

Ionization of gases by a pulsed electron beam as studied by selffocusing. II. Polyatomic gases

Hidehiko Arai and Hiroshi Hotta

Citation: The Journal of Chemical Physics 75, 2723 (1981); doi: 10.1063/1.442341

View online: http://dx.doi.org/10.1063/1.442341

View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/75/6?ver=pdfcov

Published by the AIP Publishing

Articles you may be interested in

Self-focusing of electromagnetic pulsed beams in collisional plasmas

Phys. Plasmas 15, 102301 (2008); 10.1063/1.2991360

Self-focused electron beams produced by pyroelectric crystals on heating or cooling in dilute gases Appl. Phys. Lett. **79**, 3364 (2001); 10.1063/1.1418458

lonization of gases by a pulsed electron beam as studied by selffocusing. III. He, Ar, and O2 mixtures J. Chem. Phys. **75**, 3876 (1981); 10.1063/1.442544

Ionization of gases by a pulsed electron beam as studied by selffocusing. I. Monatomic gases J. Chem. Phys. **75**, 2252 (1981); 10.1063/1.442285

Decline of the selffocusing of a pulsed high intensity electron beam owing to gas breakdown

J. Chem. Phys. 67, 3608 (1977); 10.1063/1.435360

Ionization of gases by a pulsed electron beam as studied by self-focusing. II. Polyatomic gases

Hidehiko Arai

Takasaki Radiation Chemistry Research Establishment, Japan Atomic Energy Research Institute, Takasaki, Gunma, 370-12 Japan

Hiroshi Hotta

Fukui Institute of Technology, Fukui, 910 Japan (Received 5 March 1981; accepted 27 May 1981)

In order to analyze data on the self-focusing of a pulsed electron beam in polyatomic gases, the net current $I_{\rm net}$ in H_2 , N_2 , and CH_4 was computed self-consistently as functions of time in the pressure range between 5 and 300 Torr of these gases by using swarm parameters. The computational result indicates that the larger dose $D_{\rm obs}$, observed by a piled dosimeter on the beam axis, is attributed to the larger $I_{\rm net}$, which is mainly determined by a mean ionization time t_1 for secondary ionization by the electric field induced by the pulsed beam. When values of $D_{\rm obs}$ for different gases are compared at the same pressure, the larger $D_{\rm obs}$ is given by the larger t_i . This relationship is demonstrated for several polyatomic gases by estimating t_i from various parameters in a function of secondary electron energy or E/p such as the electron drift velocity, the first Townsend ionization coefficient, the ionization cross section, and so on. For the short pulse duration of a Febetron 706, electron—ion recombination processes scarcely affect $I_{\rm net}$ except at high pressures of some polyatomic gases, while the effect of electron-attachment processes is appreciable in SF_6 , CCl_2F_2 , and N_2O .

INTRODUCTION

In a preceding paper (part I), 1 it has been shown that, for monatomic gases, the maximum dose $(D_{\rm obs})$ of the depth-dose curve in a piled dosimeter given by a pulsed electron beam of a Febetron 706 (tube $5515)^2$ can be interpreted in terms of the net current $I_{\rm net}$, which is mainly determined by a mean ionization time t_i . The value of $I_{\rm net}$ has been calculated with the following equations:

$$I_{\text{net}}(t) = I_b(t) + I_{\text{back}}(t) , \qquad (1)$$

$$I_{\text{back}}(t) = \pi r_0 E_{\sigma}(t) \sigma_{\sigma}(t) , \qquad (2)$$

$$E_z(t) = -\frac{2}{c^2} \left(\frac{1}{2} + \ln \frac{R}{r_0}\right) \frac{dI_{\text{net}}(t)}{dt},$$
 (3)

$$\sigma_e(t) = \frac{e^2 n_e(t)}{n_0(2m)^{1/2} Q_m(\overline{\epsilon}) \overline{\epsilon}^{1/2}},$$
 (4)

$$\frac{dn_e(t)}{dt} = \frac{n_0\sigma_{\text{ion}}(E_b)I_b(t)}{\pi r_0^2 e} + \frac{n_e(t)}{t_i(t)},$$
 (5)

