

# Advanced R Day 2

Sereina Herzog

Institute for Medical Informatics, Statistics and Documentation Medical University of Graz

05.03.2024

05.03.2024



## Course Content - Advanced R (Day 2)

► Statistical tests & models

05.03.2024



## Course Content - Advanced R (Day 2)

- ► Statistical tests & models
- ► Simple linear regression



Statistical tests & models 05.03.2024



Which statistical tests and models are suitable for your research questions?

Statistical tests & models 05.03.2024



Which statistical tests and models are suitable for your research questions?

- measuring level
  - nominal, ordinal, . . .



Which statistical tests and models are suitable for your research questions?

- measuring level
  - nominal, ordinal, . . .
- number of variables
  - types: independent (predictor), dependent (outcome)



Which statistical tests and models are suitable for your research questions?

- measuring level
  - nominal, ordinal, . . .
- number of variables
  - types: independent (predictor), dependent (outcome)
- ▶ type of relationship between variables
  - e.g., difference between . . .



Which statistical tests and models are suitable for your research questions?

- measuring level
  - nominal, ordinal, . . .
- number of variables
  - types: independent (predictor), dependent (outcome)
- type of relationship between variables
  - e.g., difference between . . .
- ▶ study design, ...



Which statistical tests and models are suitable for your research questions?

 $\Rightarrow$  not easy to give an answer





What is the relationship between height and weight, respectively can height explain weight?





- ► Regression analysis is used to describe the nature of a relationship using a mathematical equation
- ► Possibility of prognosis/prediction for an individual patient (incl. CI) within the value range of the predictor





- ► Dependent variable
  - target variable, response, outcome
  - this variable is to be calculated from the other variable (y-axis)



- ► Dependent variable
  - target variable, response, outcome
  - this variable is to be calculated from the other variable (y-axis)
- ► Independent variable(s)
  - explanatory variable(s), predictor
  - x-axis



- ► Dependent variable
  - target variable, response, outcome
  - this variable is to be calculated from the other variable (y-axis)
- ► Independent variable(s)
  - explanatory variable(s), predictor
  - x-axis
- ► Aim of the regression analysis
  - $\bullet$  prediction, inference of  $x \to y$



- ► Dependent variable
  - target variable, response, outcome
  - this variable is to be calculated from the other variable (y-axis)
- ► Independent variable(s)
  - explanatory variable(s), predictor
  - x-axis
- ► Aim of the regression analysis
  - prediction, inference of  $x \rightarrow y$
- method
  - e.g. minimize deviation squares of the observed values from the regression line



#### Find a straight line





- ▶ Problem: Find a straight line so that the vertical distance (residuals) between the data points and the straight line is minimized.
- ► Method, e.g., least squares method





As a statistical model

$$Y = \beta_0 + \beta_1 * X$$



As a statistical model

$$Y = \beta_0 + \beta_1 * X$$

As an empirical model with data

$$y_i = \beta_0 + \beta_1 * x_i + \epsilon_i$$

where  $\epsilon_i$  describes the error (residual)



$$\hat{y}_i = \hat{eta}_0 + \hat{eta}_1 * x_i$$
 are the predicted values of the regression

$$\hat{\epsilon}_i = \hat{y}_i - y_i$$
 are the residuals of the regression





1) Independence - Observations are independent of each other.



- 1) **Independence** Observations are independent of each other.
- 2) **Linearity** The relationship between X and the mean of Y is linear.



- 1) **Independence** Observations are independent of each other.
- 2) **Linearity** The relationship between X and the mean of Y is linear.
- 3) **Normality** For any fixed value of X, Y is normally distributed.



- 1) **Independence** Observations are independent of each other.
- 2) **Linearity** The relationship between X and the mean of Y is linear.
- 3) **Normality** For any fixed value of X, Y is normally distributed.
- 4) Homoscedasticity The variance of residual is the same for any value of X.



- 1) **Independence** Observations are independent of each other.
- 2) Linearity The relationship between X and the mean of Y is linear.
- 3) **Normality** For any fixed value of X, Y is normally distributed.
- 4) **Homoscedasticity** The variance of residual is the same for any value of X.

► For 1): study design question



- 1) **Independence** Observations are independent of each other.
- 2) Linearity The relationship between X and the mean of Y is linear.
- 3) **Normality** For any fixed value of X, Y is normally distributed.
- 4) **Homoscedasticity** The variance of residual is the same for any value of X.
- ► For 1): study design question
- For 2) scatter plot



- 1) **Independence** Observations are independent of each other.
- 2) Linearity The relationship between X and the mean of Y is linear.
- 3) **Normality** For any fixed value of X, Y is normally distributed.
- 4) Homoscedasticity The variance of residual is the same for any value of X.
- ► For 1): study design question
- For 2) scatter plot
- ► For 3) & 4) looking at residuals



#### Coefficient of Determination $R^2$

 $R^2$  specifies the proportion of variance in the data that is explained by the model

$$R^2=rac{\sum(\hat{y}_i-ar{y})^2}{\sum(y_i-ar{y})^2}$$
 and  $0\leq R^2\leq 1$ 





- 1) Independence ✓
- 2) Linearity ✓



```
res_model <- lm(weight ~ height, data = dt_regression)</pre>
```



```
res_model <- lm(weight ~ height, data = dt_regression)
```

#### ▶ Normality ✓





```
res_model <- lm(weight ~ height, data = dt_regression)
```





#### ► Homoscedasticity ✓











- ► intercept -53.49 (95% CI -87.3 to -19.69)
- ► slope 0.73 (95% CI 0.54 to 0.93)
- $R^2 = 0.27$
- $R_{adj}^2 = 0.265$





- ► intercept -53.49 (95% CI -87.3 to -19.69)
- ▶ slope 0.73 (95% CI 0.54 to 0.93)
- $R^2 = 0.27$
- $R_{adj}^2 = 0.265$

What weight can you expect from a 1.75 m tall person?



#### **Notes**

- $ightharpoonup R^2$  vs. adjusted  $R^2$ 
  - R<sup>2</sup> tends to increase as more variables are added to the model (even if they don't improve the model significantly)
  - adjusted  $R^2$  penalizes the addition of unnecessary variables:
    - $ightharpoonup R_{adj}^2 = 1 \frac{(1-R^2)(n-1)}{n-p-1}$
    - n = number of samples
    - ► p = number of predictors