### Emmanuel Daucé & Laurent Perrinet



1st International Workshop on Active Inference (IWAI\*2020), 14/9/2020



presentations.



presentations.





promine







promine.

- 1. Motivation
- 2. Methods
- 3. Results
- 4. Conclusion

- 1. Motivation
- 2. Methods
- 3. Results
- 4. Conclusion

# Computer vision

#### COMPUTER VISION



(Hinton et al, 2012)

### Human vision

#### COMPUTER VISION

# car; 1,600 dog: 0.903 dog: 0.904 cod; 0.904



(Girshick et al, 2015)

#### HUMAN VISION





(Yarbus, 1967)





(Hinton et al, 2012)







(Cajal, 1888)

### Attention vs. Scene Understanding

# Bayesian surprise (Information Gain)

 $E_v[\log P(Y|x, u) - \log P(Y)]$ 

(Itti & Baldi, 2009)



BOTTOM-UP

Visual attention Saliency Maps





Itti and Koch (2000) Kümmerer et al (2015)

#### TOP-DOWN

#### Active Inference Recurrent Attention



Najemnik, J., & Geisler, W. S. (2005) Butko & Movellan (2010) Fu et al (2017)

- 1. Motivation
- 2. Methods
- 3. Results
- 4. Conclusion

- 1. Motivation
- 2. Methods
- 3. Results
- 4. Conclusion

# Principles for central and peripheric vision



#### Information Gain:



























### Methods: What/Where separation



#### Approximate Information Gain:

$$E_{y}[\log P(Y|x, u) - \log P(Y)]$$

$$= \log P(\hat{y}|x, u) - \log P(\hat{y})$$

$$= Future Central Accuracy (after saccade)$$

$$= Central Accuracy (after saccade)$$

### What/where pathways in visual processing Mishkin, M., Ungerleider, L. G., & Macko, K. A. (1983).



### Methods: Computational Graph



### Methods: What



#### Shift-dependent Accuracy Map



### Methods: Where



- 1. Motivation
- 2. Methods
- 3. Results
- 4. Conclusion

- 1. Motivation
- 2. Methods
- 3. Results
- 4. Conclusion

### Results: success





### Results: failure



### Effect of eccentricity



### Saccades distribution





- 1. Motivation
- 2. Methods
- 3. Results
- 4. Conclusion

- 1. Motivation
- 2. Methods
- 3. Results
- 4. Conclusion

### Main results:

- A new interpretation of Information Gain in visuo-motor action selection:
  - Center-surround interpretation
  - An effective decoding scheme with strong bandwidth reduction
  - Information-gain based selection of action (actor/critic)
- A sub-linear object detection for image processing:
  - A full log-polar processing pathway (from early vision toward action selection)
  - Ready for up-scaling
- The combination of accuracy predition and accuracy-seeking policies can be formally recast in an active inference framework (see paper)

### Emmanuel Daucé & Laurent Perrinet



1st International Workshop on Active Inference (IWAI\*2020), 14/9/2020



https://laurentperrinet.github.io/talk/2020-09-14-iwai