Stata^{*} 论文中数据分析的一把利剑

或 120 分钟搞定论文数据分析及结果输出

版本号: 1.0

中南财经政法大学 STATA 协会[†] 学术组

2013年4月18日

摘要

本文是写给那些没有用过 Stata 软件,同时又想在论文中有一些数据分析的本科生和研究生的,使其能在 2 个小时内掌握 Stata 软件最基本的分析功能,并能将结果按照学术论文的格式输出到 Word 等软件中。本文 将一步步地为你展示如何用 Stata 软件来进行基础的数据分析,并演示生成高质量的描述统计表格、回归结果 及统计图并将之在论文中报告出来的详细过程。由于 Stata 软件把 EViews, SPSS 的傻瓜式菜单和 SAS 的命令、编程完美结合起来,所以它受到了初学者和高级用户的普遍欢迎。Stata 软件体积小巧、简单易懂且功能强大,相信它会帮助你完成数据分析及报告的任务,让你得到一篇高水准的论文。

关键词: 描述统计, 计量模型, 回归结果, 数据分析, 实证分析, 论文写作

目录

1	简介	2
	1.1 Stata 简介	2
	1.2 Stata 软件的安装及界面介绍	2
	1.3 Stata 操作方法介绍	2
	1.4 Do-file 的使用	4
	1.5 中文字符的支持	5
2	准备工作	5
	2.1 数据的导入	5
	2.2 下载扩展包	7
3	数据分析	7
	3.1 描述性统计	8
	3.2 相关系数矩阵	8
	3.3 最小二乘回归	S
4	结果报告	10
	4.1 logout 命令(统计表、相关系数矩阵表)	10
		11
5	统计制图 	19

^{*}本文中所使用的 Stata 软件版本为: Stata/SE 12.0 for Windows (32-bit)

[†]新浪微博名: stataclub。如果对本文有任何改进的意见,欢迎@stataclub 或发私信给我们。

1 简介

1.1 Stata 简介

Stata 与 SPSS、SAS 并称为当今三大统计软件。与后者相比,Stata 体积小巧、简单易懂且功能强大。Stata 把 EViews, SPSS 的傻瓜式菜单和 SAS 的命令、编程完美结合起来,所以它一推出就受到了初学者和高级用户的普遍欢迎。Stata 不仅在统计方面功能齐全,其在计量分析领域更是有着深刻影响,以至于有人一言以蔽之:"关于学习 Stata 的意义,大家只需知道:目前,Stata 是计量经济学,特别是微观计量经济学的主流软件。"[1]

1.2 Stata 软件的安装及界面介绍

下载好的 Stata 一般是绿色版压缩包,解压好后出现图 1 的文件夹即可。选中的 StataSE.exe 图标即为 Stata 软件,双击后得到图 2 的界面则说明打开了软件。

图 1: 解压后的绿色版 Stata 12.0 文件夹

在图 2 中,中间最大一块为"结果显示窗口",所有(除图片外)的结果都会在此处显示。其下面为"命令窗口"。它很扁的原因是 Stata 的语句一般都不长。左侧的"历史命令窗口"会显示之前的操作(红色命令行则说明操作有误),单击可将命令语句调入命令窗口,双击可直接运行;右侧上方为打开的数据库,两列分别为变量名(Variable)和标签(Label,即用于对变量进行说明),双击即可将变量名导入到命令窗口。右侧下方为变量详细特征。菜单栏中常用的为"Statistics",即"统计分析"菜单,可做各种统计分析。快捷按钮中前两个为"打开数据"、"保存数据",第 7 个至第 9 个分别为"打开 Do-file 窗口"、"编辑数据(Edit)"和"浏览数据(Browse)"。

1.3 Stata 操作方法介绍

在 Stata 中既可以使用类似 EViews, SPSS 的傻瓜式菜单的操作方式,也可以使用类似 SAS 的命令、编程的操作方式。以多元线性回归为例(见图 3), Stata 在进行回归时的三种操作方式如下:

1. **菜单式操作**,即在菜单栏中选择 Statistics 选项,然后在里面选择相应的统计分析项目。此处做的是多元线性回归,那么在下拉菜单中选 Linear models and related 中的 Linear regression,然后填入相应的因变量 (*price*)、自变量 (*mpg*, *weight*) 即可。故只要知道统计项目的英文名称,那么使用起来还是比较方便的:

图 2: Stata 12.0 软件界面

图 3: Stata 中的三种操作方式

- 2. **命令式操作**,即在 Stata 软件界面下方的 Command 命令窗口直接输入命令进行操作。由于 Stata 的命令简洁方便,所以很多用户在一开始就接受了这种操作方式。同时,在使用菜单式操作时,Stata 会在结果的上方输出对应的命令,所以这也帮助用户熟悉其命令格式。此处对于 $price = \beta_0 + \beta_1 mpg + \beta_2 weight + \varepsilon$ 的回归模型,Stata 命令为:
 - . regress price mpg weight
- 3. Do-file 编程式操作,即将若干条命令组合在一起,按需求加上一定的循环、条件语句而组成的程序,并运行。编程式操作一般是用户对命令非常熟悉时,并要完成批量或更为复杂的任务时所采用的操作方式。但是由于程序有很强的移植性,所以可以从其他人的 Do-file 程序中获取自己想要的,并进行局部修改即可为自己所用,而不必自己重新写代码。同时,Do-file 文档可以保存为*.do 的文本文件格式,方便修改和以后使用。由于此处只是一句命令语句,并不复杂,所以和命令式操作方式一致。

总结一下:这三种操作方式为初学者和高级用户均提供了合适的环境,一般是逐层递进的。但是我们首推后两种操作方式,因为它们效率高,并有很强的移植性,即简单修改方可为我们所用。而且 Do-file 编程式操作方便修改和保存。故我们后续介绍以后两种方式为主。

1.4 Do-file 的使用

由于 Do-file 编程式操作的诸多优点,故对其进行详细介绍。在图 2 的快捷按钮中选择第七个(即图中英文字母"D"上面的那个)打开 Do-file 编辑器。我们打开一个 Do-file 窗口,并输入一些 Stata 命令,如图 4 所示。

图 4: Stata 的 Do-file 窗口

在图 4 中,如要运行某几行命令语句(必须是连续的),则需要先选中语句,然后点击右上方的 "Execute (do)" 按钮运行;如果不选中语句而直接点击 "Execute (do)" 按钮,则会运行此 Do-file 中所有命令语句。注意,运行完 Do-file 后的结果依然是在"结果显示窗口"(见图 2)显示的,故点击按钮后不要傻傻地在 Do-file 窗口等着。

还需要说明的是,程序中绿色部分为**注释语句**¹,一般用于做标注²。若要注释某行语句可以以"*"、"//"(不包括引号)开始(如图 4 中第 1 行),这样会注释单行;若要注释多行,请将注释内容置于"/*"和"*/"(不包括引号)中(如图 4 中第 10 行)。注意: 三个斜杠"///"(不包括引号)并不是注释的意思,而是告诉Stata 此语句没有写完(如图 4 中第 7 行)。这一般在写长语句时为了层次分明而用。

如果要保存 Do-file 编程结果,可在 Do-file 窗口选择第三个保存命令。保存的文件的扩展名为*.do,此类文件可在下一次打开 Do-file 窗口后打开,也可用记事本打开。

¹给程序做注释是一个好习惯,因为程序如果写长,其可读性就会变弱。如果在程序命令行后及时做注释,不仅能让程序编写者思路清晰,方便修改、维护及查漏补缺,同时也方便了他人的阅读。

²如果你看到某些程序中有些语句被故意地注释掉,那么请不要惊讶为什么这些语句没有被删掉,因为这些语句有可能是程序编写者故意留下来的。其原因可能为:(1)此语句与前后某语句类似,即提供另一种实现方案;(2)此语句与其他语句冲突,但是稍作修改即可使用;(3)程序编写者编写时灵光一现写下的语句,这意味着之后的编写有可能会用得到。

1.5 中文字符的支持

Stata 对中文字符的支持力度不够3, 所以在下面的地方需要做适当调整:

- 显示窗口。若中文显示为乱码,请按图 5 的方法修改设置,即在 General Preferences 对话框中将 Color Scheme 改为 Simple 即可;
- Do-file。在 Do-file 窗口中输入、粘贴中文字符没问题。但是若在 Do-file 窗口中修改中文字符,那么一个字符要按两次删除键("Backspace"键)才能将其删除,否则会出现乱码。这是中文字符在 Stata 中储存方式的原因,初学者不必深究。

图 5: Stata 显示窗口中文字符显示乱码的调整办法

2 准备工作

2.1 数据的导入

数据分析的第一步是要有数据。一般我们的数据都是在 Excel 表格中,对于英文界面的 Stata 软件,也许导入数据就够读者头痛的了。下面介绍最简单⁴的导入方法。

