Corrigé de l'épreuve de Concours blanc

Problème 1 Commutants.

Partie A Généralités et exemples.

- 1. (a) $\cdot \mathcal{C}(A) \subset M_n(\mathbb{K})$ par définition.
 - · Puisque $A \cdot 0_n \cdot A = 0_n = 0_n \cdot A : 0_n \in \mathcal{C}(A)$.
 - · Soient M et N deux matrices de $\mathcal{C}(A)$, λ et μ deux scalaires de K.

$$A(\lambda M + \mu N) = \lambda AM + \mu AN = \lambda MA + \mu NA = (\lambda M + \mu N)A.$$

Ceci montre que $\lambda M + \mu N \in \mathcal{C}(A)$: $\mathcal{C}(A)$ est stable par combinaisons linéaires. Par caractérisation $\mathcal{C}(A)$ est un sous-espace vectoriel de $(M_n(\mathbb{K}), +, \cdot)$.

- (b) · Nous savons d'après la question précédente que $\mathcal{C}(A)$ est stable par différence.
 - · Montrons la stabilité par produit.

Soient M et N deux matrices de $\mathcal{C}(A)$. On a

$$A(MN) = (AM)N = (MA)N = M(AN) = M(NA) = (MN)A.$$

Ceci prouve que $MN \in \mathcal{C}(A)$. Nous avons utilisé l'associativité du produit matriciel et le fait que M et N commutent avec A.

· Enfin, il est clair que I_n , neutre multiplicatif de l'anneau, commute avec A: $I_n \in \mathcal{C}(A)$.

Par caractérisation C(A) est un sous-anneau de $(M_n(\mathbb{K}), +, \times)$

- 2. Toutes les matrices commutent avec I_n : on a $\mathcal{C}(I_n) = M_n(\mathbb{K})$, de dimension n^2
- 3. Les calculs mettant en jeu une matrice diagonale sont rapide :

$$AM = \begin{pmatrix} a & b \\ 2c & 2d \end{pmatrix}$$
 et $MA = \begin{pmatrix} a & 2b \\ c & 2d \end{pmatrix}$

On a $AM = MA \iff b = c = 0$, ce qui amène

$$C(A) = \left\{ \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}, a, d \in \mathbb{K} \right\} = \text{Vect}(E_{1,1}, E_{2,2}),$$

en utilisant les notations standard pour les matrices de la base canonique de $M_2(\mathbb{K})$. La famille $(E_{1,1}, E_{2,2})$ engendre $\mathcal{C}(A)$ et elle est libre (sous-famille de la base canonique). C'est donc une base de $\mathcal{C}(A)$.

On a bien que $\mathcal{C}(A)$ est de dimension 2 comme annoncé par l'énoncé.

4. Notons
$$M = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$$
. On a $BM = \begin{pmatrix} a & b & c \\ d & e & f \\ 2g & 2h & 2i \end{pmatrix}$ et $MB = \begin{pmatrix} a & b & 2c \\ d & e & 2f \\ g & h & 2i \end{pmatrix}$.

$$\mathcal{C}(B) = \left\{ \begin{pmatrix} a & b & 0 \\ d & e & 0 \\ 0 & 0 & i \end{pmatrix}, a, b, d, e, i \in \mathbb{K} \right\} = \text{Vect}(E_{1,1}, E_{1,2}, E_{2,1}, E_{2,2}, E_{3,3}).$$

La famille génératrice obtenue est libre : $(E_{1,1}, E_{1,2}, E_{2,1}, E_{2,2}, E_{3,3})$ est une base de $\mathcal{C}(B)$. On a bien que $\mathcal{C}(B)$ est de dimension 5 comme annoncé par l'énoncé.

Partie B Commutant d'une matrice diagonalisable avec vaps deux à deux distinctes.

