

高新華大学

Came T&A

Brief Introduction to Binary Relations

(课上不讲,有兴趣者,可课后自行扩展阅读)

<u>Definition</u>: Let A and B be sets. A <u>binary relation</u> from A to B is a subset of A×B.

Ex: Let A be the set of all cities in the world and B be the set of the 50 states in USA. Define $R = \{(a, b) \mid \text{city "a" is in state "b"}\}$.

Then (Charlottesville, Virginia), and (New York, New York) \in R. (Charlottesville, Utah) \notin R.

Note:

Notation: $(a, b) \in R \implies a R b$

Visualization: set; 0-1 matrix; directed graph; ...

() ()

了福多月多大学

Game T&A

Relations on (or over) a Set

• Terminology: Let A be a set. Instead of calling a relation "a binary relation from A to A" we instead say that R is a "relation on (or over) A".

Ex: Let $A = \{1, 2, 3, 4\}$ and define $R = \{(a, b) \mid a \text{ divides } b\}$.

Then $R = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)\}.$

Ex: If A is a finite set with |A| = n, how many different relations are there on A? (including the empty relation ϕ)

Since a relation on A is simply a subset of $A \times A$, then we are really asking "how many subsets are there of $A \times A$ " or $|Power(A \times A)|$?

Well, $|A \times A| = n * n = n^2$, so $|Power(A \times A)| = 2^{|A \times A|} = 2^{n^2}$.

(1)

Game T&A

Properties of Relations on a Set

<u>Def</u>: A relation R on a set A is called <u>reflexive</u> if $(a, a) \in R$ for every element $a \in A$.

Ex: Let $A = \{1, 2, 3, 4\}$ and define $R = \{(a, b) \mid a \text{ divides } b\}$.

We saw that R was reflexive since every number divides itself.

In fact we could let $A = Z^+$ and define R the same way!

Ex: The empty relation is only reflexive when $A = \phi$.

Ex: How many reflexive relations are there on a finite set A?

We are forced to include all pairs of the form (a,a). This leaves n(n-1) pairs which may or may not be in a reflexive relation. So there are $2^{n(n-1)}$ reflexive relations on a set of size n.

17年大

Game T&A

Properties of Relations on a Set

<u>Def</u>: A relation R on a set A is called <u>symmetric</u> if $(b, a) \in R$ whenever $(a, b) \in R$.

Ex: Let $A = \{1, 2, 3, 4\}$ and define $R = \{(a, b) \mid a \text{ divides } b\}$.

R is not symmetric. For example, $(1, 2) \in R$ but $(2, 1) \notin R$.

 \underline{Ex} : Let A = {w, x, y, z} and R = {(w, x), (x, w), (y, y), (y, z), (z, y)} This relation is symmetric.

 \underline{Ex} : The empty relation is always symmetric regardless of A.

(1)

Game T&A

Properties of Relations on a Set

<u>Def</u>: A relation R on a set A is called <u>antisymmetric</u> if whenever $(b, a) \in R$ and $(a, b) \in R$ then a = b.

Ex: $A = \{1, 2, 3, 4\}, R = \{(a, b) \mid a \text{ divides b}\}.$ R is antisymmetric.

Ex: $A = \mathbb{Z}, R = \{(a, b) \mid a \text{ divides } b\}.$

R is not antisymmetric: 1 divides -1 and -1 divides 1 but $1 \neq -1$.

Note: antisymmetry and symmetry are not opposites. It is possible for a relation to possess

- · both properties (such as the empty relation),
- neither property (such as {(1, 2), (2, 1), (1, 3)} over {1, 2, 3}),
- · either one of the properties but not the other.

т

Game T&A

Properties of Relations on a Set

<u>Def</u>: A relation R on a set A is called <u>irreflexive</u> if for every $a \in A$, $(a, a) \notin R$, i.e., no element is related to itself.

Ex: $A = \{1, 2, 3, 4\}, R = \{(a, b) \mid a \text{ divides b}\}. R \text{ not irreflexive.}$

Ex: $A = \mathbb{Z}, R = \{(a, b) \mid a > b\}$. R is irreflexive.

Note: irreflexivity and reflexivity are not opposites. It is possible for a relation to possess neither property.

However, it is not possible for a relation to possess both properties (unless the relation is on the empty set).

