EECS 376: Foundations of Computer Science

Chris Peikert 5 April 2023

Cryptography

Cryptography's Core Goals

- 1) Confidentiality: ensuring that only *intended* recipients can read data. (Tool: encryption.)
- 2) Integrity: ensuring that data has not been undetectably altered. (Tool: hashing.)
- 3) Authenticity/authentication: ensuring that data came from a claimed source / that an entity is who it claims to be. (Tool: signatures/MACs.)

WARNING!!:

The crypto we are about to show you in insecure in many ways. Do not use! Take EECS 388/475/575 for more info.

Confidentiality: Motivation

* Communication on the internet is "public": data sent over it may be *intercepted* en route to its destination.

Q: Can we prevent an *eavesdropper* from learning the messages we send?

Model: Alice, Bob, and Eve

* Two parties **Alice** and **Bob** communicate over a <u>public</u> <u>channel</u>, and there is an eavesdropper **Eve** that <u>sees all the</u> <u>data they send</u>.

* Ideally: Eve should not be able to "understand" their messages, even if she knows their communication protocol.

* Example: "ig-pay atin-lay" is easily decoded if one knows the protocol.

Kerckhoffs's principle: "A cryptosystem should be secure even if everything about the system, **except the key**, is public knowledge."

Cryptosystem Security

- * **Kerckhoffs's principle:** "A cryptosystem should be secure even if everything about the system, **except the key**, is public knowledge."
- * Two types of security:
- 1. Information-Theoretic (unconditional): Eve cannot break security, even using unbounded computation.
- 2. Computational (conditional): In order to break security, Eve will have to solve a (conjectured) computationally hard problem.

Ζ

0

В

Ρ

0

One-Time Pad Encryption

- Beforehand, Alice and Bob agree on a *uniformly random* secret key (a string over the message alphabet).
- Alice *encrypts* her message (of the <u>same length</u> as the key) by "padding" it with ("adding" it to) the secret key.
- Bob *decrypts* the message by subtracting the secret key.

ciphertext

																								_	
Α	В	С	D	Е	F	G	Н	-	٦	K	Ш	М	Z	0	Р	Q	R	S	Т	U	>	W	Χ	Υ	Z
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

One-Time Pad Details

- * Let $m = m_1 m_2 ... m_n$ be a message and $k = k_1 k_2 ... k_n$ be a secret key.
- * m_i and k_i are bits, or alphabet chars (e.g., from $\{0,1,...,25\}$)
- * Encryption $E_k(m)$: $c_1 \equiv m_1 + k_1 \pmod{26}$, $c_2 \equiv m_2 + k_2 \pmod{26}$, ...
- * **Decryption** $D_k(c)$: $m_1 \equiv c_1 k_1 \pmod{26}$, $m_2 \equiv c_2 k_2 \pmod{26}$, ...
- * Information-Theoretic Security: From c, Eve "learns nothing" about m that she didn't already know beforehand!
- * Downside 1: The key must be as long as the message.
- * Downside 2: It's insecure to use the same key twice.
- * Downside 3: Alice and Bob must agree on a secret, uniformly random key beforehand.

Smaller Key: Caesar Cipher

- * Encryption $E_k(m)$: $c_1 \equiv m_1 + k_1 \pmod{26}$, $c_2 \equiv m_2 + k_2 \pmod{26}$
- * Downside 1: n key symbols k_i are required
- * Idea: reuse some key symbol(s)?
- * Caesar cipher: for all i: $k_i = s$ (just one random symbol)
- * Encryption $E_s(m)$: for all i: $c_i \equiv m_i + s \pmod{26}$
- * Observation: The frequency of symbols in c match those of m.
- * Conclusion: easily breakable by "frequency analysis": e.g., E (4), T (19) are the most common in English text.
- * Exercise: Find m and s, given $E_s(m) = \text{CADCQ}$.

Α	В	С	D	Е	F	G	Н	-	J	K	Ш	М	N	0	Р	Q	R	S	Т	J	>	W	Χ	Υ	Z
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

Relative Frequencies of Letters in the English Language

Insecurity of Two-Time Pad

- * Let $m = m_1 m_2 \dots m_n$ be a message.
- * Let $k = k_1 k_2 ... k_n$ be a secret key.
- * Encryption $E_k(m)$: $c_1 \equiv m_1 + k_1 \pmod{26}$, $c_2 \equiv m_2 + k_2 \pmod{26}$
- * Downside 2: Can't use the same key twice.
- * Let $m' = m'_1 m'_2 \dots m'_n$ be a (different) message.
- * Encryption $E_k(m')$: $c'_1 \equiv m'_1 + k_1 \pmod{26}$, $c'_2 \equiv m'_2 + k_2 \pmod{26}$
- * Consider: $d_1 \equiv c_1' c_1 \equiv m_1' + k_1 (m_1 + k_1) \equiv m_1' m_1 \pmod{26}$
- * Observation: m' m is not random!
- * Conclusion: Can use statistical attacks

Two-Time Pad Attack

Ciphertext c = m + k

c' = m - m' Ciphertext c' = m' + k

- * Key point: Plaintexts are not uniformly distributed!
 - * Same core weakness in Caesar cipher, substitution schemes, and reusing one-time pads: ciphertexts are correlated in exploitable ways.

