Práctica 0

Almeraya, Kimberly., Tinoco, Sergio., De Los Ríos, Flavio. Instituto Politécnico Nacional, Escuela Superior de Cómputo.

Procesamiento de Señales

06 de agosto de 2022

En esta práctica, se realizaron una serie de pasos para comprender mejor qué tipo de señales de nuestra vida cotidiana existen para así introducirse en el ámbito digital de las señales y entender su implementación, de igual forma su graficación. A través de búsqueda en diversas fuentes y experimentación en Matlab, al tratar de imitar la forma de las señales usando la función adecuada y explorando dentro de las funciones que el software ofrece una forma de proyectar datos de la señal adecuadamente, según sus variables, para esta ocasión se usaron diez señales como muestra.

Palabras clave: matlab, señal, gráfico.

I. INTRODUCCIÓN

La práctica fue realizada con la finalidad de identificar una señal, saber clasificarla, es decir, conocer las características que puede tener y aplicar este conocimiento en la gráfica de su función.

Una señal puede ser intangible, sin embargo una señal es un indicador de que ha sucedido o está sucediendo algo. La volvemos tangible cuando la ilustramos graficando. En una señal se ve involucrada entonces una magnitud, esto quiere decir que se mide o se mantiene un registro de "algo que está ocurriendo" o que "ocurrió cuando...".

Para poder graficar y entender lo que ocurre, necesitamos saber a quiénes o qué implica, por eso tenemos variables.

En Matlab, que es un sistema de cómputo numérico que ofrece un entorno de desarrollo integrado con un lenguaje de programación propio, podemos graficar estas señales, pues funciona como si fuese una calculadora

OBJETIVO Y PLANTEAMIENTO DEL PROBLEMA

Identificar algunas de los diferentes tipos de señales que existen en la naturaleza así como utilizar las herramientas que ofrece matlab para la graficación y simulación de estas.

II. DESARROLLO EXPERIMENTAL

En esta práctica se usó Matlab, y se usaron cálculos previamente encontrados durante la experimentación y uso de este software. Los cálculos fueron encontrados en páginas web especializadas o no en gráficas y teniendo como apoyo el sitio oficial de Matlab.

Matlab al predisponer de dos modos de uso, es decir, online y con el software instalado en el equipo, da la facilidad de trabajar en ambos, así es como se usaron las dos modalidades de trabajo para probar recursos que ya se encontraran probados.

Las principales funciones usadas fueron las siguientes:

- Plot
- Sin
- Cos
- SinC
- xlabel
- ylabel

Asimismo se probaron distintas texturas y colores para visualizar de mejor manera la información, como el color y el tipo de línea, añadiendo "--r", "-g" o "y", al final como atributo en la función plotear de cada señal.

III. DISCUSIÓN Y RESULTADOS

Número de variables	M	En un espectrogram a se miden múltiples variables como el tiempo, la frecuencia y el nivel de la señal
Dimensionalidad	V	Al tener múltiples parámetros la señal se representa por medio de un vector
Variables independientes	С	Al medir el tiempo y la frecuencia se obtienen valores continuos
Valores de señales	С	La intensidad de la señal se describe de manera continua
Naturaleza estadística	A	Al medir una señal sonora no hay forma de predecir los valores de la señal para un tiempo determinado.

Señal: Electroencefalograma	
Gráfico:	

	comportamie nto de la señal por lo que es de naturaleza aleatoria.
	aleatoria.

Señal: Termómetro Digital

Características:

Variables

independientes

	, , , .	
Carac	terísticas:	

	Tipo.	Justificación.
Número de variables	U	Únicamente mide la frecuencia cerebral a lo largo del tiempo.
Dimensionalidad	E	El valor de la señal se representa en Hertz (Hz).
Variables independientes	С	Al ser el tiempo la v.i. se mide en intervalos continuos.
Valores de señales	С	La frecuencia cerebral se mide en valores continuos ya que no presentan discontinuida des.
Naturaleza estadística	A	No hay forma de predecir el

	Tipo.	Justificación.
Número de variables	U	Únicamente se va a medir la temperatura a través del tiempo.
Dimensionalidad	Е	Los valores de la señal se representan con un escalar en

C

este caso grados Centígrados.

Al ser el

tiempo la v.i. se mide en intervalos

		continuos.
Valores de señales	D	Al ser representado s por un instrumento digital se dice que adquiere valores discretos.
Naturaleza estadística	A	No hay forma de predecir el comportamie nto de la señal por lo que es de naturaleza aleatoria.

Número de variables	U	Únicamente se va a medir el valor de la corriente a través del tiempo.
Dimensionalidad	Е	Al ser un valor representado en volts se dice que es un valor escalar.
Variables independientes	С	Al ser el tiempo la v.i. se mide en intervalos continuos.
Valores de señales	С	Al ser una señal de corriente alterna, esta se mide de forma continua.
Naturaleza estadística	D	En este caso se puede describir el comportamie nto de la señal por medio de una función sinusoidal.

