

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: Hilton, Douglas J.

Alexander, Warren S. Viney, Elizabeth M.

Willson, Tracy A.

Richardson, Rachae T.

Starr, Robyn

Nicholson, Sandra E.

Metcalf, Donald Nicola, Nicos A.

- (ii) TITLE OF INVENTION: THE APEUTIC AND DIAGNOSTIC AGENTS
- (iii) NUMBER OF SEQUENCES: 50/
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Scully, Scott, Murphy & Presser
 - (B) STREET: 400 Garden City Plaza
 - (C) CITY: Garden City, New York
 - (D) STATE: New York
 - (E) COUNTRY: U.S.A.
 - (F) ZIP: 11530
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: / IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
- (vi) CURRENT APPL/ICATION DATA:
 - (A) APPLICATION NUMBER: 08/962,560
 - (B) FILING DATE: 31-OCT-1997
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: PCT/AU97/00729
 - (B) FILING DATE: 31-OCT-1997
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: PO5117
 - (B) FÍLING DATE: 14-FEB-1997
- (vii) PRIOR APPLICATION DATA:
 - (A) /APPLICATION NUMBER: PO 3384
 - (B) FILING DATE: 01-NOV-1996
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: DiGiglio, Frank S.
 - (B) REGISTRATION NO: 31,346
 - (C) REFERENCE/DOCKET NUMBER: 10976

GLO

(ix) TELECOMMUNICATION INFORMATION: (A) TELEPHONE: (516) 742-4343 (B) TELEFAX: (516) 742-4366 (C) TELEX:	
(2) INFORMATION FOR SEQ ID NO:1:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:	
CACGCCGCCC ACGTGAAGGC	20
(2) INFORMATION FOR SEQ ID NO 2:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: NA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	
TTCGCCAATG ACAAGACGCT	20
(2) INFORMATION FOR SEQ ID NO:3:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1235 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA	
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 161799	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:	
CGAGGCTCAZ GCTCCGGGCG GATTCTGCGT GCCGCTCTCG CTCCTTGGGG TCTGTTGGCC	60
GGCCTGTGCC ACCCGGACGC CCGGCTCACT GCCTCTGTCT CCCCCATCAG CGCAGCCCCG	120

GACGCTATGG CCCACCCCTC CAGCTGGCCC CTCGAGTAGG	160
ATG GTA GCA CGC AAC CAG GTG GCA GCC GAC AAT GCG ATC TCC CG Met Val Ala Arg Asn Gln Val Ala Ala Asp Asn Ala Ile Ser Pi 1 5 10	
GCA GAG CCC CGA CGG CGG TCA GAG CCC TCC TCG TCC TCG TCT TC Ala Glu Pro Arg Arg Arg Ser Glu Pro Ser Ser Ser Ser Ser Ser 30	
TCG CCA GCG GCC CCC GTG CGT CCC CGG CCC TGC CCG GCG G	
CCA GCC CCT GGC GAC ACT CAC TTC CGC ACC TTC CGC TCC CAC TC Pro Ala Pro Gly Asp Thr His Phe Arg Thr Phe Arg Ser His Sc 50 55 60	
TAC CGG CGC ATC ACG CGG ACC AGC GCG CTC CTG GAC GCC TGC GC Tyr Arg Arg Ile Thr Arg Thr Ser Ala Leu Leu Asp Ala Cys G: 65 70 75	
TAT TGG GGA CCC CTG AGC GTG CAC GGG GCG CAC GAG CGG CTG CG Tyr Trp Gly Pro Leu Ser Val His Gly Ala His Glu Arg Leu As 85 90	
GAG CCC GTG GGC ACC TTC TTG GTG CGC GAC AGT CGT CAA CGG AGG Glu Pro Val Gly Thr Phe Leu Val Arg Asp Ser Arg Gln Arg Asp 100 105 110	
TTC TTC GCG CTC AGC GTG AAG ATG GCT TCG GGC CCC ACG AGC ATG Phe Phe Ala Leu Ser Val Lys Met Ala Ser Gly Pro Thr Ser II 120 125	TC CGC 544 le Arg
GTG CAC TTC CAG GCC GGC CGC TTC CAC TTG GAC GGC AGC CGC GAC Val His Phe Gln Ala Gly Arg Phe His Leu Asp Gly Ser Arg Gl 130	
TTC GAC TGC CTT TTC GAG CTG CTG GAG CAC TAC GTG GCG GCG CC Phe Asp Cys Leu Phe Glu Leu Leu Glu His Tyr Val Ala Ala Pr 145 150 155	
CGC ATG TTG GGG GCC CCG CTG CGC CAG CGC CGC GTG CGG CCG CGATG Met Leu Gly Ala Pro Leu Arg Gln Arg Arg Val Arg Pro Leu 170	
GAG CTG TGT CGC CAG CGC ATC GTG GCC GCC GTG GGT CGC GAG AND GLU Leu Cys Arg Gln Arg Ile Val Ala Ala Val Gly Arg Glu As 180 185 190	

,

- 110 - /	
GCG CGC ATC CCT CTT AAC CCG GTA CTC CGT GAC TAC CTG AGT TCC TTC Ala Arg Ile Pro Leu Asn Pro Val Leu Arg Asp Tyr Leu Ser Ser Phe 195 200 205	784
CCC TTC CAG ATC TGA CCGGCTG CCGCTGTGCC GCAGCATTAA GTGGGGGCGC Pro Phe Gln Ile 210	836
CTTATTATTT CTTATTATTA ATTATTATTA TTTTTCTGGA ACCACGTGGG AGCCCTCCCC	896
GCCTGGGTCG GAGGGAGTGG TTGTGGAGGG TGAGATGCCT CCCACTTCTG GCTGGAGACC	956
TCATCCCACC TCTCAGGGGT GGGGGTGCTC CCCTCCTGGT GCTCCCTCCG GGTCCCCCCT	1016
GGTTGTAGCA GCTTGTGTCT GGGGCCAGGA CCTGAATTCC ACTCCTACCT CTCCATGTTT	1076
ACATATTCCC AGTATCTTTG CACAAACCAG GGTCCGGGGA GGGTCTCTGG CTTCATTTTT	1136
CTGCTGTGCA GAATATCCTA TTTTATATTT TTACAGCCAG TTTAGGTAAT AAACTTTATT	1196
ATGAAAGTTT TTTTTAAAA GAAAAAAAAA AAAAAAAA	1235

(2) INFORMATION FOR SEQ ID NO: 4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 212/ amino acids
 - (B) TYPE: amin\(b \) acid
 - (D) TOPOLOGY:/linear
- (ii) MOLECULE TYPE:/protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Val Ala Arg Asn Gln Val Ala Ala Asp Asn Ala Ile Ser Pro Ala 1 5 10 15

Ser Pro Ala Ala Pro Val Arg Pro Arg Pro Cys Pro Ala Val Pro Ala 35 40 45

Pro Ala Pro Gly Asp Thr His Phe Arg Thr Phe Arg Ser His Ser Asp 50 55 60

Tyr Arg Arg I/le Thr Arg Thr Ser Ala Leu Leu Asp Ala Cys Gly Phe
65 70 75 80

Tyr Trp Gly Pro Leu Ser Val His Gly Ala His Glu Arg Leu Arg Ala 85 90 95

Glu Pro Val Gly Thr Phe Leu Val Arg Asp Ser Arg Gln Arg Asn Cys Phe Phe Ala Leu Ser Val Lys Met Ala Ser Gly Pto Thr Ser Ile Arg 115 120 125 Val His Phe Gln Ala Gly Arg Phe His Leu Asp Gly Ser Arg Glu Thr Phe Asp Cys Leu Phe Glu Leu Leu Glu His Tyr Val Ala Ala Pro Arg 155 Arg Met Leu Gly Ala Pro Leu Arg Gln Afg Arg Val Arg Pro Leu Gln 175 Glu Leu Cys Arg Gln Arg Ile Val Ala Ala Val Gly Arg Glu Asn Leu Ala Arg Ile Pro Leu Asn Pro Val Leu Arg Asp Tyr Leu Ser Ser Phe 200 205 Pro Phe Gln Ile 210 (2) INFORMATION FOR SEQ ID NO:5: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 112/1 base pairs (B) TYPE: nucleic acid (C) STRANDEDNÉSS: single (D) TOPOLOGY ; linear (ii) MOLECULE TYPE: DNA (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCAT/ION: 223..819 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5: GCGATCTGTG GGTGA&AGTG TCTGCGAGAG ACTTTGCCAC ACCATTCTGC CGGAATTTGG 60 AGAAAAAGAA CCAG∕CCGCTT CCAGTCCCCT CCCCCTCCGC CACCATTTCG GACACCCTGC 120 ACACTCTCGT TTTGGGGGTAC CCTGTGACTT CCAGGCAGCA CGCGAGGTCC ACTGGCCCCA 180 GCTCGGGCGA C¢AGCTGTCT GGGACGTGTT GACTCATCTC CC ATG ACC CTG CGG 234 Met Thr Leu Arg 1

			GAG Glu														2	282
X	GGG Gly	ACC Thr	GCG Ala	GGG Gly	TTG Leu 25	CCG Pro	GAG Glu	GAA Glu	CAG Gln	TCC Ser 30	coc Pro	GAG Glu	GCG Ala	GCG Ala	CGT Arg 35	CTG Leu	3	330
			GCC Ala														3	378
			GTT Val 55														4	126
			TTG Leu														4	174
			AAG Lys														5	522
			AAA Lys				,										5	570
			TTT Phe														6	518
			GAT Asp 135														6	666
			TAC Tyr								Ser						7	714
			TGT Cys														7	762
			TTA Leu														8	310
	CAG Gln		TAAG	TATT	TC T	CTCI	CTTT	T TC	GTTI	TTTT	TT#	LAAA	AAA	AAAA	ACAC	CAT	8	866
	GCCI	CATA	ATA G	ACTA	TCTC	CC GA	ATGC	CAGCI	' ATC	TGA	AGA	GAAC	CCAC	SAG G	CCCI	CCTCT	9	26

												- /						
	GGA'	raac'	TGC	GCAG	AATT	CT C	TCTT	AAGG.	A CA	GTTG	GGCT	CAG	TCTA	ACT	TAAA	GGTGTG	9	86
\	AAG	ATGT.	AGC	TAGG	TATT	TT A	AAGT"	rccc	C TT.	AGGT	AGTT	TATA	GCTG.	AAT	GATG	CTTTCT	10	46
X	TTC	CTAT	GGC	TGCT	CAAG	AT C	AAAT(GGCC(C TT	TTAA	ATGA	AAC	AAAA	CAA .	AACA	AAACAA	11	06
	AAA	AAAA	AAA .	AAAA	A												11	21
	(2)	INF	ORMA'	TION	FOR	SEQ	ID I	NO:6	:									
			(i)	(A (B	ENCE) LEI) TYI) TOI	NGTH PE: 8	: 198 amino	am:	ino a id		<u>/</u>							
		(:	ii) 1	MOLE	CULE	TYPI	E: pi	rote:	in									
		(:	xi) :	SEQU	ENCE	DESC	CRIP	TION	: SE	Z ID	NO:	5:				•		
	Met 1	Thr	Leu	Arg	Cys 5	Leu	Glu	Pro	Ser	Gly 10	Asn	Gly	Ala	Asp	Arg 15	Thr		
	Arg	Ser	Gln	Trp 20	Gly	Thr	Ala	Gly	Leu 25	Pro	Glu	Glu	Gln	Ser 30	Pro	Glu		
	Ala	Ala	Arg 35	Leu	Ala	Lys	Ala	Levi 40	Arg	Glu	Leu	Ser	Gln 45	Thr	Gly	Trp		
	Tyr	Trp 50	Gly	Ser	Met	Thr	Val 55	Asn	Glu	Ala	Lys	Glu 60	Lys	Leu	Lys	Glu		
	Ala 65	Pro	Glu	Gly	Thr	Phe 70	Leu	Ile	Arg	Asp	Ser 75	Ser	His	Ser	Asp	Tyr 80		
	Leu	Leu	Thr	Ile	Ser 85	Val	Lys	Thr	Ser	Ala 90	Gly	Pro	Thr	Asn	Leu 95	Arg		
	Ile	Glu	Tyr	Gln 100	Asp	Gly	Lys	Phe	Arg 105	Leu	Asp	Ser	Ile	11e 110	Cys	Val		
	Lys	Ser	Lys 115	Leu	Lys	Glp	Phe	Asp 120	Ser	Val	Val	His	Leu 125	Ile	Asp	Tyr		
	Tyr	Val 130	Gln	Met	Cys	Lys	Asp 135	Lys	Arg	Thr	Gly	Pro 140	Glu	Ala	Pro	Arg		
	Asn 145	Gly	Thr	Val	His	Leu 150	Tyr	Leu	Thr	Lys	Pro 155	Leu	Tyr	Thr	Ser	Ala 160		
	Pro	Thr	Leu	Gln	His 165	Phe	Cys	Arg	Leu	Ala 170	Ile	Asn	Lys	Cys	Thr 175	Gly		

- 114 -Thr Ile Trp Gly Leu Pro Leu Pro Thr Arg Leu Lys Asp Tyr Leu Glu 180 185 190 Glu Tyr Lys Phe Gln Val 195 (2) INFORMATION FOR SEQ ID NO:7: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2187 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 18..695 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7: CGCTGGCTCC GTGCGCC ATG GTC ACC/CAC AGC AAG TTT CCC GCC GCC GGG 50 Met Val Thr/ His Ser Lys Phe Pro Ala Ala Gly 1 ATG AGC CGC CCC CTG GAC ACC AGC CTG CGC CTC AAG ACC TTC AGC TCC 98 Met Ser Arg Pro Leu Asp Thr/Ser Leu Arg Leu Lys Thr Phe Ser Ser 15 AAA AGC GAG TAC CAG CTG GTG GTG AAC GCC GTG CGC AAG CTG CAG GAG 146 Lys Ser Glu Tyr Gln Leu Val Val Asn Ala Val Arg Lys Leu Gln Glu 30 35 AGC GGA TTC TAC TGG AGC/GCC GTG ACC GGC GGC GAG GCG AAC CTG CTG 194 Ser Gly Phe Tyr Trp Ser Ala Val Thr Gly Glu Ala Asn Leu Leu 50 CTC AGC GCC GAG CCC GCG GGC ACC TTT CTT ATC CGC GAC AGC TCG GAC 242 Leu Ser Ala Glu Pro Ala Gly Thr Phe Leu Ile Arg Asp Ser Ser Asp 60 65 CAG CGC CAC TTC TTC ACG TTG AGC GTC AAG ACC CAG TCG GGG ACC AAG 290 Gln Arg His Phe Phe Thr Leu Ser Val Lys Thr Gln Ser Gly Thr Lys AAC CTA CGC ATC ¢AG TGT GAG GGG GGC AGC TTT TCG CTG CAG AGT GAC 338

Asn Leu Arg Ile Gln Cys Glu Gly Gly Ser Phe Ser Leu Gln Ser Asp

95

								-	115	-						
CCC Pro	CGA Arg	AGC Ser 110	Thr	CAG Gln	CCA Pro	GTT Val	CCC Pro 115	CGC Arg	TTC Phe	GAC Asp	TGT Cys	GTA Val 120	CTC Leu	AAG Lys	CTG Leu	386
Val	CAC His 125	CAC His	TAC Tyr	ATG Met	CCG Pro	CCT Pro 130	CCA Pro	GGG Gly	ACC Thr	ccc Pro	TCC Ser 135	TTT Phe	TCT Ser	TTG Leu	CCA Pro	434
			CCC Pro													482
CTC Leu	CCC Pro	GGG Gly	AGT Ser	ACC Thr 160	CCC Pro	AAG Lys	AGA Arg	GCT Ala	TAC Tyr 165	TAC Tyr	ATC Ile	TAT Tyr	TCT Ser	GGG Gly 170	GGC Gly	530
GAG Glu																578
ACC Thr																626
TAT Tyr																674
CAG Gln 220						TAAC	GAGC	CAA A	AAGGC	TCAC	GA GO	GGGC	CCTC	3		722
GGTC	GGTC	GG 1	rcgcc	TCTC	CC TO	CGAG	GCAC	ATC	GCAC	CAAG	CACA	AAAA	ATC C	CAGCC	CCAAC	782
GGTC	GGTA	GC I	CCCA	GTGA	re do	AGGG	GCAG	TTA	GGCI	TCT	TCCI	CAGO	SCC C	CTCCA	CTCCC	842
GCAG.	AGTA	GA C	CTGC	CAGO	BA/CC	TGG	ATTC	GTC	TGAC	GGG	AGGG	GGAG	CT C	CCAC	CTGCT	902
TTCC	cccc	TC C	CCCA	GCTC	co Ac	CTTC	TTTC	AAG	TGG <i>P</i>	AGCC	AGCC	GGCC	TG G	CCTC	GTGGG	962
ACAA'	TACC	TT T	GACA	AGCG	G AC	TCTC	CCCT	CCC	CTTC	CTC	CACA	CCCC	CT C	TGCT	TCCCA	1022
AGGG.	AGGT	'GG G	GACA	CCTC	CC AA	GTGI	TGAA	CTI	AGA	CTG	CAAG	GGGZ	AT C	TTCA	AACTT	1082
TCCC	GCTG	GA A	ACTTO	TTT	GC GC	TTTC	TTTA	GG1	TTGA	TCA	AGAG	CAGG	CA C	CTGG	GGGAA	1142
GGAT	GGAA	GA G	BAAAA	GGGI	G TO	TGAA	GGGI	rrr :	TATO	CTG	GCCA	AAGA	L AA	AACC	ACTCC	1202
CACT	GCCC	AA C	CTAG	GTGA	AG GA	GTGC	TGGC	TCC	TGGC	TCT	GGGG	AGAC	TG C	CAAC	GGGTG	1262
ACCT	GAAG	AG A	GCT	TACI	G GI	GCCA	GGCT	CCI	CTCC	ATG	GGGC	AGCT	r aar	GAAA	CCTCG	1322

BI

1 -				/		
CAGATCCCTT	GCACCCCAGA	ACCCTCCCCG	TTGTGAAGAG	GCAGTAGCAT	TTAGAAGGGA	1382
GACAGATGAG	GCTGGTGAGC	TGGCCGCCTT	TTCCAACACC	GAAGGGAGGC	AGATCAACAG	1442
ATGAGCCATC	TTGGAGCCCA	GGTTTCCCCT	GGAGCAGATG	GAGGGTTCTG	CTTTGTCTCT	1502
CCTATGTGGG	GCTAGGAGAC	TCGCCTTAAA	TGCCCTCTGT	CCCAGGGATG	GGGATTGGCA	1562
CACAAGGAGC	CAAACACAGC	CAATAGGCAG	AGAGTTGAGG	GATTCACCCA	GGTGGCTACA	1622
GGCCAGGGGA	AGTGGCTGCA	GGGGAGAGAC	CCAGTCACTC	CAGGAGACTC	CTGAGTTAAC	1682
ACTGGGAAGA	CATTGGCCAG	TCCTAGTCAT	CTCTCGGTCA	GTAGGTCCGA	GAGCTTCCAG	1742
GCCCTGCACA	GCCCTCCTTT	CTCACCTGGG	GGGAGGCAGG	AGGTGATGGA	GAAGCCTTCC	1802
CATGCCGCTC	ACAGGGGCCT	CACGGGAATG	PAGCAGCCAT	GCAATTACCT	GGAACTGGTC	1862
CTGTGTTGGG	GAGAAACAAG	TTTTCTGAAG	TCAGGTATGG	GGCTGGGTGG	GGCAGCTGTG	1922
TGTTGGGGTG	GCTTTTTTCT	CTCTGTTTTG	AATAATGTTT	ACAATTTGCC	TCAATCACTT	1982
ттатааааат	CCACCTCCAG	CCCGCCCGTC	TCCCCACTCA	GGCCTTCGAG	GCTGTCTGAA	2042
GATGCTTGAA	AAACTCAACC	AAATCCCAGT	TCAACTCAGA	CTTTGCACAT	ATATTTATAT	2102
TTATACTCAG	AAAAGAAACA	TTTCAGTAAT	ТТАТААТААА	AGAGCACTAT	TTTTTAATGA	2162
ААААААААА	ааааааааа	AAAAA				2187
		,				

(2) INFORMATION FOR SEQ 1/D NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 225 amino acids
 - (B) TYPE: /amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Met Val Thr His Ser Lys Phe Pro Ala Ala Gly Met Ser Arg Pro Leu
1 10 15

Asp Thr Ser Leu Arg Leu Lys Thr Phe Ser Ser Lys Ser Glu Tyr Gln 25 30

Leu Val Val Asn/Ala Val Arg Lys Leu Gln Glu Ser Gly Phe Tyr Trp
35 40 45

Ser Ala Val Thr Gly Gly Glu Ala Asn Leu Leu Ser Ala Glu Pro

- 117 -Ala Gly Thr Phe Leu Ile Arg Asp Ser Ser Asp Gln Arg His Phe Phe Thr Leu Ser Val Lys Thr Gln Ser Gly Thr Lys Aşn Leu Arg Ile Gln Cys Glu Gly Gly Ser Phe Ser Leu Gln Ser Asp/Pro Arg Ser Thr Gln Pro Val Pro Arg Phe Asp Cys Val Leu Lys Leu Val His His Tyr Met Pro Pro Pro Gly Thr Pro Ser Phe Ser Ley Pro Pro Thr Glu Pro Ser Ser Glu Val Pro Glu Gln Pro Pro Ala Éln Ala Leu Pro Gly Ser Thr 150 Pro Lys Arg Ala Tyr Tyr Ile Tyr Ser Gly Gly Glu Lys Ile Pro Leu Val Leu Ser Arg Pro Leu Ser Ser Asn Val Ala Thr Leu Gln His Leu 185 Cys Arg Lys Thr Val Asn Gly Hi/s Leu Asp Ser Tyr Glu Lys Val Thr Gln Leu Pro Gly Pro Ile Arg/Glu Phe Leu Asp Gln Tyr Asp Ala Pro 215 Leu 225 (2) INFORMATION FOR SEQ/ID NO:9: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1094 base pairs (B) TYPE! nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear

(ii) MOLECULE/TYPE: DNA

(xi) SEQUENCÉ DESCRIPTION: SEQ ID NO:9:

CTCCGGCTGG CCCCTTCTGT AGGATGGTAG CACACAACCA GGTGGCAGCC GACAATGCAG

TCTCCACAGC AGCAGAGCCC CGACGGCGGC CAGAACCTTC CTCCTCTCC TCCTCCTCGC

120

CCGCGGCCCC CGCGGGCCCG CGGCCGTGCC CCGCGGTCCC GGCCCCGGCC CCCGGCGACA

180

				,		
CGCACTTCCG	CACATTCCGT	TCGCACGCCG	ATTACCGGCG	CATCACGCGC	GCCAGCGCGC	240
TCCTGGACGC	CTGCGGATTC	TACTGGGGGC	CCCTGAGCGT	GCACGGGGCG	CACGAGCGGC	300
TGCGCGCCGA	GCCCGTGGGC	ACCTTCCTGG	TGCGCGACAG	CCGCCAGCGG	AACTGCTTTT	360
TCGCCCTTAG	CGTGAAGATG	GCCTCGGGAC	CCACGAGCAA	CCGCGTGCAC	TTTCAGGCCG	420
GCCGCTTTCA	CCTGGATGGC	AGCCGCGAGA	GCTTCGACTG	CCTCTTCGAG	CTGCTGGAGC	480
ACTACGTGGC	GGCGCCGCGC	CGCATGCTGG	GGGCCCCGCT	GCGCCAGCGC	CGCGTGCGGC	540
CGCTGCAGGA	GCTGTGCCGC	CAGCGCATCG	TGGCCACCGT	GGGCCGCGAG	AACCTGGCTC	600
GCATCCCCCT	CAACCCCGTC	CTCCGCGACT	ACCTGAGCTC	CTTCCCCTTC	CAGATTTGAC	660
CGGCAGCGCC	CGCCGTGCAC	GCAGCATTAA	CTGGGATGCC	GTGTTATTTT	GTTATTACTT	720
GCCTGGAACC	ATGTGGGTAC	CCTCCCGGC	CTGGGTTGGA	GGGAGCGGAT	GGGTGTAGGG	780
GCGAGGCGCC	TCCCGCCCTC	GGCTGGAGAC	GAGGCCGCAG	ACCCCTTCTC	ACCTCTTGAG	840
GGGGTCCTCC	CCCTCCTGGT	GCTCCCTCTG	GGTCCCCCTG	GTTGTTGTAG	CAGCTTAACT	900
GTATCTGGAG	CCAGGACCTG	AACTCGCACC	TCCTACCTCT	TCATGTTTAC	ATATACCCAG	960
TATCTTTGCA	CAAACCAGGG	GTTGGGGGAG	GGTCTCTGGC	TTTATTTTTC	TGCTGTGCAG	1020
AATCCTATTT	TATATTTTTT	AAAGTÇAGTT	TAGGTAATAA	ACTTTATTAT	GAAAGTTTTT	1080
TTTTTTAAAA	AAAA	/				1094

(2) INFORMATION FOR SEQ I⊅ NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 21/1 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY/: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Met Val Ala His Asn Gln Val Ala Ala Asp Asn Ala Val Ser Thr Ala 10 15

Ala Glu Pro Arg Arg Pro Glu Pro Ser Ser Ser Ser Ser Ser Ser

Pro Ala Ala/Pro Ala Arg Pro Arg Pro Cys Pro Ala Val Pro Ala Pro 40 45

- 118 -

MX	4							- :	119 -	-						
U BY	Ala	Pro 50	Gly	Asp	Thr	His	Phe 55	Arg	Thr	Phe	Arg/	Ser 60	His	Ala	Asp	Tyr
V	Arg 65	Arg	Ile	Thr	Arg	Ala 70	Ser	Ala	Leu	Leu	Asp /75	Ala	Cys	Gly	Phe	Tyr 80
	Trp	Gly	Pro	Leu	Ser 85	Val	His	Gly	Ala	His 90	Glu	Arg	Leu	Arg	Ala 95	Glu
	Pro	Val	Gly	Thr 100	Phe	Leu	Val	Arg	Asp 105/	Ser	Arg	Gln	Arg	Asn 110	Cys	Phe
	Phe	Ala	Leu 115	Ser	Val	Lys	Met	Ala 120	Ser	Gly	Pro	Thr	Ser 125	Ile	Arg	Val
	His	Phe 130	Gln	Ala	Gly	Arg	Phe 135	His	Leu	Asp	Gly	Ser 140	Arg	Glu	Ser	Phe
	Asp 145	Cys	Leu	Phe	Glu	Leu 150	Leu	Glu	His	Tyr	Val 155	Ala	Ala	Pro	Arg	Arg 160
	Met	Leu	Gly	Ala	Pro 165	Leu	Arg	Gln	Arg	Arg 170	Val	Arg	Pro	Leu	Gln 175	Glu
	Leu	Cys	Arg	Gln 180	Arg	Ile	Val	Ala	Thr 185	Val	Gly	Arg	Glu	Asn 190	Leu	Ala
	Arg	Ile	Pro 195	Leu	Asn	Pro	Val	Leu 200	Arg	Asp	Tyr	Leu	Ser 205	Ser	Phe	Pro
	Phe	Gln	Ile													

(2) INFORMATION FOR SEQ /ID NO:11:

210

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 2807 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

60	CGCGTGGCAG	GCTTCAGAGT	TGGCCTCAGA	CAGGAGGCCT	GCGGGGAGAC	GGAAACCGAG
120	CTGCACGCGA	CTCAGGGAAG	CGTCACTTAG	GGGCAGTGTG	AACCTGTAGA	CAAACAGAGA
180	GGCTTTCAGG	CCTACTCCTG	CAGCTAGGCA	TAAACATCGT	CCTTCATTCA	AACTCACCCG
240	GAATCCCTCG	ርጥር አርርርርርጥ	ጥልልልልጥልርርጥ	እ <i>ር</i> እርጥርጥርርጥ	TCACCAAACC	አሮአ አ አሮሞርአ አ

CCAAGGTGTG	TACGGGGCAT	GGGAGCCCTT	GTGCAGAGAT	GCTTCCAGGA	GCCTTGAGGG	300
GCTCTGTAAG	ACAGAGGCTA	GGAAGACAAA	GTTGGGGGCT	ACAGCTTCTT	GTCCTGCCCG	360
GGGCCTCAGT	TTCTTCGGTT	GCCCACGTAG	GAGTGCAGAG	ACTCCAGCCC	CTGGGGACCC	420
AACCCAACCC	CGCCCAGTTT	CCGAGGAACT	CGTCCGGGAG	ceeeececc	CCTCCCGCAC	480
CGCCTTAGGC	TTCCTTTGAA	GCCTCTGCGG	TCAGGCCACO	GCTTCCTGGG	AAGCCCAAGC	540
CAAGGCCAGG	CCGAGTGGCC	AACGGGAGGG	GCCGCGCGC	GATTCTGGAG	GAGGGCGGCG	600
GCCCCACAGG	TCTCCAGGGC	TGGCTAGCCG	GGCTCCTAGA	GCGGAGACTG	CCAAGGCCTT	660
CGGGTCCTGG	GCAGGAAGGA	TCCTGGCAGG	GAGGACTTGC	TTGGGGGGTG	GGGGGGAAAG	720
GCTCCAGGCG	CGGTGGAGCT	CTGACCAGGA	GAATGCACAC	ACTCGGAGGG	GAGGAGGCGT	780
GTCAGCCCCA	AGCTAGCATC	CCACCCGGGG	AGCAGCGATG	TGGGGCGAAG	GTAGCCAGAG	840
CAAAAGAGCA	GGCACCAGGT	GACACGAAAC	AGAAGATTCC	GGGTAGAGCC	AGAACCCCAG	900
AAGTCCCATT	CAGGGAAGGT	GCGAGGCGAG	AACGAGTTAG	GTGGACCCTC	TCCAGGGGCA	960
GCCAAAGAAA	TCTAAAGAGA	ACCCGAAGGA	CTTGCCGGAA	AGAGAAACCG	AAAGCGGCGG	1020
TGGGCGGGAT	CGGTGGGCGG	GGCCTCCCTG	GTTTAAGAGC	TTGATGCAGG	GGCGGGCAGC	1080
AGCAGAGAGA	ACTGCGGCCG	TGGCAGCGGC	ACGGCTCCCG	GCCCCGGAGC	ATGCGCGACA	1140
GCAGCCCCGG	AACCCCCAGC	ceceeeecc	CGCGTCCCGC	CGCCAGGTGA	GCCGAGGCAG	1200
CTGCGAAGGA	GCAGGCGGGA	GGGGATGGGA	GGAAGGGGAG	CAGAGCCTGG	CAGGACTATC	1260
CTCGCAGACT	GCATGGCGGG	GTCGTGGATG	CTATGCCTCT	GGCGCCCGCC	CCACCGGCTG	1320
GCCCAGGCGG	CCCCTCGCGC	ececeece	CCGTCAGCCC	CTCCTCTCCG	GCCCTGAGCC	1380
CGGATCGTCC	GCCCGGGTTC	PAGTTCCCGG	CGTGGCCAGT	AGGCGGCAAC	CGCGAGGCGG	1440
CAAGCCACCC	AGCGGGGACG	GCCTGGAGTC	GGGCCCCTCT	CCACGCCCCC	TTCTCCACGC	1500
GCGCGGGGAG	GCAGGGCTC	ACCGCCAGTC	TGGAAGGGTT	CCACATACAG	GAACGGCCTA	1560
CTTCGCAGAT	GAGCCCACCG	AGGCTCAGGC	TCCGGGCGGA	TTCTGCGTGT	CACCCTCGCT	1620
CCTTGGGGTC	CGCTGGCCGG	CCTGTGCCAC	CCGGACGCCC	GGTTCACTGC	CTCTGTCTCC	1680
CCCATCAGCG	CAGCCCGGA	CGCTATGGCC	CACCCTCCA	GCTGGCCCCT	CGAGTAGGAT	1740
GGTAGCACGT	AACCAGGTGG	AAGCCGACAA	TGCGATCTCC	CCGGCATCAG	AGCCCCGACG	1800

GCGGCCAGAG CCATCCTCGT CCTCGTCTTC GTCCTCG	GCCG GCGCCCCGG CGCGTCCCCG	1860
GCCCTGCCCG GTGGTCCCGG CCCCGGCTCC GGGCGAC	CACT CACTTCCGCA CCTTCCGCTC	1920
CCACTCTGAT TACCGGCGCA TCACGCGGAC CAGCGCT	TCTC TGGACGCCT GCGGCTTCTA	1980
CTGGGGACCC CTGAGCGTGC ATGGGGCGCA CGAACGG	GCTG CGTTCCGAAC CCGTGGGCAC	2040
CTTCTTGGTG CGCGACAGTC GCCAGCGGAA CTGCTTC	CTTC GCGCTCAGCG TGAAGATGGC	2100
TTCGGGCCCC ACGAGCATTC GTGTGCACTT CCAGGCC	CGGC CGCTTCCACC TGGACGGCAA	2160
CCGCGAGACC TTCGACTGCC TCTTCGAGCT GCTGGAG	GCAC TACGTGGCGG CGCCGCCCG	2220
CATGTTGGGG GCCCCACTGC GCCAGCGCCG CGTGCGG	GCCG CTGCAGGAGC TGTGTCGCCA	2280
GCGCATCGTG GCCGCCGTGG GTCGCGAGAA CCTGGCA	ACGC ATCCCTCTTA ACCCGGTACT	2340
CCGTGACTAC CTGAGTTCCT TCCCCTTCCA GATCTGA	ACCG GCTGCCGCCG TGCCCGCAGA	2400
ATTAAGTGGG AGCGCCTTAT TATTTCTTAT TATTAAT	TAT TATTATTTTT CTGGAACCAC	2460
GTGGGAGCCC TCCCCGCCTA GGTCGGAGGG AGTGGGT	TGTG GAGGGTGAGA TCCCTCCCAC	2520
TTCTGGCTGG AGACCTTATC CCGCCTCTGG GGGGGCC	CTCC CCTCCTGGTG CTCCCTCCCG	2580
GTCCCCTGG TTGTAGCAGC TTGTGTCTGG GGCCAGG	GACC TGAACTCCAC GCCTACCTCT	2640
CCATGTTTAC ATGTTCCCAG TATCTTTGCA CAAACCA	AGGG GTGGGGGAGG GTCTCTGGCT	2700
TCATTTTCT GCTGTGCAGA ATATTCTATT TTATATT	TTTT ACATCCAGTT TAGATAATAA	2760
ACTITATIAT GAAAGTITTT TITTITTAAAG AAACAAA	AGAT TTCTAGA	2807

(2) INFORMATION FOR SEQ 1/D NO:12:

- (i) SEQUENCE CHARAOTERISTICS:
 - (A) LENGTH: 2/12 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

Met Val Ala Arg Asn Gln Val Glu Ala Asp Asn Ala Ile Ser Pro Ala 1 5 10 15

Ser Pro Ala Ala Pro Ala Arg Pro Arg Pro Cys Pro Val Val Pro Ala 35 40 45

Pro Ala Pro Gly Asp Thr His Phe Arg Thr Phe Arg Ser His Ser Asp 50 55 60

Tyr Arg Arg Ile Thr Arg Thr Ser Ala Leu Leu Asp Ala Cys Gly Phe 65 70 75 80

Tyr Trp Gly Pro Leu Ser Val His Gly Ala His Glu Arg Leu Arg Ser 85 90 95

Glu Pro Val Gly Thr Phe Leu Val Arg Asp Ser Arg Gln Arg Asn Cys
100 105 110

Phe Phe Ala Leu Ser Val Lys Met Ala Ser Gly Pro Thr Ser Ile Arg 115 120 125

Val His Phe Gln Ala Gly Arg Phe His Leu Asp Gly Asn Arg Glu Thr
130 135/ 140

Phe Asp Cys Leu Phe Glu Leu Glu His Tyr Val Ala Ala Pro Arg 145 150 155 160

Arg Met Leu Gly Ala Pro Leu Arg Gln Arg Arg Val Arg Pro Leu Gln
165 170 175

Glu Leu Cys Arg Gln Arg Ile Val Ala Ala Val Gly Arg Glu Asn Leu 180 / 185 190

Ala Arg Ile Pro Leu Asn Pro Val Leu Arg Asp Tyr Leu Ser Ser Phe 195 200 205

Pro Phe Gln Ile 210

(2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHÁRACTERISTICS:
 - (A) LENGTH: 1611 base pairs
 - (B) TYPE:/nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE/TYPE: DNA
- (ix) FEATURE
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 263..1529
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

CGAATTCCGG GCGGCTGTG TGAGTCTGTG AGTGGAAGGC GCGCCGGCTC TTTTGTCTGA	60												
GTGTGACCCG GTGGCTTTGT TCCAGGCATT CCGGTGATTT CCTCCGGGCA GTCCGCAGAA	120												
GCCGCAGCGG CCGCCCGCGC TCTCTCTGCA GTCTCCACAC CCGGGAGAGC CTGAGCCCGC	180												
GTCACGCCCC TCAGCCCCCG CTGAGTCCCT TCTCTGTTGT CGCGTCCGAA TCGAGTTCCC													
GGAATCAGAC GGTGCCCCAT AG ATG GCC AGC TATT CCC CCG AGG GTT AAC GAG Met Ala Ser Phe Pro Pro Arg Val Asn Glu 1 5 10													
AAA GAG ATC GTG AGA TCA CGT ACT ATA GGG GAA CTC TTG GCT CCA GCA Lys Glu Ile Val Arg Ser Arg Thr Ile Gly Glu Leu Leu Ala Pro Ala 15 20 25	340												
GCT CCT TTT GAC AAG AAA TGT GGT/GGT GAG AAC TGG ACG GTT GCT TTT Ala Pro Phe Asp Lys Lys Cys Gly Glu Asn Trp Thr Val Ala Phe 30 35 40	388												
GCT CCT GAT GGT TCC TAC TTT GCG TGG TCA CAA GGA TAT CGC ATA GTG Ala Pro Asp Gly Ser Tyr Phe Ala Trp Ser Gln Gly Tyr Arg Ile Val 45 50 55	436												
AAG CTT GTC CCG TGG TCC CAG TGC CGT AAG AAC TTT CTT TTG CAT GGT Lys Leu Val Pro Trp Ser Gin Cys Arg Lys Asn Phe Leu Leu His Gly 60 70	484												
TCC AAA AAT GTT ACC AAT TCA AGC TGT CTA AAA TTG GCA AGA CAA AAC Ser Lys Asn Val Thr Asn Ser Ser Cys Leu Lys Leu Ala Arg Gln Asn 75 80 85 90	532												
AGT AAT GGT GGT CAG AAA AAC AAG CCT CCT GAG CAC GTT ATA GAC TGT Ser Asn Gly Gly Gln Lys Asn Lys Pro Pro Glu His Val Ile Asp Cys 95 100 105	580												
GGA GAC ATA GTC TGC AGT CTT GCT TTT GGG TCT TCA GTT CCA GAA AAA Gly Asp Ile Val Tro Ser Leu Ala Phe Gly Ser Ser Val Pro Glu Lys 110 120	628												
CAG AGT CGT TGC GTT AAT ATA GAA TGG CAT CGG TTC CGA TTT GGA CAG Gln Ser Arg Cys Val Asn Ile Glu Trp His Arg Phe Arg Phe Gly Gln 125 130 135	676												
GAT CAG CTA CTC CTT GCC ACA GGA TTA AAC AAT GGT CGC ATC AAA ATC Asp Gln Leu Leu Ala Thr Gly Leu Asn Asn Gly Arg Ile Lys Ile 140 145 150	724												

							-	124	-				
										TTG Leu			772
										GGG Gly			820
										TGG Trp			868
										CAG Gln			916
							,			TGT Cys 230			964
										TAC Tyr			1012
										TGT Cys			1060
										ACT Thr			1108
										TTT Phe			1156
	Pro	Thr	Pro	ΙÆ	Phe	Ala	Gly	Gly	Ala	AAT Asn 310	Asp		1204
										GTT Val			1252
										GAG Glu			1300
										GCC Ala			1348

		•							125	~		/				
											/	,				
																1396
Gly	Ser		Leu	Ala	Ala	GТУ		His	Asp	Gly	Sér		Tyr	Phe	Trp	
		303					3,0					515				
																1444
Ala		Pro	Arg	Gln	Val		Ser	Leu	Gln	Hi/s		Cys	Arg	Met	Ser	
	360					202					390					
																1492
	Arg	Arg	Val	Met		Thr	Gln	Glu	Val		Lys	Leu	Pro	Val		
393					400					405					410	
											TAG	A CT	rgaa(SACTO	3	1539
Ser	Lys	Ile	Leu		Phe	Leu	Ser	Tyr	, -	Gly						
				410				/	420							
CCTI	TCCI	GG 1	PAGGO	CTGC	CC AC	BACAC	BAGCO	; òcc	TTTY	ACAA	GAC	CAC	CTC A	AAGCI	TTACC	1599
ጥርርጣ	יכררם	ר ממי	ייאַר													1611
1001	GCCC	m i	- 4					/								1011
(2)	INFO	RMAT	NOI	FOR	SEQ	ID N	10:1/	i :								
	,	'i) c	מנוסים:	יאורי בי	CUNE	አ ሶጥፔ	יים דלכיו	ידרפ.								
	'	, I / L								5						
			(B)	TYE	E: ē	mino	/aci	.đ								
	Gly GCC Ala ATC Ile 395 TCC Ser CCTT	Gly Ser GCC ACT Ala Thr 380 ATC CGA Ile Arg 395 TCC AAA Ser Lys CCTTTCCT TCGTGCCG (2) INFO	Gly Ser Val 365 GCC ACT CCA Ala Thr Pro 380 ATC CGA AGA Ile Arg Arg 395 TCC AAA ATA Ser Lys Ile CCTTTCCTGG T TCGTGCCGAA T (2) INFORMAT	Gly Ser Val Leu 365 GCC ACT CCA AGG Ala Thr Pro Arg 380 ATC CGA AGA GTG Ile Arg Arg Val 395 TCC AAA ATA TTG Ser Lys Ile Leu CCTTTCCTGG TAGGO TCGTGCCGAA TT (2) INFORMATION (i) SEQUE (A)	Gly Ser Val Leu Ala 365 GCC ACT CCA AGG CAA Ala Thr Pro Arg Gln 380 ATC CGA AGA GTG ATG Ile Arg Arg Val Met 395 TCC AAA ATA TTG GCG Ser Lys Ile Leu Ala 415 CCTTTCCTGG TAGGCCTGC TCGTGCCGAA TT (2) INFORMATION FOR (i) SEQUENCE (A) LEN	Gly Ser Val Leu Ala Ala 365 GCC ACT CCA AGG CAA GTC Ala Thr Pro Arg Gln Val 380 ATC CGA AGA GTG ATG TCC Ile Arg Arg Val Met Ser 395 TCC AAA ATA TTG GCG TTT Ser Lys Ile Leu Ala Phe 415 CCTTTCCTGG TAGGCCTGCC AC TCGTGCCGAA TT (2) INFORMATION FOR SEQ (i) SEQUENCE CHAP (A) LENGTH:	Gly Ser Val Leu Ala Ala Gly 365 GCC ACT CCA AGG CAA GTC CCT Ala Thr Pro Arg Gln Val Pro 380 ATC CGA AGA GTG ATG TCC ACC Ile Arg Arg Val Met Ser Thr 395 TCC AAA ATA TTG GCG TTT CTC Ser Lys Ile Leu Ala Phe Leu 415 CCTTTCCTGG TAGGCCTGCC AGACAC TCGTGCCGAA TT (2) INFORMATION FOR SEQ ID N (i) SEQUENCE CHARACTE (A) LENGTH: 421	Gly Ser Val Leu Ala Ala Gly Thr 365 370 GCC ACT CCA AGG CAA GTC CCT AGC Ala Thr Pro Arg Gln Val Pro Ser 380 385 ATC CGA AGA GTG ATG TCC ACC CAA Ile Arg Arg Val Met Ser Thr Gln 395 400 TCC AAA ATA TTG GCG TTT CTC TCC Ser Lys Ile Leu Ala Phe Leu Ser 415 CCTTTCCTGG TAGGCCTGCC AGACAGAGCC TCGTGCCGAA TT (2) INFORMATION FOR SEQ ID NO:14 (i) SEQUENCE CHARACTERIST (A) LENGTH: 421 ami	GGC AGT GTT TTA GCT GCT GGG ACA CAT Gly Ser Val Leu Ala Ala Gly Thr His 365 370 GCC ACT CCA AGG CAA GTC CCT AGC CTT Ala Thr Pro Arg Gln Val Pro Ser Leu 380 385 ATC CGA AGA GTG ATG TCC ACC CAA GAA Ile Arg Arg Val Met Ser Thr Gln Glu 395 400 TCC AAA ATA TTG GCG TTT CTC TCC TAC Ser Lys Ile Leu Ala Phe Leu Ser Tyr 415 CCTTTCCTGG TAGGCCTGCC AGACAGAGCG OCC TCGTGCCGAA TT (2) INFORMATION FOR SEQ ID NO:14: (i) SEQUENCE CHARACTERISTICS:	GGC AGT GTT TTA GCT GCT GGG ACA CAT GAT Gly Ser Val Leu Ala Ala Gly Thr His Asp 365 GCC ACT CCA AGG CAA GTC CCT AGC CTT CAA Ala Thr Pro Arg Gln Val Pro Ser Leu Gln 380 ATC CGA AGA GTG ATG TCC ACC CAA GAA GTC Ile Arg Arg Val Met Ser Thr Gln Glu Val 395 TCC AAA ATA TTG GCG TTT CTC TCC TAC GGC Ser Lys Ile Leu Ala Phe Leu Ser Tyr Arg 415 CCTTTCCTGG TAGGCCTGCC AGACAGAGCG CCCTTTA TCGTGCCGAA TT (2) INFORMATION FOR SEQ ID NO:14: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 421 amino acids	Gly Ser Val Leu Ala Ala Gly Thr His Asp Gly 365 GCC ACT CCA AGG CAA GTC CCT AGC CTT CAA CAT Ala Thr Pro Arg Gln Val Pro Ser Leu Gln His 380 ATC CGA AGA GTG ATG TCC ACC CAA GAA GTC CAA Ile Arg Arg Val Met Ser Thr Gln Glu Val Gln 400 TCC AAA ATA TTG GCG TTT CTC TCC TAC GGC GGT Ser Lys Ile Leu Ala Phe Leu Ser Tyr Arg Gly 415 CCTTTCCTGG TAGGCCTGCC AGACAGAGCG CCCTTTACAA TCGTGCCGAA TT (2) INFORMATION FOR SEQ ID NO:14: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 421 amino acids	GGC AGT GTT TTA GCT GCT GGG ACA CAT GAT GGA AGA Gly Ser Val Leu Ala Ala Gly Thr His Asp Gly Ser 365 GCC ACT CCA AGG CAA GTC CCT AGC CTT CAA CAT ATA Ala Thr Pro Arg Gln Val Pro Ser Leu Gln His Ile 380 ATC CGA AGA GTG ATG TCC ACC CAA GAA GTC CAA AAA Ile Arg Arg Val Met Ser Thr Gln Glu Val Gln Lys 400 TCC AAA ATA TTG GCG TTT CTC TCC TAC GGC GGT TAG Ser Lys Ile Leu Ala Phe Leu Ser Tyr Arg Gly 415 CCTTTCCTGG TAGGCCTGCC AGACAGAGCG OCCTTTACAA GACA TCGTGCCGAA TT (2) INFORMATION FOR SEQ ID NO:14: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 421 Amino acids	GGC AGT GTT TTA GCT GCT GGG ACA CAT GAT GGA AGT GTG Gly Ser Val Leu Ala Ala Gly Thr His Asp Gly Ser Val 365 GCC ACT CCA AGG CAA GTC CCT AGC CTT CAA CAT ATA TGT Ala Thr Pro Arg Gln Val Pro Ser Leu Gln His Ile Cys 380 ATC CGA AGA GTG ATG TCC ACC CAA GAA GTC CAA AAA CTG Ile Arg Arg Val Met Ser Thr Gln Glu Val Gln Lys Leu 400 TCC AAA ATA TTG GCG TTT CTC TCC TAC GGC GGT TAG A CT Ser Lys Ile Leu Ala Phe Leu Ser Tyr Arg Gly 415 CCTTTCCTGG TAGGCCTGCC AGACAGAGCG OCCTTTACAA GACACACC TCGTGCCGAA TT (2) INFORMATION FOR SEQ ID NO:14: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 421 amino acids	GGC AGT GTT TTA GCT GCT GGG ACA CAT GAT GGA AGT GTG TAT Gly Ser Val Leu Ala Ala Gly Thr His Asp Gly Ser Val Tyr 365 GCC ACT CCA AGG CAA GTC CCT AGC CTT CAA CAV ATA TGT CGC Ala Thr Pro Arg Gln Val Pro Ser Leu Gln His Ile Cys Arg 380 ATC CGA AGA GTG ATG TCC ACC CAA GAA GTC CAA AAA CTG CCT Ile Arg Arg Val Met Ser Thr Gln Glu Val Gln Lys Leu Pro 400 TCC AAA ATA TTG GCG TTT CTC TCC TAC GGC GGT TAG A CTGAAG Ser Lys Ile Leu Ala Phe Leu Ser Tyr Arg Gly 415 CCTTTCCTGG TAGGCCTGCC AGACAGAGCG CCCTTTACAA GACACCTC ATCGTGCCGAA TT (2) INFORMATION FOR SEQ ID NO:14: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 421 amino acids	GGC AGT GTT TTA GCT GCT GGG ACA CAT GAT GGA AGT GTG TAT TTT Gly Ser Val Leu Ala Ala Gly Thr His Asp Gly Ser Val Tyr Phe 365 GCC ACT CCA AGG CAA GTC CCT AGC CTT CAA CAT ATA TGT CGC ATG Ala Thr Pro Arg Gln Val Pro Ser Leu Gln His Ile Cys Arg Met 380 ATC CGA AGA GTG ATG TCC ACC CAA GAA GTC CAA AAA CTG CCT GTT Ile Arg Arg Val Met Ser Thr Gln Glu Val Gln Lys Leu Pro Val 400 TCC AAA ATA TTG GCG TTT CTC TCC TAC GGC GGT TAG A CTGAAGACTG Ser Lys Ile Leu Ala Phe Leu Ser Tyr Arg Gly 415 CCTTTCCTGG TAGGCCTGCC AGACAGAGCG CCCTTTACAA GACACACCTC AAGCT TCGTGCCGAA TT (2) INFORMATION FOR SEQ ID NO:14: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 421 Amino acids	GGC AGT GTT TTA GCT GCT GGG ACA CAT GAT GGA AGT GTG TAT TTT TGG Gly Ser Val Leu Ala Ala Gly Thr His Asp Gly Ser Val Tyr Phe Trp 365 GCC ACT CCA AGG CAA GTC CCT AGC CTT CAA CAT ATA TGT CGC ATG TCA Ala Thr Pro Arg Gln Val Pro Ser Leu Gln His Ile Cys Arg Met Ser 380 ATC CGA AGA GTG ATG TCC ACC CAA GAA GTC CAA AAA CTG CCT GTT CCT 11e Arg Arg Val Met Ser Thr Gln Glu Val Gln Lys Leu Pro Val Pro 395 TCC AAA ATA TTG GCG TTT CTC TCC TAC GGC GGT TAG A CTGAAGACTG Ser Lys Ile Leu Ala Phe Leu Ser Tyr Arg Gly 415 CCTTTCCTGG TAGGCCTGCC AGACAGAGCG OCCTTTACAA GACACCCTC AAGCTTTACC TCGTGCCGAA TT (2) INFORMATION FOR SEQ ID NO:14: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 421 amino acids

