

<u>Course</u> > <u>Week</u>... > <u>2.2 A</u>... > 2.2 A...

2.2 Assignment 2: Understanding mathematical notation

In Statistics, we rely on notations in our discussion of statistical computation and modeling.

For a data set, we use n for sample size, or the number of individuals in the data. The variables are represented by letters that are close to the end of the alphabet, such as X, Y and Z. We use letter i to index the individuals. Therefore $\boldsymbol{X_i}$ would refer to the value of variable X for the ith individual.

One important notation in statistics is the *summation sign*, \sum (capital Greek letter /sigma/). For example

$$\sum_{i=1}^n X_i$$

would mean a sum of the n values from X_1 to X_n .

If we replace X_i in the sum above by $(X_i-3)^2$, then the quantity changes to a sum of $(X_1-3)^2$, $(X_2-3)^2$, ..., $(X_n-3)^2$,.

Consider a numerical example:

Individuals	Х
1	3

2	7
3	2
4	4

Numerical Input

1/1 point (graded)

$$X_2 = ?$$

Submit

You have used 1 of 1 attempt

✓ Correct (1/1 point)

Numerical Input

1/1 point (graded)

n = ?

Submit You have used 1 of 1 attempt

✓ Correct (1/1 point)

Numerical Input

1/1 point (graded)

$$\sum_{i=1}^{n} X_i = ?$$

16

16

Submit

You have used 1 of 1 attempt

✓ Correct (1/1 point)

Numerical Input

1/1 point (graded)

$$\frac{1}{n} \sum_{i=1}^{n} X_i = ?$$

4

4

Submit

You have used 1 of 2 attempts

✓ Correct (1/1 point)

Numerical Input

0.0/1.0 point (graded)

$$\sum_{i=1}^{n} (X_i - 4)^2 = ?$$

Submit

You have used 0 of 1 attempt

© All Rights Reserved