Sekvenciranje

- Današnja tehnologija ne omogućuje precizno "čitanje" cijelog genoma odjednom
- Veličina genoma:
 - Virus ~ 50.000 baza
 - Bakterija ~ 5.000.000 baza
 - Kvasac ~ 10.000.000 baza
 - Ptice ~ 1.000.000.000 baza
 - Čovjek ~ 3.000.000.000 baza
 - Jedan kromosom ~ 50.000.000 250.000.000 baza
 - Neke biljke čak preko 100.000.000.000 baza

Sekvenciranje

- Današnja tehnologija ne omogućuje precizno "čitanje" cijelog genoma odjednom
- Genom se umnaža (50x), nasumično razbija na manje fragmente koje se može "pročitati" – shotgun sequencing
- Kako provjeriti je li rezultat dobar?
- Prve metode sekvenciranja: označavanje pojedinih djelova kromosoma, sekvenciranje i sastavljanje.
- Prvi sastavljeni ljudski genom koštao je oko 3 milijarde \$

Sekvenciranje

- Današnja tehnologija ne omogućuje precizno "čitanje" cijelog genoma odjednom
- Genom se umnaža (50x), nasumično razbija na manje fragmente koje se može "pročitati" – shotgun sequencing
- Kako provjeriti je li rezultat dobar?
- Čarobna granica: genoma za \$1000
- "Everybody talks about the \$1,000 genome, but they don't talk about the \$2,000 mapping problem behind the \$1,000 genome" Peter Tonellato, University of Wisconsin

Sekvenciranje - tehnologije

- Prva generacija
 - Sangerovo sekvenciranje
 - Očitanja srednje duljine, precizno
 - Jako sporo
- Druga generacija (NGS next generation sequencing)
 - Illumina, Roche, Ion Torrent ...
 - Očitanja male duljine, tipično 100-200 baza, precizno (~ 1-3%)
 - Brzo i jeftino
- Treća generacija
 - PacBio, ONT Oxford Nanopore Technologies
 - Očitanja velike duljine (deseci tisuća baza) s velikom greškom (~ 5-30%)
 - Brzo i jeftino?

Primjena bioinformatike

- Precizna medicina lijekovi bolje djeluju na pacijentima koji imaju točno određenu mutaciju na nekom genu (ili genima)
 - Mutacija: zamjena, umetanje, brisanje
- Usporedba s referentnim genomom
 - deepVariant (Google)
- Sastavljanje genoma i čitanje pojedinog gena
 - Iz podataka dobivenih sekvenciranjem
 - Preklapanja između očitanja

Primjena bioinformatike

- Sastavljanje genoma i čitanje pojedinog gena
 - Iz podataka dobivenih sekvenciranjem
 - Preklapanja između očitanja
- Uspoređivanje nizova
 - Dinamičko programiranje
 - Indeksiranje manjih podnizova (kmer)
 - Kombinacija (seed & extend)

Bioinformatika

2020/2021 Dinamičko programiranje

fppt.com101100

Fibonacci

$$F_0 = 0,$$

 $F_1 = 1,$
 $F_n = F_{n-1} + F_{n-2}, \forall n > 1$

Naivni algoritam

```
Fibonnaci(n):
    ako je n = 0:
        vrati 0
    inače ako je n = 1:
        vrati 1
    inače:
        vrati Fibonnaci(n-1)+Fibonnaci(n-2)
```

Fibonacci – stablo aktiviranja

Eksponencijalna vremenska složenost

Memoizirani naivni algoritam

```
Fib je niz n+1 cijelih brojeva
Incijaliziraj Fib[i] = -1 za sve i≤n
Fib[0] = 0
Fib[1] = 1
Fibonnaci(n):
   ako je Fib[n] = -1:
     Fib[n]=Fibonacci(n-1) + Fibonacci(n-2):
   vrati Fib[n]
```

Fibonacci – stablo aktiviranja

Memoizirani naivni algoritam

```
Fin je niz n+1 cijelih brojeva
Incijaliziraj Fib[i] = -1 za sve i≤n
Fib[0] = 0
Fib[1] = 1
za i od 2 do n:
    Fib[i]=Fib[i-1] + Fib[i-2]
```

