Assignment 1

September 2, 2017

You are currently looking at **version 1.1** of this notebook. To download notebooks and datafiles, as well as get help on Jupyter notebooks in the Coursera platform, visit the Jupyter Notebook FAQ course resource.

1 Assignment 1 - Introduction to Machine Learning

For this assignment, you will be using the Breast Cancer Wisconsin (Diagnostic) Database to create a classifier that can help diagnose patients. First, read through the description of the dataset (below).

```
In [1]: import numpy as np
       import pandas as pd
       from sklearn.datasets import load_breast_cancer
       cancer = load_breast_cancer()
       print (cancer.DESCR) # Print the data set description
Breast Cancer Wisconsin (Diagnostic) Database
______
Notes
Data Set Characteristics:
   :Number of Instances: 569
   :Number of Attributes: 30 numeric, predictive attributes and the class
    :Attribute Information:
       - radius (mean of distances from center to points on the perimeter)
       - texture (standard deviation of gray-scale values)
       - perimeter
       - area
       - smoothness (local variation in radius lengths)
```

- compactness (perimeter^2 / area 1.0)
- concavity (severity of concave portions of the contour)
- concave points (number of concave portions of the contour)
- symmetry
- fractal dimension ("coastline approximation" 1)

The mean, standard error, and "worst" or largest (mean of the three largest values) of these features were computed for each image, resulting in 30 features. For instance, field 3 is Mean Radius, field 13 is Radius SE, field 23 is Worst Radius.

- class:

- WDBC-Malignant
- WDBC-Benign

:Summary Statistics:

	===== Min	===== Max
	=====	=====
radius (mean):	6.981	28.11
texture (mean):	9.71	39.28
<pre>perimeter (mean):</pre>	43.79	188.5
area (mean):	143.5	2501.0
<pre>smoothness (mean):</pre>	0.053	0.163
compactness (mean):	0.019	0.345
concavity (mean):	0.0	0.427
concave points (mean):	0.0	0.201
<pre>symmetry (mean):</pre>	0.106	0.304
fractal dimension (mean):	0.05	0.097
radius (standard error):	0.112	2.873
texture (standard error):	0.36	4.885
perimeter (standard error):	0.757	21.98
area (standard error):	6.802	542.2
<pre>smoothness (standard error):</pre>	0.002	0.031
compactness (standard error):	0.002	0.135
concavity (standard error):	0.0	0.396
concave points (standard error):	0.0	0.053
<pre>symmetry (standard error):</pre>	0.008	0.079
fractal dimension (standard error):	0.001	
radius (worst):	7.93	36.04
texture (worst):	12.02	49.54
perimeter (worst):	50.41	251.2
area (worst):	185.2	4254.0
smoothness (worst):	0.071	0.223
compactness (worst):	0.027	
concavity (worst):	0.0	
concave points (worst):	0.0	0.291

:Missing Attribute Values: None

:Class Distribution: 212 - Malignant, 357 - Benign

:Creator: Dr. William H. Wolberg, W. Nick Street, Olvi L. Mangasarian

:Donor: Nick Street

:Date: November, 1995

This is a copy of UCI ML Breast Cancer Wisconsin (Diagnostic) datasets. https://goo.gl/U2Uwz2

Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image.

Separating plane described above was obtained using Multisurface Method-Tree (MSM-T) [K. P. Bennett, "Decision Tree Construction Via Linear Programming." Proceedings of the 4th Midwest Artificial Intelligence and Cognitive Science Society, pp. 97-101, 1992], a classification method which uses linear programming to construct a decision tree. Relevant features were selected using an exhaustive search in the space of 1-4 features and 1-3 separating planes.

The actual linear program used to obtain the separating plane in the 3-dimensional space is that described in:
[K. P. Bennett and O. L. Mangasarian: "Robust Linear Programming Discrimination of Two Linearly Inseparable Sets", Optimization Methods and Software 1, 1992, 23-34].

