Derivatives of Multivariable Functions

17多元函数微分

将偏微分拓展到高维和任意方向

数学的终极目标是人类精神的荣誉。

The object of mathematics is the honor of the human spirit.

—— 卡尔·雅可比 (Carl Jacobi) | 普鲁士数学家 | 1804 ~ 1851

- numpy.meshgrid() 获得网格数据
- numpy.multiply() 向量或矩阵逐项乘积
- numpy.roots() 多项式求根
- numpy.sqrt() 平方根
- sympy.abc import x 定义符号变量 x
- sympy.diff() 求解符号导数和偏导解析式
- sympy.Eq() 定义符号等式
- sympy.evalf() 将符号解析式中未知量替换为具体数值
- sympy.plot implicit()绘制隐函数方程
- sympy.symbols() 定义符号变量

17.1 多元偏导: 二元到多元

回顾偏导

一个多变量的函数的偏导数,就是函数关于其中一个变量的导数,而保持其他变量恒定。白 话说,偏导数关注多元函数某个特定方向上的变化率。换个角度,一元函数导数这个工具改造成 偏导数后可以用在多元函数上。

下面以二元函数为例回顾偏导数定义。设 $f(x_1, x_2)$ 是定义在平面 \mathbb{R}^2 上的二元函数, $f(x_1, x_2)$ 在 点 (a, b) 的某一邻域内有定义。

图 1 (a) 网格面为 $f(x_1, x_2)$ 函数曲面,平行 x_1 轴在 $x_2 = b$ 切一刀得到浅蓝色剖面,偏导 $f_{x_1}(a,b)$ 就是浅蓝色剖面在 (a, b) 一点的切线斜率。该切线平行 x_1y 平面。

同理,如图 1 (b) 所示,平行于 x_2 轴在 $x_1 = a$ 切一刀,偏导 $f_{x_2}(a,b)$ 就是浅蓝色剖面在 (a,b) 一 点的切线斜率。该切线平行 x2y 平面。

图 1. f(x1, x2) 偏导定义,图片来自《数学要素》

向量形式

为了方便表达和运算,我们可以把上述二元函数在 x1 和 x2 方向上的偏导写成列向量的形式:

$$\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1} \\ \frac{\partial f(\mathbf{x})}{\partial x_2} \end{bmatrix}$$
(1)

其中, x 为列向量, $x = [x_1, x_2]^T$ 。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。 版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

一次函数

给定如下多元一次函数 f(x):

$$f(x) = \mathbf{w}^{\mathrm{T}} \mathbf{x} + b = \mathbf{x}^{\mathrm{T}} \mathbf{w} + b \tag{2}$$

其中, x 和 w 均为列向量:

$$\mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_D \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_D \end{bmatrix}$$
 (3)

(2) 展开得到大家熟悉的一次函数形式:

$$f(x) = w_1 x_1 + w_2 x_2 + \dots + w_D x_D + b \tag{4}$$

从空间角度来看,当 b = 0 时,上式代表的超平面通过原点,可以看做是线性空间; 当 $b \neq 0$ 时,超平面不过原点,上式可以视作仿射空间。

(2) 多元一次函数 f(x) 对 x 求一阶导,并写成列向量形式:

$$\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1} \\ \frac{\partial f(\mathbf{x})}{\partial x_2} \\ \vdots \\ \frac{\partial f(\mathbf{x})}{\partial x_D} \end{bmatrix} = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_D \end{bmatrix} = \mathbf{w}$$
(5)

本章后文会给上式一个新的名字——梯度向量。另外,请大家注意以下等价关系:

$$\frac{\partial \left(\mathbf{w}^{\mathsf{T}} \mathbf{x}\right)}{\partial \mathbf{x}} = \frac{\partial \left(\mathbf{x}^{\mathsf{T}} \mathbf{w}\right)}{\partial \mathbf{x}} = \frac{\partial \left(\mathbf{w} \cdot \mathbf{x}\right)}{\partial \mathbf{x}} = \frac{\partial \left(\mathbf{x} \cdot \mathbf{w}\right)}{\partial \mathbf{x}} = \frac{\partial \left\langle\mathbf{w}, \mathbf{x}\right\rangle}{\partial \mathbf{x}} = \mathbf{w}$$
(6)

