数值分析实验四

赵浩宇,2016012390, 计科 60

2018年5月1日

1 实验要求

考虑 n 阶希尔伯特矩阵 H_n , 其元素为 $h_{ij} = \frac{1}{i+j-1}$ 。

- (1) 按 ∞- 范数计算 H_3 , H_4 的条件数。
- (2) 令 n = 10, 生成 Hilbert 矩阵, 并构造向量 $b = H_n x$, 其中 x 是所有分量都是 1 的列向量, 用矩阵三角分解(LU 分解)的方法求解以 H_n 作为系数矩阵的线性方程组 $H_n x = b$, 得到近似解 \hat{x} , 计算残差 $r = b H_n \hat{x}$ 的 ∞ 范数 $||r||_{\infty}$, 以及误差 $\Delta x = \hat{x} x$ 的 ∞ 范数 $||\Delta x||_{\infty}$
- (3)(选做)由于上述矩阵为对称矩阵,采用平方根法(Cholesky 分解)重新求解上述方程,比较其与 LU 分解方法的运行效率。
- (4) 让上述线性方程组的右端项 b 产生 10^{-7} 的扰动,然后重新求解上述方程组,观察得到的解产生的误差的变化情况
 - (5) 减小或增大 n 的值, 观察 $||\Delta x||_{\infty}$ 的变化情况, n 取大约多少值时, 误差达到 100%?

2 算法描述

1. 首先求条件数的算法可分为两步,第一步是求出矩阵 A 的逆矩阵 A^{-1} ,第二步则是计算条件数。对于第一步,可以将矩阵写为 [AI],之后对这个矩阵进行行变换,对 A 进行高斯消元使其变为 I,那么复合矩阵变为 [I,B],那么 B 就是 A 的逆矩阵。这是因为

$$A^{-1}A = I \Rightarrow A^{-1}I = B \Rightarrow A^{-1} = B.$$

有了矩阵及其逆矩阵,求条件数只需要根据矩阵无穷范数的定义,找出行的绝对值和最大的即可。

2. 用 LU 分解法解方程的算法需要两步,第一步是对矩阵进行 LU 分解,第二步则是通过 LU 分解解出方程。首先 LU 分解可以使用公式,U 的第一行和 L 的第一列可以确定。

$$u_{1i} = a_{1i}, l_{i1} = \frac{a_{i1}}{a_{1}1}.$$

之后如果 L,U 的前 r-1 行和 r-1 列已知,那么可以得到

$$u_{ri} = a_{ri} - \sum_{k=1}^{r-1} l_{rk} u_{ki}, i = r, \dots, n.$$

同理也可以得到

$$u_{ri} = \frac{a_{ri} - \sum_{k=1}^{r-1} l_{ik} u_{kr}}{u_{rr}}, i = r+1, \dots, n.$$

则 LU 分解可以得到。下面进行第二步,假设我们要求解 Ax = b 而且 A = LU,那么首先可以求出 y 使得 Ly = b,这个求解比较容易,之后再求解 x 使得 Ux = y 即可。

3. 与 LU 分解法差不多, Cholesky 可以描述为如下算法

Input: A

Output: L, $\not\equiv P$ $A = LL^T$.

- 1: **procedure** Cholesky(A)
- 2: **for** j = 1, 2, ..., n **do**
- 3: $l_{jj} = (a_{jj} \sum_{k=1}^{j-1} l_{jk}^2)^{\frac{1}{2}}.$
- 4: $l_{ij} = (a_{ij} \sum_{k=1}^{j-1} l_{ik} l_{jk}) / l_{jj}, i = j+1, \dots, n.$
- 5: end for
- 6: end procedure

与 LU 分解法解方程相同,假设我们要求解 Ax = b 而且 $A = LL^T$,那么首先可以求出 y 使得 Ly = b,这个求解比较容易,之后再求解 x 使得 $L^Tx = y$ 即可。

3 程序清单

详细程序清单见表 1。

一	ル田
文件名称	作用
codes.cc	实验代码
lab.out	实验结果输出文件
report.tex	实验报告源码
${\rm report.pdf}$	实验报告

表 1: 程序清单

4 运行结果

- **1.** 计算可以得到,当 n=3 时,无穷范数意义下的条件数为 728。当 n=4 时,在无穷范数意义下的条件数为 28375。
- **2.** 下面给出 LU 分解,Cholesky 分解,与加入扰动之后的 LU 分解得到的 $||r||_{\infty}$, $||\Delta x||_{\infty}$,结果在表 2中给出。LU 分解与 Cholesky 分解得到的答案在 'lab.out' 中给出。同时对比 LU 分解与 Cholesky 分解的运行效率,可以知道 Cholesky 分解效率约为 LU 分解的一半左右。
- **3.** 当对 n 的值进行调整并且将结果进行输出,结果见表 3。可以看出,当 n=13 时,误差已经超过 100%。

原始及完整运行结果在'lab.out'文件中给出。

Method	$ r _{\infty}$	$ \Delta x _{\infty}$
LU	0.0000000000000	0.000436911530
Cholesky	0.0000000000000	0.000444585071
LU-Perturb	0.0000000000000	0.700640814414

表 2: 不同的计算方法对应的 $||r||_{\infty}, ||\Delta x||_{\infty}$

n	$ r _{\infty}$	$ \Delta x _{\infty}$
5	0.0000000000000	0.0000000000003
6	0.0000000000000	0.000000000425
7	0.0000000000000	0.000000015222
8	0.0000000000000	0.000000487042
9	0.0000000000000	0.000016869114
10	0.0000000000000	0.000436911530
11	0.0000000000000	0.009726486882
12	0.0000000000000	0.204232243715
13	0.0000000000000	6.493529661418
14	0.0000000000000	10.428207690148
15	0.0000000000000	8.355047567109
16	0.0000000000000	9.180072412591
17	0.0000000000000	18.416462283497
18	0.0000000000000	46.128917552869
19	0.0000000000000	13.341959391111
20	0.0000000000000	58.516277170010
21	0.0000000000000	61.697589597599
22	0.0000000000000	67.008000514975
23	0.0000000000000	171.558350683744
24	0.0000000000000	46.170493102604
25	0.0000000000000	151.476438012963
26	0.0000000000000	122.603044468031
27	0.0000000000000	61.096976107076
28	0.0000000000000	548.858039252004
29	0.0000000000000	82.203974368480

表 3: 不同的 n 对应的 $||r||_{\infty}, ||\Delta x||_{\infty}$

5 体会与展望

通过进行数值线性代数的实验,更深入的了解了 LU 分解以及 Cholesky 分解的算法以及运行效率。并且通过数值稳定性实验,知道了 Hilbert 矩阵的数值不稳定的性质,将数值分析理论与实践结合起来。