# Grundlagen der Informationstechnik

Übung 03 - IP Layer

Technische Universität Carolo-Wilhelmina zu Braunschweig Institut für Datentechnik und Kommunikationsnetze (IDA)
Abteilung Kommunikationsnetze





## A1) Adressvergabe mittels CIDR

Ein Unternehmen benötigt von einem Provider 1000 Host-Adressen. Dieser verwendet CIDR um einen geeignenten zusammenhängenden Adressbereich bereitzustellen. Zeigen Sie diesen Adressbereich und die Netzmaske, falls der Adressbereich bei 194.168.56.0 beginnen soll.





## Classless Inter-Domain Routing (CIDR, RFC 1519) Kommunikationsnetze (WS 2023/24)

- Netzwerk-Präfixe variabler Länge ersetzen ursprünglich feste Bereiche (Klasse A - 8 Bit, Klasse B – 16 Bit, Klasse C – 24 Bit)
  - Beispiel 1: 194.168.56.0 / 24
  - Der Netzwerk Präfix hat eine Länge von 24 Bit (früher Klasse C Netz)
  - Beispiel 2: 194.168.56.0 / 22
    - Der Präfix hat eine Länge von 22 Bit
    - Die ersten 22 Bit der IP Adresse kennzeichnen das Netzwerk

#### Konsequenz:

- IP- Adressbereiche können in variablen Blockgrößen vergeben werden
- Länge des Netzwerk-Präfixes muss mit IP Adresse angegeben werden
- Anmerkung: CIDR wurde im Zusammenhang mit dem Border Gateway Routing Protokoll (BGP) eingeführt





- Unternehmen benötigt 1000 Host-Adressen
- Hierfür ist ein Adress-Block der Größe 2<sup>10</sup> 2 = 1022 erforderlich
  - Es werden 10 Bit für den Host-Teil der IP Adresse benötigt

Adressen: 11000010.10101000.001110 00.00000001 ⇔ 194.168.56.1

Maske: 111111111111111111111 00.0000000 ⇔ 255.255.252.0

Präfix: 11000010.10101000.001110 00.00000000 ⇔ 194.168.56.0 / 22

|----- network-prefix ------|

- Netzwerk-Adresse ist 194.168.56.0 / 22, Präfix-Länge ist 22 Bit
- Host Adress-Bereich ist 194.168.56.1 194.168.59.254





## A2) Longest Prefix Matching

Ein Router besitzt die unten gezeigte Weiterleitungstabelle. Eine gegebene IP-Adresse verknüpft der Router mit den in der Weiterleitungstabelle gegebenen Netzmasken und wählt den nächsten Hop mit dem korrespondierenden Netzwerk-Präfix aus. Sind mehrere Netzwerk-Präfixe gültig, wird der gewählt, bei dem die meisten Bits übereinstimmen (Longest-Prefix-Matching). Führen sie die IP-Vermittlung für folgende IP-Zieladressen durch:

| Netz-Präfix  | Netz-Maske        | Nächster Hop |
|--------------|-------------------|--------------|
| 128.96.170.0 | 255.255.254.0 /23 | Interface 0  |
| 128.96.168.0 | 255.255.252.0 /22 | Interface 1  |
| 128.96.166.0 | 255.255.254.0 /23 | R2           |
| 128.96.164.0 | 255.255.252.0 /22 | R3           |
| default      |                   | R4           |

