Serii de numere reale

November 6, 2023

1 Noțiuni teoretice

Definiție 1 Pentru un șir de numere reale $(a_n)_{n\geq 1}$ expresia $\sum_{n=1}^{\infty} a_n$ se numește serie numerică cu termenul general a_n .

Şirul $(s_n)_{n\geq 1}$, definit prin $s_n=a_1+a_1+\cdots+a_n, n\geq 1$ se numeşte şirul sumelor parţiale ale seriei $\sum_{n=1}^{\infty}a_n$.

Dacă există limita $\lim_{n\to\infty} s_n = s, \ s\in \overline{\mathbb{R}}$, atunci s se numește **suma seriei** $\sum_{n=1}^{\infty} a_n$. Dacă $s\in \mathbb{R}$, seria $\sum_{n=1}^{\infty} a_n$ se numește **convergentă**. O serie care nu este convergentă se numește **divergentă**.

Dacă seria $\sum_{n=1}^{\infty} a_n$ este convergentă atunci $\lim_{n\to\infty} a_n = 0$. Rezultă de aici următorul criteriu de divergență:

Dacă $\lim_{n\to\infty} a_n \neq 0$, atunci seria $\sum_{n=1}^{\infty} a_n$ este divergentă.

1.1 Serii remarcabile

1) Seria geometrică $\sum_{n=0}^{\infty}q^n=1+q+q^2+\cdots,\,q\in\mathbb{R},$ este convergentă dacă și numai dacă $q\in(-1,1).$ Are loc relația

$$\sum_{n=0}^{\infty} q^n = \begin{cases} \frac{1}{1-q}, & \text{dacă } q \in (-1,1) \\ +\infty, & \text{dacă } q \in [1,\infty) \end{cases}.$$

Dacă $q \leq -1$, atunci seria geometrică este divergentă.

2) Seria armonică generalizată $\sum\limits_{n=1}^{\infty}\frac{1}{n^{\alpha}},\ \alpha\in\mathbb{R},$ este convergentă dacă și numai dacă $\alpha>1.$

Pentru $\alpha > 1$ notăm $\zeta(\alpha) = \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$.

Funcția $\zeta:(1,\infty)\to\mathbb{R}$ se numește funcția Zeta a lui Riemann. Au loc relațiile

$$\zeta(2) = \frac{\pi^2}{6}$$
 (Euler), $\zeta(4) = \frac{\pi^4}{90}$.

Seria $\sum_{n=1}^{\infty} \frac{1}{n}$ se numește **serie armonică** și avem $\sum_{n=1}^{\infty} \frac{1}{n} = +\infty$.

3) O altă serie remarcabilă este $\sum\limits_{n=0}^{\infty}\frac{1}{n!}=e.$

1.2 Criterii generale de convergență

Criteriul general al lui Cauchy. Seria $\sum\limits_{n=1}^{\infty}a_n$ este convergentă dacă şi numai dacă, pentru orice $\varepsilon>0$, există $n_{\varepsilon}\in\mathbb{N}$ astfel ca pentru orice $n\geq n_{\varepsilon}$ și orice $p\in\mathbb{N}^*$,

$$|a_{n+1} + a_{n+2} + \dots + a_{n+p}| < \varepsilon.$$

Criteriul lui Abel-Dirichlet. Dacă seria $\sum_{n=1}^{\infty} a_n$ are şirul sumelor parțiale mărginit şi $(b_n)_{n\geq 1}$ este un şir strict descrescător cu $\lim_{n\to\infty} b_n = 0$, atunci seria $\sum_{n=1}^{\infty} a_n b_n$ este convergentă.

Criteriul lui Abel. Dacă seria $\sum_{n=1}^{\infty} a_n$ este convergentă, iar $(b_n)_{n\geq 1}$ este un şir monoton şi mărginit, atunci seria $\sum_{n=1}^{\infty} a_n b_n$ este convergentă.

Criteriul lui Leibniz. Fie $(a_n)_{n\geq 1}$ un şir descrescător pentru care $\lim_{n\to\infty}a_n=0$. Atunci seria alternată $\sum_{n=1}^{\infty}(-1)^{n-1}a_n$ este convergentă.

$\mathbf{2}$ Criterii de convergență pentru serii cu termeni pozitivi

Criteriul raportului (D'Alembert).

