Learning Distributed Representations of Users for Source Detection in Online Social Networks

The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases 2016 Simon Bourigault, Sylvain Lamprier and Patrick Gallinari

Contents

- 1 Background
- 2 Related Work
- 3 Theory
- 4 Evaluation
- **5** Results
- 6 Criticism

Background

Field

Facebook

- Social Networks
- · Network Diffusion
- Source Detection

https://www.linkedin.com/pulse/20140918147859692-social-network-301-what-is-virality

Contributions

- Introducing representation learning approach to the field of source detection delivering a robost model that handles data sparsity well
- · Does not require the influence graph to be known
- Tested on real life data and surpassing other baseline approaches
- Provides an extension that further improves the results

Related Work

ckground **Related Work** Theory Evaluation Results Criticism

Diffusion Prediction

- Susceptible-Infected framework
 - Varies in how to reverse the process of diffusion to predict the source

Rumor centrality

- Detecting sources of computer viruses in networks: theory and experiment
 - Shah, D. and Zaman, T.

Theory

Diffusion Episodes

Group of users before and after a diffusion episode

Diffusion Episode Definition

$$D = \{(u_i, t_i), (u_i, t_i)...\}$$

Representation Learning Model

- Latent space
 - Latent
 - Dimensionality Reduction
 - Projection onto euclidean space with d dimensions
 - Distance correlates with chance of being the source
- Receiver and Sender embeddings

Source Prediction Model

Averaged Representation of Infected Users

$$z_D = \phi(\hat{U}_D) = \frac{1}{\hat{U}_D} \sum_{u_i \in \hat{U}_D} z_i$$

Diffusion Source

$$s^* = argmin_{u_i \in U/\hat{U_D}}(||w_i - z_D||)$$

Learning Step

• Stochastic Gradient Descent

Update Step

$$L(\Omega, Z) = \sum_{D \in \mathcal{D}} \sum_{u_i \notin U_D} h(||w_i - z_D||^2 - ||w_{s_D} - z_D||^2)$$

Regularization

$$L(\Omega, Z) + \lambda \sum_{u_i} ||w_i - z_i||^2$$

Learning Step

Algorithm 1. Representation Learning for Source Detection

```
Data:
    \mathcal{U}: Users set :
     \mathcal{D}: Learning set of diffusion episodes;
     d: Number of dimensions
     \epsilon: Gradient step size;
     Result:
     Z = \{ \forall u_i \in \mathcal{U} : z_i \in \mathbb{R}^d \} ; \quad \Omega = \{ \forall u_i \in \mathcal{U} : \omega_i \in \mathbb{R}^d \} ;
 1 foreach u_i \in \mathcal{U} do
           initialize z_i with random value in [-1, 1]^d
           initialize \omega_i with random value in [-1, 1]^d
 4 end
 5 while non-convergence do
           Draw an episode D \in \mathcal{D};
           Draw u_i \notin \mathcal{U}_D:
 7
           Compute z_D with formula 1;
           d_s \leftarrow ||\omega_{s_D} - z_D||^2;
           d_i \leftarrow ||\omega_i - z_D||^2;
10
           if d_i - d_s < 1 then
11
                \omega_{s_D} \leftarrow \omega_{s_D} - \epsilon \times 2(\omega_{s_D} - z_D);
12
                \omega_i \leftarrow \omega_i + \epsilon \times 2(\omega_i - z_D);
13
                 for all u_x \in \hat{\mathcal{U}}_D do
14
                     z_x \leftarrow z_x - \epsilon \times \frac{2}{|\vec{U}_D|} (\omega_j - \omega_{s_D})
15
16
                 end
17
           end
18 end
```

Extensions

Inclusion of User Importance

$$Z_D = \sum_{u_i \in \hat{U}_D} rac{\mathrm{e}^{lpha_i}}{\sum_{u_i \in \hat{U}_D} \mathrm{e}^{lpha_j}} Z_i$$

Integration of Content

$$z_D = \frac{1}{|\hat{U}_D|} \sum_{u_i \in \hat{U}_D} z_i + \langle w_D, \theta \rangle$$

Evaluation

Datasets

	Users	Links	Episodes	Density
Artificial	100	262	10 000	2 %
Lastfm	1984	235 011	331829	5 %
Weibo	5000	20784	44 345	0.08 %
Twitter	4107	128 855	16824	1 %

Dataset Statistics

Baseline Approaches

- OutDeg
 - · Ranks sources by their out-degree
- Jordan Center
 - Predicted source is the node with the minimum longest distance to any infected
- Pinto's
 - Assumes infection delays follows a Gaussian law

Training the Model

• Value of d = 30

Convergence time and performance for various values of d on the Weibo dataset

Results

Source detection with full cascades

Source detection with partial cascades (20%)

Source detection with partially observed cascades (20%)

Top-K	1	3	5	10	20			
Twitter								
RL	0.020	0.042	0.058	0.099	0.141			
RL w/weights	0.021	0.047	0.073	0.107	0.154			
Gain	3 %	10%	25%	8 %	9 %			
Lastfm								
RL	0.052	0.12	0.166	0.2545	0.374			
RL w/weights	0.065	0.1335	0.175	0.2605	0.378			
Gain	25%	11 %	5 %	2 %	1 %			
Weibo								
RL	0.31	0.51	0.59	0.72	0.82			
RL w/weights	0.31	0.50	0.60	0.75	0.84			
Gain	0%	-2.3%	+0%	+4%	+1%			

Source detection with user weights

Top-K	1	3	5	10	20
RL	0.028	0.05	0.072	0.102	0.142
RL w/content	0.043	0.069	0.099	0.128	0.179
Gain	56%	38 %	38%	26%	26%

Source Detection with Content Integration on the Twitter dataset

Criticism

Criticism

- Inconsistent reference strategy. Did not always refer to their figures and formulas
- · Latent Space
 - Missing flow between concept and construction of representation model
 - No reference to the picture
- Size of dataset
- High concept, low technical
- Results of Content Integration for Twitter dataset