Fundação Getúlio Vargas

Nome:

Simulado I - Cálculo em uma Variável

Duration: 01h40min

Exercício 1 - Continuidade Removível

As funções abaixo são contínuas? Se desejar, utilize algum software para esboçar as funções.

a) $f(x) = \alpha(x)x^2 + \beta(x)^3 + \sin\gamma(x)$, onde α, β, γ são funções contínuas definidas no mesmo domínio de f.

b) $g(x) = |x^2|$ (|x| =menor inteiro maior ou igual a x)

c) $j(x)=egin{cases} 1 & ext{se } x=2 ext{ ou } x=3 \ 0 & ext{se } x=k\pi, orall k\in \mathbb{Z} \ rac{1}{\sin{(x)}(x^2-5x+6)} & ext{caso contrário} \end{cases}$

 $\mathrm{d}) \ \ l(x) = egin{cases} x^2 & \mathrm{se} \ x
eq 0 \ 1 & \mathrm{se} \ x = 0 \end{cases}$

EXTRA: Foi-te dado a liberdade de alterar os valores dos pontos onde as funções acima são descontínuas (mas, apenas esses pontos). Você consegue tornar-las contínuas agora?

Exercício 2 - Continuidade

Sejam $f,g:\mathbb{R} o \mathbb{R}$ funções contínuas. Seja $h:\mathbb{R} o \mathbb{R}$ dada por $h(x) = \max\{f(x),g(x)\}$. Então

a) Mostre que
$$h(x)=rac{f(x)+g(x)}{2}+rac{|f(x)-g(x)|}{2}.$$

- b) h é continua?
- c) Descreva $l: \mathbb{R} \to \mathbb{R}$ dada por $l(x) = \min\{f(x), g(x)\}$ por operações elementares de soma, diferença, módulo e multiplicação por escalar.

Exercício 3 - Um Limite Fundamental

Seja $f(x) = \frac{\sin x}{x}$ se $x \neq 0$. Que valor você deve fornecer a f em x = 0 para que ela fique contínua em \mathbb{R} . Aproveite que você entendeu a ideia dessa questão e ache o valor do limite $\lim_{x\to 0} \frac{\sin x \tan x}{\sqrt{x+4}-2}$.

Exercício 4 - O Teorema do Valor Intermediário

Certo dia, 2 jogadores: Saulo e Edgard, apostaram corrida em uma pista de 5km. Em um dado instante t_0 , Saulo estava na frente e Edgard estava em segundo. Entretanto, em um novo momento t_1 , Edgard estava na frente e Saulo em segundo.

- a) Supondo que as funções S e E que descrevem as posições de Saulo e Edgard no decorrer do tempo sejam contínuas, dê um argumento para o fato de que em (t_0, t_1) , Edgard tenha ultrapassado Saulo. (OBS.: Veja que não é simplesmente afirmar que Edgard estava a frente do Saulo em t_1 (vide enunciado), pois apenas essa afirmação não impede que Edgard tenha usado sua arma de teletransporte e aparecido na frente do Saulo neste momento exato (ou seja, estamos preocupados em garantir a ultrapassagem em algum instante $t_0 < t < t_1$, embora saibamos que ela ocorreu em $t = t_1$).
- b) Sejam $S(x)=x+\sin x$ e $E(x)=x+x^3$ as funções indicadas no item (a). Mostre que em $t_0=\frac{\pi}{6}$ e em $t_1=\pi$, temos a situação descrita no enunciado e utilize o Teorema do Valor Intermediário (que você "supostamente" usou para justificar o item (a)) para justificar que se $E(t_0)< S(t_0)$ e $E(t_1)> S(t_1)$, então existe $t\in [t_0,t_1]$ (neste caso, $t\in (t_0,t_1)$) tal que E(t)=S(t). (Dica: Considere a função F(x)=E(t)-S(t)).

Exercício 5 - Cálculo de Derivadas

Dê as derivadas das seguintes funções:

a)
$$y = \frac{\sin x}{x}$$

b)
$$y = \frac{e^x + e^{-x}}{2}$$

$$\text{c) } y = \frac{\sin x^2 + \cos x^2}{x}$$

d)
$$\frac{d}{dx}f(g(10))$$
, sabendo que $f(5)=1, g(10)=5, f'(5)=9$ e $g'(10)=3$.