# **DEEP LEARNING FROM A STATISTICAL VIEWPOINT**

SESSION 0: HOW, WHY AND WHAT IS DEEP LEARNING?

# Tanguy Lefort

IMAG, Univ Montpellier, CNRS LIRMM, Inria, Univ Montpellier, CNRS

# Joseph Salmon

IMAG, Univ Montpellier, CNRS Institut Universitaire de France (IUF)









### What we are not going to talk about:

- Zoology of neural networks (CNN, Transformers, etc.): too many, more every other day!
- Very big neural networks (some models need thousands TPUv3-days to train<sup>(1)</sup> ⇒ neither practical nor theoretically well understood).





# What we are not going to talk about:

- Zoology of neural networks (CNN, Transformers, etc.): too many, more every other day!
- Very big neural networks (some models need thousands TPUv3-days to train<sup>(1)</sup> ⇒ neither practical nor theoretically well understood).

### What we are going to talk about:

- What is a feed-forward NN?
- Why do we use activation functions?
- Optimization with gradient methods and vanishing gradient

# OUTLINE



# Neural networks in parts

The perceptron SVM and MLP

Activation functions

Optimization issues in MLF

# FROM THE NEURON TO THE BRAIN... ALMOST NEURAL NETWORKS PARTS BY PARTS



The brain  $\simeq 86$  billions neurons each connected up to 10K others.

#### The core element: a neuron





- ▶ Input:  $x \in \mathbb{R}^d$
- ▶ Hidden layer:  $\langle w, x \rangle + b$
- Output:  $\theta = (w, b)$  $\hat{f}(x, \theta) = \sigma(\langle w, x \rangle) \in \mathbb{R}^{out}$
- ► Training: observations:  $X = [x_1^\top, \dots, x_n^\top]^\top$ binary labels  $(\pm 1)$ :  $y = (y_1, \dots, y_n)^\top$

# **OUTLINE**



Neural networks in parts
The perceptron
SVM and MIP

**Activation functions** 

Optimization issues in MLF

# THE PERCEPTRON (2) AN ELEMENTARY BRICK FOR NNS



### Theorem: convergence (3)

The algorithm stops in a finite number of steps if the dataset (X, y) is separable, i.e., if  $\exists \gamma > 0$ ,  $w^{\text{sep}} \in \mathbb{R}^d$  such that  $\langle w^{\text{sep}}, x_i \rangle + b > \gamma$ .

Rem: Roughly # steps  $\propto \max(\|x_i\|)^2 \cdot \|w^{\text{sep}}\|^2 / \gamma^2$ 

<sup>(2)</sup> F. Rosenblatt (1958). The perceptron: a theory of statistical separability in cognitive systems (Project Para). Cornell Aeronautical Laboratory

<sup>(3)</sup> A. B. Novikoff (1963). On convergence proofs for perceptrons. Tech. rep. STANFORD RESEARCH INST MENLO PARK CA

### THE PERCEPTRON: A RETROSPECTIVE POINT OF VIEW



#### What is the perceptron?

Modern answer: it is a linear binary classifier learnt with stochastic gradient descent (SGD) for the (perceptron) hinge loss and a fixed step size

#### (Perceptron) hinge loss:

$$\mathcal{L}(w,b) = \frac{1}{n} \sum_{i=1}^{n} \left( -y_i \cdot (\langle w, x_i \rangle + b) \right)_{+}$$

with

$$(x)_+ = ReLU(x) := max(0, x)$$



# PERCEPTRON ISSUES



- ▶ the Perceptron might never stop (cf. XOR problem)
- minimization of an 1-homogeneous function whose optimal value is trivial (w = 0, b = 0)
- SGD requires decreasing step size and does not converge for non-smooth case with fixed step size

# **VARIOUS STANDARD LOSS**





#### Credit:

### **GENERALITIES**



Many linear/affine predictors (classifiers) can leverage an expression:

$$\sigma\left(\left\langle \mathbf{w},\mathbf{x}\right\rangle +b\right)$$

- $\sigma$  the activation function
- w the weight (of the neuron)
- ▶ *b* the bias (of the neuron)

