

Unparticle physics and universality

Hans-Werner Hammer Technische Universität Darmstadt

Tangram Nuclear Theory Seminar, Feb. 17, 2022

Outline

- Universality and the unitary limit
- Schrödinger symmetry
- Nuclear reactions with neutrons
- Neutral charm mesons and the X(3872)
- Summary and Outlook

References:

HWH, **D.T. Son**, Proc. Nat. Acad. Sci. **118**, e2108716118 (2021) [arXiv:2103.12610] **Braaten**, HWH, Phys. Rev. Lett. **128**, 032002 (2022) [arxiv:2107.02831]

Universality

Universality: Physical systems with different short-distance behavior exhibit identical behavior at large distances

Universality

Universality: Physical systems with different short-distance behavior exhibit identical behavior at large distances

Condensed matter systems near critical point

$$\rho_{liq/gas}(T) - \rho_c \longrightarrow \pm A(T_c - T)^{\beta}$$

Liquid-gas system

$$M_0(T) \longrightarrow A'(T_c - T)^{\beta}$$

Ferromagnet (one easy axis)

■ Universality class determines critical exponents: $\beta = 0.325$

Scale invariance (often conformal invariance)

- Consider short-ranged, resonant S-wave interactions
- Unitary limit: $a \rightarrow \infty$, $\ell \sim r_e \rightarrow 0$

$$\mathcal{T}_2(k,k) \propto \left[\underbrace{k \cot \delta}_{-1/a + r_e k^2/2 + \dots} - ik \right]^{-1} \sim i/k$$

Scattering amplitude scale invariant, saturates unitarity bound

- Consider short-ranged, resonant S-wave interactions
- Unitary limit: $a \rightarrow \infty$, $\ell \sim r_e \rightarrow 0$

$$\mathcal{T}_2(k,k) \propto \left[\underbrace{k \cot \delta}_{-1/a+r_e k^2/2+...} -ik \right]^{-1} \sim i/k$$

- Scattering amplitude scale invariant, saturates unitarity bound
- Many-body challenge (Bertsch, 1999)
 Ground state of a many-body system of spin-1/2 fermions in unitary limit?
 Stability?
- Density $n = \frac{k_F^3}{3\pi^2}$ is only scale $\Rightarrow E = \xi E_F$, $\xi \approx 0.37$

- Unitary limit is relevant for many physical systems
 - Ultracold atoms (tunable interaction)
 cf. Braaten, HWH, Phys. Rep. 428, 259 (2006)
 - Light nuclei and halos
 cf. König, Grießhammer, HWH, van Kolck, PRL 118, 202501 (2017)

- Unitary limit is relevant for many physical systems
 - Ultracold atoms (tunable interaction) cf. Braaten, HWH, Phys. Rep. 428, 259 (2006)
 - Light nuclei and halos cf. König, Grießhammer, HWH, van Kolck, PRL 118, 202501 (2017)

BEC/BCS crossover, neutron matter, ... cf. Schäfer, Baym, PNAS 118, e2113775118 (2021)

Robert Schulze CC BY-SA 3.0, via Wikimedia Commons

Neutron Star Mass - 1.5 times the Sun -12 miles in diameter Solid crust ~1 mile thick

Heavy liquid interior Mostly neutrons, with other particles

Zwierlein group

- Consider short-ranged, resonant S-wave interactions
- Unitary limit: $a \rightarrow \infty$, $\ell \sim r_e \rightarrow 0$

$$\mathcal{T}_2(k,k) \propto \left[\underbrace{k \cot \delta}_{-1/a+r_0k^2/2+...} -ik \right]^{-1} \sim i/k$$

- Scattering amplitude scale invariant, saturates unitarity bound
- System has also (non-relativistic) conformal symmetry
 Mehen, Stewart, Wise, PLB 474, 145 (2000); Nishida, Son, PRD 76, 086004 (2007); ...
- Exploit approximate conformal symmetry for nuclear reactions with neutrons

$$\underbrace{1/(ma^2)}_{0.1\,\text{MeV}} \ll E_n^{cms} \ll \underbrace{1/(mr_e^2)}_{5\,\text{MeV}}$$

Schrödinger symmetry

- Non-relativistic conformal symmetry: Schrödinger symmetry
 - Galilei symmetry

space + time translations rotations
Galilei hoosts

Scale transformations

$$\mathbf{x} \to e^{\lambda} \mathbf{x}, \qquad t \to e^{2\lambda} t, \qquad \psi \to e^{-\lambda \Delta} \psi$$

