CURSO DE ENGENHARIA ELÉTRICA E ENGENHARIA MECÂNICA

Anderson Gomes
Ezequiel Schaurich
Henrique Gabriel Ellwanger
Kevin Penk
Luis Alexandre Rodrigues

CONCEITO DE OPERAÇÕES E MATRIZES EM C E PYTHON

RESUMO

O presente relatório é guiado pelo desejo de analisar, a partir de conteúdos adquiridos

em aula, implementando e analisando programas em duas linguagens, sendo elas em

C e Python. As analises foram realizados para verificar e comparar a diferença na

implementação de ambos os códigos, obtendo conhecimento na abordagem de

funções básicas linguagem abordagem de е uma com matrizes.

Palavras-chave: Python, código, funções, matrizes.

SUMÁRIO

1	INTRODUÇÃO	3
2	DESENVOLVIMENTO	4
2.1	DADOS GERADOS	4
2.2	Programação	6
3	RESULTADO	8
3.1	Programas em C	8
3.2	Programa em Python	8
4	CONCLUSÃO	9
	REFERÊNCIAS	.10
	APENDICE A - Resultado da programação do curso da eng. Mecânica	.11
	APENDICE B - Resultado da programação do curso da eng. Elétrica	.12

1 INTRODUÇÃO

O trabalho a seguir tem como proposta, solicitado pelo professor da cadeira de Programação para Resolução de Problemas, implementar e analisar os resultados dos programas em C e Python, como objetivo de verificar a diferença entre ambas, abrangendo no quesito de leitura, codificação e desenvolvimento.

No conteúdo procedente, o tema realizou em obter os dados dos integrantes do grupo para então determinar o tamanho da matriz, aresta e preenchimento do desenho a ser digitalizado como resultado.

A abordagem segue tendo desenhos diferentes por cada curso que compõem os autores, sendo da engenharia elétrica e engenharia mecânica. O resultado segue algumas determinações imposta.

2 DESENVOLVIMENTO

2.1 DADOS GERADOS

Para ser possível realizar os requisitos das matrizes foi necessário obter a matricula de cada aluno deste trabalho. Nas TABELA 1 pode ser observados os dados adquiridos. Além disto, é necessário lembrar que conforme exigência da atividade, a grupo foi criado tendo três integrantes da engenharia elétrica e 2 integrantes da engenharia mecânica.

Tabela 1 - Dados dos integrantes do trabalho.

Nome	Matrícula	Curso
Anderson Gomes	78911	Engenharia Mecânica
Kevin Penk	73518	Engenharia Mecânica
Ezequiel Schaurich	96898	Engenharia Elétrica
Henrique Gabriel Ellwanger	97997	Engenharia Elétrica
Luis Alexandre Rodrigues	95138	Engenharia Elétrica

Fonte: Autores.

Para realizar o trabalho 2 foi requisitado o mesmo processo de desenho do trabalho 1, sendo necessário a utilização das matriculas para criar o tamanho das matrizes. Porém cada curso continua com os seus respectivos desenhos. Relembrando ainda, grupos de dupla ou trio se faz necessário a soma de cada número de sua matricula para descobrir a dimensão. Além disto, conforme o maior e menor número das matrículas ficou disponível a aresta e o preenchimento respectivamente para o desenho. Por fim, pegando os dados da Tabela 1 acima, podemos realizar os cálculos.

Engenharia Mecânica:

$$78911 \rightarrow 7 + 8 + 9 + 1 + 1 = 26$$

 $73518 \rightarrow 7 + 3 + 5 + 1 + 8 = 24$
 $26 + 24 = 50$

Valores encontrados:

Matriz: 50x50;

Atesta: 9;

Preenchimento: 1.

Com os dados encontrados pode-se definir os desenhos. Da engenharia mecânica foi concretizado um esboço conforme a Figura 1, sendo necessário a utilização de quadrados e retângulos, onde trazia a lembrança de um veículo. É possível observar o preenchimento do número 1, arestas maiores que 9 e o tamanho da matriz com 50x50.

Figura 1 - Desenho estabelecido para o curso de engenharia mecânica.

Fonte: Autores.

Engenharia Elétrica:

$$96898 \rightarrow \mathbf{9} + 6 + 8 + 9 + 8 = 40$$

 $97997 \rightarrow 9 + 7 + 9 + 9 + 7 = 41$
 $95138 \rightarrow 9 + 5 + \mathbf{1} + 3 + 8 = 26$
 $40 + 41 + 26 = \mathbf{107}$

Valores encontrados:

Matriz: 107x107;

Atesta: 9;

Preenchimento: 1.

Para o desenho do curso de engenharia elétrica, foi imposto que deveria haver triângulos e retângulo na impressão do resultado. Na Figura 2 abaixo é possível observar o desenho que foi desejado, lembrando que a forma lembraria uma torre de rede de alta tensão.

Figura 2 - Desenho estabelecido para o curdo de engenharia elétrica.

Fonte: Autores.

2.2 Programação

A programação para realizar a o desenho se fez a partir do código em C e Python. Sendo que, dois programas foram escritos em C para cada forma do curso e 2 em Python. Devido ao fato de já ter disponível o código em Portugol com o trabalho 1, passar para as outras linguagens não houve tantas dificuldades.

