

PATIENT NAME

PATIENT INFORMATION

DATE OF BIRTH 10/26/1943	Male PATIENT GENDER	PGDX7392T3	MEDICAL RECORD NUMBER JHH MR#3-631-64-21	PATIENT PHONE NUMBER
PATIENT EMAIL			Johns Hopkins	
PHYSICIAN Christopher Wolfgang M.D.		TUMOR SAMPLE RECEIVED 5/25/2016	NORMAL SAMPLE RECEIVED 4/26/2016	

TEST INFORMATION AND SEQUENCING CHARACTERISTICS

TEST PERFORMED CancerSelect	NUMBER OF GENES SEQUENCED 88	BASES IN TARGET GENES 478,861
SEQUENCED BASES (TUMOR) 1,264,014,600	NUMBER OF SEQUENCES AT EACH BASE (TUMOR) 1,109	NUMBER OF DISTINCT SEQUENCES AT EACH BASE (TUMOR) 706
SEQUENCED BASES (NORMAL) 763,723,200	NUMBER OF SEQUENCES AT EACH BASE (NORMAL) 741	NUMBER OF DISTINCT SEQUENCES AT EACH BASE (NORMAL) 496

SAMPLE CHARACTERISTICS

TUMOR HISTOLOGY

DIAGNOSIS

Pancreatic Neuroendocrine

PRIMARY TUMOR SITE	HISTOLOGY		
Pancreas	Neuroendocrine		
SPECIMEN SITE	PATHOLOGICAL TUMOR PURITY		
Pancreas	50%		
SPECIMEN TYPE	SOURCE OF NORMAL DNA		
Frozen	Saliva		
TUMOR COLLECTION DATE	SPECIMEN ID		
4/6/2016	S16-21646		

MICROSATELLITE ANALYSIS

MSS - Microsatellite Stable (O of 5 markers positive for MSI)

SEQUENCE MUTATIONS

No Sequence Mutations Identified

AMPLIFICATIONS OR TRANSLOCATIONS

No Amplifications or Translocations Identified

ELECTRONICALLY SIGNED BY	CLIA NUMBER	DATE	
Luis A. Diaz, M.D. Chief Medical Officer	21D2039282	6/14/2016	

CLINICALLY ACTIONABLE INFORMATION ASSOCIATED WITH SOMATIC ALTERATIONS

No Clinically Actionable Information Identified

ELECTRONICALLY SIGNED BY Luis A. Diaz, M.D. Chief Medical Officer	CLIA NUMBER 21D2O39282	DATE 6/14/2016
	LIDEOGDECE	0/14/2010

CLINICAL TRIALS SPECIFIC TO MUTATION AND TUMOR TYPE

No Clinical Trials Identified

ELECTRONICALLY SIGNED BY	CLIA NUMBER	DATE
Luis A. Diaz, M.D. Chief Medical Officer	21D2O39282	6/14/2016

Sequence Analyses					Copy Numi	Copy Number Analyses			
ABL1	ERBB4	GNAQ	MTOR	RET	ALK	ERBB3	FGFR3	MYC	RET
AKT1	EZH2	GNAS	NF1	ROS1	EGFR	FGFR1	KIT	MYCN	
ALK	FANCA	HNF1A	NF2	SMAD4	ERBB2	FGFR2	MET	PDGFRA	
APC	FANCC	HRAS	NOTCH1	SMARCB1					
MTM	FANCD2	IDH1	NPM1	SMO	Rearrangement Analyses			4.00	
BRAF	FANCE	IDH2	NRAS	SRC	ABL1	EGFR	ETV6	PDGFRA	ROS1
BRCA1	FANCE	JAK2	NTRK1	STKII	ALK	ETV1	EWSR1	PDGFRB	TMPRSS2
BRCA2	FANCG	JAK3	PALB2	TERT	BCL2	ETV4	MLL	RARA	
BRIP1	FANCL	KDR	PDGFRA	TP53					
CDH1	FBXW7	KIT	PDGFRB	TSC1					
CDKN2A	FGFR1	KRAS	PIK3CA	TSC2	Microsatelli	ite Analyses	V-6-		165
CSF1R	FGFR2	MET	PMS2	VHL	BAT-25	BAT-26	NR-21	NR-24	MONO-27
TNNB1	FGFR3	MLH1	PTCH1						
DR2	FLT3	MPL	PTEN						
GFR	FOXL2	MSH2	PTPN11						
RBB2	GNA11	MSH6	RB1						

