SINTEZA CIRCUITELOR LOGICE SECVENŢIALE SINCRONE

5.5. Sinteza circuitelor logice secvenţiale sincrone

- Circuitele logice secvenţiale sincrone trec dintr-o stare în alta la momente distincte de timp, determinate de impulsurile de tact (CLK)
- Între două impulsuri de tact starea circuitului nu se modifică!

5.5. Sinteza circuitelor logice secvenţiale sincrone

Schema bloc cu componentele principale ale CLS sincrone

- Variabilele de intrare sunt în general sincrone cu impulsul de tact, dar pot fi şi de tip asincron
- CL = circuit logic general care păstrează starea internă (variabilele de stare) → registru de stări
 - se poate implementa cu: bistabili RS, D, JK, T, registre, memorii; poate fi și un circuit logic secvențial cu buclă de reacție
- CLC 1 = determină funcțiile de excitație secundare (condiționările intrărilor), care în prezența tactului determină trecerea circuitului în altă stare → se poate numi generatorul stării noi
 - se pot realiza cu porți logice sau cu circuite logice combinaționale specializate (multiplexoare, decodificatoare...)
- CLC 2 = determină valorile ieșirilor circuitului
 - se pot realiza cu porți logice sau cu circuite logice combinaționale specializate (multiplexoare, decodificatoare...)

- 1. Expunerea condițiilor de funcționare (descrierea comportării circuitului)
- **2.** Codificarea stărilor
- **3.** Reducerea numărului de stări
- 4. Se decide modul de implementare a registrului de stări
- 5. Se determină funcțiile de excitație și funcțiile de ieșire
- 6. Se studiază problemele de hazard
- 7. Se desenează schema circuitului

- **1. Expunerea condițiilor de funcționare** (descrierea comportării circuitului)
 - Stabilirea modalității de definire a circuitului care trebuie sintetizat prin:
 - tabel de tranziții
 - graf de tranziţii
 - organigramă
 - forme de undă
 - Trebuie evidenţiate:
 - stările prin care trece circuitul
 - valorile variabilelor de intrare pentru care se schimbă stările
 - valorile rezultate ale variabilelor de ieşire
 - Evoluţia circuitului începe într-o stare iniţială şi de obicei se revine la această stare, după ultima stare a ciclului

- Descrierea funcționării prin organigramă
 - Elementele componente ale organigramei de funcționare a oricărui circuit secvențial sincron:
 - 1. Elementul de intrare (control sau decizie)
 - Variabile de intrare
 - Sincrone

Asincrone

- Descrierea funcționării prin organigramă
 - Elementele componente ale organigramei de funcționare a oricărui circuit secvențial sincron:
 - 2. Elementul de stare

$$\begin{array}{ccc}
& Q_2Q_1Q_0\\
& 000
\end{array}$$

• 3. Elementul de ieșire

- Descrierea funcționării prin organigramă
 - Configurații elementare

Tranziție simplă

Stare cu decizie

Stare cu ieșire

- Descrierea funcționării prin organigramă
 - Configurații elementare
 Stara au josire și decizie

Stare cu ieșire și decizie

Stare cu decizie și ieșire condiționată

- Descrierea funcționării prin organigramă
 - Configurații elementare
 Stări cu decizii multiple și ieșiri

- 2. Codificarea stărilor dificilă
 - Funcţionări defectuoase
 - La tranziții greșite între stări
 - Tranzițiile greșite între stări apar datorită prezenței variabilelor de intrare asincrone
 - Se elimină cel mai ușor prin sincronizarea variabilele de intrare cu semnalul de tact
 - Codificarea stărilor se stabileşte astfel încât, în orice stare, pentru toate combinațiile posibile de intrări asincrone, să nu fie mai mult decât o singură variabilă de stare dependentă de o variabilă de intrare asincronă ⇒ două stări rezultate din calea de ieşire a unei intrări asincrone vor avea codificare adiacentă
 - Semnale greșite care apar la circuitul de generare a variabilelor de ieșire
 - Ieşirile false pot să apară din cauză că la trecerea dintr-o stare în alta, variabilele de stare practic nu se modifică simultan
 - Pentru evitarea tranzițiilor false ale ieșirilor se pot folosi metodele:
 - Se realizează o codificare adiacentă a stărilor
 - Se forțează trecerea circuitului prin stări suplimentare
 - Se sincronizează variabilele de ieşire

