EC504 Algorithms and Data Structure Fall 2020 Tuesday & Thursday 11:00AM - 1:00PM

Rich Brower and Krishna Palle and Casey Berger

Course Organization

• Text:

- Cormen, Leiserson, Rivest & Stein (CLRS), Fundamental text!
 "Introduction to Algorithms" 3rd Edition MIT Pres
- Keynote Slides guide to CLRS
- Reference:
- Wikepedia!
- Mark Allen Weiss "Data Structure and Algorithms in C".
- UNIX, Makefiles, very basic C/C++ and gnuplot:

• Grading:

_	HW with Coning Programs:	30%
_	Zooming Class Partipation	10%++

Project25%

Midterm (up to trees) Oct15%

Final (comprehensive) Dec20%

EC504 Course Organization

- Why Algorithm ==> Data Strutures
- CRSL text with Slide Summaries
- Scaling, Math and Empirical Analysis on Simple Cases.
- Use GitHub (EC405), Slack and CCS and Unix Tools
- HW's pencil and paper: pdf turned in HW# on CCS
- Software delivered CCS Must run from Makefile.
- Basic Unix environment useful for computer engineers to know!

Course Outline

- Algorithms Analysis CRSL 2-4 (5) HW1
 - Definition of Problem Class of Size N
 - Math for large N Asymptotics:
- I. 1-D Data Structures CRSL 6,7,8,9 HW2
 - Arrays, Lists, Stacks, Queues CRSL 10
 - Searching, Sorting, String Matching, Scheduling
- II. 1.5 D Trees CRLS 12 14 HW3
 - BST, AVL,
 - Coding, Union/Join CRLS 18-21, midterm HW4
- III. 2D Graphs CRLS 22,23,24,25, HW 5
 - Traversal, Min Spanning Tree, Shortest Path, Capacity, Min Flow CRLS 26, HW6
- IV Selected Advanced Topics & Projects
 - Spatial Data Structures, FFT's, Complexity, Approx. Solutions, Quantum Computing etc

INTRODUCTION

• CRLS 1.2

• CRLS 1.3

• CRLS 1.4

CRLS 1.5 Just a bit of averaging!

What is an <u>algorithm?</u> An unambiguous list of steps (program) to transform some input into some output.

- Pick a Problem (set)
- Find method to solve
 - 1. Correct for all cases (elements of set)
 - 2. Each step is finite (Δt_{step} < max time)
 - Next step is unambiguous
 - Terminate in finite number of steps
- You know many examples:

GCD, Multiply 2 N bit integers, ...

Abu Ja'far Muhammid ibn Musa Al-Khwarizmi Bagdad (Iraq) 780-850

Growth of Algorithm with Size n

$$T(n) = O(g(n))$$
 or $T(n) \in O(g(n))$

- T(n) in set O(g(n))
 - like $T(n) \le g(n)$ for large
 - e.g n^a log(n) exp[n] etc.

Rules of thumb

For polynomials, only the largest term matters.

$$a_0 + a_1 N + a_2 N^2 + \dots + a_k N^k \in O(N^k)$$

• log N is in o(N)

Proof: As $N \rightarrow 1$ the ratio $\log(N)/N \rightarrow 0$

• Some common functions in increasing order:

1 $\log N \sqrt{N} N N \log N N^2 N^3 N^{100} 2^N 3^N N!$

Why is big-0 important?

time	(proces	ssor do	ing ~1,0	00,000 st	eps per s	second)	
input size	_						
${f N}$	10	20	30	40	50	60	
log n	3.3µsec	4.4µsec	5μsec	5.3µsec	5.6µsec	5.9µsec	
n	10µsec	20µsec	30µsec	40µsec	50µsec	60µsec	
n^2	100µsec	400µsec	900µsec	1.5msec	2.5msec	3.6msec	
n ⁵	0.1sec	3.2sec	24.3sec	1.7min	5.2min	13min	
3n	59msec	48min	6.5yrs	385,500yı	Oyrs 2x108 centuries		
n!	3sec 7.8	8x10 ⁸ mille	ennia	•			

Non polynomial algorithms are terrible! Logs are great!

