# Math 493 Project 1

Aneesh & JJ & Matt

September 25, 2018

## Problem 1

$$x' = \theta x^2$$
$$x(1) = -1$$

# Sensitivity System 1

▶ We solved the following sensitivity system

$$D\begin{pmatrix} x \\ \partial_{\theta} x \end{pmatrix} = \begin{pmatrix} \theta x^{2} \\ x^{2} + 2\theta x (\partial_{\theta} x) \end{pmatrix}$$
$$\begin{pmatrix} x \\ \partial_{\theta} \end{pmatrix} (1) = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

## Problem 1 Results

| Method       | heta      | SSE       |
|--------------|-----------|-----------|
| fminsearch   | 1.8432617 | 0.1313268 |
| Gauss-Newton | 1.8416666 | 0.1313271 |

#### Problem 1 Results



Figure: Approximations compared with data. It took fminsearch 16 steps while it took Gauss-Newton 12 steps to converge.

### Problem 1 Results



Figure: Convergence of Gauss-Newton

# Sensitivity System 2

$$D\begin{pmatrix} x \\ \partial_{\theta} x \\ \partial_{x_0} x \end{pmatrix} = \begin{pmatrix} x^2 \theta \\ x^2 + 2x\theta \partial_{\theta} x \\ 2x\theta \partial_{x_0} x \end{pmatrix}$$

$$\begin{pmatrix} x \\ \partial_{\theta} x \\ \partial_{x_0} x \end{pmatrix} (1) = \begin{pmatrix} -0.9 \\ 0 \\ 1\theta v \end{pmatrix}$$

## Problem 2 Results

| Method       | heta      | <i>x</i> <sub>0</sub> | SSE       |
|--------------|-----------|-----------------------|-----------|
| fminsearch   | 1.7553438 | -0.8962938            | 0.0808069 |
| Gauss-Newton | 1.7543119 | -0.8963022            | 0.0808071 |

#### Problem 2 Results



Figure: Approximations compared with data. It took fminsearch 41 steps while it took Gauss-Newton 13 steps to converge.

### Problem 2 Results



Figure: Convergence of Gauss-Newton

# Sensitivity System 3

$$D\begin{pmatrix} x \\ y \\ \partial_{a}x \\ \partial_{a}y \\ \partial_{b}x \\ \partial_{b}y \end{pmatrix} = \begin{pmatrix} -axy \\ axy - by \\ -xy - ay\partial_{a}x - ayx\partial_{a}y \\ xy + ay\partial_{a}x + (ax - b)\partial_{a}y \\ -ay\partial_{b}x - ax\partial_{b}y - y + ay\partial_{b}x + (ax - b)\partial_{b}y \end{pmatrix}$$

$$D\begin{pmatrix} x \\ y \\ \partial_{a}x \\ \partial_{b}y \\ \partial_{b}x \\ \partial_{b}y \end{pmatrix} (0) = \begin{pmatrix} 0.9 \\ 0.1 \\ 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}$$

## Problem 3 Results

| Method       | а         | Ь         | SSE       |
|--------------|-----------|-----------|-----------|
| fminsearch   | 0.5022775 | 0.1030516 | 0.0171071 |
| Gauss-Newton | 0.5132331 | 0.1091130 | 0.0173460 |

#### Problem 3 Results



Figure: Approximations compared with data. It took fminsearch 71 steps while it took Gauss-Newton 49 steps to converge.

### Problem 3 Results



Figure: Convergence of Gauss-Newton

# Population Dynamic



Figure: Population percentage of susceptible and infected population