Zero-Shot Duet Singing Voices Separation with Diffusion Models

Chin-Yun Yu¹, Emilian Postolache², Emanuele Rodolà², György Fazekas¹

Queen Mary University of London¹ Sapienza University of Rome²

Unconditional Diffusion Generation

Ho, Jonathan, Ajay Jain, and Pieter Abbeel. "Denoising diffusion probabilistic models." Advances in Neural Information Processing Systems 33 (2020): 6840-6851.

Kingma, Diederik, et al. "Variational diffusion models." Advances in neural information processing systems 34 (2021): 21696-21707.

Posterior Sampling in Diffusion Models

Unconditional pre-trained
denoiser

General Source Separation Problem

Audio Inverse Problems (N = 1)

- Bandwidth Extension (H is known)
 - VRDMG (Hernandez-Olivan et al., 2023)
 - CQTDiff (Moliner et al., ICASSP 2023)
 - UDM (Yu et al., ICASSP 2023)
- Dereverberation (H is unknown)
 - GibbsDDRM (Murata et al., 2023)
 - Saito et al., ICASSP 2023

$$p(s_1|\mathbf{x},\mathbf{H})$$

$$p(s_1, \mathbf{H}|\mathbf{x})$$

Music Source Separation (N = 4)

Source separation

Mariani, Giorgio, et al. "Multi-source diffusion models for simultaneous music generation and separation." arXiv preprint arXiv:2302.02257 (2023).

Multi Speaker Separation Refinement (N > 1)

Hirano, Masato, et al. "Diffusion-based Signal Refiner for Speech Enhancement." arXiv preprint arXiv:2305.05857 (2023).

Problem with Monotimbral Source Separation

- Definition
 - s_1, s_2,..., s_N have very **similar timbre**
 - All sources are drawn from the same diffusion model
- Problem
 - The learned prior is not enough to maintain temporal coherency (i.e., singer identity)
 - ◆) Source 1

Predict 1

● Mix

Source 2

Predict 2

Proposed Methodology

Dirac Score Posterior Function (Mariani et al.)

$$abla_{\mathbf{s}_i(t)} \log p(\mathbf{s}_i(t)|\mathbf{x})$$
 $pprox \nabla_{\mathbf{s}_i(t)} \log p(\mathbf{s}_i(t)) - \nabla_{\mathbf{s}_i(t)} \log p(\mathbf{x} - \sum_{i=2}^N \mathbf{s}_i(t))$ $\hat{\mathbf{s}}_1(t) = \mathbf{x} - \sum_{i=2}^N \mathbf{s}_i(t)$

Mariani, Giorgio, et al. "Multi-source diffusion models for simultaneous music generation and separation." arXiv preprint arXiv:2302.02257 (2023).

Experiment

- Score prediction model: 1D Unet Model from Mousai
 - o batch size 32, 1M steps
- Training data: 8 singing datasets combined (>104 hours)
 - 24 kHz
 - 131072 samples per segment (~= 5.46 seconds)
- Test data: MedleyVox duet subset (N = 2)
- Metrics
 - SDRi
 - SI-SDRi

Sampling methods

- 1. Naive: conditional score w/o AR inpainting
- 2. AR: conditional score w/ AR inpainting
- 3. Segmented: non-overlapping chunks + conditional score
- 4. AR w/ TF: ground truth as inpainting context (not from the previous generation)
 - a. Similar to teacher forcing

Note: we generated three variations in each step and pick the lowest loss one

Results

Methods	SI-SDRi	SDRi
iSRNet (Jeon et al., 2023)	15.10	14.20
NMF	5.12	5.97
Naive	6.61 ± 0.25	7.60 ± 0.21
Segmented	11.14 ± 0.48	11.77 ± 0.47
AR (proposed)	11.24 ± 0.40	11.89 ± 0.34
AR w/ TF	11.75 ± 0.38	12.34 ± 0.39

Source 1

Predict 1

♦ Mix

Source 2

● Predict 2

Source code & model weights:

https://github.com/yoyololicon/duet-svs-diffusion

The Holy Grail

A general sampling method for Arbitrary **H** using diffusion models on individual sources

Potential problems:

- 1. On the sources
 - a. Temporal coherency with monotimbral sources
- 2. On the transfer function
 - a. Unknown multi-channel H
 - b. Evaluation datasets?

