Diskrete Mathematik

Chapter 2 - Math. Reasoning

True Prop: Theorem, Lemma, Corollary A true proposition is often called a theorem, a lemma or a corollary.

Logical Equivalence Two formuals F and G are called *equivalent*, denoted as $F \equiv G$ if they correspond to the same function, i.e. they have the same truth values for all possible inputs.

Logical Consequence A formula G is a *logical consequence* of a formula F if for all combinations of inputs, the truth value of G is 1 if the truth value of F is 1. Intuitively, G is true if F is true. It is written as $F \models G$, respectively $F \leq G$

Implication The implication $A \to B$ is defined as $\neg A \lor B$

Propositional formula For a fixed universe, a formula with a fixed interpretation (e.g. no moving parts"), this means all variables have been resolved, is called a propositional formula since it can either be true or false.

- Lemma: F is tautology iff. $\neg F$ unsatisfiable.
- If F is a tautology one writes $\models F$.

Forms of Proof:

- Modus Ponens A proof of a statement S is by use of the so-called modus ponens proceeds in two steps:
- 1. Statem a statement R and prove R.
- 2. Prove $R \implies S$
- CASE DESTINCTION A proof of a statemen S by case distinction proceeds by stating a finite list of mathematical statements R_1, \dots, R_k (the cases) and then proving thast one of the cases must occur and also proving $R_i \implies S$ for $i=1,\dots,k$
- PROOF BY CONTRADICTION A *Proof by contradiction* of a statement S proceeds by stating a mathematical statement T, then assuming S is false and using S as false to prove that T is true, but then realizing T should actually be false. We have therefore shown that S cannot be false.
- PIGEON HOLE PRINCIPLE If n pigeons are distributed among k>0 holes, one pigeon hole contains at least $\lceil \frac{n}{k} \rceil$ pigeons. **Ex.** Select 7 distinct numbers $\{1,\ldots,11\}$, then two will sum to 11. *Proof:* We have 6 pigeonholes: $\{1,11\},\{2,10\},\{3,9\},\{4,8\},\{5,7\},\{6\}$.

Chapter 6 - Logic

Proof Systems A proof system $\Pi=(\mathcal{S},\mathcal{P},\tau,\phi)$ has 4 elements and is defined on an alphabet Σ

- ullet $\mathcal S$ is the set of syntactic representations of mathematical statements with $\mathcal S\subseteq \Sigma^*$
- ullet \mathcal{P} is the set of syntactic representations of proof strings with $\mathcal{P}\subseteq\Sigma^*$
- ullet au is the truth function where $au: \mathcal{S} \to \{0,1\}$ which assigns a truth value to a statement.
- ϕ is the verification function with $\phi: \mathcal{S} \times \mathcal{P} \to \{0,1\}$ with $\phi(s,p)=1$ if p is a valid proof for s.
- **Sound**: A proof system is sound if no false statement has a proof. i.e. $\forall s \in \mathcal{S}$ for which $\exists p \in \mathcal{P}$ when $\phi(s, p) = 1$ we have $\tau(s) = 1$.
- Complete: A proof system is complete if every true statement has a proof. i.e. $\forall s \in \mathcal{S}$ with $\tau(s) = 1$, $\exists p \in \mathcal{P}$ such that $\phi(s, p) = 1$

Example Proof System: $\Sigma = \{0,1\}$, $\mathcal{S} = \mathcal{P} = \{0,1\}^3$, $\tau(s) = 1$ if s contains at most one 0. $\theta(s,p) = 1$ if s contains at most two 0 and s = p. Complete since we can find proof for every true statement but not sound since wrong statements e.g. 001 have proof.

Propositional Logic

Logical Consequence A formula G is a logical consequence of a formula F, denoted $F \models G$ or $M \models G$ if every interpretation suitable for both F, G which is a model for F is also a model for G.

Equivalence F, G are equivalent iff. $F \models G$ and $G \models F$

Set of formulas: All of the above can also be said for a set of formulas M which can be seen as the conjunction (AND) of all formulas withing M. If $M=\varnothing$ then every interpretation is a model for M.

Extending Predicate Logic Assume we wanted to add the symbol \heartsuit , with $F \heartsuit G$ is true iff. F and G have the same truth value:

Syntax: If F and G are formulas so is $F \heartsuit G$.

Semantics: $A(F \heartsuit G) = 1$ iff. A(F) = A(G)

Lemma 6.3 The following are equivalent:

 $\bullet \{F_1,\ldots,F_k\} \models G$

- $\{F_1 \wedge F_2 \wedge \ldots \wedge F_k\} \rightarrow G$ is a tautology
- $\{F_1, \ldots, F_k, \neg G\}$ is unsatisfiable.

Conjunctive Normal Form $F = \{A \lor \ldots \lor B\} \land \cdots \land \{B \lor \ldots \lor D\}$ Rows eval 0, or negative

Disjunctive Normal Form $F = \{A \land \ldots \land B\} \lor \cdots \lor \{C \land \ldots \land D\}$ Rows eval 1, and

We therefore obtain the following DNF

 $F \equiv (\neg A \land B \land \neg C) \lor (A \land \neg B \land \neg C) \lor (A \land \neg B \land C) \lor (A \land B \land \neg C)$ as the disjunction of 4 conjunctions. And we obtain the following CNF $F \equiv (A \lor B \lor C) \land (A \lor B \lor \neg C) \land (A \lor \neg B \lor \neg C) \land (\neg A \lor \neg B \lor \neg C).$

Lemma 6.2. For any formulas F, G, and H we have

- 1) $F \wedge F \equiv F$ and $F \vee F \equiv F$ (idempotence);
- 2) $F \wedge G \equiv G \wedge F$ and $F \vee G \equiv G \vee F$ (commutativity);
- 3) $(F \wedge G) \wedge H \equiv F \wedge (G \wedge H)$ and $(F \vee G) \vee H \equiv F \vee (G \vee H)$ (associativity);
- 4) $F \wedge (F \vee G) \equiv F$ and $F \vee (F \wedge G) \equiv F$ (absorption);
- 5) $F \wedge (G \vee H) \equiv (F \wedge G) \vee (F \wedge H)$ (distributive law);
- 6) $F \vee (G \wedge H) \equiv (F \vee G) \wedge (F \vee H)$ (distributive law);
- 7) $\neg \neg F \equiv F$ (double negation);
- 8) $\neg (F \land G) \equiv \neg F \lor \neg G$ and $\neg (F \lor G) \equiv \neg F \land \neg G$ (de Morgan's rules);
- 9) $F \lor \top \equiv \top$ and $F \land \top \equiv F$ (tautology rules);
- 10) $F \lor \bot \equiv F$ and $F \land \bot \equiv \bot$ (unsatisfiability rules).
- 11) $F \vee \neg F \equiv \top$ and $F \wedge \neg F \equiv \bot$.

Group Axioms in Predicate Logic:

associativity
$$\exists e \forall x (f(x, y), z) = f(x, f(y, z))) \land \exists e \forall x (f(x, e) = f(e, x) = x \land \exists y f(x, y) = f(y, x) = e)$$
 neutral inverse

Predicate Logic

Substitution F[x/g(a,z)] means that we are substituting every freely occurring x in F with g(a,z).

