Schema Normalization

R&G Chapter 19

In Last Lecture

Normal forms:

- 1 NF: No multivalued attributes
- 2 NF: 1 NF + no partial dependencies
- 3 NF: 2 NF + no transitive dependencies

Check Violation of 2NF

- Given relation R and its FD F, if there exists any FD X->Y in F+ s.t.
 - (1) X is a subset of keys of R, AND
 - (2) Y is a non-key attribute (i.e., Y does not appear in any key)

Then R violates 2NF!

Check Violation of 3rd Normal Form

- Given relation R and its FD F, if there exists any FD X->Y in F+ s.t.
 - 1. X is a subset of some key of R (i.e., partial dependency)

OR

2. X is not a proper subset of any key (i.e., transitive dependency)

Then R violates 3NF!

3NF example

- Consider the schema R(A, B, C, D, E)
- Functional dependencies F = {BD->A, AB->C, C->E}
- Is R in 3NF?
- Way of thinking
 - Step 1: find keys of R
 - Key: BD
 - Step 2: find non-key attributes:
 - Non-key attributes: A, C, E

3NF example

- 000 000 000 000 000
- Consider the schema R(A, B, C, D, E)
- Functional dependencies F = {BD->A, AB->C, C->E}
- Is R in 3NF?

Way of thinking

- Step 3: check violation of partial dependency:
 - Is there any FD x->y s.t. x = B or D alone while y is A, C or E?
- Step 4: check violation of transitive dependency:
 - Is there any FD x->y s.t. x is not a proper subset of any key and y is A, C, or E?
 - Yes. There is C->E.
- R is not in 3NF!

Shortcuts

• If the relation R satisfies that:

- all attributes are part of key
 - R must be 2NF & 3NF (WHY?)
- Singleton keys
 - R must be at least 2NF

Normal Form Review

- Types: 1st, 2nd, 3rd, Boyce-Codd
- $1^{st} \supset 2^{nd} \supset 3^{rd} \supset Boyce\text{-Codd} \supset ...$

Today's Lecture

- Boyce-Codd Normal Form (BCNF)
- Schema decomposition

Boyce-Codd Normal Form (BCNF)

- Also called 3.5NF.
- Reln R with FDs F is in BCNF if, for all $X \rightarrow A$ in F⁺
 - $-A \in X$ (called a *trivial* FD), or
 - X is a superkey for R.
- In other words: "R is in BCNF if the only non-trivial FDs over R are key constraints."

3NF VS BCNF

- Given Reln R and its FDs F, for every FD X -> A
 in F+,
 - 3NF requires that at least ONE condition is met
 - (a) X is a superkey for R, or
 - (b) A is a key attribute for R
 - BCNF requires that
 - (a) X is a superkey.

Example of 3NF VS. BCNF

- **R(ABC)**
- Key: (A, B)
- FD: F={C->B}
- Does R satisfy BCNF?
- Does R satisfy 3NF?

Example of 3NF VS. BCNF

- **R(ABC)**
- F={AB->C, C->A}
- What normal form does R satisfy?
 - Step 1: Find the key of R:
 - AB, BC.
 - It does not satisfy BCNF
 - In C->A, C is not a key
 - But it satisfies 3NF
 - C->A is OK as A is a key attribute.

Normal Form Summary

- Types: 1st, 2nd, 3rd, Boyce-Codd
- $1^{st} \supset 2^{nd} \supset 3^{rd} \supset Boyce\text{-Codd} \supset ...$

Schema Decomposition

Decomposition of a Relation Schema

- If a relation is not in a desired normal form, it can be decomposed into multiple relations
 - Each relation aftre decomposition is in a normal form.
- Consider the relation R(A1 ... An), a <u>decomposition</u> of R is to replace R by two or more relations such that:
 - Each new relation scheme contains a subset of the attributes of R, and
 - Every attribute of R must appear in at least one new relation.

BCNF and Duplicated Values

S	N	L	R	W	Н
123-22-3666	Attishoo	48	8	10	40
231-31-5368	Smiley	22	8	10	30
131-24-3650	Smethurst	35	5	7	30
434-26-3751	Guldu	35	5	7	32
612-67-4134	Madayan	35	8	10	40

Hourly_Emps

- SNLRWH has FDs: $S \rightarrow SNLRWH$ and $R \rightarrow W$
- Q: Is this relation in BCNF?