where I_b is the beam current assumed as in part I, I_{back} the plasma backward current, r_0 the beam radius assumed to be 0.6 cm, R the chamber radius (6.4 cm). E_z the longitudinal electric field induced along the beam coordinate z by the pulsed beam, c the velocity of light, o, the plasma conductivity of the irradiated medium gas, m the electron rest mass, e the electron charge, n_0 the number density of gas molecules, n_e the number density of secondary electrons, and Q_m the momentum transfer cross section for electrons with mean kinetic energy $\overline{\epsilon}$. The total ionization cross section $\sigma_{ton}(E_b)$ for the beam electron with energy E_b is estimated for $\overline{E}_b = 480 \text{ keV}$ from the Rieke-Prepejchal parameters. 3 The mean ionization time t_i for secondary ionization has been determined as a function of E/p for some gases by Felthenthal and Proud. For other gases, t_i can be estimated by

$$1/(pt_i) = w(\alpha/p - \eta/p) , \qquad (6)$$

where α is the first Townsend ionization coefficient, η

the electron-attachment coefficient, and w the electron drift velocity. It has been demonstrated from the calculated $I_{\rm net}$ that $D_{\rm obs}$ can be expressed approximately as

$$D_{\text{obs}} \propto \int \frac{I_b(t) I_{\text{net}}(t)}{\epsilon_b^2} dt , \qquad (7)$$

where $\pi\epsilon_b$ is the beam emittance. Thus, the larger $D_{\rm obs}$ corresponds to the larger $I_{\rm net}$, which is given by the smaller $I_{\rm back}$ for $dI_{\rm net}/dt > 0$ from Eqs. (1)-(3). This means that the larger $D_{\rm obs}$ is given by a gas with the larger t_i for $dI_{\rm net}/dt > 0$.

The similar computation was carried out for H_2 , N_2 , and CH_4 . In the present paper, data on $D_{\rm obs}$ for various polyatomic gases⁵⁻⁷ are discussed on the basis of the computational result for these gases.

COMPUTATION FOR H₂, N₂, and CH₄

In the computation, the parameters r_0 , $I_b(t)$, and $\sigma_{\rm ion}(E_b)$ were used on the same assumptions as made in part I. Literature values were used for the following parameters; w, 8 α/p , 9 D_L/μ , 10 and Q_m^{-11} for H₂; w, 8 α/p , 12 D_L/μ , 13 and Q_m^{-11} for N₂; and w, $^{14-16}$ α/p , 17 D_L/μ , 18 and $Q_m^{-19,20}$ for CH₄. The value of $\overline{\epsilon}$ was estimated from data on D_L/μ on the assumption of the Maxwellian. For polyatomic gases, Eq. (5) was revised as

$$\frac{dn_e}{dt} = \frac{n_0 \sigma_{\text{lon}}(E_b)}{e} \cdot \frac{I_b(t)}{\pi r_0^2} + \frac{n_e(t)}{t_i(t)}$$

$$(\text{term 1}) \quad (\text{term 2})$$

$$-\alpha_r n_e(t) n_i(t) - \alpha_{rd} n_e(t) n_d(t) ,$$

$$(\text{term 3}) \quad (\text{term 4})$$
(8)

$$\frac{dn_i}{dt} = \frac{n_0 \sigma_{ion}(E_b)}{e} \cdot \frac{I_b(t)}{\pi r_0^2} + \frac{n_e}{t_i} - \alpha_r n_e n_i - k_d n_i n_0^2 , \qquad (9)$$

$$\frac{dn_d}{dt} = k_d n_i n_0^2 - \alpha_{rd} n_e n_d , \qquad (10)$$

J. Chem. Phys. **75**(6), 15 Sept. 1981

0021-9606/81/182723-07\$01.00

© 1981 American Institute of Physics

2723

where α_r and α_{rd} are the recombination coefficients (cm^3/s) between electron—ion and electron—dimer ion, respectively, and k_d is the rate constant of dimer ion formation. The number densities of ions and dimer ions are represented by n_i and n_d , respectively. We have assumed that the variation of α_r and α_{rd} with $\overline{\epsilon}$ is expressed as

