

## Morley's Theorem, a Proof

### Brian Stonebridge (University of Bristol, UK) Bill Millar

In Figure 1, the near trisectors of the internal angles at the vertices A, B, and C of a triangle meet in X, Y, and Z. **Morley's theorem (http://www.cut-the-knot.org/triangle/Morley/index.shtml)** states that the triangle XYZ is equilateral. We give here a direct Euclidean proof.



Figure 1

Let the far trisectors meet in P, Q, and R. The following proof that PX, QY, and RZ are concurrent is purely Euclidean; a stronger result can be *proved (http://www.cut-the-knot.org/triangle/Morley.shtml)* using *projective geometry (http://www.cut-the-knot.org/triangle/pythpar/Geometries.shtml#projective)*. Figure 1 shows the angle values  $\alpha$ ,  $\beta$ ,  $\gamma$ , implying  $\alpha + \beta + \gamma = \pi/3$ , and  $\angle$ QXR =  $\pi - \beta - \gamma$ . Since Y is the incentre of  $\Delta$ AQC, it follows that  $\angle$ ZQY =  $\Delta$ XQY =  $\beta + \pi/6$ . The corresponding angles at R and P are  $\gamma + \pi/6$ ,  $\alpha + \pi/6$ .

Assume PX, QY and RZ meet in pairs at U, V, and W. By *transitivity (http://www.cut-the-knot.org/triangle/remarkable.shtml)*, either U, V, W all coincide or are all distinct. We show that the assumption that the three points are distinct leads to a contradiction. Indeed, this might happen in two ways, as illustrated in Figures 2 and 3 (*below*.) We focus on the diagram of Figure 2, the other one being entirely analogous. Sum the angles of quadrilateral QURX, using the above results, to find  $\angle$ WUV =  $\pi$ /3. Hence  $\triangle$ WUV is equilateral, with sides 2d, say. Thus we assume that

#### $(1) d \neq 0$

Choose  $X_1$  on QX such that  $UX_1$  is parallel to PX. Then the angles ZUQ, QUX<sub>1</sub>,  $X_1UV$  all are  $\pi/3$ . Now choose  $X_2$  and  $X_3$  on PX such that  $\angle PX_2X_1 = \pi/2$ , and  $X_1X_3$  is parallel to UV. These constructions imply  $\angle X_2X_1X = \beta$  (because in  $\Delta QWX$ ,  $\angle WQX = \beta + \pi/6$  and  $\angle QWX = \pi/3$  hence  $\angle QXW = \pi/2 - \beta$ ) and  $X_2X_3 = d$ -from the choice of  $X_3$ .





Figure 2

Denote  $X_2X$  by x, then  $VX = VX_3 - d + x$ . But  $VX_3 = UX_1 = UZ$ , from the congruence of triangles ZUQ and  $X_1UQ$ . (These triangles are congruent since they have a common side UQ, the angles at Q are  $\beta + \pi/6$ , and the angles at U are  $\pi/3$ .) Hence

(2) 
$$VX = UZ - d + x$$
.

Similarly, defining y and z in the same way as for x,

$$(3) \qquad WY = VX - d + y,$$

(4) 
$$UZ = WY - d + z$$
.

Adding equations (2)-(4) gives

(5) 
$$x + y + z = 3d$$
.

Now extend the line PX to H, such that  $\angle X_2X_1H=\pi/3$ , and hence  $X_2H=3d$ . Indeed, in an equilateral triangle the ratio of the altitude to a half-side equals  $\sqrt{3}$ . In  $\Delta UVW$ , this means that  $X_1X_2=d\times\sqrt{3}$ . In  $\Delta X_1X_2H$  (which is a half of an equilateral triangle), we have  $X_2H=X_1X_2\times\sqrt{3}$ . Multiplying through gives

$$X_2H = X_1X_2 \times \sqrt{3}$$
$$= (d \times \sqrt{3}) \times \sqrt{3}$$
$$= 3d$$

