UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE CIENCIAS

ESCUELA PROFESIONAL DE MATEMATICAS

[Código: CM132 Curso: Cálculo Integral]

QUINTA PRÁCTICA DIRIGIDA

- 1. Halle el área de la región interior a la curva $x=\frac{t}{3}(6-t);\ y=\frac{t^2}{8}(6-t).$
- 2. Sea la parábola $y^2 = 4ax$ y las rectas y = x a; x = a, en el primer cuadrante. Hallar el área encerrada en coordenadas polares.
- 3. Hallar el área de la región interior a la curva $\rho=2a\cos(3\theta),$ y fuera del círculo $\rho=a.$
- 4. Hallar el área de la región interior a la cardioide $\rho = a(1 \cos \theta)$ y el círculo $\rho = a$.
- 5. Hallar el área dentro de la curva $\rho = a sen \theta \cos^2 \theta.$
- 6. Halle el área de la porción (en el interior al círculo) de la figura acotada por la lemniscata de Bernoulli $\rho = a\sqrt{\cos(2\theta)}$.
- 7. Expresando a coordenadas polares evaluar el área de la región interior a :
 - (a) $(x^2 + y^2)^3 = 4a^2x^2y^2$.
 - (b) $x^4 + y^4 = a^2(x^2 + y^2)$.
- 8. Hágase girar alrededor del eje polar la parte de la cardioide $\rho=4+4\cos\theta$ que está entre las rectas $\theta=0$ y $\theta=\frac{\pi}{2}$ y hallar su volumen.
- 9. Las ecuaciones de la envolvente de un círculo son $x = a(\cos \theta + \theta \sin \theta)$, $y = a(\sin \theta \theta \cos \theta)$, hallar la longitud del arco desde $\theta = 0$ hasta $\theta = \theta_1$.
- 10. Dada la curva $x(t)=2\cos t-\cos(2t),$ $y(t)=2\sin(t)-\sin(2t),$ $t\in[0,\pi].$ Calcule su longitud.
- 11. Halle el área lateral del toro de revolución generada al girar la curva $(x-a)^2 + y^2 = r^2$, a > r, alrededor del eje Y.

- 12. Sea f(x) una función continua y derivable en el intervalo $\langle 0, 4 \rangle$, tal que la longitud del arco de la curva y = f(x) desde x = 0 a x = t viene dado por $s(t) = 4 \arcsin(t/4)$ con $t \in [0, 4]$. Obtenga f(x) si f(4) = 5.
- 13. Pruebe que el volumen del cono esférico $\{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le a^2, (a > 0) \ y \ 0 \le \cos^{-1}(x/\sqrt{x^2 + y^2 + z^2}) \le \varphi\}$ es igual a $2\pi a^3 (1 \cos \varphi)/3$.
- 14. Calcular el volumen generado por un segmento circular de ángulo central 2α , con $\alpha < \pi/2$ y radio R al girar alrededor de su cuerda.
- 15. Se considera el arco OAB de la parábola y = x(x a), con OA = a > 0 y OC = c > a. Determinar c de manera que el volumen de revolución generado por la región al girar en torno a OX, sea igual al volumen generado por el triángulo OCB girando en torno al mismo eje.
- 16. Hallar las pendientes de las siguientes curvas en el punto indicado:
 - a) $\rho = a(1 \cos \theta), \ \theta = \frac{\pi}{2},$
 - b) $\rho = a \sec \theta$, $\rho = 2a$,
 - c) $\rho^2 = a^2 \text{sen} (4\theta)$, en el origen.
 - d) $\rho = a^{\theta}, \ \theta = \frac{\pi}{2}$.

1

- 17. Calcular $\frac{dy}{dx}$, dado $r = \frac{2}{1 \sin \theta}$, $0 \le \theta < 2\pi$. ¿En qué puntos del gráfico tiene la curva tangente horizontal y/o vertical?
- 18. Determine la ecuación de la recta tangente a $r=3+8 \mathrm{sen}\,\theta,\,\mathrm{en}\,\,\theta=\frac{\pi}{6}.$
- 19. Dadas las ecuaciones paramétricas de la hipocicloide: $x = a \cos^3 \theta$, $y = a \sin^3 \theta$, hallar el volumen del sólido que se engendra haciéndola girar alrededor de OX.

