Du 4 au 8 décembre

Programme n°10

ELECTROCINETIQUE

EL1 Les grandeurs électriques

Cours et exercices

EL2 Les circuits linéaires

Cours et exercices

<u>EL3 Les circuits linéaires du premier ordre</u> (Cours et applications très directes)

- Equations de fonctionnement
- Régime libre d'un circuit RC
- Réponse à un échelon de tension d'un circuit RC
- Circuit RL
- Mise en équation
- Résolution
- Bilan énergétique
- Réponse à un échelon de tension

EL4 Les oscillateurs amortis (Cours uniquement)

- Observation Circuit électrique
 - Dispositif mécanique
 - Conclusion
- Mise en équation
- Pour le circuit électrique
- → Cas général
- \rightarrow Cas particulier où R = 0 Ω
- Pour le dispositif mécanique
- Analogie entre la mécanique et l'électricité
- Forme canonique (introduction du facteur de qualité)

Tomo sanomado (masadonon da facican de quanto)	
7. Oscillateurs amortis	
Circuit RLC série et oscillateur mécanique amorti par frottement visqueux.	Mettre en évidence la similitude des comportements des oscillateurs mécanique et électronique. Réaliser l'acquisition d'un régime transitoire du deuxième ordre et analyser ses caractéristiques.
	Analyser, sur des relevés expérimentaux, l'évolution de la forme des régimes transitoires en fonction des paramètres caractéristiques.
	Prévoir l'évolution du système à partir de considérations énergétiques.
	Prévoir l'évolution du système en utilisant un portrait de phase fourni.
	Écrire sous forme canonique l'équation différentielle afin d'identifier la pulsation propre et le facteur de qualité.

CINETIQUE CHIMIQUE

CX1. Généralité sur la cinétique chimique (Cours uniquement)

CX2 Cinétique formelle, réaction et ordre

Cours et exercices

Mesure d'une résistance