

## SCREENED ELECTROMECHANICAL DEVICE AND MASS FLOWMETER OF CORIOILIS TYPE (VARIANTS)

**Publication number:** RU2107263

**Publication date:** 1998-03-20

**Inventor:** IOSIF A KHASSEJN (US); MILOS DZH MACHASEK (US)

**Applicant:** FOKSBORO KOMPANI (US)

**Classification:**

- **international:** G01F1/84; G01F1/76; (IPC1-7): G01F1/84

- **European:** G01F1/84

**Application number:** SU19905001524 19901205

**Priority number(s):** WO1990US07115 19901205; US19890446310 19891205

**Also published as:**

WO9108448 (A1)

EP0456801 (A1)

US5048350 (A1)

EP0456801 (A4)

EP0456801 (A0)

[more >>](#)

[Report a data error here](#)

### Abstract of RU2107263

**FIELD:** instrumentation engineering. **SUBSTANCE:** screened electromechanical device provides for bilateral conversion of mechanical and electrical energy. It has winding assembly coupled to its far end and magnetic assembly coupled to its near end. Magnetic assembly is intended for interaction with winding assembly. Winding and magnetic assemblies are surrounded by screening assembly designed to reduce magnetic field outside the above-indicated screening assembly. Mass flowmeter has support and continuous loop of pipe line secured reliably to support at its inlet and outlet ends. Loop is exposed to effect of drive screened electromagnetic device which oscillates loop near oscillation axis. Sensor is designed to measure values of Coriolis forces arising as a result of oscillatory motion to which mass flow in loop section is subjected. **EFFECT:** more effective construction. 25 cl, 6 dwgh

---

Data supplied from the [esp@cenet](mailto:esp@cenet) database - Worldwide



(19) RU (11) 2 107 263 (13) С1  
(51) МПК<sup>6</sup> G 01 F 1/84

РОССИЙСКОЕ АГЕНТСТВО  
ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

**(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ**

(21), (22) Заявка: 5001524/28, 05.12.1990  
(30) Приоритет: 05.12.1989 US 446310  
(46) Дата публикации: 20.03.1998  
(56) Ссылки: WO, заявка, 88/03261, G 01 F 1/84,  
1988.  
(86) Заявка РСТ:  
US 90/07115 (05.12.90)

(71) Заявитель:  
Дзе Фоксборо Компани (US)  
(72) Изобретатель: Иосиф А.Хассейн[US],  
Милос Дж.Мачасек[US]  
(73) Патентообладатель:  
Дзе Фоксборо Компани (US)

**(54) ЭКРАНИРОВАННОЕ ЭЛЕКТРОМЕХАНИЧЕСКОЕ УСТРОЙСТВО И МАССОВЫЙ РАСХОДОМЕР КОРИОЛИСОВА ТИПА (ВАРИАНТЫ)**

(57) Реферат:  
Использование: массовые расходомеры с колебательными трубопроводами кориолисова типа. Сущность изобретения: экранированное электромеханическое устройство, обеспечивающее взаимное преобразование механической и электрической энергии, имеет узел обмотки, соединенный с его дальним концом, и магнитный узел, соединенный с его ближним концом. Магнитный узел приспособлен для взаимодействия с узлом обмотки. Узел обмотки и магнитный узел окружены экранирующим узлом, приспособленным уменьшать магнитное поле снаружи указанного экранирующего узла. Массовый расходомер включает в себя суппорт и непрерывную петлю трубопровода, прочно прикрепленного у своих впускного и выпускного концов к суппорту. На петлю действует экранированное электромагнитное устройство привода, которое колеблет петлю возле оси колебания. Датчик приспособлен

измерять величины сил Кориолиса, возникающих в результате того, что массовый поток в части петли подвергается колебательному движению. 6 с. и 19 з.п. ф-лы, 6 ил.



Фиг.1

RU 2 107 263 C1

RU 2 107 263 C1



(19) **RU** (11) **2 107 263** (13) **C1**  
(51) Int. Cl.<sup>6</sup> **G 01 F 1/84**

RUSSIAN AGENCY  
FOR PATENTS AND TRADEMARKS

**(12) ABSTRACT OF INVENTION**

(21), (22) Application: 5001524/28, 05.12.1990

(30) Priority: 05.12.1989 US 446310

(46) Date of publication: 20.03.1998

(86) PCT application:  
US 90/07115 (05.12.90)

(71) Applicant:  
Dze Foksboro Kompani (US)

(72) Inventor: Iosif A.Khassejn[US],  
Milos Dzh.Machasek[US]

(73) Proprietor:  
Dze Foksboro Kompani (US)

(54) SCREENED ELECTROMECHANICAL DEVICE AND MASS FLOWMETER OF CORIOILIS TYPE (VARIANTS)

(57) Abstract:

**FIELD:** instrumentation engineering.  
**SUBSTANCE:** screened electromechanical device provides for bilateral conversion of mechanical and electrical energy. It has winding assembly coupled to its far end and magnetic assembly coupled to its near end. Magnetic assembly is intended for interaction with winding assembly. Winding and magnetic assemblies are surrounded by screening assembly designed to reduce magnetic field outside the above-indicated screening assembly. Mass flowmeter has support and continuous loop of pipe line secured reliably to support at its inlet and outlet ends. Loop is exposed to effect of drive screened electromagnetic device which oscillates loop near oscillation axis. Sensor is designed to measure values of Coriolis forces arising as a result of

oscillatory motion to which mass flow in loop section is subjected. EFFECT: more effective construction. 25 cl, 6 dwg



### Фиг. 1

R U 2 1 0 7 2 6 3 C 1

R U ? 1 0 7 2 6 3 C 1

Изобретение относится к электромагнитным устройствам привода для массовых расходомеров с колебательными трубопроводами кориолисова типа.

В ответ на необходимость измерять количество материала, подаваемого по трубопроводам, был разработан ряд типов расходомеров на различных принципах. Один из наиболее широко используемых типов расходомеров основан на объемном потоке. При определении количества подаваемого материала там, где плотность материала с температурой или подачей изменяется, или там, где текучая среда, накачиваемая через трубопровод, многофазная, такая как шлам, либо там, где текучая среда является не ньютоновской, такой как майонез и другие пищевые продукты, объемные расходомеры в лучшем случае неточны. Кроме того, объемными расходомерами неудобно обслуживать химические реакции, которые являются следствием массовых реакций, где пропорции реагентов критичны.

С другой стороны, массовый расходомер представляет прибор, который обеспечивает непосредственную индикацию массы, в противоположность объему материала, подаваемого по трубопроводу. Различные способы измерения массового потока в движении требуют приложения к потоку силы и детектирования и измерения некоторых последствий приложения силы.

Один класс измерительных массовых расходомеров основан на хорошо известном эффекте Кориолиса. Пример массового расходомера кориолисова типа раскрыт в находящейся на одновременном рассмотрении патентной заявке США N 923847, поданной 28 октября 1986 г. Маттаром и др., озаглавленной "Массовый расходомер кориолисова типа", переуступленной правопреемнику настоящего изобретения и целиком включенной сюда посредством ссылки.

Многие массовые расходомеры кориолисова типа создают силу Кориолиса посредством синусоидального колебания трубопровода возле оси поворота, ортогональной к длине трубопровода. В таком массовом расходометре силы Кориолиса выражаются в радиальном перемещении массы во вращающемся трубопроводе. Материал, протекающий через трубопровод, становится радиально перемещающейся массой, которая, следовательно, подвергается ускорению. Реакция силы Кориолиса, испытываемая перемещающейся массой текущей среды, передается самому трубопроводу и выражается в виде отклонения или смещения трубопровода в направлении вектора силы Кориолиса в плоскости поворота.

Основной трудностью в этих колебательных системах является то, что сила Кориолиса, а следовательно, и результирующее отклонение, мала по сравнению не только с усилием привода, но даже с посторонними вибрациями. С другой стороны, колебательная система может использовать свойства упругого изгиба самого трубопровода для колебаний, что устраняет необходимость в отдельных поворотных или гибких соединениях и повышает механическую надежность и долговечность расходомера. Кроме того,

колебательная система предлагает возможность использования резонансной частоты вибрации самой трубы, чтобы уменьшить необходимую энергию привода.

Энергия прикладывается к трубам механизмом привода, который колеблет их путем приложения периодического усилия. Типичным примером типа механизма привода является электромеханический привод, который создает перемещение, пропорциональное напряжению, прикладываемому к обмотке. В колебательном расходомере прикладываемое напряжение является периодическим и в общем синусоидальном. Как упомянуто выше, чтобы уменьшить энергию, необходимую для создания колебаний, период входного напряжения и, следовательно, усилия привода, выбираются так, чтобы соответствовать резонансной частоте трубы.

Сила Кориолиса, созданная в результате колебаний, и поток массы внутри трубы измеряются датчиками, также расположеными на трубе расходомера. В некоторых случаях желательно устанавливать датчики в тесной близости к механизму привода. Например, в некоторых системах такое устройство выражается в более точном определении силы Кориолиса, созданной трубой расходомера.

Целью настоящего изобретения является улучшение характеристик электромагнитных устройств привода и датчиков. Более точно, целью является устранение магнитных перекрестных искажений между устройствами привода и близко расположенным датчиками, чтобы повысить чувствительность комбинации привод/датчик.

В соответствии с изобретением экранированное электромеханическое устройство привода для использования в массовом расходомере кориолисова типа с взаимным преобразованием механической и электрической энергии включает ближний конец и дальний конец и приспособлено для перемещения относительно ближнего конца. К дальнему концу присоединен узел обмотки, а к ближнему концу - магнит. Узел обмотки определяет внутреннюю полость. Узел обмотки содержит, по меньшей мере, один магнитный элемент, присоединенный к ближнему концу, и имеет, по меньшей мере, один магнитный элемент с магнитной ориентацией, совпадающей, по существу, с осью, соединяющей ближний и дальний концы. Внутри полости расположен магнитный узел, приспособленный магнитно взаимодействовать с указанным узлом обработки. Узел обработки окружен экранирующим узлом, который приспособлен так, чтобы уменьшить магнитное поле снаружи указанного экранирующего узла.

В другом примере реализации изобретение экранированное электромеханическое устройство приспособлено так, чтобы преобразовать механическую энергию в электрическую. Механическая энергия прикладывается к устройству посредством перемещения магнитного узла относительно узла обмотки, а узел обмотки в ответ на механическое перемещение вырабатывает электрическую энергию.

