

LAVORO DELLA FORZA ELETTRICA SU UNA CARICA DI PROVA

 \mathbf{q} carica di prova sotto l'influsso di forza elettrica \mathbf{F} (ovvero posta in una regione ove si trova campo E_0)

Se F sposta q, compie un lavoro

Il lavoro elementare che corrisponde ad uno spostamento infinitesimo d*I* vale

$$dL = \vec{F} \cdot d\vec{\ell} = q\vec{E}_0 \cdot d\vec{\ell}$$

$$L_{A-B} = \int_{A}^{B} d\ell = \int_{A}^{B} \vec{F} \cdot d\vec{\ell} = q \int_{A}^{B} \vec{E}_0 \cdot d\vec{\ell}$$

LAVORO PER UNITÀ DI CARICA

$$\mathcal{L} = \frac{L}{q} = \int_{A}^{B} \vec{E}_{0} \cdot d\vec{\ell}$$

CASO DEL CAMPO GENERATO DA UNA CARICA PUNTIFORME Q

$$\vec{E}_o(\vec{r}) = \frac{1}{4\pi\epsilon_o} \frac{Q}{r^2} \hat{r}$$

$$d\mathcal{L} = \vec{E_0} \cdot \vec{dl} = E_0 d\tau$$

$$\mathcal{L}_{A \rightarrow B} = \int_{A}^{B} d\mathcal{L}_{B} = \frac{Q}{4\pi\epsilon_{0}} \int_{A}^{B} \frac{dr}{r^{2}} =$$

$$=\frac{Q}{4\pi\epsilon_0}\left[-\frac{1}{r}\right]_{r_A}^{r_B}$$

$$\mathcal{L}_{A-B} = \frac{Q}{4\pi \epsilon_0} \left[\frac{1}{r_A} - \frac{1}{r_B} \right]$$

$$\mathcal{L}_{A \rightarrow B} = \frac{Q}{4\pi \, \ell_0} \left[\frac{1}{r_A} - \frac{1}{r_B} \right]$$

Notiamo che il risultato non dipende dal cammino scelto per andare da A a B ma solo dalle coordinate di A e B (cioe' posizioni iniziale e finale dello spostamento)

IL CAMPO ELETTROSTATICO È CONSERVATIVO

Se introduciamo la funzione
$$V_0(r) = \frac{1}{4\pi \epsilon_0} \frac{Q}{r} + \infty$$

costante arbitraria

$$\mathcal{L}_{A \to B} = V_0(A) - V_0(B)$$

Potenziale elettrostatico per il campo elettrico generato da una carica puntiforme.

Anche se abbiamo dimostrato per un caso particolare (carica puntiforme) l'espressione

ha validita' generale per il campo elettrico e descrive

Il lavoro che il campo compie per spostare una carica unitaria da A a B (si misura in J/C = Volt).

Il potenziale corrisponde all'energia potenziale per unità di carica.

$$\oint \vec{E}_{5} \cdot d\vec{l} = 0 \iff \text{II campo elettrostatico è conservativo}$$
$$= V(A) - V(A)$$

Lavoro che il campo compie per spostare una carica da A a B:

Quindi se A è un punto di riferimento e P il punto generico di coordinate (x,y,z) si può scrivere

$$V_0(P) = V_0(x, y, z) = -\int_A^P \widehat{E_0} \cdot d\widehat{\ell} + V_0(A)$$

È comodo scegliere una posizione di riferimento nella quale porre il potenziale uguale a zero. Se le cariche sorgenti del campo elettrico sono tutte al finito, solitamente si assume

$$V(\infty) = 0$$

$$V_o(r) = \frac{1}{4\pi\epsilon_o} \frac{Q}{r}$$
 $V_o(x,y,z) = \int_{Q}^{\infty} \vec{\epsilon_o} \cdot d\vec{\ell}$

Lavoro fatto dal campo per portare una carica unitaria da P a ∞

POTENZIALE DI UNA PARTICELLA DI PROVA NEL CAMPO DI UN NUMERO QUALSIASI DI CARICHE PUNTIFORMI

Caso di 2 cariche puntiformi $q_1 e q_2$

 Per il principio di sovrapposizione, la forza elettrica F agente sulla particella di prova q₀ è

$$\vec{\mathbf{F}} = q_0 \vec{\mathbf{E}} = q_0 (\vec{\mathbf{E}}_1 + \vec{\mathbf{E}}_2)$$

- Lavoro di \boldsymbol{F} quando q_0 viene portata da \boldsymbol{a} a \boldsymbol{b}

$$\int_{a}^{b} \vec{\mathbf{F}} \cdot d\vec{\ell} = \int_{a}^{b} q_{0} \left(\vec{\mathbf{E}}_{1} + \vec{\mathbf{E}}_{2} \right) \cdot d\vec{\ell} = q_{0} \left[\int_{a}^{b} \vec{\mathbf{E}}_{1} \cdot d\vec{\ell} + \int_{a}^{b} \vec{\mathbf{E}}_{2} \cdot d\vec{\ell} \right]$$

