# Data models, grammar of graphics

SI 649 W20: Information visualization

Matthew Kay, Assistant Professor, School of Information & Computer Science and Engineering

University of Michigan

Portions of slides adapted from Eytan Adar

# (quiz)

#### (slack)

Join here: <a href="https://tinyurl.com/yaq8luzg">https://tinyurl.com/yaq8luzg</a>

# (laptops)

## (waitlist)

#### This week

#### Lecture

Data types Grammar of graphics

#### Lab

Altair (based on grammar of graphics)

# (individual assignment reminder)

| ^                   | mpg <sup>‡</sup> | cyl <sup>‡</sup> | disp ‡ | hp <sup>‡</sup> | drat <sup>‡</sup> | wt ÷  | qsec ‡ | <b>vs</b> | am <sup>‡</sup> |
|---------------------|------------------|------------------|--------|-----------------|-------------------|-------|--------|-----------|-----------------|
| Mazda RX4           | 21.0             | 6                | 160.0  | 110             | 3.90              | 2.620 | 16.46  | 0         | 1               |
| Mazda RX4 Wag       | 21.0             | 6                | 160.0  | 110             | 3.90              | 2.875 | 17.02  | 0         | 1               |
| Datsun 710          | 22.8             | 4                | 108.0  | 93              | 3.85              | 2.320 | 18.61  | 1         | 1               |
| Hornet 4 Drive      | 21.4             | 6                | 258.0  | 110             | 3.08              | 3.215 | 19.44  | 1         | 0               |
| Hornet Sportabout   | 18.7             | 8                | 360.0  | 175             | 3.15              | 3.440 | 17.02  | 0         | 0               |
| Valiant             | 18.1             | 6                | 225.0  | 105             | 2.76              | 3.460 | 20.22  | 1         | 0               |
| Duster 360          | 14.3             | 8                | 360.0  | 245             | 3.21              | 3.570 | 15.84  | 0         | 0               |
| Merc 240D           | 24.4             | 4                | 146.7  | 62              | 3.69              | 3.190 | 20.00  | 1         | 0               |
| Merc 230            | 22.8             | 4                | 140.8  | 95              | 3.92              | 3.150 | 22.90  | 1         | 0               |
| Merc 280            | 19.2             | 6                | 167.6  | 123             | 3.92              | 3.440 | 18.30  | 1         | 0               |
| Merc 280C           | 17.8             | 6                | 167.6  | 123             | 3.92              | 3.440 | 18.90  | 1         | 0               |
| Merc 450SE          | 16.4             | 8                | 275.8  | 180             | 3.07              | 4.070 | 17.40  | 0         | 0               |
| Merc 450SL          | 17.3             | 8                | 275.8  | 180             | 3.07              | 3.730 | 17.60  | 0         | 0               |
| Merc 450SLC         | 15.2             | 8                | 275.8  | 180             | 3.07              | 3.780 | 18.00  | 0         | 0               |
| Cadillac Fleetwood  | 10.4             | 8                | 472.0  | 205             | 2.93              | 5.250 | 17.98  | 0         | 0               |
| Lincoln Continental | 10.4             | 8                | 460.0  | 215             | 3.00              | 5.424 | 17.82  | 0         | 0               |
| Chrysler Imperial   | 14.7             | 8                | 440.0  | 230             | 3.23              | 5.345 | 17.42  | 0         | 0               |
| Fiat 128            | 32.4             | 4                | 78.7   | 66              | 4.08              | 2.200 | 19.47  | 1         | 1               |
| Honda Civic         | 30.4             | 4                | 75.7   | 52              | 4.93              | 1.615 | 18.52  | 1         | 1               |
| Toyota Corolla      | 33.9             | 4                | 71.1   | 65              | 4.22              | 1.835 | 19.90  | 1         | 1               |
| Toyota Corona       | 21.5             | 4                | 120.1  | 97              | 3.70              | 2.465 | 20.01  | 1         | 0               |
| Dodge Challenger    | 15.5             | 8                | 318.0  | 150             | 2.76              | 3.520 | 16.87  | 0         | 0               |
| AMC Javelin         | 15.2             | 8                | 304.0  | 150             | 3.15              | 3.435 | 17.30  | 0         | 0               |
| Camaro Z28          | 13.3             | 8                | 350.0  | 245             | 3.73              | 3.840 | 15.41  | 0         | 0               |
| Pontiac Firebird    | 19.2             | 8                | 400.0  | 175             | 3.08              | 3.845 | 17.05  | 0         | 0               |
| Fiat X1-9           | 27.3             | 4                | 79.0   | 66              | 4.08              | 1.935 | 18.90  | 1         | 1               |



