MA 16200: Plane Analytic Geometry and Calculus II

Lecture 15: Sequences and Series Intro

7achariah Pence

Purdue University

Sections Covered: 10.1

$$= \frac{8}{\pi} \int_{0}^{\infty} \cos(\frac{\pi}{x}) \frac{\pi}{x^{2}} dx$$

$$= -\frac{8}{\pi} \int_{0}^{\infty} \cos(\frac{\pi}{x}) \frac{\pi}{x^{2}} dx$$

9) $\int_{3}^{6} 8 \cos \left(\frac{\pi}{x}\right) dx$

= 413

Let $u = \frac{T}{X}$ dx

$$\frac{\partial}{\partial T} S(n(x)) = t \rightarrow \infty \left[T S(n(x)) \right]_{3}$$

$$\sim \left[-8 \text{ si} \left(T \right) + 8 \text{ S(n)} \left(T \right) \right]_{3} \lim_{x \to \infty} \left[-\frac{8}{7} \text{ S(n)} \right]_{4}^{2}$$

$$=\lim_{t\to\infty} \left[-\frac{8}{\pi} \sin\left(\frac{\pi}{t}\right) + \frac{8}{\pi} \sin\left(\frac{\pi}{3}\right) \right] = \lim_{t\to\infty} \left[-\frac{8}{\pi} \sin\left(\frac{\pi}{t}\right) + \frac{8}{\pi} \sin\left(\frac{\pi}{3}\right) \right] = \lim_{t\to\infty} \left[-\frac{8}{\pi} \sin\left(\frac{\pi}{t}\right) + \frac{8}{\pi} \sin\left(\frac{\pi}{3}\right) \right] = \lim_{t\to\infty} \left[-\frac{8}{\pi} \sin\left(\frac{\pi}{t}\right) + \frac{8}{\pi} \sin\left(\frac{\pi}{3}\right) \right] = \lim_{t\to\infty} \left[-\frac{8}{\pi} \sin\left(\frac{\pi}{t}\right) + \frac{8}{\pi} \sin\left(\frac{\pi}{3}\right) \right] = \lim_{t\to\infty} \left[-\frac{8}{\pi} \sin\left(\frac{\pi}{t}\right) + \frac{8}{\pi} \sin\left(\frac{\pi}{3}\right) \right] = \lim_{t\to\infty} \left[-\frac{8}{\pi} \sin\left(\frac{\pi}{t}\right) + \frac{8}{\pi} \sin\left(\frac{\pi}{3}\right) \right] = \lim_{t\to\infty} \left[-\frac{8}{\pi} \sin\left(\frac{\pi}{t}\right) + \frac{8}{\pi} \sin\left(\frac{\pi}{3}\right) \right] = \lim_{t\to\infty} \left[-\frac{8}{\pi} \sin\left(\frac{\pi}{t}\right) + \frac{8}{\pi} \sin\left(\frac{\pi}{3}\right) \right] = \lim_{t\to\infty} \left[-\frac{8}{\pi} \sin\left(\frac{\pi}{t}\right) + \frac{8}{\pi} \sin\left(\frac{\pi}{3}\right) \right] = \lim_{t\to\infty} \left[-\frac{8}{\pi} \sin\left(\frac{\pi}{t}\right) + \frac{8}{\pi} \sin\left(\frac{\pi}{3}\right) \right] = \lim_{t\to\infty} \left[-\frac{8}{\pi} \sin\left(\frac{\pi}{t}\right) + \frac{8}{\pi} \sin\left(\frac{\pi}{t}\right) + \frac{8$$

 $=\lim_{t\to\infty} \left[4 \arctan^2(t) \right]$ $= 4 \left[\frac{\pi}{2} \right]^2 = 4 \frac{\pi^2}{4} = \pi^2$ $\int_{u}^{u} = \frac{1}{2} u^2$

$$\int \frac{e^{x}}{(e^{x}-1)(e^{x}+4)} dx du = e^{x} dx$$

$$= \int \frac{1}{(u-1)(u+4)} = \frac{A}{(u-1)(u+4)} + \frac{13}{(u-1)(u+4)}$$

$$= \int \frac{1}{(u-1)(u+4)} = \frac{A}{(u+4)} + \frac{13}{(u-1)(u+4)}$$

$$= A(u+4) + B(u-1)$$

$$= A(u+4) + B(u-$$

Enumerated Lists

Say we have an ordered list of numbers:

$$a_1, a_2, a_3, \dots, a_n, \dots$$

We can think of it as a function taking non-negative integers as inputs and real numbers as outputs.

