Задание 1.

Вычислить значение Z и оценить абсолютную и относительную погрешности результата, считая, что значения исходных данных получены в результате округления по дополнению. Записать результат с учетом погрешности. Указать верные цифры.

N	Z	N	Z
1	$\sin(0.25 - 0.225) - 1.66$	2	$\sqrt{14.1} + 2.555 - \ln(2.08)$
3	$2^{1.1} - 3^{1.2} + 1.3$	4	$20.295\arcsin(9.65/9.95)$
5	$1.0^4 - 0.45^3 - 1.7$	6	$2.864 - \ln 12.1 - \sqrt{2.001}$
7	$\ln(\cos(0.25 + 0.52 + \sqrt{0.25 \cdot 0.52}))$	8	$\sqrt{16.2} - 2\cos 0.01 + 1.99$
9	$\sqrt[3]{3.44} - 1.600 - \cos 2.0$	10	$(\sin(2.1) + \cos(1.512))e^{0.536}$
11	$23.8 \arctan(51.45/5.5)$	12	$\ln(5.358 + \sqrt{5.538})/2.21$
13	$\sqrt[3]{15.0 - 8.09 \cdot 8.766}$	14	$15.324\sin(13.538) + 13.538\sin(15.324)$
15	$\sqrt{1.58} - \frac{1}{5.18^2} - 1.85$	16	$\frac{1}{9.687^3} - 4.0 - 2.587^2$
17	$\ln 2.718 - 4.0 + 0.66^2$	18	$\sin(\ln 2.8 - 0.444)10.5$
19	$3.13^2\arcsin(2.122-1.88)$	20	$\sqrt{18.12} + \sqrt[3]{11.12} + \sqrt[4]{88.11}$
21	$\log_2 2.01 - 2^{-1.006 + 2.0}$	22	$\sqrt{0.15} - 2.67 + 1.200$
23	$\cos 3.14 + 2.15 - 3.0^3$	24	$3.7(\cos(3.7\cdot1.7))^2\sin(1.7)$
25	$\frac{1}{\sqrt{4.00}} - 0.11^2 - 3.6$	26	$\frac{1}{1.1^2} - \ln(1.15 + 1.26)$
27	$e^{0.22+1.22}/\sqrt{0.429}$	28	$\frac{1}{3.09^2} - 5.4^2 + 3.09$
29	$\sqrt{\sin(0.895)} - \cos(0.7 + 1.7)$	30	$1.00 - \ln 2.71 - (0.8)^3$

Задание 2. Локализовать корень нелинейного уравнения f(x) = 0 и найти его методом бисекции с точностью $\varepsilon = 0.01$.

N	f(x)	N	f(x)	N	f(x)
1	$\sin x - x^3 + 2$	2	$\sqrt{x} + 2 - \ln(x - 2)$	3	$2^{x+1} - 3^x$
4	$e^x - x^2 + 6x$	5	$x^4 - 2x^3 - 1$	6	$2 - \ln x - \sqrt{x+2}$
7	$\ln(x+1) + x^2 - 3$	8	$\sqrt{x} - 2\cos x + 1$	9	$\sqrt[3]{3x} - 1 - \cos x$
10	$\sin x - x + 3$	11	$e^x - (x-3)^2 - 1$	12	$\ln x + 2 - \frac{1}{x}$
13	$\sin x - \sqrt{x-1}$	14	$\ln x - \sqrt{x-2}$	15	$\sqrt{1-x} - \frac{1}{x^2} - 1$
16	$\frac{1}{x^2} + 3 - x$	17	$\ln x - 4 + x^2$	18	$\cos x - 3x - 3$
19	$\ln(x-1) - \frac{1}{x}$	20	$\sqrt{x-1} - \frac{1}{x+1}$	21	$\log_2 x - 2^{-x}$
22	$\sqrt{x}-2x+2$	23	$\cos x + 2 - x^3$	24	$e^x - (x-3)^2 + 2$
25	$\frac{1}{x-2} - \sqrt{x} + 1$	26	$\frac{1}{x^2} - \ln(1-x)$	27	$e^x - x^2 + 3x$
28	$\frac{1}{(x+1)^2} - x^2 + 2$	29	$\cos x + (x - 0.5)^3$	30	$1 - \ln x - (x - 2)^3$

Задание 3.

Найти корень нелинейного уравнения из задачи 2 методом простой итерации. Для этого преобразовать уравнение f(x)=0 к виду, удобному для итераций и проверить выполнение условия сходимости. В качестве отрезка локализации взять отрезок, полученный методом бисекции при решении задачи 2. Найти корень методом простой итерации с точностью $\varepsilon=0.0001$.

УКАЗАНИЕ. Для поиска экстремумов функции допускается построение ее графика в любом математическом пакете. Соответствующий график должен быть приведен при оформлении задачи.

1

Задание 4. Найти корень нелинейного уравнения f(x)=0, локализованный на отрезке [a,b], методом Ньютона с точностью $\varepsilon=10^{-8}$.

N	f(x)	[a,b]	N	f(x)	[a,b]	N	f(x)	[a,b]
1	$2x - \frac{1}{x+1} - 4$	[0, 3]	2	$\frac{1}{\sqrt{x}} - 3\sin x - 1$	[3, 5]	3	$e^{x-2} - \frac{1}{x^3}$	[1, 3]
4	$x^3 - \frac{1}{\sqrt{x+2}}$	[0, 2]	5	$6x - e^{-x+1}$	[0, 2]	6	$3(x - 0.5)^2 - 2\sin x$	[1,3]
7	$e^x - \frac{1}{2\sqrt{x+4}}$	[-2, 0]	8	$\frac{1}{2\sqrt{x}} - \frac{1}{x^3}$	[1, 3]	9	$3\cos x + \ln x + 1$	[3, 5]
10	$x + 2\sin 2x - 1$	[-1, 1]	11	$x + \cos 2x$	[-1, 1]	12	$2x + \cos x + 1$	[-1, 1]
13	$4x^3 - \frac{3}{\sqrt{x+3}}$	[0, 3]	14	$2x - \cos x + 8$	[-5, -3]	15	$\sin x + \frac{1}{2\sqrt{x}}$	[3, 5]
16	$4\cos x - \frac{1}{\sqrt{x}}$	[3, 5]	17	$\ln(x+2) + 2x + 1$	[-1, 2]	18	$e^x - 3(x+2)^2$	[-2, 0]
19	$4(x-3.5)^3 - e^{-x}$	[3, 5]	20	$e^x - 2x - 5$	[0, 3]	21	$2\cos x - \frac{1}{2\sqrt{x+3}}$	[4, 6]
22	$\frac{1}{\sqrt{x+4}} - \frac{1}{x+1}$	[0, 3]	23	$\frac{1}{2\sqrt{x+1}} - \frac{1}{x}$	[4, 6]	24	$\frac{1}{(x+1.5)^2} - 2x + 3$	[1, 3]
25	$x - 2e^{-x} - 1$	[1, 3]	26	$\cos x - \frac{1}{\sqrt{x} - 1} + 1$	[4, 6]	27	$x - \cos x$	[-1, 1]
28	$x - \frac{1}{\sqrt{x-1}} - 2$	[2, 5]	29	$2x - 2 - \frac{1}{x+1}$	[0, 3]	30	$\ln(x+3) + \frac{x}{x+3}$	[-2, 1]

Задание 5. Решить систему уравнений Ax=b методом Гаусса (схема единственного деления).

