

Features

- Floating channel designed for bootstrap operation Fully operational to +600V
 Tolerant to negative transient voltage dV/dt immune
- Gate drive supply range from 10 to 20V
- Undervoltage lockout for both channels
- 3.3V, 5V and 15V input logic compatible
- Cross-conduction prevention logic
- Matched propagation delay for both channels
- High side output in phase with HIN input
- Low side output out of phase with LIN input
- Logic and power ground +/- 5V offset.
- Internal 540ns dead-time, and programmable up to 5us with one external R_{DT} resistor (IR21084)
- Lower di/dt gate driver for better noise immunity
- Available in Lead-Free

Description

The IR2108(4)(S) are high voltage, high speed power MOSFET and IGBT drivers with dependent high and low side referenced output channels. Proprietary HVIC and latch immune

HALF-BRIDGE DRIVER

Packages

2106/2301//2108//2109/2302/2304 Feature Comparison

Part	Input logic	Cross- conduction prevention logic	Dead-Time	Ground Pins	
2106/2301	HIN/LIN	no	none	COM	
21064	I IIIN/LIIN	110	none	VSS/COM	
2108	HIN/LIN	yes	Internal 540ns	COM	
21084	TIIIV/LIIV	yes	Programmable 0.54~5 μs	VSS/COM	
2109/2302	IN/SD ves		Internal 540ns	COM	
21094	ווע/טט	yes	Programmable 0.54~5 μs	VSS/COM	
2304	HIN/LIN	yes	Internal 100ns	COM	

CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts.

Typical Connection

International

TOR Rectifier

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units	
V _B	High side floating absolute voltage	-0.3	625		
Vs	High side floating supply offset voltage	V _B - 25	V _B + 0.3		
V _{HO}	High side floating output voltage		V _S - 0.3	V _B + 0.3	
V _{CC}	Low side and logic fixed supply voltage		-0.3	25	
V _{LO}	Low side output voltage		-0.3	V _{CC} + 0.3	V
DT	Programmable dead-time pin voltage (IR21	084 only)	V _{SS} - 0.3	V _{CC} + 0.3	
V _{IN}	Logic input voltage (HIN & LIN)		V _{SS} - 0.3	V _{CC} + 0.3	
V _{SS}	Logic ground (IR21084 only)	V _{CC} - 25	V _{CC} + 0.3		
dV _S /dt	Allowable offset supply voltage transient		_	50	V/ns
PD	Package power dissipation @ T _A ≤ +25°C	(8 lead PDIP)	_	1.0	
		(8 lead SOIC)	_	0.625	
		(14 lead PDIP)	_	1.6	W
		(14 lead SOIC)	_	1.0	
RthJA	Thermal resistance, junction to ambient	(8 lead PDIP)	_	125	
		(8 lead SOIC)	_	200	
		(14 lead PDIP)	_	75	°C/W
		(14 lead SOIC)	_	120	
TJ	Junction temperature		_	150	
T _S	Storage temperature		-50	150	°C
TL	Lead temperature (soldering, 10 seconds)		_	300	

Recommended Operating Conditions

The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The V_S and V_{SS} offset rating are tested with all supplies biased at 15V differential.

Symbol	Definition	Min.	Max.	Units	
VB	High side floating supply absolute voltage	V _S + 10	V _S + 20		
Vs	High side floating supply offset voltage		Note 1	600	
V _{HO}	High side floating output voltage		Vs	V _B	
Vcc	Low side and logic fixed supply voltage		10	20	
V _{LO}	Low side output voltage		0	V _{CC}	V
V _{IN}	Logic input voltage IR2108		COM	V _{CC}	
	IR21084		V _{SS}	V _{CC}	
DT	Programmable dead-time pin voltage (IR21084 only)		V _{SS}	V _{CC}	
V _{SS}	Logic ground (IR21084 only)		-5	5	00
T _A	Ambient temperature		-40	125	°C

Note 1: Logic operational for V_S of -5 to +600V. Logic state held for V_S of -5V to -V_{BS}. (Please refer to the Design Tip DT97-3 for more details).

