Arithmétique Algorithmique

Arithmétique Algorithmique

http://www.math.univ-lyon1.fr/~roblot/ens.html

Partie IV

Factorisation des entiers

- Enoncé du problème
- 2 Algorithmes préliminaires
 - Primalité et pseudo-primalité
 - Reconnaissance des puissances de premiers
- Quelques résultats d'arithmétique
 - Nombre et taille des facteurs premiers
 - Nombres B-friables
- Factorisation : algorithmes exponentiels
 - Divisions successives
 - Méthode de Fermat
 - Méthode de Gauss
 - Méthode p-1 de Pollard
 - Méthode ρ de Pollard
 - Méthode des factorielles
- 5 Factorisation: algorithmes sous-exponentiels
 - Crible quadratique de Pomerance
 - Méthode ECM de Lenstra
 - Crible du corps de nombres

Problème de la factorisation des entiers

Soit N > 2 un entier

Trouver les nombres premiers $p_1 < \cdots < p_s$ et les entiers $e_1, \ldots e_s \geq 1$ tels que

$$N = p_1^{e_1} \cdots p_s^{e_s}$$

Par réduction, on se ramène aux trois problèmes suivants

- lacktriangle Est-ce que N est un nombre premier ?
- **②** (Sinon, est-ce que N est une puissance d'un nombre premier ?)
- **3** Sinon, trouver d avec $2 \le d < N$ et d diviseur de N

Cas le plus difficile. N=pq avec p et q premiers de même taille

- Enoncé du problème
- 2 Algorithmes préliminaires
 - Primalité et pseudo-primalité
 - Reconnaissance des puissances de premiers
- Quelques résultats d'arithmétique
 - Nombre et taille des facteurs premiers
 - Nombres B-friables
- 4 Factorisation : algorithmes exponentiels
 - Divisions successives
 - Méthode de Fermat
 - Méthode de Gauss
 - ullet Méthode p-1 de Pollard
 - Méthode ρ de Pollard
 - Méthode des factorielles
- 5 Factorisation: algorithmes sous-exponentiels
 - Crible quadratique de Pomerance
 - Méthode ECM de Lenstra
 - Crible du corps de nombres

Primalité et pseudo-primalité

Problème. N est-il un nombre premier ?

Deux problèmes différents.

Est-ce que N est presque sûrement premier ? Est-ce que N est premier ?

Tests de primalités :

- APRCL (Adleman, Pomerance, Rumely, Cohen, Lenstra) : complexité démontrée ($\log N$) $^{c \log \log \log N}$ (presque polynômiale) ; utilise les sommes de Gauss et sommes de Jacobi
- ECPP (Atkin-Morain) : complexité polynômiale conjecturée $O((\log N)^5)$; utilise les courbes elliptiques et produit un certificat
- AKS (Agrawal, Kayal, Saxena) : complexité polynômiale démontrée $O((\log N)^6)$; utilise le résultat : p premier si et seulement si $(X+1)^p \equiv X^p+1 \pmod p$

Forte pseudo-primalité

Théorème

Soit p un nombre premier, on écrit $p-1=2^s\,t$ avec t impair. Alors, pour tout a premier avec p, on a :

$$a^t \equiv 1 \pmod{p}$$
 ou $a^{2^i t} \equiv -1 \pmod{p}$ pour un i avec $1 \leq i < s$

Définition: N est fortement pseudo-premier en base a si N(=p) et a vérifient les conclusions du théorème

Théorème

Supposons N > 9 impair et composite. Alors

$$|\{1 \leq a < N \text{ avec } N \text{ fortement pseudo-premier en base } a\}| \leq \frac{1}{4} \varphi(N)$$

Fait : si N est fortement pseudo-premier en base a pour (disons) 20 valeurs de a au hasard, on est \hat{sur} que N est premier

Reconnaissance des puissances de premiers

Problème: existe-t-il p premier et $k \ge 2$ tel que $N = p^k$?

Petit théorème de Fermat

Soit p un nombre premier. Alors, tout entier a vérifie

$$a^p \equiv a \pmod{p}$$

Méthode: On calcule $d = PGCD(a^N - a, N)$ pour diverses valeurs de a

- (1) Si d=1, alors N n'est pas une puissance d'un nombre premier
- (2) Si d = N, on recommence avec un autre a
- (3) Si 1 < d < N et si d = p est un nombre premier, on teste si N est une puissance de p, sinon on recommence avec d et N/d

Fait : Dans le cas 3, il est très rare de ne pas obtenir un nombre premier

- 1 Enoncé du problème
- 2 Algorithmes préliminaires
 - Primalité et pseudo-primalité
 - Reconnaissance des puissances de premiers
- 3 Quelques résultats d'arithmétique
 - Nombre et taille des facteurs premiers
 - Nombres B-friables
- 4 Factorisation : algorithmes exponentiels
 - Divisions successives
 - Méthode de Fermat
 - Méthode de Gauss
 - Méthode p-1 de Pollard
 - Méthode ρ de Pollard
 - Méthode des factorielles
- 5 Factorisation: algorithmes sous-exponentiels
 - Crible quadratique de Pomerance
 - Méthode ECM de Lenstra
 - Crible du corps de nombres

Nombre et taille des facteurs premiers

Théorème

 $\omega(n) =$ nombre de facteurs premiers distincts de n

$$\sum_{n \le x} \omega(n) = x \log \log x + O(x)$$

Preuve.

$$\sum_{n \le x} \omega(n) = \sum_{n \le x} \sum_{p \mid n} 1 = \sum_{p \le x} \sum_{\substack{n \le x \\ p \mid n}} 1 = \sum_{p \le x} \left\lfloor \frac{x}{p} \right\rfloor = \sum_{p \le x} \frac{x}{p} + O(\pi(x))$$

puis on utilise la formule
$$\sum_{p \le x} 1/p = \log \log x + O(1)$$

Conséquence heuristique : le nombre de facteurs premiers distincts d'un entier au hasard entre 0 et x est $\log \log x$

Nombre et taille des facteurs premiers

Posons $N = p_1 p_2 \dots p_s$ avec $p_1 \leq p_2 \leq \dots \leq p_s$, donc $s \approx \log \log N$.

Fait. On a facilement $p_1 \leq N^{1/s}$

Quand est-il de la taille de p_s ? de p_{s-1} ?...

Raisonnement heuristique : N/p_s a s-1 facteurs premiers donc on a

$$\begin{split} s-1 &\approx \log\log N/p_s = \log\left(\log N - \log p_s\right) \\ &= \log\log N - \log\left(1 - \log p_s/\log N\right) \approx s - \log\left(1 - \log p_s/\log N\right) \end{split}$$

D'où on tire $\log (1 - \log p_s / \log N) \approx -1 \Rightarrow p_s \approx N^{0.63}$

Puis, en appliquant ce raisonnement à N/p_s , $N/(p_sp_{s-1})$, \ldots , on trouve

$$p_{s-1} \approx N^{0,23}, \quad p_{s-2} \approx N^{0,09}, \dots$$

Fait. On peut montrer $p_s \sim N^{0.624}$ et $p_{s-1} \sim N^{0.210}$

Nombres B-friables

Définition. x est B-friable si tous les diviseurs de premiers x sont $\leq B$

Remarque. Les entiers B-friables jouent un rôle important dans beaucoup de méthodes de factorisation

