Nullstellensatz Size-Degree Trade-offs from Reversible Pebbling

Jakob Nordström

University of Copenhagen and KTH Royal Institute of Technology

AC Section lunch meeting December 17, 2019

Polynomials $\{P_1=0,P_2=0,\ldots,P_m=0\}$ in $\mathbb{F}[x_1,\ldots,x_n]$

Polynomials $\{P_1=0,P_2=0,\ldots,P_m=0\}$ in $\mathbb{F}[x_1,\ldots,x_n]$ e.g., $\{1-x$, 1-y, xy(1-z), $z\}$ (also x^2-x,y^2-y,z^2-z to force 0-1 solutions if needed)

- Polynomials $\{P_1=0,P_2=0,\ldots,P_m=0\}$ in $\mathbb{F}[x_1,\ldots,x_n]$ e.g., $\{1-x$, 1-y, xy(1-z), $z\}$ (also x^2-x,y^2-y,z^2-z to force 0-1 solutions if needed)
- NS refutation: Q_1,Q_2,\ldots,Q_m in $\mathbb{F}[x_1,\ldots,x_n]$ s.t. $\sum_{i\in[m]}Q_iP_i=1$

- Polynomials $\{P_1=0,P_2=0,\ldots,P_m=0\}$ in $\mathbb{F}[x_1,\ldots,x_n]$ e.g., $\{1-x$, 1-y, xy(1-z), $z\}$ (also x^2-x,y^2-y,z^2-z to force 0-1 solutions if needed)
- NS refutation: Q_1,Q_2,\ldots,Q_m in $\mathbb{F}[x_1,\ldots,x_n]$ s.t. $\sum_{i\in[m]}Q_iP_i=1$

- Polynomials $\{P_1=0,P_2=0,\ldots,P_m=0\}$ in $\mathbb{F}[x_1,\ldots,x_n]$ e.g., $\{1-x$, 1-y, xy(1-z), $z\}$ (also x^2-x,y^2-y,z^2-z to force 0-1 solutions if needed)
- NS refutation: Q_1,Q_2,\ldots,Q_m in $\mathbb{F}[x_1,\ldots,x_n]$ s.t. $\sum_{i\in[m]}Q_iP_i=1$ e.g., $\boxed{1}\cdot(1-x)+\boxed{\cdot(1-y)+\boxed{\cdot xy(1-z)+\boxed{\cdot z=1}}}$

- Polynomials $\{P_1=0,P_2=0,\ldots,P_m=0\}$ in $\mathbb{F}[x_1,\ldots,x_n]$ e.g., $\{1-x$, 1-y, xy(1-z), $z\}$ (also x^2-x,y^2-y,z^2-z to force 0-1 solutions if needed)
- NS refutation: Q_1,Q_2,\ldots,Q_m in $\mathbb{F}[x_1,\ldots,x_n]$ s.t. $\sum_{i\in[m]}Q_iP_i=1$ e.g., $\boxed{1}\cdot(1-x)+\boxed{x}\cdot(1-y)+\boxed{\cdot xy(1-z)+\boxed{\cdot z=1}}$

- Polynomials $\{P_1=0,P_2=0,\ldots,P_m=0\}$ in $\mathbb{F}[x_1,\ldots,x_n]$ e.g., $\{1-x$, 1-y, xy(1-z), $z\}$ (also x^2-x,y^2-y,z^2-z to force 0-1 solutions if needed)
- NS refutation: Q_1,Q_2,\ldots,Q_m in $\mathbb{F}[x_1,\ldots,x_n]$ s.t. $\sum_{i\in[m]}Q_iP_i=1$ e.g., $\boxed{1}\cdot(1-x)+\boxed{x}\cdot(1-y)+\boxed{1}\cdot xy(1-z)+\boxed{\cdot z=1}$

- Polynomials $\{P_1=0,P_2=0,\ldots,P_m=0\}$ in $\mathbb{F}[x_1,\ldots,x_n]$ e.g., $\{1-x$, 1-y, xy(1-z), $z\}$ (also x^2-x,y^2-y,z^2-z to force 0-1 solutions if needed)
- $\begin{array}{ll} \blacktriangleright & \text{NS refutation: } Q_1,Q_2,\ldots,Q_m \text{ in } \mathbb{F}[x_1,\ldots,x_n] \text{ s.t.} \sum_{i\in[m]} Q_iP_i=1 \\ \\ \text{e.g., } \boxed{1} \cdot (1-x) + \boxed{x} \cdot (1-y) + \boxed{1} \cdot xy(1-z) + \boxed{xy} \cdot z=1 \end{array}$

- Polynomials $\{P_1=0,P_2=0,\ldots,P_m=0\}$ in $\mathbb{F}[x_1,\ldots,x_n]$ e.g., $\{1-x$, 1-y, xy(1-z), $z\}$ (also x^2-x,y^2-y,z^2-z to force 0-1 solutions if needed)
- $\text{NS refutation: } Q_1,Q_2,\ldots,Q_m \text{ in } \mathbb{F}[x_1,\ldots,x_n] \text{ s.t. } \sum_{i\in[m]}Q_iP_i=1$ e.g., $\boxed{1} \cdot (1-x) + \boxed{x} \cdot (1-y) + \boxed{1} \cdot xy(1-z) + \boxed{xy} \cdot z=1$
- Degree: maximum degree (3 in example)
- Size: # monomials when expanded (7 in example)

Questions of interest

Upper and lower bounds on degree

Questions of interest

Upper and lower bounds on degree

Upper and lower bounds on size

Questions of interest

Upper and lower bounds on degree

Upper and lower bounds on size

Size-degree relations? Simultaneous optimization?

- Rules
 - Can place a pebble if predecessors have pebbles (in particular, can pebble source)

- Rules
 - Can place a pebble if predecessors have pebbles (in particular, can pebble source)
 - Can remove pebble if predecessors have pebbles (can always remove pebble from source)

- Rules
 - Can place a pebble if predecessors have pebbles (in particular, can pebble source)
 - Can remove pebble if predecessors have pebbles (can always remove pebble from source)
- Pebbling of DAG: $\emptyset = \mathbb{P}_0, \mathbb{P}_1, \dots, \mathbb{P}_t = \emptyset$ s.t. sink is pebbled at some point

- Rules
 - Can place a pebble if predecessors have pebbles (in particular, can pebble source)
 - Can remove pebble if predecessors have pebbles (can always remove pebble from source)
- Pebbling of DAG: $\emptyset = \mathbb{P}_0, \mathbb{P}_1, \dots, \mathbb{P}_t = \emptyset$ s.t. sink is pebbled at some point

- Rules
 - Can place a pebble if predecessors have pebbles (in particular, can pebble source)
 - Can remove pebble if predecessors have pebbles (can always remove pebble from source)
- Pebbling of DAG: $\emptyset = \mathbb{P}_0, \mathbb{P}_1, \dots, \mathbb{P}_t = \emptyset$ s.t. sink is pebbled at some point

- Rules
 - Can place a pebble if predecessors have pebbles (in particular, can pebble source)
 - Can remove pebble if predecessors have pebbles (can always remove pebble from source)
- Pebbling of DAG: $\emptyset = \mathbb{P}_0, \mathbb{P}_1, \dots, \mathbb{P}_t = \emptyset$ s.t. sink is pebbled at some point

- Rules
 - Can place a pebble if predecessors have pebbles (in particular, can pebble source)
 - Can remove pebble if predecessors have pebbles (can always remove pebble from source)
- Pebbling of DAG: $\emptyset = \mathbb{P}_0, \mathbb{P}_1, \dots, \mathbb{P}_t = \emptyset$ s.t. sink is pebbled at some point

- Rules
 - Can place a pebble if predecessors have pebbles (in particular, can pebble source)
 - Can remove pebble if predecessors have pebbles (can always remove pebble from source)
- Pebbling of DAG: $\emptyset = \mathbb{P}_0, \mathbb{P}_1, \dots, \mathbb{P}_t = \emptyset$ s.t. sink is pebbled at some point

- Rules
 - Can place a pebble if predecessors have pebbles (in particular, can pebble source)
 - Can remove pebble if predecessors have pebbles (can always remove pebble from source)
- Pebbling of DAG: $\emptyset = \mathbb{P}_0, \mathbb{P}_1, \dots, \mathbb{P}_t = \emptyset$ s.t. sink is pebbled at some point

- Rules
 - Can place a pebble if predecessors have pebbles (in particular, can pebble source)
 - Can remove pebble if predecessors have pebbles (can always remove pebble from source)
- Pebbling of DAG: $\emptyset = \mathbb{P}_0, \mathbb{P}_1, \dots, \mathbb{P}_t = \emptyset$ s.t. sink is pebbled at some point

- Rules
 - Can place a pebble if predecessors have pebbles (in particular, can pebble source)
 - Can remove pebble if predecessors have pebbles (can always remove pebble from source)
- Pebbling of DAG: $\emptyset = \mathbb{P}_0, \mathbb{P}_1, \dots, \mathbb{P}_t = \emptyset$ s.t. sink is pebbled at some point

- Rules
 - Can place a pebble if predecessors have pebbles (in particular, can pebble source)
 - Can remove pebble if predecessors have pebbles (can always remove pebble from source)
- Pebbling of DAG: $\emptyset = \mathbb{P}_0, \mathbb{P}_1, \dots, \mathbb{P}_t = \emptyset$ s.t. sink is pebbled at some point

- Rules
 - Can place a pebble if predecessors have pebbles (in particular, can pebble source)
 - Can remove pebble if predecessors have pebbles (can always remove pebble from source)
- Pebbling of DAG: $\emptyset = \mathbb{P}_0, \mathbb{P}_1, \dots, \mathbb{P}_t = \emptyset$ s.t. sink is pebbled at some point

- Rules
 - Can place a pebble if predecessors have pebbles (in particular, can pebble source)
 - Can remove pebble if predecessors have pebbles (can always remove pebble from source)
- Pebbling of DAG: $\emptyset = \mathbb{P}_0, \mathbb{P}_1, \dots, \mathbb{P}_t = \emptyset$ s.t. sink is pebbled at some point

- Rules
 - Can place a pebble if predecessors have pebbles (in particular, can pebble source)
 - Can remove pebble if predecessors have pebbles (can always remove pebble from source)
- Pebbling of DAG: $\emptyset = \mathbb{P}_0, \mathbb{P}_1, \dots, \mathbb{P}_t = \emptyset$ s.t. sink is pebbled at some point

- Rules
 - Can place a pebble if predecessors have pebbles (in particular, can pebble source)
 - Can remove pebble if predecessors have pebbles (can always remove pebble from source)
- Pebbling of DAG: $\emptyset = \mathbb{P}_0, \mathbb{P}_1, \dots, \mathbb{P}_t = \emptyset$ s.t. sink is pebbled at some point

- Rules
 - Can place a pebble if predecessors have pebbles (in particular, can pebble source)
 - Can remove pebble if predecessors have pebbles (can always remove pebble from source)
- Pebbling of DAG: $\emptyset = \mathbb{P}_0, \mathbb{P}_1, \dots, \mathbb{P}_t = \emptyset$ s.t. sink is pebbled at some point

