1. Proportion et pourcentage

1.1 Population et sous-population

Définition 1.6

- 1. On appelle **population** un ensemble d'éléments appelés les **individus**.
- 2. On appelle sous-population une partie de la population.

Exemple. On considère la population constituée par les élèves du lycée Ravel. Un individu est un élève. L'ensemble des élèves de la classe de Seconde 2 constitue une sous-population de la population des élèves du lycée.

1.2 Proportion d'une sous-population

Définition 2.6

On considère une population qui possède N individus et une sous-population composée de n individus. La **proportion** d'individus de la sous-population, notée p, est égale à :

$$p=rac{n}{N}$$

Application classe.	1.6.	Calculer	la	proportion	des	élèves	faisant	euro	espagnol	au	sein	de	votre
ciasse.													

1.3 Pourcentage de pourcentage

Propriété 1.6. On considère une population A, une sous population B de A et une sous-population C de B. On note p_B la proportion d'individus de la population de B dans A et p_C la proportion d'individus de la population de C dans B.

La proportion p d'individus de C dans A est égale à :

$$p=p_B imes p_C.$$

Exemple. On considère la population constituée par les véhicules que possède une entreprise. 75 % de ces véhicules sont électriques. Parmi les véhicules électriques, 30% sont des deux-roues. La proportion p des deux-roues électriques dans la population totale est donc $p=0,75\times0,3=0,225$ ce qui prouve que les deux-roues électriques représentent 22,5% de l'ensemble des véhicules de l'entreprise.

2. Variations d'une quantité

2.1 Variation absolue

Définition 3.6

On considère une quantité qui varie au cours du temps. On note V_I la quantité initiale et V_F la quantité finale.

La variation absolue de la quantité est le nombre :

$$V_F - V_I$$
.

Remarque. La variation absolue possède la même unité que la quantité étudiée.

Exemple. Le prix du baril de pétrole au 1^{er} octobre 2018 était de 73,68 dollars. Au 1^{er} janvier 2019, le prix du baril était de 46,82 dollars.

La variation absolue du prix du baril sur cette période est 46,82-73,68=-26,86. Cela signifie que le prix a baissé de 26,86 dollars.

Propriété 2.6.

- 1. Lorsque la variation absolue d'une quantité est **positive**, la quantité **augmente**.
- 2. Lorsque la variation absolue d'une quantité est négative, la quantité diminue.

2.2 Variation relative

Définition 4.6

On considère une quantité qui varie au cours du temps. On note On note V_I la quantité initiale et V_F la quantité finale.

La variation relative de V_F par rapport à V_I est le nombre :

$$\frac{V_F-V_I}{V_I}$$

Remarque. La variation relative n'a pas d'unité. Elle s'appelle également le taux d'évolution de la quantité étudiée. Elle peut s'exprimer en pourcentage.

■ Application 2.6. Lors d'une semaine promotionnelle organisée dans un cinéma de quartier, une place d'entrée habituellement à 8 euros est vendue 5 euros. Quelle est le pourcentage d'évolution du prix de l'entrée?

Définition 5.6 —

Le taux d'évolution permettant de passer d'une valeur V_I à une valeur V_F est :

$$t = \frac{V_F - V_I}{V_I}$$
 on a alors $V_F = (1+t)V_I$

Si l'on veut le taux d'évolution en pour centage, il faut multiplier t par \dots

ATTENTION! Le taux d'évolution t peut être **négatif**; cela revient à dire dans ce cas que l'évolution est une diminution ou une baisse.

Propriété 3.6. Faire évoluer une quantité d'un taux t revient à multiplier par 1+t et en pratique :

- 1. pour une augmentation de p%, on multiplie par $1 + \frac{p}{100}$ (ici $t = \frac{p}{100}$).
- 2. pour une diminution de p%, on multiplie par $1 \frac{p}{100}$ (ici $t = -\frac{p}{100}$).

Définition 6.6

Le nombre 1+t est appelé **multiplicateur**, puisque c'est par ce nombre que l'on multiplie V_I pour avoir V_F . On note alors :

$$C_{\mathrm{M}}=1+t$$
 et on a $V_{F}=C_{\mathrm{M}}\times V_{I}$

Remarque. Si l'on connaît $C_{\rm M}$, alors $t=C_{\rm M}-1$ (multiplier par 100 pour l'avoir en pourcentage).

P Application 3.6.

1.	Après une hausse de 8 % le prix d'un article est de 351 €. Quel était le prix de cet article avant la hausse?
2.	Après une baisse de 6 % le prix d'un article est de 329 €. Quel était le prix de cet article avant la baisse ?

3. Évolutions d'une quantité

3.1 Évolutions successives

Propriété 4.6. Pour appliquer plusieurs évolutions successives à une quantité, il suffit de multiplier la quantité par le produit des coefficients multiplicateurs de chaque évolution.

Exemple. Soit V_I une valeur initiale.

- 1. Pour une hausse de V_I de t_1 % suivie d'une hausse de t_2 %, on a : $V_F = \left(1 + \frac{t_1}{100}\right) \left(1 + \frac{t_2}{100}\right) V_I$.
- 2. Pour une hausse de V_I de t_1 % suivie d'une baisse de t_2 %, on a : $V_F = \left(1 + \frac{t_1}{100}\right) \left(1 \frac{t_2}{100}\right) V_I$.

\mathbf{T}	10	• , •		70
I)	enr	11t.16	n	7.6

Dans le cas de plusieurs évolutions, le **produit** des coefficients multiplicateurs permet de déterminer le taux d'évolution global.

PAPPLICATION 4.6. Le prix du carburant subit une hausse de $2,5\%$ puis une baisse de $0,4\%$ Quel est le taux d'évolution global associé à ces deux évolutions?							

3.2 Évolution réciproque

Définition 8.6

Soit deux quantités V_0 et V_1 .

On appelle évolutions réciproques les évolutions qui permettent de passer de V_0 à V_1 d'une part et de V_1 à V_0 d'autre part. Les coefficients multiplicateurs de deux évolutions réciproques sont inverses l'un de l'autre.

■ Application 5.6. au prix initial?	Un article augmente de 25%.	Quelle baisse	doit-on appliquer	pour reveni