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

Met Ala Ser Phe Pro Pro Arg Val Asn Glu Lys Glu Ile Val Arg Ser

Arg Thr Ile Gly Glu Leu/Leu Ala Pro Ala Ala Pro Phe Asp Lys Lys

Cys Gly Glu Asn Trp Thr Val Ala Phe Ala Pro Asp Gly Ser Tyr

Phe Ala Trp Ser Gln &ly Tyr Arg Ile Val Lys Leu Val Pro Trp Ser

Gln Cys Arg Lys Asn/ Phe Leu Leu His Gly Ser Lys Asn Val Thr Asn 65

Ser Ser Cys Leu Lys Leu Ala Arg Gln Asn Ser Asn Gly Gly Gln Lys

Asn Lys Pro Pro Glu His Val Ile Asp Cys Gly Asp Ile Val Trp Ser 100

Leu Ala Phe Gly Ser Ser Val Pro Glu Lys Gln Sef Arg Cys Val Asn 115 125 Ile Glu Trp His Arg Phe Arg Phe Gly Gln Asp Éln Leu Leu Leu Ala 140 Thr Gly Leu Asn Asn Gly Arg Ile Lys Ile Trp Asp Val Tyr Thr Gly 150 Lys Leu Leu Leu Asn Leu Val Asp His Ile Glu Met Val Arg Asp Leu 170 Thr Phe Ala Pro Asp Gly Ser Leu Leu Leu Leu Ser Ala Ser Arg Asp Lys Thr Leu Arg Val Trp Asp Leu Lys Asp Asp Gly Asn Met Val Lys 200 Val Leu Arg Ala His Gln Asn Trp Val Tyr Ser Cys Ala Phe Ser Pro 215 Asp Cys Ser Met Leu Cys Ser Val Ély Ala Ser Lys Ala Val Phe Leu 225 230 235 240 Trp Asn Met Asp Lys Tyr Thr Met Ile Arg Lys Leu Glu Gly His His 250 His Asp Val Val Ala Cys Asp The Ser Pro Asp Gly Ala Leu Leu Ala 265 Thr Ala Ser Tyr Asp Thr Arg/Val Tyr Val Trp Asp Pro His Asn Gly 280 Asp Leu Leu Met Glu Phe Gly His Leu Phe Pro Ser Pro Thr Pro Ile 290 300 Phe Ala Gly Gly Ala Asn Asp Arg Trp Val Arg Ala Val Ser Phe Ser His Asp Gly Leu His Va! Ala Ser Leu Ala Asp Asp Lys Met Val Arg 325 330 335 Phe Trp Arg Ile Asp GAu Asp Cys Pro Val Gln Val Ala Pro Leu Ser 340 Asn Gly Leu Cys Cys /Ala Phe Ser Thr Asp Gly Ser Val Leu Ala Ala 360 365 Gly Thr His Asp Gly Ser Val Tyr Phe Trp Ala Thr Pro Arg Gln Val 375 380

B

Pro Ser Leu Gln His Ile Cys Arg Met Ser Ile Arg Arg Val Met Ser 385 390 395 400

Thr Gln Glu Val Gln Lys Leu Pro Val Pro Ser Lys Ile Leu Ala Phe 405 410 415

Leu Ser Tyr Arg Gly 420

(2) INFORMATION FOR SEQ ID NO:15:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 783 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

CTGTCTTCCT	CCGCAGCGCG	AGGCTGGGTA	PAGGGTCTAT	TGTCTGTGGT	TGACTCCGTA	60
CTTTGGTCTG	AGGCCTTCGG	GAGCTTTCCC	GAGGCAGTTA	GCAGAAGCCG	CAGCGACCGC	120
CCCCGCCCGT	CTCCTCTGTC	CCTGGGCCC	GGAGACAAAC	TTGGCGTCAC	GCCCTCAGCG	180
GTCGCCACTC	TCTTCTCTGT	TGTTGGGTCC	GCATCGTATT	CCCGGAATCA	GACGGTGCCC	240
CATAGATGGC	CAGCTTTCCC	CCGAGGGTCA	ACGAGAAAGA	GATCGTGAGA	TCACGTACTA	300
TAGGTGAACT	TTTAGCTCCT	GCAGCTCCTT	TTGACAAGAA	ATGTGGTCGT	GAAAATTGGA	360
CTGTTGCTTT	TGCTCCAGAT	GGTTCATACT	TTGCTTGGTC	ACAAGGACAT	CGCACAGTAA	420
AGCTTGTTCC	GTGGTCCCAG	TGCCTTCAGA	ACTTTCTCTT	GCATGGCACC	AAGAATGTTA	480
CCAATTCAAG	CAGTTTAAGA	TTECCAAGAC	AAAATAGTGA	TGGTGGTCAG	AAAAATAAGC	540
CTCGTGACAT	ATTATAGACT	GTGGAGATAT	AGTCTGGAGT	CTTGCTTTTG	GGTCATCAGT	600
TCCAGAAAAA	CAGAGTCGCT	GTGTAAATAT	AGAATGGCAT	CGCTTCAGAT	TTGGACAAGA	660
TCAGCTACTT	CTTGCTACAG	GGTTGAACAA	TGGGCGTATC	AAAATATGGG	ATGTATATCA	720
GGAAACTCCT	CCTTAACTTG	GTAGATCATA	CTGAAGTGGT	CAGAGATTTA	ACTTTTGCTC	780
CAG						783

- (2) INFORMATION FOR SEQ ID NO:16:
 - (i) SEQUENCE CHARACTERISTICS:

BI

(A) LENGTH: 1122 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

			/			
CTCTGTATGT	CTGAATGAAG	CTATAACATT	TGCCTTTTTA	TTGCAGGTTT	TCCTTTGGAA	60
TATGGATAAA	TACACCATGA	TACGGAAACT	AGAAGGACAT	CACCATGATG	TGGTAGCTTG	120
TGACTTTTCT	CCTGATGGAG	CATTACTGGC	TACTGOATCT	TATGATACTC	GAGTATATAT	180
CTGGGATCCA	CATAATGGAG	ACATTCTGAT	GGAATTTGGG	CACCTGTTTC	CCCCACCTAC	240
TCCAATATTT	GCTGGAGGAG	CAAATGACCG	GTGGGTACGA	TCTGTATCTT	TTAGCCATGA	300
TGGACTGCAT	GTTGCAAGCC	TTGCTGATGA	TAAAATGGTG	AGGTTCTGGA	GAATTGATGA	360
GGATTATCCA	GTGCAAGTTG	CACCTTTGAG	CAATGGTCTT	TGCTGTGCCT	TCTCTACTGA	420
TGGCAGTGTT	TTAGCTGCTG	GGACACATGA	CGGAAGTGTG	TATTTTTGGG	CCACTCCACG	480
GCAGGTCCCT	AGCCTGCAAC	ATTTATGTCG	CATGTCAATC	CGAAGAGTGA	TGCCCACCCA	540
AGAAGTTCAG	GAGCTGCCGA	TTCCTTCCAA	GCTTTTGGAG	TTTCTCTCGT	ATCGTATTTA	600
GAAGATTCTG	CCTTCCCTAG	TAGTAGGGAC	TGACAGAATA	CACTTAACAC	AAACCTCAAG	660
CTTTACTGAC	TTCAATTATC	TGTTTTTAAA	GACGTAGAAG	ATTTATTTAA	TTTGATATGT	720
TCTTGTACTG	CATTTTGATC	AGTTGAGCTT	ТТААААТТТ	ATTTATAGAC	AATAGAAGTA	780
TTTCTGAACA	TATCAAATAT	AAATTTTTTT	AAAGATCTAA	CTGTGAAAAC	ATACATACCT	840
GTACATATTT	AGATATAAGC	TGCTATATGT	TGAATGGACC	CTTTTGCTTT	TCTGATTTTT	900
AGTTCTGACA	TGTATATATT	CTTCAGTAG	AGCCACAATA	TGTATCTTTG	CTGTAAAGTG	960
CAAGGAAATT	TTAAATTCTG	GGACACTGAG	TTAGATGGTA	AATACTGACT	TACGAAAGTT	1020
GAATTGGGTG	AGGCGGGCAA	ATCACCTGAG	GTCAGCAGTT	TGAGACTAGC	CTGGCAAACA	1080
TGATGAAACC	CTGTCTCTAC	ТААААТАСА	ААААААААА	AA		1122

(2) INFORMATION FOR SEQ ID NO:17:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2544 base pairs
 - (B) TYPE: nucleic acid

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(ix) FEATURE:

(A) NAME/KEY: CDS
(B) LOCATION: 423..2030

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

(XI) SEQUENCE DESCRIPTION. SEQ ID NO.17.	
CGGCACGAGC CGGGCTCCGT CCGGAGGAAG CGAGGCTGCG CCGCCGGCCC GGCAGGAGCG	60
GAGGACGGGA MGCGCGGGCG GTCGCGCTCG CCCTGTCGCT GACTGCGCTG CCCCGGCCCA	120
TCCTTGCCTG GCCGCAGGTG CCCTGGATGA GGCCGCCGCG CGTGTCCCGG CCGCTGAGTG	180
TCCCCGCGG TCGCCCGGCG CCTGCCCTCA AGCGGCCGCC TCTCCTTGCC CGGGTCCCCG	240
TTTTCCCCCG GCGCAGTCCT CCTCCGGTGG GCGCCTCCGC ACCTCGGCGC AGGCGGCACG	300
GCCCTCGGGC CGGGATGGAT CCGCCGGGAA GAGGAAGACA AGCCGGGGCG TTGAGCCCCT	360
GCGCACGGTG CCGCCGCGC TAGTGGGAGC TTACTCGCAG TAGGCTCTCG CTCTTCTAAT	420
CA ATG GAT AAA GTG GGG AAA ATG TGG AAC AAC TTA AAA TAC AGA TGC Met Asp Lys Val Gly Lys Met Trp Asn Asn Leu Lys Tyr Arg Cys 1 5 10 15	467
CAG AAT CTC TTC AGC CAC GAG GGA GGA AGC CGT AAT GAG AAC GTG GAG Gln Asn Leu Phe Ser His Glu Gly Gly Ser Arg Asn Glu Asn Val Glu 20 25 30	515
ATG AAC CCC AAC AGA TGT CCG TCT GTC AAA GAG AAA AGC ATC AGT CTG Met Asn Pro Asn Arg Cys Pro Ser Val Lys Glu Lys Ser Ile Ser Leu 35 40 45	563
GGA GAG GCA GCT CCC CAG CAA GAG AGC AGT CCC TTA AGA GAA AAT GTT Gly Glu Ala Ala Pro Gln Gln Ser Ser Pro Leu Arg Glu Asn Val	611
GCC TTA CAG CTG GGA CTG AGC CCT TCC AAG ACC TTT TCC AGG CGG AAC Ala Leu Gln Leu Gly Leu Ser Pro Ser Lys Thr Phe Ser Arg Arg Asn 65 70 75	659
CAA AAC TGT GCC GCA GAG ATC CCT CAA GTG GTT GAA ATC AGC ATC GAG Gln Asn Cys Ala Ala Glu Ile Pro Gln Val Val Glu Ile Ser Ile Glu 80 90 95	707
AAA GAC AGT GAC TOG GGT GCC ACC CCA GGA ACG AGG CTT GCA CGG AGA Lys Asp Ser Asp Ser Gly Ala Thr Pro Gly Thr Arg Leu Ala Arg Arg 100 105 110	755

GAC TCC TAC TCG CGG CAC GCC CCG TGG GGA GGA AAG AAG AAA CAT TCC 803 Asp Ser Tyr Ser Arg His Ala Pro Trp Gly Gly Lys Lys His Ser 120 115 TGT TCC ACA AAG ACC CAG AGT TCA TTG GAT ACC GAG AAA AAG TTT GGT 851 Cys Ser Thr Lys Thr Gln Ser Ser Leu Asp Thr Glf Lys Lys Phe Gly 140 135 130 AGA ACT CGA AGC GGC CTT CAG AGG CGA GAG CGG CGC TAT GGA GTC AGC 899 Arg Thr Arg Ser Gly Leu Gln Arg Arg Glu Arg/Arg Tyr Gly Val Ser 155 TCC ATG CAG GAC ATG GAC AGC GTT TCT AGC CGC GCG GTC GGG AGC CGC 947 Ser Met Gln Asp Met Asp Ser Val Ser Ser Arg Ala Val Gly Ser Arg 1/70 165 160 TCC CTG AGG CAG AGG CTC CAG GAC ACG GTG GGT TTG TGT TTT CCC ATG 995 Ser Leu Arg Gln Arg Leu Gln Asp Thr Val/Gly Leu Cys Phe Pro Met 185 180 AGA ACT TAC AGC AAG CAG TCA AAG CCA CTC TTT TCC AAT AAA AGA AAA 1043 Arg Thr Tyr Ser Lys Gln Ser Lys Pro Leu Phe Ser Asn Lys Arg Lys 205 195 200 ATA CAT CTT TCT GAA TTA ATG CTG GAG AAA TGC CCT TTT CCT GCT GGC 1091 Ile His Leu Ser Glu Leu Met Leu Glu Lys Cys Pro Phe Pro Ala Gly 215 210 TCG GAT TTA GCA CAA AAG TGG CAT TTG ATT AAA CAG CAT ACC GCC CCT 1139 Ser Asp Leu Ala Gln Lys Trp His Leu Ile Lys Gln His Thr Ala Pro 235 230 225 GTG AGC CCA CAC TCA ACA TTT TTT GAT ACA TTT GAT CCA TCA CTG GTG 1187 Val Ser Pro His Ser Thr Phe Phe Asp Thr Phe Asp Pro Ser Leu Val 255 245 240 TCT ACA GAA GAT GAA GAT AGG CTT CGC GAG AGA AGA CGG CTT AGT 1235 Ser Thr Glu Asp Glu Glu Asp Arg/Leu Arg Glu Arg Arg Leu Ser 270 265 260 ATC GAA GAA GGG GTG GAT CCC CCT CCC AAC GCA CAA ATA CAC ACC TTT 1283 Ile Glu Glu Gly Val Asp Pro Pro Asn Ala Gln Ile His Thr Phe 280 275 GAA GCT ACT GCA CAG GTC AAC CCA TTG TAT AAG CTG GGA CCA AAG TTA 1331 Glu Ala Thr Ala Gln Val Asn Pro Leu Tyr Lys Leu Gly Pro Lys Leu 290 GCT CCT GGG ATG ACA GAG ATA AGT GGA GAT GGT TCT GCA ATT CCA CAA 1379 Ala Pro Gly Met Thr Glu Ile Ser Gly Asp Gly Ser Ala Ile Pro Gln 315 305 310

BL

GCS AAT TG Xaa Asn Cy 320	s Asp Ser G	GAA GAG GAT Glu Glu Asp 325	TCA ACC Ser Thr	ACC CTA Thr Leu 330	TGT CTG Cys Leu	CAG TCA Gln Ser 335	1427
		CGC CAG GTG Arg Gln Val					1475
AGC AGA CAG Ser Arg Gl	G GGA GCT 1 n Gly Ala 1 355	rGG AAA GTT Frp Lys Val	CAT ACG His Thr 360	CAG ATC Gln Ile	GAT TAC Asp Tyr 365	ATA CAC Ile His	1523
	l Pro Asp I	TTG CTT CAG Leu Leu Gln 375					1571
		PAC GAG GCC Pyr Glu Ala 390					1619
	Phe Leu I	CTC AGG GAC Leu Arg Asp 105					1667
		CGC TAC AAC Arg Tyr Asn					1715
		TTC AGC TTC Phe Ser Phe					1763
	xaa Val T	ACG GGG CTT Thr Gly Leu 455					1811
		GAA CCG TTG Glu Pro Leu 470					1859
TTC CCT TTC Phe Pro Pho 480	e Ser Leu G	CAG TAT ATC Sln Tyr Ile 185	TGC CGC Cys Arg	GCA GTG Ala Val 490	ATC TGC Ile Cys	AGA TGC Arg Cys 495	1907
ACT ACG TATT	GAT GGG A Asp Gly I 500	ATT GAC GGG	CTC CCG Leu Pro 505	CTA CCG Leu Pro	TCG ATG Ser Met	TTA CAG Leu Gln 510	1955
		/ TAT CAT TAT Tyr His Tyr					2003

- 132 -	
TTA GAA CGA GAR CCA GTC AAA GCA AAG TAACTCCTGT CCCCAAAGGG Leu Glu Arg Xaa Pro Val Lys Ala Lys 530 535	2050
CACTAACTAA GTCTGCTCCT CCCGTGCATC MGAACTGCAC CCATAGGRAG GCAGTCAGCT	2110
GCTAGGATTT CCCACCCAGA ATGGGAGCTT AGTCATTAGC CTCTGCCCTA TGGGGTCCGC	2170
TGTTCCTCAG ACAAAGGTGC CTAGGGACAG CAAGATGCT TGCAGGTGTT CGGTGGGCTG	2230
TGACAACTGA GGGAGGCAAC TCTGGGGCAT TTGCTATGAA GAATTCTATT TCTTACCGAA	2290
GAACAAATTA TTAATATTGG ATGGGTATTT CAATACTGTG ACTAATGTTT GAAATTATTT	2350
TTTCTAAGAA TTTTTCTATA ACCTTCAGAA AAAGTAGTGA TGTTTGTAGT TACTATAAAT	2410
CAAGCTTTGA AAGTTCAAAA CAAACAAGTT AAATAAAAGA CTACCTTCCT TTTAGAGAAA	2470
ACAAATGCAA GTTTTCCCAG CCACAGGCAT TGTGCACTGT TAATGTTAGC TTGTTATCAG	2530
CTCCTTTCTC CTCC	2544
(2) INFORMATION FOR SEQ ID NO:18	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 536 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: profein	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:	
Met Asn Ivs Val Gly Ivs Met Trn Asn Asn Leu Ivs Tvr Arg Cvs Gln	