This database is also available through the UW CS ftp server:

ftp ftp.cs.wisc.edu
cd math-prog/cpo-dataset/machine-learn/WDBC/

References

⁻ W.N. Street, W.H. Wolberg and O.L. Mangasarian. Nuclear feature extraction for breast tumor diagnosis. IS&T/SPIE 1993 International Symposium on Electronic Imaging: Science and Technology, volume 1905, pages 861-870, San Jose, CA, 1993.

⁻ O.L. Mangasarian, W.N. Street and W.H. Wolberg. Breast cancer diagnosis and

```
prognosis via linear programming. Operations Research, 43(4), pages 570-577, July-August 1995.
```

- W.H. Wolberg, W.N. Street, and O.L. Mangasarian. Machine learning techniques to diagnose breast cancer from fine-needle aspirates. Cancer Letters 77 (1994) 163-171.

The object returned by <code>load_breast_cancer()</code> is a scikit-learn Bunch object, which is similar to a dictionary.

```
In [2]: cancer.keys()
Out[2]: dict_keys(['feature_names', 'target_names', 'DESCR', 'data', 'target'])
```

1.0.1 Question 0 (Example)

How many features does the breast cancer dataset have? *This function should return an integer.*

```
In [3]: # You should write your whole answer within the function provided. The auto
# this function and compare the return value against the correct solution or
def answer_zero():
    # This function returns the number of features of the breast cancer day
# The assignment question description will tell you the general format
    return len(cancer['feature_names'])
```

You can examine what your function returns by calling it in the cell. If # about the assignment formats, check out the discussion forums for any FAQ

```
answer_zero()
```

1.0.2 Question 1

Out[3]: 30

Scikit-learn works with lists, numpy arrays, scipy-sparse matrices, and pandas DataFrames, so converting the dataset to a DataFrame is not necessary for training this model. Using a DataFrame does however help make many things easier such as munging data, so let's practice creating a classifier with a pandas DataFrame.

```
Convert the sklearn.dataset cancer to a DataFrame. This function should return a (569, 31) DataFrame with columns =
```

```
['mean radius', 'mean texture', 'mean perimeter', 'mean area',
'mean smoothness', 'mean compactness', 'mean concavity',
'mean concave points', 'mean symmetry', 'mean fractal dimension',
'radius error', 'texture error', 'perimeter error', 'area error',
'smoothness error', 'compactness error', 'concavity error',
'concave points error', 'symmetry error', 'fractal dimension error',
```

```
'worst smoothness', 'worst compactness', 'worst concavity',
'worst concave points', 'worst symmetry', 'worst fractal dimension',
'target']
  and index =
RangeIndex(start=0, stop=569, step=1)
In [2]: def answer_one():
            df = pd.DataFrame(cancer.data, columns=cancer.feature_names)
            df['target'] = cancer.target
            return df
        answer_one()
Out[2]:
                                                           mean area
             mean radius mean texture
                                          mean perimeter
                                                                       mean smoothness
                   17.990
                                   10.38
                                                   122.80
                                                               1001.0
                                                                                0.11840
        0
                                                   132.90
        1
                   20.570
                                   17.77
                                                               1326.0
                                                                                0.08474
        2
                   19.690
                                   21.25
                                                   130.00
                                                               1203.0
                                                                                0.10960
        3
                   11.420
                                   20.38
                                                    77.58
                                                               386.1
                                                                                0.14250
        4
                   20.290
                                   14.34
                                                   135.10
                                                               1297.0
                                                                                0.10030
        5
                   12.450
                                   15.70
                                                    82.57
                                                                477.1
                                                                                0.12780
        6
                                   19.98
                   18.250
                                                   119.60
                                                               1040.0
                                                                                0.09463
        7
                   13.710
                                   20.83
                                                    90.20
                                                                577.9
                                                                                0.11890
        8
                   13.000
                                   21.82
                                                    87.50
                                                                519.8
                                                                                0.12730
        9
                   12.460
                                   24.04
                                                    83.97
                                                                                0.11860
                                                                475.9
        10
                   16.020
                                   23.24
                                                   102.70
                                                                797.8
                                                                                0.08206
                                                                                0.09710
        11
                   15.780
                                   17.89
                                                                781.0
                                                   103.60
        12
                   19.170
                                   24.80
                                                   132.40
                                                               1123.0
                                                                                0.09740
        13
                   15.850
                                   23.95
                                                   103.70
                                                                782.7
                                                                                0.08401
        14
                   13.730
                                   22.61
                                                    93.60
                                                                578.3
                                                                                0.11310
        15
                   14.540
                                   27.54
                                                    96.73
                                                                658.8
                                                                                0.11390
                                   20.13
                                                    94.74
        16
                   14.680
                                                                684.5
                                                                                0.09867
        17
                   16.130
                                   20.68
                                                   108.10
                                                                798.8
                                                                                0.11700
        18
                   19.810
                                   22.15
                                                   130.00
                                                               1260.0
                                                                                0.09831
        19
                   13.540
                                   14.36
                                                    87.46
                                                                566.3
                                                                                0.09779
        20
                   13.080
                                   15.71
                                                    85.63
                                                                520.0
                                                                                0.10750
        21
                   9.504
                                   12.44
                                                    60.34
                                                                273.9
                                                                                0.10240
        22
                   15.340
                                   14.26
                                                   102.50
                                                                704.4
                                                                                0.10730
        23
                   21.160
                                   23.04
                                                   137.20
                                                               1404.0
                                                                                0.09428
                                   21.38
                                                   110.00
                                                                                0.11210
        2.4
                   16.650
                                                                904.6
        25
                   17.140
                                   16.40
                                                   116.00
                                                                912.7
                                                                                0.11860
        26
                   14.580
                                   21.53
                                                   97.41
                                                                644.8
                                                                                0.10540
        27
                   18.610
                                   20.25
                                                   122.10
                                                               1094.0
                                                                                0.09440
        28
                   15.300
                                   25.27
                                                   102.40
                                                                732.4
                                                                                0.10820
```

