"while (noSuccess) { tryAgain(); if (dead) break; }"

- Unknown

CSE102 Computer Programming with C

2017-2018 Spring Semester

Top-Down Design with Functions

© 2015-2018 Yakup Genç

Largely adapted from J.R. Hanly, E.B. Koffman, F.E. Sevilgen, and others...

Case Study: Circle

- Problem: Compute and display the area and the circumference of a circle
- Analysis:
 - Input: radius (double)
 - Outputs: area and circumference (double)
 - Relationship: ???
- Design:
 - 1. Get the radius
 - 2. Calculate the area
 - 3. Calculate the circumference
 - 4. Display the area and the circumference
 - Some steps requires refinement

February 2018

CSE102 Lecture 02

Function: modules of program

- Programmers use segments of earlier programs to construct new programs
 - Documentation is very important
 - Use of predefined functions
 - Top-down stepwise refinement
 - Major steps = modules of program

February 2018

CSE102 Lecture 02

Case Study: Circle

- Implementation:
 - The following slides contains the initial program

February 2018

CSE102 Lecture 02

Outline of Program Circle * Calculates and displays the area and circumference of a circle 5. #include <stdio.h> 6. #define PI 3.14159 8. int main(void) 10. (11. doubl 12. doubl 13. doubl 14. 15. /* Ge 16. 17. /* Ca 18. /* 19. 20. /* Ci 21. /* 22. 23. /* D 24. 25. retu: double radius; /* input - radius of a circle */ double area; /* output - area of a circle */ double circum; /* output - circumference /* Get the circle radius */ /* Calculate the area */ /* Assign PI * radius * radius to area. */ /* Calculate the circumference */ /* Assign 2 * PI * radius to circum. */ /* Display the area and circumference */ return (0); February 2018

Outline of Program Circle double radius; /* input - radius of a circle */ double area; /* output - area of a circle */ double circum; /* output - circumference */ $/\star$ Get the circle radius $\star/$ printf("Enter radius> "); scanf("%lf", &radius); /* Calculate the area */ area = PI * radius * radius: /* Calculate the circumference */ circum = 2 * PI * radius; /* Display the area and circumference */ printf("The area is %.4f\n", area); printf("The circumference is %.4f\n", circum); Enter radius> 5.0 The area is 78.5397 The circumference is 31.4159 CSE102 Lecture 02

Program Circle 1. /* 2. * calculates and displays the area and circumference of a circle 3. */ 4. * 5. #include <stdio.h> 6. #define Pf 3.14159 7. * 8. int 9. main(void) (continued)

Case Study: Weight of Washers

- Here, we will use the solution of the previous case study
- Problem: Manufacturer of flat washers needs to estimate shipping cost. They need to compute the weight of a specifies quantity of flat washers
- Analysis:
 - · Weight is volume times density of the material
 - Volume is the rim area times thickness
 - Rim area is calculated as in the next slide
 - Inputs: diameters, thickness, density, quantity
 - Outputs: weight
 - Relationships: ??

February 2018 CSE102 Lecture 02

Case Study: Weight of Washers • Design: - Initial Algorithm: ?? • Implementation: - next

Function sqrt as a "Black Box" function sqrt x is 16.0 → square root computation → result is 4.0 February 2018 CSE102 Lecture 02 15

Library Functions

- Software engineering:
 - Goal: writing error-free codes
 - Use well tested existing codes: code reuse
 - Use predefined functions
 - EX: sqrt function in math library
 - Use it as a black box
 - y = sqrt(x);

EX: printf and scanf in stdio library

February 2018 CSE102 Lecture 02

Square Root Program

```
* Performs three square root computations
     #include <stdio.h> /* definitions of printf, scanf */
 6. #include <math.h> /* definition of sqrt */
8. int
9. main(void)
10. {
11. doubl
           double first, second, /* input - two data values
                 first_sqrt, /* output - square root of first */
                  second_sqrt, /* output - square root of second */
                  sum_sqrt;
                                  /* output - square root of sum
           /* Get first number and display its square root. */
           printf("Enter the first number> ");
          scanf("%lf", &first);
           first_sqrt = sqrt(first);
           printf("The square root of the first number is %.2f\n", first_sqrt);
                                                                                (continued)
    February 2018
                                      CSE102 Lecture 02
```

