LAZARD'S THEOREM IN ALGEBRAIC CATEGORIES

RICHARD T. SHANNON

It is well known [1], [3] that flatness of an R-module A is equivalent to each of the following conditions: (a) Each relation in A is a consequence of relations in R. (b) Each finite set of relations in A is a consequence of relations in R. (c) A is a directed colimit of finitely generated free modules. It is shown that the generalizations of these conditions are equivalent in any algebraic category.

For any small category C let \hat{C} denote the category of functors $C^{op} \to Ens$ and natural transformations. Let $h: C \to \hat{C}$ be the Yoneda embedding

$$(f:x \to y) \to (h_f:h_x \to h_y).$$

For $A \in \hat{C}$ and $f: x \to y$ in C denote A(f) by f^* . If $A \in \hat{C}$, the comma category (h, A) has as objects (h_x, h_a) with $x \in C$ and $a \in A(x)$ and its morphisms are $h_f: (h_x, h_a) \to (h_y, h_b)$ with $f: x \to y$ and $f^*(b) = a$.

LEMMA 1. For $A \in \hat{C}$, A is a filtered colimit of representable functors if and only if (h, A) is filtered.

Proof. Suppose (h, A) is filtered. Then A is the colimit of the forgetful functor $(h, A) \rightarrow \hat{C}$ [2, p. 105].

Suppose $A = \lim_{\longrightarrow} h_u$ is a filtered colimit of representable functors. Let (h_x, h_a) and (h_y, h_b) be objects of (h, A). Since the colimit is constructed agumentwise $a \in A(x)$ is the image of some $f \in h_u(x)$. If the canonical morphism $h_u \to A$ is h_d , then $f^*(d) = a$. Similarly there is $g \in h_v(y)$ with $h_e : h_v \to A$ and $g^*(e) = b$. Since the system is filtered there are $h_k : h_u \to h_w$ and $h_k : h_v \to h_w$. If $h_c : h_w \to A$ is the canonical morphism, $h_d = h_c h_k$ and $h_e = h_c h_k$. Then $k^*(c) = d$ and $k^*(c) = e$, so $a = f^*(d) = f^*k^*(c) = (kf)^*(c)$ and $b = (kg)^*(c)$. Hence $h_{kf} : (h_x, h_a) \to (h_w, h_c)$ and $h_{kg} : (h_y, h_b) \to (h_w, h_c)$ in (h, A).

Let $h_k: (h_y, h_b) \to (h_x, h_a)$ and $h_g: (h_y, h_b) \to (h_x, h_a)$ be in (h, A). As above, there is $f \in h_u(x)$ with $h_d(x)$ (f) = a. Since h_d is a natural transformation, $h_d(y)$ $(fk) = h_d(y)$ $(h_u(k)) = h_d(y)$ $(h_u(k)) = h_d(x)$ $(h_u(k))$ $(h_u(k))$ (h

LEMMA 2. If J is a small filtered category there is a cofinal functor $I \rightarrow J$ with I a directed set.

Proof. Let J be a small filtered category. Let H be the set whose objects are pairs Presented by G. Grätzer. Received October 6, 1971. Accepted for publication in final form February 27, 1974.

 (j, θ) with $j \in J$ and θ a finite set of morphisms of J having distinct domains and j as codomain. Define $(j, \theta) \leq (k, \lambda)$ if $(j, \theta) = (k, \lambda)$ or $\theta = \{\theta_i : d_i \to j \mid i = 1, ..., n\}, \lambda$ contains a morphism $\bar{\lambda}$ with domain j and for each i = 1, ..., n a morphism λ_i with domain d_i , and $\bar{\lambda}\theta_i = \lambda_i$, i = 1, ..., n. This relation is reflexive and transitive, making H a category. Let I be a skeletal subcategory of H. I is a poset.

Let (j, θ) and (k, λ) be in I. Let D be the set of objects $d \in J$ such that d is the domain of a morphism θ_d in θ and a morphism λ_d in λ . Since this set is finite and J is filtered there are $f: j \to j$ and $g: k \to j$ with $f\theta_d = g\lambda_d$ for $d \in D$, $f\alpha = f$ for $\alpha: j \to j \in \theta$ and $g\beta = g$ for $\beta: k \to k \in \lambda$. Then $(j, \theta) \le (j, \gamma)$ and $(k, \lambda) \le (j, \gamma)$ with

$$\gamma = \{ f, g, f\theta_1, ..., f\theta_n, g\lambda_1, ..., g\lambda_m \}$$

where $\theta = \{\theta_1, ..., \theta_n\}$ and $\lambda = \{\lambda_1, ..., \lambda_m\}$, so *I* is a directed set. The functor $I \to J$ which sends $(j, \theta) < (k, \lambda)$ to the unique morphism in λ with domain *j* is cofinal.

