Formulario Fisica 1

Nicola Ferru

16 luglio 2024

Indice

1	Cinematica			
	1.1	Moto rettilineo uniforme	7	
		1.1.1 Legge oraria	7	
		1.1.2 Velocità	7	
		1.1.3 Tempo	7	
		1.1.4 Istante iniziale nullo	7	
		1.1.5 Istante e posizione iniziali nulli	7	
	1.2	Moto uniformemente accelerato	7	
		1.2.1 Segmento percorso s dopo il tempo t	8	
		1.2.2 Velocità	8	
		1.2.3 Equazione senza il tempo	8	
		1.2.4 Corpo che cade	8	
		1.2.5 Caduta da h_0 con velocità iniziale nulla	9	
		1.2.6 Lancio verso l'alto	9	
	1.3	Moto circolare uniforme	9	
		1.3.1 Energia cinetica totale	9	
		1.3.2 Forza centripeta e centrifuga	9	
	1.4	Moto circolare accelerato	10	
		1.4.1 Accelerazione tangenziale	10	
		1.4.2 Leggi orarie	10	
		1.4.3 Accelerazione totale	10	
	1.5	Somma dei vettori	10	
	1.6	Prodotto tra vettori	11	
		1.6.1 Scalare	11	
		1.6.2 Vettoriale	11	
	1.7	Moto con accelerazione variabile		
		1.7.1 Velocità dopo un tempo t	11	
		1.7.2 Forza di attrito	11	
	1.8	Piano inclinato		
	1.9	Moto Parabolico (Moto del proiettile)		
		1.9.1 Traiettoria del moto parabolico		

4 INDICE

2	Din	amica		15
	2.1	Lavora		15
		2.1.1	Forza costante	15
		2.1.2	Forza variabile	15
		2.1.3	Lavoro istantaneo	15
	2.2	Potenz	za	16
	2.3	Energi	a cinetica	16
		2.3.1	Teorema Lavoro-Energia	16
		2.3.2	Forze conservative e non conservative	16
	2.4	Energi	a Potenziale	17
	2.5	Energi	a meccanica	17
		2.5.1	Legge di conservazione dell'energia meccanica	17
		2.5.2	Energia potenziale gravitazionale	17
		2.5.3	Energia potenziale elastica	18
		2.5.4	Forza non conservative	18
		2.5.5	Legge di conservazione dell'energia	18
		2.5.6	Centro di massa	18
		2.5.7	Quantità di moto	19
		2.5.8	Teorema dell'impulso – quantità di moto	20
		2.5.9	Urto elastico a 2 dimensioni	21
	2.6	Moto	rotatorio	21
		2.6.1	Misura angolo in radianti	21
		2.6.2	Velocità angolare media	21
		2.6.3	Velocità angolare istantanea	21
		2.6.4	Accelerazione angolare media	21
		2.6.5	Moto con accelerazione angolare costante	22
		2.6.6	Velocità lineare di particella parte di un corpo rigido	22
		2.6.7	Accelerazione lineare di particella parte di un corpo rigido	22
		2.6.8	Momento di inerzia del corpo rigido	22
		2.6.9	Energia cinetica di un corpo in rotazione	22
		2.6.10	Momento della forza	22
		2.6.11	Momento di un particella	23
		2.6.12	Momenti di inerzia da ricordare	23
	2.7	Equaz	ione del moto di un oscillazione armonico	23
		2.7.1	Oscillatore armonico	24
		2.7.2	Legge di Hook	24
		2.7.3	Energia potenziale	24
		2.7.4	Legge del moto armonico	24
		2.7.5	Velocità nel moto armonico	25
		2.7.6	Accelerazione nel moto armonico	25
		2.7.7	Velocità e Accelerazione massima	25

INDICE 5

		2.7.8	Ricavare pulsazione e tempo con formule inverse o da legge oraria, velocità o accelerazione	25				
		2.7.9	Energia cinetica	25				
		2.7.10	Moto armonico smorzato	26				
		2.7.11	Oscilazioni forzate	26				
		2.7.12	Legge del moto armonico forzato	26				
3	Pen	doli		27				
	3.1	Pendo	lo semplice	27				
		3.1.1	Componente attiva della forza peso	27				
	3.2	Pendo	lo di torsione	27				
		3.2.1	Legge del moto	27				
		3.2.2	${\rm Onde} \ldots \ldots$	28				
		3.2.3	Equazione di onda sinusoidale	28				
		3.2.4	Potenza	29				
		3.2.5	Serie di Fourer	29				
		3.2.6	Onda stazionaria	29				
		3.2.7	Frequenze notivoli	30				
		3.2.8	Onde sommarie	30				
		3.2.9	Equazione di un'onda sonora	30				
	3.3	ezze acustiche Fondamentali	31					
		3.3.1	Livello di intensità sonore	31				
		3.3.2	Potenza acustica	31				
		3.3.3	Dipendenza dalla velocità del erogatore	31				
4	Info	Informazioni Utili						
	4.1	Valori	utili	33				
	4.2	Unità	di misura	33				