Dynamic Electrical Characteristics

 V_{BIAS} (V_{CC}, V_{BS}) = 15V, V_{SS} = COM, C_L = 1000 pF, T_A = 25°C, DT = VSS unless otherwise specified.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
ton	Turn-on propagation delay	_	220	300		Vs = 0V
toff	Turn-off propagation delay	_	200	280		V _S = 0V or 600V
MT	Delay matching ton - toff	_	0	30		
tr	Turn-on rise time	_	150	220	nsec	Vs = 0V
tf	Turn-off fall time	_	50	80	·	V _S = 0V
DT	Deadtime: LO turn-off to HO turn-on(DTLO-HO) &	400	540	680	·	RDT= 0
	HO turn-off to LO turn-on (DTHO-LO)	4	5	6	usec	RDT = 200k (IR21084)
MDT	Deadtime matching = DTLO-HO - DTHO-LO	_	0	60	nsec	RDT=0
		_	0	600	11000	RDT = 200k (IR21084)

Static Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15V, V_{SS} = COM, DT= V_{SS} and T_A = 25°C unless otherwise specified. The V_{IL} , V_{IH} and I_{IN} parameters are referenced to V_{SS} /COM and are applicable to the respective input leads: HIN and LIN. The V_O , I_O and Ron parameters are referenced to COM and are applicable to the respective output leads: HO and LO.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
V _{IH}	Logic "1" input voltage for HIN & logic "0" for LIN	2.9	_	_		V _{CC} = 10V to 20V
V _{IL}	Logic "0" input voltage for HIN & logic "1" for LIN	_	_	0.8	v	V _{CC} = 10V to 20V
V _{OH}	High level output voltage, V _{BIAS} - V _O	_	0.8	1.4	, v	I _O = 20 mA
V _{OL}	Low level output voltage, VO	_	0.3	0.6		I _O = 20 mA
I _{LK}	Offset supply leakage current	_	_	50		V _B = V _S = 600V
I _{QBS}	Quiescent V _{BS} supply current	20	75	130	μA	V _{IN} = 0V or 5V
Iqcc	Quiescent V _{CC} supply current	0.4	1.0	1.6	mA	V _{IN} = 0V or 5V
						RDT=0
I _{IN+}	Logic "1" input bias current	_	5	20		HIN = 5V, LIN = 0V
I _{IN-}	Logic "0" input bias current	_	_	2	μA	HIN = 0V, LIN = 5V
V _{CCUV+}	V _{CC} and V _{BS} supply undervoltage positive going	8.0	8.9	9.8		
V _{BSUV+}	threshold					
V _{CCUV} -	V _{CC} and V _{BS} supply undervoltage negative going	7.4	8.2	9.0		
V _{BSUV} -	threshold				V	
VCCUVH	Hysteresis	0.3	0.7	_		
V _{BSUVH}						
I _{O+}	Output high short circuit pulsed current	120	200	_		$V_O = 0V$,
					mA	PW ≤ 10 µs
I _{O-}	Output low short circuit pulsed current	250	350	_	'''	$V_0 = 15V$,
						PW ≤ 10 µs

Functional Block Diagram

Lead Definitions

Symbol	Description
HIN	Logic input for high side gate driver output (HO), in phase (referenced to COM for IR2108 and
	VSS for IR21084)
LIN	Logic input for low side gate driver output (LO), out of phase (referenced to COM for IR2108
	and VSS for IR21084)
DT	Programmable dead-time lead, referenced to VSS. (IR21084 only)
VSS	Logic Ground (21084 only)
V _B	High side floating supply
НО	High side gate driver output
Vs	High side floating supply return
V _{CC}	Low side and logic fixed supply
LO	Low side gate driver output
COM	Low side return

Lead Assignments

Figure 1. Input/Output Timing Diagram

Figure 3. Deadtime Waveform Definitions

Figure 2. Switching Time Waveform Definitions

Figure 4A. Turn-on Propagation Delay vs. Temperature

Figure 4B. Turn-on Propagation Delay vs. Supply Voltage

Figure 5A. Turn-off Propagation Delay vs.Temperature

Figure 5B. Turn-off Propagation Delay vs. Supply Voltage

Figure 6A.Turn-on Rise Time vs. Temperature

Figure 6B. Turn-on Rise Time vs. Supply Voltage

Figure 7A. Turn-off Fall Time vs. Temperature

Figure 7B. Turn-off Fall Time vs. Supply Voltage

Figure 8A. Deadtime vs. Temperature

Figure 8B. Deadtime vs. Supply Voltage

Figure 8C. Deadtime vs. $R_{\rm DT}$ (IR21084 Only)

Figure 9A. Logic "1" Input Voltage vs. Temperature

Figure 9B. Logic "1" Input Voltage vs. Supply Voltage

Figure 10A. Logic "0" Input Voltage vs. Temperature

Figure 10B. Logic "0" Input Voltage vs. Supply Voltage

Figure 11A. High Level Output vs. Temperature

Figure 11B. High Level Output vs. Supply Voltage

Figure 12A. Low Level Output vs. Temperature

Figure 12B. Low Level Output vs. Supply Voltage

Figure 13A. Offset Supply Leakage Current vs. Temperature

Figure 13B. Offset Supply Leakage Current vs. Temperature

Figure 14A. V_{BS} Supply Current vs. Temperature

Figure 14B. $V_{\rm BS}$ Supply Current vs. Supply Voltage

Figure 15A. V_{CC} Supply Current vs. Temperature

Figure 15B. V_{CC} Supply Current vs. Supply Voltage

Figure 16A. Logic "1" Input Current vs. Temperature

Figure 16B. Logic "1" Input Current vs. Supply Voltage

Figure 17A. Logic "0" Input Current vs. Temperature

Figure 17B. Logic "0" Input Current vs. Supply Voltage

Figure 18. V_{CC} Undervoltage Threshold (+) vs. Temperature

Figure 19. V_{cc} Undervoltage Threshold (-) vs. Temperature

Figure 20. V_{BS} Undervoltage Threshold (+) vs. Temperature

IR2108(4) (S) & (PbF)

