模块四 综合提升篇 (★★★☆)

内容提要

本节归纳几类立体几何综合小题,类型 I 为空间角度的计算方法,较为简单,作为本节的铺垫. 类型 II 、III难度较高.

- 1. 线线角的计算:核心是通过平移使其相交,到三角形中来算.
- 2. 线面角的计算: 有两种几何的方法.
- ①作垂线:如图 1,要求直线 PA 与平面 α 所成的角,只需过 P 作 α 的垂线,找到垂足 O,求 $\angle PAO$.
- ②算距离: 如图 2,若不方便过 P 作平面 α 的垂线,也可用等体积法或其它方法求出点 P 到平面 α 的距离 d,再按 $\sin\theta = \frac{d}{PA}$ 来求线面角.
- 3. 二面角的计算:核心是作平面角,若与棱垂直的射线好找,则直接作,否则如图 3,可先过 α 内的点 P 作 β 的垂线,找到垂足 A,再过 P 作 l 的垂线 PO,垂足为 O,则由三垂线定理知 $l \perp OA$,所以 $\angle POA$ 即为二面角 $\alpha l \beta$ 的平面角,这种找二面角的方法叫做三垂线法,其中 PO 和 OA 的作法可交换.

- 4. 翻折问题:解决翻折问题的核心有两点.
- ①分析翻折前后未发生变化的几何关系,得出翻折后空间图形的几何特征,将问题明朗化.
- ②在翻折前后的图形中,抓住与折痕线垂直的直线,将空间的计算问题转换到平面上来进行.
- 5. 直线上的动点问题:例如,P 为定直线 AB 上的动点,这类问题除了几何法分析之外,还可考虑建系,借助 $\overrightarrow{AP} = \lambda \overrightarrow{AB}$ 将动点 P 的坐标表示成 λ ,用向量法分析问题.

典型例题

类型 I: 空间角的计算综合小题

【例 1】直三棱柱 $ABC - A_1B_1C_1$ 中, $\angle BCA = 90^\circ$, M, N 分别是 A_1B_1 , A_1C_1 的中点, $BC = CA = CC_1$,则 BM与 AN 所成角的余弦值为()

(A)
$$\frac{1}{10}$$
 (B) $\frac{2}{5}$ (C) $\frac{\sqrt{30}}{10}$ (D) $\frac{\sqrt{2}}{2}$

解析:求异面直线所成角,常考虑平移使共起点,观察发现可将 BM 移到 NQ 处,构造平行四边形,

取 BC 中点 Q,连接 AQ, QN, MN, 则 MN// B_1C_1 且 $MN = \frac{1}{2}B_1C_1$, 又 QB// B_1C_1 且 $QB = \frac{1}{2}B_1C_1$,

所以MN//QB且MN=QB,故MNQB为平行四边形,

所以 BM//NQ,故 $\angle ANQ$ 即为直线 BM 与 AN 所成的角,设 $BC = CA = CC_1 = 2$,

则
$$AN = \sqrt{AA_1^2 + A_1N^2} = \sqrt{5}$$
, $AQ = \sqrt{AC^2 + CQ^2} = \sqrt{5}$,

$$B_1M = \frac{1}{2}A_1B_1 = \frac{1}{2}\sqrt{A_1C_1^2 + B_1C_1^2} = \sqrt{2}$$
, $NQ = BM = \sqrt{BB_1^2 + B_1M^2} = \sqrt{6}$,

所以
$$\cos \angle ANQ = \frac{AN^2 + NQ^2 - AQ^2}{2AN \cdot NQ} = \frac{\sqrt{30}}{10}$$
.

答案: C

【反思】求异面直线所成的角,核心是平移为相交直线,常见的平移方法如平行四边形对边平行、三角形中位线平行于底边等.