6 INDICE

Capitolo 1

Cinematica

1.1 Moto rettilineo uniforme

1.1.1 Legge oraria

$$s = v(t - t_i) + s_i \tag{1.1}$$

1.1.2 Velocità

$$v = \frac{s - s_i}{t - t_i} \tag{1.2}$$

1.1.3 Tempo

$$t = \frac{s - s_i}{v} + t_i \tag{1.3}$$

1.1.4 Istante iniziale nullo

$$s = vt + s_0 \tag{1.4}$$

1.1.5 Istante e posizione iniziali nulli

$$s = vt (1.5)$$

1.2 Moto uniformemente accelerato

Formula per calcolare la Velocità finale:

$$V_f = v_0 + a \cdot t \tag{1.6}$$

$$\begin{cases} v = v_i + a\Delta t \\ s = \frac{1}{2}a(\Delta t)^2 + v_i\Delta t + s_i \end{cases}$$
(1.7)

o, in forma splicita

$$\begin{cases} v = v_i + a(t - t_i) \\ s = \frac{1}{2}a(t - t_i)^2 + v_i(t - t_i) + s_i \end{cases}$$
 (1.8)

1.2.1 Segmento percorso s dopo il tempo t

$$s = s_0 + v_0 \cdot t \pm \frac{a}{2} \cdot t^2 \tag{1.9}$$

1.2.2 Velocità

$$v = v_i + a(t - t_i) \tag{1.10}$$

1.2.3 Equazione senza il tempo

$$v^2 = v_0^2 + 2a(s - s_0) (1.11)$$

1.2.4 Corpo che cade

$$h = h_0 + v_0 \cdot t \pm \frac{g}{2} \cdot t^2 \tag{1.12}$$

1.2.5 Caduta da h_0 con velocità iniziale nulla

Tempo di caduta

Velocità finale

$$t_c = \sqrt{\frac{2h_0}{g}} \tag{1.13}$$

$$V_f = \sqrt{2gh}$$

1.2.6 Lancio verso l'alto

Nel caso del lancio verso l'alto sono presenti queste due formule:

Altezza finale

Tempo finale

$$h = \frac{V_0^2}{2g} \tag{1.15}$$

1.3 Moto circolare uniforme

Accelerazione centripeta

Velocità angolare

$$\omega = \frac{2\pi_{rad}}{T} = 2\pi \cdot v \tag{1.18}$$

$$a_c = \frac{V^2}{r} \tag{1.17}$$

$$\omega = \frac{\Delta \alpha}{\Delta t}$$

1.3.1 Energia cinetica totale

$$E = \frac{1}{2}mv^2 (1.20)$$

1.3.2 Forza centripeta e centrifuga

Forza centripeta

Velocità tangenziale

$$F_{CP} = m \cdot \frac{v^2}{r} \tag{1.21}$$

Forza centrifuga

Periodo

$$F_{CF} = -m \cdot \frac{v^2}{r}$$
 (1.22) $t = \frac{1}{f}$

$$F_{CP} = -F_{CF} \tag{1.25}$$

1.4 Moto circolare accelerato

1.4.1 Accelerazione tangenziale

$$a_t = \left| \frac{dv}{dt} \right| \to a_t = \alpha r$$
 (1.26)

1.4.2 Leggi orarie

$$\theta = \frac{1}{2}\alpha t^2 + \omega_0 t + \omega_0 \quad \omega = \omega_0 + \alpha t \tag{1.27}$$

Equazione senza il tempo

$$\omega^2 = \omega_0^2 + 2\alpha(\theta - \theta_0) \tag{1.28}$$

1.4.3 Accelerazione totale

$$\vec{a}_{tot} = \vec{a}_T + \vec{a}_C \to a_{tot} = \sqrt{a_T^2 + a_C^2}$$
 (1.29)