Excel 数据 (*.xls/*.xlsx) 此类数据最常见。我们一般操作步骤为:

- 1. 打开 Excel, 如图 6 (a)。删除第一行的中文变量名,并修改成自定义的英文变量名⁵,如图 6 (b);
- 2. 选中第一行变量名及需要导入的数据(一般"全选"即可),按"复制";
- 3. 在 Stata 中按快捷键第 8 个打开数据编辑窗口⁶,右键后按 "粘贴"(或快捷键 "Ctrl + V"),如图 6 (c)。 此时 Stata 会询问第一行的数据是否视作变量名,点击 "Treat first row as variable names"即可自动将第一行英文字符作为变量名并将余下数据导入至 Stata 中,如图 6 (d)。此时数值变量默认为黑色,字符变量默认为红色。

注意:如果数据类型不统一,或是有非法字符(比如"#","="等),那么导入的时候会出现问题。建议数据在导入Stata 前需用 Excel 做预处理。

³估计对中国市场重视程度不高,应该今后的版本会改进

^{4&}quot;最简单"指的是在不涉及到批量导入、特殊类型数据导入的情况下导入数据的方法。

⁵变量名不能有空格,且尽可能地简单。一般我们会采用变量英文字母的缩写,如"股票价格 (Stock Code)"缩写为"stkcd","收盘价 (Closing Price)"缩写为"clsprc"。

⁶或直接在命令窗口输入 edit 命令并按回车。

(a) 在 Excel 中打开数据文件

(c) 在 Stata 数据编辑窗口右键按 "粘贴"("Paste")

(b) 将第一行变量名改为英文

(d) 导入 Stata 后的数据

图 6: Excel 型数据的导入

(c) 特殊粘贴对话框

(b) 将第一行变量名改为英文

(d) 导入 Stata 后的数据

图 7: 逗号分隔型数据的导入

制表符、逗号分隔型数据 (*.txt/*.csv) 及其他类型数据 此类数据导入至 Stata 的方法类似,以逗号分隔型数据 (*.csv) 为例,步骤如下:

- 1. 用记事本打开 *.csv 数据文件,如图 7 (a)。删除第一行的中文变量名,并修改成自定义的英文变量名,如图 7 (b);
- 2. 选中第一行变量名及需要导入的数据(一般"全选"即可),按"复制";
- 3. 在 Stata 中打开数据编辑窗口,此处右键后选择 "特殊粘贴" (或快捷键 "Ctrl + Alt + V"),然后弹出对话框如图 7 (c)。在窗口左侧显示多种数据分隔方式,可分别处理多种分隔格式的数据。如果剪贴板中的源数据是逗号分隔的,那么默认是"逗号 (Comma)"分隔形式。右侧有众多选项,此处我们还是勾选"Treat first row as variable names",即自动将第一行英文字符作为变量名并将余下数据导入至 Stata 中。点击"OK"即可导入数据,如图 7 (d)。

数据的打开、保存和清除 当导入上述数据后,数据则保存在内存当中。关闭数据编辑窗口即可在 Stata 的主界 面的右上方看到变量名一览表。此时可以进行数据的打开、保存和清除的工作:

• 保存数据。Stata 内存中的数据是 *.dta 格式,在图 2 所示的主界面点击第二个快捷按钮(或快捷键 "Ctrl + S"),指定路径和文件名即可保存数据文件。保存成功后我们发现结果显示窗口多了一行英文命令,而这就是 "保存数据" 操作的命令形式,其格式为:

. save [路径]文件名

- 清除数据。Stata 在工作时,只能在内存中打开一个*.dta 文件。如果要打开一个新的数据文件,必须先清空内存中已有的数据文件。执行清除数据可直接在命令窗口输入(输入后敲回车):
- 打开数据。在下次开始工作时,想打开已保存的*.dta 数据文件,可在图 2 所示的主界面点击第一个快捷按钮(或快捷键 "Ctrl + O"),找到数据文件打开即可。打开成功后,我们发现结果显示窗口多了一行英文命令,而这就是"打开数据"操作的命令形式,其格式为:
 . use [路径]文件名

2.2 下载扩展包

. clear

Stata 在分析这一块做得近乎完美,但是在结果报告这一块,特别是将结果导入 Word/Excel/LATEX 等软件时显得不便。好在 Stata 有较好的扩展性,已经有用户编写了扩展命令来解决此类问题,具体使用方法我们会在讲到"结果报告"(见第 4 节)一章再介绍。此处先介绍如何安装这些用户编写的命令。步骤如下:

- 1. 确保电脑已经联网;
- 2. 打开 Stata,在命令窗口按照如下格式输入命令: . ssc install 命令名(或者命令组)
- 3. 当输入完毕敲击回车后,一般等待半分钟即可下载并安装完毕。在 Stata 结果显示窗口会显示 installation complete.
- 一般地,我们会用到 estout, outreg2, logout 这几个用于输出结果的扩展包。

3 数据分析

将数据导入 Stata 后,我们便可做统计分析了。Stata 支持的统计分析很多,利用第 1.3 节所介绍的菜单式操作方法几乎可以完全所有的统计分析。不过我们在本文中只介绍最常用的。

3.1 描述性统计

对数据进行最基本的统计运算就是计算出各描述统计值,并将其汇总到一张表中。这里我们用到的是tabstat命令,其格式如下:

. tabstat 变量列表, stat(统计量列表)

例如在读入考试成绩数据文件 score.dta(其中包括姓名 name,语文成绩 ch,数学成绩 math 和英语成绩 eng)后,我们要列出考试成绩的最高分、最低分、平均分、中位数、标准差和有效试卷数(若要添加其他统计量,请参见表 1),则我们只需键入命令:

. tabstat ch math eng, stat(max min mean p50 sd n)

即可得到如下的结果:

. tabstat ch math eng, stat(max min mean p50 sd n)

stats	ch	math	eng
max	94	99	94
min	60	50	65
mean	77.43577	74.14541	79.38035
p50	77	73.5	80
sd	10.17742	24.12591	8.156854
N	397	392	390

统计量	含义	统计量	含义
mean count n sum max min range	均值 非缺失样本数 同上 求力值 最小值 max-min	semean skewness kurtosis p1 p5 p10 p50	sd/√n 偏度 蜂一分位位数 第五分位位数 中位数
sd variance	标准差 方差	median iqr	同上 p75-p25
cv	sd/mean		

3.2 相关系数矩阵

若要计算两个变量间的相关系数矩阵,则我们用到的是 pwcorr 命令 [2] 来计算变量成队相关系数 (Pairwise Correlation), 其格式如下:

. pwcorr 变量列表

如果要顺带要进行 t 检验,且显著性水平 $\alpha = 0.05$,那么命令格式为:

. pwcorr 变量列表, sig star(0.05)

比如用 Stata 自带的汽车数据 auto.dta 来作为例子⁷,现在对于汽车的价格 price、行驶里程数 mpg、车重 weight 以及车身长度 length等变量求相关矩阵,并做 t 检验(显著性水平 $\alpha=0.05$),那么我们依次键入下面两条命令(或编写 Do-file 文件并运行):

- . pwcorr price mpg weight length
- . pwcorr price mpg weight length, sig star(0.05)

有下面的运行结果:

. pwcorr price mpg weight length

(Continued on next page)

⁷利用命令 sysuse auto, clear 来打开。

	price	mpg	weight	length
price	1.0000			
mpg	-0.4686	1.0000		
weight	0.5386	-0.8072	1.0000	
length	0.4318	-0.7958	0.9460	1.0000
. pwcorr price	e mpg weigh	t length,	sig star(0.05)
	price	mpg	weight	length
price	1.0000			
mpg	-0.4686* 0.0000	1.0000		
weight	0.5386* 0.0000	-0.8072* 0.0000	1.0000	
length	0.4318* 0.0001	-0.7958* 0.0000		1.0000

3.3 最小二乘回归

下面介绍经典的最小二乘法,也叫做 OLS (Ordinary Least Squares)。如果构造的模型为

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k + \varepsilon$$

那么它在 Stata 中的命令为:

. regress y x1 x2 ... xk

例如仍旧用上面汽车数据 auto.dta 来作为例子, 欲构造的模型为

$$price = \beta_0 + \beta_1 mpg + \beta_2 weight + \beta_3 length + \varepsilon$$

那么应该键入如下命令:

. regress price mpg weight length

按回车后得到如下结果:

. regress price mpg weight length

Source	SS	df	MS		Number of obs	= 74
					F(3, 70)	= 12.98
Model	226957412	3 7	5652470.6		Prob > F	= 0.0000
Residual	408107984	70 E	830114.06		R-squared	= 0.3574
					Adj R-squared	= 0.3298
Total	635065396	73 8	8699525.97		Root MSE	= 2414.6
price	Coef.	Std. Er	r. t	P> t	[95% Conf.	<pre>Interval]</pre>
mpg	-86.78928	83.9433	35 -1.03	0.305	-254.209	80.63046
weight	4.364798	1.16745	3.74	0.000	2.036383	6.693213
length	-104.8682	39.7215	-2.64	0.010	-184.0903	-25.64607
_cons	14542.43	5890.63	32 2.47	0.016	2793.94	26290.93

