Initial Question:

Predicting Gorkha Earthquake Damage

Final Question:

Predicting the predefined level of damage to the buildings caused by the 2015 Gorkha Earthquake in Nepal based on geographic location and construction so that, Nepal Government can take appropriate measures for housing reconstruction

Problem Description:

We're trying to predict the ordinal variable damage_grade, which represents a level of damage to the building that was hit by the earthquake.

There are 3 grades of the damage:

- 1. represents low damage
- 2. represents a medium amount of damage
- 3. represents almost complete destruction

```
In [ ]: # Importing libraries

import numpy as np
import pandas as pd
from pathlib import Path
import matplotlib.pyplot as plt
import seaborn as sns
```

Reading the Data

```
In [8]: DATA_DIR = Path('C://Users/ManojKumar Chalamala/Desktop/Capstone')
In [9]: train_values = pd.read_csv(DATA_DIR / 'train_values.csv', index_col='building_id')
    train_labels = pd.read_csv(DATA_DIR / 'train_labels.csv', index_col='building_id')
```

Examine the Data

```
In [10]: train values.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 260601 entries, 802906 to 747594
         Data columns (total 38 columns):
         geo level 1 id
                                                    260601 non-null int64
         geo level 2 id
                                                    260601 non-null int64
         geo level 3 id
                                                    260601 non-null int64
         count floors pre eq
                                                    260601 non-null int64
                                                    260601 non-null int64
         age
         area_percentage
                                                    260601 non-null int64
         height percentage
                                                    260601 non-null int64
         land surface condition
                                                    260601 non-null object
         foundation type
                                                    260601 non-null object
         roof type
                                                    260601 non-null object
         ground floor type
                                                    260601 non-null object
         other_floor_type
                                                    260601 non-null object
         position
                                                    260601 non-null object
         plan configuration
                                                    260601 non-null object
         has superstructure adobe mud
                                                    260601 non-null int64
         has_superstructure_mud_mortar_stone
                                                    260601 non-null int64
         has superstructure stone flag
                                                    260601 non-null int64
         has_superstructure_cement_mortar_stone
                                                    260601 non-null int64
         has_superstructure_mud_mortar_brick
                                                    260601 non-null int64
         has superstructure cement mortar brick
                                                    260601 non-null int64
         has superstructure timber
                                                    260601 non-null int64
                                                    260601 non-null int64
         has superstructure bamboo
         has superstructure rc non engineered
                                                    260601 non-null int64
         has_superstructure_rc_engineered
                                                    260601 non-null int64
         has superstructure other
                                                    260601 non-null int64
                                                    260601 non-null object
         legal ownership status
         count families
                                                    260601 non-null int64
         has_secondary_use
                                                    260601 non-null int64
         has secondary use agriculture
                                                    260601 non-null int64
         has_secondary_use_hotel
                                                    260601 non-null int64
         has_secondary_use_rental
                                                    260601 non-null int64
         has secondary use institution
                                                    260601 non-null int64
         has secondary use school
                                                    260601 non-null int64
         has_secondary_use_industry
                                                    260601 non-null int64
         has_secondary_use_health_post
                                                    260601 non-null int64
         has_secondary_use_gov_office
                                                    260601 non-null int64
         has_secondary_use_use_police
                                                    260601 non-null int64
         has secondary use other
                                                    260601 non-null int64
         dtypes: int64(30), object(8)
         memory usage: 77.5+ MB
In [20]:
         train labels.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 260601 entries, 802906 to 747594
         Data columns (total 1 columns):
         damage grade
                          260601 non-null int64
         dtypes: int64(1)
```

memory usage: 4.0 MB

```
In [19]: train_values.shape
Out[19]: (260601, 38)
In [21]: train_labels.shape
Out[21]: (260601, 1)
```

Top and Bottom of the Data

```
In [22]:
           train_values.head()
Out[22]:
                        geo_level_1_id geo_level_2_id geo_level_3_id count_floors_pre_eq age area_perce
            building_id
                802906
                                    6
                                                 487
                                                              12198
                                                                                      2
                                                                                           30
                 28830
                                    8
                                                 900
                                                               2812
                                                                                      2
                                                                                           10
                94947
                                                               8973
                                   21
                                                 363
                                                                                      2
                                                                                           10
                590882
                                   22
                                                 418
                                                              10694
                                                                                      2
                                                                                           10
                201944
                                                 131
                                                               1488
                                                                                          30
                                   11
                                                                                      3
           5 rows × 38 columns
In [23]:
           train_labels.head()
Out[23]:
                        damage_grade
            building_id
                802906
                                    3
                 28830
                                    2
                94947
                                    3
```

```
In [24]: | train_values.tail()
Out[24]:
                        geo_level_1_id geo_level_2_id geo_level_3_id count_floors_pre_eq age area_perce
            building_id
               688636
                                   25
                                                1335
                                                               1621
                                                                                      1
                                                                                          55
               669485
                                   17
                                                 715
                                                               2060
                                                                                      2
                                                                                           0
               602512
                                   17
                                                              8163
                                                                                      3
                                                 51
                                                                                          55
               151409
                                   26
                                                  39
                                                               1851
                                                                                      2
                                                                                          10
                                                              9101
               747594
                                   21
                                                   9
                                                                                      3
                                                                                          10
           5 rows × 38 columns
In [25]:
           train_labels.tail()
Out[25]:
                        damage_grade
            building_id
                                   2
               688636
               669485
                                   3
               602512
                                   3
```

