

Refresher Workshop: Quantitative Methoden

Über mich

INTERNATIONALES MARKETING

KREATIV

DIGITAL

Mit kreativen Schreibmethoden kompetent zur Abschlussarbeit

Podcast

Refresher Workshop: Umfragen

Prof. Dr. Christina Sichtmann

▶ Departement W | Institute Applied Data Science & Finance

Grundlagen zu Umfragen (Surveys)

- Die Umfrage (Befragung) ist neben der Beobachtung und dem Experiment eines der wichtigsten Instrumente der Sozialwissenschaften.
- Sie ist eine wissenschaftliche Methode zur Erhebung von Informationen. Welche Form der Befragung zur Anwendung kommt, ist abhängig vom Untersuchungsgegenstand und davon, welche Art von Informationen benötigt werden.

Typischer (quantitativer) Survey-Forschungsprozess

1) Auswahl der Variablen

 Welche Variablen müssen gemessen werden, um Zusammenhänge zu analysieren?

2) Auswahl der Methodik

· Online, Persönlich, Schriftlich?

3) Gestaltung des Fragebogens

Welche Fragen messen die Variablen von Interesse?

Reihenfolge?

4) Datenerhebung

Grösse der Stichprobe?

• Ideale Stichprobenstruktur?

Wie erreicht man eine hohe Rücklaufquote?

5) Evaluation der Messung

Messen die Survey-Fragen, was sie messen sollen?

Survey-Inhalt

- Konzentration auf Wichtiges (Dilemma: Vergessene «Z» können in aller Regel nicht nacherhoben werden)
- Daumenregel maximale Länge
 - Sollte idealerweise 15 Minuten nicht überschreiten (ideal: 5-10 Minuten)
- Vorgehensweise:
 - Basis: Literaturrecherche (Skalen)
 - Sinnvoll: Priorisierung der Wichtigkeit der Fragen

Survey-Inhalt Frageformat

Bitte beschreiben Sie eine Situation, in der Sie sich in dieser Woche glücklich gefühlt haben.

Wie fühlen Sie	sich (gerade	?			
Überhau	pt					Sehr
nicht glück	lich					glücklich
1	2	3	4	5	6	7

Offene Fragen	Geschlossene Fragen
Teilnehmer/innen können so antworten, wie sie wollen	Teilnehmer/innen wählen aus vorgegebenen Antwortkategorien
 Vorteile: Ermöglicht ungewöhnliche Antworten Geringes Vorwissen des/der Forschenden nötig 	 Vorteile: Einfach quantifizierbar (kodierbar) und vergleichbar Zeiteffizient
 Nachteile: Schwierig quantitativ zu analysieren Erfordert mehr Mühe des Befragten, besonders bei schriftlichen Surveys 	 Nachteile Verlust der Spontanität Vollständigkeit der Antwortkategorien ggf. schwierig zu erreichen

Skalentypen bei geschlossenen Fragen

Nominal

- nicht kontinuierlich
- · Objekte werden lediglich klassifiziert

Ordinal

- Objekte werden in Relation zueinander gesetzt
- Die Abstände zwischen den Objekten werden nicht berücksichtigt

Intervall quasi-metrisch

- Die Abstände der Objekte können miteinander verglichen werden
- Es besteht kein natürlicher Nullpunkt

Metrisch auch Ratio

- · Es gibt einen natürlichen Nullpunkt
- Verhältnisse zwischen den Skalenwerten können berechnet werden

Skalentypen bei geschlossenen Fragen

Skala	Beschreibung	Beispiel	Auswertung	
Nominal	Identifikation und / oder Klassifikation der Objekte	Marke, Geschlecht, Einkaufsort	Prozent, Chi-Quadrat	
Ordinal	Bilden von Rangordnungen ohne vergleichbare Abstände zwischen den Objekten	Marktposition, Schulnoten	Prozent	
Intervall	Vergleich der Abstände zwischen den Objekten; willkürlicher Nullpunkt	Likert-Skala, Kaufabsicht	Mittelwert, t-Test, ANOVA, Regression	
Metrisch	Natürlicher Nullpunkt; ermöglicht einen Vergleich der Abstände und deren Verhältnisse	Alter, Umsatz, Einkommen	Mittelwert, t-Test, ANOVA, Regression	