Fait. Les entiers B-friables sont plus nombreux que l'on pourrait penser. Ainsi 25% des entiers $\leq x$ sont \sqrt{x} -friables (pour x assez grand)

Théorème

On pose

$$\psi(x,B) = |\{1 \le n \le x \text{ avec } n \text{ } B\text{-friable}\}|$$

Pour $1 \le B \le x$, posons $v = \log x/\log B$, alors la proportion d'entiers B-friables $\le x$ est

$$\frac{\psi(x,B)}{x} = v^{-v+o(1)}$$

Exemple. Prenons $B = \sqrt{x}$, donc v = 2 et $\psi(x, \sqrt{x})/x \approx 2^{-2} = 0.25$

Arithmétique Algorithmique

Factorisation : algorithmes exponentiels

On suppose pour la suite que $N \geq 2$ est un nombre composite

Le cas le plus difficile est N=pq avec p < q deux premiers de même taille

- 1 Enoncé du problème
- 2 Algorithmes préliminaires
 - Primalité et pseudo-primalité
 - Reconnaissance des puissances de premiers
- Quelques résultats d'arithmétique
 - Nombre et taille des facteurs premiers
 - Nombres B-friables
- Factorisation : algorithmes exponentiels
 - Divisions successives
 - Méthode de Fermat
 - Méthode de Gauss
 - ullet Méthode p-1 de Pollard
 - ullet Méthode ho de Pollard
 - Méthode des factorielles
- 5 Factorisation: algorithmes sous-exponentiels
 - Crible quadratique de Pomerance
 - Méthode ECM de Lenstra
 - Crible du corps de nombres

Divisions successives

Méthode. On divise N par des valeurs successives jusqu'à tomber sur une division exacte.

Division par tous les entiers. il faut $O(\sqrt{N})$ divisions (taille maximale du plus petit premier divisant N)

Division par des premiers. il faut $O(\sqrt{N}/\log N)$ divisions mais il faut disposer d'une table des premiers ou les calculer au fur et à mesure : crible d'Eratosthène jusqu'à \sqrt{N} coûte $O(\sqrt{N}\log\log N)$

Version intermédiaire : On teste 2, 3 et 5, puis ensuite uniquement les entiers inversibles modulo 30

Gain : facteur
$$\frac{30}{\varphi(30)} = 3,75$$

Méthode de Fermat

Idée. Trouver deux entiers a et b tels que

$$N = a^{2} - b^{2} = (a - b)(a + b)$$

Algorithme.

- (1) Faire $a \leftarrow \lceil \sqrt{N} \rceil$
- (2) Si $a^2 N$ est un carré, renvoyer $(a, \sqrt{a^2 N})$.
- (3) Faire $a \leftarrow a + 1$ et retourner en 2

Améliorations.

- On stocke aussi $A=a^2$ et à l'étape 2 : $A \leftarrow A+2a+1$
- On teste si a^2-N est un carré si et seulement si a^2-N est un carré modulo M avec M bien choisi

Méthode de Fermat

Efficacité. Si N=pq alors a=(p+q)/2 et b=(p-q)/2. On part de $\approx \sqrt{N}$ donc il faut

$$pprox rac{p+q}{2} - \sqrt{N} = rac{1}{2} \left(p + N/q
ight) - \sqrt{N} = rac{(\sqrt{N}-p)^2}{2p}$$
 itérations

Cas extrême. Si $p < q < p + 4\sqrt{p} + 4$, on a directement le résultat !

Cas moyen. $q \approx N^{2/3}$ alors nombre d'itérations est $\approx \frac{1}{2}N^{2/3}$

Amélioration. On multiplie N par un facteur f de telle sorte que $fp \approx q$. Mais comment trouver f? On peut essayer tous les $f=1,2,\ldots,N^{1/3}$, ou essayer des f ayant beaucoup de diviseurs. En combinant les deux, on peut obtenir une méthode en $O(N^{1/3})$ si le plus petit diviseur de N est $\geq N^{1/3}$.

Arithmétique Algorithmique

Factorisation : algorithmes exponentiels

Méthode de Fermat : Exemple

On factorise $N=10\,235\,789$

s	$s^2 - N$	mod 16	$\sqrt{s^2-N}$	s	s^2-N	mod 16	$\sqrt{s^2-N}$
3200	4211	3		3213	87580	12	
3201	10612	4	103.015	3214	94007	7	
3202	17015	7		3215	100436	4	316.916
3203	23420	12		3216	106867	3	
3204	29827	3		3217	113300	4	336.600
3205	36236	12		3218	119735	7	
3206	42647	7		3219	126172	12	
3207	49060	4	221.495	3220	132611	3	
3208	55475	3		3221	139052	12	
3209	61892	4	248.781	3222	145495	7	
3210	68311	7		3223	151940	4	389.795
3211	74732	12		3224	158387	3	
3212	81155	3		3225	164836	4	406.000

On obtient $N = (3225 - 406)(3225 + 406) = 2819 \cdot 3631$

Méthode de Gauss

 ${\bf ld\acute{e}e}.$ Trouver des résidus quadratiques modulo N pour en déduire des informations sur les premiers divisant N

Définition. Soit q premier et a entier, on pose

$$\begin{pmatrix} \frac{a}{q} \end{pmatrix} = \begin{cases} 0 & \text{ si } q \mid a \\ 1 & \text{ si } a \text{ est un carr\'e inversible modulo } q \\ -1 & \text{ si } a \text{ n'est pas un carr\'e modulo } q \end{cases}$$

Pour
$$b=q_1^{e_1}\cdots q_t^{e_t}$$
, on pose $\left(\frac{a}{b}\right)=\left(\frac{a}{q_1}\right)^{e_1}\cdots \left(\frac{a}{q_t}\right)^{e_t}$

Loi de réciprocité quadratique

Soient a et b deux entiers impairs. Alors

$$\left(\frac{a}{b}\right) = (-1)^{\frac{(a-1)(b-1)}{4}} \left(\frac{b}{a}\right)$$

Méthode de Gauss

Exemple. Si 15 est un carré modulo N alors pour tout p divisant N, on a

$$1 = \left(\frac{15}{p}\right) = (-1)^{(p-1)/2} \left(\frac{p}{15}\right) = (-1)^{(p-1)/2} \left(\frac{p}{3}\right) \left(\frac{p}{5}\right)$$

$(-1)^{(p-1)/2}$	$\left(\frac{p}{3}\right)$	$\left \left(\frac{p}{5} \right) \right $	mod 4	mod 3	mod 5	mod 60
1	1	1	1	1	1,4	1,49
1	-1	-1	1	2	2,3	17,53
-1	-1	1	3	2	1,4	11,59
-1	1	-1	3	1	2,3	7,43

Donc $p \equiv 1, 7, 11, 17, 43, 49, 53$ ou 59 (mod 60)

Efficacité. k résidus quadratiques (indépendants) diminue de 2^{-k} les diviseurs (premiers) à considérer. Ainsi 20 résidus divisent par 1 048 576 l'ensemble des diviseurs à tester.

Méthode de Gauss

Problème. Comment trouver les résidus ? Calculer $x^2 \mod N$ pour de multiples valeurs de $x \ge \lceil \sqrt{N} \rceil$ peut donner de grand résidu qu'il faut factoriser pour pouvoir obtenir les informations

Méthode. On considère des x proches de $\lceil \sqrt{kN} \rceil$ pour $k = 1, 2, \ldots$ et on garde seulement les $x^2 - kN$ qui sont friables

Difficulté. Implantation générale assez technique (possibilité d'obtenir les classes convenables en parcourant toutes les classes)

Variante. on combine plusieurs résidus pour obtenir des résidus quadratiques premiers.

