K-Means using scikit-learn

Use the scikit k-Means implementation to build the cluster of the data frame.

Preparations

Create the same data frame as above so that it is fresh.

```
In [4]:
        1 import pandas as pd
         2 import numpy as np
         3 import matplotlib.pyplot as plt
         4 %matplotlib inline
         5 import copy
         6 import sklearn as sk
         7 from sklearn.cluster import KMeans
         8 # to check the time of execution, import function time
         9 import time
        10 # check versions of libraries
        print('pandas version is: {}'.format(pd.__version__))
        12 print('numpy version is: {}'.format(np.__version__))
        print('sklearn version is: {}'.format(sk.__version__))
        pandas version is: 1.0.1
        numpy version is: 1.18.1
        sklearn version is: 0.22.1
In [5]: 1 # Dataset
         2 df = pd.DataFrame({
                'x': [1, 2, 4, 5, 6, 8, 3, 7],
                'y': [1, 1, 3, 4, 7, 8, 3, 7]
         5 })
         7 # Check that the definition of dataset is OK
         print ("*** data frame ***")
print ("First column = No.")
        10 print (df)
        11
        *** data frame ***
        First column = No.
           х у
        0 1 1
        1 2 1
        2 4 3
        3 5 4
        4 6 7
        5 8 8
        6 3 3
```

K-Means training

Invoke the imported k-Means constructor with the number of clusters (here 3). Then train the model with the dataset.

K-Means prediction

Use the model to calculate a prediction for the same data frame. Each datapoint will be labeled for the chosen cluster.

Display the result

Display the positions of the centroids and the data frame. The color depends of the assigned label for each datapoint.

```
In [10]:
          1
             # Display result
           2
             fig = plt.figure(figsize=(5, 5))
           3
             # set color for each datapoint
             colmap = {1: 'b', 2: 'g', 3: 'r'}
             colors = list( map(lambda x: colmap[x+1], labels))
           7
             # draw each datapoint
             plt.scatter(df['x'], df['y'],color=colors, alpha=0.5, edgecolor='k')
          10
          11
             # draw each centroid
             for idx, centroid in enumerate(centroids):
          12
                  plt.scatter(*centroid, color=colmap[idx+1])
          13
             plt.xlim(0, 10)
          14
          15
             plt.ylim(0, 10)
          16
             plt.show()
```



```
In [15]: 1
2  # print current date and time
3  print("date & time:",time.strftime("%d.%m.%Y %H:%M:%S"))
4  print ("*** End of Homework-H3.4_k-Means_Clustering ***")
```

```
date & time: 24.05.2023 22:31:59
*** End of Homework-H3.4_k-Means_Clustering ***
```