ANALISIS VOLATILITAS HARGA SAYURAN DI PASAR INDUK KRAMAT JATI

OLEH ACHMAD WIHONO H14053966

DEPARTEMEN ILMU EKONOMI FAKULTAS EKONOMI DAN MANAJEMEN INSTITUT PERTANIAN BOGOR 2009

RINGKASAN

ACHMAD WIHONO. Analisis Volatilitas Harga Sayuran di Pasar Induk Kramat Jati. (dibimbing oleh **MUHAMMAD FIRDAUS**).

Sayuran merupakan komoditas yang sangat berperan penting dalam pemenuhan kebutuhan pangan dan peningkatan gizi, karena sayuran merupakan salah satu sumber mineral, vitamin, serat, antioksidan dan energi yang dibutuhkan oleh manusia. Rendahnya hasil produksi sayuran dalam negeri menyebabkan tidak tercukupinya kebutuhan konsumsi sayuran dalam negeri. Hal ini juga menyebabkan distribusi sayuran tidak merata. Karena tidak semua wilayah di Indonesia dapat menghasilkan sayuran yang sering digunakan untuk konsumsi. Distribusi yang tidak merata ini menyebabkan harga sayuran berfluktuasi. Fluktuasi harga sayuran dapat disebabkan oleh besarnya jumlah penawaran dan besarnya jumlah permintaan. Semakin tinggi jumlah penawaran maka harga akan rendah, sebaliknya jika jumlah penawaran semakin sedikit maka harga akan semakin meningkat (cateris paribus). Fluktuasi harga sayuran yang terjadi menyebabkan Badan Ketahanan Pangan mengalami kesulitan dalam mengawasi perubahan harga tersebut. Oleh karena itu dibutuhkan suatu analisis tingkat volatilitas harga komoditas sayuran agar fluktuasi harga dapat segera diatasi. Pengukuran volatilitas perlu dilakukan untuk memetakan ketidakpastian tersebut. Volatilitas yang ada pada harga sayuran di Pasar Induk Kramat Jati dapat memberikan gambaran sayuran mana yang mempunyai fluktuasi harga paling tinggi.

Berdasarkan permasalahan tersebut penelitian ini bertujuan membandingkan volatilitas harga antar sayuran yang ada di Pasar Induk Kramat Jati. Selain itu akan dianalisis pula hubungan antara harga sayuran dengan jumlah pasokan sayuran. Data yang digunakan dalam proses analisis ini adalah data time series harga sayuran dari minggu terakhir Desember 2005 hingga minggu pertama maret 2009. Untuk menjawab tujuan penelitian digunakan model ARCH-GARCH dan pengujian kointegrasi dengan two step Engle-Granger antara jumlah pasokan dengan harga buah, yang semuanya dilakukan dengan bantuan program komputer Eviews 6, Microsoft Excel 2007 dan Minitab 14. Hasil analisis menunjukkan bahwa dari sepuluh sayuran yang diuji, daun bawang merupakan sayuran dengan volatilitas paling tinggi, sedangkan sayuran dengan volatilitas paling rendah adalah tomat. Dari hasil pengujian regresi dan kointegrasi dengan menggunakan two step Engel-Granger antara jumlah pasokan dengan harga sayuran dapat disimpulkan bahwa jumlah pasokan memiliki hubungan jangka panjang dan berpengaruh negatif dengan harga sayuran.

Kata kunci: volatilitas, fluktuasi harga,

ANALISIS VOLATILITAS HARGA SAYURAN DI PASAR INDUK KRAMAT JATI

Oleh

ACHMAD WIHONO H14053966

Skripsi Sebagai salah satu syarat untuk memperoleh gelar Sarjana Ekonomi pada Departemen Ilmu Ekonomi

> DEPARTEMEN ILMU EKONOMI FAKULTAS EKONOMI DAN MANAJEMEN INSTITUT PERTANIAN BOGOR 2009

Judul Skripsi : **Analisis Volatilitas Harga Sayuran**

di Pasar Induk Kramat Jati

Nama Mahasiswa : Achmad Wihono

Nomor Registrasi Pokok : H14053966

Menyetujui,

Dosen Pembimbing,

<u>Muhammad Firdaus, Ph.D</u> NIP. 19730105 19970 2 1001

Mengetahui,

Ketua Departemen

<u>Dr. Ir. Rina Oktaviani, M.S.</u> NIP. 19641023 19890 3 2002

Tanggal Kelulusan:

PERNYATAAN

DENGAN INI SAYA MENYATAKAN BAHWA SKRIPSI INI BENAR-BENAR HASIL KARYA SAYA SENDIRI YANG BELUM PERNAH DIGUNAKAN SEBAGAI SKRIPSI ATAU KARYA ILMIAH PADA PERGURUAN TINGGI ATAU LEMBAGA MANAPUN.

Bogor, September 2009

Achmad Wihono H14053966

RIWAYAT HIDUP

Penulis bernama Achmad Wihono, lahir di Jakarta pada tanggal 27 Juli 1985 dari pasangan Edi Yanto dan Sri Raharni. Penulis merupakan putra kedua dari tiga bersaudara.

Perjalanan akademis penulis dimulai dari TK. Bina Amal Bekasi Utara pada tahun 1991-1992, SDN Pejuang 1 Bekasi pada tahun 1992-1998, SMPN 1 Bekasi pada tahun 1998-2001, dan SMUN 1 Bekasi pada tahun 2001-2004.

Pada tahun 2005 penulis lulus seleksi masuk IPB melalui jalur Seleksi Penerimaan Mahasiswa Baru. Pada tahun kedua di IPB penulis memilih Program Studi Ilmu Ekonomi, Departemen Ilmu Ekonomi, Fakultas Ekonomi dan Manajemen.

KATA PENGANTAR

Puji dan syukur penulis panjatkan kepada Allah SWT, karena atas rahmat dan hidayah-

Nya penelitian ini dapat diselesaikan. Penelitian ini berjudul Analisis Volatilitas Harga

Sayuran di Pasar Induk Kramat Jati. Sayuran merupakan salah satu komoditi pertanian yang

sangat penting dalam perekonomian Indonesia. Oleh karena itu penulis tertarik untuk

menganalisis volatilitas dan fluktuasi harga sayuran di Indonesia.

Selain itu, skripsi ini juga merupakan salah satu syarat untuk memperoleh gelar Sarjana

Ekonomi pada Departeman Ilmu Ekonomi, Fakultas Ekonomi dan Manajemen, Institut

Pertanian Bogor. Pada kesempatan ini penulis mengucapkan terima kasih kepada Bapak

Muhammad Firdaus selaku dosen pembimbing yang telah memberikan bimbingan dan arahan

dalam proses penulisan skripsi, serta semua pihak yang telah membantu penyelesaian skripsi

ini baik langsung maupun tidak.

Sebagai bagian dari suatu proses, mungkin masih banyak ditemui kesalahan dan

kekurangan dalam buku ini. Oleh karena itu, penulis sangat terbuka untuk saran dan kritik

yang membangun. Akhir kata, penulis berharap agar hasil penelitian ini dapat bermanfaat

bagi penulis dan pihak lain, terutama bagi para pembaca yang berminat untuk melanjutkan

dan menyempurnakan penelitian ini..

Bogor, September 2009

Achmad Wihono H14053966

DAFTAR ISI

				Halaman			
DA	FTAR	ISI		i			
DA	FTAR	TABEL.		iv			
DA	FTAR	GAMBA	AR	v			
DA	FTAR	LAMPIF	RAN	vi			
I.	PENDAHULUAN						
1.							
	1.1.						
	1.2.			h			
	1.3.	Tujuan 1	Penelitian	6			
	1.4.	Manfaat	t Penelitian	6			
	1.5.	Ruang I	Lingkup Pe	nelitian			
II.	TINJ	AUAN P	USTAKA	DAN KERANGKA PEMIKIRAN			
	2.1.	Konsep	Risiko				
	2.2.	Pemode	lan Volatil	itas Time Series Univariate			
		2.2.1.	ARCH E	ror			
		2.2.2.	Mean Pro	cess			
		2.2.3.	Variance 1	Process			
		2.2.4.	Metode P	eramalan Box-Jenkins (Model ARIMA) 14			
			2.2.4.1.	Tahap Identifikasi			
			2.2.4.2.	Tahap Pendugaan Parameter			
			2.2.4.3.	Tahap Evaluasi			
		2.2.5.	Model AF	RCH-GARCH			
	2.3.	Teori K	ointegrasi				
	2.4.	Tinjaua	n Penelitiar	n Terdahulu			
	2.5.	Kerangl	ka Pemikira	an			

III.	METODE PENELITIAN						
	3.1.	Lokasi d	an Waktu	Penelitian	32		
	3.2.	Jenis dar	n Sumber 1	Data	32		
	3.3.	Metode 1	Metode Pengolahan dan Analisis Data				
		3.3.1.	Model A	RCH-GARCH	34		
			3.3.1.1.	Tahap Identifikasi	37		
			3.3.1.2.	Tahap Pendugaan Parameter	38		
			3.3.1.3.	Tahap Pemilihan Model ARCH-GARCH Terbaik	38		
			3.3.1.4.	Tahap Pemeriksaan Model ARCH-GARCH	39		
		3.3.2.	Peramala	an Ragam	41		
		3.3.3.	Two-Ste	p Engel Granger Test	42		
		3.3.4.	Analisis	Regresi Sederhana	43		
IV.	GAMBARAN UMUM						
	4.1.	Perkembangan Produksi Sayuran Indonesia					
	4.2.	Keterse	diaan Say	uran Indonesia	46		
	4.3.	Perkem	ıbangan E	kspor Sayuran Indonesia	47		
V.	PEMBAHASAN						
	5.1	-	-	kan Harga Sayuran di Pasar Induk Kramat	49		
		5.1.1.		si Pola Data Sayuran Kol Bulat			
		5.1.2.		si Pola Data Sayuran Kembang Kol			
		5.1.3.	-	si Pola Data Sayuran Sawi			
		5.1.4.	•	si Pola Data Sayuran Buncis			
		5.1.5.	•	si Pola Data Sayuran Wortel			
		5.1.6.	•	si Pola Data Sayuran Tomat			
		5.1.7.	Eksplora	si Pola Data Sayuran Daun Bawang	54		
		5.1.8.	Eksplora	si Pola Data Sayuran Labu Siam	55		
		5.1.9.	Eksplora	si Pola Data Sayuran Ceisim	56		
		5.1.10.	Eksplora	si Pola Data Sayuran Timun	57		
	5.2	Analisi	s Karakter	istik Sayuran	58		
		5.2.1.	Kol Bula	ıt	58		
		5.2.2.	Kemban	g Kol	59		

		5.2.3.	Sawi	•••••		59	
		5.2.4.	Buncis			60	
		5.2.5.	Wortel			61	
		5.2.6.	Tomat			61	
		5.2.7.	Labu Sia	ım		62	
		5.2.8.	Daun Ba	wang		62	
		5.2.9.	Timun			63	
		5.2.10.	Caisim			64	
	5.3	Analisis	s Volatilita	as Harga Say	uran Di Pasar Induk Kramat Jati	64	
		5.3.1.	Deskrips	i Data		64	
		5.3.2.	Identifika	asi Model Al	RCH/GARCH	66	
			5.3.2.1.	Uji Autoko	relasi	66	
			5.3.2.2.	Pemilihan I	Persamaan Rataan	67	
				5.3.2.2.1.	Kestasioneran Data Harga	67	
				5.3.2.2.2.	Penentuan Model Tentatif	67	
		5.3.3.	Penduga	an Paramete	r dan Pemilihan Model Terbaik	68	
		5.3.4.	Pemeriks	saan Model A	ARCH/GARCH	69	
	5.4.	Perama	lan Ragan	n		70	
	5.5.	Perhitui	ngan Vola	tilitas Kesep	uluh Sayuran	71	
	5.6.				ngaruh Jumlah Pasokan Sayuran nya terhadap Harga Sayuran	73	
VI.	KESI	MPULA	N DAN S	ARAN			
	6.1.	Kesimp	oulan			76	
	6.2.						
LAN	_AMPIRAN						

DAFTAR TABEL

No		Halaman
1	Produksi Sayuran di Indonesia tahun 2004 – 2008	2
2	Penentuan Model ARIMA (p,d,q)	17
3	Penentuan Model ARIMA (p,d,q) (P,D,Q)	18
4	Tinjauan Penelitian Terdahulu	31
5	Produksi Total Sayuran di Indonesia tahun 2003 – 2008	45
6	Perkembangan Luas Areal Panen Sayuran Indonesia	46
7	Perkembangan Ketersediaan Sayuran Indonesia	46
8	Volume dan Nilai Ekspor Sayuran di Indonesia Tahun 2003 – 2008	48
9	Ringkasan Statistik Data Harga jual Kuadrat Kesepuluh Sayuran	65
10	Pengujian Autokorelasi harga kuadrat Kesepuluh Sayuran	66
11	Model ARIMA Kesepuluh Sayuran	68
12	Model ARCH/GARCH Terbaik Kesepuluh Sayuran	69
13	Model ARCH/GARCH Tingkat Risiko Harga Kesepuluh Sayuran	70
14	Perhitungan Volatilitas Kesepuluh Sayuran	71
15	Rentang Fluktuasi Harga Kesepuluh Sayuran	72
16	Uji two-step Engel-Granger Ketujuh Sayuran	73
17	Uii Regresi Pasokan Sayuran dengan Harga Sayuran	74

DAFTAR GAMBAR

No	Halamar	1
1	Fluktuasi harga bulanan sayuran 2006-2008	3
2	Fluktuasi harga bulanan sayuran 2006-2008	ļ
3	Hubungan Fungsi Kepuasan dengan Pendapatan)
4	Hubungan Risiko dengan Return)
5	Kerangka Pemikiran	
6	Plot Deret Waktu Harga dan Pasokan Bulanan Kol Bulat)
7	Plot Deret Waktu Harga dan Pasokan Bulanan Kembang kol 50)
8	Plot Deret Waktu Harga dan Pasokan Bulanan Sawi	
9	Plot Deret Waktu Harga dan Pasokan Bulanan Buncis	2
10	Plot Deret Waktu Harga dan Pasokan Bulanan Wortel	3
11	Plot Deret Waktu Harga dan Pasokan Bulanan Tomat	ļ
12	Plot Deret Waktu Harga dan Pasokan Bulanan Daun Bawang 55	5
13	Plot Deret Waktu Harga Bulanan Labu Siam 56	5
14	Plot Deret Waktu Harga Bulanan Ceisim	7
15	Plot Deret Waktu Harga jual Harian Timun	3

DAFTAR LAMPIRAN

N	Halar	nan
1	Plot Data Harga Kol Bulat	82
2	Plot Data Harga Kembang Kol	82
3	Plot Data Harga Buncis	82
4	Plot Data Harga Wortel	83
5	Plot Data Harga Tomat.	83
6	Plot Data Harga Labu Siam.	83
7	Plot Data Harga Sawi	84
8	Plot Data Harga Daun Bawang.	84
9	Plot Data Harga Timun.	84
10	Plot Data Harga Ceisim.	85
11	Ringkasan Statistik Untuk Data Harga Kuadrat Sayuran Kol Bulat	85
12	Ringkasan Statistik Untuk Data Harga Kuadrat Sayuran Kembang Kol	85
13	Ringkasan Statistik Untuk Data Harga Kuadrat Sayuran Buncis.	86
14	Ringkasan Statistik Untuk Data Harga Kuadrat Sayuran Wortel.	86
15	Ringkasan Statistik Untuk Data Harga Kuadrat Sayuran Tomat.	86
16	Ringkasan Statistik Untuk Data Harga Kuadrat Sayuran Labu Siam.	87
17	Ringkasan Statistik Untuk Data Harga Kuadrat Sayuran Sawi	87
18	Ringkasan Statistik Untuk Data Harga Kuadrat Sayuran Daun Bawang	87
19	Ringkasan Statistik Untuk Data Harga Kuadrat Sayuran Ceisim.	88
20	Ringkasan Statistik Untuk Data Harga Kuadrat Sayuran Timun.	88
21	Pengujian Autokorelasi Data Harga Kuadrat Sayuran Kol Bulat	88
22	Pengujian Autokorelasi Data Harga Kuadrat Sayuran Kembang Kol	89
23	Pengujian Autokorelasi Data Harga Kuadrat Sayuran Buncis.	89
24	Pengujian Autokorelasi Data Harga Kuadrat Sayuran Wortel.	89
25	Pengujian Autokorelasi Data Harga Kuadrat Sayuran Tomat	90
26	Pengujian Autokorelasi Data Harga Kuadrat Sayuran Labu Siam	90
27	Pengujian Autokorelasi Data Harga Kuadrat Sayuran Sawi	90
28	Pengujian Autokorelasi Data Harga Kuadrat Sayuran Daun Bawang	91
29	Penguijan Autokorelasi Data Harga Kuadrat Sayuran Timun	91

30	Pengujian Autokorelasi Data Harga Kuadrat Sayuran Ceisim	91
31	Pengujian Akar Unit Data Harga Sayuran Kol Bulat	92
32	Pengujian Akar Unit Data Harga Sayuran Kembang Kol	92
33	Pengujian Akar Unit Data Harga Sayuran Buncis	92
34	Pengujian Akar Unit Data Harga Sayuran Wortel	92
35	Pengujian Akar Unit Data Harga Sayuran Tomat	92
36	Pengujian Akar Unit Data Harga Sayuran Labu Siam	93
37	Pengujian Akar Unit Data Harga Sayuran Sawi	93
38	Pengujian Akar Unit Data Harga Sayuran Daun Bawang	93
39	Pengujian Akar Unit Data Harga Sayuran Timun	93
40	Pengujian Akar Unit Data Harga Sayuran Ceisim	93
41	Pengujian Model ARIMA (1,0,1) Harga Kol Bulat	94
42	Pengujian Model ARIMA (1,0,2) Harga Kol Bulat	94
43	Pengujian Model ARIMA (1,0,3) Harga Kol Bulat	94
44	Pengujian Model ARIMA (2,0,1) Harga Kol Bulat	94
45	Pengujian Model ARIMA (2,0,2) Harga Kol Bulat	95
46	Pengujian Residual ARIMA (2,0,1) harga Kol Bulat	95
47	Pengujian Model ARIMA (1,0,1) Harga Kembang kol	95
48	Pengujian Model ARIMA (1,0,2) Harga Kembang kol	95
49	Pengujian Model ARIMA (2,0,1) Harga Kembang kol	95
50	Pengujian Model ARIMA (2,0,2) Harga Kembang kol	96
51	Pengujian Residual ARIMA (1,0,1) harga Kembang Kol	96
52	Pengujian Model ARIMA (1,0,1) Harga Buncis	96
53	Pengujian Model ARIMA (1,0,2) Harga Buncis	96
54	Pengujian Model ARIMA (2,0,1) Harga Buncis	96
55	Pengujian Residual ARIMA (2,0,2) harga Buncis	93
56	Pengujian Model ARIMA (1,0,1) Harga Wortel	97
57	Pengujian Model ARIMA (1,0,2) Harga Wortel	97
58	Pengujian Model ARIMA (2,0,1) Harga Wortel	97
59	Pengujian Model ARIMA (2,0,2) Harga Wortel	97
60	Pengujian Residual ARIMA (2,0,2) harga Wortel	98
61	Pengujian Model ARIMA (2,0,1) Harga Tomat	98
62	Pengujian Model ARIMA (2,0,2) Harga Tomat	98

63	Pengujian residual ARIMA (2,0,1) harga Tomat	98
64	Pengujian Model ARIMA (1,0,1) Harga Labu Siam	98
65	Pengujian Model ARIMA (1,0,2) Harga Labu Siam	99
66	Pengujian Model ARIMA (2,0,1) Harga Labu Siam	99
67	Pengujian Model ARIMA (2,0,2) Harga Labu Siam	99
68	Pengujian residual ARIMA (2,0,2) harga Labu Siam	99
69	Pengujian Model ARIMA (1,0,3) Harga Sawi	99
70	Pengujian Model ARIMA (2,0,1) Harga Sawi	100
71	Pengujian Model ARIMA (2,0,2) Harga Sawi	100
72	Pengujian Model ARIMA (2,0,3) Harga Sawi	100
73	Pengujian residual ARIMA (1,0,3) harga Sawi	100
74	Pengujian Model ARIMA (1,0,2) Harga Daun Bawang	100
75	Pengujian Model ARIMA (1,0,3) Harga Daun Bawang	101
76	Pengujian Model ARIMA (2,0,3) Harga Daun Bawang	101
77	Pengujian residual ARIMA (1,0,2) harga Daun Bawang	101
78	Pengujian residual ARIMA (1,0,3) harga Daun Bawang	101
79	Pengujian residual ARIMA (2,0,3) harga Daun Bawang	101
80	Pengujian Model ARIMA (2,0,1) Harga Ceisim	101
81	Pengujian Model ARIMA (2,0,2) Harga Ceisim	102
82	Pengujian Model ARIMA (2,0,2) Harga Timun	102
83	Pengujian residual ARIMA (2,0,1) harga Ceisim	102
84	Pengujian residual ARIMA (2,0,2) Harga Timun	103
85	Pengujian ARCH/GARCH ARIMA (2,0,1) Harga Kol Bulat	103
86	Pengujian ARCH/GARCH ARIMA (1,0,1) Harga Kembang Kol	103
87	Pengujian ARCH/GARCH ARIMA (2,0,2) Harga Buncis	103
88	Pengujian ARCH/GARCH ARIMA (2,0,2) Harga Wortel	102
89	Pengujian ARCH/GARCH ARIMA (2,0,1) Harga Tomat	104
90	Pengujian ARCH/GARCH ARIMA (2,0,2) Harga Labu Siam	104
91	Pengujian ARCH/GARCH ARIMA (1,0,3) Harga Sawi	104
92	Pengujian ARCH/GARCH ARIMA (2,0,3) Harga Daun Bawang	105
93	Pengujian ARCH/GARCH ARIMA (2,0,1) Harga Ceisim.	105
94	Pengujian ARCH/GARCH ARIMA (2,0,2) Harga Timun	105
95	Uji Jarque-Bera Kol Bulat	106

96	Uji Jarque-Bera Kembang Kol	106
97	Uji Jarque-Bera Buncis	106
98	Uji Jarque-Bera Wortel	107
99	Uji Jarque-Bera Tomat	107
100	Uji Jarque-Bera Labu Siam	107
101	Uji Jarque-Bera Sawi	108
102	Uji Jarque-Bera Daun Bawang	108
103	Uji Jarque-Bera Ceisim	108
104	Uji Jarque-Bera Timun	109
105	ARCH Test Model ARCH (2) Kol Bulat	109
106	ARCH Test Model GARCH (2,1) Kembang Kol	109
107	ARCH Test Model ARCH (1) Buncis	109
108	ARCH Test Model ARCH (1) Wortel	109
109	ARCH Test Model GARCH (1,1) Tomat	110
110	ARCH Test Model ARCH (1) Labu Siam	110
111	ARCH Test Model GARCH (2,1) Sawi	110
112	ARCH Test Model ARCH (1) Daun Bawang	110
113	ARCH Test Model GARCH (2,1) Ceisim	110
114	ARCH Test Model ARCH (1) Timun	110
115	Perhitungan Volatilitas Kesepuluh Sayuran	110
116	Pengujian Engel-Granger Sayuran Kol Bulat	111
117	Pengujian Engel-Granger Sayuran Kembang Kol	111
118	Pengujian Engel-Granger Sayuran Buncis	111
119	Engel-Granger Sayuran Wortel	112
120	Pengujian Engel-Granger Sayuran Tomat	112
121	Pengujian Engel-Granger Sayuran Sawi	112
122	Pengujian Engel-Granger Sayuran Daun Bawang	113
123	Pengujian Regresi Sederhana Kol Bulat	113
124	Pengujian Regresi Sederhana Kembang Kol	113
125	Pengujian Regresi Sederhana Buncis	114
126	Pengujian Regresi Sederhana Wortel	114
127	Pengujian Regresi Sederhana Tomat	115
128	Pengujian Regresi Sederhana Sawi	115

BABI

PENDAHULUAN

1.1. Latar Belakang

Sayuran dalam kehidupan manusia sangat berperan dalam pemenuhan kebutuhan pangan dan peningkatan gizi, karena sayuran merupakan salah satu sumber mineral, vitamin, serat, antioksidan dan energi yang dibutuhkan oleh manusia. Namun banyak masyarakat Indonesia belum menyadari hal tersebut, ini dapat diketahui dari tingkat konsumsi sayuran masyarakat Indonesia yang masih rendah. Berdasarkan catatan Dirjen Hortikultura, Deptan, konsumsi sayuran pada tahun 2008 baru sebesar 40,9 kg/kapita/tahun. Seharusnya menurut standar lembaga pangan dan pertanian dunia (FAO) konsumsi sayuran yang ideal adalah sebesar 65,75 kg/kapita/tahun.

Kebijakan pengembangan hortikultura yang ditetapkan oleh pemerintah diarahkan untuk memperbaiki gizi masyarakat terutama untuk golongan masyarakat berpenghasilan rendah, memperbaiki devisa negara dengan mengurangi impor dan meningkatkan ekspor, memperluas kesempatan kerja dan meningkatkan pendapatan masyarakat (Direktorat Jendral Pertanian, tanpa tahun dalam Bintoro, 1984). Konsumsi sayuran berkaitan dengan produksi sayuran, jika dilihat produksi sayuran di Indonesia beberapa tahun belakangan ini mengalami peningkatan dari tahun ke tahun (hal ini dapat dilihat pada Tabel 1), tetapi tidak semua masyarakat menyadari akan pentingnya mengkonsumsi sayuran hal ini disebabkan oleh tingkat pengetahuan rata-rata masyarakat yang masih rendah.

Tabel 1. Produksi Sayuran di Indonesia tahun 2004 – 2008

Coveren	Tahun						
Sayuran	2003	2004	2005	2006	2007	2008	
Bawang Merah	762.795	757.399	732.610	794.929	802.810	824.064	
Bawang Putih	38.957	28.851	20.733	21.052	17.312	10.821	
Bawang Daun	345.720	475.571	501.437	571.264	479.924	527.648	
Kentang	1.009.979	1.072.040	1.009.619	1.011.911	1.003.732	1.044.492	

Lobak	26.340	30.625	54.226	49.344	42.076	47.968
Kol/Kubis	1.348.433	1.432.814	1.292.984	1.267.745	1.288.738	1.304.057
Petsai/Sawi	459.253	534.964	548.453	590.400	564.912	544.238
Wortel	355.802	423.722	440.001	391.370	350.170	350.453
Kacang Merah	90.281	107.281	132.218	125.251	112.271	112.065
Kembang Kol	86.222	99.994	127.320	135.517	124.252	97.703
Cabe Besar	774.408	714.705	661.730	736.019	676.828	668.970
Cabe Rawit	292.314	385.809	396.293	449.040	451.965	423.145
Tomat	657.459	626.872	647.020	629.744	635.474	689.420
Terung	301.030	312.354	333.328	358.095	390.846	389.534
Buncis	247.782	267.619	283.649	269.533	266.790	242.455
Ketimun	514.210	477.716	552.891	598.892	581.205	499.740
Labu Siam	103.451	179.845	180.029	212.697	254.056	361.301
Kangkung	208.450	212.870	229.997	292.950	335.086	292.182
Bayam	109.423	107.737	123.785	149.435	155.863	152.130
Kacang Panjang	432.365	454.999	466.387	461.239	488.499	438.262
Jamur	31.233	10.544	30.854	23.559	48.247	61.349
Melinjo	244.864	209.630	210.836	239.209	205.728	211.705
Petai	134.099	135.715	125.587	148.268	178.680	194.435
a		• • • • •				

Sumber: Departemen Pertanian 2009.