Square Root Program (cont'd)

```
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
           /* Get second number and display its square root. */
           printf("Enter the second number> ");
           scanf("%lf", &second);
           second sqrt = sqrt(second);
           printf("The square root of the second number is %.2f\n", second sqrt);
           /* Display the square root of the sum of the two numbers. */
           sum sqrt = sqrt(first + second);
           printf("The square root of the sum of the two numbers is %.2f\n",
                   sum_sqrt);
           return (0);
     Enter the first number> 9.0
     The square root of the first number is 3.00
     Enter the second number> 16.0
     The square root of the second number is 4.00
     The square root of the sum of the two numbers is 5.00
   February 2018
                                        CSE102 Lecture 02
```

Math Library

log10(x)	<math.h></math.h>	Returns the base-10 logarithm of x for x > 0.0: if x is 100.0, log10(x) is 2.0	double	double
pow(x, y)	<math.h></math.h>	Returns x ^p . If x is negative, y must be integral: if x is 0.16 and y is 0.5, pow(x, y) is 0.4	double, double	double
sin(x)	<math.h></math.h>	Returns the sine of angle x: if x is 1.5708, min(x) is 1.0	double (radians)	double
mqrt(x)	<math.h></math.h>	Returns the non-negative square root of $x(\sqrt{x})$ for $x \ge 0.0$: if x is 2.25, eqrt(x) is 1.5	double	double
tan(x)	<math.h></math.h>	Returns the tangent of angle x: if x is 0.0, tan(x) is 0.0	double (radians)	double

February 2018 CSE102 Lecture 02

Math Library

Function	Standard Header File	Purpose: Example	Argument(s)	Result	
abs(x)	<stdlib.h></stdlib.h>	Returns the absolute value of its integer argument: if x is -5, abs(x) is 5	int	int	
ceil(x)	<math.h></math.h>	Returns the smallest integral value that is not less than x: if x is 45.23, ceil(x) is 46.0	double	double	
cos(x)	<math.h></math.h>	Returns the cosine of angle x: if x is 0.0, cos(x) is 1.0	double (radians)	double	
exp(x)	~ <math.h></math.h>	Returns e^x where $e = 2.71828$ if x is 1.0, $exp(x)$ is 2.71828	double	double	
fabs(x)	<math.h></math.h>	Returns the absolute value of its type double argument: if x is -8.432, fabs(x) is 8.432	double	double	
floor(x)	<math.h></math.h>	Returns the largest integral value that is not greater than x: if x is 45.23, floor(x) is 45.0	double	doub1e	
log(x)	<math.h></math.h>	Returns the natural logarithm of x for $x > 0.0$; if x is 2.71828, $log(x)$ is 1.0	double	double	

Library Functions

• Example: Compute the roots of a quadratic equation

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Example: Compute the length of the third side of a triangle

$$a^2 = b^2 + c^2 - 2bc \cos \alpha$$

b a

February 2018 CSE102 Lecture 02

User defined Functions

- Example: area of a circle area = find_area(radius);
- Example: circumference of a circle circum = find_circum(radius);
- Example: rim area calculation
 rim_area = find_area(edge_radius) find_area(hole_radius);

February 2018 CSE102 Lecture 02

Case Study: Simple Diagrams

- Problem: Draw simple diagrams on your screen
 - Ex: house, person
- Analysis: Basic components
 - Circle
 - Parallel lines
 - Base line
 - Intersecting lines
- Design: Divide the problem into three subproblems
 - Draw a circle
 - Draw a triangle
 - Draw intersecting lines
 - Further refinement in triangle see following structure chart

