

# UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE INFORMÁTICA – INFORMÁTICA APLICADA Arquitetura e Organização de Computadores I – 2019/1

Profs. Cechin (turma A) e Lisbôa (turma B)

## Trabalho de Programação 1 - Processador RAMSES

# 1. Descrição Geral

O objetivo deste trabalho é escrever um programa para o processador Ramses (usando necessariamente o montador Daedalus para desenvolver o código fonte) que processe um vetor contendo valores de 16 bits (2 bytes por elemento) e forneça um resultado também em 16 bits. As operações a realizar sobre os elementos do vetor exercitam o deslocamento e rotação de dados e a soma de valores em 16 bits usando o conjunto de instruções do Ramses.

### 2. Dados de entrada e saída

O programa receberá como dados de entrada o endereço inicial do vetor e o vetor propriamente dito e deverá escrever o resultado do processamento numa variável de 16 bits na memória. Os valores dos elementos do vetor serão inteiros positivos diferentes de 0 e um elemento com valor zero (nos dois bytes) indicará o fim do vetor.

Para os dados de entrada e saída devem ser utilizadas, obrigatoriamente, as seguintes posições de memória:

| Endereço | 197               | 198                      | 199                     |
|----------|-------------------|--------------------------|-------------------------|
| Dado     | Endereço do vetor | Bits 15 a 8 do resultado | Bits 7 a 0 do resultado |

O vetor estará na área de memória acima dos dados de entrada e saída (endereços 200 a 255) e é garantido que existirá um elemento marcador de fim (dois bytes com valor 0) no vetor.

### 3. Processamento

O processamento a ser realizado pelo programa consistirá em percorrer todos os elementos do vetor, até encontrar o elemento marcador de fim do vetor. Para cada elemento diferente de zero, deverão ser executadas as seguintes operações, nesta ordem:

- 1. Girar o primeiro byte do elemento para a direita em 4 bits
- 2. Girar o segundo byte do elemento para a direita em 4 bits
- 3. Permutar os valores do primeiro e do segundo byte
- 4. Somar o resultado obtido (com 16 bits) à variável que armazena o resultado

Após processados todos os elementos do vetor, o programa deve aplicar novamente as operações descritas nas etapas 1 a 3, acima, sobre a variável que armazena o resultado e terminar a execução.

Note que a operação descrita nas etapas 1 e 2 inverte os dígitos hexadecimais armazenados em um byte. Por exemplo, se o byte contiver o valor  $10100101_2$  ( $A5_{16}$ ) ficará com  $01011010_2$  ( $5A_{16}$ ). E a operação descrita no item 3, aplicada após as duas anteriores, vai resultar na inversão dos 4 dígitos hexadecimais do valor de 16 bits armazenado no elemento processado. Por exemplo, se o elemento contiver  $AB_{16}$  no primeiro byte e  $CD_{16}$  no segundo byte, após o processamento das etapas 1, 2 e 3 ele conterá os valores e  $DC_{16}$  e  $BA_{16}$ , no primeiro e segundo bytes, respectivamente.

Exemplo: supondo que os dados de entrada para o programa sejam os seguintes:

| Endereço           | 197 | 198 | 199 | <br>208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 |
|--------------------|-----|-----|-----|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Dado (decimal)     | 208 | ?   | ?   | <br>1   | 2   | 5   | 26  | 43  | 60  | 77  | 94  | 0   | 0   |
| Dado (hexadecimal) | D2  | ?   | ?   | <br>01  | 02  | 05  | 1A  | 2B  | 3C  | 4D  | 5E  | 00  | 00  |

O resultado do processamento das etapas 1 a 3 para os valores contidos no vetor será o seguinte:

| Endereço do valor de entrada | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 |
|------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Resultado (decimal)          | 32  | 16  | 161 | 80  | 195 | 178 | 229 | 212 | 0   | 0   |
| Resultado (hexadecimal)      | 20  | 10  | A1  | 50  | C3  | B2  | E5  | D4  | 00  | 00  |

Note que, dependendo do algoritmo usado para solucionar o problema, o programa não precisa armazenar os resultados de volta no vetor de entrada. Os endereços foram mostrados na tabela acima apenas para correlacionar os dados de entrada com o resultado correspondente. Na correção dos trabalhos será verificado apenas o valor da variável resultado (endereços 198 e 199), que será: 6EA6<sub>16</sub> (a soma dos elementos processados será 6AE6<sub>16</sub> e depois de aplicadas as operações 1 a 3 sobre o resultado ele conterá 6EA6<sub>16</sub>).

# 4. Correção dos Trabalhos

Os arquivos fonte do RAMSES entregues serão montados usando o montador DAEDALUS. A seguir serão aplicados 20 casos de teste, de forma sequencial e contínua (sem recarga ou inicialização da memória). A nota final do trabalho será proporcional ao número de casos de teste em que o programa produzir a resposta correta (cada caso de teste vale 5 pontos de um total de 100).

