OPTIMIZATION (SI 416) – LECTURE 2

Harsha Hutridurga

IIT Bombay

RECAP

- \clubsuit Take a once continuously differentiable function $f: \mathbb{R}^n \to \mathbb{R}$
 - $Let x, p \in \mathbb{R}^n$
 - ▶ Then, there exists a $\ell \in (0,1)$ such that

$$f(x+p) = f(x) + \langle \nabla f(x+\ell p), p \rangle$$

- \clubsuit Take a twice continuously differentiable function $f: \mathbb{R}^n \to \mathbb{R}$

 - ▶ Then, there exists a $t \in (0,1)$ such that

$$f(x+p) = f(x) + \langle \nabla f(x), p \rangle + \frac{1}{2} \langle \nabla^2 f(x+tp)p, p \rangle$$

 \clubsuit Take a once continuously differentiable function $f: \mathbb{R}^n \to \mathbb{R}$

 $\begin{array}{ccc} x_* \text{ is a} \\ \text{local minimizer} & \Longrightarrow & \nabla f(x_*) = 0 \\ \text{of } f \end{array}$

POSITIVE DEFINITENESS

- $A n \times n$ matrix B is called
 - ▶ positive definite if

$$\langle Bv, v \rangle > 0$$
 for all $v \in \mathbb{R}^n \setminus \{0\}$

▶ positive indefinite (semidefinite) if

$$\langle Bv, v \rangle \ge 0$$
 for all $v \in \mathbb{R}^n \setminus \{0\}$

Theorem (Second order necessary condition)

If x_* is a local minimizer of f and if f is twice continuously differentiable in an open neighbourhood of x_* , then

$$\nabla^2 f(x_*)$$
 is positive semidefinite.

SECOND ORDER NECESSARY CONDITION (CONTD.)

- \clubsuit Suppose $\nabla^2 f(x_*)$ is not positive semidefinite
- \clubsuit Then there exists a $p \in \mathbb{R}^n$ such that

$$\langle \nabla^2 f(x_*) p, p \rangle < 0.$$

 \clubsuit As $\nabla^2 f$ is continuous at x_* , there exists a T > 0 such that

$$\left\langle \nabla^2 f(x_* + sp)p, p \right\rangle < 0$$
 for all $s \in [0, T]$.

 \clubsuit Taylor's theorem says for all $t_* \in (0,T]$, there exists a $s_* \in (0,t_*)$

$$f(x_* + t_*p) = f(x_*) + t_* \langle \nabla f(x_*), p \rangle + \frac{t_*^2}{2} \langle \nabla^2 f(x_* + s_*p)p, p \rangle$$

- A Recall that first order necessary condition implies that $\nabla f(x_*) = 0$
- A Putting it all together, we arrive at a contradiction:

$$f(x_* + t_*p) < f(x_*)$$
 for all $t_* \in (0, T]$

SECOND ORDER SUFFICIENT CONDITION

Theorem

Suppose f is twice continuously differentiable in an open neighbourhood of a point $x_* \in \mathbb{R}^n$.

 $Suppose\ further\ that$

$$\nabla f(x_*) = 0$$
 and $\nabla^2 f(x_*)$ is positive definite.

Then, x_* is a strict local minimizer of f.

- \clubsuit This isn't a necessary condition: think of $f(x) = x^4$ at x = 0.
- \clubsuit Because $\nabla^2 f$ is continuous at x_* and as it is positive definite at x_* , there exists a r > 0 such that

$$\nabla^2 f(z)$$
 is positive definite for all $z \in B_r(x_*)$.

 \clubsuit Here $B_r(x_*)$ denotes the open ball of radius r centered at x_*

SECOND ORDER SUFFICIENT CONDITION (CONTD.)

Taking $p \in \mathbb{R}^n$ such that ||p|| < r and using Taylor's theorem,

$$f(x_* + p) = f(x_*) + \langle \nabla f(x_*), p \rangle + \frac{1}{2} \langle \nabla^2 f(x_* + sp)p, p \rangle$$
$$= f(x_*) + \frac{1}{2} \langle \nabla^2 f(x_* + sp)p, p \rangle$$

for some $s \in (0,1)$.