Met Asp Lys Val Gly Lys Met Trp Asn Asn Leu Lys Tyr Arg Cys Gln
1 10 15

Asn Leu Phe Ser His Glu Gly Gly Ser Arg Asn Glu Asn Val Glu Met 20 25 30

Asn Pro Asn Arg Cys Pro Ser Val Lys Glu Lys Ser Ile Ser Leu Gly 35 40 45

Glu Ala Ala Pro Gln Gln Glu Ser Ser Pro Leu Arg Glu Asn Val Ala 50 60

Leu Gln Leu Gly Leu Ser Pro Ser Lys Thr Phe Ser Arg Arg Asn Gln 65 70 75 80

Asn Cys Ala Ala Glu Ile Pro Gln Val Val Glu Ile Ser Ile Glu Lys

- 133 -Asp Ser Asp Ser Gly Ala Thr Pro Gly Thr Arg Leu Ala Arg Arg Asp 110 Ser Tyr Ser Arg His Ala Pro Trp Gly Gly Lys Lys/Lys His Ser Cys Ser Thr Lys Thr Gln Ser Ser Leu Asp Thr Glu Lys Lys Phe Gly Arg Thr Arg Ser Gly Leu Gln Arg Arg Glu Arg Arg/Tyr Gly Val Ser Ser Met Gln Asp Met Asp Ser Val Ser Ser Arg Ala Val Gly Ser Arg Ser 170 Leu Arg Gln Arg Leu Gln Asp Thr Val Gly Feu Cys Phe Pro Met Arg Thr Tyr Ser Lys Gln Ser Lys Pro Leu Phe Ser Asn Lys Arg Lys Ile His Leu Ser Glu Leu Met Leu Glu Lys Cys Pro Phe Pro Ala Gly Ser Asp Leu Ala Gln Lys Trp His Leu Ile/Lys Gln His Thr Ala Pro Val Ser Pro His Ser Thr Phe Phe Asp Thr Phe Asp Pro Ser Leu Val Ser 250 Thr Glu Asp Glu Glu Asp Arg Leu Arg Glu Arg Arg Arg Leu Ser Ile Glu Glu Gly Val Asp Pro Pro Pro' Asn Ala Gln Ile His Thr Phe Glu 280 Ala Thr Ala Gln Val Asn Pro L&u Tyr Lys Leu Gly Pro Lys Leu Ala 290 295 Pro Gly Met Thr Glu Ile Ser Fly Asp Gly Ser Ala Ile Pro Gln Xaa 315 310 Asn Cys Asp Ser Glu Glu Asd Ser Thr Thr Leu Cys Leu Gln Ser Arg 330 325 Arg Gln Lys Gln Arg Gln Val Ser Gly Asp Ser His Ala His Val Ser Arg Gln Gly Ala Trp Lys Nal His Thr Gln Ile Asp Tyr Ile His Cys 360

2

Leu Val Pro Asp Leu Leu Gln Ile Thr Gly Asn Pro Øys Tyr Trp Gly 370 380 Val Met Asp Arg Tyr Glu Ala Glu Ala Leu Leu Gl# Gly Lys Pro Glu 385 Gly Thr Phe Leu Leu Arg Asp Ser Ala Gln Glu Asp Tyr Leu Phe Ser 410 Val Ser Phe Arg Arg Tyr Asn Arg Ser Leu Hi/s Ala Arg Ile Glu Gln Trp Asn His Asn Phe Ser Phe Asp Ala His Asp Pro Cys Val Phe His 440 Ser Ser Xaa Val Thr Gly Leu Leu Glu His Tyr Lys Asp Pro Ser Ser Cys Met Phe Phe Glu Pro Leu Leu Thr/Ile Ser Leu Asn Arg Thr Phe 465 Pro Phe Ser Leu Gln Tyr Ile Cys Arg Ala Val Ile Cys Arg Cys Thr 490 Thr Tyr Asp Gly Ile Asp Gly Leu/Pro Leu Pro Ser Met Leu Gln Asp Phe Leu Lys Glu Tyr His Tyr Lys Gln Lys Val Arg Val Arg Trp Leu Glu Arg Xaa Pro Val Lys Ala Lys 530 535 (2) INFORMATION FOR SEQ ID/NO:19: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1221 base pairs (B) TYPE: nucl/eic acid (C) STRANDEDNÉSS: single (D) TOPOLOGY √ linear (ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

GATTAAACAG CATACAGCTC CTGTGAGCCC ACATTCAACA TTTTTTGATA CTTTGATCCA 60
TCTTTGGTTT CTACAGAAGA TGAAGAAGAT AGGCTTAGAG AGAGAAGGCG GCTTAGTATT 120
GAAGAAGGGG TTGATCCCCC TCCCAATGCA CAAATACATA CATTTGAAGC TACTGCACAG 180

GTTAATCCAT	TATTAAACTG	GGACCAAAAT	TAGCTCCTGG	AATGACTGAA	ATAAGTGGGG	240
ACAGTTCTGC	AATTCCACAA	GCTAATTGTG	ACTCGGAAGA	GGATACAACC	ACCCTGTGTT	300
GCAGTCACGG	AGGCAGAAGC	AGCGTCAGAT	ATCTGGAGAC	AGCATACCC	ATGTTAGCAG	360
ACAGGGAGCT	TGGAAAGTCC	ACACACAGAT	TGATTACATA	SACTGCTTCG	TGCCTGATTT	420
GCTTCAAATT	ACAGGGAATC	CCTGTTACTG	GGGAGTGATG	GACCGTTATG	AAGCAGAAGC	480
CCTTCTCGAA	GGGAAACCTG	AAGGCACGTT	TTTGCTCAGG	GACTCTGCGC	AAGAGGACTA	540
CTTCTTCTCT	GTGAGCTTCC	GCCGATACAA	CAGATCCCTG	CATGCCCGAA	TTGAGCAGTG	600
GAATCACAAC	TTTAGTTTCG	ACGCCCATGA	CCCGTGTGTA	TTTCACTCCT	CCACTGTAAC	660
GGGACTTTTA	GAACATTATA	AAGATCCCAG	TTCGTGCATG	TTTTTTGAAC	CATTGCTTAC	720
TATATCACTA	AATAGGACTT	TCCCTTTTAG	COTGCAGTAT	ATCTGTCGCG	CGGTAATCTG	780
CAGGTGCACT	ACGTATGATG	GAATTGATGG	GCTCCCTCTA	CCCTCAATGT	TACAGGATTT	840
TTTAAAAGAG	TATCATTATA	AACAAAAAGT	TAGAGTTCGC	TGGTTGGAAC	GAGAACCAGT	900
CAAGGCAAAG	TAAACTCTCC	GGTCCCCAAA	GGGTGTTAAC	TAGGTCCGCT	TTCATGTGCA	960
TCAGACAGTA	CACCTATAGC	AAGCACACGT	AGCAGTGTTA	GGCTTTTTCA	TACAGTATGT	1020
AAGCTTAGTG	TTAGTATCTG	TCAGATGCTA	CCTGCTGTTA	CTTATTCAGA	TAAACATGGT	1080
GCCTATTGGA	ACAATAGCGG	ATAGAGCTAC	AGGTGTTCAG	TAAGACTACA	AAAACATTTT	1140
GCCTATTTCG	CTAACAGTTT	GGTTTTTAAT	GGCTGTGGTA	TTTGAGTGAG	GCAACTCTGG	1200
GGCATTTGTT	ATGAAGAAAT	G/				1221

(2) INFORMATION FOR SEQ ID NO:20:

- (i) SEQUENCE CHARACTERISTICS:
 - (\tilde{A}) LENGTH: 2369 base pairs
 - (B) TYPE: pucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 116..1330
- (xi) SEQUENCÉ DESCRIPTION: SEQ ID NO:20:

	n	1													,		
	0								-	136	-				,		
G	3CA	.CGAC	GC (GGTG	GTGG	CG GC	CGGCC	GGC	G CGC	GCCG	CGGC	GGGG	GCGG	39G (CGGAZ	ATGAAG	60
GC	CCC.	ACGO	GCC (CTGG(GGCT	rg ac	GCG(CCCG(C CG(CCTG(3GGC	GGG	ccce	GCG 1	rcct(Met 1	118
GA G3	AG (GCC Ala	GGA Gly	GAG Glu 5	GAG Glu	CCG Pro	CTG Leu	CTG Leu	CTG Leu 10	GCT Ala	GAA Glu	CTC Leu	AAG Lys	CCT Pro 15	GGG Gly	CGC Arg	166
C(Pi	CC (CAC His	CAG Gln 20	TTC Phe	GAC Asp	TGG Trp	AAG Lys	TCA Ser 25	AGC Ser	TGC Cys	GAC Glu	ACC Thr	TGG Trp 30	AGC Ser	GTG Val	GCC Ala	214
					GGT Gly												262
Va					CCC Pro												310
					AGC Ser 70												358
					AAG Lys												406
					TGG Trp												454
	s				GCG Ala												502
	eu .				CAG Gln												550
					TCT Ser/ 150												598
A(Th	CG nr	CCC Pro	AGC Ser	GGC Gly 165	AGT Ser	TTG Leu	ATT Ile	TTG Leu	GTC Val 170	TCT Ser	GCA Ala	TCC Ser	CGG Arg	GAT Asp 175	AAG Lys	ACA Thr	646

	CGA Arg															694
TCC Ser	GGC Gly 195	CAT His	CTG Leu	CAG Gln	TGG Trp	GTT Val 200	TAC Tyr	TGC Cys	TGC Cys	TCC Ser	ATC 11e 205	TCC Ser	CCT Pro	GAC Asp	TGT Cys	742
	ATG Met															790
	CGG Arg															838
	GTC Val															886
	TAT Tyr															934
	AGG Arg 275															982
	GTC Val															1030
	TAT Tyr															1078
	GAA Glu															1126
	TGC Cys															1174
	GGC Gly 355															1222
	CAC His															1270

Val Leu Ala Leu Pro Ile Pro Lys Lys Met Lys Glu Phe Leu Thr Tyr 390 395 400	1318
AGG ACT TTC TAGCAGTGCC GGCTCCCCCA CCTCCTGCAG CAGCAGCAGT Arg Thr Phe	1367
405	
ACAAGGGACT GGCTAGGATG GAGTCAGGCA GCTCACACTG GACCAGTGTG GACCTTCCTT	1427
CCTCCCATGG CATGTGCAAG TAGGTCTGCG TGACCCCACT TCTGTGGTGC CGGCCTTACC	1487
TCGTCTTCAT CCGTGGTGAG CAGCCTTCGT CAGTCTAGTT GTGTTGAAGC CAAGTGCAGT	1547
TGTGGATGTT GCTGGGGTAA TAAAGGCAAG CGGGCTCCAG AGCCTCTCTG GTGGCGGCCA	1607
AGCCACACTC CCTTAACTGG GAAGTACCTG CCAGGTAGGG CATTTCTGCT GCCTATTTCC	1667
AGCCAGCGGC TGCATGGTTT GAAGTTCCTC CGTTGTGGTC AGAAGAACTC TGGTGTTTGG	1727
TTCCCTGCTC AGCTGCGCGT GGACTGGGCT GAGCTCCTCA CCATACACTA GTGCCGGCTT	1787
TTGTTTCCTG TAAACAGTGG TTGCATGTGT AGAGAAGTAA CAAGCGAGTA TTCAGATCAT	1847
ACGAGGAGGC GTTCCTCGGT GCATGACGGT CAGATGGCCA TTTATCAGCA TATTTATTTG	1907
TATTTTCTCA GCACATAGTA AGGTACAACT GTGTTTTCTC AATTGTCTCG AAAAAACAGA	1967
GTTCTTAAGT GGCCCAGTTG TGGAGCCAAG TCTAAGTCGT GTGGAGTCAG TGCTGACATC	2027
ACTGGCTTGT GCTGTCTGTC ACATGTGTTT GTCTCTGCTG CTTGACCTCA TGGGATGTAC	2087
CCTCCAGTTC AACTGCCCAA AACAGACAGC CCCTTCCAAG CACCGTTCTT TGACAGCGGT	2147
AGCAGCTACC TATTCAAGAC GCCTCACACA AAATCTGCCT TAGAAAGTTA ATATATTTTA	2207
AATTATTTTA AAAGAAACTC AACATCTTAT TCTTTGGCCT TTCTTAATTG ATGCTTTATG	2267
GAGGCAGTGT TAACATTGTA CAGTGTATGC ATAGAGGAGT CTCCTCTATT TGAAGAACAA	2327
TGCAAAATGA GGCTTTCATT GAAGGGAAAA AAAAAAAAAA	2369
(2) INFORMATION FOR SEQ ID NO:21:	

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 404 amino acids

 (B) TYPE: amino acid

 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

Met Glu Ala Gly Glu Glu Pro Leu Leu Leu Ala Glu Leú Lys Pro Gly Arg Pro His Gln Phe Asp Trp Lys Ser Ser Cys Glu/Thr Trp Ser Val Ala Phe Ser Pro Asp Gly Ser Trp Phe Ala Trp Ser Gln Gly His Cys Val Val Lys Leu Val Pro Trp Pro Leu Glu Gla Gln Phe Ile Pro Lys Gly Phe Glu Ala Lys Ser Arg Ser Ser Lys Asn Asp Pro Lys Gly Arg Gly Ser Leu Lys Glu Lys Thr Leu Asp Cys Gly Gln Ile Val Trp Gly Leu Ala Phe Ser Pro Trp Pro Ser Pro Pro Ser Arg Lys Leu Trp Ala Arg His His Pro Gln Ala Pro Asp Val Ser Cys Leu Ile Leu Ala Thr Gly Leu Asn Asp Gly Gln Ile Ly# Ile Trp Glu Val Gln Thr Gly Leu 135 Leu Leu Leu Asn Leu Ser Gly His Gln Asp Val Val Arg Asp Leu Ser 150 Phe Thr Pro Ser Gly Ser Ley Ile Leu Val Ser Ala Ser Arg Asp Lys Thr Leu Arg Ile Trp Asp L/eu Asn Lys His Gly Lys Gln Ile Gln Val Leu Ser Gly His Leu Gln/Trp Val Tyr Cys Cys Ser Ile Ser Pro Asp Cys Ser Met Leu Cys Ser Ala Ala Gly Glu Lys Ser Val Phe Leu Trp Ser Met Arg Ser Tyr/Thr Leu Ile Arg Lys Leu Glu Gly His Gln Ser Ser Val Val Ser Cys Asp Phe Ser Pro Asp Ser Ala Leu Leu Val Thr Ala Ser Tyr Asp Thr Ser Val Ile Met Trp Asp Pro Tyr Thr Gly Ala 260 265

Arg	Leu	Arg 275	Ser	Leu	His	His	Thr 280	Gln	Leu	Glu	Pro	Thr/ 285	Met	Asp	Asp
Ser	Asp 290	Val	His	Met	Ser	Ser 295	Leu	Arg	Ser	Val	Cys	Phe	Ser	Pro	Glu
Gly 305	Leu	Tyr	Leu	Ala	Thr 310	Val	Ala	Asp	Asp	Arg 315	Leu	Leu	Arg	Ile	Trp 320
Ala	Leu	Glu	Leu	Lys 325	Ala	Pro	Val	Ala	Phe 330	Ala	Pro	Met	Thr	Asn 335	Gly
Leu	Cys	Cys	Thr 340	Phe	Phe	Pro	His	Gly 345	Gly	#le	Ile	Ala	Thr 350	Gly	Thr
Arg	Asp	Gly 355	His	Val	Gln	Phe	Trp 360	Thr	Ala	Pro	Arg	Val 365	Leu	Ser	Ser
Leu	Lys 370	His	Leu	Cys	Arg	Lys 375	Ala	Leu	Arg	Ser	Phe 380	Leu	Thr	Thr	Tyr
Gln 385	Val	Leu	Ala	Leu	Pro 390	Ile	Pro	Lys	Lys	Met 395	Lys	Glu	Phe	Leu	Thr 400
Tyr	Arg	Thr	Phe				j	/							

(2) INFORMATION FOR SEQ ID NO: 22:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1246 base pairs

 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS:/single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

GACACTGCAT CGTCAAACT	G ATCCCCTGGC	CGTTGGAGGA	GCAGTTCATC	CCTAAAGGGT	60
TTGAAGCCAA AAGCCGAAG	T AGCAAAAATG	AGACGAAAGG	GCGGGGCAGC	CCAAAAGAGA	120
AGACGCTGGA CTGTGGTCA	.G/ATTGTCTGGG	GGCTGGCCTT	CAGCCTGTGC	TTTCCCCACC	180
CAGCAGGAAG CTCTGGGCA	GCCACCACCC	CCAAGTGCCC	GATGTCTCTT	GCCTGGTTCT	240
TGCTACGGGA CTCAACGA	G GGCAGATCAA	GATCTGGGAG	GTGCAGACAG	GGCTCCTGCT	300
TTTGAATCTT TCCGGCCAC	C AAGATGTCGT	GAGAGATCTG	AGCTTCACAC	CCAGTGGCAG	360
TTTGATTTTG GTCTCCGCG	T CACGGGATAA	GACTCTTCGC	ATCTGGGACC	TGAATAAACA	420

CGGTAAACAG ATTCAAGTGT TATCGGGCC	A CCTGCAGTGG	GTTTACTGCT	GTTCCATCTC	480		
CCCAGACTGC AGCATGCTGT GCTCTGCAG	C TGGAGAGAAG	TCGGTCTTTC	TATGGAGCAT	540		
GAGGTCCTAC ACGTTAATTC GGAAGCTAG	A GGGCCATCAA	AGCAGTGTTG	TCTCTTGTGA	600		
CTTCTCCCCC GACTCTGCCC TGCTTGTCA	C GGCTTCTTAC	GATACCAATG	TGATTATGTG	660		
GGACCCCTAC ACCGGCGAAA GGCTGAGGT	C ACTCCACCAC	ACCCAGGTTG	ACCCCGCCAT	720		
GGATGACAGT GACGTCCACA TTAGCTCAC	T GAGATCTGT	TGCTTCTCTC	CAGAAGGCTT	780		
GTACCTTGCC ACGGTGGCAG ATGACAGAC	T CCTCAGGATC	TGGGCCCTGG	AACTGAAAAC	840		
TCCCATTGCA TTTGCTCCTA TGACCAATG	G GCTTTGOTGG	CACATTTTTT	CCACATGGTG	900		
GAGTCATTGC CACAGGGACA AGAGATGGC	C ACGTCCAGTT	CTGGACAGCT	CCTAGGGTCC	960		
TGTCCTCACT GAAGCACTTA TGCCGGAAA	G CCCTTCGAAG	TTTCCTAACA	ACTTACCAAG	1020		
TCCTAGCACT GCCAATCCCC AAGAAAATG	A AAGAGTTCCT	CACATACAGG	ACTTTTTAAG	1080		
CAACACCACA TCTTGTGCTT CTTTGTAGC	A GGGTAAATCG	TCCTGTCAAA	GGGAGTTGCT	1140		
GGAATAATGG GCCAAACATC TGGTCTTGC	A TIGAAATAGC	ATTTCTTTGG	GATTGTGAAT	1200		
AGAATGTAGC AAAACCAGAT TCCAGTGTA	C TAGTCATGGA	TTTTTC		1246		
(2) INFORMATION FOR SEQ ID NO:23/:						

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 422 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

ACCATGGTTC	CAAGTCCTCT	CCCCTGTGGT	CAAGTTGCCC	GAATGTTGGG	CCCAAGTGCC	60
TTTTCCTCCT	TGGGCCTCCC	CTTOTGACCT	GCAGGACAGT	TTTCCGGAGC	CCATTTGGTA	120
TGAGGTATTA	ATTAGCCTTA	ACTAAATTAC	AGGGGACTCA	GAGGCCGTGC	TCCTGACCGA	180
TCCAGACACT	ATTTTTTTT	TTTTTTTTA	ACAATGGTGT	GCATGTGCAG	GAAATGACAA	240
ATTTGTATGT	CAGATTATAC	AGGATGTAT	TCTTAAACCG	CATGACTATT	CAGATGGCTA	300
СТСАСТТАТС	ልርጥርርርርር ልጥጥ	TATTAGCATC	ስጥ ጥጥጥልጥጥ	СТАТТТСТС	AACAGATGTT	360

AAGGTACAAC TGTGTTTTTC TCGATTATCT AAAAACCATA GTACTTAAAT TGAAAAAAA	420
AA	422
(2) INFORMATION FOR SEQ ID NO:24:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2019 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:	
GGCACGAGGC GGGGTCAGGG CGGAGGCTGA GGACCAACTA GGCATGGCGG AGGGCGGGAC	60
CGGCCCCGAT GGACGGCCG GCCCGGGACC CGCAGGTCCT AATCTGAAGG AGTGGCTGAG	120
GGAGCAGTTC TGTGACCATC CACTGGAGCA CTGTCACGAT ACAAGACTCC ATGATGCAGC	180
CTATGTAGGG GACCTCCAGA CCCTCAGGAA CCTACTGCAA GAGGAGAGCT ACCGGAGCCG	240
CATCAATGAG AAGTCTGTCT GGTGCTGCGG CTGGCTTCCC TGCACACCAC TGAGGATCGC	300
AGCCACTGCA GGCCATGGGA ACTGTGTGGA TTCCTCATA CGCAAAGGGG CCGAGGTGGA	360
CCTGGTGGAT GTCAAGGGGC AGACTGCCCT/GTATGTGGCT GTAGTGAACG GGCACTTGGA	420
GAGCACTGAG ATCCTTTTGG AAGCTGGTGC TGATCCCAAC GGCAGCCGGC ACCACCGCAG	480
CACTCCTGTG TACCATGCCT YTCGTGTGGG TAGGGACGAC ATCCTGAAGG CTCTTATCAG	540
GTATGGGGCA GATGTTGATG TCAACCATCA TCTGAATTCT GACACCCGGC CCCCTTTTTC	600
ACGGCGGCTA ACCTCCTTGG TGGTCTGTCC TCTATACATC AGTGCTGCCT ACCATAACCT	660
TCAGTGCTTC AGGCTGCTCT TGCAGGCTGG GGCAAATCCT GACTTCAATT GCAATGGCCC	720
TGTCAACACC CAGGAGTTCT ACAGGGGATC CCCTGGGTGT GTCATGGATG CTGTCCTGCG	780
CCATGGCTGT GAAGCAGCCT TCGTGAGTCT GTTGGTAGAG TTTGGAGCCA ACCTGAACCT	840
GGTGAAGTGG GAATCCCTGG CCCAGAGGC AAGAGGCAGA AGAAAGATGG ATCCTGAGGC	900
CTTGCAGGTC TTTAAAGAGG CCAGAAGTAT TCCCAGGACC TTGCTGAGTT TGTGCCGGGT	960
GGCTGTGAGA AGAGCTCTTC GCAAATACCG ACTGCATCTG GTTCCCTCGC TGCCGCTGCC	1020

