Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

I

1. (Currently amended) <u>A compound comprising Oxamide derivatives of formula</u>

A-D-B (I)

wherein

- D is a bivalent oxamide moiety, or a derivative thereof,
- A is a-an unsubstituted or substituted moiety of up to 40 carbon atoms of the formula: -L-(M- $L')_{\alpha}$, where wherein L is a 5, 6 or 7 membered cyclic structure, preferably selected from the group consisting of aryl, heteroaryl, arylene and heteroarylene, bound directly to D, L' comprises an optionally substituted cyclic moiety having at least 5 members, preferably selected from the group consisting of aryl, heteroaryl, aralkyl, cycloalkyl and heterocyclyl, M is a bond or a bridging group having at least one atom, α is an integer of from 1-4; and each cyclic structure of L and L' contains 0-4 members of selected from the group consisting of nitrogen, oxygen and sulfur, wherein L' is preferably substituted by at least one substituent selected from the group consisting of $-SO_{\beta}R_{x}$, $-C(O)R_{x}$ and $-C(NR_{y})R_{z}$
- B is a substituted or unsubstituted, up to tricyclic aryl or heteroaryl moiety of up to 30 carbon atoms, preferably of up to 20 carbon atoms, comprising at least one 5-, 6-, or 7-membered cyclic structure, preferably a 5- or 6-membered cyclic structure, bound directly to D containing 0-4 members of selected from the group consisting of nitrogen, oxygen and sulfur, wherein said cyclic structure directly bound to D is preferably

selected from the group consisting of aryl, heteroaryl and heterocyclyl, R_y is hydrogen or a carbon based moiety of up to 24 carbon atoms optionally containing heteroatoms selected from the group consisting of N, S and O and optionally halosubstituted, up to per halo,

R_z is hydrogen or a carbon based moiety of up to 30 carbon atoms optionally containing heteroatoms selected from the group consisting of N, S and O and optionally substituted by halogen, hydroxy and or carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from the group consisting of N, S and O and are optionally substituted by a halogen;

 R_x is R_z or NR_aR_b , where R_a and R_b are

a) independently hydrogen, a carbon based moiety of up to 30 carbon atoms optionally containing heteroatoms selected from the group consisting of N, S and O and optionally substituted by halogen, hydroxy and or carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from the group consisting of N, S and O and are optionally substituted by halogen, or

-OSi(R_f)₃ where R_f is hydrogen or a carbon based moiety of up to 24 carbon atoms optionally containing heteroatoms selected from the group consisting of N, S and O and optionally substituted by halogen, hydroxy and or carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from the group consisting of N, S and O and are optionally substituted by a halogen;

or

- b) R_a and R_b together form a 5-7 member heterocyclic structure of 1-3 heteroatoms selected from the group consisting of N, S and O, or a substituted 5-7 member heterocyclic structure of 1-3 heteroatoms selected from the group consisting of N, S and O substituted by halogen, hydroxy or carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from the group consisting of N, S and O and are optionally substituted by a halogen; or
- c) one of R_a or R_b is -C(O)-, a C₁-C₅ divalent alkylene group or a substituted C₁-C₅ divalent alkylene group bound to the moiety L to form a cyclic structure with at least 5 members, wherein the substituents of the substituted C₁-C₅ divalent alkylene group are selected from the group consisting of halogen, hydroxy, and carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by <u>a</u> halogen;

where B is substituted, L is substituted or L' is additionally substituted, the substituents are selected from the group consisting of <u>a</u> halogen, up to per-halo, and $W\gamma$, where γ is 0-3;

wherein each W is independently selected from the group consisting of -CN, -CO₂R, -C(O)NR⁵R⁵, -C(O)-R⁵, -NO₂, -OR⁵, -SR⁵, -SO₂R⁵, -SO₃H, -NR⁵R⁵, -NR⁵C(O)OR⁵, -NR⁵C(O)R⁵, -Q-Ar, and carbon based moieties of up to 24 carbon atoms, optionally containing heteroatoms selected from the group consisting of N, S and O and optionally substituted by one or more substituents independently selected from the groups consisting of -CN, -CO₂R, -C(O)NR⁵R⁵, -C(O)-R⁵, -NO₂, -OR⁵, -SR⁵, -SO₂R⁵, -SO₃H, -NR⁵C(O)OR⁵, -NR⁵C(O)OR⁵ and halogen up to per halo; with each R⁵ independently selected from H or a carbon based

