Course Code	Course Name	Credit
CSC601	DataAnalyticsandVisualization	03

Pre-r	Pre-requisite:		
Cour	Course Objectives: The course aims:		
1	Understand the science of statistics and the scope of its potential applications.		
2	Verifytheunderlyingassumptionsofaparticularanalysis.		
3	Construct testable hypotheses that can be evaluated using common statistical analyses.		
4	Conduct, present, and interpret common statistical analyses using any tool.		
5	Summarize and present data in meaningful ways through visualization techniques.		
	Course Outcomes: Aftersuccessful completion of the course students will be able to:		
1	Apply qualitative and quantitative techniques to understand the data		
2	Formulate testable hypotheses andevaluate them using common statistical analyses.		
3	Perform regression analysis on a given data set for prediction and forecasting.		
4	ApplyANOVAmethodtofindthestatistical differences between the means in a given data.		
5	Fit anARIMAmodel for prediction and forecasting of time series data		
6	Translatethedataintovisualcontextto identifypatterns, trendsandoutliers in large datasets.		

Module		Detailed Content	Hours
1		IntroductiontotheScienceof Statistics.	5
	1.1	Fundamental Elements of Statistics, Qualitative and QuantitativeDataSummaries,Normaldistribution·Sampling,TheCentralLi mit Theorem.	
2		ConfidenceIntervalsandHypothesisTests.	6
	2.1	StatisticalInference,Stating Hypotheses,TestStatisticsandp-Values,EvaluatingHypotheses.	
	2.2	Significance Tests and Confidence Intervals, Inference about a Population Mean, Two-Sample Problems.	
3		Understanding the association between two continuous orquantitative factors.	5
	3.1	Simple Linear Regression, F-test and t-test for Simple Linear Regression.	
	3.2	Multiplelinearregression,F-testandt-testforMultipleLinear Regression.	
4		Analysis of Variance (ANOVA) and Analysis for Proportions.	12
	4.1	One-WayandTwo-WayanalysisofVarianceandCovariance,F-testfor ANOVA,TypeIandTypeIIErrors.	

4.2	Analysis for proportions: One-Sample Tests for Proportions, Significance
	Tests for a Proportion, Confidence Intervals for a Proportion, Two-
	SampleTestsforProportions,ConfidenceIntervalsfor

		Differences in Proportions, Significance Tests for Differences in Proportions.	
5		Time SeriesAnalysis	6
	5.1	OperationsonTimeSeriesanalysis,TestingaTimeSeriesfor Autocorrelation, Plotting the Partial Autocorrelation Function, Fitting anARIMAModel,RunningDiagnosticsonanARIMAModel	
6		DataVisualization	5
	6.1	Bargraphs,Linegraphs,Histogram,Boxplots,Scatterplots,andChoropleth(map)plots,RadialBarplots	
	6.2	Timeseriesplots, Creating Dashboardusing anytool.	
		Total	39

Tex	tbooks:		
1	Teetor,P.(2011).Rcookbook.Sebastopol,CA:O'Reilly.ISBN9780596809157.		
2	Chang, W. (2013). Rgraphicscookbook. Sebastopol, CA: O'Reilly. ISBN 9781449316952.		
Ref	References:		
1	AndyField,JeremyMilesandZoeField.(2012)DiscoveringStatisticsUsingR.		
	Publisher:SAGEPublicationsLtd.ISBN-13:978-1446200469.		
2	GarethJames,DanielaWitten,Trevor Hastieand RobertTibshirani. (2013)An		
	Introduction toStatisticalLearningwithApplicationsinR. Springer.		
3	Han, Kamber, "Data Mining Concepts and Techniques", Morgan Kaufmann 3nd Edition		

Assessment:

InternalAssessment:

Assessmentconsistsoftwoclasstestsof20markseach.Thefirst-

classtestistobeconductedwhenapprox.40% syllabusis completed and second class test when additional 40% syllabusis

completed.Durationofeachtestshallbeonehour.

End SemesterTheory Examination:

Question paper will consist of 6 questions, each carrying 20 marks.
 The students need to solve a total of 4 questions.
 Question No.1 will be compulsory and based on the entire syllabus.
 Remaining question (Q.2 to Q.6) will be selected from all the modules.

