Preposition Sense Disambiguation TTLab - Text2Scene Praktikum

Dirk Neuhäuser Tim Rosenkranz Tobias Marzell

Prof. Dr. Alexander Mehler, Alexander Henlein

11. September 2020

- Aufgabe
- 2 Datenbeschaffung und -bereinigung (Tim und Dirk)
- 3 Huggingface-Bert (Dirk)
- FairNLP (Tim)
- 5 Semi-Supervised (Tobias)
- Quellen

Aufgabe

Motivation

Preposition-Sinn wichtig für Verständnis:

Auf *der Wache* bedeutet eigentlich, dass man **in** dem Gebäude ist

Auf *dem Tisch* bedeutet, dass etwas wirklich **auf** dem Tisch ist

Zur Visualisierung braucht man diese Informationen

Nice to Know

SemEval Benchmark:

- SemEval-Winner 2007 Max-Entropy-Ansatz: Accuracy bis 75 %
- \bullet Litkowski 2013 Lemmatizer und Dependency-Parser: Accuracy: 86 %
- **Semi-Supervised(2016)** Ausnutzen von mehreren Sprachen: Accuracy bis 80 %
- Hongyu Gong(2018) Geographische Context-Vektoren:
 Accuracy bis 80 %

Unsere Aufgabe

- Datenbeschaffung und -bereinigung
- Trainieren von 2 Taggern (hyperparamter-optimiert)
- Einbinden in den Text-Imager
- Semi-Supervised Ansatz Wenn möglich einbinden

Datenbeschaffung und -bereinigung (Tim und Dirk)

Daten

- SemEval 2007 oft als Benchmark Datensatz
- schwer zu bekommen online
- 34 englische Präpositionen mit insgesamt 224 verschiedene Sinnen
- Je preposition 2 xml (Trainingsdata und label-defintionen)

Datenbeispiel

Trainingsdata:

Definitionen:

</sense>

Aufgabe Datenbeschaffung und -bereinigung, (Tim und Dirk) Huggingface-Bert, (Dirk) FairNLP, (Tim) Semi-Supervised, (Tobias)

Aufbereitete Daten

sentence id sentence	label_id	definition
0 The USSR 's fifteen union republics, united <head>on</head> a supposedly voluntary basis, formed an 'integral, federal, multinativ'	2	2 having (the thing mentioned) as criteria used in judgment or evaluation or as a/the
1 Taking usage rate as a variable essentially means segmenting <pre>head</pre> on/head the basis of volume purchased.		2 having (the thing mentioned) as criteria used in judgment or evaluation or as a/the
2 She pinched bruises <head>on</head> her daughter 's inner arm , and had poured hot tea on both daughters .		1 indicating a surface that, due to contact with, serves as the cause or means of car
3 Gingerly I squeezed a bit <head>on</head> my fingertip .		1 indicating a surface that, due to contact with, serves as the cause or means of car
4 Tom squeezed <head>on</head> the reins and they came to a halt .		3 physically in contact with and supported by (a surface) (e.g., the book on the table
5 pointed my piece at Johnny and squeezed <head>on</head> the trigger.	1	3 physically in contact with and supported by (a surface) (e.g., the book on the table
6 Madeleine and Victorine stood behind his wheelchair, like nurses, while the two girls huddled <head>on</head> the windowseat.	1	3 physically in contact with and supported by (a surface) (e.g., the book on the table
7 She would kneel <head>on</head> the floor behind the sofa and pull out the tall books of art reproductions .		3 physically in contact with and supported by (a surface) (e.g., the book on the table
8 She knelt <head>on</head> the cold stone floor and carefully placed some coals on the dying embers in the grate.		3 physically in contact with and supported by (a surface) (e.g., the book on the table
9 Sung was kneeling <head>on</head> the top of the dyke, staring across at the House as the dawn broke.	1	3 physically in contact with and supported by (a surface) (e.g., the book on the table

Huggingface-Bert (Dirk)

Aufgabe Datenbeschaffung und -bereinigung, (Tim und Dirk) Huggingface-Bert, (Dirk) FairNLP, (Tim) Semi-Supervised, (Tobias)

Huggingface-Bert

Huggingface library:

- Leichte Umsetzung von State-of-the-Art Modellen
- Unterstützt bert

Bert:

- Released: November 2019
- Sehr(!) gut vortrainiert
- Knackt gleich in mehreren Disziplinen die State-of-the-Art (GLUE, SQuAD, SWAG)

