Analyse de Survie

Professeur Abdellatif El Afia

Rappel: Estimateur de Kaplan Meier (KM)

Hypothèses:

- Censure non-informative.
- Temps de survie indépendants.
- ■l'hypothèse nulle: H_0 :"Il n' y a pas de difference statistique entre les deux groupes"

Estime: la fonction de survie S(t) en fonction en éscaliers.

Utilisé souvent pour mesurer la fraction d'individus en vie pour une certaine durée, et comparer la survie de deux ou plusieurs groupes.

Formule:
$$\hat{S}(t_k) = \prod_{t_k < t} S(t_{k-1}) \left(1 - \frac{d_k}{n_k}\right)$$
 $1 < k < j$
Log-Rank test:: $\chi^2 = \sum_g \frac{(O^g - E^g)^2}{E^g}$

Modèles paramétriques

Risque instantané constant:

□ loi exponentielle

$$f(t/\theta) = \theta e^{-\theta t},$$

$$\lambda(t/\theta) = \theta,$$

$$S(t/\theta) = e^{-\theta t}$$

Risque instantané monotone:

☐ Loi de Weibull

$$f(t \mid \theta, \nu) = \nu \left(\frac{1}{\theta}\right)^{\nu} t^{\nu-1} \exp\left(-\left(\frac{t}{\theta}\right)^{\nu}\right), \quad t \geqslant 0 \text{ et } \theta, \nu > 0$$

$$\lambda(t \mid \theta, \nu) = \nu \left(\frac{1}{\theta}\right)^{\nu} t^{\nu-1}, \quad \square \text{ La loi gaussienne inverse } (\mu, \lambda)$$

$$S(t \mid \theta, \nu) = \exp\left(-\left(\frac{t}{\theta}\right)^{\nu}\right).$$

☐ Loi Gamma

$$f(t \mid \nu, \theta) = \frac{\theta^{\nu}}{\Gamma(\nu)} t^{\nu - 1} e^{-\theta t}, \qquad t \geqslant 0 \text{ et } \theta, \nu > 0$$

$$F(t \mid \nu, \theta) = \frac{1}{\Gamma(\nu)} \int_{0}^{\theta t} u^{\nu - 1} e^{-u} du,$$

$$\lambda(t \mid \nu, \theta) = \frac{f(t \mid \theta, \nu)}{1 - F(t \mid \theta, \nu)},$$

Risque instantané en ∩ et U :

- ☐ Lois de Weibull généralisées
- ☐ La loi Log-logistique de paramètre (α,β)
- (μ,σ)
- \square La loi gaussienne inverse (μ , λ)

$$f(t) = \sqrt{\frac{\lambda}{2\pi t^3}} \exp\left(-\frac{\lambda}{2\mu^2 t} (t - \mu)^2\right),$$

 $\lambda > 0, \qquad t \ge 0$

Semi Paramétriques COX PH

Fonction de risque instantané :

$$\lambda(t, X_1, ..., X_n) = \lambda_0(t) \cdot \exp(\sum_i \beta_i X_i)$$

Risque de base $\lambda_0(t)$, risque instantané quand tout les variables sont nulles.

Hypothèse des risques proportionnels :

l'effet de chaque covariable est indépendant du temps.

Hypothèses:

- Censure non-informative.
- Temps de survie indépendants.
- Risques proportionnels (HR est constant).
- $\ln(h(t,X))$ est une fonction linéaire de X.
- Covariante ne changent pas par rapport au temps.

Utilisé pour :

- Comparer l'éventuel effet d'une covariable sur la survie (coefficient).
- Hazard ration HR
- Courbes de survie ajustées.

