Gil Sales M. Neto & João Victor de Fonseca

Projeto I Modelagem Matemática em Finanças I O Modelo Binomial

Universidade Federal do Rio de Janeiro Instituto de Matemática Bacharelado em Matemática Aplicada

Brasil

Maio, 2019

Sumário

1	OS ALGORITMOS	3
1.1	Simulação do modelo binomial	3
1.2	Plotando o gráfico da questão 1	4
1.2.1	Plot usual	4
1.2.2	Plot com escala Log em Y	5
1.3	Boxplots da questão 2	5
1.4	Boxplots da questão 3	5
2	QUESTÃO 1	7
2.0.1	Plot com escala comum	7
2.0.2	Plot com escala log	8
3	QUESTÃO 2	9
4	QUESTÃO 3	10
5	QUESTÃO 4	11
5.0.1	Valor esperado para o primeiro caso	11
5.0.2	Valor esperado para o segundo caso	11
5.0.3	Média dos valores para o primeiro caso	11
5.0.4	Média dos valores para o segundo caso	11
5.0.5	Conclusão	12
6	QUESTÃO 5	13

1 Os Algoritmos

Esta seção tem como objetivo apresentar todos os códigos utilizados nas simulações.

1.1 Simulação do modelo binomial

Utilizamos a linguagem Python3 para a implementação do algoritmo que simula os caminhos da ação

```
In [1]: ## Função para simular os valores da ação dados os parametros
  def binomial(SO, T, dt, u, d, p):
     Si = SO
     S = []
     t = np.arange(0,T,dt)
     for ti in t:
        rnd = np.random.rand()
        if rnd < p:
            Si *= u
        else:
            Si *= d
            S.append(Si)
     return S</pre>
```

Esse algoritmo tem depedência do pacote Numpy do Python, e os gráficos foram plotados com o pacote MatPlotLib.pyplot

1.2 Plotando o gráfico da questão 1

Foram plotados dois gráficos, os quais seguem os códigos

1.2.1 Plot usual

```
In [2]: ## Definição dos parametros
        T = 20
        dt = 0.5
        S0 = 8
        u = 1.1
        d = 0.8
        p = 0.65
        ## Construção da lista de valores da ação pelo tempo
        x = [binomial(S0, T, dt, u, d, p) for i in range(0,20)]
        ## Inserir o valor inicial em cada lista
        for i in range (0,20):
            x[i].insert(0,S0)
        ## Discretização do tempo
        ts = np.linspace(0,20,41)
        ## Plot do gráfico
        plt.figure(figsize=(20,10))
        for i in range (0,20):
            plt.plot(ts,x[i],label="{0:.5f}".format(x[i][-1]))
        plt.title('Simulação com 20 caminhos de valor da ação')
        plt.legend(title='Valor final', loc='upper center',
         \rightarrow bbox_to_anchor=(0.5,1.05))
        plt.xlabel('Tempo')
        plt.ylabel('Valor da Ação.')
        plt.show()
```

1.2.2 Plot com escala Log em Y

1.3 Boxplots da questão 2

```
In [30]: vs = []
    med_1 = []
    vf = []
    for j in [250,500,1000,2000]:
        vs.append([binomial(S0, T, dt, u, d, p)[-1] for i in range(0,j)])
    plt.boxplot(vs,showfliers=False)
    plt.title('Boxplot com simulações')
    plt.xlabel('Número de caminhos executados na simulação')
    plt.xticks([1,2,3,4],[250,500,1000,2000])
    plt.show()
```

1.4 Boxplots da questão 3

```
In [83]: u_n = np.sqrt(u)
    d_n = np.sqrt(d)
    dt_n = dt/2

vs = []
    for j in [250,500,1000,2000]:
        vs.append([binomial(S0, T, dt_n, u_n, d_n, p)[-1] for i in range(0,j)])

plt.boxplot(vs,showfliers=False)
```

```
plt.title('Boxplot com simulações')
plt.ylabel('Valores das ações ao tempo final')
plt.xlabel('Número de caminhos executados na simulação')
plt.xticks([1,2,3,4],[250,500,1000,2000])
plt.show()
```

Foi pedido para fixar os parametros T=20 e $\Delta t=0.5$ e escolher os outros, nossos parâmetros então ficaram:

- T = 20
- $\Delta t = 0.5$
- u = 1.1
- d = 0.8
- p = 0.65

Como estamos tratando de um modelo binomial que lida com exponenciais, faz-se necessário também visualizar os valores com escala log.

2.0.1 Plot com escala comum

2.0.2 Plot com escala log

Foi pedido um boxplot para 250,500,1000,2000 caminhos de valor de ação

Foi pedido um mesmo boxplot, mas com novos parametros, que ficaram:

- T = 20
- $\Delta t = 0.25$
- $u = \sqrt{(1.1)}$
- $d = \sqrt{(0.8)}$
- p = 0.65

Número de caminhos executados na simulação

A média esperada da binomial pode ser dada pela seguinte fórmula:

$$E[X] = (p \cdot u + q \cdot d)^n \cdot S_0$$

onde q=(1-p), n=T, e os outros são os parametros do algoritmo A média do conjunto de dados é obtida pela média aritmetica, utilizando o método mean do numpy.

5.0.1 Valor esperado para o primeiro caso

$$E[X] = (0.65 \cdot 1.1 + 0.35 \cdot 0.8)^{20} \cdot 8$$

$$\approx (0.995)^{20} \cdot 8$$

$$\approx (0.904) \cdot 8$$

$$\approx 7.237$$

5.0.2 Valor esperado para o segundo caso

$$E[X] = (0.65 \cdot 1.049 + 0.35 \cdot 0.894)^{20} \cdot 8$$

$$\approx (0.994)^{20} \cdot 8$$

$$\approx (0.900) \cdot 8$$

$$\approx 7.2$$

5.0.3 Média dos valores para o primeiro caso

 $250 \ \mathrm{a} \\ \mathrm{c} \\ \mathrm{o} \\ \mathrm{e} \\ \mathrm{c} \\ \mathrm{o} \\ \mathrm{e} \\ \mathrm$

5.0.4 Média dos valores para o segundo caso

 $250 \ \mathrm{a} \\ \mathrm{c} \\ \mathrm{o} \\ \mathrm{e} \\ \mathrm{c} \\ \mathrm{o} \\ \mathrm{e} \\ \mathrm$

5.0.5 Conclusão

falta escrever

Plotar gráfico do erro e concluir sobre