Fie $\sum_{n=1}^{\infty} a_n$ o serie cu termeni pozitivi, astfel că există $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = l$, $l \in \overline{\mathbb{R}}$. Atunci:

- i) Dacă l<1, atunci $\sum_{n=1}^{\infty}a_n$ este convergentă. ii) Dacă l>1, atunci $\sum_{n=1}^{\infty}a_n$ este divergentă.
- iii) Dacă l=1 criteriul este ineficient.

Criteriul radicalului (Cauchy).

Fie $\sum\limits_{n=1}^\infty a_n$ o serie cu termeni pozitivi, astfel că există $\lim_{n\to\infty}\sqrt[n]{a_n}=l,$ $l\in\overline{\mathbb{R}}.$ Atunci:

- i) Dacă l < 1, atunci $\sum_{n=1}^{\infty} a_n$ este convergentă.
- ii) Dacă l>1, atunci $\sum\limits_{n=1}^{\infty}a_{n}$ este divergentă.
- iii) Dacă l=1 criteriul este ineficient.

Criteriul lui Raabe-Duhamel.

Fie $\sum_{n=1}^{\infty} a_n$ o serie cu termeni pozitivi, astfel că există $\lim_{n\to\infty} n(\frac{a_n}{a_{n+1}}-1)=l,\,l\in\overline{\mathbb{R}}.$ Atunci:

$$\lim_{n\to\infty} n(\frac{a_n}{a_{n+1}}-1)=l,\ l\in\overline{\mathbb{R}}.$$
 Atunci

- i) Dacă l > 1, atunci $\sum_{n=1}^{\infty} a_n$ este convergentă.
- ii) Dacă l < 1, atunci $\sum_{n=1}^{\infty} a_n$ este divergentă.
- iii) Dacă l = 1 criteriul este ineficient.

Criteriul condensării (Cauchy).

Dacă $(a_n)_{n\geq 1}$ este un șir descrescător de numere reale pozitive atunci seriile $\sum_{n=1}^{\infty} a_n$ și $\sum_{n=1}^{\infty} 2^n a_{2^n}$ au aceeași natură.

Criteriile comparației. Fie $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ două serii cu termeni pozitivi.

Criteriul 1. Dacă există $n_0 \in \mathbb{N}^*$ astfel ca $a_n \leq b_n$, pentru orice $n \geq n_0$,

- i) Dacă $\sum_{n=1}^{\infty} b_n$ este convergentă, atunci $\sum_{n=1}^{\infty} a_n$ este convergentă.
- ii) Dacă $\sum_{n=1}^{\infty} a_n$ este divergentă, atunci $\sum_{n=1}^{\infty} b_n$ este divergentă.

Criteriul 2. Dacă există $n_0 \in \mathbb{N}^*$ astfel ca $\frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n}$, pentru orice

- i) Dacă $\sum_{n=1}^{\infty} b_n$ este convergentă, atunci $\sum_{n=1}^{\infty} a_n$ este convergentă.

 ii) Dacă $\sum_{n=1}^{\infty} a_n$ este divergentă, atunci $\sum_{n=1}^{\infty} b_n$ este divergentă.

 Criterul 3. Dacă există $\lim_{n\to\infty} \frac{a_n}{b_n} = l$, atunci:

 i) Dacă $l \in (0,\infty)$, atunci seriile $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ au aceeaşi natură ii) Dacă l = 0 avem implicațiile:

- 1) $\sum_{n=1}^{\infty} b_n$ este convergentă, atunci $\sum_{n=1}^{\infty} a_n$ este convergentă;
- 2) $\sum_{n=1}^{\infty} a_n$ este divergentă, atunci $\sum_{n=1}^{\infty} b_n$ este divergentă;

În general pentru a decide natura unei serii prin al treilea criteriu al comparației se folosesc seriile armonice generalizate. Se obține astfel următoarea variantă a criteriului 3 des intâlnită în practică.

Consecința criteriului comparației

Dacă există $\alpha \in \mathbb{R}$ astfel ca $\lim_{n \neq \infty} n^{\alpha} a_n = l \in [0, \infty)$ atunci:

- a) pentru $\alpha > 1$ seria $\sum_{n=1}^{\infty} a_n$ este convergentă;
- b) pentru $\alpha \leq 1$ și $l \neq 0$ seria $\sum_{n=1}^{\infty} a_n$ este divergentă.