Geschlossene Fragen – Alternativfrage

Alternativfragen verfügen grundsätzlich nur über zwei Antwortkategorien, z. B. "ja / nein" oder "stimme zu / stimme nicht zu". Unter Umständen kann es sinnvoll sein eine neutrale Alternative wie z.B. "weiss nicht", "weder noch" bzw. "sowohl als auch" anzubieten. Bitte geben Sie Ihr Geschlecht an: weiblich männlich divers gekauft? Haben Sie in den vergangen sechs Wochen Schokolade der Marke \square ja nein ☐ weiss nicht

Auswertung Alternativfragen

Geschlossene Fragen - Multiple Choice Frage

Multiple Choice Fragen zeichnen sich dadurch aus, dass sie mehrere alternative Antwortkategorien zulassen. Die Anzahl der möglichen Nennungen kann dabei begrenzt oder unbegrenzt sein.

Von welcher der folgenden Marken haben Sie in den letzten sechs Monaten Schokolade gekauft?

Welche der folgenden Kriterien spielen beim Kauf von Tomaten für Sie eine Rolle?

Regionaler Anbau

☐ Herkunftsland

☐ Preis

☐ Erzeuger

Biologischer Anbau

☐ Keines dieser Kriterien

Auswertung von Multiple Choice Frage

Schokolade in den letzten 6 Monaten

Likert Skalen

Befragte geben an, inwiefern Sie einer Aussage zustimmen, oder ein Merkmal für zutreffend halten. Gängige Skalen sind 5Pkt. oder 7Pkt.-Skalen

Im Folgenden sehen Sie eine Auswahl an Aussagen, die andere über das Unternehmen Bitte geben Sie an, inwieweit Sie diesen Aussagen zustimmen. MONSANTO 🔰 getroffen haber

	Stimme gar nicht zu						Stimme voll und ganz zu
Monsanto würde zugunsten der Umwelt auch Umsatzeinbussen in Kauf nehmen	[1]	×	[3]	[4]	[5]	[6]	[7]
Monsanto legt großen Wert auf die Unbedenklichkeit von Produkten	[1]	[2])2 ([4]	[5]	[6]	[7]
Monsanto ist ein Vorreiter in puncto Corporate Social Responsibility	[1]	M	[3]	[4]	[5]	[6]	[7]
Wenn ich an Monsanto denke fällt mir ausschließlich Positives ein	M	[2]	[3]	[4]	[5]	[6]	[7]
Wären alle Unternehmen wie Monsanto, wäre die Welt ein besserer Ort	[1]	[2]	M	[4]	[5]	[6]	[7]

Anzahl Items

- Wie viele Fragen / Items sollten eine Variable messen?
 - Single-Item-Messung (Berkvist und Rossiter 2007)
 - Muli-Item-Messung (Diamantopoulos et al. 2012)
- Manifeste Variablen (Alter, Einkommen, Geschlecht, etc.) einfach durch eine Frage messbar (Z.B.: Wie alt sind Sie?)
- Für latente Variablen/Konstrukte (z.B. Einstellungen, Persönlichkeitseigenschaften, Intentionen) werden in der Regel Multi-Item-Skalen verwendet
 - Idee: Ein Set mehrerer Items misst dasselbe Konstrukt reliabler als die individuellen Items
 - Geteilte Varianz der Items «reflektiert» das zugrunde liegende Konstrukt
 - Abnehmender Grenznutzen zusätzlicher Items, ideal sind 4-5

Item-Inhalt

Beispiele:

Construct

Consumer innovativenessa

In general, I am among the first in my circle of friends to buy a consumer electronic product when it appears.

Compared to my friends, I often shop for consumer electronic products.

If I heard that a new consumer electronic product was available through a local department store, I would be interested enough to buy it.

In general, I am the first in my circle of friends to know the names of the latest consumer electronic product.

I know about consumer electronic products before other people do.

