

Instrumentos Estadísticos Avanzados Facultad Ciencias Económicas y Empresariales Departamento de Economía Aplicada Profesor: Santiago de la Fuente Fernández

ALGORITMO TRANSPORTE: MÉTODO HÚNGARO

- Método Húngaro
- Asignaciones
- Ejercicios resueltos con Winqsb

Asignatura	Grupo	
Apellidos	Nombre	
Ejercicio del día		

☐ MÉTODO HÚNGARO: Una compañía eléctrica semanalmente tiene que realizar un mantenimiento preventivo a tres centrales. El tiempo que demanda el mantenimiento de cada central no puede durar más de un día.

La compañía eléctrica trabaja con tres empresas auxiliares de servicios a las que debe asignar el mantenimiento, que dependiendo de su grado de especialización varía el coste de revisión de las centrales. El coste en miles de euros se refleja en la tabla adjunta.

	Central 1	Central 2	Central 3
Empresa A	10	9	5
Empresa B	9	8	3
Empresa C	6	4	7

¿Cuál debe ser la asignación de la empresa auxiliar para que el coste sea el mínimo?

Solución:

Para aplicar el método Húngaro el modelo tiene que ser balanceado, es decir, el número de filas y el de columnas debe ser igual.

Se encuentra el menor número de cada fila.

	Central 1	Central 2	Central 3
Empresa A	10	9	5
Empresa B	9	8	3
Empresa C	6	4	7

Se resta en cada fila de la matriz original el menor elemento encontrado de cada fila.

	Central 1	Central 2	Central 3
Empresa A	10 – 5 = 5	9 – 5 = 4	5 - 5 = 0
Empresa B	9 - 3 = 6	8 - 3 = 5	3 - 3 = 0
Empresa C	6 - 4 = 2	4 - 4 = 0	7-4= 3

Se repite en la nueva matriz el mismo proceso con las columnas.

	Central 1	Central 2	Central 3
Empresa A	5	4	0
Empresa B	6	5	0
Empresa C	2	0	3

Se resta en cada columna de la nueva matriz el menor elemento encontrado en cada columna.

MATRIZ DE COSTE REDUCIDO

· .	Central 1	Central 2	Central 3
Empresa A	5-2=3	4 - 0 = 4	0 - 0 = 0
Empresa B	6 - 2 = 4	5 – 0 = 5	0 - 0 = 0
Empresa C	2-2=0	0 - 0 = 0	3-0=3

Asignatura	Grupo
Apellidos	Nombre
Ejercicio del día	

Con el objetivo de cubrir todos los 0 de la matriz de coste reducido, se traza la menor cantidad de combinaciones de líneas horizontales y verticales.

	Central 1	Central 2	Central 3
Empresa A	3	4	0
Empresa B	4	5	0
Em presa C	0	0	3

El menor número de líneas horizontales y/o verticales necesarias para cubrir todos los 0 de la matriz de costo reducido es igual a 2, menor que el número de filas o columnas.

El Algoritmo Húngaro no ha terminado. Se continua seleccionando el menor elemento de los elementos no marcados.

-	Central 1	Central 2	Central 3
Empresa A	3	4	0
Empresa B	4	5	0
Em presa C	0	0	3

Se resta 3 a todos los elementos no cruzados de las filas.

	Central 1	Central 2	Central 3
Empresa A	0	1	0
Empresa B	1	2	0
Empresa C	0	0	3

Se suma 3 a todos los elementos cruzados de las columnas.

<u> </u>	Central 1	Central 2	Central 3
Empresa A	0	1	0
Empresa B	1	2	0
Empresa C	0	0	6

Se traza la menor cantidad de combinaciones de líneas horizontales y verticales con el objetivo de cubrir todos los 0 de la matriz de coste reducido.

MATRIZ DE COSTE REDUCIDO

	Central 1	Central 2	Central 3
Empresa A	0	1	0
Empresa B -	1	2	0
Empresa C -	0	0	

El algoritmo ha finalizado al ser el número de líneas trazadas igual al número de filas y columnas.

Asignatura	Grupo
Apellidos	Nombre
Eiercicio del día	

ASIGNACIÓN: Se inicia por la fila que tenga menos 0 tachando los ceros de la fila y columna donde se realizó la asignación.

