# 1 Measures

Let E be any set. A collection  $\mathcal{E}$  of subsets of E is called a  $\sigma$ -algebra if the following holds:

- 1.  $\emptyset \in \mathcal{E}$ .
- 2. If  $A \in \mathcal{E}$ , then  $A^c = E \setminus A \in \mathcal{E}$ .
- 3. If  $(A_n : n \in \mathbb{N})$ ,  $A_n \in \mathcal{E}$ , then  $\bigcup_n A_n \in \mathcal{E}$ .

#### Examples.

- $\mathcal{E} = \{\emptyset, E\}$
- $\mathcal{E} = \mathcal{P}(E)$ , the set of all subsets of E.

Note that  $\bigcap_n A_n = (\bigcup_n A_n^c)^c$ , any  $\sigma$ -algebra  $\mathcal{E}$  is also closed under countable intersection of its elements. Also  $B \setminus A = B \cap A^c \in \mathcal{E}$  whenever  $A, B \in \mathcal{E}$ .

Any set E with a choice of  $\sigma$ -algebra  $\mathcal{E}$  is called a *measurable* space, and the elements of  $\mathcal{E}$  are called *measurable sets*.

A measure  $\mu$  is a set-function  $\mu : \mathcal{E} \to [0, \infty]$  such that  $\mu(\emptyset) = 0$ , and for any  $(A_n : n \in \mathbb{N}), A_n \in \mathcal{E}$  pairwise disjoint  $(A_n \cap A_m = \emptyset)$  for all  $n \neq m$  then

$$\mu\left(\bigcup_{n} A_{n}\right) = \sum_{n} \mu(A_{n})$$
 (countable additivity of  $\mu$ )

If  $\mathcal{E}$  is countable, then for any  $A \in \mathcal{P}(E)$  and a measure  $\mu$ 

$$\mu(A) = \mu\left(\bigcup_{x \in A} \{x\}\right) = \sum_{x \in A} \mu(\{x\})$$

hence there is a one-to-one correspondence between measures and mass functions on  ${\cal E}.$ 

For any collection  $\mathcal{A}$  of subsets of E, we define the  $\sigma$ -algebra  $\sigma(\mathcal{A})$  generated by  $\mathcal{A}$  as

$$\sigma(\mathcal{A}) = \{ A \subseteq E : A \in \mathcal{E} \ \forall \sigma\text{-algebras} \ \mathcal{E} \supseteq \mathcal{A} \}$$

which equals (Example sheet)

$$\sigma(\mathcal{A}) = \bigcap_{\sigma\text{-algebras } \mathcal{E} \supseteq \mathcal{A}} \mathcal{E}$$

To construct good 'generators' we define

1.  $\mathcal{A}$  is called a ring over E if  $\emptyset \in \mathcal{A}$ ; if  $A, B \in \mathcal{A}$  then  $B \setminus A \in \mathcal{A}$  and  $A \cup B \in \mathcal{A}$ .

2.  $\mathcal{A}$  is called an algebra over E if  $\emptyset \in \mathcal{A}$ ; if  $A, B \in \mathcal{A}$  then  $A^c \in \mathcal{A}$ ,  $A \cup B \in \mathcal{A}$ .

Notice that in a ring  $A\Delta B=(B\backslash A)\cup (A\backslash B)\in \mathcal{A}$  and  $A\cap B=(A\cup B)\backslash (A\Delta B)\in \mathcal{A}$ . Also,  $B\setminus A=B\cap A^c=(B^c\cup A)^c\in \mathcal{A}$ , so an algebra is a ring.

Fact: If  $\bigcup_n A_n$ ,  $A_n \in \mathcal{E}$ ,  $\mathcal{E}$  some  $\sigma$ -algebra (or a ring if the union is finite) - then we can find  $B_n \in \mathcal{E}$  disjoint such that  $\bigcup_n A_n = \bigcup_n B_n$ . Indeed, define  $\tilde{A}_n = \bigcup_{j \leq n} A_j$ , and set  $B_n = \tilde{A}_n \setminus \tilde{A}_{n-1}$ , then the fact follows. ["disjointification of countable unions"]

**Definition.** A set function on any collection  $\mathcal{A}$  of subsets of E (where  $\emptyset \in \mathcal{A}$ ) is a map  $\mu : \mathcal{A} \to [0, \infty]$  such that  $\mu(\emptyset) = 0$ . We say  $\mu$  is

- 1. increasing if  $\mu(A) \leq \mu(B)$  whenever  $A \subseteq B$ ;  $A, B \in \mathcal{A}$
- 2. additive if  $\mu(A \cup B) = \mu(A) + \mu(B)$  whenever  $A, B \in \mathcal{A}$ ;  $A \cup B \in \mathcal{A}$  and  $A \cap B = \emptyset$ .
- 3. countably additive if  $\mu(\cup_n A_n) = \sum_n \mu(A_n)$  for any  $(A_n : n \in \mathbb{N})$  where  $A_n \in \mathcal{A}$  disjoint and  $\cup_n A_n \in \mathcal{A}$ .
- 4. countably sub-additive if  $\mu(\cup_n A_n) \leq \sum_n \mu(A_n)$  for all  $(A_n : n \in \mathbb{N})$  such that  $\cup_n A_n \in \mathcal{A}$

**Remark**: one can show that a measure  $\mu$  on a  $\sigma$ -algebra satisfies 1-4 above.

**Theorem** (Caratheodory). Let  $\mu$  be a countably additive set function on a ring A of subsets of E. Then there exists a measure  $\mu^*$  on  $\sigma(A)$  such that  $\mu^*|_{A} = \mu$ .

*Proof.* For  $B \subseteq E$  define the outer measure  $\mu^*$  as

$$\mu^*(B) = \inf \left\{ \sum_{n \in \mathbb{N}} \mu(A_n) : A_n \in \mathcal{A}, B \subseteq \bigcup_n A_n \right\}$$

and set  $\mu^*(B) = \infty$  if the set within the infimum is empty.

Define

$$\mathcal{M} = \{ A \subseteq E : \mu^*(B) = \mu^*(B \cap A) + \mu^*(B \cap A^c) \ \forall B \subseteq E \}$$

the " $\mu^*$ -measurable" sets.

Step 1:  $\mu^*$  is countably sub-additive on  $\mathcal{P}(E)$ . For any  $B \subseteq E$  and  $B_n \subseteq E$  such that  $B \subseteq \bigcup_n B_n$  we have

$$\mu^*(B) \le \sum_n \mu^*(B_n) \tag{\dagger}$$

WLOG we assume  $\mu^*(B_n) < \infty$  for all n so for all  $\varepsilon > 0$ , there exists  $A_{nm}$  such that  $B_n \subseteq \bigcup_m A_{nm}$  and

$$\mu^*(B_n) + \frac{\varepsilon}{2^n} \ge \sum_{m} \mu(A_{nm})$$

Now since  $\mu^*$  and since  $B \subseteq \bigcup_n B_n \subseteq \bigcup_{n,m} A_{nm}$ , hence

$$\mu^*(B) \le \mu^* \left( \bigcup_{n,m} A_{nm} \right) \le \sum_{n,m} \mu(A_{nm}) \le \sum_n \mu^*(B_n) + \underbrace{\sum_n \frac{\varepsilon}{2^n}}_{=\varepsilon}$$

so (†) follows since  $\varepsilon$  was arbitrary.

Step 2:  $\mu^*$  extends  $\mu$ . Let  $A \in \mathcal{A}$ . Clearly  $A = A \cup \emptyset \cup \ldots \cup \emptyset$ , so by definition of  $\mu^*$ ,  $\mu^*(A) \leq \mu(A) + 0 + \ldots + 0$ . So we need to prove  $\mu(A) \leq \mu^*(A)$ . Again, assume  $\mu^*(A) < \infty$  WLOG, and let  $A_n \in \mathcal{A}$  be such that  $A \subseteq \bigcup_n A_n$ . Then  $A = \bigcup_n \underbrace{(A \cap A_n)}_{\in \mathcal{A}}$ , and since  $\mu$  is countably sub-additive on  $\mathcal{A}$ , we have

$$\mu(A) = \mu\left(\bigcup_{n} (A \cap A_n)\right) \le \sum_{n} \mu(\underbrace{A \cap A_n}) \le \sum_{n} \mu(A_n)$$

so since the  $(A_n)$  were arbitrary, by taking infima, we have  $\mu(A) \leq \mu^*(A)$ .

Step 3:  $\mathcal{M} \supseteq \mathcal{A}$ . Let  $A \in \mathcal{A}$ , then  $B \subseteq (B \cap A) \cup (B \cap A^c) \cup \emptyset \dots \cup \emptyset = \bigcup_n B_n$  so by  $(\dagger)$  we have

$$\mu^*(B) \le \mu^*(B \cap A) + \mu^*(B \cap A^c) + 0 \dots + 0$$

so we need to prove  $\mu^*(B) \ge \mu^*(B \cap A) + \mu^*(B \cap A^c)$ . Again, WLOG assume  $\mu^*(B) < \infty$ , and so for all  $\varepsilon > 0$  there exist  $A_n \in \mathcal{A}$  such that  $B \subseteq \bigcup_n A_n$  and

$$\mu^*(B) + \varepsilon \ge \sum_n \mu(A_n) \tag{$\circ$}$$

now  $B \cap A \subseteq \bigcup_n \underbrace{(A_n \cap A)}_{\in \mathcal{A}}$  and  $B \cap A^c \subseteq \bigcup_n \underbrace{(A_n \cap A^c)}_{A_n \backslash A \in \mathcal{A}}$ . Therefore by definition

of inf in  $\mu^*$  and additivity of  $\mu$ 

$$\mu^*(B \cap A) + \mu^*(B \cap A^c) \le \sum_n (\mu(A \cap A_n) + \mu(A^c \cap A_n))$$
$$= \sum_n \mu(A_n)$$
$$\le \mu^*(B) + \varepsilon$$

since  $\epsilon$  was arbitrary,  $\mu^*(B) = \mu^*(B \cap A) + \mu^*(B \cap A^c)$ , so  $A \in \mathcal{M}$ .

Step 4:  $\mathcal{M}$  is an algebra. Clearly  $\emptyset \in \mathcal{M}$ , and by the definition of  $\mathcal{M}$  its obvious that  $A^c \in \mathcal{M}$  whenever  $A \in \mathcal{M}$ . So let  $A_1, A_2 \in \mathcal{M}$ 

$$\mu^*(B) = \mu^*(B \cap A_1) + \mu^*(B \cap A_1^c), \text{ since } A_1 \in \mathcal{M}$$

$$= \mu^*(B \cap A_1 \cap A_2) + \mu^*(B \cap A_1 \cap A_2^c) + \mu^*(B \cap A_1^c), \text{ since } A_2 \in \mathcal{M}$$

Clearly  $A_1 \cap A_2^c = (A_1 \cap A_2^c) \cap A_1$  and  $A_1^c = (A_1 \cap A_2)^c \cap A_1^c$  so

$$\mu^{*}(B)$$
=  $\mu^{*}(B \cap A_{1} \cap A_{2}) + \mu^{*}(B \cap (A_{1} \cap A_{2})^{c} \cap A_{1}) + \mu^{*}(B \cap (A_{1} \cap A_{2})^{c} \cap A_{1}^{c})$   
=  $\mu^{*}(B \cap A_{1} \cap A_{2}) + \mu^{*}(B \cap (A_{1} \cap A_{2})^{c})$ , since  $A_{1} \in \mathcal{M}$ 

so  $A_1 \cap A_2 \in \mathcal{M}$ , and  $\mathcal{M}$  is an algebra.

