Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра Систем Управления и Информатики Группа <u>Р3340</u>

Лабораторная работа №7 "Анализ точности систем управления"

Вариант - 5

Выполнил		(фамилия, и.о.)	(подпись)
Проверил		(фамилия, и.о.)	(подпись)
п <u>п</u>	_ 20r.	Санкт-Петербург,	20г.
Работа выполнена о	с оценкой		
Пото солиции "	" 9	0 5	

Цель работы. Исследование точностных свойств систем управления.

Исходные данные: Представлены в таблице 1

Таблица 1 – Исходные данные

Система с нулевым порядком астатизма			Система с первым порядком астатизма		
W(s)	g = A	g = Vt	W(s)	$g = \frac{at^2}{2}$	
$\frac{1}{s^2+s+2}$	2	2t	$\frac{s+1}{s^2+s+2}$	$0.3t^{2}$	
Исследование влияния возмущений			Исследование установившейся ошибки		
Структура системы	f_1	f_2	Сигнал задания		
б	-0.5	0.25	$t + 0.5\cos 0.5t$		

1 Исследование системы с астатизмом нулевого порядка

1.1 Исследование стационарного режима работы: g(t) = A

Рисунок 1 - Схема моделирования

Переходные процессы и график ошибки при различных значениях k представлены на рисунках 2 и 3 соответственно

Рисунок 2 - Переходные процессы

Рисунок 3 - Ошибка

Аналитический рассчет установившейся ошибки: $\varepsilon = \lim_{s \to 0} \frac{A}{1 + kW(s)} = \lim_{s \to 0} \frac{2(s^2 + s + 2)}{s^2 + s + 2 + k}$

ullet При k=1 : arepsilon=1.33

 \bullet При k=5 : $\varepsilon=0.57$

ullet При k=10 : arepsilon=0.33

1.2 Исследование режима движения с постоянной скоростью: g(t) = Vt

Рисунок 4 - Схема моделирования

Переходные процессы и график ошибки при различных значениях k представлены на рисунках 5 и 6 соответственно

Рисунок 6 - Ошибка

2 Исследование системы с астатизмом первого порядка

2.1 Исследование стационарного режима работы: g(t) = A

Рисунок 7 - Схема моделирования

Переходные процессы и график ошибки при различных значениях k представлены на рисунках 8 и 9 соответственно

1.5 0.5 0.5 -0.5 -1.5 0 5 10 15 20 25 30 t, c

Рисунок 8 - Переходные процессы

Рисунок 9 - Ошибка

Аналитический рассчет установившейся ошибки: $\varepsilon = \lim_{s \to 0} s \frac{A}{1+kW(s)} = \lim_{s \to 0} s \frac{2(s^2+s+2)}{s^2+s+2+k} = 0$

2.2 Исследование режима движения с постоянной скоростью: g(t) = Vt

Рисунок 10 - Схема моделирования

Переходные процессы и график ошибки при различных значениях k представлены на рисунках 11 и 12 соответственно

Рисунок 11 - Переходные процессы

Рисунок 12 - Ошибка

Аналитический рассчет установившейся ошибки: $\varepsilon = \lim_{s \to 0} \frac{V}{s(1+\frac{k}{s}W(s))} = \lim_{s \to 0} \frac{V(s^2+s+2)}{s(s^2+s+2+k+\frac{k}{s})} = \frac{2V}{k}$

ullet При k=1 : arepsilon=4

ullet При k=5 : arepsilon=0.8

ullet При k=10 : arepsilon=0.4

2.3 Исследование режима движения с постоянным ускорением: $g(t) = \frac{at^2}{2}$

Рисунок 13 - Схема моделирования

Переходные процессы и график ошибки при различных значениях k представлены на рисунках 14 и 15 соответственно

Рисунок 15 - Ошибка

3 Исследование влияния внешних возмущений

Рисунок 16 - Схема моделирования

Переходные процессы и график ошибки при различных значениях f_1 и f_2 представлены на рисунках 17 и 18 соответственно

_f₂=0.25, f₁=0 0.5 0 -0.25 -0.5 5 10 15 20 25 30 t, c

Рисунок 17 - Переходные процессы

Рисунок 18 - Ошибка

Аналитический рассчет установившейся ошибки:
$$\frac{(e+f_2)W(s)}{s}+f_1=y=g-e$$
 $e(1+\frac{W(s)}{s})=g-f_1-f_2(\frac{W(s)}{s})$ $e=\frac{g}{1+\frac{W(s)}{s}}-\frac{f_1}{1+\frac{W(s)}{s}}-f_2\frac{W(s)}{s+W(s)}$

Так как g, f_1 и f_2 постоянные во времени сигналы, то образ Лапласа для каждого из них равен $\frac{g}{s}$, $\frac{f_1}{s}$ и $\frac{f_2}{s}$ соответственно. Отсюда следует, что:

$$\varepsilon = \lim_{s \to 0} \frac{g}{1 + \frac{W(s)}{s}} - \frac{f_1}{1 + \frac{W(s)}{s}} - f_2 \frac{W(s)}{s + W(s)} = -f_2$$

- ullet При $f_2=0$ и $f_1=-0.5$: arepsilon=0
- При $f_1 = 0$ и $f_2 = 0.25$: $\varepsilon = -0.25$

4 Исследование установившейся ошибки при произвольном входном воздействии

Схема моделирования представлена на рисунке 19

Рисунок 19 - Схема моделирования

Переходной процесс представлен на рисунке 20

Рисунок 20 - Переходной процесс

Рисунок 21 - Ошибка

Приближенное разложение ошибки в ряд Тейлора, содержащий только 3 члена:

$$E(S) = \Phi_e(s)G(s) \quad \text{, где } \Phi_e(s) = \frac{s^2+s+2}{s^2+s+3}$$

$$e(t) = c_0g(t) + c_1g(t) + c_2\frac{g(t)}{2!} \quad \text{, где:}$$

$$c_0 = \Phi_e(s)_{s=0} = \frac{2}{3}$$

$$c_1 = (\frac{d\Phi_e(s)}{ds})_{s=0} = \frac{1}{9}$$

$$c_2 = (\frac{d^2\Phi_e(s)}{ds^2})_{s=0} = \frac{4}{27}$$

$$g(t) = t + 0.5cos0.5t$$

$$g(t) = 1 - 0.25sin0.5t$$

$$g(t) = -0.125cos0.5t$$
 В итоге:
$$e(t) = \frac{2}{3}(t + 0.5cos0.5t) + \frac{1}{9}(1 - 0.25sin0.5t) + \frac{4}{27}\frac{-0.125cos0.5t}{2!}$$

Выводы

В данной работе были исследованы две системы с разным порядком астатизма. Для системы с нулевым порядком было произведено моделирование как и в стационарном режиме, так и для линейно возрастающего сигнала при различных значениях коэффициента усиления k. Установившееся значение ошибки в стационарном режиме при увеличении k уменьшалось, а при линейном сигнале стремилось к бесконечности. Для системы с первым порядком астатизма дополнительно было произведено моделирование при квадратично возрастающем сигнале. В результате, в стационарном режиме ошибка нулевая, в линейном - константа, которая уменьшается при увеличении k, а в при квадратичном сигнале - уходит в бесконечность. Все результаты подтвердились аналитически.

Также было исследовано влияние внешних возмущений и аналитический рассчет установившейся ошибки. В результате было выявлено, что для устранения ошибки от постоянного сигнала возмущения необходимо интегрирующий элемент ставить до места приложения этого возмущения.

Было произведено моделирование системы при произвольном входном воздействии. Экспериментальная и рассчитанная ошибки совпали.