Establishing a Shared Secret Key

Problem Setup: Many encryption schemes require a pre-established secret key. So Alice wants to a establish a secret with Bob—but Eve sees all their communication.

Question: (How) can two entities set up a shared secret key over a public channel?

A Tale of Two Towers

* The Emperor of the North Tower wants to send North Tower a gift to the Emperor of the Central Tower.

- * The emperors never leave their towers.
- * Their couriers travel back and forth, but they steal anything that is unlocked.
- * If the box has one Emperor's lock, the other Emperor cannot open it.
- * Question: Can the gift be sent securely?

Central Tower

A Tale of Two Towers

- * Emperor from the North Tower adds her lock
- * Emperor from the Central Tower adds his lock
- * Emperor from the North Tower removes her lock
- * Emperor from the Central Tower removes his lock

Review: Number Theory

- * Two integers a and b are **equivalent modulo** an integer $n \ge 2$, denoted $a \equiv b \pmod{n}$, if they have the same remainder when divided by n.
- * Fact: In modular addition/multiplication, we can replace any number with an equivalent one:

$$37 + 42 \equiv 1 + 0 \equiv 1 \pmod{3}$$

 $1024 \cdot 152 \equiv 4 \cdot 2 \equiv 3 \pmod{5}$

* Fast modular exponentiation:

$$3^8 \equiv (9)^4 \equiv 4^4 \equiv (16)^2 \equiv 1^2 \equiv 1 \pmod{5}$$

A Mathematical "Lock"

- * Let p be a prime and let $\mathbb{Z}_p^* = \{1, ..., p-1\}$.
- * An integer g is a **generator** of \mathbb{Z}_p^* if, for every $x \in \mathbb{Z}_p^*$, there exists $i \in \mathbb{N}$ such that $g^i \equiv x \pmod{p}$.
- * Example: 3 is a generator of \mathbb{Z}_7^* , but 2 isn't.
- * Fact: \mathbb{Z}_p^* has a generator for *any* prime p.

Diffie-Hellman Protocol

$$x = (g^a \bmod p)$$

$$y = (g^b \bmod p)$$

System parameters: a huge prime p and a generator g of \mathbb{Z}_p^*

Alice chooses secret, random $a \in \mathbb{Z}_p^*$, sends $x = (g^a \mod p)$ to Bob.

Bob chooses secret, random $b \in \mathbb{Z}_p^*$, sends $y = (g^b \mod p)$ to Alice.

Their secret shared key is $k = (g^{ab} \mod p)$.

Alice <u>locally</u> computes: $y^a \equiv (g^b)^a \equiv g^{ba} \pmod{p}$.

Bob <u>locally</u> computes: $x^b \equiv (g^a)^b \equiv g^{ab} \pmod{p}$.

Key: These are equal!

Diffie-Hellman: Example

Secret information is **bold**, in red.

- * Toy Example: Alice and Bob use published modulus p=23 and generator g=5 of \mathbb{Z}_p^* .
 - * Alice chooses secret random a = 4, sends Bob $x = g^a \mod p = 5^4 \mod 23 = 4$.
 - * Bob chooses secret random b = 3, sends Alice $y = g^b \mod p = 5^3 \mod 23 = 10$.
 - * Alice computes $k = y^a \mod p = 10^4 \mod 23 = 18$
 - * Bob computes $k = x^b \mod p = 4^3 \mod 23 = 18$
 - * Alice and Bob now share a secret key!: 18
- * Observation: Alice and Bob compute the same value $x^b \mod p = g^{ab} \mod p = g^{ba} \mod p = y^a \mod p$.

Diffie-Hellman: Security

- * Eve sees p, g, $x = g^a \mod p$, and $y = g^b \mod p$.
- * Eve wants to compute $k = g^{ab} \mod p$.
- * DH Assumption: There is no *efficient* algorithm that given g, p, $(g^a \mod p)$, and $(g^b \mod p)$ finds $(g^{ab} \mod p)$.
- * Best known attack: solve DLog to find a (or b).
- * Upshot: Hard problems are sometimes a good thing!
- * Most modern cryptographic protocols have **conditional** security guarantees: secure if there one-way functions exist, $P \neq NP$, DH/RSA/lattices are hard, etc...