Pannon Egyetem Képfeldolgozás és Neuroszámítógépek Tanszék

Digitális Rendszerek (BSc)

2. előadás: Logikai egyenletek leírása II: Függvény-egyszerűsítési eljárások

Előadó: Vörösházi Zsolt

voroshazi@vision.vein.hu

Jegyzetek, segédanyagok:

Könyvfejezetek:

```
□ http://www.knt.vein.hu
```

-> Oktatás -> Tantárgyak -> Digitális Rendszerek (BSC).

```
(01_chapter.pdf)
```

- Fóliák, óravázlatok .ppt (.pdf)
- Feltöltésük folyamatosan

- Általánosan:
 - Függvényminimalizálást a szomszédos mintermek megkeresésével tehetjük meg.
 - A szomszédosság megállapítása után egyszerűsítünk.
 - Minterm → implikáns (egyszerűsíthető) → prímimplikáns (tovább nem egyszerűsíthető)

Függvényegyszerűsítési eljárások

- 1.) Algebrai módszer (Boole algebrai azonosságokkal)
- 2.) Kifejtési módszer
- 3.) Grafikus módszer: (Karnough tábla, igazság tábla)
- 4.) Normálformák:
 - DNF: Diszjunktív Normál Forma
 - □ KNF: Konjunktív Normál Forma
- 5.) Számjegyes minimalizálás: Quine-McCluskey

1.) Algebrai módszer

A Boole-algebra azonosságait használjuk fel az egyszerűsítéshez:

$$F(A,B,C) = \overline{A} \cdot \overline{B} \cdot C + \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot C + A \cdot B \cdot C =$$

$$= \overline{A} \cdot C \cdot (\overline{B} + B) + A \cdot C \cdot (\overline{B} + B) = \overline{A} \cdot C + A \cdot C =$$

$$= C \cdot (\overline{A} + A) = C$$

Komplexebb függvények esetén egy adott változó értékét először ponáltnak, majd negáltnak definiáljuk, végül pedig az így kiszámított két logikai kifejezést összeadjuk. Ezáltal leegyszerűsödik a függvényminimalizálási feladat.

Példa: kifejtési módszer

■ Legyen F₁ függvény a következő:

$$F_1(A, B, C) = \overline{A} \cdot B \cdot \overline{C} + \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot \overline{C} + A \cdot B \cdot \overline{C}$$

■ Ha A:=1

$$F_{1}(\mathbf{1}, B, C) = 0 \cdot B \cdot \overline{C} + 0 \cdot B \cdot \overline{C} + 1 \cdot \overline{B} \cdot \overline{C} + 1 \cdot B \cdot \overline{C}$$
$$= \overline{B} \cdot \overline{C} + B \cdot \overline{C} = \overline{C} \cdot (B + \overline{B}) = \overline{C}$$

■ Ha A:=0

$$F_{1}(\mathbf{0}, B, C) = 1 \cdot B \cdot \overline{C} + 1 \cdot B \cdot C + 0 \cdot \overline{B} \cdot \overline{C} + 0 \cdot B \cdot \overline{C}$$

$$= B \cdot \overline{C} + B \cdot C = B \cdot (\overline{C} + C) = B$$

Végül összeadjuk a kettőt (egyszerűsített alak):

$$F_1(A, B, C) = A \cdot F_1(1, B, C) + A \cdot F_1(0, B, C) =$$

$$= A \cdot \overline{C} + \overline{A} \cdot B$$

Az egyszerűsített függvény logikai áramköri realizációja

3.) Grafikus módszer

- Karnough (Veicht) diagramm
 - Tömbösítés szabályainak betartása!
- Példa:

Példa 1: 7-szegmenses dekóder áramkör tervezése

- nemzetközi elnevezései a szegmenseknek:
 (a, b, c, d, e, f, g)
 - □ 16 érték (4 biten ábrázolható): F(X,Y,Z,W)

Példa: 7-szegmenses dekóder tervezése (folyt)

- Igazságtábla (f szegmensre)
- Karnough tábla:

sor	Х	Y	Z	W	f
0	0	0	0	0	1
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	0
4	0	1	0	0	1
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	0
8	1	0	0	0	1
9	1	0	0	1	1
10	1	0	1	0	1
11	1	0	1	1	1
12	1	1	0	0	1
13	1	1	0	1	0
14	1	1	1	0	1
15	1	1	1	1	1

Kapott f kimeneti függvény:

$$f(X,Y,Z,W) = Z \cdot W + X \cdot Y + Y \cdot W + X \cdot Z + X \cdot Y \cdot Z$$

Példa 1: A 7-szegmenses dekóder logikai áramköri realizációja

$$f(X,Y,Z,W) = \overline{Z} \cdot \overline{W} + X \cdot \overline{Y} + Y \cdot \overline{W} + X \cdot Z + \overline{X} \cdot Y \cdot \overline{Z}$$

Példa 2: 7-szegmenses dekóder áramkör tervezése

- Csak számjegyeket (0-9) megjelenítésére
 - BCD: Binárisan kódolt decimális számokra
- Nemzetközi elnevezései a szegmenseknek: (a, b, c, d, e, f, g)
 - □ 10 érték (4 biten ábrázolható): F(A,B,C,D)
- NTSH: használjunk Nem Teljesen Specifikált Hálózatot (igazságtábla kimeneti függvényértékeiben lehetnek don't care '-' definiált állapotok)

Példa 2: 7-szegmenses dekóder tervezése (folyt)

