Congratulations! You passed!

Grade received 100% To pass 80% or higher

Go to next item

1.

Set	Values			
1	1	5	7	9
2	-20	-10	0	10
3	100	101	102	103
4	-10	-5	0	-5

1 / 1 point

Consider the four sets of samples above. Which one has the smallest variance?

- \bigcirc 1
- O 2
- 3
- O 4

⊘ Correct

Correct! The variance measures how much a sample is spread. We can easily look at all the samples and check that this one has the smallest spread among all.

 $\textbf{2.} \quad \text{About the } \textbf{mean, mode} \text{ and } \textbf{median, } \textbf{it is correct to say (check all that apply)}.$

1/1 point

- ☐ The mean is always greater than or equal to the median.
- The median is more stable to outliers than the mean.

⊘ Correct

Correct! Since the median is a **positional** measure, it is more stable to extreme values!

- The mode is the most frequent value in a sample.
- **⊘** Correct

Correct! This is precisely the definition of mode!

There can be more than one mode in a sample.

⊘ Correct

Correct! The most frequent value might not be unique. For instance, in the samlpe $\{1,1,2,2,3,4\}$, the modes are 1 and 2. Distributions which there are more than one mode are called **multimodal distributions!**

3. Consider the following independent random variables:

1/1 point

$$X \sim ext{Normal}(3, 1^2) \ Y \sim ext{Normal}(2, 2^2)$$

Then $Z=X+Y\sim \mathrm{Normal}(\mu,\sigma^2)$, where μ,σ are equal to:

0

 $\mu = \sqrt{5}, \sigma = \sqrt{3}$

()

 $\mu=5, \sigma=\sqrt{5}$

0

 $\mu = 5, \sigma = \sqrt{3}$

0

 $\mu = 5, \sigma = 5$

✓ Correct

Correct! Using the formula $\mu_Z=\mu_X+\mu_Y$ and $\sigma_Z=\sqrt{\sigma_X^2+\sigma_Y^2}$ you get the result!

4. What is the advantage of looking at the standard deviation instead of the variance?

1/1 point

- O The standard deviation is less affected by outliers than the variance.
- The standard deviation has the same dimension as the sample.
- O The standard deviation may be negative.

Correct Correct! The variance has the sample's dimension squared, whereas the standard deviation has the same dimension as the sample. This makes it easier to interpret.	
Which of the following best describes the purpose of a QQ plot?	1 / 1 point
O To visualize the distribution of a dataset	
O To visualize the relationship between two datasets	
To test for normality of a dataset	
O To test for independence between two datasets	
○ Correct Correct! The main purpose of a QQ plot is to test for normality of a dataset.	
Which of the following is true about a box plot with a long whisker on the upper end?	1/1 point
The data is negatively skewed	
The data is positively skewed The data is posmally distributed.	
The data is normally distributed There are no outliers	
 Correct Correct! A box plot with a long whisker on the upper end is an indication of positively skewed data. 	
Which of the following is a correct statement regarding a QQ plot?	1 / 1 point
If the points fall close to the diagonal, the data is not normally distributed	
If the points fall close to the diagonal line, the data is normally distributed	
© Correct Correct If the points fall close to the diagonal line it indicates that the data is permally distributed.	
Correct! If the points fall close to the diagonal line, it indicates that the data is normally distributed.	
If the points fall far from the diagonal line, the data is normally distributed	
If the points fall far from the diagonal line, the data is not normally distributed	
© Correct Correct 15 the projet fell for from the diagonal line it indicates that the data is not perpelled distributed.	
Correct! If the points fall far from the diagonal line, it indicates that the data is not normally distributed.	
Correct: If the points fall far from the diagonal line, it indicates that the data is not normally distributed.	
Correct! If the points fall far from the diagonal line, it indicates that the data is not normally distributed. Consider the following box plot for the test scores of two classes, A and B:	1 / 1 point
Consider the following box plot for the test scores of two classes, A and B:	1/1 point
	1/1 point
Consider the following box plot for the test scores of two classes, A and B: 100 -	1 / 1 point
Consider the following box plot for the test scores of two classes, A and B:	1/1 point
Consider the following box plot for the test scores of two classes, A and B: 100 -	1/1 point
Consider the following box plot for the test scores of two classes, A and B: 100 -	1/1 point
Consider the following box plot for the test scores of two classes, A and B: 100 -	1/1 point
Consider the following box plot for the test scores of two classes, A and B: 100 - 90 - 80 -	1/1 point
Consider the following box plot for the test scores of two classes, A and B: 100 - 90 - 80 -	1/1 point
Consider the following box plot for the test scores of two classes, A and B: 100 -	1/1 point
Consider the following box plot for the test scores of two classes, A and B: 100 -	1/1 point
Consider the following box plot for the test scores of two classes, A and B: 100 -	1/1 point
Consider the following box plot for the test scores of two classes, A and B: 100 -	1/1 point
Consider the following box plot for the test scores of two classes, A and B: 100 -	1/1 point
Consider the following box plot for the test scores of two classes, A and B: 100	1/1 point
Consider the following box plot for the test scores of two classes, A and B: 100	1/1 point

Correct! The rectangle in A is bigger than B.

- $\begin{tabular}{ll} \hline \end{tabular} \begin{tabular}{ll} The interquartile range of Class B is larger than the interquartile range of Class A. \\ \hline \end{tabular}$
- 9. Consider the following QQ plot for a set of data:

1/1 point

Which of the following statements is true?

- The data looks normally distributed.
- O The data is not normally distributed.
- O The data has a higher variance than a normal distribution.
- O The data has a lower variance than a normal distribution.
- \bigcirc Correct

The QQ plot compares the observed data with the theoretical quantiles of a normal distribution. If the points lie close to the diagonal line, then the data is likely normally distributed.