

CMF10120D-Silicon Carbide Power MOSFET

Z-FetTM MOSFET

N-Channel Enhancement Mode

 \mathbf{V}_{DS} = 1200 V $\mathbf{I}_{D(MAX)}$ = 24 A $\mathbf{R}_{DS(on)}$ = 160mΩ

Features

- High Speed Switching with Low Capacitances
- High Blocking Voltage with Low R_{DS(on)}
- Easy to Parallel and Simple to Drive
- Avalanche Ruggedness
- Resistant to Latch-Up
- Halogen Free, RoHS Compliant

Benefits

- Higher System Efficiency
- Reduced Cooling Requirements
- Increased System Switching Frequency

Applications

- Solar Inverters
- High Voltage DC/DC Converters
- Motor Drives
- · Switch Mode Power Supplies

Package

TO-247-3

Part Number	Package
CMF10120D	TO-247-3

Maximum Ratings ($T_c = 25^{\circ}C$ unless otherwise specified)

Symbol	Parameter	Value	Unit	Test Conditions	Note	
т	Continuous Drain Current	24	Α	$V_{GS}@20V, T_C = 25^{\circ}C$	Fig. 10	
I_{D}	Continuous Diain Current	13	A	$V_{GS}@20V, T_{C} = 100^{\circ}C$	Fig. 10	
${ m I}_{ m Dpulse}$	Pulsed Drain Current	49	А	Pulse width t_p limited by T_{jmax} $T_C = 25 ^{\circ}C$		
E _{AS}	Single Pulse Avalanche Energy	1.2	J	I _D = 10A, V _{DD} = 50 V, L = 20 mH	Fig. 15	
E _{AR}	Repetitive Avalanche Energy	0.8	J	t _{AR} limited by T _{jmax}		
${ m I}_{\sf AR}$	Repetitive Avalanche Current	10	А	$I_{D} = 10 \text{A, } V_{DD} = 50 \text{ V, L} = 15 \text{ mH}$ $t_{AR} \text{ limited by } T_{jmax}$		
V_{GS}	Gate Source Voltage	-5/+25	V			
P _{tot}	Power Dissipation	134	W	T _c =25°C	Fig. 9	
T_{j} , T_{stg}	Operating Junction and Storage Temperature	-55 to +135	°C			
T _L	Solder Temperature	260	°C	1.6mm (0.063") from case for 10s		
M _d	Mounting Torque	1 8.8	Nm lbf-in	M3 or 6-32 screw		

Electrical Characteristics $(T_c = 25^{\circ}C \text{ unless otherwise specified})$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions	Note	
$V_{(BR)DSS}$	Drain-Source Breakdown Voltage	1200			V	$V_{GS} = 0V$, $I_D = 50\mu A$		
			2.4	3.5	V	$V_{DS} = V_{GS}$, $I_D = 0.5$ mA		
V	Gate Threshold Voltage		3.1	4.1		$V_{DS} = V_{GS}$, $I_D = 1.0 \text{ mA}$	Fig. 11	
$V_{GS(th)}$	Gate Tilleshold Voltage		1.8		V	$V_{DS} = V_{GS}$, $I_{D} = 0.5$ mA, $T_{J} = 135$ °C	Fig. 11	
			2.3		V	$V_{DS} = V_{GS}$, $I_{D} = 1.0$ mA, $T_{J} = 135$ °C		
${ m I}_{ m DSS}$	Zero Gate Voltage Drain Current		0.5	50	μA	$V_{DS} = 1200V, V_{GS} = 0V$		
IDSS	Zero date voltage Brain current		5	150	μΛ	$V_{DS} = 1200V, V_{GS} = 0V, T_{J} = 135^{\circ}C$		
I_{GSS}	Gate-Source Leakage Current			0.25	μΑ	$V_{GS} = 20V$, $V_{DS} = 0V$		
R _{DS(on)}	Drain-Source On-State Resistance		160	200	mΩ	$V_{GS} = 20V, I_{D} = 10A$	Fig. 3	
**DS(on)	Brain Source on State Resistance		190	240	11132	$V_{GS} = 20V, I_D = 10A, T_J = 135$ °C	119.5	
g _{fs}	 Transconductance		4.2		S	V _{DS} = 20V, I _{DS} = 10A	Fig. 6	
9fs	Transconductance		3.9			V_{DS} = 20V, I_{DS} = 10A, T_{J} = 135°C	1 19. 0	
C _{iss}	Input Capacitance		928					
C_{oss}	Output Capacitance		63		pF	$V_{GS} = 0V$	Fig. 13	
Crss	Reverse Transfer Capacitance		7.5			$V_{DS} = 800V$ f = 1MHz		
E _{oss}	Coss Stored Energy		32		μJ	Vac = 25mV	Fig 14	
t _{d(on)v}	Turn-On Delay Time		8.8			$V_{DD} = 800V, V_{GS} = 0/20V$		
t_{fv}	Fall Time		21			$I_{D} = 10A$		
$t_{\text{d(off)V}}$	Turn-Off Delay Time		38		ns	$R_{G(ext)} = 2.5\Omega, R_L = 40\Omega$	fig. 17	
t _{rV}	Rise Time		34			Timing relative to $V_{\scriptscriptstyle DS}$		
R _G	Internal Gate Resistance		13.6		Ω	$f = 1MHz$, $V_{AC} = 25mV$		