### **GENERALITIES**



Many linear/affine predictors (classifiers) can leverage an expression:

$$\sigma\left(\langle w, x \rangle + b\right)$$

- $ightharpoonup \sigma$  the activation function
- w the weight (of the neuron)
- ▶ *b* the bias (of the neuron)

For binary classification, we can use as **activation** function  $\sigma$ 

- ▶ the sign function:  $x \mapsto sign(x)$ ,
- the ReLU function:  $x \mapsto (x)_+$ ,
- ▶ the tanh function:  $x \mapsto \frac{e^x e^{-x}}{e^x + e^{-x}}$
- ▶ the sigmoid:  $x \mapsto \frac{1}{1+e^{-x}}$  (with in mind  $\mathbb{P}(y_i = 1|x_i) = \frac{1}{1+e^{-(\langle w, x_i \rangle + b)}})$

















# BACKPROPAGATION ON THE PERCEPTRON+RELU



$$\widehat{L}(\theta) = \frac{1}{n} \sum_{i} (y_i - f(x_i, \theta))^2 = \frac{1}{n} \sum_{i} (y_i - (w^{\top} x_i + b)_+)^2$$

Denoting  $u = w^{\top}x_i + b$ ,  $v = (y_i - u)$ :

BY HAND VS AUTOGRAD

$$\frac{\partial \widehat{L}}{\partial w} = \frac{\partial \widehat{L}}{\partial v} \frac{\partial v}{\partial u} \frac{\partial u}{\partial w} 
= -\frac{2}{n} \sum_{i} (y_i - \widehat{y}_i) x_i^{\top} \mathbb{1}(u > 0)$$

$$\begin{split} \frac{\partial \hat{L}}{\partial b} &= \frac{\partial \hat{L}}{\partial v} \frac{\partial v}{\partial u} \frac{\partial u}{\partial b} \\ &= -\frac{2}{n} \sum_{i} (y_{i} - \hat{y}_{i}) \mathbb{1}(u > 0) \end{split}$$

Using AutoGrad (4):

#### Rem:

Gradient tree can take a lot of memory

# **OUTLINE**



# Neural networks in parts The perceptron SVM and MLP

Activation functions

Optimization issues in MLF

### MULTI LAYER PERCEPTRON



► Feed-forward NN ⊃ MLP (Multi-Layer Perceptron)



### Idea: "There is strength in numbers"

- each hidden layer: perceptrons = linear transformations + activations
- can handle multiclass cases (e.g., with softmax output activation)

# SVM AND MLP CLASSIFICATION





Decision boundary with quadratic kernel SVM in  $\mathbb{R}^2$ :

$$\left\{x|\sum_{i}\alpha_{i}y_{i}k(x_{i},x)+b=0\right\},\quad k(x,x')=(x^{\top}x'+c)^{2}$$







# SVM and MLP classification





Decision boundary with quadratic kernel SVM in  $\mathbb{R}^2$ :

$$\left\{x|\sum_{i}\alpha_{i}y_{i}k(x_{i},x)+b=0\right\},\quad k(x,x')=(x^{\top}x'+c)^{2}$$



# **Decision boundary for MLP**

- ► MLP compute probabilities and is scalable (for labels & features)
- # linear separations = # neurons in hidden layer
- Warning: overfitting with MLP is common

# **OUTLINE**



Neural networks in parts

#### **Activation functions**

Step function from RELU Approximations with NNs Universal theorem XOR problem

Optimization issues in MLF

# **OUTLINE**



Neural networks in parts

Activation functions
Step function from RELU

Approximations with NNs Universal theorem XOR problem

Optimization issues in MLP

# FROM THE LINEARITY TO NON-LINEARITY WHY NEURAL NETWORKS ARE USEFUL



For K layers: matrices (weights)  $W_1, \ldots, W_K$  and vectors (bias)  $b_1, \ldots, b_K$ 

without activations:

$$y = W_{K}x_{K-1} + b_{K} = W_{K}(W_{K-1}x_{K-2} + b_{K-1}) + b_{K}$$

$$= W_{K}W_{K-1}x_{K-2} + W_{K}b_{K-1} + b_{K}$$

$$= \dots$$

$$= W_{K}W_{K-1} \dots W_{1}x_{0} + \mathbf{c} = \mathbf{W}x + \mathbf{c} \quad (affine!)$$

