Overview of variant analysis

MSc in Genomic Medicine
Lucy Crooks
25/1/2016

Principle of next generation sequencing

Prepared fragmented DNA = library

- Attach library to substrate so fragments can be distinguished
- Sequence massively in parallel

- Output from the sequencer is reads
- A read is the set of the DNA bases in order from a fragment
- Each read is small ~100 bases and can have a mistake
- Method works because we combine information from many reads all starting and ending in different places

How do we get from reads to identifying the genetic change that has caused a patient's disease?

Variant Analysis

Steps in variant analysis

Alignment

Variant calling

Quality filtering

Identify key variant

1. Alignment

Millions of jumbled-up reads

Find where on the genome they came from

Reads are 100 bases long Genome is 3,000,000,000 bases long!

- Aligning to a reference is much easier than de novo genome assembly
- The original human genome reference was completed in 2003, taking 13 years
- It is a mixture from several individuals
- It is not a consensus

2. Variant calling

Look for differences from the reference at each position

Depth/coverage = how many reads map are over the position

Types of Variant

- SNV single nucleotide variation
- InDel small insertion or deletion
- SV structural variant (longer insertion, deletion or rearrangement, also called CNV – copy number variant)

Also want to know if the individual is homozygous or heterozygous for a variant

3. Quality filtering

- Many quality scores are generated that can be used to filter variants
- Unclear which are most useful and how they relate to each other
- Best is to have 'truth set' to test filtering strategy
- Have to chose where to balance missing true variants (sensitivity) against calling a variant by mistake (specificity)

4. Identify key variant

- ~ 4 million variants per person
- Restrict by gene

Diagnostic geneticsSmall set of genes connected to specific disease

Research

Exploratory gene list based on biological pathways or gene expression data

Test for association in large population of cases and controls

4. Identify key variant

- Has variant been published for a same or similar condition?
- Is it reported above low frequency in healthy populations?
- Where does it occur in relation to parts of genes?
 - Should it affect protein sequence or transcription?
- What are the predicted functional consequences?

4. Identify key variant

Aspects of this process are referred to as

- Variant annotation
- Variant interpretation
- Variant prioritisation

Caveats of NGS data

- Some regions of genome do not sequence well GC rich regions are problematic for PCR
 If there is no coverage you cannot see variants
- Short reads are not effective in repetitive regions and when there are gene copies
- Need bioinformatics skills!
- High requirements for computer processing and storage
 Data from 1 HiSeq run equivalent to 48 HD movies