$$\begin{split} \alpha_r(\mathrm{H}_2^\star) &= 4.\ 7 \times 10^{-8} \,\overline{\epsilon}^{-0.40} \ \ (\mathrm{Ref.\ 21}) \ , \\ \alpha_r(\mathrm{N}_2^\star) &= 5.\ 5 \times 10^{-8} \,\overline{\epsilon}^{-0.65}, \quad \mathrm{for} \ \overline{\epsilon} > 1 \ \mathrm{eV} \ (\mathrm{Ref.\ 22}) \ , \\ \alpha_{rd}(\mathrm{N}_4^\star) &= 3.\ 7 \times 10^{-7} \,\overline{\epsilon}^{-0.65}, \quad \mathrm{for} \ \overline{\epsilon} > 1 \ \mathrm{eV} \ (\mathrm{Ref.\ 22}) \ , \\ \alpha_r(\mathrm{CH}_3^\star) &= 5.\ 5 \times 10^{-8} \,\overline{\epsilon}^{-0.93}, \quad \mathrm{for} \ \overline{\epsilon} > 0.8 \ \mathrm{eV} \ (\mathrm{Ref.\ 23}) \ , \\ \alpha_{rd}(\mathrm{C}_2\mathrm{H}_5^\star) &= 9.\ 5 \times 10^{-8} \,\overline{\epsilon}^{-0.75}, \quad \mathrm{for} \ \overline{\epsilon} > 1 \ \mathrm{eV} \ (\mathrm{Ref.\ 23}) \ , \\ \mathrm{and} \ \mathrm{for} \ \mathrm{formation} \ \mathrm{processes} \ \mathrm{of} \ \mathrm{N}_4^\star \ \mathrm{and} \ \mathrm{C}_2\mathrm{H}_5^\star \colon \\ \mathrm{N}_2^\star + 2\mathrm{N}_2 \to \mathrm{N}_4^\star + \mathrm{N}_2 \end{split}$$

$$N_2^+ + 2N_2 + N_4^+ + N_2$$

 $(k_d = 8 \times 10^{-29} \text{ molecule}^{-2} \text{ cm}^6 \text{ s}^{-1}) \text{ (Ref. 24)},$
 $CH_3^+ + CH_4 + C_2H_5^+ + H_2$
 $(k_d = 1 \times 10^{-9} \text{ cm}^3/\text{s}) \text{ (Ref. 25)}.$

For hydrogen, only the association reaction of H^* leading to H_3^* is known. When the However, the yield of H^* is small in comparison with that of H_2^* (about several percent). Thus, the recombination of electron— H_3^* was neglected in the calculation for H_2 . Only the formation of CH_3^* and $C_2H_2^*$ was assumed in the calculation for methane.

Computational results of $I_{\rm net}(t)$ for H_2 , N_2 , and CH_4 are shown in Figs. 1, 2, and 3, respectively. They show that the calculated value of $I_{\rm net}$ at lower pressure is nearly constant after a certain time, as has been assumed previously as the t_B model. The value of $D_{\rm obs}$ increases at first with increasing pressure in the low pressure region, and after passing the maximum it decreases abruptly at a certain pressure (usually 1-5 Torr) but increases again with further increasing pressure. The curve of $I_{\rm net}(t)$ varies according to the t_B

FIG. 1. The calculated net current $I_{\text{net}}(t)$ as a function of time for various pressures of H_2 . The solid straight lines indicate the beam current $I_b(t)$.

FIG. 2. The calculated net current $I_{\text{net}}\left(t\right)$ as a function of time for various pressures of N_{2} .

model up to the pressure giving the minimum $D_{\rm obs}$. In this region, $I_{\rm net}(t)$ decreases with increasing pressure.

In the present paper, we are most interested in the higher pressure region in which $D_{\rm obs}$ increases gradually after passing the minimum. In this region, in Figs. 1-3, $I_{\rm net}(t)$ increases appreciably with the lapse of time and also increases with increasing pressure. According to Eq. (7), $D_{\rm obs}$ should be proportional to the value of $\int I_b(t)I_{\rm net}(t)dt$ if the variation of $\epsilon_{\rm b}$ is ignored. In Fig. 4, values of this integral are plotted in an arbitrary unit by solid symbols for H_2 , N_2 , and CH_4 by using the calculated values of $I_{\rm net}$ in Figs. 1, 2, and 3, respectively, together with the curves of $D_{\rm obs}$ shown by open symbols. The curve of the integral represents fairly well the aspect of the curve of $D_{\rm obs}$. However, when both the curves are compared at the pressure giving the minimum, the value

FIG. 3. The calculated net current $I_{\rm net}(t)$ as a function of time for various pressures of ${\rm CH_4}$.

FIG. 4. D_{obs} at various pressures of H_2 , N_2 , and CH_4 : $O(H_2)$, $\Delta(N_2)$, and CCH_4 . Solid marks $[\bullet(H_2), \Delta(N_2), A(N_2), A(N_2)]$, and CCH_4 indicate the values of the integral in Eq. (7) in an arbitrary unit.

of the integral is relatively larger than that of D_{obs} . This can be fitted by using the correct value of ϵ_b as has been discussed in part I. Consequently, the present computational result represents fairly well the phenomena induced by the pulsed beam in a gas chamber so that the calculated values of parameters such as I_{net} , n_e , and E/p, which are not easy to be measured, might be used semiquantitatively.

