Data Structures in Python Chapter 3

- Linked List
- OOP Inheritance
- ListUnsorted Class
- ListSorted Class
- Iterator
- Doubly Linked List

Agenda

- The ListSorted Class
 - Linked List Review
 - Implementation
 - push(), pop(), find()
 - Time Complexity

The ListSorted Class

Sorted linked-list example:

Linked List ADT

- LinkedList()
 - Creates a new list that is empty and returns an empty list.
- is_empty()
 - Tests to see whether the list is empty and returns a Boolean value.
- size() and __len__()
 - Returns the number of nodes in the list.
- str_()
 - Returns contents of the list in human readable format.
- push(data)
 - Pushes a new node with the data to the list.
- pop(data)
 - Removes the node from the list.
- find(data)
 - Searches for the data in the list and returns a Boolean value.

abstract methods

The ListSorted Class - push()

- push(data) the new node with data in sorted list.
- Determine the point of insertion.
 - Starting point:
 - curr = self.head
 - prev = None
 - stop = False

```
prev = None
stop = False
while curr != None and not stop:
   if curr.get_data() > data:
       stop = True
   else:
       prev = curr
       curr = curr.get_next()
```

curr = self.head

```
mylist.push(49)
```


The ListSorted Class - push()

Insert at the beginning of a linked list

```
(1) node = Node(5)
(2) node.set_next(self.head)
(3) self.head = node
```


The ListSorted Class - push()

- push(data) inserts at the middle of a sorted linked list.
 - Change the next reference of the new node to refer to the current node of the list.
 - Modify the next reference of the previous node to refer to the new node.

The ListSorted Class - pop()

- pop(data) removes a node with data from the list.
 - What is different from pop() of ListUnsorted class?
- Examples:
 - Delete the first node.

Delete a node in the middle of the list with prev and curr references.

The ListSorted Class - pop()

- To delete a node from a linked list
 - Locate the node that you want to delete (curr)
 - Disconnect this node from the linked list by changing references.
- Two situations:
 - (1) To delete the first node,
 - Modify head to refer to the node after the current node

```
self.head = curr.get_next()
```


The ListSorted Class - pop()

- To delete a node from a linked list
 - Locate the node that you want to delete (curr)
 - **Disconnect** this node from the linked list by changing references.
- Two situations:
 - (1) To delete the first node,
 - Modify head to refer to the node after the current node

- ▶ (2) To delete a node in the middle,
- Set next of the prev node to refer to the node after the current node.

```
prev.set_next(curr.get_next())
```


The ListSorted Class - find()

- find(data) searches for the node with data in the list.
 - Returns a Boolean

The ListSorted Class - find()

- find(data) searches for the node with data in the list.
 - Set a pointer to be the same address as head, process the data in the node, (search)
 move the pointer to the next node, and so on.
 - Loop stops either
 - Found the item
 - The next pointer is None
 - The value in the node is greater than the item that we are searching

```
curr = self.head
while curr != None:
    if curr.get_data() == data:
        return True
    elif curr.get_data() > data:
        return False
    curr = curr.get_next()
return False
```


The ListSorted Class - Time Complexity

Summary:

	ListUnsorted	ListSorted
is_empty	0(1)	0(1)
size	O(n)	O(n)
push	0(1)	O(n)
рор	O(n)	O(n)
find	O(n)	O(n)

Summary

- Different implementations may have different time and space complexity.
- The linked-list can be sorted.