Logarithms

$$N = b^{\log_b(N)}$$

Therefore

$$\log_a(N) = \log_a(b^{\log_b(N)}) = \log_a(b)\log_b(N)$$

Insertion Sort --- Deck of Cards

• Insertion Sort(a[0:N-1]): for (i=1; i < n; i++) for (j = i; (j>0) && (a[j]<a[j-1]); j--) swap a[j] and a[j-1];

Worst case $\Theta(N^2)$ number of "swaps" (i.e. time)

Outer loop trace for Insertion Sort: O(n^2)

	a[0] (Swaps)	a[1]	a[2]	a[3]	a[4]	a[5]	a[6]	a[7]	
•	6	5	2	8	3	4	7	1	(1)
•	5	→ 6	2	8	3	4	7	1	
	(2)		→ 6						
	2 ←	→ 5							
•	2	5	6	8	3	4	7	1	(0)
•	2	5	6	8	3	4	7	1	(3)
•	2	3	5	6	8	4	7	1	(3)
•	2	3	4	5	6	8	7	1	(1)
•	2	3	4	5	6	7	8	1	(7)

Merge Sort - Recursive O(n log(n)

How do we find T(n)? What is big Oh?

- Count the number of steps:
 - What is a step? RAM serial model.
 - Iterative loops: Sum series like

$$\sum_{i=0}^{N} i^{k} = 1 + 2^{k} + 3^{k} + \dots + N^{k} \sim O(N^{k+1})$$

but
$$k = -1 \rightarrow O(\log(n))$$

Solve Recursive Relations:

$$T(n) = a T(n/b) + O(f(n))$$

Sums

• Cases:
$$\sum_{i=1}^{N} 1 = N \approx \frac{1}{1}N$$

$$\sum_{i=1}^{N} i = \frac{1}{2}N(N+1) \approx \frac{1}{2}N^2$$

$$\sum_{i=1}^{N} i^2 = \frac{1}{6}N(N+1)(2N+1) \approx \frac{1}{3}N^3$$

$$\sum_{i=1}^{N} i^{k} \approx \frac{1}{k+1} N^{k+1}$$

Prove this by Integration:

Estimating Sums

• Integral Bounds:

$$S_k = \sum_{i=1}^N i^k$$

Estimate by integrating $S_k(x) = x^k$

$$\int_{0}^{N} x^{k} dx \le S_{k} = \sum_{i=1}^{N} i^{k} \le \int_{0}^{N} (x+1)^{k} dx$$

$$\frac{1}{k+1} N^{k+1} \le S_{k} \le \frac{1}{k+1} ((N+1)^{k+1} - 1)$$

Build Tree to Solve

$$T(n) = aT(n/b) + f(n)$$

$$n/b^h = 1 \implies h = \log_b(n)$$

$$a \times f(n/b)$$

$$\vdots \qquad \vdots$$

$$n/b^2 n/b^2 n/b^2 n/b^2 \qquad a^2 \times f(n/b^2)$$

$$\vdots \qquad \vdots$$

$$O(1) O(1) O(1) O(1) \cdots \qquad a^{\log_b(n)} \times f(1)$$

$$0 \times f(n/b) + a \times f(n/b) + \cdots + a^{\log_b(n) - 1} f(b^2) + a^h T(1)$$

