

并行程序设计与算法 CUDA入门

陶钧

taoj23@mail.sysu.edu.cn

中山大学 计算机学院 国家超级计算广州中心

课程概要

- ●要点回顾
- CPU vs GPU
- NVIDIA GPU架构
- CUDA编程模型
- CUDA编程举例

●频率提升的时代已经基本告一段落

- -晶体管数目≠频率
- 缓存增大
- 模块数量增加
 - 流水线
 - 多发射

- ●并行计算机架构: Flynn分类法
 - 根据指令和数据进入CPU的方式分类
 - SISD, SIMD, MISD, MIMD
 - 拓展分类: SPMD, MPMD
 - SIMD与GPU最为相似
 - 阵列计算机
 - 向量计算机

	Instruction												
	single	multiple											
	SISD	MISD											
V	on Neumann single CPU computer	pipelined computer											
	SIMD	MIMD											
	vector processors	multi computers/ processors											

multiple single

●使用GPU进行并行计算

- Vertex shader 和 fragment shader 可由用户自行通过shading language编程
- 把封装数据封装成图形绘制库所需的数据形式传入
- 绘制过程中通过修改shader执行用户编写的程序
 - 通常是fragment shader
- -将结果绘制到texture中传出
- -需要很强的图形学编程能力

○ 分布式 vs 共享内存架构

- 分布式: MPI
 - 多进程, 进程完全独立, 创建销毁开销高, 通过消息传递通信
- 共享内存: Pthreads/OpenMP
 - · 多CPU线程,线程完全独立,创建销毁开销较低,通过共享内存通信
- 共享内存: CUDA
 - 多GPU线程,线程并不完全独立,创建销毁开销极低,多级存储

课程概要

- ●要点回顾
- CPU vs GPU
- NVIDIA GPU架构
- CUDA编程模型
- CUDA编程举例

CPU vs GPU

• 性能

- 延迟: 一个操作从开始到完成所需的时间(ms)

- 带宽: 单位时间内可处理的数据量(MB/s, GB/s)

- 吞吐量:单位时间内成功可处理的运算量(gflops)

CPU

- 目标: 降低延迟
- 提高串行代码性能
- 更适用于复杂单任务

• GPU

- 目标: 提高吞吐量
- 大规模并行架构
- 更适用于大量相似任务

CPU vs GPU

CPU

- 大缓存
 - 掩盖较长的存储器延迟
- 强大的运算器
 - 降低运算延迟
- 复杂的控制机制
 - 分支预测等
- 线程上下文切换开销大
 - 降低一个或两个线程运行延迟

GPU

- 小缓存
 - 但通过更快的存储提高吞吐量
- 更节能的运算器
 - 延迟长但总吞吐量更大
- 简单的控制流机制
 - 无分支预测
- 线程高度轻量级
 - 大量并发

异构架构

CPU+GPU

- 利用CPU处理复杂控制流
- 利用GPU处理大规模运算
- CPU与GPU之间通过PCIe总线通信
 - 新显卡支持通过NVLink直接连接(提供5-12倍于PCIe 3.0总线带宽)

课程概要

- ●要点回顾
- CPU vs GPU
- NVIDIA GPU架构
- CUDA编程模型
- CUDA编程举例

● 2级架构

- 每个GPU拥有多个Streaming Multiprocessor (SM)
 - 具体数目及设计因产品而异
 - SM共用显存
- 每个SM拥有多个CUDA core
 - 数目因产品而异
 - Core共用调度器和指令缓存

- ●2级架构下的执行模式:线程束(warp)
 - CUDA线程以32个为一组在GPU上执行
 - · 线程束以单指令多线程的方式运行(SIMT)
 - 所有线程在不同数据上执行相同的指令
 - SIMT, SIMD, SMT (simultaneous multithreading)
 - 灵活度: SIMD < SIMT <SMT
 - 性能: SIMD > SIMT > SMT
 - SIMT与SIMD相比:多个状态寄存器,多个地址,独立的执行路径
 - » http://yosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html
 - SM负责调度并执行线程束
 - 线程束调度时会产生上下文切换
 - 调度方式因架构而异

