Ejercicio 1

Considera un proceso estacionario AR(1) dado por

$$Y_t = \frac{1}{2}Y_{t-1} + e_t$$

donde e_t son no-correlacionados $(0, \sigma^2)$. Define

$$v_t = Y_t - 2Y_{t-1}.$$

- 1. Demuestra que el residual v_t es una sucesión de v.a. no -correlacionadas $(0, \sigma_v^2)$. ¿ Cuál es la varianza de v_t ? ¿ Quién tiene más varainza e_t o v_t ?
- 2. Demuestra que e_t no está correlacionado con Y_{t-1} y que v_t está correlacionado con Y_{t-1} .
- 3. Expresa Y_t como una media móvil $MA(\infty)$.

La raíz de la ecuación característica de la ecuación en diferencias sociada a $Y_t = 2Y_{t-1} + v_t$ es 2 (i.e. es mayor que uno). Entonces, para $Y_t = \alpha_1 Y_{t-1} + v_t$, las condiciones v_t no-correlacionadas $(0, \sigma_v^2)$ y $|a_1| > 1$ no implican que Y_t es no-estacionario.

En este ejemplo preferimos la representación $Y_t = \frac{1}{2}Y_{t-1} + v_t$ pues, como demostrarás en a) -c), el error tiene menor varianza y no está correlacionado con Y_{t-1} y permite escribir a Y_t como un $MA(\infty)$.

Solución:

1. Tenemos dos representaciones para AR(1). La primer propuesta es

$$Y_t = \frac{1}{2}Y_{t-1} + e_t {1}$$

y deseamos contrastar con la representación

$$Y_t = 2Y_{t-1} + \nu_t \tag{2}$$

Es necesario probar que v_t es efectivamente un ruido blanco. Por ello, verifiquemos que v_t es no correlacionado.

$$Cov(v_t, v_{t+h}) = Cov(Y_t - 2Y_{t-1}, Y_{t+h} - 2Y_{t+h-1}),$$

= $Cov(Y_t, Y_{t+h}) - 2Cov(Y_t, Y_{t+h-1}) - 2Cov(Y_{t-1}, Y_{t+h}) - 4Cov(Y_{t-1}, Y_{t+h-1})$

Recordando que para un AR(1)

$$Y_t = \phi Y_{t-1} + e_t$$

tenemos que su covarianza es

$$Cov(Y_t, Y_{t+k}) = \frac{\sigma^2 \phi^k}{1 - \phi^2} \tag{3}$$

Por tanto, con $\phi = 1/2$

$$\begin{split} Cov(Y_t,Y_{t+h}) &= \frac{\sigma^2 \left(\frac{1}{2}\right)^h}{\frac{3}{4}} - 2\frac{\sigma^2 \left(\frac{1}{2}\right)^{h-1}}{\frac{3}{4}} - 2\frac{\sigma^2 \left(\frac{1}{2}\right)^{h+1}}{\frac{3}{4}} + 4\frac{\sigma^2 \left(\frac{1}{2}\right)^h}{\frac{3}{4}}, \\ &= \frac{4\sigma^2}{3} \left(\frac{1}{2}\right)^{h-1} \left[\left(\frac{1}{2}\right) - 2 - 2\left(\frac{1}{2}\right)^2 + 4\left(\frac{1}{2}\right)\right], \\ &= \frac{4\sigma^2}{3} \left(\frac{1}{2}\right)^{h-1} \left[\left(\frac{1}{2}\right) - 2 - \left(\frac{1}{2}\right) + 2\right], \\ &= 0. \end{split}$$

Para la varianza

$$\mathbb{V}ar[\nu_t] = Cov(\nu_t, \nu_t) = \frac{4\sigma^2}{3} > \sigma^2 = \mathbb{V}ar[e_t]$$

donde se usó (3). Por tanto, la representación (2) tiene más varianza que la representacion (1).