• with activations  $\sigma_K$  at layer k:

$$\begin{split} y &= \sigma_{K}(W_{K}z_{K-1} + b_{K}) = \sigma_{K}(z_{K}) \\ &= \sigma_{K}(W_{K}\sigma_{K-1}(W_{K-1}z_{K-2} + b_{K-1}) + b_{K}) \\ &= \sigma_{K}(W_{K}\sigma_{K-1}(W_{K-1}\sigma_{K-2}(\ldots) + b_{K-1}) + b_{K}) \quad \text{(not affine!)} \end{split}$$

### **EXAMPLE**





Here: 
$$\hat{f}: \mathbb{R}^5 \to \mathbb{R}^2$$
 
$$x \mapsto \sigma_3(W_3\sigma_2(W_2\sigma_1(W_1x + b_1) + b_2) + b_3)$$
 with:  $W_1 \in \mathbb{R}^{7 \times 5}, \quad b_1 \in \mathbb{R}^7$  
$$W_2 \in \mathbb{R}^{4 \times 7}, \quad b_2 \in \mathbb{R}^4$$
 
$$W_3 \in \mathbb{R}^{2 \times 4}, \quad b_3 \in \mathbb{R}^2$$

# **OUTLINE**



Neural networks in parts

#### **Activation functions**

Step function from RELU

Approximations with NNs

Universal theorem XOR problem

Optimization issues in MLF

# **EXAMPLE OF CODE FOR PYTORCH**





```
class Two_Perceptron(torch.nn.Module):
    def __init__(self):
        super(Two_Perceptron, self).__init__()
        self.in_fc = nn.Linear(1, 2)
        self.fc = nn.Linear(2, 1)
        self.sig = nn.Sigmoid()

def forward(self, x):
        out = self.in_fc(x)
        out = self.sig(out)
        out = self.fc(out)
        return out
```

# FROM THE LINEARITY TO THE NON-LINEARITY STEP FUNCTION WITH SIGMOID



Simple 2 neurons-1 hidden layer and sigmoid activation:

$$x \mapsto w_3 \sigma(w_1 x + b_1) + w_4 \sigma(w_2 x + b_2)$$



# FROM THE LINEARITY TO THE NON-LINEARITY STEP FUNCTION WITH SIGMOID



#### Simple 2 neurons-1 hidden layer and sigmoid activation:

$$x \mapsto w_3 \sigma(w_1 x + b_1) + w_4 \sigma(w_2 x + b_2)$$





# **EXAMPLE OF CODE FOR PYTORCH**





```
class Three_Perceptron(torch.nn.Module):
    def __init__(self):
        super(Three_Perceptron, self).__init__()
        self.in_fc = nn.Linear(1, 3)
        self.fc = nn.Linear(3, 1)
        self.sig = nn.ReLU()

def forward(self, x):
        out = self.in_fc(x)
        out = self.sig(out)
        out = self.fc(out)
        return out
```

# FROM THE LINEARITY TO THE NON-LINEARITY TRIANGLE FUNCTION WITH RELU



Simple 3 neurons-1 hidden layer and ReLu activation:

$$y = f(x, \theta) = \sigma(x+1) - 2\sigma(x) + \sigma(x-1)$$



# FROM THE LINEARITY TO THE NON-LINEARITY TRIANGLE FUNCTION WITH RELU



Simple 3 neurons-1 hidden layer and ReLu activation:

$$y = f(x, \theta) = \sigma(x+1) - 2\sigma(x) + \sigma(x-1)$$





# **OUTLINE**



Neural networks in parts

#### **Activation functions**

Step function from RELU Approximations with NNs Universal theorem

XOR problem

Optimization issues in MLF

# UNIVERSAL THEOREM OF APPROXIMATION A FUNDAMENTAL THEOREM IN DL



**Notation:**  $C([0,1]^d) := \{f : [0,1]^d \to \mathbb{R}, f \text{ continuous}\}$ 

Under the condition that  $\sigma$  is continuous with  $\begin{cases} \lim_{t\to-\infty}\sigma(t)=0,\\ \lim_{t\to+\infty}\sigma(t)=1 \end{cases}$  then

#### Theorem (5)

For every function  $g \in \mathcal{C}([0,1]^d)$  and  $\epsilon > 0$  there exists a feedforward neural network f such that  $\|g - f\|_{\infty} < \epsilon$ , i.e.,

$$f(x) = \sum_{j=1}^{N} \alpha_{j} \sigma(\langle w_{j}, x \rangle + b_{j})$$

for some integer N, some  $w_i \in \mathbb{R}^d$  and  $b_i \in \mathbb{R}$ .

