

CS 4104 APPLIED MACHINE LEARNING

Dr. Hashim Yasin

National University of Computer and Emerging Sciences,

Faisalabad, Pakistan.

DECISION TREE

Problem Setting:

- Set of possible instances X
 - \square each instance x in X is a feature vector
 - e.g., <Humidity=low, Wind=weak, Outlook=rain, Temp=hot>
- \square Unknown target function $f: X \to Y$
 - Y is discrete valued
- □ Set of function hypotheses $H = \{h \mid h: X \to Y\}$
 - \blacksquare each hypothesis h is a decision tree
 - \square trees sorts x to leaf, which assigns y

		X			Υ
Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

□ A Decision tree for

<Outlook, Temperature, Humidity, Wind> → PlayTennis?

A Decision tree for

<Outlook, Temperature, Humidity, Wind $> \rightarrow$ PlayTennis?

- \square Each internal node: test one attribute X_i
- oxdot **Each branch from a node:** selects one value for X_i
- oxdot **Each leaf node:** predict Y

 In general, decision trees represent a disjunction of conjunctions of the attribute values,

Input:

□ Training examples $\{x_i, y_i\}$ of unknown target function

Output:

□ Hypothesis h ∈ H that best approximates target function f

Decision Trees ... Examples

- \square Suppose $X = \langle X_1, ..., X_n \rangle$, where X_i are Boolean variables
- How would you represent the followings:

$$Y = X_1 \wedge X_2$$

$$Y = X_1 \vee X_2$$

Decision Trees ... Examples

- \square Suppose $X = \langle X_1, ..., X_n \rangle$, where X_i are Boolean variables
- How would you represent the followings:

$$Y = X_1 \wedge X_2$$

$$Y = X_1 \vee X_2$$

Decision Trees ... Examples

- \square Suppose $X = \langle X_1, ..., X_n \rangle$, where X_i are Boolean variables
- □ How would you represent the followings:

Decision Tree Algorithm ... ID3

Iterative Dichotomiser 3 (ID3)

ID3(Examples, Target_attribute, Attributes)

- □ Create a Root node for the tree
- If all Examples are positive, Return the single-node tree Root, with label = +
- If all Examples are negative, Return the singlenode tree Root, with label = -
- If Attributes is empty, Return the single-node tree
 Root, with label = most common value of
 Target_attribute in Examples

Decision Tree Algorithm ... ID3

Otherwise Begin

- □ A ← the attribute from Attributes that best* classifies Examples
- Assign A as decision attribute for node
- □ For **each value** of A, create new decedent of node
- Sort training examples to leaf nodes
- If training examples are perfectly classified, then
 STOP otherwise iterate over new leaf nodes

Which attribute is the best attribute?

Information Gain measure the effectiveness of an attribute

Entropy characterizes the (im)purity of an arbitrary collection of examples S.

of possible values of X

$$Entropy(S) = \sum_{i=1}^{n} -p_i \log_2 p_i$$

Example

 Given a collection S, containing positive and negative examples of some target concept, the entropy of S relative to this Boolean classification is

Entropy
$$(S) = -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$$

- \square p_{\oplus} is the proportion of positive example in S
- \square p_{\bigcirc} is the proportion of negative example in S

- S is a sample of training examples
- p₊ is the proportion of positive examples in S
- p_{_} is the proportion of negative examples in S
- Entropy measures the impurity of S

Entropy is 0 if all members belong to same class
Entropy is 1 when there is equal no. of +ve and -ve examples

Entropy (S) $\equiv -p_+ \log_2 p_+ - p_- \log_2 p_-$

- Information Gain measure the effectiveness of an attribute
- □ It is simply the expected reduction in entropy

Gain (S, A) = Entropy (S) -
$$\sum_{v \in Values(A)} \frac{|S_v|}{|S|}$$
 Entropy (S_v)

Where:

- Values(A) is the set of all possible values for attribute A
- \square S_v is the subset of S for which attribute A has value v.

EXAMPLE

	Υ				
Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

		X			Υ
Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Example

Entropy
$$(S) = -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$$

In play_tennis example,

$$Entropy([9+, 5-]) = -(9/14) \log_2(9/14) - (5/14) \log_2(5/14)$$
$$= 0.940$$

Which Attribute?

