Name	
ASU ID Number	

CSE 472: Social Media Mining

Homework I - Linear Algebra, Graph Essentials, Network Measures

Prof. Huan Liu Due at 2023, September 7^{th} , 11:59 PM

This is an *individual* homework assignment. Please submit a digital copy of this homework to **Grade-scope**. This is a fillable PDF and you are able to type into answer boxes provided for each question.

- 1. [Linear Algebra] Consider 2-dimensional data points of [-1, -2], [1, 0], [-1, 1], [2, 0], [4, 1].
 - (a) Arrange the data points in ascending order based on their length and gather them together in the following matrix. Let's assume $[X]_{2\times 5}$ is that matrix. Fill the following matrix. [Hint: The length of the vector [x, y] is $\sqrt{x^2 + y^2}$.

(b) What is the point showing the center of these points? [Hint: Calculate the mean of the values in each dimension].

$$\mu = \left(\begin{array}{c} \\ \\ \\ \\ \end{array}\right)_{2\times 1}$$

(c) Calculate $Y = (X - \mu)(X - \mu)^T$ in which X^T is the transpose of X. To calculate $(X - \mu)$, easily subtract the μ from all the data points.

(d) Solve $|Y - \lambda I| = 0$ to extract the values of λ . $|\cdot|$ is the determinant and I is the identity matrix. λ values are called eigenvalues.

(e) Calculate the corresponding eigenvector to the **largest** eigenvalue (assuming the eigenvector has norm 1).

$$v = \begin{pmatrix} \boxed{} \\ \boxed{} \\ \boxed{} \\ 2 \times 1$$

(f) Compute $\hat{X} = v^T X$.

$$\hat{X} = \left(\begin{array}{c|ccc} & & & \\ & & & \\ & & & \end{array} \right)_{1 \times 5}$$

Congratulations you performed Principle Component Analysis (PCA) procedure, a well-known dimensionality reduction method in machine learning. In other words, you projected your 2-dimensional data into 1-dimensional one such that you preserve the variance as much as possible (i.e. the least information has been lost).

2. [Graph Algorithms]

(a) Imagine a thriving social media platform called "ConnectWorld", where millions of users from around the globe come together to form a virtual community. Within ConnectWorld, friendships flourish, connections are made, and ideas are shared. In this scenario, each user within ConnectWorld represents a node in a graph, and the edges between them symbolize the effort that required to maintain the friendship. By applying **Prim**'s algorithm to the ConnectWorld graph below with starting **node** v_3 , find the most cost-effective way to create a network that connects all users while minimizing the total effort required to maintain those connections. In the following table, at each step, write down the chosen edge and calculate the cumulative weight up to that step. Represent the edge between nodes v_i and v_j using the notation $v_i - v_j$. Use as many steps as needed to solve this problem.

Step	1	2	3	4	5	6	7	8
Edge (start from v_3)								
Total Weights								

(b) Under what circumstances does the Prim's algorithm find multiple minimum spanning trees (MST) in a graph?

		n produces inco	rrect answers.		
			Treet will were.		
				ot have negative cyc	
			ns with negative	weights.	
I nput : Adja	cency Matrix	x M, Source no	de s.	weights.	
Input : Adja Output: Shor	cency Matrix test Path fro	M, Source norm s to other norm.	de s.	weights.	
Input : Adja Output: Shor $C \leftarrow$ Find min	cency Matrix test Path fro imum weight	M, Source norm s to other norm.	de s.	weights.	
Input: Adja Output: Shor $C \leftarrow \text{Find min}$ for all i and j :	cency Matrix test Path fro imum weight	M, Source norm s to other norm.	de s.	weights.	
Input : Adja Output: Shor $C \leftarrow$ Find min for all i and j :	cency Matrix test Path from imum weight $M[i,j]-C$	$\mathbf{x} M$, Source no $\mathbf{m} s$ to other not in \mathbf{M}	de s. odes.	weights.	

- 3. [Network Measures] Based on the following network answer the questions,
 - (a) Fill the adjacency matrix.

	v_1	v_2	v_3	v_4	v_5	v_6
v_1						
v_2						
v_3						
v_4						
v_5						
v_6						

(b) Calculate the "Betweenness Centrality" (normalized) values, "Closeness Centrality" and "Katz Centrality" values with $\alpha=0.25$ and $\beta=0.15$ (you can use Matlab or other mathematical software to calculate the eigenvalues).

	Betweenness Centrality	Closeness Centrality	Katz Centrality
v_1			
v_3			
v_6			

(c)	Is the	above	alpha	value a	good	choice	for	Katz	centrality?	Why?
(~)	10 0110	above	arpiia	rarac a	8004	CIIOICC	101	IICC	continuity.	,, ₁₁ ,

/	1	0	v	U .

,	Discuss what would happen to Katz Centrality if we set $\alpha = 0$?	
)	Calculate the local clustering coefficient for nodes v_1 , v_3 , v_5 , and v_6 .	
)	Compute the similarity between nodes v_3 and v_5 using both Jaccard and Cosine similar	riti

Good Luck