Disciplina: processamento digital de imagens

Primeira avaliação

NOME: Washington Pinto Bisliaa

1. A utilidade dos operadores isotrópicos é que podemos realçar bordas independentes da direção. O operador Laplaciano é um operador isotrópico. Podemos, no entanto, realçar bordas em uma dada direção, por exemplo vertical, utilizando um operador Laplaciano. Dessa forma, pede-se:

semestre: 2016/02

- derive uma máscara Laplaciana 3x3 que realce bordas predominantemente na direção

- derive uma máscara Laplaciana 3x3 que realce bordas predominantemente na direção vertical;

1	1	1
-2	-2	-2
1	1	1

máscara Laplaciana na direção horizontal máscara Laplaciana na direção vertical

Aubenor que a função que define
$$g(x-1, y-1)$$
 $g(x-1, y+1)$ $g(x-1, y+1)$

- Derivando a moseora pora realce na direção horizontal

$$\frac{\partial^{2} f}{\partial x^{2}} = \left[f(x-1, Y-1) - f(x, Y-1) \right] - \left[f(x, Y+1) - f(x+1, Y-1) \right] \\
= f(x-1, Y-1) + f(x+1, Y-1) - 2 f(x, Y-1) (1)$$

$$\frac{d^{2}f}{dx^{2}} = \left[f(x-1,Y) - f(x,Y) \right] - \left[f(x,Y) - f(x+1,Y) \right]$$

$$= f(x-1,Y) + f(x+1,Y) - 2 f(x,Y), \qquad (2)$$

$$\frac{\partial^{2} f}{\partial x^{2}} = \left[f(x-1, y+1) - f(x, y+1) \right] - \left[f(x, y+1) - f(x+1, y+1) \right]$$

$$= f(x+1, y-1) + f(x+1, y+1) - 2 \cdot f(x, y+1)$$

$$(3)$$

tomando as equações (11, (2) e(3) podemos definir a mascara loplaciana horizantal como:

1	1	1
-2	-2	-2
4,	1	1

Direção escolhida: de baixo pora cima

- Derivando a moscora para realce na direção vortical

$$\frac{d^2 f}{dy^2} = \left[\frac{1}{4(x,y)} - \frac{1}{4(x,y-1)} \right] - \left[\frac{1}{4(x,y+1)} - \frac{1}{4(x,y)} \right]$$

$$= -\frac{1}{4(x,y)} - \frac{1}{4(x,y+1)} - \frac{1}{4(x,y+1)} + \frac{1}{4(x,y)} + \frac{1}{4(x,y)}$$

$$= -\frac{1}{4(x,y)} - \frac{1}{4(x,y)} - \frac{1}{4(x,y+1)} + \frac{1}{4(x,y)} + \frac{1}{4(x,y)}$$

$$= -\frac{1}{4(x,y)} - \frac{1}{4(x,y)} - \frac{1}{4(x,y)} + \frac{1}{4(x,y)} + \frac{1}{4(x,y)} + \frac{1}{4(x,y)} + \frac{1}{4(x,y)} + \frac{1}{4(x,y)}$$

(LINHA 3)
$$\frac{J^2 f}{J^2 g^2} = \left[f(x+1,Y) - f(x+1,Y-1) \right] - \left[f(x+1,Y+1) - f(x+1,Y) \right]$$

= $- f(x+1,Y-1) - f(x+1,Y+1) + 2f(x+1,Y)$ (6)

tomando as equações (4), (5), e(6) podemos definir a mostara loplaciona vertical como;

2 -1 Lirerós escolhido: dos esquerda 2 -1 para direita

2. Considere as imagens apresentadas a seguir. Na imagem da esquerda, verifica-se a presença de bolhas (objeto de interesse) e de pequenos ruídos, como é o caso do indicado na referida figura (com o cursor). A área da imagem, contendo ruído é mostrada de forma ampliada na figura ao lado.

Pergunta-se:

- (a) Utilizando a teoria de conectividade /adjacência de pixels, como poderíamos identificar o conjunto conectado correspondente ao ruído?
- (b) Baseado na sua resposta em (a) que pixels seriam "marcados" como ruído?

- (a) Poderíamos identificar es níveis de cinza que empõem e ruído e formar um conjunto "V" com esses níveis, em seguida usariamos tal conjunto como critério de adjacencia para localização dos ruídos.
- (5) Observande a figura selecionei o conjunto: V= { 144, 145, ..., 221 }

como sendo o nuído I distaquei a ocorrência na figura.