Interpretation: An interpretation/structure is a tuple $A=(U,\phi,\psi,\xi)$ where U is a non empty universe, ϕ assisngs each function a function, ψ assigns predicated 0 or 1, ξ assigns variable a value in U. One also writes U^A, f^A, x^A, P^A

Always specify universe and all free variables.

Example 6.21. For the formula

$$F = \forall x \ (P(x) \lor P(f(x, a))),$$

a suitable structure \mathcal{A} is given by $U^{\mathcal{A}} = \mathbb{N}$, by $a^{\mathcal{A}} = 3$ and $f^{\mathcal{A}}(x,y) = x + y$, and by letting $P^{\mathcal{A}}$ be the "evenness" predicate (i.e., $P^{\mathcal{A}}(x) = 1$ if and only if x is even). For obvious reasons, we will say (see below) that the formula evaluates to true for this structure.

Some general info:

Definition 6.31. (Syntax of predicate logic.)

- A variable symbol is of the form x_i with $i \in \mathbb{N}^{47}$
- A function symbol is of the form $f_i^{(k)}$ with $i, k \in \mathbb{N}$, where k denotes the number of arguments of the function. Function symbols for k = 0 are called *constants*.
- A predicate symbol is of the form $P_i^{(k)}$ with $i, k \in \mathbb{N}$, where k denotes the number of arguments of the predicate.
- A *term* is defined inductively: A variable is a term, and if t_1, \ldots, t_k are terms, then $f_i^{(k)}(t_1, \ldots, t_k)$ is a term. For k = 0 one writes no parentheses.
- A *formula* is defined inductively:
 - For any i and k, if t_1, \ldots, t_k are terms, then $P_i^{(k)}(t_1, \ldots, t_k)$ is a formula, called an *atomic* formula.
 - − If *F* and *G* are formulas, then $\neg F$, $(F \land G)$, and $(F \lor G)$ are formulas.
 - If *F* is a formula, then, for any *i*, $\forall x_i F$ and $\exists x_i F$ are formulas.

Definition 6.36. (Semantics.) For a structure $\mathcal{A} = (U, \phi, \psi, \xi)$, we define the value (in U) of terms and the truth value of formulas under that structure.

- The value A(t) of a term t is defined recursively as follows:
 - If *t* is a variable, then $A(t) = \xi(t)$.
 - If t is of the form $f(t_1, \ldots, t_k)$ for terms t_1, \ldots, t_k and a k-ary function symbol f, then $A(t) = \phi(f)(A(t_1), \ldots, A(t_k))$.
- The truth value of a formula *F* is defined recursively as follows:
 - $\mathcal{A}((F \wedge G)) = 1$ if and only if $\mathcal{A}(F) = 1$ and $\mathcal{A}(G) = 1$;
 - $\mathcal{A}((F \vee G)) = 1$ if and only if $\mathcal{A}(F) = 1$ or $\mathcal{A}(G) = 1$;
 - $-\mathcal{A}(\neg F) = 1$ if and only if $\mathcal{A}(F) = 0$.
 - If F is of the form $F = P(t_1, \ldots, t_k)$ for terms t_1, \ldots, t_k and a k-ary predicate symbol P, then $\mathcal{A}(F) = \psi(P)(\mathcal{A}(t_1), \ldots, \mathcal{A}(t_k))$.
 - If F is of the form $\forall x \ G$ or $\exists x \ G$, then let $\mathcal{A}_{[x \to u]}$ for $u \in U$ be the same structure as \mathcal{A} except that $\xi(x)$ is overwritten by u (i.e., $\xi(x) = u$):

$$\mathcal{A}(\forall x \, G) = \begin{cases} 1 & \text{if } \mathcal{A}_{[x \to u]}(G) = 1 \text{ for all } u \in U \\ 0 & \text{else} \end{cases}$$

$$\mathcal{A}(\exists x \, G) = \begin{cases} 1 & \text{if } \mathcal{A}_{[x \to u]}(G) = 1 \text{ for some } u \in U \\ 0 & \text{else.} \end{cases}$$

Lemma 6.8. For any formulas F, G, and H, where x does not occur free in H, we have

- 1) $\neg(\forall x \ F) \equiv \exists x \ \neg F;$
- $2) \quad \neg(\exists x \ F) \ \equiv \ \forall x \ \neg F;$
- 3) $(\forall x \ F) \land (\forall x \ G) \equiv \forall x \ (F \land G);$
- 4) $(\exists x \ F) \lor (\exists x \ G) \equiv \exists x \ (F \lor G);$
- 5) $\forall x \, \forall y \, F \equiv \forall y \, \forall x \, F;$
- 6) $\exists x \, \exists y \, F \equiv \exists y \, \exists x \, F;$
- 7) $(\forall x \ F) \land H \equiv \forall x \ (F \land H);$
- 8) $(\forall x \ F) \lor H \equiv \forall x \ (F \lor H);$
- 9) $(\exists x \ F) \land H \equiv \exists x \ (F \land H);$
- 10) $(\exists x \ F) \lor H \equiv \exists x \ (F \lor H).$

Universal Instantiation For any formula F and term t we have $\forall xF \models F[x/t]$ *Proof:* Let t be any term, If $\mathcal{A}(\forall xF) = 1$ then we have $\mathcal{A}_{[x \to u]}(F) = 1$, therefore also for $u = \mathcal{A}(t)$ implying A(F[x/t]) = 1.

Example - Prenex Form:

 $F \equiv \forall x (P(x) \vee \exists x Q(f(x))) \wedge \exists y R(g(y,x)) \text{ renaming vars}$ $F \equiv \forall u (P(u) \vee \exists z Q(f(z))) \wedge \exists y R(g(y,x)) \text{ now taking quantors}$ to front $F \equiv \forall u \exists z \exists y ((P(u) \vee Q(f(z))) \wedge R(g(y,x))).$

Example - Tautology proof:

$$F \equiv (\forall x (P(x) \rightarrow Q(x)) \land P(y)) \rightarrow Q(y)$$

 $F \equiv \exists x \neg (\neg P(x) \lor Q(x)) \lor (\neg P(y) \lor Q(y))$
 $F \equiv \exists y \neg G \lor G$, which is a tautology by showing it holds for any interpret.

Calculi

A **derivation rule** is a rule for deriving a formula from a set of formulas $\{F_1, \ldots, F_k\} \vdash_R G$

A **logical calculus** K is finite set of derivation rules $\{R_1, \ldots R_m\}$.

A **derivation** is a finite list of applications of rules. We write $M \vdash_K G$ if there is a derivation of G from M in K.

Completeness A calculus K is complete if $M \models F \implies M \vdash_K F$. A calculus K is sound/correct it $M \vdash_K F \implies M \models F$,

If $F \vdash_K G$ holds for a sound calculus then $\models (F \to G)$.

