Школьные материалы, полезные при решении диффуров

I) На всякий случай элементарные алгебраические правила

Раскрытие скобок: если перед скобкой стоит число, то их можно раскрыть, умножив **каждое** слагаемое на это число:

$$2 \cdot (-5 + 3 - 7) = 2 \cdot (-5) + 2 \cdot 3 + 2 \cdot (-7)$$

Если перед скобками стоит знак «+», то их можно просто убрать:

$$+(-5+3-7) = -5+3-7$$

Если перед скобками стоит знак «—», то их можно убрать, сменив **у каждого** слагаемого знак:

$$-(-5+3-7)=5-3+7$$

В уравнении любое слагаемое можно перенести в другую часть, сменив у него знак. Рассмотрим, например, уравнение $x^2 - 7ax + 14b + 18 = y^2 - 3x + 5$ и перенесём все его члены левой части в правую часть:

$$0 = y^2 - 3x + 5 - x^2 + 7ax - 14b - 18$$

Части уравнения можно безболезненно поменять местами:

 $y^2 - 3x + 5 - x^2 + 7ax - 14b - 18 = 0$, р Авно, как и произвольно перетасовать слагаемые в пределах ОДНОЙ части:

$$-3x - 18 - x^2 + y^2 + 5 + 7ax - 14b = 0$$

Обе части уравнения можно умножить или разделить на ненулевое число, при этом его корни не меняются. Например, в уравнении $4x^2 + 2x = 2\sqrt{x} + 2a - 6$ целесообразно вынести за скобки «двойку» и разделить на неё обе части:

$$2(2x^2 + x) = 2(\sqrt{x} + a - 3)$$

$$2x^2 + x = \sqrt{x} + a - 3$$

Если мы делим обе части уравнения на выражение, содержащее переменные, то рискуем потерять корни, так при делении на x+2:

$$\frac{2x^2 + x}{x + 2} = \frac{\sqrt{x} + a - 3}{x + 2}$$
 — мы рискуем потерять корень $x = -2$ (если он является

корнем исходного уравнения). Однако при делении на положительное или отрицательное выражение, например, на $x^2 + 1$, всё проходит «без последствий».

Обратно: если мы умножаем обе части на выражение, содержащее переменные, то рискуем «приобрести» посторонние корни:

$$x(2x^2 + x) = x(\sqrt{x} + a - 3) - 3$$
десь у нас появился посторонний корень $x = 0$

Другой пример: при умножении обеих частей
$$\frac{x^2 + 2x + a + 3}{x + 2} = 0$$
 на $x + 2$:

 $x^2 + 2x + a + 3 = 0$ — мы рискуем «приобрести» посторонний корень x = -2 (если он является корнем числителя)

Правило пропорции $\frac{a}{b} = \frac{c}{d}$, (считаем, что a, b, c, d отличны от нуля)

То, что находится внизу одной части – можно переместить наверх другой части. То, что находится вверху одной части – можно переместить вниз другой части.

Крутим-вертим:

$$ad = bc$$
, $a = \frac{bc}{d}$, $d = \frac{bc}{a}$, $\frac{d}{b} = \frac{c}{a}$, $\frac{ad}{b} = c$, $b = \frac{ad}{c}$ и т.д.

II) Правила действий со степенями:

$$\frac{1}{x^a} = x^{-a}$$

$$x^a \cdot x^b = x^{a+b} \text{, в частности: } \frac{x^a}{x^b} = x^a \cdot x^{-b} = x^{a-b}$$

$$(x^a)^b = x^{a\cdot b}$$

Радикал можно представить в виде $\sqrt[b]{x^a} = x^{\frac{a}{b}}$

ІІІ) Преобразование логарифмов:

Основное логарифмическое тождество: $a^{\log_a b} = b$, в частности: $e^{\ln b} = b$. Уравнение $\ln a = b$ можно представить в виде $a = e^b$

Некоторые правила:

$$\ln|a| + \ln|b| = \ln|ab|$$

$$\ln|a| - \ln|b| = \ln\left|\frac{a}{b}\right|$$

 $\ln a^k = k \ln |a|$, если k – чётное; при других значениях k модуль не нужен.

IV) Решение квадратного уравнения $ax^2 + bx + c = 0 \ (a \ne 0)$

Сначала нужно найти дискриминант: $D = b^2 - 4ac$

1) Если D > 0, то уравнение имеет два действительных корня:

$$x_1 = \frac{-b - \sqrt{D}}{2a}, \quad x_2 = \frac{-b + \sqrt{D}}{2a}$$

2) Если D = 0, то уравнение имеет два совпавших (кратных) корня:

$$x_1 = x_2 = \frac{-b}{2a}$$

3) Если D < 0, то уравнение имеет два сопряженных комплексных корня:

$$x_{1,2} = \frac{-b \pm \sqrt{|D| \cdot i}}{2a}$$
, где $|D|$ — модуль дискриминанта.

Квадратный трёх
член раскладывается на множители следующим образом: $ax^2 + bx + c = a(x - x_1)(x - x_2)$