소쿠리 데이터 분석대회

서광류탈 조

201002383 김동수 201000869 최준우 201002488 장한별

환경 구축

Json 데이터를 DB로 구축하기 위하여 Mongo DB를 사용

환경 구축

배치 파일을 작성하여 Json 파일을 MongoDB로 Import

환경 구축

데이터 분석에 용이한 Ipython과 Python 라이브러리 이용

11월12일에 최종수정 된 Data Set 사용

참가자 중 오전에 가장 많이 운동을 한 랭킹 TOP와 오후에 운동을 많이 한 랭킹 TOP5를 구하시오.

- 1. 모든 참가자의 STEP DATA LOAD
- 2. STEP DATA 의 "time" 오브젝트로 오전, 오후 분류
- 3. 참가자별 분류된 DATA들의 STEP VALUE COUNT
- 4. COUNT 값으로 랭킹 출력 , 데이터 시각화

정답: 오전 랭킹 6,16,2,12,4 오후 랭킹 6,15,12,2,13

참가자 중 가장 꿀잠을 잔 참가자를 찾아라!
(권장 수면 시간은 [8시간] 권장 기상 시간은 일출 시간[오전 7시]이다.)
참가자 중 오후 11시부터 오전 7시까지의 수면 시간만을
꿀잠이라고 정의 했을 때 일주일 간 가장 꿀잠을 잔 참가자를 찾아주세요.

- 1. 모든 참가자들의 SLEEP DATA LOAD
- 2. 참가자별 "minuteData" 값 파싱
- 3. 23시부터 7시 까지의 SLEEP VALUE COUNT 값을 꿀잠지수로 지정
- ₹.4. 꿀잠지수 랭킹 출력 및 데이터 시각화

가장 꿀잠을 주무신 분: 13번 참가자

참가자들을 아침형 인간과 저녁형 인간으로 나누고 그 이유를 설명해주세요. 또한 사람의 생활 패턴이 아침형 인간과 저녁형 인간으로 나누어지지 않을 수도 있습니다. 이러할 경우 이유를 설명해 주세요.

(아침형 인간이란 아침에 기상하고 저녁에 잠을 자는 생활 패턴을 그리는 사람이라고 할 때 반대로 저녁형 인간이란 새벽에 잠이 들고 오후에 일어나서 생활을 하는 사람입니다.)

- 1. 모든 참가자들의 SLEEP DATA LOAD
- 2. 4시간 이상 잤을때를 낮잠,쪽잠을 제외한 주 수면 시간으로 설정
- 3. 사용자별 주 수면의 기상 시간 체크
- 4. 기상 시간 데이터 시각화

06 03 04 02 01 05 07

일

그래프가 주로 아래에 위치한 참가자 : 아침형 인간 (3,4,5,6,7,8,9,10,11,13,14)

그래프가 주로 위에 위치한 참가자 : 저녁형 인간 (1,2)

0

그래프가 들쑥 날쑥한 참가자 : 분류하기 힘듦 (16,12,15)

일

수업을 듣는 학생이라 아침형 인간이 더 많았음.

FitBit을 착용하지 않고 잔 날이 많은 참가자가 많았음.

컴퓨터 공학과 학생인 이현호와 그의 친구A는 체중감량을 위해 규칙적인 운동을 합니다.
이들은 같이 운동을 할 사람을 찾고 싶었지만,
슬프게도 둘 다 친구가 많지 않아 찾기가 쉽지 않았다고 합니다.
주어진 데이터를 분석하여 이현호의 친구A가 누구인지 찾아내고,
그들과 같이 운동을 할 수 있는 새 친구를 찾아보자!

- 1. 모든 참가자들의 Heart DATA LOAD
- 2. 1시간 단위로 평균을 내어 User 별 심박수 Matrix 계산
- 3. 두 사용자 간 상관 계수를 이용하여 1번 사용자와 유사한 User 탐색
- 4. 사용자 별로 Heat Map 시각화


```
In [93]: import numpy as np
       for i in range (1,16):
         print(str(i) + ": " + str(np.corrcoef(heartBeat.iloc[0], heartBeat.iloc[i])[0][1]))
       4:-0.626882261078
       5:-0.224630094202
       6:-0.400004475793
       7:-0.33073482565
      8:0.215200094217
      9:-0.360158635224
       10:-0.594568709614
      11:0.20839815674
      12:-0.433041933041
       13:-0.501593110453
       14:-0.41294676384
       15:-0.642138024441
         from sklearn.cluster import KMeans
In [96]:
          est=KMeans(7)
          #heartBeat=heartBeat_t, transpose()
          #print(heartBeat)
          est.fit(heartBeat)
          labels = est.labels_
          print(labels)
          [5520246106131212]
```

도식화 한 Heat Map을 이용해 확인한 1번 사용자는 주로 저녁에 많이 생활하며 운동 또한 늦은 저녁에 하는 것을 확인 할 수 있었다. 이는 2번 사용자에서도 보이는 패턴으로 1번 사용자의 친구는 2번 사용자인 것을 알 수 있었다. 이러한 기법을 통해 많이 유사하지는 않지만 9번 사용자와 12번 사용자를 친구로 추천 할 수 있다고 판별 할 수 있었다.

참가자들의 생활 패턴을 보고 앞으로 체중이 가장 많이 증가 할 것 같은 참가자와 감소할 것 같은 참가자를 예측해주세요.

(참가자들의 종합적인 모든 데이터를 바탕으로 예측하시면 됩니다.)

- 1. 모든 참가자들의 Heart DATA LOAD
- 2. 일일 단위로 평균을 내어 심박수 구간 별 칼로리 계산
- 3. 구간 별 칼로리 합계 도출
- 4. 사용자 별로 Stacked Bar Chart로 시각화

도식화 한 Bar Chart를 이용하여 2번 사용자가 누적 칼로리 소비가 가장 많아 체중이 감소할 가능성이 가장 높을 것으로 추정하였고 3번 사용자가 누적 칼로리 소비가 가장 적어 체중이 증가할 가능성이 많아보였다.

Q&A