- 3. (a) De que forma a digitalização a amostragem e a quantização de uma imagem influi na resolução espacial e de profundidade da imagem. (b) Qual é o aspecto de uma imagem sub amostrada? (c) Qual o aspecto de uma imagem digitalizada com baixa resolução de intensidade?
- (a) A amostragim e a quantidade de piceis por unidade de espaço que uma imagem possui, é umo coracterística ligada ao tipo de rensor que foi utilizado para digitalização da imagem, portanto está diretamente ligada com a resolução espacial da imagem. Austro mais denso o sensor melhor sorá a resolução espacial da imagem.

la quantização é a quantidade de lists que se usa para representar os míreis de cinza de uma imagem, portanto quanto maior a a quantidade de bits utilizados maior suá a profundidade.

- (b) la imagem seró quadriculada e com bordos surrilhados. Os detalhes finos seros perdidos.
- (C) Por ter baixa resolução de intensidade a imagem tirá pouca profundidade ou pouco controste.

4. Suponha uma imagem de 4 bits que apresenta a seguinte distribuição de nível de cinza (com n=360):

NC _i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
ni	15	0	0	0	0	70	110	45	70	35	0	0	0	0	0	15

Nós podemos expandir os níveis de cinza da faixa central aplicando a função linear por partes da figura abaixo. Essa função tem o efeito de expandir os níveis de 5 a 9 para 2 a 14. Os níveis fora dessa faixa são transformados de acordo com a função linear das extremidades do gráfico. Defina as 3 funções lineares, e realize o novo mapeamento do histograma.

função de transformação 1: $\frac{1}{2\pi} + \frac{1}{2\pi} = \frac{1}{2\pi} = \frac{1}{2\pi} + \frac{1}{2\pi} = \frac{1}{2\pi} = \frac{1}{2\pi} = \frac{1}{2\pi} + \frac{1}{2\pi} = \frac{1}$

função de transformação 2: t(n) = 3n - 13 5 < n < 9

função de transformação 3: $f(n) = \frac{\pi}{6} + \frac{75}{6}$ 9< n < 15

novo histograma decorrente do novo mapeamento:

NCi	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
n_i	45	0	70	0	0	770	0	0	45	0	0	70	6	0	35	15

-							1
	1	0	2/5.0		0	0	15
	1	1	2/5.1	5	0,4	0	0
	\	2	3/5.2	5	0,8	1	0
TI	1	3	2/5.3	7	1,2	1	0
		4	2/5.4	3.8	116	2	6
	(5	\$5.5	-	2	-2.	70
	(6	3.6-13.	:	5	5	110
_		7	3.7-13		8	8	45
T2	1	8	3.8-13	5	11	11	70
		01	3.9-13	-		14"	35
	(-	10	10/6 + 75/6	s =	14,1	14	0
)_	17	14/6 + 75/	6 =	14,3	14	0
T3	1	12	12/6 +75/	6 = 1	4,5	14	0
		13	13/6 + 75/	6=	1416	15	0
		LY	14/6+75/	6=1	14,8	15	0
		13	15/6 + 75/	6=	15	15	15
					1		

5. Considere o trecho de imagem digital a seguir, representado por uma matriz 5x5. Seja o pixel central, o pixel de referência. Que opções eu teria para filtrar esse pixel considerado ruído? Qual seria a melhor opção? Justifique sua resposta.

190	198	184	4
188	189	99	200
178	19	191	187
183	187	198	179
183	175	176	180
	188 178 183	188 189 178 19 183 187	188 189 99 178 19 191 183 187 198

Poderia ser usado um filtro de média ou um filtro de mediana. La melhor opção seria o filtro de mediana, pois esse tipo de filtro elimina os ruídos enitando o borramento da imagem.

 Descreva de que forma é realizada a filtragem espacial linear e a filtragem espacial não linear.

la filtragem espacial linear à realizada quando uma moscara de tamanho M×N é convoluido a uma imagem. Esse procedimento consiste na substituição do valor de um determinado pixel pelo resultado de uma operação linear realizada entre a vizinhança do pixel e uma moscara que determina a filtragem.

la filtragion não linear pode ser representada por um filtro de mediana, assa filtragem consiste no ordenamento dos pixes de uma determinada região i na seleção do pixel central como valor a ser usado.