Usefu	Useful Links	
1	https://onlinecourses.nptel.ac.in/noc21_cs45/preview	
2	https://nptel.ac.in/courses/106107220	

Course Code	Course Name	Credit
CSC602	Cryptographyand SystemSecurity	03

Pre-requisite:BasicconceptsofOSILayer			
Cour	Course Objectives: The course aims:		
1	The concepts of classical encryption techniques and concepts of finite fields and number theory.		
2	Toexploretheworkingprinciplesandutilitiesofvariouscryptographicalgorithmsincluding secretkeycryptography,hashesandmessagedigests,andpublickeyalgorithms		
3	Toexplorethedesignissuesandworkingprinciplesofvariousauthenticationprotocols,PKI standards.		
4	ToexplorevarioussecurecommunicationstandardsincludingKerberos,IPsec,andSSL/TLS and email.		
5	The ability to use existing cryptographic utilities to build programs for secure communication.		
6	The concepts of cryptographic utilities and authentication mechanisms to design secure applications		
Cours	se Outcomes:		
1	Identify information security goals, classical encryption techniques and acquire fundamental knowledgeontheconceptsoffinitefieldsandnumbertheory.		
2	Understand, compare and apply different encryption and decryption techniques to solve problems related to confidentiality and authentication		
3	Applythe knowledgeof cryptographicchecksums and evaluatethe performanceof different message digest algorithms for verifying the integrity of varying message sizes		
4	Applydifferent digitalsignature algorithmsto achieveauthentication and createsecure applications.		
5	Applynetwork securitybasics, analyzedifferent attacks onnetworks and evaluate the performance of firewalls and security protocols like SSL, IPSec, and PGP		
6	Apply the knowledge of cryptographic utilities and authentication mechanisms to design secure applications		

Module		DetailedContent	Hours
1		Introduction&NumberTheory	
	1.1	Services, Mechanisms and attacks-the OSI security architecture- Networksecurity model-Classical Encryption techniques (Symmetric cipher model,mono-alphabeticandpoly-alphabeticsubstitutiontechniques:Vignere cipher,playfaircipher,Hillcipher,transpositiontechniques:keyedand keyless transposition ciphers, steganography).	7
2		BlockCiphers&PublicKeyCryptography	7
	2.1	DataEncryptionStandard-Blockcipherprinciples- blockciphermodesofoperationAdvancedEncryptionStandard(AES)- TripleDES-Blowfish- RC5algorithm.Publickeycryptography:Principlesofpublickeycryptosystems- TheRSAalgorithm,Theknapsackalgorithm,El-GamalAlgorithm.Key management – Diffie Hellman Keyexchange	

3		CryptographicHashes,MessageDigestsandDigitalCertificates	7
	3.1	Authentication requirement – Authentication function , Types of Authentication, MAC–Hashfunction– Security of hash function and MAC – MD5 – SHA– HMAC – CMAC, Digital Certificate: X.509, PKI	
4		DigitalsignatureschemesandauthenticationProtocols	6
	4.1	Digitalsignatureandauthenticationprotocols:NeedhamSchroederAuthentication protocol,DigitalSignature Schemes – RSA, EI Gamal andSchnorr,DSS.	
5		SystemSecurity	6
		Operating System Security: Memory and Address Protection, File ProtectionMechanism,UserAuthentication.LinuxandWindows:Vulnerabilities, FileSystem Security Database Security: Database Security Requirements, Reliability and Integrity,Sensitive Data, InferenceAttacks, Multilevel Database Security	
6		Websecurity	6
	6.1	WebSecurity Considerations, UserAuthenticationandSession Management, Cookies, SSL, HTTPS, SSH, Web Browser Attacks, WebBugs, Clickjacking, CrossSite Request Forgery, Session Hijacking andManagement, Phishing Technique, DNS Attack, Secure ElectronicTransaction, EmailAttacks, Firewalls, PenetrationTesting	
	•		

Textbo	ooks:		
1	ComputerSecurityPrinciplesandPractice,WilliamStallings,SixthEdition,Pearson		
	Education		
2	SecurityinComputing,CharlesP.Pfleeger,FifthEdition,PearsonEducation		
3	NetworkSecurityandCryptography,BernardMenezes,CengageLearning		
4	NetworkSecurityBible,EricCole,SecondEdition,Wiley		
5	MarkStamp'sInformationSecurityPrinciplesandPractice,Wiley		
Refere	nces:		
1	WebApplicationHackersHandbookbyWiley.		
2	ComputerSecurity, DieterGollman, ThirdEdition, Wiley		
3	CCNASecurityStudyGuide,Tim Boyle,Wiley		
4	IntroductiontoComputerSecurity,MattBishop,Pearson.5.		
5	CloudSecurityandPrivacy,TimMather,SubraKumaraswamy,ShahedLatif,O'Riely		
6	Cryptographyand Network Security, Atul Kahate, Tata McGraw Hill		