Exemple: $x_1^2 - N = 2^2 \cdot 3 \cdot 5 \cdot 7$ et $x_2^2 - 2N = 5^3 \cdot 7$ donne que 3 est un résidu quadratique modulo N

Méthode de Gauss : Exemple

On factorise $N=103\,861$ ($p<\sqrt{N}\approx322,27$). On suppose $p\equiv3\pmod4$.

- $323^2-N=2^2\cdot 3^2\cdot 13$ donc $\left(\frac{p}{13}\right)=1$ et $p\equiv 1$, 3, 4, 9, 10, ou 12 (mod 13)
- $327^2-N=2^2\cdot 13\cdot 59$ donc 59 est un carré modulo p, $\left(\frac{p}{59}\right)=-1$ et $p\equiv 2$, 6, 8, 10, 11, ..., 54, 55, 56, ou 58 (mod 59). Puis, on en déduit que $p\equiv 10$, 14, 23, 30, 38, 40, ..., 751, 755, 758, 763, 764, ou 766 (mod 767)
- $457^2-2\,N=7^2\cdot 23$ donc $\left(\frac{p}{23}\right)=-1$ et $p\equiv 5,\,7,\,10,\,11,\,14,\,15,\,17,\,19,\,20,\,21,\,22$ (mod 23). Finalement, en utilisant le fait que p<322 et p premier, on obtient $p=43,\,61,\,103,\,113,\,157,\,191,\,283$ ou 313

Après essai, on trouve que 283 divise N et $N=283 \cdot 367$

Méthode p-1 de Pollard

Idée. Supposons que p-1 divise M alors p divise $\mathrm{PGCD}(a^M-1,N)$

 $\mbox{\bf Sp\'{e}cificit\'{e}}.$ Ne dépend pas de la taille de p, mais de la taille des diviseurs primaires de p-1

Superfriable. $m=q_1^{e_1}\cdots q_t^{e_t}$ est B-superfriable si $q_i^{e_i}\leq B$ pour $i=1,\ldots,t$

Fait. Posons M(c) = PPCM(1, ..., c). Si m est B-superfriable alors m divise M(B).

On a les formules : M(1) = 1, puis pour $c \ge 2$

- M(c) = qM(c-1) si $c = q^e$ (q premier)
- M(c) = M(c-1) sinon

Calcul de PGCD. On a

$$PGCD(a^M - 1, N) = PGCD((a^M \mod N) - 1, N)$$

Méthode p-1 de Pollard

Algorithme.

- (1) Poser $m \leftarrow 2$, $c \leftarrow 2$
- (2) Tant que $c \leq B$, faire $\text{Si } c = q^e \text{ alors} \\ m \leftarrow m^q \mod N \\ d \leftarrow \operatorname{PGCD}(m-1,N) \\ \text{Si } d > 1 \text{ alors renvoyer } d \text{ et terminer} \\ c \leftarrow c + 1$
- (3) Renvoyer "Echec : pas de facteur p avec p-1 B-superfriable" et terminer

Remarque. l'algorithme peut échouer avec d=N, dans ce cas on recommence avec une autre valeur initiale pour m

Amélioration. Plutôt que d'itérer sur les $c \leq B$, on peut parcourir les premiers $q_1 < q_2 < \cdots \leq B$ et faire $m \leftarrow m^{q_i} \mod N$ avec $e_i \geq 1$ maximal tel que $q_i^{e_i} \leq B$

Méthode p-1 de Pollard

Complexité. On calcule $m \leftarrow m^a \mod N$ pour $a \leq B$ en temps $O(\log B(\log N)^2)$ donc l'algorithme retourne p si p-1 est B-superfriable en temps probabiliste $O(B(\log N)^2)$ (le cas d=N pour m aléatoire a une probabilité $\leq 1/2$)

Amélioration (2nd stage). Souvent p-1 n'est pas B-superfriable, mais p-1=fQ avec f B-superfriable et Q premier >B mais pas trop grand, disons $Q < B' \le B \log B$. Alors, p divise $\mathrm{PGCD}(a^{Q\,M(B)}-1,N)$

Supposons connu les (différences des) premiers Q_1,\ldots,Q_r entre B et B', alors on peut calculer facilement

$$\begin{array}{ll} a^{Q_1\,M(B)} \mod N, \\ & a^{Q_2\,M(B)} \mod N = a^{Q_1\,M(B)} \cdot a^{(Q_2-Q_1)M(B)} \mod N, \\ & a^{Q_3\,M(B)} \mod N = a^{Q_2\,M(B)} \cdot a^{(Q_3-Q_2)M(B)} \mod N \cdots \end{array}$$

par une simple multiplication modulaire si on pré-calcule les petites puissances de a modulo N

Méthode p-1 de Pollard : Exemple

On factorise $N=136\,838\,612\,177$. On prend a=2, B=100 et on procède premier par premier.

- ullet $2^6 \le B$ puis $a^{2^6} \mod N = 122\,567\,948\,726$ et $\mathrm{PGCD}(a^{e_1}-1,N) = 1$
- $3^4 \le B$ puis $a^{e_1} 3^4 \mod N = 25\,694\,491\,622$ et $PGCD(a^{e_2} 1, N) = 1$
- $5^2 \le B$ puis $a^{e_2 \, 5^2} \mod N = 3\, 295\, 688\, 067$ et $\mathrm{PGCD}(a^{e_3} 1, N) = 1$
- $7^2 \le B$ puis $a^{e_3 7^2} \mod N = 108770095964$ et $PGCD(a^{e_4} 1, N) = 1$
- $11 \le B$ puis $a^{e_4 \, 11} \mod N = 84 \, 598 \, 852 \, 995$ et $\mathrm{PGCD}(a^{e_5} 1, N) = 1$
- $13 \le B$ puis $a^{e_5 \cdot 13} \mod N = 26\,088\,272\,808$ et $PGCD(a^{e_6} 1, N) = 1$
- 17 $\leq B$ puis $a^{e_6\,17} \mod N = 57\,795\,217\,304$ et $\mathrm{PGCD}(a^{e_7}-1,N) = 1$
- 19 $\leq B$ puis $a^{e_7\,19} \mod N = 131\,992\,584\,120$ et $\mathrm{PGCD}(a^{e_8}-1,N)=1$
- 23 $\leq B$ puis a^{e_8} 23 mod $N = 89\,064\,599\,475$ et $PGCD(a^{e_9} 1, N) = 133\,723$

D'où la factorisation $N = 133\,723 \cdot 1\,023\,299$ **Remarque.** $133\,722 = 2 \cdot 3^2 \cdot 17 \cdot 19 \cdot 23$ et $1\,023\,298 = 2 \cdot 17 \cdot 30\,097$

Méthode ρ de Pollard : le paradoxe des anniversaires

Question. Combien faut-il de personnes pour en avoir (au moins) deux avec le même anniversaire ? et avec une probabilité > 1/2 ?

E ensemble de n éléments. On choisit des éléments x_1, \ldots, x_k dans E au hasard avec répétition possible

Quelle est la probabilité p_k qu'il existe au moins une coı̈ncidence, c'est-à-dire i et j distincts tels que $x_i=x_j$?

