

LOGISTIC EQUATION RESPRESENTATION

Master in Computational Biology SANDRA ALONSO PAZ October, 2021

Index

1.	1. Introduction	
2.	2. Test cases	2
a	a. $x = 0.5, r = 1$	2
k	b. $x = 0.5, r = 2.5$	
c	c. $x = 0.5, r = 3.2$	3
c	d. $x = 0.5, r = 3.5$	4
E	e. $x = 0.5, r = 3.8$	4
f	f. $x = 0.5, r = 5$	
g	g. $x = 0.4, r = 1$	
r	h. $x = 0.4, r = 2.5$	6
i	i. $x = 0.4, r = 3.2$	6
j	j. $x = 0.4, r = 3.5$	7
k	k. $x = 0.4, r = 3.8$	7
1.	I. $x = 0.4, r = 5$	8
3.	3. Conclusions	8
a	a. $r=1$	
k	b. $r = 2.5$	9
c	c. $r = 5$	g

1. Introduction

The logistic function or logistic curve is a mathematical function used in several fields including biology, biomathematics, demography, etc. Focusing on biology it is a commonly way to represent the population growth or diseases spread.

This function could be represented by a differential equation: $\frac{dx}{dt} = rx(1-x)$ where x is the population size and y is a period of time. Finally, r represents the rate between reproduction and mortality in the given population.

2. Test cases

Twelve test cases are represented below to see the differences when we vary the values of x and r.

b. x = 0.5, r = 2.5

c. x = 0.5, r = 3.2

d. x = 0.5, r = 3.5

e. x = 0.5, r = 3.8

f. x = 0.5, r = 5

g. x = 0.4, r = 1

h. x = 0.4, r = 2.5

i. x = 0.4, r = 3.2

j. x = 0.4, r = 3.5

I. x = 0.4, r = 5

3. Conclusions

For answering the question: "What happens if you start from a slightly different x_0 (e.g., 0.4)?" I made another plot for comparing the graphs above. I found that the principal value which we must observe was not x_0 , but r. So, if we vary so slightly the value of x_0 there is no a huge difference at the final result on the plots (only the time it takes to stablish the final value).

a. r = 1

For $r \le 1$ the studied population will disappear regardless de initial number of organisms.

b. r = 2.5

For r=2.5 we can observe that at some point the population will stabilize at some value. In contrast to last example (r=1), we can affirm that higher number of initial populations, the longer it will take for the graph to stabilize.

c. r = 5

Due to the size of the equation results, it is impossible for Python to represent them. Therefore, after some investigation I found that for r>4, values left the common interval [0,1] and the graph diverge for all values.