3 Exerciții și probleme

Ex. 1 Să se precizeze natura seriilor:

a)
$$\sum_{n=1}^{\infty} \frac{(2n)!!}{n^n}$$
;

b)
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!} a^n$$
, $a > 0$;

c)
$$\sum_{n=1}^{\infty} \frac{n!}{a(a+1)\dots(a+n)}$$
, $a > 0$;

d)
$$\sum_{n=1}^{\infty} \frac{a(a+1)...(a+n-1)}{n!} \cdot \frac{1}{n^{\alpha}}, \ a > 0, \ \alpha \neq a;$$

$$e) \sum_{n=2}^{\infty} \frac{1}{n \ln n};$$

$$f$$
) $\sum_{n=1}^{\infty} \left(\frac{\ln n}{n}\right)^{\alpha}$, $\alpha \in \mathbb{R}$;

$$g) \sum_{n=1}^{\infty} \left(\frac{an+b}{cn+d}\right)^n, \ a > 0, c > 0;$$

h)
$$\sum_{n=1}^{\infty} \left(\sqrt[3]{n^3 + 3n^2 + 1} - \sqrt[3]{n^3 - n^2 + 1} \right)^n$$
;

i)
$$\sum_{n=1}^{\infty} \sin \frac{\pi}{n^{\alpha}}, \ \alpha > 0;$$

$$j$$
) $\sum_{n=1}^{\infty} \frac{1}{n^{(1+\frac{1}{n})}};$

$$k) \sum_{n=1}^{\infty} \left(e - \left(1 + \frac{1}{n} \right)^n \right);$$

$$l) \sum_{n=1}^{\infty} n! \left(\frac{a}{n}\right)^n, a > 0;$$

$$m) \sum_{n=2}^{\infty} (\sqrt[n]{n} - 1);$$

$$n$$
) $\sum_{n=3}^{\infty} \frac{1}{n \cdot \ln(n) \cdot \ln \ln(n)}$;

o)
$$\sum_{n=2}^{\infty} (2 - \sqrt{e})(2 - \sqrt[3]{e}) \cdots (2 - \sqrt[n]{e});$$

$$p \sum_{n=1}^{\infty} \left(\frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)} \right)^{\alpha}, \alpha \in \mathbb{R};$$

$$q$$
) $\sum_{n=1}^{\infty} \frac{1}{1+\sqrt{2}+\sqrt[3]{3}+\cdots+\sqrt[n]{n}};$

$$r) \sum_{n=1}^{\infty} a^{\ln n}, \ a > 0;$$

s)
$$\sum_{n=1}^{\infty} a^n \left(1 + \frac{1}{n}\right)^{-n^2}, \ a > 0.$$

Ex. 2 Să se precizeze natura seriilor:

a)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2n+1}{3^n}$$
;

b)
$$\sum_{n=2}^{\infty} (-1)^{n+1} \frac{1}{\ln n};$$

c)
$$\sum_{n=1}^{\infty} \sin(\pi\sqrt{n^2+1});$$

d)
$$\sum_{n=1}^{\infty} \cos n \cdot \sin \frac{1}{n}$$
;

$$e) \sum_{n=1}^{\infty} \frac{a \sin n + b \cos n}{n};$$

$$f$$
) $\sum_{n=1}^{\infty} \frac{\sin n \cdot \sin n^2}{\sqrt{n}}$.

Ex. 3 Se consideră șirul $(a_n)_n$ definit prin relația de recurență

$$a_{n+1} = \ln(1 + a_n), \ n \ge 1 \ \text{si} \ a_1 = 1.$$

a) $S \breve{a} \ se \ arate \ c \breve{a} \lim_{n \to \infty} a_n = 0;$

- b) Să se arate că seria $\sum_{n=1}^{\infty} a_n$ este divergentă.
- c) Să se arate că seria $\sum_{n=1}^{\infty} a_n^2$ este convergentă.

4 Indicații și răspunsuri

Solutie Ex. 1

Solutie Ex. 2 a) Aplicăm criteriul raportului. Seria este convergentă.

