LETTERKENNY INSTITUTE OF TECHNOLOGY

ASSIGNMENT COVER SHEET

Lecturer's Name: Dr James Connolly		
Assessment Title:	Natural Language Processing CA 2 Submission 2	
Work to be submitted to: Blackboard		
Date for submission of work: <u>15-04-2020</u>		
Place and time for submitting work: <u>Letterkenny (Home), 00:00</u>		
To be completed by the Student		
Student's Name:	Pathan Faisal Khan	
Class:	Big Data and Al Group A	
Subject/Module: Artificial Intelligence		
Word Count (where applicable):		

Notes

Date: <u>15-04-2020</u>

I confirm that the work submitted has been produced solely through my own efforts.

Student's signature: Faisal

Penalties: The total marks available for an assessment is reduced by 15% for work submitted up to one week late. The total marks available are reduced by 30% for work up to two weeks late. Assessment work received more than two weeks late will receive a mark of zero. [Incidents of alleged plagiarism and cheating are dealt with in accordance with the Institute's Assessment Regulations.]

Plagiarism: Presenting the ideas etc. of someone else without proper acknowledgement (see section L1 paragraph 8).

Cheating: The use of unauthorised material in a test, exam etc., unauthorised access to test matter, unauthorised collusion, dishonest behaviour in respect of assessments, and deliberate plagiarism (see section L1 paragraph 8).

Continuous Assessment: For students repeating an examination, marks awarded for continuous assessment, shall normally be carried forward from the original examination to the repeat examination.

CA 2 Submission

Pathan Faisal Khan (L00151142), BDA & AI Group A- AI 2 (NLP)

Q 1. Text Classification

We found out using GridSearch that best parameters for LDA is {n_components- 10, perplexity- 0.9}. We used CountVectorizer as it works on Probabilistic model which is also the underlying logic of LDA. We are considering that a word should come in atleast 2 documents (min_df) and should not come in more than 90% of the documents (max_df). We are also removing stop words in this process. With this configuration, we got 50,470 words from 2,00,000 documents/rows/questions. We then did NMF with 10 components/topics and default 0.7 perplexity. We used TfidfVectorizer which gives better result as compared to CountVectorizer as Tfidf takes in account words in all documents. We are considering that a word should come in atleast 2 documents (min_df) and should not come in more than 90% of the documents (max_df). We are also removing stop words in this process. With this configuration, we got 27,884 words from 2,00,000 documents/rows/questions.

Q 2. Supervised Learning

We have selected NMF classification data as it more accurately classified topics as compared to LDA. We found that the probability of words in a few topics were quite low based on the observations of the graphs.

We got the following accuracies:

Algorithm	Accuracy (%)
Logistic Regression	87%
Navie Bayes	71%
Random Forest	90%
Support Vector Classifier	21%

We have noticed that Random Forest has the highest accuracy with 90%.