Kansainväliset matematiikkaolympialaiset 2013

Tehtävien ratkaisuja

1. Todista, että jokaista positiivisten kokonaislukujen paria k ja n kohden on olemassa k sellaista positiivista kokonaislukua m_1, m_2, \ldots, m_k , (jotka eivät välttämättä ole eri lukuja, että

$$1 + \frac{2^k - 1}{n} = \left(1 + \frac{1}{m_1}\right) \left(1 + \frac{1}{m_2}\right) \cdots \left(1 + \frac{1}{m_k}\right).$$

Ratkaisu. Osoitetaan väite todeksi induktiolla k:n suhteen. Kaikilla n on

$$1 + \frac{2^1 - 1}{n} = 1 + \frac{1}{n}.$$

Tehdään sitten induktio-oletus, jonka mukaan tehtävässä oleva yhtälö saadaan toteutumaan arvolla n. Induktioaskel $k \to k+1$ tehdään eri tavoin sen mukaan, onko n pariton vai parillinen. Edellisessä tapauksessa $\frac{n+1}{2}$ on kokonaisluku. Voidaan kirjoittaa

$$1 + \frac{2^{k+1} - 1}{n} = \frac{n + 2^{k+1} - 1}{n} = \frac{(n+1)(n+2^{k+1} - 1)}{n\left(\frac{n+1}{2}\right)} = \left(1 + \frac{1}{n}\right) \frac{\frac{n-1}{2} + 2^k}{\frac{n+1}{2}}$$
$$= \left(1 + \frac{1}{n}\right) \frac{\frac{n+1}{2} + 2^k - 1}{\frac{n+1}{2}} = \left(1 + \frac{1}{n}\right) \left(1 + \frac{2^k - 1}{\frac{n+1}{2}}\right).$$

Tulon jälkimmäinen tekijä on induktio-oletuksen mukaan k:n muotoa $1 + \frac{1}{a}$ olevan luvun tekkijä, joten koko tulo on (k+1):n samanmuotoisen luvun tulo. Jos n on parillinen, kirjoitetaan vastaavasti

$$1 + \frac{2^{k+1} - 1}{n} = \frac{n + 2^{k-1} - 1}{n} = \frac{(n + 2^{k+1} - 1)(n + 2^{k+1} - 2)}{n(n + 2^{k+1} - 2)}$$
$$= \left(1 + \frac{1}{n + 2^{k+1} - 2}\right) \left(1 + \frac{2(2^k - 1)}{n}\right) = \left(1 + \frac{1}{n + 2^{k+1} - 2}\right) \left(1 + \frac{2^k - 1}{\frac{n}{2}}\right).$$

Johtopäätös on sama kuin parittoman n:n tapauksessa. Väite on todistettu.

2. 4027 tason pisteen asetelmaa kutsutaan kolumbialaiseksi, jos se koostuu 2013 punaisesta ja 2014 sinisestä pisteestä, joista mitkään kolme eivät ole samalla suoralla. Taso jaetaan useaksi alueeksi piirtämällä joukko suoria. Suorien joukko on suopea kolumbialaiselle asetelmalle, jos seuraavat kaksi ehtoa täyttyvät:

- mikään suora ei kulje minkään asetelman pisteen kautta;
- missään alueessa ei ole erivärisiä asetelman pisteitä.

Etsi pienin sellainen k, että jokaista 4027 pisteen kolumbialaista asetelmaan kohden on olemassa tälle asetelmalle suopea k:n suoran sijoittelu.

Ratkaisu. Osoitetaan ensin induktiolla, että jos "asetelmassa" on pariton määrä pisteitä 2n + 1, niin n:llä suoralla voidaan muodostaa suopea sijoittelu, riippumatta siitä, kuinka suuri osuus pisteistä on sinisiä.

