I/IV B.Tech (Regular/Supplementary) DEGREE EXAMINATION

pecember, 2019

Common to all branches

irst Semester	Linear algebra and ODE
jme: Three Hours nswer Question No.1 compulsorily.	Maximum: 50 Marks (1X10 = 10 Marks)
nswer ONE question from each unit. 1. Answer all questions	(4X10=40 Marks) (1X10=10 Marks)
(a) Find the rank of $A = \begin{bmatrix} 1 & 2 & 3 \\ -2 & 0 & 5 \end{bmatrix}$	
b) When will the system contain only unique solution in	non- homogeneous equations?
Find the Eigen values of $\begin{bmatrix} 1 & 2 & 5 \\ 0 & 3 & -4 \\ 0 & 0 & 4 \end{bmatrix}$	IM
Solve $\frac{dy}{dx} = x^2 e^{-2y}$	JIM
e) What is the standard form of Bernoulli's Equation?	JM
f) Write Growth Equation.	IM
g) Solve $\frac{d^2y}{dt^2} + 5\frac{dy}{dt} + 6y = 0$	1M
h) Find PI of $(D^2 - 4)y = e^{2x}$	1M
i) Define Laplace transform	1M
$Find L^{-1}\left(\frac{s^2-4}{s^3}\right)$	1M
UNIT	
$(3) \text{Find inverse of the matrix } A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}.$	5M
b) Solve the equations $4x+2y+z+3w=0$, $6x+3y$	y + 4z + 7w = 0 and $2x + y + w = 0$ 5M
(OR)	~
8	-6 2

Find Eigen values and Eigen vectors of the matrix $\begin{bmatrix} -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$ 5M Verify Cayley-Hamilton theorem for $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \end{bmatrix}$

5M

Solve
$$\frac{dy}{dx} = \sin(x+y) + \cos(x+y)$$
 UNIT II

Solve
$$(x+1)\frac{dy}{dx} = y + e^{3x}(x+1)^2$$

(OR)

b) If the temperature of the air is 30°C and the substance cools from 100°C to 70°C in 15 minutes. Then what will be the time for getting the temperature 40°C.

Solve
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = (1 - e^x)^2$$
UNIT III

by Solve
$$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = \frac{e^{3x}}{x^2}$$
 by using variation of parameters

7. a) Solve $(D^2 - 2D + 1)$ $y = x e^x \sin x$ 5M

An unchanged condenser C is charged by applying e.m.f $ESin(\frac{t}{\sqrt{LC}})$ through leads of self-inductance L and negligible resistance. Prove that at any time t, the charge on one of the plate is $\frac{EC}{2} \left[Sin \frac{t}{\sqrt{LC}} - \frac{t}{\sqrt{LC}} Cos \frac{t}{\sqrt{LC}} \right]$

UNIT IV

8. a) (i). Find
$$L\left[t^3e^{-3t}\right]$$
 2M (ii). Find $L\left(\frac{e^t\sin t}{t}\right)$ 3M

b) Find
$$L^{-1}\left(\frac{2s^2-1}{(s^2+1)(s^2+4)}\right)$$
 5M

9/a) Using Convolution theorem, find
$$L^{-1}\left[\frac{1}{(s+1)(s+3)}\right]$$
 5 M

By the method of transforms, solve
$$\frac{d^2x}{dt^2} - 2\frac{dx}{dt} + x = e'$$
 given $x(0) = 2$ and $x'(0) = -1$ 5 M