```
Introduction
Modelling parallel systems
Linear Time Properties
Regular Properties
Linear Temporal Logic (LTL)
  syntax and semantics of LTL
   automata-based LTL model checking
  complexity of LTL model checking
Computation-Tree Logic
Equivalences and Abstraction
```

LTLMC3.2-19

given: finite transition system T over AP

(without terminal states) LTL-formula φ over AP

question: does $T \models \varphi$ hold ?

given: finite transition system T over AP

(without terminal states) LTL-formula φ over AP

question: does $T \models \varphi$ hold ?

basic idea: try to refute $T \models \varphi$

given: finite transition system T over AP

(without terminal states) LTL-formula φ over AP

question: does $T \models \varphi$ hold ?

basic idea: try to refute $T \models \varphi$ by searching

for a path π in T s.t.

$$\pi \not\models \varphi$$

given: finite transition system T over AP

(without terminal states) LTL-formula φ over AP

question: does $T \models \varphi$ hold ?

basic idea: try to refute $T \models \varphi$ by searching

for a path π in T s.t.

$$\pi \not\models \varphi$$
, i.e., $\pi \models \neg \varphi$

given: finite transition system T over AP

LTL-formula φ over AP

question: does $T \models \varphi$ hold ?

1. construct an **NBA** \mathcal{A} for *Words*($\neg \varphi$)

given: finite transition system T over AP

LTL-formula φ over AP

question: does $T \models \varphi$ hold ?

1. construct an **NBA** \mathcal{A} for *Words*($\neg \varphi$)

2. search a path π in T with $trace(\pi) \in Words(\neg \varphi)$

given: finite transition system T over AP

LTL-formula φ over AP

question: does $T \models \varphi$ hold ?

- 1. construct an **NBA** \mathcal{A} for *Words*($\neg \varphi$)
- 2. search a path π in T with $trace(\pi) \in Words(\neg \varphi) = \mathcal{L}_{\omega}(\mathcal{A})$

given: finite transition system T over AP

LTL-formula φ over AP

question: does $T \models \varphi$ hold ?

- 1. construct an **NBA** \mathcal{A} for *Words*($\neg \varphi$)
- 2. search a path π in T with

$$trace(\pi) \in Words(\neg \varphi) = \mathcal{L}_{\omega}(\mathcal{A})$$

construct the product-TS $\mathcal{T} \otimes \mathcal{A}$ search a path in the product that meets the acceptance condition of \mathcal{A}

Safety and LTL model checking

LTLMC3.2-20

safety property <i>E</i>	LTL-formula $oldsymbol{arphi}$

Safety and LTL model checking

safety property <i>E</i>	LTL-formula $oldsymbol{arphi}$
NFA for the bad prefixes for $\stackrel{\mathcal{E}}{\mathcal{L}(\mathcal{A})} \subseteq (2^{AP})^+$	

safety property <i>E</i>	LTL-formula $oldsymbol{arphi}$
NFA for the bad prefixes for E $\mathcal{L}(A) \subseteq (2^{AP})^+$	NBA for the "bad behaviors" $\mathcal{L}_{\omega}(\mathcal{A}) = \textit{Words}(\neg \varphi)$

safety property <i>E</i>	LTL-formula $oldsymbol{arphi}$
NFA for the bad prefixes for $\stackrel{\mathcal{E}}{\mathcal{L}}(\mathcal{A}) \subseteq (2^{AP})^+$	NBA for the "bad behaviors" $\mathcal{L}_{\omega}(\mathcal{A}) = Words(\neg \varphi)$
$\overline{Traces_{fin}(\mathcal{T}) \cap \mathcal{L}(\mathcal{A})} = \emptyset$	

safety property <i>E</i>	LTL-formula $oldsymbol{arphi}$
NFA for the bad prefixes for $\stackrel{E}{\mathcal{L}}(\mathcal{A}) \subseteq (2^{AP})^+$	NBA for the "bad behaviors" $\mathcal{L}_{\omega}(\mathcal{A}) = \textit{Words}(\neg \varphi)$
$Traces_{fin}(\mathcal{T}) \cap \mathcal{L}(\mathcal{A}) = \emptyset$	$Traces(\mathcal{T}) \cap \mathcal{L}_{\omega}(\mathcal{A}) = \emptyset$

safety property <i>E</i>	LTL-formula $oldsymbol{arphi}$
NFA for the bad prefixes for E $\mathcal{L}(A) \subseteq (2^{AP})^+$	NBA for the "bad behaviors" $\mathcal{L}_{\omega}(\mathcal{A}) = \textit{Words}(\neg \varphi)$
$Traces_{fin}(\mathcal{T}) \cap \mathcal{L}(\mathcal{A}) = \emptyset$	$Traces(T) \cap \mathcal{L}_{\omega}(\mathcal{A}) = \emptyset$
invariant checking in the product $T \otimes A \models \Box \neg F$?	

safety property E	LTL-formula $oldsymbol{arphi}$
NFA for the bad prefixes for $\stackrel{\textbf{\textit{E}}}{\mathcal{L}}(\mathcal{A}) \subseteq (2^{\textit{AP}})^+$	NBA for the "bad behaviors" $\mathcal{L}_{\omega}(\mathcal{A}) = \textit{Words}(\neg \varphi)$
$Traces_{fin}(\mathcal{T}) \cap \mathcal{L}(\mathcal{A}) = \emptyset$	$Traces(\mathcal{T}) \cap \mathcal{L}_{\omega}(\mathcal{A}) = \emptyset$
/ / /	

Safety and LTL model checking LTLMC3.2-20	
safety property <i>E</i>	LTL-formula $oldsymbol{arphi}$
NFA for the bad prefixes for E $\mathcal{L}(A) \subseteq (2^{AP})^+$	NBA for the "bad behaviors" $\mathcal{L}_{\omega}(\mathcal{A}) = Words(\neg \varphi)$
$Traces_{fin}(\mathcal{T}) \cap \mathcal{L}(\mathcal{A}) = \emptyset$	$Traces(T) \cap \mathcal{L}_{\omega}(A) = \emptyset$
invariant checking in the product $T \otimes A \models \Box \neg F$?	persistence checking in the product $T \otimes A \models \Diamond \Box \neg F$?
error indication: $\widehat{\pi} \in Paths_{fin}(\mathcal{T})$ s.t. $trace(\widehat{\pi}) \in \mathcal{L}(\mathcal{A})$	

safety property E	LTL-formula $oldsymbol{arphi}$
NFA for the bad prefixes for E $\mathcal{L}(A) \subseteq (2^{AP})^+$	NBA for the "bad behaviors" $\mathcal{L}_{\omega}(\mathcal{A}) = \textit{Words}(\neg \varphi)$
$\mathit{Traces}_{\mathit{fin}}(\mathcal{T}) \cap \mathcal{L}(\mathcal{A}) = \varnothing$	$\mathit{Traces}(\mathcal{T}) \cap \mathcal{L}_{\omega}(\mathcal{A}) = \emptyset$
invariant checking	persistence checking

invariant checking in the product in the product $T \otimes A \models \Box \neg F ?$ persistence checking in the product $T \otimes A \models \Box \neg F ?$

 $T \otimes A \models \Box \neg F$?

error indication: $\widehat{\pi} \in Paths_{fin}(T)$ s.t. $trace(\widehat{\pi}) \in \mathcal{L}(A)$ $T \otimes A \models \Diamond \Box \neg F$?

error indication:

prefix of a path π s.t. $trace(\pi) \in \mathcal{L}_{\omega}(A)$

Safety vs LTL model checking

LTLMC3.2-10

$$T \models \text{safety property } E$$

iff $Traces_{fin}(T) \cap \mathcal{L}(A) = \emptyset$

where ${\cal A}$ is an NFA for the bad prefixes

$$\mathcal{T} \models \mathsf{LTL} ext{-formula } arphi$$
 iff $\mathit{Traces}(\mathcal{T}) \cap \mathcal{L}_{\omega}(\mathcal{A}) = \varnothing$

where \mathcal{A} is an NBA for $\neg \varphi$

 $T \models \text{safety property } E$ iff $Traces_{fin}(T) \cap \mathcal{L}(\mathcal{A}) = \emptyset$ iff there is \underline{no} path fragment $\langle s_0, q_0 \rangle \langle s_1, q_1 \rangle \dots \langle s_n, q_n \rangle$ in $T \otimes \mathcal{A}$ s. t. $q_n \in F$

$$T \models \mathsf{LTL} ext{-formula}\ arphi$$
 iff $\mathit{Traces}(T) \cap \mathcal{L}_{\omega}(\mathcal{A}) = \varnothing$ iff there is $\underline{\mathsf{no}}\ \mathsf{path}\ \langle s_0, q_0 \rangle \, \langle s_1, q_1 \rangle \, \langle s_2, q_2 \rangle \ldots$ in $\mathit{T} \otimes \mathcal{A}\ \mathsf{s.t.}\ q_i \in \mathit{F}\ \mathsf{for}\ \mathsf{infinitely}\ \mathsf{many}\ i \in \mathbb{N}$

$$T \models \text{safety property } E$$

iff $Traces_{fin}(T) \cap \mathcal{L}(\mathcal{A}) = \emptyset$

iff there is no path fragment $\langle s_0, q_0 \rangle \langle s_1, q_1 \rangle \dots \langle s_n, q_n \rangle$

in $T \otimes \mathcal{A}$ s. t. $q_n \in F$

iff $T \otimes \mathcal{A} \models \Box \neg F$

$$T \models \mathsf{LTL} ext{-formula}\ arphi$$
 iff $\mathit{Traces}(T) \cap \mathcal{L}_{\omega}(\mathcal{A}) = \varnothing$ iff there is \underline{no} path $\langle s_0, q_0 \rangle \langle s_1, q_1 \rangle \langle s_2, q_2 \rangle \dots$ in $T \otimes \mathcal{A}$ s.t. $q_i \in F$ for infinitely many $i \in \mathbb{N}$ iff $T \otimes \mathcal{A} \models \Diamond \Box \neg F$

$$T \models \text{safety property } E$$

iff $Traces_{fin}(T) \cap \mathcal{L}(\mathcal{A}) = \emptyset$

iff there is no path fragment $\langle s_0, q_0 \rangle \langle s_1, q_1 \rangle \dots \langle s_n, q_n \rangle$

in $T \otimes \mathcal{A}$ s. t. $q_n \in F$

iff $T \otimes \mathcal{A} \models \Box \neg F \longleftarrow$ invariant checking

iff
$$Traces(T) \cap \mathcal{L}_{\omega}(A) = \emptyset$$

 $T \models LTL$ -formula φ

iff there is <u>no</u> path $\langle s_0, q_0 \rangle \langle s_1, q_1 \rangle \langle s_2, q_2 \rangle \dots$ in $\mathcal{T} \otimes \mathcal{A}$ s.t. $q_i \in F$ for infinitely many $i \in \mathbb{N}$

iff $T \otimes A \models \Diamond \Box \neg F \longleftarrow$ persistence checking

NBA
$$\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$$

- Q finite set of states
- Σ alphabet
- $\delta: Q \times \Sigma \to 2^Q$ transition relation
- $Q_0 \subseteq Q$ set of initial states
- $F \subseteq Q$ set of final states, also called accept states

NBA
$$\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$$

- Q finite set of states
- Σ alphabet
- $\delta: Q \times \Sigma \to 2^Q$ transition relation
- $Q_0 \subseteq Q$ set of initial states
- $F \subseteq Q$ set of final states, also called accept states

```
run for a word A_0 A_1 A_2 \ldots \in \Sigma^{\omega}:

state sequence \pi = q_0 q_1 q_2 \ldots where q_0 \in Q_0

and q_{i+1} \in \delta(q_i, A_i) for i \geq 0
```

run π is accepting if $\stackrel{\infty}{\exists} i \in \mathbb{N}$. $q_i \in F$

NBA
$$\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$$

- Q finite set of states
- Σ alphabet
- $\delta: Q \times \Sigma \to 2^Q$ transition relation
- $Q_0 \subseteq Q$ set of initial states
- $F \subseteq Q$ set of final states, also called accept states

accepted language $\mathcal{L}_{\omega}(\mathcal{A}) \subseteq \Sigma^{\omega}$ is given by:

$$\mathcal{L}_{\omega}(\mathcal{A}) \stackrel{\text{def}}{=}$$
 set of infinite words over Σ that have an accepting run in \mathcal{A}

NBA
$$\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$$

- Q finite set of states
- Σ alphabet \longleftarrow here: $\Sigma = 2^{AP}$
- $\delta: Q \times \Sigma \to 2^Q$ transition relation
- $Q_0 \subseteq Q$ set of initial states
- $F \subseteq Q$ set of final states, also called accept states

accepted language $\mathcal{L}_{\omega}(\mathcal{A}) \subseteq \Sigma^{\omega}$ is given by:

$$\mathcal{L}_{\omega}(\mathcal{A}) \stackrel{\mathsf{def}}{=}$$
 set of infinite words over Σ that have an accepting run in \mathcal{A}

From LTL to NBA

LTLMC3.2-THM-LTL-2-NBA

For each LTL formula φ over AP there is an NBA \mathcal{A} over the alphabet $\mathbf{2}^{AP}$ such that

$$Words(\varphi) = \mathcal{L}_{\omega}(\mathcal{A})$$

For each LTL formula φ over AP there is an NBA \mathcal{A} over the alphabet 2^{AP} such that

- $Words(\varphi) = \mathcal{L}_{\omega}(\mathcal{A})$
- $size(A) = O(exp(|\varphi|))$

For each LTL formula φ over AP there is an NBA \mathcal{A} over the alphabet 2^{AP} such that

- $Words(\varphi) = \mathcal{L}_{\omega}(\mathcal{A})$
- $size(A) = \mathcal{O}(\exp(|\varphi|))$

proof: ... later ...

$$q_0$$
 true q_1 q_F true

$$\mathcal{L}_{\omega}(\mathcal{A}) = \mathit{Words}(\bigcirc \neg a)$$

$$q_0$$
 true q_1 q_F true

$$\mathcal{L}_{\omega}(\mathcal{A}) = \mathit{Words}(\bigcirc \neg a)$$

$$\mathcal{L}_{\omega}(\mathcal{A}) = \textit{Words}(a \lor b)$$

$$\mathcal{L}_{\omega}(\mathcal{A}) =$$
?

$$q_0$$
 true q_1 q_F true

$$\mathcal{L}_{\omega}(\mathcal{A}) = \mathit{Words}(\bigcirc \neg a)$$

$$\mathcal{L}_{\omega}(\mathcal{A}) = \mathit{Words}(a \lor b)$$

$$q_F$$
 b q_1 b

$$\mathcal{L}_{\omega}(\mathcal{A}) = \mathit{Words}(\square_{\mathsf{a}})$$

$$\mathcal{L}_{\omega}(\mathcal{A})=$$
 ?

$$\mathcal{L}_{\omega}(\mathcal{A}) = \mathit{Words}(\Box \lozenge a)$$

$$\mathcal{L}_{\omega}(\mathcal{A}) = \mathit{Words}(\Box \lozenge a)$$

$$\mathcal{L}_{\omega}(\mathcal{A}) =$$
?

$$\mathcal{L}_{\omega}(\mathcal{A}) = \mathit{Words}(\Box \lozenge a)$$

$$\mathcal{L}_{\omega}(\mathcal{A}) =$$
?

e.g.,
$$\varnothing \varnothing \varnothing \varnothing \ldots = \varnothing^{\omega}$$

$$(\{a\} \{b\})^{\omega}$$

are accepted by ${\cal A}$

$$\mathcal{L}_{\omega}(\mathcal{A}) = \mathit{Words}(\Box \lozenge a)$$

$$\mathcal{L}_{\omega}(\mathcal{A}) = \mathit{Words}(\Box(a \rightarrow \Diamond b))$$

e.g.,
$$\varnothing \varnothing \varnothing \varnothing \ldots = \varnothing^{\omega}$$

$$(\{a\} \{b\})^{\omega}$$

are accepted by ${\cal A}$

$$\mathcal{L}_{\omega}(\mathcal{A}) =$$
?

$$\mathcal{L}_{\omega}(\mathcal{A}) = \mathit{Words}(\lozenge \square_{a})$$

$$\mathcal{L}_{\omega}(\mathcal{A}) = \mathit{Words}(\Diamond \Box_{\mathsf{a}})$$

possible runs for $\{a\}^{\omega}$

 q0
 q0
 q0
 q0
 q0
 ...

 q0
 q1
 q1
 q1
 q1
 ...

 q0
 q0
 q1
 q1
 q1
 q1
 ...

 q0
 q0
 q0
 q1
 q1
 q1
 ...

