

BACKGROUND

- In this emerging tech world every small to large scale businesses are going online in order to increase their sales but there is one common problem which all of them face How to target more and more customers so that they spend more on their products and how to predict what amount is the new customer is gonna spend in the ecommerce platform.
- Here comes the use of predictive analysis but why is predictive analysis important for ecommerce platforms, the answer is simple "Predictive analytics enables ecommerce businesses to understand what products customers are looking for, helps in identifying popular and not-so-popular products and product categories".

OBJECTIVE

■ The objective of this project is that we have the dataset of an ecommerce business we will examine that data and then we will build a linear regression model which will predict the customers yearly spend on the company's product.

DATASET

1 Email	Address	Avatar	Avg Session Length	Time on App	Time on Website	Length
2 mstephenson@fernandez.com	835 Frank TunnelWrightmouth, M	l Violet	34.49726773	12.65565115	39.57766802	1
3 hduke@hotmail.com	4547 Archer CommonDiazchester,	DarkGreen	31.92627203	11.10946073	37.26895887	1
4 pallen@yahoo.com	24645 Valerie Unions Suite 582Col	Bisque	33.00091476	11.33027806	37.11059744	,
5 riverarebecca@gmail.com	1414 David ThroughwayPort Jason	SaddleBrown	34.30555663	13.71751367	36.72128268	
6 mstephens@davidson-herman.c	to 14023 Rodriguez PassagePort Jaco	MediumAquaMarine	33.33067252	12.79518855	37.5366533	
7 alvareznancy@lucas.biz	645 Martha Park Apt. 611Jeffreych	FloralWhite	33.87103788	12.02692534	34.47687763	
8 katherine20@yahoo.com	68388 Reyes Lights Suite 692Josep	DarkSlateBlue	32.0215955	11.36634831	36.68377615	
9 awatkins@yahoo.com	Unit 6538 Box 8980DPO AP 09026-4	Aqua	32.73914294	12.35195897	37.37335886	i
10 vchurch@walter-martinez.com	860 Lee KeyWest Debra, SD 97450	Salmon	33.9877729	13.38623528	37.53449734	ļ
11 bonnie69@lin.biz	PSC 2734, Box 5255APO AA 98456-	Brown	31.93654862	11.81412829	37.14516822	!
12 andrew06@peterson.com	26104 Alexander Groves Alexandri	Tomato	33.99257277	13.33897545	37.22580613	
13 ryanwerner@freeman.biz	Unit 2413 Box 0347DPO AA 07580-	Tomato	33.87936082	11.584783	37.08792607	1
14 knelson@gmail.com	6705 Miller Orchard Suite 186Lake	RoyalBlue	29.53242897	10.9612984	37.42021558	
15 wrightpeter@yahoo.com	05302 Dunlap FerryNew Stephanic	Bisque	33.19033404	12.95922609	36.1446667	1
16 taylormason@gmail.com	7773 Powell Springs Suite 190Sam	DarkBlue	32.38797585	13.14872569	36.61995708	
17 jstark@anderson.com	49558 Ramirez Road Suite 399Phil	Peru	30.73772037	12.63660605	36.21376309	j
18 wjennings@gmail.com	6362 Wilson MountainJohnsonfur	t PowderBlue	32.1253869	11.73386169	34.89409275	,
19 rebecca45@hale-bauer.biz	8982 Burton RowWilsonton, PW 8	OliveDrab	32.33889932	12.01319469	38.38513659)
20 alejandro75@hotmail.com	64475 Andre Club Apt. 795Port Da	r Cyan	32.18781205	14.71538754	38.24411459	
21 samuel 46@love-west.net	544 Alexander Heights Suite 768N	LightSeaGreen	32.61785606	13.98959256	37.1905038	
22 megan33@gmail.com	84426 Julia VistaNorth Teresa, KY	PeachPuff	32.91278511	11.36549203	37.60779252	1
23 agolden@yahoo.com	PSC 2490, Box 2120APO AE 15445-2	Black	33.50308726	12.8779837	37.44102134	ļ
24 vstafford@hotmail.com	PSC 5723, Box 8159APO AA 74738	Olive	31.53160448	13.37856278	38.73400629	1
25 denise22@hernandez-townsend	LUSNS Cardenas FPO AA 85439-9449	Silver	32.90325097	11.65757592	36.77260376	i