Price fairness

I personally feel that the advertised selling price for the ___ is...

Unfair-fair

Unreasonable-reasonable

Unacceptable-acceptable

Unjustified-justified

^aAdopted from Goldsmith and Hofacker (1991); 1 = "strongly disagree", 7 = "strongly agree".

^bAdopted from Bolton et al. (2010)/Vaidyanathan and Aggarwal (2003); 1 = "unfair/unreasonable/unacceptable/unjustified", 7 = "fair/reasonable/acceptable/justified".

Item-Inhalt

- Entwicklung eines Messinstruments für latente Konstrukte extrem aufwändig
- Deshalb: Verwendung etablierter Skalen
- Bücher mit etablierten Skalen sind ebenfalls verfügbar
- Gegebenenfalls Anpassungen:
 - Auf forschungsspezifischen Kontext
 - Möglichst inhaltsgenaue Übersetzung auf Deutsch
- Mitunter existieren verschiedene Messinstrumente für dasselbe Konstrukt. Wählen Sie die Skala, die inhaltlich am ehesten Ihre Definition widerspiegelt

Item-Inhalt

► Sonstige allgemeine Tipps zur Formulierung von Fragen

Einfach!	Klar!	Neutral!
 Kurze Fragen (max. 15 Wörter) Keine Relativsätze Vermeidung von Negationen Vermeidung von wissenschaftlichem Jargon (Variablennamen, etc.) 	 Vermeidung der Begriffe «immer», «alles» Vermeidung vager Begriffe wie «oft», «viele» Definitionen von Fragen trennen Angabe eines Zeithorizonts, auf den sich die Frage bezieht Pro Frage nur auf einen Aspekt beschränken 	 Keine Suggestivfragen Keine Antizipation von Antworten («Sind Sie nicht auch der Meinung, dass…») Vermeidung aufgeladener Begriffe

- Vom Allgemeinen zum Speziellen
- Demografika am Ende, ausser sie werden benötigt, um die richtige Stichprobe zu finden (Screening-Kriterien)
- Einfache, interessante Fragen zu Beginn
- Wichtige Fragen zu Beginn (die für Hypothesentests benötigt werden)
- Handlungsbezogene Fragen (Auswahl, Entscheidungen, Intentionen) vor Einstellungen, Wahrnehmungen
- Heikle Fragen später im Fragebogen
- Bei Verzweigungen: Klare Anweisungen (online: entsprechende Programmierung)
- Aufgepasst: Probanden formen oft Einstellungen im Verlauf des Fragebogens -> frühe Fragen aktivieren Informationen, die dann die Beantwortung späterer Fragen beeinflussen

Pretest

- Questionnaire should look as sharp as your résumé (Churchill and Iacobucci 2005, p. 252)
 - Signalisiert Interesse für das Thema
 - Signalisiert Vertrauenswürdigkeit des Durchführenden
 - Verringert die Abbruchquote
- Elemente des Layouts:
 - Klar, einfach, übersichtlich
 - Klare Identifizierung der Forschenden
 - Lesbare Schrift, ausreichende Schriftgrösse
 - ► Klare Überleitungen, wichtige Erklärungen und verständliche Instruktionen
- Ansprechende Einladung formulieren und sich für die Teilnahme bedanken!

Pretest

- Daumenregel: Probanden verstehen alles falsch, was falsch zu verstehen ist
- ► Test des Fragebogens mit wenigen (<5) Probanden
- Ziele:
 - ▶ Identifikation von Ambiguitäten und Unklarheiten
 - ▶ Identifikation von fehlendem Vorwissen, um Fragen beantworten zu können
 - Überprüfung der Vollständigkeit von Antwortkategorien
 - Messung der Zeit der Bearbeitung

Refresher Workshop: Experimente

Prof. Dr. Christina Sichtmann

▶ Departement W | Institute Applied Data Science & Finance

Alternative zu Umfragen: Experimentelle Manipulation

"An experiment is taken to mean a scientific investigation in which an investigator manipulates (...) one or more independent variables and observes the dependent variables for variation concomitant to the manipulation of the independent variables." (Churchill/Iacobucci 2005, S. 128)

