

SEA regression report summary

Sample ID 001c 70° 2

Details				
Software and regression log				
Software about	Semilab - Spectroscopic Ellipsometry Analyzer - SEA			
Software version	1.7.1			
Officially licensed to	MIT			
Operator	operator			
Date and time of regression	14-07-2021 14:18			
Comments				

Regression results

Measurement information							
Measurement file path	C:\Users\emmabat\ito	-si\001c	c.smdx				
Angle of Incidence	70°						
Regression details							
Regression 1 (EllipsoReflectance)							
Wavelength range	239.84 - 1698.83 nm						
Angle of Incidence	70°						
Fit to	<n>, <k></k></n>						
Angular Aperture	0°						
Fit algorithm	LMA						
Results							
Parameters	Value	Fitted	2 σ confidence limit	Unit			
Model							
AOI Shift	0			0			
Angular Aperture	0			0			
Phase 2 (ITO + void)	l .	I	<u> </u>	1			
Thickness	3.19	Х	0.21277	nm			
Depolarization coefficient	0.33333						
Concentration 1	0.5						
Concentration 2	0.5						
Phase 1 (ITO)				1			
Thickness	131.005	Х	0.32741	nm			
A (eV)	326.06406	Х	45.31355	eV			
E0 (eV)	9.88552	Х	0.33146	eV			
C (eV)	49.98148	Х	7.87165	eV			
Eg (eV)	2.66638	Х	0.018835	eV			
E_p (eV)	0.92705	Х	0.012238	eV			
E_Γ (eV)	0			eV			
Eps_inf	0						
Derived parameters	Value						
Phase 2 (ITO + void)							
n @ 632.8 nm	1.4987						
k @ 632.8 nm	0						
Phase 1 (ITO)							
n @ 632.8 nm	2.0551						
k @ 632.8 nm	0						
Substrate (si)							
n @ 632.8 nm	3.8811						
k @ 632.8 nm	0.0195						
Drude derived parameters	Value			Unit			
Phase 1 (ITO)				T			
Conductivity (S/m)	∞ ± NaN S/m						
Resistivity (mΩ.cm)	0 ± NaN	mΩ.cm					
Resistance (Ω/sq)	0 ± NaN	Ω/sq					
N type dopant concentration (at/cm3)	1.5582E+20 ± 4.1142E+18			at/cm3			

P type dopant concentration (at/cm3)	2.3062E+20 ± 6.089E+18	at/cm3
N type dopant mobility (cm2/Vs)	∞ ± NaN	cm2/Vs
P type dopant mobility (cm2/Vs)	∞ ± NaN	cm2/Vs
Fit quality		
R^2	0.99434	
RMSE	0.07088	

Regression graphs

Phase 2 (ITO + void) - Dispersion graphs

Phase 1 (ITO) - Dispersion graphs

Substrate (si) - Dispersion graphs

Correlation coefficients										
	Ph2 - ITO + void - Thickness	Ph1 - ITO - Thickness	Ph1 - Tauc- Lorentz[1] - A (eV)	Ph1 - Tauc- Lorentz[1] - E0 (eV)	Ph1 - Tauc- Lorentz[1] - C (eV)	Ph1 - Tauc- Lorentz[1] - Eg (eV)	Ph1 - Drude[2] - E_p (eV)			
Ph2 - ITO + void - Thickness	1	-0.4681	-0.1233	0.0426	-0.1224	-0.034	-0.0892			
Ph1 - ITO - Thickness		1	0.0263	0.0203	0.0559	0.0208	-0.2863			
Ph1 - Tauc- Lorentz[1] - A (eV)			1	-0.2381	0.9679	0.8774	0.4441			
Ph1 - Tauc- Lorentz[1] - E0 (eV)				1	0.0111	-0.5545	0.2216			
Ph1 - Tauc- Lorentz[1] - C (eV)					1	0.7538	0.4965			
Ph1 - Tauc- Lorentz[1] - Eg (eV)						1	0.2991			
Ph1 - Drude[2] - E_p (eV)							1			