La probabilité que tous les x_i soient distincts est donnée par la formule

$$1 - p_k = \frac{n(n-1)\cdots(n-(k-1))}{n^k} = \prod_{i=1}^{k-1} \left(1 - \frac{i}{n}\right) \approx \exp\left(\frac{-k(k-1)}{2n}\right)$$

On en déduit

Théorème

Si
$$k \geq 1, 2\sqrt{n}$$
, alors on a $p_k > 1/2$

Réponse. pour n=365, on trouve $\lceil 1, 2\sqrt{n} \rceil = 23$

Méthode ρ de Pollard

Idée. Soient x_1,\dots,x_k nombres au hasard entre 0 et N-1. Si on prend k de l'ordre de \sqrt{p} alors, par le paradoxe des anniversaires, il y a une probabilité >1/2 qu'il existe $i\neq j$ tels que $x_i\equiv x_j\pmod{p}$ et donc

$$PGCD(x_i - x_j, N) > 1$$

d'où une possible factorisation de N.

Problème. il faut stocker toutes les valeurs et tester toutes les paires !

Solution. On considère la suite définie par $x_0 = \lceil \sqrt{N} \rceil$, puis pour $i \geq 1$, par $x_i = x_{i-1}^2 + c \mod N$. La suite $(x_i)_{i \geq 0}$ se comporte de *manière* expérimentale (pour $c \neq 0$ ou -2) comme une suite aléatoire et est ultimement périodique

On utilise la méthode de Floyd pour déterminer une collision

Méthode ρ de Pollard : Méthode de Floyd

Soit (x_i) une suite ultimement périodique de pré-période $M \ge 0$ et de période $T \ge 1$.

Théorème

Pour
$$m:=T\lceil M/T \rceil$$
, on a $x_m=x_{2m}$

Preuve. On a $m \geq T \cdot M/T = M$ et $2m = m + T \lceil M/T \rceil$, donc on a bien $x_{2m} = x_m$.

Remarque : On a $M/T \leq \lceil M/T \rceil < M/T + 1$, et donc $M \leq m < M + T$.

Méthode. On calcule simultanément x_i et x_{2i}

Méthode ρ de Pollard

Algorithme.

- (1) Poser $a \leftarrow \lceil \sqrt{N} \rceil$, $b \leftarrow a$, $c \leftarrow 1$
- (2) Faire $a \leftarrow a^2 + c \mod N$ Faire $b \leftarrow b^2 + c \mod N$ Faire $b \leftarrow b^2 + c \mod N$
- (3) Calculer $d \leftarrow PGCD(a b, N)$ si d = 1 alors retourner en 2
- (4) Renvoyer d et terminer

Remarque. L'algorithme peut renvoyer d=N, dans ce cas on peut recommencer avec une autre valeur pour c

Complexité. Temps probabiliste
$$O(\sqrt{p}(\log N)^2) = O(N^{1/4}(\log N)^2)$$

Améliorations. Stocker les a-b en faisant $Q \leftarrow Q \cdot (a-b) \mod N$ à la fin de l'étape 2, et à la place de l'étape 3, calculer le PGCD de Q et N à intervalles réguliers.

On peut aussi utiliser l'amélioration de Brent

Méthode ρ de Pollard : Amélioration de Brent

Idée. Au lieu de considérer $x_{2i}-x_i$, pour chaque $i=2^k$, on considère $x_j-x_{2^k}$ pour $3\cdot 2^{k-1}< j\le 2^{k+1}$

Premiers calculs. On calcule x_1 , x_2 , on teste $x_2 - x_1$, puis x_3 , x_4 , teste $x_4 - x_2$, puis x_5 , x_6 , x_7 , teste $x_7 - x_4$, puis x_8 , teste $x_8 - x_4$, x_9 , x_{10} , x_{11} , x_{12} , x_{13} , teste $x_{13} - x_8 \dots$

Avantages.

- $j-2^k$ parcourt $2^{k-1}+1,\ldots,2^k$ donc on trouve une collision pour $k=\lceil \max\{\log_2 M,\log_2 T\} \rceil$
- Une seule évaluation par boucle
- Pas besoin de recalculer les x_i deux fois pour i petit
- Une seule valeur de x_i stockée à tout moment

Résultat. On peut constater (et donner des arguments heuristiques) pour une amélioration de l'ordre de 25%

Méthode ρ de Pollard : Exemple

On cherche à factoriser $N=127\,199$. On a $x_1=\lceil\sqrt{N}\rceil=357$ et $x_2=x_1^2+1\mod N=251$.

m	x_m	x_{2m}	PGCD	$\mid m \mid$	x_m	x_{2m}	PGCD
1	357	251	1	11	125075	105564	1
2	251	7210	1	12	59412	28503	1
3	63002	97662	1	13	13495	103617	1
4	7210	114009	1	14	93257	97895	1
5	86909	54078	1	15	18022	99548	1
6	97662	59412	1	16	53438	42431	1
7	103628	93257	1	17	2295	44053	1
8	114009	53438	1	18	51867	115435	1
9	95068	51867	1	19	54039	28231	1
_10	54078	106079	1	20	106079	123495	311

D'où la factorisation $N=311\cdot 409$

Coût de calcul : 58 calculs de $x \mapsto x^2 + 1 \mod N$ et 20 PGCD

Méthode ρ de Pollard : Exemple (amélioration de Brent)

On cherche à factoriser $N=127\,199$. On calcule $\mathrm{PGCD}(x_j-x_{2^k},N)$ pour $3\cdot 2^{k-1}< j\leq 2^k$

k	j	x_{2^k}	x_j	PGCD	$\mid k \mid$	j	x_{2^k}	$ x_j $	PGCD
0		357				11	95068	125075	
	2		251	1		12		59412	
1		251				13		13495	1
	3		63002			14		93257	1
	4		7210	1		15		18022	1
2		7210				16		53438	1
	5		86909		4		53438		
	6		97662						
	7		103628	1	5		42431		
	8		114009	1					
3		114009				50		98304	1
	9	95068				51		113989	1
	10		54078			52		114272	311

Coût de calcul : 51 calculs de $x \mapsto x^2 + 1 \mod N$ et 16 PGCD

Méthode des factorielles

Définition. On pose $F_N(k) = k! \mod N$

Quelques résultats.

- N est premier si et seulement si $F_N(N-1) = N-1$
- N est premier si et seulement si $\mathrm{PGCD}(F_N(\lfloor \sqrt{N} \rfloor), N) = 1$

Application à la factorisation

Soit $k \ge 1$, le plus petit entier tel que $PGCD(F_N(k), N) > 1$. Alors k est le plus petit nombre premier divisant N.

Complexité. k peut être calculé en $O(\log N)$ évaluation de la fonction F_N par dichotomie

Problème. F_N coûte cher à calculer

Méthode des factorielles : version de Pollard-Strassen

Définition. Posons $\varphi_B(X) = X(X-1)\cdots(X-B+1)$, alors, pour tout $j \ge 1$

$$\varphi_B(jB) = \frac{(jB)!}{((j-1)B)!}$$

Conséquence. Le plus petit $j \ge 1$ tel que $\operatorname{PGCD}(\varphi_B(jB), N) > 1$ donne que le plus petit facteur premier de N est dans](j-1)B, jB] Si le PGCD est dans l'intervalle, c'est le facteur premier. Sinon, on parcourt les éléments de l'intervalle pour trouver celui qui divise N.

