Física do século XX

Método e recomendacións

• Efecto fotoeléctrico

- 1. Unha radiación monocromática que ten unha lonxitude de onda de 600 nm penetra nunha célula fotoeléctrica de cátodo de cesio cuxo traballo de extracción é 3,2×10⁻¹⁹ J. Calcula:
 - a) A lonxitude de onda limiar para o cesio.
 - b) A enerxía cinética máxima dos electróns emitidos.
 - c) A velocidade máxima coa que son emitidos os electróns.
 - d) O potencial de freado.
 - e) Representa graficamente a enerxía cinética máxima dos electróns emitidos en función da frecuencia da luz incidente.
 - f) A lonxitude de onda de De Broglie asociada aos electróns emitidos polo metal con velocidade máxima.

DATOS: $h = 6.62 \times 10^{-34} \text{ J} \cdot \text{s}$; $c = 3 \times 10^8 \text{ m} \cdot \text{s}^{-1}$; $q_e = -1.6 \times 10^{-19} \text{ C}$; 1 nm = 10^{-9} m

Problema modelo baseado en A.B.A.U. ord. 18

Rta.: a) $\lambda_0 = 621$ nm; b) $E_c = 1.1 \cdot 10^{-20}$ J; c) $v = 1.6 \cdot 10^5$ m/s; d) V = 0.069 V; f) $\lambda_d = 4.7$ nm

Datos	Cifras significativas: 3
Lonxitude de onda da radiación	$\lambda = 600 \text{ nm} = 6,00 \cdot 10^{-7} \text{ m}$
Traballo de extracción do metal	$W_{\rm e} = 3,20 \cdot 10^{-19} { m J}$
Constante de Planck	$h = 6.62 \cdot 10^{-34} \text{J} \cdot \text{s}$
Velocidade da luz no baleiro	$c = 3,00 \cdot 10^8 \text{ m/s}$
Carga do electrón	$q_{\rm e} = -1,60 \times 10^{-19} {\rm C}$
Incógnitas	
Lonxitude de onda limiar	λο
Enerxía cinética máxima coa que son emitidos os electróns	$E_{\mathbf{c}}$
Velocidade máxima dos electróns emitidos	ν
Potencial de freado	V
Lonxitude de onda de De Broglie dos electróns	$\lambda_{ ext{d}}$
Ecuacións	
Ecuación de Planck (enerxía do fotón)	$E_{\mathrm{f}} = h \cdot f$
Ecuación de Einstein do efecto fotoeléctrico	$E_{ m f}=W_{ m e}+E_{ m c}$
Relación entre a frecuencia dunha onda luminosa e a lonxitude de onda	$f = c / \lambda$
Enerxía cinética	$E_{\rm c} = \frac{1}{2} m \cdot v^2$
Relación entre a enerxía cinética dos electróns e o potencial de freado	$E_{\rm c} = e \cdot V$
Lonxitude de onda de De Broglie	$\lambda_{\rm d} = \frac{h}{m \cdot v}$

Solución:

Cando a luz interactúa co metal da célula fotoeléctrica faino coma se fose un chorro de partículas chamadas fotóns (paquetes de enerxía).

Cada fotón choca cun electrón e transmítelle toda a súa enerxía.

Para que se produza efecto fotoeléctrico, os electróns emitidos deben ter enerxía suficiente para chegar ao anticátodo, o que ocorre cando a enerxía do fotón é maior que o traballo de extracción, que é unha característica do metal.

A ecuación de Einstein do efecto fotoeléctrico pode escribirse:

$$E_{\rm f} = W_e + E_{\rm c}$$

Na ecuación, $E_{\rm f}$ representa a enerxía do fotón incidente, $W_{\rm e}$ o traballo de extracción do metal e $E_{\rm c}$ a enerxía cinética máxima dos electróns (fotoelectróns) emitidos.