'worst radius', 'worst texture', 'worst perimeter', 'worst area',

29	17.570	15.05	115.00	955.1	0.09847
	• • •		• • •	• • •	• • •
539	7.691	25.44	48.34	170.4	0.08668
540	11.540	14.44	74.65	402.9	0.09984
541	14.470	24.99	95.81	656.4	0.08837
542	14.740	25.42	94.70	668.6	0.08275
543	13.210	28.06	84.88	538.4	0.08671
544	13.870	20.70	89.77	584.8	0.09578
545	13.620	23.23	87.19	573.2	0.09246
546	10.320	16.35	65.31	324.9	0.09434
547	10.260	16.58	65.85	320.8	0.08877
548	9.683	19.34	61.05	285.7	0.08491
549	10.820	24.21	68.89	361.6	0.08192
550	10.860	21.48	68.51	360.5	0.07431
551	11.130	22.44	71.49	378.4	0.09566
552	12.770	29.43	81.35	507.9	0.08276
553	9.333	21.94	59.01	264.0	0.09240
554	12.880	28.92	82.50	514.3	0.03240
555	10.290	27.61	65.67	321.4	0.09030
556	10.160	19.59	64.73	311.7	0.10030
557	9.423	27.88	59.26	271.3	0.08123
558	14.590	22.68	96.39	657.1	0.08473
559	11.510	23.93	74.52	403.5	0.09261
560	14.050	27.15	91.38	600.4	0.09929
561	11.200	29.37	70.67	386.0	0.07449
562	15.220	30.62	103.40	716.9	0.10480
563	20.920	25.09	143.00	1347.0	0.10990
564	21.560	22.39	142.00	1479.0	0.11100
565	20.130	28.25	131.20	1261.0	0.09780
566	16.600	28.08	108.30	858.1	0.08455
567	20.600	29.33	140.10	1265.0	0.11780
568	7.760	24.54	47.92	181.0	0.05263
	mean compactness	mean concavity	mean cond	cave points	mean symmetry
0	0.27760	0.300100		0.147100	0.2419
1	0.07864	0.086900		0.070170	0.1812
2	0.15990	0.197400		0.127900	0.2069
3	0.28390	0.241400		0.105200	0.2597
4	0.13280	0.198000		0.104300	0.1809
5	0.17000	0.157800		0.080890	0.2087
6	0.10900	0.112700		0.074000	0.1794
7	0.16450	0.093660		0.059850	0.2196
8	0.19320	0.185900		0.093530	0.2350
9	0.23960	0.227300		0.085430	0.2030
10	0.06669	0.032990		0.033230	0.1528
11	0.12920	0.099540		0.066060	0.1842
12	0.24580	0.206500		0.111800	0.2397
13	0.10020	0.099380		0.053640	0.1847

