Abstract

This is your silly abstract here.

Keywords: Silly, keywords

Summary for Lay Audience

Here is your Summary for Lay Audience.

Co-Authorship Statement

Your Co-Authorship Statement here.

Acknowledgements

Here is your acknowledgements.

First and foremost, I would like to express my deepest gratitude to my main supervisor...

Table of Contents

Abstrac	.t.
Summa	ry for Lay Audience
Co-Aut	horship Statement
Acknov	eledgements
Table o	f Contents
List of	Figures
List of	Γables
List of	Abbreviations, Symbols, and Nomenclature
Chapte	·1
Introdu	ction
1.1	Background
1.2	Research objectives
1.3	Thesis structure
Refe	rences
Chapte	r 2
Main C	hapter 1
2.1	Introduction
2.2	Equation
	2.2.1 Equation Example
2.3	Figure
2.4	Table

2.5	Conclusions	4
Refe	erences	5
Chapte	r 3	
Conclu	sions and Recommendations	6
3.1	Thesis summary and conclusions	6
3.2	Limitations and recommendations	6
Refe	erences	7
Append	lix Chapter A	
Your ap	ppendix	7
Refe	erences	8
Currica	ulum Vitae	q

List of Figures

2.1	Computation	nal	don	nain	and	l m	esl	h o	f t	he	m	icı	0	fixe	ed-	-be	ed 1	rea	ict	or		•	•	•	4
3.1	Caption																				 				(

List of Tables

211 Companison of numerical results with experimental auta		experimental data	results	numerical	omparison o	1 C	2.
--	--	-------------------	---------	-----------	-------------	-----	----

List of Abbreviations, Symbols, and Nomenclature

Abbreviations

CDF Cumulative distribution function

CFB Circulating fluidized bed

CFD Computational fluid dynamics

FCC Fluid catalytic cracking

PDF Probability distribution function

Subscripts

g Gas phase

s Solids phase

Symbols (greek letters and others)

 Γ Mass diffusivity, kg/m/s

 μ Viscosity, kg/m/s

 ρ Density, kg/m³

Symbols

A Area, m²

D Diameter, m

H Height, m

Chapter 1

Introduction

Here is your first chapter: Introduction.

1.1 Background

Your background (Deng et al., 2017).

1.2 Research objectives

The overall objective is ...

1.3 Thesis structure

This thesis follows the integrated-article format as outlined in the thesis guide of Western University. The thesis is organized as follows:

References

Deng, Z., Xia, Y., Long, B., & Ding, Y. (2017). Volumetric properties of disopropyl ether with acetone at temperatures from 283.15 K to 323.15 K: An experimental and theoretical study. *Journal of Molecular Liquids*, 243, 257–264.

Chapter 2

Main Chapter 1

2.1 Introduction

This chapter comprises four parts.

2.2 Equation

2.2.1 Equation Example

The equation example can be described as follows:

$$\frac{\partial}{\partial t} \left(\varepsilon_{\rm g} \, \rho_{\rm g} \, Y_{\rm g}^{\rm O_3} \right) + \dots \tag{2.1}$$

2.3 Figure

Figure 2.1 shows ...

2.4 Table

Table 2.1 shows ... (Liu, 2016; Wang et al., 2014).

Figure 2.1: Computational domain and mesh of the micro fixed-bed reactor

Table 2.1: Comparison of numerical results with experimental data

Case	$C_{ m g,in}^{ m O_3}$	Packed $\varepsilon_{\rm s}$	$U_{ m g}$	$k_{\rm r}$	$C_{ m g,out}^{ m O_3}$	$C_{\mathrm{g,out}}^{\mathrm{O_3}}/C_{\mathrm{g,in}}^{\mathrm{O_3}}$	APE
Unit	ppmv	-	m/s	s^{-1}	ppmv	-	%
Exp. 1 *	115.1	0.5	0.1124	4.12	50.70	0.44000	-
Num. 1	115.1	0.5	0.1124	4.12	50.84	0.44170	0.39
Exp. 2 **	100.0	0.5	0.57	49.12	9.054	0.09054	-
Num. 2	100.0	0.5	0.57	49.12	9.049	0.09049	0.06

^{*} Data from the work of Liu (2016).

2.5 Conclusions

The present study involved

^{**} Data from the work of Wang et al. (2014).

References

- Liu, J. (2016). *Reactor performances and hydrodynamics of various gas-solids fluidized beds* [Doctoral dissertation, The University of Western Ontario]. https://ir.lib.uwo.ca/etd/3967/
- Wang, C., Wang, G., Li, C., Barghi, S., & Zhu, J. (2014). Catalytic ozone decomposition in a high density circulating fluidized bed riser. *Industrial & Engineering Chemistry Research*, 53(16), 6613–6623.

Chapter 3

Conclusions and Recommendations

3.1 Thesis summary and conclusions

This thesis work comprehensively investigates ...

Figure 3.1 depicts ...

Figure 3.1: Caption...

3.2 Limitations and recommendations

Limitations ...

Appendix A

Your appendix

This is your appendix (Deng et al., 2017).

References

Deng, Z., Xia, Y., Long, B., & Ding, Y. (2017). Volumetric properties of diisopropyl ether with acetone at temperatures from 283.15 K to 323.15 K: An experimental and theoretical study. *Journal of Molecular Liquids*, 243, 257–264.

Curriculum Vitae

Name: firstname lastname

Post-Secondary Department of Chemical & Biochemical Engineering

Education and The University of Western Ontario

Degrees: London, Ontario, Canada

2018 - present Ph. D. candidate

School of XXX

XXX

Wuhan, Hubei, China 2012 - 2016 B. Eng.

Honours and XXXX, 2016 **Awards:** XXXXX

National Scholarship, 2015

Ministry of Education of the People's Republic of China

Related Research and Teaching Assistant, 2019 - 2023

Experience: The University of Western Ontario, London, Ontario

Visiting Student, 2021

Shanghai Jiao Tong University, Shanghai, China

Publications:

Deng, Z., Xia, Y., Long, B., & Ding, Y. (2017). Volumetric properties of diisopropyl ether with acetone at temperatures from 283.15 K to 323.15 K: An experimental and theoretical study. *Journal of Molecular Liquids*, 243, 257–264.