最近邻规则分类 KNN (K-Nearest Neighbor)

电影名称	打斗次数	接吻次数	电影类型
California Man	3	104	Romance
He's Not Really into Dudes	2	100	Romance
Beautiful Woman	1	81	Romance
Kevin Longblade	101	10	Action
Robo Slayer 3000	99	5	Action
Amped II	98	2	Action
未知	18	90	Unknown

Python机器学习-覃秉丰

点	X坐标	Y坐标	点类型
A点	3	104	Romance
B点	2	100	Romance
C点	1	81	Romance
D点	101	10	Action
E点	99	5	Action
F点	98	2	Action
G点	18	90	Unknown

Python机器学习-覃秉丰

Python机器学习-覃秉丰

- 为了判断未知实例的类别,以所有已知类别的实例作为参照选择参数K
- 计算未知实例与所有已知实例的距离
- 选择最近K个已知实例
- 根据少数服从多数的投票法则(majority-voting),让
 未知实例归类为K个最邻近样本中最多数的类别

欧式距离也称为欧几里得距离

$$E(x,y) = \sqrt{\sum_{i=0}^{n} (x_i - y_i)^2}$$

其他距离衡量:余弦值距离(cos),相关度(correlation),曼哈顿距离(Manhattan distance) http://www.cnblogs.com/belfuture/p/5871452.html

K值选取

- 算法复杂度较高(需要比较所有已知实例与要分类的实例)
- 当其样本分布不平衡时,比如其中一类样本过大(实例数量过多)占主导的时候,新的未知实例容易被归类为这个主导样本,因为这类样本实例的数量过大,但这个新的未知实例实际并没有接近目标样本