EC4.201/EC4.404: Mechatronics System Design

Harikumar Kandath and Nagamanikandan Govindan

Robotic Research Center, IIIT Hyderabad

harikumar.k@iiit.ac.in, nagamanikandan.g@iiit.ac.in

Lecture 1, Jan 04, 2025.

General Information

Mechatronics: Study of the integration of mechanical hardware, electrical/electronic hardware with computer hardware and software. Named by Tetsuro Mori from Japan when working with Yaskawa Electric Coorporation. Applications: Robotics, Aerospace industry, automotive industry, process industry etc.

Course Objective: To introduce the design and development of a mechatronic system.

Instructors: Harikumar Kandath and Nagamanikandan Govindan.

MSD1 (Course Contents -2 credit)

UNIT 1 \Diamond Sensors - structure of measurement systems, static characteristics, dynamic characteristics. \Diamond Sensors in robotics - position, speed, acceleration, orientation, range. \Diamond Actuators - general characteristics, motors, control valves.

Instructor: Harikumar Kandath

UNIT 2 \Diamond : Introduction to mechanical elements and transformations, basic concepts of kinematics and dynamics, Devise models for rotational, translational, electromechanical, and mechanical systems.

Instructor: Nagamanikandan Govindan

MSD (Course Contents - 4 credit)

UNIT 1 \Diamond Sensors - structure of measurement systems, static characteristics, dynamic characteristics. \Diamond Sensors in robotics - position, speed, acceleration, orientation, range. \Diamond Actuators - general characteristics, motors, control valves.

UNIT 3 \Diamond Computer-based feedback control: Sampled data control, sampling and hold, PID control implementation, stability, bilinear transformation.

Instructor: Harikumar Kandath

MSD (Course Contents - 4 credit)

UNIT 2 \Diamond : Introduction to mechanical elements and transformations, basic concepts of kinematics and dynamics, Devise models for rotational, translational, electromechanical, and mechanical systems.

UNIT 4 \Diamond Design and analysis of mechanisms.

UNIT 5 \Diamond Programming experiments.

Instructor: Nagamanikandan Govindan

References

- 1. Bentley, John P. "Principles of measurement systems," Pearson education, 2005.
- 2. D.R. Coughanowr, "Process system analysis and control," McGraw Hill, 1991.
- 3. G.F. Franklin, J.D. Powell and M.L. Workman, "Digital control of dynamic systems", Addison Wesley, 3rd edition, 1998.
- 4. Hartenberg, R., & Danavit, J, "Kinematic synthesis of linkages," McGraw Hill, 1964.
- 5. Robert L. Norton, "DESIGN OF MACHINERY", McGraw-Hill, 6th edition, 2019.
- 6. William Bolton, "Mechatronics: Electronic Control Systems in Mechanical and Electrical Engineering," Pearson, 6th edition, 2015.

Evaluation Scheme - MSD 1 (2 credit)

- Quiz: 20%.
- Assignments: 40%.
 Simulations (MATLAB/PYTHON)
 Design (Fusion 360 software)
 Using Sensors
- End Sem (Mid Sem) 40%

Evaluation Scheme - MSD (4 credit)

- Quiz 1 and Quiz 2: 20%.
- Mid Sem: 20%.
- Assignments: 30%.
 Simulations (MATLAB/PYTHON)
 Design (Fusion 360 software)
 Using Sensors
- Project 30% (Instructions will be provided later)

Basic Definitions

 $\textbf{System} \colon A \text{ physical/mathematical entity that takes an INPUT and generates an OUTPUT.}$

Dynamical System: A **System** for which current OUTPUT depends on current (and/or previous) INPUT and previous OUTPUT.

Process: Any activity through which a physical **system** generates an **information**.

Example 1: Position, velocity and acceleration of a ground robot or Unmanned Aerial Vehicle (UAV).

system: ground robot or UAV; **process**: system in motion; **information**: position, velocity and acceleration.

Example 2: Temperature of human body.

system: human body; **process**: overall activities (metabolism); **information**: temperature.

Measurement System

Measurement system: Links **process** to the **observer** by quantifying the **information** called **measurement**.

Figure: Purpose of measurement system

Measured value of variable (information) \approx True value of variable (information).

Structure of Measurement System

Measurement system: Contains four basic modules.

