Solutions aux exercices d'*Algebra: Chapter 0* de Paolo Aluffi¹

Oussama Ouanane

18 décembre 2023

Table des matières

L	Préliminaires : Théorie des ensembles et catégories		2
	1	Théorie naïve des ensembles	3
	2	Fonctions entre ensembles	3
	3	Catégories	5

Chapitre 1

Préliminaires : Théorie des ensembles et catégories

1 Théorie naïve des ensembles

Exercice 1.1. On définit "l'ensemble" $R = \{x \mid x \notin R\}$. Supposons d'abord que $x \in R$, alors par définition de R, on a que $x \notin R$. Supposons maintenant que $x \notin R$, alors de même, par définition de R, $x \in R$. Dans les deux cas, on a à la fois $x \in R$ et $x \notin R$. Paradoxe.

Exercice 1.2. Soit \sim soit une relation dans un ensemble S. Soit $[a]_{\sim}, [b]_{\sim}$ des élements distincts de $S/_{\sim}$. On remarque que ces deux éléments ne sont pas vides puisque $a \in [a]_{\sim}$ et $b \in [b]_{\sim}$ par réflexivité de \sim . Supposons que $[a]_{\sim} \cap [b]_{\sim} \neq \emptyset$, alors il existe $x \in S$ tel que $x \in [a]_{\sim}$ et $x \in [b]_{\sim}$ i.e. $x \sim a$ et $x \sim b$.

- Pour tous $x_a \in [a]_{\sim}$, on a $x_a \sim a$ et $a \sim x$, d'où par transitivité, $x_a \sim x$. On en déduit que $x_a \sim b$ par transitivité et réflexivité de \sim . On en déduit que $x_a \in [b]_{\sim}$ et donc $[a]_{\sim} \subseteq [b]_{\sim}$.
- Pour tous $x_b \in [b]_{\sim}$, on a $x_b \sim b$ et $b \sim x$, d'où par transitivité, $x_b \sim x$. On en déduit que $x_b \sim a$ par transitivité et réflexivité de \sim . On en déduit que $x_b \in [a]_{\sim}$ et donc $[b]_{\sim} \subseteq [a]_{\sim}$.

On a alors que $[a]_{\sim} = [b]_{\sim}$. Les éléments de $S/_{\sim}$ sont alors distincts deux à deux. On sait par définition que $\bigsqcup_{[a]_{\sim} \in S/_{\sim}} [a]_{\sim} \subseteq S$. Soit $x \in S$, alors $x \in [x]_{\sim}$, or $[x]_{\sim} \in S/_{\sim}$, donc $x \in \bigsqcup_{[a]_{\sim} \in S/_{\sim}} [a]_{\sim}$ et $S = \bigsqcup_{[a]_{\sim} \in S/_{\sim}} [a]_{\sim}$. Autrement dit, que $S/_{\sim}$ forme une partition de S.

Exercice 1.3. Direct.

Exercice 1.4. On a 5 partitions possibles de $\{1,2,3\}$. Dès lors 5 relations d'équivalence peuvent être définies sur cet ensemble.

Exercice 1.5. *Sur* $S = \{1, 2, 3\}$, *on définit*

$$R = \{(1,1), (2,2), (3,3), (1,2), (2,1), (2,3), (3,2)\}.$$

On voit que R est réflexive, symétrique mais n'est pas transitive car 1R2 et 2R3 mais on n'a pas 1R3. On aurait alors $S/_R = \{\{1,2\},\{2,1,3\},\{2,3\}\}$ qui n'est pas une partition de S.

Exercice 1.6. Soit \sim la relation sur $\mathbf R$ définie par $x \sim y \Longleftrightarrow x - y \in \mathbf Z$.

- Soit $x \in \mathbf{R}$, on a $x x = 0 \in \mathbf{Z}$, d'où $x \sim x$.
- Soit $x, y \in \mathbf{R}$, supposons que $x \sim y$, alors $y x = (-1)(x y) \in \mathbf{Z}$, d'où $y \sim x$.
- Soit $x, y, z \in \mathbf{R}$, supposons que $x \sim y$ et $y \sim z$, alors $x z = (x y) + (y z) \in \mathbf{Z}$, d'où $x \sim z$.