AGACCCCATA AAGAAGTTAT TGCTTTATGA GTAGCATTCA CATGCAGTGC TGACTGCAAT

1080

GTGGAAGCCG ATCACCTGCA	GTGAAAACTG	ACACAGACTC	TGGCATCCTG	GGAACCATGG	1140
CCTGTGCTGC CAGCTTGATC	CTTGGCTGTC	AGTGAAGAAA	AAACGGCTGT	GTTCTCTTGG	1200
ACTGTGATTC TATCTCAGGT	GCTTGGGCCA	TCGAACGCTC	CTTGAGTCAT	TGTCAACTGA	1260
GAGGCACATA CAAACTTAAT	TTTGTTCCTC	TTCAGTCTCT	CTGTTTTGGA	TTCTTCCTGG	1320
CAATGTGTGC AGCATGGGCT	GAGCCTGGTG	ATTGCCCTAG	TEGGGAAGGC	TTTTTTCTCC	1380
AGGCTATGCA TCTATTTATG	TTCCTACTTT	GCAATTTATT	GTTCTTTTAA	GGCTTGATAT	1440
CAAAACAGAA AGAGGTTTGT	TAAGAAAAGA	TATAGGGAGA	AAGGAATTCC	GGTTCCGTGC	1500
ACTTGCTAGC CTGCTTTCCT	TGCCTGGGTT	TGTCTGTCTA	TGCTGCCTGG	TGCACATCCC	1560
TTCTCTTTGC TGCCACTGTT	CTATTTTGGG	AGTTGTCTTC	CGTCTAAGAT	GGCTTCTGGG	1620
GTTCTATCTT ATTGCACAGA	GGTCCCAGAA	CAGTGTTCAT	AGGGCACCAT	CTGCTCTGCC	1680
AAGGGTTTTC TGATGTCTTA	CCCTGGGGAT	CTTCAGACAG	TGGTTACCTT	TAGGAGACCC	1740
ACCTGGAACT AACCATTAAG	TGACTGCCCA	CATTCAGATC	AGGGACCATC	TTAATAGTAC	1800
TCACTGCCAG TCCTCACAAG	AGAAGATGAC	ACGGGTGCTC	TCTTCAGACA	CTCCCATACA	1860
GGAAGTTGGA AAATGTCTTG	GTCACCTGGG	TTGTTCCCAG	GCTACAACTT	CTTGGTGTTC	1920
CACTAARACC AGRATATCCT	AGTTTTTTGG	GTTGACTGTT	CCCTCCCCAC	TTTCCTTGAA	1980
NCCCAATGCC CNTTTGTKTN	GGTTGCTTCC	СТААААКТТ			2019

(2) INFORMATION FOR SEQ ID N_2^{f} :25:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 350 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: 1/inear
- (ii) MOLECULE TYPE: /DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

Ala Arg Gly Gly Val Arg Ala Glu Ala Glu Asp Gln Val Gly Met Ala
1 5 10 15

Glu Gly Gly Thr Gly Pro Asp Gly Arg Ala Gly Pro Gly Pro Ala Gly

Pro Asn Leu Lys Glu Trp Leu Arg Glu Gln Phe Cys Asp His Pro Leu 35 40 45

Glu His Cys Asp Asp Thr Arg Leu His Asp Ala Ala Tyr/Val Gly Asp Leu Gln Thr Leu Arg Asn Leu Leu Gln Glu Glu Ser Tyr Arg Ser Arg 80 75 Ile Asn Glu Lys Ser Val Trp Cys Cys Gly Trp Léu Pro Cys Thr Pro Leu Arg Ile Ala Ala Thr Ala Gly His Gly Asp Cys Val Asp Phe Leu 105 Ile Arg Lys Gly Ala Glu Val Asp Leu Val Asp Val Lys Gly Gln Thr 120 Ala Leu Tyr Val Ala Val Val Asn Gly Has Leu Glu Ser Thr Glu Ile 135 Leu Leu Glu Ala Gly Ala Asp Pro Asm Gly Ser Arg His His Arg Ser Thr Pro Val Tyr His Ala Xaa Arg Nal Gly Arg Asp Asp Ile Leu Lys 170 Ala Leu Ile Arg Tyr Gly Ala Asp Val Asp Val Asn His His Leu Asn 185 190 Ser Asp Thr Arg Pro Pro Phe Ser Arg Arg Leu Thr Ser Leu Val Val 200 Cys Pro Leu Tyr Ile Ser Ala Ala Tyr His Asn Leu Gln Cys Phe Arg 215 Leu Leu Gln Ala Gl/y Ala Asn Pro Asp Phe Asn Cys Asn Gly Pro 235 225 Val Asn Thr Gln Glu/Phe Tyr Arg Gly Ser Pro Gly Cys Val Met Asp 250 Ala Val Leu Arg His Gly Cys Glu Ala Ala Phe Val Ser Leu Leu Val 270 260 265 Glu Phe Gly Ala/Asn Leu Asn Leu Val Lys Trp Glu Ser Leu Gly Pro 275 Glu Ala Arg Cly Arg Arg Lys Met Asp Pro Glu Ala Leu Gln Val Phe 295 290 Lys Glu Ala Arg Ser Ile Pro Arg Thr Leu Leu Ser Leu Cys Arg Val 320 315 305 310

Ala Val Arg Arg Ala Leu Gly Lys Tyr Arg Leu His Leu Val Pro Ser 325 330 335

Leu Pro Leu Pro Asp Pro Ile Lys Lys Phe Leu Leu Tyr Glu 340 345 350

(2) INFORMATION FOR SEQ ID NO:26:

- (i) SEOUENCE CHARACTERISTICS:
 - (A) LENGTH: 419 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

GCATCCATGG CGGAGGCGG CAGCACGACG GGCGGCAGG GCCGGGCTCC GCAGGTCGTA 60
ATCTGAAGGA GTGGCTGAGG GAGCAATTTT GTGATCATCC GCTGGAGCAC TGTGAGGACA 120
CGAGGCTCCA TGATGCAGCT TACGTCGGGG ACCTCCAGAC CCTCAGGAGC CTATTGCAAG 180
AGGAGAGCTA CCGGAGCCGC ATCAACGAGA AGTCTGTCTG GTGCTGTGGC TGGCTCCCCT 240
GCACACCGTT GCGAATCGCG GCCACTGCAG GCCATGGGAG CTGTGTGGAC TTCCTCATCC 300
GGAAGGGGGC CGAGGTGGAT CTGGTGGACG TAAAAGGACA GACGGCCCTG TATGTGGCTG 360
TGGTGAACGG GCACCTAGAG AGTACCCAGA TCCTTCTCGA AGCTGGCGC GACCCCAAC 419

- (2) INFORMATION FOR SEQ ID/NO:27:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 595 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA
 - (xi) SEQUENCE DÉSCRIPTION: SEQ ID NO:27:

GAGGAAGAAG AAAAGTGGAC CCTGAGGCCT TGCAGGTCTT TAAAGAGGCC AGAAGTGTTC 60

CCAGAACCTT GCTGTGTCTG TGCCGTGTGG CTGTGAGAAG AGCTCTTGGC AAAACCGGCT 120

TCATCTGATT CCTTCGCTGC CTCTGCCAGA CCCCATAAAG AAGTTTCTAC TCCATGAGTA 180

GACTCCAAGT GCTCCGGTTG ATTCCAGTGA GGGAGAAAGT GATCTGCAGG GAGGTGGACA 240

	ATGTC 300									
CTCGTAGACT GTCATTGCTC CTCAGGTGCC TGGGCCGCTG AACAGTCCTT GGGTCA	ATTGT 360									
CAGCTGAGAG GCTTATACTA AAGTTATTAT TGTTTTTCCC AAGTTCTCTG TTCTG	GATTT 420									
TCAGTTGCAT ATTAATGTAA CGGGCCATGG GGTATGTACA TGTAGGGGCT GAGGTT	rggag 480									
GCCTACTAAT TTCCTGTAGG GAAGACTCCC AGCACTTCTG GAACTGTGCT TCTCTT	TTATT 540									
TTTCTACTTC TCAATTTGAT GGTTCGATTA AAGCCTTCTA GTATCTCAAT GAAAA	595									
(2) INFORMATION FOR SEQ ID NO:28:										
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 896 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear										
(ii) MOLECULE TYPE: DNA										
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 4396										
,										
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:										
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28: CTG ATG TCC GCA ATT CTG AAG GTT GGA CAC CAC TGC TGG CTG CCT G Met Ser Ala Ile Leu Lys Val Gly His His Cys Trp Leu Pro V 1 5 10										
CTG ATG TCC GCA ATT CTG AAG GTT GGA CAC CAC TGC TGG CTG CCT G Met Ser Ala Ile Leu Lys Val Gly His His Cys Trp Leu Pro V	7al 15 GCT 96									
CTG ATG TCC GCA ATT CTG AAG GTT GGA CAC CAC TGC TGG CTG CCT G Met Ser Ala Ile Leu Lys Val Gly His His Cys Trp Leu Pro V 1 5 10 ACA TCC GCT GTC AAT CCC CAA AGG ATG CTG AGG CCA CCA CCA ACC GThr Ser Ala Val Asn Pro Gln Arg Met Leu Arg Pro Pro Pro Thr A	7al 15 SCT 96 Ala ATG 144									
CTG ATG TCC GCA ATT CTG AAG GTT GGA CAC CAC TGC TGG CTG CCT GMet Ser Ala Ile Leu Lys Val Gly His His Cys Trp Leu Pro Val Trp Ser Ala Val Asn Pro Gln Arg Met Leu Arg Pro Pro Pro Thr Ac TCC GCT TGC GCC GCT TGC TGC TGT CTG TGG GGG CAG ATG CTG AGG CTG CTG ATG CTG AGG CTG CCA ACC GTT TTC AAC TGT GCC GCT TGC TGC TGT CTG TGG GGG CAG ATG CTG ACC Val Phe Asn Cys Ala Ala Cys Cys Cys Leu Trp Gly Gln Met Leu Met Le	7al 15 GCT 96 Ala ATG 144 Met 192									
CTG ATG TCC GCA ATT CTG AAG GTT GGA CAC CAC TGC TGG CTG CCT GMet Ser Ala Ile Leu Lys Val Gly His His Cys Trp Leu Pro Val Gly His His Cys Trp Leu Pro Val Gly Trp Leu Pro Val Gly His His Cys Trp Leu Pro Val Gly Trp Leu Pro Val Gly Gly Gly Gly Gly Gly Gly Grant	7al 15 96 Ala 96 Ala 144 Met 192 7al 192 7al									

- 147 -	
CTC CGC AGT CAC CTG GAG GGC TGT CTG CCC CAT GCA CTA CCC Leu Arg Ser His Leu Glu Gly Cys Leu Pro His Ala Leu Pro 100	
CCC CTG CCA CCG CGC ATG CTC CGC TTT CTG CAG CTG GAC TTC Pro Leu Pro Pro Arg Met Leu Arg Phe Leu Gln Leu Asp Phe 115 120	e Glu Asp
CTG CTC TAC TAGGCTTGCT GCCCTGTGAA CAAAGCAGAC CCCACCCCC. Leu Leu Tyr 130	A 433
CCCCAAGGC ATCTCTCAGC AATGAATGAT GCAAGGCGGT CTGTCTTCAA	GTCAGGAGTG 493
GACGCCTTGA TCCACACTTG AGAGAAGAGG CCAGATCAGC ACCYGGCTGG	TAGTGATNGC 553
AGAGGCCACC TGTGCAGATC TGTGTGCGCA CTGGAAATCT CTAGGCTGAA	GGCYAGAGCA 613
AATGGTGCAR GTGTTAGTCC TTGGGANGAG AGACAGANGG TGAGAAAGCA	AGACAGAGGT 673
GAGAGTGCAC ATGTCAAGTG GTAGATTGCC TTAAAAGAAA GCTAAAAAAA	GAAAAAGATT 733
CGGGCGAACT TCTTTAGGGG TAATGCTGCA GCGTGTTAAA CTGACTGACC	AGCGTCCATA 793
TCTTTGGACC CTTCCCGGGT GAAAAAGCCC CTTCATCCTC CAGCGCTCCC	CAAGGGTGCT 853
TAGCAATACC GGGTGCTTTT CTGCCGCAAA GTGAGTTACC AAA	896
(2) INFORMATION FOR SEQ ID NO:29:/	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 130 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: protein	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:	
Met Ser Ala Ile Leu Lys Val Gly His His Cys Tro Leu Pro	o Val Thr

Met Ser Ala Ile Leu Lys Val Gly His His Cys Trp Leu Pro Val Thr 1 10 15

Ser Ala Val Asn Pro Gln Arg Met Leu Arg Pro Pro Pro Thr Ala Val

Phe Asn Cys Ala Ala Cys Cys Cys Leu Trp Gly Gln Met Leu Met Asn 35 40 45

Thr Tyr Arg Val Val Gin Leu Pro Glu Glu Ala Lys Gly Leu Val Pro 50 55 60

Pro Glu Ile Leu Gln Lys Tyr His Gly Phe Tyr Ser Ser Leu Phe Ala 65 Leu Val Arg Gln Pro Arg Ser Leu Gln His Leu Cys Arg C/s Ala Leu Arg Ser His Leu Glu Gly Cys Leu Pro His Ala Leu Pro Arg Leu Pro 105 110 Leu Pro Pro Arg Met Leu Arg Phe Leu Gln Leu Asp ₽he Glu Asp Leu 120 125 Leu Tyr 130 (2) INFORMATION FOR SEQ ID NO:30: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 436 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:30: GTGGGGGCGT CATCATGACC TCCTCTAGGG CT&TGCAACA TGACTCCTGT GGTGCAAATC 60 AACAAATTGT TCACTGATGA ATCCACAAGG AICTCTGGGC CTACAACCAG GTCCTGGTCC 120 ACATGACTGT CGTCTTCGGA GAAGGCACCA/CTCGCCCCCG GCAGGTACGG CTGACACCTC 180 CATGGGAGAA GACGTATCCA GGCAGCAGCT GCGCGGCCCT TCAAGAGGGC ACATCCCGTC 240 ATCTAAAGGC ACGGTGTACT GAAGGTAGIC CTGAGACATG AGTCCGATTA CTACAGGCAC 300 GTGTTCCTCC AGGTGGAGGC TCAGGTQCCC GGGTGAGCTG GGGCTGCAGC GGGACTCAGG 360 GCGCGGCTCT GGCTGCAGGT CTCGCAGCTC CCTGGGCTGT AGCTCCCGCA GATCCTTGCG 420 436 CACACCGTTG ACTGGT (2) INFORMATION FOR SEQ ID NO:31: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21/80 base pairs (B) TYPE: nucleic acid (C) STRANDEDWESS: single (D) TOPOLOGY! linear

(ii) MOLECULE TYPÉ: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

TTAATAGTAC	CTACATAGTA	GAAAATTATA	ACTCCACTTT	AAAACAATGT	TTTCTTTCTA	60
TTCAAATCAA	TTTAAAACTT	TTTATAAACA	TTAATGTTGC	AAGAGAATCC	AGTCCATTTA	120
TGAAAATTAG	TTGACAATCA	AGTTCACCCA	AGAAAATGTT	GACTAAGOTA	AAGAAATCAC	180
AGATAAAACA	TTTTACCAAA	AGGATAGGTA	ACACACAAAA	AAATGCTATC	ACAGGAAGCT	240
ATGATCATCT	AATATTTCTT	TAATAATAAT	TCTAGTTCCA	TAGGTTTTCA	TGTTATGCCA	300
ATTTGTACCC	GAGTTTAATT	ACAGAAAAGG	CAACAATTTC	TAAATTGGTG	GTATACATTT	360
CTTTACAATT	TTTTAATGTA	AGGCCATTTA	TTAAAATAGA	CAAACTAGAA	GATGAAAACG	420
AAGGCAACAG	AAAAATTCAA	CTTTTCACAA	CCAAAAGAAT	TAGCACAACC	TTAGAAATAA	480
TTTAGAAAAA	AGTGTTGTTA	AAAGATATGT	TGCAGATCTC	CGTTCCATTA	CCCAAGATTA	540
TGTCAATTCA	CGATTCTAAA	TAAATCTTTT	TAAAGTAAGA	GATTAAAAAC	TCATCTTCAG	600
TGTATATGTA	AATTCCGTGG	TTTTATCACA	CAGGTATGTT	TATTCAACAC	TGCTTTGGAA	660
ATGGACCATT	TAAAAGGACA	TGGCAATTTC	CATTCTGTTA	AGTTTCATTC	AACCTTTACT	720
TAGGGGTTGA	TTACCACATG	AAATGTGCTT	TTAATGCATA	AAAATCACAG	TGGATTAGCC	780
AGCAAAAGGG	ACTGGGCGGG	GGGGCATTG	ACGAGAATTT	GATAATTCAC	ATTGTGATTA	840
TTCTGCACAT	TGATGAAACA	TAATTCACAC	стстаааасс	TCAAGACTTC	CCTTTTTTAA	900
AGAACCAAAA	TAAACCCAAG	ACACCTTGCT	GACACTTCCC	CACCCCTAAA	CAAACTGATG	960
ACTCTTTTAC	АСАТААААСТ	GAAATAGTTA	TGGCAGCAAA	AGATTTTGAT	GGCAATGAAA	1020
GTTTGTAAAC	TGTATTTCAA	TCTCTTGTTC	TTATTCCCAA	AGTGCAAGAT	GCAGGGTTCT	1080
CAATCTTTCA	GTAGTGCTTC	TCCTGTAAAT	AATCCTTCAT	TTTGTTTGGC	AAAGGCAGTT	1140
TCTGAATTAA	GTCTATTCTG	GTATACTGAC	GTATAACAAA	ACGACACAGG	TACTGCAACG	1200
AGCGCACCTA	TGAACCCCGG	AACACTGGTT	GGCAAGTTCT	GACGGAAGTG	CAGATTCCAG	1260
GCAGCGAGAC	CTTGAATAAC	AAAAGCTCC	CATTTTCAGA	GTCCCTGATT	GAATGCTCCA	1320
ATTAGATCAA	CTATGGACGT	ATGTCCTTCC	ACATCGGCTG	TTCATAAAAG	CTAAACCTAC	1380
CATTTGAGTG	СТСААТТСТА	GTGTGAAGTG	TTTTACCATG	GGAGCGAAAG	TCACAGCTTA	1440
AAAGGTAACG	GTCGTCAGAA	CTGTCCCGAA	CAAGAAAAGA	ACCATCTGGC	ACGTTTGCTA	1500

GCTTCCCTTC TGCCTCCCAA	CGTGTGATTG	GTCCCCAGTA	CCATCCTTGC	TTTGCAAGTT	1560
TTTTCAGCTC CTCTGTAAGG	CTTGTCACAA	CCATGGGACC	ACTACTTTGC	ACTGAGTCAT	1620
AAACTCTTGC AACCCCAGGA	GCAGAGTTCG	GATCAAAATT	CAAATGACAG	CGCATAACTT	1680
TCAGCCACGT GGGGCTTTCT	GTCCAGTGAG	TCCACTGAAA	GTTCCCCTTT	GGGATTTGGA	1740
TTATTCCTGC ATTGGAGTAA	CCAATGGTGA	AGATTGGAGG	GACATCCATC	GTGAACCCGC	1800
TCTCCGGGGT TCTGCAACAT	GACTCCCGTG	GTGCCAATCA	ACAAGCCATT	CACCGGACTG	1860
ATCCACGAAG ATCTCTGGGG	CGACAACTAG	GTCCTGGTCT	ACCTGACTCT	CATCCTCGGG	1920
GAAAGCGCGC CCTCCCACTT	GAGGAGGAAC	CGCAGAGACT	TCCATGGGAG	AAGAGCTGTC	1980
CAGACAATAG CTCCGTGATC	CTTCCAAAGG	ATACATCCCC	TCATCTAAAG	GCACAGTATA	2040
CTGAATGTAG TCCTGAGGCA	TAAGTCCAAT	AACGACAGGC	ACATGTTCAT	CCAGGTGAAG	2100
ATGCAGGTCT CCATTATGAG	AAGCCGAGCT	CTTCAGTGAA	TTGGCTTGCT	CCTGGCACGT	2160
GGTCTCAGAC TGGAGGTCGT					2180

(2) INFORMATION FOR SEQ ID NO:32:

- (i) SEQUENCE CHARACTERISTICS;
 - (A) LENGTH: 2649 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: sing/le
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

GGCACGAGGC TG	TGTCCAGC AG	CACAGAGAG	GGCCCGGCCA	TCTGCTTTGG	TTCAGAGCCC	60
TGTGTCTGTC TG	TCACTTAG AG	СТСТТССТС	CCGGCTCGCA	GCTCACCCTC	CATCCTCCTT	120
ACTGGCTCCA GC	ATGACTCG C	TTCTCTTAT	GCAGAGTACT	TTGCTCTGTT	TCACTCTGGC	180
TCTGCACCTT CC	AGGTCCCC T	TCGTCTCCC	GAGAACCCAC	CGGCCCGCGC	ACCCCTGGGT	240
CTGTTCCAAG GG	GTCATGCA G	AAGTATAGC	AGCAACCTGT	TCAAGACCTC	CCAGATGGCG	300
GCTATGGACC CC	GTGCTGAA /G	GCCATCAAG	GAAGGGGATG	AAGAGGCCTT	GAAGATCATG	360
ATCCAGGATG GG	AAGAATCT TO	GCAGAGCCC	AACAAGGAGG	GCTGGCTGCC	GCTCCACGAG	420
GCTGCCTACT AT	GGCCAGQT G	GGCTGCCTG	AAAGTCCTGC	AGCAAGCCTA	CCCAGGGACC	480

