Comparative Study on the Different Types of Computers

Derick Angelo Yu | BSCS - 1 | CIS1102N

Introduction

The growth of computers has resulted in different types, each made for certain tasks. This study talks about comparing the features of supercomputers, mainframe computers, mini-computers, servers, workstations, and microcomputers.

Discussion

What is a Computer?

Computers are a big part of our lives in the 21st century. They are used for many things like learning, talking to others, entertainment, and more. Almost everything we do each day involves either a computer or a portable device like a cellphone. But this is just the basic way most people think of computers. If we look closer, we can see that computers have a broader meaning and other uses we might not notice while using them.

Computers are machines that do math, usually with numbers in binary, and show the results in a way that makes sense to the user. A computer has two main parts: hardware and software. Hardware is the physical pieces inside the computer that help it do its job, while software is the programs or instructions that tell the computer what to do.

Types of Computers

There are different types of computers, mainly based on their size and how fast they can do tasks. Some common types include:

- Supercomputers
- Mainframe Computers
- Mini Computers
- Servers
- Workstations

- Microcomputers

While there are other types, these six will be the focus here to compare their functions, speed, and other features.

Type of Computer	Name/ Brand	CPU	Memory	Processing Speed
Super	Hewlett PackardIBM SummitFujitsuMicrosoft	High core counts (6 digits) Very high clock speed (up to 2 - 3 GHz)	Ranges from 1 - 2 petabytes (1,000,000 gigabytes).	Ranges from 300 - 1,000 petaFLOPS or 1 exaFLOP
Mainframe	IBM Z Series	Multi-core	Ranges from hundreds of gigabytes up to 32 terabytes	High and optimized for transaction processing.
Mini	PDP - 11IBM AS/400	Clocking speed ranges from 1 - 2 GHz	Up to 512 megabytes to 4 gigabytes of RAM	Ranges from 1 - 10 gigaFLOPS
Server	Dell PowerEdge	Some dual, quad or octa - core Clock speed ranges from 2.5 - 3.8 GHz	Ranges from 4 - 512 gigabytes	50 kiloFLOPS - 5 megaFLOPS
Workstation	 Apple Mac Pro Dell Precision Workstation s 	Different brands or models can have a range from 12 - 64 cores and 3.5 - 3.8 GHz	Ranges from 256 gigabytes to 1,500 gigabytes.	Ranges from 40 - 160 gigaFLOPS
Micro	MacBookDell XPS	Dual, Quad, Hexa, and Deca core Clock speed ranges from 1.5 - 3.5 GHz	Modern models range from 4 - 16 gigabytes, some can reach up to 64 gigabytes	Ranges from 1 - 4 gigaFLOPS

Type of Computer	Calculating Power	Working Principle	Energy Consumption	Field of Use
Super	Ranges from 300- 1,000 petaFLOPS	Parallel processing for complex calculations	Can consume anywhere from 10 - 100 megawatts of power.	Scientific research (NASA), climate modeling
Mainframe	Moderate amount of petaFLOPS	Data processing for large-scale transactions	Consumes up to 20 megawatts of power.	Banking, enterprise databases
Mini	Ranges from 100 - 200 megaFLOPS	Moderate - sized processing for specific business functions	Ranges from 2.5 - 6 watts	Manufacturing, business applications
Server	Ranges from 25 - 200 megaFLOPS	Providing resources and service to clients on a network	Ranges from 60 - 1500 watts	Web hosting, enterprise applications
Workstation	Ranges from 180 - 220 megaFLOPS	Optimized for single-user tasks requiring heavy computing power	Ranges from 250 - 600 watts	Graphic design, engineering tasks, animation, software development
Micro	Ranges from 80 - 120 megaFLOPS	Optimized for general purpose tasks and everyday use.	Ranges from 30 - 90 watts	Personal computing, education

Comparison

Mini Computers are slower, usually working at speeds in the MHz range, and have limited memory, typically from a few megabytes to gigabytes. They use very little power and are energy-efficient. Mini computers are used for simple jobs like time-sharing or basic industrial tasks. You can often find them in places like factories or small labs that don't need strong computing power.

Microcomputers are faster, usually running at GHz speeds, and have moderate memory, typically a few gigabytes. They are also energy-efficient and use little power. Microcomputers are mainly used for personal tasks, schoolwork, and basic office tasks. They are usually found in home desktops, DIY projects, and schools

Workstations are built for more demanding tasks, working at high speeds with multiple cores in the GHz range. They have large memory, from gigabytes to terabytes, to handle tasks like 3D design, CAD, or scientific work. Workstations use more power than mini or microcomputers because they have stronger parts. They are used in jobs like design, research, and media production, where a lot of computing power is needed.

Servers are fast machines with multi-core processors that run at GHz speeds. They have a lot of memory, from gigabytes to terabytes, to manage large amounts of data and support many users at the same time. Servers use a lot of power, especially when running multiple processors or handling big tasks. They are used for managing websites, hosting databases, and providing cloud services, and are often found in data centers or businesses that need central computing.

REFERENCES

- Glick, J. (n.d.). SPEC CPU 2017 results. Retrieved from https://www.spec.org/cpu2017/results/
- TPC Benchmarks Overview. (n.d.). Retrieved from https://www.tpc.org/information/benchmarks5.asp
- Barroso, L. A., Hölzle, U., & Ranganathan, P. (2018). *The datacenter as a computer:*Designing warehouse-scale machines. Morgan & Claypool.

 https://www.morganclaypool.com/doi/pdf/10.2200/S00874ED3V01Y201809CAC
- Types of Computers: Size, Purpose, and Working Principle. (2023, May 17). Retrieved from https://testbook.com/computer-awareness/types-of-computer
- What is a Computer? (n.d.). VEDANTU. Retrieved from https://www.vedantu.com/coding-for-kids/what-is-computer
- GeeksforGeeks. (2021, June 1). Types of Computers. GeeksforGeeks. Retrieved from https://www.geeksforgeeks.org/types-of-computers/
- Understand measures of supercomputer performance and storage system capacity IUKB. (2016). Iu.edu. Retrieved from https://servicenow.iu.edu/kb?id=kb_article_view&sysparm_article=KB0023145
- Susnjara, S., & Smalley, I. (2024, March 1). What is a mainframe? Mainframe computing defined | IBM. Retrieved from https://www.ibm.com/topics/mainframe

Introduction to the New Mainframe. (n.d.). Retrieved from https://www.redbooks.ibm.com/redbooks/pdfs/sg246366.pdf