Modern Machine Learning Gauss-Markov Theorem

Kenneth E. Barner

Department of Electrical and Computer Engineering

University of Delaware

Gauss-Markov Theorem

Objective: Prove that the least-squares determine linear model parameters, $\hat{\beta}_{LS}$, have the smallest variance among all linear unbiased estimates

Gauss-Markov Theorem

Theorem Assumptions:

- $y = X\beta + \epsilon$,
 - where **X** is fixed (non-random) and ϵ components are iid $N(0, \sigma^2)$
- $\widehat{m{\beta}} = \mathbf{C}\mathbf{y}$ be a linear unbiased estimator of $m{\beta}$

Then if for all $\boldsymbol{a} \in \mathbb{R}^{(p+1)}$

$$MSE(\boldsymbol{a}^T \widehat{\boldsymbol{\beta}}_{LS}) \leq MSE(\boldsymbol{a}^T \widehat{\boldsymbol{\beta}})$$
 [MSE = Mean Squared Error]

We say that $\widehat{m{\beta}}_{LS}$ is the Best Linear Unbiased Estimator (BLUE) of $m{eta}$

Gauss-Markov Theorem

To prove the result consider first the: bias-variance decomposition of the MSE Let $Z = a^T \beta$ and $\widehat{Z} = a^T \widehat{\beta}$ then

$$MSE(\boldsymbol{a}^{T}\widehat{\boldsymbol{\beta}}) = E\left[\left(\boldsymbol{a}^{T}(\boldsymbol{\beta} - \widehat{\boldsymbol{\beta}})\right)^{2}\right] = E\left[\left(\boldsymbol{Z} - \widehat{\boldsymbol{Z}}\right)^{2}\right]$$

$$= E\left[\boldsymbol{Z}^{2} - 2\boldsymbol{Z}\widehat{\boldsymbol{Z}} + \widehat{\boldsymbol{Z}}^{2}\right]$$

$$= E\left[\boldsymbol{Z}^{2}\right] - 2E\left[\boldsymbol{Z}\widehat{\boldsymbol{Z}}\right] + E\left[\widehat{\boldsymbol{Z}}^{2}\right]$$

$$= \boldsymbol{Z}^{2} - 2\boldsymbol{Z}E\left[\widehat{\boldsymbol{Z}}\right] + Var\left[\widehat{\boldsymbol{Z}}\right] + E\left[\widehat{\boldsymbol{Z}}\right]^{2}$$

$$= \left(\boldsymbol{Z} - E\left[\widehat{\boldsymbol{Z}}\right]\right)^{2} + Var\left[\widehat{\boldsymbol{Z}}\right]$$
(*)

bias²: = $(\mathbf{Z} - E[\widehat{\mathbf{Z}}])^2$, variance: = $Var[\widehat{\mathbf{Z}}]$

Therefore, if $\hat{\beta}$ is unbiased then $MSE(a^T\hat{\beta}) = Var[\hat{Z}]$

NOTE: derivation (*) above utilizes known result $Var[\widehat{\mathbf{Z}}] = E[\widehat{\mathbf{Z}}^2] - E[\widehat{\mathbf{Z}}]^2$

To prove the Gauss-Markov theorem it suffices to show that

$$Var(\boldsymbol{a}^T\widehat{\boldsymbol{\beta}}_{LS}) \leq Var(\boldsymbol{a}^T\widehat{\boldsymbol{\beta}}), \forall \boldsymbol{a} \in \mathbb{R}^{(p+1)}$$

Proof: Let $\widehat{\beta} = \mathbf{C}\mathbf{y}$, where $\mathbf{C} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T + \mathbf{D}$, for some $\mathbf{D} \in \mathbb{R}^{(p+1)\times n}$ then

$$E[\widehat{\boldsymbol{\beta}}] = E\left[\left((\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T + \mathbf{D}\right)\mathbf{y}\right]$$

$$= E\left[\left((\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T + \mathbf{D}\right)(\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon})\right]$$

$$= (\mathbf{I} + \mathbf{D}\mathbf{X})\boldsymbol{\beta}$$

Observation: It *must* hold that $\mathbf{DX} = \mathbf{0}$ for $\widehat{\boldsymbol{\beta}}$ to be unbiased

Now calculate $Var(\boldsymbol{a}^T\widehat{\boldsymbol{\beta}})$

Then we have

$$Var(\widehat{\boldsymbol{\beta}}) = Var(\mathbf{C}\mathbf{y})$$

$$= \mathbf{C} \, Var(\mathbf{y}) \mathbf{C}^T = \sigma^2 \mathbf{C} \mathbf{C}^T \quad [\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon} \Longrightarrow Var(\mathbf{y}) = \sigma^2 \boldsymbol{I}]$$

$$= \sigma^2 \left((\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T + \mathbf{D} \right) \left((\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T + \mathbf{D} \right)^T$$

$$= \sigma^2 (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} + \sigma^2 (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{D}^T$$

$$+ \sigma^2 \mathbf{D} \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} + \sigma^2 \mathbf{D} \mathbf{D}^T$$

$$= \sigma^2 [(\mathbf{X}^T \mathbf{X})^{-1} + \mathbf{D} \mathbf{D}^T] \quad [\text{since } \mathbf{D} \mathbf{X} = \mathbf{0}]$$

Note: $\mathbf{X}^T \mathbf{X}$ and $\mathbf{D} \mathbf{D}^T$ are positive semidefinite

$$\Rightarrow a^T (\mathbf{X}^T \mathbf{X})^{-1} a \ge 0, \qquad a^T (\mathbf{D}^T \mathbf{D}) a \ge 0$$

Therefore

$$\operatorname{Var}(\boldsymbol{a}^{T}\hat{\boldsymbol{\beta}}) = \underline{\boldsymbol{a}^{T}\sigma^{2}[(\mathbf{X}^{T}\mathbf{X})^{-1} + \mathbf{D}\mathbf{D}^{T}]\boldsymbol{a}} \ge \underline{\boldsymbol{a}^{T}\sigma^{2}(\mathbf{X}^{T}\mathbf{X})^{-1}\boldsymbol{a}}$$
$$\ge \operatorname{Var}(\boldsymbol{a}^{T}\hat{\boldsymbol{\beta}}_{LS})$$

Since
$$Var(\mathbf{a}^T\hat{\beta}_{LS}) = Var(\mathbf{a}^T(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{y}) = \mathbf{a}^T\sigma^2(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{a}$$

This concludes the proof

Result: The Least Squares estimate $\hat{\beta}_{LS}$ is unbiased and has the smallest weight variance \Longrightarrow it is the Best Linear Unbiased Estimate (BLUE)