Name: Ivan Voitov Date: October 28, 2021

Lab section: Thursday Lab 009

Show your work!!!

<u>Acquire</u>

Week: 8

Date: Feb 18 Year: **2019** Data: Which States Produce the Most

Wind Energy?

Source Article/Visualization:

Which States Produce the Most Wind Energy, Data Source: American Wind Energy Association via Choose Energy.

https://www.makeovermonday.co.uk/data/data-sets-2018/

Represent

Original Visualization

Wind Power in the United States 2018

Critique

I like the way that the person had a color scheme to show the difference in wind power usage, but what I don't like about it is that the top colors are a little bit hard to distinguish and how there's a random break in the trend of the colors in the middle of the graph. Also, I don't think that it's necessary to use windmills as symbols instead of normal bars since the lower numbers further right look really mushed together and a little bit hard to tell what's going on. The idea behind using a symbol is unique and interesting though; it grabs the viewers attention pretty well. Finally, I'm pretty sure that not all 50 states are represented here and since that's the fault of the dataset maybe a better dataset could've been acquired.

NEW: Based on your knowledge of the Periodic Table of Visualization Methods (discussed in class this week), discuss which one of the 6 categories does the visualization you provided in the Represent stage falls in. Identify the method most closely related to the visualization in the Represent Stage and discuss the characteristics: overview, detail, detail AND overview, divergent thinking, convergent thinking. Refer to Week 10 Readings to assist with categorizing the visualization.

This visualization would most likely just fall under the bar graph section which is the yellow "Data Visualization" family, if the windmills were to be turned into bars the bar chart would be clear and easily categorizable. According to the periodic table of visualization methods bar charts fall under convergent thinking and overview. The convergent thinking is following the rules of a bar chart by looking at the highest bar and determining that it has the highest value and vise versa for the lowest bar. The overview vs. the detail makes sense here since bar charts are often just general ideas of comparisons between different data values on the x axis and there isn't much gritty detail that is displayed in this graph. The macro trends are apparent. The bar chart element suits this chart well.

Mine

For this I'm going to stick with the question that the data visualization answered: Which States Produce the Most Wind Energy, excluding the Southeast?

<u>Filter</u>

1 R	ankin			Equivalent Homes Powe	Total Investment (\$ Millic	Wind Projects Onli	# of Wind Turbines
2	1	TEXAS	23,262	6,235,000	42,000	136	12,750
	2	OKLAHOMA	7,495	2,268,000	13,700	45	3,717
	3	IOWA	7,312	1,935,000	14,200	107	4,145
5	4	CALIFORNIA	5,686	1,298,000	12,600	104	6,972
3	5	KANSAS	5,110	1,719,000	9,400	35	2,795
7	6	ILLINOIS	4,464	1,050,000	8,900	49	2,632
3	7	MINNESOTA	3,699	1,012,000	7,100	98	2,428
9	8	OREGON	3,213	604,600	6,600	31	1,868
0	9	COLORADO	3,106	889,100	6,000	25	1,949
1	10	WASHINGTON	3,075	695,300	6,100	20	1,725
2	11	NORTH DAKOTA	2,996	1,021,000	5.800	28	1,611
3	12	INDIANA	2,117	440.700	4.500	16	1,203
4		MICHIGAN	1,904	471,700	3,500	26	1,051
5		NEW YORK	1,829	366,500	3,700	27	1,052
6		NEW MEXICO	1,682	422,100	2,900	17	1,005
7		WYOMING	1,489	408,700	3,100	22	1,005
8		NEBRASKA	1,445	486,700	2,600	22	789
9		PENNSYLVANIA		314,000	2,800	24	726
0		SOUTH DAKOTA	,	293,100	2,100	14	583
1		IDAHO	973	228,000	2,100	15	541
2		MISSOURI	959	181,100	1,800	8	499
3		MAINE	923	206,500	1,800	18	386
4		WISCONSIN	746	142,100	1,500	18	466
5		MONTANA	720	199,800	1,400	16	493
6		WEST VIRGINIA		149,300	1,400	6	376
7		OHIO	617	145,300	1,200	37	336
8		UTAH	391	86,900	851	5	205
9		ARIZONA	268	54,600	573	5	144
0		NORTH CAROLI		43,800	330	1	105
1		HAWAII	206	59,800	412	7	119
2		MARYLAND	191	47,500	397	6	80
3		NEW HAMPSHIR		38,500	374	5	75
4		NEVADA	152	33,600	306	1	66
5	34	VERMONT	149	25,900	300	9	71
6		MASSACHUSET		20,500	236	44	86
7		ALASKA	62	15,200	126	19	104
8		RHODE ISLAND		14,200	346	15	25
9		TENNESSEE NEW JERSEY	29	2,800 1,900	39 15	2	18
0		CONNECTICUT	9	1,300	9	2	6
2		DELAWARE	2	1,300 NA	5	1	1
2	71	DELAWAILE	2	INC	3	'	

