Habits

John Doe

March 22, 2005

This is what *p*-hacking looks like!

▶ Studies x_i are drawn according $x_i \sim N(\theta_i, 1/\sqrt{n})$

- ► Studies x_i are drawn according $x_i \sim N(\theta_i, 1/\sqrt{n})$
 - \triangleright θ_i are normalized they are *effect sizes*.

- ▶ Studies x_i are drawn according $x_i \sim N\left(\theta_i, 1/\sqrt{n}\right)$
 - $ightharpoonup heta_i$ are normalized they are *effect sizes*.
 - Fixed effects: $\theta_i = \theta$ for all *i*.

- ► Studies x_i are drawn according $x_i \sim N(\theta_i, 1/\sqrt{n})$
 - \triangleright θ_i are normalized they are *effect sizes*.
 - ▶ Fixed effects: $\theta_i = \theta$ for all *i*.
 - ▶ Random effects: $\theta_i \sim N(\theta_0, \sigma_0^2)$

- ► Studies x_i are drawn according $x_i \sim N(\theta_i, 1/\sqrt{n})$
 - \triangleright θ_i are normalized they are *effect sizes*.
 - Fixed effects: $\theta_i = \theta$ for all *i*.
 - ▶ Random effects: $\theta_i \sim N(\theta_0, \sigma_0^2)$
- ► The studies are usually closely related:

- ▶ Studies x_i are drawn according $x_i \sim N(\theta_i, 1/\sqrt{n})$
 - \triangleright θ_i are normalized they are *effect sizes*.
 - Fixed effects: $\theta_i = \theta$ for all *i*.
 - ► Random effects: $\theta_i \sim N(\theta_0, \sigma_0^2)$
- ► The studies are usually closely related:
 - Effect of a class of anti-depressiva;

- ▶ Studies x_i are drawn according $x_i \sim N(\theta_i, 1/\sqrt{n})$
 - \triangleright θ_i are normalized they are *effect sizes*.
 - Fixed effects: $\theta_i = \theta$ for all *i*.
 - ▶ Random effects: $\theta_i \sim N(\theta_0, \sigma_0^2)$
- ► The studies are usually closely related:
 - Effect of a class of anti-depressiva;
 - effect of some psychological intervention.

But what's up with the plot?

