Diskrete Mathematik Solution 5

5.1 Computing Representations of Relations

a) We have $\rho^3 = \{(1,1), (1,3), (2,2), (4,4)\}$ and

$$M^{
ho^*} = egin{bmatrix} 1 & 1 & 1 & 1 \ 1 & 1 & 1 & 1 \ 0 & 0 & 0 & 0 \ 1 & 1 & 1 & 1 \end{bmatrix}$$

5.2 Operations on Relations

	Relation	reflexive	symmetric	transitive
a)	< 0	Х	Х	✓
b)	$ \cup \equiv_2$	✓	X	×
c)	$ \cup ^{-1}$	✓	✓	X

- a) Two numbers (a,b) are in the relation whenever there exists an x such that a < x and $x \mid b$. This relation is not reflexive, since $(1,1) \not\in < \circ \mid$. Moreover, it is not symmetric, because $(1,2) \in < \circ \mid$, but $(2,1) \not\in < \circ \mid$. This relation is transitive. For any (a,b,c), assume that there exist some x and y, such that a < x, $x \mid b$, b < y and $y \mid c$. From $x \mid b$ it follows that $x \leq b$, hence, $a < x \leq b < y$. Therefore, a < y and $y \mid c$.
- **b)** Two numbers (a,b) are in the relation whenever $a \mid b$ or $a \equiv_2 b$. This relation is reflexive, since for any a, we have $a \equiv_2 a$ (alternatively, one could use the fact that $a \mid a$). It is, however, not symmetric, because $(1,2) \in |\cup \equiv_2$, but $(2,1) \notin |\cup \equiv_2$. It is also not transitive, since $(3,1) \in |\cup \equiv_2$ and $(1,2) \in |\cup \equiv_2$, but $(3,2) \notin |\cup \equiv_2$.
- c) Two numbers (a, b) are in the relation whenever $a \mid b$ or $b \mid a$. This relation is reflexive, since for any a, we have $a \mid a$. It is also symmetric, because for any (a, b), we trivially have $a \mid b$ or $b \mid a$ if and only if $b \mid a$ or $a \mid b$. The relation is, however, not transitive, since $(3, 1) \in | \cup |^{-1}$ and $(1, 2) \in | \cup |^{-1}$ but $(3, 2) \notin | \cup |^{-1}$.

5.3 A False Proof

- a) For an arbitrary $x \in A$, there does not always exist a $y \in A$ such that $x \rho y$.
- **b)** Consider the following counterexample: $A = \{1, 2\}$ and $\rho = \{(1, 1)\}$. The relation ρ is symmetric and transitive. However, it is not reflexive, since $2 \rho 2$ does not hold.

5.4 An Equivalence Relation

a) We prove that \sim satisfies all properties of an equivalence relation.

Reflexivity: For any point $(x, y) \in \mathbb{R}^2 \setminus \{(0, 0)\}$, we have $(x, y) \sim (x, y)$, because one can choose $\lambda = 1$ in the definition of \sim .

Symmetry: Let $x_1, y_1, x_2, y_2 \in \mathbb{R} \setminus \{0\}$ and assume that $(x_1, y_1) \sim (x_2, y_2)$. It follows that $x_1 = \lambda x_2$ and $y_1 = \lambda y_2$ for some $\lambda > 0$. Hence, $x_2 = \frac{1}{\lambda} x_1$ and $y_2 = \frac{1}{\lambda} y_1$, where $\frac{1}{\lambda} > 0$. Therefore, $(x_2, y_2) \sim (x_1, y_1)$.

Transitivity: Let $x_1, y_1, x_2, y_2, x_3, y_3 \in \mathbb{R} \setminus \{0\}$ and assume that $(x_1, y_1) \sim (x_2, y_2)$ and $(x_2, y_2) \sim (x_3, y_3)$. This means that $(x_1, y_1) = (\lambda_1 x_2, \lambda_1 y_2)$ and $(x_2, y_2) = (\lambda_2 x_3, \lambda_2 y_3)$ for some $\lambda_1, \lambda_2 > 0$. It follows that $(x_1, y_1) = (\lambda x_3, \lambda y_3)$, where $\lambda > 0$ is defined as $\lambda_1 \lambda_2$. Hence, $(x_1, y_1) \sim (x_3, y_3)$.

b) An equivalence class $[(x,y)]_{\sim}$ contains all points on the ray through the origin (0,0) and the point (x,y) (excluding the origin). Note that no equivalence class can contain the origin (0,0) (\sim is only defined on $\mathbb{R}^2 \setminus \{(0,0)\}$).

5.5 Order Relations on Quotient Sets

To show that $(A/\theta, \rho)$ is a partial order we need to show that the relation ρ is reflexive, antisymmetric, and transitive.

Notice that for all $a \in A$ the element $least([a]_{\theta})$ is well-defined because $[a]_{\theta} \neq \emptyset$. Indeed, since θ is an equivalence relation, it is reflexive, so that $a \theta a$ and $a \in [a]_{\theta}$, by definition of $[a]_{\theta}$.