<u>Def</u>: A relation R on a set A is called <u>asymmetric</u> if it is both antisymmetric and irreflexive. That is, the relation can not have both (a, b) and (b, a) even if a = b.

Fx: A = {1.2}							
$\underline{\mathbf{Ex}} : \mathbf{A} = \{1,2\}.$							
Relation	Property	Reflex	Irref	Symm	Anti	Asym	Trans
{}			Х	Х	Х	Х	Х
{(1, 1)}				Х	Х		Х
{(1, 2)}			Х		Х	Х	Х
{(2, 1)}			Х		Х	Х	Х
{(2, 2)}				Х	Х		Х
{(1, 1), (1, 2)}					Х		Х
{(1, 1), (2, 1)}					Х		Х
{(1, 1), (2, 2)}		Х		Х	Х		Х
{(1, 2), (2, 1)}			Х	Х			
{(1, 2), (2, 2)}					Х		Х
{(2, 1), (2, 2)}					Х		Х
{(1, 1), (1, 2), (2, 1))}			Х			
{(1, 1), (1, 2), (2, 2))}	Х			Х		Х
{(1, 1), (2, 1), (2, 2))}	Х			Х		Х
{(1, 2), (2, 1), (2, 2))}			Х			
{(1, 1), (1, 2), (2, 1)), (2, 2)}	Х		Х			Х
•							D

Rationalized: Proof

Assume that C is a choice function with a domain containing at least all subsets of X of size 2 or 3. If C satisfies condition α , then there is a preference \succeq on X so that $C = C_{\succeq}$.

Proof:

Define \succeq by $x \succeq y$ if $x = C(\{x, y\})$.

Let us first verify that the relation \succeq is a preference relation.

Completeness: Follows from the fact that $C(\{x,y\})$ is always well defined.

Transitivity: If $x \succsim y$ and $y \succsim z$, then $C(\{x,y\}) = x$ and $C(\{y,z\}) = y$. If $C(\{x,z\}) \neq x$ then $C(\{x,z\}) = z$. By condition α and $C(\{x,z\}) = z$, $C(\{x,y,z\}) \neq x$. By condition α and $C(\{x,y\}) = x$, $C(\{x,y,z\}) \neq y$, and by condition α and $C(\{y,z\}) = y$, $C(\{x,y,z\}) \neq z$. A contradiction to $C(\{x,y,z\}) \in \{x,y,z\}$.

We still have to show that $C(B) = C_{\succeq}(B)$. Assume that C(B) = x and $C_{\succeq}(B) \neq x$. That is, there is $y \in B$ so that $y \succ x$. By definition of \succeq , this means $C(\{x,y\}) = y$, contradicting condition α .

Extension: Choice correspondence

- A choice correspondence C is required to assign to every nonempty A ⊆ X a nonempty subset of A, that is, Ø ≠ C(A) ⊆ A.
- The revised interpretation of C(A) is the *set* of all elements in A that are satisfactory in the sense that if the decision maker is about to make a decision and choose $a \in C(A)$, he has no desire to move away from it. ("internal equilibrium")

Given a preference relation \succsim we define the induced choice correspondence as (assuming it is never empty)

$$C_{\succsim}(A) = \{x \in A \mid x \succsim y \text{ for all } y \in A\}$$

Claim

If \succeq is a preference relation on a finite set X, then \succeq has a utility representation with values being natural numbers.

Proof

We will construct a sequence of sets inductively. Let X_1 be the subset of elements that are minimal in X. By the above lemma, X_1 is not empty. Assume we have constructed the sets X_1, \ldots, X_k . If $X = X_1 \cup X_2 \cup \ldots \cup X_k$ we are done. If not, define X_{k+1} to be the set of minimal elements in $X - X_1 - X_2 - \cdots - X_k$. By the lemma $X_{k+1} \neq \emptyset$. Since X is finite we must be done after at most |X| steps. Define U(x) = k if $x \in X_k$. Thus, U(x) is the step number at which x is "eliminated." To verify that U represents \succeq , let $a \succeq b$. Then $a \notin X_1 \cup X_2 \cup \cdots \setminus X_{U(b)}$ and thus U(a) > U(b). If $a \sim b$ then clearly U(a) = U(b).

