Лабораторная работа на тему: Эффект Холла в полупроводниках

Балушкин Петр Группа Б04-302

24 сентября 2024 г.

Содержание

1 Введение

Цель работы: измерение подвижности и концентрации носителей заряда в полупроводниках.

В работе используются:электромагнит с регулируемым источником пи тания; вольтметр; амперметр; миллиамперметр; измеритель магнитной индукции ATE-8702 источник питания $(1,5 \ B)$, образцы легированного германия.

2 Схема установки

Рис. 1: Схема установки для исследования эффекта Холла в полупроводниках

3 Теория

проводимость материала:

$$\sigma = I \cdot L_{35} / (U35 \cdot a \cdot l)$$

где L - расстоние между контактами 3 и 5, а - толщина, l - шидрина.

4 Ход работы

4.1 Таблицы и графики

В, мТл	І, мА
15.500000	0.000000
196.000000	0.200000
384.000000	0.400000
569.000000	0.600000
743.000000	0.800000
966.000000	1.000000
1113.000000	1.200000
1170.000000	1.400000

Рис. 2: Зависимость В от I

U34, mV	Im, A
0.000000	0.000000
0.026000	0.200000
0.051000	0.400000
0.074000	0.600000
0.093000	0.800000
0.107000	1.000000
0.116000	1.200000
0.122000	1.380000

Рис. 3: I = 0.3

U34, mV	Im, A
0.000000	0.000000
0.035000	0.200000
0.068000	0.400000
0.100000	0.600000
0.124000	0.800000
0.144000	1.000000
0.155000	1.200000
0.163000	1.380000

Рис. 4: I = 0.4

U34, mV	Im, A
0.000000	0.000000
0.043000	0.200000
0.086000	0.400000
0.124000	0.600000
0.156000	0.800000
0.180000	1.000000
0.195000	1.200000
0.204000	1.360000

Рис. 5: I = 0.5

U34, mV	Im, A
0.000000	0.000000
0.052000	0.200000
0.101000	0.400000
0.148000	0.600000
0.187000	0.800000
0.215000	1.000000
0.234000	1.200000
0.244000	1.360000

Рис. 6: I = 0.6

U34, mV	Im, A
0.000000	0.000000
0.059000	0.200000
0.120000	0.400000
0.174000	0.600000
0.219000	0.800000
0.251000	1.000000
0.274000	1.200000
0.284000	1.350000

Рис. 7: I = 0.7

U34, mV	Im, A
0.000000	0.000000
0.068000	0.200000
0.137000	0.400000
0.205000	0.600000
0.249000	0.800000
0.288000	1.000000
0.312000	1.200000
0.324000	1.340000

Рис. 8: I = 0.8

U34, mV	Im, A
0.000000	0.000000
0.077000	0.200000
0.155000	0.400000
0.224000	0.600000
0.282000	0.800000
0.323000	1.000000
0.353000	1.200000
0.365000	1.330000

Рис. 9: I = 0.9

U34, mV	Im, A
0.000000	0.000000
0.088000	0.200000
0.172000	0.400000
0.248000	0.600000
0.314000	0.800000
0.357000	1.000000
0.389000	1.200000
0.403000	1.330000

Рис. 10: I = 1

I	k
0.300000	0.000128
0.400000	0.000171
0.500000	0.000215
0.600000	0.000257
0.700000	0.000303
0.800000	0.000348
0.900000	0.000389
1.000000	0.000431

Рис. 11: k(I)

4.2 Расчеты

$$U = R \cdot \frac{B}{h} \cdot I$$

$$\frac{R}{h} = k$$

$$R = k * h \approx 9.6 * 10^{-4} Om/m^2$$

$$n = \frac{1}{R \cdot q} \approx 6.5 * 10^{21} m^{-3}$$

$$\sigma = \frac{I * L}{U * a * l} \approx 0.609 Om^{-1}$$

$$b = \frac{\sigma}{q * n} \approx 5.8 * 10^{-4} * c/m^2$$

5 Вывод

В данной работе был измерен ЭДС Холла, его зависимость от тока и магнитного поля, полученные тип зарядов по правилу вектооного произведения: дырки.

$$R = (960 \pm 2) * 10^{-6} Om/m^{2}$$

$$n = (650 \pm 2) * 10^{19} m^{-3}$$

$$\sigma = 0.609 \pm 0.001 Om^{-1}$$

$$b = (580 \pm 5) * 10^{-6} H * c/cm^{2}$$