

# **CODESYS V3.5**

# Настройка связи между ПЛК



Руководство пользователя

24.05.2022 версия 3.0

# Оглавление

| Γ | лосса        | арий3                                                                                                 | 3  |  |  |  |
|---|--------------|-------------------------------------------------------------------------------------------------------|----|--|--|--|
| 1 | Це           | ль документа 3                                                                                        | }  |  |  |  |
| 2 | Ce           | Сетевые переменные4                                                                                   |    |  |  |  |
|   | 2.1          | Основные сведения о сетевых переменных                                                                | 4  |  |  |  |
|   | 2.2          | Добавление и настройка компонента «Список сетевых переменных (отправитель)»                           | 2  |  |  |  |
|   | 2.3          | Добавление и настройка компонента «Список сетевых переменных (получатель)»                            | 6  |  |  |  |
|   | 2.4<br>CODE  | Настройка обмена сетевыми переменными между контроллерами, программируемым<br>ESYS V3.5               |    |  |  |  |
|   | 2.5<br>CoDes | Настройка обмена сетевыми переменными между контроллерами, программируемым<br>Sys V2.3 и CODESYS V3.5 |    |  |  |  |
|   | 2.6          | Особенности использования сетевых переменных                                                          | 19 |  |  |  |
|   | 2.7          | Диагностика                                                                                           | 20 |  |  |  |
| 3 | Me           | неджер источников данных23                                                                            | }  |  |  |  |
|   | 3.1          | Основные сведения о менеджере источников данных                                                       | 23 |  |  |  |
|   | 3.2          | Пример настройки обмена                                                                               | 24 |  |  |  |
|   | 3.3          | Настройка обмена с использованием переменной                                                          | 35 |  |  |  |
|   | 3.4          | Использование источников данных в визуализации                                                        | 37 |  |  |  |
|   | 3.5          | Диагностика                                                                                           | 39 |  |  |  |

# Глоссарий

ПЛК – программируемый логический контроллер.

ПК – персональный компьютер.

**ПКМ** – правая кнопка мыши.

# 1 Цель документа

Настоящее руководство описывает настройку обмена данными между контроллерами, программируемыми в среде **CODESYS V3.5**. Руководство предназначено для пользователей с базовыми навыками работы в CODESYS V3.5, поэтому общие вопросы (например, создание и загрузка проектов) в данном документе не рассматриваются. Базовая информация приведена в руководствах **CODESYS V3.5**. **Первый старт** и **CODESYS V3.5**. **FAQ**, которые доступны на сайте <u>OBEH</u> в разделе **CODESYS V3/Документация**.

Контроллеры, программируемые в среде CODESYS V3.5, обычно поддерживают несколько промышленных протоколов (например, Modbus). Но если требуется настроить обмен между несколькими ПЛК, то этот способ обычно оказывается не очень удобным — требуется отдельно настраивать оба ПЛК, формировать карту регистров, добавлять код для преобразования типов данных и т. д. Более простым вариантом является использование специфических коммуникационных компонентов CODESYS V3.5 — сетевых переменных или менеджера источников данных. Они позволяют организовать «бесшовный» обмен между ПЛК с минимальными затратами времени — один контроллер получает доступ к переменным других ПЛК и взаимодействует с ними так, как будто они являются его собственными.

Основное отличие сетевых переменных от менеджера источника данных:

- сетевые переменные используют широковещательную рассылку (UDP broadcast). Они удобны в тех случаях, когда требуется передать общий набор данных от одного ПЛК нескольким другим;
- менеджер источников данных использует TCP-подключение. Он удобен в тех случаях, когда ПЛК должен считывать/записать разные наборы данных из одного или нескольких других ПЛК.

Особенно удобным является добавление всех ПЛК в один проект CODESYS — это позволяет минимизировать время, требуемое на настройку обмена.

### Сетевые переменные

#### 2.1 Основные сведения о сетевых переменных

Сетевые переменные позволяют организовать обмен между несколькими контроллерами, программируемыми в CODESYS V3.5 (и CoDeSys V2.3), по протоколу UDP, который работает поверх Ethernet. Соответственно, все контроллеры, участвующие в обмене, должны находиться в одной локальной сети. В настройках сетевого оборудования должна быть отключена блокировка UDPпакетов.

Альтернативный вариант – организовать обмен по Modbus TCP. В данном случае пользователь должен добавлять в проект соответствующие компоненты (Ethernet, Modbus TCP Master, Modbus TCP Slave), настраивать их, разбираться в используемых функциях и адресации регистров. Преимуществом использования сетевых переменных является простота их настройки - достаточно создать в одном устройстве список читаемых/записываемых переменных и импортировать его в другом. В то же время протокол **UDP** по сравнению с **TCP** обладает рядом недостатков (см., например, соответствующую статью на Wikipedia). Часть недостатков может быть компенсирована настройками CODESYS (контроль CRC, подтверждение получения).

В рамках каждого списка сетевых переменных обмен происходит только в одном направлении. То есть у любого списка есть единственное устройство-отправитель и устройства-получатели (их может быть несколько). Каждое устройство может содержать несколько списков отправляемых и несколько списков получаемых сетевых переменных.

Связь между устройством-отправителем и устройством-получателем определяется следующими параметрами:

- 1. Порт, через который осуществляется передача UDP-пакетов.
- 2. Адрес рассылки пул адресов, на которые отправляются UDP-пакеты.
- 3. Идентификатор списка номер используемого списка сетевых переменных.