二次函数

给定如下二次函数:

$$f(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} \mathbf{x} = x_1^2 + x_2^2 + \dots + x_D^2$$
 (7)

从几何角度来看,上式是多元空间的正圆抛物面。特别地, $f(x) = x^T x = c$ 时,上式代表 D 维正球体。

(7) 对向量x 求一阶导:

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

$$\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1} \\ \frac{\partial f(\mathbf{x})}{\partial x_2} \\ \vdots \\ \frac{\partial f(\mathbf{x})}{\partial x_D} \end{bmatrix} = \begin{bmatrix} 2x_1 \\ 2x_2 \\ \vdots \\ 2x_D \end{bmatrix} = 2\mathbf{x}$$
(8)

要是类比的话, $f(x) = x^Tx$ 相当于 $f(x) = x^2$ 。而上式相当于 f(x) 的一阶导数 f(x) = 2x。

(8) 等价于:

$$\frac{\partial \left(\mathbf{x}^{\mathsf{T}}\mathbf{x}\right)}{\partial \mathbf{x}} = \frac{\partial \left(\mathbf{x} \cdot \mathbf{x}\right)}{\partial \mathbf{x}} = \frac{\partial \left\langle\mathbf{x}, \mathbf{x}\right\rangle}{\partial \mathbf{x}} = \frac{\partial \left(\left\|\mathbf{x}\right\|_{2}^{2}\right)}{\partial \mathbf{x}} = 2\mathbf{x}$$

$$(9)$$

二次型

给定如下二次型:

$$f(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} \mathbf{Q} \mathbf{x} \tag{10}$$

(10) 对向量 x 求一阶导:

$$\frac{\partial \left(\mathbf{x}^{\mathsf{T}} \mathbf{Q} \mathbf{x}\right)}{\partial \mathbf{x}} = \left(\mathbf{Q} + \mathbf{Q}^{\mathsf{T}}\right) \mathbf{x} \tag{11}$$

▲注意, Q 为常数方阵。

如果 Q 为对称矩阵, (10) 对 x 一阶导数可以写成:

$$\frac{\partial \left(\mathbf{x}^{\mathsf{T}} \mathbf{Q} \mathbf{x}\right)}{\partial \mathbf{r}} = 2\mathbf{Q} \mathbf{x} \tag{12}$$

假设Q为对称矩阵,给定如下二次函数:

$$f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{\mathrm{T}} \mathbf{Q} \mathbf{x} + \mathbf{w}^{\mathrm{T}} \mathbf{x} + b \tag{13}$$

(13) 对 x 求一阶导:

$$\frac{\partial f(x)}{\partial x} = Qx + w \tag{14}$$

举个形似(13)的例子:

$$f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{\mathsf{T}} \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 4 \\ 5 \end{bmatrix}^{\mathsf{T}} \mathbf{x} + 6 \tag{15}$$

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

(15) 向量 x 求一阶导:

$$\frac{\partial f(x)}{\partial x} = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} x + \begin{bmatrix} 4 \\ 5 \end{bmatrix} \tag{16}$$

如下形式函数对向量x求一阶导:

$$\frac{\partial \left(\left(x - c \right)^{\mathsf{T}} Q \left(x - c \right) \right)}{\partial x} = 2Q \left(x - c \right)$$
(17)

其中,Q 为对称矩阵。

二阶偏导: 黑塞矩阵

黑塞矩阵 (Hessian matrix) 是一个多元函数的二阶偏导数构成的方阵,黑塞矩阵描述了函数的局部曲率。黑塞矩阵由德国数学家**奥托·黑塞** (Otto Hesse) 引入并以其命名。