Rješavanje tablice po redu Linearna složenost

Dinamičko programiranje

- Klasa algoritama koja rješava probleme rješavanjem njihovih manjih dijelova, spremanjem rješenja i nakon toga kombiniranjem istih za rješenje većega problema.
- Rješenja su obično trivijalna i rezultati se spremaju u jednostavne strukture podataka (varijable, polja i tablice). Ti rezultati se onda koriste za rješavanje nešto većih problema, koji spremaju i koriste za rješavanje još većih problema.

fppt.com

Metrike sličnosti

- Hammingova udaljenost
 - Računanje broja zamjena za transformaciju jednoga niza u drugi

GATTACA	ATTACCC
	XX XX X
GATCACA	GATTACA
1	5

- Udaljenost uređivanja (Levenshtein)
 - Minimalan broj zamjena, umetanja i brisanja za transformaciju jednoga niza u drugi

GATTACA	-ATTACCC
	X XX
GATCACA	GATTAC-A
1	3

Svojstva metrika

- $1.d(x,y) \ge 0$ za sve x,y.
- 2.d(x,y) = 0, ako i samo ako x = y
- 3.d(x,y) = d(y,x) (simetrija)
- $4.d(x,y) \le d(x,z) + d(z,y)$ za sve x,y i z (nejednakost trokuta)

Udaljenost uređivanje i mjera sličnosti

- Biolozi koriste mjeru sličnosti koja raste što su sličnosti veće.
- Peter H. Sellers (1974)
 - Min(udaljenost uređivanja) ~ max(sličnosti)
- Slični algoritmi se mogu koristiti za optimiziranje obje mjere

Ulaz: dvije sekvence, npr.

t: ATCTGAT

s: TGCATAT

 Izlaz: minimalni težinski broj operacija uređivanje za transformaciju s u t.

Operacije uređivanja

- Postoje tri tipa promjena:
 - Zamjena promjena jednoga znaka iz niza s u drugačiji znak u nizu t, npr. "most" u "mast"
 - Umetanje umetanje jednoga znaka u niz s u cilju da odgovara nizu t, npr. "kos" u "kosa"
 - Brisanje brisanje jednoga znaka iz niza s u cilju da odgovara nizu t, npr. "brod" u "rod"

TGCATAT → ATCCGAT u 5 koraka

```
TGCATAT → (obriši zadnji T)
TGCATA → (obriši zadnji A)
TGCAT → (umetni A na početak)
ATGCAT → (zamijeni G sa C)
ATCCAT → (ubaci G prije zadnjeg A)
ATCCGAT (kraj)
```

Poravnanje (TGCATAT u ATCCGAT)

ATCCGAT--

-TGC-ATAT

IMMMIMMDD

TGCATAT → ATCCGAT u 4 koraka

```
TGCATAT → (obriši A)

ATGCTAT → (ubaci A)

ATGCTAT → (zamijeni G sa C)

ATCCTAT → (zamijeni T s G)

ATCCGAT (kraj)
```

Poravnanje (TGCATAT u ATCCGAT)

ATCC-GAT

-TGCATAT

IMMDMMM

Poravnanje dva niza

 Elegantan algoritam za traženja minimalnog troška trasformacije niza S u T je temeljen na zapažanju da ispravna akcija na najdesnijim znakovima od S i T može biti izračunata znajući cijenu poravnanja različitih prefiksa!

Udaljenost uređivanja – obrnuti inženjering

Zamislimo da već imamo optimalno poravnanje nizova. U tom slučaju zadnji stupac može biti samo jedna od tri opcije:

Optimalno poravnanje zadnja dva stupca je jedna od devet mogućnosti:

Optimalno poravnanje zadnja tri stupca je jedna od 27 mogućnosti:

Na kraju potrošimo sve moguće nizove od {U, Z, B}

Poravnanje dva niza

```
#define MATCH
                               /* symbol for match */
                                /* symbol for insert */
#define INSERT
#define DELETE
                                  /* symbol for delete */
int string compare(char *s, char *t, int i, int j) {
        int k; /* counter */
        int opt[3];     /* cost of the three options */
        int lowest cost; /* lowest cost */
        if (i == 0) return(j * indel(' ')); /* boundary conditions */
        if (j == 0) return(i * indel(' ')); /* boundary conditions */
        opt[MATCH] = string compare(s,t,i-1,j-1) + match(s[i],t[j]);
        opt[INSERT] = string compare(s,t,i,j-1) + indel(t[j]);
        opt[DELETE] = string compare(s,t,i-1,j) + indel(s[i]);
        lowest cost = opt[MATCH];
        for (k=INSERT; k<=DELETE; k++)</pre>
                 if (opt[k] < lowest cost) lowest cost = opt[k];</pre>
        return ( lowest cost );
} /* Steven Skiena, http://www.algorithm.cs.sunysb.edu/computationalbiology/ */
```

Složenost!

- Koliko je složenost izvršenja ovoga programa? Eksponencijalna s duljinom nizova!
- Primijetimo da stalno ponavljamo isto računanje na svakom paru prefiksa

Poravnanje dva niza

- Stanje rekurzivnih poziva je vođeno pozicijom indeksa u nizovima. Stoga postoji samo |S|×|T| različitih poziva!
- Spremanjem odgovara u tablicu i njihovim pozivanjem umjesto ponovnoga računanja, algoritam postiže kvadratnu složenost

Ideja temeljena na dinamičkom programiranju

- Neka je n duljina niza x
- Neka je m duljina niza y
- Konstruirati maticu F dimenzija (n+1) × (m+1)
- F(j, i) = rezultat najboljega poravnanja x₁...x_i s y₁...y_i

			•	X	
			Α	G	С
		0	d	2d	3d
	Α	d			
y	Α	2d			
	Α	3d		-	
	С	4d			

DP algoritam

aron of 1949 1949

- Inicijalizirati prvi red i prvi stupac matrice
- Popuniti ostatak matrice od vrha do dna, s lijeva na desno
- Za svaki F(i, j), spremiti od kuda se došlo
- *F*(*m*,*n*) sadrži optimalno poravnanje
- Vratiti se natrag od F(m,n) do F(0,0) za određivanje poravnanja
- Wagner-Fisher algoritam za određivanje udaljenosti uređivanja

Princip poravnanja

Tablica dinamičkog programiranja

 Tablica čuva informaciju o cijeni dostizanja pojedine pozicije plus zadnji potez koji je vodio do te pozicije.

```
typedef struct {
   int cost; /* cost of reaching this cell */
   int parent; /* parent cell */
} cell;

cell m[MAXLEN][MAXLEN]; /* dynamic programming table */
```

fppt.com

Opći algoritam računanja udaljenosti uređivanja

```
int string_compare(char *s, char *t)
{
  int i,j,k;    /* counters */
  int gi, gj;   /* goal cell coordinates */
  int opt[3];   /* cost of the three options */
   /* initialize the boundary conditions */
  for (i=0; i<MAXLEN; i++) {
     row_init(i);
     column_init(i);
}</pre>
```

Opći algoritam računanja udaljenosti uređivanja

```
for (i=1; i<=strlen(s); i++)
        for (j=1; j<=strlen(t); j++) {
                 opt[MATCH] = m[i-1][j-1].cost + match(s[i],t[j]);
                 opt[INSERT] = m[i][j-1].cost + indel(t[j]);
                 opt[DELETE] = m[i-1][j].cost + indel(s[i]);
                 m[i][j].cost = opt[1];
                 m[i][j].parent = 1;
                 for (k=2; k<=3; k++) {
                          if (opt[k] < m[i][j].cost) {</pre>
                                   m[i][j].cost = opt[k];
                                   m[i][j].parent = k;
   goal cell(s,t,&gi,&gj); /* returns the desired final cell */
   return( m[qi][qj].cost );
} /* Steven Skiena,
   http://www.algorithm.cs.sunysb.edu/computationalbiology/ */
```