Assessment:		
InternalAssessment:		

Asses	ssmentconsistsoftwoclasstestsof20markseach.Thefirst-
classi	testistobeconductedwhenapprox.40% syllabusis completed and second class test when
addit	ional40% syllabus is completed.
Dura	tionofeachtestshallbeonehour.
End	SemesterTheory Examination:
1	Question paper will consist of 6 questions, each carrying 20 marks.
2	The students need to solve a total of 4 questions.
3	Question No.1 will be compulsory and based on the entire syllabus.
4	Remaining question (Q.2 to Q.6) will be selected from all the modules.

Useful Links	
1 https://nptel.ac.in/courses/106105031	
2 https://onlinecourses.nptel.ac.in/noc22 cs03/preview	
3 <u>https://www.coursera.org/learn/basic-cryptography-and-crypto-api</u>	

Course Code	Course Name	Credit
CSC603	SoftwareEngineeringand ProjectManagement	03

Pre-re	Pre-requisite:None		
Cours	se Objectives: The course aims:		
1	Toprovidetheknowledgeofsoftwareengineeringdiscipline.		
2	TounderstandRequirementsandanalyzeit		
3	Todoplanningandapplyscheduling		
4	Toapplyanalysis, and develops of tware solutions		
5	Todemonstrateandevaluaterealtimeprojectswithrespecttosoftwareengineeringprinciples and Apply testing and assure quality in software solution.		
6	Tounderstandneedofprojectmanagementandprojectmanagementlifecycle.		
Cours	se Outcomes:		
1	Understand and use basic knowledge in software engineering.		
2	Identify requirements, analyze and prepare models.		
3	Plan, schedule and track the progress of the projects.		
4	Design & develop the software solutions for the growth of society		
5	Apply testing and assure quality in software solutions		
6	Generate project schedule and can construct, design and develop network diagram for		
	differenttypeofProjects. They can also organized ifferent activities of project		

Module		DetailedContent	Hours
1		IntroductiontoSoftwareEngineering	
2		Nature of Software, Software Engineering, Software Process, CapabilityMaturity Model (CMM) Generic Process Model, Prescriptive ProcessModels: The Waterfall Model, V-model, Incremental Process Models, Evolutionary ProcessModels, ConcurrentModels, Agileprocess, Agility Principles, Extreme Programming (XP), Scrum, Kanban model RequirementsAnalysis and Cost Estimation	08
	2.1	Software Requirements: Functional & non-functional – user-systemrequirementengineeringprocess—feasibilitystudies—elicitation – validation&management—softwareprototyping—S/Wdocumentation—Analysisandmodelling Requirement Elicitation, Software requirement specification (SRS)3Ps(people,productandprocess)ProcessandProjectmetricsSoftwareProjectEstimation:LOC,FP,EmpiricalEstimationModels-COCOMOII	
3		DesignEngineering	07

	3.1	Design Process & quality, Design Concepts, The design Model, Pattern-basedSoftware Design. 4.2 Architectural Design: Design Decisions, Views, Patterns, ApplicationArchitectures, ModelingComponentlevelDesign: component, Designing class based components, conducting component-level design, UserInterfaceDesign: Thegolden rules, Interface Design steps & Analysis, Design Evaluation	0.5
4	4 1	SoftwareRisk,ConfigurationManagement	05
	4.1	Risk Identification, Risk Assessment, Risk Projection, RMMM Software Configuration management, SCM repositories, SCM process Software Quality Assurance Task and Plan, Metrics, Software Reliability, Formal Technical Review (FTR), Walkthrough.	
5		Software Testing and Maintenance	05
	5.1	Testing: Software Quality, Testing: Strategic Approach, Strategic Issues-Testing: Strategies for Conventional Software, Object oriented software, Web Apps Validating Testing- System Testing- Art of Debugging. Maintenance: Software Maintenance-Software Supportability-Reengineering- Business Process Reengineering- Software Reengineering-Reverse Engineering- Restructuring- Forward Engineering.	
6		IT Project Management and Project Scheduling	08
	6.1	Introduction, 4 P's, W5HH Principle, Need for Project Management, Project Life cycle and ITPM, Project Feasibility, RFP, PMBOK Knowledge areas, Business Case, Project Planning, Project Charter and Project Scope.	
	6.2	Project Scheduling:Defining a Task Set for the Software Project, Timeline chartsWBS, Developing the Project Schedule, Network Diagrams (AON, AOA), CPM and PERT, Gantt Chart, Tracking the Schedule, Earned Value Analysis	