假设有一实值函数 f(x),如果它的所有二阶偏导数都存在、并在定义域内连续,那么 f(x) 的 黑塞矩阵 H 为:

$$\boldsymbol{H} = \frac{\partial^{2} f}{\partial \boldsymbol{x} \partial \boldsymbol{x}^{\mathrm{T}}} = \nabla^{2} f(\boldsymbol{x}) = \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{D}} \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{D}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{D} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{D} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{D}^{2}} \end{bmatrix}$$

$$(18)$$

注意,
$$\frac{\partial^2 f}{\partial x_1 \partial x_2} = \frac{\partial}{\partial x_2} \left(\frac{\partial f}{\partial x_1} \right)$$
代表先对 x_1 、后对 x_2 二阶混合偏导。

(10) 中给定二次函数对向量x 求二阶导,获得黑塞矩阵:

$$\boldsymbol{H} = \frac{\partial^2 \left(\boldsymbol{x}^{\mathsf{T}} \boldsymbol{Q} \boldsymbol{x} \right)}{\partial \boldsymbol{x} \partial \boldsymbol{x}^{\mathsf{T}}} = \boldsymbol{Q} + \boldsymbol{Q}^{\mathsf{T}}$$
(19)

如果0为对称. (19)中黑塞矩阵为:

$$\boldsymbol{H} = \frac{\partial^2 \left(\boldsymbol{x}^{\mathrm{T}} \boldsymbol{Q} \boldsymbol{x} \right)}{\partial \boldsymbol{x} \partial \boldsymbol{x}^{\mathrm{T}}} = 2\boldsymbol{Q}$$
 (20)

以(15)为例,这个二元函数的黑塞矩阵为:

$$\boldsymbol{H} = \frac{\partial^2 f}{\partial \boldsymbol{x} \partial \boldsymbol{x}^{\mathrm{T}}} = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} \\ & & x_1 \to x_2 \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$$
(21)

本书后续会在优化问题中用到黑塞矩阵判断极值点。本节的内容可能会显得单调。本章后续将依托几何视角帮助读者理解本节内容。

17.2 梯度向量: 上山方向

我们给上节讨论的一阶偏导新名字——梯度向量 (gradient vector)。函数 f(x) 的梯度向量定义如下:

$$\operatorname{grad} f(\mathbf{x}) = \nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_D} \end{bmatrix}$$
(22)

梯度向量可以使用 grad() 作为运算符,也常使用**倒三角微分算子**∇, ∇ 也叫 Nabla 算子 (Nabla symbol)。

几何视角

从几何视角来看梯度向量,如图 2 所示,在坡面 P 点处放置一个小球,轻轻松开手一瞬间,小球沿着坡面最陡峭方向 (绿色箭头) 滚下。瞬间滚动方向在平面上的投影便是**梯度下降方向** (direction of gradient descent),也称"下山"方向。

数学中,下山方向的反方向即梯度向量方向,也称作"上山"方向。

图 2. 梯度方向原理

本书配套徽课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

二元函数

以二元函数为例, $f(x_1, x_2)$ 某一点 P 处梯度向量为:

$$\nabla f(\mathbf{x}_{p}) = \operatorname{grad} f(\mathbf{x}_{p}) = \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_{1}} \\ \frac{\partial f(\mathbf{x})}{\partial x_{2}} \end{bmatrix}_{\mathbf{x}_{p}}$$
(23)

P处于不同点时,可以得到**梯度向量场** (gradient vector field)。图 3 所示为某个函数梯度向量的分布。大家容易发现,梯度向量垂直所在位置等高线。某点梯度向量长度越长,即向量模越大,这说明该处越陡峭。相反,如果梯度向量模越小,这说明该点越平坦。特殊情况是,梯度向量为 θ 向量时,这一点便是驻点,该点切平面平行于水平面。