- a) 128.96.171.92
- b) 128.96.167.151
- c) 128.96.163.151
- d) 128.96.165.121





| Netzwerkmasken    | Byte 1    | Byte 2    | 128 | 64 | 32 | 16 | 8  | 4           | 2  | 1 | Byte 4    |
|-------------------|-----------|-----------|-----|----|----|----|----|-------------|----|---|-----------|
| 255.255.254.0     | 11111111. | 11111111. | 1   | 1  | 1  | 1  | 1  | 1           | 1  | 0 | .00000000 |
| 255.255.252.0     | 11111111. | 11111111. | 1   | 11 | 1  | 11 | 11 | 1           | 0  | 0 | .00000000 |
| Netz-Präfixe      |           |           |     |    | İ  |    |    | İ           | İ  |   |           |
| 128.96.170.0      | 128.      | 96.       | 1   | 0  | 1  | 0  | 1  | 0           | 1  | 0 | .0        |
| 128.96.168.0      | 128.      | 96.       | 1   | 0  | 1  | 0  | 1  | 0           | 0  | 0 | .0        |
| 128.96.166.0      | 128.      | 96.       | 1   | 0  | 1  | 0  | 0  | i<br>1<br>1 | 1  | 0 | .0        |
| 128.96.164.0      | 128.      | 96.       | 1   | 0  | 1  | 0  | 0  | 11          | 0  | 0 | .0        |
| IP-Adressen       |           |           |     |    |    |    |    |             |    |   |           |
| a) 128.96.171.92  | 128.      | 96.       | 1   | 0  | 1  | 0  | 11 | 0           | 11 | 1 | .92       |
| b) 128.96.167.151 | 128.      | 96.       | 1   | 0  | 1  | 0  | 0  | 1           | 1  | 1 | .151      |
| c) 128.96.163.151 | 128.      | 96.       | 1   | 0  | 1  | 0  | 0  | 0           | 1  | 1 | .151      |
| d) 128.96.165.121 | 128.      | 96.       | 1   | 0  | 1  | 0  | 0  | 1           | 0  | 1 | .121      |





## a) 128.96.171.92

| IP ^ Netzmaske     | Byte1 | Byte2 | 128 | 64   | 32          | 16   | 8                  | 4      | 2                  | <br>  <b>1</b><br> | Byte 4 | Netz-Präfix  | Näch. Hop |
|--------------------|-------|-------|-----|------|-------------|------|--------------------|--------|--------------------|--------------------|--------|--------------|-----------|
| 128.96.171.92      | 128.  | 96.   | 1   | 0    | <br>  1<br> | 0    | <br>  <b>1</b><br> | 0      | <br>  <b>1</b><br> | 0                  | .0     | 128.96.170.0 | IF 0      |
| 255.255.254.0      |       |       |     | <br> | <br>        | <br> | <br>               | <br>   | <br>               | <u> </u>           |        |              |           |
| 128.96.171.92<br>^ | 128.  | 96.   | 1   | 0    | 1           | 0    | 1                  | 0      | 0                  | 0                  | .0     | 128.96.168.0 |           |
| 255.255.252.0      |       |       |     |      |             |      | <u> </u>           | !<br>! | <u> </u>           | !<br> <br>!        |        |              |           |

|          | Netz-Präfix  | Netz-Maske        | Nächster Hop |
|----------|--------------|-------------------|--------------|
| <b>→</b> | 128.96.170.0 | 255.255.254.0 /23 | Interface 0  |
|          | 128.96.168.0 | 255.255.252.0 /22 | Interface 1  |
|          | 128.96.166.0 | 255.255.254.0 /23 | R2           |
|          | 128.96.164.0 | 255.255.252.0 /22 | R3           |
|          | default      |                   | R4           |





## b) 128.96.167.151

| IP ^ Netzmaske | Byte1 | Byte2 | 128 | 64   | 32 | 16 | 8         | 4           | 2           | <br>  <b>1</b> | Byte 4 | Netz-Präfix  | Näch. Hop |
|----------------|-------|-------|-----|------|----|----|-----------|-------------|-------------|----------------|--------|--------------|-----------|
| 128.96.167.151 | 128.  | 96.   | 1   | 0    | 1  | 0  | 0         | <br>  1<br> | <br>  1<br> | 0              | .0     | 128.96.166.0 | R2        |
| 255.255.254.0  |       |       |     | <br> |    |    | j<br>I    | <br>        | <br>        | j<br>          |        |              |           |
| 128.96.167.151 | 128.  | 96.   | 1   | 0    | 1  | 0  | 0         | 1           | 0           | 0              | .0     | 128.96.164.0 |           |
| 255.255.252.0  |       |       |     |      |    |    | <br> <br> |             |             | <br> <br>      |        |              |           |

|          | Netz-Präfix  | Netz-Maske        | Nächster Hop |
|----------|--------------|-------------------|--------------|
|          | 128.96.170.0 | 255.255.254.0 /23 | Interface 0  |
|          | 128.96.168.0 | 255.255.252.0 /22 | Interface 1  |
| <b>→</b> | 128.96.166.0 | 255.255.254.0 /23 | R2           |
|          | 128.96.164.0 | 255.255.252.0 /22 | R3           |
|          | default      |                   | R4           |





