Example No.	Structure	APCI-MS
1297		442 (M + H)
1298		434 (M + H)
1299	CI CI F	442 (M + H)
1300		422 (M + H)
1301	N P S F F F	490 (M + H)

Example No.	Structure	APCI-MS
1302		440 (M + H)
1303		456 (M + H)
1304		422 (M + H)
1305		460 (M + H)
1306		472 (M + H)

Example No.	Structure	APCI-MS
1307	The state of the s	498 (M + H)
1308		464 (M + H)
1309		418 (M + H)
1310		539 (M + H)
1311		497 (M + H)

Example No.	Structure	APCI-MS
1312		558 (M + H)
1313		526 (M + H)
1314		450 (M + H)
1315		395 (M + H)
1316		553 (M + H)

Example No.	Structure	APCI-MS
1317	B B A	500 (M + H)
1318	CI POLICI	532 (M + H)
1319		450 (M+H)
1320		529 (M + H)
1321		515 (M + H)

Example No.	Structure	APCI-MS
1322		594 (M + H)
1323		473 (M+H)
1324		428 (M+H)
1325		450 (M+H)
1326		502 (M + H)

Example No.	Structure	APCI-MS
1327		508 (M + H)
1328		472 (M + H)
1329		476 (M + H)
1330		479 (M + H)
1331		446 (M + H)

Example No.	Structure	APCI-MS
1332	CH PHOH	420 (M + H)
1333		510 _. (M + H)
1334		454 (M + H)
1335		438 (M + H)
1336		492 (M + H)

Example No.	Structure	APCI-MS
1337		420 (M + H)
1338		404 (M + H)
1339		430 (M + H)
1340		448 (M + H)
1341		465 (M + H)

Example No.	Structure	APCI-MS
1342		434 (M + H)
1343		410 (M + H)
1344		587 (M + H)
1345		448 (M + H)
1346		510 (M + H)

Example No.	Structure	APCI-MS
1347		464 (M + H)
1348		432 (M + H)
1349		422 (M + H)
1350		434 (M + H)
1351		476 (M + H)

Example No.	Structure	APCI-MS
1352		418 (M+H)
1353		623 (M+H)
1354		618 (M+H)
1355		486 (M+H)
1356		463 (M+H)

Example No.	Structure	APCI-MS
1357	Br	482 (M + H)
1358		452 (M + H)
1359		454 (M + H)
1360		432 (M + H)
1361	Children by Color	482 (M + H)

Example No.	Structure	APCI-MS
1362		454 (M + H)
1363		502 (M + H)
1364		489 (M + H)
1365		328 (M + H)
1366		354 (M + H)

Example No.	Structure	APCI-MS
1367		396 (M+H)
1368		384 (M+H)
1369		356 (M + H)
1370		396 (M + H)
1371		384 (M + H)

Example No.	Structure	APCI-MS
1372		418 (M + H)
1373	CH CH	420 (M + H)
1374		460 (M+H)
1375	Br Br	444 (M+H)
1376		476 (M + H)

Example No.	Structure	APCI-MS
1377		521 (M + H)
1378		416 (M + H)
1379	Br S Br	538 (M + H)
1380		419 (M + H)
1381	Br Br	522 (M + H)

Example No.	Structure	APCI-MS
1382		492 (M + H)
1383		472 (M + H)
1384		429 (M + H)
1385		622 (M + H)
1386		545 (M+H)

Example No.	Structure	APCI-MS
1387		555 (M+H)
1388		466 (M + H)
1389		480 (M + H)
1390		482 (M+H)
1391		523 (M+H)

Example No.	Structure	APCI-MS
1392		480 (M + H)
1393		520 (M + H)
1394		573 (M+H)
1395		573 (M + H)
1396		627 (M + H)

Example No.	Structure	APCI-MS
1397		613 (M + H)
1398		532 (M + H)
1399		512 (M+H)
1400		391 (M+H)
1401		510 (M+H)

Example No.	Structure	APCI-MS
1402		633 (M + H)
1403		531 (M + H)
1404		468 (M + H)
1405		452 (M + H)
1406		468 (M + H)

Example No.	Structure	APCI-MS
1407		503 (M + H)
1408		523 (M + H)
1409		482 (M + H)
1410		494 (M + H)
1411		482 (M + H)

Example No.	Structure	APCI-MS
1412		531 (M + H)
1413		550 (M + H)
1414		536 (M + H)
1415		588 (M+H)
1416		508 (M + H)

Example No.	Structure	APCI-MS
1417		519 (M + H)
1418		488 (M + H)
1419		435 (M+H)
1420		479 (M+H)
1421		487 (M+H)

Example No.	Structure	APCI-MS
1422		501 (M + H)
1423	CH S ON	426 (M + H)
1424		494 (M + H)
1425		568 (M+H)
1426		660 (M+H)

Example No.	Structure	APCI-MS
1427		460 (M + H)
1428		424 (M + H)
1429		555 (M + H)
1430		427 (M + H)
1431		444 (M + H)

Example No.	Structure	APCI-MS
1432		435 (M + H)
1433		421 (M + H)
1434		451 (M+H)
1435		462 (M + H)
1436		512 (M+H)

Example No.	Structure	APCI-MS
1437		451 (M + H)
1438		462 (M + H)
1439	F F F F F F F F F F F F F F F F F F F	480 (M + H)
1440		439 (M+H)
1441		449 (M + H)

Example No.	Structure	APCI-MS
1442		505 (M + H)
1443 _		539 (M + H)
1444		487 (M + H)
1445		488 (M+H)
1446		565 (M+H)

Example No.	Structure	APCI-MS
1447	CI CI	492 (M + H)
1448	CT THE STATE OF TH	442 (M + H)
1449		516 (M+H)
1450		465 (M + H)
1451		472 (M + H)

Example No.	Structure	APCI-MS
1452	CI CI	458 (M + H)
1453		466 (M + H)
1454		450 (M + H)
1455		480 (M + H)
1456		518 (M + H)

Example No.	Structure	APCI-MS
1457	Ton ton	532 (M + H)
1458		580 (M + H)
1459	C C C C C C C C C C C C C C C C C C C	452 (M + H)
1460		498 (M + H)
1461		409 (M+H)

Example No.	Structure	APCI-MS
1462		563 (M + H)
1463	CT CH	420 (M + H)
1464		535 (M+H)
1465		516 (M+H)
1466		476 (M+H)

Example No.	Structure	APCI-MS
1467		472 (M + H)
1468		487 (M + H)
1469		548 (M + H)
1470	он 0-1-0	512 (M + H)
1471		473 (M + H)

Example No.	Structure	APCI-MS
1472		648 (M + H)
1473		591 (M + H)
1474	CT N CH	645 (M+H)
1475		531 (M+H)
1476		619 (M+H)

Example No.	Structure	APCI-MS
1477		529 (M + H)
1478		563 (M+H)
1479		537 (M+H)
1480		540 (M+H)
1481	# C o F F	579 (M + H)

Example No.	Structure	APCI-MS
1482	J. H. Olio.	463 (M + H)
1483		449 (M + H)
1484	OH OH	432 (M + H)
1485		482 (M+H)
1486		482 (M + H)

Example No.	Structure	APCI-MS
1487		505 (M + H)
1488		516 (M + H)
1489		560 (M+H)
1490 -		423 (M+H)
1491		405 (M+H)

Example No.	Structure	APCI-MS
1492		534 (M + H)
1493		526 (M + H)
1494		526 (M + H)
1495		510 (M+H)
1496		498 (M + H)

Example No.	Structure	APCI-MS
1497	CT HO	632 (M + H)
1498		570 (M + H)
1499	CC CS S OH	590 (M + H)
1500	CI C	618 (M+H)
1501	CI IID	658 (M + H)

Example No.	Structure	APCI-MS
1502		672 (M + H)
1503		638 (M + H)
1504		612 (M+H)
1505		624 (M + H)
1506	HO CI	590 (M + H)

Example No.	Structure	APCI-MS
1507		604 (M + H)
1508		598 (M + H)
1509	N HO C	574 (M+H)
1510		424 (M + H)
1511	CI CI	508 (M + H)

Example No.	Structure	APCI-MS
1512		474 (M + H)
1513		474 (M + H)
1514		474 (M + H)
1515		490 (M+H)
1516		490 (M+H)

Example No.	Structure	APCI-MS
1517		444 (M + H)
1518		438 (M + H)
1519		483 (M + H)
1520		535 (M+H)
1521		510 (M+H)

Example No.	Structure	APCI-MS
1522		601 (M + H)
1523		496 (M+H)
1524	OH OH	420 (M + H)
1525		498 (M + H)
1526		521 (M + H)

Example No.	Structure	APCI-MS
1527		542 (M + H)
1528		466 (M + H)
1529		480 (M+H)
1530		583 (M+H)
1531		556 (M+H)

Example No.	Structure	APCI-MS
1532		464 (M + H)
1533		434 (M + H)
1534	CH CH	434 (M+H)
1535		436 (M + H)
1536		418 (M + H)

Example No.	Structure	APCI-MS
1537		438 (M + H)
1538		446 (M + H)
1539		464 (M+H)
1540		430 (M + H)
1541		478 (M + H)

Example No.	Structure	APCI-MS
1542		575 (M + H)
1543		506 (M + H)
1544		476 (M + H)
1545		564 (M+H)
1546		478 (M + H)

Example No.	Structure	APCI-MS
1547		396 (M.+ H)
1548		410 (M + H)
1549		410 (M+H)
1550		410 (M + H)
1551		370 (M+H)

Example No.	Structure	APCI-MS
1552	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	410 (M + H)
1553		432 (M + H)
1554	The state of the s	474 (M + H)
1555		458 (M + H)
1556		490 (M + H)

Example No.	Structure	APCI-MS
1557		535 (M + H)
1558		430 (M + H)
1559	N Br	552 (M + H)
1560		433 (M+H)
1561	Dr. Br	536 (M + H)

Example No.	Structure	APCI-MS
1562		506 (M + H)
1563		429 (M + H)
1564		486 (M + H)
1565		443 (M + H)
1566		636 (M + H)

Example No.	Structure	APCI-MS
1567	Br Co	705 (M+H)
1568		559 (M+H)
1569		569 (M + H)
1570		480 (M+H)
1571		494 (M + H)

Example No.	Structure	APCI-MS
1572	HO	496 (M+H)
1573		537 (M+H)
1574	(1) HO HO	494 (M+H)
1575		534 (M+H)
1576		587 (M+H)

Example No.	Structure	APCI-MS
1577		587 (M + H)
1578		523 (M + H)
1579		627 (M + H)
1580		627 (M+H)
1581		526 (M + H)

Example No.	Structure	APCI-MS
1582		524 (M + H)
1583		564 (M + H)
1584		647 (M+H)
1585		545 (M+H)
1586		671 (M+H)

Example No.	Structure	APCI-MS
1587		482 (M + H)
1588		466 (M + H)
1589		528 (M+H)
1590		482 (M + H)
1591		517 (M+H)

Example No.	Structure	APCI-MS
1592		537 (M+H)
1593		496 (M + H)
1594		508 (M+H)
1595		496 (M+H)
1596	dino.	564 (M+H)

Example No.	Structure	APCI-MS
1597		550 (M + H)
1598		602 (M + H)
1599		522 (M + H)
1600		533 (M+H)
1601		468 (M+H)

Example No.	Structure	APCI-MS
1602		502 (M + H)
1603		449 (M + H)
1604		493 (M+H)
1605		515 (M+H)
1606	OH CHAPTER SHOW	440 (M + H)

Example No.	Structure	APCI-MS
1607		508 (M + H)
1608		582 (M+H)
1609		674 (M+H)
1610		474 (M+H)
1611		548 (M - H)

Example No.	Structure	APCI-MS
1612		438 (M + H)
1613		569 (M + H)
1614		441 (M + H)
1615		458 (M + H)
1616		449 (M+H)

Example No.	Structure	APCI-MS
1617		435 (M + H)
1618		465 (M + H)
1619		476 (M + H)
1620	F F F	526 (M+H)
1621		465 (M+H)

Example No.	Structure	APCI-MS
1622		476 (M + H)
1623		494 (M + H)
1624		453 (M + H)
1625		463 (M+H)
1626		519 (M+H)

Example No.	Structure	APCI-MS
1627		553 (M+H)
1628		501 (M+H)
1629		458 (M + H)
1630	HO	502 (M + H)
1631		579 (M + H)

Example No.	Structure	APCI-MS
1632		506 (M + H)
1633	C C C F	456 (M + H)
1634		530 (M + H)
1635		479 (M+H)
1636		590 (M+H)

Example No.	Structure	APCI-MS
1637	CI C	486 (M + H)
1638		472 (M + H)
1639		480 (M + H)
1640		464 (M + H)
1641		494 (M + H)

Example No.	Structure	APCI-MS
1642		532 (M + H)
1643	H H H H H H H H H H H H H H H H H H H	546 (M + H)
1644		608 (M+H)
1645		438 (M+H)
1646		466 (M + H)

Example No.	Structure	APCI-MS
1647		512 (M + H)
1648		423 (M+H)
1649		577 (M+H)
1650	HOO	434 (M + H)
1651		549 (M+H)

Example No.	Structure	APCI-MS
1652		530 (M + H)
1653		490 (M + H)
1654		486 (M + H)
1655		501 (M+H)
1656		562 (M + H)

Example No.	Structure	APCI-MS
1657		487 (M + H)
1658		660 (M + H)
1659		605 (M+H)
1660		662 (M + H)
1661		696 (M+H)

Example No.	Structure	APCI-MS
1662	ir of o	639 (M + H)
1663		659 (M + H)
1664	HO CO	647 (M + H)
1665	+	633 (M+H)
1666		543 (M + H)

Example No.	Structure	APCI-MS
1667		577 (M + H)
1668		551 (M+H)
1669		554 (M+H)
1670		477 (M + H)
1671		463 (M+H)

Example No.	Structure	APCI-MS
1672	OH OH	446 (M + H)
1673		496 (M + H)
1674		496 (M+H)
1675		519 (M + H)
1676		530 (M + H)

Example No.	Structure	APCI-MS
1677		574 (M+H)
1678		437 (M + H)
1679	HIN CO	419 (M+H)
1680		548 (M + H)
1681		672 (M+H)

Example No.	Structure	APCI-MS
1682		540 (M + H)
1683		540 (M + H)
1684		524 (M + H)
1685		512 (M + H)
1686		632 (M + H)

Example No.	Structure	APCI-MS
1687		646 (M + H)
1688		648 (M+H)
1689		584 (M + H)
1690		632 (M + H)
1691		672 (M + H)

Example No.	Structure	APCI-MS
1692		686 (M + H)
1693		652 (M + H)
1694		626 (M+H)
1695		638 (M + H)
1696		618 (M + H)

Example No.	Structure	APCI-MS
1697	of or o	612 (M + H)
1698		588 (M+H)
1699		624 (M+H)
1700		438 (M+H)
1701	CI CI	522 (M+H)

Example No.	Structure	APCI-MS
1702		488 (M + H)
1703		488 (M+H)
1704		488 (M+H)
1705		504 (M+H)
1706		504 (M + H)

Example No.	Structure	APCI-MS
1707		458 (M + H)
1708		452 (M + H)
1709		497 (M + H)
1710		549 (M + H)
1711	CH CH CH	524 (M + H)

Example No.	Structure	APCI-MS
1712		615 (M+H)
1713		510 (M+H)
1714	OH OH	434 (M + H)
1715		512 (M + H)
1716		535 (M+H)

Example No.	Structure	APCI-MS
1717		556 (M + H)
1718		480 (M+H)
1719		494 (M + H)
1720		597 (M + H)
1721		570 (M+H)

Example No.	Structure	APCI-MS
1722		478 (M + H)
1723		448 (M + H)
1724		448 (M + H)
1725		450 (M + H)
1726		432 (M + H)

Example No.	Structure	APCI-MS
1727		452 (M + H)
1728		460 (M + H)
1729		478 (M + H)
1730		444 (M + H)
1731		492 (M + H)

Example No.	Structure	APCI-MS
1732	CH CH	524 (M + H)
1733		589 (M + H)
1734	H CH CH	520 (M+H)
1735		490 (M + H)
1736		563 (M+H)

Example No.	Structure	APCI-MS
1737		471 (M + H)
1738		578 (M+H)
1739		410 (M+H)
1740		424 (M+H)
1741	The second secon	424 (M+H)

Example No.	Structure	APCI-MS
1742		424 (M + H)
1743		447 (M + Na)
1744		384 (M+H)
1745		424 (M + H)
1746		434 (M+H)

Example No.	Structure	APCI-MS
1747		472 (M + H)
1748		520 (M + H)
1749		514 (M+H)
1750	A PART OF THE PART	470 (M + H)
1751	THE STATE OF THE S	500 (M + H)

Example No.	Structure	APCI-MS
1752		482 (M + H)
1753		502 (M + H)
1754	C C C C C C C C C C C C C C C C C C C	490 (M + H)
1755	CI C	426 (M + H)
1756		683 (M+H)

Example No.	Structure	APCI-MS
1757		537 (M+H)
1758		588 (M+H)
1759	CI C	460 (M + H)
1760		477 (M+H)
1761		447 (M + H)

Example No.	Structure	APCI-MS
1762		509 (M+H)
1763		438 (M + H)
1764		464 (M + H)
1765	HO O	450 (M+H)
1766		383 (M+H)

Example No.	Structure	APCI-MS
1767		476 (M + H)
1768	OH OH	396 (M + H)
1769		434 (M+H)
1770		416 (M + H)
1771		470 (M + H)

Example No.	Structure	APCI-MS
1772		410 (M + H)
1773		442 (M + H)
1774		394 (M + H)
1775	CI. M.	461 (M + H)
1776	CH CH	476 (M + H)

Example No.	Structure	APCI-MS
1777	FF FF	510 (M + H)
1778		544 (M + H)
1779		380 (M+H)
1780	CH OH	437 (M + H)
1781		464 (M + H)

Example No.	Structure -	APCI-MS
1782		394 (M + H)
1783		546 (M + H)
1784		519 (M + H)
1785		542 (M + H)
1786		624 (M + H)

Example No.	Structure	APCI-MS
1787	No the second se	366 (M + H)
1788	S Br	460 (M+H)
1789		469 (M+H)
1790		450 (M+H)
1791		456 (M + H)

Example No.	Structure	APCI-MS
1792		430 (M + H)
1793		456 (M + H)
1794		456 (M+H)
1795	N N N N N N N N N N N N N N N N N N N	500 (M+H)
1796	O NO OH	537 (M + Na)

Example No.	Structure	APCI-MS
1797	CH CH COH COH	537 (M + Na)
1798	Br OH	548 (M + H)
1799	THE HOLD THE	504 (M + H)
1800	N H H	644 (M + H)
1801	CAN HOHOW	436 (M+H)

Example No.	Structure	APCI-MS
1802	HO	410 (M + H)
1803	CHAPTER OF OF	422 (M + H)
1804	OH OH	467 (M + H)
1805	CHINA CHANGE	406 (M + H)
1806		406 (M + H)

Example No.	Structure	APCI-MS
1807	CAN SHOW OH	440 (M - H)
1808	O. HO	437 (M + H)
1809		408 (M+H)
1810		404 (M + H)
1811		404 (M + H)

Example No.	Structure	APCI-MS
1812		422 (M + H)
1813		453 (M+H)
1814		433 (M+H)
1815		429 (M + H)
1816		429 (M + H)

Example No.	Structure	APCI-MS
1817		415 (M+H)
1818		404 (M + H)
1819		471 (M + H)
1820		433 (M + H)
1821		569 (M + H)

Example No.	Structure	APCI-MS
1822		415 (M+H)
1823		408 (M+H)
1824	CI CI	510 (M+H)
1825	CC H	525 (M + H)
1826		541 (M+H)

Example No.	Structure	APCI-MS
1827		555 (M + H)
1828		578 (M + H)
1829		548 (M + H)
1830		526 (M + H)
1831		544 (M + H)

Example No.	Structure	APCI-MS
1832		528 (M + H)
1833		476 (M + H)
1834	F.F.	456 (M + H)
1835		498 (M+H)
1836		450 (M + H)

Example No.	Structure	APCI-MS
1837		451 (M + H)
1838		460 (M + H)
1839		464 (M + H)
1840		450 (M + H)
1841	Br Br	562 (M + H)

Example No.	Structure	APCI-MS
1842		518 (M + H)
1843		512 (M + H)
1844		442 (M + H)
1845		542 (M+H)
1846		424 (M + H)

Example No.	Structure	APCI-MS
1847		530 (M + H)
1848		581 (M + H)
1849		581 (M+H)
1850		451 (M+H)
1851		508 (M + H)

Example No.	Structure	APCI-MS
1852		518 (M + H)
1853		512 (M+H)
1854		543 (M+H)
1855		569 (M+H)
1856		452 (M + H)

Example No.	Structure	APCI-MS
1857		433 (M + H)
1858		601 (M+H)
1859		481 (M + H)
1860		542 (M + H)
1861	F CI	534 (M+H)

Example No.	Structure	- APCI-MS
1862		434 (M+H)
1863		502 (M+H)
1864		576 (M + H)
1865		466 (M+H)
1866		436 (M+H)

Example No.	Structure	APCI-MS
1867		436 (M + H)
1868		466 (M + H)
1869		432 (M + H)
1870	HO NO	436 (M + H)
1871		429 (M + H)

Example No.	Structure	APCI-MS
1872		380 (M + H)
1873		391 (M + H)
1874		498 (M + H)
1875		446 (M+H)
1876		465 (M + H)

Example No.	Structure	APCI-MS
1877		518 (M + H)
1878		377 (M + H)
1879		377 (M+H)
1880		476 (M + H)
1881		491 (M+H)

Example No.	Structure	APCI-MS
1882		427 (M + H)
1883		536 (M + H)
1884		524 (M + H)
1885		448 (M + H)
1886		478 (M+H)

Example No.	Structure	APCI-MS
1887		510 (M + H)
1888		422 (M + H)
1889		464 (M + H)
1890		486 (M + H)
1891		462 (M + H)

Example No.	Structure	APCI-MS
1892		400 (M+H)
1893		478 (M + H)
1894		418 (M+H)
1895		448 (M+H)
1896		458 (M+H)

Example No.	Structure	APCI-MS
1897		522 (M + H)
1898		492 (M + H)
1899	Br Br	600 (M+H)
1900		472 (M + H)
1901		472 (M + H)

Example No.	Structure	APCI-MS
1902		468 (M + H)
1903		460 (M + H)
1904		472 (M + H)
1905		406 (M + H)
1906	C C C C C C C C C C C C C C C C C C C	446 (M + H)

Example No.	Structure	APCI-MS
1907		480 (M + H)
1908		404 (M + H)
1909		472 (M + H)
1910		486 (M + H)
1911		437 (M + H)

Example No.	Structure	APCI-MS
1912		432 (M + H)
1913		460 (M + H)
1914		474 (M+H)
1915	HO HO	420 (M+H)
1916		432 (M+H)

Example No.	Structure	APCI-MS
1917	CHAPTER STATE OF THE STATE OF T	480 (M + H)
1918		444 (M + H)
1919		478 (M + H)
1920		512 (M + H)
1921		392 (M + H)

Example No.	Structure	APCI-MS
1922		403 (M + H)
1923		476 (M + H)
1924		447 (M + H)
1925		446 (M + H)
1926		382 (M+H)

Example No.	Structure	APCI-MS
1927		342 (M + H)
1928		380 (M + H)
1929		370 (M+H)
1930		482 (M + H)
1931		442 (M + H)

Example No.	Structure	APCI-MS
1932		519 (M + H)
1933		505 (M+H)
1934		429 (M + H)
1935		432 (M + H)
1936		418 (M + H)

Example No.	Structure	APCI-MS
1937		588 (M + H)
1938		468 (M+H)
1939	HO	443 (M+H)
1940		434 (M + H)
1941	Çi.	500 (M+H)

Example No.	Structure	APCI-MS
1942		530 (M + H)
1943		506 (M + H)
1944		414 (M + H)
1945		442 (M + H)
1946		448 (M + H)

Example No.	Structure	APCI-MS
1947		474 (M + H)
1948		461 (M + H)
1949		509 (M+H)
1950		437 (M + H)
1951		427 (M + H)

Example No.	Structure	APCI-MS
1952		444 (M + H)
1953		460 (M + H)
1954		447 (M + H)
1955		456 (M + H)
1956		479 (M + H)

Example No.	Structure	APCI-MS
1957		469 (M + H)
1958		440 (M + H)
1959		476 (M+H)
1960		453 (M+H)
1961		552 (M+H)

Example No.	Structure	APCI-MS
1962		500 (M + H)
1963		554 (M + H)
1964		428 (M+H)
1965	P F F	538 (M+H)
1966		448 (M + H)

Example No.	Structure	APCI-MS
1967	Property of the second	486 (M + H)
1968	Br Br	534 (M+H)
1969		528 (M+H)
1970		484 (M + H)
1971	N H CH	514 (M+H)

Example No.	Structure	APCI-MS
1972		496 (M + H)
1973	N Br CoH	592 (M + H)
1974		516 (M+H)
1975		504 (M+H)
1976	HO CO	440 (M + H)

Example No.	Structure	APCI-MS
1977		697 (M + H)
1978		551 (M + H)
1979		602 (M + H)
1980		474 (M + H)
1981		491 (M + H)

Example No.	Structure	APCI-MS
1982	CI CI	523 (M + H)
1983		452 (M + H)
1984		478 (M + H)
1985	N HO HO	464 (M + H)
1986		397 (M + H)

Example No.	Structure	APCI-MS
1987		454 (M - H)
1988		490 (M + H)
1989	OH OH	410 (M + H)
1990		448 (M + H)
1991		430 (M+H)

Example No.	Structure	APCI-MS
1992		484 (M + H)
1993		424 (M + H)
1994		456 (M + H)
1995		408 (M+H)
1996		475 (M+H)

Example No.	Structure	APCI-MS
1997		490 (M + H)
1998		524 (M + H)
1999		558 (M+H)
2000		394 (M+H)
2001	N HO CH	451 (M + H)

Example No.	Structure	APCI-MS
2002		478 (M + H)
2003		408 (M + H)
2004		560 (M + H)
2005		533 (M+H)
2006	S S S S S S S S S S S S S S S S S S S	556 (M + H)

Example No.	Structure	APCI-MS
2007		638 (M + H)
2008		380 (M + H)
2009	The state of the s	474 (M + H)
2010		483 (M + H)
2011	CHAPTER OF OH	464 (M + H)

Example No.	Structure	APCI-MS
2012		470 (M + H)
2013		444 (M + H)
2014		470 (M + H)
2015		487 (M + H)
2016		470 (M + H)

Example No.	Structure	APCI-MS
2017		514 (M + H)
2018		527 (M - H)
2019		562 (M + H)
2020		518 (M + H)
2021		658 (M + H)

Example No.	Structure	APCI-MS
2022		466 (M + H)
2023		450 (M + H)
2024	OH F	424 (M + H)
2025		436 (M + H)
2026		420 (M + H)

Example No.	Structure	APCI-MS
2027		420 (M + H)
2028		456 (M + H)
2029		451 (M + H)
2030		422 (M + H)
2031		418 (M + H)

Example No.	Structure	APCI-MS
2032		418 (M + H)
2033		436 (M + H)
2034		467 (M + H)
2035	N N N N N N N N N N N N N N N N N N N	443 (M + H)
2036		443 (M + H)

Example No.	Structure	APCI-MS
2037		429 (M + H)
2038		418 (M + H)
2039		485 (M+H)
2040		447 (M + H)
2041		583 (M+H)

Example No.	Structure	APCI-MS
2042		536 (M + H)
2043		429 (M + H)
2044		422 (M + H)
2045	BY NH	507 (M+H)
2046		524 (M + H)

Example No.	Structure	APCI-MS
2047		539 (M + H)
2048		555 (M+H)
2049	CI CI	569 (M + H)
2050	F F F	592 (M + H)
2051		562 (M + H)

Example No.	Structure	APCI-MS
2052		540 (M + H)
2053		558 (M + H)
2054		542 (M + H)
2055	\$ FF	490 (M + H)
2056		470 (M + H)

Example No.	Structure	APCI-MS
2057		512 (M+H)
2058		464 (M + H)
2059		465 (M + H)
2060		474 (M + H)
2061		478 (M+H)

Example No.	Structure	APCI-MS
2062		478 (M+H)
2063		464 (M+H)
2064	N H Br	576 (M+H)
2065		532 (M+H)
2066		526 (M + H)

Example No.	Structure	APCI-MS
2067		456 (M + H)
2068		556 (M + H)
2069		438 (M+H)
2070		544 (M + H)
2071		595 (M+H)

Example No.	Structure	APCI-MS
2072		595 (M + H)
2073		465 (M+H)
2074		522 (M + H)
2075		532 (M + H)
2076		526 (M + H)

Example No.	Structure	APCI-MS
2077		557 (M + H)
2078		583 (M + H)
2079		466 (M + H)
2080		447 (M + H)
2081		615 (M + H)

Example No.	Structure	APCI-MS
2082		495 (M + H)
2083		556 (M + H)
2084		548 (M+H)
2085		448 (M+H)
2086		516 (M + H)

Example No.	Structure	APCI-MS
2087		590 (M + H)
2088		480 (M + H)
2089		450 (M + H)
2090		450 (M + H)
2091		480 (M + H)

Example No.	Structure	APCI-MS
2092		446 (M + H)
2093	HO HO	450 (M + H)
2094		443 (M + H)
2095		394 (M + H)
2096		405 (M + H)

Example No.	Structure	APCI-MS
2097		512 (M + H)
2098		460 (M + H)
2099	O=N,	479 (M + H)
2100		532 (M + H)
2101		391 (M+H)

Example No.	Structure	APCI-MS
2102		391 (M + H)
2103		490 (M + H)
2104		505 (M + H)
2105		441 (M + H)
2106		550 (M + H)

Example No.	Structure	APCI-MS
2107		538 (M + H)
2108		462 (M + H)
2109		492 (M + H)
2110		524 (M+H)
2111	C N N N OH	436 (M + H)

Example No.	Structure	APCI-MS
2112		478 (M + H)
2113		500 (M + H)
2114		476 (M + H)
2115		414 (M + H)
2116		492 (M + H)

Example No.	Structure	APCI-MS
2117		432 (M + H)
2118		472 (M + H)
2119		536 (M+H)
2120		506 (M + H)
2121	N O GET	614 (M + H)

Example No.	Structure	APCI-MS
2122		486 (M + H)
2123		486 (M + H)
2124		482 (M + H)
2125		474 (M + H)
2126		486 (M+H)

Example No.	Structure	APCI-MS
2127		420 (M + H)
2128	THE PROPERTY OF THE PROPERTY O	494 (M + H)
2129		418 (M+H)
2130		486 (M + H)
2131		500 (M+H)

Example No.	Structure	APCI-MS
2132		446 (M + H)
2133		474 (M + H)
2134	O THE	488 (M+H)
2135		434 (M + H)
2136		446 (M + H)

Example No.	Structure	APCI-MS
2137	N H COH	492 (M + H)
2138		458 (M + H)
2139		492 (M+H)
2140		526 (M + H)
2141		406 (M + H)

Example No.	Structure	APCI-MS
2142		417 (M + H)
2143		490 (M + H)
2144		461 (M+H)
2145		460 (M + H)
2146		396 (M + H)

Example No.	Structure	APCI-MS
2147		356 (M + H)
2148		394 (M + H)
2149		384 (M + H)
2150		496 (M + H)
2151		456 (M + H)

Example No.	Structure	APCI-MS
2152		533 (M+H)
2153		519 (M+H)
2154		443 (M+H)
2155		446 (M + H)
2156		432 (M + H)

Example No.	Structure	APCI-MS
2157		602 (M + H)
2158		457 (M + H)
2159		448 (M+H)
2160		514 (M + H)
2161		544 (M + H)

Example No.	Structure	APCI-MS
2162		520 (M + H)
2163		428 (M + H)
2164		462 (M + H)
2165		488 (M+H)
2166		475 (M + H)

Example No.	Structure	APCI-MS
2167		523 (M + H)
2168		451 (M+H)
2169		441 (M+H)
2170		458 (M + H)
2171		474 (M + H)

Example No.	Structure	APCI-MS
2172		461 (M + H)
2173		470 (M + H)
2174		493 (M + H)
2175		483 (M+H)
2176		454 (M+H)

Example No.	Structure	APCI-MS
2177		490 (M+H)
2178	HAD HAD S	467 (M+H)
2179		566 (M+H)
2180		514 (M+H)
2181		568 (M+H)

Example No.	Structure	APCI-MS
2182		594 (M + H)
2183		442 (M + H)
2184	F _F _F	552 (M + H)
2185		435 (M+H)
2186		450 (M+H)

Example No.	Structure	APCI-MS
2187		448 (M + H)
2188		444 (M + H)
2189		478 (M + H)
2190		434 (M + H)
2191		446 (M + H)

Example No.	Structure	APCI-MS
2192		420 (M + H)
2193		440 (M + H)
2194		464 (M + H)
2195		448 (M + H)
2196		502 (M + H)

Example No.	Structure	APCI-MS
2197		462 (M + H)
2198		508 (M + H)
2199		440 (M + H)
2200	CI Br	488 (M + H)
2201		516 (M + H)

Example No.	Structure	APCI-MS
2202		404 (M + H)
2203	CL CI	478 (M+H)
2204		456 (M+H)
2205		464 (M+H)
2206		456 (M+H)

Example No.	Structure	APCI-MS
2207	C C C C C C C C C C C C C C C C C C C	450 (M + H)
2208		442 (M + H)
2209		408 (M+H)
2210	C C C C C C C C C C C C C C C C C C C	424 (M + H)
2211		424 (M + H)

Example No.	Structure	APCI-MS
2212		448 (M + H)
2213		458 (M+H)
2214		458 (M + H)
2215		420 (M+H)
2216		419 (M + H)

Example No.	Structure	APCI-MS
2217		440 (M + H)
2218		446 (M + H)
2219		434 (M+H)
2220		446 (M + H)
2221		404 (M+H)

Example No.	Structure	APCI-MS
2222		408 (M + H)
2223		420 (M + H)
2224		420 (M + H)
2225		463 (M + H)
2226	F F	460 (M + H)

Example No.	Structure	APCI-MS
2227		462 (M + H)
2228		502 (M + H)
2229		434 (M+H)
2230		456 (M + H)
2231		432 (M + H)

Example No.	Structure	APCI-MS
2232		460 (M + H)
2233		488 (M+H)
2234		474 (M+H)
2235		446 (M + H)
2236	N D D D D D D D D D D D D D D D D D D D	484 (M + H)

Example No.	Structure	APCI-MS
2237		420 (M + H)
2238		568 (M+H)
2239		428 (M+H)
2240		396 (M + H)
2241		420 (M + H)

Example No.	Structure	APCI-MS
2242		468 (M + H)
2243		432 (M + H)
2244	Br	468 (M+H)
2245	CI CI	458 (M+H)
2246		423 (M + H)

Example No.	Structure	APCI-MS
2247		420 (M + H)
2248		404 (M + H)
2249		448 (M + H)
2250		446 (M + H)
2251		540 (M + H)

Example No.	Structure	APCI-MS
2252		470 (M + H)
2253		472 (M + H)
2254		479 (M + H)
2255		433 (M+H)
2256		458 (M + H)

Example No.	Structure	APCI-MS
2257		515 (M + H)
2258		410 (M + H)
2259		394 (M + H)
2260		368 (M + H)
2261		372 (M + H)

Example No.	Structure	APCI-MS
2262		397 (M+H)
2263		464 (M + H)
2264		462 (M + H)
2265		458 (M + H)
2266		492 (M + H)

Example No.	Structure	APCI-MS
2267		448 (M + H)
2268		460 (M + H)
2269		434 (M + H)
2270		454 (M + H)
2271		478 (M + H)

Example No.	Structure	APCI-MS
2272	N F F	462 (M + H)
2273		516 (M + H)
2274		476 (M + H)
2275		522 (M + H)
2276	CI CI	454 (M + H)

Example No.	Structure	APCI-MS
2277		502 (M + H)
2278		530 (M + H)
2279		418 (M+H)
2280		492 (M + H)
2281		470 (M + H)

Example No.	Structure	APCI-MS
2282		478 (M + H)
2283		470 (M + H)
2284		464 (M + H)
2285		456 (M + H)
2286		422 (M + H)

Example No.	Structure	APCI-MS
2287	CI CI	438 (M + H)
2288		462 (M ÷ H)
2289		472 (M + H)
2290		472 (M + H)
2291		434 (M + H)

Example No.	Structure	APCI-MS
2292		433 (M + H)
2293		454 (M + H)
2294		460 (M+H)
2295		448 (M + H)
2296		460 (M + H)

Example No.	Structure	APCI-MS
2297	THE PROPERTY OF PARTY	422 (M + H)
2298		474 (M + H)
2299		476 (M+H)
2300		516 (M+H)
2301		448 (M+H)

Example No.	Structure	APCI-MS
2302		470 (M + H)
2303		446 (M + H)
2304		488 (M+H)
2305		460 (M + H)
2306		434 (M + H)

Example No.	Structure	APCI-MS
2307		582 (M + H)
2308		442 (M + H)
2309		419 (M + H)
2310		434 (M+H)
2311	Br Br	482 (M + H)

Example No.	Structure	APCI-MS
2312		418 (M + H)
2313		446 (M + H)
2314	Br	482 (M+H)
2315		472 (M + H)
2316		437 (M + H)

Example No.	Structure	APCI-MS
2317		434 (M + H)
2318		418 (M + H)
2319		462 (M + H)
2320		460 (M + H)
2321		554 (M + H)

Example No.	Structure	APCI-MS
2322	N N N N N N N N N N N N N N N N N N N	470 (M + H)
2323		537 (M+H)
2324		529 (M + H)
2325		424 (M + H)
2326		408 (M+H)

Example No.	Structure	APCI-MS
2327		382 (M + H)
2328		386 (M + H)

Example 2329

trans-4-Bromo-N-{4-[(4-methylamino-quinazolin-2-ylamino)-methyl]cvclohexylmethyl}-2-trifluoromethoxy-benzenesulfonamide hydrochloride

Step A: Synthesis of trans-4-[(4-bromo-2-trifluoromethoxy-benzenesulfonylamino)methyll-cyclohexanecarboxylic acid.

