2024 春微积分 A(2) 期中小班辅导讲义

by LagrangeKMnO4

2024/04/11

考点一: 多元函数的极限、连续性、可微性

累次极限、重极限

常见证明极限存在的方法:

- 1. 利用不等式将齐次式降次
- 2. 利用不等式化为一元函数,利用一元函数性质证明极限存在

例 1: 求
$$\lim_{(x,y)\to(0,0)} \frac{x^3+y^3}{x^2+y^2}$$
 .

例 2: 求
$$\lim_{(x,y)\to(0,0)} (x^2+y^2)^{xy}$$
.

例 3: 求
$$\lim_{(x,y)\to(+\infty,+\infty)} \left(\frac{xy}{x^2+y^2}\right)^{x^2}$$

例 4: 求
$$\lim_{x^2+y^2\to\infty} \frac{x+y}{x^2-xy+y^2}$$

例 5: 求
$$\lim_{(x,y)\to(0,0)} \frac{1-\cos(xy)}{x^2+y^2}$$

常见证明极限不存在的方法:

- 1. 选择两条道路证明道路极限不同
- 2. 选择一条道路不存在道路极限

例 1: 证明 $\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^3+y^3}$ 不存在.

连续性、可微性判则

可微性判则可总结为下图:

如果想证明一个函数不可微,常用方法如下:

(1). f(x,y) 在 (x_0,y_0) 处至少有一个偏导数不存在. (2). f(x,y) 在 (x_0,y_0) 点不连续. (3). (最常用) $df - f_x(x_0,y_0)dx - f_y(x_0,y_0)dy \neq o(\sqrt{dx^2 + dy^2})$.

需要注意:偏导数连续并不是函数可微的必要条件,如果想证明函数可微,一般需要用定义直接证明

例 1: 己知
$$f(x,y) = \begin{cases} \frac{x^3 - y^3}{x^2 + y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0) \end{cases}$$

- (1). 函数 f(x,y) 在 (0,0) 处是否连续?
- (2). 偏导数 $f'_x(0,0)$ 和 $f'_y(0,0)$ 是否存在?
- (3). 函数 f(x,y) 在 (0,0) 处是否可微?

例 2: 己知
$$f(x,y) = \begin{cases} xy\sin\frac{1}{\sqrt{x^2+y^2}}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0) \end{cases}$$

- (1). 函数 f(x,y) 在 (0,0) 处是否连续?
- (2). 偏导数 $f'_x(0,0)$ 和 $f'_y(0,0)$ 是否存在?
- (3). 函数 f(x,y) 在 (0,0) 处是否可微? 若可微, 求出全微分.
- (4). 偏导数 f'_x 和 f'_y 在原点处是否连续?

例 3: 设 $f(x,y) = \sqrt{|xy|}$, 证明 f(x,y) 在 (0,0) 处不可微, 但偏导数都存在.

例 4: 令
$$f(x,y) = \begin{cases} \frac{\ln(1+xy)}{x}, & x \neq 0 \\ y, & x = 0. \end{cases}$$
, 求证其在定义域上连续.

考点二: 多元函数的复合微分、Taylor 展开

多元函数的复合求偏导

若 $z=f(u_1,u_2,\ldots,u_m)$ 在 (u_1,u_2,\ldots,u_m) 可微, $u_i=g_i(x_1,x_2,\ldots,x_n)$ 在点 (x_1,x_2,\ldots,x_n) 有偏导数,则复合函数 $z=f(g_1(x_1,x_2,\ldots,x_n),g_2(x_1,x_2,\ldots,x_n),\ldots,g_m(x_1,x_2,\ldots,x_n))$ 关于 x_j 的偏导数存在且

$$\frac{\partial z}{\partial x_j} = \sum_{i=1}^m \frac{\partial f}{\partial u_i} \frac{\partial u_i}{\partial x_j}.$$

例 1: 设 f(x,y) 在 \mathbb{R}^2 上有连续偏导数, $f(x,x^2)=1$,若 $f_x(x,x^2)=x$,求 $f_y(x,x^2)$.

