# **Surface Mount Schottky Power Rectifier**

# Plastic SOD-123 Package

This device uses the Schottky Barrier principle with a large area metal-to-silicon power diode. Ideally suited for low voltage, high frequency rectification or as free wheeling and polarity protection diodes in surface mount applications where compact size and weight are critical to the system. This package also provides an easy to work with alternative to leadless 34 package style. Because of its small size, it is ideal for use in portable and battery powered products such as cellular and cordless phones, chargers, notebook computers, printers, PDAs and PCMCIA cards. Typical applications are AC-DC and DC-DC converters, reverse battery protection, and "Oring" of multiple supply voltages and any other application where performance and size are critical.

#### **Features**

- Guardring for Stress Protection
- Low Leakage
- 150°C Operating Junction Temperature
- Epoxy Meets UL 94 V-0 @ 0.125 in
- Package Designed for Optimal Automated Board Assembly
- ESD Rating:
  - ◆ Human Body Model = 3B
  - ◆ Machine Model = C
- NRVB Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant\*

#### **Mechanical Characteristics**

• Device Marking: L2E

• Polarity Designator: Cathode Band

• Weight: 11.7 mg (approximately)

• Case: Epoxy, Molded

• Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable

• Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds



#### ON Semiconductor®

http://onsemi.com

# SCHOTTKY BARRIER RECTIFIER 1.0 AMPERES 20 VOLTS



SOD-123FL CASE 498

#### **MARKING DIAGRAM**



L2E = Specific Device Code

M = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

#### **ORDERING INFORMATION**

| Device        | Package                | Shipping <sup>†</sup>       |
|---------------|------------------------|-----------------------------|
| MBR120ESFT1G  | SOD-123FL<br>(Pb-Free) | 3,000/<br>Tape & Reel **    |
| NRVB120ESFT1G | SOD-123FL<br>(Pb-Free) | 3,000/<br>Tape & Reel **    |
| MBR120ESFT3G  | SOD-123FL<br>(Pb-Free) | 10,000 /<br>Tape & Reel *** |
| NRVB120ESFT3G | SOD-123FL<br>(Pb-Free) | 10,000 /<br>Tape & Reel *** |

<sup>\*\* 8</sup> mm Tape, 7" Reel

<sup>\*</sup>For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

<sup>\*\*\* 8</sup> mm Tape, 13" Reel

<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

#### **MAXIMUM RATINGS**

| Rating                                                                                                     | Symbol                                                 | Value      | Unit |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------|------|
| Peak Repetitive Reverse Voltage<br>Working Peak Reverse Voltage<br>DC Blocking Voltage                     | V <sub>RRM</sub><br>V <sub>RWM</sub><br>V <sub>R</sub> | 20         | V    |
| Average Rectified Forward Current (At Rated $V_R$ , $T_L = 140$ °C)                                        | lo                                                     | 1.0        | А    |
| Peak Repetitive Forward Current<br>(At Rated V <sub>R</sub> , Square Wave, 20 kHz, T <sub>L</sub> = 125°C) | I <sub>FRM</sub>                                       | 2.0        | А    |
| Non-Repetitive Peak Surge Current<br>(Non-Repetitive peak surge current, halfwave, single phase, 60 Hz)    | I <sub>FSM</sub>                                       | 40         | Α    |
| Storage Temperature                                                                                        | T <sub>stg</sub>                                       | -65 to 150 | °C   |
| Operating Junction Temperature                                                                             | TJ                                                     | -65 to 150 | °C   |
| Voltage Rate of Change (Rated $V_R$ , $T_J = 25^{\circ}C$ )                                                | dv/dt                                                  | 10,000     | V/μs |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

#### THERMAL CHARACTERISTICS

| Characteristic                                                                                                                                                                                    | Symbol                                                                       | Value                 | Unit |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------|------|
| Thermal Resistance – Junction-to-Lead (Note 1) Thermal Resistance – Junction-to-Lead (Note 2) Thermal Resistance – Junction-to-Ambient (Note 1) Thermal Resistance – Junction-to-Ambient (Note 2) | R <sub>tjl</sub><br>R <sub>tjl</sub><br>R <sub>tja</sub><br>R <sub>tja</sub> | 26<br>21<br>325<br>82 | °C/W |

Mounted with minimum recommended pad size, PC Board FR4.
 Mounted with 1 in. copper pad (Cu area 700 mm²).

