The Master Theorem

- Given: a *divide and conquer* algorithm
 - An algorithm that divides the problem of size *n* into *a* subproblems, each of size *n/b*
 - Let the cost of each stage (i.e., the work to divide the problem + combine solved subproblems) be described by the function *f*(n)
- Then, the Master Theorem gives us a cookbook for the algorithm's running time:

11/5/2002

The Master Theorem

I Assumptions:

§ $a \ge 1$ and $b \ge 1$ are constants

§ f(n) is an asymptotically positive function

§ T(n) is defined for nonnegative integers

§We interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$

11/5/2002

The Master Theorem

With the recurrence T(n) = a T(n/b) + f(n) as in the previous slide, T(n) can be bounded asymptotically as follows:

- 1. If $f(n) = O(n^{\log_b a e})$ for some constant e > 0, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = W(n^{\log_b a + e})$ for some constant e > 0, and if $a f(n/b) \le c f(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

11/5/2002

Using The Master Method

- T(n) = 9T(n/3) + n
 - a=9, b=3, f(n)=n
 - $n^{\log_b a} = n^{\log_3 9} = \Theta(n^2)$
 - Since $f(n) = O(n^{\log_3 9 \epsilon})$, where $\epsilon = 1$, case 1 applies:

$$T(n) = \Theta(n^{\log_b a})$$
 when $f(n) = O(n^{\log_b a - e})$

■ Thus the solution is $T(n) = \Theta(n^2)$

11/5/2002

Examples

- T(n) = 16T(n/4) + n
 - a = 16, b = 4, thus $n^{\log_b a} = n^{\log_4 16} = \Theta(n^2)$
 - $f(n) = n = O(n^{\log_4 16 e})$ where $e = 1 \Rightarrow$ case 1.
 - Therefore, $T(n) = \Theta(n^{\log_b a}) = \Theta(n^2)$
- T(n) = T(3n/7) + 1
 - $a = 1, b = 7/3, \text{ and } n^{\log_b a} = n^{\log_{7/3} 1} = n^0 = 1$
 - $f(n) = 1 = \Theta(n^{\log_b a}) \Rightarrow \text{case } 2.$
 - Therefore, $T(n) = \Theta(n^{\log_b a} \lg n) = \Theta(\lg n)$

Examples (Cont.)

- $T(n) = 3T(n/4) + n \lg n$
 - a = 3, b = 4, thus $n^{\log_b a} = n^{\log_4 3} = O(n^{0.793})$
 - $f(n) = n \lg n = \Omega(n^{\log_4 3 + e})$ where $e \approx 0.2 \Rightarrow$ case
 - Therefore, $T(n) = \Theta(f(n)) = \Theta(n \lg n)$
- $T(n) = 2T(n/2) + n \lg n$
 - a = 2, b=2, $f(n) = n \lg n$, and $n^{\log_b a} = n^{\log_2 2} = n$
 - f(n) is asymptotically larger than $n^{\log_b a}$, but not polynomially larger. The ratio $\lg n$ is asymptotically less than n^e for any positive e. Thus, the Master Theorem doesn't apply here.

11/5/20