ОБЩАЯ ЭЛЕКТРОТЕХНИКА

Расчет цепей постоянного тока методом эквивалентных преобразований, методом эквивалентного генератора Баланс мощностей

Никитина Мария Владимировна mynikitina@itmo.ru

Кононова Мария Евгеньевна maria.kononova@itmo.ru

Санкт-Петербург – 2021

Суть метода эквивалентных преобразований (МЭП) заключается в применении типовых эквивалентных преобразований к исходной схеме для ее сведения к одноконтурной относительно ветви с искомым током.

1. Преобразования источников энергии

а) преобразование реальных источников энергии друг в друга

б) расщепление идеальных источников ЭДС

$$E_{\mathfrak{I}} = E_{\mathfrak{I}} = E$$

в) расщепление идеальных источников тока

$$J_{\mathfrak{I}} = J_{\mathfrak{I}} = J$$

2. Преобразование последовательно соединенных элементов

a) *R*

б) Е

 $_{\rm B})J$

$$R_{\mathfrak{I}} = \sum R_n$$

 $E_{\mathfrak{I}} = \sum \pm E_n$

невозможное

соединение

2. Преобразование последовательно соединенных элементов

$$_{\rm I}$$
) R, E, J

$$R_{9} = \sum R_{n}, E_{9} = \sum \pm E_{m}$$

3. Преобразование параллельно соединенных элементов

a) *R*

б) Е

 $_{\mathrm{B}})J$

$$R_9 = 1/\sum (1/R_n)$$

невозможное соединение

$$J_{\scriptscriptstyle \Theta} = \sum \pm J_n$$

3. Преобразование параллельно соединенных элементов

 Γ) R, E

д)
$$R, J, E$$

$$R_{3}=1/\sum(1/R_{n})$$

$$E_{3}=R_{3}\cdot\sum(\pm E_{n}/R_{n})$$

4. Преобразование треугольник-звезда и обратно

$$R_a = R_A \cdot R_C / (R_A + R_B + R_C)$$

 $R_b = R_A \cdot R_B / (R_A + R_B + R_C)$
 $R_c = R_B \cdot R_C / (R_A + R_B + R_C)$

$$R_{A} = R_{a} + R_{b} + R_{a} \cdot R_{b} / R_{c}$$

 $R_{B} = R_{c} + R_{b} + R_{c} \cdot R_{b} / R_{a}$
 $R_{C} = R_{a} + R_{c} + R_{a} \cdot R_{c} / R_{b}$

Расчет цепей постоянного тока методом эквивалентных преобразований (МЭП)

$$\begin{bmatrix} R_3 \end{bmatrix}$$
 Дано: E_1 =20 [B], E_2 =5 [B], J =0,5 [A], R_1 = R_2 = R_3 = R_4 = R_6 =1 [OM], R_5 =4 [OM], R_7 =5 [OM].

Найти: найти ток через любой источник ЭДС МЭП (I_2)

Расчет цепей постоянного тока методом эквивалентных преобразований (МЭП)

Решение:

1. *R*₅ посл. *J* удаляем [2д].

Расчет цепей постоянного тока методом эквивалентных преобразований (МЭП)

2. Расщепляем J на R_6 , R_7 , E_2 [1в].

Расчет цепей постоянного тока методом эквивалентных преобразований (МЭП)

3. J_{91} парал. $R_6 \to E_6$ посл. R_6 [1a], J_{92} парал. $R_7 \to E_7$ посл. R_7 [1a].

$$E_6 = R_6 \cdot J_{31} = 1.0,5 = 0,5$$
 [B],
 $E_7 = R_7 \cdot J_{32} = 5.0,5 = 2,5$ [B].

Расчет цепей постоянного тока методом эквивалентных преобразований (МЭП)

4. R_1 посл. $R_6 \to R_{16}$ [2a], R_3 посл. $R_4 \to R_{34}$ [2a].

$$R_{16} = R_1 + R_6 = 1 + 1 = 2$$
 [OM],
 $R_{34} = R_3 + R_4 = 1 + 1 = 2$ [OM].

Расчет цепей постоянного тока методом эквивалентных преобразований (МЭП)

5. $(R_{16} \text{ посл. } E_6) \text{ парал. } R_{34} \rightarrow R_9 \text{ посл. } E_9 \text{ [3r].}$

$$R_9 = 1/(1/R_{16} + 1/R_{34}) =$$

=1/(1/2+1/2) =1 [O_M],

$$E_9 = R_9 \cdot (E_6/R_{16}) =$$

=1\cdot(0,5/2)=0,25 [B].

