MATH F111- Mathematics I

Saranya G. Nair Department of Mathematics

BITS Pilani

August 27, 2024

When some of the terms of a series are positive and others are negative, the series may or may not converge.

When some of the terms of a series are positive and others are negative, the series may or may not converge.

$$\sum \left(\frac{-1}{4}\right)^n = 1 - \frac{1}{4} + \frac{1}{4^2} - \frac{1}{4^3} + \cdots \text{ converges.}$$

When some of the terms of a series are positive and others are negative, the series may or may not converge.

$$\sum \left(\frac{-1}{4}\right)^n = 1 - \frac{1}{4} + \frac{1}{4^2} - \frac{1}{4^3} + \cdots \text{ converges.}$$

$$\sum \left(\frac{-5}{4}\right)^n = 1 - \frac{5}{4} + \frac{5^2}{4^2} - \frac{5^3}{4^3} + \cdots \text{ diverges.}$$

When some of the terms of a series are positive and others are negative, the series may or may not converge.

$$\sum \left(\frac{-1}{4}\right)^n = 1 - \frac{1}{4} + \frac{1}{4^2} - \frac{1}{4^3} + \cdots \text{ converges.}$$

$$\sum \left(\frac{-5}{4}\right)^n = 1 - \frac{5}{4} + \frac{5^2}{4^2} - \frac{5^3}{4^3} + \cdots \text{ diverges.}$$

For a general series with both positive and negative terms, we can apply the tests for convergence studied before to the series of absolute values of its terms.

Absolute convergence

Definition

A series $\sum a_n$ converges absolutely (is absolutely convergent) if the corresponding series of absolute values, $\sum |a_n|$ converges.

Absolute convergence

Definition

A series $\sum a_n$ converges absolutely (is absolutely convergent) if the corresponding series of absolute values, $\sum |a_n|$ converges.

$$\sum \left(\frac{-1}{4}\right)^n$$
 converges absolutely as $\sum \left(\frac{1}{4}\right)^n$ converges.

Absolute convergence

Definition

A series $\sum a_n$ converges absolutely (is absolutely convergent) if the corresponding series of absolute values, $\sum |a_n|$ converges.

$$\sum \left(\frac{-1}{4}\right)^n$$
 converges absolutely as $\sum \left(\frac{1}{4}\right)^n$ converges.

$$-|a_n| \le a_n \le |a_n| \implies 0 \le a_n + |a_n| \le 2|a_n|.$$

$$-|a_n| \le a_n \le |a_n| \implies 0 \le a_n + |a_n| \le 2|a_n|.$$

$$\sum_{n=1}^{\infty} |a_n| \text{ converges } \implies \sum_{n=1}^{\infty} 2|a_n| \text{ converges.}$$

$$-|a_n| \le a_n \le |a_n| \implies 0 \le a_n + |a_n| \le 2|a_n|.$$

$$\sum_{n=1}^{\infty}|a_n|$$
 converges $\implies \sum_{n=1}^{\infty}2|a_n|$ converges. Thus By direct comparison

test,
$$\sum_{n=1}^{\infty} a_n + |a_n|$$
 converges.

Absolute convergent test: If $\sum |a_n|$ converges, then $\sum a_n$ converges.

$$-|a_n| \le a_n \le |a_n| \implies 0 \le a_n + |a_n| \le 2|a_n|.$$

$$\sum_{n=1}^{\infty} |a_n|$$
 converges $\implies \sum_{n=1}^{\infty} 2|a_n|$ converges. Thus By direct comparison

test, $\sum_{n=1}^{\infty} a_n + |a_n|$ converges.

Now
$$a_n = (a_n + |a_n| - |a_n|)$$
 and $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (a_n + |a_n|) - \sum_{n=1}^{\infty} |a_n|$.

Thus $\sum a_n$ converges.

イロト (個) (重) (重) (重) のQの

 $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$ converges absolutely and hence $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$ converges by the absolute convergent theorem.

 $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$ converges absolutely and hence $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$ converges by the absolute convergent theorem.

$$\sum_{n=1}^{\infty} \frac{\sin n}{n^2}$$
 converges absolutely and hence
$$\sum_{n=1}^{\infty} \frac{\sin n}{n^2}$$
 converges.

 $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$ converges absolutely and hence $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$ converges by the absolute convergent theorem.

$$\sum_{n=1}^{\infty} \frac{\sin n}{n^2}$$
 converges absolutely and hence
$$\sum_{n=1}^{\infty} \frac{\sin n}{n^2}$$
 converges.

Remark

Series is absolute convergent \implies series is convergent

Converse not true: $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ converges, but $\sum_{n=1}^{\infty} \frac{1}{n}$ doesn't converge,

hence $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n}$ doesn't converge absolutely.

The Ratio Test measures the rate of growth of a series by examining the ratio $\left|\frac{a_{n+1}}{a_n}\right|$.

The Ratio Test measures the rate of growth of a series by examining the ratio $\left| \frac{a_{n+1}}{a_n} \right|$.