La relation \sim est donc une relation d'équivalence, on a $\mathbf{R}/_{\sim}=\{[x]_{\sim}\mid x\in[0,1[\}$. Raisonnement analogue pour la deuxième relation.

2 Fonctions entre ensembles

Exercice 2.1. On considère $S = \{s_1, \ldots, s_n\}$, on considère

$$\Omega_S = \{ (f(s_1), \dots, f(s_n)) \mid f : S \to S \text{ bijective} \}$$

= \{ (s_\sigma(1), \dots, s_\sigma(n)) \ \| \sigma \in S_n \}

où S_n est l'ensemble des permutations de $\{1,\ldots,n\}$. Dès lors, $|\Omega_S|=n!$, on en déduit qu'il existe n! fonctions bijectives de S à S.

Exercice 2.2. Soit $f:A \to B, A \neq \emptyset$. Supposons que f admette une fonction inverse à droite $g:B \to A$. Alors pour tout $y \in f(A)$, il existe $x:=g(y) \in A$ tel que f(x)=y. Supposons réciproquement que f soit surjective, alors pour tout $g \in B$, il existe $g \in A$ tel que g(g)=g. Soit $g \in A$ fixé, on définit alors

$$g:y\in B\mapsto \begin{cases} x\in f^{-1}(\{y\}) & \text{si }y\in Im(f),\\ s & \text{sinon} \end{cases}\in A.$$

On voit que cette fonction n'est pas unique si pour au moins un $y \in Im(f)$, $f^{-1}(\{y\}$ n'est pas un singleton, i.e. f n'est pas injective. Dès lors on a unicité de g si et seulement si f est bijective. L'axiome du choix nous permet de sélectionner un élément x de $f^{-1}(\{y\})$.

Exercice 2.3. Soit $f: A \to B$ une bijection, on a alors $f^{-1} \circ f = Id_A$ et $f \circ f^{-1} = Id_B$. Dès lors $(f^{-1})^{-1} = f$ par unicité de la bijection. Soit maintenant $f: A \to B, g: B \to C$ des bijections, alors on a $(g \circ f) \circ (f^{-1} \circ g^{-1}) = Id_A$ et $f^{-1} \circ g^{-1} \circ (g \circ f) = Id_B$ par associativité de la composition.

Exercice 2.4. Pour éviter un "ensemble d'ensembles" qui ferait apparaître un paradoxe, plaçons-nous dans $E = \mathcal{P}(\mathbf{R})$ l'ensemble des parties de \mathbf{R} .

- Soit $A \in E$, alors $1_A : x \in A \mapsto x \in A$ est une bijection d'inverse 1_A puisque $1_A \circ 1_A = 1_A$.
- Soit $A, B \in E$, supposons qu'il existe $f : A \to B$ est une bijection, alors f^{-1} est une bijection de B à A.
- Soit $A, B, C \in E$, supposons qu'il existe $f: A \to B, g: B \to C$ des bijections, alors $g \circ f$ est une bijection de $A \wr C$.

Les deuxième et troisième points sont des conséquences de l'exercice précédent.

Exercice 2.5. Soit $f:A\to B$ une fonction, on dit que f est un épimorphisme si pour tout ensemble Z, pour toutes applications $\varphi_1,\varphi_2:B\to Z$, si $\varphi_1\circ f=\varphi_2\circ f$ alors $\varphi_1=\varphi_2$. Supposons que f soit surjective, alors pour tout ensemble Z, pour toutes applications $\varphi_1,\varphi_2:B\to Z$, si $\varphi_1\circ f=\varphi_2\circ f$ alors pour tout $y\in Im(f)$, on a $\varphi_1(y)=\varphi_2(y)$, donc $\varphi_1=\varphi_2$ sur Im(f), mais Im(f)=B puisque f est surjective. D'où f est un épimorphisme. Supposons réciproquement que f soit un épimorphisme, en particulier, on a pour $\varphi_1:x\in B\mapsto 0\in\{0,1\}$ et $\varphi_1:x\in B\mapsto 1-1_{Im(f)}(x)\in\{0,1\}$. On a pour tout $x\in A$, $(\varphi_1\circ f)(x)=(\varphi_2\circ f)(x)=0$. Dès lors, on a $\varphi_1=\varphi_2$, i.e. pour tout $y\in B,y\in Im(f)$.