N		A	L.		b	N		A	1		b	N			A		b
	2	2	-5	1	4		-8	6	3	-5	-64		-9	-1	9	-8	116
1	-18	-20	44	-13	3	$\frac{1}{2}$	-32	17	13	-24	-278	3	18	3	-17	23	-246
	-4	-8	10	-19	119		-8	-22	4	-23	-135		-36	-11	36	-88	583
	-14	-14	35	2	-91		-48	-27	15	-79	-509		18	-4	-31	-24	-159
	-3	2	-10	3	12		-6	-2	5	5	33		-3	-7	3	-7	20
4	24	-26	84	-24	-20	5	-18	-2	17	15	67	6	- 9	-25	17	-25	36
	12	82	-4	-10	-714		-48	-52	17	38	578		-21	-53	37	-59	78
	-18	-78	-8	5	675		60	-16	-28	-37	-271		-6	-14	-42	13	295
	7	-4	-10	-7	-136		-4	-6	2	-7	-15		1	-1	-2	8	50
7	-7	11	7	-1	67	8	-16	-33	9	-27	-72	9	9	-8	-16	65	397
'	-49	-28	86	110	1432		-20	-102	16	-29	-147		-6	15	39	-111	-813
	14	-22	2	17	10		4	60	-2	0	50		7	-3	39	19	-96
	8	3	-1	3	-28		7	6	-7	5	0		-1	-4	9	6	59
10	56	22	-3	21	-222	11	7	-4	0	1	-4	$\begin{vmatrix} 12 \end{vmatrix}$	-9	-27	79	61	435
	-24	-18	-27	-8	291		-63	-64	79	-58	-67		7	28	-71	-47	-455
	64	31	-10	11	-295		-56	12	-13	14	228		-3	51	29	69	-363
	9	-1	-8	-5	161		9	4	2	0	-37		3	8	-10	-6	-42
13	-54	2	41	31	-935	14	9	11	-2	-1	-45	15	-21	-64	76	41	253
	-45	-27	- 9	24	-504		-81	-106	12	8	465		21	-16	-9	-46	-621
	-27	-5	-32	64	-676		-90	-68	6	8	358		0	48	-99	-42	-153

N		I	4		b	N		A	1		b	N		I	4		b
	-4	7	-10	-2	23		-10	-6	6	-2	46		6	-3	-2	-10	-73
16	-8	8	-22	1	47	17	50	21	-36	5	-131	18	54	-29	-14	-89	-665
	-32	44	-82	-6	186		-60	-108	-6	-54	1014		-6	5	-1	12	92
	-32	116	-64	-74	182		10	-57	0	-50	215		-12	18	-28	-11	100
	8	5	-9	3	105		-10	4	3	5	9		-4	-7	-3	0	-50
19	24	13	-37	7	333	20	10	-1	-3	-3	-43	$\begin{vmatrix} \\ 21 \end{vmatrix}$	40	73	36	9	431
	-72	-29	160	-9	-1086		60	-12	-24	-19	-160		28	49	23	-4	392
	48	46	25	30	489		0	24	60	-18	-540		-28	-79	-69	-109	542
	-5	9	-10	-4	186		2	-9	3	0	100		- 9	8	-5	-3	38
$\begin{vmatrix} 22 \end{vmatrix}$	-45	78	-100	-45	1832	$\frac{1}{23}$	-4	10	-10	-6	-108	$\begin{vmatrix} 24 \end{vmatrix}$	18	-26	6	9	-39
	25	-24	119	77	-1968		2	7	1	2	-64		54	42	58	-15	-499
	15	-33	10	-15	-152		16	-40	-40	-50	580		45	-60	-39	-13	246
	7	-7	- 9	-4	-67		7	-1	-1	-8	-78		-8	4	-1	-1	-67
$\begin{vmatrix} 25 \end{vmatrix}$	-14	10	14	1	139	26	-14	-8	-5	24	146	$\begin{vmatrix} 27 \end{vmatrix}$	-16	9	-7	-7	-176
	-35	3	11	-36	359		-63	-71	-40	141	585		72	-34	-6	3	520
	49	-37	-45	-16	-409		-28	24	46	43	191		72	-29	-11	-40	298
	-5	8	-2	3	-92		8	2	5	5	-26		-7	-10	4	-1	101
28	-30	54	-4	25	-568	29	-24	-2	-17	-15	44	30	35	48	-11	9	-473
	-45	90	11	43	-856		-16	-16	-7	-18	73		-63	-90	30	-7	875
	5	-44	-26	-59	268		-56	-38	-29	-46	269		-21	-10	-126	-32	-264

Задание 8. Решить систему уравнений Ax=b методом прогонки. УКАЗАНИЕ. Промежуточные результаты вычислять с шестью знаками после запятой.

N	A	b	N		A			b	N	A	b
	5 -3 0 0 0	60		4 2	0	0	0	14			10
	3 6 1 0 0	-39		4 16		0	0	-20		-5 12 -2 0 0 7	
1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	82	2	0 -3		-1	0	45	3		86
	$\begin{bmatrix} 0 & 0 & -2 & 8 & -3 \\ 0 & 0 & -2 & 8 & -3 \end{bmatrix}$	$\begin{vmatrix} -16 \end{vmatrix}$		0 0		13	-5	-127			27
	$\begin{bmatrix} 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 5 & 10 \end{bmatrix}$	$\begin{vmatrix} -125 \end{vmatrix}$		$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$		-3	6	36			-9
	7 4 0 0 0	20				0	0	-20			.7
	0 7 4 0 0	14		1 7	-3	0	0	-33		0 9 -5 0 0 -	-1
4	0 4 10 1 0	65	5	0 -4	18	-5	0	153	6	0 -5 18 5 0 4	16
	0 0 -5 10 -1	0		0 0	1	10	-4	26		$0 0 5 15 -3 \qquad 4$	13
	0 0 0 3 5	-16		0 0	0	4	8	-60		0 0 0 2 4 2	22
	6 -3 0 0 0	9		4 -	2 0	0	0	-4		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18
	$\begin{vmatrix} -6 & 21 & 5 & 0 & 0 \end{vmatrix}$	-155		1 :	5 2	0	0	-32		$\begin{bmatrix} 1 & 7 & -3 & 0 & 0 \end{bmatrix}$	7
7	$\begin{array}{ cccccccccccccccccccccccccccccccccccc$	-35	8	0 -	2 10	-4	0	-104	9	0 -3 13 -4 0 -1	118
	0 0 -4 10 2	58		0 () -1	3	1	14		0 0 1 4 2 8	8
	0 0 0 -6 12	-144		0 (0 0	-1	2	-6		0 0 0 4 7 6	6

