Yogesh Mundhra

301346798

Group 4

Zhendong Cao

Assignment 3

1)

Enter the radius of the sphere in (mm): 40

Enter the average density of the sphere in (g/mm): 0.6

Enter the density of the liquid in (g/mm): 1.0

The sphere depth below the fluid surface is 45.300000>>

The ratio was calculated using algebraic manipulation of the equations.

A small density means a a small h/r ratio.

```
function [] =Q1_2()
h=0:0.01:3;
ratio = ((3.*h. ^2)-(h.^3))./4;
plot(ratio,h)
```

```
title('Height vs. Ratio')
xlabel('Ratio')
ylabel('Height')
end
function [] = Q1()
r = input('Enter the radius of the sphere in (mm): ');
ps = input('Enter the average density of the sphere in (g/mm): ');
p0= input('Enter the density of the liquid in (g/mm): ');
h=0:0.1:2*r;
volsphere=(4/3)*pi*r^3;
masssphere=volsphere*ps;
volfluid=(pi/3)*((3*r.*h.^2)-(h.^3));
massfluid=volfluid*p0;
y=masssphere-massfluid;
for i=1:500
    if y(i)*y(i+1)<0
        fprintf('The sphere depth below the fluid surface is %f', h(i))
    end
end
end
2)
%Calculates the height and velocity.
%Yogesh Mundhra
%Group 4
%Assignment 3 ENSC 180
function [height, velocity] = R_motion(time)
height = 2.13.*time.^2-0.0013.*time.^4+0.000034.*time.^4.751;
velocity = 2*2.13.*time - 4*0.0013.*time.^(3) +
4.751*0.000034.*time.^(3.751);
end
```



```
%Plots two graphs separately of time vs height and speed vs height
%Yogesh Mundhra
%Group 4
%Assignment 3 ENSC 180
function R_motionplot(f,time)
height = length(time);
velocity = length(time);
[height, velocity] =f(time);
hold on
yyaxis left
plot(time, height, 'r')
xlabel('Time (s)');
ylabel('Height (m)');
yyaxis right
plot(time, velocity, 'b')
title('Rocket launch over time');
ylabel('Velocity (m/s)');
hold off
end
```

The velocity (actually speed) is the derivative of the height function.

3) The roots are symmetrical (approximate to 0.001) and the degree of the polynomial is the number of roots as well. >> Q3

The root #1 for the Legendre polynomial is -0.932
The root #2 for the Legendre polynomial is -0.661
The root #3 for the Legendre polynomial is -0.238
The root #4 for the Legendre polynomial is 0.239
The root #5 for the Legendre polynomial is 0.662
The root #6 for the Legendre polynomial is 0.933
The root #1 for the Chebyshev polynomial is -0.965
The root #2 for the Chebyshev polynomial is -0.707
The root #3 for the Chebyshev polynomial is -0.258
The root #4 for the Chebyshev polynomial is 0.259
The root #5 for the Chebyshev polynomial is 0.708
The root #6 for the Chebyshev polynomial is 0.966

Legendre polynomial

Chebyshev Polynomial graph.

4) Could not understand how to do the question at all. I need help with it.