A enerxía que leva un fotón de frecuencia f é:

$$E_f = h \cdot f$$

h é a constante de Planck e ten un valor moi pequeno: $h = 6,63 \cdot 10^{-34}$ J·s.

a) A lonxitude de onda limiar corresponde a unha radiación coa enerxía mínima para provocar o efecto fotoeléctrico

Na ecuación de Einstein do efecto fotoeléctrico substitúese a enerxía do fotón polo seu equivalente na ecuación de Planck:

$$\begin{vmatrix}
E_f = W_e + E_c \\
E_f = h \cdot f
\end{vmatrix} h \cdot f = W_e + E_c$$

A radiación que teña a frecuencia limiar terá a enerxía estritamente necesaria para arrincar o electrón, pero non sobrará nada para comunicarlle enerxía cinética.

$$h \cdot f_0 = W_e + 0$$

A relación entre a frecuencia limiar e o traballo de extracción é:

$$W_e = h \cdot f_0$$

Calcúlase a frecuencia, despexándoa da relación anterior:

$$f_0 = \frac{W_e}{h} = \frac{3,20 \cdot 10^{-19} \text{ J}}{6,62 \cdot 10^{-24} \text{ J} \cdot \text{s}} = 4,83 \cdot 10^{14} \text{ s}^{-1}$$

Calcúlase a lonxitude de onda limiar, despexándoa na relación entre frecuencia e lonxitude de onda:

$$\lambda_0 = \frac{c}{f_0} = \frac{3,00 \cdot 10^8 \text{ m} \cdot \text{s}^{-1}}{4,83 \cdot 10^{14} \text{ s}^{-1}} = 6,21 \cdot 10^{-7} \text{ m} = 621 \text{ nm}$$

b) Para calcular a enerxía cinética máxima dos electróns emitidos emprégase ecuación de Einstein:

$$E_{\rm c} = E_{\rm f} - W_{\rm e}$$

Calcúlase antes a enerxía dos fotóns, despois de substituír a frecuencia pola súa expresión en función da lonxitude de onda:

$$E_{\rm f} = h \cdot f = \frac{h \cdot c}{\lambda} = \frac{6.62 \cdot 10^{-34} \, [\, \text{J} \cdot \text{s}\,] \cdot 3.00 \cdot 10^8 \, [\, \text{m} \cdot \text{s}^{-1}\,]}{6.00 \cdot 10^{-7} \, [\, \text{m}\,]} = 3.31 \cdot 10^{-19} \, \text{J}$$

Calcúlase entón a enerxía cinética máxima dos electróns emitidos:

$$E_{\rm c} = 3.31 \cdot 10^{-19} \, [\rm J] - 3.20 \cdot 10^{-19} \, [\rm J] = 1.1 \cdot 10^{-20} \, \rm J$$

c) Calcúlase a velocidade a partir da expresión da enerxía cinética:

$$E_{\rm c} = \frac{1}{2} m \cdot v^2 \implies v = \sqrt{\frac{2E_{\rm c}}{m}} = \sqrt{\frac{2 \cdot 1, 1 \cdot 10^{-20} [\rm J]}{9, 11 \cdot 10^{-31} [\rm kg]}} = 1,6 \cdot 10^5 \,\mathrm{m/s}$$

d) Calcúlase o potencial de freado na ecuación que o relaciona coa enerxía cinética:

$$E_{c} = |e| \cdot V \Rightarrow V = \frac{E_{c}}{|e|} = \frac{1.1 \cdot 10^{-20} [J]}{1.60 \cdot 10^{-19} [C]} = 0.069 \text{ V}$$

e) A representación gráfica é a seguinte:

A interpretación de Einstein do efecto fotoeléctrico demostrou que a luz se comporta como un chorro de partículas, chamadas fotóns, cuxa enerxía é proporcional á frecuencia:

$$E = h \cdot f$$

No efecto Compton, o fotón compórtase como unha partícula de momento lineal:

$$p = \frac{E}{c} = \frac{h \cdot f}{c} = \frac{h \cdot f}{\lambda \cdot f} = \frac{h}{\lambda}$$