Tegra

- 面向移动和嵌入式设备
 - 平板电脑、手机等

GeForce

- 面向一般图形用户
 - 家用电脑, 优化游戏性能

Quadro

- 面向专业绘图设计需求
 - 图形工作站,优化专业绘图软件性能

Tesla

- 面向大规模计算
 - 没有显示输出
 - 此前深度学习神器v100即属于此系列
- 更强大的双精度运算能力
- 更大的内存带宽

NVIDIA A100 Tensor Core GPU

- "Engine of the NVIDIA data center platform"
- "A100 can efficiently scale to thousands of GPUs"
- "Multi-Instance GPU (MIG) technology allows multiple networks to operate simultaneously on a single A100 GPU for optimal utilization of compute resources."

Geometric mean of application speedups vs. P100: benchmark application: Amber [PME-Cellulose_NVE], Chroma [szscl21_24_128], GROMACS [ADH Dodec], MILC [Apex Medium], NAMD [stmv_nve_cuda], PyTorch (BERT Large Fine Tuner], Quantum Espresso [AUSURF112-jR]; Random Forest FP32 [make_blobs (160000 x 64 : 10)], TensorFlow [ResNet-50], VASP 6 [Si Huge], | GPU node with dual-socket CPUs with 4x NVIDIA P100, V100, or A100 GPUs.

BERT Large Inference

BERT Large Inference | NVIDIA T4 Tensor Core GPU: NVIDIA TensorRT™ (TRT) 7.1, precision = INT8, batch size = 256 | V100: TRT 7.1, precision = FP16, batch size = 256 | A100 with 7 MIG instances of 1g.5gb: pre-production TRT, batch size = 94, precision = INT8 with sparsity.

NVSwitch 与NVIDIA HGX A100

- NVSwitch: NVLink组成的全连接架构
- HGX A100: 在一张主板上由NVSwitch连接多张A100计算卡
 - 4x/8x/16x-A100: 人工智能也要进入军备竞赛阶段了?

NVIDIA NVLink A100 GPU A100 GPU A100 GPU A100 GPU NVIDIA A100 with NVLink GPU-to-GPU connections

- Tesla (2006)→Fermi (2010)→Kepler (2012)→Maxwell (2014)
 →Pascal (2016)→Volta (2017)→Turing (2018)→Ampere(2020)
 - 更新速度加快
 - CUDA核心数量及内存大小增加
 - 峰值计算性能和内存带宽提高

	"Kepler" K20	"Kepler" K40	"Maxwell" M40	Pascal P100	Volta V100
CUDA cores	2496	2880	3072	3584	5120
Cores per SM	192	192	128	64	64
Single Precision	3.52 Tflops	4.29 Tflops	7.0 Tflops	9.5 Tflops	15 Tflops
Double Precision	1.17 TFlops	1.43 Tflops	0.21 Tflops	4.7 Tflops	7.5Tflops
Memory Bandwidth	208 GB/s	288 GB/s	288 GB/s	720 GB/s	900 GB/s
Memory	5 GB	12 GB	12 GB	12/16 GB	16 GB

Fermi

- 芯片划分为多个SM
- 每个SM上32个CUDA core
- 无缓存一致性
 - SM之间没有通信

Kepler

- 芯片划分为多个SMX
 - Streaming
 Multiprocessor
 Extreme
- SMX上core数目大大 增加(192)
- 提供二级缓存一致性

Maxwell

- 芯片划分为四个GPC (quadrant)
- 每个GPC上有多个 Streaming Multiprocessor Module (SMM)
- SMM减少了core数目 但提高了能源效率
 - 192→128
 - 50%能耗
 - 90%运算能力

Pascal

- 更多GPC、SM、 CUDA cores
- 支持NVLink
 - 极大地增加带宽

Turing & Ampere

- -右图为单个SM
 - 増加Tensor cores
 - 増加Ray Tracing cores

● 计算能力(compute capability)

- 不同架构的NVIDIA GPU拥有不同计算能力
 - 由硬件决定,不同于CUDA版本
 - 计算能力#运算性能
 - 参考https://en.wikipedia.org/wiki/CUDA