3. Reducerea numărului de stări

 Se aplică metode de reducere a numărului de stări astfel încât să nu se modifice funcționarea circuitului

- 4. Se decide modul de implementare a registrului de stări interne
 - Se aleg tipurile de circuite folosite: bistabile, registre, numărătoare
- 5. Se determină funcțiile de excitație și funcțiile de ieșire
- 6. Se studiază problemele de hazard
 - Se urmăresc ieșirile false sau tranzițiile false
- 7. Se desenează schema circuitului

Condiţii impuse:

- 1. Orice tranziție între 2 stări ale circuitului se face întrun singur impuls de tact
- 2. La un moment dat circuitul se poate găsi într-o singură stare
- 3. Un circuit care se găseşte la un moment dat într-o stare dată, cu un set de intrări dat, poate avea o singură stare următoare

- Implementarea registrului de stări interne se realizează cu bistabile de tip D sau JK
- **Exemplu**: Să se recunoască secvența 101 în șirul de cifre binare 10101
- Reprezentăm funcționarea prin graf de tranziții
 - Graful de tranziții are în noduri stările circuitului
 - Pe arce avem tranziția dintr-o stare în alta pentru o anumită intrare, cu o anumită ieșire

- Notăm:
 - $\mathbf{x} = \text{intrare}$
 - $\mathbf{z} = \text{ieşire}$
- Avem 3 stări notate A, B, C \Rightarrow este nevoie de 2 variabile de stare pentru codificarea stărilor
- Alegem codificarea: A = 00, B = 01 și C = 11
- Reprezentăm funcționarea prin tabel de tranziții:

	S_{t}	S_{t+1} , z		
Q_1Q_0		x=0	x=1	
00	A	A,0	В,0	
01	В	C,0	B,0	
11	C	A,0	B,1	

- Implementarea registrului de stare cu bistabile D
 - Funcțiile de excitație (condiționările pentru intrările bistabilelor, D₁ și D₀) se deduc explicitând stările circuitului în momentul t și în momentul t+1
 - Stările se vor înlocui cu codurile lor (A=00, B=01, C=11)
 - Tabelul de excitație al bistabilului D ne dă valorile care trebuie aplicate pe intrările bistabilelor D, ca să se obțină ieșirile dorite

S_{t}	$S_{t+1} (Q_1 Q_0)^{t+1}$		Z	,
$(Q_1Q_0)^t$	$\mathbf{D_1}\mathbf{D_0}$	$D_1 D_0$		
	x=0	x=1	x=0	x=1
00 (A)	00 (A)	01 (B)	0	0
00 (A) 01 (B) 11 (C)	11 (C)	01 (B)	0	0
11 (C)	00 (A)	<mark>01</mark> (B)	0	1

- Implementarea registrului de stare cu bistabile D
 - Generatorul noii stări se realizează cu porți logice
 - Se fac DK pentru intrările D1 și D0 și se obține forma minimizată pentru funcții

1	Q_1Q_0	X	0	1
		00 01	0	0
		01	1	0
		11	0	0
		10	X	X

$$D_1 = \overline{Q}_1 \cdot Q_0 \cdot \overline{x}$$

 D_0 :

06.12.2019

Q_1Q_0	0	1
00	0	$\widehat{\mathbb{I}}$
00 01	\bigvee	$\overline{1}$
11	0	1
10	X	X

- Implementarea registrului de stare cu bistabile D
 - Ieșirea se implementează cu porți logice
 - Se face DK pentru ieşire şi se obţine forma minimizată

Z:

Q_1Q_0	0	1
00	0	0
00 01	0	0
11	0	
10	X	X

$$z = Q_1 \cdot x$$

- Implementarea registrului de stare cu bistabile D
 - Tranziții false:
 - La trecerea din starea C (11) în starea A (00) se poate trece prin starea B (01) (deoarece variabilele de stare nu se modifică simultan), ceea ce nu corespunde funcționării normale a circuitului
 - Pentru a rezolva această situație se poate introduce o stare suplimentară

- Implementarea registrului de stare cu bistabile D
 - Schema pentru circuitul logic secvenţial sincron se desenează făcând conexiuni de tip logic între semnale

- Implementarea registrului de stare cu bistabile JK
 - Tabelul de tranziții se completează ținând cont de tabelul de excitație pentru bistabilul JK

Q_t	Q_{t+1}	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

	S_{t}	S_{t+1} , z		
Q_1Q_0		x=0	x=1	
00	A	A,0	В,0	
01	В	C,0	В,0	
11	C	A,0	B,1	

S_{t}	$S_{t+1}(Q_1)$	$(Q_0)^{t+1}$,			Z	
Q_1Q_0			J_1K_1	$J_0 K_0$	${f J_1}{f K_1}$	$f{J}_0f{K}_0$		1
	x=0	x=1	X=	=0	X=	=1	x=0	x=1
00 (A)	00	01	0x	0 <mark>x</mark>	<mark>0x</mark>	1x	0	0
01 (B)	11	01	1x	x <mark>0</mark>	<mark>0x</mark>	x <mark>0</mark>	0	0
11 (C)	00	01	x 1	x <mark>1</mark>	x 1	\mathbf{x}_{0}	0	1

- Implementarea registrului de stare cu bistabile JK
 - Generatorul noii stări se realizează cu porți logice
 - Se fac DK şi se obţine forma minimizată pentru funcţii $J_{1:}$

$$\begin{array}{c|ccccc} Q_1Q_0 & x & 0 & 1 \\ \hline 00 & 0 & 0 \\ 01 & 1 & 0 \\ 11 & x & x \\ 10 & x & x \\ \end{array}$$

 $\mathbf{J}_1 = \mathbf{Q}_0 \cdot \overline{\mathbf{x}}$

 K_1 :

Q_1Q_0	0	1
00	X	X
00 01	/ X	x
11	1	1
10	X	X

$$K_1 = 1$$

Q_1Q_0	X	0	1	
	00 01	0	$\overline{1}$	
	01	X	X	
	11	X	X	
	10	X	X	

$$J_0 = x$$

$$K_0:$$

$$\mathbf{K}_0 = \mathbf{Q}_1 \cdot \overline{\mathbf{x}}$$

5.5.3 Sinteza CLS sincronegeneratorul noii stări

- Implementarea generatorului noii stări se poate realiza cu:
 - Porți logice (vezi exemplul anterior)
 - Multiplexoare
 - Decodificatoare
 - Memorii şi multiplexoare

5.5.3 Sinteza CLS sincrone – generatorul noii stări

Generatorul noii stări

- Multiplexoare
 - Funcțiile de excitație pentru intrările bistabilelor se scriu în forma canonică (fără a se minimiza)
 - Dacă x = vectorul intrărilor şi y = vectorul ieşirilor, schema bloc a unui sistem secvențial sincron devine:

5.5.3 Sinteza CLS sincrone – generatorul noii stări

Generatorul noii stări

- Decodificatoare
 - La intrarea decodificatorului se aplică variabilele de stare (Q)
 - La ieșire se obțin stările interne individualizate
 - Schema bloc a unui sistem secvențial sincron devine:

5.5.3 Sinteza CLS sincronegeneratorul noii stări

- Generatorul noii stări
 - Memorii şi multiplexoare
 - Se folosește la circuite complexe
 - Schema bloc a unui sistem secvențial sincron devine:

5.5.3 Sinteza CLS sincrone

ieşirile

Implementarea ieşirilor

- Se poate realiza cu:
 - Porți logice (vezi exemplul anterior)
 - Multiplexoare
 - Decodificatoare
 - Memorii
 - PLA-uri
 - Etc.