Nefret Söylemi ve Ofansif Dil Kullanımı

Nefret Söylemi

Ofansif Dil

Nasıl Yapıyoruz

- Veri setini Github üzerinden aldık.
- Veriler twitter üzerinden scrape edilmiş
- ▶ Daha sonra CrowdFlower uygulamaları ile etiketlenmiştir.
- Bundan sonraki kısım ise tamamen Metin Madenciliği adımlarından oluşmaktadır.
- Kodları yazmaya başlamadan önce Metin madenciliği adımlarının başlıklarını yazdık. Sonrasında başlıkların altını doldurduk. Bu proje tamamlama hızımızı büyük oranda arttırdı. Çünkü nereye ne geleceğini hemen bulduk.
- Metin Ön İşlemede: Twitter'a özel RegExpler kullandık.
- ► Bir çok twitter projesi inceledik. (bir çok)
- Sonuç olarak %83 gibi bir başarı elde ettik.

Siniflandirma Yapisi

- 0 Nefret Soylemi
- 1 Ofansif Dil
- 2 Neither

```
df['class'].hist()
```

<AxesSubplot:>

Denen Modeller

- Logistic Regression
- Linear SVC (Support Vector Classifier)
 - ► SVC (Support Vector Classifier)
- Naive Bayes
- Random Forests

Sınıflar Arasındaki Tutarsızlık?

- Sınıflar arasındaki histogramdan da anlaşılacağı üzere **Ofansif Dil** olarak etiketlenmiş tweet sayısı diğer tweet sayılarına oranla çok daha fazla.
- ▶ Bu durumla alakalı projemizi üçe böldük ve verilerin tamamını kullandığımız bir proje oluşturduk. Birde sayıları dengeleyerek iki proje oluşturduk.

df['class'].hist()

Sınıflar Arasındaki Tutarsızlık?

Sonuç

Model Adı	Ham Veri (accuracy)	Kırpılmış Veri (accuracy)	Eşit Dağıtılmış Veri (accuracy)
Logistic Regression	%78	%79	%75
Linear SVC	%81	%80	%70
Naive Bayes	%75	%75	%67
Ensemble Learning / Random Forest	%83	%80	%74