例 2: 设 $z = f(x, \frac{x}{y})$, 其中 $f \in C^{(2)}(\mathbb{R}^2)$, 求 $z_{yx}(0, 2)$.

例 3: 己知 f(x,y) 在 (1,1) 处可微, $f(1,1)=1, \frac{\partial f}{\partial x}(1,1)=2, \frac{\partial x}{\partial y}(1,1)=3, g(x)=f(x,f(x,x,))$,则 g'(1)=1

多元函数的 Taylor 展开

以二阶展开考察为主,注意观察是否有能转化为一元形式的结构.

例 1: $\frac{1}{x+y}$ 在 (1,0) 处带 Peano 余项的二阶 Taylor 展开式为.

注意: 分清是 Taylor 展开式还是多项式, 余项是从哪个点展开

例 2: 设 $f(x,y)=\begin{cases} \frac{1-e^{x(x^2+y^2)}}{x^2+y^2}, & (x,y)\neq (0,0)\\ 0, & (x,y)=(0,0). \end{cases}$, 求 f(x,y) 在 (0,0) 处的四阶 Taylor 多项式,并求 $f_{yx}(0,0),f_x^{(4)}(0,0).$

考点三: 多元函数微分学与几何

这一部分考点以求曲线、曲面的切平面(向量)、法平面(向量)为主,应注意理解计算方法。

曲线的切向量和法平面求法

三维空间中的曲线如果以参数形式给出,考虑方程

$$x = x(t), y = y(t), z = z(t), a \le t \le b.$$

如果 x,y,z 均光滑,则切向量为

$$\tau = (x'(t_0), y'(t_0), z'(t_0)).$$

切线方程为

$$\frac{x-x_0}{\tau_x} = \frac{y-y_0}{\tau_y} = \frac{z-z_0}{\tau_z}$$

法平面方程为

$$\tau_x(x-x_0) + \tau_y(y-y_0) + \tau_z(z-z_0) = 0.$$

如果以两个曲面的交线来给出,即

$$F(x, y, z) = G(x, y, z) = 0.$$

且函数光滑性足够良好,则考虑交点 p_0 ,如果 F,G 的 Jacobi 矩阵

$$\begin{pmatrix} \frac{\partial F}{\partial x} & \frac{\partial F}{\partial y} & \frac{\partial F}{\partial z} \\ \frac{\partial G}{\partial x} & \frac{\partial G}{\partial y} & \frac{\partial G}{\partial z} \end{pmatrix}$$

的秩为 2,则切向量为

$$\tau = \left(\frac{\partial(F,G)}{\partial(y,z)}, \frac{\partial(F,G)}{\partial(z,x)}, \frac{\partial(F,G)}{\partial(x,y)}\right)$$

曲面的切平面和法向量求法

- 1. 显式曲面 z = f(x, y) 的法向量 $\mathbf{n} = \pm (f_x(x, y), f_y(x, y), -1)$
- 2. 隐式曲面 F(x, y, z) = 0 的法向量为 $\mathbf{n} = \pm (F_x(x, y, z), F_y(x, y, z), F_z(x, y, z))$.
- 3. 参数曲面 x = x(u, v), y = y(u, v), z = z(u, v) 的法向量为

$$\mathbf{n} = \left(\frac{\partial(y,z)}{\partial(u,v)}, \frac{\partial(z,x)}{\partial(u,v)}, \frac{\partial(x,y)}{\partial(u,v)}\right)$$

已知法向量 $\mathbf{n} = (a, b, c)$, 则法平面方程为

$$a(x-x_0) + b(y-y_0) + c(z-z_0) = 0.$$

以上囊括了所有相关题目的通用公式解法,但不推荐死记硬背

例 1: 求 $e^z = xy + yz + zx$ 在 (1,1,0) 处的切平面方程.

例 2: 求曲面 $x = u \cos v, y = u \sin v, z = v$ 在 $(x_0, y_0, z_0) = (\sqrt{2}, \sqrt{2}, \frac{\pi}{4})$ 处的一个单位法向量.

