Formal Lab Hooke's Law Physics 4A

Connor Darling

Lab Partner: Gabe Ilano

December 2022

Purpose

To verify Hooke's law and calculate the spring constant.

Chapter 2

Theory

The force due to a spring stretched (or compressed) a distance Δx from the equilibrium position is given by the following expression:

$$\vec{F_s} = -k\Delta \vec{x}$$

where s = (force exerted by) spring k = the spring constant (in N/m)

Procedure

3.1 Procedure Equipment

The necessary equipment for this lab is as follow:

- Meter Stick
- Spring
- Weights
- Clamp
- Rods
- Suspension Clamp

3.2 Position Measurements

• The equipment is to be set up as shown below:

- Hang a weight from the end of the spring. For the lng spring use weights ranging from 0.5 kg to 2 kg and for the short spring use weights ranging from 2 kg to 4 kg. Make sure you do not select too heavy of a weight or the spring will permanently stretch.
- Measure the distance (Δx) the spring is stretched from its equilibrium position (x = 0).
- Repeat the above measurement for at least 7 more weights.

Data

Chapter 5

Data

Data Collected						
Configuration	Mass in kg	Uncertainty	x_i in meters	x_f in meters	Uncertainty	
of Mass		+-m based			+-m based	
		on meter			on scale	
		stick				
#1	1.036	0.0005	0.782	0.784	0.0005	
#2	2.033	0.0005	0.782	0.803	0.0005	
#3	4.033	0.0005	0.782	0.876	0.0005	
#4	6.032	0.0005	0.782	0.951	0.0005	
#5	1.528	0.0005	0.782	0.786	0.0005	
#6	3.527	0.0005	0.782	0.860	0.0005	
#7	5.526	0.0005	0.782	0.933	0.0005	
#8	2.530	0.0005	0.782	0.822	0.0005	

Analysis

1. For each weight, calculate the force $(F=mg,g=9.8\frac{m}{s^2})$ exerted on the spring by the Earth's gravitational force.

Force Calculated for each Configuration of Mass & Δx					
Configuration	Experimental	Δx in meters			
of Mass	F in Nm				
#1	10.153	0.002			
#2	19.923	0.021			
#3	39.523	0.094			
#4	59.114	0.169			
#5	14.974	0.004			
#6	34.565	0.078			
#7	54.155	0.151			
#8	24.794	0.040			

2. Plot the force F versus the distance the spring is stretched (Δx) . Based on Hooke's law your graph should follow a straight line.

3. Draw a best-fit line between the points and calculate the slope of the line. The slope of the line will correspond to the spring constant k_{exp} .

Using this graph, the spring constant $k_{exp}=276.52\frac{N}{m}$

4. Compare your experimental value(s) of k_{exp} with the actual value(s) of k for your spring. (Spring k is 278 $\frac{N}{m}$)

The actual constant value of the spring is $278\frac{N}{m}$. The experimental value of the spring is $276.52\frac{N}{m}$. The difference between the two values is $1.48\frac{N}{m}$.

5. Do your results agree with Hooke's law (i.e. is F directly proportional to x)?

The results obtained from the experiment were not exact, but are close enough to to agree with Hooke's law.

Error Analysis and Procedural Errors

7.1 Front-End Error - RSS

For RSS, the greatest contributors are used. The greatest contributors are the lowest weighing mass configuration in kg, and the initial position of the spring in m.

$$RSS = \sqrt{\left(\frac{0.0005m}{0.782m}\right)^2 + \left(\frac{0.0005kg}{1.036kg}\right)^2} \times 100\% = 0.08\% \; (0.080\%)$$

7.2 Back-End Error

Percent difference was employed on this experiment because the experimental value was being compared with a known actual value. The goal of the experiment was to compare (or get the difference) between the two values. In general the experimental spring constant k_{exp} was close to the acutal spring constant value.

% difference =
$$\frac{|E_1 - E_2|}{\frac{E_1 + E_2}{2}} \times 100\% = \frac{|276.52 - 278|}{\frac{276.52 + 278}{2}} \times 100\% = 0.53\% (0.534\%)$$

Conclusion

In conclusion, the purpose of this lab was to measure an experimental spring constant k_{exp} and compare it with the actual value of $278\frac{N}{m}$. This was to be done by attaching a hanging spring and measuing the x_i value of it. Then attaching 8 different configurations of that weight to the spring and measure the x_f value. After finding the Δx , the force F in Nm could be found. Once plotting each force calculated versus Δx , a best fit slope was used to find the experimental k_{exp} .

Following this process, the k_{exp} ended up being $276.52\frac{N}{m}$. Though this is not eaxctly $278\frac{N}{m}$, the error allowed could account for this deviation from the actual value. With the RSS error using greastest contributors ending up as 0.08%.

Furthermore, the backend error implementing %difference was 0.53%.

Considering the purpose of the lab, the result, and factors of possible error, the goal of this lab was accomplished.

Suggestions for Improvement