

Flux Variability Analysis & Parsimonious Flux Balance Analysis

Learning Objectives

- · Explain alternate optimal solutions,
- Explain flux variability analysis,
- · Explain parsimonious flux balance analysis.

Lesson Outline

- Alternate Optimal Solutions
- Flux Variability Analysis
- Parsimonious FBA

Phenotypes

- Phenotype = A phenotype (from Greek phainein, meaning "to show", and typos, meaning "type") is the composite of an organism's **observable** characteristics or traits, such as its morphology, development, biochemical or physiological properties, phenology, behavior, and products of behavior.
- Silent phenotypes have the same overall cellular function but are based on different underlying reaction networks.

https://en.wikipedia.org/wiki/Phenotype

Alternate Equivalent Optimal Solutions

- The flux distributions calculated by FBA are often not unique. In many cases, it is necessary for a biological system to achieve the same objective value by using alternate equivalent optimal pathways, creating phenotypically different alternate optimal solutions (silent phenotypes).
- Requires the Mixed Integer Linear Programming (MILP) solver
- For large models there can be a very large number of alternate equivalent optimal solutions.

Same objective value for all alternate flux vectors

Maximize the objective function

$$\rightarrow Z = \sum_{i} c_{i} v_{i}^{k} = \mathbf{c} \cdot \mathbf{v}^{k}$$

with the following constraints

Up to *n* alternate flux vectors

$$\frac{d\mathbf{x}}{dt} = \mathbf{S} \cdot \mathbf{v}^k = \mathbf{0}$$

$$\alpha_j \le v_j^k \le \beta_j$$

$$1 \le k \le n$$

 \Rightarrow v^1 , v^2 , ..., v^n all have the same value of Z

Reed, J. L. & Palsson, B. Ø. Genome-scale in silico models of *E. coli* have multiple equivalent phenotypic states: assessment of correlated reaction subsets that comprise network states. Genome Res. 14, 1797-1805 (2004).

Identifying Alternate Equivalent Optimal Solutions

 A function that that is provided by the Cobra Toolbox to identify alternate equivalent optimal solutions is called

enumerateOptimalSolutions(model)

- In Matlab workspace a new structure called "solutions" is created that contains all the alternate equivalent optimal solutions.
- For large models, this computation will take a long time.

```
% findingOptimalSolutionsSucc.m
clear;
model = readCbModel('ecoli core model.mat');
model = changeRxnBounds(model,'EX o2(e)',-40,'1');
model = changeRxnBounds(model, 'EX glc(e)',0,'l');
model = changeRxnBounds(model, 'EX succ(e)',-20,'1');
model = changeObjective(model, 'Biomass Ecoli core N(w/GAM) -Nmet2');
% List optimal solutions
changeCobraSolver('glpk','all') % gurobi can include loops
[solutions] = enumerateOptimalSolutions(model);
```

Reed, J. L. & Palsson, B. Ø. Genome-scale in silico models of E. coli have multiple equivalent phenotypic states: assessment of correlated reaction subsets that comprise network states. Genome Res. 14, 1797-1805 (2004).

Alternate Optimal Solutions Matlab Screenshot

Alternate Optimal Solution Non-zero Flux Values

Reaction	S1	S2	S3	Lower	Upper	Range
'ACONTa'	8.137641	8.137641	8.137641	8.137641	8.137641	0
'ACONTb'	8.137641	8.137641	8.137641	8.137641	8.137641	0
'AKGDH'	7.231221	7.231221	7.231221	7.231221	7.231221	0
'ATPM'	8.39	8.39	8.39	8.39	8.39	0
'ATPS4r'	57.78164	57.78164	57.78164	57.78164	57.78164	0
Biomass	0.840134	0.840134	0.840134	0.840134	0.840134	0
'CO2t'	-44.2477	-44.2477	-44.2477	-44.2477	-44.2477	0
'CS'	8.137641	8.137641	8.137641	8.137641	8.137641	0
'CYTBD'	66.55278	66.55278	66.55278	66.55278	66.55278	0
'ENO'	-3.49017	-3.49017	-3.49017	-3.49017	-3.49017	0
'EX_co2(e)'	44.24767	44.24767	44.24767	44.24767	44.24767	0
'EX_h2o(e)'	30.36754	30.36754	30.36754	30.36754	30.36754	0
'EX_h(e)'	-23.1469	-23.1469	-23.1469	-23.1469	-23.1469	0
'EX_nh4(e)'	-4.58108	-4.58108	-4.58108	-4.58108	-4.58108	0
'EX_o2(e)'	-33.2764	-33.2764	-33.2764	-33.2764	-33.2764	0
'EX_pi(e)'	-3.0906	-3.0906	-3.0906	-3.0906	-3.0906	0
'EX_succ(e)'	-20	-20	-20	-20	-20	0
'FBA'	-0.83568	-0.83568	-0.83568	-0.83568	-0.83568	0
'FBP'	0.835681	0.835681	0.835681	0.835681	0.835681	0

Reaction	S1	S2	S3	Lower	Upper	Range
'FUM'	27.23122	27.23122	27.23122	27.23122	27.23122	0
'GAPD'	-2.23333	-2.23333	-2.23333	-2.23333	-2.23333	0
'GLNS'	0.214822	0.214822	0.214822	0.214822	0.214822	0
'GLUDy'	-4.36626	-4.36626	-4.36626	-4.36626	-4.36626	0
'H2Ot'	-30.3675	-30.3675	-30.3675	-30.3675	-30.3675	0
'ICDHyr'	8.137641	8.137641	8.137641	8.137641	8.137641	0
'MDH'	13.56499	13.56499	20.05742	13.56499	20.05742	6.492425
'ME1'	0	6.492425	0	0	6.492425	6.492425
'ME2'	13.66623	7.173804	7.173804	7.173804	13.66623	6.492425
'NADH16'	39.32156	39.32156	39.32156	39.32156	39.32156	0
'NADTRHD'	6.492425	0	0	0	6.492425	6.492425
'NH4t'	4.581084	4.581084	4.581084	4.581084	4.581084	0
'O2t'	33.27639	33.27639	33.27639	33.27639	33.27639	0
'PDH'	11.2863	11.2863	11.2863	11.2863	11.2863	0
'PGI'	-0.17223	-0.17223	-0.17223	-0.17223	-0.17223	0
'PGK'	2.233329	2.233329	2.233329	2.233329	2.233329	0
'PGM'	3.490169	3.490169	3.490169	3.490169	3.490169	0
'Plt2r'	3.090602	3.090602	3.090602	3.090602	3.090602	0
'PPCK'	3.926283	3.926283	10.41871	3.926283	10.41871	6.492425
'PYK'	0	0	6.492425	0	6.492425	6.492425

AOS_Example.xlsx

Utah State University

BIE 5500/6500

Lesson: Flux Variability Analysis & Parsimonious Flux Balance Analysis

Reactions with Changing Flux Identified Through Alternate Optimal Solutions for Growth on Succinate