To a solution of *trans*-4-aminomethyl-cyclohexanecarboxylic acid (3.14 g, 20 mmol) in THF (20 mL) and 1 M aqueous sodium hydroxide (42 mL) was added a solution of 4-bromo-2-trifluoromethoxy benzenesulfonyl chloride (6.9 g, 20.4 mmol) in THF (20 mL) and the mixture was stirred for 2 hr at ambient temperature. The resulting mixture was concentrated and 1 M aqueous HCl (45 mL) was added. The resulting precipitate was filtered, washed with water and hexanes to give *trans*-4-[(4-bromo-2-trifluoromethoxy-benzenesulfonylamino)-methyl]-cyclohexanecarboxylic acid (7.18 g, 78%) as a white powder.

ESI MS m/e 460/462 M + H* ; 1 H NMR (500 MHz, DMSO- $_{46})$ 8 12.00 (brs, 1 H), 7.99 (brs, 1 H), 7.84-7.80 (m, 3 H), 2.72 (d, J = 6.3 Hz, 2 H), 2.10 (m, 1 H), 1.86 (m, 2 H), 1.71 (m, 2 H), 1.31 (m, 1 H), 1.23 (m, 2 H), 0.87 (m, 2 H).

Step B: Synthesis of trans-4-[(4-bromo-2-trifluoromethoxy-benzenesulfonylamino)methyll-cyclohexanecarboxylic acid amide.

A solution of trans-4-[(4-bromo-2-trifluoromethoxy-benzenesulfonylamino)-methyl]-cyclohexanecarboxylic acid (7.14 g, 15.5 mmol) and triethylamine (2.35 mL, 16.9 mmol) in THF (25 mL) was cooled to 0 °C. To the mixture was added ethyl chloroformate (1.62 mL, 17 mmol) in THF (5 mL) over 10 min. After stirring at 0 °C for 15 min, aqueous ammonia (27 mL) was added dropwise and the mixture was stirred at ambient temperature for 2 hr. The mixture was concentrated under reduced pressure and the concentrate was treated with water to give a solid. The solid was filtered and washed with water and hexanes to give trans-4-[(4-bromo-2-trifluoromethoxy-

806

benzenesulfonylamino)-methyl]-cyclohexanecarboxylic acid amide as a white solid (4.2 g, 59%).

ESI MS m/e 459/461 M + H⁺; 'H NMR (500 MHz, DMSO-d₆) δ 7.98 (brs, 1 H), 7.84-7.80 (m, 3 H), 7.13 (s, 1 H), 6.62 (s, 1 H), 2.72 (d, J = 6.5 Hz, 2 H), 1.98 (m, 1 H), 1.70 (m, 4 H), 1.23 (m, 2 H), 0.83 (m, 2 H).

Step C: Synthesis of trans-N-(4-aminomethyl-cyclohexylmethyl)-4-bromo-2-trifluoromethoxy-benzenesulfonamide.

To a solution of trans-4-[(4-bromo-2-trifluoromethoxy-benzenesulfonylamino)-methyl]-cyclohexanecarboxylic acid amide (4.2 g, 9.2 mmol) in THF (40 mL) was added a solution of 1 M BH₃ in THF (32 mL, 32 mmol) over 40 min. The mixture was refluxed for 2 hr. After cooling to 0 °C, the mixture was quenched with water (7 mL). To the resulting mixture were added 4 M HCl in EtOAc (28 mL) and MeOH (28 mL) and the mixture was concentrated. To the residue was added MeOH (28 mL) and the mixture was once again concentrated. The resulting HCl-salt was recrystallized from Et₂O and subsequently neutralized with 1 M aqueous sodium hydroxide. The aqueous layer was extracted with CH₂Cl₂ (twice), the organic layers combined, dried over sodium sulfate, and concentrated under reduced pressure to give trans-N-(4-aminomethyl-cyclohexylmethyl)-4-bromo-2-trifluoromethoxy-benzenesulfonamide as a white solid (3.0 g, 74%).

ESI MS m/e 445/447 M + H⁺; 'H NMR (500 MHz, DMSO-d₀) δ 7.84-7.79 (m, 3 H), 3.42 (brs, 2 H), 2.72 (d, J = 6.8 Hz, 2 H), 2.33 (d, J = 6.5 Hz, 2 H), 1.73 (m, 4 H), 1.27 (m, 1 H), 1.09 (m, 1 H), 0.80 (m, 4 H).

Step D: Synthesis of trans-4-Bromo-N-{4-[(4-methylamino-quinazolin-2-ylamino)-methyl]-cyclohexylmethyl}-2-trifluoromethoxy-benzenesulfonamide hydroehloride.

A mixture of (2-chloro-quinazolin-4-yl)-methylamine obtained in step A of example 50 (58 mg, 0.3 mmol) and trans-N-(4-aminomethyl-cyclohexylmethyl)-4-bromo-2-trifluoromethoxy-benzenesulfonamide amide (133 mg, 0.3 mmol) in 2-propanol (0.5 mL) was stirred at reflux for 24 hr. The mixture was cooled and the resulting white solid was collected by filtration and washed with 2-propanol to give trans-4-Bromo-N-{4-[(4-methylamino-quinazolin-2-ylamino)-methyl]-cyclohexylmethyl}-2-trifluoromethoxy-benzenesulfonamide hydrochloride as a white solid (121 mg, 67%).

ESI MS m/e 602/604 M + H $^{\circ}$; ^{1}H NMR (500 MHz, DMSO-d $_{6})$ δ 12.61 (brs, 1 H), 9.70

(brs, 1 H), 8.26 (d, J = 8.1 Hz, 1 H), 8.15 (brs, 1 H), 8.02 (t, J = 5.7 Hz, 1 H), 7.84-7.74 (m, 4 H), 7.41 (m, 1 H), 3.32 (m, 2 H), 3.07 (d, J = 3.5 Hz, 3 H), 2.73 (t, J = 6.2 Hz, 2 H), 1.77 (m, 4 H), 1.53 (m, 1 H), 1.32 (m, 1 H), 0.96 (m, 2 H), 0.82 (m, 2 H).

Example 2330

trans-N-{4-[(4-Dimethylamino-quinazolin-2-ylamino)-methyl]-cyclohexylmethyl}-2,5-bis-(2,2,2-trifluoro-ethoxy)-benzenesulfonamide hydrochloride

Step A: Synthesis of trans-4-{[2,5-bis-(2,2,2-trifluoro-ethoxy)-benzenesulfonylamino]-methyl}-cyclohexanecarboxylic acid.

To a solution of trans-4-aminomethyl-cyclohexanecarboxylic acid (1.5 g, 10 mmol) in THF (10 mL) and 1 M aqueous sodium hydroxide (27 mL) was added a solution of 2,5-bis(2,2,2-trifluoroethoxy) benzenesulfonyl chloride (3.8 g, 10.25 mmol) in THF (10 mL) dropwise and the mixture was stirred at ambient temperature for 2 hr. The resulting mixture was concentrated and 1 M aqueous HCl (22.5 mL) was added. The resulting precipitate was filtered, washed with water and hexanes to give trans-4-{[2,5-bis-(2,2,2-trifluoro-ethoxy)-benzenesulfonylamino]-methyl}-cyclohexanecarboxylic acid as a white powder (2.8 g, 57%).

ESI MS m/e 494 M + H* ; 1 H NMR (500 MHz , DMSO-d₆) δ 7.36 (m, 3 H), 7.23 (brs, 1 H), 4.88 (m, 4 H), 2.73 (m, 2 H), 2.10 (m, 1 H), 1.87 (m, 2 H), 1.72 (m, 2 H), 1.30 (m, 1 H), 1.23 (m, 2 H), 0.87 (m, 2 H).

Step B: Synthesis of trans-4-{[2,5-bis-(2,2,2-trifluoro-ethoxy)-benzenesulfonylamino]-methyl}-cyclohexanecarboxylic acid amide.

A solution of trans-4-{[2,5-bis-(2,2,2-trifluoro-ethoxy)-benzenesulfonylamino]-methyl}-cyclohexanecarboxylic acid (2.78 g, 5.63 mmol) and triethylamine (1.9 mL.

13.6 mmol) in THF (25 mL) was cooled to 0 °C. To the mixture was added ethyl chloroformate (0.586 mL, 6.2 mmol) in THF (5 mL) over 10 min. After stirring at 0 °C for 15 min, 25% aqueous ammonia (10 mL) was added dropwise. The mixture was stirred at ambient temperature for 2 hr. The resulting mixture was concentrated under reduced pressure and the concentrate was diluted with water to give a solid. The solid was filtered and washed with water and hexanes to give trans-4-{[2,5-bis-(2,2,2-trifluoro-ethoxy)-benzenesulfonylamino]-methyl}-cyclohexanecarboxylic acid amide as a white solid (2.7 g, 98%).

ESI MS m/e 493 M + H * ; 'H NMR (500 MHz, DMSO-d₆) δ 7.36 (m, 3 H), 7.23 (t, J = 6.1 Hz, 1 H), 7.13 (s, 1 H), 6.62 (s, 1 H), 4.88 (m, 4 H), 2.74 (t, J = 6.4 Hz, 2 H), 1.99 (m, 1 H), 1.75 (m, 4 H), 1.28 (m, 1 H), 1.23 (m, 2 H), 0.83 (m, 2 H).

Step C: Synthesis of trans-N-(4-aminomethyl-cyclohexylmethyl)-2,5-bis-(2,2,2-trifluoro-ethoxy)-benzenesulfonamide.

To a solution of trans-4-{[2,5-bis-(2,2,2-trifluoro-ethoxy)-benzenesulfonylamino]-methyl}-eyclohexanecarboxylic acid amide (2.7 g, 5.5 mmol) in THF (20 mL) was added a solution of 1 M BH₃ in THF (20 mL, 20 mmol) over 40 min. The mixture was stirred at reflux for 2 hr. After cooling to 0 °C, the mixture was quenched with water (7 mL). To the mixture were added 4 M HCl in EtOAc (28 mL) and MeOH (50 mL) and the mixture was once again concentrated. To the residue was added MeOH (50 mL) and the mixture was once again concentrated. The resulting HCl-salt was recrystallized from Et₂O and subsequently neutralized with 1 M aqueous sodium hydroxide. The aqueous layer was extracted with CH₂Cl₂ (twice), the combined organic layers were dried over sodium sulfate, and concentrated under reduced pressure to give trans-N-(4-aminomethyl-cyclohexylmethyl)-2,5-bis-(2,2,2-trifluoro-ethoxy)-benzenesulfonamide as a white solid (1.5 g, 57%).

ESI MS m/e 479 M + H * ; 'H NMR (500 MHz, DMSO-d $_6$) δ 7.36-7.32 (m, 3 H), 6.62 (brs, 1 H), 4.88-4.78 (m, 4 H), 3.42 (b, 2 H), 2.73 (d, J = 6.6 Hz, 2 H), 2.34 (d, J = 6.3 Hz, 2 H), 1.73 (m, 4 H), 1.27 (m, 1 H), 1.10 (m, 1 H), 0.77 (m, 4 H).

 $Step \ D: \ Synthesis of {\it trans-N-} \{4-[(4-Dimethylamino-quinazolin-2-ylamino)-methyl]-cyclohexylmethyl\}-2,5-bis-(2,2,2-trifluoro-ethoxy)-benzenesulfonamide hydrochloride.$

A mixture of (2-chloro-quinazoline-4-yl)-dimethyl-amine obtained in step B of example 1 (41.4 mg, 0.2 mmol) and trans-N-(4-aminomethyl-cyclohexylmethyl)-2,5-bis-(2,2,2-trifluoro-ethoxy)-benzenesulfonamide (95.6 mg, 0.2 mmol) in 2-propanol was stirred at reflux for 24 hr. The reaction mixture was concentrated and the residue was purified by column chromatography (silica gel) to give the product as a white foam. The product was dissolved in CH₂Cl₂ and treated with 1 M HCl in Et₂O. The mixture was concentrated to give trans-N-{4-[(4-Dimethylamino-quinazolin-2-ylamino)-methyl]-cyclohexylmethyl}-2,5-bis-(2,2,2-trifluoro-ethoxy)-benzenesulfonamide hydrochloride as

cyclohexylmethyl}-2,5-bis-(2,2,2-trifluoro-ethoxy)-benzenesulfonamide hydrochloride as a white foam (101 mg, 78%).

ESI MS m/e 650 M + H $^{+}$; $^{+}$ H NMR (500 MHz, DMSO-d₆) δ 8.16 (d, J = 8.2 Hz, 1 H), 8.00 (brs, 1 H), 7.78 (t, J = 7.9, 1 H), 7.44 (brs, 1 H), 7.34 (m, 4 H), 7.24 (t, J = 5.9 Hz, 1 H), 4.88 (m, 4 H), 3.32 (s, 6 H), 3.29 (m, 2 H), 2.75 (t, J = 6.2 Hz, 2 H), 1.74 (m, 4 H), 1.52 (m, 1 H), 1.32 (m, 1 H), 0.94 (m, 2 H), 0.83 (m, 2 H).

Example 2331

 $trans. \hbox{4-Bromo-$N-(4-guanidinomethyl-cyclohexylmethyl)-$2-trifluoromethoxy-benzenesul fon a mide-dihydrochloride$

Step A: Synthesis of trans-[({4-[(4-bromo-2-trifluoromethoxy-benzenesulfonylamino)-methyl]-cyclohexylmethyl}-amino)-tert-butoxycarbonylamino-methyl]-carbamic acid tert-butyl ester.

To a solution of trans-N-(4-aminomethyl-cyclohexylmethyl)-4-bromo-2-trifluoromethoxy-benzenesulfonamide obtain in step C of example 2329 (45 mg, 0.1 mmol) and triethylamine (14 µL, 0.1 mmol) in CH₂Cl₂ (5 mL) was added (tert-butoxycarbonylamino-trifluoromethanesulfonylimino-methyl)-carbamic acid tert-butyl ester (39.1 mg, 0.1 mmol). The reaction mixture was stirred at ambient temperature for 2 hr and concentrated. The residue was purified by column chromatography (silica gel.

 $\mathrm{CH_2Cl_2}$ to 10% MeOH in $\mathrm{CH_2Cl_2}$ to give trans-[({4-[(4-bromo-2-trifluoromethoxy-benzenesulfonylamino)-methyl]-

cyclohexylmethyl}-amino)-tert-butoxycarbonylamino-methyl]-carbamic acid tert-butyl ester as a white solid (63 mg, 92%).

ESI MS m/e 687/689 M + H $^{\circ}$; 'H NMR (400 MHz , DMSO-d_e) δ 11.45 (s, 1 H), 8.22 (t, J = 5.6 Hz , 1 H), 7.97 (t, J = 5.6 Hz , 1 H), 7.97 (t, J = 5.6 Hz , 1 H), 1.38 (s, 9 H), 1.31 (m, 2 H), 1.38 (m, 4 H).

Step B: Synthesis of trans-4-bromo-N-(4-guanidinomethyl-cyclohexylmethyl)-2-trifluoromethoxy-benzenesulfonamide dihydrochloride.

A solution of trans-[{{4-[(4-bromo-2-trifluoromethoxy-benzenesulfonylamino)-methyl]-cyclohexylmethyl}-amino)-tert-butoxycarbonylamino-methyl]-carbamic acid tert-butyl ester (53 mg, 0.077 mmol) in 50% TFA in CH₂Cl₂ (2 mL) was stirred at ambient temperature for 3 hr and the reaction mixture was concentrated. To the residue was added a solution of 1 M HCl in Et₂O (0.5 mL) and the mixture was concentrated to give trans-4-Bromo-N-(4-guanidinomethyl-cyclohexylmethyl)-2-trifluoromethoxy-

benzenesulfonamide dihydrochloride as a white solid (29 mg, 68%).

ESI MS m/e 487/489 M + H * ; ¹H NMR (500 MHz, DMSO-d₆) δ 8.01 (t, J = 5.5 Hz, 1 H), 7.84 (m, 3 H), 7.68 (m, 1 H), 7.30 (m, 2 H), 6.85 (m, 2 H), 2.94 (t, J = 6.1 Hz, 2 H), 2.74 (t, J = 6.1 Hz, 2 H), 1.71 (m, 2 H), 1.31 (m, 4 H), 0.86 (m, 4 H).

Example 2332

2 CF₃CO₂F

cis-N⁴,N⁴-Dimethyl-N²-{4-[(2-trifluoromethyl-benzylamino)-methyl]-cyclohexyl}quinazoline-2,4-diamine ditrifluoro-acetic acid

Step A: Synthesis of cis-4-tert-butoxycarbonylamino-cyclohexanecarboxylic acid.

To a solution of cis-4-amino-cyclohexanecarboxylic acid (50 g, 350 mmol) in THF

(200 mL) and 1 M aqueous sodium hydroxide (380 mL, 380 mmol) was added (Boc)₂O (83.5 g, 360 mmol). The reaction mixture was stirred at ambient temperature for 2 hr and concentrated. The residue was cooled to 0 °C followed by acidification with 1 M HCl (pH = 3). The resulting white solid was filtered, washed with water and hexanes to give cis-4-tert-butoxycarbonylamino-cyclohexanecarboxylic acid (71g, 83%) as a white solid. ESI MS m/e 244 M + H⁺; HNMR (400 MHz, DMSO- d_6) δ 12.00 (brs, 1 H), 6.74 (d, J = 4.25, 1 H), 3.30 (brs, 1 H), 2.35 (m, 1 H), 1.87 (m, 2 H), 1.55-1.37 (m, 15 H).

Step B: Synthesis of cis-(4-carbamoyl-cyclohexyl)-carbamic acid tert-butyl ester.

To a solution cooled at 0°C of cis-4-tert-butoxycarbonylamino-cyclohexanecarboxylic acid (68.0 g, 280 mmol) and triethylamine (31.1 g, 307 mmol) in THF (300 mL) was added ethyl chloroformate (29.3 mL, 308 mmol) dropwise. After stirring at 0 °C for 30 min, 25% aqueous ammonia (168 mL) was added dropwise. The reaction mixture was stirred at ambient temperature for 2 hr and concentrated. The residue was extracted with EtOAc (three times). The combined organic layer was washed with saturated aqueous NaHCO₃, 1 M HCl, brine, and water, dried over Na₂SO₄, filtered, and concentrated to give cis-(4-carbamoyl-cyclohexyl)-carbamic acid tert-butyl ester (62.0 g, 88%) as a white solid.

 $ESI~MS~m/e~243~M+H^*~;~^1H~NMR~(400~MHz,~DMSO-d_6)~8~7.10~(brs,~1~H),~6.69~(b,~2~H),\\ 3.41~(brs,~1~H),~2.14~(m,~1~H),~1.79~(m,~2~H),~1.59~(m,~2~H),~1.45-1.37~(m,~13~H).$

Step C: Synthesis of cis-4-amino-cyclohexanecarboxylic acid amide hydrochloride.

To a solution of cis-(4-carbamoyl-cyclohexyl)-carbamic acid tert-butyl ester (62 g, 256 mmol) in CH₂Cl₂ (250 mL) was added TFA (250 mL) and the mixture was stirred at ambient temperature for 1 hr. The mixture was concentrated and 2 M HCl in Et₂O (150 mL) was added to give a white precipitate. The mixture was concentrated to give cis-4-amino-cyclohexanecarboxylic acid amide hydrochloride (45 g, 98%) as a white solid. ESI MS m/e 143 M + H $^{+}$; ¹H NMR (400 MHz, DMSO-d₆) δ 8.08 (m, 3 H), 7.28 (s, 1 H), 6.78 (s, 1 H), 3.10 (m, 1 H), 2.24 (m, 1 H), 1.90 (m, 2 H), 1.66 (m, 4 H), 1.50 (m, 2 H).

Step D: Synthesis of cis-4-(4-dimethylamino-quinazolin-2-ylamino)-cyclohexanecarboxylic acid amide.

A solution of (2-chloro-quinazolin-4-yl)-dimethyl-amine obtained in step B of

example 1 (31.05 g, 150 mmol) and cis-4-amino-cyclohexanecarboxylic acid amide hydrochloride (26.7 g, 150 mmol) in pyridine (150 mL) was stirred at reflux for overnight. The reaction mixture was concentrated and residue was dissolve in CH₂Cl₂. The organic layer was washed with saturated aqueous NaHCO₃ and the aqueous layer was extracted with CH₂Cl₂. The organic layer was dried over Na₂SO₄, filtered and concentrated. The residue was purified by column chromatography (silica gel, 2% to 10% 2 M NH₃/MeOH in CH₂Cl₂) to give a slightly brown solid and the solid was recrystallized from CH₂Cl₂ to give cis-4-(4-dimethylamino-quinazolin-2-ylamino)-cyclohexanecarboxylic acid amide (20.6 g, 44%) as yellow crystals.

ESI MS m/e 314 M + H * ; 1 H NMR (400 MHz, DMSO-d_e) δ 8.19 (brs, 1 H), 8.15 (d, J = 8.4 Hz, 1 H), 7.77 (t, J = 8.0 Hz, 1 H), 7.42 (d, J = 7.2 Hz, 1 H), 7.35 (t, J = 8.4 Hz, 1 H), 7.21 (s, 1 H), 6.74 (s, 1 H), 4.12 (m, 1 H), 3.46 (m, 6 H), 2.24 (m, 1 H), 1.79-1.61 (m, 8 H).

Step E: Synthesis of $cis-N^2$ -(4-aminomethyl-cyclohexyl)- N^4 , N^4 -dimethyl-quinazoline-2,4-diamine.

To a solution of *cis-4-*(4-dimethylamino-quinazolin-2-ylamino)-cyclohexanecarboxylic acid amide (18.78 g, 60 mmol) in THF (200 mL) was added a solution of 1 M BH₃ in THF (300 mL, 300 mmol). The mixture was stirred at reflux for 2 hr. After cooling the reaction mixture to 0 °C, 4 M HCl in EtOAc (100 mL) and MeOH (200 mL) were added. The mixture was concentrated. The mixture was treated with 1 M aqueous sodium hydroxide and the aqueous layer was extracted with CH₂Cl₂. The organic layer was dried over sodium sulfate, concentrated, and purified by column chromatography (silica gel, 10% 2 M NH₃/MeOH in CH₂Cl₂) to give *cis-N*²-(4-aminomethyl-cyclohexyl)-*N*⁴,*N*⁴-dimethyl-quinazoline-2,4-diamine as a white solid (10.6 g, 59%).

ESI MS m/e 300 M + H⁺; ¹H NMR (400 MHz, DMSO-d₆) δ 7.84 (d, J = 8.4 Hz, 1 H), 7.46 (t, J = 6.8 Hz, 1 H), 7.26 (d, J = 8.4 Hz, 1 H), 6.99 (t, J = 6.8 Hz, 1 H), 6.28 (brs, 1 H), 4.02 (m, 1 H), 3.19 (m, 6 H), 2.47 (d, J = 6.8 Hz, 2 H), 2.73 (m 2 H), 1.68-1.33 (m, 9 H).

Step F: Synthesis of cis-N',N'-dimethyl-N'-{4-[(2-trifluoromethyl-benzylamino)-methyl]-cyclohexyl}-quinazoline-2,4-diamine ditrifluoro-acetic acid.

A solution of cis-N²-(4-aminomethyl-cyclohexyl)-N⁴,N⁴-dimethyl-quinazoline-2,4-diamine (33 mg, 0.11 mmol) and 2-trifluoromethyl benzaldehyde (17.41 mg, 0.1 mmol) in MeOH (1 mL) was stirred at ambient temperature for 3 hr. To the mixture was added NaBH(OAc)₃ (85 mg, 0.4 mmol) and the mixture was stirred at ambient temperature for overnight. This resulting mixture was quenched with 50% DMSO in water (2 mL) and the solution was purified by preparative HPLC. The pure fractions were combined and lyophilized to give cis-N⁴,N⁴-dimethyl-N²-{4-[(2-trifluoromethyl-benzylamino)-methyl]-cyclohexyl}-quinazoline-2,4-diamine ditrifluoro-acetic acid (41.4 mg, 60%) as a white solid.

ESI MS m/e 458 M + H $^{+}$; 1 H NMR (400 MHz, DMSO-d₀) δ 13.12 (brs, 1 H), 8.94 (b, 2 H), 8.65 (d, J = 6.8 Hz, 1 H), 8.16 (d, J = 8.8 Hz, 1 H), 7.77-7.66 (m, 5 H), 7.41 (d, J = 8.4 Hz, 1 H), 7.35 (t, J = 8 Hz, 1 H), 4.22 (s, 2 H), 4.17 (m, 1 H), 3.46 (b, 6 H), 2.94 (m, 2 H), 1.87-1.44 (m, 9 H).

Example 2333

cis-5-(4-Chloro-phenyl)-2-trifluoromethyl-furan-3-carboxylic acid [4-(4-dimethylamino-quinazolin-2-ylamino)-cyclohexylmethyl]-amide trifluoro-acetic acid

Step A: Synthesis of cis-5-(4-chloro-phenyl)-2-trifluoromethyl-furan-3-carboxylic acid [4-(4-dimethylamino-quinazolin-2-ylamino)-cyclohexylmethyl]-amide trifluoroacetic acid.

A solution of cis-N²-(4-aminomethyl-cyclohexyl)-N⁴,N⁴-dimethyl-quinazoline-2,4diamine obtained in step E of example 2332 (30 mg, 0.1 mmol), 5-(4-chloro-phenyl)-2trifluoromethyl-furan-3-acid chloride (37 mg, 0.12 mmol), and pyridine (12 µL, 0.15 mmol) in DMF (0.5 mL) was stirred at ambient temperature for overnight. The resulting mixture was diluted with DMSO (0.8 mL) and the mixture was purified by preparative

HPLC. The pure fractions were combined and lyophilized to give cis-5-(4-chlorophenyl)-2-trifluoromethyl-furan-3-carboxylic acid [4-(4-dimethylamino-quinazolin-2-ylamino)-cyclohexylmethyl]-amide trifluoro-acetic acid (17.5 mg, 26%) as a white solid. ESI MS m/e 572 M + H * ; 'H NMR (400 MHz, DMSO-d $_4$) δ 12.30 (brs, 1 H), 8.65 (t, J = 6.8 Hz, 1 H), 8.19 (brs, 1 H), 8.14 (d, J = 8.0 Hz, 1 H), 7.83-7.30 (m, 8 H), 4.1 (m, 1 H), 3.46 (b, 6 H), 3.09 (m, 2 H), 1.77-1.38 (m, 9 H).

Example 2334

cis-N-[4-(4-Dimethylamino-quinazolin-2-ylamino)-cyclohexylmethyl]-3,4,5-trimethoxy-benzamide trifluoro-acetic acid

Step A: Synthesis of cis-N-[4-(4-dimethylamino-quinazolin-2-ylamino)-cyclohexylmethyll-3,4,5-trimethoxy-benzamide trifluoro-acetic acid.

To HOBt-6-carboxaamidomethyl polystyrene 200-400 mesh (77 mg, 0.1 mmol) were added a solution of 0.3 M PyBroP in DMF (1 mL, 0.3 mmol), 3,4,5-trimethoxybenzoic acid (63 mg, 0.3 mmol), and diisopropylethylamine (85 μL, 0.5 mmol). The mixture was stirred at ambient temperature for 5 hr. The resin was washed with DMF (3 times), CH₂Cl₂ (3 times), MeOH (3 times), CH₂Cl₂ (2 times), and DMF (2 times). To the resin was added cis-λ²-(4-aminomethyl-cyclohexyl)-λ⁴-λ⁴-dimethyl-quinazoline-2,4-diamine obtained in step E of example 2332 (28 mg, 0.09 mmol) in DMF (0.5 mL) and the mixture was stirred at ambient temperature for overnight. The resin was filtered and washed with 0.5 mL DMSO (2 times). The combined filtrates were purified by preparative HPLC. The pure fractions were combined and lyophilized to give cis N-[4-(4-dimethylamino-quinazolin-2-ylamino)-cyclohexylmethyl]-3,4,5-trimethoxy-benzamide trifluoro-acetic acid (7.4 mg, 12%) as a white solid.

ESI MS m/e 494 M + H * ; 'H NMR (400 MHz, DMSO-d_d) δ 12.25 (brs, 1 H), 8.45 (t, J = 5.6 Hz, 1 H), 8.17 (brs, 1 H), 8.14 (d, J = 8.0 Hz, 1 H), 7.76 (t, J = 8.4 Hz, 1 H), 7.42 (d, J

= 7.2 Hz, 1 H), 7.34 (t, *J* = 7.6 Hz, 1 H), 7.15 (s, 2 H), 4.13 (m, 1 H), 3.44 (s, 3 H), 3.39 (s, 3 H), 3.20 (m, 2 H), 1.77-1.37 (m, 9 H).

Example 2335

Biphenyl-4-carboxylic acid {4-[(4-dimethylamino-quinazolin-2-ylamino)-methyl]phenyl}-amide

Step A: Synthesis of (4-amino-benzyl)-carbamic acid tert-butyl ester.

A solution of 4-aminomethyl-phenylamine (12.2 g, 100 mmol) and (Boc)₂O (21.8 g, 100 mmol) in CH₂Cl₂ (100 mL) was stirred at ambient temperature for overnight. The mixture was concentrated and the residue was purified by column chromatography (silica gel, CH₂Cl₂ to 10% MeOH in CH₂Cl₂) to give (4-amino-benzyl)-carbamic acid tert-butyl ester (11.6 g, 52%) as a slightly vellow solid.

ESI MS m/e 223 M + H * ; 'H NMR (400 MHz, DMSO-d₆) δ 7.27 (t, J = 6.0 Hz, 1 H), 6.86 (d, J = 8.0 Hz, 2 H), 6.47 (d, J = 6.4 Hz, 2 H), 4.89 (s, 2 H), 3.91 (d, J = 6.0 Hz, 2 H), 1.39 (s, 9 H).

Step B: Synthesis of biphenyl-4-carboxylic acid (4-aminomethyl-phenyl)-amide hydrochloride.

To a solution of (4-amino-benzyl)-carbamic acid tert-butyl ester (1.11 g, 5 mmol), biphenyl carboxylic acid (0.99 g, 5 mmol), EDC (1.2 g, 6.25 mmol), and HOAt (0.82 g, 6 mmol) in CH₂Cl₂ (10 mL) was added triethylamine (pH = 10) and the mixture was stirred at ambient temperature for overnight. The organic layer was washed with saturated aqueous NaHCO₃, 1 M aqueous HCl, water, dried over Na₂SO₄, filtered, and concentrated. The residue was dissolved in 50% TFA in CH₂Cl₂ (10 mL) and the mixture was stirred at ambient temperature. After 30 minutes, the mixture was concentrated and diluted with 1 M HCl in Et₂O (5 mL). The mixture was concentrated to give biphenyl-4-carboxylic acid (4-aminomethyl-phenyl)-amide hydrochloride (828 mg, 49%).

ESI MS m/e 303 M + H⁺; ¹H NMR (400 MHz, DMSO-d₆) δ 10.40 (s, 1 H), 8.34 (b, 3 H), 8.07 (d, J = 8.0 Hz, 2 H), 7.83-7.73 (m, 6 H), 7.51-7.38 (m, 5 H), 4.0 (q, J = 5.6 Hz, 2 H).

Step C: Synthesis of biphenyl-4-carboxylic acid {4-[(4-dimethylamino-quinazolin-2-ylamino)-methyll-phenyl}-amide.

A mixture of (2-chloro-quinazolin-4-yl)-dimethyl-amine obtained in step B of example 1 (42 mg, 0.2 mmol) and biphenyl-4-carboxylic acid (4-aminomethyl-phenyl)-amide hydrochloride (49 mg, 0.14 mmol) in 2-propanol (1 mL) and triethylamine (200 μ L) was stirred at reflux for 2 days. The resulting mixture was concentrated and purified by column chromatography (silica gel, CH₂Cl₂ to 10% 2 M NH₃/MeOH in CH₂Cl₂) to give biphenyl-4-carboxylic acid {4-[(4-dimethylamino-quinazolin-2-ylamino)-methyl]-phenyl}-amide (10 mg, 15%) as a white solid.

