Asymptotic Notations (continued)

Adapted from the CLRS book slides

O-notation

 $O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$.

g(n) is an *asymptotic upper bound* for f(n). If $f(n) \in O(g(n))$, we write f(n) = O(g(n))

O-notation

 $O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$.

g(n) is an *asymptotic upper bound* for f(n). If $f(n) \in O(g(n))$, we write f(n) = O(g(n))

Example

 $2n^2 = O(n^3)$, with c = 1 and $n_0 = 2$.

Examples of functions in $O(n^2)$:

$$n^{2}$$
 $n^{2} + n$
 $n^{2} + 1000n$
 $1000n^{2} + 1000n$
Also,
 n
 $n/1000$
 $n^{1.99999}$
 $n^{2}/\lg \lg \lg n$

Ω -notation

 $\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}$.

g(n) is an *asymptotic lower bound* for f(n).

Ω -notation

 $\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}$.

g(n) is an *asymptotic lower bound* for f(n).

Example

 $\sqrt{n} = \Omega(\lg n)$, with c = 1 and $n_0 = 16$.

Examples of functions in $\Omega(n^2)$:

$$n^{2}$$
 $n^{2} + n$
 $n^{2} - n$
 $1000n^{2} + 1000n$
 $1000n^{2} - 1000n$
Also,
 n^{3}
 $n^{2.00001}$
 $n^{2} \lg \lg \lg n$
 $2^{2^{n}}$

5

Θ-notation

 $\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}.$

Example

 $n^2/2 - 2n = \Theta(n^2)$, with $c_1 = 1/4$, $c_2 = 1/2$, and $n_0 = 8$.

Theorem

 $f(n) = \Theta(g(n))$ if and only if f = O(g(n)) and $f = \Omega(g(n))$.

Leading constants and low-order terms don't matter.

g(n) is an asymptotically tight bound for f(n).

ASYMPTOTIC NOTATION AND RUNNING TIMES

Need to be careful to use asymptotic notation correctly when characterizing a running time. Asymptotic notation describes functions, which in turn describe running times. Must be careful to specify **which** running time.

For example:

The worst-case running time for insertion sort is $O(n^2)$, $\Omega(n^2)$, and $\Theta(n^2)$; all are correct. Prefer to use $\Theta(n^2)$ here, since it's the most precise.

The best-case running time for insertion sort is O(n), $\Omega(n)$, and $\Theta(n)$; prefer $\Theta(n)$.

ASYMPTOTIC NOTATION AND RUNNING TIMES (continued)

But **cannot** say that the running time for insertion sort is $\Theta(n^2)$, with "worst-case" omitted. Omitting the case means making a blanket statement that covers **all** cases, and insertion sort does **not** run in $\Theta(n^2)$ time in all cases.

Can make the blanket statement that the running time for insertion sort is $O(n^2)$, or that it's $\Omega(n)$, because these asymptotic running times are true for all cases.

For merge sort, its running time is $\Theta(n \lg n)$ in all cases, so it's OK to omit which case.

ASYMPTOTIC NOTATION AND RUNNING TIMES (continued)

Common error: conflating O-notation with Θ -notation by using O-notation to indicate an asymptotically tight bound. O-notation gives only an asymptotic upper bound. Saying "an $O(n \lg n)$ -time algorithm runs faster than an $O(n^2)$ -time algorithm" is not necessarily true. An algorithm that runs in $\Theta(n)$ time also runs in $O(n^2)$ time. If you really mean an asymptotically tight bound, then use Θ -notation.

Use the simplest and most precise asymptotic notation that applies. Suppose that an algorithm's running time is $3n^2 + 20n$. Best to say that it's $\Theta(n^2)$. Could say that it's $O(n^3)$, but that's less precise. Could say that it's $O(3n^2 + 20n)$ but that obscures the order of growth.

ASMPTOTIC NOTATION IN EQUATIONS

When on right-hand side:

 $O(n^2)$ stands for some anonymous function in the set $O(n^2)$.

$$2n^2 + 3n + 1 = 2n^2 + \Theta(n)$$
 means $2n^2 + 3n + 1 = 2n^2 + f(n)$ for some $f(n) \in \Theta(n)$. In particular, $f(n) = 3n + 1$.

When on left-hand side:

No matter how the anonymous functions are chosen on the left-hand side, there is a way to choose the anonymous functions on the right-hand side to make the equation valid.

