

TD1 - Événements, tribus et applications mesurables *

1 - Intégrabilité, limsup, liminf

Exercice 1 : Fonction non Riemann intégrable

1) Soit h la fonction définie sur [0, 1] par

$$h(x) = \begin{cases} 1 & \text{si } x \in]0, 1], \\ 0 & \text{si } x = 0, \end{cases}.$$

Vérifier que *h* est Riemann intégrable.

- 2) Considérons $f(x) = \mathbf{1}_{[0,1] \cap \mathbb{O}}(x)$. Montrer que f n'est pas Riemann intégrable sur [0, 1].
- 3) Soit *g* la fonction définie sur [0, 1] par

$$g(x) = \begin{cases} 0 & \text{si } x \in [0, 1] \setminus \mathbb{Q}, \\ \frac{1}{q} & \text{si } x = \frac{p}{q}, \text{ avec pgcd}(p, q) = 1, 0$$

Montrer que g est Riemann intégrable et que $f = h \circ g$. Que peut-on en déduire?

4) On rappelle que $[0,1] \cap \mathbb{Q}$ est dénombrable et on note $(r_n)_{n \in \mathbb{N}^*}$ une numérotation de cet ensemble. On pose pour tout $n \in \mathbb{N}^*$, $f_n(x) = \mathbf{1}_{\{r_1,\dots,r_n\}}(x)$.

Montrer que f_n est Riemann intégrable sur [0, 1].

5) Montrer que $(f_n)_n$ converge simplement vers f. Que peut-on en déduire?

Exercice 2 : Limites supérieures et inférieures d'ensemble $\star\star\star$

Soit $(A_n)_{n\in\mathbb{N}}$ une suite de parties d'un ensemble Ω , on définit

$$\limsup A_n = \bigcap_{n \geq 0} \bigcup_{p \geq n} A_p \quad \text{ et } \quad \liminf A_n = \bigcup_{n \geq 0} \bigcap_{p \geq n} A_p.$$

Justifier que $\limsup_{n\to+\infty}A_n$ est l'ensemble des éléments de Ω apparte-

^{*}Pour toute typo/question, me contacter à clement.erignoux@inria.fr. Les fiches de TD seront uploadées sur ma page web, http://chercheurs.lille.inria.fr/cerignou/homepage.html. La difficulté de certains exercices est indiquée de ★ (facile) jusqu'à ★ ★ ★ (difficile).

nant à une infinité de A_n et $\liminf_{n\to+\infty}A_n$ est l'ensemble des éléments de Ω appartenant à tous les A_n sauf à un nombre fini.

2) Montrer que si $(A_n)_{n\in\mathbb{N}}$ est croissante pour l'inclusion, alors

$$\limsup_{n\to+\infty}A_n=\liminf_{n\to+\infty}A_n=\bigcup_{n\in\mathbb{N}}A_n.$$

3) Montrer que si $(A_n)_{n\in\mathbb{N}}$ est décroissante pour l'inclusion, alors

$$\limsup_{n\to+\infty}A_n=\liminf_{n\to+\infty}A_n=\bigcap_{n\in\mathbb{N}}A_n.$$

- 4) Calculer $\mathbf{1}_{\cup_{n\in\mathbb{N}}A_n}$, $\mathbf{1}_{\cap_{n\in\mathbb{N}}A_n}$, $\mathbf{1}_{\limsup A_n}$ et $\mathbf{1}_{\liminf A_n}$ en fonction des $\mathbf{1}_{A_n}$.
- 5) Montrer que
 - (i) $(\limsup A_n)^c = \liminf A_n^c$.
 - (ii) $\lim \inf A_n \subset \lim \sup A_n$.
 - (iii) $\limsup A_n = \{\sum_{n \in \mathbb{N}} \mathbf{1}_{A_n} = +\infty\}.$
 - (iv) $\liminf A_n = \{\sum_{n \in \mathbb{N}} \mathbf{1}_{A_n^c} < +\infty\}.$
 - (v) $\limsup (A_n \cup B_n) = \limsup A_n \cup \limsup B_n$.
 - (vi) $\limsup (A_n \cap B_n) \subset \limsup A_n \cap \limsup B_n$.
- 6) Calculer $\limsup A_n$ et $\liminf A_n$ dans les cas suivants :
 - (i) $A_n =]-\infty, a_n]$ avec $a_{2p} = 1 + \frac{1}{2p}$ et $a_{2p+1} = -1 \frac{1}{2p+1}$.
 - (ii) $A_{2p} =]0, 3 + \frac{1}{3p}[$ et $A_{2p+1} =] 1 \frac{1}{3p}, 2].$
 - (iii) $A_k = p_k \mathbb{N}$ où $(p_k)_{k \in \mathbb{N}}$ est la suite des nombres premiers.

