# 上机实验报告 2

姓名: 付伟 学号: 20190076

# 1. 主元的选取与算法的稳定性

### 1.1 问题描述

# 1.1.1 问题背景

Gauss 消去法是我们在线性代数中已经熟悉的。但由于计算机的数值运算是在一个有限的浮点数集合上进行的,如何才能确保 Gauss 消去法作为数值算法的稳定性呢? Gauss 消去法从理论算法到数值算法,其关键是主元的选择。主元的选择从数学理论上看起来平凡,它却是数值分析中十分典型的问题。

#### 1.1.2 问题描述

考虑线性方程组

$$Ax = b, A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n$$

编制一个能自动选取主元,又能手动选取主元的求解线性方程组的 Gauss 消去过程。要求如下:

1) 取矩阵
$$A = \begin{bmatrix} 6 & 1 \\ 8 & 6 & 1 \\ & \ddots & \ddots & \ddots \\ & & 8 & 6 & 1 \\ & & & 8 & 6 \end{bmatrix}, b = \begin{bmatrix} 7 \\ 15 \\ \vdots \\ 15 \\ 14 \end{bmatrix}$$
则方程有解 $x^* = (1,1,...,1)^T$ 。取

n=10计算矩阵的条件数。让程序自动选取主元(顺序消元),结果如何?

- 2) 现选择程序中手动选取主元的功能。每步消去过程总选取按模最小或按模尽可能小的元素作为主元,观察并记录计算结果。若每步消去过程总选取按模最大的元素作为主元,结果又如何?分析实验的结果。
- 3) 取矩阵阶数n = 20或者更大,重复上述实验过程,观察记录并分析不同的问题 及消去过程中选择不同的主元时计算结果的差异,说明主元素的选取在消去过程中的 作用。

#### 1.2 方案设计

根据要求,分别编写顺序高斯消元、按模最大列主元消元、按模最小列主元消元。高斯消元法主要包含两个步骤,简单描述如下:

1) 顺序消元 (k = 1, 2, ..., n - 1)

$$\begin{cases} m_{ik} = a_{ik}^{(k)}/a_{kk}^{(k)}, i = k+1, \dots, n \\ a_{ij}^{(k+1)} = a_{ij}^k - m_{ik}a_{kj}^{(k)}, i, j = k+1, \dots, n \\ b_i^{(k+1)} = b_i^{(k)} - m_{ik}b_k^{(k)}, i = k+1, \dots, n \end{cases}$$

2) 回代

$$\begin{cases} x_n = b_n^{(n)}/a_{nn}^{(n)}, \\ x_i = \left(b_i^{(i)} - \sum_{j=i+1}^n a_{ij}^{(i)} x_j\right)/a_{ii}^{(i)} \end{cases}$$

当主元素很小时,会导致其他元素数量级的严重增长和舍入误差的扩散,主元的 选取会对计算结果产生比较大的影响。为保持数值稳定性,在消元过程中,往往使用 每一列按模最大的元素作为主元,即对矩阵进行初等行交换,使得主元的绝对值在每一列为最大。

# 1.3 问题求解

### 1.3.1 程序说明

gauss.m 文件可用于高斯消元法计算线性方程组的解,输入参数 mode 为 0 时为顺序消元,为 1 时采用列主元消元,为 2 时采用列最小不为零作为主元消元。

### 1.3.2 计算结果

1) 该三对角矩阵的条件数(二范数下)为: 2557.5 得到顺序消元的解为

| 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10     |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 1.0000 | 0.9999 | 1.0000 | 0.9999 | 1.0000 |
| 00000  | 00000  | 00000  | 00000  | 99999  | 00000  | 99999  | 00000  | 99999  | 00000  |
| 00000  | 00000  | 00000  | 00000  | 99999  | 00000  | 99999  | 00001  | 99997  | 00003  |
| 00     | 00     | 00     | 00     | 80     | 00     | 30     | 00     | 90     | 00     |

顺序消元得到的解和准确解的误差如下图所示

#### 2) 按模最小得到的解如下表

| 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10     |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 1.0000 | 0.9999 | 1.0000 | 0.9999 | 1.0000 |
| 00000  | 00000  | 00000  | 00000  | 99999  | 00000  | 99999  | 00000  | 99999  | 00000  |
| 00000  | 00000  | 00000  | 00000  | 99999  | 00000  | 99999  | 00001  | 99997  | 00003  |
| 00     | 00     | 00     | 00     | 80     | 00     | 30     | 00     | 90     | 00     |

#### 按模最大的解如下表

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|---|---|---|---|---|---|---|---|---|----|
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  |

