Appearance-Mimicking Surfaces

Inspired by bas-reliefs, appearance-mimicking surfaces are thin surfaces, or 2.5D images whose normals approximate the normals of a 3D shape. Given a viewpoint and per-vertex depth bounds, the algorithm proposed finds a globally optimal surface that preserves the appearance of the target shape when observed from the designated viewpoint, while satisfying the depth constraints.

Problem Formulation

Let S^o be the original surface, and S be the deformed surface when observed from viewpoint \mathbf{o} . Each point \mathbf{p}' of the deformed surface is constrained to stay on the ray emanating from the viewpoint in the direction of \mathbf{p} (line \mathbf{op}).

The perceived difference $d(S, S^o, \mathbf{o})$ between S^o and S is measured by the sum of the L2 norm of their normals at each point:

$$d(S, S^o, \mathbf{o}) = \int_S \|\mathbf{n}_{\phi(\mathbf{p}, \mathbf{o})}^S - \mathbf{n}_{\mathbf{p}}^{S^o}\|^2 d\mathbf{p}$$
 (1)

Here, $\phi(\mathbf{p}, \mathbf{o}) = \mathbf{p}'$ on surface S. $\mathbf{n}_{\mathbf{p}}^{S^o}$ is the normal of S^o at point \mathbf{p} . Our goal is to minimize $d(S, S^o, \mathbf{o})$.

Discretization

When surface S is represented by a triangle mesh M, points p' on S are approximated by vertices \mathbf{v}_i . Each vertex \mathbf{v}_i can be written as:

$$\mathbf{v}_i = \mathbf{o} + \|\mathbf{v}_i - \mathbf{o}\| \frac{\mathbf{v}_i - \mathbf{o}}{\|\mathbf{v}_i - \mathbf{o}\|} = \mathbf{o} + \lambda_i \hat{\mathbf{v}}_i$$
 (2)

 $\hat{\mathbf{v}}_i$ is the unit vector pointing in the direction of $\mathbf{ov_i}$. λ_i measures the distance between \mathbf{o} and \mathbf{v}_i . This representation is convenient because M (deformed mesh) and M^o (original mesh) share the same set of $\hat{\mathbf{v}}_i$. Their differences are entirely expressed by λ_i and λ_i^o . Depth constraints for each vertex of M can be specified as a upper bound and a lower bound on λ_i :

$$\lambda_i^{min} \le \lambda_i \le \lambda_i^{max}$$
 (3)

Using this representation, Eq. (1) can be discretized and linearized as:

$$egin{aligned} d(M,M^o,\mathbf{o}) &= \sum_{i\in\mathbf{V}} w_i^2 A_i \|\mathbf{n}_i - \mathbf{n}_i^o\|^2 \ &= \sum_{i\in\mathbf{V}} w_i^2 A_i \|rac{(\mathbf{L}\mathbf{V})_i}{H_i} - rac{(\mathbf{L}^o\mathbf{V}^o)_i}{H_i^o}\|^2 \ &= \sum_{i\in\mathbf{V}} w_i^2 A_i \|rac{(\mathbf{L}\mathbf{D}_\lambda\hat{\mathbf{V}})_i}{H_i} - rac{(\mathbf{L}^o\mathbf{D}_{\lambda^o}\hat{\mathbf{V}})_i}{H_i^o}\|^2 \ &= \sum_{i\in\mathbf{V}} w_i^2 A_i^o \|rac{(\mathbf{L}^o\mathbf{D}_\lambda\hat{\mathbf{V}})_i}{H_i^o} - rac{(\mathbf{L}^o\mathbf{D}_{\lambda^o}\hat{\mathbf{V}})_i}{H_i^o} rac{\lambda_i}{\lambda_i^o}\|^2 \ &= \sum_{i\in\mathbf{V}} w_i^2 A_i^o \|(\mathbf{L}^o\mathbf{D}_\lambda\hat{\mathbf{V}})_i - (\mathbf{L}^o\mathbf{D}_{\lambda^o}\hat{\mathbf{V}})_i rac{\lambda_i}{\lambda_i^o}\|^2 \end{aligned}$$

 A_i is the Voronoi area ssociated with \mathbf{v}_i and can be obtained from the mass matrix coefficients. w_i are weights denoting the relative importance of \mathbf{v}_i . Visible vertices from the viewpoint are given more weight than occluded vertices. By default w_i are 1. \mathbf{L} is the discrete laplace operator of mesh M. \mathbf{D}_{λ} is a diagonal matrix with entries λ_i on the diagonal.

