

Summary

- GP-LSTM: a Gaussian process model which fully encapsulate the structural properties of LSTMs.
- Semi-stochastic gradient descent: new provably convergent optimization procedure for learning recurrent kernels.
- State-of-the-art results on sequence-to-reals regression.
- Predictive uncertainty for autonomous driving and other tasks.

Full paper: https://arxiv.org/abs/1610.08936 Code: https://github.com/alshedivat/kgp

1. Background & Motivation

 $\mathbf{X}=\{ar{\mathbf{x}}_i\}_{i=1}^n$, $ar{\mathbf{x}}_i=[\mathbf{x}_i^1,\mathbf{x}_i^2,\cdots,\mathbf{x}_i^{l_i}]$, $\mathbf{x}_i^j\in\mathcal{X}$. Input sequences:

 $\mathbf{y} = \{y_i\}_{i=1}^n$, $y_i \in \mathbb{R}$. Real-valued targets:

Applications:

- Predictions of the expensive sensory data in robotic systems.
- Temporal modeling of medical biomarkers for predictive healthcare.
- Energy / power forecasting.
- Financial markets.

Recurrent neural networks

 A flexible framework for composing complex models. **Advantages:**

- Accounts for long-range nonlinear correlations.
- Trainable by backprop.

 Easily overfits to noise. **Drawbacks:**

Gaussian processes

Advantages: Enjoys Bayesian nonparametric flexibility of the GPs.

Robust to overfitting.

 Accounts only for pairwise linear correlations between **Drawbacks:**

the time points.

Our proposal: Combine GPs with LSTMs to get flexible recurrent Bayesian nonparameteric models that are robust to noise and are able to provide predictive uncertainty estimates.

2. Gaussian Processes with Recurrent Kernels

LSTM-structured kernel

Let $\phi_{\mathbf{w}}: \mathcal{X}^L \mapsto \mathcal{H}$ be a recurrent transformation. Define the kernel as:

$$\tilde{k}_{\theta}(\bar{\mathbf{x}}, \bar{\mathbf{x}}') = k_{\gamma}(\phi_{\mathbf{w}}(\bar{\mathbf{x}}), \phi_{\mathbf{w}}(\bar{\mathbf{x}}')),$$

where $k_{\gamma}: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ is the base kernel, $\bar{\mathbf{x}}, \bar{\mathbf{x}}' \in \mathcal{X}^L$ are L-length sequences, $\tilde{k}_{\theta}: \mathcal{X}^L \times \mathcal{X}^L \mapsto \mathbb{R}$, and $\theta = \{\gamma, \mathbf{w}\}$.

Negative log marginal likelihood objective

• Enjoys Bayesian nonparametric flexibility of the GPs. **Advantages:**

Robust to overfitting.

 Does not factorize over the data. **Drawbacks:**

Involves kernel matrix inverses.

Algorithm: semi-stochastic asynchronous gradient descent

Input: Data: (\mathbf{X}, \mathbf{y}) , kernel: $k_{\gamma}(\cdot, \cdot)$, recurrent transformation: $\phi_{\mathbf{w}}(\cdot)$

- 1. Initialize γ and \mathbf{w} ; compute initial K
- 2. repeat
- $\gamma \leftarrow \gamma + \text{update}_{\gamma}(\mathbf{X}, \mathbf{w}, K).$
- for all mini-batches X_b in X
- $\mathbf{w} \leftarrow \mathbf{w} + \mathtt{update}_{\mathbf{w}}(\mathbf{X}_b, \mathbf{w}, K^{\mathrm{stale}})$
- endfor
- 7. Until: convergence

Output: Optimal γ^* and \mathbf{w}^*

Theorem [Al-Shedivat et al., 2016]. Semi-stochastic asynchronous gradient descent with τ -delayed kernel updates converges to a fixed point when the learning rate, λ_t , decays as $\Theta(1/\tau t^{\frac{1+\delta}{2}})$ for any $\delta \in (0,1]$.

3. Experiments

Qualitative: Lane prediction for autonomous driving

Figure 2: Left: Train and test routes of the autonomous car. Right: Point-wise estimation of the lanes. Dashed – ground truth, blue – LSTM, red – GP-LSTM.

Quantitative performance evaluation

Figure 3: RMSE/NLML vs. the number points/parameters per layer.

Data	Task	NARX	RNN	LSTM	RGP	GP-NARX	GP-RNN	GP-LSTM
Drives	system ident.	0.423	0.408	0.382	0.249	0.403	0.332	0.225
Actuator		0.482	0.771	0.381	0.368	0.891	0.492	0.347
GEF	power pred.	0.529	0.622	0.465		0.780	0.242	0.158
	wind est.	0.837	0.818	0.781		0.835	0.792	0.764
Car	lane seq.	0.128	0.331	0.078		0.101	0.472	0.055
	lead vehicle pos.	0.410	0.452	0.400		0.341	0.412	0.312

Table 1: Performance of the models in terms of RMSE.

Convergence of the optimization

Figure 4: Convergence of the optimization with full-/mini-batches.

Scalability

Figure 5: Scalability of learning and inference of GP-LSTM.