- Rules
 - Can place a pebble if predecessors have pebbles (in particular, can pebble source)
 - Can remove pebble if predecessors have pebbles (can always remove pebble from source)
- Pebbling of DAG: $\emptyset = \mathbb{P}_0, \mathbb{P}_1, \dots, \mathbb{P}_t = \emptyset$ s.t. sink is pebbled at some point

- Rules
 - Can place a pebble if predecessors have pebbles (in particular, can pebble source)
 - Can remove pebble if predecessors have pebbles (can always remove pebble from source)
- Pebbling of DAG: $\emptyset = \mathbb{P}_0, \mathbb{P}_1, \dots, \mathbb{P}_t = \emptyset$ s.t. sink is pebbled at some point

- Rules
 - Can place a pebble if predecessors have pebbles (in particular, can pebble source)
 - Can remove pebble if predecessors have pebbles (can always remove pebble from source)
- ▶ Pebbling of DAG: $\emptyset = \mathbb{P}_0, \mathbb{P}_1, \dots, \mathbb{P}_t = \emptyset$ s.t. sink is pebbled at some point
- \triangleright Space: maximum # pebbles in any configuration

- Rules
 - Can place a pebble if predecessors have pebbles (in particular, can pebble source)
 - Can remove pebble if predecessors have pebbles (can always remove pebble from source)
- Pebbling of DAG: $\emptyset = \mathbb{P}_0, \mathbb{P}_1, \dots, \mathbb{P}_t = \emptyset$ s.t. sink is pebbled at some point
- \triangleright Space: maximum # pebbles in any configuration (4 in example)

- Rules
 - Can place a pebble if predecessors have pebbles (in particular, can pebble source)
 - Can remove pebble if predecessors have pebbles (can always remove pebble from source)
- ▶ Pebbling of DAG: $\emptyset = \mathbb{P}_0, \mathbb{P}_1, \dots, \mathbb{P}_t = \emptyset$ s.t. sink is pebbled at some point
- \triangleright Space: maximum # pebbles in any configuration (4 in example)
- Time: # moves

- Rules
 - Can place a pebble if predecessors have pebbles (in particular, can pebble source)
 - Can remove pebble if predecessors have pebbles (can always remove pebble from source)
- ▶ Pebbling of DAG: $\emptyset = \mathbb{P}_0, \mathbb{P}_1, \dots, \mathbb{P}_t = \emptyset$ s.t. sink is pebbled at some point
- \triangleright Space: maximum # pebbles in any configuration (4 in example)
- Time: # moves (t = 16 in example)

- Can do space 4, time 16
- Faster pebbling?

- Can do space 4, time 16
- Faster pebbling?

- Can do space 4, time 16
- Faster pebbling?

- Can do space 4, time 16
- Faster pebbling?

- Can do space 4, time 16
- Faster pebbling?

- Can do space 4, time 16
- Faster pebbling?

- Can do space 4, time 16
- Faster pebbling?

- Can do space 4, time 16
- Faster pebbling?

- Can do space 4, time 16
- Faster pebbling?

- Can do space 4, time 16
- Faster pebbling?

- Can do space 4, time 16
- Faster pebbling?

- Can do space 4, time 16
- Faster pebbling?

- Can do space 4, time 16
- Faster pebbling?

- Can do space 4, time 16
- Faster pebbling?

- Can do space 4, time 16
- Faster pebbling?

- Can do space 4, time 16
- Faster pebbling?

space	time
4	16

- Can do space 4, time 16
- Faster pebbling?

space	time
4	16
5	14

- ► Can do space 4, time 16
- Faster pebbling?

space	time
4	16
5	14
6	12

Pebbling contradiction Peb_G

$$1 - x_{v_1} = 0$$

$$1 - x_{v_2} = 0$$

$$1 - x_{v_3} = 0$$

$$x_{v_1} x_{v_2} (1 - x_{v_4}) = 0$$

$$x_{v_2} x_{v_3} (1 - x_{v_5}) = 0$$

$$x_{v_4} x_{v_5} (1 - x_{v_6}) = 0$$

$$x_{v_6} = 0$$

Pebbling contradiction Peb_G

$$1 - x_{v_1} = 0$$

$$1 - x_{v_2} = 0$$

$$1 - x_{v_3} = 0$$

$$x_{v_1} x_{v_2} (1 - x_{v_4}) = 0$$

$$x_{v_2} x_{v_3} (1 - x_{v_5}) = 0$$

$$x_{v_4} x_{v_5} (1 - x_{v_6}) = 0$$

$$x_{v_6} = 0$$

$$A_v := (1 - x_v) \prod_{u \in \mathsf{pred}(v)} x_u, \text{ for all } v \in V(G)$$

$$A_{\mathsf{sink}} := x_{\mathsf{sink}}$$

pred(v): set of all predecessors of v

Nullstellensatz refutation

▶ Pebbling contradiction Peb_G

$$1 - x_{v_1} = 0$$

$$1 - x_{v_2} = 0$$

$$1 - x_{v_3} = 0$$

$$x_{v_1} x_{v_2} (1 - x_{v_4}) = 0$$

$$x_{v_2} x_{v_3} (1 - x_{v_5}) = 0$$

$$x_{v_4} x_{v_5} (1 - x_{v_6}) = 0$$

$$x_{v_6} = 0$$

► NS refutation

$$\sum_{v} Q_v A_v + Q_{\mathsf{sink}} A_{\mathsf{sink}} = 1$$

Reversible pebbling

ightharpoonup DAG G

Reversible pebbling

$$\emptyset = \mathbb{P}_0, \mathbb{P}_1, \dots, \mathbb{P}_t = \emptyset$$

Nullstellensatz refutation

▶ Pebbling contradiction Peb_G

$$1 - x_{v_1} = 0$$

$$1 - x_{v_2} = 0$$

$$1 - x_{v_3} = 0$$

$$x_{v_1} x_{v_2} (1 - x_{v_4}) = 0$$

$$x_{v_2} x_{v_3} (1 - x_{v_5}) = 0$$

$$x_{v_4} x_{v_5} (1 - x_{v_6}) = 0$$

$$x_{v_6} = 0$$

► NS refutation

$$\sum_{v} Q_v A_v + Q_{\mathsf{sink}} A_{\mathsf{sink}} = 1$$

Reversible pebbling

ightharpoonup DAG G

Reversible pebbling

$$\emptyset = \mathbb{P}_0, \mathbb{P}_1, \dots, \mathbb{P}_t = \emptyset$$

Theorem

- \exists NS refutation of Peb_G in size t+1 and degree s
 - \exists reversible pebbling of G in time t and space s

► Reason with clauses

- ► Reason with clauses
- ► Measure size, width

- ► Reason with clauses
- ► Measure size, width

Polynomial calculus

► Reason with polynomials

$$2xy + 3xz = 0 \qquad xyz - xz = 0$$

- ► Reason with clauses
- ► Measure size, width

Polynomial calculus

► Reason with polynomials

$$2xy + 3xz = 0 \qquad 3 \cdot (xyz - xz = 0)$$
$$2xy + 3xyz = 0$$

- ► Reason with clauses
- ► Measure size, width

Polynomial calculus

- ► Reason with polynomials
- ► Measure size, degree

$$2xy + 3xz = 0 \qquad 3 \cdot (xyz - xz = 0)$$
$$2xy + 3xyz = 0$$

- ► Reason with clauses
- ► Measure size, width

Polynomial calculus

- ► Reason with polynomials
- ► Measure size, degree

$$\frac{2xy + 3xz = 0}{2xy + 3xyz = 0}$$

► Small degree/width ⇒ small size

Only
$$\binom{2n}{< w} \le (2n)^w$$
 clauses of width $\le w$ (essentially tight [ALN16])

- ► Reason with clauses
- ► Measure size, width

Polynomial calculus

- ► Reason with polynomials
- ► Measure size, degree

$$2xy + 3xz = 0 \qquad 3 \cdot (xyz - xz = 0)$$
$$2xy + 3xyz = 0$$

- Small degree/width \Rightarrow small size
 Only $\binom{2n}{< w} \le (2n)^w$ clauses of width $\le w$ (essentially tight [ALN16])
- ► Small size ⇒ (medium-)small degree/width [IPS99, BW01]

Size-degree relation

Polynomial calculus, resolution

- ► Small degree/width \Rightarrow small size
- ► Small size ⇒ (medium-)small degree/width [IPS99, BW01]

Size-degree relation

Polynomial calculus, resolution

- Small degree/width \Rightarrow small size
- ► Small size ⇒ (medium-)small degree/width [IPS99, BW01]

Nullstellensatz

- ► Small degree \Rightarrow small size
- ► Small size ⇒ small degree

Size-degree relation

Polynomial calculus, resolution

- Small degree/width ⇒ small size
- ► Small size ⇒ (medium-)small degree/width [IPS99, BW01]

Nullstellensatz

- ► Small degree \Rightarrow small size
- ► Small size ⇒ small degree

Small size \Rightarrow small degree: reduction blows up size. Inherent?

- ► Resolution: yes, strong size-width trade-offs [Tha16]
- Polynomial calculus: open
- Nullstellensatz: strong size-degree trade-offs [this work]

Nullstellensatz size-degree trade-offs

Theorem

There is an explicit family of sets of polynomials s.t.

1. \exists NS refutation in nearly linear size and degree d_1 ;

Nullstellensatz size-degree trade-offs

Theorem

There is an explicit family of sets of polynomials s.t.

- 1. \exists NS refutation in nearly linear size and degree d_1 ;
- 2. \exists NS refutation in degree $d_2 \ll d_1$ (and size $\leq n^{d_2}$);

Nullstellensatz size-degree trade-offs

Theorem

There is an explicit family of sets of polynomials s.t.

- 1. \exists NS refutation in nearly linear size and degree d_1 ;
- 2. \exists NS refutation in degree $d_2 \ll d_1$ (and size $\leq n^{d_2}$);
- 3. any NS refutation in degree slightly below d_1 has size nearly n^{d_2} .

Nullstellensatz size-degree trade-offs

Theorem

There is an explicit family of sets of polynomials s.t.

- 1. \exists NS refutation in nearly linear size and degree d_1 ;
- 2. \exists NS refutation in degree $d_2 \ll d_1$ (and size $\leq n^{d_2}$);
- 3. any NS refutation in degree slightly below d_1 has size nearly n^{d_2} .

Proof.

