UNIT-2

Software Requirement Specification (SRS) Lecture No -110

Content: - Requirement Engineering ; Elicitation of Analysis.

It is a feature of the yestern or a description something that The software is capable of doing in order

to fulfill the purpose.

- Requirement Engineering -

It is the process of creating a document written in natural longuage which contains a description of what the software will do without descriping Low it will do.

— Displand application of proven principles, methods, tools of notation to describe a proposed system intended behaviour and its associated constraints.

Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Porturnentation

Requirement
Requirement
Review

Crucial Process Steps of Requirement Engineering

* It means gathering or to cupture. * It is a process of learning, uncovering, entracting, dis covering 4 main categories of participants 1) Facilitation y Users 3) Analyst. 4) Design Team * Steps in Requirement Chartation--> Assers the fearibility - Identify the people who will specify requirement. - Define the bechnical read convironment - Identify domeun constraint - Define Elicitation Method. -> Edentify ambiguous requirement. → Greate Usage sumario to help customers. * Elicebation Fegr Techniques 1) Badiational - generic data gathering technique → Surreys -) Questionares - Interviews 2) Group Elicalation Technique -> Brain Storming, FAST (Facilitated Application specification Technique) - Workshops - Luterviewing - Survey - Document Keviewing 3) Proboty Jung

Lecture No-12

Content - Documentation, Review, Management of Uses Needs

-> Kequirement Analysis -

- Requirement Documentation of Specification-

* Known as SRS.

* It can be defined as the written document, supported by graphical models, system charts I high luck.

It should include is supposed to do.

ii) what is speed, availability, response time, recovery time ets of software.

111) Interaction with huple, Hw and other 5/w.

(v) Considerations for probability, correctness, maintainability. security of reliability.

, Requirement Verification or seriewi) Plan a seriew.

ii) Review Meetings.

4) Model driven technique 5) Cognitive technique (knowledge aequisation for knowledge base) Requirement Analysis -- In this step gathered information is analyzed for conflicts, ambiguties, inconsistencies - Missing Requirement or entra requirement is understood of analysed by the analyst. 2) Lupostance 3) Possible Solutions 4) Possible data 1/p of 0/p's. 5) Possible complexities Requirement Reguisement Requirement

Types of Requirements-Quality function deployment categorise requirement into 3 categories.

* Normal Requirements

* Enpected Requirements

* Brishing Requirements

iii) follow-up actions iv) Document after seview. v) Understandability vi) Checking for redundancy. vii) Completeness. Viii) Adaptability (K) Conformation of standards. > Requirement Management -Requirement Reg " are individually Odentification Change Manag-Process plan followed when analysing a requiremental Traceability Amount of information about requirement relationship is maintainer The bool support which is required to manage requirement -> Management of Mocr needsi) Buckground information of the organisation i) Understanding the current issues to be iii) Understanding the profile.

Lecture No-13

Content - Feasibility Study & Information Modelling.

Fearibility Study - It includes

- i) An outline description of the system.
 ii) How the system will be used within an organisation
- (ii) overall objectives are coller covered.
- iv) Can the system be integrated with the other systems.

Information assessment Information collection Report Driting

Lyformation Modelling-

of diagrams & requirement specification after discussion with the user.

I he user then reviews the diagram of specification to determine if the developer has understood the reguirements.

Structured Analysis

- Is aim is to transform the tentual description of prob into graphical model.
- Each function is analysed of heirarchically decomposed into more defailed function

Structured Design

- In this all the functions are identified during structural analysis are mepped to be a module Structure.

Tools used for Structured Analysis-
1 DFD (Data Flow Diagram)
D'Content Diagram
3 Event List.
9 Data Dichonary.
DE-R Diagram (Entity Relationship Diagram)
DFD Data How Diagram-
-s Useful in understanding a system
Models punctionality and flow of data through a system Views a system as a function that transforms
reens a express as a function that transforms
the input to output.
→ Pollows some rules and represent the result of Mruchered analysis.
- SED is of 2 yres
Physical DFD. Logical DFD.
Physical DFD
To study the functioning the for depicting the flow of date is the hoper of which is
Hosed in Analysis phase - There are used in the design to study the functioning that for depicting the flow of data in the proposed system.
Elements of DFD
· ·
1) Enternal Entity - Determine System Boundaries
- Represent as the source or sink of the system.
+ Graphical Representation.