N	A	b N	A	b N	A	b
	4 2 0 0 0	-22	4 2 0 0 0	16	2 1 0 0 0	18
	0 9 5 0 0	-36	3 8 -1 0 0	33	-3 7 -1 0 0	46
10	$\begin{bmatrix} 0 & -2 & 12 & -5 & 0 \end{bmatrix}$	81 11	0 4 18 -5 0	121 12	0 2 12 5 0	-4
	$\begin{bmatrix} 0 & 0 & -2 & 11 & -4 \end{bmatrix}$	97	0 0 -4 12 2	-70	0 0 5 19 5	102
	0 0 0 -4 7	-64	0 0 0 3 5	-44	0 0 0 -2 4	-36
	7 -4 0 0 0	-85	2 -1 0 0 0	10	12 -6 0 0 0	120
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	111	1 12 5 0 0	30	-5 12 -1 0 0	-109
13	0 3 9 2 0	33 14	0 -4 14 -4 0	20 15	0 2 8 2 0	8
	0 0 -1 3 -1	-25	0 0 3 10 3	-46	0 0 -5 20 -5	5
	0 0 0 -4 8	64	0 0 0 -2 4	46	0 0 0 4 8	48
	12 -6 0 0 0	162	11 -6 0 0	52	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-10
	$\begin{bmatrix} -2 & 9 & -3 & 0 & 0 \end{bmatrix}$	-111	-5 12 -2 0	$0 \mid -52 \mid$	-2 5 -1 0 0	-4
16	0 1 11 -5 0	60 17	0 -3 8 1	$0 \mid -67 \mid 18$	$\begin{bmatrix} 0 & 3 & 9 & -2 & 0 \end{bmatrix}$	-54
	0 0 3 8 -1	-27	0 0 0 10	5 -80	0 0 3 12 3	120
	0 0 0 -4 7	13	0 0 0 -6	0 100	0 0 0 -5 9	18
	10 -5 0 0 0	-50	2 1 0 0 0	14	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-8
	$\begin{bmatrix} -2 & 13 & 5 & 0 & 0 \end{bmatrix}$	122	-3 8 1 0 0	-60	-6 22 5 0 0	32
19	0 1 7 -3 0	35 20	0 -3 8 -2 (6 21	0 1 4 -1 0	23
	0 0 -5 20 5	165	0 0 5 11 -	$1 \mid -12 \mid$	0 0 2 12 -5	-36
	0 0 0 -2 4	2	0 0 0 1 2	-9	0 0 0 4 8	-92
	$\begin{bmatrix} 6 & -3 & 0 & 0 & 0 \end{bmatrix}$	-60	2 1 0 0 0	11	5 3 0 0 0	8
	$\begin{bmatrix} 5 & 13 & -2 & 0 & 0 \end{bmatrix}$	-36	3 14 -4 0 0	15	-4 10 -2 0 0	-70
22	0 4 12 2 0	$-86 \parallel 23$	0 0 8 4 0	$-96 \parallel 24$	0 1 12 5 0	50
	0 0 -3 10 3	35	$\begin{bmatrix} 0 & 0 & -5 & 13 & 2 \end{bmatrix}$	-15	0 0 4 9 1	-34
	0 0 0 4 8	60	0 0 0 -1 2	24	0 0 0 -1 2	-10
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	4 2 0 0 0	16
	3 10 2 0 0	-20	3 7 1 0 0	-52	-4 16 -5 0 0	-216
25	$\begin{bmatrix} 0 & -3 & 8 & -2 & 0 \end{bmatrix}$	$\begin{array}{c c} 6 & 26 \end{array}$	0 3 9 2 0	5 27	$\begin{bmatrix} 0 & -1 & 6 & -2 & 0 \end{bmatrix}$	52
	$\begin{bmatrix} 0 & 0 & 3 & 12 & -4 \end{bmatrix}$	36	0 0 5 14 2	94	0 0 -4 12 3	-100
	0 0 0 -3 5	-45	0 0 0 -5 9	-98	0 0 0 -4 8	100
	9 -5 0 0 0	-55	$\begin{bmatrix} 6 & -3 & 0 & 0 & 0 \end{bmatrix}$	42	5 3 0 0 0	36
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37	$\begin{vmatrix} -3 & 18 & -6 & 0 & 0 \end{vmatrix}$		1 4 -1 0 0	34
28	0 1 2 1 0	28 29	0 1 4 2 0	36 30	0 5 15 -3 0	-10
	0 0 -6 21 5	94	0 0 0 1 -	1 13	0 0 -1 7 3	27
	0 0 0 4 8	0	0 0 0 1 2	-5	0 0 0 3 5	40

Задание 9. Вычислить нормы $\|\cdot\|_1$, $\|\cdot\|_E$, $\|\cdot\|_\infty$ матрицы A и нормы $\|\cdot\|_1$, $\|\cdot\|_2$, $\|\cdot\|_\infty$ вектора b. Считая, что компоненты вектора b получены в результате округления по дополнению, найти его относительную погрешность в каждой из трех указанных норм.

N		A		b	N		A		b
	-0,601	-1,905	2,604	-4, 2		0,745	-0,025	1,051	-0,86
1	2,614	1, 19	-1,936	-2,8	2	2,034	-2,532	-2,834	2, 18
	0,855	-1,445	1,575	3		-2,497	1,888	0,172	-4,6
	-1,584	-2,45	-1, 18	3,89		-2,043	-1,921	2,428	2,181
3	0,376	1,752	-0,093	-0,316	4	0,952	-0,664	1,031	-7
	-0.87	-0,765	-2,032	-0,34		0,566	2,087	-2,98	2,9
	-0,577	0,582	0,795	6, 6		0, 268	0,944	1,689	4,02
5	0,453	-0,24	1,113	2,419	6	2,346	0,453	-0,763	-3
	2,111	-1,422	-0,707	-0,191		2,727	1,062	1,861	2, 6
	-1,009	-0,253	0,877	5,9		-0,76	1,177	1,706	5, 5
7	2,889	2,287	-2,905	-6, 16	8	2,083	1,778	0,574	-4
	1,35	2,811	0,097	-2,9		0,02	-2,706	-0,968	2,43
	-1,843	-2,546	-2,089	-5		1,494	0,643	-2,779	0,732
9	2,118	-1,547	-1,309	-5	10	-2,782	-1,07	0,619	1,89
	0,52	-2,61	0,628	-7		0,571	-1,299	0,989	5, 4
	-0,47	-1,788	0,658	7,81		0,147	-1,565	0,844	-8
11	-2,458	0,164	-1,55	6,78	12	-2,269	1,905	0,594	2,86
	-0,027	0,697	2,626	-5,9		0,333	-0,169	-0,367	-1,62
	2,046	1,821	-1,45	2,01		2,115	-0,31	2,979	-1,02
13	-2,198	1,181	0,742	-3,03	14	0,122	2,993	0,924	5,416
	2,572	0,985	2,397	-2, 1		-0,989	-0,195	0,08	-6,206
	1,302	-2,535	-2,178	3,118		2,928	1,203	2,703	0,21
15	-2,986	2,036	-1,881	-7, 2	16	-2,309	-2,193	0,493	-6,78
	-2,76	0,947	0,438	-0,7		1,089	-1,395	1,869	-2,9
	2,802	2,293	0,876	-6		-2,137	-2,763	-2,008	-2,59
17	0,246	-1,063	1,01	-5,68	18	-2,23	-0,85	0,314	2,5
	-1,039	-1,419	-0,749	-1,15		2, 131	1,993	-1,378	-6,362
	1,158	-0,76	0,266	4		1,591	-0,75	-2,093	-2,851
19	-0,485	-2,814	-1,793	2,19	20	-1,863	-2,892	2,026	-0,536
	-0,097	1,096	2,912	0		-2,742	-0,221	-2,502	2,6
	-0,888	1,055	-1,656	-1		0,463	-2,527	-0,052	-4
21	-2,627	-1,466	-2,558	2,951	22	-0,023	0,493	-1,059	2
	2,014	-0,835	0,56	-2,988		2, 159	-1,246	-0,117	-2,9
	2,297	-1,058	1,135	-2,551		1,943	2,136	2,956	3,465
23	0,368	0,494	-0,441	-6,35	24	-2,636	-2,437	1,98	-1,583
	1,735	1,674	-1,793	2,678		-2,22	1,927	2,701	-2