Jos n=1, näin selvästi on. Oletaan, että jokaiseen 2n-1 pisteen asetelmaan liittyy suopea n-1:n suoran sijoittelu. Olkoon sitten asetelmassa 2n+1 pistettä. Tarkastellaan niiden konveksia verhoa. [Se on pienin monikulmio, joka sisältää kaikki pisteet. Aärellisen pistejoukon E konveksin verhon voi ajatella syntyvän niin, että tarkastellaan ensin jotakin mielivaltaista suoraa ℓ , jonka määrittämistä puolitasoista toiseen E kokonaan sisältyy. Kaikista ℓ :n suuntaisista ja E:n pisteiden kautta kulkevista suorista jotkin kaksi ovat sellaisia, että kaikki E:n pisteet ovat joko suoralla tai toisessa suoran määrittämistä puolitasoista. Jos suoralla on ainakin kaksi E:n pistettä, näistä kaksi äärimmäistä ovat konveksin verhon kärkipisteitä. Jos suoralla on vain yksi E:n piste A, tarkastellaan A:n ja E:n muiden pisteiden kautta kulkevia suoria. Näistä jotkin kaksi ovat sellaisia, että kaikki E:n pisteet ovat joko suoralla tai kokonaan toisessa suoran määrittämistä puolitasoista. A ja suoralla kauimpana A:sta oleva E:n piste ovat konveksin verhon kärkiä.] Jos konveksin verhon kärkipisteissä on kaksi vierekkäistä samanväristä, A ja B, on olemassa AB:n suuntainen suora ℓ , jonka toisella puolella ovat A ja B ja toisella puolella 2n-1asetelman pistettä. Induktio-oletuksen mukaan nämä voidaan jakaa n-1:llä suoralla niin, että joka alueessa on vain yhdenvärisiä pisteitä. Pisteet A ja B ovat joko samassa tai eri alueissa; alueissa joissa ne ovat, ei ole muita sijoittelun pisteitä, joten sijoittelu on suopea. Oletetaan sitten, että kaikki konveksin vierekkäiset kärkipisteet ovat erivärisiä. Valitaan niistä jälleen kaksi A ja B. Induktio-oletuksen mukaan on olemassa n-1:n suoran suopea sijoittelu, joka jakaa loput 2n-1 pistettä alueisiin, joissa kussakin on vain yhdenvärisiä asetelman pisteitä. Jos A ja B ovat samassa alueessa, niin tässä alueessa on vain joko A:n tai B:n värisiä asetelman pisteitä. Suora, joka erottaa erivärisen pisteen muista täydentää sijoittelun halutuksi. Jos A ja B ovat eri alueissa, niin AB:n suuntainen suora erottaa ne muista asetelman pisteistä alueisiin, joissa sanotut pisteet ovat alueen ainoat pisteet. Induktioaskel on otettu. Tehtävän luvuin 2013 suoraa riittää aina.

Osoitetaan vielä, että on tilanteita, joissa tarvitaan 2013 suoraa. Tarkastellaan 4026 pistettä ympyrän kehällä, vuorotellen sinisiä ja punaisia (ja yksi sininen piste jossakin). Sijoittelussa, joka on suopea tälle asetelmalle täytyy olla jokaista kahta vierekkäistä pistettä kohden suora, joka leikkaa pisteiden välisen janan ja siis myös niiden välisen kaaren. Suorien ja ympyrän leikkauspisteitä on oltava ainakin 4026, ja koska suora leikkaa ympyrän enintään kahdessa pisteessä, suoria on oltava ainakin 2013.

3. Kolmion ABC kärjen A vastainen sivuympyrä sivutkoon sivua BC pisteessä A_1 . Määriteltäköön sivun CA piste B_1 ja sivun AB piste C_1 vastaavasti käyttämällä kärkien B ja C vastaisia sivuympyröitä. Oletetaan, että kolmion $A_1B_1C_1$ ympäri piirretyn ympyrän keskipiste sijaitsee kolmion ABC ympäri piirretyllä ympyrällä. Todista, että kolmio ABC on suorakulmainen.