ATTGACCAAC	GCACACTGCA	GGAAGAGACA	GCATTATACC	TGGCCACATG	CAGAGAACAC	540
CTGGATTGCC	TCCTGTCGCT	GCTCCAGGCG	GGGGCAGAGC	CTGACATCTC	TAACAAATCC	600
AGGGAGACTC	CACTTTACAA	AGCCTGTGAG	CGCAAGAACG	CGGAGGGGT	GAGGATATTG	660
GTGCGATACA	ACGCAGACGC	CAACCACCGC	TGTAACAGGG	GCTGGACCGC	ACTGCACGAG	720
TCTGTCTCCC	GCAATGACCT	GGAGGTCATG	GAGATCCTAG	TGAGTGGCGG	GGCCAAGGTG	780
GAGGCCAAGA	ATGTCTACAG	CATCACCCCT	TTGTTTGTGG	CTGCCCAGAG	TGGGCAGCTG	840
GAGGCCCTGA	GGTTCCTGGC	CAAGCATGGT	GCAGACATCA	ACACGCAGGC	CAGTGACAGT	900
GCATCAGCCC	TCTACGAGGC	CAGCAAGAAT	GAGCATGAAG	ACGTGGTAGA	GTTTCTTCTC	960
TCTCAGGGCG	CCGATGCTAA	CAAAGCCAAC	AAGGACGCC	TGCTCCCCCT	GCATGTTGCC	1020
TCCAAGAAGG	GCAACTATAG	AATAGTGCAG	ATGCTGCTGC	CTGTGACCAG	CCGCACGCGC	1080
GTGCGCCGTA	GCGGCATCAG	CCCGCTGCAC	CTACCGGCCG	AGCGCAACCA	CGACGCGGTG	1140
CTGGAGGCGC	TGCTGGCCGC	GCGCTTCGAC	GTGAACGCAC	CTCTGGCTCC	CGAGCGCCC	1200
CGCCTCTACG	AGGACCGCCG	CAGTTCTGCG	CTCTACTTCG	CTGTGGTCAA	CAACAATGTG	1260
TACGCCACCG	AGCTGTTGCT	GCTGGCGGG	GCGGACCCCA	ACCGCGATGT	CATCAGCCCT	1320
CTGCTCGTGG	CCATCCGCCA	CGGCTGCCTG	CGCACCATGC	AGCTGCTGTT	GGACCATGGC	1380
GCCAACATCG	ACGCCTACAT	CGCCACTCAC	CCCACCGCCT	TTCCAGCCAC	CATCATGTTT	1440
GCCATGAAGT	GCCTGTCGTT	ACTCAZGTTC	CTTATGGACC	TCGGCTGCGA	TGGCGAGCCC	1500
TGCTTCTCCT	GCCTGTACGG	CAACGGCCG	CACCACCCGC	CCCGCGACCT	GGCCGCTTCC	1560
ACGACGCACC	CGTGGACGAC	AAGGCACCTA	GCGTGGTGCA	GTTCTGTGAG	TTCCTGTCGG	1620
CCCCGGAAGT	GAGCCGCTGG	GOGGGACCCA	TCATCGATGT	CCTCCTGGAC	TATGTGGGCA	1680
ACGTGCAGCT	GTGCTCCCGG	TGAAGGAGC	ACATCGACAG	CTTTGAGGAC	TGGGCTGTCA	1740
TCAAGGAGAA	GGCAGAACCT	CCGAGACCTC	TGGCTCACCT	CTGCCGGCTG	CGGGTTCGGA	1800
AGGCCATAGG	AAAATACCGG	ATAAAACTCC	TGGACACACT	GCCGCTTCCC	GGCAGGCTAA	1860
TCAGATACTT	GAAATATGAG	AATACACAGT	AACCAGCCTG	GAGAGGAGAT	GTGGCCTTCA	1920
GACTGTTTCC	GGGACGCCC	AGGTGGCCTG	CATCCAGGAC	CCCCTGGGGT	CAGAACAGGT	1980
GTGACCTTGC	TGGTTCTTTG	CTGGAGCTTC	ACCCAAAGTG	AGAACCTGAT	GTGGGGAGTG	2040

GACGTGGAAC CTCTGCTTTC ACACTGTCAG CGGATCGCAG ACCCGCTCTG/CTTC	TGGCCA 2100
TAGCCAGAGA CCTTCAACCT GGGGCCAGGG GAGAGCTGGT CTGGGCAAGG TGGC	CCCAGGC 2160
AGGAATCCTG GCCTTAAGCT GGAGAACTTG TAGGAATCCC TCACTGGACC CTCA	AGCTTTC 2220
AGGCTGCGAG GGAGACGCCC AGCCCAAGTA TTTTATTTCC GTGACACAAT AACG	STTGTAT 2280
CAGAAAAAA AAAAAACATG GGCGCAGCTT ATTCCTTAGT AGGGTATTTA CTTG	SCATGCG 2340
CGCTTAAAGC TACTGGAAAC ATGCGTTCCA CTATGCTTGA GAATCCCCTT GCAC	TGGTAA 2400
ACGAGAGCCG ACGTGCTTCA AGGTTGGATT TTTGGTTGCC CCTTTGGCGT TCCG	CCGCGTT 2460
TGTCCGACGT AATTGACCCC GTGTTTTGTC ACTTTCGAGT GTTCCGACTA TTGG	GGGGCT 2520
TTTGGTTGTC CCCAAAATTG TGGGTGGTGT GCGGACGCCA CGAGAAGTGG TTCA	TGGGCG 2580
ATAATCATTA CTGGAGAATG TAGAGCGGCG GTTTTACGAA TAAATATTTT TTAA	GCCGCC 2640
TTCCCAAAA	2649

(2) INFORMATION FOR SEQ ID NO:33:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 495 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

CCTCCTGAGA GTTCGCCGGC CCGGGCCC	CAA TGGGTTGTTC	CAAGGGGTCA	TGCAGAAATA	60
CAGCAGCAGC TTGTTCAAGA CCTCCCAC	CT GGCGCCTGCG	GACCCCTTGA	TAAAGGCCAT	120
CAAGGATGCG ATGAAGAGGC CTTGAAGA	ACC ATGATCAAGG	AAGGGAAGAA	TCTCGCAGAG	180
CCCAACAAGG AGGGCTGGCT GCCGCTGC	CAC GAGGCCGCAT	ACTATGGCCA	GGTGGGCTGC	240
CTGAAAGTCC TGCAGCGAGC GTACCCAC	GGG ACCATCGACC	AGCGCACCCT	GCAGGAGGAA	300
ACAGCCGTTT ACTTGGCAAC GTGCAGGC	GC CACCTGGACT	GTCTCCTGTC	ACTGCTCCAA	360
GCAGGGCAG AGCGGGACAT CTCCAACA	AAA TCCCGAGAGA	ACCGCTCTAC	AAAGCCTGTG	420
AGCGCAAGAA CGCGGAAGCC GTGAAGAT	TTC TTGGTGCAGC	ACAACGCAGA	CACCAACAAC	480
GCTGCAACCG GGCTG				495

(2) INFORMATION FOR SEQ ID NO:34:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 709 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

GTGCAGCTCT GCTCGCGGCT GAAGGAACAC ATCGACAGCT TTGAGGACTG GGCCGTCAT	C 60
AAGGAGAAGG CAGAACCTCC AAGACCTCTG GCTCACCTTT GCCGACTGCG GGTTCGAAA	G 120
GCCATTGGGA AATACCGTAT AAAACTCCTA GACACCTTGC CGCTCCCAGG CAGGCTGAT	T 180
AGATACCTGA AATACGAGAA CACCCAGTAA CTGGGGCCAC GGGGAGAGAG GAGTAGCCC	C 240
TCAGACTCTT CTTACTAAGT CTCAGGACGT CGGTGTTCCC AACTCCAAGG GGACCTGGT	'G 300
ACAGACGAGG CTGCAGGCTG CCTCCCTCTC AGCCTGGACA GCTACCAGGA TCTCACTGG	360 360
TCTCAGGGCC CAGAGCTTTG GCCAGAGCAG AGAACAGAAT GTGTCAAGGA GAAGAATCA	т 420
TTGTTTACAA ACTGATGAGC AGATCCCAGA CCTTCTCTAC CTTCAGGAAT GGCAGAAAC	C 480
TCTATTCCTG GGGCCAGGGC AGAGCTTGAG GTGTTCTGGG GAAGGTGGTG CTCAGAGCC	T 540
TCCCTGTGCC CCTCCACTTG TTCTGGAAAA CTCACCACTT GACTTCAGAG CTTTCTCTC	C 600
AAAGACTAAG ATGAAGACGT GGCCCAAGGT AGGGGGTAGG GGGAGCCTGG GTCTTGGAG	G 660
GCTTTGTTAA GTATTAATAT AATAAATGTT ACACATGTGA AAAAAAAAA	709

- (2) INFORMATION FOR SEQ ID NO:35/
 - (i) SEQUENCE CHARACTERISTIĆS:
 - (A) LENGTH: 848 base/pairs
 - (B) TYPE: nucleic acfid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1/..624
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

														GAT Asp 15		48
														CGA Arg		96
														CAG Gln		144
														AGC Ser		192
														GAG Glu		240
														TAT Tyr 95		288
														CTG Leu		336
														CTT Leu		384
AGA Arg	TTC Phe 130	CGG Arg	ATA Ile	CGA Arg	CAG Gln	CTC Leu 135	GTC/ Val	AGG Arg	ATA Ile	GAT Asp	CAC His 140	ATC Ile	CCA Pro	GAT Asp	CTC Leu	432
														TAC Tyr		480
														CGT Arg 175		528
														GGG Gly		576
						GGG Gly								CTT Leu	TGA	624

2022		. A.M. M	מא א כי כי	ישאכיכ	יא חור	א ת ת ת רי	CAAC	. AGC	במממב	стс	ACCC	מסממי	de a	ልርርባ	TGGGA	684
												/	<i>'</i>			
ттст	CTGT	GC A	AGAGA	CTTI	'G G'I	TCCC	CACG	CAA	AGCCC	TGG	GGCI	TGGA	AG A	AGCA	CATGA	744
CCGI	ACTO	TG (CGTGC	GGCT	C CA	ACCTO	CACAC	CCA	CCCC	TGG	GCAT	CTT	AGG A	ACTGG	AGGGG	804
CTCC	TTGO	SAA A	ACTO	GAAG	A AC	STCTO	CAACA	A CTG	TTTC	TTT	TTCA	/				848
(2)	INFO	RMAT	NOI	FOR	SEQ	ID N	10:36	5:								
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 207 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear															
	(j	i) N	OLEC	ULE	TYPE	E: pr	otei	n								
	()	ci) S	SEQUE	ENCE	DESC	CRIPT	ION:	SEÇ) ID	MO:3	86:					
Leu 1	Glu	Lys	Cys	Gly 5	Trp	Tyr	Trp	Gly	Pro/	Met	Asn	Trp	Glu	Asp 15	Ala	
Glu	Met	Lys	Leu 20	Lys	Gly	Lys	Pro	Asp 25	G ₁ y	Ser	Phe	Leu	Val 30	Arg	Asp	
Ser	Ser	Asp 35	Pro	Arg	Tyr	Ile	Leu 40	Ser	Leu	Ser	Phe	Arg 45	Ser	Gln	Gly	
Ile	Thr 50	His	His	Thr	Arg	Met 55	Glu	His	Tyr	Arg	Gly 60	Thr	Phe	Ser	Leu	
Trp 65	Cys	His	Pro	Lys	Phe 70	Glu	Asp	Arg	Cys	Gln 75	Ser	Val	Val	Glu	Phe 80	
Ile	Lys	Arg	Ala	Ile 85	Met	His	Ser	Lys	Asn 90	Gly	Lys	Phe	Leu	Tyr 95	Phe	
Leu	Arg	Ser	Arg 100	Val	Pro	Gly	Leu	Pro 105	Pro	Thr	Pro	Val	Gln 110	Leu	Leu	
Tyr	Pro	Val 115	Ser	Arg	Phe	Ser	Asn 120	Val	Lys	Ser	Leu	Gln 125	His	Leu	Cys	
Arg	Phe 130	Arg	Ile	Arg	Gln	Leu 135	Val	Arg	Ile	Asp	His 140	Ile	Pro	Asp	Leu	
Pro 145	Leu	Pro	Lys	Pro	Levi 15/0	Ile	Ser	Tyr	Ile	Arg 155	Lys	Phe	Tyr	Tyr	Tyr 160	
Asp	Pro	Gln	Glu	Glu	Val	Tyr	Leu	Ser	Leu	Lys	Glu	Ala	Gln	Arg	Gln	

Cont

Phe Pro Asn Arg Ser Lys Arg Trp Asn Pro Pro Arg Ser Glu/Gly Leu 180 185 190

Pro Ala Gly His His Gln Gly His Leu Val Ala Lys Leu 61n Leu 195 200 205

(2) INFORMATION FOR SEQ ID NO:37:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 464 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO/37:

GTTCCAAGCC	TAACCCATCT	TTGTCGTTTG	GAAATTCGGG	CCAGTCTAAA	AGCAGAGCAC	60
CTTCACTCTG	ACATTTTCAT	CCATCAGTTG	CCACTTCCCA	GAAGTCTGCA	GAACTATTTG	120
CTCTATGAAG	AGGTTTTAAG	AATGAATGAG	ATTCTAGAAC	CAGCAGCTAA	TCAGGATGGA	180
GAAACCAGCA	AGGCCACCTG	ACACAGGTCC	TTAATTCTG	TTTAGTCACA	AAAGACGGCT	240
TGTGTGACTG	TTTGGATTTG	GTGATCAAAT	GTCCATGTTT	ACAGTTGCTT	TTCCCAGTTT	300
GTGTCTTTCC	CAATATTGTG	AACCTTATCO	ATCTTGCCTT	ACTCAGTTTT	ATTTCTAGTG	360
CACTTTGTTG	TGTATTATTT	GTTTACCTGA	CCATTTTCTA	CTTTATTCTG	СТААТАААСТ	420
GTAATTCTGA	AAAAAAAA	алаладала	АААААААА	AAAA		464

(2) INFORMATION FOR SEQ ID NO:38:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 747/base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: /linear
- (ii) MOLECULE TYPE! DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

GGGGATCGAA AGCGGGGGCT TCTGGGACGC AGCTCTGGAG ACGCGGCCTC GGACCAGCCA 60
TTTCGGTGTA GAAGTGGCAG CACGGCAGAC TGGTCAAACA AATGGATTTT ACAGAGGCTT 120
ACGCGGACAC GTGCTGTACA GTTGGACTTG CTGCCAGGGA AGGCAATGTT AAAGTCTTAA 180

- 157 -							
GGAAACTGCT CAAAAAGGGC CGAAGTGTCG ATGTTGCTGA TAACAGGGGA TGGATGCCAA	240						
TTCATGAAGC AGCTTATCAC AACTCTGTAG AATGTTTGCA AATGTTAATT AATGCAGATT	300						
CATCTGAAAA CTACATTAAG ATGAAGACCT TTGAAGGTTT CTGTGCTTTG CATCTCGCTG	360						
CAAGTCAAGG ACATTGGAAA ATCGTACAGA TTCTTTTAGA AGCTGGGGCA GATCCTAATG	420						
CAACTACTTT AGAAGAAACG ACACCATTGT TTTTAGCTGT TGAAAATGGA CAGATAGATG	480						
TGTTAAGGCT GTTGCTTCAA CACGGAGCAA ATGTTAATGG ATCCCATTCT ATGTGTGGAT	540						
GGAACTCCTT GCACCAGGCT TCTTTTCAGG AAAATGCTGA GATCATAAAA TTGCTTCTTA	600						
GAAAAGGAGC AAACAAGGAA TGCCAGGATG ACTTTGGAAT CACACCTTTA TTTGTGGCTG	660						
CTCAGTATGG CCAAGCTAGA AAGCTTTGAA GCATACTTAT TTCATCCGGG TGCAAATGTC	720						
AATTGTCAAG CCTTGGACAA AGCTACC	747						
(2) INFORMATION FOR SEQ ID NO:39:							
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1018 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear							
(ii) MOLECULE TYPE: DNA							
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:							

				,		
60	ACCGGGACCT	CCACTTACTA	TTGTTAATAA	AATCTTGGAC	ACCATACAAA	CACAAATGGG
120	GGGACATGAA	CAGTGTTTGG	GTTTACTCAG	GTAGTCCCT	GCTAAACAAA	GTGACACTGG
180	GCGTGCCTTG	AGACGCCCAG	TCTACAGCCC	TCCGGAATGG	GAAATATTAC	GGATTGCCTA
240	CTGTAGTTCT	GGAGGTGGAG	CTTTCCAAAA	GTGTGCATGG	CAGTTCTCCT	TTTTTGGATT
300	CATTTGGCAT	AAATGAACTT	GAGCCCAGAT	TTGAAATATG	GAACATTCTT	TTGGAATTGT
360	GGTTGCTCAT	TTTGAGGAAA	TTCGCTACTT	TTTTCGATAT	GTACGAGAAG	ACTGCCTGAA
420	CAAGCAAAAT	AATTAAAGCA	TAAATCATGC	TATGAATTTG	GAACCATATA	TGGGACCATG
480	CTACTGTGCA	CCCACTGATT	CTGGATTTGA	CTTCTGGTTG	GTTGCCACAT	ATAAGGAGTG
540	TTTACTAATT	CACTTTGGAG	CCCTTATCTT	AGCATTGACA	TGACTCAGTC	ATTCTTGGAT
600	AACGCTTGGA	TCGTGCCTCA	TGCTCTCTGC	GTTGAAAGGA	TGCACCAGCT	GGAAGACACT

TTCTACAGCA	ACATATTGCC	CACTGTTCCA	TCCCTGACCC	ATCTTTGTCG	TTTGGAAATT	660
CGGTCCAGTC	TAAAATCAGA	ACGTCTACGG	TCTGACAGTT	ATATTAGTCA	GCTGCCACTT	720
CCCAGAAGCC	TACATAATTA	TTTGCTCTAT	GAAGACGTTC	TGAGGATGTA	TGAAGTTCCA	780
GAACTGGCAG	CTATTCAAGA	TGGATAAATC	AGTGAAACTA	OTTAACACAG	CTAATTTTTT	840
TCTCTGAAAA	ATCATCGAGA	CAAAAGAGCC	ACAGAGTACA	AGTTTTTATG	ATTTTATAGT	900
CAAAAGATGA	TTATTGATTG	TCAGATAGGT	TAGGTTTTGG	GGGGCCAGTA	GTTCAGTGAG	960
AATGTTTATG	TTTACAACTA	GCCTTCCCAG	таааадаааа	АААААААА	ААААААА	1018
			<i>f</i>			

(2) INFORMATION FOR SEQ ID NO:40:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1897 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

CGGGGGGCTG G	GACCTGGGG	CGTAACCGTC	TCTACCACGA	CGGCAAGAAC	CAGCCAAGTA	60
AAACATACCC AG	GCCTTTCTG	GAGGCGGACG	AGACATTCAT	TGTCCCTGAC	TCCTTTTTCG	120
TGGCCCTGGA CA	ATGRATGAT	GGGACCTTAA	GTTTCATCGT	GGATGGACAG	TACATGGGAG	180
TGGCTTTCCG GO	GGACTCAAG	GTAAAAAGC	TGTATCCTGT	AGTGAGTGCC	GTCTGGGGCC	240
ACTGTGAGAT CO	CGCATGCGC/	TACTTGAACG	GACTTGATCC	TGAGCCCCTG	CCACTCATGG	300
ACCTGTGCCG GO	CGTTCGGT	CGCCTAGCGC	TGGGAAAAGA	GCGCCTGGGT	GCCATCCCCG	360
CTCTGCCGCT AC	CCTGCCTCC	CTCAAAGCCT	ACCTCCTCTA	CCAGTGATCC	ACATCCCAGG	420
ACCGCCATAC GA	ACAGCCATC	TGGTGCCAAR	TCACTGAGCC	CGTTGGGGTC	CGCCGACCCC	480
TGCGCCTGGG A	TGGAAGCCC	ACCTCAGCCA	TGGGCAGACG	TGCCCCCTCA	TCCTACCGGC	540
TGCCTCTGCT GC	GGGAACCT	ATGCCAACGG	ACTTCTCCCT	TCCCAACACT	GGCTGAAGCA	600
GCAGCACCCA GC	GCCTTCCC	TGAACCAGAT	GCAGAGAATA	AACTATGAAA	ACCTCTCTCA	660
GGCGCCTTCT G	/ CTCTCAGGT	GGAGTGGGCT	GCCCCCACT	CTCTGCAGAG	AGAGGCTACA	720
CCCACCTGGG /G	GGTCCTGGG	AGGTAAGACT	AGTAGGAGGT	GCCAGGGCTG	ARTCCAAAAG	780

- 159 -

CAGGAATGGC CAGGAMCAGG CCA	TACAGAT GAAGCTCAGG	ATGTCACATA	CCATGGACAM	840
TGAGACAGAA CCCCAGGTTG GAM	TTCCCTT GGGCCAACGA	GTGCCAGCTT	TAATGTCAGC	900
TGCMGGTGCT CTGTGGCCTG TAT	TTATTCT TTAAACAGTA	CAAAGGCCA	TTTATTTATT	960
CCACTTAGAA AGGAAACCTT GGT	GGGTGGY TTCCCTCGAT	GTGCTTTCCC	CCACCTCCCT	1020
GGAATGTGTG TGCCACACCT GTC	CTTGTCC CAGGCCAGGA	CTGTGGCACA	TGAGCTGGTG	1080
TGCACAGATA CACGTATGTC GTC	GTGCATG ACCCCTCACT	AGTTCCTAAG	TAGCCCTGCA	1140
CCAAGCACCA GAGCAGACCC CAA	GAGAGGC CCGTGCAAGT	CCCCATGTCC	CCAGGTCCCT	1200
GCTTCTGTTG CCTTGGGACT CAT	ACACCGG CACACGTGTT	TCAGCCTCTT	GACTTCCATG	1260
AGCTTCGAAT TTTGCCCCCG ATT	CTTCTGA TATTTCCCAT	TGGCATCCTC	CAAAGCTCTG	1320
GGCCTGGAGG GCATTAGGAC ACA	TGGAATG AGTGGGGTCT	CCAGCCCCTG	GGAAAGCCAC	1380
TGGCAAGGCA GGATTAGAAA GAC	CAAGAGC AGGGTGGGGC	GCCATGAAGC	CTGTATGCCT	1440
CTCAGGCTCA AGACCCCGCC ACA	CACCCAC TCAAGCCTCA	GAAGTGGTGT	GTAGGGCAGC	1500
CCCAGGAGAG GAATGCCTGT CCT	AGCAGCA CGTACATGGA	GCACCCCACA	TGTGCTCCAG	1560
CCCTCTGGCT GTTTCTCTTG CTC	TAGAATC AACTCCCTAC	ATTGGGAATG	TAGCCATTTG	1620
GTAGAGGACT TGCCTAGCCT GCA	GGAAGCT CACGTTCCAT	CCCCTGCACC	AAGGAGAATC	1680
AAAGCTCAGG AGGCTGAGGC AGG	AGGATTG CTGTCAGTGG	TGTACAGAGG	TCATGGCCAT	1740
CCTGGGCTAT ATTAAACCTT GTC	CTTTAAG AAAAAGAAAA	GAAATCAACT	TCCATTGAAT	1800
CTGAGTTCTG CTCATTTCTG CAC	AGGTACA ATAGATGACT	TKATTTGTTG	AAAAATGKTT	1860
AATATATTTA CMTATATATA TAT	TTGTAAG AAGCATT			1897

(2) INFORMATION FOR SEQ ID NO:41:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 134 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECYLE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:
- Gly Gly Trp Asp Leu Gly Arg Asn Arg Leu Tyr His Asp Gly Lys Asn 1 1 15

