

Track-based Alignment Paper

Jim Pivarski

Texas A&M University

Gervasio Gomez

Instituto de Fisica de Cantabria

23 July, 2009

Contents and structure

Jim Pivarski 2/11

1	Introd	uction and Geometry	1
	1.1	Geometry of the muon system	1
	1.2	Coordinate systems and conventions	3
2	Local I	DT Alignment	3
	2.1	Algorithm for General DT Layer Alignment	4
	2.2	Independent Cross-Check of δ_z	6
3	Local (CSC Alignment	7
	3.1	Overlap Method Algorithm	7
	3.2	Monte Carlo Studies	9
	3.3	Alignment Results	10
4	Global	Muon Alignment	12
	4.1	The HIP Algorithm	12
	4.2	The MilliPede Algorithm	15
	4.3	Monte Carlo Study of the Two Algorithms	16
	4.4	Global Alignment Results and Cross-Checks	17
5	Conclu	isions	21

- ▶ Two independent sections on local alignments
- ▶ One section on global alignment with both procedures
 - algorithms are described separately
 - MC studies and results are shown together
- ▶ 24 pages, 12 figures

Alignment of layers and superlayers in chambers

- ► Two alignments described:
 - 1. layer alignment, including information from tracks, quality control measurements, and photogrammetry
 - superlayer alignment, using tracks and photogrammetry independently, then cross-checked
- Tracks alone are not sufficient to align layers and fit tracks simultaneously: consider shear distortion

- ▶ Because (1) uses all of the available data sources, no cross-checks are possible
- Alignment (2) uses 2-D segment from each superlayer to determine x, ϕ_z , and especially z (width of glue layer)

Local DT alignment

- (a) Interpretation of $\Delta x^{\text{geom}} = \frac{dx}{dz} \delta_z$.
- Superlayer alignment can be performed purely with tracks because each superlayer defines a line with slope $\left(\frac{dx}{dz}\right)$
 - discrepancies between segments $\rightarrow x$ corrections
 - ...as a function of $y \to \phi_z$ corrections
 - ... as a function of $\frac{dx}{dz} \rightarrow z$ corrections
- Good agreement with photogrammetry for all 3 parameters
- Only z was significant (due to glue layer)

Alignment of chambers in rings

- Uses overlap of neighboring chambers for precise relative alignments
- Relative corrections propagated around the ring (full mathematical detail given in note)
- ▶ Tracks-only measurement compares favorably with photogrammetry ($\vec{B} = 0$ beam-halo)

- ► Includes a Monte Carlo study
- Extension to layer alignment mentioned, but not developed (would require more beam-halo to demonstrate)

Global alignment: algorithms

- ▶ 2 sections: HIP and MillePede
- ► Complete description of Muon-HIP, how it differs from standard HIP:
 - ▶ tracks fixed by tracker
 - ▶ treatment of segment residuals: Δx , Δy , $\Delta \frac{dx}{dz}$, $\Delta \frac{dy}{dz}$ including CSC case
 - fit function: convolution of misalignment and propagation errors
 - sample fits (data only)
- ► Complete description of MillePede:
 - how it differs from the general case (fixed tracks)
 - list of potential systematic errors

Jim Pivarski 6/11

$$\begin{pmatrix} \Delta \chi^{\text{geom}} \\ \Delta y^{\text{geom}} \\ \Delta y^{\text{geom}} \\ = \begin{pmatrix} 1 & 0 & -\frac{dx}{dz} & -y\frac{dx}{dz} & x\frac{dx}{dz} & -y \\ 0 & 1 & -\frac{dy}{dz} & -y\frac{dy}{dz} & x\frac{dy}{dz} & x \\ 0 & 0 & 0 & -\frac{dx}{dz}\frac{dy}{dz} & 1 + \left(\frac{dx}{dz}\right)^2 - \frac{dy}{dz} \\ 0 & 0 & 0 & -1 - \left(\frac{dy}{dz}\right)^2 & \frac{dx}{dz}\frac{dy}{dz} & \frac{dx}{dz} \end{pmatrix} \begin{pmatrix} \delta_y \\ \delta_y \end{pmatrix}. (22)$$

