

Maths

Geometry

Vectors

Angles Between a 3D Vector and the Axes

Angles Between a 3D Vector and the Axes

Find the angles between the vector $\underline{\pmb{i}}+2\underline{\pmb{j}}+3\underline{\pmb{k}}$ and the x, y and z coordinate axes.

Part A Angle with x axis

What is the angle in degrees between the vector and the x axis? Give your answer to 3s.f.

Part B Angle with y axis

What is the angle in degrees between the vector and the y axis? Give your answer to 3s.f.

Part C Angle with z axis

What is the angle in degrees between the vector and the z axis? Give your answer to 3s.f.

Adapted for Isaac Physics from NST IA Biology preparation work

Maths

Geometry

Vectors 5

Scalar Product 1

Scalar Product 1

Find the scalar product $\underline{\boldsymbol{a}} \cdot \underline{\boldsymbol{b}}$, where $\underline{\boldsymbol{a}} = \hat{\underline{\boldsymbol{i}}} + 2\hat{\underline{\boldsymbol{j}}} + 4\hat{\underline{\boldsymbol{k}}}$ and $\underline{\boldsymbol{b}} = 2\hat{\underline{\boldsymbol{i}}} - 3\hat{\underline{\boldsymbol{j}}} + \hat{\underline{\boldsymbol{k}}}$. Hence, deduce the angle between $\underline{\boldsymbol{a}}$ and $\underline{\boldsymbol{b}}$. Give your answer to 3.s.f

Created for isaacphysics.org by Julia Riley.

<u>Home</u> <u>Gameboard</u>

Maths

Vectors: Geometry 1i

Vectors: Geometry 1i

Figure 1: The cube OABCDEFG with side length 2 units.

The diagram shows a cube OABCDEFG with sides of length 2 units. Unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are directed along OA, OC and OD respectively. The midpoint of AB is M and the midpoint of CG is N.

The point P on the line MN is such that $ec{MP}=2ec{PN}.$

Pa	rt	Δ	P
		_	

Give the x coordinate of P in exact form.

The following symbols may be useful: xGive the y coordinate of P in exact form.

The following symbols may be useful: yGive the z coordinate of P in exact form.

The following symbols may be useful: z

Part B Acute angle

Find the acute angle between OP and MN to 3 significant digits, in degrees to 3 significant figures.

Part C Intersection

To say a straight line XY is "produced" means that the line continues on beyond the second point stated, Y. For example, the line "OP produced" starts at O, goes from O to P, and then continues on in a straight line beyond P.

The lines "OP produced" and "EF produced" intersect.

Find the coordinates of the point of intersection. Give your answer in the form x y z with a space between x, y and z. x, y and z are in exact form.

Adapted with permission from UCLES, A Level, June 2004, Paper 2633, Question 6.

Gameboard:

Further Maths Practice: Vectors - Geometry

<u>Gameboard</u>

Maths

Vectors: Intersection or Skew 2i

Vectors: Intersection or Skew 2i

The lines l_1 and l_2 have the equations

$$\mathbf{r} = egin{pmatrix} 3 \ 0 \ -2 \end{pmatrix} + s egin{pmatrix} 2 \ 3 \ -4 \end{pmatrix}$$

and

$$\mathbf{r} = egin{pmatrix} 5 \ 3 \ 2 \end{pmatrix} + t egin{pmatrix} 0 \ 1 \ -2 \end{pmatrix}$$

respectively.

Part A Do they meet?

Do l_1 and l_2 intersect?

- They intersect at a point.
- They are parallel lines.
- They are skew lines.

Part B Acute angle

Find the acute angle between l_1 and l_2 to 3 significant digits, in degrees.

Part C a

One of the numbers in the equation of line \mathcal{l}_1 is changed so that the equation becomes

$$\mathbf{r} = egin{pmatrix} 3 \ 0 \ a \end{pmatrix} + s egin{pmatrix} 2 \ 3 \ -4 \end{pmatrix}$$

 \it{l}_{1} and \it{l}_{2} now intersect for some constant \it{a} .

Find a.

The following symbols may be useful: a

Adapted with permission from UCLES, A Level, Jan 2011, Paper 4724, Question 6.

Gameboard:

Further Maths Practice: Vectors - Intersection or Skew

<u>Gameboard</u>

Maths

Vectors: Perpendiculars 1i

Vectors: Perpendiculars 1i

A straight line is given by the equation
$${f r}=egin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}+t \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$$
 . O is the origin.

Part A Acute angle

The point P on the line is given by t=1.

Calculate the acute angle between $\cal OP$ and the line. give your answer in degrees, to 3 significant figures.

Part	В	Q
		વ્ય

The point Q on the line is located such that OQ is perpendicular to the line. Find the position of Q.

Give the \boldsymbol{x} coordinate of \boldsymbol{Q} in exact form.

The following symbols may be useful: x

Give the y coordinate of Q in exact form.

The following symbols may be useful: y

Give the z coordinate of Q in exact form.

