

Let $\mathbf{M_1}$ and $\mathbf{M_2}$ be single tape DTMs that decide the languages $\mathbf{L_1}$ and $\mathbf{L_2}$ respectively. Construct using a tabular format a 2-tape NDTM \mathbf{M} that decides the language $\mathbf{L_1.L_2}$. (Assumptions: 1- $\mathbf{M_1}$ and $\mathbf{M_2}$ decide the languages with final configurations $(\mathbf{h_{ves}}, \lozenge \underline{\#})$ or $(\mathbf{h_{no}}, \lozenge \underline{\#})$

(Assumptions: 1- M_1 and M_2 decide the languages with final configurations $(h_{yes}, \lozenge \#)$ or $(h_{no}, \lozenge \#)$ 2- If X and Y are DTMs that decide languages then X.Y is defined as the sequential composition where control passes from X to Y iff X reaches the state h_{yes} .) $(S, \lozenge \# \omega)$ $(S, \lozenge \# \omega)$ $(S, \lozenge \# \omega)$

TM	Condition	Next TM	<i>y</i> = 2	(3, \	, <u></u>)	W = x.y
> A	-	R'. B	-			
a	σ'=× ≠ #	R'.B		\bigcap		M ₁ . M ₂ . hyes
В	√'=×≠#	R ² .× ² . #'.R'.R ² . C	y		1 My. Myes	
	σ'=#	L'#.D				
С	σ=×+#	x ² . #'. R'. R ² . C				
	o	L ₄ , L ₄ , R', D				

If **M** is a Turing Machine that decides the language **L** where he assumptions of question 2 hold, construct using a tabular format a 2-tape NDTM **M'** that decides the language **L***.

(s, $\diamond \sharp \omega$, $\diamond \sharp \omega$)

, , , , , , , , , , , , , , , , , , , 	М	Condition	Next TM
7 / / > [4	1		R'.B
	B	σ=#	hyes
		σ'≠#	C
/ 5 T 15	C	σ=×≠#	R'C
		σ'=×≠ #	R2 x2 R1 R2 D
		_ o'= #	hno
7	D D	σ=×≠# =	x2 R1, R2 D
		σ=#	L#. L#. R'.R'.E
V E		$\sigma = \sigma^2 \neq \#$	R'R'E
		$\sigma' = \sigma^2 = \#$	L#. L# . M. hyes
		$\sigma \neq \sigma^2 \wedge \sigma^2 \neq \#$	hno
		$\sigma^{1} + \sigma^{2} \wedge \sigma^{2} = \#$	L#. R2. E