No, The second FD causes a violation; W values repeatedly associated with R values.

Decomposing a Relation

 Easiest fix is to create a relation RW to store these associations, and to remove W from the main schema:

S	N	L	R	H
123-22-3666	Attishoo	48	8	40
231-31-5368	Smiley	22	8	30
131-24-3650	Smethurst	35	5	30
434-26-3751	Guldu	35	5	32
612-67-4134	Madayan	35	8	40

R	W
8	10
5	7

Wages

Hourly_Emps2

- •Q: Are both of these relations are now in BCNF?
- Decompositions should be used only when needed.
 - -Q: potential problems of decomposition?

Problems with Decompositions

- Three potential problems:
 - May be impossible to reconstruct the original relation! (Lossiness)
 - 2) Dependency checking may require joins.
 - 3) Some queries become more expensive.
 - e.g., How much does Guldu earn? (in which employees' names are in one table, while salary information in another?)

<u>Tradeoff</u>: Must consider these issues vs. redundancy.

Task #1

How to do lossless decomposition?

Lossless Decomposition (example)

A	В	C
1	2	3
4	5	6
7	2	8

Decompose table (A, B, C) to Tables (A, C) and (B, C)

A	C
1	3
4	6
7	8

В	C
2	3
5	6
2	8

A	C
1	3
4	6
7	8

В	C
2	3
5	6
2	8

A	В	C
1	2	3
4	5	6
7	2	8

Lossy Decomposition (example)

A	В	C
1	2	3
4	5	6
7	2	8

Decompose table (A, B, C) to Tables (A, B) and (B, C)

A	В
1	2
4	5
7	2

В	C
2	3
5	6
2	8

A	В
1	2
4	5
7	2

В	C
2	3
5	6
2	8

1	2	3
4	5	6
7	2	8
1	2	8
7	2	3

Tuples that do not exist in the table $(A, B, C)_{22}$

Lossless Join Decompositions

• Decomposition of R into X and Y is <u>lossless-join</u> w.r.t. a set of FDs F if, for every instance r that satisfies F:

$$\pi_{X}(r) \bowtie \pi_{Y}(r) = r$$

• It is always true that $r \subseteq \pi_X(r) \bowtie \pi_Y(r)$

Solution to Lossless Decomposition

 The decomposition of R into X and Y is lossless with respect to F if and only if the F+ contains:

$$X \cap Y \rightarrow X$$
, or $X \cap Y \rightarrow Y$

i.e., the common attributes of X and Y must be the superkey of either X or Y.

Lossy Decomposition (example)

A	В	C
1	2	3
4	5	6
7	2	8

A	В
1	2
4	5
7	2

В	C
2	3
5	6
2	8

$$A \rightarrow B$$
; $C \rightarrow B$

 $X=\{A, B\}, Y=\{B, C\}, X \cap Y=\{B\}, B \rightarrow \{A, B\} \text{ and } B \rightarrow \{B, C\}$

Lossy decomposition!

A	В
1	2
4	5
7	2

В	С
2	3
5	6
2	8

Decomposition Principle

- If W \rightarrow Z holds over R and W \cap Z is empty, then
 - decomposition of R into R-Z and WZ
 - R-Z and WZ are guaranteed to be loss-less (since R-Z and WZ joins at W)

Revisit Decomposition Example

A	В	C
1	2	3
4	5	6
7	2	8

A	В
1	2
4	5
7	2

В	C
2	3
5	6
2	8

$$A \rightarrow B$$
; $C \rightarrow B$

Lossy decompostition

How can we construct a lossless decomposition of Relation R(A, B, C)?

Lossless Decomposition (example)

 $X=\{A, C\}, Y=\{B, C\}, X \cap Y=\{C\}, C->\{B, C\}$ Lossless decomposition!

A	C		В	C		Α	A B
1	3	N 1	2	3		1	1 2
4	6	\bowtie	5	6		4	4 5
7	8		2	8		7	7 2

But, now we can't check $A \rightarrow B$ without doing a join! (Problem #2 of decomposition!)

How to solve this? The next lecture!