EXEMPLES DE SUITES DE MATRICES – CAS DES MATRICES STOCHASTIQUES

Dans tout le problème, p désigne un entier naturel supérieur ou égal à 2.

On note $\mathbb{M}_p(\mathbb{R})$ l'algèbre des matrices carrées d'ordre p à coefficients réels et I_p la matrice identité.

Pour tout élément M de $\mathbb{M}_p(\mathbb{R})$ et pour tout couple (i,j) d'entiers compris entre 1 et p, on note $a_{i,j}(M)$ le coefficient de M situé sur la $i^{\text{ème}}$ ligne et la $j^{\text{ème}}$ colonne.

Une matrice M appartenant à $\mathbb{M}_p(\mathbb{R})$ est dite stochastique si elle satisfait aux deux conditions suivantes :

- (i) Pour tout couple (i,j) d'entiers compris entre 1 et p, $a_{i,j}(M) \ge 0$.
- (ii) Pour tout entier i comprisentre 1 et p, $\sum_{i=1}^{p} a_{i,j}(\mathbf{M}) = 1$.

On dit qu'une suite indexée par n, (M_n) de matrices appartenant à $\mathbb{M}_p(\mathbb{R})$ converge vers $M \in \mathbb{M}_p(\mathbb{R})$ si, pour tout couple (i,j), la suite des coefficients $a_{i,j}(M_n)$ converge vers $a_{i,j}(M)$; on dit alors que M est la limite de la suite (M_n) .

Étant donné une matrice A appartenant à $\mathbb{M}_p(\mathbb{R})$, pour tout entier $n \ge 0$, on note \mathbb{C}_n la matrice définie par la relation :

$$C_n = \frac{1}{n+1} [I_p + A + A^2 + \dots + A^n]$$
 (1)

On dit enfin qu'une matrice A de $\mathbb{M}_p(\mathbb{R})$ est r-périodique (où r est un entier strictement positif) si $A^r = I_p$.

L'objectif de ce problème est d'étudier quelques propriétés des matrices stochastiques et notamment, la convergence de la suite (C_n) lorsque A est stochastique et r-périodique.

Première partie : Étude d'exemples

I.1 Soit α un nombre réel. Pour tout entier $n \ge 0$, on pose $\gamma_n = \frac{1}{n+1} [1 + \alpha + \alpha^2 + \dots + \alpha^n]$

Calculer γ_n , étudier la convergence de la suite (γ_n) , et en cas de convergence, préciser sa limite.

- **I.2** On prend p = 3 et $A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$
 - a) Calculer A^2 et A^3 . En déduire A^k pour tout entier k.
 - **b)** Pour tout entier q, calculer C_{3q} , C_{3q+1} et C_{3q+2} . En déduire que la suite (C_n) converge et préciser sa limite C.
 - c) Soit (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 et v l'endomorphisme de \mathbb{R}^3 canoniquement associé à C. Déterminer le noyau F et l'image G de v. Prouver que v est le projecteur de \mathbb{R}^3 sur G parallèlement à F.
- **I.3** On prend p = 2 et $A = \begin{pmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$

On note w l'endomorphisme de \mathbb{R}^2 canoniquement associé à A.

- a) Déterminer une matrice inversible P telle que $A = P \begin{pmatrix} 1 & 0 \\ 0 & -\frac{1}{6} \end{pmatrix} P^{-1}$. En déduire A^k , pour tout entier $k \ge 0$.
- **b)** Déterminer deux matrices U et V appartenant à $\mathbb{M}_2(\mathbb{R})$, telles que, pour tout $k \ge 0$, $A^k = U + \left(-\frac{1}{6}\right)^k V$.
- c) Pour tout entier $n \ge 0$, exprimer C_n en fonction de n, U et V et déterminer la limite C de la suite (C_n) .
- **d**) Prouver que l'endomorphisme v de \mathbb{R}^2 canoniquement associé à C est un projecteur dont on précisera les éléments caractéristiques.

Deuxième partie : Étude de (C_n) lorsque A est r-périodique

1/3

On désigne par r un entier strictement positif.

II.1 Soit (α_k) une suite r-périodique de nombres réels, c'est-à-dire telle que, pour tout entier $k \ge 0$, $\alpha_{r+k} = \alpha_k$. On pose : $\gamma = \frac{1}{r}[\alpha_0 + \alpha_1 + \dots + \alpha_{r-1}]$, et pour tout entier $n \ge 0$, on pose :

$$\gamma_n = \frac{1}{n+1} [\alpha_0 + \alpha_1 + \dots + \alpha_n]. \quad (2)$$

- **a)** Prouver que pour tout entier $k \ge 0$, $\gamma = \frac{1}{r} [\alpha_k + \alpha_{k+1} + \dots + \alpha_{k+r-1}]$.
- **b**) Montrer que la suite de terme général $\beta_n = (n+1)\gamma_n (n+1)\gamma$ est r-périodique. Montrer qu'elle est bornée.
- c) Montrer que (γ_n) converge et préciser sa limite.
- **II.2** Soit A une matrice r-périodique appartenant à $\mathbb{M}_p(\mathbb{R})$.
 - a) Montrer que, pour tout couple (i,j) d'entiers compris entre 1 et p, la suite de terme général $\alpha_k = a_{i,j}(A^k)$ est r-périodique.