Exercice 3 : Limites supérieures et inférieures de suites $\star\star$

Préambule : rappel. Soit $(u_n)_{n\in\mathbb{N}}$ une suite à valeurs dans $\overline{\mathbb{R}}$. On considère $U_n=\{u_m: m\geq n\}$. On définit alors les suites $(\underline{u}_n)_{n\in\mathbb{N}}$ et $(\overline{u}_n)_{n\in\mathbb{N}}$ par $\underline{u}_n=\inf\{u_m; m\geq n\}$ $\overline{u}_n=\sup\{u_m; m\geq n\}$.

Des inclusions $U_{n+1} \subset U_n$, on déduit facilement que la suite $(\underline{u}_n)_{n \in \mathbb{N}}$ est croissante et que la suite $(\overline{u}_n)_{n \in \mathbb{N}}$ est décroissante. Ces deux suites admettent donc des limites dans $\overline{\mathbb{R}}$. On pose alors

$$\lim \inf u_n = \lim_{n \to +\infty} \underline{u}_n \quad \lim \sup u_n = \lim_{n \to +\infty} \overline{u}_n.$$

On a donc $\liminf u_n = \sup_{n \in \mathbb{N}} \inf_{k \ge n} u_k$ et $\limsup u_n = \inf_{n \in \mathbb{N}} \sup_{k \ge n} u_k$.

- 1) Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle et majorée et soit $L\in\mathbb{R}$. Montrer que $L=\limsup_{n\to+\infty}u_n$ si et seulement si pour tout $\varepsilon>0$, il existe $n_0\in\mathbb{N}$ tel que $n\geq n_0\Longrightarrow u_n\leq L+\varepsilon$ et l'ensemble $\{n\in\mathbb{N}:L-\varepsilon\leq u_n\}$ est infini.
- 2) Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle et majorée et soit $\ell \in \mathbb{R}$. Montrer que $\ell = \liminf_{n \to +\infty} u_n$ si et seulement si pour tout $\varepsilon > 0$, il existe $n_0 \in \mathbb{N}$ tel que $n \ge n_0 \Longrightarrow \ell \varepsilon \le u_n$ et l'ensemble $\{n \in \mathbb{N} : u_n \le \ell + \varepsilon\}$ est infini.
- 3) Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle et soit $L=\limsup_{n\to+\infty}u_n$ et $\ell=\liminf_{n\to+\infty}u_n$. Montrer que L et ℓ sont des valeurs d'adhérences et que si d est une valeur d'adhérence de $(u_n)_{n\in\mathbb{N}}$, alors $\ell\leq d\leq L$.

- 4) Montrer qu'une suite réelle $(u_n)_{n\in\mathbb{N}}$ converge dans $\overline{\mathbb{R}}$ si et seulement si $\limsup_{n\to+\infty}u_n=\liminf_{n\to+\infty}u_n$ et dans ce cas, on a $\lim_{n\to+\infty}u_n=\limsup_{n\to+\infty}u_n$.
- 5) Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles. Montrer que
 - (i) $\limsup_{n\to+\infty} (-u_n) = -\liminf_{n\to+\infty} u_n$.
 - (ii) $\lim \inf_{n \to +\infty} (-u_n) = -\lim \sup_{n \to +\infty} u_n$.
 - (iii) $\liminf_{n\to+\infty}(u_n) + \liminf_{n\to+\infty}(v_n) \le \liminf_{n\to+\infty}(u_n+v_n)$.
 - (iv) $\limsup_{n\to+\infty} (u_n+v_n) \le \limsup_{n\to+\infty} (u_n) + \limsup_{n\to+\infty} (v_n)$.
 - (v) On suppose que $(u_n)_{n\in\mathbb{N}}$ converge dans \mathbb{R} . Montrer alors que :

$$\liminf_{n \to +\infty} (u_n + v_n) = \lim_{n \to +\infty} u_n + \liminf_{n \to +\infty} v_n$$

et

$$\lim_{n\to+\infty}\sup(u_n+v_n)=\lim_{n\to+\infty}u_n+\limsup_{n\to+\infty}v_n.$$