	7 Midi y 515
Te	xtbooks:
1	Roger S. Pressman, Software Engineering: Apractitioner's approach, McGraw Hill
2	Rajib Mall, Fundamentals of Software Engineering, Prentice Hall India
3	JohnM.Nicholas,ProjectManagementforBusinessandTechnology,3rdedition,Pearson Education.
Re	ferences:
1	"SoftwareEngineering:APreciseApproach"Pankaj Jalote,WileyIndia
2	Ian Sommerville "Software Engineering" 9th edition Pearson Education SBN-13: 978-0- 13-703515-1, ISBN-10: 0-13-703515-2
3	PankajJalote, An integrated approach to Software Engineering, Springer/Narosa.

Ass	essment:
Inte	ernalAssessment:
appı	essmentconsistsoftwoclasstestsof20markseach. The first-classtest is to be conducted when eox. 40% syllabusis completed and second class test when additional 40% syllabusis completed. Duratio each test shall be one hour.
	SemesterTheory Examination:
1	Question paper will consist of 6 questions, each carrying 20 marks.
2	The students need to solve a total of 4 questions.
3	Question No.1 will be compulsory and based on the entire syllabus.

Use	ful Links
1	https://onlinecourses.swayam2.ac.in/cec21 cs21/preview
2	
	https://nptel.ac.in/courses/106101061
3	
	http://www.nptelvideos.com/video.php?id=911&c=94

Remaining question (Q.2 to Q.6) will be selected from all the modules.

Course Code	Course Name	Credit
CSC604	MachineLearning	03

Pre-r	equisite: Data Structures, Basic Probability and Statistics, Algorithms
Cour	se Objectives: The course aims:
1	TointroduceMachinelearningconcepts
2	TodevelopmathematicalconceptsrequiredforMachinelearningalgorithms
3	TounderstandvariousRegressiontechniques
4	TounderstandClusteringtechniques
5	TodevelopNeuralNetworkbasedlearningmodels /
	se Outcomes: successful completion of the course students will be able to:
1	Comprehend basics of Machine Learning
2	Build Mathematical foundation for machine learning
3	Understand various Machine learning models
4	Select suitable Machine learning models for a given problem
5	Build Neural Network based models
6	Apply Dimensionality Reduction techniques

Modul		Detailed Content H		
1		IntroductiontoMachineLearning	6	
	1.1	Introduction to Machine Learning, Issues in Machine Learning, ApplicationofMachineLearning,StepsofdevelopingaMachineLearningApplication.		
		SupervisedandUnsupervisedLearning:ConceptsofClassification,Clustering and prediction, Training, Testing and validation dataset, cross validation, overfitting and underfitting of model		
		PerformanceMeasures:MeasuringQualityofmodel-ConfusionMatrix, Accuracy,Recall,Precision,Specificity,F1Score,RMSE		
2		Mathematical Foundation forML	5	
	2.1	SystemofLinearequations,Norms,Innerproducts,LengthofVector,Distancebetw een vectors, Orthogonal vectors		
	2.2	SymmetricPositiveDefiniteMatrices,Determinant,Trace,Eigenvaluesandvect ors, Orthogonal Projections, Diagonalization, SVD and its applications		
3		LinearModels	7	
	3.1	Theleast-squaresmethod, Multivariate Linear Regression, Regularized Regression, Using Least-Squares Regression for classification		
	3.2	SupportVectorMachines		
4		Clustering	4	
	4.1	Hebbian Learning rule		

	4.2	Expectation -Maximization algorithm for clustering	
5		Classification models	10
	5.1	Introduction, Fundamental concept, Evolution of Neural Networks, BiologicalNeuron, Artificial Neural Networks, NN architecture, McCulloch-Pitts Model.Designing a simple network, Non-separable patterns, Perceptron model withBias. Activation functions, Binary, Bipolar, continuous, Ramp. Limitations ofPerceptron.	
	5.2	PerceptronLearningRule.DeltaLearningRule(LMS-WidrowHoff), Multi- layerperceptronnetwork.Adjustingweightsofhiddenlayers.Errorbackpropagation algorithm.	
	5.3	Logistic regression	
6		Dimensionality Reduction	07
	6.1	CurseofDimensionality.	
	6.2	Feature Selection and Feature Extraction	
	6.3	Dimensionality ReductionTechniques, Principal ComponentAnalysis.	