14	0.22930	0.212800	0.080250	0.2069
15	0.15950	0.163900	0.073640	0.2303
16	0.07200	0.073950	0.052590	0.1586
17	0.20220	0.172200	0.102800	0.2164
18	0.10270	0.147900	0.094980	0.1582
19	0.08129	0.066640	0.047810	0.1885
20	0.12700	0.045680	0.031100	0.1967
21	0.06492	0.029560	0.020760	0.1815
22	0.21350	0.207700	0.097560	0.2521
23	0.10220	0.109700	0.086320	0.1769
24	0.14570	0.152500	0.091700	0.1995
25	0.22760	0.222900	0.140100	0.3040
26	0.18680	0.142500	0.087830	0.2252
27	0.10660	0.149000	0.077310	0.1697
28	0.16970	0.168300	0.087510	0.1926
29	0.11570	0.098750	0.079530	0.1739
	0.11076	0.030700	0.073000	
· ·	0 11000	0.002520	0.012640	0 2027
539	0.11990	0.092520	0.013640	0.2037
540	0.11200	0.067370	0.025940	0.1818
541	0.12300	0.100900	0.038900	0.1872
542	0.07214	0.041050	0.030270	0.1840
543	0.06877	0.029870	0.032750	0.1628
544	0.10180	0.036880	0.023690	0.1620
545	0.06747	0.029740	0.024430	0.1664
546	0.04994	0.010120	0.005495	0.1885
547	0.08066	0.043580	0.024380	0.1669
548	0.05030	0.023370	0.009615	0.1580
549	0.06602	0.015480	0.008160	0.1976
550	0.04227	0.00000	0.00000	0.1661
551	0.08194	0.048240	0.022570	0.2030
552	0.04234	0.019970	0.014990	0.1539
553	0.05605	0.039960	0.012820	0.1692
554	0.05824	0.061950	0.023430	0.1566
555	0.07658	0.059990	0.027380	0.1593
556	0.07504	0.005025	0.011160	0.1791
557	0.04971	0.000000	0.00000	0.1742
558	0.13300	0.102900	0.037360	0.1454
559	0.10210	0.111200	0.041050	0.1388
560	0.11260	0.044620	0.043040	0.1537
561	0.03558	0.00000	0.00000	0.1060
562	0.20870	0.255000	0.094290	0.2128
563	0.22360	0.317400	0.147400	0.2149
564	0.11590	0.243900	0.138900	0.1726
565	0.10340	0.144000	0.097910	0.1752
566	0.10230	0.092510	0.053020	0.1590
567	0.27700	0.351400	0.152000	0.2397
568	0.04362	0.00000	0.00000	0.1587