Se asigna la Empresa B a Central 3 y se tacha el 0 de la Central 3.

	Central 1	Central 2	Central 3
Empresa A	0	1	X
Empresa B	1	2	-
Empresa C	0	0	6

Se asigna la Empresa A la Central 1 y se tacha el 0 de la Central 1.

	Centra 1	Central 2	Central 3
Empresa A _	0	1	
Empresa B	1	2	-
Empresa C	Ø	0	

Se asigna la Empresa C la Central 2.

	Centra 1	Central 2	Central 3
Empresa A _		1	×
Empresa B	1	2	
Empresa C _	×	0	6

Costo mínimo de asignación: $(10+4+3) \times 1000 = 17.000$ euros.

	Cent	ral 1	Cent	ral 2	Cent	ral 3
Empresa A	0 10					
Empresa B					0	3
Empresa C			0	4		

ASIGNACIÓN (Simplex) / Linear and Integer Programming

	Central 1	Central 2	Central 3
Empresa A	10 x ₁	9 x ₂	5 x ₃
Empresa B	9 x ₄	8 x ₅	3 x ₆
Empresa C	6 x ₇	4 x ₈	7 x ₉

Función objetivo: $z = (10x_1 + 9x_2 + 5x_3) + (9x_4 + 8x_5 + 3x_6) + (6x_7 + 4x_8 + 7x_9)$

Restricciones: Una empresa se puede asignar solo a una Central $\begin{cases} x_1 + x_2 + x_3 = 1 \\ x_4 + x_5 + x_6 = 1 \\ x_7 + x_8 + x_9 = 1 \end{cases} \begin{cases} x_1 + x_4 + x_7 = 1 \\ x_2 + x_5 + x_8 = 1 \\ x_3 + x_6 + x_9 = 1 \end{cases}$

$$\begin{cases} x_1 + x_2 + x_3 = 1 \\ x_4 + \dot{x}_5 + x_6 = 1 \\ x_7 + x_8 + x_9 = 1 \end{cases} \begin{cases} x_1 + x_4 + x_7 = 1 \\ x_2 + x_5 + x_8 = 1 \\ x_3 + x_6 + x_9 = 1 \end{cases}$$

Asignatura	Grupo
Apellidos	Nombre
Eiercicio del día	

Format / Switch to Matrix Form

Asignatura Grupo..... Apellidos Nombre

🧮 Linear an	d Integer Pro	gramming			0.1.17	o: 1					
ile <u>E</u> dit F <u>o</u> rm	iat <u>S</u> olve and A	Analyze <u>R</u> esult	s <u>U</u> tilities <u>W</u> i	ndow Win <u>Q</u> SB	Solución	simplex					
& EMPRESA	s										
Variable>	X1	X2	X3	X4	X5	X6	X7	X8	X9	Direction	R. H. S.
Minimize	10	9	5	9	8	3	6	4	7		
C1	1	1	1							=	1
C2				1	1	1				=	1
C3							1	1	1	=	1
C4	1			1			1			=	1
C5		1			1			1		=	1
C6			1			1			1	=	1
LowerBound	0	0	0	0	0	0	0	0	0		
UpperBound	М	М	М	М	М	М	М	М	М		
VariableType	Continuous	Continuous	Continuous	Continuous	Continuous	Continuous	Continuous	Continuous	Continuous		

_								
Minor.	Linear an	d Integer I	Programming	g				
File								
		341	0.0	_ ·	: I≡∏↑l±	→		
		≥ (0.0	M [A] =] =	: <u>= □</u>			
81	Combine	d Report f	or EMPRESAS	;				
	Decision Variable	Solution Value	Unit Cost or Profit c(j)	Total Contribution	Reduced Cost	Basis Status	Allowable Min. c(j)	Allowable Max. c(j)
1	X1	1,0000	10,0000	10,0000	0	basic	9,0000	11,0000
2	X2	0	9,0000	0	1,0000	at bound	8,0000	М
3	X3	0	5,0000	0	1,0000	at bound	4,0000	М
4	X4	0	9,0000	0	0	basic	8,0000	10,0000
5	X5	0	8,0000	0	1,0000	at bound	7,0000	М
6	X6	1,0000	3,0000	3,0000	0	basic	-М	4,0000
7	X7	0	6,0000	0	0	basic	5,0000	10,0000
8	X8	1,0000	4,0000	4,0000	0	basic	-M	5,0000
9	X9	0	7,0000	0	7,0000	at bound	0	М
	Objective	Function	(Min.) =	17,0000				
	Constraint	Left Hand Side	Direction	Right Hand Side	Slack or Surplus	Shadow Price	Allowable Min. RHS	Allowable Max. RHS
1	C1	1,0000	=	1,0000	0	0	1,0000	М
2	C2	1,0000	=	1,0000	0	-1,0000	1,0000	2,0000
3	C3	1,0000	=	1,0000	0	-4,0000	1,0000	2,0000
4	C4	1,0000	=	1,0000	0	10,0000	0	1,0000
5	C5	1,0000	=	1,0000	0	8,0000	0	1,0000
6	C6	1,0000	=	1,0000	0	4,0000	0	1,0000

