

Agents with different behaviors for Contract Negotiation using Reinforcement Learning

Презентацию подготовила: Бочкарева Мария БПМИ151

## Постановка задачи

### Среда

$$U = \text{Shuffle}(P \bigoplus N)$$

$$P = [p_1, p_2, ..., p_k]$$

$$N = [n_1, n_2, ..., n_{6-k}]$$

$$\sum_{i} p_i = 12$$

$$\sum_{i} n_i = -12$$

### Среда



#### Агент

Агент состоит из следующих частей:

- (1) Deep Neural Network (DNN) Component
  - Решает, какое количество бит необходимо изменить в предложении второго агента.
- (2) Rule Based Component
  - Решает, какие именно биты поменять, чтобы получить наибольшую выгоду.

# Процедура обучения

### Архитектура

- (1) It's Utility function  $U^A$ .
- (2) Offer given by opponent  $B, S_t^B$ .
- (3) It's previous offer,  $S_{t-1}^A$ .
- (4) Agent ID,  $I \in \{0, 1\}$ .

We convert this input into a dense representation  $D_t^A$  as

$$\begin{split} D_t^A &= [\text{OfferMLP}([U^A, S_t^B]), \text{OfferMLP}([U^A, S_{t-1}^A]), \\ &\quad \text{AgentLookup}(I), \text{TurnLookup}(t)]. \end{split}$$

### Архитектура

$$h_t^A = GRU(D_t^A, h_{t-1}^A)$$

$$\pi_A = \text{Softmax}(Wh_t^A)$$

$$L_i = \mathbb{E}_{x_t \sim (\pi_A, \pi_B)} \left[ \sum_t \gamma^{(T-t)} (r_i(x_{1...T}) - b_i) \right] + \lambda H[\pi_i]$$

## Агенты против агентов

| Agent<br>A | Agent<br>B | Dialog<br>Length | Agreement<br>Rate (%) | Optimality<br>Rate (%) | Average<br>Score |         |
|------------|------------|------------------|-----------------------|------------------------|------------------|---------|
|            |            |                  |                       |                        | A(0.70)          | B(0.70) |
| SP         | SS         | 26.50            | 59.00                 | 55.81 (94.59)          | 0.42             | 0.48    |
| PP         | PS         | 9.85             | 97.96                 | 62.55 (63.85)          | 0.51             | 0.68    |
| PP         | SS         | 23.98            | 90.01                 | 69.80 (77.54)          | 0.44             | 0.75    |
| SP         | PP         | 24.64            | 90.43                 | 64.28 (71.08)          | 0.71             | 0.45    |
| SS         | PS         | 11.89            | 93.03                 | 69.43 (74.63)          | 0.70             | 0.50    |

#### <u>Мета-агент</u>

Мета-агент представляет собой ансамбль из всех четырех агентов (SS, PS, SP, PP) и агента выбора во главе, функция потерь которого выглядит следующим образом:

$$L_s = \mathbb{E}_{s_t \sim \pi_s} \left[ \sum_t \gamma^{(T-t)} ((r_s(s_{1...T}) + r_o) - b_s) \right] + \lambda H[\pi_s]$$

#### Мета-агент



## Мета-агент против остальных

| В  | Dialog<br>Length | Agreement<br>Rate (%) | Optimality<br>Rate (%) | Average<br>Score |      |
|----|------------------|-----------------------|------------------------|------------------|------|
|    |                  |                       |                        | Meta             | В    |
| PP | 18.68            | 94.41                 | 77.15 (81.71)          | 0.64             | 0.61 |
| SS | 19.17            | 86.25                 | 73.33 (85.02)          | 0.54             | 0.66 |
| PS | 13.10            | 92.27                 | 76.56 (82.97)          | 0.69             | 0.55 |
| SP | 20.53            | 90.22                 | 81.40 (90.22)          | 0.55             | 0.71 |