 :
 :
 :
 ...
 ...

not accepting accepting accepting accepting

NFA and NBA for safety properties

LTLMC3.2-6

Let \mathcal{A} be an **NFA** for the language of all bad prefixes for a safety property \mathcal{E} .

$$\mathcal{L}_{\omega}(\mathcal{A}) = \overline{E} = (2^{AP})^{\omega} \setminus E$$

$$\mathcal{L}_{\omega}(\mathcal{A}) = \overline{E} = (2^{AP})^{\omega} \setminus E$$

Example: $E \cong$ "never **a** twice in a row"

$$\mathcal{L}_{\omega}(\mathcal{A}) = \overline{E} = (2^{AP})^{\omega} \setminus E = Words(\neg \varphi)$$

$$\mathcal{L}_{\omega}(\mathcal{A}) = \overline{E} = (2^{AP})^{\omega} \setminus E = Words(\neg \varphi)$$

wrong, if $\mathcal{L}(A)$ = language of minimal bad prefixes

$$\mathcal{L}_{\omega}(\mathcal{A}) = \overline{E} = (2^{AP})^{\omega} \setminus E = Words(\neg \varphi)$$

wrong, if $\mathcal{L}(A)$ = language of minimal bad prefixes

$$\mathcal{L}_{\omega}(\mathcal{A}) = \overline{E} = (2^{AP})^{\omega} \setminus E = Words(\neg \varphi)$$

wrong, if $\mathcal{L}(A)$ = language of minimal bad prefixes even if A is a non-blocking DFA

$$\mathcal{L}_{\omega}(\mathcal{A}) = \overline{E} = (2^{AP})^{\omega} \setminus E = Words(\neg \varphi)$$

wrong, if $\mathcal{L}(A)$ = language of minimal bad prefixes even if A is a non-blocking DFA

Recall: product transition system

$$T = (S, Act, \rightarrow, S_0, AP, L)$$

 $A = (Q, 2^{AP}, \delta, Q_0, F)$

TS without terminal states NBA or NFA non-blocking, $Q_0 \cap F = \emptyset$

Recall: product transition system

$$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$$
 TS without terminal states $\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$ NBA or NFA non-blocking, $Q_0 \cap F = \emptyset$

product-TS
$$T \otimes A \stackrel{\text{def}}{=} (S \times Q, Act, \rightarrow', S'_0, AP', L')$$

$$\mathcal{T}=(S,Act,
ightarrow,S_0,AP,L)$$
 TS without terminal states $\mathcal{A}=(Q,2^{AP},\delta,Q_0,F)$ NBA or NFA non-blocking, $Q_0\cap F=\varnothing$

product-TS
$$T \otimes A \stackrel{\text{def}}{=} (S \times Q, Act, \rightarrow', S'_0, AP', L')$$

initial states: $S'_0 = \{ \langle s_0, q \rangle : s_0 \in S_0, q \in \delta(Q_0, L(s_0)) \}$
labeling: $AP' = Q, L'(\langle s, q \rangle) = \{q\}$

$$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$$
 TS without terminal states $\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$ NBA or NFA non-blocking, $Q_0 \cap F = \emptyset$

product-TS
$$T \otimes \mathcal{A} \stackrel{\text{def}}{=} (S \times Q, Act, \rightarrow', S'_0, AP', L')$$

initial states: $S'_0 = \{ \langle s_0, q \rangle : s_0 \in S_0, q \in \delta(Q_0, L(s_0)) \}$
labeling: $AP' = Q, L'(\langle s, q \rangle) = \{q\}$

transition relation:

$$\frac{s \xrightarrow{\alpha} s' \land q' \in \delta(q, L(s'))}{\langle s, q \rangle \xrightarrow{\alpha}' \langle s', q' \rangle}$$

LTL formula $\varphi = \Box \Diamond$ green

Example: LTL model checking

LTL formula
$$\varphi = \Box(try \rightarrow \Diamond del)$$

"each (repeatedly) sent message will eventually be delivered"

LTL formula
$$\varphi = \Box(try \rightarrow \Diamond del)$$

"each (repeatedly) sent message will eventually be delivered"

$$T \not\models \varphi$$

LTL formula
$$\varphi = \Box(try \rightarrow \Diamond del)$$

"each (repeatedly) sent message will eventually be delivered"

$$T \not\models \varphi$$

reachable fragment of the product-TS

set of atomic propositions $AP' = \{q_0, q_1, q_F\}$

Example: LTL model checking

LTLMC3.2-9

Example: LTL model checking

LTLMC3.2-9

LTL model checking

```
given: finite TS T, LTL-formula \varphi
```

question: does $T \models \varphi$ hold ?

given: finite TS T, LTL-formula φ

question: does $T \models \varphi$ hold ?

construct an NBA \mathcal{A} for $\neg \varphi$ and the product $\mathcal{T} \otimes \mathcal{A}$ check whether $\mathcal{T} \otimes \mathcal{A} \models \Diamond \Box \neg \mathcal{F}$

given: finite TS T, LTL-formula φ

question: does $T \models \varphi$ hold ?

construct an NBA \mathcal{A} for $\neg \varphi$ and the product $\mathcal{T} \otimes \mathcal{A}$ check whether $T \otimes A \models \Diamond \Box \neg F \leftarrow$ persistence checking nested **DFS**

```
given: finite TS T, LTL-formula \varphi
```

question: does $T \models \varphi$ hold ?

construct an NBA
$$\mathcal{A}$$
 for $\neg \varphi$ and the product $\mathcal{T} \otimes \mathcal{A}$ check whether $\mathcal{T} \otimes \mathcal{A} \models \Diamond \Box \neg F \longleftarrow$ persistence checking nested **DFS**

THEN return "yes"

ELSE compute a counterexample
$$\langle s_0, p_0 \rangle \dots \langle s_n, p_n \rangle \dots \langle s_n, p_n \rangle$$
for $\mathcal{T} \otimes \mathcal{A}$ and $\Diamond \Box \neg F$
return "no" and $s_0 \dots s_n \dots s_n$

given: finite TS T, LTL-formula φ question: does $T \models \varphi$ hold ?

```
construct an NBA \overline{A} for \neg \varphi and the product \overline{T} \otimes \overline{A}
check whether T \otimes A \models \Diamond \Box \neg F \longleftarrow persistence
                                                                 checking
 IF T \otimes A \models \Diamond \Box \neg F
                                                               nested DFS
    THEN return "ves"
    ELSE compute a counterexample
                      \langle s_0, p_0 \rangle \dots \langle s_n, p_n \rangle \dots \langle s_n, p_n \rangle
                     for T \otimes A and \triangle \Box \neg F
                return "no" and s_0 \dots s_n \dots s_n
```

time complexity: $\mathcal{O}(\operatorname{size}(T) \cdot \operatorname{size}(A))$

From LTL to NBA

LTLMC3.2-46

nondeterministic Büchi automaton

generalized NBA several acceptance sets

nondeterministic Büchi automaton 1 acceptance set

generalized NBA

k acceptance sets

k copies of G

nondeterministic

Büchi automaton

1 acceptance set

LTLMC3.2-39

semantics of	encoding
propositional logic <i>true</i> , ¬, ∧	
next (
until U	

semantics of	encoding
propositional logic <i>true</i> , ¬, ∧	in the states
next (
until U	

semantics of	encoding
propositional logic $true$, \neg , \land	in the states
next (in the transition relation
until U	

semantics of	encoding	
propositional logic <i>true</i> , ¬, ∧	in the states	
next (in the transition relation	
until U	via expansion law	

semantics of	encoding
propositional logic <i>true</i> , ¬, ∧	in the states
next (in the transition relation
until U	via expansion law

$$\psi_1 \cup \psi_2 \equiv \psi_2 \vee (\psi_1 \wedge \bigcirc (\psi_1 \cup \psi_2))$$

semantics of	encoding	
propositional logic <i>true</i> , ¬, ∧	in the states	
next (in the transition relation	
until U	via expansion law	

$$\psi_1 \cup \psi_2 \equiv \psi_2 \vee (\psi_1 \wedge \bigcirc (\psi_1 \cup \psi_2))$$
encoded in the states

semantics of	encoding	
propositional logic <i>true</i> , ¬, ∧	in the states	
next (in the transition relation	
until U	via expansion law	
$\psi_1 \cup \psi_2 \equiv \psi_2 \vee (\psi_1 \wedge \bigcirc (\psi_1 \cup \psi_2))$		
encoded in the states	encoded in the transition relation	

sen	nantics of	encoding	
	ositional logic t <i>rue</i> , ¬, ∧	in the states	
	next (in the transition rel	ation
	until U	expansion law, least fixed point	
$\psi_1 \cup \psi_2 \equiv \psi_2 \vee (\psi_1 \wedge \bigcirc (\psi_1 \cup \psi_2)) \qquad \uparrow$			↑
	encoded in the states	encoded in the transition relation	acceptance condition

LTL → GNBA

LTL formula $\varphi \rightsquigarrow \mathsf{GNBA} \ \mathcal{G}$ for $\mathsf{Words}(\varphi)$

LTL → GNBA

LTL formula $\varphi \rightsquigarrow \mathsf{GNBA} \mathcal{G}$ for $\mathsf{Words}(\varphi)$

states of \mathcal{G} $\ \widehat{=}$ (certain) sets of subformulas of φ

LTL → GNBA

LTL formula $\varphi \rightsquigarrow \mathsf{GNBA} \ \mathcal{G}$ for $\mathsf{Words}(\varphi)$

states of $\mathcal{G} \cong (certain)$ sets of subformulas of φ s.t. each word $\sigma = A_0 A_1 A_2 ... \in Words(\varphi)$ can be extended to an accepting run $B_0 B_1 B_2 ...$ in \mathcal{G}

LTL formula $\varphi \rightsquigarrow \mathsf{GNBA} \mathcal{G}$ for $\mathsf{Words}(\varphi)$

states of $\mathcal{G} \cong (certain)$ sets of subformulas of φ s.t. each word $\sigma = A_0 A_1 A_2 ... \in Words(\varphi)$ can be extended to an accepting run $B_0 B_1 B_2 ...$ in \mathcal{G}

 $A_0 \quad A_1 \quad A_2 \quad A_3 \quad \dots \quad \in Words(\varphi)$

states of $\mathcal{G} \cong (certain)$ sets of subformulas of φ s.t. each word $\sigma = A_0 A_1 A_2 ... \in Words(\varphi)$ can be extended to an accepting run $B_0 B_1 B_2 ...$ in \mathcal{G}

states of $\mathcal{G} \cong (certain)$ sets of subformulas of φ s.t. each word $\sigma = A_0 A_1 A_2 ... \in Words(\varphi)$ can be extended to an accepting run $B_0 B_1 B_2 ...$ in \mathcal{G}

set of subformulas of φ and their negations

states of $\mathcal{G} \cong (certain)$ sets of subformulas of φ s.t. each word $\sigma = A_0 A_1 A_2 ... \in Words(\varphi)$ can be extended to an accepting run $B_0 B_1 B_2 ...$ in \mathcal{G}

Example: $\varphi = a U(\neg a \land b)$

states of $\mathcal{G} \cong (certain)$ sets of subformulas of φ s.t. each word $\sigma = A_0 A_1 A_2 ... \in Words(\varphi)$ can be extended to an accepting run $B_0 B_1 B_2 ...$ in \mathcal{G}

Example: $\varphi = aU(\neg a \land b)$

$$\{a\}$$
 $\{a\}$ $\{a,b\}$ $\{b\}$ \emptyset \emptyset ... $\models \varphi$

states of $\mathcal{G} \cong (certain)$ sets of subformulas of φ s.t. each word $\sigma = A_0 A_1 A_2 ... \in Words(\varphi)$ can be extended to an accepting run $B_0 B_1 B_2 ...$ in \mathcal{G}

Example: $\varphi = a U(\neg a \land b)$

states of $\mathcal{G} \cong (certain)$ sets of subformulas of φ s.t. each word $\sigma = A_0 A_1 A_2 ... \in Words(\varphi)$ can be extended to an accepting run $B_0 B_1 B_2 ...$ in \mathcal{G}

Example:
$$\varphi = aU(\neg a \land b)$$
 $\psi = \neg a \land b$

$$\begin{cases} a \\ \downarrow \\ B_0 \end{cases} \begin{cases} a, b \\ \downarrow \\ B_2 \end{cases} \begin{cases} b \\ B_3 \end{cases} \begin{cases} \emptyset \\ B_4 \end{cases} \begin{cases} \emptyset \\ B_5 \end{cases} \dots \models \varphi$$

where the B_i 's are subsets of $\{a, \neg a, b, \neg b, \psi, \neg \psi, \varphi, \neg \varphi\}$

states of $\mathcal{G} \cong (certain)$ sets of subformulas of φ s.t. each word $\sigma = A_0 A_1 A_2 ... \in Words(\varphi)$ can be extended to an accepting run $B_0 B_1 B_2 ...$ in \mathcal{G}

Example:
$$\varphi = a U(\neg a \land b)$$
 $\psi = \neg a \land b$

$$\{a\}$$
 $\{a\}$ $\{a,b\}$ $\{b\}$ \emptyset \emptyset ... $\models \varphi$

just for better readability: tuple rather than set notation

states of $\mathcal{G} \cong (certain)$ sets of subformulas of φ s.t. each word $\sigma = A_0 A_1 A_2 ... \in Words(\varphi)$ can be extended to an accepting run $B_0 B_1 B_2 ...$ in \mathcal{G}

Example:
$$\varphi = a U(\neg a \land b)$$
 $\psi = \neg a \land b$

$$\begin{cases} a \\ b \\ \neg b \\ \neg \psi \end{cases} \begin{cases} a \\ b \\ \neg \psi \end{cases} \begin{cases} a \\ b \\ c \end{cases} \qquad \emptyset \qquad \dots \qquad \models \varphi$$

states of $\mathcal{G} \cong (certain)$ sets of subformulas of φ s.t. each word $\sigma = A_0 A_1 A_2 ... \in Words(\varphi)$ can be extended to an accepting run $B_0 B_1 B_2 ...$ in \mathcal{G}

Example:
$$\varphi = a U(\neg a \land b)$$
 $\psi = \neg a \land b$

$$\begin{cases} a \} \quad \{a\} \quad \{a,b\} \quad \{b\} \quad \varnothing \quad \varnothing \quad \ldots \quad \models \varphi \\ \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\ a \quad \neg b \quad \neg b \quad \neg b \quad \neg b \\ \neg \psi \quad \neg \psi \quad \neg \psi \end{cases}$$

states of $\mathcal{G} \cong (certain)$ sets of subformulas of φ s.t. each word $\sigma = A_0 A_1 A_2 ... \in Words(\varphi)$ can be extended to an accepting run $B_0 B_1 B_2 ...$ in \mathcal{G}

Example: $\varphi = aU(\neg a \land b)$ $\psi = \neg a \land b$ $\begin{cases} a \} \quad \{a\} \quad \{a,b\} \quad \{b\} \quad \varnothing \quad \varnothing \quad \ldots \mid \models \varphi \\ \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\ a \quad \neg b \quad \neg b \quad \neg b \quad \neg b \quad b \\ \neg \psi \quad \neg \psi \quad \psi \quad \psi \end{cases}$

states of $\mathcal{G} \cong (certain)$ sets of subformulas of φ s.t. each word $\sigma = A_0 A_1 A_2 ... \in Words(\varphi)$ can be extended to an accepting run $B_0 B_1 B_2 ...$ in \mathcal{G}

Example:
$$\varphi = a U(\neg a \land b)$$
 $\psi = \neg a \land b$

states of $\mathcal{G} \cong (certain)$ sets of subformulas of φ s.t. each word $\sigma = A_0 A_1 A_2 ... \in Words(\varphi)$ can be extended to an accepting run $B_0 B_1 B_2 ...$ in \mathcal{G}

Example:
$$\varphi = a U(\neg a \land b)$$
 $\psi = \neg a \land b$

Closure of LTL formulas

LTLMC3.2-48

Let φ be an LTL formula. Then:

$$subf(\varphi) \stackrel{\text{def}}{=} set of all subformulas of \varphi$$

```
Let \varphi be an LTL formula. Then: subf(\varphi) \stackrel{\text{def}}{=} \text{ set of all subformulas of } \varphi cl(\varphi) \stackrel{\text{def}}{=} subf(\varphi) \cup \{\neg \psi : \psi \in subf(\varphi)\} where \psi and \neg \neg \psi are identified
```

```
Let \varphi be an LTL formula. Then: subf(\varphi) \stackrel{\text{def}}{=} \text{ set of all subformulas of } \varphi cl(\varphi) \stackrel{\text{def}}{=} subf(\varphi) \cup \{\neg \psi : \psi \in subf(\varphi)\} where \psi and \neg \neg \psi are identified
```

Example: if
$$\varphi = a \cup (\neg a \wedge b)$$
 then $cl(\varphi) = \{a, b, \neg a \wedge b, \varphi\} \cup \{\neg a, \neg b, \neg (\neg a \wedge b), \neg \varphi\}$

