1.3 Kryteria zbieżności szeregów

Kryterium porównawcze

Bardzo wygodnym kryterium zbieżności szeregów jest kryterium porównawcze. Jeśli wyrazy szeregów $\sum a_n$, $\sum b_n$ spełniają warunki $0 < a_n < b_n$ dla dowolnego $n \in \mathbb{N}$, to

- 1. Jeśli $\sum b_n$ jest zbieżny, to $\sum a_n$ jest zbieżny.
- 2. Jeśli $\sum a_n$ jest rozbieżny, to $\sum b_n$ jest rozbieżny.

W praktyce często porównujemy szereg z szeregiem $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ dla którego mamy

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} = \begin{cases} \alpha > 1 & \text{zbieżny} \\ \alpha \le 1 & \text{rozbieżny} \end{cases}$$

Przykład 1.16. Zbadać zbieżność szeregu

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}.$$

Rozwiązanie. Ponieważ

$$0 \le \frac{1}{n^2 + 1} \le \frac{1}{n^2}$$

oraz $\sum \frac{1}{n^2}$ jest zbieżny ($\alpha=2$) to $\sum_{n=1}^{\infty} \frac{1}{n^2+1}$ jest zbieżny.

Przykład 1.17. Zbadać zbieżność szeregu

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}+1}.$$

Rozwiązanie. Ponieważ

$$0 \leq \frac{1}{2\sqrt{n}} = \frac{1}{\sqrt{n} + \sqrt{n}} \leq \frac{1}{\sqrt{n} + 1}$$

oraz $\sum \frac{1}{\sqrt{n}}$ jest rozbieżny $(\alpha = \frac{1}{2})$ to $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}}$ jest rozbieżny.

Kryterium d'Alamberta

Rozpatrzmy szereg $\sum_{n=1}^{\infty} a_n$, $a_n > 0$ oraz obliczmy granicę

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = g$$

wówczas

gdy
$$\begin{cases} g>1 & \text{to szereg jest rozbieżny} \\ g=1 & \text{to kryterium nie rozstrzyga o zbieżności szeregu} \\ g<1 & \text{to szereg jest zbieżny} \end{cases}$$

Przykład 1.18. Zbadać zbieżność szeregu

$$\sum_{n=1}^{\infty} \frac{3^n}{2n}.$$

Rozwiązanie. Mamy

$$a_n = \frac{3^n}{2n}$$
 $a_{n+1} = \frac{3^{n+1}}{2(n+1)}$

oraz

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{3^{n+1}}{2(n+1)} \frac{2n}{3^n} = \lim_{n \to \infty} \frac{3n}{n+1} = 3 > 1$$

Z kryterium d'Alamberta wynika zatem, że szereg jest rozbieżny.

Przykład 1.19. Zbadać zbieżność szeregu

$$\sum_{n=1}^{\infty} \frac{n!}{n^n}.$$

Rozwiązanie. Mamy

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(n+1)!}{(n+1)^{n+1}} \frac{n^n}{n!} = \lim_{n \to \infty} \frac{n!(n+1)}{(n+1)^n(n+1)} \frac{n^n}{n!}$$

$$= \lim_{n \to \infty} \frac{n^n}{(n+1)^n} = \lim_{n \to \infty} \frac{1}{\frac{(n+1)^n}{n^n}} = \lim_{n \to \infty} \frac{1}{(1+\frac{1}{n})^n} = \frac{1}{e} < 1.$$

Z kryterium d'Alamberta wynika zatem, że szereg jest zbieżny.