Leuker	mia Remissio	n Da	ata
Group	p 1(n = 21)	Gr	oup $2(n = 21)$
t (week	s) log WBC	t (w	eeks) log WBC
6	2.31	1	2.80
6	4.06	1	5.00
6	3.28	2	4.91
7	4.43	2	4.48
10	2.96	3	4.01
13	2.88	4	4.36
16	3.60	4	2.42
22	2.32	5	3.49
23	2.57	5	3.97
6+	3.20	8	3.52
9+	2.80	8	3.05
10+	2.70	8	2.32
11+	2.60	8	3.26
17+	2.16	11	3.49
19+	2.05	11	2.12
20+	2.01	12	1.50
25+	1.78	12	3.06
32+	2.20	15	2.30
32+	2.53	17	2.95
34+	1.47	22	2.73
35+	1.45	23	1.97
+ deno	otes censored	de Surbs	ervation

Model 1:

	Coef.	Std. Err.	Z	p > z	Haz. Ratio	[95% Cor	nf. Interval]
Rx	1.509	0.410	3.68	0.000	4.523	2.027	10.094
No. of s	subjects = 42	Log likeliho	ood = -86.	.380	Prob > chi2	= 0.0001	-

Model 2:

	Coef.	Std. Err.	Z	p > z	Haz. Ratio	[95% Con	[95% Conf. Interval]	
Rx	1.294	0.422	3.07	0.002	3.648	1.595	8.343	
log WBC	1.604	0.329	4.87	0.000	4.975	2.609	9.486	
No. of subje	cts = 42	Log likelihood = -72.280		.280	Prob > chi2 = 0.0000			

Model 3:

	Coef.	Std. Err.	Z	p > z	Haz. Ratio	[95% Co	onf. Interval]
Rx	2.355	1.681	1.40	0.161	10.537	0.391	284.201
log WBC	1.803	0.447	4.04	0.000	6.067	2.528	14.561
$Rx \times \log WBC$	-0.342	0.520	-0.66	0.510	0.710	0.256	1.967
No. of subjects = 42 Log likeliho		000 = -72.	066	Prob > chi2	= 0.0000		

Model 1:

	Coef.	Std. Err.	td. Err. z $p >$		Haz. Ratio	[95% Con	f. Interval]
Rx	1.509	0.410	3.68	0.000	4 523	2.027	10.094
No. of s	subjects = 42	Log likeliho	ood = -86.	380	Prob > chi2	= 0.0001	

Model 2:

	Coef.	Std. Err.	Z	p > z	Haz. Ratio	[95% Con	f. Interval]
Rx	1.294	0.422	3.07	0.002	3.648	1.595	8.343
log WBC	1.604	0.329	4.87	0.000	4.975	2.609	9.486
No. of subje	cts = 42	Log likeliho	pod = -72	.280	Prob > chi2	= 0.0000	

Model 3:

	Coef.	Std. Err.	Z	p > z	Haz. Ratio	[95% Co	onf. Interval]
Rx	2.355	1.681	1.40	0.161	10.537	0.391	284.201
log WBC	1.803	0.447	4.04	0.000	6.067	2.528	14.561
$Rx \times \log WBC$	-0.342	0.520	-0.66	0.510	0.710	0.256	1.967
No of subjects -	_ 12	Log likelihe	ood - 72	066	Prob > chi2	_ 0.0000	

No. of subjects = 42 Log likelihood = -72.066 Prob > chi2 = 0.0000

Model 1:

	Coef.	Std. Err.	Z	p > z	Haz. Ratio	[95% Cor	nf. Interval]
Rx	1.509	0.410	3.68	0.000	4.523	2.027	10.094
No. of s	subjects = 42	Log likeliho	ood = -86.	.380	Prob > chi2	= 0.0001	-

Model 2:

19	Coef.	Std. Err.	Z	p > z	Haz. Ratio	[95% Con	f. Interval]
Rx	1.294	0.422	3.07	0.002	3.648	1.595	8.343
log WBC	1.604	0.329	4.87	0.000	4.975	2.609	9.486
No. of subje	cts = 42	Log likeliho	ood = -72	280	Prob > chi2	= 0.0000	

Model 3:

-	Coef.	Std. Err.	Z	p > z	Haz. Ratio	[95% Co	onf. Interval]
Rx	2.355	1.681	1.40	0.161	10.537	0.391	284.201
log WBC	1.803	0.447	4.04	0.000	6.067	2.528	14.561
$Rx \times \log WBC$	-0.342	0.520	-0.66	0.510	0.710	0.256	1.967
No of subjects	_ 12	Log likelih	and - 72	066	Duch > abi2	_ 0 0000	

