Bayesian Analysis of Galaxies for Physical Inference and Parameter EStimation

"bagpipes"
developed by A. C. Carnall - github.com/ACCarnall/bagpipes
Carnall+2018, Carnall+2019b

What is bagpipes?

python code for

- modelling galaxy spectra
- SED fitting
- spectroscopic fitting

today

SED fittingw/ HST & JWST photometry

→ prepped photometry catalog phot_cat_bagpipes.csv

What do we need?

- Photometry
 - flux and flux errors in several filter bands
 - from personal experience >5
- filter transmission curves

Abell 2744 galaxies (selected by eye)

DJA cutout
(GLASS+UNCOVER+DD-2756)

How does it work?

- bagpipes can fit single objects
- the better tool usually will be pipes.fit_catalogue()
 - define a load photometry function
 - a model component dictionary
 - global parameters redshift, velocity dispersion, ...
 - SFH parameters burst, constant, exponential, dblplaw, custom
 - Nebular component
 - Dust attenuation & emission

Outputs

- creates a catalogue

if you use pipes.fit_catalogue()

Δ	Index	Visible	Name	\$ID	Class	Description	Forma
0			Index	\$0	Long	Table row index	
1	1		#ID	\$1	Character		1A
2	2		burst:age 16	\$2	Double		D
3	3		burst:age 50	\$3	Double		D
4	4		burst:age_84	\$4	Double		D
5	5		burst:massformed 16	\$5	Double		D
6	6		burst:massformed 50	\$6	Double		D
7	7		burst:massformed 84	\$7	Double		D
8	8		burst:metallicity_16	\$8	Double		D
9	9		burst:metallicity 50	\$9	Double		D
10	10		burst:metallicity_84	\$10	Double		D
11	11		dust:Av_16	\$11	Double		D
12	12		dust:Av_50	\$12	Double		D
13	13		dust:Av 84	\$13	Double		D
14	14		nebular:logU 16	\$14	Double		D
15	15		nebular:logU 50	\$15	Double		D
16	16		nebular:logU_84	\$16	Double		D
17	17		redshift 16	\$17	Double		D
18	18		redshift_50	\$18	Double		D
19	19		redshift 84	\$19	Double		D
20	20		stellar_mass_16	\$20	Double		D
21	21		stellar mass 50	\$21	Double		D
22	22		stellar_mass_84	\$22	Double		D
23	23		formed mass 16	\$23	Double		D
24	24		formed_mass_50	\$24	Double		D
25	25		formed_mass_84	\$25	Double		D
26	26		sfr 16	\$26	Double		D
27	27		sfr 50	\$27	Double		D
28	28		sfr_84	\$28	Double		D
29	29		ssfr_16	\$29	Double		D
30	30			\$30	Double		D
31	31		ssfr_50	\$31	Double		D
32	31	×	ssfr_84		(T) (T) (T) (T) (T) (T)		0.000
33	33	×	nsfr_16	\$32	Double		D
34	34	~	nsfr_50	\$33 \$34	Double Double		D D
35	A 177.000	~	nsfr_84	7.70.01			0000
36	35	~	mass_weighted_age_16	\$35	Double		D
37	36	~	mass_weighted_age_50	\$36	Double		D
38	37	~	mass_weighted_age_84	\$37	Double		D
39	38 39	~	tform_16	\$38	Double		D D
40		\mathbf{x}	tform_50	\$39	Double		
41	40	\leq	tform_84	\$40	Double		D
	41	\leq	tquench_16	\$41	Double		D
42 43	42	\simeq	tquench_50	\$42	Double		D
	43	\mathbf{Z}	tquench_84	\$43	Double		D
44	44	\leq	UV_colour_16	\$44	Double		D
45	45	\mathbf{Z}	UV_colour_50	\$45	Double		D
46	46	\leq	UV_colour_84	\$46	Double		D
47	47	\checkmark	VJ_colour_16	\$47	Double		D
48	48	\leq	VJ_colour_50	\$48	Double		D
49	49	~	VJ_colour_84	\$49	Double		D
50	50	~	input_redshift	\$50	Double		D
51	51		log_evidence	\$51	Double		D
52	52	~	log_evidence_err	\$52	Double		D
53	53	~	chisq_phot	\$53	Double		D
54	54		n_bands	\$54	Double		D

Outputs

- creates a catalogue
- makes default plots
 (corner plot, posterior dist, fit, sfh)
 - latex!

Outputs

- creates a catalogue
- makes default plots (corner plot, posterior distributions, fit)
 - bagpipes uses latex, so it looks best when it finds a latex distribution
- saves posterior distributions in .h5 file
 - bagpipes returns & saves the median of the distribution and errors around that
 - can extract the max likelihood parameters & model
 - see on github.com bagpipes/examples/Further Examples 1 Extracting_the_maximum_likelihood_model.ipynb