ESI MS m/e 474 M + H²; ¹H NMR (400 MHz, DMSO-d_c) δ 10.19 (s, 1 H), 8.02 (d, J = 7.2 Hz, 2 H), 7.86 (d, J = 8.4 Hz, 1 H), 7.80 (d, J = 8.4 Hz, 2 H), 7.73 (d, J = 7.2 Hz, 2 H), 7.68 (d, J = 7.6 Hz, 2 H), 7.50-7.15 (m, 8 H), 7.01 (t, J = 8.4 Hz, 1 H), 4.51 (d, J = 6.4 Hz, 2 H), 3.30 (s, 3 H), 3.2 (s, 3 H).

Example 2336

2 CF₃CO₂H

cls-N²-(4-[2-(4-Bromo-2-trifluoromethoxy-benzylamino)-ethyl]-cyclohexyl}-N⁴,N⁴-dimethyl-quinazoline-2,4-diamine ditrifluoro-acetic acid

Step A: Synthesis of cis-[4-(2-benzyloxycarbonylamino-ethyl)-cyclohexyl]-carbamic acid tert-butyl ester.

To a solution of cis-[4-(2-amino-ethyl)-cyclohexyl]-carbamic acid tert-butyl ester (4.84 g, 20 mmol) in CH₂Cl₂ (50 mL) and triethylamine (3.06 mL, 22 mmol) was added benzyl chloroformate (3.13 mL, 22 mmol) and the mixture was stirred for 4 hr. The resulting mixture was washed with water, 1 M aqueous HCl, dried over Na₂SO₄, filtered and concentrated. The residue was purified by column chromatography (silica gel,

CH₂Cl₂ to 10% MeOH in CH₂Cl₂) to give cis-[4-(2-benzyloxycarbonylamino-ethyl)-cyclohexyl]-carbamic acid tert-butyl ester (5.46 g, 73%) as a colorless oil.

ESI MS m/e 377 M + H * ; 'H NMR (400 MHz, DMSO-d₆) δ 7.36-7.24 (m, 5 H), 7.19 (t, J = 5.6 Hz, 1 H), 6.76 (d, J = 6.8 Hz, 1 H), 4.91 (s, 2 H), 3.40 (m, 1 H), 2.99 (m, 2 H), 1.44-1.33 (m, 20H).

Step B: Synthesis of cis-[2-(4-amino-cyclohexyl)-ethyl]-carbamic acid benzyl ester.

A solution of cis-[4-(2-benzyloxycarbonylamino-ethyl)-cyclohexyl]-carbamic acid tert-butyl ester (5.26 g, 14 mmol) in 50% TFA in $\mathrm{CH_2Cl_2}$ (60 mL) was stirred at ambient temperature for 1 hr. The mixture was concentrated and the residue was diluted with saturated aqueous NaHCO3. The aqueous layer was extracted with $\mathrm{CH_2Cl_2}$ (therr times). The organic layer was dried over $\mathrm{Na_2SO_4}$ and concentrated to give cis -[2-(4-amino-cyclohexyl)-ethyl]-carbamic acid benzyl ester (3.5 g, 91%) as a colorless oil.

ESI MS m/e 277 M + H * ; ¹H NMR (400 MHz, DMSO-d₆) δ 7.72 (b, 2 H), 7.34-7.27 (m, 5 H), 7.21 (t, J = 5.2 Hz, 1 H), 4.97 (s, 2 H), 3.14 (m, 1 H), 2.99 (q, J = 6.4 Hz, 2 H), 1.58-1.34 (m, 11 H).

Step C: Synthesis of cis(2-[4-(4-dimethylamino-quinazolin-2-ylamino)-cyclohexyl]-ethyl}-carbamic acid benzyl ester.

A mixture of (2-chloro-quinazolin-4-yl)-dimethyl-amine obtained in step B of example 1 (2.45 g, 10.2 mmol) and cis-[2-(4-amino-cyclohexyl)-ethyl]-carbamic acid benzyl ester (3.3 g, 10.2 mmol) and triethylamine (1.65 mL, 10.2 mmol) in 2-propanol (15 mL) was heated at 170 °C for 45 min using a Smith Microwave Synthesizer. The mixture was concentrated and the residue was purified by column chromatography (silica gel, CH₂Cl₂ to 10% 2 M NH₃/MeOH in CH₂Cl₂) to give cis{2-[4-(4-dimethylamino-quinazolin-2-ylamino)-cyclohexyl]-ethyl}-carbamic acid benzyl ester (4.48g, 85%) as a yellow oil. ESI MS m/e 448 M + H*; 'H NMR (400 MHz, DMSO-d₆) & 8.07-7.20 (m, 11 H), 4.98 (s, 2 H), 4.08 (m, 1 H), 3.39 (b, 6 H), 3.04 (m, 2 H), 1.7-1.3 (m, 11 H).

Step D: Synthesis of $cis-N^2$ -[4-(2-amino-ethyl)-cyclohexyl]- N^4 , N^4 -dimethyl-quinazoline-2,4-diamine.

To a solution of cis-{2-[4-(4-dimethylamino-quinazolin-2-ylamino)-cyclohexyl]-

ethyl}-carbamic acid benzyl ester (4.47 g, 10 mmol) in EtOH (20 mL) was added 1,4-cyclohexadiene (20 mL) and 200 mg of 10% Pd/C. The reaction mixture was stirred at ambient temperature for 18 hr, filtered through pad of celite, and concentrated. The residue was purified by column chromatography (silica gel, 5% to 15% 2 M NH₃/MeOH in CH₂Cl₂) to give cis-N²-[4-(2-amino-ethyl)-cyclohexyl]-N²,N³-dimethyl-quinazoline-2,4-diamine (2.41g, 77%) as a yellow oil.

ESI MS m/e 314 M + H⁺; 1 H NMR (400 MHz, DMSO-d₆) 8 7.82 (d, J = 8.0 Hz, 1 H), 7.44 (t, J = 6.8 Hz, 1 H), 7.27 (d, J = 8.0 Hz, 1 H), 6.97 (t, J = 6.8 Hz, 1 H), 6.31 (brs, 1 H), 3.97 (m, 1 H), 3.37 (b, 2 H), 3.17 (s, 3), 3.14 (s, 3 H), 2.62 (t, J = 7.6 Hz, 2 H), 1.68-1.31 (m, 11 H).

Step E: Synthesis of cis-N²-{4-[2-(4-bromo-2-trifluoromethoxy-benzylamino)-ethyl]-cyclohexyl}-N⁴-N⁴-dimethyl-quinazoline-2,4-diamine ditrifluoro-acetic acid.

A solution of cis-N²-[4-(2-amino-ethyl)-cyclohexyl]-N²,N²-dimethyl-quinazoline-2,4-diamine (31.4 mg, 0.1 mmol) and 4-bromo-2-trifluoromethoxy benzaldehyde (26.9 mg, 0.1 mmol) in MeOH (1 mL) was stirred at ambient temperature. After 3 hr, NaBH(OAc)₃ (85 mg, 0.4 mmol) was added and the resulting mixture was stirred at ambient temperature for overnight. The reaction mixture was quenched with 50% DMSO in water (2 mL). The mixture was concentrated and purified by preparative HPLC. The pure fractions were combined and lyophilized to give cis-N²-{4-[2-(4-bromo-2-trifluoromethoxybenzylamino)-ethyl]-cyclohexyl}-N²,N²-dimethyl-quinazoline-2,4-diamine ditrifluoroacetic acid (32.2 mg, 41%) as a white solid.

ESI MS m/e 566/568 M + H⁺; ¹H NMR (400 MHz, DMSO-d₆) & 12.76 (brs, 1 H), 8.81 (b, 2 H), 8.43 (m, 1 H), 8.09 (d, J = 8.4 Hz, 1 H), 7.71-7.56 (m, 4 H), 7.35 (d, J = 8.0 Hz, 1 H), 7.29 (t, J = 8.0 Hz, 1 H), 4.15 (m, 3 H), 3.39 (m, 6 H), 2.97 (m, 2 H), 1.67-1.30 (m, 11 H).

Example 2337

cis-2,6-Dichloro-N-{2-[4-(4-dimethylamino-quinazolin-2-ylamino)-cyclohexyl]-ethyl}benzamide trifluoro-acetic acid

Step A: Synthesis of cis-2,6-dichloro-N-{2-[4-(4-dimethylamino-quinazolin-2-vlamino)-cyclohexyll-ethyl}-benzamide trifluoro-acetic acid.

To a solution of $cis-N^2$ -[4-(2-amino-ethyl)-cyclohexyl]- N^i , N^i -dimethyl-quinazoline-2,4-diamine (31.4 mg, 0.1 mmol) and 2,6-dichlorobenzoyl chloride (20.7 mg, 0.1 mmol) in DMF (0.5 mL) was added triethylamine (20 uL, 0.14 mmol). After stirring the mixture at ambient temperature for 6 hr , DMSO (0.5 mL) was added and the mixture was purified by preparative HPLC. The pure fractions were combined and lyophilized to give cis-2,6-dichloro-N-{2-[4-(4-dimethylamino-quinazolin-2-ylamino)-cyclohexyl]-ethyl}-benzamide trifluoro-acetic acid (17.6 mg, 29%) as a white solid.

ESI MS m/e 486 M + H $^{+}$; ¹H NMR (400 MHz, DMSO-d_e) δ 11.93 (brs, 1 H), 8.26 (t, J = 5.2 Hz, 1 H), 8.14 (d, J = 8.0 Hz, 1 H), 7.95 (brs, 1 H), 7.76 (t, J = 8.4 Hz, 1 H), 7.52-7.31 (m, 5 H), 4.15 (m, 1 H), 3.45 (b, 6 H), 3.29 (m, 2 H), 1.76-1.31 (m, 11 H).

Example 2338

 $cis-N^2-[4-(2-Ethoxy-benzylamino)-cyclohexylmethyl]-N^4, N^4-dimethyl-quinazoline-2, 4-diamine ditrifluoro-acetic acid$

Step A: Synthesis of cis-(4-aminomethyl-cyclohexyl)-carbamic acid tert-butyl ester.

To a solution of cis-(4-carbamoyl-cyclohexyl)-carbamic acid tert-butyl ester obtained in step B of example 2332 (9.68 g, 40 mmol) in THF (100 mL) was added a solution of 1 M BH₃ in THF (80 mL, 80 mmol) over 30 min. The mixture was stirred at reflux for 2 hr. After cooling the reaction mixture to ambient temperature, 1 M aqueous sodium hydroxide was carefully added. The solvents were removed under reduced pressure and the aqueous layer was extracted with CH₂Cl₂ (twice). The organic layer was dried over sodium sulfate and concentrated under reduced pressure to give cis-(4-aminomethyl-cyclohexyl)-carbamic acid tert-butyl ester as colorless oil (5.16 g, 57%). ESI MS m/e 229 M + H'; ¹H NMR (400 MHz, DMSO-d₀) δ 6.67 (d, J = 6.8 Hz, 1 H).

Step B: Synthesis of cis-{4-[(4-dimethylamino-quinazolin-2-ylamino)-methyl]-cyclohexyl}-carbanic acid tert-butyl ester.

3.43 (m, 1 H), 2.41 (d, J = 6.4 Hz, 2 H) 1.49-1.22 (m, 18 H).

A mixture of cis-(4-aminomethyl-cyclohexyl)-carbamic acid tert-butyl ester (1.14 g, 5 mmol), (2-chloro-quinazoline-4-yl)-dimethyl-amine obtained in step B of example 1 (1.035 g, 5 mmol), and triethylamine (1.5 mL, 11 mmol) in 2-propanol (2.5 mL) was heated at 170 °C for 35 min using a Smith Microwave Synthesizer. The mixture was concentrated and the residue was purified by column chromatography (silica gel, CH₂Cl₂ to 10% 2 M NH₃/MeOH in CH₂Cl₂) to give cis-{4-[(4-dimethylamino-quinazolin-2-ylamino)-methyl]-cyclohexyl}-carbamic acid tert-butyl ester (1.28 g, 80%) as a white solid.

ESI MS m/e 400 M + H*; ¹H NMR (400 MHz, DMSO-d₆) δ 8.04-7.06 (m, 4 H), 6.77 (d, J = 6.0 Hz, 1 H), 3.40-3.16 (m, 9 H), 1.70-1.37 (m, 18 H).

Step C: Synthesis of $cis-N^2$ -(4-amino-cyclohexylmethyl)- N^4 , N^4 -dimethyl-quinazoline-2,4-diamine.

A solution of cis-{4-[(4-dimethylamino-quinazolin-2-ylamino)-methyl]-cyclohexyl}-carbamic acid tert-butyl ester (1.2 g, 3 mmol) in 50% TFA in CH₂Cl₂ (20 mL) was stirred at ambient temperature. After 30 minutes, the mixture was concentrated and the residue was diluted with 1 M aqueous sodium hydroxide. The aqueous layer was extracted with CH₂Cl₂ (twice). The combined organic layer was dried over Na₂SO₄, filtered and concentrated to give cis-N²-(4-amino-cyclohexylmethyl)-N¹,N²-dimethyl-quinazoline-2,4-diamine (0.88 g, 98%) as a white solid.

ESI MS m/e 300 M + H⁺; ¹H NMR (400 MHz, DMSO-d₀) δ 7.85 (d, J = 7.6 Hz, 1 H), 7.47 (t , J = 6.8 Hz, 1 H), 7.27 (brs, 1 H), 7.0 (t, J = 7.2 Hz, 1 H), 6.66 (brs, 1 H), 3.33-3.14 (m, 9 H), 1.69-1.48 (m, 9 H).

Step D: Synthesis of cis-N²-[4-(2-ethoxy-benzylamino)-cyclohexylmethyl]-N⁴,N⁴-dimethyl-quinazoline-2,4-diamine ditrifluoro-acetic acid.

A solution of cis-N²-(4-amino-cyclohexylmethyl)-N²,N²-dimethyl-quinazoline-2,4-diamine (30 mg, 0.1 mmol) and 2-ethoxy benzaldehyde (15 mg, 0.1 mmol) in MeOH (1 mL) was stirred at ambient temperature. After 3 hr, NaBH(OAe)₃ (85 mg, 0.4 mmol) was added and the mixture was stirred at ambient temperature for overnight. The resulting mixture was quenched with 50% DMSO in water (2 mL) and the solution was purified by preparative HPLC. The pure fractions were combined and lyophilized to give cis-N²-[4-(2-ethoxy-benzylamino)-cyclohexylmethyl]-N²,N²-dimethyl-quinazoline-2,4-diamine ditrifluoro-acetic acid (33 mg, 50%) as a white solid.

ESI MS m/e 434 M + H $^+$; H NMR (400 MHz, DMSO-d₆) δ 13.03 (brs, 1 H), 8.79 (brs, 1 H), 8.49 (m, 2 H), 8.15 (d, J = 8.4 Hz, 1 H), 7.77 (t, J = 7.6 Hz, 1 H), 7.40-7.33 (m, 4 H), 7.07 (d, J = 7.6 Hz, 1 H), 6.99 (t, J = 7.2 Hz, 1 H), 4.11-4.06 (m, 4 H), 3.47-3.41 (m, 8 H), 3.15 (m, 1 H), 1.90-1.60 (m, 9 H), 1.37 (t, J = 7.2 Hz, 3 H).

Example 2339

 $cis-3, 5- Dichloro-N-\{4-[(4-dimethylamino-quinazolin-2-ylamino)-methyl]-cyclohexyl\}-benzamide trifluoro-acetic acid$

Step A: Synthesis of cis-3,5-dichloro-N-{4-[(4-dimethylamino-quinazolin-2-ylamino)methyll-cyclohexyl}-benzamide trifluoro-acetic acid.

A solution of cis-N2-(4-amino-cyclohexylmethyl)-N',N'-dimethyl-quinazoline-2,4-

diamine (30 mg, 0.1 mmol) and 3,5-dichlorobenzoylchloride (20.9 mg, 0.1 mmol) and pyridine (12 μ L, 0.25 mmol) in DMSO (1 mL) was stirred at ambient temperature for overnight. The mixture was purified by preparative HPLC. The pure fractions were combined and lyophilized to give cis-3,5-dichloro-N-{4-[(4-dimethylamino-quinazolin-2-ylamino)-methyl]-cyclohexyl}-benzamide trifluoro-acetic acid.(18 mg, 31%) as a white solid.

ESI MS m/e 472 M + H⁺; ¹H NMR (400 MHz, DMSO-d₆) δ 12.13 (brs, 1 H), 8.34 (d, J = 7.2 Hz, 1 H), 8.15 (d, J = 8.8 Hz, 1 H), 8.06 (brs, 1 H), 7.82-7.73 (m, 4 H), 7.45 (d, J = 7.6 Hz, 1 H), 7.36 (t, J = 7.6 Hz, 1 H), 3.9 (m, 1 H), 3.47-3.25 (m, 8 H), 1.83-1.56 (m, 9 H).

Example 2340

 $trans-N^2-\{4-[(2,3-\mathrm{Dimethoxy-benzylamino})-\mathrm{methyl}]-\mathrm{cyclohexyl}\}-N^4,N^4-\mathrm{dimethyl-quinazoline-2},4-\mathrm{diamine}$ ditrifluoro-acetic acid

Step A: Synthesis of trans-4-(tert-butoxycarbonylamino-methyl)cyclohexanecarboxylic acid.

To a solution of *trans*-4-amino-cyclohexanecarboxylic acid (37.7 g, 0.24 mol) in a mixture of dioxane (250 ml) and water (200 ml) cooled in an ice bath were added 1 M aqueous sodium hydroxide (10.07 g, 0.25 mol) and (Boc)₂O (57.6 g, 0.26 mol). The reaction mixture was stirred at ambient temperature. After 3 hr, the mixture was concentrated and the residue was dissolved in water. The aqueous layer was washed with $\rm Et_2O$ (3 times). The aqueous layer was cooled in an ice bath and acidified with 1 M aqueous HCI (pH = 2) and the resulting white precipitate was dried to give *trans*-4-(*tert*-butoxycarbonylamino-methyl)-cyclohexanecarboxylic acid (47.4 g, 76.8%) as a white solid.

ESI MS m/e 258 M + H $^{+}$; 1 H NMR (400 MHz, CDCl₃) 5 11.95 (brs, 1 H), 6.79 (t, J=6.0 Hz, 1 H), 2.76 (t, J=6.0 Hz, 2 H), 2.11 (m, 1 H), 1.87 (m, 2 H), 1.69 (m, 2 H), 1.36 (s,

9 H), 1.27 (m, 3 H), 0.9 (m, 2 H).

Step B: Synthesis of trans-[4-(tert-butoxycarbonylamino-methyl)-cyclohexyl]-carbamic acid benzyl ester.

To a solution of trans-4-(tert-butoxycarbonylamino-methyl)-cyclohexanecarboxylic acid (46.9 g, 0.18 mol) in benzene (300 mL) were added triethylamine (24.2 g, 0.24 mol) and diphenylphosphoryl azide (55.9 g, 0.20 mol). The reaction mixture was stirred at 80 °C for 1 hr. To the mixture was added benzyl alcohol (25.9 g, 0.24 mol) and stirred at 100 °C for 4 hr. The mixture was subsequently cooled to ambient temperature for overnight, concentrated, and the resulting pale orange solid dissolved in EtOAc. The organic layer was washed with water (three times), concentrated, and the residue was purified by column chromatography (silica gel, 50% EtOAc in hexane) to give trans-[4-(tert-butoxycarbonylamino-methyl)-cyclohexyl]-carbamic acid benzyl ester (66.7g, 100%) as a white solid.

ESI MS m/e 363 M + H*; 1 H NMR (400 MHz, CDCl₃) 8 7.24-7.23 (m, 5 H), 5.06 (s, 2 H), 4.57 (m, 2 H), 3.44 (brs, 1 H), 2.97 (t, J = 6.4 Hz, 2 H), 2.04 (m, 2 H), 1.79 (m, 2 H), 1.43 (s, 9 H), 1.08-0.76 (m, 5 H).

Step C: Synthesis of trans-(4-amino-cyclohexylmethyl)-carbamic acid tert-butyl ester.

To a solution of trans-[4-(tert-butoxycarbonylamino-methyl)-cyclohexyl]-carbamic acid benzyl ester (5.32 g, 0.015 mol) in EtOH (200 mL) was added 10% Pd/C (50 mg). The mixture was stirred at ambient temperature under hydrogen atmosphere for 4 hr. The resulting mixture was filtered through a pad of celite and concentrated. The residue was purified by column chromatography (silica gel, 3% 2 M NH₂/MeOH in CH₂Cl₂) to give trans-(4-amino-cyclohexylmethyl)-carbamic acid tert-butyl ester as a colorless solid (3.197 g, 95.4%).

ESI MS m/e 229 M + H $^{+}$; 'H NMR (400 MHz, CDCl₃) δ 8.44 (brs, 1 H), 4.59 (b, 1 H), 2.96 (m, 2 H), 2.08 (m, 2 H), 1.83 (m, 2 H), 1.43 (s, 9 H), 1.08 (m, 5 H).

Step D: Synthesis of trans-N²-(4-aminomethyl-cyclohexyl)-N⁴,N⁷-dimethyl-quinazoline-2,4-diamine ditrifluoro-acetic acid

A mixture of trans-(4-amino-cyclohexylmethyl)-carbamic acid tert-butyl ester

(0.24 g, 1 mmol) and (2-chloro-quinazolin-4-yl)-dimethyl-amine obtained in step B of example 1 (0.32 g, 1.4 mmol) in 2-propanol (5 mL) was heated to 170 °C for 30 min using a Smith Microwave Synthesizer. This procedure was repeated 19 times. The reaction mixtures were combined and purified by column chromatography (silica gel) to give 1.13 g of a yellow solid. The yellow solid was dissolved in 50% TFA in CH₂Cl₂ (20 mL) and the mixture was stirred at ambient temperature. After 10 hours, the mixture was concentrated and the residue was purified by preparative HPLC. The pure fractions were combined and lyophilized to give trans-N²-(4-aminomethyl-cyclohexyl)-N²-N²-dimethyl-quinazoline-2,4-diamine ditrifluoro-acetic acid (0.49 g, 5%) as a white solid.

ESI MS m/e 300 M + H $^{+}$; 1 H NMR (400 MHz, CDCl₃) δ 9.16 (d, J = 5.6 Hz, 1 H), 8.11 (m, 2 H), 7.86 (d, J = 8.0 Hz, 1 H), 7.51 (t, J = 7.6 Hz, 1 H), 7.41 (d, J = 8.0 Hz, 1 H), 7.18 (t, J = 6.8 Hz, 1 H), 3.8 (brs, 1 H), 3.47 (s, 6 H), 2.10 (m, 2 H), 1.92 (m, 2 H), 1.42-1.12 (m, 5 H).

Step E: Synthesis of $trans-N^2$ -{4-[(2,3-dimethoxy-benzylamino)-methyl]-cyclohexyl}- N^i , N^i -dimethyl-quinazoline-2,4-diamine ditrifluoro-acetic acid.

A mixture of 2,3-dimethoxy benzaldehyde (15 mg, 0.09 mmol), trans-N²-(4-aminomethyl-cyclohexyl)-N²,N²-dimethyl-quinazoline-2,4-diamine ditrifluoro-acetic acid (28 mg, 0.053 mmol), NaBH(OAc)₃ (76 mg, 0.36 mmol), and MeOH (2 mL) was heated at 100 °C for 40 seconds using a Smith Microwave Synthesizer. The resulting mixture was purified by preparative HPLC. The pure fractions were combined and lyophilized to give trans-N²-{4-[(2,3-dimethoxy-benzylamino)-methyl]-cyclohexyl}-N²,N²-dimethyl-quinazoline-2,4-diamine ditrifluoro-acetic acid (10.2 mg, 28 %).

ESI MS m/e 450 M + H $^{+}$; 1 H NMR (400 MHz, CDCl₃) δ 9.68 (d, J = 6.0 Hz, 1 H), 9.41 (brs, 1 H), 7.85 (d, J = 7.6 Hz, 1 H), 7.52 (t, J = 7.2 Hz, 1 H), 7.46 (d, J = 8.0 Hz, 1 H), 7.19 (t, J = 7.2 Hz, 1 H), 7.09 (t, J = 8.0 Hz, 1 H), 6.98 (d, J = 7.2 Hz, 1 H), 6.90 (d, J = 7.6 Hz, 1 H), 4.16 (s, 2 H), 3.96 (s, 3 H), 3.87 (s, 3 H), 3.75 (m, 1 H), 3.47 (m, 6 H), 2.80 (m, 2 H), 2.11 (m, 2 H), 1.86 (m, 2 H), 1.48-1.50 (m, 5 H).

Example 2341

cis-N²-[4-(3,5-Dichloro-benzylamino)-cyclohexyl]-N¹,N¹-dimethyl-quinazoline-2,4-diamine ditrifluoro-acetic acid

Step A: Synthesis of cis-(4-tert-butoxycarbonylamino-cyclohexyl)-carbamic acid benzyl ester.

To a suspension of cis-4-tert-butoxycarbonylamino-cyclohexanecarboxylic acid (50.0 g, 206 mmol) in benzene were added triethylamine (26.9 g, 266 mmol) and phosphorazidic acid diphenyl ester (62.2 g, 226 mmol). The reaction mixture was stirred at 80°C for 1 hr. Benzyl alcohol (31.4 g, 290 mmol) was added and the mixture was stirred at reflux for 24 hr. The reaction mixture was concentrated and the residue was dissolved in EtOAc and H₂O. The organic layer was separated and the aqueous layer was extracted with EtOAc (twice). The combined organic layer was dried over MgSO₄, filtered, concentrated, and purified by flash chromatography (silica gel, 30% EtOAc in hexane) to give cis-(4-tert-butoxycarbonylamino-cyclohexyl)-carbamic acid benzyl ester (54.1 g, 76%) as a colorless oil.

ESI MS m/e 349 M + H * ; ¹H NMR (400 MHz, DMSO-d₆) δ 7.34-7.28 (m, 5 H), 7.12 (d, J = 5.6 Hz, 1 H), 6.62 (brs, 1 H), 4.98 (s, 2 H), 3.39-3.37 (m, 2 H), 1.60-1.45 (m, 8 H), 1.37 (s, 9 H).

Step B: Synthesis of cis-(4-amino-cyclohexyl)-carbamic acid tert-butyl ester.

Using the procedure for the step C of example 2340, the title compound was obtained.

ESI MS m/e 215 M + H $^{+}$; 1 H NMR (400 MHz, DMSO-d₆) δ 6.60 (d, J = 6.0 Hz, 1 H), 3.30-3.28 (m, 1 H), 2.74 (s, 1 H), 1.59-1.51 (m, 2 H), 1.45-1.37 (m, 15 H).

Step C: Synthesis of cis-[4-(4-dimethlyamino-quinazolin-2-ylamino)-cyclohexyl]-

carbamic acid tert-butyl ester.

A solution of cis-(4-amino-cyclohexyl)-carbamic acid tert-butyl ester (0.5 g, 2.3 mmol), (2-chloro-quinazolin-4-yl)-dimethly-amine obtained in step B in example 1 (0.53, 2.6 mmol), diisopropylethylamine (1.22 mL, 7.0 mmol) and 2-propanol (1.0 mL) was heated using a Smith Microwave Synthesizer at 170 °C for 1 hour. This reaction procedure was repeated 39 more times and the resulting reaction mixtures were combined. The mixture was concentrated and the residue was purified by column chromatography (silica gel, 2% to 4% 2 M NH₂/MeOH in CH₂Cl₃) to give cis-[4-(4-dimethlyamino-quinazolin-2-ylamino)-cyclohexyl]-carbamic acid tert-butyl ester (22.1 g, 0.057 mol, 61%) as a colorless oil.

ESI MS m/e 386 M + H * ; ¹H NMR (400 MHz, DMSO-d₆) δ 7.85 (d, J = 8.0 Hz, 1 H), 7.47 (t, J = 8.4 Hz, 1 H), 7.27 (d, J = 8.0 Hz, 1 H), 7.00 (t, J = 7.6 Hz, 1 H), 6.60 (brs, 1 H), 6.18 (brs, 1 H), 3.89-3.88 (m, 1 H), 3.39 (brs, 1 H), 3.19 (s, 6 H), 1.77-1.71 (m, 2 H), 1.68-1.52 (m, 6 H), 1.38 (s, 9 H).

Step D: Synthesis of cis-N²-(4-amino-cyclohexyl)-N⁴,N⁴-dimethyl-quinazolin-2,4-diamine.

Using the procedure for the step C of example 2338, the title compound was obtained.

ESI MS m/e 286 M + H $^{+}$; ¹H NMR (400 MHz, DMSO-d₆) δ 7.84 (d, J = 8.4 Hz, 1 H), 7.45 (t, J = 6.8 Hz, 1 H), 7.26 (d, J = 8.4 Hz, 1 H), 6.99 (t, J = 7.6 Hz, 1 H), 6.20 (brs, 1 H), 3.90-3.89 (m, 1 H), 3.18 (s, 6 H), 2.79 (s, 1 H), 1.74-1.71 (m, 2 H), 1.57-1.41 (m, 8 H).

Step E: Synthesis of $cis-N^1$ -[4-(3,5-dichloro-benzylamino)-cyclohexyl]- N^i , N^i -dimethyl-quinazoline-2,4-diamine ditrifluoro-acetic acid.

To a solution of cis-N²-(4-amino-cyclohexyl)-N⁴,N⁴-dimethyl-quinazolin-2,4-diamine (31.4 mg, 0.11 mmol) in MeOH (0.5 mL) was added 3,5-dichlorobenzaldehyde (17.5 mg, 0.10 mmol). The mixture was stirred at ambient temperature for 0.5 hr and sodium triacetoxyborohydride (85 mg, 0.40mmol) was added. The mixture was stirred for overnight and the reaction was quenched with 50% DMSO in water (1.0 mL). The mixture was purified by preparative HPLC. The pure fractions were combined and lyophilized to give cis-N²-[4-(3,5-dichloro-benzylamino)-cyclohexyl]-N⁴,N²-dimethyl-quinazoline-2,4-diamine ditrifluoro-acetic acid (23 mg, 0.041 mmol, 37%) as a white

solid.

ESI MS m/e 444 M + H $^{+}$; ¹H NMR (400 MHz, DMSO-d₀) δ 13.55 (s, 1 H), 8.90 (brs, 3 H), 8.17 (d, J = 8.0 Hz, 1 H), 7.79 (t, 7.6 Hz, 1 H), 7.68 (s, 1 H), 7.61 (s, 2 H), 7.41 (d, J = 7.6 Hz, 1 H), 7.36 (t, J = 7.6 Hz, 1 H), 4.23 (s, 2 H), 4.07 (s, 1 H), 3.48 (s, 6 H), 2.00-1.92 (m, 4 H), 1.82-1.74 (m, 4 H).

Example 2342

cis-N-[4-(4-Dimethylamino-quinazolin-2-ylamino)-cyclohexyl]-3,4-difluorobenzamide trifluoro-acetic acid.

Step A: Synthesis of cis-N-[4-(4-dimethylamino-quinazolin-2-ylamino)-cyclohexyl]-3.4-difluoro-benzamide trifluoro-acetic acid.

Using the procedure for the step A of example 2333, the title compound was obtained.

ESI MS m/e 426 M + H*; ¹H NMR (400 MHz, DMSO- d_g) δ 12.46 (brs, 1 H), 8.36 (s, 1 H), 8.15 (d, J=8.0 Hz, 1 H), 7.97 (brs, 1 H), 7.94-7.89 (m, 1 H), 7.77-7.73 (m, 1 H), 7.56-7.49 (m, 1 H), 7.41 (brs, 1 H), 7.36 (t, J=7.6 Hz, 1 H), 4.07 (m, 1 H), 3.87 (m, 1 H), 3.47 (brs, 6 H), 1.89 (m, 2 H), 1.74 (m, 6 H).

Example 2343

2 CF₃CO₂H

cis-4-Dimethlyamino-N-[4-(4-dimethlyamino-quinazolin-2-ylamino)-cyclohexyl]benzamide ditrifluoro-acetic acid

Step A: Synthesis of cis-4-dimethlyamino-N-[4-(4-dimethlyamino-quinazolin-2-ylamino)-cyclohexyl]-benzamide ditrifluoro-acetic acid.

To a solution of 4-dimethylaminobenzoic acid (16.5 mg, 0.10 mmol) in DMF (0.5 mL) were added HATU (45.6 mg, 0.12 mmol), diisopropylethylamine (34.8 uL, 0.20 mmol), and cis-N²-(4-amino-cyclohexyl)-N²,N²-dimethyl-quinazolin-2,4-diamine obtained in step D of example 2341 (28.5 mg, 0.10 mmol) and stirred at ambient temperature for overnight. The resulting mixture was diluted with DMSO (0.5 mL) and purified by preparative HPLC. The pure fractions combined and lyophilized to give cis-4-dimethlyamino-N-[4-(4-dimethlyamino-quinazolin-2-ylamino)-cyclohexyl]-benzamide ditrifluoro-acetic acid (34.1 mg, 0.052mmol, 52%) as a white solid.

ESI MS m/e 433 M + H $^+$; ¹H NMR (400 MHz, DMSO-d₆) δ 12.73 (s, 1 H), 8.34 (s, 1 H), 8.16 (d, J = 8.0 Hz, 1 H), 7.78-7.70 (m, 4 H), 7.43 (d, J = 7.6 Hz, 1 H), 7.35 (t, J = 8.0 Hz, 1 H), 6.67 (d, J = 8.8 Hz, 2 H), 4.05 (m, 1 H), 3.86 (m, 1 H), 3.47 (s, 6 H), 2.95 (s, 3 H), 2.53 (s, 3 H), 1.91 (m, 2 H), 1.75-1.72 (m, 6 H).

Example 2344

trans-4-Bromo-N-[4-(4-dimethlyamino-quinazolin-2-ylamino)-cyclohexyl]-2-trifluoromethoxy-benzenesulfonamide

Step A: Synthesis of trans-(4-amino-cyclohexyl)-carbamic acid tert-butyl ester.

To a solution of trans-1,4-diamino-cyclohexane (10 g, 0.088 mol) in 1,4-dioxane (400 mL) was added a solution of (Boc)₂O (4.78 g, 0.022 mol) in 1,4-dioxane (100 ml) over 30 min. The mixture was stirred at ambient temperature for overnight and then the dioxane was removed in vacuo. The resulting precipitate was dissolved in H₂O (500 mL) and left to sit for 1 hour. During this time, the di-Boc-protected diamino-cyclohexane fell out as a white crystalline precipitate. This was subsequently filtered from the aqueous solvent. The aqueous layer was extracted with EtOAc (three times). The organic layers were combined and washed with H₂O. The organic layer was dried over MgSO₄ and concentrated to give trans-(4-amino-cyclohexyl)-carbamic acid tert-butyl ester (4 g, 0.019 mol, 85%).