Explore the Data

In [26]:	train_	_values.descr	ues.describe()				
Out[26]:							
	-	geo_level_1_id	geo_level_2_id	geo_level_3_id	count_floors_pre_eq	age	area_
	count	260601.000000	260601.000000	260601.000000	260601.000000	260601.000000	2606
	mean	13.900353	701.074685	6257.876148	2.129723	26.535029	
	std	8.033617	412.710734	3646.369645	0.727665	73.565937	
	min	0.000000	0.000000	0.000000	1.000000	0.000000	
	25%	7.000000	350.000000	3073.000000	2.000000	10.000000	
	50%	12.000000	702.000000	6270.000000	2.000000	15.000000	
	75%	21.000000	1050.000000	9412.000000	2.000000	30.000000	
	max	30.000000	1427.000000	12567.000000	9.000000	995.000000	
	8 rows	× 30 columns					

Out[62]:

	count	mean	std	min	25%	50%	75
geo_level_1_id	260601	13.9004	8.03362	0	7	12	2
geo_level_2_id	260601	701.075	412.711	0	350	702	105
geo_level_3_id	260601	6257.88	3646.37	0	3073	6270	941
count_floors_pre_eq	260601	2.12972	0.727665	1	2	2	
age	260601	26.535	73.5659	0	10	15	3
area_percentage	260601	8.01805	4.39223	1	5	7	
height_percentage	260601	5.43437	1.91842	2	4	5	
has_superstructure_adobe_mud	260601	0.0886451	0.284231	0	0	0	
has_superstructure_mud_mortar_stone	260601	0.761935	0.4259	0	1	1	
has_superstructure_stone_flag	260601	0.0343322	0.182081	0	0	0	
has_superstructure_cement_mortar_stone	260601	0.0182348	0.1338	0	0	0	
has_superstructure_mud_mortar_brick	260601	0.068154	0.25201	0	0	0	
has_superstructure_cement_mortar_brick	260601	0.0752683	0.263824	0	0	0	
has_superstructure_timber	260601	0.254988	0.435855	0	0	0	
has_superstructure_bamboo	260601	0.0850112	0.278899	0	0	0	
has_superstructure_rc_non_engineered	260601	0.04259	0.201931	0	0	0	
has_superstructure_rc_engineered	260601	0.0158595	0.124932	0	0	0	
has_superstructure_other	260601	0.0149846	0.121491	0	0	0	
count_families	260601	0.983949	0.418389	0	1	1	
has_secondary_use	260601	0.11188	0.315219	0	0	0	
has_secondary_use_agriculture	260601	0.0643781	0.245426	0	0	0	
has_secondary_use_hotel	260601	0.0336261	0.180265	0	0	0	
has_secondary_use_rental	260601	0.00810051	0.0896377	0	0	0	
has_secondary_use_institution	260601	0.000940135	0.0306473	0	0	0	
has_secondary_use_school	260601	0.000360705	0.0189888	0	0	0	
has_secondary_use_industry	260601	0.0010706	0.0327026	0	0	0	
has_secondary_use_health_post	260601	0.000188027	0.013711	0	0	0	
has_secondary_use_gov_office	260601	0.000145817	0.0120746	0	0	0	
has_secondary_use_use_police	260601	8.82575e-05	0.00939415	0	0	0	
has_secondary_use_other	260601	0.00511894	0.0713635	0	0	0	
4							•

```
In [60]: # checking the types of varibles in the dataset(int,float,object)
dtypes=pd.DataFrame(train_values.dtypes,columns=["Data Type"])
dtypes["Unique Values"]=train_values.nunique()
dtypes["Null Values"]=train_values.isnull().sum()
dtypes.style.background_gradient(cmap='Set2',axis=0)
```

Out[60]:

	Data Type	Unique Values	Null Values
geo_level_1_id	int64	31	0
geo_level_2_id	int64	1414	0
geo_level_3_id	int64	11595	0
count_floors_pre_eq	int64	9	0
age	int64	42	0
area_percentage	int64	84	0
height_percentage	int64	27	0
land_surface_condition	object	3	0
foundation_type	object	5	0
roof_type	object	3	0
ground_floor_type	object	5	0
other_floor_type	object	4	0
position	object	4	0
plan_configuration	object	10	0
has_superstructure_adobe_mud	int64	2	0
has_superstructure_mud_mortar_stone	int64	2	0
has_superstructure_stone_flag	int64	2	0
has_superstructure_cement_mortar_stone	int64	2	0
has_superstructure_mud_mortar_brick	int64	2	0
has_superstructure_cement_mortar_brick	int64	2	0
has_superstructure_timber	int64	2	0
has_superstructure_bamboo	int64	2	0
has_superstructure_rc_non_engineered	int64	2	0
has_superstructure_rc_engineered	int64	2	0
has_superstructure_other	int64	2	0
legal_ownership_status	object	4	0
count_families	int64	10	0
has_secondary_use	int64	2	0
has_secondary_use_agriculture	int64	2	0
has_secondary_use_hotel	int64	2	0
has_secondary_use_rental	int64	2	0
has_secondary_use_institution	int64	2	0
has_secondary_use_school	int64	2	0
has_secondary_use_industry	int64	2	0
has_secondary_use_health_post	int64	2	0

9/23/2020 Capstone Project

		Data Type	Unique Values	Null Values
	has_secondary_use_gov_office	int64	2	0
	has_secondary_use_use_police	int64	2	0
	has_secondary_use_other	int64	2	0
In [40]:	<pre>damage_level = train_labels['damage damage_level.unique()</pre>	ge_grade']	
Out[40]:	array([3, 2, 1], dtype=int64)			
In [41]:	damage_level.value_counts()			
Out[41]:	2 148259 3 87218 1 25124 Name: damage_grade, dtype: int64			

```
In [42]: train values.isna().any()
Out[42]: geo_level_1_id
                                                     False
         geo level 2 id
                                                     False
         geo_level_3_id
                                                     False
         count_floors_pre_eq
                                                     False
                                                     False
         area_percentage
                                                     False
         height percentage
                                                     False
         land surface condition
                                                     False
         foundation_type
                                                     False
         roof type
                                                     False
         ground floor type
                                                     False
         other_floor_type
                                                     False
         position
                                                     False
         plan configuration
                                                     False
         has_superstructure_adobe_mud
                                                     False
         has_superstructure_mud_mortar_stone
                                                     False
         has superstructure stone flag
                                                     False
         has superstructure cement mortar stone
                                                     False
         has_superstructure_mud_mortar_brick
                                                     False
         has superstructure cement mortar brick
                                                     False
         has_superstructure_timber
                                                     False
         has_superstructure_bamboo
                                                     False
         has superstructure rc non engineered
                                                     False
         has superstructure rc engineered
                                                     False
         has_superstructure_other
                                                     False
         legal ownership status
                                                     False
         count_families
                                                     False
         has_secondary_use
                                                     False
         has secondary use agriculture
                                                     False
         has secondary use hotel
                                                     False
         has_secondary_use_rental
                                                     False
         has secondary use institution
                                                     False
         has_secondary_use_school
                                                     False
         has_secondary_use_industry
                                                     False
         has secondary use health post
                                                     False
         has secondary use gov office
                                                     False
         has_secondary_use_use_police
                                                     False
         has_secondary_use_other
                                                     False
         dtype: bool
```

Visualize the Data

9/23/2020 Capstone Project

```
In [44]: sns.countplot(train_labels['damage_grade'])
Out[44]: <matplotlib.axes._subplots.AxesSubplot at 0x225dff1f4c8>

140000
100000
100000
40000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
200
```

The majority of buildings almost 50% of buildings are falling under damage_grade level 2 represents medium level of damage

damage grade

Visualize if age of building is affecting the damage

```
In [58]: sns.countplot(x = train_values["age"], hue = train_labels["damage_grade"])

Out[58]: <matplotlib.axes._subplots.AxesSubplot at 0x225e8aea7c8>

damage_grade

1
20000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
15000
```

Visualize if no. of floors of a building affecting the level of damage

9/23/2020 Capstone Project

Majority of the buildings are falling under 0 to 50 years Most of the buildings has medium level of damage. So despite the age of building the level of damage is almost medium

```
In [59]: sns.countplot(x = train_values["count_floors_pre_eq"], hue = train_labels["dam
age_grade"])
```

Out[59]: <matplotlib.axes._subplots.AxesSubplot at 0x225edccd348>

In []: Majority of the buildings are falling under 1 to 3 floors
 Most of the buildings has medium level of damage. So despite the floor count t
 he level of damage is almost medium

```
In [57]: sns.boxplot(x = train_labels['damage_grade'], y = train_values['age'])
    sns.boxplot(x = train_labels['damage_grade'], y = train_values['count_floors_p re_eq'])
    sns.boxplot(x = train_labels['damage_grade'], y = train_values['area_percentag e'])
    sns.boxplot(x = train_labels['damage_grade'], y = train_values['height_percent age'])
```

Out[57]: <matplotlib.axes._subplots.AxesSubplot at 0x225e8a25888>