Step 5: Let  $A = \bigcup_n A_n$ ,  $A_n \in \mathcal{M}$ , WLOG  $A_n$  disjoint (disjointification). Want  $A \in \mathcal{M}$  and  $\mu^*(A) = \sum_n \mu^*(A_n)$ . By  $(\dagger)$  we clearly have

$$\mu^*(B) \le \mu^*(B \cap A) + \mu^*(B \cap A^c) + 0 + \dots + 0$$

and

$$\mu^*(A) \le \sum_n \mu^*(A_n)$$

so we only need two converse inequalities. Similar to before

$$\mu^{*}(B)$$
=  $\mu^{*}(B \cap A_{1}) + \mu^{*}(B \cap A_{1}^{c})$   
=  $\mu^{*}(B \cap A_{1}) + \mu^{*}(B \cap \underbrace{A_{1}^{c} \cap A_{2}}_{=A_{2} \text{ as disjoint}}) + \mu^{*}(B \cap A_{1}^{c} \cap A_{2}^{c})$   
=  $\sum_{n \leq N} \mu^{*}(B \cap A_{n}) + \mu^{*}(B \cap A_{1}^{c} \cap \dots \cap A_{N}^{c})$ 

since  $\bigcup_{n \leq N} \subseteq A$  so  $\bigcap_{n \leq N} A_n^c \supseteq A^c,$  taking limits

$$\mu^*(B) \ge \sum_{n=1}^{\infty} \mu^*(B \cap A_n) + \mu^*(B \cap A^c)$$

and by  $(\dagger)$ 

$$\mu^*(B) \ge \mu^*(B \cap A) + \mu^*(B \cap A^c)$$

so  $A \in \mathcal{M}$ . Applying the previous with B = A, we see

$$\mu^*(A) \ge \sum_{n=1}^{\infty} \mu^*(A \cap A_n) + \mu^*(A \cap A^c) = \sum_n \mu^*(A_n)$$

**Definition.** A collection  $\mathcal{A}$  of subsets of E is called a  $\pi$ -system if  $\emptyset \in \mathcal{A}$  and if  $A, B \in \mathcal{A}$ , then  $A \cap B \in \mathcal{A}$ .

**Definition.**  $\mathcal{A}$  is called a *d-system* if  $E \in \mathcal{A}$ , and if  $B_1, B_2 \in \mathcal{A}$  such that  $B_1 \subseteq B_2$ , then  $B_2 \setminus B_1 \in \mathcal{A}$ , and if  $A_n \in \mathcal{A}$ ,  $A_n \uparrow \bigcup_n A_n = A$ , then  $A \in \mathcal{A}$ .

One shows (Example sheet) that a d-system which is also a  $\pi$ -system is a  $\sigma$ -algebra.

**Lemma** (Dynkin). Let A be a  $\pi$ -system. Then any d-system that conatins A also contains  $\sigma(A)$ .

*Proof.* Define

$$\mathcal{D} = \bigcap_{\mathcal{D}' \supseteq \mathcal{A} \text{ a d-system}} \mathcal{D}'$$

which is again a d-system (Example sheet). We show that  $\mathcal{D}$  is a  $\pi$ -system, hence a  $\sigma$ -algebra containing  $\mathcal{A}$ . Define

$$\mathcal{D}' = \{ B \in \mathcal{D} : B \cap A \in \mathcal{D} \ \forall A \in \mathcal{A} \}$$

which contains  $\mathcal{A}$  as  $\mathcal{A}$  is a  $\pi$ -system. Next we show  $\mathcal{D}'$  is a d-system. Clearly  $E \cap A = A \in \mathcal{A} \subseteq \mathcal{D}$ , so  $E \in \mathcal{D}'$ . Next let  $B_1, B_2 \in \mathcal{D}'$  such that  $B_1 \subseteq B_2$  then  $(B_2 \setminus B_1) \cap A = (\underbrace{B_2 \cap A}_{\in \mathcal{D}}) \setminus (\underbrace{B_1 \cap A}_{\in \mathcal{D}}) \in \mathcal{D}$  and so  $B_2 \setminus B_1 \in \mathcal{D}'$ .

Next take  $B_n \uparrow B$ ,  $B_n \in \mathcal{D}'$  then  $\underbrace{B_n \cap A}_{\in \mathcal{D}} \uparrow B \cap A \in \mathcal{D}$  so  $B \in \mathcal{D}'$ .

Hence  $\mathcal{D}'$  is a d-system containing  $\mathcal{A}$ , so by minimality of  $\mathcal{D}'$ ,  $\mathcal{D} \subseteq \mathcal{D}'$ . Conversely, by construction  $\mathcal{D}' \subseteq \mathcal{D}$ , so  $\mathcal{D}' = \mathcal{D}$ .

Next define

$$\mathcal{D}'' = \{ B \in \mathcal{D} : B \cap A \in \mathcal{D} \ \forall A \in \mathcal{D} \}$$

which by the preceding step  $(\mathcal{D}' = \mathcal{D})$  contains  $\mathcal{A}$ . Just as before, one shows that  $\mathcal{D}'' = \mathcal{D}$  and so  $\mathcal{D}$  is a  $\pi$ -system (as  $\mathcal{D}''$  is by construction).

**Theorem** (Uniqueness of extension). Let  $\mu_1, \mu_2$  be measures on  $(E, \mathcal{E})$  such that  $\mu_1(E) = \mu_2(E) < \infty$ , and suppose  $\mu_1 = \mu_2$  on a  $\pi$ -system  $\mathcal{A}$  such that  $\mathcal{E} \subseteq \sigma(\mathcal{A})$ . Then  $\mu_1 = \mu_2$  on  $\mathcal{E}$ .

Proof. Define

$$\mathcal{D} = \{ A : \mu_1(A) = \mu_2(A) \}$$

which contains  $\mathcal{A}$  by hypothesis. We show that  $\mathcal{D}$  is a d-system, and hence by Dynkin's Lemma, contains  $\sigma(\mathcal{A})$ , so the theorem follows.

To see this, note first that  $E \in \mathcal{D}$  by hypothesis. Next, by additivity and finiteness of  $\mu_1, \mu_2$ , for  $B_1 \subseteq B_2, B_1, B_2 \in \mathcal{D}$ .

$$\mu_1(B_2 \setminus B_1) = \mu_1(B_2) - \mu_1(B_1) = \mu_2(B_2) - \mu_2(B_1) = \mu_2(B_2 \setminus B_1)$$

so  $B_2 \setminus B_1 \in \mathcal{D}$ . Finally take  $B_n \uparrow B$ ,  $B_n \in \mathcal{D}$ . This implies  $B \setminus B_n \downarrow \emptyset$  and (by Example sheet)  $\mu_i(B \setminus B_n) \to \mu_i(\emptyset) = 0$  for i = 1, 2. This implies for  $\mu_i(B) < \infty$  that  $\mu_i(B_n) \to \mu_i(B)$  as  $n \to \infty$  for both i = 1, 2. But then

$$\mu_1(B) = \lim_{n \to \infty} \mu_1(B_n) = \lim_{n \to \infty} \mu_2(B_n) = \mu_2(B)$$

and so  $B \in \mathcal{D}$ , and thus  $\mathcal{D}$  is a d-system.

**Remark**: the above theorem applies to <u>finite</u> measures  $\mu$  such that  $\mu(E) < \infty$ . The above theorem extends (as we will see) to  $\sigma$ -finite measures  $\mu$  for which  $E = \bigcup_{n \in \mathbb{N}} E_n$  such that  $\mu(E_n) < \infty$ .

## Borel- $\sigma$ -algebras

**Definition.** Let E be a topological space (Hausdorff, or metric space). The  $\sigma$ -algebra generated by  $\mathcal{A} = \{B \subseteq E : B \text{ is open}\}$  is called the *Borel-\sigma-algebra*, denoted by  $\mathcal{B}(E)$ , or just  $\mathcal{B}$  when  $E = \mathbb{R}$ . Elements of  $\mathcal{B}(E)$  are the Borel subsets of E. A measure  $\mu$  on  $(E, \mathcal{B}(E))$  is called a *Borel measure on E*. A *Radon* measure  $\mu$  is a Borel measure such that  $\mu(K) < \infty$  for all  $K \subseteq E$  compact (closed in Hausdorff spaces, hence measurable).

## Construction of Lebesgue measure

We will (eventually) construct a unique Borel measure  $\mu$  on  $\mathbb{R}^d$  such that

$$\mu\left(\prod_{i=1}^{d} [a_i, b_i]\right) = \prod_{i=1}^{d} |b_i - a_i|, \ a_i < b_i, \ i = 1, \dots, d$$

We will do d = 1 first.

**Theorem.** There exists a unique Borel measure (called the Lebesgue measure)  $\mu$  on  $\mathbb{R}$  such that

$$\mu((a,b]) = b - a, \ \forall a < b \tag{\dagger}$$

*Proof.* Consider the collection  $\mathcal{A}$  of subsets of  $\mathbb{R}$  of the form

$$A = (a_1, b_1] \cup \ldots \cup (a_n, b_n]$$

(intervals pairwise disjoint) which form a ring ( $\emptyset = ((a, a])$ , unions and differences are clear), which generates (Example sheet) generates the same  $\sigma$ -algebra on the open such intervals, and open intervals with rational endpoints generate  $\mathcal{B}$ , so  $\sigma(\mathcal{A}) \supseteq \mathcal{B}$ .

Define a set function  $\mu$  on  $\mathcal{A}$  by

$$\mu(A) = \sum_{i=1}^{n} (b_i - a_i)$$

 $\mu$  is clearly additive, and well-defined since if  $A = \bigcup_j C_j$  and  $A = \bigcup_k D_k$  for distinct disjoint unions, then  $C_j = \bigcup_k (C_j \cap D_k)$  and  $D_k = \bigcup_j (D_K \cap C_k)$ , so

$$\mu(A) = \mu\left(\bigcup_{j} C_{j}\right) = \sum_{j} \mu(C_{j}) = \sum_{j} \mu\left(\bigcup_{k} (C_{j} \cap D_{k})\right)$$
$$= \sum_{j,k} \mu(C_{j} \cap D_{k}) = \dots = \mu\left(\bigcup_{k} D_{k}\right) = \mu(A)$$

by additivity of  $\mu$ . Now to prove existence of  $\mu$ , we apply Caratheodory's theorem and need to check that  $\mu$  is countably additive on  $\mathcal{A}$ . By the Example sheet, it suffices to show that for all  $A_n \in \mathcal{A}$  such that  $A_n \downarrow \emptyset$  we have  $\mu(A_n) \to 0$ .

Assume this is not the case, so there exists some  $\varepsilon > 0$  and  $B_n \in \mathcal{A}$  such that  $B_n \downarrow \emptyset$  but  $\mu(B_n) \geq 2\varepsilon$  for all n. We can approximate  $B_n$  from within by  $C_n = \bigcup_{i=1}^{N_n} \left( a_{n_i} + \frac{\varepsilon 2^{-n}}{N_n}, b_{n_i} \right] \in \mathcal{A}$  such that  $\mu(B_n \setminus C_n) = \varepsilon 2^{-n} \cdot \frac{N_n}{N_n} = \varepsilon 2^{-n}$ .

Now since  $B_n \downarrow$ , we have  $B_N = \bigcap_{n \le N} B_n$  and

$$B_N \setminus (C_1 \cap \ldots \cap C_N) = B_N \cap \left(\bigcup_{n \le N} C_n^c\right) = \bigcup_{n \le N} B_N \setminus C_n \subseteq \bigcup_{n \le N} B_n \setminus C_n$$

Hence since  $\mu$  is increasing

$$\mu(B_N \setminus (C_1 \cap \ldots \cap C_N)) \le \mu\left(\bigcup_{n \le N} B_n \setminus C_n\right) \le \sum_{n \le N} \mu(B_n \setminus C_n) \le \varepsilon$$

Hence the "length" of what was removed  $(C_1 \cap \ldots \cap C_N)$  must be at least  $\varepsilon$ , i.e

$$\mu(C_1 \cap \ldots \cap C_N) \ge \varepsilon > 0$$

This means that  $C_1 \cap ... \cap C_N$  is non-empty for all N, and so is

$$K_N = \overline{C_1} \cap \ldots \cap \overline{C}_N$$

 $(\overline{C}_i \text{ denotes the closure of } C_i)$  Thus  $K_N$  is a nested sequence of non-empty closed intervals, so  $\emptyset \neq \bigcap_N K_N$ . But  $K_N \subseteq \overline{C}_N \subseteq B_N$ , so  $\emptyset \neq \bigcap_N K_N \subseteq \bigcap_N B_n = \emptyset$ , a contradiction. So a measure  $\mu$  satisfying  $(\dagger)$  must exist.

For uniqueness, suppose  $\mu$ ,  $\lambda$  measures such that (†) holds, and define  $\mu_n(A) = \mu(A \cap (n, n+1])$ ,  $\lambda(A) = \lambda(A \cap (n, n+1])$  for  $n \in \mathbb{Z}$ , which are finite measures such that  $\mu_n(E) = 1 = \lambda_n(E)$  and  $\mu_n = \lambda_n$  on the  $\pi$ -system A. So by the uniqueness theorem, we must have  $\mu_n = \lambda_n$  on B, and

$$\mu(A) = \mu\left(\bigcup_{n} A \cap (n, n+1]\right) = \sum_{n} \mu(A \cap (n, n+1]) = \sum_{n} \mu_n(A)$$
$$= \sum_{n} \lambda_n(A) = \dots = \lambda(A)$$

so  $\lambda = \mu$ .

