U Wroclaw, Fall 2015 Applied Stats DISCUSSION/LAB 7: MULTIPLE LINEAR REGRESSION

We will use data set: cheese.MTW (.xlsx).

Goal: Using stepwise regression and best subsets regression find a model of taste on the predictors that you think is "best".

TO DO:

- Compare the results of the techniques,
- Explain how you decided on your "best" model, and write the final model.

SOLUTIONS- LAB WORK

Best Subsets Regression: taste versus acetic, h2s, lactic

Response is taste

						а		1
						C		a
						е		С
						t	h	t
		R-Sq	R-Sq	Mallows		i	2	i
Vars	R-Sq	(adj)	(pred)	Ср	s	C	s	С
1	57.1	55.6	51.9	6.0	10.833		X	
1	49.6	47.8	42.9	11.6	11.745			X
2	65.2	62.6	59.1	2.0	9.9424		X	X
2	58.2	55.1	49.4	7.2	10.890	X	X	
3	65.2	61.2	55.6	4.0	10.131	X	X	X

Regression Analysis: taste versus acetic, h2s, lactic

Forward Selection of Terms

Candidate terms: acetic, h2s, lactic

	Step 1		Step	2	
	Coef	P	Coef	P	
Constant	-9.79		-27.59		
h2s	5.776	0.000	3.95	0.002	
lactic			19.89	0.019	
s		10.8334	9	. 94236	
R-sq		57.12%		65.17%	
R-sq(adj)		55.58%		62.59%	
R-sq(pred)		51.87%	!	59.08%	
Mallows' Cp		6.02		2.01	

 α to enter = 0.25

Model Summary

S R-sq R-sq(adj) R-sq(pred) 10.8334 57.12% 55.58% 51.87% Regression Equation

taste = -9.79 + 5.776 h2s

Regression Analysis: taste versus h2s

Regression Analysis: taste versus acetic, h2s, lactic

Backward Elimination of Terms

Candidate terms: acetic, h2s, lactic

	Step	1	Step	2
	Coef	P	Coef	P
Constant	-28.9		-27.59	
acetic	0.33	0.942		
h2s	3.91	0.004	3.95	0.002
lactic	19.67	0.031	19.89	0.019
s	1	0.1307	9	. 94236
R-sq		65.18%		65.17%
R-sq(adj)		61.16%		52.59%
R-sq(pred)		55.60%	į	59.08%
Mallows' Cp		4.00		2.01

 α to remove = 0.1

Model Summary

S R-sq R-sq(adj) R-sq(pred) 9.94236 65.17% 62.59% 59.08%

Regression Equation

taste = -27.59 + 3.95 h2s + 19.89 lactic

Regression Analysis: taste versus acetic, h2s, lactic

Stepwise Selection of Terms

Candidate terms: acetic, h2s, lactic

	Step 1		Ste	p 2
	Coef	P	Coef	P
Constant	-9.79		-27.59	
h2s	5.776	0.000	3.95	0.002
lactic			19.89	0.019
S		10.8334		9.94236
R-sq		57.12%		65.17%
R-sq(adj)		55.58%		62.59%
R-sq(pred)		51.87%		59.08%
Mallows' Cp		6.02		2.01

 α to enter = 0.15, α to remove = 0.15

Regression Equation

taste = -27.59 + 3.95 h2s + 19.89 lactic