1.5 Somma dei vettori

$$|\vec{v}| = \sqrt{|v_1|^2 + |v_2|^2 + 2|v_1||v_2| + \log \alpha}$$
(1.30)

1.6 Prodotto tra vettori

1.6.1 Scalare

$$a \cdot b = a \cdot |b_p| \tag{1.31}$$

$$a \cdot b = a \cdot b \cdot \cos \alpha \tag{1.32}$$

1.6.2 Vettoriale

$$a \cdot b = a \cdot b \cdot \sin \alpha \quad a_n \dot{b} \tag{1.33}$$

di cui, a_n è componente di $a \perp ab$.

1.7 Moto con accelerazione variabile

1.7.1 Velocità dopo un tempo t

$$v = v_0 + \int_{t_0}^t a(t)dt \tag{1.34}$$

1.7.2 Forza di attrito

Attrito statico

Attrito dinamico

$$f_s = \mu_s N \tag{1.35}$$

1.8 Piano inclinato

Accelerazione perpendicolare al piano

$$a_y = 0$$

Accelerazione parallela al piano

$$a_x = g \cdot \sin(\alpha)$$

Angolo d'altezza e lunghezza

$$\sin(\alpha) = \frac{h}{l}$$

Angolo da base e lunghezza

$$\cos(\alpha) = \frac{d}{l}$$

Angolo d'altezza e base

$$\tan(\alpha) = \frac{h}{d}$$

1.9 Moto Parabolico (Moto del proiettile)

$$\begin{cases} v_{0x} = v_0 \cos(\alpha) \\ v_{0y} = v_0 \sin(\alpha) \end{cases}$$

$$v = \sqrt{v_{0x}^2 + v_{0y}^2}$$

$$\tan(\alpha) = \frac{v_{0x}}{v_{0y}}$$
(1.37)

$$\begin{cases} x = x_0 + v_{0x}t \\ y = -\frac{1}{2}gt^2 + v_{0y}t + y_0 \end{cases}$$
 (1.38)

$$t = \frac{v_0 \sin(\alpha) \pm \sqrt{v_0^2 \sin^2(\alpha) + 2gy_0}}{g}$$
 (1.39)

1.9.1 Traiettoria del moto parabolico

$$\begin{cases} t = \frac{x - x_0}{v_{0x}} \\ y = -\frac{1}{2}gt^2 + v_{0y}t + y_0 \end{cases}$$
 (Oppure in forma esplicita)
$$\begin{cases} t = \frac{x - x_0}{v_{0x}} \\ y = -\frac{1}{2}g\left(\frac{x - x_0}{v_{0x}}\right)^2 + v_{0y}\left(\frac{x - x_0}{v_{0x}}\right) + y_0 \end{cases}$$
 (1.40)

Capitolo 2

Dinamica

2.1 Lavora

2.1.1 Forza costante

$$L = (F \cdot \cos \alpha) \Delta s \tag{2.1}$$

2.1.2 Forza variabile

$$L_{1,2} = \int_{x_1}^{x_2} F(x)dx \tag{2.2}$$

Unità di misura

$$1N \cdot 1m = 1J \text{ (Joule)} \tag{2.3}$$

2.1.3 Lavoro istantaneo

$$dL = (F \cdot \cos \alpha)ds \tag{2.4}$$

2.2 Potenza

 ${\bf Potenza\ media}$

Potenza istantanea

$$\langle P \rangle = \frac{\Delta L}{\Delta t}$$
 (2.5)
$$P = \frac{dL}{dt}$$

2.3 Energia cinetica

$$k = \frac{1}{2}mv^2 \tag{2.7}$$

2.3.1 Teorema Lavoro-Energia

$$L = k - k_0 \tag{2.8}$$

2.4 Energia Potenziale

$$\Delta k = -\Delta U \tag{2.9}$$

$$k_x - k_{x_0} = -(U_x - U_{x_0}) (2.10)$$

2.5 Energia meccanica

$$E = k + U \tag{2.11}$$

2.5.1 Legge di conservazione dell'energia meccanica

$$k_0 + U_0 = k_F + U_F (2.12)$$

$$\Delta U = -\int_{x_0}^x F(x)dx$$

$$F(x) = -\frac{dU(x)}{dx}$$

2.5.2 Energia potenziale gravitazionale

$$U_{y} - U_{0} = mgyU(y) = mgy$$

$$U_{y} - U_{0} = \int_{y}^{0} F(y)dy = \int_{y}^{0} (-mg \cdot y) = mgy$$
(2.13)