Master Equation (brute force): T(n) = aT(n/b) + f(n)

$$T(n) = aT(n/b) + f(n)$$

$$aT(n/b) = a^{2}T(n/b^{2}) + af(n/b)$$

$$a^{2}T(n/b^{2}) = a^{3}T(n/b^{3}) + a^{2}f(n/b^{2})$$
...
$$a^{h-2}T(b^{2}) = a^{h-1}T(b) + a^{h-2}f(b^{2})$$

$$a^{h-1}T(b) = a^{h}T(1) + a^{h-1}f(b)$$

$$T(n)=a^hT(1)+f(n)+af(n/b)+a^2f(n/b^2)+\cdots+a^{h-1}f(b)$$

$$a^h=n^{\gamma} \qquad \text{using:} \qquad n/b^h=1 \implies h=\log_b(n)$$
 34

 $n/b^h = 1 \implies h = \log_b(n)$

Let's be very careful for $f(n) = cn^k$

$$T(n) = aT(n/b) + c n^{k}$$

$$aT(n/b) = a^{2}T(n/b^{2}) + c an^{k}/b^{k}$$

$$a^{2}T(n/b^{2}) = a^{3}T(n/b^{3}) + c a^{2}n^{k}/b^{2k}$$
...

$$n/b^h = 1$$

$$a^{h-2}T(b^2) = a^{h-1}T(b) + c \, a^{h-2}n^k/b^{(h-2)k}$$
$$a^{h-1}T(b) = a^hT(1) + c \, a^{h-1}n^k/b^{(h-1)k}$$

Therefore
$$T(n)=a^hT(1)+c\ n^k\frac{(a/b^k)^h-1}{a/b^k-1}$$

$$a^h=n^{\gamma} \qquad \qquad =n^{\gamma}T(1)+c\ \frac{n^{\gamma}-n^k}{a/b^k-1}$$

since
$$1 + a/b^k + (a/b^k)^2 + (a/b^k)^3 + \dots + (a/b^k)^{h-1} = \frac{(a/b^k)^h - 1}{a/b^k - 1}$$

Master Equation:

$$T(N) = a T(N/b) + \Theta(g(N))$$

Theorem: The asymptotic Solution is:

• $T(N) \in \Theta(N^{\gamma})$ if $g(N) \in O(N^{\gamma - \epsilon}) \ \forall \epsilon > 0$

•
$$T(N) \in \Theta(g(N))$$
 if $g(N) \in \Omega(N^{\gamma+\epsilon}) \ \forall \epsilon > 0$

$$T(N) \in \Theta(N^{\gamma} \log(N))$$
 if $g(N) \in \Theta(N^{\gamma})$

where
$$a = b^{\gamma}$$
 or $\gamma = \log(a)/\log(b)$

L'Hospital's Rule

Limit for ratio is same as for ratio of derivatives!

$$\lim_{N \to \infty} \frac{f(N)}{g(N)} = \lim_{N \to \infty} \frac{\frac{df(N)}{dN}}{\frac{dg(N)}{dN}}$$

e.g.
$$\lim_{N\to\infty} \frac{\log^2(N)}{N} = \lim_{N\to\infty} \frac{2\log(N)/N}{1} = \lim_{N\to\infty} \frac{2/N}{1} = 0$$

$$\gamma - k \rightarrow 0$$
, where $a = b^{\gamma}$

$$T(N) = N^{\gamma}T(1) + c_0(N^{\gamma} - N^k)/(a/b^k - 1)$$

$$T(N) = N^{\gamma}T(1) + c_0 N^k \frac{N^{\gamma - k} - 1}{b^{\gamma - k} - 1}$$

Take derivative with respect to $x = \gamma - k$

$$T(N) = N^{\gamma}T(1) + c_0 N^k \log(N) / \log(b)$$

More useful stuff

• Logarithmic sum (Harmonic Series):

$$H_N = \sum_{n=1}^{N} \frac{1}{n} = \ln(N) + \gamma_{Euler} + \Theta(1/N)$$

 $\gamma_{Euler} = 0.577215664901532860606512090082$

Stirling's Approx: $N! \simeq \sqrt{2\pi N} N^N e^{-N} (1 + O(1/N))$

$$\log(N!) = N \log(N) - N \log(e) + \frac{\log(2\pi N)}{2} + \Omega(1/N)$$

Fibonacci:
$$F(N) = F(N-1) + F(N-2)$$
 \rightarrow 0,1,1,2,3,5,8, for $N = 0,1,2,3,...$

Many examples in nature!