- ▶ \exists NS refutation in size t+1, degree $s \Leftrightarrow \exists$ reversible pebbling in time t, space s
- Show strong reversible pebbling time-space trade-offs

Reversible pebbling to NS refutation $\sum_{v} Q_v A_v + Q_{\text{sink}} A_{\text{sink}} = 1$

$$\sum_{v} Q_{v} A_{v} + Q_{\mathsf{sink}} A_{\mathsf{sink}} = 1$$

$$1 - x_{v_1} = 0$$

$$1 - x_{v_2} = 0$$

$$1 - x_{v_3} = 0$$

$$x_{v_1} x_{v_2} (1 - x_{v_4}) = 0$$

$$x_{v_2} x_{v_3} (1 - x_{v_5}) = 0$$

$$x_{v_4} x_{v_5} (1 - x_{v_6}) = 0$$

$$x_{v_6} = 0$$

$$1 - x_{v_1} = 0$$

$$1 - x_{v_2} = 0$$

$$1 - x_{v_3} = 0$$

$$x_{v_1} x_{v_2} (1 - x_{v_4}) = 0$$

$$x_{v_2} x_{v_3} (1 - x_{v_5}) = 0$$

$$x_{v_4} x_{v_5} (1 - x_{v_6}) = 0$$

$$x_{v_6} = 0$$

$$1 - x_{v_1} = 0$$

$$1 - x_{v_2} = 0$$

$$1 - x_{v_3} = 0$$

$$x_{v_1} x_{v_2} (1 - x_{v_4}) = 0$$

$$x_{v_2} x_{v_3} (1 - x_{v_5}) = 0$$

$$x_{v_4} x_{v_5} (1 - x_{v_6}) = 0$$

$$x_{v_6} = 0$$

$$1 - x_{v_1} = 0$$

$$1 - x_{v_2} = 0$$

$$1 - x_{v_3} = 0$$

$$x_{v_1} x_{v_2} (1 - x_{v_4}) = 0$$

$$x_{v_2}x_{v_3}(1-x_{v_5})=0$$

$$x_{v_4} x_{v_5} (1 - x_{v_6}) = 0$$

$$x_{v_6} = 0$$

$$1 - x_{v_1} = 0$$

$$1 - x_{v_2} = 0$$

$$1 - x_{v_3} = 0$$

$$x_{v_1} x_{v_2} (1 - x_{v_4}) = 0$$

$$x_{v_2} x_{v_3} (1 - x_{v_5}) = 0$$

$$x_{v_4} x_{v_5} (1 - x_{v_6}) = 0$$

$$x_{v_6} = 0$$

 $+x_{v_1}(1-x_{v_2})$

$$1 - x_{v_1} = 0$$

$$1 - x_{v_2} = 0$$

$$1 - x_{v_3} = 0$$

$$x_{v_1} x_{v_2} (1 - x_{v_4}) = 0$$

$$x_{v_2} x_{v_3} (1 - x_{v_5}) = 0$$

$$x_{v_4} x_{v_5} (1 - x_{v_6}) = 0$$

$$x_{v_6} = 0$$

$$(1-x_{v_1}) + x_{v_1}(1-x_{v_2})$$

$$1 - x_{v_1} = 0$$

$$1 - x_{v_2} = 0$$

$$1 - x_{v_3} = 0$$

$$x_{v_1} x_{v_2} (1 - x_{v_4}) = 0$$

$$x_{v_2}x_{v_3}(1-x_{v_5})=0$$

$$x_{v_4} x_{v_5} (1 - x_{v_6}) = 0$$

$$x_{v_6} = 0$$

$$(1 - x_{v_1}) \\ + x_{v_1}(1 - x_{v_2}) \\ + x_{v_1}x_{v_2}(1 - x_{v_4})$$

$$1 - x_{v_1} = 0$$

$$1 - x_{v_2} = 0$$

$$1 - x_{v_3} = 0$$

$$x_{v_1} x_{v_2} (1 - x_{v_4}) = 0$$

$$x_{v_2} x_{v_3} (1 - x_{v_5}) = 0$$

$$x_{v_4} x_{v_5} (1 - x_{v_6}) = 0$$

$$x_{v_6} = 0$$

$$(1 - x_{v_1}) + x_{v_1}(1 - x_{v_2}) + x_{v_1}x_{v_2}(1 - x_{v_4})$$

$$1 - x_{v_1} = 0$$

$$1 - x_{v_2} = 0$$

$$1 - x_{v_3} = 0$$

$$x_{v_1} x_{v_2} (1 - x_{v_4}) = 0$$

$$x_{v_2} x_{v_3} (1 - x_{v_5}) = 0$$

$$x_{v_4} x_{v_5} (1 - x_{v_6}) = 0$$

$$x_{v_6} = 0$$

$$\begin{array}{l} (1-x_{v_1}) \\ +x_{v_1}(1-x_{v_2}) \\ +x_{v_1}x_{v_2}(1-x_{v_4}) \\ +x_{v_2}x_{v_4}(-1)(1-x_{v_1}) \end{array}$$

$$1 - x_{v_1} = 0$$

$$1 - x_{v_2} = 0$$

$$1 - x_{v_3} = 0$$

$$x_{v_1} x_{v_2} (1 - x_{v_4}) = 0$$

$$x_{v_2}x_{v_3}(1-x_{v_5})=0$$

$$x_{v_4} x_{v_5} (1 - x_{v_6}) = 0$$

$$x_{v_6} = 0$$

$$\begin{array}{l} (1-x_{v_1}) \\ +x_{v_1}(1-x_{v_2}) \\ +x_{v_1}x_{v_2}(1-x_{v_4}) \\ +x_{v_2}x_{v_4}(-1)(1-x_{v_1}) \end{array}$$

$$1 - x_{v_1} = 0$$

$$1 - x_{v_2} = 0$$

$$1 - x_{v_3} = 0$$

$$x_{v_1} x_{v_2} (1 - x_{v_4}) = 0$$

$$x_{v_2}x_{v_3}(1-x_{v_5})=0$$

$$x_{v_4} x_{v_5} (1 - x_{v_6}) = 0$$

$$x_{v_6} = 0$$

$$\sum_{v} Q_v A_v + Q_{\mathsf{sink}} A_{\mathsf{sink}} = 1$$

 $+x_{v_2}x_{v_4}(1-x_{v_3})$

$$(1 - x_{v_1}) + x_{v_1}(1 - x_{v_2}) + x_{v_1}x_{v_2}(1 - x_{v_4}) + x_{v_2}x_{v_4}(-1)(1 - x_{v_1}) + x_{v_2}x_{v_4}($$

$$1 - x_{v_1} = 0$$

$$1 - x_{v_2} = 0$$

$$1 - x_{v_3} = 0$$

$$x_{v_1}x_{v_2}(1 - x_{v_4}) = 0$$

$$x_{v_2}x_{v_3}(1 - x_{v_5}) = 0$$

$$x_{v_4}x_{v_5}(1 - x_{v_6}) = 0$$

$$x_{v_6} = 0$$

$$egin{array}{l} (1-x_{v_1}) \\ +x_{v_1}(1-x_{v_2}) \\ +x_{v_1}x_{v_2}(1-x_{v_4}) \\ +x_{v_2}x_{v_4}(-1)(1-x_{v_1}) \\ +x_{v_2}x_{v_4}(1-x_{v_3}) \end{array}$$

$$1 - x_{v_1} = 0$$

$$1 - x_{v_2} = 0$$

$$1 - x_{v_3} = 0$$

$$x_{v_1} x_{v_2} (1 - x_{v_4}) = 0$$

$$x_{v_2}x_{v_3}(1-x_{v_5})=0$$

$$x_{v_4} x_{v_5} (1 - x_{v_6}) = 0$$

$$x_{v_6} = 0$$

 $+x_{v_2}x_{v_3}x_{v_4}(1-x_{v_5})$

$$\sum_{v} Q_v A_v + Q_{\mathsf{sink}} A_{\mathsf{sink}} = 1$$

 $+x_{v_2}x_{v_4}(1-x_{v_3})$

 $+x_{v_2}x_{v_3}x_{v_4}(1-x_{v_5})$

$$(1 - x_{v_1}) + x_{v_1}(1 - x_{v_2}) + x_{v_1}x_{v_2}(1 - x_{v_4}) + x_{v_2}x_{v_4}(-1)(1 - x_{v_1}) + x_{v_2}x_{v_4}($$

$$1 - x_{v_1} = 0$$

$$1 - x_{v_2} = 0$$

$$1 - x_{v_3} = 0$$

$$x_{v_1}x_{v_2}(1 - x_{v_4}) = 0$$

$$x_{v_2}x_{v_3}(1 - x_{v_5}) = 0$$

$$x_{v_4}x_{v_5}(1 - x_{v_6}) = 0$$

$$x_{v_6} = 0$$

$$\sum_{v} Q_v A_v + Q_{\mathsf{sink}} A_{\mathsf{sink}} = 1$$

 $+x_{v_2}x_{v_4}(1-x_{v_3})$

 $+x_{v_2}x_{v_3}x_{v_4}(1-x_{v_5})$

 $+x_{v_3}x_{v_4}x_{v_5}(-1)(1-x_{v_2})$

$$(1 - x_{v_1})$$
 $+ x_{v_1}(1 - x_{v_2})$
 $+ x_{v_1}x_{v_2}(1 - x_{v_4})$
 $+ x_{v_2}x_{v_4}(-1)(1 - x_{v_1})$
 $+ x_{v_2}x_{v_4}($
 $1 - x_{v_1} = 0$
 $1 - x_{v_2} = 0$
 $1 - x_{v_3} = 0$
 $x_{v_1}x_{v_2}(1 - x_{v_4}) = 0$
 $x_{v_2}x_{v_3}(1 - x_{v_5}) = 0$
 $x_{v_4}x_{v_5}(1 - x_{v_6}) = 0$
 $x_{v_6} = 0$

$$(1 - x_{v_1}) + x_{v_1}(1 - x_{v_2}) + x_{v_1}x_{v_2}(1 - x_{v_4}) + x_{v_2}x_{v_4}(-1)(1 - x_{v_1}) + x_{v_2}x_{v_4}(1 - x_{v_1}) + x_{v_2}x_{v_4}(1 - x_{v_1}) = 0$$

$$1 - x_{v_1} = 0$$

$$1 - x_{v_2} = 0$$

$$1 - x_{v_3} = 0$$

$$x_{v_1}x_{v_2}(1 - x_{v_4}) = 0$$

$$x_{v_2}x_{v_3}(1 - x_{v_5}) = 0$$

$$x_{v_4}x_{v_5}(1 - x_{v_6}) = 0$$

$$x_{v_6} = 0$$

$$\sum_{v} Q_v A_v + Q_{\mathsf{sink}} A_{\mathsf{sink}} = 1$$

 $+x_{v_2}x_{v_4}(1-x_{v_3})$

 $+x_{v_2}x_{v_3}x_{v_4}(1-x_{v_5})$

 $+x_{v_3}x_{v_4}x_{v_5}(-1)(1-x_{v_2})$

 $+x_{v_3}x_{v_4}x_{v_5}(1-x_{v_6})$

$$\sum_{v} Q_v A_v + Q_{\mathsf{sink}} A_{\mathsf{sink}} = 1$$

$$(1 - x_{v_1}) + x_{v_1}(1 - x_{v_2}) + x_{v_2}x_{v_4}(-1)(1 - x_{v_1}) + x_{v_2}x_{v_4}(1 - x_{v_3}) + x_{v_2}x_{v_4}(1 - x_{v_3}) + x_{v_3}x_{v_4}x_{v_5}(-1)(1 - x_{v_6}) + x_{v_3}x_{v_4}x_{v_5}(1 - x_{v_6}) + x_{v_3}x_{v_4}x_{v_5}(1 - x_{v_6}) + x_{v_2}x_{v_3}(1 - x_{v_5}) = 0$$