N		A		b	N		A		b
	2,847	-0,447	0	-1,67		-2,269	0,612	-2,951	6
25	0,302	-1,036	1,63	1,206	26	1,977	2,839	0,282	-0, 19
	1,311	2,661	-2,226	-2, 9		-1,195	1,636	-1,283	1,68
	-1,115	-2,02	1,282	-4,06		2,509	0,031	2,775	-6,75
27	2,166	-1,828	-1,709	7,897	28	-1,773	-1,978	2,583	2,279
	-2,485	1,305	0,615	5,024		-0,739	-2,67	-2,916	-5
	1,321	2,131	2,162	7		-0,081	1,458	1,689	3
29	2,612	1,783	2,879	0	30	-1,798	2,426	-2,33	1,49
	1,351	-1,931	-2,082	-5		-2,822	-0,005	2,154	-2, 6

Задание 11.

Дана система уравнений Ax=b. Привести ее к виду, удобному для итераций, проверить выполнение достаточного условия сходимости указанных ниже методов. Выполнить три итерации по методу Якоби и три итерации по методу Зейделя. Определить, во сколько раз уменьшится норма невязки в каждом случае. Используя апостериорную оценку, вычислить погрешность приближенного решения, полученного на третьей итерации каждого метода.

УКАЗАНИЕ. Для обеспечения выполнения достаточного условия сходимости воспользоваться перестановкой строк в исходной системе уравнений.

N		A	L		b	N		A	1		b	N		A	1		b
	-4	7	81	-1	313		-3	142	9	8	-965		9	-3	131	8	-1056
1	-4	7	-3	77	-641	$\begin{vmatrix} 2 \end{vmatrix}$	73	-5	-2	-2	-407	3	121	- 9	9	-2	-524
	102	-8	9	0	-1017		-8	8	5	128	863		-6	6	-7	119	294
	-7	110	-2	-6	448		6	-5	125	-7	-675		8	76	2	-3	-358
	2	-10	-5	100	-43		-1	- 9	7	98	-477		-3	-1	4	67	560
$\begin{vmatrix} 1 \\ 4 \end{vmatrix}$	71	-7	6	-1	82	5	-8	6	108	-5	-62	6	-10	-1	79	-3	-651
	-1	65	-8	-2	-235		103	8	4	-5	-946		143	7	7	-7	969
	6	1	96	-10	-276		1	132	-9	-9	1232		3	89	6	0	-819
	-7	0	8	81	-793		-8	123	8	-6	211		-5	8	100	4	-831
7	86	-8	6	3	-576	8	-2	1	4	49	-167	9	-7	131	8	-7	-946
	-6	118	5	-8	-1078		146	9	-6	6	-343		-4	-7	-10	124	149
	1	-9	86	-8	-181		-8	-2	65	0	404		76	0	7	-8	-436
	110	1	7	-8	115		108	3	-8	6	-127		-2	9	-7	95	-514
10	2	-6	-5	111	209	11	4	5	76	1	-348	12	3	-7	126	9	238
	9	165	6	9	45		-6	9	4	104	-593		6	67	-4	-1	-22
	-7	1	87	4	262		-2	56	-1	-7	-351		94	-1	-10	4	713
	113	6	0	- 9	693		9	0	101	-2	287		5	101	-8	7	144
13	0	-9	8	89	-424	14	139	5	-10	-5	1271	15	9	6	-7	128	-1255
	-6	107	2	-7	-542		-3	-5	0	48	-153		-2	-2	62	7	381
	-8	-9	114	-3	-330		-4	141	-10	6	778		129	-10	-4	8	-1162
	86	8	-3	5	795		103	-3	2	-10	-1000		-2	9	8	137	-971
16	-5	9	79	-1	506	17	1	65	3	-7	-660	18	9	118	-7	7	695
	7	8	4	130	-499		-2	4	7	71	-20		83	0	-3	6	-264
	-4	112	-6	-6	854		-1	1	85	7	0		9	-7	111	0	-1068

N			A		b	N		A	1		b	N		1	A		b
	0	70	-9	0	210		99	-3	-9	-5	-628		-4	0	4	73	-645
19	7	8	114	-7	143	20	3	3	4	50	-376	$\begin{vmatrix} 21 \end{vmatrix}$	-3	67	-4	0	415
	9	8	- 9	145	-1209	20	-4	1	93	- 9	-369	21	4	8	90	3	863
	81	4	6	2	642		-10	169	9	7	821		118	-8	-2	-5	679
	-8	122	-10	-6	-1176		7	3	1	71	-234		1	108	9	2	574
22	73	-10	-1	-1	-67	$\begin{vmatrix} 23 \end{vmatrix}$	-4	-4	82	0	-264	$\begin{vmatrix} 24 \end{vmatrix}$	142	8	-7	9	-180
	6	-10	-6	141	600		-8	160	-10	9	-858		-7	5	6	115	-4
	-5	0	91	8	679		73	-4	-6	-4	-674		-9	-7	121	0	-992
	-5	2	-6	104	644		-8	108	4	- 9	717		98	-5	-5	8	-149
$\begin{vmatrix} 25 \end{vmatrix}$	136	-7	9	-3	-16	$\begin{vmatrix} 26 \end{vmatrix}$	4	-5	74	5	-141	$\begin{vmatrix} 27 \end{vmatrix}$	-7	8	1	124	451
	7	7	155	-8	-1034		7	7	6	125	-145	- '	-1	82	1	5	-629
	-5	164	9	-9	-1420		79	4	-6	3	-605		5	6	116	-5	502
	-7	8	118	8	184		85	-1	-10	-3	-600		-3	86	-6	1	417
28	98	8	6	6	-556	29	-2	7	0	91	366	30	1	-3	17	0	32
	-6	8	-3	126	-61		-3	58	-3	-5	-85		-4	-7	8	111	-772
	-7	94	0	6	412		-4	6	119	-6	-1075		66	8	1	4	-249

Задание 13.

