

Today's Outline

1. Fundamentals

- Active and Passive Elements
- Linear Circuit Elements
- the Ideal Resistor and Ohm's Law
- Physical Resistors

Energy Transfer to and from Elements

We classify circuit elements in terms of their ability or inability to deliver a net positive energy to a circuit.

Let p(t')=i(t')v(t') be the *instantaneous power* that is **absorbed** by a circuit element (passive sign convention for i and v)..

The **net energy absorbed** by the circuit element up to time *t* is:

$$v(t) \qquad \qquad U(t) = \int_{-\infty}^{t} p(t') dt' = \int_{-\infty}^{t} i(t') v(t') dt'$$

Passive Elements

Passive element: a circuit element that *cannot* deliver more energy than it has already received from a circuit.

In other words, the net energy absorbed by a passive circuit element is always greater than or equal to zero.

$$v(t) \qquad \int_{-\infty}^{t} p(t') dt' = \int_{-\infty}^{t} i(t')v(t') dt' \ge 0$$

Example: a piece of copper wire can be modeled by a passive circuit element.

Active Elements

Active element: a circuit element that *can* deliver more energy than it has already received from a circuit.

In other words, all elements that are not passive are active.

Warning: Although active elements can deliver energy to a circuit, this does not mean that an active element is delivering energy in a particular circuit.

Questions:

Can a rechargeable battery be modeled as an active element or a passive element?

Can a non-rechargeable battery be modeled as an active element or a passive element?

ECSE-200

Linear Circuit Element

Linear Circuit Element: An element where terminal voltage and current are related to each other by a linear function (or operator). Examples include ideal resistors, dependent sources and many others.

Linearity

Linearity: A *function* f(x) is **linear** in the argument x if and only if:

$$f(ax+by) = af(x) + bf(y)$$

- To evaluate f(ax + by), we can evaluate f(x) and f(y), and then sum appropriately.
- In some cases, it may be easier to evaluate f(x) and f(y) instead of f(ax + by), for example:

$$f(x) = 2x$$

 $f(179) = f(170) + f(9)$ [for evaluation *without* pen or paper]
 $= 340 + 18 = 358$

Linearity (more general)

Linearity: An operator F[x(t)] is **linear** in the function x(t) if and only if:

$$F[ax(t) + by(t)] = aF[x(t)] + bF[y(t)]$$

- To evaluate F[ax(t) + by(t)], we can evaluate F[x(t)] and F[y(t)], and then sum the appropriately.
- In some cases, it may be easier to evaluate F[x(t)] and F[y(t)] instead of F [x(t) + y(t)], for example:

$$F[x(t)] = \frac{d}{dt} [x(t)]$$

$$F[C + D \exp(-kt)] = F[C] + F[D \exp(-kt)]$$

$$= 0 - Dk \exp(-kt)$$

Ohm's Law

Ohm's Law: the voltage drop *v* across an **ideal resistor** is proportional to the current *i* flowing through the resistor

- v and i are defined with passive sign convention
- the positive constant of proportionality is called the resistance, given the symbol r or R
- SI unit of resistance is the Ohm (abbreviated Ω) 1 Ω = 1 V / A

Georg Simon Ohm (1789-1854)

Ideal Resistor

Ideal Resistor: a circuit element that satisfies Ohm's law

Conductance

Conductance can also be used to parameterize a resistor.

- given the symbol G or g
- related to resistance through G = 1/R
- SI unit is the siemens (abbreviated S)

$$1 S = 1 \Omega^{-1} = 1 A / V$$

- Ohm's law can be restated i = G v

Werner von Siemens (1816-1892)

Resistance and Conductance

The terminology of resistance and conductance is analogous to the terminology of fluid flow through pipes.

larger conductance G

smaller conductance G

smaller resistance R

larger resistance R

more flow with applied pressure more current *I* with applied voltage *V*

less flow with applied pressure less current / with applied voltage V

Power

A resistor is a **passive element**. The power absorbed by a resistor is always non-negative:

$$p = i v = i^2 R = v^2/R$$

(note the importance of passive sign convention)

Physical Resistors

A wirewound resistor is typically of "small" resistance and "large" size, designed to dissipate heat effectively.

PostGlover

Chengdu Guozheng Electronics

Navatek Systems

Ceramic casing, and sometimes a metallic heatsink, is used to increase heat dissipation and maximum power rating.

Physical Resistors

A **carbon film resistor** and **metal film resistor** are well suited for resistance values of higher precision, with less power handling capability than a typical wirewound resistor.

Yageo ECSE-200 14

Rongcheng Electronics

Oretronics

Physical Resistors

A **rheostat** is a variable resistor with a sliding contact. A **potentiometer** has three terminals, with one terminal being a sliding contact.

