```
pip install fredapi
     Collecting fredapi
      Downloading fredapi-0.5.1-py3-none-any.whl (11 kB)
     Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from fredapi) (1.5.3)
     Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas->fredapi) (2.8.2)
     Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->fredapi) (2023.3.post1)
     Requirement already satisfied: numpy>=1.21.0 in /usr/local/lib/python3.10/dist-packages (from pandas->fredapi) (1.23.5)
     Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.1->pandas->fredapi) (
     Installing collected packages: fredapi
     Successfully installed fredapi-0.5.1
    4
import pandas as pd
import statsmodels.api as sm
import matplotlib.pyplot as plt
from statsmodels.tsa.stattools import adfuller, coint
from statsmodels.tsa.api import VAR
from pandas_datareader import data as pdr
import datetime
from fredapi import Fred
import numpy as np
api_key = '230970faf44ea208229d77dff9f995f3'
fred = Fred(api_key=api_key)
# Define the series IDs
# Define the series IDs
series_ids = {
    'NASDAQ': 'NASDAQCOM',
                                                   # NASDAQ Composite Index
    '10YR_Treasury_Yield': 'GS10',
                                                   # 10-Year Treasury Constant Maturity Rate
    'Real_GDP US': 'GDPC1',
                                                   # Real Gross Domestic Product
    'Industrial_Production': 'INDPRO',
                                                   # Industrial Production Index
    'Consumer_Price_Index': 'CPIAUCSL',
                                                 # Consumer Price Index for All Urban Consumers
    'Personal_Consumption_Expenditures': 'PCE',  # Personal Consumption Expenditures
    'Unemployment_Rate': 'UNRATE',
                                                   # Unemployment Rate
    'Nonfarm_Payrolls': 'PAYEMS',
                                                   # Total Nonfarm Payrolls
    'Consumer_Sentiment': 'UMCSENT',
                                                   # University of Michigan: Consumer Sentiment
    'Housing Starts': 'HOUST',
                                                  # New Privately-Owned Housing Units Started
    'Crude_Oil_Prices_WTI': 'DCOILWTICO',
                                                  # Crude Oil Prices: West Texas Intermediate
    'US_Euro_Exchange_Rate': 'DEXUSEU',
                                                   # U.S. / Euro Foreign Exchange Rate
    'M2_Money_Stock': 'M2SL',
                                                   # M2 Money Stock
    'Manufacturing_PMI': 'MANEMP',
                                            # ISM Manufacturing PMI
    'Producer_Price_Index': 'PPIACO',
                                                 # Producer Price Index
    'Business_Inventories': 'BUSINV',
                                                   # Total Business Inventories
}
# Define the observation period
start_date = '2000-01-01'
end_date = '2023-10-31'
# Download the data
data = \{\}
for series_name, series_id in series_ids.items():
    data[series_name] = fred.get_series(series_id, start_date, end_date, frequency='q')
# Transform the series (log)
for series name, series data in data.items():
    data[series_name] = pd.Series(data[series_name])
# Create a DataFrame from the log-transformed data
df = pd.DataFrame(data)
df = np.log(df)
df
```

		NASDAQ	10YR_Treasury_Yield	Real_GDP US	Industrial_Production	Consumer_Pric
	2000- 01-01	8.395675	1.868721	9.538071	4.519083	Ę
	2000- 04-01	8.228769	1.821318	9.556120	4.531269	Ę
	2000- 07-01	8.277206	1.773256	9.557139	4.530477	Ę
	2000- 10-01	8.015133	1.717395	9.563091	4.527747	٤
	2001- 01-01	7.764519	1.619388	9.559808	4.515371	Ę
		***			***	
	2022- 10-01	9.293889	1.342865	9.998342	4.631380	Ę
	2023- 01-01	9.348487	1.294727	10.003891	4.630754	Ę
	2023-	9.447525	1.278152	10.008989	4.632714	Ę
FAMAFA	ACTORS	=pd.read_	csv('F-F_Research_D	ata_5_Fact	ors_2x3_daily.csv')	
1	N7-N1	Y.5345U4	1.423108	10.021553	4.037715	5

FAMAFACTORS.Date = pd.to_datetime(FAMAFACTORS.Date, format='%Y%m%d')
FAMAFACTORS

FAMAFACTORS=FAMAFACTORS.set_index('Date')