We follow these conventions for notations:

- If **X** is a property/operator for mesh M, then \mathbf{X}^o is the corresponding property/operator for mesh M^o .
- If x is a vector, then D_x is a diagonal matrix with x on the diagonal.

Now our goal is to find λ such that it minimizes $d(M, M^o, \mathbf{o})$. To do this, we extract the unknown variable λ from \mathbf{D}_{λ} . The above equation can be further vectorized as:

$$d(M, M^o, \mathbf{o}) = \|\mathbf{D}_{\sqrt{A^o}} \mathbf{D}_w (\mathbf{\tilde{L}}^o \mathbf{D}_{\hat{\mathbf{V}}} - \mathbf{D}_{\mathbf{L}_\theta}) \mathbf{S} \lambda \|^2 = \|\mathbf{Q} \lambda \|^2$$

$$(4)$$

$$\mathbf{L}_{ heta} = \mathbf{D_{(S\lambda_{o})}}^{-1} \mathbf{\tilde{L}}^{o} \mathbf{D_{\hat{\mathbf{Y}}}} \mathbf{S} \lambda^{o}$$
 (5)

We then construct all the components of matrix $\mathbf{Q} = \mathbf{D}_{\sqrt{A^o}} \mathbf{D}_w (\mathbf{ ilde{L}}^o \mathbf{D}_{\hat{\mathbf{V}}} - \mathbf{D}_{\mathbf{L}_{ heta}}) \mathbf{S}.$

Let $n = |\mathbf{V}^o|$,

 $f D_{\sqrt{A^o}}$ is a 3n x 3n matrix with the square root of mass matrix coefficients repeated 3 times (1 for each

dimension) on the diagonal.

- \mathbf{D}_w is a 3n x 3n matrix with the weight vector \mathbf{w} repeated 3 times on the diagonal.
- $ilde{\mathbf{L}}^o$, also 3n x 3n, is the Kronecker product between the cotangent matrix and 3 x 3 identity matrix: $ilde{\mathbf{L}}^o = \mathbf{L}^o \otimes \mathbf{I}_3$
- **S** is a 3n x n selector matrix that associates each λ_i with the x, y, z coordinates of \mathbf{v}_i : $\mathbf{I}_n \otimes [1, 1, 1]^T$

Aside from depth constraints, we also need to fix the value of λ_k for one vertex \mathbf{v}_k to obtain a unique solution. λ_k is a pre-calculated value b passed into the algorithm. For example, λ_k can be set to the average of its upper and lower bound.

We now have quadratic programming problem that can be solved using the libigl active set solver:

```
egin{aligned} \min_{\lambda} \|\mathbf{Q}\lambda\|^2 \ &	ext{subject to} \ &\lambda^{min} \leq \lambda \leq \lambda^{max} \ &\lambda_k = b \end{aligned}
```

```
igl::active_set_params as;
Eigen::VectorXd lambda; // n x 1

// Q - D_A * D_w * (L_tilde0 * D_v_hat - D_L_theta) * S, 3n x n

// B - linear coefficients, set to 0

// b - index of lambda to be fixed

// Y - value of the fixed lambda

// Aeq, Beq, Aieq, Bieq - empty matrices

// lx, ux - upper and lower lambda bounds

igl::active_set(Q.transpose() * Q, B, b, Y, Aeq, Beq, Aieq, Bieq, lx, ux, as, lambda);
```

Demo

The example main.cpp deforms a mesh along the z-axis (front view).

