Q1) Write WordCount program using Hadoop

<version>3.3.3</version>

WC_Mapper.java

</dependency>

```
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reporter;
public class WC_Mapper extends MapReduceBase implements
Mapper<LongWritable,Text,Text,IntWritable>{
  private final static IntWritable one = new IntWritable(1);
  private Text word = new Text();
  public void map(LongWritable key, Text value,OutputCollector<Text,IntWritable> output,
            Reporter reporter) throws IOException{
     String line = value.toString();
     StringTokenizer tokenizer = new StringTokenizer(line);
     while (tokenizer.hasMoreTokens()){
       word.set(tokenizer.nextToken());
       output.collect(word, one);
    }
  }
}
```

WC Reducer

import java.io.IOException; import java.util.Iterator;

```
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
public class WC_Reducer extends MapReduceBase implements
Reducer<Text,IntWritable,Text,IntWritable> {
  public void reduce(Text key, Iterator<IntWritable> values,OutputCollector<Text,IntWritable>
output,
             Reporter reporter) throws IOException {
    int sum=0;
    while (values.hasNext()) {
       sum+=values.next().get();
    output.collect(key,new IntWritable(sum));
  }
}
WC Runner
import java.io.IOException;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapred.TextOutputFormat;
public class WC Runner {
  public static void main(String[] args) throws IOException{
    JobConf conf = new JobConf(WC Runner.class);
    conf.setJobName("WordCount");
    conf.setOutputKeyClass(Text.class);
    conf.setOutputValueClass(IntWritable.class);
    conf.setMapperClass(WC_Mapper.class);
    conf.setCombinerClass(WC_Reducer.class);
    conf.setReducerClass(WC Reducer.class);
    conf.setInputFormat(TextInputFormat.class);
    conf.setOutputFormat(TextOutputFormat.class);
    FileInputFormat.setInputPaths(conf,new Path(args[0]));
    FileOutputFormat.setOutputPath(conf,new Path(args[1]));
```

```
JobClient.runJob(conf);
}
```

Input file

```
hi my name is jagruti this is so cool
```

Output file

```
cool 1
hi 1
is 2
jagruti 1
my 1
name 1
so 1
this 1
```

Q2)Using Power Pivot (Excel) Perform the following on any dataset

a) Big Data Analysis b) Big Data Charting

Dataset:

	Α	В	С	D	E	F	G
1	Month	Salesman	Region	Products	Customers	Net Sales	profit/loss
2	Jan	Α	north	car	7	2100	100
3	Jan	Α	north	car	8	2400	200
4	Jan	Α	north	car	7	2100	200
5	Jan	Α	north	car	7	2100	300
6	Jan	Α	north	car	6	1800	200
7	Jan	В	west	car	8	2400	100
8	Jan	С	east	car	9	2700	100
9	Jan	С	east	bike	10	2000	100
10	Jan	Α	north	bike	6	1200	400
11	Jan	Α	north	bike	7	1400	200
12	Jan	Α	north	bike	9	1800	100
13	Jan	Α	north	bike	5	1000	100
14	Jan	В	west	truck	10	4000	100
15	Jan	В	west	truck	10	4000	200
16	Jan	В	west	truck	10	4000	300
17	Feb	В	west	car	9	2700	400
18	Feb	С	east	car	7	2100	200
19	Feb	С	east	car	6	1800	300
20	Feb	С	east	car	7	2100	300
21	Feb	Α	north	car	8	2400	300
22	Feb	Α	north	car	9	2700	400
23	Mar	Α	north	car	8	2400	400
24	Mar	Α	north	car	10	3000	100
25	Mar	Α	north	car	5	1500	100
26	Mar	Α	north	car	6	1800	100
27	Mar	Α	north	car	9	2700	100
28	Mar	В	west	bike	7	1400	200
29	Mar	С	east	car	8	2400	200
30	Mar	В	west	truck	10	4000	300
31	Mar	С	east	truck	9	3600	200
32	Mar	В	west	bike	8	1600	200

Sales by region and product :

Row Labels	Sum of Net Sales
⊟bike	10400
east	2000
north	5400
west	3000
⊟car	43200
east	11100
north	27000
west	5100
⊟truck	19600
east	3600
west	16000
Grand Total	73200