Example: if
$$\varphi = a \cup (\neg a \wedge b)$$
 then $cl(\varphi) = \{a, b, \neg a \wedge b, \varphi\} \cup \{\neg a, \neg b, \neg (\neg a \wedge b), \neg \varphi\}$
Example: if $\varphi' = \Box a$

```
Let \varphi be an LTL formula. Then: subf(\varphi) \stackrel{\text{def}}{=} \text{ set of all subformulas of } \varphi cl(\varphi) \stackrel{\text{def}}{=} subf(\varphi) \cup \{\neg \psi : \psi \in subf(\varphi)\} where \psi and \neg \neg \psi are identified
```

Example: if
$$\varphi = a \cup (\neg a \wedge b)$$
 then $cl(\varphi) = \{a, b, \neg a \wedge b, \varphi\} \cup \{\neg a, \neg b, \neg (\neg a \wedge b), \neg \varphi\}$
Example: if $\varphi' = \Box a = \neg \Diamond \neg a = \neg (true \cup \neg a)$

```
Let \varphi be an LTL formula. Then: subf(\varphi) \stackrel{\text{def}}{=} \text{ set of all subformulas of } \varphi cl(\varphi) \stackrel{\text{def}}{=} subf(\varphi) \cup \{\neg \psi : \psi \in subf(\varphi)\} where \psi and \neg \neg \psi are identified
```

Example: if
$$\varphi = a \cup (\neg a \wedge b)$$
 then $cl(\varphi) = \{a, b, \neg a \wedge b, \varphi\} \cup \{\neg a, \neg b, \neg (\neg a \wedge b), \neg \varphi\}$ Example: if $\varphi' = \Box a = \neg \Diamond \neg a = \neg (true \cup \neg a)$ then $cl(\varphi') = \{a, \neg a, true, \neg true, \Box a, \neg \Box a\}$

(1) **B** is consistent w.r.t. propositional logic

(2) **B** is maximal consistent

(3) \boldsymbol{B} is locally consistent with respect to until $\boldsymbol{\mathsf{U}}$:

(1) B is consistent w.r.t. propositional logic if $\psi \in B$ then $\neg \psi \notin B$

(2) **B** is maximal consistent

(3) $\bf{\it B}$ is locally consistent with respect to until $\bf{\it U}$:

(1) B is consistent w.r.t. propositional logic if $\psi \in B$ then $\neg \psi \notin B$ if $\psi_1 \land \psi_2 \in B$ then $\neg \psi_1 \notin B$ and $\neg \psi_2 \notin B$

(2) **B** is maximal consistent

(3) \boldsymbol{B} is locally consistent with respect to until \boldsymbol{U} :

- (1) B is consistent w.r.t. propositional logic if $\psi \in B$ then $\neg \psi \notin B$ if $\psi_1 \land \psi_2 \in B$ then $\neg \psi_1 \notin B$ and $\neg \psi_2 \notin B$ if $\psi_1 \in B$ and $\psi_2 \in B$ then $\neg (\psi_1 \land \psi_2) \notin B$
- (2) **B** is maximal consistent

(3) \boldsymbol{B} is locally consistent with respect to until \boldsymbol{U} :

- (1) B is consistent w.r.t. propositional logic if $\psi \in B$ then $\neg \psi \notin B$ if $\psi_1 \wedge \psi_2 \in B$ then $\neg \psi_1 \notin B$ and $\neg \psi_2 \notin B$ if $\psi_1 \in B$ and $\psi_2 \in B$ then $\neg (\psi_1 \wedge \psi_2) \notin B$ if $false \in cl(\varphi)$ then $false \notin B$
- (2) **B** is maximal consistent

(3) \boldsymbol{B} is locally consistent with respect to until \boldsymbol{U} :

- (1) B is consistent w.r.t. propositional logic if $\psi \in B$ then $\neg \psi \notin B$ if $\psi_1 \wedge \psi_2 \in B$ then $\neg \psi_1 \notin B$ and $\neg \psi_2 \notin B$ if $\psi_1 \in B$ and $\psi_2 \in B$ then $\neg (\psi_1 \wedge \psi_2) \notin B$ if $false \in cl(\varphi)$ then $false \notin B$
- (2) B is maximal consistent if $\psi \in cl(\varphi) \setminus B$ then $\neg \psi \in B$
- (3) \boldsymbol{B} is locally consistent with respect to until \boldsymbol{U} :

- (1) B is consistent w.r.t. propositional logic if $\psi \in B$ then $\neg \psi \notin B$ if $\psi_1 \wedge \psi_2 \in B$ then $\neg \psi_1 \notin B$ and $\neg \psi_2 \notin B$ if $\psi_1 \in B$ and $\psi_2 \in B$ then $\neg (\psi_1 \wedge \psi_2) \notin B$ if $false \in cl(\varphi)$ then $false \notin B$
- (2) B is maximal consistent if $\psi \in cl(\varphi) \setminus B$ then $\neg \psi \in B$
- (3) B is locally consistent with respect to until U: if $\psi_1 \cup \psi_2 \in B$ and $\neg \psi_2 \in B$ then $\neg \psi_1 \notin B$

- (1) B is consistent w.r.t. propositional logic if $\psi \in B$ then $\neg \psi \notin B$ if $\psi_1 \wedge \psi_2 \in B$ then $\neg \psi_1 \notin B$ and $\neg \psi_2 \notin B$ if $\psi_1 \in B$ and $\psi_2 \in B$ then $\neg (\psi_1 \wedge \psi_2) \notin B$ if $false \in cl(\varphi)$ then $false \notin B$
- (2) B is maximal consistent if $\psi \in cl(\varphi) \setminus B$ then $\neg \psi \in B$
- (3) B is locally consistent with respect to until U: if $\psi_1 \cup \psi_2 \in B$ and $\neg \psi_2 \in B$ then $\neg \psi_1 \notin B$ if $\psi_2 \in B$ and $\psi_1 \cup \psi_2 \in cl(\varphi)$ then $\neg (\psi_1 \cup \psi_2) \notin B$

 $B \subseteq cl(\varphi)$ is elementary iff:

(i) **B** is maximal consistent w.r.t. prop. logic, i.e., if ψ , $\psi_1 \wedge \psi_2 \in cl(\varphi)$ then:

$$\psi \notin B$$
 iff $\neg \psi \in B$
 $\psi_1 \land \psi_2 \in B$ iff $\psi_1 \in B$ and $\psi_2 \in B$
 $true \in cl(\varphi)$ implies $true \in B$

(ii) **B** is locally consistent with respect to until **U**, i.e., if $\psi_1 \cup \psi_2 \in cl(\varphi)$ then:

if $\psi_1 \cup \psi_2 \in B$ and $\psi_2 \not\in B$ then $\psi_1 \in B$ if $\psi_2 \in B$ then $\psi_1 \cup \psi_2 \in B$

Let
$$\varphi = a U(\neg a \wedge b)$$
.

$$B_1 = \{\mathbf{a}, \mathbf{b}, \neg \mathbf{a} \wedge \mathbf{b}, \varphi\}$$

Let
$$\varphi = a U(\neg a \land b)$$
.

$$B_1 = \{ \mathbf{a}, \mathbf{b}, \neg \mathbf{a} \wedge \mathbf{b}, \varphi \}$$

not elementary propositional inconsistent

Let
$$\varphi = a U(\neg a \wedge b)$$
.

$$B_1 = \{\mathbf{a}, \mathbf{b}, \neg \mathbf{a} \wedge \mathbf{b}, \boldsymbol{\varphi}\}$$

$$B_2 = \{ \neg \mathbf{a}, \mathbf{b}, \boldsymbol{\varphi} \}$$

Let
$$\varphi = a U(\neg a \wedge b)$$
.

$$B_1 = \{\mathbf{a}, \mathbf{b}, \neg \mathbf{a} \wedge \mathbf{b}, \varphi\}$$

$$B_2 = \{\neg a, b, \varphi\}$$

not elementary propositional inconsistent not elementary, not maximal

as
$$\neg a \land b \notin B_2$$

 $\neg (\neg a \land b) \notin B_2$

Let
$$\varphi = a U(\neg a \wedge b)$$
.

$$B_1 = \{\mathbf{a}, \mathbf{b}, \neg \mathbf{a} \wedge \mathbf{b}, \varphi\}$$

$$B_2 = \{\neg a, b, \varphi\}$$

not elementary propositional inconsistent

not elementary, not maximal

as
$$\neg a \land b \notin B_2$$

 $\neg (\neg a \land b) \notin B_2$

$$B_3 = \{\neg a, b, \neg a \land b, \neg \varphi\}$$

Let
$$\varphi = a U(\neg a \wedge b)$$
.

$$B_1 = \{\mathbf{a}, \mathbf{b}, \neg \mathbf{a} \wedge \mathbf{b}, \varphi\}$$

$$B_2 = \{ \neg \mathbf{a}, \mathbf{b}, \boldsymbol{\varphi} \}$$

$$B_3 = \{ \neg a, b, \neg a \land b, \neg \varphi \}$$

not elementary propositional inconsistent

not elementary, not maximal

as
$$\neg a \land b \notin B_2$$

 $\neg (\neg a \land b) \notin B_2$

not elementary not locally consistent for ${f U}$

Let
$$\varphi = a \, \mathsf{U}(\neg a \wedge b)$$
.

 $B_1 = \{a, b, \neg a \wedge b, \varphi\}$ not elementary propositional inconsistent

 $B_2 = \{\neg a, b, \varphi\}$ not elementary, not maximal as $\neg a \wedge b \notin B_2$ $\neg (\neg a \wedge b) \notin B_2$

$$B_3 = \{ \neg a, b, \neg a \land b, \neg \varphi \}$$
 not elementary not locally consistent for **U**

$$B_4 = \{\neg a, \neg b, \neg (\neg a \land b), \neg \varphi\}$$

Let
$$\varphi = a \, \mathsf{U}(\neg a \wedge b)$$
.

 $B_1 = \{a, b, \neg a \wedge b, \varphi\}$ not elementary propositional inconsistent

 $B_2 = \{\neg a, b, \varphi\}$ not elementary, not maximal as $\neg a \wedge b \notin B_2$ $\neg (\neg a \wedge b) \notin B_2$

$$B_3 = \{ \neg a, b, \neg a \land b, \neg \varphi \}$$
 not elementary not locally consistent for **U**

$$B_4 = \{ \neg a, \neg b, \neg (\neg a \land b), \neg \varphi \}$$
 elementary

Example: elementary formula-sets

closure $cl(\varphi)$:

- set of all subformulas of φ and their negations
- ψ and $\neg \neg \psi$ are identified

elementary formula-sets: subsets B of $cl(\varphi)$

- maximal consistent w.r.t. propositional logic
- locally consistent w.r.t. U

```
For \varphi = a U(\neg a \land b), the elementary sets are:

\{a, b, \neg(\neg a \land b), \varphi\}  \{a, b, \neg(\neg a \land b), \neg \varphi\}

\{a, \neg b, \neg(\neg a \land b), \varphi\}  \{a, \neg b, \neg(\neg a \land b), \neg \varphi\}

\{\neg a, b, \neg a \land b, \varphi\}  \{\neg a, \neg b, \neg(\neg a \land b), \neg \varphi\}
```

Encoding of LTL semantics in a GNBA

LTLMC3.2-39-COPY

idea	encode the semantics of the operators appearing
raca.	
	in φ by appropriate components of the GNBA G :

semantics of			encoding			
	propositional logic <i>true</i> , ¬, ∧		in the states			
	next 🔘		in the transition relation			
until U			expansion law, least fixed point			
$\psi_1 \cup \psi_2 \equiv \psi_2 \vee (\psi_1 \cup \psi_2)$			$\psi_1 \wedge \bigcirc (\psi_1 \cup \psi_2))$		1	
	encoded in the states		encoded in the transition relation		acceptance condition	

Encoding of LTL semantics in a GNBA

ITIMC3 2-39-COP

idea: encode the semantics of the operators appearing in φ by appropriate components of the GNBA G:

semantics of		encoding		
propositional logic $true$, \neg , \land		in the states	e states ← elementary formula set	
next (in the transition relation		
until U		expansion law, least fixed point		
ψ_1 U	$\psi_2 \equiv \psi_2 \vee \psi_2$	$(\psi_1 \land \bigcirc (\psi_1 \lor \psi_2))$)	1
	elementary formula sets	encoded in the transition relat		acceptance condition

GNBA for LTL-formula φ

$$\mathcal{G} = (Q, 2^{AP}, \delta, Q_0, \mathcal{F})$$

$$\mathcal{G} = (Q, 2^{AP}, \delta, Q_0, \mathcal{F})$$

state space: $Q = \{B \subseteq cl(\varphi) : B \text{ is elementary } \}$

$$\mathcal{G} = (Q, 2^{AP}, \delta, Q_0, \mathcal{F})$$

state space: $Q = \{B \subseteq cl(\varphi) : B \text{ is elementary } \}$

initial states: $Q_0 = \{B \in Q : \varphi \in B\}$

if $A \neq B \cap AP$ then $\delta(B, A) = \emptyset$

$$\mathcal{G} = (Q, 2^{AP}, \delta, Q_0, \mathcal{F})$$

state space: $Q = \{B \subseteq cl(\varphi) : B \text{ is elementary }\}$
initial states: $Q_0 = \{B \in Q : \varphi \in B\}$
transition relation: for $B \in Q$ and $A \in 2^{AP}$:

$$\mathcal{G} = (Q, 2^{AP}, \delta, Q_0, \mathcal{F})$$

state space: $Q = \{B \subseteq cl(\varphi) : B \text{ is elementary }\}$
initial states: $Q_0 = \{B \in Q : \varphi \in B\}$
transition relation: for $B \in Q \text{ and } A \in 2^{AP}$:
if $A \neq B \cap AP$ then $\delta(B, A) = \emptyset$
if $A = B \cap AP$ then $\delta(B, A) = \text{set of all } B' \in Q \text{ s.t.}$

$$\bigcirc \psi \in B \quad \text{iff} \quad \psi \in B'$$

$$\psi_1 \cup \psi_2 \in B \quad \text{iff} \quad (\psi_2 \in B) \vee (\psi_1 \in B \land \psi_1 \cup \psi_2 \in B')$$

$$\mathcal{G} = (Q, 2^{AP}, \delta, Q_0, \mathcal{F})$$

state space: $Q = \{B \subseteq cl(\varphi) : B \text{ is elementary }\}$
initial states: $Q_0 = \{B \in Q : \varphi \in B\}$
transition relation: for $B \in Q \text{ and } A \in 2^{AP}$:
if $A \neq B \cap AP$ then $\delta(B, A) = \emptyset$
if $A = B \cap AP$ then $\delta(B, A) = \text{set of all } B' \in Q \text{ s.t.}$

$$\bigcirc \psi \in B \quad \text{iff} \quad \psi \in B'$$

$$\psi_1 \cup \psi_2 \in B \quad \text{iff} \quad (\psi_2 \in B) \vee (\psi_1 \in B \land \psi_1 \cup \psi_2 \in B')$$

acceptance set $\mathcal{F} = \left\{ F_{\psi_1 \cup \psi_2} : \psi_1 \cup \psi_2 \in cl(\varphi) \right\}$

$$\mathcal{G} = (Q, 2^{AP}, \delta, Q_0, \mathcal{F})$$

state space: $Q = \{B \subseteq cl(\varphi) : B \text{ is elementary }\}$
initial states: $Q_0 = \{B \in Q : \varphi \in B\}$
transition relation: for $B \in Q \text{ and } A \in 2^{AP}$:
if $A \neq B \cap AP$ then $\delta(B, A) = \emptyset$
if $A = B \cap AP$ then $\delta(B, A) = \text{set of all } B' \in Q \text{ s.t.}$

$$\bigcirc \psi \in B \quad \text{iff} \quad \psi \in B'$$

$$\psi_1 \cup \psi_2 \in B \quad \text{iff} \quad (\psi_2 \in B) \vee (\psi_1 \in B \land \psi_1 \cup \psi_2 \in B')$$

acceptance set
$$\mathcal{F} = \left\{ F_{\psi_1 \cup \psi_2} : \psi_1 \cup \psi_2 \in cl(\varphi) \right\}$$

where $F_{\psi_1 \cup \psi_2} = \left\{ B \in Q : \psi_1 \cup \psi_2 \notin B \lor \psi_2 \in B \right\}$

$$a, \neg \bigcirc a$$

$$\bigcirc a, \bigcirc a$$

$$\neg a, \neg \bigcirc a$$

initial states: formula-sets B with $\bigcirc a \in B$

if
$$\bigcirc a \in B$$
 then $\delta(B, B \cap \{a\}) = \{B' : a \in B'\}$

if
$$\bigcirc a \in B$$
 then $\delta(B, B \cap \{a\}) = \{B' : a \in B'\}$

if
$$\bigcirc a \in B$$
 then $\delta(B, B \cap \{a\}) = \{B' : a \in B'\}$

if
$$\bigcirc a \in B$$
 then $\delta(B, B \cap \{a\}) = \{B' : a \in B'\}$
if $\bigcirc a \notin B$ then $\delta(B, B \cap \{a\}) = \{B' : a \notin B'\}$

if
$$\bigcirc a \in B$$
 then $\delta(B, B \cap \{a\}) = \{B' : a \in B'\}$
if $\bigcirc a \notin B$ then $\delta(B, B \cap \{a\}) = \{B' : a \notin B'\}$

if
$$\bigcirc a \in B$$
 then $\delta(B, B \cap \{a\}) = \{B' : a \in B'\}$
if $\bigcirc a \notin B$ then $\delta(B, B \cap \{a\}) = \{B' : a \notin B'\}$

set of acceptance sets:

hence: all words having an infinite run are accepted

$$\emptyset$$
 {a} {a} \emptyset \emptyset ... $\models \bigcirc \emptyset$

for all words
$$\sigma = A_0 A_1 A_2 A_3 \ldots \in \mathcal{L}_{\omega}(\mathcal{G})$$
: $A_1 = \{a\}$

for all words $\sigma = A_0 A_1 A_2 A_3 ... \in \mathcal{L}_{\omega}(\mathcal{G})$: $A_1 = \{a\}$ proof:

for all words $\sigma = A_0 A_1 A_2 A_3 ... \in \mathcal{L}_{\omega}(\mathcal{G})$: $A_1 = \{a\}$ proof: Let $B_0 B_1 B_2 ...$ be an accepting run for σ .

for all words $\sigma = A_0 A_1 A_2 A_3 ... \in \mathcal{L}_{\omega}(\mathcal{G})$: $A_1 = \{a\}$ proof: Let $B_0 B_1 B_2 ...$ be an accepting run for σ . $\Rightarrow \bigcap a \in B_0$

for all words $\sigma = A_0 A_1 A_2 A_3 ... \in \mathcal{L}_{\omega}(\mathcal{G})$: $A_1 = \{a\}$ proof: Let $B_0 B_1 B_2 ...$ be an accepting run for σ . $\Rightarrow \bigcap a \in B_0$ and therefore $a \in B_1$

179 / 527

for all words $\sigma = A_0 A_1 A_2 A_3 ... \in \mathcal{L}_{\omega}(\mathcal{G})$: $A_1 = \{a\}$ proof: Let $B_0 B_1 B_2 ...$ be an accepting run for σ .

