

Accessibility of Teaching Materials

Exploring Obtainability and Testing Usability in Design of Shareable Teaching Materials

Master of Science thesis in Learning and Leadership

HÅKAN ANDERSSON SEBASTIAN EVERETT ERIKSSON

MASTER'S THESIS 2018:NN

Accessibility of Teaching Materials

Exploring Obtainability and Testing Usability in Design of Shareable Teaching Materials

HÅKAN ANDERSSON SEBASTIAN EVERETT ERIKSSON

Department of Communication and Learning in Science CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2018 Accessibility of Teaching Materials Exploring Obtainability and Testing Usability in Design of Shareable Teaching Materials HÅKAN ANDERSSON & SEBASTIAN EVERETT ERIKSSON

© HÅKAN ANDERSSON & SEBASTIAN EVERETT ERIKSSON, 2018.

Supervisor: Mats Ander, Department of Applied Mechanics

Examiner: Samuel Bengmark, Department of Mathematical Sciences

Master's Thesis 2018:NN Department of Communication and Learning in Science Chalmers University of Technology SE-412 96 Gothenburg Telephone +46 31 772 1000

Cover: —Caption for cover page figure if used, possibly with reference to further information in the report—

Typeset in I⁴TEX Gothenburg, Sweden 2018 Accessibility of Teaching Materials

Exploring Obtainability and Testing Usability in Design of Shareable Teaching Materials

HÅKAN ANDERSSON & SEBASTIAN EVERETT ERIKSSON

Department of Communication and Learning in Science

Chalmers University of Technology

Abstract

For shareable teaching materials to work as intended, they need to be accessible to possible recipients. In this study, accessibility is defined as being obtainable and usable.

The obtainability aspect is primarily explored via literature study. The usability aspect is analyzed by testing of existing teaching materials. The methodology is inspired by usability testing methods found in computer science and IT.

Research questions created to be answered in this thesis are:

- RQ1: How can usability testing be used to improve the usability of teaching mate-rials?
- RQ2: How can usability testing as a method be made accessible for teachers with limited experience of usability design?
- RQ3: What factors do teachers consider when deciding on how to use a teaching material?
- RQ4: From the perspective of a technological system, how can usability design for teaching materials be used to help teachers?

Keywords: usability, obtainability, teaching materials, accessibility, Kleindagarna, Steve Krug.

Acknowledgements

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Name Familyname, Gothenburg, Month Year

Contents

Li	st of	Figures	xi
Li	st of	Tables	xiii
1	Intr 1.1	oduction Research Questions	1 1
2	The	orv	3
	2.1	Franklin's theory: Technology as a system	
	2.2	Institutionalization	
	2.3	Krug's theory: What is usability, and how do you test it?	
		2.3.1 Making usability testing scientific	
		2.3.2 Connecting usability theory for websites to teaching materials	4
	2.4	Figure	5
	2.5	Equation	
	2.6	Table	
	2.7	Chemical structure	5
	2.8	List	5
	2.9	Source code listing	6
	2.10	To-do note	6
3	Met	hods	7
	3.1	Obtainability	
	3.2	Usability	
		3.2.1 Comparing ASD to the used methodology	
		3.2.2 Implementation of methodology	
		3.2.3 Test subject anonymity	10
4	Res	ults	13
	4.1	The materials list	13
5	Disc	cussion	15
	5.1	Required adaptability depends on the teacher's autonomy	15
	5.2	Obtainability	15
6	Con	clusion	17

\sim						
С	റ	n	1	$\boldsymbol{\rho}$	m	ī.S

Bibliography	19
A Appendix 1	I

List of Figures

2.1	Surface and contour plots showing the two dimensional function $z(x,y) = \sin(x+y)\cos(2x)$	
3.1	Adaptive Software Development (ASD) consists of three stages with a feedback loop, enabling developers to perform multiple iterations of improvement based on what they learn from users. This model is similar to the methodology that was developed in this study to collect	
3.2	data on usability of teaching materials. (Highsmith, 2000, p.84) 8 As with ASD, this custom designed method includes a learning loop and can be used for collecting data on usability of teaching materials. The method also describes the roles of the different actors, based on	
	the current stage of the testing phase	
4.1 4.2	The original list of materials on Kleindagarna's official website [SOURCE]. The second revision of the list of materials, based on Kleindagarna's original [FIGURE REFERENCE?].	

