

AMENDMENTS TO THE CLAIMS

Kindly amend claims 1 – 4 and cancel claims 8 – 9 without prejudice to the subject matter involved. This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently amended) A compound of formula

wherein

A₀, A₁ and A₂ are each independently of the others a bond or a C₁-C₆alkylene bridge which is unsubstituted or substituted by from one to six identical or different substituents selected from halogen and C₃-C₈cycloalkyl;

A₃ is a C₁-C₆alkylene bridge which is unsubstituted or substituted by from one to six identical or different substituents selected from halogen and C₃-C₈cycloalkyl;

Y is O, NR₁₁, S, SO or SO₂;

M is O or NOR₆,

X₁ and X₂ are each independently of the other fluorine, chlorine or bromine;

R₁, R₂ and R₃ are each independently of the others H, halogen, OH, SH, CN, nitro, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkylcarbonyl, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C₂-C₆alkynyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₂-C₆alkenyloxy, C₂-C₆haloalkenyloxy, C₂-C₆alkynyloxy, -S(=O)-C₁-C₆alkyl, -S(=O)₂-C₁-C₆alkyl, C₁-C₆alkoxycarbonyl or C₃-C₆haloalkoxycarbonyl; the substituents R₃ being independent of one another when m is 2;

Q is O, NR₁₁, S, SO or SO₂;

W is O, NR₁₁, S, SO, SO₂, -C(=O)-O-, -O-C(=O)-, -C(=O)-NR₁₁- or -NR₁₁-C(=O)-;

T is a bond, O, NR₁₁, S, SO, SO₂, -C(=O)-O-, -O-C(=O)-, -C(=O)-NR₁₁- or -NR₁₁-C(=O)-;

D is CH or N;

R₄ is H, halogen, OH, SH, CN, nitro, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkylcarbonyl, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C₂-C₆alkynyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₂-C₆alkenyloxy, C₂-C₆haloalkenyloxy, C₂-C₆alkynyloxy, -S(=O)-C₁-C₆alkyl, -S(=O)₂-C₁-C₆alkyl, C₁-C₆alkoxycarbonyl, C₃-C₆haloalkynyloxy, NH₂, NH(C₁-C₆alkyl) or N(C₁-C₆alkyl)₂ wherein the two alkyl groups are independent of one another; the substituents R₄ being independent of one another when k is greater than 1;

R₅ is C₁-C₁₂alkoxy-C₁-C₁₂alkyl or heterocyclyl;

and wherein the heterocyclyl radical mentioned under R₅ are unsubstituted or, depending upon the possibilities of substitution, substituted by from one to five substituents selected from halogen, CN, NO₂, OH, SH, C₁-C₆alkyl, C₁-C₆haloalkyl, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C₃-C₆alkynyl, C₃-C₈cycloalkyl, C₃-C₈cycloalkyl-C₁-C₆alkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₂-C₆alkenyloxy, C₂-C₆haloalkenyloxy, C₃-C₆alkynyloxy, C₃-C₆haloalkynyloxy, C₃-C₈cycloalkyl-C₁-C₆alkoxy, C₁-C₆alkylcarbonyl, C₁-C₆haloalkylcarbonyl, C₁-C₆alkoxycarbonyl, C₁-C₆alkylcarbonyl, C₁-C₆alkyl, C₁-C₆alkoxycarbonyl-C₁-C₆alkyl, C₁-C₆alkylthio, C₂-C₆alkenylthio, C₃-C₆alkynythio, C₃-C₆cycloalkyl-C₁-C₆alkylthio, C₃-C₆haloalkynyl, C₂-C₆haloalkenylthio, C₁-C₆haloalkylthio, C₁-C₆alkoxy-C₁-C₆alkyl, C₁-C₆haloalkoxy-C₁-C₆alkyl, C₂-C₆alkenyloxy-C₁-C₆alkyl, C₂-C₆haloalkenyloxy-C₁-C₆alkyl, C₃-C₆alkynyloxy-C₁-C₆alkyl, NH₂, NH(C₁-C₆alkyl), N(C₁-C₆alkyl)₂ wherein the two alkyl groups are independent of one another, C₁-C₆alkylcarbonylamino, C₁-C₆haloalkylcarbonylamino, C₁-C₆alkoxycarbonylamino and C₁-C₆alkylaminocarbonylamino;