Utility function: X is countable

- Claim: If *X* is countable, then any preference relation on *X* has a utility representation with a range [0, 1].
- Proof

Next page: another claim and proof

Utility function: X is countable

- Claim: If *X* is countable, then any preference relation on *X* has a utility representation with a range [-1, 1].
- Proof(自学)

Let $\{x_n\}$ be an enumeration of all elements in X. We will construct the utility function inductively. Set $U(x_1) = 0$. Assume that you have completed the definition of the values $U(x_1), \dots, U(x_{n-1})$ so that $x_k \gtrsim x_l$ iff $U(x_k) \geq U(x_l)$. If x_n is indifferent to x_k for some k < n, then assign $U(x_n) = U(x_k)$. If not, by transitivity, all numbers in the non-empty set $\{U(x_k) | x_k \prec x_n\} \cup \{-1\}$ are below all numbers in the non-empty set $\{U(x_k) | x_n \prec x_k\} \cup \{1\}$. Choose $U(x_n)$ to be between the two sets. This guarantees that for any k < n we have $x_n \succsim x_k$ iff $U(x_n) \geq U(x_k)$. Thus, the function we defined on $\{x_1, \dots, x_n\}$ represents the preference on those elements.

To complete the proof that U represents \succeq , take any two elements, x and $y \in X$. For some k and l we have $x = x_k$ and $y = x_l$. The above applied to $n = \max\{k, l\}$ yields $x_k \succsim x_l$ iff $U(x_k) \ge U(x_l)$.

• Claim: (counterexample - Lexicographic Preferences)

The lexicographic preference relation \succsim_L on $[0,1] \times [0,1]$, induced from the relations $x \succsim_k y$ if $x_k \ge y_k$ (k=1,2), does not have a utility representation.

Proof

Assume by contradiction that the function $u: X \to \Re$ represents \succsim_L . For any $a \in [0,1]$, $(a,1) \succ_L (a,0)$ we thus have u(a,1) > u(a,0). Let q(a) be a rational number in the nonempty interval $I_a = (u(a,0), u(a,1))$. The function q is a function from [0,1] into the set of rational numbers. It is a one-to-one function since if b > a then $(b,0) \succ_L (a,1)$ and therefore $u(b,0) \succ u(a,1)$. It follows that the intervals I_a and I_b are disjoint and thus $q(a) \neq q(b)$. But the cardinality of the rational numbers is lower than that of the continuum, a contradiction.

latter case define $x_{t+1} = x_t$ and $y_{t+1} = m$. The sequences $\{x_t\}$ and $\{y_t\}$

are converging, and they must converge to the same point z since the

distance between x_t and y_t converges to zero. By the continuity of \succeq

we have $z \succeq x$ and $y \succeq z$ and thus, by transitivity, $y \succeq x$, contradicting

the assumption that $x \succ y$

A weaker condition for the Lemma

• Comments on the proof

subset of Rⁿ : convex → connected

Another proof could be given for the more general case, in which the assumption that the set X is convex is replaced by the weaker assumption that it is a connected subset of \Re^n . (Remember that a connected set cannot be covered by two non empty disjoint open sets.) If there is no z such that $x \succ z \succ y$, then X is the union of two disjoint sets $\{a|a \succ y\}$ and $\{a|x \succ a\}$, which are open by the continuity of the preference relation, contradicting the connectedness of X.

(1) (2)

We say that the set Y is dense in X if every open set $B \subset X$ contains an element in Y. Any set $X \subseteq \Re^m$ has a countable dense subset. To see this note that the standard topology in \Re^m has a countable base. That is, any open set is the union of subset of the countable collection of open sets: $\{B(a,1/n)|$ all the components of $a \in \Re^m$ are rational numbers; n is a natural number $\}$. For every set B(q,1/n) that intersects X, pick a point $y_{q,n} \in X \cap B(q,1/n)$. Let Y be the set containing all the points $\{y_{q,n}\}$. This is a countable dense set in X.

Denote by Y a countable dense set in X. By a previous claim we know that there exists a function $v:Y\to (-1,1)$, which is a utility representation of the preference relation \succsim restricted to Y. For every $x\in X$, define $U(x)=\sup\{v(z)|z\in Y \text{ and } x\succ z\}$. Define U(x)=-1 if there is no $z\in Y$ such that $x\succ z$, which means that x is the minimal element in X. (Note that it could be that U(z)< v(z) for some $z\in Y$.)

