1-6. Prove that for all $A_{i \in [1,n]}$, it follows that $\max(A)$ returns the maximum value in A.

Proof. Suppose n=1. Observe that $\max(A_1)=A_1$, which is the maximum value in a single-element array A. Thus $\max(A)$ is correct for A_1 . Now suppose $\max(A_{i\in[1,l]})$ is correct for all $1\leq l\leq k$, and consider $A_{i\in[1,k+1]}$. The maximum element of $A_{i\in[1,k]}$ is m by our assumption, so we have two cases for A_{k+1} : If $A_{k+1}\leq m$, then the maximum element of $A_{i\in[1,k+1]}$ is in $A_{i\in[1,k]}$, and m is not updated. If $A_{k+1}>m$, then A_{k+1} is the maximum element of $A_{i\in[1,k+1]}$, and the algorithm updates m to $m=A_{k+1}$. Thus $\max(A)$ is correct for all $A_{i\in[1,n]}$.