Standardno određivanje udaljenosti uređivanja

- Funkcija string_compare je opća i mora biti prilagođena primjeni.
- Koristi funkcije match i indel za vraćanje cijene tranzicije dva znaka
- row_init i column_init postavljaju rubne uvjete
 - F(i,0) = i * d
 - F(0,j) = i * d
- Cijena:
 - nema zamjene: 0
 - zamjena: 1
 - praznina: 1

Standardno određivanje udaljenosti uređivanja

- Funkcija goal_cell vraća željenu konačnu ćeliju u matrici
 - Određivanje udaljenosti zadnji stupac, zadnji redak
 - Promjena te funkcije dopušta nam preklapanje podnizova, traženje najduljeg zajedničkog podniza i maksimalnog monotonog podniza kao specijalnih slučajeva

Primjer poravnanja Inicijalizacija matrice

Primjer poravnanja

Određivanje poravnanja

x: A A A C V: - A G C

Jedno optimalno poravnanje

Biološka usporedba nizova

- Konstruiranje smislenoga poravnanja dvaju nizova zahtjeva korištenje odgovarajuće funkcije za mjerenje zamjene između svakoga mogućeg para simbola.
- Za biološke sekvence za kažnjavanje zamjene nukleotida koriste se PAM matrice (engl. point accepted mutation)
- Kod proteina su popularne BLOSUM matrice, posebice BLOSUM62

fppt.com

DNA matrice

DNA PAM matrice: NCBI BLAST sličnost i tranzicija/transverzija

	A	Τ	С	G			А	Τ	С	G
A	5	-4	-4	-4	Ā	A	0	5	5	1
Т	-4	5	-4	-4	-	Т	5	0	1	5
С	-4	-4	5	-4	(С	5	1	0	5
G	-4	-4	-4	5	(G	1	5	5	0

- Nukleotide klasificiramo kao purine (adenin i gvanin) ili pirimidine (citozin i timin)
- Tranzicija purin -> purin ili pirmidin -> pirimidin
- Transverzija purin -> pirimidin ili pirimidin -> purin
- Tranzicije češće nego transverzije
- Za maksimiziranje sličnosti koristimo Needleman-Wunsch algoritam:
 - Globalno poravnanje (od kraja do kraja niza)
 - Početni uvjeti su F(i,0) = -i*d i F(0,j) = -j*d (d je kazna za umetanje ili brisanje; pozitivan broj)

- Dvije sekvence
 - -x = CAGCACTTGGATTCTCGG

početku i kraju nizova zanemarene

- -y = CAGCGTGG
- Kako izgleda njihovo globalno poravnanje ?

CAGCACTTGGATTCTCGG

CAGC----GG

Ono što želimo postići je:

CAGCA-CTTGGATTCTCGG

- ---CAGCGTGG-----
- Moguća preklapanja:
 - Sufiks od x se poravna s prefiksom od y
 - Sufiks od y se poravna s prefiksom od x
 - y se poravna s podnizom od x
 - x se poravna s podnizom od y

Primjeri preklapanja

- Algoritam polu-globalnog poravnavanja
 - Rubni uvjeti 0 poravnanje može početi s prazninama
 - goal_cell traženje maksimuma
 (Needleman-Wunsch) u zadnjem retku i stupcu (završetak s prazninama)

Lokalno poravnanje

- Kritični problem od biološkoga interesa je usporedba dva dugačka niza i traženje lokalnih područja sličnosti
- Primjene:
 - Sačuvanost regija između vrsta
 - Prepoznavanje kodirajućih regija
- Korištenje sličnosti ima više smisla nego udaljenost uređivanja
- Želimo da d(i,j) bude najveće lokalno poravnanje koje završava u S[i] i T[j]
- CGATGTC AAATGGA
- · Smith-Waterman algoritam.

Lokalno poravnanje

- To je u stvari isti algoritam kao udaljenost uređivanja osim:
 - Maksimiziramo umjesto da minimiziramo.
 - Imamo opciju da krenemo s lokalnim poravnanjem u svakoj ćeliji matrice (0 je uvijek dostupna vrijednost).
 - Maksimum može biti u bilo kojoj ćeliji ne samo u zadnjem retku ili stupcu.

