IIT B RISC PIPELINED

Github repository: https://github.com/shambhavii13/IITB-RISC-23

Deep Boliya Shambhavi Shanker Swadhin Dash Scaria K.

```
instructions:
```

```
RA+6im — RB (")
O+9imm — RA (")
      0000
 ADI
      0011
 LLI
          0100
 LW
            M (RB+6imm) (RA (Din)
     0101
 SW
           if Branch PC'=PC+2imm
     1000
 BED
     1001
 BLT
     1010
 BLE
    1100 : Dest RA (PC+2); PC+2 imm
 JAL
 TLR 1101 : Deal RA (PC+2) ; RB
 JR1 1111 : to RA + 2 imm
```


Our Modifications and Assumptions	
-> Register File has 3 more ports	
PC can be written RF_PC_Write RO Using this port if PCEN=1' PC-EN	PC can be
-> The controller and Hazard	read at start of each clock
Detection unit are independent of	ycle.
the pipeline i.e they effect all pipelines	
-> Since the pointer counter (PC) is stond in Ro in the se might had to branching in other instructions such as the distination, hince causing hazards.	iguliu file, this ADA if Ro is
We have it up to the programmers obtained.	
-> We have used an LMSM block f	a. the
	or me
instruction LM-SM, whose wor	king is
instruction LM-SM, whose wor explained later.	king is
instruction LM-SM, whose wor	king is
instruction LM-SM, whose wor	king is
instruction LM-SM, whose wor	king is
instruction LM-SM, whose wor	king is
instruction LM-SM, whose wor	king is

	000 0000 0000 0011 ADD, ADC, ADZ, ACA		alu-op	J	
1		TI FILL, FILL	NDU, NDC , NDZ	NCU, NCC, NCZ	0010
	AWC, ACW		0100	OIDI .	0010
(,000			. 0101	
1F	ID	RR	l ex	mem	WB
					NOB
RF_PC_R → IM	odd IRII-9	→			(IR53)
RE-PC-R -ALV		→ R8-6 - RF-A2	→ Dest2	→	-dul -1 RF_Az_mux
'+2 ALU-		- Dest -			RF_A3
ALV-2C - MUX			A_mux - ALV_A	^	
MUX - RF_PC-		RA CRE_DD - ALL	D WITX		
		RB (RF_D2) - ALL	B_mux ALV-B	3	
lm_data	→		ALU-C	,	-ALU-C-+WB_MUX-
PC+2 -		→)	→ RF_D3 ←RED3_mux←
PC —	→	→			
.4	SH_EN=D	DEST_MUX =	DEST_2_MUX =		
MUX: 00	SM_MUX =0	LM_MUX = 0	ALU_cfaq = 1		$RF_D_3 - MUX = 0$
PC_EN=1	SE_MUX = 0	ALU-A-MUX =	ALU_2-ften = 1		RF_ D3-EN= 1
	36211011	A LU-B-MUX			RF_ A3_MVX = D
		A LV-D-1101	000		
			\sim	a ()	D 1
0000 t	ADI ALU-	op: 00000da	× (Ka	(+ 9mm6)-	→ 1/2
		1			
IF	ID	RR	e×	mem	WB
RF_PC_R IML	odd 1R11-9	\rightarrow $ R_{11}-a-1RF_A $			-dul -1 RF_Az_mux
REPC-R →ALU_	2A - 1R8-6	→	p-dest2)	-0000 - Kr-113-1
+2 ALU-2	10	Ly Dest -> -	→		RF_A3
ALV-2C - MUX	L		A_mux - ALU_A		
MUX	N I I	hitha RA (RF_DI) → ALU-			
1 4 40	SM_mu	X-1-1-MMUX -1 ALU-B	B_MUX ALV-B		
lm_ <u>data</u>	→		ALU-C	}	-ALV-C-WB_mux-
PC+2		→)	RF_D3 ← RF_D3_mux←
PC ——	 	→	OI DEST_2_MUX=C	MEM_WR_EN=C	D MB-MUX = 0
MUX: 00	SH_EN=D	DEST_MUX =	Ol Des 1-23 Minus		
PC_EN=1	SM_MUX =0	LM_MUX =0	ALU - 2- +1009 = 1		RF_D3_MUX = 0
	SE_MUX = 0	ALU-A-MUX =	000		RF_D3_EN= I
		ALV-B-MUX=	001		RF_A3_mux=0