6) Soit $(A_n)_{n\in\mathbb{N}}$ une suite de parties d'un ensemble Ω . Montrer que pour tout $x\in\Omega$

$$\mathbf{1}_{\limsup_{n\to+\infty}A_n}(x)=\limsup_{n\to+\infty}\mathbf{1}_{A_n}(x)$$

$$\mathbf{1}_{\lim\inf_{n\to+\infty}A_n}(x)=\liminf_{n\to+\infty}\mathbf{1}_{A_n}(x)$$

2 - Rappels : indépendance, conditionnement

Exercice 4 : Quizz **

Pour chacune des assertions suivantes, donner soit une preuve, soit un contreexemple.

- 1) Si *A* et *B* sont deux événements indépendants et incompatibles alors l'un des deux événements au moins est de probabilité nulle.
- 2) Si l'un des événements A ou B est de probabilité nulle alors A et B sont indépendants et incompatibles.
- 3) Si un événement A est indépendant d'un événement B et d'un événement C, alors il est indépendant de $B \cup C$.
- 4) Si un événement A est indépendant d'un événement B et si C est un événement tel que $C \subset B$ alors A est indépendant de C.

Exercice 5 : Une inégalité injustement méconnue *

Sur l'espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$, on note A un événement quelconque et B un événement tel que $0 < \mathbb{P}(B) < 1$.

1) Montrez que

$$|\mathbb{P}(A \cap B) - \mathbb{P}(A)\mathbb{P}(B)| \le \frac{1}{4}|\mathbb{P}(A \mid B) - \mathbb{P}(A \mid B^c)|. \tag{1}$$

Indice : Commencez par exprimer $\mathbb{P}(A \mid B) - \mathbb{P}(A \mid B^c)$ en fonction des seules probabilités $\mathbb{P}(A \cap B)$, $\mathbb{P}(A)$, $\mathbb{P}(B)$.

- 2) Que donne l'inégalité (1) lorsque $A \subset B$?
- 3) Dans quels cas (1) est-elle une égalité?

Exercice 6 : Indépendance $\star \star \star$

Peut-il exister n événements indépendants de même probabilité p dont la réunion soit l'espace Ω tout entier?

3 - Tribus

Exercice 7 : Quizz *

Les affirmations suivantes sont-elles vraies ou fausses? Justifier brièvement ou donner un contre-exemple.

- 1) Soient \mathscr{T} et \mathscr{T}' deux tribus sur Ω . Alors $\mathscr{T} \cup \mathscr{T}'$ est une tribu sur Ω .
- 2) Si A est un ensemble inclus dans un ensemble B mesurable, alors A est mesurable.

Exercice 8 : Union et intersection de tribus $\star\star$

- 1) Soit $\Omega = \{1, 2, 3, 4\}.$
- (i) Identifier la tribu \mathcal{F}_1 , engendrée par le singleton $\{1\}$ et la tribu \mathcal{F}_2 engendrée par $\{2\}$.
 - (ii) Identifier $\mathcal{F}_1 \cap \mathcal{F}_2$ et $\mathcal{F}_1 \cup \mathcal{F}_2$. Est-ce que ce sont des tribus?
- 2) Soit Ω un ensemble quelconque et C_1 et C_2 des collections d'ensembles de Ω . Donc $C_i \subset \mathcal{P}(\Omega)$.
 - (i) Montrer que $\mathcal{F}_{C_1 \cap C_2} \subset \mathcal{F}_{C_1} \cap \mathcal{F}_{C_2}$.
 - (ii) Montrer qu'il n'est pas toujours vrai que $\mathcal{F}_{C_1} \cap \mathcal{F}_{C_2} \subset \mathcal{F}_{C_1 \cap C_2}$.
- 3) Soit $C \subset \mathcal{P}(\Omega)$.
- (i) Soit $C^c = \mathcal{P}(\Omega) \setminus C$. Est-il vrai que $\mathcal{F}_C \cap \mathcal{F}_{C^c} = \emptyset$? Est-il vrai que $\mathcal{F}_C = \mathcal{F}_{C^c}$?
 - (ii) Soit $C \subset \mathcal{P}(\Omega)$ et soit $\mathcal{D} = \{A \in \mathcal{P}(\Omega) | A^c \in C\}$. Est-il vrai que $\mathcal{F}_C = \mathcal{F}_{\mathcal{D}}$?