Curves of E_z/p calculated from the values of $I_{\rm net}$ in Figs. 1, 2, and 3 are shown as functions of t in Figs. 6, 7, and 8 for H_2 , N_2 , and CH_4 , respectively. In the

FIG. 5. The calculated number density $n_e(t)$ of produced secondary electrons as functions of time at 50 Torr of He (—), Ar (—), H₂ (-·-), N₂ (-··-), and CH₄ (----).

present computation, values of $\overline{\epsilon}$ are estimated from data on D_L/μ on the assumption of the Maxwellian as functions of the calculated E_z/p shown in Figs. 6-8. Such values of $\overline{\epsilon}$ at pressure of 30 Torr for three gases, as

FIG. 6. The calculated $|E_x(t)|/p$ $|E_x(t)|$ the induced longitudinal electric field] as functions of time for various pressures of H_2 .

the representative, are shown as functions of t in Fig. 9, because we are interested mainly in the pressure region between 10 and 50 Torr in the present paper. Curves in Figs. 6-8 show that the value of E_z/p decreases abruptly for a short period. However, the actual value of $\overline{\epsilon}$ for this period might not so decrease as shown in Fig. 9 so that the value of t_i for this period may not vary abruptly according to such a calculated E_z/p because of the presence of the relaxation time of $\overline{\epsilon}$. The present computation, however, was carried out straightforwardly according to the calculated E_z/p without any correction.

The calculated value of $n_e(t)$ increased with increasing pressure and became the maximum at 75 Torr of H_2 , 50 Torr of N_2 , and 30 Torr of CH_4 . The value decreased slightly with further increasing pressure. The value of n_e became the maximum at the pressure for which $D_{\rm obs}$ is nearly equal to 1 Mrad. Such a relationship of $n_e(t)$ between p or $D_{\rm obs}$ is common with He and Ar, whose curves are shown in detail in part I. Then, the curve of $n_e(t)$ becomes almost the same irrespective of pressure for $D_{\rm obs}$ higher than 1 Mrad. Curves of $n_e(t)$ at 50 Torr are shown as functions of t in Fig. 5.

The contribution of each term to the total n_e in Eq. (8) is as follows, although the computation was carried out for a discrete value of p: The contribution of direct ionization (term 1) is less than 10% of electron avalanching (term 2) at 20-150 Torr of H_2 , 5-50 Torr of N_2 , and 5-100 Torr of CH_4 . Furthermore, the contribution of recombination precesses (terms 3 and 4) at the peak of

FIG. 7. The calculated $|E_x(t)|/p$ as functions of time for various pressures of N_2 .

FIG. 8. The calculated $|E_{\bf g}(t)|/p$ as functions of time for various pressures of CH₄.

FIG. 9. The mean electron energy estimated at 30 Torr of H_2 (---), N_2 (----), and CH_4 (----) as functions of time.

the pulsed beam (2.2 ns) is less than 10% of the total n_e at pressures below 300 Torr of the three gases. At higher pressure, however, the recombination contribution became large at 3 ns due to decreasing $\overline{\epsilon}$ in the low-E/p region and due to the large amount of dimer-ion formation. Some results are shown in Figs. 10 and 11. The number densities of secondary electrons (n_e) , $N_2^*(n_i)$, and $N_4^*(n_d)$ at 30 and 300 Torr of N_2 are shown as functions of t in Fig. 10. At 300 Torr, most of N_2^* becomes N_4^* without recombination for the pulse duration. The similar curves of n_e , $n_i(\text{CH}_3^*)$, and $n_d(\text{C}_2\text{H}_5^*)$ at 30 and 300 Torr of CH_4 are shown in Fig. 11.

Generally speaking, since n_e is on the order of 10^{15} cm⁻³ as seen in Fig. 5, the half-life of secondary electrons for electron—ion recombination processes is less than 1 ns for α , larger than 10^{-6} cm³ s⁻¹. Such large rate constants, are reported only for N_4^* , 28 O_4^* , 28 and CH_4^* or CH_3^* for thermal electrons and $N_2O^{*\,29}$ for 0.04 eV electrons. Apparent recombination coefficients for N_2 , CO_2 , CH_4 , and C_3H_8 for thermal electrons³⁰ are also larger than 10^{-6} cm³ s⁻¹ at 50 Torr. When α , is reduced according to the $\overline{\epsilon}^{-0.5}$ law, the value may be on the order of 10^{-7} cm³ s⁻¹ even for these gases for the present experiments. Therefore, we can ignore the electron—ion recombination process at least for the ns pulse duration in the pressure region of interest.