В другом примере реализации

экранированное электромагнитное устройство приспособлено так, чтобы преобразовать электрическую энергию в механическую. Электрическая энергия прикладывается к узлу обмотки, а магнитный узел перемещается в ответ на электрическую энергию относительно обмотки.

В другом примере реализации экранирующий узел включает далее ближний экран и дальний экран, ближний экран прикреплен к ближнему концу, а дальний экран - к дальнему концу электромеханического устройства.

В предпочтительном примере реализации и как другой аспект изобретения один из экранов приспособлен так, чтобы находиться внутри другого из экранов и перемещаться относительно него.

В другом примере реализации экранирующий узел выполнен из магнитопроницаемого материала, такого как сталь.

В другом примере реализации магнитный узел состоит из магнитного элемента. Магнитная ориентация магнитного элемента, по существу, совпадает с осью, распространяющейся между ближним и дальним концами.

В другом примере реализации магнитный узел включает далее полюсный наконечник, расположенный смежно с указанным первым магнитным элементом.

В другом примере реализации магнитный узел включает далее второй магнитный элемент. Магнитная ориентация второго магнитного элемента, по существу, совпадает с указанной осью, распространяющейся между указанными ближним и дальним концами.

В относительном аспекте магнитные ориентации указанных первого и второго магнитных элементов имеют противоположные направления. Магнитный узел включает далее полюсный наконечник, расположенный между указанными первым и вторым магнитными элементами. Полюсный наконечник выполнен из высокопроницаемого материала.

В других относительных аспектах узел обмотки определяет внутреннюю полость, причем магнитный узел расположен внутри полости. Узел обмотки, по существу, цилиндрический и взаимодействует магнитным образом с магнитным узлом.

В другом аспекте изобретения массовый расходомер кориолисова типа включает суппорт и непрерывную петлю трубопровода, прочно прикрепленного к своему впусканому и выпускному концам к суппорту. На петлю действует экранированное электромагнитное устройство привода, которое колеблет петлю возле оси колебания. Датчик приспособлен измерять величины сил Кориолиса, возникающих в результате того, что массовый поток в части петли подвергается колебательному движению. Экранированное электромагнитное устройство привода включает ближний и дальний концы. Узел обмотки присоединен к дальнему концу, а магнитный узел - к ближнему концу и приспособлен взаимодействовать с узлом обмотки. Узел обмотки и магнитный узел окружены экранирующим узлом. Экранирующий узел приспособлен, чтобы уменьшать магнитное поле снаружи

экранирующего узла.

В другом примере реализации датчик включает ближний и дальний концы. Узел обмотки присоединен к дальнему концу, а магнитный узел - к ближнему концу и приспособлен взаимодействовать с узлом обмотки. Узел обмотки и магнитный узел окружены экранирующим узлом, приспособленными, чтобы уменьшить магнитное поле снаружи экранирующего узла.

В следующем примере реализации устройство привода и датчик расположены на петле рядом друг с другом. Расходомер может включать вторую непрерывную петлю трубопровода, прочно прикрепленную у своих впускного и выпускного концов к суппорту. Первая и вторая непрерывные петли трубопровода, по существу, параллельны. Устройство привода и датчик расположены между двумя петлями.

В другом примере реализации изобретения расходомер включает второе устройство привода и второй датчик. Устройства привода приводят в движение петлю оси колебания в различных точках вдоль петли.

Еще в одном примере реализации изобретения участок петли между парой устройств привода является, по существу, прямолинейным.

Фиг. 1 представляет перспективный вид массового расходомера кориолисова типа;

фиг.2 - схематичный вид устройства по фиг.1;

фиг.3 - схематичное изображение трех режимов движения устройства по фиг. 1 и 2;

фиг. 4 - разрез электромеханического устройства привода в соответствии с изобретением;

фиг.5 - схематичное изображение варианта примера реализации электромеханического устройства привода по фиг.4;

фиг.6 - разрез электромеханического датчика в соответствии с изобретением.

Здесь раскрывается специфическая трубчатая конфигурация с перпендикулярной ориентацией к направлению потока процесса, т.е. к направлению потока в прямой секции трубопровода, в который должен вводиться материал. Изобретение приемлемо для линейных и других трубчатых конфигураций. Иллюстрируемые здесь примеры реализации рассчитаны на расходомеры для разнообразных продуктов, включающих, например, топливо, основанное на нефти. Раскрываемые здесь расходомер и электромеханическое устройство привода пригодны, разумеется, для широкого разнообразия других специфических конструкций и тех же самых или иных применений.

Фиг. 1 иллюстрирует двойную петлю системы с двумя приводами/детекторами, главным образом с торсионной нагрузкой концов труб, где они соединяются с единственным жестким коллектором, включаемым в линию с потоком процесса. Один и тот же пример реализации изображен на фиг.1 и 2.

Массовый расходомер 10 по фиг.1 и 2 рассчитан на то, чтобы вставляться в трубопровод (не показанный), у которого небольшой участок исключен или зарезервирован, чтобы создать пространство для измерителя. Трубопровод снабжается

R U 2 1 0 7 2 6 3 C 1

R U 2 1 0 7 2 6 3 C 1

противолежащими разнесёнными фланцами (не показанными), которые соответствуют установочным фланцем 12, приваренным к коротким участкам трубы 14, соединенным с блоком центрального коллектора 16, поддерживающим две плоские параллельные петли 18 и 20. Конфигурация и форма петель 18 и 20, по существу, идентичны.

Таким образом, описание формы петли 18 справедливо также для петли 20, за исключением того, где это указано. Блок коллектора 16 предпочтительно представляет литье прямоугольной формы в виде твердого прямоугольного блока с плоской горизонтальной верхней поверхностью или крышкой 21 и встроенным секциями труб 14. Чтобы уменьшить вес, различные части блока коллектора могут быть удалены. Концы петли 18 содержат прямые предпочтительно вертикальные параллельные впускную и выпускную секции или ноги 22 и 24 прочно прикрепленные, например, сваркой встык к верхушке поверхности коллектора 21 в тесной близости друг к другу. Основание петли 18 представляет удлиненную прямую секцию 26, проходящую под нижней поверхностью блока коллектора 16. Удлиненная прямая секция 26 основания петли 18 соединена с идущими вверх ногами 22 и 24 соответствующими диагональными секциями 30 и 32. Четыре соединения между различными прямыми отрезками петли 18 закруглены с большими радиусами, чтобы обеспечить по возможности малое сопротивление потоку. В частности, идущие вверх ноги 22 и 24 соединены с соответствующими диагональными отрезками 30 и 32 посредством выпуклых витков 34 и 36. Концы удлиненного прямого участка основания 26 соединены с соответствующими концами диагональных элементов 30 и 32 посредством нижних закругленных витков 38 и 40.

параллельные впускная/выпускная секции 22, 24 обеих петель 18 и 20 проходят через изолирующие пластины или узловые пластины 42 и 44 с соответствующими отверстиями, которые параллельны верхней поверхности коллектора 21 и разнесены с ней на предопределенное расстояние. Приваренные к трубам узловые пластины служат как пластины изоляции удара и определяют общую механическую группу для каждой петли.

Узлы электромеханического привода и датчиков прикреплены между петлями 18 и 20 на каждом из нижних закругленных витков 38 и 40. Каждый узел состоит из электромагнитного привода 46 и датчика 48, расположенных близко друг к другу между петлями 18 и 20. Электрические сигналы передаются от схемы привода и детектирования (не показанной) к устройствам привода и датчикам по проволочным выводам 50-53, которые идут вдоль наружной стороны труб через изолирующие пластины с отверстиями 42 и 44 и подсоединяются к электрическому разъему 54.

При питании пары устройств привода 46 на противоположных концах труб током равной величины, но противоположного знака (расфазированного на 180°), прямая секция 26 заставляет поворачиваться возле ее перпендикулярного бисектора 56, лежащего в той же плоскости, который пересекает трубу в

точке "с", как показано на фиг.2.

Таким образом, приводящий в движение поворот предпочтительно производится в горизонтальной плоскости в точке "с". Перпендикулярные бисекторы для прямых секций обеих петель предпочтительно лежат в их общей плоскости симметрии.

Повторно реверсируясь (т.е. изменяясь синусоидально), возбуждающий ток устройства привода заставляет прямую секцию 26 петли 18 выполнять колебательное движение в горизонтальной плоскости возле линии 56-56. Движение каждой прямой секции 26 вырисовывает форму бабочки. Общий боковой ход петли у нижних закругленных витков 38 и 40 мал - порядка 1/16 дюйма (1,6 мм) для прямой секции 26 длиной два фута (610 мм) и трубы в один дюйм (25,4 мм). Это перемещение передается идущим вверх параллельным ногам 22 и 24, начинающимся возле узловых пластин 44, в виде торсионных отклонений вокруг их осей. В прямой секции петли 20 создаются дополняющие колебания.

Движения прямых петель 18 и 20 изображены в трех режимах на фиг.3а, б и с. В режиме привода, как показан на фиг.3б, каждая петля трубопровода колеблется возле точки "с". Две петли поворачиваются синхронно, но в противоположных направлениях, т.е., когда петли 18 поворачиваются по часовой стрелке, петля 20 поворачивается против часовой стрелки. Иначе говоря, петли приводятся в движение возле их соответствующих точек "с" расфазированными на 180°. Следовательно, соответствующие концы, такие как А и С, изображенные на фиг. 3, периодически сходятся и расходятся. Этот тип приводного движения создает эффекты Кориолиса в направлениях, показанных на фиг.3а.

Таким образом, движение в режиме Кориолиса стремится сдвинуть всю плоскость петель 18 и 20. Эффект Кориолиса наибольший, когда две прямые секции 26 параллельны, как показано на фиг.3а, так как при этом синусоидально изменяющаяся угловая скорость максимальна. Поэтому движение каждой петли в режиме Кориолиса происходит в противоположном направлении, прямые секции 26 перемещаются немного вперед (или в сторону) друг от друга, как показано на фиг. 3а. Движение в общем режиме, нежелательное в данном приборе, является таким, при котором петли отклоняются в одном и том же направлении, как показано на фиг. 3с. Этот тип движения может создаваться аксиальной волной в самом трубопроводе в примере реализации по фиг.1, так как петли ориентированы перпендикулярно трубопроводу.