	mean fractal	dimonsion		worst texture	worst perimeter	\
0	mean fractar	0.07871	• • •	17.33	184.60	\
1		0.05667	• • •	23.41	158.80	
2		0.05999	• • •	25.53	152.50	
3		0.03999	• • •	26.50	98.87	
			• • •			
4		0.05883	• • •	16.67	152.20	
5		0.07613	• • •	23.75	103.40	
6		0.05742	• • •	27.66	153.20	
7		0.07451	• • •	28.14	110.60	
8		0.07389	• • •	30.73	106.20	
9		0.08243	• • •	40.68	97.65	
10		0.05697	• • •	33.88	123.80	
11		0.06082	• • •	27.28	136.50	
12		0.07800		29.94	151.70	
13		0.05338		27.66	112.00	
14		0.07682		32.01	108.80	
15		0.07077		37.13	124.10	
16		0.05922		30.88	123.40	
17		0.07356		31.48	136.80	
18		0.05395		30.88	186.80	
19		0.05766		19.26	99.70	
20		0.06811		20.49	96.09	
21		0.06905		15.66	65.13	
22		0.07032		19.08	125.10	
23		0.05278		35.59	188.00	
24		0.06330		31.56	177.00	
25		0.07413		21.40	152.40	
26		0.06924		33.21	122.40	
27		0.05699		27.26	139.90	
28		0.06540	•••	36.71	149.30	
29		0.06149	• • •	19.52	134.90	
		0.00119	• • •	17.02	131.30	
 539		0.07751	• • •	31.89	54.49	
540		0.06782	• • •	19.68	78.78	
541		0.06341	• • •	31.73	113.50	
542		0.05680	• • •	32.29	107.40	
543			• • •			
		0.05781	• • •	37.17	92.48	
544		0.06688	• • •	24.75	99.17	
545		0.05801	• • •	29.09	97.58	
546		0.06201	• • •	21.77	71.12	
547		0.06714	• • •	22.04	71.08	
548		0.06235	• • •	25.59	69.10	
549		0.06328	• • •	31.45	83.90	
550		0.05948	• • •	24.77	74.08	
551		0.06552		28.26	77.80	
552		0.05637		36.00	88.10	
553		0.06576	• • •	25.05	62.86	
554		0.05708		35.74	88.84	

555		0.06127	34.91	69.57
556		0.06331	22.88	67.88
557		0.06059	34.24	66.50
558		0.06147	27.27	105.90
559		0.06570	37.16	82.28
560		0.06171	33.17	100.20
561		0.05502	38.30	75.19
562		0 07150	42.79	128.70
563		0 06070	29.41	179.10
564		0.06879	26.40	166.10
565		0.05533	38.25	155.00
566		0 0 5 6 4 0		
			34.12	126.70
567		0.07016	39.42	184.60
568		0.05884	30.37	59.16
	worst area	worst smoothness	worst compactness	worst concavity \
0	2019.0	0.16220	0.66560	0.71190
1	1956.0	0.12380	0.18660	0.24160
2	1709.0	0.14440	0.42450	0.45040
3	567.7	0.20980	0.86630	0.68690
4	1575.0	0.13740	0.20500	0.40000
5	741.6	0.17910	0.52490	0.53550
6	1606.0	0.14420	0.25760	0.37840
7	897.0	0.16540	0.36820	0.26780
8	739.3	0.17030	0.54010	0.53900
9	711.4	0.18530	1.05800	1.10500
10	1150.0	0.11810	0.15510	0.14590
11	1299.0	0.13960	0.56090	0.39650
12	1332.0	0.10370	0.39030	0.36390
13	876.5	0.11310	0.19240	0.23220
14	697.7	0.16510	0.77250	0.69430
15	943.2	0.16780	0.65770	0.70260
16	1138.0	0.14640	0.18710	0.29140
			0.42330	
17	1315.0	0.17890		0.47840
18	2398.0	0.15120	0.31500	0.53720
19	711.2	0.14400	0.17730	0.23900
20	630.5	0.13120	0.27760	0.18900
21	314.9	0.13240	0.11480	0.08867
22	980.9	0.13900	0.59540	0.63050
23	2615.0	0.14010	0.26000	0.31550
24	2215.0	0.18050	0.35780	0.46950
25	1461.0	0.15450	0.39490	0.38530
26	896.9	0.15250	0.66430	0.55390
27	1403.0	0.13380	0.21170	0.34460
28	1269.0	0.16410	0.61100	0.63350
29	1227.0	0.12550	0.28120	0.24890
539	223.6	0.15960	0.30640	0.33930