DISCUSSION

It is concluded from Fig. 4 that the larger $D_{\rm obs}$ is given by the larger $I_{\rm net}$ which is due to the smaller $I_{\rm back}$ or $\sigma_e E_z$ from Eqs. (1), (2), and (7). From Eq. (4), $\sigma_e E_z$ is pro-

FIG. 10. The calculated number densities of secondary electrons e^* , monomer ion N_2^* , and dimer ion N_4^* as functions of time for 30 and 300 Torr of N_2 .

FIG. 11. The calculated number densities of secondary electrons e^* , monomer ion CH₃, and dimer ion C₂H₅ as functions of time for 30 and 300 Torr of CH₄.

portional to the product of $n_e/Q_m\overline{\epsilon}^{1/2}$ and E_s/p . The value of $Q_m(\overline{\epsilon})\overline{\epsilon}^{1/2}$ increases with increasing $\overline{\epsilon}$ and usually becomes nearly constant from a certain $\overline{\epsilon}$. Such plateau values are $(2-3)\times 10^{-15}$ cm² eV^{0.5} for 1-10 eV of $\overline{\epsilon}$ (5-300 V cm⁻¹ Torr⁻¹ of E/p) for H_2 , $(2.5-4.5)\times 10^{-15}$ cm² eV^{0.5} for 2-10 eV of $\overline{\epsilon}$ (1-150 V cm⁻¹ Torr⁻¹ of E/p) for N_2 , and 6.5×10^{-15} cm² eV^{0.5} for 7.4 eV (24-136 V cm⁻¹ Torr⁻¹ of E/p) for CH₄. In Figs. 6-8, these E/p regions giving the plateau value are covered by the major part of the pulse duration. The difference of $Q_m(\overline{\epsilon})\overline{\epsilon}^{1/2}$ among gases must be noticed but the plateau values are not much different among gases except CH₄. Then, the aspect of $D_{\rm obs}$ can be analyzed mainly by E/p and n_e .

Since the larger $I_{\rm net}$ induces the larger E_z from Eq. (3), at the same pressure, the larger $D_{\rm obs}$ is associated with the larger E_z/p in spite of the smaller $I_{\rm back}$ because the larger $D_{\rm obs}$ corresponds to the smaller $I_{\rm back}$ as pointed out above. From Eqs. (2) and (4), this means that the larger $D_{\rm obs}$ is given by a gas with the smaller $n_e/Q_m \overline{\epsilon}^{1/2}$ at the same pressure. The smaller n_e is given by a gas with the larger t_i because, in Eq. (8), term 2 is dominant for the major part of the pulse duration in the pressure region of interest, as described already. Therefore, if we ignore the variation of $Q_m \overline{\epsilon}^{1/2}$ among gases,

the larger $D_{\rm obs}$ is given by a gas with the larger t_i or pt_i at the same pressure under the larger $E_{\rm z}/p$, as described above. This is the principal conclusion on the relationship between $D_{\rm obs}$ and t_i . Hereafter, data on $D_{\rm obs}$ for various polyatomic gases will be analyzed on the basis of this conclusion. The value of $D_{\rm obs}$ can give information on t_i for the pulse duration, which is difficult to be measured directly.

The $E/p-pt_i$ curves for several gases have been obtained experimentally by Felsenthal and Proud⁴ as seen in Fig. 16 of Ref. 4 in which pt_i increases with decreasing E/p. The above conclusion suggests that the $E/p-pt_i$ curve for a gas giving the larger $D_{\rm obs}$ at the same pressure must be placed at the upper side in such a figure. In fact, in Fig. 16 of Ref. 4, the values of E/p at the same pt_i are in the order

$$CCl_2F_2 > SF_6 > N_2 > O_2 > Ar > He$$
. (11)

This is the same order as for $D_{\rm obs}$ at the same pressure as seen in Figs. 6 and 7 of Ref. 5. The relationship between He and Ar has been discussed in part I. ¹

As demonstrated by Felsenthal and Proud, ⁴ the value of t_i for a gas with no experimental value of t_i can be determined by Eq. (6) from swarm parameters $(w, \alpha/p,$ and $\eta/p)$. Values of η/p have been measured as functions of E/p for some gases. According to references, values of η/p are in the order³¹⁻³⁴

$$SF_6 \approx CCl_2F_2 \gg N_2O > O_2 \gg CO_2$$
 (12)

and ratios of η/α are in the order

$$CCl_2F_2 \gtrsim SF_6 > N_2O > O_2 > CO_2$$
 (13)