Implementation Details

Getting $\overline{\mathbf{D}_{\sqrt{A^o}}}$

■ Dimension: 3n x 3n

First, we construct a mass matrix M:

```
Eigen::SparseMatrix<double> M;
igl::massmatrix(V, F, igl::MASSMATRIX_TYPE_VORONOI, M);
```

Here, ${\bf M}$ is a diagonal matrix, in which the diagonal entry M_{ii} is the Voronoi area around ${\bf v}_i$ in the mesh 2 . We then take the diagonal entry for each vertex, take the square root, and repeat it 3 times (1 for each dimension). The resulting matrix ${\bf D}_{\sqrt{A^o}}$ should look like this:

$$\mathbf{D}_{\sqrt{A^{o}}} = egin{bmatrix} \sqrt{M_{00}} & 0 & \dots & & & 0 \ 0 & \sqrt{M_{00}} & & & & dots \ & & & \sqrt{M_{11}} & & & \ & & & \sqrt{M_{11}} & & \ & & & & \sqrt{M_{11}} & & \ & & & & \sqrt{M_{11}} & & \ & & & & \ddots & \ 0 & 0 & \dots & & 0 & \dots & \sqrt{M_{n-1,n-1}} \end{bmatrix}$$

Getting \mathbf{D}_{w}

■ Dimension: 3n x 3n

Similar to $\mathbf{D}_{\sqrt{A^o}}$, we take the weight vector w of size n x 1 and repeat it along the diagonal:

$$\mathbf{D}_{w} = egin{bmatrix} w_{0} & 0 & \dots & & & & 0 \\ 0 & w_{0} & & & & & \vdots \\ & & w_{0} & & & & & \vdots \\ & & & w_{1} & & & & & \\ & & & & w_{1} & & & & \\ & & & & w_{1} & & & & \\ \vdots & & & & & \ddots & & \\ 0 & 0 & \dots & & 0 & \dots & w_{n-1} \end{bmatrix}$$
 (7)

Getting $\mathbf{ ilde{L}}^o$

■ Dimension: 3n x 3n

First, we compute the cotangent Laplace-Beltrami operator \mathbf{L}^o :

```
Eigen::SparseMatrix<double> cot, M_inv, L;
igl::cotmatrix(V, F, cot);
igl::invert_diag(M, M_inv);
L = M_inv * cot;
```

 $\mathbf{\tilde{L}}^{\it o}$ is the Kronecker product between the cotangent matrix and 3 x 3 identity matrix:

$$\mathbf{ ilde{L}}^o = \mathbf{L}^o \otimes \mathbf{I}_3$$
 (8

$$\tilde{\mathbf{L}}^{o} = \begin{bmatrix}
\mathbf{L}_{00}^{o} & & & \\
& \mathbf{L}_{00}^{o} & & \\
& & \mathbf{L}_{00}^{o}
\end{bmatrix} & \dots & \begin{bmatrix}
\mathbf{L}_{0,n-1}^{o} & & \\
& \mathbf{L}_{0,n-1}^{o} & \\
& & \mathbf{L}_{0,n-1}^{o}
\end{bmatrix} \\
\vdots & & \ddots & \vdots & \\
\begin{bmatrix}
\mathbf{L}_{n-1,0}^{o} & & & \\
& \mathbf{L}_{n-1,0}^{o} & & \\
& & \mathbf{L}_{n-1,n-1}^{o}
\end{bmatrix} & \begin{bmatrix}
\mathbf{L}_{n-1,n-1}^{o} & & \\
& \mathbf{L}_{n-1,n-1}^{o} & \\
& & \mathbf{L}_{n-1,n-1}^{o}
\end{bmatrix}$$
(9)

Getting S

- Dimension: 3n x n
- ${f S}$ is a selector matrix that associates each λ_i with the x, y, z coordinates of ${f v}_i$: ${f I}_n\otimes[1,1,1]^T$

$$\begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix} \dots 0 \\
\vdots & \ddots & \vdots \\
0 & \dots & \begin{bmatrix} 1 \\
1 \\
1
\end{bmatrix}
\end{bmatrix}$$
(10)

Getting Bounds on λ

Bounds for λ_i varies for each vertex and each mesh. We first compute a bounding box [^3] for the mesh to help with customizing λ bounds.

