第2章 信息的表示和处理Ⅱ:浮点数

教师: 吴锐

计算机科学与技术学院

哈尔滨工业大学

主要内容

- 二进制小数
- IEEE 浮点数标准: IEEE 754
- 舍入模式
- 浮点数运算
- C语言的浮点数

推荐阅读:Ch2.4

有理数编码

■ 浮点表示很有用

- 对形如 $V = x \times 2^y$ 的有理数进行编码
- 非常大的数(|V| ≫ 0)或非常接近0的数(|V| ≪ 1)
- 实数的近似值

■ 从程序员角度看

- 无趣
- 晦涩难懂

二进制小数

■ "小数点" 右边的位代表小数部分

■ 表示的有理数: $\sum_{i=-n}^{m} b_i \times 2^i$

二进制小数: 例子

■ 数值 二进制小数

5 ³/₄ 101.11₂

2 7/8 10.111₂

17/16 1.0111₂

■观察

- 除以2 → 右移 (无符号数)
- 乘以2 → 左移
- **0.111111**...2
 - $1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$
 - 是最接近1.0的小数
 - 表示为1.0 ε

二进制数的问题

- 局限性 1——近似表示
 - 只能精确表示形如 x/2k的数值
 - 其他有理数的二进制表示存在重复段
 - 数值 二进制表示
 - **1/3** 0.01010101[01]...2
 - **1/5** 0.001100110011[0011]...2
 - **1/10** 0.0001100110011[0011]...2

二进制数的问题

- 在计算机内的实现问题
 - 长度有限的 w位
 - 只能在w位内设置一个二进制小数点
 - 限制了数的范围(非常小? 非常大?)

■ 定点数

- 小数点隐含在w位编码的某一个固定位置上
 - 例如MSB做符号位,隐含后面是小数点,表示小于1.0的纯小数
 - 123.456怎么办???

浮点数

- 二进制小数
- IEEE 浮点数标准: IEEE 754
- 浮点数示例与性质
- 舍入、加法与乘法
- C语言的浮点数
- 小结

IEEE 浮点数

- IEEE 标准 754
 - William Kahan 从1976年开始为Intel 设计(1989获图灵奖)
 - 1985年成为浮点运算的统一标准,快速, 易于实现、精度 损失小
 - 优雅、易理解
 - 所有主流的CPU都支持
 - 之前有很多不同格式、不太关注精确性

浮点数的表示

■ 表示有理数的形式:

 $(-1)^{s} M 2^{E}$

- 符号(sign)s / 决定数的符号,是正数(s=0)或负数(s=1)
- 尾数(Significand) M , 二进制小数 , 数值范围: [1.0,2.0)
- 阶(Exponent) *E* ,用2^E将数值加权

■ 浮点数编码

- 最高有效位(MSB)s,作为符号位s
- exp 字段 编码*E* (和E不一定相等)
- frac 字段编码尾数 M (和M不一定相等)

S	ехр	frac
---	-----	------

精度选项

■ 单精度: 32 bits

■ 双精度: 64 bits

S	ехр	frac
1	11-bits	52-bits

■ 扩展精度: 80 bits (Intel)

S	ехр	frac
1	15-bits	63 or 64-bits

规格化数

$$v = (-1)^s M 2^E$$

- 条件: exp ≠ 000...0 且 exp ≠ 111...1
- 阶码(Exponent) 采用偏置值编码: E = Exp Bias
 - Exp: exp 字段的无符号数值
 - 偏置*Bias* = 2^{k-1} 1, *k* 为阶码的位数
 - 单精度: 127 (Exp: 1...254, E: -126...127)
 - 双精度: 1023 (Exp: 1...2046, E: -1022...1023)
- 尾数(Significand) 编码隐含先导数值1: **M** = 1.xxx...x₂
 - xxx...x: 是 frac字段的数码
 - frac=000...0 (M = 1.0)时,为最小值
 - frac=111...1 (M = 2.0 ε)时,为最大值
 - 额外增加了一位的精度(隐含值1)

规格化编码示例

$$v = (-1)^s M 2^E$$

 $E = Exp - Bias$

- ■数值: float F = 15213.0
 - $15213_{10} = 11101101101101_2$ = $1.1101101101101_2 \times 2^{13}$
- ■尾数(Significand)

$$M = 1.1101101101_2$$

frac = $1101101101101_0000000000_2$

■ 阶码(Exponent)

$$E = 13$$
 $Bias = 127$
 $Exp = 140 = 10001100_{2}$

■编码结果:

非规格化数

$$v = (-1)^{s} M 2^{E}$$

 $E = 1 - Bias$

- 条件: exp = 000...0
 - 阶码(Exponent) 值: *E* = 1 Bias (instead of *E* = 0 *Bias*)
 - 尾数(Significand)编码隐含先导数值0: **M** = 0.xxx...x₂
 - **xxx**...**x**:是 frac字段的数码
- 情况1: exp = 000...0, frac = 000...0
 - 表示值0
 - 注意有不同的数值 +0 和 -0 (why?)
- 情况2: exp = 000...0, frac ≠ 000...0
 - 最接近0.0的那些数
 - 间隔均匀

特殊值

- 条件: exp = 111...1
- 情况1: exp = 111...1, frac = 000...0
 - 表示 无穷(infinity) ∞
 - 溢出的运算
 - 正无穷、负无穷
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- 情况2: exp = 111...1, frac ≠ 000...0
 - 表示: 不是一个数Not-a-Number (NaN)
 - 表示没有数值结果(非实数或无穷),例如: $sqrt(-1), \infty \infty, \infty \times 0$

浮点编码总结

浮点数

- ■二进制小数
- IEEE 浮点数标准: IEEE 754
- ■浮点数示例与性质
- ■舍入、加法与乘法
- C语言的浮点数
- ■小结

小浮点数例子——1字节浮点数

■ 8位浮点编码

- 符号位:最高有效位
- 阶码(Exponent)4位,偏置为7
- 小数(frac)3位

■ 和IEEE 相同的格式

- 规格化、非规格化
- 0、NaN、无穷的表示

动态范围(仅正数)

动态	范围(仅	$v = (-1)^s M 2^E$		
	s exp frac 0 0000 000	E -6	Value 0	n: E = Exp - Bias d: E = 1 - Bias
非规格化数	0 0000 001 0 0000 010	-6 -6	1/8*1/64 = 1/512 2/8*1/64 = 2/512	最接近0
	0 0000 110 0 0000 111 0 0001 000	-6 -6 -6	6/8*1/64 = 6/512 7/8*1/64 = 7/512 8/8*1/64 = 8/512	最大非规格化数 最小规格化数
	0 0001 001 0 0110 110	-6 -1	9/8*1/64 = 9/512 $14/8*1/2 = 14/16$	
规格化数	0 0110 110 0 0110 111 0 0111 000	-1 -1 0	15/8*1/2 = 15/16 $15/8*1/2 = 15/16$ $8/8*1 = 1$	closest to 1 below
	0 0111 001 0 0111 010	0	9/8*1 = 9/8 10/8*1 = 10/8	closest to 1 above
	 0 1110 110 0 1110 111	7 7	14/8*128 = 224 15/8*128 = 240	最大规格化数
	0 1111 000	n/a	inf	

数值分布

■ 6-bit类 IEEE格式浮点数

■ e: 阶码(Exponent) 位数3

■ f: 小数位数 2

■ 偏置bias= 2³⁻¹-1 = 3

■ 注意:数值在趋近于0时变密集

数值分布(放大观察)

■ 6-bit类 IEEE格式

■ e: 阶码(Exponent) 位数3

■ f: 小数位数 2

■ 偏置bias= 2³⁻¹-1 = 3

IEEE编码的特殊性质

- 浮点0与整数0编码相同: 所有bit均为0
- 几乎可以用与无符号整数相同的方式进行浮点数的比较
 - 先比较符号位
 - 必须考虑 -0 = 0
 - NaN的不确定性
 - 将比其他任何值都大
 - 比较将产生什么结果?
 - 其他方面均OK
 - 规格化值 vs. 非规格化值
 - 规格化值 vs. 无穷

浮点数

- 二进制小数
- IEEE 浮点数标准: IEEE 754
- 浮点数示例与性质
- 舍入、加法与乘法
- C语言的浮点数
- 小结

浮点数运算:基本思想

- $\mathbf{x} +_{\mathbf{f}} \mathbf{y} = \text{Round}(\mathbf{x} + \mathbf{y})$
- $\mathbf{x} \times_{\mathbf{f}} \mathbf{y} = \text{Round}(\mathbf{x} \times \mathbf{y})$
- 基本思想
 - 首先, 计算精确结果
 - 然后,变换到指定格式
 - 可能溢出: 阶码(Exponent) 太大
 - 小数部分可能需要舍入

舍入

■ 舍入模式(以美元舍入说明)

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
■ 向0舍入	\$1	\$1	\$1	\$2	- \$1
■ 向下舍入 (-∞)	\$1	\$1	\$1	\$2	-\$2
■ 向上 (+∞)	\$2	\$2	\$2	\$3	-\$ 1
■ 向偶数舍入(默认)	\$1	\$2	\$2	\$2	-\$2

细究"向偶数舍入"

■ 默认的舍入模式

- 很难找到更好的方法
- 其他方法都有统计偏差
 - 对正整数集合求和时,和将始终被低估或高估(负偏差、正偏差)

