Efectele depășirilor în filtrarea digitală

Laborator 10, PSS

Objectiv

Studiul efectelor produse de depășirile de format în cadrul implementărilor în virgulă fixă ale unui filtru digital.

Noțiuni teoretice

Exerciții

1. Se consideră sistemul

$$H(z) = \frac{1 - \frac{1}{2}z^{-1}}{\left(1 - \frac{1}{4}z^{-1}\right)\left(1 + \frac{1}{4}z^{-1}\right)}$$

- a. Să se deseneze realizarea în una din formele serie
- b. Considerăm o implementare în formatul virgulă fixă, cu b biți pentru partea fracționară. Fiecare produs se cuantizează prin rotunjire la acest format. Determinați dispersia zgomotului de rotunjire datorat multiplicărilor la ieșirea implementării de la punctul a.
- 2. Fie sistemul următor:

$$H(z) = \frac{1 - 0.8z^{-1} - 0.78z^{-3} + 0.1z^{-4}}{1 + 0.1z^{-1} - 0.08z^{-2} - 0.264z^{-3} - 0.0504z^{-4}}$$

- a. Generați un semnal de intrare x[n] = 0.9u[n] și afișați-l.
- b. Calculați ieșirea sistemului y[n] folosind implementarea în forma directă 2 (utilizați funcția filter_df2() atașată, creată într-un laborator anterior).
- c. Afișați semnalul y[n] precum și semnalul intern w[n] (vezi figura atașată).
- 3. Reprezentați grafic cele două caracteristici posibile ale sumatoarelor, g1() și g2() implementate în fișierele .m atașate. Ce semnificația au aceste caracteristici referitor la sumare?

Figure 1: Scalarea unei implementări în forma directă 2

- 4. Aplicați cele două caracteristici de sumare g1() și g2() celor două sume calculate în interiorul implementării, pentru a simula efectul unor sumatoare cu lungime finită. Afișați ieșirea y[n] și semnalul intern w[n] (vezi figura). Este acesta un scenariu favorabil sau nu?
- 5. Calculați cele trei norme de scalare pentru prevenirea depășirilor, l_{∞} , l_1 și l_2 , folosind funcția atașată normescal(). Aplicați scalările așa cum este reprezentat în figură. Afișați din nou semnalele w[n] și y[n]. Este acest scenariu mai bun sau mai rău decât situația anterioară?

Întrebări finale

1. TBD