0011 LLI	ALU-0): 1001 (LLI): Jú	etretuens ALV-	B LL	I ra, Imm9
1F	ID	RR	ε×	mem	NB
$\begin{array}{ccc} RF_PC_R & \longrightarrow Modd \\ RF_PC_R & \longrightarrow ALV_2A \\ +2 & \longrightarrow ALV_2B \\ ALV_2C & \longrightarrow MUX \\ MUX & \longrightarrow RF_PC_D \end{array}$	IR8-D seq -1 se-mux-1 shiften	RA (RF-D) - ALU-A-MUX		· · · · · · · · · · · · · · · · · · ·	(IR ₁₁ -9) -dul -1 RF-A3_mux + RF-A3
Im_data PC+2 PC MIUX: 00	SM_mux-) SM_EN=0	LM_MUX PLU-BLIMUX	B_MUX - ALU-B ALU-C	MEM_WREN=0	ALU-C-+WB-MUX- RF.D3 - RED3.MUX- WB-MUX = 0
Pc_ eN=1	SM_MUX = 0 SE_MUX = 1	LM_MUX = 0 ALU_A_MUX = 000 ALU_B_MUX =001	ALU - 2 - flag = 0		RF_D3_MUX = 0 RF_D3_EN= L RF_A3_MUX=0
0100 FM	s alu of	:0000 (add)	M(R	(b + 9mm 6)→ Ra
IF.	ID	RR	εx	mem	wв
$\begin{array}{ccc} RF_PC - R & \longrightarrow IModd \\ RF_PC - R & \longrightarrow ALV - 2A \\ & & & \\ & & & \\ & & & \\ LV - 2C & \longrightarrow MUX \end{array}$	1R8-6	RB(RF-D2) - ALU-A-MUX	A_mux — Alu_A		(IR1-9) -dul -1 RF-A3-mux RF-A3
MUX — RF_PC_ No Im_data PC +2 PC — >		-1 LM MUX -1 PLU-BETTUE	B_mux — ALU-B ALU-C	→alu-c —1 mem-add mem_out —>	ALU-C—+ WB_MUX— RF.D3 ←RED3_MUX←
MUX: 00 PC_EN=1	SH_EN=D SM_MUX=0 SE_MUX=0	DEST_MUX = 10 LM_MUX = 0 ALU-A_MUX = 001 ALU-B_MUX = 001	Dest 2 mux = 0 ALU - C fung = 0 ALU - 2 - fung = 0	MEM_WREN=0	WB_MUX = L RF_D3_MUX = 0 RF_D3_EN= L RF_A3_MUX = 0

SW 0101	alu	_ap = add 10	000)	sw ra	, rb, 9 mm
IF	ID	RR	ϵ^{x}	mem	WB
$\begin{array}{ccc} RF_PC_R & \longrightarrow IMods \\ RF_PC_R & \longrightarrow ALV_2s \\ +2 & \longrightarrow ALV_2B \\ ALV_2C & \longrightarrow MUX \end{array}$	1R8-6	RB (RF-D2) - ALU-A-MUX	A_mux — ALU_A	RA—1 Din	
MUX — RF_PC W m_data PC+2 — PC	SM_mux	-ILM_MUX -I PLU-B_MUX		alu_c —1 mem_add	
MUX: 00 PC_EN=	SH_EN=0 SM_MUX=0 SE_MUX=0	DEST_MUX = 00 LM_MUX = 0 ALU-A_MUX = 001 ALU-B_MUX = 001	Dest_2_mux=0 ALU_C flag = 0 ALU_2_flag = 0	MEM_WREN=1	WB_MUX = 0 RF_D3_MUX = 0 RF_D3_EN= 0 RF_A3_mux = 0
Bes 100			LE 1010		
1F	ID	RR	ex	mem	WB
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1R8-6	Ra(RF-D1) - ALU-A-MUX RBCRF-D2) - ALU-B-MUX	.		
Im_data Pc+2————————————————————————————————————	from ALV3, PC+2imm	KB CK	B_mux		
MUX: 00 PC_EN=1	SH_EN= 1 SM_MUX =0 SE_MUX = 0	DEST_MUX=00 LM_MUX=0 ALU-A_MUX=000 ALU-B_MUX=000	=01 14 =010 =	MEM_WREN=0	WB_MUX = 0 RF_D3_MUX = 0 RF_D3_EN= 0 RF_A3_MUX = 0
		W	PC-EN=1		

LM	0110	alu-op 1110	
L 1 2 1 1 1 1 1 1 1 1		in (2). PC-EN=0, Were instructions don't get boaded in (4) we stop write mable to RR[EX] in (7), when immediate = 0, we little eff all controls in energy controls in the controls in the control of the control o	
SM	0111	alu-op 11 LD	
	4 117	in (2) PC-EN=O in (3) ID-RR disabled in (6) when immediate = D (1 1 im=0) gets disabled PC-EN=1 in (7), ID_RR is mabled again	