 \clubsuit Using the positive definiteness of $\nabla^2 f$ in a neighbourhood of x_* implies that

$$f(x_* + p) > f(x_*)$$

for any $p \in \mathbb{R}^n$ satisfying ||p|| < r.

 \clubsuit Hence x_* is a strict local minimizer of f.

NOTION OF CONVEXITY

A set $\Omega \subset \mathbb{R}^n$ is said to be CONVEX if

$$x, y \in \Omega \implies \alpha x + (1 - \alpha)y \in \Omega$$
 for all $\alpha \in [0, 1]$.

- \clubsuit Take a convex set $\Omega \subset \mathbb{R}^n$.
- \clubsuit A function $f:\Omega\to\mathbb{R}$ is said to be CONVEX on Ω if
 - for any two points $x, y \in \Omega$, we have

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$
 for all $\alpha \in [0, 1]$.

- f is STRICTLY CONVEX if the above inequality is strict whenever $x \neq y$ and $\alpha \in (0,1)$
- \clubsuit f is said to be CONCAVE if -f is convex

CONVEX OPTIMIZATION

Theorem

Suppose f is a convex function on \mathbb{R}^n .

Any local minimizer x_* of f is a global minimizer of f.

- \clubsuit Suppose x_* is a local but not a global minimizer of f
- \clubsuit That is, there exists a $y \in \mathbb{R}^n$ such that

$$f(y) < f(x_*)$$

 \clubsuit Consider a point on the line segment joining x_* and y

$$x = \lambda y + (1 - \lambda)x_*$$
 for some $\lambda \in (0, 1]$

 \clubsuit By convexity of f, we have

$$f(x) \le \lambda f(y) + (1 - \lambda)f(x_*) < f(x_*)$$

♣ The strict inequality is thanks to the earlier observation

CONVEX OPTIMIZATION (CONTD.)

 \clubsuit We have shown that for any point x on the line segment joining x_* and y,

$$f(x) < f(x_*)$$

- \clubsuit Any neighbourhood of x_* contains a piece of the aforementioned line segment
- \clubsuit Hence x_* is not a local minimizer
- . Thus a contradiction

WORDS OF CAUTION

- ♣ We are NOT claiming that every convex function has a minimizer
 - ▶ The function f(x) = x doesn't have a minimum
 - A convex function bounded below need not have a minimizer.
 Consider

$$f(x) = e^x$$

SOME PROPERTIES OF CONVEX FUNCTIONS

- \P If $f,g:\mathbb{R}^n\to\mathbb{R}$ are convex then so is the function f+g
- If $f: \mathbb{R}^n \to \mathbb{R}$ is convex and if $\mu \geq 0$, then so is the function μf

DIFFERENTIABLE CONVEX FUNCTIONS

Theorem

A differentiable function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if and only if

$$f(y) \ge f(x) + \langle \nabla f(x), (y - x) \rangle$$
 for every $x, y \in \mathbb{R}^n$.

AN IMMEDIATE COROLLARY

Theorem (Stationarity and convexity)

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable convex function on \mathbb{R}^n . A point x_* is a global minimizer of f if and only if $\nabla f(x_*) = 0$.

STATIONARY POINT AND CONVEXITY

- \clubsuit If x_* is a global minimizer of f, then it is also a local minimizer
- ♣ Hence by the first order necessary condition, we have

$$\nabla f(x_*) = 0$$

- \clubsuit Let us now assume that for a point x_* , we have $\nabla f(x_*) = 0$
- \clubsuit For any point $y \in \mathbb{R}^n$, as f is convex, we have the differential inequality:

$$f(y) \ge f(x_*) + \langle \nabla f(x_*), (y - x_*) \rangle$$

= $f(x_*)$

 \clubsuit Hence x_* is a global minimizer of f

DIFFERENTIABLE CONVEX FUNCTIONS

Theorem

A differentiable function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if and only if

$$f(y) \ge f(x) + \langle \nabla f(x), (y - x) \rangle$$
 for every $x, y \in \mathbb{R}^n$.

