University of Toronto Scarborough Department of Computer & Mathematical Sciences

Midterm Test

MATB41H - Techniques of the Calculus of Several Variables I

Examiner: E. Moore Date: October 31, 2008
Duration: 110 minutes

1. **[8 points]**

(a) Carefully complete the following definition:

Let $f:U\subset\mathbb{R}^n\to\mathbb{R}^k$ be a given function. We say that f is differentiable at ${\pmb a}\in U$ if \cdots

(b) Carefully state the Extreme Value (Min–Max) Theorem for real-valued functions of several variables.

2. [15 points]

- (a) If $\lim_{(x,y)\to(1,-1)} f(x,y) = 3$, can you conclude anything about f(1,-1)? Give reasons for your answer.
- (b) Calculate $\lim_{(x,y)\to(0,0)} \frac{(x+y)^2}{x^2+y^2}$, showing your steps, or show that the limit does not exist.
- (c) Define $f: \mathbb{R}^2 \to \mathbb{R}$ by

$$f(x,y) = \begin{cases} \frac{xy - 3y}{(x-3)^2 + y^2} &, \text{ if } (x,y) \neq (3,0) \\ 1 &, \text{ if } (x,y) = (3,0) \end{cases}.$$

Is f continuous at (3,0)? (Explain your answer.)

3. [11 points] Characterize and sketch several level curves of the function

$$f(x,y) = \frac{x}{x^2 + y^2} \ .$$

Carefully indicate where f is zero, positive, negative and not defined.

4. [5 points] Find an equation of the tangent plane to the graph of $f(x,y) = 4x^2 - y^2 + 2y$ at the point (-1, 2, f(-1, 2)).

MATB41H page 2

5. **[12 points]**

(a) Give the equation of the tangent plane to the ellipsoid $\frac{x^2}{4} + y^2 + \frac{z^2}{9} = 3$ at the point $\mathbf{p} = (-2, 1, -3)$.

- (b) Give a parametric description of the normal line to the ellipsoid in part (a) which passes through \boldsymbol{p} and determine where it meets the coordinate plane z=0.
- 6. [15 points] Let $f(x, y, z) = x^2 + y^2 + z^2$.
 - (a) Characterize a typical level surface of this function.
 - (b) What is the direction of the maximum rate of increase in f at $\mathbf{p} = (1, -1, 2)$? What is the maximum rate?
 - (c) What is the rate of change in f at $\mathbf{p} = (1, -1, 2)$ measured in the direction from \mathbf{p} towards (3, 1, 1)?
- 7. [5 points] Determine if $f(x,y) = x^4 6x^2y^2 + y^4$ is harmonic.
- 8. [6 points] Let g(x, y, z) be of class C^2 and let x = 2u + 3v + w, y = u w and z = 2v. If f = g(x, y, z) is a function of u, v, w, compute $\frac{\partial^2 f}{\partial w \partial u}(\mathbf{0})$, when $\frac{\partial^2 g}{\partial x^2}(\mathbf{0}) = 1$, $\frac{\partial^2 g}{\partial y^2}(\mathbf{0}) = 2$, $\frac{\partial^2 g}{\partial z^2}(\mathbf{0}) = 3$, $\frac{\partial^2 g}{\partial x \partial y}(\mathbf{0}) = \pi$, $\frac{\partial^2 g}{\partial x \partial z}(\mathbf{0}) = \pi^2$, $\frac{\partial^2 g}{\partial u \partial z}(\mathbf{0}) = \pi^3$.
- 9. [11 points] Let $f: \mathbb{R}^3 \to \mathbb{R}^4$ be given by f(x,y,z) = (xy, yz, xz, xyz) and let $g: \mathbb{R}^4 \to \mathbb{R}^3$ be given by $g(x,y,z,w) = (x^2y, y^2z, zw)$.

 USE THE CHAIN RULE to compute $D(g \circ f)(x,y,z)$.

(**NOTE:** You must use the Chain Rule and show all your steps.)

- 10. **[12 points]**
 - (a) Give the 5th degree Taylor polynomial about the origin of $f(x,y) = \frac{\cos(x\,y)}{1+u^2}.$
 - (b) Let $f(x, y) = \ln(1 + x + y)$. Use a quadratic approximation to estimate f(0.1, 0.2).