(2010 年度後期 担当:佐藤)

問題 4.1.

(1)
$$\Phi_A(t) = t^2 - 5t + 6 = (t-2)(t-3)$$

(2) 2 \(\begin{array}{c} 2 \)

(3)
$$k=2$$
 のとき; $(2E_2-A)=\begin{pmatrix} -2 & 1 \\ -2 & 1 \end{pmatrix}$ $\overrightarrow{\text{行基本変形}}$ $\begin{pmatrix} -2 & 1 \\ 0 & 0 \end{pmatrix}$. したがって, $\boldsymbol{v}_2=c\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ (ただし, $c\neq 0$ は実数).
$$k=3$$
 のとき; $(2E_2-A)=\begin{pmatrix} -1 & 1 \\ -2 & 2 \end{pmatrix}$ $\overrightarrow{\text{行基本変形}}$ $\begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix}$. したがって, $\boldsymbol{v}_3=c\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ (ただし, $c\neq 0$ は実数).

(4) (省略)

問題 **4.2.** (以下, c は零でない実数とする)*1

(1) 固有値は -2 と 1.

$$-2$$
 に関する固有ベクトルは $c \begin{pmatrix} 2 \\ 1 \end{pmatrix}$, 1 に関する固有ベクトルは $c \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

- (2) 固有値は -1, 固有ベクトルは $c\begin{pmatrix} -1\\1 \end{pmatrix}$.
- (3) 固有値は -3 と 0.

$$-3$$
 に関する固有ベクトルは $c\left(\begin{array}{c}1\\2\end{array}\right)$, 0 に関する固有ベクトルは $c\left(\begin{array}{c}2\\1\end{array}\right)$.

(4) 実数の固有値は存在しない.*2

(5) 固有値は 1, 2, 3. 固有値はそれぞれ
$$c \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $c \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, $c \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$.

^{*2} 複素数の範囲で考えると,固有値は $\frac{1}{2}(3\pm\sqrt{5})$. $\frac{1}{2}(3+\sqrt{5})$ に関する固有ベクトルは $c\left(\begin{array}{c}\sqrt{5}-1\\2\end{array}\right)$, $\frac{1}{2}(3-\sqrt{5})$ に関する固有ベクトルは $c\left(\begin{array}{c}\sqrt{5}+1\\-2\end{array}\right)$ である(この c は任意の複素数).