$$Q_{u17}$$

$$F_{x}(t) = \Gamma$$

P1.
$$F_X(t) = P[X \le t] = \begin{cases} 1-t^{\alpha} & t \ge 1 \\ 0 & t \le 1 \end{cases}$$

$$(\alpha) \cdot f_{X}(t) = F'_{X}(t) = \begin{cases} \alpha t^{-\alpha - 1} & t \ge 1 \\ 0 & t \le 1 \end{cases}$$

(b)
$$\mathbb{E}[X^2] = \int_{0}^{2} t^2 f_X(t) dt = \int_{0}^{\infty} 3 t^2 t^{-3} dt = 3 \int_{0}^{\infty} t^{-2} dt$$

= $3(-t^{-1})\Big|_{t=0}^{\infty} = 3(\frac{-t}{2}) - 3(\frac{-t}{2}) = 3$

$$E[x|y=1] = \sum_{x} P[x=x|y=1] = \sum_{x} P[x=x,y=1]$$

$$P[y=1]$$

Det. A 1-
$$\alpha$$
 confidure interval for a parameter θ is an interval $C_n = (\alpha_n, b_n)$, where α_n, b_n and functors of $X_1, \dots, X_n = 1$.

 $P_{\theta} [\theta \in C_n] \ge 1-\alpha \quad \forall \theta \in \Theta$

One we sample Ca, there are no more probability.

- either $\theta \in Ca(\omega)$ or $\theta \notin Ca(\omega)$

Ex. $y = \begin{cases} \theta + 1 & \text{wp} \geq \\ \theta - 1 & \text{wp} \geq \end{cases}$ Beth fixed, unknown

Observe iid sumples 4, 42 ~ 4

 $C_{n} = \left(Min(Y_{1}, Y_{2}, ..., Y_{n}) - \frac{1}{4}, \max(Y_{2}, Y_{2}, ..., Y_{n}) + \frac{1}{4} \right).$

θ ∈ C ~ => min (4, 42, ..., 4,) ≠ max(4, 42, ..., 4n)

 $P[H \in C_n] = 1 - \frac{1}{2^{n-1}} \Rightarrow C_n \text{ is } n = \frac{1}{2^{n-1}} CT \text{ for } \Theta$

1-2milthe time, De C.n.

His mus our sample, of Cn

N=2: if $Y_1=15$, $Y_2=17$ then $C_2=(14.75,17.25)$ but we are 1007, sure $\theta=16$. IP[$\theta\in C_2$ | $Y_1=15$, $Y_2=17$]=1

instance/sample of CI is not a probability.

statement about the (this not randown)

X t-skep random with
$$X = \frac{1}{2}Y_i$$
, $Y_i \sim \begin{cases} -1 & \text{op } p \\ +1 & \text{op } i-p \end{cases}$

X1, X2, ..., Xx ~ X (id Sausples)

$$\hat{p} = \frac{1}{2} - \frac{1}{2}X_i$$

$$\hat{p} = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = \frac{1}{2} - \frac{1}{2}$$