

Can you predict the future? Introduction to the NEON Forecasting Challenge

Workshop lead: Contact:

Objectives:

- 1. Highlight some key concepts of ecological forecasting
- 2. Introduce NEON and the Forecasting Challenge
- 3. Walk through a simple forecast workflow
- 4. Point to resources to get involved and find more information

Workshop Overview

11:30-11.55	Introductory presentation
11.55-12.10	Break and R set-up
12:10-13:00	Hands-on coding/follow-
	along

Why forecast?

Near-term, iterative, ecological forecasts

- Near-term = sub-daily to decadal timescales
- Iterative = process of repeatedly validating forecasts, updating model initial conditions and parameters, and issuing new forecasts as new data become available
- **Ecological forecast** = future predictions of physical, chemical, or biological variables with quantified uncertainty

Examples:

- Forecast of river dissolved oxygen concentration for the next 1-48 hours for fish stocking
- 2. 1-3 month ahead predictions of the % chance of leaf fall to estimate peak leaf-peeping
- 3. Forecasts of tick abundance for the next 1-30 days in a popular hiking area

Ecological forecasting

An emerging and growing field

Lewis et al., 2021

(https://doi.org/10.1002/eap.2500)

Forecasting Challenges

Forecasting is challenging!

A Challenge to catalyze progress

Why a forecasting challenge? — the power of many forecasts!

- 1. A community of forecasting
 - Standards
 - Development of tools and infrastructure
 - A forecasting platform

2. Answer questions of predictability

The EFI-NEON Forecasting Challenge was born (2021)!

Ecological Forecasting Initiative Research Co-ordination Network

- EFI RCN Goals
 - lower barriers
 - community building
 - infrastructure
 - platform development

Ecological Forecasting Initiative Research Coordination Network5-year project

Create a community of practice that builds capacity for ecological forecasting by leveraging NEON data products.

https://ecoforecast.org/rcn/

Funded by the National Science Foundation (DEB-1926388)

What is **ne@n**?

- The National Ecological
 Observatory Network
 (NEON) is a continental scale observation facility
- To collect long-term open access ecological data
- 47 terrestrial and 34 aquatic sites

2.1. NEON Mission

NEON is a National Science Foundation-sponsored facility for research and education on long-term, large-scale ecological change. NEON's goals are derived from the Integrated Science and Education Plan.

The goals of NEON are to:

- Enable understanding and <u>forecasting</u> of the impacts of climate change, land use change, and invasive species on aspects of continental-scale ecology such as biodiversity, biogeochemistry, infectious diseases, and ecohydrology
- Enable society and the scientific community to use ecological information and forecasts to understand
 and effectively address critical ecological questions and issues
- Provide physical and information infrastructure to support research, education, and land management.

From: https://www.neonscience.org/sites/default/files/NEON_Strategy_2011u2_0.pdf

What is the EFI-NEON Challenge?

"A platform for the community to make predictions of conditions at NEON sites before the data are

- All 81 sites

collected"

- 6 themes

ticks

What is the EFI-NEON Challenge?

"A platform for the community to make predictions of conditions at NEON sites before the data are collected"

- All 81 sites
- 6 themes
- > 15,000 forecast submitted!

Forecast =
A prediction of
future environmental
conditions that
includes quantified
uncertainty

Challenge overview

Objectives:

- 1. Highlight some key concepts of forecasting
- 2. Introduce NEON and the Forecasting Challenge
- 3. Walk through a simple forecast workflow
- 4. Point to resources to get involved and find more information

Hands-on workshop:

- Aquatics theme Can we predict how water temperature will change over the next month?
 - Water temperature in lakes
 - NEONs water temperature data product (DP1.20264.001)
 - 30 day forecast horizon
 - Data latency of 2-3 days
- Simple baseline model to build on

Some forecast terminology:

HARV

5
0
-10
-15
-2018
2020
datetime

Targets – water temperature

 Uncertainty – forecasts must include an estimate of uncertainty.
 The uncertainty can be represented using different model runs (ensemble members) or the statistics of the forecast (mean and standard deviation).

Some more forecast terminology:

- NOAA data National Oceanic and Atmospheric Administration weather forecasts
- 3 NOAA forecast data products available in neon4cast:
 - Stage_1: raw forecasts from NOAA.
 30 member ensemble forecast
 - Stage_2: processed from stage_1 Recommended for future forecasts. Hourly inputs
 - Stage_3: the historic data product. A 'stacked' data set taking every 1 day ahead forecast.
 Useful for model training/calibration.

A little more forecast terminology:

<u>Scores</u> – a means to assess forecast skill. The Challenge uses the Continuous Rank Probability Score (crps). Uses both the **accuracy** (mean) and the **precision** (sd) of the forecast.

Scores → Dashboard → Users!

https://projects.ecoforecast.org/neon4cast-ci/

A little more forecast terminology:

<u>Standards</u> - Help maintain consistency in forecast generation, submissions and scoring

Need to submit a forecast in a standardized format

- file format (csv or NetCDF)
- file name format ([theme]-[reference_datetime]-[team_name].csv)
- specific column names
- column format (datetime/character/integer/etc.)

datetime	reference_datetime	site_id	family	parameter	variable	prediction	model_id
2023-01-12	2023-01-11	BARC	ensemble	1	temperature	22.63563	test_mod
2023-01-12	2023-01-11	BARC	ensemble	2	temperature	26.75148	test_mod
2023-01-12	2023-01-11	BARC	ensemble	3	temperature	24.65157	test_mod
2023-01-12	2023-01-11	BARC	ensemble	4	temperature	25.1389	test_mod
	850	•••	•••		•••	•••	test_mod
2023-02-10	2023-01-11	BARC	ensemble	1	temperature	19.40379	test_mod
2023-02-10	2023-01-11	BARC	ensemble	2	temperature	24.89667	test_mod
2023-02-10	2023-01-11	BARC	ensemble	3	temperature	25.98961	test_mod
2023-02-10	2023-01-11	BARC	ensemble	4	temperature	26.40593	test_mod

Basic workflow to submit a forecast

- 1. Read EFI-NEON Challenge documentation (neon4cast.org)
- 2. Investigate the forecast target variables

3. Build/apply your model!

- 4. Produce forecast of future conditions SUBMIT TO THE CHALLENGE!
- 5. Register, complete model description, and submit your forecasts
- 6. Wait for the scores to come in and revel in the glory of predicting the future (~5-day before first evaluation)
- 7. Use new data to update the model
- 8. Submit another forecast! And another...

Questions?

https://xkcd.com/2370

Let's forecast!

- 1. Follow-along R markdown
 - Forecasting water temperature using a Linear model with air temperature
- 2. Modify the model and submit your forecast!
 - More/other covariates
 - Different model structures
 - Other variables

Big thanks to the EFI-NEON team - especially

Quinn Thomas (Virginia Tech) and Carl Boettiger

(UC-Berkley) developers of the

cyberinfrastructure underpinning the Challenge.

For questions contact

eco4cast.initiative@gmail.com

Visit ecoforecast.org & neon4cast.org