

Partiel Electronique

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif.

Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

Exercice 1. Questions de cours (6 points – pas de points négatifs pour le QCM)

Choisissez la bonne réponse :

- **Q1.** Pour mesurer le courant qui traverse un générateur, on place :
 - a. Un voltmètre en série avec le générateur
 - b. Un ampèremètre en série après le générateur
 - c. Un voltmètre en parallèle avec le générateur
 - d. Un ampèremètre parallèle avec le générateur
- **Q2.** Si on applique la loi d'Ohm avec U en volt (V) et I en milliampère (mA), on obtient directement R en :
 - a. $M\Omega$

b. $k\Omega$

c. $m\Omega$

d. Ω

- **Q3.** Quelle est la résistance vue entre A et B?
 - a. 15*R*

c. $\frac{R}{3}$

b. $\frac{28R}{33}$

d. 3*R*

Soit le circuit ci-contre (Q4&5):

- **Q4.** La tension V_2 est :
 - a- De même signe que ${\rm I}_1$
 - b- De signe opposé à I_1
 - c- De signe opposé à V_0
 - d- Nulle

- a. $-\frac{V_0}{3R}$
- b. $\frac{V_2}{R}$

- c. $I_3 \frac{V_3}{2R}$
- d. $\frac{V_0}{3R}$

Q6. Dans le circuit ci-contre, que vaut U?

- a. 2,5 *V*
- b. -2,5 V
- c. 5*V*
- d. 5 *V*

Q7. Soit le circuit ci-contre. Quelle est l'expression de l'intensité I' ?

- a- $I' = \frac{2}{7} \cdot I$
- b- $I' = \frac{1}{3} \cdot I$
- c- $I' = \frac{4}{7} \cdot I$
- $d- I' = \frac{2}{3} \cdot I$

Q8. Que vaut la tension U_1 ?

- a. 6 V
- b. -6V
- c. -18 V
- d. 18 V

<u>Exercice 2.</u> Equivalences Thévenin/Norton (14 points)

1. Soient les 2 circuits ci-dessous.

a. Déterminer les expressions de I_N et de R_N tels que les 2 circuits ci-dessus soient équivalents.

b. En déduire l'expression de l'intensité du courant I' qui traverse 2R en fonction de E, I et R.

2. Soit le circuit ci-contre. Déterminer l'expression de la tension U en fonction de E, I et R. Vous pourrez utiliser les équivalences Thévenin/Norton.