Resolution Calculus For a formula F transform it into CNF s.t. $F = (A \lor \dots B) \land \dots \land (C \lor \dots D)$.

Define $\mathcal{K}(F) = \{\{A,\ldots,B\},\ldots,\{C,\ldots,D\}\}$. Let $\mathcal{K}(M) = \bigcup_{i=1}^k \mathcal{K}(F_i)$. We now say that a clause K is a resolvent clause of clauses K_1 and K_2 if there is a literal L such that $L \in K_1 \& \neg L \in K_2$ and $K = (K_1 \setminus \{L\}) \cup (K_2 \setminus \{\neg L\})$

Example $\{A, \neg B, \neg C\}$ and $\{\neg A, C, D, \neg E\}$ have two resolvents: $\{\neg B, \neg C, C, D, \neg E\}$ if elim. A and $\{A, \neg B, \neg A, D, \neg E\}$ if elim. C. One writes $\{K_1, K_2\} \vdash_{res} K$. If K can be derived (finite steps) on writes $K \vdash_{res} K$. If one can derive the empty clause \varnothing this is equivalent to M being unsatisfiable.

Res is sound i.e. if $\mathcal{K} \vdash_{res} K$, then $\mathcal{K} \models K$. We show res rule is correct. Assume $K_1, K_1 \vdash_{res} K$, then either $\mathcal{A}(L) = 1$ making e.g. K_1 true, but K_2 with $\neg L$ is also true so $K_2 \setminus \neg L$ is true, hence $K_1 \setminus \{L\} \cup (K_2 \setminus \{\neg L\})$ is true under \mathcal{A} .

Res is not complete We can never derive $A \models A \lor B$

Show F is tautology Show $\neg F$ is unsatisfiable.

Show logical consequence Assume $H = \{F_1, F_2, ..., F_n\}$ Show $H \models G$ by showing unsatisfiability of $\{F_1, F_2, ... F_n, \neg G\}$

Chapter 3 - Set, Relations & Functions

Set Relations

 $A = B : \iff \forall x (x \in A \leftrightarrow x \in B)$ $A \subseteq B : \iff \forall x (x \in A \leftarrow x \in B)$

It follows directly from the set equality that $A=B\iff (A\subseteq B)\land (B\subseteq A)$

Set one Element Proof: For any a and b: $\{a\} = \{b\} \implies a = b$. We prove this indirectly by showing $a \neq b \implies \{a\} \neq \{b\}$

Ordered Pair $(a,b) := \{\{a\}, \{a.b\}\}$

Empty set is subset The empty set is a subst of every set. Assume there is a set A for which $\varnothing \not\subseteq A$. So there exists $x \in \varnothing$ with $x \not\in A$. This is a contradiction since \varnothing is empty.

The empty set is unique: Assume there exist two, then $\varnothing_1\subseteq\varnothing_2$. But

also $\varnothing_2 \subseteq \varnothing_1$. This implies $\varnothing_1 = \varnothing_2$.

Power Set We define the power set of A, denoted $\mathcal{P}(A)$ as the set of all subsets of A: $\mathcal{P}(A) := \{S | S \subseteq A\}$

For a finite set of cardinality k, the power set has cardinality 2^k .

Exist. unendl. A, sd. $A \in \mathcal{P}(A)$. per ind. $\{\emptyset\} \in \mathcal{P}(\{\emptyset\})$. Schritt:

Belieb. $S \in \mathcal{P}(A) \Rightarrow S \subseteq A \subseteq \mathcal{P}(A) \Rightarrow S \in \mathcal{P}(\mathcal{P}(A))$

Theorem 3.4. For any sets A, B, and C, the following laws hold: $A \cap A = A;$ $A \cup A = A;$ $Commutativity: \quad A \cap B = B \cap A;$ $A \cup B = B \cup A;$ $Associativity: \quad A \cap (B \cap C) = (A \cap B) \cap C;$ $A \cup (B \cup C) = (A \cup B) \cup C;$ $Absorption: \quad A \cap (A \cup B) = A;$ $A \cup (A \cap B) = A;$ $Distributivity: \quad A \cap (B \cup C) = (A \cap B) \cup (A \cap C);$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C);$ $Consistency: \quad A \subseteq B \iff A \cap B = A \iff A \cup B = B.$

Cartesian Product The cartesian product of $A \times B$ is the set of all ordered pairs with the first component from A and the second from B.

$$A \times B = \{(a, b) | a \in A \land b \in B\}$$

The cardinalities are: $|A \times B| = |A| \cdot |B|$

Relations

Binary relation ρ from a set A to a set B is a subset of $A \times B$. If B = A, then ρ is relation on A, one usually writes $a\rho b$. Can be represented in bool $|A| \times |B|$ matrix, or as graph with |A| + |B| vertices only containing edges from a to b if $a\rho b$. There are 2^{n^2} different relations on a set with cardinality n.

Inverse Relation The inverse of a relation ρ from A to B is the relation $\hat{\rho}$ from B to A such that: $\forall a \in A \forall b \in B(A\rho b \leftrightarrow b\hat{\rho}a)$

Composition of Relation Let ρ be a relation from A to B and let σ be a relation form B to C. then the composition of ρ and σ , denoted $\rho\sigma$ (or $\rho \circ \sigma$) is the relation from A to C where: $a\rho\sigma c :\Leftrightarrow \exists b \in B(a\rho b \wedge b\sigma c)$

Properties of Relations

Properties of Relations						
EIGENSCHAFT	FORMEL		Menge			
reflexiv	$\forall a(a\rho a)$			$id \subseteq \rho$		
irreflexiv	$\forall a(a\rho a)$			$\rho \cap id = \varnothing$		
symmetrisch	$a\rho b \iff b\rho a$					
antisymmetrisch	$\forall a \forall b : (a\rho b \land b\rho a) \to a = b$		$\rho \cap \hat{\rho}$	$0 = id$. z.B. \leq, \geq		
transitiv	$\forall a \forall b \forall c : ((a\rho b \land b\rho c) \to a\rho c)$			$ \rho^2 \subseteq \rho. $		
EIGENSCHAFT	Matrix	Graph				

LIGENSCHAFT	WIAIRIX	GRAPH
reflexiv	diags = 1	every vertex has loop
irreflexiv	diags = 0	
symmetrisch	symmetrisch	undirected (evtl. loops)
antisymmetrisch		no cycle length 2
transitiv		

Number of symmetric relations on $\{1, 2, 3\}$?

A symmetric relation always contains both e.g. (1,2),(2,1) 2^3 combina-

tions. Furthermore, it might contain $(1,1),\ldots$, therefore 2^3*2^3 combinations are possible.

Relation transitive $\iff \rho^2 \subseteq \rho \ (\Rightarrow)$ Assume ρ transitive. Assume $(a,b) \in \rho^2$, by def $\exists c : (a,c) \in \rho \land (c,b) \in \rho$, by transitivity $(a,b) \in \rho$. (\Leftarrow) If $(a,b) \in \rho \land (b,c) \in \rho$ and therefore $(a,c) \in \rho^2$, since $\rho^2 \subseteq \rho$ also $(a,c) \in \rho$, implying transitivity.