ESI MS m/e 215 M + H $^{+}$; 1 H NMR (400 MHz, DMSO-d₆) δ 6.63 (d, J = 8.0 Hz, 1 H), 3.11-3.09 (m, 1 H), 2.44-2.37 (m, 1 H), 1.70-1.67 (m, 4 H), 1.41-1.31 (m, 11 H), 1.20-0.95 (m, 4 H).

Step B: Synthesis of trans-[4-(4-bromo-2-trifluoromethoxy-benzenesulfonylamino)cyclohexyl]-carbamic acid tert-butyl ester.

To a solution of trans-(4-amino-cyclohexyl)-carbamic acid tert-butyl ester (1 g, 0.0047 mol) in CH₂Cl₂ were added diisopropylethylamine (1.63 mL, 0.0093 mol) and 4-bromo-2-trifluoromethoxy-benzenesulfonyl chloride (1.03 mL, 0.0051 mol). The reaction mixture was stirred at ambient temperature for 1 hr and then washed with water. The aqueous layer was extracted with CH₂Cl₂ (twice), the organic layers were combined, dried over MgSO₄, and concentrated. The resulting precipitate was recrystallized with CH₂Cl₂ and hexanes to give trans-[4-(4-bromo-2-trifluoromethoxy-benzenesulfonylamino)-cyclohexyl]-carbamic acid tert-butyl ester (2.39 g, 0.0046 mol, 99%).

ESI MS m/e 517 M + H $^{\circ}$; ¹H NMR (400 MHz, DMSO-d₆) δ 7.99 (d, J = 7.6 Hz, 1 H), 7.85 (d, J = 8.0 Hz, 1 H), 7.79-7.77 (m, 1 H), 6.67 (d, J = 8.0 Hz, 1 H), 3.14-2.94 (m, 2 H), 1.70-1.60 (m, 4 H), 1.34 (s, 9 H), 1.30-1.18 (m, 2 H), 1.14-1.03 (m, 2 H).

Step C: Synthesis of trans-N-(4-amino-cyclohexyl)-4-bromo-2-trifluoromethoxybenzenesulfonamide.

Using the procedure for the step C of example 2338, the title compound was obtained.

ESI MS m/e 417/419 M + H⁺; ¹H NMR (400 MHz, DMSO-d₆) δ 7.85 (d, J= 8.4 Hz, 1 H), 7.79-7.76 (m, 3 H), 3.32 (brs, 2 H), 3.03-2.95 (m, 1 H), 2.41-2.36 (m, 1 H), 1.67-1.57 (m, 4 H), 1.28-1.18 (m, 2 H), 0.99-0.89 (m, 2 H).

Step D: Synthesis of trans-4-bromo-N-[4-(4-dimethlyamino-quinazolin-2-ylamino)-cyclohexyl]-2-trifluoromethoxy-benzenesulfonamide.

To a solution of trans-N-(4-amino-cyclohexyl)-4-bromo-2-trifluoromethoxy-benzenesulfonamide (100 mg, 0.24 mmol) in 2-propanol (0.5 mL) was added (2-chloro-quinazolin-4-yl)-dimethly-amine obtained in step B of example 1 (54.7 mg, 0.26mmol). The mixture was heated using a Smith Microwave Synthesizer at 170 °C for 15 min. The mixture was concentrated and the residue was purified by chromatography (2% to 4% 2 M NH₃/MeOH in CH₂Cl₂) to give trans-4-bromo-N-[4-(4-dimethlyamino-quinazolin-2-ylamino)-cyclohexyl]-2-trifluoromethoxy-benzenesulfonamide (42 mg, 0.71 mmol, 30%) as a white solid.

ESI MS m/e 588/590 M + H $^+$; ¹H NMR (400 MHz, DMSO-d₆) δ 8.02 (d, J = 7.6 Hz, 1 H), 7.88 (d, J = 8.4 Hz, 1 H), 7.82-7.77 (m, 3 H), 7.45-7.41 (m, 1 H), 7.25-7.41 (m, 1 H), 6.99 (t, J = 7.2 Hz, 1 H), 6.37 (brs, 1 H), 3.68-3.67 (m, 1 H), 3.16 (s, 6 H), 3.09-3.02 (m, 1 H), 1.89-1.86 (m, 2 H), 1.69-1.67 (m, 2 H), 1.40-1.17 (m, 4 H).

Example 2345

trans-4-Fluoro-biphenyl-4-carboxylic acid [4-(4-dimethlyamino-quinazolin-2-ylamino)-cyclohexyl]-amide.

Step A: Synthesis of 4'-fluoro-biphenyl-4-carboxylic acid.

To a solution of 4-bromobenzoic acid (5 g, 0.025 mol) in THF (150 mL) under an $831\,$

atmosphere of argon were added tetrakis(triphenylphosphine) palladium(0) (862 mg, 0.75 mmol), 2 M aqueous Na₂CO₃ (30 mL), and a solution 4-fluorophenyboronic acid (3.48 g, 0.025 mol) in a minimal amount of ethanol (~10 mL). The resulting reaction mixture was stirred at reflux under an argon atmosphere for overnight. The reaction mixture was cooled to ambient temperature and acidified with addition of 1 M HCl aqueous. The aqueous layer was extracted with Et₂O (three times). The organic layers were combined, dried over MgSO₄, filtered and concentrated. The resulting precipitate was crystallized in Et₂O and hexane to give 4'-fluoro-biphenyl-4-carboxylic acid (4.4 g, 0.020 mol, 82%) as a white solid.

 $^{\rm i}$ H NMR $\,$ (400 MHz, DMSO-d_e) δ 12.96 (s, 1 H), 8.00-7.98 (m, 2 H), 7.78-7.75 (m, 4 H), 7.34-7.31 (m, 2 H).

Step B: Synthesis of trans-[4-(4-dimethlyamino-quinazolin-2-ylamino)-cyclohexyl]-carbamic acid tert-butyl ester.

Using the procedure for the step D of example 2344, the title compound was obtained.

ESI MS m/e 386 M + H * ; ¹H NMR (400 MHz, DMSO-d₆) δ 7.83 (d, J= 8.0 Hz, 1 H), 7.46 (t, J= 6.8 Hz, 1 H), 7.27-7.25 (m, 1 H), 6.99 (t, J= 7.2 Hz, 1 H), 6.71 (d, J= 8.4 Hz, 1 H), 6.38 (brs, 1 H), 3.72 (m, 1 H), 3.17 (s, 6 H), 1.92-1.90 (m, 2 H), 1.79-1.76 (m, 2 H), 1.37 (s, 9 H), 1.34-1.23 (m, 4 H).

Step C: Synthesis of trans-4-fluoro-biphenyl-4-carboxylic acid [4-(4-dimethlyamino-quinazolin-2-ylamino)-cyclohexyl]-amide.

To a solution of trans-[4-(4-dimethlyamino-quinazolin-2-ylamino)-cyclohexyl]carbamic acid tert-butyl ester (0.76 g, 0.20 mmol) in CH₂Cl₂ (20 mL) was added TFA (304
μL, 0.39 mmol). The solution was stirred at ambient temperature for 4 hr. The resulting
mixture was concentrated and the residue was dissolved in CH₂Cl₂. The organic layer
was washed with a dilute aqueous NaOH and aqueous NaHCO₃ solution. The aqueous
layer was extracted with CH₂Cl₂ (twice) and the organic layers combined, dried over
MgSO₄, and concentrated. To a solution of the residue (0.1 g) and 4-fluoro-biphenyl-4carboxylic acid (76 mg, 0.35 mmol) in CH₂Cl₂ were added HOAt (62 mg, 0.46 mmol),
WSC•HCl (87 mg, 0.46 mmol), and diisopropylethylamine (31 uL, 0.18 mmol). The
mixture was stirred for 1 hr at ambient temperature and the reaction was quenched with

water. The aqueous layer was extracted with CH₂Cl₂ (twice). The organic layers were combined, dried over MgSO₄, concentrated and the residue purified by column chromatography (silica gel, 2% to 4% 2 M NH₃/MeOH in CH₂Cl₂) to give trans-4'-fluoro-biphenyl-4-carboxylic acid [4-(4-dimethlyamino-quinazolin-2-ylamino)-cyclohexyl]-amide (35 mg, 0.072, 21%) as a white solid.

ESI MS m/e 484 M + H * ; ¹H NMR (400 MHz, DMSO-d₆) δ 8.30 (brs, 1 H), 8.12 (brs, 2 H), 7.92 (d, J = 8.4 Hz, 2 H), 7.77-7.72 (m, 5 H), 7.44 (brs, 1 H), 7.34-7.28 (m, 3 H), 3.82 (brs, 2 H), 3.47 (brs, 6 H), 2.04 (m, 2 H), 1.94 (m, 2 H), 1.54-1.48 (m, 4 H).

Example 2346

$$\bigcup_{N=1}^{HN}\bigcup_{N=1}^{H}\bigcup_{OCF_3}^{Br}$$

2 CF₃CO₂H

cis-N²-[4-(4-Bromo-2-trifluoromethoxy-benzylamino)-cyclohexyl]-N^f-tert-butylquinazoline-2,4-diamine ditrifluoro-acetic acid

Step A: Synthesis of tert-butyl-(2-chloro-quinazolin-4-yl)-amine.

To a solution of 2,4-dichloro-quinazoline obtained in step B of example 1 (4 g, 20 mmol) in THF (50 mL) were added tert-butyl amine (2.15 mL, 20.5 mmol) and diisopropylethylamine (3.5 mL, 21 mmol). The mixture was stirred at ambient temperature for 2 hr. The mixture was concentrated and the residue was dissolved in EtOAc. The organic layer was washed with water, dried over Na₂SO₄, and filtered. The mixture was concentrated to give tert-butyl-(2-chloro-quinazolin-4-yl)-amine as a white solid (3 g, 64%).

ESI MS m/e 236 M + H $^{+}$; 'H NMR (400 MHz , DMSO-d₆) 8 8.40 (d, J = 8.4 Hz, 1 H), 7.75-7.36 (m, 2 H), 7.58 (d, J = 8.4 Hz, 1 H), 7.48 (t, J = 7.2 Hz, 1 H), 1.52 (s, 9 H).

Step B: Synthesis of $cis-N^2$ -(4-amino-cyclohexyl)- N^2 -tert-butyl-quinazoline-2,4-diamine.

To a suspension of cis-(4-amino-cyclohexyl)-carbamic acid tert-butyl ester (122

mg, 0.57 mmol) in 2-propanol (2 mL) were added tert-butyl-(2-chloro-quinazolin-4-yl)amine (100 mg, 0.42 mmol) and diisopropylethylamine (180 uL, 1 mmol) and the mixture was heated at 170 °C for 1 hr using a Smith Microwave Synthesizer. The resulting solution was concentrated and purified by column chromatography (silica gel, 3% MeOH in CH2Cl2) to give [4-(4-tert-butylamino-quinazolin-2-ylamino)-cyclohexyl]-carbamic acid tert-butyl ester (112 mg, 65%) as a yellow solid. To a suspension of cis-[4-(4-tertbutylamino-quinazolin-2-ylamino)-cyclohexyl]-carbamic acid tert-butyl ester (95 mg, 0.23 mmol) in CH2Cl2 (3 mL) was added trifluoroacetic acid (2 mL) dropwise. The reaction mixture was stirred at ambient temperature for 2 hr. The solution was concentrated. alkalized with saturated aqueous NaHCO3 and 1 M aqueous sodium hydroxide (pH = 9), and the aqueous layer was extracted with CH2Cl2 (three times). The combined organic layer was dried over MgSO4, filtered, and concentrated. The solid was collected by filtration to give cis-N2-(4-amino-cyclohexyl)-N4-tert-butyl-quinazoline-2,4-diamine (44.6 mg, 53%) as a yellow solid.

ESI MS m/e 314 M + H⁺; ¹H NMR (400 MHz, CDCl₃) δ 7.48 (t, J = 6.8 Hz, 1 H), 7.38 (m, 2 H), 7.04 (t, J = 8.0 Hz, 1 H), 5.42 (brs, 1 H), 4.15 (m, 1 H), 2.85 (m, 1 H), 1.2-1.9 (m, 17 H).

Synthesis of cis-N²-[4-(4-bromo-2-trifluoromethoxy-benzylamino)cyclohexyl]-N'-tert-butyl-quinazoline-2,4-diamine ditrifluoro-acetic acid.

Using the procedure for the step C of example 2341, the title compound was obtained.

ESI MS m/e 566 M + H⁺; ¹H NMR (400 MHz, CDCl₃) δ 9.36 (d, J = 8.0 Hz, 1 H), 7.67-7.64 (m, 2 H), 7.53-7.48 (m, 3 H), 7.43 (s, 1 H), 7.33 (m, 1 H), 6.17 (s, 1 H), 4.45 (m, 1 H), 4.28 (s, 2 H), 3.35 (m, 1 H), 2.14 –1.6 (m, 17 H).

Example 2347

 $\label{lem:condition} 4-Bromo-N-\{4-[(4-dimethylamino-quinazolin-2-ylamino)-methyl]-benzyl\}-2-trifluoromethoxy-benzenesulfonamide$

Step A: Synthesis of {4-[(4-dimethylamino-quinazolin-2-ylamino)-methyl]-benzyl}carbamic acid tert-butyl ester.

Using the procedure for the step D of example 2330, the title compound was obtained.

ESI MS m/e 377 M + H $^{+}$, ¹H NMR (400 MHz, DMSO-d₆) δ 8.38 (brs, 1 H), 8.08 (brs, 1 H), 7.70 (brs, 1 H), 7.47 (brs, 1 H), 7.36 (t, J = 6.2 Hz, 1 H), 7.30 (d, J = 8.0 Hz, 3 H), 7.16 (d, J = 7.6 Hz, 2 H), 4.60 (d, J = 6.4 Hz, 2 H), 4.07 (d, J = 6.0 Hz, 2 H), 3.39 (s, 6 H), 1.37 (s, 9 H).

Step B: Synthesis of N²-(4-aminomethyl-benzyl)-N²,N²-dimethyl-quinazoline-2,4-diamine hydrochloride.

To a cooled solution of $\{4-[(4-dimethylamino-quinazolin-2-ylamino)-methyl]-benzyl\}-carbamic acid tert-butyl ester (3.90 g, 9.57 mmol) in MeOH was added 1 M HCl in Et₂O (67.0 ml, 67.0 mmol) and the solution was stirred for overnight. The resulting mixture was concentrated to give <math>N^2$ -(4-aminomethyl-benzyl)-N', N'-dimethyl-quinazoline-2,4-diamine hydrochloride as a white crystalline solid (3.48 g, 95.6%).

ESI MS m/e 308.2 M + H $^{\circ}$; 'H NMR (400 MHz, CD₃OD) δ 8.16 (d, J = 7.2 Hz, 1 H), 7.75 (brs, 1 H), 7.48 (m, 5 H), 7.39 (brs, 1 H), 4.76 (s, 2 H), 4.12 (s, 2 H), 3.51 (m, 6 H).

Step C: Synthesis of 4-bromo-N-{4-[(4-dimethylamino-quinazolin-2-ylamino)-methyl]-benzyl}-2-trifluoromethoxy-benzenesulfonamide.

A solution of N^2 -(4-aminomethyl-benzyl)- N^4 , N^4 -dimethyl-quinazoline-2,4-diamine hydrochloride (50.0 mg, 0.131 mmol), 4-bromo-2-trifluoromethoxy-benzenesulfonyl chloride (53.3 mg, 0.157 mmol) and diisopropylethylamine (91 μ l, 0.524 mmol) in 2-

propanol (1.5 mL) was stirred at ambient temperature for 2 hr. The resulting mixture was concentrated, and the residue was purified by column chromatography (silica gel, 10% MeOH in CH₂Cl₂) to give 4-bromo-N-{4-[(4-dimethylamino-quinazolin-2-ylamino)-methyl]-benzyl}-2-trifluoromethoxy-benzenesulfonamide as a white crystalline compound (40 mg, 50%).

ESI MS m/e 612 M + H $^+$; ¹H NMR (400 MHz, DMSO-d₆) δ 8.51 (t, J = 6.4 Hz, 1 H), 8.06 (brs, 1 H), 7.76-7.67 (m, 4 H), 7.54-7.41 (m, 2 H), 7.24 (d, J = 7.6 Hz, 3 H), 7.14 (d, J = 8.0 Hz, 2 H), 4.56 (d, J = 6.0 Hz, 2 H), 4.67 (d, J =

Example 2348

4-bromo-N-[4-(4-dimethylamino-quinazolin-2-ylamino)-phenyl]-2-trifluoromethoxybenzenesulfonamide

Step A: Synthesis of (4-amino-phenyl)-carbamic acid tert-butyl ester.

Using the procedure for the step A of example 2344, the title compound was obtained.

ESI MS m/e 209 M + H⁺; ¹H NMR (400 MHz, DMSO-d_c) δ 8.75 (s, 1 H), 7.03 (d, J = 7.6 Hz, 2 H), 6.43 (dt, J = 9.5, 2.7 Hz, 2 H), 4.71 (s, 2 H), 1.43 (s, 9 H).

Step B: Synthesis of N^2 -(4-amino-phenyl)- N^4 , N^4 -dimethyl-quinazoline-2,4-diamine hydrochloride.

A mixture of (2-chloro-quinazolin-4-yl)-dimethyl-amine obtained in step B of example 1 (0.5 g, 2.6 mmol) and (4-amino-phenyl)-carbamic acid tert-butyl ester (0.5 g, 2.6 mmol) in CH₂Cl₂ (2 mL) was heated by Smith Synthesizer at 130 °C for 20 min. The mixture was concentrated to give [4-(4-dimethylamino-quinazolin-2-ylamino)-phenyl]-carbamic acid tert-butyl ester as a pale yellow solid (0.86 g, 87%). The reaction was repeated six times, and the total product combined was 8.5 g. To a solution of above product (8.5 g, 22.4 mmol) in MeOH (250 mL) was added 4 M HCl in dioxane (8.4 ml.

33.6 mmol) dropwise, and the mixture was stirred at ambient temperature for overnight. The mixture was concentrated to give N^2 -(4-amino-phenyl)- N^i , N^i -dimethyl-quinazoline-2,4-diamine hydrochloride as a pale pink solid (6.2 g, 87.5%).

ESI MS m/e 280 M + H $^+$; ¹H NMR (400 MHz, D₂O) δ 7.84 (d, J = 8.8 Hz, 1 H), 7.54 (td, J = 7.8, 1.2 Hz, 1 H), 7.46 (dt, J = 9.5, 2.7 Hz, 2 H), 7.27-7.16 (m, 4 H), 3.35 (b, 3 H), 3.12 (b, 3 H).

Step C: Synthesis of 4-bromo-N-[4-(4-dimethylamino-quinazolin-2-ylamino)-phenyll-2-trifluoromethoxy-benzenesulfonamide.

Using the procedure for the step C of example 2347, the title compound was obtained.

ESI MS m/e 584 M + H⁺; ¹H NMR (400 MHz, DMSO-d₆) δ 10.27 (brs, 1 H), 9.14 (brs, 1 H), 7.98 (d, J = 8.4 Hz, 1 H), 7.80-7.71 (m, 5 H), 7.60-7.56 (m, 1 H), 7.44 (d, J = 8.4 Hz, 1 H), 7.15 (t, J = 7.4 Hz, 1 H), 6.95 (d, J = 16.8 Hz, 2 H), 9.29 (s, 6 H).

Example 2349

CF₃CO₂H

 $\label{lem:chloro-biphenyl-4-carboxylic} {\it acid} \quad [4-(4-dimethylamino-quinazolin-2-ylamino)-phenyl]-amide trifluoro-acetic acid$

Synthesis of 4'-chloro-biphenyl-4-carboxylic acid [4-(4-dimethylamino-quinazolin-2-ylamino)-phenyl]-amide trifluoro-acetic acid.

A solution of N²-(4-amino-phenyl)-N¹,N²-dimethyl-quinazoline-2,4-diamine hydrochloride obtained in step B of example 2348 (81.6 mg, 0.258 mmol), 4¹-chloro-biphenyl-4-carboxylic acid (50.0 mg, 0.215 mmol), HATU (106 mg, 0.280 mmol), and diisopropylethylamine (150 µL, 0.860 mmol), in CH₂Cl₂ (2 mL) was stirred at ambient temperature for overnight, and the mixture was concentrated. The residue was purifided by HPLC to give 4¹-chloro-biphenyl-4-carboxylic acid [4-(4-dimethylamino-quinazolin-2-ylamino)-phenyl]-amide trifluoro-acetic acid as a white solid (10 mg, 9 %).

ESI MS m/e 494 M + H⁺; ¹H NMR (400 MHz, DMSO-d₆) δ 10.33 (s, 1 H), 8.17 (d, J = 8.0 Hz, 1 H), 8.80 (d, J = 8.8 Hz, 2 H), 7.85-7.75 (m, 7 H), 7.63-7.53 (m, 6 H), 7.36 (t, J = 7.6 Hz, 1 H), 3.46 (s, 6 H).

Example 2350

 $N\hbox{-}[1\hbox{-}(4\hbox{-}Dimethylamino-quinazolin-2-yl)-piperidin-4-ylmethyl]-2\hbox{-}fluorobenzenesulfonamide}$

$Step A: Synthesis \ of \ N-[1-(4-dimethylamino-quinazolin-2-yl)-piperidin-4-ylmethyl]-2-fluoro-benzenesulfonamide.$

To a solution of 4-aminomethyl-piperidine-1-carboxylic acid tert-butyl ester (60 mg, 0.28 mmol) and diisopropylethylamine (49 mL, 0.28 mmol) in CH₂Cl₂ (2 mL) was added 2-fluorobenzenesulfonyl chloride (54 mg, 0.28 mmol) and the mixture was stirred at ambient temperature for 18 hr. To the resulting mixture was added trifluoroacetic acid (0.70 mL) and stirred at ambient temperature for 18 hr. The reaction mixture was concentrated and neutralized with saturated aqueous NaHCO3. The aqueous layer was extracted with EtOAc, and the organic layer was concentrated to give 2-fluoro-Npiperidin-4-ylmethyl-benzenesulfonamide as a pale yellow solid. To a solution of above solid (0.076 g, 0.28 mmol) and diisopropylethylamine (0.072 mL, 0.42 mmol) in 2propanol (3 mL) was added (2-chloro-quinazolin-4-yl)-dimethyl-amine obtained in step B of example 1 (0.044 g, 0.21 mmol) and the resulting mixture was stirred at 100 °C for 18 hr. The mixture was concentrated, and the residue was purified by column chromatography (silica gel, 5% MeOH in CH2Cl2) to give N-[1-(4-dimethylaminoquinazolin-2-yl)-piperidin-4-ylmethyl]-2-fluoro-benzenesulfonamide as a pale yellow solid (0.024 g, 26%).

ESI MS m/e 444 M + H⁺; ¹H NMR (400 MHz, DMSO-d₆) 8 7.98 (m, 1 H), 7.86 (m, 1 H), 7.77 (m 1 H), 7.67 (m, 1 H), 7.47-7.29 (m, 4 H), 7.02 (m, 1 H), 4.69 (m, 2 H), 3.21 (s, 6 H), 2.76 (m, 4 H), 1.66 (m, 3 H), 1.00 (m, 2 H).

Using the procedure for example 2329 and purification by preparative HPLC, the compounds of example 2351 - 2819 were obtained.

Using the procedure for example 2331 and purification by preparative HPLC, the compounds of example 2820 - 2842 were obtained.

Using the procedure for example 2332, the compounds of example 2843 - 3003 were obtained.

Using the procedure for example 2333, the compounds of example 3004 - 3090 were obtained.

Using the procedure for example 2334, the compounds of example 3091 - 3161 were obtained.

Using the procedure for example 2335 and purification by preparative HPLC, the compounds of example 3162 - 3178 were obtained.

Using the procedure for example 2336, the compounds of example 3179 - 3208 were obtained.

Using the procedure for example 2337, the compounds of example 3209 was obtained.

Using the procedure for example 2338, the compounds of example 3210 - 3225 were obtained.

Using the procedure for example 2339, the compounds of example 3226 - 3228 were obtained.

Using the procedure for example 2340, the compounds of example 3229 - 3231 were obtained.

Using the procedure for example 2341, the compounds of example 3232 - 3393 were obtained.

Using the procedure for example 2342, the compounds of example 3394 - 3472 were obtained.

Using the procedure for example 2343, the compounds of example 3473 - 3527 were obtained.

Using the procedure for example 2346, the compounds of example 3528 - 3535 were obtained.

Using the procedure for example 2347 and purification by preparative HPLC, the compounds of example 3536 - 3545 were obtained.

Using the procedure for example 2348 and purification by preparative HPLC, the compounds of example 3546 - 3548 were obtained.

Using the procedure for example 2349, the compounds of example 3549 - 3567 were obtained.

Using the procedure for example 2350 and purification by preparative HPLC, the compounds of example 3568 - 3579 were obtained.

Example No.	Structure	ESI-MS	Retention Time (min)
2351	CF ₅ CO ₂ H	454.0 (M+H)	3.60
2352	N H 1, H 1, N N N N N N N N N N N N N N N N N N	530.2 (M+H)	4.02
2353	2CF ₂ CO ₂ H	545.4 (M+H)	3.05
2354	CF ₃ CO ₂ H	496.4 (M+H)	3.49
2355	CF ₃ CO ₂ H	537.4 (M+H)	3.24
2356	CF ₂ CO ₂ H	440.0 (M+H)	3.47

Example No.	Structure	ESI-MS	Retention Time (min)
2357	HN O H H N S O O O O O O O O O O O O O O O O O O	484 <u>.</u> 4 (M+H)	3.49
2358	HN OH N N N N N N N N N N N N N N N N N N N	470.2 (M+H)	3.20
2359	HN H H G	539.4 (M+H)	3.12
2360	NA HOLLING CF3CO ₂ H	522.2 (M+H)	4.22
2361	HN N H DO O	599.0 (M+H)	3.48
2362	HN H H H H H H H H H H H H H H H H H H	560.2 (M+H)	3.99

Example No.	Structure	ESI-MS	Retention Time (min)
2363	HN H H S O O O O O O O O O O O O O O O O O	548.4 (M+H)	4.06
2364	HN N N N N N N N N N N N N N N N N N N	534.0 (M+H)	3.11
2365	HNN N H S S S S S S S S S S S S S S S S	502.4 (M+H)	3.81
2366	HN	530.2 (M+H)	4.04
2367	HN H H G	532.4 (M+H)	3.85
2368	HIN N H O O	520.2 (M+H)	3.86

Example No.	Structure	ESI-MS	Retention Time (min)
2369	CF ₂ CO ₂ H	474.2 (M+H)	3.72
2370	HN	518.2 (M+H)	3.71
2371	HN NO NO COLUMN THE CO	573.2 (M+H)	3.15
2372	CF ₂ CO ₂ H	556.2 (M+H)	4.38
2373	1N N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	633.4 (M+H)	3.48
2374	NN N N N N N N N N N N N N N N N N N N	594.2 (M+H)	4.23

Example No.	Structure	ESI-MS	Retention Time (min)
2375	HN N N N N N N N N N N N N N N N N N N	582.4 (M+H)	4.26
2376	HN N N N N N N N N N N N N N N N N N N	5362 (M+H)	4.06
2377	N N N N N N N N N N N N N N N N N N N	564.2 (M+H)	4.32
2378	OF TOO H	566.4 (M+H)	4.11
2379	CF ₃ CO ₂ H	554.2 (M+H)	4.10
2380	CF ₅ Co ₂ H	614.2 (M+H)	4.26

Example No.	Structure	ESI-MS	Retention Time (min)
2381	CF ₂ CO ₂ H	524.4 (M+H)	3.87
2382	HN 0 FF F F F F F F F F F F F F F F F F F	568.2 (M+H)	3.87
2383	HN N F F F F F O ₂ CF ₃ CO ₂ H	586.2 (M+H)	4.18
2384	NN N FFFF F	614.2 (M+H)	4.45
2385	CF ₃ CO ₂ H	620.4 (M+H)	4.32
2386	CF ₃ CO ₂ H	468.2 (M+H)	3.20

Example No.	Structure	ESI-MS	Retention Time (min)
2387	CF ₂ CO ₂ H	551.6 (M+H)	2.82
2388	CF ₅ CO ₅ H	454.0 (M+H)	3.06
2389	HN 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	498.6 (M+H)	3.10
2390	HN OH N H N N N N N N N N N N N N N N N N N	484.2 (M+H)	2.76
2391	HN N N N N N N N N N N N N N N N N N N	553.6 (M+H)	2.40
2392	CF ₂ CO ₂ H	536.4 (M+H)	3.77

Example No.	Structure	ESI-MS	Retention Time (min)
2393	N N N N N N N N N N N N N N N N N N N	613.4 (M+H)	2.74
2394	02 02 NH2 NH2 NH2 CF ₅ CO ₂ H	623.4 (M+H)	3.06
2395	N N N N N N N N N N N N N N N N N N N	574.4 (M+H)	3.51
2396	F N N N N N N N N N N N N N N N N N N N	562.2 (M+H)	3.59
2397	HN N N N N N N N N N N N N N N N N N N	548.6 (M+H)	2.48
2398	HN N H O2	516.4 (M+H)	3.39

Example No.	Structure	ESI-MS	Retention Time (min)
2399	CF ₂ CO ₂ H	550.4 (M+H)	3.56
2400	HN H H G	546.2 (M+H)	3.38
2401	F N N N N N N N N N N N N N O ₂	534.0 (M+H)	3.43
2402	CF ₅ CO ₂ H	608.2 (M+H)	3.75
2403	CF ₅ CO ₅ H	518 (M+H)	3.22
2404	HN	562.2 (M+H)	3.20

Example No.	Structure	ESI-MS	Retention Time (min)
2405	F N N N N N N N N N N N N O ₂	626.0 (M+H)	3.76
2406	HN H CI H CI N N N N N N N N N N N N N N N N N N N	614.0 (M+H)	3.72
2407	O CF3CO ₂ H	610.0 (M+H)	3.57
2408	CF ₂ CO ₂ H	598.2 (M+H)	3.97
2409	H-COC-3-D	564.2 (M+H)	3.46
2410	CF ₅ CO ₅ H	508.0 (M+H)	3.44

Example No.	Structure	ESI-MS	Retention Time (min)
2411	HN	616.2 (M+H)	3.94
2412	CF ₂ CO ₂ H	604.2 (M+H)	4.51
2413	HN H G G G G G G G G G G G G G G G G G G	600.2 (M+H)	4.32
2414	F N N N N N N N N N N N N O C	588.0 (M+H)	4.38
2415	CF ₅ CO ₅ H	650.2 (M+H)	4.20
2416	CF,CO;H	726.4 (M+H)	4.52

Example No.	Structure	ESI-MS	Retention Time (min)
2417	2CF ₂ CO ₂ H	741.6 (M+H)	3.59
2418	CF ₂ CO ₂ H	692.2 (M+H)	4.12
2419	2CF,CQ,H	767.6 (M+H)	4.59
2420	CF ₂ CO ₂ H	733.4 (M+H)	3.87
2421	CF5CO,H	636.2 (M+H)	4.08
2422	FF F CF ₅ CO ₂ H	680.2 (M+H)	4.07

Example No.	Structure	ESI-MS	Retention Time (min)
2423	NN	666.0 (M+H)	3.86
2424	P F F F F S S S S S S S S S S S S S S S	735.4 (M+H)	3.50
2425	P F F F CF5C02H	718.4 (M+H)	4.64
2426	7 - F - O - F - F - O - F - F - O - F - F	795.6 (M+H)	3.70
2427	CF ₅ CO ₂ H	744.2 (M+H)	4.43
2428	CF ₂ CO ₂ H	698.0 (M+H)	4.26

Example No.	Structure	ESI-MS	Retention Time (min)
2429	CF ₅ CO ₂ H	732.4 (M+H)	4.37
2430	FFF CF ₃ CO ₂ H	726.4 (M+H)	4.52
2431	CF ₅ CO ₂ H	728.4 (M+H)	4.36
2432	CF ₃ CO ₂ H	716.4 (M+H)	4.32
2433	CF ₆ CO ₂ H	616.0 (M+H)	4.22
2434	CF ₂ CO ₂ H	692.0 (M+H)	4.57

Example No.	Structure	ESI-MS	Retention Time (min)
2435	2CF ₂ CO ₂ H	707.2 (M+H)	3.64
2436	CF ₅ CO ₂ H	658.2 (M+H)	4.15
2437	CF ₅ CO ₂ H	733.2 (M+H)	4.68
2438	СГ ₅ СО ₂ H	699.2 (M+H)	3.88
2439	HN O H S O H Br	646.4 (M+H)	4.08
2440	HN OH N N N N N N N N N N N N N N N N N N N	632.4 (M+H)	3.86

Example No.	Structure	ESI-MS	Retention Time (min)
2441	NH N	701.4 (M+H)	3.51
2442	HN H H H H H H H H H H H H H H H H H H	684.2 (M+H)	4.75
2443	NN	761.2 (M+H)	3.74
2444	NN N N N N N N N N N N N N N N N N N N	722.2 (M+H)	4.59
2445	HN	710.2 (M+H)	4.60
2446	HN	696.2 (M+H)	3.53

Example No.	Structure	ESI-MS	Retention Time (min)
2447	NN N N N N N N N N N N N N N N N N N N	664.2 (M+H)	4.39
2448	CF ₅ CO ₂ H	692.0 (M+H)	4.65
2449	© 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	698.0 (M+H)	4.59
2450	CF ₃ CO ₂ H	694.2 (M+H)	4.42
2451	CF ₂ CO ₂ H	682.2 (M+H)	4.42
2452	CF ₅ CO ₂ H	590.2 (M+H)	4.28

Example No.	Structure	ESI-MS	Retention Time (min)
2453	CF ₂ CO ₂ H	666.2 (M+H)	4.61
2454	PFP N N P PFP N N N N N N N N N N N N N N N N N N N	681.2 (M+H)	3.72
2455	CF ₅ CO ₂ H	632.4 (M+H)	421
2456	2CF ₂ CO ₂ H	707.2 (M+H)	4.70
2457	CF,CO,H	673.2 (M+H)	3.94
2458	CF ₂ CO ₂ H	576.2 (M+H)	4.16

Example No.	Structure	ESI-MS	Retention Time (min)
2459	N F F F CF ₂ CO ₂ H	620.4 (M+H)	4.19
2460	HN OH FFF F F F F F F F F F F F F F F F F	606.6 (M+H)	3.94
2461	PFF N N N N N N N N N N N N N N N N N N N	675.4 (M+H)	3.59
2462	F F F F F F F F F F F F F F F F F F F	658.6 (M+H)	4.82
2463 .	HN FFF H	735.4 (M+H)	3.82
2464	HN FFF CF ₅ CO ₂ H	696.0 (M+H)	4.56

