重庆理工大学考试试卷

2014~ 2015 学年第二学期

				2014~	2013 -	广 十分—	一只刀			
	学号		姓4	<u>ጀ</u>		考试科目	目 <u>高等数</u>	女学[(a2)机电	<u>B 卷</u>	闭卷 共 <u></u>
•••••	•••••	·····密···	• • • • • •		_	寸 · · · · · · · · · · · · · · · · · · ·		·····线	•••••	• • • • • • • • • • • • • • • • • • • •
				<u>+</u> ±	וי ויבצא דו	WEYT MICK				
		题号	_	=	Ξ	四	总分	总分人		
		分数								
3	0 14									
得分 闪	F卷人 ————————————————————————————————————	题 (本大题共	5 小题,	每小题 2	分,共 10	0 分) (请右	生正确说法后	后面括号内画 √	,错误说法后	面括号内画×)
	1									
(1) 方程	$! y' = \frac{1}{2x + y} $ 是一阶	`线性微分方	程。					()	
(2) 设非	寒向量 \vec{a} , \vec{b} 满足条	ξ 件 $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{0}$,则向	量 \vec{a}, \vec{b}	必平行。			()	
(3)	$\lim_{y \to (0,0)} \frac{xy^2}{x^2 + 2y^4} = 1/$	2						()	
			L	0 1 +	54 JM FA			(
	$s = \frac{1}{12}(5\sqrt{5} - 1), L$			$0 \le x \le 1$	的弧段。)	
(5) 幂级	整数 $\sum_{n=1}^{\infty} \frac{(x-3)^n}{\sqrt{n+1}}$ 在 $x =$	$=\frac{9}{2}$ 处发散。						()	
<i>7</i> 2.7	NE Me. I									
得分	评卷人 二、填空	题(本大题共	€ 10 小是	题,每小题	[2分,共	€20分)				
(6) 微分	·方程 y" – 2y' – 3y =	= <i>xe</i> ^{3x} 的一个	~特解□	丁设为			0			
	oz 面上的抛物线 z²									
•	:直线 $\frac{x-1}{2} = \frac{y+1}{1} =$									
	2 1	3								
(9) 函数	$z = \frac{1}{\sqrt{x^2 + y^2 - 4}} + \frac{1}{\sqrt{x^2 + y^2 - 4}}$	$\sqrt{1-x}-y$	的化义			o				
	3		$\partial^2 z$		_					
(10)设;	$z = e^{2x+y^3}$,则二阶	混合偏导数	$\partial y \partial x$	(x,y)=(0,1)						
(11) 函数	数 $z = x^3 + \sin y$ 在点	瓦(1,2) 处沿 $ar{l}$	= (1, 1)	l)方向的	方向导数	数为		o		
(12)设区	句量 $\overrightarrow{a} = 2\overrightarrow{i} - \overrightarrow{j} + \overrightarrow{k}$	$\vec{b} = \vec{i} - 2\vec{j}$	$+\stackrel{ ightarrow}{k}$, $$ $$ $$	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $			o			
(13)斯拉	毛克斯公式中的积	分曲线口的	正向与	积分曲面	Σ的侧线	符合	_规则。			
(14) 设;	L 为 $\begin{cases} x = \sin t \\ y = t \end{cases}$, $(0 \le t)$	$t<\frac{\pi}{}$)。 方常	司按≁馮	法小的方面	a. Dul	$xvdv - v^2$	dx 的完新	贝分表达式!	탄	0
X1/ X1	y = t	2, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,	4 1 × 1 1 1 1 1 1	4 4 4 7 J C	\mathbf{J}_{L}	wyay y	ши н J ЛС 1),	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		<u> </u>
〔15〕周昇	期为 2π 的函数	f(x)的傅里	叶级数	足正弦纫	及数。					

得分 评卷人

三、求解下列各题(本大题共8小题,每小题6分,共48分)。

(16) 求解微分方程 y'' + 9y = 0, $y|_{x=0} = 3$, $y'|_{x=0} = 6$.

- (17) 求曲面 $x^2 + 2y^2 + z^2 = 4$ 在点(1,1,1)处的切平面方程与法线方程。
- (18) 设函数 z = z(x, y) 由方程 $x^2 z^2 + 2y^2 z x + y^2 = 0$ 所确定,求全微分 dz。
- (19) 计算 $\iint_{\mathbb{D}} (x+2y) dx dy$, 其中 D 是由 z=1 和 $\sqrt{x^2+y^2}=z$ 围成的空间区域在 xoy 坐标面上的投影区域。
- (20) 计算 $\prod_L (e^{x^2} + 5) dy + (2xye^{x^2} 3y) dx$, 其中L为从点(2,0)到点(2,3)再到原点最后回到点(2,0)的封闭折线。
- (21) 计算 $\iint_{\Sigma} (2-3y)xdydz + (x^2+y^2)dzdx + yzdxdy$,其中 Σ 为上半球体 $0 \le z \le \sqrt{9-x^2-y^2}$ 的表面外侧。
- (22) 级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n+1} + \sqrt{n}}$ 是否收敛? 如果收敛,是绝对收敛还是条件收敛?
- (23) 将函数 $y = \frac{1}{2+x}$ 展开为 x-2 的幂级数。
- 四、应用题和证明题(共22分)
 - (24) 要做一容积等于 32 立方米的长方形无盖铁皮水箱,应如何选择水箱的尺寸,方可使铁皮的用量最省。 (8分)
 - (25) 求曲面 $z = x^2 + y^2$ 与曲面 $z = \sqrt{2 x^2 y^2}$ 围成的空间闭区域的体积。(7分)
 - (26) 证明: $4\int_0^1 dy \int_{2y}^2 e^{-x^2} dx = 1 e^{-4}$ 。 (7分)