- A Let us assume that the above differential inequality is satisfied
- \clubsuit Our goal is to show that f is convex
- \clubsuit Taking $w, z \in \mathbb{R}^n$, we aim to demonstrate that

$$f(\alpha w + (1 - \alpha)z) \le \alpha f(w) + (1 - \alpha)f(z)$$
 for $\alpha \in [0, 1]$.

Let us take

$$x = \alpha w + (1 - \alpha)z$$
 for $\alpha \in [0, 1]$

 \clubsuit Observe that $w-x=(1-\alpha)(w-z)$ and $z-x=\alpha(z-w)$

PROOF OF THE THEOREM (CONTD.)

 \clubsuit Applying the differential inequality for w and x yields

$$f(w) \ge f(x) + \langle \nabla f(x), (w - x) \rangle$$

 \clubsuit Applying the differential inequality for z and x yields

$$f(z) \ge f(x) + \langle \nabla f(x), (z - x) \rangle$$

 \bullet Multiplying the first inequality by α and the second inequality by $(1-\alpha)$ and adding the resulting inequalities yields

$$\alpha f(w) + (1 - \alpha)f(z) \ge f(x) + \alpha \langle \nabla f(x), (w - x) \rangle$$

$$+ (1 - \alpha) \langle \nabla f(x), (z - x) \rangle$$

$$= f(x) = f(\alpha w + (1 - \alpha)z)$$

Hence f is convex.

PROOF OF THE THEOREM (CONTD.)

- ♣ We have shown that the differential inequality implies convexity
- ♣ Our next objective is to show that any differentiable convex function must satisfy the following differential inequality:

$$f(y) \ge f(x) + \langle \nabla f(x), (y - x) \rangle$$
 for every $x, y \in \mathbb{R}^n$.

 \clubsuit Pick two points $x \neq y$ in \mathbb{R}^n . Convexity of f implies that

$$f\left(\frac{x+y}{2}\right) \le \frac{1}{2}f(x) + \frac{1}{2}f(y)$$

Take h := y - x. Then the above inequality rewrites as

$$f\left(x + \frac{h}{2}\right) \le \frac{1}{2}f(x) + \frac{1}{2}f(x+h)$$

♣ We can further rewrite the above inequality as

$$f(x+h) - f(x) \ge \frac{f(x+\frac{h}{2}) - f(x)}{2^{-1}}$$

PROOF OF THE THEOREM (CONTD.)

♣ Observe further that

$$f\left(x+\frac{h}{4}\right) = f\left(\frac{x}{2} + \frac{1}{2}\left(x+\frac{h}{2}\right)\right) \\ \leq \frac{1}{2}f(x) + \frac{1}{2}f\left(x+\frac{h}{2}\right)$$

A The above inequality can be rewritten as

$$f\left(x + \frac{h}{2}\right) - f(x) \ge \frac{f\left(x + \frac{h}{4}\right) - f(x)}{2^{-1}}$$

♣ Hence we deduce that

$$f(x+h) - f(x) \ge \frac{f(x+\frac{h}{4}) - f(x)}{2^{-2}}$$

Arguing recursively, we arrive at

$$f(x+h) - f(x) \ge \frac{f(x+2^{-k}h) - f(x)}{2^{-k}}$$
 for all $k \in \mathbb{N}$.

LITTLE DETOUR.

• For a function $g: \mathbb{R}^n \to \mathbb{R}$, its DIRECTIONAL DERIVATIVE at a point x in the direction p is given by

$$\lim_{s \to 0} \frac{g(x+sp) - g(x)}{s}$$

 \clubsuit If g is a differentiable function, then its directional derivative is $\langle \nabla g(x), p \rangle$

PROOF OF THE THEOREM (CONTD.)

Recall that we had

$$f(x+h) - f(x) \ge \frac{f(x+2^{-k}h) - f(x)}{2^{-k}}$$
 for all $k \in \mathbb{N}$.

 \clubsuit Letting $k \to \infty$ in the above inequality yields

$$f(y) - f(x) \ge \langle \nabla f(x), h \rangle = \langle \nabla f(x), (y - x) \rangle$$
.

END OF LECTURE 2 THANK YOU FOR YOUR ATTENTION