The Hong Kong University of Science & Technology

MATH243 - Statistical Inference

Midterm Examination - Fall 02/03

Answer ALL questions

All Equal Marks

Date: 1 November 2002 (Fri)

Time allowed: 2 Hours

- 1. Let $X_1, X_2, ..., X_n$ denote a random sample from $B_i(1, p)$.
 - (a) Find the maximum likelihood estimator of p.
 - (b) Is the estimator in (a) an unbiased estimator of p?
 - (c) Find Cramer Rao lower bound for the variance of an unbiased estimator for p.
 - (d) Find $Var(\overline{X})$.
 - (e) Find $E(\overline{X}(1-\overline{X}))$. Then, find the value of c so that $c\overline{X}(1-\overline{X})$ is an unbiased estimator of $Var(\overline{X})$.
- 2. Let $X_1, X_2, ..., X_n$ be a random sample from a uniform distribution on the interval $[\theta 1/2, \theta + 1/2]$.
 - (a) Find the method of moments estimator for θ .
 - (b) Is the estimator in (a) an unbiased estimator for θ ?
 - (c) Find the variance of the estimator in (a).
 - (d) Prove that the mid-range $Y = \frac{1}{2}(Y_1 + Y_n)$ where $Y_1 = \min(X_i)$ and $Y_n = \max(X_i)$ is an unbiased estimator for θ .
 - (e) **OPTIONAL** (4 marks) Find the variance of the estimator *Y* in (d). Is the variance in (c) greater?

Hint: $f_{Y_1,Y_n(y_1,y_n)} = n(n-1)(y_n - y_1)^{n-2}$ for $\theta - 1/2 \le y_1 \le y_n \le \theta + 1/2$

3. Let $X_1, ..., X_n$ be a random sample from $N(\mu, \sigma^2)$. Define

$$\overline{X}_k = \frac{1}{k} \sum_{i=1}^k X_i ,$$

$$\overline{X}_{n-k} = \frac{1}{n-k} \sum_{i=k+1}^n X_i ,$$

and

$$S_k^2 = \frac{1}{k-1} \sum_{i=1}^k (X_i - \overline{X}_k)^2,$$

$$S_{n-k}^2 = \frac{1}{n-k-1} \sum_{i=k+1}^n (X_i - \overline{X}_{n-k})^2.$$

Answer the following:

- (a) What is the distribution of $((k-1)S_k^2 + (n-k-1)S_{n-k}^2)/\sigma^2$?
- (b) What is the distribution of $(\overline{X}_k + \overline{X}_{n-k})/2$?
- (c) What is the distribution of $\sigma^{-2}(X_i \mu)^2$?
- (d) What is the distribution of S_k^2/S_{n-k}^2 ?
- (e) What is the distribution of $(\overline{X}_n \mu)/(S_n/\sqrt{n})$?

If $\mu = 0$ and $\sigma^2 = 1$,

- (f) What is the distribution of $k\overline{X}_k^2 + (n-k)\overline{X}_{n-k}^2$?
- (g) What is the distribution of X_1^2/X_2^2 ?
- (h) What is the distribution of X_1/X_n ?
- (i) What is the distribution of $(X_2 + X_1)^2 / (X_2 X_1)^2$?

Note: Write your answer as: $S_n^2 \sim \frac{\sigma^2}{n-1} \chi^2(n-1)$.

***** END *****