- 5. (a) $[DM]_{i,j} = d_i[M]_{i,j}$ et $[MD]_{i,j} = d_j[M]_{i,j}$.
 - (b) Supposons que M appartient à $\mathcal{C}(D)$ et considérons (i,j) avec $i \neq j$. Puisque DM = MD, on a en particulier $[DM]_{i,j} = [MD]_{i,j}$, soit $d_i[M]_{i,j} = d_j[M]_{i,j}$, et enfin $(d_i d_j)[M]_{i,j} = 0$. Par hypothèse, $d_i \neq d_j$, ce qui amène $[M]_{i,j} = 0$. Ceci prouve que M est diagonale.

Réciproquement, si M est diagonale, il est clair qu'elle commute avec la matrice diagonale D.

(c) Nous venons de démontrer que

$$C(D) = \{ \text{Diag}(\delta_1, \dots, \delta_n) \mid \delta_1, \dots, \delta_n \in \mathbb{K} \} = \text{Vect}(E_{i,i})_{1 \le i \le n}.$$

La famille $(E_{i,i})_{1 \leq i \leq n}$ engendre $\mathcal{C}(D)$ et elle est libre comme sous-famille de la base canonique de $M_n(\mathbb{K})$: c'est une base de $\mathcal{C}(D)$. Ceci établit en particulier que $\dim \mathcal{C}(D) = n$, ce qui est cohérent avec le résultat de la question 3.

6. (a) On a

$$DM = MD \iff P^{-1}APM = MP^{-1}AP \iff APMP^{-1} = PMP^{-1}A.$$

La dernière implication directe est obtenue en multipliant par P à gauche et par P^{-1} à droite. Ceci démontre $M \in \mathcal{C}(D) \iff PMP^{-1} \in \mathcal{C}(A)$

(b) i. La fonction Φ va bien de $\mathcal{C}(D)$ dans $\mathcal{C}(A)$ d'après la question précédente. En multipliant par P et P^{-1} , on obtient aussi facilement que Ψ va de $\mathcal{C}(A)$ vers $\mathcal{C}(D)$: Φ et Ψ sont bien définies. Vérifions la linéarité de Φ (celle de Ψ s'établit de la même façon). Soient M et N dans $\mathcal{C}(D)$ et $(\lambda, \mu) \in \mathbb{K}^2$.

$$\Phi(\lambda M + \mu N) = P(\lambda M + \mu N)P^{-1} = \lambda PMP^{-1} + \mu PNP^{-1} = \lambda \Phi(M) + \mu \Phi(N).$$

- ii. Soit $M \in M_n(\mathbb{K})$. On a $\Phi \circ \Psi(M) = P(P^{-1}MP)P^{-1} = I_nMI_n = M$ et $\Psi \circ \Phi(M) = P^{-1}(PMP^{-1})P = I_nMI_n = M$. Ceci démontre que $\Phi \circ \Psi = \Psi \circ \Phi = \mathrm{id}_{M_n(\mathbb{K})}$.
- iii. La question précédente prouve que l'application Φ est bijective, de réciproque Ψ . L'application Φ étant linéaire, il s'agit d'un <u>isomorphisme</u> (le mot est attendu ici) entre $\mathcal{C}(D)$ et $\mathcal{C}(A)$, qui ont donc même dimension. En utilisant le résultat de 5-(c), on a $\dim \mathcal{C}(A) = n$.
- 7. Un exemple de matrice diagonalisable.
 - (a) Notons C_1, C_2, C_3 les trois colonnes de A. On a $C_3 = -2C_1$, de sorte que

$$rg(A) = rg(C_1, C_2, C_3) = rg(C_1, C_2),$$

La famille (C_1, C_2) est libre (deux vecteurs non colinéaires) : rg(A) = 2. En appliquant le théorème du rang à f, on obtient

$$\dim \text{Ker}(f) = \dim \mathbb{K}^3 - \text{rg}(f) = \dim \mathbb{K}^3 - \text{rg}(A) = 3 - 2 = 1.$$

Le noyau de f est une droite. Tout vecteur non nul de Ker(f) en est une base. En notant $\mathcal{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{K}^3 , la relation $2C_1 + C_2 = 0$ amène $2f(e_1) + f(e_3) = 0$, soit $f(2e_1 + e_3) = 0$. On a $\text{Ker}(f) = \text{Vect}(2e_1 + e_3)$.