- Which attribute should be selected for root node in play-tennis example?
 - Outlook
 - Temperature
 - Humidity
 - Wind

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Υ

Information Gain (WIND)

Suppose in <u>play-tennis</u> example, the attribute WIND which have values Weak and Strong, the information gain is:

Gain (S, A) = Entropy (S) -
$$\sum_{v \in Values(A)} \frac{|S_v|}{|S|}$$
 Entropy (S_v)

Information Gain (WIND)

 Suppose in <u>play-tennis</u> example, the attribute WIND which have values Weak and Strong, the *information gain* is:

$$Values(Wind) = Weak, Strong$$

$$S = [9+, 5-]$$

$$S_{Weak} \leftarrow [6+, 2-]$$

$$S_{Strong} \leftarrow [3+, 3-]$$

$$Gain(S, Wind) = Entropy(S) - \sum_{v \in \{Weak, Strong\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$= Entropy(S) - (8/14) Entropy(S_{Weak})$$

$$- (6/14) Entropy(S_{Strong})$$

$$S = [9+, 5-]$$

$$S_{Weak} \leftarrow [6+, 2-]$$

$$S_{Strong} \leftarrow [3+, 3-]$$

Entropy
$$(S_{weak}) = -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$$

Entropy
$$(S_{weak}) = -\left[\frac{6}{8}\log_2\frac{6}{8}\right] - \left[\frac{2}{8}\log_2\frac{2}{8}\right]$$

Entropy
$$(S_{weak}) = -0.75(-0.415) - 0.25(-2)$$

Entropy
$$(S_{weak}) = 0.311 + 0.5 = 0.811$$

26

Information Gain

$$S = [9+, 5-]$$

$$S_{Weak} \leftarrow [6+, 2-]$$

$$S_{Strong} \leftarrow [3+, 3-]$$

$$\square$$
 Entropy S_{strong}

Entropy
$$(S_{strong}) = -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$$

Entropy
$$(S_{strong}) = -\left[\frac{3}{6}\log_2\frac{3}{6}\right] - \left[\frac{3}{6}\log_2\frac{3}{6}\right]$$

Entropy
$$(S_{strong}) = -0.5(-1) - 0.5(-1)$$

Entropy
$$(S_{strong}) = 0.5 + 0.5 = 1$$

Information Gain (WIND)

$$Values(Wind) = Weak, Strong$$

$$S = [9+, 5-]$$

$$S_{Weak} \leftarrow [6+, 2-]$$

$$S_{Strong} \leftarrow [3+, 3-]$$

$$Gain(S, Wind) = Entropy(S) - \sum_{v \in \{Weak, Strong\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$= Entropy(S) - (8/14) Entropy(S_{Weak})$$

$$- (6/14) Entropy(S_{Strong})$$

$$= 0.940 - (8/14)0.811 - (6/14)1.00$$

$$= 0.048$$

Information Gain (HUMIDITY)

28

Which attribute is the best classifier?

Humidity provide greater information gain than wind

Which attribute is the best classifier?

$$Gain(S, Outlook) = 0.246$$

$$Gain(S, Humidity) = 0.151$$

$$Gain(S, Wind) = 0.048$$

$$Gain(S, Temperature) = 0.029$$

D1 Sunny Hot High Weak No D2 Sunny Hot High Strong No D3 Overcast Hot High Weak Yes D4 Rain Mild Yes High Weak D₅ Cool Weak Yes Rain Normal D₆ Rain Cool Normal Strong No D7 Cool Overcast Normal Strong Yes D8 Mild Sunny High No Weak D9 Sunny Cool Normal Yes Weak D10 Rain Mild Weak Yes Normal D11 Sunny Mild Normal Strong Yes D12 Overcast Mild High Yes Strong Weak D13 Overcast Hot Yes Normal

Temperature Humidity

Υ

PlayTennis

Wind

Outlook

Day

Dr. Hashim Yasin

Applied Machine Learning (CS4104)

[9+,5-]

Which attribute should be tested here?

[2+,3-]

[4+,0-]

[3+,2-]

$$S_{sunny} = \{\text{D1,D2,D8,D9,D11}\}$$

 $Gain (S_{Sunny}, Humidity)$

 $Gain (S_{sunny}, Temperature)$

 $Gain (S_{sunny}, Wind)$

{D1, D2, ..., D14}

[9+,5-]

Outlook

Which attribute should be tested here?

