Chapitre 31

Dénombrement

31 Dénombrement	1
31.12Exemple: parcours d'une fourmi	2
31.19Exemple	2
31.20Exemple	2
31.27Exemple	2
31.28Exemple	2
31.32Exemple	9
31.33Exemple	9
31.38Nombre de combinaisons	9
31.40Exemple	3
31.41k-listes strictement croissantes de $[1, n]$	3

31.12 Exemple: parcours d'une fourmi

Exemple 31.12

La fourmi Donald se promène sur un grillage du plan de taille $2 \times p$ dont chaque arête est de longueur 1. Combien de chemins de longueur minimale peut-elle emprunter pour gagner le point d'arrivée depuis son point de départ?

Compter ce nombre de chemins revient à dénombrer le nombre de mots de p+2 lettres contenant exactement p lettres D et 2 lettres B.

Pour constuire un tel mot, il suffit de choisir la place des deux B.

On a p+1 choix pour le premier B.

Pour chaque choix de position $k \in [1, p+1]$, il reste p+2-k choix pour le second B.

Le nombbre de choix possible final est donc :

$$\sum_{k=1}^{p+1} (p+2-k) = \sum_{k=1}^{p+1} k$$
$$= \frac{(p+1)(p+2)}{2}$$

31.19 Exemple

Exemple 31.19

Combien y-a-t-il de couples (x, y) dans $[1, n]^2$ avec $x \neq y$?

Etape 1 : On choisit $x \in [1, n]$, soit n choix.

Etape 2 : On choisit $y \in [1, n] \setminus \{x\}$, soit n - 1 choix.

Au total n(n-1) choix (principe des bergers).

31.20 Exemple

Exemple 31.20

A partir d'un alphabet de p lettres, combien de mots de n lettres peut-on former qui ne contiennent jamais deux lettres identiques consécutives?

Etape 1 : On choisit la première lettre : p possibilités.

Etape 2 : On choisit la deuxième lettre : p-1 possibilités.

Etape 3: On choisit la troisième lettre : p-1 possibilités.

Au total : $p(p-1)^{n-1}$ possibilités.

31.27 Exemple

Exemple 31.27

De combien de façon peut-on tirer 5 cartes successivement avec remise dans un jeu de 52 cartes?

Il s'agit de compter le nombre de 5-listes d'un ensemble de cardinal 52, soit 52^5 possibilités.

31.28 Exemple

Exemple 31.28

Combien y-a-t-il de mots de 7 lettres contenant le mot "OUPS"?

Etape 1: Choix de la place du mot "OUPS": 4 choix possibles.

Etape 2 : On complète avec un mot de 3 lettres.

Cela revient à compter le nombre de 3-listes d'un ensemble à 26 éléments : 26^3 possibilités.

Aut total : 4×26^3 possibilités.

31.32Exemple

De combien de façon peut-on tirer 5 cartes successivement sans remise dans un jeu de 52 cartes?

Cela revient à compter le nombre de 5-arrangements d'un ensemble de cardinal 52, soit $\frac{52!}{(52-5)!}$.

31.33 Exemple

De combien de façons peut-on asseoir n personnes sur un banc rectiligne? Autour d'une table ronde?

- Sur un banc rectiligne, cela revient à calculer le nombre de n-arrangements d'un ensemble de cardinal n, soit n! choix.
- En choisissant arbitrairement la place d'une personne (par exemple Jack), il suffit de compléter par un (n-1)-arrangement d'un ensemble à n-1 éléments, soit (n-1)! choix.

31.38 Nombre de combinaisons

Soit $p \in \mathbb{N}$ et notons n = |E|. Il y a $\binom{n}{p}$ p-combinaisons de E.

Pour construire une p-combinaison :

- On choisit un p-arrangement de $E: \frac{n!}{(n-p)!}$ possiblités.
- On choisit l'ensemble des éléments qui constituent cet arrangement.

Or toute permutation du p-arrangement conduit à la même combinaison. Il y a donc $|S_p| = p!$ arrangements qui donne la même combinaison (il n'y en a pas d'autres). On a donc $\frac{n!}{(n-p)!p!}$ p-combinaisons.

31.40Exemple

De combien de façon peut-on tirer 5 cartes simultanément dans un jeu de 52 cartes?

Il s'agit de compter le nombre de 5-combinaisons d'un ensemble de cardinal 52. Il y en a $\binom{52}{5}$.

k-listes strictement croissantes de [1, n]31.41

Pour tout $k \in [1, n]$, il existe $\binom{n}{k}$ familles d'entiers (i_1, \ldots, i_k) pour lesquelles $1 \le i_1 < \cdots < i_k \le n$.

Pour tout ensemble à k éléments de [1, n] distincts, il existe une unique manière de les ordonner. Réciproquement tout k-uplet (i_1, \ldots, i_k) avec $1 \le i_1 < \cdots < i_k \le n$ fournit un sous-ensemble à k eléments distincts de [1, n]. Il y a donc en tout $\binom{n}{k}$ familles recherchées.