## c) 128.96.163.151

| IP ^ Netzmaske | Byte1 | Byte2 | 128 | 64   | 32          | 16   | <br>  8<br> | 4      | 2           | <br>  <b>1</b> | Byte 4 | Netz-Präfix  | Näch. Hop |
|----------------|-------|-------|-----|------|-------------|------|-------------|--------|-------------|----------------|--------|--------------|-----------|
| 128.96.163.151 | 128.  | 96.   | 1   | 0    | <br>  1<br> | 0    | 0<br>       | 0      | <br>  1<br> | 0              | .0     | 128.96.162.0 | R4        |
| 255.255.254.0  |       |       |     | <br> | <br>        | <br> | <br>        | <br>   | <br>        | <br>           |        |              | (default) |
| 128.96.163.151 | 128.  | 96.   | 1   | 0    | 1           | 0    | 0           | 0      | 0           | 0              | .0     | 128.96.160.0 | R4        |
| 255.255.252.0  |       |       |     |      |             |      | <br>        | !<br>! |             | <br>           |        |              | (default) |

| Netz-Präfix  | Netz-Maske        | Nächster Hop |
|--------------|-------------------|--------------|
| 128.96.170.0 | 255.255.254.0 /23 | Interface 0  |
| 128.96.168.0 | 255.255.252.0 /22 | Interface 1  |
| 128.96.166.0 | 255.255.254.0 /23 | R2           |
| 128.96.164.0 | 255.255.252.0 /22 | R3           |
| default      |                   | R4           |





d) 128.96.165.121

| IP ^ Netzmaske | Byte1 | Byte2 | 128 | 64   | 32 | 16   | 8          | 4           | 2    | <br>  <b>1</b><br> | Byte 4 | Netz-Präfix  | Näch. Hop |
|----------------|-------|-------|-----|------|----|------|------------|-------------|------|--------------------|--------|--------------|-----------|
| 128.96.165.121 | 128.  | 96.   | 1   | 0    | 1  | 0    | 0          | <br>  1<br> | 0    | 0                  | .0     | 128.96.164.0 | R3        |
| 255.255.254.0  |       |       |     | <br> |    | <br> | <br>       | <br>        | <br> |                    |        |              |           |
| 128.96.165.121 | 128.  | 96.   | 1   | 0    | 1  | 0    | 0          | 1           | 0    | 0                  | .0     | 128.96.164.0 | R3        |
| 255.255.252.0  |       |       |     |      |    | <br> | !<br> <br> |             |      | <br> <br>          |        |              |           |

|          | Netz-Präfix  | Netz-Maske        | Nächster Hop |
|----------|--------------|-------------------|--------------|
|          | 128.96.170.0 | 255.255.254.0 /23 | Interface 0  |
|          | 128.96.168.0 | 255.255.252.0 /22 | Interface 1  |
|          | 128.96.166.0 | 255.255.254.0 /23 | R2           |
| <b>→</b> | 128.96.164.0 | 255.255.252.0 /22 | R3           |
|          | default      |                   | R4           |





## A3) IP Payload Typ

Ein Host A sendet einem Host B alle 20 ms ein Datagramm, welches ein TCP-Segment der Größe 40 Bytes enthält. Wenn Host B das Datagramm erhält, wie weiß das Network-Layer in Host B, dass die Payload an TCP weitergeleitet werden muss und nicht an UDP? Wie groß ist der Overhead auf dem Network-Layer?