Вышеперечисленные параметры должны быть идентичными для отправителя и всех получателей. Каждый из списков переменных устройства должен иметь уникальный идентификатор.

В случае масштабирования системы пользователю требуется только добавить в новые устройства соответствующие списки. Обмен сетевыми переменными основан на отправке широковещательных (broadcast) запросах.

CODESYS V3.5 позволяет в пределах одного проекта создавать программы сразу для нескольких контроллеров, что также упрощает процесс настройки обмена.

В п. 2.2 и п. 2.3 рассмотрены настройки компонентов Список сетевых переменных (отправитель) и Список сетевых переменных (получатель).

п. 2.4 рассмотрен пример обмена контроллерами, сетевыми переменными между программируемыми в CODESYS V3.5

п. 2.5 рассмотрен пример обмена сетевыми переменными контроллерами, между программируемыми в CoDeSys V2.3 и CODESYS V3.5

В п. 2.6 описаны особенности использования сетевых переменных.

В п. 2.7 описан процесс диагностики обмена сетевыми переменными.

# 2.2 Добавление и настройка компонента «Список сетевых переменных (отправитель)»

Для добавления в проект компонента **Список сетевых переменных (отправитель)** следует в дереве проекта нажать **ПКМ** на узел **Аррlication** и в контекстном меню выбрать команду **Добавление объекта**:



Рисунок 2.2.1 – Добавление компонента Список сетевых переменных (отправитель)

После создания списка в проект будет автоматически добавлена библиотека NetVarUdp:



Рисунок 2.2.2 - Библиотека NetVarUdp в Менеджере библиотек



Рисунок 2.2.3 – Настройки компонента Список сетевых переменных (отправитель)

### Настройки компонента:

- **1. Тип сети** протокол, используемый для передачи сетевых переменных. В данный момент поддерживается только протокол **UDP**.
- **2.** Установки в данном меню выбирается порт контроллера и адрес широковещательной рассылки (Broadcast address).

# i

#### ПРИМЕЧАНИЕ

Рекомендуется использовать номер порта по умолчанию (1202).



### ПРИМЕЧАНИЕ

Адрес рассылки должен соответствовать настройкам локальной сети.

Например, если контроллер имеет IP-адрес 10.2.11.10, то адрес рассылки может быть задан как 10.2.255.255 (в данном случае получателем сетевых переменных будет являться любое устройство с IP-адресом 10.2.x.x) или 10.2.11.255 (в данном случае получателем сетевых переменных будет являться любое устройство с IP-адресом 10.2.11.x).



### ПРИМЕЧАНИЕ

В случае использования адреса рассылки по умолчанию (255.255.255) обмен сетевыми переменными будет невозможен.

- 3. Задача задача, к которой будет привязан процесс обмена сетевыми переменными.
- 4. Идентификатор списка номер данного списка.



### ПРИМЕЧАНИЕ

В пределах одного устройства для каждого списка сетевых переменных (как отправляемых, так и получаемых) должен использоваться уникальный идентификатор.

**5.** Упаковка переменных — если галочка установлена, то переменные будут упаковываться в пакеты (датаграммы), размер которых будет определяться настройками сети. В противном случае каждая переменная отправляется отдельным пакетом.

- **6. Передавать контрольную сумму** если галочка установлена, то в пакет будет добавлена контрольная сумма. Устройство-получатель будет отбрасывать пакеты с несовпадающей контрольной суммой.
- **7. Подтверждение передачи** если галочка установлена, то отправитель будет ждать подтверждения получения на каждый отправленный пакет. Если подтверждение отсутствует, то в переменных диагностики будет выставлен соответствующий флаг.

Выбор режима передачи сетевых переменных:

- **8. Циклическая передача** в данном режиме сетевые переменные будут передаваться с заданным интервалом времени.
- 9. Передача по изменению в данном режиме сетевые переменные будут передаваться в случае изменения их значений. Пользователь должен выбрать минимальный интервал времени между двумя передачами если в пределах этого интервала значение переменной изменилось, то она все равно не будет отправлена до его истечения.
- **10. Передача по событию** в данном режиме сетевые переменные будут передаваться по переднему фронту заданной логической переменной.



#### ПРИМЕЧАНИЕ

При загрузке контроллера сетевые переменные однократно отправляются вне зависимости от выполнения условий из пп. 8–10.

После создания списка следует наполнить его нужными переменными:

Рисунок 2.2.4 - Объявление сетевых переменных

Если необходимо изменить настройки созданного списка, то следует нажать на него **ПКМ** и в контекстном меню выбрать пункт **Свойства**, после чего перейти на вкладку **Свойства сети**.



Рисунок 2.2.5 – Изменение настроек списка сетевых переменных

Во вкладке Связь с файлом можно указать путь к файлу, в который будет экспортирован (или из которого будет импортирован) список глобальных переменных. Экспорт/импорт происходит после компиляции проекта. Экспортированный список можно импортировать в компонент Список сетевых переменных (получатель) другого контроллера.