Asignatura	Grupo
Apellidos	Nombre
Ejercicio del día	

ASIGNACIÓN (Método Húngaro) / Net Problem Specification - Assignment Problem

Solve and Analyze / Solve Display Steps-Tableau

Asignatura	Grupo
Apellidos	Nombre
Ejercicio del día	

MÉTODO HÚNGARO: Una empresa de transportes tiene cuatro modelos diferentes de camiones. Dependiendo de la pericia del conductor para manejar los cambios de la caja de velocidades, el camión consume más o menos combustible.

En la actualidad la planta cuenta con tres conductores. Los costes en euros por uso adicional de combustible figura en la tabla adjunta.

	Camión 1	Camión 2	Camión 3	Camión 4
Conductor A	180	150	200	200
Conductor B	250	305	450	500
Conductor C	200	208	320	100

Encontrar la asignación que minimiza los costes de combustible adicional.

Solución:

Para aplicar el método Húngaro el número de filas y el de columnas debe ser igual. En consecuencia, para que no afecte el resultado de la función objetivo, hay que crear un Conductor Ficticio D y asignarle un número de combustible adicional equivalente a 0 en cada uno de los camiones.

La tabla inicial queda de la siguiente forma:

	Camión 1	Camión 2	Camión 3	Camión 4
Conductor A	180	150	200	200
Conductor B	250	305	450	500
Conductor C	200	208	320	100
Conductor D	0	0	0	0

Se encuentra el menor elemento de cada fila.

	Camión 1	Camión 2	Camión 3	Camión 4
Conductor A	180	150	200	200
Conductor B	250	305	450	500
Conductor C	200	208	320	100
Conductor D	0	y 0	0	0

Se resta en cada fila de la matriz el menor elemento encontrado en cada fila.

	Camión 1	Camión 2	Camión 3	Camión 4
Conductor A	30	0	50	50
Conductor B	0	55	200	250
Conductor C	100	108	220	0
Conductor D	0	0	0	0

Se repite en la matriz resultante el mismo proceso con las columnas, encontrando el menor elemento por columna.

Asignatura	Grupo
Apellidos	Nombre
Eiercicio del día	

	Camión 1	Camión 2	Camión 3	Camión 4
Conductor A	30	0	50	50
Conductor B	0	55	200	250
Conductor C	100	108	220	0
Conductor D	0	0	0	0

Se resta en cada columna de la matriz el menor elemento encontrado en cada columna, que no es necesario hacer al tener un 0 en cada columna.

Se traza la menor cantidad de combinaciones de líneas horizontales y verticales con el objetivo de cubrir todos los 0 de la matriz de costo reducido.

	Camión 1	Camión 2	Camión 3	Camión 4
Conductor A -	30	0	50	
Conductor B	0	55	200	250
Conductor C	100	108	220	0
Conductor D -	0	0	0	

El algoritmo finaliza al ser el número de líneas trazadas igual que el número de filas y columnas.

AIGNACIÓN: En la matriz de costo reducido se inicia por la fila que tenga menos 0 y tachando los ceros de la fila y columna donde se realizó la asignación.

	Camión 1	Camión 2	Camión 3	Camión 4
Conductor A	30	0	50	50
Conductor B	0	55	200	250
Conductor C	100	108	220	0
Conductor D	0	0	0	0

En la práctica se intercambian las filas para obtener un 0 de asignación en la diagonal principal.

