Carlos Alberto Cardro Robles

MACHINE LEARNING 2019/04/04

HOMEWORK: PARTIAL DERIVATIVES

- 1. Find first partial derivatives f_x , f_y and f_z of the function $f(x, y, z) = e^{xy} \ln(z)$.
- 2. Find the second partial derivatives of the function $f(x,y) = x^3 + x^2y^3 2y^2$.
- 3. Find equation of the tangent line to the function $f(x,y) = x \cdot e^{xy}$ at the point P(1,0,f(1,0)).
- 4. Calculate $\triangle z$ and dz for the function $z=x^2+3xy-y^2$ if x changes from 2.0 to 2.05 and y changes from 3.0 to 2.96.
- 5. The dimension of a rectangular box are 75, 60 and 40 centimeters. If error of measurement is ± 0.2 cm, use total differential to estimate the error in volume.
- 6. If $z = e^x \cdot \sin(y)$, where $x = s \cdot t^2$ and $y = s^2 t m$ find $\partial z/\partial s$ and $\partial z/\partial t$.
- 7. Find dy/dx if $x^{3} + y^{3} = 6xy$.
- 8. Find directional derivative $D_{\overrightarrow{u}}f(x,y)$ if $f(x,y)=x^3-3xy+4y^2$ and \overrightarrow{u} is given in polar coordinates as $\overrightarrow{u}=(1,\pi/6)$.
- 9. For function $f(x, y, z) = x \cdot \sin(yz)$ find gradient vector ∇f and find directional derivative at point P(1, 3, 0) in direction of $\overrightarrow{v} = \begin{bmatrix} 1 & 2 & -1 \end{bmatrix}^T$.
- 10. Find critical points of the function $f(x, y) = y^2 x^2$.
- 11. Find the shortest distance of the point A(1,0,-2) to the plane x+2y+z=4.
- 12. Find the absolute maximum and minimum values of the function $f(x,y) = x^2 2xy + 2y$ on the rectangle $R = \{(x,y) : 0 \le x \le 3, 0 \le y \le 2\}$.
- 13. Find extreme values of the function $f(x, y) = x^2 + 2y^2$ over circumference $x^2 + y^2 = 1$.
- 14. Find extreme values of the function $f(x,y) = x^2 + 2y^2$ over disc $x^2 + y^2 \le 1$.
- 15. Find maximum value of the function f(x, y, z) = x + 2y + 3z on the curve of intersection of the plane x y + z = 1 and the cylinder $x^2 + y^2 = 1$.