Paramètre. Prenons $B = \lceil N^{1/4} \rceil$. Alors il existe j avec $1 \le j \le B$ tel que $\mathrm{PGCD}(\varphi_B(jB), N) > 1$.

Une fois trouvé j, il faut $O(N^{1/4}(\log N)^2)$ opérations pour isoler le premier.

Calcul des $\varphi_B(jB)$. Evaluation modulo N d'un polynôme de degré B en B valeurs en temps $O(B(\log N)^2)$

Complexité. Factorise en $O(N^{1/4}(\log N)^2)$. C'est l'algorithme avec la meilleure complexité déterministe démontrée

Méthode des factorielles : Exemple

On factorise N = 737419. On a $B = \lceil N^{1/4} \rceil = 30$.

On a

$$\begin{split} \varphi_{30}(X) \mod N &= X^{30} + 736984X^{29} + 90335X^{28} + 614948X^{27} + 334301X^{26} \\ &+ 413052X^{25} + 219546X^{24} + 330711X^{23} + 713199X^{22} + 313429X^{21} + 138020X^{20} \\ &+ 504805X^{19} + 381513X^{18} + 430795X^{17} + 99885X^{16} + 564428X^{15} + 265574X^{14} \\ &+ 400913X^{13} + 84143X^{12} + 484992X^{11} + 241631X^{10} + 424763X^{9} + 384906X^{8} \\ &+ 514873X^{7} + 4391X^{6} + 99109X^{5} + 321698X^{4} + 323840X^{3} + 552595X^{2} + 334486X \end{split}$$

Puis, on a

- $\varphi_{30}(B) \mod N = 289286 \text{ et PGCD} = 1$,
- $\varphi_{30}(2B) \mod N = 722233$ et PGCD= 1,
- $\varphi_{30}(3B) \mod N = 257088 \text{ et PGCD} = 1, \ldots,$
- $\varphi_{30}(27B) \mod N = 311652$ et PGCD= $787 \in [26B, 27B[$

d'où la factorisation $N = 787 \cdot 937$

- 1 Enoncé du problème
- Algorithmes préliminaires
 - Primalité et pseudo-primalité
 - Reconnaissance des puissances de premiers
- 3 Quelques résultats d'arithmétique
 - Nombre et taille des facteurs premiers
 - Nombres B-friables
- 4 Factorisation : algorithmes exponentiels
 - Divisions successives
 - Méthode de Fermat
 - Méthode de Gauss
 - ullet Méthode p-1 de Pollard
 - Méthode ρ de Pollard
 - Méthode des factorielles
- 5 Factorisation: algorithmes sous-exponentiels
 - Crible quadratique de Pomerance
 - Méthode ECM de Lenstra
 - Crible du corps de nombres

Crible quadratique de Pomerance

Idée. Trouver a et b tels que $a^2 \equiv b^2 \pmod{N}$, il suit que $N \mid (a-b)(a+b)$ et avec un peu de chance $\mathrm{PGCD}(a-b,N)$ isole un facteur de N

Combinaisons de congurences. Pour trouver a et b, on considère des valeurs de a telle que $a^2 \mod N$ est B-friable et on les combine. Par exemple

$$\begin{array}{ll} a_1^2 \mod N = q_1^3 \, q_2^1 \, q_3^1 \, q_4^0 \\ a_2^2 \mod N = q_1^2 \, q_2^2 \, q_3^0 \, q_4^1 \\ a_3^2 \mod N = q_1^1 \, q_2^1 \, q_3^1 \, q_4^3 \end{array}$$

donne que $(a_1\,a_2\,a_3)^2\equiv q_1^6\,q_2^4\,q_3^2\,q_4^4\equiv (q_1^3\,q_2^2\,q_3\,q_4^2)^2$ (mod N)

Méthode.

- Engendrer un grand nombre de a tels que $a^2 \mod N$ est B-friable
- ② Combiner ces valeurs pour en déduire des congruences $a^2 \equiv b^2 \pmod{N}$

Crible quadratique : Combinaison des congruences

Notations. Posons $2 = p_1 < p_2 < \cdots < p_t \le B$. Pour x B-friable, on a

$$x = p_1^{e_1} \cdots p_t^{e_t}$$
 avec $e_i \ge 0$

On associe à x le vecteur $\vec{e}(x) = (\bar{e}_1, \dots \bar{e}_t) \in \mathbb{F}_2^t$

Lemme

Soit x_1, \ldots, x_k des entiers B-friables. Alors $x_1 \cdots x_k$ est un carré si et seulement si $\vec{e}(x_1) + \cdots + \vec{e}(x_k) = 0$

Conséquences.

- Trouver un carré comme combinaison des congruences trouvées est un problème d'algèbre linéaire sur F₂
- ② Pour être sûr d'avoir une solution, il suffit d'avoir plus de congruences que de premiers $\leq B$
- **1** Par la méthode du pivot de Gauss, la détermination des combinaisons donnant des carrés est en $O(t^3) = O(B^3)$ opérations, voire $O(B^{2+\varepsilon})$ par la méthode de Lanczos

Crible quadratique : Criblage

Remarque. Posons $M=\lceil \sqrt{N} \rceil$ et prenons $\epsilon>0$ (petit). Pour $M \leq x \leq M+M^{\epsilon}$, on a $x^2 \mod N = x^2-N \approx M^{1+\epsilon}$

On pose $f(x) = (M+x)^2 - N$ et on cherche à trouver les valeurs de x avec $0 \le x \le T$ (T paramètre à déterminer) telles que f(x) est B-friable

Restriction sur les premiers. Soit $p \leq B$ et supposons que f(x) est B-friable. Alors p divise $f(x) = (M+x)^2 - N$ donc N est un carré modulo p. Ainsi, il suffit de considèrer uniquement les premiers $p \leq B$ tels que $\left(\frac{N}{p}\right) = 1$. On appelle l'ensemble de ces premiers la base des facteurs

Criblage. Soit p dans la base des facteurs. N possède (au plus) deux racines carrées $\pm r$ modulo p. Et f(x) est divisible par p si et seulement si $x+M\equiv \pm r\pmod p$. De même, N possède 2 racines carrées modulo p^e si p est impair ou p=2 et e<3, sinon 4. Et les valeurs de x pour lesquelles p^e divise f(x) sont celles telles que x+M est congru à une de ces racines modulo p^e

Crible quadratique : Un exemple de criblage

On prend $N=194\,111$. On a donc $M=\lceil\sqrt{N}\rceil=441$. On choisit B=15 et T=15. La base des facteurs est $\{2,5,7,11\}$, le polynôme est $f(x)=x^2+882x+370$

0 est l'unique racine de f modulo 2 donc 2 | $f(x) \iff x \equiv 0 \pmod{2}$

f n'a pas de racines modulo 4 donc 4 \nmid f(x) pour tout x

0 et 3 sont racines de f modulo 5 donc 5 | $f(x) \iff x \equiv 0,3 \pmod{5}$

3 et 15 sont racines de f modulo 5^2 donc $5^2 \mid f(x) \iff x \equiv 3,15 \pmod{5^2}$

Crible quadratique : Un exemple de criblage

40 et 78 sont racines de f modulo 5^3 (en dehors de la table)

1 et 6 sont racines de f modulo 7 donc 7 | $f(x) \iff x \equiv 1,6 \pmod{7}$

. . .

3 et 6 sont racines de f modulo 11 donc 11 | $f(x) \iff x \equiv 3,6 \pmod{11}$

. . .

