Identity testing for sparse polynomials on rectangular domains

joint work with Erhard Aichinger and Paul Hametner

Simon Grünbacher

June 15, 2023

Let $\mathbb K$ be a field and let $S\subseteq \mathbb K$ be a finite set. We are interested in the following question:

Let \mathbb{K} be a field and let $S \subseteq \mathbb{K}$ be a finite set. We are interested in the following question:

Given: Black-box access to a sparse polynomial $p \in \mathbb{K}[X_1, \dots, X_n]$.

Let \mathbb{K} be a field and let $S \subseteq \mathbb{K}$ be a finite set. We are interested in the following question:

Given: Black-box access to a sparse polynomial $p \in \mathbb{K}[X_1, \dots, X_n]$.

Asked: Does p(x) = 0 hold for all $x \in S^n$?

Let \mathbb{K} be a field and let $S \subseteq \mathbb{K}$ be a finite set. We are interested in the following question:

Given: Black-box access to a sparse polynomial $p \in \mathbb{K}[X_1, \dots, X_n]$.

Asked: Does p(x) = 0 hold for all $x \in S^n$?

Example: Does $p = 1 + X^2 + 2XY + XYZ$ vanish on $\{-1, 1\}^3$?

Let \mathbb{K} be a field and let $S \subseteq \mathbb{K}$ be a finite set. We are interested in the following question:

Given: Black-box access to a sparse polynomial $p \in \mathbb{K}[X_1, \dots, X_n]$.

Asked: Does p(x) = 0 hold for all $x \in S^n$?

Example: Does $p = 1 + X^2 + 2XY + XYZ$ vanish on $\{-1, 1\}^3$?

Goal: Decide by testing only some points $x \in S^n$.

Example

▶ Let $S = \{-1, 1\}$

- ▶ Let $S = \{-1, 1\}$
- ▶ Let $a \in S^n$ and let $p := \prod_{i=1}^n (X_i a_i)$.

- ▶ Let $S = \{-1, 1\}$
- ▶ Let $a \in S^n$ and let $p := \prod_{i=1}^n (X_i a_i)$.
- ▶ We have $\{x \in S^n \mid p(x) \neq 0\} = \{(-a_1, \dots, -a_n)\}.$

- ▶ Let $S = \{-1, 1\}$
- ▶ Let $a \in S^n$ and let $p := \prod_{i=1}^n (X_i a_i)$.
- ▶ We have $\{x \in S^n \mid p(x) \neq 0\} = \{(-a_1, ..., -a_n)\}.$
- ▶ Given only black-box access, we would have to test all 2^n points to decide $\forall x \in S^n : p(x) = 0$.

- ▶ Let $S = \{-1, 1\}$
- ▶ Let $a \in S^n$ and let $p := \prod_{i=1}^n (X_i a_i)$.
- ▶ We have $\{x \in S^n \mid p(x) \neq 0\} = \{(-a_1, ..., -a_n)\}.$
- ▶ Given only black-box access, we would have to test all 2^n points to decide $\forall x \in S^n : p(x) = 0$.
- ▶ However, p has $M(p) = 2^n$ monomials and is therefore not sparse.

- ▶ Let $S = \{-1, 1\}$
- ▶ Let $a \in S^n$ and let $p := \prod_{i=1}^n (X_i a_i)$.
- ▶ We have $\{x \in S^n \mid p(x) \neq 0\} = \{(-a_1, ..., -a_n)\}.$
- ▶ Given only black-box access, we would have to test all 2^n points to decide $\forall x \in S^n : p(x) = 0$.
- ▶ However, p has $M(p) = 2^n$ monomials and is therefore not sparse.
- Perhaps all difficult cases are non-sparse.

Theorem (Clausen, Dress, Grabmeier, Karpinski '91)

Let $n \in \mathbb{N}$, $\mathbb{K} = S = GF(q)$ and let $m \ge 2$. There exists a testing set $T \subseteq S^n$ with $|T| \le (n(q-1))^{\log_2(m)}$ such that for all $p \in \mathbb{K}[X_1, \dots, X_n]$ with $M(p) \le m$ monomials and $\deg_{X_i} p < q$ we have

$$(\forall x \in S^n : p(x) = 0) \iff (\forall x \in T : p(x) = 0).$$

Theorem (Clausen, Dress, Grabmeier, Karpinski '91)

Let $n \in \mathbb{N}$, $\mathbb{K} = S = GF(q)$ and let $m \ge 2$. There exists a testing set $T \subseteq S^n$ with $|T| \le (n(q-1))^{\log_2(m)}$ such that for all $p \in \mathbb{K}[X_1, \dots, X_n]$ with $M(p) \le m$ monomials and $\deg_{X_i} p < q$ we have

$$(\forall x \in S^n : p(x) = 0) \iff (\forall x \in T : p(x) = 0).$$

 \implies Test at most $(n(q-1))^{\log_2(M(p))}$ points.

Theorem (Clausen, Dress, Grabmeier, Karpinski '91)

Let $n \in \mathbb{N}$, $\mathbb{K} = S = GF(q)$ and let $m \geq 2$. There exists a testing set $T \subseteq S^n$ with $|T| \leq (n(q-1))^{\log_2(m)}$ such that for all $p \in \mathbb{K}[X_1, \dots, X_n]$ with $M(p) \leq m$ monomials and $\deg_{X_i} p < q$ we have

$$(\forall x \in S^n : p(x) = 0) \iff (\forall x \in T : p(x) = 0).$$

 \implies Test at most $(n(q-1))^{\log_2(M(p))}$ points.

Theorem (Kiltz, Winterhof '04)

Let $n \in \mathbb{N}$, let $\mathbb{K} = GF(q)$, let $\gamma \in \mathbb{K}$ be an element of order d and let $S = \{\gamma^i \mid 1 \leq i \leq d\}$. Let $p \in \mathbb{K}[X_1, \ldots, X_n]$ with $p \neq 0$ and $\deg_{X_i} p < d$ and let $W := \{x \in S^n \mid p(x) \neq 0\}$. Then $|W| \geq \frac{d^n}{M(p)}$.