#### Remarks:

- 1. a set  $B \in \mathcal{B}$  is called a Lebesgue null set if  $\mu(B) = 0$ . Can write  $\{x\} = \bigcap_n \left(x \frac{1}{n}, x\right]$  and so  $\mu(\{x\}) = \lim_n \frac{1}{n} = 0$ . In particular  $\mu((a, b)) = \mu((a, b]) = \mu([a, b])$ , and any countable set Q satisfies  $\mu(Q) = \mu\left(\bigcup_{q \in Q} \{q\}\right) = \sum_{q \in Q} \mu(\{q\}) = 0$ . But there exist C uncountable (and measurable) in  $\mathcal{B}$  such that  $\mu(C) = 0$  [Cantor set].
- 2. Translation invariance of  $\mu$ : let  $x \in \mathbb{R}$ , then  $B + x = \{b + x : b \in B\}$  is in  $\overline{\mathcal{B}}$  whenever  $B \in \overline{\mathcal{B}}$  and we can define

$$\mu_x(B) = \mu(B+x)$$

and by uniqueness in the preceding theorem

$$\mu_x((a,b]) = \mu((a+x,b+x]) = (b+x) - (a+x) = b-a$$

so  $\mu_x = \mu$ .

3. Lebesgue-measurable sets: in the extension theorem,  $\mu$  was assigned on the class  $\mathcal{M}$ , which can be shown (Example sheet) to equal

$$\mathcal{M} = \{ M = A \cup N : A \in \mathcal{B}, N \subseteq B \in \mathcal{B} \text{ s.t } \mu(B) = 0 \}$$

### Existence of non-measurable sets

Consider E = (0,1] with addition "+" modulo 1, and Lebesgue measure  $\mu$  is still translation invariant modulo 1.

Consider the subgroup  $Q = E \cap \mathbb{Q}$  of E and declare  $x \sim y$  if  $x - y \in Q$ . This gives equivalence classes  $[x] = \{y \in E : x \sim y\}$  on E. Assuming the axiom of choice, we can select a representative of [x], and denote by S the set of selections running over all equivalence classes. Then we can partition E into the union of its cosets,

$$E = \bigcup_{q \in Q} (S + q)$$

a disjoint union.

Assume S is a Borel set (in  $\mathcal{B}(E)$ ), then S + q is also a Borel set for all  $q \in Q$ , and we can write (by countable additivity and translation invariance)

$$1 = \mu(E) = \mu\left(\bigcup_{q \in Q} (S+q)\right) = \sum_{q \in Q} \mu(S+q) = \sum_{q \in Q} \mu(S)$$

which is a contradiction. So  $S \notin \mathcal{B}(E)$ .

One can further show that  $\mu$  cannot exted to  $\mathcal{P}(E)$ ,

**Theorem** (Banach, Kuretowski). Assuming the continuum hypothesis, there exists no measure on ([0,1]) such that  $\mu((0,1]) = 1$  and  $\mu(\{x\}) = 0$  for all  $x \in (0,1]$ .

*Proof.* Not given [see Dudley, 2002].

# **Probability Spaces**

If  $(E, \mathcal{E}, \mu)$  (a measure space) is such that  $\mu(E) = 1$ , we often call it a *probability* space and write  $(\Omega, \mathcal{F}, \mathbb{P})$ , where  $\Omega$  is the set of outcomes/the sample space;  $\mathcal{F}$  is the set of events and  $\mathbb{P}$  is the probability measure.

The axioms of probability theory (Kolmogorov, 1933) are

- 1.  $\mathbb{P}(\Omega) = 1$
- 2.  $0 \leq \mathbb{P}(E) \leq 1, \forall E \in \mathcal{F}$
- 3. If  $(A_n : n \in \mathbb{N})$  are disjoint,  $A_n \in \mathcal{F}$ , then  $\mathbb{P}(\bigcup_n A_n) = \sum_n \mathbb{P}(A_n)$  [so  $\mathbb{P}$  is a measure on a  $\sigma$ -algebra

We further say that  $(A_i : i \in I)$  are independent if for all  $J \subseteq I$  finite, we have

$$\mathbb{P}\left(\bigcap_{j\in J}A_j\right) = \prod_{j\in J}\mathbb{P}(A_j)$$

We further say  $\sigma$ -algebras  $(A_i : i \in I)$  are independent if for any  $A_j \in A_j$ ,  $j \in J$ ,  $j \subseteq I$  finite, the  $A_j$ 's are independent.

**Proposition.** Let  $\mathcal{A}_1, \mathcal{A}_2$  be  $\pi$ -systems of sets in  $\mathcal{F}$ , and suppose  $\mathbb{P}(A_1 \cap A_2) = \mathbb{P}(A_1)\mathbb{P}(A_2)$  for all  $A_1 \in \mathcal{A}_1$ ,  $A_2 \in \mathcal{A}_2$ . Then the  $\sigma$ -algebras  $\sigma(\mathcal{A}_1), \sigma(\mathcal{A}_2)$  are independent.

*Proof.* Exercise.  $\Box$ 

#### The Borel-Cantelli Lemmas

For a sequence  $(A_n : n \in \mathbb{N}), A_n \in \mathcal{F}$ , define

$$\lim\sup_n A_n = \bigcap_n \bigcup_{m \geq n} A_m = \{A_n \text{ infinitely often "i.o."}\}$$

$$\liminf_{n} A_{n} = \bigcup_{n} \bigcap_{m \geq n} A_{m} = \{A_{n} \text{ eventually}\}\$$

**Lemma** (1st Borel-Cantelli Lemma). If  $A_n \in \mathcal{F}$  are such that  $\sum_n \mathbb{P}(A_n) < \infty$  then  $\mathbb{P}(A_n \ i.o.) = 0$ 

Proof.

$$\mathbb{P}\left(\bigcap_{n}\bigcup_{m\geq n}A_{m}\right)\leq\mathbb{P}\left(\bigcup_{m\geq n}A_{m}\right)\leq\sum_{m\geq n}\mathbb{P}(A_{m})\rightarrow0$$

**Remark**: the proof actually works for any measure  $\mu$ .

**Lemma** (2nd Borel-Cantelli Lemma). Suppose  $A_n \in \mathcal{F}$  are independent and  $\sum_n \mathbb{P}(A_n) = \infty$ . Then  $\mathbb{P}(A_n \ i.o.) = 1$ .

*Proof.* By independence, for any  $N \ge n$  and using  $1 - a \le e^{-a}$ ,

$$\mathbb{P}\left(\bigcap_{m=n}^{N} A_{m}^{c}\right) = \prod_{m=n}^{N} \left(1 - \mathbb{P}(A_{m})\right) \leq \exp\left(-\sum_{m=n}^{N} \mathbb{P}(A_{m})\right) \to 0 \text{ as } N \to \infty$$

Since  $\bigcap_{m=n}^{N} A_m^c \downarrow \bigcap_{m\geq n} A_m^c$ , by countable additivity we have

$$\mathbb{P}\left(\bigcap_{m\geq n} A_m^c\right) = 0$$

But then

$$\mathbb{P}(A_n \text{ i.o.}) = \mathbb{P}\left(\bigcup_{n} \bigcap_{m \ge n} A_m\right) = 1 - \mathbb{P}\left(\bigcup_{n} \bigcap_{m \ge n} A_m^c\right)$$
$$\geq 1 - \sum_{n} \mathbb{P}\left(\bigcap_{m \ge n} A_m^c\right) = 1$$

## 2 Measurable functions

Let  $(E, \mathcal{E})$ ,  $(G, \mathcal{G})$  be measurable spaces and let  $f : E \to G$ . We say that f is  $\mathcal{E}$ - $\mathcal{G}$ -measurable if  $f^{-1}(A) \in \mathcal{E}$  for all  $A \in \mathcal{G}$ . If  $G = \mathbb{R}$  with  $\mathcal{G} = \mathcal{B}(\mathbb{R})$ , we just say  $f : (E, \mathcal{E}) \to \mathbb{R}$  is measurable.

Moreover, if E is a topological space and  $\mathcal{E} = \mathcal{B}(E)$ , we say f is Borel measurable.

Preimages preserve set operations:  $f^{-1}(\bigcup_i A_i) = \bigcup_i f^{-1}(A_i)$  and  $f^{-1}(G \setminus A) = E \setminus f^{-1}(A)$ , which implies that  $\{f^{-1}(A) : A \in \mathcal{G}\}$  is a  $\sigma$ -algebra over E, and likewise  $\{A : f^{-1}(A) \in \mathcal{E}\}$  is also a  $\sigma$ -algebra over G.

This implies that if  $\mathcal{A}$  is a collection of subsets of G generating  $\mathcal{G}$  and such that  $f^{-1}(A) \in \mathcal{E}$  for all  $A \in \mathcal{A}$ , then  $\{A : f^{-1}(A) \in \mathcal{E}\}$  is a  $\sigma$ -algebra containing  $\mathcal{A}$ , and hence  $\mathcal{G}$ . In particular, it suffices to check  $f^{-1}(A) \in \mathcal{E}$ ,  $\forall A \in \mathcal{A}$  to conclude that f is measurable.

If f takes real values, then

$$\mathcal{A} = \{(-\infty, y] : y \in \mathbb{R}\}$$

generates  $\mathcal{B}(\mathbb{R})$  (Example sheet), and so f will be measurable whenever  $f^{-1}((-\infty,y])=\{x\in E: f(x)\leq y\}\in \mathcal{E}$  for all  $y\in \mathbb{R}$ . Moreover, if E is a topological space with  $\mathcal{E}=\mathcal{B}(E)$ , then if  $f:E\to \mathbb{R}$  is continuous, it is Borel measurable.

The indicator function

$$1_A(x) = \begin{cases} 1 & \text{when } x \in A \\ 0 & \text{when } x \notin A \end{cases}$$

is measurable if and only if  $A \in \mathcal{E}$ .

One shows that compositions of measurable maps are measurable, and so are  $f_1 + f_2$ ,  $f_1 \cdot f_2$ ,  $\inf_n f_n$ ,  $\lim_n f_n$ ,  $\lim_n f_n$ ,  $\lim_n f_n$ , whenever the  $f_n$  are.

Moreover, given a collection of maps  $\{f_i: E \to (G, \mathcal{G}), i \in I\}$  we can make them all measurable for

$$\sigma\left(f_i^{-1}(A):A\in\mathcal{G},i\in I\right)$$

**Theorem** (Monotone class theorem). Let  $\mathcal{A}$  be a  $\pi$ -system generating the  $\sigma$ -algebra  $\mathcal{E}$  over E. Let further  $\mathcal{V}$  be a vector space of bounded maps from E to  $\mathbb{R}$  such that

- 1.  $1_E \in \mathcal{V}, 1_A \in \mathcal{V}, \forall A \in \mathcal{A}.$
- 2. If f is bounded and  $f_n \in \mathcal{V}$  is such that  $0 \leq f_n \uparrow f$  pointwise on E, then  $f \in \mathcal{V}$ .

Then V contains all bounded measurable  $f: E \to \mathbb{R}$ .

*Proof.* Define  $\mathcal{D} = \{A \in \mathcal{E} : 1_A \in \mathcal{V}\}$ . By hypothesis,  $\mathcal{D}$  contains the  $\pi$ -system  $\mathcal{A}$  and we now show it is also a d-system, so by Dynkind's lemma,  $\mathcal{E} = \mathcal{D}$ . Indeed,  $E \in \mathcal{D}$  since  $1_E \in \mathcal{V}$  by hypothesis. Also if  $A \subseteq B$ ,  $A, B \in \mathcal{D}$ , then  $1_{B \setminus A} = 1_B - 1_A \in \mathcal{V}$  as  $\mathcal{V}$  is a vector space. Finally, if  $A_n \in \mathcal{D}$  and  $A_n \uparrow A$ , then  $1_{A_n} \uparrow 1_A$  pointwise and so  $1_A \in \mathcal{V}$  by hypothesis, so  $A \in \mathcal{D}$ . In particular  $A \in \mathcal{V}$  for all  $A \in \mathcal{E}$ .

Let now  $f: E \to \mathbb{R}$  be bounded, non-negative and measurable. Define

$$f_n = \sum_{j=0}^{n2^n} \frac{j}{2^n} 1_{A_{n_j}}$$

where  $A_{n_j}=\{x\in E: \frac{j}{2^n}< f(x)\leq \frac{j+1}{2^n}\}=f^{-1}((\frac{j}{2^n},\frac{j+1}{2^n}])\in \mathcal{E}$  for  $j=0,\ldots,n2^n-1,$  and  $A_{n_{n2^n}}=\{x\in E: f(x)>n\}=f^{-1}((n,\infty))\in \mathcal{E}.$ 

Clearly since f is bounded, for  $n > ||f||_{\infty}$ , we see

$$f_n < f < f_n + 2^{-n}$$

so  $|f_n - f| \leq 2^{-n} \to 0$ . So by hypothesis  $f \in \mathcal{V}$ . For general f bounded and measurable, we can decompose  $f = f^+ - f^-$  where  $f^{\pm} \geq 0$ , and repeat the argument above.