Kolmion ABC kärjen A vastainen sivuympyrä on ympyrä, joka sivuaa janaa BC, puolisuoraa AB janan AB jatkeella ja puolisuoraa AC janan AC jatkeella. Kärkien B ja C vastaiset sivuympyrät määritellään vastaavasti.

Ratkaisu. Olkoot kolmion ABC sivut a, b, c, kulmat α, β, γ , sen sivuympyröiden keskipisteet I_a, I_b, I_c ja A_2, B_2, C_2 ABC:n sisäympyrän ja kolmion sivujen sivuamispisteet. Olkoon vielä B_c piste, jossa I_b -keskinen sivuympyrä sivuaa puolisuoraa BA ja 2p = a + b + c. Koska kolmion $A_1B_1C_1$ ympärysympyrän keskipiste on kolmion ulkopuolella, kolmio on tylppäkulmainen. Voidaan olettaa, että $\angle C_1A_1B_1$ on tylppä. Kolmion $A_1B_1C_1$ ympärysympyrän keskipiste on silloin samalla kolmion ABC ympärysympyrän

kaarella kuin A. Olkoon M tämän kaaren keskipiste. Osoitetaan, että M on kolmion $A_1B_1C_1$ ympärysympyrän keskipiste. On tunnettua (ja helppo todistaa) että pisteet A_1 , B_1 , C_1 ovat kolmion ABC piirin puolittajia, ts. $AB + BA_1 = AC + CA_1$ jne. Siis esimerkiksi $BC_1 = CB_1 = p - a$. Koska M on kaaren \widehat{BAC} keskipiste, M on janan BC keskinormaalilla. Lisäksi $\angle MBC_1 = \angle MBA = \angle MCA = \angle MCB_1$. Kolmiot MBC_1 ja MCB_2 ovat yhteneviä (sks), joten $MB_1 = MC_1$. Koska kolmion $A_1B_1C_1$ ympärysympyrän keskipisteen tiedetään olevan kaarella \widehat{BAC} , keskipiste on todellakin M.

Koska $BA_1 = p - c = CA_2$, kolmiot MBA_1 ja MCA_2 ovat yhteneviä. Siis $MA_2 = MA_1$, joten piste A_2 on kolmion $A_1B_1C_1$ ympärysympyrällä. Osoitetaan sitten, että myös piste B_c on tällä ympyrällä. Osoitetaan ensin, että M on janalla I_bI_c . Tämä tulee osoitetuksi, jos näytetään, että $\angle BAM$ ja $\angle BAI_c$ ovat vieruskulmia. Todellakin: $\angle BAM = \angle BCM = \frac{1}{2}(\beta+\gamma)$ ja $\angle BAI_b = \alpha + \frac{1}{2}(\beta+\gamma)$, joten $\angle BAM + \angle BAI_b = \alpha + \beta + \gamma = 180^\circ$. Koska kulman ja sen vieruskulman puolittajat ovat toisiaan vastaan kohtisuorassa, A, B, C ovat kolmion $I_aI_bI_c$ korkeusjanojen kantapisteet. Kolmion ABC ympärysympyrä on näin ollen kolmion $I_aI_bI_c$ yhdeksän pisteen ympyrä, joka tunnetusti kulkee sivujen keskipisteiden kautta. M on siis janan I_bI_c keskipiste. Koska $I_cC_1 \bot AB \bot I_bB$, M on suorien I_cC_1 ja I_bB_c suunatisella suoralla, yhtä etäällä molemmista suorista. Mutta tämä merkitsee sitä, että M on janan B_cC_1 keskinormaalilla, joten $MB_c = MC_1 = A_1B_1C_1$:n ympärysympyrän säde. Tarkastellaan nyt pisteen B potenssia $A_1B_1C_1$:n ympärysympyrän suhteen. Pätee $BA_1 \cdot BA_2 = BC_1 \cdot BB_c$. Nyt $BA_1 = p - c$ ja tunnetusti (tai helposti todistettavasti) $BA_2 = p - b$. Lisäksi $BB_c = p$. Siis (p - c)(p - b) = p(p - a). Tämä yhtälö sievenee muotoon $b^2 + c^2 - a^2 = 0$. Pythagoraan lauseen käänteislauseen perusteella kolmio ABC on siis suorakulmainen.