DEFINITION. A theory is a category T with coproducts such that every object is a coproduct of a finite number of copies of a fundamental object [1]. The coproduct of n copies of [1] is denoted by [n]. A T-model is a product preserving functor from T^{op} into sets. The category of T-models is denoted by T^b .

If T is a theory and $A \in \hat{T}$ is a T-model, let A also denote A([1]). Then $A([n]) = A^n$. A representable functor in \hat{T} is just a finitely generated free T-model. Since T^b has colimits and the construction of colimits in both T^b and \hat{T} is augumentwise, the following corollary is true.

COROLLARY. If T is a theory, a T-model A is a directed colimit, in T^b , of finitely generated free T-models if and only if (h, A) is filtered.

The following generalizes condition (a).

DEFINITION. A T-algebra A has the Killing Interpolation Property (KIP) if whenever $\theta^*a = \mu^*a$ with $a \in A^n$, and θ , $\mu \in T$ ([1], [n]) there are $c \in A^k$ and $\lambda \in T$ ([n], [k]) with $a = \lambda^*c$ and $\lambda \theta = \lambda \mu$.

THEOREM 1. A T-model A has the KIP if and only if whenever $\theta^*a = \lambda^*a$ with $a \in A^n$ and θ , $\mu \in T$ ([m], [n]) there are $c \in A^k$ and $\lambda \in T$ ([n], [k]) with $a = \lambda^*c$ and $\lambda \theta = \lambda \mu$.

Proof. Let θ , $\mu \in T([m], [n])$. Recalling that [m] is a coproduct, let $\theta_1, ..., \theta_m$ and $\mu_1, ..., \mu_m$ be the components of θ and μ , respectively. If $a \in A^n$ and $\theta^* a = \mu^* a$, then $\theta_m^* a = \mu_m^* a$ so there are $d \in A^p$ and $\tau \in T([n], [p])$ with $\tau^* d = a$ and $\tau \theta_m = \tau \mu_m$. Then $(\tau \theta_i)^* d = (\tau \mu_i)^* d$, i = 1, ..., m-1, so, by induction, there are $c \in A^k$ and $\lambda \in T([p], [k])$ with $\lambda^* c = d$ and $\lambda \tau \theta_i = \lambda \tau \mu_i$, i = 1, ..., m-1. Then $(\lambda \tau)^* c = a$ and $(\lambda \tau) \theta = (\lambda \tau) \mu$.

THEOREM 2. A T-model A is a directed colimit of finitely generated free T-models if and only if A has the KIP.

Proof. We show (h, A) is filtered if and only if A has the KIP. For any T-model A, if $(h_{[n]}, h_a)$ and $(h_{[m]}, h_b)$ are objects in (h, A) then

$$\sigma_n^*: (h_{[n]}, h_a) \rightarrow (h_{[n+m]}, h_c)$$

and

$$\sigma_m^*: (h_{\lceil m \rceil}, h_b) \to (h_{\lceil n+m \rceil}, h_c)$$

where

$$c = (a, b) \in A^n \times A^m = A^{n+m}, \sigma_n: [n] \rightarrow [n] [[m]]$$

and

$$\sigma_m: [m] \to [n] \mid [m].$$

Since

$$h_{\theta}: (h_{\lceil m \rceil}, h_b) \rightarrow (h_{\lceil n \rceil}, h_a)$$

and

$$h_{\mu}: (h_{[m]}, h_b) \rightarrow (h_{[n]}, h_a)$$

if and only if $\theta^*a = \mu^*a$, there is, by Theorem 1,

$$h_{\lambda}:(h_{[n]}), h_a) \rightarrow (h_{[k]}, h_c)$$

with $h_{\lambda}h_{\theta} = h_{\lambda}h_{\mu}$ if and only if A has the KIP.

REFERENCES

- [1] D. Lazard, Sur les modules plats, C.R. Acad. Sci. Paris 258 (1964), 6313-6316. MR 29, No. 5883.
- [2] B. Pareigis, Categories and functors, Academic Press (1970).
- [3] R. T. Shannon, The rank of a fiat module, Proc. Amer. Math. Soc. 24 (1970), 452-456.

Fordham University Bronx, New York U.S.A.