Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа №2 «Численное решение нелинейных уравнений и систем»

по дисциплине «Вычислительная математика»

Вариант: 11

Преподаватель: Наумова

Выполнил: Силаев Захар Алексеевич

Группа: Р3210

<u>Цель работы</u>: изучить численные методы решения нелинейных уравнений и их систем, найти корни заданного нелинейного уравнения/системы нелинейных уравнений, выполнить программную реализацию методов.

1. Вычислительная реализация задачи

1. Решение нелинейного уравнения

1.
$$4.45x^3 + 7.81x^2 - 9.62x - 8.17$$

2.

Для определения интервалов изоляции корней данного уравнения, можно воспользоваться методом интервалов знакопеременности. Для этого нужно найти значения функции на различных интервалах и определить знак функции на каждом из них.

Получим приближенные значения корней:

$$x \approx -2.3$$
, $x \approx -0.6$, $x \approx 1.2$

Теперь нужно разбить ось х на 4 интервала: $(-\infty, -2.3)$, (-2.3, -0.6), (-0.6, 1.2) и $(1.2, +\infty)$. На каждом из этих интервалов нужно определить знак функции.

Для этого можем вычислить значения функции в произвол вной точке каждого интервала. Например, для интервала ($-\infty$, -2.3) можно выбрать x = -3, для интервала (-2.3, -0.6) x = -1, для интервала (-0.6, -1.2) x = 1, и для интервала (-1.2, -1.2) -1.20.

Таким образом, получим следующие значения функции:

для
$$x = -3$$
: $f(-3) = -29.17$

для
$$x = -1$$
: $f(-1) = 4.81$

для
$$x = 1$$
: $f(1) = -5.53$

для
$$x = 2$$
: $f(2) = 39.43$

Знаки функции на каждом интервале будут соответственно:

$(-\infty, -2.3)$	(-2,3, -0,6)	(-0,6, 1.2)	$(1.2, +\infty)$
-	+	-	+

Таким образом, мы получаем два интервала изоляции корней уравнения:

3.

$$x_1 \approx -2,34$$

$$x_2 \approx -0.64$$

$$x_3 \approx 1,23$$

4.

Крайний правый корень – Метод половинного деления

No	a	ь	X	f(a)	f(b)	f(x)	a-b
1	0,900	2,400	1,650	-7,258	75,244	17,210	1,500
2	0,900	1,650	1,275	-7,258	17,210	1,484	0,750
3	0,900	1,275	1,088	-7,258	1,484	-3,672	0,375
4	1,088	1,275	1,181	-3,672	1,484	-1,301	0,188
5	1,181	1,275	1,228	-1,301	1,484	0,038	0,094
6	1,181	1,228	1,205	-1,301	0,038	-0,645	0,047
7	1,205	1,228	1,216	-0,645	0,038	-0,306	0,023
8	1,216	1,228	1,222	-0,306	0,038	-0,135	0,012
9	1,222	1,228	1,225	-0,135	0,038	-0,049	0,006

Крайний левый корень – Метод секущих

№	Xk-1	Xk	Xk+1	F(Xk+1)	Xk+1-Xk
1	-3,200	-1,400	-1,693	8,909	0,293
2	-1,400	-1,693	3,380	220,445	5,073
3	-1,693	3,380	-1,906	7,722	5,287
4	3,380	-1,906	-2,098	5,291	0,192
5	-1,906	-2,098	-2,516	-5,399	0,418
6	-2,098	-2,516	-2,305	1,002	0,211
7	-2,516	-2,305	-2,338	0,141	0,033
8	-2,305	-2,338	-2,343	-0,005	0,005

Центральный корень – **Метод простой итерации**

Проверка условия сходимости метода на выбранном интервале:

$$f(x) = 4,45x^3 + 7,81x^2 - 9,62x - 8,17 = 0$$

$$f'(x) = 13,35x^2 + 15,62x - 9,62$$

$$f'(a) = -5,322 < 0, f'(b) = -12,865 < 0$$

$$\max(|f'(a)|, |f'(b)|) = 12,865 \to \lambda = \frac{1}{\max(|f'(x)|)} = \frac{1}{12,865}$$

$$\varphi(x) = x + \lambda f(x) = x + \frac{4,45x^3 + 7,81x^2 - 9,62x - 8,17}{12,865}$$

$$\varphi'(x) = 1 + \lambda f'(x) = 1 + \frac{13,35x^2 + 15,62x - 9,62}{12,865}$$

$$\varphi(x) = x + \lambda f(x) = x + \frac{4,45x^3 + 7,81x^2 - 9,62x - 8,17}{12.865}$$

$$\varphi'(x) = 1 + \lambda f'(x) = 1 + \frac{13,35x^2 + 15,62x - 9,62}{12,865}$$

На отрезке начального приближения [-1.4, -0.9] функция $\varphi(x)$ определена, непрерывна и дифференцируема.

$$|\varphi'(a)| = 0.586$$

$$|\varphi'(b)| = 0$$

$$|\varphi'(x)| \le q$$
, где $q = 0.586$

 $0 \le q < 1 \to$ итерационная последовательность сходится, скорость сходимости низкая,

0,5
$$\leq q < 1$$
 \rightarrow критерий окончания итерационного процесса $|x_{k+1} - x_k| \leq \frac{1-q}{q} \varepsilon$,

$$\frac{1-q}{q} = 0,70648$$

$$x_0 = -0.9$$
.

