Tabla 1.1. Las partículas subatómicas								
Nombre	Símbolo	Masa	Carga	Descubrimiento				
protón	p	$1,673\ 10^{-27}\ \mathrm{kg}$	$+1,602\ 10^{-19}\ \mathrm{C}$	Goldstein, 1886				
electrón	e	$9,109\ 10^{-31}\ kg$	$-1,602\ 10^{-19}\ \mathrm{C}$	Thomson, 1897				
neutrón	n	1,675 10 ⁻²⁷ kg		Chadwick, 1932				

Tabla 1.2. Algunos elementos con varios isótopos								
Nombre	Símbolo	Número atómico (Z)	Número neutrónico (N)	Número másico (A)	Masa	Abundancia natural, %		
Hidrógeno-1	¹ H	1	0	1	1,674 10 ⁻²⁴ g, 1,008 u	99,985		
Deuterio	2 H o D	1	1	2	3,344 10 ⁻²⁴ g, 2,014 u	0,015		
Tritio	3H o T	1	2	3	1,674 10 ⁻²⁴ g, 3,016 u	muy inestable		
Carbono-12	12 C	6	6	12	1,9926 10 ⁻²³ g, 12 u exactas	98,90		
Carbono-13	¹³ C	6	7	13	2,159 10 ⁻²³ g, 13,00 u	1,10		
Cloro-35	³⁵ Cl	17	18	35	5,807 10 ⁻²³ g, 34,97 u	75,77		
Cloro-37	37 C 1	17	20	37	6,138 10 ⁻²³ g, 36,97 u	24,23		
Uranio-235	235 U	92	143	235	3,902 10 ⁻²² g, 235,0 u	0,72		
Uranio-238	²³⁸ U	92	146	238	3,953 10 ⁻²² g, 238,05 u	99,27		

$$v = R_{\rm H} \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

 $R_{\rm H} = 3.29 \ 10^{15} \ {\rm s}^{-1}$ (constante de Rydberg)

```
Serie de Lyman n_1 = 1 n_2 = 2, 3, 4, 5... Serie de Brackett n_1 = 4 n_2 = 5, 6, 7, 8... Serie de Balmer n_1 = 2 n_2 = 3, 4, 5, 6... Serie de Pfund n_1 = 5 n_2 = 6, 7, 8, 9... Serie de Pashen n_1 = 3 n_2 = 4, 5, 6, 7...
```


Tabla 1.3. Números cuánticos del átomo de hidrógeno							
Nombre	Símbolo	Valores	Nombre de conjunto	Sinónimos	Describe		
principal	n	1, 2, 3,	nivel o capa	K(n=1), L(2), M(3), N(4), etc	tamaño y energía orbital		
azimutal*	l	0,, <i>n</i> -1	subnivel o subcapa	s(l=0), p(1), d(2), f(3), etc	forma del orbital		
magnético orbital	m_l	$+l,\ldots,\!-\!l$	orbital** de una subcapa		orientación del orbital		
de espín	S	1/2			espín del electrón		
magnético de espín	$m_{_S}$	$\pm \frac{1}{2}$			orientación del espín		

*También llamado momento angular orbital; ** $\acute{o}rbita$ en el lenguaje de Bohr, orbital en el de la mecánica cuántica.

Tabla 1.4. Longitudes de onda de partículas							
Partícula	Masa (kg)	Velocidad ($m s^{-1}$)	Longitud de onda (Å)				
Electrón libre gaseoso (300 K)	9,11 10-31	1,17 105	63				
Electrón libre gaseoso (200 10 ³ K)	9,11 10 ⁻³¹	3,00 106	2,4				
Electrón del átomo de H $(n = 1)$	9,11 10-31	2,19 106	3,3				
Átomo de He gaseoso (300 K)	6,64 10-27	1370	0,73				
Pelota de Béisbol	0,10	20	3,3 10-24				

Ejemplo. Imprecisión mínima en la posición de partículas cuya imprecisión en la velocidad es del 1%

Partícula	Masa (kg)	$Velocidad (m s^{-1})$	Imprecisión mínima en la posición (m)
Automóvil	1000	28 (100 km/h)	10-37
Electrón del átomo de H $(n = 1)$	9,11 10 ⁻³¹	$2,19\ 10^6$	26 10 ⁻¹⁰ (26 Å, el radio de Bohr es 0,529 Å)

