Wdrożenie innowacyjnej platformy Predictive Maintenance w przedsiębiorstwie produkcyjnym

Mikołaj Szechniuk, Hubert Brzozowski, Kacper Miakinko

1. Wprowadzenie

1.1 Ogólna prezentacja kontekstu i problemu

W obliczu globalnej konkurencji i rosnących wymagań klientów przedsiębiorstwa produkcyjne potrzebują strategii pozwalających na maksymalizację dostępności maszyn oraz minimalizację kosztów napraw i przestojów.

Tradycyjne podejście do utrzymania ruchu opiera się często na naprawach poawaryjnych lub prewencyjnych w stałych odstępach czasu, co generuje niepotrzebne koszty i nieprzewidywalne postoje. Rozwiązaniem jest wdrożenie platformy Predictive Maintenance, która, opierając się na danych z czujników IoT oraz algorytmach uczenia maszynowego, pozwala przewidzieć awarie, a tym samym planować konserwacje w sposób optymalny.

1.2 Prezentacja koncepcji innowacji

Innowacja to zaawansowana platforma do przewidywania awarii maszyn. Kluczowe elementy:

- Sensory IoT monitorujące w czasie rzeczywistym parametry pracy (temperatura, wibracje, hałas).
- Algorytmy ML analizujące dane historyczne i bieżące, prognozujące prawdopodobieństwo i czas wystąpienia awarii.
- Interfejsy webowe i mobilne dla działu utrzymania ruchu do zarządzania planami konserwacyjnymi, alertami i raportami.

1.3 Prezentacja środowiska wdrożenia

Wdrożenie w średnim zakładzie produkcyjnym obróbki metali, posiadającym linie CNC i inne maszyny. Otoczenie:

- Różnorodny park maszynowy (nowe i starsze urządzenia),
- Infrastruktura sieciowa przemysłowa,
- Otwartość kadry zarządzającej i działu IT na innowacje.

Schematy obrazujące problemy i koncepcje

Diagram Ishikawy identyfikujący przyczyny nieplanowanych przestojów:

Flowchart (uproszczony) procesu obecnego utrzymania ruchu:

• W późniejszych sekcjach zostaną przedstawione analizy i wnioski potwierdzające zasadność wdrożenia nowej platformy.

2. Analiza Strategiczna

2.1 Customer Journey Map (CJM) – Perspektywa działu utrzymania ruchu:

- **Obecnie:** Intuicyjne decyzje, brak precyzyjnych danych, niespodziewane awarie.
- **Po wdrożeniu platformy:** Dostęp do alertów i prognoz, planowanie przeglądów z wyprzedzeniem, redukcja stresu i kosztów.

2.2 Model SWOT

- **S** (**Mocne strony**): Dostęp do nowoczesnych technologii IoT, wsparcie zarządu, kompetencje działu IT.
- **W (Słabe strony):** Koszty początkowe, konieczność szkoleń, konieczność integracji z istniejącymi systemami.
- O (Szanse): Popularność IoT, możliwość obniżenia kosztów i zwiększenia jakości.
- **T** (**Zagrożenia**): Konkurencja wdrażająca podobne rozwiązania, potencjalne problemy z bezpieczeństwem danych.

2.3 Model PESTLE

- P: Stabilne warunki polityczne, wsparcie programów innowacji.
- E: Presja kosztowa, potrzeba zwiększania efektywności.
- S: Klienci cenia terminowość i jakość dostaw.
- **T:** Dynamiczny rozwój IoT i ML.
- L: Normy bezpieczeństwa i RODO.
- E: Równowaga ekologiczna, oszczędność energii i materiałów.

2.4 Model 5 Sil Portera

- Nowi gracze: Bariery wejścia średnie, wymagana wiedza technologiczna.
- **Dostawcy:** Umiarkowana siła (dostawcy czujników i chmury).
- Nabywcy: Wewnetrzny dział utrzymania ruchu to odbiorca końcowy.
- **Substytuty:** Tradycyjne utrzymanie ruchu (mniej efektywne).
- **Rywalizacja:** Wzrost popularności rozwiązań Industry 4.0.

2.5 Business Canvas Model (kluczowe elementy)

- Kluczowe zasoby: Czujniki, infrastruktura IT, algorytmy ML, specjaliści IT.
- **Działania:** Gromadzenie i analiza danych, aktualizacja modeli ML, utrzymanie systemu.
- Wartość: Redukcja przestojów, optymalizacja konserwacji, mniejsze koszty.
- **Relacje:** Wewnętrzne wsparcie i szkolenia.
- **Kanały:** Interfejs platformy web/mobilnej, integracja z ERP.
- **Koszty i przychody:** Koszty wdrożenia i utrzymania vs. oszczędności z redukcji awarii.

2.6 Macierz Kluczowych Czynników

• Innowacyjność (wysoka), Redukcja kosztów (wysoka), Skalowalność (średnia), Integracja (średnia).

Platforma zapewnia wysoką wartość dodaną w kluczowych obszarach efektywności i innowacyjności.