白话讲,把图3看成一幅地图的话,某点梯度向量指向的方向就是该点最陡峭的上山方向。 梯度向量的垂直方向就是该点等高线切线。沿着等高线规划的路径运动,高度不变。

图 3. 梯度向量场

下面我们来看三个例子。

第一个例子: 一次函数

给定二元一次 $f(x_1, x_2)$ 函数如下:

$$f(x_1, x_2) = x_1 + x_2 \tag{24}$$

如图 2 (a) 所示,这个函数在三维空间的形状是个平面。这个平面通过原点,可以视作向量空间。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

(24) 函数 f(x) 的梯度向量定义如下:

$$\nabla f\left(\mathbf{x}\right) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 (25)

观察上式,容易发现二元一次函数的梯度向量的方向和大小不随位置改变,具体如图 2 (b) 所示。不存在任何约束条件的话,这个平面不存在任何极值点。

→本书第19章会专门讲解直线、平面和超平面。

图 4. 平面的梯度向量场

第二个例子: 二次函数

 $f(x_1, x_2)$ 为二元二次函数,具体如下:

$$f(x_1, x_2) = x_1^2 + x_2^2 \tag{26}$$

图 5 (a) 告诉我们这个二元二次函数图像是个开口朝上的正圆抛物面,曲面显然存在最小值点,位于 (0,0)。

(26) 函数 f(x) 的梯度向量定义如下:

$$\nabla f\left(\mathbf{x}\right) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 2x_1 \\ 2x_2 \end{bmatrix} \tag{27}$$

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

观察图 5 (b), 容易发现越靠近 (0,0), 也就是最小值点附近, 曲面梯度向量的模越小。在 (0,0) 处,梯度向量为 θ 。也就是说,该点处 $f(x_1, x_2)$ 对 x_1 和 x_2 偏导数都为0。显然 θ 是函数的最小值 点。图 5 (b) 中不同点处梯度向量均垂直于等高线,指向背离最小值点,即上山方向。

如果我们现在处于曲面上某一点,沿着下山方向一步步行走,最终我们会到达最小值点 处。这个思路就是基于梯度的优化方法。当然,我们需要制定一个下山的策略,比如下山的步伐 怎么确定? 路径怎么规划? 怎么判定是否到达极值点? 不同的基于梯度的优化方法在具体下山策 略上有差别。这些内容,我们会在本系列丛书后续分册中讨论。

图 5. 正圆抛物面的向量场

第三个例子: 复合函数

给定 $f(x_1, x_2)$ 函数如下:

$$f(x_1, x_2) = x_1 \exp(-(x_1^2 + x_2^2))$$
 (28)

图 6 (a) 所示为函数曲面,它存在一个最大值点和一个最小值点。

函数 f(x) 的梯度向量定义如下:

$$\nabla f\left(\boldsymbol{x}\right) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \end{bmatrix} = \begin{bmatrix} -2x_1^2 \exp\left(-\left(x_1^2 + x_2^2\right)\right) + \exp\left(-\left(x_1^2 + x_2^2\right)\right) \\ -2x_1x_2 \exp\left(-\left(x_1^2 + x_2^2\right)\right) \end{bmatrix}$$
(29)

图 6 (b) 中,最大值点附近,梯度向量均指向最大值点。最小值点附近,梯度向量均背离最小 值点。

在最大值和最小值点处,梯度向量都是0向量。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。 版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 6. $x_1 \exp(-(x_1^2 + x_2^2))$ 的梯度向量场

请大家修改 Bk4_Ch17_01.py 并绘制图 4、图 5、图 6。

17.3 法向量: 垂直于切平面

对于 y = f(x) 函数,我们可以把它看做是等式 f(x) - y = 0。定义 F(x, y) 如下:

$$F(\mathbf{x}, y) = f(\mathbf{x}) - y \tag{30}$$

函数 F(x, y) 梯度向量为:

$$\nabla F(\mathbf{x}, \mathbf{y}) = \begin{bmatrix} \nabla f(\mathbf{x}) \\ -1 \end{bmatrix}$$
 (31)