Theorem (Clausen, Dress, Grabmeier, Karpinski '91)

Let $n \in \mathbb{N}$, $\mathbb{K} = S = GF(q)$ and let $m \geq 2$. There exists a testing set $T \subseteq S^n$ with $|T| \leq (n(q-1))^{\log_2(m)}$ such that for all $p \in \mathbb{K}[X_1, \dots, X_n]$ with $M(p) \leq m$ monomials and $\deg_{X_i} p < q$ we have

$$(\forall x \in S^n : p(x) = 0) \iff (\forall x \in T : p(x) = 0).$$

 \implies Test at most $(n(q-1))^{\log_2(M(p))}$ points.

Theorem (Kiltz, Winterhof '04)

Let $n \in \mathbb{N}$, let $\mathbb{K} = GF(q)$, let $\gamma \in \mathbb{K}$ be an element of order d and let $S = \{\gamma^i \mid 1 \leq i \leq d\}$. Let $p \in \mathbb{K}[X_1, \ldots, X_n]$ with $p \neq 0$ and $\deg_{X_i} p < d$ and let $W := \{x \in S^n \mid p(x) \neq 0\}$. Then $|W| \geq \frac{d^n}{M(p)}$.

 \Longrightarrow Test random points and find a non-zero with probability $1-(1-\frac{1}{M(p)})^{M(p)} \approx 1-\frac{1}{e}$ after M(p) evaluations.

Our contribution

Our contribution

Theorem (EA, SG, PH)

Let $\mathbb{K}:=GF(q)$ be the field with q>2 Elements, let $t:=\frac{q-1}{q-2}$, and let $S\subseteq \mathbb{K}\setminus\{0\}$. Let $m\in \mathbb{N}$. There is a testing set $T\subseteq S^n$ of size at most $(n\cdot |S|)^{\log_t(m)}$ such that for all $p\in \mathbb{K}[X_1,\ldots,X_n]$ with $M(p)\leq m$, we have

$$(\forall x \in S^n : p(x) = 0) \iff (\forall x \in T : p(x) = 0).$$

Our contribution

Theorem (EA, SG, PH)

Let $\mathbb{K}:=GF(q)$ be the field with q>2 Elements, let $t:=\frac{q-1}{q-2}$, and let $S\subseteq \mathbb{K}\setminus\{0\}$. Let $m\in \mathbb{N}$. There is a testing set $T\subseteq S^n$ of size at most $(n\cdot |S|)^{\log_t(m)}$ such that for all $p\in \mathbb{K}[X_1,\ldots,X_n]$ with $M(p)\leq m$, we have

$$(\forall x \in S^n : p(x) = 0) \iff (\forall x \in T : p(x) = 0).$$

Theorem (EA, SG, PH)

Let $n \in \mathbb{N}$, let K be an integral domain, let $a_1, b_1, \ldots, a_n, b_n \in K \setminus \{0\}$ with $a_i \neq b_i$ for all $i \in \underline{n}$. We assume that there is $r \in \mathbb{N}$ such that for each $i \in \underline{n}$, we have $a_i^r = b_i^r$. Let $t := \frac{r}{r-1}$, let $Q := \{a_1, b_1\} \times \cdots \times \{a_n, b_n\}$, let $p \in K[X_1, \ldots, X_n]$, and let $W := \{c \in Q \mid p(c) \neq 0\}$. If $W \neq \emptyset$, then $|W| \geq 2^{n - \log_t(M(p))}$.

Definition

Let K be an integral domain, let $S \subseteq K$ be a set, let $n \in \mathbb{N}$ and let $s \in S^n$. A polynomial $p \in K[X_1, \dots, X_n]$ is called *absorbing at s for* S^n if for all $x \in S^n$ with $\exists i \in \underline{n} : x_i = s_i$, we have p(x) = 0.

Definition

Let K be an integral domain, let $S \subseteq K$ be a set, let $n \in \mathbb{N}$ and let $s \in S^n$. A polynomial $p \in K[X_1, \dots, X_n]$ is called *absorbing at s for* S^n if for all $x \in S^n$ with $\exists i \in \underline{n} : x_i = s_i$, we have p(x) = 0.

Example

Let $S = \{-1,0,1\} \subseteq \mathbb{R}$ and $p := (X_1 - 1)(X_2 + 1)$. Then p is absorbing at (1,-1)

-4	-2	0
-2	-1	0
0	0	0

Definition

Let K be an integral domain, let $S \subseteq K$ be a set, let $n \in \mathbb{N}$ and let $s \in S^n$. A polynomial $p \in K[X_1, \dots, X_n]$ is called *absorbing at s for* S^n if for all $x \in S^n$ with $\exists i \in \underline{n} : x_i = s_i$, we have p(x) = 0.

Example

Let $S = \{-1,0,1\} \subseteq \mathbb{R}$ and $p := (X_1 - 1)(X_2 + 1)$. Then p is absorbing at (1,-1)

-4	-2	0
-2	-1	0
0	0	0

Goal: Find lower bound on the number of monomials of absorbing polynomials, based on S, K and n.

Question: Does every polynomial p that is nonzero on S^n and absorbing for S^n satisfy $M(p) \ge 2^n$?

Question: Does every polynomial p that is nonzero on S^n and absorbing for S^n satisfy $M(p) \ge 2^n$?

Example

The polynomial $p_1 := X_1 \dots X_n$ is absorbing at $s = (0, \dots, 0)$ and $M(p_1) = 1$.

Question: Does every polynomial p that is nonzero on S^n and absorbing for S^n satisfy $M(p) \ge 2^n$?

Example

The polynomial $p_1 := X_1 \dots X_n$ is absorbing at $s = (0, \dots, 0)$ and $M(p_1) = 1$.

Example

▶ Let $r \ge 2$ and let $S = \{1, \alpha\} \subseteq \mathbb{R}$ with $\alpha = \exp(\frac{2i\pi}{r})$.

Question: Does every polynomial p that is nonzero on S^n and absorbing for S^n satisfy $M(p) \ge 2^n$?

Example

The polynomial $p_1 := X_1 \dots X_n$ is absorbing at $s = (0, \dots, 0)$ and $M(p_1) = 1$.