Aufgabe Datenbeschaffung und -bereinigung,(Tim und Dirk) Huggingface-Bert,(Dirk) FairNLP,(Tim) Semi-Supervised,(Tobias)

0000 0000000 00000 00000

Huggingface-Bert-Trainer

- ① Daten einlesen (90:10 train:val Split)
- ② Daten tokenisieren (pretrained tokenizer von hf für Bert): Sätze werden zu Input-Ids und Attention-Masks
- bert Modell initialisieren als Klassifizierungsmodell (mit 224 verschiedenen Outputs)
- Trainingsschleife

Huggingface-Bert-Hyperparameter-Optimierung

Google empfielt

- Epochen: 4
- Optimizer: Adam
- Learning-Rate aus [3e-4, 1e-4, 5e-5, 3e-5]
- Batch-Size aus [8, 16, 32, 64, 128]
- Rest: schon vorgegeben

Huggingface-Bert-Ergebnisse

Beste Acc: 0.9084 mit Learning-Rate = 1e-4 und Batch-Size = 16

15 / 32

Aufgabe Datenbeschaffung und -bereinigung, (Tim und Dirk) Huggingface-Bert, (Dirk) FairNLP, (Tim) Semi-Supervised, (Tobias)

Huggingface-Bert-Ergebnisse

Huggingface-Bert-Ergebnisse

Huggingface-Bert-Evaluation

```
sentence : I am <head>in</head> big trouble
prediction: indicating a state/condition/form, often a mental/emotional one that is being experience
sentence : I am <head>in</head> a big airplane
prediction: indicating a LOCATION that surrounds (or can be viewed as surrounding) something else (
sentence : I am <head>in</head> New York
prediction: indicating a LOCATION that surrounds (or can be viewed as surrounding) something else (
sentence: <head>In</head> 2020 Donald Trump will be re-elected
prediction: indicating a TIME PERIOD during which something happens or continues (e.g., in the morn
sentence : I always see you <head>in</head> my dreams.
prediction: indicating a LOCATION that surrounds (or can be viewed as surrounding) something else (
sentence: I am speaking <head>in</head> portuguese.
prediction: indicating the language, medium, or means of encoding (e.g., spoke in German)
sentence: Donald Trump appears <head>in</head> a weird manner.
prediction: indicating a manner that something happens or is done, often somewhat idiomatic (e.g.,
```

Huggingface-Bert-Evaluation

```
sentence: <head>By</head> 2021 I will have a bachelor degree.
prediction: indicating the size or amount, as of a margin (e.g., increase by 7%)

sentence: <head>By</head> the way, Joe Biden is actually better than is Opponent.
prediction: indicating the MEANS of achieving something (e.g., melt it by cooking it)

sentence: The Crisis was handled <head>by</head> the best president ever - Donald Trump.
prediction: indicating the logical subject (that is, the word that would be the subject in an act

sentence: He is leading the polls <head>by</head> far.
prediction: indicating the size or amount, as of a margin (e.g., increase by 7%)
```

Huggingface-Bert-Evaluation-Details

preposition	accuracy	occurrence in test-data	different senses
through	0.6512	43	13
inside	0.7143	7	
round	0.7500	12	
around	0.7632	38	5
after	0.7778	9	
before	0.8000	5	
above	0.8000	5	5
beneath	0.8000	5	3
off	0.8125	16	3 4 7
like	0.8462	26	7
by	0.8462	52	8
in	0.8561	139	12
behind	0.8571	14	. 4
on	0.8750	88	19
during	0.8750	8	2
from	0.8852	122	16
into	0.8852	61	. 8
over	0.8947	19	8
between	0.9130	23	6
for	0.9263	95	11
of	0.9271	288	16
to	0.9322	118	10
down	0.9394	33	3
against	0.9474	19	6
at	0.9577	71	9
across	0.9688	32	2
with	0.9832	119	14
about	0.9859	71	. 4
as	1.0000	17	1
along	1.0000	36	
towards	1.0000	22	
onto	1.0000	10	
beside	1.0000	6	
among	1.0000	10	

Aufgabe Datenbeschaffung und -bereinigung,(Tim und Dirk) Huggingface-Bert,(Dirk) FairNLP,(Tim) Semi-Supervised,(Tobias)

