Algebra 2

29. november 2024

1 Uvod v teorijo grup

1.1 Osnovni pojmi teoriji grup

Definicija 1.1. Naj bo S neprazna množica. **Operacija na množice** S je preslikava $*: S \times S \to S, \ (a,b) \mapsto a*b.$

Operacija * je **asociativna**, če $\forall a, b, c \in S \cdot (a * b) * c = a * (b * c)$.

Operacija * je komutativna, če $\forall a,b \in S$. a*b=b*a.

Definicija 1.2. Neprazna množica S skupaj z operacijo * je **polgrupa**, če je operacija * asociativna.

Definicija 1.3. Naj bo S množica z operacijo *. Pravimo, da je $e \in S$ enota (oz. nevtralni element) za operacijo *, če $\forall x \in S$. e * x = x * e = x.

Trditev 1.1. Če v množici S obstaja enota za operacijo *, potem je ena sama.

Definicija 1.4. Polgrupa z enoto je monoid.

Definicija 1.5. Naj bo S množica z operacijo * in $e \in S$ enota. Naj bo $x \in S$.

- Element $l \in S$ je levi inverz elementa x, če l * x = e.
- Element $d \in S$ je **desni inverz** elementa x, če x * d = e.
- Element $y \in S$ je **inverz** elementa x, če x * y = y * x = e.

Trditev 1.2. Če je S monoid, $x \in S$, l levi inverz x ter d desni inverz x, potem l = d.

Definicija 1.6. Pravimo, da je element $x \in S$ obrnljiv, če obstaja inverz od x.

Definicija 1.7. Naj bo S z operacijo * monoid. Pravimo, da je S **grupa**, če je vsak element iz S obrnljiv. Če je operacija * komutativna, pravimo, da je S **Abelova grupa**.

V grupah ponavadi uporabljamo **miltiplikativni zapis**: operacija: ·, enota: 1, inverz od x: x^{-1} , potenca: x^n . V Abelovih grupah uporabljamo **aditivni zapis**: operacija: +, enota: 0, inverz od x: -x, potenca: nx.

Multiplikativni zapis	Aditivni zapis (Abelova grupa)
G ima natanko eno enoto	G ima natanko en ničeln element
Vsak element iz G ima natanko en inverz	Vsak element iz G ima natnako en nasprotni element
$(x^{-1})^{-1} = x$	-(-x) = x
$(xy)^{-1} = y^{-1}x^{-1}$	-(x+y) = -x - y
$x^{m+n} = x^m x^n$	(m+n)x = mx + nx
$(x^m)^n = x^{mn}$	n(mx) = (nm)x
V splošnem $(xy)^n \neq x^n y^n$	n(x+y) = nx + ny
$xy = xz \Rightarrow y = z$	$x + y = x + z \Rightarrow y = z$ (pravila krajšanja)
$yx = zx \Rightarrow y = z$	$x+y-x+z \rightarrow y-z$ (pravna Krajsanja)
$xy = 1 \Rightarrow yx = 1$	

Tabela 1: Lastnosti računanja v grupah

Zgled. Nekaj primerov grup.

- 1. $(\mathbb{Z}, +)$, $(\mathbb{Q}, +)$, $(\mathbb{R}, +)$, $(\mathbb{C}, +)$, $(\mathbb{Q} \setminus \{0\}, \cdot)$ so Abelove grupe.
- 2. Naj bo X neprazna množica. Definiramo $\mathrm{Sim}(X) = \{ \text{vse bijektivne preslikave } f: X \to X \}.$ ($\mathrm{Sim}(X), \circ$) je grupa, imenujemo jo **simetrična grupa** množice X.

V posebnem primeru, ko je X končna dobimo $Sim(\{1, 2, ..., n\}) = S_n$. Torej običajne permutacije.

Zqled (Simetrije kvadrata). Simetrije kvadrata K so izometrije $f: \mathbb{R}^2 \to \mathbb{R}^2$, da je f(K) = K.

