Лекция 6. Источники питания электронных устройств.

Для работы различных электрических устройств необходимы **источники** электрической энергии (источники питания) постоянного напряжения. Преобразование переменного напряжения первичного источника питания (например, промышленной сети переменного тока) в постоянное осуществляется с помощью выпрямителей. Выпрямительные устройства, в состав которых входит блок выпрямителя, применяют для питания большинства электронных устройств, как на дискретных элементах, так и на интегральных микросхема, в электроприводе, в установках для электролиза и т.д.

Структурная схема выпрямительного устройства показана на рис. 6.1. В нее входит: Тр - трансформатор, изменяющий величину получаемого от сети переменного напряжения в соответствии с необходимой величиной напряжения на выходе выпрямителя; В – выпрямитель, содержащий один или несколько вентилей (диодов); СФ – сглаживающий фильтр, уменьшающий пульсации выпрямленного напряжения; Ст - стабилизатор, поддерживающий постоянное напряжение на нагрузочном устройстве; Н – нагрузочное устройство (например, нагрузочный резистор).

В зависимости от требований к выпрямительному устройству отдельные элементы его могут отсутствовать. Выпрямители бывают управляемые и неуправляемые. В управляемом выпрямителе, используемом, в частности, в электроприводе, в структурной схеме предусматриваются также элементы регулирования выпрямленного напряжения.

По числу фаз различают однофазные и многофазные (обычно трехфазные) выпрямители. По величине мощности их подразделяют на выпрямители малой, средней и большой мощности. Выпрямители малой мощности, как правило, однофазные, а средней и большой – трехфазные.

Выпрямитель характеризуют следующие основные параметры:

Среднее выпрямленное напряжение на нагрузке $U_{H\,cp}$, средний ток $I_{H\,cp}$, определяемые требованиями потребителя; коэффициент пульсаций на выходе P. последний характеризует величину пульсаций на выходе выпрямителя и определяется

$$P = \frac{U_{H m}}{U_{H cp}},$$

где U_{нт} – амплитуда основной гармоники выпрямленного напряжения.

Рассчитывают диоды для выпрямителей по основным параметрам:

Максимальное обратное напряжение на диоде $U_{\text{обр m}}$, средний ток $I_{\text{a cp}}$, и максимальный ток $I_{\text{a m}}$, диода.

Полученные значения $U_{\text{обр m}}$, $I_{\text{a m}}$ и $I_{\text{a cp}}$ не должны превышать соответствующих предельных параметров диода.

Анализ работы выпрямителей проводят при допущениях, что диод (вентиль) и трансформатор идеальны. Это означает, что

- а) вентиль идеален, когда сопротивление вентеля в прямом направлении равно нулю, а в обратном бесконечно велико,
- б) трансформатор идеален, когда активные и индуктивные сопротивления рассеяния обмоток трансформатора равны нулю.

Работа выпрямителя рассматривается с помощью временных диаграмм.

Однополупериодный выпрямитель

Схема и временные диаграммы напряжений и токов однополупериодного выпрямителя приведены на рис.6.2. схема содержит Тр, в цепь вторичной обмотки которого включены последовательно, диод Д и сопротивление нагрузки $R_{\rm H}$. При принятых допущениях (идеальный трансформатор) следует, что если напряжение U_1 на первичной обмотке трансформатора меняется по синусоидальному закону, то напряжение на вторичной обмотке U_2 также синусоидально.

Ток через диод $i_{\rm H}$ появляется в те полупериоды, когда потенциал точки а выше потенциала точки b вторичной обмотки трансформатора т.к. в эти полупериоды диод Д открыт. Когда потенциал точки, а отрицателен по

Рис. 6.2. Однополупериодный выпрямитель

отношению К потенциалу точки b, закрыт, ДИОД ток в равен нулю. цепи Таким образом, ток в резисторе появляется только один из полу периодов напряжения и2, а схема называется однополупериодной. При принятых допущениях (идеальный диод) положительный полупериод напряжения величина напряжения

на нагрузочном резисторе равна величине и2, а на диоде нулю, a отрицательный полупериод $u_{H} = 0$, а

величина $u_a = u_2$. В этой схеме $U_{HCP} = 0.4U_2$. Недостатки этой схемы – высокий (P=1,57). Эти устраняются пульсации недостатки уровень двухполупериодных схемах выпрямителей, в которых используются оба периода напряжения сети. Наиболее распространенной схемой является мостовая схема двухполупериодного выпрямителя.

