Formális nyelvek és automaták 1. zh, mintafeladatok

I. feladatsor

A1. $L_1 = \{a, ab\}, L_2 = \{b, ba\}.$

Adja meg az elemei felsorolásával:

$$L_1L_2 =$$

A2. Mi a szükséges és elégséges feltétele: $L^+ = L^* \backslash \{\varepsilon\}$

A3. Adjon az L_1^* nyelvhez reguláris nyelvtant!

B1. $L_1 = \{a, ab\}, L_2 = \{b, ba\}.$

Adja meg az elemei felsorolásával:

$$L_2^2 =$$

B2. Adjon példát olyan nyelvre, amelyre $L=L^*$

B3. Adjon az L_2^+ nyelvhez olyan környezetfüggetlen nyelvtant, ami nem reguláris!

I. feladatsor, megoldási kulcs:

A1.
$$L_1L_2 = \{ab, abb, aba, abba\}$$

A2.
$$\varepsilon \notin L$$

A3.
$$S \to \varepsilon |aS|abS$$

B1.
$$L_2^2 = \{bb, bab, bba, baba\}$$

B2. Pl.
$$L = \{\varepsilon\}$$

 $(L=L^*$ ha Lmaga is egy nyelv lezártja)

B3.
$$S \rightarrow b|ba|SS$$

II. feladatsor

A1. $G_1: K \to S | \varepsilon, S \to aSB | aB, aB \to Ba, B \to b$

Mely állítások igazak és melyek hamisak?

$$G_1 \in \mathcal{G}_0, G_1 \in \mathcal{G}_1, G_1 \in \mathcal{G}_{1'}$$

$$G_1 \in \mathcal{G}_2, G_1 \in \mathcal{G}_{2'}, G_1 \in \mathcal{G}_3, G_1 \in \mathcal{G}_{3nf}$$

A2. Helyettesítse $L(G_1)$ leírásában a . . . -ot a megfelelő formulával (amely nem függ expliciten G_1 -től)! $L(G_1) = \{u \in \{a, b\}^* | \dots \}$

A3.
$$G_2: S \to aS|bS$$

Egészítse ki a G_2 nyelvtant egyetlen szabállyal úgy, hogy a következő állítás igaz legyen! $L(G_2) = \{a, b\}^*$

B1. $G_1: S \to aSa|bSb|\varepsilon|a|b$

Mely állítások igazak és melyek hamisak?

$$G_1 \in \mathcal{G}_0, G_1 \in \mathcal{G}_1, G_1 \in \mathcal{G}_{1'}$$

$$G_1 \in \mathcal{G}_2, G_1 \in \mathcal{G}_{2'}, G_1 \in \mathcal{G}_3, G_1 \in \mathcal{G}_{3nf}$$

B2. Helyettesítse $L(G_1)$ leírásában a . . . -ot a megfelelő formulával (amely nem függ expliciten G_1 -től)!

$$L(G_1) = \{u \in \{a, b\}^* | \dots\}$$

II. feladatsor, megoldási kulcs:

A1:

 $G_1 \in \mathcal{G}_0$ ui. G_1 Chomsky-féle nyelvtan.

 $G_1 \notin \mathcal{G}_1$ ui. $aB \to Ba$ nem egyes típusú szabály.

 $G_1 \in \mathcal{G}_{1'}$ ui. G_1 csak korlátozott ε -szabályt és hosszúságnemcsökkentő szabályokat tartalmaz.

 $G_1 \notin \mathcal{G}_2$ ui. az $aB \to Ba$ szabály nem környezetfüggetlen (nem kfl): egy kfl szabály baloldala csak egy nyelvtani jel lehet.

 $G_1 \notin \mathcal{G}_{2'}, G_1 \notin \mathcal{G}_3, G_1 \notin \mathcal{G}_{3nf}, \text{ mivel } G_1 \notin \mathcal{G}_2$

A2:

$$L(G_1) = \{ u \in \{a, b\}^* | l_a(u) = l_b(u) \}$$

A3:

Kiegészítve: $G_2: S \to aS|bS|\varepsilon$

B1:

 $G_1 \in \mathcal{G}_0$ ui. G_1 Chomsky-féle nyelvtan.

 $G_1 \notin \mathcal{G}_1, \ G_1 \notin \mathcal{G}_{1'}$ ui. $S \to \varepsilon$ nem-korlátozott ε -szabály pl. $S \to aSa$ miatt.

 $G_1 \in \mathcal{G}_2$ ui. mindegyik szabálya környezetfüggetlen.