Transitive Closure The transitive closure is $\rho^* = \bigcup_{n=1}^{\infty} \rho^n$

Equivalence Relation An equivalence relation on a set A is reflexive, symmetric and transitive.

Equivalence Class For equivalence relation θ on set A and for $a \in A$, the set of elements of A that are equivalent to a is called the equivalence class of a and is denoted as $[a]_{\theta}$. The intersection of two equivalence relations is also an equivalence relation.. e.g. $(\equiv_3 \cap \equiv_2) = \equiv_{15}$

Set of Equivalence Classes The set $A/\theta := \{[a]_{\theta} | a \in A\}$ is called the quotient set of A by θ , or simply A modulo θ or $A \mod \theta$

Theorem - Equiv. Classes form partition The set A/θ of equivalence classes of an equivalence relation θ on A is a partition of A. Proof: $\forall a \in A : a \in [a]$. First we show $a\theta b \Longrightarrow [a] = [b]$. Let $c \in [a]$ impl. $c\theta a$ impl. $c\theta b$ impl. $c \in [b]$. Remains to show $a \not b b \Longrightarrow [a] \cap [b] = \varnothing$ by contradict.

Partial Order / Posets A partial order on a set A is reflexive, antisymmetric and transitive. A set A together with a partial order \preceq on A is called a partially ordered set (or simply as poset) denoted $(A; \preceq)$.If drawn as a graph it doesn't have any cycles.

Ex: >, < are not partial orders since they are not reflexive. However \leq , \geq are (on e.g. \mathbb{R}).

Comparable / totally ordered For a poset $(A; \preceq)$, two elements are called comparable if $a \preceq b$ or $b \preceq a$.

If any two elements in $(A; \preceq)$ are comparable, then A is called totally ordered by \preceq .

Example - Powerset / totally Orderable The poset $(\mathcal{P}(A),\subseteq)$ is not totally ordered if $|A|\geq 2$. Since $\{1\}$ and $\{2,3\}$ are not comparable.

Cover In a poset $(A; \preceq)$ and element b is said to cover a if $a \prec b$ and there is no c such that $a \prec c$ and $c \prec b$. $\rightarrow b$ is direct superior of a.

Hasse Diagram The hasse diagram of a finite poset $(A; \preceq)$ is the directed graph whose vertices are labelled with the elements of A and where there is an edge from a to b if and only if b covers a.

Figure 3.1: The Hasse diagrams of the posets $(\{2, 3, 4, 5, 6, 7, 8, 9\}; |)$, $(\{1, 2, 3, 4, 6, 8, 12, 24\}; |)$, and $(\mathcal{P}(\{a, b, c\}); \subseteq)$.

Special Elements in a poset Let $(A; \preceq)$ be a poset and let $S \subseteq A$ be some subset of A. Then:

- 1. $a \in S$ is a minimal (maximal) element of S if there exists no $b \in S$ with $b \prec a$ ($b \succ a$).
- 2. $a \in S$ is the least (greatest element) of S if $a \leq b$ ($a \succeq b$) for all $b \in S$.
- 3. $a \in A$ is the lower (upper) bound of S if $a \leq b$ ($a \succeq b$) for all $b \in S$
- 4. $a \in A$ is the greatest lower bound (least upper bound) of S if a is the greatest (least) element of the set of all lower (upper bounds of S)

Well ordered posets A poset $(A; \preceq)$ is well-ordered if it is totally ordered and if every non-empty subset of A has a least element. Every totally ordered finite poset is well-ordered.

Meet and Join Let (A, \preceq) be a poset. If a and b (i.e. the set $\{a,b\}\subseteq A$) have a greatest lower bound, then it is called the meet of a and b., often denoted $a \wedge b$. If a and b have a least upper bound, then it is called the join of a and b, often denoted $a \vee b$.

Examples of meet and join:

- \bullet (\mathbb{N}, \leq) , $a \wedge b = \min(a, b)$, $a \vee b = \max(a, b)$
- \bullet (N\{0},|), $a \wedge b = ggt(a,b)$, $a \vee b = kgv(a,b)$
- \bullet $(\mathcal{P}(A),\subseteq)$, $a \wedge b = a \cap b$, $a \vee b = a \cup b$

Lattice A poset in which every pair of elements has a meet and a join.

Composition of functions The composition of a function $f:A\to B$ and $g:B\to C$, denoted $g\circ f$ or simply gf, is defined by $(g\circ f)(a)=g(f(a)).$

Cardinalities of Sets

- 1. $A \sim B$, if there exists a bijection $A \to B$.
- 2. $A \leq B$, if $A \sim C$ for some subset $C \subseteq B$.
- 3. A is called if $A \leq \mathbb{N}$ and uncountable otherwise.

Bernstein Schröder: $A \leq B \land B \leq A \implies A \sim B$

Theorems on Countability

- The relation \leq is transitive: $A \leq B \land b \leq C \implies A \leq C$
- $\bullet A \subseteq B \implies a \prec B$
- ullet A set A is countable if and only if it is finite of if $A \sim \mathbb{N}$

- The set $\{0,1\}^* := \{\epsilon,0,1,00,11,01,11,000,001,\cdots\}$ of finite binary sequences is countable.
- The set $\{0,1\}^{\infty}$ is uncountable \rightarrow cantors diagonal argument.

Countability of composite sets

- \bullet For an $n \in \mathbb{N}$, the set A^n of n-tuples over A is countable.
- The union $\bigcup_{i\in\mathbb{N}} A_i$ of a countable list A_1,A_2,\ldots of countable sets is countable.
- The set A^* of finite sequences of elements from A is countable.

Computable functions A function $f: \mathbb{N} \to \{0,1\}$ is called computable if there is a program that , for every $n \in \mathbb{N}$, when given n as an input, outputs f(n).

Existence of uncomputable functions $\mathbb{N} \to \{0,1\}$ *Proof* $\{0,1\}^* \prec \{0,1\}^\infty$. Uncountably many function but countably many programs that can be computed.

Functions

Injective $\forall x_1, x_2 \in M: f(x_1) = f(x_2) \implies x_1 = x_2$ or $x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$

Surjective $\forall y \in N \exists x \in M : y = f(x)$

Inverse of injective is surjective let $f:A\to B$ be injective for any A,B. We prove $\exists g:B\to A$ is surjective. Define $g(x)=f^{-1}(x)$ if $f^{-1}(x)$ exists, and else g(x)=a arbitrary.

The converse is also true: Let $g:B\to A$ be surj. we show $\exists f:A\to B$ injective. Let g be surjective. Since g is surjective we define $(g\circ f)(a)=g(f(a))=g(b)=a$ with f(a)=b for any b.

Now assume f(a) = f(a'), by def we get a = g(f(a)) = g(f(a')) = a' implying injectivity.

