Dragon Slayer Consulting

Introduction to the Value Proposition of InfiniBand

Marc Staimer – <u>marcstaimer@earthlink.net</u> (503) 579-3763

Introduction to InfiniBand (IB) Agenda

- □ IB defined
- □ IB vs. FC & GbE
- □ IB architecture
- Real market problems IB solves
- Market projections
- Conclusions

Definition of Input/Output

- "The transfer of data into and out of a computer"
 - Maintain data integrity
 - Protect all other data in the computer from corruption
 - Through the use of Operating System defined mechanisms
 - →Usually

Three (3) Distinct Classes of I/O

- Block protocol
 - Typically disk oriented
- Network protocol
 - Typically IP oriented
- Inter-Process Communication
 - o IPC

Characteristics I/O Classes

	Block Protocol	Network Protocol	IPC
Latency Tolerance	Dozens of milliseconds	100s of Milliseconds	Dozens of Microseconds
Avg Message Size	Very large	Small to large	Small to large
Context	Data center/campus FC	Global	Server cluster/data center
Predominate Protocol	Fibre Channel Protocol (FCP)	Ethernet / TCP/IP	Emerging - VI

IB Defined

- □ The 1st unified, simplified, & consolidated I/O Fabric
 - Designed from the ground up for all aspects of I/O
 - Shared memory vs. shared bus
 - Leverages virtual lanes or pipes
 - → (multiple fabrics in one)
 - Spec'd for today & tomorrow
 - \rightarrow 1x = 2.5Gbps
 - \rightarrow 4x = 10Gbps
 - \rightarrow 12x = 30Gbps
 - Native VI protocol
 - →OS bypass
 - Credit based flow control
 - Key: extends server I/O
 - → Outside the box

Why Do We Need Yet Another Fabric?

- The issue is not the fabric, the issue is server I/O
- Current GbE & FC fabrics do not solve server I/O bottlenecks
 - Bus contention
- GbE & FC fabrics weren't specifically designed for clustering
 - They can do it...AND
 - → Message queue depths and performance not optimal
 - → Performance is often inadequate

IB vs. FC vs. GbE Conclusion

- Initially complimentary IB will not replace FC or GbE
 - Investment protection
- Eventually competitive and complimentary
 - They will compete for some of the same budget dollars

IB Architecture

Protocol Engine Moves data via messages queued in memory

Connects subnets together

5/27/2002

IB Fabric BW Increases as Switches are Added

I/O Architecture Today

Traditional Server & Infrastructure w/dedicated I/O

InfiniBand Based I/O

InfiniBand Server Hardware Architecture

Multiple IBA links

- 2.5 Gbps
- 10 Gbps

Solve redundancy problem once

InfiniBand Based I/O

InfiniBand Server Hardware Architecture InfiniBand I/O Unit Hardware Architecture

RDMA based protocols

Market Problems IB Solves

- Higher performance lower cost I/O (Shared I/O)
 - Converges clustering, networking, & storage into one fabric
 - → The IAN (I/O Area Fabric)
 - Reduces:
 - →IT management tasks
 - → Server workloads
 - **→**TCO
- PCI Bus I/O constraints
- Low cost HP/HA server clustering
 - Lowers the cost of server blade systems
 - → Enables higher density server blade clusters

Higher Performance Lower Cost I/O (Shared I/O)

Current High Availability I/O Configuration

16 Rack mount servers with dedicated I/O per server

Maintenance

LAN

- (2) HBA FC paths/server to FC fabric
- (4) FC paths to storage to FC fabric
- (2) Ethernet paths/server to network
- (1) Ethernet maint path/server to network

Non-Productive Costly Connectivity

InfiniBand Shared I/O Chassis Example

- 19" rack mount environment
- □ 3U high
- □ IBA single high single wide std
- Integrated IBA fabric
- □ Up to 45 watts / linecard slot
- Hot swappable components
- Chassis Management Entity(CME)

3U

Front-to-Back cooling

IB Enabled High Availability Shared I/O

Add dual redundant IB I/O Chassis

LAN

- IB form factor I/O cards
- Multi-protocol
 - → FC, GigE, FastE, iSCSI, etc.
- Eliminate FC edge switches

IB Enabled High Availability Shared I/O

Reduces LAN switch requirements

Maintenance

LAN

- Total Connections = 116 = ~ 45% reduction
 - (2) IB paths/server IB fabric
 - (6) FC paths to storage FC fabric
 - (2) Ethernet paths/I/O subsystem network
 - (2) E-net maint path/I/O subsystem network

*

Potential Savings

- Current dedicated I/O subsystem/server
 - Costs = ~ \$225,000
- IB shared I/O System with
 - Improved
 - →BW, connectivity, manageability, availability
 - \circ Costs = \sim \$112,500
 - Savings = ~ 50%
- Additional non-hardware TCO gains
 - Operational Expense
 - → Estimated at 3x 8x Capital Expense reduction
 - Simpler system design to manage

System Benefits

- Increased BW & connectivity per server
- Reduced infrastructure complexity
- Reduced power & space
- BW migration to bursting servers
- Natural low latency IPC network

Managing Scalability w/Traditional I/O

What happens when just 2 more servers are added?