### **Image Measures**

If  $f:(E,\mathcal{E})\to (G,\mathcal{G})$  is  $\mathcal{E}\text{-}\mathcal{G}$  measurable, and  $\mu$  is a measure on  $\mathcal{E}$ , then the image measure  $\nu=\mu\circ f^{-1}$  is obtained from

$$\nu(A) = \mu(f^{-1}(A)), \ \forall A \in \mathcal{G}$$

which is indeed a measure on  $\mathcal{G}$  (Example sheet).

**Lemma.** Let  $g: \mathbb{R} \to \mathbb{R}$  be a right-continuous, monotone increasing function, and set  $g(\pm \infty) = \lim_{z \to \pm \infty} g(z)$ . On  $I = (g(-\infty), g(\infty))$  define

$$f(x) = \inf\{y \in \mathbb{R} : x \le g(y)\}, \ x \in I$$

Then f is monotone increasing, left-continuous and

$$f(y) \le y \iff x \le g(y) \ \forall x, y$$

Proof. Define  $J_x = \{y \in \mathbb{R} : x \leq g(y)\}$ . Since  $x > g(-\infty)$ ,  $J_x$  is non-empty and bounded below, so  $f(x) \in \mathbb{R}$ . Now if  $y \in J_x$  then  $y' \geq y$  implies  $y' \in J_x$  as well since  $g \uparrow$ . Moreover if  $y_n \downarrow y$ ,  $y_n \in J_x$ , then we can take limits in  $x \leq g(y_n)$  to see  $x \leq \lim_n g(y_n) = g(y)$  as g is right-continuous, so  $y \in J_x$ . We conclude that  $J_x = [f(x), \infty)$ , which shows the equivalence.

Moreover, if  $x \leq x'$ , then  $J_x \supseteq J_{x'}$  since  $g \uparrow$ . So by properties of the infimum  $f(x) \leq f(x')$ . Likewise if  $x_n \uparrow x$ , then  $J_x = \bigcap_n J_{x_n}$  so  $f(x_n) \to f(x)$  as  $x_n \to x$ .

We call f the generalised inverse of g.

**Theorem.** Let g be as in the above lemma. Then there exists a unique Radon measure  $\mu_g$  on  $\mathbb{R}$  such that  $\mu_g((a,b]) = g(b) - g(a)$  for all a < b. Every Radon measure on  $\mathbb{R}$  can be obtained in this way.

*Proof.* For f as defined in the previous lemma, note that for all  $z \in \mathbb{R}$ 

$$f^{-1}((-\infty, z]) = \{x : f(x) \le z\} = \{x : x \le g(y)\} = (g(-\infty), g(z)] \in \mathcal{B}(I)$$

Where the 2nd equality follows again from the lemma. So f is  $\mathcal{B}\text{-}\mathcal{B}(I)$  measurable, and the image measure  $\mu \circ f^{-1} = \mu_g$ , where  $\mu$  is the Lebesgue measure on I, exists.

Then for  $-\infty < a < b < \infty$  we have

$$\mu_g((a,b]) = \mu(f^{-1}((a,b])) = \mu(x \in I : a < f(x) \leq b) = \mu((g(a),g(b)]) = g(b) - g(a)$$

Which uniquely determines  $\mu_g$  by the same arguments as for the Lebesgue measure on  $\mathbb{R}$ . (Since g maps into  $\mathbb{R}$ ,  $\mu_g$  is a Radon measure).

Conversely, let  $\nu$  be any Radon measure on  $\mathbb{R}$ , define

$$g(y) = \begin{cases} \nu((0, y]) & y \ge 0\\ -\nu((y, 0]) & y < 0 \end{cases}$$

Which is clearly increasing in y (since  $\nu$  is increasing). If  $y_n \downarrow y$ , then  $(0, y_n] \downarrow (0, y]$  so  $g(y_n) \to g(y)$  since  $\nu$  is countably additive, so g is right-continuous. Finally (assuming a < 0 < b, the other cases are similar),

$$\nu((a,b]) = \nu((a,0]) + \nu((0,b]) = -q(a) + q(b) = q(b) - q(a)$$

And by uniqueness as before, the result follows.

**Remark**: The  $\mu_g$  are called Lebesgue-Stieltjes measures, with Stieltjes distribution g.

For example, the Dirac measure  $\delta_x$  at  $x \in \mathbb{R}$ , defined by

$$\delta_x(A) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

Which has Stieltjes distribution  $g = 1_{[x,\infty)}$ .

#### Random Variables

Let  $(\Omega, \mathcal{F}, \mathbb{P})$  be a probability space, and  $(E, \mathcal{E})$  a measurable space.

**Definition.** An E-valued random variable X is any  $\mathcal{F}$ - $\mathcal{E}$  measuable map

$$X:\Omega \to E$$

When  $E = \mathbb{R}, \mathbb{R}^d$  (with Borel  $\sigma$ -algebras) we call X a random variable, or random vector. The law or distribution  $\mu_X$  of a random variable is given by  $\mu_X = \mathbb{P} \circ X^{-1}$  (the image measure) with, for  $E = \mathbb{R}$  distribution function

$$F_X(z) = \mu_X((-\infty, z]) = \mathbb{P}(X^{-1}(-\infty, z]) = \mathbb{P}(\omega \in \Omega : X(\omega) \le z) = \mathbb{P}(X \le z)$$

which uniquely determines  $\mu_X$ .

Using properties of measures one shows that any distribution function satisfies

- 1.  $F_X \uparrow$
- 2.  $F_X$  is right-continuous
- 3.  $\lim_{z\to-\infty} F_X(z) = \mu_X(\emptyset) = 0$  and  $\lim_{z\to\infty} F_X(z) = \mu_X(\mathbb{R}) = \mathbb{P}(\Omega) = 1$

Given any distribution function  $F_X$  satisfying 1,2 & 3, we can on  $(\Omega, \mathcal{F}, \mathbb{P}) = ((0,1), \mathcal{B}(0,1), \mu)$ , where  $\mu$  is the Lebesgue measure obtain a random variable  $X: \Omega \to \mathbb{R}$  by

$$X(\omega) = \inf\{x : \omega \le F_X(x)\}$$

with distribution function  $F_X$ .

**Definition.** A countable collection  $(X_i : (\Omega, \mathcal{F}, \mathbb{P} \to (E, \mathcal{E})))$  of random variables is said to be *independent* whenever the  $\sigma$ -algebras  $\sigma(X_i^{-1}(A) : A \in \mathcal{E})$  are independent. For  $(E, \mathcal{E}) = (\mathbb{R}, \mathcal{B})$  one shows (Example sheet) that this is equivalent (for  $I = \{1, \ldots, n\}$ ) to

$$\mathbb{P}(X_1 \le x_1, \dots, X_n \le x_n) = \prod_{i=1}^n \mathbb{P}(X_i \le x_i), \ \forall x_i \in \mathbb{R}$$

We now construct on  $(\Omega, \mathcal{F}, \mathbb{P}) = ((0,1), \mathcal{B}, \mu|_{(0,1)})$  with  $\mu|_{(0,1)}$  the Lebesgue measure on (0,1) an infinite sequence of independent random variables with prescribed distribution functions  $F_n$ .

Any  $\omega \in (0,1)$  has a binary representation  $(\omega_i) \in \{0,1\}^{\mathbb{N}}$ , where  $\omega = \sum_{i=1}^{n} \omega_i 2^{-i}$ , which is unique if we exclude sequences which terminate with infinitely many 0's (so rationals end in a sequence of 1's). Then we can define  $R_n(\omega) = \omega_n$  ("Radenmacher functions"), which are of the form

$$\begin{split} R_1(\omega) &= \mathbf{1}_{(1/2,1)} \\ R_2(\omega) &= \mathbf{1}_{(1/4,1/2]} + \mathbf{1}_{(3/4,1)} \\ R_3(\omega) &= \mathbf{1}_{(1/8,1/4]} + \mathbf{1}_{(3/8,1/2]} + \mathbf{1}_{(5/8,3/4]} + \mathbf{1}_{(7/8,1)} \end{split}$$

So the  $R_n$  are random variables such that  $\mathbb{P}(R_n = 1) = \frac{1}{2} = \mathbb{P}(R_n = 0)$ , so the  $R_n$  are Bernoulli for all n. Moreover for  $(x_i)_{i=1}^n \in \{0,1\}^n$ 

$$\mathbb{P}(R_1 = x_1, \dots, R_n = x_n) = 2^{-n} = \underbrace{\mathbb{P}(R_1 = x_1)}_{\frac{1}{2}} \dots \mathbb{P}(R_n = x_n)$$

So the  $R_n$  are all independent. Now take a bijection  $m:\mathbb{N}^2\to\mathbb{N}$  and define  $Y_{nk}=R_{m(n,k)}$  which are again independent and define

$$Y_n = \sum_k 2^{-k} Y_{nk}$$

which converge for all  $\omega \in \Omega$  since  $|Y_{nk}| \leq 1$  are still independent. To determine the law of  $Y_n$  we consider the  $\pi$ -system of intervals  $\left(\frac{i}{2^m}, \frac{i+1}{2^m}\right]$ ,  $i = 0, \ldots, 2^m - 1$ ,  $m \in \mathbb{N}$ , with dyadic endpoints, which generate  $\mathcal{B}$  and

$$\mathbb{P}\left(Y_n \in \left(\frac{i}{2^m}, \frac{i+1}{2^m}\right]\right) = \mathbb{P}\left(\frac{i}{2^m} < \sum_k 2^{-k} Y_{nk} \le \frac{i+1}{2^m}\right) = 2^{-m}$$
$$= \mu|_{(0,1)}\left(\left(\frac{i}{2^m}, \frac{i+1}{2^m}\right]\right)$$

so the law  $\mu_{Y_n} = \mu|_{(0,1)}$  by the uniqueness theorem, and so the  $Y_n$ 's are an infinite sequene of independent uniform random variables. Now if  $F_n$  are probability distribution functions (satisfy axioms 1-3 from earlier), then taking the generalised inverse  $f_n = F_n^{-1}$  from the lemma, we see that the  $F_n^{-1}(Y_n)$  are independent and have distribution function  $F_n$ .

# Convergence of measurable functions

**Definition.** We say that a property defining a set  $A \in \mathcal{E}$  holds  $\mu$ -almost everywhere if  $\mu(A^c) = 0$  for a measure  $\mu$  on  $\mathcal{E}$ . If  $\mu = \mathbb{P}$ , we say it holds  $\mathbb{P}$ -almost surely, or with probability 1, if  $\mathbb{P}(A) = 1$ .

If  $f_n, f$  are measurable maps on  $(E, \mathcal{E}|_{\mu})$  we say  $f_n \to f$   $\mu$ -almost always if

$$\mu(x \in E : f_n(x) \not\to f(x) \text{ as } n \to \infty) = 0$$

We say  $f_n \to f$  in  $\mu$ -measure if for all  $\varepsilon > 0$ 

$$\mu(x \in E : |f_n(x) - f(x)| > \varepsilon) \to 0 \text{ as } n \to \infty$$

For random variables say  $X_n \to X$   $\mathbb{P}$ -almost surely or  $X_n \to X$  in  $\mathbb{P}$ -probability respectively.

If  $E = \mathbb{R}$ , we say  $X_n \xrightarrow{d} X$  in distribution if  $\mathbb{P}(X_n \leq x) \to \mathbb{P}(X \leq x)$  for all  $x \in \mathbb{R}$  such that  $x \mapsto \mathbb{P}(X \leq x)$  is continuous. One shows  $X_n \xrightarrow{P} X$  implies  $X_n \xrightarrow{d} X$ .

**Theorem.** Let  $f_n:(E,\mathcal{E})\to\mathbb{R}$  be measurable functions.

- 1. If  $\mu(E) < \infty$ , then whenever  $f_n \to 0$  a.e (almost everywhere) we have  $f_n \to 0$  in measure.
- 2. If  $f_n \to 0$  in measure, then  $f_{n_k} \to 0$  a.e along some subsequence  $n_k$ .

Proof.