> moiety of up to 24 carbon atoms, optionally containing heteroatoms selected from the group consisting of N, S and O and optionally substituted by halogen, wherein Q is -O-, -S-, -N(R^5)-, -(CH₂)₈, -C(O)-, -CH(OH)-, -(CH₂)₈O-, -(CH₂))_βS-, -(CH₂)_βN(R⁵)-, -O(CH₂)_β, -CHHal-, -CHal₂-, -S-(CH₂).- and or $-N(R^5)(CH_2)_{\beta}$ - where $\beta = 1-3$, and Hal is halogen; and Ar is a 5- or 6-member aromatic structure containing 0-2 members selected from the group consisting of nitrogen, oxygen and sulfur, which is optionally substituted by halogen, up to per-halo, and optionally substituted by $Z_{\delta 1}$ wherein $\delta 1$ is 0 to 3 and each Z is independently selected from the group consisting -CN, -CO₂R⁵, $-C(O)NR^5R^5$, $-C(O)-R^5$, $-NO_2$, $-OR^5$, $-SR^5$, $-SO_2R^5$, $-SO_3H$, -NR⁵R⁵, -NR⁵C(O)OR⁵, -NR⁵C(O)R⁵, and a carbon based moiety of up to 24 carbon atoms, optionally containing heteroatoms selected from the group consisting of N, S and O and optionally substituted by one or more substituents selected from the group consisting of-CN, -CO₂R⁵, -C(O)NR⁵R⁵, -C(O)-R⁵, -NO₂, -OR⁵, $-SR^5$, $-SO_2R^5$, $-SO_3H$, $-NR^5R^5$, $-NR^5C(O)OR^5$, $-NR^5C(O)R^5$, and the pharmaceutically acceptable derivatives, salts and solvates thereof.

- 2. (Currently amended) The compound Oxamide derivative according to claim 1, characterised in that wherein each M independently from one another represents is a bond or is a bridging group, selected from the group consisting of $(CR^5R^5)_h$, or and $(CHR^5)_h$ -Q- $(CHR^5)_i$, wherein
 - Q is selected from a group consisting of O, S, N-R⁵, (CHal₂)_j, (O-CHR⁵)_j, (CHR⁵-O)_j, CR⁵=CR⁵, (O-CHR⁵CHR⁵)_j, (CHR⁵CHR⁵-O)_j, C=O, C=S, C=NR⁵, CH(OR⁵), C(OR⁵)(OR⁵), C(=O)O, OC(=O), OC(=O)O, (C=O)N(R⁵)C(=O), OC(=O)N(R⁵), N(R⁵)C(=O)O, CH=N-NR⁵, S=O, SO₂, SO₂NR⁵-und and NR⁵SO₂, wherein

- R⁵ is in each case independently selected from the meanings given above, preferably the group consisting of hydrogen, halogen, alkyl, aryl, and aralkyl,
- h, i are independently from each other 0, 1, 2, 3, 4, 5, or 6, preferably 0, 1, 2 or 3, and
- j is 0, 1, 2, 3, 4, 5 or $6, \frac{1}{2}$ or $6, \frac{1}{2}$ or 3.
- 3. (Currently amended) <u>The compound Oxamide derivative</u> according to claim 1, selected from the compounds of comprising formula II,

