PART 2 The BREAK

if $\deg \varphi = \deg \varphi'$ and $\deg \psi = \deg \psi'$ then this square of **1-dimensional isogenies**

is associated to

a **2-dimensional isogeny** $\Phi: E_2 \times E_3 \rightarrow E_1 \times E_4$

1D isogeny

if we know $\ker \varphi$, then we can compute $\varphi: E \to E'$ and $\varphi(P)$

the kernel of 2D-iso Φ is given by images $\varphi(P), \psi(P)$ for $P \in E_1$ of order $\deg \varphi + \deg \psi$

PART 2 The BREAK

Kani's Lemma (1997)

if $\deg \varphi = \deg \varphi'$ and $\deg \psi = \deg \psi'$ then this square of **1-dimensional isogenies**

is associated to

a **2-dimensional isogeny** $\Phi: E_2 \times E_3 \rightarrow E_1 \times E_4$

1D isogeny

if we know $\ker \varphi$, then we can compute $\varphi: E \to E'$ and $\varphi(P)$

2D kernel

the kernel of 2D-iso Φ is given by images $\varphi(P), \psi(P)$ for $P \in E_1$ of order $\deg \varphi + \deg \psi$

2D isogeny

if we know $\deg \varphi$ and $\deg \psi$ and we know these $\varphi(P)$, $\psi(P)$, compute $\Phi: E_2 \times E_3 \to E_1 \times E_4$

