

FIRST SEMESTER 2020 - 2021

Course Handout Part II

In addition to part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : CS G527

Course Title : Cloud Computing
Instructor-in-Charge : Dr. Subhrakanta Panda

Description : Review of Distributed computing - Concurrency, message passing, connectivity and failure models, replication. Computing Infrastructure - Processing Power, Storage aggregation, I/O & Communication, Clusters and Data Centers. Resource modeling and virtualization - CPU virtualization, memory and storage virtualization, virtualized networks. Services - Service models and service contracts; Programming on the cloud. Cloud Applications - Software on the Cloud and Infrastructure Services. Cloud infrastructure - Private vs. Public Clouds, Resource scaling and Resource provisioning. Quality of Service - Performance models, scalability, Performance measurement and enhancement techniques. Security issues - Data/ Storage Security, Resource Access Control, Process Isolation and Control, Service Policies and Privacy Issues

Scope and Objective of the Course:

Cloud computing is a key distributed systems paradigm that has grown popular in the last few years. Cloud technologies are pervasive and act as the de-facto infrastructure for HPC applications. This course aims to teach the students both the fundamental concepts of how and why cloud systems work, as well as the cloud technologies that manifest these concepts like virtualization. Various cloud service models and cloud deployment models will be discussed. Case studies on open source and commercial cloud environments line Openstack, OpenNebula, Eucalyptus, Microsoft Azure and Amazon EC2 will help the students get the necessary hands-on exposure.

Course Outcome:

The expected outcomes of this course are as follows:

- Students will develop a good understanding of the different architectural as well as the design perspectives of cloud deployment and service models.
- Students to gain hands-on exposure to AWS, Google App Engine, etc., and other open source platforms like Cloudsim.
- Develop understanding of different cloud virtualizations and have hands on implementation.
- To be able to understand and analyze SLAs in cloud systems and its QoS models.
- To be able to analyze and design admission control algorithms.
- To be able to analyze and design scheduling algorithms.
- Analyze the threat models and security challenges in cloud.
- Solve problems through Map-Reduce applications.

Textbooks:

- 1. Dinkar Sitaram and Geetha Manjunath, "Moving to the Cloud", Syngress (Elsevier) Pub, 2011.
- 2. Rajkumar Buyya, James Broburg & anderzej M.G, "Cloud Computing Principles and Paradigms", John Wiley Pub. 2011.

Reference books

- 1. Barrie Sosinsky, "Cloud Computing Bible", Wiley-India, 2010.
- 2. Nikos Antonopoulos and Lee Gillam, "Cloud Computing: Principles, Systems and Applications", Springer, 2012.
- 3. Ronald L. Krutz, Russell Dean Vines, "Cloud Security: A Comprehensive Guide to Secure Cloud Computing", Wiley-India, 2010.
- 4. Rajkumar Buyya, Christian Vecchiola et.al., "Mastering Cloud Computing", Mc Graw Hill Education, 1stedition, 2013.
- 5. Arshdeep Bahga and Vijay Madisetti, "Cloud Computing: A Hands-on Approach", Universities press (India), 2014.
- 6. Dan C. Marinescu, "Cloud Computing: Theory and Practice", Elsevier, 2013.

Course Plan:

LNo.	Learning objectives	Topics to be covered	Chapter No.
1-2	Understand different	Overview of various computational paradigms like cluster	T1 Ch 1.
	computing models	computing, grid computing etc; Distributed computing: concurrency,	R1 Ch 1.
	computing models	message passing, connectivity and failure models;	T1 Ch 2
	Introduction to cloud computing	Motivation for Cloud Computing; Introduction to Cloud Computing	T1 Ch 1.
3-4		environment (NIST model), History of Cloud Computing, Cloud	T1 Ch 2.
		Computing architecture: service model, Cloud Computing	R1 Ch 2.
		architecture: deployment model, benefits, challenges, and risks;	NIST Doc.
			800-146.
5-6	Cloud computing	Public, Private, Community, Hybrid, Federated Clouds	T1 Ch 1.
	architecture:Deploym		T2. Ch 1.
	ent model		T2. Ch 6.
		Introduction to cloud virtualization, types of Virtualization, practical	T1 Ch 9.
7-10	Cloud virtualization	aspects of Virtualization; Virtual Machine monitors/hypervisors; VM	R1 Ch 3.
/-10	Cloud virtualization	Life Cycle management; Virtualization of CPU, Storage, I/O, and	T2 Ch 5.
		Network;	
11-12	Cloud computing	Introduction to IaaS; Software stack; Delivery model, Scope of	T1 Ch 2.
11-12	architecture: IaaS	control; Management; IaaS benefits and issues;	R2
	AWS	Reference Model of AWS, Region Vs Availability zones, AWS	T1 Ch 2.
		infrastructure service: Amazon Elastic Compute Cloud (Amazon	
		EC2) Infrastructure Services, Amazon Web Services: Amazon S3,	
13-20		Amazon Glacier, Amazon EBS, AWS Import/Export	
		Amazon RDS, Amazon DynamoDB, Amazon AWS Demo	
		Amazon Cloud Services - CloudFront, Elastic Load Balancer, Elastic	
		Block Storage; Openstack	
		Cloud orchestration technologies, Dockers - Elements, Images,	Open Sources
21-23	Containers	Files, Containers	
		Introduction to PaaS; Software stack; Dependency; Delivery model;	T1 Ch 3.
24-26	Cloud computing	Scope of control; IaaS benefits and issues; Traditional packaged	R2
	architecture: PaaS	Platform Vs PaaS;GAE, Microsoft Azure, OpenNebula, Eucalyptus	
27-30	Cloud computing	Introduction to SaaS; Dependancy; Portability; Pros and Cons of	T1 Ch 4.
		SaaS model; Applications of SaaS; Traditional packaged Software	T2 Ch 9.
	architecture: SaaS	Vs SaaS;	R1 Ch 10.
	Service Level	Service Level Agreements: Lifecycle and Management; Automated	T1 Ch 8.
31-34	Agreements (SLAs)	Policy-Based Management; Admission control mechanisms	T2 Ch 16.
	1 Greenienes (SE/13)		

35-36	Quality of Service (QoS)	QoS model, parameter, measurement, and enhancement; Resource management; Failure detection and recovery.		
Cloud security issues and threat models		Infrastructure Security: Network level security, Host level security, Application level security; Data security and Storage: Data privacy and security Issues; Identity and Access Management; Access Control; Authentication in cloud computing	T2 Ch 23.	
41-42	Cloud Storage Systems	Introduction to Distributed File Systems, Case Study HDFS: Hadoop components and understandingMapReduce.	R6, Ch 8.	

Evaluation Scheme:

Sl. No.	Component	Duration	Weightage (%)	Date & Time	Nature of Component
1	Test-1	30 min	15		Open Book
2	Test-2	30 min	15		Open Book
3	Test-3	30 min	15		Open Book
4	Term Paper Presentation(TPP)		10		Open Book/Take home
5	LAB Assignments (LA)		10		Open Book
6	Comprehensive	2hrs	35	08/12 FN	Open Book

Chamber Consultation Hour: To be announced in the class. **Notices:** Notices regarding the course will be put up on CMS.

Make-up Policy: No makeup for TPP and LA components. For any other genuine reasons other than medical, prior approval from the IC is mandatory. Requests coming after the test will not be honored. The final call to grant makeup request (except compre) is at the discretion of the I/C. The above mentioned rules will be followed very strictly.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

INSTRUCTOR-IN-CHARGE CSG527

CSG527 CC Lab Content Coverage Plan

Declaration: Since the classes will be held in online mode. So students are required to install Java, Eclipse, and other Software as required in their respective Laptops/Desktops.

Exp#	Lab coverage of topics	Ref
1	Check Virtualization support in Linux and Windows based Machine,	T1 Ch 9; R1 Ch 3; T2 Ch 5;
	Oracle Virtualbox, Hyper-V Support.	Online Resources
2	Installation and Deployment of KVM. Create Virtual Machines on	T1 Ch 9; R1 Ch 3; T2 Ch 5;
	KVM. Explore other open source Cloud Platforms.	Online Resources
3	Create a shared folder in VMWare Workstation	Online Resources
5	Create virtual instance, provide S3 support to virtual instance in T1 Ch 2; Onlin	
	AWS/Openstack	
6	Create virtual instance and provide volume support in AWS/Openstack	T1 Ch 2; Online resources
7	Perform a cold migration of VM from one data store to another.	T1 Ch 2; Online resources
8	Create a setup to demo Auto-scaling feature of AWS cloud	T1 Ch 2; Online resources
9	Use Docker containers in AWS	T1 Ch 2; Online resources
10	Install Openstack and configure the Orchestration service called heat,	Online resources
	on the controller node.	
11	Install GAE, upload a local application to GAE	T1 Ch 3; R2; Lecture notes
12	Create a load balancer in Cloudsim	Online resources
13	Implement Elastic MapReduce word-count example using AWS	R6Ch 8; Online resources
14	Hadoop Map reduce-market rating Java example, word-count on	Online resources
	Hadoop Sandbox Environment.	