# Результаты

## Переговоры с настоящими людьми

| Results of Human Evaluation |                  |                       |                        |                |                |                  |                  |          |
|-----------------------------|------------------|-----------------------|------------------------|----------------|----------------|------------------|------------------|----------|
| Agent                       | Dialog<br>Length | Agreement<br>Rate (%) | Optimality<br>Rate (%) | Agent<br>Score | Human<br>Score | Agent<br>Won (%) | Human<br>Won (%) | Tied (%) |
| PP                          | 15.07            | 87.38                 | 70.87                  | 0.58           | 0.62           | 36.67            | 51.11            | 12.22    |
| SS                          | 19.56            | 73.79                 | 60.20                  | 0.58           | 0.44           | 60.53            | 21.05            | 18.42    |
| PS                          | 13.57            | 92.93                 | 66.67                  | 0.57           | 0.57           | 40.22            | 52.17            | 7.61     |
| SP                          | 21.75            | 72.28                 | 59.41                  | 0.61           | 0.39           | 68.49            | 20.55            | 10.96    |
| META                        | 16.78            | 88.30                 | 56.40                  | 0.57           | 0.56           | 46.99            | 44.58            | 8.43     |

#### Результаты

- (1) A deep learning model and a reinforcement learning procedure for training an AI agent to negotiate in the domain of contract negotiation.
- (2) Modeling selfish/prosocial behavior by varying the reward signal for the agent and its opponent in the reinforcement learning framework and empirical evidence for the same.
- (3) An Al agent with a dynamic behavior (varying within a negotiation instance) by learning an ensemble of different agent behaviors using reinforcement learning.
- (4) Evidence for the usability and success of the negotiation agent against human players through real life experimental results.

#### Другие подходы

- 1. Jakob Foerster, Ioannis Alexandros Assael, Nando de Freitas, and Shimon Whiteson. 2016. Learning to communicate with deep multi-agent reinforcement learning.
- 2. Kris Cao, Angeliki Lazaridou, Marc Lanctot, Joel Leibo, Karl Tuyls, and Stephen Clark. 2018. Emergent Communication through Negotiation.
- 3. Luís M Camarinha-Matos and Ana Inês Oliveira. 2007. Contract negotiation wizard for VO creation.

Есть также и другие работы на данную тему, однако ни в одной из выше перечисленных статей не представлены результаты переговоров с людьми.

### Другие подходы

Mike Lewis, Denis Yarats, Yann N Dauphin, Devi Parikh, and Dhruv Batra. 2017.

Deal or no deal? End-to-end learning for negotiation dialogues.

| Divide these ob<br>and another Tur<br>as many points | rker. Try ha | ard to get       | Fellow Turker: I'd like all the balls                 |                                                      |
|------------------------------------------------------|--------------|------------------|-------------------------------------------------------|------------------------------------------------------|
| Send a message no                                    | ow, or enter | the agreed deal! |                                                       |                                                      |
| Items                                                | Value        | Number You Get   |                                                       | You: Ok, if I get everything else                    |
|                                                      | 8            | [1 0]            | Fellow Turker: If I get the book then you have a deal |                                                      |
| 22                                                   | 1            | 10               |                                                       | You: No way - you can have one hat and all the balls |
|                                                      | 0            | 0 \$             | Fellow Turker: Ok deal                                |                                                      |
|                                                      |              |                  | Type Message Here:                                    |                                                      |
| Mark Deal Agreed                                     |              |                  | Message                                               | Send                                                 |

#### Литература

https://arxiv.org/pdf/1809.07066.pdf

https://arxiv.org/pdf/1706.05125.pdf

http://delivery.acm.org/10.1145/3160000/3157336/p2145-foerster.pdf?ip=92.242.59.6&id=3 157336&acc=NO%20RULES&key=24E52AF21FCA316E%2EF976A362468BE1A3%2E4D470 2B0C3E38B35%2E4D4702B0C3E38B35& acm =1541077404 464a48833ab5a9939ec747 e53f4e79c6