Matière: Devoir maison n° 2

Thomas Diot, Jim Garnier, Jules Charlier, Pierre Gallois
1E1

Problème 1 - Équations fonctionnelles

Partie A.

1)

Analyse.

On suppose qu'il existe une telle fonction g.

a)

Soient n et m appartenant à \mathbb{N} . L'unique manière d'obtenir n+m=0 est que n=0 et m=0. Cela donne :

$$g(m+n) = g(m) \times g(n)$$
$$g(0) = g(0)^{2}$$

Les solutions de cette équation sont $S = \{0, 1\}$.

Nous avons prouvé que g(0) = 0 ou g(0) = 1.

b)

Soit n dans \mathbb{N} ,

$$\begin{split} g(n) &= g(n+0) \\ &= g(n) \times g(0) \\ &= 0 \quad \text{Puisque on est dans le cas où } g(0) = 0 \end{split}$$

Si g(0) = 0, alors g est la fonction nulle.

c)

Nous raisonnons par récurrence. On suppose que g(0) = 1 et $g(n) = g(1)^n$.

Initialisation : Par hypothèse, g(0) = 1.

Hérédité :

$$g(n+1) = g(n) \times g(1)$$

= $g(1)^n \times g(1)$ D'après la supposition de départ.
= $g(1)^{(n+1)}$

Nous avons prouvé par récurrence que pour tout $n \in \mathbb{N}^*$, $g(n) = a^n$ où a = g(1).

2)

 $Synth\`ese.$

Nous avons deux candidats:

- La fonction nulle : $\forall n \in \mathbb{N}, g(n) = 0$
- Une fonction puissance : $\forall n \in \mathbb{N}, g(n) = g(1)^n$

Nous devons vérifier la condition : $\forall m, n \in \mathbb{N}, g(m+n) = g(m) \times g(n)$.

Vérifions pour la fonction nulle :

Pour tous $m, n \in \mathbb{N}$:

$$g(m+n) = 0$$

$$= 0 \times 0$$

$$= g(m) \times g(n)$$

La condition est bien vérifiée.

Vérifions pour la fonction puissance : Pour tous $m, n \in \mathbb{N}$:

$$g(m+n) = g(1)^{(m+n)}$$
$$= g(1)^m \times g(1)^n$$
$$= g(m) \times g(n)$$

La condition est bien vérifiée.

La fonction nulle et $g(n) = g(1)^n$ sont donc les deux seules fonctions qui respectent $\forall m, n \in \mathbb{N}, g(m+n) = g(m) \times g(n)$.

Partie B.

1)

Analyse. Supposons que :

$$\exists f: \mathbb{N} \to \mathbb{N}, \forall m, n \in \mathbb{N}, (f(m+n) = f(m) \times f(n) + f(m) + f(n)) \wedge (f(1) = 1.)$$

a) On a:

$$f(0) = f(0+0)$$

$$\iff f(0) = f(0) \times f(0) + f(0) + f(0)$$

$$\iff f(0) = f(0)^2 + 2f(0)$$

$$\iff f(0)^2 + f(0) = 0$$

$$\iff f(0) = 0 \text{ ou } f(0) = -1$$

Donc f(0) = 0 puisque $f(0) \in \mathbb{N}$ et $-1 \notin \mathbb{N}$.

b) Pour f(2):

$$f(2) = f(1+1)$$

$$= f(1) \times f(1) + f(1) + f(1)$$

$$= 1+2$$

$$= 3$$

Pour f(3):

$$f(3) = f(2+1)$$

$$= f(2) \times f(1) + f(2) + f(1)$$

$$= 3 \times 1 + 3 + 1$$

$$= 7$$

Pour f(6):

$$f(6) = f(3+3)$$

$$= f(3) \times f(3) + f(3) + f(3)$$

$$= 7^{2} + 14$$

$$= 63$$

Problème 2 - Nombres Échangeables

1)

En prenant a = 3, b = -2, on a bien $f_{a,b}(2) = 3$ et $f_{a,b} = 3 - 1 = 2$.

2)

Supposons que $(x,y) \in \mathbb{R}^2$ est échangeable. On exclut le cas trivial (x,x) qui est évidemment échangeable, et pour lequel $|x-x|=0 \le 1$. Sans perte de généralité, ordonnons donc par la suite x < y. On a le système :

$$\begin{cases} a - \sqrt{x+b} = y \\ a - \sqrt{y+b} = x \end{cases}$$

En faisant la différence des deux lignes, on trouve que $\sqrt{y+b}-\sqrt{x+b}=y-x=|x-y|$. De plus, on a :

$$(\sqrt{y+b} - \sqrt{x+b})(\sqrt{y+b} + \sqrt{x+b}) = y - x = |x-y|$$

$$\iff \sqrt{y+b} - \sqrt{x+b} = \frac{|x-y|}{\sqrt{y+b} + \sqrt{x+b}}$$

Donc:

$$\frac{|x-y|}{\sqrt{y+b} + \sqrt{x+b}} = |x-y|$$

Et $\sqrt{y+b} + \sqrt{x+b} = 1$.

Donc si (x,y) est échangeable, alors il existe $b \in \mathbb{R}$ tel que $\sqrt{y+b} + \sqrt{x+b} = 1$.

Avant de prouver l'énoncé de la question, considérons la fonction $F:[-x;+\infty[$ définie par $F(b)=\sqrt{y+b}+\sqrt{x+b}$. Celle-ci est croissante comme somme de deux fonctions croissantes (par croissance de $x\mapsto \sqrt{x}$). De plus, elle est continue sur son intervalle de définition, comme la somme de deux fonctions continues sur cet intervalle.

Pour prouver maintenant que si (x,y) est échangeable, alors $|x-y| \le 1$, prouvons sa contraposée : si |x-y| > 1, alors (x,y) n'est pas échangeable. On procède par l'absurde.

Supposons que (x,y) est échangable. Alors il existe $b \in \mathbb{R}$ tel que F(b) = 1. Le minimum de F sur son intervalle de définition est atteint en b = -x, avec $F(-x) = \sqrt{y-x} = \sqrt{|x-y|}$. Mais |x-y| > 1 et $\sqrt{|x-y|} > 1$. Donc F(b) > 1 pour tout $b \in \mathcal{D}_F$ et b n'existe pas, ce qui est une contradiction.

3)

Prouvons que si $|x-y| \le 1$, alors (x,y) est échangeable. On suppose toujours que $x \le y$.

Dans ce cas, on peut trouver $b \in \mathbb{R}$ tels que $F(b) \le 1$ et F(b) > 1. En effet, si b = -x, alors $F(-x) = \sqrt{y-x} \le 1$ par hypothèse, et $F(2-x) = \sqrt{2+(y-x)} + \sqrt{(2)} > 1$ car $\sqrt{2} > 1$.

Par le théorème des valeurs intermédiaires, comme F est continue sur \mathcal{D}_F , il existe $b_0 \in \mathcal{D}_F$ tel que $F(b_0) = 1$. Ainsi, on a :

$$\sqrt{y+b_0} - \sqrt{x+b_0} = \frac{|x-y|}{F(b_0)} = |x-y| = y-x$$

En particulier, en posant $a_0 = \sqrt{x + b_0} + y$, on a :

$$a_0 - \sqrt{x + b_0} = y$$

Et :

$$a_0 - \sqrt{y + b_0} = y - (\sqrt{y + b_0} - \sqrt{x + b_0}) = y - (y - x) = x$$

Donc (x, y) sont échangeables avec a_0, b_0 .