6.034 Artificial Intelligence: Lecture 6 Constraint Satisfaction

Professor Robert C. Berwick September 16, 2020

Al Methods

- Problem solving
 - ☐ G+T, search, optimal search, games constraint satisfaction
- □ Inference
 - □ rule-based systems, Bayesian inference
- ☐ Machine learning
 - k-nearest neighbors, id trees, neural nets, deep neural nets, support vector machines, genetic algorithms, near miss/one-shot
- □ Communication, perception, action
 - □ natural language processing, vision, robotics

Constraint satisfaction

■Search, exploiting constraints
Motivation for constraint satisfaction: Babies vs Google
☐ Constraint satisfaction & the trouble with Texas
☐ The Domain Reduction Algorithm — what works best?
Propagation choices & Ordering choices for the Domain Reduction Algorithm
Applying constraint satisfaction to other problems

Constraint satisfaction: how does it fit in to our picture of intelligence?

Constraints exposed by

Representations that support

Models of perception, thinking, and action

Right representation = problem almost solved

More constraint, less search

Motivation What babies can do easily

The American Journal of Psychology, Vol. 75, No. 4 (Dec., 1962), pp. 624-628

Picture perception in infancy

Judy S. DeLoache, Mark S. Strauss, Jane Maynard *Infant Behavior and Development*, Vol. 2, January 1979, 77-89

Slide Courtesy of Pawan Sinha

Google knows best?

ImageNet – 14 million images

Line drawings of common objects in ImageNet

Slide courtesy of Pawan Sinha

Line drawings & pictures: Babies vs. Google

2-D line drawings from 3-D scenes

Q: How do we figure out what these lines mean in terms of edges & junctions, and what are the separate blocks as projected from the real 3-D world?

Ans: To talk about this, first we need a library to describe the possible lines and junctions

How might one do this labeling?

- Lines in a drawing can meet up in a few different ways (these are the "constraints")
- Places where lines meet up are called junctions
- Not all junctions are physically realizable

Let's see how this works by constraint satisfaction aka constraint propagation

First, we need a description of lines and junctions between them...and three assumptions

The representation language or "combinatorial chemistry" for 3-vertex line drawings

Assumption 1: no "screw cases"

X not allowed

ASSUMPTIONS

1. General position

OK

Real World Vertices Edges 2-D line drawings
Junctions
Lines

Assumption 2: 3-vertex (trihedral) junctions

ASSUMPTIONS

- General position
- 2. Trihedral
 vertices
 (all line junctions
 formed by
 intersection of 3
 planes)

ASSUMPTIONS

- 1. General position
- 2. Trihedral

 vertices (all
 junctions formed
 by intersection of 3

3. Four line labels

Note: also by convention, we assume boundaries are traversed "clockwise"

Given these assumptions, there are only a few ways to label junctions of line drawings

- 4. 18 atomic <u>junction</u> (vertex) types (where 2 or 3 lines meet), assuming 3-faced vertices:
 - (i) 6 <u>L</u>s
 - (ii) 5 <u>F</u>orks
 - (iii) 4 Ts
 - (iv) 3 Arrows

But where do these 18 primitive junction types come from?

Vocabulary of junction types...come from difft views of objects

Here are the first two fork type junctions

The full library of junction types – just 18 labels

The "periodic table" of 18 "elements" that can label trihedral junctions 6 L's Ľs $4^2 = 16$ **Forks** 5 F's $4^3 = 64$ 4 T's T's $4^3 = 64$ 3 A's Q: How many junction types logically possible **Arrows** Arrow 1 Arrow 2 Arrow 3 if no real world 3-vertex $4^3 = 64$ constraint?

Total: 208 18 physically realizable out of 208 logically possible – constraints

Now let's see how to do "constraint satisfaction" using these constraints

Given a 2-D line drawing, how do we label it with these junctions? DFS?