124 et 325 sont racines de f modulo 11^3 donc $11^3 \mid f(x) \iff x \equiv 124,325 \pmod{11^3}$

f(x) est B-friable si et seulement si l'entrée correspondant à x vaut f(x), ici on trouve que f(3) et f(13) sont B-friables

Crible quadratique : Calcul des racines de f(x)

Problème. Soit p premier avec tel que N est un carré modulo p. Trouver les racines x_i de $f(x) = (M+x)^2 - N$ modulo p, p^2 , ... équivaut à trouver les racines carrées r_i de N modulo p^e , puis à poser $x_i = r_i - M$ mod p^e

Racines carrées modulo 2^e

La racine carrée de N modulo 2 est 1 (on peut supposer N impair) Puis, on a

- N est un carré modulo 4 si et seulement si $N\equiv 1\pmod 4$). Dans ce cas les racines carrées sont ± 1
- N est un carré modulo 2^e avec $e \geq 3$ si et seulement si $N \equiv 1$ (mod 8). Dans ce cas, N a quatre racines carrées modulo 2^e . Elles peuvent être construite par récurrence en partant d'une racine carrée r de N modulo 2^{e-1} par la procédure suivante
 - (1) Si $r^2 \not\equiv N \pmod{2^e}$, alors faire $r \leftarrow r + 2^{e-2}$
 - (2) Renvoyer $(r, -r, r + 2^{e-1}, -r + 2^{e-1})$ et terminer

Crible quadratique : Calcul des racines de f(x)

Racines carrées modulo p^e (p impair)

On utilise, par exemple, l'algorithme de Cipolla pour une racine carrée de ${\cal N}$ modulo p

- (1) Soit $b \in \mathbb{F}_p$ au hasard. Si $b^2 4N$ est un carré modulo p, recommencer en 1
- (2) Retourner $x^{(p+1)/2} \mod x^2 bx + N$ et terminer

Pour tout $e \geq 2$, alors N a aussi exactement deux racines carrées modulo p^e . Elles peuvent être construite par récurrence à partir d'une racine carrée r de N modulo p^{e-1} par la procédure suivante

- (1) Faire $s \leftarrow (N-r^2)/p^{e-1}$, puis $k \leftarrow 2^{-1}s \mod p$
- (2) Renvoyer $\pm (r + kp^{e-1})$ et terminer

Coût. Dominé par l'algorithme de Cipolla en $O((\log p)^3) = O((\log B)^3)$

Crible quadratique : Algorithme de criblage

Notons p_1, \ldots, p_K les nombres premiers de la base des facteurs avec $K \approx \frac{1}{2}B/\log B$. On suppose $T \geq B$.

- (1) Pour x = 0 à T, poser $v[x] \leftarrow 1$
- (2) Pour i = 1 à K, faire
 - (a) Poser $p \leftarrow p_i$, $e \leftarrow 1$
 - (b) Faire $\mathcal{R} \leftarrow \text{racines_de_}f(N, p^e)$
 - (c) Si tous les éléments de \mathcal{R} sont > T, passer à la prochaine valeur en 2
 - (d) Pour tout $x \in \mathcal{R}$, Faire

Tant que
$$x \le T$$

 $v[x] \leftarrow v[x] \cdot p$
 $x \leftarrow x + p^e$

- (e) Faire $e \leftarrow e + 1$ et retourner en 2.b
- (3) Renvoyer (x, f(x)) pour tous les x = 0, ..., T tels que v[x] = f(x)

Complexité. $O(K(\log B)^3 + T \log \log B)$; si $T \gg B$, coût par valeurs $\approx \log \log B$

Crible quadratique : Optimisation des paramètres

On prend $B = L(1/2, 1/2; N) = \exp\left(\frac{1}{2}\sqrt{\log N \log\log N}\right)$. Donc

$$u = \frac{\log \sqrt{N}}{\log B} = \frac{\frac{1}{2} \log N}{\frac{1}{2} \sqrt{\log N \log \log N}} = \sqrt{\frac{\log N}{\log \log N}}$$

et $\log u \approx \frac{1}{2} \log \log N$ donc le nombre de valeurs à crible pour obtenir $K \approx B$ relations est

$$T = u^u B \approx B^2$$

Ainsi $T \gg B$ et le coût du crible est donc

$$O(B^2 \log \log B)$$

Ce qui est équivalent à la phase d'algèbre linéaire si on utilise les méthodes en $O(B^{2+\varepsilon})$ et donc le coût heuristique pour factoriser N par l'algorithme du crible quadratique de Pomerance est de l'ordre de

$$\exp\left((1+\varepsilon)\sqrt{\log N\log\log N}\right) = L(1/2,1+\varepsilon;N)$$

Crible quadratique de Pomerance : Un exemple

On factorise N= 344 742 577. On trouve $B\approx$ 45. La base des facteurs est $\{2,3,7,11,13,17,23,31,43\}$

On crible les valeurs de $f(x) = x^2 + 37136x + 28047$ pour $x = 0, \dots 2025$ On trouve que f(x) est B-friable pour x = 29, 58, 66, 127, 159, 313, 463, 587, 687, 841, 908, 1055, 1713, 1758 et la matrice correspondante

/1	0	1	0	1	0	0	1	0/	
0	1	0	0	0	1	0	0	0	
0	0	0	0	0	0	1	1	1	
1	1	0	1	0	0	1	0	0	
0	1	1	1	1	0	0	1	0	
0	1	1	0	0	0	0	0	0	l
1	0	1	0	0	0	0	0	0	
1	0	0	0	0	0	0	1	0	
1	1	1	1	0	1	1	0	0	
0	1	1	1	0	0	0	0	0	
0	0	1	0	0	1	0	0	0	l
0	0	0	0	1	0	1	0	1	
1	1	1	0	0	0	0	0	1	
0/	0	1	0	1	0	0	0	0/	

dont le noyau est de rang 6, contenant par exemple le vecteur $^t(1,0,0,0,0,0,0,1,0,0,0,0,0,1)$.

Donc f(29)f(587)f(1758) est un carré modulo N qui est congru à $(29+M)^2(587+M)^2(1758+M)^2$.

En effet, on trouve

 $11\,879\,679^2 \equiv 272\,968\,322^2 \pmod{N}$

et finalement

(11879679 - 272968322, N) = 14827

d'où la factorisation

 $N = 14827 \cdot 23251$

Méthode ECM de Lenstra : Courbe elliptique

Définition. Soit K un corps. Une courbe elliptique sur K est une courbe cubique plane non singulière ayant un point rationnel sur K

Version explicite. Supposons que $\operatorname{char}(K) \neq 2,3$. Alors une courbe elliptique sur K est l'ensemble des solutions $(x,y) \in K^2$ de l'équation $y^2 = x^3 + ax + b$ auquel on ajoute le point à l'infini, où $a,b \in K$ sont tels que $4a^3 + 27b^2 \neq 0$

Exemples.

Méthode ECM de Lenstra : Groupe des points

Théorème

Le groupe des points d'une courbe elliptique E sur le corps K, noté E(K), forment un groupe abélien dont l'élément neutre est le point à l'infini O.

Exemples.

Méthode ECM de Lenstra : Addition de points

Notations. Soient $P_1 = (x_1, y_1)$ et $P_2 = (x_2, y_2)$ deux points dans E(K). On continue de noter O le point à l'infini.

Règles de calculs.