List of Tables

2.1 Values of $f(t)$ for $t = 0, 1, 5$
--

Introduction

1.1 Research Questions

- 1. How can usability testing be used to improve the usability of teaching materials?
- 2. How can usability testing as a method be made accessible for teachers with limited experience of usability design?
- 3. What factors do teachers consider when deciding on how to use a teaching material?
- 4. From the perspective of a technological system, how can usability design for teaching materials be used to help teachers?

Theory

2.1 Franklin's theory: Technology as a system

Since it's not obvious what the implications of shared teaching materials could be, it's important to stay critical and discuss the effects of certain material designs during the study. A certain perspective that can be used is one by U. Franklin, in the book and lecture series The Real World of Technology (Franklin, 1990). In it, she discusses technology as a complex system:

"Technology is not the sum of the artifacts, of the wheels and gears, of the rails and electronic transmitters. Technology is a system. It entails far more than its individual material components. Technology involves organization, procedures, symbols, new words, equations, and, most of all, a mindset. [...] Personally, I much prefer to think in terms not of systems but of a web of interactions. This allows me to see how stresses on one thread affect all others. The image also acknowledges the inherent strength of a web and recognizes the existence of patterns and designs." - Franklin, 1990, pages 16 and 95.

Since teaching materials encompass both a way of working and artifacts, they can be viewed as a technology, as defined by Franklin. As such, they affect how a teacher does their work in complex ways. For example, as Franklin also notes, materials can be used both to assist teachers in their lesson design, or to make them comply to certain standards and control structures. Therefore, it becomes important to consider effects on the teacher's work as a whole, instead of limiting the analysis to a specific lesson.

2.2 Institutionalization

"Institutionalization, in this particular understanding – needless to say there are others – means that you set up a separate entity with the express delegated authority to do a thing.

Just a little thought I had. Source: https://www.quora. is-politicalinstitutionalization

Thereby the entity becomes the only proper Doing-a-thing-place. Doing the thing outside of the institution is either senseless (Playing chess without adhering to the rules of chess.) or will get you sanctioned. (Firing a gun outside of narrowly controlled circumstances.)"

Taken from the planning report.

2.3 Krug's theory: What is usability, and how do you test it?

Steve Krug is a usability consultant who wrote books about usability. His usability books are mainly focused on websites, but as he writes himself, his methods are applicable on other things as well.

Krug defines his first law of usability as "Don't make me think!", implying that users should be understand what a website is and how to use it without expending any effort thinking about it:

"A person of average (or even below average) ability and experience can figure out how to use the thing to accomplish something without it being more trouble than it's worth." [SOURCE: DON'T MAKE ME THINK REVISITED, p.9]

Aside from a few principles of usability, Krug puts a lot of effort into describing the usefulness of usability testing and how to do such testing in a cheap and easy manner. In his book specifically about usability testing, he defines such tests as:

"Watching people try to use what you're creating/designing/building (or something you've already created/desgined/built), with the intention of (a) making it easier for people to use or (b) proving that it is easy to use."

Or, in simpler terms:

"A facilitator sits in a room with the participant, gives him some tasks to do, and asks him to think out loud while he does them."

2.3.1 Making usability testing scientific

One important difference between Krug's method and the method used in this thesis is that Krug's focus is not tobe scientific, but to merely improve what one is building [SOURCE: ROCKET SURGERY MADE EASY]. Thus, certain parts of his method have been adapted to make it easier to analyze:

- 1. In contrast to Krug's method, the tasks in the tests are not altered mid-test, to make them more comparable.
- 2. There is more data gathering involved in the form of recordings and notes, rather than having a group of observers watching the test, to make analysis and comparison easier long after the tests have been conducted.

