Задача 1. Пусть $n \in \mathbb{N}$. Докажите, что наименьший натуральный делитель числа n, отличный от единицы, является простым числом.

Задача 2° . Докажите, что если натуральное число n, большее единицы, не делится ни на одно из простых чисел, не превосходящих \sqrt{n} , то число n простое.

Задача 3. Найдите все простые числа, лежащие на числовой оси между 2010 и 2050.

Задача 4. Найдите все $p \in \mathbb{N}$, для которых числа p, (p+10) и (p+14) простые.

Задача 5. Докажите, что существует бесконечно много простых чисел следующего вида:

a) p = 4n - 1, 6) p = 6n + 5, B)* p = 4n + 1.

Задача 6°. (Основная теорема арифметики)

- а) Докажите, что любое натуральное число можно разложить в произведение простых чисел.
- б) Докажите, что это разложение единственно с точностью до перестановки сомножителей.

Замечание 1. Более точно, представление натурального числа в виде $n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \ldots \cdot p_k^{\alpha_k}$, где $p_1 < p_2 < \ldots < p_k$ — простые числа, а $\alpha_1, \alpha_2, \ldots, \alpha_k$ — натуральные числа, единственно. Такое разложение на простые сомножители называется каноническим.

Задача 7. Числа a, b, c, n натуральные, $(a, b) = 1, ab = c^n$. Найдётся ли такое целое x, что $a = x^n$?

Задача 8. Решите в натуральных числах уравнение $x^{42} = y^{55}$.

Задача 9°. ($Teopema\ Лeжaнdpa$) Докажите, что простое число p входит в каноническое разложение числа n! в степени $\lfloor n/p \rfloor + \lfloor n/p^2 \rfloor + \lfloor n/p^3 \rfloor + \dots$ (здесь $\lfloor x \rfloor$ — это целая часть числа x).

Задача 10. Найдите каноническое разложение числа а) 2013, б) 1002001, в) 17!, г) C_{20}^{10} .

Задача 11. а) На какое число нулей оканчивается число 2013!? **б)** Может ли n! делиться на 2^n при каком-либо натуральном n?

Определение 1. Общим кратным ненулевых целых чисел а и b называется целое число, которое делится как на a, так и на b. Наименьшее среди положительных общих кратных называется наименьшим общим кратным чисел a и b. Обозначение: [a,b].

Задача 12°. Пусть $a=p_1^{\alpha_1}\cdot p_2^{\alpha_2}\cdot\ldots\cdot p_n^{\alpha_n},\ b=p_1^{\beta_1}\cdot p_2^{\beta_2}\cdot\ldots\cdot p_n^{\beta_n},$ причём $\alpha_i,\ \beta_i\geqslant 0.$ а) Найдите (a,b) и [a,b]. 6) Докажите, что $ab=(a,b)\cdot [a,b].$

Задача 13°. Докажите, что любое общее кратное чисел a и b делится на [a,b].

Задача 14. Верно ли, что

- **a)** $[ca, cb] = c \cdot [a, b]$ при $c \in \mathbb{N}$;
- **б)** числа [a, b]/a и [a, b]/b взаимно просты?

Задача 15. Про натуральные числа a и b известно, что (a,b)=15, [a,b]=840. Найдите a и b.

Задача 16. Найдите все натуральные числа с нечётным числом натуральных делителей.

1	2	3	4	5 a	56	5 в	6 a	6 6	7	8	9	10 a	10 б	10 B	10 Г	11 a	11 б	12 a	12 б	13	14 a	14 6	15	16

Задача 17. Пусть $n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \ldots \cdot p_k^{\alpha_k}$.

- а) Найдите количество натуральных делителей числа n.
- **б)** Докажите, что сумма натуральных делителей числа n равна

$$\frac{p_1^{\alpha_1+1}-1}{p_1-1} \cdot \frac{p_2^{\alpha_2+1}-1}{p_2-1} \cdot \dots \cdot \frac{p_k^{\alpha_k+1}-1}{p_k-1}.$$

в)* Выведите формулу для суммы квадратов делителей числа n.

Задача 18*. Число, равное сумме всех своих натуральных делителей за исключением самого себя, называется совершенным. Докажите, что если числа p и (2^p-1) — простые, то число $2^{p-1} \cdot (2^p - 1)$ совершенно.

Определение 2. Простые числа вида $(2^n - 1)$ называются *числами Мерсенна*.

Числа Мерсенна получили известность в связи с эффективным критерием простоты, благодаря которому простые числа Мерсенна давно удерживают лидерство как самые большие известные простые числа. Часть этого критерия простоты дана в следующей задаче. На февраль 2013 года самым большим известным простым числом является число Мерсенна $M_{57\,885\,161}=2^{57885161}-1,$ найденное в январе 2013 года в рамках проекта распределённых вычислений GIMPS. Десятичная запись числа $M_{57\,885\,161}$ содержит 17 425 170 цифр.

Задача 19*. Докажите, что

- **a)** если m : n, то $(a^m 1) : (a^n 1)$;
- **б)** множество чисел $\{n \mid (a^n-1) \mid r\}$ является арифметической прогрессией для любого натурального r;
- **в)** если $(a^n 1)$ простое, то a = 2 и n простое.

Определение 3. Простые числа вида $(2^{2^k} + 1)$ называются *числами Ферма*.

Изучение чисел такого вида начал Ферма, который выдвинул гипотезу, что все они простые. Однако, эта гипотеза была опровергнута Эйлером в 1732 году, нашедшим разложение числа $F_5 = 4\,294\,967\,297$ на простые делители (в худшем случае понадобится проверить больше 6000 простых делителей, однако при должном трудолюбии вы сможете найти простой делитель этого числа на калькуляторе). Особый интерес числа Ферма представляют в связи с теоремой Гаусса — Ванцеля: Правильный *п*-угольник можно построить с помощью циркуля и линейки тогда и только тогда, когда $n=2^r\cdot p_1\cdot\ldots\cdot p_k$, где p_i различные простые числа Ферма. На январь 2013 года известно лишь 5 простых чисел Ферма: 3, 5, 17, 257, 65537. Существование других простых чисел Ферма является открытой проблемой.

Задача 20*. а) Докажите, что если число (2^n+1) — простое, то $n=2^k$. 6) Докажите, что числа вида $(2^{2^k}+1)$ являются взаимно простыми при различных k. **в)** Докажите, что все делители чисел Ферма имеют вид $k \cdot 2^{n+1} + 1$.

Задача 21*. Может ли быть целым число **a)**
$$1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}$$
; **б)** $1 + \frac{1}{3} + \frac{1}{5} + \ldots + \frac{1}{2n+1}$?

Задача 22*. На доске написано n натуральных чисел. За одну операцию вместо двух чисел, ни одно из которых не делится на другое, можно написать их наибольший общий делитель и наименьшее общее кратное. Докажите, что

- а) можно провести лишь конечное число таких операций;
- б) финальный результат не зависит от порядка выполнения действий.

Например, $(4,6,9) \rightarrow (2,12,9) \rightarrow (2,3,36) \rightarrow (1,6,36)$.

Или так: $(4,6,9) \rightarrow (4,3,18) \rightarrow (1,12,18) \rightarrow (1,6,36)$.

17 a	17 б	17 B	18	19 a	19 б	19 B	20 a	20 6	20 B	21 a	21 б	22 a	22 6