Analysis I Homework 3

Nutan Nepal

October 14, 2022

Pack Pledge: I have neither given nor received unauthorized aid on this test or assignment.

1. Kreyszig p.303 / Problem 4. It is important that in Banach's theorem 5.1-2 the condition (1) cannot be replaced by d(Tx,Ty) < d(x,y) when $x \neq y$. To see this, consider $X = \{x \mid 1 \leq x < \infty\}$, taken with the usual metric of the real line, and $T: X \to X$ defined by $x \to x + x^{-1}$. Show that |Tx - Ty| < |x - y| when $x \neq y$ but the mapping has no fixed points.

For the given map, we see that

$$|Tx - Ty| = |x + x^{-1} - y - y^{-1}| = \left|x - y + \frac{y - x}{xy}\right|.$$

Since (x-y) and (y-x)/xy have different signs, |x-y+(y-x)/xy| < |x-y| and we see that |Tx-Ty| < |x-y|.

Now, taking T(x) = x, we have 1/x = 0. But no point $x \in X$ satisfies this. Thus, T has no fixed point in X.

2. Kreyszig p.303 / Problem 6. If T is a contraction, show that T^n , $(n \in \mathbb{N})$ is a contraction. If T^n is a contraction for an n > 1, show that T need not be a contraction.

If T is a contraction on a metric space X, then there is a positive real number $\alpha < 1$ such that

$$d(Tx,Ty) \leq \alpha d(x,y)$$

for all $x, y \in X$. Then, for $n \in \mathbb{N}$,

$$d(T^n x, T^n y) = d(T \cdot T^{n-1} x, T \cdot T^{n-1} y) \le \alpha d(T^{n-1} x, T^{n-1} y)$$

Continuing this process, we get

$$d(T^n x, T^n y) < \alpha^n d(x, y).$$

Since, $0 < \alpha^n < 1$, T^n is a contraction. To show that T^n being a contraction does not imply that

T is a contraction, we define $T: \mathbb{R} \to \mathbb{R}$ and by

$$T(x) = \begin{cases} -2x, & x < 0 \\ x/4, & x \ge 0 \end{cases}$$

We see that T increases the distance when x < 0, so it is not a contraction. But $T(X) = [0, \infty)$, so T^2 decreases the distance by 1/4. Hence T^2 is a contraction.

3. Kreyszig p.32 / Problem 2. If (x_n) is Cauchy and has a convergent subsequence, say, $x_{n_k} \to x$, show that (x_n) is convergent with the limit x.

If $\{x_{n_k}\}_{n_k=1}^{\infty}$ is the convergent subsequence of the sequence $\{x_n\}_1^{\infty}$ in the metric space X, then as $x_{n_k} \to x$, for every $\varepsilon > 0$ there exists $N_1 \in \mathbb{Z}$ such that for all $n_k > N_1$, we have

$$d(x_{n_k}, x) < \varepsilon/2.$$

Also, as $\{x_n\}_1^{\infty}$ is Cauchy in X, for $\varepsilon > 0$ (same as above), there exists N such that for all m, n > N we have,

$$d(x_n, x_m) < \varepsilon/2.$$

Since there are infinitely many terms in the subsequence, we have M such that $n_k > N$ for all k > M. Then, for all k > M and n > N we have,

$$d(x_n, x) \le d(x_n, x_{n_k}) + d(x_{n_k}, x) = \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Since, this is true for any arbitrary $\varepsilon > 0$, we have $x_n \to x$.

4. **Kreyszig p.56** / **Problem 5.** Show that $\{x_1, \dots, x_n\}$, where $x_j(t) = t^j$, is a linearly independent set in the space C[a, b].

We note that if the linear combinations of $x_j(t) = t^j$ is identically 0, that is

$$\alpha_1 t + \alpha_2 t^2 + \dots + \alpha_n t^n = 0$$

then equating the corresponding coefficients, we must have each $\alpha_i = 0$. Hence the set $\{x_1, \dots, x_n\}$ must be linearly independent.