0	Process -
	-) It is work of action
	outgoing dela fow.
	outgoing data fow.
	- Major functions are computation of making decision
	J Graphical Representation
	Process.
3	Data Mow -
	I Represent the input or outful of data to a
	- Data flow must begin or and at dat a process
	→ Data flow must begin or and at dat a process. → It connects the process each other or to source or sink.

or permanent in the yestem.

- Graphical representation

-> Graphical Representation

Data Store-

Lechne No - 14

Content: - Data Dictionary, ER-Diagram.

Dala Dictionary

- It Dist all data-items appearing in DFD.

- Data-dictionary list all data-items.
- on all the DFB's.
- It determines the definition of different data structures in H terms of their component element.
- It lost the purpose of all data items and the definition in terms of their component

Dala Definition -

Composite data items can be defined in terms of primitive data items using the following data definition operators.

- O[+1: denotes composition of 2 data tens.
- @[,,]: represents selection
- (3) (): Content unside the bracket represents optional data which may of may not appear.
- (9 { } : represents iterative desta definition.
- 3 = : represents 5 na iterative data equivalence.

ER Diagram (Entity Relationship Diagram)

1) Entity - Represented by means of reclargle.

Student

2 Attributes - There are properties of entities. Represented	hy
There are properties of entities. Represented means of ellipses. connected to entity (rectangle)	
Name Roll-No Types - Shedent i) Composite Attribute	
1) Composite 4th rebute	
11) Multivalued Missiste	
iii) Derived Attribute	
3) Relations hip -	
Represented by dimond-shaped bon. All the entities participating in a relationship, are a	
All the entities participating in a relationship, are	connected
to it by a time line.	
Binary Relationship and Cardinality. - one - to - one E- E	
- one - to - one E-E	
-> One - to - many E TE	
-> Many to many NR	
- Many to one. ENE	
V	

6

<u>Lochure No-15</u> <u>Content:-</u> SRS, Doannent, IEEE Gandard for SRS.

Software Requirement Specification (SRS)

of the success of any I/w development project.

It serves many purpose depending upon who is writing it. It serves as constraint between the austomer of developer.

Characterstics of SRS - (Good SRS)

An SRS is complete if and only if these these characterstics are pulpilled.

- -> Complete
- -> Correct
- -> Unambiguous
- -> Consistent
- -> Verifiable
- Modifiable
- -> Traceable

Benefits of a good SRS-

- Processes the dear view of S/w functionalities and what is all about.

-> Reduce the development effort.

- Provides a basis for estimating cost of schedules.

-s Provide a bascline for validation of Verification.

I Serves as a basis for enhancement

- Facilitate transfer.

Components of an SRS
Therefore Regn which %p should be produced from

- Describe the relationship I/w the 1/p 2 9/p of system.

-> Suchides specifying the validity checks.

- System behavious in abnormal situation. like invalid 4p.

- Behavior for situations where the 1/p is valid. but the normal Op cann't be reaced.

D Performance Requirement.

-> 2 types Static & Dynamic.

I Are those that do not impose constraint on execution of system. includes sego like no of suntaneous users also called capacity requirement.

Dynamic

> It specify constraints on the enecution behavious of the system It includes response time, throughfut constraints, enfected no of operations that can be heyosmed in wit time.

IEEE Standard for SRS.

1. Introduction

1.1 Purpose

1.2. Scope

1.3 Definitions, acronyms & abbreviations

1.4 References

1.5 overiew.