Game T&A

Decision Making: deterministic and stochastic

- · When thinking about decision making, we often distinguish between actions and consequences.
 - But it's unnecessary for modeling situations where each action deterministically leads to a particular consequence.
 - The rational man has preferences over the set of consequences and is supposed to choose a feasible action that leads to the most desired consequence.
- · How about a decision maker in an environment in which the correspondence between actions and consequences is not deterministic but stochastic?

Lottery

- Let Z be a set of consequences (prizes). (assume that Zis a finite set; can be easily extended to an infinite set)
- A *lottery* is a probability measure on Z, i.e., a lottery pis a function that assigns a nonnegative number p(z) to each prize z, where $\Sigma_{z \in Z} p(z) = 1$.
- The number p(z) is taken to be the objective probability of obtaining the prize z given the lottery p.
- Denote by [z] the degenerate lottery for which z = 1.
- $\alpha x \oplus (1 \alpha)y$: the lottery in which the lottery x is realized with probability α and the lottery y with probability $1 - \alpha$. (Compound lotteries)
- L(Z): the space containing all lotteries with prizes on Z.

Game T&A

Preferences on Lotteries: examples

- Expected utility: A number (utility) v(z) is attached to each prize $z \in \mathbb{Z}$, and a lottery p is evaluated according to its expected v, that is, according to $\Sigma_{z \in Z} p(z)v(z)$. ($Z \rightarrow L(Z)$)
- The worst case: A number v(z) is attached to each prize z, and the lottery p is preferred to q if $min\{v(z)|\ p(z) > 0\} \ge min\{v(z)|$ q(z) > 0.
- Comparing the most likely prize: The decision maker considers the prize in each lottery which is most likely (breaking ties in some arbitrary way) and compares two lotteries according to a basic preference relation over Z.
- Lexicographic preferences: Let |Z| = n. The prizes are ordered z_1, \ldots, z_n and the lottery p is preferred to q if $(p(z_1), \ldots, p(z_n))$ $\geq_L (q(z_1), \ldots, q(z_n)).$

Von Neumann-Morgenstern (vNM) **Axiomatization:** Two Axioms

Independence (I):

For any $p, q, r \in L(Z)$ and any $\alpha \in (0, 1)$,

$$p \succsim q \text{ iff } \alpha p \oplus (1-\alpha)r \succsim \alpha q \oplus (1-\alpha)r.$$

The Independence Axiom implies:

Let $\{p^k\}_{k=1,...,K}$, be a vector lotteries, q^{k^*} a lottery and $(\alpha_k)_{k=1,...,K}$ an array of non-negative numbers such that $\alpha_{k^*} > 0$ and $\sum_k \alpha_k = 1$. Then,

 $\bigoplus_{k=1}^K \alpha_k p^k \succsim \bigoplus_{k=1}^K \alpha_k q^k$ when $p^k = q^k$ for all k but k^* iff $p^{k^*} \succsim q^{k^*}$.

Von Neumann-Morgenstern (vNM) **Axiomatization:** Two Axioms

Continuity (C):

If $p \succ q$, then there are neighborhoods B(p) of p and B(q) of q (when presented as vectors in $R_+^{|Z|}$), such that

for all $p' \in B(p)$ and $q' \in B(q), p' \succ q'$.

- · Continuity means that the preferences are not overly sensitive to small changes in the probabilities.
- **The Continuity Axiom implies:**

If $p \succ q \succ r$, then there exists $\alpha \in (0,1)$ such that

 $q \sim [\alpha p \oplus (1 - \alpha)r].$

Game T&A

Preferences on Lotteries: examples

- · Expected utility: both I and C
- The worst case: neither I nor C
- Comparing the most likely prize: C but not I
- Lexicographic preferences: I but not C

Another example (both I and C):

- Increasing the probability of a "good" outcome: The set Z is partitioned into two disjoint sets G and B (good and bad), and between two lotteries the decision maker prefers the lottery p that yields "good" prizes with higher probability.
 - Special case of expected utility: v(z)=1 (z ∈G), 0 (z ∈B)

vNM Theorem

- Debreu's theorem

 for any preference relation defined on the space of lotteries that satisfies C, there is a utility representation $U:L(Z) \rightarrow R$, continuous in the probabilities.
- Can it be represented by a more structured utility function?

