

MARKING GUIDELINE

NATIONAL CERTIFICATE APRIL EXAMINATION FITTING AND MACHINING THEORY N2

30 MARCH 2016

This marking guideline consists of 9 pages.

SECTION A

QUESTION 1: OCCUPATIONAL SAFETY

- Must be strong and long lasting
 - Must not interfere with the operation of the machine
 - Must be easy to repair
 - Must be corrosion and fire resistant
 - Must provide maximum protection
 - Must not block access to other areas
 - Must block access to danger zones during operation
 - Must be free from hazards such as splinters and pinch points
 - Should be a permanent part of the machine
 - Effective operation of the machine should not be affected by the guard

(Any 5 x 1) **[5]**

OR

- 1.2 1.2.1 Area to be sufficiently illuminated so that moving parts can be clearly seen.
 - 1.2.2 No light or lamp is allowed inside a mine unless the director general of mines approves it.
 - 1.2.3 Safety valves must be tested regularly to ensure opening at authorised gauge pressure.
 - 1.2.4 No cables to be placed or suspended in an unprotected manner. They must be laid in such a way that damage is avoided.
 - 1.2.5 No person is allowed to work in and un-illuminated part of a mine unless they carry a light.

(5 x 1) **[5]**

QUESTION 2: COUPLINGS

- Easier to handle short shafts than long shafts
- Easier to transport short shafts than long shafts
- Maintenance is easier on short shafts than on long shafts
- Cheaper to manufacture short shafts than long shafts
- Manpower is reduced during maintenance
- Shorts shafts do not bend as much as long shafts

(Any 5 x 1) [5]

QUESTION 3: LIMITS AND FITS

- 3.1 3.1.1 The hole basis system is used when a shaft is machined within limits to fit a standard existing hole.
 - Minimum allowance is the smallest distance between the smallest hole size and the largest shaft size.
 - Minimum allowance is the smallest allowable distance between two mating components. (Any 1 x 1)
 - 3.1.3 Bilateral tolerance is when the tolerance range is allowed on both sides of the basic size.
 - 3.1.4 Transition fit is a fit in which the shaft may be slightly larger or smaller in diameter than the hole and still remain within limits.

 (4×1) (4)

3.2 Minimum allowance = smallest hole size – largest shaft size \checkmark = $(30 - 0.015) - (30 - 0.025) \checkmark$ = 0.01 mm \checkmark (3)

QUESTION 4: BEARINGS

- 4.1The operation is quiet
 - Low cost
 - Great rigidity
 - Can be replaced when worn
 - · Life is not limited by fatigue
 - Easy to manufacture

(Any 4 x 1) (4)

- 4.2 Screw puller
 - Hydraulic puller
 - Puller plates
 - Impact puller
 - Hydraulic press
 - Bearing induction heater
 - Heated oil bath
 - Heating lamps
 - Wheel puller (Any 3 x 1) (3)

QUESTION 5: LUBRICATION AND VALVES

- 5.1 Ball valve
 - Gate valve
 - Globe valve
 - Diaphragm valve

(Any 2 x 1) (2)

5.2 Normally open valves are designed to be opened when in use ✓ whereas a normally closed valve is closed during normal use ✓

(2)

- 5.3 5.3.1 Stauffer grease lubricator
 - 5.3.2 Wick-feed lubricator
 - 5.3.3 Hand-operated grease pump
 - 5.3.4 Grease gun

 (4×1) (4)

[8]

QUESTION 6: PACKING, STUFFING BOXES AND JOINTS AND WATER-PIPE SYSTEMS

- 6.1 Asbestos
 - Cotton
 - Nylon
 - Rubber
 - Neoprene
 - Teflon
 - Graphite
 - Aluminium
 - Babbit or white metal
 - Cork

(Any 4 x 1) (4)

- Prevent heat loss as the pipeline carries steam or hot water from one place to another.
 - To prevent condensation or water forming in a steam pipeline
 - To prevent water hammer in steam pipelines
 - For more accurate gauge readings
 - To prevent water entering the machine

(Any 3 x 1) (3)

[7]

QUESTION 7: PUMPS

- 7.1 Centrifugal pump
 - Reciprocating pump
 - Rotary pump

 (3×1)

7.2 As water circulates inside the casing a vortex is created at the centre, which causes a vacuum. ✓ This vacuum allows more water to be drawn into the casing. ✓ A centrifugal force causes the water at the outside circumference of the casing to be forced through the delivery outlet. ✓

(3) **[6]**

(3)

QUESTION 8: COMPRESSORS

- 8.1 Lubricator
- 8.2 Sheave
- 8.3 Piston
- 8.4 Connecting rod
- 8.5 Cotter

[5]

QUESTION 9: V-BELT, CHAIN, GEAR DRIVES AND REDUCTION GEARBOXES

- 9.1 9.1.1 Chain pitch is the distance from the centre of one pin to the centre of the next pin.
 - 9.1.2 The drive sprocket is the sprocket that is attached to the motor from which the driving motion is performed.

 (2×1) (2)

- Protect persons working in close proximity to a chain drive, in case of chain breakage.
 - Protect machinery, in case of chain breakage.
 - Houses the lubrication system.

