```
In [1]: # Подключение необходимых библиотек и настройка окружения import CoolProp.CoolProp as CP import math import CoolProp from CoolProp.Plots import PropertyPlot import matplotlib.pyplot as plt from CoolProp.Plots.SimpleCycles import StateContainer import warnings warnings.filterwarnings('ignore') import matplotlib.pyplot as plt plt.rcParams["figure.figsize"] = (8,8) #размер графиков (в дюймах)
```

Задача 1.

Найти производство энтропии при смешении двух потоков с массовыми расходами $G_1=1{
m kr/c}$ и $G_2=4{
m kr/c}$, имеющих температуру $T_1=290K$ и $T_2=140K$, а так же одинаковое давление p = 10 МПа. Газ - воздух.

```
In [2]: # Дано 
 T1 = 290; G1 = 1 
 T2 = 140; G2 = 4 
 p = 10 * 10**6 #Па ** - знак возведения в степень.
```

Определим энтальпии по заданным T_1, T_2 и р, используя функцию PropsSI.

```
In [3]: h1 = CP.PropsSI('H','T',T1,'P',p,'Air') # первый агрумент функции указывает что определить. Второй и четвертый h2 = CP.PropsSI('H','T',T2,'P',p,'Air') # заданные параметры. Третий и пятый их значения. Шестой - для какого газа. print('h1 = %.2f Дж/кг, h2 = %.2f Дж/кг' % (h1,h2))
```

h1 = 394496.90 Дж/кг, h2 = 132113.40 Дж/кг

Определим параметры выходного потока из условий:

$$G_1 + G_2 = G_3 \ G_1 \cdot h_1 + G_2 \cdot h_2 = G_3 \cdot h_3$$

```
In [4]: G3 = G1+G2
h3 = (G1*h1 + G2*h2 ) / G3
print('h3 = %.2f Дж/κΓ' % h3)
```

h3 = 184590.10 Дж/кг

Определим T_3

Определим изобарные теплоемкости входных потоков:

$$C_{p1} = rac{h1-h3}{T1-T3} \ C_{p2} = rac{h2-h3}{T2-T3}$$

 $Cp1 = 1600.27 \, \text{Дж/(кгK)}$, $Cp2 = 2786.87 \, \text{Дж/(кгK)}$

Определим производство энтропии:

$$\Delta S' = G_1 \cdot C_{p1} \cdot ln(rac{T3}{T1}) + G_2 \cdot C_{p2} \cdot ln(rac{T3}{T2})$$

Ответ: $\Delta S' = 443.29 rac{$ Дж $}{
m c.K}$

Задача 2

Для изотермического сжатия в компрессоре при температуре $T_1=300K$ от давления $p_1=0,25$ МПа до давления $p_2=25$ МПа определить работу сжатия и отводимую при этом теплоту. Газ N_2 . Сделать рисунок с изображением площадей, пропорциональных искомым величинам.

```
In [8]: # \PiAHO

T1 = 300

p1 = 0.25 * 10**6 #\PiA

p2 = 25 * 10**6 #\PiA

gas = 'Nitrogen'
```

Определим значения энтропий для заданной температуры и давления газа:

```
In [9]: s1 = CP.PropsSI('S','T',T1,'P',p1,gas) s2 = CP.PropsSI('S','T',T1,'P',p2,gas) print('s1 = %.2f Дж/кгК, s2 = %.2f Дж/кгК' % (s1,s2))
```

s1 = 6572.67 Дж/кгК, s2 = 5078.90 Дж/кгК

Определим отводимую теплоту:

$$q=T\Delta S=T(s_2-s_1)$$

Знак минус говорит о том, что теплота отводится. Определим значения энтальпий для заданных давлений и температуры:

```
In [11]: h1 = CP.PropsSI('H','T',T1,'P',p1,gas)
h2 = CP.PropsSI('H','T',T1,'P',p2,gas)
print('h1 = %.2f Дж/κгΚ, h2 = %.2f Дж/κΓΚ' % (h1,h2))
h1 = 310865.75 Дж/κΓΚ, h2 = 275242.69 Дж/κΓΚ
```