	Camión 1	Camión 2	Camión 3	Camión 4
Conductor B	0	55	200	250
Conductor A	30	0	50	50
Conductor D	0	0	0	0
Conductor C	100	108	220	0

Al Conductor B se le asigna el Camión 1 y se tacha el 0 de la columna del Camión 1.

·	Camión 1	Camión 2	Camión 3	Camión 4
Conductor B	0	55	200	250
Conductor A	30	0	50	50
Conductor D	×	0	0	0
Conductor C	100	108	220	0

Al Conductor A se le asigna el Camión 2 y se tacha el 0 de la columna del Camión 2.

Asignatura	Grupo
Apellidos	Nombre
Fiercicio del día	

	Camión 1	Camión 2	Camión 3	Camión 4
Conductor B	0	55	200	250
Conductor A	30	0	50	50
Conductor D	×	Ø	0	0
Conductor C	100	108	220	0

Al Conductor D se le asigna el Camión 3 y se marca el 0 de la fila del Conductor D.

	Camión 1	Camión 2	Camión 3	Camión 4
Conductor B	0	55	200	250
Conductor A	30	0	50	50
Conductor D	×	Ø	0	Ø
Conductor C	100	108	220	0

Al Conductor C se le asigna el Camión 4.

	Camión 1	Camión 2	Camión 3	Camión 4
Conductor B	0	55	200	250
Conductor A	30	0	50	50
Conductor D	×	Ø	0	Ø
Conductor C	100	108	220	0

La asignación óptima es:

	Camión 1		Camión 2		Cam	ión 3	Camión 4		
Conductor B	0	250							
Conductor A			0 150						
Conductor D					0	0			
Conductor C							0	100	

Costo total mínimo de asignación: 250 + 150 + 100 = 500 euros

Hoia	nº																			
		•	1	•	•	•	-	1	•	•	•	-	•	•	•	1	•	•	٠	

Asignatura	Grupo
Apellidos	Nombre
Ejercicio del día	

ASIGNACIÓN (Método Húngaro) / Net Problem Specification - Assignment Problem

🦝 Hungarian Method for CAMIONES - Iteration 1 (Final)

	Camión 1	Camión 2	Camión 3	Camión 4
Conduct A	30	0	50	50
Conduct B	0	- 55	200	250
Conduct C	100	100	220	0
Dummy	0	0	0	0

Asignatura	Grupo
Apellidos	Nombre
Eiercicio del día	

■ MÉTODO HÚNGARO: En informática de ENAIRE hay tres lugares que ocupar durante seis meses: programador, analista y supervisor. Hay cuatro candidatos seleccionados para ocupar estos puestos, dependiendo el salario de cada uno del puesto que tenga. En la tabla adjunta se facilita esta información en euros.

	Programador	Analista	Supervisor
Candidato A	11.800	15.000	20.000
Candidato B	12.500	13.000	14.400
Candidato C	20.000	18.000	23.000
Candidato D	18.000	17.000	16.000

Se pide el costo mínimo de asignación de los candidatos.

Solución:

Para aplicar el método Húngaro el número de filas y el de columnas debe ser igual. Por tanto, hay que crear un Puesto Ficticio para balancear el problema y asignarle una cantidad económica equivalente a cero, para que de esta manera no afecte el resultado de la función objetivo.

La tabla inicial queda:

	Programador	Analista	Supervisor	Ficticio
Candidato A	11.800	15.000	20.000	0
Candidato B	12.500	13.000	14.400	0
Candidato C	20.000	18.000	23.000	0
Candidato D	18.000	17.000	16.000	0

Se encuentra el menor elemento de cada fila, restando en cada fila de la matriz el menor elemento encontrado en cada fila.

En este caso, la tabla queda sin alterar porque el menor elemento de cada fila es 0.

Se encuentra el menor elemento de cada columna.

	Programador	Analista	Supervisor	Ficticio
Candidato A	11.800	15.000	20.000	0
Candidato B	12.500	13.000	14.400	0
Candidato C	20.000	18.000	23.000	0
Candidato D	18.000	17.000	16.000	0

Se resta en cada columna de la matriz el menor elemento encontrado en ella.

