

# **Autonomous Vehicle Simulation (AVS) Laboratory**

## **AVS-Sim Technical Memorandum**

Document ID: AVS-SIM-hillPoint

#### **GUIDANCE MODULE FOR HILL FRAME POINTING**

| Prepared by M. Cols |
|---------------------|
|---------------------|

**Status:** Initial Version

Scope/Contents

Generate the attitude reference to perform a constant pointing towards a Hill frame orbit axis

| Rev:  | Change Description | Ву      |
|-------|--------------------|---------|
| Draft | initial copy       | M. Cols |

Doc. ID: AVS-Sim-hillPoint Page 1 of ??

#### **Contents**



**Fig. 1:** Illustration of the Hill orbit frame  $\mathcal{H}$ , and the inertial frame  $\mathcal{N}$ .

#### 1 Reference Frame Definitions

A general axis is to be aligned with a principal Hill-frame axis and stay pointing fixedly on it. Note that the presented technique does not require the hill orbit frame  $\mathcal{H}:\{\hat{\imath}_r,\hat{\imath}_\theta,\hat{\imath}_h\}$  to be the inertial frame in use. Figure 1 illustrates the situation assessed.

### 2 Angular Velocity Descriptions

Let the general reference frame associated to this pointing attitude be  $\mathcal{R}$ . The attitude tracking control requires the angular rate  $\omega_{R/N}$  and acceleration  $\dot{\omega}_{R/N}$ . The angular velocity of the Hill frame is given by

$$\omega_{H/N} = \dot{f}\hat{\imath}_h \tag{1}$$

where  $\dot{f}$  is the time-varying true anomaly rate applicable for both circular and elliptic orbits, and  $\hat{\imath}_h$  is the orbit's normal direction. Since the pointing towards the orbit axis is constant, the desired reference  $\mathcal{R}$  does not move relative to the Hill orbit frame. Thus, the angular velocity of the reference frame happens to be

$$\omega_{R/N} = \omega_{R/H} - \omega_{H/N} = \dot{f}\hat{i}_h \tag{2}$$

It is straightforward to compute the acceleration vector of the reference frame

$$\dot{\omega}_{R/N} = \ddot{f}\hat{\imath}_h \tag{3}$$