- Aktive Manipulation der X-Variable(n) ist zentrales
 Unterscheidungsmerkmal zu anderen Erhebungsdesigns
- Y-Variable: Weiterhin Beobachtung/Befragung
- Zentrale Innovation der "wissenschaftlichen Revolution" im 17. Jahrhundert
- Francis Bacon: "not only must we observe nature in the raw, but we must also ,twist the lion's tale', that is, manipulate our world in order to learn its secrets" (as cited by Hacking 1983, p. 149)

Francis Bacon (1561-1626)

Arten von Experimenten und Experimentaldesigns

Echtes Experiment vs. Quasi-Experiment

Echtes Experiment:

vollständige Randomisierung → zufällige Zuordnung von Teilnehmern zu Experimentalgruppen

Zuteilung nach Zufallsprinzip

Berner Fachhochschule

Quasi-Experiment:

 Experiment mit manipulierter UV, aber keine randomisierte Zuteilung zu den Gruppen

Teilnehmende ordnen sich selbst einer Gruppe zu oder Leiter/in des Experiments ordnet gezielt Teilnehmende einer Gruppe zu

Gruppe 1

freiwillige Teilnahme am Bonusprogramm

Gruppe 2

keine Teilnahme am Bonusprogramm

→ Allgemein grössere Schwierigkeit hinsichtlich des Ausschlusses alternativer Erklärungen.

Labor- versus Feldexperimente

Experimente

Laborexperiment

Merkmale

- Umfeld speziell für Durchführungen von Laborexperimenten
- Teilnehmer/innen sind sich der Teilnahme bewusst (aber in Unkenntnis der Hypothesen)

Vorteile

- Relativ geringer Ressourcenaufwand
- Hohe Kontrolle über Manipulation der UV
- Relativ hohe Kontrolle über potenziell konfundierende Variablen (= hohe interne Validität)
- Relativ hohe Replizierbarkeit

Nachteile

- Künstliche Entscheidungssituation (= niedrige externe Validität)
- Teilnehmer/innen verhalten sich anders, weil sie wissen, dass sie an einem Experiment teilnehmen (= niedrige externe Validität)

Feldexperiment

Merkmale

- Realistisches Umfeld (z.B. Migros, etc.)
- Teilnehmer/innen sind sich der Teilnahme meist nicht bewusst

Vorteile

- Hohe Authentizität der Entscheidungssituation erhöht Generalisierbarkeit der Ergebnisse (= hohe externe Validität)
- Teilnehmer/innen zeigen ihr «echtes» Verhalten

Nachteile

- Hoher Ressourceneinsatz
- Ethisch problematisch
- Relativ geringe Replizierbarkeit
- Relativ geringe Kontrolle über konfundierende Variablen (=niedrige interne Validität)
- Manipulation der UV oft problematisch

Externe Validität in Laborsettings

- Wählen Sie Settings, Stimuli etc., die für Ihre Zielgruppe möglichst realistisch ist!
 - Z.B. Nachstellen einer Online-Kaufumgebung
 - Tradeoff zwischen mehr Realismus und mehr Ablenkung

- Messen Sie (ggf. zusätzlich) möglichst tatsächliches Verhalten
 - Z.B. statt (nur) «Interesse» (auch zusätzlich) «Verweildauer auf Produktinformationen
 - Z.B. statt (nur) «negatives WoM» (auch zusätzlich) «tatsächliches Verfassen eines Kommentars»

Between- vs. Within-Subject Designs

Between-Subjects:

- Jeder Proband nimmt nur an einer Experimentalbedingung teil, woraus sich mehrere (min. 2) Gruppen ergeben, die miteinander vergleichen werden
- Man ist hier an Unterschieden zwischen verschiedenen Teilnehmern aus unterschiedlichen Gruppen interessiert

Within-Subjects:

- Jeder Proband durchläuft alle Experimentalbedingungen nacheinander, dabei wird die AV nach jedem Durchlauf gemessen
- ► Es wird ein Vergleich von Teilnehmern innerhalb einer Gruppe angestellt