5. Kreyszig p.56 / Problem 10. If Y and Z are subspaces of a vector space X, show that $Y \cap Z$ is a subspace of X.

For $x, y \in Y \cap Z$, we see that $x + y \in Y$ and $x + y \in Z$ since Y and Z are both subspaces of X. So, $x + y \in Y \cap Z$ and similarly, for $\alpha \in \mathbb{R}$, $\alpha \cdot x \in Y$ and $\alpha \cdot x \in Z$. So, $\alpha \cdot x \in Y \cap Z$. Since, $Y \cap Z$ is closed under addition and scalar multiplication, it is a subspace of X. (Since Y and Z are subset of X, they satisfy the linearity property.) 6. Kreyszig p.66 / Problem 11. Show that the closed unit ball

$$B(0,1) = \{x \in X : ||x|| = 1\}$$

in a normed space X is convex.

We need to show that if $x, y \in B(0,1)$ then any point z given by $z = \alpha x + (1 - \alpha)y$ for some $\alpha \in [0,1]$ is also in B(0,1). Since $x, y \in B(0,1)$, we see that

$$||z|| = ||\alpha x + (1 - \alpha)y|| \le |\alpha|||x|| + |1 - \alpha|||y|| \le \alpha + 1 - \alpha = 1.$$

So, $z \in B(0,1)$ and hence B(0,1) is convex.

7. Kreyszig p.70 / Problem 2. Show that c_0 in Prob. 1 (the space of all sequences of scalars converging to zero) is a closed subspace of l^{∞} , so that c_0 is complete by 1.5-2 and 1.4-7.

To show that c_0 is closed, we show that every sequence $\{x_i^k\}$ in c_0 has a limit point in c_0 . Here, each x_i is a sequence of scalars that converge to 0. Since l^{∞} is complete, let $y \in l^{\infty}$ be the limit point of the sequence $\{x_i^k\}$ in c_0 . Then for all $\varepsilon > 0$, we have N such that

$$\sup_{1 \le i < \infty} |x_i^k - y_i| < \varepsilon/2$$

for all k > N. Since for each $k, x_i^k \to 0$, we have for each k, there exists $N_1 \in \mathbb{N}$ such that

$$|x_i^k| = |x_i^k - 0| < \varepsilon/2$$

for all $i > N_1$. Then

$$|y_i - 0| = |y_i| \le |x_i^k - y_i| + |x_i^k| < \varepsilon$$

for all $i > N_1$ and k > N. This means that $y_i \to 0$ and thus $\{y_i\}_1^\infty \in c_0$. Thus, c_0 is closed.

8. Kreyszig p.70 / Problem 4. (Continuity of vector space operations) Show that in a normed space X, vector addition and multiplication by scalars are continuous operations with respect to the norm; that is, the mappings defined by $(x, y) \to x + y$ and $(\alpha, x) \to \alpha x$ are continuous.

We define the norm in $X \times X$ to be

$$||(x,y)||_{X\times X} = \max\{||x||_X, ||y||_X\}$$

and we define the norm in $\mathbb{R} \times X$ to be

$$\|(\alpha, y)\|_{\mathbb{R} \times X} = \max \{|\alpha|, \|y\|_X\}.$$

Then, for an arbitrary point $(x_0, y_0) \in X \times X$, for every $\varepsilon > 0$, we have $\delta = \varepsilon/2$ such that

$$\|(x,y) - (x_0,y_0)\|_{X \times X} = \|(x-x_0,y-y_0)\|_{X \times X} = \max\{\|x-x_0\|_X, \|y-y_0\|_X\} < \delta$$

implies

$$||T(x,y) - T(x_0,y_0)||_X = ||x - x_0 + y - y_0||_X \le ||x - x_0|| + ||y - y_0||_X < \delta + \delta = \varepsilon.$$

Hence, the map T(x,y) = x + y is continuous.

