- 1. The conjugate of the complex number $7 + \frac{1}{2}i$ is
 - (A) $-7 \frac{1}{2}i$
 - (B) $-7 + \frac{1}{2}i$
 - (C) $7 \frac{1}{2}i$
 - (D) $\frac{1}{2} + 7i$
- 2. The complex number $z = \sqrt{3} + i$ can be expressed as
 - (A) $\sqrt{2} \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right)$
 - (B) $\sqrt{2} \left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right)$
 - (C) $2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$
 - (D) $2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$
- 3. Given that $\cos 2x = 1 2 \sin^2 x$, then $\int_0^{\pi} \sin^2 \left(\frac{x}{4}\right) dx$ is
 - (A) $2-\pi$
 - (B) $\pi-2$
 - (C) $1-\frac{\pi}{2}$
 - (D) $\frac{\pi}{2} 1$

- One square root of 3-4i is
 - (A) $\sqrt{3}-2i$
 - (B) $\sqrt{3} + 2i$
 - (C) 2-i
 - (D) 2+i
- 5. The complex number $z = \frac{1}{1-i}$ can be represented on an Argand diagram as

GO ON TO THE NEXT PAGE

- .6. If $f(x) = \ln 2x$, then f'(x) =
 - (A) $\frac{2}{x}$
 - (B) $\frac{1}{x^2}$
 - (C) $\frac{-2}{x}$
 - (D) $\frac{1}{x}$
- 7. The equation $e^x x^4 = 0$ has a root between
 - (A) 0 and 1
 - (B) 1 and 2
 - (C) 2 and 3
 - (D) 3 and 4
- 8. The number of bacteria present in a culture is modelled by $y = y_0 e^{kt}$, where k > 0, y is the population after t hours, and y_0 is the initial population. The rate of growth, c, when t = 5 is given by
 - (A) $c = e^{5k}$
 - (B) $c = ke^5$
 - (C) $c = 5e^{5k}$
 - (D) $c = ky_0 e^{5k}$
- 9. $\frac{d}{dx}(\ln x)^3 =$
 - (A) $\frac{3}{x}$
 - (B) 3x
 - (C) $\frac{3}{x}(\ln x)^2$
 - (D) $3 (\ln x)^2$

- 10. Given that a, b, c and k are constants, then $\int \frac{3}{x^2(x-1)} dx$ can be expressed as
 - (A) $\frac{a}{x} + b \ln |x-1| + k$
 - (B) $a \ln |x| + b \ln |x-1| + k$
 - (C) $a \ln |x| + \frac{b}{x} + \frac{c}{x-1} + k$
 - (D) $a \ln |x| \frac{b}{x} + c \ln |x 1| + k$
- 11. The integral of $\frac{1}{1-\sin^2 x}$ with respect to x
 - (A) $\tan x + c$
 - (B) $\tan^2 x + c$
 - (C) $\sec^2 x + c$
 - (D) $\sec x \tan x + c$
- 12. The partial fractions of $\frac{x+3}{(2x+5)(x-1)^2}$ may be expressed in the form
 - (A) $\frac{P}{2x+5} + \frac{Q}{(x-1)^2}$
 - (B) $\frac{Px}{(2x+5)} + \frac{Q+R}{(x-1)^2}$
 - (C) $\frac{Px}{(2x+5)} + \frac{Q}{(x-1)} + \frac{Rx}{(x-1)^2}$
 - (D) $\frac{P}{(2x+5)} + \frac{Q}{(x-1)} + \frac{R}{(x-1)^2}$

- A curve is given parametrically by the 13. equations $x = t^2 - 2t$, $y = t^2 + 2t$. The simplest expression for the gradient of the tangent in terms of t is
 - (A)
 - **(B)**
 - (C)
 - (D)
- 14. $\int \frac{dx}{\sqrt{1-9x^2}} =$
 - $(A) \qquad \frac{1}{9}\sin^{-1}x + c$
 - (B) $\frac{1}{3}\sin^{-1}3x + c$
 - (C) $\frac{1}{9}\sin^{-1}\frac{x}{3}+c$
 - (D) $\frac{1}{9}\sin^{-1}3x + c$
- The argument of the complex number 15. $z = \frac{1}{2} + i \frac{\sqrt{3}}{2}$ is
 - (A)
 - (B)
 - (C)
 - (D)

- For -1 < 2n < 1, $\sum_{n=0}^{\infty} (2n)^n =$ 16.
 - (A)
 - (B)
 - (C)
 - (D)
- 17. If the terms of the sequence $u_1, u_2, u_3 ..., u_n$... satisfy the recurrence relation $u_{n+1} = u_n + 3$, $n \ge 1$, then the n^{th} term may be expressed as
 - (A)
 - $u_1 + 3(n-1)$ $u_1 + 6(n-1)$ $u_1 + 3n$ $u_1 + 6n$
 - (C)
 - (D)
- The 5th term in the sequence that is defined 18. by the relation $u_n = (-1)^{n+1} \frac{n}{3n-1}$, $n \geq 1$, is
 - (A)
 - **(B)**
 - (C)
 - (D)

