

How Green Ops is helping the UKHSA innovate Green Tech

Ravi Dhirani (QAT Performance Lead, UKHSA)

UKHSA Conference 2023

Overview

- 1. Problem Statement
- 2. Renewable Energy Overview
- 3. The Energy Journey
- 4. Technology to Enable Environmentally Friendly Solutions

Problem Statement

There are three main issues:

- Global emissions from Cloud computing ranges from 2.5% to 3.7%. This exceeds both the Aviation and Shipping industries global emissions.
- 2. Native Cloud Provider telemetry does not give us an accurate picture.
- 3. Previously at UKHSA the calculations have been manual and time consuming.

Global cloud computing emissions exceed those from commercial aviation

Share of global CO₂ emission generated by sector/category

Source: Climatiq Analysis, The Shift Project, OurWorldinData

The Energy Journey

AWS – Customer Carbon Footprint Tool

Cloud Emissions from an individual Environment to Date

Cloud Emissions from the same environment since 2022

These stats are inaccurate and not relevant to truly cloud native technologies that were born in the cloud

GreenOps Dashboard - Usage

Granular Carbon Emissions that can even be filtered by individual services

GreenOps Dashboard – Metric Analysis

Overlaps between CostOps and GreenOps

Understanding which providers offer the greenest regions

Recommendation and Forecasting Functionality

Automatic Recommendations Based on Usage Reports to Streamline your Cloud Estate

Renewable Energy Overview

Renewable Energy Conversion Systems

- Solar
- Wind
- Hydropower

Renewable Energy Credits - RECs

- A token representing a utilities green energy generation.
- RECs are purchased to offset the emissions generated by Data Centres that are still connected to a energy grid that uses fossil fuels.

Renewable Energy Storage

 Huge Battery Banks – Manufacturing of batteries is also detrimental to the environment, but is out of scope.

The Future

To date, cloud data centres consume a large but consistent amount of energy based on current usage.

- What happens when cloud is fully adopted globally and energy usage in data centres increases?
- What happens when energy prices increase further?
- How will that affect the customers?
- How will this affect policy and legislation globally?
- How can you protect your companies' interests?

What happens when the total energy requirements of Data Centres exceeds the total amount of RECs that can be bought?

The most likely scenario:

- Cloud cost will change, dependant on demand and power consumption.
- Preferential rates will be given to data centres that are underutilised.
- They will change T&Cs customers will become responsible stakeholders of the data centres they're using.
- Cloud Providers will pass on Carbon Emission responsibilities to their customers for their individual usage.

Responding to this change will require:

- Strong DevOps culture
- Cloud Agnostic Technology
- A Cloud Partner that can ensure business continuity.