

Curso Superior de Análise e Desenvolvimento de Sistemas - Prof: Andre Luiz Bedendo - Matemática Discreta

## 2. Matrizes

Uma **matriz** é uma tabela de números organizada em **linhas e colunas**. Ela é usada para representar e manipular dados de forma estruturada, facilitando cálculos e transformações matemáticas.

**Definição.** Sejam m e n números inteiros positivos. Uma matriz m x n (lê-se: matriz m por n) é uma tabela retangular de m linhas e n colunas de números reais.

$$a_{11}$$
  $a_{12}$   $a_{13}$  ...  $a_{1n}$   $a_{21}$   $a_{22}$   $a_{23}$  ...  $a_{2n}$   $a_{31}$   $a_{32}$   $a_{33}$  ...  $a_{3n}$  ...  $a_{3n}$  ...  $a_{mn}$  matrizes quadradas)

Usaremos também a nomenclatura compacta  $\left[a_{ij}\right]$  para representar toda essa matriz.

Cada elemento ou entrada  $a_{ij}$  da matriz usa a notação de duplo índice. O da linha é o primeiro índice, i, e o da coluna é o segundo índice, j. O elemento  $a_{ij}$  está na i-ésima linha e j-ésima coluna. Em geral, a ordem de uma matriz  $m \times n$  é simplesmente definida por m linhas e n colunas.

## **Exemplos:**

$$\begin{bmatrix} 1 & -2 & 3 \\ 2 & 0 & 4 \end{bmatrix}_{2 \times 3} \qquad \begin{bmatrix} -1 & 0 & 1 \\ 3 & -2 & 5 \\ 5 & 1 & \frac{1}{4} \end{bmatrix}_{3 \times 3} \qquad \begin{bmatrix} 2 \\ 1 \\ 0 \\ 5 \end{bmatrix}_{4 \times 1} \qquad [-1 & 0 & 4 & 1]_{1 \times 4}$$

As Matrizes são fundamentais em diversas áreas da computação, como:

- Processamento de Imagens e Gráficos → Imagens são representadas como matrizes de pixels, onde cada número indica a cor ou intensidade da luz.
- Inteligência Artificial e Machine Learning → Redes neurais utilizam matrizes para armazenar e processar grandes quantidades de dados.
- Banco de Dados e Algoritmos → Matrizes são usadas para organizar dados e melhorar operações em sistemas computacionais.
- Criptografia e Segurança → Códigos e mensagens secretas podem ser manipulados por operações matriciais para garantir a segurança digital.
- Simulações e Jogos → Físicas de jogos e transformações gráficas (rotação, escalonamento) são feitas com matrizes.

**Exemplo 1.** Construa uma matriz quadrada de ordem 3,  $A = [a_{ij}]$ , definida pela seguinte lei de formação,  $a_{ij} = i \cdot j + i^2$ .

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} A = \begin{bmatrix} 2 & 3 & 4 \\ 6 & 8 & 10 \\ 12 & 15 & 18 \end{bmatrix}$$

## 2.1 Operações com Matrizes

Sejam duas matrizes  $A = [a_{ij}]$ ,  $B = [b_{ij}]$  e  $C = [c_{ij}]$  de ordem  $m \times n$ , e k um valor escalar  $\epsilon \mathbb{R}$ . Definimos:

• Soma de matrizes: C = (A + B):

$$c_{ij} = a_{ij} + b_{ij}$$
 para todo  $1 \le i \le m$   $e \ 1 \le j \le n$ 

Exemplo 2.

$$A = \begin{vmatrix} z & 3 & 1 \\ 0 & z & 3 \end{vmatrix}_{Z \times 3}$$

$$B = \begin{vmatrix} -1 & 0 & 2 \\ -1 & 5 & 4 \end{vmatrix}_{Z \times 3}$$

$$C = A + B$$

$$C = \begin{vmatrix} z - 1 & 3 + 0 & 1 + 2 \\ 0 - 1 & 2 + 5 & 3 + 2 \end{vmatrix}$$

$$C = \begin{vmatrix} 1 & 3 & 3 \\ -1 & 7 & 5 \end{vmatrix}$$

$$Z \times 3$$

• Diferença de matrizes: C = (A - B)

Exemplo 3. 
$$A = \begin{bmatrix} -1 & 4 \\ Z & 0 \end{bmatrix}$$
  $B = \begin{bmatrix} -3 & -2 \\ 1 & 5 \end{bmatrix}_{Z \times Z}$ 

$$c_{ij} = a_{ij} + b_{ij}$$
 para todo  $1 \le i \le m$   $e \ 1 \le j \le n$ 

$$C = A - B$$

Multiplicação por escalar:  $\mathcal{C} = k \cdot A$ 

$$c_{ij} = k \cdot a_{ij}$$
 para todo  $1 \le i \le m$  e  $1 \le j \le n$ 

$$A = \begin{bmatrix} -1 & 0 & 1 \\ 2 & 1 & 3 \\ 4 & 3 & 1 \end{bmatrix}$$

Transposição: dada a matriz de ordem  $m \ x \ n \ A = \left[a_{ij}\right]$ , definimos sua transposta como,

