UERJ	Instituto de Matemática e Estatística
	Departamento de Informática e
	Ciência da Computação IME-UERJ.
Professor:	Luerbio Faria
Segunda prova de	Teoria da Computação
Data:	31/01/2023

- [7.0] Para cada uma das linguagens L₁, L₂:
 - 1. $L_1 = \{w = a^i b^j a^k : w \in \{a, b\}^*, i, j, k \in \mathbb{N}, i + k \le j\}.$
 - 2. $L_2 = \{w = a^k b^\ell : w \in \{a, b\}^*, k > \ell, k, \ell \in \mathbb{N}\}.$
 - (a) [0.5] Enumere lexicograficamente 6 cadeias.
 - (b) [1.0] Mostre que a linguagem é não regular.
 (c) [1.0] Apresente um autômato de pilha que reconheça a linguagem por pilha vazia e estado final. E mostre todas as configurações de seu autômato para a cadeia a³b³ (Para L₁) / a⁴b²
 - (d) [1.0] Apresente uma gramática livre de contexto que gere a linguagem. E mostre as árvores de derivação com os 2 primeiros níveis.
- Máquina de Turing Considere L = {(ab)ⁿcⁿ : n ∈ N} = {ε, abc, ababcc, abababccc, ababababcccc, ..., }.
 - (a) [1,5] Projete uma máquina de Turing $M=(K,\Sigma,\Gamma,\delta,q_0,F)$ que reconheça L.
 - (b) [0.5] Enumere as transições da máquina, que você fez, e mostre que $\omega=(ab)^2c^2\in L(M)$.
- 3. [2.0] (V)erdadeiro ou (F)also.

(Para L_2).

- (a) () Toda gramática regular é livre de contexto. {Com Justificativa se Verdadeira e Contra-exemplo se Falsa}.
 - (b) (V) L é uma linguagem regular se e somente se L é regular. {Com Verdadeiro ou Falso com correção} < Flikavn(n ↑)</p>
 - (c) () O Teorema de Gödel diz que Consistência implica em Completude. {Com Verdadeiro ou Falso com correção}. (OnSiS Tên (TO FINCOMPLETUDE)
- (d) (√) Não existe uma máquina de Turing a qual dada uma máquina de Turing M e uma entrada x ∈ Σ seja capaz de decidir se M pára com x. {Com Verdadeiro ou Falso com correção}.

UEPJ Instituto de Matemática e Estatística Depto Informática e Ciência da Computação Professor: Luerbio Faria 1ª Prova de

Teoria da Computação

Data: 01/12/2022

\frac{1}{2}. Considere o alfabeto $\Sigma = \{a, b\}$:

Descrição: $L=\{w\in \Sigma^{\bullet}: w \text{ tem pelo menos 2 a's consecu-}$ tivos ou tem pelo menos 2 b's consecutivos}.

Descrição: $\overline{L} = \{w \in \Sigma^* : w \notin L\},\$

Enumere as primeiras 10 cadeias deL e de \overline{L} . (b) Apresente um autômato finito determinístico que reconheça as cadeias da linguagem L_{\star}

Apresente um autômato finito determinístico que reconheça as (9) cadeias da linguagem \overline{L} ,

Apresente uma gramática regular que gere as cadeias da linguagem L.

5-7ab / 8/0 2. Considere a gramática regular $G=(K,\Sigma,P,S)$ onde $K=\{S,R,T,Q,U,T\}, \Sigma=\{a,b\},S$ é o símbolo inicial e o conjunto das regras de produção P é definido por:

 $S \rightarrow bR_{*}(1)$ $\begin{array}{c} R \to bT, \\ T \to aQ \mid bQ \mid 2 \mid 0 \end{array}$ Q -QUILU $U \rightarrow aT bT$

> (a) Apresente um autômato finito determinístico que reconheça as cadeias da linguagem L(G) gerada por G,

 $\begin{picture}(b) \label{picture} Apresente uma Descrição para <math>L(G)$, e

to. De a expressão regular que denota L(G).

Considere a expressão regular

$$e = (abbb \vee ab)^*$$

(à)/ Apresente um autômato finito determinístico que reconheça as cadeias da linguagem L que possua as cadeias descritas pela expressão e,

(6) Apresente uma Descrição para L, e

- (e) Dê uma gramática regular que produza as cadeias de L.
- Dado A o autômato finito deterministico na Figura.

(a) Apresente uma Descrição para a linguagem L(A) que A reconhece,

Apresente um autômato finito determinístico que reconheça L(A), e

(c) Dê uma gramática regular que produza as cadeias de L(A).