Определим работу сжатия:
$$l_{ ext{cж}} = q + (h_2 - h_1) = T(s_1 - s_2) - (h_1 - h_2)$$

l = 412507.81 дж/кг

```
In [13]:
          #Построение графика
          plot = PropertyPlot(gas, 'ts',unit_system='SI',tp_limits='ACHP') #Полотно TS
          диаграммы в системе СИ
          plot.calc isolines(CoolProp.iP, [p1,p2],2) #Расчет изолиний(изобар), в преде
          лах от p1 до p2 , в количестве двух штук
          plot.calc_isolines(CoolProp.iHmass, [h1,h2], 2) #расчет изоэнтальп, в предел
          ax or h1 до h2, в количестве двух штук
          q pl = StateContainer() #контейнер состояний(для отображения теплоты)
          ______ pl[2,'T'] = T1 # перечисление значений. (прим. для точки 2 значение T рав
          но T1)
          q pl[2, 'S'] = s2
          q_pl[3, 'S'] = s2
          q_pl[3, 'T'] = 0
q_pl[1, 'T'] = T1
q_pl[1, 'S'] = s1
          q pl[0, 'S'] = s1
          q_pl[0, T] = 0
          plot.draw process(q pl) # рисует процесс. (красная линия - площадь равная те
          плоте)
          _{\rm S} = {\sf CP.PropsSI('S','H',h2,'P',p1,gas)} #s в точке пересечения h2,p1 _{\rm T} = {\sf CP.PropsSI('T', 'H',h2,'P',p1,gas)} # T в точке пересечения h2,p1
          l_p = StateContainer()
          l_p[0, 'T'] = 0;
          l_p[0, 'S'] = _s
          l_p[1, 'S'] = _s
          l_p[1, T'] = t
          plot.draw_process(l_p, line_opts={'color':'blue', 'lw':1.5})
          ax = plot.axis
          ax.text(7000, 400, 'p1', fontsize=15) #подпись p1 (первые два параметра - ко
          ординаты на графике)
          ax.text(5500,400,'p2',fontsize = 15)
          ax.text(7000,305,'h1',fontsize = 15)
          ax.text(7000,255,'h2',fontsize = 15)
          plot.show() # отображает плот.
```


*Теплота - площадь обведенная красной рамкой.

Площадь под изобарой р1 (криволинейная трапеция ограниченная синий линией) - разность энтальпий

Работа - Площадь красной - плозадь синий.

Задача 3

Определить минимальную работу при охлаждении от температуры $T_1=290K$ до температуры $T_2=250K$ при изобарическом и изохорическом процессах, если известно давление $p_1=0.2$ МПа в начале процесса охлаждения. Температуру окружающей среды принять равной 300К. Сделать рисунок с изображением площадей пропорциональны искомым величинам. Газ - N_2

```
In [14]: #Дано

T1 = 290; T2 = 250; T_os = 300

P1 = 0.2 * 10**6 #Πa

gas = 'Nitrogen'
```

Изобарный процесс

Для изобарического процесса определим по заданным температурам и давлению энтропии и энтальпию:

```
In [15]: s1 = CP.PropsSI('S', 'P',P1, 'T', T1, gas) s2 = CP.PropsSI('S', 'P',P1, 'T', T2, gas) print('s1 = %.2f Дж/κгК, s2 = %.2f Дж/κгК' % (s1,s2))

h1 = CP.PropsSI('H', 'P',P1, 'T', T1, gas) h2 = CP.PropsSI('H', 'P',P1, 'T', T2, gas) print('h1 = %.2f Дж/кг, h2 = %.2f Дж/кг' % (h1,h2))

s1 = 6603.88 Дж/кгК, s2 = 6448.99 Дж/кгК h1 = 300545.81 Дж/кг, h2 = 258803.60 Дж/кг
```