1. For all  $\varepsilon > 0$  we have

$$\mu(|f_n| \le \varepsilon) \ge \mu \left( \bigcap_{m \ge n} \underbrace{\{|f_m| \le \varepsilon\}}_{:=A_m} \right)$$

$$\uparrow \mu \left( \bigcup_{n \ge n} \bigcap_{m \ge n} A_m \right)$$

$$= \mu(|f_n| \le \varepsilon \text{ eventually})$$

$$\ge \mu (f_n \to 0 \text{ as } n \to \infty)$$

$$= \mu(E)$$

so  $\liminf_n \mu(|f_n| \le \varepsilon) \ge \mu(E)$ . So we see  $\limsup_n \mu(|f_n| > \varepsilon) \le \mu(E) - \mu(E) = 0$ , so  $\mu(|f_n| > \varepsilon) \to 0$  as  $n \to \infty$  as desired.

2. By hypothesis, for all  $\varepsilon > 0$   $\mu(|f_n| > \frac{1}{k}) < \varepsilon$  for n large enough. So choosing  $\varepsilon = \frac{1}{k^2}$  we see that along some subsequence  $n_k$  we have  $\mu(|f_{n_k}| > \frac{1}{k}) \le \frac{1}{k^2}$  so

$$\sum_{k} \mu(|f_{n_k}| > \frac{1}{k}) < \infty$$

and by the 1st Borel-Cantelli Lemma, we have  $\mu\left(|f_{n_k}|>\frac{1}{k}\text{ i.o}\right)=0$ , so  $f_{n_k} \to 0$  a.e.

**Remarks**: (1) is false if  $\mu(E) = \infty$ , as the example  $1_{(n,\infty)}$  on  $(\mathbb{R}, \mathcal{B}, \mu)$ ,  $\mu$  Lebesgue measure shows. (2) is false without restricting to subsequences: take  $A_n$  independent such that  $\mathbb{P}(A_n) = \frac{1}{n}$  then  $1_{A_n} \to 0$  in  $\mathbb{P}$ -probability since  $\mathbb{P}(1_{A_n} > \varepsilon) = \mathbb{P}(A_n) = \frac{1}{n} \to 0$  but  $\sum_n \mathbb{P}(A_n) = \infty$ , so by the 2nd Borel-Cantelli Lemma,  $\mathbb{P}(1_{A_n} > \varepsilon \text{ i.o}) = 1$ , so  $1_{A_n} \not\to 0$  a.s.

**Example.** Let  $(X_n : n \in \mathbb{N})$  be independent and identically distributed (iid) exponential random variables with  $\mathbb{P}(X_1 \leq x) = 1 - e^{-x}, x \geq 0$ . Define  $A_n = \{X_n \geq \alpha \log n\}, \ \alpha > 0$ , s.t  $\mathbb{P}(A_n) = n^{-\alpha}$  and  $\sum_n \mathbb{P}(A_n) < \infty$  if and only if  $\alpha > 1$ . So by the Borel-Cantelli lemmas, we have

$$\mathbb{P}\left(\frac{X_n}{\log n} \ge 1 \text{ i.o}\right) = 1$$

while

$$\mathbb{P}\left(\frac{X_n}{\log n} \ge 1 + \varepsilon \text{ i.o}\right) = 0 \ \forall \varepsilon > 0$$

So  $\limsup_{n \to \infty} \frac{X_n}{\log n} = 1$  almost surely.

### Kolmogorov's 0-1 Law

For  $(X_n : n \in \mathbb{N})$  random variables, define  $\mathcal{T} = \sigma(X_{n+1}, X_{n+2}, ...)$  and set  $\mathcal{T} = \bigcap_{n \in \mathbb{N}} \mathcal{T}_n$ , the "tail  $\sigma$ -algebra" which contains all events in  $\mathcal{F}$  which depend only on the limiting behaviour of the sequence.

**Theorem.** For  $(X_n : n \in \mathbb{N})$  independent random variables, if  $A \in \mathcal{T}$  then  $\mathbb{P}(A) = 1$  or  $\mathbb{P}(A) = 0$ . Moreover if  $Y : (\Omega, \mathcal{T}) \to (\mathbb{R}, \mathcal{B})$  is measurable, then Y is constant almost surely.

*Proof.* Define  $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$  which is a  $\sigma$ -algebra generated by the  $\pi$ -system of sets

$$A = (X_1 \le x_1, \dots, X_n \le x_n), \ x_i \in \mathbb{R}$$

and note that the  $\pi$ -system of sets

$$B = (X_{n+1} \le x_{n+1}, \dots, X_{n+k} \le x_{n+k}), k \in \mathbb{N}, x_i \in \mathbb{R}$$

generates  $\mathcal{T}_n$ . By independence of  $X_n$ ,  $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$ , so by the theorem from earlier we see that  $\mathcal{T}_n$  and  $\mathcal{F}_n$  are independent. If we set  $\mathcal{F}_{\infty} = \sigma(X_1, X_2, \ldots)$ , then  $\bigcup_n \mathcal{F}_n$  is a  $\pi$ -system generating  $\mathcal{F}_{\infty}$ , and if  $A \in \bigcup_n \mathcal{F}_n$ , there exists  $\bar{n}$  such that  $B \in \mathcal{T}_{\bar{n}}$  is independent of A, in particular A is independent of elements in  $\mathcal{T} = \bigcap_{\bar{n}} \mathcal{T}_{\bar{n}}$ , hence as before  $\mathcal{F}_{\infty}$  is independent of  $\mathcal{T}$ . But clearly  $\mathcal{T} \subseteq \mathcal{F}_{\infty}$ , so if  $A \in \mathcal{T}$  it is independent to  $A \in \mathcal{F}_{\infty}$ ! Now  $\mathbb{P}(A) = \mathbb{P}(A \cap A) = \mathbb{P}(A)^2$ , so  $\mathbb{P}(A) = 0$  or 1. Finally, if Y is  $\mathcal{T}$  measurable, then  $\{Y \leq y\}$  lies in  $\mathcal{T}$  for all y, hence have probability 1 or 0. Then let

$$c = \inf\{y : F_Y(y) = 1\}$$

so Y = c almost surely.

# 3 Integration

For  $f:(E,\mathcal{E},\mu)\to\mathbb{R}$  measurable or "integrable" we will define the integral with respect to  $\mu$ :

$$\mu(f) = \int_{E} f d\mu = \int_{E} f(x) d\mu(x)$$

and if X is a random variable, we define its ("mathematical") expectation as

$$\mathbb{E}X = \int_{\Omega} X d\mathbb{P} = \int_{\Omega} X(\omega) d\mathbb{P}(\omega)$$

To start, call  $f:(E,\mathcal{E},\mu)\to\mathbb{R}$  simple if it is of the form

$$f = \sum_{k=1}^{m} a_k 1_{A_k}, \ a_k \ge 0, \ A_k \in \mathcal{E}, \ m \in \mathbb{N}$$

We define its  $\mu$ -integral to be

$$\mu(f) = \sum_{k=1}^{m} a_k \mu(A_k)$$

which is well-defined (Example sheet) and it satisfies the following properties:

- 1.  $\mu(\alpha f + \beta g) = \alpha \mu(f) + \beta \mu(g)$  for all  $\alpha, \beta \geq 0$  and f, g simple
- 2. If  $g \leq f$  then  $\mu(g) \leq \mu(f)$
- 3. If f = 0 almost everywhere  $\mu(f)$

For general  $f:(E,\mathcal{E},\mu)\to\mathbb{R}$  non-negative, we define its  $\mu$ -integral as

$$\mu(f) = \sup \{ \mu(q) : q < f, q \text{ simple} \}$$

which is consistent with the definition for simple functions, and takes values in  $[0,\infty]$ .

For  $f:(E,\mathcal{E},\mu)\to\mathbb{R}$  measurable (but not necessarily non-negative), we define  $f^+=\max(f,0),\ f^-=\max(-f,0)$ , so that  $f=f^+-f^-$  and  $|f|=f^++f^-$ . We say that f is  $\mu$ -integrable if  $\mu(|f|)<\infty$ . In this case we define

$$\mu(f) = \mu(f^+) - \mu(f^-)$$

which is well-defined (i.e not  $\infty - \infty$ ).

**Theorem** (Monotone Convergence Theorem). Let  $f_n, f: (E, \mathcal{E}, \mu) \to \mathbb{R}$  be measurable and non-negative such that  $0 \le f_n \uparrow f$  (i.e  $f_n(x) \le f_{n+1}(x) \le f(x)$  and  $f_n(x) \to f(x)$  for all  $x \in E$ ). Then  $\mu(f_n) \to \mu(f)$  as  $n \to \infty$ .

**Remark**: if we take the approximating sequence  $\tilde{f}_n$  (= min(2<sup>-n</sup>[2<sup>n</sup>f], n)) then  $0 \leq \tilde{f} \uparrow f$  so  $\mu(f) = \lim_n \mu(\tilde{f}_n)$ .

*Proof.* Recall  $\mu(f) = \sup\{\mu(g) : g \leq f, g \text{ simple}\}$ . Since  $0 \leq f_n \uparrow$  we have  $\mu(f_n) \uparrow \sup_n \mu(f_n) = M$ . But then since  $f_n \leq f$  we must have  $\mu(f_n) \leq \mu(f)$  so taking suprema  $M \leq \mu(f)$ , and if  $M < \infty$  we have  $\lim_n \mu(f_n) \leq \mu(f)$ .

We will now show  $\mu(g) \leq M$  for all simple functions g such that  $g \leq f$  so that taking suprema  $\mu(f) = \sup_q \mu(g) \leq M$  so  $\mu(f) = \lim_n \mu(f_n)$  follows.

We define  $g_n = \min(\bar{f}_n, g) = \bar{f}_n \wedge g$ , where  $\bar{f}_n$  is the approximation of  $f_n$  by simple functions from the monotone class theorem,  $[\tilde{f}_n]_n = \bar{f}_n = \min(2^{-n}\lfloor 2^n f_n \rfloor, n)$ . Now since  $f_n \uparrow f$  we must have  $\bar{f}_n \uparrow f$  too, and so  $g_n \uparrow \min(f, g) = g$ , and since  $\bar{f}_n \leq f_n$  we also have  $g_n \leq f_n$  for all n.

Now let g be an arbitrary simple function, of the form

$$g = \sum_{k=1}^{m} a_k 1_{A_k}$$

with  $m \in \mathbb{N}$ ,  $a_k \geq 0$  and  $A_k \in \mathcal{E}$  disjoint (wlog). We define for  $\varepsilon > 0$  arbitrary

$$A_k(n) = \{ x \in A_k : g_n(x) \ge (1 - \varepsilon)a_k$$

Since  $g = a_k$  on  $A_k$  and since  $g_n \uparrow g$ , we have  $A_k(n) \uparrow A_k$  for all k. Also since  $\mu$  is a measure, we must have  $\mu(A_k(n)) \uparrow \mu(A_k)$ . We have  $g_n 1_{A_k} \ge g_n 1_{A_k(n)} \ge (1 - \varepsilon) a_k 1_{A_k(n)}$  on E. Moreover

$$g_n = \sum_{k=1}^m g_n 1_{A_k}$$

since the  $A_k$ 's are disjoint and support  $g_n$  (if  $1_{A_n} = 0$  for all n, then g = 0 and  $f_n = 0$ ). Now

$$\mu(g_n) = \sum_{k=1}^{m} \mu(g_n 1_{A_k}) \ge (1 - \varepsilon) \sum_{k=1}^{n} a_k \mu(A_k(n)) \uparrow (1 - \varepsilon) \sum_{k=1}^{m} a_k \mu(A_k) = (1 - \varepsilon) \mu(g)$$

So  $\mu(g) \leq \frac{1}{1-\varepsilon} \limsup_n \mu(g_n) \leq \frac{1}{1-\varepsilon} \limsup_n \mu(f_n) \leq \frac{M}{1-\varepsilon}$ . Since  $\varepsilon$  was arbitrary we have  $\mu(g) \leq M$  as required.

**Remarks**: we have shown  $\mu(f) = \mu(\lim_n f_n) = \lim_n \mu(f)$ , so we can interchange  $\int (\cdot) d\mu$  and the limit. If  $g_n \geq 0$ , then  $\mu(\sum_n g_n) = \sum_n \mu(g_n)$ . Moreover it suffices to require  $f_n \uparrow f$  almost everywhere and the  $f_n \geq 0$  hypothesis is not necessary as long as  $f_1$  is integrable (then just subtract  $f_1$  from all terms).

**Theorem.** Let  $f, g: (E, \mathcal{E}, \mu) \to \mathbb{R}$  be measurable and non-negative. Then

- 1.  $\mu(\alpha f + \beta g) = \alpha \mu(f) = \beta \mu(g)$  for all  $\alpha, \beta \ge 0$
- 2. If  $g \leq f$  then  $\mu(g) \leq \mu(f)$

3. f = 0 almost everywhere if and only if  $\mu(f) = 0$ .

