Appunti di Farmacologia

Emiliano Bruni (info@ebruni.it)

Questo articolo riassume con delle carte mnemoniche gli argomenti di farmacologia spiegati nel IV anno del corso di laurea in medicina e chirurgia a Chieti. L'uso di questo articolo non sostituisce la lettura e lo studio di un libro e degli appunti di farmacologia. Per errori, omissioni o altre note, non esitate a contattarmi via e-mail.

Indice 2

Indice

I.	Farr	nacocinetica	3
1.	Emivi	ta	3
11.	Flas	sh Cards	5
2.	Farma	aci del SNC e del SNP	5
		Acetilcolina	6
		2.1.1. Agonisti colinergici	8
		2.1.2. Antagonisti colinergici	9
		Noradrenalina	12
		2.2.1. Simpaticomimetici	13
		2.2.2. Inibitori dei recettori adrenergici	17 18
		Serotonina (5-idrossitriptamina)	19
		Neurotrasmettitori purinici	20
		Monossido d'azoto (NO)	20
		L-glutammato	21
		GABA (Acido γ -amminobutirrico)	22
		GBH (Acido γ -idrossibutirrico)	23
		Melatonina	23
		Glicina	23
3.	Farma	aci del sistema cardiovascolare e renale	24
	3.1. I	Farmaci anti-ipertensivi	24
	3.2. I	Farmaci nell'angina e infarto cardiaco	25
	3	3.2.1. Nitrati organici	26
	3	3.2.2. Calcio antagonisti	27
		3.2.3. β -bloccanti	27
		Insufficienza cardiaca	28
		Aritmie Cardiache	30
		Diuretici	34
		3.5.1. Tubulo prossimale	34
		3.5.2. Ansa di Henle (tratto discendente)	35
		3.5.3. Ansa di Henle (tratto ascendente)	35
		3.5.4. Tubulo contorto distale	35 36
4	Farma	aci dell'emostasi	38

1 EMIVITA 3

Parte I. Farmacocinetica

1. Emivita

L'emivita di un farmaco è definita come il tempo necessario a ridurre il farmaco a ¹/₂ della quantità di farmaco presente nell'organismo allo steady-state.

Presupponendo che la quantità di farmaco nell'organismo abbia un andamento esponenziale decrescente con il tempo, si pu definire questo matematicamente come:

$$Q(t) = \alpha e^{-\beta t}$$

Per trovare i due parametri α e β consideriamo che a t=0 $Q(0)=Q_{\text{TOT}}=\alpha$ e quindi l'equazione sopra si pro scrivere come

$$Q(t) = Q_{\text{TOT}}e^{-\beta t}$$

e d'altra parte se consideriamo la velocità di eliminazione del farmaco al tempo t si ha che

$$-\frac{\mathrm{d} Q(t)}{\mathrm{d} t} = v_{\mathrm{elim}}(t) = -Q_{\mathrm{TOT}}(-\beta)e^{-\beta t}$$

Ma d'altra parte, per definizione

$$CL = \frac{v_{\text{ELIM}}^{\text{STEADY STATE}}}{c^{\text{STEADY STATE}}} = \frac{v_{\text{ELIM}}(0)}{c(0)}$$

e, a
$$t=0 \Rightarrow v_{\text{elim}}(0) = \text{CL} \cdot c(0) = -Q_{\text{TOT}}(-\beta)$$
 da cui $\beta = \frac{\text{CL} \cdot c(0)}{Q_{\text{TOT}}}$ ma

$$V_{\text{DIST}} = \frac{Q_{\text{TOT}}}{c(0)}$$

e quindi

$$\beta = \frac{\text{CL} \cdot \mathcal{G}(\theta)}{V_{\text{DIST}} \cdot \mathcal{G}(\theta)} \Rightarrow \beta = \frac{\text{CL}}{V_{\text{DIST}}} \text{ e quindi}$$

$$Q(t) = Q_{\text{TOT}} e^{-\frac{\text{CL}}{V_{\text{DIST}}}t}$$

a
$$t = t_{1/2} \Rightarrow Q(t_{1/2}) = \frac{1}{2}Q_{\text{TOT}} = Q_{\text{TOT}}e^{-\frac{\text{CL}}{V_{\text{DIST}}}t_{1/2}}$$

1 EMIVITA 4

e passando ai logaritmi naturali

$$\ln \frac{1}{2} = -\frac{\mathrm{CL}}{V_{\mathrm{DIST}}} t_{1/2} \Rightarrow t_{1/2} = \ln \frac{1}{2} \cdot \left(-\frac{V_{\mathrm{DIST}}}{\mathrm{CL}}\right) = \frac{\ln 2 \cdot V_{\mathrm{DIST}}}{\mathrm{CL}}$$

e quindi

$$t_{1/2} \simeq 0.7 \cdot \frac{V_{\mathrm{DIST}}}{\mathrm{CL}}$$

Parte II. Flash Cards

2. Farmaci del SNC e del SNP

2.1. Acetilcolina

2.1.1. Agonisti colinergici

²Presente nella fava del Calabar

²Unico degli organofosfati perchè altamente polare e può essere preparato come soluzione acquosa. Era utilizzato per il glaucoma, ora in disuso.