Определим минимальную работу:

$$l_{min} = T_{oc} \cdot (s_1 - s_2) - (h_1 - h_2)$$

```
plot = PropertyPlot(gas, 'ts',unit_system='SI',tp_limits='ACHP')
plot.calc_isolines(CoolProp.iP, [P1],1)
plot.calc_isolines(CoolProp.iHmass, [h1,h2], 2)
l_pl = StateContainer()
l pl[0, 'T'] = T1
l_{pl[0,'S']} = s1
l_pl[1,'T'] = T_os
l_pl[1,'S'] = s1
l_pl[2,'T'] = T_os
l_pl[2, 'S'] = s2
l_pl[3, 'T'] = T2
l_{pl[3, 'S']} = s2
plot.draw_process(l_pl) # рисует процесс. (красная линия - площадь равная l_
min)
plot.set axis limits([s2-750,s1+750,T2-30,T os+30]) # задает пределы плота [
x1, x2, y1, y2
plot.title(r'$l {min}$ для изобарного процесса')
ax = plot.axis
ax.text(6700, 315, 'p1', fontsize=15) #подпись p1 (первые два параметра - ко
ординаты на графике)
ax.text(7000,290,'h1',fontsize = 15)
ax.text(7000,250,'h2',fontsize = 15)
plot.show() # отображает плот.
```


Изохорный процесс:

 $h_1=300545.81$ Дж/кг $s_1=6603.88$ Дж/кгК (см. изобарный процесс) Определим величину удельного объема(v = $\frac{1}{a}$)

```
In [18]: D1 = CP.PropsSI('D', 'H',h1, 'S', s1, gas) #D - density - плотность v1 = 1/D1 print('v1 = %.2f м^3/кг' % v1)
```

 $v1 = 0.43 \text{ m}^3/\text{kr}$

По вычисленному значению плотности определим значение энтальпии и энтропии в конце процесса:

```
In [19]: h_2 = CP.PropsSI('H', 'D',D1, 'T', T2, gas)
print("h2 = %.2f Дж/κr" % h2)
s_2 = CP.PropsSI('S', 'D',D1, 'T', T2, gas)
print("s2 = %.2f Дж/κrK"% s2)
```

h2 = 258803.60 Дж/кг s2 = 6448.99 Дж/кгК

Определим давление $p_2, v_2 = v_1$ (т.к изохорный процесс),

 $p_2 = 172272.29 \; \Pi a$

Определим u_1 , u_2 по формулам:

$$u_1 = h_1 - p_1 \cdot v_1 \ u_2 = h_2 - p_2 \cdot v_2$$

А так же проверим данное значение функцией PropsSI (по известным $h_1, s_1; h_2, s_2$)

```
In [21]: u1 = h1 - P1*v1

u2 = h_2 - P2*v2

print('u1 = %.2f Дж/κr; u2 = %.2f Дж/κr' % (u1,u2))

u_1 = CP.PropsSI('U', 'H',h1,'S',s1,gas)

u_2 = CP.PropsSI('U', 'H',h_2,'S',s2,gas)

print('u_1 = %.2f Дж/кr; u_2 = %.2f Дж/кr' % (u_1,u_2))

u1 = 214518.58 Дж/кг; u2 = 184792.17 Дж/кг
```

Определим минимальную работу:

 $u_1 = 214518.58 \, \text{Дж/кг}; \, u_2 = 184782.63 \, \text{Дж/кг}$

$$egin{aligned} l_{min} &= l_K - l_{ exttt{get}} \ l_K &= T_0 \cdot (s_1 - s_2) \ l_{ exttt{get}} &= u_1 - u_2 \end{aligned}$$

