# Machine Learning

CS161

Prof. Guy Van den Broeck

### Data comes from Nature



# **Learning Settings**



# Fitting Data



### Regression



### **Classification Data**

| Example           |     |     |     |     | Inpu | t Attribu     | ıtes |     |         |       | Goal           |
|-------------------|-----|-----|-----|-----|------|---------------|------|-----|---------|-------|----------------|
|                   | Alt | Bar | Fri | Hun | Pat  | Price         | Rain | Res | Type    | Est   | WillWait       |
| $\mathbf{x}_1$    | Yes | No  | No  | Yes | Some | \$\$\$        | No   | Yes | French  | 0–10  | $y_1 = Yes$    |
| $\mathbf{x}_2$    | Yes | No  | No  | Yes | Full | \$            | No   | No  | Thai    | 30–60 | $y_2 = No$     |
| $\mathbf{x}_3$    | No  | Yes | No  | No  | Some | \$            | No   | No  | Burger  | 0–10  | $y_3 = Yes$    |
| $\mathbf{x}_4$    | Yes | No  | Yes | Yes | Full | \$            | Yes  | No  | Thai    | 10–30 | $y_4 = Yes$    |
| $\mathbf{x}_5$    | Yes | No  | Yes | No  | Full | <b>\$\$\$</b> | No   | Yes | French  | >60   | $y_5 = No$     |
| $\mathbf{x}_6$    | No  | Yes | No  | Yes | Some | <b>\$\$</b>   | Yes  | Yes | Italian | 0–10  | $y_6 = Yes$    |
| $\mathbf{x}_7$    | No  | Yes | No  | No  | None | \$            | Yes  | No  | Burger  | 0–10  | $y_7 = No$     |
| $\mathbf{x}_8$    | No  | No  | No  | Yes | Some | \$\$          | Yes  | Yes | Thai    | 0–10  | $y_8 = Yes$    |
| <b>X</b> 9        | No  | Yes | Yes | No  | Full | \$            | Yes  | No  | Burger  | >60   | $y_9 = No$     |
| $\mathbf{x}_{10}$ | Yes | Yes | Yes | Yes | Full | <i>\$\$\$</i> | No   | Yes | Italian | 10–30 | $y_{10} = No$  |
| $\mathbf{x}_{11}$ | No  | No  | No  | No  | None | \$            | No   | No  | Thai    | 0–10  | $y_{11} = No$  |
| $\mathbf{x}_{12}$ | Yes | Yes | Yes | Yes | Full | \$            | No   | No  | Burger  | 30–60 | $y_{12} = Yes$ |

#### How to evaluate?

- Unsupervised learning of a Pr:
  - Likelihood: Pr(data)
- Supervised learning of binary classification:
  - Some combination of True Positive, True Negative,
    False Positive, False Negative
  - E.g., accuracy

Many more possibilities

### More data is better!



# More model complexity is better?



# Model complexity is better?



### Hypothesis Space H

#### All functions



Given data about f(x)Find  $h(x) \approx f(x)$ Where  $h \in H$ 

#### "Bias-variance tradeoff":

- Large | H |: difficult to find h, need a lot of data
- Small |H|: difficult to match true f, not enough options

### The true function as a decision tree



### Induced decision tree from data



## How to learn Bayesian networks?

- For example: Naïve Bayes
- Parameters are conditional probability P(x|y)
- Estimate this probability:
  - Count how often y is true in the data
  - Count how often  $x \wedge y$  is true in the data
  - Take the ratio as your estimate
- Overfitting is still a problem
  - Make parameter estimates "more conservative"

### Linear Regression

Consider a linear function

$$h_w(x) = w_0 + w_1 x_1 + w_2 x_2 + \cdots$$

- Given data  $\{(x_i, y_i)\}$ , find w-vector
- Minimize loss function, for example

$$L(w) = \sum_{i} (h_w(x_i) - y_i)^2$$

- Overfitting is still a problem:
  - make weights prefer to be "close to 0."
  - A "regularizer"

### From numbers to probabilities



### Logistic Regression

Push linear prediction through sigmoid activation function:

$$g_w(x) = w_0 + w_1 x_1 + w_2 x_2 + \cdots$$
$$h_w(x) = 1/(1 + \exp(g_w(x)))$$

- Real numbers become probabilities
- Now we have a classifier!
- Overfitting: make weights close to 0
- Training: by gradient descent on a loss function

### Logistic Regression Training



## Logistic Regression vs Naïve Bayes



### Example: MNIST Digit Classification



93% accuracy with logistic regression 99% accuracy with nested logistic regression: neural networks

### Deep Neural Networks



# Deep Neural Networks



### How to learn Decision Trees?

| Example           | Input Attributes |     |     |     |      |        |      |     |         |       | Goal          |
|-------------------|------------------|-----|-----|-----|------|--------|------|-----|---------|-------|---------------|
|                   | Alt              | Bar | Fri | Hun | Pat  | Price  | Rain | Res | Type    | Est   | WillWait      |
| $\mathbf{x}_1$    | Yes              | No  | No  | Yes | Some | \$\$\$ | No   | Yes | French  | 0–10  | $y_1 = Yes$   |
| $\mathbf{x}_2$    | Yes              | No  | No  | Yes | Full | \$     | No   | No  | Thai    | 30-60 | $y_2 = No$    |
| $\mathbf{x}_3$    | No               | Yes | No  | No  | Some | \$     | No   | No  | Burger  | 0-10  | $y_3 = Yes$   |
| $\mathbf{x}_4$    | Yes              | No  | Yes | Yes | Full | \$     | Yes  | No  | Thai    | 10-30 | $y_4 = Yes$   |
| $\mathbf{x}_5$    | Yes              | No  | Yes | No  | Full | \$\$\$ | No   | Yes | French  | >60   | $y_5 = No$    |
| $\mathbf{x}_6$    | No               | Yes | No  | Yes | Some | \$\$   | Yes  | Yes | Italian | 0-10  | $y_6 = Yes$   |
| $\mathbf{x}_7$    | No               | Yes | No  | No  | None | \$     | Yes  | No  | Burger  | 0-10  | $y_7 = No$    |
| $\mathbf{x}_8$    | No               | No  | No  | Yes | Some | \$\$   | Yes  | Yes | Thai    | 0-10  | $y_8 = Yes$   |
| <b>X</b> 9        | No               | Yes | Yes | No  | Full | \$     | Yes  | No  | Burger  | >60   | $y_9 = No$    |
| $\mathbf{x}_{10}$ | Yes              | Yes | Yes | Yes | Full | \$\$\$ | No   | Yes | Italian | 10-30 | $y_{10} = Nc$ |
| $\mathbf{x}_{11}$ | No               | No  | No  | No  | None | \$     | No   | No  | Thai    | 0-10  | $y_{11} = Nc$ |
| $\mathbf{x}_{12}$ | Yes              | Yes | Yes | Yes | Full | \$     | No   | No  | Burger  | 30-60 | $y_{12} = Ye$ |



What is the size of the hypothesis space?

- How many trees over n Boolean features?
- How many conjunctions?

We'll do greedy search!

# Which Splits?