Экспортированный список представляет собой файл формата **.gvl**, который содержит сетевые переменные и сетевые настройки. Файл можно открыть любым текстовым редактором:

```
<GVL>CRIF
     -<Declarations><![CDATA[{attribute 'qualified only'}</pre>
    VAR GLOBAL
     ——iVar: —>-
                    →INT; I
     \longrightarrowrVar: \longrightarrow REAL:
     \longrightarrowadwVar:\longrightarrowARRAY\cdot[0..15]\cdotOF\cdotDWORD;
   END VAR LF
    LF
   LF
10
   LF
11
   LF
13
   ]]></Declarations>CRIF
14
    ··<NetvarSettings·Protocol="UDP">CRIB
15
16
   ····<ListIdentifier>l</ListIdentifier>CRL
    ····<Pack>True</Pack>CRLF
17
18
    ·····<Checksum>False</Checksum>@R#B
    ····<Acknowledge>False</Acknowledge>CRID
19
20 ....<CyclicTransmission>True</CyclicTransmission>@R
    ····<TransmissionOnChange>False</TransmissionOnChange>CRIF
22
   ····<TransmissionOnEvent>False</TransmissionOnEvent>CRIF
23
    ····<Interval>T#50ms</Interval>CRIM
   ····<MinGap>T#20ms</MinGap>CRUF
24
25
   ····<EventVariable>CRUE
    ····</EventVariable>CRIF
    ····<ProtocolSettings>
    <<ProtocolSetting Name="Broadcast Adr." Value="10.2.11.255" / > CRUS
28
29
    ·····<ProtocolSetting·Name="Port"·Value="1202"·/>@RIF
30
    ····</ProtocolSettings>CRUF
    ··</NetvarSettings>CRIF
32 </GVL>
```

Рисунок 2.2.6 - Содержимое файла формата .gvl

# 2.3 Добавление и настройка компонента «Список сетевых переменных (получатель)»

Для добавления в проект компонента **Список сетевых переменных (получатель)** следует в дереве проекта нажать **ПКМ** на узел **Аpplication** и в контекстном меню выбрать команду **Добавление объекта**:



Рисунок 2.3.1 – Добавление компонента Список сетевых переменных (получатель)

При добавлении компонента пользователь должен указать, откуда будет импортирован список сетевых переменных, созданный на устройстве-отправителе – из другого устройства проекта или же из файла формата .gvl (см. рисунок 2.2.6).

В результате список отправителя (включая все сетевые настройки) будет импортирован на устройствополучатель. Никаких дополнительных настроек не требуется.

```
I //Этот список глобальных переменных получен по сети.

2 //Отправитель: NVL [Device: Plc Logic: Application]

3 //Протокол: UDP

4

5 {attribute 'qualified_only'}

6 VAR_GLOBAL

7 iVar: INT;

8 rVar: REAL;

9 adwVar: ARRAY [0..15] OF DWORD;

10 END_VAR
```

Рисунок 2.3.2 – Добавление компонента Список сетевых переменных (получатель)

Переменные этого списка можно использовать в программе контроллера-получателя – при наличии обмена между устройствами они будут иметь те же значения, что и переменные в аналогичном списке контроллера-отправителя.

# 2.4 Настройка обмена сетевыми переменными между контроллерами, программируемыми в CODESYS V3.5

В качестве примера будет рассмотрен обмен сетевыми переменными между контроллерами **СПК1хх [М01]** и **ПЛК210**.

Пример доступен для скачивания: Example\_NetworkVariables\_3517v1.zip

В примере также добавлен обмен с ПЛК, программируемом в среде CoDeSys V2.3 (см. п. 2.5).

Сетевые параметры и используемые переменные приведены в таблице 2.1.

Таблица 2.1 – Сетевые параметры и переменные примера

| Параметр                        | СПК1хх [М01]              | ПЛК210                    |  |
|---------------------------------|---------------------------|---------------------------|--|
| ІР-адрес                        | 10.2.11.174               | 10.2.25.2                 |  |
| Порт UDP                        | 1202                      |                           |  |
| Broadcast адрес                 | 10.2.255.255              |                           |  |
| Названия списков сетевых        | SpkToPlc210 (отправление) | Plc210ToSpk (отправление) |  |
| переменных                      | Plc210ToSpk (получение)   | SpkToPlc210 (получение)   |  |
| Идентификаторы списков          | 1 (отправление)           | 2 (отправление)           |  |
| идентификаторы списков          | 2 (получение)             | 1 (получение)             |  |
| Отправляемая сетевая переменная | wSpkToPlc210              | wPlc210ToSpk              |  |
| Получаемая сетевая переменная   | wPlc210ToSpk              | wSpkToPlc210              |  |

Для настройки обмена через сетевые переменные следует:

- 1. Создать новый проект для **СПК1хх [M01]** в среде **CODESYS V3.5** (язык программы не имеет значения, поскольку проект не будет содержать программы).
- **2.** Добавить компонент <u>Список сетевых переменных (отправитель)</u> с названием **SpkToPlc210** с настройками в соответствии с <u>таблицей 2.1</u>:



Рисунок 2.4.1 – Добавление и настройка списка отправляемых сетевых переменных для СПК1xx [M01]

В созданном списке объявить переменную wSpkToPlc210 типа WORD:

Рисунок 2.4.2 – Объявление отправляемых сетевых переменных для СПК1хх [М01]

**3.** Нажать **ПКМ** на имя проекта, использовать команду **Добавить устройство** и выбрать модель контроллера **ПЛК210**:



Рисунок 2.4.3 - Добавление в проект ПЛК210

**4.** Нажать **ПКМ** на компонент **Конфигурация задач** и добавить задачу с названием **MainTask** и настройками по умолчанию:



Рисунок 2.4.4 - Создание задачи

**5.** В устройстве ПЛК210 добавить компонент <u>Список сетевых переменных (получатель)</u> с импортом из устройства СПК1хх [М01]:



Рисунок 2.4.5 – Добавление списка получаемых сетевых переменных

**6.** В устройстве **ПЛК210** добавить компонент <u>Список сетевых переменных (отправитель)</u> с настройками в соответствии с <u>таблицей 2.1</u>:



Рисунок 2.4.6 – Настройки списка отправляемых сетевых переменных для СПК1хх [М01]

В созданном списке объявить переменную **wPlc210ToSpk** типа **WORD**:

Рисунок 2.4.7 - Объявление отправляемых сетевых переменных для СПК1хх [М01]

7. В устройстве СПК1хх [M01] добавить компонент Список сетевых переменных (получатель) с импортом из устройства ПЛК210:



Рисунок 2.4.8 – Импорт списка сетевых переменных из СПК1хх [М01] в ПЛК210

**8.** Загрузить проекты в оба устройства и запустить их. Чтобы произвести сканирование сети для конкретного устройства – следует сначала выбрать его приложение с помощью выпадающего списка на панели инструментов:



Рисунок 2.4.9 - Выбор активного приложение проекта

**9.** В устройстве **СПК1хх [M01]** в списке **SpkToPic210** изменить значение переменной. Проверить, что оно изменилось в соответствующем списке в устройстве ПЛК210.



Рисунок 2.4.10 – Передача сетевых переменных из СПК1хх [М01] в ПЛК210

### 2 Сетевые переменные

В устройстве **ПЛК210** в списке **Pic210ToSpk** изменить значение переменной. Проверить, что оно изменилось в соответствующем списке в устройстве ПЛК210.



Рисунок 2.4.11 - Передача сетевых переменных из ПЛК210 в СПК1хх [М01]

# 2.5 Настройка обмена сетевыми переменными между контроллерами, программируемыми в CoDeSys V2.3 и CODESYS V3.5

В качестве примера будет рассмотрен обмен сетевыми переменными между контроллерами **СПК1хх [M01]** (программируется в **CODESYS V3.5**) и **ПЛК110 [M02]** (программируется в **CoDeSys V2.3**). Для СПК1хх [M01] используется пример, созданный в предыдущем пункте.

Пример доступен для скачивания: Example NetworkVariables 3517v1.zip

Сетевые параметры и используемые переменные приведены в таблице 2.2.

Таблица 2.2 – Сетевые параметры и переменные примера

| Параметр                        | СПК1хх [М01]               | ПЛК110 [М02]              |  |
|---------------------------------|----------------------------|---------------------------|--|
| ІР-адрес                        | 10.2.11.174                | 10.2.11.176               |  |
| Порт UDP                        | 1202                       |                           |  |
| Broadcast адрес                 | 10.2.255.255               |                           |  |
| Названия списков сетевых        | SpkToPlc210¹ (отправление) | Plc110ToSpk (отправление) |  |
| переменных                      | Plc110ToSpk (получение)    | SpkToPlc210 (получение)   |  |
| Macutudayyatan arusya           | 1 (отправление)            | 3 (отправление)           |  |
| Идентификатор списка            | 3 (получение)              | 1 (получение)             |  |
| Отправляемая сетевая переменная | wSpkToPlc210               | wPlc110ToSpk              |  |
| Получаемая сетевая переменная   | wPlc110ToSpk               | wSpkToPlc210              |  |

Для настройки обмена через сетевые переменные следует:

- 1. Создать новый проект для ПЛК110 [M02] в среде CoDeSys V2.3 (язык программы не имеет значения, поскольку проект не будет содержать программы, но если вы используете язык ST то добавьте в код хотя бы одно выражение (например, оператор «;», иначе проект не скомпилируется).
- **2.** Во вкладке **Ресурсы** открыть узел **Настройки целевой платформы** и во вкладке **Сетевая** функциональность указать поддержку сетевого интерфейса **UDP**:



Рисунок 2.5.1 - Включение поддержки сетевых переменных в CoDeSys V2.3

<sup>&</sup>lt;sup>1</sup> Упоминание Plc210 связано с тем, что на стороне СПК используется проект с такими названиями, созданный в <u>п. 2.4</u>.

**3.** Во вкладке **Ресурсы** открыть узел **Менеджер библиотек**, нажать **ПКМ** на свободное поле рядом с названиями библиотек, использовать команду **Добавить библиотеку** и добавить в проект библиотеку **NetVarUdp**:



Рисунок 2.5.2 – Добавление библиотеки NetVarUdp в менеджере библиотек

**4.** Нажать **ПКМ** на папку **Глобальные переменные** и создать список отправляемых сетевых переменных **Plc110ToSpk** с настройками в соответствии с <u>таблицей 3.2</u>:



Рисунок 2.5.3 – Настройки списка отправляемых сетевых переменных для ПЛК110 [М02]

В созданном списке объявить переменную wPlc110ToSpk типа WORD:



Рисунок 2.5.4 – Объявление отправляемых сетевых переменных для ПЛК110 [М02]

**5.** Нажать **ПКМ** на папку **Глобальные переменные** и создать список получаемых сетевых переменных **SpkToPic210** настройками в соответствии с <u>таблицей 3.2</u> (фактически этот список будет соответствовать списку, который был создан для СПК в <u>п. 2.4</u>):



Рисунок 2.5.5 – Настройки списка получаемых сетевых переменных для ПЛК110 [М02]

В созданном списке объявить переменную wSpkToPlc210 типа WORD:



Рисунок 2.5.6 – Объявление получаемых сетевых переменных для ПЛК110 [М02]

- **6.** Открыть проект для **СПК1хх [M01**], созданный в <u>п. 2.4</u>, в среде **CODESYS V3.5** (язык программы не имеет значения, поскольку проект не будет содержать программы).
- 7. Импорт списка сетевых переменных из CoDeSys V2.3 в CODESYS V3.5 не поддерживается. Поэтому следует создать в CODESYS V3.5 список отправляемых переменных, аналогичный тому, который был создан в CoDesys V2.3, экспортировать его в файл и импортировать в список получаемых переменных. Это процедура описана в следующих подпунктах.

