APRENDIZAJE ESTADÍSTICO

Boletín 1: Evaluación y Selección de Modelos (KNN)

ANDRÉS CAMPOS CUIÑA

FECHA DE ENTREGA: 19/11/2021

ÍNDICE

1	Ejercicio 1	1
	,	
2	Ejercicio 2	2
_	-,,,,,,,,,,-	
3	Fiercicio 3	12

٨٥	Doc.: boletin1_CamposCuina.pdf
AL	Dágina 1 do 17
MaBD	Página 1 de 17

1 EJERCICIO 1

Suponiendo que se quiere hacer la predicción de la variable de salida para X1=0, X2=0, X3=0 mediante KNN.

a. Computar la distancia entre cada observación y el punto de test.

Distancia entre el punto [0 3 2] y el punto de test [0 0 0] = 3.605551275463989

Distancia entre el punto [3 0 3] y el punto de test [0 0 0] = 4.242640687119285

Distancia entre el punto [0 3 -1] y el punto de test [0 0 0] = 3.1622776601683795

Distancia entre el punto [3 0 0] y el punto de test [0 0 0] = 3.0

Distancia entre el punto [1 2 1] y el punto de test [0 0 0] = 2.449489742783178

Distancia entre el punto [2 1 0] y el punto de test [0 0 0] = 2.23606797749979

b. ¿Cuál es la predicción para K=1? ¿Por qué?

La predicción para [0 0 0] es 0 y el 1 vecino más cercanos es:

El vecino [2 1 0] a una distancia de 2.23606797749979 con clase 0

c. ¿Cuál es la predicción para K=3? ¿Por qué?

La predicción para [0 0 0] es 1 y los 3 vecino más cercanos son:

El vecino [2 1 0] a una distancia de 2.23606797749979 con clase 0

El vecino [1 2 1] a una distancia de 2.449489742783178 con clase 1

El vecino [3 0 0] a una distancia de 3.0 con clase 1

٨٢	Doc.: boletin1_CamposCuina.pdf	
AE	Décino 3 de 17	
MaBD	Página 2 de 17	

2 EJERCICIO 2

Dado el problema de clasificación Blood Transfusion Service Center:

a. Analiza las características del conjunto de datos: número y tipo de variables de entrada y salida, número de instancias, número de clases y distribución de las mismas, correlación entre las variables, valores perdidos, etc.

	Recency	Frequency	Monetary	Time	IsMarchDonor
0	2	50	12500	98	1
1	0	13	3250	28	1
2	1	16	4000	35	1
3	2	20	5000	45	1
4	1	24	6000	77	0
743	23	2	500	38	0
744	21	2	500	52	0
745	23	3	750	62	0
746	39	1	250	39	0
747	72	1	250	72	0

748 rows × 5 columns

Tipo de dato de cada columna del Dataframe :

Recency: int64

Frequency: int64

Monetary: int64

Time: int64

IsMarchDonor: int64

ΛE	Doc.: boletin1_CamposCuina.pdf
AE	Dánina 2 da 17
MaBD	Página 3 de 17

Número de clases y distribución de las mismas:

ΛF	Doc.: boletin1_CamposCuina.pdf	
AE	Désino A do 17	
MaBD	Página 4 de 17	

ΛF	Doc.: boletin1_CamposCuina.pdf	
AE	Désino E de 17	
MaBD	Página 5 de 17	

La correlación entre las variables:

۸۵	Doc.: boletin1_CamposCuina.pdf	
AE	Décino C de 17	
MaBD	Página 6 de 17	

ΛF	Doc.: boletin1_CamposCuina.pdf
AE	Décino 7 de 17
MaBD	Página 7 de 17

٨Ε	Doc.: boletin1_CamposCuina.pdf	
AE	Dágina 9 do 17	
MaBD	Página 8 de 17	

b. Una de las clases que implementa el algoritmo KNN en *scikit-learn* es *sklearn.neighbors.KNeighborsClassifier*. Revisa los parámetros y métodos que tiene.

Revisado.

c. Divide los datos en entrenamiento (80%) y test (20%).

Hecho.

d. Realiza la experimentación con KNN (*KNeighborsClassifier*) usando como hiper-parámetro el número de vecinos.

Muestra la gráfica del error de entrenamiento con validación cruzada (5-CV) frente al valor del hiper-parámetro. ¿Cuál es el menor error de validación cruzada, su desviación estándar y el valor del hiper-parámetro para el que se consigue? ¿Cuál es el valor del hiperparámetro si se aplicase la regla de una desviación estándar?

ΛF	Doc.: boletin1_CamposCuina.pdf	
AE	Périna O de 17	
MaBD	Página 9 de 17	

Menor error de validación cruzada, su desviación estándar y el valor del hiper-parámetro para el que se consigue:

	param_n_neighbors	mean_test_score	std_test_score	rank_test_score
18	19	0.79591	0.030314	1

El error real es: 0.2040896358543417

El valor del hiper-parámetro si se aplicase la regla de una desviación estándar:

param_n_neighbors: 55

mean_test_score: 0.772577

std_test_score: 0.009657

rank_test_score: 41

Error real: 0.22742296918767513

٨Ε	Doc.: boletin1_CamposCuina.pdf
AE	Dácino 10 do 17
MaBD	Página 10 de 17

La gráfica de la selección de este valor es la siguiente:

٨٥	Doc.: boletin1_CamposCuina.pdf
AE	Dásina 11 da 17
MaBD	Página 11 de 17

Muestra la gráfica del error de test frente al valor del hiper-parámetro, y valora si la gráfica del error de entrenamiento con validación cruzada ha hecho una buena estimación del error de test. ¿Cuál es el menor error de test y el valor del hiper-parámetro para el que se consigue? ¿Cuál es el error de test para el valor del hiper-parámetro seleccionado por la validación cruzada? ¿Cuál es el error de test para el valor del hiper-parámetro seleccionado por la validación cruzada mediante la regla de una desviación estándar?