FAMAFACTORS=FAMAFACTORS.resample('Q').mean()

import pandas as pd

Assuming FAMAFACTORS is a pandas DataFrame with a datetime index FAMAFACTORS.index = FAMAFACTORS.index + pd.Timedelta(days=1)

FAMAFACTORS

```
Mkt-RF
                                     SMB
                                                HML
                                                             RMW
                                                                         CMA
                                                                                     RF
             Date
                                            1963-10-01
                    0.047187 -0.024844
      1964-01-01
                    0.058387 -0.071129
                                            0.028871 0.033548
                                                                   0.000968 0.013919
      1964-04-01 0.082903 0.025161
                                           0.123226 -0.032581 0.082742 0.013984
      1064-07-01 0.044275 -0.028504 0.028006 -0.020156 -0.012500 0.012344
df_merged=df.merge(FAMAFACTORS, left_index=True,right_index=True, how='left')
df.columns
     Index(['NASDAQ', '10YR_Treasury_Yield', 'Real_GDP US', 'Industrial_Production',
             'Consumer_Price_Index', 'Personal_Consumption_Expenditures',
'Unemployment_Rate', 'Nonfarm_Payrolls', 'Consumer_Sentiment',
'Housing_Starts', 'Crude_Oil_Prices_WTI', 'US_Euro_Exchange_Rate',
'M2_Money_Stock', 'Manufacturing_PMI', 'Producer_Price_Index',
             'Business_Inventories'],
            dtype='object')
df_merged['Returns']=df_merged['NASDAQ'].diff()
df_merged['Returns']=df_merged['Returns'].fillna(0)
df_merged['Excess_returns']=df_merged['Returns']-df_merged['RF']
```

df_merged

	NASDAQ	10YR_Treasury_Yield	Real_GDP US	Industrial_Production	Consumer_Price_Index	Personal_Consumption_Expenditures	Une
2000- 01-01	8.395675	1.868721	9.538071	4.519083	5.136386	8.797579	
2000- 04-01	8.228769	1.821318	9.556120	4.531269	5.144193	8.811637	
2000- 07-01	8.277206	1.773256	9.557139	4.530477	5.153292	8.827615	
2000- 10-01	8.015133	1.717395	9.563091	4.527747	5.160393	8.841969	
2001- 01-01	7.764519	1.619388	9.559808	4.515371	5.169916	8.852994	

2022- 10-01	9.293889	1.342865	9.998342	4.631380	5.698854	9.793511	
2023- 01-01	9.348487	1.294727	10.003891	4.630754	5.708209	9.812994	
2023- 04-01	9.447525	1.278152	10.008989	4.632714	5.714891	9.821138	
2023- 07-01	9.534504	1.423108	10.021553	4.637715	5.723693	9.836894	
2023- 10-01	NaN	NaN	NaN	NaN	NaN	NaN	

96 rows × 24 columns

penditures	Unemployment_Rate	Nonfarm_Payrolls	Consumer_Sentiment	Housing_Starts	• • •	Producer_Price_Index	Business_Inventories
0.000000	0.000000	0.000000	0.000000	0.000000		0.000000	0.000000
0.014059	-0.025318	0.005865	-0.011878	-0.044370		0.018345	0.016924
0.015977	0.025318	0.001922	-0.012020	-0.053717	***	0.013048	0.013162
0.014354	-0.025318	0.002039	-0.034062	0.026248	***	0.013116	0.011438
0.011025	0.074108	0.001538	-0.118385	0.038747		0.016349	-0.002023
	100		***			***	•••
0.013084	0.000000	0.006164	0.047006	-0.028764	***	-0.029584	0.007690
0.019483	-0.028171	0.006242	0.094073	-0.014337		-0.013002	0.002169
0.008144	0.028171	0.004281	-0.036253	0.045863		-0.014957	-0.001265
0.015756	0.027399	0.003898	0.110803	-0.058945	0.00	0.007729	0.003568
0.000000	0.000000	0.000000	0.000000	0.000000		0.000000	0.000000

```
y=df_merged['Excess_returns']
X =df_merged.drop(['Excess_returns','NASDAQ','Returns','RF','10YR_Treasury_Yield','M2_Money_Stock'],axis=1)
import pandas as pd
import statsmodels.api as sm

# Assuming your DataFrame is named df
# First, calculate the excess returns by subtracting the RF from the portfolio returns

# Define your independent variables (Mkt-RF, SMB, HML)
X = sm.add_constant(X)  # Adds a constant term to the predictor

# Define your dependent variable (Excess_Returns)

# Create the model
model = sm.OLS(y, X, missing='drop').fit()  # 'missing=drop' handles any NaN values by dropping

# Print out the statistics
model_summary = model.summary()
print(model_summary)
```