**8.** Добавить компонент <u>Список сетевых переменных (отправитель)</u> **Pic110ToSpk** с настройками, соответствующими одноименному списку из **CoDeSys V2.3**:



Рисунок 2.5.7 - Настройки «имитационного» списка отправляемых сетевых переменных

В созданном списке объявить переменную wPlc110ToSpk типа WORD (по аналогии с рисунком 2.5.4);

Рисунок 2.5.8 – Объявление отправляемых сетевых переменных в «имитационном» списке

9. Нажать ПКМ на список сетевых переменных Plc110ToSpk, выбрать пункт Свойства, во вкладке Связь с файлом выбрать режим Экспорт перед компиляцией и указать путь, по которому будет сохранен файл экспорта (имя файла может быть произвольным):



Рисунок 2.5.9 – Настройки экспорт списка сетевых переменных

**10.** Выполнить команду **Компиляция – Генерировать код**. После этого по указанному пути будет сформирован файл экспорта.



Рисунок 2.5.10 – Экспорт списка сетевых переменных

- 11. Удалить список сетевых переменных Plc110ToSpk из проекта CODESYS V3.5.
- **12.** Добавить компонент <u>Список сетевых переменных (получатель)</u> с названием **Plc110ToSpk** и импортировать файл **Plc110ToSpk.gvl**, созданный в пп. 10:



Рисунок 2.5.11 - Импорт списка сетевых переменных

- **13.** Загрузить проекты в оба контроллера и запустить их. Убедиться, что оба контроллера подключены к одной локальной сети.
- **14.** В проекте **CODESYS V3.5** в списке **SpkToPic210** изменить значение переменной **wSpkToPic210**. Проверить, что оно изменилось в **CoDeSys V2.3**.



Рисунок 2.5.12 - Передача сетевых переменных из CODESYS V3.5 в CoDeSys V2.3

**15.** В проекте **CoDeSys V2.3** в списке **Pic110ToSpk** изменить значение переменной **wPic110ToSpk**. Проверить, что оно изменилось в **CODESYS V3.5**.



Рисунок 2.5.13 - Передача сетевых переменных из CoDeSys V2.3 в CODESYS V3.5

# 2.6 Особенности использования сетевых переменных

- **1.** В случае использования адреса рассылки по умолчанию (**255.255.255.255**) обмен сетевыми переменными будет невозможен.
- 2. Каждый список сетевых переменных должен иметь уникальный идентификатор (ID).
- **3.** Используемый для обмена сетевыми переменными порт не должен применяться для других целей и не должен блокироваться на уровне промежуточного сетевого оборудования.
- **4.** Границы передаваемых массивов должны быть определены только через литералы или константы (но не выражения).
- 5. Максимальный размер сетевой переменной 255 байт.
- 6. Число сетевых переменных в проекте не ограничено.
- 7. Для обращения к сетевой переменной в коде программы требуется указывать имя списка сетевых переменных. Например, для обращения к переменной wSpkToPlc210 из списка SpkToPlc210 требуется указать такое имя: SpkToPlc210.wSpkToPlc210.

### 2.7 Диагностика

Диагностика обмена сетевыми переменными производится с помощью специальных переменных, отображаемых в списках сетевых переменных при онлайн-подключении к контроллеру. В документации CODESYS описание этих переменных отсутствует. Ниже приведены несколько практических советов по их использованию.

Для диагностики на стороне отправителя необходимо в свойствах списка сетевых переменных на вкладке **Свойства сети** установить галочку **Подтверждение** для ожидания подтверждений от получателя.



Рисунок 2.7.1 – Установка ожидания подтверждения получения сетевых переменных

В случае обрыва связи в структуре NetVarTxDiag\_UDP поле sLastError примет значение NetVarUDPError\_NOACKNOWLEDGEMENT, а поле nErrorCount будет постоянно увеличиваться.



Рисунок 2.7.2 – Диагностика обрыва связи на стороне отправителя

Диагностика связи на стороне получателя: в случае обрыва связи в структуре **NetVarRxDiag\_UDP** значение полей **nReceiveCount** и **tLastReceive** «застынут» и перестанут изменяться.



Рисунок 2.7.3 – Диагностика обрыва связи на стороне получателя

В версии **CODESYS V3.5 SP17** значения переменных диагностики в списке сетевых переменных могут не отображаться:



Рисунок 2.7.4 – Проблема с отображением значений переменных диагностики в CODESYS V3.5 SP17

В этом случае следует добавить их в список просмотра (Вид – Просмотр – Watch):



Рисунок 2.7.5 – Отображения значений переменных диагностики в окне просмотра

Переменные диагностики можно использовать в коде программы (при этом компоненты диагностики не будут предлагаться для автодополнения – требуется ввести их имена вручную):



Рисунок 2.7.6 – Доступ к переменным диагностики в коде программы

# 3 Менеджер источников данных

### 3.1 Основные сведения о менеджере источников данных

**Менеджер источников данных** позволяет организовать обмен между несколько контроллерами, программируемыми в **CODESYS V3.5.** В рамках данного механизма опроса контроллер может выполнять роль источника данных (удаленного устройства) или менеджера данных (локального устройства) – но не может совмещать эти роли.

