ALIMENTATIONS STABILISEES

Circuits & systèmes électroniques I M. Kayal

ALIMENTATIONS STABILISEES

- ALIMENTATIONS A REGULATEUR CONTINU SERIE
- REGULATEUR DE TENSION CONTINU SERIE
- REFERENCES DE TENSION A DIODE ZENER
- REFERENCES DE TENSION "BAND GAP"
- EXEMPLES DE REGULATEUR DE TENSION CONTINU SERIE

1. ALIMENTATIONS A REGULATEUR CONTINU SERIE

La différence entre V_{1NR} et V_{OUT} est "chutée" par le régulateur

1. ALIMENTATIONS A REGULATEUR CONTINU SERIE

- · Alimentations de très haute qualité.
- · Très faible ondulation résiduelle.
- · Très faible impédance de sortie.
- Réponse rapide aux sollicitations et perturbations.
- © Rendement bien plus faible que les alimentations à découpage.

2.1 REGULATEUR DE TENSION CONTINU SERIE

Régulateur (dit aussi stabilisateur) de tension continu (dit aussi linéaire) série

2.1 REGULATEUR DE TENSION CONTINU SERIE

2.2 CARACTERISTIQUES DES REGULATEUR DE TENSION CONTINU SERIE

EFFET D'UNE VARIATION DE LA CHARGE R

$$\frac{\Delta V_{OUT}}{\Delta I_{OUT}} = R_{out,F}$$

EFFET D'UNE VARIATION DE LA TENSION D'ENTREE V1

$$\frac{\Delta V_{OUT}}{\Delta V_{1NR}} = \frac{\Delta V_{REF}}{\Delta V_{1NR}} \cdot \frac{R_1 + R_2}{R_2} + PSRR$$

EFFET D'UNE VARIATION DE LA TEMPERATURE

$$\frac{\Delta V_{OUT}}{\Delta T} = \frac{\Delta V_{REF}}{\Delta T} \cdot \frac{R_1 + R_2}{R_2}$$

2.3 REGULATEUR LINEAIRE SERIE A AMPLI DIFFERENTIEL

$$V_{OUT} = V_{REF} \cdot \frac{R_1 + R_2}{R_2}$$

L'ampli différentiel compense l'effet de la température sur les jonctions BE de T₁ et T₂

Le courant de sortie n'influence pratiquement pas le courant dans la référence

V_{OUT} est réglable en modifiant le rapport R₁/R₂

Si R_L décroît I_{OUT} croît et pourrait atteindre :

$$I_{OUT, max} = \beta_S \cdot I_2$$

Avec la sortie en court-circuit, T_S devrait dissiper :

$$P_{QS, max} = V_{1NR} \cdot \beta_S \cdot I_2$$

Ces valeurs sont en général bien plus élevée que les maxima tolérés par le transistor, d'où la nécessité d'une limitation de courant.

LIMITATION SIMPLE

Lorsque T_3 conduit, $V_{BE3} = 0.7 V \Rightarrow$

$$I_{out} \approx \frac{U_{j}}{R_{lim}} \approx \frac{0.7}{R_{lim}}$$

LIMITATION SIMPLE

LIMITATION A REPLIEMENT (FOLDBACK)

=>

$$V_{BE3} = I_{OUT} \cdot R_{lim} - \alpha \cdot V'_{OUT}$$

avec:
$$\begin{cases} V'_{OUT} = V_{OUT} + I_{OUT} \cdot R_{lim} \\ \alpha = R_3 / (R_3 + R_4) \end{cases}$$

Lorsque
$$T_3$$
 conduit, $V_{BE3} = U_j$

$$I_{OUT} = \frac{U_j + \alpha \cdot V_{OUT}}{(1 - \alpha) \cdot R_{lim}}$$

LIMITATION A REPLIEMENT (FOLDBACK)

AVANTAGE DE LA LIMITATION A REPLIEMENT

POLARISATION PAR UNE RESISTANCE

Modèle "petits signaux"

$$\Delta V_{REF} \approx \Delta V_1 \cdot \frac{r_Z}{R}$$

POLARISATION PAR UNE SOURCE DE COURANT

$$\Delta V_{Za} \approx \Delta V_1 \cdot \frac{r_{Za}}{R_1} \implies \Delta I = \frac{\Delta V_{Za}}{R_2} \implies \Delta V_{REF} = \Delta I \cdot r_Z \approx \Delta V_1 \cdot \frac{r_{Za} \cdot r_Z}{R_1 \cdot R_2}$$

$$\odot$$
 $V_{1,min} = V_{Za} + V_{Z}$

POLARISATION PAR UNE SOURCE DE COURANT (CI)

En "petits signaux":

nécessité d'un circuit auxiliaire de démarrage

POLARISATION PAR UNE SOURCE DE COURANT (discret)

$$I_Z = \frac{V_Z}{R} \cdot \frac{R_2}{R_1}$$
 précis ©

En "petits signaux":

$$\Delta V_{REF} \stackrel{\textcircled{\textcircled{\sc o}}}{pprox} \Delta V_1 \cdot \frac{1}{PSRR} \cdot \frac{R_2 + R_1}{R_1}$$

SENSIBILITE A LA TEMPERATURE

- Stabilité thermique : typiquement +/- 50 ppm/°C
- Bruit lié à l'effet d'avalanche de la Zener
- Tension minimum d'alimentation supérieure à V_Z et consommation de courant relativement importante :
 - pas adaptée à des applications "Low Voltage" ou "Low Power"
- Problèmes de compatibilité entre une diode Zener de qualité et les technologies standards des circuits intégrés

On compense le coefficient de température négatif de V_{BE} (- 2 mV/°C) par celui positif du potentiel thermodynamique U_T (k/q = + 85 μ V/°C)

On parle de référence "Band-Gap" parce que la tension ainsi obtenue (environ 1.23 V) est très proche de la tension de Band-Gap du Silicium.

Le principe repose sur la source de courant de WIDLAR

$$\mathbf{V}_{\mathrm{BE1}} = \mathbf{V}_{\mathrm{BE2}} + \mathbf{I}_{2} \cdot \mathbf{R}_{3}$$

$$\mathbf{U}_{\mathrm{T}} \cdot \ln(\frac{\mathbf{I}_{1}}{\mathbf{I}_{\mathrm{S1}}}) = \mathbf{U}_{\mathrm{T}} \cdot \ln(\frac{\mathbf{I}_{2}}{\mathbf{I}_{\mathrm{S2}}}) + \mathbf{I}_{2} \cdot \mathbf{R}_{3}$$

Si les 2 transistors sont identiques:

$$\Delta \mathbf{V}_{\mathrm{BE}} = \mathbf{U}_{\mathrm{T}} \cdot \ln(\mathbf{I}_{1}/\mathbf{I}_{2}) = \mathbf{I}_{2} \cdot \mathbf{R}_{3}$$

REFERENCE "BAND-GAP" SIMPLE

REFERENCE "BAND-GAP" AMELIOREE

REFERENCE "BAND-GAP" AMELIOREE

4. SCHEMA SIMPLIFIE DU LM140L

4. SCHEMA SIMPLIFIE DU uA78LXX

