on the column space of A is then just $A\hat{\mathbf{x}}$.

Example

Find the least squares line for the data points (2,1),(5,2),(7,3),(8,3).

Solution

Looking for β_1, β_2 such that the line $y = \beta_1 + \beta_2 x$ best fits the data.

 \iff $\hat{\mathbf{x}}$ is such that $A\hat{\mathbf{x}} - \mathbf{b}$ is as small as possible.

 $\iff A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$ (the normal equations)

The projection of **b** on the column space of A is then just $A\hat{\mathbf{x}}$.

Example

Find the least squares line for the data points (2,1),(5,2),(7,3),(8,3).

Solution

Looking for β_1, β_2 such that the line $y = \beta_1 + \beta_2 x$ best fits the data.

 $\iff \hat{\mathbf{x}}$ is such that $A\hat{\mathbf{x}} - \mathbf{b}$ is as small as possible.

 $\iff A^T A \hat{\mathbf{x}} = A^T \mathbf{b} \text{ (the normal equations)}$

The projection of **b** on the column space of A is then just $A\hat{\mathbf{x}}$.

Example

Find the least squares line for the data points (2,1),(5,2),(7,3),(8,3).

Solution

Looking for β_1, β_2 such that the line $y = \beta_1 + \beta_2 x$ best fits the data. The equations $y_i = \beta_1 + \beta_2 x_i$ in matrix form:

 $\iff \hat{\mathbf{x}}$ is such that $A\hat{\mathbf{x}} - \mathbf{b}$ is as small as possible.

 $\iff A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$ (the normal equations)

The projection of **b** on the column space of A is then just $A\hat{\mathbf{x}}$.

Example

Find the least squares line for the data points (2,1), (5,2), (7,3), (8,3).

Solution

Looking for β_1 , β_2 such that the line $y = \beta_1 + \beta_2 x$ best fits the data. The equations $y_i = \beta_1 + \beta_2 x_i$ in matrix form:

$$\begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_3 \\ 1 & x_4 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}$$
design matrix X observation vector \mathbf{y}

$$\begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix}.$$

$$\begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix}.$$

$$\begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix}.$$

$$X^TX =$$

$$\begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix}.$$

$$X^{T}X = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 5 & 7 & 8 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix} = \begin{bmatrix} 4 & 22 \\ 22 & 142 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix}.$$

$$X^{T}X = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 5 & 7 & 8 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix} = \begin{bmatrix} 4 & 22 \\ 22 & 142 \end{bmatrix}$$

$$X^T y =$$

$$\begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix}.$$

$$X^{T}X = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 5 & 7 & 8 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix} = \begin{bmatrix} 4 & 22 \\ 22 & 142 \end{bmatrix}$$

$$X^{\mathsf{T}}\mathbf{y} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 5 & 7 & 8 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix} = \begin{bmatrix} 9 \\ 57 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix}.$$

$$X^{T}X = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 5 & 7 & 8 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix} = \begin{bmatrix} 4 & 22 \\ 22 & 142 \end{bmatrix}$$

$$X^{\mathsf{T}}\mathbf{y} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 5 & 7 & 8 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix} = \begin{bmatrix} 9 \\ 57 \end{bmatrix}$$

Solving
$$\begin{bmatrix} 4 & 22 \\ 22 & 142 \end{bmatrix} \hat{\beta} = \begin{bmatrix} 9 \\ 57 \end{bmatrix}$$
,

$$\begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix}.$$

$$X^{T}X = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 5 & 7 & 8 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix} = \begin{bmatrix} 4 & 22 \\ 22 & 142 \end{bmatrix}$$

$$X^{T}\mathbf{y} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 5 & 7 & 8 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix} = \begin{bmatrix} 9 \\ 57 \end{bmatrix}$$

Solving
$$\begin{bmatrix} 4 & 22 \\ 22 & 142 \end{bmatrix} \hat{\beta} = \begin{bmatrix} 9 \\ 57 \end{bmatrix} \text{, we find } \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 2/7 \\ 5/14 \end{bmatrix}.$$

Least Squares

Here, we need to find a least squares solution to

$$\begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix}.$$

$$X^{T}X = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 5 & 7 & 8 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix} = \begin{bmatrix} 4 & 22 \\ 22 & 142 \end{bmatrix}$$

$$X^{T}\mathbf{y} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 5 & 7 & 8 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix} = \begin{bmatrix} 9 \\ 57 \end{bmatrix}$$

Solving
$$\begin{bmatrix} 4 & 22 \\ 22 & 142 \end{bmatrix} \hat{\beta} = \begin{bmatrix} 9 \\ 57 \end{bmatrix}$$
, we find $\begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 2/7 \\ 5/14 \end{bmatrix}$.

Line of best fit: y = 2/7 + 5/14x.

What is the projection of $\begin{bmatrix} 1\\2\\3\\3 \end{bmatrix}$ onto the column space of $\begin{bmatrix} 1&2\\1&5\\1&7\\1&8 \end{bmatrix}$?

What is the projection of
$$\begin{bmatrix} 1\\2\\3\\3 \end{bmatrix}$$
 onto the column space of $\begin{bmatrix} 1&2\\1&5\\1&7\\1&8 \end{bmatrix}$?

Solution

We found the least squares solution to
$$\begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix}$$
 to be

What is the projection of
$$\begin{bmatrix} 1\\2\\3\\3 \end{bmatrix}$$
 onto the column space of $\begin{bmatrix} 1&2\\1&5\\1&7\\1&8 \end{bmatrix}$?

