이다. 이 구간에서 $(0.2)^{n+1}/[z^{n+1}(n+1)]$ 은 $(0.2)^{n+1}/(n+1)$ 보다 작다. 따라서 다 음을 만족하는 n을 찾을 수 있다.

$$\frac{(0.2)^{n+1}}{(n+1)} < 0.001$$
$$1000 < (n+1)5^{n+1}$$

시행착오를 통하여 이 부등식을 만족하는 가장 작은 n값은 n=3임을 알 수 있다. 따라서 원하는 정확도를 만족하는 ln(1.2)의 근삿값을 구하기 위해서는 삼차 테일 러 다항식이 필요하다.

연습문제 7.5

1. 다음 주어진 x = c에서 f의 값과 기울기가 같은 일차다항 식함수 P_1 을 구하여라. 그래프 계산기로 f와 P_1 의 그래 프를 그려라. P₁을 무엇이라 부르는가?

(a)
$$f(x) = \frac{4}{\sqrt{x}}$$
, $c =$

(a)
$$f(x) = \frac{4}{\sqrt{x}}$$
, $c = 1$ (b) $f(x) = \sec x$, $c = \frac{\pi}{4}$

- **2.** 함수 $f(x) = \cos x$ 와 그것의 매클로린 다항식 P_2, P_4, P_6 이 있다(예제 5 참고).
 - (a) 그래프 계산기로 f와 지시한 다항 근사식의 그래프를
 - (b) $n=2, \ 4, \ 6$ 에 대하여 $f^{(n)}(0)$ 과 $P_n^{(n)}(0)$ 의 값을 계산 하고 비교하여라.
 - (c) (b)의 결과를 이용하여 $f^{(n)}(0)$ 과 $P_n^{(n)}(0)$ 을 예측하여라.
- 3. 다음 함수의 n차 매클로린 다항식을 구하여라.

(a)
$$f(x) = e^{-x}$$
, $n = 3$ (b) $f(x) = e^{2x}$, $n = 4$

(b)
$$f(x) = e^{2x}$$
, $n = 4$

(c)
$$f(x) = \sin x$$
, $n = 5$ (d) $f(x) = xe^x$, $n = 4$

(d)
$$f(x) = xe^{x}$$
, $n = e^{x}$

(e)
$$f(x) = \frac{1}{x+1}$$
, $n = 4$ (f) $f(x) = \sec x$, $n = 2$

(f)
$$f(x) = \sec x$$
, $n = 2$

4. 다음 주어진 c에서 전개한 n차 테일러 다항식을 구하여라.

(a)
$$f(x) = \frac{1}{x}$$
, $n = 4$, $c = 1$ (b) $f(x) = \sqrt{x}$, $n = 4$, $c = 1$

(c)
$$f(x) = \ln x$$
, $n = 4$, $c = 1$

5. 컴퓨터 대수시스템으로 주어진 조건에 맞는 함수 f(x) =tan x 의 테일러 다항식을 구하고 함수와 구한 테일러 다 항식의 그래프를 그려라.

(a)
$$n = 3$$
, $c = 0$

(a)
$$n = 3$$
, $c = 0$ (b) $n = 3$, $c = \pi/4$

6. (수치적, 그래프적 근삿값)

(a) $f(x) = \sin x$ 에 대한 매클로린 다항식 $P_1(x)$, $P_3(x)$, $P_5(x)$ 를 이용하여 다음 표를 완성하여라.

x	0	0.25	0.50	0.75	1.00
sin x	0	0.2474	0.4794	0.6816	0.8415
$P_1(x)$					
$P_3(x)$					
$P_5(x)$					

- (b) 그래프 계산기로 $f(x) = \sin x$ 와 (a)의 매클로린 다항 식의 그래프를 그려라.
- (c) 그 다항식이 전개한 점으로부터 거리가 증가할 때 다 항식 근삿값의 정확도의 변화에 대하여 설명하여라.
- 7. (수치적. 그래프적 근삿값) $f(x) = \arcsin x$ 에 대하여 (a) f(x)에 대한 매클로린 다항식 $P_3(x)$ 를 구하여라. (b) f(x)와 $P_3(x)$ 에 대한 다음 표를 완성하여라. (c) 같은 좌표평면 에 f(x)와 $P_3(x)$ 의 그래프를 그려라.

х	-0.75	-0.50	-0.25	0	0.25	0.50	0.75
f(x)							
$P_3(x)$							

8. 앞에 나온 연습문제의 다항식을 이용하여 주어진 x값에 서 함수의 근삿값을 구하여라.

- (a) $f(x) = e^{-x}$, $f(\frac{1}{2})$, 연습문제 3(a)
- (b) $f(x) = \ln x$, f(1.2), 연습문제 4(c)
- 9. 다음에서 테일러정리를 이용하여 근삿값에 대한 오차의 상계를 구하고 오차의 정확한 값을 계산하여라.
 - (a) $\cos (0.3) \approx 1 \frac{(0.3)^2}{2!} + \frac{(0.3)^4}{4!}$
 - (b) $\arcsin(0.4) \approx 0.4 + \frac{(0.4)^3}{2 \cdot 3}$
- **10.** 다음 주어진 x에서 함숫값과 근삿값과의 오차가 0.001보다 작은 매클로린 다항식의 차수를 결정하여라.
 - (a) $\sin(0.3)$
- (b) $e^{0.6}$
- 11. 다음 주어진 x에서 함숫값과 근삿값과의 오차가 0.0001 보다 작은 매클로린 다항식의 차수를 결정하여라. 컴퓨터 대수시스템으로 필요한 도함수를 구하고 계산하여라.
 - (a) $f(x) = \ln(x+1)$, f(0.5)의 근삿값
 - (b) $f(x) = e^{-\pi x}$, f(1.3)의 근삿값

- 12. 다음에서 오차가 0.001을 초과할 수 없다면 함수가 테일러 다항식으로 대치될 수 있는 x 값들을 결정하여라.
 - (a) $f(x) = e^x \approx 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!}, x < 0$
 - (b) $f(x) = \cos x \approx 1 \frac{x^2}{2!} + \frac{x^4}{4!}$
- 13. (매클로린 다항식 비교하기)
 - (a) $f(x) = e^x$ 과 $g(x) = xe^x$ 의 사차와 오차 매클로린 다항식을 각각 비교하여라. 어떤 관계가 있는가?
 - (b) (a)의 결과와 f(x) = sin x 에 대한 오차 매클로린 다항식을 이용하여 함수 g(x) = x sin x 에 대한 육차 매클로린 다항식을 구하여라.
 - (c) (a)의 결과와 $f(x) = \sin x$ 에 대한 오차 매클로린 다항 식을 이용하여 함수 $g(x) = (\sin x)/x$ 에 대한 사차 매클로린 다항식을 구하여라.
- **14.** f가 기함수이면 n차 매클로린 다항식은 x의 홀수 지수의 항만을 포함한다는 것을 증명하여라.

7.6 멱급수

- 멱급수의 정의 이해하기
- 멱급수의 수렴반지름과 수렴구간 구하기
- 멱급수의 끝점에서 수렴 결정하기
- 멱급수를 미분. 적분하기

멱급수

7.5절에서 테일러 다항식에 의한 근사 함수 개념을 소개하였다. 예를 들어 함수 $f(x) = e^x$ 은 아래와 같이 매클로린 다항식으로 어림할 수 있다.

$$e^x \approx 1 + x$$

$$e^x \approx 1 + x + \frac{x^2}{2!}$$

$$e^x \approx 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!}$$