Sequence Definition

Definition 1

A **sequence** is an ordered list of numbers of the form:

$$\{a_1, a_2, \dots (a_n) \dots \}$$

The subscript n is called the **index**. The number a_n is called the *n*-**th term** in the sequence.

Notation: Usually n starts at either
$$0$$
 or 1 (but it $\{a_n\}_{n=1}^{\infty}$ $\{a_n\}$ $\{a$

Defining Sequences

One can define sequences:

Recursively using a recurrence relation $a_{n+1} = f(a_n)$

■ The Fibonacci Sequence:

$$f_2 = \int_1^1 f_0 = \int_1^1 f_0 = f_{n+1} = f_n + f_{n-1}; \quad f_1 = 1; \quad f_0 = 1$$

Given a sequence $\{a_n\}$, define the **sequence of partial sums**

$$S_N = a_N + S_{N-1}; \quad S_1 = a_1 \quad \int_N a_1 d_1 + q_2 + \dots + q_N$$

- 3 "Abstractly" (when there is no obvious formula)
 - Let $\{p_n\}$ be the sequence of prime numbers:

$$\{p_n\} = \{2, 3, 5, 7, 11, 13, \ldots\}$$

Example (Explicit Formulas)

3a,3,=1

Problem 2

Use the explicit formula $\{\frac{1}{2^n}\}_{n=1}^{\infty}$ to write the first 4 terms of the sequence. Sketch a graph of the sequence.

$$\begin{array}{lll}
a_1 &= \frac{1}{2^1} = \frac{1}{2} & \frac{1}{2} & \frac{1}{4} \\
a_2 &= \frac{1}{2^2} = \frac{1}{4} \\
a_3 &= \frac{1}{2^3} = \frac{1}{8} \\
a_4 &= \frac{1}{2^4} = \frac{1}{16} & \frac{1}{16$$

Example (Explicit Formulas)

Problem 3

Use the explicit formula $\{1+\frac{(-1)^{n+1}}{n}\}_{n=1}^{\infty}$ to write the first 4 terms of the sequence. Sketch a graph of the sequence.

$$Q_{1} = \begin{vmatrix} + \frac{(-1)^{1+1}}{1} = \end{vmatrix} + \begin{vmatrix} -1 \\ 2 \end{vmatrix} = \begin{vmatrix} + \frac{1}{2} = \frac{1}{2} \end{vmatrix}$$

$$Q_{2} = \begin{vmatrix} + \frac{(-1)^{2+1}}{2} = \end{vmatrix} + \begin{vmatrix} -1 \\ 2 \end{vmatrix} = \begin{vmatrix} + \frac{1}{2} = \frac{1}{2} \end{vmatrix}$$

$$Q_{3} = \begin{vmatrix} + \frac{(-1)^{3+1}}{3} = \end{vmatrix} + \begin{vmatrix} + \frac{1}{3} = \frac{3}{4} \end{vmatrix}$$

$$Q_{4} = \begin{vmatrix} + \frac{(-1)^{4+1}}{1} = \end{vmatrix} - \begin{vmatrix} -1 \\ 4 \end{vmatrix} = \begin{vmatrix} -1 \\ 4 \end{vmatrix}$$

Example (Recursion)

Problem 4

Use the recurrence relation to write the first 4 terms of the sequence.