【例 2】已知三棱锥 S-ABC 中,底面 ABC 为边长等于 2 的等边三角形,SA 垂直于底面 ABC,SA=3,那么直线 AB 与平面 SBC 所成角的正弦值为()

(A)
$$\frac{\sqrt{3}}{4}$$
 (B) $\frac{\sqrt{5}}{4}$ (C) $\frac{\sqrt{7}}{4}$ (D) $\frac{3}{4}$

解法 1: 由 SA 工面 ABC 和 AC = AB 可分析出 SC = SB ,故 ΔSBC 和 ΔABC 均满足等腰,且共底边 BC,这种模型中我们常取公共底边的中点,构造与公共底边垂直的截面来分析,

如图,取BC中点O,连接OS,OA,因为SA 上平面ABC,所以 $BC \perp SA$,

又 ΔABC 是正三角形,所以 $BC \perp OA$,故 $BC \perp$ 平面SOA,

作 $AD \perp SO$ 于 D, 连接 BD,则 $BC \perp AD$,所以 $AD \perp$ 平面 SBC,故 $\angle ABD$ 即为所求线面角,

由题意,
$$AB = 2$$
, $SA = 3$,所以 $OA = \sqrt{3}$, $SO = \sqrt{SA^2 + OA^2} = 2\sqrt{3}$,

由
$$S_{\Delta SOA} = \frac{1}{2}SA \cdot OA = \frac{1}{2}SO \cdot AD$$
可得 $AD = \frac{SA \cdot OA}{SO} = \frac{3}{2}$,所以 $\sin \angle ABD = \frac{AD}{AB} = \frac{3}{4}$.

解法 2: 注意到 SA 工面 ABC,所以三棱锥 S-ABC 的体积易求,故也可考虑用等体积法求出 A 到面 SBC 的距离 d,按 $\sin\theta = \frac{d}{AB}$ 来求线面角的正弦值,

取 BC 中点 O,连接 OS,由所给数据可求得 $SB=SC=\sqrt{13}$,所以 $SO \perp BC$,且 $SO=\sqrt{SC^2-OC^2}=2\sqrt{3}$,

因为
$$\frac{1}{3}S_{\Delta SBC} \cdot d = \frac{1}{3}S_{\Delta ABC} \cdot SA$$
,所以 $\frac{1}{3} \times \frac{1}{2} \times 2 \times 2\sqrt{3}d = \frac{1}{3} \times \frac{1}{2} \times 2 \times 2 \times \frac{\sqrt{3}}{2} \times 3$,解得: $d = \frac{3}{2}$,

故直线 AB 与平面 SBC 所成角的正弦值为 $\sin \theta = \frac{d}{AB} = \frac{3}{4}$.

答案: D

【**反思**】①找线面角的核心是过直线上的点作面的垂线,找到垂足,也就找到了线面角;②若没作出垂线,也可考虑像上面解法2那样,通过求点到平面的距离来算线面角.

【例 3】我国古代数学名著《九章算术》中,将底面是直角三角形的直三棱柱称为"堑堵",在如图所示的"堑堵"中, $AC = CB = CC_1$,则二面角 $C_1 - AB - C$ 的正切值为(

(A) 1 (B) 2 (C)
$$\frac{\sqrt{2}}{2}$$
 (D) $\sqrt{2}$

解析:面ABC的垂线比较明显,故用三垂线法找二面角,即只需过C作二面角棱的垂线即可,

如图,取AB中点D,连接CD, C_1D ,因为AC=CB,所以 $CD\perp AB$,

又 CC_1 上面ABC,由三垂线定理, $AB \perp C_1D$,所以 $\angle CDC_1$ 即为二面角 $C_1 - AB - C$ 的平面角,

不妨设
$$AC = CB = CC_1 = 2$$
,则 $CD = \sqrt{2}$,所以 $\tan \angle CDC_1 = \frac{CC_1}{CD} = \sqrt{2}$.

答案: D

【**反思**】作二面角的平面角常用三垂线法,即只需过一个面内的点向另一个面作垂线,找到垂足,再过垂足作二面角棱的垂线,就能找到二面角的平面角.