Customer count by salesperson:

Row Labels 🔻	Sum of Customers
Α	117
В	72
С	56
Grand Total	245

Q3) Buyer event analytics using Cassandra on suitable product sales data

```
create keyspace buyer events with replication = {'class' :
'SimpleStrategy', 'replication_factor':'1'};
use buyer_events;
BUYERS TABLE:
create table buyers(
          ... buyer_id int primary key,
          ... username text,
          ... email text,
          ... address text);
Inserting:
insert into buyers(buyer_id,username,email,address)
          ... values(1,'user1','user1@example.com','hyd');
cqlsh:buyer_events> insert into buyers(buyer_id,username,email,address)
          ... values(2,'user2','user2@example.com','mum');
cqlsh:buyer_events> insert into buyers(buyer_id,username,email,address)
          ... values(3,'user3','user3@example.com','pun');
cqlsh:buyer_events> insert into buyers(buyer_id,username,email,address)
          ... values(4,'user4','user4@example.com','hyd');
cqlsh:buyer_events> insert into buyers(buyer_id,username,email,address)
          ... values(5,'user5','user5@example.com','pun');
insert into buyers(buyer_id,username,email,address)
          ... values(6, 'user6', 'user6@example.com', 'mum');
```

buyer_id	address	email	username
5 1 2 4 6 3	pun hyd mum hyd mum pun	user5@example.com user1@example.com user2@example.com user4@example.com user6@example.com user3@example.com	user5 user1 user2 user4 user6 user3
(6 rows)			

PRODUCTS TABLE:

```
create table products(
```

... product_id int primary key,

... name text,

... category text,

... price int);

cqlsh:buyer_events> insert into products(product_id,name,category,price)

... values (1, 'coffee maker', 'appliances', 60);

cqlsh:buyer_events> insert into products (product_id, name, category, price)

... values (2, 'phone', 'electronics', 300);

cqlsh:buyer_events> insert into products (product_id, name, category, price)

... values (3, 'led tv', 'electronics', 600);

cqlsh:buyer_events> insert into products (product_id, name, category, price)

... values (4, 'running shoes', 'apparel', 100);

cqlsh:buyer_events> insert into products (product_id, name, category, price)

... values (5,'oven', 'appliances', 500);

cqlsh:buyer_events> select * from products;

product_id		category	ļ	name	ļ	price
5 1 2 4 3	L 2 ↓	appliances appliances electronics apparel electronics	İ	oven coffee maker phone running shoes led tv		400 60 300 100 600
(5 rows)						

PURCHASE HISTORY TABLE:

create table purchase_history(

... transactionID int primary key,

... buyer_id int,

... product_id int,

... quantity int,

... total_amount int,

... purchase_date timestamp);

INSERTIONS:

insert into

purchase_history(transactionID,buyer_id,product_id,quantity,total_amount,purchase_date)

Section-A BDA Lab JNTUH UCESTH

... values(1,1,5,2,800,toTimestamp(now()));

cqlsh:buyer_events> insert into

purchase_history(transactionID,buyer_id,product_id,quantity,total_amount,purchase_date)

... values(2,1,4,4,400,toTimestamp(now()));

cqlsh:buyer_events> insert into

purchase_history(transactionID,buyer_id,product_id,quantity,total_amount,purchase_date)

... values(3,2,4,1,100,toTimestamp(now()));

cqlsh:buyer_events> insert into

purchase_history(transactionID,buyer_id,product_id,quantity,total_amount,purchase_date)

... values(4,2,1,3,180,toTimestamp(now()));

cqlsh:buyer_events> insert into

purchase_history(transactionID,buyer_id,product_id,quantity,total_amount,purchase_date)

... values(5,3,3,4,2400,toTimestamp(now()));

cqlsh:buyer_events> insert into

purchase_history(transactionID,buyer_id,product_id,quantity,total_amount,purchase_date)