Solution

We found the least squares solution to
$$\begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix}$$
 to be

What is the projection of
$$\begin{bmatrix} 1\\2\\3\\3 \end{bmatrix}$$
 onto the column space of $\begin{bmatrix} 1&2\\1&5\\1&7\\1&8 \end{bmatrix}$?

Solution

We found the least squares solution to
$$\begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix}$$
 to be

What is the projection of $\begin{bmatrix} 1\\2\\3\\3 \end{bmatrix}$ onto the column space of $\begin{bmatrix} 1&2\\1&5\\1&7\\1&8 \end{bmatrix}$?

Solution

We found the least squares solution to $\begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix}$ to be

$$\begin{bmatrix} 2/7 \\ 5/14 \end{bmatrix}$$

So, the projection is $A\hat{\mathbf{x}} = \begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix} \begin{bmatrix} 2/7 \\ 5/14 \end{bmatrix} =$

What is the projection of $\begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix}$ onto the column space of $\begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix}$?

Solution

We found the least squares solution to $\begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 3 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix}$ to be

$$\begin{bmatrix} 2/7 \\ 5/14 \end{bmatrix}$$

So, the projection is $A\hat{\mathbf{x}} = \begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix} \begin{bmatrix} 2/7 \\ 5/14 \end{bmatrix} = \begin{bmatrix} 1 \\ 29/14 \\ 39/14 \\ 22/7 \end{bmatrix}$

Gram-Schmidt

$$\mathbf{b}_1 = \mathbf{a}_1, \quad \mathbf{q}_1 = \frac{\mathbf{b}_1}{\|\mathbf{b}_1\|}$$

$$egin{aligned} \mathbf{b}_1 = \mathbf{a}_1, & \mathbf{q}_1 = rac{\mathbf{b}_1}{\|\mathbf{b}_1\|} \ \mathbf{b}_2 = \mathbf{a}_2 - \langle \mathbf{a}_2, \mathbf{q}_1
angle \mathbf{q}_1, & \mathbf{q}_2 = rac{\mathbf{b}_2}{\|\mathbf{b}_2\|} \end{aligned}$$

$$\begin{aligned} \textbf{b}_1 &= \textbf{a}_1, & \textbf{q}_1 &= \frac{\textbf{b}_1}{\|\textbf{b}_1\|} \\ \textbf{b}_2 &= \textbf{a}_2 - \langle \textbf{a}_2, \textbf{q}_1 \rangle \textbf{q}_1, & \textbf{q}_2 &= \frac{\textbf{b}_2}{\|\textbf{b}_2\|} \\ \textbf{b}_3 &= \textbf{a}_3 - \langle \textbf{a}_3, \textbf{q}_1 \rangle \textbf{q}_1 - \langle \textbf{a}_3, \textbf{q}_2 \rangle \textbf{q}_2, & \textbf{q}_3 &= \frac{\textbf{b}_3}{\|\textbf{b}_3\|} \end{aligned}$$

$$\begin{aligned} \textbf{b}_1 = \textbf{a}_1, & \textbf{q}_1 = \frac{\textbf{b}_1}{\|\textbf{b}_1\|} \\ \textbf{b}_2 = \textbf{a}_2 - \langle \textbf{a}_2, \textbf{q}_1 \rangle \textbf{q}_1, & \textbf{q}_2 = \frac{\textbf{b}_2}{\|\textbf{b}_2\|} \\ \textbf{b}_3 = \textbf{a}_3 - \langle \textbf{a}_3, \textbf{q}_1 \rangle \textbf{q}_1 - \langle \textbf{a}_3, \textbf{q}_2 \rangle \textbf{q}_2, & \textbf{q}_3 = \frac{\textbf{b}_3}{\|\textbf{b}_3\|} \\ & \cdots & \cdots \end{aligned}$$

Given a basis $\mathbf{a}_1, \dots, \mathbf{a}_n$, produce an orthonormal basis $\mathbf{q}_1, \dots, \mathbf{q}_n$.

$$\begin{aligned} \textbf{b}_1 &= \textbf{a}_1, & \textbf{q}_1 &= \frac{\textbf{b}_1}{\|\textbf{b}_1\|} \\ \textbf{b}_2 &= \textbf{a}_2 - \langle \textbf{a}_2, \textbf{q}_1 \rangle \textbf{q}_1, & \textbf{q}_2 &= \frac{\textbf{b}_2}{\|\textbf{b}_2\|} \\ \textbf{b}_3 &= \textbf{a}_3 - \langle \textbf{a}_3, \textbf{q}_1 \rangle \textbf{q}_1 - \langle \textbf{a}_3, \textbf{q}_2 \rangle \textbf{q}_2, & \textbf{q}_3 &= \frac{\textbf{b}_3}{\|\textbf{b}_3\|} \\ & \cdots & \cdots \end{aligned}$$

 An orthogonal matrix is a square matrix Q with orthonormal columns.