#### **ELECTRICAL CHARACTERISTICS**

| Characteristic                                                                   | Symbol         | Value                   |                         | Unit |
|----------------------------------------------------------------------------------|----------------|-------------------------|-------------------------|------|
| Maximum Instantaneous Forward Voltage (Note 3), See Figure 2                     | V <sub>F</sub> | T <sub>J</sub> = 25°C   | T <sub>J</sub> = 100°C  | V    |
| (I <sub>F</sub> = 0.1 A)<br>(I <sub>F</sub> = 1.0 A)<br>(I <sub>F</sub> = 2.0 A) |                | 0.455<br>0.530<br>0.595 | 0.360<br>0.455<br>0.540 |      |
| Maximum Instantaneous Reverse Current (Note 3), See Figure 4                     | I <sub>R</sub> | T <sub>J</sub> = 25°C   | T <sub>J</sub> = 100°C  | μΑ   |
| $(V_R = 20 \text{ V})$<br>$(V_R = 10 \text{ V})$<br>$(V_R = 5.0 \text{ V})$      |                | 10<br>1.0<br>0.5        | 1600<br>500<br>300      |      |

<sup>3.</sup> Pulse Test: Pulse Width  $\leq$  250  $\mu$ s, Duty Cycle  $\leq$  2%.



Figure 1. Typical Forward Voltage



Figure 2. Maximum Forward Voltage



**Figure 3. Typical Reverse Current** 



**Figure 4. Maximum Reverse Current** 



Figure 5. Current Derating



Figure 6. Forward Power Dissipation



Figure 7. Capacitance

Figure 8. Typical Operating Temperature Derating\*

\* Reverse power dissipation and the possibility of thermal runaway must be considered when operating this device under any reverse voltage conditions. Calculations of  $T_J$  therefore must include forward and reverse power effects. The allowable operating  $T_J$  may be calculated from the equation:  $T_J = T_{Jmax} - r(t) (Pf + Pr)$  where

r(t) = thermal impedance under given conditions,

Pf = forward power dissipation, and

Pr = reverse power dissipation

This graph displays the derated allowable  $T_J$  due to reverse bias under DC conditions only and is calculated as  $T_J = T_{Jmax} - r(t)Pr$ , where r(t) = Rthja. For other power applications further calculations must be performed.



Figure 9. Thermal Response



SOD-123FL **CASE 498** ISSUE D

**DATE 10 MAY 2013** 









# RECOMMENDED SOLDERING FOOTPRINT\*



**DIMENSIONS: MILLIMETERS** 

\*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

#### NOTES:

- ES:
  DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
  CONTROLLING DIMENSION: MILLIMETER.
  DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH.
  DIMENSIONS D AND J ARE TO BE MEASURED ON FLAT SECTION
  OF THE LEAD: BETWEEN 0.10 AND 0.25 MM FROM THE LEAD TIP.

|     | MILLIMETERS |      | INCHES |       |       |       |
|-----|-------------|------|--------|-------|-------|-------|
| DIM | MIN         | NOM  | MAX    | MIN   | NOM   | MAX   |
| Α   | 0.90        | 0.95 | 0.98   | 0.035 | 0.037 | 0.039 |
| A1  | 0.00        | 0.05 | 0.10   | 0.000 | 0.002 | 0.004 |
| b   | 0.70        | 0.90 | 1.10   | 0.028 | 0.035 | 0.043 |
| С   | 0.10        | 0.15 | 0.20   | 0.004 | 0.006 | 0.008 |
| D   | 1.50        | 1.65 | 1.80   | 0.059 | 0.065 | 0.071 |
| E   | 2.50        | 2.70 | 2.90   | 0.098 | 0.106 | 0.114 |
| L   | 0.55        | 0.75 | 0.95   | 0.022 | 0.030 | 0.037 |
| HE  | 3.40        | 3.60 | 3.80   | 0.134 | 0.142 | 0.150 |
| θ   | 0°          | -    | 8°     | 0°    | -     | 8°    |

#### **GENERIC MARKING DIAGRAM\***



XXX = Specific Device Code

= Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

| DOCUMENT NUMBER: | 98AON11184D | Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |
|------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| DESCRIPTION:     | SOD-123FL   |                                                                                                                                                                                | PAGE 1 OF 1 |  |

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

#### **PUBLICATION ORDERING INFORMATION**

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

## **ON Semiconductor:**

NRVB120ESFT3G NRVB120ESFT1G MBR120ESFT1 MBR120ESFT1G MBR120ESFT3 MBR120ESFT3G