ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ»

Факультет Программной Инженерии и Компьютерной Техники

Дисциплина: «Вычислительная математика»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 2 «Численное решение нелинейных уравнений и систем»

Вариант 3

Выполнил:

Студент гр. P32151 Горинов Даниил Андреевич

Проверил:

Машина Екатерина Алексеевна

Санкт-Петербург 2023г.

Цель лабораторной работы:

Изучить численные методы решения нелинейных уравнений и их систем, найти корни заданного нелинейного уравнения/системы нелинейных уравнений, выполнить программную реализацию методов

Порядок выполнения лабораторной работы:

Исследуемое уравнение:

$$f(x) = x^3 + 2.84x^2 - 5.606x - 14.766$$

Рассмотрим график f(x) = 0:

- Уравнение имеет три корня, выберем начальные приближения для корней как интервалы:
 - Для крайнего левого корня => $x_0 \in [-3.2, -3.0]$
 - Для центрального корня => $x_1 \in [-2.2, -2.0]$
 - Для крайнего правого корня => $x_2 \in [2.2, 2.4]$
- Найдём приближения к корням следующими методами: к крайнему левому
 методом простой итерации, к крайнему правому методом половинного деления, к центральному корню методом Ньютона
 - •Далее напишем программу, реализующую поиск приближенных значений корней для ряда функций-полиномов и трансцендентных функций.

Формулы:

1. Метод половинного деления

Рабочая формула метода: $x_i = \frac{a_i + b_i}{2}$

Критерий окончания итерационного процесса: $|b_n - a_n| \le \varepsilon$ или $|f(x_n)| \le \varepsilon$.

Приближенное значение корня: $x^* = \frac{a_n + b_n}{2}$ или $x^* = a_n$ или $x^* = b_n$

2. Метод секущих

Рабочая формула метода:

$$x_{i+1} = x_i - \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})} f(x_i)$$
 $i = 1, 2 ...$

3. Метод простой итерации

Уравнение f(x) = 0 приведем к эквивалентному виду: $x = \varphi(x)$, выразив x из исходного уравнения.

Зная начальное приближение: $x_0 \in [a, b]$, найдем очередные приближения:

$$x_1 = \varphi(x_0) \to x_2 = \varphi(x_1) \dots$$

Рабочая формула метода: $x_{i+1} = \varphi(x_i)$

4. Метод Ньютона для систем нелинейных уравнений

А далее вычислять на каждой итерации:

$$x_{i+1} = x_i + \Delta x_i$$
 и $y_{i+1} = y_i + \Delta y_i$,

где x_i , y_i - текущее приближение к корню,

 x_{i+1}, y_{i+1} - последующее приближение,

 Δx_i , Δy_i – приращения к очередным приближениям.

Процесс вычисления заканчивается при выполнении следующих условий:

$$|x_{i+1} - x_i| \le \varepsilon$$
, $|y_{i+1} - y_i| \le \varepsilon$

Заполненные таблицы вычислительной части лабораторной работы:

1. Уточнение крайнего правого корня методом половинного деления:

Nº	a	b	x	f(a)	f(b)	f(x)	a-b
++							+
000	2,200	2,400	2,300	- 10,822	7,848	-1, 877	0,200
001	2,300	2,400	2,350	-1, 877	7,848	2,887	0,100
002	2,300	2,350	2,325	-1, 877	2,887	0,480	0,050
003	2,300	2,325	2,313	-1, 877	0,480	- 0,704	0,025
004	2,313	2,325	2,319	-0,704	0,480	- 0,113	0,012
005	2,319	2,325	2,322	- 0,113	0,480	0,183	0,006
0061	2,319	2,322	2 , 320	- 0,113	0,183	0,035	0,003
007	2,319	2,320	2,320	- 0,113	0,035	- 0,039	0,002
008	2,320	2,320	2,320	- 0,039	0,035	- 0,002	0,001

- Как результат берём приближённое значение $x_2 = 2{,}320$
- 2. Уточнение крайнего левого корня методом простой итерации:

- Как результат берём приближённое значение $x_0 = -3,120$
- 3. Уточнение центрального корня методом Ньютона:

			$ f'(X_k) $			
			-4,966			
001	-2,039	-0,005	-4,715	-2,040	Ī	0,001

• Как результат берём приближённое значение $x_1 = -2,039$

```
Примеры работы:
```

1)

Enter dimension: 3

Enter matrix rows:

row 1:1356

row 2: 1 3 6 7

row 3: 9 8 5 10

Original matrix:

1.0 3.0 5.0 | 6.0

1.0 3.0 6.0 | 7.0

9.0 8.0 5.0 | 10.0

Triangle matrix:

9.0 8.0 5.0 | 10.0

0.0 2.111 5.444 | 5.889

0.0 0.0 -1.0 | -1.0

Determinant = 19.0

Roots:

 $x_1 = 0.368$

 $x_2 = 0.211$

 $x_3 = 1.0$

Errors:

0.0

0.0

0.0

2)

Enter dimension: 2

Enter matrix rows:

row 1: 1 2 3

row 2: 3 2 1

Original matrix:

1.0 2.0 | 3.0

3.0 2.0 | 1.0

Triangle matrix:

3.0 2.0 | 1.0

0.0 1.333 | 2.667

Determinant = -4.0

```
Roots:
```

 $x_1 = -1.0$

x 2 = 2.0

Errors:

0.0

0.0

3)

Enter dimension: 4

Enter matrix rows:

row 1: 1 2 3 4 5

row 2: 23456

row 3: 6 5 4 3 2

row 4: 23331

Original matrix:

1.0 2.0 3.0 4.0 | 5.0

2.0 3.0 4.0 5.0 | 6.0

6.0 5.0 4.0 3.0 | 2.0

2.0 3.0 3.0 3.0 | 1.0

Determinant = 0. Matrix is inconsistent.

Вывод:

Недостатками метода Гаусса с выбором главного элемента по столбцам: требуется хранить всю матрицу в памяти системы (т.е. при большой размерности матрицы потребуется много памяти), не учитывается структуру матрицы (т.е нулевые элементы хранятся в памяти, и над ними проводятся арифметические действия), происходит накапливание погрешностей

Достоинства: этот метод пригоден для решения широкого класса СЛАУ, решаются за конечное число операций.