For $E/p > 60~\rm V~cm^{-1}~Torr^{-1}$, the ratio of η/α is negligibly small for O_2 and CO_2 . On the other hand, since the number density of gas molecules is $3.3 \times 10^{18}~\rm cm^{-3}$ at $20~\rm ^{\circ}C$ and $100~\rm Torr$, the half-life of secondary electrons for electron-attachment processes is less than 1 ns for the rate constant larger than $2 \times 10^{-10}~\rm cm^3/s$. Such large rate constants are reported for O_2 ($3.4 \times 10^{-10}~\rm cm^3/s$ at $6.7~\rm eV^{35}$), N_2O ($9.2 \times 10^{-10}~\rm cm^3/s$ at $2.4~\rm eV^{35}$), SF_6 ($2 \times 10^{-7}~\rm cm^3/s$ at thermal energy 36), and CCl_2F_2 ($5.6 \times 10^{-9}~\rm cm^3/s$ at $1.08~\rm eV^{36}$). Then, the contribution of electron-attachment processes may be important in CCl_2F_2 , SF_6 , and N_2O . In fact, as seen in Fig. 7 of Ref. 5, values of $D_{\rm obs}$ in these gases are larger than in other gases; they are in the order

$$CCl_2F_2 > SF_6 > N_2O > CH_4$$
, (14)

as predicted from the ordering (12) and (13). This fact suggests that t_i is lengthened due to the large η/p in Eq. (6).

For the gas with no appreciable electron-attachment process, the value of pt_i can be estimated as $p/w\alpha$. Although E/p varies with t and p, from Figs. 6-8, we attempt to estimate the value of $p/w\alpha$ at 100 V cm⁻¹ × Torr⁻¹ as the representative value for gas pressures between 20 and 50 Torr. From data on w and α/p in Ref. 8, values of $p/w\alpha$ are in the order

$$N_2 > CO_2 > CH_4 > O_2 > H_2$$
 (15)

This order is almost the same with the order of D_{obs} in

Fig. 7 of Ref. 5 except CH₄ because $D_{\rm obs}$ for CH₄ is rather larger than for N₂. This fact supports the present conclusion on the relationship between $D_{\rm obs}$ and t_i . $D_{\rm obs}$ for CH₄ is attributed to the large value of $Q_m \, \overline{\epsilon}^{1/2}$ for CH₄ as described already.

On the other hand, for the gas with no electron-attachment process, the value of pt_i can also be estimated by the following equation instead of $p/w\alpha$:

$$\frac{1}{n_0 t_i} = \left(\frac{2}{m}\right)^{1/2} \int_{1.\,\mathrm{P.}}^{\infty} \epsilon^{1/2} \sigma_i(\epsilon) F(\epsilon) d\epsilon \ , \tag{16}$$

where I.P. is the ionization potential of a gas, $\sigma_i(\epsilon)$ the total ionization cross section of a gas for electrons with energy ϵ , and $F(\epsilon)$ the distribution function of ϵ . Data on σ_i for lower-energy electrons are given by Rapp and Englander-Golden. Equation (16) indicates that, at the same pressure, the larger $D_{\rm obs}$ or t_i is given by the gas with the higher I.P., the slower initial slope of σ_i , and the larger distribution of ϵ at the lower energy.

There are few available data on $F(\epsilon)$ in the E/p region of interest. We can find some data on D_L/μ as functions of E/p between 50 and 100 V cm⁻¹ Torr⁻¹ for estimation of $\overline{\epsilon}$ for H_2 , ¹⁰ N_2 , ¹³ O_2 , ³⁷ CO_2 , ³⁸ CH_4 , ¹⁸ SF_6 , ³⁹ and CCl_2F_2 . ⁴⁰ Values of $\overline{\epsilon}$ for these gases estimated on the assumption of the Maxwellian are about 7–8 eV except CCl_2F_2 (5.5 eV) at 100 V cm⁻¹ Torr⁻¹ and are in the order

$$CH_4 > H_2 \approx O_2 \approx CO_2 \approx (SF_6) > N_2 > (CCl_2F_2)$$
(17)

at 50 V cm⁻¹ Torr⁻¹. The values for SF₆ and CCl₂F₂ are extrapolated from data at E/p above 100 V cm⁻¹ Torr⁻¹.