2.3.2 Connecting usability theory for websites to teaching materials

One can argue that there's a large difference between teaching materials and websites. While in some cases these can be the same, such as online materials shared through a blog post, a teaching material can sometimes take the form of a book, a single PDF file, and more. All the materials have in common is that they're used to facilitate and/or empower a teacher's work. However, usability testing is still clearly applicable in the sense that it consists of observing someone use what you're testing.

Since teaching materials can be used in many different ways, the use case had to be narrowed down. Thus, in this thesis, the use case that the usability tests cover consist mainly of how teachers use teaching materials to plan their lessons. This does not mean that other use cases are ignored, such as a teacher simply using a material to learn more about a subject. However, the lesson planning is the main focus of the usability testing in this thesis.

2.4 Figure

Figure 2.1: Surface and contour plots showing the two dimensional function $z(x,y) = \sin(x+y)\cos(2x)$.

2.5 Equation

$$f(t) = \begin{cases} 1, & t < 1 \\ t^2 & t \ge 1 \end{cases}$$
 (2.1)

2.6 Table

Table 2.1: Values of f(t) for t = 0, 1, ... 5.

\overline{t}	0	1	2	3	4	5
f(t)	1	1	4	9	16	25

2.7 Chemical structure

2.8 List

- 1. The first item
 - (a) Nested item 1

```
(b) Nested item 22. The second item3. The third item4. ...
```

2.9 Source code listing

```
% Generate x- and y-nodes
x=linspace(0,1); y=linspace(0,1);

% Calculate z=f(x,y)
for i=1:length(x)
  for j=1:length(y)
   z(i,j)=x(i)+2*y(j);
  end
end
```

2.10 To-do note

The todo package enables to-do notes to be added in the page margin. This can be a very convenient way of making notes in the document during the process of writing. All notes can be hidden by using the option *disable* when loading the package in the settings.

Example of a to-do note.

Methods

When discussing Accessibility of a teaching material, in this study, it has been separated into two aspects: Obtainability and Usability. Collecting data for these aspects has be done separately and with different methods. The purpose of describing this study's methodology is both to give insight in how data has been collected, as well as describing a methodology one can use when revising their own shareable teaching material.

3.1 Obtainability

Obtainability describes how easy it is for a teacher to obtain a teaching material, and the data for this aspect of accessibility has mainly be acquired through studying literature. Some data connected to obtainability has also been acquired while performing usability testing, partly because these aspect have proven hard to isolate from each other.

3.2 Usability

The main method of collecting data for this study consisted of a process inspired by Adaptive Software Development (ASD). This method involves iterative development with strengths that fit this study, such as being flexible and low risk. This can for example mean that new information can be easily adopted in future tests and that results can be delivered even if test subjects decide to terminate involvement in this study early. (Sommerville, 2016)

ASD is an antecedent to Agile Software Development, paving the way for popular project management methodologies such as Scrum and Kanban. The methodology for this study has no need of being as complex as Scrum or Kanban, one of the main reasons being the relative small size of the development team (i.e. the two authors of this paper), whereas for example the Scrum model is generally used by splitting a larger workforce in teams of 3 to 9. (Schwaber, 2004)

3.2.1 Comparing ASD to the used methodology

While deciding on the aim of this study, a custom methodology was developed, as this process helped clarify what the study did and did not aim to investigate and

Figure 3.1: Adaptive Software Development (ASD) consists of three stages with a feedback loop, enabling developers to perform multiple iterations of improvement based on what they learn from users. This model is similar to the methodology that was developed in this study to collect data on usability of teaching materials. (Highsmith, 2000, p.84)

how that was expected to play out. That methodology is described in Figure 3.2, and then compared to the ASD methodology to indicate similarities and differences. Comparing the methodology developed for this study with the ASD model, the Kick Off Meeting used to introduce one or more teachers to the study, as well as deciding on a teaching material to work on and a date for the first usability test, is comparable to the Project Initiation of ASD, being prior to the parts contained inside the Learning Loop.

What in the ASD methodology is called Adaptive Cycle Planning is the initial step of the Revising Material stage, deciding on how to rework the teaching material based on the data collected from a Kick Off Meeting or previous Usability Test. This is inevitably one of the stages where collected data is Summarized and Analyzed, even if just as a thought process.

