

ABSTRACT OF THE DISCLOSURE

This invention relates to a system for estimating the position, velocity speed and orientation of a vehicle, by determining the components of two noncollinear constant unit vectors \hat{g}_b, \hat{e}_b according to vehicle body axes; and determining the components of the noncollinear constant unit vectors \vec{g}, \vec{e} , according to Earth's axes. The system further determines the three components of angular velocity $\hat{\omega}_b$ of the vehicle in body axes; corrects the angular velocity $\hat{\omega}_b$ with a correction u_ω and obtains a corrected angular velocity $\hat{\omega}_b = \hat{\omega}_b + u_\omega$; a control module implementing a control law to calculate the correction u_ω , where the control law is:

$$u_\omega = \sigma(\hat{g}_b \times \hat{g}_b + \hat{e}_b \times \hat{e}_b) \quad [1]$$

where σ is a positive scalar,

- such that upon using the corrected angular velocity $\hat{\omega}_b = \hat{\omega}_b + u_\omega$ as input to a module for integrating the kinematic equations, the latter are stable in the ISS sense and the error in the estimation of the direction cosine matrix \hat{B} and of the Euler angles $\hat{\Phi}$ is bounded.