

Mutual Voting for Ranking 3D Correspondences

INTRODUCTION

A Practical Maximum Clique Algorithm for Matching with Pairwise Constraints: A way for 3D point cloud registration

keypoint-based 3D registration

A popular paradigm:

- 1. let $X = \{x_i\}_{i=1}^n$ and $Y = \{y_j\}_{j=1}^n$ be two input point clouds
- 2. generate a tentative correspondence set $C = \{c_k\}_{k=1}^N$
- 3. $C_k = (x_k, y_k)$ associates a point $x_k \in X, y_k \in Y$
- 4. a 6 DoF rigid transformation can be estimated from C

Disadvantage: outliers exist in C, thus the registration function must be estimated using a robust technique.

It is vital to investigate keypointbased 3D registration

Find the largest subset of C that are pairwise consistent

Figure 1. Example registration. (a) Input correspondence set C of size N = 2000. (b) The largest subset of C that are pairwise consistent (found in 0.06 seconds by our novel max clique algorithm). (c) The alignment estimated via SVD [7] using the correspondences in (b).

Solve:

$$\max_{\mathcal{I} \subseteq \{1,...,N\}} \max_{\mathcal{I} \subseteq \{1,...,N\}} |\mathcal{I}|$$
subject to $d(c_i,c_j) \le \epsilon, \ \forall i,j \in \mathcal{I},$ (1)

where the "distance" between two correspondences $c_i =$ $(\mathbf{x}_i, \mathbf{y}_{i'})$ and $c_j = (\mathbf{x}_j, \mathbf{y}_{j'})$ is given by

$$d(c_i, c_j) = \left| \|\mathbf{x}_i - \mathbf{x}_j\|_2 - \|\mathbf{y}_{i'} - \mathbf{y}_{j'}\|_2 \right|.$$
 (2)

- 1.the registration function can be estimated from the data indexed by
- 2. value *I** can directly be taken as the similarity score of shapes X and Y

Graph formulation

Let G = (V, E) represent an undirected graph with vertices $V = \{v_i\}$ and edges $E = \{(v_i, v_j)\}$.

Definition 2.1 (Adjacency and degree). We say that a pair of vertices v_i and v_j of G are adjacent if $(v_i, v_j) \in E$. For each $v_i \in V$, denote the adjacency of v_i as

$$\Gamma(v_i) = \{ v_j \in V \mid (v_i, v_j) \in E \}. \tag{3}$$

Then $|\Gamma(v_i)|$ is called the degree of v_i .

Definition 2.2 (Consistency graph). Given a set of correspondences C, the consistency graph is constructed as the graph with vertices V = C and edges

$$E = \{(c_i, c_i) \in \mathcal{C} \times \mathcal{C} \mid d(c_i, c_i) \le \epsilon, \ i \ne j\}, \quad (4)$$

i.e., two correspondences c_i and c_j are adjacent in the graph if they are pairwise consistent.

Definition 2.3 (Inconsistency graph). The inconsistency graph is the complement of the consistency graph, i.e., the graph with vertices V = C and edges

$$E = \{(c_i, c_j) \in \mathcal{C} \times \mathcal{C} \mid d(c_i, c_j) > \epsilon, \ i \neq j\}.$$
 (5)

i.e., two correspondences c_i and c_j are adjacent in the graph if they are pairwise inconsistent.

Definition 2.4 (Clique). A clique of a graph G = (V, E) is a subgraph of G where every pair of vertices in the subgraph are adjacent. A maximum clique (MC) of G is a clique of G with the largest size.

Definition 2.5 (Vertex cover). A vertex cover of a graph G = (V, E) is a subset of V such that every edge in E is incident with at least one vertex in the subset. The removal of a vertex cover from G leaves an independent set, i.e., a set of vertices with no edges. A *minimum vertex cover* (MVC) of G is a vertex cover of G with the smallest size.

 $\begin{array}{ll} \underset{\mathcal{I} \subseteq \{1, \ldots, N\}}{\text{maximise}} & |\mathcal{I}| \\ \text{subject to} & d(c_i, c_j) \leq \epsilon, \ \forall i, j \in \mathcal{I}, \end{array}$

finding the MC of the consistency graph constructed from the correspondence set C

MIP solutions

MC can be written as the MIP

$$\begin{array}{ll} \text{maximise} & \sum_{i=1}^{|V|} x_i \\ \text{subject to} & x_i + x_j \leq 1, \ \forall (v_i, v_j) \notin E \\ & x_i \in \{0, 1\}, \ i = 1 \dots |V|. \end{array}$$

当vi、vj不属于一条边时, xi、xj不同时为1, 所有的xi=1组成MC

The MIP formulation for MVC is

$$\begin{array}{ll} \text{minimise} & \sum_{i=1}^{|V|} x_i \\ \text{subject to} & x_i+x_j \geq 1, \ \forall (v_i,v_j) \in E \\ & x_i \in \{0,1\}, \ i=1\dots |V|. \end{array}$$

BNB

BnB explores the set of cliques of G by building a search tree over the vertices V A fundamental aspect of BnB algorithms is to prune branches in the search tree that are

Figure 2. A sample input graph G = (V, E).