Now, for the map $T: \mathbb{R} \times X \to X$ given by $T(\alpha, x) = \alpha x$, for every $\varepsilon > 0$, we take $\delta = \min\{\varepsilon/2(|\alpha_0|+1), \varepsilon/2(\|x_0\|_X+1), 1\}$, we get

$$\|(\alpha, x) - (\alpha_0, x_0)\| = \|(\alpha - \alpha_0, x - x_0)\| = \max\{|\alpha - \alpha_0|, \|x - x_0\|_X\} < \delta$$

implies

$$||T(\alpha, x) - T(\alpha_0, x_0)||_X = ||\alpha x - \alpha_0 x_0||_X \le |\alpha_0| ||x - x_0|| + |\alpha - \alpha_0| ||x||_X$$

$$\le |\alpha_0| ||x - x_0|| + |\alpha - \alpha_0| (||x - x_0||_X + ||x_0||_X)$$

$$< \delta |\alpha_0| + \delta (\delta + ||x_0||_X)$$

$$\le \frac{\varepsilon |\alpha_0|}{2(|\alpha_0| + 1)} + \frac{\varepsilon}{2(||x_0||_X + 1)} (||x_0||_X + 1) < \varepsilon.$$

Hence, T is continuous.

9. Kreyszig p.70 / Problem 5. Show that $x_n \to x$ and $y_n \to y$ implies $x_n + y_n \to x + y$. Show that $\alpha_n \to \alpha$ and $x_n \to x$ implies $\alpha_n x_n \to \alpha x$.

If $x_n \to x$, $y_n \to y$ and $\alpha_n \to \alpha$, then for every $\varepsilon > 0$ we have $N \in \mathbb{Z}$ such that for all n > N,

$$||x_n - x|| < \varepsilon/2$$
, $||y_n - y|| < \varepsilon/2$ and $||\alpha_n - \alpha|| < \varepsilon/2$.

Then for the same N,

$$||(x_n + y_n) - (x + y)|| = ||(x_n - x) - (y_n - y)|| \le ||x_n - x|| + ||y_n - y|| < \varepsilon.$$

Hence, $x_n + y_n \to x + y$ and similarly,

$$\|\alpha_n x_n - \alpha x\| = \|\alpha_n x_n - \alpha_n x + \alpha_n x - \alpha x\| = \|\alpha_n (x_n - x) + x(\alpha_n - \alpha)\| \le |\alpha_n| \|x_n - x\| + \|y\| |\alpha_n - \alpha| < \varepsilon.$$

Hence $\alpha_n x_n \to \alpha x$.

10. **Kreyszig p.71** / **Problem 9.** Show that in a Banach space, an absolutely convergent series is convergent.

If a series $\sum_{i=1}^{\infty} x_i$ in X absolutely converges, then the sequence of partial sums $\{y_i\}_{i=1}^{\infty}$ given by

$$y_k = \sum_{i=1}^k \|x_i\|$$

converges to some point $y \in \mathbb{R}$. Hence, $\{y_i\}_{1}^{\infty}$ is Cauchy and for every $\varepsilon > 0$, we have $N \in \mathbb{Z}$ such that for all m > n > N,

$$|y_m - y_n| = \sum_{i=n+1}^m ||x_i|| < \varepsilon.$$

Now, if $\{s_i\}_1^{\infty}$ is the sequence of partial sums of the sequence $\{x_i\}_1^{\infty}$ given by $s_k = \sum_{i=1}^k x_i$, then for the same $\varepsilon > 0$ and m > n > N as above, we have

$$||s_m - s_n|| = \left\| \sum_{i=n+1}^m x_i \right\| \le \sum_{i=n+1}^m ||x_i|| < \varepsilon.$$

Hence, the sequence $\{s_i\}_{1}^{\infty}$ is Cauchy in X and since X is complete, the sequence converges in X. Hence, the absolutely convergent series is convergent.

