

PiMS, xtalPiMS and beyond: proteins, crystals and data

Chris Morris
STFC Daresbury Laboratory...

...and the PIMS development team

Outline of talk

What is information management?

PiMS concepts

Use of PiMS for real projects

xtalPiMS for crystallization

Getting information to the synchrotron

What is information management?

- The process of storing experimental information for later retrieval
 - Storage medium can be human memory, paper, electronic files or relational databases
 - Quality assurance (QA) experiments are typically repetitive, research experiments are constantly changing
 - Purpose of retrieval could be supporting the next experiment, providing reports, publishing papers or depositing public data
 - Automated systems may require electronic information management

Research laboratory processes

- Full projects (solving a protein structure?)
 - Long workflow with many decision points
 - No two projects are identical
 - Comprise different experimental steps...
- Routine experiments (purification, QA?)
 - Performed the same way for several projects
- High-throughput experiments (cloning?)
 - Routine experiments using robots
 - Tracking of samples is paramount
- One-off experiments (functional assays?)
 - Unique to a particular project

Systems for managing information

- Paper-based records
 - Well suited to independent research
 - Long-term archive for independent researcher
- Electronic Laboratory Notebooks (ELNs)
 - Electronic version of paper systems
 - Can be shared remotely
- Laboratory Information Management Systems (LIMS)
 - Based on a relational database
 - Requires a model for laboratory processes
 - Snapshot of current state of laboratory

Benefits of LIMS

Standardization

- Use of controlled vocabulary and standards
- Comparing different experiments
- Depositing data in standardized form
- Distributed and collaborative processes
 - Information can be accessed anywhere
 - Different people record into same store
- Miniaturized processes
 - Labelling of samples becomes impossible
- Automated and high-throughput processes
 - Handling layouts in plates etc.

Potential problems with LIMS

IT overhead

 Shared data should be on backed-up server – use a web-based service

Data loss

Hardware failure or data corruption – hardware failures manageable

Data integrity

- Data need to be entered properly or LIMS can default to being ELN
- Recording data takes time for no immediate benefit – easy input essential
- Unrecorded data are lost and incomplete data may break data "chain"

What is PiMS?

- Protein Information Management System
 - Collaborative academic effort to produce a general free-to-use fully featured LIMS
- PiMS needs to support anyone & everyone
 - Data for complex ever-changing workflows
 - Data need to be recorded in standardized ways
 - Many labs have similar processes
 - Most have some unique processes
- PiMS needs to be very easy to use
 - Schema reflects workflow: specific to one site, specific to one workflow, hard to modify
 - Schema generalizes samples and processes: flexible but potentially hard to use

Technologies used in PiMS

- PiMS is a web application
 - Client is Mozilla Firefox or Internet Explorer
 - No client software to install (perhaps plugins)
 - Windows, Macintosh and Linux clients
- PiMS requires a server or two
 - Web server uses Apache Tomcat
 - Database server uses PostgreSQL or Oracle
 - Windows and Linux servers
 - Managed public PiMS server hosted at RAL
- Technologies used by developers
 - Java1.5, Hibernate, JUnit, BioJava, dot, batik, AJAX, ...

PIMS uses simple key concepts

Complexes & Targets

- Descriptions of proteins and complexes
- Can contain bioinformatics annotations

Constructs

- Starting point for real experiments
- Describes actual sequences

(Typed) Samples

- Tracked samples made & used by experiments
- Samples have types, owners, locations etc.

Experiments & Protocols

- Consume (input) and produce (output) samples
- Protocols are user-defined reusable templates

How it all links together

Experiments + Samples = Workflows

Basic protocols used at OPPF

The PiMS (v3.1) home page

Standardized PiMS pages

Navigating through your PiMS data: interactive diagrams

Example of a complex workflow

Experiments can read/write data

Simple reports of how samples are made

Graphical interface for plate experiments

The xtalPiMS home page

Moving along the pipeline: linking to X-ray data collection

Changing ways of using synchrotrons

- Rapid data collection means more samples
- Expert users collect data for many projects
- Increasing use of remote access
- Ever more automation which needs data

Can PiMS and xtalPiMS help?

- Easy report of sample details from PiMS
- xtalPiMS can mark crystal for data collection
- Need simple project planning tool in xtalPiMS
- In situ diffraction screening plan for xtalPiMS
- eHTPX-style message model to get data to ISPyB etc.

Acknowledgments

The PiMS project people

- Kim Henrick, Dave Stuart, Keith Wilson, Colin Nave, Neil Isaacs, Jim Naismith, Richard Blake
- Chris Morris
- Ed Daniel, Alain Da Souza, Jon Diprose, Susy Griffiths, Bill Lin, Anne Pajon, Katya Pilicheva, Marc Savitsky, Petr Troshin, Jo van Niekerk

xtalPiMS (and Vault) people

- Ian Berry, Chris Mayo
- PiMS and xtalPiMS users in Oxford
 - Ben Bishop and Christian Siebold