A diferença na implementação entre Python e C foi a forma dos requisitos de espaçamento, além de observar uma forma mais "limpa" do código escrito e praticidade em realizar manipulação de matrizes no Python. Porém, vale ressaltar, a programação em C é umas das primeiras criadas, dando bases para aprimora e

atualizar outros linguagens. Por fim, destaca-se alguns pontos positivos do Python, sendo eles:

- Facilidade de interpretação para com variáveis, não sendo necessário ser declaradas antecipadamente, pois ao atribuirmos um conteúdo a uma variável, automaticamente, a variável é declarada e inicializada;
- Inúmeros métodos e funções prontas para lidar com matriz. Facilitando a alteração, concatenação, etc.;
- Sintaxe intuitiva, fácil de analisar e compreender.

Para o caso da linguagem em C, mesmo sendo mais engessada, o mesmo ainda é muito utilizado no meio da engenharia, aplicadas em microcontroladores, robôs e outros processos. Além de haver grande número de conteúdo para o mesmo.

Todos os códigos implementados para as duas linguagens podem ser analisados no repositório do GitHub, seguindo o link: <u>GitHub - Repositório do Trabalho</u> <u>2</u>.

3 RESULTADO

O resultado da execução dos programas foi realizado com sucesso. Para este caso, pode-se observar os desenhos sendo processados logo abaixo nos dois tópicos divididos por suas linguagens.

3.1 Programas em C

Para implementação e resultado do código em C foi utilizado o programa Code::Blocks é um IDE C/C++ e Fortran gratuito construído para atender às necessidades mais exigentes de seus usuários. Ele é projetado para ser muito extensível e totalmente configurável.

No curso da engenharia mecânica a resposta do processo pode ser analisada na APÊNDICE A demonstrando o resultado conforme esperado, sendo executado a forma que lembra a um veículo. No final da execução, o programa imprimi o resultado do somatório dos números 1 no preenchimento do desenho, sendo de 1062.

Para o curso da engenharia elétrica o resultado é realizado com sucesso, conforme pode ser verificado no APÊNDICE B. Começando com a visualização dos dados gerais, logo mais é imprimido os valores salvos na matriz conforme o desenho imposto. Por final, o código escreve o total da somatória dos números 1 preenchidos nas formas, sendo de 2990.

3.2 Programa em Python

Na implementação e resultado do programa em Python usufruiu-se da IDLE shell, uma maneira rápida e fácil para o uso das funções e bibliotecas do Python, como também, proporcionar uma plataforma de estudo simples de ser utilizada, disponibilizando num único lugar, todos os recursos e bibliotecas do Python.

O resultado foi o mesmo da linguagem em C para ambos os desenhos, APÊNDICE A e APÊNDICE B.

4 CONCLUSÃO

Perante o trabalho de implementação realizado, conseguimos observar que, na maioria das vezes, os códigos seguem um padrão de estrutura havendo apenas mudanças para minimizar linhas de códigos. Constatamos também, que a linguagem em Python obtém melhores funções para manejo de matriz facilitando o processamento dos dados. Alem disto, a não necessidade de declarar a variável antecipadamente ajuda na otimização de tempo para o programador.

Uma segunda observação dessa conclusão tende sobre a importância de cada linguagem em sua área aplicada, mesmo o Python sendo mais novo e compacto, não devemos descartar o C que é imposto em inúmeros projetos.

Por fim, a implementação e observação da programação nos ajudou em nosso desenvolvimento da resolução para os problemas impostos.

REFERÊNCIAS

CODE::BLOCKS. **Code::Blocks.** Disponivel em: https://www.codeblocks.org/>. Acessado em: 15 de novembro de 2022.

GITHUB. **GitHub.** Disponivel em: https://github.com/>. Acessado em: 21 de novembro de 2022.

IDLE. **IDLE.** Disponivel em: < https://docs.python.org/3/library/idle.html/>. Acessado em: 19 de novembro de 2022.

INTELLECTUALE. **Tecnologia e treinamento.** Disponivel em: < http://linguagemc.com.br/>. Acessado em: 15 de novembro de 2022.

PYTHON. **Documentos python online.** Disponivel em: < https:// www.python.org/d oc/>. Acessado em: 19 de novembro de 2022.

APENDICE A - Resultado da programação do curso da eng. Mecânica

Nome | Matricula | Somatorio Anderson | 78911 | 26 Kevin | 73518 | 24

Matriz: 50x50 Aresta: 9

Preenchimento: 1

Curso: Engenharia Mecanica

Forma: Carro (RetÔngulos+Quadrados)

Somatorio dos numeros que preenchem a forma desenhada: 1062

Process returned 0 (0x0) execution time: 0.208 s

APENDICE B - Resultado da programação do curso da eng. Elétrica

Nome | Matricula | Somatorio Luis | 95138 | 26 Ezequiel | 96898 | 40 Henrique | 97997 | 41

Matriz: 107x107 Aresta: 9 Preenchimento: 1

Curso: Engenharia Eletrica

Forma: Torre de Rede de Alta tensao sobre concreto (Triangulos+retangulo)

Somatorio dos numeros que preenchem a forma desenhada: 2990

Process returned 0 (0x0) execution time: 0.856 s