Reaction	Minimum Flux (mmol gDW ⁻¹ hr ⁻¹)	Maximum Flux (mmol gDW ⁻¹ hr ⁻¹)
MDH	13.56	20.06
ME1	0	6.49
ME2	7.17	13.67
NADTRHD	0	6.49
PPCK	3.93	10.42
РУК	0	6.49

finding Optimal Solutions Succ.m

Reactions with Changing Flux Identified Through Alternate Optimal Solutions

- MDH (malate dehydrogenase)
 - √ mal-L + nad <==> h + nadh + oaa
- ME1 (malic enzyme (NAD))
 - \checkmark mal-L + nad --> co2 + nadh + pyr
- ME2 (malic enzyme (NADP))
 - \checkmark mal-L + nadp --> co2 + nadph + pyr
- NADTRHD (NAD transhydrogenase)
 - √ nad + nadph --> nadh + nadp
- **PPCK** (phosphoenolpyruvate carboxykinase)
 - \checkmark atp + oaa --> adp + co2 + pep
- PYK (pyruvate kinase)
 - \checkmark adp + h + pep --> atp + pyr

All reactions are centered around energy and reducing power production

Energy Production: Electron Transport Chain

http://classconnection.s3.amazonaws.com/567/flashcards/203567/png/citric_acid_cycle1315513581579.png

Reconstruction and Use of Microbial Metabolic Networks: the Core Escherichia coli Metabolic Model as an Educational Guide by Orth, Fleming, and Palsson (2010)

Oxidative Phosphorylation and Transfer of Reducing Equivalents

Reconstruction and Use of Microbial Metabolic Networks: the Core Escherichia coli Metabolic Model as an Educational Guide by Orth, Fleming, and Palsson (2010)

Redox Trafficking in the Core Metabolic Pathways: Cofactor View

B. O. Palsson lectures on Systems Biology: Simulation of Dynamic Network States, Lecture #8.

http://sbrg.ucsd.edu/Publications/Books/SB2LectureSlides

Visualizing the Alternate Optimal Solution Flux Vectors

```
% findingOptimalSolutionsSuccVisualize.m
clear;
model = readCbModel('ecoli core model.mat');
model = changeRxnBounds(model, 'EX glc(e)',0,'1');
model = changeRxnBounds (model, 'EX o2 (e)', -40, '1');
model = changeRxnBounds(model,'EX succ(e)',-20,'1');
model = changeObjective(model,'Biomass Ecoli core N(w/GAM)-Nmet2');
% List optimal solutions
changeCobraSolver('glpk','all');
[solutions] = enumerateOptimalSolutions(model);
v = solutions.fluxes(:,1); % Select which vector wanted to be mapped (1-3)
printFluxVector(model, FBAsolution.x, true)
map=readCbMap('ecoli Textbook ExportMap');
options.1b = -10;
options.ub = 10;
options.zeroFluxWidth = 0.1;
options.rxnDirMultiplier = 10;
drawFlux(map, model, v, options);
```


Alternate Optimal Solutions #1: Changing Fluxes

findingOptimalSolutionsSuccVisualize.m

ACONT a	8.13764	FBA	-0.835681	PGM	3.49017
ACONT b	8.13764	FBP	0.835681	PIt2r	3.0906
AKGDH	7.23122	FUM	27.2312	PPCK	3.92628
ATPM	8.39	GAPD	-2.23333	RPE	-0.603888
ATPS4r	57.7816	GLNS	0.214822	RPI	-0.603888
Biomass	0.840134	GLUDy	-4.36626	SUCCt2_2	20
CO2t	-44.2477	H20t	-30.3675	SUCDi	27.2312
CS	8.13764	ICDHyr	8.13764	SUCOAS	-7.23122
CYTBD	66.5528	MDH	13.565	TALA	-0.1503
ENO	-3.49017	ME2	13.6662	TKT1	-0.1503
EX_co2(e)	44.2477	NADH16	39.3216	TKT2	-0.453588
EX_h2o(e)	30.3675	NADTRHD	6.49242	TPI	-0.835681
EX_h(e)	-23.1469	NH4t	4.58108		
EX_nh4(e)	-4.58108	O2t	33.2764	Other AOS	Reactions
EX_o2(e)	-33.2764	PDH	11.2863	ME1	0
EX_pi(e)	-3.0906	PGI	-0.172228	РУК	0
EX_succ(e)	-20	PGK	2.23333		
		_			

NADH

Alternate Solution #1: NADH & ATP Node Fluxes

```
surfNet(model, 'nadh[c]', 0, flux, 1)
                                                                                                           surfNet(model, 'atp[c]', 0, flux, 1)
Met #51 nadh[c], Nicotinamide adenine dinucleotide - reduced, C21H27N7O14P2, metCharges: -2
                                                                                                           Met #17 atp[c], ATP, C10H12N5O13P3, metCharges: -4
Consuming reactions with non-zero fluxes:
                                                                                                           Consuming reactions with non-zero fluxes:
 #49 GAPD (-2.233329), Bd: -1000 / 1000, glyceraldehyde-3-phosphate dehydrogenase,
                                                                                                            #11 ATPM (8.39), Bd: 8.39 / 8.39, ATP maintenance requirement,
g3p[c] + nad[c] + pi[c] \leftarrow 13dpg[c] + h[c] + nadh[c]
                                                                                                           atp[c] + h2o[c] \rightarrow adp[c] + h[c] + pi[c]
 #67 NADH16 (39.32156), Bd: 0 / 1000, NADH dehydrogenase (ubiquinone-8 & 3 protons),
4 h[c] + nadh[c] + q8[c] \rightarrow 3 h[e] + nad[c] + q8h2[c]
                                                                                                            #13 Biomass Ecoli core N(w/GAM)-Nmet2 (0.840134), Bd: 0 / 1000,
                                                                                                           1.496 \text{ 3pq[c]} + 3.7478 \text{ accoa[c]} + 59.81 \text{ atp[c]} + 0.361 \text{ e4p[c]} + 0.0709 \text{ f6p[c]} + 0.129 \text{ g3p[c]} +
Producing reactions with non-zero fluxes:
                                                                                                           0.205 \text{ q6p[c]} + 0.2557 \text{ qln-L[c]} + 4.9414 \text{ qlu-L[c]} + 59.81 \text{ h2o[c]} + 3.547 \text{ nad[c]} + 13.0279
 #8 AKGDH (7.231221), Bd: 0 / 1000, 2-Oxogluterate dehydrogenase,
                                                                                                           nadph[c] + 1.7867 \ oaa[c] + 0.5191 \ pep[c] + 2.8328 \ pyr[c] + 0.8977 \ r5p[c] \rightarrow 59.81 \ adp[c] +
akq[c] + coa[c] + nad[c] \rightarrow co2[c] + nadh[c] + succoa[c]
                                                                                                           4.1182 \text{ akg[c]} + 3.7478 \text{ coa[c]} + 59.81 \text{ h[c]} + 3.547 \text{ nadh[c]} + 13.0279 \text{ nadp[c]} + 59.81 \text{ pi[c]}
 #13 Biomass_Ecoli_core_N(w/GAM)-Nmet2 (0.840134), Bd: 0 / 1000,
                                                                                                            #51 GLNS (0.214822), Bd: 0 / 1000, glutamine synthetase,
1.496 \ 3pq[c] + 3.7478 \ accoa[c] + 59.81 \ atp[c] + 0.361 \ e4p[c] + 0.0709 \ f6p[c] + 0.129 \ g3p[c] +
                                                                                                           atp[c] + glu - L[c] + nh4[c] \rightarrow adp[c] + gln - L[c] + h[c] + pi[c]
0.205 g6p[c] + 0.2557 gln-L[c] + 4.9414 glu-L[c] + 59.81 h2o[c] + 3.547 nad[c] + 13.0279 nadph[c]
+1.7867 oaa[c] +0.5191 pep[c] +2.8328 pyr[c] +0.8977 r5p[c] ->59.81 adp[c] +4.1182 akg[c] +
                                                                                                            #75 PGK (2.233329), Bd: -1000 / 1000, phosphoglycerate kinase,
3.7478 \cos[c] + 59.81 h[c] + 3.547 nadh[c] + 13.0279 nadp[c] + 59.81 pi[c]
                                                                                                           3pq[c] + atp[c] \rightarrow 13dpq[c] + adp[c]
 #64 MDH (13.56499), Bd: -1000 / 1000, malate dehydrogenase,
                                                                                                            #80 PPCK (3.926283), Bd: 0 / 1000, phosphoenolpyruvate carboxykinase,
mal-L[c] + nad[c] \rightarrow h[c] + nadh[c] + oaa[c]
                                                                                                           atp[c] + oaa[c] \rightarrow adp[c] + co2[c] + pep[c]
 #68 NADTRHD (6.492425), Bd: 0 / 1000, NAD transhydrogenase
nad[c] + nadph[c] \rightarrow nadh[c] + nadp[c]
                                                                                                           Producing reactions with non-zero fluxes:
                                                                                                            #12 ATPS4r (57.78164), Bd: -1000 / 1000, ATP synthase (four protons for one ATP),
 #71 PDH (11.2863), Bd: 0 / 1000, pyruvate dehydrogenase,
                                                                                                           adp[c] + 4h[e] + pi[c] \rightarrow atp[c] + h2o[c] + 3h[c]
coa[c] + nad[c] + pyr[c] \rightarrow accoa[c] + co2[c] + nadh[c]
```