- We <u>could</u> use depth-first search: pick a junction label out of our library of 18, for some vertex, #1; then picking a junction label for vertex #2, and so on, backing up if the labels are not "compatible"
- E.g., pick Arrow 3 for Vertex #1, and then L5 for Vertex #2. The line connecting vertex 1 to vertex 2 <u>must</u> be marked "+" at <u>both</u> ends: **this is the key constraint that must "propagate" & defines the notion "compatible"**
- But this choice is <u>not</u> compatible with Arrow 2 for Vertex #3, because the < on L5 ≠ the − on Arrow 2; we need to back up & make another choice of junction label

Key idea: instead, we can "pile up" <u>all</u> the labels at each junction and filter them out one against the other all at once ("Waltz's algorithm")

Constraint satisfaction for map coloring: No adjacent states w same color

4 colors – Red, Green, Blue, Yellow

Will constraint propagation as in line labeling work out here?

{Red, Green,	{Red, Green,
Blue, Yellow}	Blue, Yellow}
{Red, Green,	{Red, Green,
Blue, Yellow}	Blue, Yellow}

We need to do something a bit more general...

Vocabulary for a general method: the Domain Reduction

- Variable V: something that can have an assignment
- Value x: something that can be assigned
- Domain D: a bag of values
- Constraint C: a condition that must be satisfied among variable values

Systematic Idea for Map Coloring: Domain Reduction Algorithm

- For each depth first search assignment
 - ullet For each variable V_i considered choices here
 - For each value x_i in D_i (domain of V_i)
 - For each constraint C between V_i and other variables V_j we use binary constraints (e.g., Y/N)

Domain Reduction Algorithm

- If $\nexists x_j \in D_j$ such that $C(x_i, x_j)$ is satisfied
- Then remove x_i from D_i

Systematic Idea for Map Coloring: Domain Reduction Algorithm

- For each depth first search assignment
 - For each variable V_i <u>considered</u>

we have choices here

- For each value x_i in D_i (domain of V_i)
 - For each constraint C between V_i and other variables V_j we use pinary constraints (e.g., Y/N)
- Domain
- If $\nexists x_i \in D_i$ such that $C(x_i, x_i)$ is satisfied
- **Reduction** Then remove x_i from D_i
- Algorithm If D_i empty, then backtrack

Let's see domain reduction in action with map coloring – we can "consider" variables in several different ways...

- 1. Check nothing (no constraints); or everything
- 2. Check assignments only
- 3. Check neighbors
- 4. Propagate constraints through reduced domains
- 5. Propagate through singleton domains

In addition, 2 flourishes:

Try most constrained variables (e.g., states) first; Try least constrained variables (e.g., states) first Which method works best for USA map coloring?

1. Check nothing

1. Check nothing – end state

2. Check assignments only

2. Check assignments only – end state

3. Check neighbors only

3. Check neighbors only – end state

4. Propagate constraints through reduced domains

4. Propagate through reduced domains – end state

4. Propagate through singleton domains

5. Propagate constraints through singleton domains – end state

Flourish 1: color least constrained state first

Flourish 1: color least constrained state first – end state

Flourish 2: color most constrained state first

Flourish 2: color most constrained state first – end state

Check assignments <u>only</u>, <u>no</u> constraint propagation, most constrained state first

The dirty little secret: check assignments <u>only</u>, <u>no</u> constraint propagation, most constrained state first

What Do We "consider"?

ordering of states: strange, alphabetic, most, least constrained

Consider	dead ends	extensions	constraints checked	
	≈∞	≈∞	o	S
A saissa sa	1827	9217	0	a
Assignments only	3	101	0	m
	≈∞	≈∞	0	ı
	406	2113	4667	s
	0	82	244	а
Neighbors only	0	86	224	m
	1371	6945	10302	
Droposoto	0	75	585	S
Propagate	0	82	492	a
through singleton	0	86	299	m
domains	0	82	492	ı
Duanagata	0	75	2095	S
Propagate	0	82	2074	a
through reduced	0	86	1725	m
domains	0	82	2074	

What other problems can we solve by constraint satisfaction?

Resource Allocation via Constraint Propagation

 Consider JetGreen Airlines with the following proposed schedule, using 4 aircraft:

Summary: Constraint satisfaction

Different architectures/algorithms that exploit

Constraints exposed by

Representations that support

Models of perception, thinking, and action

Many different, difficult problems can be solved this way!

Dutch human language analysis solved like line labeling "We know that Cecilia tries to teach Hans to crack a nut" We weten dat Cecilia Hans een noot probeert te leren kraken

> We know Cecilia Hans teach _crack tries nut