Unit – 1 (NUMERICAL METHODS-1)

Q.No	Questions						
1.	(a) Obtain $y(0.2)$ using Picard's method upto second iteration for the initial value problem						
1.							
	$\frac{dy}{dx} = x^2 - 2y , y(0) = 1.$						
	(b) Solve $y' = x + y$, y(0)=1 by Picard's method up to second approximation, Hence find the						
	value of y(1).compare with exact solution.						
2.	(a) Solve $\frac{dy}{dx} = y - x^2$, y (0)=1 by Picard's method up to the third approximation. Hence find the						
	value of y (0.1) and y (0.2) .						
	(b) Obtain a solution up to the third approximation of y for $x=0.2$ by Picard's method, given that						
	$\frac{dy}{dx} = x + y + xy; y(0) = 1.$						
3.	(a) Solve $\frac{dy}{dx} = x^2 + y^2$, $y(0)=0$ by Picard's method up to the second approximation.						
	$\frac{dy}{dx} = \frac{x + y}{dx}, y(0) = 0 \text{ by T leads in the field approximation.}$						
	Hence find the value of $y(0.1)$						
	(b) Solve $\frac{dy}{dx} = \frac{x^2}{y^2 + 1}$, y(0)=0 by Picard's method up to the second approximation.						
	$\frac{dx}{dx} = \frac{-y^2+1}{y^2+1}, y(0)=0 \text{ by T leads include up to the second approximation.}$						
	Hence find the value of y (0.25) , y (0.5) ,y (1.0) .						
4.	(a)Obtain a solution upto the third approximation of y for x=0.2 by Picard's method, given that						
	$\frac{dy}{dx} + y = e^x; y(0) = 1.$						
	(b) $\frac{dy}{dx} = 1 + y^2$; y(0)=0, compute y(0.8) correct to 4 decimal places by generating the initial values						
	from Picard's second approximation.						
5.	(a) Using Taylor's series method, find y at $x = 0.1$ and $x = 0.2$ considering up to 4^{th} degree terms.						
	Given that $\frac{dy}{dx} = x^2y - 1$ and $y(0) = 1$						
	(b) Given the differential equation $\frac{dy}{dx} = \frac{1}{x^2 + y}$, with y(4)=4, obtain y(4.1) and y(4.2)						
	by Taylor's series method						
6.	(a) Solve $\frac{dy}{dx} = 2y + 3e^x$, y(0)=0. Using Taylor's series method find y(0.1),y(0.2)						
	(b) Using Taylor's series method, find y at $x = 1.1$ and $x = 1.2$,						
	Given that $\frac{dy}{dx} = x y^{1/3}$ and $y(1) = 1$						
7.	(a) Employ Taylor's series method to find the approximate solution to find y at x=0.1 given						
/.	,						
	$\frac{dy}{dx} = x - y^2$, y(0)=1 by considering upto 4 th degree term.						
	(b) Use Taylor's series method to obtain a power series in $(x - 4)$ for the equation						
	$5x \frac{dy}{dx} + y^2 - 2 = 0, x = 4, y = 1$ and use it to find y at x = 4.1,4.2						
8.	(a) Solve the initial value problem $y' = -2xy^2$, $y(0) = 1$ for y at $x = 1$ using						
	Taylor series method of order four. (b) Find y at $x=1.4$ correct four decimal places given dy = $(xy-1)$ dx and y = 2 at x =1 by						
	Applying Taylor's series method.						
9.	(a) Solve by Euler's modified method to obtain $y(1.2)$ given $\frac{dy}{dx} = \frac{y+x}{y-x}$, $y(1) = 2$.						
	···· y ··						
10.	(b) Solve $y' = \log_e(x + y)$, $y(0) = 2$, $h = 0.2$ by using modified Euler's method at the points $x = 0.2$. (a) Solve the differential equation $\frac{dy}{dx} = -xy^2$ under the initial condition $y(0) = 2$, by using modified						
10.							
	Euler's method, at the points $x=0.1$ and $x=0.2$. Take a step size of $h=0.1$ carry out two modifications at each step.						
	(b) Solve by Euler's modified method to obtain $y(0.4)$ given $\frac{dy}{dx} = x + \sqrt{y} , y(0) = 1, h = 0.4$.						
	$\frac{1}{dx} = x + \sqrt{y} , y(0) = 1, n = 0.4.$						
11.	(a) Given $\frac{dy}{dx} + y - x^2 = 0$, $y(0) = 0$. Find correct to four decimal places $y(0.2)$ using						
-	modified Euler's method.						