Ket : * angka sementara

Jika dilihat dari Tabel 1, dari tahun 2003 sampai tahun 2008 produksi sayur-sayuran sebagian ada yang mengalami peningkatan produksi dari tahun ke tahun dan sebagian lagi berfluktuasi dengan kecendrungan yang berbeda-beda, ada yang menurun dan ada yang meningkat. Sayuran yang mengalami peningkatan produksi adalah labu siam. sayuran yang produksinya berfluktuasi dengan kecendrungan meningkat adalah terung, tomat, cabe rawit, dll, sedangkan sayuran yang produksinya berfluktuasi dengan kecendrungan menurun adalah cabe besar. Walaupun angka produksi sudah mengalami peningkatan tetapi belum memenuhi kebutuhan konsumsi sayuran masyarakat di Indonesia. Rahardi (2001) menyatakan bahwa idealnya seseorang mengkonsumsi sayuran sekitar 200 gr/hari, ini bertujuan agar metabolisme didalam tubuh tidak terganggu sebagai akibat dari kekurangan serat. Fakta ini mengindikasikan bahwa pangsa pasar domestik untuk komoditi sayuran di indonesia masih terbuka lebar.

1.2. Perumusan Masalah

Rendahnya hasil produksi sayuran dalam negeri menyebabkan tidak tercukupinya kebutuhan konsumsi sayuran dalam negeri. Hal ini juga menyebabkan distribusi sayuran tidak merata. Karena tidak semua wilayah di Indonesia dapat menghasilkan sayuran yang sering digunakan untuk konsumsi. Distribusi yang tidak merata ini menyebabkan harga sayuran berfluktuasi. Grafik fluktuasi harga sayuran timun, tomat, buncis, wortel, dan labu siam dapat dilihat pada Gambar 1.

Sumber: Dinas Pasar Induk Kramat Jati 2009 Gambar 1. Fluktuasi harga bulanan sayuran 2006-2008

Dari Gambar 1 dapat diketahui bahwa harga sayuran timun, tomat, buncis, wortel, dan labu siam sangat berfluktuasi. Sekilas dari gambar tersebut dapat disimpulkan bahwa harga sayuran yang paling rendah fluktuasinya adalah labu siam dan yang paling tinggi fluktuasinya adalah buncis. Grafik fluktuasi harga sayuran dapat dilihat pada Gambar 2.

Sumber : Dinas Pasar Induk Kramat Jati 2009

Gambar 2. Fluktuasi harga bulanan sayuran 2006-2008

Dari Gambar 2 dapat diketahui bahwa harga sayuran timun, tomat, buncis, wortel, dan labu siam sangat berfluktuasi. Jika dilihat sekilas dari gambar tersebut dapat disimpulkan bahwa harga sayuran yang paling rendah fluktuasinya adalah ceisim dan yang paling tinggi fluktuasinya adalah daun bawang.

Harga sayuran yang berfluktuasi dapat menghasilkan pengaruh positif maupun pengaruh negatif. Pengaruh positif yang ditimbulkan oleh fluktuasi harga sayuran dapat dilihat ketika harga sayuran sedang tinggi. Ketika harga sayuran tinggi maka penjual sayuran akan mendapatkan keuntungan yang cukup besar. Sedangkan pengaruh negatif yang ditimbulkan bagi penjual sayuran akibat fluktuasi harga sayuran yaitu ketika harga sayuran sedang rendah. Pada kondisi tersebut penjual sayuran akan mendapatkan keuntungan yang sedikit.

Fluktuasi harga sayuran dapat disebabkan oleh besarnya jumlah penawaran dan besarnya jumlah permintaan. Semakin tinggi jumlah penawaran maka harga akan rendah, sebaliknya jika jumlah penawaran semakin sedikit maka harga akan semakin meningkat (cateris paribus). Tinggi rendahnya jumlah penawaran dapat disebabkan oleh terjadinya panen. Tingginya tingkat gagal panen bisa disebabkan oleh serangan hama dan faktor cuaca.

Dilihat dari permintaan, tingginya harga terjadi karena permintaan akan suatu komoditi meningkat. Sedangkan turunnya permintaan akan menyebabkan turunnya harga (cateris paribus).

Harga sayuran yang fluktuatif ini menjadikan komoditas ini sulit untuk diprediksi. Sebagai contoh kasus, penelitian ini akan mengambil lokasi di Pasar Induk Kramat Jati (PIKJ). Setiap harinya Pasar Induk Kramat Jati mendapat ratusan ton pasokan sayuran dari berbagai daerah penghasil sayuran di Indonesia. Selain itu perubahan harga sayuran di Pasar Induk Kramat Jati juga dicatat setiap harinya. Sehingga dengan adanya pencatatan harga setiap hari fluktuasi harga dapat terpantau dengan jelas.

Fluktuasi harga sayuran yang terjadi menyebabkan Badan Ketahanan Pangan mengalami kesulitan dalam mengawasi perubahan harga tesebut. Badan Ketahanan Pangan merasa kesulitan dalam menetapkan kebijakan harga untuk sayuran tersebut. Oleh karena itu dibutuhkan suatu analisis tingkat risiko harga komoditas sayuran agar fluktuasi harga dapat segera diatasi. Pengukuran tingkat risiko perlu dilakukan untuk memetakan ketidakpastian tersebut. Tingkat risiko yang ada pada harga sayuran di Pasar Induk Kramat Jati dapat memberikan gambaran berapa tingkat ketidakpastian yang akan ditanggung baik oleh penjual ataupun pembeli jika terjadi perubahan harga sayuran di pasar.

Berdasarkan uraian di atas, maka dalam penelitian ini dapat dirumuskan permasalahan sebagai berikut :

- 1. Bagaimana volatilitas harga sayuran di Pasar Induk Kramat Jati?
- 2. Bagaimana hubungan antara jumlah pasokan sayuran dengan harga sayuran di pasar Induk Kramat Jati?

1.3. Tujuan Penelitian

Tujuan dalam penelitian ini adalah:

- 1. Membandingkan volatilitas harga antar sayuran di Pasar Induk Kramat Jati.
- Menganalisis hubungan antara jumlah pasokan sayuran dengan harga sayuran di pasar induk kramat jati.

1.4. Manfaat Penelitian

Hasil penelitian ini diharapkan dapat bermanfaat bagi pemerintah seperti Badan Ketahanan Pangan dalam menentukan kebijakan harga. Selain itu dapat bermanfaat bagi masyarakat yang membacanya untuk memperluas wawasan. Untuk penulis penelitian ini tentunya bermanfaat sebagai penerapan ilmu yang diperoleh selama perkuliahan yang akan menjadi penyeimbang pada dunia kerja dalam hal memperluas wawasan dan melatih kemandirian. Hasil penelitian ini juga bermanfaat sebagai tambahan informasi dan referensi untuk penelitian selanjutnya.

1.5. Ruang Lingkup Penelitian

Penelitian ini dibatasi pada analisis volatilitas harga komoditas tujuh sayuran utama di Pasar Induk Kramat Jati namun tidak membahas faktor-faktor yang mempengaruhi volatilitas itu sendiri. Analisis volatilitas harga ini dilakukan karena adanya fluktuasi harga komoditas sayuran, dan digunakan model ARCH/GARCH untuk menganalisisnya karena model ARCH/GARCH merupakan salah satu model yang dapat mengakomodasi adanya fluktuasi atau variasi.

BAB II

TINJAUAN PUSTAKA DAN KERANGKA PEMIKIRAN

2.1. Konsep Risiko

Manusia selalu dihadapkan dengan risiko sehingga risiko menjadi bagian dari manusia. Begitu juga dengan perusahaan, perusahaan akan selalu berhadapan dengan risiko, ketidakmampuan perusahaan dalam menangani berbagai risiko yang dihadapi akan merugikan perusahaan. Menurut Kountur (2004), risiko berhubungan dengan ketidakpastian, ketidakpastian ini terjadi akibat kurangnya atau tidak tersedianya informasi yang menyangkut apa yang akan terjadi.

Selanjutnya Kountur menjelaskan ketidakpastian yang dihadapi perusahaan dapat berdampak merugikan atau menguntungkan. Apabila ketidakpastian yang dihadapi berdampak menguntungkan maka disebut dengan istilah kesempatan (*opportunity*), sedangkan ketidakpastian yang berdampak merugikan disebut sebagai risiko. Oleh sebab itu risiko adalah sebagai suatu keadaan yang tidak pasti yang dihadapi seseorang atau perusahaan yang dapat memberikan dampak yang merugikan.

Menurut Robison dan Barry (1987) dan Kadarsan (1992), risiko (*risk*) adalah kemungkinan merugi (*possibility of loss or injury*), jadi peluang akan terjadinya suatu kejadian telah diketahui terlebih dahulu yang didasarkan pada pengalaman. Ketidakpastian (*uncertainty*) adalah suatu yang tidak bias diramalkan sebelumnya (*the quality or state of being uncertain; something that is uncertain*), peluang terjadinya merugi belum diketahui sebelumnya.

Analisis risiko berhubungan dengan teori pengambilan keputusan (*decision theory*) berdasarkan konsep *expected utility* model (Robison dan Barry, 1987; Moschini dan Hennessy, 1999). Dalam menganalisis mengenai pengambilan keputusan yang berhubungan

dengan risiko dapat menggunakan *expected utility model*. Model ini digunakan karena adanya kelemahan yang terdapat pada *expexted return model*, yaitu bahwa yang ingin dicapai oleh seseorang bukan nilai (*return*) tetapi kepuasan (*utility*). Hubungan fungsi kepuasan dengan pendapatan adalah positif, dimana jika tingkat kepuasan meningkat maka pendapatan yang akan diperoleh juga meningkat. Hal ini dapat dilihat pada Gambar 3.

Sumber: Debertin, 1986

Gambar 3. Hubungan Fungsi Kepuasan dengan Pendapatan

Risiko adalah konsekuensi dari apa yang telah kita lakukan. Seluruh kegiatan yang dilakukan baik perorangan atau perusahaan juga mengandung risiko. Kegiatan bisnis sangat erat kaitannya dengan risiko. Risiko dalam kegiatan bisnis juga dikaitkan dengan besarnya *return* yang akan diterima oleh pengambil keputusan. Semakin besar risiko yang dihadapi umumnya dapat diperhitungkan bahwa *return* yang diterima juga akan lebih besar. Hubungan antara risiko dengan *return* dapat dilihat pada Gambar 4.

Sumber : Lam, 2008

Gambar 4. Hubungan Risiko dengan Return

Berdasarkan Gambar 4 dapat dilihat bahwa semakin besar risiko yang dihadapi maka semakin besar pula *return* yang diperoleh (*high risk high return*). Begitu juga sebaliknya semakin kecil risiko yang diterima semakin kecil pula *return* yang didapat.

Menurut Kountur (2004) risiko dapat dibedakan berdasarkan sudut pandang manajer perusahaan dan dari sumber penyebab risiko. Risiko menurut manajer perusahaan adalah risiko spekulatif yaitu risiko yang dihadapi perusahaan yang dapat memberikan kemungkinan merugikan dan kemungkinan menguntungkan, dan risiko murni yaitu risiko dimana tidak ada kemungkinan yang menguntungkan, yang ada hanya kemungkinan yang merugikan. Sedangkan risiko berdasarkan penyebabnya terdiri dari risiko keuangan dan risiko operasional. Risiko keuangan adalah risiko yang disebabkan oleh faktor-faktor ekonomi dan keuangan, seperti perubahan harga, tingkat bunga, dan mata uang. Risiko operasional merupakan semua risiko yang tidak termasuk pada kelompok risiko keuangan seperti risiko yang disebabkan oleh faktor manusia, alam dan teknologi. Oleh sebab itu perusahaan harus dapat memahami beberapa kategori risiko sehingga dapat mengetahui dan dapat menjelaskan risiko yang dapat dilihat dari sudut pandang yang berbeda.

2.2. Pemodelan Volatilitas Time Series Univariate

Data deret waktu dalam bidang ekonomi dan keuangan umumnya bersifat acak, disamping itu penelitian tentang adanya korelasi dalam nilai kuadrat perubahan harga

menegaskan bahwa kemungkinan terdapat beberapa proses stokastik mendasar lainnya sebagai tambahan bagi perubahan harga itu sendiri (Ramadona, 2004 <u>dalam</u> Iskandar, 2006). Proses ini sering disebut dengan volatilitas. Biasanya volatilitas diestimasi dengan cara menghitung deviasi standar perubahan harga dalam waktu tertentu, yang menentukan seberapa cepat data berubah dengan keacakannya.

Secara umum, volatilitas mengukur rata-rata fluktuasi dari data deret waktu. Namun hal ini dikembangkan lebih jauh dengan menekankan pada nilai variansi (variabel statistika yang menggambarkan seberapa jauh perubahan dan persebaran nilai fluktuasi terhadap nilai rata-rata) dari data. Dari sini dapat dikatakan bahwa nilai volatilitas sebagai nilai variansi dari data fluktuasi (data harga sayuran).

Dua pendapat besar berkembang terhadap variansi, pertama yang menganggap bahwa variansi untuk data deret waktu adalah konstan (homocedastic) dan pendapat kedua yang menganggap bahwa variansi dari data deret waktu adalah tidak konstan, artinya berubah berdasarkan waktu (heteroscedastic). Pada konsep homocedastic, koreksi nilai dari suatu error dari homocedastic dapat dihasilkan estimasi parameter yang lebih efisien. Dalam beberapa aplikasi, terdapat suatu alasan untuk mempercayai bahwa varian dari suatu error bukanlah merupakan fungsi dari variabel independen, tapi bervariasi seiring dengan waktu tergantung dari seberapa besar error yang terjadi pada masa lalu (Sianturi, 1996 dalam Iskandar, 2006).

Analisis konvensional memodelkan pendapat pertama (variansi konstan) dalam model yang disebut *autoregressive* (AR), *moving average* (MA), dan kombinasi keduanya, ARMA. Sedangkan pendapat kedua diwakili oleh metode ARCH (*autoregressive conditional heteroskedastic*) yang digeneralisasi menjadi GARCH (*generalized autoregressive conditional heteroskedastic*). Untuk data harga sayuran dengan tingkat fluktuasi yang tinggi, model autokorelasi dengan variansi berubah adalah model yang lebih realistis dibandingkan

model autokorelasi dengan variansi konstan, sehingga model ARCH merupakan model yang lebih realistis untuk memodelkan nilai volatilitas data harga sayuran dibandingkan model AR, MA, dan ARMA.

2.2.1. ARCH Error

Terdapat perbedaan mendasar dalam pembentukan dan analisis model *time series* univariate dan persamaan *cross sectional multivariate*. Pada *time series univariate*, tidak terdapat faktor heteroskedastisitas sehingga tidak dapat dilakukan uji heteroskedastisitas secara umum, seperti uji *Goldfield-quandt*, uji *White*, maupun uji *Park*. Itu pula sebabnya fenomena heteroskedastisitas umum ditemukan pada persamaan *cross section* (Newbold, 2003 <u>dalam</u> Iskandar, 2006)

Pada persamaan *time series univariate*, perhatian lebih ditunjukkan pada adanya ARCH *error*, yakni kuadrat residual yang berprilaku autoregresi. Ada tidaknya fenomena ARCH *error* dapat diketahui dengan menggunakan uji ARCH-LM. Uji ARCH-LM didasarkan atas hipotesis nol tidak terdapatnya ARCH *error*. Apabila hasil perhitungan menunjukkan penerimaan hipotesis, maka data tidak mengandung ARCH *error* dan tidak perlu dimodelkan berdasarkan ARCH.

2.2.2. Mean Process

Pembentukan model estimasi volatilitas pada model *time series univariate* memerlukan *mean process. Mean Process* diperlukan guna menghasilkan residual yang diestimasi perubahannya. *Mean process* memegang peranan penting dalam pemodelan volatilitas. Apabila pembentukan *varians process* menghasilkan insignifikansi pada parameter *mean process*, maka dengan sendirinya *varians process* tersebut gugur sebagai

suatu model yang valid, karena volatilitas yang dihasilkan amat tergantung dari jenis *mean* process yang dibentuk.

Mean process umumnya dibentuk berdasarkan persamaan ARMA. Akan tetapi tidak jarang pula mean process dihasilkan dari suatu persamaan dalam bentuk konstanta. Hal ini umumnya terjadi pada data yang diambil dalam interval yang panjang. Akibat panjangnya interval, maka fluktuasi disekitar titik keseimbangan akan berlangsung secara random. Penggunaan interval yang lebih rendah akan menyebabkan pergerakan terstruktur pada salah satu dari titik keseimbangan. Dampaknya akan terlihat pada signifikansinya autokorelasi residual yang terjadi (Newbold, 2003 dalam Iskandar, 2006)

2.2.3. Variance Process

Variance process dibentuk apabila error yang dihasilkan dari persamaan mean process mengandung ARCH error. Terdapat beberapa varian ARCH yang memiliki hubungan timbal balik antara mean process dan variance process. Salah satu contoh varian ARCH ini adalah ARCH- (ARCH in Mean). Pada model ini, mean process terdiri dari mean process umum dan salah satu komponen variance process. Hal ini mengakibatkan adanya hubungan timbal balik antara mean dan variance.

2.2.4. Metode Peramalan Box-Jenkins (Model ARIMA)

Metodologi Box-Jenkins mengacu pada himpunan prosedur untuk mengidentifikasikan, mencocokan dan memeriksa model ARIMA dengan data deret waktu. Metode ini sangatlah berbeda dengan kebanyakan metode peramalan lainnya karena model ini tidak mengasumsikan pola tertentu pada data historis deret yang diramalkan. Model ini menggunakan pendekatan iteratif pada identifikasi suatu model yang mungkin dari model umum.

Model autoregresif (AR) pertama kali dikembangkan oleh Yule (1926) dan kemudian dikembangkan oleh Walker (1931), sedangkan model Moving Average dikembangkan oleh Slutzky (1937), dan pada tahun 1938 Wold menggabungkan kedua proses tersebut. Wold membentuk model ARMA yang dikembangkan pada tiga hal. Pertama, identifikasi efisien dan prosedur penaksiran untuk proses AR, MA, dan ARMA campuran. Kedua, perluasan dari hasil tersebut untuk cakup deret berkala musiman. Ketiga, pengembangan hal-hal sederhana yang mencakup proses-proses non-stasioner. (Makridakis, et al. 1999 <u>dalam</u> Iskandar, 2006).

Bentuk umum model AR:

$$Y_{t} = \Phi_{0} + \Phi_{1}Y_{t\text{-}1} + \Phi_{2}Y_{t\text{-}2} + \ldots + \Phi_{p} Y_{t\text{-}p} + \epsilon_{t}$$

Bentuk umum model MA:

$$Y_t = \mu + \varepsilon_t - \omega_1 \varepsilon_{t-1} - \omega_1 \varepsilon_{t-2} - \dots - \omega_1 \varepsilon_{t-q}$$

Bentuk umum model ARMA:

$$Y_{t} = \Phi_{0} + \Phi_{1}Y_{t\text{-}1} + \Phi_{2}Y_{t\text{-}2} + \ldots + \Phi_{p} Y_{t\text{-}p} + \epsilon_{t} - \omega_{1}\epsilon_{t\text{-}1} - \omega_{1}\epsilon_{t\text{-}2} - \ldots - \omega_{1}\epsilon_{t\text{-}q}$$

Dimana:

Y_t = Variabel respon (terikat) pada waktu t

 $Y_{t-1}, Y_{t-2}, \dots, Y_{t-p}$ = Variabel respon pada masing – masing selang waktu

 $\Phi_0, \Phi_1, \Phi_2, \dots, \Phi_p$ = Koefisien yang diestimasi

 $\mu = Mean$ konstanta proses

 $\omega_1, \omega_2, \dots, \omega_q = \text{Koefisien yang diestimasi}$

 ε_t = Bentuk galat yang mewakili efek variabel yang tak

terjelaskan oleh model

 $\epsilon_{t\text{--}1},\,\epsilon_{t\text{--}2},\,\ldots\,,\,\epsilon_{t\text{--}4}$ = Galat pada periode waktu sebelumnya yang pada saat t nilainya menyatu dengan nilai respon Y_t

Kemudian Box dan Jenkins (1976) berhasil mencapai kesepakatan mengenai informasi relevan yang diperlukan untuk memahami dan menggunakan model-model

ARIMA untuk data *time series univariat*. Dasar pendekatan yang dikembangkan secara umum dapat dibedakan menjadi tiga tahap, yaitu tahap identifikasi, tahap estimasi dan evaluasi, dan tahap aplikasi.

2.2.4.1. Tahap Identifikasi

Pada tahap ini dilakukan identifikasi terhadap tiga hal, yaitu identifikasi terhadap kestasioneran data, identifikasi terhadap unsur musiman, dan identifikasi terhadap pola atau perilaku fungsi autokorelasi (ACF) dan fungsi autokorelasi parsial (PACF) untuk menentukan model tentative.

Kestasioneran dapat dianalisis dengan alat analisis dalam bentuk sebaran grafik (plot) dari data awal atau dari sebaran nilai autokorelasi (*Autocorrelation Functional/ACF*). Suatu data deret waktu dikatakan sudah stasioner apabila tidak menunjukkan adanya perubahan nilai tengah (tidak ada trend). Dengan melihat sebaran nilai autokorelasi (ACF), suatu data deret waktu dikatakan non-stasioner apabila plot sebaran nilai autokorelasi bergerak menuju nol secara eksponensial dengan perubahan yang sangat lambat. Selain itu dapat pula dilakukan dengan menggunakan uji *Augmented Dickey-Fuller*, dimana data sudah stasioner (tidak mengandung *unit root*) apabila nilai mutlak ADF *Test Statistic* lebih besar daripada *Critical Value*.

Kebanyakan data deret berkala memiliki unsur kecendrungan (*trend*) yang menjadikan kondisi data berkala tersebut menjadi non-stasioner. Sementara itu penerapan model ARIMA hanya dapat untuk data yang bersifat stasioner. Oleh karena itu diperlukan notasi yang dapat membedakan data awal yang bersifat non-stasioner dan data baru setelah distasionerkan, yaitu dengan melakukan proses pembedaan (*differencing*).

Ketelitian dan tingkat akurasi model ARIMA dapat ditingkatkan dengan memasukkan unsur musiman yang terkandung dalam data. Pendeteksian komponen trend (stasioneritas)

dan musiman yang terkandung dalam data digunakan bantuan (i) plot data, (ii) plot ACF, (iii) plot PACF.

Pada tahap berikutnya adalah identifikasi nilai banyaknya parameter AR non-musiman (p) dan banyaknya parameter MA non-musiman (q). untuk menentukannya dibantu oleh alat dalam plot Gambar ACF dan PACF yang secara ringkas disajikan pada Tabel 2.

Tabel 2. Penentuan Model ARIMA (p,d,q)

Model	ACF	PACF
Moving Average orde q	Cut off setelah lag q (q=1	Eksponensial Dies down
	atau 2)	dan atau sinusoidal
Autoregressive orde p	Eksponensial dies down dan atau sinusoidal	Cut off setelah lag p (p=1 atau 2)
Mixed (autoregressive- moving average) orde p,q	Eksponensial Dies down dan atau sinusoidal	Eksponensial Dies down dan atau sinusoidal

Sumber: Gaynor dan Kirpartrik (1994)

Dalam data deret waktu yang mengandung unsur musiman dan tidak stasioner maka langkah untuk proses stasioneritas dilakukan dua tahap, yaitu (i) mendeteksi pola-pola (stasioner, AR dan MA) pada unsur musiman dan (ii) mendeteksi pola-pola (stasioner, AR dan MA) pada unsur non-musiman. Untuk menentukannya dibantu oleh alat dalam plot Gambar ACF dan PACF yang secara ringkas disajikan pada Tabel 3.

Tabel 3. Penentuan Model ARIMA (p,d,q) (P,D,Q)

Model	ACF	PACF
Non seasonal-moving average (q=1 atau q=2)	Cut off setelah lag q (q=1 atau 2); koefisien korelasi tidak signifikan pada lag-	Dies down
seasonal-moving average (q=1)	lag musiman Cut off setelah lag L, koefisien korelasi tidak signifikan pada lag-lag non-musiman	Dies down
Non seasonal-moving average (q=1 atau q=2; Q=1)	Cut off setelah lag L, terdapat koefisien korelasi yang signifikan pada lag non-musiman ke-1 atau 2	Dies down
Non seasonal- autoregressive (p=1 atau 2)	Dies down	Cut off setelah lag q (q=1 atau 2); koefisien korelasi tidak signifikan pada laglag musiman
seasonal-autoregressive (p=1)	Dies down	Cut off setelah lag L, koefisien korelasi tidak signifikan pada lag-lag non-musiman
Non seasonal- autoregressive (p=1 atau 2; P=1)	Dies down	Cut off setelah lag L, terdapat koefisien korelasi yang signifikan pada lag non-musiman ke-1 atau 2
Mixed (autoregressive- moving average) non- seasonal; seasonal)	Dies down	

Sumber: Gaynor dan Kirpartrik (1994)

Eliminasi unsur musiman dilakukan dengan melakukan pembedaan terhadap data awal. Jika panjang musiman adalah S, maka pembedaan ke-S dirumuskan dengan :

Sedangkan eliminasi unsur trend dilakukan dengan pembedaan ordo ke-d terhadap data hasil eliminasi unsur musiman.

2.2.4.2. Tahap Pendugaan Parameter

Setelah berhasil menetapkan atau mengidentifikasi model sementara, tahap berikutnya adalah pendugaan parameter model sementara tersebut. Terdapat dua cara yang mendasar yang dapat digunakan untuk pendugaan terhadap parameter-parameter tersebut, yaitu:

- 1. Dengan cara mencoba-coba (*trial and error*) yaitu dengan menguji beberapa nilai yang berbeda dan memilih diantaranya dengan syarat yang meminimumkan jumlah kuadrat nilai galat (*sum square of residual*).
- 2. Perbaikan secara iteratif yaitu dengan memilih nilai taksiran awal dan kemudian membiarkan program komputer untuk memperhalus penaksiran tersebut secara iteratif.

Dengan semakin majunya program komputer untuk proses statistik maka nilai parameter dapat langsung dihasilkan oleh komputer tersebut.

2.2.4.3. Tahap Evaluasi

Setelah diperoleh persamaan untuk model tentative, dilakukan uji diagnostik untuk menguji kedekatan model dengan data. Terdapat 6 kriteria dalam evaluasi model Box-Jenkins (Gaynor, 1994 <u>dalam</u> Iskandar, 2006), yaitu :

- 1. Proses iterasi harus *convergence*. Bila ini terpenuhi maka pada *session* terdapat pernyataan *relative change in each estimate less than* 0,0010.
- 2. Residual (forecast error) random. Untuk memastikan apakah model sudah memenuhi syarat ini, dapat digunakan indikator modified Box-Pierce Statistic. Dari session diketahui bahwa nilai P-value yang lebih besar dari 0.05 menunjukkan bahwa residual sudah random atau sudah mempunyai adequate model
- 3. Kondisi stasioneritas harus terpenuhi, ditunjukkan oleh koefien MA atau AR yang kurang dari satu.

- 4. Parameter yang diestimasi berbeda nyata dengan nol, ditunjukkan oleh nilai P-value yang harus kurang dari 0.05.
- 5. Model harus memiliki *mean square error* (MSE) yang kecil. Selain itu untuk aplikasinya dapat pula dilihat dari nilai AIC dan SC terkecil.

Apabila dalam metode ARIMA masih terdapat unsur heteroskedastisitas, maka nilai kuadrat galat dari metode ini digunakan lebih lanjut ke dalam metode ARCH/GARCH.

