

Übung: Grundlagen der elektrischen Energietechnik

Teil 1: Energienetze

Aufgaben aus den Vorlesungen (Einführung und Drehstromsysteme I):

- I. Welche Spannungs- und Stromsysteme gibt es in einem Drehstromsystem?
- II. Welche Bezeichnungen gibt es für die beiden Spannungssysteme in einem Drehstromsystem?
- III. Wie groß ist die Bemessungsspannung bei einer Leiter-Erd-Spannung von 220 kV?
- IV. Bitte berechnen Sie den Scheinwiderstand für eine Impedanz, die bei 50 Hz und einer Spannung von 140 V einen Strom von 1 A mit einer Phasenverschiebung zwischen Spannung und Strom von 45° fließen lässt!
 - Geben Sie den Scheinwiderstand in Polarkoordinaten und in kartesischen Koordinaten an!
- V. Welche Vorteile bietet ein Dreileitersystem in der el. Energieversorgung?
- VI. Welche Vorteile bietet ein Vierleitersystem in der el. Energieversorgung?

Übung 1: Berechnung von Sternschaltungen

Das Schaltbild zeigt eine unsymmetrische Drehstrom-Sternschaltung mit 230/400 V; 50 Hz.

- a) $\underline{Z_1}$ ist allgemein in Komponentenschreibweise darzustellen.
- b) $\underline{Z_2}$ in der Phase S-E enthält $C_2=20~\mu F$ und $R_2=105~\Omega$. Welchen Ausdruck (exponentielle Schreibweise) nimmt Z_2 an und wie groß ist der Betrag von I_S ?
- c) Für die Impedanz der Phase T-E gilt $\underline{Z_3}=175~\Omega\cdot e^{~j~80^\circ}$ und $L_3=0.2~H.$ Wie groß muss \underline{Z} sein (exponentielle Schreibweise), damit die angegebenen Werte erreicht werden? Wie groß ist der Betrag von I_T ?
- d) Wie groß sind Schein-, Wirk- und Blindleistung im Zweig R-E? Gegeben sind $R_1=125~\Omega$ und $L_1=637~mH$.
- e) Ein Zeigerdiagramm aller Leiter-Erde-Spannungen und Ströme ist zu zeichnen. Gegeben ist: $\underline{U_{RE}}=230~V\cdot e^{-j~90^\circ}$. (Maßstab: 23 V/cm, 1 A/cm)

Hinweise zur Berechnung des Phasenwinkels

• Berechnung des Phasenwinkels abhängig vom Quadranten:

$$\varphi = an^{-1} \left(\frac{Im\{\underline{Z}\}}{Re\{Z\}} \right)$$
 für Quadrant I und IV

$$\varphi = \pi + \tan^{-1} \left(\frac{Im\{Z\}}{Re\{Z\}} \right)$$
 für Quadrant II

$$\varphi = -\pi + \tan^{-1}\left(\frac{Im\{\underline{Z}\}}{Re\{\underline{Z}\}}\right)$$
 für Quadrant III

$$Re > 0$$
, $Im > 0 \rightarrow Quadrant I$

$$Re < 0$$
, $Im > 0 \rightarrow Quadrant II$

$$Re < 0$$
, $Im < 0 \rightarrow Quadrant III$

$$Re > 0$$
, $Im < 0 \rightarrow Quadrant IV$

Hinweise zur Berechnung der Leistung

- Wirkleistung: $P = U_{Eff} \cdot I_{Eff} \cdot \cos \varphi$
- Blindleistung: $Q = U_{Eff} \cdot I_{Eff} \cdot \sin \varphi$
- Scheinleistung: $\underline{S} = P + j Q$

$$S = \sqrt{P^2 + Q^2} = U_{Eff} \cdot I_{Eff}$$