

Licenciatura em Engenharia Informática

1º Ano, 1º Semestre

Eletrónica (2022/2023)

Ficha Prática N.º 6

Todos os cálculos matemáticos, decorrentes das questões que se apresentam em seguida, devem ser realizados através do ambiente de desenvolvimento integrado *IDLE*.

19. Considere o circuito da figura seguinte, em que o transístor apresenta as seguintes características: β = 172 e V_{BE} = 0.66 V.

- a) Determine o ponto de funcionamento e repouso (PFR). Utilize o método direto).
- b) Determine o PFR (utilize o teorema de *Thevenin* para simplificar o circuito de polarização da base).
- c) Determine o Ponto de Corte (PC).
- d) Determine o Ponto de Saturação (PS).
- e) Represente a Reta de Carga (RC).
- f) Determine o Ponto de Máxima Excursão Simétrica (PMES).
- g) Simule o circuito anterior recorrendo ao programa de simulação *Pspice*, considerando uma temperatura de operação de 27 °C.
- h) Suponha que a temperatura de operação diminui para -55 °C. Simule o circuito anterior recorrendo ao programa de simulação *Pspice*, considerando uma temperatura de operação de -55 °C¹. Que conclusões pode retirar relativamente à estabilidade do circuito.

¹ A temperatura atmosférica diminui com a altitude, sendo que na faixa dos 10 *Km* a 12 *Km* de altitude é aproximadamente constante e igual a -55 °C. Como a temperatura não varia significativamente, o nível de turbulência é bastante mitigado, motivo pelo qual esta é a altitude cruzeiro típica de um voo comercial.

- a. Justifique analiticamente (obtenha a relação $I_B = função(\beta)$).
- b. Justifique com recurso à análise do efeito da temperatura na tensão aos terminais do díodo emissor.
- i) Remova a resistência R₄ e ajuste o valor das resistências R₃ e R₂ para 7 kΩ. Simule o circuito para 27 °C e -55 °C. Que conclusões pode retirar relativamente à estabilidade do circuito.
 - a. Justifique analiticamente (obtenha a relação $I_B = função(\beta)$).
 - Justifique com recurso à análise do efeito da temperatura na tensão aos terminais do díodo emissor.
- j) Indique um sistema onde uma escolha inadequada do circuito de polarização poderia conduzir a uma situação catastrófica, justifique.
- k) Considere o circuito original em que a resistência R_1 é ajustada para o valor 50 $k\Omega$. Em que região de operação se encontra a operar o transístor BJT, justifique analiticamente (considere que com β = 172 e V_{BE} = 0.66 V).
- **20.**Considere o circuito da figura seguinte, em que o transístor apresenta a seguinte característica V_{BE} = 0.66 V.

- a) Determine a corrente que atravessa a resistência R₁.
- b) Considere o valor da corrente de base desprezável em relação ao valor da corrente no emissor. Determine a corrente na resistência R_{VAR}.
- c) Simule o circuito anterior em Pspice:
 - i. Considere $R_{VAR}=1 k\Omega$.
 - ii. Considere R_{VAR} =10 k Ω .
 - iii. Conclua relativamente à aplicação deste circuito.
- d) Determine o valor máximo que R_{VAR} pode assumir para que o BJT passe a operar na região de saturação (considere que o BJT está saturado quando V_{CE} é inferior a 0.2 Volts e o valor da corrente de base desprezável em relação ao valor da corrente no emissor).
- e) Simule o circuito anterior considerando uma resistência R_{VAR} duas vezes superior ao valor calculado na alínea anterior. Que conclusão pode extrair do resultado obtido.
- f) Indique algumas aplicações para o circuito anterior.

21.Considere o circuito da figura seguinte, em que o transístor apresenta a seguinte característica β = 175 e V_{BE} = 0.66 V.

- a) Determine o PFR.
- b) Simule o circuito em Pspice.
- c) Considere que no datasheet do BJT é indicado que para β inferiores a 50 o transístor encontra-se a operar na região de saturação. Calcule qual o valor máximo que R₁ deveria assumir para que o BJT esteja a operar na região de saturação.
- d) Simule o circuito em *Pspice* substituindo a fonte V_1 por uma fonte de tensão quadrada com:
 - i. Valor máximo de 5 V e mínimo de 0 V
 - ii. Duty cycle de 50%.
 - iii. Frequência = 1 kHz.
 - iv. Simule o circuito num primeiro momento considerando R₁ igual ao valor calculado na alínea c.
 - v. Seguidamente simule o circuito considerando R_1 igual 500 k Ω .
 - vi. Que conclusões pode extrair dos resultados obtidos.
- e) Identifique algumas aplicações para o circuito apresentado.

Bibliografia:

- [1] Amaral, Acácio (2021), Eletrónica Aplicada, Edições Silabo, Lisboa, Portugal.
- [2] Amaral, Acácio (2017), Electrónica Analógica: Princípios, Análise e Projectos, Edições Silabo, Lisboa, Portugal.
- [3] Amaral, Acácio (2015), Análise de Circuitos e Dispositivos Eletrónicos, Publindústria, Porto (2ª edição).