11. Kreyszig p.71 / Problem 12. A seminorm on a vector space X is a mapping $p: X \to \mathbb{R}$ satisfying (N1), (N3), (N4) in Sec. 2.2 (Some authors call this a pseudonorm.) Show that

$$p(0) = 0,$$

$$|p(y) - p(x)| \le p(y - x).$$

(Hence if p(x) = 0 implies x = 0 then p is a norm.)

From (N3), we have $p(0) = p(0 \cdot 0) = 0 \cdot p(0) = 0$.

Again, from (N4), we have $p(x+z) \le p(x) + p(z)$ for all $x, z \in X$. Then, taking z = y - x, we get $p(y) \le p(x) + p(y-x) \implies p(y) - p(x) \le p(y-x)$. Similarly, we have $p(x) = p(x-y+y) \le p(x-y) + p(y) \implies p(x) - p(y) \le p(x-y) = p(y-x)$. Combining these two inequalities, we get

$$|p(y) - p(x)| \le p(y - x).$$

12. Kreyszig p.76 / Problem 9. If two norms $\|\cdot\|$ and $\|\cdot\|_0$ on a vector space X are equivalent, show that $(i) \|x_n - x\| \to 0$ implies $(ii) \|x_n - x\|_0 \to 0$ (and vice versa, of course).

If the two norms $\|\cdot\|$ and $\|\cdot\|_0$ on a vector space X are equivalent, then for some c>0, we have

$$0 \le ||x_n - x||_0 \le c||x_n - x||.$$

Taking limit as $n \to \infty$, we see that, by squeeze theorem $||x_n - x|| \to 0 \implies |x_n - x||_0 \to 0$. Similarly for some $c_1 > 0$, we have

$$0 \le ||x_n - x|| \le c_1 ||x_n - x||_0$$

which after taking limit as $n \to \infty$ proves the converse statement.

- 13. Let X be a finite dimensional v.s. over \mathbb{R} , with basis $\{e_1, ..., e_n\}$.
 - (a) Show that for any $1 \leq p \leq \infty$, the map $\|\cdot\|_p$ defined by

$$x = \sum_{1}^{n} x_i e_i \rightarrow ||x||_p = \left(\sum_{1}^{n} |x_i|^p\right)^{1/p}, \text{ for } 1 \le p < \infty$$

$$x = \sum_{1}^{n} x_i e_i \rightarrow ||x||_{\infty} = \max_{1 \le i \le n} |x_i| \text{ for } p = \infty$$

is a norm on X.

- i. For $p < \infty$, $||x||_p = \left(\sum_1^n |x_i|^p\right)^{1/p}$ and each $|x| \ge 0$, so we have $||x|| \ge 0$ for all $x \in X$. Similarly, for $p = \infty$, since $|x_i| \ge 0$, $||x||_\infty \ge 0$.
- ii. If $||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p} = 0$, then each $|x_i| = 0 \implies x_i = 0 \implies x = 0$. And, if x = 0 then each $|x_i| = 0$ and so ||x|| = 0.

Similarly, for if $||x||_p = \max_{1 \le i \le n} |x_i| = 0$, then each $|x_i|$ must be 0 and so x = 0. And, if x = 0 then each $|x_i| = 0$ and so $||x||_{\infty} = 0$.

iii. For $\alpha \in \mathbb{R}$,

$$\|\alpha x\|_{p} = \left(\sum_{1}^{n} |\alpha x_{i}|^{p}\right)^{1/p} = \left(\alpha^{p} \sum_{1}^{n} |x_{i}|^{p}\right)^{1/p} = |\alpha| \|x\|.$$
$$\|\alpha x\|_{\infty} = \max_{1 \le i \le n} |\alpha x_{i}| = |\alpha| \max_{1 \le i \le n} |x_{i}| = |\alpha| \|x\|_{\infty}.$$

iv. If another element $y \in X$ is given by $y = \sum_{i=1}^n y_i e_i$, then we take sequences $x' = \{x_i'\}_1^\infty$ and $y' = \{y_i'\}_1^\infty$ in l^p such that $x_i' = x_i$ and $y_i' = y_i$ for i = 1, ..., n and $x_i' = y_i' = 0$ for i > n. Then, we have