В приложении удаленных устройств (серверов) не требуется каких-либо дополнительных настроек для использования этого механизма обмена.

В приложении локальных устройств (клиентов) должен быть добавлен и настроен компонент Менеджер источников данных.

Контроллеры, которые участвуют в обмене, должны находиться в одной локальной сети и иметь разные сетевые имена (hostname) – в том числе, на этапе настройки обмена. Настроить обмен для разных ПЛК «по отдельности» не получится, потому что для установки связи требуется выполнить операцию сканирования сети – соответственно, контроллеры должны обнаруживаться при сканировании, а для этого в сети должны быть разрешены широковещательные UDP-запросы (UDP broadcast). Крайне рекомендуется проконтролировать, что ПК, на котором выполняется сканирование сети, был подключен только к одной локальной сети (имел только один активный сетевой интерфейс) – иначе на этапе конфигурирования обмена адреса локальных устройств могут быть определены некорректно, что приведет к невозможности подключения к ним менеджера источника данных.

**CODESYS V3.5** позволяет в пределах одного проекта создавать программы сразу для нескольких контроллеров, что также упрощает процесс настройки обмена.

В <u>п. 3.2</u> приведен пример настройки обмена с использованием менеджера источника данных и описание этого компонента.

В <u>п. 3.3</u> описан частный случай настройки обмена с удаленным устройством с использованием переменной с адресом устройства.

В п. 3.4 приведена информация по использованию источников данных в визуализации.

В п. 3.5 описан процесс диагностики обмена с удаленным устройством.

### 3.2 Пример настройки обмена

В качестве примера будет рассмотрен обмен между контроллерами **СПК1хх [M01]** и **ПЛК210**. ПЛК210 будет использоваться в роли удаленного устройства, СПК1хх [M01] – локального устройства. Пример доступен для скачивания: <a href="mailto:Example Datasources">Example Datasources</a> 3517v1.projectarchive

Для настройки обмена с помощью менеджера источника данных следует:

**1.** Объявить в проекте удаленного устройства переменные, к которым требуется организовать доступ со стороны локального устройства. В рамках примера используются переменные типа **WORD**, **REAL** и **STRING**:



Рисунок 3.2.1 – Объявление переменных удаленного устройства

- **2.** Подключиться к ПЛК210 (узел **Device** вкладка **Установки соединения**) и загрузить в него проект.
- **3.** Нажать **ПКМ** на имя проекта, использовать команду **Добавить устройство** и выбрать модель контроллера **СПК1хх [М01]**:



Рисунок 3.2.2 - Добавление в проект CODESYS локального устройства

4. Нажать ПКМ на узел Application и добавить программу SPK\_PRG.



#### **ВНИМАНИЕ**

Менеджер источников данных импортирует в проект объекты удаленного устройства. Так как в примере программа в ПЛК210, в которой объявлены переменные, называется **PLC\_PRG**, то в проекте СПК1xx [M01] не должно быть программы с таким же названием (иначе возникнут ошибки компиляции).



Рисунок 3.2.3 – Добавление программы SPK\_PRG

5. В программе SPK\_PRG объявить два набора переменных – один из них будет соответствовать значениям переменных, считываемым из удаленного устройства, второй – использоваться для записи в удаленное устройство новых значений по команде, представленной переменной xWriteData.Код программы будет добавлен в пп. 15 после настройки менеджера источников данных.

```
SPK_PRG X
I≣I
   1
       PROGRAM SPK_PRG
  2
       VAR
   3
            wVar read: WORD;
   4
            rVar_read: REAL;
   5
            sVar read: STRING;
   6
   7
           wVar_write: WORD;
  8
            rVar write: REAL;
  9
            sVar write: STRING;
 1.0
            xWriteData: BOOL;
 11
 12
       END VAR
```

Рисунок 3.2.4 – Объявление переменных программы SPK\_PRG

**6.** Нажать **ПКМ** на компонент **Конфигурация задач** и добавить задачу с названием **MainTask** и настройками по умолчанию.



Рисунок 3.2.5 – Добавление задачи MainTask

7. В настройках созданной задачи добавить вызов программы **SPK\_PRG**.



Рисунок 3.2.6 – Привязка программы SPK\_PRG к задаче MainTask

**8.** Нажать **ПКМ** на узел **Application** и добавить в проект визуализацию (без нее не получится скомпилировать проект для СПК).



Рисунок 3.2.7 - Добавление в проект визуализации



9. Нажать ПКМ на узел Application и добавить в проект Менеджер источников данных.

Рисунок 3.2.8 – Добавление менеджера источника данных

**10.** Нажать **ПКМ** на компонент **Менеджер источников данных** и добавить источник данных с названием **Datasource**. В рамках примера используется один источник данных, в случае необходимости — можно добавить несколько источников данных (каждый источник данных соответствует одному опрашиваемому менеджером контроллеру).



#### ВНИМАНИЕ

Контроллеры OBEH поддерживают только один тип источника данных — **CODESYS ApplicationV3**.



