Interrogation de cours nº 7

Lundi 3 novembre 2025

Version de l'année dernière, des questions sont susceptibles de changer!

Dans tout l'énoncé, I est un intervalle de $\mathbb R$ d'intérieur non vide, E un $\mathbb K$ -espace vectoriel de dimension finie $n \in \mathbb N^*$, et on considère une fonction $f: I \to E$. On fixera également $a, b \in I$ avec a < b.

Définitions & formules

- 1. Donner la définition de la dérivabilité de f en a.
- **2.** Si f est de classe \mathcal{C}^k et $\varphi: E \times E \to \mathbb{K}$ une forme bilinéaire, exprimer la dérivée k-ième de $g: t \mapsto \varphi(f(t), f(t))$ à l'aide de φ et des dérivées successives de f.
- **3.** Si f est continue par morceaux sur [a,b], comment définit-on l'intégrale de f sur [a,b]?
- **4.** Énoncer l'inégalité des accroissements finis pour f sur [a,b] si f est de classe \mathcal{C}^1 .
- **5.** On suppose f de classe C^{p+1} . Écrire la formule de Taylor avec reste intégral sur [a, b], à l'ordre p.

Résultats et propriétés

- a) Montrer que f est dérivable en a si, et seulement si elle admet un développement limité d'ordre 1 en a.
- **b)** Si F est un \mathbb{K} espace vectoriel de dimension finie et $g \in \mathcal{L}(E, F)$, montrer que la dérivabilité de f sur I implique celle de $g \circ f$.
- c) En reprenant l'écriture de la formule de Taylor avec reste intégral de la question 5, montrer comment on en déduit l'inégalité de Taylor-Lagrange.