例 3: 求曲线 $x = t, y = 2\cos t, z = 3\sin t$ 在 $t = \frac{\pi}{2}$ 处的切线方程.

例 4: 求 $2x^2 + 3y^2 + z^2 = 9$ 和 $3x^2 + y^2 - z^2 = 0$ 的交线在 (1, -1, 2) 处的法平面方程.

例 5: 求 $x^2 + y^2 + z^2 = 9$, z = xy 交线在 (1,2,2) 处的切线方程.

函数的方向导数和梯度

关键在于认识到方向导数和梯度之间的关系,设方向 l 的方向余弦为 $\cos \alpha, \cos \beta$,则

$$\frac{\partial f}{\partial l}(p_0) = \nabla f(p_0) \cdot (\cos \alpha, \cos \beta).$$

从而,沿梯度方向即为方向导数最大的方向,逆梯度方向即为方向导数最小的方向。

例 1: 证明: 若 \mathbb{R}^2 上的可微函数 f 满足

$$xf_x + yf_y = 0.$$

则 f(x,y) 为常数.

例 2: 设

$$f(x,y) = \begin{cases} x - y + \frac{xy^2}{x^2 + y^2}. & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

证明: f(x,y) 在原点处连续,沿任何方向的方向导数都存在,但不可微.

考点四: 多元函数的极值、最值: 条件极值、条件最值

不带约束的极值和最值

若 f 在驻点 p_0 的某邻域上有二阶连续偏导数,则

- 1. 若 H 正定,则 $f(p_0)$ 为极小值
- 2. 若 H 负定,则 $f(p_0)$ 为极大值
- 3. 若 H 不定,则 p_0 不是极值点
- 4. 若 H 半定,则应进一步判别(不在课纲内)

对于整体求极值的步骤,可归结如下:

- 1. 通过解方程组 $\frac{\partial f}{\partial x_i} = 0$ 求出驻点 p_0 .
- 2. 如果 p_0 的邻域上有二阶连续偏导,则考察 H 是否满足上述充分条件
- 3. 考察奇异点 (即 $\frac{\partial f}{\partial x_i}$ 不完全存在的点) 是否为极值点.
- 4. 考察没有二阶连续偏导的驻点是否为极值点.

对于整体求最值,可归结如下:

- 1. 求出所有的整体极值点
- 2. 求出边界点的最值(或极限)
- 3. 比较所有的极值,并选取最值(或证明最值并不存在)

例 1: 求函数 $f(x,y) = e^{-(x^2+y^2)}(x+y)$ 的极值和值域.

(提示): 1. 利用驻点求极值 2. 求无穷远处的极限 3. 进行比较,并指出定义域连通

例 2: 证明存在常数 C 使得对于 $\forall x, y \geq 0$, 均有 $x^2 + y^2 \leq Ce^{x+y-2}$, 并求 C 的最小值.

带约束的条件极值和最值

满足约束条件 $\varphi_i(x_1,\ldots,x_n)=0$, 求函数 $f(x_1,\ldots,x_n)$ 的极值问题, 可归结为对 Lagrange 函数

$$L(x_1,x_2,\dots,x_n) = f(x_1,\dots,x_n) + \sum_{i=1}^m \lambda_i \varphi_i(x_1,\dots,x_n)$$

的极值问题, 求解方法:

- 1. 作出 Lagrange 函数
- 2. 求 $\frac{\partial L}{\partial x_i} = 0$ 与 $\varphi_i = 0$, 联立解出驻点和 λ_i 的具体值,并要求驻点处 Jacobi 矩阵的秩 m.
- 3. 对每个驻点 p_0 , 计算 Hesse 矩阵 $H(p_0)$, 若 $H(p_0)$ 正定,则为极小值点; 若负定,则为极大值点; 若不定,则需进一步考虑(不在课纲范围内)

例 1: 用 Lagrange 乘子法求函数 $f(x,y) = e^{xy}\sin(x+y)$ 在曲线 $x^2+y^2=1$ 上的最大值和最小值.