Como xa estaba establecido que a luz se propaga como unha onda, propúxose que o comportamento era dual: nalgúns experimentos o comportamento da luz parece ser corpuscular e noutros, ondulatorio. De Broglie propuxo que este comportamento dual tamén afecto a calquera partícula. Nalgúns casos o comportamento de certas partículas podería interpretarse como o de ondas cuxa lonxitude de onda asociada λ vén dada pola expresión:

$$\lambda = \frac{h}{p} = \frac{h}{m \cdot v}$$

h é a constante de Planck, m é a masa da partícula e v é a súa velocidade.

f) Calcúlase a lonxitude de onda asociada aos electróns usando a ecuación de De Broglie

$$\lambda_{3} = \frac{h}{m \cdot v} = \frac{6.63 \cdot 10^{-34} [\text{J} \cdot \text{s}]}{9.10 \cdot 10^{-31} [\text{kg}] \cdot 1.6 \cdot 10^{5} [\text{m/s}]} = 4.7 \cdot 10^{-9} \text{ m} = 4.7 \text{ nm}$$

Pode obter as respostas na pestana «Fotoelectr» da folla de cálculo Fisica (gal). Instrucións.

Traballo de extracción $W_o = 3,20 \cdot 10^{-19}$ J

Lonxitude de onda dos fotóns $\lambda = 600$ nm

Tamén pode escribir 3,2E-19 en vez de 3,20·10⁻¹⁹. Os resultados son:

a) Lonxitude de onda limiar $\lambda_o = 6,21 \cdot 10^{-7}$ m

Enerxía dos fotóns $E = 3,31 \cdot 10^{-19}$ J

b) Enerxía cinética $E = 1,11 \cdot 10^{-20}$ J

Facendo clic na cela de cor laranxa poden elixir os valores pedidos nos outros apartados.

c) Velocidade máxima $v = 1,56 \cdot 10^5 \text{ m/s}$

d) Potencial de freado V = 0.0691 V

f) Lonxitude de onda de De Broglie $\lambda_d = 4,66 \cdot 10^{-9} \text{ m}$

Se escribe «2» á dereita de «f =», o aspecto da gráfica será:

be ebelibe "L" a a		,,	P = = = = = = = = = = = = = = = = = = =	iroa bera.	
GRÁFICAS					
Enerxía cinética	fronte a Frecuencia				
dos	electróns		dos	fotóns	
Frecuencia máx.		f =	2	·10¹⁵ Hz	

12

Desintegración radioactiva

- 1. O período de semidesintegración do 90/38 Sr é 28 anos. Calcula:
 - a) A constante de desintegración radioactiva expresada en s⁻¹.
 - b) A vida media do 90 Sr.
 - c) A actividade inicial dunha mostra de 6,25 mg.
 - d) A masa que queda desa mostra 100 anos máis tarde.
 - e) O tempo necesario para que se desintegre o 70 % dos átomos iniciais.

f) Representa nunha gráfica, de forma cualitativa, a variación da masa en función do tempo. Datos: $N_A = 6,022 \cdot 10^{23} \text{ mol}^{-1}$; masa atómica do $^{90}_{38}\text{Sr} = 90 \text{ g} \cdot \text{mol}^{-1}$.

