Курсовая по 3dML

Выполнили:

- Иоффе Владислав
- Сайфудинов Роман
- Зыкова Дарья
- Богуславский Андрей

Шаги выполнения:

• Первым шагом было необходимо скачать и открыть предоставленное нам облако точек с территорией МАИ, которое было заранее отснято с помощью квадракоптера.

Для этого было испробовано несколько программ, таких как Matlab, Autocad и Autodesk recap. Но для подобной задачи данные приложения не подошли, так как они вылетали из-за нехватки памяти зависали или выдавали ошибку формата. Удачно открыть облако точек получилось с помощью Cloud Compare.

• Далее из огромной территории необходимо выделить один объект для дальнейшей работы. Мы выбрали самолет, находящийся рядом со входом в ГУК.

• Для кропа объекта необходимо узнать его координаты центра, а также координаты крайних точек в 3х измерениях.

Получилось выделить нужный объект из изначального облака точек.

Но в данном облаке присутствует много помех и элементов, не относящихся к нужному объекту. Для устранения этой проблемы кроп выбранного объекта был повторен еще несколько раз, в результате чего получилось достаточно чистое облако

точек.

- Были рассчитаны нормали с помощью встроенного функционала Cloud Compare. В дальнейшем они пригодятся для восстановления модели из облака точек.
- Далее полученное облако было сохранено в формате csv.

1	1	2	3	4	5	6	7	8	9	10	
1	X	Υ	Z	R	G	В	Α	Nx	Nx	Nx	
2	4.7340087	-122.5869	184.38400	139	156	175	255	-0.340622	-0.340623	-0.340624	
3	4.9710083	-122.5070	184.45399	100	114	134	255	0.750122	0.750123	0.750124	
4	5.0620117	-122.7349	183.68099	60	60	64	255	0.894739	0.894740	0.894741	
5	5.1480102	-121.9970	184.49099	238	254	255	255	0.056145	0.056146	0.056147	
6	5.1610107	-122.3449	184.14799	130	135	138	255	0.743932	0.743933	0.743934	
7	4.7579956	-122.4819	184.47200	137	163	186	255	-0.559360	-0.559361	-0.559362	
8	4.8380127	-122.6719	184.49499	156	228	246	255	-0.090764	-0.090765	-0.090766	
9	4.9600219	-122.2130	184.55700	198	201	211	255	-0.050049	-0.050050	-0.050051	
10	4.9249877	-122.1610	184.54499	174	177	184	255	-0.352136	-0.352137	-0.352138	
11	5.0239868	-122.7459	183.70700	62	62	67	255	0.887320	0.887321	0.887322	
12	5.1970214	-121.8880	184.46499	214	221	231	255	-0.146687	-0.146688	-0.146689	
13	5.1129760	-122.2169	184.49000	226	229	236	255	0.665018	0.665019	0.665020	
14	5.1099853	-122.0070	184.50399	229	246	254	255	0.146989	0.146990	0.146991	
15	4.8270263	-122.6329	184.47000	144	197	221	255	-0.167156	-0.167157	-0.167158	
16	5.0139770	-122.3430	184.47900	188	203	222	255	0.681267	0.681268	0.681269	
17	5.0339965	-122.0729	184.53100	247	252	253	255	0.045582	0.045583	0.045584	
18	4.9869995	-121.9819	184.48199	172	153	160	255	-0.205073	-0.205074	-0.205075	
19	4.8850097	-122.2620	184.48300	168	176	184	255	-0.597526	-0.597527	-0.597528	
20	5.0020141	-122.1849	184.54400	229	231	239	255	0.147635	0.147636	0.147637	
21	5.0399780	-122.1749	184.52999	234	243	251	255	0.364561	0.364562	0.364563	
22	4.8170166	-122.8220	184.50700	104	124	143	255	0.233129	0.233130	0.233131	
23	4.8670043	-122.4860	184.50700	152	213	231	255	-0.322685	-0.322686	-0.322687	
24	4.8829956	-122.9270	184.35299	46	46	51	255	0.964003	0.964004	0.964005	

• С помощью библиотек trimesh и open3D объект был визуализирован.

• Для создания меша был выбран алгоритм "Поворот Шара" (Ball-Pivoting Algorithm)

Идея данного алгоритма состоит в том, чтобы имитировать использование виртуального шара для создания сетки из облака точек. Сначала мы предполагаем, что данное облако точек состоит из точек, отобранных с поверхности объекта. Точки должны представлять собой бесшумную поверхность.

Можно представить, что крошечный шарик катится по облаку точек. Этот крошечный шарик зависит от масштаба сетки и должен быть немного больше, чем среднее расстояние между точками. Когда мы бросаем мяч на поверхность точек, мяч остановится на трех точках, которые образуют треугольник. С этого места мяч будет катиться по ребру треугольника, образованному двумя точками. Затем мяч оседает

в новом месте: новый треугольник формируется из двух предыдущих вершин и к сетке добавляется новый треугольник. Пока мяч продолжает кататься и поворачиваться, формируются и добавляются к сетке новые треугольники. Действие продолжается пока сетка полностью не сформируется.

• Далее было решено осуществить работу с данным объектом путем преобразования сферы в самолет. Основной библиотекой для этого является pytorch3d. При обучении модели для подгонки сферы под объект используется градиентный спуск. На каждом шаге происходит сравнение части меша сферы и части меша объекта. На основе этого сравнения высчитывается ошибка, влияющая на дальнейшее обучение.

Итоговый результат видно на изображениях ниже.

