- 14. Em cada alínea, determine o subgrupo indicado:
 - (a) $\langle 1 \rangle$ de $(\mathbb{Z}, +)$;
 - (b) $\langle 3, 4 \rangle$ de $(\mathbb{Z}, +)$;
 - (c) $\langle -2,6 \rangle$ de $(\mathbb{Z},+)$;
 - (d) (3, 6, 12) de $(\mathbb{Z}, +)$;
 - (e) $\langle -1, 1 \rangle$ de $(\mathbb{Z}, +)$.
- 15. Determine os conjuntos dos subgrupos dos grupos (\mathbb{Z}_6, \oplus) e $(\mathbb{Z}_7^*, \otimes)$ e esboce os diagramas de Hasse desses conjuntos, parcialmente ordenados pela relação de inclusão.
- 16. Dê um exemplo, ou justifique que não existe, de:
 - (a) um grupo G infinito e de um seu subgrupo H que seja finito; um grupo G infinito e de um seu subgrupo H que seja infinito;
 - (b) um grupo G finito e de um seu subgrupo H que seja infinito;
 - (c) um grupo com um número infinito de subgrupos;
 - (d) um grupo G e de um seu subconjunto não vazio H que, sendo fechado para o produto, não constitui um subgrupo de G;
 - (e) um grupo G e de um seu subconjunto não vazio H que, contendo os inversos de todos os seus elementos, não é subgrupo de G;
 - (f) um grupo sem subgrupos;
 - (g) um grupo com apenas um subgrupo;
 - (h) um grupo com pelo menos 2 subgrupos.
- 17. Seja $G = \{e, p, q, a, b, c\}$ o grupo cuja operação é dada pela tabela

	e	p	q	a	b	c
e	e	p	q	a	b	c
p	p	q	e	c	a	b
q	q	e	p	b	c	a .
a	a	b	c	e	p	q
b	b	c	a	q	e	p
c	c	a	b	p	q	$ \begin{array}{c} c \\ b \\ a \\ q \\ p \\ e \end{array} $

Determine a ordem de cada um dos elementos de G.

- 18. Considere os grupos $(\mathbb{Z}_6,+)$ e $(\mathbb{Z}_8,+)$, o grupo produto direto $\mathbb{Z}_6\otimes\mathbb{Z}_8$ e o semigrupo comutativo (\mathbb{Z}_{10},\times) .
 - (a) Indique:
 - i. a identidade do grupo $\mathbb{Z}_6 \otimes \mathbb{Z}_8$;
 - ii. o simétrico do elemento $([3]_6, [5]_8) + ([2]_6, [5]_8)$;
 - iii. a ordem dos elementos ($[2]_6, [4]_8$) e ($[5]_6, [5]_8$);
 - iv. o inverso do elemento $[3]_{10}$;
 - v. o elemento $([3]_{10} [9]_{10})^{-1}$.
 - (b) Indique, caso existam, um elemento $(a,b) \in \mathbb{Z}_6 \otimes \mathbb{Z}_8$ com ordem 14 e um subgrupo H de $\mathbb{Z}_6 \otimes \mathbb{Z}_8$ com ordem 12. Justifique.
- 19. Sejam G um grupo comutativo e $a,b\in G$ tais que $o(a)=m,\ o(b)=n$ e $\mathrm{m.d.c.}(n,m)=1.$ Determine a ordem de ab.
- 20. Seja G um grupo. Mostre que se todo o elemento de $G\setminus\{1_G\}$ tem ordem 2 então G é abeliano.
- 21. Mostre que se G é um grupo finito de ordem n $(n \in \mathbb{N})$ então, para qualquer elemento $a \in G$, $a^n = 1_G$.