Восстановление трехмерных моделей по изображениям

Виктор Ерухимов, Itseez3D

Восстановление трехмерных моделей

- Вход: изображения (RGBD, IMU) статической сцены
- Выход: одна или несколько моделей, каждая из которых представлена сеткой (набор треугольников) и (опционально) текстурой

Робототехника

Autonomous drones

Tightly-Coupled Monocular Visual-Inertial Fusion for Autonomous Flight of Rotorcraft MAVs

Shaojie Shen, Nathan Michael, and Vijay Kumar

Дополненная реальность

Сканирование зубов

3shape♪

Производство кино

Создание цифровых людей

Фотограмметрия

Image credit: James Busby, Ten 24 Media, https://80.lv/articles/photogrammetry-how-does-it-help/

Фотограмметрия

Основные этапы создания 3D моделей

- Вычисление положения камер и координат трехмерных точек
- Построение поверхности
- Текстурирование

Камера

Камера-обскура (pinhole camera)

Проекция камеры-обскуры

- Прямые линии проектируются в прямые линии
- Параллельные прямые проектируются в пересекающиеся

Проекция до эпохи Возрождения

Дуччо ди Буонинсенья «Благовещение» 1308-1311

Возникновение проективной геометрии (начало эпохи Возрождения)

Возникновение проективной геометрии

- Иоганн Кеплер и Жерар Дезарг (начало XVII века): бесконечно далекие точки, точка на бесконечности, прямая на бесконечности
- Жан-Виктор Понселе, Мишель Шаль (первая половина XIX века): проективное пространство
- Август Фердинанд Мебиус (середина XIX века): однородные координаты

Модель камеры-обскуры

Проективное пространство

- Состоит из множества прямых линий, проходящих через нулевую точку линейного пространства, включает точку на бесконечности
- Если линейное пространство трехмерное, то проективное пространство называют проективной плоскостью **Р**²

Однородные координаты

Точка на проективной плоскости
$$\vec{p} = \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} \in P^2$$

ставится в соответствие всем точкам из трехмерного пространства, проектирующимся в нее:

$$\vec{u} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = z \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} \in \mathbb{R}^3$$

(х,у,z) называют однородными координатами точки р.

Однородные координаты

Уравнение прямой:

$$p^{T}l = 0$$
 $p_{x}l_{x} + p_{y}l_{y} + p_{z}l_{z} = 0$

Прямая, проходящая через две точки:

$$l = p_1 \times p_2 \qquad \qquad p_i^T p_1 \times p_2 = 0$$

Пересечение прямых:

$$p = l_1 \times l_2 \qquad \qquad l_i^T l_1 \times l_2 = 0$$

Модель камеры-обскуры

Матрица проекции камеры

$$w\begin{pmatrix} u \\ v \\ 1 \end{pmatrix} = \begin{pmatrix} f_{x} & 0 & c_{x} \\ 0 & f_{y} & c_{y} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$$

Матрица проекции камеры

$$w\begin{pmatrix} u \\ v \\ 1 \end{pmatrix} = \begin{pmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{pmatrix} \begin{bmatrix} R|T \end{bmatrix} \begin{pmatrix} X_0 \\ Y_0 \\ Z_0 \\ 1 \end{pmatrix}$$

Матрица проекции камеры

Стереозрение

Стерео ректификация

 После калибрации стереопары, мы можем сделать эпиполярные линии горизонтальными

Stereo correspondence block matching

For each block in left image:

Search for the corresponding block in the right image such that SSD or SAD between pixel intensities is minimum

iPhone X True Depth camera

Стереозрение

Нахождение фундаментальной матрицы

- Находим ключевые точки и соответствия между ними (SIFT etc)
- При помощи RANSAC фильтруем неправильные соответствия и находим фундаментальную матрицу

Ключевые точки

Соответствия

Random Sample Consensus

- Do n iterations until #inliers > inlierThreshold
 - Draw k matches randomly
 - Find the transformation
 - Calculate inliers count
 - Remember the best solution