LAN

- (1) new switch has to be added
- Fabric will need to be reconfigured
- Maintenance LAN will also need to change
 - From a 16-pt switch/router to 24-port

Managing Scalability w/Traditional I/O

Adding servers takes a lot of hard work & time

- Disruptive FC fabric reconfigurations

Managing Scalability w/IB based I/O

Adding additional servers is significantly simpler & easier

- (2) IB paths/new server IB fabric
- No new switches or reconfigurations
- Faster & non-disruptive implementation

Scalability Net Results w/IB shared I/O

- Making adds, moves, or changes means
 - Less time
 - Less cost
 - Less effort
 - Less complexity
 - Less personnel
 - Less disruptions
 - More control
 - More simplicity
 - More stability
 - Better RAS

PCI Bus Constraints

- □ PCI bus limitations have been strangling CPU I/O
 - Like trying to drink from a fire hose

PCI Bus Constraints

PCI	PCI (66Mhz)	PCI-X (133 Mhz)	DDR	QDR	3GIO
Max BW	4 Gbps	8 Gbps	16Gbps	32Gbps	64Gbps
I/O Constraint	(4) GbE w/TOE or (2) 2gig FC	(4) SCSI 320	(1) 4x IB	(1) 10gigE, FC, or 4x IB	(2) 10gigE, FC, or 4x IB
Architecture	Shared Parallel Bus				Switched serial
Issues	Bus contention			Not until 04	

PCI Bus vs. IB

Comparison	Advantages		Disadvantages	
PCI PCI-X DDR	Lower cost		Until there is 3GIO, bus contention	
QDR 3GIO	Simpler for chip-to-chip			
	Protects software base			
InfiniBand	Clustering			
	Scalability:	Ports & BW		
	Out-of-box connectivity			
	QoS	Security	Software	
	Fault Tolerance		Sollware	
	Multi-cast			
	Fabric Convergence			
	PCB, Copper, & Fiber			

Solution: PCI Bus AND IB

- □ It's not "either:or"
 - They are complimentary not mutually exclusive
- The best solutions takes advantage of both
 - This is why you rarely hear anymore that IB is the PCI replacement
- There are new HCAs WITH PCI-X interfaces
 - Expect DDR, QDR, & 3GIO as well
 - The IB benefits are almost as great
 - → Eliminates bus contention
 - → Preserves PCI software base
 - Provides IB benefits NOW
 - → Don't have to wait for native server IB

Low Cost HP/HA Server Clustering

- IB clustering costs less for scaling out than SMP or NUMA scaling up
- □ IB eliminates fabric messaging performance Issues with clustering
 - Long queues
 - PCI bus contention
- □ IB enables low cost server (shared I/O arguments even stronger here)
 - Diskless blades
 - → Personality on the storage
 - → Higher Fault Tolerance and Availability
 - One connection for clustering and shared I/O
 - → Less I/O interfaces than any other interconnect
 - **→** Higher performance
 - **→** Lower TCO

Industry Analyst's IB Enabled Server Forecast

Analysts are split in their forecast of IB's TAM; but, not on its potential

IB Enabled Servers as a % of Total

Conclusions

- Even if the analysts views are optimistic
 - Huge % of servers will be I/B enabled
 - The value proposition is far too strong to ignore
 - Initial deployment will utilize PCI-X HCAs
 - Native deployments will enable lower cost server blade clusters
 - As more and more servers become IB enabled
 - →Clever IT people will realize that they can run IB native for:
 - → Clustering, Networking, and Storage
- When IB becomes native with the server motherboard
 - The perception becomes that it's free
 - → There is always high market demand for...free.

Dragon Slayer Consulting

?????Questions?????

Why Not Just Use GbE or FC?

- GbE and FC are the current fabric infrastructures
- IT personnel already know & understand the technologies
- FC & GbE are already battling it out for SAN infrastructures
 - FCP vs. iSCSI

IB vs. FC vs. GbE

Technology	Standards	Signaling	First	Maximum	Primary
recilliology	Body	Speed	Standard	Frame Size	Application
Gigabit Ethernet	IEEE & IETF	1.25 Gbps	1999	1.5K	LAN: Local Area Network
Fibre Channel	ANSI	2.125 Gbps	1988	2K	SAN: Storage Area Network
InfiniBand Architecture	InfiniBand Trade Association	2.5Gbps (1x) 10Gbps (4x) 30Gbps (12x)	2001	4K	IAN: I/O Area Network

How IB compares w/GbE & FC in OSI

	Ethernet (802.3)		Fibre Channel	IB Architecture	
Upper Level Protocols	Application		Application	Application	
Transport Layer	ТСР	UDP	FC-4: Protocol Mappings	IBA Operations	
			(FC-3)		
Network Layer	Network Layer		FC-2: Framing	Network	
Link Layer	Logical Link Control		Service Class	Line Encoding	
	Media Access Control		FC-1: Encoding	Media Access Control	
Physical Layer	Physical Layer Entities		FC-0: Physical Media	Physical	

= layers not included in the protocol standards

Data Center Fabric & I/O Consolidation

- IB enables convergence through shared server I/O
 - One I/O interface for
 - **→** Clustering
 - → Network
 - **→** Storage
 - → Eliminates the need for multiple server I/O blades/ports
 - IB virtual lanes provides
 - → Multiple independent logical fabrics multiplexed on one physical one
 - → QoS to prioritize traffic
 - → The benefits of independent fabrics with:
 - → The management and maintenance of one fabric
 - Switches, directors, and routers provide
 - → Scalability, redundancy, availability, and flexibility

Requirements of a Shared I/O System

- Cooperative Software Architecture
 - Ability to productively distribute work between host & external shared I/O system
- Virtualization of I/O
 - Host manipulates logical resources
 - Host has no awareness of underlying physical resources
- All I/O managed external to host
 - Host originates requests and receives result
- Heterogeneous Operating Systems
- 3 Classes of I/O
 - Efficiently handle small to very large messages
 - Microsecond sensitive latency without sacrificing bandwidth
- Channel Architecture
 - Highly differentiated priority and service levels
 - Connection oriented guaranteed delivery mechanism
 - Inherent memory semantics and protection
 - High speed / low latency

Dragon Slayer Consulting

Market Projections

IDC & Gartner-Dataquest