<sup>(5)</sup> G. Cybenko (1989). "Approximation by superpositions of a sigmoidal function". en. In: Mathematics of Control, Signals and Systems 2.4, pp. 303–314

<sup>(6)</sup> L. Devroye, L. Györfi, and G. Lugosi (1996). A probabilistic theory of pattern recognition. Vol. 31. Applications of Mathematics (New York). Springer-Verlag

<sup>(7)</sup> Z. Lu et al. (2017). The Expressive Power of Neural Networks: A View from the Width.

# UNIVERSAL THEOREM OF APPROXIMATION A FUNDAMENTAL THEOREM IN DL



**Notation:**  $C([0,1]^d) := \{f : [0,1]^d \to \mathbb{R}, f \text{ continuous}\}$ 

Under the condition that  $\sigma$  is continuous with  $\begin{cases} \lim_{t\to -\infty} \sigma(t) = 0, \\ \lim_{t\to +\infty} \sigma(t) = 1 \end{cases}$  then

#### Theorem (5)

For every function  $g \in \mathcal{C}([0,1]^d)$  and  $\epsilon > 0$  there exists a feedforward neural network f such that  $\|g - f\|_{\infty} < \epsilon$ , i.e.,

$$f(x) = \sum_{j=1}^{N} \alpha_j \sigma(\langle w_j, x \rangle + b_j)$$

for some integer N, some  $w_j \in \mathbb{R}^d$  and  $b_j \in \mathbb{R}$ .

<u>Rem</u>: one can adapt the proof<sup>(6)</sup> to ReLU with the "triangle" approximation. <u>Rem</u>: refined control on width/depth are possible  $^{(7)}$ 

<sup>(5)</sup> G. Cybenko (1989). "Approximation by superpositions of a sigmoidal function". en. In: Mathematics of Control, Signals and Systems 2.4, pp. 303–314

<sup>(6)</sup> L. Devroye, L. Györfi, and G. Lugosi (1996). A probabilistic theory of pattern recognition. Vol. 31. Applications of Mathematics (New York). Springer-Verlag

<sup>(7)</sup> Z. Lu et al. (2017). The Expressive Power of Neural Networks: A View from the Width.

# UNIVERSAL THEOREM OF APPROXIMATION WARNING



What the theorem says and does not say:

► a MLP will approximate the function not learn (overfitting for example)

# UNIVERSAL THEOREM OF APPROXIMATION WARNING



### What the theorem says and does not say:

- ► a MLP will approximate the function not learn (overfitting for example)
- there always exists a large NN but might be exponentially large.

# UNIVERSAL THEOREM OF APPROXIMATION WARNING



### What the theorem says and does not say:

- ► a MLP will approximate the function not learn (overfitting for example)
- there always exists a large NN but might be exponentially large.
- a single hidden layer feedforward NN can represent any function BUT in practice, require a large single layer (extremelly time and memory consuming). Depth is a key element in NN.

# UNIVERSAL THEOREM OF APPROXIMATION IN PRACTICE



- Widgets Runge and Gibbs phenomenon
- ► Show: universal approx video

# UNIVERSAL THEOREM OF APPROXIMATION Is it simply Kolmogorov-Arnold theorem?



**Kolmogorov-Arnold theorem**<sup>(3)</sup>: For any  $g:[0,1]^d\to\mathbb{R}$  continuous there exist univariate continuous functions such that:

$$g(x_1,\ldots,x_d)=\sum_{q=1}^{2d}h_q\left(\sum_{p=1}^d\psi_{p,q}(x_p)\right).$$

► Kolmogorov's theorem is irrelevant<sup>(4)</sup>: smoothness issue (learning) and  $h_q$  highly dependent of g (no parametric form).

<sup>(3)</sup> A. N. Kolmogorov (1956). "The representation of continuous functions of several variables by superpositions of continuous functions of a smaller number of variables". In: Doklady Akademii Nauk SSSR 108.2, pp. 179–182.

