Report:

I ran my sorting algorithms on a variety on textfiles with between 100, 000 and 500, 000 numbers.

I ran the both random number files and files with the same number repeated.

Quick sort		
Number of		
numbers	Time	
100000	40	
200000	130	
300000	250	
400000	420	
500000	630	
Merge sort		
Number of		
numbers	Time	
100000	22	
200000	45	
300000	72	
400000	95	
500000	129	

As can be seen quicksort is running in O $[n^2]$ and mergesort is running in O [nlogn]

Quick sort same number	
Number of	
numbers	Time
100000	7699
200000	211722
300000	NA
400000	NA
500000	NA
Merge sort – same number	
Number of	
numbers	Time
100000	19
200000	42
300000	62
400000	85
500000	112

As can be seem, mergesort does not change with an array of the same numbers, staying at O[nlogn] whilst Quicksort quickly becomes unmanageable, failing to complete with any more than 200K numbers