TFA per cambiamenti di coordinate

Filippo \mathcal{L} . Troncana

A.A. 2023/2024

1 Misure e σ -algebre indotte

Definizione 1.1: σ -algebra finale

Sia (X, \mathcal{A}) uno spazio misurabile, sia Y un insieme e sia $f: X \to Y$ una funzione suriettiva. La σ -algebra finale indotta da f rispetto a \mathcal{A} è la famiglia

$$f\mathcal{A} := \{ E \in 2^Y : f^{-1}(E) \in \mathcal{A} \}$$

Osservazione 1.1

La σ -algebra finale di f rispetto a \mathcal{A} è la più grande σ -algebra Σ tale che $f:(X,\mathcal{A})\to (Y,\Sigma)$ sia misurabile.

Dimostrazione

Sia $\Sigma \subset 2^Y$ tale che $f:(X,\mathcal{A}) \to (Y,\Sigma)$ sia misurabile. Per definizione di funzione misurabile, abbiamo che per ogni $E \in \Sigma$, abbiamo che $f^{-1}(E) \in \mathcal{A}$, dunque $\Sigma \subset f\mathcal{A}$.

Definizione 1.2: Misura esterna indotta

Siano X e Y due insiemi, sia μ una misura esterna su X e sia $f:X\to Y$ una funzione suriettiva. La $misura\ indotta$ da f rispetto a μ è la funzione

$$f\mu: 2^Y \to [0, +\infty]$$
 con $f\mu(E) := \mu(f^{-1}(E))$

Proposizione 1.1

 $f\mu$ è una misura esterna su Y.

Dimostrazione

Dimostriamo i tre assiomi di misura esterna.

- 1. $f^{-1}(\varnothing) = \varnothing \Rightarrow f\mu(\varnothing) = 0$.
- 2. Siano $E\subset F\subset Y$, allora $f^{-1}(E)\subset f^{-1}(F)$, dunque la monotonia di $f\mu$ segue dalla monotonia di μ .
- 3. Siano $A,B\subset Y,$ allora $f^{-1}(A\cup B)=f^{-1}(A)\cup f^{-1}(B)$ e la subaddittività segue da quella di μ

Proposizione 1.2

Se $f\mu$ è la misura indotta da f rispetto a μ , allora $\mathcal{M}_{f\mu} = f\mathcal{M}_{\mu}$.

Dimostrazione

TODO

TODO: è possibile definire una duale σ -algebra iniziale e una misura iniziale richiedendo l'iniettività, ma per la nostra trattazione è sufficiente la versione finale.

Lemma 1.1: Isomorfismo di σ -algebre indotte

Siano (X, \mathcal{A}) uno spazio misurabile, Y un insieme e $f: (X, \mathcal{A}) \to Y$ una funzione biettiva. Allora $F\mathcal{A} \cong \mathcal{A}$.

Dimostrazione

Banale dimostrazione di insiemistica.

2 Integrazione indotta

La situazione che studiamo in questa sezione è la seguente

Teorema 2.1: Integrazione indotta

Sia (X, \mathcal{A}, μ) uno spazio con misura, sia Y un insieme, sia $f: X \to Y$ una funzione biettiva e sia $g: (Y, f\mathcal{A}, f\mu) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}), \mathcal{L}^1)$ una funzione $f\mathcal{A}$ -misurabile. Allora g è $f\mu$ -integrabile se e solo se $g \circ f$ è μ -integrabile, e vale l'identità

$$\int g \, \mathrm{d}f\mu = \int g \circ f \, \mathrm{d}\mu$$

Dimostrazione

Assumiamo che g sia $f\mu$ -integrabile. Allora vale

$$\int g \, \mathrm{d}f\mu = \int_* g \, \mathrm{d}f\mu = \sup \{I_{f\mu}(\varphi) : \varphi \in \Sigma_-(g)\} = \sup \left\{ \sum_i a_i f\mu(\varphi^{-1}(\{a_i\})) : \varphi \in \Sigma_-(g) \right\} =$$

$$= \sup \left\{ \sum_i a_i \mu(f^{-1}(\varphi^{-1}(\{a_i\}))) : \varphi \in \Sigma_-(g) \right\} = \sup \left\{ \sum_i a_i \mu((\varphi \circ f)^{-1}(\{a_i\})) : \varphi \circ f \in \Sigma_-(g \circ f) \right\}$$

$$\operatorname{con} \psi := \varphi \circ f, \quad \int_* g \, \mathrm{d}f\mu = \sup \{I_\mu(\psi) : \psi \in \Sigma_-(g \circ f)\} = \int_* g \circ f \, \mathrm{d}\mu$$

La dimostrazione è assolutamente analoga per l'integrale superiore e nella direzione opposta assumendo l'integrabilità di $g \circ f$. Le varie uguaglianze seguono dalla biettività di f.

