Stream Codes: Arithmetic Coding, Range Coding, and Asymmetric Numeral Systems (ANS)

Robert Bamler · 19 May 2022

This lecture is a part of the Course "Data Compression With and Without Deep Probabilistic Models" at University of Tübingen.

More course materials (lecture notes, problem sets, solutions, and videos) are available at:

https://robamler.github.io/teaching/compress22/

Stream Codes vs. Symbol Codes

- ▶ Reminder: Huffman coding [Huffman, 1952] creates an optimal symbol code; but:
 - Symbol codes are restrictive: each symbol contributes an integer number of bits.
 - Modern machine-learning based (lossy) compression methods typically use models with very low entropy *per symbol* (e.g., $H_P[X_i] \approx 0.3$ bits).
 - ⇒ Any symbol code has > 200 % overhead (since it needs at least 1 bit per symbol).
- ▶ Naive idea: Block codes (Problem 2.4)
 - apply Huffman coding to large blocks of symbols rather than to individual symbols
 - problem: cost scales exponentially in the block size
- ▶ Better idea: stream codes amortize efficiently over multiple symbols
 - ► Arithmetic Coding and Range Coding [Rissanen and Langdon, 1979; Pasco, 1976]
 - Asymmetric Numeral Systems (ANS) [Duda et al., 2015]

Robert Bamler · Course "Data Compression With and Without Deep Probabilistic Models" · 5 May 2022

Amortizing Compressed Bits Over Symbols

information content of each symbol xi Symbol codes: $R_C((x_1, x_2, x_3)) = 4 \text{ bits}$ X_1 X_2 $C(x_1)$ $C(x_2)$ $R_C((x_1, x_2, x_3)) = 2 \text{ bits}$ Stream codes: $|\leftarrow 1 \text{ bit } \rightarrow |\leftarrow 1 \text{ bit } \rightarrow |\leftarrow 1 \text{ bit } \rightarrow |$

- Intuitively: "pack" information content as closely as possible
- ▶ We can no longer associate each bit in the compressed representation with any specific symbol

Arithmetic Coding and Range Coding

[Pasco, 1976; Rissanen and Langdon, 1979]

Idea: Similar to Shannon coding, but applied to the entire message of k symbols rather than to each symbol individually

→ challenge: making it computationally efficient

Arithmetic Coding and Range Coding are two very similar algorithms. They are both

- conceptionally simple
- but a bit tricky to fully implement due to a number of edge cases

Consider a probability distribution P(\underline{X}) over messages $\underline{X} = (x_1, x_2, \dots, x_k)$

Define some total ordering on the message space, i.e., for X, X' $\in \mathcal{K}^k$, you have exactly one of

Now consider the left- and right-sided cumulative distribution functions:

Question: what is the rate $R(\underline{x})$, i.e., how long does the binary representation of $\int_{\underline{x}} have to be if we want to have <math>\int_{\underline{x}} \in \mathcal{X}_{\underline{x}}$?

$$\Rightarrow$$
 Consider the set of all numbers $g = (0, \frac{277}{127}, \frac{7}{12})_z$

So far, we've more or less reinvented Shannon coding, except that

- we apply it to the whole message rather than a single symbol; and
- we don't care about unique decodability here since we don't expect users to concatenate the compressed representations of entire messages without some form of container format or protocol

But: how can we find a suitable $z_{\underline{\varkappa}} \in \mathcal{X}_{\underline{\varkappa}}$ without iterating over all possible messages?

Strategy ("Arithmetic Coding"):

- use chain rule of probability theory
- use lexicographic order of messages
- find $\mathcal{T}_{\underline{\varkappa}}$ by iterative refinement

Remarks:

- in practice, Arithmetic coding becomes more complicated because the intervals quickly become too small for typical numerical precisions. Thus, every time one emits a bit, one should rescale all intervals on both the left side and the right side by a factor of 2. This also works in situations like \Re , but it is a bit tedious to work out the details.
- Range coding is similar, but it works with larger bases than 2 (e.g., 2^32 or 2^64) to improve practical
- computational efficiency on real hardware (→ emits compressed data in blocks of, e.g., 32 or 64 bits).

 on next week's problem set, you will use a range coder provided by a library ("constriction") to improve our machine-learning based compression method for natural language from Problem Set 3.

Exercise

Consider a data source that generates a random message $\mathbf{X} \equiv (X_1, X_2, \dots, X_k)$ of length k, where each symbol X_i , $i \in \{1, \dots, k\}$ is drawn independently from all other symbols from a uniform probability distribution over the alphabet $\mathfrak{X} = \{0, 1, 2, \dots, 9\}$.

- (a) What is the entropy per symbol? $\frac{1}{k}H_P[X] = H_P[X_i] =$
- (b) What is the expected code word length of an *optimal symbol code* for this data source? $L := \mathbb{E}_P[\ell_{\mathsf{Huff}}(X_i)] =$
- (c) Can you do better than an optimal symbol code? Describe your approach first in words, then implement it in Python or in pseudo code. (about 4 lines of code for encoding and 4 lines of code for decoding; no library function calls necessary.)
- (d) What is the expected bit rate per symbol of your method from part (c) in the limit of long messages? $\lim_{k\to\infty}\frac{1}{k}\mathbb{E}_P[R_C(\mathbf{X})]=$

Idea: generalize positional numeral systems from sequences of uniformly distributed symbols from the same alphabet to arbitrarily distributed symbols from symbol-dependent alphabets.