$$(R^8)_p$$
 Ar^1 N N X Ar^2 $(R^{10})_r$ $(R^9)_q$

wherein

- Ar¹, Ar² are selected independently from one another from aromatic hydrocarbons containing 6 to 14 carbon atoms and ethylenical unsaturated or aromatic heterocyclic residues containing 3 to 10 carbon atoms and one or two hetero atoms, independently selected from the group consisting of N, O-und and S,
- R^{8} , R^{9} and R^{10} are independently selected from a group consisting of H, A, cycloalkyl comprising 3 to 7 carbon atoms, Hal, CH₂Hal, CH(Hal)₂, C(Hal)₃, NO₂, (CH₂)_nCN, (CH₂)_nNR¹¹R¹², (CH₂)_nOR¹¹, (CH₂)_nO(CH₂)_kNR¹¹R¹², (CH₂)_nCOOR¹², (CH₂)_nCONR¹¹R¹², (CH₂)_nNR¹¹COR¹³, (CH₂)_nNR¹¹CONR¹¹R¹², (CH₂)_nNR¹¹SO₂A, (CH₂)_nSO₂NR¹¹R¹², (CH₂)_nS(O)_uR¹³, (CH₂)_nOC(O)R¹³, (CH₂)_nCOR¹³, (CH₂)_nSR¹¹, CH=N-OA, CH₂CH=N-OA.

(CH₂)_nNHOA, (CH₂)_nCH=N-R¹¹, (CH₂)_nOC(O)NR¹¹R¹²,
(CH₂)_nNR¹¹COOR¹², (CH₂)_nN(R¹¹)CH₂CH₂OR¹³,
(CH₂)_nN(R¹¹)CH₂CH₂OCF₃, (CH₂)_nN(R¹¹)C(R¹³)HCOOR¹²,
C(R¹³)HCOR¹², (CH₂)_nN(R¹¹)CH₂CH₂N(R¹²)CH₂COOR¹²,
(CH₂)_nN(R¹¹)CH₂CH₂NR¹¹R¹², CH=CHCOOR¹¹,
CH=CHCH₂NR¹¹R¹², CH=CHCH₂NR¹¹R¹², CH=CHCH₂OR¹³,
(CH₂)_nN(COOR¹¹)COOR¹², (CH₂)_nN(CONH₂)COOR¹¹,
(CH₂)_nN(CONH₂)CONH₂, (CH₂)_nN(CH₂COOR¹¹)COOR¹²,
(CH₂)_nN(CH₂CONH₂)COOR¹¹, (CH₂)_nN(CH₂COOR¹¹)COOR¹²,
(CH₂)_nCHR¹³COR¹¹, (CH₂)_nCHR¹³COOR¹¹,
(CH₂)_nCHR¹³COR¹¹, (CH₂)_nCHR¹³COOR¹¹,

- R^{11} , R^{12} are independently selected from a group consisting of H, A, $(CH_2)_mAr^3$ and $(CH_2)_mHet$, or in $NR^{11}R^{12}$,
- R¹¹ and R¹² form, together with the N-Atom they are bound to, a 5-, 6- or 7-membered heterocyclus heterocycles which optionally contains 1 or 2 additional hetero atoms, selected from the group consisting of N, O and S,
- R^{13} , R^{14} are independently selected from a group consisting of H, Hal, A, $(CH_2)_mAr^4$ and $(CH_2)_mHet$,
- A is selected from the group consisting of alkyl, alkenyl, cycloalkyl, alkylenecycloalkyl, alkoxy and alkoxyalkyl,
- Ar³, Ar⁴ are independently from one another aromatic hydrocarbon residues comprising 5 to 12 and preferably 5 to 10 carbon atoms which are optionally substituted by one or more substituents, selected from a the group consisting of A, Hal, NO₂, CN, OR¹⁵, NR¹⁵R¹⁶, COOR¹⁵, CONR¹⁵R¹⁶, NR¹⁵COR¹⁶, NR¹⁵CONR¹⁵R¹⁶, NR¹⁶SO₂A, COR¹⁵, SO₂R¹⁵R¹⁶, S(O)₀A and OOCR¹⁵.