Расчет цепей постоянного тока методом эквивалентных преобразований (МЭП)

6. Схема сведена к одноконтурной относительно ветви с искомым током.

Искомый ток R_2 определим с использованием ЗКП.

Расчет цепей постоянного тока методом эквивалентных преобразований (МЭП)

$$(R_2 + R_7 + R_9) \cdot I_2 = E_1 - E_2 - E_7 - E_9$$

$$I_2 = (E_1 - E_2 - E_7 - E_9) / (R_2 + R_7 + R_9)$$

$$I_2$$
=(20–5–2,5–0,25)/ (1+ 5+ 1)=
=12,25/7=1,75 [A].

Ответ: I_2 =1,75 [A].

- **1.** Определить ЭДС генератора (E_{Γ}). Составить цепь холостого хода и определить напряжение между точками подключения ветви с искомым током (U_{xx}). Цепь холостого хода формируется из исходной путем удаления ветви с искомым током. ЭДС генератора равна найденному напряжению (E_{Γ} = U_{xx}).
- **2.** Определить сопротивление генератора (R_{Γ}). Составить пассивную цепь и определить эквивалентное сопротивление между точками подключения ветви с искомым током (R_{9KB}). Пассивная цепь формируется из цепи холостого хода путем удаления из последней источников энергии (источники ЭДС закорачиваются (заменяются проводником), источники тока обрываются). Сопротивление генератора равно найденному эквивалентному сопротивлению ($R_{\Gamma} = R_{9KB}$).
- 3. Определить искомый ток (I_x) . Составить одноконтурную цепь, содержащую ветвь с искомым током и последовательное соединение E_{Γ} и R_{Γ} . Используя второй закон Кирхгофа вывести формулу для определения искомого тока.

Дано:
$$E_1$$
=20 [B], E_2 =5 [B], J =0,5 [A], R_1 = R_2 = R_3 = R_4 = R_6 =1 [OM], R_5 =4 [OM], R_7 =5 [OM].

Найти: найти ток через любой источник ЭДС МЭГ (I_2)

Решение:

1. Определение $E_{_{\Gamma}}$

$$R_1 I^{**} - U_{xx} + R_7 J + R_6 I^* = -E_2,$$

следовательно,

$$U_{xx} = R_1 I^{**} + R_7 J + R_6 I^* + E_2.$$

$$(R_1 + R_3 + R_4 + R_6)I_{11} + R_6I_{22} = 0,$$

тогда
$$I_{11} = -R_6 I_{22}/(R_1 + R_3 + R_4 + R_6) =$$

= $-1 \cdot 0.5/(1+1+1+1) = -0.125$ [A].

в) итак,

$$E_{\Gamma} = U_{xx} = R_1 I^{**} + R_7 J + R_6 I^* + E_2 =$$

=1·(-0,125)+5·0,5+1·0,375+5=7,75[B].

2. Определение R_{Γ}

а) R_5 удаляем

б)
$$R_1$$
 посл. $R_6 \to R_{16}$,
$$R_3$$
 посл. $R_4 \to R_{34}$
$$R_{16} = R_1 + R_6 = 1 + 1 = 2 \text{ [OM]},$$

$$R_{34} = R_3 + R_4 = 1 + 1 = 2 \text{ [OM]}.$$

 $_{R_{34}}$ в) R_{16} парал. $R_{34} \rightarrow R_{91}$.

$$R_{91}=1/(1/R_{16}+1/R_{34}) =$$

=1/(1/2+1/2) =1 [O_M]

г)
$$R_{\mathfrak{I}}$$
 послед. $R_7 \rightarrow R_{\mathfrak{I}KB}$.

$$R_{\Gamma} = R_{\text{9KB}} = R_{\text{91}} + R_{7} =$$

= 1+5 =6 [OM]

3. Определение I_2

Πο 3ΚΙΙ:
$$(R_2+R_r)\cdot I_2 = E_1 - E_r$$

$$I_2 = (E_1 - E_{\Gamma})/(R_2 + R_{\Gamma}) =$$

= $(20 - 7,75)/(1+6) = 1,75$ [A].

Ответ: I_2 =1,75 [A].