Датчики 48 детектируют колебательное движение прямых секций труб и выдают сигнал, который характеризует силу колебательного привода, модулированную силой реакции Кориолиса, создаваемой текучей средой, подвергающейся ускорению. Вследствие тесной близости устройства привода 46 и датчика 48 должны быть предприняты специальные меры предосторожности, чтобы предотвратить возникновение магнитной взаимосвязи. Т.е. магнитное поле устройства привода 46 может наводить напряжение в датчике 48, создавая паразитный сигнал. Предпочтительно использовать экранированное устройство

привода и датчик, чтобы предотвратить возникновение магнитной взаимосвязи.

#### Экранированное устройство привода.

Сошлемся на фиг.4, на котором изображен предпочтительный пример реализации узла датчика 46. Экранированное устройство привода рассчитано на то, чтобы взаимно преобразовывать электрическую и механическую энергию. В частности, устройство привода эффективно преобразует электрическую энергию (т.е. электрические сигналы) в механическую энергию (т.е. механическое движение). Узел 46 состоит из ближнего конца 62, прикрепленного к трубопроводу потока 18близней крепежной скобой 64, и дальнего конца 66, прикрепленного к трубопроводу потока 20 дальней крепежной скобой 68.

Ближний конец 62 состоит из магнитного узла 72, расположенного внутри ближнего экрана 70. Ближний экран выполнен из мягкой углеродистой стали и имеет чащкообразную форму с цилиндрической стенкой 71 и плоским дном 73, которое прикреплено к ближней крепежной скобе 64. Размеры ближнего экрана определяются размерами и формой всего узла привода. Ближний экран 70 действует как обратный путь, помогая сосредоточить магнитный поток внутри магнитного узла. В центре экрана 70 расположен удлиненный магнитный узел 72, имеющий пару магнитов 75 и 76, разделенных центральным полюсным наконечником 78.

Магнитная ориентация магнитов совпадает с осью 80-80, определяемой узлом привода, и противоположна по направлению. Т.е. магнитная ориентация магнитов 75 и 76 антипараллельна. В примере реализации, изображенном на фиг.4, магниты ориентированы северными полюсами, обращенными к центральному полюсному наконечнику 78. Специалистам в данной области техники понятно, что может применяться другая ориентация, например, к центральному полюсному наконечнику могут быть обращены южные полюса магнитов. Полюсный наконечник может быть выполнен из любого магнитного приемлемого материала, как известно, в данной области техники. Предпочтительным материалом является мягкая углеродистая сталь. Это устройство магнитов 75, 76 и центрального полюсного наконечника 78 сосредотачивает магнитный поток внутри небольшой области близи полюсного наконечника для максимального взаимодействия с узлом обмотки 82.

Дальний конец 66 узла привода 60 состоит из узла обмотки 82, расположенного внутри дальнего экрана 84. Узел обмотки содержит носитель обмотки 86, который на своем дальнем конце прикреплен к дальнему экрану 84, который крепится далее к дальней крепежной скобе 68 немагнитной заклепкой 106 для соединения с трубопроводом потока 20. На ближнем конце носителя обмотки 86 образована как единой целое катушка 94. Чтобы свести к минимуму образование вихревых токов, носитель обмотки может быть выполнен из непроводящего материала. Катушка 94 имеет намотанную на ней проволочную обмотку 96, образующую электромагнитную обмотку 98. Обмотка и носитель обмотки определяют внутреннюю полость 100, имеющую в общем

цилиндрическую секцию 102 и усеченно-конически дальний участок 104, который сужается от цилиндрического участка 102, чтобы принять заклепку 106. В общем цилиндрическая внутренняя полость имеет размер, достаточный для того, чтобы позволить свободное перемещение магнитного узла и обеспечить максимальное взаимодействие между узлом обмотки и магнитным полем, выходящим из магнитного узла. Ближний и дальний экраны сконструированы так, чтобы перемещаться друг относительно друга и минимизировать магнитный поток, выходящий из устройства. Это достигается признаком ближнему и дальнему экранам в общем цилиндрической форме и перекрыванием одного другим, так что один из элементов может входить внутрь другого и свободно перемещаться там. Иначе говоря, экраны образуют телескопическое устройство, в котором один из экранов входит внутрь другого.

В примере реализации, изображенном на фиг.4, экранирующие элементы цилиндрические, ближний элемент имеет меньший радиус, нежели дальний и приспособлен входит внутрь и перемещаться относительно дальнего конца вдоль оси 80-80, определяемой цилиндрической формой экранов. Экраны совместно минимизируют утечку магнитного потока из устройства и в устройство путем создания экранированного и закрытого магнитного узла. В цилиндрической поверхности дальнего экрана может быть сделан вырез (не показанный), чтобы предотвратить образование вихревых токов, которые могут увеличить магнитный поток. Отсутствие магнитного потока снаружи позволяет близко располагать любое число устройств привода и датчиков без проблем магнитной взаимосвязи. Близкорасположенные устройства привода и датчики магнитно не будут влиять друг на друга. Следующим достоинством этого устройства является повышение линейности, которая является результатом многоэлементного магнитного узла. Перемещение ближнего и дальнего концов относительно друг друга вследствие приводного тока в обмотке не изменит значительно постоянное магнитное поле, и, следовательно, будут достигнуты линейные силы привода.

На фиг.5 изображен другой пример реализации электромагнитного устройства привода. Устройство привода 110 состоит из удлиненного экрана из мягкой углеродистой стали 112, имеющего цилиндрическое сечение перпендикулярно оси элемента 114-114. Экран имеет участки 116-118, которые уменьшают открытую область у каждого конца экрана и обеспечивают отверстие, через которое перемещается удлиненный магнитный элемент 120. На внутренней поверхности 122 экрана имеется кольцевое ребро 124, выступающее к центру экрана. На кольцевом ребре 124 укреплена электромеханическая обмотка 126. Удлиненный магнитный элемент 120 расположен посередине внутри экрана 112. Магнитный элемент 120 состоит из двух магнитов 128 и 130 и трех полюсных наконечников 132, 134 и 136. Два магнита 128 и 130 расположены на противоположных сторонах от центрального полюсного

наконечника 132 так, что их магнитные ориентации противоположны по отношению друг к другу и параллельны оси 114-114 магнитного элемента. В примере реализации по фиг.5 друг к другу направлены северные полюса каждого магнита 128 и 130. Однако, если необходимо, друг к другу могут быть направлены южные полюсы магнитов. На концах каждого магнита 128, 130, противоположных полюсному наконечнику 132, прикреплены полюсные наконечники 134 и 136, соответственно. Полюсные наконечники 132, 134 и 136 и магниты 128, 130 образуют совместно удлиненный магнитный узел, который обладает высокой эффективностью и линейностью.

Конструкция электромагнитного устройства основана на том, что от устройства привода должна быть получена максимальная сила при минимальной величине тока, подаваемого в обмотку.

Уравнение, определяющее силу будет  
 $F = N \cdot I \cdot B$ ,

где

$F$  - сила (ニュートン);

$N$  - число витков обмотки;

$I$  - длина среднего витка обмотки (м);

$I$  - ток обмотки (А);

$B$  - плотность радиального потока (тесла).

Для того, чтобы сдвинуть  $B$  в максимальном и все еще сохранить линейность силы, должны использоваться два магнита, соединенных одинаковыми сторонами, с плоскими наконечниками, как показано на фиг.4 и 5. В этих конфигурациях поток заставляется концентрироваться радиально в области, занимаемую обмоткой. Когда постоянный магнит движется, воздушные зазоры между полюсными наконечниками и экраном не изменяются, что снижает нелинейность конструкции.

Пример реализации по фиг.5 состоит из оболочки, выполненной из мягкой углеродистой стали, трех полюсных наконечников, двух постоянных магнитов и обмотки. Цель данного примера реализации - сфокусировать радиальный поток в область обмотки и, таким образом, получить максимальную силу привода для данного тока обмотки.

Для вычисления индуктивности обмотки, а также среднего радиального потока в области обмотки, была применена программа анализа ограниченного элемента. Затем эта модель была использована, чтобы оптимизировать электромагнитную конструкцию и достичь максимальной силы для установленного значения тока.

В цифровой модели величина, использованная для проницаемости мягкой углеродистой стали, составляла 100, а для постоянного магнита и воздуха была 1. Остаточная магнитная индукция используемого постоянного магнита была 0,9 тесла. Результат вычисления дал среднюю плотность потока 477,2 миллитесла. Индуктивность обмотки была также вычислена ее моделированием как полоски магнита, размещенного в центре узла. Снова была запущена программа ограниченного элемента, чтобы вычислить распределение потока для моделированной обмотки. Затем была запущена программа регрессии, чтобы получить математическое соотношение между потоком и радиальным расстоянием.

Было использовано геометрическое соотношение виде

$$Y = K \cdot X^n$$

где

$Y$  - представляет поток;  $X$  - расстояние;  $K$  и  $n$  - компоненты, устанавливаемые программой регрессии.

Из уравнения (2) был вычислен средний поток и определено эффективное радиальное расстояние. Это эффективное расстояние было использовано для того, чтобы оценить эффективную кольцевую область потока обмотки  $/Am$ , а также эффективную длину пути потока обмотки  $/lm$ . Затем из этих двух факторов была вычислена индуктивность  $/L$

$$L = N^2 \mu Am / lm, (3)$$

где

$N$  - число витков обмотки;  $\mu$  - проницаемость свободного пространства, результат для фиг.5 дает значение 7,465 мГн для  $N = 450$  витков.

Чтобы проверить результаты моделирования, электромагнитное устройство было построено. Воздушный зазор между полюсными наконечниками и оболочкой был заменен пластиковой трубкой, которая была приспособлена под обмотку и удерживала узел отцентрованным. Чтобы создать узел обмотки, на этой трубке был намотан провод с общим числом витков 450. В одном конце оболочки было выполнено небольшое отверстие (отверстие 104 на фиг.4) для вставления пробника на эффекте Холла с целью измерения плотности потока. Были использованы два редкоземельных магнита с остаточной индукцией от 0,85 до 0,93 тесла. Размеры магнитов составляли 20 мм в диаметре и 10 мм по длине. Максимальная измеренная плотность потока была около 500 Гаусс. Индуктивность, измеренная мостиком импедансов, составляла 7,75 мГн.