Given a basis $\mathbf{a}_1, \dots, \mathbf{a}_n$, produce an orthonormal basis $\mathbf{q}_1, \dots, \mathbf{q}_n$.

$$\begin{aligned} \textbf{b}_1 &= \textbf{a}_1, & \textbf{q}_1 &= \frac{\textbf{b}_1}{\|\textbf{b}_1\|} \\ \textbf{b}_2 &= \textbf{a}_2 - \langle \textbf{a}_2, \textbf{q}_1 \rangle \textbf{q}_1, & \textbf{q}_2 &= \frac{\textbf{b}_2}{\|\textbf{b}_2\|} \\ \textbf{b}_3 &= \textbf{a}_3 - \langle \textbf{a}_3, \textbf{q}_1 \rangle \textbf{q}_1 - \langle \textbf{a}_3, \textbf{q}_2 \rangle \textbf{q}_2, & \textbf{q}_3 &= \frac{\textbf{b}_3}{\|\textbf{b}_3\|} \\ & \cdots & \cdots \end{aligned}$$

 An orthogonal matrix is a square matrix Q with orthonormal columns.

Given a basis $\mathbf{a}_1, \dots, \mathbf{a}_n$, produce an orthonormal basis $\mathbf{q}_1, \dots, \mathbf{q}_n$.

$$\begin{aligned} \textbf{b}_1 &= \textbf{a}_1, & \textbf{q}_1 &= \frac{\textbf{b}_1}{\|\textbf{b}_1\|} \\ \textbf{b}_2 &= \textbf{a}_2 - \langle \textbf{a}_2, \textbf{q}_1 \rangle \textbf{q}_1, & \textbf{q}_2 &= \frac{\textbf{b}_2}{\|\textbf{b}_2\|} \\ \textbf{b}_3 &= \textbf{a}_3 - \langle \textbf{a}_3, \textbf{q}_1 \rangle \textbf{q}_1 - \langle \textbf{a}_3, \textbf{q}_2 \rangle \textbf{q}_2, & \textbf{q}_3 &= \frac{\textbf{b}_3}{\|\textbf{b}_3\|} \\ & \cdots & \cdots \end{aligned}$$

• An **orthogonal matrix** is a square matrix Q with orthonormal columns. Equivalently, $Q^TQ =$

Given a basis $\mathbf{a}_1, \dots, \mathbf{a}_n$, produce an orthonormal basis $\mathbf{q}_1, \dots, \mathbf{q}_n$.

$$\begin{aligned} \textbf{b}_1 &= \textbf{a}_1, & \textbf{q}_1 &= \frac{\textbf{b}_1}{\|\textbf{b}_1\|} \\ \textbf{b}_2 &= \textbf{a}_2 - \langle \textbf{a}_2, \textbf{q}_1 \rangle \textbf{q}_1, & \textbf{q}_2 &= \frac{\textbf{b}_2}{\|\textbf{b}_2\|} \\ \textbf{b}_3 &= \textbf{a}_3 - \langle \textbf{a}_3, \textbf{q}_1 \rangle \textbf{q}_1 - \langle \textbf{a}_3, \textbf{q}_2 \rangle \textbf{q}_2, & \textbf{q}_3 &= \frac{\textbf{b}_3}{\|\textbf{b}_3\|} \\ & \cdots & \cdots \end{aligned}$$

• An **orthogonal matrix** is a square matrix Q with orthonormal columns. Equivalently, $Q^TQ = I$ (also true for non-square matrices).

$$\begin{aligned} \textbf{b}_1 &= \textbf{a}_1, & \textbf{q}_1 &= \frac{\textbf{b}_1}{\|\textbf{b}_1\|} \\ \textbf{b}_2 &= \textbf{a}_2 - \langle \textbf{a}_2, \textbf{q}_1 \rangle \textbf{q}_1, & \textbf{q}_2 &= \frac{\textbf{b}_2}{\|\textbf{b}_2\|} \\ \textbf{b}_3 &= \textbf{a}_3 - \langle \textbf{a}_3, \textbf{q}_1 \rangle \textbf{q}_1 - \langle \textbf{a}_3, \textbf{q}_2 \rangle \textbf{q}_2, & \textbf{q}_3 &= \frac{\textbf{b}_3}{\|\textbf{b}_3\|} \end{aligned}$$

- An **orthogonal matrix** is a square matrix Q with orthonormal columns. Equivalently, $Q^TQ = I$ (also true for non-square matrices).
- Apply Gram-Schmidt to the (independent) columns of A to obtain the **QR decomposition** A = QR.

$$\begin{aligned} \textbf{b}_1 &= \textbf{a}_1, & \textbf{q}_1 &= \frac{\textbf{b}_1}{\|\textbf{b}_1\|} \\ \textbf{b}_2 &= \textbf{a}_2 - \langle \textbf{a}_2, \textbf{q}_1 \rangle \textbf{q}_1, & \textbf{q}_2 &= \frac{\textbf{b}_2}{\|\textbf{b}_2\|} \\ \textbf{b}_3 &= \textbf{a}_3 - \langle \textbf{a}_3, \textbf{q}_1 \rangle \textbf{q}_1 - \langle \textbf{a}_3, \textbf{q}_2 \rangle \textbf{q}_2, & \textbf{q}_3 &= \frac{\textbf{b}_3}{\|\textbf{b}_3\|} \end{aligned}$$

- An orthogonal matrix is a square matrix Q with orthonormal columns. Equivalently, Q^TQ = I (also true for non-square matrices).
- Apply Gram-Schmidt to the (independent) columns of A to obtain the **QR decomposition** A = QR.
 - Q has orthonormal columns (the output vectors of Gram-Schmidt).