$$x_{v_1}x_{v_2}(1 - x_{v_4}) = 0$$

$$x_{v_2}x_{v_3}(1 - x_{v_5}) = 0$$

$$x_{v_4}x_{v_5}(1 - x_{v_6}) = 0$$

$$x_{v_6} = 0$$

$$\sum_{v} Q_v A_v + Q_{\mathsf{sink}} A_{\mathsf{sink}} = 1$$

$$(1 - x_{v_1}) + (x_{v_1} - x_{v_1} x_{v_2}) + (x_{v_1} x_{v_2} - x_{v_1} x_{v_2} x_{v_4}) + (x_{v_1} x_{v_2} x_{v_4} - x_{v_2} x_{v_4}) + (x_{v_2} x_{v_4} - x_{v_2} x_{v_4}) + (x_{v_2} x_{v_4}) + (x_{v_2}$$

$$\sum_{v} Q_v A_v + Q_{\mathsf{sink}} A_{\mathsf{sink}} = 1$$

 $= 1 - x_{v_3} x_{v_4} x_{v_5} x_{v_6}$

$$(1 - x_{v_1}) + (x_{v_1} - x_{v_1} x_{v_2}) + (x_{v_1} x_{v_2} - x_{v_1} x_{v_2} x_{v_4}) + (x_{v_1} x_{v_2} x_{v_4} - x_{v_2} x_{v_4}) + (x_{v_2} x_{v_4} - x_{v_2} x_{v_4}) + (x_{v_2} x_{v_4}) + (x_{v_2}$$

$$+(x_{v_2}x_{v_4} - x_{v_2}x_{v_3}x_{v_4}) +(x_{v_2}x_{v_3}x_{v_4} - x_{v_2}x_{v_3}x_{v_4}x_{v_5}) +(x_{v_2}x_{v_3}x_{v_4}x_{v_5} - x_{v_3}x_{v_4}x_{v_5}) +(x_{v_3}x_{v_4}x_{v_5} - x_{v_3}x_{v_4}x_{v_5}x_{v_6})$$

$$\begin{array}{l} (1-x_{v_1}) \\ +x_{v_1}(1-x_{v_2}) \\ +x_{v_2}x_{v_4}(-1)(1-x_{v_3}) \\ +x_{v_2}x_{v_3}x_{v_4}(1-x_{v_5}) \\ 1-x_{v_2}=0 \\ 1-x_{v_3}=0 \\ x_{v_1}x_{v_2}(1-x_{v_4})=0 \\ x_{v_2}x_{v_3}(1-x_{v_5})=0 \\ x_{v_4}x_{v_5}(1-x_{v_6})=0 \end{array}$$

 $x_{v_6} = 0$

 $x_{v_6} = 0$

NS size $= 2 \cdot \frac{\text{pebbling time}}{2} + 1 = 2 \cdot 8 + 1$ NS degree = pebbling space = 4

 $x_{v_4}x_{v_5}(1-x_{v_6})=0$

 $x_{v_6} = 0$

NS refutation to reversible pebbling $\sum_{v} Q_{v} A_{v} + Q_{\mathsf{sink}} A_{\mathsf{sink}} = 1$

$$\sum_{v} Q_v A_v + Q_{\mathsf{sink}} A_{\mathsf{sink}} = 1$$

NS refutation to reversible pebbling $\sum Q_v A_v + Q_{\text{sink}} A_{\text{sink}} = 1$

$$\sum_v Q_v A_v + Q_{\mathsf{sink}} A_{\mathsf{sink}} = 1$$

$$1 - x_{v_1} = 0$$

$$1 - x_{v_2} = 0$$

$$1 - x_{v_3} = 0$$

$$x_{v_1} x_{v_2} (1 - x_{v_4}) = 0$$

$$x_{v_2} x_{v_3} (1 - x_{v_5}) = 0$$

$$x_{v_4} x_{v_5} (1 - x_{v_6}) = 0$$

$$x_{v_6} = 0$$

$$(1 - x_{v_2} x_{v_4})(1 - x_{v_1}) + (x_{v_1} - x_{v_3} x_{v_4} x_{v_5})(1 - x_{v_2}) + x_{v_2} x_{v_4} (1 - x_{v_3}) + x_{v_1} x_{v_2} (1 - x_{v_4})$$

$$+ x_{v_4} x_{v_2} x_{v_3} (1 - x_{v_5}) + x_{v_3} x_{v_4} x_{v_5} (1 - x_{v_6}) + x_{v_3} x_{v_4} x_{v_5} x_{v_6} = 1$$

NS refutation to reversible pebbling $\sum Q_v A_v + Q_{\text{sink}} A_{\text{sink}} = 1$

$$Q_v A_v + Q_{\mathsf{sink}} A_{\mathsf{sink}} = 1$$

$$1 - x_{v_1} = 0$$

$$1 - x_{v_2} = 0$$

$$1 - x_{v_3} = 0$$

$$x_{v_1} x_{v_2} (1 - x_{v_4}) = 0$$

$$x_{v_2} x_{v_3} (1 - x_{v_5}) = 0$$

$$x_{v_4} x_{v_5} (1 - x_{v_6}) = 0$$

$$x_{v_6} = 0$$

$$(1 - x_{v_2} x_{v_4})(1 - x_{v_1}) + (x_{v_1} - x_{v_3} x_{v_4} x_{v_5})(1 - x_{v_2}) + x_{v_2} x_{v_4} (1 - x_{v_3}) + x_{v_1} x_{v_2} (1 - x_{v_4})$$

$$+ x_{v_4} x_{v_2} x_{v_3} (1 - x_{v_5}) + x_{v_3} x_{v_4} x_{v_5} (1 - x_{v_6}) + x_{v_3} x_{v_4} x_{v_5} x_{v_6} = 1$$

NS refutation to reversible pebbling $\sum Q_v A_v + Q_{\text{sink}} A_{\text{sink}} = 1$

$$Q_v A_v + Q_{\mathsf{sink}} A_{\mathsf{sink}} = 1$$

$$1 + x_{v_1} = 0$$

$$1 + x_{v_2} = 0$$

$$1 + x_{v_3} = 0$$

$$x_{v_1} x_{v_2} (1 + x_{v_4}) = 0$$

$$x_{v_2} x_{v_3} (1 + x_{v_5}) = 0$$

$$x_{v_4} x_{v_5} (1 + x_{v_6}) = 0$$

$$x_{v_6} = 0$$

$$(1 + x_{v_2} x_{v_4})(1 + x_{v_1}) + (x_{v_1} + x_{v_3} x_{v_4} x_{v_5})(1 + x_{v_2}) + x_{v_2} x_{v_4} (1 + x_{v_3}) + x_{v_1} x_{v_2} (1 + x_{v_4})$$
$$+ x_{v_4} x_{v_2} x_{v_3} (1 + x_{v_5}) + x_{v_3} x_{v_4} x_{v_5} (1 + x_{v_6}) + x_{v_3} x_{v_4} x_{v_5} x_{v_6} = 1$$

 \forall monomials x_W in proof, add node W

$$1 + x_{v_1} = 0$$

$$1 + x_{v_2} = 0$$

$$1 + x_{v_3} = 0$$

$$x_{v_1} x_{v_2} (1 + x_{v_4}) = 0$$

$$x_{v_2} x_{v_3} (1 + x_{v_5}) = 0$$

$$x_{v_4} x_{v_5} (1 + x_{v_6}) = 0$$

$$x_{v_6} = 0$$

$$(1 + x_{v_2} x_{v_4})(1 + x_{v_1}) + (x_{v_1} + x_{v_3} x_{v_4} x_{v_5})(1 + x_{v_2}) + x_{v_2} x_{v_4} (1 + x_{v_3}) + x_{v_1} x_{v_2} (1 + x_{v_4})$$
$$+ x_{v_4} x_{v_2} x_{v_3} (1 + x_{v_5}) + x_{v_3} x_{v_4} x_{v_5} (1 + x_{v_6}) + x_{v_3} x_{v_4} x_{v_5} x_{v_6} = 1$$

$$\sum_{v} Q_v A_v + Q_{\mathsf{sink}} A_{\mathsf{sink}} = 1$$

 \forall monomials x_W in proof, add node W

$$1 + x_{v_1} = 0$$

$$1 + x_{v_2} = 0$$

$$1 + x_{v_3} = 0$$

$$x_{v_1} x_{v_2} (1 + x_{v_4}) = 0$$

$$x_{v_2} x_{v_3} (1 + x_{v_5}) = 0$$

$$x_{v_4} x_{v_5} (1 + x_{v_6}) = 0$$

$$x_{v_6} = 0$$

$$(1 + x_{v_2}x_{v_4})(1 + x_{v_1}) + (x_{v_1} + x_{v_3}x_{v_4}x_{v_5})(1 + x_{v_2}) + x_{v_2}x_{v_4}(1 + x_{v_3}) + x_{v_1}x_{v_2}(1 + x_{v_4})$$
$$+ x_{v_4}x_{v_2}x_{v_3}(1 + x_{v_5}) + x_{v_3}x_{v_4}x_{v_5}(1 + x_{v_6}) + x_{v_3}x_{v_4}x_{v_5}x_{v_6} = 1$$

 \forall monomials x_W in proof, add node W

$$1 + x_{v_1} = 0$$

$$1 + x_{v_2} = 0$$

$$1 + x_{v_3} = 0$$

$$x_{v_1} x_{v_2} (1 + x_{v_4}) = 0$$

$$x_{v_2} x_{v_3} (1 + x_{v_5}) = 0$$

$$x_{v_4} x_{v_5} (1 + x_{v_6}) = 0$$

$$x_{v_6} = 0$$

$$(1 + x_{v_2} x_{v_4})(1 + x_{v_1}) + (x_{v_1} + x_{v_3} x_{v_4} x_{v_5})(1 + x_{v_2}) + x_{v_2} x_{v_4} (1 + x_{v_3}) + x_{v_1} x_{v_2} (1 + x_{v_4})$$
$$+ x_{v_4} x_{v_2} x_{v_3} (1 + x_{v_5}) + x_{v_3} x_{v_4} x_{v_5} (1 + x_{v_6}) + x_{v_3} x_{v_4} x_{v_5} x_{v_6} = 1$$

