1.4 启发式图搜索

- 利用知识来引导搜索,达到减少搜索范围,降低问题复杂度的目的。
- 启发信息的强度
 - 强:降低搜索工作量,但可能导致找不到最优解
 - 弱:一般导致工作量加大,极限情况下变为 盲目搜索,但可能可以找到最优解

启发式搜索概述

- ▶设计一个与问题相关的估价函数,用于评价各节点的重要程度
- ▶按照节点的重要性次序,亦即估价函数从小到大的顺序扩展节点
- \rightarrow 估价函数的形式: $f(n)=\alpha g(n)+\beta h(n)$
 - g(n) 从S₀到节点n已付出的代价;
 - h(n) n到Sg最优路径的估计代价;

启发式搜索概述(续)

- ▶g(x)比例越大,越倾向广度优先搜索,完备性较好而效率可能受影响;
- ▶h(x)比例越大,越倾向深度优先搜索,效率可能较好;
- 》加权α,β调整比例,引入启发知识,在保证找到最佳解的情况下,尽可能减少搜索范围,提高搜索效率。
- ▶不同的启发式函数构成了算法的不同性质

启发式搜索算法A(A算法)

•评价函数的格式: f(n) = g(n) + h(n)

f(n):评价函数;h(n):启发函数

- g*(n):从S0到n的<u>最短</u>路径的耗散值
- h*(n):从n到Sg的最短路径的耗散值
- $f^*(n)=g^*(n)+h^*(n)$: 从S0经过n到Sg的最短路径的耗散值
- g(n)、h(n)、f(n)分别是g*(n)、h*(n)、f*(n)的估计值
- •恒有: g(n) ≥g*(n) 且 g(n)不增

A算法

```
1, OPEN:=(s), f(s):=g(s)+h(s);
2, LOOP: IF OPEN=() THEN EXIT(FAIL);
3, n:=FIRST(OPEN);
4, IF GOAL(n) THEN EXIT(SUCCESS);
5, REMOVE(n, OPEN), ADD(n, CLOSED);
6, EXPAND(n) \{m_i\},
 计算f(n,m;):=g(n,m;)+h(m;);
```

f(n,mi):经过节点n的mi的评价函数

A算法 (续)

```
ADD(m<sub>i</sub>, OPEN), 标记m<sub>i</sub>到n的指针;
IF f(n, m_k) < f(m_k) THEN f(m_k) := f(n, m_k),
标记m<sub>k</sub>到n的指针;
IF f(n,m_1) < f(m_1) THEN
    f(m_1) := f(n, m_1),
标记ml到n的指针,
```

•mi:扩展的新节点

·mk:已生成未被扩展的节点

•m₁:已生成并被扩展的节点

ADD(m₁, OPEN); (不变后代指针, m₁从closed重进open表)

- 7, OPEN表节点按f值从小到大排序;
- 8, GO LOOP;

对有限图,如果从初始点到目标点有路径存在,则算法A一定成功结束(完备性)

例:九宫重排问题

定义评价函数1:

$$\mathbf{f}_1(\mathbf{n}) = \mathbf{g}(\mathbf{n}) + \mathbf{h}_1(\mathbf{n})$$

g(n)为从初始节点到当前节点的耗散值(深度)

h₁(n)为当前节点"不在位"的将牌数

定义评价函数2:

$$\mathbf{f}_2(\mathbf{n}) = \mathbf{g}(\mathbf{n}) + \mathbf{h}_1(\mathbf{n})$$

g(n)为从初始节点到当前节点的耗散值(深度)

h₂(n)为数字移到目标处的距离总和

7 5

$$h_2(n) = 1 + 1 + 1 + 2 = 5$$

Greedy best-first search

• Evaluation function f(n) = h(n) (heuristic)

 Greedy best-first search expands the node that appears to be closest to goal

Romania with step costs in km

h(n) = straight-line distance from n to Bucharest

Properties of greedy best-first search

- Complete? No can get stuck in loops, e.g.,
 Iasi → Neamt → Iasi → Neamt →
- Time? $O(b^m)$, but a good heuristic can give dramatic improvement
- Space? $O(b^m)$ -- keeps all nodes in memory
- Optimal? No

爬山法 (Hill-climbing)

n:=s
LOOP:IF GOAL(n) THEN EXIT(SUCCESS);
EXPAND(n)→{m_i},计算h(m_i),nextn:=m(min h(m_i)的节点);
IF h(n)<h(nextn) THEN EXIT(FAIL);
N:=nextn;
GO LOOP;

Hill-climbing search

- "Like climbing Everest in thick fog with amnesia"
- Problem: depending on initial state, can get stuck in local maxima

《人工智能》陈昭炯

Hill-climbing search: 8-queens problem

18	12	14	13	13	12	14	14
14	16	13	15	12	14	12	16
14	12	18	13	15	12	14	14
15	14	14	♛	13	16	13	16
₩	14	17	15	₩	14	16	16
17	酥	16	18	15	₩	15	₩
18	14	₩	15	15	14	₩	16
14	14	13	17	12	14	12	18

$$h = 17 \xrightarrow{5 \text{ steps}} A$$
 local minimum with $h = 1$

h = number of pairs of queens that are attacking each other, either directly or indirectly