Let us suppose that ϵ is lowered by $Q_t f$, where Q_t is the total collision cross section and f the mean fractional energy loss per collision which is given by 41

$$f = 1.74 \times 10^{-14} w^2 / k_{\pi} \,, \tag{18}$$

where k_T is the Townsend energy factor $(k_T=39.8\ D_L/\mu$ at $20\,^{\circ}\mathrm{C}^{11}$ for the Maxwellian). Values of $Q_t f$ from Eq. (18) are shown as functions of $\overline{\epsilon}$ in Fig. 12. Data on Q_t are cited from references as follows; H_2 , 42 N_2 , 20 O_2 , 43,44 CO_2 , 20 CH_4 , 19 and SF_6 . When the curves in Fig. 12 are compared with the ordering (17), the high value of $\overline{\epsilon}$ for CH_4 at lower E/p is attributed to the small value of $Q_t f$ at lower $\overline{\epsilon}$ because of the special dependence of D_L/μ on E/p^{18} ; the low value of $\overline{\epsilon}$ for N_2 is attributed to the large value of $Q_t f$, and the intermediate values for O_2 , CO_2 , and SF_6 are also understood by their curves of $Q_t f$ from Eq. (18). This means that $Q_t f$ from Eq. (18) is useful to estimate $F(\epsilon)$ qualitatively, though there is some problem for the application of Eq. (18) to the higher E/p region.

Now, we examine the order of $D_{\rm obs}$ as seen in Fig. 7 of Ref. 5 on the basis of Eq. (16). When data on I. P. and σ_i are compared for N₂O and N₂, t_i for N₂O must be smaller than for N₂ because of the large $Q_t f$ for N₂. However, $D_{\rm obs}$ for N₂O is larger than for N₂. This fact suggests that $D_{\rm obs}$ or t_i for N₂O may be affected appreciably by the electron-attachment process which is ignored in Eq. (16). Similarly, in the comparison between CH₄ and N₂, $D_{\rm obs}$ for CH₄ rather larger than for N₂ can be explained only by the large $Q_m(\vec{\epsilon})\vec{\epsilon}^{1/2}$ for CH₄. The value

FIG. 12. The estimated values of $Q_t f(Q_t)$: total collision cross section for electrons; and f: mean fractional energy loss per collision) as functions of the mean electron energy.

of $D_{\rm obs}$ for N_2 rather larger than for ${\rm CO}_2$ is attributed to the higher I. P., the smaller σ_i , and the larger $Q_t f$ for N_2 than for ${\rm CO}_2$. The value of $D_{\rm obs}$ for ${\rm O}_2$ smaller than for ${\rm CO}_2$ is attributed to the lowest I. P. among gases compared in the ordering (15). On the other hand, for ${\rm H}_2$, the value of $D_{\rm obs}$ is the lowest among polyatomic gases as seen in Fig. 7 of Ref. 5. This fact can be interpreted in terms of $p/w\alpha$ as seen in the ordering (15) because of the largest α/p for ${\rm H}_2$ at 100 V cm⁻¹ Torr⁻¹. However, the largest α/p cannot be derived from Eq. (16) because ${\rm H}_2$ has a high I. P., a small σ_i , and a large $Q_t f$.

ACKNOWLEDGMENTS

The authors wish to express their thanks to Sin-ichi Sato and Minoru Maeda of Fujitsu Ltd. at the Computing Center of Tokai Research Establishment, JAERI for their valuable advice and help in programming and computation.