l min = $3363.43 \, \text{Дж/кг}$

```
plot = PropertyPlot(gas, 'ts',unit_system='SI',tp_limits='ACHP')
plot.calc_isolines(CoolProp.iDmass, [D1],1)
plot.calc_isolines(CoolProp.iP, [P1],1)
plot.calc isolines(CoolProp.iHmass, [h1,h 2], 2)
l pl v = StateContainer()
l_pl_v[0, T'] = T1
l_pl_v[0,'S'] = s1
l_pl_v[1,'T'] = T_os
l_pl_v[1,'S'] = s1
l_pl_v[2,'T'] = T_os
l p l v[2, 'S'] = s 2
l_pl_v[3, T] = T2
l_pl_v[3, 'S'] = s_2
plot.draw_process(l_pl_v) # рисует процесс. (красная линия - площадь равная
plot.draw process(l pl, line opts={'color':'blue', 'lw':1.5}) # изобарный пр
оцесс
plot.set axis limits([s2-300,s1+300,T2-30,T os+30]) # задает пределы плота [
x1, x2, y1, y2
plot.title(r'$l_{min}$ для изохорного процесса')
ax = plot.axis
ax.text(6450, 230, 'v1', fontsize=15) #подпись v1 (первые два параметра - ко
ординаты на графике)
ax.text(6700, 315, 'p1', fontsize=15) #подпись p1 (первые два параметра - ко
ординаты на графике)
ax.text(6800,290,'h1',fontsize = 15)
ax.text(6800,250,'h2',fontsize = 15)
ax.text(6200,320,"синяя линия - изобарный процесс", fontsize = 10)
ax.text(6200,315,"красная линия - изохорный процесс", fontsize = 10)
plot.show() # отображает плот.
```


Ответ:

Минимальная работа в изобарном процессе : $l_{min} = 4723.77 Дж/кг$

Минимальная работа в изохорном процессе : $l_{min}=3363.43$ Дж/кг

Задача 4

Найти температуры потоков на выходе из противоточного теплообменника, если на входе: первый поток имеет температуру ${\rm T_1}=300$ К, давление ${\rm P_1}=0,5$ МПа, массовый расход $G_1=10$ кг/с, второй поток – соответственно ${\rm T_2}=100$ К, ${\rm P_2}=1$ МПа и $G_2=9$ кг/с. Потерями давления и влиянием фонового теплопритока пренебречь, минимальная недорекуперация на одном из концов теплообменника составляет 5К. Поток 1 - O_2 . Поток 2 - N_2

```
In [24]: #Дано
    T1 = 300; T2 = 100
    gas1 = '0xygen'; gas2 = 'Nitrogen'
    P1 = 0.5 * 10**6 #Па
    P2 = 1 * 10**6 #Па
    G1 = 10; G2 = 9
    dT = 5 #недорекуперация
```

Определим изобарные теплоемкости C_{p1} и C_{p2}

```
In [25]: Cp1 = CP.PropsSI('CPMASS', 'P',P1, 'T', T1, gas1)
Cp2 = CP.PropsSI('CPMASS', 'P',P2, 'T', T2, gas2)
print("Cp1 = %.2f Дж/κгΚ, Cp2 = %.2f Дж/κгΚ" % (Cp1,Cp2))

Cp1 = 926.11 Дж/кгК, Cp2 = 2304.75 Дж/кгΚ
```

Водные эквивалентны:

$$W_1 = C_{p1} \cdot G_1$$
$$W_1 = C_{p2} \cdot G_2$$

In [26]:
$$W1 = Cp1*G1$$
; $W2 = Cp2*G2$
 $print('W1 = %.2f \ \mbox{$\sc L}\mbox{$\sc K}'(K*c)$, $W2 = %.2f \ \mbox{$\sc L}\mbox{$\sc K}'(K*c)$$ (W1,W2))
 $W1 = 9261.10 \ \mbox{$\sc K}'(K*c)$, $W2 = 20742.77 \ \mbox{$\sc K}'(K*c)$$$

Правило задания недорекуперации для двухпоточного противоточного теплообменника: Если водяной эквивалент прямого потока больше, чем обратного, то недорекуперацию задаём на тёплом конце теплообменника. В данном случае недорекуперация задается на холодном конце теплообменника. ($W_2 > W_1$)

Тогда:
$$T_3 = T_2 - \Delta T$$

Энергетический баланс: $W_1 \cdot (T_1 - T_3) = W_2 \cdot (T_2 - T_4)$

Откуда
$$T_4 = T_2 + rac{W_1}{W_2} \cdot (T_1 - T_3)$$

T3 = 105.00 K, T4 = 187.06 K

Ответ:

 $T_3 = 105K$; $T_4 = 187.06K$

Задача 5

Определить совершенную удельную работу и температуру в конце изоэнтропного и изоэнтальпного расширений, используя таблицы или диаграммы реальных свойств веществ. Для процесса изоэнтропного расширения также использовать уравнение адиабаты Пуассона для идеального газа. Известно давление в начале $P_1=2,5\,\mathrm{M}\Pi a$ и конце $P_2=0,2\,\mathrm{M}\Pi a$ процесса расширения и диапазон температур для начала процесса расширения $T_1=250...300\,\mathrm{K}$. Построить графики зависимостей изменения перепада температур и удельной работы в процессах расширения от начальной температуры расширения, используя при этом не менее пяти точек.

