1 Let $f = a_0 + a_1 x + \cdots + a_n x^n \in R[x]$ be a polynomial.

Note. I use (b) in the proof of (a), but the proof of (b) does not rely on (a).

(a) Show that if f is a unit in R[x], then a_0 is a unit in R and a_1, \ldots, a_n are nilpotent.

Proof. Let $g = b_0 + b_1 x + \cdots + b_m x^m \in R[x]$ be any polynomial, then we have the product

$$fg = \sum_{d=0}^{n+m} c_d x^d$$
 where $c_d = \sum_{i+j=d} a_i b_j$.

Then fg = 1 if and only if $c_0 = 1$ and $c_d = 0$ for all d > 0. Assuming g is the inverse of f, this means that $1 = c_0 = a_0 b_0$, so indeed a_0 is a unit in R.

The next step is to show that the leading coefficient of f is nilpotent when $n \ge 1$. To do this, we first claim that $a_n^{k+1}b_{m-k} = 0$ for $k = 0, 1, \ldots, m$ —we will prove this by induction on k. For the base case of k = 0, we immediately have

$$0 = c_{n+m} = a_n b_m.$$

Assuming the result holds for all indices less than some $k \geq 1$. Then

$$0 = c_{n+m-k} = a_n b_{m-k} + a_{n-1} b_{m-(k-1)} + \dots + a_{n-k} b_m,$$

and multiplying by a_n^k gives

$$0 = a_n^{k+1}b_{m-k} + a_{n-1}(a_n^{k+1}b_{m-(k-1)}) + \dots + a_{n-k}(a_n^{k+1}b_m) = a_n^{k+1}b_{m-k}.$$

This completes the induction. In particular, k = m tells us that $a_n^{m+1}b_0 = 0$, and multiplying by a_0 gives $a_n^{m+1} = 0$, i.e., a_n is nilpotent in R.

Lastly, we perform induction on $n = \deg f$ to show that the coefficients of the remaining nonconstant terms are nonzero. For the base case of n = 0, $f = a_0$ has no nonconstant terms, so the result is vacuously true. Assume that the result holds for all unit polynomials of degree less than $n \ge 1$. Since a_n is nilpotent in R, we know that $a_n x^n$ is nilpotent in R[x], so part (b) tells us that $f - a_n x^n$ is a unit in R[x]. But the degree of $f - a_n x^n$ is strictly less than n, so the inductive hypothesis tells us that all the coefficients of all of its nonconstant terms are nilpotent—these are precisely a_1, \ldots, a_{n-1} , so the induction is complete.

(b) Show that the sum of a unit and a nilpotent element is a unit.

Proof. We consider elements of an arbitrary ring.

If a is nilpotent with $a^n = 0$ then

$$(1-a)(1+a+\cdots+a^{n-1})=1-a^n=1.$$

In particular, 1-a is a unit whenever a is nilpotent.

Let u be a unit and a be nilpotent. Then $-u^{-1}a$ is also nilpotent and the above result tells us that $1 + u^{-1}a$ is a unit. Multiplying by the unit u, we conclude that u + a is a unit. \square

(c) Show that the converse of (a) also holds.

Proof. Since the set of nilpotents of R[x] is an ideal (the nilradical), then any R[x]-linear combination of nilpotents $a_1, \ldots, a_n \in R \subseteq R[x]$ is also nilpotent. In particular,

$$a_1x + \cdots + a_nx^n$$

is nilpotent. Then if a_0 is a unit in R, it is still a unit in R[x], so part (b) tells us that

$$f = a_0 + a_1 x + \dots + a_n x^n$$

is a unit in R[x].

2 Let M be an R-module, and $I \subset R$ an ideal. Show that if $M_{\mathfrak{m}} = \{0\}$ for all maximal ideals $\mathfrak{m} \subset R$ containing I, then M = IM.

Proof. Note that M = IM if and only if M/IM = 0. Moreover, M/IM = 0 if and only if the localization $(M/IM)_{\mathfrak{m}} = 0$ at every maximal ideal $\mathfrak{m} \subseteq R$.