The following symbols may be useful: z

Part C OQ

Find the length of OQ in exact form.

Adapted with permission from UCLES, A Level, Jan 2010, Paper 4724, Question 9.

Gameboard:

Further Maths Practice: Vectors - Perpendiculars

Maths

Vectors: Lines and Planes 1ii

Vectors: Lines and Planes 1ii

Two intersecting lines, lying in a plane p, have equations:

$$\frac{x-1}{2} = \frac{y-3}{1} = \frac{z-4}{-3}$$
 and $\frac{x-1}{-1} = \frac{y-3}{2} = \frac{z-4}{4}$.

Part A Finding the equation of p

Obtain the equation of p in the form 2x + by + z = d.

The following symbols may be useful: x, y, z

Part B Distance between p and q

Plane q has equation 2x - y + z = 21. Find the perpendicular distance between p and q.

Adapted with permission from UCLES, A Level, January 2011, Paper 4727, Question 2.

Maths

Vectors: Intersecting Planes 3i

Vectors: Intersecting Planes 3i

The plane
$$\Pi_1$$
 has equation $\underline{m r}=\left(egin{array}{c}2\\2\\1\end{array}
ight)+\lambda\left(egin{array}{c}1\\1\\0\end{array}
ight)+\mu\left(egin{array}{c}1\\-5\\-2\end{array}
ight)$

Part A Equation of Π_1

Express the equation of Π_1 in the form $\underline{m r}\cdot \underline{m n}=p$ where:

$$oldsymbol{\underline{n}} = oldsymbol{\underline{i}} + a_y oldsymbol{j} + a_z oldsymbol{\underline{k}}$$

What is \underline{n} ? Write your answer in the form:

$$\underline{m{i}} + a_y \underline{m{j}} + a_z \underline{m{k}}$$

The following symbols may be useful: i, j, k

What is p?

Part B Intersection of Π_1 and Π_2

The plane
$$\Pi_2$$
 has equation $egin{array}{c} \left(egin{array}{c} 7 \\ 17 \\ -3 \end{array}
ight) = 21.$

Find an equation of the line of intersection of Π_1 and Π_2 .

Give your answer in the form:

$$(3\underline{\boldsymbol{i}}+a_y\underline{\boldsymbol{j}}+a_z\underline{\boldsymbol{k}})+t(2\underline{\boldsymbol{i}}+b_y\underline{\boldsymbol{j}}+b_z\underline{\boldsymbol{k}})$$

The following symbols may be useful: i, j, k, t

Adapted with permission from UCLES, A Level, June 2019, Paper 4727, Question 6.

Maths

Vectors: Angles and Distances 1i

Vectors: Angles and Distances 1i

The plane Π has equation x+2y-2z=5. The line l has equation $\frac{x-1}{2}=\frac{y+1}{5}=\frac{z-2}{1}$

Part A Intersection of l and Π

Find the coordinates of the point of intersection of l with the plane Π .

What is the x coordinate?

What is the y coordinate?

What is the *z* coordinate?

Part B Angle between l and Π

Find the acute angle between l and Π .

Give your answer in radians to 3 significant figures

Part C Points on l Equidistant From Π

Find the position vector of the two points on the line l such that the minimum distance of each point from the plane Π is 2.

Give your answer in the form:

$$(a_x \underline{\pmb{i}} + a_y \underline{\pmb{j}} + a_z \underline{\pmb{k}}) \pm (b_x \underline{\pmb{i}} + b_y \underline{\pmb{j}} + b_z \underline{\pmb{k}})$$

The following symbols may be useful: i, j, k

Adapted with permission from UCLES, A Level, June 2013, Paper 4727, Question 6.

<u>Gameboard</u>

Maths

Vectors: Common Perpendiculars 2ii

Vectors: Common Perpendiculars 2ii

Two skew lines have the equations

$$\frac{x}{2} = \frac{y+3}{1} = \frac{z-6}{3} \text{ and } \frac{x-5}{3} = \frac{y+1}{1} = \frac{z-7}{5}$$

Find the coordinates of \underline{n} , the vector in the direction of the common perpendicular to the lines in the form x y z with a space between x, y and z. Take x to be positive and for all the components to be integers of the simplest form.

Adapted with permission from UCLES, A Level, Jan 2009, Paper 4727, Question 3.

Gameboard:

Further Maths Practice: Vectors - Common Perpendiculars

Maths

Vectors: Angles and Distances 3ii

Vectors: Angles and Distances 3ii

Part A Distance between two lines

Find the shortest distance between the lines
$$\underline{r} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$
 and $\underline{r} = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}$.

Part B Distance from a point to a plane

Find the shortest distance from the point (3,-1,-2) to the plane with equation x-2y+4z=11.

Part C Equation of a plane

Find a cartesian equation of the plane which passes through the point (3,-1,-2) and is parallel to the plane x-2y+4z=11.

Give your answer in the form x + by + cz = d

The following symbols may be useful: x, y, z

Adapted with permission from UCLES, A Level, June 2018, Paper 4727, Question 2.