244	000.0	0.12040	0.20370	0.137	70
545	729.8	0.12160	0.15170	0.104	90
546	384.9	0.12850	0.08842	0.043	84
547	357.4	0.14610	0.22460	0.178	30
548	364.2	0.11990	0.09546	0.093	50
549	505.6	0.12040	0.16330	0.061	94
550	412.3	0.10010	0.07348	0.000	00
551	436.6	0.10870	0.17820	0.156	40
552	594.7	0.12340	0.10640	0.086	53
553	295.8	0.11030	0.08298	0.079	93
554	595.7	0.12270	0.16200	0.243	90
555	357.6	0.13840	0.17100	0.200	00
556	347.3	0.12650	0.12000	0.010	05
557	330.6	0.10730	0.07158	0.000	00
558	733.5	0.10260	0.31710	0.366	20
559	474.2	0.12980	0.25170	0.363	00
560	706.7	0.12410	0.22640	0.132	60
561	439.6	0.09267	0.05494	0.000	00
562	915.0	0.14170	0.79170	1.170	00
563	1819.0	0.14070	0.41860	0.659	90
564	2027.0	0.14100	0.21130	0.410	70
565	1731.0	0.11660	0.19220	0.321	50
566	1124.0	0.11390	0.30940	0.340	30
567	1821.0	0.16500	0.86810	0.938	70
568	268.6	0.08996	0.06444	0.000	00
	worst concave points	worst symmetry	worst fractal	dimension	target
0	0.26540	0.4601		0.11890	0
1	0.18600	0.2750		0.08902	0
2	0.24300	0.3613		0.08758	0
3	0.25750	0.6638		0.17300	0
4	0.16250	0.2364		0.07678	0
5	0.17410	0.3985		0.12440	0
6	0.19320	0.3063		0.08368	0
7	0.15560	0.3196		0.11510	0
8	0.20600	0.4378		0.10720	0
9	0.22100	0.4366		0.20750	0
10	0.09975	0.2948		0.08452	0
11	0.18100	0.3792		0.10480	0
12	0.17670	0.3176		0.10230	0
13	0.11190	0.2809		0.06287	0
14	0.22080	0.3596		0.14310	0
15	0.17120	0.4218		0.13410	0
16	0.16090	0.3029		0.08216	0
		10			
		10			

540

541

542

543

544

457.8

808.9

826.4

629.6

688.6

0.13450

0.13400

0.10600

0.10720

0.12640

0.21180

0.42020

0.13760

0.13810

0.20370

0.17970

0.40400

0.16110

0.10620

0.13770

17	0.20730	0.3706	0.11420
18	0.23880	0.2768	0.07615
19	0.12880	0.2977	0.07259
20	0.07283	0.3184	0.08183
21	0.06227	0.2450	0.07773
22	0.23930	0.4667	0.09946
23	0.20090	0.2822	0.07526
24	0.20950	0.3613	0.09564
25	0.25500	0.4066	0.10590
26	0.27010	0.4264	0.12750
27	0.14900	0.2341	0.07421
28	0.20240	0.4027	0.09876
29	0.14560	0.2756	0.07919
	• • •	• • •	
539	0.05000	0.2790	0.10660
540	0.06918	0.2329	0.08134
541	0.12050	0.3187	0.10230
542	0.10950	0.2722	0.06956
543	0.07958	0.2473	0.06443
544	0.06845	0.2249	0.08492
545	0.07174	0.2642	0.06953
546	0.02381	0.2681	0.07399
547	0.08333	0.2691	0.09479
548	0.03846	0.2552	0.07920
549	0.03264	0.3059	0.07626
550	0.0000	0.2458	0.06592
551	0.06413	0.3169	0.08032
552	0.06498	0.2407	0.06484
553	0.02564	0.2435	0.07393
554	0.06493	0.2372	0.07242
555	0.09127	0.2226	0.08283
556	0.02232	0.2262	0.06742
557	0.0000	0.2475	0.06969
558	0.11050	0.2258	0.08004
559	0.09653	0.2112	0.08732
560	0.10480	0.2250	0.08321
561	0.0000	0.1566	0.05905
562	0.23560	0.4089	0.14090
563	0.25420	0.2929	0.09873
564	0.22160	0.2060	0.07115
565	0.16280	0.2572	0.06637
566	0.14180	0.2218	0.07820
567	0.26500	0.4087	0.12400
568	0.00000	0.2871	0.07039

[569 rows x 31 columns]

1.0.3 **Question 2**

What is the class distribution? (i.e. how many instances of malignant (encoded 0) and how many benign (encoded 1)?)