Функция y=y(x) задана таблицей своих значений. Применяя метод наименьших квадратов, приблизить функцию многочленами 1-й и 2-й степеней. Для каждого приближения определить величину среднеквадратичного уклонения. Построить на одном чертеже точечный график функции и графики многочленов.

N			та	блица	1		N			таб	блица		
1	x	-2,2	-1,1	0	1,1	2,2	2	x	-4	-2	0	2	4
	у	2,6	6,2	8	8,1	9,8		у	1,2	-0,5	1,5	4,2	5
3	x	-4	-2	0	2	4	4	x	-2,4	-1,2	0	1,2	2,4
	у	-1,2	-1,9	-4,4	-5,5	-7		у	-0,9	2,1	5,6	5,7	6,8
5	x	-3,4	-1,7	0	1,7	3,4	6	x	-2,6	-1,3	0	1,3	2,6
	у	2,7	6,4	7	8	11,1		у	1,2	1,6	0,6	-0,4	-0,5
7	x	-5,6	-2,8	0	2,8	5,6	8	x	-5,2	-2,6	0	2,6	5,2
	у	1,9	0,2	-2,4	-5	-5,4		у	0,9	-0,4	-0,5	0,4	0,6
9	x	-1,4	-0,7	0	0,7	1,4	10	X	-5	-2,5	0	2,5	5
	у	1,3	0,1	-0,1	-1,4	-4,9		у	3,3	-0,5	-2,8	-5,5	-5,7
11	x	-1,6	-0,8	0	0,8	1,6	12	x	-4,6	-2,3	0	2,3	4,6
	у	3,9	7,4	9,1	11,8	12,9		у	1,5	2	3,2	3,1	-0,8
13	x	-4	-2	0	2	4	14	x	-3	-1,5	0	1,5	3
	у	-3,4	-0,6	-2	-4,3	-6,3		у	0,4	-3,1	-6,8	-7,9	-8,2
15	X	-5,8	-2,9	0	2,9	5,8	16	X	-4	-2	0	2	4
	у	2	2,1	2,9	4,6	7,8		у	-2,2	0,8	-2	-5,3	-7,7
17	X	-1,2	-0,6	0	0,6	1,2	18	x	-2,4	-1,2	0	1,2	2,4
	у	-1,2	-2,2	-2,8	-6,6	-7		у	1,2	-0,4	2,1	3	5,9
19	x	-2,8	-1,4	0	1,4	2,8	20	x	-1,4	-0,7	0	0,7	1,4
	у	-1,6	-2,8	-3,8	-4,6	-7,7		у	-1,7	-2,6	-5,1	-8,8	-9,1

N			та	блица	j.		N			таб	блица		
21	x	-1,2	-0,6	0	0,6	1,2	22	x	-1	-0,5	0	0,5	1
	у	2,5	0,5	-1,3	-4,9	-5,4		у	-2,4	-2,6	-6,4	-2,8	-1,8
23	x	-4,6	-2,3	0	2,3	4,6	24	x	-5,2	-2,6	0	2,6	5,2
	у	2	-0,4	0,1	3,1	3,3		у	-3,6	-4,8	-1,7	2,1	3,2
25	x	-2,4	-1,2	0	1,2	2,4	26	x	-2,8	-1,4	0	1,4	2,8
	у	1,6	4,6	5,5	7	9,9		у	-0,9	2	3,8	3,8	6,1
27	x	-1	-0,5	0	0,5	1	28	x	-1	-0,5	0	0,5	1
	у	-3,9	-2,3	0	0,2	3,8		у	1	3,6	1,1	0	-0,8
29	X	-2,2	-1,1	0	1,1	2,2	30	x	-2,6	-1,3	0	1,3	2,6
	у	0,5	0	-0,4	-4,2	-8		у	3,4	1,8	2,2	2,2	4,6

Задание 14. Функция y=y(x) задана таблицей своих значений. Применяя метод наименьших квадратов, приблизить ее функцией вида $\Phi(x)=a\varphi_0(x)+b\varphi_1(x)$ Определить величину среднеквадратичного уклонения. Построить на одном чертеже точечный график исходных данных и график функции $\Phi(x)$.

N	$\varphi_0(x)$	$\varphi_1(x)$				табли	ца		
1	x	e^{x-4}	x	0,4	0,6	1,5	2,4	6,3	6,7
			у	1,736	2,577	6,437	10,547	60,74	79,549
2	x	e^{x-3}	x	1,2	4,8	5,3	5,6	5,7	6,7
			у	4,513	43,918	64,306	81,986	89,093	214,917
3	x	$\sin x$	x	2,3	4,1	4,8	5,9	6,2	6,7
			у	9,187	7,141	8,196	13,732	15,763	19,161
4	1	$\sin(x-1)$	x	4,3	4,7	4,8	5,1	6	6,1
			у	0,306	-0,625	-0,83	-1,346	-1,697	-1,615
5	x	2^{x-3}	x	2,1	2,8	4,6	5,2	6,1	6,7
			у	11,906	16,468	33,139	41,9	61,252	80,875
6	$\cos x$	$\sin 3x$	x	1,2	3,3	5,1	5,4	6	6,2
			у	0,21	-3,733	1,85	0,943	1,358	2,421
7	1	$\sin(1/x)$	x	2,9	3,5	5,4	5,6	6	6,1
			у	3,145	3,005	2,76	2,744	2,715	2,708
8	x	1/(x+0.5)	x	3,1	3,3	3,4	4,7	4,8	6,1
			у	14,751	15,573	15,986	21,449	21,875	27,446
9	x	x^3	x	2	3,3	5,3	5,4	5,6	6,4
			у	18,8	83,315	343,477	363,247	405,037	604,211
10	1	1/(x+0.2)	x	0,1	1,1	3,4	4,2	5,3	6,4
			у	20,333	7,769	5,361	5,114	4,891	4,742
11	1	$(x-1)^3$	x	1,4	3	4	4,4	5,9	6,8
			у	4,519	6,9	12,6	16,291	39,795	63,034
12	1	3^{x-3}	x	3,3	4	5,4	5,6	6,1	6,5
			у	6,962	13,4	57,266	70,995	121,941	188,461
13	1	$\cos(x-1)$	x	0,3	2,8	4,1	4,5	5	5,4
			y	7,483	3,614	0,603	0,848	1,951	3,301

