Context: confidence boost implication mining

Task: to identify which closures provide implications having (closure-based) confidence boost above threshold b.

February 19, 2025

Preliminary definitions:

$$mxsup_{\tau}(X) = \max(\{s(Z) \mid Z = \overline{Z}, Z \supset X, s(Z) \ge \tau\} \cup \{0\})$$

$$mnsub_{\tau}(X) = \min(\{s(Y) \mid Y = \overline{Y}, Y \subset X, s(Y) \ge \tau\} \cup \{\infty\})$$

In the presence of a support threshold $\tau,$ the *support ratio* of an association rule $X \to Y$ is

$$\sigma_{\tau}(X \to Y) = \frac{s(XY)}{\max\{s(Z) \mid XY \subset Z, s(Z) > \tau\}}$$

We see that this measure does not depend on the antecedent X but just on XY, therefore we may speak of the support ratio of a set Z and understand the support ratio of any of the rules $X \to Y$ with XY = Z. We also note that

$$\sigma_{\tau}(Z) = \frac{s(Z)}{mxsup_{\tau}(Z)}.$$

1 Confidence Boost

The *confidence boost* of an association rule $X \to Y$ is

$$\beta(X \to Y) = \frac{c(X \to Y)}{\max\{c(X' \to Y') \mid (X \neq X' \lor XY \neq X'Y'), X' \subseteq X, Y \backslash X \subseteq X'Y'\}}.$$

It is clear that for any rule $X \to Y$ with $X \cap Y = Z \neq \emptyset$ we have $s(X \to Y) = s(X \to Y \setminus Z)$, $c(X \to Y) = c(X \to Y \setminus Z)$ and $\beta(X \to Y) = \beta(X \to Y \setminus Z)$, so we do not regard $X \to Y$ and $X \to Y \setminus Z$ as being distinct rules (in particular, if $X \cap Y = \emptyset$, then $X \to XY$ is the same rule as $X \to Y$). In the sequel our rules will always have their antecedents and consequents disjoint. Therefore, condition $Y \setminus X \subseteq X'Y'$ can be written equivalently $Y \subseteq Y'$.

Lemma 1. If $XY \neq \overline{XY}$ or X is not minimal generator, $\beta(X \to Y) = 1$.

Proof. Indeed, if XY is not closed, take X' = X and $Y' = \overline{XY} - X \supseteq Y$. It is easy to see that $c(X' \to Y') = c(X \to Y)$.

Moreover, if X is not a minimal generator, take $X' \subset X$ such that s(X') = s(X), and $Y' = XY - X' \supseteq Y$. Clearly, $c(X' \to Y') = c(X \to Y)$.

Proposition 1. Consider the rule $X \to Y$ such that $XY = \overline{XY}$, X is a minimal generator for XY and $s(X) = s(XY) > \tau$. Then

$$\beta(X \to Y) = \begin{cases} \frac{1}{\max\{\frac{mxsup_{\tau}(\overline{X})}{s(X)}, \max\{\frac{s(X'Y)}{s(X')}|X' \subset X\}\}}, & \text{if } \overline{Y} \subset \overline{X} \\ \frac{1}{\max\{\frac{mxsup_{\tau}(\overline{X})}{s(X)}, \frac{s(X)}{mnsub_{\tau}(X)}\}}, & \text{if } \overline{Y} = \overline{X} \end{cases}$$

Proof. Since s(X) = s(XY) it is clear that $\overline{X} = \overline{XY}$ (hence, $c(X \to Y) = 1$) and $\overline{Y} \subseteq \overline{X}$. Let us take $X' \to Y'$ to be a distinct rule of maximum confidence that satisfies $X' \subseteq X$ and $Y \subseteq Y'$. Now, if $\overline{Y} = \overline{X}$ then $\overline{X'Y} = \overline{X}$, and one may identify two cases according to whether X' is strictly included in X or not.

- If $X' \subset X$ then $c(X' \to Y') = \frac{s(X'Y')}{s(X')} \le \frac{s(X'Y)}{s(X')} = \frac{s(X)}{mnsub_{\tau}(X)}$. Moreover, this upper bound is reached for Y' = Y.
- If X' = X then $XY \neq X'Y'$ translates to $XY \subset X'Y'$, and therefore, $c(X' \to Y') = \frac{s(X'Y')}{s(X')} = \frac{mxsup_{\tau}(XY)}{s(X)} = \frac{mxsup_{\tau}(\overline{XY})}{s(X)} = \frac{mxsup_{\tau}(\overline{X})}{s(X)}$.