Kryterium Cauchy'ego (pierwiastkowe)

Rozpatrzmy szereg $\sum_{n=1}^{\infty} a_n$, $a_n \geq 0$ oraz obliczmy granicę

$$\lim_{n \to \infty} \sqrt[n]{a_n} = g$$

wówczas

gdy
$$\begin{cases} g>1 & \text{to szereg jest rozbieżny} \\ g=1 & \text{to kryterium nie rozstrzyga o zbieżności szeregu} \\ g<1 & \text{to szereg jest zbieżny} \end{cases}$$

Przykład 1.20. Zbadać zbieżność szeregu

$$\sum_{n=1}^{\infty} \frac{2n^3}{3^n}.$$

Rozwiązanie. Stosujemy kryterium Cauchy'ego

$$\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \sqrt[n]{\frac{2n^3}{3^n}} = \lim_{n \to \infty} \frac{\sqrt[n]{2} \sqrt[n]{n^3}}{\sqrt[n]{3^n}} = \lim_{n \to \infty} \frac{\sqrt[n]{2} \sqrt[n]{n^3}}{3} = \frac{1}{3} < 1$$

szereg jest zatem zbieżny.

Przykład 1.21. Zbadamy zbieżność szeregu

$$\sum_{n=1}^{\infty} \frac{2^n 3^{n+1}}{5^{n+2}}.$$

Rozwiązanie. Stosujemy kryterium Cauchy'ego

$$\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \sqrt[n]{\frac{2^n 3^{n+1}}{5^{n+2}}} = \lim_{n \to \infty} \sqrt[n]{\frac{2^n 3^n 3}{5^n 5^2}} = \lim_{n \to \infty} \frac{2 \cdot 3 \sqrt[n]{3}}{5 \sqrt[n]{5}^2} = \frac{6}{5} > 1$$

szereg jest zatem rozbieżny.

Szeregi naprzemienne

Szeregiem naprzemiennym nazywamy szereg postaci

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n = a_1 - a_2 + a_3 - a_4 + \dots$$

gdzie $a_n>0$ dla każdego $n\in\mathbb{N}.$ Zbieżność szeregów naprzemiennych rozstrzyga następujace

Kryterium Leibniza

Rozpatrzmy szereg naprzemienny

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n$$

Jeżeli ciąg $\{a_n\}$ jest malejący oraz $\lim_{n\to\infty}a_n=0$ to szereg jest zbieżny.

Przykład 1.22. Zbadać zbieżność szeregu

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}.$$

Rozwiązanie. Ciąg $a_n=\frac{1}{n}$ jest malejący oraz $\lim_{n\to\infty}1/n=0$. Stąd oraz z kryterium Leibniza wynika, że szereg jest zbieżny.

Szereg

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$$

nazywamy szeregiem anharmonicznym.

Bezwzględna i warunkowa zbieżność szeregów

Z następującej definicji bezwzględnej zbieżności często korzystamy przy badaniu zbieżności szeregów.

Definicja 1.23. Szereg $\sum_{n=1}^{\infty} a_n$ nazywamy *bezwzględnie zbieżnym* jeżeli zbieżny jest szereg $\sum_{n=1}^{\infty} |a_n|$.

Twierdzenie 1.24. Jeżeli szereg jest bezwzględnie zbieżny to jest zbieżny (wynikanie w drugą stronę nie jest na ogół prawdziwe).

Definicja 1.25. Jeżeli szereg jest zbieżny ale nie jest zbieżny bezwzględnie to mówimy, że szereg jest *zbieżny warunkowo*.

Przykład 1.26. Jak pokazaliśmy przed chwilą szereg

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$$

jest zbieżny. Nie jest jednak zbieżny bezwzględnie gdyż szereg

$$\sum_{n=1}^{\infty} |a_n| = \sum_{n=1}^{\infty} \left| (-1)^{n+1} \frac{1}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n}$$

jest rozbieżny.

Przykład 1.27. Szereg $\sum_{n=1}^{\infty} (-1)^{n+1} 1/n^2$ jest zbieżny. Ponadto jest to szereg zbieżny bezwzględnie gdyż szereg

$$\sum_{n=1}^{\infty} |a_n| = \sum_{n=1}^{\infty} \left| (-1)^{n+1} \frac{1}{n^2} \right| = \sum_{n=1}^{\infty} \frac{1}{n^2}$$

jest zbieżny.