*Proof.* If  $\tilde{f}_n$ ,  $\tilde{g}_n$  are the approximations of f,g from the monotone class theorem, then  $\alpha \tilde{f}_n \uparrow \alpha f$ ,  $\beta \tilde{g}_n \uparrow \beta g$ ,  $\alpha \tilde{f}_n + \beta \tilde{g}_n \uparrow \alpha f + \beta g$ . And from earlier

$$\mu(\alpha \tilde{f}_n + \beta \tilde{g}_n) = \alpha \mu(\tilde{f}_n) + \beta \mu(\tilde{g}_n)$$

So taking limits the monotone convergence theorem implies

$$\mu(\alpha f + \beta g) = \alpha \mu(f) + \beta \mu(g)$$

(2) follows in a similar way. Now we show (3): if f = 0 almost everywhere, then  $0 \le \tilde{f}_n \le f = 0$  a.e., so  $\tilde{f}_n = 0$  a.e. for all n, so  $\mu(\tilde{f}_n) = 0$ , so  $\mu(\tilde{f}_n) \uparrow \mu(f) = 0$ . Conversely if  $\mu(f) = 0$  then  $0 \le \mu(\tilde{f}) \uparrow \mu(f) = 0$  so  $\mu(\tilde{f}_n) = 0$  for all n, so  $\tilde{f}_n = 0$  a.e. Since  $0 \le \tilde{f}_n \uparrow f$  we have that f = 0 a.e.

**Remark**: functions such as  $1_{\mathbb{Q}}$  have  $\mu(1_{\mathbb{Q}}) = 0$ , and are 'identified' with 0.

**Theorem.** Let  $f, g: (E, \mathcal{E}, \mu) \to \mathbb{R}$  be integrable. Then

- 1.  $\mu(\alpha f + \beta g) = \alpha \mu(f) + \beta \mu(g)$  for all  $\alpha, \beta \in \mathbb{R}$
- 2.  $g \le f$  implies  $\mu(g) \le \mu(f)$
- 3. If f = 0 almost everywhere then  $\mu(f) = 0$

*Proof.* Clearly if f is integrable, so is  $\alpha f$ , and  $\mu(-f) = -\mu(f)$ . And for  $\alpha \ge 0$ ,  $\mu(\alpha f) = \mu((\alpha f)^+) - \mu((\alpha f)^-) = \alpha \mu(f^+) - \alpha \mu(f^-) = \alpha \mu(f)$ . So we can restrict to  $\alpha = \beta = 1$ .

Define  $h=f+g=h^+-h^-=f^+-f^-+g^+-g^-$ . This is the same as  $h^++f^-+g^-=h^-+f^++g^+$ , and all of these functions are non-negative. Hence by the previous theorem

$$\mu(h^+) + \mu(f^-) + \mu(g^-) = \mu(h^-) + \mu(f^+) + \mu(g^+)$$

so  $\mu(h) = \mu(f) + \mu(g)$  follows.

Now we show (2). Clearly  $0 \le f - g$  so  $\mu(0) \le \mu(f - g)$  by the previous theorem, and  $\mu(f - g) = \mu(f) - \mu(g)$  by (1) of this theorem.

Finally we show (3): if f = 0 almost everywhere,  $f^+ = f^- = 0$  almost everywhere, so  $\mu(f) = \mu(f^+) - \mu(f^-) = 0 - 0$ .

**Lemma** (Fatou). Let  $f_n, f: (E, \mathcal{E}, \mu) \to \mathbb{R}$  be measurable and non-negative. Then  $\mu(\liminf_n f_n) \leq \liminf_n \mu(f_n)$ .

**Remark**: recall that for  $x_n \in \mathbb{R}$ 

$$\liminf_{n} x_n = \sup_{n} \inf_{m \ge n} x_m$$

$$\limsup_{n} x_n = \inf_{n} \sup_{m \ge n} x_m$$

In particular, if  $\limsup_n x_n = \liminf_n x_n$  then  $\lim_n x_n = \liminf_n x_n$ . Therefore if  $f = \lim_n f_n$  exists in Fatou's lemma, we have  $\mu(f) \leq \liminf_n \mu(f_n)$ .

*Proof.* We have  $\inf_{m\geq n} f_m \leq f_k$  for all  $k\geq n$ , and integrating this implies  $\mu(\inf_{m\geq n} f_m) \leq \mu(f_k)$  for all  $k\geq n$ . So

$$\mu(\inf_{m\geq n} f_m) \leq \mu(f_k)$$

$$\mu(\inf_{m\geq n} f_m) \leq \inf_{k\geq n} \mu(f_k) \leq \sup_{n} \inf_{k\geq n} \mu(f_k) = \liminf_{n} \mu(f_n)$$

Also,  $0 \leq \inf_{m \geq n} f_m \uparrow \sup_n \inf_{m \geq n} f_m$  so by the monotone convergence theorem

$$\mu(\liminf_{n} f_n) = \lim_{n} \mu(\inf_{m \ge n} f_m) \le \liminf_{n} \mu(f_n)$$

**Theorem** (Dominated convergence theorem). Let  $f_n, f: (E, \mathcal{E}, \mu) \to \mathbb{R}$  be measurable such that  $|f_n| \leq g$  almost everywhere on E and g is  $\mu$ -integrable  $(\mu(g) < \infty)$ . Suppose  $f_n \to f$  pointwise (or almost everywhere) on E. Then  $f_n$  and f are integrable and  $\mu(f_n) \to \mu(f)$  as  $n \to \infty$ .

*Proof.* Clearly  $\mu(|f_n|) \leq \mu(g) < \infty$  so the  $f_n$  are integrable and taking limits in  $|f_n| \leq g$  we have  $|f| \leq g$ , so  $\mu(|f|) < \infty$ .

Next

$$0 \le g \pm f_n \xrightarrow{\text{ptws on } E} g \pm f$$

By Fatou's lemma

$$\mu(g) + \mu(f) = \mu(g + f) = \mu(\liminf_n (g + f_n)) \leq \liminf_n (\mu(g) + \mu(f_n)) = \mu(g) + \liminf_n \mu(f_n)$$

So  $\mu(f) \leq \liminf_n \mu(f_n)$ . Likewise

$$\mu(g) - \mu(f) = \mu(\liminf_{n} (g - f_n)) \le \mu(g) - \limsup_{n} \mu(f_n)$$

So  $\limsup_n \mu(f_n) \le \mu(f)$ . Therefore  $\limsup_n \mu(f_n) = \liminf_n \mu(f_n) = \lim_n \mu(f_$ 

Page 24

**Example.** On E = [0,1] with the Lebesgue measure, suppose  $f_n \to f$  pointwise and  $\sup_n ||f_n||_{\infty} \le g < \infty$ . Then since  $\mu(g) \le g$  the dominated convergence theorem implies  $\mu(f_n) \to \mu(f)$  as  $n \to \infty$  (no uniform convergence of  $f_n \to f$  required).

**Remark**: the proof of the Fundamental Theorem of Calculus (FTC) requires only  $\int_{x}^{x+h} dt = h$ . Therefore for any continuous  $f: [0,1] \to \mathbb{R}$ 

$$\underbrace{\int_{0}^{x} f(t) dt}_{\text{Riemann-integral}} = F(x) = \underbrace{\int_{0}^{x} f(t) d\mu(t)}_{\text{Lebesgue-integral}}, \ x \in [0, 1]$$

So these integrals coincide for continuous maps.

One shows that all Riemann-integrable functions are  $\mu^*$ -measurable ( $\mu$  is Lebesgue measure) but that there exist Riemann-integrable functions that are not Borel measurable.

A bounded  $\mu^*$ -measurable function is Riemann-integrable if and only if

$$\mu(x \in [0,1]: f \text{ if discontinuous at } x) = 0$$

All standard formulae for the Riemann-integral (substitution, integration, by parts etc) extend to all bounded measurable functions by the monotone class theorem (see Example sheet).

**Theorem.** Let  $U \subseteq \mathbb{R}$  be open,  $(E, \mathcal{E}, \mu)$  a measure space, and  $f: U \times E \to \mathbb{R}$  such that

- $x \mapsto f(t,x)$  for all  $t \in U$  is measurable
- $t \mapsto f(t,x)$  is differentiable for all  $x \in E$ , with  $\left| \frac{\partial f(t,x)}{\partial t} \right| \leq g(x)$  for all  $t \in U$  where g is  $\mu$ -integrable.

Then if

$$F(t) = \int_{E} f(t, x) d\mu(x)$$

we have

$$F'(t) = \int_{E} \frac{\partial f}{\partial t}(t, x) d\mu(x)$$

*Proof.* By the MVT

$$|g_h(x)| := \left| \frac{f(t+h,x) - f(t,x)}{h} - \frac{\partial f}{\partial t}(t,x) \right| = \left| \frac{\partial f(\tilde{t},x)}{\partial t} - \frac{\partial f(t,x)}{\partial t} \right|$$

For some  $\tilde{t} \in U$ . SO  $|g_h(x)| \leq 2g(x)$  which is  $\mu$ -integrable. By differentiability, we have  $g_h \to 0$  as  $h \to 0$ , so applying the dominated convergence theorem,  $\mu(g_h) \to \mu(0) = 0$ , or by linearity of  $\mu$ 

$$\mu(g_h) = \frac{\int_E (f(t+h,x) - f(t,x)) d\mu(x)}{h} - \int_E \frac{\partial f}{\partial t}(t,x) d\mu(x)$$

$$=\frac{F(t+h)-F(t)}{h}-F'(t)\to 0 \text{ as } h\to 0$$

Page 26

# Integrals with respect to image measures

For  $f:(E,\mathcal{E},\mu)\to (G,\mathcal{G})$  measurable,  $g:G\to\mathbb{R}$  measurable and non-negative, we have

$$\mu\circ f^{-1}(g)=\int_G g\mathrm{d}\mu\circ f^{-1}=\int_E g(f(x))\mathrm{d}\mu(x)=\mu(g\circ f)$$

On a probability space  $(\Omega, \mathcal{F}, \mathbb{P})$ , and for a G-valued random variable X,

$$\mathbb{E}g(X) = \mu_X(g) = \int_{\Omega} g(X(\omega)) d\mathbb{P}(\omega) = \int_{\Omega} g d\mathbb{P}$$

#### Measures with densities

If  $f:(E,\mathcal{E},\mu)\to\mathbb{R}$  is measurable and non-negative, we can define  $\nu_f(A)=\mu(f1_A)$  for any  $A\in\mathcal{E}$ , which is again a measure (by the monotone convergence theorem), and if  $g:(E,\mathcal{E})\to\mathbb{R}$  is measurable, then  $\nu_f(g)=\int_E g(x)f(x)\mathrm{d}\mu(x)=\int_E g\mathrm{d}\nu_f$ . We call f the density of  $\nu_f$  with respect to  $\mu$ .

#### Product measures

Let  $(E_1, \mathcal{E}_1, \mu_1)$  and  $(E_2, \mathcal{E}_2, \mu_2)$  be finite measure spaces. On  $E = E_1 \times E_2$ , we consider the  $\pi$ -system of 'rectangles'  $\mathcal{A} = \{A_1 \times A_2 : A_1 \in \mathcal{E}_1, A_2 \in \mathcal{E}_2\}$ , which generates the  $\sigma$ -algebra  $\sigma(\mathcal{A}) \equiv \mathcal{E}_1 \otimes \mathcal{E}_2 = \mathcal{E}$ .

If  $E_1, E_2$  are topological spaces with a countable base, then  $\mathcal{B}(E_1 \times E_2)$  for the product topology on  $E_1 \times E_2$  coincides with  $\mathcal{B}(E_1) \otimes \mathcal{B}(E_2)$  (see Dudley).

**Lemma.** Let  $f:(E,\mathcal{E})\to\mathbb{R}$  be measurable. Then for all  $x_1\in E_1$  fixed the map  $x_2\mapsto f(x_1,x_2)$  is  $\mathcal{E}_2$ -measurable.

*Proof.* Define a vector space

$$\mathcal{V} = \{ f : (E, \mathcal{E}) \to \mathbb{R} \text{ bounded and measurable, s.t Lemma holds} \}$$

This is indeed a vector space, and contains  $1_E, 1_A$  for all  $A \in \mathcal{A}$ , since  $1_A = 1_{A_1}(x_1)1_{A_2}(x_2)$  is  $\mathcal{E}_2$  measurable as  $A_2 \in \mathcal{E}_2$ . Next let  $0 \leq f_n \uparrow f$ ,  $f_n \in \mathcal{V}$ , then  $f(x_1, \cdot) = \lim_n f_n(x_1, \cdot)$  hence is  $\mathcal{E}_2$ -measurable as the limit of a sequence of measurable functions, so by the monotone class theorem,  $\mathcal{V}$  contains all bounded measurable functions. This extends to all f (not necessarily bounded) by taking  $\min(\max(-n, f), n) \in \mathcal{V}$ , which converges to f.