Exercice 9 : Tribu engendrée par une partition **

Soit E un ensemble et $\{E_1, E_2, \dots, E_n\}$ une partition de E, c'est-à-dire

$$E = \bigcup_{i=1}^{n} E_i, \qquad E_i \cap E_j = \emptyset, \ i \neq j.$$

Montrer que

$$\sigma(\lbrace E_1, E_2, \ldots, E_n \rbrace) = \left\{ \bigcup_{i \in I} E_i : I \subset \lbrace 1, 2, \ldots, n \rbrace \right\}.$$

Exercice 10: Ensemble engendrant la tribu borélienne

Soit $\mathcal{B}(]0,1[)$ la tribu Borélienne sur]0,1[.

- 1) Montrer que tout ouvert de]0, 1[peut s'écrire comme réunion dénombrable d'intervalles de]0, 1[de la forme $[r-\delta,r+\delta]$ où r et δ sont des rationnels de]0, 1[.
- 2) Montrer que $\mathcal{B}(]0,1[)$ est engendrée par chacune des familles suivantes :
 - (i) $C_1 = \{[a, b], a \le b, a, b \in]0, 1[\}.$
 - (ii) $C_2 = \{[a, b], a \le b, a, b \in]0, 1[\cap \mathbb{Q}\}.$
 - (iii) $C_3 = \{]0, t], t \in]0, 1[\}.$
 - (iv) $C_4 = \{]0, \frac{1}{2^n}[, [\frac{k}{2^n}, \frac{k+1}{2^n}[, n \in \mathbb{N}, k \in \{1, \dots 2^n 1\}\}.$
- 3) Considérons pour tout $n \in \mathbb{N}$ la famille suivante d'ensembles de]0,1[:

$$\mathcal{T}_n = \sigma(]0, 1/2^n[, [k/2^n, (k+1)/2^n], k \in \{1, \dots 2^n - 1\}).$$

Montrer que la suite des $(\mathscr{T}_n)_{n\in\mathbb{N}}$ est croissante au sens de l'inclusion mais que $\bigcup_{n\in\mathbb{N}}\mathscr{T}_n$ n'est pas une tribu.

Indication : on pourra vérifier que

$$\{1/2\} = \bigcap_{n \ge 1} \left[\frac{k_n}{2^n}, \frac{k_n + 1}{2^n} \right],$$

pour une certaine suite d'entiers $k_n \in \{1, \dots, 2^n - 1\}$ et raisonner par l'absurde en montrant que si $\bigcup_{n \in \mathbb{N}} \mathscr{T}_n$ est une tribu, alors $\{1/2\} \in \mathscr{T}_n$, pour un certain n. On conclura à une absurdité en utilisant l'Exercice 9.

Exercice 11: Tribu produit

Soient (E,\mathcal{T}) et (E',\mathcal{T}') deux espaces mesurables. On note, pour toutes familles $\mathscr{F}\subset \mathscr{T}$ et $\mathscr{F}'\subset \mathscr{T}'$, $\mathscr{F}\otimes \mathscr{F}':=\sigma(\{A\times B,\ A\in \mathscr{F},\ B\in \mathscr{F}'\})$. En particulier, pour $\mathscr{F}=\mathscr{T}$ et $\mathscr{F}'=\mathscr{T}'$, on appelle $\mathscr{T}\otimes \mathscr{T}'$ la tribu produit sur $E\times E'$.

Supposons que $\mathscr{T} = \sigma(\mathscr{F})$, $\mathscr{T}' = \sigma(\mathscr{F}')$ et $(E, E') \in \mathscr{F} \times \mathscr{F}'$. Le but de l'exercice est de montrer que $\mathscr{F} \otimes \mathscr{F}' = \mathscr{T} \otimes \mathscr{T}'$.

- 1) Vérifier que $\mathscr{F} \otimes \mathscr{F}' \subset \mathscr{T} \otimes \mathscr{T}'$.
- 2) Soit $B \in \mathcal{F}'$ et notons

$$\Lambda_B = \{ A \in \mathcal{T} : A \times B \in \mathcal{F} \otimes \mathcal{F}' \}.$$

Montrer que Λ_B est une tribu sur E qui contient \mathcal{T} .