Tex	xtbooks:
1	Nathalie Japkowicz & Mohak Shah, "Evaluating Learning Algorithms:A Classification Perspective", Cambridge.
2	Marc Peter Deisenroth, Aldo Faisal, Cheng Soon Ong, "Mathematics for machine learning",
3	SamirRoyandChakraborty, "Introductiontosoftcomputing", PearsonEdition.
4	EthemAlpaydın, "Introduction to Machine Learning", MITPress McGraw-Hill Higher Education
5	Peter Flach, "Machine Learning", Cambridge University Press
Ref	Cerences:
1	TomM.Mitchell, "MachineLearning", McGrawHill
2	KevinP. Murphy, "Machine Learning —AProbabilisticPerspective", MITPress
3	Stephen Marsland, "Machine Learning an Algorithmic Perspective", CRC Press
4	Shai Shalev-Shwartz, Shai Ben-David, "Understanding Machine Learning", Cambridge University Press
5	Peter Harrington, "Machine Learning in Action", DreamTech Press

Assessment:

InternalAssessment:

Assessmentconsists of two class tests of 20 marks each. The first-class test is to be conducted whenapprox.40% syllabusis completed and second class test when additional 40% syllabusis completed. Dura tion of each test shall beone hour.

End SemesterTheory Examination:

- Question paper will consist of 6 questions, each carrying 20 marks. 2
 - The students need to solve a total of 4 questions.
- Question No.1 will be compulsory and based on the entire syllabus. 3
- Remaining question (Q.2 to Q.6) will be selected from all the modules.

Useful links:

1	<u>NPTEL</u>
2	AI and MLCertification - Enroll in PGPAI MLCourses with Purdue (simplilearn.com)
3	https://www.learndatasci.com/out/coursera-machine-learning/
4	https://www.learndatasci.com/out/google-machine-learning-crash-course/

CourseCode	Course Name	Credit
CSDLO6011	High PerformanceComputing	03

CourseObjectives:Studentswilltryto:

- 1. Learntheconceptsofhigh-performancecomputing.
- 2. Gainknowledgeofplatformsforhighperformancecomputing.
- 3. Designandimplementalgorithmsforparallelprogrammingapplications.
- 4. AnalyzetheperformancemetricsofHighPerformanceComputing.
- 5. Understandtheparallelprogrammingparadigm, algorithms and applications.
- 6. Demonstrate the understanding of different High Performance Computing tools.

CourseOutcomes: Students will be able to:

- 1. UnderstandthefundamentalsofparallelComputing.
- 2. DescribedifferentparallelprocessingplatformsinvolvedinachievingHighPerformanceComputing.
- 3. DemonstratetheprinciplesofParallelAlgorithmsandtheirexecution.
- 4. EvaluatetheperformanceofHPCsystems.
- 5. ApplyHPCprogrammingparadigmtoparallelapplications
- 6. DiscussdifferentcurrentHPCPlatforms.

Prerequisite: Computer Organization, CProgramming, Datastructures and Algorithm Analysis.

DETAILEDSYLLABUS:

Sr. No.	Module	DetailedCo ntent	Hours
0	Prerequisite	ComputerOrganization,CProgramming,Datastructuresan dAlgorithmAnalysis.	02
I	Introduction	Introduction to Parallel Computing: Motivating Parallelism,Scope of Parallel Computing, Levels of parallelism (instruction,transaction,task,thread,memory,function),Mod els(SIMD, MIMD,SIMT,SPMD,DataflowModels,Demand- drivenComputation). Self-learning Topics: Parallel Architectures: Interconnectionnetwork,ProcessorArray,Multiprocessor.	05