分支界限法(f(n)=g(n))

```
Branch-Bound
QUEUE:=(s),g(s)=0;
LOOP: IF QUEUE=( ) THEN EXIT(Fail);
PATH:=FIRST(QUEUE),n:=LAST(PATH);
IF GOAL(n) THEN EXIT(SUCCESS);
EXPAND(n) {m<sub>i</sub>},计算g(m<sub>i</sub>)=g(n,m<sub>i</sub>);
REMOVE(s-n,QUEUE),ADD(s-m;,QUEUE);
QUEUE中局部(全局)路径g值最小者排在前面;
GO LOOP
```

例:找一条从A到E的最短路径

是否需遍历所有路径才可确定最短?

动态规划示图

•若起点S0到终 点Sg的最优路 径经过点E,则 S0到E和E到Sg 的路径也是最优 的。

例:找一条从A到E的最短路径 3 E B

是否需遍历所有路径才可确定最短? 求S0到终点Sg的最优路径,对某一中间节点E,只需保留 S0到E中耗散最小的局部路径,其余S0到E的路径可剪。

E

A*算法

- ➤ 如果A算法满足可纳条件: h(n) h*(n) 则称为A*算法。
- > 分支界限与动态规划及使用下界范围的h相结合的算法

九宫问题解1

九宫问题解2

A*算法的性质

- ▶A*算法是可纳的:对于可解状态空间图,A*算法在有限步内终止并找到最优解。
- ▶OPEN表上任一具有f(n)<f*(s₀)的节点n,最终都将被A*选做扩展节点
- \rightarrow A*选做扩展的任一节点,都有f(n) f*(s₀)
- ▶在h(n) h*(n)的条件下, h(n)的值越大,携带的启发式信息越多,扩展的节点数越少,搜索效率越高。

(评价指标是"扩展的节点数",即同一个节点无论被扩展多少次,都只计算一次)

▶A1和A2均为A*算法,h1(n)<h2(n),则在具有一条解路径的隐含图上,A2扩展的节点必定不多于被A1所扩展的节点

8数码的两种启发式算法?

A*算法的改进

• 问题的提出:

因A算法第6步对m_l类节点要重新放回 OPEN表中,因此可能会多次重复扩展 同一个节点,导致搜索效率下降。

一个例子:

OPEN表	CLOSED表
s(10)	s(10)
A(7) B(8) C(9)	A(7) s(10)
B (8) C(9) G(14)	B(8) A(7) s(10)
A(5) C(9) G(14)	A(5) B(8) s(10)
C(9) G(12)	C(9) A(5) B(8) s(10)
B(7) G(12)	B(7) C(9) $A(5)$ s(10)
A(4) G(12)	A(4) B(7) C(9) s(10)
G (11)	

出现多次扩展节点的原因

在前面的扩展中,并 没有找到从初始节点 到当前节点的最短路 径,如节点A。

解决的途径

- 思路一:对h加以限制
 - 能否对h增加适当的限制,使得第一次扩展 一个节点时,就找到了从s到该节点的最短 路径。
- 思路二:对算法加以改进
 - 能否对算法加以改进,避免或减少节点的多次扩展。

改进的条件

- 可采纳性不变
- 不多扩展节点
- 不增加太多算法的复杂性

思路一:对h加以限制

• 定义:一个启发函数h,如果对所有节点 n_i 和 n_j ,其中 n_j 是 n_i 的子节点,满足

$$\begin{cases} h(n_i)-h(n_j) & c(n_i,n_j) \\ h(t)=0 \end{cases}$$

或

$$\begin{cases} h(n_i) & c(n_i,n_j)+h(n_j) \\ h(t)=0 \end{cases}$$

则称h是单调的。

h单调的性质

- 若h(n)是单调的,则A*扩展了节点n之后,就已经找到了到达节点n的最佳路径。
 - 即:当A*选n扩展时,有g(n)=g*(n)。
- 若h(n)是单调的,则由A*所扩展的节点 序列其f值是非递减的。即 $f(n_i) = f(n_i)$ 。
- 一般图搜索算法可简化

h单调的例子

• 8数码问题:

- h为"不在位"的将牌数

$$h(n_i)$$
 - $h(n_j) = \begin{cases} 1 \\ 0 \\ -1 \end{cases}$ (n_j为n_i的后继节点)

$$h(t) = 0$$
$$c(n_i, n_i) = 1$$

满足单调的条件。
$$h(n_i)$$
- $h(n_j)$ $c(n_i,n_j)$ $h(t)=0$

h的单调化方法

• 如果令:

f(n) = max(f(n的父节点), g(n)+h(n))则容易证明,这样处理后的h是单调的。

但可能影响h的有效性

思路二:对算法加以改进

• 两个结论:

- OPEN表上任一具有f(n) < f*(s)的节点定会 被扩展。
- A*选作扩展的任一节点,定有f(n) f*(s)。

改进的出发点

 f_m :到目前为止已扩展节点的最大f值,用 f_m 代替 $f^*(s)$

修正过程A

```
1, OPEN:=(s), f(s)=g(s)+h(s), f_m:=f(s);
2, LOOP: IF OPEN=() THEN EXIT(FAIL);
3, NEST:=\{n_i | f(n_i) < f_m\}
  IF NEST () THEN n:=NEST中g最小的节点
                  ELSE n:=FIRST(OPEN),
                        f<sub>m</sub>:=f(n); 在NEST集合中,
令h=0,此时h满
4, ..., 8: 同过程A。
                                  足单调性条件
```

前面的例子:

Relaxed problems

- A problem with fewer restrictions on the actions is called a relaxed problem
- The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem
- If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution
- If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution

八数码问题,松弛条件3:

一个棋子可以从方格A移动到方格B,如果B是空的启发函数?

例:修道士与野人问题(1968)

河左岸有N个Missionaries和k个Cannibals,1条boat

条件:1) M和C都会划船,船一次只能载2人

2) 在任一岸上, M人数不得少于C的人数, 否则被吃

目标:安全抵达对岸的最佳方案

- \bullet (M,C,b):S₀(5,5,1)
- •松弛条件:无限制时,
- (M,C,1),最少次数:

- •h2(n)=M+C(非A*, 20步)
- •h3(n)=M+C-2b (A*, 21步)

$$\left[\frac{M+C-3}{2}\right] \times 2+1 \ge \frac{M+C-3}{2} \times 2+1 = M+C-2$$

(M,C,0) 最少次数=(M+1,C,1) 最少次数+1=M+1+C-2+1=M+C

A*算法的其它不足:

- •大多数情况节点数为解长度的指数级, $|h(n)-h^*(n)| \le O(\log h^*(n))$
- •存储量过大,保留了所有生成的节点,不适用于大规模问题
- •存储限制的A*算法
 - •Solution: *Iterative-deepening A* (IDA*)*
 - •Just like Iterative Deepening, but...
 - •...instead of using g(N) (the actual depth so far) to cut off searching...
 - •...use f(N) (the estimated *total* depth)
 - •IDA* gives the same results as A*
 - •Since IDA* is basically a depth-first search, storage requirements are linear in length of path

启发式函数的精确度问题实验(8数码问题扩展的节点数)

解的深度	迭代有界深度	A*(h₁)	A*(h₂)
2	10	6	6
4	112	13	12
6	680	20	18
8	6384	39	25
10	47127	93	39
12	3644035	227	73
14		539	113
16		1301	211
18		3056	363
20		7276	676
22		18094	1219
24		39135	1641

搜索的完备性与效率

- ▶完备性:若问题可解则搜索过程一定能找解,称这样的搜索过程为完备的,完备的搜索过程也称为搜索 算法
- ▶广度类,改进的有界深度,A*——完备
- ▶搜索效率之外显率(渗透率): P=L/T 1
 - $L:S_0$ S_g 的最优路径长度; T:搜索生成的节点总数
 - P越小效率越低。P=1

▶搜索效率之有效分枝因数

定义:满足式: $B+B^2+....+B^L=T$ 的数B

意义:每一有效节点平均生成的节点数目,越小越好

关联:

$$P = \frac{L \times (B-1)}{B \times (B^L - 1)}, \qquad T = \frac{B \times (B^L - 1)}{B - 1}$$

解释:(可绘制如下关系图表)

固定B,则L越大P越小,即有效分枝因数固定的情况下,最优解越远,搜索效率越低

固定L,则B越大P越小T越大,即最优解一定的情况下,有效分枝因数越大,搜索生成的节点总数越多,搜索效率越低

8数码问题不同搜索算法的有效分支因子比较

解的深度	迭代有界深度	A*(h₁)	A*(h ₂)
2	2.45	1.79	1.79
4	2.87	1.48	1.45
6	2.73	1.34	1.30
8	2.80	1.33	1.24
10	2.79	1.38	1.22
12	2.78	1.42	1.24
14	-	1.44	1.23
16	-	1.45	1.25
18	-	1.46	1.26
20	-	1.47	1.27
22	-	1.48	1.28
24	-	1.48	1.26

问题:

- •如何在盲目搜索中避免重复状态?对广度和深度优先算法这种策略有何不同?
- •树与图的区别是什么?其搜索方法有何不同?如何选择?
- •了解若干经典搜索问题的最新进展,如:皇后问题,滑块问题,TSP问题,规划问题,巡游问题等。
- •是否还有比较通用的启发函数的构造方法?
- •8数码问题的所有状态可以划分为两个互不相交的集合,如何说明?
- •能否找到8数码问题更有效的启发式函数?
- •A*算法除了具有完备性、最优性之外,是否在效率上优于一般的启发式算法?