If $\mathfrak{m} \subseteq R$ is maximal ideal containing I, the quotient map followed by a canonical isomorphism gives us a surjection

$$0 = M_{\mathfrak{m}} \longrightarrow M_{\mathfrak{m}}/(IM)_{\mathfrak{m}} \cong (M/IM)_{\mathfrak{m}},$$

hence $(M/IM)_{\mathfrak{m}} = 0$.

If $\mathfrak{m} \subseteq R$ is a maximal ideal not containing I, we can find a scalar $t \in I \setminus \mathfrak{m}$. Then for any element in the localization $\frac{m+IM}{s} \in (M/IM)_{\mathfrak{m}}$, we have $tm \in IM$ so

$$t(m+IM)=0\in M/IM \implies \tfrac{m+IM}{s}=0\in (M/IM)_{\mathfrak{m}}.$$

So again we deduce that $(M/IM)_{\mathfrak{m}} = 0$.

3 Let M be an R-module. Define the support of M to be

$$\operatorname{Supp}(M) := \{ \text{all prime ideals } \mathfrak{p} \subset R \text{ such that } M_{\mathfrak{p}} \neq 0 \},$$

and the annihilator of M to be

$$\operatorname{Ann}_R(M) := \{ r \in R \text{ such that } rm = 0 \text{ for all } m \in M \}.$$

Show that if M is finitely generated over R, then $\operatorname{Supp}(M)$ is the same as the set of all prime ideals $\mathfrak{p} \subset R$ containing $\operatorname{Ann}_R(M)$.

Proof. Suppose $\mathfrak{p} \in \operatorname{Supp}(M)$. The fact that $M_{\mathfrak{p}} \neq 0$ means there is some $m \in M$ such that $tm \neq 0$ for all $t \in R \setminus \mathfrak{p}$. In particular, for all $a \in \operatorname{Ann}_R(M)$ we have am = 0, which implies $a \in \mathfrak{p}$. Hence, $\operatorname{Ann}_R(M) \subseteq \mathfrak{p}$.

Suppose $\mathfrak{p} \subseteq R$ is a prime ideal with $M_{\mathfrak{p}} = 0$, i.e., $\mathfrak{p} \notin \operatorname{Supp}(M)$. This means that for all $m \in M$ there is some $t \in R \setminus \mathfrak{p}$ such that tm = 0. If M is generated by $x_1, \ldots, x_n \in M$, we can choose scalars $t_i \in R \setminus \mathfrak{p}$ such that $t_i x_i = 0$. Since \mathfrak{p} is prime, we know that the product $t = t_1 \cdots t_n$ is not in \mathfrak{p} . For any $m \in M$, write $m = \sum_{i=1}^n a_i x_i$ for some $a_i \in R$, then

$$tm = \sum_{i=1}^{n} a_i (t_1 \cdots t_i \cdots t_n) x_i = 0.$$

That is, $t \in \operatorname{Ann}_R(M)$. But since $t \notin \mathfrak{p}$, we conclude that $\operatorname{Ann}_R(M) \nsubseteq \mathfrak{p}$.

4 Let M be a nonzero module over a Noetherian ring R. We say that a prime ideal $\mathfrak{p} \subset R$ is associated with M if

$$\mathfrak{p} = \operatorname{Ann}_R(m)$$

for some $m \in M$, where $\operatorname{Ann}_R(m) := \{r \in R : rm = 0\}.$

Show that the set of prime ideals associated with M is nonempty.

(*Hint*: Consider a maximal element in the set $\{Ann_R(m): m \neq 0 \in M\}$.)

Proof. Note that $Ann_R(m)$ is an ideal of R: given $a, b \in Ann_R(m)$ and $r \in R$ we have

$$(ra + b)m = r(am) + bm = r \cdot 0 + 0 = 0,$$

hence $ra + b \in \operatorname{Ann}_R(m)$. Moreover, $\operatorname{Ann}_R(m)$ is a proper ideal if and only if $m \neq 0 \in M$, since both are equivalent to $1 \in \operatorname{Ann}_R(m)$.

Per the hint, consider the set $\mathcal{A} = \{\operatorname{Ann}_R(m) \mid m \neq 0 \in M\}$, partially ordered by inclusion. This is a set of proper ideals in R, which we know to be nonempty because M is nonzero. We will use Zorn's lemma to choose a maximal element of \mathcal{A} .