- (b) On pouvait faire le produit matriciel ou écrire $u=e_1+e_2$ et $v=e_1+e_3$. On obtient f(u)=(-1,-1,0) et f(v)=(1,0,1). On a donc f(u)=-u et f(v)=v.
- (c) Notons $w = 2e_1 + e_3$ le vecteur trouvé en question 1. Il est facile (...) d'établir que $\mathcal{B}' = (u, v, w)$ est famille libre : puisqu'elle compte trois vecteurs dans un espace de dimension 3, c'est une <u>base</u> de \mathbb{K}^3 . Posons

$$P = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix} = P_{\mathcal{B}, \mathcal{B}'}.$$

2

Dans la base \mathcal{B}' , la matrice de f est

$$\operatorname{Mat}_{\mathcal{B}'}(f) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Notons-la D puis qu'elle est diagonale. La formule du changement de base pour l'endomorphisme f s'écrit

$$\operatorname{Mat}_{\mathcal{B}'}(f) = P_{\mathcal{B}',\mathcal{B}} \operatorname{Mat}_{\mathcal{B}'}(f) = P_{\mathcal{B},\mathcal{B}'} \quad \text{soit} \quad \boxed{D = P^{-1}AP}$$

Partie C Commutant d'un endomorphisme diagonalisable avec deux valeurs propres.

- 8. Soit $x \in E_{\lambda}$. Par définition de E_{λ} , $f(x) \lambda x = 0$. On a donc $f(x) = \lambda x \in E_{\lambda}$ (puisque E_{λ} est un sous-espace vectoriel : c'est un noyau). Remarquons de surcroît que $f_{|E_{\lambda}} = \lambda \mathrm{id}_{E_{\lambda}}$: l'endomorphisme induit par f sur E_{λ} est l'homothétie de rapport λ .
- 9. Soit $x \in E_{\lambda}(f)$ (on a donc $f(x) = \lambda x$). Montrons que $g(x) \in E_{\lambda}$. On calcule

$$f(g(x)) = f \circ g(x) \underset{g \in \mathcal{C}(f)}{=} g \circ f(x) = g(f(x)) = g(\lambda x) = \lambda g(x).$$

On a bien que $g(x) \in \text{Ker}(f - \lambda \text{id}) = E_{\lambda}(f)$: $E_{\lambda}(f)$ est stable par g.

- 10. L'inclusion réciproque est triviale puisque E_{λ} et E_{μ} sont des sous-espaces vectoriels. Soit $x \in E_{\lambda}(f) \cap E_{\mu}(f)$. On a $f(x) = \lambda x = \mu x$. On a donc $(\lambda \mu)x = 0_E$. Puisque $\lambda \neq \mu$, on a $x = 0_E$. Cela achève de prouver que E_{λ} et E_{μ} sont en somme directe.
- 11. (a) L'application Λ est bien définie puisque si $g \in \mathcal{C}(f)$, on a établi en question 9 que E_{λ} et E_{μ} sont stables par g: les endomorphismes induits $g_{|E_{\lambda}}$ et $g_{|E_{\mu}}$ existent bien. Montrons que Λ est linéaire. Soient $(g,h) \in \mathcal{C}(f)^2$ et $(\alpha,\beta) \in \mathbb{K}^2$. On a

$$\begin{split} \Lambda(\alpha g + \beta h) &= \left((\alpha g + \beta h)_{|E_{\lambda}}, (\alpha g + \beta h)_{|E_{\mu}} \right) \\ &= \left(\alpha g_{|E_{\lambda}} + \beta h_{|E_{\lambda}}, \alpha g_{|E_{\mu}} + \beta h_{|E_{\mu}} \right) \\ &= \alpha (g_{|E_{\lambda}}, g_{|E_{\mu}}) + \beta (h_{|E_{\lambda}}, h_{|E_{\mu}}) \\ &= \alpha \Lambda(q) + \mu \Lambda(h). \end{split}$$
restreindre, c'est linéaire