Exemplo 5.

$$A = \begin{bmatrix} z & 1 & 3 \\ -1 & 0 & Z \end{bmatrix}_{z \times 3}$$

z de ordem 
$$m \times n$$
  $A = [a_{ij}]$ , de ordem  $m \times n$ 

$$A^{T} = [a_{ji}], \text{ de ordem } m \times n$$

$$A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix}, \text{ de ordem } m \times n$$

$$A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix}, \text{ de ordem } m \times n$$

$$A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix}, \text{ de ordem } m \times n$$

$$A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix}, \text{ de ordem } m \times n$$

$$A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix}, \text{ de ordem } m \times n$$

$$A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix}, \text{ de ordem } m \times n$$

$$A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix}, \text{ de ordem } m \times n$$

$$A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix}, \text{ de ordem } m \times n$$

$$A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix}, \text{ de ordem } m \times n$$

$$A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix}, \text{ de ordem } m \times n$$

$$A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix}, \text{ de ordem } m \times n$$

$$A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix}, \text{ de ordem } m \times n$$

$$A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix}, \text{ de ordem } m \times n$$

$$A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix}, \text{ de ordem } m \times n$$

$$A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix}, \text{ de ordem } m \times n$$

$$A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix}, \text{ de ordem } m \times n$$

$$A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix}, \text{ de ordem } m \times n$$

$$A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix}, \text{ de ordem } m \times n$$

$$A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix}, \text{ de ordem } m \times n$$

$$A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix}, \text{ de ordem } m \times n$$

$$A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix}, \text{ de ordem } m \times n$$

$$A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix}, \text{ de ordem } m \times n$$

$$A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix}, \text{ de ordem } m \times n$$

$$A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix}, \text{ de ordem } m \times n$$

$$A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix}, \text{ de ordem } m \times n$$

$$A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix}, \text{ de ordem } m \times n$$

$$A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix}, \text{ de ordem } m \times n$$

$$A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix}, \text{ de ordem } m \times n$$

$$A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix}, \text{ de ordem } m \times n$$

$$A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix}, \text{ de ordem } m \times n$$

$$A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix}, \text{ de ordem } m \times n$$

$$A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix}, \text{ de ordem } m \times n$$

$$A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix}, \text{ de ordem } m \times n$$

$$A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix}, \text{ de ordem } m \times n$$

$$A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix}, \text{ de ordem } m \times n$$

$$A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix}, \text{ de ordem } m \times n$$

$$A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix}, \text{ de ordem } m \times n$$

$$A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix}, \text{ de ordem } m \times n$$

$$A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix}, \text{ de ordem } m \times n$$

$$A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix}, \text{ de ordem } m \times n$$

$$A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix}, \text{ de ordem } m \times n$$

$$A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix}, \text{ de ordem } m \times n$$

$$A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix}, \text{ de ordem } m \times n$$

$$A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix}, \text{ de ordem } m \times n$$

$$A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix}, \text{ de ordem } m \times n$$

$$A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix}, \text{ de ordem } m \times n$$

$$A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix},$$

Multiplicação de Matrizes: Seja A uma matriz de ordem  $m \ x \ p$  e B uma matriz  $p \ x \ n$ . Definimos o produto AB como a matriz  $C=[c_{ij}]$ , de ordem  $m \ x \ n$ , tal que  $c_{ij}$  é o produto da linha i da matriz Apela coluna j da matriz B. Multiplicamos as entradas correspondentes da linha e da coluna e então somamos os produtos resultantes.  $A = A \cdot B$ 

**Exemplo 6.** Considere as matrizes  $A = \begin{bmatrix} -1 & 0 & 1 \\ 3 & -2 & 5 \\ 5 & 1 & 2 \end{bmatrix}$  e  $B = \begin{bmatrix} 1 & 0 \\ 2 & 3 \\ -1 & 4 \end{bmatrix}$ , determine a matriz C

resultante de 
$$A \cdot B$$
.

