Solutions to extra probability exercises

November 19, 2019

(Source: Pearl et al, 2016, solution manual)

Study question 1.3.1.

Identify the variables and events invoked in the lollipop story of Study question 1.2.4

Solution to study question 1.3.1

 ${\it Variables}$: Let X indicate Treatment / Drug receipt, Z indicate Lollipop receipt, and Y indicate Recovery Status.

Events: "X = 1 and Z = 1 and Y = 1" indicates the event where an individual takes the drug, receives a lollipop, and recovers (the same applies for other values of each variable).

Study question 1.3.3.

Consider the casino problem described in Section 1.3.7

- (a) Compute P("craps"|"11") assuming that there are twice as many roulette tables as craps games at the casino.
- (b) Compute P("roulette"|"10") assuming that there are twice as many craps games as roulette tables at the casino.

Solution to study question 1.3.3

Part (a)

Assuming that there are twice as many roulette tables as craps games at the casino, we have:

$$P("roulette") = 2/3$$

 $P("craps") = 1/3$

So, by the law of total probability, we can write our target quantity P("11") in terms of what we know:

$$P("11") = P("11"|"craps")P("craps") + P("11"|"roulette")P("roulette")$$

$$= 1/18*1/3 + 1/38*2/3$$

$$= 37/1026$$

$$= 0.036$$

$$P("craps"|"11") = P("craps", "11")/P("11")$$

$$= \frac{1/18*1/3}{37/1026}$$

$$= 0.514$$

Part (b)

Assuming that there are twice as many craps games as roulette tables at the casino, we have:

$$P("roulette") = 1/3$$

 $P("craps") = 2/3$

We can use the same tactic as in (a) (the law of total probability) to write our target quantity in terms of what we know:

$$P("10") = P("10"|"craps")P("craps") + P("10"|"roulette")P("roulette")$$

$$= 1/12 * 2/3 + 1/38 * 1/3$$

$$= 11/171$$

$$= 0.064$$

$$P("roulette"|"10") = P("roulette", "10")/P("10")$$

$$= \frac{1/38 * 1/3}{11/171}$$

$$= 0.136$$

Study question 1.3.7.

Two fair coins are flipped simultaneously to determine the payoffs of two players in the town's casino. Player 1 wins a dollar if and only if at least one coin lands on head. Player 2 receives a dollar if and only if the two coins land on the same face. Let X stand for the payoff of Player 1 and Y for the payoff of Player 2.

(a) Find and describe the probability distributions

$$P(x), P(y), P(x, y), P(y|x)$$
 and $P(x|y)$

(b) Using the descriptions in (a), compute the following measures:

$$E[X], E[Y], E[Y|X = x], E[X|Y = y]$$

 $Var(X), Var(Y), Cov(X, Y), \rho_{XY}$

- (c) Given that Player 2 won a dollar, what is your best guess of Player 1's payoff?
- (d) Given that Player 1 won a dollar, what is your best guess of Player 2's payoff?
- (e) Are there two events, X = x and Y = y, that are mutually independent?

Solution to study question 1.3.7

Let X and Y stand for the winnings of Player 1 and Player 2, respectively. We have: **Part** (a)

The descriptions of these distributions are as follows:

P(x): The probability that player 1 gets x dollars.

P(y): The probability that player 2 gets y dollars.

P(x,y): The probability that player 1 gets x dollars and player 2 gets y dollars.

P(y|x): The probability that player 2 gets y dollars given that player 1 gets x dollars.

P(x|y): The probability that player 1 gets x dollars given that player 2 gets y dollars.

Part (b)

We'll compute each measure by its definition, using the fact that each coin flip is fair and independent:

First, observe that Player 1 wins a dollar if at least 1 of the coins lands on heads. Another way to think about this scenario is that Player 1 loses if both coins land on tails, which we can subtract from 1 to find the probability of them winning. Specifically:

$$P(X = 1) = 1 - P(X = 0) = 1 - P(tails_1)P(tails_2) = 1 - 1/2 * 1/2 = 3/4$$

Computing the expected value follows from Eq. (1.10), summing over all outcomes and their associated probabilities:

$$E[X] = \sum_{x} x * P(x) = 1 * P(X = 1) + 0 * P(X = 0) = 3/4$$

We'll use a similar approach to computing the winning probability for Player 2 as well as the expected value of their winnings. Observe that the winning conditions for Player 2 are when both coins land on the same face, specifically:

$$P(Y = 1) = P(heads_1)P(heads_2) + P(tails_1)P(tails_2) = 1/2 * 1/2 + 1/2 * 1/2 = 1/2$$

$$E[Y] = \sum_{y} y * P(y) = 1 * P(Y = 1) + 0 * P(Y = 0) = 1/2$$

To compute the conditional expected values, we will use Eq. (1.13), which intuitively sums over all possible values of the query and weights by the conditional probability of each:

$$E[Y|X = x] = \sum_{y} P(y|X = x)$$

$$= 1 * P(Y = 1|X = x) + 0 * P(Y = 0|X = x)$$

$$= P(Y = 1|X = x)$$

$$E[X|Y = y] = \sum_{x} P(x|Y = y)$$

$$= 1 * P(X = 1|Y = y) + 0 * P(X = 0|Y = y)$$

$$= P(X = 1|Y = y)$$

Next, we can compute the variances of each variable using Eq. (1.15), their covariance using Eq. (1.16), and their correlation coefficient using Eq. (1.17).

$$Var(X) = E((X - 3/4)^2)$$

$$= (1 - 3/4)^2 * P(X = 1) + (0 - 3/4)^2 * P(X = 0)$$

$$= 1/16 * 3/4 + 9/16 * 1/4$$

$$= 3/16$$

$$Var(Y) = E((Y - 1/2)^2)$$

$$= (1 - 1/2)^2 * P(Y = 1) + (0 - 1/2)^2 * P(X = 0)$$

$$= 1/4 * 1/2 + 1/4 * 1/2$$

$$= 1/4$$

$$Cov(X,Y) = E[(X - 3/4)(Y - 1/2)]$$

$$= 1/4 * 1/2 * P(X = 1, Y = 1) - 3/4 * 1/2 * P(X = 0, Y = 1)$$

$$+ 1/4 * -1/2 * P(X = 1, Y = 0) - 3/4 * -1/2 * P(X = 0, Y = 0)$$

$$= 1/4 * 1/2 * 1/4 - 3/4 * 1/2 * 1/4 + 1/4 * -1/2 * 1/2 - 3/4 * -1/2 * 0$$

$$= -1/8$$

$$\rho_{XY} = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$$

$$= \frac{-1/8}{\sqrt{3/16}\sqrt{1/4}}$$

$$= -1/\sqrt{3}$$

Part (c)

To answer this query, we know that if both X=1 and Y=1, then the outcome of the two coins must have been both heads, meaning that P(X=1,Y=1)=1/4. Furthermore, we can phrase our query as E[X|Y=1], since we are interested in the expectation of Player 1's winnings having observed that Player 2 won a dollar. Combining this knowledge with our solution to each conditional expected value from part (b) above, we have:

$$E[X|Y = 1] = P(X = 1|Y = 1)$$

$$= \frac{P(X = 1, Y = 1)}{Y = 1}$$

$$= \frac{1/4}{1/2}$$

$$= 1/2$$

Part (d)

We use the same strategy as in part (c) above, and have:

$$E[Y|X = 1] = P(Y = 1|X = 1)$$

$$= \frac{P(X = 1, Y = 1)}{X = 1}$$

$$= \frac{1/4}{3/4}$$

$$= 1/3$$

Part (e)

Consider what we know about the joint events:

$$P(X = 1, Y = 1) = 1/4$$

$$P(X = 0, Y = 1) = 1/4$$

$$P(X = 1, Y = 0) = 1/2$$

$$P(X = 0, Y = 0) = 0$$

Now, examining their priors, we have:

$$P(X = 1) = 3/4$$

 $P(X = 0) = 1/4$
 $P(Y = 1) = P(Y = 0) = 1/2$

Plainly, there are no two values for X and Y such that the product of their priors will equal their joint, i.e., for no two values X=x,Y=y do we have: P(Y=y,X=x)=P(Y=y)*P(X=x). Therefore, we conclude that there are no two mutually independent events.

Correction: what is called 'prior' here should be called 'marginal'