TEORÍA DE CONJUNTOS

Lic. Silvina San Miguel

CONCEPTOS PRIMITIVOS

 Conjunto: agrupación de objetos llamados elementos.

• Relación de pertenencia: Si A es un conjunto y x es un elemento de A, la expresión simbólica x ∈ A, se lee "x pertenece a A" y significa que "x es un elemento del conjunto A"

RELACIÓN DE INCLUSIÓN:

Sean A y B dos conjuntos, A está incluido en B, lo que se denota $A \subset B$ si, y sólo si, todo elemento de A es elemento de B.

$$A \subset B \Leftrightarrow \forall x : (x \in A \Rightarrow x \in B)$$

Propiedades de la relación de inclusión

(a) $A \subset A$; $\forall A$ (Propiedad reflexiva)

(b) $\forall A,B: si A \subset B \land B \subset A \Rightarrow A=B$ (Propiedad antisimétrica)

(c) \forall A, B, C: si A \subset B \land B \subset C \Rightarrow A \subset C (Propiedad transitiva)

AXIOMAS DE LA TEORÍA DE CONJUNTOS

Axioma 1. (Axioma de Sustitución)

"Sea P(x) una proposición respecto a la variable x. Si P(x) es verdadera y si u = x, entonces P(u) es también verdadera".

Axioma 2. (Axioma de Extensión)

"Dos conjuntos A y B son iguales si y sólo si tienen los mismos elementos".

Simbólicamente: $A = B \Leftrightarrow [A \subset B \land B \subset A]$

Propiedades de la relación de igualdad

(a) A = A; $\forall A$ (Propiedad reflexiva)

- (b) $\forall A,B: si A = B \Rightarrow B = A$ (Propiedad simétrica)
- (c) \forall A, B, C: si A = B \land B = C \Rightarrow A = C (Propiedad transitiva)

Por cumplir estas tres propiedades se trata de una relación de equivalencia

AXIOMAS DE LA TEORÍA DE CONJUNTOS

Axioma 3. (Axioma de Especificación)

"Dado un conjunto U y una función proposicional P(x) con $x \in U$, existe un único subconjunto A de U, cuyos elementos son todos los elementos $x \in U$ tales que P(x) es verdadera".

$$A = \{x \in U / P(x)\}$$

• Conjunto vacío: $\emptyset = \{x / f(x)\}$

Ejemplo: $\emptyset = \{x \in R / x \neq x\}$

o Propiedades del conjunto vacío

- a) $\forall a : a \notin \phi$
- b) $\forall A: \phi \subset A$
- c) ϕ es único

AXIOMAS DE LA TEORÍA DE CONJUNTOS

o Axioma 4. (Axioma del conjunto potencia)

"Dado un conjunto E, existe un conjunto y solamente uno cuyos elementos son todos los subconjuntos de E".

$$P(E) = \{A / A \subset E\}$$

Observación:

a) Como para todo conjunto E, $\phi \subset E$ y $E \subset E$, entonces

$$\phi \in P(E)$$
 y $E \in P(E)$

b) Se demuestra que, si A es un conjunto que tiene n elementos, entonces P (A) tiene 2ⁿ elementos.

Unión de Conjuntos

- Axioma 5 (Axioma de la unión de conjuntos) "Dados dos conjuntos A y B, existe un conjunto U tal que $A \subset U$ y $B \subset U$ ".
- o **Definición.** Sean $A \subset U$ y $B \subset U$ dos conjuntos, la unión de A y B, denotada por $A \cup B$, es el conjunto formado por todos los elementos x ∈ U tales que x ∈ A o x ∈ B.

Simbólicamente

$$A \cup B = \{x \in U \mid x \in A \ v \ x \in B\}$$

Es decir

$$x \in (A \cup B) \Leftrightarrow [x \in A \lor x \in B]$$

Intersección de Conjuntos

o **Definición.-** Sean $A \subset U$ y $B \subset U$ dos conjuntos, **la intersección de** A y B, denotada por $A \cap B$ es el conjunto formado por todos los elementos x de U, tales que $x \in A$ y $x \in B$.