它们与标准解的误差如下图所示



3) 将 n 增大为 20 后,矩阵条件数变为 2621437.5,消元计算的结果如下图所示



可以看到,若选取模最小的元素作为主元,计算后几个解的误差会迅速变大,且随着n的增大,误差也在增大。这是由于若选取模最小的元素作为主元,除数过小会导致因子变大,出现"大数吃小数"的情况,积累舍入误差。

# 2. 线性代数方程组的性态与条件数的估计

### 2.1 问题描述

# 2.1.1 问题背景

理论上,线性代数方程组Ax = b的摄动满足

$$\frac{\|\Delta x\|}{\|x\|} \le \frac{cond(A)}{1 - \|A^{-1}\| \|\Delta A\|} \left( \frac{\|\Delta A\|}{\|A\|} + \frac{\|\Delta b\|}{\|b\|} \right)$$

矩阵的条件数确实是对矩阵病态性的刻画,但在实际应用中直接计算它显然不现实,因为计算 $\|A^{-1}\|$ 通常要比求解方程Ax = b还困难。

# 2.1.2 问题描述

MATLAB 中提供有函数 "condest"可以用来估计矩阵的条件数,它给出的是按 1-范数的条件数。首先构造非奇异矩阵 A 和右端,使得方程是可以精确求解的。再人 为地引进系数矩阵和右端的摄动 $\Delta A$ 和 $\Delta b$ ,使得 $\|\Delta A\|$ 和 $\|\Delta b\|$ 克分小。问题要求:

- 1)假设方程 Ax=b 的解为 x,求解方程 $(A+\Delta A)\hat{x}=b+\Delta b$ ,以 1-范数,给出  $\frac{\|\Delta x\|}{\|x\|}=\frac{\|\hat{x}-x\|}{\|x\|}$ 的计算结果。
- 2)选择一系列维数递增的矩阵(可以是随机生成的),比较函数 "condest"所需机器时间的差别.考虑若干逆是已知的矩阵,借助函数 "eig"很容易给出 cond2(A)的数值。将它与函数 "cond(A,2)" 所得到的结果进行比较。
- 3)利用 "condest" 给出矩阵 A 条件数的估计,针对(1)中的结果给出的 $\frac{\|\Delta x\|}{\|x\|}$ 理论估计,并将它与 1)给出的计算结果进行比较,分析所得结果。
  - 4) 估计著名的 Hilbert 矩阵的条件数。

$$H = (h_{i,j})_{n \times n}, \quad h_{i,j} = \frac{1}{i+j-1}, \quad i, j = 1, 2, \dots, n$$

#### 2.2 方案设计

综合运用以下函数可以得到结果:

zeros(m,n) 生成m行,n列的零矩阵

ones(m,n) 生成 m 行, n 列的元素全为 1 的矩阵

eye(n) 生成 n 阶单位矩阵

rand(m,n) 生成 m 行,n 列(0,1)上均匀分布的随机矩阵

diag(x) 返回由向量 x 的元素构成的对角矩阵

tril(A) 提取矩阵 A 的下三角部分生成下三角矩阵

triu(A) 提取矩阵 A 的上三角部分生成上三角矩阵

rank(A) 返回矩阵 A 的秩

det(A) 返回方阵 A 的行列式

inv(A) 返回可逆方阵 A 的逆矩阵

[V, D]=eig(A) 返回方阵 A 的特征值和特征向量

norm(A,p) 矩阵或向量的 p 范数

cond(A,p) 矩阵的条件数

Hi=hilb(n) 生成 n 阶 Hilbert 矩阵

对于 1), 选取实验 5.1 中的三对角阵, 加上 rand 函数生成的微小扰动, 采用\命令直接求解方程:

对于 2) ,矩阵的谱条件数为

$$cond(A)_2 = \frac{|\lambda_1|}{|\lambda_n|}$$

使用 eig 函数可以方便地计算谱条件数,并比较;

对于3),由于

$$cond(A) = ||A|| ||A^{-1}||$$

如果知道了||A||和条件数的估计,可以方便的给出误差上界;对于 4),使用 hilb 和 cond 函数可以简单求解条件数。

### 2.3 问题求解

#### 2.3.1 程序说明

main.m 的第二节即为计算实验 5.2 的代码。

# 2.3.2 计算结果

- 1)扰动量级为 1e-6 时,计算得到的 $\frac{\|\Delta x\|}{\|x\|}$ 为 7.05709741157690e-05.
- 2) 不同维数的矩阵 condest 函数所需机器时间的变化情况如下图所示:



eig 和 cond 函数计算的谱条件数之差如下图所示:



可以看到除了少数几个差别较大的点,两种方法计算出的谱条件数可以认为一致。

- 3)根据公式计算的到理论值为 0.00130535796854885,大于实际的误差 7.05709741157690e-05. 即证明了误差估计公式给出的是上限。
  - 4) Hilbert 矩阵的条件数随维数的变化如下图所示:



得到的1范数条件数如下表:

| 1 | 2    | 3     | 4       | 5        | 6          | 7           | 8              |
|---|------|-------|---------|----------|------------|-------------|----------------|
| 1 | 27.0 | 748.0 | 28375.0 | 943655.9 | 29070279.0 | 985194886.4 | 33872788903.95 |

可以看到,矩阵增加 1 维,条件数增加几个量级,说明 Hilbert 矩阵病态非常严重。

# 3. 病态的线性方程组的求解

### 3.1 问题描述

### 3.1.1 问题背景

理论的分析表明,求解病态的线性方程组是困难的。实际情况是否如此,会出现 怎样的现象呢?考虑方程组 Hx=b 的求解,其中系数矩阵 H 为 Hilbert 矩阵,

$$H = (h_{i,j})_{n \times n}, \quad h_{i,j} = \frac{1}{i+j-1}, \quad i, j = 1, 2, \dots, n$$

这是一个著名的病态问题。通过首先给定解(例如取为各个分量均为 1)再计算出右端 b 的办法给出确定的问题。

# 3.1.2 问题描述

- 1)选择问题的维数为 6,分别用 Gauss 消去法、列主元 Gauss 消去法、J 迭代法、GS 迭代法和 SOR 迭代法求解方程组,其各自的结果如何?将计算结果与问题的解比较,结论如何?
- 2)逐步增大问题的维数(至少到 100),仍然用上述的方法来解它们,计算的结果如何?计算的结果说明了什么?
  - 3) 讨论病态问题求解的算法。

### 3.2 方案设计

不同的迭代法的迭代公式分量形式如下:

1) jacobi 迭代

$$x_i^{(k+1)} = \left(b_i - \sum_{j=1, j \neq i}^n a_{ij} x_j^{(k)}\right) / a_{ii}, i = 1, 2 \dots, n$$

2) G-S 迭代

$$x_i^{(k+1)} = \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)}\right) / a_{ii}, i = 1, 2 \dots, n$$

3) SOR 迭代

$$x_i^{(k+1)} = x_i^{(k)} + \omega \left( b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i}^{n} a_{ij} x_j^{(k)} \right) / a_{ii}, i = 1, 2 \dots, n$$

#### 3.3 计算结果

# 3.3.1 程序文件

Jacobi.m 文件可用 Jacobi 迭代法计算线性方程组的解,输入参数为:矩阵 A, b, 计算精度 eps,最大迭代次数 iter;

GS.m 文件可用 G-S 迭代法计算线性方程组的解,输入参数为:矩阵 A,b,计算精度 eps,最大迭代次数 iter;

SOR.m 文件可用 SOR 迭代法计算线性方程组的解,输入参数为:矩阵 A, b, 计算精度 eps, 最大迭代次数 iter, 因子 omega。

# 3.3.2 计算结果

1) 矩阵维数为6时,解为(精确解为(1,1,1,1,1,1)<sup>T</sup>)

# Gauss 消元法:

| 1           | 2          | 3           | 4          | 5           | 6          |
|-------------|------------|-------------|------------|-------------|------------|
| 0.999999999 | 1.00000000 | 0.999999999 | 1.00000000 | 0.999999999 | 1.00000000 |
| 999228      | 002194     | 851792      | 038537     | 574584      | 016768     |

# 列主元 Gauss 消元法:

| 1           | 2          | 3           | 4          | 5           | 6          |
|-------------|------------|-------------|------------|-------------|------------|
| 0.999999999 | 1.00000000 | 0.999999999 | 1.00000000 | 0.999999999 | 1.00000000 |
| 999072      | 002670     | 818267      | 047487     | 473962      | 020787     |

J 迭代法  $(\rho(J) = 4.3085 > 1)$  不收敛;

# GS 迭代法(控制循环条件为 1e-7):

| 1           | 2          | 3           | 4          | 5          | 6           |
|-------------|------------|-------------|------------|------------|-------------|
| 0.999763387 | 1.00352761 | 0.989290774 | 1.00483501 | 1.01296417 | 0.989445522 |
| 886533      | 381646     | 029354      | 489063     | 844645     | 508985      |

