BÀI 12. THIẾT KẾ MẠCH CỘNG ĐẦY ĐỦ VÀ MẠCH CHỌN KỆNH

1. Muc tiêu

- Sinh viên biết cách thiết kế mạch cộng đầy đủ và mạch chọn kênh từ các cổng logic cơ bản.
- Sinh viên có khả năng thực hành lắp mạch cộng đầy đủ và mạch chọn kênh trên nền tảng TinkerCAD.

2. Hướng dẫn thực hành

2.1. Mạch cộng đầy đủ

Mạch cộng đầy đủ ($full\ adder\ -FA$) là một mạch tổ hợp được sử dụng để cộng hai toán hạng ở đầu vào (operand) – số nhị phân, có tính đến bit nhớ vào ($carry\ input$) để tạo ra kết quả là một tổng (sum) và một bit nhớ ra ($carry\ output$).

Hình 1 trình bày mạch cộng đầy đủ và bảng thật với:

- 3 đầu vào 1-bit: **A**, **B**, **Cin**

- 2 đầu ra 1-bit: **S, Cout**

Hình 1: Mạch cộng đầy đủ 1-bit và bảng thật.

• Dựa vào bảng thật và thực hiện một vài biến đổi đại số Boolean đơn giản để thu được hàm Boolean của hai đầu ra S và Cout theo các đầu vào A, B, Cin:

$$S = A \oplus B \oplus C$$
 $Cout = A.B + (Cin.(A \oplus B))$

• Từ các hàm Boolean S và Cout, mạch cộng đầy đủ 1-bit có thể được thiết kế từ các cổng logic XOR, AND, và OR như Hình 2.

Hình 2: Thực hiện mạch cộng đầy đủ 1-bit dùng cổng logic AND, XOR, OR.

• Áp dụng mạch cộng đầy đủ 1-bit có thể phát triển được mạch cộng đầy đủ n-bit, tức là mạch thực hiện phép cộng 2 toán hạng n-bit (A_{n-1}...A₁A₀, B_{n-1}...B₁B₀) có tính đến bit nhớ vào (Cin), như minh họa ở Hình 3. Cụ thể, bắt đầu từ mạch cộng đầy đủ 1-bit của 2 LSB (A₀ và B₀), nối bit nhớ ra Cout của mạch cộng này với Cin của mạch cộng tiếp theo. Thực hiện vậy cho đến mạch cộng đẩy đủ 1-bit của 2 MSB (A_{n-1} và B_{n-1}).

Hình 3: Mạch cộng đầy đủ n-bit.

Ví dụ thiết kế: Mạch cộng đầy đủ 1-bit

- Đăng nhập vào nền tảng TinkerCAD (https://www.tinkercad.com/login), Circuits →
 Create new circuits và lấy các linh kiện cần sử dụng theo sơ đồ ở Hình 2, gồm:
 - Nguồn (Pin 9V và LM7805)
 - Breadboard
 - Điện trở $(10k\Omega, 330\Omega)$
 - LED
 - Công tắc (DIP switch)
 - 74HC86 (XOR), 74HC32 (OR), 74HC08 (AND).

Hình 4: Các linh kiện cần thiết cho mạch cộng đầy đủ 1-bit

• Lắp đặt các linh kiện theo sơ đồ ở Hình 2, bấm **Start Simulation** để mô phỏng hoạt động của mạch và quan sát kết quả thu được và đối chiếu với bảng thật:

Hình 5: Lắp mạch và thực hiện mô phỏng mạch cộng đầy đủ 1-bit

2.2. Mạch chọn kênh

Mạch chọn kênh (multiplexer - MUX) là một mạch tổ hợp có nhiều đầu vào (input), một đầu ra (output), và một hoặc nhiều tín hiệu lựa chọn (selection). Chức năng của mạch chọn kênh là ở một thời điểm sẽ thực hiện việc **chọn giá trị ở một đầu vào** và chuyển giá trị đó ra đầu ra, tùy thuộc vào trạng thái của tín hiệu lựa chọn. Nếu mạch chọn kênh có 2^n đầu vào thì được gọi là mạch chọn kênh 2^n -to-1, và cần n tín hiệu lựa chọn.