Simbólicamente:
$$A \cap B = \{x \in U \mid x \in A \land x \in B\}$$

Es decir

$$x \in (A \cap B) \Leftrightarrow (x \in A \land x \in B)$$

OBSERVACIÓN

Si $A \cap B = \emptyset$, se dirá que los conjuntos A y B son disjuntos.

Diferencia de Conjuntos

• **Definición.**- Dados los conjuntos $A \subset U$ y $B \subset U$, la diferencia de A y B, denotado por A -B, es el conjunto formado por todos los elementos x de U tales que $x \in A$ y $x \notin B$.

Simbólicamente: A - B = $\{x \in U / x \in A \land x \notin B\}$

Es decir,

$$x \in (A - B) \Leftrightarrow [x \in A \land x \notin B]$$

Complemento de un Conjunto.

o **Definición.**- Sean A y B dos conjuntos tales que A ⊂ B ⊂ U. Se llama **complemento de A con respecto al conjunto B**, y se denota por C_BA , a la diferencia B -A.

Es decir, $C_{B}A = B - A$.

Observación: Si B = U, el complemento de A respecto a U se denota simplemente por: A ó CA. En este caso se tiene por definición que: x pertenece a A si, y sólo si, x no es elemento de A. En símbolos,

$$x \in \overline{A} \Leftrightarrow x \notin A$$

Diferencia simétrica.

• **Definición.**- Sean A y B dos conjuntos tales que A ⊂ U y B ⊂ U. Se llama **diferencia simétrica entre A y B**, y se denota por $A\Delta B$, al conjunto formado por todos los elementos x de U tales que $x \in A$ y $x \notin B$ o $x \in B$ y $x \notin A$. Simbólicamente:

$$A\Delta B = \left\{ x \in U / (x \in A \land x \notin B) \lor (x \in B \land x \notin A) \right\}$$

Propiedades de la Unión

o Teorema 1

Dado los conjuntos A, B, C, D, y ϕ , en un conjunto universal **U**, se cumplen las siguientes propiedades:

a)
$$A \subset (A \cup B) \land B \subset (A \cup B)$$

b)
$$A \subset D \wedge B \subset D \Rightarrow (A \cup B) \subset D$$

c)
$$A \cup A = A$$
 (Idempotencia)

d)
$$(A \cup B) \cup C = A \cup (B \cup C)$$
 (Asociativa)

e)
$$A \cup B = B \cup A$$
 (Conmutativa)

f)
$$A \cup \phi = A$$
 (Elemento Neutro)

g)
$$A \subset B \Rightarrow A \cup B = B$$

h) A
$$\cup$$
 $U = U$

Propiedades de la Intersección

- o Teorema 2
- Dado los conjuntos A, B, C y φ, en el conjunto universal **U**, se cumplen las siguientes propiedades:

a)
$$(A \cap B) \subset A \wedge (A \cap B) \subset B$$

$$A \cap A = A$$

(Idempotencia)

$$(A \cap B) \cap C = A \cap (B \cap C)$$

(Asociativa)

d)
$$A \cap B = B \cap A$$

(Conmutativa)

e)
$$A \subset B \Rightarrow A \cap B = A$$

$$f$$
 $A \cap \phi = \phi$

$$A \cap U = A$$

PROPIEDADES DISTRIBUTIVAS

o Teorema 3

Dado los conjuntos A, B y C se cumplen las siguientes propiedades distributivas:

- a) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- b) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

PROPIEDADES DE LA DIFERENCIA DE CONJUNTOS

o Teorema 4

Dado los conjuntos A, B, C, y ϕ , se cumplen las siguientes propiedades:

- a) $A \phi = A$
- b) $A A = \phi$
- c) $A \cap (B-C) = (A \cap B) (A \cap C)$
- d) d) A B = $(A \cup B)$ B = A $(A \cap B)$ = A \cap **C**B

Propiedades del complemento

o Teorema 5.

Dado los conjuntos ϕ , A \subset U y B \subset U, se cumplen las siguientes propiedades:

- a) C(CA) = A
- b) $A \subset B \Rightarrow CB \subset CA$; $CB \subset CA \Rightarrow A \subset B$
- $C (A \cap B) = CA \cup CB$
- d) $C(A \cup B) = CA \cap CB$
- e) $A \cap CA = \phi$
- f AU CA = U
- g) $C\phi = U$ y $CU = \phi$.