2.2.5 Model ARCH-GARCH

ARCH (*Auto Regressive Conditional Heteroscedasticity*) adalah suatu konsep tentang fungsi otoregresi yang mengasumsikan bahwa variansi berubah terhadap waktu dan nilai variansi ini dipengaruhi oleh sejumlah data sebelumnya. Ide dibalik model ini seperti dalam model autoregresi biasa (AR) dan pergerakan (MA), yaitu untuk melihat hubungan variabel acak dengan variabel acak sebelumnya. Secara sedehana dapat kita katakan bahwa volatilitas berdasarkan model ARCH(m) mengasumsikan bahwa variansi data fluktuasi dipengaruhi oleh sejumlah m data dari fluktuasi sebelumnya. Sebagai contoh, volatilitas dengan ARCH (7) berarti variansi data fluktuasi dipengaruhi oleh tujuh data fluktuasi sebelumnya (Surya, 2003 dalam Iskandar, 2006).

Varian terdiri dari 2 komponen. Komponen pertama adalah varian yang konstan. Komponen kedua adalah ketergantungan dari varian saat ini terhadap besarnya volatilitas diperiode sebelumnya. Jika volatilitas pada periode sebelumnya besar (baik positif maupun negatif), maka varian pada saat ini akan besar pula. Sehingga model ARCH dapat dirumuskan:

$$h_t = \xi + \alpha_1 \varepsilon_{t-1}^2 + \alpha_2 \varepsilon_{t-2}^2 + \dots + \alpha_m \varepsilon_{t-m}^2$$

dimana,

h_t = Variabel respon (terikat) pada waktu t / Varian pada waktu ke t

 ξ = Varian yang konstan

 $\varepsilon_{\text{t-m}}^2$ = Suku ARCH/volatilitas pada periode sebelumnya

 $\alpha_1, \alpha_2, ..., \alpha_m$ = koefisien orde m yang diestimasikan

Dalam metode OLS, *error* diasumsikan homoskedastis, yaitu variansi dari *error* konstan dan terdistribusi normal dengan rata-rata nol. Menurut Engle, varian tergantung dari varian dimasa lalu sehingga heteroskedastisitas dapat dimodelkan dan varian di perbolehkan untuk berubah antar waktu. Dengan demikian volatilitas yang besar di masa lalu dapat ditangkap dalam model ARCH.

Kondisi yang sering terjadi adalah bahwa varian saat ini tergantung dari volatilitas beberapa periode di masa lalu. Hal ini akan menimbulkan banyaknya parameter dalam conditional variance yang harus diestimasi. Pengestimasian parameter-parameter tersebut sulit dilakukan dengan presisi yang tepat. Oleh karena itu, Surya (2003) memperkenalkan metode GARCH (Generelized Auto Regressive Conditional Heteroscedasticity) guna menghasilkan model yang parsimony (menggunakan parameter yang lebih sedikit).

Model GARCH dikembangkan dengan mengintegrasikan autoregresi dari kuadrat residual lag kedua hingga lag tak hingga ke dalam bentuk varian pada lag pertama. Model ini dikembangkan sebagai generalisasi dari model volatilitas. Secara sederhana volatilitas berdasarkan model GARCH(r,m) mengasumsikan bahwa variansi data fluktuasi dipengaruhi sejumlah m data fluktuasi sebelumnya dan sejumlah r data volatilitas sebelumnya, ide dibalik model ini seperti dalam model autoregresi biasa (AR) dan pergerakan rata-rata (MA), yaitu untuk melihat hubungan variabel acak dengan variabel acak sebelumnya.

Varian terdiri dari 3 komponen. Komponen pertama adalah varian yang konstan. Komponen kedua adalah volatilitas pada periode sebelumnya, ϵ^2_{t-m} (suku ARCH) dan komponen ketiga adalah varian pada periode sebelumnya h_{t-r} , sehingga model GARCH padat dirumuskan :

$$h_{t} = {}_{K} + \delta_{1}h_{t\text{-}1} + \delta_{2}h_{t\text{-}2} + ... + \delta_{r}h_{t\text{-}r} + \alpha_{1}\epsilon^{2}_{\text{ t-}1} + \alpha_{2}\epsilon^{2}_{\text{ t-}2} + ... + \alpha_{m}\epsilon^{2}_{\text{ t-m}}$$

dimana;

h_t = Variabel respon (terikat) pada waktu t / Varian pada waktu ke t

к = Varian yang konstan

 ϵ^2_{t-m} = Suku ARCH/volatilitas pada periode sebelumnya

 $\alpha_1, \alpha_2, ..., \alpha_m$ = Koefisien orde m yang diestimasikan $\delta_1, \delta_2, ..., \delta_r$ = Koefisien orde r yang diestimasikan

h_{t-r} = Suku GARCH/ varian pada periode sebelumnya

Proses GARCH dapat ditafsirkan sebagai proses ARMA dalam X_t^2 . Prosedur umum dalam peramalan model GARCH sama dengan prosedur yang diterapkan pada model ARIMA yaitu tahap identifikasi, estimasi, evaluasi, dan tahap aplikasi.

2.3. Teori Kointegrasi

Hubungan regresi kointegrasi adalah hubungan jangka panjang antara dua atau lebih variabel yang secara individu non-stasioner, namun deviasi dari variabel-variabel secara keseluruhan bersifat stasioner. Bentuk umum dari persamaan kointegrasi adalah sebagai berikut:

$$\Delta x_t = \sum_{i=1}^{k-1} \Gamma i \, \Delta x_{t\text{-}i} + \mu_0 + \mu_1 t + \alpha \beta x_{t\text{-}1} + e_t$$

Dimana;

Γi = Jumlah vektor kointegrasi

 $e_t = Error term$

 α_{ix} = Parameter matriks jangka pendek

 $\sigma_x \beta$ = Parameter matriks jangka panjang

Konsep keseimbangan dalam kointegrasi berbeda dengan keseimbangan dalam teori ekonomi, yaitu pada teori ekonomi keseimbangan mempunyai arti nilai transaksi yang diinginkan sama dengan nilai aktualnya. Sedangkan pada kointegrasi, keseimbangan jangka panjang merupakan hubungan jangka panjang dari peubah-peubah non-stasioner (Ulama, 2002).

Pengujian model kointegrasi ditekankan pada pengujian kestasioneran galat, sedangkan pengujian terhadap koefisien peubah kurang mendapatkan perhatian dan untuk interpretasi koefisien model kointegrasi dengan mengasumsikan kondisi yang lain tetap (cateris paribus). Dipihak lain apabila suatu model regresi dimana asumsi-asumsi tentang galat dipenuhi, secara implisit merupakan gambaran dari hubungan kointegrasi (Ulama, 2002).

Menurut Engel dan Granger (1987) dalam Darrat (2000) menyatakan bahwa, penggunaan variabel stasioner dalam persamaan regresi akan mengurangi frekuensi informasi yang rendah jika variabel-variabel tersebut berkointegrasi. Salah satu cara untuk menguji kointegrasi adalah memeriksa residual dari hubungan keseimbangan jangka panjang. Apabila

residualnya tidak stasioner, maka variabel-variabel tersebut dikatakan tidak berkointegrasi pada order (1,1) (Enders, 2004).

Konsep kointegrasi diperkenalkan oleh Engel-Granger (1987), dimana analisis formalnya dimulai dengan mendasarkan pada himpunan peubah (variabel) ekonomi yang berada pada keseimbangan jangka panjang.

$$\beta_1 x_1 + \beta_2 x_2 + ... + \beta_n x_n = 0$$
 atau $\beta x_t = 0$

penyimpangan dari keseimbangan jangka panjang disebut galat (*error*) ekuilibrium (e_t) sehingga (e_t) = βx_t dimana e_t pada kondisi stasioner. Menurut Engel-Granger komponen suatu vektor $x_t = (x_{1t}, x_{2t}, ..., x_{nt})$ dikatakan berkointegrasi ordo (d,b) dan dinyatakan dengan C1 (d,b), jika :

- 1. Semua komponen dari x_t adalah berintegrasi ordo d
- 2. Ada vektor $\beta = (\beta_1, \beta_2,..., \beta_n)$ sehingga kombinasi linear $\beta x_t = \beta_1 x_1 + \beta_2 x_2 + ... + \beta_n x_n$, adalah kointegrasi orde d-b, dimana b > 0 dan β disebut vektor kointegrasi.

Ada beberapa hal yang harus diperhatikan dalam melakukan identifikasi model kointegrasi, antara lain :

- Kointegrasi mengacu pada kombinasi linear dari peubah non-stasioner. Secara teoritis, sangat tidak mungkin terdapat hubungan jangka panjang yang non-linear diantara peubahpeubah yang terintegrasi.
- 2. Semua peubah harus mempunyai ordo integrasi sama dan tidak berarti peubah dengan integrasi sama adalah kointegrasi. Jika peubah yang ordo integrasinya tidak sama maka tidak dapat berkointegrasi. Misalnya ordo integrasi dari peubah x_{1t} dan x_{2t} masing-masing d_1 dan d_2 , dimana $d_2 > d_1$, maka kombinasi linear dari x_{1t} dan x_{2t} adalah I (d_2).
- 3. Jika komponen x_t ada sebanyak n komponen yang tidak stasioner, maka ada paling banyak n-1 vektor kointegrasi tak bebas yang linear.

4. Umumnya literatur-literatur kointegrasi memfokuskan peubah-peubah yang mempunyai satu unit root. Hal ini dikarenakan pada umumnya analisis time series hanya diaplikasikan ketika peubah-peubah adalah I(0). Dipihak lain, hanya ada beberapa peubah ekonomi yang terintegrasi. Umumnya kointegrasi merujuk pada kasus dimana variabel-variabelnya C1 (1,1).

2.4. Tinjauan Penelitian Terdahulu

Penelititan sayur-sayuran pada pacet segar, Kabupaten Cianjur, Jawa Barat yang dilakukan Sulistiyawati (2005). Analisis yang dilakukan adalah analisis pendapatan yang menggunakan analisis usahatani dan analisis imbangan penerimaan dan biaya sedangkan analisis risiko dilakukan melalui metode single index portofolio. Total penerimaan yang diterima perusahaan setiap bulan adalah Rp. 544.930.796. Dalam hal ini daun bawang memberikan kontribusi keuntungan yang lebih besar dibandingkan komoditas yang lain. Alokasi modal aktual seluruh komoditas ada yang mengalami kenaikan. Hal ini dikarenakan komoditas tersebut pada saat optimal memiliki tingkat risiko yang meningkat dibandingkan tingkat risiko pada saat aktualnya. Risiko portofolio yang dihadapi perusahaan menurun hingga Rp. 170.926.873,77 dari risiko aktualnya sebesar Rp 192.837.937,68 atau turun sebesar 11 persen. Perusahaan ini sebaiknya tetap melakukan diversifikasi komoditas karena risiko yang dihadapi lebih ringan daripada melakukan spesialisasi komoditas dalam usaha taninya.

Penelitian Rauf (2005) mengenai risiko, bertujuan untuk mengetahui kelayakan usaha ternak sapi perah di PT.X dan juga untuk mengetahui besarnya tingkat risiko yang diterima oleh perusahaan dan faktor-faktor apa saja yang mempengaruhi tingkat risiko yang diterima oleh perusahaan. Berdasarkan hasil analisis evaluasi finasial, usaha ternak sapi perah dapat dikatakan layak karena dilihat dari kriteria NPV yang lebih besar dari nol, nilai BCR lebih

dari satu dan nilai IRR lebih besar dari tingkat suku bunga. Hasil perhitungan NPV usaha peternakan sapi perah dikatakan layak karena nilai NPV yang diperoleh adalah sebesar Rp 751.892.074. Dari analisis BCR dihasilkan nilai yang lebih besar dari satu yaitu sebesar 1,16, yang berarti bahwa benefit atau manfaat yang diterima oleh usaha harus dapat menutupi seluruh biaya yang dikeluarkan. Sedangkan nilai IRR diperoleh sebesar 25,94 persen. Hal ini menunjukkan bahwa tingkat suku bunga yang akan menjadikan jumlah nilai sekarang dari penerimaan yang diterima sama dengan jumlah nilai sekarang dari pengeluaran. Berdasarkan hasil analisis tingkat risiko menunjukkan bahwa risiko usaha ternak sapi cukup tinggi dan akan menghadapi peluang merugi setiap bulan dengan nilai koefisien variasi sebesar 1,60. Berdasarkan analisis regresi diperoleh faktor-faktor yang mempengaruhi risiko yang sangat besar pada perusahaan adalah fluktuasi penerimaan susu, fluktuasi biaya pakan, dan fluktuasi penerimaan non-susu.

Penelitian yang dilakukan Robi'ah (2006) menyebutkan bahwa risiko usaha dalam beternak broiler adalah tinggi. Analisis yang digunakan adalah analisis risiko dan analisis keputusan berisiko. Tingginya tingkat risiko yang dihadapi peternak broiler adalah karena fluktuasi harga input (pakan dan DOC) dengan struktur pasar oligopoly, fluktuasi harga output dengan struktur pasar persaingan tidak sempurna dan fluktuasi hasil produksi yang bergantung pada kondisi alam yang menyebabkan kondisi ketidakpastian yang tinggi sehingga risiko yang dihadapi tinggi. Manajemen produksi pada perusahaan juga belum dilaksanakan dengan baik sehingga perlu manajemen yang baik agar risiko produksi dapat dikurangi. Analisis keputusan berisiko pada usaha ini menunjukkan bahwa periode Lebaran expected value menambah populasi (Rp 128.969.580,-) lebih besar daripada expected value tidak menambah populasi (Rp 107.474.650,-). Sedangkan pada periode tahun ajaran baru expected value mengurangi populasi (Rp 14.368.120,-) lebih kecil dari pada expected value tidak mengurangi populasi (Rp 17.960.150,-). Berdasarkan hal ini perusahaan lebih baik

menambah populasi broiler pada periode Lebaran selanjutnya dan tidak mengurangi populasi broiler pada periode tahun ajaran baru berikutnya.

Penelitian yang dilakukan Iskandar (2006) tentang analisis risiko investasi saham dengan menggunakan model ARCH-GARCH untuk mendapatkan model peramalan dan value at risk (VAR) untuk mengukur tingkat risiko. Penelitian dilakukan pada PT. BEJ dengan memilih perusahaan rokok yang dijadikan sebagai tempat penelitian yaitu PT. Gudang Garam (GGRM), PT.HM Sampoerna (HMSP) dan PT. Bentoel International Investama (RMBA). Risiko yang akan dikaji adalah risiko saham dengan adanya fluktuasi harga saham dari waktu ke waktu. Sedangkan data observasi berjumlah 1032 dari Januari 2002 sampai akhir Maret 2006.

Hasil yang diperoleh berdasarkan model ARCH-GARCH adalah tingkat risiko yang dimiliki oleh saham RMBA merupakan yang tertinggi dibandingkan dengan perusahaan rokok lainnya. Hal ini disebabkan oleh kurang diminatinya saham tersebut oleh investor karena saham RMBA lebih banyak menghasilkan tingkat return yang negatif. Saham HMSP memiliki tingkat risiko yang terendah dibandingkan kedua saham rokok lainnya. Tingkat risiko saham GGRM menempati urutan tertinggi kedua setelah saham RMBA karena saham dianggap sudah terlalu mahal oleh para investor sehingga investor cenderung irrasional dalam mengambil keputusan dalam berinvestasi pada GGRM. RMBA memiliki tingkat risiko yang terbesar dalam industri rokok namun memiliki tingkat return yang terbesar pula. Penelitian yang dilakukan Fariyanti (2008) tentang bagaimana perilaku ekonomi petani sayuran di Pengalengan Kabupaten Bandung. Analisis resiko produksi dilakukan dengan menggunakan model Generalized Autoregressive Conditional Heteroscedasticity (GARCH). Hasil yang diperoleh bahwa risiko produksi kentang maupun kubis dipengaruhi secara nyata oleh risiko produksi pada musim sebelumnya. Risiko produksi pada kentang lebih tinggi dibandingkan kubis, sedangkan risiko harga kentang lebih rendah daripada kubis. Untuk diversifikasi

usahatani kentang dan kubis memiliki risiko produksi (portofolio) lebih rendah dibandingkan spesialisasi kentang atau kubis. Penanggulangan pengurangan risiko produksi dapat dilakukan dengan menggunakan benih yang tahan dan bagus, penerapan teknologi irigasi dan melakukan diversifikasi. Sedangkan penggulangan pengurangan risiko harga yang dapat dilakukan yakni dengan mengembangkan sistem kemitraan dan pembentukan kelembagaan pemasaran.

Dari adanya penelitian terdahulu, maka dapat dilihat persamaan penelitian ini dengan penelitian terdahulu adalah dengan menggunakan analisis yang sama untuk menghitung volatilitas harga sayuran dari model ARCH-GARCH yang diramalkan. Sedangkan perbedaan penelitian ini dengan penelitian terdahulu adalah pada komoditas yang diteliti yaitu sayursayuran yang dijual di pasar induk kramat jati. Selain itu penelitian ini juga lebih memprioritaskan pada masalah fluktuasi harga sayuran.

2.5. Kerangka Pemikiran

Analisis risiko harga sayuran dilakukan pada tujuh jenis sayuran utama, yaitu kol bulat, kembang kol, buncis, wortel, tomat, sawi, dan daun bawang, yang setiap harinya dipasok dipasar induk Kramat Jati. Data yang digunakan dalam penelitian ini adalah data sekunder harian yaitu data *time series* dengan rentang periode waktu antara minggu kelima desember 2005 sampai dengan dua hari di minggu pertama maret 2009, yang diperoleh dari dinas Pasar Induk Kramat Jati. Berdasarkan perumusan masalah maka tujuan dari penelitian ini adalah pertama, menganalisis volatilitas harga sayuran di Pasar Induk Kramat Jati, dan kedua menganalisis pengaruh jumlah pasokan sayuran dan harga sayuran sehari sebelumnya terhadap harga sayuran yang akan datang di Pasar Induk Kramat Jati.

Metode yang digunakan untuk menjawab tujuan pertama adalah menggunakan model ARCH/GARCH untuk memperoleh peramalan model harga terbaik untuk ketujuh sayuran,

kemudian tahap berikutnya adalah menghitung nilai volatilitas harga sayuran untuk mengetahui seberapa besar fluktuasi yang terjadi terhadap harga sayuran. Sedangkan untuk menjawab pertanyaan kedua dilakukan pengujian dengan menggunakan *Granger Causality Test* dan regresi untuk melihat hubungan dan pengaruh pasokan sayuran dan harga sayuran sehari sebelumnya terhadap harga sayuran yang akan datang.

Berdasarkan penjabaran diatas maka kerangka pemikiran dari penelitian ini dapat dilihat pada diagram pada Gambar 5.

Gambar 5. Kerangka Pemikiran

BAB III

METODE PENELITIAN

3.1. Lokasi dan Waktu Penelitian

Penelitian ini dilaksanakan di Pasar Induk Kramat Jati, Jl. Raya Bogor KM 17 Jakarta Timur. Pemilihan lokasi penelitian ini dilakukan secara sengaja (*purposive*) dengan alasan bahwa Pasar Induk Kramat Jati menjadi acuan bagi pemerintah yaitu Badan Ketahanan Pangan dalam menentukan kebijakan harga sayuran. Penelitian ini dilaksanakan pada pertengahan bulan Juni 2009 hingga bulan Agustus 2009 dengan rincian kegiatan meliputi pengumpulan data, pengolahan data, hingga penulisan hasil penelitian dalam skripsi.

3.2. Jenis dan Sumber Data

Data yang digunakan dalam penelitian ini adalah data *time series* yang terdiri dari data sekunder. Data sekunder berasal dari data pasokan dan harga sayuran harian yang terdapat di Pasar Induk Kramat Jati. Data yang dianalisis adalah data dari Desember 2005 hingga Maret 2009. Selain itu data juga diperoleh melalui instansi-instansi pemerintahan, buku-buku, penelitian-penelitian terdahulu dan literatur yang terkait.

3.3. Metode Pengolahan dan Analisis Data

Dalam penelitian ini akan digunakan model ARCH-GARCH. Tingkat risiko harga dapat diramalkan dengan pendekatan ARCH-GARCH. Data yang ada diolah dengan menggunakan program *Minitab 14, Microsoft Excel* dan *Eviews 6*. Analisis grafik pergerakan harga dilakukan dengan plot grafik *time series* untuk melihat kecenderungan data. Tingkat risiko harga diramalkan dengan pendekatan ARCH-GARCH. Hal ini dilakukan karena ARCH-GARCH mampu menangkap *error-error* fluktuasi yang sering terjadi pada data pergerakan

harga sayuran. Pendekatan ini dilakukan dengan beberapa tahapan, tahap pertama, spesifikasi model yaitu dengan pendeteksian efek ARCH dengan uji autokorelasi dan uji ARCH diikuti dengan spesifikasi persamaan rataan yang sesuai. Tahap kedua, pendugaan parameter dan pemilihan model ragam yang terbaik yaitu dengan simulasi beberapa model ragam yang dilanjutkan dengan pendugaan parameter model kemudian membandingkan nilai AIC dan SC. Tahap ketiga, diagnostik model ragam dengan analisis galat meliputi kebebasan galat (fungsi autokorelasi), uji ARCH dan uji normalitas galat. Tahap keempat, adalah dengan melakukan perhitungan nilai volatilitas harga sayuran.

Untuk melihat pengaruh pasokan dengan perubahan harga yang terjadi dalam jangka panjang maka dilakukan uji kointegrasi. Apabila kedua data yang dianalisis tidak stasioner tapi saling berkointegrasi, berarti ada hubungan jangka panjang (atau keseimbangan) antara kedua variabel tersebut. Dalam jangka pendek ada kemungkinan terjadi ketidak-seimbangan (disekuilibrium), untuk itu tahap selanjutnya diperlukan adanya koreksi kesalahan dengan model koreksi kesalahan Engle-Grange dua tahap. Kemudian untuk melihat pengaruh dari perubahan jumlah pasokan sayuran terhadap harga sayuran dilakukan regresi sederhana dengan variabel independen berupa pasokan sayuran dan varibel dependennya harga sayuran.

3.3.1. Model ARCH-GARCH

GARCH mengasumsikan data yang akan dimodelkan memiliki standar deviasi yang selalu berubah terhadap waktu. GARCH cukup baik untuk memodelkan data yang berubah standar deviasinya, tetapi tidak untuk data yang benar-benar acak. Langkah awal untuk mengidentifikasikan model ARCH-GARCH adalah dengan melihat ada tidaknya *ARCH error* dari data pergerakan harga komoditas sayuran terpilih.

Dalam proses GARCH data *time series* yang bergerak secara acak harus dilakukan lokalisasi di suatu daerah tertentu. Lokalisasi dilakukan dengan merubah data awal ke dalam bentuk *return* yang didefinisikan sebagai :

$$\mathbf{Y}_{\mathsf{t}} = \operatorname{Ln} \ \frac{X_{t+1}}{X_{\mathsf{t}}}$$

Dimana:

Y_t = tingkat pengembalian (rupiah)

 X_t = harga sayuran pada saat t (rupiah)

 X_{t+1} = harga sayuran pada saat t+1 (rupiah)

Nilai Y_t akan bernilai positif jika harga sayuran naik terhadap X_t , dan sebaliknya akan bernilai negatif jika harga sayuran turun terhadap X_t . Data Y_t dengan pendekatan distribusi normal dengan variansi yang selalu berubah.

Misalkan Y_1 , Y_2 , ..., Y_t merupakan deret waktu pengamatan return dan (Y_t) adalah sebuah proses yang mengikuti persamaan ARMA (p,q). Dalam bentuk persamaan ditulis sebagai :

$$Y_{t} - \Phi_{1}Y_{t\text{-}1} - \Phi_{2}Y_{t\text{-}2} \text{-} \dots \text{-} \Phi_{p}Y_{t\text{-}p} = \epsilon_{t} - \theta_{1}\epsilon_{t\text{-}1} - \theta_{2}\epsilon_{t\text{-}2} \text{-} \dots \text{-} \theta_{q}\epsilon_{t\text{-}q}$$

dimana ε_t adalah white noise. Persamaan tersebut dapat ditulis :

$$(\Phi_{D}B) Yt = (\theta_{Q}B) \varepsilon_{t}$$

dimana B adalah operator *backshift*. Jika q = 0 ARMA (p,q) sama dengan proses *autoregressive* dengan orde-p, AR(p), yang dapat ditulis dalam bentuk persamaan sebagai berikut:

$$Y_t = \varphi + \Phi_1 Y_{t-1} + \Phi_2 Y_{t-2} + ... + \Phi_p Y_{t-p} + \varepsilon_t$$

dengan:

$$E(\varepsilon_t) = 0$$

$$E(\varepsilon_{t}, \varepsilon_{x}) = \begin{cases} \sigma^{2}, \text{ untuk } t = x (1) \\ 0, \text{ untuk selainnya} \end{cases}$$

Proses memiliki persamaan peragam stasioner jika 1- Φ_1 Z1- Φ_2 Z2 - ... - Φ_p Zp = 0. Peramalan linier yang optimal dari Yt untuk proses AR(p) adalah :

$$\hat{E}(Y_{t}|Y_{t-1},Y_{t-2},...) = \varphi + \Phi_{1}Y_{t-1} + \Phi_{2}Y_{t-2} + ... + \Phi_{p}Y_{t-p}$$

dimana \hat{E} (Yt| Y_{t-1}, Y_{t-2}, ...) menunjukkan proyeksi linier dari Y_t terhadap konstanta dari (Y_{t-1}, Y_{t-2}, ...). Jika rataan bersyarat dari Y_t berubah-ubah pada tiap titik waktu mengikuti persamaan di atas dan proses tersebut memiliki peragam yang stasioner, maka rataan tak bersyarat dari Y_t adalah konstan sebagai berikut:

$$E(Y_t) = \varphi / (1 - \Phi_1 - \Phi_2 - ... - \Phi_p)$$

Hal yang menarik dalam persamaan ini tidak hanya peramalan dari Y_t saja, melainkan juga peramalan varians. Varians yang berubah-ubah pada setiap titik waktu juga mempunyai implikasi terhadap validitas dan efisiensi dalam estimasi parameter $(\phi, \Phi_1, \Phi_2, ..., \Phi_p)$. Walaupun persamaan (1) berimplikasi bahwa varians bersyarat dari ε_t adalah konstan yang sebesar σ^2 , namun pada kenyataannya varians bersyarat dari ε_t dapat berubah-ubah terhadap titik waktu. Satu pendekatan yang digunakan untuk mendeskripsikan kuadrat dari ε_t yang mengikuti proses AR (m):

$$\varepsilon_{t} = \xi + \alpha_{1} \varepsilon_{t-1}^{2} + \alpha_{2} \varepsilon_{t-2}^{2} + \dots + \alpha_{m} \varepsilon_{t-m}^{2} + \omega_{t}$$
 (2)

peubah ot adalah proses white noise yang baru, dengan

$$E(\omega_t) = 0$$

$$\begin{cases} \lambda^2, \text{ untuk } t = \lambda \end{cases}$$

 $E(\omega_t, \omega_\lambda) =$

0, untuk selainnya

Karena ϵ_t juga merupakan error dari peramalan Y_t , persamaan (2) berimplikasi bahwa proyeksi linier kuadrat error dari ramalan Y_t terhadap m-kuadrat error peramalan sebelumnya adalah sebagai berikut :

$$E\left(\epsilon^{2}_{t} | \epsilon^{2}_{t-1}, \epsilon^{2}_{t-2}, ...\right) = \xi + \alpha_{1} \epsilon^{2}_{t-1} + \alpha_{2} \epsilon^{2}_{t-2} + ... + \alpha_{m} \epsilon^{2}_{t-m} +$$
 (3)

Proses *white noise* yang memenuhi persamaan (3) dikenal sebagai model *Autoregressive Conditional Heteroscedasticity* dengan orde m atau ARCH (m). Proses ini dinotasikan:

$$\varepsilon_t \sim ARCH(m)$$

Persamaan ini sering juga ditulis sebagai berikut :

$$h_t = \xi + \alpha_1 \epsilon^2_{t-1} + \alpha_2 \epsilon^2_{t-2} + ... + \alpha_m \epsilon^2_{t-m}$$

dimana $h_t = E\left(\epsilon^2_t | \epsilon^2_{t-1}, \, \epsilon^2_{t-2}, \, ... \right)$ yang sering disebut sebagai ragam. Proses $\epsilon_t \sim ARCH$ (m) dicirikan oleh $\epsilon^2_t = h_t$, Vt. Dalam hal ini Vt $\sim N$ (0,1).