Exercice 2.6. On peut exprimer $f: A \to B$ par son graphe $\Gamma = \{(x, f(x)) \mid x \in A\}$.

Exercice 2.7. On note $\pi_A: (x, f(x)) \in \Omega \mapsto x \in A$. Par définition de fonction, chaque élément de A est associé à un unique élément dans B. Dès lors, π_A est injective. De même, π_A est surjective à partir du moment où A est le domaine de f. Dans ce livre on ne fait pas de distinction entre fonction et application, dès lors A est le domaine de f donc π_A est toujours surjective.

Exercice 2.8. En posant $f: x \in \mathbf{R} \mapsto e^{2i\pi r} \in \mathbf{C}$, on a $Im(f) = S^1$ le cercle unité centré en 0 dans le plan complexe. Soit $r, r' \in \mathbf{R}$, supposons que $e^{2i\pi r} = e^{2i\pi r'}$. On aurait alors $2\pi r = 2\pi r' + 2k\pi = 2\pi (r+k)$ avec $k \in \mathbf{Z}$. D'où r-r' = k, ou encore, $r-r' \in \mathbf{Z}$. Dès lors, définir $r \sim r' \Leftrightarrow e^{2i\pi r} = e^{2i\pi r'}$ revient à $r \sim r' \Leftrightarrow r-r' \in \mathbf{Z}$. Grâce à l'exercice 1.6, on sait que $\mathbf{R}/_{\sim} = \{[y]_{\sim} | y \in [0,1]\}$. On a alors

Exercice 2.9. Supposons que $A' \cong A''$ et $B' \cong B''$ avec A', B' disjoints et A'', B'' disjoints. Il existe alors des fonctions $f: A' \to A'', g: B' \to B''$ bijectives. On construit alors $h: x \in A' \cup B' \mapsto \begin{cases} f(x) & \text{si } x \in A', \\ g(x) & \text{si } x \in B' \end{cases} \in A'' \cup B''$. Cette fonction est bien définie puisque A', B' sont disjoints. La fonction h est bijective par construction, on a $h^{-1}: y \in A'' \cup B'' \mapsto \begin{cases} f^{-1}(y) & \text{si } x \in A'', \\ g^{-1}(y) & \text{si } x \in B'' \end{cases} \in A'' \cup B''$.

On peut définir A II B comme étant l'ensemble $(S \times A) \cup (T \times B)$ où S,T sont des ensembles disjoints. Dès lors pour tous ensembles S,T,S',T' avec $S \cap T \neq \emptyset$ et $S' \cap T \neq \emptyset$, on a $(S \times A) \cong (S' \times A)$ et $(T \times B) \cong (T' \times B)$, d'où par le résultat ci-dessus, $(S \times A) \cup (T \times B) \cong (S' \times A) \cup (T' \times B)$.

Exercice 2.10. Soit A, B deux ensembles finis, on a

$$|B^{A}| = \{ \{ f(x_{1}), ..., f(x_{|A|}) \} \mid f : A \to B, x_{i} \in A, i = 1 ... |A|, x_{i} \neq x_{j} \text{ si } i \neq j \} |$$

$$= \left| \prod_{i=1}^{|A|} B \right|$$

$$= |B|^{|A|}.$$

Exercice 2.11. On pose $\varphi: f \in 2^A \mapsto \{a \in A \mid f(a) = 1\} \in \mathcal{P}(A)$, d'inverse $\varphi^{-1}: B \in \mathcal{P}(A) \mapsto 1_B \in 2^A$.

3 Catégories