# SOR 迭代法(控制循环条件为 1e-7, omega 取 1.5):

| 1           | 2          | 3           | 4           | 5          | 6           |
|-------------|------------|-------------|-------------|------------|-------------|
| 0.999830928 | 1.00227417 | 0.994884825 | 0.995503532 | 1.01901249 | 0.988351769 |
| 771665      | 231049     | 312781      | 761870      | 905378     | 307922      |

和精确解的比较如下图所示:



2) 将维数增加到 20 维后,不同解法和精确解的误差如下图所示:



可以看到,迭代法解与精确解的偏差更小,而高斯消元法得到的偏差很大。结果 说明 Hilbert 矩阵阶数较低时适合使用高斯消元法,阶数较高时适合使用迭代法求解。

# 3) 病态矩阵的解法

可以使用以下几种方法求解病态矩阵

a. 迭代改善法。直接法得到的解只是近似解,可以考虑采用迭代法对解进行改善。设 $x_1$ 是Ax = b的一个近似解, $r_1 = b - Ax_1$ 是 $x_1$ 对应的余量,求解 $Ad_1 = r_1$ 得到  $d_1$ ,然后 $x_2 = x_1 + d_1$ 。重复这个过程,得到近似解的序列 $\{x_k\}$ 。然而,当矩阵 A 过分病态时, $\{x_k\}$ 有可能不收敛于精确解。

#### b. 加权迭代改善法

对于矩阵过分病态的情况,如 Hilbert 矩阵,可采用主元加权迭代改善算法。对于方程组Ax = b,构造一个迭代过程:

$$(A + \alpha I)x^{(k+1)} = b + \alpha x^{(k)}$$

对于任意初始解 $x_0$ ,用 $x_1$ 表示第一次计算出的解,则

$$(A + \alpha I)x^{(2)} = b + \alpha x^{(1)}$$

$$(A + \alpha I)x^{(1)} + (A + \alpha I)e^{(1)} = b + \alpha x^{(1)}$$

即

$$(A + \alpha I)e^{(1)} = b - Ax^{(1)}$$

求解得到 $e_1$ 。重复这个过程,得到近似解的序列 $\{x_k\}$ 。

- c. 共轭梯度法是解决大型、稀疏、正定对称的线性方程组的有效方法。在矩阵的条件数很大时仍然能得到较好的结果。如果先采用预处理降低矩阵条件数,再用共轭梯度法求解,效果往往更好。
  - d. 遗传算法将矩阵求解问题转化为优化问题, 然后用遗传算法求解。

# 4. 二维泊松方程的求解

### 4.1 问题描述

书上 P211 计算实习题 2, 其中 n=100, 第二小问改为用 Jacobi 迭代、G-S 迭代、 红黑排序的 G-S 迭代求解, 并比较他们之间的收敛速度; 进一步, 用 BSOR 迭代求解, 试找出最优松弛因子。

# 4.2 方案设计

#### 1) 建立方程

该问题为二维 Poisson 方程求解问题,可以使用五点公式建立线性方程组求解。根据查分方程可以得到:

$$4u_{ij} - u_{i+1,j} - u_{i-1,j} - u_{i,j+1} - u_{i,j-1} = h^2 f_{ij}$$

该问题和例 10 区别在于边值不为零,如果 $(x_i,y_j) \in \partial \Omega$ ,可以通过在方程Ax = b的右端项添加边界点的取值,即可转化为边值为零的情况(A 矩阵不变)。

2) 迭代求解

### 4.3 问题求解

#### 4.3.1 程序说明

main.m 文件中 6.1 节即为求解二维泊松方程的代码。首先根据网格点之间的关系 定义矩阵,对于边界点修改右端项,之后便可化为线性方程组求解。

GS.m 文件中输入 mode 参数为 1 时,即为红黑排序法求解。

# 4.3.2 计算结果

1) 不同方法计算结果对比(n=100), 其中 UInf 定义为:

$$U_{inf} = \|\hat{u} - u\|_{inf}$$





不同方法收敛速度对比,纵坐标为逐次迭代间偏差下降速度,定义为

$$\frac{\left\|x^{(k+1)}-x^{(k)}\right\|}{\|x^{(k)}\|}$$

画出图像如下图所示



可以看到,四种方法得到的 Uinf 几乎一致,但是 BSOR 方法收敛得更快。

# 2) 寻找最优松弛因子

可以画出矩阵 A 进行 SOR 迭代时迭代矩阵 $L_{\omega}$ 的谱半径随 $\omega$ 的变化关系如下图所示,得到最优的迭代因子大约为 1.57.