Alternate Optimal Solutions #2: Changing Fluxes

findingOptimalSolutionsSuccVisualize.m

ACONT a	8.13764	FBA	-0.835681	PGM	3.49017
ACONT b	8.13764	FBP	0.835681	PIt2r	3.0906
AKGDH	7.23122	FUM	27.2312	PPCK	3.92628
ATPM	8.39	GAPD	-2.23333	RPE	-0.603888
ATPS4r	57.7816	GLNS	0.214822	RPI	-0.603888
Biomass	0.840134	<i>G</i> LUDy	-4.36626	SUCCt2_2	20
CO2t	-44.2477	H2Ot	-30.3675	SUCDi	27.2312
CS	8.13764	ICDHyr	8.13764	SUCOAS	-7.23122
CYTBD	66.5528	MDH	13.565	TALA	-0.1503
ENO	-3.49017	ME1	6.49242	TKT1	-0.1503
EX_co2(e)	44.2477	ME2	7.1738	TKT2	-0.453588
EX_h2o(e)	30.3675	NADH16	39.3216	TPI	-0.835681
EX_h(e)	-23.1469	NH4t	4.58108		
EX_nh4(e)	-4.58108	O2t	33.2764	Other AOS	5 Reactions
EX_o2(e)	-33.2764	PDH	11.2863	NADTRHD	0
EX_pi(e)	-3.0906	P <i>G</i> I	-0.172228	РУК	0
EX_succ(e)	-20	PGK	2.23333		
■ ATP) 	DP I	NADH	■ NA[)HP
		<u> </u>			

Alternate Optimal Solutions #3: Changing Fluxes

findingOptimalSolutionsSuccVisualize.m

<i>ACO</i> NTa	8.13764	FBA	-0.835681	PGM	3.49017
ACONT b	8.13764	FBP	0.835681	PIt2r	3.0906
AKGDH	7.23122	FUM	27.2312	PPCK	10.4187
ATPM	8.39	GAPD	-2.23333	РУК	6.49242
ATPS4r	57.7816	GLNS	0.214822	RPE	-0.603888
Biomass	0.840134	GLUDy	-4.36626	RPI	-0.603888
CO2t	-44.2477	H20t	-30.3675	SUCCt2_2	20
CS	8.13764	ICDHyr	8.13764	SUCDi	27.2312
CYTBD	66.5528	MDH	20.0574	SUCOAS	-7.23122
ENO	-3.49017	ME2	7.1738	TALA	-0.1503
EX_co2(e)	44.2477	NADH16	39.3216	TKT1	-0.1503
EX_h2o(e)	30.3675	NH4t	4.58108	TKT2	-0.453588
EX_h(e)	-23.1469	O2t	33.2764	TPI	-0.835681
EX_nh4(e)	-4.58108	PDH	11.2863		
EX_o2(e)	-33.2764	PGI	-0.172228	Other AOS	Reactions
EX_pi(e)	-3.0906	PGK	2.23333	NADTRHD	0
EX_succ(e)	-20			ME1	0

Alternate Optimal Solutions

findingOptimalSolutionsSuccVisualize.m

All three solution produce the same amount of ATP by providing the same amount of NADH for the electron transport chain

Reducing Alternate Optimal Solutions Code

```
% findingOptimalSolutionsSuccVisualizeOne.m
clear; clc;
model = readCbModel('ecoli core model.mat');
model = changeRxnBounds(model, 'EX glc(e)',0,'1');
model = changeRxnBounds (model, 'EX o2 (e)', -40, '1');
model = changeRxnBounds(model, 'EX succ(e)',-20,'1');
model = changeObjective(model, 'Biomass Ecoli core N(w/GAM) -Nmet2');
model = changeRxnBounds (model, 'ME1', 0, 'b');
% model = changeRxnBounds (model, 'NADTRHD', 0, 'b');
model = changeRxnBounds (model, 'PYK', 0, 'b');
% List optimal solutions
solverOK = changeCobraSolver('glpk','all');
[solutions] = enumerateOptimalSolutions(model);
v = solutions.fluxes(:,1); % Select which vector wanted to be mapped
(1-3)
printFluxVector(model, v, true)
map=readCbMap('ecoli Textbook ExportMap');
options.lb = -10;
options.ub = 10;
options.zeroFluxWidth = 0.1;
options.rxnDirMultiplier = 10;
drawFlux(map, model, v, options);
```


Solution #1

Reducing Alternate Optimal Solutions

findingOptimalSolutionsSuccVisualizeOne.m

If both ME1 and PYK are set to zero (knocked out), then there will only be one optimal solution (in this simple model)

Alternate Optimal Solutions for Ethanol Production

69 Alternate Optimal Flux Vectors

```
% findingOptimalSolutionsEthanol.m
clear;
model = readCbModel('ecoli core model.mat');
model = changeRxnBounds(model, 'EX glc(e)',-10,'1');
model = changeRxnBounds(model,'EX o2(e)',0,'1');
model = changeObjective(model, 'EX etoh(e)');
% List optimal solutions
solverOK = changeCobraSolver('glpk','all');
[solutions] = enumerateOptimalSolutions(model);
```


Review Questions

- What are alternate optimal solutions?
- What is the relationship between alternate optimal solutions and a cell's phenotype?
- What are silent phenotypes?
- How can you find the alternate optimal solutions using the Cobra Toolbox?
- How many alternate optimal solutions can there be for a given phenotype?
- How many alternate optimal solutions can there be for a carbon source?
- Do aerobic/anaerobic conditions impact the number alternate optimal solutions?
- Does the choice of objective function impact the number alternate optimal solutions?

