<< Python Data Structure & NumPy Project >>

Knight's Tour Problem by "Dynamic" WARNSDORFF Algorithm

<前言>

從圖論 (Graph Theory) 角度而言,Knight's Tour (騎士旅程問題) 是一個 Hamiltonian Path / Circle Problems (漢彌爾頓路徑 或 漢彌爾頓循環 的問題)。通常,以 Depth-first Search algorithm (深度優先搜尋演算法) 來求解在 8x8 西洋棋盤上的騎士旅程問題。求解過程中,當路徑搜尋遇到 dead-end 的問題時,會採用 backtracking (回溯) 方式解決該問題。從程式設計的角度,這將會利用"遞迴" (Recursion) 演算法來協助實作 backtracking。

一般而言,上述的搜尋計算效能不高,因此,Warnsdorff (1823) 提出一套"規則"(亦即 演算法),有助於提升搜尋 Hamiltonian Path 的效能。雖然如此,"靜態" Warnsdorff rules 仍然無法避免搜尋時可能遇到 dead-end,亦即 必須"回溯" (backtracking) 搜尋。

本專案旨在利用"動態 (dynamic)" Warnsdorff 演算法,藉由動態更新各棋盤格點的 degree 值,來協助避開搜尋時遇到 dead-end 的問題;在無需回溯的情況下,快速求解騎士旅程問題。同時,將演算法擴增、求解 NxN 棋盤的搜尋問題 (其中 N>8)。

[有關騎士旅程問題 — 簡述]

今有 8x8 的西洋棋棋盤,若將騎士的第一步放於棋盤中的任一位置, 請利用"動態"的 Warnsdorff 演算法撰寫程式,找出騎士在 64 步內,依據: 「每個方格只能走一次,不得重複!」方式,將棋盤全部方格走完。

• Depth-first Search (DFS) Algorithm with Backtracking

• Warnsdorff Rules

			_			_		1								
2	3	4	4	4	4	3	2		1	46	15	30	55	48	13	28
3	4	6	6	6	6	4	3		16	31	54	47	14	29	36	49
4	6	8	8	8	8	6	4		45	2	8	8	8	56	27	12
4	6	8	8	8	8	6	4		32	17	8	53	8	35	50	37
4	6	8	8	8	8	6	4		3	44	33	8	51	38	11	26
4	6	8	8	8	8	6	4		18	21	52	8	34	8	8	39
3	4	6	6	6	6	4	3		43	4	23	20	41	6	25	10
2	3	4	4	4	4	3	2		22	19	42	5	24	9	40	7
degree map (static)								•		de	ad-	end	sit	uati	ion	
										(w	itho	ut b	ackt	rack	ring`)
										(***	11110	at b	ucit	iacr	uiis,	,
K	3	4	4	3	4	3	2		1	26	15	24	29	36	13	32
K	3			3	4	3	2		1	· ·					·	
-		4 K		7					_	26	15	24	29	36	13	32
3	4	K	6	6	6	4	3	1	16	26 23	15 28	24	29	36 31	13	32
3	4 5	K	6 8	6 7	6	4	3		16 27	26 23 2	15 28 25	24 35 30	29 14 61	36 31 38	13 40 33	32 37 12
3 3	5 5	8 8	6 8	6 7 8	6 8 8	4 6 6	3 4 4		16 27 22	26 23 2 17	15 28 25 62	24 35 30 45	29 14 61 34	36 31 38 41	13 40 33 50	32 37 12 39
3 4 4	5 5 6	8 8	6 8 7 8	6 7 8	6 8 8	4 6 6	3 4 4 4		16 27 22 3	26 23 2 17 46	15 28 25 62 21	24 35 30 45 60	29 14 61 34 49	36 31 38 41 64	13 40 33 50 11	32 37 12 39 42
3 4 4 4	5 6 6	8 8	6 8 7 8 8	6 7 8 8	6 8 8 8	4 6 6 6	3 4 4 4		16 27 22 3 18	26 23 2 17 46 57	15 28 25 62 21 48	24 35 30 45 60	29 14 61 34 49	36 31 38 41 64 53	13 40 33 50 11 8	32 37 12 39 42 51

(without backtracking)

REFERENCE

- 1. "Knight's Tour", Wikipedia. https://en.wikipedia.org/wiki/Knight%27s tour
- 2. D. Squirrel and P. Cull, "A Warnsdorff-Rule Algorithm for Knight's Tours on Square Chessboards", PDF, 1996.

 $\underline{http://math.oregonstate.edu/{\sim}math\ reu/proceedings/REU\ Proceedings/Proceedings1996/1996Squ}\ \underline{irrel.pdf}$

3. "KNIGHT'S TOUR USING WARNSDORFF ALGORITHM (PYTHON RECIPE)", http://code.activestate.com/recipes/578382-knights-tour-using-warnsdorff-algorithm/

[ALGORITHM] : Knight's Tour by "Dynamic" WARNSDORFF Algorithm

- < NOTE > : (1) Using Python's data structures : list, tuple, set, dictionary, and functions to implement the algorithm;
 - (2) Using **NumPy extension library** to implement the algorithm with Jupyter Notebook.

$< Warnsdorff\ algorithm\ with\ dynamic\ degree-updating\ for\ 8x8\ Chessboard >$

STEP 1: Creating a degree map for an 8x8 chessboard.

STEP 2: Creating the 8 possible moves.

STEP 3: Initiating the **start position** of Knight.

[Note]: It could be chosen at *any* start position for the Knight.

STEP 4: **Looping** for finding the Hamiltonian Path for Knight's Tour.

- (1) Checking if the moves within the board boundaries or not.
- (2) Finding the next position for Knight's movement.
- (3) *Updating the degree map and the new move.*

STEP 5: **Print out** the Hamiltonian Path for Knight's Tour; *for example*:

```
1
26
15
24
29
36
13
32

16
23
28
35
14
31
40
37

27
2
25
30
61
38
33
12

22
17
62
45
34
41
50
39

3
46
21
60
49
64
11
42

18
57
48
63
44
53
8
51

47
4
55
20
59
6
43
10

56
19
58
5
54
9
52
7
```

< NOTE > :

A Possible Solution with Python for the Warnsdorff algorithm above for an 8x8 Chessboard can be downloaded from the following address:

https://drive.google.com/file/d/1QwLkM8M9-kXYf95QyR5u53XWj7M9wXR-/view?usp=sharing

[**Problem**]: A Solution for Knight's Tour with NxN Chessboard ($8 \le N \le 30$)

- Following the **STEPs** above to solve the Knight's Tour problem for an *arbitrary NxN* chessboard, where $8 \le N \le 30$.
- [NOTE]: If N is an odd number, there exist the solutions only for Knight's start positions at (i, j) where the sum of i and j is equal to an even number.

[**Requirement**]: Your Python code for the Solution should be accomplished at most 50 statements (*if possible, make it less than 20 statements*).

Good luck!!