2.1.2. Antagonisti colinergici

³vedi inibitori dell'AchE

Antimuscarinici

GANGLIOPLEGICI

BLOCCANTI NEUROMUSCOLARI

Una mutazione del gene che codifica la pseudocolinesterasi plasmatica rende alcuni pazienti più sensibili a metabolizzare la succinilcolina.

Il n. di dibucaina è un parametro per definire tali anomalie e dipende dal fatto che la dibucaina inibisce la pseudo Ach
E normale per l'80% mentre l'inibizione è solo del 20% in quella modificata.

2.2. Noradrenalina

Organo	Tipo	Recettore	Azione
M. radiale	simpatico	α_1	costrizione
M. circolare	parasimpatico	M_3	costrizione pupilla
M. ciliare	simpatico	β	rilasciamento
M. ciliare	parasimpatico	M_2	contrazione
Nodo SA	simpatico	$\beta_1\beta_2$	accellerazione
Nodo SA	parasimpatico	M_2	rallentamento
Forza contrazione	simpatico	$\beta_1\beta_2$	aumento
Forza contrazione	parasimpatico	M_2	diminuzione
vasi muscolari	simpatico	β	rilasciamento
muscolo gastrointestinale	simpatico	$\alpha_2\beta_2$	rilasciamento
muscolo gastrointestinale	parasimpatico	M_3	contrazione
sfinteri gastrointestinali	simpatico	α_1	contrazione
sfinteri gastrointestinali	parasimpatico	M_3	rilasciamento

2.2.1. Simpaticomimetici

Le catecolamine sono degradate da COMT a livello intestinale e epatico per cui l'assorbimento per os è praticamente nulla.

L'assenza di uno o di ambedue i gruppi $___{\mbox{OH}}$ ne aumenta la disponibilità per os.

La metilazione sul primo carbonio a sx del gruppo ammino, comporta un'azione mista dei farmaci come nell'efedrina e l'anfetamina che hanno azione diretta e indiretta e quindi dipendono anche dalla presenza del neurotrasmettitore.

⁵Per cui può dare anche un aumento della pressione e per questo non si usa nelle emergenge da ipertensione

 $^{^5\}grave{\rm E}$ anche un inibitore della DOPA decarbossilasi per cui $\downarrow\!{\rm dopamina}.$

2.2.2. Inibitori dei recettori adrenergici

α -BLOCCANTI

 β -BLOCCANTI

⁶Attiva sia gli α che i β_2 . Se si immette un α -bloccante questo neutralizzerà l'effetto vasocostrittore dell'adrenalina lasciando la sola attivazione dei β_2 che quindi causerà una vasodilatazione da cui un azione inversa a quella usuale dell'adrenalina

2.3. Dopamina

Ricorda anche la dopamina è una catecolamina quindi anche i recettori dopaminergici sono recettori adrenergici

2.4. Serotonina (5-idrossitriptamina)

2.5. Neurotrasmettitori purinici

2.6. Monossido d'azoto (NO)

Per via inalatoria ↓shunt, ↓broncocostrizione, ↓ipertensione polmonare e quindi utile anche nella cura dell'asma.

Utile nel trattamento delle malattie neurovegetative e shock settico dove aumenta e nell'ateorscelosi e ipercolesterolemia dove diminuisce.

2.7. L-glutammato

Neurotrasmettitore ubiquitario eccitatorio del SNC

2.8. GABA (Acido γ -amminobutirrico)

Enzima GABA-transaminasi (o GABA amminotransferasi). Utile informazione relativamente al valproato (farmaco antiepilettico, vedi).

2.9. GBH (Acido γ -idrossibutirrico)

Proviene dalla sintesi del GABA. †rilascio GH, attiva le "vie della gratificazione", da euforia e disibinizione. Droga da strada.

2.10. Melatonina

2.11. Glicina

Nessun farmaco in uso agisce su questo recettore. Stricnina e tossina tetanica prevengono il rilascio di glicina

3. Farmaci del sistema cardiovascolare e renale

3.1. Farmaci anti-ipertensivi

 $^{^8{\}mbox{Vedere}}$ farmaci angina

⁸Vedere farmaci angina

3.2. Farmaci nell'angina e infarto cardiaco

 $^{^9{\}rm vedi}$ farmaci anti-ipertensivi

3.2.1. Nitrati organici

3.2.2. Calcio antagonisti

3.2.3. β -bloccanti

3.3. Insufficienza cardiaca

3.4. Aritmie Cardiache

Periodo refrattario tra fase 0 e ripristino del canale Na⁺ niattivati utile a consentire il propagarsi di un nuovo PdA.