$$\begin{cases} a_{n+1} = a_n + a_{n-1} & \text{or} \\ a_0 = 1 & \text{or} \\ a_1 = 1 & \text{or} \end{cases}$$

$$\begin{cases} a_{n+1} = a_n + a_{n-1} & \text{or} \\ a_0 = 1 & \text{or} \end{cases}$$

$$\begin{cases} a_{n+1} = a_n + a_{n-1} & \text{or} \\ a_0 = 1 & \text{or} \end{cases}$$

$$\begin{cases} a_{n+1} = a_n + a_{n-1} & \text{or} \\ a_1 = 1 & \text{or} \end{cases}$$

$$\begin{cases} a_{n+1} = a_n + a_{n-1} & \text{or} \\ a_1 = 1 & \text{or} \end{cases}$$

$$\begin{cases} a_{n+1} = a_n + a_{n-1} & \text{or} \\ a_1 = 1 & \text{or} \end{cases}$$

$$\begin{cases} a_{n+1} = a_n + a_{n-1} & \text{or} \\ a_1 = 1 & \text{or} \end{cases}$$

$$Q_2 = Q_1 + Q_0 = 1 + 1 = 2$$

 $Q_3 = Q_2 + Q_1 = 2 + 1 = 3$
 $Q_4 = Q_3 + Q_2 = 3 + 2 = 5$
 $Q_5 = Q_4 + Q_3 = 5 + 3 = 8$

Example (Recursion)

Problem 5

Use the recurrence relation to write the first 4 terms of the sequence.

$$\begin{cases}
a_{n+1} = 2a_n + 1 \\
a_1 = 1
\end{cases}$$

$$Q_{3} = 2 \cdot Q_{1} + 1 = 2 \cdot 1 + 1 = 3$$

 $Q_{3} = 2 \cdot Q_{2} + 1 = 2 \cdot 3 + 1 = 7$
 $Q_{4} = 2 \cdot Q_{3} + 1 = 2 \cdot 7 + 1 = 15$
 $Q_{5} = 2 \cdot Q_{4} + 1 = 2 \cdot 15 + 1 = 3$

Example (Finding Formulas)

Problem 6

Consider the sequence $\{a_n\} = \{-2, 5, 12, 19, \ldots\}$.

1 Find 2 different formulas describing this sequence.

- 2 Use either formula to find the next 2 terms in the sequence.

Explicit Formula:
$$Q_n = f(n) = 7n - 2$$
; $n \ge 0$
 $7(n-1) - 2$; $n \ge 1$
Recursive Formula:
 $Q_{n+1} = 7(n+1) - 2 = 7n + 7 - 2 = (7n-2) + 7$
 $= 2n+7$
 $= 2n+7$

$$Q_5 = Q_4 + 7 = 26 + 7 = 33$$

Q ay = a3 + 7 = 19+7 = 26

Example (Finding Formulas)

Problem 7

Consider the sequence $\{a_n\} = \{1, -2, 6, -24, 120, \ldots\}$.

- 1 Find 2 different formulas describing this sequence.
- Use either formula to find the next 2 terms in the sequence.

$$\begin{array}{c|cccc}
n & a_n \\
\hline
1 & 1 \\
2 & -2 = (-1) & 2 \cdot 1 \\
3 & 6 = 3 \cdot 2 \cdot 1 \\
4 & -24 = (-1) \cdot 4 \cdot 3 \cdot 2 \cdot 1 \\
5 & 120 = 6 \cdot 4 \cdot 3 \cdot 2 \cdot 1
\end{array}$$
Z. Pence

$$1 \text{ Explicit Formula}$$
 $Q_n = (-1)^{n+1} (n(n-1)(n-2)....3\cdot 2\cdot 1)$
 $= (-1)^{n+1} \cdot n!$

Recursive:
$$\begin{aligned}
(n+1) &= (-1) \cdot (n+1) | = (-1) \cdot (-1)^{n+1} \cdot (n+1) \cdot n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 3 \cdot 24 \\
&= (-1) \cdot (n+1) \cdot (-1)^{n+1} \cdot n \cdot | \\
&= -(n+1) \cdot \alpha_n
\end{aligned}$$
Finally,
$$\begin{aligned}
\alpha_{1} &= (-1) \cdot (-1)^{n+1} \cdot (-1) \cdot \alpha_n \\
\alpha_{1} &= (-1) \cdot \alpha_n
\end{aligned}$$

Convergence Qn -> L means "an converges to L"

Definition 8

We say the sequence $\{a_n\}$ converges to a real number L (written $a_n \to L$) if

$$\lim_{n\to\infty}a_n=L$$

That is, the limit exists and equals L. Otherwise, we say the limit diverges.