Huggingface-Bert-Anbindung

```
Typed Definition of English To an end 22 select; smile 2327/2

Typed Definition of English To an end 22 select a smile 2327/2

Typed Definition of English To an end 22 select a smile 2327/2

Typed Englisher English 25 end 227 select 21 value 25 smile 2327/2

Typed Englisher English 25 end 227 select 21 value 25 smile 2327/2

Typed Englisher English 25 end 227 select 21 value 25 smile 2327/2

Typed Englisher English 25 end 25 select 21 value 2111 smile 2327/2

Typed Englisher English 25 end 25 select 21 value 2111 smile 2327/2

Typed Englisher English 25 end 25 select 21 value 2111 smile 2327/2

Typed Englisher English 25 end 25 select 21 value 2111 smile 2327/2

Typed Englisher English 25 end 25 select 21 value 2111 smile 2327/2

Typed Englisher English 25 end 25 select 21 value 2111 smile 2327/2

Typed English 25 end 25 select 25 end 25 select 25 end 25 end
```

FairNLP (Tim)

FlairNLP

- Aktuell, spezialisiert f
 ür NLP-Aufgaben [Akbik, Blythe und Vollgraf 2018]
- Einfaches Framework
- Basiert auf PyTorch

Aufgabe Datenbeschaffung und -bereinigung, (Tim und Dirk) Huggingface-Bert, (Dirk) FairNLP, (Tim) Semi-Supervised, (Tobias)

Flair Trainer

- Daten im CSV-Format in Korpus laden
 - Mindestens train.csv, optional dev.csv und test.csv
 - dev und test werden ggf. von flair erstellt

Optimisierung:

- Optimisierung mit Hyperopt-Wrapper
- Mehrere Embeddings, Lernraten, etc. eingestellt
- Unbekannte Fehler
- log files im repository

Flair Optimisierung

Results: - F-score (micro) 0.9835 - F-score (macro) 0.7382 - Accuracy 0.9835

Ergebnisse des Trainings mit optimierten hyperparameter

```
recall fi-score
                1,0000
                            .0000
                                      1.0006
                1.0000
                           1 8556
                                      1 0000
                0.9815
                1,8908
                             .0000
                1.8886
                                      1.0000
                1,0000
                0.8824
                1,0000
                           1,0000
                1.0000
                           0.9677
                           1.0000
                           0.9508
                           1.0000
                                      1.0000
                                      1.0000
                1.8886
                 1.0000
                1.0000
                            . 0000
                                      1.0000
 label 14
                1.0000
                           1.0000
                1.0000
                           1.0000
                           1.0000
                                      1.0000
                            . 0000
label__215
label 213
label_274
                1.0000
                                     0.9200
 label 95
                1.0000
                           1.0000
                0.0000
                           0.0000
                                     0.0000
label 217
                           1.0000
```

2020-00-11 17312.400 Model: "TextClassifier (
(document_embeddings): DocumentPolisbebddings (
first_tums_nodenoine, politypenoine)
(itst_embeddings): DomientEmbeddings (
itst_embeddings): DomientEmbeddings(
itst_embeddings): DomientE

Einstellungen der Hyperparameter für gutes Ergebnis

(weight tensor) None

Ergebnisse je Klasse

Aufgabe Datenbeschaffung und -bereinigung,(Tim und Dirk) Huggingface-Bert,(Dirk) FairNLP,(Tim) Semi-Supervised,(Tobias)

0000 0000 0000 00000 00000

Flair Trainer

- Daten im CSV-Format in Korpus laden
 - Mindestens train.csv, optional dev.csv und test.csv
 - dev und test werden ggf. von flair erstellt
- Embeddings: FlairEmbeddings + DocumentRNNEmbeddings
- Mindestens rund 100 Epochen Training

Semi-Supervised (Tobias)

Datenbeschaffung

- European Parliament Proceedings Parallel Corpus 1996-2011 (http://www.statmt.org/europarl/)
- CDEC Word Aligner (https://github.com/redpony/cdec)

Daten Vorbereitung

- Tokenizen der Daten
- Alle Tokens in lower-case überführen
- Zusammenführen der beiden Corpora (special format)
- Entfernen von unvollständigen Zeilen
- Wörter alignen

Verfolgte Ansätze

- Bidirectional LSTM selbst trainieren
- Transformers Model transfer learning
- Bert Transfer Learning

Ausblick

- Verschiedene Sprachen ausprobieren
- Output in die anderen Classifier einbinden

Quellen

Aufgabe Datenbeschaffung und -bereinigung, (Tim und Dirk) Huggingface-Bert, (Dirk) FairNLP, (Tim) Semi-Supervised, (Tobias)

Quellen

Akbik, Alan, Duncan Blythe und Roland Vollgraf (2018). "Contextual String Embeddings for Sequence Labeling". In: COLING 2018, 27th International Conference on Computational Linguistics, S. 1638–1649.