例 2: 设 $f(x,y) = x^3 + y^3 - 3xy$, 求 f 在曲线 $x^2 - xy + y^2 = 1$ 上的最大值和最小值.

例 3: 用 Lagrange 乘子法求椭圆 $5x^2 + 4xy + 2y^2 = 1$ 的长半轴和短半轴.

例 4: 求 $f(x,y) = xy^3 - x$ 在区域 $D = \{(x,y)|x^2 + y^2 \le 1\}$ 上的最大值和最小值.

考点五: 隐函数、反函数求导

以计算为主,但需要注意使用条件,并且学会灵活计算。

隐函数定理

设二元函数 F(x,y) 满足以下条件:

- 1. 在 (x_0, y_0) 邻域上有关于 x, y 的连续偏导.
- 2. $F(x_0, y_0) = 0$.
- 3. $F_y(x_0, y_0) \neq 0$.

则有: 在 (x_0,y_0) 的邻域内,方程 F(x,y)=0 可以确定唯一函数 y=f(x); f(x) 在 $B(x_0)$ 上连续; f(x) 在 $B(x_0)$ 上有连续导数 $f'(x)=-\frac{F_x}{F_x}$,连续导数的阶数和 F 在邻域上的光滑性一致.

例 1: 证明方程 $1+xy=\arctan(x+y)$ 在 $(x_0,y_0)=(-1,1)$ 的邻域中确定了一个任意次连续可微的隐函数 y=y(x) ,并求 y'(-1) 和 y''(-1).

考点六: 含参积分 7

例 2: 己知方程 $2z-e^z+1+\int_y^{x^2}\sin(t^2)\mathrm{d}t=0$ 在 $(x_0,y_0,z_0)=(1,1,0)$ 的某个邻域中确定了一个隐函数 z=z(x,y) ,求 $\frac{\partial^2 z}{\partial x\partial y}(1,1)$.

例 3: 已知 φ 为二阶连续可微函数,z=z(x,y) 为由方程 $x^3+y^3+z^3=\varphi(z)$ 确定的隐函数,求 $\frac{\partial^2 z}{\partial x \partial y}$ 即其存在的条件.

例 4: 设 z=f(x,y) 是由方程 F(x-y,y-z)=0 确定的隐函数,求 z_x,z_y,z_{xy}

例 5: 设 f(x+y,y+z,z+x)=0, 求 z_x,z_y,z_{yx} .

例 6: 设 z=z(x,y) 是由方程 $x^3+y^3+z^3=x+y+z$ 确定的二阶函数,求 $\frac{\partial^2 z}{\partial x \partial y}$.

反函数定理

若 u = f(x,y), v = f(x,y) 在 (x_0,y_0) 的某个邻域中连续可微, $u_0 = f(x_0,y_0), v_0 = g(x_0,y_0)$ 且

$$\frac{\partial(u,v)}{\partial(x,y)}\Big|_{(x_0,y_0)} \neq 0.$$

则在 (u_0,v_0) 的邻域内存在唯一的反函数组 x=x(u,v),y=y(u,v),满足 $u_0=u(x_0,y_0),v_0=v(x_0,y_0)$,且成立

$$\frac{\partial(x,y)}{\partial(u,v)}\frac{\partial(u,v)}{\partial(x,y)} = 1.$$

例 1: 已知
$$\begin{cases} x=e^v+u^3\\y=e^u-v^3 \end{cases}$$
,将点 $(u_0,v_0)=(1,0)$ 映为 $(x_0,y_0)=(2,e)$,则其逆映射
$$\begin{cases} u=u(x,y)\\v=v(x,y) \end{cases}$$
 在点 $(x_0,y_0)=(2,e)$ 处的 Jacobi 矩阵的行列式 $\det\frac{\partial(u,v)}{\partial(x,y)}\bigg|_{(x,y)=(2,e)}$ 为

例 2: 己知
$$\begin{cases} x=e^v+u^3\\ y=e^u-v^3 \end{cases}$$
 , 当 $(u,v)=(0,1)$ 时, $(x,y)=(e,0)$,则偏导数 $\frac{\partial u}{\partial x}(e,0)=.$