Lesson Outline

- Alternate Optimal Solutions
- → · Flux Variability Analysis
 - Parsimonious FBA

Flux Variability Analysis

- This method identifies the allowable range of flux values through a given reaction by finding the maximum and minimum possible fluxes through the particular reaction for a given maximum objective value.
- All reactions under test have the same objective value
- This analysis method begins by finding the optimal value of the objective function for a given set of constraints and then optimizes for the minimum and maximum flux values for each reaction (1 + 2n) optimizations where n is the number of reactions).
- A method that can be used to identify alternate optimal pathways.

Price, N. D., J. L. Reed, et al. (2004). "Genome-scale models of microbial cells: evaluating the consequences of constraints." Nature reviews. Microbiology 2(11): 886-897.

Flux Variability Analysis Example

Does not allow loops

```
% FluxVariabilitySuccinate.m
% Load model
model = readCbModel('ecoli core model.mat');
% Change carbon source from glucose to succinate
model = changeRxnBounds(model, 'EX glc(e)',0,'1');
model = changeRxnBounds(model,'EX succ(e)',-20,'1');
% Set optimization objective to Biomass Ecoli core N(w/GAM)-Nmet2
model = changeObjective(model, 'Biomass Ecoli core N(w/GAM)-Nmet2');
% Perform flux variability analysis
[minFlux,maxFlux]=fluxVariability(model,100,'max',model.rxns,false,false);
```


FVA_Succinate_Anaerobic.xlsx

printFluxVector(model, [minFlux, maxFlux], true)

% Print flux values

FVA_example1.xlsx

Flux Variability Analysis Example Output (No Loops)

Reaction	Lower	Upper	Difference
ACALD	-5.07E-06	0	0
ACALDt	-5.07E-06	0	0
ACKr	-7.76E-06	0	0
ACONTa	8.13763	8.13764	0
ACONTb	8.13763	8.13764	0
ACt2r	-7.76E-06	0	0
ADK1	0	3.30E-05	0
AKGDH	7.23119	7.23122	0
AKGt2r	-3.07E-06	0	0
ALCD2x	-4.40E-06	0	0
ATPM	8.39	8.39	0
ATPS4r	57.7816	57.7817	0
Biomass	0.840134	0.840134	0
CO2t	-44.2477	-44.2477	0
CS	8.13763	8.13764	0
CYTBD	66.5528	66.5528	0
D_LACt2	-4.25E-06	0	0
ENO	-3.49018	-3.49017	0
ETOHt2r	-4.40E-06	0	0
EX_ac(e)	0	7.76E-06	0
EX_acald(e)	0	5.07E-06	0
EX_akg(e)	0	3.07E-06	0
EX_co2(e)	44.2477	44.2477	0
EX_etoh(e)	0	4.40E-06	0
EX_for(e)	0	2.20E-05	0
EX_glu_L(e)	0	2.75E-06	0
EX_h2o(e)	30.3675	30.3675	0
EX_h(e)	-23.1469	-23.1469	0

Reaction	Lower	Upper	Difference
EX_lac_D(e)	0	4.25E-06	0
EX_nh4(e)	-4.58109	-4.58108	0
EX_o2(e)	-33.2764	-33.2764	0
EX_pi(e)	-3.0906	-3.0906	0
EX_pyr(e)	0	5.07E-06	0
EX_succ(e)	-20	-20	0
FBA	-0.8357	-0.83568	0
FBP	0.835681	0.835714	0
FORt2	0	0.000132	0.00013187
FORti	0	0.000132	0.00013187
FUM	27.2312	27.2312	0
G6PDH2r	0	4.40E-05	0
GAPD	-2.23334	-2.23E+00	0
GLNS	0.214822	0.214855	0
GLUDy	-4.36626	-4.36623	0
GLUN	0	3.30E-05	0
GLUSy	0	3.30E-05	0
GLUt2r	-2.75E-06	0.00E+00	0
GND	0.00E+00	4.40E-05	0
H2Ot	-30.3675	-3.04E+01	0
ICDHyr	8.13761	8.13764	0
ICL	0	3.30E-05	0
LDH_D	-4.25E-06	0.00E+00	0
MALS	0.00E+00	3.30E-05	0
MDH	13.565	2.01E+01	6.49253
ME1	0	6.4925	6.4925
ME2	7.17372	13.6663	6.49254
NADH16	39.3216	39.3216	0

Reaction	Lower	Upper	Difference
NADTRHD	0	6.4925	6.4925
NH4t	4.58108	4.58109	0
O2t	33.2764	33.2764	0
PDH	11.2863	11.2863	0
PFK	0	3.30E-05	0
PFL	0	2.20E-05	0
PGI	-0.17227	-0.17223	0
PGK	2.23333	2.23334	0
PGL	0	4.40E-05	0
PGM	3.49017	3.49018	0
Plt2r	3.0906	3.0906	0
PPC	0	3.30E-05	0
PPCK	3.92625	10.4188	6.49254
PPS	0	3.30E-05	0
PTAr	0	7.76E-06	0
PYK	0	6.4925	6.4925
PYRt2r	-5.07E-06	0	0
RPE	-0.60389	-0.60386	0
RPI	-0.6039	-0.60389	0
SUCCt2_2	20	20	0
SUCCt3	0	4.40E-05	0
SUCDi	27.2312	27.2312	0
SUCOAS	-7.23122	-7.23119	0
TALA	-0.1503	-0.15029	0
THD2	0	6.59E-05	0
TKT1	-0.1503	-0.15029	0
TKT2	-0.45359	-0.45357	0
TPI	-0.8357	-0.83568	0

Flux Variability Analysis Example

Flux Variability Analysis Example (Continued)

Reaction	Minimum Flux (mmol gDW ⁻¹ hr ⁻¹)	Maximum Flux (mmol gDW ⁻¹ hr ⁻¹)
MDH	13.56	20.06
ME1	0	6.49
ME2	7.17	13.67
NADTRHD	0	6.49
PPCK	3.93	10.42
РУК	0	6.49

Variable Reactions For Growth On Succinate (Same as Alternate Optimal Solutions Example)

FVA_Succinate_Anaerobic.xlsx

Fluxes Identified Through Flux Variability Analysis

(Aerobic Succinate Bio Mass.m)

- MDH (malate dehydrogenase)
- ME1 (malic enzyme (NAD))
- ME2 (malic enzyme (NADP))
- NADTRHD (NAD transhydrogenase)
- **PPCK** (phosphoenolpyruvate carboxykinase)
- PYK (pyruvate kinase)