**Lemma.** Let  $f:(E,\mathcal{E})\to\mathbb{R}$  be measurable, such that either

1. f is bounded or;

2.  $f \ge 0$ 

Then  $x_1 \mapsto \int_{E_2} f(x_1, x_2) d\mu_2(x_2)$  is  $\mathcal{E}_1$  measurable, and is (in the case of 1) bounded on  $E_1$ , (in the case of 2)  $\geq 0$ , respectively.

**Remarks**: in 2, the mapping may evaluate to  $\infty$ , but  $\{x_1 \in E_1 : \int_{E_2} f(x_1, x_2) d\mu(x_2) = \infty\} \in \mathcal{E}_1$ 

*Proof.* Define a vector space

$$\mathcal{V} = \{ f : (E, \mathcal{E}) \to \mathbb{R} \text{ bounded and measurable, s.t Lemma holds} \}$$

Which is indeed a vector space, and contains  $1_E$  since  $1_{E_1}\mu(E_2) \geq 0$  is bounded and also  $1_A = 1_{A_1}(x_1)1_{A_2}(x_2)$  since  $1_{A_1}(x_1)\mu_2(A_2)$  is  $\mathcal{E}_1$ -measurable, nonnegative and bounded since  $0 \leq \mu_2(E_2) < \infty$ .

Now let  $0 \leq f_n \uparrow f$  be a sequence in  $\mathcal{V}$ . Then by the monotone convergence theorem,

$$\int_{E_2} \lim_n f_n(x_1, x_2) d\mu_2(x_2) = \lim_n \int_{E_2} f_n(x_1, x_2) d\mu_2(x_2)$$

which is  $\mathcal{E}_1$ -measurable as the limit of  $\mathcal{E}_1$ -measurable functions. Also (in the case of 1) it is bounded by  $\mu_2(E_2)||f||_{\infty}$  and non-negative, so  $f \in \mathcal{V}$ , so by the monotone class theorem,  $\mathcal{V}$  contains all bounded measureable functions. In the case of 2, we approximate f by  $\min(f, n) \in \mathcal{V}$ .

**Theorem** (Product measure). Let  $\mu_1(E_1), \mu_2(E_2) < \infty$ . Then there exists a unique measure  $\mu$  on  $(E_1 \times E_2, \mathcal{E}_1 \otimes \mathcal{E}_2)$  such that  $\mu(A_1 \times A_2) = \mu_1(A_1)\mu_2(A_2)$  for all  $A_1 \in \mathcal{E}_1$ ,  $A_2 \in \mathcal{E}_2$ .

*Proof.* By the uniqueness theorem and since  $\mathcal{A}$  generates  $\mathcal{E}_1 \otimes \mathcal{E}_2$ , there can only be one such measure. Define

$$\mu(A) = \int_{E_1} \left( \int_{E_2} 1_A(x_1, x_2) d\mu_2(x_2) \right) d\mu_1(x_1)$$

, so  $\mu(A_1 \times A_2) = \int_{E_1} 1_{A_1}(x_1) \mu_2(A_2) \mathrm{d}\mu_1(x_1) = \mu_1(A_1) \mu_2(A_2)$ , and  $\mu(\emptyset) = 0$ , so to prove the theorem we need to show  $\mu$  is countably additive (and thus a measure). Let  $A_n \in \mathcal{E}_1 \otimes \mathcal{E}_2$  be disjoint, so  $1_{\bigcup_n A_n} = \sum_n 1_{A_n} = \lim_{N \to \infty} \sum_{n \le N} 1_{A_n}$ . Thus

$$\mu\left(\bigcup_{n} A_{n}\right) = \int_{E_{1}} \left(\int_{E_{2}} \lim_{N \to \infty} \sum_{n \le N} 1_{A_{n}}(x_{1}, x_{2}) d\mu_{2}(x_{2})\right) d\mu_{1}(x_{1})$$

Which upon applying the monotone convergence theorem twice (once for each integral), in conjunction with the previous lemmas, gives

$$\mu\left(\bigcup_{n} A_{n}\right) = \lim_{N \to \infty} \sum_{n \le N} \int_{E_{1}} \left( \int_{E_{2}} 1_{A_{n}}(x_{1}, x_{2}) d\mu_{2}(x_{2}) \right) d\mu_{1}(x_{1}) = \sum_{n=1}^{\infty} \mu(A_{n})$$

**Theorem** (Fubini's Theorem). Let  $(E, \mathcal{E}, \mu) = (E_1 \times E_2, \mathcal{E}_1 \otimes \mathcal{E}_2, \mu_1 \otimes \mu_2)$ . Then

(a) Let  $f:(E,\mathcal{E})\to\mathbb{R}$  be measurable and non-negative. Then

$$\mu(f) = \int_{E} f d\mu = \int_{E_1} \left( \int_{E_2} f(x_1, x_2) d\mu_2(x_2) \right) d\mu_1(x_1)$$
 (†)

$$= \int_{E_2} \left( \int_{E_1} f(x_1, x_2) d\mu_1(x_1) \right) d\mu_2(x_2) \tag{$\diamond$}$$

(b) If  $f:(E,\mathcal{E})\to\mathbb{R}$  is  $\mu$ -integrable, then if

$$A_1 = \left\{ x_1 \in E_1 : \int_{E_2} |f(x_1, x_2)| d\mu_2(x_2) < \infty \right\}$$

and for  $f_1(x_1) = \int_{E_2} f(x_1, x_2) d\mu_2(x_2)$  for  $x_1 \in A_1$ , and  $f_1(x_1) = 0$  on  $A_1^c$ , we have  $\mu_1(A_1^c) = 0$ , and  $\mu(f) = \mu_1(f_1) = \mu_1(f_1 1_{A_1})$ .

**Remark**: in (b), if f is bounded,  $A_1 = E_1$ . The same statement holds for  $f_2$ ,  $A_2$  with the obvious modifications in (b), so  $\mu_1(f_1) = \mu_2(f_2)$ . But for  $f(x_1, x_2) = \frac{x_1^2 - x_2^2}{(x_1^2 + x_2^2)}$  on  $(0, 1)^2$ , we have  $\mu_1(f_1) \neq \mu_2(f_2)$  but f is not Lebesgue measurable on  $(0, 1)^2$ .

*Proof.* By the construction of  $\mu(A)$  for rectangles  $A = A_1 \times A_2 \in \mathcal{A}$  generating  $\mathcal{E}$ , the identities (†) and (o) hold for  $f = 1_A$ , and by uniqueness of extenion, this extends to  $1_A$ ,  $A \in \mathcal{E}$ , and by linearity of the integral this extends to simple functions. By the monotone convergence theorem (applied 5 times) on simple functions  $0 \le f_n \uparrow f$ , the result (a) follows.

If  $h(x_1) = \int_{E_2} |f(x_1, x_2)| d\mu_2(x_2)$ , then by (a)  $\mu_1(|h|) \leq \mu(|f|) < \infty$  since f is  $\mu$ -integrable. So  $f_1$  is  $\mu_1$ -integrable and  $\mu_1(A_1^c) = 0$ . Then  $f_1^{\pm} = \int_{E_2} f^{\pm}(x_1, x_2) d\mu_2(x_2)$  so  $\mu_1(f_1) = \mu_1(f_1^+) - \mu_1(f_1^-)$ . Thus

$$\mu(f) = \mu(f^+) - \mu(f^-) = \mu_1(f_1^+) - \mu_1(f_1^-) = \mu_1(f_1)$$

by (a).  $\Box$ 

**Remark**: the preceding results for product measures extend to  $\sigma$ -finite measures  $\mu$ .

For  $(E_i, \mathcal{E}_i)$  for  $i = 1, \ldots, n$  with  $\sigma$ -finite  $\mu_i$ , then since

$$(\mathcal{E}_1 \otimes \mathcal{E}_2) \otimes \mathcal{E}_3 = \mathcal{E}_1 \otimes (\mathcal{E}_2 \otimes \mathcal{E}_3)$$

by a  $\pi$ -system argument and Dynkin's lemma, we can iterate the construction of product measures to obtain  $\mu_1 \otimes \ldots \otimes \mu_n$ , a unique product measure on  $(\bigotimes_{i=1}^n E_i, \bigotimes_{i=1}^n \mathcal{E}_i)$  such that  $\mu_1 \otimes \ldots \otimes \mu_n(A_1 \times \ldots \times A_n) = \prod_{i=1}^n \mu_i(A_i)$ .

In particular, on  $\mathbb{R}^n$  with Borel- $\sigma$ -algebra  $\mathcal{B}(\mathbb{R}^n) = \bigotimes_{i=1}^n \mathcal{B}(\mathbb{R})$  (product topology), we obtain the *n*-dimensional Lebesgue measure

$$\mu^n = \bigotimes_{i=1}^n \mu$$

and Fubini's theorem (applied n-1 times) implies

$$\mu^{n}(f) = \int_{\mathbb{R}^{n}} f d\mu^{n} = \int_{\mathbb{R}} \dots \int_{\mathbb{R}} f(x_{1}, \dots, x_{n}) d\mu(x_{1}) \dots d\mu(x_{n})$$

whenever f is measurable and non-negative, or  $\mu^n$ -integrable.

# Product Probability Spaces & Independence

**Proposition.** Let  $(\Omega, \mathcal{F}, \mathbb{P})$  be a probability space, and  $(E, \mathcal{E}) = (\bigoplus_{i=1}^n E_i, \bigoplus_{i=1}^n \mathcal{E}_i)$ . Consider  $X : (\Omega, \mathcal{F}, \mathbb{P}) \to (E, \mathcal{E})$  measurable and such that  $X(\omega) = (X_1(\omega), \dots, X_n(\omega))$ . The following are equivalent:

- (i)  $X_1, \ldots, X_n$  are independent
- (ii)  $\mu_X = \bigoplus_{i=1}^n \mu_{X_i}$
- (iii) For all  $f_i: E_i \to \mathbb{R}$  bounded and measurable,

$$\mathbb{E}\left[\prod_{i=1}^{n} f_i(X_i)\right] = \prod_{i=1}^{n} \mathbb{E}f(X_i)$$

*Proof.* First we show (i) implies (ii): for rectangles  $A = \times_{i=1}^n A_i$ ,  $A_i \in \mathcal{E}_i$ , we have (by the definition of image measure)

$$\mu_X(A_1, \dots, A_n) = \mathbb{P}(X_1 \in A_1, \dots, X_n \in A_n) = \prod_{i=1}^n \mathbb{P}(X_i \in A_i) = \prod_{i=1}^n \mu_{X_i}(A_i)$$

Now we show (ii) implies (iii): by Fubini's theorem,

$$\mathbb{E}\left[\prod_{i=1}^{n} f(X_{i})\right] = \mu_{X}\left(\prod_{i=1}^{n} f(X_{i})\right) = \int_{E_{1}} \dots \int_{E_{n}} f_{1}(x_{1}) \dots f_{n}(x_{n}) d\mu_{X_{1}}(x_{1}) \dots \mu_{X_{n}}(x_{n})$$

$$= \prod_{i=1}^{n} \int_{E_{i}} f_{i}(x_{i}) d\mu_{X_{i}}(x_{i}) = \prod_{i=1}^{n} \mathbb{E}f_{i}(X_{i})$$

Finally we show (iii) implies (i): take  $f_i = 1_{A_i}$  for any  $A_i \in \mathcal{E}_i$ , which is bounded and measurable. So

$$\mathbb{P}(X_1 \in A_1, \dots, X_n \in A_n) = \mathbb{E}\left[\prod_{i=1}^n 1_{A_i}(X_i)\right] = \prod_{i=1}^n \mathbb{E}1_{A_i} = \prod_{i=1}^n \mathbb{P}(X_i \in A_i)$$

so  $X_1, \ldots, X_n$  are independent.

