Disclaimer

Содержание

1.	Бил	\mathbf{e}	1																																•		2
	1.1.	рет пеј ТЕ	рмо чно реч ЕМ. ект	ри ри	В(В(Тм	10' ОЛ ИП' ес:	т€ Н(в(ед	ен: ов ол ца: ог	ЦИ Ю НО НО	иа. И В В В На	ла ф; ог ая	и. УЕ О ПС	Д ік ч :в:	иО ЦИ ИО ЯЗ	фо ии сл вь но	ђ€ и а. м ъгс	ер <i>b</i> (Е тех	ен <i>r</i> ⊥ Зь жд	щі ър цу	- иа Пах ах г ий	лл Те же 10 и	ьн Эн Эн Пе	ю ят ия ер	Э : И: Н : Н : Н	ур я дл :ні ги	ан Пр ія ым	ВН ОО, П ИИ	ен ДО ОЛ К	ие лі іе: оп	е д й мп еч	цл: ОГ Т] ЮН	я О Е, 1ен	по и Т нта	пс ТМ аи	e- O- I, IT		2
2.	Бил	ет	2																																		5
		илет 2															5																				
		10,		21 (P	γP	IVI	y 51	LYI	PC	וטי	ixu	,	ωд	ųω	111	1 0	/111	ric	COL	.111	. 71	ъ	<i>7</i> 01	11	Ι.	ω,	_	141	-, -	L <u>L</u>	1111	. 1	rii	101	٠,	J
3.	Бил	ет	3	•	•	•					•	•			•	•		•				•		•	•			•	•			•	•	•	•		7
4.	Бил	ет	4	•	•	•	•	ě					•	•	•		•		•	•	•		•		•		•				•	•	·	•			7
5 .	Бил	ет	5	•	•	•	•	•	•	•	•	•	•		•	•		•		•		•	•	•	•	•	•	•				•	•	•	•		7
6.	Бил	ет	6					•						•			•		•		•					•	•						•		•		7
7.	Бил	ет	7	•				٠																	•	•	•					•	•		•	•	7
8.	Бил	ет	8					•						•			•		•		•					•	•						•		•		7
9.	Бил	ет	9	•	•	•	•	•	•	•			•		•					•			•		•		•	•	•		•	•	•	•			7
10	.Бил	ет	10	•	•	•	•	•	•	•	•	•	•		•					•			•		•	•	•	•				•	•	•	•		7
11	.Бил	ет	11	•			•	•								•		•				•		•	٠	•	•				•	•	٠		•		7
12	.Бил	ет	12	ě				•	•	•			•							•			•		•		•					•	•			•	7
13	.Бил	ет	13																																		7

1. Билет 1

1.1. Гармонические волны в линиях передачи. Выражение для векторного потенциала. Дифференциальное уравнение для поперечной волновой функции $\psi(\vec{r_{\perp}})$. Понятия продольного и поперечного волнового числа. Выражения для полей ТЕ, ТМ, ТЕМ. Импедансная связь между поперечными компонентаит электрического и магнитного полей и понятие поперечного волнового сопротивления

Линия передач - это любая цилиндрическая система. В них различают продольное z и поперечное $\vec{r_\perp} = r_\perp(r,\theta)$ направление. При описании таких систем проще использовать векторный потенциал \vec{A} , который должен удовлетворять уравнению Гельмгольца (для амплитуд):

$$\Delta \vec{A}^e + k^2 \vec{A}^e = -\frac{4\pi\mu}{c} \vec{j}^e = 0$$
$$\vec{B} = rot \vec{A}^e$$

0 потому что случай, где нет сторонних источников. Запишем поля в $\Pi\Pi$, когда волна бежит вдоль оси Oz:

$$\vec{E}(\vec{r}_{\perp}, z, \theta) = \vec{E}_0(\vec{r}_{\perp})e^{i(wt-hz)},$$

где h - **продольное волновое число** (постоянная распространения). Реальное поля в таком случае записывается как:

$$E_{R_x} = Re(E_x) = |E_x(\vec{r}_\perp)|\cos(wt - hz + \varphi(\vec{r}_\perp))$$

Запишем веторный потенциал в следующем виде:

$$\vec{A}^e = \psi^e(\vec{r}_\perp)e^{-ihz}\vec{z_0},$$

где $\psi^e(\vec{r}_\perp)$ - **поперечная волновая функция**. Запишем теперь поля \vec{E} и \vec{H} через $\psi^e(\vec{r}_\perp)$. Вспомним выражение полей через векторный потенциал:

$$\begin{split} \vec{H} &= \frac{1}{\mu} rot \vec{A^e} \\ \vec{E} &= -\nabla \varphi - \frac{1}{c} \frac{\partial \vec{A^e}}{\partial t} = \frac{1}{i k_0 \varepsilon \mu} (\nabla div + k^2) \vec{A^e}, \end{split}$$

