11. Extremwerte unter Nebenbedingungen

Definition

Seien M, N Mengen $\neq \emptyset$, $f: M \to N$ eine Funktion und $\emptyset \neq T \subseteq M$. Die Funktion $f_{|T}: T \to N$, $f_{|T}(x) := f(x) \ \forall x \in T$ heißt die **Einschränkung** von f auf T.

In diesem Paragraphen gelte stets: $\emptyset \neq D \subseteq \mathbb{R}^n$, D offen, $f \in C^1(D, \mathbb{R})$, $p \in \mathbb{N}$, p < n und $\varphi = (\varphi_1, \dots, \varphi_p) \in C^1(D, \mathbb{R}^p)$. Es sei $T := \{x \in D : \varphi(x) = 0\} \neq \emptyset$.

Definition

f hat in $x_0 \in D$ ein lokales Extremum unter der Nebenbedingung $\varphi = 0 : \iff x_0 \in T$ und $f_{|_T}$ hat in x_0 ein lokales Extremum.

Wir führen folgende Hilfsfunktion ein: Für $x = (x_1, \dots, x_n) \in D$ und $\lambda = (\lambda_1, \dots, \lambda_p) \in \mathbb{R}^p$ gilt:

$$H(x,\lambda) := f(x) + \lambda \cdot \varphi(x) = f(x) + \lambda_1 \varphi_1(x) + \dots + \lambda_p \varphi_p(x)$$

Es ist

$$H_{x_j} = f_{x_j} + \lambda_1 \frac{\partial \varphi_1}{\partial x_j} + \cdots + \lambda_p \frac{\partial \varphi_p}{\partial x_j} \ (j = 1, \dots, n), \ H_{\lambda_j} = \varphi_j$$

Für $x_0 \in D$ und $\lambda_0 \in \mathbb{R}^p$ gilt:

$$H'(x_0, \lambda_0) = 0 \iff f'(x_0) + \lambda_0 \varphi'(x_0) = 0 \text{ und } \varphi(x_0) = 0$$

 $\iff f'(x_0) + \lambda_0 \varphi'(x_0) = 0 \text{ und } x_0 \in T \text{ (I)}$

Satz 11.1 (Multiplikationenregel von Lagrange)

f habe in $x_0 \in D$ eine lokales Extremum unter der Nebenbedingung $\varphi = 0$ und es sei Rang $\varphi'(x_0) = p$. Dann existiert ein $\lambda_0 \in \mathbb{R}^p$ mit: $H'(x_0, \lambda_0) = 0$ (λ_0 heißt **Multiplikator**).

Folgerung 11.2

T sei beschränkt und abgeschlossen. Wegen 3.3 gilt: $\exists a,b \in T: f(a) = \max f(T), \ f(b) = \min f(T)$. Ist Rang $\varphi'(a) = p \implies \exists \lambda_0 \in \mathbb{R}^p: H'(a,\lambda_0) = 0$.

Beweis

Es ist $x_0 \in T$ und

$$\varphi'(x_0) = \underbrace{\begin{pmatrix} \frac{\partial \varphi_1}{\partial x_1}(x_0) & \cdots & \frac{\partial \varphi_1}{\partial x_p}(x_0) \\ \vdots & & \vdots \\ \frac{\partial \varphi_p}{\partial x_1}(x_0) & \cdots & \frac{\partial \varphi_p}{\partial x_p}(x_0) \end{pmatrix}}_{=:A} \quad \cdots \quad \frac{\frac{\partial \varphi_1}{\partial x_n}(x_0)}{\frac{\partial \varphi_p}{\partial x_n}(x_0)}$$

Rang $\varphi'(x_0) = p \implies \text{o.B.d.A.: } \det A \neq 0.$

Für $x=(x_1,\ldots,x_n)\in D$ schreiben wir x=(y,z), wobei $y=(x_1,\ldots,x_p),\ z=(x_{p+1},\ldots,x_n).$ Insbesondere ist $x_0=(y_0,z_0).$ Damit gilt: $\varphi(y_0,z_0)=0$ und $\det\frac{\partial \varphi}{\partial y}(y_0,z_0)\neq 0.$

Aus 10.1 folgt: \exists offene Umgebung $U \subseteq \mathbb{R}^{n-p}$ von z_0 , \exists offene Umgebung $V \subseteq \mathbb{R}^p$ von y_0 und es existiert $g \in C^1(U, \mathbb{R}^p)$ mit:

$$(II) \ g(z_0) = y_0$$

(III)
$$\varphi(q(z), z) = 0 \ \forall z \in U$$

(IV)
$$g'(z_0) = -\left(\frac{\partial \varphi}{\partial y} \underbrace{(g(z_0), z_0)}_{=x_0}\right)^{-1} \frac{\partial \varphi}{\partial z} \underbrace{(g(z_0), z_0)}_{=x_0}$$

