

BM23MTECH11006 P TEJA VENKATA RAMANA KUMAR

Solution-01:

Mean well death rate =
$$\frac{\text{Total dead cell} \, \lambda}{\text{Total time taken}}$$

$$= \frac{10^6 + 5 \times 10^6 + 2 \times 10^6 + 2 \times 10^6 \, \text{(cells)}}{2 + 8 + 4 + 5 \, \text{(hr} \, \lambda)}$$

$$= 0.5263 \times 10^6 \, \text{cell} \, \text{k/h} \, \text{v}$$
It is better to

Solution-02:

with it as $5.26 \times 10^5 \, \text{cells/hr}$.

an 43.134744 mean 15.972135 mean 40.72 d 29.118697 std 3.029786 std 9.12 n -3.285399 min 11.216731 min 10.00 % 27.796190 25% 13.739758 50% 35.78 % 41.563856 50% 16.582917 75% 44.92 % 53.292637 75% 18.071467 75% 44.92	nean 43.134744 mean 15.972135 mean 40.72 std 29.118697 std 3.029786 std 9.12 min -3.285399 min 11.216731 min 10.000 25% 27.796190 25% 13.739758 25% 50% 40.314 50% 41.563856 50% 16.582917 75% 75% 44.926	43.134744 29.118697 -3.285399 27.796190	mean std min	15.972135 3.029786 11.216731	mean std min	200.000 40.721 9.122 10.000
d 29.118697 std 3.029786 std 9.12 n -3.285399 min 11.216731 min 10.00 % 27.796190 25% 13.739758 25% 35.76 % 41.563856 50% 16.582917 50% 40.31 % 53.292637 75% 18.071467 75% 44.92	std 29.118697 std 3.029786 std 9.123 min -3.285399 min 11.216731 25% min 10.000 25% 27.796190 25% 13.739758 25% 35.783 50% 41.563856 50% 16.582917 75% 50% 40.314 75% 53.292637 75% 18.071467 max 88.000	29.118697 -3.285399 27.796190	std min	3.029786 11.216731	std min	9.122
std 3.029786 n -3.285399 min 11.216731 min 10.00 % 27.796190 25% 13.739758 25% 35.78 % 41.563856 50% 16.582917 50% 40.31 % 53.292637 75% 18.071467 75% 44.92	min -3.285399 min 11.216731 min 10.000 25% 27.796190 25% 13.739758 25% 35.783 50% 41.563856 50% 16.582917 75% 50% 40.314 75% 53.292637 75% 18.071467 75% 44.924 max 88.000	-3.285399 27.796190	min	11.216731	min	
min 11.216731 % 27.796190 25% 13.739758 25% 35.78 % 41.563856 50% 16.582917 50% 40.31 % 53.292637 75% 18.071467 75% 44.92	25% 27.796190 25% 13.739758 25% 35.780 50% 16.582917 75% 53.292637 75% 18.071467 25% 38.000	27.796190				10.000
25% 13.739758 % 41.563856 50% 16.582917 % 53.292637 75% 18.071467	25% 13.739758 50% 41.563856 50% 16.582917 50% 40.314 75% 53.292637 75% 18.071467 max 88.000		25%			
50% 16.582917 % 53.292637 75% 18.071467	75% 16.582917 75% 18.071467 75% 44.924 max 88.000	41 563856		13.739758	25%	35.783
75% 18.071467	75% 18.071467 max 88.000	11.000000	50%	16.582917	50%	40.314
	max 130.000000 max 20.012265 max 88.000	53.292637	75%	18.071467	75%	44.924
130.000000 max 20.012265 max 88.00		130.000000	may	20.012265	max	88.000
t .				130,000000	120,00000	75% 18.071467 max

(ii) Justification

(a) Volume (in mm3) of AV malformation in the brain:

The data set for the volume of AV malformations in the brain experiment has outliers. So, the mean will not give an accurate value the median was good for this.

(b) Elastic modulus (in GPa) of femoral cortical bone:

The mean is very sensitive to outliers, and in the data set of the elastic modulus experiment, there are no outliers. So mean is preferred for these experiments.

(c) Hematocrit levels (in %) in dengue patients:

This experiment has most frequent observation and have outliers. So, mode was good choice for this experiment.

which dispersion measure?

Solution-03:

Justification:

3a) Degree of anisotropy in compressive strength and age for female and male donors

This scatter plot has outliers, so Pearson correlation gave an overestimated value. But the spearman predicts a better value even if outliers are present. The Spearman correlation was suitable for this experiment.

Solution-3b:

Hemoglobin (in g/dl) and hematocrit levels (in %) of dengue patients

Pearson's correlations: 0.923156

Spearmann's correlations: 0.9111

Kendall's correlations: 0.74191

Justification:

This scatter plot has a positive correlation with r = 1, and its positive values indicate a positive association. So, the Pearson correlation can be used for this experiment.

Solution-04:

4501:

a) standard error of the Mean:

Std. deviation of sample =
$$\frac{1}{(N-1)}\sum_{i=1}^{N}(2i-\mu)^2$$

Mean $(\mu) = \sum_{i=1}^{N} = 137.58333333$
 $= 137.583333333$

$$0 = \frac{1}{(12+1)^{4}} (121-137.5)^{2} + (125-13$$

(b)
$$P(x>146)$$
 $Z = \frac{x-\mu}{5} = \frac{146-137.5}{2.696}$

$$P(x-\mu) = \frac{146-137.5}{2.696} = P(z>3.1528)$$

$$P(z=0.0008) = \frac{146-137.5}{2.696} = \frac{146-137.5}{2.696$$

Assumptions: - std. Normal distribution Symmetric about Mean at Z=0.