## Let's systematize "turning data into a vis"

data -> ??? -> marks on the screen (or paper)

- ??? = New function for every chart type
  - = Low-level drawing functions
  - = Grammar of graphics

Encode data with visual channels Display encodings with marks

#### Channels / encodings -> Marks

("aesthetics" in ggplot)

("geometries" in ggplot)





Codifies data types, encodings/channels, marks

Maps data -> channels -> marks

# Data types

#### Basic data types — A simple taxonomy

Categorical (aka Nominal)

**Ordinal** 

Quantitative

#### Group activity

In groups, agree on answers to the quiz

#### Basic data types — A simple taxonomy

Categorical

**Ordinal** 

Quantitative

- sometimes subdivided: interval versus ratio

#### Basic data types — Operations

Categorical:  $= \neq$ 

Ordinal:  $= \neq < >$ 

Quantitative:  $= \pm < > + - (\times \div)$ 

# Quantitative -> Ordinal -> Categorical

#### Quantitative

| temperature °F |
|----------------|
| -50            |
| 30             |
| 300            |
| -10            |
| 70             |
| -250           |
| 2000           |

# Quantitative -> Ordinal -> Categorical

| <b>Quantitative</b><br>temperature °F | Ordinal cold < warm < hot |
|---------------------------------------|---------------------------|
| -50                                   | cold                      |
| 30                                    | cold                      |
| 300                                   | hot                       |
| -10                                   | cold                      |
| 70                                    | warm                      |
| -250                                  | cold                      |
| 2000                                  | hot                       |

## Quantitative -> Ordinal -> Categorical

| <b>Quantitative</b><br>temperature °F | Ordinal cold < warm < hot | <b>Categorical</b><br>burned ≠ not burned |
|---------------------------------------|---------------------------|-------------------------------------------|
| -50                                   | cold                      | not burned                                |
| 30                                    | cold                      | not burned                                |
| 300                                   | hot                       | burned                                    |
| -10                                   | cold                      | not burned                                |
| 70                                    | warm                      | not burned                                |
| -250                                  | cold                      | not burned                                |
| 2000                                  | hot                       | burned                                    |

#### Sequential / diverging scales

Ordinal / quantitative data may also be sequential or diverging

This impacts encoding choice, for example:

Sequential color scale:



Diverging color scale:



#### Sequential / diverging scales



[http://www.research.ibm.com/people/I/Iloydt/color/color.HTM]

## Sequential / diverging scales



[http://www.research.ibm.com/people/l/lloydt/color/color.HTM]

Okay, back to grammar of graphics...