Algorithm 1 Basic BnB algorithm for MC. **Require:** A set of candidate vertices *S*.

- 1: **global variables:** The current clique R and the best clique found so far R_{best} .
- 2: **initialisation:** $R \leftarrow \emptyset$, $R_{best} \leftarrow \emptyset$.
- 3: while $S \neq \emptyset$ do

not promising.

- 4: if $|R| + |S| \le |R_{best}|$ then
- 5: return
- 6: end if
- 7: $v \leftarrow \text{first vertex in } S$.
- 8: $R \leftarrow R \cup \{v\}$.
- 9: $S' \leftarrow S \cap \Gamma(v)$.
- in if $S' \neq \emptyset$ then
- 11: Recursive call with candidate vertices S'.
- 12: else if $|R| > |R_{best}|$ then
- 13: $R_{best} \leftarrow R$.
- 14: end if
- 15: $R \leftarrow R \setminus \{v\}$.
- 16: $S \leftarrow S \setminus \{v\}$.
- 17: end while
- 18: **return** R_{best} .

Figure 3. 在求解图2中的示例图时,算法1的搜索树的进展。前12步是逐步生成的,以显示顶点扩展、顶点删除(灰色顶点)和停止扩展节点(虚线)。树的叶结点对应于一个空集合。

MCQ

A colouring of a graph G = (V; E) is a labelling f of its vertices such that no adjacent vertices have the same colour $f(v_i) \neq f(v_j)$ for all $(v_i, v_j) \in E$,

```
Algorithm 2 MCQ algorithm for MC.
```

```
Require: A set of candidate vertices S, a colouring f.
 1: global variables: The current clique R and the best
    clique found so far R_{best}.
 2: initialisation: R \leftarrow \emptyset, R_{best} \leftarrow \emptyset.
 3: initialisation: Reorder vertices in S in descending or-
    der of degree, i.e., |\Gamma(v_i)| \geq |\Gamma(v_i)|, \ \forall v_i, v_i \in S if
    i < j.
 4: while S \neq \emptyset do
      v \leftarrow \text{last vertex in } S.
       if |R| + f(v) \le |R_{best}| then
           return
       end if
       R \leftarrow R \cup \{v\}.
       S' \leftarrow S \cap \Gamma(v).
       if S' \neq \emptyset then
          Find a colouring f' of S'.
12:
          Recursive call with candidate vertices S' and
          colouring f'.
       else if |R| > |R_{best}| then
          R_{best} \leftarrow R.
15:
       end if
      R \leftarrow R \setminus \{v\}.
      S \leftarrow S \setminus \{v\}.
19: end while
```

find the colouring with the minimum number of colours

$$\min_{f} \max_{v_i \in S} f(v_i).$$

20: **return** R_{best} .

PMC algorithm for MC

To speed up MCQ, we introduce a novel extra pruning step to avoid exploring mulbranches during the search for the optimal solution

Figure 2. A sample input graph G = (V, E).

Figure 4. Progression of the search tree of Algorithm 3 when solving MC for the example graph in Fig. 2. Vertices are visited in same order that in Fig. 3, however only vertices in $C \subseteq S$ are expanded (continue circles). The first 7 steps are incrementally generated to show vertex expansions and vertex deletions (grey vertices). Leaves of the tree correspond to the empty set.

Results

- To investigate the efficacy of the proposed method, The article compared the following algorithms for matching with pairwise constraints:
- MCQ: BnB method (Algorithm 2)
- PMC: Our BnB method (Algorithm 3) with the same initial vertex ordering as MCQ.
- MIP-MC: MIP formulation of MC solved with GurobiOptimiser.
- MIP-MVC: MIP formulation of MVC solved with Gurobi Optimiser
- Two different datasets
- the Stanford 3D Scanning Repository (armadillo, buddha, bunny, and dragon)
- Mian's dataset (chef, chicken, parasauro and t-rex).

