

KENNESAW STATE U N I V E R S I T Y

CS 4732
MACHINE VISION

PROJECT 1
IMAGE RESOLUTION

<u>INSTRUCTOR</u>

Dr. Sanghoon Lee

Your Name:

KSU ID: 000123456

1. ABSTRACT

In this project
2. TEST RESULTS
2. TEST RESULTS 2.1 Test Results for Image Negative
2.1 Test Results for Image Negative
2.1 Test Results for Image Negative Figure 1(a),
2.1 Test Results for Image Negative Figure 1(a),
2.1 Test Results for Image Negative Figure 1(a),
2.1 Test Results for Image Negative Figure 1(a),
2.1 Test Results for Image Negative Figure 1(a),

Figure 1: (a-b) Original grayscale images (lena.pgm), (clock.pgm), (c-d) Negative image of original grayscale images.

Figure 2: (a-b) Original grayscale images (cicek2), (lena2.jpeg), (c-d) Negative image of original grayscale images.

2.2 Test Results for image opside-down

3. CODES

3.1 Code for Image Negative

```
% Name:
% KSU Number:
% Project 1
close all;
clear;
clc;
% read the input image as input image
inimage = imread(flower.jpg');
% Show input image
figure, imshow(inimage,[]);
% Get the size of input image
[row,col,chan] = size(inimage);
% Predefine the output image
outimage = zeros(row, col,chan);
% Compute the effect pixel by pixel
for y = 1:1:row
    for x = 1:1:col
        for z=1:chan
            % Get the negative of the pixel value
            outimage (y, x, z) = 255 - inimage(y, x, z);
        end
    end
end
% Change the image format to uint8 before saving the result.
outimage = uint8(outimage);
% Show output image
figure (2), imshow (outimage, []);
% Save the output image as image file.
imwrite(outimage, 'output.jpg', 'jpeg');
```

3.2 Code for Image Upside-Down

```
% Name:
% KSU Number:
% Project 1
close all;
clear;
clc;
% read the input image as input image
inimage = imread('lena.jpg');
% Show input image
figure,imshow(inimage,[]);
% Get the size of input image
[row,col,chan] = size(inimage);
% Predefine the output image
```

```
outimage = zeros(row, col,chan);
% Compute the effect pixel by pixel
for y = 1:1:row
    for x = 1:1:col
        for z=1:chan
            % Get the upside down image
            outimage(y,x,z) = inimage(row-y+1,x,z);
        end
    end
end
% Change the image format to uint8 before saving the result.
outimage = uint8(outimage);
% Show output image
figure(2),imshow(outimage,[]);
\ensuremath{\%} Save the output image as image file.
imwrite(outimage, 'output.jpg', 'jpeg');
```