Gln

	Pro	Ser	Lys	Thr 20	Tyr	Pro	Ala	Phe	Leu 25	Glu	Pro	Asp	Glu	Thr	Phe		
	Ile	Val	Pro 35	Asp	Ser	Phe	Phe	Va1 40		Leu	Asp	Met	Xaa 45		Gly	Thr	
	Leu	Ser 50		Ile	Val	Asp	Gly 55		Tyr	Met	gly	Val 60		Phe	Arg	Gly	
	Leu 65		Gly	Lys	Lys	Leu 70		Pro	Val	Va/1	Ser 75	• •	Val	Trp	Gly	His 80	
		Glu	Ile	Arg	Met 85		туr	Leu	Asn	Gly 90		Asp	Pro	Glu	Pro 95		
	Pro	Leu	Met	Asp 100	Leu	Cys	Arg	Arg	ser /105	Val	Arg	Leu	Ala	Leu 110		Lys	
	Glu	Arg	Leu 115	Gly	Ala	Ile	Pro	Ala 120	Leu	Pro	Leu	Pro	Ala 125	Ser	Leu	Lys	
	Ala	Tyr 130	Leu	Leu	Tyr	Gln	/										
(2) I	NFOF	CTAMS	ON F	FOR S	SEO I	D NO): <u>4</u> 2:	;									
(2) INFORMATION FOR SEQ ID NO: 42: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 265 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear																	
(ii)	MOLE	CULE	TYF	E: 7) NA											
(xi)	SEQU	IENCE	E DES	CRA E	MOIT	: SE	EQ II	NO:	42:							
AAGGG	TAAA	A AA	CTGI	ATCC	rgī	AGTO	AGT	GCCG	TCTC	GG G	CCAC	TGTA	G AI	CCGP	ATGC	:	60
GCTAC	TTGA	A CO	GACI	CGA	ccc	GAGA	CTG	CCGC	TCAT	GG A	TTTG	TGCC	G TO	GCTC	GGTG	}	120
CGCCT	GGCC	C TO	GGGA	.GGGA	GCG	CCTO	GGG	GAGA	ACCA	CA C	CTGC	CGCT	G CC	GGCI	TCCC	;	180
TCAAG	GCCI	'A CC	TCCI	TAC	CAG	TGAC	GTT	CGCC	ATCA	TA C	CGCC	AGCG	SC GP	CAGC	CACC	:	240
TGGTG	CCAA	C TC	ACT	/ BAGCC	GCC	TG											265
(2) I	NFOR	ITAM	ON F	OR S	EQ I	D NC	:43:										
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2438 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single																	

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:

				/		
AAGTGGCGGC	GGTCCCTGGA	GAGCAGGCGG	AGGCAGCGGC	AGTCTGACT	CTGGGCTGAC	60
CGTGGAGCCG	GGGCGGGGC	TGACAGCCAG	GCCTCCGCCT	GGCGGGAGCC	GCACGAGGAG	120
CGGGAGTGGC	CGGGCCTCTC	TTCCGCGCTT	GAGCGAGCGC	CGGGTGATGG	CGGTGGTGAT	180
GGCGGCAGGC	GCTCGGACAG	CTCCGCTTGA	GCTGAGCTCG	GAGAGATCCG	TCCAGAAAGT	240
GCCCAGAAGA	AACTTCCTCT	TAGAAAAGCT	GAAAAACACA	RTATTTATAA	CACTGGAAAT	300
TGTAAAGAAT	TTGTTTAAAA	TGGCTGAAAA	CAATAGTAAA	AATGTAGATG	TACGGCCTAA	360
AACAAGTCGG	AGTCGAAGTG	CTGACAGGAA	GGATGGTTAT	GTGTGGAGTG	GAAAGAAGTT	420
GTCTTGGTCC	AAAAAGAGTG	AGAGTTGTTC	TGAATCTGAA	GCCATAGGTA	CTGTTGAGAA	480
TGTTGAAATT	CCTCTAAGAA	GCCAAGAAAG	GCAGCTTAGC	TGTTCGTCCA	TTGAGTTGGA	540
CTTAGATCAT	TCCTGTGGGC	ATAGATTTTT	AGGCCGATCC	CTTAAACAGA	AACTGCAAGA	600
TGCGGTGGGG	CAGTGTTTTC	CAATAAAGAA	TTGTAGTGGC	CGACACTCTC	CAGGGCTTCC	660
ATCTAAAAGA	AAGATTCATA	TCAGTGAACT	CATGTTAGAT	AAGTGCCCTT	TCCCACCTCG	720
CTCAGATTTA	GCCTTTAGGT	GGCATTTTAT	TAAACGACAC	ACTGTTCCTA	TGAGTCCCAA	780
CTCAGATGAA	TGGGTGAGTG	CAGACCTGTC	TGAGAGGAAA	CTGAGAGATG	CTCAGCTGAA	840
ACGAAGAAAC	ACAGAAGATG	ACATACCCTG	TTTCTCACAT	ACCAATGGCC	AGCCTTGTGT	900
CATAACTGCC	AACAGTGCTT	CGTGTACAGG	TGGTCACATA	ACTGGTTCTA	TGATGAACTT	960
GGTCACAAAC	AACAGCATAG	AAGACAGTGA	CATGGATTCA	GAGGATGAAA	TTATAACGCT	1020
GTGCACAAGC	TCCAGAAAAA	GGAATAAGCC	CAGGTGGGAA	ATGGAAGAGG	AGATCCTGCA	1080
GTTGGAGGCA	CCTCCTAAGT	TCCACACCCA	GATCGACTAC	GTCCACTGCC	TTGTTCCAGA	1140
CCTCCTTCAG	ATCAGTAACA	ATCCGTGCTA	CTGGGGTGTC	ATGGACAAAT	ATGCAGCCGA	1200
AGCTCTGCTG	GAAGGAAAGC	CAGAGGGCAC	CTTTTTACTT	CGAGATTCAG	CGCAGGAAGA	1260
TTATTTATTC	TCTGTTAGTT	TTAGACGCTA	CAGTCGTTCT	CTTCATGCTA	GAATTGAGCA	1320
GTGGAATCAT	AZCTTTAGCT	TTGATGCCCA	TGATCCTTGT	GTCTTCCATT	CTCCTGATAT	1380

	•			,		
TACTGGGCTC	CTGGAACACT	ATAAGGACCC	CAGTGCCTGT	ATGTTCTTTG	AGCCGCTCTT	1440
GTCCACTCCC	TTAATCCGGA	CGTTCCCCTT	TTCCTTGCAG	CATATTTGCA	GAACGGTTAT	1500
TTGTAATTGT	ACGACTTACG	ATGGCATCGA	TGCCCTTCCC	ATTCOTTCGC	CTATGAAATT	1560
GTATCTGAAG	GAATACCATT	АТАААТСААА	AGTTAGGTTA	CTOAGGATTG	ATGTGCCAGA	1620
GCAGCAGTGA	TGCGGAGAGG	TTAGAATGTC	GACCTGCATA	CATATTTTCA	TTTAATATTT	1680
TATTTTTCTT	ATGCCTCTTT	GAATTTTTGT	ACAAAGGCAG/	TTGAATCAAA	TAAAACTGTG	1740
CCCTAAGTTT	TAATTCCAGA	ТСААТТТАТТ	TTTTTTATGA	TACACTTGTT	ATATATTTT	1800
AAGCAGGTGT	TTGGTTTTGT	TTTTACCATA	TAAATTTACA	TATGGTCCAG	GCATATTTAC	1860
AATTTCAAGG	CATTGCATAT	ACATTTGAAT	ATTCTGTATT	TTTTAAATAA	TCTTTTGTTC	1920
TTTCCTATGT	GTGAAATATT	TTGCTAATCT	ATGCTATCAG	TATTCTTGTA	TGACCGAATA	1980
GTTACCTATT	CTCTTTTCAT	CTTGAAGATT	TTCAGTAAAG	AGTGTTGTAA	TCAATCCATT	2040
ATAATGTAAT	TGACTTTTGT	AATTTGCCAA	TAGGAGTGTT	AAACAACAAA	ATGATTTAAA	2100
ATGAAACTTA	ATGTATTTTC	аттттааата	TTAACTAAAC	CAAGTTTGTT	TGTTAGTTAT	2160
TCTAGCCAAT	AAGAAAAGAG	AATGTAGCAT	CCTAGAGGTG	TATTTGTTCT	GCAGTTTGGC	2220
AGGACCGTCA	GTTAGTCCAA	ATAAACATCC	CCTCAGCGTG	GAGGCGAATG	GAACCTGTGC	2280
TCCTTTCTTA	CGGGAAGCTT	TGCAAAGCAA	AATAGCAGGG	TTACAAGCTT	GGAGTTGTTA	2340
AGGCAACTAG	AGTTTTCTCT	ATTAATTTAT	AGACTGTTGT	TGCACCTACT	TAGCTCTTTT	2400
TTGGGAACTC	TAGTTCCCAG	GGGAAAATAC	CTCGTGCC			2438

(2) INFORMATION FOR SEQ ID NO:44:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 542 amino acids
 - (B) TYPE:/amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENÇE DESCRIPTION: SEQ ID NO:44:

Ser Gly Gly Gly Pro Trp Arg Ala Gly Gly Gly Ser Gly Lys Ser Asp 1 10 15

Ser Gly Leu Thr Val Glu Pro Gly Arg Gly Leu Ahr Ala Arg Pro Pro Pro Gly Gly Ser Arg Thr Arg Ser Gly Ser Gly Arg Ala Ser Leu Pro Arg Leu Ser Glu Arg Arg Val Met Ala Val Val Met Ala Ala Gly Ala Arg Thr Ala Pro Leu Glu Leu Ser Ser, Glu Arg Ser Val Gln Lys Val Pro Arg Arg Asn Phe Leu Leu Glu Lys Leu Lys Asn Thr Xaa Phe Ile Thr Leu Glu Ile Val Lys Asn Leu Phe Lys Met Ala Glu Asn Asn Ser 105 Lys Asn Val Asp Val Arg Pro/Lys Thr Ser Arg Ser Arg Ser Ala Asp Arg Lys Asp Gly Tyr Val Trp Ser Gly Lys Lys Leu Ser Trp Ser Lys 130 Lys Ser Glu Ser Cys Ser Glu Ser Glu Ala Ile Gly Thr Val Glu Asn 145 155 Val Glu Ile Pro Leu Árg Ser Gln Glu Arg Gln Leu Ser Cys Ser Ser 170 Ile Glu Leu Asp Leú Asp His Ser Cys Gly His Arg Phe Leu Gly Arg 180 185 Ser Leu Lys Gln Lys Leu Gln Asp Ala Val Gly Gln Cys Phe Pro Ile 195 205 Lys Asn Cys Ser Gly Arg His Ser Pro Gly Leu Pro Ser Lys Arg Lys 215 Ile His Ile Ser Glu Leu Met Leu Asp Lys Cys Pro Phe Pro Pro Arg 230 235 Ser Asp Leu Ala Phe Arg Trp His Phe Ile Lys Arg His Thr Val Pro 255 245 Met Ser Pro Asn Ser Asp Glu Trp Val Ser Ala Asp Leu Ser Glu Arg 265 260 Lys Leu Arg Asp Ala Gln Leu Lys Arg Arg Asn Thr Glu Asp Asp Ile 280 285

Pro Cys Phe Ser His Thr Asn Gly Gln Pro Cys Va/1 Ile Thr Ala Asn Ser Ala Ser Cys Thr Gly Gly His Ile Thr Gly/Ser Met Met Asn Leu Val Thr Asn Asn Ser Ile Glu Asp Ser Asp Met Asp Ser Glu Asp Glu 330 Ile Ile Thr Leu Cys Thr Ser Ser Arg Lýs Arg Asn Lys Pro Arg Trp 340 Glu Met Glu Glu Glu Ile Leu Gln Ley Glu Ala Pro Pro Lys Phe His 360 Thr Gln Ile Asp Tyr Val His Cys Leu Val Pro Asp Leu Leu Gln Ile 375 Ser Asn Asn Pro Cys Tyr Trp Gly Val Met Asp Lys Tyr Ala Ala Glu 390 395 Ala Leu Leu Glu Gly Lys Pro/Glu Gly Thr Phe Leu Leu Arg Asp Ser 410 Ala Gln Glu Asp Tyr Leu Phe Ser Val Ser Phe Arg Arg Tyr Ser Arg 420 Ser Leu His Ala Arg Ile Glu Gln Trp Asn His Asn Phe Ser Phe Asp Ala His Asp Pro Cys Val Phe His Ser Pro Asp Ile Thr Gly Leu Leu 455 Glu His Tyr Lys Asp Pro Ser Ala Cys Met Phe Phe Glu Pro Leu Leu 465 470 475 480 Ser Thr Pro Leu The Arg Thr Phe Pro Phe Ser Leu Gln His Ile Cys 490 Arg Thr Val Ile Cys Asn Cys Thr Thr Tyr Asp Gly Ile Asp Ala Leu Pro Ile Pro Ser Pro Met Lys Leu Tyr Leu Lys Glu Tyr His Tyr Lys 515 Ser Lys Val/ Arg Leu Leu Arg Ile Asp Val Pro Glu Gln Gln 530 535

(2) INFORMATION FOR SEQ ID NO:45:

(i) SEQUENCE CHARACTERISTICS:

- 165 -

(A) LENGTH: 5000 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45

CCCTCTGGGC	AAGCCGCCCC	CCCCCCACCC	ATCTACCACA	CACACACACA	CACACACACA	60
CACACATTCA	GACCTTGGGG	САААААСААА	GCAAAATAAC	ААСААСАААА	ACACTGCCTG	120
TGGAAAGTCC	TTACTTCAGG	AAGGTTGGCA	GATGAGGAGC	AAGGGAACAT	TTTATCAGGA	180
CTGCCACAAA	GGAGTCTTTT	TTTTTAATGG	TTTTTCAAGA	CAGGGTTTCT	CTGTATAGCC	240
CTGGCTGTCC	TGGAGCTCAC	TTTGTAGACC	AGECTGGCCT	CGAACTCAGA	AATTCGCCTG	300
CCTCTGCCTC	CTGAGTGCTG	GGATTAAAGG	GTGCAGCAC	CATGTCCAAC	TGGCATTTTC	360
TCAATTAAGG	TTCGTTCCTT	TCAGATAACT	CTAGGTTCTG	GGTCAAGCTG	ACACAAGGCT	420
ACACAGCACA	GTTTGTATGC	CACATTCAGT	TCAGAAGACA	CCCAACCTCC	CTGGAACTGG	480
AACTTATGCA	CATTTGTGAG	CTTCCACTTG	GGAGTGGGAA	CCTGAACTGG	GTCCTCTGCA	540
AGAGCAGCCG	TGCTCTTAAC	TGCTGAGCCA	TTTCAGCAGC	CTCACATCAG	AATTAAGTTA	600
GAAATTAGCC	GGGTATGAAT	CATACCCTTA	GAATCCTAGC	ATCTGAAAGC	AGAGCTAAGA	660
GAAACAGGGA	TTCAAGACCA	GCTCTTGGCT	ACAGAGCCCG	TCCTGTCCTA	GGATGGGCTA	720
CAAGAGACTA	TTTCAAAGCC	атссавасав	CAATAACTAC	AACAACAACA	AGGTTAAAAT	780
TAGGCTGGGC	ACAGGGTACA	CACCTTTAAT	GCCAACACTC	AGGAGGCAGA	GGCAGGCTGA	840
TCAGTGTGAG	TTTGAGTTCA	ACGTGGTCTA	CATAGGGAGT	TCTAGGCCAG	CAGAGGTTAC	900
AGTCTCTCTC	тстстстстс	TCTCTCTCTC	TCTCTCACAC	ACACACACAC	ACACACACAC	960
ACACACACAC	ACACACACGG	TGGCATTATG	GGATTTTTTT	GGGATAAGGT	TTCTCTGTCT	1020
AGCCCTGGCA	TAGATTCACT	CTGTAGACTA	GGCTAGCCTT	GAACTCAGAG	ATCCGCCTGC	1080
CTCTGCCTCC	CAAGTGCTGG	GATTATAGGT	GTTGCACCAC	CACTGCCCAG	CCACTTTGGG	1140
ATTTTTGAAC	TGTTATCAAG	AGGCTTTCGA	GGAGGTCAAA	CTTCAACAGC	AACCTCTCCA	1200
TGATAATGTA	GCTAATGATC	AAACGACACT	СААААСТТАА	CCCTTAAAGC	ACACATCCAC	1260
CAGACAGCGT	ECCCACTCGT	AGTTCCATTA	CTCAGGAGGC	TGAAGCAGGA	GGATGAAGGA	1320

CTAAGGCTTC	AGCAACCTAG	GGAGCCGCAG	GGGACAGTAG	TCTCAATCCC	TACATTCTCC	1380
TGAACACAGG	AGCAGGAGTT	CAGGAAGGGT	GTCAAGGCCG	CTTACTGATC	TTAGGGCCTC	1440
AGGAATGACT	AGCTCAGGCA	GAGAGAGCAA	AGGTCTCCAG	TGGAGAAGTC	TACACACACA	1500
CACACACACA	CACACACACA	CACACACACA	CAGAATCCAA	GGCGATGACG	TCATCAAAGG	1560
GTTAATTCTA	GTCTGGGATG	GGGGGAGGG	TGGGGCACGC	AGCTGTCAGG	TGGCTTTGGA	1620
ААААТАААСТ	GCTGAAGAGT	CTGACGCCAG	GGAGTCCT&G	GAGGGACAAG	AGGTTACCCA	1680
CTCAAAGAGT	GTGCTCCACA	AAGCATGCGC	GCTTGTCCAC	GTCTGGAGTC	GTCACTTATT	1740
TTTTGCCTGG	ATTCTTTGTA	GCCGGTGGGT	TCTCAAGGCG	GTAAGTGGTG	TGGCCGCCGT	1800
GGTCTGGGAG	GTGACGATAG	GGTTAATCGT	CCACAGAGCC	CAGGGGCGGA	GCGCGGGCGG	1860
GCGTCCGCAG	CCCCGCTGGA	GCCGGAAGCA	GTGGCTGGTC	AGGGGCGCTT	CTAGCCTTCC	1920
CTATCTGTAC	TTCCACAGAG	GTCTCTGCGA	GCTAGGGGGA	CAGTGAGGTG	CGGGGTAGGG	1980
GCCCGGCGTT	AGAGCCAGCA	AGGGGACGGT	TCACGGTAAG	GTCTGAGGGA	GAGAGAGCTC	2040
CTGAGAAACT	TGGGGGGCGC	GACACAGATA	GGGTGAAAGC	AGAGTGATAG	ACCTGGGATG	2100
GTTAGGGGAC	CAAGGGAAGA	CCAGGCTGGT	TGGCATACAC	CGGTGAACGG	ATGGGAGTCC	2160
TAGGGAAAGA	TGATGCGCCT	AACAGTCCTT	TCTGTCTCCA	CACCACTCCA	GGGGACGATC	2220
CGGAGCTCAA	CTTTCAAAAG	CGAGACGCCC	CAGCAAGCCT	GTTTTGAGAA	GTTCTTCAGC	2280
GGCTCTCCTC	ATGGGCCAGA	CGCCCTGCC	AAGGGGCAGC	AGCAGCACCC	CTACCTCGCA	2340
GGCTCTGTAC	TCGGACTTCT	CTCCTCCCGA	GGGCTTGGAG	GAGCTCCTGT	CTGCTCCCCC	2400
TCCTGACCTG	GTTGCCCAAC	GGCACCACGG	CTGGAACCCC	AAGGATTGCT	CCGAGAACAT	2460
CGATGTCAAG	GAAGGGGGTC	TGTGCTTTGA	GCGGCGCCCT	GTGGCCCAGA	GCACTGATGG	2520
AGTCCGGGGG	AAACGGGGCT	ATTCGAGAGG	TCTGCACGCC	TGGGAGATCA	GCTGGCCCCT	2580
GGAGCAAAGG	GGCACACACG	CCGTGGTGGG	CGTGGCCACC	GCCCTCGCCC	CGCTGCAGGC	2640
TGACCACTAT	GCGGCGCTTT	TGGGCAGCAA	CAGCGAGTCC	TGGGGCTGGG	ATATTGGGCG	2700
GGGAAAATTG	TATCATCAGA	GTAAGGGCCT	CGAGGCCCCC	CAGTATCCAG	CTGGACCTCA	2760
GGGTGAGCAG	¢TAGTGGTGC	CAGAGAGACT	GCTGGTGGTT	CTGGACATGG	AGGAGGGGAC	2820
TCTTGGCTAC	TCTATTGGGG	GCACGTACCT	GGGACCAGCC	TTCCGTGGAC	TGAAGGGGAG	2880

GACCCTCTAT	CCCTCTGTAA	GTGCTGTTTG	GGGCCAGTGC	CAGGTCCGCA	TCCGCTACAT	2940
GGGCGAAAGA	AGAGGTGAGA	TACGGACTAG	GTGTGGGGAG	ATCACTACTC	TTGGCAATGG	3000
TTTGGGCTGG	AAACTCATGG	TTGGAGCACA	GGAAGTAGGC	TTCTTGTCAC	TTTGGCCTGT	3060
CACTTAGATG	GCCTTGGATC	TAGCTTCACT	CCCAATCCCT	ATTGGATGTG	ATGCACAAAT	3120
TCAGAGCCTT	TGGGTCTCCC	TCAGCTGAGG	TGGCGGTGGA	AATGGAGGAA	GAAGGAAGGG	3180
TGCCTGAGCA	GGATCTCAAG	TTCAAGGATG	CCTGGAGTTG	CTTACTTACC	TTGTCTTCCT	3240
TCTCTCTCCG	CAGTGGAGGA	ACCACAATCC	CTTCTGCACC	TGAGCCGCCT	GTGTGTGCGC	3300
CATGCTCTGG	GGGACACCCG	GCTGGGTCAA	ATATCCACTC	TGCCTTTGCC	CCCTGCCATG	3360
AAGCGCTATC	TGCTCTACAA	ATGACCCAGT	AGTACAGGGT	GTGCTGGCAC	CCTACCGTGG	3420
GGACAGGTGG	AGAGGCACCC	GCTGGCCTAG	ACAACTTTAA	AAAGCTGGTG	AAGCTGGGGG	3480
GGGGGGGCTG	GACCCCTTCA	CCTCCCCTTC	TCACAGGAGC	AAGACATATA	GAAATGATAT	3540
TAAACACCAT	GGCAGCCTGG	GACAAAGAGG	TTTTTGAAGT	AAAAAATGAG	ATGTATTGTC	3600
ACAACCTGTT	TCATTATTGT	ТТТТТСТТТ	GTTTTACACT	CCCCCACCCC	AGGCTAGAGC	3660
CCCATCACTG	TCTTAAGGAA	TTATGACAAC	CCACAAAGCT	CAGGCCCAGG	TGTTTATTTC	3720
CCTTACATGT	AGGATGGTTC	ACAZACACAA	TACAGGGGCT	TTGGCACCGT	GGGGGAGGGG	3780
ACTATCCCAG	GCCTCTTAGG	GTCTCATGTA	TACCGAATTC	AGACCCGAAA	GCTCTGAATT	3840
TCTGCATCAG	ACATCCAGTA	GAACTTGGGA	GTGAAGCTAG	AGCCAAGGCC	ATCTAAGTGA	3900
CAGGCCAAAG	TGACACGAAG	CCCACTTCCT	GTGCTCCAAC	CATGAGTTTC	CAGCCCAAAC	3960
CAATGGAAGG	TGATTTCACT	TGTCAGGGCC	CAAAGGGACA	GTCAGTTCTA	CTCCCTCCCC	4020
TCACTAGGAG	CCACCTTCGT	GACAGTTGAT	TCTACCCACT	GTAAGTGGTA	AAGGGATTGG	4080
CCTGGTCCCA	ACCATAATAG	GGCGGTGGAA	ACGGCTCAGG	AGGGTACAGC	GTGGATTAGG	4140
CCACAAGATG	GGGCAGATGA	TGTCATCAGA	AGCATGTGAC	CGGTGGGAGC	AGTTACTAAA	4200
CTTCTGGGCA	ACCTAGTCCA	TGCTATGCAG	GCAGGTAGAG	GGATGGGCAG	TGCTCATTGT	4260
TTGGCATTGA	TGATGTCCAC	AAATTCAGGC	TTGAGAGATG	CGCCACCCAC	AAGGAAGCCG	4320
TCCACGTCAG	CTGGCTTGC	CAGCTCTTTG	CAGGTTGCTC	CAGTCACAGA	ACCTGTACCA	4380
GGAACAAGAA	/GACAGTTTGG	TCAGGTCTAT	GATCAGAACA	CTTAAGCCCC	ACCTCTCTGT	4440