$$A = \begin{bmatrix} A & A & B \\ A & A & B$$

$$C = \begin{vmatrix} (-1) \cdot 1 + 0 \cdot 2 + 1 \cdot (-1) & (-1) \cdot 0 + 0 \cdot 3 + 1 \cdot 4 \\ 3 \cdot 1 + (-2) \cdot 2 + 5 \cdot (-1) & 3 \cdot 0 + (-2) \cdot 3 + 5 \cdot 4 \\ 5 \cdot 1 + 1 \cdot 2 + 2 \cdot (-1) & 5 \cdot 0 + 1 \cdot 3 + 2 \cdot 4 \end{vmatrix}$$



$$C = \begin{vmatrix} -2 & 4 \\ -6 & 14 \\ 5 & 11 & 3 \times 2 \end{vmatrix}$$

OBS: Obrigatório que o número de columno de A seja igual ao número de linhas da matriz B. colunas

**Exemplo 7.** Considere as matrizes 
$$A = \begin{bmatrix} -1 & 0 & 1 & 1 \\ 3 & -2 & 5 & 0 \\ 5 & 1 & 2 & -1 \end{bmatrix}$$
 e  $B = \begin{bmatrix} 1 & 0 \\ 2 & 5 \\ 1 & 4 \\ 2 & 0 \end{bmatrix}$ , determine a matriz

 $C = \begin{bmatrix} -1 & 2 & 0 \\ 4 & 5 & -2 \end{bmatrix}$ , determine a matriz D resultante da operação  $A \cdot B + C^T$ .

A 
$$B + C^T = D$$
 $A \cdot B + C^T = D$ 
 $A \cdot B + C^T = D$ 

Traço de Matrizes: Seja A for uma matriz quadrada, então o traço de A, denotado por tr(A),
 é definido pela soma das entradas da diagonal principal de A. O traço de A não é definido se A não for uma matriz quadrada.

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{bmatrix} \quad tr(A) = a_{11} + a_{22} + a_{33} + \cdots + a_{mn}$$

 $B = \begin{pmatrix} 2 & 30 \\ 1 & 27 \end{pmatrix}$ 

sendo A quadrada m = n.

Exemplo 8. Determine o valor do traço das seguintes matrizes.

$$A = \begin{bmatrix} 4 & 0 & 13 \\ 3 & 1 & 5 \\ 5 & 1 & 2 \end{bmatrix}$$

$$t_{r(A)} = -\frac{1}{1+2}$$
 $t_{r(B)} = \frac{1}{2}$ 
 $t_{r(B)} = \frac{1}{2}$ 



Curso Superior de Análise e Desenvolvimento de Sistemas - Prof: Andre Luiz Bedendo - Matemática Discreta

## Lista 1. Matrizes e operações elementares

1. Dadas as matrizes A e B em cada item, determine a matriz C resultante das seguintes operações:

(a) 
$$A + B$$
; (b)  $A - B$ ; (c)  $3A$ ; (d)  $2A - 3B$ 

$$I1) A = \begin{bmatrix} 2 & 3 \\ -1 & 5 \end{bmatrix} B = \begin{bmatrix} 1 & -3 \\ -2 & -4 \end{bmatrix}$$

$$I1) A = \begin{bmatrix} 2 & 3 \\ -1 & 5 \end{bmatrix} B = \begin{bmatrix} 1 & -3 \\ -2 & -4 \end{bmatrix} \qquad I2) A = \begin{bmatrix} -1 & 0 & 2 \\ 4 & 1 & -1 \\ 2 & 0 & 1 \end{bmatrix} B = \begin{bmatrix} 2 & 1 & 0 \\ -1 & 0 & 2 \\ 4 & -3 & -1 \end{bmatrix}$$

$$I3) A = \begin{bmatrix} -3 & 1 \\ 0 & -1 \\ 2 & 1 \end{bmatrix} B = \begin{bmatrix} 4 & 0 \\ -2 & 1 \\ -3 & -1 \end{bmatrix}$$

$$I3) A = \begin{bmatrix} -3 & 1 \\ 0 & -1 \\ 2 & 1 \end{bmatrix} B = \begin{bmatrix} 4 & 0 \\ -2 & 1 \\ 2 & 1 \end{bmatrix} \qquad I4) A = \begin{bmatrix} 5 & -2 & 3 & 1 \\ -1 & 0 & 2 & 2 \end{bmatrix} B = \begin{bmatrix} -2 & 3 & 1 & 0 \\ 4 & 0 & -1 & -2 \end{bmatrix}$$

2. Considere as seguintes matrizes  $A = \begin{bmatrix} 2 & -1 & 0 \\ 3 & 2 & 1 \\ 4 & -2 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 \\ 1 & 4 \\ 0 & 5 \end{bmatrix}, C = \begin{bmatrix} 2 & 1 & -3 \\ 2 & 2 & -5 \end{bmatrix}, D = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}$ , se

possível determine a matriz resultante das seguintes operações.