The number of iterations required ~
$$10*\left(\frac{\# matches}{\# inliers}\right)^{\kappa}$$

Финальный результат

Оценка позы объекта (задача PnP)

Точки, $\left\{ \begin{pmatrix} u_i \\ v_i \end{pmatrix} \right\}_{i=1..n}$ изображении:

Трехмерные координаты в системе отсчета объекта $egin{pmatrix} X_i \\ Y_i \\ Z_i \end{pmatrix}_{i=1..n}$

Класс решений – поворот и трансляция:

$$f\begin{bmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}, R, T \end{bmatrix} = R \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} + T$$

Ошибка репроекции

$$w_{i} \begin{pmatrix} u_{i}^{p} \\ v_{i}^{p} \\ 1 \end{pmatrix} = P \begin{pmatrix} X_{i} \\ Y_{i} \\ Z_{i} \\ 1 \end{pmatrix}$$

$$error(P) = \sum_{i} \left[\begin{pmatrix} u_i \\ v_i \end{pmatrix} - \begin{pmatrix} u_i^p \\ v_i^p \end{pmatrix} \right]^2$$

Perspective-n-Points problem

$$\min_{R, T} \operatorname{error}(K, R, T)$$

- P3P, P4P
- Levenberg-Marquardt
- RANSAC
- O(N) closed-form methods
 - See Hesch J.A., Roumeliotis S.I. A direct least-squares (DLS) method for pnp; Proceedings of the IEEE International Conference on Computer Vision; Barcelona, Spain. 6–13 November 2011; pp. 383–390.

Восстановление ЗД сцены при помощи одной камеры

SLAM: Simultaneous Localization and Mapping

Structure from Motion

Даны два изображения одной и той же сцены. Требуется восстановить трехмерную структуру.

- 1) Внутренние параметры камеры известны
- 2) Внутренние параметры камеры неизвестны

Теорема о проективной реконструкции

- P_i, P_i'– матрицы проекции камер
- $q_i, q'_i \in P^2, Q_{ki} \in P^3$.
- Пусть $\{(q_i,q_i')\}$ пары соответствующих точек на двух изображениях, и существует единственная F такая, что $q_i'Fq_i=0$ для всех i. Пусть $(P_1,P_1',\{Q_{1i}\})$ и $(P_2,P_2',\{Q_{2i}\})$ две реконструкции, соответствующие $\{(q_i,q_i')\}$.
- Тогда существует несингулярная матрица Н такая, что $P_2 = P_1 H^{-1}$, $P'_2 = P'_1 H^{-1}$ и $Q_{2i} = HQ_{1i}$, для всех і, кроме точек, лежащих на линии, соединяющей центры камер.

Проективное преобразование **R**³

$$X = \frac{H_{11}X_0 + H_{12}Y_0 + H_{13}Z_0 + H_{14}}{H_{41}X_0 + H_{42}Y_0 + H_{43}Z_0 + H_{44}}$$

$$Y = \frac{H_{21}X_0 + H_{22}Y_0 + H_{23}Z_0 + H_{24}}{H_{41}X_0 + H_{42}Y_0 + H_{43}Z_0 + H_{44}}$$

$$Z = \frac{H_{31}X_0 + H_{32}Y_0 + H_{33}Z_0 + H_{34}}{H_{41}X_0 + H_{42}Y_0 + H_{43}Z_0 + H_{44}}$$

Нахождение плоскости на бесконечности

Structure from Motion

• При известных внутренних параметрах камеры и наличии достаточного количества правильных соответствий (минимум 5), можно однозначно восстановить относительные позы камер (кроме вырожденных случаев) с точностью до масштаба

ORB-SLAM2

ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras

Raúl Mur-Artal and Juan D. Tardós

raulmur@unizar.es

tardos@unizar.es

Sparse Bundle Adjustment

$$\min_{i,j} \sum_{i} \sum_{j} v_{ij} d(P_j Q_i, q_{ij})^2$$

 P_{j} -- матрица проекции ј-й камеры $Q_{i} \in P^{3}$ -- i-я точка в трехмерном пространстве $q_{ij} \in P^{2}$ -- ее проекция на ј-е изображение v_{ij} равно 1, если q_{ij} присутствует на изображении ј, иначе 0