OLS Regression Results

OLS Adj. R-squared: Least Squares F-statistic:

Dep. Variable: Excess_returns R-squared:

Model: Method:

Date: Time:	Sun, 03 Dec 202 15:45:5		<pre>(F-statistic): ikelihood:</pre>		4.03e-08 131.18		
No. Observations:		96 AIC:	IREIIIIOU.		-224.4		
Df Residuals:		77 BIC:			-175.6		
Df Model:		18			-1/5.0		
Covariance Type:	nonrobus						
		coef	std err	t	P> t	[0.025	0.975]
const		0.0190	0.020	0.967	0.336	-0.020	0.058
Real_GDP US		2.7265	2.160	1.262	0.211	-1.574	7.027
Industrial_Production	n e	-1.0324	0.983	-1.050	0.297	-2.990	0.926
Consumer_Price_Index		-1.0049	2.628	-0.382	0.703	-6.237	4.227
Personal_Consumption_	_Expenditures	1.2371	1.823	0.678	0.500	-2.394	4.868
Unemployment Rate		-0.1373	0.258	-0.533	0.596	-0.650	0.376
Nonfarm_Payrolls		-6.1097	2.993	-2.041	0.045	-12.069	-0.150
Consumer_Sentiment		0.4200	0.129	3.245	0.002	0.162	0.678
Housing_Starts		0.0898	0.129	0.695	0.489	-0.168	0.347
Crude Oil Prices WTI		0.0184	0.093	0.197	0.844	-0.167	0.204
US Euro Exchange Rate	9	0.2676	0.222	1.207	0.231	-0.174	0.709
Manufacturing PMI		3.6759	1.698	2.165	0.034	0.295	7.057
Producer Price Index		1.0847	0.678	1.600	0.114	-0.265	2.434

0.566 0.464

5.571

Business_Inventories	-	1.5589	0.992	-1.571	0.120	-3.534	0.417
Mkt-RF		0.1171	0.084	1.394	0.167	-0.050	0.284
SMB	-	0.2612	0.129	-2.024	0.046	-0.518	-0.004
HML	- (0.0085	0.117	-0.073	0.942	-0.241	0.224
RMW	- (0.1060	0.126	-0.842	0.402	-0.357	0.145
CMA	- (0.2457	0.164	-1.497	0.138	-0.572	0.081
		=======	=======		=======		
Omnibus:	22.189	Durbin-W	atson:		2.145		
Decale (Omes illeres)	0 000	7 D	(ID).		21 171		

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 31.171

 Skew:
 -1.078
 Prob(JB):
 1.70e-07

 Kurtosis:
 4.773
 Cond. No.
 491.