- Sensing element.
- Signal conditioning element.
- Signal processing element.
- Data presentation element.

Figure: Structure of measurement system

Sensing Element

Role: Maintains direct/indirect contact with the process and gives an output that is a function of the variable to be measured.

Example 1: Thermocouple gives voltage output as a function of input temperature.

Example 2: Orifice plate gives pressure difference output as a function of input flow rate.

Signal Conditioning Element

Role: To convert the output of sensing elements into a form suitable for further processing. The output will be usually, a DC current, DC voltage or AC voltage.

Example 1: Deflection bridge which converts an impedance change into a voltage change.

Example 2: Amplifier which amplifies millivolts to volts.

Example 3: Oscillator which converts an impedance change into a variable frequency voltage.

Sensing element OR sensing element + signal conditioning element is called a **Transducer**. It converts one form of energy to another form.

Signal Processing Element

Role: Takes the output of the signal conditioning element and converts it into a form more suitable for presentation.

Example 1: Analogue-to-digital converter (ADC) which converts a voltage into a digital form for input to a computer.

Example 2: Computer which calculates the measured value of the variable from the incoming digital data.

Data Presentation Element

Role: Takes the output of signal processing element and presents the measured value in a form which can be easily recognised by the observer.

Examples: point-scale indicator, chart recorder, visual display etc.

Examples of Measurement Systems

Static Characteristics of Measurement System

- Range
- Span
- Non-linearity
- Sensitivity
- Environmental effects
- Hysteresis
- Resolution
- Error

Range and Span

- Input range: Specified by the minimum and maximum values of input denoted by I_{MIN} and I_{MAX} respectively.
- Output range: Specified by the minimum and maximum values of output denoted by O_{MIN} and O_{MAX} respectively.
- Input span: Maximum variation in input $(I_{MAX} I_{MIN})$.
- Output span: Maximum variation in output $(O_{MAX} O_{MIN})$.

Example: A thermocouple may have input range of 100°C to 250°C and output range of 4 mV to 10 mV. Similarly, input span is 150°C (250°C - 100°C) and output span is 6 mV (10 mV - 4 mV).

Non-Linearity

Linearity: The relationship between input (I) and output (O) can be defined using a straight line.

$$O - O_{MIN} = \frac{O_{MAX} - O_{MIN}}{I_{MAX} - I_{MIN}} (I - I_{MIN}) \tag{1}$$

$$O-4=\frac{6}{150}(I-100) \tag{2}$$

Non-linearity, N(I)

$$N(I) = O(I) - (KI + a)$$
(3)

$$\hat{N} = \frac{\max(|N(I)|)}{O_{MAX} - O_{MIN}} \times 100\% \tag{4}$$

19 / 26

Harikumar Kandath and Nagamanikandan G

Lecture 1, Jan 04, 2025.

Sensitivity

Sensitivity (S) is the change in the output for a small change in the input.

$$S = \frac{\delta O}{\delta I} \tag{5}$$

when $\delta I \rightarrow 0$

$$S = \frac{dO}{dI} \tag{6}$$

$$S = \frac{d}{dI}(KI + a + N(I)) = K + \frac{dN(I)}{dI}$$
 (7)

Environmental Effects

- Modifying input: Changes the linear sensitivity, K is modified by $K + K_M I_M$. Here I_M is the modifying input with sensitivity K_M . Example: temperature is a modifying input for many sensors, like thermocouple.
- Interfering input: Zero bias is modified, a is modified to $a + K_I I_I$. Here I_I is the interfering input with sensitivity K_I . Example: temperature is also an interfering input for many sensors.

Hysteresis

Here for a given value of the input I, the output O may be different depending whether I is increasing or decreasing.

$$H(I) = O(I)_{<<} - O(I)_{>>}$$
 (8)

$$\hat{H} = \frac{\max(|H(I)|)}{O_{MAX} - O_{MIN}} \times 100\% \tag{9}$$

Resolution

Resolution (R) is the smallest change in the input that can be measured.

$$R = \frac{\Delta I_R}{I_{MAX} - I_{MIN}} \times 100\% \tag{10}$$

Error Band

Generalized model of a Measurement System

Generalized model of measurement system showing static and dynamic characteristics.

THANK YOU