STA261 Lecture 8 — 2017-08-02

Neil Montgomery

Last edited: 2017-08-02 20:28

Some population of interest is modeled by a random variable X, up to some parameter θ , whose value is not known. So a sample $\mathbf{X} = X_1, \dots, X_n$ i.i.d. with the same distribution of X will be gathered. We have extensively studied the problem of estimating θ .

Some population of interest is modeled by a random variable X, up to some parameter θ , whose value is not known. So a sample $\mathbf{X} = X_1, \dots, X_n$ i.i.d. with the same distribution of X will be gathered. We have extensively studied the problem of estimating θ .

It would be nice to communicate an amount of uncertainty along with the estimate itself, which will depend on:

the population variance itself

Some population of interest is modeled by a random variable X, up to some parameter θ , whose value is not known. So a sample $\mathbf{X} = X_1, \dots, X_n$ i.i.d. with the same distribution of X will be gathered. We have extensively studied the problem of estimating θ .

It would be nice to communicate an amount of uncertainty along with the estimate itself, which will depend on:

- the population variance itself
- the estimator being used

Some population of interest is modeled by a random variable X, up to some parameter θ , whose value is not known. So a sample $\mathbf{X} = X_1, \dots, X_n$ i.i.d. with the same distribution of X will be gathered. We have extensively studied the problem of estimating θ .

It would be nice to communicate an amount of uncertainty along with the estimate itself, which will depend on:

- the population variance itself
- the estimator being used
- ▶ the sample size

A $(1 - \alpha) \cdot 100$ % confidence interval for θ is a pair of statistics $L(\mathbf{X})$ and $U(\mathbf{X})$ with these properties:

1. L(X) < U(X)

A $(1 - \alpha) \cdot 100$ % confidence interval for θ is a pair of statistics $L(\mathbf{X})$ and $U(\mathbf{X})$ with these properties:

- 1. L(X) < U(X)
- 2. $P(\{L(\mathbf{X}) > \theta)\} \cup \{U(\mathbf{X}) < \theta)\}) = 1 \alpha$

A $(1 - \alpha) \cdot 100$ % confidence interval for θ is a pair of statistics $L(\mathbf{X})$ and $U(\mathbf{X})$ with these properties:

- 1. L(X) < U(X)
- 2. $P(\{L(\mathbf{X}) > \theta)\} \cup \{U(\mathbf{X}) < \theta)\}) = 1 \alpha$

A $(1 - \alpha) \cdot 100$ % confidence interval for θ is a pair of statistics $L(\mathbf{X})$ and $U(\mathbf{X})$ with these properties:

- 1. L(X) < U(X)
- 2. $P(\{L(X) > \theta)\} \cup \{U(X) < \theta)\}) = 1 \alpha$

It's not clear where such a pair of statistics might come from. But they are often easy to find.

A $(1 - \alpha) \cdot 100$ % confidence interval for θ is a pair of statistics $L(\mathbf{X})$ and $U(\mathbf{X})$ with these properties:

- 1. L(X) < U(X)
- 2. $P(\{L(\mathbf{X}) > \theta)\} \cup \{U(\mathbf{X}) < \theta)\}) = 1 \alpha$

It's not clear where such a pair of statistics might come from. But they are often easy to find.

Note: We can allow one of L or U to be a constant, including $\pm \infty$, resulting in a so-called "one-sided" confidence interval.

A $(1 - \alpha) \cdot 100$ % confidence interval for θ is a pair of statistics $L(\mathbf{X})$ and $U(\mathbf{X})$ with these properties:

- 1. L(X) < U(X)
- 2. $P(\{L(X) > \theta)\} \cup \{U(X) < \theta)\}) = 1 \alpha$

It's not clear where such a pair of statistics might come from. But they are often easy to find.

Note: We can allow one of L or U to be a constant, including $\pm \infty$, resulting in a so-called "one-sided" confidence interval.

Note: α is arbitrary and can technically be anything between 0 and 1, but it's usually small and almost always 0.05.

A *pivot*, or *pivotal quantity*, for θ is a function $g(\mathbf{X}, \theta)$ whose distribution is the same for all θ .

A *pivot*, or *pivotal quantity*, for θ is a function $g(\mathbf{X}, \theta)$ whose distribution is the same for all θ .

Less formally, a pivot contains $\boldsymbol{\theta}$ in its formula, but not in its distrbution.

A *pivot*, or *pivotal quantity*, for θ is a function $g(\mathbf{X}, \theta)$ whose distribution is the same for all θ .

Less formally, a pivot contains $\boldsymbol{\theta}$ in its formula, but not in its distrbution.

Example 8.0: $N(\mu, 1)$.

A pivot, or pivotal quantity, for θ is a function $g(\mathbf{X}, \theta)$ whose distribution is the same for all θ .

Less formally, a pivot contains θ in its formula, but not in its distribution.

Example 8.0: $N(\mu, 1)$.