Hình 6 trình bày mạch chọn kênh 2-to-1 và bảng thật với:

- 2 đầu vào 1-bit: **A**, **B**
- 1 đầu ra 1-bit: **Y**
- 1 tín hiệu lựa chọn 1-bit: S

Hình 6: Mạch chọn kênh 2-to-1 và bảng thật.

- Dựa vào bảng thật có thể thu được hàm Boolean của đầu ra Y theo đầu vào A, B, và S:
 - $Y = \overline{S}.A + S.B$
- Từ hàm Boolean Y, mạch chọn kênh với 2-to-1 với đầu vào 1-bit có thể được thiết kế từ các cổng logic AND, NOT, và OR như Hình 7.

Hình 7: Thực hiện mạch chọn kênh 2-to-1, đầu vào 1-bit.

• Áp dụng mạch chọn kênh 2-to-1 với đầu vào 1-bit có thể phát triển được mạch chọn kênh 2^n -to-1 với đầu vào 1-bit hoặc đầu vào m-bit. Hình 8 trình bày ví dụ thiết kế mạch chọn kênh 2-to-1, với đầu vào 2-bit (A_1A_0 và B_1B_0) và đầu ra 2-bit Y_1Y_0 . $Y_1Y_0 = A_1A_0$ hoặc $Y_1Y_0 = B_1B_0$ tùy thuộc vào giá trị của tín hiệu lựa chọn 1-bit S.

Hình 8: Thực hiện mạch chọn kênh 2-to-1, đầu vào 2-bit.

Ví dụ thiết kế: Mạch chọn kênh 2-to-1 với đầu vào 1-bit

Lấy các linh kiện và lắp mạch theo sơ đồ ở Hình 7, gồm:

- Nguồn (Pin 9V và LM7805)
- Breadboard
- Điện trở $(10k\Omega, 330\Omega)$
- LED
- Công tắc (DIP switch)
- 74HC04 (NOT), 74HC32 (OR), 74HC08 (AND).

Hình 9: Các linh kiện cần thiết cho mạch chọn kênh 2-to-1, đầu vào 1-bit

• Quan sát kết quả thu được và đối chiếu với bảng thật:

Hình 10: Lắp mạch và thực hiện mô phỏng mạch chọn kênh 2-to-1, đầu vào 1-bit

3. Bài thực hành tự làm

Bài 1. Thiết kế lại mạch cộng đầy đủ 1-bit và mạch chọn kênh 2-to-1 với đầu vào 1-bit. Sau đó, thực hành lắp mạch trên *breadboard* (TinkerCAD).

Yêu cầu:

- Mạch cộng chỉ dùng IC 74HC00 (NAND), IC 74HC32 (OR), IC 74HC86 (XOR).
- Mạch chọn kênh chỉ sử dụng IC 74HC08 (AND), IC 74HC04 (NOT), IC 74HC32 (OR).
- Dùng LED để hiển thị các trạng thái đầu vào/ra của mạch.

Bài 2. Thiết kế mạch cộng đầy đủ 2-bit và mạch chọn kênh 2-to-1 với đầu vào 2-bit. Sau đó, thực hành lắp mạch trên *breadboard* (TinkerCAD).

Yêu cầu:

- Mạch cộng chỉ dùng IC 74HC00 (NAND), IC 74HC32 (OR), IC 74HC86 (XOR).
- Mạch chọn kênh chỉ sử dụng IC 74HC08 (AND), IC 74HC04 (NOT), IC 74HC32 (OR).
- Dùng LED để hiển thị các trạng thái đầu vào/ra của mạch.
- **Bài 3.** Sử dụng mạch cộng đầy đủ 2-bit và mạch chọn kênh 2-to-1 với đầu vào 2-bit được thiết kế ở trên để thiết kế mạch tổ hợp có khả năng thực hiện các phép tính sau: 3A; 3B; 2A+B; A+2B. Sau đó, thực hành lắp mạch trên *breadboard* (TinkerCAD).

Yêu cầu:

- Có thể dùng tùy ý các IC 74HC00/04/08/32/86.
- Dùng LED để hiển thị các trạng thái đầu vào/ra của mạch.

Gợi ý: Mỗi khối logic có thể được lắp trên 1 mini breadboard sau đó nối dây giữa các khối.