这个梯度向量就是 f(x) 点 x 处曲面的法向量 n:

$$\boldsymbol{n} = \begin{bmatrix} \nabla f(\boldsymbol{x}) \\ -1 \end{bmatrix} \tag{32}$$

如图7所示,以二元函数f(x)为例,n 向水平面投影得到梯度向量 $\nabla f(x)$ 。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载:https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 7. n 向水平面投影得到梯度向量

图 8 左图所示为某个二元函数 f(x) 曲面上不同点处的法向量,这些法向量向 x_1x_2 平面投影便得到 f(x) 的梯度向量,具体如图 8 右图所示。这个视角非常重要,本书第 21 章还会继续用到。

图 8. 曲面法向量场投影得到梯度向量场

图 9 给出的是 (28) 中函数在不同点处的法向量,这些向量朝水平面投影便得到图 6 (b)。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 9. $x_1 \exp(-(x_1^2 + x_2^2))$ 的法向量场

Bk4_Ch17_02.py 绘制图9。

17.4 方向性微分: 函数任意方向的变化率

《数学要素》一册提到过,光滑曲面 $f(x_1, x_2)$ 某点的切线有无数条,如图 10 所示。而偏导数仅仅分析了其中两条切线的变化率,它们分别沿着 x_1 和 x_2 轴方向。

本节将介绍一个全新的数学工具——**方向性微分** (directional derivative),它可以分析光滑曲面 某点处不同方向切线的变化率。

图 10. 光滑曲面 ƒ(x1, x2) 某点的切线有无数条

以二元函数为例

二元函数 $f(x_1, x_2)$ 写作 f(x):

$$f(\mathbf{x}) = f(x_1, x_2) \tag{33}$$

 $P(x_1, x_2)$ 点处,任意偏离 P 点微小移动 ($\Delta x_1, \Delta x_2$) 可能导致 $f(\mathbf{x})$ 大小发生变化,函数值变化具体为:

$$\Delta f = f(x + \Delta x) - f(x) = f(x_1 + \Delta x_1, x_2 + \Delta x_2) - f(x_1, x_2)$$
(34)

如图 11 所示,曲面从 P 点移动到 Q 点高度变化就是上式中的 Δf 。

图 11. 曲面从 P 点移动到 Q 点对应位置变化

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

用一阶偏微分近似求解 Δf :

$$\Delta f = f(\mathbf{x} + \Delta \mathbf{x}) - f(\mathbf{x})$$

$$= \underbrace{f(x_1 + \Delta x_1, x_2 + \Delta x_2)}_{O} - \underbrace{f(x_1, x_2)}_{R} \approx \frac{\partial f(\mathbf{x})}{\partial x_1} \Delta x_1 + \frac{\partial f(\mathbf{x})}{\partial x_2} \Delta x_2$$
(35)

上式便是丛书之前讲过的二元函数泰勒一阶展开。如图 11 所示,上式相当于用二元一次函数斜面 (浅蓝色背景) 近似函数曲面,即:

$$\underbrace{f\left(x_{1} + \Delta x_{1}, x_{2} + \Delta x_{2}\right)}_{\varrho} \approx \underbrace{f\left(x_{1}, x_{2}\right) + \frac{\partial f\left(x\right)}{\partial x_{1}} \Delta x_{1} + \frac{\partial f\left(x\right)}{\partial x_{2}} \Delta x_{2}}_{\varrho} \tag{36}$$