类型 II: 翻折问题

【例 4】如图,平面四边形 ABCD 中, ΔBCD 是边长为 2 的正三角形, $AB \perp AD$, AB = 1 ,现沿对角线 BD 将 ΔABD 折起到 $\Delta A'BD$,使 A' 在平面 BCD 内的射影 I 落在 ΔBCD 的中线 BE 上,则 BI = 1 .

解析: 若直接在 $\Delta A'BI$ 中用勾股定理求 BI,会发现 A'I 不好算,但若将翻折后空间图形中的 I 对应到翻折前的平面图形中去,算 BI 就成了初中问题,

如图 2,作 $A'O \perp BD$ 于 O, $A'I \perp 平面 BCD \Rightarrow BD \perp A'I$,所以 $BD \perp 平面 A'OI$,故 $BD \perp OI$,

注意到翻折前后 ΔBCD 和 $\Delta A'BD$ 内部点线的位置关系未变,故翻折前也应有 $BD \perp AO$, $BD \perp OI$,于是 I, O 在原图中的位置如图 1,接下来的计算可在图 1 中进行,

$$AB = 1 \Rightarrow OB = AB \cdot \cos \angle ABO = AB \cdot \frac{AB}{BD} = \frac{1}{2}$$
,由题意, $\angle OBI = 30^{\circ}$,所以 $BI = \frac{OB}{\cos \angle OBI} = \frac{\sqrt{3}}{3}$.

答案: $\frac{\sqrt{3}}{3}$

《一数•高考数学核心方法》

【变式】如图,在直角梯形 ABCD 中,AB//CD, AB=BC=2CD=2, $\angle DAB=90^{\circ}$,将 ΔACD 沿 AC 折起,使得 BD=AB .

- (1) 证明: 平面 ABC 上 平面 ACD;
- (2) 若 $BM \perp AD$ 于点 M, 求点 M 到平面 BCD 的距离.

解: (1)(折叠前,AB,BC,CD 已知,AD 未知,可过 C 作 AB 的垂线,构造一个矩形来分析)

如图 1,作 $CE \perp AB$ 于 E,因为 $\angle DAB = 90^{\circ}$,所以 CE //AD,结合 AB //CD 可得四边形 AECD 是矩形,所以 AE = CD = 1,又 AB = 2,所以 E 是 AB 的中点,故 AC = BC,

又 AB = BC = 2 , 所以 ΔABC 是边长为 2 的正三角形,故 $CE = \sqrt{3}$, $AD = \sqrt{3}$,

(要证面面垂直,先找线面垂直,可用逆推法,只需在一个面内找与交线垂直的直线,它必垂直于另一个平面,折叠前后 ΔABC 和 ΔACD 的形状未变,而 ΔABC 是正三角形,垂线更好作)

如图,取AC中点F,连接BF,DF,则 $BF \perp AC$,(要证 $BF \perp$ 面ACD,还差一条线,观察已知条件可发现约束折叠位置的是BD = AB,长度类条件证垂直,考虑勾股定理)

因为 $\angle ADC = 90^{\circ}$,所以 $DF = \frac{1}{2}AC = 1$,又BD = AB = 2, $BF = \sqrt{3}$,所以 $DF^2 + BF^2 = 4 = BD^2$,

故 $BF \perp DF$,结合 $BF \perp AC$,且 AC,DF 是平面 ACD 内的相交直线可得 $BF \perp$ 平面 ACD,又 $BF \subset$ 平面 ABC,所以平面 $ABC \perp$ 平面 ACD.