Primeri simetrij: r - rotacija za 90° okoli središča kvadrata, z - zrcaljenje čez fiksno os simetrije ter kompozicije r in z. Iz geometrije lahko vidimo, da je $zr = r^3z$. To pomeni, da je vsak kompozitum r in z oblike r^kz .

Kvadrat ima kvečjemu 8 simetrij, ker je vsaka simetrija določena s sliko oglišča 1 in informacijo, ali smo naredili zrcaljenje ali ne. Dobimo množico simetrij $D_{2\cdot 4} = \{id, r, r^2, r^3, z, rz, r^2z, r^3z\}$. $D_{2\cdot 4}$ je **diedrska grupa moči** 8.

Zgled (Diedrska grupa moči 2n). Imamo naslednje simetrije pravilnega n-kotnika:

- r rotacija za $\frac{2\pi}{n}$ okoli središča.
- z zrcaljenje čes neko fiksno os simetrije.

Velja: $zr = r^{n-1}z$.

Množica vseh simetrij je $D_{2n} = \{1, r, r^2, \dots, r^{n-1}, z, rz, r^2zn, \dots, r^{n-1}z\}$. D_{2n} je **diedrska grupa moči** 2n.

Zgled (Monoid \to Grupa). Naj bo (S,*) monoid. Definiramo $S^* = \{obrnljive elementi iz <math>S\}$, potem S^* je grupa za *.

Primer. Naj bo $S = (\mathbb{R}^{n \times n}, \cdot), \ S^* = \{A \in \mathbb{R}^{n \times n} \mid \det A \neq 0\} = \operatorname{GL}_n(\mathbb{R}). \ \operatorname{GL}_n(\mathbb{R})$ je splošna linearna grupa $n \times n$ matrik.

Zgled (Direktni produkt grup). Naj bodo G_1, G_2, \ldots, G_n grupe z operacijami $*_1, *_2, \ldots, *_n$. Na množice $G_1 \times G_2 \times \ldots \times G_n$ vpeljamo operacijo $(g_1, g_2, \ldots, g_n) * (h_1, h_2, \ldots, h_n) = (g_1 *_1 h_1, g_2 *_2 h_2, \ldots, g_n *_n h_n)$. Potem $(G_1 \times G_2 \times \ldots \times G_n, *)$ je grupa.

1.2 Ponovitev o permutacijah

Izrek 1.3. Vsaka permutacija je produkt disjunktnih ciklov.

Definicija 1.8. Cikli dolžine 2 so transpozicije.

Trditev 1.4. Vsaka permutacija $\pi \in S_n$ je produkt transpozicij. Teh transpozicij je vedno sodo mnogo ali vedno liho mnogo.

Definicija 1.9. Permutacija je soda (oz. liha), če je produkt sodo (oz. liho) mnogo transpozicij.

Definicija 1.10. Znak permutacije je $sgn(\pi) = \begin{cases} 1; & \pi \text{ je soda} \\ -1; & \pi \text{ je liha} \end{cases}$.

Trditev 1.5. $sgn(\pi \rho) = sgn(\pi) \cdot sgn(\rho)$.

1.3 Podgrupe

Definicija 1.11. Naj bo G grupa in $H \subseteq G$, $H \neq \emptyset$. H je **podgrupa grupe** G, če je H za isto operacijo tudi grupa. Oznaka $H \leq G$.

Opomba. Očitno o podgrupah:

- 1. Naj bo G grupa. Vedno velja: $\{1\} \leq G$ in $G \leq G$.
- 2. Če je $H \leq G$, potem (nujno!) $1 \in H$, kjer 1 je enota v G.

Opomba. Pri monoidih se enota ne deduje nujno, npr. (\mathbb{Z},\cdot) in $(\{0\},\cdot)$.

Trditev 1.6. Naj bo G grupa, $H \subseteq G$, $H \neq \emptyset$. Naslednje trditve so ekvivalentne:

- 1. $H \leq G$.
- 2. $\forall x, y \in H . xy^{-1} \in H$.
- 3. H je zaprta za množenje in invertiranje.

