0 Preliminaries

Properties of Integers

Theorem 0.1 (Well Ordering Principle). Every non-empty subset of the positive integers has a least element.

Theorem 0.2 (Division Algorithm). Let $a, b \in \mathbb{Z}$ with b > 0. Then there exist unique integers q, r such that

$$a = bq + r$$
 and $0 \le r < b$.

Example.

(i) a = 13, b = 5. We have that $13 = 5 \cdot 2 + 3$.

(ii) a = -13, b = 5. We have that $-13 = 5 \cdot (-3) + 2$.

Sketch of Proof of Theorem. Let $a, b \in \mathbb{Z}$ and b > 0. let $S = \{a - bk \mid k \in \mathbb{Z}, a - bk \ge 0\}$.

Case 1: $0 \in S$. Then a - bk = 0 for some $k \in \mathbb{Z}$ and a = bk and a = bq + r where q = k and r = 0.

Case 2: $0 \notin S$. Then S is a subset of the positive integers.

Exercise. Show S is nonempty.

By the Well Ordering Principle, S has a least element. Let r be this least element. Then r = a - bq for some $q \in \mathbb{Z}$. Show r < b, and show uniqueness of q and r.

Definition 0.1. Let $a, b \in \mathbb{Z}$. We say a divides b and write $a \mid b$ if b = ac for some $c \in \mathbb{Z}$. We say a is a divisor of b.

Example. $8 \mid 24 \text{ since } 24 = 8 \cdot 3 \text{ and } 3 \in \mathbb{Z}.$

Definition 0.2. Let $a, b \in \mathbb{Z}$ where a, b are not both zero. Then the greatest common divisor of a and b, denoted by gcd(a, b), is the largest integer d such that $d \mid a$ and $d \mid b$.

Note. In number theory gcd(a, b) is denoted by (a, b).

Example. gcd(8,60) = 4.

Theorem 0.3. Let $a, b \in \mathbb{Z}$, where a, b are not both zero. Then $gcd(a, b) = min\{ax + by \mid x, y \in \mathbb{Z}, ax + by > 0\}$

Sketch of Proof. Let $a, b \in \mathbb{Z}$ not both be zero. Then let $S = \{as + bt \mid s, t \in \mathbb{Z}, as + bt > 0\}$. See that S is nonempty because $a, -a, b, -b \in S$.

So S is a nonempty set of positive integers. By the Well Ordering Principle, S has a least element d. We show $d = \gcd(a, b)$.

So d = as + bt for some $s, t \in \mathbb{Z}$. Then by the Division Algorithm, a = dq + r fo some integers q, r where $0 \le r < d$.

- 1 previous chapters TODO
- 2 previous chapters TODO

3 Cyclic Groups

Let $a \in G$ where G is a group. The cyclic group generated by a is

$$\langle a \rangle \coloneqq \{a^n : n \in \mathbb{Z}\}.$$

Theorem 3.1. Let G be a group and suppose $a \in G$.

- (1) If a has infinite order then $a^i = a^j$ $(i, j \in \mathbb{Z})$ if and only if i = j.
- (2) If a has finite order n, then

$$\langle a \rangle = \left\{ e, a^1, a^2, \dots, a^{n-1} \right\},\,$$

and $a^i = a^j$ $(i, j \in \mathbb{Z})$ if and only if $i \equiv j \pmod{n}$

Proof. Let G be a group and suppose $a \in G$.

(1) Suppose a has infinite order. If n is a positive integer then $a^n \neq e$. Suppose $a^i = a^j$ where $i, j \in \mathbb{Z}$, and without loss of generality, $i \leq j$. Then $a^{j-i} = a^j \left(a^i\right)^- 1 = a^i \left(a^i\right)^- 1 = e$. It follows that j - i = 0 since $j - i \in \mathbb{Z}$ and $j - i \geq 0$, so i = j.

Conversely, if i = j, then $a^i = a^j$.

(2) Suppose a has finite order n.

Case 1: n = 1. Then $a^1 = a = e$, so

$$\langle a \rangle = \{e^n : n \in \mathbb{Z}\} = \{e\}.$$

Note that

4 Isomorphisms?

. . .

Example. Find $Aut(\mathbb{Z}_8)$.

Suppose $\alpha \in Aut(\mathbb{Z}_8)$. Then $\alpha : \mathbb{Z}_8 \to \mathbb{Z}_8$ is an isomorphism.

$x = x \cdot 1$	$ x = \frac{8}{\gcd(x,8)}$
0	1
1	8
2	4
3	8
4	2
5	8
6	4
7	8

|1| = 8 and 1 is a generator of \mathbb{Z}_8 .

By a previous theorem, $|\alpha(1)| = 8$ and hence $\alpha(1) = 1, 3, 5$, or 7.

Let
$$x \in \mathbb{Z}_8$$
. Then $x = x \cdot 1 = \underbrace{1 + \cdots + 1}^{x \text{-times}}$. So $\alpha(x) = \alpha(1) + \cdots + \alpha(1) = x\alpha(1)$.

The automorphism α is completely determined by the value of $\alpha(1)$.

