STICS Performance Evaluation Report: Winter Wheat

Authors: N. Beaudoin, B. Dumont, G. Jégo, E. Justes, D. Ripoche, S. Buis

JavaSTICS version: 1.41 STICS version: 9.0

IdeSTICS version: r1220 Number of USMs: 222 Number of cultivars: 9

Cultivars names: Arminda, Talent, Thesee, Soissons, Promentin, Sideral, Thésarmin, Thétalent,

Shango

Number of observations per variable

The evaluation dataset includes 222 USMs not used for model calibration, 9 cultivars and a large number of observations (>90) for all evaluated variables.

Evolution of performances with respect to former version 8.50

rRMSE (%) Wheat

rRMSE obtained with the new version 9.0 are very close to those obtained with the former version V8.50 for all observed variables.

Global analysis

Systematic and unsystematic RMSE

- Relative RMSE (rRMSE):
 - o are generally fairly good for crop growth, nitrogen exportation by the plant and water content (below 30%),
 - o higher rRMSE for *lai* (rRMSE ≈ 45%),
 - o very high for *aznit* in the different layers with an increasing rRMSE with soil depth while *azomes* is relatively fairly good (rRMSE \approx 44%).
- Bias:
 - o no major systematic bias in model predictions compared to dispersion (rRMSEu > rRMSEs) for growth dynamic, hr1-5, aznit 1-4, resmes, azomes and QNplante,

o moderate systematic bias compared to dispersion are observed for *mafruit*, mafruit.maxvalue (i.e. mafruit at harvest), aznit 5, inn, chargefruit, and cngrain (pRMSEs close to pRMSEu).

Yield elaboration

	mafruit	chargefruit	cngrain
number-of-usm	216	193	166
number-of-observations	222	193	166
Mean-of-measurements	7.27	18038	1.72
CV-measurements	28	26	16
CV-simulations	30	21	16
RMSE	1.90	4753	0.32
rRMSE (%)	26.05	26.35	18.36
pRMSEs	0.45	0.41	0.43
pRMSEu	0.55	0.59	0.57
Mean-difference (M)	1.02	-796.11	0.08
Relative error (%)	10.88	-14.32	3.34

- Bias level is medium for *mafruit* and shows that model underestimates the observations. A doubt is emitted about the harvest index prediction. This observation emerges from the fact that *masec* is pretty much well simulated.
- *chargefruit* and *cngrain* have similar levels of systematic errors w.r.t. dispersion. On average *cngrain* is underestimated by the model, while *chargefruit* is overestimated. *cngrain* being underestimated has a greater consequence in terms of quality of the grain and the overall N balance.
- The variability of all three variables is quite well simulated (CV-measurements and CV-simulations are close).
- There are correlations between residues and observations for the three variables (see graphs next page).

Growth dynamic

	lai	masec	QNplante
number-of-usm	39	188	157
number-of-observations	177	493	457
Mean-of-measurements	2.49	9.31	132.99
CV-measurements	65	69	55
CV-simulations	63	75	60
RMSE	1.11	2.24	38.55
rRMSE (%)	44.75	24.09	28.99
pRMSEs	0.28	0.12	0.12
pRMSEu	0.72	0.88	0.88
Mean-difference (M)	0.24	0.70	9.56
Relative error (%)	-4.47	18.51	9.17

- QNplante and masec are fairly well predicted.
- Systematic bias in model predictions is low compared to dispersion but the total variability of all three variables is quite well simulated.
- Almost no correlation between residues and observations for *masec* and *QNplante* (except for a few underestimated situations), but there is correlation for *lai* (see graphs next page).

Water and nitrogen soil content

	resmes	azomes
number-of-usm	111	100
number-of-observations	260	236
Mean-of-measurements	319.22	56.03
CV-measurements	40	70
CV-simulations	39	73
RMSE	35.46	24.51
rRMSE (%)	11.11	43.74
pRMSEs	0.08	0.04
pRMSEu	0.92	0.96
Mean-difference (M)	2.92	-0.95
Relative error (%)	-0.51	-22.76

- Soil water content is fairly well predicted with small rRMSE and very low systematic bias.
- Soil nitrogen content (*azomes*) is relatively well predicted compared to *aznit1-4* but quite poorly predicted compared to soil water content. It however also has a very small systematic bias.
- The total variability of both variables is quite well simulated.

Conclusion

Overall model performance is relatively good:

- Yield elaboration variables have low rRMSE but significant biases and quite poor efficiencies.
- Growth dynamic variables are well simulated (although rRMSE of *lai* is a bit high).
- Soil water content is very well predicted. Total soil nitrogen content is relatively well predicted although errors on nitrogen content per soil layer are high.
- Largest errors are often due to a small number of USMs.