Dokaz. Definicija podgrupe.

Posledica 1.6.1. Naj bo G končna grupa in $H \subseteq G$, $H \neq \emptyset$. Velja:

 $H \leq G \Leftrightarrow H$ je zaprta za množenje.

Dokaz. Ker je G končna, ko potenciramo $x \in H$, ena izmed potenc zagotovo ponovi.

Opomba. V končnih grupih ni potrebno preverjati zaprtost za invertiranje.

Primer. Primeri podrgup.

- 1. Vse prave podrgupe v grupi $(\mathbb{Z}, +)$ so oblike $n\mathbb{Z}, n \in \mathbb{N}$.
- 2. Definiramo $\mathrm{SL}_n(\mathbb{R}) = \{A \in \mathrm{GL}_n(\mathbb{R}) \mid \det A = 1\}$. Potem $\mathrm{SL}_n(\mathbb{R}) \leq \mathrm{GL}_n(\mathbb{R})$. $\mathrm{SL}_n(\mathbb{R})$ imenujemo **specialna linearna grupa**.
- 3. Definiramo $O(n) = \{ A \in GL_n(\mathbb{R}) \mid AA^T = A^TA = I \}$. Potem $O(n) \leq GL_n(\mathbb{R})$.
- 4. Definiramo $SO(n) = \{A \in O(n) \mid \det A = 1\}$. Potem $SO(n) \leq O(n)$. Grupo SO(n) imenujemo **specialne ortogonalne matrike**.

Trditev 1.7. Naj bosta H in K podgrupi grupe G . Potem $H \cap K \leq G$. Enako velja za preseke poljubnih družin podgrup.	
$Dokaz$. Karakterizacija podrgupe. \Box	
Definicija 1.12. Naj bosta $H, K \leq G$. Definiramo $HK = \{hk \mid h \in H, k \in K\}$. Temu pravimo produkt podgrup .	
$Zgled.\ HK$ ni nujno podgrupa v $G.\ Vzemimo\ G=S_3,\ H=\{\mathrm{id},(1\ 2)\},\ K=\{\mathrm{id},(1\ 3)\}.$	
Trditev 1.8. Naj bosta $H, K \leq G$. Če velja $HK = KH$, potem je $HK \leq G$.	
$Dokaz$. Karakterizacija podrgupe in definicija produkta podgrup. \Box	
$Opomba$. Ni nujno, da produkt podgrup HK komutativen. Torej ni nujno vsak element $hk \in HK$ se da zapisati kot $k'h' \in KH$ za neki $k' \in K$ in $h' \in H$.	
Definicija 1.13. Naj bo $H \leq G$, $a \in G$. Definiramo množico $aHa^{-1} = \{aha^{-1} \mid h \in H\}$. Potem $aHa^{-1} \leq G$. Temu se reče konjungiranje podgrupe H z elementom a .	
$Dokaz$. Karakterizacija podrgupe. \Box	
Trditev 1.9. Naj bo G grupa. 1. Definiramo $Z(G) = \{y \in G \mid \forall x \in G . yx = xy\}$. Potem $Z(G) \leq G$. Tej grupi pravimo center grupe G . 2. Naj bo $a \in G$. Definiramo $C_G(a) = \{y \in G \mid ya = ay\}$. Potem $C_G(a) \leq G$. Tej podgrupi pravimo centralizator elementa a v G .	
$Dokaz$. Karakterizacija podrgupe. \Box	
1.4 Odseki podgrup in Lagrangeev izrek	
Naj bo G grupa in $H \leq G$. Definiramo relacijo na G s predpsiom $\forall a,b \in G$. $a \sim b :\Leftrightarrow a^{-1}b \in H$.	
Trditev 1.10. Relacija \sim je ekvivalenčna relacija na G .	
Dokaz. Preverimo refleksivnost, simetričnost in tranzitivnost.	
Definicija 1.14. Naj bo G grupa, $H \leq H$, $a \in G$. Ekvivalenčni razred elementa $a \in G$ je množica $[a] = \{b \in G \mid a \sim b\}$.	
$Opomba. \ [a] = \{ah \mid h \in H\} =: aH.$	
Definicija 1.15. Množico aH imenujemo levi odsek grupe G po podgrupi H .	
$Opomba$. V grupo G lahko vpeljamo tudi relacijo \approx s predpisom $\forall a,b \in G$. $a \approx b :\Leftrightarrow ab^{-1} \in H$. To je ekvivalenčna relacija. Ekvivalentni razredi so $[a] = \{ha \mid h \in H\} =: Ha$, ki jih imenujemo desni odseki .	
Definicija 1.16. Faktorska (oz. kvocientna) množica glede na relacijo \sim je množica $G/_{\sim} = \{aH \mid a \in G\} =: G/H.$	
Opomba.~G/H ni nujno grupa. $Opomba.~$ Kadar sta dva odseka enaka? $aH=bH\Leftrightarrow a\sim b\Leftrightarrow a^{-1}b\in H.$ Opomba.~ Naj bo G končna grupa. Potem je G/H tudi končna množica.	
Definicija 1.17. Naj bo G končna grupa. Moč množce G/H označimo z $G:H$ (oz $[G:H]$) in jo imenujemo indeks podgrupe H v grupi G .	
Izrek 1.11 (Lagrangeev izrek). Če je G končna grupa in $H \leq G$, potem je	
$ G = H \cdot G:H .$	
$Dokaz.$ Recimo, da $ G:H =r.$ Pokažemo, da $ a_iH = H $ za vse $i=1,\ldots,r.$	

