MAT240:

20161027

MATRIX MULTIPLICATION

RECALL :

V
$$\rightarrow$$
 F, V \rightarrow [V] \triangleright

WITH INVERSE F $\stackrel{n}{\rightarrow}$ \bigvee

(a,

iii) $\stackrel{m}{\downarrow}$ $\stackrel{m}{\downarrow}$

SUPPOSE V, W ARE GIVEN WITH BASES

WHERE T IS GIVEN AS $\frac{n}{j=1} \left(\sum_{i=1}^{n} a_i v_i \right) = \sum_{i=1}^{m} \left(\sum_{i=1}^{m} A_{ij} a_i \right) w_i$

EXAMPLE

FIND THE COORDINATE
REPRESENTATION FOR

T:
$$\mathcal{J}_{3}(\mathbb{R}) \rightarrow \mathcal{J}_{2}(\mathbb{R})$$
,

P \mapsto $P''' + P'$

FOR THE STANDARD BASES

 $\beta = \{1, \times, \times^{2}, \times^{3}\}, \forall \in \{1, \times, \times^{2}\}:$
 $T(x) = 0$
 $T(x) = 1$
 $T(x^{2}) = 2x$
 $T(x^{3}) = 6x + 3x^{2}$

$$\frac{1}{2} \left[\frac{1}{1} \right]^{8} = \begin{pmatrix} 0 & 1 & 0 & 6 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$$

REMARK

[T] B DEPENDS ON THE CHOICE OF OPDERED BASES.

INTERCHANGING WI, WIR OF W INTERCHANGES THE ji, j2-TH KOW OF [T] &

INTERCHANGENG VJI, VJZ OF V INTERCHANGE THE JI, J2 - TH COLUMN OF PTJ8

 $V = V \cdot \mathcal{L}(V) = \mathcal{L}(V, V).$

if J=B, TTIB= [T]B

THE MATRIX OF IVE &(V)

NOTATION

EXAMPLE

MORE GENERALLY, GIVEN AN ISOMORPHISM

ARE RELATED BY WE = T(Vi), MEN

QUESTION.

$$b = \sum_{j=1}^{n} A_{ij}$$

IN SMORT,

QUESTION:

$$\begin{bmatrix}
 To S \end{bmatrix}_{X}^{S} : A = [T]_{B}^{S}, B = [S]_{A}^{B}$$

$$To S (u_{R}) = T \left(\sum_{j=1}^{n} B_{jk} V_{j}\right)$$

$$= \sum_{j=1}^{n} B_{jk} V_{j}$$

$$= \sum_{j=1}^{n} A_{ij} W_{ij}$$

$$= \sum_{j=1}^{n} A_{ij} B_{jk} W_{ij}$$

 $[T \circ S]_{+}^{x} = C$, $C_{ik} = \sum_{j=1}^{n} A_{ij} B_{ik}$

LD DEFINITION OF A MATRIX PRODUCT