AP Calculus - Worksheet - Chain Rule

Find the derivative of each of the following functions and parametric equations.

1.
$$f(x) = (3x^2 + 5x)^3$$

 $f' = 3(3x^2 + 5x)^2(6x + 5)$

6.
$$x(t) = 6t + 1$$
$$y(t) = 4t^{2} - 6t + 5$$
$$\frac{dy}{dx} = \frac{8t - 6}{6} = \frac{4t - 3}{3}$$

2.
$$g(x) = \sqrt[3]{4x^2 + 5x} (3x + 5)$$

 $g' = \frac{1}{3} (4x^2 + 5x)^{-\frac{2}{3}} (8x + 5) (3x + 5) + \sqrt[3]{4x^2 + 5x} (3)$

7.
$$x(t) = \cos(2t)$$

$$y(t) = \sin(4t)$$

$$\frac{dy}{dx} = \frac{4\cos(4t)}{-2\sin(2t)} = -\frac{2\cos(4t)}{\sin(2t)}$$

3.
$$s(d) = \frac{\sqrt{d-4d^2}}{(d+1)^2}$$

$$\frac{(d+1)^2 \frac{1}{2} (d-4d^2)^{-\frac{1}{2}} (1-8d) - \sqrt{d-4d^2} (2(d+1))}{(d+1)^4}$$

8.
$$x(\theta) = \theta$$

$$y(\theta) = 2 - 2\cos\theta$$

$$\frac{dy}{dx} = \frac{2\sin\theta}{1} = 2\sin\theta$$

4.
$$g(x) = \frac{6 - x - x^2}{x + 3} = \frac{(3 + x)(2 - x)}{x + 3}$$

$$g' = \frac{(x + 3)(-1 - 2x) - (6 - x - x^2)(1)}{(x + 3)^2}$$

$$g' = -1$$
5. $\frac{x(t) = t}{y(t) = 3t^2 + 6}$

9.
$$f(x) = 2\sin(\tan(3x))$$

$$f' = 2\cos(\tan(3x))\sec^2(3x) \cdot 3$$

$$= 6\cos(\tan(3x))\sec^2(3x)$$

$$\frac{dy}{dx} = \frac{6t}{1} = 6t$$

10.
$$g(x) = (\sqrt{x+2})^{1/2}$$

 $g' = \frac{1}{2} (\sqrt{x+2})^{-\frac{1}{2}} (\frac{1}{2} (x+2)^{-\frac{1}{2}}) \cdot |$
 $= \frac{1}{4} (x+2)^{-\frac{3}{4}}$

