

### TEAM MEMBERS



#### **Garrett Bradshaw**

Electrical Engineer

Team / Object Detection Lead

Raleigh, MS



#### **Slade Hicks**

**Electrical Engineer** 

Wireless Comm Lead

Laurel, MS



#### **Brandon Waldrup**

**Electrical Engineer** 

Power Supply Lead

Laurel, MS



#### **Kyler Smith**

Computer Engineer

Motion Tracking Lead

Southside, AL

### INTERNAL ADVISOR

Dr. Ryan Green

- Assistant Professor, Mississippi State University
- Expertise in robotics and electromagnetics





# EXTERNAL ADVISOR

Dr. Adam Jones

- Assistant Professor, Mississippi State University
- Expertise in neuroscience, psychophysics, and virtual reality

### OUTLINE

Overview

Constraints

Approach

Progress



### **OVERVIEW**







### **TECHNICAL CONSTRAINTS**

| Name       | Description                                                |
|------------|------------------------------------------------------------|
| Wheelchair | The system is attached to a wheelchair moving no faster    |
| Speed      | than five miles per hour [7].                              |
| Detection  | The system detects objects within a radius of no more      |
| Distance   | than 2.2 meters.                                           |
| Feedback   | This system's latency for sending feedback to the user in  |
| Latency    | response to an object is no more than 250 milliseconds.    |
| Sensor     | The system's false detection rate is less than 16 percent. |
| Accuracy   |                                                            |
|            | The system can connect wirelessly to a Quest VR headset    |
| Range      | within 2.31 meters.                                        |
| Wireless   | The wireless latency is less than 250 milliseconds.        |
| Latency    |                                                            |

# PRACTICAL CONSTRAINTS

| Туре           | Name                   | Description                                                                                                                                     |
|----------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Sustainability | Reliability            | Train and Go is designed to operate for at least five years without component failure.                                                          |
| Sustainability | Sensor<br>Maintenance  | Sensor connections are placed strategically to allow simple maintenance or replacement.                                                         |
| Usability      | Product<br>Versatility | Train and Go offers a flexible packaging system to attach to a variety of wheelchair designs and does not inhibit existing chair functionality. |
| Safety         | Collision<br>Detection | Train and Go provides the user with feedback to minimize the risk of collisions with obstacles.                                                 |
| Functionality  | VR<br>Communication    | Train and Go communicates with a Quest VR headset.                                                                                              |

### ENGINEERING STANDARDS

| Specific<br>Standard                    | Standard Document                                | Specification / Application                                                                                     |  |
|-----------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|
| IP-44                                   |                                                  | The system is protected from solid particles that are over 1 millimeter in size and from splashes of water [8]. |  |
| Bluetooth                               |                                                  | d The system adheres to IEEI<br>2- Bluetooth standards [9].                                                     |  |
| Protection<br>Against Electric<br>Shock |                                                  | The electrical components of the system are isolated from the user to prevent electric shock [10].              |  |
| Wheelchair<br>Accessory                 | FDA 21 Code of Federal<br>Regulations § 890.3910 | Train and Go satisfies the FDA standards for a wheelchair accessory [11].                                       |  |



# ASSEMBLY DIAGRAM



## APPROACH: HARDWARE







| Product         | Input<br>Voltage<br>(V) | Current<br>Usage<br>(mA) | Linear Acceleration<br>Zero-G Offset Value<br>(mg) | Cost<br>(USD) |
|-----------------|-------------------------|--------------------------|----------------------------------------------------|---------------|
| Requirements    | ≥ 3.3                   | ≤ 5                      | ≤ 25                                               | ≤ 50.00       |
| ISM330DHCX [13] | 3.3                     | 1.2                      | 10                                                 | 20.00         |
| LSM6DSOX [14]   | 3.3                     | 0.55                     | 20                                                 | 12.00         |
| LSM6DSO32 [15]  | 3.3                     | 0.55                     | 20                                                 | 12.50         |

### ORIENTATION MICROCONTROLLER

| Product                 | Working<br>Voltage<br>(V) | Working<br>Current<br>(mA) | Clock<br>Speed<br>(Hz) | GPIO<br>Pins | Cost (USD) |
|-------------------------|---------------------------|----------------------------|------------------------|--------------|------------|
| Requirements            | 3.3 - 5                   | ≤ 1,000                    | ≥ 4K                   | ≥ 2          | ≤ 100.00   |
| Raspberry Pi 4B<br>[16] | 5                         | 3,000                      | 1.5B                   | 40           | 152.00     |
| ESP32 [17]              | 2.3 <b>-</b> 3.6          | 500                        | 60M                    | 22           | 6.67       |
| Libre Le Potato<br>[18] | 5                         | 800                        | 1.5B                   | 40           | 35.00      |