	Programador	Analista	Supervisor	Ficticio
Candidato A	0	2.000	5.600	0
Candidato B	700	0	0	0
Candidato C	8.200	5.000	8.600	0
Candidato D	6.200	4.000	1.600	0

Asignatura	Grupo
Apellidos	Nombre
Ejercicio del día	

Se traza la menor cantidad de combinaciones de líneas horizontales y verticales con el objetivo de cubrir todos los 0 de la matriz de costo reducido.

	Programador	Analista	Supervisor	Ficticio
Candidato A _	0	2,000	5,600	4
Candidato B -	700	0	0	
Candidato C	8.200	5.000	8.600	d
Candidato D	6.200	4.000	1.600	d

El menor número de líneas para cubrir todos los 0 es 3, menor que el número de filas o columnas. El Algoritmo Húngaro continua.

Se selecciona el menor elemento entre los elementos no marcados.

	Programador	Analista	Supervisor	Ficticio
Candidato A	0	2,000	5,600	4
Candidato B -	700	0	0	
Candidato C	8.200	5.000	8.600	d
Candidato D	6.200	4.000	1.600	d

Se resta 1.600 euros a todos los elementos no cruzados de las filas.

	Programador	Analista	Supervisor	Ficticio
Candidato A _	0	2.000	5.600	4
Candidato B	700	0	0	
Candidato C	6.600	3.400	7.000	d
Candidato D	4.600	2.400	0	d

Se suma 1.600 euros a todos los elementos cruzados de las columnas.

	Programador	Analista	Supervisor	Ficticio
Candidato A	0	2.000	5.600	1.600
Candidato B	700	0	0	1.600
Candidato C	6.600	3.400	7.000	0
Candidato D	4.600	2.400	0	0

Se traza la menor cantidad de combinaciones de líneas horizontales y verticales con el objetivo de cubrir todos los 0 de la matriz de costo reducido.

•	Programador	Analista	Supervisor	Ficticio
Candidato A	0	2.000	5.600	1.600
Candidato B _	700	0	0	1.600
Candidato C -	6.600	3.400	7.000	
Candidato D	4.600	2.400	0	0

El Algoritmo finaliza al ser el número de líneas trazadas igual al número de filas o columnas.

Asignatura	Grupo			
Apellidos	Nombre			
Ejercicio del día				

ASIGNACIÓN: Se inicia por la fila que tenga menos 0 y tachando los ceros de la fila y columna donde se realiza la asignación.

Para una visualización más sencilla se intercambian las filas para obtener un 0 de asignación en la diagonal principal.

	Programador	Analista	Supervisor	Ficticio
Candidato A	0	2.000	5.600	1.600
Candidato B	700	0	Ø	1.600
Candidato D	4.600	2.400	0	Ø
Candidato C	6.600	3.400	7.000	0

Candidato A ocupa el puesto de Programador

Candidato B ocupa el puesto de Analista

Candidato D ocupa el puesto de Supervisor

Candidato C no se selecciona

El coste total mínimo de asignación:

	Programador		Analista		Supervisor	
Candidato A	0	11.800				
Candidato B			0	13.000		
Candidato D					0	16.000

Coste total mínimo: 11.800 + 13.000 + 16.00 = 40.800 euros.

Asignatura	Grupo
Apellidos	Nombre
Eiercicio del día	

MÉTODO HÚNGARO (MAXIMIZAR): La compañía cafetera Fuenterrebollo dispone de cuatro terrenos disponibles para comercializar su producto. Los terrenos, dependiendo de su ubicación, tienen condiciones particulares de rendimiento. Tres equipos de la compañía cafetera se tienen que hacer cargo del proceso, teniendo que hacerse cargo de dos terrenos un equipo.

Un ingeniero agrónomo de la compañía, disponiendo de la capacidad de cosecha (en cientos de sacos de café) de cada uno de los equipos tiene que realizar la asignación para maximizar el rendimiento. La información disponible de capacidad de cosecha se refleja en la tabla adjunta:

	Terreno 1	Terreno 2	Terreno 3	Terreno 4
Equipo A	13	7	12	12
Equipo B	10	13	15	7
Equipo C	13	10	8	8

¿Cómo se haría la asignación de los equipos para obtener el máximo rendimiento?

Solución:

Para aplicar el método Húngaro el número de filas y el de columnas debe ser igual. Se necesita crear un Equipo Ficticio y asignarle un número de sacos cosechados equivalente a cero en cada uno de los terrenos.