Газ - N_2 . Показатель адиабаты k=1.4. Степень сжатия $\epsilon = rac{P_2}{P_1}$

```
In [28]: # Дано
P1 = 2.5 * 10**6 #Па
P2 = 0.2 * 10**6 #Па
gas = 'Nitrogen'
T1max = 300
T1min = 250
k = 1.4 # Показатель адиабаты для азота
eps = P2/P1 #Степень сжатия
print("eps = ", eps)

eps = 0.08
```

Изоэнтропный процесс

По уравнению Пуассона вычислим T_2 :

$$T_2 = T_1 \cdot \epsilon^{rac{k-1}{k}}$$

Теперь определим энтальпию в начале и в конце процесса по известным T_1, T_2 и P_1, P_2 .

```
In [30]: h1 = []; h2 = [];
          print('h1 = [', end = ' ')
          for t in T1:
              tmp = CP.PropsSI('H', 'P',P1, 'T', t, gas)
              h1.append( tmp )
              print('%.2f'%tmp, end = '; ')
          print('] Дж/κΓ')
print('h2 = [', end = ' ')
          for t2 in T2:
              tmp = CP.PropsSI('H', 'P',P2, 'T', t2, gas)
              h2.append( tmp )
              print('%.2f'%tmp, end = '; ')
          print('] Дж/κΓ')
          h1 = [ 251492.87; 262502.01; 273452.19; 284352.04; 295208.65; 306027.99; ] Дж
          h2 = [ 123542.22; 128755.56; 133950.51; 139130.02; 144296.40; 149451.57; ] Дж
          Работа при изоинтропном расширении:
                                              l_s = h_1 - h_2
In [31]: | l_s = []
          print('l_s = [', end = ' ')
          for i,j \bar{i}n zip(h1,h2): # i - элемент h1, j - элемент h2.
              l s.append(i-j)
              print('%.2f' % (i-j), end = '; ')
          print('] Дж/κΓ')
          l s = [ 127950.66; 133746.45; 139501.68; 145222.02; 150912.25; 156576.43; ] \Pi
          ж/кг
          Изменение температуры \Delta T = T_1 - T_2
In [32]: | deltaT = []
          print('deltaT = [', end = ' ')
for i,j in zip(T1,T2): # i - элемент T1, j - элемент T2.
              deltaT.append(i-j)
              print('%.2f' % (i-j), end = '; ')
          print('] K')
```

deltaT = [128.51; 133.65; 138.79; 143.93; 149.07; 154.21;] K

```
In [33]: plt.subplot(221)
   plt.plot(T1, deltaT)
   plt.title(r"$\Delta T$")
   plt.subplot(222)
   plt.plot(T1,l_s)
   plt.title(r"$l_s$")
   plt.show()
```


Изоэнтальпный процесс

Энтальпии в начале и в конце процесса равны $h_1=h_2$ Определим T_2 по известному давлению P_2 и энтальпии h_1

```
In [34]: h2 = h1
    T2 = []
    print("T2 = [", end = ' ')
    for h in h1:
        tmp = CP.PropsSI('T', 'H',h, 'P', P2, gas)
        T2.append(tmp)
        print("%.2f" % tmp, end = '; ')
    print('] K ')
```

