1. (1 valor)

- (a) Considere uma função $f:A\subset\mathbb{R}\to\mathbb{R}$ e um ponto $a\in A$, onde A é um intervalo aberto. Usando a definição, escreva a expressão que traduz a continuidade de f em a. Use quantificadores.
- (b) Dê um exemplo de uma função $f:\mathbb{R}\to\mathbb{R}$ que seja descontínua em, pelo menos, um ponto.

2. (2 valores)

- (a) Mostre que a equação $\ln x = \sin x + \frac{\pi}{2}$ tem uma raíz no intervalo $]\pi, 2\pi[$. Justifique.
- (b) Diga, justificando, se $f:[0,2[\to \mathbb{R} \text{ dada por } f(x)=x \text{ atinge algum dos seus extremos.}]$
- 3. (2 valores) Sabendo que $\sinh(x) = \frac{e^x e^{-x}}{2} e \cosh(x) = \frac{e^x + e^{-x}}{2}$,
 - (a) Mostre que $\cosh(x) = \cosh(-x)$ e $\sinh(x) = -\sinh(-x)$.
 - (b) Represente graficamente a função tangente hiperbólica no seu domínio.
 - (c) Mostre que $\tanh^2(x) = 1 \frac{1}{\cosh^2(x)}$.

4. (1 valor)

- (a) Represente graficamente a função arcsin : $[-1,1] \rightarrow [-\pi/2,\pi/2]$ dada por arcsin $(x) = (\sin)^{-1}(x)$.
- (b) Determine $\arcsin\left(\sin\left(\frac{11\pi}{4}\right)\right)$.

5. (4 valores)

- (a) Seja $f:A\subset\mathbb{R}\to\mathbb{R}$ e $a\in A$ um ponto de acumulação. Defina derivada de f em a.
- (b) Usando a definição, determine a derivada da função $f: \mathbb{R}_0^+ \to \mathbb{R}$ dada por $f(x) = \sqrt{x}$.
- (c) Diga, justificando, se $f: \mathbb{R} \to \mathbb{R}$ dada por f(x) = |x| é derivável.
- (d) Mostre que se $f:A\subset\mathbb{R}\to\mathbb{R}$ é derivável em $a\in A\cup A'$, então f é contínua em a.
- 6. (1 valor) Calcule $\lim_{x\to 0^+} x \ln x$.

7. (2 valores) Calcule as primitivas:

(a)
$$\int \frac{e^x}{4 + e^{2x}} dx$$

(b)
$$\int \frac{e^x}{\sqrt[4]{(3+e^x)^3}} dx$$

- 8. (2 valores)
 - (a) Enuncie o teorema fundamental do cálculo.
 - (b) Mostre que se $f:[-L,L]\to\mathbb{R},$ com L>0, é integrável e tal que f(x)=-f(-x), então

$$\int_{-L}^{L} f(x) = 0.$$

9. (3 valores) Resolva os seguintes integrais:

(a)
$$\int_{1}^{e} \ln{(\sqrt{x})} dx$$

- (b) $\int_0^1 \sqrt{1-x^2} dx$, usando a substituição de variável $x=\sin t$, nos domínios apropriados, e $\cos^2\left(\frac{x}{2}\right)=\frac{1+\cos x}{2}$.
- 10. (2 valores) Determine a área do domínio plano limitado pelas curvas de equação $y=x^2$ e $y=2-x^2$.