Example No.	Structure	ESI-MS	Retention Time (min)
2465	F F F F F F CF ₂ CO ₂ H	684.4 (M+H)	4.61
2466	10 N N N F F F F F F F F F F F F F F F F	670.2 (M+H)	3.56
2467	CF ₅ CO ₂ H	638.2 (M+H)	4.43
2468	F F F F F F F F F F F F F F F F F F F	666.2 (M+H)	4.68
2469	CI FF F F F F F F F F F F F F F F F F F	672.2 (M+H)	4.60
2470	CF ₂ CO ₂ H	668.2 (M+H)	4.44

Example No.	Structure	ESI-MS	Retention Time (min)
2471	F F F F CF ₂ CO ₂ H	656.4 (M+H)	4.47
2472	N N N N N N N N N N N N N N N N N N N	595.4 (M+H)	3.32
2473	HN 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	534.0 (M+H)	3.81
2474	HN OH N H H G	520.4 (M+H)	3.56
2475	10 N N N N N N N N N N N N N N N N N N N	589.2 (M+H)	3.25
2476	CF _S CO ₂ H	572.4 (M+H)	4.47

Example No.	Structure	ESI-MS	Retention Time (min)
2477	2CF ₅ CO ₂ H	649.4 (M+H)	3.50
2478	CF ₂ CO ₂ H	610.4 (M+H)	4.26
2479	IN TO THE STATE OF	598.2 (M+H)	4.30
2480	HN N N N N N N N N N N N N N N N N N N	584.4 (M+H)	3.29
2481	HN N N N N N N N N N N N N N N N N N N	552.6 (M+H)	4.11
2482	CF ₃ CO ₃ H	580.6 (M+H)	4.40

Example No.	Structure	ESI-MS	Retention Time (min)
2483	HH N N N N N N N N N N N N N N N N N N	586.2 (M+H)	4.30
2484	CF ₂ CO ₂ H	582.4 (M+H)	4.14
2485	F N N N N N N N O ₂ CF ₂ CO ₂ H	570.2 (M+H)	4.14
2486	CF ₂ CO ₂ H	504.2 (M+H)	3.94
2487	CF-CO-H	580.6 (M+H)	4.34
2488	2CF ₂ CO ₂ H	595.2 (M+H)	3.41

Example No.	Structure	ESI-MS	Retention Time (min)
2489	CF ₂ CO ₂ H	490.2 (M+H)	3.84
2490	CF ₂ CO ₂ H	534.2 (M+H)	3.84
2491	CF3CO ₂ H	520.4 (M+H)	3.60
2492	2CF ₂ CO ₂ H	589.2 (M+H)	3.29
2493	CF ₅ CO ₂ H	572.4 (M+H)	4.51
2494	2CF ₂ CO ₂ H	649.4 (M+H)	3.52

Example No.	Structure	ESI-MS	Retention Time (min)
2495	CF ₂ CO ₂ H	610.2 (M+H)	4.29
2496	HN T F	598.2 (M+H)	4.34
2497	CF ₅ CO ₂ H	552.6 (M+H)	4.13
2498	CF ₅ CO ₅ H	580.6 (M+H)	4.37
2499	CF ₅ CO ₂ H	586.2 (M+H)	4.30
2500	CF ₅ CO ₂ H	570.2 (M+H)	4.18

Example No.	Structure	ESI-MS	Retention Time (min)
2501	2CF,CO.H	547.4 (M+H)	3.69
2502	20F ₂ CO ₂ H	623.4 (M+H)	4.10
2503	NAME OF SCOOL	638.2 (M+H)	3.20
2504	China Carlo	589.2 (M+H)	3.62
2505	3CF ₂ CO ₂ H	664.4 (M+H)	4.25
2506	2CF ₂ CO ₂ H	630.4 (M+H)	3.35

Example No.	Structure	ESI-MS	Retention Time (min)
2507	2CF,CO2H	533.2 (M+H)	3.57
2508	18) O. H. H. H. M. S. M. O. C. F. CO. P. H. C. C. P. P. C. P. C. P. P. C. P	577.6 (M+H)	3.58
2509	18H OH N N H CF5CO2H	563.2 (M+H)	3.28
2510	3CF ₂ CO ₂ H	632.6 (M+H)	3.06
2511	2CF ₂ CO ₂ H	615.4 (M+H)	4.30
2512	3CF ₂ CO ₂ H	692.2 (M+H)	3.38

Example No.	Structure	ESI-MS	Retention Time (min)
2513	HN H H G L H L L L L L L L L L L L L L L L	641.4 (M+H)	4.13
2514	1HV N N N N N N N N N N N N N N N N N N N	595.4 (M+H)	3.89
2515	HN H S S S S S S S S S S S S S S S S S S	623.4 (M+H)	4.20
2516	HN	629.2 (M+H)	4.15
2517	2CF ₂ CO ₂ H	613.2 (M+H)	4.02
2518	N H O CI S CI	528.2 (M+H)	4.03

Example No.	Structure	ESI-MS	Retention Time (min)
2519	CF ₂ CO ₂ H	570.2 (M+H)	3.96
2520	CF ₃ CO ₂ H	611.0 (M+H)	3.69
2521	HN N H O CI	514.2 (M+H)	3.94
2522	2CF ₂ CO ₂ H	625.4 (M+H)	3.94
2523	HN N N N N N N N N N N N N N N N N N N	558.2 (M+H)	3.96
2524	CF ₃ CO ₂ H	544.2 (M+H)	3.67

Example No.	Structure	ESI-MS	Retention Time (min)
2525	HN H O CI	613.2 (M+H)	3.31
2526	HN H H O CF SCOL	596.2 (M+H)	4.69
2527	2CF,CO,H	673.4 (M+H)	3.57
2528	CF ₅ CO ₂ H	634.4 (M+H)	4.41
2529	CF ₃ CO ₂ H	622.2 (M+H)	4.45
2530	CF ₅ CO ₂ H	576 (M+H)	4.25

Example No.	Structure	ESI-MS	Retention Time (min)
2531	LEPSCOPH	604.4 (M+H)	4.52
2532	CF ₂ CO ₂ H	610.2 (M+H)	4.40
2533	CF ₂ CO ₂ H	606.4 (M+H)	4.29
2534	HN F	594.2 (M+H)	4.27
2535	C N H O C N H	571.8 (M + H)	4.99
2536	CF,CO,H	609.8 (M + H)	4.43

Example No.	Structure	ESI-MS	Retention Time (min)
2537	CF ₅ CO ₅ H	536.4 (M + H)	4.86
2538	CF ₅ CO ₅ H	564.6 (M+H)	5.13
2539	CF ₅ CO ₂ H	530.6 (M + H)	4.65
2540	2CF ₂ CO ₂ H	605.6 (M + H)	5.21
2541	CF.CO.H.	571.6 (M + H)	4.45
2542	HN H H A COST	568.8 (M + H)	4.09

Example No.	Structure	ESI-MS	Retention Time (min)
2543	CF ₂ CO ₂ H	570.6 (M + H)	5.11
2544	2CF,CO,H	629.6 (M+H)	4.37
2545	Children Control Contr	655.6 (M + H)	5.35
2546	CESCOPH	621.8 (M + H)	4.63
2547	CF ₅ CO ₂ H	606.8 (M + H)	5.45
2548	CF ₅ CO ₂ H	644.6 (M + H)	5.21

Example No.	Structure	ESI-MS	Retention Time (min)
2549	CF ₂ CO ₂ H	632.6 (M+H)	5.25
2550	2OF ₂ CO ₂ H	618.6 (M+H)	4.29
2551	CF ₅ CO ₂ H	616.6 (M + H)	5.14
2552	CCOCOTH	604.6 (M + H)	5.13
2553	CF,CO,H	544.6 (M + H)	5.03
2554	2CF ₂ CO ₂ H	585.6 (M + H)	5.13

Example No.	Structure	ESI-MS	Retention Time (min)
2555	2CF ₂ CO ₂ H	623.6 (M+H)	4.25
2556	CF ₅ CO ₂ H	574.6 (M+H)	4.73
2557	20F5CO ₂ H	649.0 (M + H)	5.25
2558	CF ₅ CO ₂ H	615.0 (M+H)	4.51
2559	HN N N N N N N N N N N N N N N N N N N	617.4 (M + H)	4.15
2560	CF,CO ₂ H	600.6 (M + H)	5.37

Example No.	Structure	ESI-MS	Retention Time (min)
2561	IN THE TOTAL PROPERTY OF THE TOTAL PROPERTY	677.0 (M+H)	4.45
2562	CF ₅ CO ₂ H	638.6 (M+H)	5.18
2563	20F5CO ₂ H	612.6 (M + H)	4.16
2564	HN N N N N N N N N N N N N N N N N N N	580.0 (M + H)	5.01
2565	CF ₅ CO ₂ H	608.0 (M + H)	5.26
2566	2CF ₅ CO ₅ H	613.6 (M+H)	4.44

Example No.	Structure	ESI-MS	Retention Time (min)
2567	CF ₂ CO ₂ H	639.6 (M + H)	5.48
2568	CF ₃ CO ₂ H	552.6 (M + H)	4.92
2569	2CF5CO2H	607.8 (M+H)	4.33
2570	2CF ₂ CO ₂ H	667.4 (M + H)	4.67
2571	CF ₅ CO ₂ H	628.6 (M + H)	5.29
2572	2CF ₂ CO ₂ H	602.6 (M+H)	4.35

Example No.	Structure	ESI-MS	Retention Time (min)
2573	CF ₂ CO ₂ H	570.6 (M + H)	5.23
2574	CF ₅ CO ₂ H	805.4 (M + H)	4.91
2575	2CF5CO ₅ H	730.8 (M + H)	4.47
2576	CF ₅ CO ₅ H	771.6 (M + H)	4.93
2577	CF,CO,H	745.6 (M+H)	5.01
2578	CF,CO,H	580.8 (M+H)	5.18

Example No.	Structure	ESI-MS	Retention Time (min)
2579	2CF ₂ CO ₂ H	621.8 (M + H)	5.27
2580	CF ₂ CO ₂ H	587.6 (M+H)	4.51
2581	2CF ₂ CO ₂ H	584.6 (M+H)	4.21
2582	CF ₂ CO ₂ H	582.8 (M+H)	5.03
2583	CF ₅ CO ₂ H	653.8 (M+H)	4.90
2584	CF ₅ CO ₂ H	604.6 (M + H)	5.33

Example No.	Structure	ESI-MS	Retention Time (min)
2585	2CF ₂ CO ₂ H	645.6 (M+H)	5.41
2586	HN N H O F	458.6 (M+H)	4.39
2587	HN N N N N N N N N N N N N N N N N N N	458.6 (M + H)	4.40
2588	HN H O CI	474.6 (M + H)	4,39
2589	HN N H O CI	474.6 (M + H)	4.58
2590	CF ₅ CO ₅ H	542.6 (M+H)	4.79

Example No.	Structure	ESI-MS	Retention Time (min)
2591	HN N H O Br	518.6 (M + H)	4.51
2592	HN N H O O O O O O O O O O O O O O O O O	500.8 (M + H)	4.33
2593	HN N N O O O O O O O O O O O O O O O O O	524.6 (M + H)	4.61
2594	HN N N N N N N N N N N N N N N N N N N	508.6 (M + H)	4.57
2595	CF ₅ CO ₅ H	496.8 (M + H)	4.87
2596	HN N H O O S	446.8 (M + H)	4.29

Example No.	Structure	ESI-MS	Retention Time (min)
2597	N H O F O F O F O F O F O F O F O F O F O	472.8 (M + H)	4.47
2598	CF ₅ CO ₂ H	472.8 (M + H)	4.53
2599	CF ₅ CO ₂ H	488.6 (M + H)	4.55
2600	CF ₅ CO ₂ H	487.6 (M+H)	4.65
2601	CF ₃ CO ₂ H	556.6 (M + H)	4.91
2602	CF ₅ CO ₅ H	532.4 (M + H)	4.61

Example No.	Structure	ESI-MS	Retention Time (min)
2603	CF ₂ CO ₂ H	514.8 (M + H)	4.43
2604	NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	538.6 (M + H)	4.80
2605	CF ₃ CO ₂ H	510.6 (M+H)	5.00
2606	CF ₅ CO ₂ H	460.6 (M + H)	4.40
2607	CF ₃ CO ₂ H	486.6 (M+H)	4.60
2608	CF ₅ CO ₅ H	484.6 (M+H)	4.64

Example No.	Structure	ESI-MS	Retention Time (min)
2609	CF ₉ CO ₂ H	503.6 (M + H)	4.74
2610	CF ₂ CO ₂ H	502.6 (M + H)	4.86
2611	CF ₂ CO ₂ H	570.8 (M+H)	5.00
2612	N N N N N N N N N N N N N N N N N N N	546.0 (M + H)	4.80
2613	CF _p CO _p H	528.8 (M+H)	4.63
2614	CF ₅ CO ₂ H	552.8 (M+H)	4.90

Example No.	Structure	ESI-MS	Retention Time (min)
2615	CF ₂ CO ₂ H	536.6 (M+H)	4.82
2616	CF ₅ CO ₂ H	524.8 (M+H)	5.07
2617	CF ₅ CO ₂ H	474.6 (M + H)	4.55
2618	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	468.4 (M+H)	4.59
2619	CF ₂ CO ₂ H	502.6 (M + H)	4.81
2620	CF ₅ CO ₅ H	552.8 (M+H)	4.94

Example No.	Structure	ESI-MS	Retention Time (min)
2621	CF ₅ CO ₂ H	482.6 (M+H)	4.73
2622	CF ₂ CO ₂ H	546.6 (M + H)	4.85
2623	CF3CO.H	536.4 (M + H)	5.08
2624	CF ₂ CO ₂ H	630.4 (M + H)	5.11
2625	CF ₅ CO ₂ H	604.6 (M + H)	5.16
2626	CF,CO ₂ H	518.6 (M + H)	4.75

Example No.	Structure	ESI-MS	Retention Time (min)
2627	N N N N N N N N N N N N N N N N N N N	518.6 (M+H)	4.91
2628	2CF ₂ CO ₂ H	561.6 (M + H)	4.61
2629	CF,CO,H	500.8 (M + H)	4.75
2630	CE°CO'H	500.2 (M+H)	4.85
2631	CF ₅ CO ₂ H	516.6 (M+H)	4.81
2632	CF ₅ CO ₂ H	516.6 (M+H)	4.95

Example No.	Structure	ESI-MS	Retention Time (min)
2633	CF ₂ CO ₂ H	584.6 (M+H)	5.18
2634	N N H O Br	560.6 (M + H)	4.87
2635	CF ₅ CO ₂ H	542.8 (M+H)	4.80
2636	CF ₂ CO ₂ H	566.6 (M + H)	5.01
2637	CF,CC,H	550.8 (M + H)	4.95
2638	CF ₂ CO ₂ H	538.6 (M + H)	5.20

Example No.	Structure	ESI-MS	Retention Time (min)
2639	CF ₅ CO ₅ H	488.6 (M + H)	4.65
2640	CF ₅ CO ₅ H	482.6 (M + H)	4.73
2641	N N H O O O O O O	516.8 (M + H)	4.97
2642	CF ₃ CO ₂ H	566.6 (M + H)	5.12
2643	CF ₂ CO ₂ H	496.8 (M + H)	4.89
2644	CF ₂ CO ₂ H	560.0 (M + H)	4.98

Example No.	Structure	ESI-MS	Retention Time (min)
2645	CF ₂ CO ₂ H	550.6 (M + H)	5.21
2646	N N N N N N N N N N N N N N N N N N N	532.6 (M + H)	4.99
2647	CF ₂ CO ₂ H	532.6 (M + H)	5.03
2648	2CF ₂ CO ₂ H	575.8 (M + H)	4.80
2649	HN N N N N N N N N N N N N N N N N N N	486.6 (M + H)	4.64
2650	CF ₅ CO ₂ H	486.6 (M + H)	4.66

Example No.	Structure	ESI-MS	Retention Time (min)
2651	HN N H O CI	502.6 (M+H)	4.72
2652	HN H O CI CF3CO;H	502.6 (M+H)	4.87
2653	HN N N N N N N N N N N N N N N N N N N	570.6 (M+H)	5.03
2654	HN N H O Br	546.6 (M + H)	4.77
2655	HN H H H O O O O O O O O O O O O O O O O	528.8 (M + H)	4.68
2656	HN N N N N N N N N N N N N N N N N N N	552.8 (M + H)	4.89

Example No.	Structure	ESI-MS	Retention Time (min)
2657	NN N N N N N N N N N N N N N N N N N N	536.6 (M+H)	4.85
2658	HN N N N N N N N N N N N N N N N N N N N	524.8 (M+H)	5.15
2659	CF ₃ CO ₂ H	474.8 (M+H)	4.63
2660	HN N H O O O O O O O O O O O O O O O O O	468.4 (M + H)	4.61
2661	CF ₃ CO ₂ H	502.6 (M+H)	4.86
2662	HN H O BE	546.6 (M+H)	4.64

Example No.	Structure	ESI-MS	Retention Time (min)
2663	Han N H O CI	536.4 (M+H)	4.81
2664	CF ₂ CO ₂ H	630.4 (M+H)	4.85
2665	CF ₂ CO ₂ H	604.6 (M + H)	4.87
2666	HNN N N N N N N N N N N N N N N N N N N	518.6 (M + H)	4.67
2667	Hy N H N N H N N N N N N N N N N N N N N	518.6 (M + H)	4.90
2668	HN H H S C C C C C C C C C C C C C C C C C	561.6 (M + H)	4.64

Example No.	Structure	ESI-MS	Retention Time (min)
2669	CF ₂ CO ₂ H	500.8 (M+H)	4.73
2670	HN N H N N N N N N N N N N N N N N N N	500.8 (M+H)	4.74
2671	HN N CF ₅ CO ₂ H	516.6 (M+H)	4.89
2672	HN H H CF ₅ CO ₂ H	516.6 (M + H)	4.93
2673	CF ₅ CO ₂ H	560.0 (M+H)	4.89
2674	CF,CO2H	542.8 (M + H)	4.76

Example No.	Structure	ESI-MS	Retention Time (min)
2675	HN N H O F F F F F F F F F F F F F F F F F F	566.6 (M + H)	5.03
2676	CF ₃ CO ₂ H	550.8 (M + H)	4.96
2677	HNN H H H H H H H H H H H H H H H H H H	538.8 (M+H)	5.25
2678	HN N H O O S	488.6 (M + H)	4.67
2679	HNN H O O CF ₅ CO ₂ H	482.4 (M + H)	4.71
2680	CF ₂ CO ₂ H	516.6 (M + H)	4.95

Example No.	Structure	ESI-MS	Retention Time (min)
2681	HN H H H H H H H H H H H H H H H H H H	566.8 (M+H)	5.07
2682	HN N H O O CF ₅ CO ₂ H	496.8 (M + H)	4.83
2683	HN H H Br	560.6 (M + H)	5.01
2684	CF ₅ CO ₂ H	550.6 (M + H)	5.07
2685	CC ² CO ² H	644.6 (M + H)	5.29
2686	HN H O F F F F CF ₃ CO ₂ H	618.6 (M + H)	5.25

Example No.	Structure	ESI-MS	Retention Time (min)
2687	HN H H O O O O O O O O O O O O O O O O O	532.6 (M+H)	5.01
2688	HN N H N N N N N N N N N N N N N N N N	532.6 (M + H)	5.04
2689	HNN H P P P P P P P P P P P P P P P P P	575.8 (M + H)	4.75
2690	HN N H O F CF ₅ CO ₂ H	484.6 (M + H)	4.51
2691	HN N H O CI	500.8 (M + H)	4.59
2692	CF,CO,H	500.8 (M + H)	4.71

Example No.	Structure	ESI-MS	Retention Time (min)
2693	HN N H O Br	544.6 (M+H)	4.63
2694	HNN H , , H , O O O O O O O O O O O O O O O	526.8 (M + H)	4.55
2695	HN N H N P F F CF ₃ CO ₂ H	550.6 (M+H)	4.79
2696	HN N H CF ₅ CO ₂ H	534.6 (M + H)	4.69
2697	CF ₅ CO ₂ H	522.4 (M + H)	5.03
2698	HN N N N N N N N N N N N N N N N N N N	472.8 (M+H)	4.43

Example No.	Structure	ESI-MS	Retention Time (min)
2699	HN N H O O O O O O O O O O O O O O O O O	466.6 (M + H)	4.50
2700	HNN H P P P P P P P P P P P P P P P P P	550.6 (M + H)	4.87
2701	HN N H P P P P P P P P P P P P P P P P P	480.6 (M+H)	4.65
2702	HN	544.6 (M + H)	4.75
2703	HN	534.6 (M + H)	4.90
2704	N H F F F F F F F F F F F F F F F F F F	628.6 (M + H)	5.08

Example No.	Structure	ESI-MS	Retention Time (min)
2705	CF ₂ CO ₂ H	602.6 (M+H)	5.10
2706	NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	516.8 (M+H)	4.71
2707	HN N N N N N N N N N N N N N N N N N N	516.8 (M + H)	4.81
2708	20F ₂ CO ₂ H	559.6 (M + H)	4.50
2709	CF ₃ CO ₂ H	498.8 (M+H)	4.64
2710	CF ₅ CO ₂ H	498.8 (M + H)	4.73

Example No.	Structure	ESI-MS	Retention Time (min)
2711	HN H CF3CO ₂ H	514.8 (M+H)	4.87
2712	CF3CO ₂ H	564.6 (M+H)	4.93
2713	CF ₅ CO ₂ H	548.6 (M+H)	4.87
2714	CF ₅ CO ₂ H	536.6 (M+H)	5.19
2715	CF ₅ CO ₂ H	603.8 (M+H)	4.76
2716	CF ₂ CO ₂ H	603.4 (M+H)	4.87

Example No.	Structure	ESI-MS	Retention Time (min)
2717	CF ₂ CO ₂ H	671.6 (M + H)	5.05
2718	CF ₃ CO ₂ H	647.6 (M + H)	4.79
2719	CF,CO,H	629.8 (M+H)	4.67
2720	CF ₅ CO ₂ H	653.8 (M + H)	4.91
2721	OF ₂ CO ₂ H	637.8 (M + H)	4.85
2722	CF ₂ CO ₂ H	625.8 (M + H)	5.14

Example No.	Structure	ESI-MS	Retention Time (min)
2723	CF ₂ CO ₂ H	575.6 (M + H)	4.63
2724	CF ₃ CO ₂ H	569.8 (M + H)	4.66
2725	CF ₅ CO ₂ H	603.8 (M + H)	4.88
2726	CF ₂ CO ₂ H	653.8 (M + H)	5.01
2727	The state of the	583.8 (M + H)	4.77
2728	CF ₅ CO ₂ H	647 (M+H)	4.92

Example No.	Structure	ESI-MS	Retention Time (min)
2729	CF ₂ CO ₂ H	637.8 (M + H)	5.13
2730	CF ₅ CO ₂ H	731.6 (M + H)	5.19
2731	CF ₂ CO ₂ H	705.8 (M + H)	5.22
2732	CF ₂ CO ₂ H	619.8 (M + H)	4.91
2733	HN—NHI HN—NHI CF ₅ CO ₂ H	619.8 (M + H)	4.93
2734	2CF5CO.H	663.0 (M+H)	4.67

Example No.	Structure	ESI-MS	Retention Time (min)
2735	O NH CI	631.8 (M+H)	5.01
2736	CF ₃ CO ₃ H	699.0 (M+H)	5.19
2737	CF ₅ CO ₂ H	675.8 (M + H)	4.95
2738	CF ₃ CO ₂ H	657.8 (M + H)	4.81
2739	O	665.8 (M + H)	4.97
2740	CF ₂ CO ₂ H	653.8 (M + H)	5.27

Example No.	Structure	ESI-MS	Retention Time (min)
2741	O_NHNH	603.4 (M + H)	4.77
2742	CF ₅ CO ₂ H	597.8 (M+H)	4.79
2743	CF ₅ CO ₅ H	631.8 (M + H)	5.02
2744	CF ₃ CO ₂ H	681.8 (M + H)	5.14
2745	CF ₂ CO ₂ H	611.8 (M + H)	4.93
2746	CF ₅ CO ₂ H	675.0 (M + H)	5.05

Example No.	Structure	ESI-MS	Retention Time (min)
2747	CF ₂ CO ₂ H	665.8 (M + H)	5.29
2748	CF ₅ CO ₂ H	759.6 (M+H)	5.31
2749	CF ₅ CO ₂ H	733.8 (M + H)	5.36
2750	CF ₅ CO ₂ H	647.8 (M + H)	5.05
2751	CF ₃ CO ₂ H	647.8 (M + H)	5.08
2752	2CF ₅ CO ₂ H	691.0 (M + H)	4.89

Example No.	Structure	ESI-MS	Retention Time (min)
2753	CF ₅ CO ₂ H	559.6 (M + H)	4.51
2754	CF ₃ CO ₂ H	575.6 (M+H)	4.57
2755	CF ₂ CO ₂ H	575.6 (M + H)	4.69
2756	CF ₃ CO ₂ H	619.6 (M + H)	4.63
2757	CF ₂ CO ₂ H	625.8 (M+H)	4.72
2758	+0,00 +N,NH F,C CF,CO,H	609.8 (M+H)	4.67

Example No.	Structure	ESI-MS	Retention Time (min)
2759	CF2CO2H	541.8 (M+H)	4.45
2760	CF ₅ CO ₅ H	625.8 (M+H)	4.38
2761	CF ₂ CO ₂ H	555.8 (M + H)	4.57
2762	CF ₃ CO ₂ H	609.8 (M+H)	4.94
2763	HN _{NH} CF ₃ CF ₃ CF ₃ CF ₃	677.8 (M + H)	5.05
2764	CF ₂ CO ₂ H	591.6 (M + H)	4.73

Example No.	Structure	ESI-MS	Retention Time (min)
2765	CF ₂ CO ₂ H	591.6 (M+H)	4.75
2766	2CF ₂ CO ₂ H	635.0 (M + H)	4.47
2767	H ₂ N NH CI	503.6 (M + H)	3.83
2768	P ₂ N N N C C C C C C C C C C C C C C C C C	503.6 (M + H)	3.99
2769	H ₂ N	571.6 (M + H)	4.16
2770	2CF ₅ CO ₅ H	547.6 (M + H)	3.85

Example No.	Structure	ESI-MS	Retention Time (min)
2771	H ₂ N, NH O O O O O O O O O O O O O O O O O O	529.6 (M+H)	3.75
2772	H ₂ N H F ₅ CO O ₂	553.8 (M+H)	3.99
2773	H ₂ N NH F ₃ C 2CF ₃ CO ₂ H	537.6 (M+H)	3.93
2774	H ₂ N NH	525.8 (M + H)	4.22
2775	15 NH	475.6 (M+H)	3.64
2776	H ₂ N	469.6 (M+H)	3.71

Example No.	Structure	ESI-MS	Retention Time (min)
2777	2CF ₅ CO ₂ H	503.6 (M+H)	3.97
2778	H ₂ N, NH NH OCF ₃	553.8 (M+H)	4.17
2779	NH N	483.4 (M + H)	3.87
2780	11-N NH	547.6 (M + H)	4.04
2781	H ₃ N NH Cl	537.4 (M + H)	4.23
2782	2CF ₅ CO ₅ H	631.6 (M + H)	4.23

Example No.	Structure	ESI-MS	Retention Time (min)
2783	H ₂ N NH OF5 OF5 OF5 OF5 OF5	605.8 (M + H)	4.41
2784	H ₂ N NH	519.6 (M+H)	4.01
2785	H ₂ N , MH , M , M , M , M , M , M , M , M ,	519.6 (M + H)	4.07
2786	H ₂ N NH NH S ₂ SCF ₂ CO ₂ H	562.6 (M+H)	3.77
2787	H ₂ N ₂ C ₂ C ₃ CO ₂ H	531.6 (M+H)	3.90
2788	H,N ,	531.6 (M + H)	4.04

Example No.	Structure	ESI-MS	Retention Time (min)
2789	Hall CF ₀	599.6 (M+H)	4.24
2790	H-N-1 JH-1 JH-1 JCF-5CO ₂ H	575.0 (M+H)	3.95
2791	H ₂ N	557.6 (M+H)	3.86
2792	H ₃ N , h ₄ H , f ₅ C , h ₅ C , h ₆ C , h ₇ C	565.6 (M+H)	4.03
2793	H ₂ N ₂ N ₃ H ₄ N ₄ H ₅ N	554 (M+H)	4.29
2794	H ₂ N	503.6 (M+H)	3.78

Example No.	Structure	ESI-MS	Retention Time (min)
2795	H ₂ N H ₃ N H ₅ 2CF ₂ CO ₂ H	497.6 (M + H)	3.83
2796	Hall NH Score Col	531.6 (M + H)	4.05
2797	H ₂ N	582.0 (M+H)	4.23
2798	H ₂ N	511 (M+H)	3.95
2799	H ₂ N H H G ₂ Per 2CF ₂ CO ₂ H	575.6 (M+H)	4.10
2800	H ₂ M ₂ C ₁ C ₂ C ₂ C ₂ C ₃ C ₃ H	565.0 (M+H)	4.32

Example No.	Structure	ESI-MS	Retention Time (min)
2801	H ₂ N F ₅ CO Hr 2CF ₅ CO ₂ H	659.6 (M+H)	4.35
2802	H ₉ NL NH CF ₅ CF ₅ 2CF ₅ CO ₂ H	634.0 (M+H)	4.43
2803	15 A A A A A A A A A A A A A A A A A A A	547.6 (M+H)	4.09
2804	2CF ₂ CO ₂ H	547.6 (M+H)	4.15
2805	3CF2CQ.H	590.6 (M + H)	3.93
2806	н _ы N _N H	459.6 (M + H)	4.07

Example No.	Structure	ESI-MS	Retention Time (min)
2807	H ₂ N NH NH SO2 2CF ₂ CO ₂ H	477.6 (M+H)	4.07
2808	H ₂ N-NH (C) (C) (D) (C) (D) (D) (D) (D) (D) (D) (D) (D	475.6 (M + H)	4.07
2809	H ₂ N _N H CI 2CF ₂ CO ₂ H	475.6 (M + H)	4.23
2810	H ₂ N _N _N H N 1 2CF ₂ CO ₂ H	501.8 (M + H)	4.15
2811	H ₂ N-NH NH NH NH NH NH NH NH NH NH NH NH NH N	509.4 (M + H)	4.27
2812	H ₂ N-NH N N N N N N N N N N N N N N N N N N	525.6 (M+H)	4.37

Example No.	Structure	ESI-MS	Retention Time (min)
2813	H _b N _N H NH NH NH NH NH NH NH NH NH NH NH NH NH	519.6 (M + H)	4.25
2814	H ₂ N _N H C C C C C C C C C C C C C C C C C C C	509.4 (M+H)	4.49
2815	H ₂ N _N H N N F ₃ CO ₂ H S ₂	603.0 (M+H)	4.60
2816	H ₂ N _N H N N N N N N N N N N N N N N N N N N N	577.6 (M + H)	4.72
2817	H ₃ N NH	491 (M+H)	4.31
2818	112N NH S2 2CF5CO2H	491.6 (M + H)	4.33

Example No.	Structure	ESI-MS	Retention Time (min)
2819	H ₂ N ₁ N ₂ H 3CF ₂ CO ₂ H	534.6 (M+H)	4.01
2820	H, MH H C C C C C C C C C C C C C C C C C	325.4 (M+H)	3.91
2821	H _M N H	359.4 (M+H)	4.24
2822	H ₂ N H S S S S S S S S S S S S S S S S S S	409.4 (M+H)	4.51
2823	SHCI	339.6 (M+H)	4.09
2824	H ₂ N H SO Br	403.4 (M+H)	4.28

Example No.	Structure	ESI-MS	Retention Time (min)
2825	H ₂ N H O CI	393.0 (M+H)	4.57
2826	NH H ₂ N H S S F F F F 2HCI	521.6 (M+H)	4.69
2827	HAN THE FE	461.6 (M+H)	4.77
2828	H ₂ N H	375.4 (M + H)	4.33
2829	H ₂ N N N O O O O O O O O O O O O O O O O O	375.4 (M + H)	4.39
2830	H ₂ N H O O O O O O O O O O O O O O O O O O	418.8 (M+H)	4.33

Example No.	Structure	ESI-MS	Retention Time (min)
2831	H ₂ N H S F S S F S S S S S S S S S S S S S S	343.4 (M+H)	3.96
2832	H ₂ N NH	343.4 (M + H)	4.03
2833	H ₂ N H O CI	359.4 (M+H)	4.05 ·
2834	H ₂ N H	359.4 (M+H)	4.24
2835	NH H ₂ N H O Br	403.4 (M + H)	4.07
2836	H ₂ N H , O O O O O O O O O O O O O O O O O O	385.4 (M + H)	4.00

Example No.	Structure	ESI-MS	Retention Time (min)
2837	H ₂ N H S S F	409.4 (M + H)	4.32
2838	H ₂ N H SO F F F	393.6 (M + H)	4.23
2839	H ₂ N H	381.6 (M+H)	4.62
2840	H ₂ N NH SO SHO	330.8 (M+H)	3.83
2841	NH H ₂ N H SO F SHCI	361.4 (M + H)	4.05
2842	H ₂ N S F F C 2HCl	427.4 (M+H)	4.51

Example No.	Structure	ESI-MS	Retention Time (min)
2843	2CF ₃ CO ₂ H	458.4 (M+H)	3.22
2844	2CF ₂ CO ₂ H	415.4 (M+H)	3.01
2845	2CF ₃ CO ₂ H	432.6 (M+H)	3.26
2846	N N N N N N N N N N N N N N N N N N N	396.2 (M+H)	2.81
2847	2CF ₃ CO ₂ H	450.0 (M+H)	3.09
2848	2CF ₅ CO ₅ H	408.4 (M+H)	2.85

Example No.	Structure	ESI-MS	Retention Time (min)
2849	2CF ₃ CO ₃ H	434.4 (M + H)	2.89
2850	2CF ₂ CO ₂ H	440.0 (M + H)	3.20
2851	2CF ₂ CO ₂ H	482.4 (M + H)	3,43
2852	2CF ₂ CO ₂ H	466.4 (M + H)	2.71
2853	2CF ₂ CO ₂ H	380.2 (M+H)	2.72
2854	N N N N N N N N N N N N N N N N N N N	426.2 (M+H)	2.91

Example No.	Structure	ESI-MS	Retention Time (min)
2855	2CF ₅ CO ₂ H	450.0 (M + H)	2.82
2856	N H OH 2CF ₂ CO ₂ H	434.4 (M + H)	2.69
2857	2CF ₉ CO ₂ H	440.0 (M + H)	2.85
2858	2CF ₂ CO ₂ H	550.6 (M + H)	3.80
2859	N N N N N N N N N N N N N N N N N N N	441.4 (M + H)	3.03
2860	20F ₅ CO ₅ H	446.6 (M+H)	3.41

