

Úloha: Binárne vyhľadávanie (BinSearch)

Input file stdin
Output file stdout

Uvažujme takúto implementáciu binárneho vyhľadávania:

```
bool binary_search(int n, int p[], int target){
   int left = 1, right = n;
   while(left < right){
      int mid = (left + right) / 2;
      if(p[mid] == target)
           return true;
      else if(p[mid] < target)
           left = mid + 1;
      else
           right = mid - 1;
   }
   if(p[left] == target) return true;
   else return false;
}</pre>
```

Je dobre známe, že pre neprázdne usporiadané pole p[1..n] táto funkcia vráti true vtedy a len vtedy, keď sa hodnota target nachádza niekde v poli p. Túto funkciu však môžeme zavolať aj na pole p, ktoré usporiadané nie je, a vtedy takéto jej správanie nevieme zaručiť.

Ty dostaneš na vstupe hodnotu n a postupnosť boolovských hodnôt $b_1, \ldots, b_n \in \{\text{true}, \text{false}\}$. Je zaručené, že $n = 2^k - 1$ pre nejaké kladné celé číslo k.

Hovoríme, že pole p je permutáciou čísel $\{1,\ldots,n\}$ ak sa medzi hodnotami $p[1],\ldots,p[n]$ nachádza každá z hodnôt 1 až n práve raz.

Pre konkrétnu permutáciu p označme S(p) počet takých indexov $i \in \{1, ..., n\}$ pre ktoré volanie funkcie binary_search(n, p, i) nevráti hodnotu b_i .

Tvojou úlohou je nájsť konkrétnu permutáciu p čísel $\{1, \ldots, n\}$, pre ktorú bude hodnota S(p) dostatočne malá. Detailnejšie požiadavky uvádzame nižšie.

Vstup

Vstup obsahuje viacero nezávislých testov. V prvom riadku vstupu je číslo t udávajúce počet testov.

Každý test tvoria dva riadky. V prvom je číslo n. V druhom je reťazec n núl a jednotiek. Ak je i-ty znak tohto reťazca '1' tak $b_i = \mathtt{true}$, a ak je to '0', tak $b_i = \mathtt{false}$.

Výstup

Pre každý test vypíš jeden riadok a v ňom tebou zostrojenú permutáciu p. Medzi každými dvoma prvkami p vypíš jednu medzeru.

Hodnotenie

Ak v úplne všetkých testoch v konkrétnej podúlohe dosiahneš $S(p) \le 1$, dostaneš za tú podúlohu 100% bodov.

Inak, ak v úplne všetkých testoch v konkrétnej podúlohe bude pre tvoju permutáciu p platiť $S(p) \leq \lceil \log_2 n \rceil$ (inými slovami, $2^{S(p)} \leq n+1$), dostaneš za tú podúlohu 50% bodov.

Obmedzenia

V každom vstupe bude platiť $1 \leq \sum n \leq 100\,000$, kde $\sum n$ označuje súčet hodnôt n pre všetky testy obsiahnuté v tom konkrétnom vstupe.

V každom vstupe bude platiť $1 \le t \le 7\,000$.

V každom teste bude platiť $n=2^k-1$ pre nejaké $k\in\mathbb{N},\,k>0.$

V jednotlivých podúlohách platia nasledujúce dodatočné obmedzenia:

#	Body	Obmedzenia
1	3	$b_i = $ true pre všetky i
2	4	$b_i = \mathtt{false} \; \mathrm{pre} \; \mathrm{v} \check{\mathrm{set}} \mathrm{ky} \; i$
3	16	$1 \le n \le 7$
4	25	$1 \le n \le 15$
5	22	$n=2^{16}-1$ a každá hodnota b_i bola vygenerovaná náhodne, hodom férovej mince
6	30	bez dodatočných obmedzení

Príklady

Input file	Output file
4	1 2 3
3	1 2 3 4 5 6 7
111	3 2 1
7	7 6 5 4 3 2 1
1111111	
3	
000	
7	
00000000	
2	3 2 1
3	7 3 1 5 2 4 6
010	
7	
0010110	

Vysvetlenia

Príklad 1.

V prvých dvoch testoch sa nám zjavne podarilo dosiahnuť, že S(p) = 0.

V treťom teste máme S(p)=1, keďže binary_search(n, p, 2) vráti true, zatiaľ čo $b_2=$ false.

Vo štvrtom teste máme tiež S(p)=1. Tentokrát binary_search(n, p, 4) vráti true, zatiaľ čo sme chceli $b_4=\mathtt{false}$.

Príklad 2.

Obe permutácie v príklade výstupu majú S(p) = 0.