The Concurrent Component Engineering part of ASD is practically the same as the Revising Material stage, this is where a coder would revise the code of the program and this is likewise where the product, the teaching material, is being worked on with the intent of improving its usability.

What is called Quality Review in ASD is the Usability Testing part of this study. This is where the teaching material is tested on a teacher and the data needed to improve the usability of the teaching material is collected. The method used to test usability is based on Steve Krug's script for usability testing websites. Because a teaching material is quite different from a website, oftentimes focusing on interac-

Figure 3.2: As with ASD, this custom designed method includes a learning loop and can be used for collecting data on usability of teaching materials. The method also describes the roles of the different actors, based on the current stage of the testing phase.

tivity, the script could not be used without some changes. There is however some important aspects of Steve Krug's script, e.g. not asking leading questions, that is of great importance to the quality of the data and thereby the quality of future revisions of the teaching material. (Krug, 2009)

The end goal of ASD is Final QA and Release. In the case of this thesis, this has been replaced with Final report.

3.2.2 Implementation of methodology

During the Kick Off Meeting of each teacher involved in the study, the teacher was able to choose what teaching material they wanted to use for their usability testing. A list of sample teaching materials was compiled, consisting of a selection of materials produced at Kleindagarna. This was done as a compromise between delimiting the study and offering teaching materials that feel relevant to the teachers.

mention Kleindagarna earlier or describe more here. /H

The later part of this paragraph brings up something we don't do. When revising material, the decisions of what to revise when is determined from a combination of data from Usability Tests and by studying literature. There may have been instances where a teacher's assumptions of how the next revision will look have been unmet. These cases need to be analyzed and mentioned in the final report, as they may lead to interesting discussions. If for example a revision is made following a certain pedagogic template, and the resulting material makes the test subject less inclined to use it on a lesson, new conclusions can possibly be drawn about accessibility of designing teaching materials.

3.2.3 Test subject anonymity

There are several ways of presenting the personal details of test subjects in scientific studies. In this study some personal details have been disclosed and some have been held anonymous. What is disclosed and examples of what is held anonymous are listed below.

Disclosed information

- Age rounded to nearest 5 years.
- Current status if the test subject is currently working as a teacher and if so on what stage of education, or if they are e.g. studying to become a teacher.
- Years in teaching nearest year if under 10 years, can otherwise be rounded to nearest 5 years. No regard to the age of students taught. No regard to full-time or part-time employment.
- Subjects what school subjects is the test subject certified to teach or studying to teach?

Anonymous information

- Sex/Gender the risk of a reader finding false correlations from the data is assumed to be greater if the test subject's sex and/or gender is disclosed.
- Name the name of the test subjects will not be disclosed, and because the sex/gender will not either, the label of the test subjects will also be as gender free as possible.
- Name of school with this information, it would be too easy to identify the test subject.
- Place of school all subjects studied will live and work in close proximity to Gothenburg, Sweden, as it has been decided to delimit the tests to personal meetings.

Results

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

4.1 The materials list

Lektio	ner		
	erial som utvecklats under tid eftersom fler lektioner utveck	digare Kleindagar. klas. Använd och sprid gärna!	
Kleinföreläsare	Ämne	Lektionspiloter	Lektion
Torsten Ekedahl	Algebra	Kerstin Pettersson och Anny Markussen	Lektion
Magnus Fontes	Modellering	Christer Bergsten och Peter Berggren	Lektion
Axel Hultman	Kombinatorik	Samuel Bengmark och Elisabeth Samuelssor	n Lektion
Torbjörn Lundh	Differentialekvationer	Ola Helenius och Torbjörn Jansson	Saknas
Jana Madjarova	Geometri	Samuel Bengmark och Roger Willför	Lektion
2012			
Kleinföreläsare	Ämne	Lektionspiloter I	ektion

Figure 4.1: The original list of materials on Kleindagarna's official website [SOURCE].

