数据库系统 期末速通教程

1. 前言

1.1 文件系统的问题

[ACID] ① 原子性(atomicity); ② 一致性(consistency); ③ 隔离性(isolation); ④ 持久性(durability).

[文件系统的问题]

- (1) 不保证不备份时数据不丢失.
- (2) 不支持查询语言.
- (3) 尽管数据位置已知, 也无高效的查找数据的方法.
- (4) 应用依赖于数据的定义(结构), 改变数据的定义会影响应用程序.
- (5) 数据的视图单一, 只有按物理存放的视图.
- (6) 不同应用有不同的文件, 难支持新应用.
- (7) 对多访问的控制有限.
- (8) 无对数据的集中控制.
- (9) 文件常为一个特定的应用而创建.
- (10) 文件独立创建和管理.
- (11) 常有数据冗余(redundancy)和不一致(inconsistency).
- (12) 缺少并发控制,不能防止并发请求间相互干扰.

[DB 的优点]

- (1) 控制数据冗余.
- (2) 多用户共享数据.
- (3) 提供数据的访问控制.
- (4) 对不同用户提供不同接口.
- (5) 表示数据间的复杂关系.
- (6) 保证数据完整性.
- (7) 提供备份和还原操作.
- (8) 有通用标准.
- (9) 能适应数据的结构的改变.
- (10) 减少应用开发时间.
- (11) 保证最新信息的可用性.

- (12) 因经营规模扩大而得到的经济节约.
- (13) 提供并发控制.

1.2 不同类型的 DB

[分层数据库系统, Hierachical DBS, HDBS]

- (1)数据组织为树,数据间用指针连接,父子数据间存在一对多的关系.
- (2) 示意图:

(3) 缺点:

- ① 查询复杂: 需要复杂的查询语言或递归查询.
- ②数据冗余: 子树中的节点信息在多个地方使用时, 更新操作复杂, 存储空间大.
- ③ 难保证数据一致性: 修改一个节点的数据时, 需保证其父子节点的数据也被正确更新.
- ④ 难扩展:引入新的关系或数据模型时,可能修改整个 DB 的结构.
- ⑤ 缺乏标准: 无 RDBS 的标准查询语言, 可能不兼容不同系统.
- ⑥ 访问控制困难: 需保证只有授权用户能访问特定的节点.

[网状数据库系统, Network DBS, NDBS]

- (1)数据组织为一个无环图.
- (2) 示意图:

[关系型数据库系统, Relational DBS, RDBS]

- (1) 产生原因: HDBS 和 NDBS 太难用.
- (2) 数据组织为关系表.
- (3) 示意图:

Stuc	lent:							
<u>ID</u>	Name	Age	Dept-Name	<u>GPA</u>				
130	Mark	22	22 CSSE 3.2		2		Student-Course:	
522	Jay	21	CSSE	3.8	3		Stude ntl D	CourseID
	Eva	19	SFL	3.5	5		522	CSSE20
	ı						522	CSSE40
Course:							522	CSSE50
CourselD		Course Title			ofe ssor	ROOM	131	CSSE30
CSSE20		DBS Principle		Dr.	Peng	A305	131	CSSE50
CSS	SSE30 COBOL		Ob	ama	B409	282	CSSE20	
CSS	SE40	Database Mgt		Ro	nald	C606	282	CSSE30
CSSE50		Sys.Analysis		Ko	be	B313	282	CSSE50

1.3 数据库系统

[数据库系统, DBS]

- (1)产生原因:数据逐渐增多,需要存储和处理技术.
- (2)组成:
 - ① [Database] 有如下三条性质的数据的集合:
 - (i) 对应现实中的某些方面.
 - (ii) 因特殊要求而创建.
 - (iii) 数据间相关.
 - ② [Data Model] DBS 中对数据的描述.
 - (i) 数据的结构.
 - (ii) 数据的操作.
 - (iii) 数据的限制.
 - ③ [DBMS] DBS 中用于定义(define)、存储(store)、操作(manipulate)和控制(control)数据的软件.

1.4 DB 语言

[DB 语言]

- (1) [Data Definition Language, DDL] 定义 DB 的模式(schema).
- (2) [Data Manipulation Language, DML] 对数据进行增(insert)、删(delete)、改(update)、查(retrieve).
 - ① [Query Language] 用于检索数据的 DML.

- ② 分类:
 - (i) [Procedural DML] 用户需同时知道需要何数据和如何得到它. 难用, 但是效率高.
 - (ii) [Non-procedural DML] 用户只需知道需要何数据. 例: SQL. 好用, 但是效率低.
- ③ 解决办法: Non-procedural DML + query optimization.
- (3) [Data Control Language, DCL] 对 DB 进行权限控制.

1.5 DB Schema

[DB Schema]

- (1) 定义: DB 中对用户数据的描述.
- (2) 在关系模型中, 一个 DB Schema 由数据表的集合构成.
- (3) 分类:

[Conceptual Schema] 逻辑上地定义 DB 中的所有数据.

[Internal Schema, Physical Schema] 描述数据在 DB 中如何存储.

[External Schema, User View]每个 External Schema 描述特定用户组感兴趣或可访问的一部分数据.

[DBMS 3-Tier Architecture]

(1)3层:

- ① [External Level] 关注个体用户看见数据的方式.
- ② [Conceptual Level] 对组织感兴趣的数据的正式描述, 独立于存储.
- ③ [Internal Level] 关注数据如何存放.

(2) 有点:

- ① 用户容易理解和使用 DB.
- ② 提供访问控制机制.