- ▶ Let $r \ge 2$ and let $S = \{1, \alpha\} \subseteq \mathbb{R}$ with $\alpha = \exp(\frac{2i\pi}{r})$.
- ▶ The polynomial $p_2 := \sum_{k=0}^{r-1} (\prod_{j=1}^{r-1} X_j)^k \in \mathbb{R}[X_1, \dots, X_{r-1}]$ is nonzero at $(1, \dots, 1)$ and absorbing at $s = (\alpha, \dots, \alpha)$:

Question: Does every polynomial p that is nonzero on S^n and absorbing for S^n satisfy $M(p) \ge 2^n$?

Example

The polynomial $p_1 := X_1 ... X_n$ is absorbing at s = (0, ..., 0) and $M(p_1) = 1$.

- ▶ Let $r \ge 2$ and let $S = \{1, \alpha\} \subseteq \mathbb{R}$ with $\alpha = \exp(\frac{2i\pi}{r})$.
- ▶ The polynomial $p_2 := \sum_{k=0}^{r-1} (\prod_{j=1}^{r-1} X_j)^k \in \mathbb{R}[X_1, \dots, X_{r-1}]$ is nonzero at $(1, \dots, 1)$ and absorbing at $s = (\alpha, \dots, \alpha)$:
- ▶ If $x \in S^n$ satisfies $\exists i : x_i = \alpha$, then we have $1 \le u \le r 1$ with $x_1 \dots x_{r-1} = \alpha^u$.

Question: Does every polynomial p that is nonzero on S^n and absorbing for S^n satisfy $M(p) \ge 2^n$?

Example

The polynomial $p_1 := X_1 \dots X_n$ is absorbing at $s = (0, \dots, 0)$ and $M(p_1) = 1$.

- ▶ Let $r \ge 2$ and let $S = \{1, \alpha\} \subseteq \mathbb{R}$ with $\alpha = \exp(\frac{2i\pi}{r})$.
- ▶ The polynomial $p_2 := \sum_{k=0}^{r-1} (\prod_{j=1}^{r-1} X_j)^k \in \mathbb{R}[X_1, \dots, X_{r-1}]$ is nonzero at $(1, \dots, 1)$ and absorbing at $s = (\alpha, \dots, \alpha)$:
- ▶ If $x \in S^n$ satisfies $\exists i : x_i = \alpha$, then we have $1 \le u \le r 1$ with $x_1 \dots x_{r-1} = \alpha^u$.
- ► Therefore $p_2(x) = \sum_{k=0}^{r-1} \alpha^{uk} = 0$

Question: Does every polynomial p that is nonzero on S^n and absorbing for S^n satisfy $M(p) \ge 2^n$?

Example

The polynomial $p_1 := X_1 \dots X_n$ is absorbing at $s = (0, \dots, 0)$ and $M(p_1) = 1$.

- ▶ Let $r \ge 2$ and let $S = \{1, \alpha\} \subseteq \mathbb{R}$ with $\alpha = \exp(\frac{2i\pi}{r})$.
- ▶ The polynomial $p_2 := \sum_{k=0}^{r-1} (\prod_{j=1}^{r-1} X_j)^k \in \mathbb{R}[X_1, \dots, X_{r-1}]$ is nonzero at $(1, \dots, 1)$ and absorbing at $s = (\alpha, \dots, \alpha)$:
- ▶ If $x \in S^n$ satisfies $\exists i : x_i = \alpha$, then we have $1 \le u \le r 1$ with $x_1 \dots x_{r-1} = \alpha^u$.
- ► Therefore $p_2(x) = \sum_{k=0}^{r-1} \alpha^{uk} = 0$
- ▶ Note that $M(p_2) = r$

Question: Does every polynomial p that is nonzero on S^n and absorbing for S^n satisfy $M(p) \ge 2^n$?

Example

The polynomial $p_1 := X_1 \dots X_n$ is absorbing at $s = (0, \dots, 0)$ and $M(p_1) = 1$.

- ▶ Let $r \ge 2$ and let $S = \{1, \alpha\} \subseteq \mathbb{R}$ with $\alpha = \exp(\frac{2i\pi}{r})$.
- ► The polynomial $p_2 := \sum_{k=0}^{r-1} (\prod_{j=1}^{r-1} X_j)^k \in \mathbb{R}[X_1, \dots, X_{r-1}]$ is nonzero at $(1, \dots, 1)$ and absorbing at $s = (\alpha, \dots, \alpha)$:
- ▶ If $x \in S^n$ satisfies $\exists i : x_i = \alpha$, then we have $1 \le u \le r 1$ with $x_1 \dots x_{r-1} = \alpha^u$.
- ► Therefore $p_2(x) = \sum_{k=0}^{r-1} \alpha^{uk} = 0$
- ▶ Note that $M(p_2) = r$
- Multiplying such polynomials yields nonzero absorbing polynomials q_n on $S^{n(r-1)}$ of size $M(q_n) = r^n = 2^{\log_2(r)n}$

Lemma

Let K be an integral domain and let $S \subseteq K \setminus \{0\}$, let $p \in K[X_1, \ldots, X_n]$ be absorbing at $s \in S^n$ and let $t \in S^n$ such that $p(t) \neq 0$. Let $r \in \mathbb{N}$ such that X^r is constant on S. Assume $p = \sum_{e \in E} c(e)X^e$. Let $d \in \{0, \ldots, r-1\}^n$. Then there exists an $e \in E$ such that for all $1 \leq i \leq n$, we have $d_i \not\equiv_r e_i$.

Lemma

Let K be an integral domain and let $S \subseteq K \setminus \{0\}$, let $p \in K[X_1, \ldots, X_n]$ be absorbing at $s \in S^n$ and let $t \in S^n$ such that $p(t) \neq 0$. Let $r \in \mathbb{N}$ such that X^r is constant on S. Assume $p = \sum_{e \in E} c(e)X^e$. Let $d \in \{0, \ldots, r-1\}^n$. Then there exists an $e \in E$ such that for all $1 \leq i \leq n$, we have $d_i \not\equiv_r e_i$.

Proof.

▶ Seeking a contradiction, let $d \in \{0, ..., r-1\}^n$ be a counterexample.

Lemma

Let K be an integral domain and let $S \subseteq K \setminus \{0\}$, let $p \in K[X_1, \ldots, X_n]$ be absorbing at $s \in S^n$ and let $t \in S^n$ such that $p(t) \neq 0$. Let $r \in \mathbb{N}$ such that X^r is constant on S. Assume $p = \sum_{e \in E} c(e)X^e$. Let $d \in \{0, \ldots, r-1\}^n$. Then there exists an $e \in E$ such that for all $1 \leq i \leq n$, we have $d_i \not\equiv_r e_i$.

