Алгоритм многокритериального ранжирования на основе индекса эффективности

Рассмотрим дискретную многокритериальную аналитическую задачу из примера 5

No	1	2	3	4	5	6	7	8	9	10
f_1^i	7	22	46	32	4	13	19	39	2	38
f_2^i	1	7	30	19	39	47	41	14	40	4

Алгоритм многокритериального ранжирования на основе индекса эффективности

Состоит из следующих шагов.

Шаг 1. Полагаем i = 1.

Шаг 2.Вычисляем параметр b_i - число точек, для которых выполняется условие

$$\left(\mathbf{F}^{j} - \mathbf{F}^{i}\right) \in \mathbf{\Omega}, \ j = \overline{1, N}, \ i \neq j,$$
 (4)

Шаг 3. Вычисляем значение индекса эффективности в виде:

$$\Phi_i = \frac{1}{1 + \frac{b_i}{N - 1}}.$$
 (5)

Шаг 4. Если i < N, то полагаем i = i + 1 и переходим к шагу 2. Иначе, переходим к шагу 5.

Шаг 5.Из точек множества $\mathbf{F} \Big(\hat{\mathbf{X}} \Big)$ формируем множество $\mathbf{F}_{_{\mathrm{P}}} \Big(\hat{\mathbf{X}} \Big)$ парето-оптимальных решений по правилу:

$$\mathbf{F}_{\mathbf{P}}(\hat{\mathbf{X}}) = \left\{ \mathbf{F}^{i}(\mathbf{X}) \in \mathbf{F}(\mathbf{X}) \middle| \Phi_{i} = 1 \right\}.$$
 (6)

Результаты работы алгоритма отображены в таблице: $\mathbf{F}_{\mathbf{P}}\left(\mathbf{X}\right) = \left\{\mathbf{F}^{3}, \mathbf{F}^{6}, \mathbf{F}^{7}\right\}$. В столбце b_{i} в скобках указаны номера элементов \mathbf{F}^{j} , для которых выполняется условие (4).

Свойства индекса эффективности:

- 1) $\Phi_{imax} = 1$ для всех $\mathbf{F}^i \in \mathbf{F}_{\mathbf{P}}(\mathbf{X})$;
- 2) $\Phi_{imin} = 1/2$;
- 3) $1/2 \leq \Phi_i < 1$, если $\mathbf{F}^i \notin \mathbf{F}_{\mathbf{P}}(\mathbf{X})$.

No	f_1^i	f_2^i	b_{i}	$\Phi_{_i}$	K_{l}
1	7	1	7 (2,3,4,6,7,8,10)	0.56	K_3
2	22	7	3(3, 4, 8)	0.75	K_3
3	46	30	0	1	K_1
4	32	19	1(3)	0.9	K_2
5	4	39	2(6, 7)	0.82	K_2
6	13	47	0	1	K_1
7	19	41	0	1	K_1
8	39	14	1(3)	0.9	K_2
9	2	40	2(6, 7)	0.82	K_2
10	38	4	2(3, 8)	0.82	K_2

Задача многокритериальной кластеризации по индексу эффективности

В задаче кластеризации будем предполагать, что множество допустимых альтернативных решений $\hat{\mathbf{X}}$ требуется разбить на три кластера K_1 , K_2 , K_3 , по значению индекса эффективности.

Зададим центры кластеров на интервале[0.5; 1]:

$$C_1=1$$
, $C_2=0.85$, $C_2=0.75$.

Для каждого альтернативного решения $\mathbf{x}^i \in \hat{\mathbf{X}}$ (соответственно $\mathbf{F}^i \in \mathbf{F}(\hat{\mathbf{X}})$) определяем кластер K_n в соответствии со следующим алгоритмом.

Шаг 1. В пространстве признаков вычисляем расстояния от \mathbf{x}^i до центров кластеров

$$r_{ij} = |\Phi_i - C_j|, j = \overline{1, 3}.$$

Шаг 2. Вычисляем минимальное расстояние

$$k_i = min\left\{r_{ij}, j = \overline{1, 3}\right\}$$

Шаг 3. Определяем номер кластера n, которому принадлежит \mathbf{x}^i

$$n = \left\{ j \in \{1, 2, 3\} \middle| k_i = r_{ij} \right\}$$

Результаты кластеризации представлены в таблице и отображены на рисунке (зеленым - K_1 , желтым - K_2 , красным - K_3).