Posledica 1.11.1. Moč vsake podgrupe končne grupe deli moč grupe.

Opomba. Če je grupa G Abelova in $H \leq G$, potem odseki pišemo kot a+H. Velja: $G/H = \{a+H \mid a \in G\}$. Vpeljamo operacijo na G/H: (a+H)+(b+H)=(a+b)+H. Ta operacija je dobro definirana, ker je G Abelova.

Trditev 1.12. G/H je za to operacijo Abelova grupa.

Dokaz. Enostavno preverimo aksiome.

Primer. Naj bo $G = \mathbb{Z}$ in $H = n\mathbb{Z}$, $n \in \mathbb{N}$. Potem $\mathbb{Z}/n\mathbb{Z} = \{0 + n\mathbb{Z}, 1 + n\mathbb{Z}, \dots, (n-1) + n\mathbb{Z}\}$.

Operacija + na $\mathbb{Z}/n\mathbb{Z}$ je seštevanje po modulu n. Grupa $\mathbb{Z}_n := \mathbb{Z}/n\mathbb{Z}$ je **grupa ostankov po modulu** n, $|\mathbb{Z}_n| = n$.

Posledica 1.12.1. Za vsako število $n \in \mathbb{N}$ obstaja vsaj ena grupa moči n.

1.5 Generatorji grup. Ciklične grupe

Definicija 1.18. Naj bo G grupa in X podmnožica v G. Potem označimo z $\langle X \rangle$ najmanjšo podgrupo v G, ki vsebuje množico X. To podgrupo imenujemo **podgrupa generirana z množico** X.

 $Opomba. \langle X \rangle$ je presek vseh podgrup grupe G, ki vsebujejo množico X.

Definicija 1.19. Naj bo G grupa.

• Če je $X \subseteq G$, za katero velja $G = \langle X \rangle$, pravimo, da je G generirana z množico X. Elementam množice X pravimo generatorji grupe G.

Oznaka: Če je $X = \{x_1, \dots, x_n\}$, pišemo $\langle \{x_1, \dots, x_n\} \rangle = \langle x_1, \dots, x_n \rangle$.

- Če je $G = \langle x_1, \dots, x_n \rangle$, pravimo, da je G končno generirana grupa.
- Če obstaja $x \in G$, da je $G = \langle x \rangle$, pravimo, da je G ciklična grupa.