Lebih umum lagi dapat diperlihatkan sebuah proses dimana ragam bersyaratnya tergantung pada jumlah lag terhingga dari ϵ^2_{t-j} :

$$h_t = \xi + \pi(L) \; \epsilon^2_t \; ... \eqno(4)$$
 dengan

$$\pi(L) = \sum_{i=1}^{\infty} \pi_{i} L^{2}$$

kemudian $\pi(L)$ diparameterisasi sebagai rasio dari 2 orde polinomial terhingga :

$$\pi(L) = \frac{\alpha(L)}{1 - \delta(L)} = \frac{\alpha_1(L)^1 + \alpha_2(L)^2 + \alpha_3(L)^3 + \dots + \alpha_m(L)^m}{1 - \delta_1(L)^1 - \delta_2(L)^2 - \delta_3(L)^3 - \dots - \delta_r(L)^r}$$

dimana diasumsikan bahwa akar dari $1-\delta(L)=0$. Jika persamaan (4) dikalikan dengan $1-\delta(L)$, maka diperoleh persamaan sebagai berikut :

 $[1-\delta(L)]$ h_t = $[1-\delta(L)]$ $\xi + \alpha(L)$ ε^2_t atau dapat ditulis sebagai berikut :

$$\begin{aligned} h_t &= \kappa + \delta_1 h_{t-1} + \delta_2 h_{t-2} + ... + \delta_r h_{t-r} + \alpha_1 \epsilon^2_{t-1} + \alpha_2 \epsilon^2_{t-2} + ... + \alpha_m \epsilon^2_{t-m} \ ... \end{aligned} \tag{5}$$
 untuk $\kappa = \begin{bmatrix} 1 - \delta_1 - \delta_2 - ... - \delta_r \end{bmatrix} \xi.$

Persamaan (5) dikenal sebagai model *General Autoregressive Conditional Heteroscedasticity* dengan orde r dan orde m yang biasa dinotasikan sebagai $\varepsilon_t \sim GARCH$.

3.3.1.1. Tahap Identifikasi

Dalam pemodelan ARCH-GARCH didahului dengan identifikasi apakah data mengandung heteroskedastisitas atau tidak. Hal ini dapat dilakukan antara lain dengan mengamati beberapa ringkasan statistik dari data. Pengujian keberadaan heteroskedastisitas dapat dilakukan dengan melihat keruncingan (kurtosis) data. Jika data tersebut memiliki nilai kurtosis yang lebih dari 3, maka data tersebut memiliki sifat heteroskedastisitas (Leblang dalam Kurniawan, 2003). Selain itu fungsi autokorelasi kuadrat pengembalian (Y_t²) juga dapat digunakan dalam pendeteksian efek ARCH-GARCH *error*. Menurut Enders (2004), jika nilai autokorelasi pada data pengembalian kuadrat (Y_t²) signifikan, maka nilai tersebut mengindikasikan bahwa data tersebut terdapat efek ARCH. Cara yang lebih terkuantifikasi dalam menguji ada tidaknya ARCH *error* ialah dengan menggunakan uji ARCH-LM. Uji ARCH-LM didasarkan atas hipotesis nol tidak terdapatnya ARCH *error*. Apabila hasil penghitungan menunjukkan penerimaan hipotesis, maka data tidak mengandung ARCH *error* dan tidak perlu dimodelkan berdasarkan ARCH.

3.3.1.2. Tahap Pendugaan Parameter

Setelah asumsi-asumsi yang diperlukan terpenuhi maka tahap selanjutnya adalah membangun model dengan mengestimasi nilai-nilai parameternya. Pendugaan parameter bertujuan untuk mencari koefisien model yang paling sesuai dengan data.

Penentuan dugaan parameter ARCH-GARCH dilakukan dengan menggunakan metode kemungkinan maksimum secara iteratif dengan Algoritma Marquardt. Dengan menggunakan bantuan program *Eviews 4.1* kita dapat mengestimasi nilai-nilai parameter yang dibutuhkan.

3.3.1.3. Tahap Pemilihan Model ARCH-GARCH Terbaik

Kriteria model yang terbaik adalah memiliki ukuran kebaikan model yang besar dan koefisien yang nyata. Terdapat dua bentuk pendekatan yang dapat digunakan sebagai ukuran kebaikan model yaitu:

1. Akaike Information Criterion (AIC)

$$AIC = \ln (MSE) + 2*K/N$$

2. Schwartz Criterion (SC)

$$SC = \ln (MSE) + [K*\log(N)/N]$$

dimana:

MSE = *Mean Square Error*

K = banyaknya parameter, yaitu (p+q+1)

N = banyaknya data pengamatan

SC dan AIC adalah dua standar informasi yang menyediakan ukuran informasi yang dapat menemukan keseimbangan antara ukuran kebaikan model dan spesifikasi model yang terlalu hemat. Nilai ini dapat membantu untuk mendapatkan seleksi model terbaik. Model yang baik dipilih berdasarkan nilai AIC dan SC yang terkecil dengan melihat juga signifikansi koefisien model. Menurut Brooks (2002), model juga dapat diseleksi berdasarkan asumsi *non-negativity constrains* yang mensyaratkan tidak boleh ada koefisien yang negatif.

Hal ini dilakukan agar tidak terjadi nilai varians yang negatif karena nilai yang negatif akan

tidak berarti (meaningless).

3.3.1.4. Tahap Pemeriksaan Model ARCH-GARCH

Pemeriksaan kecukupan model dilakukan untuk menguji asumsi, sehingga model yang

diperoleh cukup memadai. Jika model tidak memadai, maka kembali ke tahap identifikasi

untuk mendapatkan model yang lebih baik. Diagnosis model dilakukan dengan menganalisis

residual yang telah distandardisasi. Diagnosis meliputi:

1. Sebaran residual

2. Kebebasan residual yang dilihat dari fungsi autokorelasi dan kuadrat residual

3. Pengujian efek ARCH-GARCH dari residual.

Langkah awal yang dilakukan adalah memeriksa kenormalan residual baku model dengan uji

Jarque Bera (JB). Uji JB mengukur perbedaan antara Skewness (kemenjuluran) dan kurtosis

(keruncingan) data dari sebaran normal, serta memasukkan ukuran keragaman. Hipotesis

yang diuji adalah sebagai berikut:

H0: Residual baku menyebar normal

H1: Residual baku tidak menyebar normal

Statistik uji JB dihitung dengan persamaan berikut :

JB =
$$\frac{N-K}{6} (S^2 + \frac{1}{4}(k-3)^2)$$

dimana:

S: kemenjuluran

K: keruncingan

k: banyaknya koefisien penduga

N : banyaknya data pengamatan

Di bawah ini dijelaskan kondisi hipotesis nol, JB memiliki derajat bebas 2. tolak H0 jika JB > χ_2^2 (α) atau jika P (χ_2^2 > JB) kurang dari α = 0,05. Artinya data residual terbakukan dan tidak menyebar normal.

Model ARCH-GARCH menunjukkan kinerja yang baik jika dapat menghilangkan autokorelasi yang ada pada data, yaitu bila residual baku merupakan proses ingar putih. Langkah selanjutnya adalah memeriksa koefisien autokorelasi residual baku, dengan uji statistik Ljung-Box.

Uji Ljung-Box (Q*) pada dasarnya adalah pengujian kebebasan residual baku. Untuk data deret waktu dengan N pengamatan, statistik uji Ljung-Box diformulasikan sebagai :

$$Q^* = n(n+2) \frac{\sum_{t=1}^{k} r_1^2(\varepsilon_t)}{n-k}$$

dimana r_1 (ε_t) adalah autokorelasi contoh pada lag 1 dan k adalah maksimum lag yang diinginkan. Jika nilai Q* lebih besar dari nilai χ_2^2 (α) dengan derajat bebas k-p-q atau jika P ($\chi^2_{(k-p-q)} > Q^*$) lebih kecil dari taraf nyata 0,05 maka model tersebut dinyatakan tidak layak.

3.3.2. Peramalan Ragam

Setelah memperoleh model yang memadai, model tersebut digunakan untuk memperkirakan nilai volatilitas yang akan datang (σ_{t+1}) dimana $\sigma_t = \sqrt{h_t}$. Peramalan ragam untuk periode mendatang diformulasikan sebagai berikut :

$$h_t = \sigma^2 + \alpha_1 \epsilon^2_{\ t\text{--}1} + \alpha_2 \epsilon^2_{\ t\text{--}2} + ... + \alpha_m \epsilon^2_{\ t\text{--}m}$$

untuk ARCH (m), atau

$$h_t = \kappa + \delta_1 h_{t\text{-}1} + \delta_2 h_{t\text{-}2} + ... + \delta_r h_{t\text{-}r} + \alpha_1 \epsilon^2_{\ t\text{-}1} + \alpha_2 \epsilon^2_{\ t\text{-}2} + ... + \alpha_m \epsilon^2_{\ t\text{-}m}$$

untuk GARCH (r, m), dengan

$$\kappa > 0$$
, $\delta r \ge 0$ dan $\alpha_m \ge 0$

dimana:

h_t: Nilai ragam ke-t

ε: Nilai sisaan

 $\kappa: Konstanta$

 $\delta_r\,dan\;\alpha_m$: Paramater-parameter

3.3.3. Two-Step Engel-Granger Test

Menurut Granger (1969), hubungan *causality* adalah hubungan jangka pendek antara kelompok tertentu dengan menggunakan pendekatan ekonometrik. Terdapat beberapa hubungan kausalitas, yaitu hubungan kausalitas satu arah, hubungan kausalitas dua arah dan hubungan timbal balik. Dari pandangan ekonometrik, ide utama dari kausalitas adalah sebagai berikut:

$$Y_{t} = \sum_{j=1}^{k} \alpha_{j} Y_{t\text{-}j} + \sum_{j=1}^{k} \beta_{j} X_{t\text{-}j} + u_{t}$$

$$X_t = \sum_{j=1}^k \delta_j X_{t-j} + \sum_{j=1}^k \gamma_j Y_{t-j} + u_t$$

Jika X mempengaruhi Y, berarti informasi masa lalu X dapat membantu dalam memprediksikan Y, dengan kata lain, dengan menambah data masa lalu X ke regresi Y dengan data Y masa lalu maka dapat meningkatkan *explanatory power* (kekuatan penjelas) dari regresi. Kedua, data masa lalu Y tidak dapat membantu dalam memprediksikan X, karena jika X dapat membantu dalam memprediksikan Y dan Y dapat membantu dalam memprediksikan X, maka kemungkinan besar terdapat variabel lain, misalkan Z, yang mempengaruhi X dan Y.

X mempengaruhi Y atau hubungan kausalitas satu arah dari X ke Y apabila koefisien β_j tidak sama dengan nol. Hal yang sama juga berlaku jika Y mempengaruhi X atau terdapat hubungan kausalitas satu arah dari Y ke X jika koefisien γ_j tidak sama dengan nol. Apabila keduanya terjadi maka dikatakan terdapat hubungan timbal balik (*feedback relationship*) antara X dan Y.

Karena adanya keterbatasan data pasokan sayuran maka pengujian *two-step* Engel-Granger ini hanya dilakukan pada tujuh sayuran yang memiliki data pasokan antara lain kol bulat, kembang kol, buncis, wortel, tomat, sawi dan daun bawang. Sedangkan untuk labu siam, timun dan ceisim karena tidak adanya data pasokan maka tidak dilakukan pengujian ini.

3.3.4. Analisis Regresi

Analisis regresi digunakan untuk mengetahui hubungan antara suatu variabel

dependen dengan variabel independen. Bila hanya ada satu variabel dependen dan satu

variabel independen, disebut regresi sederhana. Apabila terdapat beberapa variabel

independen, analisisnya disebut dengan regresi berganda.

Analisis yang dilakukan pada penelitian ini untuk mengetahui pengaruh dari jumlah

pasokan sayuran terhadap harga sayuran adalah regresi sederhana dengan variabel

independen berupa pasokan sayuran dan variabel dependennya harga sayuran.

 $Y_t = \alpha + \beta X_t + e_i$

dimana:

Y_t: Harga sayuran di Pasar Induk Kramat Jati

X_t: Pasokan sayuran di Pasar Induk Kramat Jati

e_t Error term

Dari persamaan regresi diatas dirumuskan hipotesis sebagai berikut :

 $H_0: \beta = 0$

 $H_1: \beta < 0$

Jika β lebih kecil dari nol berarti tolak H₀ sehingga dapat disimpulkan bahwa jumlah

pasokan sayuran berpengaruh negatif terhadap harga sayuran, namun jika ternyata β sama

dengan nol berarti terima H₀ sehingga dapat disimpulkan bahwa jumlah pasokan sayuran

tidak berpengaruh terhadap harga sayuran. Karena adanya keterbatasan data pasokan sayuran

maka regresi sederhana ini hanya dilakukan pada tujuh sayuran yang memiliki data pasokan

antara lain kol bulat, kembang kol, buncis, wortel, tomat, sawi dan daun bawang. Sedangkan

untuk labu siam, timun dan ceisim karena tidak adanya data pasokan maka tidak dilakukan

analisis ini.

BAB IV

GAMBARAN UMUM

4.1. Perkembangan Produksi Sayuran Indonesia

Pengembangan budidaya sayuran memiliki prospek yang sangat baik di Indonesia karena keadaan agroklimatologis dan kondisi alam Indonesia yang sangat mendukung. Dari Tabel 5 dapat terlihat bahwa total produksi sayuran terus meningkat dari periode 2003-2008. Peningkatan tertinggi tercatat antara periode tahun 2003-2004, yaitu sekitar 5,65 persen dan terendah pada periode tahun 2004-2005 yaitu sekitar 0,47 persen.

Tabel 5. Produksi Total Sayuran di Indonesia tahun 2003 – 2008

Tahun	Produksi (Ton)
2003	8.574.870
2004	9.059.676
2005	9.101.987
2006	9.350.436
2007	9.455.464
2008*	9.563.075
Rata-rata	9.130.009

Sumber: Departemen Pertanian, 2009.

Ket : * angka sementara

Jika dilihat dari luas areal panennya, berdasarkan data yang didapat dari Departemen Pertanian, Tabel 6, luas areal panen sayuran secara keseluruhan dari periode tahun 2003-2008 mengalami fluktuasi, yaitu meningkat pada periode 2003-2004 dan 2005-2006, menurun pada periode 2004-2005 dan 2006-2008.

Tabel 6. Perkembangan Luas Areal Panen Sayuran Indonesia

Tahun	Ketersediaan Perkapita (Kg)
2003	913.445
2004	977.552
2005	944.695
2006	1.007.839
2007	1.001.606
2008*	990.915
Rata-rata	972.675

Sumber: Departemen Pertanian, 2009.

Ket : * angka sementara

Terlihat pada Tabel 6 peningkatan tertinggi tercatat pada periode tahun 2003-2004, yaitu sekitar 7,02 persen dan terendah pada periode tahun 2004-2005 yaitu sekitar 3,36 persen.

4.2. Ketersediaan Sayuran Indonesia

Sayuran merupakan sumber vitamin dan mineral di samping buah-buahan, yang dibutuhkan oleh tubuh manusia untuk menjaga kesehatan tubuhnya. Berbeda dengan buah-buahan yang beberapa produksinya tergantung terhadap musim seperti durian, rambutan, mangga, dan duku, untuk produksi sayuran tidak bergantung pada musim sehingga pasokannya selalu ada meskipun berfluktuasi. Perkembangan ketersediaan sayuran di Indonesia disajikan pada Tabel 7.

Tabel 7. Perkembangan Ketersediaan Sayuran Indonesia

Tahun	Ketersediaan Perkapita (Kg)
2003	35,36
2004	37,49
2005	39,30
2006	40,37
2007	40,14
2008*	43,01
Rata-rata	39,18

Sumber: Departemen Pertanian, 2009.

Ket : * angka sementara

Dari Tabel 7 dapat dilihat bahwa meskipun hingga tahun 2008 tingkat ketersediaan sayuran perkapita di Indonesia cenderung meningkat namun untuk konsumsi masyarakat masih di

bawah standar oleh *Food and Agriculture Organization* (FAO) yang menganjurkan konsumsi sayuran sebesar 65,75 kg/kapita/tahun.

4.3. Perkembangan Ekspor Sayuran Indonesia

Menurut Badan Pusat Statistik (BPS) tahun 2003, ekspor adalah mengeluarkan barang-barang dari peredaran dalam masyarakat dan mengirimkan ke luar negeri sesuai ketentuan pemerintah dan mengharapkan pembayaran dalam bentuk valuta asing. Tujuan ekspor antara lain adalah meningkatkan laba produsen dan devisa negara, membuka pasar baru dalam negeri, dan memberikan dorongan untuk bersaing secara internasional.

Sektor pertanian merupakan sektor yang memiliki peranan penting bagi perekonomian nasional. Sektor ini mampu memperoleh keuntungan yang menghasilkan devisa negara. Selain itu, pertanian juga merupakan salah satu sektor yang dipersiapkan untuk menghasilkan produk yang memiliki kualitas dan nilai ekonomis sehingga dapat bersaing pada era pasar bebas. Salah satu komoditas pertanian adalah sayur-sayuran yang dapat memberikan nilai tambah bagi pembangunan nasional karena dapat memberikan kontribusi yang signifikan terhadap peningkatan pendapatan dan kesejahteraan masyarakat.

Indonesia sebagai negara agraris yang memiliki kekayaan alam melimpah dan berada di daerah tropis memiliki potensi dan peluang untuk menggalakkan ekspor sayuran Indonesia ke beberapa negara di kawasan Eropa, Amerika dan Asia Pasifik. Peningkatan produksi terhadap sayuran mempengaruhi volume dan nilai ekspor produk Indonesia. Perkembangan volume dan nilai ekspor sayuran Indonesia dapat dilihat pada Tabel 8.

Tabel 8. Volume dan Nilai Ekspor Sayuran di Indonesia Tahun 2003 – 2008

Tahun	Ekspor (Kg)		
	Volume (Kg)	Nilai (US\$)	
2003	120.500.259	53.295.642	
2004	107.493.047	60.981.193	
2005	152.658.158	110.581.931	
2006	236.225.397	126.217.171	

2007	209.347.875	137.106.305
2008*	175.927.334	171.468.367
Rata-rata	167.025.345	109.941.768

Sumber: Departemen Pertanian 2009. Ket: * angka sementara

Berdasarkan Tabel 8, ekspor sayuran Indonesia selama beberapa tahun terakhir menunjukkan angka yang terus meningkat jika dilihat dari nilai ekspornya. Namun dari sisi volume ekspornya, ekspor sayuran Indonesia cenderung fluktuatif.

BAB V

PEMBAHASAN

5.1. Deskripsi Pergerakan Harga Sayuran di Pasar Induk Kramat Jati

5.1.1. Eksplorasi Pola Data Sayuran Kol Bulat

Eksplorasi pola data dilakukan terhadap data harga dan pasokan bulanan sayuran kol bulat yang ada di Pasar Induk Kramat Jati. Gambar 6 menunjukkan plot deret waktu dari pergerakan harga bulanan kol bulat dan pasokannya periode Januari 2006 hingga Desember 2008.

Sumber: Pasar Induk Kramat Jati 2009

Gambar 6. Plot Deret Waktu Harga dan Pasokan Bulanan Kol Bulat

Dari plot deret waktu bulanan terlihat bahwa harga penjualan kol bulat berkisar antara 1000 hingga 3600. Fluktuasi pola data memperlihatkan adanya beberapa periode pergerakan, yaitu harga yang cenderung menurun hingga 1000 pada periode Januari 2006 sampai Maret 2006. Hal ini kemungkinan dapat disebabkan oleh jumlah pasokan kol bulat yang tinggi pada periode tersebut. Pada periode selanjutnya yaitu Maret 2006 sampai september 2006 harga cenderung mengalami peningkatan hingga mencapai 2000, yang jika dihubungkan dengan jumlah pasokan kol bulat pada periode ini juga cenderung menurun. Peningkatan harga tertinggi hingga berkisar 3600 terjadi pada periode Oktober 2007 sampai akhir Desember 2007, padahal pada periode Oktober 2007 sampai november 2007 jumlah pasokan terlihat mengalami peningkatan, namun peningkatan harga tetap terjadi. Hal ini kemungkinan dapat

disebabkan pada periode tersebut merupakan waktu terjadinya hari raya Idul Fitri sehingga permintaan kol bulat terus meningkat.

5.1.2. Eksplorasi Pola Data Sayuran Kembang Kol

Eksplorasi pola data dilakukan terhadap data harga dan pasokan bulanan sayuran kembang kol yang ada di Pasar Induk Kramat Jati. Gambar 7 menunjukkan plot deret waktu dari pergerakan harga bulanan kembang kol dan pasokannya periode Januari 2006 hingga Desember 2008.

Sumber: Pasar Induk Kramat Jati 2009

Gambar 7. Plot Deret Waktu Harga dan Pasokan Bulanan Kembang kol

Dari plot deret waktu bulanan terlihat bahwa harga penjualan kembang kol berkisar antara 2900 hingga 8800. Pada periode Januari 2006 sampai Februari 2006 harga kembang kol terlihat naik yang dikarenakan pada periode tersebut jumlah pasokan menurun. Pada periode Februari 2006 sampai Juni 2006 jumlah pasokan kembang kol berfluktuasi dengan kecendrungan meningkat sehingga harga kembang kol cenderung mengalami penurunan. Begitu juga untuk periode-periode selanjutnya, ketika jumlah pasokan berkurang maka harga cenderung meningkat dan juga sebaliknya. Harga kembang kol mencapai titik tertinggi hingga 8800 pada bulan Desember 2008 dan harga terendah yaitu sebesar 2900 terjadi pada bulan Mei 2008.

5.1.3. Eksplorasi Pola Data Sayuran Sawi

Eksplorasi pola data dilakukan terhadap data harga dan pasokan bulanan sayuran sawi yang ada di Pasar Induk Kramat Jati. Gambar 8 menunjukkan plot deret waktu dari pergerakan harga bulanan sawi dan pasokannya periode Januari 2006 hingga Desember 2008.

: Pasar Induk Kramat Jati 2009

Gambar 8. Plot Deret Waktu Harga dan Pasokan Bulanan Sawi

Dari plot deret waktu terlihat bahwa harga bulanan sawi sangat fluktuatif dan berkisar antara 1000 hingga 2600. Pada periode Januari 2006 hingga April 2006 harga sawi mengalami penurunan hingga mencapai titik minimum yaitu sebesar 1000, yang mungkin bisa disebabkan oleh meningkatnya jumlah pasokan sawi pada periode tersebut. Pada periode April 2006 hingga akhir Desember 2006 harga sawi mengalami peningkatan hingga mencapai titik maksimum yaitu sebesar 2600. Untuk periode-periode selanjutnya harga bulanan sawi terus mengalami fluktuasi yang berkisar antara 1300 sampai 2400.

5.1.4. Eksplorasi Pola Data Sayuran Buncis

Eksplorasi pola data dilakukan terhadap data harga dan pasokan bulanan sayuran buncis yang ada di Pasar Induk Kramat Jati. Gambar 9 menunjukkan plot deret waktu dari pergerakan harga bulanan buncis dan pasokannya periode Januari 2006 hingga Desember 2008.

Gambar 9. Plot Deret Waktu Harga dan Pasokan Bulanan Buncis

Dari plot deret waktu terlihat bahwa harga bulanan buncis sangat fluktuatif dan berkisar antara 1800 hingga 5800. Fluktuasi pola data harga bulanan buncis memperlihatkan adanya beberapa periode pergerakan, pada periode Januari 2006 hingga Juni 2006 harga buncis mengalami penurunan meskipun pasokan buncis pada periode tersebut berfluktuasi dengan kecendrungan menurun. Pada periode selanjutnya yaitu Juni 2006 hingga akhir tahun 2006, harga buncis cenderung mengalami peningkatan dan pasokan buncis berfluktuasi dengan kecenderungan menurun. Untuk periode-periode berikutnya harga buncis terus berfluktuasi dan mencapai harga maksimum yaitu sebesar 5800 pada bulan desember 2008.

5.1.5. Eksplorasi Pola Data Sayuran Wortel

Eksplorasi pola data dilakukan terhadap data harga dan pasokan bulanan sayuran wortel yang ada di Pasar Induk Kramat Jati. Gambar 10 menunjukkan plot deret waktu dari pergerakan harga bulanan wortel periode Januari 2006 hingga Desember 2008.

Gambar 10. Plot Deret Waktu Harga dan Pasokan Bulanan Wortel

Dari plot deret waktu terlihat bahwa harga wortel sangat fluktuatif dan berkisar antara 1600 hingga 6500. Harga meningkat sangat signifikan pada periode bulan Oktober 2006 hingga Desember 2006. Kemungkinan hal ini dapat disebabkan oleh peningkatan permintaan karena hari raya Idul Fitri (Oktober 2006) dan cenderung menurunnya pasokan wortel pada periode tersebut. Untuk periode-periode selanjutnya fluktuasi terus terjadi dengan rentang antara 5400 sampai 1900.

5.1.6. Eksplorasi Pola Data Sayuran Tomat

Eksplorasi pola data dilakukan terhadap data harga dan pasokan bulanan sayuran tomat yang ada di Pasar Induk Kramat Jati. Gambar 11 menunjukkan plot deret waktu dari pergerakan harga bulanan tomat dan pasokannya periode Januari 2006 hingga Desember 2008.

Gambar 11. Plot Deret Waktu Harga dan Pasokan Bulanan Tomat

Dari plot deret waktu terlihat bahwa harga bulanan tomat sangat fluktuatif dan berkisar antara 1200 hingga 5100. Harga maksimum dicapai pada Januari 2007 dan harga minimun pada Oktober 2007. Fluktuasi pola data harga bulanan memperlihatkan dua pergerakan, yaitu *pertama*, harga yang cenderung naik pada periode Januari 2006 hingga Januari 2007 dan pada periode Maret 2008 hingga Desember 2008, *kedua*, harga yang cenderung turun pada periode Januari 2007 hingga Februari 2008.

5.1.7. Eksplorasi Pola Data Sayuran Daun Bawang

Eksplorasi pola data dilakukan terhadap data harga dan pasokan bulanan sayuran daun bawang yang ada di Pasar Induk Kramat Jati. Gambar 12 menunjukkan plot deret waktu dari pergerakan harga bulanan daun bawang dan pasokannya periode Januari 2006 hingga Desember 2008.

Gambar 12. Plot Deret Waktu Harga dan Pasokan Bulanan Daun Bawang

Dari plot deret waktu harian terlihat bahwa harga penjualan daun bawang berkisar antara 2000 hingga 8000. Pada periode Januari 2006 sampai November 2006 perubahan harga yang terjadi relatif stabil karena hanya berluktuasi pada kisaran 2000 hingga 3100. Menjelang berakhirnya bulan November 2006 hingga Juli 2007 harga daun bawang mengalami peningkatan cukup tinggi hingga mencapai titik maksimum yaitu 8000, hal ini kemungkinan bisa disebabkan oleh menurunnya pasokan pada periode tersebut. Untuk periode selanjutnya yaitu Juli 2007 hingga September 2008 kondisi harga menyerupai periode Januari 2006 hingga November 2006, sedangkan dari September 2008 hingga Desember 2008 harga daun bawang mengalami peningkatan kembali yang kemungkinan bisa disebabkan oleh terus turunnya pasokan daun bawang pada periode tersebut.

