Semiconductor Materials 2024/07/17

材料工学科 Department of Materials Science 弓野健太郎 Kentaro Kyuno

電界郊果トランジスタ、

MOSFET.

Metal Oxide Semiconductor Field Effect Transistor.

· amplification

2111 switch

Logic circuit 論理回路(中v)

-
√€ | Memory device

NOGIT -

Display device

NOT 回路 NOT circuit (inverter)

AND, OR circuits AND, OR回路も作製可能 Logic circuit, memory device 論理回路、メモリ

Exercise1

Derive the surface potential ($\Psi_{\rm S}$) at the onset of inversion when the acceptor density in Si ($N_{\rm A}$) is 1×10^{16} /cm³.

Si のアクセプター濃度(N_A) を $1x10^{16}$ /cm³ とする。 反転状態における表面ポテンシャル (Ψ_S) を求めよ.

$$\begin{cases} S_{1} = 1 \text{ if } F_{1} = 1 \text{ if } F_{1} = 0.026 \text{ eV at } 300 \text{ K}, \\ N_{1} = 2.66 \times 10^{19} \text{ cm}^{3}, & S_{2} = 1.6 \times 10^{-19} \text{ permittivity} \\ E_{1} = 1.9 \times 8.85 \times 10^{-12} \text{ F/m} \left(\text{ Sinstex} \right) \\ E_{0} = 3.9 \times 8.85 \times 10^{-12} \text{ F/m} \left(\text{ Sio2} \right) \\ \text{permittivity} \end{cases} C_{0x} = \frac{\varepsilon_{0x}}{t}$$

伝導電子密度

Conduction electron density

ホール密度

Hole density

Acceptor density $N_A = 1x10^{16} / cm^3$

Evaluation of surface potential

老面でランクルの事出

Poisson's equation

$$\frac{d^2(10)}{dx^2} = -\frac{f(x)}{e_s}$$

$$E(\omega) = 0.$$

Electric field

たまたできない

Surface potential

迅值配

酸化物薄膜の静電容量 Capacitance of oxide layer

Threshold

Exercise1

Evaluate the depletion layer width (W) at the onset of inversion when the acceptor density in Si (N_A) is $1x10^{16}$ /cm³.

Si のアクセプター濃度(N_A) を $1x10^{16}$ /cm 3 とする。このとき、反転状態における空乏層幅(W)を求めよ。

Signt gap

Signt Signt gap

Signt = 1.12eV,
$$ET = 0.026eV$$
 at $300K$,

 $ES = 1.19 \times 8.85 \times 10^{-12} F/m$ ($ES = 1.19 \times 8.85 \times 10^{-12} F/m$ ($ES = 1.19 \times 8.85 \times 10^{-12} F/m$ ($ES = 1.19 \times 8.85 \times 10^{-12} F/m$ ($ES = 1.19 \times 8.85 \times 10^{-12} F/m$ ($ES = 1.19 \times 8.85 \times 10^{-12} F/m$ ($ES = 1.19 \times 8.85 \times 10^{-12} F/m$ ($ES = 1.19 \times 8.85 \times 10^{-12} F/m$ ($ES = 1.19 \times 8.85 \times 10^{-12} F/m$ ($ES = 1.19 \times 8.85 \times 10^{-12} F/m$ ($ES = 1.19 \times 10^{-12} F/m$)