Мостовая схема выпрямителя

Мостовая схема двухполупериодного выпрямителя и соответствующие ей временные диаграммы приведены на рис.6.3. В этой схеме диоды Д_I – Д₄ включены по мостовой схеме, к одной диагонали которой подведено переменное напряжение u_2 , а к другой подключен нагрузочный резистор R_H . В течение первой половины периода напряжения u_2 , когда потенциал точки а положителен, точки b – отрицателен, диоды A_1 , A_3 открыты, A_2 , A_4 – заперты, ток \emph{i}_{H} = \emph{i}_{a1} = \emph{i}_{a3} течет через диоды $\emph{Д}_{1}$, $\emph{Д}_{3}$ и нагрузочный резистор \emph{R}_{H} . К диодам Д₂, Д₄ приложено обратное напряжение вторичной обмотки трансформатора и2. В другой полупериод напряжения и2, потенциал точки а ниже потенциала точки b, диоды $Д_2$, $Д_4$ открыты, $Д_1$, $Д_3$ – закрыты, при этом i_H = i_{a2} = i_{a4} течет

Рис. 6.3. Мостовая схема выпрямителя

Сглаживающие фильтры

Выпрямленное напряжение имеет пульсирующий характер и его нельзя непосредственно использовать для питания электронных устройств. Поэтому для уменьшения коэффициента пульсаций на входе выпрямителя применяют сглаживающие фильтры. Включение сглаживающего фильтра между выпрямителем и нагрузочным устройством $R_{\rm H}$ уменьшает коэффициент пульсаций напряжения. Величина, показывающая во сколько раз происходит уменьшение коэффициента пульсаций на выходе ($P_{\rm BMX}$) фильтра по сравнению с его значением на входе ($P_{\rm BX}$), носит название коэффициента сглаживания

$$q = P_{\text{вх}}/P_{\text{вых}}$$

Фильтры состоят из конденсаторов и катушек индуктивности. Основные виды фильтров – емкостной, индуктивный и смешанный (рис.6.4).

На рис.6.5 показаны осциллограммы напряжений на активном сопротивлении нагрузочного устройства $R_{\rm H}$ двухполупериодного

выпрямителя при включенном емкостном C_{Φ} (рис. 6.5.a) и индуктивном L_{Φ} -фильтрах (рис. 6.5.б).

Рис. 6.4. Фильтры: емкостной, индуктивный, Γ и Π - образные

Емкостной фильтр включается параллельно нагрузочному резистору (рис.6.4.а) и шунтирует его по переменной составляющей тока. При этом

конденсатор попеременно заряжается до значения напряжения U $_{H\,m}$ (период времени t_1-t_2 рис.6.5a), а затем разряжается через резистор R_H (период времени t_2-t_3 рис. 6.5a). Если постоянна времени разряда конденсатора $\tau=C_{\varphi}$ R_H значительно превышает период времени T изменения u_H , то напряжение на конденсаторе при разряде уменьшается несущественно за время (t_2-t_3) . Это приводит к значительному увеличению среднего значения напряжения на

нагрузочном резисторе U_{HCP} и к снижению пульсаций выпрямленного напряжения. Емкостной фильтр используют в маломощных источниках питания при высокоомной нагрузке $R_{\rm H}$.

Индуктивный фильтр L_{Φ} включается последовательно с резистором R_H (рис.6.5.б). Поэтому переменная составляющая тока через нагрузку значительно уменьшается из-за действия закона электромагнитной индукции — Фарадея (рис.6.5.б) и снижаются пульсации выпрямленного напряжения. Индуктивный фильтр используется в выпрямителях средней и большой мощности с низкоомной нагрузкой R_H .

Рис. 6.5. Осциллограммы напряжений на активном сопротивлении нагрузочного устройства R_H двухпериодного выпрямителя при включённом емкостном C_{Φ} (а) и индуктивном L_{Φ} (б) фильтрах

Чаще всего используются смешанные фильтры: Γ - образный LC – фильтр (рис.6.4.в) или Π -образный CLC – фильтр (рис.6.4.г). Они обеспечивают более высокую степень сглаживания выпрямленного напряжения. При этом

коэффициент сглаживания смешанного фильтра определяется $q=q_1q_2...q_n$, где q_n — коэффициент сглаживания каждого простого звена фильтра.

Внешняя характеристика выпрямителя

Внешней характеристикой выпрямителя называют зависимость напряжения на нагрузочном устройстве от тока в нем $U_H = f(I_H)$. Наличие такой зависимости обусловлено тем, что в реальном выпрямителе сопротивления диодов и обмоток трансформатора не равны нулю, а имеют конечные значения. На этих сопротивлениях от протекания выпрямленного тока I_H создается падение напряжения, приводящее к уменьшению напряжения U_H .

На рис.6.6. изображена зависимость $U_H = f(I_H)$ выпрямителя без фильтра (кривая 1), где U_{Hx} - напряжение холостого хода. Кривая 2 на рис.6.6. соответствует выпрямителю с емкостным фильтром. При $I_H = 0$ кривая берет свое начало из точки на оси ординат, соответствующей напряжению

Рис. 6.6. Внешние характеристики выпрямителей

 $\mathbf{U}_{2m} = \sqrt{2}\mathbf{U}_{2},$ так как В I_{H} отсутствии тока конденсатор Сф заряжается до амплитудного значения напряжения вторичной обмотки u_2 . с ростом тока I_H кривая 2 спадает быстрее, чем кривая 1, что объясняется не только увеличением падения напряжения на вторичной трансформатора обмотке прямом сопротивлении диода,

но и уменьшением постоянной времени разряда $\tau=R_H$ C_Φ , обусловливающим дополнительное снижение среднего значения выпрямленного напряжения $U_{H.}$ Можно легко показать, что при дальнейшем уменьшении R_H кривая 2 будет асимптотически стремиться к кривой 1 и при R_H =0 они придут в одну точку на оси абсцисс.

Внешняя характеристика П-образного фильтра (кривая 3) на рис.6.6.имеет еще более крутой наклон, чем кривая 2. Это вызвано дополнительным падением напряжения на последовательно включенной катушке L_{Φ} .

Стабилизаторы напряжения

Уменьшение напряжения нагрузки U_H при изменении потребляемого тока I_H (рис.6.7.) или из-за изменения температуры является нежелательным явлением, т.к. снижают надежность работы электронных устройств. Поддержание напряжения нагрузочного устройства на заданном уровне обеспечивают стабилизаторы напряжения.

И

По способу стабилизации компенсационные стабилизаторы.

Параметрические стабилизаторы используют в принципе работы свойства ВАХ электронных приборов. Для примера рис. 6.7. а приведена схема параметрического стабилизатора, выполненного на основе стабилитрона.

Рис. 6.7. Схема параметрического (а) и ВАХ (б) стабилизатора

Стабилитрон Д включен параллельно нагрузке $R_{H,}$ при этом изменение тока в пределах Δ I практически не меняет U_{CT} = U_H (рис. 6.7.б). Последовательно со стабилитроном выключен балластный резистор $R_{\rm B}$ обеспечивающий требуемый режим работы стабилитрона.

стабилизаторах постоянство В компенсационных напряжения обеспечивается автоматического регулирования за счет выходного напряжения источника питания. Это достигается наличием отрицательной обратной связи между выходом и регулирующим элементом (транзистор, микросхема), который изменяет свое сопротивление так, что компенсирует возникающие отклонения выходного напряжения. Схемотехнических решений компенсационных стабилизаторов множество.