ADDENDUM

Disclaimer and Limitations of Approach

In validation studies, the analytical sensitivity and specificity of the targeted cancer gene assay were > 99% and > 99.9%, respectively. These may be lower for structural alterations and vary depending on the quality of the specimen. Next generation sequencing approaches may provide incorrect sequence or mutational data due to insufficient coverage in specific regions of the genome, inability to distinguish highly related human sequences, and sequencing errors. The analysis of sequence specific alterations can also be hampered by three aspects related to the tumor DNA. First, the quality of tumor DNA obtained from formalin-fixed samples is generally of poor quality and can result in degraded and damaged DNA. Second, the quantity of DNA obtained can be very low, limiting the amount of DNA molecules that can be successfully analyzed by next generation sequencing. Third, the purity of tumor DNA can be a factor, as a significant portion of the DNA analyzed in the tumor sample may be derived from contaminating normal tissues. These three aspects can reduce the chance of detecting somatic sequence and copy number alterations and rearrangements.

Sequence mutations, including single base and small insertions/deletions, are evaluated where the allele frequency is \$2.0% and amplifications are evaluated when the fold-change is \$4-fold. Specific amplifications are marked as "indeterminate" in situations where there is evidence of amplification \$3-fold, but a definitive determination cannot be made.

Genetic alterations are defined as clinically significant based on published literature and other evidence. Literature references are not comprehensive and there may be other studies that relate to the test results.

Results presented in this report are intended for use solely by a qualified health care professional. Any diagnosis, counseling, or treatment determination made as a result of data presented in the report should be made by a qualified health care professional in conjunction with other individual patient health information, including clinical presentation and other test reports. Information contained within the report is current as of the report date; a qualified health professional should reassess these data as relevant literature becomes available.

This test was developed and its performance characteristics determined by Personal Genome Diagnostics, It has not been cleared or approved by the FDA. The laboratory is regulated under CLIA as qualified to perform high-complexity testing. This test is used for clinical purposes. It should not be regarded as investigational or for research.

Somatic vs. Germline mutations

Except for BRCA1, BRCA2, PALB2 and ATM, this test is meant to identify only somatic mutations and is not designed to detect the presence or absence of germline mutations. For BRCA1, BRCA2, PALB2 and ATM, the presence of either a somatic or germline change will be included in this report. Our analyses do not determine whether a mutation is somatic or germline, and patients in whom an alteration in these genes is reported may benefit from additional germline testing.

Microsatellite Instability Testing

The microsatellite instability (MSI) phenotype may indicate a deficiency in normal DNA mismatch repair function within the tumor, and may suggest that this individual has an inherited cancer syndrome due to defective DNA mismatch repair (e.g. HNPCC/Lynch syndrome). However, the finding of tumor MSI does not distinguish between somatic and germline alterations leading to MSI. Furthermore, it is also possible that MSI status can be influenced by neoadjuvant chemotherapy, which may lead to a false positive result (Int J Radiat Oncol Biol Phys. 2007 68(5):1584).

Source of Clinical Information

N-of-One, Inc has provided to PGDx research, analysis and interpretation, on a patient specific basis, of peer-reviewed studies and publically available databases. This information may include the association between a specific molecular alteration and clinical benefit, or lack thereof, from FDA-approved therapies and therapies under clinical investigation. Additional information from N-of-One is available on its website at www.n-of-one.com.

ELECTRONICALLY SIGNED BY Luis A. Diaz, M.D. Chief Medical Officer	CLIA NUMBER 21D2O39282	6/14/2016				

All positions below use the Human Reference genome hg19

SEQUENCE MUTATION DETAILS

No Sequence Mutations Identified

AMPLIFICATION DETAILS

No Amplifications Identified

TRANSLOCATION DETAILS

No Translocations Identified