Nome: Mattia data inizio: 8/1/2020

Cognome: Bracco data consegna: 21/1/2020

Classe: 1^A data assenza /

TITOLO: Attrito radente

OBBIETTIVO: determinare il coefficiente d'attrito statico fra diversi materiali a contatto. Verificare se dipende dall'estensione della superficie a contatto.

TEORIA ED ASPETTATIVE:

 $K = F_{att} : P$

 $P = F_{att} \cdot K$

 $F_{att} = K * P$

mi aspetto che materiali diversi abbiano forze di attrito molto diverse fra di loro.

MATERIALI E SCHEMI DI MONTAGGIO USATI:

dinamometro digitale, bilancia, oggetti vari.

PROCEDIMENTO: agganciato un materiale per volta al dinamometro abbiamo determinato quanta forza bisogna imprimere per mettere l' oggetto in movimento (forza di primo distacco, F).

Se F non è sufficiente a superare F_{att} il corpo rimarrà fermo.

MISURE, GRAFICI E DATI:

qui di seguito sono riportate le tabelle con i dati delle varie superfici a contatto.

1-

MAT	MAT	m	Р	superficie	$F_{attrito}$	K _{attrito}
1	2	Kg	N	cm ²	/	/
				s MAX		
legno	formica	0,267	2,62	s MED	0,4	0,152
				s MIN		

2-

MAT	MAT	m	Р	superficie	$F_{attrito}$	K _{attrito}
1	2	Kg	N	cm ²	/	/
				s MAX		
legno	formica	0,537	5,27	s MED	0,9	0,17
				s MIN		

MAT	MAT	m	Р	superficie	$F_{attrito}$	K _{attrito}
1	2	Kg	N	cm²	/	/
formica	formica	0,339		s MAX		0,18
			3,33	s MED	0,6	
				s MIN		

4-

MAT	MAT	m	Р	superficie	$F_{attrito}$	K _{attrito}
1	2	Kg	N	cm²	/	/
				s MAX		
formica	spugna	0,339	3,33	s MED	1	0,3
				s MIN		

CONCLUSIONI: ho dimostrato che l' attrito non dipende dall' estensione della superficie. Inoltre ho determinato che il K di attrito (K_{att}) non dipende dalla massa.