Large-Scale SLAM: Colosseum

Agarwal, Noah Snavely, Ian Simon, Steven M. Seitz and Richard Szeliski, *Building Rome in a Day.* ICCV 2009

Large-Scale SLAM: Dubrovnik

Agarwal, Noah Snavely, Ian Simon, Steven M. Seitz and Richard Szeliski, *Building Rome in a Day.* ICCV 2009

Meshing

Poisson Surface Reconstruction

Seminal paper:

M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson Surface Reconstruction. Symposium on Geometry Processing, 2006

2000 citations

The Indicator Function

 Reconstruct the surface of the model by solving for the indicator function of the shape:

$$\chi_M(p) = \begin{cases} 1 & \text{if } p \in M \\ 0 & \text{if } p \notin M \end{cases}$$

Challenge

How to construct the indicator function?

Gradient Relationship

 There is a relationship between the normal field and gradient of indicator function

Integration

- Represent the points by a vector field \dot{V}
- Find the function χ whose gradient best approximates \vec{V} :

$$\min_{\chi} \left\| \nabla \chi - \vec{V} \right\|$$

Integration as a Poisson Problem

- Represent the points by a vector field \dot{V}
- Find the function χ whose gradient best approximates \vec{V} :

$$\min_{\chi} \left\| \nabla \chi - \vec{V} \right\|$$

Applying the divergence operator, we can transform this into a Poisson problem:

$$\nabla \cdot (\nabla \chi) = \nabla \cdot \vec{V} \quad \Leftrightarrow \quad \Delta \chi = \nabla \cdot \vec{V}$$

Implementation details

- Octree to represent the field V
- Laplace equation solved for the octree
- Marching cubes to represent the resulting surface as polygons

Example of results

 Naïve: for each vertex take average color across all images

Better: take weighted average

Example:

Callieri, M., Cignoni, P., Corsini, M. and Scopigno, R. Masked photo blending: Mapping dense photographic data set on high-resolution sampled 3D models. Computers & Graphics 2008

Fig. 2. An example of the core weighting masks. From left to right: Angle Mask, Depth Mask, Border Mask. Rightmost, all the masks combined in the final mask. Caveat: the contrast of the depth and border masks has been increased for enhanced readability.

Example of results

itSeez3D

Computed mesh

Final 3D model

Disclaimer: itSeez3d may or may not use the described algorithms.

Трехмерное сканирование

Восстановление модели лица человека по одной фотографии

• Данных недостаточно

• Изображение сильно зависит от освещения, камеры и внешнего вида человека

Параметрическая модель лица

- Множество трехмерных моделей лиц приводится к одной топологии и одному размеру
- Обучается параметрическая модель с относительно небольшим количеством параметров
- Тренируется модель, предсказывающая эти параметры по изображению

V. Blanz, T. Vetter. A Morphable Model For The Synthesis Of 3D Faces. SIGGRAPH 1999.

A. Jackson et al, Large Pose 3D Face Reconstruction from a Single Image via Direct Volumetric CNN Regression, ICCV 2017

Параметрическая модель лица

V. Blanz, T. Vetter. A Morphable Model For The Synthesis Of 3D Faces. SIGGRAPH 1999.

Avatar SDK

Deep neural network

50K high quality 3D models of faces 30 million parameters, trained for a month on 2x Titan X (Maxwell)

Unique shape and texture for each image!

Examples of Avatar SDK Head avatars

Examples of Avatar SDK Head avatars

Некоторые нерешенные задачи

- Robust SLAM, работающий на маломощной архитектуре
- Реконструкция нетвердых объектов
- Фотореалистичная реконструкция по неполным данным
- Реконструкция по неполным данным без базы трехмерных моделей

Cnacu6o!

Bиктор Ерухимов Itseez3D support@itseez3d.com

