从一个例子讲起

$$\max_{S:t.} Z = \chi_1 + 2\chi_2$$

$$\sum_{S:t.} \chi_1 + \chi_2 \leq 3$$

$$\chi_2 \leq 1$$

$$\chi_1, \chi_2 \geq 0$$

$$\sum_{H_3} \chi_1 + \chi_2 + \chi_3 = 3$$

$$\chi_2 + \chi_4 = 1$$

$$\chi_1, \chi_2, \chi_3, \chi_4 \geq 0$$

构造初始可行解

$$\chi^{(0)} = (0,0,3,1)^T, Z=0$$

典则形式: 用非基变量表示基变量和目标函数

$$\begin{cases} \chi_3 = 3 - \chi_1 - \chi_2 \\ \chi_4 = 1 - \chi_2 \\ \mathcal{Z} = \chi_1 + 2\chi_2 \end{cases}$$

显然目标函数可以改进

$$\chi^{(1)} = (0,1,2,0)^T \mathbb{Z} = 2$$

$$\begin{cases} \chi_2 = 1 - \chi_4 \\ \chi_3 = 2 - \chi_1 + \chi_4 \\ Z = \chi_1 - 2\chi_4 + 2 \end{cases}$$

 χ_1 入基, χ_2 不变, $\chi_3 = 2 - \chi_1 + \chi_4 = 0 ±基 <math>\chi^{(2)} = (2,1,0,0)^T$, Z=4

$$\begin{cases} \chi_1 = 2 - \chi_3 + \chi_4 \\ \chi_2 = |-\chi_4| \\ Z = 4 - \chi_3 - \chi_4 \end{cases}$$

检验数50, 达到最优的

B: Basic N: non-Basic

$$\chi = \begin{bmatrix} \chi_B \\ \chi_N \end{bmatrix}$$
 $A = [A_B A_N]$

 $A_B \chi_B + A_N \chi_N = b$

$$\int \chi_B = A_B^{-1} b - A_B^{-1} A_N \chi_N$$

要则 $\{ \chi_B = A_B^{\dagger} b - A_B^{\dagger} A_N \chi_N \}$ $\{ \chi_B = A_B^{\dagger} b - A_B^{\dagger} A_N \chi_N \}$ $\chi_B = A_B^{\dagger} b - A_B^{\dagger} A_N \chi_N \}$

$$C^{T} \chi = C_{b}^{T} \chi_{b} + C_{v}^{T} \chi_{v}$$

 $= C_{B}^{T} A_{B}^{H} b + (C_{M}^{T} - C_{B}^{T} A_{B}^{H} A_{M}) \chi_{M}$ 检验数

 $A = A_B^T A_N = (\bar{\Omega} \dot{q})_{m \times (n-m)}$

若非基变量 % (j=m+1,...,n) 的 检验面

 $G_{k} = C_{k} - \stackrel{m}{\underset{i=1}{2}} C_{i} \overline{\Omega}_{i} k \qquad k = \hat{j} - (m+1)$ 因为 χ_{m+1} 对方

 $\bar{x} \max, 若 \sigma_k \leq 0 , 则 [XB] 为最优弱$

岩∃σ >0且 Qī ≤0, ∀i=1,…, m,则无有限最优的 (α越大越路)

	Св	CN		
χ_{B}	AB	ΑN	Ь	~ ABXB+ANXN=b

检验数 目标值相反数

		CN-CB AB AN		\sim
$\chi_{\mathtt{B}}$	Imxm	A _e A _√	A& b	$Z-C_8^TA_8^{-1}b$
	单位矩阵			$= (C^{N} - C^{\beta}_{\perp} A^{\beta}_{-l} A^{N}) \times^{N}$

$$\chi_i + \overline{\alpha_{ij}} \chi_j = \overline{b_i}$$

 $\min_{\alpha_{ij} > 0} \frac{\overline{b_i}}{\overline{\alpha_{ij}}} \text{ at } \overline{\lambda_i}$

举例:

$$\max_{s.t.} z = \chi_1 + 2\chi_2$$

$$s.t. \quad \chi_1 + \chi_2 \leq 3$$

$$\chi_2 \leq |$$

$$\chi_1, \chi_2 \geq 0$$

光化成林涯
$$\max Z = \chi_1 + 2\chi_2$$

円 式 $\chi_1 + \chi_2 + \chi_3 = 3$
 $\chi_2 + \chi_4 = 1$

 $\chi_1, \chi_2, \chi_3, \chi_4 \geq 0$

构造一组初始可好解(0,0,3,1)™ 足=0 先的Xx, Xx为基

				/ /	机计
		ત	(0	0	
$\chi_{\!\scriptscriptstyle 3}$	I	1	-	0	√ 3
7/4	0	-	0		

	١	(C)	0	0		
χ,	1	ł	1	0	3	
7/4	0	0	0	1		
入基						

λ2λ基, 选准址。

	I	۷.	0	0	0
χ ₃	ı	1	1	0	3
χ2	O	ı	0	١	1

	Θ	0	9	-2	-2
χ3	Θ	0	1	T	2
χ ₂	Q		0	l	ſ

不满足典则刑式

χ,入基, χ, 生基

		Х			
		0	0	-2	-2
χ_{ι}	I	70	ı	-1	2
χ_2	0	7	0	l	ſ

检验和率≤0							
	٥	0	1	T	-4		
χ_{ι}	1	0	1	-1	2		

0

χ₂ Θ Ι

$$\chi^* = (2.1, 0.0) Z^* = 4$$

$$\chi_{5}$$
 χ_{8} χ_{8} χ_{8} χ_{8} χ_{8} χ_{1} χ_{1} χ_{1} χ_{2} χ_{3} χ_{5} χ_{5} χ_{5} χ_{6} χ_{1} χ_{1} χ_{2} χ_{3} χ_{5} χ_{5} χ_{6} χ_{7} χ_{1} χ_{1} χ_{1} χ_{2} χ_{3} χ_{5} χ_{5} χ_{6} χ_{1} χ_{1} χ_{1} χ_{2} χ_{3} χ_{5} χ_{5} χ_{5} χ_{5} χ_{6} χ_{1} χ_{1} χ_{1} χ_{2} χ_{3} χ_{5} χ_{5

$$(6.5, 2.5, 0.5, 0, 0)$$
 $Z = -1.5$

to max

- O read in
- 2 min => max
- ③"≥" 临集 ⇒ "≤"
- ①判断等于O的的束 两阶段法 松弛变量

⑤ 松弛变量为 b

市网

⑤2 两阶