2009 级第一学期工科数学分析期中试题解答

2.
$$\left(\frac{2x}{1+x^4}f'(\arctan x^2) + \frac{2f(x)f'(x)}{\sqrt{1-f^4(x)}}\right)dx$$
 (每项 2 分,缺少 dx 扣 1 分)

3.
$$(1+t^2)e^{t^2}$$
, $(1+t^2)(2+t^2)e^{t^2}$ $(2 \%, 2 \%)$

4.
$$x = 1, x = 4$$
, $\arctan \frac{6}{7}$ $(1 \%, 1 \%, 2 \%)$

5.
$$\frac{y-y^2\cos(xy)}{1+xy\cos(xy)}$$
, $e-e^2$ (2 $\%$, 2 $\%$)

6.
$$2, 3, \frac{1}{6}$$
 $(2 \%, 1 \%, 1 \%)$

7. -28cm²/sec (缺少负号扣1分,缺少量纲扣1分)

二.
$$\Leftrightarrow y = (\cot x)^{\frac{1}{\ln x^2}}$$
 $\lim_{x \to 0^+} \ln y = \lim_{x \to 0^+} \frac{\ln \cot x}{2 \ln x}$ (1 分)

$$= \lim_{x \to 0^{+}} \frac{\frac{1}{\cot x} \cdot \frac{-1}{\sin^{2} x}}{\frac{2}{x}} \qquad (5 \, \%)$$

$$= \lim_{x \to 0^{+}} \frac{x \cdot \frac{-1}{x^{2}}}{\frac{2}{x}} = -\frac{1}{2}$$
 (8 \(\frac{\psi}{x}\))

$$\lim_{x \to 0^{+}} (\cot x)^{\frac{1}{\ln x^{2}}} = e^{-\frac{1}{2}}$$
 (9 分)

三.
$$f'(x) = \frac{1}{x} - \frac{1}{e}$$
(1 分)

$$\lim_{x \to 0^+} f(x) = -\infty \qquad \lim_{x \to +\infty} f(x) = -\infty \qquad f(e) = k \qquad \dots (6 \ \%)$$

当
$$k > 0$$
, $f(x) = 0$ 有两个实根

当
$$k = 0$$
, $f(x) = 0$ 有一个实根

当
$$k < 0$$
, $f(x) = 0$ 没有实根(9分)

$$x_2 = 1 + \frac{1}{2} > x_1$$
, $\ddot{x}_n > x_{n-1}$, \ddot{y}

$$x_{n+1} - x_n = 1 + \frac{x_n}{1 + x_n} - 1 - \frac{x_{n-1}}{1 + x_{n-1}} = \frac{x_n - x_{n-1}}{(1 + x_n)(1 + x_{n-1})} > 0$$

由于
$$x_n > 0$$
,故 $x_n = 1 + \frac{x_{n-1}}{1 + x_{n-1}} < 2$, $\therefore \{x_n\}$ 有上界

$$\lim_{n\to\infty} x_n$$
 存在

设
$$\lim_{n\to\infty} x_n = A$$
 由 $x_n = 1 + \frac{x_{n-1}}{1+x_{n-1}}$ 得 $A = 1 + \frac{A}{1+A}$ (8 分)

解得
$$A = \frac{1 \pm \sqrt{5}}{2}$$
 (舍去负值) $\lim_{n \to \infty} x_n = \frac{1 + \sqrt{5}}{2}$ (9 分)

五.

$$\lim_{x \to 0} y = \infty$$
 $x = 0$ 是垂直渐近线

$$\lim_{x \to \infty} \frac{y}{x} = 3 \quad \lim_{x \to \infty} (y - 3x) = 1 \quad y = 3x + 1$$
 是斜渐近线(3 分)

$$y' = \frac{3(x^4 - 1)}{x^4}$$

$$\Leftrightarrow y' = 0$$
 得 $x = \pm 1$

$$y'' = \frac{12}{x^5}$$

х	(-∞,-1)	-1	(-1,0)	0	(0,1)	1	(1,+∞)
y'	+	0	_		_	0	+
y"	_		_		+		+
у		极大值 -3		间断		极小值 5	

.....(9分)

七.

$$f(1) = \frac{1+a+b}{3}$$
(3 \(\frac{\frac{1}{2}}{2}\)

由
$$f(1-0) = f(1+0)$$
 得 $\frac{a+b}{2} = 1$ 即 $a+b=2$ (4分)

$$f'_{-}(1) = \lim_{x \to 1^{-}} \frac{\frac{ax+b}{2} - 1}{x-1} = \lim_{x \to 1^{-}} \frac{ax-a}{2(x-1)} = \frac{a}{2}$$
(6 \(\frac{\psi}{2}\))

$$f'_{+}(1) = \lim_{x \to 1^{-}} \frac{x^2 - 1}{x - 1} = 2 \tag{7 \%}$$

$$a = 4$$
 $b = -2$ (9 $\%$

$$y = k \frac{\cos \theta}{h^2 + r^2} = k \frac{h}{(h^2 + r^2)^{\frac{3}{2}}}$$
(3 分)

$$\frac{dy}{dh} = k \frac{r^2 - 2h^2}{(h^2 + r^2)^{\frac{5}{2}}}$$
(6 \(\frac{\frac{1}{2}}{2}\)

$$\Rightarrow \frac{dy}{dh} = 0$$
 得 $h = \frac{r}{\sqrt{2}}$ (8 分)

由问题的实际意义,h确有最大值,又驻点惟一,故当 $h = \frac{r}{\sqrt{2}}$ 物体的亮度最好......(9分)

$$f'(x) = \frac{1}{1+x} - 1 = \frac{-x}{1+x}$$
(2 分)

$$f''(x) = -\frac{1}{(1+x)^2}$$
 $f''(0) = -1 < 0$

故 f(0) = 0 是极大值也是最大值, 所以 $f(x) \le 0$, 即

$$ln(1+x) \le x$$
(5 分)

$$\Leftrightarrow$$
 $g(x) = (1+x)\ln(1+x) - x$ (6 \Re)

$$g'(x) = \ln(1+x)$$
(7 分)

令
$$g'(x) = 0$$
, 得 $x = 0$
$$g''(x) = \frac{1}{1+x} \qquad g''(0) = 1 > 0$$

故 g(0) = 0 是极小值也是最小值, 所以 $g(x) \ge 0$, 即

$$(1+x)\ln(1+x) - x \ge 0$$
 $\frac{x}{1+x} \le \ln(1+x)$ (10 分)

九.
$$\Leftrightarrow F(x) = (x-b)^a f(x)$$
(2分)

则 F(x) 在 [a,b] 上连续, 在 (a,b) 内可导, 且 F(a) = F(b) = 0

根据罗尔定理, 在(a,b)内存在 ξ , 使 $F'(\xi)=0$, 即

$$a(\xi - b)^{a-1} f(\xi) + (\xi - b)^a f'(\xi) = 0$$
(5 分)

由于 $(\xi - b)^{a-1} \neq 0$ 故 $af(\xi) + (\xi - b)f'(\xi) = 0$

$$f(\xi) = \frac{b - \xi}{a} f'(\xi) \qquad \dots (6 \ \%)$$