1 The model

For a time horizon T > 0 and a parameter $\alpha > 0$ and $(\theta_t)_{t \in [0,T]}$ a positive deterministic function, let us consider the model given by

$$dX_{t} = (\dot{p}_{t} - \theta_{t}(X_{t} - p_{t}))dt + \sqrt{2\alpha\theta_{t}X_{t}(1 - X_{t})}dW_{t} \quad t \in [0, T]$$

$$X_{0} = x_{0} \in [0, 1],$$
(1)

where $(p_t)_{t\in[0,T]}$ denotes the prediction function that satisfies $0 \le p_t \le 1$ for all $t \in [0,T]$. This prediction function is assumed to be a smooth function of the time so that

$$\sup_{t \in [0,T]} \left(|p_s| + |\dot{p}_s| \right) < +\infty.$$

The following proofs are based on standard arguments for stochastic processes that can be found e.g. in Alfonsi [1] and Karatzas and Shreve [2] that we adapted to the setting of our model (1).

Theorem 1.1. Assume that

$$\forall t \in [0, T], \quad 0 \le \dot{p}_t + \theta_t p_t \le \theta_t, \quad \text{and} \quad \sup_{t \in [0, T]} |\theta_t| < +\infty.$$
 (A)

Then, there is a unique strong solution to (1) s.t. for all $t \in [0, T]$, $X_t \in [0, 1]$ a.s.

Proof. Let us first consider the following SDE for $t \in [0, T]$

$$X_{t} = x_{0} + \int_{0}^{t} (\dot{p}_{s} - \theta_{s}(X_{s} - p_{s})) ds + \int_{0}^{t} \sqrt{2\alpha\theta_{s}|X_{s}(1 - X_{s})|} dW_{s}, \quad x_{0} > 0.$$
 (2)

According to Proposition 2.13, p. 291 of [2], under assumption (A) there is a unique strong solution X to (2). Moreover, as the diffusion coefficient is of linear growth, we have for all p > 0

$$\mathbb{E}[\sup_{t \in [0,T]} |X_t|^p] < \infty. \tag{3}$$

Then, it remains to show that for all $t \in [0, T]$, $X_t \in [0, 1]$ a.s. For this aim, we need to use the so-called Yamada function ψ_n that is a \mathcal{C}^2 function that satisfies a bench of useful properties:

$$|\psi_n(x)| \underset{n \to +\infty}{\to} |x|, \quad x\psi'_n(x) \underset{n \to +\infty}{\to} |x|, \quad |\psi_n(x)| \wedge |x\psi'_n(x)| \leq |x|$$

$$\psi'_n(x) \leq 1, \quad \text{and } \psi''_n(x) = g_n(|x|) \geq 0 \quad \text{with} \quad g_n(x)x \leq \frac{2}{n} \quad \text{for all } x \in \mathbb{R}.$$

See the proof of Proposition 2.13, p. 291 of [2] for the construction of such function. Applying Itô's formula we get

$$\psi_n(X_t) = \psi_n(x_0) + \int_0^t \psi'_n(X_s)(\dot{p}_s + \theta_s p_s - \theta_s X_s) ds + \int_0^t \psi'_n(X_s) \sqrt{2\alpha \theta_s |X_s(1 - X_s)|} dW_s + \alpha \int_0^t \theta_s g_n(|X_s|) |X_s(1 - X_s)| ds.$$

Now, thanks to (A), (3) and to the above properties of ψ_n and g_n , we get

$$\mathbb{E}[\psi_n(X_t)] \le \psi_n(x_0) + \int_0^t \left(\dot{p}_s + \theta_s p_s - \theta_s \mathbb{E}[\psi'_n(X_s) X_s]\right) ds + \frac{2\alpha}{n} \int_0^t \theta_s \mathbb{E}[1 - X_s] ds.$$

Therefore, letting n tends to infinity we use Lebesgue's theorem to get

$$\mathbb{E}[|X_t|] \le x_0 + \int_0^t (\dot{p}_s + \theta_s p_s - \theta_s \mathbb{E}|X_s|) ds.$$

