CSI30

Outline

What is a set?

Describing sets:

Listing Elements
Set-Builder Notation
Venn Diagrams

Terminology:

Subset

Cardinality

Cartesian Product

Set is an unordered collection of *distinct* objects.

- used to group objects together,
- often the objects with similar properties

This description of a set (without specification what an object is) was started by the German mathematician Georg Cantor, in 1895.

He is considered to be the founder of **set theory**.

We will use Cantor's original version of set theory (called **naive set theory**).

The objects in a set are called elements, or members, of the set. A set is said to contain its elements.

CSI30

Example (set builder notation):

 $A = \{ x \mid x \text{ is even positive integer} \}$

which means that $A = \{ 2, 4, 6, 8, 10, ... \}$

-we can use this notation when it is not possible to list all the elements of the set.

Example (set builder notation):

 $T = \{ x \mid x^2 = 64 \}$ Can you tell what numbers set T consists of?

Some of the well studied sets

 $N = \{0, 1, 2, 3, 4, ...\}$ set of natural numbers

 $Z = {..., -3, -2, -1, 0, 1, 2, 3, ...}$ set of integers

 $Z^+ = \{ 1, 2, 3, 4, ... \}$ set of positive integers

R = the set of real numbers (rational and irrational numbers)

Venn Diagrams

- is used to show relationships between sets.
- named after English mathematician Jogn Venn, who introduced their use in 1881.

In Venn diagram the universal set *U*, which contains <u>all the objects under consideration</u>, is represented by a rectangle.

U – universe

Let $U = \mathbf{Z}$ the set of integers

Inside the rectangle, circles and other geometrical figures are used to represent sets.

Sometimes points are used to represent particular elements of the set.

Venn Diagrams

Venn diagrams allow us to visualize relationships between sets.

CSI30

Empty set is a set that has no elements; denotation: \emptyset

A is a subset of B iff every element of A is also an element of B.

denotation: $A \subseteq B$ or $B \supseteq A$

Example:

Let $A=\{1,2,3\}$ and $B=\{0,1,2,5,3\}$.

Then $A \subseteq B$.

Venn diagram for $A \subseteq B$

CSI30

A is a proper subset of B iff A is a subset of B and set A and B are not equal.

denotation: $A \subset B$ or $B \supset A$

Examples:

- **1)** Let $A = \{1,2,3\}$ and $B = \{0,1,2,5,3\}$. Then $A \subset B$.
- **2)** Let A={1,2,3} and B={1,2,3} Then A ⊆ B, but A ⊄ B

Venn diagram for $A \subseteq B$

CSI30

Let S be a set. If there are exactly n distinct elements in S, where n is a nonnegative integer, we say that S is a finite set and that n is the cardinality of S.

Denotation: |S|

Examples: find the cardinality of the given sets

a) The set of even positive integers less than 8.

b) The set of letters in English alphabet.

c) \varnothing

Cartesian Products

The order of elements in the set is often important. Sets are unordered. Ordered n-tuples provide ordered collection.

An ordered n-tuple $(a_1, a_2, ..., a_n)$ is the ordered collection of the elements, where a_1 is the first element, a_2 is the second elements,..., and a_n is the last, nth element.

n-tuples are equal iff each corresponding pair of their elements is equal, i.e. $(a_1, a_2, ..., a_n) = (b_1, b_2, ..., b_n)$ iff $a_i = b_i$, for i = 1, 2, ..., n

Examples:

- 1) (1,2,3,4)
- 2) (a,b)
- 3) (1,4,2,3)
- 4) (b,a)

Cartesian Products

Cartesian product of two sets, A and B, is the set of all ordered pairs (a,b), where $a \in A$ and $b \in B$

denotation: A × B

$$A \times B = \{ (a,b) \mid a \in A \land b \in B \}$$

Example: Find the Cartesian products $A \times B$ of the given sets **a)** $A = \{ 10, 23 \}, B = \{ a, b, c \}$

b)
$$A = \{ 1, 2, 3, 4 \}, B = \{ a, b \}$$

Is $A \times B = B \times A$ for any two sets A and B?

Cartesian Products

Cartesian product of the sets A_1 , A_2 , ..., A_n is the set of all ordered n-tuples $(a_1, a_2, ..., a_n)$, where $a_i \in A_i$ for i = 1, 2, ..., n

<u>denotation</u>: $A_1 \times A_2 \times A_3 \times ... \times A_n$

$$A_1 \times A_2 \times A_3 \times ... \times A_n = \{ (a_1, a_2, ..., a_n) \mid a_i \in A_i, \text{ for } i = 1, 2, ..., n \}$$

Example: Find the Cartesian product $A \times B \times C$, where $A = \{ a, b, c \}, B = \{ 0, 1 \}, and <math>C = \{ 2, 3 \}.$