No	X_k	x_{k+1}	$f(x_{k+1})$	X_{k+1} - X_k
1	-0,900	-0,622	3,570	0,278
2	-0,622	-0,640	-0,229	0,018
3	-0,640	-0,638	0,023	0,002

2. Решение системы нелинейных уравнений

1.
$$\begin{cases} tg(xy + 0.1) = x^2 \\ x^2 + 2y^2 = 1 \end{cases}$$
, Метод Ньютона

2.

$$\begin{cases} tg(xy+0.1) = x^2 \\ x^2 + 2y^2 = 1 \end{cases} \to \begin{cases} f(x,y) = 0 \\ g(x,y) = 0 \end{cases} \to \begin{cases} tg(xy+0.1) - x^2 = 0 \\ x^2 + 2y^2 - 1 = 0 \end{cases}$$

Отметим, что решение системы уравнений являются точки пересечения эллипса и $tg(xy + 0.1) - x^2 = 0$, следовательно, система имеет не более четырех различных решений.

Построим матрицу Якоби:
$$\frac{\partial f}{\partial x} = y \sec(xy + 0.1) - 2x, \frac{\partial f}{\partial y} = x \sec^2(xy + 0.1), \frac{\partial g}{\partial x} = 2x, \frac{\partial g}{\partial y} = 4y$$

Тогда будем решать систему линейных уравнений

$$\begin{vmatrix} \frac{\partial f(x,y)}{\partial x} & \frac{\partial f(x,y)}{\partial y} \\ \frac{\partial g(x,y)}{\partial x} & \frac{\partial g(x,y)}{\partial y} \end{vmatrix} \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} = -\begin{pmatrix} f(x,y) \\ g(x,y) \end{pmatrix}$$

$$\begin{vmatrix} y \sec(xy+0.1)-2x & x \sec^2(xy+0.1) \\ 2x & 4y \end{vmatrix} \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} = \begin{pmatrix} x^2-tg(xy+0.1) \\ 1-x^2-2y^2 \end{pmatrix} \ \text{или}$$

$$\begin{cases} ysec(xy + 0.1)\Delta x - 2\Delta x + x sec^{2}(xy + 0.1)\Delta y = x^{2} - tg(xy + 0.1) \\ 2x\Delta x + 4y\Delta y = 1 - x^{2} - 2y^{2} \end{cases}$$

Корень 1: Шаг 1: Выбираем $x_0 = -0.12$; $y_0 = 0.7$

$$\begin{cases} ysec(xy + 0.1)\Delta x - 2x\Delta x + x sec^{2}(xy + 0.1)\Delta y = x^{2} - tg(xy + 0.1) \\ 2x\Delta x + 4y\Delta y = 1 - x^{2} - 2y^{2} \end{cases}$$

Шаг 2. Решаем полученную систему.

$$\begin{cases} \Delta x + 0.077 \ \Delta y = 0.0154 \\ -0.2\Delta x + 2.8\Delta y = 0.01 \end{cases} \rightarrow \Delta x = -0.0014; \ \Delta y = 0.0019 \end{cases}$$
 Шаг 3. Вычисляем очередные приближения:
$$x_1 = x_0 + \Delta x = -0.12 - 0.0014 = -0.1214$$

$$y_1 = y_0 + \Delta y = 0.7 + 0.0019 = 0.7019$$

$$|x_1 - x_0| \leq \varepsilon, \ |y_1 - y_0| \leq \varepsilon$$

$$|-0.1214 + 0.12| \leq \varepsilon, \ |0.7019 - 0.7| \leq \varepsilon \rightarrow \text{ответ найден, } \mathbf{корень 1} : (-0.1214, 0.7019)$$

Аналогично находим **другой корень**: (0.698, 0.506) Из графического решения, корни симметричны, следовательно, **другие 2 корня** (-0.698, -0.506), (0.1214, -0.7019)

2. Программная реализация задачи

https://github.com/Chousik/lab CM/blob/main/lab2 new.py

2. Блок Схемы

Метод Хорд

-

Метод Ньютона и Метод Простой Иттерации НАЧАЛО (Newton's Method) iteration = 0 fa = f(a), fb = f(b)fa = f(a), fb = f(b)fa * fb > 0? fa * ddf(a) > 0? x_current = b x_current = a iteration = 0 iteration += 1 $fx = f(x_current)$ $dfx = df(x_current)$ x_next = x_current - fx/dfx Логирование |x_next - x_current| < eps?

Конец

x_current = x_next

Метод Простой Итерации для системы

Вывод

В ходе выполнения лабораторной работы были изучены численные методы решения нелинейных уравнений и систем нелинейных уравнений с использованием Python. В результате работы были найдены корни заданных уравнений и систем с использованием различных численных методов, а также были построены графики функций для полного представления исследуемых интервалов.