Special conformal transformations

$$\mathbf{x} \to \frac{\mathbf{x}}{1+\varepsilon t}, \qquad t \to \frac{t}{1+\varepsilon t}, \qquad \psi \to \psi' = \dots$$

- ⇒ preserves angles
- 12 Parameters
- Generators: H, P, L, K, D, C, satisfy Schrödinger algebra

Unitary limit

■ Spin-1/2 Fermions with zero-range interactions ($|a| \gg r_e$)

- Renormalization group equation: $\Lambda \frac{d}{d\Lambda} \tilde{g}_2 = \tilde{g}_2 (1 + \tilde{g}_2)$
- Two fixed points:
 - $-\tilde{g}_2 = 0 \Leftrightarrow a = 0 \Rightarrow$ no interaction
 - $-\tilde{g}_2 = -1 \Leftrightarrow 1/a = 0 \Rightarrow \text{unitary limit}$
 - ⇒ conformal/Schrödinger symmetry

(Mehen, Stewart, Wise, PLB 474, 145 (2000); Nishida, Son, PRD 76, 086004 (2007); ...)

- Neutrons: $a \approx -18.6$ fm, $r_e \approx 2.8$ fm
 - ⇒ neutrons are approximately conformal

Unparticle physics

- (Relativistic) Unparticle (Georgi, Phys. Rev. Lett. 98, 221601 (2007))
 - $lue{}$ field ψ in relativistic conformal field theory
 - $f \ \ \psi$ characterized by scaling dimension Δ , massless
 - hidden conformal symmetry sector beyond Standard model (weakly coupled)
 - no evidence at LHC so far (CMS Coll., EPJC 75, 235 (2015), PRD 93, 052011, JHEP 03, 061 (2017))
- (Non-relativistic) unparticle/unnucleus
 - non-relativistic analog of Georgi's unparticle
 - f n field ψ in non-relativistic conformal field theory (cf. Nishida, Son, Phys. Rev. D **76**, 086004 (2007))
 - $lue{}$ ψ characterized by scaling dimension Δ and mass \emph{M}
 - free field has $\Delta = 3/2 \iff$ mass dimension
 - ⇒ lowest possible value (unitarity)

Conformal field theory

■ Two-point function of primary field operator \mathcal{U} ("unnucleus")

$$G_{\mathcal{U}}(t, \textbf{\textit{x}}) = -i \langle \mathcal{T}\mathcal{U}(t, \textbf{\textit{x}}) \mathcal{U}^{\dagger}(0, \textbf{0}) \rangle = \frac{c}{(it)^{\Delta}} \exp\left(\frac{i M \textbf{\textit{x}}^2}{2t}\right)$$

- Determined by symmetry up to overall constant C
- Two-point function in momentum space

$$G_{\mathcal{U}}(\omega, \mathbf{p}) = -\mathbf{C} \left(rac{2\pi}{M}
ight)^{3/2} \Gamma\left(rac{5}{2} - \Delta
ight) \left(rac{\mathbf{p}^2}{2M} - \omega
ight)^{\Delta - rac{5}{2}}$$

- pole only for $\Delta = 3/2$ (free field)
- branch cut for $\Delta > 3/2$
- General unnucleus (unparticle) does not behave like a particle

⇒ continuous energy spectrum

Conformal field theory

■ Imaginary part of propagator

$$\operatorname{Im} G_{\mathcal{U}}(\omega, \mathbf{p}) \sim \begin{cases} \delta\left(\omega - \frac{\mathbf{p}^2}{2M}\right), & \Delta = \frac{3}{2}, \\ \left(\omega - \frac{\mathbf{p}^2}{2M}\right)^{\Delta - \frac{5}{2}} \theta\left(\omega - \frac{\mathbf{p}^2}{2M}\right), & \Delta > \frac{3}{2} \end{cases}$$

Examples of un-nuclei

• free field:
$$\mathcal{U} = \psi$$
, $M = m_{\psi}$, $\Delta = 3/2$

■ N free fields:
$$U = \psi_1 \dots \psi_N$$
, $M = Nm_{\psi}$, $\Delta = 3N/2$

■ N interacting fields:
$$U = \psi_1 \dots \psi_N$$
, $M = Nm_{\psi}$, $\Delta > 3/2$