 $G_1 \notin \mathcal{G}_{2'}$ ui. $S \to \varepsilon$ nem-korlátozott ε -szabály.

 $G_1 \notin \mathcal{G}_3$, $G_1 \notin \mathcal{G}_{3nf}$ hiszen pl. az $S \to aSa$ szabály nemreguláris.

B2:

$$L(G_1) = \{u \in \{a, b\}^* | u = u^{-1}\}\$$

III. feladatsor

A: Adjunk az alábbi EBNF-fel ekvivalens alap BNF-et!

$$A_1: < L > ::= \{b\}_1^{\infty} \{\{a\}_0^1 \{b|c\}\}_0^{\infty}$$

$$A_2: < L > ::= \{p|m\}_0^1 t \{\{p|m\}_1^{\infty} t\}_0^{\infty}$$

B: Adjunk az alábbi alap BNF-fel ekvivalens EBNF-et úgy, hogy az EBNF egyetlen szabályból állhat, aminek a jobb oldalán csak terminálisok szerepelhetnek, BNF fogalmak (nyelvtani jelek) nem.

$$B_1$$
:
 $< L > ::= < e > < t >$
 $< e > ::= < s > | < s > < e >$
 $< t > ::= $\varepsilon | c < v >$
 $< v > ::= $\varepsilon | c < v >$
 $< s > ::= a | b$
 B_2 :
 $< L > ::= ()|(< e > < v >)$
 $< v > ::= $\varepsilon | < e > < v >$
 $< e > ::= < b > | < b > < e >$
 $< b > ::= 0|1$$$$

III. feladatsor, megoldási kulcs:

A_1 :

Vezessük be a köv. jelöléseket:

$$< bk > ::= \{b\}_1^{\infty}$$

 $< oa > ::= \{a\}_0^1$
 $< bvc > ::= \{b|c\}$
 $< av > ::= \{< oa > < bvc > \}_0^{\infty}$

Ekkor a megoldás:

$$< L> ::=< bk> < av>$$

 $< bk> ::= b|b < bk>$
 $< av> ::= \varepsilon| < oa> < bvc> < av>$
 $< oa> ::= \varepsilon|a$
 $< bvc> ::= b|c$

B_1 :

Írjuk át az egyes szabályokat tömörített, nemrekurzív EBNF alakba:

A fenti EBNF fogalmakba a szabály jobboldalakat visszahelyettesítve adódik a megoldás:

$$< L > ::= \{a|b\}_1^{\infty} \{c\{a|b\}_0^{\infty}\}_0^1$$

IV. feladatsor

- 1. $L = \{a^i b^j | i, j \in \mathbb{N}_0 \land i \neq j\}$
- 1.a Adjuk meg az L nyelv EBNF leírását úgy, hogy a szabályok között csak egy lehet rekurzív! (Több szabály-alternatíva is több szabálynak számít.)
- 1.b Írjuk le az L nyelvet környezetfüggetlen nyelvtannal!

2.
$$G: S \to BZJ, Z \to XZY | \varepsilon, XY \to YaX,$$

. $Xa \to aX, aY \to Ya, XJ \to J, BY \to B,$
. $Ba \to aB, BJ \to \varepsilon$

Adjunk az L(G) nyelvhez olyan leírást, ami nem függ expliciten G-től!

Indokoljuk is az állítást!

3. ε -mentesítse az alábbi nyelvtant, a gyakorlatról ismert algoritmus segítségével!

$$G: S \to aSB|SS|\varepsilon, B \to b|S$$

IV. feladatsor, megoldási kulcs:

1.
$$L = \{a^i b^j | i, j \in \mathbb{N}_0 \land i \neq j\}$$

1.a
$$< L > := \{a\}_1^{\infty} | \{b\}_1^{\infty} | a < L > b$$

1.b
$$S \to aSb|A|B, A \to aA|a, B \to bB|b$$

2.
$$L(G) = \{a^{n^2} | n \in \mathbb{N}_0\}.$$

Minden G-beli levezetés az $S \to BZJ$ szabályt alkalmazza először, majd a $Z \to XZY$ szabályt alkalmazza valamely $n \in \mathbb{N}_0$ számszor, és a $Z \to \varepsilon$ szabállyal folytatja. Ezután létrejön a BX^nY^nJ szó, amire pontosan n^2 -szer kell alkalmazni az $XY \to YaX$ szabályt, hogy az X-ek az $XJ \to J$, az Y-ok pedig a $BY \to B$ szabály segítségével törlődhessenek. Mivel csak az $XY \to YaX$ szabály hoz létre terminálist, az eredményben biztosan n^2 darab a betű lesz, azaz csak a^{n^2} alakú lehet. Az ilyen alakú szavak viszont mind előállíthatók, mert az X-ek és az Y-ok az útjukba kerülő a betűkön átlépve, egymással megcserélődve el tudnak jutni a J illetve B betűkhöz, ahol törlődnek. Közben pontosan n^2 darab a betűt hoznak létre, ha a levezetés elején a $Z \to XZY$ szabályt n-szer alkalmaztuk. Az utolsó két szabály segítségével pedig a B és a J betűket tudjuk törölni.