4. Olkoon ABC teräväkulmainen kolmio, jonka korkeusjanojen leikkauspiste on H, ja olkoon W sivun BC piste, joka sijaitsee aidosti pisteiden B ja C välissä. Pisteet M ja N olkoot kärjistä B ja C lähtevien korkeusjanojen kannat. Merkitään ω_1 :llä kolmion BWN ympäri piirrettyä ympyrää, ja olkoon X ympyrän ω_1 se piste, jolle WX on ympyrän ω_1

halkaisija. Merkitään ω_2 :lla vastaavasti kolmion CWM ympäri piirrettyä ympyrää, ja olkoon Y se ympyrän ω_2 piste, jolle WY on ympyrän ω_2 halkaisija. Todista, että X, Y ja H ovat samalla suoralla.

Ratkaisu. Olkoot kolmion ABC kulmat α , β , γ . Olkoon Z ympyröiden ω_1 ja ω_2 toinen leikkauspiste. Koska WX ja WY ovat ω_1 :n ja ω_2 :n halkaisijat, kulmat $\angle WZX$ ja $\angle WZY$ ovat suoria. X, Z ja Y ovat siis samalla suoralla. Jännenelikulmioista BWZN ja WCMZ saadaan kulmaksi NZM $\angle NBW + \angle WCM = \beta + \gamma$. Kulma $\angle NZM$ on siis kulman $\angle MAN = \alpha$ vieruskulma, joten Z on pisteiden A, N, M kautta kulkevalla ympyrällä. Koska $\angle ANH$ ja $\angle AMH$ ovat suoria kulmia, myös H on tällä ympyrällä ja AH on ympyrän halkaisija. Mutta silloin

 $\angle AZH$ on suora kulma. Osoitetaan vielä, että myös $\angle AZX$ on suora. Tämä seuraa kehäkulmalauseen ja kulmien $\angle AHN$ ja $\angle ABC$ yhtäsuuruuden vuoksi siitä, että $\angle AZX = \angle AZN + \angle NZX = \angle AHN + \angle XBN = \angle ABC + \angle XBN = \angle XBW$. Siis H on samalla suoralla kuin Z, X, Y, ja väite on todistettu.

- **5.** Olkoon $\mathbb{Q}_{>0}$ positiivisten rationaalilukujen joukko. Olkoon $f:\mathbb{Q}_{>0}\to\mathbb{R}$ kuvaus, joka toteuttaa seuraavat kolme ehtoa:
- (i) kaikilla $x, y \in \mathbb{Q}_{>0}$ pätee $f(x)f(y) \ge f(xy)$;
- (ii) kaikilla $x, y \in \mathbb{Q}_{>0}$ pätee $f(x+y) \ge f(x) + f(y)$;
- (iii) on olemassa rationaaliluku a > 1, jolle f(a) = a.

Todista, että jokaisella $x \in \mathbb{Q}_{>0}$ pätee f(x) = x.

Ratkaisu. Koska $a = f(a) = f(a \cdot 1) \leq f(a)f(1) = af(1)$, niin $f(1) \geq 1$. Tästä seuraa induktiolla, että $f(k) \geq k$ kaikilla positiivisilla kokonaisluvuilla k: jos $f(k) \geq k$, niin $f(k+1) \geq f(k) + f(1) \geq k + 1$. Jos m ja n ovat positiivisia kokonaislukuja, niin $m \leq f(m) = f\left(n \cdot \frac{m}{n}\right) \leq f(n)f\left(\frac{m}{n}\right)$. Tästä seuraa, että f(x) > 0 kaikilla positiivisilla rationaaliluvuilla. Ehdosta (ii) seuraa nyt, että f on kasvava funktio. Erityisesti $a^2 = f(a)^2 \geq f(a^2)$, ja induktiolla nähdään, että yleisesti $f(a^k) \leq a^k$. Samoin induktiolla nähdään, että $f(ka) \geq kf(a)$ kaikilla positiiviisilla kokonaisluvuilla k. Osoitetaan nyt, että itse asiassa f(ka) = ka kaikilla k. Todistetaan epäsuorasti: oletetaan, että jollain m on f(ma) - ma = t > 0. Jos nyt n on sellainen kokonaisluku, että nt > a, niin