### **ULTRASONIC SENSOR**

| Product        | Working<br>Voltage (V) | Working<br>Current<br>(mA) | Max Range<br>(m) | Measuring<br>Angle<br>(Degrees) | Cost<br>(USD) |
|----------------|------------------------|----------------------------|------------------|---------------------------------|---------------|
| Requirements   | 3.3 - 5                | ≤ 15                       | ≥ 2.2            | N/A                             | N/A           |
| RCWL-1601 [19] | 3.3 <b>-</b> 5         | 15                         | 4.5              | 15                              | 3.95          |
| US-100 [20]    | 3.3 <b>-</b> 5         | 15                         | 4.5              | X < 15                          | 6.95          |
| HC-SR04 [21]   | 3.3 <b>-</b> 5         | 15                         | 4                | 15                              | 1.30          |
| A02YYUW [22]   | 3.3 <b>-</b> 5         | 8                          | 4.5              | 60                              | 17.88         |
| Grove [23]     | 3.3 - 5                | 8                          | 3.5              | 15                              | 3.95          |

### **RUMBLE MOTOR**

| Product       | Working<br>Voltage (V) | Working Current (mA) | Rated<br>Speed<br>(rad/s) | Cost<br>(USD) |
|---------------|------------------------|----------------------|---------------------------|---------------|
| Requirements  | ≥ 3                    | ≤ <b>2</b> 5mA       | ≥ 1675                    | N/A           |
| TATOKO [25]   | 3                      | 20                   | 1675                      | 2.14          |
| BestTong [26] | 1.5                    | 20                   | 837                       | 1.19          |
| BOJACK [27]   | 3                      | 20                   | 1675                      | 3.50          |





# DETECTION MICROCONTROLLER

| 3 34 N | Product           | Input<br>Voltage<br>(V) | Clock<br>Speed<br>(MHz) | Analog<br>GPIO<br>Pins | Cost<br>(USD) |
|--------|-------------------|-------------------------|-------------------------|------------------------|---------------|
|        | Requirements      | N/A                     | ≥ 16                    | ≥ 16                   | N/A           |
|        | Elegoo Mega [28]  | 7 – 12                  | 16                      | 16                     | 21.00         |
| Ì      | Shield Buddy [29] | 7 – 12                  | 300                     | 16                     | 129.94        |
|        | Arduino Mega [30] | 7 – 12                  | 16                      | 16                     | 48.20         |

### **BLUETOOTH TRANSMITTER**

| Product                                      | Working<br>Voltage<br>(V) | Working<br>Current<br>(mA) | Connectivity      | Cost<br>(USD) |
|----------------------------------------------|---------------------------|----------------------------|-------------------|---------------|
| Requirements                                 | ≤ 5                       | ≤ 500                      | Bluetooth         | ≤ 30.00       |
| DSD Tech HM-10<br>BT Module[31]              | 3.6 - 6                   | 50                         | Bluetooth 4.0 BLE | 10.99         |
| ESP32 [17]                                   | 2.3 - 3.6                 | 500                        | Bluetooth 4.2     | 6.67          |
| Adafruit Feather<br>nRF52840 Express<br>[32] | 3.7                       | 500                        | Bluetooth LE      | 24.95         |
| Raspberry Pi 4<br>Model B [16]               | 5                         | 1300                       | Bluetooth 5.0     | 152.00        |





