MINIMIZING ANGULAR ERROR IN LABELED GRAPHS

GRAPHS

- Labeled Graph
- Directed Graph (Digraph), no edges to oneself
- Graph with angle orientation for each vertex
- => directed angular graph (DAG)

SLAM

"SLAM is a process by which a mobile robot can build a map of an environment and at the same time use this map to deduce its location."

- Simultaneous localization and mapping
- Cumulative error

DUAL POPULATION CODING

Navigation model by Tristan Baumann

- Graph based spatial representation
- Estimating the global reference direction at each point

DIRECTION DRIFT

Given:

- Adjacency matrix $A = (a_{ij})$
 - directed Graph, as $a_{ij} \neq a_{ji}$ for some i, j
- Internal reference directions v_i
- Angles ϕ_{ij} (in respect to reference direction)

Goal:

- Embedding of points $(x_1, ..., x_n), x_i \in \mathbb{R}^2$, such that $x_j x_i \approx \lambda \begin{pmatrix} \cos \phi_{ij} \\ \sin \phi_{ij} \end{pmatrix} =: \lambda p_{ij}$
- Minimizing the Objective function: $f(x_1, ..., x_n) = \sum_{ij} a_{ij} \left(\frac{x_j x_i}{||x_j x_i||} p_{ij} \right)^2$

- Embedding of points $(x_1, ..., x_n)$, $x_i \in \mathbb{R}^2$, such that $x_j x_i \approx \lambda \begin{pmatrix} \cos \phi_{ij} \\ \sin \phi_{ij} \end{pmatrix} =: \lambda p_{ij}$
- Minimization problem: $f(x_1, ..., x_n) = \sum_{ij} a_{ij} \left(\frac{x_j x_i}{||x_j x_i||} p_{ij} \right)^2$

- Embedding of points $(x_1, ..., x_n)$, $x_i \in \mathbb{R}^2$, such that $x_j x_i \approx \lambda \begin{pmatrix} \cos \phi_{ij} \\ \sin \phi_{ij} \end{pmatrix} =: \lambda p_{ij}$
- Minimization problem: $f(x_1, ..., x_n) = \sum_{ij} a_{ij} \left(\frac{x_j x_i}{||x_j x_i||} p_{ij} \right)^2$

- Embedding of points $(x_1, ..., x_n)$, $x_i \in \mathbb{R}^2$, such that $x_j x_i \approx \lambda \begin{pmatrix} \cos \phi_{ij} \\ \sin \phi_{ij} \end{pmatrix} =: \lambda p_{ij}$
- Minimization problem: $f(x_1, ..., x_n) = \sum_{ij} a_{ij} \left(\frac{x_j x_i}{||x_j x_i||} p_{ij} \right)^2$

- Embedding of points $(x_1, ..., x_n)$, $x_i \in \mathbb{R}^2$, such that $x_j x_i \approx \lambda \begin{pmatrix} \cos \phi_{ij} \\ \sin \phi_{ij} \end{pmatrix} =: \lambda p_{ij}$
- Minimization problem: $f(x_1, ..., x_n) = \sum_{ij} a_{ij} \left(\frac{x_j x_i}{||x_j x_i||} p_{ij} \right)^2$

Classical MDS:

"Given a distance matrix with the distances between each pair of objects in a set [...] an MDS algorithm places each object into [...] [this] space such that the between-object distances are preserved as well as possible."

Classical MDS:

"Given a distance matrix with the distances between each pair of objects in a set [...] an MDS algorithm places each object into [...] [this] space such that the between-object distances are preserved as well as possible."

- Broad literature of different approaches
- MDS algorithm running time $O(n^2)$ not good for big graphs
 - Many approaches for (random) sampling of pivot points
- Looking for smallest cliques throughout the graph?

"A valid dissimilarity matrix must satisfy both of the following constraints:

(i) self-similarity $d_{ii}=0$ and (ii) symmetry $d_{ij}=d_{ji}$ "

difference of angles, not distances

"A valid dissimilarity matrix must satisfy both of the following constraints:

(i) self-similarity $d_{ii} = 0$ and (ii) symmetry $d_{ij} = d_{ji}$ What are the implications for a classical MDS in our case?

"A valid dissimilarity matrix must satisfy both of the following constraints:

(i) self-similarity
$$d_{ii}=0$$
 and (ii) symmetry $d_{ij}=d_{ji}$ "

What are the implications for a classical MDS in our case?

$$f(x_1, ..., x_n) = \sum_{ij} a_{ij} \left(\frac{x_j - x_i}{||x_j - x_i||} - p_{ij} \right)^2$$

$$f(x_1, \dots, x_n) = \sum_{ij} a_{ij} (x_j - x_i - p_{ij})^2$$

MEASUREMENT

$$f(x_1, ..., x_n) = \sum_{ij} a_{ij} \left(\frac{x_j - x_i}{||x_j - x_i||} - p_{ij} \right)^2$$

$$\left(\frac{x_{j} - x_{i}}{||x_{j} - x_{i}||} - p_{ij}\right)^{2}$$

$$= (x_{ij} - p_{ij})^{2}$$

$$= x_{ij}^{2} + p_{ij}^{2} - 2(x_{ij} \circ p_{ij})$$

$$= 1 + 1 - 2(x_{ij} \circ p_{ij})$$

$$= 2 - 2 * \rho, mit \rho \in [-1,1]$$

with $\rho = 0$ we get the worst embedding (90°)

MEASUREMENT

$$f(x_1, \dots, x_n) = \sum_{ij} a_{ij} \left(\frac{x_j - x_i}{||x_j - x_i||} - p_{ij} \right)^2$$

$$g(f) = \frac{f(x_1, \dots, x_n)}{\sum_{ij} a_{ij}} \epsilon [0,4]$$

$$g(f, \xi) = |\xi| * \left(\frac{f(x_1, \dots, x_n)}{2 * \sum_{ij} a_{ij}} - 1 \right) |\epsilon [0, \xi]$$
with $g(f, \xi) = \xi$
being perfect

measured value

$$\left(\frac{x_{j} - x_{i}}{||x_{j} - x_{i}||} - p_{ij}\right)^{2}$$

$$= (x_{ij} - p_{ij})^{2}$$

$$= x_{ij}^{2} + p_{ij}^{2} - 2(x_{ij} \circ p_{ij})$$

$$= 1 + 1 - 2(x_{ij} \circ p_{ij})$$

$$= 2 - 2 * \rho, mit \rho \in [-1,1]$$

with $\rho = 0$ we get the worst embedding (all 90°)