Forschungsdesign: Manipulation mehrerer Variablen (I)

- Es ist möglich, mehr als eine UV zu manipulieren (z.B. zusätzlich ein Moderator)
 - In voll-faktoriellen Designs erhält man bei der (Varianz-) Analyse die direkten Effekte aller manipulierten UV auf die AV sowie alle möglichen Interaktionseffekte (ggf. höherer Ordnung)
 - # Experimentalbedingungen = # Bedingungen UV₁ × # Bedingungen UV₂ ... × # Bedingungen UV_N
 - Beispiel: Hängt der Effekt des Einführungspreises auf die wahrgenommene Preisfairness von der Neuheit des Produkts ab? (Kuester et al., 2015)

Forschungsdesign: Beispiel Manipulation mehrerer Variablen

Produktneuheit

INP **RNP** 4.8", 1280x720 touch screen 4.8", 1280x720 touch screen display Einführungspreis bendable OLED display Niedrig technology Quadcore 1.4GHz processor · Quadcore 1.4GHz processor 8 MP camera 8 MP camera 259€ 259€ 4.8", 1280x720 touch screen 4.8". 1280x720 touch screen Hoch display display bendable OLED display technology Quadcore 1.4GHz processor · Quadcore 1.4GHz processor · 8 MP camera 8 MP camera 509€ 509€

→ Zentraler Schritt: Gestaltung der Szenarien/Experimentalbedingung unter Sicherstellung dass sie sich *ausschliesslich* hinsichtlich der Manipulation unterscheiden (nicht immer trivial)

Forschungsdesign: Beispiel Manipulation mehrerer Variablen

Fig. 2. Study 1: the launch price \times product newness interaction.

Wichtig bei Experimenten: Hat die Manipulation funktioniert?

z. B. Manipulation von Frustration als unabhängige Variable mit den Stufen "nicht frustriert" und "stark frustriert"

Wie können wir nun aber sicher sein, dass unsere Manipulation funktioniert hat und die Teilnehmenden der beiden Gruppen tatsächlich spürbar unterschiedliche Frustrationslevel empfinden?

Lösung: Manipulation Check

- Überprüft meist mit einer einfachen Frage die Effektivität der Manipulation.
- ▶ Inwiefern stimmen Sie der folgenden Aussage zu? (hier: sieben-Punkt Likert-Skala)
- ▶ Ich fühle mich sehr gestresst (1) stimme überhaupt nicht zu ------ (7) stimme voll zu
- Die Gruppenmittelwerte der Antworten auf diese Frage sollten sich zwischen den Gruppen signifikant unterscheiden

Unlösbare Aufgabe

Einfache Aufgabe

 $\mu = 2.3$

- ▶ Ggf. Test von Manipulationen im Rahmen von Pilotstudien (Pre-Test) nötig.
- → Es empfiehlt sich für eigene Experimente auf bereits bewährte Manipulationen zu setzen und diese ggf. nur leicht für die eigene Fragestellung anzupassen.
 - → Ein Manipulationscheck ist allerdings auch dann nötig!

Refresher Workshop: Datenanalyse

Prof. Dr. Christina Sichtmann

▶ Departement W | Institute Applied Data Science & Finance

Agenda

- Multi-Item Skalen
- ► Festlegen der geeigneten statistischen Methode
 - ► Hypothesentests als Signifikanztests
 - ▶ t-Test
 - ► Einfaktorielle ANOVA (1 UV mit 2 oder mehr Stufen)

Prüfung der internen Konsistenz einer Multi-Item Skala (I)

Cronbachs Alpha (0 < Alpha < 1) gibt das Ausmass an, indem die Items einer Skala miteinander in Beziehung stehen und somit geeignet sind ein und dasselbe Konstrukt abzubilden.

Prüfung der internen Konsistenz einer Multi-Item-Skala (II)

Schritt 1: Kodierung aller Items so, dass hohe Werte

> für das Item hohe Werte des zu messenden Konstrukts reflektieren (ggf. umkodieren)

Schritt 2: SPSS: Analysieren → Metrisch →

> Reliabilitätsanalyse (unter "Statistiken: Haken bei Skale, wenn Item gelöscht)

Schritt 3: Ist Alpha > 0.7?