考点六: 含参积分

含参常义积分的相关性质

设 $D \subset \mathbb{R}$,若二元函数 f(x,t) 定义在 $[a,b] \times D$ 上,对于任意 $t \in D$,设 f(x,t) 作为 x 的函数在 [a,b] 上常义可积,则 $\varphi(t) = \int_a^b f(x,t) dx$ 是定义在 D 上的含参变量常义积分,且满足以下性质:

1. 设 t_0 是 D 的聚点,如果 $\lim_{t\to t_0} f(x,t) = \psi(x)$,且收敛关于 $x\in [a,b]$ 是一致的,则 $\psi(x)$ 在 [a,b] 上有界可积,且

考点六: 含参积分

$$\lim_{t \to t_0} \varphi(t) = \lim_{t \to t_0} \int_a^b f(x, t) \mathrm{d}x = \int_a^b \psi(x) \mathrm{d}x.$$

8

2. 设 f(x,t) 在 $[a,b] \times [c,d]$ 上连续,则

$$\varphi(t) = \int_{a}^{b} f(x, t) \mathrm{d}x.$$

在 [c,d] 上连续.

- 3. 设 f(x,t) 在 $[a,b] \times [c,d]$ 上连续,则积分可交换次序.
- 4. 设 $f(x,t), f_t(x,t)$ 在 $[a,b] \times [c,d]$ 上连续,则 $\varphi(t)$ 在 [c,d] 上可导,导数为 $\varphi'(t) = \int_a^b f_t(x,t) \mathrm{d}x$.
- 5. 设 f(x,t) 在 $[a,b] \times [c,d]$ 上连续, $\alpha(t),\beta(t)$ 在 [c,d] 上连续,且 $a \leq \alpha(t),\beta(t) \leq b$,则

$$\varphi(t) = \int_{\alpha(t)}^{\beta(t)} f(x, t) dx$$

在 [c,d] 上连续,若进一步 f_t 在矩形上连续,且 α,β 可导,则 $\varphi(t)$ 也可导,导函数为

$$\varphi(t) = f(\beta(t), t)\beta'(t) - f(\alpha(t), t)\alpha'(t) + \int_{\alpha(t)}^{\beta(t)} f_t(x, t) dx.$$

例 1: 设 f(x) 在 [0,1] 上连续,考察函数

$$F(t) = \int_0^1 \frac{t}{x^2 + t^2} f(x) dx.$$

的连续性.

含参广义积分判敛准则

考虑含参变量广义积分 $\varphi(t)=\int_a^{+\infty}f(x,t)\mathrm{d}x$,设积分对每一个 t 收敛,如果 $\forall \varepsilon>0$,存在 \$A_0\$(与 t 无关),当 $A>A_0$ 时,有

$$\Big| \int_{A}^{+\infty} f(x, t) \mathrm{d}x \Big| < \varepsilon.$$

则称含参变量广义积分关于 t 一致收敛.

下面是其他证明一致收敛的判则:

下面是证明广义积分不一致收敛的判则:

例 1: 证明 $\int_0^{+\infty} x e^{-\alpha x} dx$ 在 $0 < \alpha_0 \le \alpha < +\infty$ 上一致收敛,但在 $0 < \alpha < +\infty$ 上不一致收敛.

例 2: 证明 $\int_0^{+\infty} \frac{x \sin \alpha x}{\alpha(1+x^2)} dx$ 在 $0 < \alpha < +\infty$ 上非一致收敛.

- 1. Cauchy 一致收敛准则 $\int_a^{+\infty} f(x,t) dx$ 关于 $t \in T$ 一致收敛的充分必要条件 是: $\forall \varepsilon > 0$, 存在 $A_0 > a$, 当 A, $A' > A_0$ 时, 对一切 $t \in T$, 有 $\left| \int_A^{A'} f(x,t) dx \right| < \varepsilon.$
- 2. Weierstrass 判别法 (M-判别法) 设 $\int_{a}^{+\infty} f(x,t) dx$ 在 $t \in T$ 上收敛, 如果
 - $(1) |f(x,t)| \leqslant F(x), \ a \leqslant x < +\infty, \ t \in T,$
 - (2) $\int_{a}^{+\infty} F(x) dx$ 收敛,

则
$$\int_{a}^{+\infty} f(x,t) dx$$
 关于 $t \in T$ 一致收敛.