Besides, taking the expectation of (2), we get

$$\mathbb{E}X_t = x_0 + \int_0^t \left(\dot{p}_s + \theta_s p_s - \theta_s \mathbb{E}X_s\right) ds$$

and thus we have

$$\mathbb{E}[|X_t| - X_t] \le \int_0^t \theta_s \mathbb{E}[|X_s| - X_s] ds.$$

Then, Gronwall's lemma gives us $\mathbb{E}[|X_t|] = \mathbb{E}X_t$ and thus for any $t \in [0,T]$ $X_t \geq 0$ a.s. The same arguments work to prove that for any $t \in [0,T]$ $Y_t := 1 - X_t \geq 0$ a.s. since the process $(Y_t)_{t \in [0,T]}$ is solution to

$$dY_t = (\theta_t(1 - p_t) - \dot{p}_t - \theta_t Y_t)dt - \sqrt{2\alpha\theta_t Y_t(1 - Y_t)}dW_t,$$

Then similarly, we need to assume that $\dot{p}_t + \theta_t p_t \ge 0$. This completes the proof.

Theorem 1.2. Assume that assumptions of Theorem 1.1 hold with $x_0 \in]0,1[$. Let $\tau_0 := \inf\{t \in [0,T], X_t = 0\}$ and $\tau_1 := \inf\{t \in [0,T], X_t = 1\}$ with the convention that $\inf \emptyset = +\infty$. Assume in addition that

$$0 < \alpha < \frac{1}{2}$$
 and $\forall t \in [0, T], \quad \alpha \theta_t \le \dot{p}_t + \theta_t p_t \le (1 - \alpha)\theta_t.$ (B)

Then, $\tau_0 = \tau_1 = +\infty$ a.s.

Proof. For $t \in [0, \tau_0]$, we have

$$\frac{dX_t}{X_t} = \frac{\dot{p}_t + \theta_t p_t}{X_t} - \theta_t dt + \sqrt{\frac{2\alpha\theta_t (1 - X_t)}{X_t}} dW_t$$

so that

$$X_t = x_0 \exp\left(\int_0^t \frac{\dot{p}_s + \theta_s(p_s - \alpha)}{X_s} ds - (1 - \alpha) \int_0^t \theta_s ds + M_t\right),$$

where $M_t = \int_0^t \sqrt{\frac{2\alpha\theta_s(1-X_s)}{X_s}} dW_s$ is a continuous martingale. Then as for all $t \in [0,T]$, we have $\dot{p}_t + \theta_t(p_t - \alpha) \ge 0$, we deduce that

$$X_t \ge x_0 \exp\left(-(1-\alpha)\int_0^t \theta_s ds + M_t\right).$$

By way of contradiction let us assume that $\{\tau_0 < \infty\}$, then letting $t \to \tau_0$ we deduce that $\lim_{t\to\infty} \mathbf{1}_{\{\tau_0<\infty\}} M_{t\wedge\tau_0} = -\mathbf{1}_{\{\tau_0<\infty\}} \infty$ a.s. This leads to a contradiction since we know that continuous martingales likewise the Brownian motion cannot converge almost surely to $+\infty$ or $-\infty$. It follows that $\tau_0 = \infty$ almost surely. Next, recalling that the process $(Y_t)_{t\geq 0}$ given by $Y_t = 1 - X_t$ is solution to

$$dY_t = (\theta_t(1 - p_t) - \dot{p}_t - \theta_t Y_t)dt - \sqrt{2\alpha\theta_t Y_t(1 - Y_t)}dW_t$$

we deduce using similar arguments as above $\tau_1 = \infty$ a.s. provided that $\theta_t(1-p_t) - \dot{p}_t - \alpha \theta_t \ge 0$.

When using Lamperti, the form

References

- [1] Alfonsi, A. (2015) Affine diffusions and related processes: simulation, theory and applications. Springer, Cham; Bocconi University Press, Milan, 2015.
- [2] Karatzas, I. and Shreve, S. E. (1991), Brownian motion and stochastic calculus Springer-Verlag, New York.