N	(2) (m)	(2) (21)				табли			
14	$\varphi_0(x)$ 1	$\frac{\varphi_1(x)}{1/(x+0.2)^2}$	 	2 7	4.0			6.1	6.2
14	1	$1/(x+0.2)^{-}$	X	3,7	4,9	5,4	5,6	6,1	6,3
15	. 0	0	У	3,351	3,288	3,273	3,268	3,258	3,254
15	$\sin 2x$	$\cos 2x$	X	4,4	4,6	4,9	5,2	6,2	6,7
1.0			У	-2,429	-3,256	-3,513	-2,543	3,336	2,871
16	$\cos x$	$\sin 2x$	X	1,6	4,7	4,9	5,7	5,9	6,5
			У	-0,301	0,006	-0,076	1,608	2,672	5,92
17	x	$\sin(x/2)$	X	2,3	4,1	5,4	5,7	6,1	6,3
			У	10,668	18,572	24,016	25,252	26,895	27,715
18	1	$(x+1)^2$	x	4,3	4,4	4,7	4,8	5,5	5,7
			У	135,223	140,252	155,903	161,308	201,775	214,183
19	1	3^{x-4}	x	3	3,7	4	4,4	5,2	6,4
			у	5,967	6,97	7,7	9,135	14,817	41,413
20	1	x/(x+1)	x	0,8	1,2	4,7	5,2	5,8	5,9
			у	2,522	2,845	3,739	3,784	3,829	3,836
21	x	x^2	x	0,6	4,5	5,2	5,5	6,4	6,8
			у	2,676	100,8	133,224	148,5	199,296	224,264
22	x	$(x-1)^2$	x	1,4	2,2	3,8	5,4	5,5	5,8
			у	2,248	5,672	19,432	42,408	44,15	49,592
23	x	3^{x-4}	x	1,8	4,2	4,7	5,3	6,1	6,9
			у	8,505	20,363	23,169	26,996	33,693	44,525
24	1	2^{x-3}	x	2,9	3,2	4,9	5,7	6,1	6,3
			у	2,333	2,549	5,132	7,898	9,974	11,249
25	$\sin x$	$\cos 2x$	x	0,2	3,7	5,3	5,5	6,3	6,7
			у	1,956	-0,005	-1,942	-1,05	1,824	1,817
26	$\sin x$	$\cos 3x$	x	3,2	4,4	5,3	5,8	6,4	6,9
			у	-1,241	-1,683	-3,327	-1,121	1,348	1,258
27	1	$(x-3)^3$	x	3	4,8	4,9	5,9	6,4	6,7
			у	2,6	20,096	23,177	75,767	120,512	154,559
28	$\sin x$	$\sin 3x$	X	1,8	4,4	4,5	5,1	5,3	6,7
			y	-3,031	2,26	3,163	1,428	-1,07	4,203
29	1	1/(x+1)	X	0,1	3,8	4,1	5,6	5,9	6,3
			y	4,282	1,829	1,786	1,63	1,607	1,579
30	x	1/(x+0.2)	X	3	3,9	4,5	4,6	5,3	6
		-/(~ / 0.2)	у	12,175	15,113	17,136	17,477	19,88	22,31
			у	12,110	10,110	11,100	11,711	10,00	,01

Задание 15. Для функции y=y(x), заданной таблицей своих значений, построить интерполяционные многочлены в форме Лагранжа и Ньютона. Используя их, вычислить приближенное значение функции в точке \widetilde{x} .

N		Та	абли	ца		\widetilde{x}	N		Та	абли	ца		\widetilde{x}	N		Та	абли	ца		\widetilde{x}
1	x	-4	-3	-2	-1	-3,33	2	x	0	1	2	3	0,65	3	x	1	2	3	4	2,29
	у	4	-3	0	3			у	-1	-4	0	-4			у	-3	-5	0	-5	

N		Та	абли	ца		\widetilde{x}	N		Та	абли	ца		\widetilde{x}	N		Та	абли	ца		\widetilde{x}
4	x	-3	-2	-1	0	-1,33	5	x	4	5	6	7	4,67	6	x	0	1	2	3	1,49
	у	2	0	-2	-4			у	-1	0	-1	1			у	0	4	3	2	
7	x	-2	-1	0	1	-0,44	8	X	4	5	6	7	4,32	9	x	-3	-2	-1	0	-1,21
	у	0	-5	-3	4			у	-1	3	0	-2			у	-2	-4	0	2	
10	x	2	3	4	5	3,71	11	x	0	1	2	3	0,69	12	x	-2	-1	0	1	-1,9
	у	-1	0	2	1			у	4	-5	0	4			у	3	-4	0	-3	
13	x	-4	-3	-2	-1	-2,87	14	x	-2	-1	0	1	-0,57	15	x	-3	-2	-1	0	-1,22
	у	1	0	3	2			у	-4	0	3	4			у	1	0	-1	-1	
16	X	-4	-3	-2	-1	-3,53	17	X	-5	-4	-3	-2	-4,85	18	x	3	4	5	6	4,37
	у	-4	0	4	-4			у	1	3	0	3			у	3	-4	0	-3	
19	x	3	4	5	6	4,54	20	X	3	4	5	6	3,6	21	x	2	3	4	5	2,45
	у	-5	0	-2	-4			у	0	3	1	4			у	-2	0	3	2	
22	x	0	1	2	3	0,15	23	x	-1	0	1	2	0,85	24	x	2	3	4	5	3,56
	у	0	4	3	-5			у	-4	3	0	3			у	-3	1	0	4	
25	x	2	3	4	5	3,88	26	x	0	1	2	3	1,13	27	x	1	2	3	4	1,59
	у	1	-3	0	1			у	0	4	-5	-3			у	-2	-4	0	2	
28	x	-4	-3	-2	-1	-2,81	29	x	-2	-1	0	1	-0,62	30	x	-5	-4	-3	-2	-3,66
	у	0	-3	-1	1			у	1	3	0	3			у	1	-1	0	4	

Задание 16.

Функция y=y(x) задана таблицей своих значений. Вычислить приближенное значение функции в точке \widetilde{x} , используя интерполяционные многочлены Ньютона первой, второй и третьей степеней. Для каждого вычисленного значения найти практическую оценку погрешности. Записать все результаты с учетом погрешности.

УКАЗАНИЕ. Перед построением многочленов следует переупорядочить таблицу, расположив точки в порядке удаления от \widetilde{x} .

