

Emotion classification with EEG

Neuro-Usability WiSe 2018/19

Mohamed Shaban (373238, Computer science B.Sc.) & Ajit Parikh (387730, Computer science M.Sc.)

Motivation / Goals

 Design and conduct an experiment in order to generate emotional responses (in Virtual Reality) and analyse the corresponding physiological signals

 Model and train a classifier, which is able to predict an emotional state (self-assessment) through EEG signal data, using current machine learning techniques

Related literature

- Affect generation
 - DEAP: "A Database for Emotion Analysis Using Physiological Signals " (Koelstra et al., 2012) [3]
- Affect detection / analysis
 - "Classification of Human Emotions from Electroencephalogram (EEG) Signal using Deep Neural Network" (Al-Nafjan et al., 2017) [1]

Experiment design

Experiment design

What theoretical emotion model do we use?

How do we generate a variety of emotional responses?

How do participants self-assess their emotional state?

Experiment design

- What theoretical emotion model do we use?
 - Dimensional model (Valence-Arousal space)
- How do we generate a variety of emotional responses?
 - > Three different Virtual Reality games
- How do participants self-assess their emotional state?
 - Self-Assessment Manikin

Experiment design - Emotional model

Valence <-> Arousal

- three games:
 - positive excited
 - negative excited
 - positive calm

Experiment design - VR Games

positive excited

"Beat Saber is a VR rhythm game where your goal is to slash the beats which perfectly fit into precisely handcrafted music." [4]

Experiment design - VR Games

negative excited

"Brookhaven is a VR survival shooter [...]. Players will have to use the weapons and tools provided to survive ever more terrifying waves of horrific monsters." [5]

Experiment design - VR Games

positive calm

"Explore tropical beaches, underwater oceans and even take to the stars. Relax and immerse yourself into the Nature Treks VR experience." [6]

Experiment design - Self-Assessment Manikin

Valence

Arousal

Experiment design - EEG setup

Experiment design - procedure

- Introduction, signing of consent letter, demographic questionnaire
- EEG preparation, basic explanation of games
- For each game:
 - few minutes to get familiar to the game controls
 - gameplay: about 3 minutes (one song/ one level ...)
 - self-assessment rating
- ~ 45 minutes

Data analysis

Demographics

- 20 participants
- age: 20-35 years
 - o (mean: 25 years)
- little to no Virtual Reality experience (with few exceptions)

Self-Assessment ratings per game

Valence (mean, std):

• beat: 7.6 (+/- 1.2)

• brook: 4.7 (+/- 1.9)

• nat: 6.3 (+/- 1.8)

Arousal (mean, std):

• beat: 7.3 (+/- 1.1)

brook: 7.9 (+/- 1.4)

• nat: 2.7 (+/- 1.3)

Self-Assessment ratings per game -> labels

- positive excited
 - o v>5, a>=5
- negative excited
 - o v<=5, a>=5
- calm
 - o a<5

EEG analysis

- 9 channels
- signal preprocessing
- conversion from time domain to frequency domain
- compute average "Power Spectral Density" for four frequency ranges (theta, alpha, beta, gamma)

EEG analysis - signal in time domain

EEG analysis - signal in time domain

EEG analysis - signal in time domain

EEG analysis - Frequency domain data

EEG analysis - PSD average (theta: 2-8 Hz)

EEG analysis - PSD average (alpha: 8-13 Hz)

EEG analysis - PSD average (beta: 13-30 Hz)

EEG analysis - PSD average (gamma: 30-... Hz)

EEG analysis - Classification

- Evaluation was done by performing a 5-fold cross validation
- Time domain: 3 Deep convolutional networks were trained on trial data
 - > ~ 60 % accuracy
- Frequency domain: Input PSD, standard Multilayer Perceptron
 - ➤ ~ 53 % accuracy

EEG analysis - Classification

for comparison (using DEAP data set):

- Chung and Yoon, 2012 (four classes) [2]:
 - > 53.4 %
- Koelstra et al., 2012 (valence, arousal separately; two classes each) [3]:
 - > ~ 75.2 % (valence), ~ 81.7 % (arousal)
- Al-Nafjan et al., 2017 (four classes) [1]:
 - **>** 82.0 %

Outlook & improvements

- classify valence and arousal separately
- combine with other physiological sensors: heartbeat, skin conductance, etc.
- use more EEG channels, especially in the front area (Frontal EEG Asymmetry used as feature in other papers)
- need to look for better material for 'negative-exciting'
- better time management -> more participants -> better results

Thank you!

References

- [1] Al-nafjan, A. & Hosny, M. & Al-Wabil, A. & Al-Ohali, Y.. (2017). Classification of Human Emotions
 - from Electroencephalogram (EEG) Signal using Deep Neural Network. International Journal of Advanced Computer Science and Applications. 8. 10.14569/IJACSA.2017.080955.
- [2] S. Y. Chung and H. J. Yoon, "Affective classification using Bayesian classifier and supervised learning", Control, Automation and Systems (ICCAS), pp. 1768–1771, 2012.
- [3] Koelstra, Sander & Mühl, Christian & Soleymani, Mohammad & Lee, Jong-Seok & Yazdani, Ashkan & Ebrahimi, Touradj & Pun, Thierry & Nijholt, Anton & Yiannis) Patras, Ioannis. (2011). DEAP: A Database for Emotion Analysis Using Physiological Signals. *IEEE Transactions on Affective Computing*. 3. 18-31. 10.1109/T-AFFC.2011.15.
- [4] <u>Deep learning with convolutional neural networks for EEG decoding and visualization</u>
- [5] https://store.steampowered.com/app/620980/Beat_Saber/
- [6] https://store.steampowered.com/app/440630/The Brookhaven Experiment/
- [7] https://store.steampowered.com/app/587580/Nature_Treks_VR/
 Emotion classification with EEG | Mohamed Shaban & Ajit Parikh | Neuro-Usability, WiSe 2018/19