5.1.8. Eksplorasi Pola Data Sayuran Labu Siam

Eksplorasi pola data dilakukan terhadap data harga bulanan sayuran kol bulat yang ada di Pasar Induk Kramat Jati. Karena adanya keterbatasan berupa tidak tersedianya data pasokan, maka jumlah pasokan labu siam tidak bisa ditampilkan plot gambarnya. Gambar 13 menunjukkan plot deret waktu dari pergerakan harga bulanan labu siam periode Januari 2006 hingga Desember 2008.

Gambar 13. Plot Deret Waktu Harga Bulanan Labu Siam

Dari plot deret waktu terlihat bahwa harga bulanan labu siam berkisar antara 300 hingga 130000. Fluktuasi pola data menggambarkan adanya beberapa periode pergerakan yang secara keseluruhan memiliki kecendrungan meningkat. Pada permulaan periode yaitu Januari 2006 hingga Oktober 2006 harga mencapai titik minimun dan pada periode Oktober 2006 hingga Desember 2008 harga terus meningkat hingga mencapai titik harga maksimum.

5.1.9. Eksplorasi Pola Data Sayuran Caisim

Eksplorasi pola data dilakukan terhadap data harga bulanan sayuran caisim yang ada di Pasar Induk Kramat Jati. Untuk sayuran caisim karena adanya keterbatasan berupa tidak tersedianya data pasokan, maka jumlah pasokan caisim tidak bisa ditampilkan plot gambarnya. Gambar 14 menunjukkan plot deret waktu dari pergerakan harga bulanan caisim periode Januari 2006 hingga Desember 2008.

Sumber : Pasar Induk Kramat Jati 2009

Gambar 14. Plot Deret Waktu Harga jual Harian Caisim

Dari plot deret waktu harian terlihat bahwa harga caisim berkisar antara Rp 1000 hingga Rp 2200. Pada periode Januari 2006 hingga Desember 2006 harga caisim cenderung menurun dan mengalami peningkatan kembali saat memasuki periode Januari 2007. Harga maksimum tercapai di bulan januari 2006 kemudian mengalami penurunan signifikan hingga mencapai titik harga minimum permulaan April 2006. Secara keseluruhan dapat dilihat bahwa pergerakan harga jual caisim sangat berfluktuasi.

5.1.10. Explorasi Pola Data Sayuran Timun

Eksplorasi pola data dilakukan terhadap data harga dan pasokan bulanan sayuran timun yang ada di Pasar Induk Kramat Jati. Untuk sayuran timun karena adanya keterbatasan berupa tidak tersedianya data pasokan, maka jumlah pasokan timun tidak bisa ditampilkan plot gambarnya. Gambar 15 menunjukkan plot deret waktu dari pergerakan harga bulanan timun periode Januari 2006 hingga Desember 2008.

Sumber: Pasar Induk Kramat Jati 2009

Gambar 15. Plot Deret Waktu Harga jual Harian Timun

Dari plot deret waktu harian terlihat bahwa harga timun berkisar antara Rp 1200 hingga Rp 3300. Pada periode Januari 2006 hingga September 2006 harga timun cenderung menurun dan mengalami peningkatan kembali saat memasuki periode Oktober 2006. Harga maksimum tercapai di bulan januari 2006 kemudian mengalami penurunan signifikan hingga mencapai titik harga minimum pada permulaan September 2006. Secara keseluruhan dapat dilihat bahwa pergerakan harga jual jual timun sangat berfluktuasi.

5.2. Analisis Karakteristik Sayuran

5.2.1. Kol Bulat

Kol bulat atau biasa dikenal dengan kubis merupakan tanaman sayur famili *Brassicaceae* berupa tumbuhan berbatang lunak. Kol banyak ditanam di dataran tinggi dengan sentra terdapat di Dieng, Wonosobo, Tawangmangu, Kopeng, Salatiga, Bobot Sari, Purbalingga, Malang, Brastagi, Argalingga, Tosari, Cipanas, Lembang, Garut, Pengalengan dan beberapa daerah lain di Bali, Timor Timur, Nusa Tenggara Timur dan Irian Jaya, tetapi beberapa varietas dapat ditanam di dataran rendah. Setelah dipanen, kubis dikumpulkan pada tempat yang teduh dan tidak terkena sinar matahari langsung agar laju respirasi berkurang sehingga didapatkan kubis yang tinggi kwalitas dan kwantitasnya. Penyimpanan kubis harus

memperhatikan varietas kubis, suhu, kelembaban dan kadar air. Pada suhu 32-35 derajat F dan kelembaban udara 92-95%, kubis dapat disimpan 4-6 bulan (kubis kadar air tinggi) dan 12 bulan (kubis kadar air rendah) dengan kehilangan berat sebesar 10%.

5.2.2. Kembang Kol

Kol bunga putih merupakan tanaman sayur yang dikenal oleh masyarakat di Indonesia sebagai kol kembang. Daerah dataran tinggi (pegunungan) adalah pusat budidaya kubis bunga. Pusat Produksi tanaman ini terletak di Jawa Barat yaitu di Lembang, Cisarua, Cibodas. Tetapi saat ini kubis bunga mulai ditanam di sentra-sentra sayuran lainnya seperti Bukit Tinggi (Sumatera Barat), Pangalengan, Maja dan Garut (Jawa Barat), Kopeng (Jawa Tengah) dan Bedugul (Bali). Setelah kembang kol dipanen, hasil panen disimpan di tempat yang teduh. Penyimpanan terbaik di ruang gelap pada temperatur 20 derajat Celcius, kelembaban 75-85 persen atau kamar dingin dengan temperatur 4.4 derajat Celcius dengan kelembaban 85-95 persen. Pada ruangan-ruangan tersebut kubis akan tetap segar selama 2-3 minggu.

5.2.3. Sawi

Sawi merupakan tanaman semusim yang berdaun lonjong, halus, tidak berbulu, dan tidak berkrop. Sawi dapat di tanam di dataran tinggi maupun di dataran rendah. Akan tetapi, umumnya sawi diusahakan orang di dataran rendah, yaitu di pekarangan, di ladang, atau di sawah, jarang diusahakan di daerah pegunungan. Sawi termasuk tanaman sayuran yang tahan terhadap hujan. Sehingga ia dapat ditanam di sepanjang tahun, asalkan pada saat musim kemarau disediakan air yang cukup untuk penyiraman. Tanaman sawi dapat dipetik hasilnya setelah berumur 2 bulan.

5.2.4. Buncis

Tanaman buncis dapat dikelompokkan ke dalam kelompok kacang-kacangan (beans), yang berumur pendek dan berbentuk semak atau perdu. Tinggi tanaman buncis tipe tegak berkisar antara 30–50 cm tergantung dari varietasnya, sedangkan tipe merambat dapat mencapai 2 meter. Buncis termasuk sejenis sayuran yang tidak tahan disimpan lama dalam keadaan segar, cepat rusak atau busuk sehingga disebut sebagai perishable food. Hal ini terjadi karena setelah dipanen masih terjadi respirasi dan transpirasi sehingga lama kelamaan komoditi ini mengalami kemunduran (deterioration). Dengan kemunduran tersebut menyebabkan komoditi menjadi lebih peka terhadap serangan jasad renik sehingga komoditi menjadi rendah mutunya dan akhirnya membusuk. Mengingat sifat buncis tersebut maka diperlukan penyimpanan khusus bila buncis tidak langsung dikonsumsi. Cara penyimpanan yang biasa dilakukan adalah sistem pendinginan, dengan suhu 0-4,4 derajat Celcius dan kelembaban 85-90 persen. Pada kondisi ini, maka umur kesegaran buncis bisa mencapai 2-4 minggu.

5.2.5. Wortel

Wortel bukan tanaman asli Indonesia, berasal dari negeri yang beriklim sedang (subtropis) yaitu berasal dari Asia Timur Dekat dan Asia Tengah. Di Indonesia budidaya wortel pada mulanya hanya terkonsentrasi di Jawa Barat yaitu daerah Lembang dan Cipanas. Namun dalam perkembangannya menyebar luas ke daerah-daerah sentra sayuran di Jawa dan Luar Jawa. Berdasarkan hasil survei pertanian produksi tanaman sayuran di Indonesia (BPS, 1991) luas areal panen wortel nasional mencapai 13.398 hektar yang tersebar di 16 propinsi yaitu; Jawa Barat, Jawa Tengah, Jawa Timur, Bengkulu, Sumatera Utara, Sumatera Barat, Sumatera

Selatan, Lampung, Bali, NTT, Kalimantan Timur, Sulawesi Utara, Sulawesi Tengah, Sulawesi Selatan, Maluku dan Irian Jaya. Tanaman wortel siap untuk dipanen setelah berumur lebih kurang 3 bulan sejak sebar benih. Panen yang terlalu tua (terlambat) dapat menyebabkan umbi menjadi keras dan berkatu, sehingga kualitasnya rendah atau tidak laku dipasarkan. Demikian pula panen terlalu awal hanya akan menghasilkan umbi berukuran kecil-kecil, sehingga produksinya menurun (rendah). Penyimpanan hasil panen wortel dilakukan dalam wadah atau ruangan yang suhunya dingin dan berventilasi baik.

5.2.6. Tomat

Sentra penanaman tomat di dunia adalah di Taiwan, sedangkan di Indonesia adalah daerah Malang. Tanaman tomat termasuk tanaman semusim yang berumur sekitar 4 bulan. Bagian yang dikonsumsi dari tanaman tersebut adalah bagian buahnya. Selain memiliki rasa yang enak, buah tomat juga merupakan sumber vitamin A dan C yang sangat baik. Disamping itu, kandungan lycopenenya sangat berguna sebagai antioksidan yang dapat mencegah perkembangan penyakit kanker. Penyimpanan hasil panen tomat dilakukan di dalam ruangan bertemperatur rendah (48-50 derajat Farenheit) hal ini dimaksudkan agar kematangan buah dapat tertunda sampai beberapa hari.

5.2.7. Labu Siam

Labu ini disebut juga waluh siem, labu jepan, atau labu jipang. Tanamannya tumbuh merambat ke para-para. Buahnya agak lebih besar dari kepalan tangan. Berbentuk membulat ke bawah. Ada alur pada kulit luar yang agak mirip dengan pembagian ruang dalam buah. Kulit bertonjolan tidak teratur. Kulit buah tipis dengan daging yang tebal. Bila dikupas kandungan getahnya keluar. Oleh karena itu, perlu direndam sebentar dalam air sebelum dimasak. Ada juga yang merebus labu siam muda langsung beserta kulitnya untuk dijadikan

lalap. Labu siam dipanen pertama kali sekitar umur 4 bulan sesudah tanam. Pemanenan labu siam dilakukan dengan cara dipotong tangkainya dengan pisau, Kulitnya yang halus mudah lecet sehingga dapat mengurangi mutunya.

5.2.8. Daun Bawang

Sayuran daun bawang yang biasa di budidayakan terdiri dari jenis bawang prei, kucai, dan bawang semprong. Bawang prei di luar negeri jenis ini dikenal sebagai *leek*. Jenis ini tidak berumbi dan daunnya lebih lebar dari jenis bawang merah atau putih. Pelepahnya panjang dan liat, bagian dalam daun pipih, Kucai adalah jenis bawang daun yang cukup terkenal sebagai bahan sayuran. Daunnya kecil-kecil, panjang, pipih, dan berwama hijau tua, dan berlubang kecil. Berbeda dengan bawang prei yang tak berumbi, kucai berumbi meskipun kecil sekali. Bawang semprong atau bawang bakung daunnya berbentuk bulat panjang, berlubang seperti pipa, dan berumbi kecil. Varietas bawang semprong yang banyak ditemukan di pasar antara lain sinyonya rarahan yang dapat menghasilkan bawang daun 10,8 ton/ha di dataran rendah dan silih besar yang rata-rata produksinya di dataran rendah 11,0 ton/ha. Aroma dan rasanya yang khas membuat sayuran ini banyak digunakan sebagai campuran masakan. Setelah dipanen, daun bawang tak dapat disimpan lama. Oleh karena itu, harus segera mungkin dibawa ke pasar agar mutunya masih baik ketika dijual.

5.2.9. Timun

Timun merupakan tanaman semusim yang bersifat menjalar atau memanjat dengan perantaraan alat pemegang berbentuk pilin atau spiral. Bagian yang dimakan dari sayuran ini adalah buahnya. Biasanya buah timun dimakan mentah sebagai lalap. Atau, buah itu dapat pula diasinkan sebagai teman nasi. Buah timun banyak mengandung vitamin A, vitamin B, dan vitamin C. Timun dapat hidup pada lahan berketinggian sekitar 200-800 m dpl.

Pertumbuhan optimalnya dapat dicapai jika di tanam pada lahan yang berada pada ketinggian 400 m dpl. Sedangkan tekstur tanah yang dikehendaki adalah tanah berkadar liat rendah dengan pH tanah sekitar 6-7. Timun dapat dipanen setelah tanaman berumur 38-40 hari sejak tanam. Buah yang dipanen berukuran panjang sekitar 18-20 cm dengan berat antara 80-120 g. Buah yang berbentuk lurus berdiameter 1,5-2,5 cm dengan berat 20 g adalah buah kualitas super.

5.2.10. Caisim

Caisim merupakan jenis sayuran yang cukup populer. Dikenal pula sebagai sawi hijau, sayuran ini mudah dibudidayakan dan dapat dimakan segar (biasanya dilayukan dengan air panas) atau diolah menjadi asinan. Jenis sayuran ini mudah tumbuh di dataran rendah maupun dataran tinggi. Bila ditanam pada suhu sejuk tumbuhan ini akan cepat berbunga. Caisim biasanya dipanen seluruh bagian tubuhnya (kecuali akarnya), karena kurang disukai. Setelah di panen, jika disimpan dalam kondisi lingkungan yang sejuk maka dapat bertahan lebih kurang 1 minggu.

5.3. Analisis Volatilitas Harga Sayuran di Pasar Induk Kramat Jati

5.3.1. Deskripsi Data

Dari plot data harga jual kesepuluh sayuran (lampiran 1, 2, 3, 4, 5, 6, 7, 8, 9, dan 10) terlihat bahwa data harga jual berfluktuasi dan pada beberapa periode terdapat kenaikan atau penurunan yang tajam. Data seperti ini mengindikasikan *conditionally heteroskedastic* (Enders, 2004), dimana dalam jangka panjang varians dari harga jual konstan, tetapi ada beberapa periode dimana varians relatif tinggi.

Beberapa ringkasan statistik dari data harga jual kuadrat kesepuluh sayuran dapat dilihat di tabel 9 :

Tabel 9. Ringkasan Statistik Data Harga jual Kuadrat Kesepuluh Sayuran

Sayuran	Rata-rata	Skewness	Kurtosis
Kol Bulat	3.542.247	2,259265	8,9470
Kembang Kol	24.186.839	4,010401	26,0146
Buncis	11.877.792	1,027494	3,5951
Wortel	8.709.159	3,201993	15,3715
Tomat	10.654.343	2,410060	10,8921
Labu Siam	795.281	1,751551	11,3613
Sawi	2.458.477	3,066425	16,5778
Daun Bawang	20.469.942	1,357868	3,8302
Caisim	2.636.618	1,953388	8,4649
Timun	4.334.449	2,084468	10,7702

Sumber: Lampiran 11, 12, 13, 14, 15, 16, 17, 18, 19 dan 20

Dari tabel 9 dapat diketahui bahwa rata-rata harga kuadrat sayuran sawi selama 3 tahun menunjukkan tingkat harga sayuran kembang kol adalah yang tertinggi yaitu sebesar 24.186.839 jika dibandingkan dengan 9 sayuran lainnya, kemudian diikuti oleh daun bawang, buncis, tomat, wortel, timun kol bulat, caisim, sawi dan sayuran terakhir dengan tingkat rata-rata harga kuadrat terkecil adalah labu siam yaitu sebesar 795.281,1. Koefisien kemenjuluran (*skewness*) yang merupakan ukuran kemiringan adalah lebih besar dari 0 yang menunjukkan harga kuadrat kesepuluh sayuran tersebut memilki distribusi yang miring ke kanan artinya data cenderung menumpuk pada nilai yang rendah. Nilai *kurtosis* yang lebih dari 3 bermakna bahwa distribusi harga kuadrat kesepuluh sayuran tersebut memiliki ekor yang lebih padat dibandingkan dengan sebaran normal. Nilai kurtosis yang lebih besar dari 3 ini juga merupakan gejala awal terjadinya heteroskedastisitas (Firdaus, 2006).

5.3.2. Identifikasi Model ARCH/GARCH

Terdapat dua langkah yang termasuk ke dalam tahap spesifikasi model. Pertama, pendeteksian efek ARCH dengan uji autokorelasi dan uji ARCH. Kedua, spesifikasi persamaan rataan.

5.3.2.1. Uji Autokorelasi

Pengujian efek ARCH dapat dilakukan dengan cara menguji nilai autokorelasi pada kuadrat data tersebut dalam hal ini kuadrat harga sayuran. Fungsi autokorelasi kuadrat harga sayuran digunakan untuk mendeteksi keberadaan efek ARCH. Jika pada kuadrat harga terdapat autokorelasi (Enders dalam Iskandar, 2007), maka hal ini mengindikasikan bahwa terdapat unsur ARCH error pada data harga sayuran. Pengujian autokorelasi dari data harga jual kuadrat kesepuluh sayuran dapat dilihat di Tabel 10.

Tabel 10. Pengujian Autokorelasi harga kuadrat Kesepuluh Sayuran

Sayuran	Nilai Probability 15 lag pertama	Uji Autokorelasi
Kol Bulat	Signifikan	Ada Autokorelasi
Kembang Kol	Signifikan	Ada Autokorelasi
Buncis	Signifikan	Ada Autokorelasi
Wortel	Signifikan	Ada Autokorelasi
Tomat	Signifikan	Ada Autokorelasi
Labu Siam	Signifikan	Ada Autokorelasi
Sawi	Signifikan	Ada Autokorelasi
Daun Bawang	Signifikan	Ada Autokorelasi
Caisim	Signifikan	Ada Autokorelasi
Timun	Signifikan	Ada Autokorelasi

Sumber : Lampiran 21, 22, 23, 24, 25, 26, 27, 28, 29, dan 30

Pada Tabel 10 dapat diketahui bahwa terdapat autokorelasi pada harga kuadrat kesepuluh sayuran tersebut yang ditandai dengan nilai autokorelasi harga kuadrat yang signifikan pada 15 lag pertama. Hal ini mengindikasikan adanya efek ARCH/ARCh error pada data harga kesepuluh sayuran tersebut.

5.3.2.2. Pemilihan Persamaan Rataan

Tahapan selanjutnya dari spesifikasi model adalah pemilihan persamaan rataan.

Persamaan rataan ini diperoleh melalui serangkaian metodologi Box-Jenkins, antara lain:

5.3.2.2.1. Kestasioneran Data Harga

Salah satu cara untuk menguji apakah suatu data stasioner atau tidak adalah dengan melakukan uji akar unit. Berdasarkan uji akar unit di tingkat level (tanpa proses *differencing*), yang dilakukan pada data harga (lampiran 31, 32, 33, 34, 35, 36, 37, 38, 39, dan 40), dapat diketahui bahwa kesepuluh data harga sayuran memiliki nilai absolut *Augmented Dickey-Fuller* yang lebih besar dari nilai kritisnya pada tingkat kepercayaan 5%. Begitu juga dengan nilai probabilitas kesepuluh data harga yang lebih kecil dari 0.05, sehingga dengan begitu dapat disimpulkan bahwa kesepuluh data harga sayuran sudah stasioner.

5.3.2.2.2. Penentuan Model Tentatif

Penentuan model tentatif ARIMA didasarkan pada informasi yang terdapat dari sebaran nilai autokorelasi (ACF/PACF) untuk menduga parameter AR dan MA yang akan digunakan dalam model tentatif. Karena data sudah stasioner maka tidak perlu dilakukan proses differencing. Setelah beberapa model yg diduga terbaik sudah ditemukan, langkah berikutnya adalah menentukan nilai AIC dan SC yang terkecil. Berdasarkan proses pengujian diperoleh beberapa model arima untuk data harga kesepuluh sayuran sebagai berikut:

Tabel 11. Model ARIMA Kesepuluh Sayuran

Sayuran	Model ARIMA Terbaik
Kol Bulat	ARIMA (2,0,1)
Kembang Kol	ARIMA (1,0,1)
Buncis	ARIMA (2,0,2)
Wortel	ARIMA (2,0,2)
Tomat	ARIMA (2,0,1)

Labu Siam	ARIMA (2,0,2)
Sawi	ARIMA (1,0,3)
Daun Bawang	ARIMA (2,0,3)
Caisim	ARIMA (2,0,1)
Timun	ARIMA (2,0,2)

Sumber : lampiran 44, 47, 55, 59, 61, 67, 69, 76, 80 dan 82

Model ARIMA yang terpilih kesepuluh sayuran merupakan model yang paling memenuhi kriteria. Dari model tersebut kemudian diperiksa residualnya. Terlihat pada lampiran 46, 51, 55, 60, 63, 68, 73, 79, 83 dan 84, diketahui bahwa nilai F-*statistic* untuk model ARIMA harga sayuran dari atas (kol bulat) ke bawah (timun) secara berturut-turut sebesar 68.59449, 35,22909, 302,8039, 402,8492, 6,747073, 434,8164, 22,32068, 6,892504, dan 369,4670, dengan nilai *probability* untuk model kesepuluh sayuran yang kurang dari 0.05 mengindikasikan bahwa terdapat efek ARCH pada model ARIMA yang diestimasi.

5.3.3. Pendugaan Parameter dan Pemilihan Model Terbaik

Karena dalam metode ARIMA terdapat efek ARCH, maka dari model terbaik ARIMA ini dapat digunakan lebih lanjut untuk mencari model ARCH-GARCH. Langkah pertama dalam tahap ini adalah mensimulasikan beberapa model ragam dengan spesifikasi model rataan yang telah didapatkan, dilanjutkan dengan pendugaan parameter model menggunakan metode kemungkinan maksimum atau *quasi maksimum likelihood* (QML). Simulasi model ini mengkombinasikan nilai r = 1 dan 2 dengan nilai m = 0, 1 dan 2 sehingga terbentuk 6 model ragam.

Pemilihan model ragam yang terbaik dilakukan dengan mengambil salah satu model dengan nilai AIC atau SC terendah dan memiliki koefisien yang signifikan.

5.3.4. Pemeriksaan Model ARCH/GARCH

Model dugaan sementara kesepuluh sayuran yang terpilih adalah :

Tabel 12. Model ARCH/GARCH Terbaik Kesepuluh Sayuran

Sayuran	Model ARCH/GARCH Terbaik
Kol Bulat	ARCH (2)
Kembang Kol	GARCH (2,1)
Buncis	ARCH (1)
Wortel	ARCH (1)
Tomat	GARCH (1,1)
Labu Siam	ARCH (1)
Sawi	GARCH (2,1)
Daun Bawang	ARCH (1)
Caisim	GARCH (2,1)
Timun	ARCH (1)

Sumber : Lampiran 85, 86, 87, 88, 89, 90, 91, 92, 93, dan 94

Untuk mengetahui kecukupan model dilakukan pemeriksaan terhadap galat terbakukan dengan mengamati nlai statistik uji Jarque Bera (JB) untuk memeriksa asumsi kenormalan. Berdasarkan nilai JB kesepuluh sayuran (lampiran 95, 96, 97, 98, 99, 100, 101, 102, 103, dan 104) dengan nilai p (0.000000), berarti menolak hipotesis nol atau galat terbakukan tidak menyebar bebas. Langkah selanjutnya adalah menguji kinerja kesepuluh model. Berdasarkan uji ARCH (Lampiran 105, 106, 107, 108, 109, 110, 111, 112, 113, dan 114) yang dilakukan dapat diketahui bahwa nilai p kesepuluh model lebih besar dari 0.05 yang berarti dapat diketahui sudah tidak terdapat efek ARCH pada kesepuluh model yang diestimasi atau dengan kata lain kinerja kesepuluh model sudah baik.

5.4. Peramalan Ragam

Peramalan model ARCH-GARCH untuk tingkat risiko harga kesepuluh sayuran dapat dilihat pada tabel 13.

Tabel 13. Model ARCH/GARCH Tingkat Risiko Harga Kesepuluh Sayuran

Sayuran	Konstanta	Koefisien	Koefisien	Koefisien	Koefisien
		ϵ_{t-1}^{2}	$\mathbf{\epsilon_{t-2}}^2$	h_{t-1}	h_{t-2}
Kol Bulat	13052.3	0.178863	0.271866	-	-
Kembang Kol	235467.4	0.232129	0.182554	-0.797812	-
Buncis	83753.7	0.542999	-	-0.999324	-
Wortel	83753.7	0.542999	-	-	-

Tomat	990401.1	0.002307	-	-0.999324	-
Labu Siam	5137.0	0.567406	-	-	-
Sawi	18194.7	0.975465	0.861972	-0.859056	-
Daun Bawang	112998.6	0.769626	-	1	-
Caisim	93491.5	0.010146	-	-0.222287	-0.988627
Timun	24908.9	0.689144	-	-	-

Sumber : Lampiran 85, 86, 87, 88, 89, 90, 91, 92, 93, dan 94

Untuk sayuran kol bulat, model diatas memberikan informasi bahwa tingkat risiko harga jual sayuran kol bulat dipengaruhi oleh besarnya nilai sisaan sehari dan dua hari sebelumnya. Untuk sayuran kembang kol, dan sawi, model di atas memberikan informasi bahwa tingkat risiko harga jual sayuran dipengaruhi oleh besarnya nilai sisaan sehari sebelumnya, dua hari sebelumnya dan simpangan baku dari rataannya untuk satu hari sebelumnya. Untuk sayuran buncis dan tomat, model diatas memberikan informasi bahwa tingkat risiko harga jual sayuran dipengaruhi oleh besarnya nilai sisaan sehari sebelumnya. Untuk sayuran wortel, labu siam, daun bawang dan timun, model diatas memberikan informasi bahwa tingkat risiko harga sayuran dipengaruhi oleh besarnya nilai sisaan sehari sebelumnya. Untuk sayuran caisim, model diatas memberikan informasi bahwa tingkat risiko harga jual sayuran kembang kol dipengaruhi oleh besarnya nilai sisaan sehari sebelumnya dan simpangan baku dari rataannya untuk satu hari dan dua hari sebelumnya.

5.5. Perhitungan Volatilitas Kesepuluh Sayuran

Setelah model ARCH-GARCH dari kesepuluh sayuran diketahui, langkah berikutnya adalah menghitung volatilitas untuk mengetahui jenis sayuran yang memiliki tingkat harga paling fluktuatif. Nilai volatilitas dari kesepuluh sayuran dapat dilihat pada Tabel 14.

Tabel 14. Perhitungan Volatilitas Kesepuluh Sayuran

Sayuran	Nilai Volatilitas
Kol Bulat	147,57
Kembang Kol	498,10
Buncis	386,48
Wortel	331,67

Tomat	26,12
Sawi	85,93
Daun Bawang	513,93
Labu Siam	95,89
Caisim	287,70
Timun	235,51

Sumber : Lampiran 115

Berdasarkan Tabel 14 dapat diketahui nilai volatilitas sayuran dari yang tertinggi yaitu daun bawang dengan volatilitas sebesar 513,93 yang kemudian diikuti oleh kembang kol, buncis, wortel, caisim, timun, kol bulat, labu siam, sawi dan yang terendah adalah tomat dengan volatilitas sebesar 26,12. Sehingga dapat disimpulkan sayuran dengan tingkat harga yang berfluktuasi paling tinggi adalah daun bawang dan sayuran dengan tingkat harga yang berfluktuasi paling rendah adalah tomat. Rentang fluktuasi harga harian yang terjadi pada kesepuluh sayuran dapat dilihat pada Tabel 15.