Problema modelo baseado no A.B.A.U. ord. 17

 $A = -d N / d t = \lambda \cdot N$

Rta.: a) $\lambda = 7.8 \cdot 10^{-10} \text{ s}^{-1}$; b) $\tau = 40 \text{ anos}$; c) $A_0 = 3.28 \cdot 10^{10} \text{ Bq}$; d) m = 0.53 mg; e) t = 49 anos

Datos	Cifras significativas: 3
Período de semidesintegración	$T_{\frac{1}{2}} = 28,0 \text{ anos} = 8,84 \cdot 10^8 \text{ s}$
Masa da mostra	$m_0 = 6.25 \text{ mg} = 6.25 \cdot 10^{-3} \text{ g}$
Tempo para calcular a masa restante	$t = 100 \text{ anos} = 3,16 \cdot 10^9 \text{ s}$
Fracción de mostra desintegrada	f = 70,0 % = 0,700
Masa atómica do 90 Sr	$M = 90.0 \text{ g} \cdot \text{mol}^{-1}$
Número de Avogadro	$N_{\rm A}$ =6,022·10 ²³ mol ⁻¹
Incógnitas	
Vida media	au
Constante de desintegración radioactiva	λ
Actividade inicial dunha mostra de 6,25 mg.	$A_{ m o}$
Masa que queda desa mostra 100 anos máis tarde.	m
Tempo necesario para que a masa redúzase de 1 mg a 0,25 mg	t
Ecuacións	
T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$N = N_0 \cdot e^{-\lambda \cdot t}$
Lei da desintegración radioactiva	$\lambda = \ln (N_0 / N) / t$
Cando $t = T, N = N_0 / 2$	$T_{1/2} = \ln 2 / \lambda$
Vida media	$\tau = 1 / \lambda$

Solución:

Actividade radioactiva

a) Calcúlase a constante radioactiva a partir do período de semidesintegración:

$$\lambda = \frac{\ln 2}{T_{1/2}} = \frac{0.693}{8.84 \cdot 10^8 \, [s]} = 7.84 \cdot 10^{-10} \, \text{s}^{-1}$$

b) Calcúlase a vida media a partir da constante radioactiva:

$$\tau = \frac{1}{\lambda} = \frac{1}{7,84 \cdot 10^{-10} [s^{-1}]} = 1,27 \cdot 10^9 s = 40,4 \text{ anos}$$

c) Calcúlanse cantos átomos hai en 6,25 mg de Sr:

$$N = 6,25 \cdot 10^{-3} \text{ g} _{38}^{90} \text{Sr} \quad \frac{1 \text{ mol} _{38}^{90} \text{Sr}}{90,0 \text{ g} _{38}^{60} \text{Sr}} \quad \frac{6,022 \cdot 10^{23} \text{ átomos} _{38}^{90} \text{Sr}}{1 \text{ mol} _{38}^{90} \text{Sr}} \quad \frac{1 \text{ núcleo} _{38}^{90} \text{Sr}}{1 \text{ átomo} _{38}^{90} \text{Sr}} = 4,18 \cdot 10^{19} \text{ núcleos} _{38}^{90} \text{Sr}$$

Calcúlase a actividade radioactiva:

$$A = \lambda \cdot N = 7.84 \cdot 10^{-10} [s^{-1}] \cdot 4.18 \cdot 10^{19} [núcleos] = 3.28 \cdot 10^{10} Bq$$

d) Emprégase a lei de desintegración radioactiva para calcular a masa:

$$N = N_0 \cdot e^{-\lambda \cdot t}$$

Como a masa é proporcional á cantidade de núcleos, $m = M \cdot N / N_{A}$, pódese obter unha expresión similar á lei da desintegración radioactiva, na que aparece a masa en lugar da cantidade de átomos:

$$m\frac{N_{\overline{A}}}{M} = m_0 \frac{N_{\overline{A}}}{M} e^{-\lambda t}$$

Calcúlase a masa:

$$m=6,25 \,[\text{mg}] \cdot e^{-7,84 \cdot 10^{-10} \,[\text{s}^{-1}] \cdot 3,16 \cdot 10^{9} \,[\text{s}]} = 0,526 \,\text{mg}$$

e) Emprégase a ecuación da lei de desintegración radioactiva expresada en forma logarítmica, para calcular o tempo:

$$-\ln (N/N_0) = \ln (N_0/N) = \lambda \cdot t$$

Calcúlase o tempo, tendo en conta que queda o 30 %., ao desintegrarse o 70 %.

