Segundo Parcial de Fundamentos de Base de Datos

Noviembre 2006

Presentar la resolución del parcial:

- Con las hojas numeradas y escritas de un solo lado.
- Con la cantidad de hojas entregadas en la primer hoja.
- Con cédula de identidad y nombre en cada hoja.
- Comenzando cada ejercicio en una hoja nueva.
- Escrita a lápiz y en forma prolija.

Ejercicio 1 (9 ptos)

Dado el esquema relación R(A,B,C,D,E,G,H) y F un conjunto de dependencias funcionales sobre R.

Se sabe que ni C ni D participan en las dependencias de F.

Se realizan los siguientes cálculos:

- i) $A_F^+ = R \{CD\}$ ii) $(BGCD)_F^+ = R$
- iii) $(GCD)^+_F = R$
- iv) $(ECD)^+_F \neq R$

Indicar cuáles de las siguientes afirmaciones son correctas. Justificar la respuesta

- i) A es clave de R según F
- ii) CDA es clave de R según F
- iii) GCD es superclave de R según F pero no es clave
- iv) BGCD es clave de R según F
- v) EH no forma parte de ninguna de las superclaves de R

Ejercicio 2 (8 ptos)

Dado el esquema relación R (A,B,C,D,E,G,H), F un conjunto de dependencias sobre R, determinar si los siguientes conjuntos de tablas son descomposiciones de R. En caso afirmativo determinar si tienen join sin pérdida respecto a F. Justifique su respuesta.

```
\begin{split} F &= \{ \text{ A} \to \text{DE, BC} \to \text{GH, G} \to \text{B, E} \to \text{D} \} \\ &\text{i.} \quad \rho_1 = \{ \text{R}_1(\text{A},\text{B},\text{C}), \, \text{R}_2(\text{C},\text{D},\text{A}), \, \text{R}_3(\text{D},\text{B},\text{A},\text{H}) \, \} \\ &\text{ii.} \quad \rho_2 = \{ \text{R}_1(\text{A},\text{B},\text{C},\text{G}) \, \, \text{R}_2(\text{A},\text{G},\text{D},\text{E},\text{H}) \, \} \end{split}
```

Ejercicio 3 (9 ptos)

Dado el esquema relación R(A,B,C,D,E,G,H,I) y F un conjunto de dependencias sobre R, y los siguientes

```
\begin{array}{l} R_1(A,B,C,D) \\ R_2(E,G,A) \\ R_3(B,E,G,H,I) \end{array}
```

$$\mathsf{F} = \{\mathsf{GH} \to \mathsf{AB},\, \mathsf{C} \to \mathsf{AG},\, \mathsf{D} \to \mathsf{EB},\, \mathsf{E} \to \mathsf{HI},\, \mathsf{B} \to \mathsf{CD}\}$$

- i. Proyectar las dependencias de F en cada uno de los R_i (i = 1..3). Justificar la respuesta.
- ii. Indicar si la descomposición de R en R₁,R₂,R₃ preserva las dependencias funcionales. En caso negativo indicar todas las dependencias que se pierden. Justificar la respuesta

Ejercicio 4 (9 ptos)

Para cada uno de los siguientes esquemas relación y su respectivo conjunto de dependencias.

i. Indicar la máxima forma normal en que se encuentra. Justificar la respuesta.

1.
$$R_1(A,B,C,D,E)$$
 $F_1 = \{C \rightarrow DA, CD \rightarrow B, CA \rightarrow E\}$
2. $R_2(A,B,C,D,E)$ $F_2 = \{A \rightarrow DE, C \rightarrow AB, BD \rightarrow C\}$

ii. Sabiendo que en R_1 también se cumple la siguiente dependencia : D ->> BC. Obtener una descomposición de R_1 en 4NF con JSP

Ejercicio 5 (8 ptos)

Dado el siguiente Modelo Entidad Relación:

Lugar = Yate \cup Local Yate \cap Local = \emptyset

Se pide:

Pasar el modelo anterior a un Modelo Relacional especificando: esquemas relación, dependencias de inclusión, dependencias funcionales y dependencias multivaluadas Justificar la respuesta.

Ejercicio 6 (8 ptos)

Dadas las siguientes transacciones T₁, T₂, donde s_i representa la instrucción de inicio de la transacción:

 T_1 : s_1 , $r_1(x)$, $w_1(x)$, $r_1(y)$, $w_1(y)$, c_1 T_2 : s_2 , $r_2(z)$, $w_2(z)$, $r_2(y)$, $w_2(y)$, $r_2(x)$, $w_2(x)$, c_2

- a) Suponga que el sistema maneja sólo locks binarios.
 - a. Si es posible, coloque los locks en las transacciones de forma que no respete 2PL básico. Justifique
 - Si es posible, coloque los locks en las transacciones de forma que respete 2PL riguroso y no respete 2PL conservador.
 - Caracterice las historias que se pueden construir con las transacciones en la parte b. Justifique.
 - d. Si es posible, coloque los locks en las transacciones de forma que respete 2PL riguroso y a la vez respete 2PL conservador.
 - e. Caracterice las historias que se pueden construir con las transacciones en la parte d. Justifique.

Ejercicio 7 (9 ptos)

En la base de datos de una empresa de servicios informáticos se tienen las siguientes tablas relacionales:

Abonados(Id_equipo, vendedor, tipo-abono, v-cuota, fecha, marca)

Esta tabla representa los equipos abonados a la empresa.

En esta tabla, para cada equipo se tiene el vendedor que realizó la suscripción, el valor actual de la cuota y la fecha en que se realizó la suscripción.

Servicios(Id_equipo, Cod-servicio, fecha, importe, status)

Esta tabla representa los servicios realizados a cada equipo. Para cada equipo, dado un código de servicio y una fecha, la tabla contiene el importe de ese servicio y el status. El atributo status indica si el importe fue saldado al contado, si es a crédito o si está con mora.

Clientes(Cl Cli, ld equipo)

Esta tabla contiene los equipos abonados junto con los clientes dueños de los mismos.

Dada la siguiente consulta SQL:

SELECT CI_Cli, vendedor
FROM Clientes C, Servicios S, Abonados A
WHERE A.Id_equipo = S.Id_equipo AND
A.Id_equipo = C.Id_equipo AND
A.marca = 'Dell' AND
S.status = 'Mora'

Considerando la siguiente información:

Tabla	Columna	Valores Distintos	
Servicios	Status	El 1% de los servicios están en "mora"	
Abonados	Marca	25 (dist. Uniforme)	

Tabla	Cant. Tuplas	Información adicional
Abonados	720	
Servicios	3500	 - Un equipo puede estar en estado de mora en un solo servicio. - Solo 15 equipos de los que se encuentran en mora son marca "Dell".
Clientes	720	- En esta tabla se encuentran todos los equipos abonados.

Indice	Tabla/Atributo	Tipo
Ind_Cli1	Clientes/CI _Cli	Secundario
Ind_Cli2	Clientes/Id_equipo	Primario
Ind_Abo1	Abonados/marca	Secundario
Ind_Abo2	Abonados/Id_equipo	Primario

- a) Dar un plan lógico para la consulta, optimizado mediante las heurísticas vistas en el curso, sin considerar los tamaños. Mostrar los pasos aplicados.
- b) Calcular los tamaños de los resultados de cada operación aplicada (considerando solamente las operaciones de selección y join). En caso de que lo considere conveniente, modificar el plan lógico de la parte a teniendo en cuenta los tamaños.
- c) Dar un plan físico cualquiera para el plan lógico de la parte b, utilizando los índices cuando es posible.