¹⁰Ossia agiscono soprattutto sui canali in uso ossia aperti o refrattari. Questi sono maggiormente in questi stati nei tessuti aritmici e quindi si ha un maggiore effetto proprio su quei tessuti che stanno causando il problema rispetto a quelle che funzionano normalmente.

3.5. Diuretici

3.5.1. Tubulo prossimale

Nella parte terminale del tubulo gli ${\rm H^+}$ pompati fuori non trovano quasi più ${\rm HCO_3}^-$ da

convertire per cui ↓ pH dell'urina che fa attivare le base che o NaCl.

3.5.2. Ansa di Henle (tratto discendente)

3.5.3. Ansa di Henle (tratto ascendente)

3.5.4. Tubulo contorto distale

Non c'è qui l'ingresso del K^+ quindi non c'è il riassorbimento del Mg^{2+} . C'è invece il riassorbimento del Ca^{2+} in quanto c'è un canale dedicato e regolato dall'ormone PTH.

Il Ca^{2+} finisce poi nel flusso sanguigno tramite due canali Ca^{2+} finisce poi nel flusso sanguigno tramite due canali Ca^{2+} finisce poi nel flusso sanguigno tramite due canali Ca^{2+} finisce poi nel flusso sanguigno tramite due canali Ca^{2+} finisce poi nel flusso sanguigno tramite due canali Ca^{2+} finisce poi nel flusso sanguigno tramite due canali

3.5.5. Tubulo collettore

Il sodio viene riassorbito dal tubulo, il potassio vie escreto e la pompa sodio–potassio tenta di mantenere l'equilibrio. Più Na^+ viene assorbito e più K^+ viene escreto. Tutto questo regolato dall'aldosterone.

Ecco il motivo per cui i diuretici depauperano il corpo di potassio.

In questo stesso settore, l'ADH regola l'espressione di acquaporine di tipo 2 e \uparrow ADH causa \uparrow acq2 e quindi \uparrow \circlearrowleft H_2O

4. Farmaci dell'emostasi

Indice analitico

α-metildopa, 24 abciximab, 38 acetazolamide, 34 acido chinuretico, 22 acido etacrinico, 35 adenosina, 32, 33 adrenalina, 12, 13, 16 amiodarone, 32, 33 argatroban, 38 atenololo, 18 atropina, 9, 10	felilefrina, 13 fenilefrina, 16 fenossibenzamina, 17 fentolamina, 17 fisostigmina, 8, 9 flecaimide, 32 fosinopril, 24 furosemide, 24, 30, 35 idralazina, 24 idrocloratiazide, 36 Isosorbide mononitrato, 25
bacoflen, 22 betanecolo, 8, 9 captopril, 24, 30 carvedilolo, 18, 30 cilostazolo, 38	ketamina, 22 labetalolo, 17, 18, 24 lepirudina, 38 lidocaina, 32 losartan, 30
clonidina, 13, 16, 24 clopidogrel, 38 cloratiazide, 36 cocaina, 16 digitale, 30	mannitolo, 34 memantina, 22 metildopa, 16 metodazone, 36 metoprololo, 18, 30
digossina, vedi digitale, vedi digitale diidropiridine, 25 diltiazem, 25, 27 dipiridamolo, 38 dobutamina, 13, 16, 30 dopamina, 12 doxazosina, 24	neostigmina, 8, 9 nicotina, 8 nifedipina, 24, 25, 27 Nitroglicerina, 25 nitroprussiato, 24 noradrenalina, 12
ecotiopato, 9 ecotipato, 8 edofonio, 9 edrofonio, 8 efedrina, 13 elanapril, 30 enalapril, 24 eparina, 38 eptifibatide, 38	oxibutina, 10 oximetazolina, 16 pilocarpina, 8, 9 pralidossima, 9 pralidossina, 10 prazosina, 17 procainamide, 32 propanololo, 18, 32 propranololo, 24, 25

Indice analitico 40

rocuronio, 11

saclofen, 22 salbutamolo, 13, 16 scopolamina, 9, 10 sotalolo, 32, 33 spironolattone, 24, 36, 37 streptochinasi, 38 succinilcolina, 11

ticlopidina, 38 timololo, 18 tiotropio, 10 tiramina, 16 tirofiban, 38 tossina botulina, 9 tossina botulinica, 11 trimetafano, 9, 11

urochinasi, 38

varapamil, 27 verapamil, 25, 32

warfarin, 38