• **Reflexivity:** Let $[a]_{\theta} \in A/\theta$. One has

$$[a]_{\theta} \ \rho \ [a]_{\theta}$$

$$\stackrel{\cdot}{\Longleftrightarrow} \mathtt{least}([a]_{\theta}) \leq \mathtt{least}([a]_{\theta}) \quad (\mathsf{Definition} \ \mathsf{of} \ \rho)$$

$$\stackrel{\cdot}{\Longleftrightarrow} \mathsf{true}. \qquad (\mathsf{Reflexivity} \ \mathsf{of} \ \leq)$$

• Antisymmetry: Let $[a]_{\theta}$, $[b]_{\theta} \in A/\theta$. We have

$$([a]_{\theta} \ \rho \ [b]_{\theta}) \land ([b]_{\theta} \ \rho \ [a]_{\theta})$$

$$\Leftrightarrow \left(\operatorname{least}([a]_{\theta}) \leq \operatorname{least}([b]_{\theta}) \right) \land \left(\operatorname{least}([b]_{\theta}) \leq \operatorname{least}([a]_{\theta}) \right) \quad \text{(Definition of } \rho, \text{twice)}$$

$$\Rightarrow \operatorname{least}([a]_{\theta}) = \operatorname{least}([b]_{\theta}) \qquad \qquad \text{(Antyisymmetry of } \leq)$$

$$\Rightarrow [a]_{\theta} \cap [b]_{\theta} \neq \varnothing \qquad \qquad \text{(Definition of } \cap)$$

$$\Rightarrow [a]_{\theta} = [b]_{\theta}. \qquad \qquad \text{(Theorem 3.11)}$$

• Transitivity: Let $[a]_{\theta}$, $[b]_{\theta}$, $[c]_{\theta} \in A/\theta$. We have

$$\begin{split} &([a]_{\theta} \ \rho \ [b]_{\theta}) \wedge ([b]_{\theta} \ \rho \ [c]_{\theta}) \\ & \stackrel{}{\Longleftrightarrow} \left(\texttt{least}([a]_{\theta}) \leq \texttt{least}([b]_{\theta}) \right) \wedge \left(\texttt{least}([b]_{\theta}) \leq \texttt{least}([c]_{\theta}) \right) \quad \text{(Definition of } \rho, \text{twice)} \\ & \stackrel{}{\Longrightarrow} \texttt{least}([a]_{\theta}) \leq \texttt{least}([c]_{\theta}) \qquad \qquad \text{(Transitivity of } \leq) \\ & \stackrel{}{\Longrightarrow} [a]_{\theta} \ \rho \ [c]_{\theta}. \qquad \qquad \text{(Definition of } \rho) \end{split}$$

5.6 Lifting an Operation to Equivalence Classes

a) We define the function sum : $A^2 \rightarrow A$ by

$$\operatorname{sum}((a,b),(c,d)) \stackrel{\text{def}}{=} (ad+bc,bd).$$

Observe that $bd \neq 0$ since $b \neq 0$ and $d \neq 0$.

b) f is θ -consistent if and only if

$$(b_1 \ \theta \ b_1' \ \text{and} \ b_2 \ \theta \ b_2') \implies f(b_1, b_2) \ \theta \ f(b_1', b_2')$$

is true for all $b_1, b_2, b_1', b_2' \in B$. Alternatively (and equivalently) we could say that f is θ -consistent if and only if

$$([b_1]_{\theta} = [b_1']_{\theta} \text{ and } [b_2]_{\theta} = [b_2']_{\theta}) \implies [f(b_1, b_2)]_{\theta} = [f(b_1', b_2')]_{\theta}$$

is true for all $b_1, b_2, b'_1, b'_2 \in B$.

c) Let $(a, b), (a', b'), (c, d), (c', d') \in A$ be arbitrary. We have

$$(a,b) \sim (a',b') \text{ and } (c,d) \sim (c',d')$$

$$\stackrel{}{\Longleftrightarrow} ab' = ba' \text{ and } cd' = dc' \qquad (\text{def.} \sim)$$

$$\stackrel{}{\Longrightarrow} ab' \cdot dd' + cd' \cdot bb' = ba' \cdot dd' + dc' \cdot bb'$$

$$\stackrel{}{\Longleftrightarrow} ad \cdot b'd' + bc \cdot b'd' = bd \cdot a'd' + bd \cdot b'c' \qquad (\text{comm.})$$

$$\stackrel{}{\Longleftrightarrow} (ad + bc) \cdot b'd' = bd \cdot (a'd' + b'c') \qquad (\text{distr.})$$

$$\stackrel{}{\Longleftrightarrow} (ad + bc,bd) \sim (a'd' + b'c',b'd') \qquad (\text{def.} \sim)$$

$$\stackrel{}{\Longleftrightarrow} \text{sum}((a,b),(c,d)) \sim \text{sum}((a',b'),(c',d')). \qquad (\text{def. sum})$$

Hence, sum is \sim -consistent.