Built-in SiC Body Diode Characteristics

Symbol	Parameter	Тур.	Max.	Unit	Test Conditions	Note
V_{SD}	Diode Forward Voltage	3.5		\/	$V_{GS} = -5V$, $I_F = 5A$, $T_J = 25^{\circ}C$	
V _{SD}	Diode Forward Voltage	3.1	V	$V_{GS} = -2V, I_F = 5A, T_J = 25^{\circ}C$		
t _{rr}	Reverse Recovery Time	138		ns	V _{GS} = -5V, I _F =10A, T _J = 25°C	
Qrr	Reverse Recovery Charge	94		nC	$V_{R} = 800V$,	Fig. 22
I_{rrm}	Peak Reverse Recovery Current	1.57		Α	$di_F/dt = 100A/\mu s$	

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Unit	Test Conditions	Note
$R_{\theta JC}$	Thermal Resistance from Junction to Case	0.66	0.82			
$R_{\theta CS}$	Case to Sink, w/ Thermal Compound	0.25		K/W		Fig. 7
$R_{\theta JA}$	Thermal Resistance From Junction to Ambient		40	1,711		, , ,

Gate Charge Characteristics

Symbol	Parameter	Тур.	Max.	Unit	Test Conditions	Note
Q_{gs}	Gate to Source Charge	11.8				
Q_{gd}	Gate to Drain Charge	21.5		nC		Fig.12
Qg	Gate Charge Total	47.1			Per JEDEC24 pg 27	

Figure 1. Typical Output Characteristics $T_1 = 25$ °C

Figure 2. Typical Output Characteristics $T_1 = 135$ °C

Figure 3. Normalized On-Resistance vs. Temperature

Figure 5. On-Resistance vs. Gate Voltage

Figure 4. On-Resistance vs. Drain Current

Figure 6. Typical Transfer Characteristics

Figure 7. Transient Thermal Impedance (Junction - Case) with Duty Cycle

Figure 9. Power Dissipation Derating Curve

T_c (°C)

Figure 11. Gate Threshold Voltage vs. Temperature

Figure 8. Safe Operating Area

Figure 10. Continuous Current Derating Curve

Figure 12. Typical Gate Charge Characteristics (25°C)

Figure 13A and 13B. Typical Capacitances vs. Drain Voltage at $V_{\rm GS}$ = 0V and f = 1 MHz

V_{GS} = 0/20V V_{DD} = 50V L = 20 mH 10 2500 E_{AS} = 1.2 J 2000 1500 S 8 ا_ه (A) 1000 500 0 0 0.001 0.002 0.003 0.004 0.005 0.006 Time (sec)

Figure 14. Typical $C_{\rm oss}$ Stored Energy

Figure 16. Resistive Switching Times vs. External $\rm R_{\rm G}$ at $\rm V_{\rm DD}$ = 400V, $\rm ~I_{\rm D}$ = 10A

Figure 17. Resistive Switching Times vs. External $\rm R_{\rm G}$ at $\rm V_{\rm DD}$ = 800V, $\rm I_{\rm D}$ = 10A

400 E_{TOT,SW} 350 Switching Energy (µJ) 300 250 200 150 **E**OFF $V_{GS} = 0/20V$ $R_G = 20 \Omega$ Tot 100 V_{DD} = 800V L= 856 μH 50 FWD: C4D05120A I_D = 10 A 25 T, (°C)

Figure 18. Clamped Inductive Switching Energy vs.
Drain Current (Fig. 20)

Figure 19. Clamped Inductive Switching Energy vs. Junction Temperature (Fig 20)

Figure 20. Clamped Inductive Switching Waveform Test Circuit

Figure 21. Switching Test Waveforms for Transition times

Test Circuit Diagrams and Waveforms

Fig 22. Body Diode Recovery Test

Fig 23. Body Diode Recovery Waveform

Fig 24. Unclamped Inductive Switching Test Circuit

Fig 25. Unclamped Inductive Switching waveform for Avalanche Energy

ESD Ratings

ESD Test	Total Devices Sampled	Resulting Classification
ESD-HBM	All Devices Passed 1000V	2 (>2000V)
ESD-MM	All Devices Passed 400V	C (>400V)
ESD-CDM	All Devices Passed 1000V	IV (>1000V)

Package Dimensions

Package TO-247-3

Α	.605	.635	15.367	16.130
В	.800	.831	20.320	21.10
С	.780	.800	19.810	20.320
D	.095	.133	2.413	3.380
E	.046	.052	1.168	1.321
F	.060	.095	1.524	2.410
G	.215	TYP	5.460) TYP
Н	.175	.205	4.450	5.210
J	.075	.085	1.910	2.160
K	6°	21°	6°	21°
L	4°	6°	4°	6°
М	2°	4°	2°	4°
N	2°	4°	2°	4°
Р	.090	.100	2.286	2.540
Q	.020	.030	.508	.762
R	9°	11°	9°	11°
S	9°	11°	9°	11°
Т	2°	8°	2°	8°
U	2°	8°	2°	8°
V	.137	.144	3.487	3.658
W	.210	.248	5.334	6.300
Х	.502	.557	12.751	14.150
Y	.637	.695	16.180	17.653
Z	.038	.052	0.964	1.321
AA	.110	.140	2.794	3.556

.046

.176

0.766

4.100

1.168

4.472

Inches

Max

Min

POS

Millimeters

Max

Min

Recommended Solder Pad Layout

Part Number	Package	Marking
CMF10120D	TO-247-3	CMF10120

ВВ

CC

.030

.161

"The levels of environmentally sensitive, persistent biologically toxic (PBT), persistent organic pollutants (POP), or otherwise restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2002/95/EC on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS), as amended through April 21, 2006.

This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, air traffic control systems, or weapons systems.

Copyright © 2010-2012 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks and Z-REC and Z-FET are trademarks of Cree, Inc.