•
$$-O = O$$
, $O + P_1 = P_1$

$$-P_1 = (x_1, -y_1)$$

• Si
$$P_2 = -P_1$$
, alors $P_1 + P_2 = O$

• Si $P_2 \neq -P_1$, alors $P_1 + P_2 = (x_3, y_3)$ avec

$$x_3 = m^2 - x_1 - x_2$$
, $y_3 = m(x_1 - x_3) - y_1$

où la pente
$$m$$
 est donnée par $m= \begin{cases} \dfrac{y_2-y_1}{x_2-x_1} & \text{ si } x_1 \neq x_2 \\ \dfrac{3x_1^2+a}{2y_1} & \text{ sinon} \end{cases}$

Coût. Au plus 7 additions et 4 divisions/multiplications

Méthode ECM de Lenstra : Stucture de $E(\mathbb{F}_p)$

Soit p un nombre premier et soit E un courbe elliptique définie sur \mathbb{F}_p

Théorèmes de Cassels et Hasse

Le groupe $E(\mathbb{F}_p)$ est de rang 1 ou 2 et son cardinal vérifie

$$|\#E(\mathbb{F}_p) - (p+1)| \le 2\sqrt{p}$$

Théorèmes de Deuring et Lenstra

Pour tout entier $m \in [p+1-2\sqrt{p}, p+1+2\sqrt{p}]$, il existe une courbe elliptique E sur \mathbb{F}_p telle que $\#E(\mathbb{F}_p)=m$.

De surcroît, il existe c>0 telle que si p>3 et si $\mathcal S$ est un sous-ensemble de $\mathbb Z\cap [p+1-2\sqrt p,p+1+2\sqrt p]$ de cardinal ≥ 3 , alors le nombre $N(\mathcal S)$ de courbes elliptiques sur $\mathbb F_p$ dont le cardinal est dans $\mathcal S$ vérifie

$$N(S) > \frac{c \cdot \#S \cdot p^{3/2}}{\log p}$$

Méthode ECM de Lenstra

Méthode p-1 **de Pollard revisitée.** Soit N=pq, le théorème des restes chinois donne l'isomorphisme

$$(\mathbb{Z}/N\mathbb{Z})^{\times} \simeq (\mathbb{Z}/p\mathbb{Z})^{\times} \times (\mathbb{Z}/q\mathbb{Z})^{\times}$$

La méthode p-1 de Pollard consiste à trouver $M\geq 1$ et $a\in (\mathbb{Z}/N\mathbb{Z})^{\times}$ tels que $a^{M}\equiv 1\pmod{p}$ et $a^{M}\not\equiv 1\pmod{q}$

Méthode ECM. Soit $E: y^2 = x^3 + ax + b$ une pseudo-courbe elliptique sur $\mathbb{Z}/N\mathbb{Z}$ avec $(4a^3 + 27b^2, N) = 1$. On a une application naturelle

$$E(\mathbb{Z}/N\mathbb{Z}) \to E(\mathbb{F}_p) \times E(\mathbb{F}_q)$$

La méthode ECM de Lenstra consiste à trouver $M \geq 1$ et $P \in E(\mathbb{Z}/N\mathbb{Z})$ tel que $M \cdot P = O$ dans $E(\mathbb{F}_p)$ et $M \cdot P \neq O$ dans $E(\mathbb{F}_q)$

Avantages. Plus de choix de groupes donc plus de chance de trouver un groupe de cardinal B-friable

Méthode ECM de Lenstra

Algorithme.

- (1) Prendre $(x, y, a) \in \{0, ..., N-1\}^3$ au hasard
- (2) Faire $b \leftarrow y^2 x^3 ax \mod N$
- (3) Calculer $d \leftarrow (4a^3 27b^2, N)$ et si d = N alors retourner en 1
- (4) Si $d \neq 1$ alors retourner d et terminer
- (5) Faire $E \leftarrow y^2 = x^3 + ax + b$, $P \leftarrow (x, y)$
- (6) Pour tous les premiers $p \leq B$, Faire
 - (a) Trouver $e \ge 1$ maximal tel que $p^e \le B$
 - (b) Faire $P \leftarrow p^e \cdot P$ dans $E(\mathbb{Z}/N\mathbb{Z})$ si possible. Sinon, on a trouvé d tel que d n'est pas inversible modulo N, renvoyer (d, N) et terminer
- (7) Retourner en 1 après avoir éventuellement augmenté B

Complexité. $O(B^{1+\varepsilon})$ exponentiations dans $E(\mathbb{Z}/N\mathbb{Z})$ pour chaque courbe

Méthode ECM de Lenstra : Complexité

Problème. Soit P un point au hasard sur une pseudo-courbe elliptique aléatoire E définie modulo N. Quelle est la probabilité que l'ordre de P dans $E(\mathbb{F}_p)$ est B-friable alors que l'ordre de P dans $E(\mathbb{F}_q)$ ne l'est pas ?

Réduction. On ignore la deuxième condition qui est très improbable si la première est vérifiée

Les bonnes courbes. Par le théorème de Lenstra, la probabilité qu'un courbe sur \mathbb{F}_p prise au hasard soit d'ordre B-friable est plus grande que

$$\operatorname{prob}(B) = c \cdot \operatorname{card} S \cdot \frac{p^{3/2}}{\log p} \cdot \frac{1}{p^2} \approx c \cdot \frac{\psi(\frac{3}{2}p, B) - \psi(\frac{1}{2}p, B)}{\sqrt{p} \log p}$$

avec ${\mathcal S}$ l'ensemble des entiers B-friables entre $p+1-2\sqrt{p}$ et $p+1+2\sqrt{p}$

Optimisation. Le coût de l'algorithme pour une courbe est de l'ordre de B opérations dans le groupe des points, donc on cherche à minimiser $B/\operatorname{prob}(B)$. On trouve $B=L(1/2,\sqrt{2}/2+\varepsilon;p)$. La complexité finale est sous-exponentielle en la taille de $p:O(L(1/2,\sqrt{2}+\varepsilon;p)$

Amélioration. Comme pour la méthode p-1 de Pollard, il est possible de faire un second stage

Méthode ECM de Lenstra : Un exemple

On factorise $N=3\,549\,331\,957$. On prend $a=1\,078\,104\,638$, $x=317\,359\,960$ et $y=983\,830\,906$

Donc on trouve $b=y^2-x^3-ax \mod N=1\,587\,719\,826$

On considère les multiples du point P= (317 359 960, 983 830 906) sur la pseudo-courbe $E:y^2=x^3+1\,078\,104\,638x+1\,587\,719\,826$ définie modulo N

On prend B = 1000

- $P \leftarrow 2^9 \cdot P = (701738352,991959613)$
- $P \leftarrow 3^6 \cdot P = (879549846, 58668168)$
- $P \leftarrow 5^4 \cdot P = (1040814202,724918949)$

En effet, on obtient (1 050 050 212, N) = 26 861 et la factorisation $N=26\,861\cdot132\,137$

Crible du corps de nombres

Idée. Soit $f(X) \in \mathbb{Z}[X]$, unitaire et irréductible, et soit $m \in \mathbb{Z}$ tel que $f(m) \equiv 0 \pmod{N}$. On pose $\alpha = \bar{X}$ dans $\mathbb{Z}[X]/(f(X))$ et donc cet anneau est $\mathbb{Z}[\alpha]$