● 计算能力(compute capability)

Technical specifications									Comp	oute cap	ability	(versio	n)				
		1.1	1.2	1.3	2.x	3.0	3.2	3.5	3.7	5.0	5.2	5.3	6.0	6.1	6.2	7.0 (7.2?)	7.5
Maximum number of resident grids per device (concurrent kernel execution)		t.b.d.			1	6 4				32 16			128	32	16	128	
Maximum dimensionality of grid of thread blocks		2 3															
Maximum x-dimension of a grid of thread blocks	65535 2 ³¹ – 1																
Maximum y-, or z-dimension of a grid of thread blocks	65535																
Maximum dimensionality of thread block	3																
Maximum x- or y-dimension of a block		512 1024															
Maximum z-dimension of a block		64															
Maximum number of threads per block		512 1024															
Warp size	32																
Maximum number of resident blocks per multiprocessor			8					16					16				
Maximum number of resident warps per multiprocessor	2	24	3	2	48 64										32		
Maximum number of resident threads per multiprocessor	7	68	10	24	1536 2048								1024				
Number of 32-bit registers per multiprocessor	8	K	16	κ	32 K	64 K			128 K					64 k	(
Maximum number of 32-bit registers per thread block	N/A			32 K	32 K 64 K			6	4 K		32 K	32 K 64 K		32 K 64		4 K	
Maximum number of 32-bit registers per thread		124			6	3				255							
Maximum amount of shared memory per multiprocessor	16 KB		48		48 KB		112 KB	64 KB	96 KB	64	KB	96 KB	64 KB	96 KB (of 128)	64 KB (of 96)		
Maximum amount of shared memory per thread block			48 KB 48/96 KB 64 KB												64 KB		

• CUDA的架构分类

- 异构
 - CPU+GPU
 - CPU执行host代码
 - GPU执行device代码
- SIMD?
 - 线程束以SIMD方式执行
- -SPMD?
 - SM之间拥有一定的独立性

课程概要

- ●要点回顾
- CPU vs GPU
- NVIDIA GPU架构
- CUDA编程模型
- CUDA编程举例

Host与device

- Host(CPU相关):运行在CPU上的代码及主机内存
- Device (GPU相关): 运行在GPU上的代码及显存(设备内存)
- 通过在主机上调用核函数(kernel)执行并行代码

● 指明host与device代码

- -__host__ 从主机端调用,在主机端执行
- -__global__ 从主机端调用,在设备端执行
 - 计算能力5.0后设备已经可以在设备端调用
- -__device__从设备端调用,在设备端执行
- -__host__与__device__限定符可以一起使用
 - 函数可以从主机端和设备端调用

```
__global__ void hello_d(){
    printf("Hello World from GPU!");
}

__host__ void hello_h(){
    printf("Hello World from CPU!")
    hello_d<<<1,4>>>();
    cudaDeviceSynchronize();
}
```

输出:

Hello World from CPU!
Hello World from GPU!
Hello World from GPU!
Hello World from GPU!
Hello World from GPU!

● 指明host与device代码

- <<<1,4>>>为执行配置
 - 指明网格中有1个块
 - 每块中有4个线程
- cudaDeviceSynchronize();
 - 与OpenMP不同,CUDA核函数为异步执行
 - 调用完成后,控制权立即返回给CPU

```
__global___ void hello_d(){
    printf("Hello World from GPU!");
}

__host__ void hello_h(){
    printf("Hello World from CPU!")
    hello_d<<<1,4>>>();
    cudaDeviceSynchronize();
}
```

输出:

Hello World from CPU!
Hello World from GPU!
Hello World from GPU!
Hello World from GPU!
Hello World from GPU!