Osservazione 2.1: Girotondone per il TFA

L'obiettivo di questo scherzetto è dimostrare il TFA per cambiamenti di coordinate, ovvero

$$\int g \, \mathrm{d}\mathcal{L}^n = \int (g \circ f) \cdot J_f \, \mathrm{d}\mathcal{L}^n$$

Ma c'è un problema: noi abbiamo dimostrato un risultato dalla forma leggermente diversa, ovvero

$$\int g \, \mathrm{d}f\mu = \int g \circ f \, \mathrm{d}\mu$$

Osservando il TFA ci aspettiamo che la nostra $df\mu$ corrisponda a $J_f d\mathcal{L}^n$, dunque dobbiamo fare un piccolo giretto usando la biettività di f:

$$\int g \, d\lambda = \int g \circ f \circ f^{-1} \, d\lambda = \int g \circ f \, df^{-1} \lambda$$

In questo modo ci basta riuscire a far corrispondere J_f d \mathcal{L}^n a d $f^{-1}\mathcal{L}^n$

3 Derivata di Radòn-Nikodym

Teorema 3.1: Teorema di Radòn-Nikodym

Sia (X, \mathcal{A}) uno spazio misurabile e siano ν, μ misure su (X, \mathcal{A}) tali che μ sia σ -finita e ν sia assolutamente continua rispetto a μ . Allora esiste una funzione \mathcal{A} -misurabile $f: X \to X$ tale che per ogni $E \in \mathcal{A}$ si abbia

$$\nu(A) = \int\limits_A f \, \mathrm{d}\mu$$

E per una funzione ν -integrabile $g:(X,\mathcal{A},\nu)\to\mathbb{R}$ vale

$$\int g \, \mathrm{d}\nu = \int g \cdot f \, \mathrm{d}\mu$$

Definizione 3.1: Derivata di Radòn-Nikodym

Nella situazione precedente, la funzione f si dice derivata di Radòn-Nikodym di ν rispetto a μ e si indica con

$$f = \frac{\mathrm{d}\nu}{\mathrm{d}\mu}$$

Corollario 3.1: CONGETTURA Di Banach-Caccioppoli e Radòn-Nikodym

Sia $(X, \mathcal{A}, \mu, ||\cdot||)$ uno spazio di misura di Banach, sia μ una misura di Radòn invariante per isometrie e sia $f: (X, ||\cdot||) \to (X, ||\cdot||)$ una contrazione biettiva.

Allora $f^{-1}\mu$ soddifa le ipotesi del teorema 3.1 e ||f|| è la sua derivata di R-N rispetto a μ .

Dimostrazione

Sia 0 < L < 1 la costante di Lipschitz di f e sia $A \in \mathcal{A}$ un insieme di misura nulla.

Abbiamo che $f^{-1}\mu(A) = \mu(f(A))$. Osserviamo che f(A) è isometricamente equivalente a un sottoinsieme di A, dunque f(A) ha misura nulla per monotonia di μ . Abbiamo dunque che esiste una funzione μ -integrabile $g: X \to [0, +\infty]$ tale che

$$f^{-1}\mu(E) = \int_E g \, d\mu = \int g\chi_E \, d\mu = \int_* g\chi_E \, d\mu = \sup \{I_\mu(\varphi) : \varphi \in \Sigma_-(g\chi_E)\}$$

Combinando con la definizione di misura finale

$$f^{-1}\mu(E) = \mu(f(E)) = \int\limits_{f(E)} \,\mathrm{d}\mu$$

4 Il viaggio verso il TFA

Cercheremo di dimostrare il TFA per cambiamenti di coordinate *lineari* con la speranza di estendere questo ragionamento a cambiamenti di coordinate *differenziabili*, ovvero localmente lineari. Per fare questo, ci permetteremo di sostituire i plurirettangoli nella definizione della misura di Lebesgue ai pluriparallelogrammi