Баланс мощностей

На основании закона сохранения энергии мощность, развиваемая источниками электрической энергии в цепи должна быть равна мощности преобразуемой в другие виды энергии в нагрузке:

$$P_{\rm M} = P_{\rm m}$$

ИЛИ

$$\sum \pm P_J + \sum \pm P_E = \sum P_R,$$

где $P_{\rm u}$ — суммарная мощность источников энергии, $P_{\rm u}$ — суммарная мощность потребителей (нагрузки), P_{J} — мощность источника тока, P_{E} — мощность источника ЭДС, P_{R} — мощность резистивного элемента.

Баланс мощностей

Мощность источника тока

$$P_J = \pm U_J \cdot J$$

 $(U_J$ направляется произвольно и определяется с использованием ЗКІІ)

Мощность источника ЭДС

$$P_F = \pm E \cdot I$$

Мощность резистивного элемента

$$P_R = R \cdot I^2$$

Дано:
$$E_1$$
=20 [B], E_2 =5 [B], J =0,5 [A], R_5 =4 [OM], R_1 = R_2 = R_3 = R_4 = R_6 =1 [OM], R_7 =5 [OM], I_1 = - 0,75 [A], I_2 =1,75 [A], I_3 = 1 [A], I_4 = - 1,25 [A], I_5 = 2,25 [A].

Найти: U_J , мощности всех элементов цепи, суммарные мощности источников и приемников, показать, что соблюдается БМ.

Решение:

1) Определение U_J по ЗКІІ для контура (*)

$$R_5 \cdot J + U_J + R_7 \cdot I_5 - R_6 \cdot I_4 = -E_2$$

тогда

$$U_J = -E_2 - R_5 \cdot J - R_7 \cdot I_5 + R_6 \cdot I_4$$

$$U_J = -5 - 4.0, 5 - 5.2, 25 + 1.(-1,25)$$

$$U_J = -19,5$$
 [B].

2) Определение мощностей элементов

$$P_J = -U_J \cdot J = -(-19,5) \cdot 0,5 =$$

= 9,75 [BT]

$$P_{E1} = E_1 \cdot I_2 = 20 \cdot 1,75 = 35 \text{ [BT]}$$

$$P_{E2} = -E_2 \cdot I_5 = -5.2,25 = -11,25 \text{ [BT]}$$

$$P_{R1} = R_1 \cdot I_1^2 = 1 \cdot (-0.75)^2 = 0.5625 \text{ [BT]}$$

$$P_{R2} = R_2 \cdot I_2^2 = 1 \cdot (1,75)^2 = 3,0625 \text{ [BT]}$$

$$P_{R3} = R_3 \cdot I_3^2 = 1 \cdot (1)^2 = 1$$
 [BT]

$$P_{R4} = R_4 \cdot I_3^2 = 1 \cdot (1)^2 = 1$$
 [BT]

$$P_{R5} = R_5 \cdot J^2 = 4 \cdot (0.5)^2 = 1 \text{ [BT]}$$

$$P_{R6} = R_6 \cdot I_4^2 = 1 \cdot (-1,25)^2 = 1,5625 \text{ [BT]}$$

$$P_{R7} = R_7 \cdot I_5^2 = 5 \cdot (2,25)^2 = 25,3125 \text{ [BT]}$$

- 3) Баланс мощностей
- суммарная мощность источников

$$P_{\text{H}} = P_J + P_{E1} + P_{E2} = 9,75 + 35 + (-11,25) = 33,5 \text{ [BT]}$$

- суммарная мощность потребителей

$$P_{\Pi} = P_{R1} + P_{R2} + P_{R3} + P_{R4} + P_{R5} + P_{R6} + P_{R7} =$$

$$= 0,5625 + 3,0625 + 1 + 1 + 1 + 1,5625 + 25,3125 = 33,5 \text{ [BT]}$$

 $P_{\mu} = P_{\pi} = 33,5$ [Вт] баланс мощностей сошелся

Otbet:
$$I_1$$
= -0.75 [A], I_2 = 1.75 [A], I_3 = 1 [A], I_4 = -1.25 [A], I_5 = 2.25 [A], U_J = -19.5 [B], P_J = 9.75 [BT], P_{E1} = 35 [BT], P_{E2} = -11.25 [BT], P_{R3} = 1 [BT], P_{R4} = 1 [BT], P_{R5} = 1 [BT], P_{R6} = 1.5625 [BT], P_{R7} = 25.3125 [BT], P_{II} = 23.5 [BT].

СПАСИБО ЗА ВНИМАНИЕ!