2.5.3 Energia potenziale elastica

$$U(x) = \int_{T}^{0} (-kx)dx = \frac{1}{2}kx^{2}$$

2.5.4 Forza non conservative

$$L_{non-cons.} = \Delta(k+U) = \Delta E$$

2.5.5 Legge di conservazione dell'energia

2.5.6 Centro di massa

$$x_{cm} = \frac{\sum m_i x_i}{\sum m_i} \tag{2.14}$$

coordinate centro di massa (carpo esteso e di materia uniforme)

$$x_{cm} = \lim_{\Delta m_i \to 0} = \frac{\sum m_i x_i}{\sum m_i} \tag{2.15}$$

$$x_{cm} = \frac{\int x dm}{\int dm} = \frac{1}{M} \cdot \int x dm$$

2.6. MOTO ROTATORIO

Equazione vettoriale del centro di massa

$$\vec{s}_{cm} = \frac{\int \vec{s} dm}{\int dm} \tag{2.16}$$

Accelerazione del centro di massa (di un sistema di particelle)

$$M_{cm_x} = \sum F_i = \sum m_i \frac{dV_{i_x}}{dt} \tag{2.17}$$

Legge del moto traslatorio del centro di massa

$$F_{est} = Ma_{cm} (2.18)$$

2.5.7 Quantità di moto

$$\vec{P} = mv \tag{2.19}$$

$$\vec{F} = \frac{d\vec{P}}{dt}$$

$$P_{Tot} = M \cdot V_{cm}$$

$$\frac{d\vec{P}}{dt} = F_{ext}$$

2.5.8 Teorema dell'impulso – quantità di moto

$$\vec{J} = \int_{t_*}^{t_2} F(t)dt = \Delta P \tag{2.20}$$

2.5.9 Urto elastico a 2 dimensioni

$$V_1 + V_1 = V_2 + V_2 \tag{2.21}$$

$$V_1 - V_2 = V_2 - V_1$$

$$\frac{1}{2}m_1V_1^2 + \frac{1}{2}m_2V_2^2 = \frac{1}{2}m_1V_1^2 + \frac{1}{2}m_2V_2^2$$
(2.22)

Velocità urto completamente anelastico

$$m_1 V_1 + m_2 V_2 = (m_1 + m_2) V (2.23)$$

2.6 Moto rotatorio

2.6.1 Misura angolo in radianti

$$\theta = \frac{s}{R} \tag{2.24}$$

2.6.2 Velocità angolare media

$$<\omega> = \frac{\Delta\theta}{\Delta t}$$
 (2.25)

2.6.3 Velocità angolare istantanea

$$\omega(t) = \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t} = \frac{d\theta}{dt} \tag{2.26}$$

2.6.4 Accelerazione angolare media

$$\alpha = \frac{\Delta\omega}{\Delta t} \tag{2.27}$$

2.6.5 Moto con accelerazione angolare costante

$$\begin{cases}
\omega = \omega_0 + \alpha t \\
\theta = \frac{1}{2}(\omega_0 + \omega)t \\
\theta = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2 \quad \text{equazioni orarie}
\end{cases}$$
(2.28)

2.6.6 Velocità lineare di particella parte di un corpo rigido

$$V = r\omega \tag{2.29}$$

2.6.7 Accelerazione lineare di particella parte di un corpo rigido

$$a_T = r\alpha \tag{2.30}$$

2.6.8 Momento di inerzia del corpo rigido

$$I = \sum (m_i r_i^2)$$

$$I = \int r^2 dm$$
(2.31)

2.6.9 Energia cinetica di un corpo in rotazione

$$K_{tot} = \frac{1}{2}I\omega^2 \tag{2.32}$$

2.6.10 Momento della forza

$$\vec{r} = \vec{r} \times \vec{F}$$

$$r = rF \sin \theta$$

$$r = I\alpha$$
(2.33)

2.6.11 Momento di un particella

$$\vec{L} = \vec{r} \times \vec{P}$$

$$L = rP \sin \theta$$

$$\tau = \frac{dL}{dt} = \frac{d(I\omega)}{dt}$$

$$dL = \tau dt \Rightarrow \Delta L = \int \tau(t)dt$$
(2.34)

