Tarea # 4, tarea grupal

David Esteban González González 2020425932 Derek Umaña Quirós 2019208874 Jefferson Arias Gutiérrez 2021131112 María José Venegas Díaz 202151065 Brainer Chacón Orellana 2021039600

March 2022

Calcular las derivadas por definición de las funciones: Definición de una derivada:

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$f(x) = mx + b$$

$$\lim_{h \to 0} \frac{m(x+h) + b - (mx+b)}{h}$$

$$= \lim_{h \to 0} \frac{m(x+h) + b - mx}{h}$$

$$= \lim_{h \to 0} \frac{mx + mh - mx}{h}$$

$$= \lim_{h \to 0} \frac{mx + mh - mx}{h}$$

$$= \lim_{h \to 0} \frac{mh}{h}$$

$$= \lim_{h \to 0} \frac{mh}{h}$$

$$= \lim_{h \to 0} \frac{mh}{h}$$

$$= m$$

$$g(x) = x^3$$

$$\lim_{h \to 0} \frac{(x+h)^3 - x^3}{h}$$

$$= \lim_{h \to 0} \frac{x^3 + 3x^2h + 3xh^2 + h^3 - x^3}{h}$$

$$= \lim_{h \to 0} \frac{x^3 + 3x^2h + 3xh^2 + h^3}{h}$$

$$= \lim_{h \to 0} \frac{3x^2h + 3xh^2 + h^3}{h}$$

$$= \lim_{h \to 0} \frac{h(3x^2 + 3xh + h^2)}{h}$$

$$= \lim_{h \to 0} \frac{h(3x^2 + 3xh + h^2)}{h}$$

$$= \lim_{h \to 0} 3x^2 + 3xh + h^2$$

$$= 3x^2 + 3 \cdot 0x + 0^2$$

$$= 3x^2$$

g(x) = c constante

$$\lim_{h \to 0} \frac{c - c}{h}$$

$$= \lim_{h \to 0} \frac{e}{h}$$

$$= \lim_{h \to 0} \frac{0}{h}$$

$$= \lim_{h \to 0} \frac{0}{h}$$

$$= 0$$

$$g(x) = \sqrt{x+1}$$

$$g(x) = \cos x$$

$$\begin{split} & \lim_{h \to 0} \frac{\cos(x+h) - \cos(x)}{h} \\ &= \lim_{h \to 0} \frac{\cos(x+h) - \cos(x)}{h} \\ &= \lim_{h \to 0} \frac{\cos(x) \cdot \cos(h) - \sin(x) \cdot \sin(h) - \cos(x)}{h} \\ &= \lim_{h \to 0} \frac{[\cos(x) \cdot \cos(h) - \cos(x)] - \sin(x) \cdot \sin(h)}{h} \\ &= \lim_{h \to 0} \frac{\cos(x) [\cos(h) - 1] - \sin(x) \cdot \sin(h)}{h} \\ &= \lim_{h \to 0} \frac{\cos(x) [\cos(h) - 1]}{h} + \lim_{h \to 0} \frac{-\sin(x) \cdot \sin(h)}{h} \\ &= \cos(x) \lim_{h \to 0} \left(\frac{[\cos(h) - 1]}{h} \right) - \sin(x) \lim_{h \to 0} \frac{\sin(h)}{h} \\ &= -\cos(x) \lim_{h \to 0} \left(\frac{[1 - \cos(h)]}{h} \right) - \sin(x) \lim_{h \to 0} \frac{\sin(h)}{h} \\ &= -\cos(x) \lim_{h \to 0} \left(\frac{[1 - \cos(h)]}{h} \right) - \sin(x) \lim_{h \to 0} \frac{\sin(h)}{h} \\ &= -\cos(x) \cdot 0 - \sin(x) \cdot 1 \\ &= -\sin(x) \end{split}$$

Encuentre la recta tangente a la curva $y = x^3$ en el punto (2,8)

$$f(x) = x^3$$

$$f'(x) = 3x^2$$

Una vez tenemos la recta tangente, evaluamos en f', con esto obtendremos la pendiente de la recta tangente.

$$f'(2) = 3 \cdot 2^2$$

$$m = 12$$

Ahora con la ecuación punto-pentdiente obtenemos la ecuación de la recta:

$$y - y_0 = m(x - x_0)$$

sustituimos valores y luego despejamos y:

$$y - 8 = 12(x - 2)$$

la ecuación de la recta tangente a x^3 en el punto (2,8) es:

$$y = 12x - 16$$