Proof.

- Seeking a contradiction, let $d \in \{0, ..., r-1\}^n$ be a counterexample.
- Let $g:=X_1^{r-d_1}\dots X_n^{r-d_n}p$. The polynomial g is also absorbing at s and $g(t)\neq 0$.

Lemma

Let K be an integral domain and let $S \subseteq K \setminus \{0\}$, let $p \in K[X_1, \ldots, X_n]$ be absorbing at $s \in S^n$ and let $t \in S^n$ such that $p(t) \neq 0$. Let $r \in \mathbb{N}$ such that X^r is constant on S. Assume $p = \sum_{e \in E} c(e)X^e$. Let $d \in \{0, \ldots, r-1\}^n$. Then there exists an $e \in E$ such that for all $1 \leq i \leq n$, we have $d_i \not\equiv_r e_i$.

Proof.

- Seeking a contradiction, let $d \in \{0, ..., r-1\}^n$ be a counterexample.
- Let $g := X_1^{r-d_1} \dots X_n^{r-d_n} p$. The polynomial g is also absorbing at s and $g(t) \neq 0$.
- ightharpoonup On S^n , every monomial of g is constant in at least one argument by our choice of d.

Lemma

Let K be an integral domain and let $S \subseteq K \setminus \{0\}$, let $p \in K[X_1, \ldots, X_n]$ be absorbing at $s \in S^n$ and let $t \in S^n$ such that $p(t) \neq 0$. Let $r \in \mathbb{N}$ such that X^r is constant on S. Assume $p = \sum_{e \in E} c(e)X^e$. Let $d \in \{0, \ldots, r-1\}^n$. Then there exists an $e \in E$ such that for all $1 \leq i \leq n$, we have $d_i \not\equiv_r e_i$.

Proof.

- Seeking a contradiction, let $d \in \{0, ..., r-1\}^n$ be a counterexample.
- Let $g:=X_1^{r-d_1}\dots X_n^{r-d_n}p$. The polynomial g is also absorbing at s and $g(t)\neq 0$.
- ightharpoonup On S^n , every monomial of g is constant in at least one argument by our choice of d.
- ▶ Therefore $0 \neq g(t) = \sum_{u \in \{0,1\}^n} (-1)^{u_1 + \dots + u_n} g(s_1^{u_1} t_1^{1-u_1}, \dots, s_n^{u_n} t_n^{1-u_n}) = 0$, a contradiction.

Definition

Let $n, r \in \mathbb{N}$. We call $E \subseteq \underline{r}^n$ pattern-avoiding if for all $d \in \underline{r}^n$, we have $e \in E$ such that $e_i \neq d_i$ for all $i \in \underline{n}$.

Definition

Let $n, r \in \mathbb{N}$. We call $E \subseteq \underline{r}^n$ pattern-avoiding if for all $d \in \underline{r}^n$, we have $e \in E$ such that $e_i \neq d_i$ for all $i \in \underline{n}$.

Lemma

Let $n \in \mathbb{N}$, $r \ge 2$ and let $E \subseteq \underline{r}^n$ be pattern-avoiding. Then $|E| \ge (\frac{r}{r-1})^n$.

Definition

Let $n, r \in \mathbb{N}$. We call $E \subseteq \underline{r}^n$ pattern-avoiding if for all $d \in \underline{r}^n$, we have $e \in E$ such that $e_i \neq d_i$ for all $i \in \underline{n}$.

Lemma

Let $n \in \mathbb{N}$, $r \ge 2$ and let $E \subseteq \underline{r}^n$ be pattern-avoiding. Then $|E| \ge (\frac{r}{r-1})^n$.

Proof.

▶ For $e \in E$ let $D(e) := \{d \in \underline{r}^n \mid \forall i \in \underline{n} : d_i \neq e_i\}.$

Definition

Let $n, r \in \mathbb{N}$. We call $E \subseteq \underline{r}^n$ pattern-avoiding if for all $d \in \underline{r}^n$, we have $e \in E$ such that $e_i \neq d_i$ for all $i \in \underline{n}$.

Lemma

Let $n \in \mathbb{N}$, $r \ge 2$ and let $E \subseteq \underline{r}^n$ be pattern-avoiding. Then $|E| \ge (\frac{r}{r-1})^n$.

- ▶ For $e \in E$ let $D(e) := \{d \in \underline{r}^n \mid \forall i \in \underline{n} : d_i \neq e_i\}.$
- ▶ We have $|D(e)| = (r-1)^n$ for all $e \in E$.

Definition

Let $n, r \in \mathbb{N}$. We call $E \subseteq \underline{r}^n$ pattern-avoiding if for all $d \in \underline{r}^n$, we have $e \in E$ such that $e_i \neq d_i$ for all $i \in \underline{n}$.

Lemma

Let $n \in \mathbb{N}$, $r \ge 2$ and let $E \subseteq \underline{r}^n$ be pattern-avoiding. Then $|E| \ge (\frac{r}{r-1})^n$.

- ▶ For $e \in E$ let $D(e) := \{d \in \underline{r}^n \mid \forall i \in \underline{n} : d_i \neq e_i\}.$
- ▶ We have $|D(e)| = (r-1)^n$ for all $e \in E$.
- ▶ We have $\underline{r}^n = \bigcup_{e \in E} D(e)$.

Definition

Let $n, r \in \mathbb{N}$. We call $E \subseteq \underline{r}^n$ pattern-avoiding if for all $d \in \underline{r}^n$, we have $e \in E$ such that $e_i \neq d_i$ for all $i \in \underline{n}$.

Lemma

Let $n \in \mathbb{N}$, $r \ge 2$ and let $E \subseteq \underline{r}^n$ be pattern-avoiding. Then $|E| \ge (\frac{r}{r-1})^n$.

- ▶ For $e \in E$ let $D(e) := \{d \in \underline{r}^n \mid \forall i \in \underline{n} : d_i \neq e_i\}.$
- ▶ We have $|D(e)| = (r-1)^n$ for all $e \in E$.
- ▶ We have $\underline{r}^n = \bigcup_{e \in E} D(e)$.
- ▶ Therefore $r^n = |\bigcup_{e \in E} D(e)| \le \sum_{e \in E} |D(e)| = |E| \cdot (r-1)^n$.