Экспериментальные результаты были очень близки к результатам, предсказанным методом ограниченного элемента, и обеспечили большее доверие к теоретической работе. Существенно, безопасный расходомер должен иметь низкий предел тока, чтобы удовлетворить требования безопасности, чтобы этот прибор не мог поджечь газ в воспламеняемой окружающей среде. Имеется много факторов, которые определяют величину подаваемого тока, таких как индуктивность обмотки, сопротивление, барьерное сопротивление, напряжение питания, характеристики проводов и т.д. В больших массовых расходомерах кориолисова типа, таких как те, что имеют трубопроводы потока диаметром три дюйма (76,2 мм), если трубы толстые и короткие (что необходимо для компактной конструкции), нужна большая сила привода. Это требует большой величины подаваемого тока, которая может нарушать условия безопасности. Единственный альтернативный способ сделать, чтобы измеритель требовал небольшую силу - это использовать длинные трубы с очень тонкими стенками. В этом случае конструкция прибора не будет компактной и не будет приемлема для высоких давлений. Следовательно, достоинство использования новой конструкции электромагнитного устройства очевидно, так как оно обеспечивает большую силу при небольшом токе и позволяет прибору быть компактным и прочным.

**Экранированный датчик.**

Узел экранированного датчика 48, который аналогичен устройству привода 46, изображен на фиг.6. Узел экранированного датчика подобно экранированному устройству привода рассчитан на взаимное преобразование электрической и механической энергии. Однако датчик в противоположность электромеханическому приводу эффективно преобразует механическую энергию (механическое движение) в электрическую энергию (электрические сигналы). Узел экранированного датчика состоит из ближнего конца 152, прикрепленного к трубопроводу потока 18 ближней крепежной скобой 154, и дальнего конца 156, прикрепленного к трубопроводу потока 20 дальней крепежной скобой 158.

Ближний конец 152 состоит из узла обмотки 162<sup>1</sup>, установленной внутри ближнего экрана 160 с помощью немагнитной заклепки 162. Экран выполнен из мягкой углеродистой стали и имеет форму чаши с цилиндрической стенкой 161 и плоским дном 163, прикрепленным к ближней крепежной скобе 154. Размеры ближнего экранирующего элемента определяются размерами и формой всего узла датчика. На дальнем конце узла обмотки находится выполненная как одно целое катушка 169 с намотанной на ней проволочной обмоткой, образующая электромагнитную обмотку 171. Узел обмотки может быть сконструирован из немагнитного материала, чтобы предотвратить образование вихревых токов. Узел обмотки определяет внутреннюю полость, имеющую в общем цилиндрические участки 179, 171 и усеченно-конические участки 172, 173, которые сужаются от цилиндрического участка 170 к отверстию 166, приспособленному под заклепку 162. В общем цилиндрическая внутренняя полость достаточно большая, чтобы позволить перемещение магнитного узла, но небольшая, чтобы обеспечить максимальное взаимодействие между узлом обмотки и магнитным полем, выходящим из магнитного узла.

Дальний конец 156 состоит из дальнего экранирующего элемента 176 и магнитного узла 178, расположенного внутри дальнего экрана. Экранирующий элемент 176 выполнен из мягкой углеродистой стали и имеет в общем форму чаши с цилиндрической стенкой 180 и плоским дном 182, которое прикреплено к дальней крепежной скобе 158. Размеры дальнего экрана определяются размерами и формой всего узла датчика. В центре экранирующего элемента 176 находится удлиненный магнитный узел 178 с магнитом 182 и полюсным наконечником 184. Магнитная ориентация лежит вдоль оси 186-186, определяемой узлом датчика.

Подобно рассмотренному выше экранированному устройству привода ближний и дальний экранирующие элементы экранированного датчика рассчитаны так, чтобы перемещаться друг относительно друга и минимизировать магнитный поток, выходящий из устройства и входящий в него. Это достигается приданием ближнему и дальнему экранирующим элементам цилиндрической формы, так что экранирующие элементы образуют

телескопическое устройство, в котором один из экранирующих элементов входит внутрь другого и перемещается там. В примере реализации, изображенном на фиг.6, элементы цилиндрические и дальний экранирующий элемент имеет меньший радиус, нежели ближний экранирующий элемент, и приспособлен входит внутрь ближнего экранирующего элемента и перемещаться вдоль оси. Экранирующие элементы совместно минимизируют утечку магнитного потока устройства посредством образования экранированного и закрытого магнитного узла. Отсутствие наружного магнитного потока позволяет близко располагать любое число устройства привода и датчиков без проблем взаимосвязи. Близкорасположенные приводы и датчики магнитно не влияют друг на друга.

Без отделения от духа и сути изобретения, которые устанавливаются в формуле изобретения, могут быть выполнены многие иные модификации, дополнения иллюстрируемых примеров и/или отдельных элементов из них.

**Формула изобретения:**

1. Экранированное электромеханическое устройство для использования в массовом расходомере кориолисова типа для взаимного преобразования механической и электрической энергии, содержащее ближний конец и дальний конец, узел обмотки, соединенный с указанным дальним концом, магнитный узел, соединенный с указанным ближним концом, приспособленный взаимодействовать с указанным узлом обмотки, и экранирующий узел, окружающий указанный узел обмотки и указанный магнитный узел, приспособленный уменьшать магнитное поле снаружи указанного экранирующего узла, причем указанный экранирующий узел включает ближний экран, прикрепленный к указанному ближнему концу, и дальний экран, прикрепленный к указанному дальнему концу, отличающееся тем, что один из указанных экранов приспособлен так, чтобы входить внутрь другого из указанных экранов и перемещаться относительно него.

2. Устройство по п.1, отличающееся тем, что указанный экранирующий узел содержит магнитопроницаемый материал.

3. Устройство по п.2, отличающееся тем, что указанный экранирующий узел содержит сталь.

4. Устройство по п. 1, отличающееся тем, что указанный магнитный узел содержит магнитный элемент.

5. Устройство по п.4, отличающееся тем, что магнитная ориентация указанного магнитного элемента, по существу, совпадает с осью, распространяющейся между указанными ближним и дальним концами.

6. Устройство по п. 4, отличающееся тем, что указанный магнитный узел содержит далее полюсный наконечник, расположенный смежно с указанным магнитным элементом.

7. Экранированное электромеханическое устройство для использования в массовом расходомере кориолисова типа для взаимного преобразования механической и электрической энергии, содержащее ближний конец и дальний конец, узел обмотки, соединенный с указанным дальним концом, магнитный узел, соединенный с указанным ближним концом, приспособленный

взаимодействовать с указанным узлом обмотки, и экранирующий узел, окружающий указанный узел обмотки и указанный магнитный узел, приспособленный уменьшать магнитное поле снаружи указанного экранирующего узла, отличающееся тем, что магнитный узел включает первый и второй магнитные элементы и полюсный наконечник, указанный полюсный наконечник расположен смежно с указанным первым магнитным элементом, а указанный второй магнитный элемент расположен смежно с указанным полюсным наконечником.

8. Устройство по п.7, отличающееся тем, что магнитная ориентация указанных первого и второго магнитных элементов, по существу, совпадает с осью, распространяющейся между указанным ближним и указанным дальним концами.

9. Устройство по п.8, отличающееся тем, что указанные магнитные ориентации указанных первого и второго магнитных элементов направлены в противоположные стороны.

10. Устройство по п.7, отличающееся тем, что первый и второй магнитные элементы и указанный полюсный наконечник расположены на указанной оси, распространяющейся между указанными ближним и дальним концами.

11. Устройство по п.10, отличающееся тем, что содержит далее концевые полюсные наконечники, размещенные смежно с каждым из указанных первым и вторым магнитными элементами, причем указанные полюсные наконечники расположены на указанной оси, распространяющейся между указанными ближним и дальним концами.

12. Устройство по п.11, отличающееся тем, что указанный полюсный наконечник и указанные концевые полюсные наконечники содержат высокопроницаемый материал.

13. Устройство по п.11, отличающееся тем, что высокопроницаемый материал является сталью.

14. Устройство по п.1, отличающееся тем, что указанный узел обмотки определяют внутреннюю полость, причем указанный магнитный узел расположен внутри указанной полости.

15. Устройство по п.14, отличающееся тем, что указанный узел обмотки, по существу, цилиндрический и магнитно взаимодействует с указанным магнитным узлом.

16. Массовый расходомер кориолисова типа, содержащий суппорт, две непрерывные параллельные петли из труб, прочно закрепленных у своих впускных и выпускных концов на суппорте, экранированное электромагнитное устройство привода, расположенное между указанных петель, действующее на указанные петли для их колебания возле соответствующих осей колебания, причем указанное экранированное устройство привода содержит ближний конец, прикрепленный к одной из указанных петель, и дальний конец, прикрепленный к другой из указанных петель, узел обмотки, соединенный с указанным дальним концом, магнитный узел, соединенный с указанным ближним концом, приспособленный взаимодействовать с указанным узлом обмотки, и экранирующий узел, окружающий указанный узел обмотки и указанный магнитный узел, приспособленный

уменьшать магнитное поле снаружи указанного экранирующего узла, причем указанный экранирующий узел включает ближний экран, прикрепленный к указанному ближнему концу, и дальний экран, прикрепленный к указанному дальнему концу, отличающийся тем, что один из указанных экранов приспособлен входить внутрь другого из указанных экранов и перемещаться относительно него, датчик, приспособленный для измерения величины сил Кориолиса, возникающих в результате того, что массовый поток на участке указанной петли подвергаются колебательному движению.

17. Расходомер по п.16, отличающийся тем, что указанный датчик содержит ближний конец и дальний конец, узел обмотки, соединенный с указанным дальним концом, магнитный узел, соединенный с указанным ближним концом, приспособленный взаимодействовать с указанным узлом обмотки, и экранирующий узел, окружающий указанный узел обмотки и указанный магнитный узел, приспособленный уменьшать магнитное поле снаружи указанного экранирующего узла.

18. Массовый расходомер кориолисова типа, содержащий суппорт, непрерывную петлю трубопровода, прочно прикрепленную у своих впускного и выпускного концов к суппорту, экранированное электромагнитное устройство привода, действующее на указанную петлю для ее колебания возле оси колебания, содержащее ближний конец и дальний конец, узел обмотки, соединенный с указанным дальним концом, магнитный узел, соединенный с указанным ближним концом, приспособленный взаимодействовать с указанным узлом обмотки, и экранирующий узел, окружающий указанный узел обмотки и указанный магнитный узел, приспособленный уменьшать магнитное поле снаружи указанного экранирующего узла, и датчик, приспособленный для измерения величины сил Кориолиса, возникающих в результате

того, что массовый поток на участке указанной петли подвергается колебательному движению, содержащий ближний конец и дальний конец, узел обмотки, соединенный с указанным дальним концом, магнитный узел, соединенный с указанным ближним концом, приспособленный взаимодействовать с указанным узлом обмотки, и экранирующий узел, окружающий указанный узел обмотки и указанный магнитный узел, приспособленный уменьшать магнитное поле снаружи указанного экранирующего узла, отличающийся тем, что указанное устройство привода и указанный датчик находятся на указанной петле рядом друг с другом.