$$f(nma) \ge n f(ma) = nma + nt > nma + a.$$

Koska a > 1, on olemassa sellainen kokonaisluku p, että $|a^p| > nm$. Silloin

$$a^{p+1} \ge f(a^{p+1}) \ge f(\lfloor a^p \rfloor a) = f((\lfloor a^p \rfloor - nm)a + nma) \ge f((\lfloor a^p \rfloor - nm)a) + f(nma)$$
$$> (\lfloor a^p \rfloor - nm)a + nma + a = a(\lfloor a^p \rfloor) + 1),$$

eli $a^p > \lfloor a^p \rfloor + 1$. Tämä ei ole mahdollista, joten vastaoletus oli virheellinen. Siis f(ka) = ka kaikilla positiivisilla kokonaisluvuilla k.

Koska a on rationaaliluku, $a = \frac{p}{q}$ joillain positiivisilla kokonaisluvuilla p ja q. Jos k = nq,

niin $f(np) = f\left(k\frac{p}{q}\right) = f(ka) = ka = np$. Toisaalta $f(np) \ge pf(n)$. Siis $n \ge f(n)$.

Koska, niin kuin alussa huomautettiin, $f(n) \ge n$, on oltava f(n) = n kaikilla positiivisilla kokonaisluvuilla n. Oletetaan sitten, että jollain rationaaliluvulla x olisi f(x) - x = u > 0. Jos n on sellainen kokonaisluku, että nx on kokonaisluku, on $nx = f(nx) \ge nf(x) > nx + nu$. Ristiriita; siis mainitunlaista rationaalilukua x ei ole olemassa, joten $f(x) \le x$ kaikilla x.

On vielä torjuttava mahdollisuus f(y) < y jollain rationaaliluvulla y. Jos n on sellainen kokonaisluku, että ny on kokonaisluku, niin $ny = f(ny) \le f(n)f(y) = nf(y) < ny$. Ristiriita taas. Todistus on valmis.

6. Olkoon $n \geq 3$ kokonaisluku. Tarkastellaan ympyrää, jolle on merkitty n+1 pistettä tasaisin välein. Tarkastellaan pisteiden kaikkia mahdollisia nimeämisiä luvuilla $0, 1, \ldots, n$, missä kutakin lukua käytetään täsmälleen kerran; tällaisia nimeämisiä pidetään samoina, jos ne voidaan saada toisistaan ympyrän kierrolla. Nimeämistä kutsutaan kauniiksi, jos a:ksi ja d:ksi nimettyjen pisteiden välinen jänne ei leikkaa b:ksi ja c:ksi nimettyjen pisteiden välistä jännettä, kun neljälle nimelle a < b < c < d pätee a + d = b + c.

Olkoon M kauniiden nimeämisten lukumäärä, ja olkoon N niiden positiivisten kokonaislukujen järjestettyjen parien (x, y) lukumäärä, joille $x + y \le n$ ja s.y.t.(x, y) = 1. Todista, että

$$M = N + 1$$
.

Ratkaisu. Puhutaan "nimeämisen" sijaan "numeroinnista". Sellaisia lukupareja (x, y), joilla s.y.t.(x, y) = 1 ja $x + y \le n$ on tasan yhtä monta kuin sellaisia lukupareja (z, y), missä $1 \le y < z \le n$. Väite tulee todistetuksi, kun osoitetaan, että yhtä lukuunottamatta jokainen kaunis numerointi vastaa yksikäsitteisesti tällaista lukuparia. Konstruoidaan siis jokaista paria (z, y) kohden kaunis numerointi ja osoitetaan, että näin syntyvät kaikki kauniit numeroinnit.