Results

Object	N	Outlier	Outlier Consistency graph		Inconsistency graph		Solution			PMC	MCQ	MIP-MC	MIP-VC	RANSAC
_		ratio	V	E	V	E	$ I^* $	angErr (°)	trErr	time (s)				
$armadillo \mathcal{X} = 788 \mathcal{Y} = 711$	1000	0.98	1000	167200	1000	831800	37	0.72	0.06	0.020	0.010	1387.404	1291.205	25.25
	3000	0.98	3000	1397630	3000	7599370	92	0.61	0.05	2.510	5.390	_	_	39.93
	5000	0.98	5000	3485008	5000	21509992	139	0.98	0.15	61.080	3377.430	_	_	70.16
$buddha$ $ \mathcal{X} = 206$ $ \mathcal{Y} = 193$	1000	0.96	1000	139516	1000	859484	55	0.64	0.34	0.170	0.020	75.170	85.624	5.67
	3000	0.98	3000	700794	3000	8296206	68	1.60	0.18	5.420	2.730	_	_	105.24
	5000	0.99	5000	1700434	5000	23294566	74	1.06	0.25	5.640	76.100	_	_	602.04
$bunny \mathcal{X} = 668 \mathcal{Y} = 615$	1000	0.96	1000	101956	1000	897044	27	2.03	0.42	0.020	0.010	-	-	5.09
	3000	0.96	3000	918160	3000	8078840	102	0.32	0.11	0.410	0.280	1224.189	1642.969	7.32
	5000	0.96	5000	2490092	5000	22504908	171	0.47	0.09	7.250	_	3520.973	_	16.39
$chef$ $ \mathcal{X} = 183$ $ \mathcal{Y} = 185$	1000	0.94	1000	117182	1000	881818	80	1.01	0.21	0.310	0.040	16.469	22.378	1.32
	3000	0.97	3000	774036	3000	8222964	97	0.95	0.16	1.980	1.410	1578.146	2293.338	30.39
	5000	0.98	5000	1961382	5000	23033618	100	0.61	0.26	6.870	37.470	_	_	200.01
chicken $ \mathcal{X} = 601$ $ \mathcal{Y} = 616$	1000	0.97	1000	142856	1000	856144	26	15.88	2.02	0.040	0.020	-	-	14.53
	3000	0.98	3000	1265814	3000	7731186	55	1.63	0.28	1.480	0.830	_	_	58.08
	5000	0.98	5000	3597810	5000	21397190	81	0.93	0.23	7.620	21.420	_	_	98.33
dragon $ \mathcal{X} = 289$ $ \mathcal{Y} = 270$	1000	0.91	1000	141516	1000	857484	106	0.23	0.20	0.090	0.020	19.240	21.579	0.52
	3000	0.97	3000	877756	3000	8119244	126	0.41	0.20	1.030	0.930	772.552	1294.577	12.74
	5000	0.98	5000	2211540	5000	22783460	136	0.31	0.19	5.530	18.130	_	_	76.86
$parasauro$ $ \mathcal{X} = 261$ $ \mathcal{Y} = 216$	1000	0.93	1000	153806	1000	845194	81	0.14	0.10	0.040	0.020	19.053	24.703	1.26
	3000	0.97	3000	973874	3000	8023126	118	0.40	0.10	2.830	42.160	2289.741	2681.053	21.83
	5000	0.98	5000	2214264	5000	22780736	127	0.44	0.22	36.600	_	_	_	84.86
t -rex $ \mathcal{X} = 222$	1000	0.93	1000	116406	1000	882594	86	0.43	0.15	0.040	0.010	13.601	15.705	0.88
	3000	0.97	3000	818628	3000	8178372	118	0.13	0.21	1.200	10.570	865.289	1339.081	18.15
Y = 217	5000	0.98	5000	2022928	5000	22972072	128	0.27	0.22	7.970	1287.740	_	_	81.86

Table 1. Results for matching with pairwise constraints (1) and RANSAC. '-' implies forced timeout after a 1-hour limit.

Analyze:

- MIP-MC took several orders of magnitude more time than PMC to find the optimal solution.
- In general, PMC found the optimal solution in less than 10 seconds.
- Although MCQ performed better than PMC for N = 1000, PMC converged considerably faster than MCQ for N = 5000

Figure 5. Qualitative results. Column 1: Input correspondence set C with N=3000. Column 2: Largest subset of pairwise consistent correspondences \mathcal{I}^* . Column 3: The alignment given by the rigid transformation estimated from \mathcal{I}^* using SVD [7].

conclusion

- That matching with pairwise constraints can be performed in reasonable time when posing the problem as maximum clique.
- The article have also proposed a maximum clique algorithm that combines graph colouring with a proposed extra pruning step to very efficiently solve maximum clique.
- The obtained results demonstrate that, using the proposed algorithm, matching with pairwise constraints is a very practical approach for point cloud registration

Thank You!

Avenida da Universidade, Taipa, Macau, China

Tel: (853) 8822 8833 Fax: (853) 8822 8822

Email: info@um.edu.mo Website: www.um.edu.mo