Definition

Let $n, r \in \mathbb{N}$. We call $E \subseteq \underline{r}^n$ pattern-avoiding if for all $d \in \underline{r}^n$, we have $e \in E$ such that $e_i \neq d_i$ for all $i \in \underline{n}$.

Lemma

Let $n \in \mathbb{N}$, $r \ge 2$ and let $E \subseteq \underline{r}^n$ be pattern-avoiding. Then $|E| \ge (\frac{r}{r-1})^n$.

- ▶ For $e \in E$ let $D(e) := \{d \in \underline{r}^n \mid \forall i \in \underline{n} : d_i \neq e_i\}.$
- ▶ We have $|D(e)| = (r-1)^n$ for all $e \in E$.
- ▶ We have $\underline{r}^n = \bigcup_{e \in E} D(e)$.
- ▶ Therefore $r^n = |\bigcup_{e \in E} D(e)| \le \sum_{e \in E} |D(e)| = |E| \cdot (r-1)^n$.
- ▶ Hence $(\frac{r}{r-1})^n \le |E|$

Monomials of absorbing polynomials

Lemma

Let K be an integral domain, let $S \subseteq K \setminus \{0\}$ and let $r \in \mathbb{N}$ such that X^r is constant on S. Let $p \in K[X_1, \ldots, X_n]$ be absorbing at $s \in S^n$ and let $t \in S^n$ with $p(t) \neq 0$. Then $M(p) \geq (\frac{r}{r-1})^n$.

Monomials of absorbing polynomials

Lemma

Let K be an integral domain, let $S \subseteq K \setminus \{0\}$ and let $r \in \mathbb{N}$ such that X^r is constant on S. Let $p \in K[X_1, \ldots, X_n]$ be absorbing at $s \in S^n$ and let $t \in S^n$ with $p(t) \neq 0$. Then $M(p) \geq (\frac{r}{r-1})^n$.

Proof.

▶ If $p = \sum_{e \in E} c(e)X^e$, where $E \subseteq \mathbb{N}^n$ is the set of exponents, then

$$E' := \{(e_1 \mod r, \dots, e_n \mod r) \mid e \in E\} \subseteq \{0, \dots r - 1\}^n$$

must be pattern-avioding.

Monomials of absorbing polynomials

Lemma

Let K be an integral domain, let $S \subseteq K \setminus \{0\}$ and let $r \in \mathbb{N}$ such that X^r is constant on S. Let $p \in K[X_1, \ldots, X_n]$ be absorbing at $s \in S^n$ and let $t \in S^n$ with $p(t) \neq 0$. Then $M(p) \geq (\frac{r}{r-1})^n$.

Proof.

▶ If $p = \sum_{e \in E} c(e)X^e$, where $E \subseteq \mathbb{N}^n$ is the set of exponents, then

$$E' := \{(e_1 \mod r, \dots, e_n \mod r) \mid e \in E\} \subseteq \{0, \dots r-1\}^n$$

must be pattern-avioding.

► Therefore $|E| \ge |E'| \ge (\frac{r}{r-1})^n$.

Theorem

Let $n \in \mathbb{N}$, let \mathbb{K} be a field and let $S_1, \ldots, S_n \subseteq \mathbb{K}$ be finite. Let $s \in (S_1 \setminus \{0\}) \times \cdots \times (S_n \setminus \{0\})$ and let $p \in \mathbb{K}[X_1, \ldots, X_n]$ be absorbing at s for $Q := S_1 \times \cdots \times S_n$. Assume that $\deg_{X_i} p < |S_i|$ for all $i \in \underline{n}$ and that p is nonzero on Q. Then $M(p) \geq 2^n$.

Theorem

Let $n \in \mathbb{N}$, let \mathbb{K} be a field and let $S_1, \ldots, S_n \subseteq \mathbb{K}$ be finite. Let $s \in (S_1 \setminus \{0\}) \times \cdots \times (S_n \setminus \{0\})$ and let $p \in \mathbb{K}[X_1, \ldots, X_n]$ be absorbing at s for $Q := S_1 \times \cdots \times S_n$. Assume that $\deg_{X_i} p < |S_i|$ for all $i \in \underline{n}$ and that p is nonzero on Q. Then $M(p) \geq 2^n$.

Sketch of proof:

▶ Special case: $S := S_1 = \cdots = S_n$.

Theorem

Let $n \in \mathbb{N}$, let \mathbb{K} be a field and let $S_1, \ldots, S_n \subseteq \mathbb{K}$ be finite. Let $s \in (S_1 \setminus \{0\}) \times \cdots \times (S_n \setminus \{0\})$ and let $p \in \mathbb{K}[X_1, \ldots, X_n]$ be absorbing at s for $Q := S_1 \times \cdots \times S_n$. Assume that $\deg_{X_i} p < |S_i|$ for all $i \in \underline{n}$ and that p is nonzero on Q. Then $M(p) \geq 2^n$.

- ▶ Special case: $S := S_1 = \cdots = S_n$.
- ▶ Let r := |S| and let $p = \sum_{e \in E} c(e)X^e$.

Theorem

Let $n \in \mathbb{N}$, let \mathbb{K} be a field and let $S_1, \ldots, S_n \subseteq \mathbb{K}$ be finite. Let $s \in (S_1 \setminus \{0\}) \times \cdots \times (S_n \setminus \{0\})$ and let $p \in \mathbb{K}[X_1, \ldots, X_n]$ be absorbing at s for $Q := S_1 \times \cdots \times S_n$. Assume that $\deg_{X_i} p < |S_i|$ for all $i \in \underline{n}$ and that p is nonzero on Q. Then $M(p) \geq 2^n$.

- ▶ Special case: $S := S_1 = \cdots = S_n$.
- ▶ Let r := |S| and let $p = \sum_{e \in E} c(e)X^e$.
- ▶ Use the degree bound to show that the set $E \subseteq \{0, ..., r-1\}^n$ has the following property:

Theorem

Let $n \in \mathbb{N}$, let \mathbb{K} be a field and let $S_1, \ldots, S_n \subseteq \mathbb{K}$ be finite. Let $s \in (S_1 \setminus \{0\}) \times \cdots \times (S_n \setminus \{0\})$ and let $p \in \mathbb{K}[X_1, \ldots, X_n]$ be absorbing at s for $Q := S_1 \times \cdots \times S_n$. Assume that $\deg_{X_i} p < |S_i|$ for all $i \in \underline{n}$ and that p is nonzero on Q. Then $M(p) \geq 2^n$.

