自相关

自相关,也称为序列相关,是指回归模型中误差项之间存在相关性。换句话说,一个观测值的误差项会影响到其他观测值的误差项。

I自相关的后果

当存在自相关时:

- OLS 估计量仍然是无偏和一致的。
- OLS 估计量仍然服从渐近正态分布。
- OLS 估计量的方差表达式不再是 σ^2 $(X'X)^{-1}$,因为 $\mathrm{Var}(,\varepsilon\mid X)\neq\sigma^2I$,因此,通常的 t 检验 F 检验也失效了。
- <u>Chapter5 > 高斯-马尔可夫定理</u>不再成立,即 OLS 不再是最佳线性无偏估计量 (BLUE)。这是因为 OLS 估计忽略了误差项自相关所包含的信息。

|可能导致自相关的原因

- 时间序列数据中的自相关: 经济活动的连续性和持久性, 意外事件或新政策的效应, 滞后的调整过程等。
- 截面数据中的自相关: 相邻观测单位之间的"溢出效应", 也称为"空间自相关"。
- 对数据的人为处理:数据中包含移动平均数、内插值或季节调整等。
- 设定误差: 模型设定中遗漏了某个自相关的解释变量。

I自相关的检验

常用的自相关检验方法包括:

- 画图: 将残差与其滞后残差绘制成散点图或自相关图, 可以直观地观察自相关是否存在。
- Breusch-Godfrey (BG) 检验: 这是一个较为通用的检验方法,可以检验高阶自相关。
- Box-Pierce Q 检验和 Ljung-Box Q 检验: 这两种检验方法基于残差的样本自相关系数, 在大样本下等价,但 Ljung-Box Q 检验的小样本性质更好。
- Durbin-Watson (DW) 检验: 这是一种较早出现的检验方法,只能检验一阶自相关,且有较多限制,现已不常用。

| 自相关的处理

|使用OLS + 异方差自相关稳健标准误

仍然使用 OLS 估计回归系数,但使用"异方差自相关稳健的标准误"(HAC),即在存在异方差与自相关的情况下也成立的稳健标准误。这种方法被称为"Newey-West估计法",它只改变标准误的估计值,并不改变回归系数的估计值。

|使用"OLS + 聚类稳健的标准误

如果样本观测值可以分为不同的"聚类",且同一聚类内的观测值自相关,不同聚类之间不相关,则可以使用"聚类稳健的标准误"。

关于稳健标准误的总结

方法	解决问题	应用场景	关键假设
异方差稳健标准误	异方差	横截面数据	误差项无自相关
自相关-异方差稳健标准误 (HAC)	异方差+自相关	时间序列数 据	误差项在组间独立
聚类稳健标准误	异方差+组内相关 性	面板数据	组间独立,组内相 关

|使用可行广义最小二乘法(FGLS)

通过估计误差项的协方差矩阵并对原模型进行变换,可以消除自相关,使得 OLS 估计量重新 满足高斯-马尔可夫定理。常用的 FGLS 方法包括 Prais-Winsten 估计法和 Cochrane-Orcutt 估计法。

- FGLS 比 OLS 更有效率的前提是对自相关系数的估计比较准确,且满足严格外生性的假定。
- 如果不满足严格外生性,而仅仅满足前定解释变量的假定,则 FGLS 可能是不一致的, 尽管 OLS 依然一致。

修改模型设定:自相关可能是由于模型设定错误导致的,例如遗漏了自相关的解释变量或将动态模型误设为静态模型。

|如何选择自相关处理方法

- 如果只是需要得到一致的估计量,而对效率要求不高,则可以使用 OLS 加 HAC 标准误或聚类稳健标准误。
- 如果需要得到更有效的估计量,且满足 FGLS 的使用条件,则可以使用 FGLS。
- 最根本的解决方法是修改模型设定,消除自相关的根源。

| Stata 代码

Ⅰ自相关检验

```
tsset time
```

设定 time 变量为时间序列算子

```
graph twoway connect consumption temp100 time, msymbol(circle)
msymbol(triangle)
```

graph twoway

connect 折线图

consumption temp100 time 绘制按时间序列排列的 consumption 和 temp100

msymbol(circle) msymbol(triangle) consumption 用圆圈, temp100 用三角形

```
reg consumption temp price income predict e1, res g e2 = L.e1 // L.e1 表示对 e1 取滞后项 (lag)

twoway (scatter e1 e2)(lfit e1 e2) // 画出 e1 e2 的拟合回归线 ac e1 pac e1
```