 $\sum_v Q_v A_v + Q_{\mathsf{sink}} A_{\mathsf{sink}} = 1$

 \forall monomials x_W in proof, add node W

$$\begin{cases} \{v_1, v_2, v_4\} \} & 1 + x_{v_1} = 0 \\ \{v_2, v_3, v_4, v_5\} \end{cases} \\ \begin{cases} \{v_1, v_2\} \} & \{v_2, v_3, v_4\} \} \end{cases} \\ \begin{cases} \{v_2, v_3, v_4\} \} & \{v_3, v_4, v_5\} \} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5, v_6\} \} & \{v_3, v_4, v_5, v_6\} \} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5, v_6\} \} & \{v_3, v_4, v_5, v_6\} \} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \} & \{v_3, v_4, v_5\} \} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \} & \{v_3, v_4, v_5\} \} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \} & \{v_3, v_4, v_5\} \} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \} & \{v_3, v_4, v_5\} \} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \} & \{v_3, v_4, v_5\} \} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \} & \{v_3, v_4, v_5\} \} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \} & \{v_3, v_4, v_5\} \} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \} & \{v_3, v_4, v_5\} \} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \} & \{v_3, v_4, v_5\} \} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \} & \{v_3, v_4, v_5\} \} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \} & \{v_3, v_4, v_5\} \} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \} & \{v_3, v_4, v_5\} \} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \} & \{v_3, v_4, v_5\} \} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \} & \{v_3, v_4, v_5\} \} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \} & \{v_3, v_4, v_5\} \} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \} & \{v_3, v_4, v_5\} \} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \} & \{v_3, v_4, v_5\} \} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \} & \{v_3, v_4, v_5\} \} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \} & \{v_3, v_4, v_5\} \} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \} & \{v_3, v_4, v_5\} \} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \} & \{v_3, v_4, v_5\} \} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \} & \{v_3, v_4, v_5\} \} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \} & \{v_3, v_4, v_5\} \} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \} & \{v_3, v_4, v_5\} \} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \} & \{v_3, v_4, v_5\} \} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \} & \{v_3, v_4, v_5\} \} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \} & \{v_3, v_4, v_5\} \} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \} & \{v_3, v_4, v_5\} \} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \} & \{v_3, v_4, v_5\} \} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \} & \{v_3, v_4, v_5\} \} \end{cases} \\ \begin{cases} \{v_3, v_4$$

 $\sum_{v} \frac{Q_v A_v + Q_{\mathsf{sink}} A_{\mathsf{sink}} = 1$

 \forall monomials x_W in proof, add node W

 $\forall v, \forall \text{ monomials } x_W \in Q_v, \text{ add edge } (W \cup \text{pred}(v), W \cup \text{pred}(v) \cup \{v\})$

For simplicity, assume \mathbb{F}_2

$$\begin{cases} \{v_1, v_2, v_4\} \} \\ \{v_1, v_2\} \end{cases}$$

$$\begin{cases} \{v_1, v_2, v_4\} \} \\ \{v_2, v_3, v_4, v_5\} \end{cases}$$

$$\begin{cases} \{v_2, v_3, v_4, v_5\} \} \\ \{v_2, v_3, v_4, v_5\} \end{cases}$$

$$\begin{cases} \{v_2, v_3, v_4, v_5\} \} \\ \{v_3, v_4, v_5, v_6\} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \} \\ \{v_3, v_4, v_5, v_6\} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \} \\ \{v_3, v_4, v_5, v_6\} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \} \\ \{v_3, v_4, v_5, v_6\} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \} \\ \{v_3, v_4, v_5, v_6\} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \} \\ \{v_3, v_4, v_5, v_6\} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \} \\ \{v_3, v_4, v_5, v_6\} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \} \\ \{v_3, v_4, v_5, v_6\} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \} \\ \{v_3, v_4, v_5, v_6\} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \} \\ \{v_3, v_4, v_5, v_6\} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \} \\ \{v_3, v_4, v_5, v_6\} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \} \\ \{v_3, v_4, v_5, v_6\} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \} \\ \{v_3, v_4, v_5, v_6\} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \} \\ \{v_3, v_4, v_5, v_6\} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \} \\ \{v_3, v_4, v_5, v_6\} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \} \\ \{v_3, v_4, v_5, v_6\} \} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \} \\ \{v_3, v_4, v_5, v_6\} \} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \} \\ \{v_3, v_4, v_5, v_6\} \} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \} \\ \{v_3, v_4, v_5, v_6\} \} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \} \\ \{v_3, v_4, v_5, v_6\} \} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \} \\ \{v_3, v_4, v_5, v_6\} \} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \} \\ \{v_3, v_4, v_5, v_6\} \}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \} \\ \{v_3, v_4, v_5, v_6\} \} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \} \\ \{v_3, v_4, v_5, v_6\} \} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \} \\ \{v_3, v_4, v_5, v_6\} \}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \} \\ \{v_3, v_4, v_5, v_6\} \} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \} \\ \{v_3, v_4, v_5, v_6\} \}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \} \\ \{v_3, v_4, v_5, v_6\} \}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \} \\ \{v_3, v_4, v_5, v_6\} \}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \} \\ \{v_3, v_4, v_5, v_6\} \}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \} \\ \{v_3, v_4, v_5, v_6\} \}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \} \\ \{v_3, v_4, v_5, v_6\} \}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \} \\ \{v_3, v_4, v_5, v_6\} \}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \} \\ \{v_3, v_4, v_5, v_6\} \}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \} \\ \{v_3, v_4, v_5, v_6\}$$

 $+x_{v_4}x_{v_2}x_{v_3}(1+x_{v_5})+x_{v_3}x_{v_4}x_{v_5}(1+x_{v_6})+x_{v_3}x_{v_4}x_{v_5}x_{v_6}=1$

 $\sum_{v} \frac{Q_v A_v + Q_{\mathsf{sink}} A_{\mathsf{sink}} = 1$

 \forall monomials x_W in proof, add node W

 $\forall v, \forall \text{ monomials } x_W \in Q_v, \text{ add edge } (W \cup \text{pred}(v), W \cup \text{pred}(v) \cup \{v\})$

$$\begin{cases} \{v_1, v_2, v_4\} \end{cases} & 1 + x_{v_1} = 0 \\ \{v_2, v_3, v_4, v_5\} \end{cases} \\ \begin{cases} \{v_1, v_2\} \end{cases} & \{v_2, v_3, v_4\} \end{cases} & \begin{cases} \{v_2, v_3, v_4, v_5\} \end{cases} \\ \begin{cases} \{v_2, v_3, v_4, v_5\} \end{cases} & \begin{cases} \{v_3, v_4, v_5, v_6\} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5, v_6\} \end{cases} & \begin{cases} \{v_3, v_4, v_5, v_6\} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \end{cases} & \begin{cases} \{v_3, v_4, v_5, v_6\} \end{cases} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \end{cases} & \begin{cases} \{v_3, v_4, v_5\} \end{cases} \\ \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \end{cases} & \begin{cases} \{v_3, v_4, v_5\} \end{cases} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \end{cases} & \begin{cases} \{v_3, v_4, v_5\} \end{cases} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \end{cases} & \begin{cases} \{v_3, v_4, v_5\} \end{cases} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \end{cases} & \begin{cases} \{v_3, v_4, v_5\} \end{cases} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \end{cases} & \begin{cases} \{v_3, v_4, v_5\} \end{cases} \end{cases} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \end{cases} & \begin{cases} \{v_3, v_4, v_5\} \end{cases} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \end{cases} & \begin{cases} \{v_3, v_4, v_5\} \end{cases} \end{cases} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \end{cases} & \begin{cases} \{v_3, v_4, v_5\} \end{cases} \end{cases} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \end{cases} & \begin{cases} \{v_3, v_4, v_5\} \end{cases} \end{cases} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \end{cases} & \begin{cases} \{v_3, v_4, v_5\} \end{cases} \end{cases} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \end{cases} & \begin{cases} \{v_3, v_4, v_5\} \end{cases} \end{cases} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \end{cases} & \begin{cases} \{v_3, v_4, v_5\} \end{cases} \end{cases} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \end{cases} & \begin{cases} \{v_3, v_4, v_5\} \end{cases} \end{cases} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \end{cases} & \begin{cases} \{v_3, v_4, v_5\} \end{cases} \end{cases} \end{cases} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \end{cases} & \begin{cases} \{v_3, v_4, v_5\} \end{cases} \end{cases} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \end{cases} & \begin{cases} \{v_3, v_4, v_5\} \end{cases} \end{cases} \end{cases} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \end{cases} & \begin{cases} \{v_3, v_4, v_5\} \end{cases} \end{cases} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \end{cases} & \begin{cases} \{v_3, v_4, v_5\} \end{cases} \end{cases} \end{cases} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \end{cases} & \begin{cases} \{v_3, v_4, v_5\} \end{cases} \end{cases} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \end{cases} & \begin{cases} \{v_3, v_4, v_5\} \end{cases} \end{cases} \end{cases} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \end{cases} & \begin{cases} \{v_3, v_4, v_5\} \end{cases} \end{cases} \end{cases} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \end{cases} & \begin{cases} \{v_3, v_4, v_5\} \end{cases} \end{cases} \end{cases} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \end{cases} \end{cases} \end{cases} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \end{cases} \end{cases} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \end{cases} \end{cases} \end{cases} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \end{cases} \end{cases} \end{cases} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \end{cases} \end{cases} \end{cases} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \end{cases} \end{cases} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \end{cases} \end{cases} \end{cases} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \end{cases} \end{cases} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \end{cases} \end{cases} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \end{cases} \end{cases} \end{cases} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \end{cases} \end{cases} \end{cases} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \end{cases} \end{cases} \end{cases} \end{cases} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \end{cases} \end{cases} \end{cases} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \end{cases} \end{cases} \end{cases} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \end{cases} \end{cases} \end{cases} \end{cases} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \end{cases} \end{cases} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \end{cases} \end{cases} \end{cases} \end{cases} \end{cases} \end{cases} \end{cases} \end{cases} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5\} \end{cases} \\ \begin{cases} \{v_3, v_4, v_5\} \end{cases} \end{cases} \end{cases}$$

 $\sum_{v} Q_v A_v + Q_{\mathsf{sink}} A_{\mathsf{sink}} = 1$

 \forall monomials x_W in proof, add node W

 $\forall v, \forall$ monomials $x_W \in Q_v$, add edge $(W \cup \operatorname{pred}(v), W \cup \operatorname{pred}(v) \cup \{v\})$

$$\sum_{v} Q_v A_v + Q_{\mathsf{sink}} A_{\mathsf{sink}} = 1$$

 \forall monomials x_W in proof, add node W

 $\forall v, \forall \text{ monomials } x_W \in Q_v, \text{ add edge } (W \cup \text{pred}(v), W \cup \text{pred}(v) \cup \{v\})$

$$\begin{cases} \{v_1, v_2, v_4\} \end{cases} \qquad \begin{cases} \{v_1, v_2, v_4\} \end{cases} \qquad \begin{cases} \{v_1, v_2, v_4\} \end{cases} \qquad \begin{cases} \{v_2, v_3, v_4, v_5\} \end{cases} \qquad \begin{cases} \{v_3, v_4, v_5, v_6\} \end{cases} \qquad \begin{cases} \{v_3$$

