PA – 4 Question Answer Task on Squad

By – Mudit Jain(muditjai@)

Introduction to problem and dataset

- Question answering is a challenging sub-problem within machine comprehension area.
- Solving question answering problems can help automate customer care, enable better search in text etc.
- Recently Squad dataset with 100K context, question, answers tuples has been created using Wikipedia and human judgment.
- The problem statement is Given a context paragraph, and a question, generate an answer span pair $a_s < a_e$ which answers the question. The performance is measured using F1 score and Exact match(EM) score.

Solution approaches and conclusions

- Recent research has focused on using various deep learning methods to solve it.
- I have created 3 different NN model for this problem.
- Model 3 with 30/20 as F1/EM score, is able to learn the correct semantics
 of response ie "Who" type of questions need a person in response, "When"
 type of questions need a time, "How much" type of questions expect a
 quantity.
- Questions with simple sentence structures and short simple answers are answered correctly most of the times. Long answers are not answered correctly.
- Even when factually incorrect, the answers are still mostly coherent.

Model 1 – Simple encoder decoder network

	Sanity Check Set		Dev Set		Test Set	
	F1	EM	F1	EM	F1	EM
Simple Encoder Network	3.34	0.37	5.20	0.64	4.89	0.63

Model 2 – Attention based encoder decoder network

	Sanity Check Set			
	F1	EM		
Attention based model epoch 4	2.33	0.12		
Attention based model epoch 8	2.27	0.12		

Model 3 – Filter and Attention based two step decoder network

GRU Filter Cell

```
\begin{aligned} h_p &= \mathsf{GRU}(e_p) \\ \alpha &= \mathsf{cosine}(h_p, H_q) \\ h_p^{\mathsf{max\_sim}} &= h_p * \mathsf{max}(\alpha) \\ h_p^{\mathsf{mean\_sim}} &= h_p * \mathsf{mean}(\alpha) \\ h_p^{\mathsf{question\_sim}} &= h_p * \mathsf{cosine}(h_p, h_q^{\mathsf{final}}) \end{aligned}
```

 $gru_out = Linear(h_p^{max_sim}h_p^{mean_sim}h_p^{question_sim}h_q^{final})$

Glove 840B embeddings used for q_i and c_i

Model 3 Performance

	Sanity Check Set		Dev Set		Test Set	
	F1	EM	F1	EM	F1	EM
GRU filter attn epoch 1	18.90	11.23	17.65	8.24	17.36	7.89
GRU filter attn epoch 2	25.88	18.39	24.39	13.3	1	
GRU filter attn epoch 3	28.04	20.61	28.87	17.38		

Thanks!