

山东大学・泰山学堂

计算机网络实验

多队列网络调度与 802.11 协议模拟

王愚德 (201300301257)

张昊文 (201300130123)

冯宗浩 (201300130013)

指导老师 刘磊

目录

1	多队	列网络调度模拟	3
	1.1	实验要求	3
	1.2	实验环境	3
	1.3	实验步骤及结果	3
		1.3.1 公平判定标准	3
		1.3.2 仿真算法描述	3
	1.4	实验结果	4
		1.4.1 等权重,等包长	4
		1.4.2 不等权重,不等包长	4
	1.5	结论分析与体会	6
2	简化	.版 802.11 协议模拟	7
	2.1	实验要求	7
	2.2	实验环境	7
	2.3	实验步骤及结果	7
		2.3.1 初始化	7
		2.3.2 仿真算法描述	7
		2.3.3 仿真参数	8
		2.3.4 结果	8
	2.4	结论分析与体会	8

1. 多队列网络调度模拟

1.1. 实验要求

创建 3 个包长与到达时间间隔均满足泊松分布的队列,每个队列有对应的权重。有 1 个服务端,其服务速率恒定,服务时间与包长成正比。选择一个公平判定标准,并实现一个公平队列调度算法,使得无论如何选取每个队列的平均到达时间与平均包长,队列调度都是公平的。

1.2. 实验环境

- Windows 10
- gcc 4.9.3
- Matlab R2015b

1.3. 实验步骤及结果

1.3.1. 公平判定标准

本次实验中,我们采用的公平判定标准是:队列占用服务资源的比例近似于队列权重的比例。此处,服务资源占用的量化标准为每个队列占用服务端的总时间。

1.3.2. 仿真算法描述

我们采用加权公平队列 (Weighted Fair Queueing) [1] 调度算法。以下是该算法完整的实现以及模拟流程。

- 1. 初始化阶段,设置各变量的初值。
 - (a) 设当前时间为 0、模拟时间在本次实验中取 10⁶ 秒。
 - (b) 设下次到达时间为 0, 下次服务时间为 ∞ 。
- 2. 若当前时间大于模拟时间,结束模拟。否则,根据下次到达时间与下次服务时间的先后,决 定执行到达或服务操作。
 - (a) 若下次到达时间小于下次服务时间, 跳转至 2.
 - (b) 若下次到达时间大于下次服务时间, 跳转至 3.
- 3. 对每次到达,置当前时间为下次到达时间。
 - (a) 到达包的包长(即服务该包所需的时间)按泊松分布生成。
 - (b) 计算包的虚拟开始时间与虚拟完成时间。
 - i. 虚拟开始时间 = $max\{$ 当前时间,该队列上次虚拟完成时间 $\}$ 。
 - (c) 将包压入队列中。
 - (d) 若压入该包之前, 所有队列中都为空, 则将下次处理时间设为当前时间加上包长。

- (e) 按泊松分布生成该队列的下次到达时间。选择所有队列的下次到达时间中最小的一个, 作为下次到达时间。
- (f) 跳转至 2.
- 4. 对每次服务、置当前时间为下次服务时间。
 - (a) 将完成处理的包从其所属队列中弹出。若弹出后所有队列为空,则将下次处理时间设为 ∞ 。
 - (b) 从所有队列顶部的包中选择虚拟完成时间最小的包。将下次处理时间加上该包的包长。
 - (c) 跳转至 2.

1.4. 实验结果

1.4.1. 等权重, 等包长

仿真参数:

1. 平均包长 (以平均服务时间记): 1.0, 1.0, 1.0

2. 每个队列包的平均到达时间: 1.25

3. 队列权重之比: 1:1:1

模拟结果:

队列序号	1	2	3	
完成包数	334149	333658	333312	
服务时间	333333.72	333331.52	333334.57	

可以看出,各队列的服务时间比例约为1:1:1,近似于队列权重之比。

等待时间分布见图.1。

队列长度分布见图. 2。

由于队列的各个参数相等、因此得出的图线基本重合。

1.4.2. 不等权重,不等包长

仿真参数:

1. 平均包长 (以平均服务时间记): 0.7, 1.0, 1.3

2. 每个队列包的平均到达时间: 1.25

3. 队列权重之比: 2:3:5

模拟结果:

队列序号	1	2	3
完成包数	286127	300454	385046
服务时间	199997.94	300000.56	500000.52

图. 1. 等待时间分布

图. 2. 队列长度分布

可以看出,各队列的服务时间比例约为2:3:5,近似于队列权重之比。

等待时间分布见图.3。

队列长度分布见图. 4。

图. 3. 等待时间分布

图. 4. 队列长度分布

1.5. 结论分析与体会

本次实验中我们实现了加权公平队列算法,模拟结果也与我们的期望基本吻合。在实验的模拟过程中,仿真参数的选取十分重要。假设队列的总到达速率慢于服务速率,则所有队列的包都能被服务完,但考虑到我们的公平标准是检查服务资源分配的比例,这种情况下不能体现出调度算法的公平性。因此我们将到达速率固定,仅修改队列的权重与平均包长,形成一定的队列积压,来观察服务资源分配情况。