Tabel 15. Rentang Fluktuasi Harga Kesepuluh Sayuran

Sayuran	Rentang Harga (Rp/Kg)
Kol Bulat	700 - 4200
Kembang Kol	2000 - 12000
Buncis	1200 - 6500
Wortel	1200 - 8000
Tomat	900 - 8000
Sawi	800 - 4000
Daun Bawang	1500 - 10000
Labu Siam	350 - 2400
Caisim	700 - 3500
Timun	1000 - 4000

Sumber: Lampiran 1, 2, 3, 4, 5, 6, 7, 8, 9, dan 10

Berdasarkan Tabel 15 dapat diketahui rentang fluktuasi harga terbesar dimiliki oleh kembang kol yaitu berkisar antara 2000 hingga 12000, kemudian diikuti oleh daun bawang, tomat, wortel, buncis, kol bulat, sawi, timun, caisim dan labu siam dengan rentang fluktuasi harga antara 350 hingga 2400. Dengan begitu dapat disimpulkan, meskipun daun bawang dan tomat merupakan sayuran dengan nilai volatilitas harga tertinggi dan terendah namun bukan berarti rentang fluktuasi harga daun bawang dan tomat juga yang tertinggi dan terendah.

Karena volatilitas harga ini bukan hanya menggambarkan seberapa besar fluktuasi namun juga menggambarkan seberapa cepat fluktuasi harga itu terjadi dalam periode waktu tertentu.

5.6. Identifikasi Hubungan dan Pengaruh Jumlah Pasokan Sayuran dan Kayuran Sehari Sebelumnya Terhadap Harga Sayuran Harga Sayuran

Uji *Two Step* Engel-Granger dilakukan untuk mengetahui apakah terdapat hubungan jangka panjang antara fluktuasi harga sayuran dengan perubahan jumlah pasokan sayuran. Karena berdasarkan teori *supply* dikatakan bahwa perubahan *supply* akan mempengaruhi harga, jika *supply* meningkat maka harga akan naik jika *supply* berkurang maka harga akan turun, begitu juga berlaku sebaliknya. Pengujian *two-step* Engel-Granger ini hanya dilakukan pada tujuh sayuran yang memiliki data pasokan antara lain kol bulat, kembang kol, buncis, wortel, tomat, sawi dan daun bawang. Sedangkan untuk labu siam, timun dan caisim karena tidak adanya data pasokan maka tidak dilakukan pengujian ini.

Dapat diketahui dari namanya, uji *two-step* Engel-Granger memerlukan dua tahap. Tahap pertama adalah menghitung nilai residual dari persamaan regresi awal. Tahap kedua adalah melakukan analisis regresi dengan memasukkan residual dari langkah pertama. Hasil pengujian *two-step* Engel-Granger dari ketujuh sayuran dapat dilihat di Tabel 16.

Tabel 16. Uji *two-step* Engel-Granger Ketujuh Sayuran

Sayuran	Nilai t-stasistik residual
Kol Bulat	114,72
Kembang Kol	87,18
Buncis	70,59
Wortel	75,22
Tomat	95,77
Sawi	91,96
Daun Bawang	133,97

Sumber : Lampiran 116, 117, 118, 119, 120, 121, dan 122

Ket : Semua signifikan pada taraf 5%

Berdasarsarkan Tabel 16 dapat diketahui bahwa nilai statistik t residual untuk ketujuh sayuran cukup tinggi (lebih besar dari 2) dan nilai prob residual yang signifikan pada taraf nyata 5 persen untuk ketujuh sayuran, menunjukkan bahwa model yang digunakan sudah valid. Sehingga dapat disimpulkan bahwa terdapat hubungan jangka panjang antara harga dari ketujuh sayuran yang di uji terhadap jumlah pasokan dari ketujuh sayuran tersebut.

Untuk melihat pengaruh jumlah pasokan sayuran terhadap harga sayuran maka dilakukan pengujian regresi dengan variabel dependen berupa harga sayuran dan variabel independennya jumlah pasokan sayuran dan harga sayuran sehari sebelumnya. Hasil pengujian regresi dapat dilihat pada Tabel 17.

Tabel 17. Uji Regresi Pasokan Sayuran dengan Harga Sayuran

Sayuran	Koefisien
Kol Bulat	-3,80*
Kembang Kol	-34,70*
Buncis	-41,69
Wortel	-25,74*
Tomat	-10,28*
Sawi	-0,13
Daun Bawang	-29,22*

Sumber : Lampiran 123, 124, 125, 126, 127, 128, dan 129

Ket : * Signifikan pada taraf nyata 5%

Berdasarkan Tabel 17 dapat disimpulkan bahwa jumlah pasokan dari ketujuh sayuran yang di uji berpengaruh negatif terhardap harga ketujuh sayuran tersebut. Secara umum hal ini diartikan jika jumlah pasokan sayuran meningkat maka harga sayuran akan menurun. Sebagai contoh, untuk sayuran kol bulat, jika jumlah pasokan sayuran kol bulat meningkat sebesar 1 ton maka harga sayuran akan menurun sebesar Rp. 3,8 per kilogram. Begitu juga sebaliknya, jika jumlah pasokan sayuran kol bulat menurun sebesar 1 ton maka harga sayuran akan meningkat sebesar Rp. 3,8 per kilogram. Untuk sayuran yaitu wortel, kol bulat, kembang kol, tomat, dan daun bawang masing-masing variabel independennya berpengaruh nyata atau signifikan terhadap variabel dependennya, namun untuk sayuran buncis dan sawi, variabel independennya tidak berpengaruh signifikan terhadap variabel dependennya.

BAB VI

KESIMPULAN DAN SARAN

6.1. Kesimpulan

Berdasarkan hasil analisis dan pembahasan maka dapat disimpulkan sebagai berikut :

- Perkembangan harga ketujuh sayuran dalam 3 tahun terakhir menunjukan bahwa harga ketujuh sayuran sangat berfluktuasi.
- 2. Berdasarkan dari nilai volatilitas yang diperoleh dapat diketahui sayuran dengan volatilitas harga tertinggi adalah daun bawang yang berarti bahwa tingkat harga kembang kol yang paling berfluktuasi, sedangkan sayuran dengan nilai volatilitas terendah adalah tomat yang berarti bahwa tingkat harga tomat berfluktuasi paling rendah.
- 3. Berdasarkan uji *two-step* Engel-Granger dan regresi dapat disimpulkan bahwa jumlah pasokan untuk sayuran wortel, kol bulat, kembang kol, tomat, dan daun bawang memberikan pengaruh nyata terhadap fluktuasi yang terjadi terhadap harga sayuran itu. Namun jumlah pasokan untuk sayuran buncis dan sawi tidak berpengaruh nyata terhadap fluktuasi yang terjadi terhadap harga sayuran tersebut.

6.1. Saran

- 1. Analisis dengan metode ARCH-GARCH ini cukup baik digunakan dalam menangkap error perubahan atau fluktuasi pada data yang bersifat *volatile* seperti data harga sayuran.
- 2. Agar hasil penelitian yang didapat lebih lebih rinci dan mendalam maka untuk penelitian selanjutnya masih diperlukan analisis mengenai faktor-faktor yang menyebabkan volatilitas harga pada sayuran.
- 3. Untuk melindungi petani dan konsumen dari fluktuasi harga sayuran yang tidak menentu sebaiknya pemerintah menjaga jumlah pasokan sayuran, misalnya dengan membantu petani melakukan perencanaan produksi, agar jumlah pasokan sayuran tidak terlalu berfluktuasi karena hal ini berhubungan dengan harga sayuran, sehingga dengan begitu kemungkinan fluktuasi harga sayuran dapat diminimalkan.

DAFTAR PUSTAKA

Debertin, D.L 1986. Agricultural Production Economics. Macmillan Publishing Company, New York

Enders, W. 2004. Applied Econometric Time Series. John Wiley & Son, Inc. New York.

Engle, R.F. 2001. The Use of ARCH/GARCH Models in Applied econometrics. Journal of Economic Perspectives 4: 157-168

E-views Inc. 2002. E-views Reference Manual Version 4.1.

Fariyanti, A. 2008. "Perilaku Ekonomi Rumah Tangga Petani Sayuran pada Kondisi Risiko Produksi dan Harga di Kecamatan Pandeglang Kabupaten Bandung". [Disertasi]. Program Studi. Fakultas Ekonomi dan Manajemen . Institut Pertanian Bogor.

Firdaus, M. 2006. "Analisis Deret Waktu Satu Ragam". IPB Press, Bogor.

Gaynor, Patricia E. dan R. C. Kirckpatrick. 1994. *Introduction to Time-series Modelling and Forecasting in Business and Economics*. McGraw-Hill, Inc. Singapura.

Gujarati, D. 1978. Ekonometrika Dasar. Zain dan Sumarno [penerjemah]. Erlangga, Jakarta.

http://www.bkp.deptan.go.id/index.php

http://www.forum-ekonometrika.blogspot.com

http://www.hortikultura.deptan.go.id/index.php.

http://www.id.wikipedia.org

http://www.iptek.net.id/ind/

Iskandar, E. 2006. *Analisis Risiko Investasi Saham Agribisnis Rokok dengan Pendekatan ARCH-GARCH* [Skripsi]. Program Studi Manajemen Agribisnis. Fakultas Pertanian. Institut Pertanian Bogor.

Kadarsan, H. 1992. Keuangan Pertanian dan Pembiayaan Perusahaan Agribisnis. PT. Gramedia. Jakarta

H Khurniawan, Arie W. 2004. *Pemodelan Risiko Berinvestasi Pada Saham Syariah Dengan Menggunakan Model GARCH* [Skripsi]. Jurusan Statistika, Fakultas MIPA IPB, Bogor

Kountur, R. 2004. Manajemen Risiko Operasional (Memahami Cara Mengelola Risiko Operasional Perusahaan. PPM. Jakarta.

Lam, J. 2008. Enterprise Risk Management. PT. Ray Indonesia. Jakarta Pusat.

Makridakis, Spyros et. all. 1999. *Metode dan Aplikiasi Peramalan*, Edisi Kedua Jilid Satu Terj. dari *forecasting : Method and Application, Second Edition* oleh Hari Sumitro. Binarupa Aksara: Jakarta

- Moschini, G. and D.A. Hennessy. 1999. *Uncertainty, Risk Aversion and Risk Management for Agricultural Producers*. Elsevier Science Publishers, Amsterdam.
- Newbold, Paul and Stephen J. 2003. Legbourne. Recent *Development In Time Series Volume III*. New York.
- Ramadhona, B. 2004. *Analisis Investasi dengan Pendekatan Model ARCH-dan Pendugaan Harga Saham dengan Pendekatan Model Time Series pada Perusahaan Agribisnis di PT. Bursa Efek Jakarta* [Skripsi]. Program Studi Sosial Ekonomi Pertanian. Fakultas Pertanian. Institut Pertanian Bogor.
- Ramanathan, R. 1998. *Introdutory Econometrics with Application*. Fourth edition. The Dryden Press Harcourt Brace College Publishers. USA
- Rauf, A. A. 2005. Analisis Finansial dan Risiko Usaha Ternak Sapi Perah PT. X di Kecamatan Bogor Selatan. [Skripsi]. Fakultas Peternakan. Institut Pertanian Bogor.
- Robison, L. J. and P.J. Barry. 1987. The Competitive Firm's Response to Risk. Macmillan Publisher, London.
- Robi`ah, S. 2006. Manajemen Risiko Usaha Peternakan Broiler pada Sunan Kudus Farm Kecamatan Ciampea Kabupaten Bogor. [Skripsi]. Fakultas Peternakan. Institut Pertanian Bogor.
- Sianturi, Johnny Ferry H. 1996. *Perzamalan Harga Saham di Bursa Efek Jakarta*. [Tesis]. Program Studi Magister Manajemen, Fakultas Ekonomi Universitas Indonesia
- Sulistyawati. 2005. Analisis Pendapatan dan Risiko Diversivikasi Usahatani Sayur-sayuran pada Perusahaan Pacet Segar, Kecamatan Pacet, Kabupaten Cianjur, Jawa Barat [Skripsi]. Program Studi Sosial Ekonomi Pertanian. Fakultas Pertanian . Institut Pertanian Bogor.
- Surya, Y. dan S. Hariadi. 2003. Mempelajari Ekonofisika. http://ekonofisika.com/kertas kerja.
- Siregar, Y. R. 2009. *Analisis Risiko Harga Day Old Chick (DOC) Broiler dan Layer*pada PT. Sierad Produce Tbk. Parung, Bogor [Skripsi]. Program Studi Ekstensi
 Agribisnis. Fakultas Ekonomi dan Manajemen. Institut Pertanian Bogor.
- Ulama. 2002. Peramalan dalan Selang GARCH (1,1). http://ekonofisika.com/kertas kerja.
- Winarno, W. W. 2007. "Analisis Ekonometrika dan Statistika dengan EViews". Edisi Pertama. Sekolah Tinggi Ilmu Managemen YKPN, Yogyakarta.

Lampiran 1. Plot Data Harga Kol Bulat

Lampiran 2. Plot Data Harga Kembang Kol

Lampiran 3. Plot Data Harga Buncis

Lampiran 4. Plot Data Harga Wortel

Lampiran 5. Plot Data Harga Tomat

Lampiran 6. Plot Data Harga Labu Siam

Lampiran 7. Plot Data Harga Sawi

Lampiran 8. Plot Data Harga Daun Bawang

Lampiran 9. Plot Data Harga Timun

Lampiran 10. Plot Data Harga Ceisim

Lampiran 11. Ringkasan Statistik Untuk Data Harga Kuadrat Sayuran Kol Bulat

Series: HARGA2 Sample 1 1165 Observations 1165					
Mean	3542247.				
Median	2560000.				
Maximum	17640000				
Minimum	490000.0				
Std. Dev.	2999002.				
Skewness	2.259265				
Kurtosis	8.947085				
Jarque-Bera	2707.893				
Probability	0.000000				

Lampiran 12. Ringkasan Statistik Untuk Data Harga Kuadrat Sayuran Kembang Kol

Series: HARGA2 Sample 1 1165 Observations 1165					
Mean	24186839				
Median	20250000				
Maximum 1.44E+08					
Minimum	4000000.				
Std. Dev.	15487575				
Skewness	4.010401				
Kurtosis 26.01468					
_					
Jarque-Bera	28834.17				
Probability	0.000000				

Lampiran 13. Ringkasan Statistik Untuk Data Harga Kuadrat Sayuran Buncis

Series: HARGA2 Sample 1 1165 Observations 1165						
Mean	11877792					
Median	9000000.					
Maximum	42250000					
Minimum	1440000.					
Std. Dev.	7409449.					
Skewness	1.027494					
Kurtosis	3.595166					
Jarque-Bera	222.1848					
Probability	0.000000					

Lampiran 14. Ringkasan Statistik Untuk Data Harga Kuadrat Sayuran Wortel

Series: HARGA2 Sample 1 1165 Observations 1165					
Mean	8709159.				
Median	6250000.				
Maximum 64000000					
Minimum	1210000.				
Std. Dev.	8490804.				
Skewness	3.201993				
Kurtosis 15.37150					
Jarque-Bera	9420.243				
Probability 0.000000					

Lampiran 15. Ringkasan Statistik Untuk Data Harga Kuadrat Sayuran Tomat

Series: Sample 1 1165 Observations 1165					
Mean	10654343				
Median	7290000.				
Maximum	64000000				
Minimum	810000.0				
Std. Dev.	9589590.				
Skewness	2.410060				
Kurtosis	10.89210				
Jarque-Bera	4151.222				
Probability	0.000000				

Lampiran 16. Ringkasan Statistik Untuk Data Harga Kuadrat Sayuran Labu Siam

Lampiran 17. Ringkasan Statistik Untuk Data Harga Kuadrat Sayuran Sawi

Lampiran 18. Ringkasan Statistik Untuk Data Harga Kuadrat Sayuran Daun Bawang

Lampiran 19. Ringkasan Statistik Untuk Data Harga Kuadrat Sayuran Ceisim

Series: HARGA2 Sample 1 1165 Observations 1165 2636618. 2250000. 12250000 490000.0 Median Maximum Minimum Std. Dev. 1623570. Skewness 1.953388 Kurtosis 8.464944 Jarque-Bera 2190.613 Probability 0.000000

Lampiran 20. Ringkasan Statistik Untuk Data Harga Kuadrat Sayuran Timun

Series: HARGA2 Sample 1 1165 Observations 1165						
Mean	4334449.					
Median	4000000.					
Maximum	16000000					
Minimum	1000000.					
Std. Dev.	2380678.					
Skewness	2.084468					
Kurtosis	10.77025					
Jarque-Bera	3774.444					
Probability	0.000000					

Lampiran 21. Pengujian Autokorelasi Data Harga Kuadrat Sayuran Kol Bulat

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
. ******	. ******	1	0.969	0.969	1096.2	0.000
. ******	. i	2	0.937	-0.032	2121.5	0.000
. ******	.i i	3	0.907	0.024	3083.5	0.000
******	.i i	4	0.879	0.021	3988.9	0.000
. ******	.	5	0.855	0.036	4845.6	0.000
. *****	.	6	0.832	0.017	5658.3	0.000
. *****	.	7	0.810	-0.010	6427.9	0.000
. *****	. *	8	0.791	0.068	7164.0	0.000
. *****	.	9	0.774	0.009	7869.2	0.000
. *****	.	10	0.759	0.026	8547.3	0.000
. *****	.	11	0.742	-0.026	9196.1	0.000
. *****	.	12	0.724	-0.014	9814.7	0.000
. *****	. *	13	0.714	0.125	10417.	0.000
. ****	.	14	0.708	0.049	11008.	0.000
. ****	.l l	15	0.700	-0.013	11587.	0.000

Lampiran 22. Pengujian Autokorelasi Data Harga Kuadrat Sayuran Kembang Kol

_	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
	. ******	. ******	1	0.944	0.944	1040.1	0.000
	. ******	. **	2	0.916	0.237	2022.0	0.000
	. ******	.	3	0.879	-0.042	2926.3	0.000
	. ******	.	4	0.851	0.040	3774.8	0.000
	- *****	.	5	0.824	0.031	4570.6	0.000

. *****	. *		6	0.808	0.104	5337.3	0.000
. *****	*	İ	7	0.782	-0.059	6054.9	0.000
. *****	.i	ĺ	8	0.767	0.062	6747.0	0.000
. *****		ĺ	9	0.748	0.014	7405.5	0.000
. *****	*		10	0.724	-0.077	8022.0	0.000
*****		ĺ	11	0.704	0.024	8606.2	0.000
. *****	*		12	0.674	-0.103	9141.2	0.000
. *****	.		13	0.649	0.006	9638.5	0.000
. *****			14	0.619	-0.056	10092.	0.000
. ****	.l		15	0.597	0.020	10513.	0.000

Lampiran 23. Pengujian Autokorelasi Data Harga Kuadrat Sayuran Buncis

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
. ******	. ******	1	0.945	0.945	1042.2	0.000
. *****	. *	2	0.906	0.126	2001.3	0.000
. ******	. *	3	0.875	0.079	2897.4	0.000
. ******	.i i	4	0.848	0.045	3739.8	0.000
. *****	.i i	5	0.818	-0.022	4524.1	0.000
. *****	.i i	6	0.793	0.035	5261.9	0.000
. *****	.i i	7	0.768	0.000	5954.6	0.000
. *****	.i i	8	0.749	0.050	6613.4	0.000
. *****	.	9	0.729	0.013	7239.2	0.000
. *****	.	10	0.714	0.036	7838.7	0.000
- ****	.i i	11	0.699	0.023	8414.1	0.000
. *****	.	12	0.688	0.039	8971.7	0.000
- ****	.i i	13	0.675	0.007	9509.6	0.000
. *****	.	14	0.664	0.019	10031.	0.000
- ****		15	0.653	0.010	10535.	0.000

Lampiran 24. Pengujian Autokorelasi Data Harga Kuadrat Sayuran Wortel
Autocorrelation Partial Correlation AC PAC Q-Stat Prob

_	Autocorrelation	Partial Correlation		AC	PAC	Q- 5เลเ	Prob
	. ******	. ******	1	0.959	0.959	1073.7	0.000
	. ******		2	0.923	0.042	2069.0	0.000
	. ******	. *	3	0.900	0.150	3016.5	0.000
	. ******	.	4	0.880	0.046	3923.3	0.000
	. ******	. *	5	0.869	0.136	4808.3	0.000
	. ******	.	6	0.856	0.009	5668.1	0.000
	. ******	. *	7	0.854	0.178	6524.4	0.000
	. ******	.	8	0.851	0.033	7376.2	0.000
	. *****	*	9	0.834	-0.116	8193.9	0.000
	. *****	.	10	0.818	0.007	8980.9	0.000
	. *****	*	11	0.797	-0.086	9728.9	0.000
	. *****	*	12	0.771	-0.099	10430.	0.000
	. *****	.	13	0.751	-0.008	11096.	0.000
	. *****	. *	14	0.738	0.066	11739.	0.000
	. *****	. *	15	0.742	0.170	12390.	0.000

Lampiran 25. Pengujian Autokorelasi Data Harga Kuadrat Sayuran Tomat Autocorrelation Partial Correlation AC PAC Q-Stat Prob

oon clation	T ditial Correlation		710	1 / (0	Q Olai	1 100
. ******	. ******	1	0.958	0.958	1071.6	0.000
. ******	.i i	2	0.918	0.010	2057.4	0.000
. ******	.i i	3	0.877	-0.041	2957.4	0.000
. *****	*	4	0.833	-0.059	3769.4	0.000
. *****		5	0.795	0.053	4510.1	0.000
. *****	.	6	0.760	0.025	5188.6	0.000
. *****	.	7	0.724	-0.042	5804.3	0.000
. *****	.	8	0.692	0.026	6367.6	0.000
. *****	*	9	0.656	-0.064	6874.5	0.000
. *****	. *	10	0.628	0.068	7338.1	0.000
. *****	. *	11	0.612	0.147	7779.2	0.000
. *****	. *	12	0.605	0.110	8210.5	0.000
. *****	.	13	0.600	0.014	8635.3	0.000

. *****		14	0.601	0.056	9061.5	0.000
. *****	i .i	ĺ 15	0.596	-0.034	9481.9	0.000

Lampiran 26. Pengujian Autokorelasi Data Harga Kuadrat Sayuran Labu Siam

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
******	. ******	1	0.931	0.931	1013.2	0.000
. ******	. *	2	0.884	0.126	1927.0	0.000
. ******	. *	3	0.849	0.095	2771.1	0.000
. *****	.i i	4	0.808	-0.041	3534.7	0.000
. *****	. *	5	0.779	0.076	4245.2	0.000
. *****	*	6	0.741	-0.060	4889.4	0.000
- ****	*	7	0.694	-0.089	5455.4	0.000
- ****	. **	8	0.688	0.249	6010.9	0.000
- *****	. *	9	0.684	0.106	6560.6	0.000
- ****	. *	10	0.680	0.078	7105.7	0.000
- *****	.	11	0.676	-0.007	7644.0	0.000
- ****	.	12	0.671	0.048	8174.5	0.000
- *****	.	13	0.668	0.010	8701.1	0.000
- ****	.	14	0.665	-0.028	9222.8	0.000
. ****	. *	15	0.662	0.080	9741.0	0.000

Lampiran 27. Pengujian Autokorelasi Data Harga Kuadrat Sayuran Sawi

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
. ******	******	1	0.921	0.921	989.93	0.000
. *****	<u>.</u> i i	2	0.843	-0.034	1820.3	0.000
. *****	. *	3	0.785	0.087	2540.5	0.000
. *****	. *	4	0.748	0.111	3195.5	0.000
. *****	. *	5	0.735	0.156	3828.8	0.000
. *****	.	6	0.717	-0.003	4432.1	0.000
. *****	. *	7	0.705	0.089	5015.4	0.000
. *****	.	8	0.689	0.014	5572.6	0.000
. *****	.	9	0.662	-0.041	6087.1	0.000
. ****	*	10	0.623	-0.084	6543.1	0.000
. ****	*	11	0.572	-0.102	6928.0	0.000
. ****	. .	12	0.533	0.004	7262.4	0.000
. ****	. * ′	13	0.517	0.085	7578.0	0.000
. ****	. .	14	0.513	0.041	7888.3	0.000
. ****	. .	15	0.498	-0.055	8181.1	0.000

Lampiran 28. Pengujian Autokorelasi Data Harga Kuadrat Sayuran Daun Bawang Autocorrelation Partial Correlation AC PAC Q-Stat Prob

_	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
	. ******	. ******	1	0.971	0.971	1102.0	0.000
	. ******	.i i	2	0.944	0.017	2144.8	0.000
	. ******	. *	3	0.924	0.102	3143.9	0.000
	. ******	. *	4	0.909	0.095	4111.8	0.000
	. ******	. *	5	0.900	0.118	5061.3	0.000
	. ******	.i i	6	0.891	0.038	5993.5	0.000
	. ******		7	0.880	-0.021	6902.0	0.000
	. ******	.] [8	0.867	0.010	7785.9	0.000
	. ******		9	0.856	0.026	8648.1	0.000
	. ******	. *	10	0.852	0.122	9502.6	0.000
	. *****	*	11	0.843	-0.084	10339.	0.000
	. *****	*	12	0.826	-0.111	11144.	0.000
	. *****	.	13	0.808	-0.039	11915.	0.000
	. *****	. '	14	0.792	0.004	12656.	0.000
	. *****	. *	15	0.784	0.091	13382.	0.000

Lampiran 29. Pengujian Autokorelasi Data Harga Kuadrat Sayuran Timun Autocorrelation _ Partial Correlation _ AC _ PAC _ Q-Stat _ Prob

	*****	- ******	1	0.927	0.927	1003.1	0.000
اً.	*****	i	2	0.863	0.031	1874.2	0.000
	*****	. [*]	3	0.814	0.073	2649.9	0.000
	*****	i .i i	4	0.768	0.003	3339.8	0.000
	*****		5	0.726	0.023	3957.6	0.000
	*****		6	0.693	0.048	4521.4	0.000
	*****		7	0.662	0.012	5036.6	0.000
	*****	*	8	0.618	-0.095	5486.1	0.000
	****]	9	0.575	-0.027	5874.5	0.000
	****	. 10	0	0.541	0.032	6218.4	0.000
	****	1	1	0.506	-0.013	6520.5	0.000
	****	. 1:	2	0.475	0.004	6786.3	0.000
	***	. 1:	3	0.447	0.000	7021.7	0.000
	***	. 14	4	0.418	-0.014	7228.1	0.000
	***	* 1:	5	0.378	-0.083	7397.1	0.000

Lampiran 30. Pengujian Autokorelasi Data Harga Kuadrat Sayuran Ceisim

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
. *****	. ******	1	0.904	0.904	954.55	0.000
. *****	. *	2	0.830	0.071	1760.5	0.000
. *****	. *	3	0.775	0.072	2462.5	0.000
. *****	. *	4	0.738	0.095	3099.5	0.000
*****	. *	5	0.710	0.071	3691.0	0.000
- ****	*	6	0.668	-0.058	4215.2	0.000
- *****	.	7	0.630	0.007	4681.0	0.000
- ****	.i i	8	0.600	0.037	5104.6	0.000
. ****	*	9	0.559	-0.077	5471.9	0.000
. ****		10	0.525	0.012	5796.9	0.000
. ****	.	11	0.498	0.029	6089.6	0.000
. ****	.	12	0.466	-0.040	6345.6	0.000
. ***	.i i	13	0.438	-0.001	6571.6	0.000
. ***	.	14	0.409	0.004	6769.4	0.000
. ***	.l i	15	0.375	-0.053	6935.6	0.000