2. Si el modelo AR(1) es invertible (1) entonces iterando (1) *k* veces

$$Y_{t} = \frac{1}{2}Y_{t-1} + e_{t},$$

$$= \frac{1}{2}(Y_{t-2} + e_{t-1}) + e_{t},$$

$$= e_{t} + \frac{1}{2}e_{t-1} + \frac{1}{2}Y_{t-2},$$

$$= e_{t} + \frac{1}{2}e_{t-1} + \left(\frac{1}{2}\right)^{2}e_{t-2} + \dots + \left(\frac{1}{2}\right)^{k}e_{t-k} + \left(\frac{1}{2}\right)^{k+1}Y_{t-k-1}$$

vemos que converge en L^2

$$\mathbb{E}\left[\left|Y_{t} - \sum_{j=0}^{k} \phi^{j} e_{t-j}\right|^{2}\right] = \mathbb{E}\left[\left|\left(\frac{1}{2}\right)^{k+1} Y_{t-k-1}\right|^{2}\right],$$

$$= \left(\frac{1}{2}\right)^{2k+2} \mathbb{E}\left[\left|Y_{t-k-1}\right|^{2}\right],$$

$$\stackrel{k \to \infty}{\longrightarrow} 0$$

Entonce se satisface

$$Y_t = \sum_{i=0}^{\infty} \phi^j e_{t-j} \tag{4}$$

casi seguramente. Es decir, si $|\phi|<1$ podemos expresar el modelo AR(1) como una media movil infinito $MA(\infty)$.

Finalmente, es directo que

$$Cov(e_t, Y_{t-1}) = Cov\left(e_t, \sum_{j=0}^{\infty} \phi^j e_{t-j-1}\right),$$

= 0.

ya que la covarianza se aplica entre e_t y valores e_k donde k es menor que t.

Posteriormente se muestra que existe covarianza entre v_t y Y_{t-1}

$$Cov(\nu_{t}, Y_{t-1}) = Cov(Y_{t} - 2Y_{t-1}, Y_{t-1}),$$

$$= Cov(Y_{t}, Y_{t-1}) - 2Cov(Y_{t-1}, Y_{t-1}),$$

$$= \frac{\sigma^{2} \frac{1}{2}}{\frac{3}{4}} - 2\frac{\sigma^{2}}{\frac{3}{4}},$$

$$= \frac{4\sigma^{2}}{3} \left(\frac{1}{2} - 2\right),$$

$$= -2\sigma^{2}$$

por tanto, las variables involucradas están correlacionadas.

3. Este último ya se ha resuelto en (4) pues se expresó Y_t como un $MA(\infty)$.

Ejercicio 2

Sea Y_t una serie de tiempo definida como

$$Y_t = \beta_0 + \beta_1 t + X_t$$
 $t = 1, 2, \cdots$

donde

$$X_t = e_t + 0.6e_{t-1}$$

con β_0 , β_1 fijos y $\{e_t: t \in \mathbb{N} \cup \{0\}\}$ distribuidas $N(0, \sigma^2)$ Construye la media y la función de covarianza para Y_t .

Solución:

Haciendo el calculo directamente

$$\mathbb{E}[Y_t] = \mathbb{E}[\beta_0 + \beta_1 t + X_t],$$

= $\beta_0 + \beta_1 t \mathbb{E}[X_t],$

entonces, es necesario calcular la esperanza para X_t

$$\mathbb{E}[X_t] = \mathbb{E}[e_t] + (0.6)\mathbb{E}[e_{t-1}] = 0.$$

Para la covarianza $Cov(Y_t, Y_{t+k})$, discriminamos por casos. Para k=0

$$Cov(Y_t, Y_t) = \mathbb{V}ar[Y_t],$$

= $\mathbb{V}ar[\beta_0 + \beta_1 t + X_t],$
= $\mathbb{V}ar[X_t]$

luego, como e_t son no correlacionados

$$Var[X_t] = Var[e_t + (0.6)e_{t-1}],$$

$$= Var[e_t] + (0.6)^2 Var[e_{t-1}],$$

$$= \sigma^2 (1 + (0.6)^2),$$

$$= 1.36\sigma^2$$

para k = 1

$$Cov(Y_t, Y_{t+1}) = Cov(\beta_0 + \beta_1 t + X_t, \beta_0 + \beta_1 (t+1) + X_{t+1}),$$

