003793595

WPI Acc No: 1983-789832/ 198342

Touch and close fastener for work pad - comprises injection-moulded thermoplastics support part with integral hooked elements for direct connection

Patent Assignee: PAFILIS M (PAFI-I)

Inventor: PAFILIS M

Number of Countries: 001 Number of Patents: 002

Patent Family:

Patent No Kind Date Applicat No Kind Date Week
DE 3244410 A 19831013 DE 3244410 A 19821201 198342 B
DE 3244410 C 19860605 198623

Priority Applications (No Type Date): DE 82U8754 U 19820327

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

DE 3244410 A 20

Abstract (Basic): DE 3244410 A

The touch and close fastening is for connecting work pads to a carrier part. The carrier part is injection moulded of thermoplastic material with integral claw-like elements (4).

Each element is pref. in the form of a pin with a mushroom or hook-shaped head. The pins pref. have a relative spacing of at least 0.5 mm, a diameter of at least 0.1 mm and a length of at least 0.2 mm. The elements may be arranged in rows, those of one row being offset w.r.t. those of an adjacent row.

(1) BUNDESREPUBLIK **DEUTSCHLAND**

® Offenlegungsschrift ₍₁₎ DE 3324410 A1

DEUTSCHES PATENTAMT (21) Aktenzeichen:

P 33 24 410.3

2 Anmeldetag:

6. 7.83

(43) Offenlegungstag:

12. 1.84

(3) Unionspriorität:
(3) (3)

06.07.82 FR 8211835

(71) Anmelder:

Jaeger, 92303 Levallois-Perret, Hauts-de-Seine, FR

(74) Vertreter:

Wilhelms, R., Dipl.-Chem. Dr.rer.nat.; Kilian, H., Dipl.-Phys. Dr.rer.nat., Pat.-Anw., 8000 München 2 Erfinder:

Regnault, Serge Marcel, 75009 Paris, FR

(54) Elektrischer Mehrfacheinschalter

Der Einschalter gemäß der Erfindung ist aus einer Anzahl übereinanderliegender platten- bzw. blattförmiger Elemente (20, 40, 60) gebildet, die verformbare bauchige Flächen (21, 41, 61) tragen, die bei ihrer Verformung einen Kontakt schlleßen können. Durch ein einziges Betätigungselement (70, 80) erhält man aufeinanderfolgende Verformungen der bauchigen Flächen, wobei jede Fläche nach der Fläche, die inmittelbar darüber liegt, verformt wird und am Ende des Weges die Gesamtheit der Flächen verformt ist. (33 24 410)

PATENTANWÄLTE

EUROPEAN PATENT ATTORNEYS

5

10

"一个人,这样的一个

EUROPÄISCHE PATENTVERTRETER

MANDATAIRES EN BREVETS EUROPÉENS

DR. ROLF E. WILHELMS DR. HELMUT KILIAN

GEIBELSTRASSE 6 8000 MÜNCHEN 80

TELEFON (0.89) 47.40.73 *
TELEX 52.34.67 (wilp-d)
TELEGRAMME PATRANS MUNCHEN
TELECOPIER gr. 2 (0.89) 222.066

PH/HP 1699-DE

Jaeger
Levallois-Perret, Frankreich

Elektrischer Mehrfacheinschalter

Priorität: 6. Juli 1982 - FRANKREICH - Nr. 82 11 835

Patentansprüche

1. Elektrischer Einschalter, dadurch gekennzeichnet, daßer eine Anzahl von übereinander liegenden platten- bzw. blattartigen Elementen (20, 40, 60),
die mit verformbaren bauchigen Flächen (21, 41, 61) versehen sind, welche auf ihrer konkaven Seite ein für das
Schließen eines Kontakts bei der Verformung der bauchigen
Fläche eingerichtetes Leitungsmuster tragen, wobei die
bauchigen Flächen der einzelnen Elemente auf die gleiche
Achse zentriert sind, sowie eine einmal vorgesehene Betätigungseinrichtung (70), die während ihres Hubs aufeinanderfolgende Verformungen der bauchigen Flächen bewirkt, wobel
jede Fläche nach der unmittelbar davorliegenden verformt

wird und die Gesamtheit der Flächen am Ende des Hubs verformt ist, aufweist.

2. Einschalter nach Anspruch 1, dadurch gekennzeichnet, daß die verformbaren bauchigen Flächen Flächen mit abrupter Vorformung sind, derart, daß die Aufeinanderfolge der Verformungen der Flächen auf die Betätigungseinrichtung eine Folge taktiler Empfindungen überträgt.

