17 Aprile 2019 - Analisi Esplorativa
Cognome:
Nome:
Matricola:
Tipologia d'esame: \Box 12 CFU \Box 15 CFU
Prova scritta - fila A
Si svolgano gli esercizi riportando il risultato dove indicato. Durata: 70 minuti
Esercizio 1 (10 punti)
Il dataset Boston presente nella libreria MASS è composto da 506 osservazioni e 14 variabili: $crim, zn, indus$ $chas, nox, rm, age, dis, rad, tax, ptratio, black, lstat, medv.$
Le variabili di interesse per l'analisi sono trasformazioni delle variabili originali come elencato nel seguito:
• $x_1 = log(crim)$ • $x_2 = zn/10$ • $x_3 = log(indus)$ • $x_4 = log(nox)$ • $x_5 = log(rm)$ • $x_6 = (age)^{2.5}/10000$ • $x_7 = log(dis)$ • $x_8 = log(rad)$ • $x_9 = log(tax)$ • $x_{10} = exp(0.4 \cdot ptratio)/1000$ • $x_{11} = black/100$ • $x_{12} = \sqrt{lstat}$ • $x_{13} = log(medv)$
dove log indica il logaritmo naturale.
Si costruisca la matrice dei dati $X_{506\times13}$ che contiene le variabili x_1, x_2, \dots, x_{13} .
a. Si calcoli $d_M^2(x_i, \bar{x})$, il quadrato della distanza di Mahalanobis di ciascuna osservazione (ciascuna riga della matrice X) dal baricentro. Si riportino i valori di $d_M^2(x_i, \bar{x})$ solo se superano il valore 38 specificando anche l'indice della riga di X a cui si fa riferimento.
b. Sulla base della matrice dei dati standardizzati $\frac{Z}{506 \times 13}$, applicare l'algoritmo delle K medie (algorithm

- = "Hartigan-Wong") inizializzando i K centrodi utilizzando le prime K osservazioni (righe $1,\ldots,K$ della matrice Z). Arrotondando il risultato alla seconda cifra decimale, riportare per $K=5,6,\ldots,10$ • il valore dell'indice $\operatorname{CH}(K)=\frac{B/(K-1)}{W/(n-K)}$ di Calinski and Harabasz

 • il valore medio della silhouette considerando come matrice delle distanze quella ottenuta con la

 - metrica Euclidea basata su ${\cal Z}$

 $K \qquad \qquad 5 \qquad \qquad 6 \qquad \qquad 7 \qquad \qquad 8 \qquad \qquad 9 \qquad \qquad 10$ CH(K) $\mathrm{silhouette}(K)$

- c. Si consideri la stima di massima verosimiglianza per il modello fattoriale con k fattori basato sui dati standardizzati Z. Riportare il p-value del primo test non significativo al livello 5% (e il corrispondente valore di k) per la sequenza di ipotesi nulle $H_0(k=1), H_0(k=2), H_0(k=3), \ldots$ dove $H_0(k)$ ="il modello fattoriale con k fattori è corretto".
- d. Stimare il modello fattoriale con k=5 fattori con il metodo della massima verosimiglianza utilizzando i dati standardizzati Z e senza effettuare alcuna rotazione. Riportare il valore della statistica test rapporto di verosimiglianza $T=n\log\left(\frac{det(\hat{\Lambda}\hat{\Lambda}'+\hat{\Psi})}{det(R)}\right)$ (arrotondando al terzo decimale)
- e. Stimare il modello fattoriale con k=7 fattori con il metodo della massima verosimiglianza utilizzando i dati standardizzati Z e senza effettuare alcuna rotazione. Riportare i punteggi fattoriali \hat{f}_i con il metodo di Thompson (arrotondando alla seconda cifra decimale) per l'unità statistica corrispondente alla riga i=100 della matrice Z.

Esercizio 2 (6 punti)

Sia

$$R = \left[\begin{array}{cc} 1 & r \\ r & 1 \end{array} \right]$$

con 0 < r < 1.

a. Determinare gli autovalori di R:

$$\lambda_1 = \dots \qquad \qquad \lambda_2 = \dots \dots \dots$$

b. Determinare gli autovettori normalizzati di R:

$$v_1 = \left[\begin{array}{c} \dots \\ \dots \end{array} \right], \qquad v_2 = \left[\begin{array}{c} \dots \\ \dots \end{array} \right]$$

c. Determinare i punteggi delle componenti principali

$$y_{i1} = \dots, y_{i2} = \dots, i = 1, \dots, n$$

Esercizio 3 (4 punti)

Dimostrare, esplicitando tutti i passaggi e le quantità coinvolte, che il vettore $u \atop p \times 1$ di lunghezza unitaria che risolve il problema di massimo
$\max_{u: u =1} u'Su$
è l'autovettore v_1 (con segno positivo o negativo) della matrice di varianze/covarianze S .
p×1

Esercizio 4 (3 punti)

Si consideri la seguente matrice di varianze/covarianze $S = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$

dove $a>0,\,b>0$ e c>0 sono costanti non note.

a. Calcolare la varianza totale

=

b. Calcolare la varianza generalizzata

=

c. Calcolare l'indice di variabilità relativo

=

d. Determinare l'inversa della matrice di correlazione

Esercizio 5 (3 punti)

Enunciare il teorema di Eckart-Young.