National University of Computer and Emerging Sciences, Lahore Campus

	10	AL UNI	ERC
	ENCES APP	ń	III OF CO
1	23	8 EMER	HIND
	-	03M3	

Course Name:	Operations Research	Course Code:	MT 4031
Degree Program:	BSCS	Semester:	Spring 2024
Exam Duration:		Total Marks:	40
Submission Date:	7 May 2024	Weight	4
Section:	J and K	Page(s):	
Exam Type:	Assignment-3		

Reference book: Hamdy A. Taha, Operations Research, An Introduction (10th Edition) Instruction:

- Clearly write your name, roll no, section, Course title and assignment title on the first page.
- Use A4 size sheets only. Use both sides of paper.
- Late submission will have no credit.

Questions 1: Determine the maximum flow and optimum flow in each arc of the network given below, where all the arcs allow positive flow from node i to node j and zero flow in the opposite direction. [10]

Questions 2: The National Park Service plans to develop a wilderness area for tourism. Four locations in the area are designated for automobile access. These sites and distances between them are listed as:

	Entrance	A	В	С	D
Entrance		7	20	19	26
Α	7		8	16	13
В	20	8		18	5
С	19	16	18		17
D	26	13	5	17	

To inflict the least harm on the environment, the Park Service wants to minimize the miles of roadway required to provide the desired accessibility. Draw the network connecting the 4 areas to the park entrance and determine how the roads should be built to achieve the objective. [10]

Questions 3: Find shortest route from node 2 to node 7 using Dijkstra Algorithm. [10]

Question 4: Develop a branch and bound tree for the following problem. Use GEOGEBRA to find the solution to each subproblem. [10]

$$\max z = 2x_1 + 2x_2$$
 subject to
$$2x_1 + 5x_2 \le 27$$

$$6x_1 + 5x_2 \le 16$$

$$x_1, x_2 \ge 0 \text{ and integers.}$$