- 19. Which of the following sequences, {u_n}, converges?
 - (A) $\left\{ \left(\frac{1}{2}\right)^n \right\}$
 - (B) $\left\{ \left(\frac{1}{n}\right)^{-n} \right\}$
 - (C) $\{(-1)^n\}$
 - (D) $\{2^n\}$
- 20. Which of the following series are arithmetic series?
 - $I. \qquad \sum_{r=1}^{n} (7+3r)$
 - II. $\sum_{r=1}^{n} 2(3^r)$
 - III. $\sum_{r=1}^{n} \log_{10}(r+1)$
 - IV. $\sum_{r=1}^{n} \log_{10} 3^{(r+1)}$
 - (A) I and III only
 - (B) I and IV only
 - (C) III and IV only
 - (D) I, II and IV only
- 21. The sum to infinity of a geometric series is $\frac{1}{1-2x}$. The range of x is
 - (A) -1 < x < 1
 - (B) -2 < x < 2
 - (C) $-\frac{1}{2} < x < \frac{1}{2}$
 - (D) $x > \frac{1}{2}$

- 22. Let a and S denote respectively, the value of the nth term and the nth partial sum of a series. The value of S n+2 S when calculated on the series is
 - $(A) a_{n+1}$
 - (B) a_{n+2}
 - (C) $a_{n+1} + a_{n+2}$
 - (D) $a_{n+1} a_{n+2}$
- 23. The binomial coefficient $\binom{n}{2}$ is equivalent to
 - (A) $\binom{n}{1} + \binom{n}{1}$
 - (B) $\binom{n}{n-2}$
 - (C) $\binom{n-2}{n}$
 - (D) $\binom{n}{n+2}$
- 24. Given that $S_n = \sum_{i=1}^n \left(\frac{1}{i} \frac{1}{i+1}\right)$, $\lim_{n \to \infty} S_n$ is
 - (A) 0
 - (B) $\frac{2}{3}$
 - (C) 1
 - (D) ∞

- 25. The value of the term that is independent of x in the binomial expansion of $\left(x^2 + \frac{1}{x}\right)^{12}$ is
 - (A) $\begin{pmatrix} 12 \\ 4 \end{pmatrix}$
 - (B) $\begin{pmatrix} 12\\3 \end{pmatrix}$
 - (C) $\begin{pmatrix} 12 \\ 1 \end{pmatrix}$
 - (D) $\begin{pmatrix} 12\\0 \end{pmatrix}$
- Given that the coefficient of the term in b³ in the binomial expansion of (a+b)⁵ is 40, then a =
 - (A) 2
 - (B) 4
 - (C) 10
 - (D) 20
- 27. If $\sum_{n=2}^{\infty} 2^{-n} = a$, then *a* is
 - (A) $\frac{1}{4}$
 - (B) $\frac{1}{2}$
 - (C) 2
 - (D) 4

- 28. The Maclaurin series for $\sin x$, up to the term in x^3 , is
 - (A) $x-\frac{x^3}{6}$
 - (B) $x + \frac{x^3}{6}$
 - (C) $1+x+\frac{x^2}{2}-\frac{x^3}{6}$
 - (D) $1+x-\frac{x^2}{2}-\frac{x^3}{6}$
- 29. Let f be a continuous function with f(0) = 1 and f(0.8) = -0.76.

The first approximation to the root in [0,0.8], to three decimal places, using linear interpolation is

- (A) 0.000
- (B) 0.400
- (C) 0.444
- (D) 0.455
- 30. Given that the nth approximation of the root of the equation $x^5 = x^3 + 25$ based on the Newton-Raphson method is x_n , then x_{n+1} may be expressed as

(A)
$$\frac{x_n - x_n^5 - x_n^3 + 25}{5x_n^4 - 3x_n^2}$$

(B)
$$\frac{x_n - x_n^5 - s_n^3 - 25}{5x_n^4 - 3x_n^2}$$

(C)
$$\frac{4x_n^5 - 4x_n^3 - 25}{5}$$

(D)
$$\frac{4x_n^5 - 2x_n^3 + 25}{5x_n^4 - 3x_n^2}$$

- 31. In how many ways can the letters ABCDE be arranged so that the A and B are always together?
 - (A) 5!
 - (B) $4! \times 2$
 - (C) 4!
 - (D) $\frac{5!}{2}$
- 32. The number of distinct permutations of the letters of the word POSSIBILITY is
 - (A) $\frac{11!}{3!2!}$
 - (B) "P₁₁
 - (C) ¹¹P₈
 - (D) $(^{11}P_3)$ $(^{11}P_2)$
- 33. A relay team of five teachers is to be chosen from a group of 15 teachers.

In how many ways could this relay team be chosen?

- (A) $\frac{15!}{10!5!}$
- (B) $\frac{15!}{10!}$
- (C) $\frac{15!}{5!}$
- (D) 15!

