

Compressing Neural Networks using the Variational Information Bottleneck

Bin Dai¹; Chen Zhu²; Baining Guo³; David Wipf³ ¹Tsinghua University, ²University of Maryland, ³Microsoft Research

ABSTRACT

Neural networks can be compressed to reduce memory and computational requirements, or to increase accuracy by facilitating the use of a larger base architecture. In this work, we use the information bottleneck principle to inspire a novel energy function for compressing deep networks. Theoretical analysis supports the compression performance while empirical results show state-of-art compression rates across an array of datasets and network architectures.

CONTACT

Bin Dai: daib13@mails.tsinghua.edu.cn Chen Zhu: chenzhu@umd.edu David Wipf: davidwip@microsoft.com

Code Available

Background

Neural networks are over-parameterized in terms of

- Number of parameters (r_W)
- Computational cost (FLOP)
- Memory footprint (r_N)

Previous compression strategies:

- Design more efficient network structures
- Quantize network weights
- Apply tensor/matrix decompositions
- Prune existing network structures, e.g.
 - Connections
 - Weight groups / activations
 - Bayesian approaches
 - Group Lasso
 - Smoothed l_0 -norm approach

Figure 1. VIBNet layer/block structure

Method	r _W (%)	r _N (%)	Error(%)	Pruned Model
VD	25.28	58.95	1.8	512-114-72
BC-GNJ	10.76	32.85	1.8	278-98-13
BC-GHS	10.55	34.71	1.8	311-86-14
L0	26.02	45.02	1.4	219-214-100
L0-sep	10.01	32.69	1.8	266-88-33
DN	23.05	57.94	1.8	542-83-61
VIBNet	3.59	16.98	1.6	97-71-33

Table 1. LeNet300-100 on MNIST

Figure 2. Compression ratio and mutual information between the first hidden layer and the input layer.

Method

We interpret a feedforward network as a Markov chain (All the layers are stochastic):

$$y \to x \to h_1 \to \cdots \to h_L \to \widehat{y}$$

Intuition:

Minimize the mutual information $I(h_i; h_{i-1})$ to remove inter-layer redundancy (information bottleneck) Maximize the mutual information $I(h_i; y)$ to encourage accurate predictions of y

\Lapprox Layer-wise objective: $\mathcal{L}_i = \gamma_i I(h_i; h_{i-1}) - I(h_i; y)$

Variational upper bound:

$$\tilde{\mathcal{L}}_i = \gamma_i \mathbb{E}_{\{\boldsymbol{x},\boldsymbol{y}\} \sim \mathcal{D},\boldsymbol{h}_{1:i-1} \sim p(\boldsymbol{h}_{1:i-1}|\boldsymbol{x})} \left[\mathbb{KL}[p(\boldsymbol{h}_i|\boldsymbol{h}_{i-1})||q(\boldsymbol{h}_i)] \right] - \mathbb{E}_{\{\boldsymbol{x},\boldsymbol{y}\} \sim \mathcal{D},\boldsymbol{h} \sim p(\boldsymbol{h}|\boldsymbol{x})} [\log q(\boldsymbol{y}|\boldsymbol{h}_L)]$$

 \Leftrightarrow Parametric forms of $p(\mathbf{h}_i|\mathbf{h}_{i-1})$, $q(\mathbf{h}_i)$ and $q(\mathbf{y}|\mathbf{h}_L)$

$$p(\mathbf{h}_i|\mathbf{h}_{i-1}) = \mathcal{N}(\mathbf{h}_i|f_i(\mathbf{h}_{i-1}) \odot \boldsymbol{\mu}_i, \operatorname{diag}[f_i(\mathbf{h}_{i-1})^2 \odot \boldsymbol{\sigma}_i^2])$$
$$q(\mathbf{h}_i) = \mathcal{N}(\mathbf{h}_i|\mathbf{0}, \operatorname{diag}[\boldsymbol{\xi}_i])$$

 $q(\mathbf{y}|\mathbf{h}_L)$ is multinomial for classification and Gaussian for regression.

