Enumerating The Rationals

Wout Elsinghorst, Pepijn Kokke

June 27th, 2013

Enumerating The Rationals

- Naive approach
- Reduced rationals
- Stern-Brocot Tree
- Calkin-Wilf Tree
- Deforested Calkin-Wilf

CoLists and CoTrees

- CoData
 - Col ists

```
Cons : (Q, CoList) -> CoList Q
```

CoTrees

```
Node : (CoTree Q, Q, CoTree Q) -> CoTree Q
unfold f s =
  let (x, v, y) = f s
  in Node (unfold f x, v, unfold f y)
```

Naive Approach

- step : Q -> (Q, Q, Q) step $\frac{n}{d} = (\frac{n+1}{d}, \frac{n}{d}, \frac{n}{d+1})$
- tree : CoTree Q tree = unfold step $\frac{1}{1}$

Reduced rationals

• [Bool]: Finite bit strings, gcd execution traces

```
igcd : Q -> (N, [Bool])
igcd p/q =
  if m < n then step True $ igcd (m, m - n) else
  if m > n them step False $ igcd (m - n, n) else m
    where step b (d, bs) = (d, b : bs)
```

- pgcd : Q -> [Bool]
- ungcd : (N, [Bool]) -> Q

Reduced rationals (Cont'd)

- Enumerate all rationals:
 - Enumerate all bit finite bit strings (without dupes)
 - 2 Map λ p . ungcd (1, p)
 - One

Stern-Brocot Tree

- efficient *trie* representation of finite bit strings
- search tree property for every finite pruning

Stern-Brocot Tree (Cont'd)

Fig. 1. The first few levels of the Stern-Brocot tree.

- step : (Q, Q) -> ((Q, Q), Q, (Q, Q))step $(\frac{a}{b}, \frac{c}{d})$ = let $m = \frac{a+c}{b+d}$ in $(\frac{a}{b}, m)$, m, $(m, \frac{c}{d})$
- tree : CoTree Q tree = unfold step $(\frac{0}{1}, \frac{1}{0})$

Things to prove

- $\forall q \in Q$: ungcd (igcd q) = q
 - the process really is reversible
- $\forall p, q \in Q$: (pgcd p = pgcd q) \Rightarrow ($p \sim q$)
 - bit string assignment is injective when identifying equivalent fractions
- $\forall p \in [Bool]$: pgcd (ungcd (1, p)) = p
 - every bit string corresponds to at least one fraction
- $\forall p \in [Bool]$: pgcd (lookup p tree) = p
 - every fraction in the tree is at the correct node

Problems with Stern-Brocot Tree

• Unfolding requires the "pseudo-rationals" $\frac{0}{1}$ and $\frac{1}{0}$ as input;

Problems with Stern-Brocot Tree

- Unfolding requires the "pseudo-rationals" $\frac{0}{1}$ and $\frac{1}{0}$ as input;
- Relation between Q-reduction and path in the Stern-Brocot tree requires both to use equivalent implementations of gcd

Conclusions

Calkin-Wilf Tree

Fig. 2. The first few levels of the Calkin-Wilf tree.

- step : Q -> (Q, Q, Q) step $\frac{m}{n} = (\frac{m}{m+n}, \frac{m}{n}, \frac{m+n}{n})$
- tree : Cotree Q tree = unfold step $\frac{1}{1}$