- ⁶H. Hotta, R. Tanaka, and H. Arai, Radiat. Res. 63, 32 (1975).
- ⁷H. Arai and H. Hotta, Radiat. Res. 64, 407 (1975).
- ⁸J. Dutton, J. Phys. Chem. Ref. Data 4, 577 (1975).
- ⁹D. J. Rose, Phys. Rev. 104, 273 (1956).
- ¹⁰N. Kontoleon, J. Lucas, and L. E. Virr, J. Phys. D 5, 956 (1972).
- ¹¹A. L. Gilardini, Low Energy Electron Collisions in Gases (Wiley-Interscience, New York, 1971).
- ¹²S. C. Haydon and O. M. Williams, J. Phys. D 9, 523 (1976).
- ¹³N. Kontoleon, J. Lucas, and L. E. Virr, J. Phys. D 6, 1237 (1973).
- ¹⁴X. Fink and P. Huber, Helv. Phys. Acta 38, 717 (1965).
- ¹⁵H. Schumbohm, Z. Phys. **182**, 317 (1965).
- ¹⁶L. Frommhold, Z. Phys. 156, 144 (1959).
- ¹⁷A. E. D. Heylen, J. Chem. Phys. 38, 765 (1963).
- ¹⁸C. S. Lakshiminarasimha and J. Lucas, J. Phys. D **10**, 313 (1977).
- ¹⁹Y. Itikawa, At. Data Nucl. Data Tables 14, 1 (1974).
- ²⁰H. H. Landolt and R. Börnstein, Zahlenwerte und Funktionen (Springer, Berlin, 1956), Vol. 1, Part 1.
- ²¹D. Auerbach, R. Cacak, R. Caudano, T. D. Gaily, C. J. Keyer, J. Wm. McGowan, J. B. A. Mitchell, and S. F. J. Wilk, J. Phys. B 10, 3797 (1977).
- ²²P. Mul and J. Wm. McGowan, J. Phys. B 12, 1591 (1979).
- ²³P. Mul and J. Wm. McGowan, in "Compilation of Data Relevant to Rare Gas-Rare Gas and Rare Gas-Monohalide Excimer Lasers," Technical Report H-78-1, Vol. 1, edited by E. W. McDaniel, M. R. Flannery, H. W. Ellis, F. L. Eisele, W. Pope, and T. G. Roberts, U. S. Army Missile Research and Development Command, Redstone Arsenal, Alabama (1979).
- ²⁴A. Good, Chem. Rev. 75, 561 (1975).
- ²⁵R. P. Clow and J. H. Futrell, Int. J. Mass Spectrom. Ion Phys. 4, 165 (1970).
- ²⁶D. Rapp and P. Englander-Golden, J. Chem. Phys. 43, 1464 (1965).
- ²⁷P. Englander-Golden and D. Rapp, Lockheed Missiles and Space Company Report No. LMSC 6-74-64-12, Palo Alto, California (1964).
- ²⁸J. N. Bardsley and M. A. Biondi, Adv. At. Mol. Phys. 6, 1 (1970).
- ²⁹D. E. Wilson and D. A. Armstrong, Can. J. Chem. 48, 598 (1970).
- ³⁰H. N. Maier and R. W. Fessenden, J. Chem. Phys. 62, 4790 (1975).
- ³¹M. S. Bhalla and J. D. Craggs, Proc. Phys. Soc. London 80, 151 (1962) (SF₆).
- 32 M. A. Harrison and R. Geballe, Phys. Rev. 91, 1 (1953) (CCl₂F₂ and O₂).
- $^{33}\mathrm{J}.$ Dutton, F. M. Harris, and D. B. Hughes, J. Phys. B 8, 313 (1975) (N₂O).
- ³⁴ V. J. Conti and W. Williams, J. Phys. D 8, 2198 (1975) (CO₂).
- 35L. G. Christophorou, Atomic and Molecular Radiation Physics (Wiley-Interscience, New York, 1971).
- ³⁶L. G. Christophorou, Chem. Rev. 76, 409 (1976).
- ³⁷J. Lucas, D. A. Price, and J. M. Moruzzi, J. Phys. D 6, 1503 (1973).
- ³⁸C. S. Lakshiminarasimha, J. Lucas, and N. Kontoleon, J. Phys. D 7, 2545 (1974).
- ³⁹M. S. Naidu and A. N. Prasad, J. Phys. D 5, 1090 (1972).
- ⁴⁰M. S. Naidu and A. N. Prasad, J. Phys. D 2, 1431 (1969).
- ⁴¹L. G. Christophorou, K. S. Gant, and J. K. Baird, Chem. Phys. Lett. 30, 104 (1975).
- ⁴²D. E. Golden, Phys. Rev. **146**, 40 (1966).
- ⁴³A. Salop and H. H. Nakano, Phys. Rev. A 2, 127 (1970).
- ⁴⁴S. Trajmar, D. C. Cartwright, and W. W. Williams, Phys. Rev. A 4, 1482 (1971).
- ⁴⁵R. E. Kennerly, R. A. Bonham, and M. McMillan, J. Chem. Phys. 70, 2039 (1979).

Arai and H. Hotta, J. Chem. Phys. 75, 2252 (1981).
 Tanaka, H. Sunaga, and H. Hotta, Radiat. Res. 63, 14 (1975).

F. Rieke and W. Prepejchal, Phys. Rev. A 6, 1507 (1972).
 Felsenthal and J. M. Proud, Phys. Rev. Sect. A 139, 1796 (1965).

⁵H. Hotta and H. Arai, J. Chem. Phys. 67, 3608 (1977).