- TCP Overhead 20 Bytes
- 8-Bit Protokoll Feld enthält Protokollnummer zur Identifikation des Transportschichtprotokolls

| 0                                                    | 4                                             | 8                                   |               | 16        | 19      | 31 |  |
|------------------------------------------------------|-----------------------------------------------|-------------------------------------|---------------|-----------|---------|----|--|
| Version                                              | Header-<br>Length                             | ········ DS IECNI TOTAL EDOM ON EST |               |           |         |    |  |
| 16 Bit - Identification Flags 13-Bit-Fragment offset |                                               |                                     |               |           |         |    |  |
| 300000000                                            | Time-to-live (TTL) Protocol Header - checksum |                                     |               |           |         |    |  |
|                                                      |                                               | 32-Bit –                            | IP – <u>s</u> | ource ac  | ddress  |    |  |
|                                                      |                                               | 32-Bit – IP                         | – des         | stination | address |    |  |
| Options (0 to 40 bytes)                              |                                               |                                     |               |           |         |    |  |
| Payload                                              |                                               |                                     |               |           |         |    |  |



## A4) Mehrfach Fragmentierung

Ein TCP-Segment inklusive des TCP-Headers ist 2436 Byte lang und soll mittels des IP-Protokolls über 2 Netzwerke zum Ziel-Host vermittelt werden. Es wird angenommen, dass der IP-Header keine Optionen enthält.

- Das erste Netzwerk besitzt eine MTU = 1188 Byte, das zweite eine MTU = 576 Byte. Geben Sie die Größen und den Offset aller Fragmente in den beiden Netzen an. Zeigen Sie die Defragmentierung im Ziel-Host.
  - Mittels einer path-MTU Discovery-Prozedur erfährt der Quell-Host, dass die path-MTU 576 Byte beträgt. Geben Sie die Größen und Anzahl der Fragmente für diesen Fall an.
  - Warum wird der Fragment-Offset in Vielfachen von 8 Byte angegeben





Nutzdaten von 2436 Byte werden in N Fragmente aufgeteilt

#### Netz 1:

MTU1 = 1188 Byte

→ 1188 Byte – 20 Byte IP-Header = 1168 Byte für Nutzdaten je Fragment

Offset: 1168 / 8 = 146

→ maximale Nutzdatenlänge Vielfaches von 8





| Fragmente im | Netz1      |               | Fragmente im | n Netz2 |               |
|--------------|------------|---------------|--------------|---------|---------------|
| Nutzdaten    | Offset     | Fragmentlänge | Nutzdaten    | Offset  | Fragmentlänge |
| 1168 Byte    | 0          | 1188 Byte     |              |         |               |
|              |            |               |              |         |               |
|              |            |               |              |         |               |
| 1168 Byte    | 1168/8=146 | 1188 Byte     |              |         |               |
|              |            |               |              |         |               |
|              |            |               |              |         |               |
| 100 Byte     | 2336/8=292 | 120 Byte      |              |         |               |

#### Netz 2:

MTU2 = 576 Byte

→ 576 Byte– 20 Byte IP-Header = 556 Byte für Nutzdaten je Fragment

Offset: 556 / 8 = 69,5

- → maximale Nutzdatenlänge nicht Vielfaches von 8
- → maximal 8 \* 69 = 552 Byte Nutzdaten in den Fragmenten 1,...,N-1
  - → maximal 556 Byte im letzten Fragment



| Fragmente im Netz1      |              |               | Fragmente im Netz2 |              |               |
|-------------------------|--------------|---------------|--------------------|--------------|---------------|
| Nutzdaten Offset Fragm  |              | Fragmentlänge | Nutzdaten          | Offset       | Fragmentlänge |
| 1168 Byte 0 1188 Byte ! |              | 552 Byte      | 0                  | 572 Byte     |               |
|                         |              |               | 552 Byte           | 522/8 = 69   | 572 Byte      |
|                         |              |               | 64 Byte            | 1104/8 = 138 | 84 Byte       |
| 1168 Byte               | 1168/8 = 146 | 1188 Byte     | 552 Byte           | 1168/8 = 146 | 572 Byte      |
|                         |              |               | 552 Byte           | 215          | 572 Byte      |
|                         |              |               | 64 Byte            | 284          | 84 Byte       |
| 100 Byte                | 2336/8 = 292 | 120 Byte      | 100 Byte           | 292          | 120 Byte      |