 Pronaći najbolje lokalno poravnanje sekvenci "ACCTAAGG" i "GGCTCAATCA" koristeći +2 za podudaranje, -1 za zamjenu i -2 za prazninu. Popuniti 0-ti stupac i 0-ti redak s nulama

		G	G	С	Т	С	Α	Α	Т	С	Α
	0	0	0	0	0	0	0	0	0	0	0
Α	0										
С	0										
С	0										
Т	0										
Α	0										
Α	0										
G	0										
G	0										

Prvo izračunamo F(1,1) koristeći rekurziju:

$$F(i, j) = \max \begin{cases} F(i-1, j-1) + zamjena(x_i, y_j) = 0 - 1 = -1 \\ F(i-1, j) + d = 0 - 2 = -2 \\ F(i, j-1) + d = 0 - 2 = -2 \\ 0 \end{cases}$$

Maksimalna vrijednost je 0, stoga F(1,1) = 0

		G	G	С	Τ	С	Α	Α	Т	С	Α
	0	0	0	0	0	0	0	0	0	0	0
Α	0	0	?								
С	0										
С	0										
Т	0										
Α	0										
Α	0										
G	0										
G	0										

Nakon toga računamo F(1,2)

Popuniti cijelu tablicu, pamteći koja ćelija je prethodila svakoj ćeliji. Pronaći ćeliju s maksimalnim rezultatom

		G	G	С	Т	С	Α	Α	Т	С	Α
	0	0	0	0	0	0	0	0	0	0	0
Α	0	0	0	0	0	0	2	2	0	0	2
С	0	0	0	2	0	2	0	1	1	2	0
С	0	0	0	2	1	2	1	0	0	3	1
Т	0	0	0	0	4	-2	1	0	2	1	2
Α	0	0	0	0	2	3	4	3	-1	1	3
Α	0	0	0	0	0	1	5	6	-4 -	-2	3
G	0	2	2	0	0	0	3	4	5	-3	1
G	0	2	4	-2	0	0	1	2	3	4	-2

Pretragom unatrag doći do poravnanja.

		G	G	С	Τ	С	Α	Α	T	С	Α
	0	0	0	0	0	0	0	0	0	0	0
Α	0	0	0	0	0	0	2	2	0	0	2
С	0	0	0	2		2	0	1	1	2	0
С	0	0	0	2	1	2	1	0	0	3	1
Т	0	0	0	0	4	2	1	0	2	1	2
Α	0	0	0	0	2	3	4	3	1	1	3
Α	0	0	0	0	0	1	5	6	4	2	3
G	0	2	2	0	0	0	3	4	5	3	1
G	0	2	4	2	0	0	1	2	3	4	2

CTCAA

CT-AA

Ušteda u prostoru

 Primijetiti da možemo izbaciti prethodne redove u matrici kako ju punimo

Ušteda u prostoru

 Svaki redak tablice sadrži rezultate poravnanja prefiksa lijeve sekvence sa svim prefiksima sekvence na vrhu:

- Hirschberg (1975)
- Razmotrimo put poravnanja u matrici

 Pretpostavimo da znamo da put optimalnoga poravnanja prolazi kroz ćeliju (n/2, k*)

 Znajući to možemo riješiti problem spajajući putove za dijagonalne kvadrante.

- Važno je primijetiti da možemo ignorirati kvadrante na pomoćnoj dijagonali
- Bez obzira na to gdje se nalazi k* površina žutih kvadrata je točno polovica ukupne
- Možemo ponavljati ovaj proces reducirajući količinu prostora potrebnog za pronalazak optimalnoga poravnanja.

- Ponavljajući ovaj proces dok ne dođemo do jedne ćelije možemo izračunati cjelokupni put poravnanja.
- Vremenska složenost
 O((1+1/2+1/4+...)×(n×m)) = O(2×n×m)

- Kako pronaći ćeliju (n/2, k*)?
- **Definicija.** Ako s α^r označimo reverzni niz α .
- **Definicija.** $F^{r}(i,j)$ je sličnost prvih i znakova od S_{1}^{r} s prvim j znakovima od S_{2}^{r} .

$$S^{r}_{1}$$
 $\underline{\qquad \qquad }^{n}$ S^{r}_{2} $\underline{\qquad \qquad }^{j}$ $\underline{\qquad \qquad }^{m}$

- Lema: $F(n, m) = \max_{0 \le k \le m} [F(n/2, k) + F'(n/2, m-k)]$
- Rješenje poravnanja F(n, m) je suma kraćih poravnanja F(n/2,k) & F'(n/2,m-k) gdje je k odabran tako da daje najveću sumu.
- U praksi uzmemo dva retka u sredini i nađemo maksimalno poravnanje.