. reg consump	tion temp pric	e income					
Source	SS	df	MS	Numbe	er of obs	=	30
				F(3,	26)	=	22.17
Model	.090250523	3	.030083508	Prob	> F	=	0.0000
Residual	.035272835	26	.001356647	R-sq	uared	=	0.7190
				Adj I	R-squared	=	0.6866
Total	.125523358	29	.004328392	Root	MSE	=	.03683
consumption	Coefficient	Std. err.	t	P> t	[95% co	onf.	interval]
temp	.0034584	.0004455	7.76	0.000	.002542	6	.0043743
price	-1.044413	.834357	-1.25	0.222	-2.75945	8	.6706322
income	.0033078	.0011714	2.82	0.009	.000899	9	.0057156
_cons	.1973149	.2702161	0.73	0.472	358122	23	.752752
			-				

e1 存在一阶自相关, 下面进行检验:

estat bgodfrey

进行 BG 检验,原假设为"无自相关",p<5% 即为拒绝原假设,存在自相关

wntestq e1

进行 Q 检验,原假设为"无自相关",p<5% 即为拒绝原假设,存在自相关

estat dwatson

进行 DW 检验

d=2, 无一阶自相关

d=0, 一阶正自相关

d=4, 一阶负自相关

I 使用「OLS+HAC 标准误」处理自相关

newey consumption temp price income, lag(3)

计算 Newey-West 标准误,由于样本数量 n=30,因此取滞后阶数 $p=n^{1/4}\approx 3$

. newey consumption temp price income, lag(3)

Regression with Newey-West standard errors
Maximum lag = 3

Number of obs = 30 F(3, 26) = 27.63Prob > F = 0.0000

consumption	Coefficient	Newey-West std. err.		P> t	[95% conf.	interval]
temp	.0034584	.0004002	8.64	0.000	.0026357	.0042811
price	-1.044413	.9772494	-1.07	0.295	-3.053178	.9643518
income	.0033078	.0013278	2.49	0.019	.0005783	.0060372
_cons	.1973149	.3378109	0.58	0.564	4970655	.8916952

发现与用 reg 命令进行回归的标准误相差不大,滞后阶数翻倍为 6 再次尝试。

. newey consumption temp price income, lag(6)

Regression with Newey-West standard errors Maximum lag = 6 Number of obs = 30 F(3, 26) = 52.97 Prob > F = 0.0000

consumption	Coefficient	Newey-West std. err.		P> t	[95% conf.	interval]
temp	.0034584	.0003504	9.87	0.000	.0027382	.0041787
price	-1.044413	.9821798	-1.06	0.297	-3.063313	.9744864
income	.0033078	.00132	2.51	0.019	.0005945	.006021
_cons	.1973149	.3299533	0.60	0.555	4809139	.8755437

说明无论截断参数是 3 还是 6, Newey-West 标准误变化不大, 比较稳健。

|使用可行广义最小二乘法(FGLS)

prais consumption temp price income, corc

prais: 进行 Prais-Winsten 回归

- Prais-Winsten 回归是一种广义最小二乘法(GLS)估计方法
- 主要用于处理一阶自相关 AR(1) 问题
- 是 Cochrane-Orcutt 方法的改进版本

corc (可选):

- 表示使用 Cochrane-Orcutt 迭代方法
- 这是一种迭代算法,用于估计自相关系数ρ

如果不加 corc,则默认使用 Prais-Winsten 变换处理第一个观测值

把得到的参数估计值与 reg 命令相比较查看差别,查看 DW 统计量发现 DW 值提升了。

Cochrane-Orcutt AR(1) regression with iterated estimates

Source	SS	df	MS	Number of obs	=	29
				F(3, 25)	=	15.40
Model	.047040596	3	.015680199	Prob > F	=	0.0000
Residual	.025451894	25	.001018076	R-squared	=	0.6489
				- Adj R-squared	=	0.6068
Total	.072492491	28	.002589018	Root MSE	=	.03191
consumption	Coefficient	Std. err.	t	P> t [95% c	onf	interval]
				12 [33 0	.0111.	Intervati
	0005504					
temp	.0035584	.0005547		0.000 .0024		.0047008
temp price	.0035584 8923963		6.42		16	
		.0005547	6.42 -1.10	0.000 .0024	116 373	.0047008
price	8923963	.0005547	6.42 -1.10 2.07	0.000 .0024 0.282 -2.5623	116 373 .86	.0047008

Durbin-Watson statistic (original) = 1.021169 Durbin-Watson statistic (transformed) = 1.548837

.4009256

去除可选参数 croc, 进行 PW 估计。

rho

Prais-Winsten AR(1) regression with iterated estimates

Source	SS	df	MS	Number of obs	=	30 14.35
Model	.04494596	3	.014981987		=	0.0000
Residual	.027154354	26	.001044398	R-squared	=	0.6234
				Adj R-squared	=	0.5799
Total	.072100315	29	.002486218	Root MSE	=	.03232
consumption	Coefficient	Std. err.	t	P> t [95% co	nf.	interval]
temp	.0029541	.0007109	4.16	0.000 .001492	9	.0044152
price	-1.048854	.759751	-1.38	0.179 -2.61054	5	.5128361
income	0008022	.0020458	-0.39	0.698005007	4	.0034029
_cons	.5870049	.2952699	1.99	0.057019931	1	1.193941
rho	.8002264					

Durbin-Watson statistic (original) = 1.021169 Durbin-Watson statistic (transformed) = 1.846795

虽然 DW 统计量提升较大,但收入效应的参数变为负,与预期不符合,PW 方法不如 OLS 稳健。

|模型设定不正确

加入 temp 的一阶滞后值,进行 OLS 回归

reg consumpiton temp L.temp price income