$$= Cov(X_t, X_{t+1}),$$

$$= Cov(e_t + 0.6e_{t-1}, e_{t+1} + 0.6e_t),$$

$$= Cov(e_t, 0.6e_t),$$

$$= 0.6\sigma^2$$

para k = -1 es similar al anterior

$$Cov(Y_t, Y_{t-1}) = Cov(X_t, X_{t-1}),$$

= $Cov(e_t + 0.6e_{t-1}, e_{t-1} + 0.6e_{t-2}),$
= $0.6\sigma^2$

para los otros casos todos los términos son no correlacionados. Así,

$$Cov(Y_t, Y_{t+k}) = \begin{cases} 1.36\sigma^2 & k = 0\\ 0.6\sigma^2 & |k| = 1\\ 0 & e.o.c \end{cases}$$

lo que concluye el ejercicio.

Ejercicio 3

Sean $X_i \sim N(0, \sigma^2)$ $i = 1, 2, \cdots$ independientes y sea $\bar{X}_n = n^{-1} \sum_{i=1}^n X_i$.

- 1. Se sabe que $\mu \neq 0$. ¿ Cómo aproximarías la distribución de \bar{X}_n^2 en muestras grandes?
- 2. Se sabe que $\mu=0$. ¿ Cómo aproximarías la distibución de \bar{X}_n^2 en muestras grandes ?
- 3. Comenta qué pasa si quitamos el supuesto de independencia en los incisos anteriores.

Explica con detalle los procedimientos y asegúrate de que no se den distribuciones límites degenerads. Este ejercicio es para recordar los procedimientos más básicos para variables aleatorias.

Solución:

1. Dado que nos pide una aproximación a los estadísticos dados, precindiremos en está parte que $X_i \sim N(0, \sigma^2)$ pues citaremos el Teorema de Límite Central y dicha hipótesis no es necesaria. Entonces, por TLC tenemos que

$$\sqrt{n}(\bar{X}_n - \mu) \sim N(0, \sigma^2)$$

o lo que es lo mismo

$$\bar{X}_n \sim N\left(0, \frac{\sigma^2}{n}\right)$$

para n relativamente grandes. Luego, el método delta nos dice que para una transformación g(X) diferenciable tal que $g'(x) \neq 0$. Entonces

$$\sqrt{n}(g(\bar{X}_n) - g(\mu)) \sim N\left(0, (g'(\mu))^2 \sigma^2\right)$$

En nuestro caso, es de interes la transformación $g(x) = x^2$. Por lo que la varianza se reescala por el factor g'(x) = 2x teniendo la siguiente aproximación

$$\sqrt{n}\left(\bar{X}_{n}^{2}-\mu^{2}\right)\sim N\left(0,4\mu^{2}\sigma^{2}\right)$$

o lo que es lo mismo

$$\bar{X}_n^2 \sim N\left(\mu^2, \frac{4\mu^2\sigma^2}{n}\right)$$

notemos que el método delta pide que $g'(\mu)=2\mu\neq 0$ por lo que es necesario pedir que $\mu\neq 0$.

2. Para el caso $\mu=0$ no es posible aplicar el método delta. Sin embargo, podemos usar el teorema de cambio de variable donde ahora si contemplamos la hipótesis de sobre la distibución de X_i . Entonces, sabemos que

$$\frac{\sqrt{n}\bar{X}_n}{\sigma} \sim N(0,1) \tag{5}$$

denotemos $Z=\frac{\sqrt{n}\bar{X}_n}{\sigma}$. Es un resultado conocido que $Z^2\sim\chi^2(1)$ que es la distribución ji-cuadrada con un grado de libertad.

Este último resultado se obtiene fácilmente de

$$\mathbb{P}(Z^2 \le t) = \mathbb{P}\left(|Z| \le \sqrt{t}\right) = \mathbb{P}\left(-\sqrt{t} \le Z \le \sqrt{t}\right),$$

$$= F_Z(\sqrt{t}) - F_Z(-\sqrt{t}) = F_Z(\sqrt{t}) - \left(1 - F_Z(\sqrt{t})\right) = 2F_Z(\sqrt{t}) - 1,$$

