Show that the language $L = \{ww \mid w \in \{0, 1\}^*\}$ is not regular using pumping lemma theorem.

Correct word choice:

- 1. Let p be the critical length for L, pick w such that $w \in L$ and $|w| \ge p$: $w = 0^p 10^p 1$
- 2. From the pumping lemma, we can write $w=0^p10^p1=xyz$ with length $|xy|\leq p$ and $|y|\geq 1$:

$$w=xyz=0^p10^p1=\underbrace{0\dots0}_x\underbrace{0\dots0}_y\underbrace{0\dots010\dots01}_z \text{ which have the following length}$$
 details $\underbrace{0\dots00\dots00\dots01}_x\underbrace{0\dots01}$. Thus, $y=0^k;1\leq k\leq p$

- 3. From the pumping lemma, $xy^iz \in L$ where i=0,1,2,3,... Thus $xy^3z \in L$: $xy^3z = \underbrace{0 \dots 0}_{x} \underbrace{0 \dots 0}_{y} \underbrace{0 \dots 0}_{y} \underbrace{0 \dots 0}_{y} \underbrace{0 \dots 010}_{z} \dots \underbrace{01}_{z}$ which have the following length details $\underbrace{0 \dots 00 \dots 00 \dots 00 \dots 01}_{p+2k+1} \underbrace{0 \dots 01}_{p+1} \underbrace{0 \dots 01}_{p+2k+1} \underbrace{0 \dots 01}_{p+2k+1}$
- 4. After pumping, the resulted word is $w'' = 0^{p+2k} 10^p 1$, let us check if $w'' \in L$ or not: $w'' = 0^{p+2k} 10^p 1 \notin L$
- 5. From step 4, there is contradiction, therefore our assumption that L is a regular language is not true. Thus, L is not a regular language.

Incorrect word choice:

- 1. Let p be the critical length for L, pick w such that $w \in L$ and $|w| \ge p$: $w = 0^p 0^p \longrightarrow \text{Bad choice! Continue the proof to understand why.}$
- 2. From the pumping lemma, we can write $w = 0^p 0^p = xyz$ with length $|xy| \le p$ and $|y| \ge 1$:

$$w=xyz=0^p0^p=\underbrace{0\dots0}_x\underbrace{0\dots0}_y\underbrace{0\dots00\dots0}_z$$
 which have the following length details
$$\underbrace{0\dots00\dots00\dots00\dots0}_p$$
 Thus, $y=0^k; 1\leq k\leq p$

- 3. From the pumping lemma, $xy^iz \in L$ where i=0,1,2,3,... Thus $xy^3z \in L$: $xy^3z = \underbrace{0 \dots 0}_{x} \underbrace{0 \dots 0}_{y} \underbrace{0 \dots 0}_{y} \underbrace{0 \dots 0}_{y} \underbrace{0 \dots 0}_{z} \underbrace{0 \dots 0}_{z} \underbrace{0 \dots 0}_{z} \underbrace{0 \dots 0}_{z}$ which have the following length details $\underbrace{0 \dots 00 \dots 00 \dots 00 \dots 00 \dots 0}_{p+2k} \underbrace{0 \dots 0}_{z} \underbrace{0 \dots 0}_{z}$
- 4. After pumping, the resulted word is $w'' = 0^{p+2k}0^p$, let us check if $w'' \in L$ or not: $w'' = 0^{p+2k}0^p = 0^{2p+2k} = 0^{p+k}0^{p+k} \in L$
- 5. From step 4, there is **NO** contradiction! Which indicates that our choice for the word with the critical length is a bad choice.