Theorem (vNM):

Let \succeq be a preference relation over L(Z) satisfying I and C. There are numbers $(v(z))_{z\in Z}$ such that

$$p \succeq q \text{ iff } U(p) = \sum_{z \in Z} p(z)v(z) \ge U(q) = \sum_{z \in Z} q(z)v(z).$$

- Note: U(p) is the utility number of the lottery p (in L(Z))
 - -v is a utility function representing the preferences on Z (v(z)) is called the Bernoulli numbers or the vNM utilities)
 - -v is often referred to as a utility function representing the preferences over L(Z).

Game T&A

Lemma (自学)

Let \succeq be a preference over L(Z) satisfying Axiom I. Let $x, y \in Z$ such that $[x] \succ [y]$ and $1 \ge \alpha > \beta \ge 0$. Then

$$\alpha x \oplus (1 - \alpha)y \succ \beta x \oplus (1 - \beta)y$$
.

Proof:

If either $\alpha = 1$ or $\beta = 0$, the claim is implied by I. Otherwise, by I, $\alpha x \oplus (1-\alpha)y \succ [y]$. Using I again we get: $\alpha x \oplus (1-\alpha)y \succ (\beta/\alpha)(\alpha x \oplus (1-\alpha)y) \succ (\beta/\alpha)(\alpha x \oplus (1-\alpha)x) \vdash (\beta/\alpha)$ $(1-\alpha)y) \oplus (1-\beta/\alpha)[y] = \beta x \oplus (1-\beta)y.$

Game T&A

Proof of vNM Theorem (自学)

Let M and m be a best and a worst certain lotteries in L(Z).

Consider first the case that $M \sim m$. It follows from I^* that $p \sim m$ for any p and thus $p \sim q$ for all $p,q \in L(Z)$. Thus, any constant utility func tion represents \succeq . Choosing v(z) = 0 for all z we have $\sum_{z \in Z} p(z)v(z) = 0$ for all $p \in L(Z)$.

Now consider the case that $M \succ m$. By C^* and the lemma, there is a single number $v(z) \in [0,1]$ such that $v(z)M \oplus (1-v(z))m \sim [z]$. (In particular, v(M) = 1 and v(m) = 0). By I^* we obtain that

$$p \sim (\Sigma_{z \in Z} p(z) v(z)) M \oplus (1 - \Sigma_{z \in Z} p(z) v(z)) m.$$

And by the lemma $p \gtrsim q$ iff $\sum_{z \in Z} p(z) v(z) \ge \sum_{z \in Z} q(z) v(z)$.

Game T&A

The Uniqueness of vNM Utilities?

- The vNM utilities are unique up to positive affine transformation (namely, multiplication by a positive number and adding any scalar)
- but are not invariant to arbitrary monotonic transformation.
- invariant to positive affine transformation: easy
- Uniqueness: see proof in next page (自学)

Game T&A

(1) (b) (5

The Uniqueness of vNM Utilities

Furthermore, assume that $W(p) = \sum_{z} p(z)w(z)$ represents the preferences \succeq as well. We will show that w must be a positive affine transformation of v. To see this, let $\alpha > 0$ and β satisfy

$$w(M) = \alpha v(M) + \beta \quad \text{and} \quad w(m) = \alpha v(m) + \beta$$

(the existence of $\alpha > 0$ and β is guaranteed by v(M) > v(m) and w(M) > 0w(m)). For any $z \in Z$ there must be a number p such that $[z] \sim$ $pM \oplus (1-p)m$, so it must be that

$$\begin{split} w(z) &= pw(M) + (1-p)w(m) \\ &= p[\alpha v(M) + \beta] + (1-p)[\alpha v(m) + \beta] \\ &= \alpha[pv(M) + (1-p)v(m)] + \beta \\ &= \alpha v(z) + \beta. \end{split}$$

Risk attitude 风险态度 / Risk preference 风险偏好 (risk neutral / aversion / seeking)

Lotteries with Monetary Prizes

- Z is a set of real numbers and $a \in Z$ is interpreted as "receiving \$a."
- Z may be infinite, but for simplicity we will still only consider lotteries with finite support.
- Assumption: there is a continuous function u, such that the preference relation over lotteries is represented by the function $Eu(p) = \sum_{z \in \mathbb{Z}} p(z)u(z)$.
- 【思考】What will happen if a decision maker has an unbounded (e.g. linearly increasing) vNM utility function u?

