Atmosphere

Lecture 2

ME EN 415
Andrew Ning
aning@byu.edu

Temperature (°C)

Altitude

Geometric Altitude: geometre distance (on Sea level

Absolute Altitude: geometre height from conte of

Pressure Altitude: Corresponding alt. in Standard at m. of

Geopotential Altitude: an equivalent altitude Usung

Altimeters

Pressure (bornom) a Hundy.

Radar altimeter

International Standard Atmosphere

Geopotential Altitude (km)	Temperature Gradient (K/km)
0	-6.5
11	0.0
20	+1.0
32	+2.8
47	0.0
51	-2.8
71	-2.0
84.8520	

Sea Level Properties

$$T_{SL}$$
 288.15 K
 P_{SL} 1.01325 × 10⁵ Pa
 μ_{SL} 1.79 × 10⁻⁵ kg/m-s
 g 9.80665 m/s²

$$R = 284.055 \frac{1}{400}$$

Hydrostatics

Isothermal Layers

$$P(CP) = -9(h-h_1)$$

$$P(P) = -9(h-h_1)$$

$$P(P) = -9(h-h_1)$$

$$P(P) = -9(h-h_1)$$

$$P(P) = -9(h-h_1)$$

Gradient Layers

Curve Fit

$$T(h) = T_{SL} - 71.5 + 2.0 \ln \left[1 + \exp(35.75 - 3.25h) + \exp(-3.0 + 0.0003h^3) \right]$$

$$P(h) = P_{SL} \exp\left(-0.118h - \frac{0.0015h^2}{1 - 0.018h + 0.0011h^2}\right)$$

(h in km, T in K)

applicable for altitudes below 47 km

Upper Atmosphere

NRLMSISE-00

(up to 1000 km)

Upper Atmosphere

NRLMSISE-00

(up to 1000 km)

or for a simple approximation during atmospheric entry:

$$\frac{P}{P_{SL}} = \exp^{-\frac{gh}{RT_m}}$$
 (reasonable up to 140 km)

Create Your Own

$$P, T, \rho = \operatorname{atmosphere}(h)$$

More Comprehensive Databases

ERA Interim dataset

https://earth.nullschool.net