上式左侧代表 Q 点高度,右侧代表 R 点高度。两者之差就是估算误差。

几何视角

图 12 为图 11 局部放大图,这张图更清晰地展示估算过程。

在 $P(x_1, x_2)$ 点处,二元函数曲面的高度为 $f(x_1, x_2)$ 。沿着蓝色斜面从 P 点运动到 R 点,我们把高度变化分成两步阶梯来看。沿着 x_1 方向上移动 Δx_1 带来的高度变化为 $\frac{\partial f(x)}{\partial x_1}\bigg|_{P}\Delta x_1$ 。类似地,在 x_2 方向上移动 Δx_2 带来的高度变化为 $\frac{\partial f(x)}{\partial x_2}\bigg|_{P}\Delta x_2$ 。两个高度变化之和便是对的 Δf 一阶逼近。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

(35) 可以写成两个向量内积关系:

$$\Delta f \approx \begin{bmatrix} \Delta x_1 \\ \Delta x_2 \end{bmatrix} \cdot \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1} \\ \frac{\partial f(\mathbf{x})}{\partial x_2} \end{bmatrix} = \begin{bmatrix} \Delta x_1 \\ \Delta x_2 \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1} \\ \frac{\partial f(\mathbf{x})}{\partial x_2} \end{bmatrix}$$
(37)

换个角度,向量 $(\Delta x_1, \Delta x_2)$ 决定了 P 点方向微分方向,如图 13 所示。

也就是说,有了向量 (Δx_1 , Δx_2),我们可以量化二元函数 $f(x_1, x_2)$ 在任意方向的函数变化,以及变化率。

图 13. x₁x₂平面上方向微分

单位向量

 x_1x_2 平面上,给定一个方向,用单位向量 ν 表示:

$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \tag{38}$$

令单位向量 v 为:

$$\mathbf{v} = \begin{bmatrix} \cos \theta_1 \\ \cos \theta_2 \end{bmatrix} \tag{39}$$

图 13 给出 θ_1 和 θ_2 角度定义。

对于上述二元函数, 定义方向性微分为:

$$\nabla_{\mathbf{v}} f(\mathbf{x}) = \mathbf{v} \cdot \nabla f(\mathbf{x}) = \mathbf{v}^{\mathsf{T}} \nabla f(\mathbf{x}) = \langle \mathbf{v}, \nabla f(\mathbf{x}) \rangle$$
(40)

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

展开得到方向导数和偏导之间关系为:

$$\nabla_{\mathbf{y}} f(\mathbf{x}) = \frac{\partial f(\mathbf{x})}{\partial x_1} \cos \theta_1 + \frac{\partial f(\mathbf{x})}{\partial x_2} \cos \theta_2 = \begin{bmatrix} \cos \theta_1 \\ \cos \theta_2 \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1} \\ \frac{\partial f(\mathbf{x})}{\partial x_2} \end{bmatrix}$$
(41)

(40) 也适用于多元函数。

不同方向

根据向量内积法则。(40) 可以写成:

$$\nabla_{v} f(\mathbf{x}) = \nabla f(\mathbf{x}) \cdot \mathbf{v}$$

$$= \|\nabla f(\mathbf{x})\| \cdot \|\mathbf{v}\| \cos(\theta)$$

$$= \|\nabla f(\mathbf{x})\| \cos(\theta)$$
(42)

其中, θ 为 $\nabla f(x)$ 和 v 之间夹角。

图 14 所示为 x₁x₂平面上六种不同方向导数情况。

如图 14 (a) 和 (b) 所示,若 θ = 90°,方向导数垂直于梯度向量,(42) 为 0。这说明沿着等高线 运动、函数值不会有任何变化。

如图 14 (c),若 θ = 180°, (42) 取得最小值。此时, ν 方向为梯度向量反方向,即下山方向。沿 着 v 运动瞬间, 函数值减小最快。

如图 14 (d), $\theta=0^\circ$,(42) 取得最大值。方向导数和梯度向量同向,对应该点处函数值增大最 快方向, 即上山方向。

当 θ 为锐角, (42) 大于 0。沿着 ν 运动瞬间, 函数变化大于 0, 如图 14 (e)。当 θ 为钝角, (42) 小于 0。沿着 ν 运动瞬间,函数变化小于 0,如图 14(f)。