 $h\mapsto f\circ h\circ g$ injektiv. $f:A\to B$ injective and $g:B\to A$ surjective. Thus $\phi:A^A\to B^B$ injective. Beweis Wts. $\forall h_1\neq h_2\in A^A\Rightarrow \phi(h_1)\neq \phi(h_2)$. Let $h_1\neq h_2$, $\exists a_0\in A:h_1(a_0)\neq h_2(a_0)$ Let $g(b)=a_0$ which exists since g surjective. Thus: $h_1(g(b))\neq h_2(g(b))$. Since f injective: $f(h_1(g(b)))\neq f(h_2(g(b)))\Leftrightarrow f\circ h_1\circ g\neq f\circ h_2\circ g\Leftrightarrow \phi(h_1)\neq \phi(h_2)$ as we wanted.

Chapter 4 - Number Theory

Theorem 2.1: (Euclid) For all integers a and $d \neq 0$ there exist unique integers q and r satisfying

$$a = dq + r$$
 and $0 \le r < |d|$

Definition: Greatest Common Divisor For integers a and b (both not 0), an integer d is called the greatest common divisor of a and b if d divides both a and b and if every common divisor of a and b divides d:

$$d|a \wedge d|b \wedge \forall c((c|a \wedge c|b) \rightarrow c|d)$$

Euclids Extended Algorithm

```
\begin{array}{l} (s_1,u_1,v_1) := (a,1,0);\\ (s_2,u_2,v_2) := (b,0,1);\\ \textbf{while } s_2 > 0 \textbf{ do begin}\\ q := s_1 \textbf{ div } s_2;\\ t := (s_2,u_2,v_2);\\ (s_2,u_2,v_2) := (s_1,u_1,v_1) - q(s_2,u_2,v_2);\\ (s_1,u_1,v_1) := t;\\ \textbf{end;}\\ d := s_1; \ u := u_1; \ v := v_1; \end{array} \qquad \begin{array}{l} \text{EUCLID}(a,b)\\ 1 \quad \textbf{if } b == 0\\ 2 \quad \textbf{return } a\\ 3 \quad \textbf{else return } \text{EUCLID}(b,a \text{ mod } b) \end{array}
```

Example: Find $u, v \in \mathbb{Z}$ s.t. 62u + 58v = ggT(62, 58). Perform algorithm with $s_1 = 62, s_2 = 58$, then $u_1 = u$ (for 62) and $v_1 = v$ (for 58)

Definition: Least Common Multiple The least common mulitple l of two positive integers a and b, denoted l = lcm(a,b), is the common multiple of a and b, which divides every common multiple of a and b. $a|l \wedge b \wedge l \wedge \forall m((a|m \wedge b|m) \rightarrow l|m)$

Some facts about gdc and lcm:

if $a=\prod_i p_i^{e_i}$ and $b=\prod_i p_i^{f_i}$ then $\gcd(a,b)=\prod_i p_i^{\min(e_i,f_i)}$ and $lcm(a,b)=\prod_i p_i^{\max(e_i,f_i)}$. This implies $\gcd(a,b)\cdot lcm(a,b)=a\cdot b$ because $\forall i$ we have $\min(e_i,f_i)+\max(e_i,f_i)=e_i+f_i$

Bézout's Lemma For $a,b\in\mathbb{Z}\setminus\{0\}\exists u,v\in\mathbb{Z}$ such that gcd(a,b)=ua+vb

Example Proof Number of Divisors Odd Let D_n be the set of divisors of n. Show $|D_n|$ odd $\iff \exists c: c^2 = n$. *Proof:* We write two divisors as tuple (a,b) when ab=n. We can only have an odd number of tuples if (c,c) is a tuple.

Show Irrationality $\log_2(2015)$ is irrat. since AFSOC $\frac{p}{q} = \log_2(2015) \Rightarrow 2^p * 2015 = 2^q$, but then prime decomp. not unique.

Modulus

Definition: Modulo Congruence For $a, b, m \in \mathbb{Z}$ with $m \ge 1$ we say that a is congruent to b modulo m if m divides a - b. We write $a \equiv b \mod m$ or simply $a \equiv_m b$.

or in short: $a \equiv_m b : \iff m|(a-b)|$

Remainder Equalities: For any $a,b,m \in \mathbb{Z}$ with $m \geq 1$ we have $R_m(a+b) = R_m(R_m(a) + R_m(b))$ and $R_m(a*b) = R_m(R_m(a) * R_m(b))$

Lemma 4.19 - **Solutions to Congruences:** $ax \equiv_m 1$ is a congruence equation which has a solution iff. gcd(a,m)=1. The solution is unique. One can find that solution called the multiplicative inverse if one uses the extended euclidean algorithm, setting b=m. look at the factor that would multiply with a.

Ex: $R_{990}(5^{722})$

a) ges: $R_{990}(5^{722})\equiv R_{2*5*9*11}(5^{722})$. Dies ist (nach dem CRT) äquivalent zum Finden der Reste $a_1,a_2,a_3,\ \mathrm{und}\ a_4$, so dass die folgenden Gleichungen gelten: $x\equiv_2 a_1,\ \mathrm{mit}\ a_1=1,\ \mathrm{weil}\ R_2((5^{722})^1*1)=R_2(1*1)=1$ ist $x\equiv_5 a_2,\ \mathrm{mit}\ a_2=0,trivial$ $x\equiv_9 a_3,\ \mathrm{mit}\ a_3=7,\ \mathrm{weil}\ R_9((5^6)^{120}*5^2)=R_9(1*5^2)=7$ ist $x\equiv_{11} a_4,\ \mathrm{mit}\ a_4=3,\ \mathrm{weil}\ R_{11}((5^{10})^{72}*5^2)=R_{11}(1*5^2)=3$ ist Dabei verwendeten wir, dass $p\nmid a \Longrightarrow a^{p-1}\equiv_p 1$ gilt. Jetzt wenden wir das CRT wie gewohnt an und erhalten $x=R_{990}(1*1*495+0*2*198+7*5*110+3*6*90)=25$

Chinese Remainder Theorem: Theory Let m_1, \ldots, m_r be pairwise prime integers and let $M = \prod_{i=1}^r m_i$. For every list $a_1, \ldots a_r$ with $0 \le a_i < m_i$ for $1 \le i \le r$, the system of congruence equations $x \equiv_{m_1} a_1 \wedge \ldots \wedge x \equiv_{m_r} a_r$ for x has a unique solution x satisfying $0 \le x < M$: By contruction: Let $M_i = M/m_i$ and $M_i N_i \equiv_{m_i} 1$ (using euclidean algorithm) then we have the solution $x = R_M \left(\sum_{i=1}^r a_i M_i N_i \right)$

Chinese Remainder Theorem: Example

ASSUME WE have:

$$x = 31$$
 $x = 31$
 $x = 31$
 $x = 41$
 $x = 41$

Diffie-Hellman

Figure 4.2: The Diffie-Hellman key agreement protocol.

Divisibility Rules

- 11: Alternating sum: $2728 \rightarrow 2 - 7 + 2 - 8 = -11$

- 9: Quersumme durch 9 teilbar.
- -7: Ziehe letzte Ziffer zweimal von Zahl ohne letze Ziffer ab. Wiederhole solange nötig. Wenn Resultat durch 7 teilbar, so war es auch die Zahl. z.B: 7|17059?, 1705 18 = 1687, 168 14 = 154, 15 8 = 7, somit 7|17059.