- 20. Dada la curva $x = t^2$, $y = 4t t^3$, hallar el área del lazo y el volumen del sólido generado por éste lazo, cuando gira alrededor del eje X.
- 21. Hágase girar alrededor del eje polar la parte de la cardioide $\rho = 4 + 4\cos\theta$ que está entre las rectas $\theta = 0$ y $\theta = \frac{\pi}{2}$.
- 22. Hallar la longitud de arco de las siguientes curvas:
 - (a) El arco de la parábola semicúbica $ay^2 = x^3$ desde el origen hasta x = 5a.
 - (b) El arco de la curva cuya ecuación es $y = \frac{x^3}{6} + \frac{1}{2x}$ desde el punto de abcisa x = 1 hasta el punto x = 3.
 - (c) El arco de la parábola $y^2 = 2px$ desde el vértice a un extremo del lado recto.
 - (d) El arco de la curva $y = \ln \sec x$ desde el origen al punto $(\pi/3, \ln 2)$.
 - (e) La hipocicloide $x^{2/3} + y^{2/3} = a^{2/3}$.
 - (f) De una arcada completa de la cicloide.
 - (g) De la curva $e^y = \frac{e^x + 1}{e^x 1}$ entre x = a y x = b.
- 23. Hallar la longitud del arco de la curva $x=e^{\theta} {\rm sen}\, \theta, \ y=e^{\theta} {\rm cos}\, \theta, \ {\rm desde}\, \theta=0$ hasta $\theta=\frac{\pi}{2}.$
- 24. Hallar la longitud de arco de:
 - (a) La espiral de Arquímedes $\rho = a\theta$, desde el origen al extremo de la primera vuelta.
 - (b) De la espiral $\rho = e^{a\theta}$ desde el origen hasta el punto (ρ, θ) .
 - (c) De la curva $\rho = \sec^2(\frac{\theta}{2})$ desde $\theta = 0$ hasta $\theta = \frac{\pi}{2}$.
 - (d) De la parábola $\rho = \frac{2}{1 + \cos \theta}$ desde $\theta = 0$ hasta $\theta = \frac{\pi}{2}$.

- (e) De la espiral hiperbólica $\rho^{\theta} = a$, limitado por los puntos (ρ_1, θ_1) hasta (ρ_2, θ_2)
- 25. Demostrar que la longitud total de la curva $\rho = a \operatorname{sen}^3(\frac{\theta}{3})$ es $\frac{3\pi a}{2}$.
- 26. Hallar longitud de arco de la cisoide $\rho=2a\tan\theta \mathrm{sen}\,\theta\,\,\mathrm{desde}\,\,\theta=0\,\,\mathrm{hasta}\,\,\theta=\frac{\pi}{4}$
- 27. Halle el área de la superficie del paraboloide que genera la curva $y=\sqrt{x},$ $0 \le x \le 1$, cuando rota alrededor del eje X.
- 28. Halle el área de la superficie generada por la rotación de la curva paramétrica $x=t^3,$ $y=\frac{3}{2}t^2,\, 0\leq t\leq 1$ alrededor del eje X.
- 29. Sea la curva $x=t, \ y=\frac{t^3}{3}+\frac{1}{4t}. \ t\in [1,2].$ Hallar la longitud de la curva y el área que genera al girar alrededor de la recta y=-2.
- 30. Sea la función $x=g(y)=\frac{1}{8}y^4+\frac{1}{4y^2}$ de dominio [1, 2]. Calcule el área de la superficie de revolución que se genera al girar su gráfico alrededor de y=3.
- 31. Hallar el área de la superficie que se genera al girar la catenaria $y = \cosh x$, entre -1 y 1.
- 32. Halle el área generada al girar alrededor del eje X, la porción de curva $y^2 = |x+4|$, definido entre $-10 \le x \le 2$.
- 33. Sea f una función derivable con $f'(x) \geq 0$. Asumiendo que f(0) = 0, f(1) = 1 y sea L la longitud del gráfico de f en el intervalo [0,1]. probar que $\sqrt{2} \leq L \leq 2$. (Considere la desigualdad $\frac{\sqrt{2}}{2}(a+b) \leq \sqrt{a^2+b^2} \leq a+b$).
- 34. Sea $f:[0,1] \Longrightarrow [0,1]$ una función cóncava de clase \mathcal{C}^1 tal que f(0)=f(1)=0. Pruebe que la longitud de arco del gráfico de f no excede a 3.

UNI, November 12, 2017.