$$\left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} = \left(\sum_{i=1}^{n} |x_i + y_i|^p\right)^{1/p}$$

and by Minkowski's inequality, we have

$$||x+y||_p = \left(\sum_{i=1}^n |x_i + y_i|^p\right)^{1/p} = \left(\sum_{i=1}^\infty |x_i' + y_i'|^p\right)^{1/p} \le \left(\sum_{i=1}^\infty |x_i|^p\right)^{1/p} + \left(\sum_{i=1}^\infty |y_i|^p\right)^{1/p}$$

Hence $||x + y||_p \le ||x||_p + ||y||_p$ for $1 \le p < \infty$.

For $p = \infty$, we have

$$||x+y||_p = \max\{|x_1|, \dots, |x_n|, |y_1|, \dots, |y_n|\} \le \max\{|x_1|, \dots, |x_n|\} + \max\{|y_1|, \dots, |y_n|\}$$

So, $||x+y||_p \le ||x||_p + ||y||_p$ for $p = \infty$.

(b) Show that for $1 \le p \le \infty$, $(X, \|\cdot\|)$ is separable.

We take the set M consisting of elements of X with rational coordinates given by

$$M = \left\{ x \in X : \ x = \sum_{i=1}^{n} \lambda_i e_i, \ \lambda_i \in \mathbb{Q} \right\}.$$

M is countable since M is a countable union of countable sets. To show that M is dense in X, we show that every open neighborhood of an arbitrary point contains a point of M. For

a point $y = \sum_{i=1}^{n} y_i e_i$ we note that its ε -neighborhood is given by

$$N_{\varepsilon}(y) = \{x \in X : ||y - x|| < \varepsilon\}.$$

For $1 \le p < \infty$,

$$N_{\varepsilon}(y) = \left\{ x \in X : \sum_{i=1}^{n} |y_i - x_i|^p < \varepsilon^p \right\}.$$

Then since rational numbers are dense in \mathbb{R} , we can choose rational numbers x_i such that $|y_i - x_i| < \varepsilon/n^{1/p}$. Then clearly, $x = \sum_{i=1}^n x_i e_i \in N_{\varepsilon}(y)$. Hence, X is separable.

Now, or $p = \infty$,

$$N_{\varepsilon}(y) = \left\{ x \in X : \max_{i = \overline{1, \dots, n}} \{|y_i - x_i|\} < \varepsilon \right\}.$$

Then, we can choose each rational number x_i such that $x_i \in (y_i, y_i + \varepsilon)$. Then $x \in N_{\varepsilon}(y)$ and hence M is dense in X. So, X is separable.

14. Prove that any vector space can be normed.

We note that every vector space V has a Hamel basis B such that every element x of the vector space V can be written as a linear combination of finitely many elements of B with non-zero scalars as coefficients. Then, if for an element $x \in V$, b_1, \ldots, b_k are the finitely many elements of B with non-zero coefficients, then

$$x = \lambda_1 b_1 + \cdots + \lambda_k b_k$$

and we define the norm of x to be

$$||x|| = \max_{i=\overline{1,k}} |\lambda_i|.$$

Clearly, $||x|| \ge 0$ and if ||x|| = 0 then x = 0. Also, $x = 0 \implies ||x|| = 0$ and $||\alpha x|| = \max_{i=\overline{1,k}} |\alpha \lambda_i| = |\alpha| ||x||$. Furthermore, if $y = \beta_1 c_1 + \cdots + \beta_n c_n$ is another element of V, then $x + y = \lambda_1 b_1 + \cdots + \lambda_k b_k + \beta_1 c_1 + \cdots + \beta_n c_n$. And

$$||x + y|| = \max\{\lambda_1, \dots, \lambda_k, \beta_1, \dots, \beta_n\} \le \max\{\lambda_1, \dots, \lambda_k\} + \max\{\beta_1, \dots, \beta_n\} = ||x|| + ||y||.$$

We see that $\|\cdot\|$ satisfies all the conditions of a norm on the vector space V.

