CSE 102 Spring 2021 Advanced Homework Assignment 4

Jaden Liu University of California at Santa Cruz Santa Cruz, CA 95064 USA

May 5, 2021

1 AdvHW4

Greedy Approximation to 0-1 Knapsack Problem: (up to 10 points: simple proof without external resources) Consider the 0-1 knapsack problem: Given n items with weights w_1 , ..., w_n and value v_1 , ... v_n and a total weight of W, where each w_i , v_i and B are positive integers, find a subset S of items that a thief would like to steal so that the total weight is smaller than W and the total value is maximum.

Greedy strategy:

- 1. Calculate the value of each item's unit weight vi/wi
- 2. Pack items with the highest unit weight into the backpack.
- 3. If total weight of the items in the backpack does not exceed give weight maximum W, then select items with the second highest value per unit weight.
 - 4. Loop process 2 and 3 to pack as many backpacks as possible until the backpack is full.
- 5. After the looping, we need to compare v_{k+1} and $v_1 + v_2 + v_3 + \cdots + v_k$ unless we could get wrong other. Our final answer would be $\max(v_{k+1}, v_1 + v_2 + v_3 + \cdots + v_k)$ for $1 \le k \le n$

Proof. First the we sort the knapsack's items in decreasing order of the value density v_i/w_i , then item n_1 has biggest value density with value v_1 and w_1 . Assume we have the optimal total value v_{max} , then obviously $v_1 + v_2 + v_3 + \cdots + v_k \le v_{max}$. Also we can have $v_{max} \le v_1 + v_2 + v_3 + \cdots + v_k + v_{k+1}$. This situation is like partial Knapsack Problem. When we add partial v_{k+1} to fill the pack completely. The pack has already been at the maximum value density, hence adding partial v_{k+1} is equal to v_{max} . Not to mention adding whole v_{k+1} is larger or equal to v_{max} . Then we have to two inequalities:

$$\begin{cases} v_{max} \le v_1 + v_2 + v_3 + \dots + v_k + v_{k+1} \\ v_1 + v_2 + v_3 + \dots + v_k + v_{k+1} \le 2 \max(v_{k+1}, v_1 + v_2 + v_3 + \dots + v_k) \end{cases}$$

It's easy to prove the second inequality if we consider $v_{k+1} = a$, $v_1 + v_2 + v_3 + \cdots + v_k = b$, then $\max(a,b) \ge a$ and $\max(a,b) \ge b$. Thus $2\max(a,b) \ge a + b$.

Combine these two inequalities, we can get $v_{max} \le 2 \max(v_{k+1}, v_1 + v_2 + v_3 + \dots + v_k)$. Thus the

solution of our greedy algorithm is at least $\frac{V_{max}}{2}$.

For further convenience, I want to change the name " v_{max} " to " $v_{optimal}$ " or " v_{opt} ", and name the solution of our greedy algorithm " $\max(v_k + 1, v_1 + v_2 + ... v_k)$ " as " v_{max} ".

- 1. It's hard to compare v_{max} and v_{opt} . Therefore, we need to come up with a "bridge" to connect these two variables. It's natural to think of $\max(a,b) \ge a$ or b. In order to get the coefficient "2" in the final result, we can easily come up with inequality that $2*\max(a,b) \ge a+b$. Then we find a+b, which is " $v_1 + v_2 + ... + v_{k+1}$ " is always larger than v_{opt} .
- 2. 0-1 Knapsack problem is different from general Knapsack problem mainly because of its element divisibility. In general Knapsack problem, for example, we have fulfilled the pack with v_1 to v_k with only w_{rem} . However, we have w_{k+1} for the last element which cannot be packed in the bag. Thus, we choose w_{rem}/w_{k+1} of the last element, so the total value is $v_1 + ... + v_{k+1} * \frac{w_{rem}}{w_{k+1}}$. It's easy to prove $v_{max} = v_{opt}$ in this situation since we have chosen from most valuable to least valuable to let the final pack density reaching maximum. However, in the 0-1 Knapsack problem, the elements are not divisible. Hence, $v_1 + ... + v_{k+1}$ is always larger to v_{opt} .