(Any 2 x 1) (2)

- Always make sure that the V-belt drive has a guard around it
 - Make sure that the machine is switched off when replacing V-belts
 - Never adjust the slack of a V-belt while the machine is in motion
 - Use tensioning pulleys to adjust the slack of the belt
 - Use the correct size V-belt for the pulley and type of drive
 - Keep dirt and oil off the drive to prevent slip
 - Make sure that the pulleys are tightly fitted onto the shafts
 - Ensure that the pulleys are in line with each other
 - Always keep spare V-belts so that broken ones can be replaced immediately.
 (Any 3 x 1)

- Unlike V-belt and chain drives, gear drives are positive drive, that is, no slip is possible ✓
 - Gear drives can be used in confined spaces whereas V-belt and chain drives are used over longer distances ✓
 - Gear drives can deal with higher torque than V-belt and chain drives ✓
 - Gear drives are more durable than V-belt and chain drives (Any 3 x 1)

[10]

TOTAL SECTION A: 60

SECTION B

Candidates must answer only TWO questions in this section.

QUESTION 10: HYDRAULICS AND PNEUMATICS

10.1	10.1.1 10.1.2 10.1.3 10.1.4 10.1.5	Air dryer Filter with manual drain Filter with automatic drain Filter or regulator Single-acting cylinder with spring return	(5 x 1)	(5)
10.2	 In hydraulic systems, oil is the working medium ✓ whereas in pneumatics systems, air is the working medium. ✓ 			
	 In hydraulic systems, the excess oil is returned to the reservoir ✓ whereas in pneumatic systems, the excess air is exhausted to the atmosphere. ✓ (Any 1 x 2) 			(2)
10.3	ManuallyElectrically			
	By fluid pressure (pilot pressure) (3 x 1)		(3 x 1)	(3)
10.4	10.4.1	Hydraulic motor is a hydraulic source of rotary power, components	which drives	
	10.4.2	Tank/Reservoir is a storage container for hydraulic oil which is to be used in the system and acts as return station.		
	10.4.3	Pressure-relief valve regulates the system pressure, keeping it at a fixed pressure for end use. (3 x 1)	eeping it at a	
			(3 x 1)	(3)
10.5	 Controls energy flow Opens or closes the path of flow Directs the flow Regulates the flow (Any 2 x 1) 			(2)
10.6	10.6.1 10.6.2 10.6.3 10.6.4 10.6.5	Pump Single-acting cylinder Check valve 4/3 way directional control valve Tank/Reservoir		
			(5 x 1)	(5) [20]

QUESTION 11: CENTRE LATHES

- 11.1 The fixed cone holds the work in position ✓ while the sliding cone can be tightened onto the workpiece by means of a fastening nut on the back end. ✓
 - 11.1.2 A split tapered bush fits over a tapered shaft. ✓ By driving the shaft into the bush, the bush opens up to accommodate workpieces of various hole sizes. ✓

 (2×2) (4)

- 11.2 11.2.1 Time saving
 - · Concentricity is guaranteed
 - · Simplicity of operation and calculations
 - Internal and external tapers can be turned
 - Short tapers can be turned to any angle (Any 2 x 1) (2)
 - The length of the taper is limited to the length of the travel of the compound slide.
 - No automatic feed, only by hand
 - Not very accurate angle (set by eye judgement) (Any 2 x 1) (2)
- 11.3 The dial test indicator method

11.4

The graduated sleeve method

The travelling steady is fitted to the carriage of the lathe and travels along with the tool ✓ whereas the fixed steady is clamped on the slideway of the lathe

the tool ✓ whereas the fixed steady is clamped on the slideway of the lathe and does not move with the tool. ✓

Tailstock set - over = $\frac{\text{Length of workpiece}}{2} \times \text{Ratio}$ \checkmark $= \frac{280}{2} \times \frac{1}{40} \checkmark$ $= 3.5 \text{ mm} \checkmark$ (3)

11.6 Lead=No. of starts \times Pitch = $2 \times 10 = 20 \,\text{mm}$

Mean diameter = OD - $\frac{\text{Pitch}}{2}$ = 45 - $\frac{10}{2}$ = 40 mm

 $\tan \theta = \frac{\text{Lead}}{\text{Mean Circumference}} = \frac{20}{\pi \times 40} = 0.159$

$$\theta = \tan^{-1} 0.159 = 9.043^{\circ} \checkmark$$
 (5)

[20]

(2)

(2)

QUESTION 12: MILLING MACHINES AND SURFACE GRINDERS

12.1 12.1.1 Ball-nose cutter

12.1.2 T-slot cutter

12.1.3 Dove-tail cutter

 (3×1) (3)

12.2 • Rapid index plate

- Index plate for simple indexing
- Angular head with degrees on
- Spindle
- Crank handle
- Single-start worm
- Worm wheel

• Sector arms (Any 4 x 1) (4)

12.3 • Too slow a speed

- Metal clogging the space between abrasive particles/wheel clogged
- Wrong wheel/wheel too hard
- Insufficient coolant/disruption in coolant supply

(Any 3 x 1) (3)

12.4 $S = \pi D N$

$$= \pi \times 0.04 \times 302$$

$$= 37,95 \text{ m/min } \checkmark \tag{3}$$

12.5 12.5.1

√√ (for drawing)

The teeth cuts from top to bottom. \checkmark The direction of cutter and (5) feed \checkmark is in the same. \checkmark

12.5.2 • Deeper cuts can be taken

• A finer finish is obtained (2)

[20]

TOTAL SECTION B: 40
GRAND TOTAL: 100