Flux Variability Analysis #1

findingOptimalSolutionsSuccVisualize.m

ACONT a	8.13764	FBA	-0.835681	PGM	3.49017
ACONT b	8.13764	FBP	0.835681	PIt2r	3.0906
AKGDH	7.23122	FUM	27.2312	PPCK	3.92628
ATPM	8.39	GAPD	-2.23333	RPE	-0.603888
ATPS4r	57.7816	GLNS	0.214822	RPI	-0.603888
Biomass	0.840134	GLUDy	-4.36626	SUCCt2_2	20
CO2t	-44.2477	H2Ot	-30.3675	SUCDi	27.2312
CS	8.13764	ICDHyr	8.13764	SUCOAS	-7.23122
CYTBD	66.5528	MDH	13.565	TALA	-0.1503
ENO	-3.49017	ME2	13.6662	TKT1	-0.1503
EX_co2(e)	44.2477	NADH16	39.3216	TKT2	-0.453588
EX_h2o(e)	30.3675	NADTRHD	6.49242	TPI	-0.835681
EX_h(e)	-23.1469	NH4t	4.58108		
EX_nh4(e)	-4.58108	O2t	33.2764	Other FVA	Reactions
EX_o2(e)	-33.2764	PDH	11.2863	ME1	0
EX_pi(e)	-3.0906	P <i>G</i> I	-0.172228	РУК	0
EX_succ(e)	-20	PGK	2.23333		
	ATPM ATPS4r Biomass CO2t CS CYTBD ENO EX_co2(e) EX_h2o(e) EX_h(e) EX_nh4(e) EX_o2(e) EX_pi(e)	ATPM 8.39 ATPS4r 57.7816 Biomass 0.840134 CO2t -44.2477 CS 8.13764 CYTBD 66.5528 ENO -3.49017 EX_co2(e) 44.2477 EX_h2o(e) 30.3675 EX_h(e) -23.1469 EX_nh4(e) -4.58108 EX_o2(e) -33.2764 EX_pi(e) -3.0906	ATPM 8.39 GAPD ATPS4r 57.7816 GLNS Biomass 0.840134 GLUDy CO2t -44.2477 H2Ot CS 8.13764 ICDHyr CYTBD 66.5528 MDH ENO -3.49017 ME2 EX_co2(e) 44.2477 NADH16 EX_h2o(e) 30.3675 NADTRHD EX_h(e) -23.1469 NH4t EX_nh4(e) -4.58108 O2t EX_o2(e) -33.2764 PDH EX_pi(e) -3.0906 PGI	ATPM 8.39 GAPD -2.23333 ATPS4r 57.7816 GLNS 0.214822 Biomass 0.840134 GLUDy -4.36626 CO2t -44.2477 H2Ot -30.3675 CS 8.13764 ICDHyr 8.13764 CYTBD 66.5528 MDH 13.565 ENO -3.49017 ME2 13.6662 EX_co2(e) 44.2477 NADH16 39.3216 EX_h2o(e) 30.3675 NADTRHD 6.49242 EX_h(e) -23.1469 NH4t 4.58108 EX_nh4(e) -4.58108 O2t 33.2764 EX_o2(e) -33.2764 PDH 11.2863 EX_pi(e) -3.0906 PGI -0.172228	ATPM 8.39 GAPD -2.233333 RPE ATPS4r 57.7816 GLNS 0.214822 RPI Biomass 0.840134 GLUDy -4.36626 SUCCt2_2 CO2t -44.2477 H2Ot -30.3675 SUCDi CS 8.13764 ICDHyr 8.13764 SUCOAS CYTBD 66.5528 MDH 13.565 TALA ENO -3.49017 ME2 13.6662 TKT1 EX_co2(e) 44.2477 NADH16 39.3216 TKT2 EX_h2o(e) 30.3675 NADTRHD 6.49242 TPI EX_h(e) -23.1469 NH4t 4.58108 EX_nh4(e) -4.58108 O2t 33.2764 Other FVA EX_o2(e) -33.2764 PDH 11.2863 ME1 EX_pi(e) -3.0906 PGI -0.172228 PYK

FVA Upper Bound; Lower Bound.

Flux Variability Analysis #2

findingOptimalSolutionsSuccVisualize.m

ACONTa	8.13764	FBA	-0.835681	P GM	3.49017
ACONT b	8.13764	FBP	0.835681	PIt2r	3.0906
AKGDH	7.23122	FUM	27.2312	PPCK	3.92628
A TPM	8.39	GAPD	-2.23333	RPE	-0.603888
ATPS4r	57.7816	GLNS	0.214822	RPI	-0.603888
Biomass	0.840134	GLUDy	-4.36626	SUCCt2_2	20
CO2t	-44.2477	H2Ot	-30.3675	SUCDi	27.2312
CS	8.13764	ICDHyr	8.13764	SUCOAS	-7.23122
CYTBD	66.5528	MDH	13.565	TALA	-0.1503
ENO	-3.49017	ME1	6.49242	TKT1	-0.1503
EX_co2(e)	44.2477	ME2	7.1738	TKT2	-0.453588
EX_h2o(e)	30.3675	NADH16	39.3216	TPI	-0.835681
EX_h(e)	-23.1469	NH4t	4.58108		
EX_nh4(e)	-4.58108	O2t	33.2764	Other FVA	Reactions
EX_o2(e)	-33.2764	PDH	11.2863	NADTRHD	0
EX_pi(e)	-3.0906	P <i>G</i> I	-0.172228	РУК	0
EX_succ(e)	-20	PGK	2.23333		

FVA Upper Bound; Lower Bound.

Utah State University

BIE 5500/6500

Lesson: Flux Variability Analysis & Parsimonious Flux Balance Analysis

Flux Variability Analysis #3

findingOptimalSolutionsSuccVisualize.m

<i>ACO</i> NTa	8.13764	FBA	-0.835681	PGM	3.49017
<i>ACO</i> NTb	8.13764	FBP	0.835681	PIt2r	3.0906
AKGDH	7.23122	FUM	27.2312	PPCK	10.4187
ATPM	8.39	GAPD	-2.23333	РУК	6.49242
ATPS4r	57.7816	GLNS	0.214822	RPE	-0.603888
Biomass	0.840134	GLUDy	-4.36626	RPI	-0.603888
CO2t	-44.2477	H2Ot	-30.3675	SUCCt2_2	20
CS	8.13764	ICDHyr	8.13764	SUCDi	27.2312
CYTBD	66.5528	MDH	20.0574	SUCOAS	-7.23122
ENO	-3.49017	ME2	7.1738	TALA	-0.1503
EX_co2(e)	44.2477	NADH16	39.3216	TKT1	-0.1503
EX_h2o(e)	30.3675	NH4t	4.58108	TKT2	-0.453588
EX_h(e)	-23.1469	O2t	33.2764	TPI	-0.835681
EX_nh4(e)	-4.58108	PDH	11.2863		
EX_o2(e)	-33.2764	PGI	-0.172228	Other FVA	Reactions
EX_pi(e)	-3.0906	PGK	2.23333	NADTRHD	0
EX_succ(e)	-20			ME1	0

FVA Upper Bound; Lower Bound.

Three Alternate Optimal Solutions

All three solution produce the same amount of NADH for the electron transport chain

FVA Upper Bound; Lower Bound.