February 2018

CSE102 Lecture 02 22

Function Prototypes and Main Function

User Defined Functions

- Function prototype
 - Functions should be defined before they are used
 - Insert the whole function definition
 - · Insert the function prototype
 - Defines
 - Data types of the function
 - Function name
 - Arguments and their types

function_type function_name (argument types);

- Ex:

void draw_circle(void);

February 2018

CSE102 Lecture 02

User Defined Functions

- Function definition
 - Defines the operation of a function
 - Similar to main function

```
function_type function_name (argument list)
{
    local declerations
    executable statements
}
```

- Function heading: similar to function prototype
- Function body: enclosed in braces

February 2018

CSE102 Lecture 02

27

User Defined Functions

- Function call
 - Calling a function

```
function_name (arguments);
```

– Ex:

```
draw_circle();
printf("%d", year);
```

February 2018

CSE102 Lecture 02

Function draw_circle

```
1. /*
2. * Draws a circle
3. */
4. void
5. draw_circle(void)
6. {
    printf(" * \n");
    printf(" * *\n");
9. printf(" * *\n");
10. }

February 2018

CSE102 Lecture 02

28
```

February 2018 Function draw_triangle 1. /* 2. * Draws a triangle 3. */ 4. void 5. draw_triangle(void) 6. { 7. draw_intersect(); 8. draw_base(); 9.

Flow of Control

- Compiling the program:
 - Function prototypes: compiler knows the functions
 - enables compiler to translate function calls
 - Function definition: translates the code of the function
 - · Allocates memory needed
 - Function call: Transfers of the control to the function
 - End of the function: Transfer of the control back to the calling statement
 - Releases the local memory

February 2018 CSE102 Lecture 02 32

computer memory in main function draw_circle(); draw_triangle(); draw_intersect(); february 2018 computer memory /* Draw a circle. */ void draw_circle (void) { printf(" * \n"); printf("* * \n"); return to calling program }

Function instruct * Displays instructions to a user of program to compute * the area and circumference of a circle. void instruct(void) printf("This program computes the area\n"); printf("and circumference of a circle.\n\n"); 10. 11. 12. } printf("To use this program, enter the radius of\n"); printf("the circle after the prompt: Enter radius>\n"); This program computes the area and circumference of a circle. To use this program, enter the radius of the circle after the prompt: Enter radius> February 2018 CSE102 Lecture 02

Advantages of Functions

- For team of programmers:
 - Dividing programming tasks to the programmers
- Procedural abstraction
 - Move the details of the operation to the functions
 - Focus on the main operations
- Code reuse
 - In a program
 - In other programs
 - · Well tested functions

February 2018

CSE102 Lecture 02

Functions with Input Arguments

- Functions are building blocks to construct large programs
 - Like Lego blocks
- Arguments:
 - to carry information to functions : input arguments
 - to return multiple results : output arguments
- Arguments makes functions more versatile
 - Manipulate different data at each call

rim area = find area(edge radius) - find area(hole radius);

February 2018

CSE102 Lecture 02


```
Functions find_circum and find_area

1. /*
2. * Computes the circumference of a circle with radius r.
3. * Pre: r is defined and is > 0.
4. * PI is a constant macro representing an approximation of pi.
5. */
6. double
7. find_circum(double r)
8. {
9. return (2.0 * PI * r);
10. }
11.
12. /*
13. * Computes the area of a circle with radius r.
14. * Pre: r is defined and is > 0.
15. * PI is a constant macro representing an approximation of pi.
16. * Library math.h is included.
17. */
18. double
19. find_area(double r)
20. {
21. return (PI * pow(r, 2));
22. }

February 2018 CSE102 Lecture 02 40
```


Testing functions

- Functions can be tested by a program that uses it
- Driver program
 - Defines function arguments
 - Call the functions
 - Display the return value

February 2018 CSE102 Lecture 02 43

Argument Correspondence

- Be careful to provide correct
 - number of arguments
 - order of arguments
 - type of arguments
 - Actual parameter int to formal parameter double
 - Actual parameter double to formal parameter int
 - Loss of fractional part

February 2018 CSE102 Lecture 02