This function should return a Series named target of length 2 with integer values and index = ['malignant', 'benign']

1.0.4 Question 3

Split the DataFrame into X (the data) and y (the labels).

This function should return a tuple of length 2: (X, y), where * X has shape (569, 30) * y has shape (569,).

1.0.5 **Question 4**

Using train_test_split, split X and y into training and test sets (X_train, X_test, y_train, and y_test).

Set the random number generator state to 0 using random_state=0 to make sure your results match the autograder!

This function should return a tuple of length 4: (X_train, X_test, y_train, y_test), where * X_train has shape (426, 30) * X_test has shape (143, 30) * y_train has shape (426,) * y_test has shape (143,)

```
In [15]: from sklearn.model_selection import train_test_split
    def answer_four():
        X, y = answer_three()
```

```
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state
return X_train, X_test, y_train, y_test
```

1.0.6 **Question 5**

Using KNeighborsClassifier, fit a k-nearest neighbors (knn) classifier with X_train, y_train and using one nearest neighbor (n_neighbors = 1).

This function should return a sklearn.neighbors.classification.KNeighborsClassifier.

```
In [16]: from sklearn.neighbors import KNeighborsClassifier

def answer_five():
    X_train, X_test, y_train, y_test = answer_four()

knn = KNeighborsClassifier(n_neighbors = 1)
    knn.fit(X_train, y_train)

return knn
```

1.0.7 **Question 6**

Using your knn classifier, predict the class label using the mean value for each feature.

Hint: You can use cancerdf.mean() [:-1].values.reshape(1, -1) which gets the mean value for each feature, ignores the target column, and reshapes the data from 1 dimension to 2 (necessary for the precict method of KNeighborsClassifier).

This function should return a numpy array either array ([0.]) or array ([1.])

1.0.8 Question 7

Using your knn classifier, predict the class labels for the test set X_test.

This function should return a numpy array with shape (143,) and values either 0.0 or 1.0.

1.0.9 **Question 8**

Find the score (mean accuracy) of your knn classifier using X_test and y_test. This function should return a float between 0 and 1

1.0.10 Optional plot

Try using the plotting function below to visualize the differet predicition scores between training and test sets, as well as malignant and benign cells.

```
In [12]: def accuracy_plot():
             import matplotlib.pyplot as plt
             %matplotlib notebook
             X_train, X_test, y_train, y_test = answer_four()
             # Find the training and testing accuracies by target value (i.e. malig
             mal_train_X = X_train[y_train==0]
             mal_train_y = y_train[y_train==0]
             ben_train_X = X_train[y_train==1]
             ben_train_y = y_train[y_train==1]
             mal_test_X = X_test[y_test==0]
             mal_test_y = y_test[y_test==0]
             ben_test_X = X_test[y_test==1]
             ben_test_y = y_test[y_test==1]
             knn = answer five()
             scores = [knn.score(mal_train_X, mal_train_y), knn.score(ben_train_X,
                       knn.score(mal_test_X, mal_test_y), knn.score(ben_test_X, ber
             plt.figure()
             # Plot the scores as a bar chart
             bars = plt.bar(np.arange(4), scores, color=['#4c72b0','#4c72b0','#55a8
```

directly label the score onto the bars

for bar in bars:

```
height = bar.get_height()
                                                              plt.gca().text(bar.get_x() + bar.get_width()/2, height*.90, '{0:..
                                                                                                              ha='center', color='w', fontsize=11)
                                                # remove all the ticks (both axes), and tick labels on the Y axis
                                               plt.tick_params(top='off', bottom='off', left='off', right='off', labe
                                                # remove the frame of the chart
                                               for spine in plt.gca().spines.values():
                                                               spine.set_visible(False)
                                               plt.xticks([0,1,2,3], ['Malignant\nTraining', 'Benign\nTraining', 'Malignant\nTraining', 'M
                                               plt.title('Training and Test Accuracies for Malignant and Benign Cells
In [23]: # Uncomment the plotting function to see the visualization,
                                 # Comment out the plotting function when submitting your notebook for grad
                                 accuracy_plot()
<IPython.core.display.Javascript object>
<IPython.core.display.HTML object>
In [ ]:
```