2. 简化版 802.11 协议模拟

2.1. 实验要求

创建 10 个到达速率分布均满足泊松分布的队列,且它们的平均到达速率相同。有 1 个服务端,其服务速率满足泊松分布。实现一个简化版的 802.11 协议 (不考虑 SIFS 和 AIFS₁ 两个时间间隔)。

2.2. 实验环境

- Windows 7
- Visual Studio 2012
- Matlab R2015a

2.3. 实验步骤及结果

2.3.1. 初始化

- 1. 设置初始竞争窗口和竞争窗口的最大值。
- 2. 设置每个队列的平均到达速率,平均包长,具体下一个包的到达时间和包长由泊松过程获得。
- 3. 设置时间片长度。

2.3.2. 仿真算法描述

当前时间未超过仿真总时间时:

- 1. 判断队列是否有包在本时间片内到达,若有,此包进入队列,并计算下一个包的到达时间,循环步骤 1.,直到下一个包的到达时间不在时间片内,跳转至 2.
- 2. 在时间片头侦听信道, 若被占用, 则将所有本时间片内请求服务的队列请求时间设为下一个时间片头, 跳转至 5.; 若未被占用, 跳转至 3.
- 3. 统计在时间片头请求服务的队列数。若个数大于一,进行二元指数回退,对第 i 次冲突,每个发生冲突的队列随机等待 0 2ⁱ⁺³ (2ⁱ⁺³ 最大为 2¹⁰) 个时间片并跳转至 5. 若个数等于一,对其服务,出队列并判断队列是否为空,为空则将下一个请求服务时间设为下一个包到达时间;不为空则将下一个请求服务时间设为下一个时间片头。
- 4. 若本时间片中有队列请求服务,将请求服务时间设为下一个时间片头。跳转至 5.
- 5. 时间片计数加一, 跳转至 1.

2.3.3. 仿真参数

1. 初始竞争窗口: 24=16 个

2. 竞争窗口最大值: 210=1024 个

3. 每个时间片大小: 0.01

4. 平均包长 (以平均服务时间记): 0.15

5. 每个队列包的平均到达时间 (与到达速率成倒数): 3

2.3.4. 结果

1. 信道利用率,即 $\frac{\text{碰撞时间片个数+发送包时间片个数}}{\text{总时间片}}$: 52.4073%

2. 碰撞概率,即 $\frac{$ 碰撞包数}{ 碰撞包数+发送包数:

队列序号	1	2	3	4	5
碰撞概率	25.5907%	25.5688%	25.5628%	25.6101%	25.5855%
队列序号	6	7	8	9	10
碰撞概率	25.5810%	25.5928%	25.5901%	25.5998%	25.6045%

3. 吞吐率,即 $\frac{\bar{\text{k}} \cdot \bar{\text{k}} \cdot \bar{\text{k}} \cdot \bar{\text{k}}}{\bar{\text{k}} \cdot \bar{\text{k}} \cdot \bar{\text{k}}}$: 0.744385, 其中 总发包数 = 成功发包数 + 碰撞包数。 等待时间分布见图. 5。

图. 5. 等待时间分布

队列长度分布见图.6。

2.4. 结论分析与体会

1. 我们对初始竞争窗口大小设置进行了探究: 我们绘制了小于 $2^5 = 32$ 的初始竞争窗口的碰撞概率变化图,如图. 7所示。可以看出,随着初始竞争窗口的增大,碰撞概率有一定的减

图. 6. 队列长度分布

小; 而当初始竞争窗口大小超过 32 时,碰撞概率减小变得不明显。因此,将初始竞争窗口大小置为 32 比较合适,这也与 802.11b 的标准一致。

图. 7. 不同初始竞争窗口大小的碰撞概率

2. 我们对时间片大小的选取进行了研究:在前面的仿真实验中,我们时间片的大小均设置为 0.01。而现在,我们又进行了 7 次实验,每次时间片的大小增加 0.01,观察信道利用率和碰 撞概率的变化,绘制了图.8。

我们发现,在一定范围内,随着时间片的增大,信道利用率不断升高,而碰撞概率出现了先升高,后降低的现象,吞吐率基本不变。

计算机网络实验

图. 8. 不同大小时间片的信道利用率和碰撞概率

引用

1. Alan Demers, Srinivasan Keshav, and Scott Shenker. Analysis and simulation of a fair queueing algorithm. In *ACM SIGCOMM Computer Communication Review*, volume 19, pages 1–12. ACM, 1989.