特别地, $\mathbf{v} = [1, 0]^T$ 对应 $f(x_1, x_2)$ 对 x_1 偏导。 $\mathbf{v} = [0, 1]^T$ 对应 $f(x_1, x_2)$ 对 x_2 偏导。可见,方向性 微分比偏导更灵活。

方向导数可以用来研究多元函数在某一特定方向的函数变化率,机器学习和深度学习很多算 法在求解优化问题时都会用到方向导数这个重要的数学工具。

图 14. x₁x₂平面上六种方向导数情况

丛书《数学要素》第 17 章介绍泰勒展开 (Taylor series expansion)。本节将一元泰勒展开扩展 到多元函数应用。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。 版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套徽课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

一元函数泰勒展开

一元函数 f(x) 在展开点 x = a 处泰勒展开形式为:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

$$= f(a) + \frac{f'(a)}{1!} (x-a) + \frac{f''(a)}{2!} (x-a)^2 + \frac{f'''(a)}{3!} (x-a)^3 + \cdots$$
(43)

上式保留"常数 + 一阶导数"两个成分就是线性逼近:

$$f(x) \approx f(a) + f'(a)(x - a) \tag{44}$$

线性逼近

更一般情况,对于多元函数 f(x),当 x 足够靠近展开点 x_P 时,f(x) 函数值可以用泰勒一阶展 开逼近,如下式:

$$f(\mathbf{x}) \approx f(\mathbf{x}_p) + \nabla f(\mathbf{x}_p)^{\mathrm{T}} (\mathbf{x} - \mathbf{x}_p)$$

$$= f(\mathbf{x}_p) + \nabla f(\mathbf{x}_p)^{\mathrm{T}} \Delta \mathbf{x}$$
(45)

 x_P 为泰勒级数展开点 (expansion point of Taylor series), $\nabla f(x_p)$ 为多元函数 f(x) 在 x_P 处梯度向 量。

图 15 比较一元函数和二元函数线性逼近。一元线性逼近是用切线逼近曲线,二元线性逼近是 用切面逼近曲面。

图 15. 一元到二元线性逼近

二次逼近

多元函数 f(x) 泰勒二阶级数展开式对应的矩阵运算如下:

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

$$f(\mathbf{x}) \approx f(\mathbf{x}_{p}) + \nabla f(\mathbf{x}_{p})^{\mathrm{T}} \left(\mathbf{x} - \mathbf{x}_{p}\right) + \frac{1}{2} \left(\mathbf{x} - \mathbf{x}_{p}\right)^{\mathrm{T}} \nabla^{2} f(\mathbf{x}_{p}) \left(\mathbf{x} - \mathbf{x}_{p}\right)$$

$$= f(\mathbf{x}_{p}) + \nabla f(\mathbf{x}_{p})^{\mathrm{T}} \Delta \mathbf{x} + \frac{1}{2} \Delta \mathbf{x}^{\mathrm{T}} \nabla^{2} f(\mathbf{x}_{p}) \Delta \mathbf{x}$$

$$= f(\mathbf{x}_{p}) + \nabla f(\mathbf{x}_{p})^{\mathrm{T}} \Delta \mathbf{x} + \frac{1}{2} \Delta \mathbf{x}^{\mathrm{T}} \mathbf{H} \Delta \mathbf{x}$$

$$(46)$$

上式就是二次逼近。其中,H为黑塞矩阵。

二次曲面

本章最后讨论二次曲面在某点切面,即一次逼近。采用圆锥曲线一般式,令 $y = f(x_1, x_2)$:

$$y = f(x_1, x_2) = Ax_1^2 + Bx_1x_2 + Cx_2^2 + Dx_1 + Ex_2 + F$$
(47)