这个回归报告的左上角是解释/残差/总平方和 (SSE/SSR/SST) 及自由度 (df) 等信息;右上角报告的分别是样本数 (n)、模型 F 检验值、p 值以及拟合优度 R^2 、调整 R^2 等信息;下半部分则分别列出了各回归变量前的系数 (Coefficient)、标准误 (se)、t 检验值、p 值和置信区间的信息。如何对模型进行分析及修正已经超越本文的范畴,相应的 Stata 命令也会在高级的 Stata 书籍内得到详细解释,具体请参见劳伦斯•汉密尔顿 [3] 和陈强 [4] 的有关书籍。

4 结果报告

我们知道,在一篇实证论文中,统计结果的报告与分析是论文中很重要的一块。"实证分析中最重要的就是各种表格"[2] 说的就是这个道理。虽然 Stata 报告的结果简单明了,但是直接粘贴到论文编辑软件中就会显得不是太正式,尤其在回归结果中很多值是冗余的。本节主要介绍如何将 Stata 结果以正规论文的格式来导入 Word中,至于导入 IAT_FX 中请主要参照 [5]。

4.1 logout 命令(统计表、相关系数矩阵表)

logout 命令用于将 Stata 的结果以表格的形式输出到 Word/Excel/IATEX 中。这个命令非常强大,但凡含有表格输出的 Stata 命令,均可以在命令前添加 logout,以使结果转换成需要的格式。这个命令在第一次使用时需要联网下载,具体请参见 2.2 节内容。

logout 命令的格式为:

. logout, 选项 : 主命令

其中选项有输出文件名 save()、输出格式 word, excel, tex 和是否覆盖同名文件 replace。如果输出 test.rtf 文件⁸,那么选项为 save(test) word;由于输出报告结果不是一次就成功的,我们就会反复进行尝试⁹,那么一般会加上 replace 选项;上述选项可以多个使用,使用的时候只需用空格隔开。而 logout 命令格式中的"主命令"则为 Stata 真正需执行的命令。一般我们将某条命令执行成功后,加上前面的 logout 命令及选项即可输出成表格。

例如要将 3.1 和 3.2 节的结果输出至 Excel 文档,那么可执行下面的 Do-file:

然后运行后 Stata 的结果窗口会出现如下蓝色的结果:

test2.xml

dir

其中第一个就是输出的结果,点击后可以用 Excel 软件打开;第二个点击后会弹出文件所在的文件夹。

需要注意的是,1ogout 命令得到的表格一般会存在错位和空行的现象,见表 2。这就需要手动做一些调整,如将第一行的表头往右移一列,p 值向右移,并将多余的行删掉,同时还要对 p 值加上括号,并在表的底端注明星号的含义。见表 3。

⁸logout 命令将输出的 Word/Excel 文件扩展名默认为 *.rtf/*.xml 格式,这是因为较 *.doc/*.xls 的常规格式来说,前者不仅可用 Word/Excel 打开,而且还可用其他软件打开,其应用更广。

⁹在反复尝试的时候,记得在运行命令之前将旧的 *.rtf/*.xml 文档关闭,否则新的文档将无法生成,并提示 file *.rtf is read-only; cannot be modified or erased 的错误。

表 2: 输出的相关矩阵表格 (test2.xml)

price	mpg	weight	length	
price	1			
mpg	-0.4686*	1		
0				
weight	0.5386*	-0.8072*	1	
0	0	0.0012	1	
1 .1	0.4010*	0.5050*	0.0400*	1
length	0.4318*	-0.7958*	0.9460*	1
0.000100	0	0		

表 3: 经调整后的相关矩阵表格

	price	mpg	weight	length
price	1			
mpg	-0.4686* (0.0000)	1		
weight	0.5386*	-0.8072*	1	
length	(0.0000) $0.4318*$ (0.0001)	(0.0000) $-0.7958*$ (0.0000)	0.9460* (0.0000)	1

*表示通过显著性水平 $\alpha = 0.05$ 的 t 检验。

4.2 esttab 命令(最小二乘回归表)