Example No.	Structure	ESI-MS	Retention Time (min)
2861	2CF ₂ CO ₂ H	448.4 (M + H)	2.91
2862	2CF ₂ CO ₂ H	424.2 (M + H)	3.05
2863	3CF4CO4H	441.4 (M+H)	2.68
2864	3CF ₂ CO ₂ H	463.4 (M + H)	2.76
2865	2CF ₃ CO ₂ H	408.4 (M + H)	2.91
2866	N N N N N N N N N N N N N N N N N N N	492.2 (M+H)	3.30

Example No.	Structure	ESI-MS	Retention Time (min)
2867	2CF ₂ CO ₂ H	464.2 (M + H)	2.93
2868	20F ₂ CO ₂ H	474.4 (M + H)	3.27
2869	N H H H H H H H H H H H H H H H H H H H	390.6 (M + H)	2.88
2870	2CF ₂ CO ₂ H	482.2 (M + H)	3.43
2871	2CF ₃ CO ₂ H	408.4 (M + H)	2.91
2872	N N N N N N N N N N N N N N N N N N N	420.4 (M + H)	2.91

Example No.	Structure	ESI-MS	Retention Time (min)
2873	N Br	468.2 (M+H)	3.09
2874	0H N N N N N N N N N N N N N N N N N N N	406.4 (M + H)	2.80
2875	2CF ₂ CO ₂ H	464.2 (M + H)	2.97
2876	N N N N N N N N N N N N N N N N N N N	524.6 (M + H)	3.12
2877	2CF ₃ CO ₂ H	442.4 (M+H)	3.10
2878	2CF ₂ CO ₂ H	426.2 (M+H)	2.90

Example No.	Structure	ESI-MS	Retention Time (min)
2879	2CF,CO,H	480.2 (M + H)	2.89
2880	2CF ₃ CO ₂ H	468.2 (M + H)	3.07
2381	N OH OH	422.4 (M + H)	2.61
2882	2CF ₃ CO ₂ H	450.0 (M+H)	2.93
2883	2CF ₃ CO ₂ H	404.6 (M + H)	3.01
2884	2CF ₃ CO ₂ H	436.4 (M+H)	3.08

Example No.	Structure	ESI-MS	Retention Time (min)
2885	2CF ₂ CO ₂ H	440.0 (M + H)	3.18
2886	2CF ₂ CO ₂ H	470.4 (M+H)	3.25
2887	N H P P P P P P P P P P P P P P P P P P	450.0 (M+H)	3.01
2888	2CF ₂ CO ₂ H	466.4 (M + H)	3.40
2889	2CF ₉ CO ₂ H	415.4 (M+H)	2.83
2890	2CF ₃ CO ₂ H	458.4 (M+H)	3.25

Example No.	Structure	ESI-MS	Retention Time (min)
2891	2CF ₂ CO ₂ H	468.2 (M + H)	3.00
2892	N N N N OH	406.4 (M + H)	2.66
2893	NN H COPH	420.4 (M + H)	2.92
2894	3CF ₂ CO ₂ H	379.4 (M+H)	2.71
2895	N N N N N N N N N N N N N N N N N N N	434.4 (M + H)	2.87
2896	2CF,CO,H	480.2 (M + H)\	3.17

Example No.	Structure	ESI-MS	Retention Time (min)
2897	NN H F 2CF ₅ CO ₂ H	426.2 (M + H)	2.98
2898	2CF ₂ CO ₂ H	480.2 (M + H)	2.99
2899	2CF ₂ CO ₂ H	528.4 (M+H)	3.15
2900	2CF ₂ CO ₂ H	458.4 (M+H)	3.19
2901	2CF ₂ CO ₂ H	480.2 (M+H)	2.92
2902	2CF ₅ CO ₂ H	470.4 (M + H)	3.27

Example No.	Structure	ESI-MS	Retention Time (min)
2903	N N N N N N N N N N N N N N N N N N N	404.6 (M+H)	2.87
2904	2CF ₂ CO ₂ H	460.4 (M+H)	3.48
2905	2CF ₂ CO ₂ H	410.4 (M + H)	2.96
2906	20F ₂ CO ₂ H	450.0 (M + H)	3.03
2907	2CF ₂ CO ₂ H	434.4 (M + H)	3.08
2908	2CF ₃ CO ₂ H	452.2 (M + H)	2.79

Example No.	Structure	ESI-MS	Retention Time (min)
2909	N N N N N S	396.2 (M+H)	2.81
2910	3CF ₂ CO ₂ H	459.4 (M + H)	3.21
2911	2CF ₂ CO ₂ H	458.2 (M+H)	3.08
2912	N N N N N N N N N N N N N N N N N N N	410.4 (M + H)	2.88
2913	N N N N F F	426.2 (M + H)	3.01
2914	3СБ,5СО2Н	429.4 (M + H)	2.97

Example No.	Structure	ESI-MS	Retention Time (min)
2915	3CF ₂ CO ₂ H	507.2 (M+H)	3.53
2916	2CF ₅ CO ₂ H	522.4 (M + H)	3.56
2917	3CF ₂ CO ₂ H	483.2 (M + H)	2.80
2918	3CF ₃ CO ₂ H	507.2 (M + H)	3.27
2919	20F ₃ CO ₂ H	474.2 (M+H)	3.10
2920	20F ₉ CO ₂ H	450.0 (M + H)	3.00

Example No.	Structure	ESI-MS	Retention Time (min)
2921	2CF ₂ CO ₂ H	498.4 (M+H)	3.15
2922	3CF ₂ CO ₂ H	459.4 (M + H)	2.99
2923	2CF ₂ CO ₂ H	476.0 (M+H)	3.10
2924	OH Br	.518.2 (M + H)	3.10
2925	2CF ₅ CO ₅ H	476.2 (M + H)	3.12
2926	2CF,CO ₂ H	490.4 (M + H)	3.35

Example No.	Structure	ESI-MS	Retention Time (min)
2927	N N N N N N N N N N N N N N N N N N N	434.4 (M + H)	3.11
2928	2CF ₃ CO ₂ H	478.4 (M + H)	3.29
2929	2CF ₂ CO ₂ H	438.2 (M + H)	3.01
2930	3CF ₃ CO ₂ H	433.4 (M + H)	2.59
2931	NN H P	438,2 (M + H)	2.90
2932	N N N N N N N N N N N N N N N N N N N	456.2 (M + H)	3.10

Example No.	Structure	ESI-MS	Retention Time (min)
2933	2CF ₅ CO ₂ H	492.2 (M+H)	3.25
2934	2CF ₂ CO ₂ H	476.2 (M+H)	3.11
2935	2CF ₂ CO ₂ H	490.4 (M + H)	3.20
2936	2CF ₃ CO ₂ H	448.4 (M+H)	3.17
2937	2CF ₂ CO ₂ H	489.6 (M + H)	3.31
2938	2CF ₃ CO ₃ H	528.2 (M+H)	3.03

Example No.	Structure	ESI-MS	Retention Time (min)
2939	2CF ₃ CO ₂ H	476.2 (M+H)	2.99
2940	2CF ₂ CO ₂ H	447.4 (M + H)	2.66
2941	N N N N N N N N N N N N N N N N N N N	532.4 (M + H)	3.66
2942	OH ON BIT DEF	514.4 (M + H)	3.08
2943	N N N N N N N N N N N N N N N N N N N	393.4 (M + H)	2.79
2944	2CF ₃ CO ₃ H	474.4 (M + H)	3.24

Example No.	Structure	ESI-MS	Retention Time (min)
2945	2CF ₃ CO ₃ H	526.6 (M+H)	3.44
2946	2CF ₂ CO ₂ H	526.6 (M+H)	3.42
2947	20F,CO,H	490.4 (M + H)	3.35
2948	20F3COJH	462.2 (M+H)	3.43
2949	NN N N N N N N N N N N N N N N N N N N	418.6 (M + H)	3.13
2950	PFF FFF 2CF ₃ CO ₂ H	458.4 (M+H)	3.10

Example No.	Structure	ESI-MS	Retention Time (min)
2951	2CF ₂ CO ₂ H	476.4 (M+H)	3.19
2952	ZCF ₂ CO ₂ H	438.2 (M+H)	2.95
2953	N N N N N N N N N N N N N N N N N N N	422.4 (M + H)	2.61
2954	N N N N CI	458.2 (M + H)	3.07
2955	20F ₉ CO ₉ H	470.4 (M + H)	3.45
2956	2CF ₅ CO ₅ H	471.6 (M + H)	2.88

Example No.	Structure	ESI-MS	Retention Time (min)
2957	2CF,CO,H	472.4 (M + H)	3.36
2958	2CF,CO,H	450 (M + H)	2.75
2959	2CF,CO,H	448.4 (M + H)	3.20
2960	2CF ₂ CO ₂ H	508.4 (M+H)	3.00
2961	HOOF-SCOTA	420.4 (M + H)	2.80
2962	2CF ₃ CO ₃ H	474.4 (M + H)	3.20

Example No.	Structure	ESI-MS	Retention Time (min)
2963	2CF,CO ₂ H	404.4 (M+H)	2.87
2964	N N N N N N N N N N N N N N N N N N N	458.2 (M + H)	3.00
2965	D D D D D D D D D D D D D D D D D D D	394.4 (M + H)	2.30
2966	2CF ₂ CO ₂ H	505.4 (M + H)	2.60
2967	H-6-05-4-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-	424.2 (M + H)	3.00
2968	2CF ₅ CO ₂ H	436.4 (M + H)	2.71

Example No.	Structure	ESI-MS	Retention Time (min)
2969	20F5CO2H	432.4 (M + H)	3.30
2970	N N N H CI	424.2 (M+H)	2.95
2971	ZCF ₃ CO ₂ H	415.4 (M+H)	2.79
2972	20F ₂ CO ₂ H	480.2 (M + H)	3.00
2973	2CF ₅ CO ₂ H	496.2 (M + H)	3.46
2974	2CF,CO ₂ H	562.2 (M+H)	2.99

Example No.	Structure	ESI-MS	Retention Time (min)
2975	2CF,CO,H	492.4 (M+H)	3.64
2976	20F ₂ CO ₂ H	492.2 (M+H)	3.25
2977	N P P P P P P P P P P P P P P P P P P P	448.4 (M+H)	3.22
2978	2CF ₂ CO ₂ H	456.2 (M+H)	3.09
2979	2CF ₃ CO ₃ H	434.4 (M+H)	2.89
2980	N N H OH O	436.4 (M+H)	2.79

Example No.	Structure	ESI-MS	Retention Time (min)
2981	2CF,CO.H	438.2 (M + H)	2.91
2982	3CF ₃ CO ₂ H	441.4 (M + H)	2.55
2983	N H H S	446.4 (M + H)	3.13
2984	3CF3CO3H	461.4 (M+H)	2.46
2985	2CF,CO,H	422.2 (M + H)	3.01
2986	2CF ₂ CO ₂ H	510.2 (M+H)	2.85

Example No.	Structure	ESI-MS	Retention Time (min)
2987	2CF ₂ CO ₂ H	414.4 (M + H)	2.86
2988	2CF ₂ CO ₂ H	534.2 (M + H)	3.13
2989	2CF ₂ CO ₂ H	424.2 (M + H)	3.08
2990	20F ₂ CO ₂ H	510.4 (M + H)	3.32
2991	2CE-2co-H	510.4 (M + H)	3.17
2992	2CF ₃ CO ₂ H	476.4 (M + H)	3.17

Example No.	Structure	ESI-MS	Retention Time (min)
2993	P F F F 2CF,CO,H	476.2 (M + H)	3.21
2994	2CF ₂ CO ₂ H	454.2 (M+H)	2.77
2995	2CF ₂ CO ₂ H	468.4 (M + H)	2.89
2996	20F ₂ CO ₂ H	418.6 (M+H)	3.12
2997	2CF ₂ CO ₂ H	496.4 (M + H)	3.29
2998	3CF ₅ CO ₅ H	472.6 (M + H)	2.99

Example No.	Structure	ESI-MS	Retention Time (min)
2999	2CF,CO,H	466.4 (M + H)	3.37
3000	2CF ₂ CO ₂ H	574.2 (M + H)	3.64
3001	2CF ₃ CO ₂ H	430.4 (M + H)	3.05
3002	2CF ₃ CO ₂ H	532.4 (M + H)	4.05
3003	PF OF DBr	552.0 (M + H)	3.37
3004	CF ₂ CO ₂ H	448.4 (M+H)	3.51

Example No.	Structure	ESI-MS	Retention Time (min)
3005	CF ₂ CO ₂ H	454.2 (M + H)	3.91
3006	CF ₃ CO ₂ H	472.4 (M + H)	4.02
3007	OF,CO,H	494.4 (M + H)	4.01
3008	CF ₃ CO ₂ H	537.4 (M + H)	3.77
3009	OF ₂ CO ₂ H	418.6 (M + H)	3.63
3010	OF ₂ CO ₂ H	418.6 (M + H)	3.51

Example No.	Structure	ESI-MS	Retention Time (min)
3011	CF ₂ CO ₂ H	396.2 (M+H)	3.47
3012	CF ₅ CO ₂ H	434.4 (M + H)	3.52
3013	CF ₂ CO ₂ H	395.4 (M+H)	3.15
3014	CF ₃ CO ₂ H	460.2 (M + H)	4.03
3015	CF ₃ CO ₂ H	418.6 (M + H)	3.65
3016	CF ₅ CO ₂ H	462.2 (M + H)	4.09

Example No.	Structure	ESI-MS	Retention Time (min)
3017	CF ₂ CO ₂ H	484.2 (M + H)	3.79
3018	CF ₅ CO ₂ H	498.6 (M + H)	3.88
3019	OF ₅ CO ₂ H	483.2 (M + H)	3.80
3020	CF ₃ CO ₂ H	478.2 (M + H)	3.49
3021	N N N N N N N N N N N N N N N N N N N	450.0 (M + H)	3.61
3022	CF ₂ CO ₂ H	448.2 (M + H)	3.70

Example No.	Structure	ESI-MS	Retention Time (min)
3023	CF ₅ CO ₅ H	554.4 (M + H)	4.41
3024	CF ₅ CO ₅ H	598.2 (M + H)	4.03
3025	CF,CO2H	499.2 (M + H)	3.59
3026	CF ₃ CO ₂ H	524.6 (M+H)	3.84
3027	20F ₂ CO ₂ H	497.4 (M + H)	3.80
3028	CF ₂ CO ₂ H	410.2 (M+H)	3.43

Example No.	Structure	ESI-MS	Retention Time (min)
3029	CF ₂ CO ₂ H	468.2 (M + H)	3.77
3030	CF ₃ CO ₂ H	463.2 (M + H)	3.73
3031	CF,CO,H	490.4 (M+H)	3.91
3032	CF ₃ CO ₂ H	490.4 (M + H)	3.94
3033	CF ₃ CO ₃ H	490.4 (M + H)	3.85
3034	CF ₃ CO ₂ H	490.4 (M+H)	3.87

Example No.	Structure	ESI-MS	Retention Time (min)
3035	CF ₃ CO ₂ H	490.4 (M+H)	3.63
3036	CF ₃ CO ₂ H	490.2 (M+H)	3.54
3037	CF ₅ CO ₅ H	540.4 (M + H)	3.95
3038	N N N N N N N N N N N N N N N N N N N	440.4 (M + H)	3.58
3039	CF ₂ CO ₂ H	458.4 (M+H)	3.56
3040	CF ₂ CO ₂ H	476.4 (M + H)	3.83

Example No.	Structure	ESI-MS	Retention Time (min)
3041	CF ₂ CO ₂ H	490.4 (M + H)	3.82
3042	CF ₂ CO ₂ H	508.0 (M+H)	3.85
3043	CF3CO2H	438.2 (M + H)	3.71
3044	NN POPULATION OF THE POPULATIO	464.2 (M + H)	3.65
3045	CF ₂ CO ₂ H	448.4 (M + H)	3.47
3046	CF ₅ CO ₂ H	440.4 (M + H)	3.59

Example No.	Structure	ESI-MS	Retention Time (min)
3047	CF ₂ CO ₂ H	464.2 (M + H)	3.36
3048	CF ₃ CO ₂ H	464.4 (M+H)	3.39
3049	CF ₉ CO ₂ H	432.4 (M + H)	3.81
3050	CF ₅ CO ₂ H	448.4 (M + H)	3.69
3051	CF ₂ CO ₂ H	438.2 (M + H)	3.69
3052	CF ₃ CO ₂ H	472.4 (M + H)	4.03

Example N	o. Structure	ESI-MS	Retention Time (min)
3053	CF ₃ CO ₂ H	429.2 (M+H)	
3054	CF,CO ₂ H	488.4 (M + H)	4.60
3055	CF,CO,H	424.2 (M + H)	3.41
3056	CF ₂ CO ₂ H	530.2 (M+H)	3.83
3057	CF ₉ CO ₂ H	446.4 (M + H)	4.02
3058	CF,CO2H	438.2 (M+H)	3.70

Example No.	Structure	ESI-MS	Retention Time (min)
3059	CF ₂ CO ₂ H	472.4 (M + H)	3,55
3060	N N N N N N N N N N N N N N N N N N N	506.4 (M + H)	3.71
3061	CF ₅ CO ₂ H	530.2 (M + H)	3.61
3062	CF ₃ CO ₃ H	474.4 (M + H)	4.41
3063	CF ₈ CO ₂ H	476.4 (M+H)	4.14
3064	CF ₂ CO ₂ H	502.4 (M + H)	4.83

Example No.	Structure	ESI-MS	Retention Time (min)
3065	CF ₂ CO ₂ H	480.4 (M + H)	4.09
3066	CF ₂ CO ₂ H	486.4 (M + H)	3.84
3067	CF ₃ CO ₂ H	440.4 (M+H)	3.46
3068	CF ₃ CO ₂ H	494.4 (M + H)	3.79
3069	CF ₃ CO ₂ H	472.4 (M + H)	3.55
3070	CF _S CO ₂ H	464.4 (M + H)	3.63

Example No.	Structure	ESI-MS	Retention Time (min)
3071	CF ₃ CO ₂ H	458.2 (M+H)	3.69
3072	CF ₃ CO ₂ H	440.4 (M + H)	3.69
3073	CF ₃ CO ₃ H	440.4 (M+H)	3.66
3074	CF ₂ CO ₂ H	422.4 (M + H)	3.55
3075	CF ₅ CO ₅ H	460.4 (M + H)	4.24
3076	CF ₅ CO ₂ H	429.2 (M+H)	3.42

Example No.	Structure	ESI-MS	Retention Time (min)
3077	CF ₅ CO ₅ H	434.4 (M + H)	3.61
3078	CF ₃ CO ₂ H	488.4 (M+H)	3.86
3079	CF ₅ CO ₅ H	518.6 (M+H)	4.74
3080	CF ₂ CO ₂ H	458.2 (M + H)	3.68
3081	CF ₅ CO ₅ H	410.4 (M+H)	3.58
3082	CF ₅ CO ₅ H	540.4 (M+H)	4.19

Example No.	Structure	ESI-MS	Retention Time (min)
3083	CF ₂ CO ₂ H	422.2 (M + H)	3.50
3084	CF ₂ CO ₂ H	494.4 (M + H)	3.39
3085	CF ₅ CO ₃ H	440.0 (M + H)	3.55
3086	CF ₂ CO ₂ H	438.2 (M + H)	3.48
3087	OF5004H	454.2 (M+H)	3.75
3088	CF ₃ CO ₃ H	472.4 (M+H)	3.83

Example No.	Structure	ESI-MS	Retention Time (min)
3089	CF ₂ CO ₂ H	422.2 (M + H)	3.51
3090	CF ₃ CO ₂ H	472.4 (M + H)	3.87
3091	CF ₅ CO ₂ H	500.4 (M + H)	3.03
3092	20F ₂ CO ₂ F ₁	447.4 (M + H)	2.59
3093	CF ₅ CO ₂ H	486.4 (M+H)	3.25
3094	CF ₅ CO ₂ H	488.4 (M + H)	2.81

Example No.	Structure	ESI-MS	Retention Time (min)
3095	N N N N N N N N N N N N N N N N N N N	452.4 (M + H)	2.98
3096	CF ₅ CO ₅ H	496.4 (M + H)	3.29
3097	CF ₅ CO ₂ H	448.4 (M + H)	2.77
3098	CF ₅ CO ₂ H	458.4 (M + H)	3.06
3099	CF ₅ CO ₂ H	484.4 (M + H)	3.40
3100	CF ₅ CO ₂ H	418.6 (M+H)	2.69

Example No.	Structure	ESI-MS	Retention Time (min)
3101	2CF _F CO _F H	496.4 (M + H)	3.01
3102	CF ₃ CO ₂ H	483.4 (M + H)	2.79
3103	CF ₅ CO ₅ H	420.4 (M + H)	2.76
3104	CF ₃ CO ₂ H	516.2 (M + H)	3.03
3105	CF ₅ CO ₂ H	480.4 (M + H)	2.41
3106	CF ₃ CO ₂ H	483.2 (M+H)	2.84

Example No.	Structure	ESI-MS	Retention Time (min)
3107	2CF,CO,H	455 (M+H)	2.45
3108	2CF ₂ CO ₂ H	455.2 (M + H)	3.19
3109	CF,CO,H	461.4 (M+H)	2.60
3110	2CF ₃ CO ₃ H	470.4 (M + H)	2.74
3111	OF,CO,H	446.6 (M + H)	2.61
3112	CF ₅ CO ₂ H	464.4 (M + H)	2.35

Example No.	Structure	ESI-MS	Retention Time (min)
3113	CF ₂ CO ₂ H	468.4 (M + H)	3.04
3114	2CF ₃ CO ₂ H	456.2 (M+H)	2.44
3115	2CF ₅ CO ₂ H	455.2 (M + H)	2.11
3116	CF ₈ CO ₂ H	454.2 (M + H)	3.21
3117	2CF ₃ CO ₂ H	433.6 (M + H)	2.34
3118	2CF ₂ CO ₂ H	444.6 (M+)	2.93

Example No.	Structure	ESI-MS	Retention Time (min)
3119	2CF,CO,H	421.4 (M + H)	2.23
3120	CF ₅ CO ₂ H	506.4 (M+H)	3.31
3121	2CF ₂ CO ₂ H	511.6 (M + H)	3.21
3122	CF ₃ CO ₂ H	479.4 (M + H)	3.60
3123	OH OF SCO2H	434.4 (M + H)	2.37
3124	CF ₃ CO ₂ H	516.4 (M+H)	3.02

Example No.	Structure	ESI-MS	Retention Time (min)
3125	CF ₂ CO ₂ H	394.4 (M + H)	
3126	CF ₅ CO ₅ H	450.2 (M + H)	2.41
3127	2CF ₂ CO ₂ H	477.0 (M + H)	2.88
3128	2CF ₃ CO ₂ H	405.6 (M + H)	2.61
3129	CF ₂ CO ₂ H	472.6 (M + H)	3.17
3130	CF ₅ CO ₂ H	464.4 (M + H)	2.59

Example No.	Structure	ESI-MS	Retention Time (min)
3131	CF ₂ CO ₂ H	484.2 (M+H)	
3132	NN NH2	453.0 (M + H)	2.45
3133	CF ₅ CO ₂ H	488.4 (M + H)	3.59
3134	CF ₅ CO ₂ H	454.2 (M+H)	2.81
3135	2CF ₃ CO ₂ H	421.4 (M + H)	2.89
3136	CF ₅ CO ₂ H	468.4 (M+H)	2.53

Example No.	Structure	ESI-MS	Retention Time (min)
3137	20F ₃ CO ₂ H	483.2 (M+H)	2.83
3138	CF ₅ CO ₂ H	487.4 (M+2H+)	3.40
3139	CF ₅ CO ₂ H	445.6 (M + H)	2.36
3140	2CF ₃ CO ₂ H	453.2 (M+H)	2.46
3141	CF,CO,H	478.4 (M+H)	2.77
3142	CF ₂ CO ₂ H	672.2 (M + H)	3.92

Example No.	Structure	ESI-MS	Retention Time (min)
3143	O OH N H H Br CF ₂ CO ₂ H	576.2 (M + H)	3.71
3144	2CF ₂ CO ₂ H	421.2 (M + H)	2.01
3145	0 NO2 N NO2 CF3CO2H	494.4 (M + H)	2.77
3146	2CF ₂ CO ₂ H	405.6 (M + H)	1.99
3147	CF ₃ CO ₂ H	488.4 (M + H)	3.13
3148	CF ₃ CO ₂ H	430.4 (M+H)	2.91

Example No.	Structure	ESI-MS	Retention Time (min)
3149	2CF ₂ CO ₂ H	459.4 (M+H)	2.47
3150	CF ₂ CO ₂ H	486.6 (M + H)	2.93
3151	CF ₂ CO ₂ H	474.4 (M+H)	3.03
3152	OF ₃ CO ₂ H	465.2 (M+H)	3.13
3153	20F ₃ ;OO,H	483.4 (M+H)	2.67
3154	CF ₃ CO ₂ H	556.4 (M+H)	2.84

Example No.	Structure	ESI-MS	Retention Time (min)
3155	2CF ₂ CO ₂ H	443.4 (M + H)	2.94
3156	CF ₅ CO ₅ H	508.2 (M + H)	3.20
3157	CF ₂ CO ₂ H	440.0 (M+H)	2.72
3158	CF ₃ CO ₂ H	532.4 (M + H)	3.58
3159	CF ₃ CO ₃ H	535.4 (M + H)	3.51
3160	CF ₅ CO ₂ H	504.4 (M + H)	3.49

Example No.	Structure	ESI-MS	Retention Time (min)
3161	CF ₂ CO ₂ H	572.4 (M+H)	3.71
3162	CF ₅ CO ₂ H	460.2 (M + H)	3.80
3163	HN TO Y	589.2 (M+H)	4.00
3164	CF ₅ CO ₂ H	492.2 (M + H)	3.90
3165	CF ₂ CO ₂ H	478.2 (M + H)	3.80
3166	CF ₅ CO ₅ H	607.6 (M + H)	4.00

Example No.	Structure	ESI-MS	Retention Time (min)
3167	CF ₂ CO ₂ H	504.2 (M + H)	3.40
3168	CF ₂ CO ₂ H	506.2 (M + H)	3.90
3169	CF,CO,H	480.2 (M + H)	3.80
3170	NH N N N CF ₅ CO ₂ H	466.2 (M + H)	3.70
3171	CF ₂ CO ₂ H	515.2 (M + H)	3.90
3172	CF ₅ CO ₅ H	644.2 (M + H)	4.10

Example No.	Structure	ESI-MS	Retention Time (min)
3173	CF ₅ CO ₂ H	488.2 (M+H)	3.90
3174	N-1	474.4 (M+H)	3.80
3175	NH OF	525.4 (M + H)	3.70
3176	HN CF3CQH	654.2 (M + H)	3.90
3177	CF ₃ CO ₂ H	428.2 (M + H)	3.10
3178	NH N N N N N N N N N N N N N N N N N N	414.4 (M + H)	2.90

Example No.	Structure	ESI-MS	Retention Time (min)
3179	2CF ₂ CO ₂ H	506.4 (M+H)	3.04
3180	2CF ₃ CO ₂ H	578.8 (M + H)	3.50
3181	2CF ₃ CO ₂ H	520.6 (M+H)	3.19
3182	2CF ₂ CO ₂ H	448.4 (M+H)	2.80
3183	2CF ₂ CO ₂ H	494.6 (M+H)	2.66
3184	2CF ₃ CO ₂ H	478.4 (M + H)	2.66

Example No.	Structure	ESI-MS	Retention Time (min)
3185	2CF ₃ CO ₂ H	492.6 (M+H)	2.94
3186	2CF ₂ CO ₂ H	464.4 (M + H)	2.65
3187	2CF ₃ CO ₂ H	464.4 (M + H)	2.68
3188	N H H FF	566.4 (M + H)	3.03
3189	2CF ₃ CO ₃ H	512.6 (M + H)	2.85
3190	2CF ₃ CO ₂ H	474.4 (M + H)	3.09

Example No.	Structure	ESI-MS	Retention Time (min)
3191	3CF ₁ CO ₂ H	477.4 (M + H)	2.51
3192	N N N N N N N N N N N N N N N N N N N	464.4 (M + H)	2.67
3193	2CF3CO3H	494.6 (M + H)	2.78
3194	2CF ₃ CO ₂ H	494.6 (M + H)	2.60
3195	N H H L L L L L L L L L L L L L L L L L	434.6 (M + H)	2.67
3196	2CF3CO2H	546.4 (M+H)	4.30

Example No.	Structure	ESI-MS	Retention Time (min)
3197	Pr Pr 2CF ₃ CO ₂ H	606.6 (M+H)	3.95
3198	2CF ₃ CO ₂ H	536.6 (M + H)	3.83
3199	2CF ₂ CO ₂ H	492.4 (M + H)	2.97
3200	NN H (0)	478.4 (M + H)	2.79
3201	2CF ₇ CO ₂ H	542.0 (M + H)	2.85
3202	2CF ₅ CO ₅ H	492.6 (M + H)	2.81

Example No.	Structure	ESI-MS	Retention Time (min)
3203	2CF ₂ CO ₂ H	590.4 (M+H)	3.02
3204	N N N N N N N N N N N N N N N N N N N	502.2 (M + H)	2.91
3205	N H OOH 2CF3CO3H	480.4 (M+H)	2.51
3206	N N N N N N N N N N N N N N N N N N N	536.4 (M + H)	3.21
3207	N H N S	443.6 (M + H)	2.66
3208	2CF ₅ CO ₂ H	536.4 (M + H)	3.08

Example No.	Structure	ESI-MS	Retention Time (min)
3209	N H C C C C C C C C C C C C C C C C C C	520.0 (M + H)	3.51
3210	N N N N N N N N N N O O	480.4 (M + H)	2.58
3211	N N N N N N N N N N N N N N N N N N N	552.0 (M+H)	3.11
3212	2CF ₃ CO ₂ H	464.4 (M + H)	3.22
3213	2CF3CO ₂ H	450.4 (M + H)	2.70
3214	2CF ₅ CO ₂ H	450.4 (M+H)	2.58

Example No.	Structure	ESI-MS	Retention Time (min)
3215	2CF3CO2H	480.4 (M+H)	2.73
3216	3CF ₃ CO ₂ H	429.4 (M+H)	3.29
3217	2CF ₂ CO ₂ H	480.2 (M+H)	2.78
3218	2CF3CO2H	522.4 (M+H)	3.77
3219	NN N N N N N N N N N N N N N N O O O O	450.2 (M+H)	2.57
3220	N N N N N N N N N N N N N N N N N N N	498.0 (M + H)	2.97

Example No.	Structure	ESI-MS	Retention Time (min)
3221	2CF ₂ CO ₂ H	478.4 (M+H)	3.17
3222	N N O O O O O O O O O O O O O O O O O O	480.0 (M+H)	3.08
3223	Property of the state of the st	590.2 (M + H)	4.20
3224	Pr Br Br 2CF ₃ CO ₂ H	576.4 (M + H)	3.95
3225	2CF ₃ CO ₂ H	512.4 (M + H)	3.86
3226	Ct-2Co2H	472.4 (M + H)	3.07

Example No.	Structure	ESI-MS	Retention Time (min)
3227	F F F F F F F F F F F F F F F F F F F	540.6 (M+H)	3.75
3228	CF ₃ CO ₂ H	464.4 (M + H)	3.07
3229	2CF ₃ CO ₂ H	478.4 (M+H)	3.40
3230	N N N N N N N N N N N N N N N N N N N	552.6 (M+H)	3.50
3231	N N Br	590.2 (M+H)	3.60
3232	2CF ₅ CO ₂ H	418.6 (M+H)	3.25

Example No.	Structure	ESI-MS	Retention Time (min)
3233	2CF ₃ CO ₃ H	382.2 (M+H)	2.67
3234	2CF ₃ CO ₃ H	436.4 (M + H)	3.05
3235	2CF ₂ CO ₂ H	394.4 (M + H)	2.75
3236	2CF ₃ CO ₃ H	420.4 (M + H)	2.82
3237	2CF ₃ CO ₃ H	426.4 (M + H)	3.17
3238	NN N N N N N N N N N N N N N N N N N N	468.4 (M+H)	3.44

Example No.	Structure	ESI-MS	Retention Time (min)
3239	2CF ₂ CO ₂ H	452.2 (M + H)	2.69
3240	NNNN NO PHOTOLOGY	436.4 (M + H)	2.80
3241	2CF ₃ CO ₂ H	426.2 (M+H)	2.79
3242	2CF ₃ CO ₂ H	536.4 (M+H)	3.75
3243	3CF ₃ CO ₂ H	427.2 (M + H)	2.95
3244	2CF ₃ CO ₂ H	432.4 (M+H)	3.41

Example No.	Structure	ESI-MS	Retention Time (min)
3245	2CF ₃ CO ₂ H	434.2 (M + H)	2.84
3246	2CF ₃ CO ₂ H	410.2 (M+H)	3.02
3247	3CF3CO2H	427.4 (M + H)	2.61
3248	2CF ₃ CO ₂ H	450.4 (M + H)	2.91
3249	PFF F NN H 2CF3CO ₂ H	460.4 (M + H)	3.19
3250	2CF ₃ CO ₂ H	468.4 (M + H)	2.79

Example No.	Structure	ESI-MS	Retention Time (min)
3251	2CF3CO2H	394.4 (M+H)	2.83
3252	N H Br 2CF ₃ CO ₂ H	454.2 (M + H)	3.08
3253	2CF ₃ CO ₃ H	392.4 (M + H)	2.73
3254	2CF ₃ CO ₂ H	450.4 (M + H)	2.92
3255	3CF ₃ CO ₂ H	510.4 (M + H)	3.17
3256	CI F	428.2 (M + H)	3.08

Example No.	Structure	ESI-MS	Retention Time (min)
3257	он 2CF₃CO₃H	392.4 (M + H)	2.63
3258	N H F F 2CF ₃ CO ₂ H	412.2 (M + H)	2.83
3259	2CF ₂ CO ₂ H	466.4 (M+H)	2.89
3260	N N H SPI	454.0 (M+H)	3.05
3261	NN NOH	408.2 (M + H)	2.53
3262	2CF ₂ CO ₂ H	390.4 (M+H)	2.92

Example No.	Structure	ESI-MS	Retention Time (min)
3263	N H S S S S S S S S S S S S S S S S S S	422.2 (M + H)	3.05
3264	NN H CO.	456.4 (M + H)	3.25
3265	N N N N N N N N N N N N N N N N N N N	452.2 (M + H)	3.37
3266	2CF ₃ CO ₂ H	401.2 (M+H)	2.76
3267	N H CI CI 2CF ₃ CO ₂ H	444.4 (M+H)	3.17
3268	2CF3CO2H	392.4 (M+H)	2.61

Example No.	Structure	ESI-MS	Retention Time (min)
3269	2CF ₃ CO ₂ H	406.4 (M+H)	2.86
3270	3CF ₃ CO ₂ H	365.4 (M+H)	2.61
3271	2CF ₂ CO ₂ H	420.4 (M + H)	2.83
3272	2CF3CO2H	466.4 (M + H)	3.10
3273	2CF ₃ CO ₂ H	514.4 (M + H)	3.13
3274	FFF F-F 2CF ₃ CO ₂ H	444.4 (M+H)	3.17

