

Sumário

- 1. Perpendicularidade
- 2. Projeções e Distâncias

Perpendicularidade

Definição

- Como vimos, Euclides define 'ângulo reto' como sendo igual ao ângulo formado por duas retas que se cortam de maneira a formar quatro ângulos iguais.
- ► Essas duas retas são ditas **perpendiculares** (símbolo: ⊥).
- O resultado a seguir é um corolário do Teorema do Triângulo Externo.

Corolário

Corolário 1

Por um ponto não pertencente a uma reta, passa uma única reta perpendicular a reta dada.

- ▶ Hipótese: $C \notin r$.
- ► **Tese:** Existe uma única reta que passa por *C* e é perpendicular a reta *r*.

Existência:

- ► Seja *r* uma reta e *C* um ponto fora dela.
- Trace na reta r um ponto D tal que CD = CB.

Existência:

► O triângulo *DCB* é isósceles, logo sua bissetriz é também sua mediana e sua altura (Teorema 2).

Existência:

Assim, a bissetriz de \hat{C} é uma reta perpendicular à reta r que passa por C.

Unicidade: .

► Suponha, por absurdo, que existam duas retas perpendiculares à reta *r*, que passam por *C*.

Unicidade:

- O triângulo *CFE* possui dois ângulos retos (*CFE* e *CEF*).
- Mas, por causa do TAE, se um ângulo for reto os outros devem ser agudos, contradizendo a afirmação acima.

Projeções e Distâncias

Projeção Ortogonal

Definição 1

Chama-se **projeção ortogonal** de um ponto sobre uma reta r ao ponto de interseção da reta com a perpendicular à ela que passa por aquele ponto.

- $ightharpoonup \overrightarrow{PP'} \perp r e \overrightarrow{PP'} \cap r = \{P'\}.$
- ▶ Se $P \in r$, então P' = P.

Projeção de um segmento sobre uma reta

Definição 2

A **projeção** de um segmento de reta \overline{AB} não perpendicular a uma reta r sobre esta reta é o segmento $\overline{A'B'}$ em que

- ► A' é a projeção de A sobre r e
- ▶ B' é a projeção de B sobre r.

Figura 1: Exemplos da projeção

Retas Oblíquas

Definição 3

Se duas retas são concorrentes e não são perpendiculares, diz-se que essas retas são oblíquas.

Teoremas

Seja r uma reta, P um ponto fora dela e P' a projeção ortogonal deste ponto. Ainda, sejam A e B pontos de r.

Demonstre os teoremas a seguir:

Teorema 1

O segmento perpendicular $\overline{PP'}$ é menor que qualquer oblíquo \overline{PA} .

Teorema 2

Se os segmentos oblíquos \overline{PA} e \overline{PB} possuem projeções congruentes, então eles também são congruentes.

Teorema 3

Segmentos oblíquos congruentes têm projeções congruentes.

Teoremas

Teorema 4

De dois segmentos oblíquos de projeções não congruentes, o de maior projeção é maior.

Teorema 5

De dois segmentos oblíquos não congruentes, o maior tem projeção maior.

Teorema 6

De dois segmentos oblíquos não congruentes, o maior forma com a sua projeção ângulo menor.

Teorema 7

De dois segmentos oblíquos não congruentes, aquele que forma com a sua projeção um ângulo menor é maior.

Distâncias

Definição 4

A distância de um ponto a uma reta é a distância desse ponto à projeção dele sobre a reta.

Exercício

Exercício 1

Mostre que todo ponto da bissetriz de um ângulo é equidistante dos lados do ângulo.

Referencias I