где $k = \frac{w}{c}\sqrt{\varepsilon\mu}, k_0 = \frac{w}{c}$. При подстановке выражения для $\vec{A^e}$, для компонент векторов в случае TM - волны получим (надо расписать такие вещи как $div(\vec{A^e}), \ \nabla div(\vec{A^e}), \ rot\vec{A^e}$):

$$E_{z} = \frac{\varkappa^{2}}{ik_{0}\varepsilon\mu}\psi^{e}(\vec{r}_{\perp}) \cdot e^{i(wt-hz)}$$

$$\vec{E}_{\perp} = -\frac{h}{k_{0}\varepsilon\mu}\nabla_{\perp}\psi^{e}(\vec{r}_{\perp}) \cdot e^{i(wt-hz)}$$

$$\vec{H}_{\perp} = \frac{1}{\mu}[\nabla_{\perp}\psi^{e}(\vec{r}_{\perp}) \times \vec{z_{0}}] \cdot e^{i(wt-hz)}$$

$$H_{z} = 0$$

 ${f TM}$ -волна - поперечная магнитная волна (Магнитное поле имеет только поперечную компоненту. Поле \vec{E} имеет и поперечное и продольное направление).

Потенциал $\vec{A^e}$, при любой зависимости от времени, должен удовлетворять волновому уравнению:

$$\Delta \vec{A^e} - \frac{\varepsilon \mu}{c^2} \frac{\partial^2 \vec{A^e}}{\partial t^2} = 0$$

В нашем случае, когда векторный потенциал имеет вид $\vec{A^e} = \psi^e(\vec{r_\perp})e^{-ihz}\vec{z_0}$, для гармонических полей справедливы следующие переходы:

$$\frac{\partial}{\partial t} \Rightarrow iw, \ \Delta \vec{A}^e + k^2 \vec{A}^e = 0, \ k^2 = \frac{w^2}{c^2} \varepsilon \mu$$

Рассмотри для *z*-компоненты:

$$\begin{split} \Delta A_z^e + k^2 A_z^e &= 0, \ \Delta = \Delta_\perp + \frac{\partial^2}{\partial z^2} \\ \frac{\partial^2}{\partial z^2} &\Rightarrow -h^2, \ \text{t.k.} A_z^e = \psi^e(\vec{r}_\perp) e^{-ihz} \\ \Delta_\perp \psi^e + \underbrace{(k^2 - h^2)}_{\varkappa^2} \psi^e &= 0 \\ \Delta_\perp \psi^e + \varkappa^2 \psi^e &= 0 \end{split}$$

 \varkappa^2 - поперечное волновое число. Если поле удовлетворяет уравнению выше, то такое поле удоветворяет уравнениям Максвелла.

Аналогично сделаем для ТЕ - волны.

ТЕ-волна - поперечная электрическая волна (Электрическое поле имеет только поперечную компоненту. Магнитное поле имеет и поперечное и

продольное направление). По принципу двойственности производим замены:

$$\vec{E} \to \vec{H}, \ \vec{H} \to -\vec{E}, \ \varepsilon \leftrightarrow \mu$$

$$H_{z} = \frac{\varkappa^{2}}{ik_{0}\varepsilon\mu}\psi^{m}(\vec{r}_{\perp}) \cdot e^{i(wt-hz)}$$

$$\vec{H}_{\perp} = -\frac{h}{k_{0}\varepsilon\mu}\nabla_{\perp}\psi^{m}(\vec{r}_{\perp}) \cdot e^{i(wt-hz)}$$

$$\vec{E}_{\perp} = -\frac{1}{\mu}[\nabla_{\perp}\psi^{m}(\vec{r}_{\perp}) \times \vec{z_{0}}] \cdot e^{i(wt-hz)}$$

$$E_{z} = 0$$

Вообще говоря, ψ^e и ψ^m могут быть различными, поэтому выше вместо ψ^e записано ψ^m . Аналогично для ψ^m требуется выполнение:

$$\Delta_{\perp}\psi^m + \varkappa^2\psi^m = 0$$

 ${
m TE}, {
m TM}$ волны - это решения уравнений Максвелла. однак может быть еще один тип решений - ${
m TEM}$ - волны. Рассмотрим случай $\varkappa=0,\ h=k$:

$$H_z = E_z = 0$$

$$\vec{E_\perp} = -\frac{1}{\sqrt{\varepsilon\mu}} \nabla_\perp \psi \cdot e^{i(wt - kz)}$$

$$\vec{H_\perp} = \frac{1}{\mu} [\nabla_\perp \psi \times \vec{z_0}] \cdot e^{i(wt - kz)}$$

$$\Delta_\perp \psi = 0$$

ТЕМ-волна - чисто поперечная волна (Электрическое поле имеет только поперечную компоненту, как и магнитное).