- \implies $\bigcirc a \in B_0$ and therefore $a \in B_1$
- \implies the outgoing edges of B_1 have label $\{a\}$

for all words $\sigma = A_0 A_1 A_2 A_3 ... \in \mathcal{L}_{\omega}(\mathcal{G})$: $A_1 = \{a\}$ proof: Let $B_0 B_1 B_2 ...$ be an accepting run for σ .

$$\implies$$
 $\bigcirc a \in B_0$ and therefore $a \in B_1$

 \implies the outgoing edges of B_1 have label $\{a\}$

$$\implies \{a\} = B_1 \cap AP = A_1$$

$$\neg a, \neg b, \neg (a \cup b)$$

$$a, \neg b, a \cup b$$

$$a, \neg b, \neg (a \cup b)$$

$$\neg a, b, a \cup b$$

locally inconsistent:
$$\{a, b, \neg (a \cup b)\}$$

$$\neg(a \cup b)$$

$$\{\neg a, b, \neg (a \cup b)\}$$

$$\{\neg a, \neg b, a \cup b\}$$

$$\neg a, \neg b, \neg (a \cup b)$$

$$a, \neg b, a \cup b$$

$$a, \neg b, \neg (a \cup b)$$

$$\neg a, b, a \cup b$$

initial states:

B with
$$\varphi = \mathbf{a} \mathbf{U} \mathbf{b} \in \mathbf{B}$$

$$\rightarrow$$
 a, b, a U b

$$\neg a, \neg b, \neg (a \cup b)$$

$$\rightarrow$$
 a, $\neg b$, a U b

$$a, \neg b, \neg (a \cup b)$$

$$\rightarrow \neg a, b, a \cup b$$

initial states:

B with
$$\varphi = \mathbf{a} \cup \mathbf{b} \in \mathbf{B}$$

 $\rightarrow \neg a, b, a \cup b$

initial states: B with $\varphi = a \cup b \in B$ acceptance condition: just one set of accept states

 $F = \text{set of all } B \text{ with } \varphi \notin B \text{ or } b \in B$

$$\rightarrow$$
 a, b, a U b

$$\neg a, \neg b, \neg (a \cup b)$$

$$\longrightarrow$$
 a, $\neg b$, a U b

$$a, \neg b, \neg (a \cup b)$$

$$\rightarrow \neg a, b, a \cup b$$

initial states:

B with
$$\varphi = \mathbf{a} \mathbf{U} \mathbf{b} \in \mathbf{B}$$

acceptance condition: just one set of accept states

 $F = \text{set of all } B \text{ with } \varphi \notin B \text{ or } b \in B$

initial states: **B** with $\varphi = \mathbf{a} \mathbf{U} \mathbf{b} \in \mathbf{B}$

acceptance condition: just one set of accept states

 $F = \text{set of all } B \text{ with } \varphi \notin B \text{ or } b \in B$

transition relation:
$$B' \in \delta(B, B \cap AP)$$
 iff $a \cup b \in B \iff (b \in B \vee (a \in B \land a \cup b \in B'))$

transition relation: $B' \in \delta(B, B \cap AP)$ iff $a \cup b \in B \iff (b \in B \lor (a \in B \land a \cup b \in B'))$

transition relation:
$$B' \in \delta(B, B \cap AP)$$
 iff $a \cup b \in B \iff (b \in B \lor (a \in B \land a \cup b \in B'))$

transition relation:
$$B' \in \delta(B, B \cap AP)$$
 iff $a \cup b \in B \iff (b \in B \lor (a \in B \land a \cup b \in B'))$

transition relation:
$$B' \in \delta(B, B \cap AP)$$
 iff $a \cup b \in B \iff (b \in B \vee (a \in B \land a \cup b \in B'))$

$$\neg a, \neg b, \neg (a \cup b)$$

$$a, \neg b, \neg (a \cup b)$$

$$a \wedge \neg b$$

transition relation: $B' \in \delta(B, B \cap AP)$ iff $a \cup b \in B \iff (b \in B \lor (a \in B \land a \cup b \in B'))$

 $_{\rm LTLMC3.2-55}$

$$\{a\}\{a\}\{a\}\{a\}\dots\not\models\varphi$$

$$\{a\} \{a\} \{a\} \{a\} \dots \not\models \varphi$$

only **1** infinite run: $q_0 q_0 q_0 \dots$

$$\{a\} \{a\} \{a\} \{a\} \dots \not\models \varphi$$

only **1** infinite run: $q_0 q_0 q_0 \dots$

$$\{a\}\{a\}\{a\}\{a\}\ldots\not\models\varphi$$

only **1** infinite run: $q_0 q_0 q_0 \dots$ not accepting

$$\mathcal{G} = (Q, 2^{AP}, \delta, Q_0, \mathcal{F})$$

state space: $Q = \{B \subseteq cl(\varphi) : B \text{ is elementary }\}$
initial states: $Q_0 = \{B \in Q : \varphi \in B\}$
transition relation: for $B \in Q \text{ and } A \in 2^{AP}$:
if $A \neq B \cap AP$ then $\delta(B, A) = \emptyset$
if $A = B \cap AP$ then $\delta(B, A) = \text{set of all } B' \in Q \text{ s.t.}$

$$\bigcirc \psi \in B \quad \text{iff} \quad \psi \in B'$$

$$\psi_1 \cup \psi_2 \in B \quad \text{iff} \quad (\psi_2 \in B) \vee (\psi_1 \in B \land \psi_1 \cup \psi_2 \in B')$$

acceptance set
$$\mathcal{F} = \left\{ F_{\psi_1 \cup \psi_2} : \psi_1 \cup \psi_2 \in cl(\varphi) \right\}$$

where $F_{\psi_1 \cup \psi_2} = \left\{ B \in Q : \psi_1 \cup \psi_2 \notin B \lor \psi_2 \in B \right\}$

Soundness

.... of the construction LTL formula $\varphi \rightsquigarrow \mathsf{GNBA} \mathcal{G}$

Soundness

Let φ be an LTL-formula and $\mathcal{G} = (Q, 2^{AP}, \delta, Q_0, \mathcal{F})$ be the constructed GNBA.

Claim: $Words(\varphi) = \mathcal{L}_{\omega}(\mathcal{G})$

Let φ be an LTL-formula and $\mathcal{G} = (Q, 2^{AP}, \delta, Q_0, \mathcal{F})$ be the constructed GNBA.

Claim:
$$Words(\varphi) = \mathcal{L}_{\omega}(\mathcal{G})$$

'
$$\subseteq$$
'' show: each infinite word $A_0 A_1 A_2 ... \in (2^{AP})^{\omega}$ with $A_0 A_1 A_2 ... \models \varphi$

has an accepting run in ${\cal G}$

Let φ be an LTL-formula and $\mathcal{G} = (Q, 2^{AP}, \delta, Q_0, \mathcal{F})$ be the constructed GNBA.

Claim:
$$Words(\varphi) = \mathcal{L}_{\omega}(\mathcal{G})$$

'
$$\subseteq$$
'' show: each infinite word $A_0 A_1 A_2 ... \in (2^{AP})^{\omega}$ with $A_0 A_1 A_2 ... \models \varphi$

has an accepting run in ${\cal G}$

"
$$\supseteq$$
" show: for all infinite words $A_0 A_1 A_2 ... \in \mathcal{L}_{\omega}(\mathcal{G})$:

$$A_0 A_1 A_2 ... \models \varphi$$

Let φ be an LTL-formula and $\mathcal{G} = (Q, 2^{AP}, \delta, Q_0, \mathcal{F})$ be the constructed GNBA.

Claim: $Words(\varphi) = \mathcal{L}_{\omega}(\mathcal{G})$

"
$$\subseteq$$
" show: each infinite word $A_0 A_1 A_2 ... \in (2^{AP})^{\omega}$ with $A_0 A_1 A_2 ... \models \varphi$ has an accepting run in \mathcal{G}

"\(\text{\text{\text{2}}}\)" show: for all infinite words $A_0 A_1 A_2 ... \in \mathcal{L}_{\omega}(\mathcal{G})$: $A_0 A_1 A_2 ... \models \varphi$

Accepting runs for the elements of $\mathit{Words}(\varphi)$ LILIMG3.2-47-COPY

LTL formula $\varphi \rightsquigarrow \text{GNBA } \mathcal{G} \text{ for } Words(\varphi)$

states of $\mathcal{G} \cong \text{elementary formula-sets } B \subseteq cl(\varphi)$

LTL formula $\varphi \leadsto \mathsf{GNBA} \ \mathcal{G}$ for $\mathit{Words}(\varphi)$ states of $\mathcal{G} \ \widehat{=} \ \mathsf{elementary}$ formula-sets $B \subseteq \mathit{cl}(\varphi)$ s.t. each word $\sigma = A_0 \ A_1 \ A_2 \dots \in \mathit{Words}(\varphi)$ can be extended to an accepting run $B_0 \ B_1 \ B_2 \dots \mathsf{in} \ \mathcal{G}$

```
LTL formula \varphi \rightsquigarrow \mathsf{GNBA} \mathcal{G} for \mathsf{Words}(\varphi)
 states of \mathcal{G} \cong \text{elementary formula-sets } B \subseteq cl(\varphi)
 s.t. each word \sigma = A_0 A_1 A_2 ... \in Words(\varphi) can be
 extended to an accepting run B_0 B_1 B_2 \dots in G
Example: \varphi = a U(\neg a \land b)
```

```
LTL formula \varphi \rightsquigarrow \mathsf{GNBA} \mathcal{G} for \mathsf{Words}(\varphi)
 states of \mathcal{G} \cong \text{elementary formula-sets } B \subseteq cl(\varphi)
 s.t. each word \sigma = A_0 A_1 A_2 ... \in Words(\varphi) can be
 extended to an accepting run B_0 B_1 B_2 \dots in G
Example: \varphi = aU(\neg a \land b)
   \{a\} \{a\} \{a,b\} \{b\} \emptyset \emptyset ... \models \varphi
```

LTL formula $\varphi \rightsquigarrow \mathsf{GNBA} \mathcal{G}$ for $\mathsf{Words}(\varphi)$

states of $\mathcal{G} = \text{elementary formula-sets } B \subseteq cl(\varphi)$

s.t. each word $\sigma = A_0 A_1 A_2 ... \in Words(\varphi)$ can be extended to an accepting run $B_0 B_1 B_2 \dots$ in G

Example: $\varphi = a U(\neg a \land b)$

where the B_i 's are states in \mathcal{G} , i.e., elementary subsets of $\{a, \neg a, b, \neg b, \psi, \neg \psi, \varphi, \neg \varphi\}$

Accepting runs for the elements of $\mathit{Words}(\varphi)$ Letac3.2-47-copy

LTL formula $\varphi \rightsquigarrow \mathsf{GNBA} \mathcal{G}$ for $\mathsf{Words}(\varphi)$ states of $\mathcal{G} = \text{elementary formula-sets } B \subseteq cl(\varphi)$ s.t. each word $\sigma = A_0 A_1 A_2 ... \in Words(\varphi)$ can be extended to an accepting run $B_0 B_1 B_2 \dots$ in GExample: $\varphi = a U(\neg a \land b)$ $\psi = \neg a \land b$ $\{a\}$ $\{a\}$ $\{a,b\}$ $\{b\}$ \emptyset \emptyset ... $\models \varphi$

LTL formula $\varphi \rightsquigarrow \mathsf{GNBA} \mathcal{G}$ for $\mathsf{Words}(\varphi)$ states of $\mathcal{G} = \text{elementary formula-sets } B \subset cl(\varphi)$ s.t. each word $\sigma = A_0 A_1 A_2 ... \in Words(\varphi)$ can be extended to an accepting run $B_0 B_1 B_2 \dots$ in GExample: $\varphi = a U(\neg a \land b)$ $\psi = \neg a \land b$ $\{a\}$ $\{a\}$ $\{a,b\}$ $\{b\}$ \varnothing \varnothing ... $\models \varphi$ LTL formula $\varphi \rightsquigarrow \mathsf{GNBA} \mathcal{G}$ for $\mathsf{Words}(\varphi)$ states of $\mathcal{G} = \text{elementary formula-sets } B \subset cl(\varphi)$ s.t. each word $\sigma = A_0 A_1 A_2 ... \in Words(\varphi)$ can be extended to an accepting run $B_0 B_1 B_2 \dots$ in GExample: $\varphi = a U(\neg a \land b)$ $\psi = \neg a \land b$ $\{a\}$ $\{a\}$ $\{a,b\}$ $\{b\}$ \emptyset \emptyset ... $\models \varphi$

LTL formula
$$\varphi \leadsto \mathsf{GNBA} \ \mathcal{G}$$
 for $\mathit{Words}(\varphi)$ states of $\mathcal{G} \ \widehat{=} \ \mathsf{elementary}$ formula-sets $B \subseteq \mathit{cl}(\varphi)$ s.t. each word $\sigma = A_0 \ A_1 \ A_2 \dots \in \mathit{Words}(\varphi)$ can be extended to an accepting run $B_0 \ B_1 \ B_2 \dots$ in \mathcal{G} Example: $\varphi = \mathsf{a} \ \mathsf{U}(\neg \mathsf{a} \land \mathsf{b}) \qquad \psi = \neg \mathsf{a} \land \mathsf{b}$
$$\{\mathsf{a}\} \quad \{\mathsf{a}\} \quad \{\mathsf{a}, \mathsf{b}\} \quad \{\mathsf{b}\} \qquad \varnothing \qquad \dots \models \varphi$$

LTL formula $\varphi \rightsquigarrow \mathsf{GNBA} \mathcal{G}$ for $\mathsf{Words}(\varphi)$ states of $\mathcal{G} = \text{elementary formula-sets } B \subset cl(\varphi)$ s.t. each word $\sigma = A_0 A_1 A_2 ... \in Words(\varphi)$ can be

extended to an accepting run $B_0 B_1 B_2 \dots$ in G

Example:
$$\varphi = aU(\neg a \land b)$$
 $\psi = \neg a \land b$

$$\begin{cases} a \} \quad \{a\} \quad \{a,b\} \quad \{b\} \quad \varnothing \quad \varnothing \quad \ldots \quad \models \varphi \\ \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\ \neg b \quad \neg b \\ \neg \psi \quad \varphi \quad \varphi \quad \neg \psi \quad \neg \psi \\ \varphi \quad \varphi \quad \varphi \quad \varphi \quad \varphi \quad \varphi \quad \varphi$$

Accepting runs for the elements of $\mathit{Words}(\varphi)$ Letting 3,2-47-copy

LTL formula $\varphi \leadsto \mathsf{GNBA} \ \mathcal{G}$ for $\mathit{Words}(\varphi)$

states of $\mathcal{G} \ \widehat{=} \$ elementary formula-sets $B \subseteq cl(\varphi)$

s.t. each word $\sigma = A_0 A_1 A_2 ... \in Words(\varphi)$ can be extended to an accepting run $B_0 B_1 B_2 ...$ in \mathcal{G}

Example:
$$\varphi = aU(\neg a \land b)$$
 $\psi = \neg a \land b$

$$\begin{cases} a \} \quad \{a\} \quad \{a,b\} \quad \{b\} \quad \varnothing \quad \varnothing \quad \ldots \quad \models \varphi \\ \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\ \neg b \quad \neg b \\ \neg \psi \quad (a) \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\ \downarrow \quad (b) \quad \neg \psi \quad \neg \psi \quad \neg \psi \quad \neg \psi \end{cases}$$

$$\mathcal{G} = (Q, 2^{AP}, \delta, Q_0, \mathcal{F})$$
 state space: $Q = \{B \subseteq cl(\varphi) : B \text{ is elementary }\}$ initial states: $Q_0 = \{B \in Q : \varphi \in B\}$ transition relation: for $B \in Q$ and $A \in 2^{AP}$: if $A \neq B \cap AP$ then $\delta(B, A) = \emptyset$ if $A = B \cap AP$ then $\delta(B, A) = \emptyset$ s.t.

acceptance set
$$\mathcal{F} = \left\{ F_{\psi_1 \cup \psi_2} : \psi_1 \cup \psi_2 \in cl(\varphi) \right\}$$

where $F_{\psi_1 \cup \psi_2} = \left\{ B \in Q : \psi_1 \cup \psi_2 \notin B \lor \psi_2 \in B \right\}$

 $B \subseteq cl(\varphi)$ is elementary iff:

(i) **B** is maximal consistent w.r.t. prop. logic, i.e., if ψ , $\psi_1 \wedge \psi_2 \in cl(\varphi)$ then:

```
\psi \notin B iff \neg \psi \in B

\psi_1 \land \psi_2 \in B iff \psi_1 \in B and \psi_2 \in B

true \in cl(\varphi) implies true \in B
```

(ii) **B** is locally consistent with respect to until **U**, i.e., if $\psi_1 \cup \psi_2 \in cl(\varphi)$ then:

if $\psi_1 \cup \psi_2 \in B$ and $\psi_2 \not\in B$ then $\psi_1 \in B$ if $\psi_2 \in B$ then $\psi_1 \cup \psi_2 \in B$

Let φ be an LTL-formula and $\mathcal{G} = (Q, 2^{AP}, \delta, Q_0, \mathcal{F})$ be the constructed GNBA.