- Igazságtábla (c szegmensre)
- Karnough tábla:

sor	Α	В	С	D	С
0	0	0	0	0	1
1	0	0	0	1	1
2	0	0	1	0	0
3	0	0	1	1	1
4	0	1	0	0	1
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	1
10	1	0	1	0	1
11	1	0	1	1	1
12	1	1	0	0	1
13	1	1	0	1	-
14	1	1	1	0	-
15	1	1	1	1	-

$$c(A, B, C, D) = A + B + \overline{C} + D$$

Példa 2: 7-szegmenses dekóder logikai áramköri realizációja (BCD)

$$c(A, B, C, D) = A + B + \overline{C} + D$$

- DNF: Diszjunktív Normál Forma
 - mintermek (szorzattermek) VAGY kapcsolata
- KNF: Konjunktív Normál Forma
 - Maxtermek (összegtermek) ÉS kapcsolata

Példa 1: Diszjunktív Normál Forma

Legyen: $F = \sum_{i=0}^{n=4} (0,1,3,7,11,12,14,15)$

■ Karnough tábla: AB CD

D

Kapott F függvény:

$$F(A, B, C, D) = C \cdot D + \overline{A} \cdot \overline{B} \cdot \overline{C} + A \cdot B \cdot \overline{D}$$

Példa 2: Konjunktív Normál Forma

Legyen: $F = \prod_{i=0}^{n=4} (2,4,5,6,8,9,10,13)$

Karnough tábla:

Kapott F függvény:

$$F(A,B,C,D) = (A + \overline{C} + D) \cdot (A + \overline{B} + C) \cdot (\overline{A} + C + \overline{D}) \cdot (\overline{A} + B + D)$$

5.) Számjegyes minimalizálás (Quine-McCluskey módszer)

- Szomszédosság szükséges feltételei:
 - □ Decimális indexek különbsége 2ⁿ kell legyen (szükséges, de nem elégséges feltétel!)
 - Pl: i: 6-2=4 (szomszédos), de i:10-6=4 (nem szomszédos)
 - □ Bináris súlyuk különbsége 1. (Hamming távolság)

 A nagyobb decimális indexűnek kell nagyobb bináris súllyal szerepelnie! (szükséges, de nem elégséges feltétel!)

	00	01	11	10
00	Y ₀	Y ₁	Y ₃	Y ₂
01	Y ₄	Y ₅	Y ₇	Y ₆
11	Y ₁₂	Y ₁₃	Y ₁₅	Y ₁₄
10	Y ₈	Y ₉	Y ₁₁	Y ₁₀

Példa: Számjegyes minimalizálásra (Quine-McCluskey módszer)

- Oldjuk meg a következő feladatot a Quine-McCluskey módszerrel
- Ha adott az F függvény DNF alakban:

$$F^{n=4} = \sum_{i=0}^{2^{n}-1} (0,1,3,7,11,12,14,15)$$

Karnough tábla:

- Csoportosítás bináris súlyuk szerint:
 - □ ahol a kimeneti értékük '1-s' volt.

0	0000	[0 bináris súly]
1	0001	[1 bináris súly]
3	0011	[2 bináris súly]
12	1100	
7	0111	[3 bináris súly]
11	1011	
14	1110	
15	1111	[4 bináris súly]

bináris súly szerinti csoportképzések

Számjegyes minimalizálás Quine-McCluskey módszer II.lépés

 II. Összes létező szomszédos kételemű lefedő tömb összevonása (Karnough tábla alapján)

Minterm	Decimális különbség		
<u>0,1</u>	(1)		
<u>1,3</u>	(2)		
3,7	(4)		
3,11	(8)		
<u>12,14</u>	(2)		
7,15	(8)		
11,15	(4)		
14,15	(1)		

Számjegyes minimalizálás Quine-McCluskey módszer III.lépés

 III. Összes létező szomszédos kettesekből képzett négyelemű lefedő tömb összevonása (Karnough tábla alapján)

NA:		
Minterm	Decimális különbség	
0,1	(1)	
1,3	(2)	
3,7	(4) \ Négyes	
3,11	(8) Összevonás	
12,14	(2) 3,7,11,15 (4, 8	B)
7,15	(8)	
11,15	(4)	
14,15	(1)	

Számjegyes minimalizálás Quine-McCluskey módszer IV.lépés

 IV. Prímimplikáns tábla felírása a megmaradt összevonásokkal (III. lépés alapján)

sor		0	1	3	7	11	12	14	15
*	0,1 (1)	*	*						
	1,3 (2)		*	*					
*	12,14 (2)						*	*	
	14,15 (1)							*	*
*	3,7,11,15 (4,8)			*	*	*			*

^{* :} ahol egy adott mintermhez tartozó oszlopban csak egy '*' van, az a sor jelöli a **lényeges prímimplikánst** (ahol az implikáns tovább már nem egyszerűsíthető!). Az a sor nem elhagyható!

Számjegyes minimalizálás Quine-McCluskey módszer V.lépés

V. Prímimplikánsokból képzett kimeneti függvény megadása (IV. lépés alapján):

□ (0,1):
$$0000$$
 0001 0000 0001 0000 0001 0000 0001 00000 00000 0000 00000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0

Tehát a kimeneti minimalizált F függvény a következő:

$$F = 0000 + 1100 + 0011 \Rightarrow F = A \cdot B \cdot C + A \cdot B \cdot D + C \cdot D$$

 Ajánlott: fejezetek végén a feladatok (Exercises) részek áttekintése.