 $y = f(x_1, x_2)$ 写成矩阵运算式:

$$y = f\left(x_1, x_2\right) = \frac{1}{2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} 2A & B \\ B & 2C \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} D \\ E \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + F \tag{48}$$

构造函数 F(x1, x2, y):

$$F(x_1, x_2, y) = Ax_1^2 + Bx_1x_2 + Cx_2^2 + Dx_1 + Ex_2 + F - y$$
(49)

在三维空间中一点 $P(p_1, p_2, p_y)$, $F(x_1, x_2, y)$ 曲面法向量 \mathbf{n}_p 通过下式得到:

$$\boldsymbol{n}_{P} = \begin{bmatrix} \frac{\partial F}{\partial x_{1}} \\ \frac{\partial F}{\partial x_{2}} \\ \frac{\partial F}{\partial y} \end{bmatrix}_{(p_{1}, p_{2}, p_{y})} = \begin{bmatrix} 2Ap_{1} + Bp_{2} + D \\ Bp_{1} + 2Cp_{2} + E \\ -1 \end{bmatrix}$$
(50)

切面上任意一点 (x_1, x_2, y) 和切点 P 构成向量 p:

$$\boldsymbol{p} = \begin{bmatrix} x_1 - p_1 \\ x_2 - p_2 \\ y - p_y \end{bmatrix}$$
 (51)

p 垂直于 n_p , 因此两者向量内积为 0,得到如下等式:

$$(2Ap_1 + Bp_2 + D)(x_1 - p_1) + (Bp_1 + 2Cp_2 + E)(x_2 - p_2) - y + p_y = 0$$
(52)

整理得到切面解析式 $t(x_1, x_2)$:

$$t(x_1, x_2) = (2Ap_1 + Bp_2 + D)(x_1 - p_1) + (Bp_1 + 2Cp_2 + E)(x_2 - p_2) + p_y$$
(53)

另外, 以上切面解析式就是 P 点泰勒一次逼近:

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。 版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

$$t(x_1, x_2) = f(p_1, p_2) + \nabla f(p_1, p_2)^{\mathsf{T}} \begin{bmatrix} x_1 - p_1 \\ x_2 - p_2 \end{bmatrix}$$
 (54)

 $y = f(x_1, x_2)$ 在 P 点梯度向量:

$$\nabla f(p_1, p_2) = \begin{bmatrix} 2A & B \\ B & 2C \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \end{bmatrix} + \begin{bmatrix} D \\ E \end{bmatrix} = \begin{bmatrix} 2Ap_1 + Bp_2 + D \\ Bp_1 + 2Cp_2 + E \end{bmatrix}$$
 (55)

将 (55) 代入 (54), 同样可以得到 (53) 结果。

举个例子

给定二元函数 $y = f(x_1, x_2)$,

$$y = f(x_1, x_2) = -4x_1^2 - 4x_2^2$$
 (56)

将 A 点坐标 (0, -1.5, -9) 带入 (53), 得到 A 点处曲面切面解析式, 具体如下:

$$t(x_1, x_2) = 12x_2 + 9 (57)$$

图 16 (a) 所示为二次曲面和曲面上 A 点 (0, -1.5, -9) 切面。图 16 (b) 所示为 B 点 (-1.5, 0, -9) 曲面切面。

图 16. 二次凹曲面 A 点处切面

Bk4 Ch17 03.py 绘制图 16。

本章将一元函数微分推广到多元函数,并介绍了几个重要数学工具——梯度向量、黑塞矩阵、法向量、方向导数、一次泰勒逼近、二次泰勒逼近。本书后续将利用这些数学工具分析解决各种数学问题。

图 17. 总结本章重要内容的四副图

本章仅仅讨论了本书后续将会用到的矩阵微分法则。大家如果对这个话题感兴趣的话,推荐 大家参考 *The Matrix Cookbook*。下载地址为:

https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf