$\begin{array}{c} ARPP \\ H = 20 \end{array}$	Emis. Reg.	Europe	US	China	East Asia	India	Sahel
SO_2	NHML US East Asia India Europe	$ \begin{array}{c} -2.4\text{e-}06 \pm 9.4\text{e-}07 \\ -7.1\text{e-}07 \pm 3.0\text{e-}07 \\ 4.6\text{e-}06 \pm 2.2\text{e-}06 \\ 2.8\text{e-}06 \pm 1.7\text{e-}06 \\ -1.6\text{e-}05 \pm 6.8\text{e-}06 \end{array} $	$-1.8e-07 \pm 6.9e-08$ $-4.0e-06 \pm 1.7e-06$ $1.4e-05 \pm 6.9e-06$ $8.7e-06 \pm 5.1e-06$ $-8.2e-06 \pm 3.4e-06$	$-1.6e-05 \pm 6.3e-06$ $-1.4e-05 \pm 5.7e-06$ $-5.7e-05 \pm 2.8e-05$ $-3.5e-05 \pm 2.1e-05$ $-1.7e-05 \pm 6.9e-06$	$-8.8e-06 \pm 3.4e-06$ $-1.1e-05 \pm 4.8e-06$ $-7.1e-05 \pm 3.4e-05$ $-4.3e-05 \pm 2.5e-05$ $-4.1e-06 \pm 1.7e-06$	$-2.3e-05 \pm 8.8e-06$ $-2.2e-05 \pm 9.2e-06$ $-6.3e-05 \pm 3.0e-05$ $-3.8e-05 \pm 2.3e-05$ $-3.4e-05 \pm 1.4e-05$	$\begin{array}{c} -8.8 \text{e-}06 \pm 3.4 \text{e-}06 \\ -5.5 \text{e-}06 \pm 2.3 \text{e-}06 \\ -1.1 \text{e-}05 \pm 5.2 \text{e-}06 \\ -6.5 \text{e-}06 \pm 3.9 \text{e-}06 \\ -1.2 \text{e-}05 \pm 5.1 \text{e-}06 \end{array}$
BC	Global Asia	$1.7e-04 \pm 8.2e-05$ $2.8e-05 \pm 1.6e-05$	$1.9e-04 \pm 9.1e-05$ $7.7e-05 \pm 4.4e-05$	$-1.8e-04 \pm 8.5e-05$ $5.6e-05 \pm 3.1e-05$	$-6.0e-05 \pm 2.9e-05$ $-4.4e-05 \pm 2.5e-05$	$-3.3e-04 \pm 1.6e-04$ $9.0e-05 \pm 5.1e-05$	$-3.1e-04 \pm 1.5e-04$ $1.0e-05 \pm 5.8e-06$
CH_4	Global	$1.8e-07 \pm 9.7e-08$	$1.2e-06 \pm 6.3e-07$	$2.0 \text{e-}06 \pm 1.1 \text{e-}06$	$1.7e-06 \pm 9.3e-07$	$2.8e-06 \pm 1.5e-06$	$1.0e-06 \pm 5.3e-07$
CO_2	Global	-1.1e-09 ± 1.3e-09	3.4e-09 ± 4.2e-09	1.4e-08 ± 1.7e-08	9.7e-09 ± 1.2e-08	1.6e-08 ± 2.0e-08	5.0e-09 ± 6.1e-09