En déduire que la suite (C_n) converge vers $C = \frac{1}{r}[I_p + A + \cdots A^{r-}]$.

b) Soit $(e_1, ..., e_p)$ la base canonique de \mathbb{R}^p , u et v les endomorphismes de \mathbb{R}^p canoniquement associés aux matrices A et C.

Prouver que $u^r = \text{Id}$ où Id est l'endomorphisme identité de \mathbb{R}^p . Montrer que $u \circ v = v \circ u = v$.

- c) Soit x un élément de \mathbb{R}^p . Prouver que u(x)=x si et seulement si v(x)=x, puis que x appartient à $\operatorname{Im} v$ si et seulement si u(x)=x. En déduire que $\operatorname{Im} v=\operatorname{Ker}(u-\operatorname{Id})$.
- **d)** Montrer que v est le projecteur sur $G = \operatorname{Im} v$ parallèlement à $F = \operatorname{Ker} v$.
- **e)** Établir enfin que $\operatorname{Ker} v = \operatorname{Im}(u \operatorname{Id})$.
- **II.3** a) Soit (α_k) une suite de nombre réels r-périodique à partir d'un certain rang positif m. On définit γ_n par la relation (2).

Prouver que (γ_n) admet une limite que l'on précisera.

b) Soit A une matrice de $\mathbb{M}_p(\mathbb{R})$, r-périodique à partir d'un certain rang m, c'est-à-dire que, pour tout entier $k \ge m$, $A^{k+r} = A^k$.

Prouver que la suite (C_n) admet une limite C que l'on précisera.

Troisième partie : Étude de matrices stochastiques

On note S_p l'ensemble des matrices stochastiques de $\mathbb{M}_p(\mathbb{R})$ et D_p l'ensemble des matrices *déterministes*, c'est-à-dire stochastiques et dont tous les coefficients sont égaux à 0 ou 1. Enfin, on appelle Δ_p l'ensemble des matrices déterministes et inversibles.

- III.1 a) Prouver que, pour tout couple (λ, μ) de nombres réels tels que $\lambda \ge 0$, $\mu \ge 0$ et $\lambda + \mu = 1$, et pour tout couple (M, N) de S_p , $\lambda M + \mu N$ appartient encore à S_p .
 - **b)** Prouver que le produit MN de deux éléments M et N de S_p appartient à S_p .
 - c) Soit A un élément de S_p . Prouver que, pour tout entier $n \ge 0$, C_n (définie par (1)) appartient à S_p . Que peut-on en déduire pour la limite C de (C_n) , lorsqu'elle existe?
- **III.2** a) Montrer qu'une matrice M est déterministe si et seulement si tous ces coefficients sont égaux à 0 ou 1 et si chaque ligne de M contient exactement un coefficient égal à 1.
 - **b)** En déduire que D_p est un ensemble fini et préciser le nombre de ses éléments.
 - c) Montrer que le produit MN de deux éléments M et N de D_p appartient à D_p .
 - **d**) Soit A une matrice déterministe. Prouver qu'il existe un entier $r \ge 1$ et un entier $m \ge 0$ tels que $A^{m+r} = A^m$.
 - En déduire que A est r-périodique à partir de ce rang m et que si de plus A est inversible, A est r-périodique.
 - e) Soit A une matrice déterministe inversible. Prouver que A⁻¹ l'est aussi.

- III.3 a) En utilisant les résultats de la partie II, établir le résultat suivant : Si A est une matrice déterministe *inversible*, alors (C_n) converge vers une matrice stochastique C telle que $C^2 = C$.
 - **b)** Étendre ce résultat au cas où A est déterministe *non inversible*.
- **III.4** Soient X et Y des éléments de S_p tels que $XY = I_p$. On se propose de montrer que X et Y sont déterministes inversibles.
 - a) Prouver que Y est une matrice inversible et que X l'est aussi.
 - **b)** On pose $X = (\alpha_{ij})$, $Y = (\beta_{ij})$ et, pour tout j compris entre 1 et p, $\mu_i = \max\{\beta_{1,i}, \beta_{2,i}, \dots, \beta_{p,i}\}$

Prouver que $\mu_i = 1$. Pour cela, on pourra calculer le coefficient $a_{i,j}(XY)$.

c) Montrer que $\sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{i,j} = \sum_{j=1}^{p} \mu_{j}$.

En déduire que tous les coefficients de Y sont égaux à 0 ou 1.

- **d)** Prouver que X et Y appartiennent à Δ_p .
- e) Plus généralement, soient U et V deux matrices de S_p telles que le produit UV appartient à Δ_p . Prouver que U et V appartiennent à Δ_p (on pourra utiliser le résultat de la question III.2.e).