3.
$$G: S \to aSB|SS|\varepsilon, B \to b|S$$

ε -mentesítés:

 $E_1 = \{S\}, E_2 = \{S\} \cup \{B\}, E_3 = \{S, B\} \cup \{\} = E_2, E = \{S, B\}$ Mivel $S \in E$, KES szükséges. Mivel S szerepel szabály jobboldalon is, új kezdőszimbólumot (K) vezetünk be.

$$K \to S|\varepsilon, S \to aSB|aS|aB|a|SS, B \to b|S$$

V. feladatsor

1.
$$L_1 = \{a, ab\}, L_2 = \{\varepsilon, ba\}.$$

- a) Adja meg elemei felsorolásával az alábbi nyelveket!
- a1) $L_1L_2 =$
- a2) $L_2L_1 =$
- a3) $L_1^2 =$
- a4) $L_2^2 =$
- b
1) Sorolja fel az L_1^* nyelv 2 hosszú szavait!
- b2) Sorolja fel az L_1^* nyelv 3 hosszú szavait!
- b
3) Sorolja fel az L_2^* nyelv 3 hosszú szavait!
- b
4) Sorolja fel az L_2^{\ast} nyelv legfeljebb 4 hosszú szavait!

2.

$$G: S \to \varepsilon |aSb|Z, Z \to bSaZ|bSa$$

- a) Mutassa meg, hogy $abaabbab \in L(G)$! (Adja meg egy legbal levezetését, vagy a szintaxisfáját!)
- b) Mutassa meg kétféleképpen, hogy $bababa \in L(G)$! (Adja meg két legbal levezetését, vagy két, különböző szintaxisfáját!)

3.

Írja át az alábbi grammatikákat megszorított 2-es típusú grammatikává, azaz – a gyakorlaton tanult algoritmussal – ε -mentesítse a nyelvtanokat!

$$G_1: S \to aSB|SS|\varepsilon, B \to b|S$$

$$G_2: K \to SaS, S \to aSBS|\varepsilon, B \to b|\varepsilon$$

$$G_3: S \to aZ|ZZ, Z \to aZZ|K, K \to Zb|\varepsilon$$

```
4.

L_{1} = \{\varepsilon, ba\}^{*}
L_{2} = \{a, ab\}^{*}\{a, ab\}
L_{3} = (\{a\}\{b, \varepsilon\})^{*}\{b\}
```

 $L_4 = \{$ Olyan programok, amelyek egyetlen utasításból állnak. Az utasítás lehet struktúrált, úgymint C-szerű while utasítás, ifelse utasítás és nemüres utasítássorozat C-szerűen bezárójelezve; vagy lehet elemi utasítás, amit az egyszerűség kedvéért mindig kis u betűvel jelölünk. A while és if-else utasítások feltételeit pedig mindenütt egy-egy kis f betűvel jelöljük. A struktúrált utasítások – mint C-ben – korlátozás nélkül egymásba ágyazhatók, de a legbelső mindig egy elemi utasítás. Két egymás után jövő utasítást mindig egy pontosvesszővel kell elválasztani. $\}$ Például:

```
{
    u;
    while(f){
        if(f) while(f)u
        else if(f)u
        else u;
        u
}
```

- a) Írja le olyan 2-es típusú nyelvtanokkal a fenti nyelveket, amelyek nem 3-as típusúak; azaz $\mathcal{G}_2 \setminus \mathcal{G}_3$ -beliek!
- b) Írja le 3-as típusú nyelvtanokkal a fenti L_1, L_2, L_3 nyelveket!
- c) Adjon BNF leírást a fenti nyelvekhez!
- d) Adjon minél tömörebb EBNF leírást a fenti nyelvekhez!