On the other hand, if $\overline{Y} \subset \overline{X}$ then we can argue as above to conclude that $c(X' \to Y') = \max\{\frac{mxsup_{\tau}(\overline{X})}{s(X)}, \max\{c(X' \to Y) \mid X' \subset X\}\}.$

Note that $\beta(X \to \emptyset) = 1$ for all non-empty closed sets X that are their own minimal generators (take $X' \subset X$ and $Y' = \emptyset$).

Next, we show that the set $\mathcal{B}_b = \{X \to Y \mid X \cap Y = \emptyset, XY = \overline{XY}, X \text{ is a minimal generator, } s(X) = s(XY) > \tau, \beta(X \to Y) \geq b\}$ is a GD base for all those implications that pass the support threshold τ and have their confidence boost value greater than or equal to b (b > 1).

Indeed, let $X \to Y$ be an arbitrary implication with $s(X \to Y) > \tau$ and $\beta(X \to Y) \ge b$. We can assume without loss of generality that $X \cap Y = \emptyset$. By Lemma 1, $XY = \overline{XY}$ and X is a minimal generator (otherwise, $\beta(X \to Y) = 1 < b$, a contradiction). Hence, $X \to Y$ is in \mathcal{B}_b .

On the other hand, none of the rules in \mathcal{B}_b can be obtained from other distinct rule(s) in \mathcal{B}_b by applying one or more times the Armstrong rules:

- augmentation: $\frac{X \to Y}{XX' \to Y}$ Assume \mathcal{B}_b contains the rules $X \to Y$ and $XX' \to Y$, with $X' \neq \emptyset$. Since $X \to Y$ is a rule (of confidence 1) that participates in computing $\beta(XX' \to Y)$ we get $\beta(XX' \to Y) = 1$, a contradiction.
- transitivity: $\frac{X \to Y, Y \to Z}{X \to Z}$ Assume \mathcal{B}_b contains the following distinct rules: $X \to Y, Y \to Z, X \to Z$. Since XY and XZ are closed sets and $c(X \to Y) = c(X \to Z) = 1$, we

get XY = XZ. So, Y = Z (recall that X, Y and Z are pairwise disjoint). It follows $Y = Z = \emptyset$ and therefore the rule $X \to Z$ is the same as $X \to Y$, a contradiction.

• reflexivity: $\frac{\emptyset \to \emptyset}{X \to \emptyset}$ Assume \mathcal{B}_b contains both $\emptyset \to \emptyset$ and $X \to \emptyset$ for some $X \neq \emptyset$. This means X is a minimal generator for $\overline{X} = X$. Since $X \neq \emptyset$, we can consider an arbitrary $X' \subset X$. The rule $X' \to \emptyset$ is a rule of confidence 1 that participates in computing $\beta(X \to \emptyset)$, so $\beta(X \to \emptyset) = 1$, a contradiction.

The following algorithm outputs the set \mathcal{B}_b .

```
1: set of rules G initially empty
 2: for all Z closed with s(Z) > \tau do
       if \sigma_{\tau}(Z) \geq b then
 3:
          for X in mingens(Z) do
 4:
            Y = Z \backslash X
 5:
            if \overline{Y} = Z and mnsub_{\tau}(X)/s(X) \geq b then
 6:
               report X \to Z as output
 7:
               add X \to Y to G
 8:
            end if
 9:
            if \overline{Y} \subset Z and \min\{s(X')/s(X' \to Y) \mid X' \subset X\} \ge b then
10:
               report X \to Z as output
11:
               add X \to Y to G
12:
            end if
13:
          end for
14:
       end if
15:
16: end for
```

Note that for the case in which $\overline{Y} \subset Z$ we also have

$$\max\{c(X' \to Y) \mid X' \subset X\} \geq \max\{\frac{s(Z)}{s(Z \backslash \overline{Y})}, \frac{s(Y)}{s(\emptyset)}\}$$

(this is easy to see: take $X'=Z\backslash \overline{Y}$ and $X'=\emptyset$, respectively). Unfortunately, it does not help much.

2 Closure Based Confidence Boost

We say that two rules $X_1 \to Y_1$ and $X_2 \to Y_2$ are equivalent and we denote it by $(X_1 \to Y_1) \equiv (X_2 \to Y_2)$ if $\overline{X_1} = \overline{X_2}$ and $\overline{X_1Y_1} = \overline{X_2Y_2}$.