For
$$j = 1, 3, 5$$
, or 7, we define $\alpha_j : \mathbb{Z}_8 \to \mathbb{Z}_8$ by $\alpha_j(x) = xj \pmod 8 = \underbrace{j + \cdots + j}^{x \text{-times}} \pmod 8$.

We show that each α_j is an automorphism of \mathbb{Z}_8 . Clearly each α_j is well-defined. Let j=1,3,5, or 7. Suppose $x_1, x_2 \in \mathbb{Z}_8$ and $\alpha_j(x_1) = \alpha_j(x_2)$. Then $jx_1 \equiv jx_2 \pmod 8$.

Observe that $j \in \{1, 3, 5, 7\} = U(8)$. The operation in U(8) is multiplication mod 8. Each j has a multiplicative inverse $\bar{j} \pmod{8}$, i.e. $\bar{j}j \equiv 1 \pmod{8}$.

In this example, $\bar{j} = j$. Then

$$\bar{j}(jx_1) \equiv \bar{j}(jx_2) \pmod{8}$$

$$(\bar{j}j) x_1 \equiv (\bar{j}j) x_2 \pmod{8}$$

$$1x_1 \equiv 1x_2 \pmod{8}$$

$$x_1 \equiv x_2 \pmod{8}$$

so that $x_1 = x_2$ in \mathbb{Z}_8 . So α_i is one-to-one.

Let $y \in \mathbb{Z}_8$. Then $\alpha_j(\bar{j}y) = j(\bar{j}y) \pmod{8} = (j\bar{j})y \pmod{8} = y \pmod{8}$. Then $\alpha_j(\bar{j}y) = y$, so α_j is onto.

Then

$$\alpha_j(x_1 + x_2) = j(x_1 + x_2) \pmod{8}$$

$$= (jx_1 + jx_2) \pmod{8}$$

$$= (jx_1 \pmod{8}) + (jx_1 \pmod{8})$$

$$= \alpha_j(x_1) + \alpha_j(x_2)$$

So α_i preserves the group operation and α_i is an automorphism.

Note. $\alpha_1, \alpha_3, \alpha_5, \alpha_7$ are the automorphisms of \mathbb{Z}_8 , i.e.

Aut
$$\mathbb{Z}_8 = \{\alpha_1, \alpha_3, \alpha_5, \alpha_7\}$$
.

Note. Aut $\mathbb{Z}_8 \approx U(8)$.

Proof. Define $T: \{\alpha_1, \alpha_3, \alpha_5, \alpha_7\} \to U(8)$ by $T(\alpha_j) = j$. So

$$\alpha_1 \to 1$$

$$\alpha_3 \to 3$$

$$\alpha_5 \to 5$$

$$\alpha_7 \rightarrow 7$$

T is clearly well-defined, one-to-one, and onto. Let $i, j \in U(8)$. Suppose ij = k in U(8), i.e. $ij \equiv k \pmod{8}$.

Then

$$T(\alpha_i \circ \alpha_j) = T(\alpha_k) = k$$
$$= i \cdot j \pmod{8} = T(\alpha_i)T(\alpha_j) \pmod{8}$$

since $\alpha_i \circ \alpha_j = \alpha_k$, which is true because

$$(\alpha_i \circ \alpha_j)(x) \equiv \alpha_i(\alpha_j(x)) \equiv i(jx) \pmod{8}$$

$$\equiv (ij)x \equiv kx \pmod{8} = \alpha_k(x)$$

for any $x \in U(8)$. Hence T is an isomorphism and so $\operatorname{Aut}(\mathbb{Z}_8) \approx U(8)$.

Similarly, we have the following theorem:

Theorem 4.1. $\operatorname{Aut}(\mathbb{Z}_n) \approx U(n)$.

Example. Suppose $\Phi: \mathbb{Z}_8 \to \mathbb{Z}_8$ is an automorphism and $\Phi(5) = 7$. Find a formula for $\Phi(x)$.

Hint. $5 \cdot 5 = 1$ in \mathbb{Z}_8 .

To find a formula for $\Phi(x)$ we only need to find $\Phi(1)$ since $\Phi(x) = \Phi(x \cdot 1) = x\Phi(1)$. So from the hint given we find that $\Phi(1) = \Phi(5 \cdot 5) = 5\Phi(5) = 5 \cdot 7 = 35 \equiv 3 \pmod{8}$. So $\Phi(1) = 3$, which means $\Phi(x) = x\Phi(1) = x \cdot 3$.

Hence $\Phi(x) = 3x \pmod{8}$.

5 Cosets and Lagrange's Theorem (ch7)

Definition 5.1. Let H be a subset of a group G. Let $a \in G$. Define

$$aH = \{ah : h \in H\}$$

and

$$Ha = \{ha : h \in H\}.$$

When H is a subgroup of G the set aH is called the left coset of H in G containing a, and Ha is called the right coset of H in G containing a.

Example. Let $H = \{e, (12)\} = \langle (12) \rangle$ and $G = S_3 = \{e, (12), (13), (23), (132)\}.$

Then

$$eH = H = \{e, (12)\}$$

$$(12)H = \{(12), e\} = H$$

$$(13)H = \{(13), (13)(12)\} = \{(12), (123)\}$$

$$(23)H = \{\}$$