- 3. Abel 判别法 设
 - (1) $\int_{a}^{+\infty} f(x,t) dx$ 关于 $t \in T$ 一致收敛,
 - (2) 函数 g(x,t) 关于 x 单调, 且作为二元函数是有界的,

则
$$\int_{0}^{+\infty} f(x,t)g(x,t) dx$$
 关于 $t \in T$ 一致收敛.

- 4. Dirichlet 判别法 设
 - (1) $\int_{a}^{A} f(x,t) dx, \forall A \ge a, t \in T$ 是一致有界的,
 - (2) 函数 g(x,t) 关于 x 单调, 且 $\lim_{x\to +\infty} g(x,t)=0$ 关于 $t\in T$ 是一致的,

则
$$\int_{a}^{+\infty} f(x,t)g(x,t) dx$$
 关于 $t \in T$ 一致收敛.

5. **Dini 定理** 设 f(x,t) 在 $D = \{(x,t) \mid a \leq x < +\infty, \alpha \leq t \leq \beta\}$ 上连续且不变 号, $\varphi(t) = \int_a^{+\infty} f(x,t) \, \mathrm{d}x$ 在 $[\alpha,\beta]$ 上连续,则 $\int_a^{+\infty} f(x,t) \, \mathrm{d}x$ 关于 $t \in [\alpha,\beta]$ 为一致收敛.

图 1: 收敛性判则

1. 按定义: $\exists \varepsilon_0 > 0, \forall M > 0$, 存在 A(M) > M 以及 $t(M) \in T$, 使得 $\left| \int_{A(M)}^{+\infty} f(x, t(M)) \, \mathrm{d}x \right| \geqslant \varepsilon_0.$

§23.2 含参变量广义积分

287

2. 按 Cauchy 一致收敛准则: $\exists \varepsilon_0 > 0, \forall M, 存在 A_1(M) > M, A_2(M) > M$ 以及 $t(M) \in T$, 使得

$$\left| \int_{A_1(M)}^{A_2(M)} f(x, t(M)) \, \mathrm{d}x \right| \geqslant \varepsilon_0.$$

- 3. 若 f(x,t) 在 $[a,+\infty) \times T$ 上连续, t_0 为 T 的一个聚点, $\int_a^{+\infty} f(x,t) \, \mathrm{d}x$ 在 $T \setminus \{t_0\}$ 上收敛, 而 $\int_a^{+\infty} f(x,t_0) \, \mathrm{d}x$ 发散, 则 $\int_a^{+\infty} f(x,t) \, \mathrm{d}x$ 在 T 上必定不一致收敛.
- 4. 若 f(x,t) 在 $D = \{a \le x < +\infty, \alpha \le t \le \beta\}$ 上连续, $\varphi(t) = \int_a^{+\infty} f(x,t) dx$ 在 $[\alpha, \beta]$ 上存在但不连续, 则 $\int_a^{+\infty} f(x,t) dx$ 在 $[\alpha, \beta]$ 上不一致收敛.

图 2: 证明不收敛的判则

考点七:证明题(选讲) 11

含参广义积分的相关性质

连续性: 设 f(x,t) 在 $D = \{(x,t)|a \le x < +\infty, \alpha \le t \le \beta\}$ 上连续,且 $\int_a^{+\infty} f(x,t) dx$ 关于 t 在 $[\alpha,\beta]$ 上一致 收敛于 $\varphi(t)$,则 $\varphi(t)$ 在 $[\alpha,\beta]$ 上连续.