The closure-based confidence boost of an association rule $X \to Y$ is

$$\overline{\beta}(X \to Y) = \frac{c(X \to Y)}{\max\{c(X' \to Y') \mid (\overline{X} \neq \overline{X'} \vee \overline{XY} \neq \overline{X'Y'}), X' \subseteq \overline{X}, Y \backslash X \subseteq \overline{X'Y'}\}}.$$

Clearly, if X and Y are disjoint sets then condition $Y \setminus X \subseteq \overline{X'Y'}$ can be written equivalently $Y \subseteq \overline{X'Y'}$. In the sequel all the rules have the consequent disjoint from the antecedent unless we specify it otherwise.

Proposition 2. Consider the rule $X \to Y$ with $s(X) = s(XY) > \tau$. Then

$$\overline{\beta}(X \to Y) = \begin{cases} 1, & \text{if } \overline{Y} \subset \frac{\lambda}{\overline{X}} \\ \frac{1}{\max\{\frac{mxsup_{\tau}(\overline{X})}{s(X)}, \frac{s(X)}{mnsub_{\tau}(\overline{X})}\}}, & \text{if } \overline{Y} = \overline{X} \end{cases}$$

Moreover, $\overline{\beta}(X \to Y) > 1$ if and only if $\overline{Y} = \overline{X}$.

Proof. Since s(X) = s(XY) it is clear that $\overline{X} = \overline{XY}$ (hence, $c(X \to Y) = 1$) and $\overline{Y} \subseteq \overline{X}$. Now, if $\overline{Y} \subset \overline{X}$ then one can take X' = Y and $Y' = \emptyset$. It is easy to check that the rule $X' \to Y'$ is not equivalent with $X \to Y$ and it satisfies $X' \subseteq \overline{X}$ and $Y \subseteq \overline{X'Y'}$. Since $c(X' \to Y') = 1$ we get $\overline{\beta}(X \to Y) = 1$.

On the other hand, if $\overline{Y} = \overline{X}$, let us take $X' \to Y'$ to be a non-equivalent rule of maximum confidence that satisfies $X' \subseteq \overline{X}$ and $Y \subseteq \overline{X'Y'}$ (or, equivalently, that $\overline{X'} \subseteq \overline{X}$ and $\overline{Y} \subseteq \overline{X'Y'}$). We distinguish two cases according to whether $\overline{X'}$ is strictly included in \overline{X} or not.

- If $\overline{X'} \subset \overline{X}$ then $c(X' \to Y') = \frac{s(\overline{X'Y'})}{s(\overline{X'})} \leq \frac{s(Y)}{mnsub_{\tau}(\overline{X})} = \frac{s(X)}{mnsub_{\tau}(\overline{X})}$. This maximum value is reached for $Y' = \overline{Y} X'$, so $c(X' \to Y') = \frac{s(X)}{mnsub_{\tau}(\overline{X})}$.
- If $\overline{X'} = \overline{X}$ then $\overline{XY} \neq \overline{X'Y'}$ translates to $\overline{XY} \subset \overline{X'Y'}$, and therefore, $c(X' \to Y') = \frac{s(\overline{X'Y'})}{s(\overline{X'})} = \frac{mxsup_{\tau}(\overline{XY})}{s(\overline{X'})} = \frac{mxsup_{\tau}(\overline{X})}{s(X)}$.

Corollary 1. In the conditions of Proposition 1, $\beta(X \to Y) \ge \overline{\beta}(X \to Y)$.

Proof. If
$$\overline{Y} \subset \overline{X}$$
, $\overline{\beta}(X \to Y) = 1$ and the inequality trivially holds. Otherwise, $\overline{\beta}(X \to Y) = \frac{1}{\max\{\frac{mzsup_{\tau}(\overline{X})}{s(X)}, \frac{s(X)}{mnsub_{\tau}(\overline{X})}\}} \leq \frac{1}{\max\{\frac{mzsup_{\tau}(\overline{X})}{s(X)}, \frac{s(X)}{mnsub_{\tau}(X)}\}} = \beta(X \to Y)$ because $mnsub_{\tau}(\overline{X}) \leq mnsub_{\tau}(X)$.

Next, we show that the set $\overline{\mathcal{B}}_b = \{X \to Y \mid X \cap Y = \emptyset, XY = \overline{XY}, X \text{ is a minimal generator, } s(X) = s(XY) > \tau, \overline{\beta}(X \to Y) \ge b\}$ is a GD base for all implications of closure based confidence boost greater than or equal to b (b > 1) that pass the support threshold τ .

Lemma 2. For all implications $X \to Y$ with $\overline{\beta}(X \to Y) \ge b$ and $s(X) > \tau$ it holds that either the rule itself or an equivalent one is in $\overline{\mathcal{B}}_b$.