Het is a saturated, unsaturated or aromatic heterocyclic residue which is optionally substituted by one or more substituents, selected from a group consisting of A, Hal, NO₂, CN, OR¹⁵, NR¹⁵R¹⁶, COOR¹⁵, CONR¹⁵R¹⁶, NR¹⁵COR¹⁶, NR¹⁵CONR¹⁵R¹⁶, NR¹⁶SO₂A, COR¹⁵, SO₂R¹⁵R¹⁶, S(O)_uA and OOCR¹⁵,

- R^{15} , R^{16} are independently selected from a group consisting of H, A, and $(CH_2)_mAr^5$, wherein
- Ar⁵ is a 5- or 6-membered aromatic hydrocarbon which is optionally substituted by one or more substituents selected from a the group consisting of methyl, ethyl, propyl, 2-propyl, tert.-butyl, Hal, CN, OH, NH₂ and CF₃,

k, m and n are independently of one another 0, 1, 2, 3, 4, or 5;

- X represents a bond or is $(CR^{11}R^{12})_h$, or $(CHR^{11})_h$ -Q- $(CHR^{12})_i$, wherein
- Q is selected from a the group consisting of O, S, N-R¹⁵, (CHal₂)_j, (O-CHR¹⁸)_j, (CHR¹⁸-O)_j, CR¹⁸=CR¹⁹, (O-CHR¹⁸CHR¹⁹)_j, CHR¹⁸CHR¹⁹-O)_j, C=O, C=S, C=NR¹⁵, CH(OR¹⁵), C(OR¹⁵)(OR²⁰), C(=O)O, OC(=O), OC(=O)O, C(=)N(R¹⁵), N(R¹⁵)C(=O), CH=N-O, CH=N-NR¹⁵, OC(O)NR¹⁵, NR¹⁵C(O)O, S=O, SO₂, SO₂NR¹⁵-und and NR¹⁵SO₂, wherein
- $R^{18},\,R^{19},\,R^{20}$ are independently selected from the meanings given for $R^8,\,R^9$ and $R^{10},\,$
- h, i are independently from each other 0, 1, 2, 3, 4, 5 or 6, and

- j is 1, 2, 3, 4, 5 or 6,
- Y is selected from the group consisting of O, S, NR²¹, C(R²²)-NO₂, C(R²²)-CN and C(CN)₂, wherein
- R²¹ is independently selected from the meanings given for R¹³, R¹⁴, and
- R²² is independently selected from the meanings given for R¹¹, R¹²,
- p, r are independently from one another 0, 1, 2, 3, 4 or 5,
- q is 0, 1, 2, 3 or 4, preferably 0, 1 or 2,
- u is 0, 1, 2 or 3, preferably 0, 1 or 2,

and

Hal is independently selected from a the group consisting of F, Cl, Br and I;

and the pharmaceutically acceptable derivatives, salts and solvates thereof.

4. (Currently amended) <u>The compound Oxamide derivative</u> according to claim 3, selected from the compounds of formula IIa, IIb, IIc, IId, IIe, IIf, IIg and IIh,

$$(R^8)_p$$
 N
 N
 $(R^9)_q$
IIa

$$(R^8)_p$$
 H
 $(R^9)_q$
 R^{10}
IIb

$$(R^8)_p$$
 N
 N
 R^{10}
 $(R^9)_q$
IIc

$$(R^8)_p$$
 H
 $(R^9)_q$
 IId

$$R^{8} \longrightarrow \begin{pmatrix} H & Y & X & X & R^{10} \\ N & Y & H & (R^{9})_{q} & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

$$R^{8} \longrightarrow Q \longrightarrow N \longrightarrow N \longrightarrow (R^{9})_{q} \longrightarrow R^{10}$$
 IIf

$$R^{8} \longrightarrow N^{-O} \longrightarrow H \longrightarrow (R^{9})_{q} \longrightarrow IIg$$

$$R^{8} \xrightarrow{N-O} Y \xrightarrow{H} (R^{9})_{q}$$
IIh

wherein R⁶, R⁷, R⁸, p, X, Y, R⁹, q are as defined in claim 3 and R¹⁰ is H or as defined in claim 3;

and the pharmaceutically acceptable derivatives, salts and solvates thereof.

