

多重積分單元十一

+ Outline

- 二重積分
 - ◆ 投影為矩形區域
 - ◆ 投影為非矩形區域

+體積與二重積分 (Volumes and Double Integrals)

■ 回憶前面定積分的定義:

+二重積分

= 若 z = f(x, y) 在一個封閉的矩形區域 R 上有界且連續,則 f 在 R 上可積,即 f 在 R 上的二重積分(double integral)為:

$$V = \iint\limits_R f(x,y)dA = \lim_{m,n\to\infty} \sum_{i=1}^m \sum_{j=1}^n f(x_{ij},y_{ij})\Delta A$$

估計在正方形 $R = [0,2] \times [0,2]$ 上被橢圓拋物面 $z = 16 - x^2 - 2y^2$ 所覆蓋的實體體積。

(b) $m = n = 8, V \approx 44.875$

(c) m = n = 16, $V \approx 46.46875$

+二重積分的性質

* 逐次積分 (Iterated Integral)

- 已知f為定義在矩形區域 $R = [a,b] \times [c,d]$ 的可積函數,則有 $A(x) = \int_c^d f(x,y) dy$ 令 $V(x) = \int_a^b A(x) dx = \int_a^b \left[\int_c^d f(x,y) dy \right] dx$
 - ◆ 先對變量 y 從 c 積分到 d, 然後再對變量 x 從 a 積分到 b。

計算:

- **A.** $\int_0^3 \int_1^2 x^2 y \, dy \, dx$
- B. $\int_{1}^{2} \int_{0}^{3} x^{2} y \, dx \, dy$
- $\mathbf{C.} \qquad \int_1^2 \int_0^\pi y \sin(xy) \, dy \, dx$
- $\mathbf{D.} \qquad \int_0^3 \int_{-1}^2 \int_0^1 xyz^2 dx \, dy \, dz$

+ 非矩形區域上的二重積分(13.3)

- 已知f為定義在區域D的可積函數,則f在區域D之
 - 二重積分(double integral of f over D)為:

$$V(x) = \iint\limits_D f(x,y)dA$$

+ 平面區域 D 的常見類型

■ 若D 為xy 平面上由拋物線 $y = 1 + x^2$ 和 $y = 2x^2$ 所

圍成的區域,試求 $\iint_D (x+2y)dA$ 。

■ 試求邊界別為平面 $x + 2y + z = 2 \cdot x = 2y \cdot x = 0$ 及 z = 0 之四面體體積。

■ 求下列積分的值:

A.
$$\int_0^4 \int_0^{\sqrt{y}} xy^2 \, dx \, dy$$

B.
$$\int_0^1 \int_{x^2}^x (1+2x) \, dy \, dx$$

C.
$$\int_0^1 \int_0^{s^2} \cos(s^3) dt ds$$

+ 教材對應閱讀章節及練習

- 13.1-13.3(~例4)
- 對應習題:(可視個人情況定量)
 - **◆** 13.2: 1-24
 - **◆** 13.3: 1-14