II	ParallelProgra mmingPlatfor ms	ParallelProgrammingPlatforms: ImplicitParallelis m:Dichotomy of Parallel Computing Platforms, Physical OrganizationofParallelPlatforms, CommunicationCostsi nParallel Machines. Self-learning Topics: Trends in Microprocessor & Architectures, Limitations of Memory System Performance.	04
III	Parallel Algorithm And Concurrency	Principles of Parallel Algorithm Design: Preliminaries, Decomposition Techniques, Characteristics of Tasks and Interactions, Mapping Techniques for Load Balanci ng, Basic Communication operations: Broadcast and Reduction Communication types. Self-learning Topics: Parallel Algorithm Models	09
IV	Performance Measures forHPC	PerformanceMeasures:Speedup,executiontime,efficienc y,cost, scalability, Effect of granularity on performance,Scalability of Parallel Systems, Amdahl's Law, Gustavson's Law. Self-learningTopics:PerformanceBottlenecks.	05
V	ProgrammingP aradigms forHPC	Programming Using the Message-Passing Paradigm PrinciplesofMessagePassingProgramming,TheBuildi ngBlocks: Send and Receive Operations, MPI: the MessagePassingInterface,Topology andEmbedding. ParallelAlgorithms andApplications: One-DimensionalMatrix-VectorMultiplication,Graph Algorithms,SampleSort,Two- DimensionalMatrixVectorMultiplication. Self-learningTopics:IntroductiontoOpenMP.	09
VI	GeneralP urposeGr aphics Processing Unit(GPGPU) Architecturean dProgramming	OpenCLDeviceArchitectures,IntroductiontoOpenCLProgram ming. Self-learning Topics: Introduction to CUDA architecture, andIntroduction to CUDAProgramming.	05

TextBooks:

- 1. AnanthGrama,AnshulGupta,GeorgeKarypis,VipinKumar,"IntroductiontoParallelComputing", Pearson Education, Second Edition, 2007.
- 2. Kai Hwang, Naresh Jotwani, "Advanced Computer Architecture:

 Parallelism, Scalability, Programmability", McGraw Hill, Second Edition, 2010.
- 3. EdwardKandrotandJasonSanders, "CUDAbyExample— AnIntroductiontoGeneralPurposeGPUProgramming", Addison-WesleyProfessional ©,2010.
- 4. GeorgHager, Gerhard Wellein, "Introduction to High Performance Computing for Scientistsa nd Engineers", Chapman & Hall/CRCComputational Science series, 2011.
- 5. Benedict Gaster, Lee Howes, David Kaeli, Perhaad Mistry, Dana Schaa ,"HeterogeneousComputingwithOpenCL",2ndEdition,Elsevier,2012.

Reference Books:

- 1. Michael J. Quinn, "Parallel Programming in Cwith MPI and Open MP", McGraw-Hill International Editions, Computer Science Series, 2008.
- 2. KaiHwang,ZhiweiXu,"ScalableParallelComputing:Technology,Architecture,Programmi ng", McGraw Hill, 1998.
- 3. LaurenceT.Yang,MinyiGuo,"High-PerformanceComputing:ParadigmandInfrastructure"Wiley, 2006.
- 4. FayezGebali, "AlgorithmsandParallelComputing", JohnWiley&Sons, Inc., 2011.

OnlineReferences:

Sr.No. WebsiteName

- 1. https://onlinecourses.nptel.ac.in/noc21_cs46/preview
- **2.** https://onlinecourses.nptel.ac.in/noc22_cs21/preview

Assessment:

InternalAssessment(IA)for20marks:

 IAwillconsistofTwoCompulsoryInternalAssessmentTests.Approxima tely40% to 50% of syllabus content must be covered in First IA Test andremaining 40% to 50% of syllabus content must be covered in Second IATest.

EndSemesterExamination: Some guidelines for setting the question papers are as:

- Weightageofeachmoduleinendsemesterexaminationisexpectedtobe/willbep roportionaltonumberofrespectivelecturehoursmentionedinthesyllabus.
- Questionpaperformat
- QuestionPaperwillcompriseofatotalofsixquestionseachcarrying20
 marks. Q.1 will be compulsory and should cover maximum
 contents ofthesyllabus
- Remainingquestionswillbemixedinnature(part(a)andpart(b)ofeach question must be from different modules. For example, if Q.2 has part (a)from Module 3 then part (b) must be from any other Module randomlyselectedfromallthemodules)
- Atotaloffourquestionsneedtobeanswered.
- Suggestion: Laboratoryworkbasedontheabovesyllabuscanbeincorporatedasa miniprojectinCSM601: Mini-Project.