GCAAGGCAGC CTCAGTCTGT	CTTAGCCCAT	TTCCGTCTTA	GCTAGAGCCA	AAGCCACTCA	4500
CCTCCATAAA TGATCCGGGT	GCTCTGAGCC	ACCCCATCAT	TGACATTGGA	TTTCAGCCAT	4560
CCCCGGAGCT TCTCGTGTAC	TTCCTGTGCC	TAGAAGGAGG	ACCCAGAGCT	ACTAAGTAAG	4620
CTCCTTCCTA TCTATCATTC	AAGGAGTAAA	AACCACTGGT	TCTCACATAG	AGTTGAGTTT	4680
CCAGAAAAGC CCCGGGACCA	GAGAGTGGCA	AGGCTCCAAT	CCCACCAGGC	TTGGAATGAA	4740
CATTTTTGGC AAAGTCACTC	TCCTTGGTGA	GTTTGGGGGC	CCTCTGTCTC	TAAAGGGGCT	4800
TGGATGGGCT CCATAGCTGT	GTGAGTCTGT	TAAAGCCGGA	CAGGCTGAGG	AGCTCTGGGT	4860
AGTTACCTGC TGAGGGGTTG	CCGTCTTGCC	AGTCCCAATG	GÇCCACACAG	GTTCATAGGC	4920
CAGGACCACC TTGCTCCAGT	CTTTCACATT	ATCTGTGGGG	CAGAGAGGAG	AGTGAGTAGG	4980
AAGGAGCTGA CCCGCCAAGC					5000

(2) INFORMATION FOR SEQ ID NO:46:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 264 aming acids
 - (B) TYPE: amino acid/
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:

Met Gly Gln Thr Ala/Leu Ala Arg Gly Ser Ser Ser Thr Pro Thr Ser 1 10 15

Gln Ala Leu Tyr Ser Asp Phe Ser Pro Pro Glu Gly Leu Glu Glu Leu 20 25 30

Leu Ser Ala Pro Pro Pro Asp Leu Val Ala Gln Arg His His Gly Trp 35 40 45

Asn Pro Lys Asp Cys Ser Glu Asn Ile Asp Val Lys Glu Gly Gly Leu 50 55 60

Cys Phe Glu Arg Arg Pro Val Ala Gln Ser Thr Asp Gly Val Arg Gly 65 70 75 80

Lys Arg Gly Tyr Ser Arg Gly Leu His Ala Trp Glu Ile Ser Trp Pro

Leu Glu Gln Arg Gly Thr His Ala Val Val Gly Val Ala Thr Ala Leu 100 105 110

Ala	Pro	Leu 115	Gln	Ala	Asp	His	Tyr 120	Ala	Ala	Leu	Léu	Gly 125	Ser	Asn	Ser	
Glu	Ser 130	Trp	Gly	Trp	Asp	Ile 135	Gly	Arg	Gly	Lys	Leu 140	Tyr	His	Gln	Ser	
Lys 145	Gly	Leu	Glu	Ala	Pro 150	Gln	Tyr	Pro	Ala	Gly 155	Pro	Gln	Gly	Glu	Gln 160	
Leu	Val	Val	Pro	Glu 165	Arg	Leu	Leu	Val	/Val 170	Leu	Asp	Met	Glu	Glu 175	Gly	
Thr	Leu	Gly	Tyr 180	Ser	Ile	Gly	Gly	Thr /185	Tyr	Leu	Gly	Pro	Ala 190	Phe	Arg	
Gly	Leu	Lys 195	Gly	Arg	Thr	Leu	Tyr 2,00	Pro	Ser	Val	Ser	Ala 205	Val	Trp	Gly	
Gln	Cys 210	Gln	Val	Arg	Ile	Arg/ 215	Tyr	Met	Gly	Glu	Arg 220	Arg	Val	Glu	Glu	
Pro 225	Gln	Ser	Leu	Leu	His 230	Leu	Ser	Arg	Leu	Cys 235	Val	Arg	His	Ala	Leu 240	
Gly	Asp	Thr	Arg	Leu 245	Gly	Gln	Ile	Ser	Thr 250	Leu	Pro	Leu	Pro	Pro 255	Ala	
Met	Lys	Arg	Туг 260	Leu	/ Leu	Tyr	Lys									
(2) INFO	TAMS	ON F	FOR S	SEQ I	D NC	:47:										
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5615 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear																
(ii)	(ii) MOLECULE TYPE: DNA															
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:																
GTACTTTCT	AT TY	TATO	TCCA	TAA	TTTT	'ATT	TACT	'ATTA	CT A	CATG	ATAC	TT A	TTTA	TATA		60
AAAGTCTTTG TAACCTCCTT AAGGATTCAC TGCTTAATCT CCAGTGCTTA GCACAAATCA 120																
TTAAATGCGA ACCAGAAACT CTTCCAAATG TGTTACATCT ATAACCTCAT TGGATTCTCA 180																
CTACCAAC	CTACCAACOC CATGCAATAG ATACTAATGT GATCTCTGTC TTACAGAGGA AGAAACAGGC 240															
ACAGGGAGG	T TC	AGTA	TTTA	GCC	CAAG	GTC	АТАС	ACAC	AC T	GGCC	TTCA	G GT	ATTC	ATGC	1 ;	300

CCGGGGAGTC	TGGTCCCACA	GCTGGCATGT	TTGCCATTAT	ATTATATTGC	CTCCTTATAG	360
TGTCGGCACT	CATTAAGCAC	ATTGACAGCT	ATGCTTGGTG	AGTGACTACT	ATGTACCCAG	420
CTCTGTGCTA	CATGCTTTAC	CTGGATTATT	TCAACTGCAC	AACAACCCTG	TGAGGTAACT	480
ACCATCATTG	CTCCTATTTT	ACATAACAGA	AAACTACAGA	AATCTGGGGC	TGGGCGTAGT	540
GGCTCATGCC	TGAAATCCCA	GCACTTTGGG	AGACCCTGTC	ТСТАААААА	ATTTTTTTTT	600
GGCCGGACGT	GGTGGCTCAC	ACCTGTAATC	TCAGCACTTT	GGGAGGCTAA	GGCAGGCAGA	660
TCACAAGGTC	AGGAGTTCTA	GACCAGCCTG	GCCAACATGG	CAAAACCCTG	TGTCTACTAA	720
АААТАСАААА	AATAGCTAGG	CGTGGTGGCA	GGTGCCTGTA	ATCCCAGCTA	CTCAGGAGGC	780
TGAGGCAGGA	GAATCCCCTG	AACCTGGGAG	ATGGAGGTTA	CAGAGAGCCG	AGATCGTGCC	840
GCTGCACTCC	AGCCTGGGCA	ACAAGAGCAA	GACTCTGTCT	CGAAAAAAAT	АААААТАААА	900
ATAAAAATAT	TTTTTTAAAA	ATTAGCTGGG	TGTGGTAGCA	CATGCCTGTA	GTCCCAGCTA	960
CTTGGGAGGC	TGAGGTAGGA	GGATCACTTG	AGCCCAGGAG	GTCAAGGCTG	CAGTGGGCTG	1020
TGATGGCGCC	ACTGCACTCT	AGCCTTGGTG	ACAGCAAGAC	CCTGTCTCAA	ААААААААА	1080
AAGAGAAATC	GGGCAACTTC	CCCAAGATCG	CGCAGTTAAC	TAGTGGCATA	GCTTCACTCA	1140
AACTCGAAGT	CTTAATCAGG	ACACTCTACC	AAATGAGATC	AACGGCTCAG	TAATGGATTG	1200
GCATCCAGTA	TGAAGACTGG	ACCAGCAGGG	AGAACTATGA	TGCGTACAGC	CTAGAGCCTG	1260
AAGCAGATTT	CACAGCCTCA	GAGGTGGCAC	AGGCTGACTC	ACAACCCGGG	GCAGAAAGGG	1320
ACCAGCCCAG	AAACAGTGAC	CCAGAATCAC	AGGGAAGTAG	AAATGGGATT	CGGCACAATG	1380
AAGCCCCTCC	TTGACCCCAT	GCTCCTTACC	CTCAGGGGCG	CAGGAGTTAG	TCGCTCAGGC	1440
GGCTCAAAGG	TCTTGACGGT	GGAGAACACC	ATCCCCAGGG	ATTCCCGACG	CGGTGATGCC	1500
ATCAAAGCGT	TAATTCTGAG	ATGGGCCTGC	CCGGGTGCGG	ACTCTGCCGC	AGCAAGAGAA	1560
GGGTTAACTG	CCCGGGCCT	TCGCCGTGGG	GGCGGGGCCT	CGGGGAGGGT	CACAGCCCGG	1620
GACTGAGACC	CGAGGTTAAC	CGCCCGGGGT	GGGCTCCACG	GGGGCGGGC	ATGCTCTCCG	1680
ссстстс	CGGTATAGAG	CGGTAACTGC	CCAGGAGGGG	GCGGGGCCCC	ACAGGGGCGT	1740
GGCCTCGGAG	CTGCACGGCC	GTGGGCGGCG	ATGAGAGGGT	TAAGCCCCAG	AGGGCCCTGG	1800
AGGGGCGGGG	CCGCGGGACG	GGCTCGGCCC	AAGGGAGGAG	CTGGGGGCGG	AAGCGGCCGG	1860

- 171 -

CGGTCTGC	CGC	CCTGCGCGCC	TCGGCTTCTT	TCCGCCCGGC	TCCTTCAGAG	GCCCGGCGAC	1920
CTCCAGGC	GCT	GGGAAGTCAA	CCGAGGTTCG	GGGGCAGCGG	CGAGGGCTCC	GGGCGAGTAA	1980
GGGGGATC	GT	CCATGCTGAG	GCCCAAATGG	GGCGAACTCG	CGAGAGTCTC	TGGCGACCTG	2040
GATCAGAT	rgg	GGCGAGGGCA	GATGAAGGGC	CCAGGAGCTT	TGGGGCAGCG	AGGAGGGAGG	2100
AGCGGGCC	CCG	TTGGCAAACT	TGGGTGAAAG	GATGGGGTAC	CTGGGTGACG	AGCCCCCGCC	2160
AGGATTCT	rGC	TCTTCACGCC	CCTTTTCTCC	CAGCTCCCTT	CCAGGTCAAT	CCAAACTGGA	2220
GCTCAACT	TT	CAGAAGAGAA	AGACGCCCCA	GCZAGCCTCT	TTCGGGGAGT	CCTCTAGCTC	2280
CTCACCTC	CCA	TGGGCCAGAC	AGCTCTGGCA	GGGGCAGCA	GCAGCACCCC	CACGCCACAG	2340
GCCCTGTA	/CC	CTGACCTCTC	CTGTCCCGAG	GGCTTGGAAG	AGCTGCTGTC	TGCACCCCCT	2400
CCTGACCT	rgig	GGGCCCAGCG	GCGCCACGGT	TGGAACCCCA	AAGACTGTTC	AGAGAACATC	2460
GAGGTCAA	\GG	AAGGAGGGTT	GTACTTTGAG	CGGCGGCCCG	TGGCCCAGAG	CACTGATGGG	2520
GCCCGGGG	TA	AGAGGGGCTA	TTCAAGGGGC	CTGCACGCCT	GGGAGATCAG	CTGGCCCCTA	2580
GAGCAGAG	GG	GCACGCATGC	CGTGGTGGGC	GTGGCCACGG	CCCTCGCCCC	GCTGCAGACT	2640
GACCACTA	.CG	CGGCGCTGCT	GGCAGCAAC	AGCGAGTCGT	GGGGCTGGGA	CATCGGGCGG	2700
GGGAAGCT	ĠТ	ACCATCAGAG	CAAGGGGCCC	GGAGCCCCCC	AGTATCCAGC	GGGAACTCAG	2760
GGTGAGCA	.GC	TGGAGGTGC	AGAGAGACTG	CTGGTGGTTC	TGGACATGGA	GGAGGGAACT	2820
CTGGGCTA	CG	CTATTGGGG	CACCTACCTG	GGGCCAGCAT	TCCGCGGACT	GAAGGGCAGG	2880
ACCCTCTA	TC	CGGCAGTAAG	CGCTGTCTGG	GGCCAGTGCC	AGGTCCGCAT	CCGCTACCTG	2940
GGCGAAAG	GA	GAGGTGAGGC	CTGGGGCAGA	CGTGGGGAGA	ACTTTCTGTC	CCTGGTGGCA	3000
GTGGTTTG	GG	ATGGAAACTC	TTCTGACAAG	AGCAGAGGGG	ATGGACCTTC	ATCCAGCCTG	3060
CCTCAACC	TC	TGTTCAGTGC	TGGGAAAGGC	TAGGGGTCTT	CACAGCTGTT	ATTTAATTTA	3120
ACCCAACA	.GC	AATAGAGGTG	AAACAGGCTT	GAGAAAGCAA	CTTTCTCAAG	TTCTCTTGGC	3180
CAGTAAAT	GG	*GAACCTTCA	GAATGGAGGG	AGGAACTGCA	GGGATGAGAG	AATTCAGGAG	3240
ATATCAAC	cc/	CTGAGCAAGA	GGTGCAAAGC	GTTAGGTACT	GGGTTTGATG	TACAGGTCCA	3300
AAAGAAGG	ĄТ	GGGCAGAGCC	AGGTACCCAG	GCTGTATACC	GGATTCCCTG	GGCTCTAACC	3360
тстстстс	TG	CCACATACCT	ACTTCCTTCC	TCAGCCACAC	CTCTGGATGG	AGACACTGGG	3420

GCCCTGGGCA	CCAGGGAGGA	GAGCAGTGGA	GGAGGCAGGG	CCTTAGGGTG	GGGCAGCAGG	3480
GGAGGAGCCT	CCCCAGGAAC	TGACTGGGTC	CAGGGCTTGG	AGCTGCTCTC	TGCAGTTGTG	3540
TGGGCTGTAG	AGTGGAGGGC	CATCCCTCCT	CACCTCAGCC	COAGCTCCCA	AGCCTCTGGA	3600
GTCAAAGCCT	GGGCCAGCTC	CACCACTGTC	AGAGCCACCT	TGGCCTGTTG	TTTAGAGGGC	3660
CTTAGCCAGC	TCTTCACCCC	CAGCTCTGAC	TAGGGATGTG	TGAAATCTTA	TCTGGGAGGC	3720
AGAACTTCCG	GGTATCTCAA	ATTCCCCTTT	CAGCCAGGTG	GGCACACTCG	AAGCAGGAAA	3780
GCAGAAAGGC	ATCTGAGTAG	GACCCCGTAG	TTTGAGGACA	TCTGGCTGGT	GGCTGCACCC	3840
ATACTTAÇAT	TCCCCTCCTT	CTCTCTCCCA	GCGCAGCCAC	ACTCCCTTCT	GCACCTGAGC	3900
CGCCTGTGTG	TGCGCCACAA	CCTGGGGGAT	ACCCGCTCG	GCCAGGTGTC	TGCCCTGCCC	3960
TTGCCCCCTG	CCATGAAGCG	CTACCTGCTC	TACCAGTGAG	CCCTGTGATA	CCACAGACTG	4020
TGCTGAGGTC	TTGCCACCAC	CCCTCCCCTT	GGGGAGGTGG	GGAGGCACTG	CTGGCCTAGA	4080
CCAGCTGCTG	AAAGCTGGTG	AGGCTGACCC	CCTACCCCAA	CCCAAGCTCT	GCGGAAATCA	4140
ACAGCCCCAG	AGCCACTTGG	AGGGAGGAAG	AAAGGGAGCC	GGCGTTCAAG	GCTATGACAG	4200
TCTGCTACGC	AAAACATTTT	TTCAAGTAAA	AATAGTAAGA	GATGTTGTTA	TAGAAACCTG	4260
TTCTTGTTTT	TTTTTTTC	TTGCACAAAT	GATCATTTAT	ATAGCTGCCT	CAAAAAGGAA	4320
GATTATCTGG	GCAAGTCCAG	TGAAGGCAGA	CAAACCACAA	GACCTAGTGC	CAGGTTTATT	4380
CCCTCACATG	GGTGGTTCAC	ATACACAGCA	CAGAGGCACG	GGCACCATGG	GAGAGGGCAG	4440
CACTCCTGCC	TTCTGAGGGG	ATCTTGGCCT	CACGGTGTAA	GAAGGGAGAG	GATGGTTTCT	4500
CTTCTGCCCT	CACTAGGGCC	TAGGGAACCC	AGGAGCAAAT	CCCACCACGC	CTTCCATCTC	4560
TCAGCCAAGG	AGAAGCCACC	TTGGTGACGT	TTAGTTCCAA	CCATTATAGT	AAGTGGAGAA	4620
GGGATTGGCC	TGGTCGCAAC	CATTACAGGG	TGAAGATATA	AACAGTAAAG	GAAGATACAG	4680
TTTGGATGAG	GCCAGAGGAA	GGAGCAGATG	ACACCATCAG	AAGCATATGC	AGGGAAAGGG	4740
CAGTTACTGG	GCTTCTGGGC	TGCTTAGTCC	CTGGCTTGGC	AGGAAGGGTA	GGGAAGATGG	4800
ATGGGGCTCA	TTETTTGGCA	TTGATGATGT	CCACGAATTC	GGGCTTGAGG	GAAGCACCAC	4860
CCACAAGGAA	GCCATCCACA	TCAGGCTGGC	TGGCCAGCTC	CTTGCAGGTT	GCCCCAGTCA	4920
CAGAGCCTGG	GAAGGGAGCA	GAACAAGGGC	TTGGTCAAGA	ATGGGATGAG	TCTGCCCCAT	4980

				/		
CCCCACCTCC	ATGTCCGAGG	GCTCAGTCTA	GTCCTCAGCC	CACTCCACCT	CAGCCGGGAA	5040
CCAAAGCCAC	TCACCTCCAT	AAATGATACG	GGTGCTCTGA	GCCACCGCAT	CAGAGACGTT	5100
GGACTTCAGC	CATCCTCGGA	GCTTCTCGTG	TACTTCCTGG	GCCTAGAACA	AGAAGCTGGC	5160
CTAAGTAAGA	CCTTTTCTGC	CTCTCTAAGA	GGAAAAATCA	CTGGCACCAG	TGGACACTTA	5220
GTGTGGTTTC	TGACTGAGTC	AGAGTACCAG	GGCTCTGATC	CAAGCCAGGC	CCTGGACTGG	5280
ATGCCCTTGG	ACAAGTCACT	GTCTCTGGGT	TCAAGGTCTC	TGTGTCTTTG	AAATAAGGGG	5340
TTGCCCCATG	TGGGCTGTGT	CTGTCCAAAC	@TATTGAGGC	AGGCTGGGAT	GAGGGCAGGG	5400
CTCCTGGGCC	CGGTTACCTG	TTGGGGTGTT	GCAGTCTTGC	CAGTACCAAT	GGCCCACACA	5460
GGCTCATAGG	CCAGGACGAC	CTTGCTCCAG	TCCTTCACGT	TATCTGCAGG	GCAGAGATAC	5520
AGATGGAGGG	AAGGGTGAAC	AAGAAAGAGC	TCTCCAGCCA	GGTTCTCCGG	AGTACGAAGA	5580
ACGGTGGCCT	ACTGCCCCCT	AGTGGACATT	GGGGG			5615

(2) INFORMATION FOR SEQ ID NO:48:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 263 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

65

(xi) SEQUENCE/DESCRIPTION: SEQ ID NO:48:

Met Gly Gln Thr Ala Leu Ala Gly Gly Ser Ser Ser Thr Pro Thr Pro 1 10 15

Gln Ala Leu Tyr Pro Asp Leu Ser Cys Pro Glu Gly Leu Glu Glu Leu 30

Leu Ser Ala Pro Pro Pro Asp Leu Gly Ala Gln Arg Arg His Gly Trp 45

Asn Pro Lys Asp Cys Ser Glu Asn Ile Glu Val Lys Glu Gly Leu 55

Tyr Phe Glu Arg Arg Pro Val Ala Gln Ser Thr Asp Gly Ala Arg Gly

Lys Arg Gly Tyr Ser Arg Gly Leu His Ala Trp Glu Ile Ser Trp Pro

Leu Glu Gln Arg Gly Thr His Ala Val Val Gly Val Ala Thr Ala Leu Ala Pro Leu Gln Thr Asp His Tyr Ala Ala Leu Leu/Gly Ser Asn Ser Glu Ser Trp Gly Trp Asp Ile Gly Arg Gly Lys/Leu Tyr His Gln Ser 130 135 Lys Gly Pro Gly Ala Pro Gln Tyr Pro Ala Cly Thr Gln Gly Glu Gln Leu Glu Val Pro Glu Arg Leu Leu Val Val Leu Asp Met Glu Glu Gly Thr Leu Gly Tyr Ala Ile Gly Gly Thr/Tyr Leu Gly Pro Ala Phe Arg Gly Leu Lys Gly Arg Thr Leu Tyr Pro Ala Val Ser Ala Val Trp Gly Gln Cys Gln Val Arg Ile Arg Tr Leu Gly Glu Arg Arg Ala Glu Pro 215 His Ser Leu Leu His Leu Ser Arg Leu Cys Val Arg His Asn Leu Gly 225 230 Asp Thr Arg Leu Gly Gln Nal Ser Ala Leu Pro Leu Pro Pro Ala Met 250 Lys Arg Tyr Leu Leu Tyr Gln 260

- (2) INFORMATION FOR SEQ ≠D NO:49:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 28 base pairs
 - (B) TYPE: nacleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:

AGCTAGATCT GGACCCTACA ATGGCAGC

- (2) INFORMATION FOR SEQ ID NO:50:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 36 base pairs
 - (B) TYPE: nucleic acid

28

- 175 -(C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:

AGCTAGATCT GCCATCCTAC TCGAGGGGCC AGCTGG

36