#### Defragmentierung im Ziel-Host:

| 552 Byte | 552 Byte | 64 By | yte 552 | 2 Byte | 552 Byte | 64 Byte | 100 Byte | Fragmente |
|----------|----------|-------|---------|--------|----------|---------|----------|-----------|
| 0        | 69       | /138  | /46     | 21     | 15       | 284 $2$ | 92       | Offset    |
| 0        | 552      | 1104  | 1168    | 1720   | ) 227    | 2 2336  |          | Datagramm |



b) Mittels einer path-MTU Discovery Prozedur erfährt der Quell-Host, dass die path-MTU 576 Byte beträgt. Geben Sie die Größen und Anzahl der Fragmente für diesen Fall an.

Path-MTU = 576 Byte

- → maximal 8 \* 69 = 522 Byte Nutzdaten pro Fragment
  - $\rightarrow$  2436 Byte = 4 \* 522 Byte + 228 Byte
    - → Anzahl der Fragmente: 5



c) Warum wird der Fragment-Offset in Vielfachen von 8 Byte angegeben?

Maximale Länge der Nutzdaten eines Datagramms:

$$(2^{16} - 1)$$
 Byte – 20 Byte Header =  $(65535 - 20)$  Byte =  $65515$  Byte

Offset-Feld hat 13 Bit:

 $\rightarrow$  maximaler Wert des Offsets ist: (2<sup>13</sup>-1) \* 8 Byte = 8191 \* 8 Byte = 65528 Byte

Da der Offset ein Vielfaches von 8 Byte darstellt, lässt sich mit einem 13 Bit Feld der Offset für ein Datagramm maximaler Länge angeben, falls dieses in Fragmente zerlegt wird.



## A5) IP Forwarding

Der gezeigte Netzausschnitt umfasst 2 Router und 5 Hosts (PCs), die über Ethernet-Segmente (R1, R2, sowie Hosts A, B, C und E) oder direkt (Host D) gekoppelt sind.



Die Adresszuordnung auf der Ethernet-Layer (MAC Adressen) und der Network-Layer (IP-Adressen) zeigen die folgenden Tabellen.

|    | Router 1          |              |
|----|-------------------|--------------|
| IF | MAC Adresse       | IP-Adresse   |
| 0  | 00.1c.58.bb.4c.d7 | 194.168.59.4 |
| 1  | 00.1c.58.bb.4c.d8 | 194.168.6.27 |
| 2  | 00.1c.58.bb.4c.d9 | 194.168.70.9 |

| Router 2 |                   |                |  |  |
|----------|-------------------|----------------|--|--|
| IF       | MAC Adresse       | IP-Adresse     |  |  |
| 0        | 00.1d.46.f1.dd.b0 | 194.105.12.250 |  |  |
| 1        | 00.1d.46.f1.dd.b1 | 194.168.70.72  |  |  |

| Host | MAC Adresse       | IP-Adresse   |
|------|-------------------|--------------|
| Α    | 00.1f.58.de.a1.c1 | 194.168.59.1 |
| В    | 00.1f.58.de.a2.c2 | 194.105.12.2 |
| С    | 00.1f.58.bb.a3.c3 | 194.105.12.1 |
| D    | 00.1f.58.bb.a4.c4 | 194.168.6.1  |
| E    | 00.1f.58.bb.a5.c5 | 194.168.70.1 |





## A5) IP Forwarding

Die logische Darstellung der IP-Netzwerkstruktur auf der Network-Layer und die Forwarding Tabellen in den Routern und in Host A zeigt das folgende Diagram.