19. Расходомер по п.18, отличающийся тем, что содержит далее вторую непрерывную петлю трубопровода, прочно прикрепленную у своих впускного и выпускного концов к суппорту.

20. Расходомер по п.19, отличающийся тем, что указанная петля и указанная вторая петля, по существу, параллельны.

21. Расходомер по п.19, отличающийся тем, что указанное устройство привода и датчик расположены между указанной петлей и указанной второй петлей.

22. Расходомер по п.21, отличающийся тем, что ближние концы указанных устройства

привода и датчика соединены с одной из указанных петель, а дальние концы указанных устройства привода и датчика соединены с другой из указанных петель.

23. Массовый расходомер кориолисова типа, содержащий суппорт, непрерывную петлю трубопровода, прочно прикрепленную у своих впускного и выпускного концов к суппорту, экранированное устройство привода, действующее на указанную петлю для ее колебания возле оси колебания, содержащее ближний конец и дальний конец, узел обмотки, соединенный с указанным дальним концом, магнитный узел, соединенный с указанным ближним концом, приспособленный взаимодействовать с указанным узлом обмотки, и экранирующий узел, окружающий указанный узел обмотки и указанный магнитный узел, приспособленный уменьшать магнитное поле снаружи указанного экранирующего узла, и датчик, приспособленный для измерения величины сил Кориолиса, возникающих в результате того, что массовый поток на участке указанной петли подвергаются колебательному движению, содержащий ближний конец и дальний конец, узел обмотки, соединенный с указанным дальним концом, магнитный узел, соединенный с указанным ближним концом, приспособленный взаимодействовать с указанным узлом обмотки, и экранирующий узел, окружающий узел, окружающий указанный узел обмотки и указанный магнитный узел, приспособленный уменьшать магнитное поле снаружи указанного экранирующего узла, отличающийся тем, что содержит далее вторую непрерывную петлю трубопровода, прочно прикрепленную у своих впускного и выпускного концов к суппорту, указанные устройство привода и датчик расположены между указанной петлей и указанной второй петлей, ближние концы указанных устройства привода и датчика соединены с одной из указанных петель, а

дальние концы указанных устройства привода и датчика соединены с другой из указанных петель, указанные устройство привода и датчик расположены рядом друг с другом.

24. Массовый расходомер кориолисова типа, содержащий суппорт, непрерывную петлю трубопровода, прочно прикрепленную у своих впускного и выпускного концов к суппорту, экранированное электромагнитное устройство привода, действующее на указанную петлю для колебания указанной петли возле оси колебания, содержащее ближний и дальний концы, узел обмотки, соединенный с дальним концом, магнитный узел, соединенный с указанным ближним концом, приспособленный взаимодействовать с указанным узлом обмотки, и экранирующий узел, окружающий указанный узел обмотки и указанный магнитный узел, приспособленный уменьшать магнитное поле снаружи указанного экранирующего узла, и датчик, приспособленный для измерения величины сил Кориолиса, возникающих в результате того, что массовый поток на участке указанной петли подвергается колебательному движению, содержащий ближний конец и дальний конец, узел обмотки, соединенный с указанным дальним концом, магнитный узел, соединенный с указанным ближним концом, приспособленный взаимодействовать с указанным узлом обмотки, и экранирующий узел, окружающий указанный узел обмотки и указанный магнитный узел, приспособленный уменьшать магнитное поле снаружи указанного экранирующего узла, отличающийся тем, что содержит далее второе устройство привода и второй датчик, причем указанные устройства привода приводят в действие указанную петлю в различных точках вдоль петли возле оси колебания.

25. Расходомер по п.24, отличающийся тем, что участок указанной петли между указанной парой устройств привода представляет, по существу, прямую секцию.

Р У 2 1 0 7 2 6 3 С 1



Фиг.2

Р У 2 1 0 7 2 6 3 С 1

**PCT**WORLD INTELLECTUAL PROPERTY ORGANIZATION  
International Bureau

## INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| (51) International Patent Classification 5 :<br><b>G01F 1/84</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A1                                                                                                                                                                                                                                                                                                                                | (11) International Publication Number: <b>WO 91/08448</b><br>(43) International Publication Date: 13 June 1991 (13.06.91) |
| (21) International Application Number: PCT/US90/07115<br>(22) International Filing Date: 5 December 1990 (05.12.90)<br><br>(30) Priority data:<br>446,310 5 December 1989 (05.12.89) US<br><br>(71) Applicant: THE FOXBORO COMPANY [US/US]; 33 Commercial Street, Foxboro, MA 02035 (US).<br><br>(72) Inventors: HUSSAIN, Yousif, A.; 5 Coulsdon Rise, Coulsdon, Surrey CR3 2SE (GB). MACHACEK, Milos, J.; 10 Chartfield Road, Reigate, Surrey RH2 7J2 (GB).<br><br>(74) Agent: HENNESSEY, Gilbert, H.; Fish & Richardson, One Financial Center, Suite 2500, Boston, MA 02111-2658 (US). | (81) Designated States: AT (European patent), BE (European patent), CA, CH (European patent), DE (European patent), DK (European patent), ES (European patent), FR (European patent), GB (European patent), GR (European patent), IT (European patent), JP, LU (European patent), NL (European patent), SE (European patent), SU. | Published<br><i>With international search report.</i>                                                                     |

**(54) Title:** ELECTROMAGNETIC DRIVER AND SENSOR**(57) Abstract**

A shielded electromechanical device for use in a Coriolis type mass flowmeter for interconverting mechanical energy and electrical energy has a coil assembly (82) connected to its distal end, and a magnetic assembly (72) connected to its proximal end. The magnetic assembly is adapted to interact with the coil assembly. A shield assembly (70, 84) surrounds the coil and magnetic assemblies and is adapted to reduce the magnetic field exterior to said shield assembly.



**FOR THE PURPOSES OF INFORMATION ONLY**

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

|    |                          |    |                                          |    |                          |
|----|--------------------------|----|------------------------------------------|----|--------------------------|
| AT | Austria                  | FI | Finland                                  | ML | Mali                     |
| AU | Australia                | FR | France                                   | MN | Mongolia                 |
| BB | Barbados                 | GA | Gabon                                    | MR | Mauritania               |
| BE | Belgium                  | GB | United Kingdom                           | MW | Malawi                   |
| BF | Burkina Faso             | GN | Guinea                                   | NL | Netherlands              |
| BG | Bulgaria                 | GR | Greece                                   | NO | Norway                   |
| BJ | Benin                    | HU | Hungary                                  | PL | Poland                   |
| BR | Brazil                   | IT | Italy                                    | RO | Romania                  |
| CA | Canada                   | JP | Japan                                    | SD | Sudan                    |
| CF | Central African Republic | KP | Democratic People's Republic<br>of Korea | SE | Sweden                   |
| CG | Congo                    | KR | Republic of Korea                        | SN | Senegal                  |
| CH | Switzerland              | LI | Liechtenstein                            | SU | Soviet Union             |
| CI | Côte d'Ivoire            | LK | Sri Lanka                                | TD | Chad                     |
| CM | Cameroon                 | LU | Luxembourg                               | TG | Togo                     |
| DE | Germany                  | MC | Monaco                                   | US | United States of America |
| DK | Denmark                  | MG | Madagascar                               |    |                          |

ELECTROMAGNETIC DRIVER AND SENSORBackground of the Invention

The present invention relates to electromagnetic drivers for oscillating-conduit Coriolis-type mass flowmeters.

In response to the need to measure the quantity of material being delivered through pipelines, numerous types of flowmeters have evolved from a variety of design principles. One of the more widely used types of flowmeters is based on volumetric flow. Volumetric flowmeters are at best inaccurate in determining the quantity of material delivered, where the density of the material varies with temperature of feedstock or where the fluid being pumped through the pipe line is polyphase such as a slurry or where the fluid is non-Newtonian such as mayonnaise and other food products. In addition, chemical reactions, which are in effect mass reactions where proportions of reactants are critical, may be poorly served by volumetric flowmeters.

A mass flowmeter, on the other hand, is an instrument that provides a direct indication of the quantity of mass, as opposed to volume, of material being transferred through the pipeline. Various methods for measuring mass flow in a moving stream require application of a force to the stream and detecting and measuring some consequence of the applied force.

One class of mass measuring flowmeters is based on the well-known Coriolis effect. An exemplary Coriolis-type mass flowmeter is described in a co-pending U.S. patent application Serial No. 923,847 filed October 28, 1986 by Mattar et al., entitled "Coriolis-Type Mass Flowmeter" assigned to the assignee of the present invention and incorporated herein by reference in its entirety.

- 2 -

Many Coriolis-type mass flowmeters induce a Coriolis force by oscillating the pipe sinusoidally about a pivot axis orthogonal to the length of the pipe. In such a mass flowmeter, Coriolis forces are exhibited in the radial movement of mass in a rotating conduit. Material flowing through the pipe becomes a radially travelling mass which, therefore, experiences an acceleration. The Coriolis reaction force experienced by the travelling fluid mass is transferred to the pipe itself and is manifested as a deflection or offset of the pipe in the direction of the Coriolis force vector in the plane of rotation.

A major difficulty in these oscillatory systems is that the Coriolis force and, therefore, the resulting deflection is relatively small compared not only to the drive force but even to extraneous vibrations. On the other hand, an oscillatory system can employ the inherent bending resiliency of the pipe itself as a hinge or pivot point for oscillation that obviates the need for separate rotary or flexible joints, which improves mechanical reliability and durability. Moreover, an oscillatory system offers the possibility of using the resonant frequency of vibration of the tube itself to reduce the drive energy needed.