(x, y, z) coordenadas cartesianas (r, θ, ϕ) coordenadas polares

$$z = r \cos \theta$$
 $r^2 = x^2 + y^2 + z^2$
 $x = r \sin \theta \cos \phi$ $\theta = \arccos(z/r)$
 $y = r \sin \theta \sin \phi$ $\phi = \arctan(y/x)$

Tabla 1.5. Funciones radiales $R_{n,l}(r)$ normalizadas para átomos o iones monoelectrónicos*

Orbital	n	l	$R_{n,l}$ =	Constante	× Polinomio ×	Exponencial
1 s	1	0	$R_{1,0}$	$2Z^{3/2}$	1	e^{-Zr}
2 s	2	0	$R_{2,1}$	$\frac{Z^{3/2}}{2\sqrt{2}}$	(2-Zr)	$e^{-Zr/2}$
2 <i>p</i>	2	1	$R_{2,0}$	$\frac{Z^{3/2}}{2\sqrt{6}}$	Zr	$e^{-Zr/2}$
3 s	3	0	$R_{3,0}$	$\frac{2Z^{3/2}}{81\sqrt{3}}$	$(27 - Zr + Z^2r^2)$	e ^{–Zr/3}
3 <i>p</i>	3	1	$R_{3,1}$	$\frac{4Z^{3/2}}{81\sqrt{6}}$	$(6Zr - Z^2r^2)$	$e^{-Zr/3}$
3 <i>d</i>	3	2	$R_{3,2}$	$\frac{4Z^{3/2}}{81\sqrt{30}}$	Z^2r^2	e ^{–Zr/3}
48	4	0	$R_{4,0}$	$\frac{Z^{3/2}}{768}$	$(192 - 144Zr + 24Z^2r^2 - Z^3r^3)$	$e^{-Zr/4}$
4 <i>p</i>	4	1	$R_{4,1}$	$\frac{Z^{3/2}}{256\sqrt{15}}$	$(80Zr - 20Z^2r^2 + Z^3r^3)$	$e^{-Zr/4}$
4 <i>d</i>	4	2	$R_{4,2}$	$\frac{Z^{3/2}}{768\sqrt{5}}$	$(12Z^2r^2 - Z^3r^3)$	$e^{-Zr/4}$
4 <i>f</i>	4	3	$R_{4,3}$	$\frac{Z^{3/2}}{768\sqrt{35}}$	Z^3r^3	e ^{-Zr/4}
	n	l	$R_{n,l} = \sum_{x=l}^{n-1}$	N_{χ}	r^{χ}	e−Zr/n

^{*} Las funciones se dan en base al sistema de unidades atómicas (es decir, r en unidades de a_0).

Parte Angular

Parte Radial

Tabla 1.6. Funciones angulares $A_{l,ml}$ normalizadas para átomos o iones monoelectrónicos