> Berechnung des Durchschnitts für das zu messende la

> > Konstrukts als Mittelwert der jeweiligen Item-Werte

Schrittweises Löschen der Items mit niedrigster Item-Total-Nein

Korrelation. Wiederholen bis Alpha > .7 oder nur noch 3

Items übrig. Dann Absprache mit Betreuenden.

Reliabilitätsproblem! Ansprache in den Limitationen nötig.

Berechnung des Skalenmittelwertes über alle Items hinweg für jeden Probanden

Agenda

- ► Multi-Item Skalen
- ► Festlegen der geeigneten statistischen Methode
 - Hypothesentests als Signifikanztests
 - ▶ t-Test
 - ► Einfaktorielle ANOVA (1 UV mit 2 oder mehr Stufen)

Hypothesentests überprüfen Aussagen über Parameter (Schätzwerte) von Grundgesamtheiten. Dabei wird von den Stichprobenergebnissen auf die Population geschlossen.

Personenkreis, den wir verstehen wollen

Die Ergebnisse einer Stichprobe können nicht einfach auf die Population übertragen werden, weil Stichprobenergebnisse variieren

Die Streuung der Stichproben-Ergebnisse (z.B. Mittelwert oder Anteil) um den wahren Populationsparameter wird als Standardfehler bezeichnet

Ein Signifikanztest beantwortet die folgende Frage

Wie wahrscheinlich ist es, dass das gefundene Stichprobenergebnis nur durch Zufall zustande gekommen ist und in der Population gar nicht existiert?

Aufbau eines Signifikanztests:

Ein Signifikanztest basiert auf einer Nullhypothese H_0 und einer Alternativhypothese H_1 :

Die Alternativhypothese H₁ entspricht unserer Arbeitshypothese und postuliert das, was wir eigentlich zeigen wollen:

z.B. Es gibt <u>in der Population</u> einen Unterschied zwischen dem Durchschnittsverdienst von Männern und Frauen \rightarrow H₁: $\mu_{Männer} \neq \mu_{Frauen}$

Die Nullhypothese H₀ postuliert das Gegenteil:

z.B. Es gibt <u>in der Population</u> keinen Unterschied im Durchschnittsverdienst zwischen Männern und Frauen \rightarrow H₀: $\mu_{Männer} = \mu_{Frauen}$ **Das Stichprobenergebnis ist durch Zufallsvariation zustande gekommen**.

Hypothesentests sind sogenannte Signifikanztests

Signifikanztests weisen als Hauptergebnis einen <u>p-Wert</u> aus.

Der *p*-Wert gibt an, wie wahrscheinlich es ist das gefundene Stichprobenergebnis zu erhalten, *durch Zufallsvariation zustande gekommen ist*.

Ein kleiner p-Wert als Ergebnis eines Signifikanztests ist also wünschenswert, um die Nullhypothese ablehnen zu können.

Doch bis zu welchem p-Wert kann die H₀-Hypothese abgelehnt werden?

In den empirischen Sozialwissenschaften akzeptiert man üblicherweise eine Irrtumswahrscheinlichkeit α (=die Wahrscheinlichkeit, dass man die H_0 -Hypothese fälschlicherweise ablehnt) von 5%. Wenn der p-Wert also < als α (und damit < 0.05) ist, können wir die H_0 -Hypothese ablehnen und davon ausgehen, dass unsere H_1 zutrifft.