Example No.	Structure	ESI-MS	Retention Time (min)
3275	2CF ₂ CO ₂ H	466.4 (M+H)	2.86
3276	2CF ₃ CO ₂ H	456.2 (M + H)	3.22
3277	NN H 2CF3CO2H	446.6 (M + H)	3.45
3278	2CF3CO2H	436.4 (M + H)	2.95
3279	N N N N N N N N N N N N N N N N N N N	420.2 (M + H)	3.03
3280	N N N S	382.4 (M+H)	2.72

Example No.	Structure	ESI-MS	Retention Time (min)
3281	N N CI	444.4 (M + H)	3.07
3282	NN H S N	396.2 (M + H)	2.79
3283	NN H FF	412.4 (M+H)	2.95
3284	32CF ₂ CO ₂ H	493.4 (M+H)	3.57
3285	CI CI N N N N N N N N N N N N N	508.2 (M + H)	3.52
3286	NN HANDER CO.H	469.6 (M + H)	2.76

Example No.	Structure	ESI-MS	Retention Time (min)
3287	3CF ₂ CO ₂ H	493.2 (M + H)	3.17
3288	2CF ₃ CO ₂ H	460.2 (M + H)	2.95
3289	Pr NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	484.2 (M + H)	3.14
3290	PFFF F-F 2CF3CO2H	462.2 (M + H)	3.11
3291	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	462.2 (M+H)	3.11
3292	PFFF S 2CF ₃ CO ₂ H	476.4 (M+H)	3.39

Example No.	Structure	ESI-MS	Retention Time (min)
3293	2CF ₂ CO ₂ H	420.4 (M+H)	3.05
3294	2CF ₃ CO ₂ H	464.2 (M+H)	3.21
3295	N N N N N N N N N N N N N N N N N N N	424.2 (M + H)	2.94
3296	3CF ₃ CO ₃ H	419.4 (M+H)	2.51
3297	3CF3CO3H	366.4 (M + H)	2.26
3298	2CF ₂ CO ₂ H	424.2 (M + H)	2.93

Example No.	Structure	ESI-MS	Retention Time (min)
3299	P P P P P P P P P P P P P P P P P P P	442.4 (M+H)	2.97
3300	PFF FF NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	478.2 (M+H)	3.19
3301	N H F F F 2CF ₂ CO ₂ H	462.2 (M + H)	3.05
3302	P P O H	476.4 (M+H)	3.20
3303	2CF3CO ₂ H	366.4 (M + H)	2.64
3304	2CF ₂ CO ₂ H	412.4 (M+H)	2.85

Example No.	Structure	ESI-MS	Retention Time (min)
3305	OH OH OOH OOH OO2CF3CO2H	420.4 (M + H)	2.67
3306	3CF ₂ CO ₂ H	449.4 (M+H)	2.74
3307	2CF ₃ CO ₂ H	394.4 (M + H)	2.86
3308	CI CI CI 2CF3CO2H	478.2 (M+H)	3.38
3309	2CF ₃ CO ₂ H	444.4 (M+H)	3.09
3310	NN H CO2H	376.4 (M + H)	2.82

Example No.	Structure	ESI-MS	Retention Time (min)
3311	NN H O	406.4 (M+H)	2.87
3312	2CF ₃ CO ₂ H	436.4 (M + H)	2.91
3313	2CF ₂ CO ₂ H	426.2 (M + H)	3.13
3314	2CF ₃ CO ₂ H	436.4 (M + H)	2.99
3315	2CF ₃ CO ₃ H	454.0 (M + H)	2.97
3316	2CF ₃ CO ₂ H	412.4 (M + H)	2.92

Example No.	Structure	ESI-MS	Retention Time (min)
3317	2CF ₂ CO ₂ H	466.4 (M + H)	2.95
3318	2CF ₃ CO ₂ H	390.4 (M + H)	2.95
3319	N N N S S S S S S S S S S S S S S S S S	396.2 (M+H)	2.89
3320	2CF ₃ CO ₂ H	438.2 (M + H)	2.76
3321	NN N N N N N N N N N N N N N N N N N N	445.4 (M+H)	3.16
3322	N N N N N N N N N N N N N N N N N N N	415.4 (M + H)	2.96

Example No.	Structure	ESI-MS	Retention Time (min)
3323	3CF ₃ CO ₂ H	445.4 (M + H)	2.96
3324	PHO Br CI	504.2 (M + H)	3.11
3325	2CF ₂ CO ₂ H	434.4 (M + H)	3.17
3326	FFF NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	476.2 (M + H)	3.27
3327	2CF ₂ CO ₂ H	514.4 (M + H)	3.07
3328	N H F F F C2CF ₃ CO ₂ H	462.2 (M + H)	2.99

Example No.	Structure	ESI-MS	Retention Time (min)
3329	2CF ₃ CO ₃ H	433.2 (M+H)	2.63
3330	CI CHANNEL MANAGEMENT OF THE CONTROL	518.4 (M+H)	3.63
3331	HO O Br	500.4 (M + H)	3.09
3332	3CF ₂ CO ₂ H	379.4 (M+H)	2.77
3333	PF F F F F F F F F F F F F F F F F F F	460.2 (M+H)	3.31
3334	FFF FF 2CF ₃ CO ₂ H	512.4 (M+H)	3.51

Example No.	Structure	ESI-MS	Retention Time (min)
3335	N H F F F	512.6 (M+H)	3.51
3336	FF S	476.2 (M + H)	3.39
3337	N N N N N N N N N N N N N N N N N N N	448.4 (M+H)	3.42
3338	2CF ₃ CO ₂ H	404.4 (M+H)	3.17
3339	N H F F F	444.4 (M+H)	3.13
3340	PFFF PFFF 2CF ₅ CO ₂ H	462.2 (M+H)	3.21

Example No.	Structure	ESI-MS	Retention Time (min)
3341	2CF3CO2H	424.2 (M + H)	2.97
3342	2CF ₃ CO ₂ H	444.6 (M + H)	3.16
3343	3CF3CO2H	469.4 (M + H)	3.47
3344	N H COPy H COPy H	456.4 (M + H)	3.47
3345	2CF3CO2H	457.4 (M + H)	3.09
3346	N S S S S S S S S S S S S S S S S S S S	458.2 (M+H)	3.37

Example No.	Structure	ESI-MS	Retention Time (min)
3347	2CF ₃ CO ₂ H	436.4 (M+H)	2.83
3348	2CF3CO2H	434.4 (M + H)	3.30
3349	2CF ₃ CO ₃ H	494.4 (M+H)	2.98
3350	2CF ₃ CO ₂ H	406.4 (M+H)	2.80
3351	FFF NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	460.4 (M+H)	3.20
3352	2CF ₅ CO ₂ H	390.4 (M+H)	2.97

Example No.	Structure	ESI-MS	Retention Time (min)
3353	2CF ₃ CO ₂ H	444.2 (M + H)	3.01
3354	N N N N N N N N N N N N N N N N N N N	380.2 (M + H)	2.27
3355	The second secon	491.4 (M + H)	2.55
3356	N N N N N N N N N N N N N N N N N N N	410.4 (M + H)	3.05
3357	N H COH	422.2 (M+H)	2.69
3358	2CF ₅ CO ₂ H	418.6 (M + H)	3.36

Example No.	Structure	ESI-MS	Retention Time (min)
3359	CI N N N N N N N N N N N	410.4 (M + H)	2.97
3360	2CF ₃ CO ₂ H	401.2 (M + H)	2.81
3361	2CF ₃ CO ₂ H	466.2 (M + H)	3.01
3362	2CF ₃ CO ₂ H	482.4 (M + H)	3.43
3363	N N N O OH	548.4 (M + H)	3.03
3364	3CF ₃ CO ₂ H	543.6 (M+H)	3.95

Example No.	Structure	ESI-MS	Retention Time (min)
3365	2CF2CO2H	478.4 (M + H)	3.64
3366	N N N N N N N N N N N N N N N N N N N	478.4 (M + H)	3.29
3367	2CF ₂ CO ₃ H	434.4 (M + H)	3.20
3368	2CF ₃ CO ₂ H	442.4 (M + H)	3.09
3369	2CF ₃ CO ₂ H	420.4 (M + H)	2.87
3370	2CF ₅ CO ₂ H	422.2 (M + H)	2.79

Example No.	Structure	ESI-MS	Retention Time (min)
3371	2CF ₂ CO ₂ H	424.2 (M + H)	2.96
3372	3CF ₂ CO ₂ H	427.2 (M+H)	2.53
3373	2CF ₂ CO ₂ H	432.4 (M + H)	3.12
3374	3CF ₂ CO ₂ H	447.4 (M + H)	2.45
3375	2CF ₃ CO ₃ H	408.2 (M + H)	3.02
3376	2CF,CO ₂ H	496.4 (M + H)	2.81

Example No.	Structure	ESI-MS	Retention Time (min)
3377	2CF ₂ CO ₂ H	400.2 (M+H)	2.81
3378	N N N N N N N N N N N N N N N N N N N	520.2 (M+H)	3.14
3379	2CF ₂ CO ₂ H	410.4 (M+H)	3.12
3380	CI FF 2CF,CO ₂ H	496.4 (M+H)	3.40
3381	2CF ₂ CO ₂ H	496.4 (M+H)	3.17
3382	2CF ₂ CO ₂ H	462.2 (M+H)	3.19

Example No.	Structure	ESI-MS	Retention Time (min)
3383	N H F F F F F F F F F F F F F F F F F F	462.2 (M + H)	3.28
3384	O OH F 2CF ₃ CO ₂ H	440.4 (M + H)	2.74
3385	N H F O O	454.2 (M+H)	2.89
3386	2CF ₃ CO ₂ H	404.4 (M + H)	3.09
3387	2CF ₃ CO ₂ H	482.2 (M + H)	3.29
3388	N N N N N N N N N N N N N N N N N N N	458.4 (M + H)	2.99

Example No.	Structure	ESI-MS	Retention Time (min)
3389	2CF ₂ CO ₂ H	452.2 (M + H)	3.40
3390	2CF ₃ CO ₂ H	560.2 (M + H)	3.73
3391	2CF ₂ CO ₂ H	416.4 (M+H)	2.99
3392	2CF ₃ CO ₂ H	518.6 (M+H)	4.08
3393	2CF ₃ CO ₂ H	436.4 (M + H)	2.95
3394	CF ₅ CO ₅ H	434.4 (M + H)	3.30

Example No.	Structure	ESI-MS	Retention Time (min)
3395	CE3CO,H	440.4 (M+H)	4.26
3396	CF ₃ CO ₂ H	458.2 (M+H)	4.39
3397	CF ₂ CO ₂ H	480.4 (M+H)	4.37
3398	CF ₃ CO ₃ H	523.6 (M+H)	4.15
3399	CF ₃ CO ₂ H	404.4 (M + H)	3.46
3400	CF ₃ CO ₂ H	404.4 (M+H)	3.75

Example No.	Structure	ESI-MS	Retention Time (min)
3401	CE3CO3H	382.4 (M + H)	- 3.65
3402	CF ₃ CO ₂ H	420.4 (M + H)	3.81
3403	CF ₂ CO ₂ H	381.2 (M+H)	3.33
3404	CF ₂ CO ₂ H	404.4 (M + H)	3.93
3405	O-N±0 N±0 CF3CO3H	435.2 (M + H)	3.40
3406	CF ₅ CO ₂ H	484.4 (M+H)	4.15

Example No.	Structure	ESI-MS	Retention Time (min)
3407	CF ₃ CO ₃ H	469.4 (M + H)	4.20
3408	CF ₃ CO ₃ H	436.2 (M + H)	3.88
3409	CF ₂ CO ₂ H	434.4 (M+H)	3.91
3410	CF ₃ CO ₃ H	558.4 (M + H)	4.92
3411	N N N N N N N N N N N N N N N N N N N	483.4 (M + H)	4.08
3412	CF ₅ CO ₅ H	396.2 (M+H)	3.68

Example No.	Structure	ESI-MS	Retention Time (min)
3413	CF ₃ CO ₃ H	454.2 (M + H)	3.70
3414	CF3CO3H	449.4 (M + H)	4.09
3415	CF ₂ CO ₃ H	476.2 (M + H)	4.33
3416	CF ₃ CO ₃ H	476.4 (M + H)	3.60
3417	FFF NN N N F F CF ₃ CO ₃ H	476.4 (M + H)	4.23
3418	CF ₃ CO ₂ H	476.4 (M + H)	4.38

Example No.	Structure	ESI-MS	Retention Time (min)
3419	CF ₂ CO ₂ H	426.2 (M + H)	3.87
3420	CF ₃ CO ₂ H	444.4 (M+H)	3.86
3421	CF ₂ CO ₂ H	462.2 (M + H)	4.15
3422	CF3CO3H	424.2 (M + H)	4.06
3423	CF,CO,H	450.4 (M + H)	4.03
3424	CF ₅ CO ₂ H	434.2 (M+H)	3.75

Example No.	Structure	ESI-MS	Retention Time (min)
3425	CF ₅ CO ₂ H	426.2 (M + H)	3.88
3426	CF ₃ CO ₃ H	450.4 (M + H)	3.64
3427	CF ₂ CO ₂ H	450.4 (M + H)	3.55
3428	CF ₅ CO ₅ H	418.6 (M + H)	4.17
3429	CF ₃ CO ₃ H	434.4 (M + H)	4.03
3430	CF;CO;H	458.2 (M+H)	4.45

Example No.	Structure	ESI-MS	Retention Time (min)
3431	CF ₂ CO ₂ H	415.4 (M+H)	3.76
3432	CF,CO,H	474.4 (M+H)	5.06
3433	CF ₂ CO ₂ H	410.2 (M+H)	3.64
3434	CF3CO3H	516.2 (M + H)	4.24
3435	CF3CO3H	424.2 (M+H)	4.09
3436	CF ₅ CO ₂ H	458.2 (M+H)	3.89

Example No.	Structure	ESI-MS	Retention Time (min)
3437	CF ₂ CO ₂ H	516.2 (M+H)	3.88
3438	CF ₃ CO ₃ H	460.4 (M+H)	4.86
3439	CF ₂ CO ₂ H	488.4 (M+H)	4.70
3440	CI, CI CI, CI CF ₃ CO ₃ H	472.4 (M + H)	4.29
3441	CF ₃ CO ₃ H	426.2 (M + H)	3.69
3442	CF ₃ CO ₂ H	480.2 (M+H)	4.16

Example No.	Structure	ESI-MS	Retention Time (min)
3443	CF ₃ CO ₂ H	458.2 (M+H)	3.91
3444	CF ₃ CO ₂ H	450.4 (M+H)	3.95
3445	CF ₃ CO ₃ H	444.4 (M+H)	4.01
3446	CF ₃ CO ₂ H	426.2 (M+H)	4.00
3447	CF,CO ₂ H	408.4 (M + H)	3.75
3448	CF ₂ CO ₂ H	446.6 (M + H)	4.65

Example No.	Structure	ESI-MS	Retention Time (min)
3449	CF ₂ CO ₂ H	415.2 (M + H)	3.75
3450	CF ₃ CO ₂ H	420.4 (M + H)	3.91
3451	CF ₂ CO ₂ H	490.4 (M+H)	4.99
3452	CF ₅ CO ₅ H	504.4 (M + H)	5.16
3453	CF ₃ CO ₃ H	444.4 (M + H)	4.00
3454	CF ₂ CO ₂ H	396.2 (M + H)	3.85

Example No.	Structure	ESI-MS	Retention Time (min)
3455	FFF CF ₃ CO ₂ H	526.6 (M+H)	4.69
3456	CF,CO ₂ H	408.4 (M+H)	3.30
3457	CF ₂ CO ₂ H	480.4 (M+H)	3.76
3458	CF ₃ CO ₃ H	426.2 (M+H)	3.86
3459	CF ₂ CO ₂ H	424.2 (M+H)	3.76
3460	CF ₂ CO ₂ H	440.4 (M+H)	4.05

Example No.	Structure	ESI-MS	Retention Time (min)
3461	CF ₅ CO ₅ H	458.4 (M+H)	4.25
3462	CF ₃ CO ₂ H	408.2 (M + H)	3.84
3463	CF ₂ CO ₂ H	458.2 (M+H)	4.25
3464	CF ₅ CO ₃ H	446.6 (M + H)	4.44
3465	CF,CO,H	470.2 (M + H)	4.13
3466	CF ₂ CO ₂ H	476.2 (M+H)	4.25

Example No.	Structure	ESI-MS	Retention Time (min)
3467	CF ₃ CO ₃ H	476.2 (M + H)	3.92
3468	CF ₅ CO ₅ H	526.4 (M + H)	4.31
3469	CF ₂ CO ₂ H	476.2 (M + H)	4.15
3470	CF ₃ CO ₃ H	462.2 (M + H)	4.48
3471	CF ₃ CO ₃ H	466.4 (M + H)	4.45
3472	CF,CO ₂ H	474.4 (M + H)	4.29

Example No.	Structure	ESI-MS	Retention Time (min)
3473	CF ₃ CO ₃ H	486.2 (M+H)	4.32
3474	CF ₅ CO ₃ H	438.4 (M + H)	4.31
3475	NN H STEP	441.4 (M + H)	3.75
3476	CF ₂ CO ₂ H	434.4 (M + H)	4.10
3477	CF ₃ CO ₃ H	469.4 (M + H)	4.19
3478	CF ₅ CO ₂ H	444.4 (M + H)	4.36

Example No.	Structure	ESI-MS	Retention Time (min)
3479	3CF ₂ CO ₂ H	482.4 (M + H)	4.35
3480	М Н СТ3 СО2 Н	482.4 (M + H)	4.64
3481	CF ₂ CO ₂ H	502.2 (M + H)	4.37
3482	CF ₃ CO ₂ H	458.2 (M + H)	4.08
3483	2CF ₃ CO ₂ H	465.4 (M + H)	3.66
3484	CF ₃ CO ₂ H	404.4 (M + H)	4.03

Example No.	Structure	ESI-MS	Retention Time (min)
3485	CF ₃ CO ₂ H	469.4 (M + H)	4.23
3486	P H N S S S S S S S S S S S S S S S S S S	447.4 (M+H)	3,94
3487	NN H H NN	456.2 (M + H)	4.07
3488	CF ₃ CO ₂ H	432.4 (M + H)	3.99
3489	N N N N N N N N N N N N N N N N N N N	441.3 (M+H)	1.70
3490	HO H N N H CF ₃ CO ₂ H	440.2 (M+H)	4.57

Example No.	Structure	ESI-MS	Retention Time (min)
3491	N H N N N N N N N N N N N N N N N N N N	393.4 (M + H)	4.01
3492	2CF ₂ CO ₂ H	497.4 (M + H)	4.45
3493	CF ₃ CO ₂ H	470.2 (M + H)	2.40
3494	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	439.4 (M + H)	1.92
3495	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	407.4 (M+H)	2.30
3496	CI NH2 H 2CF3CO2H	469.5 (M + H)	2.27

Example No.	Structure	ESI-MS	Retention Time (min)
3497	N N N N N N N N N N N N N N N N N N N	439.4 (M + H)	1.93
3498	N H H OH 2CF3CO2H	407.4 (M + H)	1.62
3499	CF ₂ CO ₂ H	416.3 (M + H)	2.34
3500	CF ₃ CO ₂ H	460.4 (M + H)	2.46
3501	$\bigcap_{N}\bigcap_{N}\bigcap_{N}\bigcap_{NO_{2}}\bigcap_{NO_{2}}$ $CF_{3}CO_{3}H$	465.4 (M + H)	4.13
3502	1 H ₂ N H ₂	419.4 (M+H)	3.87

Example No.	Structure	ESI-MS	Retention Time (min)
3503	CF ₂ CO ₂ H	450.4 (M + H)	3.97
3504	CF ₃ CO ₃ H	406.2 (M+H)	2.18
3505	CF ₃ CO ₃ H	470.4 (M + H)	4.74
3506	CF ₅ CO ₂ H	466.4 (M + H)	3.83
3507	N H N H N H N H N H N H N H N H N H N H	441.2 (M + H)	4.38
3508	2CF ₅ CO ₅ H	441.2 (M + H)	3.62

Example No.	Structure	ESI-MS	Retention Time (min)
3509	CF ₃ CO ₂ H	454.5 (M+H)	2.44
3510	N H O O O O O O O O O O O O O O O O O O	384.4 (M+H)	3.67
3511	N N N N N N N N N N N N N N N N N N N	502.2 (M + H)	4.37
3512	CF ₃ CO ₂ H	480.5 (M + H)	2.18
3513	CF ₃ CO ₂ H	380.2 (M+H)	3.81
3514	N H S N T S	463.2 (M+H)	4.23

Example No.	Structure	ESI-MS	Retention Time (min)
3515	N N N N N N N N N N N N N N N N N N N	443.4 (M+H)	2.12
3516	N H HN S CF3CO2H	431.1 (M+H)	1.90
3517	CF ₃ CO ₂ H	474.4 (M + H)	5.05
3518	N H N F F CF3CO ₂ H	440.5 (M+H)	2.33
3519	N N H O O O O O O O O O O O O O O O O O	464.5 (M + H)	2.20
3520	N H N N N N N 2CF ₃ CO ₂ H	391.1 (M+H)	1.59

Example No.	Structure	ESI-MS	Retention Time (min)
3521	CF ₂ CO ₂ H	474.4 (M + H)	4.53
3522	CF ₃ CO ₃ H	542.2 (M + H)	2.26
3523	N H HN O	429.3 (M + H)	2.41
3524	CF ₃ CO ₂ H	494.6 (M + H)	2.59
3525	CF ₃ CO ₃ H	518.5 (M+H)	2.96
3526	CF ₅ CO ₂ H	420.4 (M + H)	2.19

Example No.	Structure	ESI-MS	Retention Time (min)
3527	CF ₃ CO ₂ H	420.4 (M+H)	2.19
3528	NH Br PF 2CF ₃ CO ₂ H	552.0 (M+H)	2.45
3529	NH N	564.2 (M + H)	· 2.48
3530	NH NH PF F	606.0 (M + H)	2.86
3531	NH NH NH PF FF	586.2 (M + H)	3.20
3532	NH NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	614.4 (M + H)	2.76

Example No.	Structure	ESI-MS	Retention Time (min)
3533	CI NH Br	620.0 (M + H)	2.68
3534	NH NH NH FF	616.0 (M + H)	2.56
3535	F F Br	566.0 (M + H)	2.54
3536	N H O F F CF5CO3H	532.2 (M + H)	3.35
3537	2CF3CO3H	541.4 (M + H)	3.11
3538	CF ₂ CO ₂ H	505.2 (M+H)	2.98

Example No.	Structure	ESI-MS	Retention Time (min)
3539	CF ₂ CO ₂ H	556 (M+H)	3.37
3540	CF ₅ CO ₂ H	516.4 (M + H)	3.39
3541	CF ₅ CO ₅ H	504.4 (M + H)	3.61
3542	CF ₃ CO ₂ H	574.4 (M + H)	4.27
3543	CF ₅ CO ₂ H	508.2 (M+H)	3.17
3544	CF,CO,H	644.2 (M + H)	3.63

Example No.	Structure	ESI-MS	Retention Time (min)
3545	CF ₂ CO ₂ H	520.4 (M+H)	3.56
3546	The second secon	504.2 (M+H)	3,25
3547	2CF ₂ CO ₂ H	513.4 (M+H)	2.86
3548	CF ₅ CO ₅ H	616.2 (M+H)	3.73
3549	2CF ₂ CO ₂ H	450.4 (M+H)	2.79
3550	CF ₃ CO ₂ H	466.2 (M+H)	3.35

Example No.	Structure	ESI-MS	Retention Time (min)
3551	2CF ₂ CO ₂ H	465.2 (M+H)	3.34
3552	CF3CO3H	451.2 (M + H)	3.83
3553	CF ₅ CO ₂ H	451.2 (M + H)	4.10
3554	CF ₃ CO ₃ H	563.2 (M+H)	4.33
3555	2CF3CO2H	468.4 (M + H)	3.66
3556	2CF ₅ CO ₂ H	467.4 (M+H)	2.85

Example No.	Structure	ESI-MS	Retention Time (min)
3557	CF ₂ CO ₂ H	515.4 (M+H)	3.52
3558	СБ,СО2H	485.2 (M + H)	3.40
3559	2CF ₂ CO ₂ H	467.4 (M + H)	3.90
3560	CF ₃ CO ₂ H	473.4 (M + H)	4.17
3561	CE-CO-H	467.4 (M + H)	3.57
3562	CF ₂ CO ₂ H	490.2 (M + H)	4.00

Example No.	Structure	ESI-MS	Retention Time (min)
3563	CF ₂ CO ₂ H	490.2 (M+H)	3.99
3564	2CF ₂ CO ₂ H	476.2 (M+H)	3.76
3565	CF ₂ CO ₂ H	467.2 (M+H)	4.07
3566	CF ₃ CO ₂ H	528.2 (M+H)	4.53
3567	CF,CO,H	464.2 (M+H)	4.11
3568	CF ₂ CO ₂ H	494.0 (M+H)	3.43

Example No.	Structure	ESI-MS	Retention Time (min)
3569	CF ₂ CO ₂ H	444.0 (M + H)	3.03
3570	CF ₃ CO ₂ H	552.0 (M+H)	3.30
3571	N N N P F F CF ₃ CO ₂ H	510.0 (M + H)	3.37
3572	N F F F F F F F F F F F F F F F F F F F	562.0 (M + H)	3.66
3573	CF ₃ CO ₃ H	622.0 (M+H)	3.61
3574	CF ₂ CO ₂ H	588.0 (M + H)	3.59

Example No.	Structure	ESI-MS	Retention Time (min)
3575	N F F F F CF3CO3H	510.0 (M+H)	3.31
3576	CF ₃ CO ₂ H	562.0 (M + H)	3.61
3577	CF ₃ CO ₂ H	510.0 (M + H)	3.35
3578	CF ₃ CO ₃ H	597.0 (M+H)	3.55
3579	CF ₃ CO ₂ H	665.0 (M + H)	4.02

Assay Procedures

Compounds identified and disclosed throughout this patent document were assayed according to the protocols found in co-pending patent application having U.S. Serial Number 09/826.509, which is incorporated herein by reference.

Example 3580

Preparation of Endogenous MCH Receptor.

The endogenous human MCH receptor was obtained by PCR using genomic DNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and 0.2 mM of each 4 nucleotides. The cycle condition was 30 cycles of 94°C for 1 min, 56°C for 1 min and 72 °C for 1 min and 20 sec. The 5' PCR primer contained a HindIII site with the sequence:

5°-GTGAAGCTTGCCTCTGGTGCCTGCAGGAGG-3°(SEQ.ID.NO.:1)

and the 3' primer contained an EcoRI site with the sequence:

5'-GCAGAATTCCCGGTGGCGTGTTGTGGTGCCC-3' (SEQ.ID.NO.:2).

The 1.3 kb PCR fragment was digested with HindIII and EcoRI and cloned into HindIII-EcoRI site of CMVp expression vector. Later the cloning work by Lakaye et al showed that there is an intron the coding rgion of the gene. Thus the 5' end of the cDNA was obtained by 5' RACE PCR using Clontech's marathon-ready hypothalamus cDNA as template and the manufacturer's recommended protocol for cycling condition. The 5' RACE PCR for the first and second round PCR were as follows:

5'-CATGAGCTGGTGGATCATGAAGGG-3' (SEQ.ID.NO.:3) and

5'-ATGAAGGGCATGCCCAGGAGAAAG-3' (SEO.ID.NO.:4).

Nucleic acid and amino acid sequences were thereafter determined and verified with the published sequences found on GenBank having Accession Number U71092.

Example 3581

Preparation of Non-Endogenous, Constitutively Active MCH Receptor.

Preparation of a non-endogenous version of the human MCH receptor was accomplished by creating a MCH-IC3-SST2 mutation (see; SEQ.ID.NO..7 for nucleic acid sequence, and SEQ.ID.NO..8 for amino acid sequence). Blast result showed that MCH receptor had the highest sequence homology to known SST2 receptor. Thus the third intracellular loop ("IC3") of MCH receptor was replaced with that of the IC3 of SST2.

receptor to see if the chimera would show constitutive activity.

The BamHI-BstEII fragment containing IC3 of MCH receptor was replaced with synthetic oligonucleotides that contained the IC3 of SST2. The PCR sense mutagenesis primer used had the following sequence:

5'-GATCCTGCAGAAGGTGAAGTCCTCTGGAATCCGAGTGGGCTCCTCTAAGAG GAAGAAGTCTGAGAAGAAG-3' (SEQ.ID.NO.:9)

and the antisense primer had the following sequence:

5'-GTGACCTTCTTCTCAGACTTCTTCCTCTTAGAGGAGCCCACTCGGATTCCAG AGGACTTCACCTTCTGCAG-3' (SEQ.ID.NO.:10).

The endogenous MCH receptor cDNA was used as a template.

Example 3582

GPCR Fusion Protein Preparation.

MCH Receptor- $Gi\alpha$ Fusion Protein construct was made as follows: primers were designed for endogenous MCH receptor was as follows:

5'-GTGAAGCTTGCCCGGGCAGGATGGACCTGG-3' (SEQ.ID.NO.:11; sense)

5'-ATCTAGAGGTGCCTTTGCTTTCTG-3' (SEQ.ID.NO.:12; anitsense).

The sense and anti-sense primers included the restriction sites for KB4 and XbaI, respectively.

PCR was utilized to secure the respective receptor sequences for fusion within the Giα universal vector disclosed above, using the following protocol for each: 100ng cDNA for MCH receptor was added to separate tubes containing 2ul of each primer (sense and anti-sense), 3uL of 10mM dNTPs, 10uL of 10xTaqPlus™ Precision buffer, 1uL of TaqPlus™ Precision polymerase (Stratagene: #600211), and 80uL of water. Reaction temperatures and cycle times for MCH receptor were as follows: the initial denaturing step was done it 94°C for five minutes, and a cycle of 94°C for 30 seconds; 55°C for 30 seconds; 72°C for two minutes. A final extension time was done at 72°C for ten minutes. PCR product for was run on a 1% agarose gel and then purified (data not shown). The purified product was digested with KB4 and XbaI (New England Biolabs) and the desired inserts will be isolated, purified and ligated into the Gi universal vector at the respective restriction site. The positive clones was isolated following transformation and determined by restriction enzyme digest; expression using 293 cells was accomplished

following the protocol set forth *infra*. Each positive clone for MCH receptor: Gi-Fusion Protein was sequenced and made available for the direct identification of candidate compounds. (See, SEQ.ID.NO.:13 for nucleic acid sequence and SEQ.ID.NO.:14 for amino acid sequence).

Endogenous version of MCH receptor was fused upstream from the G protein Gi and is located at nucleotide 1 through 1,059 (see, SEE.ID.NO.:13) and amino acid residue 1 through 353 (see, SEQ.ID.NO.:14). With respect to the MCH receptor, 2 amino acid residues (an equivalent of 6 nucleotides) were placed in between the endogenous (or non-endogenous) GPCR and the start codon for the G protein Gio. Therefore, the Gi protein is located at nucleotide 1,066 through 2,133 (see, SEQ.ID.NO.:13) and at amino acid residue 356 through 711 (see, SEQ.ID.NO.:14). Those skilled in the art are credited with the ability to select techniques for constructing a GPCR Fusion Protein where the G protein is fused to the 3' end of the GPCR of interest.

Example 3583

ASSAY FOR DETERMINATION OF CONSTITUTIVE ACTIVITY OF NON-ENDOGENOUS GPCRS

A. Intracellular IP3 Accumulation Assay

On day 1, cells comprising the receptors (endogenous and/or non-endogenous) can be plated onto 24 well plates, usually 1×10^5 cells/well (although his umber can be optimized. On day 2 cells can be transfected by firstly mixing 0.25ug DNA in 50 ul serum free DMEM/well and 2 ul lipofectamine in 50 µl serum-free DMEM/well. The solutions are gently mixed and incubated for 15-30 min at room temperature. Cells are washed with 0.5 ml PBS and 400 µl of serum free media is mixed with the transfection media and added to the cells. The cells are then incubated for 3-4 hrs at 37°C/5%CO₂ and then the transfection media is removed and replaced with 1ml/well of regular growth media. On day 3 the cells are labeled with 3 H-myo-inositol. Briefly, the media is removed and the cells are washed with 0.5 ml PBS. Then 0.5 ml inositol-free/serum free media (GIBCO BRL) is added/well with 0.25 µCi of 3 H-myo-inositol/ well and the cells are incubated for 16-18 hrs o/n at 37°C/5%CO₂. On Day 4 the cells are washed with 0.5 ml PBS and 0.45 ml of assay medium is added containing inositol-free/serum free media 10µM pargyline 10 mM lithium chloride or 0.4 ml of assay medium and 50 ul of 10x

ketanserin (ket) to final concentration of 10μM. The cells are then incubated for 30 min at 37°C. The cells are then washed with 0.5 ml PBS and 200 ul of fresh/ice cold stop solution (1M KOH; 18 mM Na-borate; 3.8 mM EDTA) is added/well. The solution is kept on ice for 5-10 min or until cells were lysed and then neutralized by 200 μl of fresh/ice cold neutralization sol. (7.5 % HCL). The lysate is then transferred into 1.5 ml eppendorf tubes and 1 ml of chloroform/methanol (1:2) is added/tube. The solution is vortexed for 15 sec and the upper phase is applied to a Biorad AG1-X8TM anion exchange resin (100-200 mesh). Firstly, the resin is washed with water at 1:1.25 W/V and 0.9 ml of upper phase is loaded onto the column. The column is washed with 10 mls of 5 mM myo-inositol and 10 ml of 5 mM Na-borate/60mM Na-formate. The inositol tris phosphates are eluted into scintillation vials containing 10 ml of scintillation cocktail with 2 ml of 0.1 M formic acid/ 1 M ammonium formate. The columns are regenerated by washing with 10 ml of 0.1 M formic acid/3M ammonium formate and rinsed twice with H₂O and stored at 4°C in water.

Reference is made to Figure 1. Figure 1 provides an illustration of IP₃ production from several non-endogenous, constitutively activated version of MCH receptor as compared with the endogenous version of this receptor. When compared to the endogenous version of MCH receptor ("MCH-R wt"), MCH-IC3-SST2 evidenced about a 27% increase in IP₃ accumulation.

Example 3584

Determination of Compound Using [35S]GTPyS ASSAY

Direct identification of candidate compounds was initially screened using [35S]GTPγS Assay (see, Example 6 of co-pending patent application 09/826,509). Preferably, an MCH receptor: Gi Fusion Protein was utilized, according to Example 6(2) of co-pending patent application 09/826,509. Several lead hits were identified utilizing [35S]GTPγS Assay.

Example 3585

High Throughput Functional Screening: FLIPR™

Subsequently, a functional based assay was used to confirm the lead hits, referred to as FLIPR™ (the Fluorometric Imaging Plate Reader) and FDSS6000™ (Functional

Drug Screening System). This assay utilized a non-endogenous version of the MCH receptor, which was created by swapping the third intracellular loop of the MCH receptor with that of the SST2 receptor (see Example 2(B)(2) of patent application serial number 09/826,509).