10

15

- 3. Einschalter nach einem der Ansprüche 1 und 2, dadurch gekennzeich net, daß er ein Paar benachbarter verformbarer Flächen (21, 41) aufweist, die mit ihrer Konkavität die gleiche Richtung haben, wobei das Leitungsmuster der ersten verformbaren Fläche einen Kontakt mit einem Leitungsmuster schließt, das die gegenüberstehende Seite der anderen Fläche des Paares trägt.
- 4. Einschalter nach Anspruch 3, dadurch geken n20 zeichnet, daß die beiden verformbaren Flächen
 des Paares durch ein plattenartiges Abstandselement (30)
 getrennt sind, dessen Dicke (h₁) einen Wert im Bereich der
 Amplitude der Verformung hat.
- 5. Einschalter nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß er eine verformbare Fläche (41) aufweist, deren Leitungsmuster einen Kontakt mit einem Leitungsmuster schließt, das die gegenüberstehende Seite eines angrenzenden steifen plattenartigen Elements (50) trägt, gegen das die verformbare Fläche ihre Konkavität kehrt.
- 6. Einschalter nach Anspruch 5, dadurch geken nzeichnet, daß das steife Element (50) ein eingeschobenes bewegliches Element ist, das unter der Wirkung

der Betätigungseinrichtung niederdrückbar ist und zwei verformbare Flächen (41, 61) trennt, die beide ihre Kon-kavität diesem Element zukehren.

- 7. Einschalter nach Anspruch 6, dadurch gekennzeichnet, daß die Betätigungseinrichtung ein
 feststehendes Reaktionselement (81) aufweist, das die Verformung der zwischen diesem Element und dem eingeschobenen
 beweglichen plattenartigen Element angeordneten verformbaren Fläche (61) durch einen auf die Mitte dieser verformbaren Fläche ausgeübten Druck bewirkt.
 - 8. Einschalter nach Anspruch 7, dadurch gekennzeichnet, daß das Reaktionselement eine Überdicke mit einem Querschnitt (S₂), der unter demjenigen einer verformbaren Fläche liegt, und einer Höhe (h₂), die
 wenigstens gleich der Verformungsamplitude ist, ist.

Beschreibung

Die Erfindung bezieht sich auf einen elektrischen Schalter, bei welchem der Kontakt durch die Verformung einer verformbaren bauchigen Fläche bewirkt wird, die auf ihrer konkaven Seite ein Leitungsmuster trägt, das bei dieser Verformung einen Kontakt schließen kann.

5

10

15

20

25

30

35

Diese bauchige Fläche ist im allgemeinen eine Fläche mit abrupter Verformung wie dem Klappen beim Eindrücken einer Blase derart, daß bei diesem Vorgang eine abrupte und deutliche Kontaktherstellung erfolgt, die darüber hinaus auch noch von einer taktilen Empfindung für den Benutzer begleitet ist, der auf die Fläche direkt oder über einen Taster drückt.

Bislang bekannte Einschalter gestatten indessen nur die Herstellung eines einzigen Kontakts und arbeiten nach dem Prinzip "alles oder nichts", das heißt, Kontakt offen oder Kontakt geschlossen, je nachdem ob ein Knopf losgelassen oder niedergedrückt ist.

Demgegenüber gestattet der Einschalter gemäß der Erfindung, beispielsweise über einen einzigen vorgesehenen Drücker die Herstellung mehrerer aufeinanderfolgender Kontakte entsprechend dem Grad der Niederdrückung dieses Drückers, wobei alle Vorteile in obigem Sinne klappender Flächen erhalten bleiben (deutlicher Kontakt und taktile Empfindung). Außerdem kann man den Einschalter gemäß der Erfindung als "Überhub"-Einschalter verwenden, der wie ein herkömmlicher Einschalter funktioniert, aber mit der Möglichkeit, einen zusätzlichen Kontakt mit einem ausgeprägteren Niederdrücken des Drückers, ggf. mit einer größeren Kraft, zu schließen.

Der Einschalter umfaßt zu diesem Zweck eine Anzahl von übereinliegenden platten- bzw. blattartigen Elementen, die mit verformbaren bombierten bzw. bauchigen Flächen versehen

sind, die auf ihrer konkaven Seite ein Leitungsmuster tragen, das bei der Verformung der bauchigen Fläche einen Kontakt schließen kann, wobei die bauchigen Flächen der einzelnen Elemente auf die gleiche Achse zentriert sind, sowie eine einzige Betätigungseinrichtung, die bei ihrem Hub aufeinanderfolgende Verformungen der bauchigen Flächen bewirkt, wobei jede Fläche nach der Fläche verformt wird, die unmittelbar über ihr liegt, und die Gesamtheit der Flächen am Ende des Hubes verformt ist.

5

20

Vorzugsweise sind die verformbaren bauchigen Flächen Flächen mit abrupter Verformung, damit die Aufeinanderfolge der Verformungen der Flächen eine Aufeinanderfolge taktiler Empfindungen auf die Betätigungseinrichtung überträgt.

Im folgenden werden Ausführungsformen der Erfindung 15 anhand der beigefügten Zeichnung beschrieben. Auf dieser zeigen

Fign. 1 die verschiedenen Betätigungsphasen eines Einbis 4 schalters gemäß einer ersten Ausführungsform der Erfindung, und

Fign. 5 zwei vereinfachte Varianten dieser Ausführungsform. und 6

rig. 1 zeigt einen Einschalter, der aus einem Stapel verschiedener blatt- bzw. tafelartiger Elemente aufgebaut ist: Es finden sich von oben nach unten (die Begriffe "oben" und "unten" beziehen sich ausschließlich auf die Darstellung der Figur und sollen keine Einschränkung der Erfindung bedeuten) ein erstes Element 10 als Schutz und Festlegung für die darunterliegende Elemente, ein Element 20 mit einer ersten verformbaren bauchigen Fläche 21, ein ein Abstandsstück bildendes steifes Element 30, ein Element 40 mit einer zweiten verformbaren bauchigen Fläche 41, ein steifes Element 50 und ein Element 60 mit einer

dritten verformbaren bauchigen Fläche 61.