R₆ is H, C₁-C₁₂alkyl, C₃-C₈cycloalkyl, C₁-C₆alkylcarbonyl, C₂-C₆alkenyl, C₂-C₆alkynyl, aryl, heterocyclyl or benzyl, wherein the alkyl, cycloalkyl, alkenyl and alkynyl radicals are unsubstituted or, depending upon the possibilities of substitution, substituted by from one to five identical or different substituents selected from the group consisting of halogen, -N₃, CN, NO₂, OH, SH, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₂-C₆alkenyloxy, C₂-C₆haloalkenyloxy, C₃-C₆alkynyloxy, C₃-C₆cycloalkyl-C₁-C₆alkoxy, C₁-C₆alkylcarbonyl, C₁-C₆haloalkylcarbonyl, C₁-C₆alkoxycarbonyl, C₁-C₆alkylcarbonyl-C₁-C₆alkyl, C₁-C₆alkoxycarbonyl-C₁-C₆alkyl, C₁-C₆alkylthio, C₂-C₆alkenylthio, C₃-C₆alkynythio, C₃-C₆cycloalkyl-C₁-C₆alkylthio, C₃-C₆haloalkynyl, C₂-C₆haloalkenylthio, C₁-C₆haloalkylthio, C₁-C₆alkoxy-C₁-C₆alkyl, C₁-C₆haloalkoxy-C₁-C₆alkyl, C₂-C₆alkenyl-oxy-C₁-C₆alkyl, C₂-C₆haloalkenyloxy-C₁-C₆alkyl, C₃-C₆alkynyloxy-C₁-C₆alkyl, NH₂, NH(C₁-C₆alkyl), N(C₁-C₆alkyl)₂ wherein the two alkyl groups are independent of one another, C₁-C₆alkyl-

Appl No. 10/560,292
Amdt. Dated November 20, 2007
Reply to the final Office action of August 20, 2007

carbonylamino, C₁-C₆haloalkylcarbonylamino, C₁-C₆alkoxycarbonylamino and C₁-C₆alkylaminocarbonylamino;

and the aryl, heterocycll and benzyl radicals are unsubstituted or, depending upon the possibilities of substitution, substituted by from one to five identical or different substituents selected from the group consisting of halogen, CN, NO₂, OH, SH, C₁-C₆alkyl, C₁-C₆haloalkyl, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C₃-C₆alkynyl, C₃-C₈cycloalkyl, C₃-C₈cycloalkyl-C₁-C₆alkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₂-C₆alkenyloxy, C₂-C₆haloalkenyloxy, C₃-C₆alkynyloxy, C₃-C₆haloalkynyloxy, C₃-C₈cycloalkyl-C₁-C₆alkoxy, C₁-C₆alkylcarbonyl, C₁-C₆haloalkylcarbonyl, C₁-C₆alkoxycarbonyl, C₁-C₆alkylcarbonyl-C₁-C₆alkyl, C₁-C₆alkoxycarbonyl-C₁-C₆alkyl, C₁-C₆alkylthio, C₂-C₆alkenylthio, C₃-C₆alkynythio, C₃-C₆cycloalkyl-C₁-C₆alkylthio, C₃-C₆haloalkynyl, C₂-C₆haloalkenylthio, C₁-C₆haloalkylthio, C₁-C₆alkoxy-C₁-C₆alkyl, C₁-C₆haloalkoxy-C₁-C₆alkyl, C₂-C₆alkenyloxy-C₁-C₆alkyl, C₂-C₆haloalkenyloxy-C₁-C₆alkyl, C₃-C₆alkynyloxy-C₁-C₆alkyl, NH₂, NH(C₁-C₆alkyl), N(C₁-C₆alkyl)₂ wherein the two alkyl groups are independent of one another, C₁-C₆alkylcarbonylamino, C₁-C₆haloalkylcarbonylamino, C₁-C₆alkoxycarbonylamino and C₁-C₆alkylaminocarbonylamino;

R₇ is H, C₁-C₆alkyl, C₁-C₃haloalkyl, C₁-C₆alkylcarbonyl, C₁-C₃haloalkylcarbonyl, C₁-C₆alkoxycarbonyl, C₃-C₈cycloalkyl, C₃-C₈cycloalkylcarbonyl or formyl;

R₈ is H, C₁-C₁₂alkyl substituted by from one to five identical or different substituents selected from halogen, -N₃, CN, NO₂, OH, C₁-C₆alkoxy, C₁-C₆alkylthio, NH₂, NH(C₁-C₆alkyl), N(C₁-C₆alkyl)₂ wherein the two alkyl groups are independent of one another and C₁-C₆alkylcarbonylamino; C₃-C₈cycloalkyl, C₁-C₆alkylcarbonyl, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C₂-C₆alkynyl, C₂-C₆haloalkynyl, aryl, heterocycll or benzyl, wherein the aryl, heterocycll and benzyl radicals are unsubstituted or, depending upon the possibilities of substitution, substituted by from one to five substituents selected from the group consisting of halogen, CN, NO₂, OH, C₁-C₆haloalkyl, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C₃-C₆alkynyl, C₃-C₈cycloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₂-C₆alkenyloxy, C₂-C₆haloalkenyloxy, C₃-C₆alkynyloxy, C₃-C₆haloalkynyloxy, C₁-C₆alkylcarbonyl, C₁-C₆haloalkylcarbonyl, C₁-C₆alkoxycarbonyl, C₁-C₆alkylthio, C₂-C₆alkenylthio, C₃-C₆alkynythio, C₁-C₆alkylthio, C₃-C₆haloalkynyl, C₁-C₆haloalkylthio, C₁-C₆alkoxy-C₁-C₆alkyl, NH₂, NH(C₁-C₆alkyl), N(C₁-C₆alkyl)₂, C₁-C₆alkylcarbonylamino, C₁-C₆haloalkylcarbonylamino, C₁-C₆alkoxycarbonylamino and C₁-C₆alkylaminocarbonylamino;