T2 = [243.00; 253.54; 264.03; 274.48; 284.88; 295.26;] K

Найдем значение удельного объема вещества

$$V_1=1/
ho_1 \ V_2=1/
ho_2$$

```
In [35]: V1=[]
    print('V1 = [', end=' ')
    for h in h1:
        tmp = 1/CP.PropsSI('D', 'H',h, 'P', P1, gas)
        V1.append( tmp )
        print('%.4f'%tmp, end = '; ')
    print('] M3/Kr')
    V2=[]
    print('V2 = [', end=' ')
    for h in h1:
        tmp = 1/CP.PropsSI('D', 'H',h, 'P', P2, gas)
        V2.append( tmp )
        print('%.4f'%tmp, end = '; ')
    print('] M3/Kr')
```

Работа равна изменению внутренней энергии:

$$l_h = p_1 \cdot v_1 - p_2 \cdot v_2$$

```
In [36]:
         lh = []
          print('l h = [', end = ' ')
          for i,j in zip(V1,V2):
              tmp = P1*i - P2*i
              l h.append(tmp)
              print('%.2f'%tmp, end = '; ')
         print('] Дж/κΓ')
         l h = [ 890.56; 955.27; 1014.62; 1069.20; 1119.51; 1166.00; ] Дж/кг
In [37]: deltaT = []
          print('deltaT = [', end = ' ')
          for i,j in zip(T1,T2): # i - элемент T1, j - элемент T2.
              deltaT.append(i-j)
              print('%.2f' % (i-j), end = '; ')
         print('| K')
         deltaT = [ 7.00; 6.46; 5.97; 5.52; 5.12; 4.74; ] K
In [38]:
         plt.subplot(221)
          plt.plot(T1, deltaT)
         plt.title(r"$\Delta T$")
          plt.subplot(222)
         plt.plot(T1, l_h)
         plt.title(r"$l_h$")
          plt.show()
                                                        I_h
                         ΔΤ
          7.0
                                       1150
          6.5
                                       1100
                                       1050
          6.0
                                       1000
          5.5
                                        950
          5.0
```

900

250

Задача 6

260

270

280

290

300

Определить совершенную удельную работу и температуру в конце изоэнтропного и изоэнтальпного расширения, используя таблицы или диаграммы реальных свойств веществ. Для процесса изоэнтропного расширения также использовать уравнение адиабаты Пуассона для идеального газа. Известна температура $T_1=300\mathrm{K}$ в начале процесса расширения, диапазон давлений начала процесса $P_1=0.5..5$ МПа. Степень расширения равна 2,5. Построить графики зависимостей изменения перепада температур и удельной работы в процессах расширения от начального давления расширения, используя при этом не менее пяти точек.Газ - N_2

260

270

280

290

300

```
In [39]: #Дано

T1 = 300

Plmax = 5 * 10**6 #Па

Plmin = 5 * 10**5 #Па

gas = 'Nitrogen'

k = 1.4 # показатель адиабаты

eps = 2.5 # коэффициент расширения!
```

Изоэнтропный процесс

Определим T_2 по уравнению Пуассона:

$$T_2 = T_1 \cdot \epsilon^{rac{k-1}{k}}$$

```
In [40]: T2 = T1*(1/eps)**((k-1)/k) # 1/eps тк здесь стоит коэффициент сжатия.
print("T2 = %.2f K" % T2)

T2 = 230.90 K
```

Зададим измение P_1 , вычислим $P_2=rac{P_1}{2.5}$. По известным P_1,P_2 и T_1,T_2 определим значения энтальпий

```
In [41]: P1 = []
          P1 = [x for x in range(Plmin,Plmax+5*10**5,5*10**5)] # задаем диапозон измен
          ия Р1
          P2 = []
          for p in P1:
              P2.append(p/eps) # вычисляем P2
         print('P1 = ',P1, 'Πa')
print('P2 = ', P2, 'Πa')
          print(P2)
          h1 = []
          print('h1 = [', end = '')
          for p in P1:
              tmp = CP.PropsSI('H', 'P',p, 'T', T1, gas)
              h1.append(tmp)
              print('%.2f'%tmp, end = ' ')
          print(']Дж/κΓ')
          h2 = []
          print('h2 = [', end = '')
          for p in P2:
              tmp = CP.PropsSI('H', 'P',p, 'T', T2, gas)
              h2.append(tmp)
              print('%.2f'%tmp, end = ' ')
          print(']Дж/κΓ')
```