Claim:
$$Words(\varphi) = \mathcal{L}_{\omega}(\mathcal{G})$$

'Show: each infinite word
$$A_0 A_1 A_2 ... \in (2^{AP})^{\omega}$$
 with $A_0 A_1 A_2 ... \models \varphi$ has an accepting run in G

" \supseteq " show: for all infinite words $A_0 A_1 A_2 ... \in \mathcal{L}_{\omega}(\mathcal{G})$:

$$A_0 A_1 A_2 ... \models \varphi$$

Let φ be an LTL-formula and $\mathcal{G} = (Q, 2^{AP}, \delta, Q_0, \mathcal{F})$ be the constructed GNBA.

Claim:
$$Words(\varphi) = \mathcal{L}_{\omega}(\mathcal{G})$$

"
$$\subseteq$$
" show: each infinite word $A_0 A_1 A_2 ... \in (2^{AP})^{\omega}$ with $A_0 A_1 A_2 ... \models \varphi$ has an accepting run in $\mathcal G$

"\(\text{\text{\text{2}}}\)" show: for all infinite words $A_0 A_1 A_2 ... \in \mathcal{L}_{\omega}(\mathcal{G})$: $A_0 A_1 A_2 ... \models \varphi$

Proof of $\mathcal{L}_{\omega}(\mathcal{G}) \subseteq Words(\varphi)$

Claim: If $B_0 \stackrel{A_0}{\to} B_1 \stackrel{A_1}{\to} B_2 \stackrel{A_2}{\to} ...$ is a path in \mathcal{G} s.t.

$$\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0. B_j \in F$$

then for all formulas $\psi \in cl(\varphi)$:

$$\psi \in B_0 \quad \text{iff} \quad A_0 A_1 A_2 \dots \models \psi$$

Claim: If $B_0 \stackrel{A_0}{\to} B_1 \stackrel{A_1}{\to} B_2 \stackrel{A_2}{\to} ...$ is a path in $\mathcal G$ s.t.

$$\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0. B_j \in F$$

then for all formulas $\psi \in cl(\varphi)$:

$$\psi \in B_0 \quad \text{iff} \quad A_0 A_1 A_2 \dots \models \psi$$

Claim: If $B_0 \stackrel{A_0}{\to} B_1 \stackrel{A_1}{\to} B_2 \stackrel{A_2}{\to} ...$ is a path in $\mathcal G$ s.t.

$$\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0. B_j \in F$$

then for all formulas $\psi \in cl(\varphi)$:

$$\psi \in B_0 \quad \text{iff} \quad A_0 A_1 A_2 \dots \models \psi$$

The claim yields that for each $\sigma = A_0 A_1 A_2 \ldots \in \mathcal{L}_{\omega}(\mathcal{G})$:

 \implies there is an accepting run $B_0 B_1 B_2 \dots$ for σ

Claim: If $B_0 \xrightarrow{A_0} B_1 \xrightarrow{A_1} B_2 \xrightarrow{A_2} ...$ is a path in \mathcal{G} s.t.

$$\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0. B_j \in F$$

then for all formulas $\psi \in cl(\varphi)$:

$$\psi \in B_0 \quad \text{iff} \quad A_0 A_1 A_2 \dots \models \psi$$

- \implies there is an accepting run $B_0 B_1 B_2 \ldots$ for σ
- $\implies B_0 \stackrel{A_0}{\rightarrow} B_1 \stackrel{A_1}{\rightarrow} B_2 \stackrel{A_2}{\rightarrow} \dots$ is a path in \mathcal{G}

Claim: If $B_0 \stackrel{A_0}{\to} B_1 \stackrel{A_1}{\to} B_2 \stackrel{A_2}{\to} ...$ is a path in \mathcal{G} s.t.

$$\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0. B_j \in F$$

then for all formulas $\psi \in cl(\varphi)$:

$$\psi \in B_0 \quad \text{iff} \quad A_0 A_1 A_2 \dots \models \psi$$

- \implies there is an accepting run $B_0 B_1 B_2 \ldots$ for σ
- $\implies B_0 \stackrel{A_0}{\rightarrow} B_1 \stackrel{A_1}{\rightarrow} B_2 \stackrel{A_2}{\rightarrow} \dots$ is a path in \mathcal{G} s.t. $\varphi \in B_0$

 $\mathtt{LTLMC3.2-59}$

Claim: If $B_0 \stackrel{A_0}{\to} B_1 \stackrel{A_1}{\to} B_2 \stackrel{A_2}{\to} ...$ is a path in \mathcal{G} s.t.

$$\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0. B_j \in F$$

then for all formulas $\psi \in cl(\varphi)$:

$$\psi \in B_0 \quad \text{iff} \quad A_0 A_1 A_2 \dots \models \psi$$

- \implies there is an accepting run $B_0 B_1 B_2 \ldots$ for σ
- $\implies B_0 \stackrel{A_0}{\rightarrow} B_1 \stackrel{A_1}{\rightarrow} B_2 \stackrel{A_2}{\rightarrow} \dots$ is a path in \mathcal{G} s.t. $\varphi \in B_0$

Claim: If $B_0 \stackrel{A_0}{\to} B_1 \stackrel{A_1}{\to} B_2 \stackrel{A_2}{\to} ...$ is a path in $\mathcal G$ s.t.

$$\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0. B_j \in F \tag{*}$$

then for all formulas $\psi \in cl(\varphi)$:

$$\psi \in B_0 \quad \text{iff} \quad A_0 A_1 A_2 \dots \models \psi$$

- \implies there is an accepting run $B_0 B_1 B_2 \ldots$ for σ
- $\implies B_0 \stackrel{A_0}{\rightarrow} B_1 \stackrel{A_1}{\rightarrow} B_2 \stackrel{A_2}{\rightarrow} \dots \text{ is a path in } \mathcal{G} \text{ s.t. } \varphi \in B_0$ and (*) holds

Claim: If $B_0 \stackrel{A_0}{\to} B_1 \stackrel{A_1}{\to} B_2 \stackrel{A_2}{\to} ...$ is a path in \mathcal{G} s.t.

$$\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0. B_j \in F \tag{*}$$

then for all formulas $\psi \in cl(\varphi)$:

$$\psi \in B_0 \quad \text{iff} \quad A_0 A_1 A_2 \dots \models \psi$$

$$\implies$$
 there is an accepting run $B_0 B_1 B_2 \ldots$ for σ

$$\implies B_0 \stackrel{A_0}{\rightarrow} B_1 \stackrel{A_1}{\rightarrow} B_2 \stackrel{A_2}{\rightarrow} \dots \text{ is a path in } \mathcal{G} \text{ s.t. } \varphi \in B_0$$
and (*) holds

$$\implies \sigma = A_0 A_1 A_2 \ldots \models \varphi$$

Claim: If $B_0 \stackrel{A_0}{\to} B_1 \stackrel{A_1}{\to} B_2 \stackrel{A_2}{\to} ...$ is a path in $\mathcal G$ s.t.

$$\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0. B_j \in F \tag{*}$$

then for all formulas $\psi \in cl(\varphi)$:

$$\psi \in B_0$$
 iff $A_0 A_1 A_2 \dots \models \psi$

- \Longrightarrow there is an accepting run $B_0 B_1 B_2 \ldots$ for σ
- $\implies B_0 \stackrel{A_0}{\rightarrow} B_1 \stackrel{A_1}{\rightarrow} B_2 \stackrel{A_2}{\rightarrow} \dots \text{ is a path in } \mathcal{G} \text{ s.t. } \boxed{\varphi \in B_0}$ and (*) holds $\Rightarrow B_0 \in Q_0$

$$\implies \sigma = A_0 A_1 A_2 \ldots \models \varphi$$

Claim: If
$$B_0 \stackrel{A_0}{\to} B_1 \stackrel{A_1}{\to} B_2 \stackrel{A_2}{\to} \dots$$
 is a path in $\mathcal G$ s.t.
$$\forall F \in \mathcal F \stackrel{\infty}{\to} j \geq 0. \ B_j \in F \qquad (*)$$
 then for all formulas $\psi \in cl(\varphi)$:
$$\psi \in B_0 \quad \text{iff} \quad A_0 \ A_1 \ A_2 \ \dots \ \models \psi$$

Proof by structural induction on ψ

Claim: If $B_0 \stackrel{A_0}{\to} B_1 \stackrel{A_1}{\to} B_2 \stackrel{A_2}{\to} ...$ is a path in $\mathcal G$ s.t.

$$\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0. B_j \in F \qquad (*)$$

then for all formulas $\psi \in cl(\varphi)$:

$$\psi \in B_0 \quad \text{iff} \quad A_0 A_1 A_2 \dots \models \psi$$

Proof by structural induction on ψ

$$\psi = true$$

$$\psi = a \in AP$$

Claim: If
$$B_0 \stackrel{A_0}{\to} B_1 \stackrel{A_1}{\to} B_2 \stackrel{A_2}{\to} ...$$
 is a path in $\mathcal G$ s.t.

$$\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0. B_j \in F \tag{*}$$

then for all formulas $\psi \in cl(\varphi)$:

$$\psi \in B_0 \quad \text{iff} \quad A_0 A_1 A_2 \dots \models \psi$$

Proof by structural induction on ψ

base of induction:

$$oldsymbol{\psi} = extit{true}$$

$$\psi = a \in AP$$

induction step:

$$\psi = \neg \psi'$$

$$\psi = \psi_1 \wedge \psi_2$$

$$\psi = \bigcirc \psi$$

$$\psi = \psi_1 \, \mathsf{U} \, \psi_2$$

```
Claim: If B_0 \xrightarrow{A_0} B_1 \xrightarrow{A_1} B_2 \xrightarrow{A_2} ... is a path in \mathcal G s.t. \forall F \in \mathcal F \stackrel{\infty}{\exists} j \geq 0. B_j \in F then for all formulas \psi \in cl(\varphi): \psi \in B_0 iff A_0 A_1 A_2 ... \models \psi
```

Claim: If
$$B_0 \xrightarrow{A_0} B_1 \xrightarrow{A_1} B_2 \xrightarrow{A_2} \dots$$
 is a path in $\mathcal G$ s.t. $\forall F \in \mathcal F \stackrel{\infty}{\exists} j \geq 0. B_j \in F$ then for all formulas $\psi \in cl(\varphi)$: $\psi \in B_0$ iff $A_0 A_1 A_2 \dots \models \psi$

Suppose
$$\psi = true \in cl(\varphi)$$
.

Claim: If
$$B_0 \xrightarrow{A_0} B_1 \xrightarrow{A_1} B_2 \xrightarrow{A_2} ...$$
 is a path in \mathcal{G} s.t. $\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0. B_j \in F$ then for all formulas $\psi \in cl(\varphi)$:

Suppose
$$\psi = true \in cl(\varphi)$$
. Then $true \in B_0$

 $\psi \in B_0$ iff $A_0 A_1 A_2 \dots \models \psi$

note: true is contained in all elementary formula-sets

Claim: If
$$B_0 \xrightarrow{A_0} B_1 \xrightarrow{A_1} B_2 \xrightarrow{A_2} ...$$
 is a path in \mathcal{G} s.t. $\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0. B_j \in F$ then for all formulas $\psi \in cl(\varphi)$: $\psi \in B_0$ iff $A_0 A_1 A_2 ... \models \psi$

Suppose
$$\psi = true \in cl(\varphi)$$
. Then $true \in B_0$ and $A_0 A_1 A_2 ... \models true$

note: **true** is contained in all elementary formula-sets **true** holds for all paths/traces

Claim: If
$$B_0 \xrightarrow{A_0} B_1 \xrightarrow{A_1} B_2 \xrightarrow{A_2} ...$$
 is a path in \mathcal{G} s.t. $\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0$. $B_j \in F$ then for all formulas $\psi \in cl(\varphi)$: $\psi \in B_0$ iff $A_0 A_1 A_2 ... \models \psi$

Suppose
$$\psi = true \in cl(\varphi)$$
. Then $true \in B_0$ and $A_0 A_1 A_2 ... \models true$

Let
$$\psi = \mathbf{a} \in AP$$
.

Claim: If
$$B_0 \xrightarrow{A_0} B_1 \xrightarrow{A_1} B_2 \xrightarrow{A_2} ...$$
 is a path in \mathcal{G} s.t. $\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0. B_j \in F$ then for all formulas $\psi \in cl(\varphi)$: $\psi \in B_0$ iff $A_0 A_1 A_2 ... \models \psi$

Suppose
$$\psi = true \in cl(\varphi)$$
. Then $true \in B_0$ and $A_0 A_1 A_2 ... \models true$

Let
$$\psi = a \in AP$$
. Then: $a \in B_0$

Claim: If
$$B_0 \xrightarrow{A_0} B_1 \xrightarrow{A_1} B_2 \xrightarrow{A_2} ...$$
 is a path in \mathcal{G} s.t. $\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0. B_j \in F$ then for all formulas $\psi \in cl(\varphi)$: $\psi \in B_0$ iff $A_0 A_1 A_2 ... \models \psi$

Suppose
$$\psi = true \in cl(\varphi)$$
. Then $true \in B_0$ and $A_0 A_1 A_2 ... \models true$

Let
$$\psi = a \in AP$$
. Then:
 $a \in B_0 \iff a \in A_0$

Claim: If
$$B_0 \xrightarrow{A_0} B_1 \xrightarrow{A_1} B_2 \xrightarrow{A_2} \dots$$
 is a path in \mathcal{G} s.t. $\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0. B_j \in F$ then for all formulas $\psi \in cl(\varphi)$: $\psi \in B_0$ iff $A_0 A_1 A_2 \dots \models \psi$

Suppose
$$\psi = true \in cl(\varphi)$$
. Then $true \in B_0$ and $A_0 A_1 A_2 ... \models true$

Let
$$\psi = a \in AP$$
. Then:
 $a \in B_0 \iff a \in A_0$

Claim: If
$$B_0 \xrightarrow{A_0} B_1 \xrightarrow{A_1} B_2 \xrightarrow{A_2} \dots$$
 is a path in \mathcal{G} s.t. $\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0$. $B_j \in F \qquad A_0 = B_0 \cap AP$ then for all formulas $\psi \in cl(\varphi)$: $\psi \in B_0 \quad \text{iff} \quad A_0 A_1 A_2 \dots \models \psi$

Suppose
$$\psi = true \in cl(\varphi)$$
. Then $true \in B_0$ and $A_0 A_1 A_2 ... \models true$