$$\begin{array}{cccc} \textbf{b}_1 = \textbf{a}_1, & \textbf{q}_1 = \frac{\textbf{b}_1}{\|\textbf{b}_1\|} \\ \textbf{b}_2 = \textbf{a}_2 - \langle \textbf{a}_2, \textbf{q}_1 \rangle \textbf{q}_1, & \textbf{q}_2 = \frac{\textbf{b}_2}{\|\textbf{b}_2\|} \\ \textbf{b}_3 = \textbf{a}_3 - \langle \textbf{a}_3, \textbf{q}_1 \rangle \textbf{q}_1 - \langle \textbf{a}_3, \textbf{q}_2 \rangle \textbf{q}_2, & \textbf{q}_3 = \frac{\textbf{b}_3}{\|\textbf{b}_3\|} \\ & \cdots & \cdots \end{array}$$

- An **orthogonal matrix** is a square matrix Q with orthonormal columns. Equivalently, $Q^TQ = I$ (also true for non-square matrices).
- Apply Gram-Schmidt to the (independent) columns of A to obtain the **QR decomposition** A = QR.
 - Q has orthonormal columns (the output vectors of Gram-Schmidt).
 - $R = Q^T A$ is upper triangular.

Find the QR decomposition of
$$A = \begin{bmatrix} 1 & 1 \\ 2 & 0 \\ 0 & 1 \end{bmatrix}$$
.

Find the QR decomposition of
$$A = \begin{bmatrix} 1 & 1 \\ 2 & 0 \\ 0 & 1 \end{bmatrix}$$
.

Solution

We apply Gram-Schmidt to the columns of A:

Find the QR decomposition of
$$A = \begin{bmatrix} 1 & 1 \\ 2 & 0 \\ 0 & 1 \end{bmatrix}$$
.

Solution

We apply Gram-Schmidt to the columns of A:

Find the QR decomposition of
$$A = \begin{bmatrix} 1 & 1 \\ 2 & 0 \\ 0 & 1 \end{bmatrix}$$
.

Solution

We apply Gram-Schmidt to the columns of A:

 \mathbf{q}_1

Find the QR decomposition of $A = \begin{bmatrix} 1 & 1 \\ 2 & 0 \\ 0 & 1 \end{bmatrix}$.

Solution

$$\mathbf{q}_1 = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$$

Find the QR decomposition of $A = \begin{bmatrix} 1 & 1 \\ 2 & 0 \\ 0 & 1 \end{bmatrix}$.

Solution

$$\mathbf{q}_1 = rac{1}{\sqrt{5}} egin{bmatrix} 1 \ 2 \ 0 \end{bmatrix}$$

$$\boldsymbol{b_2} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} - \left\langle \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \boldsymbol{q_1} \right\rangle \boldsymbol{q_1} =$$

Find the QR decomposition of $A = \begin{bmatrix} 1 & 1 \\ 2 & 0 \\ 0 & 1 \end{bmatrix}$.

Solution

$$\mathbf{q}_1 = rac{1}{\sqrt{5}} egin{bmatrix} 1 \ 2 \ 0 \end{bmatrix}$$

$$\boldsymbol{b_2} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} - \left\langle \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \boldsymbol{q_1} \right\rangle \boldsymbol{q_1} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} - \frac{1}{\sqrt{5}} \frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} =$$

Find the QR decomposition of $A = \begin{bmatrix} 1 & 1 \\ 2 & 0 \\ 0 & 1 \end{bmatrix}$.

Solution

We apply Gram-Schmidt to the columns of A:

$$\mathbf{q}_1 = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$$

$$\boldsymbol{b_2} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} - \left\langle \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \boldsymbol{q_1} \right\rangle \boldsymbol{q_1} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} - \frac{1}{\sqrt{5}} \frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 4/5 \\ -2/5 \\ 1 \end{bmatrix},$$

Diagonalization

Find the QR decomposition of $A = \begin{bmatrix} 1 & 1 \\ 2 & 0 \\ 0 & 1 \end{bmatrix}$.

Solution

$$\mathbf{q}_1 = rac{1}{\sqrt{5}} egin{bmatrix} 1 \ 2 \ 0 \end{bmatrix}$$

$$\bm{b_2} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} - \left\langle \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \bm{q_1} \right\rangle \bm{q_1} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} - \frac{1}{\sqrt{5}} \frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 4/5 \\ -2/5 \\ 1 \end{bmatrix}, \bm{q_2} =$$

Find the QR decomposition of $A = \begin{bmatrix} 1 & 1 \\ 2 & 0 \\ 0 & 1 \end{bmatrix}$.

Solution

$$\mathbf{q}_1 = rac{1}{\sqrt{5}} egin{bmatrix} 1 \ 2 \ 0 \end{bmatrix}$$

$$\mathbf{b_2} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} - \left\langle \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \mathbf{q}_1 \right\rangle \mathbf{q}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} - \frac{1}{\sqrt{5}} \frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 4/5 \\ -2/5 \\ 1 \end{bmatrix}, \mathbf{q}_2 = \frac{1}{\sqrt{9/5}} \begin{bmatrix} 4/5 \\ -2/5 \\ 1 \end{bmatrix}$$

Hence:
$$Q = [\mathbf{q}_1, \mathbf{q}_2] = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{4}{\sqrt{45}} \\ \frac{2}{\sqrt{5}} & -\frac{2}{\sqrt{45}} \\ 0 & \frac{5}{\sqrt{45}} \end{bmatrix}$$

Hence:
$$Q = [\mathbf{q}_1, \mathbf{q}_2] = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{4}{\sqrt{45}} \\ \frac{2}{\sqrt{5}} & -\frac{2}{\sqrt{45}} \\ 0 & \frac{5}{\sqrt{45}} \end{bmatrix}$$