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Orbital	$A_{l,ml}(\theta, \phi)^*$	$A_{l,ml}(x, y, z)^{**}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S		$\frac{1}{2\sqrt{\pi}}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$oldsymbol{p}_{\mathcal{Z}}$	$\frac{\sqrt{3}}{2\sqrt{\pi}}\cos\theta$	$\frac{\sqrt{3}}{2\sqrt{\pi}}\left(z/r\right)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	p_{x}	$\frac{\sqrt{3}}{2\sqrt{\pi}}$ sen θ cos ϕ	$\frac{\sqrt{3}}{2\sqrt{\pi}}\left(x/r\right)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	p_y	$\frac{\sqrt{3}}{2\sqrt{\pi}}$ sen θ sen ϕ	$\frac{\sqrt{3}}{2\sqrt{\pi}}\left(y/r\right)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	d_Z^2	$\frac{\sqrt{5}}{4\sqrt{\pi}} (3 \cos^2 \theta - 1)$	$\frac{\sqrt{5}}{4\sqrt{\pi}} \left[(2z^2 - x^2 - y^2)/r^2 \right]$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	d_{zx}	$\frac{\sqrt{15}}{2\sqrt{\pi}}\cos\theta\sin\theta\cos\phi$	$\frac{\sqrt{15}}{2\sqrt{\pi}}\left(zx/r^2\right)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	d_{zy}	$\frac{\sqrt{15}}{2\sqrt{\pi}}\cos\theta\sin\theta\sin\phi$	$\frac{\sqrt{15}}{2\sqrt{\pi}} \left(zy/r^2 \right)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$d_{x^2-y^2}$	$\frac{\sqrt{15}}{4\sqrt{\pi}} \operatorname{sen}^2 \theta \left(2 \cos^2 \phi - 1 \right)$	$\frac{\sqrt{15}}{4\sqrt{\pi}} \left[(x^2 - y^2)/r^2 \right]$
$ \frac{f_{z^2x}}{8\sqrt{\pi}} (5 \cos^2 \theta - 1) \operatorname{sen} \theta \cos \phi \qquad \frac{\sqrt{42}}{8\sqrt{\pi}} [(4z^2x - x^3 - y^2x)/r^3] \\ \frac{f_{z^2y}}{8\sqrt{\pi}} (5 \cos^2 \theta - 1) \operatorname{sen} \theta \operatorname{sen} \phi \qquad \frac{\sqrt{42}}{8\sqrt{\pi}} [(4z^2y - x^2y - y^3)/r^3] \\ \frac{f_{z(x^2 - y^2)}}{4\sqrt{\pi}} \cos \theta \operatorname{sen}^2 \theta (2 \cos^2 \phi - 1) \qquad \frac{\sqrt{105}}{4\sqrt{\pi}} [z(x^2 - y^2)/r^3] \\ \frac{f_{zxy}}{2\sqrt{\pi}} \cos \theta \operatorname{sen}^2 \theta \cos \phi \operatorname{sen} \phi \qquad \frac{\sqrt{105}}{2\sqrt{\pi}} (zxy/r^3) \\ \frac{f_{x^3}}{8\sqrt{\pi}} \sin^3 \theta (4 \cos^3 \phi - 3 \cos \phi) \qquad \frac{\sqrt{70}}{8\sqrt{\pi}} [(x^3 - 3xy^2)/r^3] $	d_{xy}	$\frac{\sqrt{15}}{2\sqrt{\pi}}$ sen ² θ sen ϕ cos ϕ	$\frac{\sqrt{15}}{2\sqrt{\pi}} (xy/r^2)$
$ \frac{f_{z^2y}}{8\sqrt{\pi}} = \frac{\sqrt{42}}{8\sqrt{\pi}} (5\cos^2\theta - 1) \sin\theta \sin\theta $ $ \frac{\sqrt{42}}{8\sqrt{\pi}} [(4z^2y - x^2y - y^3)/r^3] $ $ \frac{\sqrt{105}}{4\sqrt{\pi}} \cos\theta \sin^2\theta (2\cos^2\phi - 1) $ $ \frac{\sqrt{105}}{4\sqrt{\pi}} [z(x^2 - y^2)/r^3] $ $ \frac{\sqrt{105}}{2\sqrt{\pi}} \cos\theta \sin^2\theta \cos\phi \sin\phi $ $ \frac{\sqrt{105}}{2\sqrt{\pi}} (zxy/r^3) $ $ \frac{\sqrt{70}}{8\sqrt{\pi}} \sin^3\theta (4\cos^3\phi - 3\cos\phi) $ $ \frac{\sqrt{70}}{8\sqrt{\pi}} [(x^3 - 3xy^2)/r^3] $	f_z 3	$\frac{\sqrt{7}}{4\sqrt{\pi}} (5 \cos^3 \theta - 3 \cos \theta)$	$\frac{\sqrt{7}}{4\sqrt{\pi}} \left[(2z^3 - 3x^2z - 3y^2z)/r^3 \right]$
$ \frac{f_{z(x^2-y^2)}}{f_{zxy}} = \frac{\sqrt{105}}{4\sqrt{\pi}} \cos \theta \sec^2 \theta (2\cos^2 \phi - 1) \qquad \frac{\sqrt{105}}{4\sqrt{\pi}} [z(x^2-y^2)/r^3] \\ \frac{f_{zxy}}{2\sqrt{\pi}} \cos \theta \sec^2 \theta \cos \phi \sec \phi \qquad \frac{\sqrt{105}}{2\sqrt{\pi}} (zxy/r^3) \\ \frac{f_{x^3}}{8\sqrt{\pi}} \sec^3 \theta (4\cos^3 \phi - 3\cos \phi) \qquad \frac{\sqrt{70}}{8\sqrt{\pi}} [(x^3-3xy^2)/r^3] $	f_z^2	$\frac{\sqrt{42}}{8\sqrt{\pi}}$ (5 cos ² θ – 1) sen θ cos ϕ	$\frac{\sqrt{42}}{8\sqrt{\pi}}\left[(4z^2x-x^3-y^2x)/r^3\right]$
$ \frac{f_{zxy}}{f_{x^3}} = \frac{\sqrt{105}}{2\sqrt{\pi}} \cos\theta \sin^2\theta \cos\phi \sin\phi \qquad \frac{\sqrt{105}}{2\sqrt{\pi}} (zxy/r^3) \frac{\sqrt{70}}{8\sqrt{\pi}} \sin^3\theta (4\cos^3\phi - 3\cos\phi) \qquad \frac{\sqrt{70}}{8\sqrt{\pi}} [(x^3 - 3xy^2)/r^3] $	f_{z^2y}	$\frac{\sqrt{42}}{8\sqrt{\pi}}$ (5 cos ² θ – 1) sen θ sen ϕ	$\frac{\sqrt{42}}{8\sqrt{\pi}}\left[(4z^2y-x^2y-y^3)/r^3\right]$
$\frac{f_{x^3}}{8\sqrt{\pi}} \sec^3 \theta (4\cos^3 \phi - 3\cos \phi) \qquad \qquad \frac{\sqrt{70}}{8\sqrt{\pi}} [(x^3 - 3xy^2)/r^3]$	$f_{Z(x^2-y^2)}$	$\frac{\sqrt{105}}{4\sqrt{\pi}}\cos\theta\sin^2\theta(2\cos^2\phi-1)$	$\frac{\sqrt{105}}{4\sqrt{\pi}} \left[z(x^2 - y^2)/r^3 \right]$
8/11	f_{zxy}	$\frac{\sqrt{105}}{2\sqrt{\pi}}\cos\theta\sin^2\theta\cos\phi\sin\phi$	$\frac{\sqrt{105}}{2\sqrt{\pi}} \left(zxy/r^3 \right)$
$\frac{f_{y^3}}{8\sqrt{\pi}} \sec^3 \theta (3 \sec \phi - 4 \sec^3 \phi)$ $\frac{\sqrt{70}}{8\sqrt{\pi}} [(-y^3 + 3x^2y)/r^3]$	f_x 3	$\frac{\sqrt{70}}{8\sqrt{\pi}} \operatorname{sen}^3 \theta \left(4 \cos^3 \phi - 3 \cos \phi \right)$	$\frac{\sqrt{70}}{8\sqrt{\pi}} \left[(x^3 - 3xy^2)/r^3 \right]$
	f_y 3	$\frac{\sqrt{70}}{8\sqrt{\pi}} \operatorname{sen}^3 \theta (3 \operatorname{sen} \phi - 4 \operatorname{sen}^3 \phi)$	$\frac{\sqrt{70}}{8\sqrt{\pi}} \left[(-y^3 + 3x^2y)/r^3 \right]$