Let
$$\psi = a \in AP$$
. Then:
 $a \in B_0 \iff a \in A_0$

Claim: If
$$B_0 \xrightarrow{A_0} B_1 \xrightarrow{A_1} B_2 \xrightarrow{A_2} \dots$$
 is a path in \mathcal{G} s.t. $\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0$. $B_j \in F$ $A_0 = B_0 \cap AP$ then for all formulas $\psi \in cl(\varphi)$: $\psi \in B_0$ iff $A_0 A_1 A_2 \dots \models \psi$

Suppose
$$\psi = true \in cl(\varphi)$$
. Then $true \in B_0$ and $A_0 A_1 A_2 ... \models true$

Let
$$\psi = a \in AP$$
. Then:

$$a \in B_0 \iff a \in A_0 \iff A_0 A_1 A_2 \dots \models a$$

Induction step: negation

LTLMC3.2-61

```
Claim: If B_0 \stackrel{A_0}{\to} B_1 \stackrel{A_1}{\to} B_2 \stackrel{A_2}{\to} ... is a path in \mathcal G s.t. \forall F \in \mathcal F \stackrel{\infty}{\exists} j \geq 0. B_j \in F then for all formulas \psi \in cl(\varphi): \psi \in B_0 iff A_0 A_1 A_2 ... \models \psi
```

Induction step: for $\psi = \neg \psi'$:

Claim: If $B_0 \stackrel{A_0}{\to} B_1 \stackrel{A_1}{\to} B_2 \stackrel{A_2}{\to} \dots$ is a path in $\mathcal G$ s.t. $\forall F \in \mathcal F \stackrel{\infty}{\exists} j \geq 0$. $B_j \in F$ then for all formulas $\psi \in cl(\varphi)$: $\psi \in B_0$ iff $A_0 A_1 A_2 \dots \models \psi$

Induction step: for
$$\psi = \neg \psi'$$
: $\psi \in B_0$

```
Claim: If B_0 \stackrel{A_0}{\to} B_1 \stackrel{A_1}{\to} B_2 \stackrel{A_2}{\to} \dots is a path in \mathcal G s.t. \forall F \in \mathcal F \stackrel{\infty}{\exists} j \geq 0. B_j \in F then for all formulas \psi \in cl(\varphi): \psi \in B_0 iff A_0 A_1 A_2 \dots \models \psi
```

```
Induction step: for \psi = \neg \psi': \psi \in B_0 iff \psi' \not\in B_0 (maximal consistency)
```

```
Claim: If B_0 \stackrel{A_0}{\to} B_1 \stackrel{A_1}{\to} B_2 \stackrel{A_2}{\to} \dots is a path in \mathcal G s.t. \forall F \in \mathcal F \stackrel{\infty}{\exists} j \geq 0. B_j \in F then for all formulas \psi \in cl(\varphi): \psi \in B_0 iff A_0 A_1 A_2 \dots \models \psi
```

```
Induction step: for \psi = \neg \psi': \psi \in B_0 iff \psi' \notin B_0 (maximal consistency) iff A_0 A_1 A_2 \dots \not\models \psi' (induction hypothesis)
```

```
Claim: If B_0 \stackrel{A_0}{\to} B_1 \stackrel{A_1}{\to} B_2 \stackrel{A_2}{\to} \dots is a path in \mathcal G s.t. \forall F \in \mathcal F \stackrel{\infty}{\exists} j \geq 0. B_j \in F then for all formulas \psi \in cl(\varphi): \psi \in B_0 iff A_0 A_1 A_2 \dots \models \psi
```

```
Induction step: for \psi = \neg \psi': \psi \in B_0 iff \psi' \notin B_0 (maximal consistency) iff A_0 A_1 A_2 \dots \not\models \psi' (induction hypothesis) iff A_0 A_1 A_2 \dots \models \psi (semantics of \neg)
```

 $B \subseteq cl(\varphi)$ is elementary iff:

(i) **B** is maximal consistent w.r.t. prop. logic, i.e., if ψ , $\psi_1 \wedge \psi_2 \in cl(\varphi)$ then:

$$\psi \notin B$$
 iff $\neg \psi \in B$ $\psi_1 \land \psi_2 \in B$ iff $\psi_1 \in B$ and $\psi_2 \in B$ $true \in cl(\varphi)$ implies $true \in B$

(ii) **B** is locally consistent with respect to until **U**, i.e., if $\psi_1 \cup \psi_2 \in cl(\varphi)$ then:

if $\psi_1 \cup \psi_2 \in B$ and $\psi_2 \not\in B$ then $\psi_1 \in B$ if $\psi_2 \in B$ then $\psi_1 \cup \psi_2 \in B$

- $B \subseteq cl(\varphi)$ is elementary iff:
 - (i) **B** is maximal consistent w.r.t. prop. logic, i.e., if ψ , $\psi_1 \wedge \psi_2 \in cl(\varphi)$ then:

$$\psi \notin B$$
 iff $\neg \psi \in B$

$$\psi_1 \land \psi_2 \in B \text{ iff } \psi_1 \in B \text{ and } \psi_2 \in B$$

$$true \in cl(\varphi) \text{ implies } true \in B$$

(ii) **B** is locally consistent with respect to until **U**, i.e., if $\psi_1 \cup \psi_2 \in cl(\varphi)$ then:

if $\psi_1 \cup \psi_2 \in B$ and $\psi_2 \notin B$ then $\psi_1 \in B$ if $\psi_2 \in B$ then $\psi_1 \cup \psi_2 \in B$

Induction step: conjunction

```
Claim: If B_0 \stackrel{A_0}{\to} B_1 \stackrel{A_1}{\to} B_2 \stackrel{A_2}{\to} \dots is a path in \mathcal G s.t. \forall F \in \mathcal F \stackrel{\cong}{\exists} j \geq 0. B_j \in F then for all formulas \psi \in cl(\varphi): \psi \in B_0 iff A_0 A_1 A_2 \dots \models \psi
```

Induction step: for $\psi = \psi_1 \wedge \psi_2$

Induction step: conjunction

Claim: If $B_0 \stackrel{A_0}{\to} B_1 \stackrel{A_1}{\to} B_2 \stackrel{A_2}{\to} \dots$ is a path in $\mathcal G$ s.t. $\forall F \in \mathcal F \stackrel{\infty}{\exists} j \geq 0. B_j \in F$ then for all formulas $\psi \in cl(\varphi)$: $\psi \in B_0$ iff $A_0 A_1 A_2 \dots \models \psi$

Induction step: for
$$\psi = \psi_1 \wedge \psi_2$$
 $\psi \in B_0$

Claim: If
$$B_0 \stackrel{A_0}{\to} B_1 \stackrel{A_1}{\to} B_2 \stackrel{A_2}{\to} \dots$$
 is a path in $\mathcal G$ s.t. $\forall F \in \mathcal F \stackrel{\infty}{\exists} j \geq 0$. $B_j \in F$ then for all formulas $\psi \in cl(\varphi)$: $\psi \in B_0$ iff $A_0 A_1 A_2 \dots \models \psi$

Induction step: for
$$\psi = \psi_1 \wedge \psi_2$$

$$\psi \in \mathcal{B}_0$$
 iff $\psi_1, \psi_2 \in \mathcal{B}_0$ (maximal consistency)

```
Claim: If B_0 \stackrel{A_0}{\to} B_1 \stackrel{A_1}{\to} B_2 \stackrel{A_2}{\to} ... is a path in \mathcal G s.t. \forall F \in \mathcal F \stackrel{\infty}{\exists} j \geq 0. B_j \in F then for all formulas \psi \in cl(\varphi): \psi \in B_0 iff A_0 A_1 A_2 ... \models \psi
```

Induction step: for
$$\psi = \psi_1 \wedge \psi_2$$

$$\psi \in \mathcal{B}_0$$
 iff $\psi_1, \psi_2 \in \mathcal{B}_0$ (maximal consistency) iff $A_0 A_1 A_2 \ldots \models \psi_1$ and $A_0 A_1 A_2 \ldots \models \psi_2$ (IH)

LTLMC3.2-61A

Claim: If $B_0 \stackrel{A_0}{\to} B_1 \stackrel{A_1}{\to} B_2 \stackrel{A_2}{\to} \dots$ is a path in $\mathcal G$ s.t. $\forall F \in \mathcal F \stackrel{\infty}{\exists} j \geq 0. B_j \in F$ then for all formulas $\psi \in cl(\varphi)$: $\psi \in B_0$ iff $A_0 A_1 A_2 \dots \models \psi$

```
Induction step: for \psi = \psi_1 \wedge \psi_2 \psi \in B_0 (maximal consistency) iff A_0 A_1 A_2 \ldots \models \psi_1 and A_0 A_1 A_2 \ldots \models \psi_2 (IH) iff A_0 A_1 A_2 \ldots \models \psi (semantics of \Lambda)
```

Claim: If $B_0 \stackrel{A_0}{\to} B_1 \stackrel{A_1}{\to} B_2 \stackrel{A_2}{\to} ...$ is a path in $\mathcal G$ s.t. $\forall F \in \mathcal F \stackrel{\infty}{\exists} j \geq 0$. $B_j \in F$ then for all formulas $\psi \in cl(\varphi)$: $\psi \in B_0$ iff $A_0 A_1 A_2 ... \models \psi$

Induction step: for $\psi = \bigcirc \psi'$:

$$\mathcal{G} = (Q, 2^{AP}, \delta, Q_0, \mathcal{F})$$

state space: $Q = \{B \subseteq cl(\varphi) : B \text{ is elementary }\}$ initial states: $Q_0 = \{B \in Q : \varphi \in B\}$

transition relation: for $B \in Q$ and $A \in 2^{AP}$:

if
$$A \neq B \cap AP$$
 then $\delta(B, A) = \emptyset$

if $A = B \cap AP$ then $\delta(B, A) = \text{set of all } B' \in Q \text{ s.t.}$

$$\bigcirc \psi \in B \quad \text{iff} \quad \psi \in B'$$

$$\psi_1 \cup \psi_2 \in B \quad \text{iff} \quad (\psi_2 \in B) \vee (\psi_1 \in B \wedge \psi_1 \cup \psi_2 \in B')$$

acceptance set
$$\mathcal{F} = \left\{ F_{\psi_1 \cup \psi_2} : \psi_1 \cup \psi_2 \in cl(\varphi) \right\}$$

where $F_{\psi_1 \cup \psi_2} = \left\{ B \in Q : \psi_1 \cup \psi_2 \notin B \lor \psi_2 \in B \right\}$

Claim: If $B_0 \stackrel{A_0}{\to} B_1 \stackrel{A_1}{\to} B_2 \stackrel{A_2}{\to} \dots$ is a path in $\mathcal G$ s.t. $\forall F \in \mathcal F \stackrel{\infty}{\exists} j \geq 0$. $B_j \in F$ then for all formulas $\psi \in cl(\varphi)$: $\psi \in B_0$ iff $A_0 A_1 A_2 \dots \models \psi$

Induction step: for $\psi = \bigcirc \psi'$:

Claim: If $B_0 \stackrel{A_0}{\to} B_1 \stackrel{A_1}{\to} B_2 \stackrel{A_2}{\to} ...$ is a path in \mathcal{G} s.t. $\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0. B_j \in F$ then for all formulas $\psi \in cl(\varphi)$:

$$\psi \in B_0$$
 iff $A_0 A_1 A_2 \dots \models \psi$

Induction step: for
$$\psi = \bigcirc \psi'$$
: $\psi \in B_0$

Claim: If $B_0 \stackrel{A_0}{\to} B_1 \stackrel{A_1}{\to} B_2 \stackrel{A_2}{\to} \dots$ is a path in $\mathcal G$ s.t. $\forall F \in \mathcal F \stackrel{\infty}{\exists} j \geq 0. \, B_j \in F \qquad B_1 \in \delta(B_0, A_0)$ then for all formulas $\psi \in cl(\varphi)$: $\psi \in B_0 \quad \text{iff} \quad A_0 \, A_1 \, A_2 \, \dots \, \models \psi$

Induction step: for
$$\psi = \bigcirc \psi'$$
:
$$\psi \in B_0$$
 iff $\psi' \in B_1$ (definition of δ)

```
Claim: If B_0 \stackrel{A_0}{\to} B_1 \stackrel{A_1}{\to} B_2 \stackrel{A_2}{\to} ... is a path in \mathcal G s.t. \forall F \in \mathcal F \stackrel{\infty}{\exists} j \geq 0. \, B_j \in F \qquad B_1 \in \delta(B_0, A_0) then for all formulas \psi \in cl(\varphi): \psi \in B_0 \quad \text{iff} \quad A_0 \, A_1 \, A_2 \, ... \models \psi
```

```
Induction step: for \psi = \bigcirc \psi': \psi \in B_0 iff \psi' \in B_1 (definition of \delta) iff A_1 A_2 A_3 \ldots \models \psi' (induction hypothesis)
```

Claim: If
$$B_0 \stackrel{A_0}{\to} B_1 \stackrel{A_1}{\to} B_2 \stackrel{A_2}{\to} \dots$$
 is a path in $\mathcal G$ s.t.
$$\forall F \in \mathcal F \stackrel{\infty}{\exists} j \geq 0. \ B_j \in F \qquad B_1 \in \delta(B_0, A_0)$$
 then for all formulas $\psi \in cl(\varphi)$:
$$\psi \in B_0 \quad \text{iff} \quad A_0 \ A_1 \ A_2 \ \dots \ \models \psi$$

Induction step: for
$$\psi = \bigcirc \psi'$$
:
$$\psi \in B_0$$
 iff $\psi' \in B_1$ (definition of δ) iff $A_1 A_2 A_3 \ldots \models \psi'$ (induction hypothesis) iff $A_0 A_1 A_2 A_3 \ldots \models \psi$ (semantics of \bigcirc)

Induction step: until

LTLMC3.2-63

Recall: elementary formula-sets

 $B \subseteq cl(\varphi)$ is elementary iff:

(i) **B** is maximal consistent w.r.t. prop. logic, i.e., if ψ , $\psi_1 \wedge \psi_2 \in cl(\varphi)$ then:

```
\psi \notin B iff \neg \psi \in B

\psi_1 \land \psi_2 \in B iff \psi_1 \in B and \psi_2 \in B

true \in cl(\varphi) implies true \in B
```

(ii) **B** is locally consistent with respect to until **U**, i.e., if $\psi_1 \cup \psi_2 \in cl(\varphi)$ then:

```
if \psi_1 \cup \psi_2 \in B and \psi_2 \notin B then \psi_1 \in B if \psi_2 \in B then \psi_1 \cup \psi_2 \in B
```

$$\mathcal{G} = (Q, 2^{AP}, \delta, Q_0, \mathcal{F})$$

state space: $Q = \{B \subseteq cl(\varphi) : B \text{ is elementary }\}$ initial states: $Q_0 = \{B \in Q : \varphi \in B\}$

transition relation: for $B \in Q$ and $A \in 2^{AP}$:

if $A \neq B \cap AP$ then $\delta(B, A) = \emptyset$

if $A = B \cap AP$ then $\delta(B, A) = \text{set of all } B' \in Q \text{ s.t.}$

 $\bigcirc \psi \in B$ iff $\psi \in B'$

$$\psi_1 \cup \psi_2 \in B$$
 iff $(\psi_2 \in B) \vee (\psi_1 \in B \wedge \psi_1 \cup \psi_2 \in B')$

acceptance set
$$\mathcal{F} = \left\{ F_{\psi_1 \cup \psi_2} : \psi_1 \cup \psi_2 \in cl(\varphi) \right\}$$

where $F_{\psi_1 \cup \psi_2} = \left\{ B \in Q : \psi_1 \cup \psi_2 \notin B \lor \psi_2 \in B \right\}$

$$\mathcal{G} = (Q, 2^{AP}, \delta, Q_0, \mathcal{F})$$

state space: $Q = \{B \subseteq cl(\varphi) : B \text{ is elementary }\}$ initial states: $Q_0 = \{B \in Q : \varphi \in B\}$

transition relation: for $B \in Q$ and $A \in 2^{AP}$:

if
$$A \neq B \cap AP$$
 then $\delta(B, A) = \emptyset$

if $A = B \cap AP$ then $\delta(B, A) = \text{set of all } B' \in Q \text{ s.t.}$

$$\bigcirc \psi \in B$$
 iff $\psi \in B'$

$$\psi_1 \cup \psi_2 \in B \quad \text{iff} \quad (\psi_2 \in B) \vee (\psi_1 \in B \wedge \psi_1 \cup \psi_2 \in B')$$

acceptance set
$$\mathcal{F} = \left\{ F_{\psi_1 \cup \psi_2} : \psi_1 \cup \psi_2 \in cl(\varphi) \right\}$$

where $F_{\psi_1 \cup \psi_2} = \left\{ B \in Q : \psi_1 \cup \psi_2 \notin B \lor \psi_2 \in B \right\}$

Induction step: until

LTLMC3.2-63

$$\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0. B_j \in F$$

then for all $\psi \in cl(\varphi)$: $\psi \in B_0$ iff $A_0 A_1 A_2 \ldots \models \psi$

$$\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0. B_j \in F$$

then for all $\psi \in cl(\varphi)$: $\psi \in B_0$ iff $A_0 A_1 A_2 \ldots \models \psi$

Induction step for $\psi = \psi_1 U \psi_2$:

" \leftarrow ": Suppose $A_0 A_1 A_2 ... \models \psi$.

