Mémoire structurée, logique de séparation

1 IMP avec tas.

La syntaxe des commandes de IMP avec tas est définie par la grammaire

$$c := x := a \mid \text{skip} \mid c_1 ; c_2 \mid \text{if } b \text{ then } c_1 \text{ else } c_2 \mid \text{while } b \text{ do } c$$

$$x := [a] \mid [x_1] := a \mid x := \text{alloc}(k) \mid \text{free}(a).$$

Les expressions arithmétiques et booléennes restent inchangées.

Ces quatre nouvelles constructions correspondent respectivement à

- ▷ l'accès à une case mémoire;
- ▷ la modification d'une valeur d'une case mémoire;
- \triangleright l'allocation de k cases mémoires;
- ▷ la libération de cases mémoires.

Remarque 1. C'est un langage impératif de bas niveau : on manipule de la mémoire directement. On ne s'autorise pas tout, cependant. On ne s'autorise pas, par exemple,

$$[x+i+1] := [t+i] + [t+i-1],$$

mais on demande d'écrire

$$x := [t+i]$$
 ; $y := [t+i-1]$; $[x+i+1] := x+y.$

On raffine IMP : avant, les cases vivaient quelque part, mais on ne sait pas où, ce sont des registres; maintenant, peut aussi allouer des « blocs » de mémoire, et on peut donc parler de cases mémoires adjacentes.

L'allocation alloc est *dynamique*, similaire à malloc en C, où l'on alloue de la mémoire dans l'espace mémoire appelé *tas*.

1.1 Sémantique opérationnelle.

Définition 1 (États mémoire). Un état mémoire est la donnée de

- $\triangleright \sigma$ un registre, c-à-d un dictionnaire sur (V, \mathbb{Z}) ;
- \triangleright h un tas, c-à-d un dictionnaire sur (\mathbb{N}, \mathbb{Z}) , c'est un gros tableau. 1

On définit $h[k_1 \mapsto k_2]$ que si $k_1 \in \text{dom}(h)$ et alors il vaut le dictionnaire où l'on assigne k_2 à k_1 .

On définit $h_1 \uplus h_2$ que si $dom(h_1) \cap dom(h_2) = \emptyset$ et vaut l'union de dictionnaires h_1 et h_2 .

On définit ainsi la sémantique dénotationnelle comme la relation \Downarrow est une relation quinaire (*i.e.* avec 5 éléments) notée $c, \sigma, h \Downarrow \sigma', h'$ où c est une commande, h, h' sont deux tas, et σ, σ' sont deux registres.

$$\sigma' = \sigma[x \mapsto k] \ \frac{a, \sigma \Downarrow k}{x := a, \sigma, h \Downarrow \sigma', h} \ \frac{c_1, \sigma, h \Downarrow \sigma', h' \quad c_2, \sigma', h' \Downarrow \sigma'', h''}{c_1 \ ; \ c_2, \sigma, h \Downarrow \sigma'', h''} \\ \frac{k' = h(k)}{x := [a], \sigma, h \Downarrow \sigma'h} \ \frac{a, \sigma \Downarrow k}{x := [a], \sigma, h \Downarrow \sigma'h} \ \frac{h' = h[k_1 \mapsto k_2]^2}{[a_1] := a_2, \sigma, h \Downarrow \sigma, h'} \\ \frac{\{k', \dots, k' + k - 1\} \cap \operatorname{dom}(h) = \emptyset}{k' = h \uplus \{k' \mapsto 0, \dots, k' + k - 1 \mapsto 0\}} \\ \frac{k' = h[k_1 \mapsto k_2]^2}{x := \operatorname{alloc}(k), \sigma, h \Downarrow \sigma', h'} \\ \frac{a, \sigma \Downarrow k}{\operatorname{free}(a), \sigma, h \Downarrow \sigma, h'}.$$

^{1.} On appelle parfois IMP avec tas, IMP avec tableau.

2 Logique de séparation.

Définition 2. On définit les assertions dans IMP avec tas comme l'enrichissement des assertions IMP avec les constructions emp, \mapsto et *:

$$A ::= \cdots \mid \text{emp} \mid a_1 \mapsto a_2 \mid A_1 * A_2.$$

On enrichit ainsi la relation de satisfaction:

- $\triangleright \sigma, h \models \text{emp si et seulement si } h = \emptyset;$
- $\triangleright \sigma, h \models a_1 \rightarrow a_2$ si et seulement si $a_1, \sigma \downarrow k_1$, et $a_2, \sigma \downarrow k_2$ et $h = [k_1 = k_2]$ (le tas est un singleton);
- $\triangleright \sigma, h \models A_1 * A_2$ si et seulement si $h = h_1 \uplus h_2$ avec $\sigma, h_1 \models A_1$ et $\sigma, h_2 \models A_2$.

L'opérateur * est appelé *conjonction séparante* : on découpe le tas en deux, chaque partie étant « observée » par une sous-assertion.

Note 1 (Notations). \triangleright On note $a \mapsto _$ pour $\exists i, a \mapsto i$.

- \triangleright On note $a_1 \hookrightarrow a_2$ pour $(a_1 \mapsto a_2) * true$.
- \triangleright On note $a \mapsto (a_1, \ldots, a_n)$ pour

$$(a \mapsto a_1) * (a+1 \mapsto a_2) * \cdots * (a+n-1 \mapsto a_n).$$

 \triangleright On note [A] pour $A \land emp$.

Ces notations signifient respectivement:

- \triangleright La première formule dit qu'une case mémoire est allouée en a (ou plutôt que si a s'évalue en k, alors il y a une case mémoire allouée en k).
- \triangleright La seconde formule dit que la case mémoire a_1 est allouée, et contient a_2 quelque part dans le tas.
- \triangleright La troisième formule dit que les n cases mémoires suivant a contiennent respectivement a_1 , puis a_2 , etc.

 \triangleright La quatrième formule permet de ne pas parler du tas. Intuitivement A « observe » uniquement la composante σ et alors A est une formule de la logique de Hoare.

2.1 Triplets de Hoare pour la logique de séparation.

On rappelle que $\{A\}\{A'\}$ est définir avec A, A' closes. La validité d'un triplet de Hoare en logique de séparation est défini par $\models \{A\}c\{A'\}$ si et seulement si dès que $\sigma, h \models A$ et $c, \sigma, h \downarrow \sigma', h'$ alors $\sigma', h' \models A'$.

Parmi les règles d'inférences pour la logique de séparation, il y a la « frame rule » ou « règle d'encadrement » :

Elle permet de zoomer, et de ce concentrer sur un comportent local.

Les règles suivantes définissent une logique sur les commandes de IMP avec tas.