THE INTERNATINONAL UNIVERSITY (IU) – VIETNAM NATIONAL UNIVERSITY – HCMC

Midterm Examination

Date:April 23, 2020.....

Duration: 150 minutes

SUBJECT: Principles of EE1	
Dean of School of Electronics &	Lecturer: Dr Huynh Tan Quoc
Telecommunications Engineering	Signature:
Signature:	
Full name:	Full name:

INTRODUCTIONS:

- 1. This is an OPEN-BOOK examination.
- 2. Students takes 2 decimal digits in calculation
- 3. Discussion and material transfer are strictly prohibited Total pages: 05 (including this page)

Problem 1: (10 pts) Calculate the power for all the elements in the circuit shown in Figure P1 and state whether it is absorbed or delivered. Suppose V_A = 20 V, i_a = 5 A, i_b = 4 A, V_D = 11 V, i_d = 1 A, V_F = 8 V.

Figure P1

- a) Find ic and VE?
- b) Calculate the power for all the elements in the circuit shown and state whether it is absorbed or delivered.

Problem2: (10 points) For the voltage divider circuit shown, with V_i = 60 V, R_1 = 2 k Ω , R_2 = 4 k Ω , R_L = 4 k Ω ,

- a) Find the voltage *vo*1 under no load condition (Figure P2.a)
- b) Find the voltage *vo2* under loading condition (Figure P2.b)

Figure P2.a

Figure P2.b

Problem3: (10 points) Find I_o with V=11 V, $R_1=7$ k Ω , $R_2=5$ k Ω , $R_3=5$ k Ω , $R_4=1$ k Ω , $R_5=5$ k Ω

Figure P3

Problem4: (10 points) For the circuit shown, such that I=0.1 A, V=15 V, $R_1=52$ Ω , $R_2=32$ Ω , $R_3=126$ Ω , $R_4=63$ Ω .

Use the superposition principle to find the voltage V_o

Figure P4

Problem 5: (20 points) Determine the currents i_1 , i_2 , i_3 , i_4 in the following circuits with reference to the indicated direction. Let V = 84 V, I = 9 A, $R1 = 42 \Omega$, $R2 = 14 \Omega$, $R3 = 49 \Omega$, $R4 = 28 \Omega$.

- a) By using node voltage method.
- b) By using mesh current method.

Figure P5

Problem 6: (20 points) Consider the circuit in Figure P6. Suppose V1 = 4 V, R1 = 4 k Ω , R2 = 4 k Ω , V2 = 19 V, R3 = 10 k Ω , R4 = 8 k Ω ;

- a) Find the Thevenin equivalent for the circuit between node (a) and (b) as seen by the resistive load RL
- b) Find the value for RL such that the voltage across the load VL=1 V, Calculate the power delivered to the load
- c) Find the value for RL such that the current the power delivered to the load is maximum, Calculate the power delivered to the load

Problem 7: (20 points) For the OP.AMP circuit shown in Figure P7, Let V_i = 4 V, R_1 = 5 k Ω , R_2 = 9 k Ω , R_3 = 9 k Ω ;

Assume it is ideal, find the value of Rf such that Vo = 10 V

Figure P7