| Forwarding Table in Router 1  |               |   |  |
|-------------------------------|---------------|---|--|
| Prefix   next Router          |               |   |  |
| 194.168.59.0/24               | direct        | 0 |  |
| 194.168.6.0/24 direct         |               |   |  |
| 194.168.70.0/24 direct        |               |   |  |
| 194.105.12.0/24 194.168.70.72 |               |   |  |
| default                       | 194.168.70.72 | 2 |  |

| Forwarding Table in Router 2 |              |   |  |
|------------------------------|--------------|---|--|
| Prefix next Router           |              |   |  |
| 194.105.12.0/24              | direct       | 0 |  |
| 194.168.70.0/24              | direct       | 1 |  |
| 194.168.6.0/24               | 194.168.70.9 | 1 |  |
| 194.168.59.0/24              | 194.168.70.9 | 1 |  |
| default                      | 194.168.70.9 | 0 |  |



| Forwarding Table in Host A |              |   |  |
|----------------------------|--------------|---|--|
| Prefix   next Router   IF  |              |   |  |
| 194.168.59.0/24 direct     |              |   |  |
| default                    | 194.168.59.4 | 0 |  |





## A5) IP Forwarding

Die Layer 2 Informationen einiger Netzelemente ist in folgenden ARP-Tabellen dargestellt.

| ARP - Cache im Router 1     |                                        |  |  |
|-----------------------------|----------------------------------------|--|--|
| IP-Adresse   L2 MAC Adresse |                                        |  |  |
| 194.168.59.1                | 00.1f.58.de.a1.c1                      |  |  |
| 194.168.6.1                 | 00.1f.58.bb.a4.c4<br>00.1d.46.f1.dd.b1 |  |  |
| 194.168.70.72               | 00.1d.46.f1.dd.b1                      |  |  |

| ARP - Cache im Router 2     |                   |  |  |
|-----------------------------|-------------------|--|--|
| IP-Adresse   L2 MAC Adresse |                   |  |  |
| 194.168.70.9                | 00.1c.58.bb.4c.d9 |  |  |
| 194.168.70.1                | 00.1f.58.bb.a5.c5 |  |  |
| 194.105.12.1                | 00.1f.58.de.a3.c3 |  |  |

| ARP - Cache im Host A     |                   |  |  |
|---------------------------|-------------------|--|--|
| IP-Adresse L2 MAC Adresse |                   |  |  |
| 194.168.59.4              | 00.1c.58.bb.4c.d7 |  |  |

Es soll ein Datagramm von Host A zum Zielhost B gesendet werden. Zeigen und erläutern Sie das abschnittsweise Forwarding der Datagramme unter Angabe der Ethernet-MAC- und der IP-Datagramm-Header.

- Der ARP Cache (Adressumsetztabelle) liefert die Zuordnung
  IP-Adresse => Layer-2 Hardware-Adresse
  - ARP Cache wird automatisch durch das ARP Protokoll erstellt
  - Einträge werden nach einem Zeitintervall gelöscht





## Adressumsetzung mittels ARP

Problem: MAC Adresse von Host A nicht im ARP - Cache vorhanden

- Router 1 sendet ARP-Request per LAN- Broadcast an alle LAN- Systeme "Wie lautet die HW-Adresse von Host A"
- Host A erkennt seine eigene IP-Adresse im ARP-Request
  - Quelle IP-Adresse => Quelle HW-Adresse in ARP Cache Host A





## Adressumsetzung mittels ARP (2)

- Host A schickt dem Router 1 ein ARP-Reply
  - Dieses enthält seine IP und Layer 2 Hardware
     – Adresse
- Router 1 kopiert aus dem ARP-Reply die Zuordnung
  - Quelle IP-Adresse => Quelle HW-Adresse in ARP Cache Router 1



Datagramm von **Host A** (194.168.59.1) zum Zielhost B (194.105.12.2)