For a geometric series ar^n , this rate is a constant $\left|\frac{ar^{n+1}}{ar^n}\right| = |r|$ and we know that the series converges if and only if |r| < 1. The Ratio Test is a powerful rule extending that result.

The Ratio Test measures the rate of growth of a series by examining the ratio $\left| \frac{a_{n+1}}{a_n} \right|$.

For a geometric series ar^n , this rate is a constant $\left|\frac{ar^{n+1}}{ar^n}\right|=|r|$ and we know that the series converges if and only if |r|<1. The Ratio Test is a powerful rule extending that result.

Theorem

Let $\sum_{n=0}^{\infty} a_n$ be any series and suppose that $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = r$. Then

The Ratio Test measures the rate of growth of a series by examining the ratio $\left|\frac{a_{n+1}}{a_n}\right|$.

For a geometric series ar^n , this rate is a constant $\left|\frac{ar^{n+1}}{ar^n}\right|=|r|$ and we know that the series converges if and only if |r|<1. The Ratio Test is a powerful rule extending that result.

Theorem

Let $\sum_{n=0}^{\infty} a_n$ be any series and suppose that $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = r$. Then

• (a) the series converges absolutely if r < 1,

The Ratio Test measures the rate of growth of a series by examining the ratio $\left|\frac{a_{n+1}}{a_n}\right|$.

For a geometric series ar^n , this rate is a constant $\left|\frac{ar^{n+1}}{ar^n}\right|=|r|$ and we know that the series converges if and only if |r|<1. The Ratio Test is a powerful rule extending that result.

Theorem

Let $\sum_{n=0}^{\infty} a_n$ be any series and suppose that $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = r$. Then

- (a) the series converges absolutely if r < 1,
- (b) the series diverges if r > 1 or r is infinite,

The Ratio Test measures the rate of growth of a series by examining the ratio $\left|\frac{a_{n+1}}{a_n}\right|$.

For a geometric series ar^n , this rate is a constant $\left|\frac{ar^{n+1}}{ar^n}\right|=|r|$ and we know that the series converges if and only if |r|<1. The Ratio Test is a powerful rule extending that result.

Theorem

Let $\sum_{n=0}^{\infty} a_n$ be any series and suppose that $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = r$. Then

- (a) the series converges absolutely if r < 1,
- (b) the series diverges if r > 1 or r is infinite,
- (c) the test is inconclusive if r = 1.

$$\bullet \sum_{n=0}^{\infty} \frac{2^n + 5}{3^n},$$

•
$$\sum_{n=0}^{\infty} \frac{2^n + 5}{3^n}$$
, $\left| \frac{a_{n+1}}{a_n} \right| \to \frac{2}{3}$, so converges.

$$\bullet \sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^2},$$

•
$$\sum_{n=0}^{\infty} \frac{2^n + 5}{3^n}$$
, $\left| \frac{a_{n+1}}{a_n} \right| \rightarrow \frac{2}{3}$, so converges.

•
$$\sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^2}$$
, $\left|\frac{a_{n+1}}{a_n}\right| \to 4$, so diverges.

•
$$\sum_{n=0}^{\infty} \frac{4^n (n!)^2}{(2n!)}$$
,

- $\sum_{n=0}^{\infty} \frac{2^n + 5}{3^n}$, $\left| \frac{a_{n+1}}{a_n} \right| \to \frac{2}{3}$, so converges.
- $\sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^2}$, $\left|\frac{a_{n+1}}{a_n}\right| \to 4$, so diverges.
- $\sum_{n=0}^{\infty} \frac{4^n (n!)^2}{(2n!)}$, $\left|\frac{a_{n+1}}{a_n}\right| \to 1$, so ratio test is inconclusive. Can you apply any other test to conclude?

Investigate the convergence of the following series:

•
$$\sum_{n=0}^{\infty} \frac{2^n + 5}{3^n}$$
, $\left| \frac{a_{n+1}}{a_n} \right| \rightarrow \frac{2}{3}$, so converges.

•
$$\sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^2}$$
, $\left|\frac{a_{n+1}}{a_n}\right| \to 4$, so diverges.

• $\sum_{n=0}^{\infty} \frac{4^n (n!)^2}{(2n!)}$, $\left|\frac{a_{n+1}}{a_n}\right| \to 1$, so ratio test is inconclusive. Can you apply any other test to conclude?

Let $\sum_{n=0}^{\infty} a_n$ be any series and suppose that $\lim_{n\to\infty} \sqrt[n]{|a_n|} = r$.

Let $\sum_{n=0}^{\infty} a_n$ be any series and suppose that $\lim_{n\to\infty} \sqrt[n]{|a_n|} = r$. Then

• (a) the series converges absolutely if r < 1,

Let $\sum_{n=0}^{\infty} a_n$ be any series and suppose that $\lim_{n\to\infty} \sqrt[n]{|a_n|} = r$. Then

- (a) the series converges absolutely if r < 1,
- (b) the series diverges if r > 1 or r is infinite,

Let $\sum_{n=0}^{\infty} a_n$ be any series and suppose that $\lim_{n\to\infty} \sqrt[n]{|a_n|} = r$. Then

- (a) the series converges absolutely if r < 1,
- (b) the series diverges if r > 1 or r is infinite,
- (c) the test is inconclusive if r = 1.

