Algebraic Theory I: Homework IV

Thomas Fleming

Thu 18 Nov 2021 03:10

Problem (1). Let (X, \subseteq) be the set of all ideals not containing I partially ordered by inclusion.

It suffices to show that for a totally ordered set $(I_{\alpha})_{\alpha \in \Omega}$ with ordered set Ω , and ideals $I_{\alpha} \in X$ there is an upper bound. Take $U = \bigcup_{\alpha \in \Omega} I_{\alpha}$. U is the union of ideals so it is clearly an ideal. Suppose $U \notin X$, that is $U \supseteq I$. Then, there is a subsequence $\alpha_1, \ldots, \alpha_n$ and a permutation π so that

$$(x_{\pi(1)}) \subseteq I_{\alpha_1}, (x_{\pi(1)}, x_{\pi(2)}) \subseteq I_{\alpha_2}, \dots, (x_{\pi(1)}, \dots, x_{\pi(n)}) = I \subseteq I_{\alpha_n} \ \ \xi.$$

Hence, $U \in X$, and U contains all I_{α} so it is an upper bound. Hence, there is a maximal element $M \in X$ by Zorn's Lemma.

Problem (2).

First note that $2, \sqrt{-D}, 1 + \sqrt{-D}$ are all non-units in R as their respective inverses in \mathbb{C} all have noninteger coefficients.

Then define

$$N: \mathbb{Z}\left[\sqrt{-D}\right] \longrightarrow \mathbb{Z}$$

 $(a+bi) = x \longmapsto x\overline{x} = a^2 + b^2.$

Then

$$N((a+bi)(c+di)) = [(ac-bd) + (bc+ad)i][(ac-bd) - (bc+ad)i]$$

$$= (ac-bd)^{2} + (bc+ad)^{2}$$
and $N(a+bi)N(c+di) = (a^{2}+b^{2})(c^{2}+d^{2})$

$$= (ac)^{2} - 2acbd + (bd)^{2} + (ad)^{2} + 2adbc + (bc)^{2}$$

$$= (ac-bd)^{2} + (bc+ad)^{2}$$

$$= N((a+bi)(c+di))$$

In particular N is a ring homomorphism of R. Next, suppose 2 is not irreducible in R. Then, there are non-units $x = a + b\sqrt{-D}$, $y = c + d\sqrt{-D} \in R$ so that $(a + b\sqrt{-D})$ $(c + d\sqrt{-D}) = 2$. Passing to N,

$$N(2) = 4 = N(x) N(y)$$
$$= (a^{2} + b^{2}D) (c^{2} + d^{2}D) \in \mathbb{Z}$$

Since units pull back to units under homomorphisms, we can assume both of these quantities to be non-units. Hence the only possibility is

$$a^{2} + b^{2}D = c^{2} + d^{2}D = 2$$
 (up to units).

In this case D>2 so we see b=d=0, hence either $a=2,\ c=1$ or $a=1,\ c=2$. In either case ξ , as x,y were assumed nonunits. Hence 2 is irreducible in R.

Now assume $\sqrt{-D}$ non-irreducible in R. Then, we find non-units $x=a+b\sqrt{-D},y=c+d\sqrt{-D}\in R$ so that $\sqrt{-D}=xy$. Passing to N, we find

$$N\left(\sqrt{-D}\right) = D = \left(a^2 + b^2 D\right) \left(c^2 + d^2 D\right).$$

If WLOG b=1, then we see a=d=0 and c=1 ¼ as y is not a unit. If b>1 or d>1, then $b^2D>D$ so ¼. Hence b=d=0. Hence, $D=a^2c^2$, but D was square-free ¼.

Lastly, suppose $1+\sqrt{-D}$ is irreducible in R. Then, we find non-units $x=a+b\sqrt{-D},y=c+d\sqrt{-D}\in R$ so that $xy=1+\sqrt{-D}$. Hence

$$N(1+\sqrt{-D}) = 1 + D = (a^2 + b^2 D)(c^2 + d^2 D).$$

If WLOG b=1, then d=0 otherwise $1+D>2D^2$ $\mbox{$\rlap/$}{\mbox{$\rlap/$}}$, and similarly c=1. Hence y is a unit $\mbox{$\rlap/$}{\mbox{$\rlap/$}}$. So, $1+\sqrt{-D}$ is an irreducible.

Now, note that the element D^2+D has two distinct factorizations. First, it is again clear that $D\pm\sqrt{-D}$ is a non-unit as its complex inverse has nonintegral coefficients. Then, we note $D\left(D+1\right)=D^2+D=\left(D+\sqrt{-D}\right)\left(D-\sqrt{-D}\right)$. We see D,(D+1) are not units and likewise for $\left(D\pm\sqrt{-D}\right)$. Moreover, the factorizations are not pairwise associate, hence there are two factorizations for D^2+D , so $Z\left[\sqrt{-D}\right]$ is not a UFD.

