Funktionentheorie

Wintersemester 2017/18

Übungsserie 3

1. Die Logarithmus-Funktion im Komplexen (Hauptzweig) ist definiert als

$$\log z := \log |z| + i \arg z$$

mit $-\pi < \arg z \le \pi$. Sie ist holomorph in $\mathbb{C} \setminus \{z : \Im m \ z = 0, \Re e \ z \le 0\}$. Weisen Sie nach, daß

$$\log(z \cdot w) = \log z + \log w$$

gilt für alle z, w mit $\Re e \ z, \Re e \ w > 0$.

Kann man diese einschränkende Bedingung auch weglassen?

2. Üblicherweise definiert man allgemeine Potenzen im Komplexen mittels folgender Formel

$$z^w:=e^{w\,\log z}\,,\qquad z,w\in\mathbb{C}\,,\quad z\neq 0.$$

(i) Berechnen Sie

$$i^i$$
, $(1+i)^i$, i^{1+i} , $(1+i)^{1+i}$.

(ii) Sei $w \in \mathbb{C}$ gegeben. Wir definieren

$$f(z) := z^w, \qquad z \neq 0.$$

Geben Sie ein möglichst großes Gebiet $G\subset \mathbb{C}$ an, in welchem f holomorph ist. Berechnen Sie dort f'.

(iii) Sei $z \in \mathbb{C} \setminus \{0\}$ gegeben. Wir setzen

$$g(w) := z^w, \qquad z \neq 0.$$

Geben Sie ein möglichst großes Gebiet $G\subset \mathbb{C}$ an, in welchem g holomorph ist. Berechnen Sie dort g'.

3. Berechnen Sie folgende komplexe Wegintegrale:

$$\int_{z(I)} (1+z^3)^{15} dz \qquad \text{mit} \quad z(t) := 2e^{it} + e^{-it}, \quad 0 \le t \le 2\pi;$$

$$\int_{z(I)} z e^z dz \qquad \text{mit} \quad z(t) := (t-1)\pi i + t\pi i, \quad 0 \le t \le 1;$$

$$\int_{z(I)} (iz^2 + 1 - 2iz^{-2}) dz \qquad \text{wo} \quad z(t)$$

einen regulren Weg von (i+1) nach 2i bezeichnet.

- 4. Man berechne $\int_{z(I)} \Re e \ z \, dz$ entlang folgender Wege:
 - entlang der oberen Hälfte des Einheitskreises von +1 nach -1;
 - entlang der geradlinigen Verbindung von z_1 nach z_2 (für beliebige Paare z_1, z_2);
 - entlang des in positiver Richtung umlaufenen Kreises mit Radius r > 0 und Zentrum in z_0 .
- 5. Man berechne $\int_{z(I)} |z| dz$ entlang folgender Wege von -i nach i:
 - geradlinig;
 - längs der linken Hälfte des Einheitskreises;
 - längs der rechten Hälfte des Einheitskreises.
- 6. Sei Γ ein Kreis und $z_0 \not\in \Gamma$. Man berechne alle Integrale der Form

$$\int_{\Gamma} (z-z_0)^n \, dz \,, \qquad n=0,\pm 1\,,\pm 2\,,\ldots\,,$$

wobei wir uns auf eine Umdrehung festlegen.

7. Seien $a \neq 0$, $\omega := e^{i2\pi/n}$ und $z_k := a\omega^k$, $k = 1, 2, \ldots, n$. Weiter setzen wir $z_0 := z_n$ und

$$\xi_k := \frac{z_{k-1} + z_k}{2}, \qquad k = 1, \dots, n.$$

Beweisen Sie

$$\lim_{n\to\infty} \left(\frac{z_1-z_0}{\xi_1} + \frac{z_2-z_1}{\xi_2} + \ldots + \frac{z_n-z_{n-1}}{\xi_n} \right) = \int_{|z|=|a|} \frac{dz}{z}.$$