Sunny {D1,D2,D8,D9,D11}

{D3,D7,D12,D13}

[4+,0-]

Overcast

{D4,D5,D6,D10,D14}

Rain

[2+,3-]

2

Yes

[3+,2-]

 $S_{sunny} = \{\text{D1,D2,D8,D9,D11}\}$

 $Gain (S_{sunny}, Humidity)$

 $Gain (S_{Sunny}, Temperature)$

 $Gain (S_{sunny}, Wind)$

Day	Outlook	Temp.	Humidity	Wind	Decision
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes

Applied Machine Learning (CS4104)

Day Outlook Temp. **Humidity** Wind **Decision** Hot Weak No Sunny High Hot Sunny High Strong No Mild High Weak Sunny Nο Cool Sunny Normal Weak Yes 11 Sunny Mild Normal Strong Yes

$$\Box$$
 $Gain(S_{sunny}, Humidity)$

Gain (S, A) = Entropy (S) -
$$\sum_{v \in Values(A)} \frac{|S_v|}{|S|}$$
 Entropy (S_v)

$$Gain(S_{sunny}, Humidity) = Entropy(S_{sunny}) -$$

$$\left[\frac{\frac{Humidity_{high}}{S_{sunny}}\big[Entropy\big(Humidity_{high}\big)\big]+}{\frac{Humidity_{normal}}{S_{sunny}}\big[Entropy\big(Humidity_{normal}\big)\big]}\right]$$

 \Box $Gain(S_{sunny}, Humidity)$

Gain (S, A) = Entropy (S) -
$$\sum_{v \in Values(A)} \frac{|S_v|}{|S|}$$
 Entropy (S_v)

$$Gain(S_{sunny}, Humidity) = Entropy(S_{sunny}) -$$

$$\begin{bmatrix} \frac{3}{5} [Entropy(Humidity_{high})] + \\ \frac{2}{5} [Entropy(Humidity_{normal})] \end{bmatrix}$$

Day	Outlook	Temp.	Humidity	Wind	Decision
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes

1. $Entropy(S_{sunny})$

$$Entropy\left(S_{sunny}\right) = -p_{\oplus}\log_2 p_{\oplus} - p_{\ominus}\log_2 p_{\ominus}$$

$$Entropy(S_{sunny}) = -\frac{2}{5}\log_2\frac{2}{5} - \frac{3}{5}\log_2\frac{3}{5}$$

$$Entropy(S_{sunny}) = 0.529 + 0.441 = 0.970$$

	٦	r	ï
	з	▶	3
T.	y	L	٩

Entropy $(S) = -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$
--

Day	Outlook	Temp.	Humidity	Wind	Decision
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes

2. $Entropy(Humidity_{high})$

Entropy
$$\left(Humidity_{high}\right) = -\frac{0}{3}\log_2\frac{0}{3} - \frac{3}{3}\log_2\frac{3}{3}$$

Entropy
$$(Humidity_{high}) = 0 + 0 = 0$$

$3. Entropy(Humidity_{normal})$

Entropy
$$(Humidity_{normal}) = -\frac{2}{2}\log_2\frac{2}{2} - \frac{0}{2}\log_2\frac{0}{2}$$

Entropy (
$$Humidity_{normal}$$
) = 0 + 0 = 0

Day	Outlook	Temp.	Humidity	Wind	Decision
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes

$$\Box$$
 $Gain(S_{sunny}, Humidity)$

$$Gain(S_{sunny}, Humidity) = Entropy(S_{sunny}) -$$

$$\begin{bmatrix} \frac{3}{5} [Entropy(Humidity_{high})] + \\ \frac{2}{5} [Entropy(Humidity_{normal})] \end{bmatrix}$$

$$Gain(S_{sunny}, Humidity) = 0.97 - \left[\frac{3}{5}(0) + \frac{2}{5}(0)\right] = 0.970$$

{D1, D2, ..., D14}

[9+,5-]

Which attribute should be tested here?

[2+,3-]

3-] [4+,0-]

Yes

[3+,2-]

?

$$S_{sunnv} = \{D1,D2,D8,D9,D11\}$$

$$Gain(S_{sunny}, Humidity) = .970 - (3/5) 0.0 - (2/5) 0.0 = .970$$

$$Gain(S_{Sunny}, Temperature) = .970 - (2/5) 0.0 - (2/5) 1.0 - (1/5) 0.0 = .570$$

$$Gain(S_{sunny}, Wind) = .970 - (2/5) 1.0 - (3/5) .918 = .019$$

Dr. Hashim Yasin

Acknowledgement

Tom Mitchel, Russel & Norvig, Andrew Ng, Alpydin & Ch. Eick.