On pose $\phi: \mathbb{Z}[\alpha] \to \mathbb{Z}/N\mathbb{Z}$ définie par $\phi(P(\alpha)) = \overline{P(m)}$. C'est un morphisme d'anneaux

On va trouver $P(X) \in \mathbb{Z}[X]$ tel que $P(\alpha) = \gamma^2 \in \mathbb{Z}[\alpha]$ et $P(m) = b^2 \in \mathbb{Z}$. Si on pose $a = \phi(\gamma)$, on a alors

$$a^2 \equiv \phi(\gamma)^2 \equiv \phi(\gamma^2) \equiv \phi(P(\alpha)) \equiv P(m) \equiv b^2 \pmod{N}$$

d'où une possible factorisation de N

Méthode. On va cribler à la fois les valeurs $u-v\alpha$ dans $\mathbb{Z}[\alpha]$ et les valeurs u-vm dans \mathbb{Z}

Avantages. Les valeurs à cribler sont plus petites donc plus probables à être friables donc il est plus facile à trouver la relation souhaitée. On peut montrer que la complexité est $L(1/3,\beta;N)$ avec $\beta>\sqrt[3]{32/9}$

Crible du corps de nombres

Construction de f. On prend $d \geq 5$ tel que $\frac{3}{2}(d/\log 2)^d < N$ et on pose $m = \lfloor N^{1/d} \rfloor$. On écrit le développement de N en base m

$$N = \lambda_d m^d + \lambda_{d-1} m^{d-1} + \dots + \lambda_0$$

On peut montrer que $\lambda_d=1$ et on pose

$$f(X) = X^d + \lambda_{d-1}X^{d-1} + \dots + \lambda_0$$

Clairement, f(m) = N et si f(X) = P(X)Q(X) n'est pas irréductible alors on a une factorisation N = P(m)Q(m)

Norme. Soit $\alpha_1, \ldots, \alpha_d \in \mathbb{C}$ les racines de f. Pour $\beta = P(\alpha) \in \mathbb{Z}[\alpha]$, on pose

$$\mathcal{N}\beta = \prod_{i=1}^d P(\alpha_i) \in \mathbb{Z}$$

Remarque. Si $\beta \in \mathbb{Z}[\alpha]$ est un carré, alors $\mathcal{N}\beta$ est un carré dans \mathbb{Z}

Crible du corps de nombres : Criblage

On a pour $u, v \in \mathbb{Z}$

$$\mathcal{N}(u - v\alpha) = \prod_{i=1}^{d} (u - v\alpha_i) = v^d \prod_{i=1}^{d} (u/v - \alpha_i) = v^d f(u/v) = F(u, v)$$

où $F(X,Y) = Y^d f(X/Y)$ est l'homogénéisé de f.

On pose G(X,Y) = X - Ym

On crible pour trouver les $|a|, |b| \leq M$ tels que F(a, b) et G(a, b) sont B-friables

Par algèbre linéaire, on en déduit des a_i , b_i tels que

$$\prod (a_i - b_i m) \text{ est un carr\'e dans } \mathbb{Z} \text{ et}$$
$$\prod \mathcal{N}(a_i - b_i \alpha) = \mathcal{N} \left(\prod (a_i - b_i \alpha)\right) \text{ est un carr\'e dans } \mathbb{Z}$$

Problèmes. On peut avoir que $\mathcal{N}(\beta)$ est un carré sans que β soit un carré, et si c'est un carré, la racine carrée n'est pas forcément dans $\mathbb{Z}[\alpha]$ et surtout comment calculer cette racine carrée dans un anneau non factoriel ?

Crible du corps de nombres : Anneau d'entiers

Définition. Notons $K = \mathbb{Q}(\alpha)$. Alors

$$\mathcal{O}_K = \{ \beta \in K \text{ tel que le polynôme minimal de } \beta \text{ est dans } \mathbb{Z}[X] \}$$

est un sous-anneau de K appelé l'anneau des entiers de K

Résultats. \mathcal{O}_K est un anneau de Dedekind, en général non principal, et on a $\mathbb{Z}[\alpha] \subset \mathcal{O}_K$ et $f'(\alpha)\mathcal{O}_K \subset \mathbb{Z}[\alpha]$

Solutions. Si
$$\beta = \gamma^2$$
 avec $\gamma \in \mathcal{O}_K$ alors $f'(\alpha)^2 \beta = (f'(\alpha)\gamma)^2$ et $f'(\alpha)\gamma \in \mathbb{Z}[\alpha]$

Problèmes. Soit β tel que $\mathcal{N}(\beta)$ est un carré, il faut tester si vraiment $\beta = \gamma^2$ et si oui, calculer γ

Crible du corps de nombres : Racines carrées dans $\mathbb{Z}[\alpha]$

Définition. On dit qu'un nombre premier ℓ est de degré 1 si ℓ ne divise pas le discriminant de f et si il existe s_{ℓ} un entier tel que $f(s_{\ell}) \equiv 0 \pmod{\ell}$. On a alors nécessairement $f'(s_{\ell}) \not\equiv 0 \pmod{\ell}$.

Théorème.

Soient $a_i, b_i \in \mathbb{Z}$ tels que $f'(\alpha)^2 \prod (a_i - b_i \alpha)$ est un carré dans $\mathbb{Z}[\alpha]$ et soit ℓ un premier de degré 1 qui ne divise aucun des $\mathcal{N}(a_i - b_i \alpha)$. Alors

$$\prod \left(\frac{a_i - b_i s_\ell}{\ell} \right) = 1$$

Idée. On ajoute des premiers ℓ_j de degré 1 – assez grands pour ne pas diviser aucun des $\mathcal{N}(a_i-b_i\alpha)$ considérés – au vecteur du crible et on ne garde que les valeurs qui vérifient aussi les conclusions du théorème

Calcul de la racine carrée. On détermine la racine carrée modulo ℓ , premier de degré 1, et on effectue un relèvement de Hensel

Crible du corps de nombres : Cas particuliers

Idée. Optimiser les choix du polynôme f et de l'entier m tels que $f(m) \equiv 0 \pmod{N}$ si on cherche à des factoriser des nombres de forme particulières

Nombres de Cunningham. $b^k \pm 1$ avec b=2,3,5,6,7,10,11,12 (généralise nombre de Fermat $2^k + 1$)

Exemple. Pour $N = F_9 = 2^{2^9} + 1 = 2^{512} + 1 = {}_{13407807929942597099574024998205846127}$

479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084097 on peut utiliser $f(X)=X^5+8$ et $m=2^{103}$

Plus généralement, pour $b^k\pm 1$, si on veut un polynôme de degré d, on écrit k=dl+r, la division euclidienne, et on prend $f(X)=X^d\pm b^{d-r}$ et $m=b^{l+1}$. On a alors

$$f(m) = (b^{l+1})^d \pm b^{d-r} = b^{d(l+1)} \pm b^{d-r} = b^{d-r}(b^k \pm 1)$$

Exemple. $N=10^{193}-1=9\cdots 9$ (193 neufs), le choix ci-dessus donne X^5-100 et $m=10^{39}$. On remarque que $10^{193}\equiv 1\pmod N$ donne $(10^{64})^3\equiv 10^{-1}\pmod N$ et donc $(6\cdot 10^{64})^3\equiv 6^3\cdot 10^{-1}\equiv 108\cdot 5^{-1}\pmod N$ et ainsi un meilleur choix $f(X)=5X^3-108$ et $m=6\cdot 10^{64}$