- b) Pentru a < 4 seria este convergentă, iar pentru $a \ge 4$ seria este divergentă.
- c) Aplicăm criteriul lui Raabe Duhamel. Seria este convergentă pentru a>1 si divergentă pentru $a\leq 1$.
- d) Aplicăm criteriul lui Raabe-Duhamel. Seria converge pentru $\alpha > a$ și diverge pentru $\alpha < a$
- e) Aplicăm criteriul condensării. Seria este divergentă.
- f) Seria $\sum_{n=1}^{\infty} a_n$ este convergentă pentru $\alpha > 1$ și divergentă pentru $\alpha < 1$.
- g) Aplicăm criteriul radicalului. Pentru $a \ge c$ seria este divergentă iar pentru a < c seria este convergentă.
- h) Seria este divergentă.
- i) Comparăm cu seria armonică. Seria este convergentă pentru $\alpha>1$ și divergentă pentru $\alpha\leq1.$
- j) Comparăm cu seria armonică. Seria este divergentă.
- k) $a_n = e \left(1 + \frac{1}{n}\right)^n > 0$, $\forall n \geq 1$. Comparăm seria $\sum_{n=1}^{\infty} a_n$ cu $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ pentru o valoare potrivită a lui α , $\alpha > 0$. Avem:

$$\lim_{n \to \infty} \frac{a_n}{\frac{1}{n^{\alpha}}} = \lim_{n \to \infty} \frac{e - \left(1 + \frac{1}{n}\right)^n}{\left(\frac{1}{n}\right)^{\alpha}} = \lim_{x \searrow 0} \frac{e - (1 + x)^{\frac{1}{x}}}{x^{\alpha}}$$

$$= \lim_{x \searrow 0} \frac{e - e^{\frac{1}{x}\ln(1+x)}}{x^{\alpha}} = \lim_{x \searrow 0} e \cdot \frac{1 - e^{\frac{\ln(1+x)}{x} - 1}}{\frac{\ln(1+x)}{x} - 1} \cdot \frac{\frac{\ln(1+x)}{x} - 1}{x^{\alpha}}$$

$$= -e \lim_{x \searrow 0} \frac{\ln(1+x) - x}{x^{\alpha+1}} = -e \lim_{x \searrow 0} \frac{\frac{1}{1+x} - 1}{(\alpha+1)x^{\alpha}}$$

$$= \frac{e}{\alpha+1} \lim_{x \searrow 0} \frac{1}{x^{\alpha-1}(1+x)} = \begin{cases} +\infty, & \alpha > 1\\ \frac{e}{2}, & \alpha = 1\\ 0, & \alpha < 1. \end{cases}$$

În concluzie, $\lim_{n\to\infty} \frac{a_n}{\frac{1}{n}} = \frac{e}{2}$ şi $\sum_{n=1}^{\infty} \frac{1}{n} = \infty$ implică $\sum_{n=1}^{\infty} a_n = +\infty$, conform Criteriului 3 al comparației.

- l) Seria este convergentă pentru a < e și divergentă pentru $a \ge e$.
- m) Seria este divergentă.
- n) Seria este divergentă.
- o) Se folosește inegalitatea $\left(1+\frac{1}{n}\right)^n < e < \left(1+\frac{1}{n}\right)^{n+1}$ și criteriul comparației. Seria este divergentă.
- p) Se folosește inegalitatea

$$\frac{1}{2\sqrt{n}} < \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)} < \frac{1}{\sqrt{2n+1}}.$$

Conform criteriului comparației seria este convergentă pentru $\alpha > 2$ și divergentă pentru $\alpha \leq 2$. Se poate aplica si criteriul Raabe Duhamel pentru $\alpha \neq 2$.

- q) Se compară seria data cu seria armonică. Conform criteriului 3 al comparației seria este divergentă.
- r) Pentru $a \ge 1$ seria este divergentă $(a_n \to 0)$. Pentru a < 1 se aplică criteriul condensării. Seria este convergentă pentru $a < \frac{1}{e}$ și divergentă pentru $a \ge \frac{1}{e}$. Se poate aplica si Raabe Duhamel.
- s) Aplicăm criteriul radicalului. Seria este convergentă pentru a < e şi divregentă pentru $a \ge e$.

Solutie Ex. 3 a) Se aplică criteriul lui Leibnitz. Seria este convergentă.

- b) Se aplică criteriul lui Leibnitz. Seria este convergentă.
- c) Seria este convergentă.
- d) Se aplică criteriul lui Abel-Dirichlet. Seria este convergentă.
- e) Se aplică criteriul lui Abel-Dirichlet. Seria este convergentă.
- f) Se aplică criteriul lui Abel-Dirichlet. Seria este convergentă.

Solutie Ex. 4 a) Se arată că sirul este monoton și mărginit.

- b) Aplicăm criteriul comparației comparând cu seria $\sum_{n=1}^{\infty} \frac{1}{n}$.
- c) Aplicăm criteriul comparației comparând cu seria $\sum\limits_{n=1}^{\infty}\frac{1}{n^2}.$