● 指明host与device代码

- -核函数限制条件(__global__函数)
 - 只能访问设备内存
 - 必须返回void
 - 不支持可变数量的参数
 - int func_name(int n_args, ...)
 - 参数不可为引用类型
 - 不支持静态变量

• 执行配置

- 指明网格及块的维度
- 形式为<<< grid, block >>>

grid of blocks - 网格与块均可为1维、2维、或3维 block of threads

●执行配置

- 指明网格及块的维度
- 形式为<<< grid, block>>>
 - grid与block为dim3类型(三个分量为x, y, z)
 - grid与block的大小受到计算能力的限制

Technical specifications									Comp	oute cap	ability (versio	n)												
		1.1	1.2	1.3	2.x	3.0	3.2	3.5	3.7	5.0	5.2	5.3	6.0	6.1	6.2	7.0 (7.2?)	7.5								
Maximum number of resident grids per device (concurrent kernel execution)		t.b.d.			1	16 4		32			16	128	32	16	128										
Maximum dimensionality of grid of thread blocks		2																							
Maximum x-dimension of a grid of thread blocks		65535 2 ³¹ – 1																							
Maximum y-, or z-dimension of a grid of thread blocks		65535																							
Maximum dimensionality of thread block	3																								
Maximum x- or y-dimension of a block		512 1024																							
Maximum z-dimension of a block		64																							
Maximum number of threads per block		512 1024																							

• GPU架构与线程组织

- ●确定线程编号
 - 使用内置变量threadIdx, blockIdx, blockDim

●确定线程编号

- 使用内置变量threadIdx, blockIdx, blockDim
 - dim3类型
 - 只可用于设备代码上

```
__global___ void hello_d(){
   int bid = blockIdx.x;
   int tid = threadIdx.x;
   printf("Hello World from thread (%d, %d)", bid, tid);
}
__host__ void hello_h(){
   hello_d<<<2,4>>>();
   cudaDeviceSynchronize();
}
```


课程概要

- ●要点回顾
- CPU vs GPU
- NVIDIA GPU架构
- CUDA编程模型
- CUDA编程举例

●向量相加

- -已知长度为n的两个向量a与b,求向量c,使c[i]=a[i]+b[i]
 - 数据依赖性: 非循环迭代相关
 - 串行代码(循环)

```
void vector_add(int *a, int* b, int* c, int n){
    for(int i = 0; i < n; ++i) {
        c[i] = a[i] + b[i];
    }
}</pre>
```


●例:向量相加

- 已知长度为n的两个向量a与b, 求向量c, 使c[i]=a[i]+b[i]
 - 串行代码(循环)

```
void vector_add(int *a, int* b, int* c, int n){
    for(int i = 0; i < n; ++i) {
        c[i] = a[i] + b[i];
    }
}</pre>
```

• CUDA (使用1个block)

```
__global__ void vector_add(int *a, int* b, int* c){
   int tid = threadIdx.x;
   c[tid] = a[tid] + b[tid];
}
vector add<<< 1, n >>>(a, b, c);
```


●例:向量相加

- 已知长度为n的两个向量a与b, 求向量c, 使c[i]=a[i]+b[i]
 - CUDA (使用1个block)

```
__global___ void vector_add(int *a, int* b, int* c){
    int tid = threadIdx.x;
    c[i] = a[i] + b[i];
}

vector_add<<< 1, n >>>(a, b, c);
```

• 存在问题:

-a,b,c为主内存地址,GPU无法访问

• GPU内存管理

- 创建: cudaMalloc

- 拷贝: cudaMemcpy

- 使用cudaMemcpyHostToDevice与cudaMemcpyDeviceToHost指明拷贝方向
- 释放: cudaFree

```
int *a_h, *b_h, *c_h; //_h常用来表明主机内存
int *a_d, *b_d, *c_d; //_d常用来表明设备内存
int n_bytes = sizeof(int)*n;

cudaMalloc((void**)&a_d, sizeof(int)*n);
cudaMemcpy(a_d, a_h, n_bytes, cudaMemcpyHostToDevice);
... //same for b and cudaMalloc for c

vector_add<<< 1, n >>>(a_d, b_d, c_d);
cudaDeviceSynchronize();
cudaMemcpy(c_h, c_d, n_bytes, cudaMemcpyDeviceToHost);
cudaFree(a_d);
... //same for b and c
```