(2) 由 $BM \perp AD$, BD = AB 可得 M 为 AD 的中点,

(据此可将问题转化为求A到平面BCD的距离,观察发现已有BF上平面ACD,故用等体积法)

由(1)可得
$$S_{\Delta ACD} = \frac{1}{2}AD \cdot CD = \frac{1}{2} \times \sqrt{3} \times 1 = \frac{\sqrt{3}}{2}$$
, $BF = \sqrt{3}$, 所以 $V_{B-ACD} = \frac{1}{3}S_{\Delta ACD} \cdot BF = \frac{1}{3} \times \frac{\sqrt{3}}{2} \times \sqrt{3} = \frac{1}{2}$,

如图 2, 取 CD 中点 G, 连接 BG, 因为 BC=2, BD=2, CD=1, 所以 $BG \perp CD$,

且
$$CG = \frac{1}{2}$$
, $BG = \sqrt{BC^2 - CG^2} = \frac{\sqrt{15}}{2}$,所以 $S_{\Delta BCD} = \frac{1}{2}CD \cdot BG = \frac{1}{2} \times 1 \times \frac{\sqrt{15}}{2} = \frac{\sqrt{15}}{4}$,

设点 A 到平面 BCD 的距离为 d,则 $V_{A-BCD} = \frac{1}{3} S_{\Delta BCD} \cdot d = \frac{1}{3} \times \frac{\sqrt{15}}{4} d = \frac{\sqrt{15}}{12} d$,

因为
$$V_{A-BCD} = V_{B-ACD}$$
,所以 $\frac{\sqrt{15}}{12}d = \frac{1}{2}$,解得: $d = \frac{2\sqrt{15}}{5}$,

因为M为AD的中点,所以M到平面BCD的距离为 $\frac{\sqrt{15}}{5}$.

【总结】从上面两道题可以看出,求解翻折问题的核心有两点:①分析翻折前后未发生变化的几何关系;②抓住与折痕线垂直的直线,将空间的计算问题转换到平面上来处理.

类型III: 直线上的动点问题处理思路

【例 5】(多选)如图,在棱长为 2 的正方体 $ABCD - A_1B_1C_1D_1$ 中,E 为棱 AD 的中点,点 P 为线段 D_1B 上的动点,设 $D_1P = \lambda D_1B$,则()

(A) 当
$$\lambda = \frac{1}{3}$$
时, $EP//$ 平面 AB_1C

(B) 当
$$\lambda = \frac{1}{2}$$
时,*PE* 的长取得最小值 √2

(C)
$$PA + PC$$
 的最小值为 $\frac{4\sqrt{6}}{3}$

(D) 当
$$C_1$$
在平面 CEP 内时, $\lambda = \frac{1}{4}$

解析: 观察选项发现 $A \setminus B \setminus D$ 三个选项用几何方法分析不易,而图形又方便建系,故考虑建系. 那线段 D_1B 上的动点 P 的坐标如何写呢? 可由 $\overrightarrow{D_1P} = \lambda \overrightarrow{D_1B}$ 将点 P 的坐标用 λ 表示,用向量法来解决问题,

以 D 为原点建立如图 1 所示的空间直角坐标系,则 $D_1(0,0,2)$, B(2,2,0) , E(1,0,0) , D(0,0,0) , A(2,0,0) , $B_1(2,2,2)$, C(0,2,0) , 由题意, $D_1P=\lambda\overline{D_1B}$,

所以
$$\overrightarrow{DP} = \overrightarrow{DD_1} + \overrightarrow{D_1P} = \overrightarrow{DD_1} + \lambda \overrightarrow{D_1B} = (0,0,2) + \lambda(2,2,-2) = (2\lambda,2\lambda,2-2\lambda)$$
,故 $P(2\lambda,2\lambda,2-2\lambda)$,

A 项,当 $\lambda = \frac{1}{3}$ 时, $P(\frac{2}{3}, \frac{2}{3}, \frac{4}{3})$,要判断 A 项是否正确,只需看 \overrightarrow{EP} 与面 AB_1C 的法向量是否垂直,

$$\overrightarrow{EP} = (-\frac{1}{3}, \frac{2}{3}, \frac{4}{3}), \quad \overrightarrow{AB_1} = (0, 2, 2), \quad \overrightarrow{AC} = (-2, 2, 0), \quad \text{\&Pm } AB_1C \text{ his higher } \mathbf{m} = (x, y, z),$$