2.7 Benchmarking

Porównanie z ofertami komercyjnymi: nasze rozwiązanie bardziej elastyczne, dostosowane do specyfiki maszyn, kontrola nad danymi i brak zależności od zewnętrznych dostawców.

2.8 Analiza ryzyka (Analiza wielokryterialna + Monte Carlo)

Identyfikowane ryzyka:

- Awarie sieci wpływ wysoki, prawdopodobieństwo średnie.
- Błędy algorytmów wpływ umiarkowany, prawdopodobieństwo niskie.
- Opor personelu wpływ średni, prawdopodobieństwo umiarkowane. Symulacja Monte Carlo wykazała, że wdrożenie szkoleń i testów ograniczy negatywny wpływ do akceptowalnego poziomu.

3. Strategia wdrożenia innowacji

3.1 Plan strategii rynkowej

Choć wdrożenie wewnętrzne, celem jest zwiększenie konkurencyjności i efektywności. W przyszłości rozważa się komercjalizację rozwiązania dla innych zakładów.

3.2 Plan struktury organizacyjnej

- Zespół ds. Predictive Maintenance: inżynier utrzymania ruchu, specjalista IoT, data scientist.
- Raportowanie do kierownika działu produkcji.
- Ścisła współpraca z działem IT i jakości.

3.3 Plan kluczowych procesów

• Gromadzenie danych (IoT) → Analiza (ML) → Generowanie alertów → Decyzje o konserwacjach → Ciągłe doskonalenie modeli.

Diagram procesu (Flowchart / UML Activity Diagram):

3.4 Plan procesu zarządzania przedsięwzięciem (Agile)

- Metodyka: Scrum
- Sprinty 2-tygodniowe, regularne spotkania, szybka reakcja na zmiany.
- Product Backlog: integracje czujników, modele ML, interfejs użytkownika.

3.5 Plan kontroli i zarządzania jakością

- KPI: redukcja nieplanowanych przestojów o 30%, dokładność prognoz >90%.
- Audyty danych, testy modeli, raportowanie kwartalne.
- Porównanie danych sprzed i po wdrożeniu.

3.6 Harmonogram wdrożenia (Wykres Gantta – opis tekstowy)

Harmonogram obejmuje kluczowe etapy realizacji projektu Predictive Maintenance, podzielone na logiczne sekcje i zadania. Poniżej znajduje się krótkie podsumowanie poszczególnych etapów:

1. Analiza i Przygotowanie (2025-01-01 – 2025-02-28)

- **Analiza wymagań** (2025-01-01 2025-02-15): Zbieranie danych, identyfikacja potrzeb technicznych i procesowych.
- **Zakup czujników** (2025-02-16 2025-02-28): Nabycie odpowiedniego sprzętu IoT do monitorowania maszyn.

2. Integracje Technologiczne (2025-03-01 – 2025-04-30)

- **Integracja IoT** (2025-03-01 2025-04-15): Połączenie czujników z platformą IoT oraz konfiguracja.
- **Prototyp platformy** (2025-03-10 2025-04-20): Budowa wstępnej wersji systemu (frontend + backend).
- **Pre-testy** (2025-04-21 2025-04-30): Weryfikacja działania platformy w środowisku laboratoryjnym.

3. Szkolenia i Optymalizacja (2025-05-01 – 2025-06-25)

- **Szkolenia personelu** (2025-05-01 2025-05-18): Przeprowadzenie warsztatów dla działu UR i zespołu IT.
- **Optymalizacja algorytmów ML** (2025-05-19 2025-06-17): Dostosowanie modeli predykcyjnych do specyfiki danych maszynowych.
- **Testy produkcyjne** (2025-06-18 2025-06-30): Sprawdzenie systemu na rzeczywistych danych z maszyn.

4. Uruchomienie i Monitoring (2025-07-01 – 2025-07-31)

- **Go live** (2025-07-01 2025-07-05): Wdrożenie systemu w środowisku produkcyjnym.
- **Monitoring i udoskonalenia** (2025-07-06 2025-07-31): Ciągłe monitorowanie działania systemu oraz implementacja usprawnień.

Łączny czas realizacji: 7 miesięcy

Projekt zakłada sukcesywną realizację zadań od analizy wymagań do pełnego uruchomienia systemu Predictive Maintenance. Dzięki starannie zaplanowanemu harmonogramowi, każdy etap jest logicznie powiązany, co minimalizuje ryzyko opóźnień.

Podsumowanie

Wdrożenie platformy Predictive Maintenance jest uzasadnione i poparte solidnymi analizami (SWOT, PESTLE, 5 Sił Portera, CJM, Benchmarking, Analiza ryzyka). Strategia zakłada spójne działania organizacyjne, technologiczne i procesowe, a plany oraz harmonogram wdrożenia uwzględniają kluczowe aspekty integracji, jakości oraz zarządzania ryzykiem. Dodane schematy, diagramy i wykres Gantta pozwalają w pełni zrozumieć etapy i zasady funkcjonowania innowacji, wspierając skuteczną realizację przedsięwzięcia.