### 5. Bônus

Os programas que fornecerem resultados corretos para todos os 20 casos de teste poderão concorrer a um Bônus de Desempenho, no valor de 10 pontos (10% da nota). Esse bônus será concedido para as soluções que utilizarem o menor número de acessos à memória (aqueles mais rápidos). O desempenho será medido somando os números de acessos usados para solucionar todos os 20 casos de teste.

# 6. Entregáveis: o que deve ser entregue?

Somente os arquivos fonte (arquivos .RAD) escritos na linguagem simbólica do RAMSES com a solução do problema apresentado deverão ser entregues via Moodle da disciplina. Esses arquivos serão montados com o DAEDALUS. O programa fonte deverá conter comentários descritivos da implementação. Por exemplo, nos comentários podem ser usados comandos em alto nível da linguagem "C". Para nomear os arquivos, utilize todo o seu nome, usando maiúsculas e minúsculas, sem acentos.

O trabalho deverá ser entregue até a data especificada no link de entrega no sistema Moodle. **Não serão aceitos trabalhos após o prazo estabelecido**.

## 7. Observações

Recomenda-se a troca de ideias entre os alunos. Entretanto, a identificação de cópias de trabalhos acarretará na aplicação do Código Disciplinar Discente e a tomada das medidas cabíveis para essa situação (tanto o trabalho original quanto os copiados receberão nota zero).

O professor da disciplina reserva-se o direito, caso necessário, de solicitar uma demonstração do programa, onde o aluno será arguido sobre o trabalho como um todo. Nesse caso, a nota final do trabalho levará em consideração o resultado da demonstração.

# 8. Casos de Teste

Para testar sua solução, use os casos de teste abaixo, da seguinte forma:

- 1. Carregue seu código (arquivo .MEM gerado pelo Daedalus a partir do seu .RAD) no simulador Ramses
- 2. Coloque os valores indicados nas palavras 197 a 217 (as palavras em branco não precisam ser preenchidas)
- 3. Coloque o valor 0 no PC
- 4. Execute o programa
- 5. Verifique se os resultados nas palavras 198 e 199 são os mesmos indicados no final da linha de cada caso de teste
- 6. Para testar os demais casos, volte à etapa 2 SEM RECARREGAR O CÓDIGO DE SUA SOLUÇÃO NO SIMULADOR

|      |                    | Dados de entrada |     |     |     |     |     |     |     |     |     |     |     |     |     | Resultado |     |     |     |     |   |     |     |
|------|--------------------|------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----------|-----|-----|-----|-----|---|-----|-----|
| Caso | End. $\rightarrow$ | 197              | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213       | 214 | 215 | 216 | 217 |   | 198 | 199 |
| 1    |                    | 208              |     |     |     |     |     |     |     |     | 1   | 2   | 5   | 26  | 43  | 60        | 77  | 94  | 0   | 0   |   | 110 | 166 |
| 2    |                    | 200              | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14        | 15  | 16  | 0   | 0   | : | 0   | 88  |
| 3    |                    | 216              |     |     |     |     |     |     |     |     |     |     |     |     |     |           |     |     | 0   | 0   |   | 0   | 0   |
| 4    |                    | 200              | 255 | 255 | 0   | 0   |     |     |     |     |     |     |     |     |     |           |     |     |     |     |   | 255 | 255 |
| 5    | Dados              | 210              |     |     |     |     |     |     |     |     |     |     | 15  | 240 | 0   | 0         |     |     |     |     |   | 15  | 240 |
| 6    | Dauos              | 205              |     |     |     |     |     | 0   | 255 | 0   | 255 | 0   | 255 | 0   | 255 | 0         | 255 | 0   | 255 | 0   | 0 | 0   | 175 |
| 7    |                    | 200              | 0   | 1   | 0   | 2   | 0   | 3   | 0   | 4   | 0   | 5   | 0   | 6   | 0   | 7         | 0   | 8   | 0   | 0   |   | 0   | 4   |
| 8    |                    | 200              | 1   | 0   | 2   | 0   | 3   | 0   | 4   | 0   | 5   | 0   | 6   | 0   | 7   | 0         | 8   | 0   | 0   | 0   |   | 4   | 32  |
| 9    |                    | 200              | 0   | 16  | 0   | 32  | 0   | 48  | 0   | 64  | 0   | 80  | 0   | 96  | 0   | 112       | 0   | 128 | 0   | 0   |   | 0   | 66  |
| 10   |                    | 205              |     |     |     |     |     | 16  | 32  | 48  | 64  | 80  | 96  | 0   | 0   |           |     |     |     |     |   | 144 | 192 |