3) Soit $A \in \mathcal{T}$ et notons

$$\mu_A = \{B \in \mathscr{T}' : A \times B \in \mathscr{F} \otimes \mathscr{F}'\}.$$

Montrer que μ_A est une tribu sur E' qui contient \mathscr{T}' .

4) Conclure.

Exercice 12 : Tribu engendrée par les singletons

Soit Ω un ensemble non vide et $\mathscr{T} = \{A \in \mathcal{P}(\Omega) : A \text{ dénombrable ou } \Omega \setminus A \text{ dénombrable} \}.$

- 1) Vérifier que \mathcal{T} est une tribu sur Ω .
- 2) Montrer que la tribu engendrée par les singletons de Ω est \mathcal{I} .
- 3) Quelle est la tribu engendrée par l'ensemble des parties finies de Ω ?

Exercice 13: Une autre tribu sur $\mathbb R$

On munit \mathbb{R} de la tribu borélienne $\mathcal{B}(\mathbb{R})$.

On définit l'ensemble

$$C = \{A \in \mathcal{B}(\mathbb{R}) \text{ tel que } A = -A\},$$

où $-A = \{-x; x \in A\}$ désigne l'ensemble des opposés des éléments de A.

- 1) Montrer que C est une tribu.
- 2) Décrire les intervalles [a,b] qui appartiennent à C.
- 3) Décrire les ensembles $\{a, b\}$ qui appartiennent à C.

Exercice 14 : Points de convergence d'une suite d'applications $\star \star$

Soit $(f_n)_n$ une suite d'applications continues de \mathbb{R} dans lui-même.

- 1) Soit $x \in \mathbb{R}$. Montrer que $(f_n(x))_n$ converge vers l si et seulement si pour tout $n \in \mathbb{N}^*$, il existe $k \in \mathbb{N}$ tel que pour tout $l \ge k$, $|f_l(x) l| < \frac{1}{n}$.
- 2) Soit $A = \{x \in \mathbb{R} : f_n(x) \xrightarrow[n \to +\infty]{} 0\}$. Montrer que

$$A = \bigcap_{n \in \mathbb{N}^*} \bigcup_{k \in \mathbb{N}} \bigcap_{l > k} f_l^{-1}] - 1/n, 1/n[.$$

En déduire que A est un borélien de \mathbb{R} .

- 3) Montrer que $B = \{x \in \mathbb{R} : (f_n(x))_n \text{ admet } 0 \text{ comme valeur d'adhérence} \}$ est un borélien de \mathbb{R} .
- 4) Soit $C = \{x \in \mathbb{R} : (f_n(x))_{n \ge 1} \text{ converge simplement} \}$ En procédant comme dans les questions 1) et 2) avec le critère de Cauchy, montrer que C est un borélien de \mathbb{R} .

Exercice 15 : Les boréliens de Q

Montrer que $\mathcal{B}(\mathbb{Q}) = \mathcal{P}(\mathbb{Q})$.

4 - Applications mesurables

Exercice 16 : Applications mesurables pour la tribu grossière, triviale

Quelles sont les applications mesurables h de (E, \mathcal{T}) dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ lorsque \mathcal{T} est la tribu grossière? lorsque \mathcal{T} est la tribu triviale?

Exercice 17: Quizz

Soient f et g des applications d'un espace mesurable (E, \mathcal{T}) à valeurs dans \mathbb{R} muni de sa tribu borélienne. Les affirmations suivantes sont-elles vraies ou fausses? Justifier brièvement ou donner un contre-exemple.

- 1) Si f est $(\mathcal{T}, \mathcal{B}(\mathbb{R}))$ -mesurable, alors |f| est aussi $(\mathcal{T}, \mathcal{B}(\mathbb{R}))$ -mesurable.
- 2) Si f et g sont $(\mathcal{T}, \mathcal{B}(\mathbb{R}))$ -mesurables, alors les fonctions $\max(f, g)$ et $\min(f, g)$ sont aussi $(\mathcal{T}, \mathcal{B}(\mathbb{R}))$ -mesurables.
- 3) Si |f| est $(\mathcal{T}, \mathcal{B}(\mathbb{R}))$ -mesurable, alors f est aussi $(\mathcal{T}, \mathcal{B}(\mathbb{R}))$ -mesurable.