Claim: If
$$B_0 \stackrel{A_0}{\to} B_1 \stackrel{A_1}{\to} B_2 \stackrel{A_2}{\to} ...$$
 is a path in $\mathcal G$ s.t.

$$\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0. B_j \in F$$

"
$$\leftarrow$$
": Suppose $A_0 A_1 A_2 \dots \models \psi$. Let $j \geq 0$ s.t.

$$A_j A_{j+1} A_{j+2} \dots \models \psi_2$$

$$A_{j-1} A_j A_{j-1} \dots \models \psi_1$$

$$A_{j-2}A_{j-1}A_j \dots \models \psi_1$$

$$A_0 A_1 A_2 A_3 \dots \models \psi_1$$

LTLMC3.2-63

Induction step: until (part "←")

Claim: If
$$B_0 \stackrel{A_0}{\to} B_1 \stackrel{A_1}{\to} B_2 \stackrel{A_2}{\to} ...$$
 is a path in $\mathcal G$ s.t.

$$\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0. B_j \in F$$

then for all $\psi \in cl(\varphi)$: $\psi \in B_0$ iff $A_0 A_1 A_2 \ldots \models \psi$

Claim: If
$$B_0 \stackrel{A_0}{\to} B_1 \stackrel{A_1}{\to} B_2 \stackrel{A_2}{\to} ...$$
 is a path in $\mathcal G$ s.t.

$$\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0. B_j \in F$$
 B_j is elementary

"\(= \)": Suppose
$$A_0 A_1 A_2 \dots \models \psi$$
. Let $j \geq 0$ s.t.
$$A_j A_{j+1} A_{j+2} \dots \models \psi_2 \quad \stackrel{\text{IH}}{\Rightarrow} \quad \psi_2 \in B_j \quad \Rightarrow \quad \psi \in B_j$$

$$A_{j-1} A_j A_{j-1} \dots \models \psi_1 \quad \Rightarrow \quad \psi_1 \in B_{j-1}$$

$$A_{j-2} A_{j-1} A_j \dots \models \psi_1 \quad \Rightarrow \quad \psi_1 \in B_{j-2}$$

$$\vdots$$

$$A_0 A_1 A_2 A_3 \dots \models \psi_1 \Rightarrow \quad \psi_1 \in B_0$$

Claim: If
$$B_0 \stackrel{A_0}{\to} B_1 \stackrel{A_1}{\to} B_2 \stackrel{A_2}{\to} ...$$
 is a path in $\mathcal G$ s.t.

$$\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0. B_j \in F \qquad B_j \in \delta(B_{j-1}, A_{j-1})$$

"\(\iff \text{": Suppose } A_0 A_1 A_2 \ldots \box \psi \psi \text{. Let } j \geq 0 \text{ s.t.}\]
$$A_j A_{j+1} A_{j+2} \ldots \box \psi_2 \text{ $\frac{\text{IH}}{\psi}$ } \psi_2 \in B_j \text{ $\psi} \text{ $\psi \psi_2 \in B_j$} \text{ $\psi \psi_2 \in B_j$} \text{ $\psi \psi_2 \in B_{j-1}$ } \text{ $\psi \psi_2 \in B_{j-1}$ } \text{ $\psi \psi_1 \in B_{j-2}$} \text{ IH } \text{ $\psi_1 \in B_{j-1}$ } \text{ $\psi \psi_1 \in B_{j-1}$ } \text{ $\psi \psi_1 \in B_{j-1}$ } \text{ $\psi_1 \in B_{j-2}$ } \text{ IH } \text{ $\psi_1 \in B_{0}$ } \text{ IH } \text{ $\psi_1 \in B_{0}$ } \text{ $\psi_1 \in B_{0}$ } \text{ IH } \text{ $\psi_2 \in B_{0}$ } \text{ IH } \text{ $\psi_1 \in B_{0}$ } \text{ $\psi_1 \in B_{0}$ } \text{ $\psi_2 \in B_{0}$ } \text{ $\psi_1 \in B_{0}$ } \text{ $\psi_1 \in B_{0}$ } \text{ $\psi_1 \in B_{0}$ } \text{ $\psi_2 \in B_{0}$ } \text{ $\psi_1 \in B_{0}$ } \text{ $\psi_2 \in B_{0}$ } \text{ $\psi_1 \in B_{0}$ } \text{ $\psi_2 \in B_{0}$ } \text{ $\psi_1 \in B_{0}$ } \text{ $\psi_2 \in B_{0}$ } \text{ $\psi_1 \in B_{0}$ } \text{ $\psi_2 \in B_{0}$ } \text{ $\psi_2 \in B_{0}$ } \text{ $\psi_1 \in B_{0}$ } \text{ $\psi_2 \in B_{0}$ } \text{ $$$

Claim: If
$$B_0 \stackrel{A_0}{\to} B_1 \stackrel{A_1}{\to} B_2 \stackrel{A_2}{\to} ...$$
 is a path in $\mathcal G$ s.t.

$$\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0. B_j \in F \qquad B_{j-1} \in \delta(B_{j-2}, A_{j-2})$$

"\(= \)": Suppose
$$A_0 A_1 A_2 \dots \models \psi$$
. Let $j \geq 0$ s.t.
$$A_j A_{j+1} A_{j+2} \dots \models \psi_2 \quad \stackrel{\text{IH}}{\Rightarrow} \quad \psi_2 \in B_j \quad \Rightarrow \quad \psi \in B_j$$

$$A_{j-1} A_j A_{j-1} \dots \models \psi_1 \quad \Rightarrow \quad \psi_1 \in B_{j-1} \quad \land \quad \psi \in B_{j-1}$$

$$A_{j-2} A_{j-1} A_j \dots \models \psi_1 \quad \Rightarrow \quad \psi_1 \in B_{j-2} \quad \land \quad \psi \in B_{j-2}$$

$$\vdots \qquad \qquad \vdots$$

$$A_0 A_1 A_2 A_3 \dots \models \psi_1 \quad \Rightarrow \quad \psi_1 \in B_0$$

Claim: If
$$B_0 \stackrel{A_0}{\to} B_1 \stackrel{A_1}{\to} B_2 \stackrel{A_2}{\to} ...$$
 is a path in $\mathcal G$ s.t.

$$\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0. B_j \in F \qquad B_1 \in \delta(B_0, A_0)$$

"\(= \)": Suppose
$$A_0 A_1 A_2 \dots \models \psi$$
. Let $j \geq 0$ s.t.
$$A_j A_{j+1} A_{j+2} \dots \models \psi_2 \quad \stackrel{\text{IH}}{\Rightarrow} \quad \psi_2 \in B_j \quad \Rightarrow \quad \psi \in B_j$$

$$A_{j-1} A_j A_{j-1} \dots \models \psi_1 \quad \Rightarrow \quad \psi_1 \in B_{j-1} \quad \land \quad \psi \in B_{j-1}$$

$$A_{j-2} A_{j-1} A_j \dots \models \psi_1 \quad \Rightarrow \quad \psi_1 \in B_{j-2} \quad \land \quad \psi \in B_{j-2}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$A_0 A_1 A_2 A_3 \dots \models \psi_1 \Rightarrow \quad \psi_1 \in B_0 \quad \land \quad \psi \in B_0$$

$$\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0. B_j \in F$$

then for all $\psi \in cl(\varphi)$: $\psi \in B_0$ iff $A_0 A_1 A_2 \ldots \models \psi$

$$\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0. B_j \in F$$

then for all $\psi \in cl(\varphi)$: $\psi \in B_0$ iff $A_0 A_1 A_2 \ldots \models \psi$

Induction step for $\psi = \psi_1 \cup \psi_2$:

"⇒" Suppose $\psi \in B_0$.

$$\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0. B_j \in F$$

then for all $\psi \in cl(\varphi)$: $\psi \in B_0$ iff $A_0 A_1 A_2 \ldots \models \psi$

Induction step for $\psi = \psi_1 \cup \psi_2$:

" \Longrightarrow " Suppose $\psi \in B_0$. There exists $j \ge 0$ with $\psi_2 \in B_j$,

$$\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0. B_i \in F$$

then for all $\psi \in cl(\varphi)$: $\psi \in B_0$ iff $A_0 A_1 A_2 \dots \models \psi$

Induction step for $\psi = \psi_1 U \psi_2$:

$$\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0. B_j \in F$$

then for all $\psi \in cl(\varphi)$: $\psi \in B_0$ iff $A_0 A_1 A_2 \ldots \models \psi$

Induction step for $\psi = \psi_1 U \psi_2$:

$$\psi \in B_0 \land \psi_2 \notin B_0$$

$$\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0. \ B_j \in F \qquad B_{i+1} \in \delta(B_i, A_i)$$
 then for all $\psi \in cl(\varphi)$: $\psi \in B_0$ iff $A_0 A_1 A_2 \ldots \models \psi$

Induction step for $\psi = \psi_1 U \psi_2$:

$$\psi \in B_0 \land \psi_2 \notin B_0$$

$$\Rightarrow \psi \in B_1$$

$$\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0. \ B_j \in F \qquad B_{i+1} \in \delta(B_i, A_i)$$
 then for all $\psi \in cl(\varphi)$: $\psi \in B_0$ iff $A_0 A_1 A_2 \ldots \models \psi$

Induction step for $\psi = \psi_1 U \psi_2$:

$$\psi \in B_0 \land \psi_2 \notin B_0$$

$$\Rightarrow \psi \in B_1 \land \psi_2 \notin B_1$$

$$\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0. \ B_j \in F \qquad B_{i+1} \in \delta(B_i, A_i)$$
 then for all $\psi \in cl(\varphi)$: $\psi \in B_0$ iff $A_0 A_1 A_2 \ldots \models \psi$

Induction step for $\psi = \psi_1 U \psi_2$:

$$\psi \in B_0 \land \psi_2 \notin B_0$$

$$\Rightarrow \psi \in B_1 \land \psi_2 \notin B_1$$

$$\Rightarrow \psi \in B_2$$

$$\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0. \ B_j \in F \qquad B_{i+1} \in \delta(B_i, A_i)$$
 then for all $\psi \in cl(\varphi)$: $\psi \in B_0$ iff $A_0 A_1 A_2 \ldots \models \psi$

Induction step for $\psi = \psi_1 U \psi_2$:

$$\psi \in B_0 \land \psi_2 \notin B_0$$

$$\Rightarrow \psi \in B_1 \land \psi_2 \notin B_1$$

$$\Rightarrow \psi \in B_2 \land \psi_2 \notin B_2$$
:

Claim: If $B_0 \xrightarrow{A_0} B_1 \xrightarrow{A_1} B_2 \xrightarrow{A_2} ...$ is a path in \mathcal{G} s.t.

$$\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0. B_i \in F$$

then for all $\psi \in cl(\varphi)$: $\psi \in B_0$ iff $A_0 A_1 A_2 \dots \models \psi$

Induction step for $\psi = \psi_1 \mathbf{U} \psi_2$:

" \Longrightarrow " Suppose $\psi \in B_0$. There exists $i \geq 0$ with $\psi_2 \in B_i$, since otherwise $\forall j \geq 0. \psi_2 \notin B_i$ and therefore:

$$\psi \in B_0 \land \psi_2 \notin B_0
\Rightarrow \psi \in B_1 \land \psi_2 \notin B_1
\Rightarrow \psi \in B_2 \land \psi_2 \notin B_2
\vdots$$

$$\Rightarrow \forall j \geq 0. \ B_j \notin F_{\psi} \text{ where}
F_{\psi} = \{B : \psi \notin B \text{ or } \psi_2 \in B\}$$

 $F_{\psi} = \{B : \psi \notin B \text{ or } \psi_2 \in B\}$

Claim: If $B_0 \xrightarrow{A_0} B_1 \xrightarrow{A_1} B_2 \xrightarrow{A_2} ...$ is a path in \mathcal{G} s.t.

$$\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0. B_j \in F$$

then for all $\psi \in cl(\varphi)$: $\psi \in B_0$ iff $A_0 A_1 A_2 \dots \models \psi$

Induction step for $\psi = \psi_1 U \psi_2$:

" \Longrightarrow " Suppose $\psi \in B_0$. There exists $j \ge 0$ with $\psi_2 \in B_j$, since otherwise $\forall j \ge 0$. $\psi_2 \notin B_j$ and therefore:

$$\psi \in B_0 \land \psi_2 \notin B_0$$

$$\Rightarrow \psi \in B_1 \land \psi_2 \notin B_1$$

$$\Rightarrow \psi \in B_2 \land \psi_2 \notin B_2$$

$$\vdots$$

$$\Longrightarrow \forall j \geq 0$$
. $B_j \notin F_{\psi}$ where $F_{\psi} = \{B : \psi \notin B \text{ or } \psi_2 \in B\}$

Contradiction!

LTLMC3.2-65

Claim: If $B_0 \xrightarrow{A_0} B_1 \xrightarrow{A_1} B_2 \xrightarrow{A_2} ...$ is a path in \mathcal{G} s.t.

$$\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0. B_j \in F$$

then for all $\psi \in cl(\varphi)$: $\psi \in B_0$ iff $A_0 A_1 A_2 \ldots \models \psi$

Induction step for $\psi = \psi_1 \cup \psi_2$:

Let $\psi \in B_0$ and $j \ge 0$ minimal s.t. $\psi_2 \in B_j$

$$\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0. B_j \in F$$

then for all $\psi \in cl(\varphi)$: $\psi \in B_0$ iff $A_0 A_1 A_2 \dots \models \psi$

Induction step for
$$\psi = \psi_1 \cup \psi_2$$
:

Let
$$\psi \in B_0$$
 and $j \ge 0$ minimal s.t. $\psi_2 \in B_j$

$$\stackrel{\mathsf{IH}}{\Longrightarrow} A_j A_{j+1} \dots \models \psi_2$$

Claim: If
$$B_0 \stackrel{A_0}{\to} B_1 \stackrel{A_1}{\to} B_2 \stackrel{A_2}{\to} \dots$$
 is a path in $\mathcal G$ s.t.
$$\forall F \in \mathcal F \stackrel{\infty}{\exists} j \geq 0. \ B_j \in F$$
 then for all $\psi \in cl(\varphi)$: $\psi \in B_0$ iff $A_0 A_1 A_2 \dots \models \psi$

Induction step for
$$\psi = \psi_1 \cup \psi_2$$
:

Let $\psi \in B_0$ and $j \ge 0$ minimal s.t. $\psi_2 \in B_j$

$$\Longrightarrow A_j A_{j+1} \dots \models \psi_2$$

$$\lnot \psi_2 \qquad \in B_{j-1}$$

$$\lnot \psi_2 \qquad \in B_{j-2}$$

$$\vdots$$

$$\lnot \psi_2 \qquad \in B_1$$

$$\lnot \psi_2 \qquad \in B_0$$

Claim: If
$$B_0 \stackrel{A_0}{\to} B_1 \stackrel{A_1}{\to} B_2 \stackrel{A_2}{\to} \dots$$
 is a path in $\mathcal G$ s.t.
$$\forall F \in \mathcal F \stackrel{\infty}{\to} j \geq 0. \ B_j \in F$$
 then for all $\psi \in cl(\varphi)$: $\psi \in B_0$ iff $A_0 A_1 A_2 \dots \models \psi$

Induction step for
$$\psi = \psi_1 \cup \psi_2$$
:

Let $\psi \in B_0$ and $j \ge 0$ minimal s.t. $\psi_2 \in B_j$
 $\Rightarrow A_j A_{j+1} \dots \models \psi_2$
 $\neg \psi_2 \in B_{j-1}$
 $\neg \psi_2 \in B_{j-2}$
 \vdots
 $\neg \psi_2 \in B_1$
 $\neg \psi_2, \quad \psi \in B_0 \quad \longleftarrow \text{ by assumption}$

Induction step: until (part "⇒")

LTLMC3.2-65

Claim: If
$$B_0 \stackrel{A_0}{\to} B_1 \stackrel{A_1}{\to} B_2 \stackrel{A_2}{\to} \dots$$
 is a path in $\mathcal G$ s.t.
$$\forall F \in \mathcal F \stackrel{\infty}{\exists} j \geq 0. \ B_j \in F$$
 then for all $\psi \in cl(\varphi)$: $\psi \in B_0$ iff $A_0 A_1 A_2 \dots \models \psi$

Induction step for
$$\psi = \psi_1 \cup \psi_2$$
:

Let $\psi \in B_0$ and $j \ge 0$ minimal s.t. $\psi_2 \in B_j$

$$\Longrightarrow A_j A_{j+1} \dots \models \psi_2$$

$$\lnot \psi_2 \qquad \in B_{j-1}$$

$$\lnot \psi_2 \qquad \in B_{j-2}$$

$$\vdots$$

$$\lnot \psi_2 \qquad \in B_1$$

$$\lnot \psi_2, \psi_1, \psi \in B_0 \qquad \leftarrow \text{local consistency w.r.t. } \mathbf{U}$$