Figure 21. V_{BS} Undervoltage Threshold (-) vs. Temperature

Figure 22A. Output Source Current vs. Temperature

Figure 22B. Output Source Current vs. Supply Voltage

Figure 23A. Output Sink Current vs. Temperature

Figure 23B. Output Sink Current vs. Supply Voltage

Figure 24. Maximum $\rm V_s$ Negative Offset vs. Supply Voltage

Figure 25. IR2108 vs. Frequency (IRFBC20), ${\rm R_{\rm qate}}{=}33\Omega,\,{\rm V_{\rm CC}}{=}15{\rm V}$

Figure 26. IR2108 vs. Frequency(IRFBC30), ${\rm R_{gate}}{=}22\Omega\,,\,{\rm V_{CC}}{=}15{\rm V}$

Figure 27. IR2108 vs. Frequency (IRFBC40), ${\rm R_{\rm oate}}{=}15\Omega, {\rm V_{\rm cc}}{=}15{\rm V}$

Figure 28. IR2108 vs. Frequency (IRFPE50), ${\rm R_{gate}}{=}10\Omega, {\rm V_{CC}}{=}15{\rm V}$

Figure 29. IR21084 vs. Frequency (IRFBC20), ${\rm R_{gate}}{=}33\Omega,\,{\rm V_{CC}}{=}15{\rm V}$

Figure 30. IR21084 vs. Frequency (IRFBC30), ${\rm R_{\rm gate}}{=}22\Omega,\,{\rm V_{\rm CC}}{=}15{\rm V}$

Figure 31. IR21084 vs. Frequency (IRFBC40), ${\rm R_{\rm nate}}{=}15\Omega, {\rm V_{\rm CC}}{=}15{\rm V}$

Figure 32. IR21084 vs. Frequency (IRFPE50), ${\rm R_{\rm oate}}{=}10\Omega, {\rm V_{\rm CC}}{=}15{\rm V}$

Figure 33. IR2108S vs. Frequency (IRFBC20), ${\rm R_{\rm gate}}{=}33\Omega,\,{\rm V_{\rm CC}}{=}15{\rm V}$

Figure 34. IR2108S vs. Frequency (IRFBC30), ${\rm R_{\rm gate}}{=}22\Omega,\,{\rm V_{\rm CC}}{=}15{\rm V}$

Figure 35. IR2108S vs. Frequency (IRFBC40), ${\rm R_{gate}}{=}15\Omega,\,{\rm V_{CC}}{=}15{\rm V}$

Figure 36. IR2108S vs. Frequency (IRFPE50), $R_{\rm gate}$ =10 Ω , $V_{\rm CC}$ =15V

Figure 37. IR21084S vs. Frequency (IRFBC20), ${\rm R_{gate}}\text{=}33\Omega,\,{\rm V_{CC}}\text{=}15{\rm V}$

Figure 38. IR21084S vs. Frequency (IRFBC30), $R_{\rm gate}{=}22\Omega\,,\,V_{\rm CC}{=}15V$

Figure 39. IR21084S vs. Frequency (IRFBC40), ${\rm R_{gate}}{=}15\Omega,\,{\rm V_{CC}}{=}15{\rm V}$

Figure 40. IR21084S vs. Frequency (IRFPE50), ${\rm R_{gate}} {=} 10 \Omega, \, {\rm V_{cc}} {=} 15 {\rm V}$

Case outlines

LEADFREE PART MARKING INFORMATION

ORDER INFORMATION

Basic Part (Non-Lead Free)

Lead-Free Part

8-Lead PDIP IR2108	order IR2108	8-Lead PDIP IR2108	order IR2108PbF
8-Lead SOIC IR2108S	order IR2108S	8-Lead SOIC IR2108S	order IR2108SPbF
14-Lead PDIP IR21084	order IR21084	14-Lead PDIP IR21084	order IR21084PbF
14-Lead SOIC IR21084S	order IR21084S	14-Lead SOIC IR21084S	order IR21084SPbF

This product has been designed and qualified for the Industrial market.

Qualification Standards can be found on IR's Website.

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.09/08/04