Suppose $\mathcal{C} \subseteq \mathcal{A}$ is a chain. Choose an arbitrary initial element $\mathfrak{a}_0 \in \mathcal{C}$ and inductively choose $\mathfrak{a}_i \in \mathcal{C}$ such that $\mathfrak{a}_i \subseteq \mathfrak{a}_{i+1}$, with strict inclusion whenever \mathfrak{a}_i is not the maximum in \mathcal{C} . (It may be worth remarking on the choice of \mathfrak{a}_i 's here—to be completely formal, we are using dependent choice.) We now have an ascending sequence $\mathfrak{a}_0 \subseteq \mathfrak{a}_1 \subseteq \cdots$ of ideals in R. Since R is noetherian, this sequence eventually stabilizes, i.e., there is an index n such that $\mathfrak{a}_i = \mathfrak{a}_n$ for all $i \geq n$. However, by our choice of \mathfrak{a}_i 's, this is only possible if \mathfrak{a}_n is the maximum of \mathcal{C} . In particular, $\mathfrak{a}_n \in \mathcal{A}$ is an upper bound for \mathcal{C} , so the condition for Zorn's lemma is satisfied.

Let $\operatorname{Ann}_R(m) \in \mathcal{A}$ be a maximal element. We already know that $\operatorname{Ann}_R(m)$ is an ideal of R, so it remains to prove it is prime. Suppose $r, s \in R$ with $rs \in \operatorname{Ann}_R(m)$. If $s \notin \operatorname{Ann}_R(m)$, then $sm \neq 0$ and we have

$$\operatorname{Ann}_R(m) \subseteq \operatorname{Ann}_R(sm) \in \mathcal{A}.$$

However, since $\operatorname{Ann}_R(m)$ is maximal in \mathcal{A} , we must have equality. And since rsm = 0, we conclude that

$$r \in \operatorname{Ann}_R(sm) = \operatorname{Ann}_R(m).$$

Hence, $Ann_R(m)$ is a prime ideal associated with M.

5 Let M be a flat R-module.

(a) Show that if R is an integral domain, then $M_{\text{tors}} = \{0\}$.

Proof. We check that M_{tors} is a submodule of M. Given $m, n \in M_{\text{tors}}$ and $r \in R$, there are nonzero scalars $s, t \in R$ such that sm = tn = 0. Then

$$st(rm+n) = rt(sm) + s(tn) = rt \cdot 0 + s \cdot 0 = 0,$$

hence $rm + n \in M_{\text{tors}}$. In particular, the inclusion map $M_{\text{tors}} \hookrightarrow M$ is an injective R-module homomorphism.

Let $F = \operatorname{Frac} R$ be the field of fractions of R. The inclusion $R \hookrightarrow F$ is an injective ring homomorphism, so it is also an injective R-module homomorphism. Since M is R-flat, the induced R-module homomorphism $R \otimes_R M \to F \otimes_R M$ is also injective. We now consider the following composition of injective R-module homomorphisms:

$$M_{\mathrm{tors}} \stackrel{\sim}{\longleftrightarrow} M \stackrel{\sim}{\longrightarrow} R \otimes_R M \longrightarrow F \otimes_R M$$

$$m \longmapsto 1 \otimes m$$

$$r \otimes m \longmapsto \frac{r}{1} \otimes m$$

Given $m \in M_{\text{tors}}$ there is a nonzero scalar $r \in R$ such that $rm = 0 \in M$. Under the above map, m is sent to $1 \otimes m \in F \otimes_R M$. However, in $F \otimes_R M$, we have

$$1 \otimes m = \frac{r}{r} \otimes m = \frac{1}{r} \otimes rm = \frac{1}{r} \otimes 0 = 0.$$

In other words, $M_{\text{tors}} \to F \otimes_R M$ is the zero map. But because we already know this map to be injective, we must conclude that $M_{\text{tors}} = 0$.

(b) Show that for any ideal $I \subset R$ we have

$$I \otimes_R M \simeq IM$$

as R-modules.

