Теплопроводность, детерминированное горение

Этап №1

Махорин И. С.

24 февраля 2024

Российский университет дружбы народов, Москва, Россия

Докладчики

- Махорин Иван Сергеевич
- Шаповалова Диана Дмитриевна
- Егорова Юлия Владимировна
- Павлова Варвара Юрьевна
- Лебединец Татьяна Александровна
- Великоднева Евгения Владимировна

Вводная часть

Цели проекта

• Изучить методы математического моделирования на примере теплопроводности и детерминированного горения.

Задачи проекта

- \cdot Исследовать влияние E на режим горения. При каком минимальном значении E возникает пульсирующий режим?
- Написать программу, решающую одномерное уравнение теплопроводности с адиабатическими граничными условиями, используя явную разностную схему. Исследовать поведение численного решения при различных значениях $\chi \Delta t/h2$.
- Написать программу, решающую одномерное уравнение теплопроводности с адиабатическими граничными условиями, используя неявную разностную схему.

- Горение представляет собой феномен природы, являющийся интересным объектом для научного исследования. Несмотря на комплексность и разнообразие физико-химических процессов, лежащих в его основе, многие из его характеристик могут быть описаны с использованием простых моделей. Для того чтобы произошло горение, необходимы определенные условия, такие как теплопроводность среды и возможность экзотермической реакции, скорость которой зависит от температуры.
- Детерминированное горение это процесс горения, который подчиняется определенным законам физики и химии. В отличие от случайного горения, его характеристики можно предсказать с высокой точностью. Этот тип горения применяется, например, при моделировании работы двигателей внутреннего сгорания.

Как протекает?

Обычное стационарное горение, при котором скорость распространения зоны активного горения или реакции (фронт пламени) не зависит от времени, может стать неустойчивым. Возникают быстрые периоды горения, сменяющиеся пассивными периодами.

В двумерном случае фронт горения может искривляться и состоять из нескольких зон активного горения, движущихся вдоль фронта и вглубь материала. Эти зоны могут взаимодействовать, периодически исчезать и появляться снова.

Основная часть

Размерная система уравнений

Закон Аррениуса для реакции первого порядка

Вещество вида A переходит в B, при этом выделяется тепло. Для скорости XP воспользуемся законом Аррениуса для реакции первого порядка:

$$\frac{\partial N}{\partial t} = -\frac{N}{\tau} e^{-E/RT}$$

(1.1)

- $\cdot N$ доля непрореагировавшего вещества A, меняющаяся от 1 исходное состояние, до 0 все прореагировало,
- \cdot E энергия активации XP
- · au характерное время перераспределения энергии
- $\cdot T$ температура в данной точке

Размерная система уравнений

Одномерный случай

В одномерном случае необходимо добавить уравнение теплопроводности с дополнительным членом, отвечающим за энерговыделение:

$$\rho c \frac{\partial T}{\partial t} = \kappa \frac{\partial^2 T}{\partial x^2} - \rho Q \frac{\partial N}{\partial t}$$

(1.2)

- \cdot ρ плотность
- \cdot c удельная теплоемкость
- · κ коэффициент теплопроводности
- $\cdot \, Q$ удельное энерговыделение при XP

Одномерный случай

Рис. 1: Профили температуры и исходного компонента в стационарной волне горения

Система уравнений для безразмерных величин

Поделив уравнение теплопроводности на ho Q и перейдя к безразмерным температуре ilde T=cT/Q и энергии активации ilde E=cE/(RQ) получим систему уравнений:

$$\frac{\partial T}{\partial t} = \chi \frac{\partial^2 T}{\partial x^2} - \frac{\partial N}{\partial t}$$

(2.1)

$$\frac{\partial N}{\partial t} = -\frac{N}{\tau} - e^{-E/T}$$

(2.2)

$$\cdot \chi = \kappa/\rho c$$

 $\cdot \; \chi$ - коэффициент температуропроводности

Одномерный случай

- \cdot Первый режим скорость распространения волны постоянна, а профили температуры и концентрации переносятся вдоль оси X не деформируясь.
- Второй режим скорость волны переменная, и горение распространяется в виде чередующихся вспышек и угасаний. От значения параметра E, зависит какой режим реализуется.