 \forall monomials x_W in proof, add node W

 $\forall v, \forall \text{ monomials } x_W \in Q_v, \text{ add edge } (W \cup \text{pred}(v), W \cup \text{pred}(v) \cup \{v\})$

 \forall monomials x_W in proof, add node W

 $\forall v, \forall$ monomials $x_W \in Q_v$, add edge $(W \cup \operatorname{pred}(v), W \cup \operatorname{pred}(v) \cup \{v\})$

$$\begin{cases} \{v_1,v_2,v_4\} \\ \{v_1,v_2\} \\ \{v_2,v_3,v_4\} \end{cases} \begin{cases} \{v_2,v_3,v_4,v_5\} \\ \{v_2,v_3,v_4\} \\ \{v_3,v_4,v_5\} \end{cases} \begin{cases} \{v_2,v_3,v_4,v_5\} \\ \{v_3,v_4,v_5,v_6\} \\ \{v_3,v_4,v_5\} \end{cases} \begin{cases} \{v_3,v_4,v_5,v_6\} \\ \{v_3,v_4,v_5,v_6\} \\ \{v_3,v_4,v_5\} \end{cases} \begin{cases} \{v_3,v_4,v_5,v_6\} \\ \{v_3,v_4,v_5\} \\ \{v_3,v_4,v_5\} \end{cases} \begin{cases} \{v_3,v_4,v_5,v_6\} \\ \{v_3,v_4,v_5\} \\ \{v_3,v_$$

 \forall monomials x_W in proof, add node W

 $\forall v, \forall \text{ monomials } x_W \in Q_v, \text{ add edge } (W \cup \text{pred}(v), W \cup \text{pred}(v) \cup \{v\})$

$$\begin{cases} \{v_1,v_2,v_4\} \end{cases} \qquad \begin{cases} \{v_1,v_2,v_4\} \end{cases} \qquad \begin{cases} \{v_2,v_3,v_4,v_5\} \end{cases} \qquad \begin{cases} 1+x_{v_1}=0\\ 1+x_{v_2}=0\\ 1+x_{v_3}=0\\ x_{v_1}x_{v_2}(1+x_{v_4})=0\\ x_{v_2}x_{v_3}(1+x_{v_5})=0\\ x_{v_4}x_{v_5}(1+x_{v_6})=0\\ x_{v_6}=0 \end{cases}$$

 \forall monomials x_W in proof, add node W

 $\forall v, \forall$ monomials $x_W \in Q_v$, add edge $(W \cup \operatorname{pred}(v), W \cup \operatorname{pred}(v) \cup \{v\})$

$$\begin{cases} \{v_1,v_2,v_4\} \end{cases} \qquad \begin{cases} \{v_1,v_2,v_4\} \end{cases} \qquad \begin{cases} \{v_2,v_3,v_4,v_5\} \end{cases} \qquad \begin{cases} 1+x_{v_1}=0\\ 1+x_{v_2}=0\\ 1+x_{v_3}=0\\ \end{cases} \\ \{v_2,v_3,v_4\} \end{cases} \qquad \begin{cases} \{v_2,v_3,v_4,v_5\} \end{cases} \qquad \begin{cases} \{v_3,v_4,v_5,v_6\} \end{cases} \qquad \begin{cases} x_{v_1}x_{v_2}(1+x_{v_4})=0\\ x_{v_2}x_{v_3}(1+x_{v_5})=0\\ x_{v_4}x_{v_5}(1+x_{v_6})=0\\ \end{cases} \\ x_{v_6}=0 \end{cases}$$

 \forall monomials x_W in proof, add node W

 $\forall v, \forall$ monomials $x_W \in Q_v$, add edge $(W \cup \operatorname{pred}(v), W \cup \operatorname{pred}(v) \cup \{v\})$

$$\begin{cases} \{v_1,v_2,v_4\} \\ \{v_1,v_2,v_4\} \\ \{v_2,v_3,v_4,v_5\} \end{cases} \begin{cases} \{v_2,v_3,v_4,v_5\} \\ 1+x_{v_2}=0 \\ 1+x_{v_3}=0 \end{cases} \\ \{v_2,v_3,v_4\} \end{cases} \begin{cases} \{v_2,v_3,v_4,v_5\} \\ \{v_3,v_4,v_5,v_6\} \\ x_{v_1}x_{v_2}(1+x_{v_4})=0 \end{cases} \\ \{v_3,v_4,v_5,v_6\} \end{cases} \begin{cases} \{v_3,v_4,v_5,v_6\} \\ x_{v_4}x_{v_5}(1+x_{v_6})=0 \\ x_{v_6}=0 \end{cases} \\ \{v_3,v_4,v_5\} \end{cases}$$

 \forall monomials x_W in proof, add node W

 $\forall v, \forall$ monomials $x_W \in Q_v$, add edge $(W \cup \operatorname{pred}(v), W \cup \operatorname{pred}(v) \cup \{v\})$

$$\begin{cases} \{v_1,v_2,v_4\} \\ \{v_1,v_2,v_4\} \end{cases} \qquad \begin{cases} \{v_1,v_2,v_4\} \\ \{v_2,v_3,v_4,v_5\} \end{cases} \qquad \begin{cases} 1+x_{v_1}=0 \\ 1+x_{v_2}=0 \\ 1+x_{v_3}=0 \end{cases} \\ x_{v_1}x_{v_2}(1+x_{v_4})=0 \\ x_{v_2}x_{v_3}(1+x_{v_5})=0 \\ x_{v_4}x_{v_5}(1+x_{v_6})=0 \end{cases} \\ x_{v_6}=0$$

$$(1+x_{v_2}x_{v_4})(1+x_{v_1})+(x_{v_1}+x_{v_3}x_{v_4}x_{v_5})(1+x_{v_2})+x_{v_2}x_{v_4}(1+x_{v_3})+x_{v_1}x_{v_2}(1+x_{v_4}) \\ +x_{v_4}x_{v_2}x_{v_3}(1+x_{v_5})+x_{v_3}x_{v_4}x_{v_5}(1+x_{v_6})+x_{v_3}x_{v_4}x_{v_5}x_{v_6}=1 \end{cases}$$

 \forall monomials x_W in proof, add node W

 $\forall v, \forall$ monomials $x_W \in Q_v$, add edge $(W \cup \operatorname{pred}(v), W \cup \operatorname{pred}(v) \cup \{v\})$

 $\sum_{v} Q_{v} A_{v} + Q_{\mathsf{sink}} A_{\mathsf{sink}} = 1$

 \forall monomials x_W in proof, add node W

 $\forall v, \forall \text{ monomials } x_W \in Q_v, \text{ add edge } (W \cup \text{pred}(v), W \cup \text{pred}(v) \cup \{v\})$

For simplicity, assume \mathbb{F}_2

$$\begin{cases} \{v_1,v_2,v_4\} \\ \{v_2,v_3,v_4,v_5\} \\ \{v_2,v_3,v_4,v_5\} \end{cases} \begin{cases} \{v_2,v_3,v_4,v_5\} \\ \{v_2,v_3,v_4\} \\ \{v_3,v_4,v_5,v_6\} \end{cases} \begin{cases} \{v_3,v_4,v_5,v_6\} \\ \{v_3,v_4,v_5,v_6\} \\ \{v_3,v_4,v_5,v_6\} \\ \{v_3,v_4,v_5,v_6\} \end{cases} \begin{cases} \{v_3,v_4,v_5,v_6\} \\ \{v_$$

 $\sum_{v} Q_v A_v + Q_{\mathsf{sink}} A_{\mathsf{sink}} = 1$

 \forall monomials x_W in proof, add node W

 $\forall v, \forall \text{ monomials } x_W \in Q_v, \text{ add edge } (W \cup \text{pred}(v), W \cup \text{pred}(v) \cup \{v\})$

For simplicity, assume \mathbb{F}_2

$$(1 + x_{v_2} x_{v_4})(1 + x_{v_1}) + (x_{v_1} + x_{v_3} x_{v_4} x_{v_5})(1 + x_{v_2}) + x_{v_2} x_{v_4}(1 + x_{v_3}) + x_{v_1} x_{v_2}(1 + x_{v_4})$$

$$+ x_{v_4} x_{v_2} x_{v_3}(1 + x_{v_5}) + x_{v_3} x_{v_4} x_{v_5}(1 + x_{v_6}) + x_{v_3} x_{v_4} x_{v_5} x_{v_6} = 1$$

 $\sum_{v} Q_v A_v + Q_{\mathsf{sink}} A_{\mathsf{sink}} = 1$

 \forall monomials x_W in proof, add node W

 $\forall v, \forall \text{ monomials } x_W \in Q_v, \text{ add edge } (W \cup \text{pred}(v), W \cup \text{pred}(v) \cup \{v\})$

For simplicity, assume \mathbb{F}_2

$$(1 + x_{v_2} x_{v_4})(1 + x_{v_1}) + (x_{v_1} + x_{v_3} x_{v_4} x_{v_5})(1 + x_{v_2}) + x_{v_2} x_{v_4}(1 + x_{v_3}) + x_{v_1} x_{v_2}(1 + x_{v_4})$$

$$+ x_{v_4} x_{v_2} x_{v_3}(1 + x_{v_5}) + x_{v_3} x_{v_4} x_{v_5}(1 + x_{v_6}) + x_{v_3} x_{v_4} x_{v_5} x_{v_6} = 1$$

 $\sum_{v} Q_v A_v + Q_{\mathsf{sink}} A_{\mathsf{sink}} = 1$

 \forall monomials x_W in proof, add node W

 $\forall v, \forall \text{ monomials } x_W \in Q_v, \text{ add edge } (W \cup \text{pred}(v), W \cup \text{pred}(v) \cup \{v\})$

For simplicity, assume \mathbb{F}_2

$$(1 + x_{v_2} x_{v_4})(1 + x_{v_1}) + (x_{v_1} + x_{v_3} x_{v_4} x_{v_5})(1 + x_{v_2}) + x_{v_2} x_{v_4}(1 + x_{v_3}) + x_{v_1} x_{v_2}(1 + x_{v_4})$$

$$+ x_{v_4} x_{v_2} x_{v_3}(1 + x_{v_5}) + x_{v_3} x_{v_4} x_{v_5}(1 + x_{v_6}) + x_{v_3} x_{v_4} x_{v_5} x_{v_6} = 1$$

 $\sum_{v} Q_v A_v + Q_{\mathsf{sink}} A_{\mathsf{sink}} = 1$

 \forall monomials x_W in proof, add node W

 $\forall v, \forall \text{ monomials } x_W \in Q_v, \text{ add edge } (W \cup \text{pred}(v), W \cup \text{pred}(v) \cup \{v\})$