Proof. Let $X \to Y$ be a rule with $s(X) = s(XY) > \tau$ and $\overline{\beta}(X \to Y) \ge b$. We show that there exists an equivalent rule $X' \to Y'$ in $\overline{\mathcal{B}}_b$. Indeed, let $X' \subseteq X$ be a minimal generator for \overline{XY} and $Y' = \overline{XY} \setminus X'$.

• since $\overline{X'} \subseteq \overline{X} \subseteq \overline{XY}$ and s(X') = s(XY) we get $\overline{X'} = \overline{X}$.

- $X'Y' = \overline{XY}$ implies $\overline{X'Y'} = \overline{XY} = X'Y'$
- $X' \cap Y' = \emptyset$

So, $X \to Y$ and $X' \to Y'$ are two equivalent rules and $X' \to Y'$ is in $\overline{\mathcal{B}}_b$. \square

Lemma 3. Let $X \to Y$ be a rule with $X \cap Y = \emptyset$ and Z = XY. Then $X \to Y$ is in $\overline{\mathcal{B}}_b$ if and only if $Z = \overline{Z}$, X is a minimal generator, $s(Y) = s(X) = s(Z) > \tau$, $\sigma_{\tau}(Z) \geq b$ and $mnsub_{\tau}(Z)/s(Z) \geq b$.

Proof. The "only if" direction is immediate: s(X) = s(XY) implies $\overline{Y} \subseteq \overline{X}$, and since $\overline{\beta}(X \to Y) \ge b > 1$ we get $\overline{Y} = \overline{X}$ (see Proposition 2). Moreover, $\max\{\frac{mxsup_{\tau}(\overline{X})}{s(X)}, \frac{s(X)}{mnsub_{\tau}(\overline{X})}\} \le \frac{1}{b}$, so $\sigma_{\tau}(Z) \ge b$ and $mnsub_{\tau}(Z)/s(X) \ge b$ (recall that $Z = XY = \overline{XY} = \overline{X}$).

For the "if" direction, we only have to argue that $\overline{\beta}(X \to Y)$ is indeed not smaller than b. But since s(Y) = s(X) = s(XY) we get $\overline{Y} = \overline{X} = \overline{XY} = Z$, so $\overline{\beta}(X \to Y) = \frac{1}{\max\{\frac{mssup_{\tau}(\overline{X})}{s(X)}, \frac{s(X)}{mnsub_{\tau}(\overline{X})}\}}$ (see Proposition 2). We can therefore conclude that $\overline{\beta}(X \to Y) \geq b$.

Lemma 4. None of the rules in $\overline{\mathcal{B}}_b$ can be obtained from other distinct rule(s) in $\overline{\mathcal{B}}_b$ by applying one or more times the Armstrong rules:

Proof. • augmentation: $\frac{X \to Y}{XX' \to Y}$ If $\overline{X} = \overline{XX'}$, the case is solved (X is minimal generator). If $\overline{X} \subset \overline{XX'}$, the rule $X \to Y$ is a rule of confidence 1 that participates in the computation of $\overline{\beta}(XX' \to Y)$, so $\overline{\beta}(XX' \to Y) = 1$.

- transitivity: $\frac{X \to Y, Y \to Z}{X \to Z}$ The same as in the case of confidence boost: Since X is minimal generator for both \overline{XY} and \overline{XZ} (XY and XZ are closed sets), it follows XY = XZ and hence Y = Z (recall that X, Y and Z are pairwise disjoint). We get $Y = Z = \emptyset$ and therefore the rule $X \to Z$ is the same as $X \to Y$.
- reflexivity: $\frac{\emptyset \to \emptyset}{X \to \emptyset}$ Assume $X \to \emptyset$ is in $\overline{\mathcal{B}}_b$ for some $X \neq \emptyset$. Then X is minimal generator for \overline{X} and $X = \overline{X}$. Since $\emptyset \to \emptyset$ is a rule of confidence 1 that participates in the computation of $\overline{\beta}(X \to \emptyset)$ ($\overline{X} \neq \overline{\emptyset}$ because the minimal generator for $\overline{\emptyset}$ is the empty set itself), we can conclude that $\overline{\beta}(X \to \emptyset) = 1$.

The following algorithm outputs the set $\overline{\mathcal{B}}_b$.

```
1: set of rules G initially empty
2: for all Z closed with s(Z) > \tau do
       if \sigma_{\tau}(Z) \geq b and mnsub_{\tau}(Z)/s(Z) \geq b then
 3:
          for X in mingens(Z) do if \overline{Z\backslash X} = Z then
 4:
 5:
               report X \to Z as output
 6:
                add X \to Z \backslash X to G
 7:
             end if
 8:
 9:
          end for
       end if
10:
11: end for
```