- (b) Soit $g \in \text{Ker}(\Lambda)$. On a donc $\Lambda(g) = (0_{\mathscr{L}(E_{\lambda})}, 0_{\mathscr{L}(E_{\mu})})$, soit $g_{|E_{\lambda}} = 0_{\mathscr{L}(E_{\lambda})}$ et $g_{|E_{\mu}} = 0_{\mathscr{L}(E_{\mu})}$. L'application g est nulle sur deux supplémentaires (en fait $E = E_{\lambda} + E_{\mu}$ suffit ici). Elle est donc nulle sur E tout entier : $g = 0_{\mathscr{L}(E)}$: Λ est injective.
- (c) Soit $(u,v) \in \mathcal{L}(E_{\lambda}) \times \mathcal{L}(E_{\mu})$. Puisque E_{λ} et E_{μ} sont supplémentaires, il existe (un unique) endomorphisme $g \in \mathcal{L}(E)$ tel que $g_{|E_{\lambda}} = u$ et $g_{|E_{\mu}} = v$ (c'est un des modes de définition d'une application linéaire dans le cours). Reste à vérifier que g commute avec f. L'égalité $g \circ f(x) = f \circ g(x)$ est vraie lorsque x appartient à E_{λ} ou E_{μ} puisque u commute avec l'homothétie $\lambda \mathrm{id}_{E_{\lambda}}$ et v commute avec l'homothétie $\lambda \mathrm{id}_{E_{\mu}}$. Par linéarité, elle est vraie pour tout vecteur x de $E: g \in \mathcal{C}(f)$. Le couple (u,v) a bien un antécédent par $\Lambda: \Lambda$ est surjective.

12. On a noté $p = \dim E_{\lambda}$. Par supplémentarité, $\dim E_{\mu} = n - p$. La question 11 établit que les espaces $\mathcal{C}(f)$ et $\mathscr{L}(E_{\lambda}) \times \mathscr{L}(E_{\mu})$ sont isomorphes.

En particulier, ils ont même dimension. Ceci amène $\dim \mathcal{C}(f) = \dim \mathscr{L}(E_{\lambda}) + \dim \mathscr{L}(E_{\mu}) \quad \text{soit} \quad \boxed{\dim \mathcal{C}(f) = p^2 + (n-p)^2}$

On peut remarquer que ce résultat est cohérent avec celui de la question 4: si f est l'endomorphisme de \mathbb{K}^3 canoniquement associé à B, il est facile de voir que (bon, il faut réfléchir un peu) $E_1(f)$ est de dimension 2 et $E_2(f)$ de dimension 1, ces deux sous-espaces étant supplémentaires. Puisque $\mathcal{C}(B)$ et $\mathcal{C}(f)$ sont isomorphes (vous savez, le miroir...) on retrouve que dim $\mathcal{C}(B) = 2^2 + (3-2)^2 = 5$.

- 13. (a) Si p est un projecteur de E, alors $E = \operatorname{Ker}(f \operatorname{id}) \oplus \operatorname{Ker}(f) = E_1(p) \oplus E_0(p)$. On rappelle que la relation $p \circ p = p$ (idempotence) caractérise les projecteurs de E parmi ses endomorphismes.
 - (b) Si s est une symétrie de E, alors $E = \operatorname{Ker}(f \operatorname{id}) \oplus \operatorname{Ker}(f + \operatorname{id}) = E_1(s) \oplus E_1(s)$. On rappelle que la relation $s \circ s = \operatorname{id}$ (involutivité) caractérise les symétries de E parmi ses endomorphismes.

Problème 2 Produits infinis.

Partie A Autour de la définition : premiers exemples.

