Intelligence Artificielle	Série d'exercices	Imen Masmoudi
4 ^{ème} Génie Informatique	Révision pour Examen	

Exercice 1:

On souhaite définir un modèle de perceptron linéaire à seuil. Ce perceptron va permettre de réaliser la fonction logique « Ou » qu'on peut représenter graphiquement comme suit. Et la base d'apprentissage qu'on va utiliser pour lancer l'apprentissage est donnée sous forme de couples (X, Y) avec X= {x1, x2}.

x1	x2	у
0	0	0
0	1	1
1	0	1
1	1	1

- 1. Présenter le schéma représentatif de ce perceptron linéaire à seuil.
- 2. On suppose que ε = 1, Qu'initialement w_2 =0 et que le reste des poids sont égaux à 1, et que la fonction d'activation est définie comme suit :

$$f(x) = \begin{cases} 0 & \text{si } x \le 0 \\ 1 & \text{sinon} \end{cases}$$

En se basant sur l'algorithme d'apprentissage du perceptron, dont le pseudo code est fourni, procéder à l'apprentissage jusqu'à 12 itérations.

- Initialiser aléatoirement les coefficients wi.
- Répéter :
 - Prendre un exemple (X, y) de la base D
 - Calculer la prédiction p du réseau pour X
 - •Mettre à jour les poids :
 - Pour i de 0 à n :
 - wi = wi + $\epsilon * (y p) * xi$
 - Fin Pour
- •Fin Répéter
- 3. Qu'est-ce que vous pouvez en déduire?

4. On souhaite maintenant réaliser la fonction logique Ou Exclusif dont la représentation graphique est la suivante :

Est-ce que le modèle du perceptron qu'on a déjà définit permet de faire l'apprentissage de cette fonction Ou Exclusif ? Justifier votre réponse et proposer une solution.

Exercice 2:

Construire un arbre de décision à partir de l'ensemble des observations suivantes pour des patients.

ID	Fièvre	Toux	Problème respiratoire	Infection
1	Non	Non	Non	Non
2	Oui	Oui	Oui	Oui
3	Oui	Oui	Non	Non
4	Oui	Non	Oui	Oui
5	Oui	Oui	Oui	Oui
6	Non	Oui	Non	Non
7	Oui	Non	Oui	Oui
8	Oui	Non	Oui	Oui
9	Non	Oui	Oui	Oui
10	Non	Oui	Non	Non
11	Non	Oui	Oui	Oui
12	Non	Non	Oui	Non
13	Oui	Oui	Non	Non