^{*} Funciones en el sistema de coordenadas polares esféricas. ** Funciones en el sistema de coordenadas cartesiano.

electrón 1 Z = 2 para Helio *er*₁₂ Núcleo Ze+*r*₂ electrón 2

Tabla 1.7 (parcial). Cargas Nucleares Efectivas de los elementos del 1 al 36

Elemento	1 s	2 s	2 <i>p</i>	3s	3 <i>p</i>	4 <i>S</i>
Н	1,000					
He	1,688					
Li	2,691	1,279				
Be	3,685	1,912				
В	4,680	2,576	2,421			
\mathbf{C}	5,673	3,217	3,136			
${f N}$	6,665	3,847	3,834			
O	7,658	4,492	4,453			
${f F}$	8,650	5,128	5,100			
Ne	9,642	5,758	5,758			
Na	10,626	6,571	6,802	2,507		
Mg	11,619	7,392	7,826	3,308		
Al	12,591	8,214	8,963	4,117	4,066	
Si	13,575	9,020	9,945	4,903	4,285	
P	14,558	9,825	10,961	5,642	4,886	
\mathbf{S}	15,541	10,629	11,977	6,367	5,482	
Cl	16,524	11,430	12,993	7,068	6,116	
Ar	17,508	12,230	14,008	7,757	6,764	
K	18,490	13,006	15,027	8,680	7,726	3,495