处理错误

●使用宏定义

- 来自Grossman and McKercher, "Professional CUDA C Programming"

```
用法举例: CHECK(cudaMalloc((void**)&a, n_bytes));
```


●例: 向量相加

- -已知长度为n的两个向量a与b,求向量c,使c[i]=a[i]+b[i]
 - CUDA(使用1个block)
 - 假设 a, b, c 均为设备内存

```
__global__ void vector_add(int *a, int* b, int* c){
   int tid = threadIdx.x;
   c[tid] = a[tid] + b[tid];
}
vector_add<<< 1, n >>>(a, b, c);
```

- 存在问题:
 - -block中有最大线程数限制:n必须不大于1024
 - 同一个block只在一个SM上执行:没有充分利用GPU计算资源

●例:向量相加

- 已知长度为n的两个向量a与b, 求向量c, 使c[i]=a[i]+b[i]
 - CUDA(使用多个block)
 - 每个block使用m个thread(如 m = 32)

vector_add<<< n/m, m>>>(a, b, c);

- 确定thread的全局编号

```
blockDim.x threads

threadIdx.x threads

blockIdx.x blocks

_global__ void vector_add(int *a, int* b, int* c){
   int tid = blockDim.x * blockIdx.x + threadIdx.x;
   c[tid] = a[tid] + b[tid];
}
```


●例:向量相加

- -已知长度为n的两个向量a与b,求向量c,使c[i]=a[i]+b[i]
 - CUDA(使用多个block)

```
__global___ void vector_add(int *a, int* b, int* c){
    int tid = blockDim.x * blockIdx.x + threadIdx.x;
    c[tid] = a[tid] + b[tid];
}

vector_add<<<< n/m, m>>>(a, b, c);
```

- 存在问题: n无法被m整除
 - 需对 n/m 向上取整
 - 需判断 tid 是否超过 n

●例:向量相加

- -已知长度为n的两个向量a与b,求向量c,使c[i]=a[i]+b[i]
 - CUDA(使用多个block)

```
__global__ void vector_add(int *a, int* b, int* c, int n){
    int tid = blockDim.x * blockIdx.x + threadIdx.x;
    if (tid < n){
        c[tid] = a[tid] + b[tid];
int divup(int n, int m){
    return ((n%m)?(n/m+1):(n/m));
vector add<<< divup(n,m), m>>>(a, b, c, n);
```


●例:向量相加

- -已知长度为n的两个向量a与b,求向量c,使c[i]=a[i]+b[i]
 - CUDA (使用多个block)

可否使用const int& n?

```
__global__ void vector_add(int *a, int* b, int* c, int n){
    int tid = blockDim.x * blockIdx.x + threadIdx.x;
    if (tid < n){
        c[tid] = a[tid] + b[tid];
int divup(int n, int m){
    return ((n%m)?(n/m+1):(n/m));
vector add<<< divup(n,m), m>>>(a, b, c, n);
```


●例: 向量相加

- 已知长度为n的两个向量a与b, 求向量c, 使c[i]=a[i]+b[i]
 - CUDA (每个block使用 m 个线程, 每个thread处理 k 个数据)
 - 优缺点?
 - 注意: 以下代码并非最优数据访问方式, 我们会在性能优化部分重新回顾

```
_global__ void vector_add(int *a, int* b, int* c, int n, int k){
   int tid = blockDim.x * blockIdx.x + threadIdx.x;

   for (int i=tid*k; i<(tid+1)*k && i<n; ++i){
      c[i] = a[i] + b[i];
   }
}</pre>
```

vector add<<< divup(n,m*k), m >>>(a, b, c, n, k);

CUDA vs OpenMP

CUDA

- 由核函数指明并行代码
- 主机代码调用核函数产生设备 线程
- 用户决定每个线程处理的任务
- 异步执行

OpenMP

- 由预处理指令与{}指明并行区 域
- 主线程产生从线程
- 由调度算法将任务分配到线 程上
- 默认在并行区域结束时同步

- CUDA向量相加中,数据与线程组织都是一维的
- 如果数据是二维(矩阵)呢?