Exercice 18: Partitions et fonctions mesurables

Soit $(A_n)_{n\in I}$ une partition d'un ensemble E où $I\subset \mathbb{N}$.

- 1) Caractériser les éléments de la tribu $\mathscr{T} := \sigma(\{A_n : n \in I\})$ lorsque $I = \{0\}$, $I = \{0, 1\}$, $I = \{0, 1, 2\}$, $I = \mathbb{N}$.
- 2) Soit f une fonction mesurable de (E, \mathcal{T}) dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Montrer que f est constante sur chaque A_n . En déduire la forme générale des applications mesurables pour I comme dans la question a).

Exercice 19 : Résultats essentiels à retenir! $\star \star \star$

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions mesurables d'un espace mesurable (E,\mathcal{T}) à valeurs dans \mathbb{R} muni de la tribu borélienne. Montrer que l'on a les propriétés suivantes :

- 1) En considérant les images réciproques de $]-\infty,a]$ pour $a\in\mathbb{R}$, montrer que $\sup_n(f_n)$ est mesurable.
- 2) Montrer que $\inf_n(f_n)$ est mesurable.
- 3) Si la suite $(f_n)_{n\in\mathbb{N}}$ converge simplement vers la fonction f, montrer que pour tout $a\in\mathbb{R}$,

$$f^{-1}(]-\infty,a])=\bigcap_{p\in\mathbb{N}^*}\bigcup_{n\in\mathbb{N}}\bigcap_{k\geq n}f_k^{-1}\left(\left]-\infty,a+\frac{1}{p}\right]\right).$$

En déduire que f est mesurable.

- 4) $\limsup_{n\to+\infty} f_n$ et $\liminf_{n\to+\infty} f_n$ sont mesurables.
- 5) Reprendre l'exercice avec $\overline{\mathbb{R}}$ muni de la tribu borélienne.

Exercice 20: Une fonction mesurable non continue

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par : $f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$ si $(x,y) \neq (0,0)$ et f(0,0) = 0. Montrer que f est mesurable mais n'est pas continue en (0,0).

Exercice 21 : Une dérivée est toujours mesurable! **

Soit $f: \mathbb{R} \to \mathbb{R}$ dérivable. Montrer que f' est mesurable.

Exercice 22: Une fonction monotone est mesurable

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction monotone.

- 1) Montrer que, pour tout $c \in \mathbb{R}$, $f^{-1}(]-\infty,c[)$ est convexe.
- 2) En déduire que *f* est mesurable.

Exercice 23: Retour sur l'exercice 13

On reprend la tribu C sur \mathbb{R} défini dans l'exercice 13.

1) Les fonctions suivantes sont-elles mesurables de (\mathbb{R}, C) dans lui même?

$$f_1: x \mapsto e^x, \quad f_2: x \mapsto x^5, \quad f_3: x \mapsto \cos(x)$$

$$f_4: x \mapsto \begin{cases} x & \text{si } x \in [-1, 1] \\ 3x^2 & \text{sinon} \end{cases}$$

2) Même question avec la $(C, \mathcal{B}(\mathbb{R}))$ -mesurabilité.

Exercice 24: Ensemble où deux fonctions mesurables coincident

Soient f,g deux applications mesurables d'un espace mesurable (E,\mathcal{T}) à valeurs dans $\overline{\mathbb{R}}$ (muni de la tribu borélienne). Montrer que $\{x \in E : f(x) = g(x)\} \in \mathcal{T}$.

 $\it Indication:$ on prendra garde au fait que les fonctions $\it f$ et $\it g$ peuvent prendre des valeurs infinies....

Exercice 25 : Mesurabilité de limites de fonctions mesurables

Soit (E,d) un espace métrique et (E,\mathcal{T}) un espace mesurable. Soit $(f_n)_{n\in\mathbb{N}}$ une suite d'applications de E dans E qui sont $(\mathcal{T},\mathcal{B}(E))$ -mesurables.

- 1) Supposons dans cette question que $(f_n)_n$ converge simplement vers une application f. Montrer que f est $(\mathcal{T}, \mathcal{B}(E))$ -mesurable.
- 2) Supposons que *E* soit complet. Montrer que

 $\{x \in E : (f_n(x))_n \text{ converge simplement}\} \in \mathscr{T}.$