Tabla 1.8	Tabla 1.8. Energías calculadas para el helio en su estado fundamental a partir de funciones de onda aproximadas					
	Tipo de función de onda	Energía (en eV)				
1	Producto de orbitales del He ⁺ (aprox. orbital)	-74,83				
2	Producto de orbitales con Z* fijada por el método SCF	-77,48				
3	Producto de funciones más apropiado	-77,870917				
4	Función no orbitalaria de Pekeris (combinación lineal de 1078 términos)	-79,00946912				
	Valor experimental $(I_1 + I_2)$	-79,014				

S = 1

 $M_S = +1, 0, -1$

$$s = 1/2$$

$$S = 0$$

$$M_S = 0$$

$$l = 1$$

 $L = 2$
 $M_L = +2, +1, 0, -1, -2$

$$l = 1$$

 $L = 1$
 $M_L = +1, 0, -1$

$$l = 1$$

$$L = 0$$

$$M_L = 0$$

m 11 110 m/ ·	D 11 C	1	1	~	•
Tabla I III Torminas	Ruggoll Valla	dore nara al	MINAC	CONTIGUES	CIANAC
Tabla 1.10. Términos	nusseu-saum	uers Duru ui	zunus	comizuia	
		F	0	777	

Configuración	Términos	Término fundamental
s^1	^{2}S	2 <u>S</u>
S^2	^{1}S	15
$p^1 y p^5$	^{2}P	2 P
$p^2 y p^4$	${}^{1}S, {}^{1}D, {}^{3}P$	³ ₽
<i>p</i> ³	$^{2}P, ^{2}D, ^{4}S$	4S
p^6	^{1}S	15
d^1 y d^9	^{2}D	2D
$d^2 y d^8$	${}^{1}S, {}^{1}D, {}^{1}G, {}^{3}P, {}^{3}F$	3F
d^3 y d^7	${}^{2}P, {}^{2}D(2), {}^{2}F, {}^{2}G, {}^{2}H, {}^{4}P, {}^{4}F$	4F
$d^4 ext{ y } d^6$	${}^{1}S(2), {}^{1}D(2), {}^{1}F, {}^{1}G(2), {}^{1}I, {}^{3}P(2), {}^{3}D, {}^{3}F(2), {}^{3}G, {}^{3}H, {}^{5}D$	5D
d^5	^{2}S , ^{2}P , $^{2}D(3)$, $^{2}F(2)$, ^{1}I , $^{2}G(2)$, ^{3}H , ^{2}I , ^{4}P , ^{4}D , ^{4}F , ^{4}G , ^{6}S	6S

Tabla 1.11. Energías de ionización de los elementos del 2 al :	5
--	---

Elemento	Primera	Segunda	Tercera	Cuarta
He	2372 kJ mol-1			
Li	519 kJ mol ⁻¹	7300 kJ mol-1		
Be	$900~\mathrm{kJ~mol^{-1}}$	$1760~\mathrm{kJ~mol^{-1}}$	$14800 \; kJ \; mol^{-1}$	
В	799 kJ mol ⁻¹	2420 kJ mol-1	3660 kJ mol ⁻¹	25000 kJ mol ⁻¹

1		< 100 +100 a +200						18
Н								He
72	2	-100 a 0 +200 a +300	13	14	15	16	17	-21
Li	Be	0 a + 100 $> +300$	В	С	N	0	F	Ne
60	-241		27	122	0	141	328	-29
Na	Mg		Al	Si	Р	S	Cl	Ar
53	-230		42	134	72	200	349	-34
K	Ca		Ga	Ge	As	Se	Br	Kr
48	-156		29	119	78	195	325	-39
Rb	Sr		In	Sn	Sb	Те		Xe
47	-167		29	107	103	190	295	-40
Cs	Ba		TI	Pb	Bi	Po	At	Rn
45	-52		19	35	91	183	270	-41
Fr	Ra							
		J						