$$t = \frac{\ln(N_0/N)}{\lambda} = \frac{\ln(100 \text{ átomos}_{38}^{90} \text{Sr}/30 \text{ átomos}_{38}^{90} \text{Sr})}{7,84 \cdot 10^{-10} [\text{s}^{-1}]} = 1,8 \cdot 10^9 \text{ s} = 49 \text{ anos}$$

Análise: Posto que nese tempo a mostra reduciuse a un 30 %, pouco máis da cuarta parte = $(\frac{1}{2})^2$, transcorreron algo menos de 2 períodos de semidesintegración (56 anos), polo que 49 anos parece un resultado razoable.

f) A gráfica é unha función exponencial decrecente.

Pode obter as respostas na pestana «Desintegr» da folla de cálculo Fisica (gal). Instrucións.

LOG	e obter as respostas na pestana «De	billitegi" da 10	na ac carcare	Tibica (Sai).	mou uc.
	Período de semidesintegración	T =	28	anos	
	Masa inicial	$m_0 =$	6,25	mg	
	Desintégranse		70	%	
	Despois de	$\Delta t =$			
	Masa atómica	M =	90	g/mol	
	Tempo	<i>t</i> =	100		anos

Para obter os primeiros resultados faga clic na cela cor laranxa debaixo de «Constante» e elixa «Vida media». Faga clic na cela cor laranxa debaixo de « τ » e elixa «Bq»

a)		Constante	λ =	$7,84 \cdot 10^{-10} \text{ s}^{-1}$
b)		Vida media	τ =	1,27·10 ⁹ s
		Actividade <mark>Bq</mark>		
c)	Inicial	3,28·1010		
	Queda un 30%	9,84·10°	en	48,6 <mark>anos</mark>
	En 100 anos	$2,76 \cdot 10^9$		

Para os seguintes resultados, cambie «Bq» por «mg», e elixa «anos» na cela laranxa da dereita:

		Masa <mark>n</mark>	ng	
	Inicial	6,25		
e)	Queda un 30%	1,88	en	48,6 anos
d)	En 100 anos	0,526		

• Enerxía nuclear

- 1. O isótopo do boro $^{10}_5$ B é bombardeado por unha partícula α e prodúcese $^{13}_6$ C e outra partícula.
 - a) Escribe a reacción nuclear.
 - b) Calcula a enerxía liberada por núcleo de boro bombardeado.
 - c) Calcula a enerxía liberada s3 considérase 1 g de boro.
 - d) Calcula a enerxía de enlace nuclear do 63C.
 - e) Calcula a súa enerxía de enlace por nucleón.

Datos: masa atómica(${}_{5}^{10}$ B) = 10,0129 u; masa atómica(${}_{6}^{13}$ C) = 13,0034 u; masa(α) = 4,0026 u; masa(protón) = 1,0073 u; $c = 3 \cdot 10^8$ m/s; $N_{A=} 6,022 \cdot 10^{23}$ mol⁻¹; 1 u = 1,66 \cdot 10^{-27} kg. (Cos datos do P.A.U. sep. 16) **Rta.:** a) ${}_{5}^{10}$ B + ${}_{2}^{4}$ Hei $\rightarrow {}_{6}^{13}$ C + ${}_{1}^{1}$ H; b) $E = 7,17 \cdot 10^{-13}$ J/átomo; c) $E_{2} = 43,1$ GJ/g

