1 Successioni

1.1 Sottosuccessioni

Teorema I (legame limite successione e sottosuccessione) Consideriamo $\{a_n\}_{n=0}^{\infty}, l \in \mathbb{R}^*$,

$$\lim_{n \to \infty} a_n = l$$

 \iff ogni sottosuccessione di a_n ammette una sottosuccessione che tende a l

dim. (I)

" \Longrightarrow " La prima implicazione è vera, pertanto

$$\forall V(l) \exists \overline{n} \forall n \geq \overline{n} : a_n \in V(l)$$

Sia $n \to k_n$ crescente, e $b_n = a_{k_n}$, allora

$$\exists \overline{\overline{n}} \, \forall \, n \geq \overline{\overline{n}} : \, k_n \geq \overline{n}$$

allora $b_n = a_{k_n} \in V(l)$.

Dunque

$$\forall V(l) \exists \overline{n} \in \mathbb{N} \text{ t. c. } \forall n > \overline{\overline{n}} : b_n \in V(l)$$

$$\implies \lim_{n \to +\infty} b_n = l$$

Abbiamo anche dimostrato che $a_n \xrightarrow{n \to \infty} l$ implica che qualsiasi sua sottosuccessione $b_{k_n} \to l$

$$\forall V(l) \forall n \in \mathbb{N} \exists n' \geq n | a_{n'} \notin V(l)$$

Consideriamo $n=1; \exists n'_1>1$ tale che $a_{n'_1}\notin V(l); k_1=n'_1$

Consideriamo $n=k_1+1; \exists n_2' \geq k_1+1 > k_1$ tale che $a_{n_2'} \notin V(l); k_2=n_2'$

Consideriamo $n=k_2+1;\ \exists n_3'\geq k_2+1>k_1$ tale che $a_{n_3'}\notin V(l);\ k_3=n_3'$

. . .

Otteniamo una successione di indici

$$\mathbb{N} \to \mathbb{N}$$
$$n \mapsto k_n$$

strettamente crescente, e una successione $b_n = a_{k_n}$ tale che

$$\exists V(l) | \forall n, b_n \notin V(l)$$

Allora b_n non può ammettere sottosuccessioni che tendono a l

 \implies abbiamo dimostrato la negazione della seconda implicazione, partendo dalla negazione della prima, ovvero la prima implicazione implica la seconda

1.2 Successioni a valori in \mathbb{R}^n

$$\{a_k\}_{k=0}^{\infty}$$
 $a_k = (a_1^k, a_2^k, a_3^k, \cdots, a_n^k) \in \mathbb{R}^n$

Esempio (1.1) Fissato $x \in \mathbb{R}^n$

$$a_k = kx = (kx_1, kx_2, kx_3, \cdots, kx_n)$$

 $\{a_k\}_{k=0}^{\infty}$ a valori vettoriali è convergente a $l \in \mathbb{R}^n$ se

$$\forall \, \varepsilon > 0 \, \exists \overline{k} \in \mathbb{N} \, \forall \, k \geq \overline{k} : \underbrace{|a_k - l|}_{\left(\sum_{j=1}^n (a_j^k - l)^2\right)^{1/2}} < \varepsilon$$

 $\{a_k\}_{k=0}^{\infty}$ a valori vettoriali è divergente a $l \in \mathbb{R}^n$ se

$$\forall M > 0 \,\exists \overline{k} \in \mathbb{N} \,\forall k \geq \overline{k} : |a_k| > M$$

 $\{a_k\}_{k=0}^\infty$ si dice irregolare (oscillante) se non è né convergente né divergente

Osservazione (1.1) Per $\{a_k\}_{k=0}^{\infty}$ a valori in \mathbb{R}^n vale il teorema di legame tra limiti di successione e sottosuccessioni

Valgono tutti i teoremi sui limiti che non coinvolgono l'ordinamento del codominio. (In particolare, non si definiscono le successioni monotone, e quindi non vale il teorema sui limiti delle successioni monotone)

Proposizione *p.*i Sia $E \subseteq \mathbb{R}^n$, sia $y \in \mathbb{R}^n \cup \{\infty\}$

Se y è di accumulazione per E

 $\implies \exists \, \{x_k\}_{k=0}^\infty$ a valori in E, con $x_k \neq y \; \forall \, k \in \mathbb{N}$ e tale che

$$\lim_{k \to +\infty} x_k = y$$

dim. (p.i)

caso 1. $y \in \mathbb{R}^n$: $y \in E'$, si ha

$$\forall r > 0 \exists x \in E, x \neq y, x \in B_r(y)$$

Consideriamo $k=1,2,3,\ldots$; possiamo determinare $x_k\in E,$ con $x_k\neq y$ e $x_k\in B_{1/k}(y)$

Abbiamo ottenuto una successione $\{x_k\}_{k=0}^{\infty}$ a valori in E tale che $\forall \varepsilon > 0$ $\exists \overline{k} \mid \forall k \geq \overline{k} : x_k \in B_{1/k}(y) \subset B_{1/\overline{k}}(y) \subset B_{\varepsilon}(y)$

Allora $x_k \xrightarrow{k \to +\infty} y$, $x_k \neq y$

caso 2. $y = \infty, y \in E'$

$$\forall M > 0 \exists x \in E : |x| > M$$

Per $k = 1, 2, 3, \ldots$ consideriamo $x_k \in E$, con $|x_k| \ge k$ allora

$$\forall \varepsilon > 0 \,\exists \overline{k} \in \mathbb{N} \,\forall \, k \geq \overline{k} : |x_k| \geq k \geq \overline{k} > M$$

$$\implies x_k \to \infty$$

Teorema II (di Bolzano-Weierstrass per le successioni) Data $\{a_k\}_{k=0}^{\infty}$ a valori in \mathbb{R}^n (valori vettoriali), si ha che

se $\{a_k\}_{k=0}^{\infty}$ è limitata

 $\implies \exists \{a_{h_k}\}_{k=0}^{\infty} \text{ sottosuccessione tale che } a_{h_k} \text{ è convergente a } l \in \mathbb{R}$

Ogni successione limitata ammette sempre una sottosuccessione convergente

dim. (II) Indichiamo con $E = \{a_k\}$ = insieme dei valori della successione. E è limitato per ipotesi;

caso 1. assumiamo che E abbia un numero infinito di elementi.

 \implies per il teorema di Bolzano-Weiesrtrass sui sottoinsiemi infiniti di $\mathbb{R}^n \implies E$ ammette almeno un punto di accumulazione $\lambda \in \mathbb{R}^n$

$$\implies \exists \{b_k\}_{k=0}^{\infty} \text{ a valori in } E, \text{ tale che } b_k \xrightarrow{k \to +\infty} \lambda$$

Ma $E \equiv i$ valori di $\{a_k\}_{k=0}^{\infty}$

dunque b_k è sottosuccessione di a_k .

Allora esiste una sottosuccessione di a_k convergente.

caso 2. assumiamo che E abbia un numero finito di elementi.

 \implies esisterà sicuramente un valore di E assunto infinite volte dalla successione $\{a_k\}_{k=0}^{\infty}$. Sia $a_k = l$ per infiniti indici.

Consideriamo $b_k = l$, $\forall k \in \mathbb{N}$, b_k è successioni a valori in E, ed essendo costante: $b_k \xrightarrow{k \to +\infty} l$, dunque b_n è convergente

Osservazione (1.2) Il teorema di Bolzano-Weierstrass per le successioni utilizza il teorema di Bolzano-Weierstrass per gli insiemi in \mathbb{R}^n . Dunque è necessaria la completezza di \mathbb{R}

Se $\{a_n\} \subset \mathbb{R}^n$ ed è limitata $\implies \{a_n\}$ convergente

Se $\{a_n\} \subset \mathbb{R}$ ed è limitata $\implies \{a_n\}$ convergente

Se $\{a_n\} \subset \mathbb{C}$ ed è limitata $\Longrightarrow \{a_n\}$ convergente

Se $\{a_n\} \subset \mathbb{Q}$ ed è limitata $\Rightarrow \{a_n\}$ convergente

1.2.1 Successioni e chiusura di $E \in \mathbb{R}^n$

Si ricorda che la chiusura è

$$\overline{E} = E \cup \delta E$$

Proprietà Data $E \in \mathbb{R}^n$ e $y \in \mathbb{R}$

$$y \in \overline{E} \iff \exists \{x_k\}_{k=0}^{\infty} \text{ a valori in } E \text{ tale che } x_k \xrightarrow{k \to +\infty} y$$

Dimostrazione. Procediamo spezzando le due implicazioni

" \Longrightarrow " Ricordiamo che $\overline{E} = E \cup E'$

$$y \in \overline{E} = E \cup E'$$

- se $y \in E$, allora consideriamo $x_k \equiv y \in E$ si ha $x_k \xrightarrow{k \to +\infty} y$
- se $y \in E'$ e $y \notin E$, per la proposizione (p.i), $\exists \{x_k\}_{k=0}^{\infty}$ a valori in E tale che $x_k \xrightarrow{k \to +\infty} y$

"
 — " Assumiamo per assurdo che esista $x_k \xrightarrow{k \to +\infty} y$ e $y \notin \overline{E}$, con $x_k \in E$.

 \overline{E} è un insieme chiuso, allora $(\overline{E})^C$ è aperto, ovvero $\exists\, r>0$ tale che $B_r(y)\subset (\overline{E})^C$

Allora $B_r(y) \cap \overline{E} = \emptyset$, allora poiché $E \subset \overline{E}$

$$\exists r > 0 : B_r(y) \cap E = \emptyset$$

allora qualsiasi successione a valori in E non può convergere a y, dunque neghiamo $x_k \xrightarrow{k \to +\infty} y$, si ha contraddizione, dunque

$$y \in \overline{E}$$

Teorema III Dato $E \in \mathbb{R}^n$

$$E$$
 è chiuso (A)

$$\iff$$
 se esiste $\{x_k\}_{k=0}^{\infty}$ a valori in E tale che $x_k \xrightarrow{k \to +\infty} y$ allora $y \in E$ (B)

Equivalentemente:

$$E
ilde{e} chiuso$$
 (A)

 \iff tutte le sue successioni convergenti hanno limite in E stesso (B)

dim. (III)

" \Longrightarrow " E è chiuso. Ricordiamo che E è chiuso $\iff E = \overline{E}$ Allora per proprietà precedente

$$\{x_k\}_{k=0}^{\infty} \subset E \land x_k \to y \implies y \in \overline{E} = E$$

" \Leftarrow " Ricordiamo che E chiuso \Leftrightarrow $E' \subset E$. Dimostriamo che $E' \subset E$.

Consideriamo $y \in E'$, $\Longrightarrow \exists \{x_k\}_{k=0}^{\infty} \subset E$, con $x_k \neq y$, $x_k \to y$, allora per (B), $y \in E$

Dunque
$$E' \subset E$$
, ed E chiuso \square

Definizione Sia $\{a_k\}_{k=0}^{\infty}$ a valori in \mathbb{R}^n . Questa successione è detta successione di Cauchy (o successione fondamentale) se

$$\forall \varepsilon > 0 \,\exists \, \overline{k} \in \mathbb{N} \,|\, \forall k, m > \overline{k} \,|a_k - a_m| < \varepsilon$$

O, equivalentemente

$$\forall \varepsilon > 0 \,\exists \, \overline{k} \in \mathbb{N} \,\forall \, k > \overline{k} \,\forall \, p \in \mathbb{N} \,|a_k - a_{k+p}| < \varepsilon$$

(Definitivamente $|a_k - a_{k+p}| < \varepsilon$)

Intuitivamente, da un certo punto in poi i valori della successione di Cauchy sono vicini a piacere

Studieremo il legame tra l'essere di Cauchy l'essere convergente.