PB. 51 – Soluzione

SVOLGIMENTO

Introduciamo le variabili intere x_i che indicano il numero di poliziotti assegnati al turno i, i = 1, ..., 24. La relazione tra i turni e le ore in cui i poliziotti sono effettivamente in servizio è data dalla matrice 24×24 i cui elementi sono

$$a_{ij} = \begin{cases} 1 & \text{se i poliziotti assegnati al turno } i \text{ sono in servizio all'ora } j \\ 0 & \text{altrimenti} \end{cases} i, j = 1, \dots, 24.$$

Il numero totale di poliziotti assegnati ai turni (che deve essere minimizzato) è quindi: $\sum_{i=1}^{24} x_i$.

I vincoli che garantiscono la copertura minima richiesta sono: $\sum_{i=1}^{24} a_{ij} x_i \ge p(j), \quad j=1,\ldots,24.$

I vincoli sulla distribuzione $|x_i - x_{i+1}| \le v$, i = 1, ..., 23, non lineari, possono venire equivalentemente espressi tramite l'insieme di vincoli lineari

$$x_i - x_{i+1} \le v, \quad i = 1, \dots, 23$$

$$x_{i+1} - x_i \le v, \quad i = 1, \dots, 23.$$

La formulazione in termini di P.L.I. è pertanto:

(P) min
$$\sum_{i=1}^{24} x_i$$

$$\sum_{i=1}^{24} a_{ij} x_i \ge p(j) \quad j = 1, \dots, 24$$

$$x_i - x_{i+1} \le v \qquad i = 1, \dots, 23$$

$$x_{i+1} - x_i \le v \qquad i = 1, \dots, 23$$

$$x_i \in \mathbb{Z}_+ \qquad i = 1, \dots, 24$$