... values(6,4,2,2,600,toTimestamp(now()));

transactionid	buyer_id	product_id	purchase_date	quantity	total_amount
5 1] 3 1	3	2023-11-01 14:52:09+0000 2023-11-01 14:50:04+0000	4 2	 2400 800
2	1	4	2023-11-01 14:50:26+0000	4	400
4] 2] 4] 1 2	2023-11-01 14:51:31+0000 2023-11-01 14:52:42+0000] 3 2	180 600
3	2	4	2023-11-01 14:51:08+0000	1	100
(6 rows)					

QUERIES:

1. RETRIEVE BUYER'S PURCHASE HISTORY

select * from purchase_history where buyer_id = 1 allow filtering;

transactionid	buyer_id	product_id	purchase_date	ļ	quantity	total_amount
1 2	1 1		2023-11-01 14:50:04+0000 2023-11-01 14:50:26+0000		2 4	- 800 400
(2 rows)						

2. FIND TOTAL NUMBER OF PRODUCTS

select count(product_id) from products;

```
system.count(product_id)
------
5

(1 rows)
```

3. RETRIEVE TOTAL SPENDING BY A BUYER

select sum(total_amount) from purchase_history where buyer_id = 2 allow filtering;

```
system.sum(total_amount)
------
280
(1 rows)
```

4. RETRIEVE PRODUCTS BY CATEGORY

select * from products where category = 'electronics' allow filtering;

```
product_id | category | name | price

2 | electronics | phone | 300

3 | electronics | led tv | 600

(2 rows)
```

5. FIND THE MAXIMUM PRICE

Select max(price) from products;

```
system.max(price)
------
600
(1 rows)
```

6. TO FIND TOTAL NUMBER OF BUYERS

select count(buyer_id) from buyers;

```
system.count(buyer_id)
------
6
(1 rows)
```

7. FIND AVERAGE PRICE OF PRODUCTS OF A PARTICULAR CATEGORY

select avg(price) from products where category='electronics' allow filtering;

8. SELECT PRODUCTS IN A PARTICULAR PRICE RANGE

select * from products where price>=100 and price<=400 allow filtering;

product_id	category	name	price
5 2 4	appliances electronics apparel	oven phone running shoes	400 300 100
(3 rows)			

9. TO FIND NUMBER OF BUYERS FROM A SPECIFIC LOCATION

select count(buyer_id) from buyers where address='pun' allow filtering;

```
system.count(buyer_id)
------
2
(1 rows)
```

10. TO FIND ALL THE PURCHASES OF A PARTICULAR PRODUCT

select * from purchase_history where product_id = 4 allow filtering;

transactionid	buyer_id	product_id	purchase_date	quantity	total_amount
2 3 (2 rows)	1 2		2023-11-01 14:50:26+0000 2023-11-01 14:51:08+0000		400 100

11. TO FIND TOTAL AMOUNT OBTAINED THROUGH SALES OF A PARTICULAR PRODUCT

select sum(total_amount) from purchase_history where product_id = 4 allow filtering;

```
system.sum(total_amount)
------
500

(1 rows)
```

Q4) Perform Social media analysis using cassandra

```
create keyspace social media
 ... with replication = {'class':'SimpleStrategy','replication_factor':1};
use social_media;
USERS TABLE:
create table social_media.users(
          ... user_id int primary key,
          ... username text,
          ... email text,
          ... registration date timestamp
          ...);
INSERTING INTO USERS:
insert into social_media.users(user_id,username,email,registration_date)
          ... values(1,'user1','user1@example.com',toTimestamp(now()));
insert into social_media.users(user_id,username,email,registration_date)
          ... values(2,'user2','user2@example.com',toTimestamp(now()));
insert into social_media.users(user_id,username,email,registration_date)
          ... values(3,'user3','user3@example.com',toTimestamp(now()));
insert into social_media.users(user_id,username,email,registration_date)
          ... values(4,'user4','user4@example.com',toTimestamp(now()));
insert into social media.users(user id,username,email,registration date)
         ... values(5,'user5','user5@example.com',toTimestamp(now()));
```

USERS TABLE:

select * from users;

user_id	email	١	registration_date	username	
5 1 2 4 3	user5@example.com user1@example.com user2@example.com user4@example.com user3@example.com		2023-10-31 16:27:59+0000 2023-10-31 16:24:52+0000 2023-10-31 16:26:41+0000 2023-10-31 16:27:46+0000 2023-10-31 16:27:29+0000	user5 user1 user2 user4 user3	
(5 rows)					