Datos	Cifras significativas: 3			
Masa: boro-10	$m(^{10}_{5}B) = 10,0129 \text{ u}$			
carbono-13	$m(^{13}_{6}C) = 13,0034 \text{ u}$			
partícula α	$m(^{4}_{2}\text{He}) = 4,0026 \text{ u}$			
protón	$m({}_{1}^{1}H) = 1,0073 \text{ u}$			
Número de Avogadro	$N_{\rm A}$ = 6,022·10 ²³ mol ⁻¹			
Unidade de masa atómica	$1 \text{ u} = 1,66 \cdot 10^{-27} \text{ kg}$			
Velocidade da luz no baleiro	$c = 3,00 \cdot 10^8 \text{ m/s}$			
Incógnitas				
Enerxía liberada por núcleo de boro bombardeado	E			
Enerxía liberada / g de boro	E_{2}			
Outros símbolos				
Constante de desintegración radioactiva	λ			
Ecuacións				
Equivalencia masa enerxía de Einstein	$E = m \cdot c^2$			

Solución:

a) Escríbese a reacción nuclear aplicando os principios de conservación do número másico e da carga eléctrica nos procesos nucleares.

$${}_{5}^{10}B + {}_{2}^{4}He \longrightarrow {}_{6}^{13}C + {}_{1}^{1}H$$

b) Calcúlase o defecto de masa:

$$\Delta m = m(^{13}_{6}C) + m(^{14}_{1}H) - (m(^{10}_{5}B) - m(^{4}_{2}He)) = 13,0034 [u] + 1,0073 [u] - (10,0129 [u] + 4,0026 [u]) = -0,00480 u$$

$$\Delta m = -0,00480 u \cdot 1,66 \cdot 10^{-27} \text{ kg/u} = -7,97 \cdot 10^{-30} \text{ kg}$$

Calcúlase a enerxía equivalente segundo a ecuación de Einstein:

$$E = m \cdot c^2 = 7.97 \cdot 10^{-30} \text{ [kg]} \cdot (3.00 \cdot 10^8 \text{ [m/s]})^2 = 7.17 \cdot 10^{-13} \text{ J/átomo B}$$

c) Calcúlase a cantidade de átomos de boro que hai en 1 g de boro.

$$N=1,00 \text{ g B} \frac{1 \text{ mol B}}{10,012 \text{ 9g B}} \frac{6,022 \cdot 10^{23} \text{ átomos}}{1 \text{ mol}} = 6,01 \cdot 10^{22} \text{ átomos B}$$

Calcúlase a enerxía para 1 g de boro:

$$E_2 = 7,15 \cdot 10^{-13} \; \text{[J/átomo B]} \cdot 6,01 \cdot 10^{22} \; \text{[átomos B/g B]} = 4,31 \cdot 10^{10} \; \text{J} = 43,1 \; \text{GJ/g B}$$

d) O defecto de masa é a diferenza entre a masa do núcleo de $^{13}_{6}$ C e a suma das masas dos protóns e neutróns que o forman. O número de protóns é o número atómico, 6, e o de neutróns é 7, a diferenza entre o número másico 13 e o número de protóns 6.

$$\Delta m = m(_{6}^{13}C) - 6 \cdot m(_{1}^{1}H) - 7 \cdot m(_{0}^{1}n) = 13,0034 [u] - 6 \cdot 1,0073 [u] - 7 \cdot 1,008665 [u] = -0,101 u$$

$$\Delta m = -0,101 [u] \cdot \frac{1 [g]}{6,02 \times 10^{23} [u]} \cdot \frac{1 [kg]}{10^{3} [g]} = -1,68 \cdot 10^{-28} kg$$

A enerxía equivalente calcúlase coa ecuación de Einstein

$$E_e = m \cdot c^2 = 1,68 \cdot 10^{-28} \text{ [kg]} \cdot (3,00 \cdot 10^8 \text{ [m/s]})^2 = 1,51 \cdot 10^{-11} \text{ J/átomo}^{-13}\text{C}$$

e) A enerxía de enlace por nucleón calcúlase dividindo entre o número de nucleóns:

$$E_{\rm en} = \frac{1,51 \cdot 10^{-11} \left[\text{ J/átomo C} \right]}{13 \left[\text{nucleóns/átomo C} \right]} = 1,16 \cdot 10^{-12} \text{ J/nucleón}$$

Pode obter as respostas na pestana «EnerNuclear» da folla de cálculo Fisica (gal). Instrucións.

