

Simulation of Dynamical Scattering Effect in Electron Diffraction Patterns

Tarik Drevon, David Waterman, Eugene Krissinel

Discrepancy between theory and experiments

Macromolecules solved from experimental Electron Diffraction (ED) data

Sample Resolution Year 2.9 Å 2013 Lysozyme (14.4 kDa) Sup35 prion 2016 1.0 Å protein core (905 Da) Au₁₄₆(p-MBA)₅₇ 2017 0.85 Å nanoparticle (37.5 kDa)

Multiple scattering should prevent use of standard X-ray kinematic technique

B. L. Nannenga and T. Gonen, "The cryo-EM method microcrystal electron diffraction (MicroED)," Nat. Methods, vol. 16, no. May, pp. 369–379, 2019

G. Subramanian, S. Basu, H. Liu, J. Zuo, and J. C. H. Spence, "Solving protein nanocrystals by cryo-EM diffraction: Multiple scattering artifacts," Ultramicroscopy, vol. 148, pp. 87–93, 2015

Electron diffraction and dynamical scattering

Atomic interation cross section

$$P_{scattered} = \sigma \phi_{incident}$$

X-rays (Thomson scattering)

$$\sigma_{th} = \frac{8\pi}{3}r_e^2 = 66fm^2$$

Electrons (Coulomb scattering)

$$\sigma_{th} \approx 1.87 \times 10^6 Z^{4/3} (c/v)^2 = 5 \times 10^7 fm^2$$

Mean free path $l_e = 1/\sigma_e \rho$

$$l_e = 1/\sigma_e \rho$$

Numerical simulation tools of ED patterns

Born approximation (used for X-rays)

Schrodinger's fast electron wave equation

Method	Exact/ consistent	Speed	Memory (per atoms)	Periodic structure	Grid based	Package
Multislice (MS) (physical optics based approach)	no	fast	10 points	yes	yes	TEMSIM (pyMS) PRISM,
Bloch wave (diagonalization in reciprocal space)	yes	slow	10 points	yes	no	EDM,PyQt,
Near bragg (real space path differences)	no	??	1 point	no	no	NearBragg (James Holton)

Multislice algorithm (MS)

$$\frac{\partial \Psi(x, y, z)}{\partial_z} = \left\{ \frac{i\lambda}{4\pi} \nabla_{xy}^2 + i\sigma V(x, y, z) \right\} \Psi(x, y, z)$$

$$\frac{\partial \Psi(x, y, z)}{\partial z} = \left\{ \frac{i\lambda}{4\pi} \nabla_{xy}^2 + i\sigma V(x, y, z) \right\} \Psi(x, y, z) \qquad \qquad \Psi(z + \Delta z) = p(x, y, \Delta z) * \left(t(x, y, z) \Psi(z) \right)$$

FFT

Fresnel propagator

$$p(x, y, \Delta z) = \frac{1}{i\lambda\Delta z}e^{ik_0\frac{x^2+y^2}{2\Delta z}}$$

Transmission function

$$t(x, y, z) = e^{i\sigma\nu_{\Delta z}}$$

$$\approx 1 + i\sigma \nu_{\Delta z}$$

Weak potential

Projected potential

$$\nu_{\Delta_z} = \int_z^{z+\Delta z} V(x, y, z') dz'$$

Multislice simple example

Transmission function and projected potential

Real space wave function as function of propagation

Major beams intensities in reciprocal space

Multislice Silicon Diamond Structure

Simulation of biotin

 $C_{10}H_{16}N_2O_3S$

Structure $P2_12_12_1$

$$a = 5.24A$$
,

$$b = 10.35A$$

$$c = 21.04A$$

[001]=0deg

[401]=45deg

[801]=64deg

What's next?

- Use CCP4 with the simulated data
- Include effects of defects and solvent scattering
- Develop nearBragg approach
- Make python interface available from the python index pypi

More info http://brno.rc-harwell.ac.uk:8000/ RCaH VPN required