- 5. (Currently amended) <u>The compound Oxamide derivative</u> according to claim 1, selected from the compounds (1) to (224) of table 1, and the pharmaceutically acceptable derivatives, salts and solvates thereof.
- 6. (Currently amended) <u>The compound Oxamide derivative</u> according to claim 1 as wherein said compound is a medicament.
- 7. (Currently amended) <u>The compound Oxamide derivative</u> according to claim 1 as wherein said compound is a kinase inhibitor.
- 8. (Currently amended) <u>The compound Oxamide derivative</u> according to claim 7, characterized in that <u>wherein</u> the <u>kinase inhibitor inhibits a raf-kinase kinases are selected from raf-kinases</u>.
- 9. (Currently Amended) <u>A Ppharmaceutical composition</u>, characterized in that it contains comprising one or more of the compounds according to claim 1.
- 10. (Currently Amended) <u>The Ppharmaceutical composition according to claim 9</u>, eharacterised in that it contains <u>comprising</u> one or more additional compounds, selected from the group consisting of physiologically acceptable excipients, auxiliaries, adjuvants, carriers and pharmaceutical active ingredients other than the compounds according to claim 9.

- 11. (Currently Amended) <u>A Pprocess</u> for the manufacture of a pharmaceutical composition, characterised in that comprising mixing one or more compounds according to claim 1 and with one or more compounds, selected from the group consisting of carriers, excipients, auxiliaries and pharmaceutical active ingredients other than the compounds according to claim 1, is processed by mechanical means into a pharmaceutical composition that is suitable as dosage form for application and/or or administration to a patient.
- 12. (Currently amended) Use of a The compound according to claim 1 as wherein said compound is a pharmaceutical.
- 13. (Currently Amended) Use of a compound according to claim 1 in the treatment and/or prophylaxis of disorders A method of treatment or prophylaxis of disorders comprising administering a patient in need thereof, an effective amount of the compound according to claim 1.
- 14. (Currently Amended) Use of a compound according to claim 1 for producing a pharmaceutical composition for the treatment and/or_prophylaxis of disorders A method of treatment or prophylaxis of disorders comprising administering a patient in need thereof, a pharmaceutical composition comprising an effective amount of the compound according to claim 1.
- 15. (Currently Amended) Use The method according to claim 13, characterised in that wherein the disorders are caused, mediated and/or or propagated by raf-kinases.
- 16. (Currently Amended) Use The method according to claim 13, characterised in that-wherein the disorders are selected from the group consisting of hyperproliferative and nonhyperproliferative disorders.
- 17. (Currently Amended) Use The method according to claim 13, characterised in that wherein the disorder is cancer.

Appl. No. 10/549,852 Amdt. dated January 8, 2007

Reply to Office action of Nov. 8, 2006

18. (Currently Amended) Use The method according to claim 13, characterised in that wherein the disorder is noncancerous.

- 19. (Currently Amended) Use The method according to claim 13, characterised in that wherein the noncancerous disorders are selected from the group consisting of psioarsis, arthritis, inflammation, endometriosis, scarring, Helicobacter pylori infection, begnin prostatic hyperplasia, immunological diseases, autoimmune diseases and immunodeficiency diseases.
- 20. (Currently Amended) Use The method according to claim 13, characterised in that wherein the disorders are selected from the group consisting of melanoma, brain cancer, lung cancer, squamous cell cancer, bladder cancer, gastric cancer, pancreatic cancer, hepatic cancer, renal cancer, colorectal cancer, breast cancer, head cancer, neck cancer, oesophageal cancer, gynaecological cancer, ovarian cancar, ovary cancer, uterine cancer, prostate cancer, thyroid cancer, lymphoma, chronic leukaemia and acute leukaemia.
- 21. (Currently Amended) Use The method according to claim 15, characterised in that wherein the disorders are selected from the group consisting of arthritis, restenosis; fibrotic disorders; mesangial cell proliferative disorders, diabetic nephropathy, malignant nephrosclerosis, thrombotic microangiopathy syndromes, organ transplant rejection, glomerulopathies, metabolic disorders, inflammation, solid tumors, rheumatic arthritis, diabetic retinopathy, and neurodegenerative diseases.
- 22. (Currently Amended) Use The method according to claim 15, characterised in that wherein the disorders are selected from the group consisting of rheumatoid arthritis, inflammation, autoimmune disease, chronic obstructive pulmonary disease, asthma, inflammatory bowel disease, fibrosis, atherosclerosis, restenosis, vascular disease, cardiovascular disease, inflammation, renal disease and angiogenesis disorders.
- 23. (Currently amended) Use of a The compound according to claim 1 as wherein said compound is a raf-kinase inhibitor.