Hence:
$$Q = [\mathbf{q}_1, \mathbf{q}_2] = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{4}{\sqrt{45}} \\ \frac{2}{\sqrt{5}} & -\frac{2}{\sqrt{45}} \\ 0 & \frac{5}{\sqrt{45}} \end{bmatrix}$$

And:
$$R = Q^T A =$$

Hence:
$$Q = [\mathbf{q}_1, \mathbf{q}_2] = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{4}{\sqrt{45}} \\ \frac{2}{\sqrt{5}} & -\frac{2}{\sqrt{45}} \\ 0 & \frac{5}{\sqrt{45}} \end{bmatrix}$$

And:
$$R = Q^T A = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} & 0\\ \frac{4}{\sqrt{45}} & -\frac{2}{\sqrt{45}} & \frac{5}{\sqrt{45}} \end{bmatrix} \begin{bmatrix} 1 & 1\\ 2 & 0\\ 0 & 1 \end{bmatrix} =$$

Hence:
$$Q = [\mathbf{q}_1, \mathbf{q}_2] = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{4}{\sqrt{45}} \\ \frac{2}{\sqrt{5}} & -\frac{2}{\sqrt{45}} \\ 0 & \frac{5}{\sqrt{45}} \end{bmatrix}$$

And:
$$R = Q^T A = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} & 0\\ \frac{4}{\sqrt{45}} & -\frac{2}{\sqrt{45}} & \frac{5}{\sqrt{45}} \end{bmatrix} \begin{bmatrix} 1 & 1\\ 2 & 0\\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{5}{\sqrt{5}} & \frac{1}{\sqrt{5}}\\ 0 & \frac{9}{45} \end{bmatrix}$$

Determinants

• A is invertible $\iff \det(A) \neq 0$

- A is invertible \iff $det(A) \neq 0$
- $\bullet \ \det(AB) = \det(A)\det(B)$

- A is invertible \iff $det(A) \neq 0$
- $\bullet \ \det(AB) = \det(A)\det(B)$
- $\bullet \ \det(A^{-1}) = \tfrac{1}{\det(A)}$

- A is invertible \iff $det(A) \neq 0$
- $\bullet \ \det(AB) = \det(A)\det(B)$
- $\bullet \ \det(A^{-1}) = \tfrac{1}{\det(A)}$

- A is invertible \iff $det(A) \neq 0$
- $\bullet \ \det(A^{-1}) = \tfrac{1}{\det(A)}$
- \bullet det(A^T) = det(A)
- The **determinant** is characterized by:

- A is invertible \iff $det(A) \neq 0$
- $\bullet \ \det(A^{-1}) = \tfrac{1}{\det(A)}$
- $det(A^T) = det(A)$
- The determinant is characterized by:
 - the normalization $\det I = 1$,

- A is invertible \iff $det(A) \neq 0$
- $\bullet \ \det(AB) = \det(A)\det(B)$
- $\bullet \ \det(A^{-1}) = \tfrac{1}{\det(A)}$
- \bullet det(A^T) = det(A)
- The determinant is characterized by:
 - the normalization $\det I = 1$,
 - and how it is affected by elementary row operations:

- A is invertible \iff $\det(A) \neq 0$
- $\bullet \ \det(A^{-1}) = \tfrac{1}{\det(A)}$
- \bullet det(A^T) = det(A)
- The determinant is characterized by:
 - the normalization $\det I = 1$,
 - and how it is affected by elementary row operations:
 - (replacement) Add a multiple of one row to another row.

- A is invertible \iff $\det(A) \neq 0$
- $\bullet \ \det(A^{-1}) = \tfrac{1}{\det(A)}$
- \bullet det(A^T) = det(A)
- The determinant is characterized by:
 - the normalization $\det I = 1$,
 - and how it is affected by elementary row operations:
 - (replacement) Add a multiple of one row to another row.

- A is invertible \iff $det(A) \neq 0$
- $\bullet \ \det(AB) = \det(A)\det(B)$
- $\bullet \ \det(A^{-1}) = \tfrac{1}{\det(A)}$
- $det(A^T) = det(A)$
- The determinant is characterized by:
 - the normalization $\det I = 1$,
 - and how it is affected by elementary row operations:
 - (replacement) Add a multiple of one row to another row.
 Does not change the determinant.

- A is invertible \iff $det(A) \neq 0$
- $\bullet \ \det(AB) = \det(A)\det(B)$
- $\bullet \ \det(A^{-1}) = \tfrac{1}{\det(A)}$
- $det(A^T) = det(A)$
- The determinant is characterized by:
 - the normalization $\det I = 1$,
 - and how it is affected by elementary row operations:
 - (replacement) Add a multiple of one row to another row.
 Does not change the determinant.
 - (interchange) Interchange two rows.

- A is invertible \iff $det(A) \neq 0$
- $\bullet \ \det(AB) = \det(A)\det(B)$
- $\bullet \ \det(A^{-1}) = \tfrac{1}{\det(A)}$
- $det(A^T) = det(A)$
- The determinant is characterized by:
 - the normalization $\det I = 1$,
 - and how it is affected by elementary row operations:
 - (replacement) Add a multiple of one row to another row.
 Does not change the determinant.
 - (interchange) Interchange two rows.

- A is invertible \iff $\det(A) \neq 0$
- $\bullet \ \det(A^{-1}) = \tfrac{1}{\det(A)}$
- \bullet det(A^T) = det(A)
- The determinant is characterized by:
 - the normalization $\det I = 1$,
 - and how it is affected by elementary row operations:
 - (replacement) Add a multiple of one row to another row.
 Does not change the determinant.
 - (interchange) Interchange two rows. Reverses the sign of the determinant.