10

15

20

25

30

35

Die erste bauchige Fläche 21 ist mit ihrer Konvexität nach oben gekehrt. Die zweite bauchige Fläche 41 ist beispielsweise parallel zur ersten angeordnet, während die dritte bauchige Fläche 61 mit ihrer Konvexität nach unten gekehrt ist. Auf dieselbe Achse ausgerichtet sind die dreibauchigen Flächen dabei allerdings.

Die Betätigungsmittel für den Einschalter umfassen einen Drücker 70, der in der Mitte der ersten bauchigen Fläche 21 zur Anlage kommt, die in einer im ersten Element 10 vorgesehenen öffnung freiliegt. Zu den Mitteln gehört auch eine auf der Abstützung 80 vorgesehene überdicke 81. Der Querschnitt S1 des Drückers 70 und der Querschnitt S2 der überdicke 81 sind für Flächen 21 und 61 gleicher Abmessungen im wesentlichen gleich.

Die Figur 1 zeigt den Aufbau des Schalters in Ruhe. Wenn man de Drücker 70 niederdrückt, verformt sich die erste Fläche 21 in der in Fig. 2 angegebenen Weise. Die Unterseite der Fläche 21 berührt die Oberseite der Fläche 41, die in diesem Stadium nur wenig oder gar nicht verformt wird. Ein erster elektrischer Kontakt läßt sich erreichen, indem man die Seiten, die miteinander in Berührung kommen, mit elektrischen Leitern, beispielsweise in Form von Druckmustern auf den beiden Elementen 20 und 40, versieht.

Ein weiteres Niederdrücken des Drückers 70 (Fig. 3) verformt die Fläche 21 weiter nach unten, bis die Unterseite der zweiten verformbaren Fläche 41 mit der Oberseite des steifen Elements 50 in Berührung kommt. Leitungsmuster, die auf diesen beide miteinander in Berührung kommenden Flächen vorhanden sind, erlauben so die Herstellung eines zweiten elektrischen Kontakts.

Die Höhe h₁ des Abstandselements 30 ist im Bereich derjenigen der Verformung einer bauchigen Fläche gewählt, was ein Verformen der Fläche 41 ohne übermäßiges Niederdrücken der Drucktaste und damit ohne zu starke Verformung der

ersten Fläche 21 ermöglicht.

25

30

35

Wenn man den Drücker 70 noch weiter niederdrückt (Fig. 4), stützt sich dieser über die Flächen 21 und 41 am steifen Element 50 ab, was ein allgemeines Niederdrücken der Gesamtheit der Elemente 10 bis 60 bewirkt. Die untere Fläche 61, die mit ihrer Konvexität dem feststehenden Basisträger und der Überdicke 81 zugekehrt ist, findet sich dann durch diese gegen die Unterseite des steifen Elements 50 angelegt. Auf diese Weise läßt sich ein dritter Kontakt zwischen dieser Unterseite und der Oberseite der Fläche 61 herstellen.

Die Höhe h₂ der Überdicke ist zu einem Wert gewählt, der wenigstens gleich dem Wert der Verformung der Fläche 61 ist.

15 Fig. 5 zeigt eine vereinfachte Ausführungsform, die nur die beiden oberen bauchigen Flächen der Fig. 1 aufweist. Auch hier sind ein Stapel der Elemente 10 bis 40 und der Drücker 70 zu finden, der Stapel ruht jedoch auf einem steifen plattenförmigen Element 50', das im Unterschied zum 20 Element 50 der Fig. 1 nunmehr feststeht.

Fig. 6 zeigt eine weiteren Abwandlung mit zwei Kontakten, das heißt, verglichen mit Fig. 1, das die erste Fläche 21 tragende Element 20 und das Abstandselement 30 sind weggelassen.

Die verformbaren Flächen lassen sich beispielsweise ausgehend von Mylar-Folien gewinnen, auf denen Blasen ausgebildet worden sind und die aufgedruckte Leitungsmuster aufweisen. Die verschiedenen verformbaren Flächen können identische Eigenschaften (Verformungsamplitude und für das Einbauchen notwendige Kraft) haben, es können aber auch Flächen gewählt werden, die unterschiedliche mechanische Eigenschaften haben, wenn veränderbare Berührempfindungen erzielt werden sollen. Das kann beispielsweise bei Endschaltern der Fall sein, wo der Endkontakt (beispielsweise derjenige, der durch die Verformung der Fläche 41 hergestellt wird) dann einem auf den Drücker ausgeübten erhöhten

Druck entsprechen wird, um ein Schließen des Kontakts zur Unzeit zu vermeiden.

35 KI/s

H 01 H 13/52 6. Juli 1983 12. Januar 1984