									ı						
N			таб	блица			\widetilde{x}	N			та	блица			\widetilde{x}
1	x	1	1,4	1,8	2,2	3	1,99	2	X	4	4,4	4,8	5,2	5,6	$4,\!55$
	у	3	4,1	5,6	7,3	11,7			у	19	22,5	26,2	30,3	34,7	
3	x	1	1,4	1,8	2,2	2,6	2,08	4	x	0	0,8	1,2	2	2,8	1,31
	у	3	4,1	5,6	7,3	9,4			у	1	2,5	3,5	6,4	10,5	
5	x	1	1,4	1,8	2,2	3	1,93	6	x	0	0,8	1,2	1,6	2	0,99
	у	3	4,1	5,6	7,3	11,7			у	1	2,5	3,5	4,8	6,4	
7	x	4	4,4	4,8	5,2	5,6	4,69	8	x	0	0,4	0,8	1,6	2,4	0,64
	у	19	22,5	26,2	30,3	34,7			у	1	1,8	2,5	4,8	8,3	
9	x	0	0,4	0,8	1,2	1,6	0,94	10	x	3	3,4	4,2	5	5,8	4,3
	у	1	1,8	2,5	3,5	4,8			у	11,7	14,4	20,7	28,2	37	
11	x	1	1,8	2,6	3	3,8	2,78	12	x	1	1,8	2,2	2,6	3,4	2,34
	у	3	5,6	9,4	11,7	17,4			у	3	5,6	7,3	9,4	14,4	
13	x	3	3,8	4,2	4,6	5	4,03	14	x	4	4,4	5,2	6	6,4	5,46
	у	11,7	17,4	20,7	24,3	28,2			у	19	22,5	30,3	39,4	44,5	

N			таб	блица			\widetilde{x}	N			та	блица			\widetilde{x}
15	x	1	1,4	1,8	2,2	3	1,51	16	X	4	4,8	5,6	6	6,8	5,82
	у	3	4,1	5,6	7,3	11,7			у	19	26,2	34,7	39,4	49,8	
17	x	3	3,4	3,8	4,2	5	4,03	18	x	0	0,4	1,2	1,6	2	0,61
	у	11,7	14,4	17,4	20,7	28,2			у	1	1,8	3,5	4,8	6,4	
19	x	0	0,4	1,2	1,6	2,4	0,69	20	x	0	0,4	0,8	1,6	2	0,6
	у	1	1,8	3,5	4,8	8,3			у	1	1,8	2,5	4,8	6,4	
21	x	0	0,8	1,6	2,4	2,8	1,02	22	x	1	1,4	2,2	2,6	3,4	2,35
	у	1	2,5	4,8	8,3	10,5			у	3	4,1	7,3	9,4	14,4	
23	x	3	3,8	4,6	5,4	5,8	4,89	24	x	0	0,4	1,2	1,6	2,4	1,44
	у	11,7	17,4	24,3	32,5	37			у	1	1,8	3,5	4,8	8,3	
25	x	2	2,4	2,8	3,6	4	2,57	26	x	0	0,8	1,6	2,4	2,8	1,82
	у	6,4	8,3	10,5	15,9	19			у	1	2,5	4,8	8,3	10,5	
27	x	4	4,8	5,6	6	6,4	5,07	28	x	2	2,8	3,6	4,4	4,8	3,8
	у	19	26,2	34,7	39,4	44,5			у	6,4	10,5	15,9	22,5	26,2	
29	x	2	2,4	3,2	4	4,8	3,34	30	x	4	4,8	5,6	6,4	7,2	4,94
	у	6,4	8,3	13	19	26,2			у	19	26,2	34,7	44,5	55,5	

Задание 20.

Вычислить приближенное значение интеграла $\int\limits_a^b f(x)\,dx$, используя квадратурные формулы: а) центральных прямоугольников с шагом h=0.4; дать априорную оценку погрешности; б) трапеций с шагами h=0.4 и h=0.2; оценить погрешность последнего результата по правилу Рунге и уточнить последний результат по Рунге; в) Симпсона с шагом h=0.4.

УКАЗАНИЕ. Промежуточные результаты вычислять с шестью знаками после запятой. Аргументы тригонометрических функций вычислять в радианах.

N	f(x)	a	b	N	f(x)	a	b	N	f(x)	a	b
1	$\sqrt[3]{2-\cos x}$	3,2	4,8	2	$\sqrt[3]{x \sin x}$	4,7	6,3	3	$\frac{x^2-1}{x^3}$	1,1	2,7
4	e^{-1/x^2}	2,7	4,3	5	$\frac{\operatorname{arctg} x}{x}$	3,5	5,1	6	$\sin(e^x)$	4,9	6,5
7	$e^{\cos(1/x)}$	4,8	6,4	8	$\ln(4-\sin x)$	3,6	5,2	9	$\sin(1+\sqrt{x})$	0,5	2,1
10	$e^{1/x}$	1,9	3,5	11	$e^{0.3/x^2}$	1,2	2,8	12	$e^{\cos^2 x}$	0,6	2,2
13	$\cos(1/x)$	4,4	6	14	$\sin(0.5x\sqrt{x})$	1,5	3,1	15	$\cos(e^{-\sqrt{x}})$	4,1	5,7
16	$e^{-\operatorname{arctg} x}$	2,3	3,9	17	$\frac{\ln(1+x)}{x}$	4,4	6	18	$4\cos(0.02x^3)$	2,9	4,5
19	$e^{-\sin(1/x)}$	0,9	2,5	20	$e^{-1/(x\sqrt{x})}$	2,5	4,1	21	$\frac{\sqrt{x} - x}{1 + e^{-x}}$	1,3	2,9
22	$\sqrt{1+e^{-x}}$	4,4	6	23	$\ln(1+e^x)$	3,6	5,2	24	$e^{-0.1/x}$	1,2	2,8
25	$x \operatorname{arctg} x$	1,1	2,7	26	$\sin(\operatorname{arctg} x)$	4,6	6,2	27	$e^{-0.02x\sqrt{x}}$	0,6	2,2
28	$\ln(1+x^2)$	3,2	4,8	29	$\sin(1/x^2)$	3,5	5,1	30	$\frac{1+\sqrt{x}}{1+x}$	4,9	6,5

Задание 21.

Дан интеграл вида $\int_a^b (c_0 + c_1 x + c_2 x^2 + c_3 x^3 + c_4 x^4) dx$. Используя априорную оценку погрешности формулы трапеций, определить шаг интегрирования, достаточный для достижения точности $\varepsilon = 0.01$, и вычислить интеграл с этим шагом. Вычислив точное значение интеграла, подтвердить достижение указанной точности.

N	a	b	c_0	c_1	c_2	c_3	c_4	N	a	b	c_0	c_1	c_2	c_3	c_4
1	0,2	0,7	0	4	3	0	-3	2	-1	-0,5	-2	-1	-3	1	2
3	-1	-0,5	2	-3	-2	-4	-2	4	0,8	1,3	-1	1	-3	-3	4
5	1,4	1,9	0	-5	-1	4	-1	6	1,3	1,8	-3	-3	-1	4	3
7	-0,3	0,2	-5	0	-3	-1	3	8	-1	-0,5	-2	3	-3	2	3
9	-0,9	-0,4	3	-1	-2	3	-2	10	0,9	1,4	1	3	-4	1	1
11	0,7	1,2	3	4	0	-1	-4	12	0,1	0,6	2	1	-2	-2	-1
13	-0,2	0,3	-1	-3	3	0	-3	14	0,1	0,6	4	-1	-4	1	0
15	-0,5	0	-1	-4	-5	3	-5	16	0,7	1,2	-3	-3	2	1	-2
17	1,1	1,6	2	0	-2	-3	-3	18	0	0,5	3	2	2	-3	-1
19	0,7	1,2	-5	-2	0	1	-5	20	0,6	1,1	2	3	2	-4	-4
21	0	0,5	0	-5	-2	-4	0	22	-1,2	-0,7	0	4	-2	4	-1
23	1,2	1,7	-1	-1	3	1	1	24	-0,9	-0,4	3	0	-1	-2	-4
25	-1,3	-0,8	0	3	-2	3	0	26	-0,3	0,2	3	3	0	0	4
27	1	1,5	-2	0	-5	3	0	28	0,4	0,9	1	-1	0	4	0
29	0,4	0,9	-3	1	-4	4	3	30	-1,5	-1	1	1	-5	-1	-1

Задание 23.