则
$$\begin{cases} \boldsymbol{m} \cdot \overrightarrow{AB_1} = 2y + 2z = 0 \\ \boldsymbol{m} \cdot \overrightarrow{AC} = -2x + 2y = 0 \end{cases}$$
, $\diamondsuit x = 1$, 则
$$\begin{cases} y = 1 \\ z = -1 \end{cases}$$
, 所以 $\boldsymbol{m} = (1, 1, -1)$ 是平面 AB_1C 的一个法向量,

因为
$$\overrightarrow{EP} \cdot m = -\frac{1}{3} \times 1 + \frac{2}{3} \times 1 + \frac{4}{3} \times (-1) = -1 \neq 0$$
,所以 EP 与平面 AB_1C 不平行,故A项错误;

B项,已有P,E的坐标,可用空间两点间的距离公式把PE表示成关于 λ 的函数,再分析最值,

$$PE = \sqrt{(2\lambda - 1)^2 + (2\lambda)^2 + (2-2\lambda)^2} = \sqrt{12\lambda^2 - 12\lambda + 5} = \sqrt{12(\lambda - \frac{1}{2})^2 + 2},$$

所以当 $\lambda = \frac{1}{2}$ 时,PE 取得最小值 $\sqrt{2}$,故 B 项正确;

 \mathbb{C} 项,求PA+PC 的最小值,可以理解成求从A 到 D_1B 上的点P,再到点C 的最短路径,涉及最短路径问题,可考虑将其展开到平面上来看,

如图 1,AB = BC = 2 , $AD_1 = CD_1 = 2\sqrt{2}$, $BD_1 = 2\sqrt{3}$,将 ΔABD_1 绕 BD_1 旋转至与 ΔBCD_1 在同一平面上,如图 2,当 P 与图中 P_0 重合时, PA + PC 取得最小值,且最小值为 AC,

由对称性,
$$AC = 2AP_0 = 2AB \cdot \sin \angle ABP_0 = 2AB \cdot \frac{AD_1}{BD_1} = 2 \times 2 \times \frac{2\sqrt{2}}{2\sqrt{3}} = \frac{4\sqrt{6}}{3}$$
,故 C 项正确;

D 项, C_1 在面 CEP 内等价于 C_1 ,C,E,P 四点共面,也等价于 \overline{EP} 是平面 ECC_1 内的向量,故应与该平面的法向量垂直,可由此求 λ ,

由图 1 可知 $C_1(0,2,2)$,所以 $\overrightarrow{CC_1} = (0,0,2)$, $\overrightarrow{CE} = (1,-2,0)$, 设平面 ECC_1 的法向量为 n = (x',y',z'),

则
$$\begin{cases} \boldsymbol{n} \cdot \overrightarrow{CC_1} = 2z' = 0 \\ \boldsymbol{n} \cdot \overrightarrow{CE} = x' - 2v' = 0 \end{cases}$$
, $\diamondsuit x' = 2$, 则
$$\begin{cases} y' = 1 \\ z' = 0 \end{cases}$$
, 所以 $\boldsymbol{n} = (2,1,0)$ 是平面 ECC_1 的一个法向量,

 $\overrightarrow{ZP} = (2\lambda - 1, 2\lambda, 2 - 2\lambda)$,所以 $\overrightarrow{EP} \cdot \mathbf{n} = 0$ 即为 $2(2\lambda - 1) + 2\lambda = 0$,解得: $\lambda = \frac{1}{3}$,故 D 项错误. 答案: BC

图1

【反思】当点在直线上运动时,可像本题这样由 $\overrightarrow{D_1P} = \lambda \overrightarrow{D_1B}$ 将P的坐标用 λ 表示.对于这种综合多选题, 一般优先考虑几何法,若几何法较难,也可建系处理.

