(Turn over)

2012

Time: 3 hours

Full Marks: 80

Candidates are required to give their answers in their own words as far as practicable.

The questions are of equal value.

Answer any five questions in which Q. No. 1 is compulsory.

1.	Choose the correct alternatives for the following					
		the true value is				
		(i)	Relative error	(ii)	Absolute error	
		(iii)	Truncation error	(iv)	None of these	
	(b) The significant digit of 0.0001234					
		(i)-	7 🦠	(ii)	4	
		(iii)	8	(iv)	None of these	
	(c)	Bise	ection method is _	300.00	but	
		(i)	Fast, fails			

TX - 9/2

	(iv)	Slow, never fails							
(d)	If f(x) is continuous in the interval (a, b) and if								
	f(a) and f(b) are of opposite signs, then there is:								
	(j)	At least one real root of f(x) = 0 between a and b							
	(ii)	i) At most one real root of f(x) = 0 between							
	(")	a and b							
	(iii)	i) There will be no real root of f(x) = 0 between a and b							
	(iv)	None of these							
(e)	How many initial guesses are required for								
	Newton-Raphson method?								
	(i)	One	(ii)	Two					
	(iii)	Three	(iv)	Any					
(f)	In Simpson's 1/3 rule, minimum no. of points								
	required for evaluation of integration:								
	(i)	Four	(ii)	Three					
	(iii)	Two	(iv)	One					
(g)	In trapezoidal rule, no. of strips each of width								
	'h' i	s:		-					
	(i)	Six	(ii)	Any					
	(iii)	Multiple of three	(iv)	Even					
		(2)			Contd.				
- 9/2	2	(2)		-	Conta.				

(iii) Fast, never fails

- (h) The order of h in error of 4th order Runge-Kutta method is:
 - (i) 4

(ii) 5

(iii) 6

- (iv) None of these
- Define forward, backward, central differences and divided differences. State and prove Newton's backward interpolating formula.
- 3. Find the positive roots of $x^3 = 2x + 5$ false position method. [do only 4 iterations]
- Solve the system of equations using Gauss-Seidel interative methods:

$$20x - y - 2z = 17$$

$$3x + 20y - z = -18$$

$$2x - 3y + 20z = 25$$

Find Y(12) using Newton's forward interpolation formula given :

X	Y		
10	46		
20	66		
30	81		
40	93		
50	101		

TX - 9/2

(3)

(Turn over)

6. Find the largest eigenvalues and its

corresponding vector of the matrix
$$\begin{bmatrix} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{bmatrix}$$

by power method.

 Explain least square principle. Fit a least square line to the following data :

X	Y
1	2
2	5
3	3
4	8
5	7

- (a) Discuss, with suitable example Absolute error, Relative error, Percentage error.
 - (b) Explain a general formula for errors.
- (a) Briefly describe the test for Maxima and Minima of a function at a point.
 - (b) Find the maximum and minimum values of the function:

$$f(x) = x^4 - 2x^3 - 3x^2 - 4x + 4$$

(4) BCA(II) — 203