- 24. (Currently amended) Use The compound according to claim 23, characterised in that wherein the raf-kinase is selected from the group consisting of A-Raf, B-Raf and c-Raf-1.
- 25. (Currently Amended) <u>A Mm</u>ethod for the treatment <u>and/or or prophylaxis</u> of disorders, <u>characterised in that wherein one</u> or more compounds according to claim 1 is administered to a patient in need of such a treatment.
- 26. (Currently Amended) The Mmethod according to claim 25, wherein the one or more compounds are administered as a pharmaceutical composition. characterised in that the one or more compounds according to one of the claims claim 1 to 5 are administered as a pharmaceutical composition according to claim 9 or 10.
- 27. (Currently Amended) <u>The Mm</u>ethod for the treatment and/or prophylaxis of disorders according to claim 26, characterized in that wherein the disorder is caused, medicated and /or or propagated by raf-kinase.
- 28. (Currently amended) <u>The Mmethod for the treatment</u> according to claim 27, characterised in that wherein the disorder is cancerous cell growth mediated by raf-kinase.
- 29. (Currently amended) <u>A Mmethod for producing compounds of formula II, eharacterised in that comprising, reacting</u>
 - a) a compound of formula III

$$(R^8)_p$$
 Ar^1 N Y L^1 III

wherein

is Cl, Br, l, OH, an esterified OH-group or a diazonium moiety, and R⁸,
 p, Ar¹, Y are as defined in claim 3,

is reacted

b) with a compound of formula IV,

$$L_{L^{3}}^{2}$$
 $(R^{9})_{q}$ IV

wherein

 L^2 , L^3 are independently from one another H or a metal ion, and R^9 , q, X, Ar^2 , R^{10} and r are as—as defined in claim 3,

and optionally

- c) isolating and/or or treating the compound of formula II obtained by said reaction with an acid, to obtain the salt thereof.
- 30. (Currently amended) A Compound of formula III,

$$(R^8)_p$$
 Ar^1 N L^1 III

wherein

L¹ is Cl, Br, l, OH, an esterified OH-group or a diazonium moiety, and R⁸, p, Ar¹, Y are as defined in claim 3.

31. (Currently amended) A Compound of formula IV,

$$L_{N}^{2}$$
 $(R^{9})_{q}$ IV

wherein

- L^2 , L^3 are independently from one another H or a metal ion, and R^9 , q, X, Ar^2 , R^{10} and r are as defined in claim 3.
- 32. (New) The compound according to claim1, wherein said compound is an oxamide derivative.

33. (New) The compound comprising formula II,

$$(R^8)_p - Ar^1 - N + O + Ar^2 - (R^{10})_r$$
 $(R^9)_q$
II

wherein

Ar¹, Ar² are selected independently selected from one another from a group consisting of aromatic hydrocarbons containing 6 to 14 carbon atoms and ethylenical unsaturated or aromatic heterocyclic residues containing 3 to 10 carbon atoms and one or two hetero atoms, independently selected from the group consisting of N, O and S, or ONC₃H₂,

 R^8 , R^9 and R^{10} are independently selected from a group consisting of H, A, cycloalkyl comprising 3 to 7 carbon atoms, Hal, CH₂Hal, CH(Hal)₂, C(Hal)₃, NO₂, (CH₂)_nCN, (CH₂)_nNR¹¹R¹², (CH₂)_nOR¹¹, (CH₂)_nO(CH₂)_kNR¹¹R¹², (CH₂)_nCOOR¹², (CH₂)_nCONR¹¹R¹², (CH₂)_nNR¹¹COR¹³, (CH₂)_nNR¹¹CONR¹¹R¹², (CH₂)_nNR¹¹SO₂A, (CH₂)_nSO₂NR¹¹R¹², (CH₂)_nS(O)_uR¹³, (CH₂)_nOC(O)R¹³, (CH₂)_nCOR¹³, (CH₂)_nSR¹¹, CH=N-OA, CH₂CH=N-OA, (CH₂)_nNHOA, (CH₂)_nCH=N-R¹¹, (CH₂)_nOC(O)NR¹¹R¹², (CH₂)_nNR¹¹COOR¹², (CH₂)_nN(R¹¹)CH₂CH₂OR¹³, (CH₂)_nN(R¹¹)C(R¹³)HCOOR¹².