Game T&A

A curious gamble

- Consider the game: flip a coin until you get a head.
- Payoff head the first time \$2, the second time \$4, the third time \$8, ...
- What is the expected value of this game?

- The paradox is named from Daniel Bernoulli's presentation of the problem and his solution, published in 1738 in the Commentaries of the Imperial Academy of Science of Saint Petersburg.
- However, the problem was invented by Daniel's cousin Nicolas Bernoulli who first stated it in a letter to Pierre Raymond de Montmort of 9 September 1713.
- of it, Daniel Bernoulli said: "The determination of the value of an item must not be based on the price, but rather on the utility it yields.... There is no doubt that a gain of one thousand dueats is more significant to the pauper than to a rich man though both gain the same amount."

Game T&A

Risk Aversion

 \succeq is risk averse if for any lottery p, $[Ep] \succeq p$

· Claim:

Let \succeq be a preference on L(Z) represented by the vNM utility function u. The preference relation \succeq is risk averse iff u is concave.

Proof:

Assume that u is concave. By the Jensen Inequality, for any lottery p, $u(E(p)) \ge Eu(p)$ and thus $[E(p)] \succsim p$.

Assume that \succeq is risk averse and that u represents \succeq . For all $\alpha \in$ (0,1) and for all $x,y\in Z$, we have by risk aversion $[\alpha x+(1-\alpha)y]\succsim$ $\alpha x \oplus (1-\alpha)y$ and thus $u(\alpha x + (1-\alpha)y) \ge \alpha u(x) + (1-\alpha)u(y)$, that is, u is concave.

Game T&A Certainty Equivalence and Risk Premium (风险溢价)

• Definition:

Given a preference relation \succeq over the space L(Z), the certainty equivalence of a lottery p, CE(p), is a prize satisfying $[CE(p)] \sim p$.

- The *risk premium* of *p* is the difference R(P) =E(p) - CE(p).
- · By definition, the preferences are risk averse if and only if $R(p) \ge 0$ for all p.

Game T&A Certainty Equivalence (CE): Example

 $U(y) = -e^{-ry}$ with r > 0**Utility function:**

for $Y \sim N(\mu_V, \sigma_V^2)$ $CE(Y) = ? \implies CE[Y] = \mu_Y - \frac{1}{2}r\sigma_Y^2$

Expected utility: $E[-e^{-rY}] = U(CE[Y]) = -e^{-rCE[Y]}$

Proof: E[- e^{-rY}] = $-\frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} e^{-[ry + \frac{(y-\mu)^2}{2\sigma^2}]} dy$ $= -\frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} e^{-\left[\frac{(y-\mu+r\sigma^2)^2}{2\sigma^2} + r(\mu - \frac{r\sigma^2}{2})\right]}$

 $= -e^{-r(\mu - \frac{r\sigma^2}{2})}$

Portfolio: Mean-Variance Model

(Markowitz 1952; 1990 Nobel prize winner)

Game T&A The "More Risk Averse" Relation

- The preference relation ≿₁ is more risk averse than ≿₂ if for any lottery p and degenerate lottery c, $p \succeq_1 c$ implies that $p \succeq_2 c$.
- In case the preferences are monotonic:
- The preference relation ≥ is more risk averse than ≥ if CE₁(p) ≤ $CE_2(p)$ for all p.
- In case the preferences satisfy vNM assumptions:
- Let u₁ and u₂ be vNM utility functions representing ≿₁ and ≿₂, respectively. The preference relation \succeq_1 is more risk averse than \gtrsim_2 if the function φ , defined by $u_1(t) = \varphi(u_2(t))$, is concave.
- Let u₁ and u₂ be twice differentiable vNM utility functions representing \succeq_1 and \succeq_2 , respectively. The preference relation \succeq_1 is more risk averse than \succeq_2 if $r_1(x) \ge r_2(x)$ for all x, where $r_i(x) =$ $-u_i''(x)/u_i'(x)$. (coefficient of absolute risk aversion)