P1 = [500000, 1000000, 1500000, 2000000, 2500000, 3000000, 3500000, 40000000, 4500000, 5000000] P2 = [200000.0, 400000.0, 600000.0, 800000.0, 1000000.0, 1200000.0, 1400000.0, 1600000.0, 1800000.0, 2000000.0] [200000.0, 400000.0, 600000.0, 800000.0, 1000000.0, 1200000.0, 1400000.0, 1600000.0, 1800000.0, 2000000.0] [310316.86 309227.29 308149.01 307082.44 306027.99 304986.11 303957.19 302941.66 301939.93 300952.38] [238849.67 238100.58 237351.64 236602.94 235854.55 235106.57 234359.08 233612.19 232865.97 232120.54]

Работа при изоинтропном расширении:

$$l_s = h_1 - h_2$$

Изменение температуры $\Delta T = T_1 - T_2 = 69.1 K$

```
In [42]: l_s = []
         print('l_s = [', end = ' ')
         for i,j \bar{i}n zip(h1,h2): # i - элемент h1, j - элемент h2.
             l_s.append(i-j)
             print('%.2f' % (i-j), end = '; ')
         print('] Дж/кг')
         deltaT = T1 - T2
         l s = [71467.19; 71126.71; 70797.37; 70479.50; 70173.45; 69879.54; 69598.11;
         69329.48; 69073.96; 68831.84; ] Дж/кг
In [43]: dt = []
         p1 = []
         for x in P1:
             p1.append(x/10**6)
         for x in range(10):
             dt.append(deltaT)
         plt.subplot(221)
         plt.plot(p1, dt)
         plt.title(r"$\Delta T$")
         plt.xlabel(r'$P 1 , MΠa$')
         plt.subplot(222)
```


Изоэнтальпный процесс

plt.plot(p1,l_s)
plt.xlabel(r'\$P_1 , MΠa\$')

plt.title(r"\$l_s\$")

plt.show()

Значения энтальпии h_2 берем из первой части(из изоэнтропного процесса) Затем по известным значениям энтальпии и давления определяем температуру T_2

```
In [44]: h2 = h1
    T2=[]
    print('T2 = [', end ='')
    for i in range(10):
        tmp = CP.PropsSI('T', 'H',h1[i], 'P', P2[i], gas)
        T2.append(tmp)
        print('%.2f' % tmp, end = ' ')
    print(']K')

T2 = [299.37 298.75 298.14 297.55 296.97 296.41 295.85 295.32 294.79 294.29 ]
    K
```

Определим удельный объем по известным энтальпиям и давлениям

 $V1 = [0.178\ 0.089\ 0.059\ 0.044\ 0.036\ 0.030\ 0.025\ 0.022\ 0.020\ 0.018\] \text{m}3/\kappa\Gamma$ $V2 = [0.444\ 0.222\ 0.147\ 0.110\ 0.088\ 0.073\ 0.063\ 0.055\ 0.048\ 0.044\] \text{m}3/\kappa\Gamma$

Определим работу как изменение внутренней энергии:

$$l_h = p_1 \cdot v_1 - p_2 \cdot v_2$$

 $l_h = [143.821\ 293.994\ 450.462\ 613.170\ 782.059\ 957.073\ 1138.149\ 1325.225\ 1518\ .230\ 1717.091\]$ Дж/кг

Изменение температуры по формуле Пуассона:

$$\Delta T = T_1 \cdot (1 - \epsilon^{rac{k-1}{k}})$$

```
In [47]: dT = []
    for i in range(10):
        dT.append(T1*(1-0.4**((k-1))/k))
    printList(dT,'deltaT', 'K')
```

deltaT = [151.469 151.

```
In [48]: plt.subplot(221)
    plt.plot(p1, dT)
    plt.title(r"$\Delta T$")
    plt.xlabel(r'$P_1 , M\Pia$')
    plt.subplot(222)
    plt.plot(p1,l)
    plt.xlabel(r'$P_1 , M\Pia$')
    plt.title(r"$l_h$")
    plt.show()
```

