IN THE CLAIMS

Please amend the claims as follows:

Claims 1-23 (Cancelled).

Claim 24 (Currently Amended): An analyzer, comprising:

a monochromator that receives X-ray radiation emitted by a sample and reflects and refracts the X-ray radiation to create diffraction lines; and

a detector that receives the diffraction lines and converts the diffraction lines into an electrical signal;

wherein:

the monochromator comprises consisting of a single-crystal lithium fluoride doped with at least 0.018 mol per kg of a divalent positive ion M present in the a fluorinated state; and

the analyzer is configured to perform elemental analysis of the sample.

Claim 25 (Previously Presented): The analyzer as claimed in claim 24, wherein the ionic radius of the divalent ion M ranges from 55 to 80 picometers.

Claim 26 (Previously Presented): The analyzer as claimed in claim 25, wherein M is present in the fluoride in an amount of at least 0.02 mol per kg.

Claim 27 (Previously Presented): The analyzer as claimed in claim 26, wherein M is present in the fluoride in an amount of at least 0.023 mol per kg.

Reply to Office Action of October 23, 2008

Claim 28 (Previously Presented): The analyzer as claimed in claim 27, wherein M is present in the fluoride in an amount of at least 0.025 mol per kg.

Claim 29 (Previously Presented): The analyzer as claimed in claim 24, wherein M is present in the fluoride in an amount of at most 0.082 mol per kg.

Claim 30 (Previously Presented): The analyzer as claimed in claim 29, wherein M is present in the fluoride in an amount of at most 0.045 mol per kg.

Claim 31 (Previously Presented): The analyzer as claimed in claim 24, wherein M is Mg^{2+} .

Claim 32 (Previously Presented): The analyzer as claimed in claim 24, wherein M is Co^{2+} .

Claim 33 (Previously Presented): The analyzer as claimed in claim 24, wherein M is Zn^{2+} .

Claim 34 (Previously Presented): The analyzer as claimed in claim 24, wherein M is a mixture of at least two ions chosen from Mg²⁺, Zn²⁺ and Co²⁺.

Claim 35 (Currently Amended): The analyzer as claimed in claim 24, wherein the fluoride is present in the form of a cube or a parallelepiped shape.

Claim 36 (Currently Amended): The analyzer as claimed in claim 24, wherein the volume of the fluoride ranges from $2 \cdot 5 \times 10^{-3} \cdot \text{cm}^3 \cdot 2.5 \times 10^{-3} \cdot \text{cm}^3$ to 30 cm³.

Claim 37 (Previously Presented): The analyzer as claimed in claim 36, wherein the volume of the fluoride ranges from 0.01 to 20 cm³.

Claim 38 (Previously Presented): The analyzer as claimed in claim 24, wherein the fluoride has a cleaved surface.

Claim 39 (Previously Presented): The analyzer as claimed in claim 24, wherein the fluoride has a surface that is ground and then treated in an acid medium or polished,

Claim 40 (Currently Amended): The analyzer as claimed in claim 24, comprising wherein the detector comprises at least one scintillator consisting of a rare-earth halide.

Claim 41 (Previously Presented): The analyzer as claimed in claim 40, wherein the rare-earth halide is CeCl₃-doped LaCl₃ or CeBr₃-doped LaBr₃.

Claim 42 (Currently Amended): A method, comprising:

of analyzing an element of a specimen by means of with the analyzer as claimed in claim 24,;

wherein:

Å.

said-the analyzer comprises a detector consisting of a scintilator scintillator; and said scintilator the scintillator being is set on a line having a wavelength of less than 3

Claim 43 (Currently Amended): The method as claimed in claim 42, wherein the seintilator is set on a line having a wavelength of less than 2 Å.

Claim 44 (Currently Amended): The method as claimed in claim 43, wherein the scintilator-scintillator is set on a line having a wavelength of less than 1.5 Å.

Claim 45 (Previously Presented): A single-crystal lithium fluoride doped with 0.023 to 0.082 mol per kg of a divalent positive ion M present in the fluorinated state.

Claim 46 (Previously Presented): The fluoride as claimed in claim 45, wherein the ionic radius of the divalent ion M ranges from 55 to 80 picometers.

Claim 47 (Previously Presented): The fluoride as claimed in claim 46, wherein M is present in an amount of at least 0.025 mol per kg.

Claim 48 (Previously Presented): The fluoride as claimed in claim 47, wherein M is present in an amount of at most 0.045 mol per kg.

Claim 49 (Previously Presented): The fluoride as claimed in claim 45, wherein M is Mg^{2+} .

Claim 50 (Previously Presented): The fluoride as claimed in claim 45, wherein M is Co^{2+} .

Claim 51 (Previously Presented): The fluoride as claimed in claim 45, wherein M is Zn^{2+} .

Claim 52 (Previously Presented): The fluoride as claimed in claim 45, wherein M is a mixture of at least two ions chosen from Mg^{2+} , Zn^{2+} and Co^{2+} .

Claim 53 (Currently Amended): The fluoride as claimed in claim 45, wherein said fluoride is present in the form of a cube or a parallelepiped shape.

Claim 54 (Previously Presented): The fluoride as claimed in claim 45, wherein the volume of said fluoride ranges from 2.5×10^{-3} cm to 30 cm³.

Claim 55 (Previously Presented): The fluoride as claimed in claim 54, wherein the volume ranges from 0.01 to 20 cm³.

Claim 56 (Previously Presented): The fluoride as claimed in claim 45, wherein said fluoride has a cleaved surface.

Claim 57 (Previously Presented): The fluoride as claimed in claim 45, wherein said fluoride has a surface that is ground and then treated in an acid medium or polished,

Claim 58 (Currently Amended): <u>A method for preparing a monochromator</u>, <u>comprising The use of a utilizing the fluoride of claim 45-as monochromator</u>.

Application No. 10/586,282 Reply to Office Action of October 23, 2008

Claim 59 (New): A process for performing elemental analysis of a sample, comprising:

exciting the sample with a primary X-ray beam so that the sample emits a second X-ray beam by fluorescence;

reflecting and refracting the second X-ray beam into diffraction lines with a monochromator; and

detecting the diffraction lines and converting the diffraction lines into an electrical signal with a detector;

wherein the monochromator comprises a single-crystal lithium fluoride doped with at least 0.018 mol per kg of a divalent positive ion M present in a fluorinated state.