Lampiran 31. Pengujian Akar Unit Data Harga Sayuran Kol Bulat Null Hypothesis: HARGA has a unit root

Exogenous: Constant Lag Length: 4 (Fixed)

		t-Statistic	Prob.*
Augmented Dickey-Ful	ler test statistic	-3.628642	0.0054
Test critical values:	1% level	-3.435772	
	5% level	-2.863822	
	10% level	-2.568036	

Lampiran 32. Pengujian Akar Unit Data Harga Sayuran Kembang Kol

Null Hypothesis: HARGA has a unit root

Exogenous: Constant Lag Length: 4 (Fixed)

		t-Statistic	Prob.*
Augmented Dickey-Ful	ler test statistic	-4.032252	0.0013
Test critical values:	1% level	-3.435772	
	5% level	-2.863822	
	10% level	-2.568036	

Lampiran 33. Pengujian Akar Unit Data Harga Sayuran Buncis

Null Hypothesis: HARGA has a unit root

Exogenous: Constant Lag Length: 4 (Fixed)

	t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic	-4.032252	0.0013
Test critical values: 1% level	-3 /35772	

1% level -3.435772 Lest critical values:

5% level -2.863822 10% level -2.568036

Lampiran 34. Pengujian Akar Unit Data Harga Sayuran Wortel

Null Hypothesis: HARGA has a unit root

Exogenous: Constant Lag Length: 4 (Fixed)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-2.965762	0.0385
Test critical values:	1% level	-3.435772	
	5% level	-2.863822	
	10% level	-2.568036	

Lampiran 35. Pengujian Akar Unit Data Harga Sayuran Tomat

Null Hypothesis: HARGA has a unit root

Exogenous: Constant Lag Length: 4 (Fixed)

		t-Statistic	Prob.*
Augmented Dickey-Fulle	r test statistic	-4.042548	0.0013
Test critical values:	1% level	-3.435772	
	5% level	-2.863822	
	10% level	-2.568036	

Lampiran 36. Pengujian Akar Unit Data Harga Sayuran Labu Siam

Null Hypothesis: HARGA has a unit root

Exogenous: Constant Lag Length: 4 (Fixed)

		t-Statistic	Prob.*
Augmented Dickey-F	uller test statistic	-2.922258	0.0431
Test critical values:	1% level	-3.435772	
	5% level	-2.863822	
	10% level	-2.568036	

Lampiran 37. Pengujian Akar Unit Data Harga Sayuran Sawi

Null Hypothesis: HARGA has a unit root

Exogenous: Constant Lag Length: 4 (Fixed)

		t-Statistic	Prob.*
Augmented Dickey-Ful	ler test statistic	-4.587844	0.0001
Test critical values:	1% level	-3.435777	
	5% level	-2.863824	
	10% level	-2.568037	

Lampiran 38. Pengujian Akar Unit Data Harga Sayuran Daun Bawang

Null Hypothesis: HARGA has a unit root

Exogenous: Constant Lag Length: 4 (Fixed)

		t-Statistic	Prob.*
Augmented Dickey-Ful	ler test statistic	-18.15525	0.0000
Test critical values:	1% level	-3.435777	
	5% level	-2.863824	
	10% level	-2.568037	

Lampiran 39. Pengujian Akar Unit Data Harga Sayuran Timun

Null Hypothesis: HARGA has a unit root

Exogenous: Constant Lag Length: 4 (Fixed)

		t-Statistic	Prob.*
Augmented Dickey-F	uller test statistic	-5.326489	0.0000
Test critical values:	1% level	-3.435772	
	5% level	-2.863822	
	10% level	-2.568036	

Lampiran 40. Pengujian Akar Unit Data Harga Sayuran Ceisim

Null Hypothesis: HARGA has a unit root

Exogenous: Constant Lag Length: 4 (Fixed)

		t-Statistic	Prob.*
Augmented Dickey-Ful	ler test statistic	-5.203831	0.0000
Test critical values:	1% level	-3.435772	
	5% level	-2.863822	
	10% level	-2.568036	

Lampiran 41. Penguj	Lampiran 41. Pengujian Model ARIMA (1,0,1) Harga Kol Bulat					
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
С	1757.155	175.3463	10.02106	0.0000		
AR(1)	0.974867	0.006718	145.1170	0.0000		
MA(1)	-0.027281	0.030160	-0.904532	0.3659		
R-squared	0.947615	Mean deper	ndent var	1756.980		
Adjusted R-squared	0.947524	S.D. depend	dent var	674.7337		
S.E. of regression	154.5651	Akaike info	criterion	12.92168		
Sum squared resid	27736703	Schwarz cri	terion	12.93472		
Log likelihood	-7517.418	F-statistic		10500.83		
Durbin-Watson stat	1.997294	Prob(F-stati	stic)	0.000000		

Lampiran 42. Pengujian Model ARIMA (1,0,2) Harga Kol Bulat Variable Coefficient Std. Error t-Statistic Pro

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	1757.340	175.3554	10.02159	0.0000
AR(1)	0.974903	0.006695	145.6116	0.0000
MA(2)	-0.028586	0.030077	-0.950423	0.3421
R-squared	0.947618	Mean deper	ndent var	1756.980
Adjusted R-squared	0.947528	S.D. depend	dent var	674.7337
S.E. of regression	154.5593	Akaike info	criterion	12.92161
Sum squared resid	27734649	Schwarz crit	terion	12.93465
Log likelihood	-7517.375	F-statistic		10501.65
Durbin-Watson stat	2.050586	Prob(F-stati	stic)	0.000000

Lampiran 43. Pengujian Model ARIMA (1,0,3) Harga Kol Bulat

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	1756.871	167.0115	10.51946	0.0000
AR(1)	0.972199	0.007023	138.4345	0.0000
MA(3)	0.024859	0.030004	0.828515	0.4075
R-squared	0.947611	Mean dependent var		1756.980
Adjusted R-squared	0.947520	S.D. dependent var		674.7337
S.E. of regression	154.5708	Akaike info	criterion	12.92176
Sum squared resid	27738781	Schwarz crit	erion	12.93480
Log likelihood	-7517.462	F-statistic		10500.00
Durbin-Watson stat	2.042789	Prob(F-statis	stic)	0.000000

Lampiran 44. Pengujian Model ARIMA (2,0,1) Harga Kol Bulat Variable Coefficient Std. Error t-Statistic Prob.

 variable	Coemcient	Sta. Elloi	เ-งเลแงแบ	F100.
С	1756.795	170.9331	10.27767	0.0000

AR(2)	0.947642	0.012854	73.72375	0.0000
MA(1)	0.973071	0.009105	106.8687	0.0000
R-squared	0.947574	Mean depen	dent var	1756.771
Adjusted R-squared	0.947484	S.D. dependent var		674.9863
S.E. of regression	154.6827	Akaike info	criterion	12.92320
Sum squared resid	27755007	Schwarz crit	erion	12.93625
Log likelihood	-7511.844	F-statistic		10483.25
Durbin-Watson stat	2.045315	Prob(F-statis	stic)	0.000000

Lampiran 45. Pengujian Model ARIMA (2,0,2) Harga Kol Bulat

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	1760.395	126.6118	13.90388	0.0000
AR(2)	0.952233	0.009463	100.6316	0.0000
MA(2)	-0.032033	0.030935	-1.035498	0.3007
R-squared	0.900538	Mean dependent var		1756.771
Adjusted R-squared	0.900367	S.D. depende	nt var	674.9863
S.E. of regression	213.0578	Akaike info cri	terion	13.56358
Sum squared resid	52656623	Schwarz criter	rion	13.57663
Log likelihood	-7884.222	F-statistic		5251.376
Durbin-Watson stat	1.024004	Prob(F-statisti	c)	0.000000

Lampiran 46. Pengujian residual ARIMA (2,0,1) harga Kol Bulat ARCH Test:

F-statistic	68.59449	Probability	0.000000
Obs*R-squared	64.87640	Probability	0.000000

Lampiran 47. Pengujian Model ARIMA (1,0,1) Harga Kembang kol

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	4699.691	285.8163	16.44305	0.0000
AR(1)	0.967110	0.008107	119.2977	0.0000
MA(1)	-0.227205	0.030338	-7.489147	0.0000
R-squared	0.888834	Mean dependen	t var	4757.532
Adjusted R-squared	0.888642	S.D. dependent	var	1241.691
S.E. of regression	414.3559	Akaike info criter	rion	14.89390
Sum squared resid	1.99E+08	Schwarz criterion	n	14.90694
Log likelihood	-8665.251	F-statistic		4641.417
Durbin-Watson stat	1.978445	Prob(F-statistic)		0.000000

Lampiran 48. Pengujian Model ARIMA (1,0,2) Harga Kembang kol Variable Coefficient Std. Error t-Statistic Prob.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	4722.516	214.4309	22.02348	0.0000
AR(1)	0.942030	0.010364	90.89599	0.0000
MA(2)	0.002419	0.030914	0.078239	0.9377
R-squared	0.884176	Mean dependent	var	4757.532
Adjusted R-squared	0.883976	S.D. dependent	var	1241.691
S.E. of regression	422.9480	Akaike info criter	ion	14.93495
Sum squared resid	2.08E+08	Schwarz criterior	1	14.94799
Log likelihood	-8689.141	F-statistic		4431.408
Durbin-Watson stat	2.355193	Prob(F-statistic)		0.000000

Lampiran 49. Pengujian Model ARIMA (2,0,1) Harga Kembang kol

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	4724.331	194.1678	24.33118	0.0000
AR(2)	0.879208	0.017737	49.56959	0.0000
MA(1)	0.895533	0.016398	54.61072	0.0000
R-squared	0.884878	Mean deper	dent var	4757.753
Adjusted R-squared	0.884679	S.D. depend	lent var	1242.202
S.E. of regression	421.8380	Akaike info	criterion	14.92970
Sum squared resid	2.06E+08	Schwarz crit	erion	14.94275

Log likelihood	-8678.618	F-statistic	4458.131
Durbin-Watson stat	2.263179	Prob(F-statistic)	0.000000

Lampiran 50. Pengujian Model ARIMA (2,0,2) Harga Kembang kol

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	4703.333	219.8168	21.39660	0.0000
AR(2)	0.946335	0.010592	89.34681	0.0000
MA(2)	-0.223932	0.031991	-6.999827	0.0000
R-squared	0.826763	Mean dependent	var	4757.753
Adjusted R-squared	0.826465	S.D. dependent v	/ar	1242.202
S.E. of regression	517.4716	Akaike info criter	ion	15.33836
Sum squared resid	3.11E+08	Schwarz criterion	1	15.35141
Log likelihood	-8916.258	F-statistic		2768.018
Durbin-Watson stat	1.072630	Prob(F-statistic)		0.000000
Inverted AR Roots	.97	97		
Inverted MA Roots	.47	47		

Lampiran 51. Pengujian residual ARIMA (1,0,1) harga Kembang Kol ARCH Test:

F-statistic	35.22909	Probability	0.000000
Obs*R-squared	34.25049	Probability	0.000000

Lampiran 52. Pengujian Model ARIMA (1,0,1) Harga Buncis

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	3319.995	236.4435	14.04139	0.0000
AR(1)	0.967553	0.007855	123.1765	0.0000
MA(1)	-0.185126	0.030286	-6.112550	0.0000
R-squared	0.904014	Mean dependent	t var	3287.672
Adjusted R-squared	0.903849	S.D. dependent	var	1035.052
S.E. of regression	320.9521	Akaike info criter	ion	14.38303
Sum squared resid	1.20E+08	Schwarz criterion	า	14.39607
Log likelihood	-8367.926	F-statistic		5467.251
Durbin-Watson stat	1.981718	Prob(F-statistic)		0.000000

Lampiran 53. Pengujian Model ARIMA (1,0,2) Harga Buncis

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	3309.541	194.7285	16.99567	0.0000
AR(1)	0.952158	0.009319	102.1766	0.0000
MA(2)	-0.023153	0.030330	-0.763383	0.4454
R-squared	0.901409	Mean dependen	t var	3287.672
Adjusted R-squared	0.901240	S.D. dependent	var	1035.052
S.E. of regression	325.2774	Akaike info criter	rion	14.40981
Sum squared resid	1.23E+08	Schwarz criterion	n	14.42285
Log likelihood	-8383.508	F-statistic		5307.484
Durbin-Watson stat	2.305278	Prob(F-statistic)		0.000000

Lampiran 54. Pengujian Model ARIMA (2,0,1) Harga Buncis

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	3309.456	196.9560	16.80303	0.0000
AR(2)	0.907322	0.016478	55.06292	0.0000
MA(1)	0.922244	0.015072	61.18862	0.0000
R-squared	0.902392	Mean dependent var		3287.747
Adjusted R-squared	0.902224	S.D. dependent var		1035.494
S.E. of regression	323.7901	Akaike info cri	terion	14.40064
Sum squared resid	1.22E+08	Schwarz criter	rion	14.41369
Log likelihood	-8370.975	F-statistic		5362.161
Durbin-Watson stat	2.226980	Prob(F-statisti	c)	0.000000

Lampiran 55. Pengujian Model ARIMA (2,0,2) Harga Buncis

	Variable	Coefficient	Std. Error	t-Statistic	Prob.
-	С	3321.831	180.9593	18.35678	0.0000

AR(2) MA(2)	0.945756 -0.182830	0.010440 0.031388	90.58874 -5.824821	0.0000 0.0000
R-squared	0.844111	Mean dependent	var	3287.747
Adjusted R-squared	0.843843	S.D. dependent	/ar	1035.494
S.E. of regression	409.1939	Akaike info criter	ion	14.86883
Sum squared resid	1.94E+08	Schwarz criterior	1	14.88188
Log likelihood	-8643.225	F-statistic		3140.604
Durbin-Watson stat	1.074553	Prob(F-statistic)		0.000000

Lampiran 56. Pengujian residual ARIMA (2,0,2) harga Buncis ARCH Test:

F-statistic	302.8039	Probability	0.000000
Obs*R-squared	240.5368	Probability	0.000000

Lampiran 57. Pengujian Model ARIMA (1,0,1) Harga Wortel

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	2809.021	281.7940	9.968349	0.0000
AR(1)	0.974200	0.006915	140.8854	0.0000
MA(1)	-0.125076	0.030161	-4.146976	0.0000
R-squared	0.932980	Mean dependent var		2742.698
Adjusted R-squared	0.932865	S.D. dependent var		1091.713
S.E. of regression	282.8676	Akaike info criterion		14.13041
Sum squared resid	92896361	Schwarz criterion		14.14345
Log likelihood	-8220.898	F-statistic		8081.149
Durbin-Watson stat	1.963861	Prob(F-statistic)		0.000000

Lampiran 58. Pengujian Model ARIMA (1,0,2) Harga Wortel Backcast: 0 1

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	2814.364	291.7213	9.647441	0.0000
AR(1)	0.976165	0.006581	148.3366	0.0000
MA(2)	-0.159721	0.029747	-5.369408	0.0000
R-squared	0.933607	Mean dependent var		2742.698
Adjusted R-squared	0.933492	S.D. dependent var		1091.713
S.E. of regression	281.5429	Akaike info criterion		14.12102
Sum squared resid	92028309	Schwarz criterion		14.13406
Log likelihood	-8215.434	F-statistic		8162.849
Durbin-Watson stat	2.221682	Prob(F-statistic)		0.000000

Lampiran 59. Pengujian Model ARIMA (2,0,1) Harga Wortel

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	2788.405	243.1216	11.46918	0.0000
AR(2)	0.932293	0.014664	63.57509	0.0000
MA(1)	0.973270	0.009331	104.3102	0.0000
R-squared	0.932367	Mean dependent var		2743.250
Adjusted R-squared	0.932250	S.D. dependent var		1092.020
S.E. of regression	284.2395	Akaike info criterion		14.14009
Sum squared resid	93718843	Schwarz criterion		14.15314
Log likelihood	-8219.461	F-statistic		7995.680
Durbin-Watson stat	2.169872	Prob(F-statistic)		0.000000

Lampiran 60. Pengujian Model ARIMA (2,0,2) Harga Wortel

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	2862.812	259.0435	11.05147	0.0000
AR(2)	0.969314	0.007776	124.6501	0.0000
MA(2)	-0.271086	0.029919	-9.060582	0.0000
R-squared	0.886049	Mean dependent var		2743.250
Adjusted R-squared	0.885852	S.D. dependent var		1092.020
S.E. of regression	368.9469	Akaike info criterion		14.66176
Sum squared resid	1.58E+08	Schwarz criterion		14.67481
Log likelihood	-8522.813	F-statistic		4509.905

Lampiran 61. Pengujian residual ARIMA (2,0,2) harga Wortel ARCH Test:

F-statistic	402.8492	Probability	0.000000
Obs*R-squared	299.5239	Probability	0.000000

Lampiran 62. Pengujian Model ARIMA (2,0,1) Harga Tomat

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	3008.753	285.9445	10.52216	0.0000
AR(2)	0.934745	0.014475	64.57482	0.0000
MA(1)	0.965660	0.010592	91.16829	0.0000
R-squared	0.934884	Mean dependent var		3008.684
Adjusted R-squared	0.934772	S.D. dependent var		1267.433
S.E. of regression	323.7000	Akaike info criterion		14.40009
Sum squared resid	1.22E+08	Schwarz criterion		14.41314
Log likelihood	-8370.651	F-statistic		8327.198
Durbin-Watson stat	2.044206	Prob(F-statis	stic)	0.000000

Lampiran 63. Pengujian Model ARIMA (2,0,2) Harga Tomat

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	2862.812	259.0435	11.05147	0.0000
AR(2)	0.969314	0.007776	124.6501	0.0000
MA(2)	-0.271086	0.029919	-9.060582	0.0000
R-squared	0.886049	Mean dependent var		2743.250
Adjusted R-squared	0.885852	S.D. dependent var		1092.020
S.E. of regression	368.9469	Akaike info criterion		14.66176
Sum squared resid	1.58E+08	Schwarz criterion		14.67481
Log likelihood	-8522.813	F-statistic		4509.905
Durbin-Watson stat	1.031513	Prob(F-stati	stic)	0.000000

Lampiran 64. Pengujian residual ARIMA (2,0,1) harga Tomat ARCH Test:

F-statistic	6.747073	Probability	0.009509
Obs*R-squared	6.719621	Probability	0.009536

Lampiran 65. Pengujian Model ARIMA (1,0,1) Harga Labu Siam Variable Coefficient Std. Error t-Statistic Prob.

variable	Coefficient	Sta. Error	t-Statistic	Prob.
С	913.4928	108.8264	8.394038	0.0000
AR(1)	0.980341	0.005968	164.2525	0.0000
MA(1)	-0.231830	0.029479	-7.864208	0.0000
R-squared	0.935227	Mean dependen	t var	869.5017
Adjusted R-squared	0.935116	S.D. dependent	var	370.0190
S.E. of regression	94.25258	Akaike info crite	rion	11.93241
Sum squared resid	10313800	Schwarz criterio	n	11.94545
Log likelihood	-6941.661	F-statistic		8381.632
Durbin-Watson stat	1.952777	Prob(F-statistic)		0.000000

Lampiran 66. Pengujian Model ARIMA (1,0,2) Harga Labu Siam

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	900.5092	90.93504	9.902774	0.0000
AR(1)	0.971979	0.007041	138.0476	0.0000
MA(2)	-0.095632	0.029837	-3.205149	0.0014
R-squared	0.933171	Mean dependent	var	869.5017
Adjusted R-squared	0.933056	S.D. dependent v	/ar	370.0190
S.E. of regression	95.73692	Akaike info criteri	ion	11.96366
Sum squared resid	10641212	Schwarz criterion	1	11.97670

Log likelihood	-6959.850	F-statistic	8105.882
Durbin-Watson stat	2.377677	Prob(F-statistic)	0.000000

Lampiran 67. Pengujian Model ARIMA (2,0,1) Harga Labu Siam

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	894.5756	79.77901	11.21317	0.0000
AR(2)	0.930657	0.014583	63.81795	0.0000
MA(1)	0.958230	0.011398	84.06894	0.0000
R-squared	0.932562	Mean depende	ent var	869.9484
Adjusted R-squared	0.932446	S.D. depender	nt var	369.8641
S.E. of regression	96.13209	Akaike info cri	terion	11.97190
Sum squared resid	10719999	Schwarz criter	ion	11.98495
Log likelihood	-6958.660	F-statistic		8020.500
Durbin-Watson stat	2.315173	Prob(F-statisti	c)	0.000000

Lampiran 68. Pengujian Model ARIMA (2,0,2) Harga Labu Siam

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	928.9105	90.94010	10.21453	0.0000
AR(2)	0.972357	0.007146	136.0780	0.0000
MA(2)	-0.288634	0.029553	-9.766508	0.0000
R-squared	0.897286	Mean dependent var		869.9484
Adjusted R-squared	0.897108	S.D. dependent var		369.8641
S.E. of regression	118.6402	Akaike info criterion		12.39264
Sum squared resid	16327586	Schwarz criterion		12.40569
Log likelihood	-7203.323	F-statistic		5066.723
Durbin-Watson stat	1.090372	Prob(F-stati	stic)	0.000000

Lampiran 69. Pengujian residual ARIMA (2,0,2) harga Labu Siam ARCH Test:

F-statistic	434.8164	Probability	0.000000
Obs*R-squared	316.8118	Probability	0.000000

Lampiran 70. Pengujian Model ARIMA (1,0,3) Harga Sawi

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	1506.364	77.28263	19.49163	0.0000
AR(1)	0.944262	0.010057	93.89047	0.0000
MA(3)	-0.062204	0.030534	-2.037226	0.0419
R-squared	0.879395	Mean dependent	t var	1502.040
Adjusted R-squared	0.879188	S.D. dependent	var	450.7620
S.E. of regression	156.6761	Akaike info criter	ion	12.94881
Sum squared resid	28499548	Schwarz criterion	า	12.96185
Log likelihood	-7533.209	F-statistic		4232.752
Durbin-Watson stat	2.076428	Prob(F-statistic)		0.000000

Lampiran 71. Pengujian Model ARIMA (2,0,1) Harga Sawi

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	1505.296	75.94710	19.82032	0.0000
AR(2)	0.881592	0.019150	46.03517	0.0000
MA(1)	0.956141	0.011912	80.26753	0.0000
R-squared	0.879321	Mean dependent var		1502.171
Adjusted R-squared	0.879113	S.D. depender	nt var	450.9339
S.E. of regression	156.7845	Akaike info cri	terion	12.95020
Sum squared resid	28514383	Schwarz criter	ion	12.96325
Log likelihood	-7527.540	F-statistic		4226.134
Durbin-Watson stat	2.078277	Prob(F-statisti	c)	0.000000

Lampiran 72. Pengujian Model ARIMA (2,0,2) Harga Sawi

_	Variable	Coefficient	Std. Error	t-Statistic	Prob.
_	С	1505.417	61 26747	24 57123	0.0000

AR(2)	0.913776	0.013453	67.92323	0.0000
MA(2)	-0.147307	0.032792	-4.492214	0.0000
R-squared	0.781002	Mean dependent var		1502.171
Adjusted R-squared	0.780624	S.D. dependent var		450.9339
S.E. of regression	211.2065	Akaike info criterion		13.54613
Sum squared resid	51745472	Schwarz criterion		13.55917
Log likelihood	-7874.072	F-statistic		2068.424
Durbin-Watson stat	0.976089	Prob(F-statistic)		0.000000

Lampiran 73. Pengujian Model ARIMA (2,0,3) Harga Sawi

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	1505.485	60.51495	24.87790	0.0000
AR(2)	0.912719	0.013141	69.45820	0.0000
MA(3)	-0.145464	0.031854	-4.566654	0.0000
R-squared	0.782085	Mean dependent var		1502.171
Adjusted R-squared			nt var	450.9339
S.E. of regression	210.6837	Akaike info criterion		13.54117
Sum squared resid	51489621	Schwarz criterion		13.55422
Log likelihood	-7871.190	F-statistic		2081.584
Durbin-Watson stat	1.126414	Prob(F-statisti	c)	0.000000

Lampiran 74. Pengujian residual ARIMA (1,0,3) harga Sawi ARCH Test:

F-statistic	22.32068	Probability	0.000003
Obs*R-squared	21.93737	Probability	0.000003

Lampiran 75. Pengujian Model ARIMA (1,0,2) Harga Daun Bawang

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	4214.293	640.6263	6.578396	0.0000
AR(1)	0.983401	0.005438	180.8469	0.0000
MA(2)	-0.088261	0.030241	-2.918560	0.0036
R-squared	0.960485	Mean dependent var		4063.359
Adjusted R-squared	0.960417	S.D. dependent var		1993.437
S.E. of regression	396.6039	Akaike info criterion		14.80633
Sum squared resid	1.83E+08	Schwarz criterion		14.81937
Log likelihood	-8614.283	F-statistic		14110.14
Durbin-Watson stat	2.083471	Prob(F-statistic)		0.000000

Lampiran 76. Pengujian Model ARIMA (1,0,3) Harga Daun Bawang

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	4207.697	631.6245	6.661706	0.0000
AR(1)	0.982985	0.005482	179.3183	0.0000
MA(3)	-0.078455	0.030231	-2.595179	0.0096
R-squared	0.960476	6 Mean dependent var		4063.359
Adjusted R-squared	0.960408	S.D. dependent var		1993.437
S.E. of regression	S.E. of regression 396.6492 Akaike info criterion		terion	14.80656
Sum squared resid	1.83E+08	Schwarz criterion		14.81960
Log likelihood -8614.41		F-statistic		14106.79
Durbin-Watson stat 2.083		Prob(F-statisti	c)	0.000000

Lampiran 77. Pengujian Model ARIMA (2,0,3) Harga Daun Bawang

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	4239.023	498.5249	8.503132	0.0000
AR(2)	0.973034	0.006989	139.2160	0.0000
MA(3)	-0.158915	0.030243	-5.254651	0.0000
R-squared	0.926125	Mean dependent var		4064.703
Adjusted R-squared	0.925998	S.D. dependent var		1993.767
S.E. of regression	542.3712	Akaike info criterion		15.43235
Sum squared resid	3.41E+08	Schwarz criterion		15.44540
Log likelihood	-8970.914	F-statistic		7271.120

Lampiran 78. Pengujian residual ARIMA (1,0,2) harga Daun Bawang ARCH Test:

F-statistic	2.819407	Probability	0.093400
Obs*R-squared	2.817422	Probability	0.093246

Lampiran 79. Pengujian residual ARIMA (1,0,3) harga Daun Bawang ARCH Test:

F-statistic	2.700303	Probability	0.100600
Obs*R-squared	2.698678	Probability	0.100431

Lampiran 80. Pengujian residual ARIMA (2,0,3) harga Daun Bawang ARCH Test:

F-statistic	247.2689	Probability	0.000000
Obs*R-squared	204.1731	Probability	0.000000

Lampiran 81. Pengujian Model ARIMA (2,0,1) Harga Ceisim

Dependent Variable: HARGA Method: Least Squares Date: 09/01/09 Time: 10:53 Sample(adjusted): 3 1165

Included observations: 1163 after adjusting endpoints

Convergence achieved after 6 iterations

Backcast: 2

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	1554.077	63.88001	24.32806	0.0000
AR(2)	0.848335	0.020887	40.61486	0.0000
MA(1)	0.909719	0.016433	55.36050	0.0000
R-squared	0.847454	Mean dependent var		1561.135
Adjusted R-squared	0.847191	S.D. dependent var		442.5549
S.E. of regression	S.E. of regression 172.9981 Akaike info criterion		ion	13.14701
Sum squared resid	34716872	Schwarz criterior	١	13.16006
Log likelihood -7641.		F-statistic		3222.137
		Prob(F-statistic)		0.000000

Lampiran 82. Pengujian Model ARIMA (2,0,2) Harga Ceisim Dependent Variable: HARGA