For simplicity, assume \mathbb{F}_2

$$(1 + x_{v_2} x_{v_4})(1 + x_{v_1}) + (x_{v_1} + x_{v_3} x_{v_4} x_{v_5})(1 + x_{v_2}) + x_{v_2} x_{v_4}(1 + x_{v_3}) + x_{v_1} x_{v_2}(1 + x_{v_4})$$

$$+ x_{v_4} x_{v_2} x_{v_3}(1 + x_{v_5}) + x_{v_3} x_{v_4} x_{v_5}(1 + x_{v_6}) + x_{v_3} x_{v_4} x_{v_5} x_{v_6} = 1$$

 $\sum_{v} Q_v A_v + Q_{\mathsf{sink}} A_{\mathsf{sink}} = 1$

 \forall monomials x_W in proof, add node W

 $\forall v, \forall \text{ monomials } x_W \in Q_v, \text{ add edge } (W \cup \text{pred}(v), W \cup \text{pred}(v) \cup \{v\})$

For simplicity, assume \mathbb{F}_2

$$(1 + x_{v_2} x_{v_4})(1 + x_{v_1}) + (x_{v_1} + x_{v_3} x_{v_4} x_{v_5})(1 + x_{v_2}) + x_{v_2} x_{v_4}(1 + x_{v_3}) + x_{v_1} x_{v_2}(1 + x_{v_4})$$

$$+ x_{v_4} x_{v_2} x_{v_3}(1 + x_{v_5}) + x_{v_3} x_{v_4} x_{v_5}(1 + x_{v_6}) + x_{v_3} x_{v_4} x_{v_5} x_{v_6} = 1$$

 $\sum_{v} Q_v A_v + Q_{\mathsf{sink}} A_{\mathsf{sink}} = 1$

 \forall monomials x_W in proof, add node W

 $\forall v, \forall \text{ monomials } x_W \in Q_v, \text{ add edge } (W \cup \text{pred}(v), W \cup \text{pred}(v) \cup \{v\})$

For simplicity, assume \mathbb{F}_2

$$(1 + x_{v_2} x_{v_4})(1 + x_{v_1}) + (x_{v_1} + x_{v_3} x_{v_4} x_{v_5})(1 + x_{v_2}) + x_{v_2} x_{v_4}(1 + x_{v_3}) + x_{v_1} x_{v_2}(1 + x_{v_4})$$

$$+ x_{v_4} x_{v_2} x_{v_3}(1 + x_{v_5}) + x_{v_3} x_{v_4} x_{v_5}(1 + x_{v_6}) + x_{v_3} x_{v_4} x_{v_5} x_{v_6} = 1$$

 \forall monomials x_W in proof, add node W

 $\forall v, \forall$ monomials $x_W \in Q_v$, add edge $(W \cup \operatorname{pred}(v), W \cup \operatorname{pred}(v) \cup \{v\})$

For simplicity, assume \mathbb{F}_2

$$(1 + x_{v_2} x_{v_4})(1 + x_{v_1}) + (x_{v_1} + x_{v_3} x_{v_4} x_{v_5})(1 + x_{v_2}) + x_{v_2} x_{v_4}(1 + x_{v_3}) + x_{v_1} x_{v_2}(1 + x_{v_4})$$

$$+ x_{v_4} x_{v_2} x_{v_3}(1 + x_{v_5}) + x_{v_3} x_{v_4} x_{v_5}(1 + x_{v_6}) + x_{v_3} x_{v_4} x_{v_5} x_{v_6} = 1$$

 $\sum_{v} Q_v A_v + Q_{\mathsf{sink}} A_{\mathsf{sink}} = 1$

 \forall monomials x_W in proof, add node W

 $\forall v, \forall \text{ monomials } x_W \in Q_v, \text{ add edge } (W \cup \text{pred}(v), W \cup \text{pred}(v) \cup \{v\})$

For simplicity, assume \mathbb{F}_2

$$(1 + x_{v_2} x_{v_4})(1 + x_{v_1}) + (x_{v_1} + x_{v_3} x_{v_4} x_{v_5})(1 + x_{v_2}) + x_{v_2} x_{v_4}(1 + x_{v_3}) + x_{v_1} x_{v_2}(1 + x_{v_4})$$

$$+ x_{v_4} x_{v_2} x_{v_3}(1 + x_{v_5}) + x_{v_3} x_{v_4} x_{v_5}(1 + x_{v_6}) + x_{v_3} x_{v_4} x_{v_5} x_{v_6} = 1$$

 $\sum_{v} Q_v A_v + Q_{\mathsf{sink}} A_{\mathsf{sink}} = 1$

 \forall monomials x_W in proof, add node W

 $\forall v, \forall$ monomials $x_W \in Q_v$, add edge $(W \cup \operatorname{pred}(v), W \cup \operatorname{pred}(v) \cup \{v\})$

For simplicity, assume \mathbb{F}_2

$$(1 + x_{v_2} x_{v_4})(1 + x_{v_1}) + (x_{v_1} + x_{v_3} x_{v_4} x_{v_5})(1 + x_{v_2}) + x_{v_2} x_{v_4}(1 + x_{v_3}) + x_{v_1} x_{v_2}(1 + x_{v_4})$$

$$+ x_{v_4} x_{v_2} x_{v_3}(1 + x_{v_5}) + x_{v_3} x_{v_4} x_{v_5}(1 + x_{v_6}) + x_{v_3} x_{v_4} x_{v_5} x_{v_6} = 1$$

 \forall monomials x_W in proof, add node W

 $\forall v, \forall$ monomials $x_W \in Q_v$, add edge $(W \cup \operatorname{pred}(v), W \cup \operatorname{pred}(v) \cup \{v\})$

For simplicity, assume \mathbb{F}_2

$$(1 + x_{v_2} x_{v_4})(1 + x_{v_1}) + (x_{v_1} + x_{v_3} x_{v_4} x_{v_5})(1 + x_{v_2}) + x_{v_2} x_{v_4}(1 + x_{v_3}) + x_{v_1} x_{v_2}(1 + x_{v_4})$$

$$+ x_{v_4} x_{v_2} x_{v_3}(1 + x_{v_5}) + x_{v_3} x_{v_4} x_{v_5}(1 + x_{v_6}) + x_{v_3} x_{v_4} x_{v_5} x_{v_6} = 1$$

 $\sum_{v} Q_v A_v + Q_{\mathsf{sink}} A_{\mathsf{sink}} = 1$

 \forall monomials x_W in proof, add node W

 $\forall v, \forall$ monomials $x_W \in Q_v$, add edge $(W \cup \operatorname{pred}(v), W \cup \operatorname{pred}(v) \cup \{v\})$

For simplicity, assume \mathbb{F}_2

$$(1 + x_{v_2}x_{v_4})(1 + x_{v_1}) + (x_{v_1} + x_{v_3}x_{v_4}x_{v_5})(1 + x_{v_2}) + x_{v_2}x_{v_4}(1 + x_{v_3}) + x_{v_1}x_{v_2}(1 + x_{v_4})$$

$$+ x_{v_4}x_{v_2}x_{v_3}(1 + x_{v_5}) + x_{v_3}x_{v_4}x_{v_5}(1 + x_{v_6}) + x_{v_3}x_{v_4}x_{v_5}x_{v_6} = 1$$

 $\sum_{v} Q_v A_v + Q_{\mathsf{sink}} A_{\mathsf{sink}} = 1$

 \forall monomials x_W in proof, add node W

 $\forall v, \forall$ monomials $x_W \in Q_v$, add edge $(W \cup \operatorname{pred}(v), W \cup \operatorname{pred}(v) \cup \{v\})$

For simplicity, assume \mathbb{F}_2

$$(1 + x_{v_2} x_{v_4})(1 + x_{v_1}) + (x_{v_1} + x_{v_3} x_{v_4} x_{v_5})(1 + x_{v_2}) + x_{v_2} x_{v_4}(1 + x_{v_3}) + x_{v_1} x_{v_2}(1 + x_{v_4})$$

$$+ x_{v_4} x_{v_2} x_{v_3}(1 + x_{v_5}) + x_{v_3} x_{v_4} x_{v_5}(1 + x_{v_6}) + x_{v_3} x_{v_4} x_{v_5} x_{v_6} = 1$$

 $\sum_{v} Q_v A_v + Q_{\mathsf{sink}} A_{\mathsf{sink}} = 1$

 \forall monomials x_W in proof, add node W

 $\forall v, \forall \text{ monomials } x_W \in Q_v, \text{ add edge } (W \cup \text{pred}(v), W \cup \text{pred}(v) \cup \{v\})$

For simplicity, assume \mathbb{F}_2

$$(1 + x_{v_2} x_{v_4})(1 + x_{v_1}) + (x_{v_1} + x_{v_3} x_{v_4} x_{v_5})(1 + x_{v_2}) + x_{v_2} x_{v_4}(1 + x_{v_3}) + x_{v_1} x_{v_2}(1 + x_{v_4})$$

$$+ x_{v_4} x_{v_2} x_{v_3}(1 + x_{v_5}) + x_{v_3} x_{v_4} x_{v_5}(1 + x_{v_6}) + x_{v_3} x_{v_4} x_{v_5} x_{v_6} = 1$$

 $\sum_{v} Q_v A_v + Q_{\mathsf{sink}} A_{\mathsf{sink}} = 1$

 \forall monomials x_W in proof, add node W

 $\forall v, \forall \text{ monomials } x_W \in Q_v, \text{ add edge } (W \cup \text{pred}(v), W \cup \text{pred}(v) \cup \{v\})$

For simplicity, assume \mathbb{F}_2

$$(1 + x_{v_2} x_{v_4})(1 + x_{v_1}) + (x_{v_1} + x_{v_3} x_{v_4} x_{v_5})(1 + x_{v_2}) + x_{v_2} x_{v_4}(1 + x_{v_3}) + x_{v_1} x_{v_2}(1 + x_{v_4})$$

$$+ x_{v_4} x_{v_2} x_{v_3}(1 + x_{v_5}) + x_{v_3} x_{v_4} x_{v_5}(1 + x_{v_6}) + x_{v_3} x_{v_4} x_{v_5} x_{v_6} = 1$$

 $\sum_{v} Q_v A_v + Q_{\mathsf{sink}} A_{\mathsf{sink}} = 1$

 \forall monomials x_W in proof, add node W

 $\forall v, \forall$ monomials $x_W \in Q_v$, add edge $(W \cup \operatorname{pred}(v), W \cup \operatorname{pred}(v) \cup \{v\})$

For simplicity, assume \mathbb{F}_2

$$(1 + x_{v_2} x_{v_4})(1 + x_{v_1}) + (x_{v_1} + x_{v_3} x_{v_4} x_{v_5})(1 + x_{v_2}) + x_{v_2} x_{v_4}(1 + x_{v_3}) + x_{v_1} x_{v_2}(1 + x_{v_4})$$

$$+ x_{v_4} x_{v_2} x_{v_3}(1 + x_{v_5}) + x_{v_3} x_{v_4} x_{v_5}(1 + x_{v_6}) + x_{v_3} x_{v_4} x_{v_5} x_{v_6} = 1$$