### POWER SOURCE/BATTERY

| Product                               | Working<br>Voltage<br>(V) | Working<br>Current<br>(mA) | Capacity<br>(mAh) | Cost (USD) |
|---------------------------------------|---------------------------|----------------------------|-------------------|------------|
| Requirements                          | ≤ 7.4                     | ≤ 3000                     | ≥ 3000            | ≤ 100.00   |
| SoloGood<br>RadioMaster TX16S<br>[33] | 7.4                       | 5000                       | 5000              | 25.00      |
| Zeee 2S Lipo [34]                     | 7.4                       | 5000                       | 5400              | 38.00      |
| Razepony [35]                         | 7.4                       | 5000                       | 4800              | 22.00      |
| HXJNLDC [36]                          | 3.7                       | 800                        | 800               | 15.00      |



| Product          | Working<br>Voltage (V)    | Working<br>Current<br>(mA) | Cost<br>(USD) |
|------------------|---------------------------|----------------------------|---------------|
| Requirements     | 7.4 to 3.3                | ≥ 3000                     | ≤ 20.00       |
| YIPIN HEXHA [37] | 24 - 5 to 2 - 18          | 3000                       | 12.00         |
| Drok [38]        | 8 - 22 to 3 - 15          | 3000                       | 15.00         |
| Red Wolf [39]    | 12 TO 3.3, 5, 6,<br>AND 9 | 3000                       | 14.00         |

[37]



### POWER RAIL/TERMINAL BLOCK

| Product                 | Working<br>Voltage<br>(V) | Working<br>Current<br>(mA) | Number of<br>Outputs | Cost<br>(USD) |
|-------------------------|---------------------------|----------------------------|----------------------|---------------|
| Requirements            | ≥ 3.3                     | ≥ 3000                     | ≥ 10                 | ≤ 20.00       |
| EVEMODEL<br>PCB007 [40] | 24                        | 10000                      | 12                   | 7.00          |
| OONO D1410 [41]         | 48                        | 16000                      | 12                   | 11.00         |
| HCDC D1338 [42]         | 300                       | 30000                      | 12                   | 18.00         |



### VR HEADSET

| Product                   | Weight<br>(lbs) | Connection | Tracking                  | Cost (USD) |
|---------------------------|-----------------|------------|---------------------------|------------|
| Requirements              | ≤ 2             | Wireless   | On-board                  | ≤ 1,500.00 |
| Valve Index [43]          | 1.78            | Wired      | Steam VR Base<br>Stations | 750.00     |
| Meta Quest 2 [44]         | 1.11            | Wireless   | On-board                  | 400.00     |
| HTC Vive XR Elite<br>[45] | 1.38            | Wireless   | On-board                  | 1,100.00   |
| Meta Quest Pro<br>[46]    | 1.59            | Wireless   | On-board                  | 1,000.00   |

### SOFTWARE







[50]

UNREAL ENGINE







### **VR ENVIRONMENT**







### ULTRASONIC SENSOR





### **BLUETOOTH GAMEPAD**



### **IMU READINGS**

Temperature 17.86 deg C

Accel X: -4.16 Y: -2.58 Z: 1.83 m/s^2

Gyro X: 7.18 Y: 2.94 Z: -1.00 radians/s

Temperature 17.80 deg C

Accel X: -9.07 Y: 1.48 Z: -2.40 m/s^2

Gyro X: -4.61 Y: 3.72 Z: 1.49 radians/s

Temperature 17.85 deg C

Accel X: -1.35 Y: 6.96 Z: -8.27 m/s^2

Gyro X: -20.01 Y: -2.94 Z: 3.02 radians/s



### TIMELINE





• Train and Go provides an • Train and Go is currently • Train and Go's first enhanced VR wheelchair still in the testing phase training experience