No obstante, la empresa cafetera ha previsto que uno de los equipos se encargase de dos terrenos, en este caso se crea un Equipo B bis, permitiendo prescindir del Equipo Ficticio, con la misma capacidad de cosecha que el Equipo B.

	Terreno 1	Terreno 2	Terreno 3	Terreno 4
Equipo A	13	7	12	12
Equipo B	10	13	15	7
Equipo B bis	10	13	15	7
Equipo C	13	10	8	8

Balanceado el tabulado, el objetivo es maximizar los sacos de café. El Método Húngaro está diseñado para minimizar, con lo que se busca el mayor valor del tabulado (15).

Se resta al mayor valor (15) el valor de cada una de las celdas.

	Terreno 1	Terreno 2	Terreno 3	Terreno 4
Equipo A	15 – 13 = 2	15 – 7 = 8	15 - 12 = 3	15 - 12 = 3
Equipo B	15 - 10 = 5	15 – 13 = 2	15 - 15 = 0	15 – 7 = 8
Equipo B bis	15 – 10 = 5	15 – 13 = 2	15 – 15 = 0	15 - 7 = 8
Equipo C	15 – 13 = 2	15 – 10 = 5	15 - 8 = 7	15 – 8 = 7

La tabla queda:

	Terreno 1	Terreno 2	Terreno 3	Terreno 4		
Equipo A	2	8	3	3		
Equipo B	5	2	0	8		
Equipo B bis	5	2	0	8		
Equipo C	2	5	7	7		

Asignatura	Grupo
Apellidos	Nombre
Eiercicio del día	

A partir del tabulado obtenido se aplica el Algoritmo Húngaro como se haría en el caso normal de minimización.

Se encuentra el menor elemento de cada fila.

	Terreno 1	Terreno 2	Terreno 3	Terreno 4
Equipo A	2	8	3	3
Equipo B	5	2	0	8
Equipo B bis	5	2	0	8
Equipo C	2	5	7	7

En cada fila de la matriz se resta el menor elemento encontrado en ella.

	Terreno 1	Terreno 2	Terreno 3	Terreno 4
Equipo A	0	6	1	1
Equipo B	5	2	0	8
Equipo B bis	5	2	0	8
Equipo C	0	3	5	5

Se encuentra el menor elemento de cada columna.

	Terreno 1	Terreno 2	Terreno 3	Terreno 4
Equipo A	0	6	1	1
Equipo B	5	2	0	8
Equipo B bis	5	2	0	8
Equipo C	0	3	5	5

En cada columna de la matriz se resta el menor elemento encontrado en ella.

	Terreno 1	Terreno 2	Terreno 3	Terreno 4
Equipo A	0	4	1	0
Equipo B	5	0	0	7
Equipo B bis	5	0	0 -	7
Equipo C	0	1	5	4

Se traza la menor cantidad de combinaciones de líneas horizontales y verticales con el objetivo de cubrir todos los 0 de la matriz de costo reducido.

	Terreno 1	Terreno 2	Terreno 3	Terreno 4
Equipo A —	0	4	1	0
Equipo B —	5	0	0	7-
Equipo B bis	5	0	0	7
Equipo C	U	1	5	4

El Algoritmo finaliza al ser el número de líneas trazadas igual al número de filas o columnas.

Asignatura	Grupo				
Apellidos	Nombre				
Ejercicio del día					

ASIGNACIÓN: Se inicia por la fila que tenga menos 0 y tachando los ceros de la fila y columna donde se realiza la asignación.

	Terreno 1	Terreno 2 Terreno 3		Terreno 4
Equipo A	Ø	4	1	04
Equipo B	5	Ø	0 ³	7
Equipo B bis	5	0 ²	Ø	7
Equipo C	0 ¹	1	5	4

Equipo A queda con el Terreno 4

Equipo B queda con los Terrenos 2 y 3

Equipo C queda con el Terreno 1

El coste total mínimo de asignación:

	Terre	Terreno 1 Terreno 2		Terreno 3		Terreno 4		
Equipo A							0	12
Equipo B					0	15		
Equipo B bis			0	13				
Equipo C	0	13						

Máximo de sacos cosechados: (13+13+15+12).100 = 5.300 sacos de café

Asignatura	Grupo
Apellidos	Nombre
Ejercicio del día	

☐ Asignar 4 máquinas a 4 posibles lugares, se presentan los costos asociados.