Let $\sum_{n=0}^{\infty} a_n$ be any series and suppose that $\lim_{n\to\infty} \sqrt[n]{|a_n|} = r$. Then

- ullet (a) the series converges absolutely if r < 1,
- (b) the series diverges if r > 1 or r is infinite,
- (c) the test is inconclusive if r = 1.

$$\bullet \sum_{n=0}^{\infty} \frac{n^2}{2^n},$$

Let $\sum_{n=0}^{\infty} a_n$ be any series and suppose that $\lim_{n\to\infty} \sqrt[n]{|a_n|} = r$. Then

- (a) the series converges absolutely if r < 1,
- (b) the series diverges if r > 1 or r is infinite,
- (c) the test is inconclusive if r = 1.

•
$$\sum_{n=0}^{\infty} \frac{n^2}{2^n}$$
, $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \frac{1}{2}$, so converges.

$$\bullet \sum_{n=0}^{\infty} \frac{2^n}{n^3},$$

Let $\sum_{n=0}^{\infty} a_n$ be any series and suppose that $\lim_{n\to\infty} \sqrt[n]{|a_n|} = r$. Then

- (a) the series converges absolutely if r < 1,
- (b) the series diverges if r > 1 or r is infinite,
- (c) the test is inconclusive if r = 1.

•
$$\sum_{n=0}^{\infty} \frac{n^2}{2^n}$$
, $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \frac{1}{2}$, so converges.

•
$$\sum_{n=0}^{\infty} \frac{2^n}{n^3}$$
, $\lim_{n\to\infty} \sqrt[n]{|a_n|} = 2$, so diverges.

Alternating Series test

Theorem

The series

$$\sum_{n=0}^{\infty} (-1)^{n+1} u_n = u_1 - u_2 + u_3 - u_4 + \cdots$$

converges if the following conditions are satisfied:

- 1. The $u_n > 0$.
- 2. $u_n \ge u_{n+1}$ for all $n \ge N$, for some integer N.
- 3. $u_n \rightarrow 0$.

$$\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n}$$
 converges by alternating series test.

Alternating Series test

Theorem

The series

$$\sum_{n=0}^{\infty} (-1)^{n+1} u_n = u_1 - u_2 + u_3 - u_4 + \cdots$$

converges if the following conditions are satisfied:

- 1. The $u_n > 0$.
- 2. $u_n \ge u_{n+1}$ for all $n \ge N$, for some integer N.
- 3. $u_n \rightarrow 0$.

$$\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n}$$
 converges by alternating series test.

$$\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n}$$
 converges by alternating series test.
$$\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n^p}, p>0$$
 converges by alternating series test.

Definition

A series that is convergent but not absolutely convergent is called conditionally convergent.

Definition

A series that is convergent but not absolutely convergent is called conditionally convergent.

$$\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n}$$
 is conditionally convergent.(converges, but not absolutely convergent.)

Definition

A series that is convergent but not absolutely convergent is called conditionally convergent.

$$\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n}$$
 is conditionally convergent.(converges, but not absolutely convergent.)
$$\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n^p}, 0$$

$$\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n^p}, 0$$

Rearranging terms in a series

We know $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n}$ converges and say it converges to L. (hence conditional convergent, but not absolute convergent).

Rearranging terms in a series

We know $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n}$ converges and say it converges to L. (hence conditional convergent, but not absolute convergent).

$$2L = 2\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n} = 2\left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} - \frac{1}{8} + \frac{1}{9} - \frac{1}{10} \cdots\right)$$

$$= 2 - 1 + \frac{2}{3} - \frac{1}{2} + \frac{2}{5} - \frac{1}{3} + \frac{2}{7} - \frac{1}{4} + \frac{2}{9} - \frac{1}{5} + \frac{2}{11} \cdots$$

$$= (2 - 1) - \frac{1}{2} + \left(\frac{2}{3} - \frac{1}{3}\right) - \frac{1}{4} + \left(\frac{2}{5} - \frac{1}{5}\right) - \frac{1}{6} + \left(\frac{2}{7} - \frac{1}{7}\right) - \frac{1}{8} + \cdots$$

$$= 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \cdots$$

This shows that we cannot rearrange the terms of a conditionally convergent series and expect the new series to be the same as the original one.

This shows that we cannot rearrange the terms of a conditionally convergent series and expect the new series to be the same as the original one. Can we rearrange the terms of an absolute convergent series?

Theorem

The Rearrangement Theorem for Absolutely Convergent Series: If

 $\sum_{n=0}^{\infty} a_n$ converges absolutely, and $b_1, b_2, \dots, b_n, \dots$ is any arrangement of

the sequence (a_n) , then $\sum_{n=0}^{\infty} b_n$ converges absolutely and $\sum_{n=0}^{\infty} a_n = \sum_{n=0}^{\infty} b_n$.