Here is the formal definition, you will not need to know this.

Definition 9 (Formal Definition)

We say $a_n \to L$ if for any $\varepsilon > 0$ there is a positive integer N such that:

If
$$n \geq N$$
, then $|a_n - L| < \varepsilon$

an diverges (no limit point)

Example (Limits)

Problem 10

Make a conjecture about whether the following sequences converge or diverge. Explain why or why not.

- $a_n = (-1)^n \frac{3}{n+5}$;
- $\bigcirc \blacksquare a_n = \cos \pi n \; ; \; n \geq 0$
- $a_n=2a_n;\; a_1=1$ \mathcal{O}_n is unbounded, So
- \$ costin 3 = { 1, -1, 1, -1 ---
- - Z. Pence

Example (Height of a Ball)

Problem 11

A basketball tossed straight up in the air reaches a high point and falls to the floor. Each time the ball bounces on the floor it rebounds to 0.8 of its previous height. Let h_n be the high point after the nth bounce, with the initial height being $h_0 = 20$ ft.

- Find a recurrence relation and an explicit formula for the sequence $\{h_n\}$.
- What is the height of the peak after the 10th bounce? After the 20th bounce?
- Speculate the limit of the sequence $\{h_n\}$.

$$\begin{array}{ll} \begin{array}{ll} \end{array}{ll} \end{array} \end{array} \end{array}}{h_{1}} = 0.8 \, h_{0} \\ \end{array} \end{array} \\ \begin{array}{ll} \end{array}{ll} \end{array} \end{array}}{h_{2}} = 0.8 \, (0.8 \, h_{0}) \\ \end{array} \end{array} \\ \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \end{array}{ll} \end{array} \end{array}}{h_{3}} = 0.8 \, h_{0} \\ \end{array} \\ \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \end{array}{ll} \end{array} \end{array} \end{array} \\ \end{array} \\ \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \end{array}{ll} \end{array} \end{array} \end{array} \\ \end{array} \\ \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \end{array}{ll} \end{array} \end{array} \\ \end{array} \\ \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \end{array} \end{array} \end{array} \\ \end{array} \\ \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \end{array} \end{array} \end{array} \\ \end{array} \\ \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \end{array} \end{array} \end{array} \\ \end{array} \\ \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \end{array} \end{array} \\ \end{array} \\ \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \end{array} \end{array} \\ \end{array} \\ \begin{array}{ll} \begin{array}{ll} \end{array} \end{array} \\ \end{array} \\ \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \end{array} \end{array} \\ \end{array} \\ \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \end{array} \end{array} \\ \end{array} \\ \begin{array}{ll} \begin{array}{ll} \end{array} \end{array} \\ \end{array} \\ \begin{array}{ll} \begin{array}{ll} \end{array} \end{array} \\ \end{array} \\ \begin{array}{ll} \end{array} \end{array} \\ \end{array} \\ \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \end{array} \end{array} \\ \end{array} \\ \begin{array}{ll} \end{array} \end{array} \\ \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \end{array} \end{array} \\ \end{array} \\ \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{ll} \end{array} \\ \end{array} \\ \begin{array}{ll} \begin{array}{ll} \end{array} \end{array} \\ \end{array} \\ \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{ll} \end{array} \end{array} \\ \begin{array}{ll} \begin{array}{ll} \end{array} \end{array} \\ \end{array} \\ \begin{array}{ll} \end{array} \end{array} \\ \begin{array}{ll} \end{array} \end{array} \\ \begin{array}{ll} \end{array} \\ \end{array} \\ \begin{array}{ll} \end{array} \end{array} \\ \begin{array}{ll} \begin{array}{ll} \end{array} \end{array} \\ \end{array} \\ \begin{array}{ll} \end{array} \end{array} \\ \begin{array}{ll} \begin{array}{ll} \end{array} \end{array} \\ \end{array} \\ \begin{array}{ll} \end{array} \\ \end{array} \\ \begin{array}{ll} \end{array} \end{array} \\ \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \end{array} \end{array} \\ \end{array} \\ \begin{array}{ll} \end{array} \end{array} \\ \begin{array}{ll} \end{array} \\ \end{array} \\ \begin{array}{ll} \end{array} \end{array} \\ \begin{array}{ll} \end{array} \\ \begin{array}{ll} \end{array} \end{array} \\ \end{array} \\ \begin{array}{ll} \end{array} \\ \end{array} \\ \begin{array}{ll} \end{array} \end{array} \\ \begin{array}{ll} \end{array} \end{array} \\ \begin{array}{ll} \end{array} \end{array} \\ \begin{array}{ll} \end{array} \\ \begin{array}{ll} \end{array} \\ \end{array} \\ \begin{array}{ll} \end{array} \end{array} \\ \begin{array}{ll} \end{array} \\ \end{array} \begin{array}{ll} \end{array} \\ \begin{array}{ll} \end{array} \end{array} \\ \begin{array}{ll} \end{array} \\ \begin{array}{ll} \end{array} \\ \end{array} \\ \begin{array}{ll} \end{array} \end{array} \\ \begin{array}{ll} \end{array} \end{array} \\ \begin{array}{ll} \end{array} \\ \end{array} \\ \begin{array}{ll} \end{array} \end{array} \\ \begin{array}{ll} \end{array} \\ \end{array} \\ \begin{array}{ll} \end{array} \end{array} \\ \begin{array}{ll} \end{array} \end{array} \\ \\ \end{array} \\ \end{array} \begin{array}{ll} \end{array} \\ \begin{array}{ll} \end{array} \\ \end{array}$$