	(b) Using Euler's predictor and corrector formula compute y(1.1) correct to five decimal places given that						
	$\frac{dy}{dx} + \frac{y}{x} = \frac{1}{x^2}$ and y=1 at x=1 .also find the analytical solution.						
	dr r r ² and f I at x I also and the analytical solution.						

12.	(a) Solve $y' = x + y$, given $y(0)=1$, by using modified Euler's method step length is h=0.1.						
	(b) Using modified Euler's method find y at x=0.2 given $\frac{dy}{dx} = 3x + \frac{y}{2}$ with y(0)=1 taking h=0.1.						
	Perform two iterations at each step.						
13.	(a) Solve $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$ with $y(0) = 1$, find y at x=0.2 using Runge-kutta method of 4th order taking						
	step- length h=0.2. Accurate up to 4th decimal places.						
	(b) Integrate differential equation by Runge Kutta method of fourth order given						
1.0	$y' = -2xy^2$, y(0)=1, h=0.2, find y(0.2).						
14.	(a) Apply Runge-kutta method to find an approximate value of y for x=0.2 in step of 0.2						
	of $\frac{dy}{dx} = x + y^2$, given that y=1 when x=0.						
	(b)Use the Runge kutta fourth order method to find the value of y when x=0.3 given that y=1 when x=0						
4=	and that $\frac{dy}{dx} = \frac{y-x}{y+x}$						
15.	(a) Apply Runge-kutta method to find an approximate value of y for x=0.2 in step of 0.2 for $\frac{dy}{dx}$						
	$\frac{dy}{dx} = x + y, \text{ given that y=1 when x=0.}$						
	(b) Apply Runge-kutta method to find an approximate value in the range $0 \le x \le 0.1$ by taking						
	h=0.1 for $\frac{dy}{dx} = x(1+xy)$, given that y=1 when x=0						
16.	(a) Apply Runge-kutta method of 4 th order, to compute y(0.3). Given that $10 \frac{dy}{dx} = x^2 + y^2$						
	y(0)=1, taking h=0.3.						
	(b) Using Runge kutta method of fourth order find y(20.2) for the equation $\frac{dy}{dx} = log_{10}\left(\frac{x}{y}\right)$, y(20)=5						
17.	taking h=0.2.						
17.	(a) Given that that $\frac{dy}{dx} = x^2(1+y)$ and y(1)=1; y(1.1)=1.233; y(1.2)=1.548; y(1.3)=1.979, find y at						
	x=1.4 by using Milne's predictor and corrector method. (b)Use Taylor's series method to obtain the solution as a power series in x (up to third derivative						
	terms) given that $\frac{dy}{dx} - y^2 = x$, $y(0) = 0$. using this generate the values of y corresponding to						
	x = 0.2, 0.4, 0.6 correct to four decimal places. Then apply Milne's predictor corrector formulae to						
	Compute y at $x = 0.8$.						
18.	(a) The following table gives the solution of $\frac{dy}{dx} = x - y^2$. Find the value of y at x=0.8 using Milne's						
	predictor and corrector formulae.						
	x 0 0.2 0.4 0.6						
	y 0 0.02 0.07 0.17						
	(b) If $\frac{dy}{dx} = x + y^2$; y(0)=1, y(0.1)=1.1, y(0.2)=1.231, y(0.3)=1.402, compute y(0.4) correct to three						
	decimal places, using the Milne's predictor –corrector method. Apply the corrector formulae						
	twice.						
19.	(a) If $\frac{dy}{dx} = xy + y^2$; $y(0) = 1$, $y(0.1) = 1.1169$, $y(0.2) = 1.2773$, $y(0.3) = 1.5049$						
	find $y(0.4)$ correct to three decimal places, using the Milne's predictor –corrector						
	method. Apply the corrector formulae twice.						
	dy y = 1						
	(b) Given $\frac{dy}{dx} + \frac{y}{x} = \frac{1}{x^2}$ and the data						
	x 1 1.1 1.2 1.3						
	y 1 0.996 0.986 0.972						
20	Compute y(1.4) correct to 3 decimal places by applying Milne's method.						
20.	(a) Using Milne's formulae, Determine y(0.4) given the differential equation for $\frac{dy}{dx} = \frac{1}{2}xy$ and the						
	data, y(0)=1, y(0.1)=1.0025, y(0.2)=1.0101, y(0.3)=1.0228. Apply the corrector formulae twice.						
	(b) Using Milne's method find y(1.4) given that $\frac{dy}{dx} = x^2 + \frac{y}{2}$ with y(1)=2. Obtain the initial values of y at						
	X=1.1, 1.2, 1.3 by Taylor's series method of order 4.						