SYMPLECTIC GROUPOIDS FOR CLUSTER MANIFOLDS

ABSTRACT. We prove some things. And we are happy! It seems to work!

Outline

- (1) Intro to Poisson manifolds, symplectic groupoid and Poisson spray
- (2) Intro to cluster algebra and compatible Poisson structures
- (3) Cluster symplectic groupoid
- (4) Totally positive cluster manifolds (definition of manifolds with corners [check D Joyce], associahedron of type A and generalized associahedron)
- (5) Symplectic topology of the groupoid, and examples
 - 1. Introduction
 - 2. Poisson Geometry
 - 3. Cluster Algebras
 - 4. Cluster Symplectic Groupoids

In this section we give an integration to a symplectic groupoid $\mathcal{G}(\Sigma)$ of the Poisson structure on a cluster manifold $M(\Sigma)$.

5. Totally Positive Cluster Manifolds

In this section we show that the totally nonnegative part $M_{\geq 0}(\Sigma)$ of a cluster manifold is a manifold with corners in the sense of [?]. Moreover, we show that the nonnegative cluster manifold is a union of symplectic leaves for any compatible Poisson structure on $\mathcal{A}(\Sigma)$. Here there is a unique dense symplectic leaf and the boundary of $M_{\geq 0}(\Sigma)$ is again a union of symplectic leaves of lower dimension where the Poisson structure degenerates.

Theorem 5.1. Let Σ be a seed. The 1-skeleton of $M_{\geq 0}(\Sigma)$ given by 0-dimensional and 1-dimensional symplectic leaves identifies with the exchange graph of $\mathcal{A}(\Sigma)$. Moreover, if Σ is a seed of finite-type, then $M_{\geq 0}(\Sigma)$ provides a realization of the generalized associahedron with the same Cartan type as Σ .

6. Symplectic Topology of the Nonnegative Cluster Groupoid

Let $\mathcal{G}_{\geq 0}(\Sigma)$ denote the symplectic groupoid over $M_{\geq 0}(\Sigma)$. In this section we introduce a Poisson spray which may be used to construct $\mathcal{G}_{\geq 0}(\Sigma)$ and apply a Moser argument to show that up to symplectomorphism $\mathcal{G}_{\geq 0}(\Sigma)$ can be identified with $T^*M_{\geq 0}(\Sigma)$.