DISEÑO ESTRUCTURAL DE PAVIMENTOS

Código asignatura: MIV-2.4.1 Créditos: 60

Profesores: Dr. Ing. Oscar Giovanon

Dra. Ing. Marta Pagola

OBJETIVOS

El objetivo es profundizar sobre los modelos de diseño de pavimento sus hipótesis y limitaciones. Logrando una real capacitación en el uso de los mismos, por lo que se alternará entre teoría y aplicaciones practicas en los que los participantes irán cobrando progresivamente mayor independencia.

CONTENIDOS

Se analiza el comportamiento de una estructura Vial bajo la óptica de la mecánica del continuo con diferentes hipótesis de los Modelos de Diseño Empíricos Mecanicistas, comportamiento lineal y no lineal, condiciones iniciales o evolución de deterioros,

Se reconocen las actuales limitaciones de los modelos de predicción, planteando la necesidad de su complementación con las técnicas de dosificación de materiales y especificaciones.

PROGRAMA ANALÍTICO

1.- El proceso de deterioro de una estructura vial

<u>Planteo de la problemática general de comportamiento estructural</u>, donde se ponen de manifiesto los distintos deterioros, las variables que los condicionan y sus interacciones. Se pondrá énfasis en que el diseño de espesores es uno de los elementos que se ve condicionado por el resto como ser: dosificación de cada material, una adecuada técnica constructiva, acciones de mantenimiento, etc

2.- Modelización de estructuras viales

Parámetros intervinientes en el modelo. Consideración de las variables:

- Estructura (Caracterización de Materiales para el Diseño Estructural).
- Tránsito (Vinculación con el Deterioro Estructural).
- Entorno, Clima (Condicionante del Comportamiento).

Distintos niveles de aproximación al comportamiento:

- Linealidad y no linealidad.
- Condiciones iniciales o modelo incremental.
- Tránsito equivalente o espectro de cargas.

<u>Retroajuste de Rigideces Estructurales</u>. (Backcalculation of modulus) Evaluación Estructural

Utilización de mediciones de la deformada en superficie deflexiones por impacto FWD, regla Benkelman y deflectógrafo Lacroix.

- Ensayos complementarios, DCP, georradar, calado de probetas, toma de muestras
- Necesidad de hipótesis modulares, importancia del número y posición de los sensores.

- Base de referencia en la medición de deformaciones.
- Entorno del momento y forma de medición (frecuencia, temperatura, época, estado del pavimento).

3.- Periodo de vida en servicio, falla estructural

<u>Definición del fin de un período de vida</u>; criterios de serviciabilidad y estrategias de diseño (diseño por etapas).

Definición de criterios de falla.

- Criterios en laboratorio.
- Criterios en servicio, pistas de ensayo o tramos reales.
- Coeficientes de ajuste, funciones de transferencia.
- Su vinculación con la ponderación de variables como tránsito y clima.

4.- Diseño de Pavimentos Flexibles

Comentarios sobre Métodos de diseño SHELL, AASHO93, MPEDG AASHO 2015 Utilización del modelo mecanicista empírico BackViDe 2018

5.- Aspectos del Diseño de Aeropuertos

Diferencias y similitudes respecto a carreteras.

Método mecanicista FAARFIELD.

6.- Proyecto de mejoras

Una metodología de Diseño-Refuerzo racional. Sus pasos:

- Recopilación de antecedentes (Importancia Base de Datos).
- Evaluación de estado actual.
- Ajuste de Modelos estructurales por deformabilidad.
- Verificación a la fecha de la última mejora. (ajuste criterios de falla)
- Propuesta de distintas alternativas de mejoras
- Análisis de sensibilidad de variables para cada alternativa.
- Adopción de una alternativa técnico económica.