- ▶ Special case: $S := S_1 = \cdots = S_n$.
- ▶ Let r := |S| and let $p = \sum_{e \in E} c(e)X^e$.
- ▶ Use the degree bound to show that the set $E \subseteq \{0, ..., r-1\}^n$ has the following property:
- ▶ For all $d \in E$ and $i \in \underline{n}$, we have $e \in E$ such that $d_i \neq e_i$ and $d_j = e_j$ for all $j \neq i$.

Theorem

Let $n \in \mathbb{N}$, let \mathbb{K} be a field and let $S_1, \ldots, S_n \subseteq \mathbb{K}$ be finite. Let $s \in (S_1 \setminus \{0\}) \times \cdots \times (S_n \setminus \{0\})$ and let $p \in \mathbb{K}[X_1, \ldots, X_n]$ be absorbing at s for $Q := S_1 \times \cdots \times S_n$. Assume that $\deg_{X_i} p < |S_i|$ for all $i \in \underline{n}$ and that p is nonzero on Q. Then $M(p) \geq 2^n$.

- ▶ Special case: $S := S_1 = \cdots = S_n$.
- ▶ Let r := |S| and let $p = \sum_{e \in E} c(e)X^e$.
- ▶ Use the degree bound to show that the set $E \subseteq \{0, ..., r-1\}^n$ has the following property:
- ▶ For all $d \in E$ and $i \in \underline{n}$, we have $e \in E$ such that $d_i \neq e_i$ and $d_j = e_j$ for all $j \neq i$.
- Show that every nonempty set E with this property satisfies $|E| \ge 2^n$.

Theorem 1

Let K be an integral domain. Let $Q = \{a_1, b_1\} \times \cdots \times \{a_n, b_n\} \subseteq (K \setminus \{0\})^n$ with $a_i \neq b_i$ and let $r \in \mathbb{N}$ such that $a_i^r = b_i^r$ for all $i \in \underline{n}$. Let $t = \frac{r}{r-1}$. Let $p \in K[X_1, \ldots, X_n]$ and let $W := \{x \in Q \mid p(x) \neq 0\}$. If $W \neq \emptyset$, then $|W| \geq 2^{n - \log_t(M(p))}$.

Proof.

• We prove only the case $a:=a_1=\cdots=a_n, b:=b_1=\cdots=b_n$.

- We prove only the case $a:=a_1=\cdots=a_n, b:=b_1=\cdots=b_n$.
- ▶ We prove $|W| \ge 2^{n \log_t(M(p))}$ by induction on |W|:

- \blacktriangleright We prove only the case $a:=a_1=\cdots=a_n, b:=b_1=\cdots=b_n.$
- ▶ We prove $|W| \ge 2^{n \log_t(M(p))}$ by induction on |W|:
- If |W| = 1, then p is absorbing and therefore $M(p) \ge t^n$, hence $\log_t(M(p)) \ge n$, so $2^{n \log_t(M(p))} \le 1 = |W|$.

- \blacktriangleright We prove only the case $a:=a_1=\cdots=a_n, b:=b_1=\cdots=b_n$.
- ▶ We prove $|W| \ge 2^{n-\log_t(M(p))}$ by induction on |W|:
- If |W| = 1, then p is absorbing and therefore $M(p) \ge t^n$, hence $\log_t(M(p)) \ge n$, so $2^{n \log_t(M(p))} \le 1 = |W|$.
- ▶ If |W| > 1, choose $u \neq v \in W$ and $i \in \underline{n}$ with $a = u_i$ and $v_i = b$.

- \blacktriangleright We prove only the case $a:=a_1=\cdots=a_n, b:=b_1=\cdots=b_n.$
- ▶ We prove $|W| \ge 2^{n-\log_t(M(p))}$ by induction on |W|:
- If |W| = 1, then p is absorbing and therefore $M(p) \ge t^n$, hence $\log_t(M(p)) \ge n$, so $2^{n \log_t(M(p))} \le 1 = |W|$.
- ▶ If |W| > 1, choose $u \neq v \in W$ and $i \in \underline{n}$ with $a = u_i$ and $v_i = b$.
- ▶ Let $Q' := \{a, b\}^{n-1}$

- \blacktriangleright We prove only the case $a:=a_1=\cdots=a_n, b:=b_1=\cdots=b_n.$
- ▶ We prove $|W| \ge 2^{n-\log_t(M(p))}$ by induction on |W|:
- If |W| = 1, then p is absorbing and therefore $M(p) \ge t^n$, hence $\log_t(M(p)) \ge n$, so $2^{n \log_t(M(p))} \le 1 = |W|$.
- ▶ If |W| > 1, choose $u \neq v \in W$ and $i \in \underline{n}$ with $a = u_i$ and $v_i = b$.
- ▶ Let $Q' := \{a, b\}^{n-1}$
- ▶ Let $p_a := p_{x_i = a}, p_b := p_{x_i = b}$ and let $W_a := \{ w \in Q' \mid p_a(w) \neq 0 \}, W_b := \{ w \in Q' \mid p_b(w) \neq 0 \}.$

- \blacktriangleright We prove only the case $a:=a_1=\cdots=a_n, b:=b_1=\cdots=b_n.$
- ▶ We prove $|W| \ge 2^{n-\log_t(M(p))}$ by induction on |W|:
- If |W| = 1, then p is absorbing and therefore $M(p) \ge t^n$, hence $\log_t(M(p)) \ge n$, so $2^{n \log_t(M(p))} \le 1 = |W|$.
- ▶ If |W| > 1, choose $u \neq v \in W$ and $i \in \underline{n}$ with $a = u_i$ and $v_i = b$.
- ▶ Let $Q' := \{a, b\}^{n-1}$
- ▶ Let $p_a := p_{x_i=a}, p_b := p_{x_i=b}$ and let $W_a := \{ w \in Q' \mid p_a(w) \neq 0 \}, W_b := \{ w \in Q' \mid p_b(w) \neq 0 \}.$
- ▶ We have $|W_a| \le |W_b|$ without loss.