Flux Variability Analysis for Maximum Ethanol Production

```
% FluxVariabilityEthanol.m
clear; clc;
% Load the E.coli core model
model = readCbModel('ecoli core model.mat');
model = changeRxnBounds(model, 'EX glc(e)',0,'1');
model = changeRxnBounds(model,'EX succ(e)',-20,'1');
model = changeObjective(model,'EX etoh(e)'); % Optimize for maximum ethanol
% Perform flux variability analysis
[minFluxL, maxFluxL] = fluxVariability (model, 100, 'max', model.rxns, false, false)
% Print flux values
Difference = abs(maxFlux - minFlux);
FluxDifference = Difference;
n = length(Difference);
for i=1:n % Set small values of flux to zero
    if Difference(i) < 0.0001
        FluxDifference(i) = 0;
    end
end
printFluxVector(model, [minFlux, maxFlux, FluxDifference])
```

69 Alternate Optimal Flux Vectors

finding Optimal Solutions Ethanol.m

Utah State University

BIE 5500/6500

Lesson: Flux Variability Analysis & Parsimonious Flux Balance Analysis

FVA Ethanol Production.xlsx

Flux Variability Map

Flux Variability Succinate.m

Flux Variability Map - Close-up

- Bidirectional/reversible = calculated flux change is bidirectional and changes directions/Stoichiometry is reversible
- Unidirectional/reversible forward = calculated flux change is unidirectional in direction of listed Stoichiometry/Stoichiometry
 is reversible
- Unidirectional/reversible reverse = calculated flux change is unidirectional in opposite direction of listed
 Stoichiometry/Stoichiometry is reversible
- Unidirectional/irreversible = calculated flux change is unidirectional/Stoichiometry is irreversible

FVA Classifications

FVA can be used to classify the reactions in a metabolic network. Assuming a biomass production rate greater than 90% of the optimal growth rate;

- A reaction was classified as "Hard-coupled to biomass" if the flux varied exactly with biomass production.
- "Partially coupled to biomass" included reactions
 that were required to have a non-zero flux, but
 were more flexible in the range.
- Reactions were classified as "Not coupled to biomass" if they could have a zero or non-zero flux while maintaining 90% biomass.
- Reactions were considered "zero flux" if they
 could maintain a flux in other conditions, but could
 not in growth conditions.

Lewis, N. E., K. K. Hixson, et al. (2010). "Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models-Supplementary Material." Molecular Systems Biology 6: 390.

FVA Classifications

```
% FVASuccinateClassificationSimple.m
clear; clc;
% Input the E.coli core model
model = readCbModel('ecoli core model.mat');
% Change carbon source from glucose to succinate
model = changeRxnBounds(model,'EX glc(e)',0,'1');
model = changeRxnBounds(model, 'EX succ(e)', -20, '1');
% Set optimization objective to Biomass Ecoli core N(w/GAM)-Nmet2
model = changeObjective(model,'Biomass Ecoli core N(w/GAM)-Nmet2');
% Perform flux variability analysis classification
[minFlux,maxFlux]=fluxVariability(model,90,'max',model.rxns,false,false);
BioMassID = findRxnIDs(model, 'Biomass Ecoli core N(w/GAM)-Nmet2');
BiomassRatio = minFlux(BioMassID)/maxFlux(BioMassID); -
% Find hard-coupled reactions
HCReactions = {};
n = length(maxFlux);
j = 1;
for i=1:n
    if (minFlux(i) == BiomassRatio*maxFlux(i)) && (maxFlux(i) > 0)
        HCReactions(j) = model.rxns(i);
        j = j+1;
    end
end
HardCoupledReactions = transpose(HCReactions)
```

```
% Find partially-coupled reactions
PCReactions = {};
n = length(maxFlux);
j = 1;
for i=1:n
    if (minFlux(i) > 0 ) && (minFlux(i) < BiomassRatio*maxFlux(i))</pre>
        PCReactions(j) = model.rxns(i);
        j = j+1;
    end
end
PartiallyCoupledReactions = transpose (PCReactions)
% Find not-coupled reactions
NCReactions = {};
n = length(maxFlux);
j = 1;
for i=1:n
    if (minFlux(i) <= 0 ) && (minFlux(i) < maxFlux(i))</pre>
        NCReactions(j) = model.rxns(i);
        j = j+1;
    end
end
NotCoupledReactions = transpose(NCReactions)
% Find zero-flux reactions
ZFReactions = {};
n = length(maxFlux);
j = 1;
for i=1:n
    if (minFlux(i) == 0 ) && (maxFlux(i) == 0)
        ZFReactions(j) = model.rxns(i);
        j = j+1;
    end
end
ZeroFluxReactions = transpose(ZFReactions)
```

FVASuccinateClassificationSimple.m

FVA Classifications for Succinate Growth

'EX_lac_D(e)'

'EX_nh4(e)'

'EX o2(e)'

'EX_pi(e)'

Hard-Coupled Reactions

Partially-Coupled Reactions

Not-Coupled Reactions

Zero-flux Reactions

'Biomass_Ecoli_core_N(w/GAM)-Nmet2'

'ACONTa' 'ACONTb' 'ATPS4r' 'Biomass 'CS' 'CYTBD' 'EX co2(e)' 'EX_h2o(e) 'FBP' 'FUM' 'GLNS' 'ICDHyr' 'MDH' 'NADH16' 'NH4†' 'O2t' 'PDH' 'PGK' 'PGM' 'PIt2r' 'SUCC+2 2' 'SUCDi'

'ACALD' 'EX_pyr(e)' 'ACALDt' 'EX succ(e)' 'ACKr' 'FBA' 'ACt2r' 'FORt2' 'ADK1' 'FORti' 'AKGDH' 'G6PDH2r' 'AKGt2r' 'GAPD' 'ALCD2x' 'GLUDy' 'CO2t' 'GLUN' 'D LACt2' 'GLUSy' 'ENO' 'GLUt2r' 'ETOHt2r' 'GND' 'H2Ot' 'EX_ac(e)' 'EX_acald(e)' 'ICL' 'LDH D' 'EX_akg(e)' 'EX_etoh(e)' 'MALS' 'EX for(e)' 'ME1' 'ME2' 'EX_glu_L(e)' 'EX_h(e)' 'NADTRHD'

'PFK'

'PFL'

'PGI'

'PGL'

'EX_fru(e)'
'EX_fum(e)'
'EX_glc(e)'
'EX_gln_L(e)'
'EX_mal_L(e)'
'FRD7'
'FRUpts2'
'FUMt2_2'
'GLCpts'
'GLNabc'
'MALt2_2'

FVASuccinateClassification.m

'PGL'

'PPC'

'PPCK'

'PPS'

'РУК'

'RPE'

'RPI'

'PTAr'

'PYRt2r'

'SUCC+3'

'TALA'

'THD2'

'TKT1'

'TKT2'

'TPI'

'SUCOAS'

Review Questions

- What is flux variability analysis?
- What is the relationship between the value of the objective function and the flux values calculated through flux variability analysis?
- How is flux variability analysis related to alternate optimal flux vectors?
- How can you implement flux variability analysis using the Cobra Toolbox?
- · Does flux variability analysis identify the specific alternate optimal solutions?
- What is the value of knowing which reactions carry flux, which reactions carry no flux, and which reactions span a range of flux values?
- Explain the different FVA classifications; hard-coupled, partially-coupled, not-coupled, and no-flux reactions?