Dependent Variable: HARGA Method: Least Squares Date: 07/31/09 Time: 12:10 Sample(adjusted): 3 1165

Included observations: 1163 after adjusting endpoints

Convergence achieved after 7 iterations

Backcast: 1 2

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	1548.753	54.84486	28.23881	0.0000
AR(2)	0.900196	0.014616	61.58823	0.0000
MA(2)	-0.172308	0.033425	-5.155055	0.0000
R-squared	0.741272	Mean dependent var		1561.135
Adjusted R-squared	0.740826	S.D. dependent var		442.5549
S.É. of regression	225.3008	Akaike info criterion		13.67533
Sum squared resid	58882119	Schwarz criterion		13.68838
Log likelihood	-7949.202	F-statistic		1661.739
Durbin-Watson stat	1.021483	Prob(F-statistic)		0.000000

Lampiran 83. Pengujian Model ARIMA (2,0,2) Harga Timun

Dependent Variable: HARGA Method: Least Squares Date: 07/31/09 Time: 10:44 Sample(adjusted): 3 1165

Included observations: 1163 after adjusting endpoints

Convergence achieved after 10 iterations

Backcast: 1 2

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	2008.526	67.73946	29.65076	0.0000
AR(2)	0.904505	0.014277	63.35365	0.0000
MA(2)	-0.154055	0.033174	-4.643814	0.0000
R-squared	0.757677	Mean dependent	t var	2013.306
Adjusted R-squared	0.757259	S.D. dependent	var	529.0829
S.E. of regression	260.6725	Akaike info criter	ion	13.96698
Sum squared resid	78822157	Schwarz criterion	า	13.98003
Log likelihood	-8118.800	F-statistic		1813.499
Durbin-Watson stat	0.999736	Prob(F-statistic)		0.000000

Lampiran 84. Pengujian residual ARIMA (2,0,1) harga Ceisim ARCH Test:

F-statistic	6.892504	Probability	0.008770
Obs*R-squared	6.863605	Probability	0.008797

Lampiran 85. Pengujian residual ARIMA (2,0,2) Harga Timun ARCH Test:

F-statistic	369.4670	Probability	0.000000
Obs*R-squared	280.6995	Probability	0.000000

Lampiran 86. Pengujian ARCH/GARCH ARIMA (2,0,1) Harga Kol Bulat

		<u> </u>		. , , ,		
Koef	ARCH	ARCH	GARCH	GARCH	GARCH	GARCH
	(1)	(2)	(1,1)	(2,1)	(1,2)	(2,2)
K	299129.1	13052.26	54299.99	313585.4	293344.5	309539.9
α_1	-0.592230	0.178863	0.013885	-0.052375	0.127871	-0.170513
α_1	-	0.271866	-	-0.233837*	-	-0.108164
β_1	-	-	-1.007023	-0.995403	-1.101902	-0.798599
B_2	-	-	-	_	-0.901411	-0.930041
AIC	14.49562	12.77352	12.91171	13.84799	13.59444	13.68358
SC	14.51737	12.79962	12.93781	13.87844	13.62489	13.71838

Ket: * tidak signifikan

Lampiran 87. Pengujian ARCH/GARCH ARIMA (1,0,1) Harga Kembang Kol

Koef	ARCH (1)	ARCH (2)	GARCH	GARCH	GARCH	GARCH
			(1,1)	(2,1)	(1,2)	(2,2)
K	1012310.	1078330.	307656.9*	235467.4	992747.0	1047394.
α_1	-0.098206	-0.087176	0.020923*	0.232129	0.060983	0.036500
α_1		-0.061607*		0.182554		0.028789
β_1			-0.844216	-0.797812	-0.549287	-1.017230
B_2					-0.783055	-0.962023
AIC	15.84938	15.89133	14.87711	14.82880	15.21475	15.07879
SC	15.87112	15.91741	14.90319	14.85923	15.24517	15.11357

Ket: * tidak signifikan

Lampiran 88. Pengujian ARCH/GARCH ARIMA (2,0,2) Harga Buncis

Lamp	Lampitan 66. I engajian i iterij 67 iterij 7 iterij (2,6,2) Harga Baneis							
Koef	ARCH	ARCH	GARCH	GARCH	GARCH	GARCH		
	(1)	(2)	(1,1)	(2,1)	(1,2)	(2,2)		
K	83753.72	749927.5	6577.682*	738025.0	9470.118*	256747.0		
α_1	0.542999	-0.015339*	0.169714	0.321449	0.261969	0.347620		
α_1		-0.108491		0.375428		0.341154		

β_1			0.800745	-0.409955*	0.031319*	-
'						1.037493
B_2					0.659662	-
						0.039118
AIC	14.65578	15.59882	14.59387	16.77735	14.56752	14.66795
SC	14.67753	15.62492	14.61997	16.80780	14.59797	14.70275

Ket: * tidak signifikan

Lampiran 89. Pengujian ARCH/GARCH ARIMA (2,0,2) Harga Wortel

Koef	ARCH	ARCH	GARCH	GARCH	GARCH	GARCH
	(1)	(2)	(1,1)	(2,1)	(1,2)	(2,2)
K	39602.89	833982.0	202087.7	75959.18	767279.6	810205.7
α_1	0.788239	0.034658*	0.052326*	0.806438	0.044143	0.052911
α_1		-0.078800*		0.741700		-0.004695*
β_1			-0.753139	-0.949385	-1.063813	-1.053951
B_2					-0.742586	-0.712032
AIC	14.24285	15.63255	14.52697	14.23525	14.85998	14.88944
SC	14.26460	15.65865	14.55307	14.26570	14.89043	14.92423

Ket: * tidak signifikan

Lampiran 90. Pengujian ARCH/GARCH ARIMA (2,0,1) Harga Tomat

Koef	ARCH	ARCH	GARCH	GARCH	GARCH	GARCH	
	(1)	(2)	(1,1)	(2,1)	(1,2)	(2,2)	
K	1054704	1123485.	990401.1	540122.7	310423.0	306176.4	
α_1	-0.179351*	-	0.002307	0.003150*	-0.000182	0.003496	
		0.190659					
α_1		-		0.022684*		0.004996	
		0.134772					
β_1			-0.999324	-0.998515	-0.982581	-0.984010	
B_2					-0.995216	-0.996719	
AIC	15.79841	15.85091	15.05898	14.70336	14.38952	14.38266	
SC	15.82016	15.87701	15.08508	14.73381	14.41997	14.41746	

Ket: * tidak signifikan

Lampiran 91. Pengujian ARCH/GARCH ARIMA (2,0,2) Harga Labu Siam

Koef	ARCH	ARCH	GARCH	GARCH	GARCH	GARCH
	(1)	(2)	(1,1)	(2,1)	(1,2)	(2,2)
K	5136.965	3965.833	26073.62	12298.72	39385.20	92937.67
α_1	0.567406	0.681664	0.023433	0.392679*	0.006139*	0.038253*
α_1		0.153975*		0.388252*		0.026883*
β_1			-0.998635	-0.998783	-0.999084	-1.007071
B_2					-0.992476	-0.486263
AIC	11.82293	11.81640	12.10094	11.70661	12.16669	12.70437
SC	11.84467	11.84250	12.12704	11.73706	12.19714	12.73917

Ket: * tidak signifikan

Lampiran 92. Pengujian ARCH/GARCH ARIMA (1,0,3) Harga Sawi

Koef	ARCH	ARCH	GARCH	GARCH	GARCH	GARCH
	(1)	(2)	(1,1)	(2,1)	(1,2)	(2,2)
K	133362.6	141915.5	47735.24	18194.75	67723.65	1996.323
α_1	-0.115464	-0.126285	-0.004984*	0.975465	0.005208*	0.142227
α_1		-0.049980*		0.861972		0.245027
β_1			-0.968632	-0.859056	-0.863343	-0.041380*
B_2					-0.916447	0.593341
AIC	13.81671	13.86943	12.93063	12.78643	12.94926	12.56284
SC	13.83844	13.89551	12.95671	12.81686	12.97969	12.59761

Ket: * tidak signifikan

Lampiran 93. Pengujian ARCH/GARCH ARIMA (2,0,3) Harga Daun Bawang

TZ C	ADCII		CADCII	CADCII	CARCII	CADCII
Koef	ARCH	ARCH	GARCH	GARCH	GARCH	GARCH
	(1)	(2)	(1,1)	(2,1)	(1,2)	(2,2)
K	112998.6	2780170.	638107.1	254512.9	926735.6	892921.3
α_1	0.769626	-	0.023172	0.669520	0.031141	0.033071
		0.211564				
α_1		-		0.662331		0.036813
		0.429083				
β_1			-0.999088	-0.996876	-0.986994	-0.996154
B_2					-0.988413	-0.992305
AIC	15.15131	16.73949	15.39414	15.14872	15.40786	15.38090
SC	15.17306	16.76559	15.42024	15.17917	15.43831	15.41570

Ket: * tidak signifikan

Lampiran 94. Pengujian ARCH/GARCH ARIMA (2,0,1) Harga Ceisim

ARCH	ARCH	GARCH	GARCH	GARCH	GARCH
(1)	(2)	(1,1)	(2,1)	(1,2)	(2,2)
21783.67	21571.03	127165.8	134794.8	93491.52	133065.0
0.383745*	0.356115*	0.014246	0.110639	0.010146	0.078610*
	0.024559*	-0.915285	0.089247		0.071006*
			-0.992724	-0.222287	-0.014205*
				-0.988627	-0.315686
13.06379	13.06504	13.43332	13.34991	13.15882	13.70242
13.08554	13.09114	13.45941	13.38036	13.18927	13.73721
((1) 21783.67 0.383745* 13.06379	(1) (2) 21783.67 21571.03 0.383745* 0.356115* 0.024559* 13.06379 13.06504	(1) (2) (1,1) 21783.67 21571.03 127165.8 0.383745* 0.356115* 0.014246 0.024559* -0.915285 13.06379 13.06504 13.43332	(1) (2) (1,1) (2,1) 21783.67 21571.03 127165.8 134794.8 0.383745* 0.356115* 0.014246 0.110639 0.024559* -0.915285 0.089247 -0.992724 13.06379 13.06504 13.43332 13.34991	(1) (2) (1,1) (2,1) (1,2) 21783.67 21571.03 127165.8 134794.8 93491.52 0.383745* 0.356115* 0.014246 0.110639 0.010146 0.024559* -0.915285 0.089247 -0.992724 -0.222287 -0.988627 13.06379 13.06504 13.43332 13.34991 13.15882

Ket: * tidak signifikan

Lampiran 95. Pengujian ARCH/GARCH ARIMA (2,0,2) Harga Timun

		J		(-, -, -,	J., .	
Koef	ARCH	ARCH (2)	GARCH	GARCH	GARCH	GARCH
	(1)		(1,1)	(2,1)	(1,2)	(2,2)
K	24908.95	195776.2	181586.5	168235.6	178573.7	190104.3
α_1	0.689144	0.089953*	0.131464*	0.382614	0.097127*	0.464700
α_1		-0.033268*		0.438854		0.425495
β_1			-0.265050	-0.901043	-0.149225*	-0.962861
B_2					-0.141843*	-0.169813*
AIC	13.60415	14.35042	14.16278	13.93351	14.14823	13.93426
SC	13.62589	14.37652	14.18888	13.96396	14.17867	13.96906

Ket: * tidak signifikan

Lampiran 96. Uji Jarque-Bera Kol Bulat

Series: Standardized Residuals Sample 3 1165 Observations 1163		
Mean	0.026304	
Median	0.011324	
Maximum	4.429512	
Minimum	-4.312194	
Std. Dev.	1.000085	
Skewness	0.125586	
Kurtosis	5.099655	
Jarque-Bera	216.6881	
Probability	0.000000	

Lampiran 97. Uji Jarque-Bera Kembang Kol

Series: Standardized Residuals Sample 2 1165 Observations 1164		
Mean	0.019558	
Median	-0.002444	
Maximum	4.762011	
Minimum	-6.291739	
Std. Dev.	1.000299	
Skewness	-0.140300	
Kurtosis	6.355634	
Jarque-Bera	549.9423	
Probability	0.000000	

Lampiran 98. Uji Jarque-Bera Buncis

Series: Standardized Residuals Sample 3 1165 Observations 1163		
Mean	0.070379	
Median	0.004519	
Maximum	5.467666	
Minimum	-8.185561	
Std. Dev.	0.997904	
Skewness	-0.466233	
Kurtosis	9.647969	
Jarque-Bera	2183.774	
Probability	0.000000	

Lampiran 99. Uji Jarque-Bera Wortel

Series: Standardized Residuals Sample 3 1165 Observations 1163		
Mean	0.056114	
Median	0.046579	
Maximum	5.392867	
Minimum	-5.237140	
Std. Dev.	0.998859	
Skewness	0.335374	
Kurtosis	5.119130	
Jarque-Bera Probability	239.4139 0.000000	

Lampiran 100. Uji Jarque-Bera Tomat

Series: Standardized Residuals Sample 3 1165 Observations 1163		
Mean	0.029668	
Median	0.034912	
Maximum	5.463375	
Minimum	-5.200581	
Std. Dev.	0.650105	
Skewness	0.850018	
Kurtosis	22.31819	
Jarque-Bera	18224.33	
Probability	0.000000	

Lampiran 101. Uji Jarque-Bera Labu Siam

Series: Standardized Residuals Sample 3 1165 Observations 1163		
Mean	0.102009	
Median	0.072833	
Maximum	17.54764	
Minimum	-3.445345	
Std. Dev.	0.995196	
Skewness	4.587396	
Kurtosis	83.32861	
Jarque-Bera	316765.4	
Probability	0.000000	

Lampiran 102. Uji Jarque-Bera Sawi

Series: Standardized Residuals Sample 2 1165 Observations 1164		
Mean	0.175219	
Median	0.105987	
Maximum	7.855433	
Minimum	-3.450492	
Std. Dev.	0.985388	
Skewness	0.940892	
Kurtosis	8.656897	
Jarque-Bera	1723.768	
Probability	0.000000	

Lampiran 103. Uji Jarque-Bera Daun Bawang

Series: Standardized Residuals Sample 3 1165 Observations 1163		
Mean	0.048076	
Median	0.002093	
Maximum	4.336222	
Minimum	-4.051863	
Std. Dev.	0.999269	
Skewness	0.325882	
Kurtosis	5.057571	
Jarque-Bera	225.7380	
Probability	0.000000	

Lampiran 104. Uji Jarque-Bera Ceisim

Series: Standardized Residuals Sample 3 1165 Observations 1163		
Mean	0.015620	
Median	-0.009447	
Maximum	6.605118	
Minimum	-7.049135	
Std. Dev.	0.646249	
Skewness	-0.218683	
Kurtosis	30.00045	
Jarque-Bera	35336.58	
Probability	0.000000	

Lampiran 105. Uji Jarque-Bera Timun

Series: Standardized Residuals Sample 3 1165 Observations 1163		
Mean	0.042855	
Median	0.044985	
Maximum	4.333925	
Minimum	-7.797614	
Std. Dev.	0.999463	
Skewness	-0.934180	
Kurtosis	10.00135	
_		
Jarque-Bera	2544.533	
Probability	0.000000	

Lampiran 106. ARCH Test Model ARCH (2) Kol Bulat ARCH Test:

F-statistic	0.122681	Probability	0.726208
Oho*D squared			
Obs*R-squared	0.122880	Probability	0.725932

Lampiran 107. ARCH Test Model GARCH (2,1) Kembang Kol ARCH Test:

F-statistic	0.010346	Probability	0.919002
Obs*R-squared	0.010363	Probability	0.918915

Lampiran 108. ARCH Test Model ARCH (1) Buncis ARCH Test:

F-statistic	0.165127	Probability	0.684555
Obs*R-squared	0.165388	Probability	0.684244

Lampiran 109. ARCH Test Model ARCH (1) Wortel ARCH Test:

F-statistic	0.038228	Probability	0.845019
Obs*R-squared	0.038293	Probability	0.844856

Lampiran 110. ARCH Test Model GARCH (1,1) Tomat ARCH Test:

F-statistic	0.212906	Probability	0.644586

Obs*R-squared	0.213234	Probability	0.644245		
Lampiran 111. AF	RCH Test Mode	1 ARCH (1)	Labu Siam		
F-statistic Obs*R-squared	0.000285 0.000286	Probability Probability	0.986527 0.986513		
Lampiran 112. AF ARCH Test:	RCH Test Mode	l GARCH (2	,1) Sawi		
F-statistic Obs*R-squared	3.802032 3.796150	Probability Probability	0.051431 0.051371		
Lampiran 113. AF	RCH Test Mode	1 ARCH (1)	Daun Bawang		
F-statistic Obs*R-squared	0.558391 0.559085	Probability Probability	0.455061 0.454629		
Lampiran 114. ARCH Test Model GARCH (2,1) Ceisim ARCH Test:					
F-statistic Obs*R-squared	0.595993 0.596714	Probability Probability	0.440268 0.439835		
Lampiran 115. ARCH Test Model ARCH (1) Timun ARCH Test:					
F-statistic Obs*R-squared		bability bability	0.965569 0.965532		

Lampiran 116. Perhitungan Volatilitas Kesepuluh Sayuran

Sayuran	Nilai Volatilitas (σ_{t+1})
Kol Bulat	147.5702
Kembang Kol	498.0993
Buncis	386.4774
Wortel	331.6715
Tomat	26.1190
Sawi	85.9256
Daun Bawang	513.9321
Labu Siam	95.8950
Ceisim	287.7054
Timun	235.5095

Lampiran 117. Pengujian Engel-Granger Sayuran Kol Bulat Dependent Variable: HARGA Method: Least Squares Date: 08/13/09 Time: 18:33 Sample(adjusted): 1 1164 Included observations: 1164 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	1888.760	20.11784	93.88483	0.0000
PASOKAN	-1.299329	0.191013	-6.802307	0.0000
RESID01(1)	0.964966	0.008411	114.7204	0.0000
R-squared	0.921142	Mean dependent var		1756.980
Adjusted R-squared	0.921006	S.D. dependent var		674.7337
S.E. of regression	189.6394	Akaike info criterion		13.33070
Sum squared resid	41753142	Schwarz criterion		13.34374
Log likelihood	-7755.467	F-statistic		6780.853
Durbin-Watson stat	2.015246	Prob(F-statistic)		0.000000

Lampiran 118. Pengujian Engel-Granger Sayuran Kembang Kol Dependent Variable: HARGA Method: Least Squares Date: 08/13/09 Time: 18:48 Sample(adjusted): 1 1164

Included observations: 1157
Excluded observations: 7 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	4787.141	20.53558	233.1145	0.0000
PASOKAN	-6.386845	3.141061	-2.033340	0.0422
RESID01(1)	0.935073	0.010726	87.18111	0.0000
R-squared	0.870022	Mean dependent var		4751.743
Adjusted R-squared	0.869797	S.D. dependent var		1235.551
S.E. of regression	445.8318	Akaike info criterion		15.04035
Sum squared resid	2.29E+08	Schwarz criterion		15.05345
Log likelihood	-8697.843	F-statistic		3862.227
Durbin-Watson stat	2.343055	Prob(F-statistic)		0.000000

Lampiran 119. Pengujian Engel-Granger Sayuran Buncis Dependent Variable: HARGA

Dependent Variable: HARGA Method: Least Squares Date: 08/13/09 Time: 18:57 Sample(adjusted): 1 1164 Included observations: 469

Included observations: 469
Excluded observations: 695 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C PASOKAN	3433.888 3.981489	34.15022 19.16259	100.5524 0.207774	0.0000 0.8355
RESID01(1)	0.949341	0.013449	70.58955	0.0000
R-squared	0.914542	Mean dependent var		3524.520
Adjusted R-squared	0.914175	S.D. dependent var		1047.441
S.E. of regression Sum squared resid	306.8575 43879273	Akaike info criterion Schwarz criterion		14.29702 14.32357
Log likelihood	-3349.651	F-statistic	1	2493.474
Durbin-Watson stat	2.535021	Prob(F-statistic)		0.000000

Lampiran 120. Pengujian Engel-Granger Sayuran Wortel Dependent Variable: HARGA

Dependent Variable: HARGA Method: Least Squares Date: 08/13/09 Time: 19:00 Sample(adjusted): 1 1164 Included observations: 1159

Excluded observations: 5 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	3158.036	35.62008	88.65886	0.0000
PASOKAN	-11.30982	0.897494	-12.60155	0.0000
RESID01(1)	0.932269	0.012395	75.21619	0.0000
R-squared	0.849351	Mean dependent var		2738.136
Adjusted R-squared	0.849091	S.D. dependent var		1092.720
S.E. of regression	424.4894	Akaike info criter	ion	14.94224
Sum squared resid	2.08E+08	Schwarz criterion		14.95532
Log likelihood	-8656.026	F-statistic		3258.742
Durbin-Watson stat	2.121183	Prob(F-statistic)		0.000000

Lampiran 121. Pengujian Engel-Granger Sayuran Tomat

Dependent Variable: HARGA Method: Least Squares Date: 08/13/09 Time: 19:02 Sample(adjusted): 1 1164 Included observations: 1160

Excluded observations: 4 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	3302.680	43.94438	75.15591	0.0000
PASOKAN	-3.268422	0.469379	-6.963293	0.0000
RESID01(1)	0.954014	0.009961	95.77198	0.0000
R-squared	0.893199	Mean dependent var		3008.534
Adjusted R-squared	0.893014	S.D. dependent var		1268.890
S.E. of regression	415.0372	Akaike info criter	ion	14.89720
Sum squared resid	1.99E+08	Schwarz criterior	า	14.91027
Log likelihood	-8637.374	F-statistic		4838.109
Durbin-Watson stat	1.943969	Prob(F-statistic)		0.000000

Lampiran 122. Pengujian Engel-Granger Sayuran Sawi

Dependent Variable: HARGA Method: Least Squares Date: 08/13/09 Time: 19:04 Sample(adjusted): 1 1164 Included observations: 1158

Excluded observations: 6 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C PASOKAN RESID01(1)	1517.672 -0.423071 0.938192	11.96155 0.313370 0.010203	126.8792 -1.350068 91.95625	0.0000 0.1773 0.0000
R-squared Adjusted R-squared	0.879827 0.879619	Mean dependent var S.D. dependent var		1503.346 451.2038
S.E. of regression Sum squared resid Log likelihood	156.5497 28306525 -7493.436	Akaike info criterion Schwarz criterion F-statistic		12.94721 12.96031 4228.062
Durbin-Watson stat	2.043201	Prob(F-statistic)		0.000000

Lampiran 123. Pengujian Engel-Granger Sayuran Daun Bawang Dependent Variable: HARGA

Dependent Variable: HARGA Method: Least Squares Date: 08/13/09 Time: 19:06 Sample(adjusted): 1 1164 Included observations: 1154

Excluded observations: 10 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	4135.220	31.41848	131.6174	0.0000
PASOKAN	-4.912649	1.565223	-3.138626	0.0017
RESID01(1)	0.975877	0.007284	133.9668	0.0000
R-squared	0.940800	Mean dependent var		4036.785
Adjusted R-squared	0.940698	S.D. dependent var		1983.742
S.E. of regression	483.0823	Akaike info criterion		15.20085
Sum squared resid	2.69E+08	Schwarz criterion		15.21398
Log likelihood	-8767.889	F-statistic		9145.865
Durbin-Watson stat	2.038594	Prob(F-statistic)		0.000000

Lampiran 124. Pengujian Regresi Kol Bulat

Dependent Variable: HARGA Method: Least Squares Date: 09/09/09 Time: 12:43 Sample (adjusted): 2 1165

Included observations: 1164 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C HARGA0 PASOKAN	39.34890 0.973917 0.064017	21.96927 0.006821 0.157081	1.791088 142.7743 0.407542	0.0735 0.0000 0.6837
R-squared Adjusted R-squared	0.947587 0.947497	Mean dependent var S.D. dependent var		1756.980 674.7337
S.E. of regression Sum squared resid	154.6054 27751189	Akaike info criterion Schwarz criterion		12.92220 12.93524
Log likelihood F-statistic Prob(F-statistic)	-7517.722 10495.05 0.000000	Hannan-Quinn criter. Durbin-Watson stat		12.92712 2.048852

Lampiran 125. Pengujian Regresi Kembang Kol

Dependent Variable: HARGA Method: Least Squares Date: 09/09/09 Time: 12:49 Sample (adjusted): 2 1165

Included observations: 1160 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C PASOKAN HARGA0	288.5050 -1.989736 0.941157	53.41776 2.981252 0.010098	5.400919 -0.667416 93.19891	0.0000 0.5046 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.884071 0.883871 422.5437 2.07E+08 -8658.166 4411.639 0.000000	Mean depend S.D. depende Akaike info c Schwarz crite Hannan-Quir Durbin-Watse	ent var riterion erion nn criter.	4753.678 1239.942 14.93305 14.94612 14.93798 2.362157

Lampiran 126. Pengujian Regresi Buncis Dependent Variable: HARGA Method: Least Squares Date: 09/09/09 Time: 12:53 Sample (adjusted): 2 1165 Included observations: 656 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C PASOKAN HARGA0	213.1025 -19.43486 0.945220	52.35303 14.36533 0.012855	4.070490 -1.352900 73.52807	0.0001 0.1766 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.892382 0.892052 340.9779 75921655 -4754.993 2707.373 0.000000	Mean depen S.D. depend Akaike info d Schwarz crite Hannan-Quir Durbin-Wats	ent var riterion erion nn criter.	3442.149 1037.813 14.50608 14.52659 14.51403 2.080030

Lampiran 127. Pengujian Regresi Wortel

Dependent Variable: HARGA Method: Least Squares Date: 09/09/09 Time: 12:56 Sample (adjusted): 2 1165

Included observations: 1160 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C PASOKAN HARGA0	192.2740 -2.004612 0.957625	37.47216 0.616893 0.008033	5.131115 -3.249532 119.2066	0.0000 0.0012 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.933163 0.933048 282.7860 92522909 -8192.308 8076.941 0.000000	Mean depender S.D. depender Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watsor	nt var erion on criter.	2740.517 1092.888 14.12984 14.14292 14.13478 2.151592

Lampiran 128. Pengujian Regresi Tomat

Dependent Variable: HARGA Method: Least Squares Date: 09/09/09 Time: 13:03 Sample (adjusted): 2 1165

Included observations: 1161 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C PASOKAN HARGA0	120.9544 -0.223727 0.966281	45.13105 0.367312 0.007642	2.680071 -0.609093 126.4487	0.0075 0.5426 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.935559 0.935448 322.2725 1.20E+08 -8351.122 8405.941 0.000000	Mean depender S.D. depender Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	nt var erion on criter.	3008.096 1268.431 14.39125 14.40432 14.39618 2.013036

Lampiran 129. Pengujian Regresi Sawi

Dependent Variable: HARGA Method: Least Squares Date: 09/09/09 Time: 13:07 Sample (adjusted): 2 1165

Included observations: 1160 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C PASOKAN HARGA0	96.88817 -0.062441 0.937393	19.48791 0.314056 0.010196	4.971705 -0.198821 91.93508	0.0000 0.8424 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.879596 0.879388 156.5845 28368140 -7506.638 4226.152 0.000000	Mean depender S.D. depender Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watsor	nt var erion on criter.	1503.341 450.8717 12.94765 12.96073 12.95259 2.045192

Lampiran 130. Pengujian Regresi Daun Bawang Dependent Variable: HARGA

Dependent Variable: HARGA Method: Least Squares Date: 09/09/09 Time: 13:09 Sample (adjusted): 2 1165

Included observations: 1159 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C PASOKAN HARGA0	75.91446 0.381427 0.980268	37.45333 1.291343 0.005939	2.026908 0.295372 165.0670	0.0429 0.7678 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.960035 0.959966 397.9453 1.83E+08 -8581.186 13884.61 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		4051.553 1988.875 14.81309 14.82618 14.81803 2.065335