- \blacktriangleright We prove only the case $a:=a_1=\cdots=a_n, b:=b_1=\cdots=b_n.$
- ▶ We prove $|W| \ge 2^{n-\log_t(M(p))}$ by induction on |W|:
- If |W| = 1, then p is absorbing and therefore $M(p) \ge t^n$, hence $\log_t(M(p)) \ge n$, so $2^{n \log_t(M(p))} \le 1 = |W|$.
- ▶ If |W| > 1, choose $u \neq v \in W$ and $i \in \underline{n}$ with $a = u_i$ and $v_i = b$.
- ▶ Let $Q' := \{a, b\}^{n-1}$
- ▶ Let $p_a := p_{x_i=a}, p_b := p_{x_i=b}$ and let $W_a := \{ w \in Q' \mid p_a(w) \neq 0 \}, W_b := \{ w \in Q' \mid p_b(w) \neq 0 \}.$
- ▶ We have $|W_a| \le |W_b|$ without loss.
- Use the induction hypothesis on p_a to get $|W| = |W_a| + |W_b| \ge 2|W_a| \ge 2 \cdot 2^{(n-1)-\log_t(M(p_a))} \ge 2^{n-\log_t(M(p))}$

Lemma

Let K be an integral domain, let $S \subseteq K \setminus \{0\}$ and let $r \in \mathbb{N}$ such that $\forall x \in S : x^r = 1$. Let $t = \frac{r}{r-1}$. Let $p \in K[X_1, \ldots, X_n]$ be a polynomial that does not vanish on S^n . Let $a \in S^n$. Then there exists a $b \in S^n$ with $p(b) \neq 0$ and $d(a,b) := |\{i \mid a_i \neq b_i\}| \leq \log_t(M(p))$.

Lemma

Let K be an integral domain, let $S \subseteq K \setminus \{0\}$ and let $r \in \mathbb{N}$ such that $\forall x \in S : x^r = 1$. Let $t = \frac{r}{r-1}$. Let $p \in K[X_1, \ldots, X_n]$ be a polynomial that does not vanish on S^n . Let $a \in S^n$. Then there exists a $b \in S^n$ with $p(b) \neq 0$ and $d(a,b) := |\{i \mid a_i \neq b_i\}| \leq \log_t(M(p))$.

Proof.

▶ Choose $b \in S^n$ with $p(b) \neq 0$ such that $\{i \mid a_i \neq b_i\} = \{i_1, \dots, i_k\}$ has minimal size.

Lemma

Let K be an integral domain, let $S \subseteq K \setminus \{0\}$ and let $r \in \mathbb{N}$ such that $\forall x \in S : x^r = 1$. Let $t = \frac{r}{r-1}$. Let $p \in K[X_1, \ldots, X_n]$ be a polynomial that does not vanish on S^n . Let $a \in S^n$. Then there exists a $b \in S^n$ with $p(b) \neq 0$ and $d(a,b) := |\{i \mid a_i \neq b_i\}| \leq \log_t(M(p))$.

- ▶ Choose $b \in S^n$ with $p(b) \neq 0$ such that $\{i \mid a_i \neq b_i\} = \{i_1, \dots, i_k\}$ has minimal size.
- Let h be the polynomial obtained from setting $x_i = b_i$ for all $i \in \underline{n}$ with $a_i = b_i$.

Lemma

Let K be an integral domain, let $S \subseteq K \setminus \{0\}$ and let $r \in \mathbb{N}$ such that $\forall x \in S : x^r = 1$. Let $t = \frac{r}{r-1}$. Let $p \in K[X_1, \ldots, X_n]$ be a polynomial that does not vanish on S^n . Let $a \in S^n$. Then there exists a $b \in S^n$ with $p(b) \neq 0$ and $d(a,b) := |\{i \mid a_i \neq b_i\}| \leq \log_t(M(p))$.

- ▶ Choose $b \in S^n$ with $p(b) \neq 0$ such that $\{i \mid a_i \neq b_i\} = \{i_1, \dots, i_k\}$ has minimal size.
- Let h be the polynomial obtained from setting $x_i = b_i$ for all $i \in \underline{n}$ with $a_i = b_i$.
- Now h depends on the k remaining variables and is absorbing on $\{a_{i_1},b_{i_1}\}\times\cdots\times\{a_{i_k},b_{i_k}\}$ by minimality.

Lemma

Let K be an integral domain, let $S \subseteq K \setminus \{0\}$ and let $r \in \mathbb{N}$ such that $\forall x \in S : x^r = 1$. Let $t = \frac{r}{r-1}$. Let $p \in K[X_1, \ldots, X_n]$ be a polynomial that does not vanish on S^n . Let $a \in S^n$. Then there exists a $b \in S^n$ with $p(b) \neq 0$ and $d(a,b) := |\{i \mid a_i \neq b_i\}| \leq \log_t(M(p))$.

- ▶ Choose $b \in S^n$ with $p(b) \neq 0$ such that $\{i \mid a_i \neq b_i\} = \{i_1, \dots, i_k\}$ has minimal size.
- Let h be the polynomial obtained from setting $x_i = b_i$ for all $i \in \underline{n}$ with $a_i = b_i$.
- Now h depends on the k remaining variables and is absorbing on $\{a_{i_1}, b_{i_1}\} \times \cdots \times \{a_{i_k}, b_{i_k}\}$ by minimality.
- ▶ Hence $M(p) \ge M(h) \ge t^k$ and therefore $\log_t(M(p)) \ge k$.

Theorem

Let $\mathbb{K} = GF(q)$ be a finite field, let $S \subseteq K \setminus \{0\}$ and let $t = \frac{q-1}{q-2}$. Let $s \in S^n$. For $m \ge 2$ let $T_m := \{x \in S^n \mid \log_t(m) \ge d(s,x)\}$. Let $p \in K[X_1, \ldots, X_n]$ with $M(p) \le m$. Then $|T_m| \le (n|S|)^{\log_t(m)}$ and

$$\forall x \in S^n : p(x) = 0 \iff \forall x \in T_m : p(x) = 0.$$

Proof.

▶ The property $\forall x \in S^n : p(x) = 0 \iff \forall x \in T_m : p(x) = 0$ follows from the last lemma because $x^{q-1} = 1$ on S.

