MA-110 Linear Algebra and Differential Equations

Rekha Santhanam

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> January 16, 2024 Lecture 6 D3

Recap

- If a $n \times n$ matrix is invertible it has n-pivots.
- Elementary matrix $E_{ij}(\lambda)$ is a matrix corresponding to adding λ multiple of the j^{th} row to the i^{th} row. Its inverse corresponds to adding λ multiple of the j^{th} row to the i^{th} row, $E_{ij}(-\lambda)$.
- Permutation matrices P_{ij} are matrices which correspond to row exchanges. Product of any matrices of this form is also called a permutation matrix . The inverse of the matrix P_{ij} is P_{ij} .
- Note that P_{ij} is a symmetric matrix.
- Any square matrix without row exchanges can be written as a product of a lower triangular and upper triangular matrix.

Rekha Santhanam Lecture 6 D3

Triangular Factorization

Let
$$A = \begin{pmatrix} 2 & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2 \end{pmatrix}$$
. Note that each $E_{ij}(a)$ is a *lower*

triangular. Product of lower triangular matrices is lower triangular. In particular L is lower triangular, where

$$L = E_{21}(2) E_{31}(-1) E_{32}(-1) =$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ \mathbf{2} & 1 & 0 \\ -\mathbf{1} & -\mathbf{1} & 1 \end{pmatrix}$$

Observe: L is lower triangular with diagonal entries 1 and below the diagonals are the multipliers. (2,-1,-1) in the earlier example.

Lecture 6 D3

LU Decomposition

If A is an $n \times n$ matrix, with no row interchanges needed in the Gaussian elimination of A, then A = LU, where

- \bullet *U* is an upper triangular matrix, which is obtained by forward elimination, with non-zero diagonal entries as pivots.
- *L* is a lower triangular with diagonal entries 1 and with the multipliers needed in the elimination algorithm below the diagonals.

Q: What happens if row exchanges are required?

LU Decomposition: with Row Exchanges

Example:
$$A = \begin{pmatrix} 0 & 2 \\ 3 & 4 \end{pmatrix}$$
. A can not be factored as LU . (Why?) How to verify?

The 1st step in the Gaussian elimination of A is a row exchange.

$$P_{12} A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 3 & 4 \\ 0 & 2 \end{pmatrix}$$

Now elimination can be carried out without row exchanges.

• If A is an $n \times n$ non-singular matrix, then there is a matrix P which is a permutation matrix (needed to take care of row exchanges in the elimination process) such that PA = LU, where L and U are as defined earlier. Why?

Q: What happens when A is an $m \times n$ matrix? **A**: Coming Soon!

Application 1: Solving systems of equations

Let
$$A = \begin{pmatrix} 1 & 2 & 3 \\ -2 & -12 & -5 \\ 1 & -6 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 0 & -8 & 1 \\ 0 & 0 & -1 \end{pmatrix}$$

To solve Ax = b, we can solve two triangular systems

$$Lc = b$$
 and $Ux = c$. Then $Ax = LUx = Lc = b$.

Take
$$b = \begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix}$$
. First solve $\begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix}$.

We get $c_1 = 1$, $-2c_1 + c_2 = 2 \Rightarrow c_2 = 4$, and similarly $c_3 = 0$.

Now solve
$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & -8 & 1 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} u \\ v \\ w \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 0 \end{pmatrix}.$$

We get w = 0, v = -1/2, u = 2.

Applications: 2. Invertibility of a Matrix

Let A be $n \times n$, P, L and U as before be such that PA = LU.

- P is invertible and $P^{-1} = P^T \Rightarrow A = P^{-1}LU$.
- *L* is lower triangular, with diagonal entries $1 \Rightarrow L$ is invertible.
- **Q**: What is L^{-1} ? e.g., Try $L = E_{21}(2)E_{31}(-1)E_{32}(-1)$ first.
- The non-zero diagonal entries of *U* are the pivots of *A*.

Thus, A invertible \Rightarrow A has n pivots

 \Rightarrow all diagonal entries of U are non-zero $\Rightarrow U$ is invertible.

Why? Hint: U^T is invertible.

Conversely, suppose U is invertible. Then A is invertible and has n pivots. Why? Moreover, $A^{-1} =$ _____.

We have proved:

A is invertible $\Leftrightarrow U$ is invertible $\Leftrightarrow A$ has n pivots.

Computing the Inverse

Observe:
$$A = L U \Rightarrow A^{-1} = U^{-1} L^{-1}$$
.

Example:
$$A = \begin{pmatrix} 2 & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2 \end{pmatrix}$$
 is invertible. Find A^{-1} .

If $A^{-1} = (x_1 \ x_2 \ x_3)$, where x_i is the *i*-th column of A^{-1} , then $AA^{-1} = I$ gives three systems of linear equations

$$Ax_1 = e_1$$
, $Ax_2 = e_2$, $Ax_3 = e_3$

where e_i is the *i*-th column of *I*. Since the coefficient matrix *A* is same in three systems, we can solve them simultaneously as follows:

Calculation of A^{-1} : Gauss-Jordan Method

Steps:
$$(A|I) \longrightarrow (U|L^{-1}) \longrightarrow (I|U^{-1}L^{-1}).$$

$$(A \mid e_1 \quad e_2 \quad e_3) = \begin{pmatrix} 2 & 1 & 1 & | & 1 & 0 & 0 \\ 4 & -6 & 0 & | & 0 & 1 & 0 \\ -2 & 7 & 2 & | & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{R_2 - 2R_1} \begin{pmatrix} 2 & 1 & 1 & | & 1 & 0 & 0 \\ 0 & -8 & -2 & | & -2 & 1 & 0 \\ 0 & 8 & 3 & | & 1 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{R_3 + R_2} \begin{pmatrix} 2 & 1 & 1 & | & 1 & 0 & 0 \\ 0 & 8 & 3 & | & 1 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{R_3 + R_2} \begin{pmatrix} 2 & 1 & 1 & | & 1 & 0 & 0 \\ 0 & -8 & -2 & | & -2 & 1 & 0 \\ 0 & 0 & 1 & | & -1 & 1 & 1 \end{pmatrix}$$

$$= (U \mid L^{-1}).$$

Calculation of A^{-1} (Contd.)

Steps:
$$(A|I) \longrightarrow (U|L^{-1}) \longrightarrow (I|U^{-1}L^{-1})$$
.

$$(U|L^{-1}) = \begin{pmatrix} 2 & 1 & 1 & | & 1 & 0 & 0 \\ 0 & -8 & -2 & | & -2 & 1 & 0 \\ 0 & 0 & 1 & | & -1 & 1 & 1 \end{pmatrix}$$

$$\stackrel{R_2 + 2R_3}{\underset{R_1 - R_3}{\longrightarrow}} \begin{pmatrix} 2 & 1 & 0 & | & 2 & -1 & -1 \\ 0 & -8 & 0 & | & -4 & 3 & 2 \\ 0 & 0 & 1 & | & -1 & 1 & 1 \end{pmatrix}$$

$$\stackrel{R_1 + \frac{1}{8}R_2}{\underset{R_2}{\longrightarrow}} \begin{pmatrix} 2 & 0 & 0 & | & 12/8 & -5/8 & -6/8 \\ 0 & -8 & 0 & | & -4 & 3 & 2 \\ 0 & 0 & 1 & | & -1 & 1 & 1 \end{pmatrix}$$

$$\stackrel{\text{Divide by pivots}}{\longrightarrow} \begin{pmatrix} 1 & 0 & 0 & | & 12/16 & -5/16 & -6/16 \\ 0 & 1 & 0 & | & 4/8 & -3/8 & -2/8 \\ 0 & 0 & 1 & | & -1 & 1 & 1 \end{pmatrix}$$

$$= (I | U^{-1}L^{-1}) = (I | A^{-1})$$

Echelon Form

Recall: If A is $n \times n$, then PA = LU, where P is a product of permutation matrices, L is lower triangular, U is upper triangular, and all of size $n \times n$.

Q: What happens when A is not a square matrix?

Let
$$A = \begin{pmatrix} 1 & 2 & 3 & 5 \\ 2 & 4 & 8 & 12 \\ 3 & 6 & 7 & 13 \end{pmatrix}$$
. By elimination, we see:

$$A \to \begin{pmatrix} 1 & 2 & 3 & 5 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & -2 & -2 \end{pmatrix} \to \begin{pmatrix} 1 & 2 & 3 & 5 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix} = U.$$

Thus
$$A = LU$$
, where $L = E_{21}(2)E_{31}(3)E_{32}(-1) = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & -1 & 1 \end{pmatrix}$.

Echelon Form

If A is $m \times n$, we can find P, L and U as before. In this case, L and P will be $m \times m$ and U will be $m \times n$.

U has the following properties:

- 1 Pivots are the 1st nonzero entries in their rows.
- 2 Entries below pivots are zero, by elimination.
- 3 Each pivot lies to the right of the pivot in the row above.
- 4 Zero rows are at the bottom of the matrix.

U is called an echelon form of A.

Find all possible 2×2 echelon forms: Let \bullet = pivot entry.