$$\begin{split} &C(R^{13})HCOR^{12}, (CH_2)_nN(R^{11})CH_2CH_2N(R^{12})CH_2COOR^{12}, (CH_2)_nN(R^{11})CH_2CH_2NR^{11}R^{12},\\ &CH=CHCOOR^{11}, CH=CHCH_2NR^{11}R^{12}, CH=CHCH_2NR^{11}R^{12}, CH=CHCH_2OR^{13},\\ &(CH_2)_nN(COOR^{11})COOR^{12}, (CH_2)_nN(CONH_2)COOR^{11}, (CH_2)_nN(CONH_2)CONH_2,\\ &(CH_2)_nN(CH_2COOR^{11})COOR^{12}, (CH_2)_nN(CH_2CONH_2)COOR^{11},\\ &(CH_2)_nN(CH_2CONH_2)CONH_2, (CH_2)_nCHR^{13}COR^{11}, (CH_2)_nCHR^{13}COOR^{11},\\ &(CH_2)_nCHR^{13}CH_2OR^{14}, (CH_2)_nOCN \ and \ (CH_2)_nNCO, \ wherein \end{split}$$

R¹¹, R¹² are independently selected from a group consisting of H, A, (CH₂)_mAr³ and (CH₂)_mHet, or in NR¹¹R¹², R¹¹ and R¹² form, together with the N-Atom they are bound to, a 5-, 6- or 7-membered heterocycles which optionally contains 1 or 2 additional hetero atoms, selected from the group consisting of N, O and S,

 $R^{13},\,R^{14}$ are independently selected from a group consisting of H, Hal, A, $(CH_2)_mAr^4$ and $(CH_2)_mHet$,

A is selected from the group consisting of alkyl, alkenyl, cycloalkyl, alkylenecycloalkyl, alkoxy and alkoxyalkyl,

Ar³, Ar⁴ are independently aromatic hydrocarbon residues comprising 5 to 12 carbon atoms optionally substituted by one or more substituents, selected from the group consisting of A, Hal, NO₂, CN, OR¹⁵, NR¹⁵R¹⁶, COOR¹⁵, CONR¹⁵R¹⁶, NR¹⁵COR¹⁶, NR¹⁵COR¹⁶, NR¹⁵COR¹⁵, NR¹⁵COR¹⁵, NR¹⁵COR¹⁵, NR¹⁶SO₂A, COR¹⁵, SO₂R¹⁵R¹⁶, S(O)₁₁A and OOCR¹⁵,

Het is a saturated, unsaturated or aromatic heterocyclic residue which is optionally substituted by one or more substituents, selected from a group consisting of A, Hal, NO₂, CN, OR¹⁵, NR¹⁵R¹⁶, COOR¹⁵, CONR¹⁵R¹⁶, NR¹⁵COR¹⁶, NR¹⁵CONR¹⁵R¹⁶, NR¹⁶SO₂A, COR¹⁵, SO₂R¹⁵R¹⁶, S(O)_uA and OOCR¹⁵,

 R^{15} , R^{16} are independently selected from a group consisting of H, A, and $(CH_2)_mAr^5$, wherein

Ar⁵ is a 5- or 6-membered aromatic hydrocarbon optionally substituted by one or more substituents selected from the group consisting of methyl, ethyl, propyl, 2-propyl, tert.-butyl, Hal, CN, OH, NH₂ and CF₃,

k, m and n are independently of one another 0, 1, 2, 3, 4, or 5;

X is selected from the group consisting of O, S, and CH₂,
p, r are independently from one another 0, 1, 2, 3, 4 or 5,
q is 0, 1, 2, 3 or 4,
u is 0, 1, 2 or 3,and

Hal is independently selected from the group consisting of F, Cl, Br and I; and the pharmaceutically acceptable derivatives, salts and solvates thereof.