Examples 8.1: $N(\mu, \sigma^2)$ (with $\theta = \mu$, and then with $\theta = \sigma^2$)

A pivot, or pivotal quantity, for θ is a function $g(\mathbf{X}, \theta)$ whose distribution is the same for all θ .

Less formally, a pivot contains θ in its formula, but not in its distrbution.

Example 8.0: $N(\mu, 1)$.

Examples 8.1: $N(\mu, \sigma^2)$ (with $\theta = \mu$, and then with $\theta = \sigma^2$)

Example 8.2: Gamma (α, λ) (with $\theta = \lambda$)

A pivot, or pivotal quantity, for θ is a function $g(\mathbf{X}, \theta)$ whose distribution is the same for all θ .

Less formally, a pivot contains θ in its formula, but not in its distribution.

Example 8.0: $N(\mu, 1)$.

Examples 8.1: $N(\mu, \sigma^2)$ (with $\theta = \mu$, and then with $\theta = \sigma^2$)

Example 8.2: Gamma (α, λ) (with $\theta = \lambda$)

Example 8.3: X_{11}, \ldots, X_{1n} i.i.d $N(\mu_1, \sigma_1^2)$ and X_{21}, \ldots, X_{2m} i.i.d $N(\mu_2, \sigma_2^2)$ and $X_{1i} \perp X_{2j}$ (with $\theta = \sigma_1^2/\sigma_2^2$))

A *pivot*, or *pivotal quantity*, for θ is a function $g(\mathbf{X}, \theta)$ whose distribution is the same for all θ .

Less formally, a pivot contains θ in its formula, but not in its distribution.

Example 8.0: $N(\mu, 1)$.

Examples 8.1: $N(\mu, \sigma^2)$ (with $\theta = \mu$, and then with $\theta = \sigma^2$)

Example 8.2: Gamma (α, λ) (with $\theta = \lambda$)

Example 8.3: X_{11}, \ldots, X_{1n} i.i.d $N(\mu_1, \sigma_1^2)$ and X_{21}, \ldots, X_{2m} i.i.d $N(\mu_2, \sigma_2^2)$ and $X_{1i} \perp X_{2j}$ (with $\theta = \sigma_1^2/\sigma_2^2$))

Example 8.4: Uniform $(0, \theta)$

Since a pivot has θ in the formula, but not in the distribution, confidence intervals can be produces in great abundance.

Since a pivot has θ in the formula, but not in the distribution, confidence intervals can be produces in great abundance.

Example 8.5: $N(\mu, 1)$.

Since a pivot has θ in the formula, but not in the distribution, confidence intervals can be produces in great abundance.

Example 8.5: $N(\mu, 1)$.

Definition: z_{τ} is the solution of $P(Z > z_{\tau}) = \tau$ and $t_{\nu,\tau}$ is the solution of $P(t_{\nu} > t_{\nu,\tau}) = \tau$.

Since a pivot has θ in the formula, but not in the distribution, confidence intervals can be produces in great abundance.

Example 8.5: $N(\mu, 1)$.

Definition: z_{τ} is the solution of $P(Z > z_{\tau}) = \tau$ and $t_{\nu,\tau}$ is the solution of $P(t_{\nu} > t_{\nu,\tau}) = \tau$.

Examples 8.6: $N(\mu, \sigma^2)$ (with $\theta = \mu$, and then with $\theta = \sigma^2$)

Since a pivot has θ in the formula, but not in the distribution, confidence intervals can be produces in great abundance.

Example 8.5: $N(\mu, 1)$.

Definition: z_{τ} is the solution of $P(Z > z_{\tau}) = \tau$ and $t_{\nu,\tau}$ is the solution of $P(t_{\nu} > t_{\nu,\tau}) = \tau$.

Examples 8.6: $N(\mu, \sigma^2)$ (with $\theta = \mu$, and then with $\theta = \sigma^2$)

Example 8.7: Uniform $(0, \theta)$

Suppose you actually encounter some data, say from a $N(\mu,1)$ distribution. Sample size n=9.

4.95, 2.71, 2.55, 3.5, 3.09, 1.39, 0.76, 3.27, 3.54

Suppose you actually encounter some data, say from a $N(\mu,1)$ distribution. Sample size n=9.

$$4.95, 2.71, 2.55, 3.5, 3.09, 1.39, 0.76, 3.27, 3.54$$

The observed value of \overline{X} is what I'd call $\overline{x}=2.86$.

Suppose you actually encounter some data, say from a $N(\mu, 1)$ distribution. Sample size n = 9.

The observed value of \overline{X} is what I'd call $\overline{x} = 2.86$.

To report your estimate for μ you might say "the 95% confidence interval is [2.21, 3.52]".

Suppose you actually encounter some data, say from a $N(\mu, 1)$ distribution. Sample size n = 9.

The observed value of \overline{X} is what I'd call $\overline{x} = 2.86$.

To report your estimate for μ you might say "the 95% confidence interval is [2.21, 3.52]".

That's not strictly speaking a confidence interval, but we call them that anyway.

Just don't go thinking "there is a 95 chance that μ is inside [2.21, 3.52]"