Lineare Unabhängigkeit, Basis, Dimension

nach G.Strang, MIT OpenCourseWare 18.06 Linear Algebra, Lecture 9

M. Gruber

KW 44

Zusammenfassung

Lineare Unabhängigkeit, lineare Abhängigkeit.

Aufspannen eines Unterraums.

Basis

Dimension.

Lineare Unabhängigkeit

Definition 1. [Lineare Unabhängigkeit] Vektoren v_1, \ldots, v_n sind linear unabhängig, wenn für jede Linearkombination außer der trivialen Linearkombination $0 \cdot v_1 + \ldots + 0 \cdot v_n$ gilt:

$$c_1v_1+\ldots+c_nv_n\neq 0.$$

Definition 2. [Lineare Abhängigkeit] Vektoren v_1, \ldots, v_n sind linear abhängig, wenn sie nicht linear unabhängig sind, d.h. wenn es eine nichttriviale Linearkombination (nicht alle $c_i = 0$) gibt mit

$$c_1v_1+\ldots+c_nv_n=0.$$

Beispiele

Beispiel 1. Sei $v \neq 0$. Die Vektoren v und 2v sind linear abhängig. Warum?

Tipp: Finde eine nichttriviale Linearkombination von v und 2v mit dem Wert null.

Beispiel 2. Sei v ein beliebiger Vektor. Der Nullvektor 0 und v sind linear abhängig. Warum?

Tipp: Finde eine nichttriviale Linearkombination von 0 und v mit dem Wert null.

Beispiel 3. Seien $v_1, v_2, v_3 \in \mathbf{R}^2$. Die Vektoren sind linear abhängig. Warum?

Tipp: Schreibe v_1, v_2, v_3 als Spalten in eine 2×3 -Matrix A und betrachte ihren Nullraum N(A).

Beispielwerte: $v_1=\left[egin{smallmatrix} 2\\1 \end{smallmatrix}
ight]$, $v_2=\left[egin{smallmatrix} 1\\2 \end{smallmatrix}
ight]$, $v_3=\left[egin{smallmatrix} 2.5\\-1 \end{smallmatrix}
ight]$

Zusammenhang mit Ax = 0

Seien v_1, \ldots, v_n die Spalten einer Matrix A.

- 1. v_1,\ldots,v_n sind genau dann linear unabhängig, wenn $N(A)=\{0\}$ ist.
- 2. v_1, \ldots, v_n sind genau dann linear unabhängig, wenn $\operatorname{rank} A = n$ ist, d.h. wenn es keine freien Spalten gibt.
- 3. v_1,\ldots,v_n sind genau dann linear abhängig, wenn Ac=0 für ein c
 eq 0 ist.
- 4. v_1, \ldots, v_n sind genau dann linear abhängig, wenn $\operatorname{rank} A < n$ ist, d.h. wenn es freie Spalten gibt.

Basis

Definition 3. ["aufspannen"] v_1, \ldots, v_l spannen den Vektorraum V auf, wenn V aus allen Linearkombinationen der v_1, \ldots, v_l besteht.

Bemerkung 1. Dabei ist nicht gesagt, dass v_1, \ldots, v_l linear unabhängig sein müssen.

Definition 4. [Basis] Die Vektoren v_1, \ldots, v_d bilden eine Basis des Vektorraums V, wenn sie

- 1. den Vektorraum V aufspannen und
- 2. linear unabhängig sind.

Beispiele

 $V = \mathbf{R}^3$.

Beispiel 4. Die Vektoren $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\1\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\1\\0 \end{bmatrix}$ bilden eine Basis. Warum?

Tipp: Schreibe sie in eine 3×3 -Matrix A. Sind sie linear unabhängig? Ist C(A) = V?

Beispiel 5. Die Vektoren $\begin{bmatrix} 1\\1\\2 \end{bmatrix}$, $\begin{bmatrix} 2\\2\\5 \end{bmatrix}$, $\begin{bmatrix} 3\\4\\8 \end{bmatrix}$ bilden eine Basis. Warum?

Tipp: Schreibe sie in eine 3×3 -Matrix A. Sind sie linear unabhängig? Ist C(A) = V?

Beispiel 6. Die Vektoren $\begin{bmatrix} 1\\1\\2 \end{bmatrix}$, $\begin{bmatrix} 2\\2\\5 \end{bmatrix}$ bilden keine Basis. Warum nicht?

Tipp: Schreibe sie in eine 3×3 -Matrix A. Sind sie linear unabhängig? Ist C(A) = V?

Beispiel 7. Die Vektoren $\begin{bmatrix} 1\\1\\2 \end{bmatrix}$, $\begin{bmatrix} 2\\2\\5 \end{bmatrix}$, $\begin{bmatrix} 3\\3\\8 \end{bmatrix}$ bilden keine Basis. Warum nicht?

Tipp: Schreibe sie in eine 3×3 -Matrix A. Sind sie linear unabhängig? Ist C(A) = V?

Dimension

Satz 1. Jede Basis eines Vektorraums $S \subset \mathbf{R}^m$ hat die gleiche Anzahl von Vektoren.

Beweis Angenommen, v_1, \ldots, v_d und $w_1, \ldots, w_l \in S$ sind Basen von S und l > d.

Schreibe die v_i als Spalten in die m imes d-Matrix V und die w_i als Spalten in die m imes l-Matrix W. Es gibt eine d imes l-Matrix C mit Spalten c_1, \ldots, c_l und VC = W, denn V enthält eine Basis.

Da C mehr Spalten als Zeilen hat, müssen die Spalten von C linear abhängig sein. Deshalb gibt es eine nichttriviale Linearkombination der c_i mit $s_1c_1+\ldots+s_lc_l=0$ und man hat wegen $0=V(s_1c_1+\ldots+s_lc_l)=s_1w_1+\ldots+s_lw_l$ eine nichttriviale Linearkombination der w_i mit dem Wert null.

Also bilden die w_1,\ldots,w_l keine Basis. Widerspruch!

 $oxed{Definition 5. [Dimension]}$ Sei S ein Vektorraum mit Basis v_1, \ldots, v_d . $\dim S := d$ ist die Dimension von S.

Ein Beispiel

Beispiel 8. Sei $A = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 2 & 3 & 1 \end{bmatrix}$.

- $ullet egin{bmatrix} -1 \ 1 \ 1 \end{bmatrix} \in N(A) \Rightarrow$ die ersten drei Spalten von A bilden keine Basis von C(A).
- ullet $2=\operatorname{rank} A=\#$ der Pivot-Spalten von $A=\dim C(A)$.
- $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 2 \\ 3 \end{bmatrix}$ ist eine Basis von C(A); $\begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 7 \\ 5 \\ 7 \end{bmatrix}$ ist eine andere Basis von C(A). . .
- $\begin{bmatrix} -1 \\ -1 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} -1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$ ist eine Basis von N(A).
- ullet dim N(A)=# der freien Spalten von A=n-r .