

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS

Laboratório de Algoritmos e Estruturas de Dados – 2/2023

AULA PRÁTICA – ANÁLISE DE COMPLEXIDADE

Prof. Edwaldo Soares Rodrigues

1 – Faça um método	que rece	ba um	número	inteiro	n e	efetue	o núm	iero de	e multip	licações,
pedido nos casos a se	guir:									

- a) $5n + 4n^3$
- b) $9n^4 + 5n^2 + n/2$
- c) $4n^3 + 2$
- d) $lg(n) + n^2$
- e) $3\lg(n) + \lg(n)$
- f) $2n + 2n2 + \lg(n)$
- 2 Marque verdadeiro ou falso, em cada célula da tabela abaixo:

a)

	Θ (1)	Θ(lg n)	Θ (n)	Θ (n.lg(n))	Θ(n²)	Θ(n³)	Θ (n⁵)	Θ(n ²⁰)
f(n) = Ig(n)	V	V						
$f(n) = n \cdot lg(n)$				V				
f(n) = 5n + 1			V					
$f(n) = 7n^5 - 3n^2$							V	
$f(n) = 99n^3 - 1000n^2$						V		
$f(n) = n^5 - 99999n^4$							V	

b)

	Ω(1)	Ω(lg n)	Ω(n)	Ω(n.lg(n))	$\Omega(n^2)$	$\Omega(n^3)$	Ω(n ⁵)	Ω(n ²⁰)
f(n) = Ig(n)	V	V						
$f(n) = n \cdot lg(n)$	V	V	V	V				
f(n) = 5n + 1			V					
$f(n) = 7n^5 - 3n^2$	V	V	V	V	V	V	V	
$f(n) = 99n^3 - 1000n^2$	V	V	V	V	\	>		
$f(n) = n^5 - 99999n^4$	V	V	V	V	V	V	V	

c)

	O(1)	O(lg n)	O(n)	O(n.lg(n))	O(n²)	O(n³)	O(n ⁵)	O(n ²⁰)
f(n) = Ig(n)		V	V	V	V	V	V	V
$f(n) = n \cdot lg(n)$				V	V	V	V	V
f(n) = 5n + 1			V	V	V	V	V	V
$f(n) = 7n^5 - 3n^2$							V	V
$f(n) = 99n^3 - 1000n^2$						V	V	V
$f(n) = n^5 - 99999n^4$							V	V

3 – Apresente a função e a taxa de complexidade para as 3 notações vistas em sala, referente ao número de comparações e movimentações de registros, para o pior e melhor caso, para as opções a seguir:

a)

```
void imprimirMaxMin(int [] array, int n){
    int maximo, minimo;

if (array[0] > array[1]){
        maximo = array[0];
    } else {
        maximo = array[1];
    }

for (int i = 2; i < n; i++){
        if (array[i] > maximo){
            maximo = array[i];
        } else if (array[i] < minimo){
            minimo = array[i];
        } else if (array[i] < minimo){
            minimo = array[i];
        }
}</pre>
```

```
Função de complexidade
```

```
MOV COMP PIOR f(n) = 2 + (n-2) f(n) = 1 + 2(n-2) MELHOR f(n) = 2 f(n) = 1 + (n-2)
```

NOTAÇÕES

```
MOV COMP
PIOR O(n), Om(n), Th(n) O(n), Om(n), Th(n)
MELHOR O(1), Om(1), Th(1) O(n), Om(n), Th(n)
```

b)

```
i = 0;

while (i < n) {
    i++;
    a--;
}

if (b > c) {
    i--;
} else {
    i--;
    a--;
}
```

Aqui deveria ser pedido apenas a função de complexidade e as notações, apenas, referente ao número de subtrações.

	função	Notação
PIOR	f(n) = n+2	O(n), Om(n), Th(n)
MELHOR	f(n) = n+1	O(n), $Om(n)$, $Th(n)$

c)

```
for (i = 0; i < n; i++) {
    for (j = 0; j < n; j++) {
        a--;
        b--;
    }
    c--;
}</pre>
```

Aqui deveria ser pedido apenas a função de complexidade e as notações, apenas, referente ao número de subtrações.

função Notação

 $PIOR \ / \ MELHOR \qquad \qquad f(n) = (2n+1)n \qquad O(n2), \ Om(n2), \ Th(n2)$

n2 = n ao quadrado

4 – Apresente o tipo de crescimento que melhor caracteriza as funções abaixo:

	Constante	Linear	Polinomial	Exponencial
3n		Χ		
1	Х			
(3/2)n		X		
2n³			Х	
2 ⁿ				Х
3n ²			X	
1000	Х			
(3/2) ⁿ				Х

5 – Classifique as funções $f_1(n)$ = n.lg(n), $f_2(n)$ = lg(n), $f_3(n)$ = $8n^2$, $f_4(n)$ = 64, $f_5(n)$ = $6n^3$, $f_6(n)$ = 8^{2n} e f7(n) = 4n de acordo com o crescimento, do mais rápido para o mais lento.

Classificação das funções de complexidades, em ordem de eficiência. Quanto antes, mais eficientes os algoritmos representados pelas funções

- F4 F2
- F7
- F1
- F3 F5
- F6