ho = 20

(3)
$$\lim_{n\to\infty} h_n = \lim_{n\to\infty} 20 \cdot (0.8)^n = 0$$

$$h_n \to 0$$

$$0.8^x$$

Zeno's Paradox

Let's say we want to travel 1m. For each step, we go half the remaining distance.

Series •000000

What is the distance traveled after n steps? Will we ever reach 1m?

Distance traveled at:
$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} = \sum_{k=1}^n \frac{1}{2^k}$$

We will at "
$$n = 00$$
"
We want to make sense of $\frac{1000}{2^k} = 1$

Sequence of Partial Sums

For a given sequence $\{a_n\}$, we define the **sequence of partial** sums $\{S_N\}$ as:

Series 0000000

$$S_1 = a_1$$
 $S_2 = a_1 + a_2$
 $S_3 = a_1 + a_2 + a_3$
 \vdots

$$S_N = a_1 + a_2 + \dots + a_N = \sum_{n=1}^{N} a_n = a_N + S_{N-1}$$
Explicit

That is, for the infinite sum $a_1 + a_2 + ... + a_k + ...$, S_N is the value when we "chop off" the first N terms and compute its sum.

Series Definition

Definition 12

Given a sequence $\{a_n\}_{n=1}^{\infty}$, the sum of its terms:

$$a_1 + a_2 + a_3 + \ldots = \sum_{n=1}^{\infty} a_n$$

Series 0000000

is called an (infinite) series. If the sequence of partial sums $\{S_N\}$ has a limit L, we say the series **converges** to L. We then write,

$$\sum_{n=1}^{\infty} a_n \stackrel{\text{def}}{=} \lim_{N \to \infty} \sum_{n=1}^{N} a_n = \lim_{N \to \infty} S_n = L$$

Otherwise, the series **diverges**.

0.9999999999... = 1?