se sigue que la densidad es

$$\begin{split} f_Z(t) &= 2\frac{d}{dt} F_Z(\sqrt{t}) = 2\frac{d}{dt} \left(\int_{-\infty}^{\sqrt{t}} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx \right), \\ &= 2\frac{1}{2\pi} e^{-\frac{t}{2}} \frac{1}{2\sqrt{t}}, \\ &= \frac{1}{2^{1/2} \Gamma\left(\frac{1}{2}\right)} t^{-\frac{1}{2}} e^{-\frac{t}{2}} \end{split}$$

que es la densidad de la ji-cuadrada con un grado de libertad. Hasta ahora hemos visto que

$$Z^2 = \frac{n\bar{X}^2}{\sigma^2} \sim \chi^2(1)$$

sin embargo queremos conocer la distribución de \bar{X}_n^2 solamente. Para ello, utilizamos el teorema de transformación de variables aleatorias. Denotemos por $X=Z^2$. Sea $U=\frac{\sigma^2}{n}X$. Entonces la densidad transformada será

$$f_U(u) = f_X(x(u)) \left| \frac{dx(u)}{du} \right|$$

donde $x(u) = \frac{nu}{\sigma^2}$. Así,

$$f_{U}(u) = \frac{1}{2^{1/2}\Gamma(\frac{1}{2})} \left(\frac{nu}{\sigma^{2}}\right)^{-\frac{1}{2}} e^{-\frac{1}{2}\left(\frac{nu}{\sigma^{2}}\right)} \frac{n}{\sigma^{2}},$$

$$= \frac{n}{\sqrt{2\pi}\sigma^{2}} \left(\frac{\sigma^{2}}{n}\right)^{1/2} u^{-1/2} e^{-\frac{u}{2\sigma^{2}/n}},$$

$$= \frac{1}{\sqrt{2\pi u\sigma^{2}/n}} e^{-\frac{u}{2\sigma^{2}/n}}$$

que no es una distribución concocida más que una transformación de una distribución ji-cuadrada.

3. El supuesto de independencia es vital para usar el Teorema del límite central que se uso el el caso $\mu \neq 0$. Sin dicho supuesto tampoco podemos afirmar (5) y tampo hay distribución aproximada para $\mu = 0$. Luego, se requieren otros supuesto como lo es la condición de linderberg-feller, donde el Teorema de Linderberg Feller permite una dependencia *débil*. Existen otros acercamientos que generalizan el Teorema de Límite Central. Sin embargo dichos teoremas salen de los propositos establecidos.

Ejercicio 4

Monstrar que si $m^p + a_1 m^{p-1} + \cdots + a_p = 0$ tiene todas sus raíces menores que uno en módulo, entonces $1 + a_1 q + \cdots + a_p q^p = 0$ tiene todas sus raíces mayores que uno en módulo. *Hint: si r es una raíz del primer polinomio, ¿ es 1/r una raíz del segundo?*

Solución:

Bajo manipulación algebraica. Las raíces de

$$m^p + a_1 m^{m-1} + \dots + a_p = 0$$

denotadas por m_1, \cdots, m_p , son las mismas que

$$\frac{1}{m^p}\left(m^p + a_1 m^{m-1} + \dots + a_p\right) = 0$$

siempre que m=0 no sea solución. Así,

$$1 + a_1 \frac{1}{m} + a_2 \frac{1}{m^2} + \dots + a_p \frac{1}{m^p} = 0$$

con la transformación q = 1/m se sigue

$$1 + a_1 q + a_2 q^2 + \dots + a_p q^p = 0 (6)$$

Entonces cada raíz de (6) satisface que $q_i = \frac{1}{m_i}$. Se sigue que si $|m_i| < 1$ entonces $|q_i| > 1$ para $i = 1, \dots, p$.

Ejercicio 5

Si m_1, \dots, m_p son las raíces de $m^p - \sum_{i=1}^p \alpha_i m^{p-i} = 0$, entonces

- 1. $\sum_{i=1}^{p} \alpha_i = 1$ si y sólo si al menos una raíz es igual a 1.
- 2. Si todas las raíces en módulo son menores que 1, entonces $\sum_{i=1}^{p} \alpha_i < 1$.
- 3. Mostrar que

$$\prod_{i=1}^{p} (1 - m_i x) = 1 - \sum_{i=1}^{p} \alpha_i x_i$$

para todo *x*.