强化训练

1.(2023•山西忻州模拟•★★★)如图,在四棱锥 P-ABCD中,平面 PAD ⊥平面 ABCD,四边形 ABCD是矩形, $PA = \sqrt{2}AB$,E,F 分别是棱 BC,PD 的中点,则异面直线 EF 与 AB 所成角的余弦值是()

- (A) $\frac{\sqrt{3}}{3}$ (B) $\frac{\sqrt{6}}{3}$ (C) $\frac{\sqrt{3}}{6}$ (D) $\frac{\sqrt{6}}{6}$

2. (★★★) 已知正三棱柱 $ABC - A_1B_1C_1$ 的侧棱长与底面边长相等,则 AB_1 与侧面 ACC_1A_1 所成角的正弦值

(A) $\frac{\sqrt{6}}{4}$ (B) $\frac{\sqrt{10}}{4}$ (C) $\frac{\sqrt{2}}{2}$ (D) $\frac{\sqrt{3}}{2}$

- 3. $(2023 \cdot 全国乙卷 \cdot ★★★)已知 △ABC 为等腰直角三角形,AB 为斜边,△ABD 为等边三角形,若二面$ 角C - AB - D为150°,则直线 CD与平面 ABC 所成角的正切值为()

- (A) $\frac{1}{5}$ (B) $\frac{\sqrt{2}}{5}$ (C) $\frac{\sqrt{3}}{5}$ (D) $\frac{2}{5}$

- 4. (2023 •新高考 II 卷 •★★★)(多选)已知圆锥的顶点为 P,底面圆心为 O,AB 为底面直径, $\angle APB = 120^{\circ}$, PA=2,点 C 在底面圆周上,且二面角 P-AC-O 为 45° ,则()
 - (A) 该圆锥的体积为π
- (B) 该圆锥的侧面积为 $4\sqrt{3}\pi$
- (C) $AC = 2\sqrt{2}$
- (D) ΔPAC 的面积为 $\sqrt{3}$
- 5. $(2022 \cdot 北京卷 \cdot ★★★)$ 已知正三棱锥 P-ABC 的六条棱长均为 6, S 是 $\triangle ABC$ 及其内部的点构成的 集合,设集合 $T = \{Q \in S \mid PQ \le 5\}$,则 T 表示的区域的面积为(
- (A) $\frac{3\pi}{4}$ (B) π (C) 2π (D) 3π

- 6. (2022 •福建模拟 •★★★★)(多选)如图,直角梯形 ABCD 中,AB // CD, AB ⊥ BC, $BC = CD = \frac{1}{2}AB = 1$, E 为 AB 中点,以 DE 为折痕把 ΔADE 折起,使点 A 到达点 P 的位置,使 $PC = \sqrt{3}$,则()
- (A) 平面 PED 上平面 PCD
- (B) $PC \perp BD$
- (C) 二面角P-DC-B的大小为 60°
- (D) PC 与平面 PED 所成角为45°

- 7. $(2023 \cdot 云南模拟 \cdot \star \star \star \star \star)$ (多选) 如图,正方体 $ABCD A_1B_1C_1D_1$ 的棱长为 2,点 $E \neq A_1B$ 的中点,点 P 是线段 D_1E 上的动点,则下列说法正确的是()
 - (A) $A_1C \perp D_1P$
- (B) CP 的最小值为 $\frac{4}{3}$
- (C) 三棱锥 $P-BC_1D$ 的体积为 $\frac{4}{3}$
- (D) 存在点 P, 使直线 CP 与平面 ABCD 所成角为 60°

《一数•高考数学核心方法》

- 8. $(2022 \cdot 山东模拟 \cdot \star \star \star \star \star)$ (多选) 在三棱锥 P-ABC 中, $AB \perp BC$, P 在底面 ABC 上的投影是 AC 中点 D, DP=DC=1,则下列结论中正确的是()
 - (A) PA = PB = PC
- (B) $\angle PAB$ 的取值范围为 $(\frac{\pi}{4}, \frac{\pi}{2})$
- (C) 若三棱锥 P-ABC 的四个顶点都在球 O 的表面上,则球 O 的表面积为 2π
- (D) 若 AB = BC, E 是棱 PC 上的一个动点,则 DE + BE 的最小值是 $\frac{\sqrt{6} + \sqrt{2}}{2}$