Рисунок 3.2.9 - Добавление источника данных

11. В появившемся окне указать параметры удаленного устройства:

**Выберите текущий проект** – если удаленное устройство добавлено в этом же проекте CODESYS (как в примере), то следует указать вариант **Текущий проект** и выбрать в окне приложение нужного устройства (в рамках примера – приложение ПЛК210). Если же удаленное устройство создано в отдельном проекте CODESYS, то следует выбрать вариант **Другой проект** и указать путь к файлу проекта.

**Целевое устройство** – определение сетевых настроек удаленного устройства. Возможные варианты:

- **Автоматическая конфигурация** конфигурация будет считана автоматически, если удаленное устройство добавлено в том же проекте (как в примере) и обнаружено при сканировании сети. Предварительно в это устройство должен быть загружен проект (см. пп. 2). Этот способ является наиболее простым и рекомендуется использовать именно его;
- **Конфигурация вручную** конфигурация задается пользователем с помощью специальной переменной (см. <u>п. 3.3</u>) или с помощью сканирования сети по заданным параметрам (см. информацию в <u>онлайн-справке CODESYS</u>).

**Конфигурация логина** – если в удаленном устройстве настроено управление пользователями визуализации, то требуется указать логин и пароль, которые будут использоваться для подключения; **Размер буфера связи по умолчанию** – недокументированная настройка, значение которой не рекомендуется изменять.



Рисунок 3.2.10 – Настройки подключения к источнику данных

После ввода настроек следует нажать Next и выбрать нужные перемененные источника данных:



Рисунок 3.2.11 - Выбор переменных удаленного устройства

Для завершения настройки следует нажать **Finish**.

12. У добавленного в проект источника данных доступны следующие вкладки:

Переменные — на этой вкладке отображаются переменные, импортированные из удаленного устройства. Столбец Создать или соотнести позволяет выбрать, как будет производиться импорт — с помощью автоматического создания в проекте локального устройства нужных переменных (→) или ручного соотнесения переменных удаленного и локального устройства со строгим (→) или нестрогим (→) совпадением типов. Подробнее см. в онлайн-справке CODESYS. Рекомендуется использовать автоматический импорт.

В столбце **Обновлять всегда** выбирается режим обновления переменных. Если переменные используются в визуализации (см. также <u>п. 3.4</u>), то рекомендуется не устанавливать галочку – в этом случае обновление переменных будет происходить автоматически при изменении их значений. Если переменные используются только в коде программы (как в примере) – то следует установить галочку для циклического обновления данных. Также возможно обновление данных по команде в коде программы – см. <u>статью в онлайн-справке CODESYS</u>.

Команда **Обновить переменные** позволять выполнить повторный импорт переменных из удаленного устройства (например, если его переменные изменились).



Рисунок 3.2.12 – Настройки источника данных, вкладка Переменные

**Соотнесения типа** — на этой вкладке отображаются типы импортированных данных. Пользователь может указать соответствие между типами объектов удаленного и локального устройства. Это полезно, например, если в удаленном и локальном устройстве используются одни и те же структуры/перечисления — в этом случае автоматическое создание () невозможно, потому что в результате в проекте локального устройства будут присутствовать два объекта с совпадающими названиями, что приведет к ошибкам компиляции. Вместо этого надо соотнести () структуру удаленного устройства с аналогичной структурой локального устройства. Подробнее см. в онлайн-справке CODESYS.



Рисунок 3.2.13 – Настройки источника данных, вкладка Соотнесение типа

Связь – на этой вкладке доступны коммуникационные настройки (их список аналогичен рисунку 3.2.10).

**Общее и диагностика** – на этой вкладке можно настроить период обновления данных. При онлайнподключении к контроллеру на этой вкладке отображается статус соединения и код ошибки. См. описание переменных диагностики в <u>п. 3.5</u>.



Рисунок 3.2.14 – Настройки источника данных, вкладка Общее и диагностика

- 13. После добавления и настройки источника данных в проект автоматически будут добавлены:
  - библиотеки **DatasourceAppV3** и **Datasources** (например, они используются для диагностики обмена и настройки подключения из кода программы);
  - задача DatasourcesTask;
  - папка **DataSources\_Objects** с импортированными объектами и переменными удаленного устройства.

Настоятельно не рекомендуется редактировать эти компоненты.



Рисунок 3.2.15 - Автоматические добавленные компоненты менеджера источника данных

**14.** Для доступа к переменным удаленного устройства следует в коде программе обратиться к объекту нужного источника данных (в примере он называется **Datasource** – см. пп. 10) и в выпадающем списке выбрать нужный объект и его переменные:



Рисунок 3.2.16 - Обращение к переменным удаленного устройства

15. В рамках примера в программу **SPK\_PRG** будет добавлен следующий код:

```
// чтение значений из источника данных
     wVar_read := Datasource.PLC_PRG.wVar;
 3
     rVar read := Datasource.PLC PRG.rVar;
     sVar_read := Datasource.PLC_PRG.sVar;
     // запись значений в источник данных
     IF xWriteData THEN
         Datasource.PLC PRG.wVar := wVar write;
10
         Datasource.PLC PRG.rVar := rVar write;
11
         Datasource.PLC_PRG.sVar := sVar_write;
12
13
         xWriteData := FALSE;
14
15
     END IF
16
```

Рисунок 3.2.17- Код программы SPK\_PRG

**16.** Осталось загрузить проекты в оба устройства и запустить их. Чтобы произвести сканирование сети для конкретного устройства — следует сначала выбрать его приложение с помощью выпадающего списка на панели инструментов:



Рисунок 3.2.18 - Выбор активного приложение проекта

**17.** В случае успешной установки связи (это может занять некоторое время, которое прямо пропорционально числу опрашиваемых переменных) рядом с узлом источника данных отобразится соответствующая пиктограмма:



Рисунок 3.2.19 - Пиктограмма успешной установки связи с удаленным устройством

**18.** В устройстве ПЛК210 следует изменить значения переменных и проверить, что в устройстве СПК1хх [М01] изменились значения переменных с постфиксом \_read.



