

"I need someone well versed in the art of torture—do you know PowerPoint?"

Risks of Risk Assessment Resillience Engineering: Managing the Residual

John Wreathall

Workshop: Open Initiative for Next Generation PSA

Washington, DC

October 3rd, 2007

Probabilistic Safety Assessment (PSA/PRA)

- A quasi-static assessment of risk
- As designed
- As modified
- Weak representation of human performance
- Under-developed models despite investment in 2nd Gen HRA modeling
- Lack of relevant <u>meaningful</u> data
- Minimal representation of organizational performance
- <u>At best</u>, representation of retrospective performance is implicit in plantspecific data
- Helpful for measuring substantial departures from reference
- Regulatory audits
- Limited help in *proactive* day-to-day safety management

The Old 'Swiss Cheese' Model

PSA can be thought of as modeling the likelihood of a hazard passing through a set of 'holes'. Resilience is partly about managing the state of the holes,

particularly the latent conditions.

Kasmussen's 'Boundary Model'& Safety Management Pressures

From Rasmussen, *Risk management in a dynamic society: a modelling problem*, Safety Science (1997)

Properties of Resilient Systems

Buffering capacity

 System absorbs or adapts to disruptions without fundamental breakdown

| Flexibility

 System can restructure or reconfigure in response to external changes or pressures

Tolerance

 System can perform close to performance boundaries and degrades gracefully as it approaches them

Managing margins

performance boundaries and can anticipate/control future System manager has understanding of how close it is to trajectory

Buffering

- Accomplished by having reserves of the right kind that can be deployed at the right time
- knowledge about the system's current state Knowing the right kind and time requires and its direction (see later)
- Reserves are often thought of as 'fat' to be cut to improve production performance
- 'Faster-better-cheaper'
- Just-in-time' processes

Flexibility & tolerance - An engineering analogy

Think of the relationship between stress and strain in material properties:

Adaptation & Restructuring

Adaptation & Restructuring

Knowing Where You Are on the 'Stress/Strain Curve'

- (stress) and strain (1st and 2nd order adaptations) Monitor performance about levels of demand
- activities continuously for information about how \blacksquare Examine sample work events (not just failures) & work is being performed
 - Identify the challenges to getting work done
- Stressors like time & workload pressures, economic challenges,
- Identify what adaptations are being used
- Use of work-arounds, short cuts, improvisations, work deferrals, etc., to "meet demands"

Managing at the Margins

- Use workplace performance indicators for data gathering for specific work functions
- Example: EPRI's PAOWF software tool*
- What are the problems in getting work done?
- How did you overcome problems & create adaptations?
- What defenses remain?

1003033, Final Report on Leading Indicators of Human Performance, 2001 * See: EPRI Reports: 1000918, PAOWF Users' Guide, 2001, &

Example: EPRI PAOWF Ratings

Summary

- Key aspects of resilience engineering:
- Manage how organization copes with disruptions and variations that challenge the mechanisms/models of adaptiveness built into the organization
- Monitor how the organization adapts and to what
- Understand mechanisms to adjust underlying performance models and means for adaptiveness
- Controls risk resulting from organizational decisionmaking & management processes that produce unrecognized drift toward failure boundaries
- Safety <u>&</u> economic boundaries

More Information

- 1st International workshop on Resilience Engineering, Söderköping, Sweden, 2004
- Resilience Engineering; Concepts & Precepts (Ashgate) 2006
- 2nd International workshop on Resilience Engineering, Juan-les-Pins, France, 2006
- http://www.resilience-engineering.org/
- Resilience Engineering: Remaining Sensitive to the Possibility of Failure (Ashgate) in press

Example: ER ICU design layout

Adaptation - 1

Adaptation - 2

Resilient adaptations in ER example

L. Attempts to increase buffers

- Use of irregular space
- hallways, office, storage room/kitchen
- Chair patients and borrowing' resilience

Sacrificing lower level goals

- Pain management, privacy, satisfaction
- Increased inefficiencies
- Tying up ambulance crews for long periods
 - EKG delays

3. 'Feed forward' strategies

- Test & x-ray ordering
- Anticipates future opportunity
- Displaces / spreads problem to other areas

4. Disturbance management

Simple accounting