<sup>(4)</sup> F. Girosi and T. Poggio (1989). "Representation properties of networks: Kolmogorov's theorem is irrelevant". In: Neural Computation 1.4, pp. 465–469.

<sup>(5)</sup> V. Kůrková (1991). "Kolmogorov's Theorem Is Relevant". In: Neural Computation 3.4, pp. 617-622.

<sup>(6) 1.</sup> Schmidt-Hieber (2021). "The Kolmogorov–Arnold representation theorem revisited". In: Neural Networks 137, pp. 119–126.

# UNIVERSAL THEOREM OF APPROXIMATION Is it simply Kolmogorov-Arnold theorem?



**Kolmogorov-Arnold theorem**<sup>(3)</sup>: For any  $g:[0,1]^d\to\mathbb{R}$  continuous there exist univariate continuous functions such that:

$$g(x_1,\ldots,x_d)=\sum_{q=1}^{2d}h_q\left(\sum_{p=1}^d\psi_{p,q}(x_p)\right).$$

- ► Kolmogorov's theorem is irrelevant (4): smoothness issue (learning) and  $h_q$  highly dependent of g (no parametric form).
- ► *Kolmogorov's theorem is relevant* (5): construction of smoother functions and reduction of the problem.

<sup>(3)</sup> A. N. Kolmogorov (1956). "The representation of continuous functions of several variables by superpositions of continuous functions of a smaller number of variables". In: Doklady Akademii Nauk SSSR 108.2, pp. 179–182.

<sup>(4)</sup> F. Girosi and T. Poggio (1989). "Representation properties of networks: Kolmogorov's theorem is irrelevant". In: Neural Computation 1.4, pp. 465–469.

<sup>(5)</sup> V. Kůrková (1991). "Kolmogorov's Theorem Is Relevant". In: Neural Computation 3.4, pp. 617–622.

<sup>(6) 1.</sup> Schmidt-Hieber (2021). "The Kolmogorov–Arnold representation theorem revisited". In: Neural Networks 137, pp. 119–126.

# UNIVERSAL THEOREM OF APPROXIMATION Is it simply Kolmogorov-Arnold theorem?



**Kolmogorov-Arnold theorem**<sup>(3)</sup>: For any  $g:[0,1]^d\to\mathbb{R}$  continuous there exist univariate continuous functions such that:

$$g(x_1,\ldots,x_d)=\sum_{q=1}^{2d}h_q\left(\sum_{p=1}^d\psi_{p,q}(x_p)\right).$$

- ► Kolmogorov's theorem is irrelevant  $^{(4)}$ : smoothness issue (learning) and  $h_q$  highly dependent of g (no parametric form).
- ► *Kolmogorov's theorem is relevant* (5): construction of smoother functions and reduction of the problem.
- The Kolmogorov-Arnold representation theorem revisited<sup>(6)</sup>: simplify hypothesis and approximate the inner function with deep ReLU NN.

<sup>(3)</sup> A. N. Kolmogorov (1956). "The representation of continuous functions of several variables by superpositions of continuous functions of a smaller number of variables". In: Doklady Akademii Nauk SSSR 108.2, pp. 179–182.

<sup>(4)</sup> F. Girosi and T. Poggio (1989). "Representation properties of networks: Kolmogorov's theorem is irrelevant". In: Neural Computation 1.4, pp. 465–469.

<sup>(5)</sup> V. Kůrková (1991). "Kolmogorov's Theorem Is Relevant". In: Neural Computation 3.4, pp. 617-622.

<sup>(6)</sup> J. Schmidt-Hieber (2021). "The Kolmogorov-Arnold representation theorem revisited". In: Neural Networks 137, pp. 119-126.



Neural networks in parts

### **Activation functions**

Step function from RELU Approximations with NNs Universal theorem XOR problem

Optimization issues in MLF

## THE XOR PROBLEM (7)





$$X = \begin{pmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} \quad y = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}$$
$$\widehat{L}(\theta) = \frac{1}{4} \sum_{i} (y_i - f(x_i, \theta))^2$$
$$f(x_i, \theta) = \mathbb{1}(f(x) > 0.5)$$

### Non separable case: the XOR problem

The XOR problem with this configuration can not be solved with a linear separator  $x \mapsto w^{\top}x + b$ . (To show: video xor perceptron)

1<sup>st</sup> order conditions: 
$$\hat{w} = (0,0)^{\top}$$
, and  $\hat{b} = \frac{1}{2} \Longrightarrow f(x_i, \theta) = \frac{1}{2}$ .