Agenda

- ► Multi-Item Skalen
- ► Festlegen der geeigneten statistischen Methode
 - ► Hypothesentests als Signifikanztests
 - ▶ t-Test
 - ► Einfaktorielle ANOVA (1 UV mit 2 oder mehr Stufen)

T-Test

Test auf Signifikanz von Unterschieden zwischen 2 Gruppenmittelwerten

Für unabhängige Stichproben

Ergeben sich z.B. aus
Experimenten mit "betweensubjects-Design"
(Vergleich verschiedener
Teilnehmer miteinander)

Für verbundene Stichproben

Ergeben sich z.B. aus
Experimenten mit "withinsubjects-Design"
(Vergleich gleicher Teilnehmer
miteinander)

Vergleich von zwei Mittelwerten mit t-Test für unabhängige Stichproben

Vergleich von zwei Mittelwerten – t-Test

Test bei unabhängigen Stichproben

Levene-Test der Varianzgleichheit						T-Test für die Gleichheit der Mittelwerte					
									95% Konfidenzinte	rvall der Differenz	
		F	Sig.	t	df	Sia. (2-seitia)	Mittlere Differenz	Stdfehler der Differenz	Untere	Obere	
Kaufbereitschaft	Varianzen sind gleich	.08	.776	-2.43	75.00	.017	60	.25	-1.09	11	
	Varianzen sind nicht gleich			-2.43	74.72	.018	60	.25	-1.09	11	

Der Levene-Test auf Varianzgleichheit überprüft, ob die Gruppenvarianzen gleich sind (eine der Voraussetzungen für den t-Test).

Ist der p-Wert > .05 kann die Nullhypothese nicht abgelehnt und es muss angenommen werden, dass die Gruppenvarianzen gleich sind. In dem Fall sind alle relevanten Werte der oberen Zeile "Varianzen sind gleich" zu entnehmen. Ist der p-Wert < .05, können die "korrigierten" Werte aus der unteren Zeile abgelesen werden.

Der p-Wert liegt unter dem Signifikanzniveau von α=0.05.

H_o (es gibt keinen Unterschied zwischen den Gruppen) wird verworfen, H₁ (es gibt **in der Population** einen Unterschied zwischen den Gruppen) gilt damit als bestätigt.

Wie man die Ergebnisse eines t-Tests berichtet

Test bei unabhängigen Stichproben

		Levene-Test de	· Varianzgleichheit				T-Test für die	Gleichheit der Mittelwerte	e	
									95% Konfidenzinte	ervall der Differenz
		F	Sig.	t	df	Sig. (2-seitig)	Mittlere Differenz	Stdfehler der Differenz	Untere	Obere
Kaufbereitschaft	Varianzen sind gleich	.08	.776	-2.43	75.00	.017	60	.25	-1.09	11
	Varianzen sind nicht gleich			-2.43	74.72	.018	60	.25	-1.09	11

Im Durchschnitt gaben die Befragten eine höhere Kaufbereitschaft bei der Preisaktion «Kauf zwei, erhalte eine gratis» an (M = 5.3), als bei der Preisaktion «Kaufe drei für den Preis von zwei» (M = 4.8). Dieser Unterschied war statistisch signifikant (t(75) = -2.43, p = .017)

Agenda

- ► Multi-Item Skalen
- ► Festlegen der geeigneten statistischen Methode
 - ► Hypothesentests als Signifikanztests
 - ▶ t-Test
 - ► Einfaktorielle ANOVA (1 UV mit 2 oder mehr Stufen)

Vergleich von 3 Gruppenmittelwerten

H₁: Mindestens zwei der drei Gruppenmittelwerte unterscheiden sich

H₀: Alle drei Gruppenmittelwerte sind gleich

Gruppe 1:

Kauf zwei, bekomme eine gratis! Kauf drei für den Preis von zwei!

Alle guten Dinge sind drei!

Messung der Kaufabsicht

1= auf keinen Fall 7= sehr wahrscheinlich

M = 3.7

Messung der Kaufabsicht

1= auf keinen Fall 7= sehr wahrscheinlich

M = 2.63

1= auf keinen Fall 7= sehr wahrscheinlich

M = 3.59

Warum können wir den t-Test in diesem Fall nicht anwenden?