- 1. Produits téléscopiques
 - (a) Soit $N \geq 2$. On a

$$\prod_{n=2}^{N} \left(1 - \frac{1}{n} \right) = \prod_{n=2}^{N} \frac{n-1}{n} = \frac{1}{N} \underset{N \to +\infty}{\longrightarrow} 0.$$

La suites des produits partiels tend vers 0 : ce produit infini est divergent

(b) Soit $N \geq 2$. On a

$$\prod_{n=2}^{N} \left(1 - \frac{1}{n^2} \right) = \prod_{n=2}^{N} \frac{n^2 - 1}{n^2} = \prod_{n=2}^{N} \frac{n-1}{n} \prod_{n=2}^{N} \frac{n+1}{n} = \frac{N+1}{2N} \underset{N \to +\infty}{\longrightarrow} \frac{1}{2}.$$

Ce produit infini est convergent et $\prod_{n=2}^{+\infty} \left(1 - \frac{1}{n^2}\right) = \frac{1}{2}$

- 2. Conditions nécessaires de convergence
 - (a) Par contraposée, supposons qu'il existe $n_1 \geq n_0$ tel que $u_{n_1} = 0$. Soit $N \geq n_1$. Le produit partiel P_N vaut 0 (c'est un produit fini dont un des facteurs est nul). Ainsi, (P_N) est stationnaire à 0 : elle tend vers 0, ce qui contredit que le produit infini est convergent (la définition n'autorise pas une limite nulle).
 - (b) Supposons que $\prod_{n\geq n_0} u_n$ converge. Alors tous les termes u_n sont non nuls. Pour

 $N \geq n_0$, on peut considérer le quotient des produits partiels $\frac{P_{N+1}}{P_N} = u_{N+1}$. Notons ℓ la valeur du produit infini (la limite de (P_N)). Par définition, $\ell \neq 0$, de sorte que

$$\frac{P_{N+1}}{P_N} \underset{N \to +\infty}{\longrightarrow} \frac{\ell}{\ell} = 1.$$

Ceci démontre que $u_N \xrightarrow[N \to +\infty]{} 1$.

3

(c) La condition $\lim_{n\to +\infty} u_n = 1$ n'est pas suffisante, comme on le voit avec l'exemple de la question 1-(a) : le produit infini diverge alors que son "facteur général" tend vers 1.

- 3. Lien avec les séries
 - (a) Soit $N \geq n_0$. La propriété de morphisme pour la donne

$$\ln(P_N) = \sum_{n=n_0}^N \ln(u_n).$$

Par continuité de ln sur \mathbb{R}_+^* , $(P_N)_{N\geq n_0}$ converge vers une limite non nulle si et seulement si $(\ln(P_N))_{N\geq n_0}$ converge.

Autrement dit, la suite des produits partiels converge vers une limite non nulle ssi la suite des sommes partielles de la série $\sum \ln(u_n)$ converge. On a bien

$$\prod_{n\geq n_0} u_n \text{ converge } \iff \sum \ln(u_n) \text{ converge }.$$

Dans le cas où il y a convergence, par continuité de ln sur \mathbb{R}_+^* , on a

$$\ln\left(\prod_{n=n_0}^{+\infty} u_n\right) = \sum_{n=n_0}^{+\infty} \ln(u_n).$$

(b) • Supposons que le produit infini $\prod (1-u_n)$ converge.

D'après 3-(a), la série $\sum \ln(1-u_n)$ est convergente. Or, d'après 2-(b), la convergence du produit entraı̂ne $1-u_n\to 1$, soit $u_n\to 0$. On a donc l'équivalent $\ln(1-u_n)\sim u_n$. Par comparaison des séries à termes positifs, on obtient la convergence de la série $\sum u_n$.

• Supposons que $\sum u_n$ est une série convergente.