Существует критическое значение безразмерной энергии активации E*. При E < E*- стационарное горение, а при E > E*- пульсирующее. Теоретически можно показать, что при $T0 \ll 1$ критическое значение E*=6,56. При увеличении начальной температуры ТО критическое значение E* возрастает.

Различные режимы горения

Двумерный случай

Для моделирования волны горения в двумерном случае в уравнение:

$$\frac{\partial T}{\partial t} = \chi \frac{\partial^2 T}{\partial x^2} - \frac{\partial N}{\partial t}$$

(2.1)

нужно добавить перенос тепла по второй координате $-\chi rac{\partial^2 T}{\partial y^2}$

Кроме стационарного и пульсирующего режимов для этой двухмерной системы возможен третий режим распространения волны горения — спиновый.

Различные режимы горения

Рис. 2: Характерный пример численного моделирования спинового режима горения

Явная разностная схема

Рассмотрим численные методы решения одномерного уравнения теплопроводности без химических реакций:

$$\frac{\partial T}{\partial t} = \chi \frac{\partial^2 T}{\partial x^2}$$

(3.1)

Для этого в уравнении теплопроводности заменим частные производные на разностные:

$$\frac{\hat{T}_i - T_i}{\Delta t} = \chi \frac{\frac{T_{i+1} - T_i}{h} - \frac{T_i - T_{i_1}}{h}}{h} = \chi \frac{(T_{i+1} - 2T_i + T_{i-1})}{h^2}.$$
, (3.2)

Явная разностная схема

Теперь учитываем, добавим изменение безразмерной температуры за счёт энерговыделения в химических реакциях за шаг по времени:

$$\Delta N_i = -\frac{N_i}{\tau} e^{-E/T_i} \Delta t,$$

$$\hat{T}_i = T_i + \frac{\chi \Delta t}{h^2} (T_{i+1} - 2T_i + T_{i-1}) - \Delta N_i,$$

$$\hat{N}_i = N_i - \Delta N_i,$$

$$(3.3)$$

i = 1, 2, ..., n

Неявные разностные схемы

Неявная схема:

$$\frac{\hat{T}_i - T_i}{\Delta t} = \chi \frac{(\delta^2 \hat{T})_i}{h^2}, \quad e = O[\Delta t] + O[h^2]$$
, (3.4)

Неявная схема Кранка-Николсон:

$$\frac{\hat{T}_{i} - T_{i}}{\Delta t} = \chi \frac{(\delta^{2}T)_{i} + (\delta^{2}\hat{T})_{i}}{2h^{2}}, \quad e = O[(\Delta t)^{2}] + O[h^{2}], \quad (3.5)$$

Неявные разностные схемы

Преобразовав выражение, получим следующую систему уравнений:

$$\hat{T}_{i-1} - (2 + \frac{2h^2}{\chi \Delta t})\hat{T}_i + \hat{T}_{i+1} = -T_{i-1} + (2 - \frac{2h^2}{\chi \Delta t})T_i - T_{i+1}$$
, (3.6)

Заключительная часть

Результаты

На данном этапе мы рассмотрели, что такое теплопроводность и детерминированное горение, что они из себя представляют и что в себе сочетают. Так же мы познакомились с основными понятиями, которые используются при изучении и построении уравнений и моделей теплопроводности и детерминированного горения.

Источники

• Моделирование физических процессов и явлений на ПК / Д. А. Медведев, А. Л. Куперштох, Э. Р. Прууэл [и др.]. – Новосибирск : Новосиб. гос. ун-т, 2010. – 101 с. – ISBN 978-5-94356-933-3.