Оптимальность по Слейтеру

Рассмотрим конус доминирования:

$$\mathbf{\Omega} = \mathbf{E}_{<}^{m} = \left\{ \mathbf{r} \in \mathbf{E}^{m} \middle| r_{i} < 0, i = \overline{1, m} \right\}$$
 (1)

Конусу доминирования Ω на множестве допустимых решений X многокритериальной аналитической задачи соответствует бинарное отношение строгого предпочтения \mathscr{D} :

$$\mathbf{x} \otimes \mathbf{y} \Leftrightarrow \mathbf{F}(\mathbf{x}) - \mathbf{F}(\mathbf{y}) \in \mathbf{\Omega} \Leftrightarrow \mathbf{F}(\mathbf{x}) < \mathbf{F}(\mathbf{y}) \Leftrightarrow f_i(\mathbf{x}) < f_i(\mathbf{y}), i = \overline{1, m}$$
 (2)

Отношение предпочтения 😥 называется отношением Слейтера.

Определение. Допустимое решение $\mathbf{x}^* \in \mathbf{X}$ называется оптимальным по Слейтеру (слабо эффективным), если на множестве \mathbf{X} не существует решения $\tilde{\mathbf{x}} \neq \mathbf{x}^*$, удовлетворяющего условию $\tilde{\mathbf{x}} \wp \mathbf{x}^*$, т.е. системе неравенств вида (2).

Множество оптимальных по Слейтеру обозначим: $\mathbf{F}_{\mathrm{S}}(\mathbf{X})$.

Взаимосвязь множеств Парето и Слейтера

$$\mathbf{F}_P = \cup \mathrm{BC}$$

$$\mathbf{F}_{\mathbf{S}} = \bigcup \mathbf{ABCD}$$

Пример 1.

Множество достижимых векторных оценок в многокритериальной аналитической задаче имеет вид:

Построить множества решений, оптимальных по Парето и Слейтеру, для следующих задач:

A.
$$f_1(\mathbf{x}) \to \min_{\mathbf{x} \in \mathbf{X}} f_2(\mathbf{x}) \to \min_{\mathbf{x} \in \mathbf{X}}$$
.

B.
$$f_1(\mathbf{x}) \to \max_{\mathbf{x} \in \mathbf{X}}; f_2(\mathbf{x}) \to \max_{\mathbf{x} \in \mathbf{X}}.$$

C.
$$f_1(\mathbf{x}) \to \max_{\mathbf{x} \in \mathbf{X}} f_2(\mathbf{x}) \to \min_{\mathbf{x} \in \mathbf{X}}$$

D.
$$f_1(\mathbf{x}) \to \min_{\mathbf{x} \in \mathbf{X}}; f_2(\mathbf{x}) \to \max_{\mathbf{x} \in \mathbf{X}}.$$

Решение.

A.
$$\mathbf{F}_{P} = (\cdot)\mathbf{A}$$
 ; $\mathbf{F}_{S} = [\mathbf{AD}]$

B.
$$\mathbf{F}_{P} = [CD]$$
 ; $\mathbf{F}_{S} = [BCD]$

C.
$$\mathbf{F}_{P} = (\cdot)\mathbf{D}$$
; $\mathbf{F}_{S} = [\mathbf{AD}]$

D.
$$\mathbf{F}_{P} = [AB]$$
 ; $\mathbf{F}_{S} = [ABC]$

Пример 2.

Множество достижимых векторных оценок в многокритериальной аналитической задаче имеет вид

Построить множества решений, оптимальных по Парето и Слейтеру для случаев A, B, C, D.

Решение.

A.
$$\mathbf{F}_{P} = [BG] \cup (\cdot) A$$
; $\mathbf{F}_{S} = [BG] \cup [AD]$

B.
$$\mathbf{F}_{P} = (\cdot) \mathbf{C}$$
; $\mathbf{F}_{S} = [\mathbf{B}\mathbf{C}]$

C.
$$\mathbf{F}_{P} = [CH] \cup (\cdot)D$$
; $\mathbf{F}_{S} = [CH] \cup [AD]$

D.
$$\mathbf{F}_{P} = (\cdot)\mathbf{B}$$
; $\mathbf{F}_{S} = [\mathbf{BC}]$