Collaborative Filter

```
Collaborative Filter

Dependence
Run
Project Structure
Method
Some Visualizations:
TODO list
Reference
```

• Xinglu Wang 3140102282 ISEE 1403

Dependence

- Python 2.7
 - o Tensorflow 1.1
 - o Keras 2

Run

- predict_sub_txt.txt is the final results I predicted
- Put train_sub_txt.txt in data\
- Run ensemble.py , generate res.txt in root directory

Project Structure

Method

• DeepCF re-implemented with reference to [2] and there are following modifications for our problem:

- Turn it into classification problem rather than regression.
- EarlyStop to avoid over fitting, rather than eject noise.
- o Others: Model Ensemble.
- Inherited Ideas:
 - Use history ratings as item's raw feature, enable to generalize better to unseen items. with at least
 10 ratings. Because the input is raw feature rather than user index.
 - Adapt In-Matrix prediction, split train: test= 9:1, no overlapping between train and test data.
 - o Others: Shuffle and Clean Data, Grid Search.

Some Visualizations:

• After Remove Item less than 10.7 ratings, and shuffle User/Item index:

• Data Distribution is not balanced, so I tried to augment the unbalanced data, but in the future work I may use on-line hard example mining instead.

• After grid search for latent dim of SVD, I choose 100

• From grid search result for Deep CF, we can see severe over-fitting phenomenon

• So I have to apply early-stop, and I find although the accuracy of DeepCF(On Test Set) is just slightly higher than SVD. But after ensemble, final accuracy can higher than both.

• The train and test pattern of SVD, not severely suffer from over-fitting

TODO list

- On-line Hard Example Mining
- Ensemble SVD and DaulNet
- Whether to Early-stop/ Checkpoint
- Whether to balance training dataset (Aug+Shuffle)
- ✓ SVD
 - o Grid search
 - latent dim / Dropout / regularize hyper-parameter
 - o accuracy on the fly

DaulNet

- o Grid search
- Last time result

	name	acc
0	svd_ynobsxylrc	0.438849
1	svd_mtmhmysqcu	0.436098
2	svd_lmtulnapux	0.435675
3	svd_faufhruaaq	0.434405
4	svd_uxvjuhhcnk	0.432234
5	deep_cf_cfrjuudupl	0.443504
6	deep_cf_kjjiarcqqq	0.444774
7	deep_cf_iwmyylneww	0.448159
8	deep_cf_imdhxyutfe	0.448295

Reference

- [1] SVD: https://github.com/mesuvash/TFMF/blob/master/TFMF.ipynb
- [2] DaulNet / DeepCF re-implement from Xiong Y, Lin D, Niu H, et al. Collaborative Deep Embedding via Dual Networks[J]. 2016. (With Some Modifications)