- 例子: 矩阵相加
 - 直接将一维gird与block扩展至二维
 - 每个线程负责一个位置上的数字相加
 - x、y方向上分别求全局坐标
 - int x = blockDim.x * blockIdx.x + threadIdx.x;
 - int y = blockDim.y * blockIdx.y + threadIdx.y;
 - C[y][x] = A[y][x] + B[y][x];

kernel
matrix_add

● 例子: 矩阵相加

- 直接将一维gird与block扩展至二维

```
_global__ void matrix_add(int **A, int **B, int **C, int n, int m){
    int x = blockDim.x * blockIdx.x + threadIdx.x;
    int y = blockDim.y * blockIdx.y + threadIdx.y;
    if (y<n && x<m ){
        C[y][x] = A[y][x] + B[y][x];
dim3 block(w, h, 1);
dim3 grid(divup(m, w), divup(n, h), 1);
matrix_add<<< grid, block >>>(A, B, C, n, m);
```


- 例子: 矩阵相加
 - 直接将一维gird与block扩展至二维
 - 存在问题: 需要二级指针结构创建二维数组

• CPU

```
int *A_data = new int[n*m];
int **A = new int*[n];

for (int i=0; i<n; ++i)
    A[i] = &A_data[i*m];</pre>
```

• GPU

```
__global__ void init_matrix(int **A, int *A_data, int n, int m){
    int tid = blockDim.x * blockIdx.x + threadIdx.x;
    if (tid<n){
        A[tid] = &A_data[tid*m];
    }
}
int *A_data, **A;
cudaMalloc((void*)&A_data, sizeof(int)*n*m);
cudaMalloc((void*)&A, sizeof(int*)*n);</pre>
```


● 例子: 矩阵相加

- 直接将一维gird与block扩展至二维
 - 存在问题: 需要二级指针结构创建二维数组
 - 解决方案: 使用一维数组存放矩阵
 - 即使在前一个版本中,数据在内存中也是一维连续(int *A_data)
 - int **A只提供访问数据的方式(A[y][x]增加内存访问次数!)

```
__global___ void matrix_add(int *A, int *B, int *C, int n, int m){
    int x = blockDim.x * blockIdx.x + threadIdx.x;
    int y = blockDim.y * blockIdx.y + threadIdx.y;

    if (y<n && x<m ){
        C[y*m+x] = A[y*m+x] + B[y*m+x];
    }
}

dim3 block(w, h, 1);
dim3 grid(divup(m, w), divup(n, h), 1);
matrix_add<<< grid, block >>>(A, B, C, n, m);
```


- 例子: 矩阵相加
 - 直接将一维gird与block扩展至二维
 - 存在问题: block中线程访问的内存空间不连续
 - 内存访问的局部性差

- 例子: 矩阵相加
 - 直接将一维gird与block扩展至二维
 - 存在问题: 在x、y维度上都可能出现余数

● 例子: 矩阵相加

- 直接将一维gird与block扩展至二维
 - 存在问题: block中线程访问的内存空间不连续
 - 在x、y维度上都可能出现余数
 - 解决方案: 使用一维grid与block

```
- 与vector_add(A, B, C, n*m)等价!
```

```
__global___ void matrix_add(int *A, int *B, int *C, int n, int m){
    int tid = blockDim.x * blockIdx.x + threadIdx.x;

if ( tid<n*m ){
        C[tid] = A[tid] + B[tid];
    }
```


● 例子: 矩阵相加

- 线程组织方式和内存中数据的组织方式可以互相独立
 - 二维grid与block也可以用于一维数据,反之亦然
- 相同的组织方式在编程中显得更直观
 - 但效率不一定最优
 - 效率归根结底由硬件结构决定

小结

● CUDA架构特征

- 异构: CPU+GPU
- 兼具SIMD与SPMD的特征
- 大量超轻量级线程提高吞吐量

● CUDA编程结构

- Host与device
 - __host___, __global___, __device___
 - 内存管理
- 线程组织
 - 网格(grid)与块(block)
 - 组织方式可以是一维、二维、三维

Questions?