Interpret $2n^2 + \Theta(n) = \Theta(n^2)$ as meaning for all functions $f(n) \in \Theta(n)$, there exists a function $g(n) \in \Theta(n^2)$ such that $2n^2 + f(n) = g(n)$.

ASMPTOTIC NOTATION IN EQUATIONS (continued)

Can chain together:

$$2n^2 + 3n + 1 = 2n^2 + \Theta(n)$$

= $\Theta(n^2)$.

Interpretation:

- First equation: There exists $f(n) \in \Theta(n)$ such that $2n^2 + 3n + 1 = 2n^2 + f(n)$.
- Second equation: For all $g(n) \in \Theta(n)$ (such as the f(n) used to make the first equation hold), there exists $h(n) \in \Theta(n^2)$ such that $2n^2 + g(n) = h(n)$.

SUBTLE POINT: ASYMPTOTIC NOTATION IN RECURRENCES

Often abuse asymptotic notation when writing recurrences: T(n) = O(1) for n < 3. Strictly speaking, this statement is meaningless. Definition of O-notation says that T(n) is bounded above by a constant c > 0 for $n \ge n_0$, for some $n_0 > 0$. The value of T(n) for $n < n_0$ might not be bounded. So when we say T(n) = O(1) for n < 3, cannot determine any constraint on T(n) when n < 3 because could have $n_0 > 3$.

What we really mean is that there exists a constant c > 0 such that $T(n) \le c$ for n < 3. This convention allows us to avoid naming the bounding constant so that we can focus on the more important part of the recurrence.

o-notation

```
o(g(n)) = \{f(n) : \text{ for all constants } c > 0, \text{ there exists a constant} 
n_0 > 0 \text{ such that } 0 \le f(n) < cg(n) \text{ for all } n \ge n_0 \}.
```

Another view, probably easier to use: $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$.

$$n^{1.9999} = o(n^2)$$

 $n^2 / \lg n = o(n^2)$
 $n^2 \neq o(n^2)$ (just like $2 \neq 2$)
 $n^2 / 1000 \neq o(n^2)$

ω -notation

 $\omega(g(n)) = \{f(n) : \text{ for all constants } c > 0, \text{ there exists a constant}$ $n_0 > 0 \text{ such that } 0 \le cg(n) < f(n) \text{ for all } n \ge n_0 \}$.

Another view, again, probably easier to use: $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty$.

$$n^{2.0001} = \omega(n^2)$$

$$n^2 \lg n = \omega(n^2)$$

$$n^2 \neq \omega(n^2)$$

COMPARISONS OF FUNCTIONS

Transitivity: $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))$. Same for O, Ω, o , and ω .

Reflexivity: $f(n) = \Theta(f(n))$. Same for O and Ω .

Symmetry: $f(n) = \Theta(g(n))$ if and only if $g(n) = \Theta(f(n))$.

Transpose symmetry: f(n) = O(g(n)) if and only if $g(n) = \Omega(f(n))$. f(n) = o(g(n)) if and only if $g(n) = \omega(f(n))$.

COMPARISONS OF FUNCTIONS (continued)

- Comparisons: f(n) is asymptotically smaller than g(n) if f(n) = o(g(n)).
 - f(n) is *asymptotically larger* than g(n) if $f(n) = \omega(g(n))$.

No trichotomy. Although intuitively, we can like O to \leq , Ω to \geq , etc., unlike real numbers, where a < b, a = b, or a > b, we might not be able to compare functions.

Example: $n^{1+\sin n}$ and n, since $1+\sin n$ oscillates between 0 and 2.

LOGARITHMS

```
Notations: \lg n = \log_2 n (binary logarithm),
                \ln n = \log_e n (natural logarithm),
              \lg^k n = (\lg n)^k (exponentiation),
              \lg \lg n = \lg(\lg n) (composition).
```

Logarithm functions apply only to the next term in the formula, so that $\lg n + k$ means $(\lg n) + k$, and not $\lg(n + k)$.

In the expression $\log_b a$:

- Hold b constant \Rightarrow the expression is strictly increasing as a increases.
- Hold a constant \Rightarrow the expression is strictly decreasing as b increases.

LOGARITHMS (continued)

$$a = b^{\log_b a},$$

$$\log_c(ab) = \log_c a + \log_c b,$$

$$\log_b a^n = n \log_b a,$$

$$\log_b a = \frac{\log_c a}{\log_c b},$$

$$\log_b(1/a) = -\log_b a,$$

$$\log_b a = \frac{1}{\log_a b},$$

$$a^{\log_b c} = c^{\log_b a}.$$