可微性: 设 f(x,t), $f_t(x,t)$ 在 D 上连续, $\int_a^{+\infty} f(x,t) dx$ 在 $[\alpha,\beta]$ 上收敛于 $\varphi(t)$, $\int_a^{+\infty} f_t(x,t) dx$ 关于 $t \in [\alpha,\beta]$ 一致收敛,则 $\varphi(t)$ 在 $[\alpha,\beta]$ 上可微,且

$$\varphi'(t) = \frac{\mathrm{d}}{\mathrm{d}t} \int_{a}^{+\infty} f(x,t) \mathrm{d}x = \int_{a}^{+\infty} f_{t}(x,t) \mathrm{d}x$$

例 1: 己知
$$\int_0^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$
, $I(t) = \int_0^{+\infty} \frac{1 - e^{-tx^2}}{x^2} dx$, $t \in [0, +\infty)$.

$$(1). 证明 \ f(t,x) = \begin{cases} \frac{1-e^{-tx^2}}{x^2}, & x \neq 0, t \in \mathbb{R} \\ t, & x = 0, t \in \mathbb{R}. \end{cases}$$
 在 \mathbb{R}^2 上连续.

- (2). 证明: I(t) 在 $[0, +\infty)$ 上连续.
- (3). 证明: I(t) 在 $(0,+\infty)$ 上可导并计算 I'(t).
- (4). 求 I(t).

例 2: 设 $f \in C^{(0)}[0,1]$ 且 $f(x) > 0, \alpha > 0$. 分类讨论 $g(y) = \int_0^1 \frac{y^{\alpha} f(x)}{x^2 + y^2} \mathrm{d}x (y \in [0, +\infty))$ 的连续性.

具体含参积分的计算

例 1: 计算积分 $\int_0^{+\infty} \frac{\arctan bx - \arctan ax}{x} dx$, 其中 b > a > 0.

例 2: 计算积分 $\int_0^1 \frac{x^b - x^a}{\ln x} dx$.

例 3: 计算积分 $\int_0^{+\infty} \frac{1-e^{-ax}}{xe^x} dx$

考点七:证明题(选讲)

多元函数极限、连续、可微性的证明题

这一类一般是通过 \mathbb{R}^n 上的点集性质(如聚点定理、Heine 归结定理、有限覆盖定理等)进行估计和放缩,或通过反证法导出谬误.

例 1: f(x,y) 在 (x_0,y_0) 的一个去心邻域上有定义,如果: (1) 对 x_0 的每一个邻域内的 x,都有 $\lim_{y\to y_0}f(x,y)=g(x)$. (2) $\lim_{x\to x_0}f(x,y)=h(y)$ 关于 y 在 $0<|y-y_0|<\eta$ 一致.

则有 $\lim_{x\to x_0}g(x)=\lim_{y\to y_0}h(y).$

例 2: 设 f(x,y) 分别对 x,y 连续,且对 y 单调,则 f(x,y) 是 D 上的二元函数.

考点七:证明题(选讲) 12

例 3: 函数 f(x,y) 定义在单位闭正方形上,在底边上连续,证明: $\exists \delta > 0$ 使得 f(x,y) 在 $I_{\delta} = \{(x,y) | 0 \le x \le 1, 0 \le y \le \delta\}$ 上有界.

例 4: 设 f 是定义在连通集 D 上的连续函数, $a,b \in D$,则对于任意 $C \in (f(a),f(b))$,存在点 $c \in D$,使得 f(c) = C.

例 5: f(x,y) 在全空间上连续,且 $\lim_{x^2+y^2\to\infty}f(x,y)$ 存在,则 f(x,y) 在 \mathbb{R}^2 上有界且一致连续.

例 6: 若函数 f(x,y) 的偏导数 f_x 和 f_y 在区域 D 内存在, $f_x=f_y=0$,证明 f(x,y) 在 D 上为常值函数.

例 7: 设 K 是 \mathbb{R}^k 的紧集,函数 $f:\mathbb{R}^m \times K \to \mathbb{R}$ 连续,记 $g(x) = \min_{y \in K} f(x,y)$,证明 g 连续.

例 8: 设二元函数 f(x,y) 在开圆盘 D_R 上可微,在闭圆盘上连续. 若函数 f(x,y) 在圆周上取常数值,则其在开圆盘上必有驻点.