Problem (3). Let $I,J\subseteq R$ be ideals of a commutative ring R. Then, let $x,y\in IJ$ with $x=\sum_{i=1}^n a_ib_i$ and $y=\sum_{i=n+1}^m a_ib_i$ for $a_i\in I$ $b_i\in J,$ $1\leq i\leq m$. Then, we see $x+y=\sum_{i=1}^m a_ib_i\in IJ$. Next, if $r\in R$, and $x\in I$ with $x=\sum_{i=1}^n a_ib_i$ for some $a_i\in I$ $b_i\in J$, then $rx=r\sum_{i=1}^n a_ib_i=\sum_{i=1}^n ra_ib_i$ with $ra_i\in I$ by absorption property and $b_i\in J$ by assumption for $1\leq i\leq n$. Hence $rx\in IJ$, so IJ is an ideal.

Problem (4). Let I be an ideal in R and $I_i = \{x_i : x \in I\} \subseteq R_i$ for each $1 \leq i \leq n$. First, fix i and let $r_i \in R_i$. Then, there is an $\mathbf{r} \in R$ so that \mathbf{r} has r_i in its i'th coordinate. Hence, we see $\mathbf{rx} \in I$ for all $\mathbf{x} \in I$, so $r_i x_i \in I_i$ for all $x_i \in I_i$ by the pointwise multiplication. Similarly, fix i and let $x_i, y_i \in I_i$. Then there are $\mathbf{x}, \mathbf{y} \in I$ having x_i, y_i in their i'th coordinates respectively and $\mathbf{x} + \mathbf{y} \in I$. Hence, $x_i + y_i \in I_i$. So, each I_i is an ideal. Now, we show I to be the product of the I_i 's.

As each I_i is simply the projection of I into its i'th coordinate it is clear $I \subseteq$ $\prod_{i=1}^n I_i$. Hence, let $\mathbf{x} = (x_1, \dots, x_n) \in \prod_{i=1}^n I_i$. Then, we see there are vectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \in I$ each having x_i in their *i*'th coordinates respectively and

chosen by axiom of choice such that $\mathbf{x}_i \cdot j_i = \left(0, \dots, \underbrace{x_i}_{\text{position } i}, \dots, 0\right) \in I$ for $j_i \in R$ being the indicator vector in the *i*'th coordinate. Hence the sum

 $\mathbf{x} = \sum_{i=1}^{n} \mathbf{x}_{i} j_{i} \in I$ by closure of addition. So, equality holds.

Problem (5). 1. It is trivial that $I \subseteq \sqrt{I}$ (taking n=1 for all $x \in I$). To show \sqrt{I} an ideal, let $x_1, x_2 \in \sqrt{I}$ with $x_1^p \in I$ and $x_2^{p_2} \in I$. Then, there are $a_0, a_1, \ldots, a_{p+q} \in R$ so that

$$(x_1 + x_2)^{p+q} = a_{p+q} x_1^{p+q} + a_{p+q-1} x_1^{p+q-1} x_2^1 + \dots + a_p x_1^p x_2^q + \dots a_1 x_1^1 x_2^{p+q-1} + a_0 x_2^{p+q}.$$

We know each term of this sum to be in I by the absorbition property of x_1^p and x_2^q , hence the sum is in I, so $x_1+x_2\in \sqrt{I}$. Next, let $x\in R, a\in \sqrt{I}$ with $a^n\in I$, then $(xa)^n=x^na^n\in I$ by absorption, so $xa\in \sqrt{I}$, so \sqrt{I} is an ideal

- 2. Suppose $\sqrt{I}=R$. Then, $1\in \sqrt{I}$, hence $1^n=1\in I$, so I=R. Conversely, $I=R\subseteq \sqrt{I}$ so the claim holds.
- 3. Let M be a maximal ideal among inclusion and $n \geq 1$. Then $M \subseteq \sqrt{M}$ with \sqrt{M} being an ideal so either $\sqrt{M} = R$ or $\sqrt{M} = M$ if $\sqrt{M} = R$, ξ by previous part, so $\sqrt{M} = M$. Moreover, as $M^n \subseteq M$, we see $\sqrt{M^n} \subseteq \sqrt{M}$. Hence, we need only show the reverse inclusion. Let $x \in \sqrt{M}$. Then, $x^m \in M$ for some $m \geq 1$. Then, we see $x^{mn} = \underbrace{x^m \cdot x^m \cdot \ldots \cdot x^m}_{n \text{ times}} \in M^n$,

so $x \in \sqrt{M^n}$. Hence equality holds.