a) 
$$A \cdot B$$

b) 
$$B + C^T$$

c) 
$$B \cdot C$$

d) 
$$(A \cdot B) + C^T$$
 e)  $D^T \cdot A$ 

e) 
$$D^T \cdot A$$

f) 
$$\frac{1}{2}A \cdot C^T$$

g) 
$$(5A + A^T) \cdot C^T$$
 h)  $(D^T \cdot B) \cdot C$  i)  $-2C \cdot D$  j)  $(B \cdot 3C) + A$ 

h) 
$$(D^T \cdot B) \cdot a$$

i) 
$$-2C \cdot L$$

$$j)(B \cdot 3C) + A$$

3. Dadas as matrizes A e B, determine se possível a matriz C resultante das operações: (a) AB;

(b) BA. Em seguida, determine se possível o valor do traço de cada matriz C.

$$I1) A = \begin{bmatrix} 1 & 0 & 2 \\ 4 & 1 & -1 \\ 2 & 0 & 1 \\ 2 & 2 & 3 \\ 0 & 1 & 3 \end{bmatrix} B = \begin{bmatrix} -1 & 3 & 2 & 1 & 1 \\ 2 & 1 & -1 & 5 & 6 \\ -3 & 1 & 1 & 1 & 4 \end{bmatrix} \qquad I2) A = \begin{pmatrix} 1 & 1 & 0 & 3 \\ 2 & -1 & 1 & 2 \end{pmatrix} B = \begin{pmatrix} 0 & 1 & 2 \\ -1 & 0 & 4 \\ -5 & 0 & 6 \\ 1 & 5 & -3 \end{pmatrix}$$

$$I2) A = \begin{pmatrix} 1 & 1 & 0 & 3 \\ 2 & -1 & 1 & 2 \end{pmatrix} B = \begin{pmatrix} 0 & 1 & 2 \\ -1 & 0 & 4 \\ -5 & 0 & 6 \\ 1 & 5 & -3 \end{pmatrix}$$

Respostas. Número 2.

a) 
$$\begin{bmatrix} 1 & 0 \\ 5 & 19 \\ 2 & 10 \end{bmatrix}$$

b) 
$$\begin{bmatrix} 3 & 4 \\ 2 & 6 \\ -3 & 0 \end{bmatrix}$$

a) 
$$\begin{bmatrix} 1 & 0 \\ 5 & 19 \\ 2 & 10 \end{bmatrix}$$
 b)  $\begin{bmatrix} 3 & 4 \\ 2 & 6 \\ -3 & 0 \end{bmatrix}$  c)  $\begin{bmatrix} 6 & 5 & -13 \\ 10 & 9 & -23 \\ 10 & 10 & -25 \end{bmatrix}$  d)  $\begin{bmatrix} 3 & 2 \\ 6 & 21 \\ -1 & 5 \end{bmatrix}$  e)  $\begin{bmatrix} 8 & -11 & 4 \end{bmatrix}$  f)  $\begin{bmatrix} \frac{3}{2} & 1 \\ \frac{5}{2} & \frac{5}{2} \\ \frac{3}{2} & \frac{1}{2} \end{bmatrix}$ 

$$d)\begin{bmatrix} 3 & 2 \\ 6 & 21 \\ -1 & 5 \end{bmatrix}$$

f) 
$$\begin{bmatrix} \frac{3}{2} & 1\\ \frac{5}{2} & \frac{5}{2}\\ 0 & -3 \end{bmatrix}$$

g) 
$$\begin{bmatrix} 10 & 0 \\ 31 & 37 \\ -5 & -38 \end{bmatrix}$$

i) 
$$\begin{bmatrix} 18 \\ 34 \end{bmatrix}$$

g) 
$$\begin{bmatrix} 10 & 0 \\ 31 & 37 \\ -5 & -38 \end{bmatrix}$$
 h)  $\begin{bmatrix} 16 & 17 & -42 \end{bmatrix}$  i)  $\begin{bmatrix} 18 \\ 34 \end{bmatrix}$  j)  $\begin{bmatrix} 20 & 14 & -39 \\ 33 & 29 & -68 \\ 34 & 28 & -73 \end{bmatrix}$ 

Número 3.

$$I1) (a) \begin{bmatrix} -7 & 5 & 4 & 3 & 9 \\ 1 & 12 & 6 & 8 & 6 \\ -5 & 7 & 5 & 3 & 6 \\ -7 & 11 & 5 & 15 & 26 \\ -7 & 4 & 2 & 8 & 18 \end{bmatrix} tr = 43 \quad (b) \begin{pmatrix} 17 & 6 & 3 \\ 14 & 17 & 35 \\ 5 & 7 & 9 \end{pmatrix} tr = 43 \quad I2 (a) \begin{pmatrix} 2 & 16 & -3 \\ -2 & 12 & 0 \end{pmatrix} tr = \cancel{1}$$
 (b)  $\cancel{2}$