Olkoon $S_n = \{0, 1, 2, ..., n\}$ ja olkoot pisteiden numerot myötäpäivään $a_0 = 0$, $a_1, ..., a_n$. Olkoon kaikilla $k \in S_n$ f(k) se yksikäsitteinen luku, jolle $a_{f(k)} = k$; sanomme, että f(k) on k:n indeksi. Merkintä $i \prec j$ tarkoittaa samaa kuin f(i) < f(j); tällöin siis "i on ennen j:tä". Numerointi on kaunis, jos ja vain jos aina kun $a \prec b \prec c \prec d$, on $a + d \neq b + c$.

Huomataan, että jos $a_1 = 1$, niin $a_j = j$ kaikilla j. Ellei näin olisi, olisi $i + 1 \prec i$ jollain i ja siis $0 \prec 1 \prec i + 1 \prec i$ ja 0 + (i + 1) = 1 + i. Oletetaan sitten, että $a_1 \neq 1$. Tehtävän väite tulee todistetuksi, kun osoitetaan, että kaikki muut kauniit numeroinnit saadaan seuraavasti. Olkoon (z, y) sellainen järjestetty lukupari, että $1 \leq y < z \leq n$ ja s.y.t.(x, y) = 1. Kaikilla $i = 0, 1, 2, \ldots, z - 1$ asetetaan

$$E_i = \{k \mid 0 \le k \le n \text{ ja } k \equiv yi \mod z\}.$$

Tämän jälkeen annetaan pisteille ensin E_0 :n numerot suuruusjärjestyksessä, sitten E_1 :n jne. Todetaan, että aina $a_0 = 0$ ja $a_1 = z$. [Jos esimerkiksi y = 3, z = 5, n = 23,

numerointi on 0, 5, 10, 15, 20, 3, 8, 13, 18, 23, 1, 6, 11, 16, 21, 4, 9, 14, 19, 2, 7, 12, 17, 22.]

Osoitetaan, että näin syntyvät numeroinnit ovat kauniita. Ellei näin olisi, löytyisi luvut a, b, c, d niin, että $a \prec b \prec c \prec d$ ja a+c=b+d. Tällöin $a \in E_{i_1}, b \in E_{i_2}, c \in E_{i_3}$ ja $d \in E_{i_4}$, missä $0 \le i_1 \le i_2 \le i_3 \le i_4 < z$. Koska s.y.t.(y, z) = 1, tästä seuraa $i_1+i_3 \equiv i_2+i_4$ mod z. Mutta $(i_2+i_4)-(i_1+i_3)=i_4-i_1-(i_3-i_2)\le i_4-i_1\le z-1$, joten $i_1+i_3=i_2+i_4$. Tämä on mahdollista vai, jos $i_1=i_2$ ja $i_3=i_4$. Koska numeroinnissa on noudatettu suuruusjärjestystä E_{i_1} :ssä ja E_{i_3} :ssa, on a < b ja c < d, joten onkin a+c < b+d. Ristiriita osoittaa, että jokainen kuvatulla tavalla synnytetty numerointi on kaunis.