Course Code	Course Name	Credit
CSDLO6012	Distributed Computing	03

Pre-r	equisite:CProgramming
Cours	se Objectives: The course aims:
1	Toprovidestudentswithcontemporaryknowledgeindistributedsystems
2	Toequipstudentswithskillstoanalyzeanddesigndistributedapplications.
3	Toprovidemasterskillstomeasuretheperformanceofdistributedsynchronization
	algorithms
4	Toequipstudentswithskillstoavailabilityofresources
5	Toprovidemasterskillstodistributedfilesystem
Cours	se Outcomes:
1	Demonstrate knowledge of the basic elements and concepts related to distributed system technologies.
2	Illustrate the middleware technologies that support distributed applications such as RPC, RMI and Object based middleware.
3	Analyze the various techniques used for clock synchronization and mutual exclusion
4	Demonstrate the concepts of Resource and Process management and synchronization
algorithms	
5	Demonstrate the concepts of Consistency and Replication Management
6	Apply the knowledge of Distributed File System to analyze various file systems like NFS,
	AFSandthe experiencein buildinglarge-scale distributedapplications

Module		DetailedContent	Hours	
1		IntroductiontoDistributedSystems		
	1.1	CharacterizationofDistributedSystems:Issues,Goals,andTypesof distributed systems, Distributed System Models, Hardware concepts,Software Concept.	06	
	1.2	Middleware:ModelsofMiddleware,Servicesofferedbymiddleware,ClientServer model.		
2		Communication	06	
	2.1	LayeredProtocols,Interprocesscommunication(IPC):MPI,RemoteProcedureCall (RPC),RemoteObjectInvocation,RemoteMethodInvocation(RMI)		
	2.2	MessageOrientedCommunication,StreamOrientedCommunication,GroupCommunication		
3		Synchronization	09	
	3.1	Clock Synchronization, Physical Clock, Logical Clocks, Election Algorithms, Mutual Exclusion, Distributed Mutual Exclusion-Classification of Mutual Exclusion Algorithm, Requirements of Mutual Exclusion Algorithms, Performance measure.		
	3.2	Non Token based Algorithms: Lamport Algorithm, Ricart—Agrawala's Algorithm, Maekawa's Algorithm		

	3.3	TokenBasedAlgorithms:Suzuki-	
		Kasami'sBroadcastAlgorithms,Singhal'sHeuristic Algorithm, Raymond's	
		Tree.based Algorithm, Comparative	
		PerformanceAnalysis.	
4		ResourceandProcessManagement	06
	4.1	DesirableFeaturesofglobalSchedulingalgorithm,Taskassignmentapproach, Load balancing approach, load sharing approach	
	4.2	Introduction to process management, process migration, Threads, Virtualization, Clients, Servers, CodeMigration	
5		Consistency, Replication and Fault Tolerance	06
	5.1	Introductiontoreplicationandconsistency, Data-CentricandClient-Centric ConsistencyModels, ReplicaManagement	
	5.2	FaultTolerance:Introduction,Processresilience,Reliableclient-serverandgroup communication,Recovery	
6		DistributedFileSystemsandNameServices	06
	6.1	Introduction and features of DFS, File models, File Accessing models, File-Caching Schemes, FileReplication, CaseStudy: DistributedFileSystems(DSF), NetworkFileSystem(NFS), AndrewFileSystem(AFS), HDFS	

Tex	tbooks:		
1	AndrewS.TanenbaumandMaartenVanSteen, "DistributedSystems: Principles and Paradigms,		
	2nd edition, Pearson Education.		
2	GeorgeCoulouris,JeanDollimore,TimKindberg,,"DistributedSystems:ConceptsandDesign",		
	4th Edition, Pearson Education, 2005.		
Refe	References:		
1	A.S.TanenbaumandM.V.Steen,"DistributedSystems:PrinciplesandParadigms",Second		
	Edition, Prentice Hall, 2006.		
2	M. L. Liu, "Distributed Computing PrinciplesandApplications", PearsonAddisonWesley,2004.		
3	Learn to Master Distributed Computing by ScriptDemics, StarEdu Solutions		

			
Assess	Assessment:		
	S		
Intern	alAssessment:		
Assess	Assessment consists of two class tests of 20 marks each. The first-class test is to be conducted when		
approx	approx. 40% syllabus is completed and second class test when additional 40% syllabus is		
comple	completed.Durationof each test shall be one hour.		
End S	emesterTheory Examination:		
1	Question paper will consist of 6 questions, each carrying 20 marks.		
2	The students need to solve a total of 4 questions.		
3	Question No.1 will be compulsory and based on the entire syllabus.		
4	Remaining question (Q.2 to Q.6) will be selected from all the modules.		

