VISVESVARAYA TECHNOLOGICAL UNIVERSITY

"Jnana Sangama", Belagavi-590018, Karnataka

Report on

"Helmet Detection Using AI"

Submitted in partial fulfilment of the requirements for the award of the degree of Bachelor of Engineering in Computer Science & Engineering

Submitted By

USN	Name	
1BI22CS002	AASHUTOSH PANDEY	
1BI22CS009	ADITYA KUMAR	
1BI22CS036	CHAITRA	
1BI22CS042	DEEPTHI REDDY	

Under the Guidance of
Prof.Ashwini .T.N
Assistant Professor
Department of CS&E, BIT
Bengaluru-560004

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

BANGALORE INSTITUTE OF TECHNOLOGY

K.R. Road, V.V. Pura, Bengaluru-560 004

2024-25

VISVESVARAYA TECHNOLOGICAL UNIVERSITY

"Jnana Sangama", Belagavi-590018, Karnataka

BANGALORE INSTITUTE OF TECHNOLOGY

Bengaluru-560 004

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Certificate

This is to certify that the Mini Project (BCS586) work entitled "Helmet Detection Using AI" carried out by

USN	Name
1BI22CS002	AASUTOSH PANDEY
1BI22CS009	ADITYA KUMAR
1BI22CS036	CHAITRA
1BI22CS042	DEEPTHI REDDY

Bonafide students of V semester B.E. for the partial fulfilment of the requirements for the Bachelor's Degree in Computer Science & Engineering of the VISVESVARAYA TECHNOLOGICAL UNIVERSITY during the academic year 2024-25. The Mini Project report has been approved as it satisfies the academic requirements in respect of the Mini Project work prescribed for the said degree.

Guide Name Ashwini T.N. Asst. Professor, Dept. of CSE, BIT **Dr. Suneetha K R**Prof. & Head,
Dept. of CSE, BIT

Acknowledgement

The knowledge & satisfaction that accompany the successful completion of any task would be incomplete without mention of people who made it possible, whose guidance and encouragement crowned our effort with success. We would like to thank all and acknowledge the help we have received to carry out this project.

We would like to convey our thanks to Principal **Dr. Aswath M U,** Bangalore Institute of Technology, and **Dr.Suneetha.K.R,** Professor and Head, Department of Computer Science and Engineering, BIT for being kind enough to provide the necessary support to carry out the Mini Project.

We would like to acknowledge the support we have received from the Mini Project coordinator **Dr. Madhuri J,** Associate Professor, Department of Computer Science and Engineering, BIT for continuous co-ordination and timely deliberation of requirements at every phase of the Mini Project.

We are most humbled to mention the enthusiastic influence provided by our guide **Prof.Ashwini.T.N**, Asst.Professor on the Mini Project for the ideas, time to time suggestions, for the constant support and co-operation shown during the venture and for making this Mini Project a great success.

We are very much pleased to express our sincere gratitude to the friendly co-operation shown by all the staff members of the Computer Science Department, Bangalore Institute of Technology.

Aashutosh Pandey(1BI22CS002)
Aditya Kumar(1BI22CS009)
Chaitra(1BI22CS036)
Deepthi Reddy(1BI22CS042)

Abstract

Road safety is a critical concern worldwide, with motorcyclists being particularly vulnerable to accidents and injuries. The use of helmets significantly reduces the risk of fatalities, yet many riders fail to comply with helmet-wearing regulations. This project aims to develop an AI-powered Helmet Detection system to promote safer roads by automatically identifying motorcyclists not wearing helmets. Using advanced computer vision techniques and deep learning, the system is designed to analyse live video feeds or images from traffic surveillance systems, ensuring monitoring and enforcement.

The core of the project involves training a deep learning model on a dataset containing images of motorcyclists with and without helmets. Techniques such as YOLO (You Only Look Once) or similar object detection algorithms are utilized for accurate identification and classification. The system is further enhanced to detect motorcycles, differentiate riders from pillion passengers, and assess compliance. Key achievements include achieving high accuracy in helmet detection, seamless integration with existing traffic monitoring infrastructure, and the potential to generate automated violation reports for authorities. Project contributes to the broader vision of leveraging AI to improve road safety, reduce accidents, and encourage responsible behaviour among road users.

Table of Contents

	Page no.
Chapter -1 Introduction	1-3
1.1. Overview	1
1.2. Objectives	2
1.3. Purpose, Scope, Applicability	3
Chapter -2 Literature Survey	4-11
2.1. Introduction	4
2.2. Summary of Papers	4
2.3. Drawbacks of Existing System	9
2.4. Problem Statement	10
2.5 Proposed Solution	11
Chapter -3 Requirement Engineering	12-15
3.1. Introduction	12
3.1.1. Software Tools	12
3.2.2. Hardware Tools	12
3.2. Conceptual/Analysis Modelling	13
3.2.1. Data Flow Diagram (DFD)	13
3.2.2. Activity Diagram	14
3.3. Software Requirements Specification	15
Chapter -4 System Design	16-25
4.1. System Architecture	16
4.2. Component Design / Module Decomposition	n 17
4.2.1. Module Decomposition Breakdow	n 17
4.2.2. Summary of Module Decomposition	on 17
4.3. Interface Design	19
4.4. Data Structure Design	24
4.4.1. Data Structures Overview	24
4.4.2 Data Flow and Relationships	25
Chapter -5 Implementation	26-34
5.1. Implementation Approaches	26

5.2 Coding Details and code efficiency	31
Chapter -6 Testing	35-39
6.1. Testing Approach	
6.1.1. Unit Testing	35
6.1.2. Integrated Testing	36
Chapter -7 Results Discussion and Performance Analysis	40-47
7.1. Test Reports	40
7.1.1. Test Case 1: Structured Inputs	40
7.1.2. Test Case 2: Handling Extreme Traffic Conditions	40
7.1.3. Test Case 3:Performance under various Conditions	40
7.1.4. Test Case 4: Handling Edge cases	40
7.1.5. Test Case 5: Model Accuracy	41
7.1.6. Test Case 6: Edge Case Performance	41
7.1.7. Test Case 7: Handling Missing Input Data	41
7.1.8. Test Case 8: Predicting Delivery Time	41
7.2. User Documentation	42
7.2.1. System Requirements	42
7.2.2. User Interface Overview	43
7.2.3. How To Use The System	44-45
7.2.4. Output	46-47
Chapter -8 Conclusion. Application and Future Work	48-54
8.1. Conclusion	48
8.2. Application	48-50
8.3. Limitations of the System	
8.4 Future Scope of the Project	

LIST OF FIGURES

Figure No.	Figure Name	Page No.
		4.0
3.1	Data Flow Diagram	13
3.2	Use case diagram	14
4.1	System Architecture	16
7.1	Test Case 1	40
7.2	Test Case 2	40
7.3	Test Case 3	40
7.4	Test Case 4	41
7.5	Test Case 5	41