No. of subjects = 42 Log likelihood = -72.066 Prob > chi2 = 0.0000

Model 1:

	Coef.	Std. Err.	Z	p > z	Haz. Ratio	[95% Cor	f. Interval]	_
Rx	1.509	0.410	3.68	0.000	4.523	2.027	10.094	8.067
No. of s	subjects = 42	Log likeliho	ood = -86.	380	Prob > chi2	= 0.0001		•

Model 2:

Coef.		Std. Err.	Z	p > z	Haz. Ratio	[95% Conf. Interval]		
Rx	1.294	0.422	3.07	0.002	3.648	1.595	8.343	6.748
log WBC	1.604	0.329	4.87	0.000	4.975	2.609	9.486	
No. of subje	cts = 42	Log likeliho	ood = -72	.280	Prob > chi2	= 0.0000		-

Formule:

$$h(t, X_1, \dots, X_n) = h_0(t) \cdot \exp(\sum_i \beta_i X_i)$$

 $h_0(t)$ the baseline hazard (risque de base). Non spécifié (semi-paramétrique). X_i covariables (indépendantes de temps). $\exp(\sum_i \beta_i X_i)$ est positif, ce qui arrange le risque.

Robuste:

Si on connait e modèle paramétrique, tant mieux, sinon, Cox donne une approximation robuste

Pas besoin de spécifier le risque de base $h_0(t)$ pour calculer **HR**.

Maximum Likelyhood

Vraisemblance partielle :

$$L_i(\beta) = \frac{h_i(t_i)}{\sum_{l \in R_i} h_l(t_i)} = \frac{e^{\beta^T x_i}}{\sum_{l \in R_i} e^{\beta^T x_l}}$$

Vraisemblance totale:

$$L(\beta) = \prod_{i=1}^{k} L_i(\beta) = \prod_{i=1}^{k} \frac{e^{\beta^T x_i}}{\sum_{l \in R_i} e^{\beta^T x_l}}$$

La fonction de Score $U(\beta)$ est définie comme la dérivée première du log de vraisemblance :

$$U(\beta) = \frac{\partial}{\partial \beta} (l(\beta)) = x_i - \frac{\sum_{l \in R_i} x_i e^{\beta^T x_l}}{\sum_{l \in R_i} e^{\beta x_l}}$$

On tire l'estimation $\hat{\beta}$ du paramètre β , par :

$$U(\hat{\beta}) = 0$$

Courbes de survie ajustées

$$\hat{h}(t, \mathbf{X}) = \hat{h}_0(t)e^{1.294 Rx + 1.604 \log WBC}$$

$$\hat{S}(t, \mathbf{X}) = [\hat{S}_0(t)]^{\exp(1.294 Rx + 1.604 \log WBC)}$$

Specify values for $\mathbf{X} = (Rx, \log \text{WBC})$

$$Rx = 1$$
, $\log WBC = 2.93$:

$$\hat{S}(t, \mathbf{X}) = \left[\hat{S}_{0}(t)\right]^{\exp(\hat{\beta}_{1}\overline{Rx} + \hat{\beta}_{2}\overline{\log \text{WBC}})}
= \left[\hat{S}_{0}(t)\right]^{\exp(1.294(0.5) + 1.604(2.93))}
= \left[\hat{S}_{0}(t)\right]^{\exp(5.35)} = \left[\hat{S}_{0}(t)\right]^{210.6}$$

$$Rx = 0$$
, $\log WBC = 2.93$:

$$\hat{S}(t, \mathbf{X}) = \left[\hat{S}_0(t)\right]^{\exp(1.294(0) + 1.604(2.93))}$$
$$= \left[\hat{S}_0(t)\right]^{\exp(4.70)} = \left[\left[\hat{S}_0(t)\right]^{109.9}\right]$$

Courbes de survie ajustées

Courbes de survie ajustées

Adjusted survival	
curves	KM curves
Adjusted for	No covariates
covariates	
Use fitted Cox	No Cox model
model	fitted

TP 3:

- Reprendre votre data de survie et appliquer le modèle Cox PH
- Vérifier si l'hypothèse de Proportional Hazard tient.