Departamento de Ciência de Computadores FCUP Desenho e Análise de Algoritmos (CC2001) 2017/18

2°Teste (13.12.2017)	duração: 31	i
	J	

N.º		Nome					
1	C 11		• ,	1 / 6 ~	 1 /0	. ~	1

1. Considere a rede de fluxo seguinte, onde c/f são pares capacidade/fluxo, e s e t são a origem e destino.

b) [1.4] Partindo de f, aplique o algoritmo de Edmonds-Karp para obter um fluxo máximo (desenhe a rede residual **em cada iteração**, represente o fluxo final na rede, e explique sucintamente).

c) [0.4] A partir das estruturas de dados calculadas, como se pode identificar um corte $\{S, T\}$ de capacidade mínima? Indique-o e a sua capacidade.

d) [0.4] Sabendo que, para uma rede com n nós e m ramos, o algoritmo não efetua mais do que mn/2 iterações, justifique a complexidade $O(m^2n)$.

2. Considere o problema de formar uma certa quantia de 5, 10, 20 e 50 cêntimos, 1 e 2 euros, e ainda notas de 5, 10 de notas e moedas. Admita que pode dispor de um númer	e 20 euros. Pretendemos usar o número mínimo
QUANTIA (c,n,x,y,q) que determine no $array\ q$ a te solução obtida pelo algoritmo $greedy$. O $array\ c$ de-	[0.4] Justifique que QUANTIA(c, n, x, y, q) dermina a solução ótima, estendendo a prova de que estratégia greedy produz a solução ótima se se sar apenas moedas (dada nas aulas).
b) [0.4] A complexidade (para c e n quaisquer) é:	
c) [0.1] Na chamada, o estado de c e n é:	
d) [0.3] Se $x = 437$ e $y = 59$, o estado final de q é:	
f) [0.5] Prove que se o número de moedas/notas for limit	ado, a estratégia greedy (adaptada) não é correta.
3. [1.4] Aplique o algoritmo de Kruskal para obter uma á cado. Em cada iteração, apresente os ramos em \mathcal{T} e o con	
(s) 10 (p) 15 (t) 10 3 8 17 14	

(Continua, v.p.f.)

N.º	Nome	

4. [1.8] Usando **a definição** das classes prove que $40n + 1000 \in O(n^3 \log_2 n)$ e $40n + 1000 \notin \Omega(n^2)$ e diga, justificando, se se pode concluir que $40n + 1000 \notin \Theta(n^2)$.

5. [3.0] Seja G=(V,E,d) um grafo não dirigido, com $d:E\to\mathbb{Z}^+$ constante. Queremos um percurso γ de um nó s para um nó t, com $\sum_{e\in\gamma}d(e)\leq dmax$, para $dmax\in\mathbb{Z}^+$ dado. Apresente em pseudocódigo uma função CAMINHO(G,s,t,dmax), com complexidade O(|V|+|E|), para obter um tal percurso, se existir, e o imprimir. Pode usar funções auxiliares. Justifique sucintamente a correção e complexidade.

6. [0.5] Admita que a árvore representa um dos conjuntos de uma partição de $V = \{1, 2, \dots, 50\}$. Desenhe a árvore após a operação FINDSET(18), supondo que usa a heurística *path compression*.

7. Seja G um grafo dirigido $G=(V,E)$ com $V=\{v_1,v_2,v_3,\ldots,v_{10}\}$ tem exatamente quatro componentes fortemente conexas, duas com nó v_1 é acessível de v_5 e de v_9 , mas nem v_5 nem v_9 são acessíveis de v_1 , o de v_5 , o nó v_2 é acessível de v_1 mas v_1 não é acessível de v_2 , e o nó v_6 é a	dois nós e duas com três nós. O nó v_5 não é acessível de v_9 nem v_9
a) [0.5] Dê exemplo de um grafo nas condições indicadas e identifique a	
	•
b) [1.2] Assumindo que se houver alternativa num passo da pesquisa, exp menor, indique a ordem pela qual as componentes são obtidas no algorito	•
8. [2.0] Considere uma <i>heap binária de mínimo</i> com 10 elementos, dada	por [-7, -5, 2, -4, 3, 8, 6, 1, 7, 9].
a) Indique os valores de: PARENT(5) LEFT(5) RIG	GHT(5)
· 1 1	d) Desenhe-a após a operação DECREASEKEY reduzir 7 para -6.
e) Na definição dada nas aulas para uma fila de prioridade suportada foram usados dois <i>arrays</i> (a e pos_a). Com que objetivo?	por uma heap binária de mínimo

N.º Nome		
9. [1.0] Complete: "Dados n pontos no plano	_	
da ardanaaão aam aamnlavidada	Tem complexidade	se se usar um algoritmo
de ordenação com complexidade	no pior caso , como	
ou		

- 10. Recorde o problema "Caixotes de morangos", em que é necessário determinar como distribuir c caixas de morangos por l lojas de forma a maximizar o valor total obtido. Seja L_{kn} o valor que a loja k oferece por n caixas e seja V_{kn} o valor máximo que se pode obter se se distribuir n caixas pelas lojas $1, 2, \ldots, k$. Seja E_{kn} uma solução com valor V_{kn} , dada por uma lista de pares (i, q), em que q é o número de caixas que envia à loja i, com $q \neq 0$ (omite o par se q = 0). Seja N_{kn} o número total de soluções com valor V_{kn} . Assuma que os valores L_{kn} são inteiros positivos.
- a) [0.5] Indique V_{kn} , E_{kn} e N_{kn} , para $0 \le n \le 5$ e $1 \le k \le 3$, sendo L dada por:

15 35 45 60 65 25 50 55 55 55 20 30 55 60 60

b) [1.0] Apresente a recorrência que define V_{kn} , E_{kn} e N_{kn} , para $k \ge 1$ e $n \ge 0$.

c) [1.5] Adaptando a função dada nas aulas, escreva (em pseudocódigo) a função CAIXOTES (L, c, l, V, E, N) para obter os valores V_{ln} , E_{ln} e N_{ln} , **usando programação dinâmica**, para $0 \le n \le c$, sendo V e N arrays de inteiros, com c+1 posições e E um array de c+1 listas de pares de inteiros. Admita que L é uma matriz de inteiros com l linhas e c+1 colunas.