Usefu	Useful Links		
1	https://onlinecourses.nptel.ac.in/noc21_cs87/		
2	https://nptel.ac.in/courses/106106168		

 $^{^* \} Suggestion: Laboratory work based on the above syllabus can be incorporated a saminiproject in CSM 601: Mini-Project.\\$

Course Code:	CourseTitle	Credit
CSDLO6013	ImageandVideoProcessing	3

Pre	Prerequisite: Engineering Mathematics, Algorithms		
Co	Course Objectives:		
1	Tointroducestudentstothebasicconceptsofimageprocessing, fileformats.		
2	Toacquireanin-depthunderstandingofimageenhancementtechnquies.		
3	Togainknowledgeofimagesegmentationandcompressiontechniques.		
4	Toacquirefundamentalsofimagetransformtechniques.		
Co	Course Outcomes		
1	TogainfundamentalknowledgeofImageprocessing.		
2	Toapplyimageenhancementtechniques.		
3	Toapplyimagesegmentationandcompressiontechniques.		
4	Togainanin-depthunderstandingofimagetransforms.		
5	Togainfundamentalunderstandingofvideoprocessing.		

Module		Content	Hrs
1		DigitalImageFundamentals	04
	1.1	IntroductiontoDigitalImage,DigitalImageProcessingSystem,Samplingand Quantization,	
	1.2	RepresentationofDigitalImage,Connectivity,ImageFileFormats:BMP,TIF F and JPEG.	
2		ImageEnhancement inSpatial domain	08
	2.1	IntroductiontoImageEnhancement:GrayLevelTransformations,ZeroMe moryPoint Operations,	
	2.2	HistogramProcessing,.	
	2.3	NeighbourhoodProcessing,SpatialFiltering,SmoothingandSharpeningFilters	
3		Image Segmentation	06
	3.1	Segmentation based on Discontinuities (point, Line, Edge)	
	3.2	ImageEdgedetectionusingRobert,Sobel,Previttmasks,ImageEdgedetection using Laplacian Mask.	

	3.3	RegionOrientedSegmentation:RegiongrowingbypixelAggregation,Spl itand Merge	
4		ImageTransforms	09
	4.1	IntroductiontoUnitaryTransforms	
	4.2	DiscreteFourierTransform(DFT),InverseDFT,PropertiesofDFT,FastFourierTransform(FFT),	
	4.3	DiscreteHadamardTransform(DHT),InverseDHT,FastHadamardTransform(FHT),DiscreteCosineTransform(DCT),InverseDCT	
5		ImageCompression	08
	5.1	Introduction,Redundancy,FidelityCriteria	
	5.2	LosslessCompressionTechniques:RunlengthCoding,ArithmeticCoding, Huffman Coding	
	5.3	LossyCompressionTechniques:ImprovedGrayScaleQuantization,Ve ctorQuantization	
6		DigitalVideoProcessing	04
	6.1	IntroductiontoDigitalVideoProcessing,SampledVideo	
	6.2	CompositeandComponentVideo,Digitalvideoformatsandapp lications	
		Total	39

Tex	Textbooks:	
1	RafaelC.GonzalezandRichardE.Woods, 'DigitalImageProcessing', PearsonEducationAsia, Third Edition, 2009	
2	S.Jayaraman, E.Esakkirajanand T.Veerkumar, "Digital Image Processing" Tata McGraw Hill Education Private Ltd, 2009	
3	Anil K. Jain, "Fundamentals and Digital Image Processing", Prentice Hall of India PrivateLtd, Third Edition	
4	S.Sridhar, "DigitalImageProcessing", OxfordUniversityPress, Second Edition, 2012.	
5.	Alan C. Bovik, "The Essential GuideToVideoProcessing" AcademicPress,	
6	YaoWang,JornOstermann,Ya-QinZang,"VideoProcessingandCommunications",Prentice Hall, Signal Processing series.	