Notes

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

ıT B			<u>}</u> ≡	:= ·	⊷ ψ <u></u>		
	egression Resu		.=======	======		=======	=======
Dep. Vai			returns	R-squa			0.566
Model:			OLS		R-squared:		0.464
Method:		Least	Squares	_	istic:		5.571
Date:			Dec 2023		(F-statistic):		4.03e-08
Time:			15:45:56		kelihood:		131.18
	ervations:		96	AIC:			-224.4
Df Resid	duals:		77	BIC:			-175.6
Df Mode:			18				
	nce Type:	r	nonrobust				
======	=========					======	
======				coef	std err	t	P>
				t	[0.025	0.975]	17
			G	0100	0 020	0 067	0
const	-0 020	0 050	6	0.0190	0.020	0.967	0.
336	-0.020	0.058		7265	2 160	1 262	0
Real_GDI		7 027	2	2.7265	2.160	1.262	0.
211	-1.574	7.027	4	1 0224	0 003	1 050	0
	ial_Production		-1	L.0324	0.983	-1.050	0.
297	-2.990	0.926		0040	2 (20	0 202	0
	r_Price_Index	4 227	-1	L.0049	2.628	-0.382	0.
703	-6.237	4.227		2274	4 633	0 670	0
	l_Consumption_		ures 1	L.2371	1.823	0.678	0.
500	-2.394	4.868					
	yment_Rate	0 376	-6	0.1373	0.258	-0.533	0.
596	-0.650	0.376				0.044	
-	_Payrolls	0 1=-	-6	5.1097	2.993	-2.041	0.
045		-0.150		100-	6 10-	2 2 5	-
	r_Sentiment		6	0.4200	0.129	3.245	0.
002	0.162	0.678					_
Housing_			6	0.0898	0.129	0.695	0.
489	-0.168	0.347					
_	il_Prices_WTI		6	0.0184	0.093	0.197	0.
844	-0.167	0.204					
_	_Exchange_Rate		6	3.2676	0.222	1.207	0.
231	-0.174	0.709					
	turing_PMI		3	3.6759	1.698	2.165	0.
034	0.295	7.057					
	r_Price_Index		1	L.0847	0.678	1.600	0.
114	-0.265	2.434					
	s_Inventories		-1	L.5589	0.992	-1.571	0.
120	-3.534	0.417					
Mkt-RF			6	.1171	0.084	1.394	0.
167	-0.050	0.284					
SMB			-6	0.2612	0.129	-2.024	0.
046	-0.518	-0.004					
HML			-6	0.0085	0.117	-0.073	0.
942	-0.241	0.224					
RMW			-6	0.1060	0.126	-0.842	0.
402	-0.357	0.145					
CMA			-0	2457	0.164	-1.497	0.
138	-0.572	0.081					
	=========				.========		=======
Omnibus			22.189	Durbir	n-Watson:		2.145
Prob(Om			0.000		e-Bera (JB):		31.171
(111	/·		-1.078	Prob(3			1.70e-07
Skew:							

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

OLS Regression Results

Dep. Variable: Excess_returns R-squared: 0.566 Model: OLS Adj. R-squared: 0.464 Method: Least Squares F-statistic: 5.571 Date: Sun, 03 Dec 2023 Prob (F-statistic): 4.03e-08 Time: 15:45:56 Log-Likelihood: 131.18 No. Observations: 96 AIC: -224.4 Df Residuals: 77 BIC: -175.6 Df Model: 18

Covariance Type: nonrobust

coef std err t P>|t| [0.025 0.975]

const 0.0190 0.020 0.967 0.336 -0.020 0.058 Real_GDP US 2.7265 2.160 1.262 0.211 -1.574 7.027 Industrial_Production -1.0324 0.983 -1.050 0.297 -2.990 0.926 Consumer_Price_Index -1.0049 2.628 -0.382 0.703 -6.237 4.227 Personal_Consumption_Expenditures 1.2371 1.823 0.678 0.500 -2.394 4.868 Unemployment_Rate -0.1373 0.258 -0.533 0.596 -0.650 0.376 Nonfarm_Payrolls -6.1097 2.993 -2.041 0.045 -12.069 -0.150 Consumer_Sentiment 0.4200 0.129 3.245 0.002 0.162 0.678 Housing_Starts 0.0898 0.129 0.695 0.489 -0.168 0.347 Crude_Oil_Prices_WTI 0.0184 0.093 0.197 0.844 -0.167 0.204 US_Euro_Exchange_Rate 0.2676 0.222 1.207 0.231 -0.174 0.709 Manufacturing_PMI 3.6759 1.698 2.165 0.034 0.295 7.057 Producer_Price_Index 1.0847 0.678 1.600 0.114 -0.265 2.434 Business_Inventories -1.5589 0.992 -1.571 0.120 -3.534 0.417 Mkt-RF 0.1171 0.084 1.394 0.167 -0.050 0.284 SMB -0.2612 0.129 -2.024 0.046 -0.518 -0.004 HML -0.0085 0.117 -0.073 0.942 -0.241 0.224 RMW -0.1060 0.126 -0.842 0.402 -0.357 0.145

CMA -0.2457 0.164 -1.497 0.138 -0.572 0.081

Omnibus: 22.189 Durbin-Watson: 2.145 Prob(Omnibus): 0.000 Jarque-Bera (JB): 31.171 Skew: -1.078 Prob(JB): 1.70e-07

Kurtosis: 4.773 Cond. No. 491.

Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.