#### I) Zielnetzwerk in FT ermitteln

194.105.12.2/24⇔194.105.12.0 → kein Match

→ Default Eintrag wählen

GW 194.168.59.4 über Interface 0

| Forwarding Table (FT) in Host A |        |   |  |
|---------------------------------|--------|---|--|
| Prefix   next Router  IF        |        |   |  |
| 194.168.59.0/24                 | direct | 0 |  |
| default194.168.59.4 (           |        |   |  |

| Forwarding Table in Router 1 |               |   |  |
|------------------------------|---------------|---|--|
| Prefix   next Router         |               |   |  |
| 194.168.59.0/24 direct       |               |   |  |
| 194.168.6.0/24 direct        |               |   |  |
| 194.168.70.0/24              |               | 2 |  |
| 194.105.12.0/24              | 194.168.70.72 | 2 |  |
| default                      | 194.168.70.72 | 2 |  |

| Forwarding Table in Router 2 |              |   |  |
|------------------------------|--------------|---|--|
| Prefix   next Router         |              |   |  |
| 194.105.12.0/24 direct       |              |   |  |
| 194.168.70.0/24 direct       |              |   |  |
| 194.168.6.0/24               | 194.168.70.9 | 1 |  |
| 194.168.59.0/24              | 194.168.70.9 | 1 |  |
| default                      | 194.168.70.9 | 0 |  |



| Forwarding Table in Host A |              |   |
|----------------------------|--------------|---|
| Prefix   next Router   IF  |              |   |
| 194.168.59.0/24            |              | 0 |
| default                    | 194.168.59.4 | 0 |





Datagramm von **Host A** (194.168.59.1) zum Zielhost B (194.105.12.2)

#### I) Zielnetzwerk in FT ermitteln

194.105.12.2/24⇔194.105.12.0 → kein Match

→ Default Eintrag wählen

GW 194.168.59.4 über Interface 0

| Forwarding Table (FT) in Host A |        |   |
|---------------------------------|--------|---|
| Prefix   next Router  IF        |        |   |
| 194.168.59.0/24                 | direct | 0 |
| default — 194.168.59.4          |        | 0 |

#### II) Layer 2 Adresse (MAC) von GW (R1) ermitteln

Eintrag in ARP-Tabelle für GW-IP verwenden

|   | ARP - Cache im Host A |                   |  |
|---|-----------------------|-------------------|--|
|   | IP-Adresse L2 MAC Ad  |                   |  |
| _ | 194.168.59.4          | 00.1c.58.bb.4c.d7 |  |

#### III) Datagramm über Data-Link Layer an R1

- Layer 2 Ziel-Adresse (MAC) von R1 / IF0
- MAC-Quell-Adresse von Host A
- Ziel-IP-Adresse von Host B
- Quell-IP-Adresse von Host A

| Host | MAC Adresse       | IP-Adresse   |
|------|-------------------|--------------|
| A    | 00.1f.58.de.a1.c1 | 194.168.59.1 |



#### Datagramm von Host A mit Ziel 194.105.12.2 ist im Router 1

#### I) Zielnetzwerk in FT ermitteln

194.105.12.2/24⇔194.105.12.0 → Match GW 194.168.70.72 über Interface 2

| Forwarding Table in Router 1 |               |    |
|------------------------------|---------------|----|
| Prefix   next Router         |               | IF |
| 194.168.59.0/24              | direct        | 0  |
| 194.168.6.0/24               | direct        | 1  |
| 194.168.70.0/24              | direct        | 2  |
| 194.105.12.0/24              |               |    |
| default                      | 194.168.70.72 | 2  |

#### II) MAC Adresse von GW (R2) ermitteln

Eintrag in ARP-Tabelle für GW-IP verwenden

|   | ARP - Cache im Router 1     |                                        |  |
|---|-----------------------------|----------------------------------------|--|
|   | IP-Adresse   L2 MAC Adresse |                                        |  |
|   | 194.168.59.1                | 00.1f.58.de.a1.c1                      |  |
|   | 194.168.6.1                 | 00.1f.58.bb.a4.c4<br>00.1d.46.f1.dd.b1 |  |
| 4 | 194.168.70.72               | 00.1d.46.f1.dd.b1                      |  |