Principio di conservazione del momento ongolare

 $I\omega = costante$

2.6.12 Momenti di inerzia da ricordare

Rotazione rispetto all'asse del cilindro

$$I = \frac{mR^2}{2} \tag{2.35}$$

Rotazione rispetto a un asse perpendicolare a un esterno

$$I = \frac{ml}{2} \tag{2.38}$$

Rotazione rispetto ad un diametro centrale

$$I = \frac{mR^2}{4} + \frac{ml^2}{12} \tag{2.36}$$

Sfera piena (rispetto a diametro qualunque)

$$I = \frac{2nR^2}{5} \tag{2.39}$$

Rispetto ad un asse perpendicolare al centro Superficie sferica (rispetto a diametro qualundella lunghezza que)

$$I = \frac{nl^2}{12} (2.37) I = \frac{2mR^2}{3}$$

2.7 Equazione del moto di un oscillazione armonico

$$m\frac{d''x}{dt^2} + kx = 0 (2.41)$$

2.7.1 Oscillatore armonico

2.7.2 Legge di Hook

$$F = -kx (2.42)$$

2.7.3 Energia potenziale

$$U = \frac{1}{2}kx^2\tag{2.43}$$

Legge del moto armonico

$$x(t) = A \cdot \cos(\omega t + \delta) \tag{2.44}$$

$$(\omega t + \delta) = \text{fase del moto} \tag{2.45}$$

$$-1 < \cos x \le 1 \Longrightarrow -A \le x(t) \le A$$

Periodo

Frequenza

$$T=\frac{2\pi}{\omega}=2\pi\sqrt{\frac{m}{k}}$$
 Oppure $T=\frac{1}{f}$

$$f = \frac{1}{T} = \frac{\omega}{2\pi} = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$$

Dipende solo da $k \in m$

È misurato in Hz

Pulsazione

$$\omega = \frac{2\pi}{T}; \omega = 2\pi f \tag{2.46}$$

2.7.5 Velocità nel moto armonico

$$V(t) = \frac{dx}{dt} = -\omega A \sin(\omega t + \delta)$$
 (2.47)

2.7.6 Accelerazione nel moto armonico

$$a(t) = \frac{d''x}{dt} = -\omega^2 A \cos(\omega t + \delta)$$
 (2.48)

Velocità e Accelerazione massima 2.7.7

$$v_{max} = \omega A \quad a_{max} = A\omega^2 \tag{2.49}$$

Ricavare pulsazione e tempo con formule inverse o da legge oraria, velocità 2.7.8 o accelerazione

$$A\cos(\omega t) = \frac{x}{4} \rightarrow \omega t = \arccos(\cos(\omega t))$$
 (2.50)

$$A\cos(\omega t) = \frac{x}{A} \to \omega t = \arccos(\cos(\omega t))$$

$$t = \frac{\arccos(\cos(\omega t))}{\omega} \qquad \omega = \frac{\arccos(\cos(\omega t))}{t}$$

$$(2.50)$$

2.7.9Energia cinetica

$$k = \frac{1}{2}mv^2 = \underbrace{\frac{1}{2}k}_{\omega^2 \cdot m} A^2 \sin^2(\omega t * \delta) \quad \omega = \frac{k}{m}$$
(2.52)

Energia potenziale

energia meccanica

$$U = \frac{1}{2}kA^2\cos^2(\omega t + \delta)$$

$$E = U + k = \frac{1}{2}kA^2$$

2.7.10 Moto armonico smorzato

$$m\frac{d''x}{dt^2} + b\frac{dx}{dt} + kx = 0$$
 (2.53) Modulo forza d'attrito
$$F_a = -b\frac{dx}{dt}$$

legge del moto armonico smorzato

$$x(t) = Ae^{-\frac{bt}{2m}}\cos(\omega't + \omega) \tag{2.55}$$

dove

$$\omega' = \sqrt{\frac{k}{m} - \left(\frac{b}{2m}\right)^2}$$

2.7.11 Oscilazioni forzate

$$m\frac{d''x}{dt^2} + b\frac{dx}{dt} + kx = \underbrace{F_m \cos(\omega''t)}_{\text{FORZA ESTERNA AL SISTEMA}}$$
(2.56)

2.7.12 Legge del moto armonico forzato

$$x(t) = \left(\frac{F_m}{G}\right) \cdot \sin(\omega'' - \alpha) \tag{2.57}$$

dove:

$$G = \sqrt{m^2(\omega'' - \omega^2)^2 + b^2 \omega''^2} \quad e \quad \alpha = \arccos\left(\frac{b\omega''}{G}\right)$$
 (2.58)