Что имеем в итоге:

- Поля выражаются через поперечную волновую функцию
- ullet Продольные компоненты полей пропорциональны ψ
- ullet Поперечные компоненты полей пропорциональны $abla_{\perp}\psi$

Т.е. если заданы ψ^e, ψ^m , то можно полностью найти поля. Из формул также видно следующее соотношение:

$$\vec{E}_{\perp} = \eta_{\perp \text{\tiny B}} [\vec{H}_{\perp} \times \vec{z_0}],$$

где $\eta_{\perp \rm B}$ - поперечное волновое сопротивление - отношение между поперечными компонентами полей в бегущей волне $\eta_{\perp \rm B}=\frac{E_\perp}{H_\perp}$. Для раличных

типов волн записывается как:

$$ext{TE}(+), ext{TM}(-)$$
 - волны: $\eta_{\perp ext{B}} = \sqrt{rac{\mu}{arepsilon}} \left(rac{k}{h}
ight)^{\pm 1}$
 $ext{TEM}$ - волны: $\eta_{\perp ext{B}} = \sqrt{rac{\mu}{arepsilon}}$

Заметим, что в бегущей волне поля зависят от координат, а их отношение - $\eta_{\perp \rm B}$ - нет. В стоячей волне это не так.

2. Билет 2

2.1. Граничные условия для поперечных волновых функций волн ТЕ, ТМ, ТЕМ типов в идеальной линии передачи. Математическая формулировка задачи описания волн ТЕ, ТМ, ТЕМ типов.

Рассмотрим случай идеального проводника, $\sigma \to \infty$ (Вообще говоря, идеальных проводников не бывает, однако условие идеальной проводимости можно записать в виде: $\sigma \gg w$ ($\delta \ll L$)). Вспомним граничные условия для полей на поверхности идеального проводника:

$$E_{\tau}|_{S} = 0, \ H_{n}|_{S} = 0,$$

а также условие на поперечную волновую функцию:

$$\Delta_{\perp}\psi^{e,m} + \varkappa^2\psi^{e,m} = 0$$

Найдем граничные условия для $\psi^{e,m}$ для идеальной $\Pi\Pi$.

ТМ-волна:

т.к.
$$E_z \sim \psi^e, \ \vec{E}_{\perp \tau} \sim \frac{\partial \psi^e}{\partial \tau}$$
 и $E_z = 0, \ E_{\perp \tau} = 0$ то $\psi^e(\vec{r}_\perp)|_S = 0$

- это граничное условие Дирихле

ТЕ-волна:

т.к.
$$\vec{E}_{\perp \tau} \sim [\nabla_{\perp} \psi^m(\vec{r}_{\perp}) \times \vec{z_0}]_{\tau}$$
 и $E_{\perp \tau} = 0$ то $\frac{\partial \psi^m}{\partial n}|_S = 0$

ТЕМ-волна:

T.K.
$$ec{E}_{\perp au} \sim
abla_{\perp} \psi^m(ec{r}_{\perp})$$

TO
$$\frac{\partial \psi}{\partial \tau}|_S = 0 \Rightarrow \psi|_S = const = C_i$$

Отметим, что на разных поверхностях проводников постоянная C_i может быть разной.

Математическая формулировка задач для описания волн. ТМ. Необходимо решить:

$$\Delta_{\perp}\psi^e+arkappa^2\psi^e=0$$
 $\psi^e|_L=0,L$ - граничный контур

ТЕ. Необходимо решить:

$$\frac{\Delta_{\perp}\psi^m + \varkappa^2\psi^m = 0}{\frac{\partial\psi^m}{\partial n}|_L = 0}$$

ТЕМ. Необходимо решить:

$$\Delta_{\perp}\psi^m = 0$$
$$\psi|_{L_i} = C_i$$

Задачи ТЕ, ТМ волн - аналогичны задачам с мембраной, где граница мембраны закреплена неподвижно, а ТЕМ задачу можно назвать «электростатической». Это задачи на нахождение собственных функций

$$\psi_1^{e,m}(\vec{r}_\perp), \psi_2^{e,m}(\vec{r}_\perp), \dots \psi_i^{e,m}(\vec{r}_\perp)$$

и собственных чисел

$$\mathcal{X}_1, \mathcal{X}_2, \ldots, \mathcal{X}_i$$

Если ЛП идеальна, то спектр сбственных значений и функций бесконечен.

- 3. Билет 3
- 4. Билет 4
- 5. Билет 5
- 6. Билет 6
- 7. Билет 7
- 8. Билет 8
- 9. Билет 9
- 10. Билет 10
- 11. Билет 11
- 12. Билет 12
- 13. Билет 13