Induction step: until (part "⇒")

LTLMC3.2-65

Claim: If
$$B_0 \xrightarrow{A_0} B_1 \xrightarrow{A_1} B_2 \xrightarrow{A_2} \dots$$
 is a path in \mathcal{G} s.t.

$$\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0. \ B_j \in F \qquad B_{i+1} \in \delta(B_i, A_i)$$
 then for all $\psi \in cl(\varphi)$: $\psi \in B_0$ iff $A_0 A_1 A_2 \ldots \models \psi$

Induction step for $\psi = \psi_1 U \psi_2$:

Let
$$\psi \in \mathcal{B}_0$$
 and $j \geq 0$ minimal s.t. $\psi_2 \in \mathcal{B}_j$

$$\stackrel{\mathsf{IH}}{\Longrightarrow} A_j A_{j+1} \dots \models \psi_2$$

$$\neg \psi_2 \in B_{j-1}$$

$$\neg \psi_2 \in B_{j-2}$$

$$\neg \psi_2, \psi_1, \psi \in B_1$$

$$\neg \psi_2, \psi_1, \psi \in B_0$$

← local consistency w.r.t. **U**

Claim: If
$$B_0 \stackrel{A_0}{\to} B_1 \stackrel{A_1}{\to} B_2 \stackrel{A_2}{\to} ...$$
 is a path in \mathcal{G} s.t.

$$\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0. \ B_j \in F \qquad B_{i+1} \in \delta(B_i, A_i)$$
 then for all $\psi \in cl(\varphi)$: $\psi \in B_0$ iff $A_0 A_1 A_2 \ldots \models \psi$

Induction step for $\psi = \psi_1 U \psi_2$:

Let
$$\psi \in \mathcal{B}_0$$
 and $j \geq 0$ minimal s.t. $\psi_2 \in \mathcal{B}_j$

$$\stackrel{\mathsf{IH}}{\Longrightarrow} A_j A_{j+1} \dots \models \psi_2$$

$$\neg \psi_2, \psi_1, \psi \in B_{j-1}$$

$$\neg \psi_2, \psi_1, \psi \in B_{j-2}$$

$$\neg \psi_2, \psi_1, \psi \in B_1$$

$$\neg \psi_2, \psi_1, \psi \in B_0$$

← local consistency w.r.t. **U**

Claim: If
$$B_0 \stackrel{A_0}{\to} B_1 \stackrel{A_1}{\to} B_2 \stackrel{A_2}{\to} ...$$
 is a path in $\mathcal G$ s.t.

$$\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0. B_i \in F$$

then for all $\psi \in cl(\varphi)$: $\psi \in B_0$ iff $A_0 A_1 A_2 \dots \models \psi$

Induction step for
$$\psi = \psi_1 U \psi_2$$
:

Let
$$\psi \in B_0$$
 and $j \ge 0$ minimal s.t. $\psi_2 \in B_j$

$$\stackrel{\text{IH}}{\Longrightarrow} A_j A_{j+1} \dots \models \psi_2$$

$$\neg \psi_2, \psi_1, \psi \in B_{j-1} \implies A_{j-1}A_j \dots \models \psi_1$$

$$\neg \psi_2, \psi_1, \psi \in B_{j-2}$$

$$\neg \psi_2, \psi_1, \psi \in B_1$$

$$\neg \psi_2, \psi_1, \psi \in B_0 \leftarrow \text{local consistency w.r.t. } \mathbf{U}$$

Claim: If
$$B_0 \stackrel{A_0}{\to} B_1 \stackrel{A_1}{\to} B_2 \stackrel{A_2}{\to} \dots$$
 is a path in $\mathcal G$ s.t.

$$\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0. B_i \in F$$

then for all $\psi \in cl(\varphi)$: $\psi \in B_0$ iff $A_0 A_1 A_2 \ldots \models \psi$

Induction step for
$$\psi = \psi_1 U \psi_2$$
:

Let
$$\psi \in B_0$$
 and $j \ge 0$ minimal s.t. $\psi_2 \in B_j$

$$\stackrel{|H}{\Longrightarrow} A_j A_{j+1} \dots \models \psi_2$$

$$\neg \psi_2, \psi_1, \psi \in B_{j-1} \implies A_{j-1} A_j \dots \models \psi_1$$

$$\neg \psi_2, \psi_1, \psi \in B_{j-2} \implies A_{j-2} A_{j-1} \ldots \models \psi_1$$

$$\neg \psi_2, \psi_1, \psi \in B_1$$

$$\neg \psi_2, \psi_1, \psi \in B_0 \leftarrow \text{local consistency w.r.t. } \mathbf{U}$$

Claim: If
$$B_0 \stackrel{A_0}{\to} B_1 \stackrel{A_1}{\to} B_2 \stackrel{A_2}{\to} ...$$
 is a path in \mathcal{G} s.t.

$$\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0. B_i \in F$$

then for all $\psi \in cl(\varphi)$: $\psi \in B_0$ iff $A_0 A_1 A_2 \dots \models \psi$

Induction step for
$$\psi = \psi_1 U \psi_2$$
:

Let
$$\psi \in B_0$$
 and $j \ge 0$ minimal s.t. $\psi_2 \in B_j$

Claim: If
$$B_0 \stackrel{A_0}{\to} B_1 \stackrel{A_1}{\to} B_2 \stackrel{A_2}{\to} ...$$
 is a path in \mathcal{G} s.t.

$$\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0. B_i \in F$$

then for all $\psi \in cl(\varphi)$: $\psi \in B_0$ iff $A_0 A_1 A_2 \dots \models \psi$

Induction step for $\psi = \psi_1 U \psi_2$:

Let
$$\psi \in B_0$$
 and $j \ge 0$ minimal s.t. $\psi_2 \in B_j$

$$\begin{array}{cccc}
&\stackrel{|\mathbb{H}}{\Longrightarrow} & A_j A_{j+1} \dots & \models \psi_2 \\
\neg \psi_2, \psi_1, \psi \in B_{j-1} & \Longrightarrow & A_{j-1} A_j \dots & \models \psi_1 \\
\neg \psi_2, \psi_1, \psi \in B_{j-2} & \Longrightarrow & A_{j-2} A_{j-1} \dots & \models \psi_1 \\
& \vdots & & \vdots & & \vdots \\
\neg \psi_2, \psi_1, \psi \in B_1 & \Longrightarrow & A_1 A_2 A_3 \dots & \models \psi_1 \\
\neg \psi_2, \psi_1, \psi \in B_0 & \Longrightarrow & A_0 A_1 A_2 \dots & \models \psi_1
\end{array}$$

Claim: If $B_0 \stackrel{A_0}{\to} B_1 \stackrel{A_1}{\to} B_2 \stackrel{A_2}{\to} \dots$ is a path in $\mathcal G$ s.t. $\forall F \in \mathcal F \stackrel{\infty}{\exists} j \geq 0. \ B_j \in F$ then for all $\psi \in cl(\varphi)$: $\psi \in B_0$ iff $A_0 \ A_1 \ A_2 \ \dots \models \psi$

Induction step for
$$\psi = \psi_1 \cup \psi_2$$
:
Let $\psi \in B_0$ and $j \ge 0$ minimal s.t. $\psi_2 \in B_j$

$$\stackrel{|H}{\Longrightarrow} A_j A_{j+1} \dots \models \psi_2$$

$$\neg \psi_2, \psi_1, \psi \in B_{j-1} \implies A_{j-1} A_j \dots \models \psi_1$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\neg \psi_2, \psi_1, \psi \in B_0 \implies A_0 A_1 A_2 \dots \models \psi_1$$

$$\forall F \in \mathcal{F} \stackrel{\infty}{\exists} j \geq 0. B_i \in F$$

then for all $\psi \in cl(\varphi)$: $\psi \in B_0$ iff $A_0 A_1 A_2 \dots \models \psi$

Induction step for $\psi = \psi_1 U \psi_2$:

Let
$$\psi \in B_0$$
 and $j \ge 0$ minimal s.t. $\psi_2 \in B_j$

$$\stackrel{\sqcap}{\Longrightarrow} A_j A_{j+1} \dots \models \psi_2$$

$$\neg \psi_2, \psi_1, \psi \in B_{j-1} \implies A_{j-1} A_j \dots \models \psi_1$$

$$\neg \psi_2, \psi_1, \psi \in B_0 \quad \Longrightarrow \quad A_0 A_1 A_2 \dots \models \psi_1$$

$$A_0 A_1 A_2 \ldots \models \psi = \psi_1 \cup \psi_2$$

Complexity: LTL → NBA

LTLMC3.2-67

Complexity: LTL → NBA

$$\mathcal{L}_{\omega}(\mathcal{A}) = Words(\varphi)$$

$$\mathcal{L}_{\omega}(\mathcal{A}) = Words(\varphi)$$

$$\mathcal{L}_{\omega}(\mathcal{A}) = Words(\varphi)$$

$$\mathcal{L}_{\omega}(\mathcal{A}) = Words(\varphi)$$

$$\mathcal{L}_{\omega}(\mathcal{A}) = Words(\varphi)$$

 $|\mathcal{F}|$ = number of acceptance sets in \mathcal{G} $\leq |\varphi|$

size: $size(\mathcal{G}) \cdot |\mathcal{F}|$

$$\mathcal{L}_{\omega}(\mathcal{A}) = Words(\varphi)$$

For each LTL formula φ , there is an NBA \mathcal{A} s.t. $\mathcal{L}_{\omega}(\mathcal{A}) = Words(\varphi) \text{ and }$ $size(\mathcal{A}) \leq 2^{|cl(\varphi)|} \cdot |\varphi|$

$$\mathcal{L}_{\omega}(\mathcal{A}) = Words(\varphi)$$
 and $size(\mathcal{A}) \leq 2^{|cl(\varphi)|} \cdot |\varphi| = 2^{\mathcal{O}(|\varphi|)}$

Size of NBA for LTL formulas

LTLMC3.2-68

The constructed NBA for LTL formulas are often unnecessarily complicated

The constructed NBA for LTL formulas are often unnecessarily complicated

NBA for **○**a

constructed GNBA has **4** states and **8** edges

The constructed NBA for LTL formulas are often unnecessarily complicated

NBA for a U b

constructed (G)NBA has **5** states and **20** edges

The constructed NBA for LTL formulas are often unnecessarily complicated

... but there exists LTL formulas φ_n such that

- $|\varphi_n| = \mathcal{O}(poly(n))$
- each NBA for φ_n has at least 2^n states

LT-properties that have no "small" NBA

LTLMC3.2-69

$$E_n = \begin{cases} \text{ set of all infinite words over } 2^{AP} \text{ of the form} \\ A_1 A_2 A_3 \dots A_n A_1 A_2 A_3 \dots A_n B_1 B_2 B_3 B_4 \dots \end{cases}$$

$$E_n = \begin{cases} \text{ set of all infinite words over } 2^{AP} \text{ of the form} \\ \underline{A_1 A_2 A_3 \dots A_n A_1 A_2 A_3 \dots A_n} \underbrace{B_1 B_2 B_3 B_4 \dots} \\ = xx \qquad \qquad \in (2^{AP})^{\omega} \\ \text{for some } x \in (2^{AP})^* \qquad \text{arbitrary} \\ \text{of length } n \end{cases}$$

$$E_n = \begin{cases} \text{ set of all infinite words over } 2^{AP} \text{ of the form} \\ \underbrace{A_1 A_2 A_3 \dots A_n A_1 A_2 A_3 \dots A_n}_{\text{encoded}} \underbrace{B_1 B_2 B_3 B_4 \dots}_{\text{encoded}} \\ = xx \qquad \qquad \in \left(2^{AP}\right)^{\omega} \\ \text{for some } x \in \left(2^{AP}\right)^* \qquad \text{arbitrary} \\ \text{of length } n \end{cases}$$

LTL formula φ_n with $Words(\varphi_n) = E_n$

$$E_{n} = \begin{cases} \text{ set of all infinite words over } 2^{AP} \text{ of the form} \\ \underbrace{A_{1} A_{2} A_{3} \dots A_{n} A_{1} A_{2} A_{3} \dots A_{n}}_{= xx} \underbrace{B_{1} B_{2} B_{3} B_{4} \dots}_{= xx} \\ \text{for some } x \in (2^{AP})^{\omega} \\ \text{of length } n \end{cases}$$

LTL formula φ_n with $Words(\varphi_n) = E_n$

$$\varphi_n = \bigwedge_{\mathbf{a} \in AP} \bigwedge_{0 \le i \le n} \left(\bigcirc^i \mathbf{a} \leftrightarrow \bigcirc^{i+n} \mathbf{a} \right)$$

$$E_{n} = \begin{cases} \text{ set of all infinite words over } 2^{AP} \text{ of the form} \\ \underbrace{A_{1} A_{2} A_{3} \dots A_{n} A_{1} A_{2} A_{3} \dots A_{n}}_{= xx} \underbrace{B_{1} B_{2} B_{3} B_{4} \dots}_{= xx} \\ \text{for some } x \in (2^{AP})^{*} \text{ arbitrary} \\ \text{of length } n \end{cases}$$

LTL formula φ_n with $Words(\varphi_n) = E_n$

$$\varphi_n = \bigwedge_{\mathbf{a} \in AP} \bigwedge_{0 \le i < n} \left(\bigcirc^i \mathbf{a} \leftrightarrow \bigcirc^{i+n} \mathbf{a} \right) \longleftarrow \boxed{ \begin{array}{c} \text{length} \\ \mathcal{O}(poly(n)) \end{array} }$$

$$\textit{\textbf{E}}_1 = \left\{ \begin{array}{l} \text{set of all infinite words over } 2^\textit{\textbf{AP}} \text{ of the form} \\ \textit{\textbf{AA}} \textit{\textbf{B}}_1 \textit{\textbf{B}}_2 \textit{\textbf{B}}_3 \textit{\textbf{B}}_4 \dots \text{ where } \textit{\textbf{A}}, \textit{\textbf{B}}_j \subseteq \textit{\textbf{AP}} \text{ for } j \geq 0 \end{array} \right.$$

$$\textit{\textbf{E}}_1 = \left\{ \begin{array}{l} \text{set of all infinite words over } 2^\textit{\textbf{AP}} \text{ of the form} \\ \textit{\textbf{AA}} \textit{\textbf{B}}_1 \textit{\textbf{B}}_2 \textit{\textbf{B}}_3 \textit{\textbf{B}}_4 \dots \text{ where } \textit{\textbf{A}}, \textit{\textbf{B}}_j \subseteq \textit{\textbf{AP}} \text{ for } j \geq 0 \end{array} \right.$$

NBA for E_1 if $AP = \{a\}$:

$$E_1 = \left\{ \begin{array}{l} \text{set of all infinite words over } 2^{AP} \text{ of the form} \\ A \land B_1 B_2 B_3 B_4 \dots \text{ where } A, B_j \subseteq AP \text{ for } j \geq 0 \end{array} \right.$$

NBA for E_1 if $AP = \{a\}$:

LTL-formula: $a \leftrightarrow \bigcirc a$

$$E_1 = \begin{cases} \text{ set of all infinite words over } 2^{AP} \text{ of the form} \\ A A B_1 B_2 B_3 B_4 \dots \text{ where } A, B_j \subseteq AP \text{ for } j \ge 0 \end{cases}$$

NBA for E_1 if $AP = \{a, b\}$:

$$E_1 = \begin{cases} \text{ set of all infinite words over } 2^{AP} \text{ of the form} \\ A A B_1 B_2 B_3 B_4 \dots \text{ where } A, B_j \subseteq AP \text{ for } j \ge 0 \end{cases}$$

NBA for E_1 if $AP = \{a, b\}$:

$$E_2 = \left\{ A_1 A_2 A_1 A_2 \sigma : A_1, A_2 \subseteq AP, \sigma \in (2^{AP})^{\omega} \right\}$$

$$E_2 = \left\{ A_1 A_2 A_1 A_2 \sigma : A_1, A_2 \subseteq AP, \sigma \in (2^{AP})^{\omega} \right\}$$

LTL-formula:
$$(a \leftrightarrow \bigcirc \bigcirc a) \land (\bigcirc a \leftrightarrow \bigcirc \bigcirc \bigcirc a)$$

general case: each **NBA** for E_n has $\geq 2^n$ states

general case: each NBA for E_n has $\geq 2^n$ states

$$E_n = Words(\varphi_n)$$
 where $\varphi_n = \bigwedge_{a \in AP} \bigwedge_{0 \le i \le n} (\bigcirc^i a \leftrightarrow \bigcirc^{n+i} a)$

general case: each **NBA** for E_n has $\geq 2^n$ states

$$E_n = Words(\varphi_n)$$
 where $\varphi_n = \bigwedge_{a \in AP} \bigwedge_{0 \le i \le n} (\bigcirc^i a \leftrightarrow \bigcirc^{n+i} a)$