	Lugar 1	Lugar 2	Lugar 3	Lugar 4
Máquina 1	3	5	3	3
Máquina 2	5	14	10	10
Máquina 3	12	6	19	17
Máquina 4	2	17	10	12

Solución:

Siguiendo al algoritmo Húngaro, se resta en cada fila de la matriz el menor elemento encontrado en cada fila.

	Lugar 1	Lugar 2	Lugar 3	Lugar 4
Máquina 1	0	2	0	0
Máquina 2	0	9	5	5
Máquina 3	6	0	13	11
Máquina 4	0	15	8	10

En la matriz resultante, se resta en cada columna el menor elemento encontrado en cada columna, que no es necesario hacer al presentarse un 0 en cada columna.

Se traza la menor cantidad de combinaciones líneas horizontales y verticales con el objetivo de cubrir todos los 0 de la matriz de costo reducido.

	Lugar 1	Lugar 2	Lugar 3	Lugar 4
Máquina 1	-	2	0	0
Máquina 2	þ	9	5	5
Máquina 3	- 6	0	13	11
Máquina 4	b	15	8	10

El algoritmo no finaliza al ser el número de líneas menor que el grado de la matriz.

Se toma el menor elemento no marcado por una línea (5), restando este valor a todos los elementos de la filas no marcadas.

	Lugar 1	Lugar 2	Lugar 3	Lugar 4
Máquina 1	0	2	0	0
Máquina 2	0	4	0	0
Máquina 3	6	0	13	11
Máquina 4	0	10	3	5

Asignatura	Grupo
Apellidos	Nombre
Ejercicio del día	

Se suma el valor (5) a todos los elementos de las columnas cruzadas

	Lugar 1	Lugar 2	Lugar 3	Lugar 4
Máquina 1	5	2	0	0
Máquina 2	0	4	0	0
Máquina 3	11	0	13	11
Máquina 4	0	10	3	5

Se traza la menor cantidad de combinaciones líneas horizontales y verticales con el objetivo de cubrir todos los 0 de la matriz de costo reducido.

	Lug <mark>ar 1</mark>	Lugar 2	Lugar 3	Lugar 4
Máquina 1	5	2	0	þ
Máquina 2	þ	4	0	þ
Máquina 3	11	0	13	11
Máquina 4	þ	10	l ₃	5

El algoritmo finaliza al ser el número de líneas igual que el grado de la matriz.

ASIGNACIÓN: En la matriz de costo reducido se inicia por la fila que tenga menos ceros, tachando los ceros de la fila y columna donde se realizó la asignación.

	Lugar 1	Lugar 2	Lugar 3	Lugar 4
Máquina 1	5	2	Ø	04
Máquina 2	Ø	4	0 ³	Ø
Máquina 3	11	0^2	13	11
Máquina 4	0^1	10	3	5

	Lugar 1	Lugar 2	Lugar 3	Lugar 4
Máquina 1				3
Máquina 2			10	
Máquina 3		6		
Máquina 4	2			

Costo Total = 2 + 6 + 10 + 3 = 21

Hoja	nº																
		•	1	•	•	۰		٠	٠	٠	•	٠	٠	•	•	٠	

Asignatura	Grupo
Apellidos	Nombre
Eiercicio del día	

M. Solutio	Solution for MAQUINAS: Minimization (Assignment Problem)													
	From	To	Assignment	Unit Cost	Total Cost	Reduced Cost								
1	Máquina 1	Lugar 3	1	3	3	0								
2	Máquina 2	Lugar 4	1	10	10	0								
3	Máquina 3	Lugar 2	1	6	6	0								
4	Máquina 4	Lugar 1	1	2	2	0								
	Total	Objective	Function	Value =	21									

10ju 11	Ноја	nº																					
---------	------	----	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

UÁM	
Universidad Autónoma de Madrid	

Asignatura	Grupo
Apellidos	Nombre
Eiercicio del día	

Asignatura	Grupo
Apellidos	Nombre
Eiercicio del día	

Instrumentos Estadísticos Avanzados Facultad Ciencias Económicas y Empresariales Departamento de Economía Aplicada Profesor: Santiago de la Fuente Fernández