Rabits, Bees and Double Window Panes

Rabbits

Fibonacci investigated (in the year 1202) was about how fast rabbits could breed in ideal circumstances. Females take one month to mature: Pairs mate and produce a male and female in a month

Fibonacci:
$$F_k = F_{k-1} + F_{f-2} \rightarrow 0,1,1,2,3,5,8$$
,

Characteristic equation, try:

$$F_k = \phi^k \implies \phi^k = \phi^{k-1} + \phi^{k-2}$$

$$\phi^2 - \phi + \phi = 0 \qquad \phi = \frac{1}{2} \pm \frac{1}{2}\sqrt{5}$$

$$F_k = c_1 \left(\frac{1+\sqrt{5}}{2}\right)^k + c_2 \left(\frac{1-\sqrt{5}}{2}\right)^k$$

$$F_k = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^k - \left(\frac{1 - \sqrt{5}}{2} \right)^k \right]$$

$$ax^2 + bx + c = 0 \implies x = -b/2a \pm \sqrt{(b/2a)^2 - c/a}$$
 42

Maximum Subsequence Sum: CLRS 4.1

• Given a[0], a[1],..., a[N-1] find max

Dumbest

$$O(N^3)$$

– Dumb

$$O(N^2)$$

– Smart

$$O(N \log(N))$$

Smartest

```
i,j,k loops
```

i,j loops

```
for ( i = 0; i < N; i++)
{ Sum = 0;
for(j=i; j < N; j++)
Sum += a[j];
if(Sum > MaxSum)
MaxSum = Sum;
}
```


$$\Sigma_{k=i}^{j} 1 = j - i + 1$$

$$\Sigma_{j=i}^{N-1} (j - i + 1) = \frac{1}{2} (N - i)(N - i + 1)$$

$$\frac{1}{2} \Sigma_{i=0}^{N-1} i(i + 1) = \frac{1}{6} (N^3 + 3N + 2N)$$

$$\Sigma_{j=i}^{N-1}1 = N-1-i+1=N-i$$

$$\Sigma_{i=0}^{N-1}(N-i) = N^2 - (\frac{N(N-1)}{2})$$

$$= \frac{1}{2}(N^2+N)$$

Recursion versus Single Pass

- T(N) = 2 T(N/2) + c N
 - Large left/right + sum to left and right for split screen.

 $O(N \log(N))$

Joining is O(N)

- On line:
 - Quit when you are in debt and start over.

```
Sum = 0; \\ for(j=0; j<N; j++) \{ \\ Sum += a[j]; \\ if(Sum > MaxSum) \\ MaxSum = Sum \\ else if (Sum < 0) \\ Sum = 0; \\ \}
```

O(N)

When you loose try and try again!

Searching and Sorting

Searching O(N)Linear bisection O(log(N))dictionary O(log(log(N Sorting Insertion, bubble, selection O(N²) CRLS: 2.1 Merge, Quick, Heap O(N log (N)) CRLS: 2.2, Bin (Count), Radix, Bucket O(N) CLRS: 8 Proof: $\Omega(N^2)$ near neighbor exchange Proof: $\Omega(N \log(N))$ Comparison search Median (or k quick selection) Problem CLRS: 9

Searching: "Why Sort at All?"

int a[0], a[1],a[2],a[3],.... a[m],.... a[2],a[N-1]

Three Algorithms:

■ Linear Search

(after Sorting)

■ Bisection Search →

■ Dictionary Search →

O(N)

O(log(N)).

