Exercici 1. Sigui M una matriu $N \times N$ amb coeficients reals tal que la suma dels coeficients de cada columna dona sempre el mateix número c, o sigui $\sum_{i=1}^{N} a_{ij} = c$ per a tota $1 \leq j \leq N$. Sigui $\vec{v} \in \mathbb{R}^N$ un vector en format columna tal que la suma dels seus coeficients és k. Demostreu que la suma dels coeficients de $A\vec{v}$ (on \vec{v} és el vector escrit en columna) és c * k.

Solució. Definim $\vec{u} = A\vec{v}$. Volem demostrar que la suma de coeficients de $\sum_{i=1}^{N} u_i = c*k$. Sabem que cada coeficient de \vec{u} a posició i es calcula $u_i = \sum_{j=1}^{N} a_{ij} * v_j$. Com volem calcular la suma de tots els coeficients de \vec{u} , hem de calcular el sumatori següent:

$$\sum_{i=1}^{N} u_i = \sum_{i=1}^{N} \sum_{j=1}^{N} a_{ij} * v_j$$

Per les propietats dels sumatoris es pot canviar l'ordre dels sumatoris, quedant la següent operació:

$$\sum_{i=1}^{N} \sum_{i=1}^{N} a_{ij} * v_j$$

Com la v_i no canvia al segon sumatori, es pot treure multiplicant, quedant així:

$$\sum_{i=1}^{N} v_j \sum_{i=1}^{N} a_{ij}$$

Com ja sabem per l'enunciat, $\sum_{i=1}^{N} a_{ij} = c$ per tota $1 \leq j \leq N$, llavors ens queda això:

$$\sum_{j=1}^{N} v_j * c$$

Ara, la c no depèn de j, podem treure-la del sumatori com a constant:

$$c\sum_{j=1}^{N} v_j$$

Finalment, com ja sabíem a l'enunciat, la suma dels coeficients de $\vec{v} = k$, i el sumatori que ens queda fa exactament això, una suma dels seus coeficients, per tant:

$$\sum_{i=1}^{N} u_i = c \sum_{j=1}^{N} v_j = c * k$$

A partir d'aquí fixem:

- N és un enter positiu i M és una matriu $N \times N$ amb coeficients reals positius (o zero) tal que la suma dels coeficients de cada columna dona sempre 1.
- També considerarem els vectors escrits en columna per a fer les multiplicacions amb matrius.
- p és un nombre real tal que 0 (algunes de les afirmacions que es fan a sota no són certes pels casos <math>p = 0 i p = 1).

Exercici 2. Sigui $\vec{v}_1 \in \mathbb{R}^N$ un vector amb tots els coeficients positius (o zero) tal que la suma dels seus coeficients és N. A partir de $p \in (0,1)$, definim el vector $\vec{p} = (p,p,\ldots,p) \in \mathbb{R}^N$. Sigui $\vec{v}_2 = (1-p)M\vec{v}_1 + \vec{p}$. Demostreu que tots els coeficients de \vec{v}_2 són positius i la suma dels seus coeficients és N.

Solució. A l'anterior exercici, sabíem que la suma dels coeficients de $M\vec{v}=c*k$. En aquest cas, sabem que c=1 (ja que la suma de coeficients de cada columna de M dona sempre 1) i per l'enunciat de l'exercici, k=N (ja que la suma dels coeficients de \vec{v}_1 dona N). Això fa que ens quedi el següent:

$$\sum_{i=1}^{N} v_{2_i} = (1-p)N + \sum_{i=1}^{N} p_i$$

De forma trivial $\sum_{i=1}^{N} p_i = N * p$, en reemplaçar-ho tenim:

$$\sum_{i=1}^{N} v_{2_i} = (1-p)N + p * N = (1-p+p) * N = N$$

Per demostrar que tots els coeficients de \vec{v}_2 són positius hem de pensar que $(1-p)v_{1_j}\sum_{i=1}^N M_{ij} \ge 0$ per les fixacions anteriors, això ja que $(1-p) \in (0,1)$, $v_{1_j} \ge 0$ i $\sum_{i=1}^N M_{ij} \ge 0$ (ja que a qualsevol fila dona 1).