(III) \implies $(g(z), z) \in T \ \forall z \in U$. Wir definieren h(z) durch

$$h(z) := f(g(z), z) \ (z \in U)$$

Dann hat h in z_0 ein lokales Extremum (ohne Nebenbedingung). Damit gilt nach 8.1:

$$0 = h'(z_0) \stackrel{5.4}{=} f'(g(z_0), z_0) \cdot \begin{pmatrix} g'(z_0) \\ I \end{pmatrix} = \begin{pmatrix} \frac{\partial f}{\partial y}(x_0) \mid \frac{\partial f}{\partial z}(x_0) \end{pmatrix} \cdot \begin{pmatrix} g'(z_0) \\ I \end{pmatrix} = \frac{\partial f}{\partial y}(x_0)g'(z_0) + \frac{\partial f}{\partial z}(x_0)g'(z_0) + \frac{$$

$$\stackrel{\text{(IV)}}{=} \underbrace{\frac{\partial f}{\partial y}(x_0) \left(-\frac{\partial \varphi}{\partial y}(x_0) \right)^{-1}}_{=:\lambda_0 \in \mathbb{R}^p} \underbrace{\frac{\partial \varphi}{\partial z}(x_0) + \frac{\partial f}{\partial z}(x_0)}_{=:\lambda_0 \in \mathbb{R}^p} \Longrightarrow \underbrace{\frac{\partial f}{\partial z}(x_0) + \lambda_0 \frac{\partial \varphi}{\partial z}(x_0) = 0 \text{ (V)}$$

$$\lambda_0 = \frac{\partial f}{\partial y}(x_0) \left(-\frac{\partial \varphi}{\partial y}(x_0) \right)^{-1} \implies \frac{\partial f}{\partial y}(x_0) + \lambda_0 \frac{\partial \varphi}{\partial y}(x_0) = 0 \text{ (VI)}$$

Aus (V),(VI) folgt: $f'(x_0) + \lambda_0 \varphi'(x_0) = 0 \stackrel{\text{(I)}}{\Longrightarrow} H'(x_0, \lambda_0) = 0.$

Beispiel

Desipper
$$(n=3,p=2)$$
 $f(x,y,z)=x+y+z,$ $T:=\{(x,y,z)\in\mathbb{R}^3:x^2+y^2=2,$ $x+z=1\},$ $\varphi(x,y,z)=(x^2+y^2-2,x+z-1).$

Bestimme $\max f(T)$, $\min f(T)$. Übung: T ist beschränkt und abgeschlossen $\stackrel{3.3}{\Longrightarrow} \exists a,b \in T$: $f(a) = \max f(T), \ f(b) = \min f(T).$

$$\varphi'(x,y,z) = \left(\begin{array}{ccc} 2x & 2y & 0\\ 1 & 0 & 1 \end{array}\right)$$

Rang $\varphi'(x, y, z) = 1 <math>a, b \in T \implies \text{Rang } \varphi'(a) = \text{Rang } \varphi'(b) = 2$ $H(x, y, z, \lambda_1, \lambda_2) = x + y + z + \lambda_1(x^2 + y^2 - 2) + \lambda_2(x + z - 1)$

$$\begin{split} H_x &= 1 + 2\lambda_1 x + \lambda_2 \stackrel{!}{=} 0 \ (1) \\ H_y &= 1 + 2\lambda_1 y & \stackrel{!}{=} 0 \ (2) \\ H_z &= 1 + \lambda_2 & \stackrel{!}{=} 0 \ (3) \\ H_{\lambda_1} &= x^2 + y^2 - 2 & \stackrel{!}{=} 0 \ (4) \\ H_{\lambda_2} &= x + z - 1 & \stackrel{!}{=} 0 \ (5) \end{split}$$

(3)
$$\Longrightarrow \lambda_2 = -1 \stackrel{(1)}{\Longrightarrow} 2\lambda_1 x = 0;$$
 (2) $\Longrightarrow \lambda_1 \neq 0 \implies x = 0 \stackrel{(5)}{\Longrightarrow} z = 1;$ (4) $\Longrightarrow y = \pm \sqrt{2}$
11.2 $\Longrightarrow a, b \in \{(0, \sqrt{2}, 1), (0, -\sqrt{2}, 1)\}$
 $f(0, \sqrt{2}, 1) = 1 + \sqrt{2} = \max f(T); \ f(0, -\sqrt{2}, 1) = 1 - \sqrt{2} = \min f(T)$

Anwendung Sei A eine reelle, symmetrische $(n \times n)$ -Matrix. Beh: A besitzt einen reellen EW.

Beweis

 $f(x) := x \cdot (Ax) = Q_A(x) \ (x \in \mathbb{R}^n), \ T := \{x \in \mathbb{R}^n : ||x|| = 1\} = \partial U_1(0)$ ist beschränkt und abgeschlossen.

$$\varphi(x) := ||x||^2 - 1 = x \cdot x - 1; \ \varphi'(x) = 2x, \ f'(x) = 2Ax.$$

$$3.3 \implies \exists x_0 \in T : f(x_0) = \max f(T); \ \varphi'(x) = 2(x_1, \dots, x_n); \ x_0 \in T \implies \operatorname{Rang} \varphi'(x_0) = 1 \ (= p)$$

11.2
$$\Longrightarrow \exists \lambda_0 \in \mathbb{R} : H'(x_0, \lambda_0) = 0; \ h(x, \lambda) = f(x) + \lambda \varphi(x); \ H'(x, \lambda) = 2Ax + 2\lambda x$$

 $\Longrightarrow 0 = 2(Ax_0 + \lambda_0 x_0) \Longrightarrow Ax_0 = (-\lambda_0)x_0, \ x_0 \neq 0 \Longrightarrow -\lambda_0 \text{ ist ein EW von } A.$