Frequency domain F (j @)	$ F(i\omega) $ $\frac{1}{a^2}$ 0		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A 1 + a + a + b 2 F(iw) - w ₀ A	
Time domain f(t)	$\frac{1}{(a+j\omega)^2}$	$\frac{1}{(a+j\omega)^n}$	$\frac{A\omega_0}{(a+j\omega)^2+\omega_0^2}$	$A\frac{a+j\omega}{(a+j\omega)^2+\omega_0^2}$	$T \left[\frac{\sin(\omega - \omega_0)T}{(\omega - \omega_0)T} + \frac{\sin(\omega + \omega_0)T}{(\omega + \omega_0)T} \right]$
	$t \exp(-at)u(t)$	$\frac{t^{n-1}}{(n-1)!} \exp(-at)u(t)$	$A \exp(-at) \sin(\omega_0 t) u(t)$	$A \exp(-at)\cos(\omega_0 t)u(t)$	$\cos \omega_0 t \left[u(t+T) - u(t-T) \right]$
	f(t) A		0	f(t) \	
Sl.No	17.	18.	19.	20.	21.

114 Digital Signal Processing

The Fourier transform of f(t) is

$$F(j\omega) = \mathcal{F}[f(t)] = \int_{-\infty}^{\infty} f(t)e^{-j\omega t} dt$$

$$= \int_{-T/2}^{T/2} 1 \cdot e^{-j\omega t} dt = \frac{1}{-j\omega} \left[e^{-j\omega t} \right]_{-T/2}^{T/2}$$

$$= \frac{1}{-j\omega} \left[e^{-j\omega T/2} - e^{-j\omega T/2} \right] = T \cdot \frac{\sin\left(\frac{\omega T}{2}\right)}{\left(\frac{\omega T}{2}\right)} = T \operatorname{sinc}\left(\frac{\omega T}{2}\right)$$

Hence, the amplitude spectrum is $|F(j\omega)| = T \left| \operatorname{sinc} \left(\frac{\omega T}{2} \right) \right|$

Fig. 2.5 (a) Amplitude Spectrum and
(b) Phase Spectrum of the Single Gate Function

and the phase spectrum is
$$|F(j\omega)| = \begin{cases} 0, & \operatorname{sinc}\left(\frac{\omega T}{2}\right) > 0\\ \pi & \operatorname{sinc}\left(\frac{\omega T}{2}\right) < 0 \end{cases}$$