Advanced Quantum Physics Notes

Xinyu Zhong Wolfson College

November 21, 2022

Contents

1	Rev	ision	2
2	Perturbation Theory 2.1 Time-Independent Perturbation Theory		
	2.2	First-order Perturbation Theory	2
	2.3	Second-order Perturbation Theory	2
	2.4	Degenerate Perturbation Theory	2
	2.5	Variation Method	2
		2.5.1 Rayleigh-Ritz Method	2
3		etromagnetism	2
	3.1	Aharanov-Bohm Effect	3
	3.2	Gauge Invariance	3
		3.2.1 Couloumb Gauge	3
	0.0	3.2.2 Symmetric Gauge	3
	3.3	Orbital Magnetic moment	3
	3.4	Magnetic Moments	3
		3.4.1 Electron	3
		3.4.2 Muon	3
		3.4.3 p, n, nuclei	3
	3.5	Spin	3
		3.5.1 Particle magnetic moment: spin-half	3
		3.5.2 Spin Precession	3
		3.5.3 Spin-half	3
		3.5.4 Energy Eigenstates	3
		3.5.5 Wave-function Evolution	3
	3.6	Stern-Gerlach	3
	3.7	Landau Levels	3
		3.7.1 Landau Gauge	3
4	Real Hydrogen Atom 4		
		Relativistic Corrections	4
	4.2	Fine Structure	4
	4.3	Hyperfine Structure	4
	1.0		•
5	Sym	nmetries	4
	5.1	Symmetry Transformation	4
		5.1.1 Time translation	4
	5.2	The Wigner-Eckart Theorem(selection rule)	4
	5.3	Combining magnetic moment	4
_			
6		ntical Particles	4
	6.1	Spin and statistics(fermions and bosons)	4
	6.2	Exchange forces	4
	6.3	The Helium atom	4
7	Mul	ti-electron atoms	4
•	7.1	Periodic table	4
	$7.1 \\ 7.2$	LS coupling(Hund's rule)	4
	7.2	jj coupling	4
	1.0	JJ coupming	4
8	3 Zeeman effect/Stark effect/Molecules: H_2^+ and H_2 4		

1 Revision

2 Perturbation Theory

2.1 Time-Independent Perturbation Theory

2.2 First-order Perturbation Theory

2.3 Second-order Perturbation Theory

Example: Infinite square well with central bump

...

Example: Infinite square well in an electric field

... Evomplo

Example: Harmonic Oscillator + Linear perturbation

...

Example: Van der Waals Interaction

•••

2.4 Degenerate Perturbation Theory

Example: Perturbed 2D infinite square well

•••

2.5 Variation Method

Example: Hydrogen atom ground state energy

...

2.5.1 Rayleigh-Ritz Method

Example: Hydrogen atom with finite proton mass

• • •

3 Electromagnetism

Definition cyclotron frequency:

$$\omega_c = \frac{qB}{m}$$

This is the frequency with which particles moving transverse to a magnetic filed B undergo circular orbit.

 ω_c should be really close to the spin precession frequency ω_s .

- 3.1 Aharanov-Bohm Effect
- 3.2 Gauge Invariance
- 3.2.1 Couloumb Gauge
- 3.2.2 Symmetric Gauge
- 3.3 Orbital Magnetic moment

In Hamiltonian, the $L \cdot B$ term can be written as: $\hat{H} = -\hat{\mu}_L \cdot B$ Definition Orbital magnetic moment operator:

$$-\hat{\mu}_L = \frac{q}{2m}\hat{L}\gamma_L$$

...

Definition Gyromagnetic ratio, γ_L :

$$\gamma_L = \frac{q}{2m}$$

...

For an electron (q=-e), the orbital magnetic moment operator is

- 3.4 Magnetic Moments
- 3.4.1 Electron
- 3.4.2 Muon
- 3.4.3 p, n, nuclei
- 3.5 Spin
- 3.5.1 Particle magnetic moment: spin-half
- 3.5.2 Spin Precession
- 3.5.3 Spin-half
- 3.5.4 Energy Eigenstates
- 3.5.5 Wave-function Evolution
- 3.6 Stern-Gerlach
- 3.7 Landau Levels
- 3.7.1 Landau Gauge

Example: 2D Electron Gas

4 Real Hydrogen Atom

- 4.1 Relativistic Corrections
- 4.2 Fine Structure
- 4.3 Hyperfine Structure
- 5 Symmetries
- 5.1 Symmetry Transformation
- 5.1.1 Time translation

Take way: The time-dependent Shrodinger equation is a consequence of the invariance under time transformation

5.2 The Wigner-Eckart Theorem(selection rule)

Wigner-Eckart Theorem: $\langle \alpha''j''m'' | \hat{K} | \alpha'j'm' \rangle = \langle \alpha''j'' | |\hat{K}| | \alpha'j' \rangle$

A particular case is that $\langle \alpha j m | \hat{K} | \alpha j m \rangle = \langle \alpha j | |\hat{K}| | \alpha j \rangle$

i.e. the expectation values of a scalr opertator are independent of m and are given by the appropriate reduced matrix element of K

- 5.3 Combining magnetic moment
- 6 Identical Particles
- 6.1 Spin and statistics(fermions and bosons)
- 6.2 Exchange forces
- 6.3 The Helium atom
- 7 Multi-electron atoms
- 7.1 Periodic table
- 7.2 LS coupling(Hund's rule)
- 7.3 jj coupling
- 8 Zeeman effect/Stark effect/Molecules: H_2^+ and H_2