(d)/Dê a expressão regular associada com L(A).

3. Dada $L = \{b^{2i}a^i \mid i \in \mathbb{N}\}$. 1. Enumere as 10 primeiras cadelas de L. 2. Prove que L não é regular.

UERJ	Instituto de Matemática e Estatística
	Departamento de Informática e
	Ciência da Computação IME-UERJ.
Professor:	Lucrbio Faria
Segunda prova de	Teoria da Computação
Data:	24/05/2021

- [6.0] Para cada uma das linguagens L₁, L₂;
 - 1. $L_1 = \{w = a^{3i}b^{2j}c^jd^{2i} : w \in \{a, b, c, d\}^*, i, j \in \mathbb{N}^*\}.$
 - 2. $L_2 = \{w = a^k b^\ell : w \in \{a, b\}^*, k > \ell, k, \ell \in \mathbb{N}^*\}.$
 - (a) [1.0] Mostre que a linguagem é não regular.
 - (b) [1.0] Apresente um autômato de pilha que reconheça a linguagem por pilha vazia e estado final.
 - (c) [1.0] Apresente uma gramática livre de contexto que gere a linguagem.
- [2.5] Máquina de Turing Considere L = {(ab)ⁿcⁿ : n ∈ N*} = {abc, ababec, abababeccc, ababababeccc, . . . , }.
 - (a) [2.0] Projete uma máquina de Turing $M=(K,\Sigma,\Gamma,\delta,q_0,F)$ que reconheça L.
 - (b) [0.5] Enumere as transições da máquina, que você fez, e mostre que $\omega = (ab)^2 c^2 \in L(M)$.
- [2.0] (V)erdadeiro ou (F)also.
 - (a) () Toda gramática regular é livre de contexto. {Com Justificativa se Verdadeira e Contra-exemplo se Falsa}.
 - (b) () A Tese de Church diz que a Máquina de Turing é a formalização do conceito de procedimento computacional. {Com Verdadeiro ou Falso com correção}.
 - (c) () O Teorema de Gödel diz que Consistência implica em Completude. {Com Verdadeiro ou Falso com correção}.
 - (d) () N\u00e3o existe uma m\u00e1quina de Turing a qual dada uma m\u00e1quina de Turing M e uma entrada x ∈ Σ seja capaz de decidir se M p\u00e1ra com x. {Com Verdadeiro ou Falso com correç\u00e3o}.

2 páginas

Instituto de Matemática e Estatística **UERJ** Informática e Ciência da Computação Depto Luerbio Faria

Professor:

1ª Prova de Teoria da Computação

19/04/2020 Data:

Considere o alfabeto Σ = {a.b} com as seguintes linguagens:

Descrição: L = {w ∈ {a,b}* : cada a é seguido por um número par de b's}.

Descrição: L
 = {w ∈ {a,b}* : w ∉ L}.

(a) Apresente um autômato finito que reconheça L;

(b) Apresente um autômato finito que reconheça T;

(c) Apresente uma gramática regular que gere L.

2. Considere a gramática regular $G=(K,\Sigma,P,S)$ onde $K=\{S,R,Q,T,M,N\}, \Sigma=\{0,1\}, S$ é o símbolo inicial e o conjunto das regras de produção P é definido por:

 $S \rightarrow 0S | 1R$ $R \rightarrow 0Q$,

 $Q \rightarrow 0Q | 1T$

 $T \to 0M$,

 $M \to 0M|1N$,

 $N \to 0N | \varepsilon$.

- (a) Apresente um autômato finito determinístico que reconheça as cadeias da linguagem L(G) gerada por G,
- (b) Apresente uma Descrição para L(G), e
- (c) Dê a expressão regular que denota L(G).
- Considere a expressão regular

$$e = ((a)^*)(baaa \lor ba)^*$$

- (a) Apresente um autômato finito determinístico que reconheça as cadeias da linguagem L que possua as cadeias descritas pela expressão e,
- (b) Apresente uma Descrição para L, e
- (c) Dê uma gramática regular que produza as cadeias de L.
- Dado A o autômato finito determinístico na Figura 1.
 - (a) Apresente uma Descrição para a linguagem L(A) que A reconhece,
 - (b) Apresente um autômato finito determinístico que reconheça L(A), e
 - (c) Dê uma gramática regular que produza as cadeias de L(A).
 - (d) Dê a descrição de L.

Figure 1: AFND A.