Sistem Cerdas Pendeteksi Kualitas Ikan Air Tawar Menggunakan Electronic Nose

Bagus Farhan Abdillah 05311840000016

Outline

04

Hasil dan Pembahasan

Kesimpulan dan Saran

01 Pendahuluan

- Ikan merupakan komoditas dengan nilai ekonomi tinggi.
- Kesegaran pada ikan menjadi tolak ukur sebagai kualitas.
- Cara konvensional untuk menentukan kesegaran.

Rumusan Masalah

- Bagaimana cara kerja electronic nose sehingga dapat mendeteksi kualitas ikan air tawar?
- Bagaimana karakteristik sensor yang digunakan pada electronic nose?
- Bagaimana rancangan alat electronic nose untuk mendeteksi kesegaran ikan air tawar berdasarakan aroma ikan air tawar?
- Bagaimana pengelompokan kesegaran ikan air tawar menggunakan machine learning.

Batasan Masalah

- Pendeteksian terbatas pada aroma ikan air tawar.
- Objek pendeteksian terbatas pada ikan nila, ikan lele, dan ikan patin.
- Sensor yang digunakan terdiri dari 6 jenis sensor MQ (MQ3, MQ4, MQ5, MQ9, MQ135, MQ136).
- Metode machine learning yang digunakan Support Vector Machine dan Logistic Regression.

Tujuan

- Mengetahui cara kerja sistem.
- Mengetahui karakteristik sensor pada e-nose
- Mengetahui rancangan enose
- Mengetahui pengelompokan kesegaran ikan air tawar.

Studi Sebelumnya

IJEIS, Vol.6, No.2, October 2016, pp. 129~140

ISSN: 2088-3714

129

Rancang Bangun *Electronic Nose* untuk Mendeteksi Tingkat Kebusukan Ikan Air Tawar

Chrisal Aji Lintang*¹, Triyogatama Wahyu Widodo², Danang Lelono³

¹Program Studi Elektronika dan Instrumentasi, JIKE, FMIPA, UGM, Yogyakarta

^{2,3}Jurusan Ilmu Komputer dan Elektronika, FMIPA UGM, Yogyakarta

e-mail: *¹chriisaal@gmail.com, ²yogatama@ugm.ac.id, ³danang@ugm.ac.id

JURNAL SAINS DAN SENI ITS Vol. 1, No. 1, (Sept. 2012) ISSN: 2301-928X

D-14'

Analisis Diagnosis Pasien Kanker Payudara Menggunakan Regresi Logistik dan *Support Vector Machine* (SVM) Berdasarkan Hasil Mamografi

Fourina Ayu Novianti dan Santi Wulan Purnami Jurusan Statistika, Fakultas MIPA, Institut Teknologi Sepuluh Nopember (ITS) Jl. Arief Rahman Hakim, Surabaya 60111 *E-mail*: santi wp@statistika.its.ac.id

Contents lists available at ScienceDirect

Food Bioscience

journal homepage: www.elsevier.com/locate/fbio

Check for updates

Determination of fish quality parameters with low cost electronic nose

Emre Yavuzer

Department of Food Engineering, Faculty of Engineering and Architecture, Kırşehir Ahi Evran University, 40100, Kırşehir, Turkey

Journal of Theoretical and Applied Information Technology 15th October 2017. Vol.95. No 19

© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 <u>www.jatit.org</u> E-ISSN: 1817-3195

THE CLASSIFICATION PERFORMANCE USING LOGISTIC REGRESSION AND SUPPORT VECTOR MACHINE (SVM)

¹AGUS WIDODO, ²SAMINGUN HANDOYO

¹Department of Mathematics, Universitas Brawijaya Malang, Indonesia ²Department of Statistics, Universitas Brawijaya Malang, Indonesia E-mail: ¹prof.agus widodo@yahoo.com, ²samistat@ub.ac.id

03 Metodologi

Tahapan Penelitian

O4 Hasil danPembahasan

Preparasi Sampel

Gambar sampel ikan nila dan lele

Sambar sampel ikan patin.

Proses Pemotongan Sampel

Sampel Ikan Dalam Beaker Glass.

Uji Performa

UJI	MQ3	MQ4	MQ5	MQ136	MQ9	MQ135
IKAN JAM KE 1	608	390	189	294	133	342
IKAN JAM KE 2	529	392	138	296	120	358
IKAN JAM KE 3	539	391	145	294	117	409
IKAN JAM KE 4	520	389	144	292	121	423
IKAN JAM KE 5	511	389	152	290	122	445
IKAN JAM KE 6	496	420	154	303	174	480

Pengambilan Data

Proses Pengambilan Data

Flowchart Pengambilan Data

Flowchart Pengambilan Data

Hasil Respon Sensor

Jumlah Data

Hasil Akurasi Uji Coba Parameter

Support Vector Machine

Paramet	Persentase Partisi			
Kernel	С	70:30	80:20	50:50
Linear	1	86%	78%	75%
	10	86%	85%	84%
	100	88%	87%	87%
Polynomial	1	89%	89%	89%
	10	91%	92%	92%
	100	93%	94%	93%
RBF	1	89%	90%	89%
	10	92%	93%	92%
	100	94%	94%	93%

Logistic Regression

Parameter		Persentase Partisi			
Kernel	С	70:30	80:20	50:50	
Newton-cg	1	70%	71%	67%	
	10	79%	80%	78%	
	100	84%	84%	83%	
Saga	1	70%	71%	67%	
	10	79%	79%	78%	
	100	83%	83%	82%	
	1	70%	71%	67%	
lbfgs	10	79%	79%	78%	
	100	83%	83%	83%	

Confusion Matrix

Confusion Matrix pada sampel ikan nila

Confusion Matrix

Confusion Matrix pada sampel ikan patin.

Score Plot Ikan Lele

Score Plot Ikan Nila

Score Plot Ikan Patin

⁰⁵ Kesimpulandan Saran

12 Kesimpulan

- Cara kerja alat.
- Sensor MQ135 dan MQ3 memberikan respon kepekaan yang tinggi saat sampel ikan sudah tidak layak konsumsi.
- Ikan lele dan ikan nila masuk ke tahap pembusukan pada pengujian 7,5 jam. Ikan patin memiliki ketahanan yang lebih tinggi dibandingkan dengan sampel ikan lainnya. Pembusukan pada ikan patin terjadi mulai dari waktu 10 jam keatas.

13 Saran

- Menggunakan sensor yang lebih banyak sehingga kepekaan terhadap berbagai macam bau lebih tinggi.
- Menggunakan metode algoritma lain untuk mencari tingkat akurasi yang lebih tinggi.

Terima Kasih

Bagus Farhan Abdillah 05311840000016