Trditev 1.13. Naj bo G grupa in $X \subseteq G$. $\langle X \rangle = \left\{ x_{i_1}^{\pm 1} x_{i_2}^{\pm 1} \dots x_{i_r}^{\pm 1} \mid x_{i_j} \in X; \ r \in \mathbb{N}_0 \right\} =: S$.

Dokaz. Dovolj dokazati, da je S podgrupa grupe G.

Posledica 1.13.1. Naj bo G grupa, $a \in G$. Potem $\langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}.$

Primer. Primeri generatorjev grup:

- $\mathbb{Z} = \langle 1 \rangle$. Velja tudi: $\mathbb{Z} = \langle p, q \rangle$, kjer sta p in q tuji.
- $\mathbb{Z}_n = \langle 1 + n \mathbb{Z} \rangle$.

Definicija 1.20. Naj bo G grupa in $a \in G$. Najmanjšemu naravnemu številu n, za katerega velja $a^n = 1$, pravimo **red** elementa a. Če tak n ne obstaja, pravimo, da ima a neskončen red.

Primer. Primeri elementov končnega in neskončnega reda.

- Element $1 \in \mathbb{Z}$ ima neskončen red.
- Element $1 + n\mathbb{Z} \in \mathbb{Z}_n$ ima red n.

Trditev 1.14. Naj bo G grupa, $a \in G$. Potem je red elementa a enak n natanko tedaj, ko $|\langle a \rangle| = n$.

Dokaz. Uporabimo ustrezne definicije in izreki o celih številih.

Posledica 1.14.1. Naj bo G končna grupa. Velja:

- 1. Za vsak $a \in G$ red a deli |G|.
- 2. Za vsak $a \in G$ velja, da $a^{|G|} = 1$.
- 3. Če je |G| praštevilo, potem je G ciklična grupa.

Dokaz. Uporabimo ustrezne definicije in izreki.

2 Uvod v teorijo kolobarjev

Definicija 2.1. Naj bo K neprazna množica z operacijama + in \cdot . Pravimo, da je $(K, +, \cdot)$ kolobar, če

- 1. (K, +) je Abelova grupa (enota: 0, inverz od a: -a).
- 2. (K,\cdot) je monoid, tj. kolobar vedno ima enoto za \cdot , označimo jo z 1, in rečemo, da je 1 **enica** kolobarja K.
- 3. Za vse $a, b, c \in K$ velja, da a(b+c) = ab + ac in (a+b)c = ac + bc.

Če je množenje komutativno, pravimo, da je K komutativen kolobar.

Zgled. Primeri kolobarjev.

- $(\mathbb{Z}, +, \cdot)$ je komutativen kolobar.
- $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ so komutativni kolobarji.
- $(\mathbb{R}^{n\times n},+,\cdot)$ je kolobar.
- Naj bo $X \subseteq \mathbb{R}$, $\mathbb{R}^X = \{f : X \to \mathbb{R}\}$. Definiramo (f+g)(x) = f(x) + g(x), (fg)(x) = f(x)g(x). \mathbb{R}^X je komutativen kolobar.

Definicija 2.2. Naj bo K kolobar.

- $l \in K \setminus \{0\}$ je levi delitelj niča, če $\exists y \in K \setminus \{0\} . ly = 0...$
- $d \in K \setminus \{0\}$ je desni delitelj niča, če $\exists y \in K \setminus \{0\} . yd = 0...$
- $x \in K \setminus \{0\}$ je **delitelj niča**, če je levi ali desni delitelj niča.
- $x \in K$ je idempotent, če $x^2 = x$.
- $x \in K$ je nilpotent, če $\exists n \in \mathbb{N} . x^n = 0$.

Zgled. Primeri deliteljev niča, idempotentov in nilpotentov.