Рисунок 3.2.20 – Чтение значений из удаленного устройства

В устройстве **СПК1хх [M01]** следует изменить значения переменных с постификсом \_write, присвоить **TRUE** переменной **xWriteData** и проверить, что изменились значения переменных в устройстве **ПЛК210**.



Рисунок 3.2.21 – Запись значений в удаленное устройство

### 3.3 Настройка обмена с использованием переменной

В <u>п. 3.2</u> рассматривалась <u>автоматическая</u> конфигурация обмена с удаленным устройством. Альтернативным вариантом является настройка обмена через переменную типа **DatasourceAppV3.ConnectionSetup** (структуру). Эту переменную следует объявить в коде программы и инициализировать ее поля:

```
stDatasourceSetup: DatasourceAppV3.ConnectionSetup;

END_VAR

// имя источника данных, отображаемое при сканировании сети
stDatasourceSetup.stNodeAddress := '0000.1902';
stDatasourceSetup.xDataValid := TRUE;
```

Рисунок 3.3.1 – Объявление экземпляра структуры DatasourceAppV3.ConnectionSetup и присвоение значений ее полям

В поле stNodeAddress следует записать адрес устройства, отображаемый на вкладке Установки соединения. После этого следует присвоить полю xDataValid значение TRUE.

Обратите внимание, что сканирование сети должно производиться именно с того ПК, с которого выполняется загрузка проекта в контроллер.



Рисунок 3.3.2 - Отображение адреса устройства

Теперь при настройке связи с удаленном устройством можно выбрать режим **Конфигурация вручную/Динамически из переменной устройства** и привязать объявленную переменную:



Рисунок 3.3.3 – Привязка переменной устройства в окне настройки обмена

Подключение к удаленному устройству с заданным адресом будет произведено автоматические при запуске проекта. Чтобы отключить связи – следует присвоить полю **xDataValid** значение **FALSE**.

### 3.4 Использование источников данных в визуализации

Использование менеджера источника данных позволяет без дополнительных настроек получать данные для некоторых элементов визуализации.

Элементы **Таблица тревог** и **Баннер тревог** могут отображать тревоги удаленного устройства. Для этого следует:

- добавить в проект локального устройства компонент Конфигурация тревог, настроить его и загрузить проект в контроллер;
- добавить в проект локального устройства компонент Конфигурация тревог;
- добавить в конфигурацию тревог локального устройства узел **Удаленные тревоги** (**Remote Alarms**);
- в визуализации для элемента **Таблица тревог** или **Баннер тревог** выбрать источник данных и приложение удаленного устройства.

Других настроек не требуется.

См. видеопример.

Для отображения в таблице тревог названия конкретного удаленного устройства, от которого получена тревога, можно добавить столбец **Удаленное устройство**.



Рисунок 3.4.1 – Добавление узла Удаленные тревоги



Рисунок 3.4.2 – Выбор источника данных в таблице тревог



Рисунок 3.4.3 – Добавление столбца с именем удаленного устройства в таблицу тревог

Элементы **Трассировка** и **Тренд** могут отображать значения удаленного устройства. Для этого следует в их настройках выбрать источник данных и приложение удаленного устройства. Для тренда название записей тренда (TrendRecording) в удаленном и локальном устройстве должны совпадать. Других настроек не требуется (в частности, не надо импортировать в локальное устройство переменные тренда удаленного устройства и добавлять их на тренд локального устройства – данные будут считываться автоматически и без этого).



Рисунок 3.4.4 – Выбор источника данных в тренде

**Менеджер рецептов** синхронизирует рецепты локального и удаленного устройства, если хотя бы одна переменная рецепта добавлена в источник данных.



### ПРИМЕЧАНИЕ

Значения переменных источника данных, напрямую привязанные к элементам визуализации (например, прямоугольникам) локального устройства, не будут отображаться в сервисной визуализации CODESYS (в редакторе визуализации CODESYS при онлайн-подключении к контроллеру).

### 3.5 Диагностика

Диагностику обмена с локальным устройством в коде программы можно произвести с помощью глобальных системных переменных:

- g\_Datasources.<ums\_источника\_данных>Error (тип: Datasources.DataSourceError);
- g\_Datasources.<имя\_источника\_данных>State (тип: Datasources.DataSourceMonitoringState).

Имя источника данных можно увидеть в дереве проекта (по умолчанию для первого источника данных это имя – **Datasource**).



Рисунок 3.5.1 – Обращение к переменным диагностики в коде программы

Перечисления **DataSourceError** и **DataSourceMonitoringState** объявлены в библиотеке **Datasources**, которая автоматически добавляется в проект вместе с менеджером источников данных.



Рисунок 3.5.2 – Перечисления переменных диагностики в библиотеке Datasources