Proof. The natural projection of R onto the quotient R/I can be used to construct the following short exact sequence of R-module homomorphisms:

$$0 \longrightarrow I \stackrel{\iota}{\longrightarrow} R \stackrel{\pi}{\longrightarrow} R/I \longrightarrow 0.$$

Since M is R-flat, there is an induced short exact sequence of R-module homomorphisms

$$0 \longrightarrow I \otimes_R M \xrightarrow{\iota \otimes \mathrm{id}_M} R \otimes_R M \xrightarrow{\pi \otimes \mathrm{id}_M} R/I \otimes_R M \longrightarrow 0.$$

By the universal property of the tensor product, these are in fact the unique maps such that the following diagram commutes with exact rows:

(The horizontal maps are R-linear while the vertical maps are R-bilinear.)

The natural projection of M onto the quotient M/IM can be used to construct the following short exact sequence of R-module homomorphisms:

$$0 \longrightarrow IM \longrightarrow M \longrightarrow M/IM \longrightarrow 0.$$

Consider the following multiplication maps

Once again, these R-bilinear maps make the following diagram commute with exact rows:

The universal property of the tensor product gives us unique R-linear maps α, β, γ such that the following diagram commutes with exact rows:

Notice that β and γ are simply the canonical isomorphisms

$$R \otimes_R M \longrightarrow M$$
 $R/I \otimes_R M \longrightarrow M/IM$ $r \otimes m \longmapsto rm$ $(r+I) \otimes m \longmapsto rm + IM$

By the 5-lemma (proved below), α is an isomorphism $I \otimes_R M \cong IM$.

Lemma 1 (5-lemma). Suppose the following diagram of *R*-module homomorphisms commutes with exact rows:

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

$$\downarrow^{\alpha} \qquad \downarrow^{\beta} \qquad \downarrow^{\gamma}$$

$$0 \longrightarrow A' \longrightarrow B' \longrightarrow C' \longrightarrow 0$$

If two of the maps α, β, γ are isomorphisms then so is the third.

Proof. Note that a map $\varphi: G \to H$ is an isomorphism if and only if the sequence

$$0 \longrightarrow G \stackrel{\varphi}{\longrightarrow} H \longrightarrow 0$$

is exact. That is, φ is an isomorphism if and only if $\ker \varphi = \operatorname{coker} \varphi = 0$.

By the snake lemma, there is an exact sequence

$$0 \to \ker \alpha \to \ker \beta \to \ker \gamma \to \operatorname{coker} \alpha \to \operatorname{coker} \beta \to \operatorname{coker} \gamma \to 0.$$

If α and β are isomorphisms then this becomes

$$0 \longrightarrow 0 \longrightarrow 0 \longrightarrow \ker \gamma \longrightarrow 0 \longrightarrow \operatorname{coker} \gamma \longrightarrow 0$$
,

which means $\ker \gamma = \operatorname{coker} \gamma = 0$. The same argument shows that if α and γ are isomorphisms then $\ker \beta = \operatorname{coker} \beta = 0$, and if β and γ are isomorphisms then $\ker \alpha = \operatorname{coker} \alpha = 0$.

(c) Let $f: R \to S$ be a ring homomorphism. Show that the map

$$M \to M \otimes_R S$$
$$m \mapsto m \otimes 1$$

is injective if and only if $\ker(f) \subset \operatorname{Ann}_R(M)$.

(*Hint*: Consider the R-module exact sequence defined by f.)

Proof. Per the hint, there is an exact sequence of R-module homomorphisms

$$0 \longrightarrow \ker f \hookrightarrow R \stackrel{f}{\longrightarrow} S.$$

Since M is R-flat, tensoring with M over R will produce another exact sequence. Additionally—similar to part (b)—we use canonical isomorphisms to obtain the following commutative diagram with exact rows:

$$0 \longrightarrow \ker f \otimes_R M \longrightarrow R \otimes_R M \longrightarrow S \otimes_R M$$

$$\downarrow^{\wr} \qquad \qquad \downarrow^{\wr} \qquad \qquad \downarrow_{\mathrm{id}}$$

$$0 \longrightarrow (\ker f)M \hookrightarrow M \longrightarrow S \otimes_R M$$

As the bottom row is exact, the map $M \to S \otimes_R M$ is injective if and only if $(\ker f)M = 0$. This is the case if and only if every element of $\ker f$ annihilates M, i.e., $\ker f \subseteq \operatorname{Ann}_R(M)$. \square