## III) Datagramm über Layer 2 von R1 an R 2 senden.

- MAC-Ziel-Adresse von R2 / IF1
- MAC-Quell-Adresse von R1 / IF2
- IP-Ziel-Adresse von Host B

| B. |    |                   |              |
|----|----|-------------------|--------------|
|    |    | Router 1          |              |
|    | IF | MAC Adresse       | IP-Adresse   |
| -  | 2  | 00.1c.58.bb.4c.d9 | 194.168.70.9 |





#### Datagramm von Host A mit Ziel 194.105.12.2 ist im Router 2

#### I) Zielnetzwerk in FT ermitteln

194.105.12.2/24⇔194.105.12.0 → Match angeschlossenes LAN über Interface 0

|          | Forwarding Table in Router 2 |              |    |
|----------|------------------------------|--------------|----|
|          | Prefix   next Router         |              | ΙF |
| <b>—</b> | 194.105.12.0/24 — direct     |              | 0  |
|          | 194.168.70.0/24              | direct       | 1  |
|          | 194.168.6.0/24               | 194.168.70.9 | 1  |
|          | 194.168.59.0/24              | 194.168.70.9 | 1  |
|          | default                      | 194.168.70.9 | 0  |

| ARP - Cache im Router 2    |                                        |  |
|----------------------------|----------------------------------------|--|
| IP-Adresse   L2 MAC Adress |                                        |  |
| 194.168.70.9               | 00.1c.58.bb.4c.d9                      |  |
| 194.168.70.1               | 00.1f.58.bb.a5.c5<br>00.1f.58.de.a3.c3 |  |
| 194.105.12.1               | 00.1f.58.de.a3.c3                      |  |







#### II) MAC Adresse von Ziel-IP ermitteln

- Kein Eintrag in ARP-Tab. für Ziel-IP vorhanden
- Zuordnung Ziel-IP <-> MAC mittels ARP Protokoll ermitteln



#### ARP-Request

Quelle (Router 2): 194.105.12.250 00.1d.46.f1.dd.b0

Ziel (Host B): 194.105.12.2 00.00.00.00.00.00

00.1d.46.f1.dd.b0 ff.ff.ff.ff.ff



#### II) MAC Adresse von Ziel-IP ermitteln

- Kein Eintrag in ARP-Tab. für Ziel-IP vorhanden
- Zuordnung Ziel-IP <-> MAC mittels ARP Protokoll ermitteln



#### ARP-Request

Quelle (Router 2): 194.105.12.250 00.1d.46.f1.dd.b0

Ziel (Host B): 194.105.12.2 00.00.00.00.00

00.1d.46.f1.dd.b0 ff.ff.ff.ff.ff



194.105.12.250

00.1d.46.f1.dd.b0

#### Datagramm von Host A mit Ziel 194.105.12.2 ist im Router 2

#### I) Zielnetzwerk in FT ermitteln

194.105.12.2/24⇔194.105.12.0 → Match angeschlossenes LAN über Interface 0

| Forwarding Table in Router 2 |              |   |
|------------------------------|--------------|---|
| Prefix I next Router         |              |   |
| 194.105.12.0/24 → direct     |              | 0 |
| 194.168.70.0/24              | direct       | 1 |
| 194.168.6.0/24               | 194.168.70.9 | 1 |
| 194.168.59.0/24              | 194.168.70.9 | 1 |
| default                      | 194.168.70.9 | 0 |

|     | ARP - Cache im Router 2      |                                        |
|-----|------------------------------|----------------------------------------|
|     | IP-Adresse                   | L2 MAC Adresse                         |
|     | 194.168.70.9                 | 00.1c.58.bb.4c.d9                      |
|     | 194.168.70.1<br>194.105.12.1 | 00.1f.58.bb.a5.c5<br>00.1f.58.de.a3.c3 |
| ARP |                              | 00.1f.58.de.a3.c3                      |
|     | 194.105.12.2                 | 00.1f.58.de.a2.c2                      |

III) Datagramm über Layer 2 von R2 an Host B senden.

- MAC-Ziel-Adresse von Host B
- MAC-Quell-Adresse von R2 / IF0
- IP-Ziel-Adresse von Host B