 $\sum_{v} Q_v A_v + Q_{\mathsf{sink}} A_{\mathsf{sink}} = 1$

 \forall monomials x_W in proof, add node W

 $\forall v, \forall \text{ monomials } x_W \in Q_v, \text{ add edge } (W \cup \text{pred}(v), W \cup \text{pred}(v) \cup \{v\})$

For simplicity, assume \mathbb{F}_2

$$(1 + x_{v_2} x_{v_4})(1 + x_{v_1}) + (x_{v_1} + x_{v_3} x_{v_4} x_{v_5})(1 + x_{v_2}) + x_{v_2} x_{v_4}(1 + x_{v_3}) + x_{v_1} x_{v_2}(1 + x_{v_4})$$

$$+ x_{v_4} x_{v_2} x_{v_3}(1 + x_{v_5}) + x_{v_3} x_{v_4} x_{v_5}(1 + x_{v_6}) + x_{v_3} x_{v_4} x_{v_5} x_{v_6} = 1$$

 $\sum_{v} Q_v A_v + Q_{\mathsf{sink}} A_{\mathsf{sink}} = 1$

 \forall monomials x_W in proof, add node W

 $\forall v, \forall \text{ monomials } x_W \in Q_v, \text{ add edge } (W \cup \text{pred}(v), W \cup \text{pred}(v) \cup \{v\})$

For simplicity, assume \mathbb{F}_2

$$(1 + x_{v_2}x_{v_4})(1 + x_{v_1}) + (x_{v_1} + x_{v_3}x_{v_4}x_{v_5})(1 + x_{v_2}) + x_{v_2}x_{v_4}(1 + x_{v_3}) + x_{v_1}x_{v_2}(1 + x_{v_4})$$

$$+ x_{v_4}x_{v_2}x_{v_3}(1 + x_{v_5}) + x_{v_3}x_{v_4}x_{v_5}(1 + x_{v_6}) + x_{v_3}x_{v_4}x_{v_5}x_{v_6} = 1$$

 $\sum_{v} Q_v A_v + Q_{\mathsf{sink}} A_{\mathsf{sink}} = 1$

 \forall monomials x_W in proof, add node W

 $\forall v, \forall \text{ monomials } x_W \in Q_v, \text{ add edge } (W \cup \text{pred}(v), W \cup \text{pred}(v) \cup \{v\})$

For simplicity, assume \mathbb{F}_2

$$(1 + x_{v_2} x_{v_4})(1 + x_{v_1}) + (x_{v_1} + x_{v_3} x_{v_4} x_{v_5})(1 + x_{v_2}) + x_{v_2} x_{v_4}(1 + x_{v_3}) + x_{v_1} x_{v_2}(1 + x_{v_4})$$

$$+ x_{v_4} x_{v_2} x_{v_3}(1 + x_{v_5}) + x_{v_3} x_{v_4} x_{v_5}(1 + x_{v_6}) + x_{v_3} x_{v_4} x_{v_5} x_{v_6} = 1$$

 $\sum_{v} Q_{v} A_{v} + Q_{\mathsf{sink}} A_{\mathsf{sink}} = 1$

 \forall monomials x_W in proof, add node W

 $\forall v, \forall$ monomials $x_W \in Q_v$, add edge $(W \cup \operatorname{pred}(v), W \cup \operatorname{pred}(v) \cup \{v\})$

For simplicity, assume \mathbb{F}_2

$$\begin{cases} \{v_1,v_2,v_4\} \\ \{v_2,v_3,v_4,v_5\} \\ \{v_2,v_3,v_4,v_5\} \end{cases} \begin{cases} \{v_2,v_3,v_4,v_5\} \\ \{v_2,v_3,v_4\} \\ \{v_3,v_4,v_5,v_6\} \end{cases} \begin{cases} \{v_3,v_4,v_5,v_6\} \\ \{v_3,v_4,v_5,v_6\} \\ \{v_3,v_4,v_5,v_6\} \\ \{v_3,v_4,v_5,v_6\} \end{cases} \begin{cases} \{v_3,v_4,v_5,v_6\} \\ \{v_$$

 $\sum_{v} Q_v A_v + Q_{\mathsf{sink}} A_{\mathsf{sink}} = 1$

 \forall monomials x_W in proof, add node W

 $\forall v, \forall$ monomials $x_W \in Q_v$, add edge $(W \cup \operatorname{pred}(v), W \cup \operatorname{pred}(v) \cup \{v\})$

For simplicity, assume \mathbb{F}_2

$$\begin{cases} \{v_1, v_2, v_4\} \\ \{v_2, v_3, v_4, v_5\} \end{cases}$$

$$\begin{cases} \{v_1, v_2, v_4\} \\ \{v_2, v_3, v_4, v_5\} \end{cases}$$

$$\begin{cases} \{v_2, v_3, v_4, v_5\} \\ \{v_2, v_3, v_4\} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \\ \{v_3, v_4, v_5, v_6\} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \\ \{v_3, v_4, v_5, v_6\} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \\ \{v_3, v_4, v_5, v_6\} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \\ \{v_3, v_4, v_5, v_6\} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \\ \{v_3, v_4, v_5, v_6\} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \\ \{v_3, v_4, v_5, v_6\} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \\ \{v_3, v_4, v_5, v_6\} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \\ \{v_3, v_4, v_5, v_6\} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \\ \{v_3, v_4, v_5, v_6\} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \\ \{v_3, v_4, v_5, v_6\} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \\ \{v_3, v_4, v_5, v_6\} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \\ \{v_3, v_4, v_5, v_6\} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \\ \{v_3, v_4, v_5, v_6\} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \\ \{v_3, v_4, v_5, v_6\} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \\ \{v_3, v_4, v_5, v_6\} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \\ \{v_3, v_4, v_5, v_6\} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \\ \{v_3, v_4, v_5, v_6\} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \\ \{v_3, v_4, v_5, v_6\} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \\ \{v_3, v_4, v_5, v_6\} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \\ \{v_3, v_4, v_5, v_6\} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \\ \{v_3, v_4, v_5, v_6\} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \\ \{v_3, v_4, v_5, v_6\} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \\ \{v_3, v_4, v_5, v_6\} \end{cases}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \\ \{v_3, v_4, v_5, v_6\} \}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \\ \{v_3, v_4, v_5, v_6\} \}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \\ \{v_3, v_4, v_5, v_6\} \}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \\ \{v_3, v_4, v_5, v_6\} \}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \\ \{v_3, v_4, v_5, v_6\} \}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \\ \{v_3, v_4, v_5, v_6\} \}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \\ \{v_3, v_4, v_5, v_6\} \}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \\ \{v_3, v_4, v_5, v_6\} \}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \\ \{v_3, v_4, v_5, v_6\} \}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \\ \{v_3, v_4, v_5, v_6\} \}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \\ \{v_3, v_4, v_5, v_6\} \}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \\ \{v_3, v_4, v_5, v_6\} \}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \\ \{v_3, v_4, v_5, v_6\} \}$$

$$\begin{cases} \{v_3, v_4, v_5, v_6\} \\ \{v_3,$$

- \exists path from \emptyset to some set containing z
 - (1) $deg(\emptyset)$ odd
 - (2) $z \notin U \neq \emptyset$, $\deg(U)$ even

$$\sum_{v} Q_v A_v + Q_{\mathsf{sink}} A_{\mathsf{sink}} = 1$$

 \forall monomials x_W in proof, add node W

 $\forall v, \forall$ monomials $x_W \in Q_v$, add edge $(W \cup \operatorname{pred}(v), W \cup \operatorname{pred}(v) \cup \{v\})$

For simplicity, assume \mathbb{F}_2

- \exists path from \emptyset to some set containing z
 - (1) $deg(\emptyset)$ odd
 - (2) $z \notin U \neq \emptyset$, $\deg(U)$ even

pebbling time
$$\leq 2 \cdot \#$$
 edges $= 2 \cdot \frac{\text{NS size} - 1}{2} = 2 \cdot 8$ pebbling space \leq NS degree $= 4$

Reversible pebbling time-space trade-offs

- Need reversible pebbling time-space trade-off
- Time-space trade-off has been studied for standard pebbling [CS82, LT82]
- Lower bounds still hold, upper bounds have to be adapted

Theorem

There is an explicit family of sets of polynomials s.t.

1. \exists NS refutation in nearly linear size and degree $\widetilde{O}(\sqrt[3]{n})$;

Theorem

There is an explicit family of sets of polynomials s.t.

- 1. \exists NS refutation in nearly linear size and degree $O(\sqrt[3]{n})$;
- 2. \exists NS refutation in degree $\widetilde{O}(\sqrt[6]{n})$;

Theorem

There is an explicit family of sets of polynomials s.t.

- 1. \exists NS refutation in nearly linear size and degree $\widetilde{O}(\sqrt[3]{n})$;
- 2. \exists NS refutation in degree $\widetilde{O}(\sqrt[6]{n})$;
- 3. any NS refutation in degree $\leq \sqrt[3]{n}$ has size $\geq n^{\Omega(\sqrt[6]{n})}$.

Summing up

- ► Nullstellensatz refutation ⇔ reversible pebbling
- Size-degree trade-off for Nullstellensatz

Summing up

- Nullstellensatz refutation ⇔ reversible pebbling
- Size-degree trade-off for Nullstellensatz

Open problems

ightharpoonup Sharper trade-offs (constant degree drop \Rightarrow exponential size blow-up)

Summing up

- ► Nullstellensatz refutation ⇔ reversible pebbling
- Size-degree trade-off for Nullstellensatz

- ightharpoonup Sharper trade-offs (constant degree drop \Rightarrow exponential size blow-up)
- Generalize to setting with variables for negated literals

Summing up

- ► Nullstellensatz refutation ⇔ reversible pebbling
- Size-degree trade-off for Nullstellensatz

- ightharpoonup Sharper trade-offs (constant degree drop \Rightarrow exponential size blow-up)
- Generalize to setting with variables for negated literals (ongoing)

Summing up

- ► Nullstellensatz refutation ⇔ reversible pebbling
- Size-degree trade-off for Nullstellensatz

- ightharpoonup Sharper trade-offs (constant degree drop \Rightarrow exponential size blow-up)
- Generalize to setting with variables for negated literals (ongoing)
- Size-degree trade-off for polynomial calculus

Summing up

- Nullstellensatz refutation ⇔ reversible pebbling
- Size-degree trade-off for Nullstellensatz

- ightharpoonup Sharper trade-offs (constant degree drop \Rightarrow exponential size blow-up)
- Generalize to setting with variables for negated literals (ongoing)
- Size-degree trade-off for polynomial calculus (to appear in ITCS '20)

Summing up

- ► Nullstellensatz refutation ⇔ reversible pebbling
- Size-degree trade-off for Nullstellensatz

Open problems

- ightharpoonup Sharper trade-offs (constant degree drop \Rightarrow exponential size blow-up)
- Generalize to setting with variables for negated literals (ongoing)
- Size-degree trade-off for polynomial calculus (to appear in ITCS '20)

Thank you!