<sup>(7)</sup> M. L. Minskv and S. A. Papert (1969). Perceptrons. An Introduction to Computational Geometry. 1969, Expanded. Cambridge, MA: MIT Press

# THE XOR PROBLEM MINIMIZERS WITH ONE HL





$$\widehat{L}(\theta) = \frac{1}{4} \sum_{i} (y_i - f(x_i, \theta))^2,$$

$$f(x_i, \theta) = \langle w_2, h \rangle + b_2, h = (W_1 x_i + b_1)_+$$

## Multiple solutions give $\widehat{L}(\theta) = 0$

- if  $b_1 = (0, 0)$ , and  $b_2 = 0$ :
  - $w_2 = (1,1) \text{ and } W_1 = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$
  - $w_2 = (1,1) \text{ and } W_1 = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$
  - ▶ for  $D = \text{diag}(d_1, d_2), d_1, d_2 > 0$  taking  $\widetilde{w}_2 = D^{-1}w_2$ ,  $\widetilde{W}_1 = DW_1$  with  $w_2$  and  $W_1$  leading to a global minimum.
- if  $b_1 = (1, -1)$  and  $b_2 = 1$  and  $W_1 = \begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix}$  and  $w_2 = (-1, -1)$
- ▶ ...

# THE XOR PROBLEM VISUALIZATION





To show: video xor 1 HL 2 neurons



Neural networks in parts

Activation functions

### Optimization issues in MLP

Backpropagation in MLP Vanishing gradients solutions for optimization Introduction to resnets

### TRAINING STEP



Learn a neural network by miniming your (favorite) loss  $\mathcal L$  on the training set:

$$\min_{\substack{W_1,\ldots,W_K\\b_1,\ldots,b_K}} \mathcal{L}\left(\hat{f}(x_i),y_i\right)$$
s.t.  $\hat{f} = \sigma_K(W_K\sigma_{K-1}(W_{K-1}\sigma_{K-2}(\ldots) + b_{K-1}) + b_K)$ 

**Algorithm choice**: use SGD and/or variants (with mini-batch) if possible with a GPU (tailored for fast matrix/vector operations)



Neural networks in parts

**Activation functions** 

Optimization issues in MLP
Backpropagation in MLP
Vanishing gradients solutions for optimization
Introduction to resnets

# VANISHING AND EXPLODING GRADIENT



$$\begin{array}{c} \text{Chain rule: } \frac{\partial \text{out}}{\partial \text{in}} = \frac{\partial \text{out}}{\partial \text{u}} \frac{\partial \text{u}}{\partial \text{in}} \\ \\ \text{out} \quad & \text{W} \quad \text{in} \\ \end{array}$$

# VANISHING AND EXPLODING GRADIENT



LONG TERM DEPENDANCY (7)

Chain rule: 
$$\frac{\partial out}{\partial in} = \frac{\partial out}{\partial u} \frac{\partial u}{\partial in}$$
out  $\frac{W}{u}$  in

Risk with too deep NN: if  $W = P \operatorname{diag}(\lambda_i)_i P^{-1} \Longrightarrow W^k = P \operatorname{diag}(\lambda_i^k) P^{-1}$ .

- $\lambda_i > 1 \Longrightarrow \text{exploding gradient}$ ,
- $\lambda_i < 1 \Longrightarrow$  vanishing gradient.

## Diagnose the vanishing / exploding gradient

- necessary condition (vanishing): weights distribution barely changing (not sufficient!)
- learning curve very unstable or not decreasing (also not sufficient)

<sup>(7)</sup> Ian Goofellow, Yoshua Yoshua, and Aaron Courville (2016). Deep Learning. MIT Press



Neural networks in parts

**Activation functions** 

Optimization issues in MLP

Backpropagation in MLP

 $\ \ \, \text{Vanishing gradients solutions for optimization}$ 

Introduction to resnet

# VANISHING GRADIENT Activation functions



## Sigmoïd activation induce gradient issues

Very low variations in the tails  $\implies$  flat gradient!