4. Interpretar el resultado.

Solución:

1. Consideremos la ecuación polinomica para sus respectivas raíces

$$m^p - \sum_{i=1}^p \alpha_i m^{p-i} = 0.$$

Observemos las siguientes equivalencias

$$\exists j \in \{1, \dots, p\} \text{ tal que } m_j = 1 \iff m_j^p - \sum_{i=1}^p \alpha_i m_j^{p-i} = 0$$
$$\iff 1 - \sum_{i=1}^p \alpha_i = 0$$
$$\iff \sum_{i=1}^p \alpha_i = 1$$

Notese que la doble implicación es cierta. La implicación trivial es (\Longrightarrow) ya que solo es la evaluación del polinomio. La implicación (\Leftarrow) es cierta por contraposición lógica. Si $\sum \alpha_i \neq$ entonces no existe ninguna solución $m_i = 1$.

2. Como $|m_j| < 1$ para todo $j \in \{1, \dots, p\}$ entonces

$$0 = m^{p} - \sum_{i=1}^{p} \alpha_{i} m^{p-i},$$

$$0 = 1 - \sum_{i=1}^{p} \alpha_{i} m^{-i},$$

como

$$|m_j| < 1,$$

$$\frac{1}{|m_j|} > 1,$$

$$-\frac{1}{|m_j|} < -1$$

se sigue que

$$0 = 1 - \sum_{i=1}^{p} \alpha_{i} m^{-i} < 1 - \sum_{i=1}^{p} \alpha_{i}$$

lo que implica que

$$\sum_{i=1}^{p} \alpha_i < 1$$

3. Observemos que m_1, \dots, m_p son raíces de

$$0 = x^{p} - \sum_{i=1}^{p} \alpha_{i} x^{p-i},$$

$$0 = x^{p} - \alpha_{1} x^{p-1} - \alpha_{2} x^{p-2} - \dots - \alpha_{p}$$

por el ejercicio 4) sabemos que $\frac{1}{m_1}, \cdots, \frac{1}{m_p}$ son raíces de

$$0=1-\alpha_1x-\cdots-\alpha_px^p$$

Por otro lado, por el Teorema Fundamental del algebra, podemos construir un polinomio con las mismas raíces $q_i = 1/m_i$ de la forma que

$$\prod_{i=1}^{p} (q_i - x) = \prod_{i=1}^{p} \left(\frac{1}{m_i} - x \right) = \prod_{i=1}^{p} \left(\frac{1 - m_i x}{m_i} \right)$$

es decir

$$0 = 1 - \sum_{i=1}^{p} \alpha_i x^i = \prod_{i=1}^{p} \left(\frac{1 - m_i x}{m_i} \right) = \prod_{i=1}^{p} \left(1 - m_i x \right)$$

es decir existe una constante K tal que

$$1 - \sum_{i=1}^{p} \alpha_i x^i = K \prod_{i=1}^{p} (1 - m_i x)$$

que desarrollando vemos que el término lineal del miembro derecho es K mientras que en el lado izquierdo es 1. Luego, por independecia lineal entre los términos se sigue que K=1.

$$1 - \sum_{i=1}^{p} \alpha_i x^i = \prod_{i=1}^{p} (1 - m_i x)$$

lo que concluye el inciso.

4. Veamos que el polinomio $\phi(x)=1-\sum_{i=0}^p\alpha_ix_i$ es el polinomio característico de un AR(p) bajo el operador de translación B en la forma

$$\phi(B)Y_t = e_t$$

por tanto, tenemos una relación práctica para saber si se puede invertir Y_t como un $MA(\infty)$.

Ejercicio 6

Mostrar que, si $\lambda > 0\beta \ge 0$ y p es un entero no negativo, entonces $\exists M$ tal que

$$(t+1)^p \beta^t < M \lambda^t \quad \forall t \geq 0.$$

Solución:

Como $\lambda > \beta$ entonces $\lambda/\beta > 1$ y podemos escribir

$$(t+1)^p < M\left(\frac{\lambda}{\beta}\right)^t$$

que en el miembro derecho tenemos una exponencial, por lo que cambiando la base

$$(t+1)^p < Me^{t\log(\frac{\lambda}{\beta})}$$

que es lo que se desea mostrar.