It is important to note that the design of Kleindagarna's list of materials changed in the middle of the thesis. Most of the information in the list remained the same, but colors and fonts changed. A screenshot of the list before Kleindagarna's change wasn't made and thus the exact changes were lost. The first and second thesis-revisions of the list were made before Kleindagarna made changes to their list.

Material från Kleindagarna

Lektionsplaneringar med nya matteperspektiv

Titel	Beskrivning	Relevant(a) gymnasiekurs(er)	Koppling till ämnesplan	Länk
Primtal och kryptering	Beskriver några metoder för att hitta primtal och hur de kan användas i kryptering.	Ma 1b, 1c och 5	Taluppfattning, aritmetik och algebra: primtal, potenser med heltalsexponenter, strategier för användning av digitala verktyg. Innehåller övningsuppgifter.	<u>PDF</u>
Modellering	Eleverna får skapa en modell som mäter hur mycket som går åt av ett stift på en penna per millimeter streck som ritas.	Ma 1b, 1c och 2a	Matematisk modellering	<u>PDF</u>
Ramseytal	Eleverna får lära sig om begreppen permutation och kombination genom något som kallas Ramseytal. Innehåller blad som kan delas ut till eleverna.	Ma 5	Permutation och kombination, grafer och grafteoretiska problem.	PDF
Geometri: Definition, sats och bevis	Eleverna får ställa upp sig på ett sätt så att de bildar en mittpunktsnormal. Sedan får de formulera hypotes och bevis, och fördjupa sig i ämnet med fler geometriska problem.	Ma 1b och 1c		PDF
Operationer: Associativitet och kommutativitet	Undersöker ifall operationer är associativa och/eller kommutativa.			<u>PDF</u>
Område statistik	Går igenom statistiska begrepp genom att låta eleverna rita tsreck utan att prata med varandra, och efteråt analysera strecklängderna.	Ma 2b och 2c	Statistik, beräkning av lägesmått och spridningsmått mm., normalfördelning.	PDF
Randvinkelsatsen	Går igenom randvinkelsatsen laborativt.	Ma 2b och 2c	Geometri, randvinkelsatsen.	PDF
Den dolda och tvetydiga matematiken	Går igenom vanliga missuppfattningar i algebran och aritmetiken.	Ma 1 och 2	Aritmetik och algebra.	PDF
	Utforskar hur en mäter längd, area och			

Figure 4.2: The second revision of the list of materials, based on Kleindagarna's original [FIGURE REFERENCE?].

Discussion

5.1 Required adaptability depends on the teacher's autonomy

The effects of teaching materials on teacher workload is complex. A lot boils down to the autonomy in which the teacher can choose and work with a material. If a teacher is forced to use a material, either due to rules or due to external factors, the material might have negative consequences. But if a teacher has the right to use or not use a material in the way they want, they can choose to use the parts that help them, and ignore the parts that hold them back. For example, "I use the book for simplicity's sake, but when something requires extra attention I find a material that better suits the students' needs."

Some speculations that I decided to write down to see where the final report might end up. Better make risky speculations early rather than late, so we get a chance to revise them. /S

How materials are used in a school is part of the school's material technology. Teachers and students both learn habits that affect the rest of the school. Thus, the school as a whole should consider how to best make use of materials as a resource: Do they have access to new material when needed and/or wanted, and do they have a stable method to fall back on when the materials produce too much workload? Note that being forced to use some new and different material is just as negative on the teacher's autonomy as being forced to do like everyone else.

5.2 Obtainability

Words like obtainable and teaching materials are broad by definition, and school as an institution is complex by nature. This discussion on obtainability can therefore be expected to fail at giving a complete explanation to how these words fit together, but it will try to answer some of the difficulties teachers are facing in obtaining teaching materials.

this could possibly be the first paragraph of this section in the final report. It is phrased as it aims to answer an RQ, so maybe it shouldn't be in discussion(?) /H

Conclusion

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Bibliography

[1] Frisk, D. (2016) A Chalmers University of Technology Master's thesis template for $\mbox{\sc IAT}_{\mbox{EX}}.$ Unpublished.

A

Appendix 1

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.