Chapter 5 - Algebra

Definition: Algebra An algebra is a pair $\langle S; \Omega \rangle$, where S is a set (the carrier of the algebra) and $\Omega = (\omega_1, \dots \omega_n)$ a list of operations on S. Some terms that are relevant:

- Left neutral element: e * a = a
- Associativity: A binary relation * is associative iff. a*(b*c) = (a*b)*c
- Left inverse element b of a: b * a = e

Definition: Monoid A monoid is an algebra $\langle M; *, e \rangle$ where * is associative and e is the neutral element.

Definition: Group A group is an algebra $\langle G; *, ^{\wedge}, e \rangle$ satisfying the following conditions:

G1 * is associative

G2 There exists a neutral element $e \in G$ such that a * e = e * a = a

G3 Every $a \in G$ has an inverse \hat{a} such that $a * \hat{a} = \hat{a} * a = e$

An abellian group is a group that commutes d.h.: ab = ba

Some Group Lemmas A group fulfills the following: $\widehat{(a)} = a$, $\widehat{a \times b} = \widehat{b} * \widehat{a}$, $a*b=a*c \implies b=c$, $b*a=c*a \implies b=c$, equation a*x=b has unique solution x for any a,b

Group of order 4 commutes. AFSOC $xy \neq yx$, build cases, show that there must be one more element. Then conclude that e, x, y, xy, yx are distint.

Morphisms

A homomorphisms is a mapping between two groups with $\phi(a*b)=\phi(a)*\phi(b)$. It fulfills: $\phi(e_G)=e_H$, $\phi(a^{-1})=\widehat{\phi(a)}$, $\phi(a^n)=\phi(a)^n$, A group always gets mapped onto a subgroup. **Isomorphism** is a bijective homomorphism.

Definition: Direct Products of Groups The direct product of n groups $\langle G_1, *_1 \rangle, \cdots, \langle G_n, *_n \rangle$ is the algebra $\langle G_1 \cdots * G_n; * \rangle$ where * is defined component wise: $(a_1, \ldots, a_n) * (b_1, \ldots b_n) = (a_1 *_n b_1, \ldots, a_n *_n b_n)$

Definition: Group Homomorphism A function ψ from a group $\langle G; *, \hat{}, e \rangle$ to a group $\langle H; *', \hat{}, e' \rangle$ is a group homomorphism iff. for all a, b we have $\psi(a*b) = \psi(a)*\psi(b)$. If ψ is a bijection it is an isomorphism and we write $G \simeq H$, called homeomorphic.

Generator maps onto Generator: ϕ a homomorphism from a cyclic group $\langle g \rangle = G$ to a group H. wts. $\phi(g)$ generates H. Proof g Generator of G. wts. $\forall h \in H \exists k \in N : h = \phi(g)^k$. Since bijective $r = \phi^{-1}(h), r \in G$. $\exists n : g^n = r \Rightarrow \phi(g)^n = \phi(g^n) = \phi(r) = h$, cause $\phi(g^n) = \phi(g)^n$ via induct.

Definition: Subgroup A subset $H \subseteq G$ of a group $\langle G; *, \wedge, e \rangle$ is calld a subgroup if $\langle H; *, \wedge, e \rangle$ is a group; closed under all operations. This means that the neutral element is always in the subgroup.

Union of subgroups is not subgroup AFSOC $H_1 \cup H_2 = H_3$. Dann $\exists a \in H_1, a \not\in H_2$ und $\exists b \in H_2, b \not\in H_1$. Dann $ab \in H_3$, somit entweder $ab \in H_1$ oder $ab \in H_2$. Contradict.

Definition: Order of Group Element Let G be a group and a an element of G. The minimal m for which $a^m=e$ is called ord(m). If no such m exist we have $ord(m)=\infty$. By def ord(e)=1

Definition: Order of Group Let G be a group, the order of G is defined as $\vert G \vert$

Finite Group every Element finite order: *Proof:* Since G is finite we must have $a^r = a^s = b$ for some r, s with r < s. Then $a^{s-r} = a^s * a^{-r} = b * b^{-1} = e$.

Intersection of two Subgroups is Subgroup Let H_1, H_2 be two subgroups. Trivially $e \in H_1, H_2$, we show $H_3 = H_1 \cap H_2$ is closed: $a, b \in H_1, H_1$, hence $ab \in H_1, H_2$, resulting in $ab \in H_3$. Similarly $c^{-1} \in H_1, H_2$ so $c^{-1} \in H_3$.

Isomorphic Subfields Let p be a prime number. The field F_{p^m} is (isomorphic to) a subfield of F_{p^n} if and only if m|n. (not in lecture)

Cyclicity & Generators

Definition: Cyclic Group A group $G = \langle g \rangle$ generated by an element $g \in G$ is called cyclic and g is called the generator of G.

Remark about Generators: If G is a group and $a \in G$ has finite order then $a^m = a^{R_{ord(a)}(m)}$. We define $\langle a \rangle = \{a^n | n \in Z\} = \{e, a, a^2, \dots, a^{ord(a)-1}\}$. Not all groups are cyclic!

Find all generators of $\langle \mathbb{Z}_{17}^*; \otimes \rangle$: We first note that $\mathbb{Z}_{17}^* = \{1, \dots, 16\}$. We know that all elements generate a subgroup, we need to find the elements generating a subgroup of size 16. We check which elements $a^8 \neq 1$, these are our generators of the whole group. They are: $\{3, 5, 6, 7, 10, 11, 12, 14\}$ which are 8 elements which is $\phi(16) = 8$.

Cyclic Groups are Abelian A cyclic group of order n is isomorphic to $\langle Z_n; \oplus \rangle$ and hence abelian. *Proof:* Let $G = \langle g \rangle$ be a cyclic group of order n. The bijection $\mathbb{Z}_n \to G: i \mapsto g^i$ is a group homomorph. since $i \oplus j \mapsto g^{i+j} = g^i * g^j$.

Lagrange Theorem Let G be a finite group and H a subgroup of G. Then the order of H divides the order of G, i.e. |H| divides |G|

Generated Groups are cyclic if G **finite** Let G be a finite group. Then $a^{|G|}=e$ for every $a\in G$. *Proof:* We have |G|=k*ord(a) for some k (Lagrange). Hence $a^{|G|}=a^{k*ord(a)}=a^{ord(a)^k}=e^k=e$.

Groups of Prime order is Cyclic Every group of prime order is cyclic and in such a group every element except the neutral element is a generator. Since no other non-trivial subgroups can be formed.

Order of Cyclic Groups The group \mathbb{Z}_m^* is cyclic \iff m=

 $2 \vee m = 4 \vee m = p^e \vee m = 2p^e$ for p any odd prime and $e \geq 1$

Multiplicative Groups & Totient Function

Definition: Multiplicative Group / Inverse We define

$$\mathbb{Z}_m^* = \{ a \in \mathbb{Z}_m | \gcd(1, m) = 1 \}$$

This is the set of all integers modulo m which have an inverse. For it to have an inverse by section 4.5.3 $\gcd(a,m)$ must be 1.