Osoitetaan sitten, että kaikki kauniit numeroinnit on tuotettu kuvatulla tavalla. Tehdään induktio n:n suhteen. Kun n=3, mahdolliset parit (z,y) ovat (3,1), (3,2) ja (2,1). Ne tuottavat triviaalia numerointia lukuun ottamatta kaikki kauniit numeroinnit, 0,3,1,2,0,3,2,1 ja 0,2,1,3. Oletetaan nyt, että menetelmä tuottaa kaikki k:n pisteen kauniit numeroinnit, kun $k \leq n$. Tarkastellaan jotain (n+1):n pisteen numerointia $a_0=0,a_1,\ldots,a_n$, missä $a_1>1$. Olkoon $a_1=z$. Tarkastellaan erikseen tapauksia $a_1=n$ ja $a_1 < n$. Olkoon siis $a_1=z=n$. Asetetaan $y=a_2$. Osoitetaan, että $a_{k+1} \equiv ky \mod z$. Väitetään, että jos näin ei olisi, olisi olemassa i ja j niin, että $y \prec i \prec j$ ja $i-j \equiv y \mod n$. Silloin olisi joko i-j=y tai j-i=n-y. Koska $0 \prec y \prec i \prec j$, edellinen vaihtoehto ei käy, koska $n \prec y \prec i \prec j$, jälkimmäinen vaihtoehtokaan ei käy. Todistetaan nyt esitetty väite. Jos s.y.t.(y,z)=1, väite on triviaalisti tosi, koska lukujen ky jakojäännökset mod z ovat kaikki eri suuria. Jos taas s.y.t.(y,z)>1 eikä väitteen mukaisia lukuja i ja j ole olemassa, niin $1 \prec 1 + y \prec 1 + 2y \prec \ldots$ (luvut mod z) Jono palaa jossain vaiheessa 1:een, mikä on ristiriita.

Tarkastellaan sitten sellaisia numerointeja, joissa $a_1 \neq n$. Poistetaan piste, jolla on numero n. Induktio-oletuksen mukaan on olemassa jokin n:n pisteen kaunis numerointi, joka noudattaa esitettyä konstruktiota joillain (z, y). Pyritään osoittamaan, että tällaiseen numerointiin voidaan liittää piste, jonka numero on n vain yhdellä tavalla niin, että numerointi on kaunis ja sellainen, joka perustuu pariin (z, y) yllä kuvatulla tavalla, ja jossa siis $a_1 = z$. Olkoon $n \equiv ky \mod z$, $0 \le k < z$. Osoitetaan, että n on sijoitettava lukujen n-z ja joukon E_{k+1} pienimmän alkion v väliin. Huomataan, että $v \equiv n+y \mod z$. Osoitetaan ensin, että on oltava $n-z \prec n$. Koska $a_0=0$ ja $a_1=z$, on $z \prec n$. Jos n=2z, ei voi olla $n \prec n-z$ ([0, n] ja [z, n-z] leikkaisivat). Jos $n \neq 2z$, sekä n että n-z ovat ympyrän kehällä 0:n ja z:n jälkeen, ja n-z:n on edellettävä n:ää. Osoitetaan sitten, että n on sijoitettava välittömästi n:n jälkeen. Käsitellään eri mahdollisuudet. Jos k=z-1, niin $n-z \equiv (z-1)y \mod z$ on E_{z-1} :n suurin alkio ja siis numeroinnin viimeinen; silloin n voidaan sijoittaa vain n-z:n ja 0:n väliin. Jos sitten k=0 eli $n\equiv 0 \mod z$, niin n=tzja $t \geq 2$. Nyt v = y. Koska $(t-1)z \prec y \prec y \prec z + y$, niin n on sijoitettava (t-1)z:n ja z+y:n väliin. n:ää ei kuitenkaan voi sijoittaa y:n jälkeen, koska $n-y \in E_{z-1}$ ja näin sekä y että n ovat 0:n ja (n-y):n välissä. Oletetaan sitten, että n=tz+u, misstä $t\geq 1$ ja 0 < u < z; myös 0 < v < z. Edellä tehdystä huomautuksesta seuraa, että joko v = u + ytai v + z = u + y. Jos v = u + y, niin $tz \prec y \prec v$, n (koska y seuraa heti tz:aa). Jos v+z=u+y, niin $n-z \prec v \prec v+z$, joten n on sijoitettava (n-z):n ja (v+z):n väliin. Koska n-v=(t+1)z-y, niin n-v on numeroinnin viimeinen. Siis 0 < n, v < n-v, joten on oltava $n \prec v$.

Induktioaskel on nyt otettu, ja väite todistettu.