Sabent que $(1-p)v_{1_j}\sum_{i=1}^N M_{ij} \geq 0$ per tota $1 \leq j \leq N$, llavors $(1-p)v_{1_j}\sum_{i=1}^N M_{ij} + p \geq p > 0$ per tota $1 \leq j \leq N$. Per allò, sent $(1-p)v_{1_j}\sum_{i=1}^N M_{ij} + p$ el coeficient a la posició j de \vec{v}_2 , això implica que tots els coeficients de \vec{v}_2 són positius.

Això permet definir, a partir de M (matriu com fins ara), $p \in (0,1)$ i un vector inicial \vec{v}_1 complint les condicions de l'exercici anterior, una successió de vectors amb la fórmula:

$$\vec{v}_{k+1} = (1-p)M\vec{v}_k + \vec{p} \tag{1}$$

on \vec{v}_k té tots els coeficients positius i amb la suma de coeficients constant igual a N per a tot $k \ge 1$.

Exercici 3. Demostreu que l'Equació (1) és equivalent a la igualtat:

$$\left(\begin{array}{c|c} \overrightarrow{v}_{k+1} \\ \hline 1 \end{array}\right) = \left(\begin{array}{c|c} (1-p)M & \overrightarrow{p} \\ \hline 0 & 1 \end{array}\right) \left(\begin{array}{c|c} \overrightarrow{v}_k \\ \hline 1 \end{array}\right)$$

Solució. Sabem el següent:

$$\left(\begin{array}{c|c} \overrightarrow{v}_{k+1} \\ \hline 1 \end{array}\right) = \left(\begin{array}{c|c} (1-p)M & \overrightarrow{p} \\ \hline 0 & 1 \end{array}\right) \left(\begin{array}{c|c} \overrightarrow{v}_k \\ \hline 1 \end{array}\right) = \left(\begin{array}{c|c} (1-p)M\overrightarrow{v}_k & \overrightarrow{p} \\ \hline 0 & 1 \end{array}\right)$$

I això és equivalent a ampliar ambdós vectors resultants amb un 1.

Exercici 4. Demostreu que la matriu $A = \begin{pmatrix} (1-p)M & \vec{p} \\ 0 & 1 \end{pmatrix}$ té 1 com a valor propi. A més, si hi ha algun enllaç entre pàgines web (si i només si la matriu M no és tot zeros), demostreu que aquest vector propi té alguns coeficients no nul a les primeres N coordenades.

Solució. Primer, demostrar que té 1 com valor propi és pràcticament trivial, ja que sempre a l'última filera són tot zero menys l'últim valor, que és 1. Això dit equivaldria al següent:

$$A - \mathbb{I}_{N+1} = \left(\begin{array}{c|c} (1-p)M - \mathbb{I}_N & \vec{p} \\ \hline 0 & 0 \end{array}\right)$$

Amb això en compte, per les propietats dels determinants (per ser específics: si els components d'una filera o una columna són zeros, el valor del determinant també serà zero) sabem que $\det(A - \mathbb{I}_{N+1}) = 0$. Com els valors propis es poden trobar mitjançant el polinomi característic en resoldre $\det(A - \lambda \mathbb{I}_{N+1}) = 0$, sabem que 1 ha de ser un valor propi. Si hi ha un enllaç entre pàgines web, sabem que per fer el $\ker(A - \mathbb{I}_{N+1})$ haurem de reduir per columnes (amb una ampliada per així trobar el nucli directament). L'última columna (la de \vec{p}) és la idònia per fer la reducció. Ara, la suma de cada component a cada columna serà -p (ja que (1-p)-1) i per allò, en reduir la matriu, totes les transformacions elementals seran positives o 0. Llavors, sempre hi tindrà com mínim un valor no nul.

Altres propietats de la matriu A són:

- La dimensió de $\ker(A \mathbb{I}_{N+1})$ és 1.
- Si $\lambda \neq 1$ és un altre valor propi (real o complex) d'A, llavors $|\lambda| \leq (1-p) < 1$, per tant, 1 és el valor propi de mòdul més gran (valor propi dominant).

També, utilitzant el Teorema del Punt Fix de Browder¹ (se surt una mica de l'esperit del curs) es pot veure que, es pot considerar un vector propi de valor propi 1 amb totes les coordenades positives (els altres seran múltiples d'aquest).

Teorema (Browder): si $f:[0,1]^N \to [0,1]^N$ és una aplicació contínua, llavors existeix $x \in [0,1]^N$ tal que f(x) = x.