Stakeholders

My audience (minus the students and teachers) could be government officials that are interested in how each state generates power, or even environmentalists that could be advocating for states that use naturally generated power and using this visualization to prove their points. Some assumptions that I made were that the Southeast states use wind power, but just weren't provided in the dataset. Another assumption would be

that this data was taken at the same time, as in on the same day to one another. This would make it so that the rankings are accurate. Another assumption that I made is that the amount of energy used to power the wind turbine is factored out of the total for each state since some states like Texas have way more turbines that require more energy to run. I used Tableau to make the visualization.

What to submit: This document in PDF format only (if you do not know how to do this, ask).

Choose the best layout for your makeover visualization: Portrait or Landscape, Remove the page of the layout that you DO NOT choose. No blank pages!

Refine (Makeover – Landscape view)

Use an additional page if necessary. Remember, the purpose of visualization is "insight." Take and include a screenshot of your visualization and include it below. Use Data Visualization Best Practices (see data visualization checklist).

Figure Caption. The Wind Power Usage in the United States (2018) is displayed and color coded by state excluding the South East.

Resources

Data Visualization Checklist:

http://stephanieevergreen.com/wp-content/uploads/2016/10/DataVizChecklist May2016.pdf

How to give constructive criticism:

https://personalexcellence.co/blog/constructive-criticism/

Sample Makeovers

https://www.makeovermonday.co.uk/gallery/

Grading Rubric

Excellent	Good	Fair	Needs Improvement
(21-25 pts)	(10-20 pts)	(5 – 9 pts)	(0 – 4 pts)
Meets ALL or most of	Meets MOST of these:	Consistently meets	Little to no evidence
these: Makeover is	Makeover is esthetically	SOME of these:	of the understanding
esthetically pleasing	pleasing (color,	Makeover is	of the data
(color, perception), best	perception), best practices	esthetically pleasing	visualization process.
practices followed	followed (insightful),	(color, perception),	
(insightful), Correct	Correct dataset	best practices	Lackluster makeover
dataset downloaded;	downloaded; provided an	followed (insightful),	or no makeover.
provided an interesting	interesting point of view	Correct dataset	
point of view of the	of the data; critiqued	downloaded;	Little effort.
data; critiqued previous	previous makeover,	provided an	
makeover, critique is	critique is constructive	interesting point of	
constructive (indicates	(indicates one thing that is	view of the data;	
one thing that is done	done well, and one thing	critiqued previous	

well, and one thing that	that could be done	makeover, critique is	
could be done	differently, what will be	constructive	
differently, what will be	done to improve the	(indicates one thing	
done to improve the	visualization),	that is done well, and	
visualization),	assumptions (more than	one thing that could	
assumptions (more than	one) are listed.	be done differently,	
one) are listed.		what will be done to	
		improve the	
		visualization),	
		assumptions (more	
		than one) are listed.	