Introduction

- Difference between Data and Information
- What is Metadata (Table 1.1)
- Difference between sequential access and random access to a file

Historical

- Historical databases
 - File processing system page 4 in book
 - what were the limitations (Slides from day 1... part 2)
 - Relational Databases
 - From the 1970s
 - Most successful
 - The rest of these, just know they exist
 - Networking databases
 - Hierarchical databases
 - Object Oriented database
- Big Data
 - Exposing the limits of the relational database systems
 - Google and Amazon have their own

Databases

- Define database system page 11
 - includes data and metadata, etc
- Compare figure 1.1 to figure 1.6
- Advantages of using a database page 15
- Disadvantages
 - Higher upfront program costs
 - Higher upfront program complexity
- Data management operations
 - CRUD

Databases

- What drives a database design?
 - Requirements! The business, the organization
- Difference between database and database system
- Components of a database system

Foundations — Entity type

- What is a Model?
 - What are the types of models we will do
- Entity Type
 - A collection of attributes

Foundations - Attribute

- Attribute characteristics
 - Name (unique to entity type)
 - Type (or data type)
 - Numeric
 - Alphanumeric
 - Alphabetic
 - Date/time
 - logical (true or false)
 - binary
 - Optionality
- Uniqueness Constraints
- Domain Constraints
 - can includes the size of the attribute data types

Foundations - Relationship Type

- Can have attributes
- Relationship Type degrees
 - Binary
 - Ternary
 - Quarternary
 - Recursive
- Participation Constraints
 - Total (or mandatory)
 - Partial (or optional)
- Cardinality Constraints
 - 1:n (also called parent-child)
 - 1:1
 - m:n

Foundations - Additional

- Weak Entity Type
 - often have partial keys
- Cluster Entity Type
- Deletion Constraints
 - Restrict
 - Cascade
 - Set null
 - Set default
- Associative Entity Type
 - Relationship type that becomes a weak entity type

Instance Diagrams

Understand how to read one

ER Models

- 1. Presentation Layer
- 2. Design-Specific
 - Determine all data types, sizes
 - Adds (min, max) for Relationship Structural Constraints
 - Optional participation becomes a min of "0"
 - Multi-values attributes become entity types
 - Resolve m:n Relationship constraints
 - Convert them to weak entity type with 1:n or 1:1
 - Remember: some domain constraints and other business rules are listed separately
 - Best to list domain constraints in a tabular format (similar to page 105)
- 3. Page 353 # 32... start with an interns relationship type

Enhanced Entity Relationship Model

- New Construct: SubClass/SuperClass Relationship
 - for "Is A" relationships
 - Disjoint (d)
 - VEHICLE is either SUV or VAN
 - Overlapping (o)
 - ATHLETE can be either BASEBALL_PLAYER or FOOTBALL_PLAYER or BOTH
 - Aggregation (a) of subclasses "Is part of a"
 - page 167
 - Union (u) of superclasses categorization
- Review Vignette 3.2
 - Emphasize the subset notation

Relational Data Model

- A type of Logical Data Model
- Based on Relations
- Relation:
 - Mathematical term approximately equivalent to a 2-D table
 - This table has a heading with attribute names
 - each attribute name must be unique in that relation
 - Naming convention
 - each attribute is atomic... compound or molecular attributes go away
 - Some domain constraints on attributes become entity types
 - SHIP.classification
 - referred to as look-up tables
 - derived values are not captured... but they are derivable
 - Each row in the relation is called a *tuple*
 - every tuple in a relation MUST be unique
 - therefore, at least one unique identifier is needed
 - A relation *schema* has just the headings of the relation