R₉ is H, C₁-C₁₂alkyl unsubstituted or substituted by from one to five identical or different substituents selected from halogen, CN, NO₂, OH, C₁-C₆alkoxy, C₁-C₆alkylthio, NH₂, NH(C₁-C₆alkyl), N(C₁-C₆alkyl)₂ wherein the two alkyl groups are independent of one another and

C₁-C₆alkylcarbonylamino; C₃-C₈cycloalkyl, C₁-C₆alkylcarbonyl, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C₂-C₆alkynyl, C₂-C₆haloalkynyl, aryl, heterocycl or benzyl, wherein the aryl, heterocycl and benzyl radicals are unsubstituted or, depending upon the possibilities of substitution, substituted by from one to five substituents selected from the group consisting of halogen, CN, NO₂, OH, C₁-C₆haloalkyl, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C₃-C₆alkynyl, C₃-C₈cycloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₂-C₆alkenyloxy, C₂-C₆haloalkenyloxy, C₃-C₆alkynyloxy, C₃-C₆haloalkynyloxy, C₁-C₆alkylcarbonyl, C₁-C₆haloalkylcarbonyl, C₁-C₆alkoxycarbonyl, C₁-C₆alkylthio, C₂-C₆alkenylthio, C₃-C₆alkynylthio, C₁-C₆alkylthio, C₃-C₆haloalkynyl, C₁-C₆haloalkylthio, C₁-C₆alkoxy-C₁-C₆alkyl, NH₂, NH(C₁-C₆alkyl), N(C₁-C₆alkyl)₂ wherein the two alkyl groups are independent of one another, C₁-C₆alkylcarbonylamino, C₁-C₆haloalkylcarbonylamino, C₁-C₆alkoxycarbonylamino and C₁-C₆alkylaminocarbonylamino;

R₁₀ is H, C₁-C₁₂alkyl unsubstituted or substituted by from one to five identical or different substituents selected from halogen, CN, NO₂, OH, C₁-C₆alkoxy, C₁-C₆alkylthio, NH₂, NH(C₁-C₆alkyl), N(C₁-C₆alkyl)₂ and C₁-C₆alkylcarbonylamino; C₃-C₈cycloalkyl, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C₂-C₆alkynyl, aryl, heterocycl or benzyl, wherein the aryl, heterocycl and benzyl radicals are unsubstituted or, depending upon the possibilities of substitution, substituted by from one to five identical or different substituents selected from the group consisting of halogen, CN, NO₂, OH, SH, C₁-C₆alkyl, C₁-C₆haloalkyl, C₃-C₈cycloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkylcarbonyl, C₁-C₆haloalkylcarbonyl, C₁-C₆alkoxycarbonyl, C₁-C₆alkylcarbonyl-C₁-C₆alkyl, C₁-C₆alkoxy-C₁-C₆alkyl, NH₂, NH(C₁-C₆alkyl), N(C₁-C₆alkyl)₂ wherein the two alkyl groups are independent of one another, C₁-C₆alkylcarbonylamino, C₁-C₆haloalkylcarbonylamino, C₁-C₆alkoxycarbonylamino and C₁-C₆alkylaminocarbonylamino;

R₁₁ and R₁₂ are each independently of the other H, C₁-C₆alkyl, C₁-C₃haloalkyl, C₁-C₆alkylcarbonyl, C₁-C₃haloalkylcarbonyl, C₁-C₆alkoxycarbonyl, C₃-C₈cycloalkyl, C₃-C₈cycloalkyl-C₁-C₆alkyl or C₃-C₈cycloalkylcarbonyl;

R₁₃ is H, C₁-C₆alkyl, C₂-C₆alkenyl, C₃-C₆alkynyl or C₁-C₆haloalkyl;

R₁₄ is H, C₁-C₆alkyl, C₂-C₆alkenyl, C₃-C₆alkynyl or C₁-C₆haloalkyl;

R₁₅ is H, C₁-C₆alkyl, C₂-C₆alkenyl, C₃-C₆alkynyl or C₁-C₆haloalkyl;

k is 0, 1, 2, 3 or 4;

m is 1 or 2; and

q is 0, 1 or 2;

or, where applicable, a possible E/Z isomer, E/Z isomeric mixture and/or tautomer thereof, in each case in free form or in salt form.

2. (Previously presented) A compound according to claim 1 wherein M is NOR₆.
3. (Previously presented) A compound according to claim 1 wherein M is O.
4. (Previously presented) A compound according to claim 1 in free form.
5. (Previously presented) A compound according to claim 1 wherein X₁ and X₂ are chlorine or bromine.
6. (Previously presented) A compound according to claim 1 wherein D is CH.
7. (Previously presented) A compound according to claim 1 wherein A₃ is straight-chain alkylene bridge.

8 – 9. (Canceled)

10. (Previously presented) A pesticidal composition which comprises as active ingredient at least one compound defined in claim 1, in free form or in agrochemically acceptable salt form, and at least one adjuvant.
11. (Original) A method of controlling pests which comprises applying a pesticidal composition as defined in claim 10 to the pests or to the locus thereof.