Capitolo 3

Pendoli

3.1 Pendolo semplice

Periodo

$$T = 2\pi \sqrt{\frac{l}{g}} \tag{3.1}$$

3.1.1 Componente attiva della forza peso

$$F_{P,x} = -\left(\frac{mg}{L}\right)x\tag{3.2}$$

3.2 Pendolo di torsione

$$\tau = -x\theta \tag{3.3}$$

3.2.1 Legge del moto

$$\theta = \theta_m \cos(\omega t + \delta) \tag{3.4}$$

È la soluzione all'equazione differenziale:

Soluzione integrale

Periodo

$$\frac{d''\theta}{dt^2} = -\frac{x}{I}\theta \tag{3.6}$$

3.2.2 Onde

3.2.3 Equazione di onda sinusoidale

$$y(x,t) = y_m \sin(kx - \omega t - \psi)$$
 $y_m = \text{ampiezza massima oscilazione}$ (3.7)

Dove:

Numero d'onda

Frequenza ongolare

$$k = \frac{2\pi}{\lambda} \tag{3.8}$$

Equazione per la teoria

$$y(x,t) = y_m \sin 2\pi \left(\frac{x}{\lambda} - \frac{t}{T}\right) \tag{3.10}$$

- finito t, $y(x) = y(x + k\lambda) \quad \forall k \in \mathbb{Z}$ (numeri interi)
- finito x, $y(t) = y(t + kT) \quad \forall k \in \mathbb{Z}$

Velocità di fase

$$V = \frac{\lambda}{T} \tag{3.11}$$

$$\lambda = VT = \frac{V}{f}$$

3.2.4 Potenza

$$\langle P \rangle = 2\pi^2 y_m^2 f^2 \mu V$$
 (3.12)

3.2.5 Serie di Fourer

$$y(t) = A_0 + A_1 \sin(\omega t) + A_2 \sin(\omega t) + \dots + A_N \sin(\omega t) + B_1 \cos(\omega t) + B_2 \cos(\omega t) + \dots + B_N \cos(\omega t)$$
(3.13)

dove $\omega = \frac{2\pi}{T}$

3.2.6 Onda stazionaria

$$y = 2y_m \sin kx \cos \omega t \tag{3.14}$$

data dalla massa di onda incidente e onda rilessa.

3.2.7 Frequenze notivoli

$$f = \underbrace{\frac{n}{2l}}_{\lambda} \underbrace{\sqrt{\frac{F}{\mu}}}_{v} \tag{3.15}$$

$$\lambda = \frac{2l}{n} \Leftrightarrow l/\frac{\lambda}{2} = n$$

$$V = \sqrt{\frac{F}{\mu}}$$
(3.16)

3.2.8 Onde sommarie

Frequenza udibile dall'uomo: $20Hz \rightarrow 20.000Hz$

Velocità di propagazione

$$V = \sqrt{\frac{B}{\sigma_0}} \tag{3.17}$$

3.2.9 Equazione di un'onda sonora

$$y = y_m \cos(kx - \omega t) \tag{3.18}$$

$$k = \frac{2\pi}{\lambda} \quad \omega = \frac{2\pi}{T} \tag{3.19}$$

Variazione di pressione del mezzo (rispetto a un punto P_0)

$$p = P\sin(kx - \omega t) \tag{3.20}$$

dove P è l'ampiezza di pressione:

$$P = k\sigma_0 V^2 y_m \tag{3.21}$$

3.3 Grandezze acustiche Fondamentali

3.3.1 Livello di intensità sonore

$$L = 10 \cdot \log \left(\frac{I}{I_0}\right) \tag{3.22}$$

Ricavare intensità dal livello di intensità

$$I = I_0 \cdot 10^{\frac{L}{10}} \tag{3.23}$$

3.3.2 Potenza acustica

$$P = I \cdot S \tag{3.24}$$

3.3.3 Dipendenza dalla velocità del erogatore

$$v_s = 343 \frac{m}{s} \tag{3.25}$$

Avvicinamento punto di riferimento

$$f_1 = \frac{v_s}{v_s - v_e} \cdot f \tag{3.26}$$

Allontanamento punto di riferimento

$$f_2 = \frac{v_2}{v_s + v_e} \cdot f \tag{3.27}$$