5. Adjunk az alábbi EBNF-fel ekvivalens alap BNF-et!

$${\bf 5.a} < L> ::= \{b\{a\}_0^1\}_1^\infty \{aa|b\}_0^\infty$$

$$\mathbf{5.b} < L > ::= c|b\{\{a\}_0^1\{b|c\}_1^\infty\}_0^\infty$$

V. feladatsor, megoldási kulcs:

1.a1

$$L_1L_2 = \{a, ab\}\{\varepsilon, ba\} = \{a, aba, ab, abba\}$$

1.a2
 $L_2L_1 = \{\varepsilon, ba\}\{a, ab\} = \{a, ab, baa, baab\}$
1.a3
 $L_1^2 = \{a, ab\}\{a, ab\} = \{aa, aab, aba, abab\}$
1.a4
 $L_2^2 = \{\varepsilon, ba\}\{\varepsilon, ba\} = \{\varepsilon, ba, baba\}$
1.b1
 $\{u \in L_1^* | l(u) = 2\} = \{ab, aa\}$
1.b2
 $\{u \in L_1^* | l(u) = 3\} = \{aab, aba, aaa\}$
1.b3
 $\{u \in L_2^* | l(u) = 3\} = \{\}$

 $\{u \in L_2^* | l(u) \le 4\} = \{\varepsilon, ba, baba\}$

 $\textbf{2.a} \ S \rightarrow aSb \rightarrow aZb \rightarrow abSab \rightarrow abaSbab \rightarrow abaaSbbab \rightarrow abaabbab$

$$(G: S \to \varepsilon |aSb|Z, Z \to bSaZ|bSa)$$

(Ebben a feladatmegoldásban, az alábbi szintaxisfákban ε helyett # jelöli az üres szót. Az elágazások lefele, illetve vízszintesen jobbra haladnak.)

(2.a)	(2.b1)			(2.b2)
S	S			S
/ \				
a S b	Z	Z	Z	Z
	/ \	/ \	/ \	/ \
Z	b S a	b S a	b S a	b S a
/ \				/ \
b S a	#	#	#	a S b
/ \				
a S b				Z
/ \				/ \
a S b				bЅа
#				#

3.1 ε -mentesítés:

 $E_1 = \{S\}, E_2 = \{S\} \cup \{B\}, E_3 = \{S, B\} \cup \{\} = E_2, E = \{S, B\}$ Mivel $S \in E$, KES szükséges. Mivel S szerepel szabály jobboldalon is, új kezdőszimbólumot (K) vezetünk be. $K \to S|\varepsilon, S \to aSB|aS|aB|a|SS, B \to b|S$

4.

Vegyük észre, hogy

$$L_1 = \{ba\}^*$$

$$L_2 = \{a, ab\}^+$$

$$L_3 = \{ab, a\}^* \{b\}$$

4.a.1

$$S \to \varepsilon |Sba$$

4.b.1

$$S \to \varepsilon |baS|$$

4.c.1

$$< L1 > ::= \varepsilon |ba < L1 >$$

4.d.1

$$< L1 > ::= \{ba\}_0^{\infty}$$

4.a.2

$$S \to a|ab|SS$$

4.b.2

$$S \to a|ab|aS|abS$$

$$< L2 > ::= a|ab| < L2 > < L2 >$$

4.d.2

$$< L2 > ::= \{a|ab\}_1^{\infty}$$

4.a.3

$$S \to AS|b$$

$$A \to ab|a$$

4.b.3

$$S \to abS|aS|b$$

4.c.3

$$< L3> := < abva > < L3 > |b|$$

 $< abva > := ab|a$

4.d.3

$$< L3 > ::= \{ab|a\}_0^{\infty}b$$

Más megoldás:

$$< L3 > ::= \{ab_0^1\}_0^{\infty} b$$

4.a.4

$$S \to W|F|B|u$$

$$W \to while(f)S$$

$$F \rightarrow if(f)SelseS$$

$$B \to \{K\}$$

$$K \to S|S;K$$

4.c.4

BNF-fel:

$$< L_4 > := < utasitas >$$

$$< utasitas > := < while - ut > | < if - ut > | < blokk > | u$$

$$< while - ut > ::= while(f) < utasitas >$$

$$< if - ut > ::= if(f) < utasitas > else < utasitas >$$

$$< blokk > := \{ < ut - sor > \}$$

$$< ut - sor > := < utasitas > | < utasitas > ; < ut - sor >$$

4.d.4

EBNF-fel kiküszöbölhetjük az < ut - sor > fogalmát:

$$< blokk > ::= `\{` < utasitas > \{; < utasitas > \}_0^{\infty} `\}`$$

5.a

5.b

$$< L> ::= c|b < abck> \\ < abck> ::= \varepsilon| < A> < bcK> < abck> \\ < A> ::= \varepsilon|a \\ < bcK> ::= < bvc> | < bvc> < bcK> \\ < bvc> ::= b|c$$