Logique Propositionnelle

Intro

Calcul propositionel

De manière analogue, un énoncé mathématique/programme informatique doit respecter:

- Des règles **lexicales** ⇒ les symboles utilisé
- Des règles **syntaxiques**, ⇒ la grammaire, structure de la proposition
- Des règles sémantiques, toute énoncé doit être interprété

Exemples:

- il pleut
- Pourquoi le poulet a-t-il traversé la route ? c'est une interrogation
- 1+1=2
- Si les poules avaient des dents, alors j'irais sur la lune bien que ça a l'air faux, c'est une proposition correcte
- 0(4 = -1), ici la syntaxe est fausse
- $1 + \sqrt{x} > 4$, ici x n'est pas définit, on ne peut donc pas évaluer la proposition

Définition 1: Une proposition est un énoncé qui peut être évalué et attribué une valeur booléenne, soit vrai soit faux

Syntaxe

comme tout langage, les expressions logique repose sur une syntaxe et un lexique. Ce lexique est composé de ces élements:

- les constantes \top et \bot
- les variables propositionnelles, souvent assignés par des lettres latin. Elles sont fini et ont pour valeur soit \top ou \bot
- · les parentheses
- les connecteurs logique, \neg , \land , \lor , \Rightarrow , \Leftrightarrow , \oplus

Définition 2: l'arité est le nombre q de propositions qu'un connecteur peut connecter, exemple si q=1, on parle de conecteur unaire

la table de verite d'un connecteur est la sortie qu'il renvoie, par exemple, voici la table de verite pour un composant \oplus binaire

entree	Ф
\top \top	丄
ТТ	T
ΤТ	Т
⊤⊥	Т

Formalisation raisonnement

Exercices

Placeholder (Comming Soon)