Definition: Euler function The euler function $\phi: \mathbb{Z}^+ \to \mathbb{Z}^+$ is defined as the cardinality of $\mathbb{Z}_m^*: \phi(m) = |\mathbb{Z}_m^*|$

Example: Euler function $\mathbb{Z}_m^* = \{1, 5, 7, 11, 13, 17\}$, so $\phi(18) = 6$. Furthermore if p prime then $\phi(p) = p-1$ since $\gcd(p,l) = 1 \forall l$

Evaluating Eulers function If the prime factorization of m is $m = \prod_{i=1}^r p_i^{e_i}$ then

$$\phi(m) = \prod_{i=1}^{r} (p_i - 1) p_i^{e_i - 1}$$

It is not injective since $\phi(6)=2=\phi(2)$. Also not surjective, odd numbers have no preimage since if gcd(k,n)=1, gcd(n-k,n)=1 too. If n>2 all rel. prime to n match up into pairs $\{k,n-k\}$. So $\phi(n)$ even.

Fermat's & Euler's Corollary For all $m \geq 2$ and all a with gcd(a,m)=1 we have $a^{\phi(m)}\equiv_m 1$ & for every prime p and every a not divisible by p: $a^{p-1}\equiv_p 1$ Proof: We know that G finite so $a^{|G|}=e$ for every $a\in G$

RSA Theorem Let G be some finite group and let $e \in Z$ be relatively prime to |G| (gcd(e,|G|)=1). The unique e-th root of y, namely $x \in G$ satisfying $x^e=y$ is

$$x = y^{c}$$

where d is the multiplicative inverse of e modulo |G|, i.e. $ed \equiv_{|G|} 1$

RSA: Explained We look at \mathbb{Z}_n^* where n=pq with p,q being large primes. The order of \mathbb{Z}_n^* is $|\mathbb{Z}_n^*| = \phi(n) = (p-1)(q-1)$. We can encrypt a message m with $y=R_n(m^e)$ and decrypt it with $m=R_n(y^d)$ where $ed\equiv_{(p-1)(q-1)} 1$.

Rings and Fields

Definition: Ring A ring $\langle R; +, -, 0, *, 1 \rangle$ is an algebra for which:

- 1. $\langle R; +, -, 0 \rangle$ is a commutative group
- 2. $\langle R; *, 1 \rangle$ is a monoid
- 3. a(b+c)=(ab)+(bc) left associativity and right associativity (b+c)a=(ba)+(ca)

If ab = ba we call the ring commutative.

Simple Ring Corollary's For any ring we have 0a = a0 = 0 & (-a)b = -(ab) & (-a)(-b) = ab & if the ring R is non-trivial then $1 \neq 0$.

Divisors: Like usual, but -1 and negative values are also divisors.

Commutattivity of Addition follows from other Axioms $\langle R, +, -, 0, \cdot, 1 \rangle$, look at (1+1)(a+b)

Polynomials

Definition: Polynomial Rings A Polynomial over a ring is of the form $a(x) = a_d x^d + \dots + a_0 x^0 = \sum_{i=0}^d a_i x^i$. The degree is the greatest i for $a_i \neq 0$. But $deg(0) = -\infty$. The set R[x] is the set of Polynomials in x over R.

$$a(x) + b(x) = \sum_{i=0}^{\max(d,d')} (a_i + b_i) x^i$$

$$a(x) * b(x) = \sum_{i=0}^{d+d'} \left(\sum_{k=0}^{i} a_k b_{i-k} \right) x^i = \sum_{i=0}^{d+d'} \left(\sum_{k=0}^{u+v=i} a_u b_v \right) x^i$$

$$= a_d b_{d'} x^{d+d'} + \dots + (a_0 b_2 + a_1 b_1 + a_2 b_0) x^2 + (a_0 b_1 + a_1 b_0) x + a_0 b_0$$

R[x] a **ring** For any ring R, R[x] is also a ring. Can be shown using axioms.

 $a(x) \in F[x]$, in F a field, has at most d roots. Proof AFSOC deg(a(x)) = d but has e > d roots. Then the poly. $\prod_{i=1}^e (x - \alpha_i)$ divs a(x). but this would mean a(x) has degree at least e, contradict.

Monic Polynomial, if ratinal root then integer $a(x) \in \mathbb{Z}[x]$, $r \in \mathbb{Q}$, a(r) = 0, then $r \in \mathbb{Z}$ *Proof* Insert $\frac{p}{q}$ then $0 = q^n f(\alpha) = p^n + q\left(a_{n-1}p^{n-1} + \cdots + a_1q^{n-2}p + a_0q^{n-1}\right)$ Show q|p, hence q = 1.

Lagrange Polynomial Interpolation: Assume we have values pairs $\beta_1=a(\alpha_1),\ldots,\beta_{d+1}=a(\alpha_{d+1})$, then we define $a(x)=\sum_{i=1}^{d+1}\beta_iu_i(x)$ (of degree d) with $u_i(x)=\frac{(x-\alpha_1)*\cdots*(x-\alpha_{i-1})*(x-\alpha_{i+1})*\cdots*(x-\alpha_{d+1})}{(\alpha_i-\alpha_1)*\cdots*(\alpha_i-\alpha_{i-1})*(\alpha_i-\alpha_{i+1})*\cdots*(\alpha_i-\alpha_{d+1})}$

Lagrange Polynomial Example Let a(x) be a Polynomial of degree 4 over GF(7)[x]. We know that a(x) has a double root at x=2. Moreover: a(3)=2, a(4)=3, a(6)=5. Find a: Since 2 is a double root $a(x)=(x-2)^2b(x)$. Now we can use Lagrange Poly Interpol. to determine b(x).

Lagrange Interpo. Theorem Polynomial of degree at most d can uniquely be determined by and d+1 values of a(x).

Zerodivisors & Units & Integral Domains

Definitions on Rings:

- Characteristic of group is defined as the order of 1 in the additive group, if it is infinite we set it 0. A field $GF(p^n)$ has characteristic p if p prime. $Proof \ 0 = Char(F) * 1 = ab$ so it has zerodivs.
- **Zerodivisor:** If $a \neq 0$ in a commutative ring has $b \neq 0$ such that ab = 0.
- Unit: An element u in a (commutative) Ring is a unit, if u is invertible: uv = vu = 1. The set of units is R^* .

For Ring R, R^* is multiplicative Group:

Proof. We need to show that R^* is closed under multiplication, i.e., that for $u \in R^*$ and $v \in R^*$, we also have $uv \in R^*$, which means that uv has an inverse. The inverse of uv is $v^{-1}u^{-1}$ since $(uv)(v^{-1}u^{-1}) = uvv^{-1}u^{-1} = uu^{-1} = 1$. R^* also contains the neutral element 1 (since 1 has an inverse). Moreover, the associativity of multiplication in R^* is inherited from the associativity of multiplication operation is the same).

