Extreme Gradient Boosting

H2O POWERED MACHINE LEARNING

FILIP WÓJCIK

SENIOR DATA SCIENTIST, UNIVERSITY LECTURER

FILP.WOJCIK@OUTLOOK.COM

Agenda

- 1. Machine learning madness
 - Core machine learning technologies
 - Machine learning overview
- 2. Is deep learning an ultimate algorithm (hint: no!)?
 - Neural networks vs the rest of the world
 - Top machine learning algorithms
- 3. Xgboost overivew
 - Decision trees primer
 - Boosted trees powerful extension to decision trees
- 4. H2O framework scalable machine learning tool
 - H2O architecture
 - H2O and big data
 - DEMO!

- Data science & machine learning are gaining popularity in recent years
- Rapid boost of data science & analytical software
- Big data influence larger volumes of data can be processed now, without any problems
- Machine learning everywhere!

Machine learning job positions count

R jobs

Python jobs

Source: r4stat, The Popularity of Data Science Software by Robert A. Muenchen, http://r4stats.com/articles/popularity/

Machine learning core technologies

Source: KDNuggets, Jean-Francois Puget, 2017 The Most Popular Language For Machine Learning and Data Science Is..., http://www.kdnuggets.com/2017/01/most-popular-language-machine-learning-data-science.html

- Deep learning seems to be the most hyped ML algorithm nowadays
- Many analysts try to use it to solve ALL kinds of problems
- In reality deep learning is great tool for:

- Motion detection
- ✓ Sentiment analysis
- Classification in fuzzy contexts

Trend identification

No free lunch theorem!

No learning algorithm has an inherent superiority over other learning algorithms for all problems.

Wolpert, D.H., Macready, W.G. (1997), "No Free Lunch Theorems for Optimization"

Top multi-purpose machine learning algorithms

5. K-means clustering

8. Naive Bayes

Source:

UpX, Namartha Peddi, 10 most popular machine learning algorithms, https://upxacademy.com/10-popular-machine-learning-algorithms/ Data Science Central, Top 10 most popular machine learning algorithms, http://www.datasciencecentral.com/profiles/blogs/top-10-machine-learning-algorithms

	Xgboost	Deep learning / ANN
Building complexity	Fast to design & train	Require carefull tuning
Data types	Tabular/structured data	Unstructured data/pictures/speech/etc.
Volumes of data	High to moderate	Small to INSANE
Mathematical explanation	Gradient function	Black - box

- Based on decision trees & random forests
- Using boosting procedure learning on previous mistakes:
 - Putting more emphasis on wrongly classified examples
 - Training new classifiers one-by-one, with instruction to "watch out" for particular errors
- Can be used to both tasks:
 - Classification
 - Regression
- Both tasks are based on assigning numerical score, which corresponds to decision certaninty level (classification) and/or raw numeric result

client	hotel	addons	money_spent	offer
business	Hilton	trip	40,000	deluxe
business	Hilton	full board	38,000	deluxe
business	Hilton	trip	40,000	deluxe
middle class	Meta	none	800	basic
middle class	Meta	meal	900	basic
manager	Meta	spa	1,500	premium

Value	Count	%
Deluxe	3	0.5
Basic	2	0.333
Premium	1	0.16666

	client	hotel	addons	money_spent	offer		
	business	Hilton	trip	40,000	deluxe		
	business	Hilton	full board	38,000	deluxe		
	business	Hilton	trip	40,000	deluxe		
	middle class	Meta	none	800	basic		
	middle class	Meta	meal	900	basic		
	manager	Meta	spa	1,500	premium		
		Cli	ient == business?				
	True				False		
	1					<u> </u>	
addons	money_spent	offer		hotel	addons	s money_spent	offer
trip	40,000	deluxe		Meta	none	800	basic
full board	38,000	deluxe		Meta	meal	900	basic

hotel

Hilton

Hilton

Hilton

- Multiple decision trees, each learning from mistakes of its predecessors
- Each tree receives slightly randomized dataset (different columns, resampled rows), to get rid of noise
- Steps:
 - 1. Fit initial model simple prediction, e.g. mean: $F_1(x) = \hat{y}$
 - 2. Calculate error magnitude for each data point: $h_1(x) = y F_1(x)$
 - 3. Create a new model, which will correct errors of its predecessor: $F_2(x) = F_1(x) + h_1(x)$
 - 4. Continue until error rates are small enough or until reaching tree limit

$$F(x) = F_1(x) \rightarrow F_2(x) \rightarrow \cdots \rightarrow F_n(x)$$

Source: official Xgboost documentation. http://xgboost.readthedocs.io/en/latest/model.html

f(🎒

f(👺

$$)=-1-0.9=-1.9$$

Source: official Xgboost documentation. http://xgboost.readthedocs.io/en/latest/model.html

- Additional performance tuning tricks:
 - Using random set of columns for every tree prevents overfitting
 - Using random set of examples for every tree prevents overfitting
 - Using different tree depths prevents overfitting ©

- H2O Al is
 - Open-source
 - Fast
 - Scalable
 - In-memory

processing engine, equipped with predefined set of machine learning models

- Big-data ready and optimized
 - Special data structures (hex)
 - Highly compressed
 - Lazy operations (like in Apache Spark)
 - Immutable, distributed structures

26

Source: official H2O documentation, http://docs.h2o.ai/h2o/latest-stable/h2o-docs/index.html

DEMO!