Problem 13

Make a conjecture about whether the sum:

bout whether the sum:
$$9/10 + 9/100 + 9/1000 + \cdots = \sum_{n=1}^{\infty} 9 \cdot (\frac{1}{10})^n$$
 $0.9 + 0.09 + 0.009 + \cdots = \sum_{n=1}^{\infty} 9 \cdot (\frac{1}{10})^n$

Series 0000000

converges or diverges. If so, what is a plausible limit?

$$S_1 = 0.9$$

 $S_2 = 0.9 + 0.09 = 0.99$
 $S_3 = 0.99 + 0.009 = 0.999$
 $S_4 = 0.999 + 0.0009 = 0.999$

$$\begin{array}{rcl}
 \chi &=& 0.555 \\
 0\chi &=& 5.55 \\
 \hline
 \chi &=& 5
 \end{array}$$

$$\begin{array}{rcl}
 \chi &=& 5 \\
 \chi &=& 5
 \end{array}$$

$$\begin{array}{rcl}
 \chi &=& 5 \\
 \chi &=& 5
 \end{array}$$

Example

Series 0000000

Problem 14

Make a conjecture about whether the sum:

$$\sum_{k=1}^{\infty} \frac{1}{k(k+1)} \frac{Partial Fractions}{k} \frac{\infty}{k-1} \left[\frac{1}{k} - \frac{1}{k+1} \right]$$

converges or diverges. If so, what is a plausible limit?

$$S_{1} = 1 - \frac{1}{2} \quad q_{2}$$

$$S_{2} = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} = 1 - \frac{1}{3}$$

$$S_{3} = 1 - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} = 1 - \frac{1}{4}$$

$$= 1 - \frac{1}{3+1}$$
Z. Pence

$$S_{N} = 1 - \frac{1}{N+1}$$

$$\sum_{k=1}^{\infty} \frac{1}{k(k+1)} = \lim_{N \to \infty} S_{N} = \lim_{N \to \infty} \left(1 - \frac{1}{N+1}\right)$$

$$= 1$$

The Harmonic Series

Theorem 15

The **harmonic series**:

$$\sum_{n=1}^{\infty} \frac{1}{n} = \left(+ \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots \right)$$

Series 0000000

diverges.

Why? For full details, see Section 10.4.

$$S_N = \sum_{n=1}^N \frac{1}{n} > \int_1^{N+1} \frac{1}{x} dx = \ln(N+1)$$

So S_N is unbounded (hence it diverges).

Example (Distance of a Ball)

Problem 16

Suppose a ball is thrown upward to a height of h_0 meters. Each time the ball bounces, it rebounds to a fraction $r = 0.5 \ \phi f$ its previous height. Let h, be the height after the nth bounce and let S_n be the total distance the ball has traveled at the moment of the nth bounce.

• Find a formula for S_n and find a plausible value for the limit.

$$S_1 = 2h_0$$

 $S_2 = S_1 + 2(\frac{h_0}{2}) = 2h_0 + \frac{1}{2}(2h_0)$
 $= 2h_0(1+\frac{1}{2})$
 $S_3 = S_2 + 2(\frac{h_1}{2}) = S_2 + 2(\frac{h_0}{4})$

Series 000000

SN =
$$2ho\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\cdots+\frac{1}{2^{N-1}}\right)=2h_o\sum_{n=1}^{N}\frac{1}{2^{n-1}}$$

Find a Plausible Limit for $2ho\sum_{n=1}^{\infty}\frac{1}{2^{n-1}}$

O

 $\frac{1}{2^{n-1}}=\lim_{N\to\infty}\frac{N}{2^{n-1}}=2$

Total Distance: $2ho\sum_{n=1}^{\infty}\frac{1}{2^{n-1}}=4ho$

Comparing to Functions

	Sequences/Series	Functions
Independent Variable	n	Х
Dependent Variable	a_n	f(x)
Domain	Integers	Real Numbers
Accumulation	Sums	Integrals
Accumulation over finite interval	$\sum_{n=1}^{N} a_k$	$\int_1^N f(x) \ dx$
Accumulation over an infinite interval	$\sum_{n=1}^{\infty} a_n$	$\int_1^\infty f(x) \ dx$