# 4 $L^p$ -spaces and norms

**Definition.** A norm on a vector space V (over  $\mathbb{R}$ ) is a map  $||\cdot||_V:V\to\mathbb{R}_+$  such that

- 1.  $||\lambda v|| = |\lambda| \cdot ||v||$
- 2.  $||u+v|| \le ||u|| + ||v||$
- 3.  $||v|| = 0 \iff v = 0$

**Definition.** For  $(E, \mathcal{E}, \mu)$  a measure space, we define  $L^p(E, \mathcal{E}, \mu) = L^p(\mu) = L^p$  by

$$L^p(E, \mathcal{E}, \mu) = \{ f : E \to \mathbb{R} \text{ measurable s.t } ||f||_p < \infty \}$$

where

$$||f||_p = \left(\int_E |f(x)|^p \mathrm{d}\mu(x)\right)^{1/p}, \ 1 \le p < \infty$$
 
$$||f||_\infty = \operatorname{en}\sup|f| := \inf\{\lambda > 0 : |f| \le \lambda \text{ a.e}\}$$

The property (1) of a norm holds for  $||\cdot||_p$  whenever  $1 \le p \le \infty$ . Property (2) holds for  $p=1,\infty$  and also for 1 (to be proved). For (3), note that <math>f=0 implies  $||f||_p=0$ , but  $||f||_p=0$  implies f=0 almost everywhere on E. We can define quotient spaces

$$\mathcal{L}_p = L^p / \{ f = 0 \text{ a.e} \} = \{ [f] : f \in L^p \}$$

where the equivalence classes are  $[f] = \{g \in L^p : g = f \text{ a.e}\}$ . The functional  $||\cdot||_p$  is then a norm on  $\mathcal{L}_p$ .

**Proposition** (Chebyshev's/Markov's inequality). Let  $f \geq 0$  be non-negative and measurable. Then for all  $\lambda > 0$ ,  $\mu(f \geq \lambda) = \mu(\{x : f(x) \geq \lambda\}) \leq \frac{\mu(f)}{\lambda}$ .

*Proof.* Integrate 
$$\lambda 1_{\{f \geq \lambda\}} \leq f$$
 on  $E$ .

**Definition.** Let  $I \subseteq \mathbb{R}$  be an interval, then a map  $c: I \to \mathbb{R}$  is called *convex* if

$$c(tx + (1-t)y) \le tc(x) + (1-t)c(y), \ \forall x, y \in I, \ \forall t \in (0,1)$$

which is easily seen to be equivalent to the condition that for all  $x, y \in I$  and t with x < t < y,

$$\frac{c(t) - c(x)}{t - x} \le \frac{c(y) - c(t)}{y - t} \tag{$\circ$}$$

Since c is continuous on the interior of I, it is Borel-measurable.

**Lemma.** Let  $m \in int(I)$ . Then if c is convex on I, there exist a,b such that  $c(x) \ge ax + b$  with equality when x = m.

Proof. Define

$$a = \sup \{ \frac{c(m) - c(x)}{m - x} : x < m \}$$

which exists in  $\mathbb{R}$  by (o). Let  $y \in I$ , y > m, then by (o),  $a \leq \frac{c(y) - c(m)}{y - m}$ , so we get

$$c(y) \ge ay + \underbrace{(-am + c(m))}_{=b}$$

Likewise for x < m, by definition of a

$$\frac{c(m) - c(y)}{m - y} \le a$$

so  $c(y) \ge ay - b$ . Also c(m) = am + b.

**Theorem** (Jensen's inequality). Let X be a random variable taking values in  $I \subseteq \mathbb{R}$  and such that  $\mathbb{E}|X| < \infty$ . If  $c: I \to \mathbb{R}$  is convex, then  $\mathbb{E}c(X) \ge c(\mathbb{E}X)$ , in particular  $\mathbb{E}c(X) = \mathbb{E}c^+(X) - \mathbb{E}c^-(X)$  is will defined in  $(-\infty, \infty]$ .

*Proof.* Define  $m = \mathbb{E}X = \int_I z \mathrm{d}\mu_X(z)$ , and if  $m \notin \mathrm{int}(I)$ , then X = m almost surely and the result follows. If  $m \in \mathrm{int}(I)$ , then we can apply the lemma to see  $c^-(X) \leq |a||X| + |b|$ . So  $\mathbb{E}c^-(X) \leq |a|\mathbb{E}|X| + |b| < \infty$ , and  $\mathbb{E}c(X) = \mathbb{E}c^+(x) - \mathbb{E}c^-(X)$  is well-defined in  $(-\infty, \infty]$ .

Then integrating the inequality from the lemma

$$\mathbb{E} c(X) \geq a \mathbb{E} X + b = am + b = c(m) = c(\mathbb{E} X)$$

**Remark**: a consequence of this is that if X is a bounded random variable (in  $L^{\infty}(\mathbb{P})$ ), and if  $1 \leq p < q < \infty$  then  $c(x) = |x|^{q/p}$  is convex and

$$||X||_p = (\mathbb{E}|X|^p)^{1/p} = c(\mathbb{E}|X|^p)^{1/q} \le \mathbb{E} (c(|X|^p))^{1/q} = ||X||_q$$

Using the monotone convergence theorem, this extends to all  $X \in L^q(\mathbb{P})$ . In particular  $L^q(\mathbb{P}) \subseteq L^p(\mathbb{P})$  for all  $1 \leq p \leq q \leq \infty$ .

**Theorem** (Holders inequality). Let f, g be measurable on  $(E, \mathcal{E}, \mu)$ . If p, q are conjugate, i.e  $\frac{1}{p} + \frac{1}{q} = 1$  and  $1 \leq p, q \leq \infty$ , then

$$\mu(|fg|) = \int_{E} |gf| d\mu \le ||f||_{p} ||g||_{q}$$

(for p = q = 2, this is the Cauchy-Schwarz inequality on  $L^2$ )

*Proof.* The cases  $p=1,\infty$  are obvious, and we can assume  $f\in L^p, g\in L^q$  (or else we're done). We can also assume that we dont have f=0 almost everywhere (else done), hence  $||f||_p>0$ , so by dividing we can assume  $||f||_p=1$ . Then

$$\mu(|fg|) = \int_E |g| \frac{1}{|f|^{p-1}} \mathbf{1}_{\{|f|>0\}} \underbrace{|f|^p \mathrm{d}\mu}_{\mathrm{d}\mathbb{P}} \leq \left( \int_E |g|^q \frac{1}{|f|^{q(p-1)}} |f|^p \mathrm{d}\mu \right)^{1/q} = ||g||_q$$

**Theorem** (Minkowski's inquality). Let  $f, g: (E, \mathcal{E}, \mu) \to \mathbb{R}$  be measurable. Then for all  $1 \le p \le \infty$ 

$$||f + g||_p \le ||f||_p + ||g||_p$$

*Proof.*  $p = 1, \infty$  are clear, so assume  $1 . We may assume <math>f, g \in L^p$  or else it is obvious. We can integrate the pointwise inequality

$$|f+g|^p \le 2^p (|f|^p + |g|^p)$$

to deduce

$$||f+g||_p^p \le 2^p \left(||f||_p^p + ||g||_p^p\right) < \infty$$

So we can assume  $0 < ||f + g||_0 < \infty$ . Now

$$||f+g||_p^p = \int_E |f+g|^{p-1}|f+g| d\mu = \int_E |f+g|^{p-1}|f| d\mu + \int_E |f+g|^{p-1}|g| d\mu$$

So by Holders inequality with q conjugate to p

$$||f+g||_p^p \le \underbrace{\left(\int_E |f+g|^{q(p-1)} d\mu\right)^{1/q}}_{||f+g||_p^{p/q}} (||f||_p + ||g||_p)$$

So obtain  $||f + g||_p \le ||f||_p + ||g||_p$ .

**Theorem** ( $\mathcal{L}^p$  is a Banach space). Let  $1 \leq p \leq \infty$ , and let  $f_n \in L^p$  be a Cauchy sequence. Then there exists  $f \in L^p$  such that  $f_n \to f$  in  $L^p$ .

*Proof.* We assume  $p < \infty$ , the proof when  $p = \infty$  is easier. or all  $\varepsilon > 0$  there exists  $N \in \mathbb{N}$  such that  $\forall m, n \geq N, ||f_n - f_m|| \leq \varepsilon$ . Using this with  $\varepsilon = 2^{-k}$  we can extract a subsequence  $f_{N_k}$  such that  $S = \sum_{k=1}^{\infty} ||f_{N_{k+1}} - f_{N_k}||_p \leq \sum_{k=1}^{\infty} 2^{-k} < \infty$ . By Minkowski's inequality, for any K

$$\left\| \sum_{k=1}^{K} |f_{N_{k+1}} - f_{N_k}| \right\|_p \le \sum_{k=1}^{K} ||f_{N_{k+1}} - f_{N_k}||_p \le S$$

So by the monotone convergence theorem applied to  $\left|\sum_{k=1}^{K} |f_{N_{k+1}} - f_{N_k}|\right|^p \uparrow \left|\sum_{k=1}^{\infty} |f_{N_{k+1}} - f_{N_k}|\right|^p$  we see that

$$\left\| \sum_{k=1}^{\infty} |f_{N_{k+1}} - f_{N_k}| \right\|_p \le S < \infty$$

Since the integral is finite, we see that  $\sum_{k=1}^{\infty} |f_{N_{k+1}} - f_{N_k}| < \infty$  almost everywhere. Then  $\sum_{k=1}^{K} (f_{N_{k+1}}(x) - f_{N_n}(x)) = f_{N_{K+1}}(x) - f_{N_1}(x)$  converges in  $\mathbb R$  for

all x in some set A with  $\mu(A^c) = 0$ . Since  $\mathbb{R}$  is complete,  $f_{N_k}(x)$  converges in  $\mathbb{R}$  and we define

$$f(x) = \begin{cases} \lim_{k \to \infty} f_{N_k}(x) & x \in A \\ 0 & x \notin A \end{cases}$$

So  $f_{N_k} \to f$  as  $k \to \infty$  almost everywhere. Next

$$||f_n - f||_p^p = \mu(|f_n - f|^p) = \mu\left(\lim_k |f_n - f_{N_k}|^p\right) \le \liminf_k \mu(|f_n - f_{N_k}|^p)$$

where the last inequality follows from Fatou's lemma. Using the Cauchy property,  $||f||_p \le ||f - f_N||_p + ||f_N||_p < \infty$ , so  $f \in L^p$  and  $||f_n - f_{N_k}||_p^p \le \varepsilon^p$  for  $n, N_k \ge N$ , so  $f_n \to f$  in  $L^p$ .

**Remark**: if V is any of the spaces C([a,b]),  $\{f \text{ simple}\}$  or  $\{f \text{ a linear combination of indicators of intervals}\}$ , then V is dense in  $L^1(\mu)$ , for  $\mu$  the Lebesgue measure on  $\mathcal{B}([a,b])$ , and so the completion  $\overline{(V,||\cdot||_1)} = L^1(\mu)$ .

# $\mathcal{L}^2(\mu)$ as a Hilbert space

**Definition.** A symmetric bilinear form  $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$  on a vector space V is called a *inner product* if  $\langle v, v \rangle \geq 0$  with equality only when v = 0. In this case we can define a norm  $||v|| = \sqrt{\langle v, v \rangle}$  on V, and if  $(V, \langle \cdot, \cdot \rangle)$  is complete for  $||\cdot||$ , we call this space a *Hilbert space*.

Corollary.  $\mathcal{L}^2(\mu)$  is a Hilbert space for  $\langle f, g \rangle = \int_E f g d\mu$ .

*Proof.* Trivial by previous theorem.

Pythagoras rule: for  $f, g \in L^2$ ,  $||f + g||_2^2 = ||f||_2^2 + 2\langle f, g \rangle + ||g||_2^2$ .

We say that f is orthogonal to g if  $\langle f,g\rangle=\int_E fg\mathrm{d}\mu=0$ , and write  $f\perp g$ . For centred (mean 0) random variables X,Y, we have  $\langle X,Y\rangle=\mathbb{E}(XY)=\mathbb{E}[(X-\mathbb{E}X)(Y-\mathbb{E}Y)]=\mathrm{Cov}(X,Y)=0$  whenever  $X\perp Y$ .

Parallelogram identity:  $||f+g||_2^2 + ||f-g||_2^2 = 2(||f||_2^2 + ||g||_2^2)$ 

For  $V \subseteq \mathcal{L}^2(\mu)$ , we define its orthogonal complement

$$V^\perp = \{f \in L^2(\mu) : \langle f, v \rangle = 0 \ \forall v \in V\}$$

We say that a subset V of  $\mathcal{L}^2$  is closed if for any sequence  $f_n$  in V, which converges to some  $f \in \mathcal{L}^2$ , we have f = v almost everywhere for some  $v \in V$ .

**Theorem.** Let V be a closed linear subspace of  $\mathcal{L}^2(\mu)$ . Then for all  $f \in \mathcal{L}^2$  there exists a decomposition f = v + u, for  $v \in V$ ,  $u \in V^{\perp}$  such that  $||f - v||_2 \le ||f - g||_2$  for all  $g \in V$ , with equality only if g = v almost everywhere. We call v the projection of f onto V.