 Lavoro puo' essere separato in 2 contributi indipendenti ciascuno identico risultato con una sola carica ed indipendente dal percorso a → b.

quindi

Anche in questo caso il campo elettrostatico e' conservativo

$$V(\mathbf{r}) = \frac{1}{4 \pi \varepsilon_0} \left(\frac{q_1}{r_1} + \frac{q_2}{r_2} \right) \qquad \text{Con V}(\infty) = 0$$

 r_1 e r_2 sono le distanze della carica di prova dalle cariche q_1 e q_2

Caso di *n* cariche puntiformi

$$V = \frac{1}{4\pi\varepsilon_0} \sum_{1}^{n} \frac{q_i}{r_i}$$

Energia potenziale della carica di prova

$$U = q_0 V$$

POTENZIALE DI UNA PARTICELLA DI PROVA NEL CAMPO DI UNA DISTRIBUZIONE CONTINUA DI CARICA

3D
$$V_0(\vec{r}) = \frac{1}{4\pi\epsilon_0} \int_{\vec{z}} \frac{g(x',y',z') dz'}{|\vec{r}-\vec{r}|}$$

2D
$$V_0(\vec{r}) = \frac{1}{4\pi\epsilon_0} \int_{\Sigma} \frac{\sigma(x', y', z') ds'}{|\vec{r} - \vec{r}'|}$$

1D
$$V_0(\vec{r}) = \frac{1}{4\pi \epsilon_0} \int_{\Lambda} \frac{\lambda(x', y', z') d\ell'}{|\vec{r} - \vec{r}'|}$$

In fisica atomica si usa spesso come unità di misura dell'energia l'elettronvolt (eV)

$$1 \text{ eV} = (1.6 \times 10^{-19} \text{ C})(1 \text{ V}) = 1.6 \times 10^{-19} \text{ J}$$

rappresenta l'energia guadagnata da un elettrone che attraversi una differenza di potenziale di 1 V.

POTENZIALE DI UN DIPOLO ELETTRICO

ENERGIA POTENZIALE DI UN DIPOLO IN UN CAMPO ELETTRICO UNIFORME

$$x_{+} = x_{0} + a \cos\theta$$
$$x_{-} = x_{0} - a \cos\theta$$

Differenza di potenziale fra 2 punti in un campo elettrico uniforme

$$V_b - V_a = -\int_{x_a}^{x_b} (E\hat{\imath}). (dx\hat{\imath}) = -\int_{x_a}^{x_b} E. dx$$

 $V_b - V_a = -E(x_b - x_a) = -E\Delta x$

Se diciamo che $V_a=V_0$ rappresenta i punti del piano yz (x=0) si ha:

Figura 3.14

Determinazione di $V_b - V_a$ in un campo uniforme orientato nella direzione +x.

$$V(x) - V_0 = -Ex$$

In un campo uniforme varia linearmente con *E* e decresce nella direzione del campo

Per un campo uniforme nella direzione x

$$V(x) = -E x + V_0$$

$$U_{+} = q(-Ex_{+} + V_{0})$$
 $U_{-} = -q(-Ex_{-} + V_{0})$ $U = U_{+} + U_{-} = -2 a q cos \theta E$

$$U = -\boldsymbol{p} \cdot \boldsymbol{E}$$

- -non dipende dalla posizione del dipolo
- -l'energia potenziale dipende dall'angolo tra il momento di dipolo ed E
- è minima quando il dipolo è parallelo al campo.

Le forze esterne che agiscono sul dipolo sono $F^+ = q E e F^- = -q E e la forza risultante e' nulla.$

Ma il momento torcente non e' nullo:

$$\vec{\mathbf{\tau}} = \vec{\mathbf{r}}_{+} \times \vec{\mathbf{F}}_{+} + \vec{\mathbf{r}}_{-} \times \vec{\mathbf{F}}_{-} = \vec{\mathbf{r}}_{+} \times (+q)\vec{\mathbf{E}} + \vec{\mathbf{r}}_{-} \times (-q)\vec{\mathbf{E}} = q(\vec{\mathbf{r}}_{+} - \vec{\mathbf{r}}_{-}) \times \vec{\mathbf{E}}$$

 $r_{+} - r_{-}$ è il vettore che va dalla carica negativa a quella positiva, quindi si può scrivere:

$$\vec{\tau} = \vec{p} \times \vec{E}$$

Il dipolo non subisce alcun effetto da parte del campo se è allineato con esso, ossia se p è parallelo e concorde oppure opposto a E (solo nel primo caso si ha una situazione di equilibrio stabile) negli altri casi sul dipolo agisce un momento meccanico che tende ad allineare il dipolo al campo.