prototype will be completed soon

- [1] Mississippi State University, "Faculty," msstate.edu. https://www.ece.msstate.edu/people/faculty/ (Accessed: Mar. 25, 2023).
- [2] Mississippi State University, "Faculty," msstate.edu. https://www.cse.msstate.edu/people/faculty/ (Accessed: Mar. 25, 2023).
- [3] Centers for Disease Control and Prevention, "Disability impacts all of us," Cdc.gov. https://www.cdc.gov/ncbddd/disabilityandhealth/infographic-disability-impacts-all.html (Accessed: Jan. 31, 2023).
- [4] United Spinal Association, "NYC sidewalks finally complying with ADA," unitedspinal.org. https://unitedspinal.org/nyc-sidewalks-finally-complying-with-ada/ (Accessed Jan. 31, 2023).
- [5] L. Faria, "Review-cities VR," waytoomany.games. https://waytoomany.games/?s=cities+vr (Accessed: Jan. 31, 2023).
- [6] Disher, "Product constraints: The catalyst of great design," disher.com. https://www.disher.com/blog/product-constraints-can-catalyst-great-design/ (Accessed: Mar. 25, 2023).
- [7] A. Smith, "How fast do electric wheelchairs go?" Mobility Medical Supply. https://mobilitymedicalsupply.com/how-fast-do-electric-wheelchairs-go/. (Accessed: Feb. 16, 2023).
- [8] Degrees of protection provided by enclosures (IP Code), International Electrotechnical Commission, 2019. https://www.iec.ch/ip-ratings. (Accessed: Feb. 22, 2023).
- [9] Medium access control and physical layers, Institute of Electrical and Electronics Engineers 802.15.1, Institute of Electrical and Electronics Engineers, 2005. https://standards.ieee.org/ieee/802.15.1/3513/. (Accessed: Feb. 22, 2023).
- [10] Audio/video, information, and communication technology equipment Part 1: Safety requirements, International Electrotechnical Commission, 62368, International Electrotechnical Commission, 2018. https://webstore.iec.ch/publication/63964. (Accessed: Feb. 22, 2023).
- [11] Wheelchair accessory, Code of Federal Regulations Title 21 Section 890.3910, FDA, 2001. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=890.3910. (Accessed: Feb. 22, 2023).
- [12] "Permobil M5 corpus power wheelchair," medicaleshop.com. https://www.medicaleshop.com/permobil-m5-corpus-power-wheelchair.html (Accessed: Mar. 25, 2023).
- [13] "Adafruit ISM330DHCX 6 DoF IMU," adafruit.com. https://www.adafruit.com/product/4502 (Accessed: Mar. 03, 2023).

- [14] "Adafruit LSM6DSOX 6 DoF Accelerometer and Gyroscope," adafruit.com. https://www.adafruit.com/product/4438 (Accessed: Mar. 03, 2023).
- [15] "Adafruit LSM6DSO32 6-DoF Accelerometer and Gyroscope," adafruit.com. https://www.adafruit.com/product/4692 (Accessed: Mar. 03, 2023).
- [16] "Buy a Raspberry Pi Model B," raspberrypi.com. https://www.raspberrypi.com/products/raspberry-pi-4-model-b/ (Accessed: Mar. 03, 2023).
- [17] "ESP32 datasheet," adafruit.com. https://cdn-shop.adafruit.com/product-files/3269/esp32\_datasheet\_en\_0.pdf (Accessed: Mar. 03, 2023).
- [18] "AML-S905X-CC (Le Potato)," libre.computer. https://libre.computer/products/aml-s905x-cc/ (Accessed: Mar. 03, 2023).
- [19] "RCWL-1601 Ultrasonic Distance Sensor," digikey.com. https://www.digikey.com/en/products/detail/adafruit-industries-llc/4742/16584032 (Accessed: Mar. 03, 2023).
- [20] "US-100 Ultrasonic Distance Sensor," adafruit.com. https://www.adafruit.com/product/4019 (Accessed: Mar. 03, 2023).
- [21] "HC-SR04 Ultrasonic Distance Sensor," amazon.com. https://www.amazon.com/ACEIRMC-HC-SR04-Ultrasonic-Distance-ElecRightt/dp/B09J4BN46F/r (Accessed: Mar. 03, 2023).
- [22] "A02YYUW Ultrasonic Distance Sensor," digikey.com. https://www.digikey.com/en/products/detail/dfrobot/SEN0311/11202577 (Accessed: Mar. 03, 2023).
- [23] "Grove Ultrasonic Distance Sensor," seedstudio.com. https://www.seeedstudio.com/Grove-Ultrasonic-DistanceSensor.html (Accessed: Mar. 03, 2023).
- [24] "HC-SR04 distance sensing," microcontrollerelectronics.com. http://microcontrollerelectronics.com/distance-sensing/ (Accessed March 25, 2023).
- [25] "Tatoko Rumble Motor," amazon.com. https://www.amazon.com/tatoko-vibration-Waterproof-8000-16000RPM-toothbrush/dp/B07KYLZC1S/ (Accessed: Mar. 03, 2023).
- [26] "BestTong Rumble Motor," amazon.com. https://www.amazon.com/dp/B073JKQ9LN/ (Accessed: Mar. 03, 2023).
- [27] "BOJACK Rumble Motor," amazon.com https://www.amazon.com/dp/B09KBCY3FQ/ (Accessed: Mar. 03, 2023).
- [28] "Elegoo Mega Microcontroller," amazon.com. https://www.amazon.com/ELEGOO-ATmega2560-ATMEGA16U2-Arduino-Compliant/dp/B01H4ZDYCE/ (Accessed: Mar. 03, 2023).