Lesson Outline

- Alternate Optimal Solutions
- Flux Variability Analysis
- → · Parsimonious FBA

singleRxnDeletion, singleGeneDeletion

- A cobra toolbox function that performs single reaction or gene deletion (knockout) analysis
 - ✓ [grRatio,grRateKO,grRateWT,hasEffect,delRxns,hasEffect] = singleRxnDeletion(model)
 - √ [grRatio,grRateKO,grRateWT,delRxns,hasEffect] = singleGeneDeletion(model)
- grRatio Computed growth rate ratio between the model with a deleted reaction/gene and the original model without any deletions
- grRateKO Growth rate of model with a reaction deletion/gene (1/h)
- grRateWT Growth rate of the original model (1/h)
- hasEffect Does a reaction deletion/gene affect anything
- delRxn Deleted reactions/genes
- fluxSolution FBA/MOMA/IMOMA fluxes for models with reaction/gene deletions
- Typically, if the grRatio is below a certain tolerance, tol, then the reaction/gene is categorized as essential

Essential Reactions

Essential reactions, metabolic genes necessary for in silico growth in the given media;

```
% EssentialReactions.m
clear; clc;
% Load the E.coli core model
model = readCbModel('ecoli core model.mat');
model = changeRxnBounds(model, 'EX glc(e)',-10,'1');
model = changeRxnBounds (model, 'EX o2 (e)', -30, '1');
tol = 1e-6; % Growth rate lower limit
RxnRatio = singleRxnDeletion(model);
RxnRatio(isnan(RxnRatio))=0; % Replace NaN with 0
EssentialRxns = model.rxns(RxnRatio<tol)</pre>
```

Aerobic Angerobic

'ACONTa' 'ACONTa' 'ACONTb' 'ACONTb' 'Biomass 'Biomass' 'CS' 'CS' 'ENO' 'ENO' 'EX glc(e)' 'EX glc(e)' 'EX h(e)' 'EX h(e)' 'EX nh4(e)' 'EX nh4(e)' 'EX pi(e) 'EX_pi(e)' 'FBA' 'GAPD' 'GLCpts' 'GAPD' 'GLNS' 'GLCpts' 'ICDHyr 'GLNS' 'NH4t' 'ICDHyr' 'PGK' 'NH4t' 'PFK' 'PGM' 'PIt2r' 'PGI' 'RPI' 'PGK'

'PGM'

'Plt2r'

'PPC'

'RPI' 'TPI'

*RxnRatio = Computed growth rate ratio between deletion strain and wild type

Essential Genes

Essential genes, metabolic genes necessary for in silico growth in the given media;

```
% EssentialGenes.m
clear; clc;
% Load the E.coli core model
model = readCbModel('ecoli core model.mat');
model = changeRxnBounds(model, 'EX glc(e)',-10,'1');
model = changeRxnBounds (model, 'EX o2 (e)', -30, '1');
tol = 1e-6; % Growth rate lower limit
grRatio = singleGeneDeletion(model);
grRatio(isnan(grRatio))=0;
EssentialGenes = model.genes(grRatio<tol)</pre>
% List reactions associated with genes
```

```
Aerobic
 'b0451'
 'b0720'
 'b1136'
'b1779'
'b2415'
 'b2416'
 'b2779'
'b2926'
Anaerobic
'b0451'
 'b0720'
 'b1136'
'b1779'
 'b2415'
 'b2416'
 'b2779'
 'b2926'
 'b3919'
'b3956'
 'b4025'
```


Parsimonious FBA

- Flux parsimony minimize the total material flow required to achieve an objective.
- The underlying assumption is that, under growth pressure, there is a selection for strains that can process the
 growth substrate the most rapidly and efficiently while using the minimum amount of enzyme.
- Genes are classified into six categories:
 - 1. essential genes, metabolic genes necessary for in silico growth in the given media;
 - 2. pFBA optima, non-essential genes contributing to the optimal growth rate and minimum gene-associated flux;
 - 3. enzymatically less efficient (ELE), genes requiring more flux through enzymatic steps than alternative pathways that meet the same predicted growth rate;
 - 4. metabolically less efficient (MLE), genes requiring a growth rate reduction if used;
 - 5. pFBA no-flux, genes that are unable to carry flux in the experimental conditions; and
 - 6. Blocked, genes that are only associated with the reactions that cannot carry a flux under any condition ("blocked" reactions).
- A map showing the category of each gene can be created.

Lewis, N. E., K. K. Hixson, et al. (2010). "Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models." Molecular Systems Biology 6: 390.

Parsimonious Enzyme Usage

- Gene A, classified as MLE, represents an enzyme that uses a suboptimal co-factor to catalyze a reaction, thereby reducing the growth rate if used.
- Gene B, classified as pFBA no-flux, cannot carry a flux in this
 example since it is unable to take up or produce a necessary
 precursor metabolite.
- Genes E and F in this example require two different enzymes to catalyze the same transformation which Gene D can do alone; therefore they are classified as ELE.
- Gene G is essential, since its removal will stop the flux through all pathways.
- Genes C and D represent the most efficient (topologically and metabolically) pathway and therefore are part of the pFBA optima.

Parsimonious Enzyme Usage FBA (pFBA)
Step 1: Optimize biomass production (FBA)

In an FBA
Solution
Not in FBA
Solution
Non-Functional

Step 2: Minimize net enzymatic flux in the network

Lewis, N. E., K. K. Hixson, et al. (2010). "Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models." Molecular Systems Biology 6: 390.

Parsimonious FBA Example

pFBA_Ecoli_Core.m (Aerobic)

```
% pFBA_Ecoli_Core.m

clear;

model=readCbModel('ecoli_textbook');

model = changeRxnBounds(model,'EX_glc(e)',-10,'1');
model = changeRxnBounds(model,'EX_o2(e)',-0 or -30,'1');

map=readCbMap('ecoli_Textbook_ExportMap');

[GeneClasses RxnClasses modelIrrevFM] = pFBA(model, 'geneoption',0, 'tol',1e-7)
```

```
Red = Essential reactions,

Orange = pFBA optima reaction

Yellow = ELE reactions,

Green = MLE reactions,

Blue = zero flux reactions,

Purple = blocked reactions,

Black = not classified
```


pFBA Classification pFBA_Ecoli_Core.m (Anaerobic)

- Metabolically Less Efficient (MLE), reactions/genes requiring a growth rate reduction if used;
- pFBA no-flux, reactions/genes that are unable to carry flux in the experimental conditions; and
- Blocked, reactions/genes that are only associated with the reactions that cannot carry a flux under any condition ("blocked" reactions).