Carga	(e+)	Masa		
Partícula proxectil	2	4,0026	u	
Núclido diana	5	10,0129	u	
Núclido formado	6	13,0034	u	
Partícula emitida	1	1,0073	u	
2ª partícula emitida				
Masa da mostra		1	g	N. diana

Os resultados son:

$${}^{4}_{2}\text{He} + {}^{10}_{5}\text{B} \rightarrow {}^{13}_{6}\text{C} + {}^{1}_{1}\text{H}$$
Defecto de masa $\Delta m = -7,17\cdot10^{-13}$ J/átomo

Enerxía da mostra $E = 43,1$ GJ/g ${}^{10}_{5}\text{B}$

Para calcular a enerxía de enlace do carbono-13, hai que borrar todos os datos excepto o do carbono.

	Carga	(e+)	Masa	
Partícula proxectil				
Núclido diana				
Núclido formado		6	13,0034	u
Partícula emitida				
2ª partícula emitida				
Masa da mostra				
4. 4				

Los resultados son agora:

Enerxía de enlace $E_e = -1,51 \cdot 10^{-11}$ J/átomo

Se cambiamos agora «/átomo» por «/nucleón» obtemos:

Enerxía de enlace $E_e = -1,16 \cdot 10^{-12}$ J/nucleón

Cuestións e problemas das <u>Probas de avaliación de Bacharelato para o acceso á Universidade</u> (A.B.A.U. e P.A.U.) en Galiza.

Respostas e composición de Alfonso J. Barbadillo Marán.

Algúns cálculos fixéronse cunha folla de cálculo de LibreOffice do mesmo autor.

Algunhas ecuacións e as fórmulas orgánicas construíronse coa extensión CLC09 de Charles Lalanne-Cassou.

A tradución ao/desde o galego realizouse coa axuda de traducindote, e de o tradutor da CIXUG.

Procurouse seguir as recomendacións do Centro Español de Metrología (CEM).

Consultouse ao Copilot de Microsoft Edge e tivéronse en conta algunhas das súas respostas nas cuestións.

Actualizado: 07/10/24

Sumario

I	CICI	$\mathbf{C} \mathbf{A}$	DO	CE	α	Λ	$\mathbf{V}\mathbf{V}$

Efecto fotoeléctrico
1. Unha radiación monocromática que ten unha lonxitude de onda de 600 nm penetra nunha célula
fotoeléctrica de cátodo de cesio cuxo traballo de extracción é 3,2×10 ⁻¹⁹ J. Calcula:1
a) A lonxitude de onda limiar para o cesio
b) A enerxía cinética máxima dos electróns emitidos
c) A velocidade máxima coa que son emitidos os electróns
d) O potencial de freado
e) Representa graficamente a enerxía cinética máxima dos electróns emitidos en función da fre-
cuencia da luz incidente
f) A lonxitude de onda de De Broglie asociada aos electróns emitidos polo metal con velocidade
máxima
Desintegración radioactiva4
1. O período de semidesintegración do 30 Sr é 28 anos. Calcula:
a) A constante de desintegración radioactiva expresada en s ⁻¹
b) A vida media do ⁹⁰ Sr
c) A actividade inicial dunha mostra de 6,25 mg
d) A masa que queda desa mostra 100 anos máis tarde
e) O tempo necesario para que se desintegre o 70 % dos átomos iniciais
f) Representa nunha gráfica, de forma cualitativa, a variación da masa en función do tempo
Enerxía nuclear
1. O isótopo do boro 5ºB é bombardeado por unha partícula α e prodúcese 6ºC e outra partícula6
a) Escribe a reacción nuclear
b) Calcula a enerxía liberada por núcleo de boro bombardeado
c) Calcula a enerxía liberada si considérase 1 g de boro
d) Calcula a enerxía de enlace nuclear do 63C
e) Calcula a súa enerxía de enlace por nucleón