Вычислить центральную и левую разностные производные, а также вторую разностную производную функции f(x) с шагом h=0.1 в точке $x_0=\frac{a+b}{2}$. (Функция и величины а и b даны в задании 20). Вычислив точное значение производной в заданной точке, сравнить качество приближений.

Задание 24.

Численно решить задачу Коши для обыкновенного дифференциального уравнения 1-го порядка

$$\begin{cases} y' = f(t, y) \\ y(t_0) = y_0 \end{cases}$$

на отрезке $[t_0, t_0 + 0.8]$ с шагом h = 0.2: а) методом Эйлера; б) методом Рунге-Кутты 2-го порядка. Оценить погрешность обоих методов по правилу Рунге. Найти точное решение задачи. Построить на одном чертеже графики точного и приближенных решений.

N	f(t,y)	t_0	y_0	N	f(t,y)	t_0	y_0
1	$y\cos t + 3t^2 e^{\sin t}$	0	0	2	$y \operatorname{ctg} t + \sin^2 t$	$\pi/2$	0
3	$y \operatorname{ctg} t - \frac{1}{\sin t}$	$\pi/2$	0	4	$y\operatorname{ctg} t + 4t\sin t$	$-\pi/2$	$-\pi^2/2$
5	$-y \operatorname{tg} t + \cos^2 t e^{\sin t}$	0	0	6	$\frac{y}{t} + 2t^2 e^{t^2}$	1	e
7	$-\frac{3t-1}{t}y+6t$	1	3	8	$y \operatorname{ctg} t + 8t \sin t$	$\pi/2$	π^2
9	$\frac{y}{t \ln t} + \frac{\ln t}{t}$	e	1	10	$\frac{6}{t^2} + \frac{2y}{t}$	1	0
11	$\frac{y}{t} + t\sin t + t$	$\pi/2$	$\pi^2/4$	12	$2yt^2 + 4t^2$	0	-1
13	$-y \operatorname{tg} t + 2t \cos t$	0	2	14	$3yt^2 + 6t^2$	0	1
15	$\frac{y}{t+1} - (t+1)e^{-t}$	0	0	16	$\frac{y}{t-1} + t^2 - 1$	-1	5
17	$-y \operatorname{tg} t + \frac{\cos t}{t^2}$	π	0	18	$-\frac{2y}{t} + \frac{2}{t^2} + 4t$	1	3

N	f(t,y)	t_0	y_0	N	f(t,y)	t_0	y_0
19	$\frac{2t+1}{t}y+t$	1	0.5	20	$-\frac{4t-1}{t}y+2t$	1	1
21	2ty-2t	0	0	22	$y\cos t + e^{\sin t}$	0	1
23	$2y + 2e^{4t}$	0	3	24	$y \operatorname{ctg} t + 2 \sin t$	$\pi/2$	π
25	$\frac{y}{t+3} - \frac{t+3}{t^2}$	1	4	26	$\frac{y}{t+2} + (t+2)^2$	0	4
27	$-\frac{y}{t} - \frac{\sin t}{t}$	$\pi/2$	$4/\pi$	28	$\frac{y}{t+1} + t + 1$	1	0
29	$-y \operatorname{tg} t + 3 \cos t$	0	1	30	$-y \operatorname{tg} t - \sin 2t$	0	2

Задание 27.

Методом конечных разностей найти решение краевой задачи $\begin{cases} -y'' + q(x)y = f(x) & \text{с шагами } h_1 = 1/3, \\ y(0) = y_0, & y(1) = y_1 \end{cases}$ $h_2 = 1/6 \text{ и оценить погрешность по правилу Рунге. Построить на одном чертеже графики полученных получ$

приближеных решений.

	()	6/		
N	q(x)	f(x)	y_0	y_1
1	$(\pi/2) \operatorname{tg}^2(\pi x/4) + \pi$	$(\pi/2)\operatorname{tg}(\pi x/4)$	0	1
	$3/(4(1+x)^2)$	$1/(1+x)^{3/2}$	1	$\sqrt{2}$
3	1/(1+x)	$(5+4x)/(4(1+x)^{3/2})$	1	$\sqrt{2}$
4	1/4	$((\pi^2 + 1)/4)\sin(\pi(x+1)/2)$	1	0
5	$4/(1+x)^2$	$2/(x+1)^3$	1	1/2
6	π^2	$2\pi^2 + 5\pi^2 \sin^2(\pi x)$	0	0
7	6	$2e^{2x-1}$	1/e	e
8	$1/\sqrt{1+x}$	$1 + 1/(4(1+x)^{3/2})$	1	$\sqrt{2}$
9	1	$2 + x - x^2$	1	e
10	1-x	$1-x^2$	1	2
11	1	$(\pi^2 + 1)\cos(\pi(2x - 1)/2)$	0	0
12	5	e^{2x}	1	e^2
13	$5\pi^{2}/9$	$\pi^2 \sin(\pi(4x+1)/6)$	1/2	1/2
14	1/2	$e^{x/2}/4$	1	\sqrt{e}
15	$\pi^2/2$	$\pi^2(1+\sin^2(\pi x/2))/2$	1	0
16	1-x	$2 + x(1-x)^2$	0	0
17	2	$2x^2 - 2x$	1	1
18	3+x	$6-x-x^2$	2	1
19	2-x	$(1-x)e^{1-x}$	e	1
20	e^2	e^{2x}	2	1+e
21	1	$2e^{-x}$	0	1/e
22	π	$\pi \operatorname{tg}(\pi x/4) \left(1 - \operatorname{tg}^2(\pi x/4)\right)/2$	0	1
23	$2e^x$	$xe^x(e^x-1)$	1	1 + e
24	1	$5\sin 2x$	0	$\sin 2$
25	x	$2 + x - 2x^2$	1	0
26	x	$2 + x^2 - x^3$	0	0
27	$5\pi^{2}/9$	$\pi^2 \cos(\pi(2x-1)/3)$	1/2	1/2

N	q(x)	f(x)	y_0	y_1
28	6	$6(1-x+x^3)$	1	2
29	$3\pi^{2}/4$	$\pi^2 \sin(\pi x/2)$	0	1
30	2	$2x + 2x^2$	1	3