Choose G on  $X_2H$  such that  $\angle XX_1G = \gamma$ . Then  $\angle GX_1H = \alpha$ . Finally, choose F on  $X_1G$  such that XF is normal to  $XX_1$ . Then  $\Delta XX_1F$  and  $\Delta Y_2Y_1Y$  are similar. Since  $XX_1 > X_2X_1 = Y_2Y_1$ , then XF > y. Because  $\angle XFG = \pi/2 + \gamma$ , it is the greatest angle in  $\Delta XFG$ . Hence, by **Euclid (I.19) (http://www.cut-the-knot.org/pythagoras/EuclidRef\_1.shtml#** (I.19)), XG is the longest side, so y < XG. Similarly, z < GH. Including  $x = X_2X$ , it follows that x + y + z < 3d. This contradicts (5) and so the assumption  $d \neq 0$  was false. That is, PX, QY, and RZ are concurrent, with mutual angles of  $\pi/3$ .

Now complete the proof of Morley's Theorem. As was observed earlier, in Figure 2,  $UZ = UX_1$ , so that  $\Delta Z UX_1$  is isosceles. Hence YQ, being the bisector at vertex U, is normal to the base  $ZX_1$ . But  $X_1$  and X now the same point, so ZX is normal to YQ. Similarly, XY, YZ are normal to RZ, PX, implying that the  $\Delta XYZ$  is equilateral.



# Morley's Miracle (http://www.cut-the-knot.org/triangle/Morley/index.shtml)

On Morley and his theorem

- 1. Doodling and Miracles (http://www.cut-the-knot.org/triangle/Morley/Morley.shtml)
- 2. Morley's Pursuit of Incidence (http://www.cut-the-knot.org/triangle/Morley/CenterCircle.shtml)
- 3. Lines, Circles and Beyond (http://www.cut-the-knot.org/triangle/Morley/Beyond.shtml)
- 4. On Motivation and Understanding (http://www.cut-the-knot.org/triangle/Morley/MorleyFinal.shtml)
- 5. Of Looking and Seeing (http://www.cut-the-knot.org/ctk/MorleyConc.shtml)

#### Backward proofs

- 1. J.Conway's proof (http://www.cut-the-knot.org/triangle/Morley/conway.shtml)
  - Remarks on J. Conway's proof (http://www.cut-the-knot.org/triangle/Morley/remarks\_c.shtml)
- 2. D. J. Newman's proof (http://www.cut-the-knot.org/triangle/Morley/newman.shtml)
- 3. B. Bollobás' proof (http://www.cut-the-knot.org/triangle/Morley/Bollobas.shtml)
- 4. G. Zsolt Kiss' proof (http://www.cut-the-knot.org/triangle/Morley/MorleyZsolt.shtml)
- 5. Backward Proof by B. Stonebridge (http://www.cut-the-knot.org/triangle/Morley/sb3.shtml)
- Morley's Equilaterals, Spiridon A. Kuruklis' proof (http://www.cut-theknot.org/m/Geometry/Morley5.shtml)

#### Trigonometric proofs

- 1. Bankoff's proof (http://www.cut-the-knot.org/triangle/Morley/BankoffProof.shtml)
- 2. B. Bollobás' trigonometric proof (http://www.cut-the-knot.org/triangle/Morley/BollobasTrig.shtml)
- 3. Proof by R. J. Webster (http://www.cut-the-knot.org/triangle/Morley/Webster.shtml)
- 4. A Vector-based Proof of Morley's Trisector Theorem (http://www.cut-the-knot.org/triangle/Morley/VectorProof.shtml)
- 5. L. Giugiuc's Proof of Morley's Theorem (http://www.cut-the-knot.org/triangle/Morley/Giugiuc.shtml)
- 6. Dijkstra's Proof of Morley's Theorem (http://www.cut-the-knot.org/triangle/Morley/Dijkstra.shtml)

