Universal properties

11th June 2022

Problem 2

Prove that \emptyset is the unique initial object in Set.

Solution. Assume otherwise \varnothing and \varnothing' are two initial objects in Set. They must be isomorphic since they are both initial objects. Thus, they are both empty. The statements $x \in \varnothing \implies x \in \varnothing'$ and $x \in \varnothing' \implies x \in \varnothing$ are both vacuously true. So $\varnothing \subseteq \varnothing'$ and $\varnothing' \subseteq \varnothing'$, implying $\varnothing = \varnothing'$.

Problem 3

Prove that final objects are unique up to isomorphism.

Solution. Let F_1 , F_2 be two final objects in the category C. There is a unique morphism $F_1 \to F_1$ and $F_2 \to F_2$, so it must be the identity morphisms 1_{F_1} and 1_{F_2} . Because F_2 is a final object, there is a unique morphism $f: F_1 \to F_2$, and because F_1 is a final object, there is a unique morphism $g: F_2 \to F_1$. We want to show that f is an isomorphism. gf is a morphism from F_1 to F_1 , so it must be the identity. That is

$$gf=1_{F_1}$$
.

Similarly, we have

$$fg = 1_{F_2}$$
.

So f is an isomorphism, and $F_1 \cong F_2$.

Q3

Problem 6

Consider the category corresponding to endowing (as in Example 3.3) the set \mathbb{Z}^+ of positive integers with the *divisibility* relation. Thus, there is exactly one morphism $d \to m$ in this category if and only if d divides m without remainder; there is no morphism between d and m otherwise. Show that this category has products and coproducts. What are their 'conventional' names?

Solution. If $a, b \in \mathbb{Z}^+$, and the product $a \times b$ satisfies the condition that $d \mid a$ and $d \mid b$ implies $d \mid a \times b$. We also want $a \times b \mid a$ and $a \times b \mid b$. In other words, we have $a \times b = \gcd(a, b)$.

Similarly, we have $a \coprod b = lcm(a, b)$.