Hirschberg primjer – korak 1

	-	Α	G	С	Α	Т	G	С	-
-	0	-1	-2	-3	-4	-5	-6	-7	
Α	-1	2	1	0	-1	-2	-3	-4	
С	-2	1	1	3	2	1	0	-1	
Α	-3	0	0	2	5	4	3	2	
Α	-4	-1	-1	1	4	4	3	2	
Т									
С									
С									
-									

Hirschberg primjer – korak 2

Hirschberg primjer – korak 3

Ograničeno dinamičko programiranje koristeći udaljenost uređivanja

Pretpostavimo da znamo da su x i y vrlo slični

Pretpostavka: broj praznina
$$(x, y) < k(N) (uz N>M)$$

onda,
$$x_i$$
 $| i-j | < k(N)$
 y_j

Možemo poravnati x i y efikasnije koristeći:

Vrijeme, Prostor:
$$O(N \times k(N)) << O(N^2)$$

Ograničeno dinamičko programiranje

<u>Inicijalizacija:</u>

F(i,0), F(0,j) nedefinirani za i,j > k

Iteracija:

for
$$i = 1...M$$

for $j = max(1, i - k)...min(N, i+k)$

$$F(i, j) = \max \begin{cases} F(i-1, j-1) + z(x_i, y_j) \\ F(i, j-1) - d, \text{ if } j > i - k(N) \\ F(i-1, j) - d, \text{ if } j < i + k(N) \end{cases}$$

Kraj: isti kao klasični algoritam

Ograničeno - primjer

d=3
A-CAATCC
AGCA-TGC

	-	Α	G	С	Α	Т	G	С
-	0	-1	-2	-3				
Α	-1	2	1	0	-1			
С	-2	1	1	3	2	1		
Α	-3	0	0	2	5	4	3	
Α		-1	-1	1	4	4	3	2
Т			-2	0	3	6	5	4
С				0	2	5	5	7
С					1	4	4	7

Procijep

 Procijep (engl. gap) u poravnanju je maksimalan podniz susjednih praznina u bilo kojem nizu poravnanja

Ovo je procijęp A-CAACTCGCCTCC AGCA: Još jedan procijep

Kažnjavanje procijepa

- Procijepi u poravnanju se mogu modelirati kao uzastopni niz brisanja nukleotida gdje je kazna linearna funkcija duljine
 - To smo do sada pretpostavljali.
 - U mnogim primjenama sama duljina procijepa je relativno nevažna.
- Primjeri pojavljivanja procijepa:
 - Brisanja introna pri formiranju mRNA.
 - Ubacivanja mobilnih elementa u niz DNA kao što su transpozoni.
 - Mutacija može uzrokovati brisanje/umetanja duljeg podniza.
 Takva vrsta mutacija može biti jednako vjerojatna kao brisanje/umetanje jednog nukleotida.

Preciznije ocjenjivanje procijepa

- Jednostavni linearni model:
 - duljina procijepa q
 - cijena q×d

- Konveksna funkcija kažnjavanja procijepa:
 - g(q) takva da za sve q, $g(q + 1) - g(q) \le g(q) - g(q - 1)$
 - Algoritam: O(N³) vrijeme, O(N²) prostor

Kompromis: afina procijepi

$$g(q) = -d - (q - 1) \times e$$

| procijep procijep
otvaranje proširenje

- Potrebno je na pozicijama x_i i y_i za vrijeme dinamičkoga programiranja zapamtiti jesmo li usred procijepa:
 - Ako jesmo u tom slučaju kazna je samo dodatna praznina izračunata u (q-1) ×e izrazu
 - Ako nismo otvaramo novu prazninu s konstantnom kaznom d

fppt.com