RELACIONANDO EL ÁLGEBRA DE CONJUNTOS CON EL ÁLGEBRA DE PROPOSICIONES.

Álgebra de Conjuntos	Álgebra de proposiciones
Unión (∪)	Disyunción (∨)
Intersección (∩)	Conjunción (^)
Complemento (-)	Negación (~)
Conjunto vacío (Ø)	Falso (f)
Conjunto Universal (U)	Verdadero (v)
Diferencia simétrica (Δ)	Disyunción excluyente (⊻)

ÁLGEBRA DE CONJUNTO: PROPIEDADES

Idempotencia		
$A \cup A = A$	$A \cap A = A$	
Conn	nutatividad	
$A \cup B = B \cup A$	$A \cap B = B \cap A$	
Aso	ciatividad	
$(A \cup B) \cup C = A \cup (B \cup C)$	$(A \cap B) \cap C = A \cap (B \cap C)$	
Distributividad		
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	
Elemento Neutro		
$A \cup \emptyset = A$	$A \cap U = A$	
Element	to Absorbente	
$A \cup U = U$	$A \cap \varnothing = \varnothing$	
Absorción		
$A \cup (A \cap B) = A$	$A \cap (A \cup B) = A$	
In	volución	
	$\overline{A} = A$	
Leyes o	le De Morgan	
$\overline{A \cup B} = \overline{A} \cap \overline{B}$	$\overline{A \cap B} = \overline{A} \cup \overline{B}$	
$A - (B \cup C) = (A - B) \cap (A - C)$	$A - (B \cap C) = (A - B) \cup (A - C)$	

PAR ORDENADO

• Es todo conjunto de dos elementos en el que se distingue un primer elemento y un segundo elemento.

(a, b) par ordenado de primera componente a y segunda componente b

Producto cartesiano de dos conjuntos : A x B

• Es el conjunto que tiene por elementos todos los pares ordenados cuya primera componente pertenece a A y cuya segunda componente pertenece a B.

$$A \times B = \{(x, y) / x \in A \land y \in B\}$$

o Ejemplo 1: Sean

$$A = \left\{ x \in \mathbb{Z} / -1 \le x < 2 \right\}$$
Hallar A x B
$$B = \left\{ x \in \mathbb{N} / |x - 1| \le 1 \right\}$$

• Efectuar A x B, considerando cada uno de los conjuntos anteriores en el universo de los reales.

Propiedades del producto cartesiano

a)	$A \times B \neq B \times A$
b)	$A \times \phi \neq \phi \times A = \phi$
c)	$\operatorname{Si} A \subset B \wedge C \subset D \Longrightarrow (A \times C) \subset (B \times D)$
d)	$\operatorname{Si}(A \times C) \subset (B \times D) \wedge (A \times C) \neq \phi \Rightarrow A \subset B \wedge C \subset D$
e)	$(A \cup B) \times C = (A \times C) \cup (B \times C)$
f)	$(A \cap B) \times C = (A \times C) \cap (B \times C)$
g)	$(A-B)\times C = (A\times C)-(B\times C)$

RELACIÓN BINARIA

o Entre los elementos de los conjuntos A y B, es todo subconjunto del producto cartesiano A x B

$$R = \{(x, y) \in A \times B / xRy\}$$

Ejemplos:

$$R_1 = \{(x, y) \in A \times B / x < y\}$$

$$R_2 = \left\{ (x, y) \in A \times B / x = y \right\}$$

$$R_3 = \{(x, y) \in A \times B / y = x^2\}$$

CONJUNTOS IMPORTANTES

- A es el conjunto de partida de la relación.
- o B es el **conjunto de llegada** de la relación.
- Dominio de la relación: es el conjunto que tiene por elementos las primeras componentes de los pares ordenados de la relación.
- Imagen de la relación: es el conjunto que tiene por elementos las segundas componentes de los pares ordenados de la relación.

Relación definida en un conjunto

• Es toda relación definida a partir del producto cartesiano A x A. El conjunto de partida es igual al conjunto de llegada.

• Ejemplo:

$$A = \left\{ x \in R / \frac{x+1}{x-3} < 1 \right\}$$

$$R = \left\{ (x, y) \in A \times A / y = 2x - 1 \right\}$$