DATASET COLUMN DESCRIPTION

- EMAIL- consist up of the email id's of the customers
- AVATAR
- ADDRESS consist up of the delivery address / main address of the customers
- AVG SESSION LENGTH average amount of time spent by customer
- TIME ON APP time spent by customers on the app
- TIME ON WEBSITE time spent by customers on the website
- LENGTH OF MEMBERSHIP time for which customers have been the members
- YEARLY SPENT AMOUNT amount spent by the customer on yearly basis

FLOW OF PROJECT & TOOLS USED

- The project has been done on google collab and the tools used are
- SPARK
- PYTHON

Creating the environment

■ First of all we will create the working environment for spark in google collab as displayed in the picture below .

```
!apt-get update > /dev/null
!apt-get install openjdk-8-jdk-headless -qq > /dev/null
#!wget -q http://apache.osuosl.org/spark/spark-2.2.2/spark-2.2.2-bin-hadoop2.7.tgz
#!wget -q http://apache.osuosl.org/spark/spark-2.4.0/spark-2.4.0-bin-hadoop2.7.tgz
#wget -q http://apache.osuosl.org/spark/spark-2.4.5/spark-2.4.5-bin-hadoop2.7.tgz
#!wget -q http://apache.osuosl.org/spark/spark-2.4.6/spark-2.4.6-bin-hadoop2.7.tgz
#!wget -q http://apache.osuosl.org/spark/spark-3.0.1/spark-3.0.1-bin-hadoop3.2.tgz
!wget -q http://apache.osuosl.org/spark/spark-3.1.2/spark-3.1.2-bin-hadoop3.2.tgz
# check here for current versions http://apache.osuosl.org/spark
#!tar xf spark-2.4.0-bin-hadoop2.7.tgz
#!tar xf spark-2.4.5-bin-hadoop2.7.tgz
#!tar xf spark-2.4.6-bin-hadoop2.7.tgz
!tar xf spark-3.1.2-bin-hadoop3.2.tgz
#!pip install -q findspark
!pip install -q pyspark
os.environ["JAVA_HOME"] = "/usr/lib/jvm/java-8-openjdk-amd64"
#os.environ["SPARK_HOME"] = "/content/spark-2.4.0-bin-hadoop2.7"
```

CHECKING THE SCHEMA OF DATA & NULL VALUES

- We checked the schema of the data & found that the schema of the data provided was right nad there was no need of changing or transforming the schema
- Then we checked for the null values and found that there were no null values present in the dataset.

GENERAL STATS

Before going for the modelling part of the data we just saw an overview of the description of the data.

MODELLING PART

- For the modelling process since we are doing this project using spark we had to change the data frame .
- So we changed our dataframe, we did that because spark accepts the dataframe in the form of "labels" & features.
- we did this using the vector assembler library .

After using the vector assembler library we got a new column named features which is a form of vector and the dataframe now looked like this.

MODEL USED

- We used a linear regression model here because the we were doing the analysis on a continuous set of data
- So to start the modelling process we first of all split the data set into training and test data.
- Training data is used to train the model
- Test data is used to validate the model
- We split the data set by 70:30 ratio

- 70 being the training data
- 30 being the test data

- After splitting up the data set we called the linear regression library of spark
- We trained the model.

- Now after training the mode I our next job was to fit the model
- So we did that with our test data .

Now after fitting the data the next step was to see the prediction of the model so we got the following output as the prediction output.

- So these were the predictions obtained after fitting the model .
- Now we got the coefficient and the intercepts for the model .
- What is a co-efficient The values which multiply the predictor values .
- What is an intercept The expected value of Y when X = 0.

These were the values of co-efficients & intercept that were obtained .

- Next we calculated the MSE & RMSE values which is displayed below
- RMSE standard deviation of the residuals.
- MSE how close a regression line is to a set of points

```
[] print("RMSE: {}".format(test_results.rootMeanSquaredError))
print("MSE: {}".format(test_results.meanSquaredError))

RMSE: 9.19985715182144
MSE: 84.6373716139201

[]
```

So basically our objective for this project was to predict the yearly spent and we have
achieved that objective using the linear regression model .

■ This brings us to the end of this project .