- 34. X and Y are mutually exclusive events. If $P(X) = \frac{1}{4}$ and $P(Y) = \frac{1}{5}$ then $P(X \cup Y) = \frac{1}{5}$
 - (A) $\frac{1}{9}$
 - (B) $\frac{2}{5}$
 - (C) $\frac{9}{20}$
 - (D) $\frac{1}{20}$
- 35. The matrix A is a 3 \times 3 matrix with determinant 14. If the matrix of cofactors

of A is
$$\begin{pmatrix} 4 & -14 & -2 \\ 3 & -7 & -5 \\ 1 & 7 & 3 \end{pmatrix}$$
 then A^{-1} =

- (A) $\frac{1}{14} \begin{pmatrix} 4 & -14 & -2 \\ 3 & -7 & -5 \\ 1 & 7 & 3 \end{pmatrix}$
- (B) $\frac{1}{14} \begin{pmatrix} 4 & 3 & 1 \\ -14 & -7 & 7 \\ -2 & -5 & 3 \end{pmatrix}$
- (C) $\frac{1}{14} \begin{pmatrix} 4 & 14 & -2 \\ 3 & 7 & -5 \\ 1 & -7 & 3 \end{pmatrix}$
- (D) $\frac{1}{14} \begin{pmatrix} 4 & -3 & 1 \\ -14 & 7 & 7 \\ -2 & -5 & 3 \end{pmatrix}$
- 36. The number of possible values of x which satisfy the system of simultaneous equations,

$$2x + 3y + 2z = -5$$

 $4x + 6y + 4z = -10$
 $6x + 9y + 6z = -16$
is

- (A) (
- (B) 1
- (C) 2
- (D) 3

-37. If
$$M = \begin{pmatrix} 1 & 1 & 4 \\ 3 & 2 & -1 \\ 6 & 0 & 5 \end{pmatrix}$$
, then the cofactor of

the element 3 in M above may be written as

$$(A) \qquad \begin{vmatrix} 1 & 4 \\ 0 & 5 \end{vmatrix}$$

(B)
$$-\begin{vmatrix} 1 & 4 \\ 0 & 5 \end{vmatrix}$$

(C)
$$\begin{vmatrix} 2 & -1 \\ 0 & 1 \end{vmatrix}$$

(D)
$$-\begin{vmatrix} 2 & -1 \\ 0 & 1 \end{vmatrix}$$

38. If
$$P = \begin{pmatrix} 1 & -2 & 0 \\ 3 & 1 & 5 \\ -1 & 2 & 3 \end{pmatrix}$$
 and

$$Q = \begin{pmatrix} -7 & 6 & -10 \\ -14 & 3 & -5 \\ 7 & 0 & 7 \end{pmatrix}$$
then

$$PQ = \begin{pmatrix} 21 & 0 & 0 \\ 0 & 21 & 0 \\ 0 & 0 & 21 \end{pmatrix}.$$

The matrix P^{-1} equals

(A)
$$(PQ)^{-1}$$

(C)
$$\frac{1}{21}P$$

(D)
$$\frac{1}{21}Q$$

(B)
$$\frac{9!}{3!} - 7!$$

(D)
$$9! - 7! \times 3!$$

(A)
$$\frac{2}{3}$$

(B)
$$\frac{1}{24}$$

(C)
$$\frac{1}{8}$$

(D)
$$\frac{3}{4}$$

$$M = \begin{pmatrix} 3 & -1 & 5 \\ 2 & 3 & -2 \\ 0 & 5 & 4 \end{pmatrix}$$
 is

42. If the auxiliary equation for a homogeneous second order differential equation with real, constant coefficients is given by $\lambda^2 + 6\lambda + 50 = 0$, then the general solution of the differential equation may be given by

(A)
$$y = e^{\lambda x} (A + Bx)$$

(B)
$$ye^{\int \lambda(x)dx} = \int Q(x)e^{\int \lambda(x)dx} dx + C$$

(C)
$$y = Ae^{\lambda_1 x} + Be^{\lambda_2 x}$$

(D)
$$y = e^{\alpha x} (A \cos \beta x + B \sin \beta x)$$

43. The general solution of the differential equation $(x-2)\frac{dy}{dx} = y$ is

(A)
$$y = e^{\ln(x-2)} + c$$

(B)
$$y = e^{ln(x-2)}$$
. e^{c}

(C)
$$y = 2e^{\ln(x-2)} + c$$

(D)
$$y = -2e^{\ln(x-2)} + \ln c$$

44. Given that $y = \frac{\pi}{4}$ and $x = \frac{1}{2}$, then the particular solution of $\frac{dy}{dx} = 2x \cos^2 y$ is

(A)
$$\tan y = x^2 + \frac{3}{4}$$

(B)
$$\tan y = 2x + \frac{1}{4}$$

(C)
$$\sin y = 2x + 1$$

$$(D) 2\cos y = x^2 + c$$

45. The general solution of the differential equation $\frac{dy}{dx} = \frac{y}{x}$ is

(A)
$$y = e^x$$

(B)
$$y = kx$$

(C)
$$y=x+k$$

(D)
$$y = \ln x + k$$

END OF TEST

IF YOU FINISH BEFORE TIME IS CALLED, CHECK YOUR WORK ON THIS TEST.