15. Let X be a finite dimensional normed space. Prove that any closed and bounded subset is compact.

Let M be a closed and bounded subset of the finite dimensional vector space X with dim X = n and basis $\{e_1, \ldots, e_n\}$. Let $\{x_i\}_1^{\infty}$ be a sequence in M, then each x_i has a unique linear representation

$$x_i = \lambda_i^1 e_1 + \dots + \lambda_i^n e_n.$$

By the lower bound theorem, we have $||x_i|| \ge c \sum_{k=1}^n |\lambda_i^k|$ for some c > 0 and since M is a bounded set we have, for some real positive number c_2 , $||x_i|| \le c_2$. Taking $c_1 = \sum_{k=1}^n |\lambda_i^k|$, we get

$$c_1 \le ||x_i|| \le c_2.$$

Then for each k, we have $c_1 \leq \|\lambda_i^k\| \leq c_2$ and for a fixed k, we have the sequence $\{\lambda_i^k\}_1^{\infty}$ of real numbers which is bounded. By Bolzano-Weierstrass theorem, we know that this sequence has a convergent subsequence which converges to a point β^k in \mathbb{R} . And hence, we have a corresponding convergent subsequence $\{x_{i_k}\}$ of $\{x_i\}$ which converges to $z = \sum \beta_i e_i$. Since, M is closed, this limit point is in M. So, M is compact.

16. Prove Riesz's Lemma.

Theorem 1 (Riesz's Lemma). Let Y and Z be subspaces of a normed space X (of any dimension), and suppose that Y is closed and is a proper subset of Z. Then for every real number θ in the interval (0,1) there is a $z \in Z$ such that

$$||z|| = 1,$$
 $||z - y|| \ge \theta$ for all $y \in Y$.

Proof. For $v \in Z-Y$, we denote the distance between v and the subspace Y by $a = \inf_{y \in Y} \|v - y\|$. Since $v \notin Y$, a > 0 and for some $\theta \in (0,1)$, there exists a $y_0 \in Y$ such that

$$a \le ||v - y_0|| \le a/\theta$$
.

Let $z = c(v - y_0)$ where $c = 1/\|v - y_0\|$. Then $\|z\| = 1$ and

$$||z - y|| = ||c(v - y_0) - y|| = c||v - y_0 - c^{-1}y|| = c||v - y_1||$$

where $y_1 = y_0 + c^{-1}y$ which is in Y (since Y is a subspace). Hence $||v - y_1|| \ge a$ and

$$||z - y|| = c||v - y_1|| \ge \frac{a}{||v - y_0||} \ge a/(a/\theta) = \theta.$$

17. If a normed space X has the property that the closed unit ball $\overline{B}(0,1)$ is compact, then X is finite dimensional.

We show that if the closed unit ball \overline{B} is compact, and X is of infinite dimension, then we get a contraction. Let $x_1 \in X$ such that ||x|| = 1 for some norm $||\cdot||$. Then the span of x_1 is a subspace M_1 of dimension 1 and hence, is closed and proper subspace of X. Then, by Riesz's Lemma, taking $\theta = 1/2$, there exists $x_2 \in X$ of norm 1 such that $||x_2 - x_1|| \ge 1/2$. The elements x_1 and x_2 now generate a 2 dimensional closed and proper subspace M_2 of X and again, by Riesz's lemma, there exists an x_3 of norm 1 such that $||x_3 - x_1|| \ge 1/2$ and $||x_3 - x_2|| \ge 1/2$. Then inductively, we obtain a sequence $\{x_n\}_1^{\infty}$ in \overline{B} such that for all integers $m \ne n$, we have

$$||x_m - x_n|| \ge \frac{1}{2}.$$

But this sequence cannot have a convergent subsequence even though \overline{B} is compact. Hence, our assumption that the dimension of X is infinite cannot be true.