1 Logic Proposition

Let p, Q and r be the following propositions concerning integers n:

- p: n is a factor of 36 (2)
- q: n is a factor of 4 (2)
- r: n is a factor of 9 (3)

n	p	q	r
1	1	1	1
2	1	0	1
3	0	1	1
4	1	0	1
6	0	0	1
9	0	1	1
12	0	0	1
18	0	0	1
36	0	0	1

For each of the following compound statements, express it using the propositions $P \neq P$ q and $P \neq P$ q and $P \neq P$ q. and $P \neq P$ q. are the following compound statements, express it using the propositions $P \neq P$ q and $P \neq P$ q. are the following compound statements, express it using the propositions $P \neq P$ q and $P \neq P$ are the following compound statements, express it using the propositions $P \neq P$ and $P \neq P$ are the following compound statements, express it using the propositions $P \neq P$ and $P \neq P$ are the following compound statements, express it using the propositions $P \neq P$ and $P \neq P$ are the following compound statements, express it using the propositions $P \neq P$ and $P \neq P$ are the following compound statements $P \neq P$ and $P \neq P$ are the following compound statements $P \neq P$ and $P \neq P$ are the following compound statements $P \neq P$ and $P \neq P$ are the following compound statements $P \neq P$ and $P \neq P$ are the following compound statements $P \neq P$ and $P \neq P$ are the following compound statements $P \neq P$ and $P \neq P$ are the following compound statements $P \neq P$ and $P \neq P$ are the following compound statements $P \neq P$ and $P \neq P$ are the following compound statements $P \neq P$ and $P \neq P$ are the following compound statements $P \neq P$ and $P \neq P$ are the following compound statements $P \neq P$ and $P \neq P$ are the following compound statements $P \neq P$ and $P \neq P$ are the following compound statements $P \neq P$ and $P \neq P$ are the following compound statements $P \neq P$ and $P \neq P$ are the following compound statements $P \neq P$ and $P \neq P$ are the following compound statements $P \neq P$ and $P \neq P$ are the following compound statements $P \neq P$ and $P \neq P$ are the following compound statements $P \neq P$ and $P \neq P$ are the following compound statements $P \neq P$ are the following compound statements $P \neq P$ and $P \neq P$ are the following compound statements $P \neq P$ and $P \neq P$ a

- 1) If n is a factor of 36, then n is a factor of 4 or n is a factor of 9
- 2) If n is a factor of 4 or n is a factor of 9 then n is a factor of 36

Part 1: Logic

1.1 2010 Question 3

Let $S = \{10, 11, 12, 13, 14, 15, 16, 17, 18, 19\}$ and let p, q be the following propositions concerning the integer $n \in S$.

- p: n is a multiple of two. (i.,18e. {10,12,14,16,18})
- q: n is a multiple of three. i.e. {12, 15, 18}

For each of the following compound statements find the sets of values n for which it is true.

- $p \lor q$: (p or q: 10 12 14 15 16 18)
- $p \land q$: (p and q: 12 18)
- $\neg p \oplus q$: (not-p or q, but not both)
 - $-\neg p \text{ not-p} = \{1113151719\}$
 - $-\neg p \lor q \text{ not-p or q } \{11121315171819\}$
 - $-\neg p \wedge q$ not-p and q $\{15\}$
 - $-\neg p \oplus q = \{11, 12, 13, 17, 18, 19\}$

1.2 2010 Question 3

Let p and q be propositions. Use Truth Tables to prove that

$$p \to q \equiv \neg q \to \neg$$

Important Remember to make a comment at the end to say why the table proves that the two statements are logically equivalent. e.g. since the columns

are identical both sides of the equation are equivalent.

р	q	$p \rightarrow q$
0	0	1
0	1	1
1	0	0
1	1	1

р	q	$\neg q$	$\neg p$	$\neg q \rightarrow \neg p$
0	0	1	1	1
0	1	0	1	1
1	0	1	0	0
1	1	0	0	1

(Key "difference" is first and last rows)

1.3 Membership Tables for Laws

Page 44 (Volume 1) Q8. Also see Section 3.3 Laws of Logic.

Construct a truth table for each of the following compound statement and hence find simpler propositions to which it is equivalent.

 $\bullet \ p \vee F$

• $p \wedge T$

Solutions

р	Т	$p \lor T$	$p \wedge T$
0	1	1	0
1	1	1	1

• Logical OR: $p \vee T = T$

• Logical AND: $p \wedge T = p$

р	F	$p \vee F$	$p \wedge F$
0	0	0	0
1	0	1	0

• Logical OR: $p \vee F = p$

• Logical AND: $p \wedge F = F$

1.4 Propositions

Page 67 Question 9 Write the contrapositive of each of the following statements:

• If n=12, then n is divisible by 3.

• If n=5, then n is positive.

• If the quadrilateral is square, then four sides are equal.

Solutions

• If n is not divisible by 3, then n is not equal to 12.

• If n is not positive, then n is not equal to 5.

• If the four sides are not equal, then the quadrilateral is not a square.

1.5 Truth Sets

2009

Let $n = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ and let p, q be the following propositions concerning the integer n.

• p: n is even,

• q: $n \ge 5$.

By drawing up the appropriate truth table nd the truth set for each of the propositions $p \vee \neg q$ and $\neg q \to p$

		_		
n	р	q	$\neg q$	$p \vee \neg q$
1	0	0	1	1
2	1	0	1	0
3	0	0	1	1
4	1	0	1	0
5	0	1	0	1
6	1	1	0	1
7	0	1	0	1
8	1	1	0	1
9	0	1	0	1

Truth Set = $\{1, 3, 5, 6, 7, 8, 9\}$

n	р	q	$q \rightarrow p$	$q \rightarrow p$
1	0	0	1	0
2	1	0	1	0
3	0	0	1	0
4	1	0	1	0
5	0	1	0	1
6	1	1	1	0
7	0	1	0	1
8	1	1	1	0
9	0	1	0	1

Truth Set = $\{5,7,9\}$

1.6 Biconditional

See Section 3.2.1.

Use truth tables to prove that $\neg p \leftrightarrow \neg q$ is equivalent to $p \leftrightarrow q$

p	q	$p \leftrightarrow q$
0	0	1
0	1	0
1	0	0
1	1	1

р	q	$\neg p$	$\neg q$	$p \leftrightarrow q$
0	0	1	1	1
0	1	1	0	0
1	0	0	1	0
1	1	0	0	1

1.7 2008 Q3b Logic Networks

Construct a logic network that accepts as input p and q, which may independently have the value 0 or 1, and gives as final input $\neg(p \land \not q)$ (i.e. $\equiv p \rightarrow q$).

Logic Gates

- AND
- OR
- NOT

Examiner's Comments: Many diagrams were carefully and clearly drawn and well labelled, gaining full marks. The logic table was also well done by most, but there were a few marks lost in the final part by failing to deduce that since the columns of the table are identical the expressions are equivalent.

1.8 2008 Q3b Logic Networks

Construct a logic network that accepts as input p and q, which may independently have the value 0 or 1, and gives as final input $(p \land q) \lor \neg q$ (i.e. $\equiv p \to q$).

Important Label each of the gates appropriately and label the diagram with a symblic expression for the output after each gate.

Prepositional Logic

1.1 five basic connectives