(The above matrix is an extension of Equation 17 in §)). For CSCs, the curvilinear residuals $\Delta r p_s^{\rm geom}$ and $\Delta d(r \phi)/dz^{\rm geom}$ introduce corrections suppressed by r, the radial distance to the beamline:

$$\begin{pmatrix} \Delta r \phi^{groin} \\ \Delta \frac{dr \phi^{groin}}{dz} \end{pmatrix} = \begin{pmatrix} 1 & \left[-\frac{x}{r} + 3\left(\frac{x}{r}\right)^2 \right] & -\frac{dx}{dz} & -y \frac{dx}{dz} & x \frac{dx}{dz} & -y \\ 0 & -\frac{dx}{dz} \left(\frac{1}{2r} \right) & 0 & \left[\frac{x}{r} - \frac{dx}{dz} \frac{dy}{dz} \right] & 1 + \left(\frac{dx}{dz} \right)^2 & -\frac{dy}{dz} \end{pmatrix} \begin{pmatrix} \frac{\delta_y}{\delta_y} \\ \frac{\delta_y}{\delta_y} \\ \frac{\delta_y}{\delta_y} \\ \frac{\delta_y}{\delta_y} \end{pmatrix}$$

To extract geometric residuals from the measurements, we construct an ansatz describing all effects and fit it to the data. Each of the four observables is represented by a convolution of a Gaussian and a Lorentzian (to model the power-law scattering tails).

$$f(t; t_0, \sigma, \gamma) = \int_{-\infty}^{\infty} \frac{1}{\pi} \frac{\gamma}{(t - s - t_0)^2 + (\gamma)^2} \times \frac{1}{\sqrt{2\pi}\sigma} \exp\left(\frac{-s^2}{2\sigma^2}\right) ds. \tag{24}$$

Parallel MC studies

Millepede:

Jim Pivarski 7/11

- Cosmic ray Monte Carlo
- Everything the same as data except no tracker misalignment, $\vec{B}(\vec{x})$ errors, or internal DT misalignment
- Width of difference between aligned and true:

HIP	MP	
0.19	0.53	mm
0.84	1.09	mm
0.63	2.76	mm
0.42	1.46	mrad
0.09	1.01	mrad
0.29	0.67	mrad
	0.19 0.84 0.63 0.42 0.09	0.19 0.53 0.84 1.09 0.63 2.76 0.42 1.46 0.09 1.01

Results (cross-checks)

Jim Pivarski

- ► Since the output of alignment is a many-parameter geometry which doesn't mean much to an outside reader, what we show in the Results section are cross-checks
- First check (internal consistency): residuals minimized
- Second: algorithms agree (within uncertainties set by MC)

Results (cross-checks)

Jim Pivarski 9/11

- ► Third check: local and global agree
 - local track fits are partly independent of global track fits
 - higher precision from shorter propagation through only one layer of iron
 - can only quantify relative positions
- Local differences maintained (and slightly improved) despite few-mm scale global corrections

	x (mm)	$\phi_{\mathcal{Y}}$ (mrad)
before align 1 - 2	0.77	1.35
before align 2 - 3	1.08	1.25
before align 3 — 4	1.27	0.96
HIP 1 - 2	0.68	0.56
HIP 2 - 3	0.69	0.56
HIP 3 − 4	1.09	0.71
Millepede 1 – 2	0.67	0.80
Millepede 2 — 3	0.78	0.76
Millepede 3 — 4	0.98	0.70

Results (cross-checks)

Jim Pivarski 10/11

- ► Fourth: split each cosmic ray into two LHC-like halves, fit top and bottom independently
 - any mismatch in $1/p_T$ is purely instrumental
 - ▶ select $p_T \gtrsim 200$ GeV to emphasize contribution of the muon alignment (long lever arm for resolution of small sagitta

Plot from Technical

sigma ~ 0.025 at 200 GeV for a perfect detector

200 GeV

Conclusions

- ► This paper contains many mature analyses, demonstrating the quality of our detectors and tracking, and should be published
- ► Later than nominal CRAFT paper schedule (our apologies!):

DPG/POG reading/review/Pre-approval	July 1
ARC Review	July 15-Aug 15
Collaboration-wide review	Aug 20–Sep 6
Final Tar Ball of Paper to Editors	Sep 20
48 Hour notice for final urgent comments	Sep 24
Submission to J.INST	Sept 30