- A is invertible \iff $\det(A) \neq 0$
- $\bullet \ \det(AB) = \det(A)\det(B)$
- $\bullet \ \det(A^{-1}) = \tfrac{1}{\det(A)}$
- $det(A^T) = det(A)$
- The determinant is characterized by:
 - the normalization $\det I = 1$,
 - and how it is affected by elementary row operations:
 - (replacement) Add a multiple of one row to another row.
 Does not change the determinant.
 - (interchange) Interchange two rows. Reverses the sign of the determinant.
 - (scaling) Multiply all entries in a row by s.

- A is invertible \iff $\det(A) \neq 0$
- $\bullet \ \det(AB) = \det(A)\det(B)$
- $\bullet \ \det(A^{-1}) = \tfrac{1}{\det(A)}$
- $det(A^T) = det(A)$
- The determinant is characterized by:
 - the normalization $\det I = 1$,
 - and how it is affected by elementary row operations:
 - (replacement) Add a multiple of one row to another row.
 Does not change the determinant.
 - (interchange) Interchange two rows. Reverses the sign of the determinant.
 - (scaling) Multiply all entries in a row by s.

- A is invertible \iff $det(A) \neq 0$
- $\bullet \ \det(AB) = \det(A)\det(B)$
- $\bullet \ \det(A^{-1}) = \tfrac{1}{\det(A)}$
- $det(A^T) = det(A)$
- The determinant is characterized by:
 - the normalization $\det I = 1$,
 - and how it is affected by elementary row operations:
 - (replacement) Add a multiple of one row to another row.
 Does not change the determinant.
 - (interchange) Interchange two rows. Reverses the sign of the determinant.
 - (scaling) Multiply all entries in a row by s. Multiplies the determinant by s.

- A is invertible \iff $\det(A) \neq 0$
- $\bullet \ \det(AB) = \det(A)\det(B)$
- $\bullet \ \det(A^{-1}) = \tfrac{1}{\det(A)}$
- $\bullet \ \det(A^T) = \det(A)$
- The **determinant** is characterized by:
 - the normalization $\det I = 1$,
 - and how it is affected by elementary row operations:
 - (replacement) Add a multiple of one row to another row.
 Does not change the determinant.
 - (interchange) Interchange two rows. Reverses the sign of the determinant.
 - (scaling) Multiply all entries in a row by s. Multiplies the determinant by s.

$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 1 & 5 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 3 & 5 \end{vmatrix} R4 \rightarrow R4 - \frac{3}{2}R3$$

- A is invertible \iff $\det(A) \neq 0$
- $\bullet \ \det(AB) = \det(A)\det(B)$
- $\bullet \ \det(A^{-1}) = \tfrac{1}{\det(A)}$
- $\bullet \ \det(A^T) = \det(A)$
- The determinant is characterized by:
 - the normalization $\det I = 1$,
 - and how it is affected by elementary row operations:
 - (replacement) Add a multiple of one row to another row.
 Does not change the determinant.
 - (interchange) Interchange two rows. Reverses the sign of the determinant.
 - (scaling) Multiply all entries in a row by s.
 Multiplies the determinant by s.

$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 1 & 5 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 3 & 5 \end{vmatrix} \xrightarrow{R4 \to R4 - \frac{3}{2}R3} \begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 1 & 5 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & \frac{7}{2} \end{vmatrix} =$$

- A is invertible \iff $\det(A) \neq 0$
- $\bullet \ \det(A^{-1}) = \tfrac{1}{\det(A)}$
- \bullet det(A^T) = det(A)
- The determinant is characterized by:
 - the normalization $\det I = 1$,
 - and how it is affected by elementary row operations:
 - (replacement) Add a multiple of one row to another row.
 Does not change the determinant.
 - (interchange) Interchange two rows. Reverses the sign of the determinant.
 - (scaling) Multiply all entries in a row by s. Multiplies the determinant by s.

$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 1 & 5 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 3 & 5 \end{vmatrix} \xrightarrow{R4 \to R4 - \frac{3}{2}R3} \begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 1 & 5 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & \frac{7}{2} \end{vmatrix} = 1 \cdot 2 \cdot 2 \cdot \frac{7}{2} =$$

- A is invertible \iff $det(A) \neq 0$
- $\bullet \ \det(A^{-1}) = \tfrac{1}{\det(A)}$
- $\bullet \ \det(A^T) = \det(A)$
- The determinant is characterized by:
 - the normalization $\det I = 1$,
 - and how it is affected by elementary row operations:
 - (replacement) Add a multiple of one row to another row.
 Does not change the determinant.
 - (interchange) Interchange two rows. Reverses the sign of the determinant.
 - (scaling) Multiply all entries in a row by s.
 Multiplies the determinant by s.

$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 1 & 5 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 3 & 5 \end{vmatrix} \xrightarrow{R4 \to R4 - \frac{3}{2}R3} \begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 1 & 5 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & \frac{7}{2} \end{vmatrix} = 1 \cdot 2 \cdot 2 \cdot \frac{7}{2} = 14$$

Cofactor expansion is another way to compute determinants.

Cofactor expansion is another way to compute determinants.