2. Over all Description -

2.1 Product Perspective

2.2 Product Functions

2.3 User Characterships

2.4 Constraints

2.5- Assumptions of Dependencies

2.6 Apportioning of Requirements.

3. Specific Requirements

3.1 Enternal Enterface. requirements

3.2 Specific Regn 3.3 Performance Regn

3.4 Design Constraints

3.5 3/w System Attributes

3.6 other Requirements.

4. Supposting Suformation

4.1 Table of content and inden 4.2 Appendixes.

Content: - Software Quality Assurance

Software Quality-

I Defined in terms of its fitness of purpose. I fitness of purpose is interpreted with sutisfaction of the requirements by the user, from the SRS.

- Two kinds of Sw Quality.

Quality of design

Le encompasses requirements

Specifications of design of the

yestern.

Availey of Confirmance

- hours is on implementation

- If the implementation follows

the disign and the resulting

system muts the segn of perform
- ance good.

Nen the auctity of

Conformance is high.

Attribute domain in Iw auchty.

- Portability
- > Usability
- Reusability
- Conechress
- Maintainability

Product

Procedures

Plan

Plan

Standards

Lecture No-17

Content: - Software Validation & Varification (SVV), SEI-CMM.

Verification

Validation

- Are we suilding the product

- Are we building the right product.

- The S/w should confirm to its

- The S/w should do what the uses wants.

Verification Pechnique i) Dynamic Testing a) Functional Testing b) Structural Perting C) Random Pesting ii) Static Techniques/ testing a) Consistency technique. b) Measurement technique. Validation Technique. i) formal Method. i) & foult injection a) H/w Fault injection b) Yw Fault injection iii) Dependability Analysis SEI-CMM Model -Continuous umproving Predictable Process Stundard Consistent Defined Process Disciplined Repealable Process Luitial - Set of activities, methods & mactics, use to develop of maintain I/w.

S/w Process Capability-- It discribes the range of enfected 9/p's
- Means of predicting most likely 0/p's. 5/w Process Performance -- Actual results achieved by 5/w Process. Jw Process Makinity -→ Implies hotential growth in capability Indicate richness of process.

I entent to which a process is enplicitly, managed measured and controlled. CMM > Cepability Making Model -- Developed by S/w Institute of Carriage Mellon - Framework that describes the "key clement of an effective - Describes evolutionary improvement both from unature to a mature of disciplined process.

Level 1 - Sintial

Contents: - SEI - CMM, 150-9000

Levels of CMM- (capability Makinity Model)

1 Level 1 Initial:

- To Proces is adhor

- Few processes are defined

- Gow over budget

I over scheduled.

organisational.

Level 2: Repealable -

- Basic Process Management to establish cost,

Schedule; function.

- Realistic Commitments based on results of previous

-> Project standards are defined.

- hours is disciplined.

Level 3: Defined -

-> S/w Process is documented, standardized of integrated

- All project use approved versions of orgn standard

S/w Process. for development of S/w.

Level 4: Managed-

- Process capability is established at this level.

- Detailed measures of s/w process of product quality are collected.

- anantitardy understood of Controlled of Redictable.

7)

Level 5: Optimized. -

- Tontinuous process improvement is enabled by

Jeedback

-s Innovative ideas.

I Goal is to prevent the occurence of defects.

150 9000 Model - (1946)

- International organisation for standardization.

- Adopted as a series of written quality standards. (1987, It tells the manufacturers and suppliers what is

sequired from a quality oriented system.

Objective of 150 9000-

→ To facilitate international trade of goods of sorvices.

→ To obtain competitiveness by obtaining required quality in a cost effective manner.

How to achieve these objectives? -

-> Maintain & Seek to workinworsly unprove product

Improve the quality of operations to continuously meet customers and stakeholders stated and implical needs.

-) provide confidence to internal management.

-> provide confidence to other employees.

-s provide confidence that quality system requirements are pufilled.

Advantages of 150 9000 model -

- Geales more efficient & effective operation.
- Increase customes satisfaction & retention.
- Enhance Marketing.
- -> Lucrease Profit.
- Improves employee motivation, awareness.
- Reduce audits.
- Reduce waste and uncrease productivity.
- Promote international trade.