Energy is supplied to the tubes by a driving mechanism that oscillates the tubes by applying a periodic force. A typical type of driving mechanism is exemplified by an electromechanical driver, which exhibits motion proportional to a voltage applied across its coil. In an oscillating flowmeter the applied voltage is periodic and, generally, is sinusoidal. As mentioned above, the period of the input voltage, and hence, the driving force, is chosen to match the resonant frequency of the tube to reduce the energy needed to sustain the oscillation.

- 3 -

The Coriolis force resulting from the oscillation and the mass flow within the tube is measured by sensors also disposed on the flowmeter tube. In some cases it is desirable to place the sensors in close proximity to the driving mechanism. For example, in some systems this arrangement results in a more accurate determination of the Coriolis force exhibited by the flowmeter tube.

Summary of the Invention

The general purpose of the invention is to improve the performance of electromagnetic drivers and sensors. A more specific goal is to eliminate magnetic cross-talk between a driver and a closely disposed sensor to improve the sensitivity of the driver/sensor combination.

These and other objects of the invention are achieved by various combinations of features disclosed herein. The claims appended hereto should be consulted for the scope of the invention.

According to the invention, a shielded electromechanical device for use in a Coriolis type mass flowmeter for interconverting mechanical energy and electrical energy includes a proximal end and a distal end, is adapted to move relative to the proximal end. A coil assembly is connected to the distal end, and a magnet assembly is connected to the proximal end. The coil assembly defines an interior cavity. A magnetic assembly comprises at least one magnetic member connected to the proximal end and has at least one magnetic member with a magnetic orientation aligned substantially with an axis connecting the proximal and distal ends. The magnetic assembly is disposed in the interior cavity and is adapted to interact magnetically with said coil assembly. A shield assembly surrounds the coil assembly, and the magnetic

- 4 -

assembly is adapted to reduce the magnetic field exterior to said shield assembly.

In another embodiment of the invention, the shielded electromechanical device is adapted to convert mechanical energy into electrical energy. The mechanical energy is applied to the device by movement of the magnetic assembly relative to the coil assembly, and the coil assembly produces electrical energy in response to the mechanical movement.

10 In another embodiment, the shielded electromechanical device is adapted to convert electrical energy into mechanical energy. The electrical energy is applied to the coil assembly, and the magnetic assembly moves relative to the coil assembly in response to the 15 electrical energy.

20 In another embodiment, the shield assembly further includes a proximal shield and a distal shield; the proximal shield is attached to the proximal end, and the distal shield is attached to the distal end of the electromechanical device.

In a preferred embodiment and as another aspect of the invention, one of the shields is adapted to fit within and move relative to the other of the shields.

25 In other embodiments, the shield assembly is made of a magnetically permeable material, such as steel.

In other embodiments, the magnetic assembly consists of a magnetic member. The magnetic orientation of the magnetic member is substantially aligned with an axis extending between the proximal and distal ends.

30 In a further embodiment, the magnetic assembly further includes a pole piece disposed adjacent said first magnetic member.

- 5 -

In other embodiments, the magnetic assembly further includes a second magnetic member. The magnetic orientation of the second magnetic member is substantially aligned with said axis extending between said proximal and distal ends.

5 In a related aspect, the magnetic orientations of said first and second magnetic members are oriented in opposite directions; the magnetic assembly further includes a pole piece disposed between the first and said second magnetic members. The pole piece is made from a high  
10 permeability material.

15 In other related aspects, the coil assembly defines an interior cavity with the magnetic assembly is disposed within the cavity. The coil assembly is substantially cylindrical and interacts magnetically with the magnetic assembly.

20 In another aspect of the invention, a Coriolis type mass flowmeter includes a support and a continuous loop of conduit solidly mounted at its inlet and outlet ends to the support. A shielded electromagnetic driver acts on the loop and oscillates the loop about an oscillation axis. A sensor  
25 is adapted to measure the magnitude of the Coriolis forces arising as a result of mass flow in the portion of the loop undergoing oscillatory motion. The shielded electromagnetic driver includes a proximal and distal end. A coil assembly is connected to the distal end, and a magnetic assembly is connected to the proximal end and is adapted to interact with the coil assembly. A shielded assembly surrounds the coil assembly and the magnetic assembly. The shield assembly is adapted to reduce the magnetic field exterior to  
30 the shield assembly.

In another embodiment, the sensor includes proximal and distal ends. A coil assembly is connected to the distal end and a magnetic assembly is connected to the proximal end

- 6 -

and is adapted to interact with the coil assembly. A shield assembly surrounds the coil and magnetic assemblies and is adapted to reduce the magnetic field exterior to the shield assembly.

5 In further embodiments, the driver and sensor are juxtaposed on the loop. The flowmeter may include a second continuous loop of conduit solidly mounted at its inlet and outlet ends to the support. The first and second continuous loops of conduit are substantially parallel. The driver and  
10 sensor are disposed between the two loops.

In another embodiment of the invention, the flowmeter includes a second driver and a second sensor. The drivers drive the loop at different point along the loop about the oscillation axis.

15 In yet another embodiment of the invention, the portion of the loop between the pair of drivers is a substantially straight section.

Description of the Preferred Embodiments

We first briefly describe the drawings.

20 FIG. 1 is a perspective view of a Coriolis type mass flowmeter.

FIG. 2 is side schematic view of the apparatus of Fig. 1.

25 FIG. 3 is a schematic representation of three modes of motion of the apparatus of Figs. 1 and 2.

FIG. 4 is a sectional view of an electromechanical driver according to the invention.

- 7 -

FIG. 5 is a schematic representation of an alternative embodiment of the electromechanical driver of Fig. 4.

FIG. 6 is a sectional view of an electromechanical sensor according to the invention.

#### Mechanical Design

A specific tubular configuration is described herein in a perpendicular orientation with respect to the direction of the process flow, i.e., the direction of flow in a straight section of pipeline in which the material is to be inserted. The invention is equally applicable to in-line and other tubular configurations. The implementations illustrated herein are designed for flow meters for a variety of products including petroleum based fuels, for example. The flowmeter and electromechanical driver described herein are applicable, of course, to a wide variety of other specific designs for the same or different applications.

Fig. 1 illustrates a double loop, dual drive/detector system with mainly torsional loading of the tube ends where they are connected to a single rigid central manifold connected in line with the process flow. The same embodiment is shown in Figs. 1 and 2.

The mass flowmeter 10 of Figs. 1 and 2 is designed to be inserted in a pipeline (not shown) which has had a small section removed or reserved to make room for the meter. The pipeline is equipped with opposing spaced flanges (not shown) which mate with mounting flanges 12 that are welded to short sections of pipe 14 connected to a central manifold block 16 supporting the two parallel planar loops 18 and 20. The configuration and shape of loops 18

- 8 -

and 20 are essentially identical. Thus, the description of the shape of loop 18 holds true for loop 20 as well, except where noted. Manifold block 16 is preferably a casting in the general shape of a solid rectangular block with a flat 5 horizontal upper surface or top 21 and integral pipe sections 14. Various portions of the manifold block may be removed to reduce weight. The ends of loop 18 comprise straight, preferably vertical, parallel inlet and outlet sections or legs 22 and 24 securely affixed, e.g., by butt 10 welding, to the top of the manifold surface 21 in close proximity to each other. The base of loop 18 is a long straight section 26 passing beneath the bottom face of manifold block 16. The long straight section 26 at the base of the loop 18 is connected to upright legs 22 and 24 by 15 respective diagonal sections 30 and 32. The four junctions between the various straight segments of the loop 28 are rounded by large radii turns to afford as little resistance to flow as possible. In particular, upright legs 22 and 24 are connected to the respective diagonal segments 30 and 32 20 by means of apex turns 34 and 36. The ends of the long straight base section 26 are connected to the respective ends of the diagonal segments 30 and 32 by lower rounded turns 38 and 40.

The parallel inlet/outlet sections 22, 24 of both 25 loops 18 and 20 pass through correspondingly apertured isolation plates or node plates 42 and 44 which are parallel to upper manifold surface 21 and spaced from the manifold surface by a predetermined distance. Welded to the tube, the node plates serve as stress isolation plates and define 30 a common mechanical ground for each loop.

Electromechanical driver and detector assemblies are attached between loops 18 and 20 on each of the lower rounded turns 38 and 40. Each assembly consists of an

- 9 -

electromagnetic driver 46 and sensor 48 disposed closely to each other, between the tubes 18 and 20. The electrical signals are transferred from driver and detection circuitry (not shown) to the drivers and sensors through wire leads 5 50-53 which run along the exterior of the tubes, through apertured isolation plates 42 and 44, and are connected to an electrical socket 54.

By energizing the driver pairs 46 on opposite ends of the tubes with current of equal magnitude but opposite sign (180 degrees out-of-phase), straight section 26 is caused to rotate about its co-planar perpendicular bisector 56 which intersects the tube at point c as shown in Fig. 2. The drive rotation is thus preferably in a horizontal plane about point c. The perpendicular bisectors for the straight sections of both loops preferably lie in a common plane of symmetry for both loops.

Repeatedly reversing (e.g., controlling sinusoidally) the energizing current of the drivers causes straight section 26 of loop 18 to execute an oscillatory motion in the horizontal plane about line 56-56. The motion of each straight section 26 sweeps out a bow tie shape. The entire lateral excursion of the loop at the lower rounded turns 38 and 40 is small, on the order of 1/16 of an inch for a two foot long straight section 26 for a one inch pipe. This displacement is coupled to the upright parallel legs 22 and 24 as torsional deflections about the axes of the legs 22 and 24 beginning at the node plate 44. Complementary oscillatory motion is induced in the straight section of the loop 20.

The motions of the straight sections of loops 18 and 20 are shown in three modes in views a, b, and c in Fig. 3. In the drive mode as shown in view 3b, each conduit loop oscillates around a point c. The two loops rotate

- 10 -

synchronously but in the opposite sense, i.e., while loop 18 rotates clockwise, loop 20 undergoes counterclockwise rotation. That is, the loops are driven 180° out-of-phase about their respective points c. Consequently, respective 5 ends such as A and C as shown in Fig. 3 periodically come together and go apart. This type of drive motion induces Coriolis effects in the directions shown in view 3a. The Coriolis mode motion thus tends to move the whole planes of the loops 18 and 20. The Coriolis effect is greatest when 10 the two straight sections 26 are parallel as shown in view 3a, because the sinusoidally varying angular velocity is then at its maximum. Because the Coriolis mode motion of each loop is in the opposite direction, the straight sections 26 move slightly toward (or away) from each other 15 as shown in view 3a. A common mode motion, undesirable in this instrument, would be one which deflected the loops in the same direction as shown in view 3c. This type of motion might be produced by an axial wave in the pipeline itself in the embodiment of Fig. 1 because the loops are oriented 20 perpendicular to the pipeline.