Cofactor expansion is another way to compute determinants.

$$\begin{vmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \\ 2 & 0 & 1 \end{vmatrix} = -2 \cdot \begin{vmatrix} 3 & 2 \\ 2 & 1 \end{vmatrix} + (-1) \cdot \begin{vmatrix} 1 & 0 \\ 3 & 2 \\ 2 & 1 \end{vmatrix} - 0 \cdot \begin{vmatrix} 1 & 0 \\ 3 & 2 \\ - & - \end{vmatrix}$$

$$= -2 \cdot (-1) + (-1) \cdot 1 - 0 = 1$$

Example

What is
$$\begin{vmatrix} 1 & 1 & 1 & 4 \\ -1 & 2 & 2 & 5 \\ 0 & 3 & 3 & 1 \\ 2 & 0 & 0 & 5 \end{vmatrix}$$
?

Example

What is
$$\begin{vmatrix} 1 & 1 & 1 & 4 \\ -1 & 2 & 2 & 5 \\ 0 & 3 & 3 & 1 \\ 2 & 0 & 0 & 5 \end{vmatrix}$$
?

Solution

The determinant is 0 because the matrix is not invertible (second and third columns are the same).

Eigenvalues and eigenvectors

• If $A\mathbf{x} = \lambda \mathbf{x}$, then \mathbf{x} is an **eigenvector** of A with **eigenvalue** λ .

- If $A\mathbf{x} = \lambda \mathbf{x}$, then \mathbf{x} is an **eigenvector** of A with **eigenvalue** λ .
- λ is an eigenvalue of $A \iff \det(A \lambda I) = 0$.

- If $A\mathbf{x} = \lambda \mathbf{x}$, then \mathbf{x} is an **eigenvector** of A with **eigenvalue** λ .
- λ is an eigenvalue of $A \iff \det(A \lambda I) = 0$.

- If $A\mathbf{x} = \lambda \mathbf{x}$, then \mathbf{x} is an **eigenvector** of A with **eigenvalue** λ .
- λ is an eigenvalue of $A \iff \det(A \lambda I) = 0$.

 Characteristic polynomial Why? Because $A\mathbf{x} = \lambda \mathbf{x} \iff (A \lambda I)\mathbf{x} = \mathbf{0}$.

- If $A\mathbf{x} = \lambda \mathbf{x}$, then \mathbf{x} is an **eigenvector** of A with **eigenvalue** λ .
- λ is an eigenvalue of $A \iff \det(A \lambda I) = 0$.

 characteristic polynomial

 Why? Because $A\mathbf{x} = \lambda \mathbf{x} \iff (A \lambda I)\mathbf{x} = \mathbf{0}$.
- The **eigenspace** of λ is Nul($A \lambda I$).

- If $A\mathbf{x} = \lambda \mathbf{x}$, then \mathbf{x} is an **eigenvector** of A with **eigenvalue** λ .
- λ is an eigenvalue of $A \iff \det(A \lambda I) = 0$.

 characteristic polynomial

 Why? Because $A\mathbf{x} = \lambda \mathbf{x} \iff (A \lambda I)\mathbf{x} = \mathbf{0}$.
- The **eigenspace** of λ is Nul($A \lambda I$).

- If $Ax = \lambda x$, then x is an **eigenvector** of A with **eigenvalue** λ .
- λ is an eigenvalue of $A \iff \det(A \lambda I) = 0$.

 characteristic polynomial

 Why? Because $A\mathbf{x} = \lambda \mathbf{x} \iff (A \lambda I)\mathbf{x} = \mathbf{0}$.
- The **eigenspace** of λ is Nul($A \lambda I$). It consists of all vectors (plus **0**) with eigenvalue λ .

- If $Ax = \lambda x$, then x is an eigenvector of A with eigenvalue λ .
- λ is an eigenvalue of $A \iff \det(A \lambda I) = 0$.

 characteristic polynomial

 Why? Because $A\mathbf{x} = \lambda \mathbf{x} \iff (A \lambda I)\mathbf{x} = \mathbf{0}$.
- The **eigenspace** of λ is Nul($A \lambda I$). It consists of all vectors (plus **0**) with eigenvalue λ .
- Eigenvectors $\mathbf{x}_1, \dots, \mathbf{x}_m$ of A corresponding to different eigenvalues are independent.

- If $Ax = \lambda x$, then x is an eigenvector of A with eigenvalue λ .
- λ is an eigenvalue of $A \iff \det(A \lambda I) = 0$.

 characteristic polynomial

 Why? Because $A\mathbf{x} = \lambda \mathbf{x} \iff (A \lambda I)\mathbf{x} = \mathbf{0}$.
- The **eigenspace** of λ is Nul($A \lambda I$). It consists of all vectors (plus **0**) with eigenvalue λ .
- Eigenvectors $\mathbf{x}_1, \dots, \mathbf{x}_m$ of A corresponding to different eigenvalues are independent.
- Useful when checking: sum of eigenvalues = sum of diagonal entries.

- If $Ax = \lambda x$, then x is an eigenvector of A with eigenvalue λ .
- λ is an eigenvalue of $A \iff \det(A \lambda I) = 0$.

 characteristic polynomial

 Why? Because $A\mathbf{x} = \lambda \mathbf{x} \iff (A \lambda I)\mathbf{x} = \mathbf{0}$.
- The **eigenspace** of λ is Nul($A \lambda I$). It consists of all vectors (plus **0**) with eigenvalue λ .
- Eigenvectors $\mathbf{x}_1, \dots, \mathbf{x}_m$ of A corresponding to different eigenvalues are independent.
- Useful when checking: sum of eigenvalues = sum of diagonal entries.
- Useful when checking: product of eigenvalues = determinant of A.

