B. Tech. Degree III Semester Regular/Supplementary Examination January 2023

CE/CS/EC/EE/IT/ME/SE 19-200-0301 LINEAR ALGEBRA AND TRANSFORM TECHNIQUES

(2019 Scheme)

Time: 3 Hours

Maximum Marks: 60

Course Outcomes

On successful completion of the course, the students will be able to:

CO1: Solve linear system of equations and to determine eigen values and eigen vectors of a matrix.

CO2: Understand the concept of vector space and subspace.

CO3: Determine Fourier series expansion of functions and transform.

CO4: Solve linear differential equation and integral equation using Laplace transform.

Bloom's Taxonomy Levels (BL): L1 - Remember, L2 - Understand, L3 - Apply, L4 - Analyze,

L5 - Evaluate, L6 - Create

PO - Programme Outcome

PART A	
(Answer ALL questions)	

	$(8 \times 3 = 24)$	Marks	BL	CO	PO
I. (a)	Find eigen values and eigen vectors of $\begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$.	3	L2, L3	1	1
(b)	Form quadratic form corresponding to $A = \begin{bmatrix} 5 & -3 \\ -3 & 8 \end{bmatrix}$.	3	L1, L2 L3	1	2
³ (c)	Find a non zero vector W that is orthogonal to $(1, 3, 2)$ and $(1, 2, 3)$ in \mathbb{R}^3 .	3	L3	2	2
در (d)	Find the value of λ for which the following set of vectors $(\lambda, 0, 2)$ $(2, 1, 0)$ $(0, 3, 6)$ form a basis of \mathbb{R}^3 .	3	L3, L4	2	1
(e)	Obtain the Fourier series expansion of $f(x)$ if	3	L2, L3	3	2
	$f(x) = \begin{cases} 1 \text{ for } 0 \le x \le 1 \\ x \text{ for } 1 < x < 2 \end{cases} \text{ and } f(x+2) = f(x).$			ū	
(f)	Obtain half range sine series for e^x in $0 < x < 1$.	3	L2, L3	3	2
(g)	Find the Laplace transform of $f(t)$ where $f(t) = \begin{cases} \cos t & 0 < t < \pi \\ \sin t & t > \pi \end{cases}$.	3	L3	4	2
(h)	Find $L^{-1}\left(\frac{e^{-2s}}{s-3}\right)$.	3	L4	4	3

PART B

$$(4 \times 12 = 48)$$

II. (a) Find the values of λ and μ for which the equation x+y+z=3; 6 L4 1 2 x+2y+2z=6; $x+\lambda y+3z=\mu$ have (i) no solution (ii) unique solution (iii) more than one solution.

(b) State Cayley-Hamilton theorem. Using this theorem find inverse of the matrix $A=\begin{bmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \end{bmatrix}$.

111.	(a)	Find the rank of the matrix. $A = \begin{bmatrix} 1 & 1 & 2 & 3 \\ 3 & 4 & 7 & 10 \\ 5 & 7 & 11 & 17 \\ 6 & 8 & 13 & 16 \end{bmatrix}$		BL L2, L3	CO 1	PO 2
	(b)	Diagonalise the matrix $A = \begin{bmatrix} 2 & 1 & -1 \\ 1 & 1 & -2 \\ -1 & -2 & 1 \end{bmatrix}$ by means of an orthogonal transformation.	6	L4	1	3
IV.	(a)	Let V consists of all real polynomials of degree ≤ 4 with usual polynomial addition and scalar multiplication. Let $W = \{\text{polynomials of degree } \leq 4 \text{ with coefficient of } x^2 = 0 \}$. Then verify W is a subspace or not.	6	L4	2	2
	(b)	$T: \mathbb{R}^3 \to \mathbb{R}^2$ be a transformation defined by $T \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x+y \\ z \end{bmatrix}$. Verify T	6	L3	2	2
		is a linear transformation or not.				
V.	(a)	Find the dimension and basis of the vector space $V = \text{set of all } 2 \times 2$ matrices.	6	L4	2	2
	(b)	Using Gram Schmidtz orthonormalisation process find an orthogonal and orthonormal basis $V = P_2(x)$, $x \in [0,1]$ $B = \{1, x, x^2\}$	6	L3	2	2

 $f(x) = \begin{cases} x & \text{for } 0 \le x \le \pi \\ 2\pi - x & \text{for } \pi \le x \le 2\pi \end{cases}$ and deduce that

VI. (a)

$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}.$$

Find the Fourier series to represent the function

$$1^2$$
 3^2 5^2 . 8

(b) Find the Fourier cosine transform of e^{-x^2} .

L4,

L3

6

VII. (a) Develop
$$x \sin x$$
 in half range cosine series in the range $0 < x < \pi$

$$\int_0^\infty \frac{1 - \cos \pi \lambda}{\lambda} \sin x \lambda \, d\lambda = \begin{cases} \frac{\pi}{2} & \text{in } 0 < x < \pi \\ 0 & \text{in } x > \pi \end{cases}$$

(Continued)

2

3

BTS-III(R/S)-01-23-1433

VIII.	(a)	Solve the integral equation $y(t) = 1 + \int_0^t y(u) \sin(t - u) du$.	6	L4, L5	4	3
	(b)	State convolution theorem. Find $L^{-1}\frac{1}{\left(S^2+4\right)^2}$ using convolution	6	L1, L3	4	2
	(P)	theorem.				
		OR				
IX.	(a)	(i) Prove the symmetric property of beta function.	3	L1,	4	2
				L3		
		(ii) Define gamma function and prove that $\frac{1}{1/2} = \sqrt{\pi}$.	3	T 1	1	2
		(ii) Solino gamma function and prove that $1/2 - \sqrt{\pi}$.	3	L1, L3	4	2
	(b)	Solve the equation $y''-3y'+2y=4t+e^{3t}$ when $y(0)=1$ and	6	L4,	4	3
	. ,			Υ.Ε.		_
		y'(0) = -1.		ĿΣ		

Bloom's Taxonomy Levels L1 = 6%, L2 = 12%, L3 = 38%, L4 = 40%, L5 = 4%.