Problem 1

Show that $C_0(\mathbb{R})$ is a Banach space.

Proof: Let $(f_n)_n$ be a Cauchy sequence in $C_0(\mathbb{R})$. Since each $f_k \in C_0(\mathbb{R})$, it must be the case that each f_k is uniformly continuous. For each $x \in \mathbb{R}$, it is thus the case that $(f_n(x))_n$ is Cauchy in \mathbb{R} . Since \mathbb{R} is complete, $(f_n(x))_n \to f(x)$ for each $x \in \mathbb{R}$, and since each f_k is uniformly continuous, it must be the case that f(x) is continuous.

For $\varepsilon > 0$, there must be N large such that for $m, n \ge N$ and $m \ge n$, it must be the case that $|f_m(x) - f_n(x)| < \varepsilon$ for all $x \in \mathbb{R}$. Letting $m \to \infty$, we have $|f_n(x) - f(x)| < \varepsilon$, meaning $(f_n)_n \to f$. Thus, $f \in C_0(\mathbb{R})$.

Problem 2

Show that ℓ_2 is a Hilbert space.

Proof: Let $(x_n)_n$ be a Cauchy sequence in ℓ_2 . Let $x_n(k)$ denote the index k of the sequence $x_n \in \ell_2$. Then, by the equivalence of norms, $\exists c \in \mathbb{R}$ such that

$$|x_n(k) - x_m(k)| \le c \|x_m(k) - x_n(k)\|_2$$

 $\to 0$ since $(x_n)_n$ is Cauchy in ℓ_2 .

Since \mathbb{R} (or \mathbb{C}) is complete, $x_n(k) \to x(k)$ as $k \to \infty$. We set $(x(k))_k$ to be the sequence such that $x_n(k) \to x(k)$ for each n.

We must show that $||x_n - x||_2 \to 0$ as $n \to \infty$. This is equivalent to

$$\lim_{N \to \infty} \sum_{k=1}^{N} \lim_{m \to \infty} |x_n(k) - x_m(k)|^2 \le \lim_{m \to \infty} \sup_{m \ge M} ||x_n - x_m||^2$$

$$\le \varepsilon^2 \qquad \text{since } (x_n)_n \text{ is Cauchy.}$$

Thus, $||x_n - x_m|| \to 0$ as $m \to \infty$ and $n \to \infty$, so $||x_n - x|| \to 0$ as $n \to \infty$.

Problem 3

Suppose (X, d) is a complete metric space and $(x_n)_n$ is a sequence in X such that there is a $\theta \in (0, 1)$ with $d(x_{n+1}, x_n) \le \theta d(x_n, x_{n-1})$. Show that $(x_n)_n$ is convergent.

Proof: We will show that $(x_n)_n$ is convergent by showing that $(x_n)_n$ Cauchy. Let m, n be such that $m \ge n$. Notice that $d(x_n, x_{n-1}) \le \theta^{n-2} d(x_2, x_1)$. Thus,

$$d(x_{m}, x_{n}) \leq d(x_{m}, x_{m-1}) + d(x_{m-1}, x_{m-2}) + \dots + d(x_{n+1}, x_{n})$$

$$\leq d(x_{2}, x_{1}) \left(\theta^{m-2} + \theta^{m-3} + \dots + \theta^{n-1}\right)$$

$$= d(x_{2}, x_{1})\theta^{n-1} \left(1 + \theta + \theta^{2} + \dots + \theta^{p-q-1}\right)$$

$$\leq d(x_{2}, x_{1}) \frac{\theta^{n-1}}{1 - \theta}.$$

Notice that the sequence $\left(\frac{\theta^{n-1}}{1-\theta}\right)_n \to 0$ in \mathbb{R} , meaning $(x_n)_n$ is Cauchy. Since X is complete, $(x_n)_n$ is convergent.

Problem 4

Let (X, d) be a complete metric space, and suppose $f: X \to X$ is a contractive map — i.e., there is a $\theta \in (0, 1)$ with

$$d(f(x), f(y)) < \theta d(x, y).$$

Prove that f has a unique fixed point.

Proof: Let $x_0 \in X$, and define $x_n = f(x_{n-1})$. For all n, we have

$$d(x_n, x_{n-1}) \le \theta^n d(x_1, x_0).$$

Therefore, for x_m , x_n arbitrary in X with m > n, we have

$$d(x_{m}, x_{n}) \leq d(x_{m}, x_{m-1}) + \dots + d(x_{n+1}, x_{n})$$

$$\leq \theta^{m} d(x_{1}, x_{0}) + \dots + \theta^{n+1} d(x_{1}, x_{0})$$

$$= d(x_{1}, x_{0}) \theta^{n+1} (1 + \theta + \dots + \theta^{m-n-1})$$

$$\leq d(x_{1}, x_{0}) \frac{\theta^{n+1}}{1 - \theta}.$$

Since $\left(\frac{\theta^{n+1}}{1-\theta}\right)_n \to 0$ in $\mathbb R$ as $n \to \infty$, it must be the case that $d(x_m, x_n) \to 0$ as $m, n \to \infty$. Since X is complete, this means $(x_n)_n \to x$ for some $x \in X$, meaning f(x) = x.

Suppose it were the case that there existed s,t distinct with f(s)=s and f(t)=t. Then, $d(f(s),f(t))=d(s,t)\leq \theta d(s,t)$, but $\theta<1$. Thus, x is unique.