The sensors 48 detect the oscillatory motion of the straight sections of the tubes and output a signal that is representative of the oscillatory drive force modulated with the Coriolis reaction force exhibited by the fluid 25 undergoing acceleration. Because of the close proximity of driver 46 and sensor 48, special precautions must be taken to prevent magnetic interlock from occurring. That is, the magnetic field from driver 46 may induce a voltage within the sensor 48 to give a spurious signal. It is preferred 30 that a shielded driver and sensor be used to prevent magnetic interlock from occurring.

- 11 -

Shielded Driver

With reference to Fig. 4, a driver assembly 46 of a preferred embodiment is shown. The shielded driver is designed to interconvert electrical and mechanical energy.

5 Specifically, the driver efficiently converts electrical energy (i.e., electrical signals) into mechanical energy (that is, mechanical motion). Driver assembly 46 consists of a proximal end 62 attached to flow conduit 18 by a proximal mounting bracket 64 and a distal end 66 attached to flow conduit 20 by a distal mounting bracket 68.

10

Proximal end 62 consists of a magnetic assembly 72 disposed within a proximal shield 70. The proximal shield is made of soft carbon steel and is cup-shaped having a cylindrical wall 71 and flat bottom 73 that is attached to proximal mounting bracket 64. The dimensions of the proximal shield are determined by the size and shape of the overall driver assembly. The proximal shield 70 acts as a magnetic path return, helping to contain the magnetic flux within the magnetic assembly. Disposed in the center of shield 70 is elongated magnet assembly 72 having a pair of magnets 75 and 76 separated by a central pole piece 78. The magnetic orientations of the magnets lie along the axis 80-80 defined by the driver assembly and point in opposite directions. That is, the magnetic orientations of magnets 75 and 76 are antiparallel. In the embodiment shown in Fig. 4, the magnets are oriented with the north poles of each magnet facing central pole piece 78. It will be appreciated by those skilled in the art that other orientations may be used, such as the south poles of each magnet facing the central pole piece. The pole piece may be made of any magnetically susceptible material, as is known in the art. A preferred material is soft carbon steel. This arrangement of magnets 75, 76 and central pole piece 78 concentrates the

- 12 -

magnetic flux to within a small region proximate the pole piece for maximum interaction with a coil assembly 82.

Distal end 66 of the driver assembly 60 consists of a coil assembly 82 disposed within a distal shield 84. The 5 coil assembly comprises a coil carrier 86 which, on its distal end, is attached to distal shield 84 which is then attached to distal mounting bracket 68 by a nonmagnetic rivet 106 for connection to flow conduit 20. On the proximal end of the coil carrier 86, a bobbin 94 is 10 integrally formed. The coil carrier can be made from a nonconducting material to minimized the formation of eddy currents on the carrier itself. The bobbin 94 has wire wound 96 therearound to form an electromagnetic coil 98. The coil and coil carrier define an interior cavity 100 having a generally cylindrical section 102 and a 15 frustoconical distal portion 104 that tapers from cylindrical section 102 to accommodate rivet 106. The generally cylindrical interior cavity is of a size sufficient to allow free movement of the magnet assembly and 20 to allow maximum interaction between the coil assembly and the magnetic field projected from the magnet assembly.

The proximal and distal shields are designed to move relative to each other and to minimize magnetic flux escape from the device. This is accomplished by forming the 25 proximal and distal shields in a generally cylindrical overlapping shape such that one of the members can fit and move freely within the other. That is, the shields together form a telescoping arrangement wherein one of the shields fits within the other. In the embodiment shown in Fig. 4, 30 the shielding members are cylindrical, and the proximal member has a smaller radius than the distal member and is adapted to fit within and move relative to the distal end along the axis 80-80 defined by the cylindrical shape of the

- 13 -

shields. Together the shields minimize the leakage of magnetic flux from and into the device by providing a shielded and enclosed magnetic assembly. A cut (not shown) in the cylindrical surface of the distal shield can be used 5 to prevent eddy current formation, which can increase magnetic flux. The absence of an external magnetic flux allows close placement of any number of drivers and sensors without the problem of magnetic interlock; the proximate drivers and sensors will not magnetically influence each 10 other. Another benefit of this arrangement is the increase in linearity that results from the multiple magnet assembly. The movement of the proximal and distal ends relative to each other due to the driving current in the coil will not significantly alter the permanent magnetic field and 15 consequently linear driving forces are achieved.

With reference to Fig. 5, another embodiment of the electromagnetic driver is shown. The driver 110 consists of an elongated soft carbon steel shield 112 having a cylindrical cross section perpendicular to the member's axis 114-114. The shield has shoulder portions 116 and 118 that decrease the open area at each end of the shield and provide 20 an opening through which an elongated magnetic member 120 moves. Located on the internal surface 122 of the shield is an annular ridge 124 projecting toward the center of the 25 shield. An electromechanical coil 126 is mounted upon the annular ridge 124. Disposed centrally within the shield 112 is elongated magnetic member 120. Magnetic member 120 consists of two magnets 128 and 130 and three pole pieces 132, 134, and 136. Disposed on opposite sides of central 30 pole piece 132 are two magnets 128 and 130 that have their magnetic orientations antiparallel, with respect to each other, and parallel to the axis 114-114 of the magnetic member. In the embodiment of Fig. 5, the north poles of

- 14 -

each magnet 128 and 130 face each other. However, if desired, the south poles of each magnet may face each other. On the ends of each magnet 128, 130 opposite pole piece 122, are attached end pole pieces 134 and 136 respectively.

- 5 Together pole pieces 132, 134, and 136 and magnets 128 and 130 form an elongated magnet assembly which exhibits high efficiency and linearity.

#### Electromagnetic Design

The design of the electromagnet device is based on  
10 the fact that maximum force should be provided from the driver with a minimum amount of current supplied to the coil. The equation governing the force is:

$$F = N \cdot I \cdot l \cdot B \quad (1)$$

where  $F$  = force (Newton),  
15  $N$  = number of coil turns,  
 $l$  = coil average length per turn (meter),  
 $I$  = coil current (amp), and  
 $B$  = radial flux density (tesla).

In order to maximize  $B$  and still maintain the  
20 linearity of the force, two magnets should be used, connected back to back, with the pole pieces as shown in Figs. 4 and 5. In these configurations the flux will be forced to merge radially in the region occupied by the coil. The air gaps between the pole pieces and the shield will not  
25 change while the permanent magnet is moving, which reduces the non-linearity of the design.

The embodiment of Fig. 5 consists of a soft carbon steel shell, 3 pole pieces, 2 permanent magnets and a coil. The aim of this embodiment is to focus the radial flux at

- 15 -

the coil region and thus achieve maximum driving force for a given coil current.

A finite element analysis program was used to calculate the coil inductance as well as the average radial flux in the coil area. This model was then used to optimize the electromagnet design to achieve maximum force for a set amount of current. In the numerical model, the value used for the permeability of the soft carbon steel was 100, and that for the permanent magnet and air were 1. The remanence of the permanent magnet used was 0.9 tesla. The result of the calculation gave an average flux density of 477.2 millitesla. The coil inductance was also calculated by simulating the coil as a strip of permanent magnet located in the center of the assembly. The finite element program was run again to calculate the flux distribution due to the simulated coil. A regression program was then run to obtain a mathematical relation between the flux and the radial distance. A geometrical relation of the form

$$y = k x^n \quad (2)$$

was used, where  $y$  is the flux,  $x$  is the distance, and  $k$  and  $n$  are constants to be fit by the regression program.

From equation 2 the average flux was calculated and the effective radial distance was determined. This effective distance was used to estimate the effective annular area of the coil flux ( $A_m$ ) as well as the effective path length of the coil flux ( $l_m$ ). From these two factors, the inductance ( $L$ ) was then calculated

$$L = N^2 \mu A_m / l_m \quad (3)$$

- 16 -

where  $N$  is the number of turns in the coil, and  $\mu$  is the free space permeability. The result for Fig. 5 gave a value of 7.465 mH for  $N = 450$  turns.

In order to verify the modelling results, an electromagnetic device was built. The air gap between the pole pieces and the shell was replaced by a plastic tube that accommodated the coil and kept the assembly centered. A magnet wire was wound on this tube to make the assembly coil with a total of 450 turns. A small hole (i.e., Fig. 4, hole 109) was made in one end of the shell for inserting a hall effect probe for measuring the flux density. Two rare earth magnets were used with remanences of 0.85 to 0.93 tesla. The magnet dimensions were 20 mm in diameter and 10 mm in length. The maximum measure flux density was about 500 gauss. The inductance was 7.75 mH measured with an impedance bridge instrument. The experimental results were very close to those predicted by the finite element method and provided more confidence in the theoretical work.

An intrinsically safe mass flowmeter should have a low current limit in order to satisfy safety requirements so that this device will not be capable of igniting gas in a flammable environment. There are many factors that determine the value of the supplied current, such as coil inductance, resistance, barrier resistance, supply voltage, cabling characteristics, etc. In large Coriolis mass flowmeters, such as those having three inch diameter flow conduits, a large driving force is required if the tubes are thick and short (necessary for a compact design). This requires a high supplied current value which could violate the safety specification. The only alternative way to make the meter require a smaller force is to use long tubes with very thin walls. In this case the meter design will not be compact and not suitable for high pressure. Hence, the

- 17 -

advantage of using the new design of the electromagnet device is apparent since it provides a large force with a small current and allows for construction of a relatively compact and sturdy device.

5                           Shielded Sensor

A shielded sensor assembly 48, which is similar to driver 46, is shown in Fig. 6. The shielded sensor assembly, like the shielded driver, is designed to interconvert electrical and mechanical energy. The sensor, however, efficiently converts mechanical energy (mechanical motion) into electrical energy (electrical signals), as opposed to the electromechanical driver. The shielded sensor assembly consists of a proximal end 152 attached to flow conduit 18 by a proximal mounting bracket 154, and a distal end 156 attached to flow conduit 20 by a distal mounting bracket 158.

