Success and geography: Evidence from open-source software

Gábor Békés (CEU, HUN-REN KRTK, and CEPR), Julian Hinz (Bielefeld University and Kiel Institute for the World Economy) Miklós Koren (CEU, HUN-REN KRTK, CEPR and CESifo), Aaron Lohmann (Bielefeld University and Kiel Institute for the World Economy)

April 20, 2024¹

¹This work was funded by the European Union under the Horizon Europe grant 101061123. Views and opinions expressed are, however, those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the granting authority can be held responsible for them.

Introduction

Research question

- How and where is open source software developed?
- Can spatially dispersed developers produce quality software?

GitHub poll

```
if (poll == "no") {
```

Why Open Source Software (OSS)?

OSS is huge

- Software industry 1% of global GDP
- 90+% of software has open source components

OSS is everywhere

OSS plays an important roles in

- Websites (PHP, JavaScript)
- Operating systems (Linux, Android)
- Data (R Tidyverse, Python Pandas, Julia)
- Machine Learning and AI (PyTorch, LLaMA)

OSS is observable

Collaboration is done mostly online

Collaboration is done mostly online

Open Source vocabulary

Package: A unit of software, provision of a (bundle of) functionality

Project: A software project offering solution to a use case. Typically one package, but may be more.

Repository: A storage for one project (what we observe)

Commit: The smallest unit of contribution

Git: Distributed version control system for software projects

GitHub: A platform to collaboratively work on software projects

Dependency: An imported package that provides a functionality

}

Related literature

- **Geographical Distance / Network formation / Agglomeration**: [@chaney2014network] [@bernard2019production] [@davis2019spatial] [@BaileyGuptaHillenbrandEtAl2021], [@Atkin_2022_F2F]
- Gravity: Digital: [@blum2006does] [@anderson2018dark]
- Frictions in services: [@stein2007longitude] [@bahar2020hardships]
- Patents and science: [@BircanJavorcikPauly2021], [@head_li_minondo_math_2019], [@jaffe1993geographic], Singh (2008) [@AlShebli_nature_2018], [@Li2014-patents-eer]
- **OSS**: [@lerner2002some] , [@Laurentsyeva:2019] [@Wachs_etal_2022] [@fackler_hofmann_laurentsyeva_2023]

Data

GitHub

Snapshot of all public repositories on GitHub on 2019-06-01. Six largest languages: JavaScript, Python, Java, Ruby, PHP, and C++. Drop smallest and largest projects. 4.4m projects, 2.7m users. Self-reported location for about 1/3 os users.

libraries.io

Dependency data for projects on major package managers (npm, PyPI, Maven, RubyGems, etc).

Developer density around the globe

Descriptives

Project size and popularity

Team size and total developer effort

Geographic diversity of teams

Collaboration across cities is mostly North-North

Collaboration

Measuring collaboration and dependencies

(a) Developers committing to a repository.

(b) Dependency of repository 1 on repository 2 with the respective developers.

Multiplexing

Multiplexing

Some work is done within organizations

Collaboration in space

Gravity model of collaboration

Developer i and j collaborate with probability

$$\Pr(\mathsf{Collaboration}_{ij}) = \exp(\alpha_i + \beta_j - \gamma \times \mathsf{distance}_{ij})$$

Aggregate across city pairs d and o:

$$E(N_{do}) = \exp(\tilde{\alpha}_d + \tilde{\beta}_o - \gamma \times \mathrm{distance}_{do})$$

Estimate this with Poisson maximum likelihood.

Four margins of collaboration

- Committing to the same project
- Commenting on the same issue
- 3 Editor rights on the same project
- 4 Members of the same organization

Gravity model of the developer-to-developer network

	(1)	(2)	(3)	(4)
VARIABLES	commits	comments	editors	organizations
Distance (log km)	-0.143***	-0.107***	-0.277***	-0.183***
	(0.0129)	(0.0139)	(0.0178)	(0.0313)
Same country (dummy)	0.519***	0.584***	1.058***	0.706***
, , ,	(0.0528)	(0.107)	(0.0894)	(0.135)
Same city (dummy)	0.846***	0.433***	0.856***	0.350**
- (- ,	(0.0863)	(0.0587)	(0.0924)	(0.154)
Observations	498,472	781,201	139,464	408,094

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Odds ratios of collaboration

Editor rights are most localized

Small differences across languages

Success

Spatial diversity reduces amount of work (3)(1)(2)(4)**VARIABLES** n commits n commits n_days n_days 0.0409*** 0.0384*** avg_In_distance (0.00416)(0.00271)-0.159*** -0.218*** In n cities (0.0302)(0.0184)-0.244*** -0.212*** (0.0231)(0.0111)1.241*** 0.935*** 1.257*** 0.929*** (0.0296)(0.0171)(0.0161)(0.00639)-0.236*** -0.0602***

In n countries In n developers share organization (0.0314)(0.00921)-0.0184* 0.0534** share different cities (0.0255)(0.0103)-0.0955*** -0.124*** share_different_countries (0.0234)(0.0110)

32 / 1

Spatial diversity associated with higher quality (1)(3)(4) **VARIABLES** n stars n stars n_downstream n downstream avg_ln_distance 0.198*** 0.299*** (0.0114)(0.0558)0.311*** 1.817*** (0.0780)(0.344)0.577*** 0.364*** (0.199)(0.0447)1.020*** 0.537*** -1.428*** 0.683*** (0.0797)(0.320)(0.0134)(0.0409)-1.769*** 0.101 (0.0446)(0.147)

In n cities In n countries In n developers share organization 0.944*** share different cities 4.144*** (0.0534)(0.768)0.731*** 1.217*** share_different_countries (0.0406)(0.184) $in_libraries = o$,

33 / 1