Señal: Sismo	
Gráfico:	

	8 ×10 ⁻¹³ Sismo
	6
	4
itchter	2
Escala Ritchter	
ш	2
	-4
	-6 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
	Tiempo

Características:

	Tipo.	Justificación.
Número de variables	M	Es multivariable porque lo que se mide son: el tiempo, la distancia del epicentro (valores más cercanos y constantes) hacia la ubicación de la marca del medidor y el movimiento (amplitud).
Dimensionalidad	V	Al tener múltiples parámetros la señal se representa por medio de un vector.
Variables independientes	С	Al medir el sismo con la distancia

		entre el pico más alto y la distancia al epicentro conforme avanza el tiempo, tendremos variables independient es como el tiempo que son constantes.
Valores de señales	С	Las señales son registradas durante periodos largos, por esto, son señales constantes.
Naturaleza estadística	A	No podemos determinar la intensidad con la que ocurrirá el sismo, por eso su naturaleza es aleatoria.

Señal: Ciclo de trabajo	
Gráfico:	

Características:

	Tipo.	Justificación.
Número de variables	M	En el ciclo de trabajo se mide la frecuencia de los ciclos respecto al tiempo, así se observan ambas variables, considerando así que es multivariable.
Dimensionalidad	E	La dimensionali dad es escalable porque bien podrían variar los parámetros y ajustarse los valores de estos, causando un cambio en el

		gráfico.
Variables independientes	С	La variable independient e es continua, porque constanteme nte se está midiendo (monitoreand o) la frecuencia de los ciclos a través del tiempo.
Valores de señales	C	La señal de un ciclo de trabajo se mide en GHz, por lo tanto, es una medida escalar y continua.
Naturaleza estadística	D	Un ciclo de trabajo con condiciones constantes como las del gráfico, si son predecibles, es posible determinar resultados certeros.

Señal: Función SinC(x)	
Gráfico:	

0.8 0.6 p _{0.0} 0.2 0.4 0.2 0.4 0.10 -8 -6 -4 -2 0 2 4 6 8 10 Tiempo		Valores de señales	С	discontinuida des. Los valores de las señales son constantes, porque a la par que pasa el tiempo, se siguen manteniendo punto tras	
	Tipo.	Justificación.			punto en el gráfico.
Número de variables	M	Es multivariable porque se mide el seno cardinalment e, sobre el tiempo, teniendo así, estas dos variables.	Naturaleza estadística	D	Su naturaleza es determinista porque es posible calcular esta función.
Dimensionalidad	V	Es vectorial porque se grafican vectores que se miden en radianes.	Señal: Función Sen Gráfico: File Edit View Insert Tools Desktop Window Onda Sen Cos	-	
Variables independientes	C	Sus variables independient es son constantes porque se registran durante un lapso y no hay	eiglov/ philidim -0.5	5 2	

Características:

	Tipo.	Justificación.
Número de variables:	M	Es multivariable ya que implica el tiempo
Dimension alidad:	E	y voltaje. Es escalar porque pueden crecer y
Variables Independie ntes:	C	decrecer Son continuas por que se muestran cantidades decimales
Valores de señales:	C	Es constante porque se mantiene en el mismo punto
Naturaleza estadística.	D	Es determinista porque es posible calcular esta función

Características:

	Tipo.	Justificación.
Numero de variables:	M	Es multivariable
Dimensionali dad:	E	ya que implica al campo electrico y magnetico
Variables Independien tes:	C	Es escalar Es continua porque trabaja
Valores de señales:	С	con decimales Es constante
Naturaleza estadística.	D	porque se mantiene en el mismo punto
		Es predecible los valores que esta puede tomar por lo tanto es determinista

Señal: Manecillas de Reloj

Gráfico:

Características:

	Tipo.	Justificación.
Número de variables:	U	Es de una sola variable porque
Dimensional idad:	V	implica solo el tiempo Es vectorial
Variables Independient es:	С	Es continua pues se miden los minutos
Valores de señales:	D	Ya que no siempre cae en el mismo punto es discreta
Naturaleza estadística.	D	Es predecible los valores que esta puede tomar por lo tanto es determinista

IV. CONCLUSIONES

Almeraya Pineda Kimberly Jovana: Al final de los resultados de la práctica mostraron ciertas similitudes, por ejemplo, en su mayoría requieren datos específicos como la amplitud de la señal, necesaria para saber en dónde se ubicará la gráfica de la señal. las funciones, sin embargo, hacían ese trabajo, por lo que se muestran al final, señales que bien pudieran ser iguales o parecidas a las señales del mundo real.

Tinoco Videgaray Sergio: Muchas de las señales que se presentaron en la práctica requieren el uso de funciones para describir comportamiento de manera gráfica, por lo que un recurso como matlab simplifica nos bastante proceso que a priori nos puede llegar a confundir en el caso de señales que dependan de más de variable como espectrograma.

Sánchez De Los Ríos Flavio Josué:

El poder discernir una onda de señal no es una tarea fácil, ya que para ello se deben de buscar las variables que estas implican, ya que no todas son iguales aunque tengan una mínima similitud.

De manera digital es más sencillo el plotear las gráficas ya que con el uso de distintos comandos es posible simular las distintas ondas de señales.

V. BIBLIOGRAFÍA

Anónimo. (2015). Espectrograma utilizando la transformada de Fourier de tiempo corto - MATLAB spectrogram -**MathWorks** América Latina. MathWorks. Recuperado de septiembre de 2022, de https://la.mathworks.com/help/signal/re f/spectrogram.html

Dr.Vijay Dudhal (2022). EEG ANALYSIS AND CLASSIFICATION (https://www.mathworks.com/matlabce ntral/fileexchange/55112-eeg-analysis-an d-classification), MATLAB Central File Exchange. Recuperado September 7, 2022.