Spring 2022

For this discussion, Note 1 is helpful for background in transistors and RC circuits.

1. NAND Circuit

Let us consider a NAND logic gate. This circuit implements the boolean function $\overline{(A \cdot B)}$. The · stands for the AND operation, and the stands for NOT; combining them, we get NAND!

Figure 1: NAND gate transistor-level implementation.

 V_{tn} and V_{tp} are the threshold voltages for the NMOS and PMOS transistors, respectively. Assume that $V_{DD} > V_{tn}, |V_{tp}| > 0.$

- (a) Label the gate, source, and drain nodes for the NMOS and PMOS transistors above.
- (b) If $V_A = V_{DD}$ and $V_B = V_{DD}$, which transistors act like open switches? Which transistors act like closed switches? What is V_{out} ?
- (c) If $V_A = 0V$ and $V_B = V_{DD}$, what is V_{out} ?

- (d) If $V_A = V_{DD}$ and $V_B = 0V$, what is V_{out} ?
- (e) If $V_A = 0V$ and $V_B = 0V$, what is V_{out} ?
- (f) Write out the truth table for this circuit.

V_A	V_B	$V_{ m out}$
0	0	
0	V_{DD}	
V_{DD}	0	
V_{DD}	V_{DD}	

2. RC Circuits - Part I

In this problem, we will find the voltage across a capacitor over time in an RC circuit. We set up our problem by first defining four functions over time: I(t) is the current at time t, V(t) is the voltage across the circuit at time t, $V_R(t)$ is the voltage across the resistor at time t, and $V_C(t)$ is the voltage across the capacitor at time t.

Recall from 16A that the voltage across a resistor is defined as $V_R = RI_R$ where I_R is the current across the resistor, and the voltage across a capacitor is defined as $V_C = \frac{Q}{C}$ where Q is the charge across the capacitor.

Figure 2: Example Circuit

(a) Starting from the given charge-voltage relation for a capacitor, find an equation that relates the current across the capacitor I(t) with the voltage across the capacitor $V_C(t)$.

(b) Analyzing the circuit, write an equation that relates the functions I(t), $V_C(t)$, and V(t).

(c) So far, we have an equation that involves both I(t) and $V_C(t)$. To solve this equation, we can remove I(t) (one of the unknowns) using what we found in part 2.a. Rewrite the previous equation in part 2.b in the form of a differential equation. You will pick up with this in the next discussion.

Contributors:

- Neelesh Ramachandran.
- Kumar Krishna Agrawal.
- Lev Tauz.
- Varun Mishra.
- Regina Eckert.