O(log[log[N]])

Bisection Search of Sorted List

```
int a[0], a[1],a[2],a[3],.... a[m],....
                                                        a[N-2],a[N-1]
            i= 0; j= N-1; m = N/2
             while(b!=a[m] && i!=j ){
                                                                 Choose
                     if(b>a[m]) i = m+1;
                                                                 mid point
                     if(b < a[m]) j = m-1;
                     m = (j-i)/2 + i;
             if(b==a[m])) "found it" else "not found"
```

$$T(N) = T(N/2) + c_0 \rightarrow T(N) \gg Log(N)$$

Dictionary: Sorted and Uniform

int a[0], a[1],a[2],a[3],... a[m],... a[2],a[N-1]

| Dictionary: Same code EXCEPT |
| estimate location of b
| x = fractional distance (0<x<1) |
| x = (b-a[i])/(a[j] - a[i]); |
| m = x (j-i) + i; |</pre>

$$T(N) = T(N^{1/2}) + c_0 \rightarrow T(N) \Rightarrow Log(Log(N))$$

$$N \to N^{\frac{1}{2}} \to N^{\frac{1}{4}} \to N^{\frac{1}{8}} \cdots \to N^{\frac{1}{2^n}} = 1$$
 or $n = log_2(log_2(N))$

Extra Knowledge Helps: % Error » 1/N¹/²

Insertion Sort --- Deck of Cards

• Insertion Sort(a[0:N-1]): for (i=1; i < n; i++) for (j = i; (j>0) && (a[j]<a[j-1]); j--) swap a[j] and a[j-1];

Worst case $\Theta(N^2)$ number of "swaps" (i.e. time)

Outer loop trace for Insertion Sort

•	a[0] (Swaps)	a[1]	a[2]	a[3]	a[4]	a[5]	a[6]	a[7]	
•	6	5	2	8	3	4	7	1	(1)
	5←	→ 6							
•	5	6	2	8	3	4	7	1	
	(2)								
		2 ←	→ 6						
	2 ←	→ 5							
•	2	5	6	8	3	4	7	1	(0)
•	2	5	6	8	3	4	7	1	(3)
•	2	3	5	6	8	4	7	1	(3)
•	2	3	4	5	6	8	7	1	(1)
	2	3	4	5	6	7	8	1	(7) 10

Bubble Sort --- Sweep R to L

• Bubble Sort(a[0:N-1]): for i=0 to n-1for j=n-1 to i+1if a[j]<a[j-1] then swap a[i] and a[j]

Worst case $\Theta(N^2)$ swaps (time)

Outer loop trace for Bubble Sort

Average Number of N(N-1)/4 swaps

■Best Case: sorted order → 0 swaps

■ Worst Case: reverse order \rightarrow N(N-1)/2 swaps since 1 + 2 + ... + N-1 = N(N-1)/2

■ Average Case: Pair up each of the N! permutations with its reverse order \rightarrow Every pair must swap in one or the other: Thus average is half of all swaps \rightarrow (1/2) N(N-1)/2 q.e.d.

Selection Sort --- (Bubble only the index)

```
Selection Sort(a[0:N-1]):
 for i=1 to n-2
    \{ min = i \}
     for j = n-1 to i + 1
            if a[j] < a[min] then
                     min = j;
        swap a[i] and a[min];
worst case \Theta(N) swaps + \Theta(N^2) comparisons
```

Outer loop trace for Selection Sort

Merge Sort: Worst Case $\Theta(Nlog(N))$

```
void mergesort(int a[], int I, int r)
  if (r > I)
     m = (r+I)/2;
     mergesort(a, I, m);
     mergesort(a, m+1, r);
     for (i = 1; i < m+1; l++) b[i] = a[i];
     for (j = m; j < r; j++) b[r+m-j] = a[j+1]; // reverse
     for (k = I; k \le r; k++)
             a[k] = (b[i] < b[j]) ? b[i++] : b[j--]; }
```

Outer loop trace for Merge Sort