Alors $u_n \to 0$, et donc $\ln(1-u_n) \sim u_n$, ce qui entraı̂ne que $\sum \ln(1-u_n)$ converge, puis $\prod (1-u_n)$ converge.

$$\prod_{n \ge n_0} (1 - u_n) \text{ converge} \iff \sum u_n \text{ converge}.$$

(c) Puisque $\alpha > 0$, on a $\forall n \in \mathbb{N}$ $0 < 1 - \frac{1}{n^{\alpha}} < 1$. D'après la question précédente, le produit $\prod_{n \geq 2} \left(1 - \frac{1}{n^{\alpha}}\right)$ converge si et seulement si la série $\sum \frac{1}{n^{\alpha}}$ converge. Nous savons que ceci advient si et seulement si $\alpha > 1$ (critère de convergence des séries de Riemann).

Partie B Vers le produit eulérien du sinus (correction succinte).

4. (a) En développant avec le binôme, on obtient

$$P_n(X) = \frac{1}{2i} \left(\left(\frac{i}{2n+1} \right)^{2n+1} X^{2n+1} - \left(-\frac{i}{2n+1} \right)^{2n+1} X^{2n+1} \right) + Q_n(X),$$

où $Q_n(X)$ est de degré inférieur à 2n.

Puisque $i^{2n+1} = (-1)^n i$, le calcul amène $P_n(X) = \frac{(-1)^n}{(2n+1)^{2n+1}} X^{2n+1} + Q_n(X)$. Le coefficient devant X^{2n+1} étant non nul, on a $\left[\deg P_n(X) = 2n+1\right]$.

(b) Soit $k \in [0, 2n]$. On calcule

$$P_n(x_k) = \frac{1}{2i} \left[\left(1 + i \tan(\frac{k\pi}{2n+1}) \right)^{2n+1} - \left(1 - i \tan(\frac{k\pi}{2n+1}) \right)^{2n+1} \right]$$
$$= \dots = \cos^{-2n-1}(\frac{k\pi}{2n+1}) \sin(k\pi) = 0.$$

Ceci démontre que les x_k sont racines de P_n . Pour $k \in [1, n]$, on a $0 < \frac{k\pi}{2n+1} < \frac{\pi}{2}$. La fonction tan étant strictement croissante sur $]0, \frac{\pi}{2}[$, on a $0 < x_1 < \dots, x_n$. On remarque de surcroît que $x_{2n+1-k} = -x_k$ (calcul).

Les racines trouvées sont au nombre de 2n+1 (elles sont distinctes deux à deux). Or, P_n a au plus 2n+1 racines puisque son degré vaut 2n+1.

L'ensemble des racines de P_n est bien $\{x_k \mid k \in [0, 2n]\}$.

(c) Le nombre de racines vaut le degré : P_n est scindé sur \mathbb{C} .

Il existe $\alpha \in \mathbb{C}^*$ tel que $P_n(X) = \alpha \prod_{k=0}^{2n} (X - x_k)$. En écrivant à part $X - x_0 = X$ et en utilisant le fait que $x_{2n+1-k} = -x_k$, on obtient

$$P_n(X) = \alpha X \prod_{k=1}^n (X - x_k)(X + x_k) = \alpha X \prod_{k=1}^n (X - x_k^2) = \alpha \prod_{k=1}^n (-x_k^2) \prod_{k=1}^n \left(1 - \frac{X^2}{x_k^2}\right)$$

- (d) En dérivant la forme développée, on obtient $P_n'(0)=1$. En écrivant $P_n'(0)=\lim_{x\to 0}\frac{P_n(x)-P_n(0)}{x}=\lim_{x\to 0}\lambda\prod_{k=1}^n\left(1-\frac{x^2}{x_k^2}\right)$, on obtient $P_n'(0)=\lambda$. Ceci amène $\lambda=1$.
- 5. $(1 + \frac{a}{n})^n = \exp(n \ln(1 + \frac{a}{n})) = \exp(n(\frac{a}{n} + o(\frac{1}{n}))) = \exp(a + o(1)) \to \exp(a)$ En admettant que la convergence demeure vraie avec z = ix, on a

$$P_n(x) \rightarrow \frac{1}{2i} \left(e^{ix} - e^{-ix} \right) = \boxed{\sin x}$$