Lemma 4.1: Misura indotta da un cambiamento di coordinate lineare

Sia $F: (\mathbb{R}^n, \mathcal{M}_{\mathcal{L}}, \mathcal{L}^n) \to \mathbb{R}^n$ una mappa lineare invertibile. Allora $F^{-1}\mathcal{L}^n = |\det F| \cdot \mathcal{L}^n$ e dunque

$$F^{-1}\mathcal{L}^n(E) = \int_E |\det F| \, \mathrm{d}\mathcal{L}^n$$

Dimostrazione

Sia $E \in F\mathcal{M}_{\mathcal{L}}$. Per definizione di misura indotta, abbiamo che $F^{-1}\mathcal{L}^n(E) = \mathcal{L}^n(F(E))$ e che, come visto nel corso di Geometria A è uguale a $|\det F| \cdot \mathcal{L}^n(E)$.

Teorema 4.1: TFA per cambiamenti di coordinate lineari

Sia $F: \mathbb{R}^n \to \mathbb{R}^n$ una mappa lineare invertibile e sia $g: \mathbb{R}^n \to \mathbb{R}$ una funzione \mathcal{L}^n -integrabile. Vale il seguente fatto:

$$\int g \, d\mathcal{L}^n = \int (g \circ F) \cdot |\det F| \, d\mathcal{L}^n$$

Lemma 4.2: NON SO SE SERVA DAVVERO

Sia $E \subset \mathbb{R}^n$ un insieme misurabile e per r > 0 sia $\{B_r(x_i)\}_{i \in I_r}$ un suo ricoprimento numerabile di palle aperte. Vale

$$\mathcal{L}^n(E) \leq \sum_{i \in I_r} \mathcal{L}^n(B_r(x_i))$$
 e in particolare $\mathcal{L}^n(E) = \lim_{r \to 0} \sum_{i \in I_r} \mathcal{L}^n(B_r(x_i))$

Dimostrazione

Segue dal teorema di Lindelof e dalla compatibilità tra \mathcal{H}^n e \mathcal{L}^n

Teorema 4.2: Derivata R-N di una misura finale

Sia $\varphi: (\mathbb{R}^n, \mathcal{M}_{\mathcal{L}}, \mathcal{L}^n) \to \mathbb{R}^n$ un diffeomorfismo locale e sia $E \subset \mathbb{R}^n$ un aperto. Allora

$$\varphi^{-1}\mathcal{L}^n(E) = \int_E |\det D_{\varphi}| \, d\mathcal{L}^n$$

Equivalentemente

$$\frac{\mathrm{d}\varphi^{-1}\mathcal{L}^n}{\mathrm{d}\mathcal{L}^n} = |\det D_{\varphi}|$$

Nel senso della definizione 3.1 della derivata di Radòn-Nikodym.

Dimostrazione

Poniamo $|\det D_{\varphi}(x)| =: J(x).$

Sia $E \subset \mathbb{R}^n$ un aperto. Localmente la trasformazione φ agisce come una trasformazione lineare D_{φ} , dunque in intorni V_i sufficientemente piccoli di punti $x_i \in E$ indicizzati su un insieme numerabile I applichiamo il lemma 4.1 e abbiamo $\varphi^{-1}\mathcal{L}^n \sim D_{\varphi}\mathcal{L}^n = J(x) \cdot \mathcal{L}^n$. Dunque posti possiamo scrivere

$$\varphi^{-1}\mathcal{L}^n(E) = \sum_{i \in I} \int_{V_i} J(x_i) \, d\mathcal{L}^n \sum_{i \in I} \int_E J(x_i) \chi_{V_i}(y) \, d\mathcal{L}^n(y)$$

Facendo una $mossa\ alla\ Gottinga$ riconosciamo una regolarità sufficiente ad applicare uno strano genere di integrale di Riemann rendendo sempre più piccoli i nostri intorni e otteniamo

$$\varphi^{-1}\mathcal{L}^n(E) = \int_E J \, d\mathcal{L}^n = \int_E |\det D_{\varphi}| \, d\mathcal{L}^n$$

Teorema 4.3: TFA

Sia $\varphi: \mathbb{R}^n \to \mathbb{R}^n$ un diffeomorfismo locale e $g: \mathbb{R}^n \to \mathbb{R}$ una funzione \mathcal{L}^n -integrabile. Vale

$$\int g \, d\mathcal{L}^n = \int (g \circ \varphi) \cdot |\det D_{\varphi}| \, d\mathcal{L}^n$$

Dimostrazione

La dimostrazione è banale combinando i non banali teoremi 2.1, 3.1 e 4.2.