Theorem

Let $\mathbb{K} = GF(q)$ be a finite field, let $S \subseteq K \setminus \{0\}$ and let $t = \frac{q-1}{q-2}$. Let $s \in S^n$. For $m \ge 2$ let $T_m := \{x \in S^n \mid \log_t(m) \ge d(s,x)\}$. Let $p \in K[X_1, \ldots, X_n]$ with $M(p) \le m$. Then $|T_m| \le (n|S|)^{\log_t(m)}$ and

$$\forall x \in S^n : p(x) = 0 \iff \forall x \in T_m : p(x) = 0.$$

- ▶ The property $\forall x \in S^n : p(x) = 0 \iff \forall x \in T_m : p(x) = 0$ follows from the last lemma because $x^{q-1} = 1$ on S.
- ▶ The bound $|T_m| \le (n|S|)^{\log_t(m)}$ can be seen as follows:

Theorem

Let $\mathbb{K} = GF(q)$ be a finite field, let $S \subseteq K \setminus \{0\}$ and let $t = \frac{q-1}{q-2}$. Let $s \in S^n$. For $m \ge 2$ let $T_m := \{x \in S^n \mid \log_t(m) \ge d(s,x)\}$. Let $p \in K[X_1, \ldots, X_n]$ with $M(p) \le m$. Then $|T_m| \le (n|S|)^{\log_t(m)}$ and

$$\forall x \in S^n : p(x) = 0 \iff \forall x \in T_m : p(x) = 0.$$

- ▶ The property $\forall x \in S^n : p(x) = 0 \iff \forall x \in T_m : p(x) = 0$ follows from the last lemma because $x^{q-1} = 1$ on S.
- ▶ The bound $|T_m| \le (n|S|)^{\log_t(m)}$ can be seen as follows:
- ▶ Let $k = \lfloor \log_t(m) \rfloor$. Every $t \in T_m$ can be identified with at least one pair (I, v) where $v \in S^k$ and $I \subseteq \underline{n}$ with |I| = k.

Theorem

Let $\mathbb{K} = GF(q)$ be a finite field, let $S \subseteq K \setminus \{0\}$ and let $t = \frac{q-1}{q-2}$. Let $s \in S^n$. For $m \ge 2$ let $T_m := \{x \in S^n \mid \log_t(m) \ge d(s,x)\}$. Let $p \in K[X_1, \dots, X_n]$ with $M(p) \le m$. Then $|T_m| \le (n|S|)^{\log_t(m)}$ and

$$\forall x \in S^n : p(x) = 0 \iff \forall x \in T_m : p(x) = 0.$$

- ▶ The property $\forall x \in S^n : p(x) = 0 \iff \forall x \in T_m : p(x) = 0$ follows from the last lemma because $x^{q-1} = 1$ on S.
- ▶ The bound $|T_m| \le (n|S|)^{\log_t(m)}$ can be seen as follows:
- ▶ Let $k = \lfloor \log_t(m) \rfloor$. Every $t \in T_m$ can be identified with at least one pair (I, v) where $v \in S^k$ and $I \subseteq \underline{n}$ with |I| = k.
- ▶ Therefore $|T_m| \le |S|^k \cdot {n \choose k} \le (n \cdot |S|)^k$.

Our results about absorbing polynomials can be used to prove the following:

Our results about absorbing polynomials can be used to prove the following:

Lemma

Let t be a term in n variables over the alternating group $(A_4, \cdot, (-)^{-1})$. Assume that the term function t^{A_4} satisfies $1 \in \{x_1, \dots, x_n\} \Rightarrow t^{A_4}(x_1, \dots, x_n) = 1$ and that t^{A_4} is not always 1. Then t has length at least 2^{n-2} .

Our results about absorbing polynomials can be used to prove the following:

Lemma

Let t be a term in n variables over the alternating group $(A_4, \cdot, (-)^{-1})$. Assume that the term function t^{A_4} satisfies $1 \in \{x_1, \dots, x_n\} \Rightarrow t^{A_4}(x_1, \dots, x_n) = 1$ and that t^{A_4} is not always 1. Then t has length at least 2^{n-2} .

Example

The term $t(x_1, x_2) = [x_1, x_2] = x_1^{-1} x_2^{-1} x_1 x_2$ satisfies these properties.

Our results about absorbing polynomials can be used to prove the following:

Lemma

Let t be a term in n variables over the alternating group $(A_4, \cdot, (-)^{-1})$. Assume that the term function t^{A_4} satisfies $1 \in \{x_1, \dots, x_n\} \Rightarrow t^{A_4}(x_1, \dots, x_n) = 1$ and that t^{A_4} is not always 1. Then t has length at least 2^{n-2} .

Example

The term $t(x_1, x_2) = [x_1, x_2] = x_1^{-1} x_2^{-1} x_1 x_2$ satisfies these properties.

Note: It is known that identity testing over $(A_4, \cdot, (-)^{-1})$ (but not over $(A_4, \cdot, (-)^{-1}, [\cdot, \cdot])$) can be done in polynomial time. This does not yield a better algorithm, but it might guide the way towards identity testing over $(S_4, \cdot, (-)^{-1})$.

Problem 1

To get a quasipolynomial-time algorithm for identity testing over (S_4, \cdot) , we would need to prove the following conjecture:

Problem 1

To get a quasipolynomial-time algorithm for identity testing over (S_4, \cdot) , we would need to prove the following conjecture:

Conjecture

Let $\alpha \in \mathbb{K} = GF(4)$ be an element of order 3. Let $u(x) := \alpha^x$ for $x \in \mathbb{Z}_3$. Let $n, k \in \mathbb{N}$. Let $E \subseteq \{0,1\}^n$ and let $c : E \times \underline{k} \to \mathbb{Z}_3$. Let $f : \{1,-1\}^n \to \mathbb{K}$ be defined by

$$f(x) = \sum_{i \in \underline{k}} u(\sum_{e \in E} c(e, i)x^e).$$

Assume that f(x) is nonzero for a unique $x \in \{-1,1\}^n$. Then

$$|\{(e,i)\in E\times\underline{k}\mid c(e,i)\neq 0\}|\geq 2^{c\sqrt{n}}.$$

for some universal c > 0.