SMART INDIA HACKATHON 2024

- Problem Statement ID SIH1536
- Problem Statement Title- Student Innovation
- Theme- Agriculture, FoodTech & Rural Development.
- PS Category- Software/Hardware Hardware
- Team ID- T16
- Team Name WeedWipe Al

AI-Driven Autonomous Weed Detection and Precision Pesticide Spraying with Integrated Farm Management System

Proposed Solution:

- Al-Driven Autonomous Pesticide Spraying Bot for precision agriculture.
- Uses computer vision for efficient weed targeting and elimination.
- Includes a Weed Management feature analyzing weed types and quantities for improved crop management.

Problem Addressed:

- Traditional weed control methods result in excessive pesticide use and are labor-intensive.
- Lack of precise targeting leads to inefficiencies.
- Al-driven bot reduces chemical usage, minimizes labor, and offers real-time data for sustainable weed management.

Innovation and Uniqueness:

- Combines AI-driven weed detection and Crop Disease Identification with an autonomous bot for precision spraying.
- Integrated Weed Management System provides real-time analysis of weed types and quantities.
- Ensures sustainable farming, reduces costs, and enhances productivity with minimal human intervention.

TECHNICAL APPROACH

Programming Languages:

- •Python and micro python: Data analytics, machine learning, and IoT applications.
- •JavaScript: Essential for web development and front-end user interface.
- •C/C++: For embedded systems and performance-critical tasks.
- •Robotics OS: ROS2.0 Dashing Diademata

Frameworks and Libraries:

- •TensorFlow and PyTorch: Deep learning frameworks for image processing and object detection.
- •OpenCV: Computer vision library for image processing and analysis.
- •Keras: High-level API for building and training neural networks.
- •Flask: Python web frameworks for developing web applications.

Hardware:

- Raspberry Pi
- Cameras.
- Sensors.
- Motors.
- Actuators.
- Microcontrollers.

FEASIBILITY AND VIABILITY

FEASIBILITY

Technological Feasibility: The necessary technologies for computer vision, robotics, and machine learning are readily available and mature.

Economic Feasibility: While initial investments may be required, the long-term cost savings from reduced pesticide use, labor, and crop losses can make it economically viable.

Environmental Feasibility: The bot can significantly reduce pesticide usage, minimizing environmental impact.

Regulatory Feasibility: Compliance with agricultural regulations and safety standards should be considered.

VIABILITY

Market Demand: There is a growing demand for sustainable and efficient agricultural practices, making the bot a potential solution for farmers.

Scalability: The technology can be scaled to accommodate various farm sizes and crop types.

Sustainability: The bot aligns with the trend towards sustainable agriculture and can contribute to long-term environmental benefits.

Competitive Advantage: The bot can provide a competitive advantage for farmers by improving efficiency and reducing costs.

WeedWipe AI

IMPACT AND BENEFITS

❖ Impact:

- •Farmers: Increased efficiency, reduced labor and chemical costs, improved crop yields.
- •Environment: Lower chemical usage, reduced soil and water pollution.
- •Agricultural Businesses: Enhanced productivity, competitive advantage.
- •Consumers: Safer, environmentally friendly produce.

Benefits:

- •Precision: Accurate weed detection and optimized pesticide application.
- •Cost Savings: Reduced labor and chemical costs.
- •Environmental: Sustainable farming practices, less pollution.
- •Data Integration: Real-time insights for better farm management and predictive analysis.

RESEARCH AND REFERENCES

***** REFERENCES:

- National Institutes of Health: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7908628/
- Nindamani-Nvidia robot: https://github.com/AutoRoboCulture/Nindamani-the-weed-removal-robot
- Farmer-Management-System: https://github.com/Tejas-Gosavi/Farmer-Management-System.git

RESEARCH:

- Design and Development of Automatic Weed Detection and Smart Herbicide Sprayer Robot
 (By Aravind R, Daman M, Kariyappa B S Professor)
- Machine Vision based Agricultural Weed Detection and Smart Herbicide Spraying

 (By S. Mohan Raj* and V. Kavitha)
- Automatic Weed Detection Robot

 (By Ramaiah Institute of Technology (Autonomous Institute, Affiliated to VTU) Bengaluru 560054)