Q5) Use R-project to carry out statistical analysis of big data

Perform analytics on any standard data set

dat <- read.csv(file =

"C:\\Users\\Dakshith\\Downloads\\Compressed\\Datasets\\inflammation-01.csv", header =

FALSE)

head(dat)

output:

```
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 V21
1 0 0 1 3 1 2 4 7 8 3 3 3 10 5 7 4 7 7 12 18 6
2 0 1 2 1 2 1 3 2 2 6 10 11 5 9 4 4 7 16 8 6 18
3 0 1 1 3 3 2 6 2 5 9 5 7 4 5 4 15 5 11 9 10 19
4 0 0 2 0 4 2 2 1 6 7 10 7 9 13 8 8 15 10 10 7 17
5 0 1 1 3 3 1 3 5 2 4 4 7 6 5 3 10 8 10 6 17 9
6 0 0 1 2 2 4 2 1 6 4 7 6 6 9 9 15 4 16 18 12 12

V22 V23 V24 V25 V26 V27 V28 V29 V30 V31 V32 V33 V34 V35 V36 V37 V38 V39 V40
1 13 11 11 7 7 4 6 8 8 4 4 5 7 3 4 2 3 0 0
2 4 12 5 12 7 11 5 11 3 3 5 4 4 5 5 1 1 0 1
3 14 12 17 7 12 11 7 4 2 10 5 4 2 2 3 2 2 1 1
4 4 4 7 6 15 6 4 9 11 3 5 6 3 3 4 2 3 2 1
5 14 9 7 13 9 12 6 7 7 9 6 3 2 2 4 2 0 1 1
6 5 18 9 5 3 10 3 12 7 8 4 7 3 5 4 4 3 2 1
```

patient_1 <- dat[1,]

max inflammation for patient 1

max(patient_1)

[1] 18

max(dat[2,])

18

min(dat[, 7])

1

mean(dat[, 7])

3.8

sd(dat[,7])

[1] 1.725187

summary(dat[,1:4])

V1 V2 V3 V4

Min. :0 Min. :0.00 Min. :0.000 Min. :0.00

1st Qu.:0 1st Qu.:0.00 1st Qu.:1.000 1st Qu.:1.00

Median :0 Median :0.00 Median :1.000 Median :2.00

Mean :0 Mean :0.45 Mean :1.117 Mean :1.753rd

Qu.:0 3rd Qu.:1.00 3rd Qu.:2.000 3rd Qu.:3.00Max. :0

Max. :1.00 Max. :2.000 Max. :3.00

avg_day_inflammation<-apply(dat,2,mean)

plot(avg_day_inflammation)

min_day_inflammation<-apply(dat,2,min)
plot(min_day_inflammation)</pre>

Q6) Use R-Project for data visualization of social media data

Bar Plot:

data(airquality)

barplot(airquality\$Ozone, main = 'Ozone Concenteration in air',

xlab = 'ozone levels', horiz = TRUE)

Ozone Concenteration in air

barplot(airquality\$Ozone, main = 'Ozone Concenteration in air', xlab = 'ozone levels', col = 'blue', horiz = FALSE)

Ozone Concenteration in air

ozone levels

Histogram:

hist(airquality\$Temp, main ="La Guardia Airport's Maximum Temperature(Daily)", xlab ="Temperature(Fahrenheit)", xlim = c(50, 125), col ="yellow", freq = TRUE)

Section-A BDA Lab JNTUH UCESTH

Box Plot:

boxplot(airquality\$Wind, main = "Average wind speed at La Guardia Airport", xlab = "Miles per hour", ylab = "Wind", col = "orange", border = "brown", horizontal = TRUE, notch = TRUE)

boxplot(airquality[, 0:4], main ='Box Plots for Air Quality Parameters')

Box Plots for Air Quality Parameters

Miles per hour

Scatter plot:

plot(airquality\$Ozone, airquality\$Month, main ="Scatterplot Example", xlab ="Ozone Concentration in parts per billion", ylab =" Month of observation ", pch = 19)

Section-A BDA Lab JNTUH UCESTH

Scatterplot Example