Proximal end 152 consists of a coil assembly 162 positioned within a proximal shield 160 by a non-magnetic rivet 162. The shield is made of soft carbon steel and is cup shaped having a cylindrical wall 161 and a flat bottom 163 attached to proximal mounting bracket 154. The dimensions of the proximal shielding member is determined by the size and shaped of the overall sensor assembly. On the distal end of the coil assembly is an integral bobbin 169 having wire wound therearound to form an electromagnetic coil 171. The coil assembly can be constructed from a non-magnetic material to prevent the formation of eddy currents. The coil assembly defines an interior cavity having generally cylindrical portions 170, 171 and frustoconical portions 172, 173, which taper from cylindrical portion 170 to opening 166 to accommodate rivet 162. The generally cylindrical interior cavity is large enough to allow free

- 18 -

movement of the magnet assembly, but small to allow maximum interaction between the coil assembly and the magnetic field projected from a magnet assembly.

Distal end 156 consists of a distal shielding member 176 and a magnetic assembly 178 disposed within the proximal shield. Shielding member 176 is made of soft carbon steel and is generally cup shaped having a cylindrical wall 180 and a flat bottom 182, which is attached to the distal mounting bracket 158. The dimensions of the distal shield are determined by the size and shape of the overall sensor assembly. Disposed in the center of shielding member 176 is an elongated magnet assembly 178 having a magnet 182 and pole piece 184. The magnetic orientation of the magnet lies along the axis 186-186 defined by the sensor assembly.

Like that of the shielded driver discussed above, the proximal and distal shielding members of the shielded sensor are designed to move relative to each other and to minimize magnetic flux escape out of and magnetic flux entrance into the device. This is accomplished by forming the proximal and distal shielding members in cylindrical shapes such that the shielding members together form a telescoping arrangement wherein one of the shielding members fits and moves within the other. In the embodiment shown in Fig. 6, the members are cylindrical and the distal shielding member has a smaller radius than the proximal shielding member and is adapted to fit within and move relative to the proximal shielding member along the axis. Together the shielding members minimize the leakage of magnetic flux of the device by providing a shielded and enclosed magnetic assembly. The absence of an external magnetic flux allows close placement of any number of drivers and sensors without the problem of interlock; the proximate drivers and sensors will not magnetically influence each other.

- 19 -

Many other modifications, additions and/or subtractions from the illustrated embodiments may be made without departing from the spirit or scope of the invention, which is indicated by the appended claim or equivalents

5 thereto.

What is claimed is:

- 20 -

1       1. A shielded electromechanical device for use in a  
2 Coriolis type mass flowmeter for interconverting mechanical  
3 energy and electrical energy comprising:  
4           a proximal end and a distal end;  
5           a coil assembly connected to said distal end;  
6           a magnetic assembly connected to said proximal end  
7 adapted to interact with said coil assembly; and  
8           a shield assembly surrounding said coil assembly and  
9 said magnetic assembly, said shield assembly adapted to  
10 reduce the magnetic field exterior to said shield assembly.

1       2. The shielded electromechanical device of claim 1  
2 wherein said device converts electrical energy into  
3 mechanical energy.

1       3. The shielded electromechanical device of claim 2  
2 wherein electrical energy is applied to said coil assembly,  
3 said magnetic assembly moving relative to said coil assembly  
4 in response to said electrical energy.

1       4. The shielded electromechanical device of claim 1  
2 wherein said device converts mechanical energy into  
3 electrical energy.

1       5. The shielded electromechanical device of claim 4  
2 wherein mechanical energy is applied to said device by  
3 movement of said magnetic assembly relative to said coil  
4 assembly, said coil assembly producing electrical energy in  
5 response to said mechanical movement.

1       6. The shielded electromechanical device of claim 1  
2 wherein said shield assembly comprises a proximal shield and

- 21 -

3 a distal shield, said proximal shield being attached to said  
4 proximal end, and said distal shield attached to said distal  
5 end.

1           7. The shielded electromechanical device of claim 2  
2 wherein one of said shields is adapted to fit within and  
3 move relative to the other of said shields.

1           8. The shielded electromechanical device of claim 1  
2 wherein said shield assembly comprises magnetically  
3 permeable material.

1           9. The shielded electromechanical device of claim 8  
2 wherein said shield assemble comprises steel.

1           10. The shielded electromechanical device of claim  
2 1 wherein said magnetic assembly comprises a magnetic  
3 member.

1           11. The shielded electromechanical device of claim  
2 10 wherein the magnetic orientation of said magnetic member  
3 is aligned substantially with an axis extending between said  
4 proximal and distal ends.

1           12. The shielded electromechanical device of claim  
2 10 wherein said magnetic assembly further comprises a pole  
3 piece disposed adjacent said first magnetic member.

1           13. The shielded electromechanical device of claim  
2 12 wherein said magnetic assembly further comprises a second  
3 magnetic member disposed adjacent said pole piece.

- 22 -

1        14. The shielded electromechanical device of claim  
2        13 wherein the magnetic orientation of said magnetic and  
3        said second magnetic members being aligned substantially  
4        with an axis extending between said proximal and distal  
5        ends.

1        15. The shielded electromechanical device of claim  
2        14 wherein said magnetic orientations of said magnetic and  
3        second magnetic members are oriented in opposite directions.

1        16. The shielded electromechanical device of claim  
2        13 wherein said magnetic and second magnetic members and  
3        said pole piece are disposed on said axis extending between  
4        said proximal and distal ends.

1        17. The shielded electromechanical device of claim  
2        16 further comprising end pole pieces disposed adjacent each  
3        of said magnetic and second magnetic members, said end pole  
4        pieces disposed on said axis extending between said proximal  
5        and said distal ends.

1        18. The shielded electromechanical device of claim  
2        17 wherein said pole piece and said end pole pieces comprise  
3        a high permeability material.

1        19. The shielded electromechanical device of claim  
2        17 high permeability material is steel.

1        20. The electromechanical device of claim 1 wherein  
2        said coil assembly defines an interior cavity, said magnetic  
3        assembly disposed within said cavity.

- 23 -

1           21. The shielded electromechanical device of claim  
2         20 wherein said coil assembly is substantially cylindrical,  
3         interact magnetically with said magnetic assembly.

1           22. A Coriolis type mass flow meter comprising:  
2           a support;  
3           a continuous loop of conduit solidly mounted at its  
4         inlet and outlets ends to the support;  
5           an shielded electromagnetic driver acting on said  
6         loop for oscillating said loop about an oscillation axis,  
7         said shielded electromagnetic driver comprising  
8           a. a proximal end and a distal end,  
9           b. a coil assembly connected to said distal end,  
10          c. a magnetic assembly connected to said proximal  
11         end adapted to interact with said coil assembly, and  
12           d. a shield assembly surrounding said coil assembly  
13         and said magnetic assembly, said shield assembly adapted to  
14         reduce the magnetic field exterior to said shield assembly;  
15         and  
16           a sensor adapted to measure the magnitude of  
17         Coriolis forces arising as a result of mass flow in the  
18         portion of said loop undergoing oscillatory motion.

1           23. The Coriolis type mass flow meter of claim 22  
2         wherein said sensor comprises:  
3           a proximal end and a distal end;  
4           a coil assembly connected to said distal end;  
5           a magnetic assembly connected to said proximal end  
6         adapted to interact with said coil assembly; and  
7           a shield assembly surrounding said coil assembly and  
8         said magnetic assembly, said shield assembly adapted to  
9         reduce the magnetic field exterior to said shield assembly.

- 24 -

1        24. The Coriolis type mass flowmeter of claim 23  
2 wherein said driver and said sensor are juxtaposed on said  
3 loop.

1        25. The Coriolis type mass flowmeter of claim 23  
2 further comprising a second continuous loop of conduit  
3 solidly mounted at its inlet and outlet ends to the support.

1        26. The Coriolis type mass flowmeter of claim 25  
2 wherein said loop and said second loop are substantially  
3 parallel.

1        27. The Coriolis type mass flowmeter of claim 25  
2 wherein said driver and sensor are disposed between said  
3 loop and said second loop.

1        28. The Coriolis type mass flowmeter of claim 27  
2 wherein the proximal ends of said driver and sensor are  
3 connected to one of said loops and the distal ends of said  
4 driver and sensor are connected to the other of said loops.

1        29. The Coriolis type mass flowmeter of claim 28  
2 wherein said driver and sensor are juxtaposed.

1        30. The Coriolis type mass flowmeter of claim 23  
2 further comprising a second driver and a second sensor, said  
3 drivers driving said loop at different points along the loop  
4 about said oscillation axis.

1        31. The Coriolis type mass flowmeter of claim 30  
2 wherein the portion of said loop between said pair of  
3 drivers is a substantially straight section.

1 / 5

**SUBSTITUTE SHEET**

2 / 5



FIG. 2

SUBSTITUTE SHEET



FIG.3a

FIG.3b

FIG.3c





FIG. 4

SUBSTITUTE SHEET

5 / 5



FIG. 6

# INTERNATIONAL SEARCH REPORT

International Application No.

PCT/US90/07115

## I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) <sup>3</sup>

According to International Patent Classification (IPC) or to both National Classification and IPC

IPC(5) G01F 1/84

US CL. 73/861.53

## II. FIELDS SEARCHED

Minimum Documentation Searched <sup>4</sup>

| Classification System | Classification Symbols |
|-----------------------|------------------------|
| US                    | 73/861.37, 861.38      |

Documentation Searched other than Minimum Documentation  
to the Extent that such Documents are Included in the Fields Searched <sup>5</sup>

## III. DOCUMENTS CONSIDERED TO BE RELEVANT <sup>14</sup>

| Category * | Citation of Document, <sup>10</sup> with indication, where appropriate, of the relevant passages <sup>11</sup> | Relevant to Claim No. <sup>14</sup> |
|------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------|
| X          | US, A, 4,738,144 (CAGE) 19 APRIL 1988<br>See fig. 2 elements 48,50                                             | 1-3,8-12,20,22<br>4-6,23,25-28      |
| Y          | US, A, 2,865,201 (ROTH) 23 DECEMBER 1958<br>See fig. 11                                                        | 4-6,23,25-28                        |

### \* Special categories of cited documents: <sup>10</sup>

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

## IV. CERTIFICATION

Date of the Actual Completion of the International Search <sup>2</sup>

09 JANUARY 1991

Date of Mailing of this International Search Report <sup>2</sup>

**15 MAR 1991**

International Searching Authority <sup>1</sup>

ISA/US

Signature of Authorized Officer  
INTERNATIONAL DIVISION

HERBERT GOLDSTEIN *Nguyen*