In our case: un-nucleus is strongly interacting multi-neutron state with

$$\underbrace{1/(ma^2)}_{0.1\,\text{MeV}} \ll E_n^{cms} \ll \underbrace{1/(mr_e^2)}_{5\,\text{MeV}}$$

Scaling dimension

- How to calculate scaling dimension Δ ?
 - (1) Δ can be obtained from field theory calculation
 - (2) Δ can be obtained from operator state correspondence

 Δ of primary operator = (Energy of state in HO)/ $\hbar\omega$

(Nishida, Son, Phys. Rev. D 76, 086004 (2007))

Ν	S	L	0	Δ
2	0	0	$\psi_1\psi_2$	2
3	1/2	1	$\psi_1\psi_2\nabla_j\psi_2$	4.27272
3	1/2	0	$\psi_1 \nabla_j \psi_2 \nabla_j \psi_2$	4.66622
4	0	0	$\psi_1\psi_2\nabla_j\psi_1\nabla_j\psi_2$	5.07(1)
5	1/2	1		7.6(1)

 \Rightarrow connection between Δ and energy of particles in a trap

Reactions with neutrons

Application: High-energy nuclear reaction with final state neutrons

- Assumption: energy scale of primary reaction $\gg E_{\mathcal{U}} \frac{p^2}{2M_{\mathcal{U}}} = E_n^{cms}$
- Factorization: $\frac{d\sigma}{dE} \sim |\mathcal{M}_{\textit{primary}}|^2 \operatorname{Im} G_{\mathcal{U}}(E_{\mathcal{U}}, \boldsymbol{p})$
- Reproduces Watson-Migdal treatment of FSI for 2n (Watson, Phys. Rev. 88, 1163 (1952); Migdal, Sov. Phys. JETP 1, 2 (1955))

Reactions with neutrons

- Two ways to do experiments
 - (a) detect recoil particle B

$$\frac{d\sigma}{dE} \sim (E_0 - E_B)^{\Delta - 5/2}, \qquad E_0 = (1 + M_B/M_U)^{-1} E_{kin}$$

(b) detect all final state particles including neutrons

$$rac{d\sigma}{dE} \sim (E_{
m n}^{
m cms})^{\Delta-5/2}$$

- Consistent with previous experiments for ${}^3H(\pi^-, \gamma)3n$ (Miller et al., Nucl. Phys. A **343**, 347 (1980))
- Two few events in recent tetraneutron experiment: ⁴He(⁸He, ⁸Be)4*n* (Kisamori et al., Phys. Rev. Lett. **116**, 052501 (2016))

Reaction calculations

■ Two-neutron spectrum for 6 He $(p,p\alpha)2n$ (Göbel et al., Phys. Rev. C **104**, 024001 (2021).)

■ Can be understood from dimer propagator ($\Delta = 2$)

$$G_d(E_{nn}, \boldsymbol{0}) \sim \frac{1}{1/a + i\sqrt{mE_{nn}}} \quad \Rightarrow \quad \operatorname{Im} G_d(E_{nn}, \boldsymbol{0}) \sim \frac{\sqrt{E_{nn}}}{(ma^2)^{-1} + E_{nn}}$$

Reaction calculations

Radiative muon/pion capture on the triton (AV18 + UIX)

Golak et al., PRC 98, 054001 (2018)

Golak et al., PRC 94, 054001 (2016)

Un-nucleus behavior prediction

$$rac{d\Gamma}{dF} \sim (E_{3n})^{4.27272-5/2} \sim (E_{3n})^{1.77272}, \qquad 0.1 \ \text{MeV} \ll E_{3n} \ll 5 \ \text{MeV}$$

New experiments

- New experiments in complete kinematics at RIBF/RIKEN
- Measurement of a_{nn} in 6 He($p,p\alpha$)2n(T. Aumann et al., NP2012-SAMURAI55R1 (2020))
- Search for tetraneutron resonances in 8 He $(p,p\alpha)$ 4n (S. Paschalis et al., NP1406-SAMURAI19R1 (2014))

unnucleus prediction for point source:

$$\rho \sim (E_{4n})^{5.07-5/2} \sim (E_{4n})^{2.57}$$

 $0.1\,\text{MeV} \ll \textit{E}_{4n} \ll 5\,\text{MeV}$

Neutral charm mesons and X(3872)