Potenziale del campo generato da una distribuzione lineare di carica

$$V(r) = \frac{-\lambda}{2\pi\epsilon_0} \ln \frac{r}{r_A}$$

Relazione tra campo e potenziale elettrico

$$V(P) = -\int_{A}^{P} \mathbf{E} \cdot d\mathbf{l} + V(A)$$

Se è noto $\mathbf{E}(x,y,z)$, è quindi possibile calcolare V(x,y,z). Pensiamo ora all'operazione inversa: se conosciamo V(x,y,z) è possibile calcolare $\mathbf{E}(x,y,z)$?

Supponiamo di calcolare la differenza di potenziale tra due punti $P = (x+\Delta x,y,z)$ e A = (x,y,z). Se prendiamo d**I = dx' i**

$$V(x + \Delta x, y, z) - V(x, y, z) = -\int_{A}^{P} \mathbf{E} \cdot d\mathbf{l} = -\int_{x}^{x + \Delta x} E_{x}(x', y, z) dx'$$

Considerando uno spostamento Δx molto piccolo (quindi E_x pressoché costante tra x e x + Δx):

$$-E_x \int_x^{x+\Delta x} dx' = -E_x \left[(x + \Delta x) - (x) \right] = -E_x \Delta x$$

$$V(x + \Delta x, y, z) - V(x, y, z) \approx -E_x \Delta x$$

Se dividiamo per Δx e prendiamo il limite per Δx che tende a 0 si ha

$$\lim_{\Delta x \to 0} \left(\frac{V(x + \Delta x, y, z) - V(x, y, z)}{\Delta x} \right) = -E_x$$
 quindi
$$E_x = -\frac{\partial V}{\partial x}$$

Variazioni infinitesime del potenziale nelle direzioni y e z danno risultati analoghi. Quindi:

$$\boldsymbol{E} = -(\frac{\partial V}{\partial x} \, \boldsymbol{i} + \frac{\partial V}{\partial y} \, \boldsymbol{j} + \frac{\partial V}{\partial z} \, \boldsymbol{k})$$

Se si conosce un'espressione del potenziale V dovuto a una distribuzione di carica, si può determinare \mathbf{E} .

Definendo l'operatore gradiente
$$grad = (\frac{\partial}{\partial x} \mathbf{i} + \frac{\partial}{\partial y} \mathbf{j} + \frac{\partial}{\partial z} \mathbf{k})$$

$$E = -grad V$$

IMPORTANTE: Il campo elettrostatico è esprimibile come gradiente di uno scalare perché è un campo conservativo.

Risultati analoghi possono essere ottenuti per altri tipi di coordinate oltre a quelle cartesiane. Ad esempio, se una distribuzione di carica ha simmetria sferica, V dipende solo dalla coordinata radiale r ed E ha soltanto una componente radiale. Si ha:

$$E_r = -\frac{\partial V}{\partial r}$$

Quando si calcola la derivata parziale di una funzione rispetto a una delle variabili, le altre variabili vengono considerate costanti durante il procedimento. Ad esempio nel caso di una carica puntiforme:

$$E_r = -\frac{d}{dr} \frac{q}{4\pi\varepsilon_0 r} = -\frac{q}{4\pi\varepsilon_0} \left(-\frac{1}{r^2} \right) = \frac{q}{4\pi\varepsilon_0 r^2}$$

E' importante notare che per determinare il campo elettrico in un punto non è sufficiente conoscere il valore del potenziale in quel punto, ma è necessario conoscere il potenziale in un *intorno* del punto considerato.

Inoltre per determinare il potenziale in un punto non è sufficiente conoscere il valore del campo elettrico in quel punto, ma occorre conoscere il campo elettrico lungo una linea tra il punto di riferimento e il punto considerato.

Dai risultati precedenti si vede che l'unità di misura SI del campo elettrico può essere scritta anche come volt/metro (V/m) oltre che come newton/coulomb (N/C).

Superfici equipotenziali

Una superficie equipotenziale è una superficie sulla quale il potenziale è costante. Le forze elettriche **non compiono lavoro quando una** carica si sposta su una superficie equipotenziale.

All'esterno di una sfera uniformemente carica

$$E_r = \frac{Q \,\hat{r}}{4 \,\pi \varepsilon_0 r^2} \qquad V(r) = \frac{Q}{4 \,\pi \varepsilon_0 r} \qquad \text{Con V}(\infty) = 0$$

Quindi V è costante se r è costante.

Le linee di forza di **E** sono perpendicolari alle superfici equipotenziali. Infatti, se **E** avesse una componente tangente ad una superficie equipotenziale, la forza elettrica compierebbe lavoro quando una particella carica si muove sulla superficie. Quindi, **E** non può avere una componente tangente a una superficie equipotenziale.