Generalized Master Theorem

Jatin Shah

Yale University

Lemma 1. Given a polynomial p(x) such that p(0) = 0 then for any 0 < t < 1, $p(tx) \le tp(x)$.

Proof. Let $p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x$. Now,

$$p(tx) = a_n(tx)^n + a_{n-1}(tx)^{n-1} + \dots + a_1(tx)$$

$$= a_n t^n x^n + a_{n-1} t^{n-1} x^{n-1} + \dots + a_1(tx)$$

$$\leq a_n t x^n + a_{n-1} t x^{n-1} + \dots + a_1(tx) \qquad (\because t^n \leq t \ \forall n \geq 1)$$

$$= t(a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x) = tp(x)$$

Theorem 1. Given a recursive function T(x) defined as

$$T(x) = \sum_{i=1}^{m} T(x_i) + f(x) \qquad \text{if } x > K$$

$$T(x) = b \qquad \text{if } 1 \le x \le K$$

where x and x_i 's are positive integers, there exists functions $g_i(\cdot)$ such that $x_i = g_i(x)$ for all $i = 1, \ldots, m$; and K, b and m are positive integer constants.

If f(x) is a polynomial defined on positive integers such that $f(0) \ge 0$ and $f(x) \ge d > 0$ for all $1 \le x \le K$, and $x > \sum_{i=1}^{m} x_i$ then there exists a constant $c \ge 1$ such that $T(x) \le cxf(x)$ for all $x \ge 1$.

Proof. Choose $c = max\{1, b/d\}$. We shall prove by induction.

Base case: When $1 \le x \le K$, $T(x) = b = (b/d)d \le cf(x) \le cxf(x)$.

Induction case: When x > K,

$$T(x) = \sum_{i=1}^{m} T(x_i) + f(x)$$

$$\leq \sum_{i=1}^{m} cx_i f(x_i) + f(x)$$
(Using Induction Hypothesis on $x_i < x$: $T(x_i) \leq cx_i f(x_i)$)
$$= c \sum_{i=1}^{m} x \left(\frac{x_i}{x}\right) f\left(x\frac{x_i}{x}\right) + f(x)$$

$$\leq c \sum_{i=1}^{m} \left(\frac{x_i}{x}\right) x f(x) + f(x)$$
(Let $t = \left(\frac{x_i}{x}\right) < 1$ and $p(x_i) = x_i f(x_i)$ in Lemma 1)
$$= cx f(x) \sum_{i=1}^{m} \left(\frac{x_i}{x}\right) + f(x)$$

$$= x f(x) \left(c \sum_{i=1}^{m} \frac{x_i}{x} + \frac{1}{x}\right)$$

$$\leq cx f(x)$$
 (: $x > \sum_{i=1}^{m} x_i$)