El menor error de test y el valor del hiper-parámetro para el que se consigue:

	param_n_neighbors	mean_test_score	std_test_score	rank_test_score
19	20	0.806667	0.0	1

Error real: 0.19333333333333336

El error de test para el valor del hiper-parámetro seleccionado por la validación cruzada:

0.2133333333333333

El error de test para el valor del hiper-parámetro seleccionado por la validación cruzada mediante la regla de una desviación estándar:

0.226666666666668

ΛE	Doc.: boletin1_CamposCuina.pdf
AE	Décino 12 do 17
MaBD	Página 12 de 17

3 EJERCICIO 3

Dado el problema de regresión Energy Efficiency:

a. Analiza las características del conjunto de datos: número y tipo de variables de entrada y salida, número de instancias, número de clases y distribución de las mismas, correlación entre las variables, valores perdidos, etc.

	X1	Х2	Х3	X4	X5	Х6	Х7	Х8	Υ
0	0.98	514.5	294.0	110.25	7.0	2	0.0	0	21.33
1	0.98	514.5	294.0	110.25	7.0	3	0.0	0	21.33
2	0.98	514.5	294.0	110.25	7.0	4	0.0	0	21.33
3	0.98	514.5	294.0	110.25	7.0	5	0.0	0	21.33
4	0.90	563.5	318.5	122.50	7.0	2	0.0	0	28.28
763	0.64	784.0	343.0	220.50	3.5	5	0.4	5	21.40
764	0.62	808.5	367.5	220.50	3.5	2	0.4	5	16.88
765	0.62	808.5	367.5	220.50	3.5	3	0.4	5	17.11
766	0.62	808.5	367.5	220.50	3.5	4	0.4	5	16.61
767	0.62	808.5	367.5	220.50	3.5	5	0.4	5	16.03

768 rows × 9 columns

Tipo de dato de cada columna del Dataframe :

- X1 float64
- X2 float64
- X3 float64
- X4 float64
- X5 float64
- X6 int64
- X7 float64
- X8 int64
- Y float64

ΛΕ	Doc.: boletin1_CamposCuina.pdf
AE	Dánina 12 da 17
MaBD	Página 13 de 17

Número de clases y distribución de las mismas:

ΛE	Doc.: boletin1_CamposCuina.pdf
AC	Dánina 14 da 17
MaBD	Página 14 de 17

La correlación entre las variables:

٨Ε	Doc.: boletin1_CamposCuina.pdf
AE	Página 15 do 17
MaBD	Página 15 de 17

b. Una de las clases que implementa el algoritmo KNN en *scikit-learn* es *sklearn.neighbors.KNeighborsRegressor*. Revisa los parámetros y métodos que tiene.

Revisado.

c. Divide los datos en entrenamiento (80%) y test (20%).

Hecho.

d. Realiza la experimentación con KNN (*KNeighborsRegressor*) usando como hiper-parámetro el número de vecinos.

Muestra la gráfica del error de entrenamiento con validación cruzada (5-CV) frente al valor del hiper-parámetro. ¿Cuál es el menor error de validación cruzada, su desviación estándar y el valor del hiper-parámetro para el que se consigue? ¿Cuál es el valor del hiperparámetro si se aplicase la regla de una desviación estándar?

Menor error de validación cruzada, su desviación estándar y el valor del hiper-parámetro para el que se consigue:

	param_n_neighbors	mean_test_score	std_test_score	$destandardized_mean_test_score$	$destandardized_std_test_score$	rank_test_score
1	2	-0.068429	0.006466	6.115019	0.577814	1

ΛE	Doc.: boletin1_CamposCuina.pdf
AE	Dánha 46 da 47
MaBD	Página 16 de 17

El valor del hiper-parámetro si se aplicase la regla de una desviación estándar:

	param_n_neighbors	mean_test_score	std_test_score	$destandardized_mean_test_score$	$destandardized_std_test_score$	rank_test_score
1	2	-0.068429	0.006466	6.115019	0.577814	1

La gráfica de la selección de este valor es la siguiente:

٨٥	Doc.: boletin1_CamposCuina.pdf
AE T	Dágina 17 do 17
MaBD	Página 17 de 17

Muestra la gráfica del error de test frente al valor del hiper-parámetro, y valora si la gráfica del error de entrenamiento con validación cruzada ha hecho una buena estimación del error de test. ¿Cuál es el menor error de test y el valor del hiper-parámetro para el que se consigue? ¿Cuál es el error de test para el valor del hiper-parámetro seleccionado por la validación cruzada? ¿Cuál es el error de test para el valor del hiper-parámetro seleccionado por la validación cruzada mediante la regla de una desviación estándar?

El menor error de test y el valor del hiper-parámetro para el que se consigue:

	param_n_neighbors	mean_test_score	std_test_score	$destandardized_mean_test_score$	$destandardized_std_test_score$	rank_test_score
8	9	-0.107463	0.0	9.603207	0.0	1

El error de test para el valor del hiper-parámetro seleccionado por la validación cruzada:

12.588656331168831

El error de test para el valor del hiper-parámetro seleccionado por la validación cruzada mediante la regla de una desviación estándar:

12.588656331168831