Problem H A Research Problem

Input: Standard Input
Output: Standard Output

A mad researcher was trying to get fund for his research project but it is a pity that after a year he was able to collect **500\$** only. So all his research work has gone to ashtray. The mad researcher now wants his revenge, so he wants you to solve his unfinished research problem within a very limited time. You will be happy to know that his research is related to Euler's phi function.

Euler's phi (or totient) function of a positive integer n is the number of integers in $\{1,2,3,...,n\}$ which are relatively prime to n. This is usually denoted as $\phi(n)$. The table below shows the value of phi function for first few numbers.

integer n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
phi(n)	1	1	2	2	4	2	6	4	6	4	10	4	12	6	8	8

Given the value of \mathbf{n} , it is very easy to find the value of $\varphi(\mathbf{n})$ using the formula below:

$$\phi(n) = n \prod_{p|n} \left(1 - \frac{1}{p}\right)$$
 // Here p is a prime

According to this formula
$$\phi(12) = \phi(2^2 * 3) = 12\left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{3}\right) = 12 * \frac{1}{2} * \frac{2}{3} = 4$$
.

But your task is not quite straightforward, given the value of $\varphi(n)$ you will have to find the minimum possible value of n.

Input

The input file contains at most 100 lines of input. Each line contains a positive integer **phi_n** (1\leq **phi_n\leq 100000000**). Input is terminated by a line where **phi_n=0**. This line should not be processed.

Output

For each line of input produce one line of output. This line contains the serial of output followed by two integers $\mathbf{phi}_{\mathbf{n}}$ and \mathbf{n} . The first integer is the integer taken as input and the second integer is the minimum possible value of \mathbf{n} , for which $\phi(\mathbf{n})=\mathbf{phi}_{\mathbf{n}}$. All the input numbers will be such that for all given input there will be a possible value of \mathbf{n} less than 200000000.

Sample Input

Output for Sample Input

12		Case	1:	12 13		
24		Case	2:	24 35		
228096	50	Case	3:	2280960	2283989	
500000	00	Case	4:	5000000	6265625	
0						

Problem setter: Shahriar Manzoor