- If $Ax = \lambda x$, then x is an eigenvector of A with eigenvalue λ .
- λ is an eigenvalue of $A \iff \det(A \lambda I) = 0$.

 characteristic polynomial

 Why? Because $A\mathbf{x} = \lambda \mathbf{x} \iff (A \lambda I)\mathbf{x} = \mathbf{0}$.
- The **eigenspace** of λ is Nul($A \lambda I$). It consists of all vectors (plus **0**) with eigenvalue λ .
- Eigenvectors $\mathbf{x}_1, \dots, \mathbf{x}_m$ of A corresponding to different eigenvalues are independent.
- Useful when checking: sum of eigenvalues = sum of diagonal entries.
- Useful when checking: product of eigenvalues = determinant of *A*.
- Eigenvalues can be complex numbers, even if A is a real matrix.

- If $Ax = \lambda x$, then x is an eigenvector of A with eigenvalue λ .
- λ is an eigenvalue of $A \iff \det(A \lambda I) = 0$.

 characteristic polynomial

 Why? Because $A\mathbf{x} = \lambda \mathbf{x} \iff (A \lambda I)\mathbf{x} = \mathbf{0}$.
- The **eigenspace** of λ is Nul($A \lambda I$). It consists of all vectors (plus **0**) with eigenvalue λ .
- Eigenvectors $\mathbf{x}_1, \dots, \mathbf{x}_m$ of A corresponding to different eigenvalues are independent.
- Useful when checking: sum of eigenvalues = sum of diagonal entries.
- Useful when checking: product of eigenvalues = determinant of *A*.
- Eigenvalues can be complex numbers, even if A is a real matrix.

- If $Ax = \lambda x$, then x is an eigenvector of A with eigenvalue λ .
- λ is an eigenvalue of $A \iff \det(A \lambda I) = 0$.

 characteristic polynomial

 Why? Because $A\mathbf{x} = \lambda \mathbf{x} \iff (A \lambda I)\mathbf{x} = \mathbf{0}$.
- The **eigenspace** of λ is Nul($A \lambda I$). It consists of all vectors (plus **0**) with eigenvalue λ .
- Eigenvectors $\mathbf{x}_1, \dots, \mathbf{x}_m$ of A corresponding to different eigenvalues are independent.
- Useful when checking: sum of eigenvalues = sum of diagonal entries.
- Useful when checking: product of eigenvalues = determinant of A.
- Eigenvalues can be complex numbers, even if A is a real matrix. In that case eigenvectors will be complex, too.

- If $Ax = \lambda x$, then x is an eigenvector of A with eigenvalue λ .
- λ is an eigenvalue of $A \iff \det(A \lambda I) = 0$.

 characteristic polynomial

 Why? Because $A\mathbf{x} = \lambda \mathbf{x} \iff (A \lambda I)\mathbf{x} = \mathbf{0}$.
- The **eigenspace** of λ is Nul($A \lambda I$). It consists of all vectors (plus **0**) with eigenvalue λ .
- Eigenvectors $\mathbf{x}_1, \dots, \mathbf{x}_m$ of A corresponding to different eigenvalues are independent.
- Useful when checking: sum of eigenvalues = sum of diagonal entries.
- Useful when checking: product of eigenvalues = determinant of *A*.
- Eigenvalues can be complex numbers, even if A is a real matrix. In that case eigenvectors will be complex, too. Works just like real vectors.

Diagonalization

• If A is an $n \times n$ matrix, $\mathbf{v}_1, \dots, \mathbf{v}_n$ is an **eigenbasis** if

• If A is an $n \times n$ matrix, $\mathbf{v}_1, \dots, \mathbf{v}_n$ is an **eigenbasis** if

• If A is an $n \times n$ matrix, $\mathbf{v}_1, \dots, \mathbf{v}_n$ is an **eigenbasis** if $A\mathbf{v}_i = \lambda_i \mathbf{v}_i$ for each i (and it is a basis!).

- If A is an $n \times n$ matrix, $\mathbf{v}_1, \dots, \mathbf{v}_n$ is an **eigenbasis** if $A\mathbf{v}_i = \lambda_i \mathbf{v}_i$ for each i (and it is a basis!).
- Not all matrices have eigenbases!

- If A is an $n \times n$ matrix, $\mathbf{v}_1, \dots, \mathbf{v}_n$ is an **eigenbasis** if $A\mathbf{v}_i = \lambda_i \mathbf{v}_i$ for each i (and it is a basis!).
- Not all matrices have eigenbases!

- If A is an $n \times n$ matrix, $\mathbf{v}_1, \dots, \mathbf{v}_n$ is an **eigenbasis** if $A\mathbf{v}_i = \lambda_i \mathbf{v}_i$ for each i (and it is a basis!).
- Not all matrices have eigenbases! But if they do, write:

$$\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_n \mathbf{v}_n.$$

- If A is an $n \times n$ matrix, $\mathbf{v}_1, \dots, \mathbf{v}_n$ is an **eigenbasis** if $A\mathbf{v}_i = \lambda_i \mathbf{v}_i$ for each i (and it is a basis!).
- Not all matrices have eigenbases! But if they do, write:

$$\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_n \mathbf{v}_n.$$

• Then it is easy to calculate the action of powers of A on x:

$$A^k \mathbf{x} = c_1 \lambda_1^k \mathbf{v}_1 + c_2 \lambda_2^k \mathbf{v}_2 + \dots + c_n \lambda_n^k \mathbf{v}_n.$$

GOOD LUCK!