首先要明确的是,即使 logout 命令可将 3.3 节中的回归结果以表格形式输出到 Word 中,我们也千万不要这么做——我们只需要在论文中罗列出回归后的核心结果,而非所有结果。这些结果包括: 变量前的系数(必须)、t 检验值或者标准误(必须)、样本数 n、模型的拟合优度 R^2 、F 检验值等。

例如 3.3 节中的回归结果可以下面回归方程式或表格(见表 4)的形式报告出来(括号中的值为标准误):

price =
$$14542.43 - 86.79 \, mpg + 4.36 \, weight - 104.87 \, length + \varepsilon$$

$$(5890.63) \quad (83.94) \quad (1.17) \quad (39.72)$$

$$n = 74, \qquad R^2 = 0.3574, \qquad \overline{R}^2 = 0.3298$$

表 4: 表格式回归结果报告

(1)		
(1)		
price		
-86.79		
(83.94)		
4.365***		
(1.167)		
-104.9*		
(39.72)		
14542.4*		
(5890.6)		
74		
0.357		
0.330		

Standard errors in parentheses

表 5: 多个回归结果对比

	70 0 9 1 H /H /N /N /N		
	(1)	(2)	
	price	price	
mpg	-238.9***	-86.79	
	(53.08)	(83.94)	
weight		4.365***	
		(1.167)	
length		-104.9*	
		(39.72)	
_cons	11253.1***	14542.4*	
	(1170.8)	(5890.6)	
\overline{N}	74	74	
R^2	0.220	0.357	
adj. R^2	0.209	0.330	

Standard errors in parentheses

其中第一个回归方程式是无法用 Stata 来生成的,而第二个却可以使用 esttab 命令直接生成。而且在多个回归方程做对比的情况下,后者要比前者更有针对性。这个命令在第一次使用时需要联网下载¹⁰,具体请参见 2.2 节内容。

在使用 esttab 命令输出之前,我们需要现在 Stata 中运行 regress 的回归。接着,输出到 Word 中¹¹ 的 esttab 命令格式为:

. esttab using 文件名.rtf, r2 ar2 se replace nogap

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

 $^{^{10}}$ 此处联网下载的是名为 estout 的命令包,但是我们经常使用的是这个包里面的 esttab 命令。

¹¹输出到 IAT_FX 中只需将 esttab 命令格式中的 *.rtf 改为 *.tex。更多其他格式请在 Stata 命令窗口输入 help esttab 来获取帮助。

其中 r2, ar2 是分别输出 R^2 和 \overline{R}^2 的值; se 是表明括号中的值为标准误,否则会默认输出 t 检验值; replace 是覆盖同名文件; nogap 是忽略表格中的空行,否则在默认情况下表格中每个系数下都会有空行,会显得不够紧

如果要进行多个回归模型的对比,可以参考下面的 Do-file 文件。结果见表 5。

5 统计制图

如果要用统计图来描述结果,首先要明确你的目的,然后再在众多统计图中选择一个。一般统计图有下列几种(括号中的为特点): 散点图(观察两变量之间关系)、折线图(观察走势)、条形图(做对比)、饼图(所占比例)、直方图(分布)、箱线图(看五值信息)等,这些图的绘制请参见 [6]。在本节中,我们主要介绍与 3.2 和 3.3 节相关的统计图: 矩阵图和双变量散点 – 回归直线图。如果以 auto.dta 数据文件为例,我们可以写出如下 Do-file。结果见图 8 和图 9。

```
sysuse auto, clear
graph matrix price length weight mpg // 画出 price length weight mpg 变量的矩阵图
scatter price weight || lfit price weight // 画出 price, weight 变量的散点图并拟合直线
```


图 8: 矩阵图

图 9: 散点 - 回归直线图

参考文献

- [1] 《Stata 简明讲义》, 王非, 中国经济研究中心, ebwf@163.com
- [2] 《学会"懒惰"用好 Stata》,徐鑫,中南财经政法大学金融学院,2013.03, xuxinfinance@gmail.com
- [3] 《应用 Stata 做统计分析》, 劳伦斯·汉密尔顿等, 重庆大学出版社, 2011,
- [4] 《高级计量经济学及 Stata 应用》, 陈强, 高等教育出版社, 2010,
- [5] 《Stata 与 LATEX 的完美结合》, 连玉君, 中山大学岭南学院, 2007.08, arlionn@163.com
- [6] 《Stata 画图专题 (2): 基础绘图命令》, 中南财经政法大学 STATA 协会学术组, 中南财经政法大学, 2013.03