■ 向偶数舍入

- 当恰好在两个可能的数值正中间时(中间值):舍入后,最低有效位的数码为偶数
- 其他时候:向最近的数值舍入
 - 比中间值小向下舍入,比中间值大向上舍入

■ 以10进制数向最近的百分位舍入为例:

7.8949999	7.89	(比中间值小:向下舍入)
7.8950001	7.90	(比中间值大: 向上舍入)
7.8950000	7.90	(中间值—向上舍入)
7.8850000	7.88	(中间值—向下舍入)

二进制数的舍入

■ 二进制小数的舍入

- "偶数": 最低有效位值为0
- "中间值": 舍入位置右侧的位都是0, 即形如: XXX **100...**2

■ 例子

■ 舍入到最近的1/4 (小数点右边第2位)

数值	二进制	舍入后	舍入动作	舍入后的值
2 3/32	10.00 <mark>011</mark> 2	10.002	(<1/2—down)	2
2 3/16	10.00 <mark>110</mark> 2	10.012	(>1/2—up)	2 1/4
2 7/8	$10.11\frac{100}{2}$	11.002	(1/2—up)	3
2 5/8	10.10 <mark>100</mark> 2	10.102	(1/2—down)	2 1/2

浮点乘法

- $-(-1)^{s1} M1 2^{E1} \times (-1)^{s2} M2 2^{E2}$
- 精确结果: (-1)^s M 2^E
 - 符号(Sign) s: s1 ^ s2
 - 尾数(Significand) M: M1 x M2
 - 阶码(Exponent) *E*: *E1* + *E2*

■ 修正

- 如M≥2,将M右移(1位), E加1
- 如 E 超出范围,则溢出
- 将M舍入,以符合小数部分的精度要求

■ 实现

■ 主要问题:实现尾数(Significand)的乘

浮点数加法

- - ■假设 *E1 > E2*
- 准确结果: (-1)^s M 2^E
 - ■符号 s, 尾数M:
 - 有符号数对齐、相加的结果
 - ■阶码(Exponent) E: E1

■ 修正

- ■M ≥ 2: 将M右移(1位), E加1
- ■M < 1: 将M左移k 位, E 减 k
- ■E超范围:溢出
- ■将M舍入,以符合小数部分的精度要求

浮点数加法的数学性质

■ 与阿贝尔群比较

加法运算下:

■ 是否封闭

Yes

But may generate infinity or NaN

■ 交换性(Commutative)?

Yes

■ 分配性(Associative)?

No

■ 溢出和舍入的不确定性

 \bullet (3.14+1e10)-1e10 = 0, 3.14+(1e10-1e10) = 3.14

■ 0 是加法的单位元?

■ 每个元素都有逆元?

Yes

■ 除了无穷和NaN

Almost

■ 单调性(Monotonicity)

■ $a \ge b \Rightarrow a+c \ge b+c$?

Almost

■ 除了无穷和NaN

浮点数乘法的数学性质

■ 与交换环相比

■ 乘法下封闭性?

Yes

■ 但可能产生无穷或NaN

■ 乘法的交换性?

Yes

■ 乘法的结合性?

No

■ 可能溢出、舍入不精确

■ 例: (1e20*1e20) *1e-20= inf, 1e20* (1e20*1e-20) = 1e20

■ 1是乘法的单位元?

Yes

■ 乘法对加法的分配性?

No

- 可能溢出、舍入不精确
- \blacksquare 1e20*(1e20-1e20) = 0.0, 1e20*1e20 1e20*1e20 = NaN

■ 单调性

• $a \ge b \ \& c \ge 0 \Rightarrow a * c \ge b *c?$

Almost

■ 除了无穷和 NaN

浮点数

- 二进制小数
- IEEE 浮点数标准: IEEE 754
- 浮点数示例与性质
- 舍入、加法与乘法
- C语言的浮点数
- 小结

C语言的浮点数

■ 两种精度

- ■float 单精度
- ■double 双精度

■ 类型转换

- ■int, float, double 间转换,将改变位模式
- double/float → int
 - 截掉小数部分
 - 类似向0舍入
 - 当数值超范围或NaN时无定义:通常设置为 TMin
- int → double
 - 精确转换,只要int的位宽 ≤ 53 bit,即可精确转换
- int → float
 - 将根据舍入模式进行舍入

浮点数习题

■ 针对下列C表达式:

- 证明对所有参数值都成立
- 或什么条件下不成立

```
int x = ...;
float f = ...;
double d = ...;
```

假定d和 f都不是NaN

浮点数习题答案

$$= f == -(-f);$$

■
$$d < 0.0 \Rightarrow ((d*2) < 0.0)$$

No: 24 位尾数

Yes: 53位尾数

Yes: 增加精度

No: 损失精度

Yes: 仅仅改变符号位

No: 2/3 == 0

Yes!