11.
$$y = \cos^{2}(4x)$$

12. $f(x) = \frac{\sin(2x)}{(4x+1)^{2}}$

13. $f(x) = \sqrt[4]{1+2x+x^{3}}$

14. $y = \frac{x^{2}-x^{-2}}{x^{2}+x^{-2}}$

15. $f(x) = \frac{\sin(2x)}{(4x+1)^{2}}$

16. $f(x) = \frac{\sin(2x)}{(4x+1)^{2}}$

17. $f(x) = \frac{\sin(2x)}{(4x+1)^{2}}$

18. $f(x) = \sqrt[4]{1+2x+x^{3}}$

19. $f(x) = \frac{x^{2}-x^{-2}}{(4x+1)^{2}}$

19. $f(x) = \frac{x^{2}-x^{-2}}{(4x+1)^{2}}$

10. $f(x) = \frac{x^{2}-x^{-2}}{(4x+1)^{2}}$

11. $f(x) = \sqrt[4]{1+2x+x^{3}}$

12. $f(x) = \sqrt[4]{1+2x+x^{3}}$

13. $f(x) = \sqrt[4]{1+2x+x^{3}}$

14. $f(x) = \sqrt[4]{1+2x+x^{3}}$

15. $f(x) = \sqrt[4]{1+2x+x^{3}}$

16. $f(x) = \sqrt[4]{1+2x+x^{3}}$

17. $f(x) = \sqrt[4]{1+2x+x^{3}}$

18. $f(x) = \sqrt[4]{1+2x+x^{3}}$

19. $f(x) = \sqrt[4]{1+2x+x^{3}}$

19. $f(x) = \sqrt[4]{1+2x+x^{3}}$

10. $f(x) = \sqrt[4]{1+2x+x^{3}}$

11. $f(x) = \sqrt[4]{1+2x+x^{3}}$

12. $f(x) = \sqrt[4]{1+2x+x^{3}}$

13. $f(x) = \sqrt[4]{1+2x+x^{3}}$

14. $f(x) = \sqrt[4]{1+2x+x^{3}}$

15. $f(x) = \sqrt[4]{1+2x+x^{3}}$

16. $f(x) = \sqrt[4]{1+2x+x^{3}}$

17. $f(x) = \sqrt[4]{1+2x+x^{3}}$

18. $f(x) = \sqrt[4]{1+2x+x^{3}}$

19. $f(x) = \sqrt[4]{1+2x+x^{3}}$

19. $f(x) = \sqrt[4]{1+2x+x^{3}}$

10. $f(x) = \sqrt[4]{1+2x+x^{3}}$

11. $f(x) = \sqrt[4]{1+2x+x^{3}}$

12. $f(x) = \sqrt[4]{1+2x+x^{3}}$

13. $f(x) = \sqrt[4]{1+2x+x^{3}}$

14. $f(x) = \sqrt[4]{1+2x+x^{3}}$

15. $f(x) = \sqrt[4]{1+2x+x^{3}}$

16. $f(x) = \sqrt[4]{1+2x+x^{3}}$

17. $f(x) = \sqrt[4]{1+2x+x^{3}}$

18. $f(x) = \sqrt[4]{1+2x+x^{3}}$

19. $f(x) = \sqrt[4]{1+2x+x^{3}}$

10. $f(x) = \sqrt[4]{1+2x+x^{3}}$

11. $f(x) = \sqrt[4]{1+2x+x^{3}}$

12. $f(x) = \sqrt[4]{1+2x+x^{3}}$

13. $f(x) = \sqrt[4]{1+2x+x^{3}}$

14. $f(x) = \sqrt[4]{1+2x+x^{3}}$

15. $f(x) = \sqrt[4]{1+2x+x^{3}}$

16. $f(x) = \sqrt[4]{1+2x+x^{3}}$

17. $f(x) = \sqrt[4]{1+2x+x^{3}}$

18. $f(x) = \sqrt[4]{1+2x+x^{3}}$

19. $f(x) =$

Convert Problem 5 and 6 from parametric equations to functions and then take the derivative.

15.
$$x(t) = t$$
 $y(t) = 3t^2 + 6$
 $y(x) = 3x^2 + 6$
 $y'(x) = 6x$

16. $x(t) = 6t + 1$ $y(t) = 4t^2 - 6t + 5$
 $t = \frac{x-1}{6}$
 $y'(x) = 6x$
 $y'(x) = 8\left(\frac{x-1}{6}\right)^2 - 6\left(\frac{x-1}{6}\right) + 5$

17. If $F(x) = f(g(x))$, where $f(-2) = 8$, $f'(-2) = 4$, $f'(5) = 3$, $g(5) = -2$, and $g'(5) = 6$, find

17. If
$$F(x) = f(g(x))$$
, where $f(-2) = 8$, $f'(-2) = 4$, $f'(5) = 3$, $g(5) = -2$, and $g'(5) = 6$, find $F'(5)$.

$$F'(x) = f'(g(x)) \cdot g'(x) \cdot |$$

$$F'(5) = f'(g(5)) \cdot g'(5)$$

$$= f'(-2) \cdot (6) = 24$$

18. The following table of values contains f, g, f', and g', use them to find:

x	f(x)	g(x)	f'(x)	g'(x)
1	3	2	4	6
2	1	8	5	7
3	7	2	7	9

a. If
$$h(x) = f(g(x))$$
, find $h'(1)$.

b. If
$$H(x) = g(f(x))$$
, find $H'(1)$.

$$H'(1) = g'(f(1)) \cdot f'(1) \qquad \Rightarrow 36$$