- 1. Essential genes, metabolic reactions/genes necessary for in silico growth in the given media:
- 2. pFBA optima, non-essential reactions/genes contributing to the optimal growth rate and minimum gene-associated flux;
- 3. Enzymatically Less Efficient (ELE), reactions/genes requiring more flux through enzymatic steps than alternative pathways that meet the same predicted growth rate;

Essential		pFBA Optima		Enzymatically Less Efficient	Metabolically Less Efficient			pFBA No-flux	Blocked
'ACONTa'	'GLNS'	'ACALD'	'EX_h2o(e)'	'FRD7'	'ACALDt'	'FORt2'	'ME2'	'CYTBD'	
'ACONTb'	'ICDHyr'	'ACKr'	'FORti'	'SUCDi'	'ADK1'	'FUM'	'NADH16'	'EX_fru(e)'	
Biomass'	'NH4t'	'ACt2r'	'GLUDy'		'AKGDH'	'G6PDH2r'	'NADTRHD'	'EX_fum(e)'	
'CS'	'PFK'	'ALCD2x'	'H2Ot'		'AKGt2r'	'GLUN'	'PDH'	'EX_gln_L(e)'	
'ENO'	'PGI'	'ATPM'	'PFL'		'D_LACt2'	'GLUSy'	'PGL'	'EX_mal_L(e)'	
'EX_glc(e)'	'PGK'	'ATPS4r'	'PTAr'		'EX_acald(e)'	'GLUt2r'	'PPCK'	'EX_o2(e)'	
'EX_h(e)'	'PGM'	'CO2t'	'PYK'		'EX_akg(e)'	'GND'	'PPS'	'FRUpts2'	
'EX_nh4(e)'	'Plt2r'	'ETOHt2r'	'RPE'		'EX_glu_L(e)'	'ICL'	'PYRt2r'	'FUMt2_2'	
'EX_pi(e)'	'PPC'	'EX_ac(e)'	'TALA'		'EX_lac_D(e)'	'LDH_D'	'SUCCt2_2'	'GLNabc'	
'FBA'	'RPI'	'EX_co2(e)'	'THD2'		'EX_pyr(e)'	'MALS'	'SUCCt3'	'MALt2_2'	
'GAPD'	'TPI'	'EX_etoh(e)'	'TKT1'		'EX_succ(e)'	'MDH'	'SUCOAS'	'O2t'	
'GLCpts'		'EX_for(e)'	'TKT2'		'FBP'	'ME1'			

Parsimonious FBA Data

Essential	pFBA Optima Enzymatically Less Efficient		Metabolically l	Less Efficient	pFBA No-flux	Blocked
'ACONTa'	'ACALD'	'FRD7'	'ACALD†'	'ME2'	'CYTBD'	
'ACONTb'	'ACKr'	'SUCDi'	'ADK1'	'NADH16'	'EX_fru(e)'	
Biomass'	' <i>AC</i> †2r'		'AKGDH'	'NADTRHD'	'EX_fum(e)'	
'CS'	'ALCD2x'		'AKGt2r'	'PDH'	'EX_gln_L(e)'	
'ENO'	'ATPM'		'D_LACt2'	'PGL'	'EX_mal_L(e)'	
'EX_glc(e)'	'ATPS4r'		'EX_acald(e)'	'PPCK'	'EX_o2(e)'	
'EX_h(e)'	'CO2†'		'EX_akg(e)'	'PPS'	'FRUpts2'	
'EX_nh4(e)'	'ETOHt2r'		'EX_glu_L(e)'	'PYRt2r'	'FUM†2_2'	
'EX_pi(e)'	'EX_ac(e)'		'EX_lac_D(e)'	'SUCC†2_2'	'GLNabc'	
'FBA'	'EX_co2(e)'		'EX_pyr(e)'	' <i>SUCC</i> †3'	'MAL†2_2'	
'GAPD'	'EX_etoh(e)'		'EX_succ(e)'	'SUCOAS'	'O2t'	
'GLCpts'	'EX_for(e)'		'FBP'			
'GLNS'	'EX_h2o(e)'		'FORt2'			
'ICDHyr'	'FORti'		'FUM'			
'NH4†'	'GLUDy'		'G6PDH2r'			
'PFK' 'PGI'	'H2Ot' 'PFL'		'GLUN'			
'PGK'	'PTAr'		'GLUSy' 'GLUt2r'			
'PGM'	'PYK'		'GND'			
'PIt2r'	'RPE'		'ICL'			
'PPC'	'TALA'		'LDH_D'			
'RPI'	'THD2'		'MALS'			
'TPI'	'TKT1'		'MDH'			
	'TKT2'		'ME1'			

pFBA_Ecoli_Core.m (Anaerobic) target.svg OxP Glyc TCA Ferm

Parsimonious FBA Maps pFBA_Ecoli_Core.m

pFBA vs. FVA Reaction Classes

The pFBA genes were mapped to the FVA reaction classes.

- The hard-coupled and partially-coupled reactions were all associated with the essential and pFBA optima genes, and the
- pFBA no-flux genes were all within the FVA zero-flux reactions.
- FVA Zero Flux reactions were identified in the other pFBA classes since some Zero-Flux reactions are catalyzed by genes which may be active for alternative, functional reactions.

Lewis, N. E., K. K. Hixson, et al. (2010). "Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models-Supplementary Material." Molecular Systems Biology 6: 390.

Review Questions

- Why do they call it parsimonious flux balance analysis?
- What are essential genes/reactions?
- What are pFBA optima genes/reactions?
- What are enzymatically less efficient (ELE) genes/reactions?
- What are metabolically less efficient genes/reactions?
- What are pFBA no-flux genes/reactions?
- What are blocked genes/reactions?
- What is the difference between pFBA optima genes/reactions, enzymatically less efficient (ELE) genes/reactions and metabolically less efficient (MLE), genes/reactions?
- How can you implement parsimonious flux balance analysis using the Cobra Toolbox
- How can parsimonious flux balance analysis be used to metabolically engineer a cell?

Lesson Outline

- Alternate Optimal Solutions
- Flux Variability Analysis
- Parsimonious FBA

New Cobra Toolbox Functions

```
% Changing solver type
changeCobraSolver('glpk','all')
% Finding alternate optimal solutions
[solutions] = enumerateOptimalSolutions(model); % Finding alternate optimal solutions
% Flux Variability Analysis
[minFlux,maxFlux]=fluxVariability(model,100,'max',model.rxns,false,false); % Flux Variability Analysis
% Single reaction deletion
[grRatio,grRateKO,grRateWT,hasEffect,delRxns,hasEffect] = singleRxnDeletion(model)
% Single gene deletion
[grRatio,grRateKO,grRateWT,delRxns,hasEffect] = singleGeneDeletion(model)
% Parsimonious Flux Balance Analysis
[GeneClasses RxnClasses modelIrrevFM] = pFBA(model, 'geneoption', 0, 'tol', 1e-7)
```


References

Flux Variability Analysis

- 1. Reed, J. L. & Palsson, B. Ø. Genome-scale in silico models of *E. coli* have multiple equivalent phenotypic states: assessment of correlated reaction subsets that comprise network states. Genome Res. 14, 1797–1805 (2004).
- 2. <u>Mahadevan, R. and C. H. Schilling (2003).</u> "The effects of alternate optimal solutions in constraint-based genome-scale metabolic models." <u>Metabolic engineering 5(4): 264-276</u>
- 3. <u>Phalakornkule, C. et al. A MILP-based flux alternative generation and NMR experimental design strategy for metabolic engineering. Metab. Eng. 3, 124–137 (2001).</u>
- 4. <u>Lee, S., Phalakornkule, C., Domach, M. M. & Grossmann, I. E. Recursive MILP model for finding all the alternate optima in LP models for metabolic networks.Comp. Chem. Eng. 24, 711-716 (2000).</u>

Parsimonious Analysis

1. <u>Lewis, N. E., K. K. Hixson, et al. (2010). "Omic data from evolved *E. coli* are consistent with computed optimal growth from genome-scale models." Molecular Systems Biology 6: 390.</u>