Yes

Yes!

No: 不具备结合性

浮点的悲剧

- 1991年2月25日
- 美国爱国者导弹拦截伊拉克飞毛腿导弹失败
- 后果: 飞毛腿导弹炸死28名士兵
- 爱国者导弹的内置时钟计数器N每0.1秒记一次数。
- ■时间计算

 $T = N \times 0.1$

程序用24位数来近似表示0.1:

x=0.0001 1001 1001 1001 1001 100

浮点的悲剧

- $0.1-x = 2^{-20} \times 0.1 = 9.54 \times 10^{-8}$
- 程序运行100 后,累计的误差: 100×3600×10×9.54×10-8=0.34344秒
- 软件升级不完全,第一次读取了精确时间,而另一次读取了有误差的时间,结果悲剧....
- 飞毛腿速度: 2000 m/s
- 飞毛腿位置的估计误差: 686 m

天价"溢出"

■ 代价5亿美元的溢出

天价"溢出"

- 主角:阿丽亚娜5(Ariane5)型火箭的首次发射
- 时间: 1996.6.4
- 剧情:发射后仅37秒,偏离路径,解体爆炸
- 代价:5亿美元
- 原因:溢出
 - 溢出——将64位浮点数转换成16位有符号整型数时,发生溢出。这个 溢出的整型数,用于描述火箭的水平速度
 - Ariane4的水平速度绝对不会超过16位数的范围,因此用了16位整数
 - Ariane5简单复用了这部分代码
 - <u>问题</u>:_Ariane 5 的水平速度是Ariane 4的5倍!!!

小结

- IEEE 浮点数 具有清晰的数学性质
- 表示形如 M x 2^E 的数字
- 对运算进行推理,而不用考虑其实现
 - 就像有完美的精度,然后在进行舍入
- 和实数运算不同
 - 结核性、分配性有冲突
 - 日子变得难:编译器、认真的数值应用程序员

生成浮点数

■ 步骤

- 规格化为1开头的数
- 小数部分舍入成符合的形式
- 后规格化,处理 舍入的效果

S	ехр	frac
1	4-bits	3-bits

■ 例子

■ 将 8-bit 无符号数转换成小浮点格式

128	10000000
15	00001101

63 00111111

规格化

■ 要求

- 调整编码的所有参数,得到1开始的数,即形如1.xxxxx的数字
- 指数减作为左移

数值	二进制	小数	指数
128	1000000	1.000000	7
15	00001101	1.1010000	3
17	00010001	1.0001000	4
19	00010011	1.0011000	4
138	10001010	1.0001010	7
63	00111111	1.1111100	5

舍入

1.BBGRXXX

保护位(Guard bit): 结果的LSB

黏着位(Sticky bit): 剩余位

舍入位(Round bit): 舍入位中的第一个bit

■ 舍入的条件

- Round = 1, Sticky = $1 \rightarrow > 0.5$
- Guard = 1, Round = 1, Sticky = 0 → Round to even

数值	小数	GRS	Incr?	舍入后的值
128	1.0000000	000	N	1.000
15	1.1010000	100	N	1.101
17	1.0001000	010	N	1.000
19	1.0011000	110	Y	1.010
138	1.0001010	011	Y	1.001
63	1.1111100	111	Y	10.000

后规格化

- 问题
 - 舍入可能导致溢出
 - 解决: 单次右移 & 阶码(Exponent)增1

数值	舍入后的值	指数	效值 修正	结果
128	1.000	7		128
15	1.101	3		15
17	1.000	4		16
19	1.010	4		20
138	1.001	7		134
63	10.000	5	1.000/6	64

有趣的数字

{single,double}

Description	ехр	frac	Numeric Value
0	0000	0000	0.0
■ 最小值的后非规格化数	0000	0001	$2^{-\{23,52\}} \times 2^{-\{126,1022\}}$
■ Single $\approx 1.4 \times 10^{-45}$			
■ Double $\approx 4.9 \times 10^{-324}$			
■ 最大的非规格化数	0000	1111	$(1.0 - \varepsilon) \times 2^{-\{126,1022\}}$
■ Single $\approx 1.18 \times 10^{-38}$			
■ Double $\approx 2.2 \times 10^{-308}$			
■ 最小的后规格化数	0001	0000	1.0 x $2^{-\{126,1022\}}$
■ 刚刚比最大的非规格化数大			
1	0111	0000	1.0
■ 最大的规格化数	1110	1111	$(2.0 - \varepsilon) \times 2^{\{127,1023\}}$
■ Single $\approx 3.4 \times 10^{38}$			

Double $\approx 1.8 \times 10^{308}$