- [29] "Shield Buddy Microcontroller," digikey.com
- https://www.digikey.com/en/products/detail/infineontechnologies/KITA2GTC375ARDSBTOBO1/13563717 (Accessed: Mar. 03, 2023).
- [30] "Arduino Mega Microcontroller," amazon.com. https://www.amazon.com/ARDUINO-MEGA-2560-REV3-A000067/dp/B0046AMGW0/ (Accessed: Mar. 03, 2023).
- [31] "HM-10 Bluetooth Module," amazon.com. https://a.co/d/dheFiz2 (Accessed: Mar. 03, 2023).
- [32] "Adafruit Feather Microcontroller with Bluetooth," adafruit.com. https://www.adafruit.com/product/4062 (Accessed: Mar. 03, 2023).
- [33] "Radio Master Battery," amazon.com. https://www.amazon.com/RadioMaster-5000mah-Control-Transmitter-Endurance/dp/B08DNRSKRP (Accessed: Mar. 03, 2023).
- [34] "Zeee 2S Lipo Battery," amazon.com. https://www.amazon.com/dp/B092CZGW2P (Accessed: Mar. 03, 2023).
- [35] "Razepony 2S Battery," amazon.com. https://www.amazon.com/dp/B0BHYTFNVN (Accessed: Mar. 03, 2023).
- [36] "HXJNLDC Battery," amazon.com. https://www.amazon.com/603040-Rechargeable-Lithium-Replacement-Electronic/dp/B09YQ2C1KR (Accessed: Mar. 03, 2023).
- [37] "YIPIN HEXHA Voltage Converter," amazon.com. https://www.amazon.com/dp/B0BS5ZCP1N (Accessed: Mar. 03, 2023).
- [38] "Drok Voltage Converter," amazon.com. https://www.amazon.com/DROK-Waterproof-Converter-Adjustable-Transformer/dp/B00C0KL1OM (Accessed: Mar. 03, 2023).
- [39] "Red Wolf Voltage Converter," amazon.com. https://www.amazon.com/dp/B0945X9JHK (Accessed: Mar. 03, 2023).
- [40] "Evemodel Power Rail," amazon.com. https://www.amazon.com/PCB007-Position-Distribution-Outputs-Voltage/dp/B07DW2C4ZB (Accessed: Mar. 03, 2023).
- [41] "OONO Power Rail," amazon.com. https://www.amazon.com/OONO-Position-Terminal-Distribution-Module/dp/B08TBXQ7H6 (Accessed: Mar. 03, 2023).
- [42] "HCDC Power Rail," amazon.com. https://www.amazon.com/dp/B0876W456F (Accessed: Mar. 03, 2023).
- [43] "Valve Index," amazon.com. https://www.amazon.com/Valve-Release-Headset-Stations-Controllers/dp/B07VPRVBFF/ (Accessed: Mar. 03, 2023).

- [44] "Meta Quest 2," amazon.com. https://www.amazon.com/Oculus-Quest-Advanced-All-One-Virtual/dp/B099VMT8VZ/ (Accessed: Mar. 03, 2023).
- [45] "HTC Vive XR Elite," amazon.com. https://www.amazon.com/Vive-Elite-Virtual-Reality-Headset-Controllers/dp/B0BQXDFLJ6/ (Accessed: Mar. 03, 2023).
- [46] "Meta Quest Pro," amazon.com. https://www.amazon.com/Meta-Quest-Pro-Oculus/dp/B09Z7KGTVW/ (Accessed: Mar. 03, 2023).
- [47] "Meta Quest Pro: Our most advanced new VR headset | meta store," meta.com. https://www.meta.com/quest/quest-pro/ (Accessed: Mar. 25, 2023).
- [48] "File:Meta Platforms Inc. logo.svg," wikimedia.org. https://commons.wikimedia.org/wiki/File:Meta\_Platforms\_Inc.\_logo.svg (Accessed: Mar. 25, 2023).
- [49] "Unreal engine branding," unrealengine.com. https://www.unrealengine.com/en-US/branding (Accessed: Mar. 25, 2023).
- [50] "Arduino home," arduino.cc. https://www.arduino.cc/ (Accessed: Mar. 25, 2023).