- V \mathbb{R}^2 velja $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = 0.$
- Če je K poljuben kolobar, potem 1 in 0 sta idempotenta.
- V \mathbb{R}^5 matrika $\begin{bmatrix} 0 & 1 & & & \\ & 0 & 1 & & \\ & & 0 & 1 & \\ & & & 0 & 1 \\ & & & & 0 \end{bmatrix}$ je nilpotenta.

Definicija 2.3. Cel kolobar je komutativen kolobar brez deliteljev niča.

Primer. $(\mathbb{Z}, +, \cdot)$ je cel kolobar.

Definicija 2.4. Naj bo K kolobar.

- Kolobar K je **obseg**, če je vsak neničeln element kolobarja K obrnljiv, tj. $K^* = K \setminus \{0\}$.
- **Polje** je komutativen obseg.

Primer. $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ so polja.

Trditev 2.1. Obrnljiv element kolobarja K ne more biti delitelj niča.

Dokaz. Enostavno.

Definicija 2.5. Naj bo A kolobar in F polje. A je **algebra** nad F, če

- 1. A je vektorski prostor nad F.
- 2. $\alpha(xy) = (\alpha x)y = x(\alpha y)$.

Zgled. Kolobarji in algebri.

- Naj bo K kolobar, $K^{n \times n} = M_n(K) = \{n \times n \text{ matrike z elementi iz } K\}$. $K^{n \times n}$ z običajnima + in \cdot je kolobar. Če je F polje, potem $F^{n \times n}$ je vektorski prostor in hitro vidimo, da je $F^{n \times n}$ algebra nad F.
 - Bolj splošno: Naj bo V vektorski prostor nad F. Vzemimo množico $\operatorname{End} V$. Potem $\operatorname{End} V$ je algebra nad F (rečemo tudi F-algebra).
- Naj bo X neprazna množica. Gledamo funkcije \mathbb{R}^X . Na \mathbb{R}^X lahko definiramo +, \cdot in množenje s skalarjem iz \mathbb{R} po točkah. \mathbb{R}^X je algebra nad \mathbb{R} .

• Naj bo K kolobar. **Polinom** s koeficienti iz K je formalna vrsta oblike

$$p(x) = \sum_{i \ge 0} a_i X^i = a_0 + a_1 X + a_2 X^2 + \dots + a_k X^k, \ a_i \in K, \ k \ge 0.$$

Manj baročno:

$$(a_0, a_1, \ldots, a_k, 0, 0, \ldots).$$

Torej polinom je končno zaporedje elementov iz K.

Naj bo K[X] je množica vseh polinomov s koeficienti iz K. V K[X] definiramo seštevanje in množenje:

- $-\sum_{i\geq 0} a_i X^i + \sum_{i\geq 0} b_i X^i := \sum_{i\geq 0} (a_i + b_i) X^i.$ $-\sum_{i\geq 0} a_i X^i \cdot \sum_{i\geq 0} b_i X^i := \sum_{i\geq 0} c_i X^i, \text{ kjer } c_i = \sum_{j\geq 0}^i a_{i-j} b_j.$ S temi operacijami K[X] postane kolobar.

Opomba. Če je K polje, v K[X] lahko vpeljamo množenje s skalarjem:

$$-\alpha(\sum_{i\geq 0} a_i X^i) = \sum_{i\geq 0} (\alpha a_i) X^i$$

Potem $K[X]$ postane algebra nad K .

 $Mo\check{z}ni\ pospolo\check{s}itvi\ K[X]:$

- Polinomi več spremenljivk: $K[X_1, \ldots, X_n] = K[X_1, \ldots, X_n][X_n].$
- Če se ne omejimo na končne formalne vsote, dobimo kolobar formalnih potenčnih vrst K[[X]].

Trditev 2.2. Velja:

- Če je K komutativen kolobar, je tudi K[X] komutativen.
- K je brez deliteljev nična natanko tedaj, ko K[X] brez deliteljev niča.
- K je cel kolobar natanko tedaj, ko K[X] cel.

Dokaz. Enostavno.