- New cc̄ states at B factories: X, Y, Z (cf. Godfrey, arXiv:0910.3409)
 - Challenge for understanding of QCD
 - Unitary limit relevant?
- *X*(3872) (Belle, CDF, BaBar, D0, LHCb)
- Nature of *X*(3872)?
 - $\bar{D}^0 D^{0*}$ -molecule, tetraquark, charmonium hybrid, ...

$$m_{X}=(3871.65\pm0.06)~{
m MeV},~~\Gamma=(1.19\pm0.21)~{
m MeV},~~J^{PC}=1^{++}~~{
m (PDG~2021)}$$

- Assumption: X(3872) is weakly-bound $D^0-\bar{D}^{0*}$ -molecule
 - $\Rightarrow \quad |{\it X}\rangle = (|{\it D}^0\bar{\it D}^{0*}\rangle + |\bar{\it D}^0{\it D}^{0*}\rangle)/\sqrt{2} \;, \qquad {\it B}_{\it X} = (0.07 \pm 0.12) \; {\rm MeV} \approx 1/(2\mu_{\it DD^*}a^2)$
 - ⇒ universal properties (Braaten et al., 2003-2008; ...)

Neutral charm mesons and X(3872)

- Approximate unparticles of three D^0/D^{0*} mesons
 Interaction of X(3872) with D^0 , \bar{D}^0 , D^{0*} , \bar{D}^{0*} determined by large a(Canham, HWH, Springer, PRD 80, 014009 (2009))

$$a_{D^0X} = -9.7a$$
 $a_{D^{*0}X} = -16.6 a$

Richer structure because of X(3872) (bound state)

Neutral charm mesons and X(3872)

- Approximate unparticles of three D^0/D^{0*} mesons
 Interaction of X(3872) with D^0 , \bar{D}^0 , D^{0*} , \bar{D}^{0*} determined by large a(Canham, HWH, Springer, PRD 80, 014009 (2009))

$$a_{D^0X} = -9.7a$$
 $a_{D^{*0}X} = -16.6 a$

Richer structure because of X(3872) (bound state)

two charm mesons three charm mesons

Scaling Behavior

 Universal scaling for unparticles of three neutral charm mesons (Braaten, HWH, Phys. Rev. Lett. 128, 032002 (2022) [arXiv:2107.02831])

$$\frac{dR}{dE} \sim (E^{-(\Delta_1 + \Delta_2 - \Delta_3)/2})^2 \sqrt{E} \approx E^{0.1}$$

$$\Delta_1=3/2$$
, $\Delta_2=2$, $\Delta_3\approx 3.10119/3.08697$

$$\sigma \sim E^{-1.6}$$

Summary and Outlook

- Universality in the unitary limit
 - ⇒ (approximate) conformal symmetry
 - \Rightarrow power law behavior of observables determined by Δ
- Application to high-energy nuclear reactions with neutrons
- Model-independent constraints on nuclear reactions
- Connection between reactions & properties of trapped particles

Summary and Outlook

- Universality in the unitary limit
 - ⇒ (approximate) conformal symmetry
 - \Rightarrow power law behavior of observables determined by Δ
- Application to high-energy nuclear reactions with neutrons
- Model-independent constraints on nuclear reactions
- Connection between reactions & properties of trapped particles
- Other applications & extensions
 - Two-component Fermions in ultracold atom physics
 - Neutral charm mesons
 - Systems with the Efimov effect?
 - \Rightarrow bosonic atoms, nucleons, α particles
 - ⇒ complex scaling dimensions
 - ⇒ scale symmetry broken

Additional Slides

- Ground state energy: $E = \xi E_F$, $\xi \approx 0.37$
- Difficult non-perturbative problem
 - f a diagrammatic resummation, ϵ -expansion, fixed-node Greens function MC, auxilliary field MC, quantum simulation w/ ultracold atoms, ...

- Lattice Monte Carlo: $\xi = 0.366^{+0.016}_{-0.011}$
 - Endres, Kaplan, Lee, Nicholson, Phys. Rev. A 87, 023615 (2013)

Conformal mapping

Lambert conformal conic projection

Oleg Alexandrov, via Wikimedia Commons; Strebe CC BY-SA 3.0, via Wikimedia Commons