# VANISHING GRADIENT ACTIVATION FUNCTIONS



## Sigmoïd activation induce gradient issues

Very low variations in the tails  $\implies$  flat gradient!

**RELU activations** = our rescue?



### Sigmoïd activation induce gradient issues

Very low variations in the tails  $\implies$  flat gradient!

**RELU activations** = our rescue? NO (even if the internet often says so).

- ▶ too much dying RELUs ⇒ zero-out layers
- same for  $\ell_2$  and  $\ell_1$  penalties (but great to prevent exploding gradients instead of gradient clipping)

### Currently there is no savior, just band-aids

Batch normalizations, weight initializations, leaky RELUs,... = help Leave MLPs and go to Residuals networks.



Neural networks in parts

Activation functions

### Optimization issues in MLP

Backpropagation in MLP
Vanishing gradients solutions for optimization
Introduction to resnets



Idea: add "skip connections" to avoid flatlining gradients

$$z_{k+l} = \sigma_{k+l-1}(z_{k+l-1}) + z_k \Rightarrow \frac{\partial z_{k+l}}{z_k} = \frac{\partial \sigma_{k+l-1}(z_{k+l-1})}{\partial z_k} + 1$$

$$\longrightarrow z_k \longrightarrow z_{k+l}$$

### Let's adress the dimensionality

- dimension is an issue in CNNs (and any NN using pooling)
- authors suggested using a linear projection of  $z_k$  if needed.
- ► *l* is kept fairly small (2 or 3).

### Conclusion



- ▶ New techniques come up very often,
- Most of the time, understanding the basics is enough to scrap the ideas and use them in your situation.
- Lots of empirical results and strategies adopted, the why does it (not) work is sometimes left behind (lots of research needed),
- ► Time vs Cost ⇒ essential factor in (re)using lots of NN.

We are now ready to tackle both theoretically and practically the next sessions

### REFERENCES I





- Devroye, L., L. Györfi, and G. Lugosi (1996). A probabilistic theory of pattern recognition. Vol. 31. Applications of Mathematics (New York). New York: Springer-Verlag.
- Dosovitskiy, A. et al. (June 2021). "An Image is Worth 16x16 Words:

  Transformers for Image Recognition at Scale". In: arXiv:2010.11929 [cs].

  arXiv: 2010.11929.
- Girosi, F. and T. Poggio (1989). "Representation properties of networks: Kolmogorov's theorem is irrelevant". In: Neural Computation 1.4, pp. 465–469.
- He, K. et al. (Dec. 2015). "Deep Residual Learning for Image Recognition". In: arXiv:1512.03385 [cs]. arXiv: 1512.03385.
- Ian Goofellow, Yoshua Yoshua, and Aaron Courville (2016). Deep Learning. MIT Press.

### REFERENCES II



- Kolmogorov, A. N. (1956). "The representation of continuous functions of several variables by superpositions of continuous functions of a smaller number of variables". In: Doklady Akademii Nauk SSSR 108.2, pp. 179–182.
- Kůrková, V. (Dec. 1991). "Kolmogorov's Theorem Is Relevant". In: Neural Computation 3.4, pp. 617–622.
- Lu, Z. et al. (2017). The Expressive Power of Neural Networks: A View from the Width.
- Minsky, M. L. and S. A. Papert (1969). Perceptrons. An Introduction to Computational Geometry. 1969, Expanded. Cambridge, MA: MIT Press.
- Novikoff, A. B. (1963). On convergence proofs for perceptrons. Tech. rep. STANFORD RESEARCH INST MENIO PARK CA.
- Paszke, A. et al. (Dec. 2019). "PyTorch: An Imperative Style, High-Performance Deep Learning Library". In: arXiv:1912.01703 [cs, stat]. arXiv:1912.01703
- Rosenblatt, F. (1958). The perceptron: a theory of statistical separability in cognitive systems (Project Para). Cornell Aeronautical Laboratory.
- Schmidt-Hieber, J. (2021). "The Kolmogorov–Arnold representation theorem revisited". In: Neural Networks 137, pp. 119–126.