❖ Final variational IB-inspired objective function (*VIBNet*):

Method	r _W (%)	r _N (%)	FLOP(mil)	Error(%)
GD	1.38	32.00	0.250	1.1
GL	23.69	19.35	0.201	1.0
VD	9.29	60.78	0.660	1.0
SBP	19.66	21.15	0.213	0.9
BC-GNJ	0.95	35.03	0.283	1.0
BC-GHS	0.64	22.80	0.153	1.0
L0	8.92	85.82	1.113	0.9
L0-sep	1.08	40.36	0.389	1.0
VIBNet	0.83	15.55	0.094	1.0

Table 2. LeNet5-Caffe on MNIST

VD:	Molchanov et al., ICML 2017
BC-GNJ / BC-GHS:	Louizos et al., NIPS 2017
L0 / L0-sep:	Louizos et al., ICLR 2017
DN:	Pan et al., arXiv 2016
GD:	Srinivas & Babu, arXiv 2016
GL:	Wen et al., NIPS 2016

Method	r _W (%)	r _N (%)	FLOP(mil)	Error(%)
BC-GNJ	6.57	81.68	141.5	8.6
BC-GHS	5.40	74.82	121.9	9.0
VIBNet	5.30	49.57	70.63	8.8 (8.5)
PF	35.99	83.97	206.3	6.6
SBP	7.01	80.72	136.0	7.5
SBPa	5.78	66.46	99.20	9.0
VIBNet	5.45	57.86	86.82	6.5 (6.1)
NS-Single	11.50	-	195.5	6.2
NS-Best	8.60	-	147.0	5.9
VIBNet	5.79	59.60	116.0	6.2 (5.8)

(Tishby & Zaslavsky, arXiv 2015)

Table 3. VGG16 (modified) on CIFAR10

SBP / SBPa: Neklyu-dov et al., NIPS 2017 Li et al., ICLR 2016 NS-Single / NS-Best: Liu et al., ICCV 2017 RNP: Lin et al., NIPS 2017

Theoretical Results

Reduced redundancy via intrinsic sparsity:

Define $\alpha_{i,j} = \frac{\mu_{i,j}^2}{\sigma_i^2}$, at the global minimum of (*)

Analysis of tractable upper bounds:

 $-L\mathbb{E}_{\{x,y\}\sim\mathcal{D},\boldsymbol{h}\sim p(\boldsymbol{h}|x)}[\log q(\boldsymbol{y}|\boldsymbol{h}_L)]$ can be written as

$$\int p(\boldsymbol{\epsilon})g(\boldsymbol{\epsilon};\boldsymbol{\theta},\boldsymbol{W})d\boldsymbol{\epsilon}$$

For fixed network weights W', replace $g(\epsilon; \theta, W)$ with a quadratic upper bound

 $\bar{g}(\boldsymbol{\epsilon};\boldsymbol{\theta}) \triangleq z(\boldsymbol{\epsilon};\boldsymbol{\theta})^T A^T A z(\boldsymbol{\epsilon};\boldsymbol{\theta}) + \boldsymbol{b}^T z(\boldsymbol{\epsilon};\boldsymbol{\theta}) + c$

A becomes low-rank if the network is overparameterized. At any local minimum of the upper bound of $\tilde{\mathcal{L}}$, we have

 $\|\mu^*\|_0 = \|\alpha^*\|_0 \le rank[A] + 1 \implies sparse$

Method	r _W (%)	r _N (%)	FLOP(mil)	Error(%)
RNP	_	-	160	38.0
VIBNet	22.75	59.80	133.6	37.6 (37.4)
NS-Single	24.90	-	250.5	26.5
NS-Best	20.80	-	214.8	26.0
VIBNet	15.08	73.80	203.1	25.9 (25.1)

Table 4. VGG16 (modified) on CIFAR100