| ^                   | mpg <sup>‡</sup> | cyl <sup>‡</sup> | disp ‡ | hp ‡ | drat <sup>‡</sup> | wt ÷  | qsec ‡ | <b>vs</b> | am <sup>‡</sup> |
|---------------------|------------------|------------------|--------|------|-------------------|-------|--------|-----------|-----------------|
| Mazda RX4           | 21.0             | 6                | 160.0  | 110  | 3.90              | 2.620 | 16.46  | 0         | 1               |
| Mazda RX4 Wag       | 21.0             | 6                | 160.0  | 110  | 3.90              | 2.875 | 17.02  | 0         | 1               |
| Datsun 710          | 22.8             | 4                | 108.0  | 93   | 3.85              | 2.320 | 18.61  | 1         | 1               |
| Hornet 4 Drive      | 21.4             | 6                | 258.0  | 110  | 3.08              | 3.215 | 19.44  | 1         | 0               |
| Hornet Sportabout   | 18.7             | 8                | 360.0  | 175  | 3.15              | 3.440 | 17.02  | 0         | 0               |
| Valiant             | 18.1             | 6                | 225.0  | 105  | 2.76              | 3.460 | 20.22  | 1         | 0               |
| Duster 360          | 14.3             | 8                | 360.0  | 245  | 3.21              | 3.570 | 15.84  | 0         | 0               |
| Merc 240D           | 24.4             | 4                | 146.7  | 62   | 3.69              | 3.190 | 20.00  | 1         | 0               |
| Merc 230            | 22.8             | 4                | 140.8  | 95   | 3.92              | 3.150 | 22.90  | 1         | 0               |
| Merc 280            | 19.2             | 6                | 167.6  | 123  | 3.92              | 3.440 | 18.30  | 1         | 0               |
| Merc 280C           | 17.8             | 6                | 167.6  | 123  | 3.92              | 3.440 | 18.90  | 1         | 0               |
| Merc 450SE          | 16.4             | 8                | 275.8  | 180  | 3.07              | 4.070 | 17.40  | 0         | 0               |
| Merc 450SL          | 17.3             | 8                | 275.8  | 180  | 3.07              | 3.730 | 17.60  | 0         | 0               |
| Merc 450SLC         | 15.2             | 8                | 275.8  | 180  | 3.07              | 3.780 | 18.00  | 0         | 0               |
| Cadillac Fleetwood  | 10.4             | 8                | 472.0  | 205  | 2.93              | 5.250 | 17.98  | 0         | 0               |
| Lincoln Continental | 10.4             | 8                | 460.0  | 215  | 3.00              | 5.424 | 17.82  | 0         | 0               |
| Chrysler Imperial   | 14.7             | 8                | 440.0  | 230  | 3.23              | 5.345 | 17.42  | 0         | 0               |
| Fiat 128            | 32.4             | 4                | 78.7   | 66   | 4.08              | 2.200 | 19.47  | 1         | 1               |
| Honda Civic         | 30.4             | 4                | 75.7   | 52   | 4.93              | 1.615 | 18.52  | 1         | 1               |
| Toyota Corolla      | 33.9             | 4                | 71.1   | 65   | 4.22              | 1.835 | 19.90  | 1         | 1               |
| Toyota Corona       | 21.5             | 4                | 120.1  | 97   | 3.70              | 2.465 | 20.01  | 1         | 0               |
| Dodge Challenger    | 15.5             | 8                | 318.0  | 150  | 2.76              | 3.520 | 16.87  | 0         | 0               |
| AMC Javelin         | 15.2             | 8                | 304.0  | 150  | 3.15              | 3.435 | 17.30  | 0         | 0               |
| Camaro Z28          | 13.3             | 8                | 350.0  | 245  | 3.73              | 3.840 | 15.41  | 0         | 0               |
| Pontiac Firebird    | 19.2             | 8                | 400.0  | 175  | 3.08              | 3.845 | 17.05  | 0         | 0               |
| Fiat X1-9           | 27.3             | 4                | 79.0   | 66   | 4.08              | 1.935 | 18.90  | 1         | 1               |



mpg: numeric

wt: numeric

wt -> x position

mpg -> y position



mpg: numeric

wt: numeric

→manual: nominal

wt -> x position

mpg -> y position

→manual -> color



mpg: numeric

wt: numeric

manual: nominal

wt -> x position

mpg -> y position

manual -> color

manual -> shape ←



## Why is the grammar of graphics useful?

1. Easier to specify many charts, combinations

2. Helps you evaluate charts systematically

3. Helps you design charts systematically

mpg: numeric

wt: numeric

wt -> x position

mpg -> y position



```
Not:
```

```
some_big_function_to_make_scatterplots(
    my_data,
    a_bunch_of_options
)
```



Not:

```
some_function_to_draw_grid()
some_function_to_draw_axes()
for (row in data) {
   draw_point(data[i]["x"], ...)
}
...
```



```
e.g., in Altair:
```

```
(data, channels, marks)
```

```
alt.Chart(mtcars)\
    .encode(
    x = 'wt',
    y = 'mpg'
)\
    .mark point()
```



Data → channels → marks → viewer viewer's reconstruction of the data





How well do these match, given the channel used?

E.g.,

How accurately do people perceive position?

How accurately do people perceive area?

#### **Channels**



E.g.,

How accurately do people perceive position for quantitative data? ...for ordered data? ...for nominal data? etc.

#### **Channels**

Position Color Hue Texture Connection Containment Density Color Saturation Shape Length  $\triangleleft \theta$ Angle Slope \_ \ \ | / / Area • • • • • • • • Volume 

## 3. Helps you design charts systematically

E.g.,

What channel is best for quantitative data? ...for ordered data? ...for nominal data? etc.

#### **Channels**



## 3. Helps you design charts systematically

Work on perception informs these questions

(next week's topic!)



#### Grammar of graphics summary

Think in data types, channels/encodings, and marks.

This will help you specify, evaluate, and design charts.



What are the variables / types?

Channels / encodings?

Marks?

Is this effective?



What are the variables / types?

Channels / encodings?

Marks?

Is this effective?



New York Times, August 9, 1978, p. D-2.

What are the variables / types?

Channels / encodings? Marks?

Is this effective?



What are the variables / types?

Channels / encodings?

Marks?

N.B.: skier size indicates price of six-day regional peaktime ski pass