

After this video you will be able to

- Explain the term "vector model"
- Describe the concepts of similarity function and similarity search
- Recognize that many document and image search engines use vector models and similarity search

Document Vector

d1: "new york times" d2: "new york post" d3: "los angeles times"

Let's create the term frequency matrix

	angeles	los	new	post	times	york
d1	0	0	1	0	1	1
d2	0	0	1	1	0	1
d3	1	1	0	0	1	0

Document Vector

d1: "new york times" d2: "new york post" d3: "los angeles times"

Inverse document frequency

<u>TERM</u>	DOC-FREQUENCY	<u>IDF</u>
angeles	1	$\log_2(3/1) = 1.584$
los	1	$\log_2(3/1) = 1.584$
new	2	$\log_2(3/2) = 0.584$
post	1	$\log_2(3/1) = 1.584$
times	2	$\log_2(3/2) = 0.584$
york	2	$\log_2(3/2) = 0.584$

The tf-idf matrix

<u>TERM</u>	DOC-FREQUENCY	<u>IDF</u>
angeles	1	$\log_2(3/1) = 1.584$
los	1	$\log_2(3/1) = 1.584$
new	2	$\log_2(3/2) = 0.584$
post	1	$\log_2(3/1) = 1.584$
times	2	$\log_2(3/2) = 0.584$
york	2	$\log_2(3/2) = 0.584$

	angeles	los	new	post	times	york
d1	0	0	1	0	1	1
d2	0	0	1	1	0	1
d3	1	1	0	0	1	0

The tf-idf matrix

<u>TERM</u>	DOC-FREQUENCY	<u>IDF</u>
angeles	1	$\log_2(3/1) = 1.584$
los	1	$\log_2(3/1) = 1.584$
new	2	$\log_2(3/2) = 0.584$
post	1	$\log_2(3/1) = 1.584$
times	2	$\log_2(3/2) = 0.584$
york	2	$\log_2(3/2) = 0.584$

	angeles	los	new	post	times	york	Length
d1	0	0	0.584	0	0.584	0.584	1.011
d2	0	0	0.584	1.584	0	0.584	1.786
d3	1.584	1.584	0	0	0.584	0	2.316

Length of $d1 = sqrt(0.584^2 + 0.584^2 + 0.584^2) = 1.011$

Searching in Vector Space

```
query q: new new york
```

- Max frequency of a term ("new") = 2
- Create the query vector

```
Q [0 0 (2/2)*0.584=0.584 0 (1/2)*0.584=0.292 0 ] length(q)=0.652
```

 A similarity function between to vectors is a measure of how far they are apart

Similarity Function

- Many possible functions
- Cosine distance

$$similarity = cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|} = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}}$$


```
cosSim(d1,q) = (0.584*0.584+0.584*0.292) / (1.011*0.652) = 0.776

cosSim(d2,q) = (0.584*0.584) / (1.786*0.652) = 0.292

cosSim(d3,q) = (0.584*0.292) / (2.316*0.652) = 0.112
```

Documents can now be sorted according to this score

Query Term Weighting

- Every query term may optionally be associated with a weighting term
 - Q=York times^2 post^5
 - wt(York) = 1/(1+5+2)=1/8= 0.125
 - wt(times) = 2/8 = 0.25
 - wt(post)= 5/8 = 0.625
 - Multiply the query vector with these weights
 - "new york post" ranks first

Image Search

	0-31	32-63	64-95	96- 127	128- 159	159- 191	192- 223	223- 255
Red	0.04	0.12	0.23	0.06	0.24	0.12	0.13	0.06
Green	0.05	0.07	0.11	0.07	0.26	0.24	0.17	0.03
Blue	0.08	0.13	0.16	0.08	0.03	0.12	0.19	0.21