The above figure shows how main.cpp deforms a mesh from a left viewpoint. We assume the mesh faces the positive z-axis and the bounding box is roughly square.

$$egin{aligned} \lambda_{max} &= |OG| \ \lambda_{min} &= |OE| \ (\lambda_i \mathbf{\hat{v}}_i) \, \cdot \, \mathbf{\hat{n}}_i &\leq \lambda_{max}
ightarrow \lambda_i &\leq \lambda_{max}/(\mathbf{\hat{v}}_i \, \cdot \, \mathbf{\hat{n}}_i) \ (\lambda_i \mathbf{\hat{v}}_i) \, \cdot \, \mathbf{\hat{n}}_i &\geq \lambda_{min}
ightarrow \lambda_i &\geq \lambda_{min}/(\mathbf{\hat{v}}_i \, \cdot \, \mathbf{\hat{n}}_i) \ lowerbound &= \lambda_{max}/(\mathbf{\hat{v}}_i \, \cdot \, \mathbf{\hat{n}}_i) \ upperbound &= \lambda_{min}/(\mathbf{\hat{v}}_i \, \cdot \, \mathbf{\hat{n}}_i) \end{aligned}$$

Future Directions & Challenges

Allowing Disconnected Pieces

The paper introduces a vector μ that allows the depth range constraints to be discontinuous. Each element μ_g is a scaling factor for an independent group of vertices such that $\mu_g \lambda_i^{min} \leq \lambda_i \leq \mu_g \lambda_i^{max}$ holds for all vertices i in group g. $|\mu|=$ number of groups. The paper optimizes for both λ and μ :

$$\min_{\lambda,\mu}\|\mathbf{Q}\lambda\|^2+lpha\|\mu\|^2$$

subject to
$$\mathbf{C}_{I}[\lambda \ \mu]^{T} \leq \mathbf{d}$$
 $\mathbf{C}_{E}[\lambda \ \mu]^{T} = \mathbf{b}$

lpha Is set to 10^{-7} in the paper. ${f C}_I$ are the inequality constraints. ${f C}_E$ are the equality constraints.

Combining λ and μ into one unknown vector \mathbf{x} , the input into the active set solver becomes:

```
// B - linear coefficients, set to 0
// b - index of lambda to be fixed
// Y - value of the fixed lambda
// Aeq, Beq, Aieq, Bieq - empty matrices
// lx, ux - upper and lower lambda and mu bounds
igl::active_set(F.transpose() * F, B, b, Y, Aeq, Beq, Aieq, Bieq, lx, ux, as, lambda);
```

where F is:

$$F = \begin{bmatrix} \mathbf{Q} & \mathbf{0} \\ \mathbf{0} & \sqrt{\alpha} \cdot \mathbf{I} \end{bmatrix} \tag{11}$$

The deformed vertices are retrieved by multiplying each λ_i with μ_q .

Unfortunately, I was not able to complete the implementation for this part. One challenge is that I am not sure what the inequality constraints (\mathbf{C}_I) are when μ is involved. Without μ , the inequality constraints are clear: $\lambda^{min} \leq \lambda \leq \lambda^{max}$. Then I could conveniently set $\exists x = \lambda^{min}$, $\exists x = \lambda^{max}$. However, the paper does not explicitly mention the constraints on μ .

- If there are no constraints, the energy minimization encourages μ to take on a magnitude of 0.
- If μ is constrained by $\mu_g \lambda_i^{min} \leq \lambda_i \leq \mu_g \lambda_i^{max}$, I am having trouble re-formulating this into $\mathbf{C}_I[\lambda \ \mu]^T \leq \mathbf{d}$ because both μ_g and λ_i are unknowns.

Other Challenges

The paper is very detailed in describing how to construct \mathbf{Q} , which greatly helped me in my implementation. However, the description for the constraints are less detailed. Aside from \mathbf{C}_I , I had trouble finding \mathbf{C}_E , \mathbf{d} , and \mathbf{b} as well.

$$\mathbf{C}_{I}[\lambda \ \mu]^{T} \leq \mathbf{d}$$
 (12) $\mathbf{C}_{E}[\lambda \ \mu]^{T} = \mathbf{b}$

I guessed from the line "the scale invariance introduces rank deficiency in the optimization, but can be fixed by constraining the λ_i of a single vertex i", that $\mathbf{C}_E[\lambda \ \mu]^T = \mathbf{b}$ means $\lambda_i = b$ for a pre-defined value b.

References

- 1. Christian Schuller, Daniele Panozzo, Olga Sorkine-Hornung, *Appearance-Mimicking Surface*s, 2014 🖰
- 2. Mark Mever, Mathieu Desbrun, Peter Schröder and Alan H. Barr, Discrete Differential-Geometry Operators for Triangulated 2-Manifolds, 2003.