#### Synthetic proofs

- 1. Another proof (http://www.cut-the-knot.org/triangle/Morley/yours\_truly.shtml)
- 2. Nikos Dergiades' proof (http://www.cut-the-knot.org/triangle/Morley/Dergiades.shtml)
- 3. M. T. Naraniengar's proof (http://www.cut-the-knot.org/triangle/Morley/Naraniengar.shtml)
- 4. An Unexpected Variant (http://www.cut-the-knot.org/triangle/Morley/Larry.shtml)
- 5. Proof by B. Stonebridge and B. Millar
- 6. Proof by B. Stonebridge (http://www.cut-the-knot.org/triangle/Morley/sb2.shtml)
- 7. Proof by Roger Smyth (http://www.cut-the-knot.org/triangle/Morley/Smyth.shtml)
- 8. Proof by H. D. Grossman (http://www.cut-the-knot.org/triangle/Morley/Grossman.shtml)
- 9. Proof by H. Shutrick (http://www.cut-the-knot.org/wiki-math/index.php?n=Geometry.MorleysTheorem)
- Original Taylor and Marr's Proof of Morley's Theorem (http://www.cut-theknot.org/m/Geometry/Morley2.shtml)
- 11. Taylor and Marr's Proof R. A. Johnson's Version (http://www.cut-the-knot.org/m/Geometry/Morley.shtml)

- 12. Morley's Theorem: Second Proof by Roger Smyth (http://www.cut-theknot.org/triangle/Morley/Smyth2.shtml)
- 13. Proof by A. Robson (http://www.cut-the-knot.org/triangle/Morley/Robson.shtml)

#### Algebraic proofs

1. Morley's Redux and More, Alain Connes' proof (http://www.cut-the-knot.org/ctk/MorleysRedux.shtml)

#### Invalid proofs

- 1. Bankoff's conundrum (http://www.cut-the-knot.org/triangle/Morley/bankoff.shtml)
- 2. Proof by Nolan L Aljaddou (http://www.cut-the-knot.org/triangle/Morley/Aljaddou.shtml)
- 3. Morley's Theorem: A Proof That Needs Fixing (http://www.cut-theknot.org/triangle/Morley/MorleyFalse.shtml)

|Contact| (http://www.cut-the-knot.org/MailNotificationPage.shtml) |Front page| (http://www.cut-theknot.org/front.shtml) |Contents| (http://www.cut-the-knot.org/content.shtml) |Geometry| (http://www.cut-theknot.org/geometry.shtml) |Store| (http://astore.amazon.com/ctksoftwareinc)

Copyright © 1996-2017 Alexander Bogomolny (http://www.cut-the-knot.org)

60070481

#### CITE THIS PAGE AS:

Alexander Bogomolny, Proof by B. Stonebridge and B. Millar from Interactive Mathematics Miscellany and Puzzles

http://www.cut-the-knot.org/triangle/Morley/sb.shtml (http://www.cut-the-knot.org/triangle/Morley/sb.shtml), Accessed 16 May 2017

#### My Amazon Picks





Judgment Under Uncertainty: Heuristics and Biases (http://aax-us-east.amazon-**\$85**/**\$9**e#<del>\$200</del>/h/x/c/Qg1dreRN... SE/https://www.pnazon.com/... Under-Uncertainty-Heuristics-





Search Amazon

Ads by Amazon (https://affiliate-program.amazon.com/home/ads/ref=sm\_n\_ma\_dka\_US\_ sigts=1494960639607&sig=9a6d935dfebb4f4fdb49c50d145462d4cd0713e9&adId=logo&creativeASIN=logo&linkId=3af37814f33d7c49737b9ff22297ea49&tag=ctksoftwareinc&linkCode=w43 refURL=http%3A%2F%2Fwww.cut-the-knot.org%2Ftriangle%2FMorley%2Fsb.shtml&slotNum=0&imprToken=ZhDoOtW06YKH1XiovHRMtA&ac-ms-src=nsa-ads&cid=nsa (https://www.amazon.com/adprefs)

Hey guest, welcome to **Cut The Knot Math!** Sign up and become a member.

Facebook Google Twitter **Email** 

**Popular In the Community GOLDEN RATIO IN THREE** A TRIANGLE WITH A 45 AN ANGLE STATHIS KOUTRAS' THEOREM **REGULAR PENTAGONS II DEGREES ANGLE IN SQUARE** CONJOINT