La primera observación es considerando que la exponencial tiene un crecimiento de mayor orden, es decir, si $f(t)=(t+1)^p$ y $g(t)=e^{t\log\left(\frac{\lambda}{\beta}\right)}$

$$\lim_{t\to\infty}\frac{f(t)}{g(t)}=0.$$

Entonces existe un T para el cual la exponencial domina al polinomio para valores $t \geq T$. Es decir

$$\frac{f(t)}{g(t)} < M_2$$

donde $M_2 = \frac{f(T)}{g(T)} + 1$ ya que el crecimiento exponencial es monotono.

Por otro lado, para valore de $t \in [0,T)$. Como el polinomio es función continua, y g(t) es mayor que uno, no hay indeterminaciones y el supremo del cociente se alcanza. Sea $M_2 = \sup_{t \in [0,T)} \{\frac{f(t)}{g(t)}\} + 1$. La prueba se concluye tomando $M = \max\{M_1, M_2\}$.

Ejercicio 7

Sea Y_t un proceso autoregresivo de orden p

$$Y_t = \theta + \sum_{i=1}^p \alpha_i Y_{t-i} + e_t = \mu + \sum_{i=0}^\infty w_i e_{t-i}$$

donde $\mu = \mathbb{E}[Y_t]$, $\omega_0 = 1$; $\omega_i = 0i < 0$ y $\omega_j = \sum_{i=1}^p \alpha_i \omega_{j-i}$, $j = 1, 2, \cdots$. Supongamos que $\sum_{i=1}^\infty |\omega_j| < \infty$ (en este caso se puede mostrar que $|\omega_j| < M\lambda^j$, $\lambda < 1$).

1. Mostrar que

$$\sum_{i=0}^{\infty} w_i = \left(1 - \sum_{i=1}^{p} \alpha_i\right)^{-1}$$

2. Comenta como esste resultado puede usarse en la práctica para estimar los coeficientes de un AR(p) estacionario.

Solución:

1. Directamente calculando la suma

$$\sum_{j=0}^{\infty} w_j = 1 + \sum_{j=1}^{\infty} w_j,$$

$$= 1 + \sum_{j=1}^{\infty} \sum_{i=1}^{p} \alpha_i w_{j-i}$$

notemos que la suma interna en realidad suma desde i hasta el mínimo de p y j ya que de lo contrario, para i mayores que j, j-i<0 y los términos $w_{i-i}=0$ por hipótesis. Entonces,

$$\sum_{j=0}^{\infty} w_j = 1 + \sum_{j=1}^{\infty} \sum_{i=1}^{p \wedge j} \alpha_i w_{j-i}$$

Por el Teorema de Fubbini, podemos intercambiar el orden de las sumas. Por un análisis de los índices dicho cambio se torna en

$$\sum_{j=0}^{\infty} w_j = 1 + \sum_{i=1}^{p} \sum_{j=i}^{\infty} \alpha_i w_{j-i},$$

$$= 1 + \sum_{i=1}^{p} \alpha_i \sum_{j=i}^{\infty} w_{j-i},$$

$$= 1 + \sum_{i=1}^{p} \alpha_i \sum_{j=0}^{\infty} w_j.$$

Despejando

$$\sum_{j=0}^{\infty} w_j - \sum_{i=1}^p \alpha_i \sum_{j=0}^{\infty} w_j = 1,$$

$$\sum_{j=0}^{\infty} w_j \left(1 - \sum_{i=1}^p \alpha_i \right) = 1,$$

por tanto

$$\sum_{j=0}^{\infty} w_j = \left(1 - \sum_{i=1}^p \alpha_i\right)^{-1}$$

9

que es lo que se deseaba mostrar.

2. Hagamos la primer observación. Si el AR(p) se construye con un polinomio característico

$$\phi(B) = \left(1 - \sum_{i=1}^{p} \alpha_i B^i\right)$$

de forma $\phi(B)Y_t=e_t$. Por lo visto en los problemas 4 y 5, tenemos que Y_t es inverible si $\sum \alpha_i<1$ por tanto

$$\left(1 - \sum_{i=1}^{p} \alpha_i\right)^{-1} < \infty$$

lo que implica que

$$\sum_{j=0}^{\infty} w_j < \infty$$

una representacion de $MA(\infty)$ convergente y causal.