Ring with aa=a, a=-a commutes. Look at $(a+b)=(a+b)^2$ and (b+a)...

 \mathbb{Z}_4 **not** a **field** Since 2 doesn't have an inverse.

Ex: Number of Units in \mathbb{Z}_{12} Just $|\mathbb{Z}_{12}^*| = \phi(12) = 4$

Definition: Integral Domain An Integral Domain is a nontrivial commutative ring without zerodivisors. ($\forall a \forall b (ab=0 \implies a=0 \lor b=0)$)

Some Integral Domains / Zero Divisors

- For a ring R, R^* is a multiplicative group.
- Any element of \mathbb{Z}_m not relatively prime to m is a zerodivisor. Since if $m=ab,\ a,b$ are zerodivisors.
- ullet Z_m is not an integral domain if m is not prime since ab=m are zero divisors.

Lemma 5.20 - **Unique Divisor** In an integral domain, if a|b then c is unique with b=ac

D[x] is Integral Domain If D is an integral domain, so is D[x].

Units of D[x] are units of D, ($D^* = D[x]^*$) This means constant polynomials are only units. *Proof* Only degree 0 polynomial can be unit (because can't reduce dimensions in polynomial). They are units since

they have an inverse, (from D).

Field is Int. Domain / Unit not Zero Div: A field is always an integral domain. We show every non-zero element is not a zero divisor, hence in any commutative ring, a unit $u \in R$ is not a zero div. by contradiction: Assume uv = 0, then $v = 1v = u^{-1}uv = u^{-1}0 = 0$, hence u is not a zero div. since v = 0.

→ Zero doesn't have inverse but is still in field!

Fields

Definition: Field A field is a nontrivial commutative ring F in which every nonzero element is a unit, i.e. $F^* = F \setminus \{0\}$. Furthermore, GF(p) stands for Galois Field with p elements, it is just a field with p elements.

Examples: $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ are fields, but \mathbb{N}, \mathbb{Z} are not, no inverse \forall .

Direct Prod not a field $\langle F;+,\cdot\rangle$ a field. $\langle F\times F;\oplus,\otimes\rangle$ not a field. (0,0) is additive neutral. But $(1,0)\otimes(0,1)=(0,0)$ so there are zerodivisors. So it is not a field.

 \mathbb{Z}_p is a field iff. p is prime Follows since $\mathbb{Z}_p \setminus \{0\} = \mathbb{Z}_p^*$ is a multiplicative group, iff. p is prime.

Linear Equations in Fields

(De solve
$$5 \times \oplus 2g = 4$$
, $1 \times \oplus 7g = 0$ over 1_{M} , $GF(M)$.

$$\begin{pmatrix} 5 & 2 & | 4|^{2} + 2^{2n} \\ 2 & 7 & | 9 \end{pmatrix} \xrightarrow{(5 \ 2)} \begin{pmatrix} 5 & 2 & | 4| \\ 1 & 0 & | 6 \end{pmatrix}$$

$$2_{1} + 6_{22} \begin{pmatrix} 0 & 2 & | 7 \\ 1 & 0 & | 6 \end{pmatrix} \xrightarrow{\chi = 6} \begin{pmatrix} 6 \\ 2g = 7 \end{pmatrix}, \quad y = 2^{4} \cdot 7 = g$$

$$-7 \times = 6 \\ y = 9$$

Polynomials in fields

Polynomial Division in a field

Wir mochten
$$x^{4} + x + 1$$
 durch $x^{2} + x + 1$ feilenin $GF(2)[x]$

$$(x^{4} + x + 1) : (x^{2} + x + 1) = (x^{2} + x + 1)$$

$$- (x^{4} + x^{3} + x^{2})$$

$$- (x^{3} + x^{2} + x + 1)$$

$$- (x^{3} + x^{2} + x + 1)$$
Toick: make sure yousley in $GF(2)[x]$

Definition - **Irreducible Polynomial** A Polynomial a(x) is called irreducible if it is only divisible by constant Polynomials and by constant multiples of a(x). We check irreducibility of a(x) of degree d by testing all monic irreducible Polynomials of degree d = d/2.

Factorization of Polynomials:

- A Polynomial of degree 1 is always irreducible by def. A
- Poly of deg 2,3 must have factor of deg 1 if reducible, therefore they are irreducible if they don't have a root.
- Poly. of degree 4. First check for roots, then for irreducible factors of degree 2.

 \bullet else, check all irred. polys of deg < d/2.

Factorization Example: find roots of $x^2 + 3x + 2$ in GF(5). We check all elements of GF(5) and find that $x^2 + 3x + 2 = (x - 3)(x - 4)$

Multivar. Factorization Example: Factor $xy^3 + xy^2 + (x+1)y + x$ on $GF(2)[x]_{x^2+x+1}[y]$ into irred. We first check for roots and find a(x)=0. Therefore we can poly div by (x-y)=(x+y) Using $x^2=x+1$ we find $a(x)=(y+x)(xy^2+y+1)$

Remainder & GCD The monic Polynomial g(x) of largest degree such that g(x)|a(x) and g(x)|b(x) is the gcd(a(x),b(x)). If F a field and $a(x),b(x)\neq 0$ there exists unique q(x) s.t. a(x)=b(x)q(x)+r(x)

Definition: Roots Let $a(x) \in R[x]$. An element $\alpha \in R$ for which $a(\alpha) = 0$ is called a root of a(x). (to prove this use division with remainder) A Polynomial of degree d can have at most d roots.

Extension Fields: If m(x) irreducib. with deg(m)=d over field F, then $F[x]_{m(x)}=\{a(x)\in F[x]|dex(a(x))< d\}$ is a field with, if F has q elements $|F[x]_{m(x)}|=q^d$ elements.

Construct a field with 9 elements: We can construct GF(9) as the extension field of GF(3), by listing all Polynomials in GF(3) with degree smaller than 2 and modulus x^2+1 . Therefore $GF(9)=\{0,1,2,x,2x,x+1,x+2,2x+1,2x+2\}$. This builds on the fact that $GF(9)=GF(3)_m$, with m irreducible. Also all operations are alrady defined in $GF(3)_{x^2+1}$. Find a generator of the field above The field has 9 elements, 8 of which are non zero and invertible. By lagrange's theorem the order of any element in $F^*=F\setminus\{0\}$ must divide the order of F^* . The possible orders are $\{1,2,4,8\}$, we are therefore looking for an element a such that $a^4\neq 1$. a=x+1 since $(x+1)^4=2\neq 1$. Hence x+1 is a generator of F^* .

Error Correction

Let alphabet= $\mathcal{A}=GF(q)$ and let $\alpha_1,\ldots,\alpha_{n-1}$ arbitrary elements from GF(q), with $E((a_0,\ldots,a_{k-1}))=(a(\alpha_1),\ldots,a(\alpha_{n-1}))$. The code has a min. dist. of n-k+1. Idea: We can interpolate a(x) of deg k-1 by any k codeword symbols.