10

15

20

What is claimed is:

1. A method for making a magnetic sensor for a disk drive read head, the method comprising the steps of:

fabricating a giant magnetoresistive stack on a surface of a layer of bottom shield material, the giant magnetoresistive stack including an etch stop layer positioned on an end of the giant magnetoresistive stack opposite the surface of the wafer and a buffer layer positioned on the etch stop layer;

depositing an insulating material on the giant magnetoresistive stack and the surface of the layer of bottom shield material;

planarizing the insulating material to form a top surface of the insulating material lying in a plane adjacent to or passing through the buffer layer;

etching the buffer layer; and

depositing a top shield layer on the insulating material and the giant magnetoresistive stack, the top shield layer making electrical contact with the giant magnetoresistive stack.

- 2. A method for making a magnetic sensor for a disk drive read head according to claim 1, wherein the step of planarizing the insulating material is performed using chemical machining polishing.
- 3. A method for making a magnetic sensor for a disk drive read head according to claim 1, wherein the step of planarizing the insulating material is performed using a vacuum etch process.
- A method for making a magnetic sensor for a disk drive read head according to claim 1, the method further comprising the steps of:

etching the etch stop layer prior to the step of depositing a top shield layer on the insulating material and the giant magnetoresistive stack.

4. A method for making a magnetic sensor for a disk drive read head according to claim 1, wherein:

the insulating material comprises a material selected from the group of Al₂O₃, AlN, AlON, SiO₂, SiN and SiON.

30

25

10

15

20

25

5. A method for making a magnetic sensor for a disk drive read head according to claim 1, wherein:

the etch stop layer comprises a material selected from the group of Au, Cu, NiFe, CoFe, NiCoFe, Al₂O₃, and Ta.

6. A method for making a magnetic sensor for a disk drive read head according to claim 1, wherein:

the buffer layer comprises a material selected from the group of Ta, W, Ti, Cu, SiO₂ and SiN.

- 7. A magnetic sensor made in accordance with the method of claim 1.
- 8. A method for making a magnetic sensor for a disk drive read head, the method comprising the steps of:

fabricating a giant magnetoresistive stack on a surface of a layer of bottom shield material;

depositing an insulating material on the giant magnetoresistive stack on the surface of the layer of bottom shield material;

depositing a self-planarizing material on the insulating material;

planarizing the self planarizing material and the insulating material using a vacuum etch process that removes the self planarizing material and the insulating material at the same rate until a surface of the insulating material lies in a plane adjacent to an end of the giant magnetoresistive stack; and

deposing a top shield layer on the insulating material and the giant magnetoresistive stack.

- 9. A method for making a magnetic sensor for a disk drive read head according to claim 8, wherein:
- the insulating material comprises a material selected form the group of alumina, SiO₂, SiN.
 - 10. A method for making a magnetic sensor for a disk drive read head according to claim 8, wherein:

the self-planarizing material comprises a material selected from the group of a spin on glass and a photo resist.

10

15

20

25

- 11. A magnetic sensor made in accordance with the method of claim 8.
- 12. A method for making a magnetic sensor for a disk drive read head, the method comprising the steps of:

fabricating a giant magnetoresistive stack on a surface of a layer of bottom shield material, the giant magnetoresistive stack including an etch stop layer positioned on an end of the giant magnetoresistive stack opposite the surface and a buffer layer positioned on the etch stop layer;

depositing an insulating material on the giant magnetoresistive stack and the surface of the layer of bottom shield material;

depositing a self-planarizing material on the insulating material;

planarizing the self-planarizing material and the insulating material using chemical machining polishing to form a top surface of the insulating material lying in a plane adjacent to or passing through the buffer layer;

etching the buffer layer; and

depositing a top shield layer on the insulating material and the giant magnetoresistive stack, the top shield layer making electrical contact with the giant magnetoresistive stack.

13. A method for making a magnetic sensor for a disk drive read head according to claim 12, the method further comprising the steps of:

etching the etch stop layer prior to the step of depositing a top shield layer on the insulating material and the giant magnetoresistive stack.

14. A method for making a magnetic sensor for a disk drive read head according to claim 12, wherein:

the insulating material comprises a material selected from the group of Al₂O₃, AlN, AlON, SiO₂, SiN and SiON.

15. A method for making a magnetic sensor for a disk drive read head according to claim 12, wherein:

the etch stop layer comprises a material selected from the group of Au, Cu, NiFe, CoFe, NiCoFe, Al_2O_3 , and Ta.

15

20

4.1

16. A method for making a magnetic sensor for a disk drive read head according to claim 12, wherein:

the buffer layer comprises a material selected from the group of Ta, W, Ti, Cu, SiO_2 and SiN.

- 5 17. A magnetic sensor made in accordance with the method of claim 12.
 - 18. A method for making a magnetic sensor for a disk drive read head, the method comprising the steps of:

fabricating a giant magnetoresistive stack on a surface of a layer of bottom shield material;

depositing a self-planarizing material on the giant magnetoresistive stack on the surface of the layer of bottom shield material;

planarizing the self planarizing material using a vacuum etch process that removes the self planarizing material until a surface of the self planarizing material lies in a plane adjacent to an end of the giant magnetoresistive stack; and

depositing a top shield layer on the self-planarizing material and the giant magnetoresistive stack.

19. A method for making a magnetic sensor for a disk drive read head according to claim 18, wherein:

the self-planarizing material comprises a material selected from the group of a spin on glass and a photo resist.

20. A magnetic sensor made in accordance with the method of claim 18.