- Bei der Durchführung von mehreren t-Tests kumuliert sich die Irrtumswahrscheinlichkeit α
- Die Wahrscheinlichkeit, dass unser Befund tatsächlich statistisch signifikant ist, beträgt $1 \alpha = .95$
- Bei drei t-Tests beträgt diese Wahrscheinlichkeit $(1 \alpha) * (1 \alpha) * (1 \alpha) = .95 * .95 * .95 = .86$
- Somit beträgt die kumulierte Irrtumswahrscheinlichkeit bei 3 t-Tests 1- .86 = .14

Bei Vergleichen von zwei oder mehr Gruppen aus einer UV → Einfaktorielle ANOVA

Die ANOVA testet mit der F-Statistik alle Gruppenmittelwerte simultan und es gibt nur eine Irrtumswahrscheinlichkeit α

ANOVA = Analysis of Variance

Varianz in der AV (Y) = Quadratsumme der Abweichungen aller Beobachtungswerte y vom Mittelwert y

ANOVA zerlegt die **Gesamtvarianz der AV** in zwei Teile: Varianz zwischen den Gruppen und Varianz innerhalb von Gruppen und setzt diese für den Sig.-Test ins Verhältnis

> Varianz zwischen Gruppen Varianz innerhalb Gruppen

- Das Ergebnis der ANOVA (F-Wert und p-Wert) sagt uns zunächst nur, ob ein signifikanter Unterscheid vorliegt, aber nicht welche Gruppen genau sich unterscheiden
- Um zu bestimmen, welche Gruppenmittelwerte sich unterscheiden, muss ein Post-hoc-Test eingesetzt werden: Scheffé-, Tukey-, Newman-Keuls-, oder Duncan-Test.

Gruppe 1: Kauf zwei, bekomme eine gratis!

Gruppe 2: Kauf drei für den Preis von zwei!

UV "Preisaktion" mit

Gruppe 3: Alle guten Dinge sind drei!

Wie man die Ergebnisse einer einfaktoriellen ANOVA berichtet

Deskriptive Statistiken

						95% Konfidenzinte	rvall für Mittelwert		
	Gruppe	N	Mittelwert	Std. Abweichung	Standardfehler	Untere Grenze	Obere Grenze	Minimum	Maximum
Kaufbereitschaft	Preisaktion 1	44	3.70	1.84	.28	3.15	4.26	1.00	7.00
	Preisaktion 2	43	2.63	1.38	.21	2.20	3.05	1.00	7.00
	Preisaktion 3	44	3.59	1.74	.26	3.06	4.12	1.00	6.00
	Gesamt	131	3.31	1.72	.15	3.02	3.61	1.00	7.00

ANOVA

Preisaktion 2

			Quadratsumme	df	Mitte	l der Quadrate	F	Sig.	_	
Kaufb	ereitschaft	Zwischen Gruppe	n 30.33	2		15.16	5.45	.005		
		Innerhalb Gruppe	n 355.84	128		2.78				
		Gesamt	386.17	130						
			Mehrfachver	gleiche	(Kauf	fbereitschaft)				
								(95% Konfid	enzintervall
	(J) Familie	(J) Familie	Differenz der Mittel	werte ((I - J)	Standardfehle	Sig.	Unte	re Grenze	Obere Grenze
LSD	Preisaktion	1 Preisaktion 2			1.08	.36	.003	3	.37	1.78
		Draisaktion 3		11		26	750	-	59	.82
	Preisaktion	2 Preisaktion 1			-1.08	.36	.003	3	-1.78	37
		Preisaktion 3			96	.36	.008	3	-1.67	26
· •	Preisaktion	3 Preisaktion 1			11	.36	.750)	82	.59

.36 .008

.96

F= <u>Varianz zwischen Gruppen</u> Varianz innerhalb Gruppen

$$p = 0.005$$

$$df_{zw} = k-1$$

 $df_{inn} = N-k$

df=Freiheitsgrade, d.h. Anzahl der Werte im statistischen Ausdruck, die frei variieren können

Das Ergebnis einer einfaktoriellen Varianzanalyse zeigte, dass die Preisaktion einen signifikanten

.26

1.67

Effekt auf die angegebene Kaufbereitschaft hatte F(2,128) = 5.45, p = .005.

Post-hoc-Analysen unter der Verwendung des Sheffé Post-hoc-Kriteriums für Signifikanz zeigten, dass die Kaufbereitschaft bei Preisaktion 2 (*M*= 2.63) signifikant geringer war als bei Preisaktion 1