The FLIPR and FDSS assays are able to detect intracellular Ca²+ concentration in cells, which can be utilized to assess receptor activation and determine whether a candidate compound is an, for example, antagonist, inverse agonist or agonist to a Gq-coupled receptor. The concentration of free Ca²+ in the cytosol of any cell is extremely low, whereas its concentration in the extracellular fluid and endoplasmic reticulum (ER) is very high. Thus, there is a large gradient tending to drive Ca²+ into the cytosol across both the plasma membrane and ER. The FLIPR™ and FDSS6000™ systems (Molecular Devices Corporation, HAMAMATSU Photonics K.K.) are designed to perform functional cell-based assays, such as the measurement of intracellular calcium for high-throughput screening. The measurement of fluorescent is associated with calcium release upon activation of the Gq-coupled receptors. Gi or Go coupled receptors are not as easily monitored through the FLIPR™ and FDSS6000™ systems because these G proteins do not couple with calcium signal pathways.

To confirm the lead hits identified using the [35]GTPγS assay, Fluorometric Imaging Plate Reader system was used to allow for rapid, kinetic measurements of intracellular fluorescence in 96 well microplates (or 384 well microplates). Simultaneous measurements of fluorescence in all wells can be made by FLIPR or FDSS6000[™] every second with high sensitivity and precision. These systems are ideal for measuring cell-based functional assays such as monitoring the intracellular calcium fluxes that occur within seconds after activation of the Gq coupled receptor.

Briefly, the cells are seeded into 96 well at 5.5x10⁴ cells/well with complete culture media (Dulbecco's Modified Eagle Medium with 10 % fetal bovine serum, 2 mM L-glutamine, 1 mM sodium pyruvate and 0.5 mg/ml G418, pH 7.4) for the assay next day. On the day of assay, the media is removed and the cells are incubated with 100 µl of loading buffer (4 µM Fluo4-AM in complete culture media containing 2.5 mM Probenicid, 0.5 mg/ml and 0.2% bovine serum albumin) in 5% CO₂ incubator at 37°C for 1 hr. The loading buffer is removed, and the cells are washed with wash buffer (Hank's Balanced Salt Solution containing 2.5 mM Probenicid, 20 mM HEPES, 0.5 mg/ml and 0.2% bovine

serum albumin, pH 7.4)). One hundred fifty µl of wash buffer containing various concentrations of test compound are added to the cells, and the cells are incubated in 5% CO₂ incubator at 37°C for 30 min. Fifty µl of wash buffer containing various concentration of MCH are added to each well, and transient changes in [Ca²⁺]i evoked by MCH are monitored using the FLIPR or FDSS in 96 well plates at Ex. 488 nm and Em. 530 nm for 290 second. When antagonist activity of compound is tested, 50 nM of MCH is used.

Use of FLIPR $^{\text{TM}}$ and FDSS6000 $^{\text{TM}}$ can be accomplished by following manufacturer's instruction (Molecular Device Corporation and HAMAMATSU Photonics K.K.).

The results were shpwn below.

Compound No.	IC ₅₀ value (nM)		
Example 41	6		
Example 42	19		

It is intended that each of the patents, applications, printed publications, and other published documents mentioned or referred to in this specification be herein incorporated by reference in their entirety.

Those skilled in the art will appreciate that numerous changes and modifications may be made to the preferred embodiments of the invention and that such changes and modifications may be made without departing from the spirit of the invention. It is therefore intended that the appended claims cover all such equivalent variations as fall within the true spirit and scope of the invention.

What is claimed is:

1. A compound of Formula I:

$$Q_{L}Y_{R_{1}}$$

wherein Q is

R₁ represents

- (i) C1-C16 alkyl,
- C1-C16 alkyl substituted by substituent(s) independently selected from
- ·halogen,
- •hydroxy,
- ·oxo.
- •C1-C3 alkoxy,
- •C1-C3 alkoxy substituted by substituent(s) independently selected from
- ··carbocyclic aryl,
- ..heterocyclyl,
- . heterocyclyl substituted by C1-C3 alkyl,
- •C1-C3 alkylcarbonyloxy.
- ·carbocyclyloxy,
- ·carbocyclic aryloxy,
- •carbocyclic aryloxy substituted by substituent(s) independently selected from
- ··halogen,
- ••nitro,
- ··carbocyclic aryl,
- . carbocyclic aryl substituted by C1-C3 alkoxy,

```
••C<sub>1</sub>-C<sub>4</sub> alkyl,
```

••C1-C4 alkyl substituted by substituent(s) independently selected from

•••oxo.

- •••mono- or di-C1-C3 alkylamino,
- ***mono- or di-C1-C3 alkylamino substituted by carbocyclic aryl,
- ***mono- or di-C1-C3 alkylamino substituted by halogenated carbocyclic aryl,
- · · · carbocyclic arylcarbonylamino,
- · · · halogenated carbocyclic arylcarbonylamino,
- heterocyclyloxy,
- ·heterocyclyloxy substituted by C1-C3 alkyl,
- substituted heterocyclyl-ethylideneaminooxy,
- C₁-C₃ alkoxycarbonyl,
- •C1-C3 alkoxycarbonyl substituted by carbocyclic aryl,
- *mono- or di-C1-C3 alkylaminocarbonyl,
- ·mono- or di-C1-C3 alkylamino,
- mono- or di-C₁-C₃ alkylamino substituted by substituent(s) independently selected from
 cyano,
- · carbocyclic aryl.
- ..heterocyclyl,
- ·mono- or di-carbocyclic arylamino,
- •mono- or di-carbocyclic arylamino substituted by substituent(s) independently selected from
- ··hydroxy,
- ••C₁-C₃ alkyl,
- •C1-C3 alkylcalbonylamino,
- •C1-C3 alkylcalbonylamino substituted by substituent(s) independently selected from
- ••C₁-C₃ alkylcalbonylamino,
- ··carbocyclic arylcalbonylamino,
- ··heterocyclyl,
- C₁-C₄ alkoxycalbonylamino,
- ·heterocyclyl calbonylamino,
- ·carbocyclic arylsulfonylamino,

·carbocyclic arylsulfonylamino substituted by substituent(s) independently selected from

- ••nitro,
- ••C1-C3 alkvl.
- ••mono- or di-C1-C3 alkylamino,
- •C1-C3 alkylthio,
- •C1-C3 alkylthio substituted by substituent(s) independently selected from
- ..mono- or di-carbocyclic arylaminocarbonyl,
- . halogenated mono- or di-carbocyclic arylaminocarbonyl,
- ..mono- or di-carbocyclic arylamino,
- ··halogenated mono- or di-carbocyclic arylamino,
- · carbocyclic aryl,
- ..carbocyclic aryl substituted by substituent(s) independently selected from
- · · · halogen,
- · · · C₁-C₃ alkoxy,
- ·carbocyclic arylthio,
- ·carbocyclic arylthio substituted by substituent(s) independently selected from
- ··halogen,
- ••C1-C3 alkyl.
- ·carbocyclic arylsulfonyl,
- ·halogenated carbocyclic arylsulfonyl,
- ·heterocyclylthio,
- •heterocyclylthio substituted by substituent(s) independently selected from
- ••nitro.
- ••C1-C3 alkyl.
- C₃-C₆ cycloalkyl,
- *C₃-C₆ cycloalkyl substituted by C₁-C₃ alkyl,
- C₃-C₆ cycloalkenyl,
- ·carbocyclyl,
- *carbocyclyl substituted by substituent(s) independently selected from
- ••halogen,
- ••C₁-C₃ alkyl,
- ••C1-C3 alkoxy.

```
••C2-C3 alkenyl,
```

- ••C2-C3 alkenyl substituted by carbocyclic aryl,
- ••C2-C3 alkenyl substituted by carbocyclic aryl substituted C1-C3 alkylsulfinyl,
- ·carbocyclic aryl,
- *carbocyclic aryl substituted by substituent(s) independently selected from
- ••halogen,
- ••hydroxy,
- ••nitro.
- ••C1-C4 alkyl.
- ••C1-C4 alkyl substituted by substituent(s) independently selected from
- ...halogen,
- ...hydroxy,
- ···oxo,
- ...carbocyclic aryl,
- · · · heterocyclyl,
- •••mono- or di-carbocyclic arylamino,
- •••mono- or di-carbocyclic arylamino substituted by substituent(s) independently selected from
- · · · · halogen,
- ····nitro,
- ····C₁-C₃ alkyl,
- · · · · C₁-C₃ alkoxy,
- · · · · halogenated C1-C3 alkoxy,
- ••C1-C4 alkoxy,
- ••C1-C4 alkoxy substituted by substituent(s) independently selected from
- •••halogen,
- · · · carbocyclic aryl,
- ··carbocyclic aryloxy,
- ••C₁-C₃ alkoxycarbonyl,
- ••C1-C3 alkylcarbonyloxy,
- mono- or di-C1-C3 alkylamino,
- ..mono- or di-carbocyclic arylamino.

- .. halogenated mono- or di-carbocyclic arylamino,
- **mono- or di-carbocyclic arylaminocarbonyl,
- mono- or di-carbocyclic arylaminocarbonyl substituted by substituent(s) independently selected from
- · · · halogen,
- •••nitro.
- · · · C₁-C₃ alkyl,
- · · · C₁-C₃ alkoxy,
- •••halogenated C1-C3 alkoxy,
- ••mercapto,
- ••C1-C3 alkylthio,
- .. halogenated C1-C3 alkylthio,
- ••C1-C3 alkylsulfonyl,
- ••C3-C6 cycloalkyl,
- ··carbocyclic aryl,
- ··heterocyclyl,
- heterocyclyl,
- •heterocyclyl substituted by substituent(s) independently selected from
- ..hydroxy,
- ••C1-C3 alkyl.
- ••C1-C3 alkyl substituted by carbocyclic aryl,
- ••C1-C3 alkoxy,
- ••C1-C3 alkoxy substituted by carbocyclic aryl,
- ··carbocyclic aryl,
- ··halogenated carbocyclic aryl,
- (ii) C2-C8 alkenyl,
- C_2 - C_8 alkenyl substituted by substituent(s) independently selected from
- ·halogen,
- •oxo,
- •C1-C2 alkoxy,
- •C1-C3 alkoxy substituted by carbocyclic arvl.
- ·carbocyclic aryl,

·carbocyclic aryl substituted by substituent(s) independently selected from

- ··halogen,
- ..hydroxy,
- ..nitro.
- ••C1-C3 alkyl.
- . halogenated C1-C3 alkyl,
- .. C1-C3 alkoxy,
- . halogenated C1-C3 alkoxy,
- ·heterocyclyl,
- ·heterocyclyl substituted by substituent(s) independently selected from
- ••hydroxy,
- ••nitro,
- ••C1-C3 alkyl,
- ••C1-C3 alkoxy,
- (iii) C2-C4 alkynyl,
- C2-C4 alkynyl substituted by carbocyclic aryl,
- (iv) C3-C6 cycloalkyl,
- C3-C6 cycloalkyl substituted by substituent(s) independently selected from
- •C1-C3 alkyl,
- •C1-C1 alkyl substituted by substituent(s) independently selected from
- ..hydroxy,
- ••oxo,
- ··carbocyclic aryl.
- •mono- or di-C1-C3 alkylamino,
- •mono- or di-C1-C3 alkylamino substituted by carbocyclic aryl,
- ·carbocyclic arylcarbonylamino,
- ·carbocyclic aryl,
- (v) C3-C6 cycloalkeyl,
- C3-C6 cycloalkeyl substituted by C1-C3 alkyl,
- (vi) carbocyclyl,
- carbocyclyl substituted by substituent(s) independently selected from
- hydroxy,

```
·nitro.
(vii) carbocyclic aryl,
carbocyclic aryl substituted by substituent(s) independently selected from
·halogen,

    hydroxy,

·cyano,
·nitro,
·C<sub>1</sub>-C<sub>9</sub> alkyl,
•C1-Co alkyl substituted by substituent(s) independently selected from
••halogen,
..hydroxy,
..oxo.
••C1-C3 alkoxy,
··carbocyclic aryloxy,
**mono- or di-C1-C3 alkylamino-N-oxy,
. mono- or di-C1-C3 alkylamino,
••mono- or di-C1-C3 alkylamino substituted by carbocyclic aryl,
..mono- or di-carbocyclic arylamino,
··carbocyclylimino,
..carbocyclylimino substituted by carbocyclic arvl.
**mono- or di-carbocyclic arylamino,

    mono- or di-carbocyclic arylamino substituted by C<sub>1</sub>-C<sub>3</sub> alkoxy,

..mono- or di-carbocyclic arylaminocarbonyl,
••mono- or di-carbocyclic arylaminocarbonyl substituted by C1-C3 alkoxy,
··carbocyclic aryl.
..carbocyclic aryl substituted by substituent(s) independently selected from
· · · halogen,
· · · C<sub>1</sub>-C<sub>3</sub> alkyl,
•••halogenated C1-C3 alkyl,
··heterocyclyl,
. heterocyclyl substituted by C1-C3 alkyl,
```

1058

·C2-C3 alkenyl,

```
•C2-C3 alkenyl substituted by carbocyclic aryl,
```

- •C1-C9 alkoxy,
- •C1-C9 alkoxy substituted by substituent(s) independently selected from
- ••hydroxy,
- ··halogen,
- ..carboxy,
- ..mono- or di-C1-C3 alkylamino,
- ..carbocyclic aryl,
- ..halogenated carbocyclic aryl,
- ··heterocyclyl,
- ..heterocyclyl substituted by substituent(s) independently selected from
- •••halogen,
- · · · heterocyclyl,
- •••heterocyclyl substituted by substituent(s) independently selected from
- · · · · halogen,
- ·····C₁-C₃ alkyl,
- ••••halogenated C1-C3 alkyl,
- •C2-C3 alkenyloxy,
- C₁-C₃ alkylcarbonyloxy,
- ·carbocyclic aryloxy,
- ·carbocyclic aryloxy substituted by substituent(s) independently selected from
- ••halogen,
- ..nitro,
- ••C1-C4 alkyl,
- ••halogenated C1-C4 alkyl,
- ••C₁-C₃ alkoxy,
- ·heterocyclyloxy,
- •heterocyclyloxy substituted by substituent(s) independently selected from
- ··halogen.
- ••C1-C3 alkyl,
- .. halogenated C1-C3 alkyl,
- ·(carbocyclic aryl)S(O)2O,

```
·carboxy,
```

- •C1-C3 alkoxycarbonyl,
- ·mono- or di-C1-C3 alkylaminocarbonyl,
- •mono- or di-C1-C3 alkylaminocarbonyl substituted by carbocyclic aryl,
- ·mono- or di-carbocyclic arylaminocarbonyl,
- mono- or di-carbocyclic arylaminocarbonyl substituted by C₁-C₃ alkyl,
- ·amino,
- •mono- or di-C1-C4 alkylamino,
- •mono- or di-C1-C4 alkylamino substituted by cyano,
- *mono- or di-carbocyclic arylamino,
- •C1-C3 alkynylcarbonylamino,
- C₁-C₃ alkynylcarbonylamino substituted by carbocyclic aryl,
- ·carbocyclic arylsulfonylamino,
- *carbocyclic arylsulfonylamino substituted by C1-C3 alkyl,
- ·(carbocyclic aryl)NHC(O)NH.
- •(carbocyclic aryl)NHC(O)NH substituted by C1-C3 alkoxy,
- •(carbocyclic aryl)NHC(O)NH substituted by haloganated C1-C3 alkoxy,
- carbocyclic aryl diazo,
- carbocyclic aryl diazo substituted by mono- or di- C₁-C₃ alkylamino,
- •C1-C3 alkylthio,
- halogenated C₁-C₃ alkylthio,
- ·carbocyclic arylthio,
- •carbocyclic arylthio substituted by substituent(s) independently selected from
- ••halogen,
- ··cyano.
- ••C₁-C₃ alkyl,
- ·heterocyclylthio,
- •C1-C3 alkylsulfonyl,
- •mono- or di-C1-C3 alkylaminosulfonyl.
- carbocyclic aryl,
- ·carbocyclic aryl substituted by substituent(s) independently selected from
- ••C1-C7 alkyl,

```
.. halogenated C1-C7 alkyl,
```

- ·heterocyclyl,
- ·heterocyclyl substituted by substituent(s) independently selected from
- ••C1-C3 alkyl.
- ··carbocyclic arvl.
- .. halogenated carbocyclic arvl.
- (viii) heterocyclyl,
- or heterocyclyl substituted by substituent(s) independently selected from
- ·halogen,
- ·hydroxy,
- ·cyano,
- nitro.
- •C1-C4 alkvl.
- *C1-C4 alkyl substituted by substituent(s) independently selected from
- ··halogen,
- ..hydroxy,
- ••oxo.
- ••C1-C3 alkylcarbonyloxy,
- ··carbocyclic arylcarbonylamino,
- .. halogenated carbocyclic arylcarbonylamino,
- ••C1-C3 alkoxycarbonyl,
- ••C1-C3 alkylthio,
- **C1-C3 alkylthio substituted by carbocyclic aryl,
- ••C1-C3 alkylthio substituted by halogenated carbocyclic aryl,
- ··carbocyclic aryl,
- ..carbocyclic aryl substituted by substituent(s) independently selected from
- · · · halogen,
- · · · nitro,
- ··heterocyclyl,
- . heterocyclyl substituted by substituent(s) independently selected from
- · · · halogen,
- ···C₁-C₃ alkyl,

```
•••halogenated C1-C3 alkyl,
```

- •C1-C3 alkoxy,
- *C1-C3 alkoxy substituted by carbocyclic aryl,
- ·carbocyclic aryloxy,
- earbocyclic aryloxy substituted by substituent(s) independently selected from
- ••halogen,
- ••C1-C3 alkyl,
- ·mono- or di-C1-C3 alkylamino,
- •C1-C4 alkylcarbonylamino,
- •C₁-C₃ alkylthio,
- •C1-C3 alkenylthio,
- ·carbocyclic arylthio,
- ·halogenated carbocyclic arylthio,
- carbocyclic arylthio substituted by C₁-C₃ alkoxycarbonyl,
- ·heterocyclylthio,
- •heterocyclylthio substituted by C1-C3 alkyl,
- •C1-C3 alkylsulfonyl,
- ·carbocyclic arylsulfonyl,
- ·halogenated carbocyclic arylsulfonyl,
- carbocyclic arylsulfonyl substituted by C₁-C₄ alkyl,
- C₁-C₃ alkoxycarbonyl,
- ·carbocyclic aryl,
- *carbocyclic aryl substituted by substituent(s) independently selected from
- ··halogen,
- ··nitro.
- ••C1-C3 alkyl,
- . halogenated C1-C3 alkvl.
- ••C1-C3 alkoxy,
- .. halogenated C1-C3 alkoxy,
- ·heterocyclyl,
- •heterocyclyl substituted by substituent(s) independently selected from
- ··halogen,

- ••C1-C3 alkyl,
- . halogenated C1-C3 alkyl,
- ••C₁-C₃ alkoxy,
- ••C1-C3 alkoxycarbonyl;

 R_2 is -NHNH2, -NHNHBoc, -N(R_{2a})(R_{2b}), morpholino, 4-acetyl-piperazyl, or 4-phenyl-piperazyl;

wherein R2a is H or C1-C3 alkyl;

 R_{2b} is C_1 - C_4 alkyl, C_1 - C_4 alkyl substituted by substituent(s) independently selected from hydroxy,

- •C1-C3 alkoxy,
- ·amino.
- ·-NHBoc,
- •C3-C6 cycloalkyl,
- ·carbocyclic aryl.
- ·carbocyclic aryl substituted by substituent(s) independently selected from
- ..halogen,
- ••C1-C3 alkyl,
- ••C₁-C₃ alkoxy,
- ..-SO2NH2,
- ·heterocyclyl,

C₁-C₆ cycloalkyl, carbocyclic aryl, carbocyclic aryl substituted by substituent(s)

independently selected from

- ·halogen,
- •C1-C3 alkyl,
- •C1-C3 alkoxy,
- or a group of Formula IV;

substituted by substituent(s) independently selected from

- ·carbocyclic aryl,
- ·halogenated carbocyclic aryl,
- *carbocyclic aryl substituted by C1-C3 alkoxy;

L is selected from Formula V - XIX;

wherein R4 is H or C1-C3 alkyl;

 R_3 is H, C_1 - C_3 alkyl, or C_1 - C_3 alkyl substituted by a substituted carbocyclic aryl; Y is $-S(O)_2$ -, -C(O)-, or $-(CH_2)_m$;

m is 0 or 1;

wherein carbocyclic aryl is phenyl, naphthyl, anthranyl, biphenyl, or phenanthryl; carbocyclyl is 10,11-dihydro-5-oxo-dibenzo[a,d]cycloheptyl, 1-oxo-indanyl, 7,7-dimethyl-2-oxo-bicyclo[2.2.1]heptyl, 9H-fluorenyl, 9-oxo-fluorenyl, acenaphthyl, anthraquinonyl, C-fluoren-9-ylidene, indanyl, indenyl, 1,2,3,4-tetrahydro-naphthyl, or bicyclo[2.2.1]hepteny;

heterocyclyl is 1,2,3,4-tetrahydro-isoquinolyl, 1,2,3-thiadiazolyl, 1,2,3-triazolyl, 1,2-dihydro-3-oxo-pyrazolyl, 1,3,4-thiadiazolyl, 1,3-dioxo-isoindolyl, 1,3-dioxolanyl, 1H-indolyl, 1H-pyrrolo[2,3-c]pyridyl, 1H-pyrrolyl, 1-oxo-3H-isobenzofuranyl, 2,2',5',2"-terthiophenyl, 2,2'-bithiophenyl, 2,3-dihydro-1-oxo-isoindolyl, 2,3-dihydro-benzo[1,4]dioxinyl, 2,4-dihydro-3-oxo-pyrazolyl, 2H-benzopyranyl, 2-oxo-benzopyranyl, 2-oxo-pyrrolidinyl, 3,4-dihydro-2H-benzo[1,4]dioxepinyl, 4H-benzo[1,3]dioxinyl, 4H-benzopyranyl, 4-oxo-1,5,6,7-tetrahydro-indolyl, 4-oxo-3,4-dihydro-phthalazinyl, 4-oxo-benzopyranyl, 9,10,10-trioxo-thioxanthenyl, 9H-carbazolyl, 9H-xanthenyl, azetidinyl, benzofuryl, 9H-carbazolyl, 9H-xanthenyl, azetidinyl, benzofuryl, benzofuryl, benzothiazolyl, cinnolyl, furyl, imidazo[2,1-b]thiazolyl, imidazolyl, isoxazolyl, morpholino, morpholinyl, oxazolyl, oxolanyl, piperazyl, piperidyl, piridyl, pyrazolo[5,1-b]thiazolyl, thiazolyl, thiolanyl, 2,3-

```
dihydro-benzofuryl, tetrahydro-thienyl, or benzofuranyl;
halogen is fluoro, chloro, bromo, or iodo;
```

or a salt thereof.

- 2. A compound according to claim 1, wherein Q is Fomura II;
- R₁ represents
- (i) C1-C10 alkyl,
- C1-C10 alkyl substituted by substituent(s) independently selected from
- ·halogen,
- oxo,
- •C1-C3 alkoxy.
- •C1-C3 alkoxy substituted by carbocyclic arvl.
- •C1-C3 alkylcarbonyloxy,
- ·carbocyclyloxy,
- ·carbocyclic aryloxy,
- ·carbocyclic aryloxy substituted by substituent(s) independently selected from
- ··halogen,
- ••nitro.
- ··C₁-C₄ alkyl,
- ••C1-C4 alkyl substituted by substituent(s) independently selected from
- •••oxo,
- · · · carbocyclic arylcarbonylamino,
- · · · halogenated carbocyclic arylcarbonylamino,
- ·heterocyclyloxy,
- heterocyclyloxy substituted by C₁-C₃ alkyl,
- ·substituted heterocyclyl-ethylideneaminooxy,
- C₁-C₃ alkoxycarbonyl,
- •C1-C3 alkoxycarbonyl substituted by carbocyclic aryl,
- mono- or di-C₁-C₃ alkylaminocarbonyl,
- ·mono- or di-carbocyclic arylamino,
- ·mono- or di-carbocyclic arylamino substituted by hydroxy,
- •C1-C3 alkylcalbonylamino,

•C1-C3 alkylcalbonylamino substituted by substituent(s) independently selected from

- ••C1-C3 alkylcalbonylamino,
- ··carbocyclic arylcalbonylamino,
- ··heterocyclyl.
- •C1-C4 alkoxycalbonylamino,
- ·heterocyclyl calbonylamino,
- ·carbocyclic arylsulfonylamino,
- ·carbocyclic arylsulfonylamino substituted by substituent(s) independently selected from
- ..nitro.
- ••C₁-C₃ alkyl,
- mono- or di-C1-C3 alkylamino,
- •C1-C3 alkylthio,
- •C1-C3 alkylthio substituted by substituent(s) independently selected from
- ..mono- or di-carbocyclic arylaminocarbonyl,
- ··halogenated mono- or di-carbocyclic arylaminocarbonyl,
- ··carbocyclic aryl,
- ..carbocyclic aryl substituted by substituent(s) independently selected from
- •••halogen,
- · · · C₁-C₃ alkoxy,
- carbocyclic arylthio.
- *carbocyclic arylthio substituted by substituent(s) independently selected from
- ··halogen,
- ••C1-C3 alkyl,
- ·carbocyclic arylsulfonyl,
- ·halogenated carbocyclic arylsulfonyl,
- ·heterocyclylthio,
- ·heterocyclylthio substituted by substituent(s) independently selected from
- ••nitro.
- ••C1-C3 alkyl,
- ·C3-C6 cycloalkyl,
- C₃-C₆ cycloalkyl substituted by C₁-C₃ alkyl,
- ·C3-C6 cycloalkenyl,

```
·carbocyclyl,
```

·carbocyclyl substituted by substituent(s) independently selected from

- ··halogen,
- ••C₁-C₃ alkyl,
- ••C1-C3 alkoxy,
- ••C2-C3 alkenyl,
- ••C2-C3 alkenyl substituted by carbocyclic aryl,
- ••C2-C3 alkenyl substituted by carbocyclic aryl substituted C1-C3 alkylsulfinyl,
- ·carbocyclic aryl,
- *carbocyclic aryl substituted by substituent(s) independently selected from
- ••halogen,
- ••hydroxy,
- ..nitro.
- ··C₁-C₄ alkyl,
- ••C1-C4 alkyl substituted by substituent(s) independently selected from
- ***oxo,
- · · · carbocyclic aryl.
- •••heterocyclyl,
- ••C1-C4 alkoxy,
- ••C1-C4 alkoxy substituted by substituent(s) independently selected from
- · · · halogen,
- · · · carbocyclic aryl,
- ··carbocyclic aryloxy,
- ••C1-C3 alkylcarbonyloxy,
- ··mono- or di-carbocyclic arylamino,
- ··halogenated mono- or di-carbocyclic arylamino,
- **mono- or di-carbocyclic arylaminocarbonyl,
- ••mono- or di-carbocyclic arylaminocarbonyl substituted by substituent(s) independently selected from
- ...halogen,
- ...nitro.
- •••C₁-C₃ alkyl,

```
· · · C<sub>1</sub>-C<sub>3</sub> alkoxy,
```

- •••halogenated C1-C3 alkoxy,
- ··mercapto,
- ••C1-C3 alkylthio,
- . halogenated C1-C3 alkylthio,
- ••C1-C3 alkylsulfonyl,
- ••C3-C6 cycloalkyl,
- ··carbocyclic aryl,
- ··heterocyclyl.
- ·heterocyclyl,
- ·heterocyclyl substituted by substituent(s) independently selected from
- ••hydroxy,
- ••C1-C3 alkyl,
- **C1-C3 alkyl substituted by carbocyclic aryl,
- ••C1-C3 alkoxy,
- ••C1-C3 alkoxy substituted by carbocyclic aryl,
- ··carbocyclic aryl,
- .. halogenated carbocyclic aryl,
- (ii) C2-C6 alkenyl,
- C2-C6 alkenyl substituted by substituent(s) independently selected from
- ·oxo,
- carbocyclic aryl,
- *carbocyclic aryl substituted by substituent(s) independently selected from
- ··halogen,
- ··nitro.
- ••C₁-C₃ alkyl,
- . halogenated C1-C3 alkyl,
- ••C1-C3 alkoxy,
- **halogenated C1-C3 alkoxy,
- ·heterocyclyl,
- ·heterocyclyl substituted by substituent(s) independently selected from
- · hydroxy,

```
.. C1-C3 alkyl,
```

(iii) C3-C6 cycloalkyl,

C3-C6 cycloalkyl substituted by substituent(s) independently selected from

•C1-C3 alkvl.

•C1-C3 alkyl substituted by substituent(s) independently selected from

••oxo,

··carbocyclic aryl,

·carbocyclic arylcarbonylamino,

·carbocyclic aryl,

(iv) carbocyclyl,

carbocyclyl substituted by nitro,

(v) carbocyclic aryl,

carbocyclic aryl substituted by substituent(s) independently selected from

·halogen,

hydroxy,

·cyano,

nitro,

•C1-C9 alkyl,

•C1-C9 alkyl substituted by substituent(s) independently selected from

··halogen.

••oxo,

··carbocyclic aryloxy,

··carbocyclylimino,

..carbocyclylimino substituted by carbocyclic aryl,

..mono- or di-carbocyclic arylaminocarbonyl,

••mono- or di-carbocyclic arylaminocarbonyl substituted by C1-C3 alkoxy,

··carbocyclic aryl,

..carbocyclic aryl substituted by substituent(s) independently selected from

· · · halogen,

· · · C₁-C₃ alkyl,

•••halogenated C1-C3 alkyl,

```
··heterocyclyl,
```

- .. heterocyclyl substituted by C1-C3 alkyl.
- •C1-C7 alkoxy,
- •C1-C7 alkoxy substituted by substituent(s) independently selected from
- ··halogen.
- ··carbocyclic aryl,
- C₁-C₃ alkylcarbonyloxy,
- ·carbocyclic aryloxy,
- carbocyclic aryloxy substituted by C₁-C₃ alkoxy,
- •C1-C3 alkoxycarbonyl.
- *mono- or di-C1-C3 alkylaminocarbonyl,
- •mono- or di-C1-C3 alkylaminocarbonyl substituted by carbocyclic aryl.
- mono- or di-carbocyclic arylaminocarbonyl,
- •mono- or di-carbocyclic arylaminocarbonyl substituted by C1-C3 alkyl,
- ·amino.
- mono- or di-C₁-C₃ alkylamino,
- C₁-C₃ alkynylcarbonylamino,
- •C1-C3 alkynylcarbonylamino substituted by carbocyclic aryl,
- ·carbocyclic arylsulfonylamino,
- carbocyclic arylsulfonylamino substituted by C₁-C₃ alkyl,
- •(carbocyclic aryl)NHC(O)NH,
- (carbocyclic aryl)NHC(O)NH substituted by C₁-C₃ alkoxy,
- •(carbocyclic aryl)NHC(O)NH substituted by haloganated C1-C3 alkoxy,
- C₁-C₃ alkylthio,
 - •halogenated C1-C3 alkylthio,
- ·carbocyclic arylthio,
- ·carbocyclic arylthio substituted by cyano,
- C₁-C₃ alkylsulfonyl,
- •mono- or di-C1-C3 alkylaminosulfonyl,
- carbocyclic aryl,
- ·carbocyclic aryl substituted by substituent(s) independently selected from
- ••C1-C7 alkyl,

- .. halogenated C1-C7 alkyl,
- ·heterocyclyl,
- ·heterocyclyl substituted by substituent(s) independently selected from
- ••C₁-C₃ alkyl,
- ··carbocyclic aryl,
- ··halogenated carbocyclic aryl,
- (vi) heterocyclyl,
- or heterocyclyl substituted by substituent(s) independently selected from
- ·halogen,
- ·nitro,
- •C1-C4 alkyl,
- •C1-C4 alkyl substituted by substituent(s) independently selected from
- ··halogen,
- ••oxo.
- ••C1-C3 alkylthio,
- ••C1-C3 alkylthio substituted by carbocyclic aryl,
- ••C1-C3 alkylthio substituted by halogenated carbocyclic aryl,
- ··carbocyclic aryl,
- ··halogenated carbocyclic aryl,
- ··heterocyclyl,
- •C1-C3 alkoxy,
- ·carbocyclic aryloxy,
- *carbocyclic aryloxy substituted by substituent(s) independently selected from
- ••halogen.
- ••C1-C3 alkyl,
- •C1-C3 alkylthio,
- •C1-C3 alkenylthio,
- ·carbocyclic arylthio.
- •C1-C3 alkylsulfonyl,
- ·carbocyclic arylsulfonyl,
- ·halogenated carbocyclic arylsulfonyl,
- ·carbocyclic arylsulfonyl substituted by C1-C4 alkyl,

- ·carbocyclic aryl,
- ·carbocyclic aryl substituted by substituent(s) independently selected from
- ··halogen,
- ··nitro.
- ••C1-C3 alkyl,
- ••C1-C3 alkoxy,
- ·heterocyclyl,
- ·heterocyclyl substituted by substituent(s) independently selected from
- ••C1-C3 alkyl,
- ..halogenated C1-C3 alkyl;

Y is -C(0)-;

wherein carbocyclic aryl is phenyl, naphthyl, anthranyl, or biphenyl;

carbocyclyl is 10,11-dihydro-5-oxo-dibenzo[a,d]cycloheptyl, 1-oxo-indanyl, 9H-

fluorenyl, 9-oxo-fluorenyl, acenaphthyl, anthraquinonyl, C-fluoren-9-ylidene, indanyl, indenyl, 1.2.3.4-tetrahydro-naphthyl, or bicyclof2.2.1 lhepteny;

heterocyclyl is 1,2,3-thiadiazolyl, 1,2,3-triazolyl, 1,2-dihydro-3-oxo-pyrazolyl, 1,3-dioxo-isoindolyl, 1*H*-indolyl, 1*H*-pyrrolyl, 1-oxo-3*H*-isobenzofuranyl, 2,3-dihydro-

benzo[1,4]dioxinyl, 2,3-dihydro-benzofuryl, 2,4-dihydro-3-oxo-pyrazolyl, 2H-

benzopyranyl, 2-oxo-benzopyranyl, 2-oxo-pyrrolidinyl, 3,4-dihydro-2H-

benzo[b][1,4] dioxepinyl, 4-oxo-1,5,6,7-tetra hydro-indolyl, 4-oxo-3,4-dihydro-phthalazinyl,

4-oxo-benzopyranyl, 9,10,10-trioxo-thioxanthenyl, 9H-xanthenyl, azetidinyl,

benzo [1,3] dioxolyl, benzo [2,1,3] oxadiazolyl, benzo [b] thienyl, cinnolyl, benzo [b] thienyl, cinnolyl, benzo [b] thienyl, benzo [b] thienyl,

 $furyl,\,imidazolyl,\,isoxazolyl,\,morpholino,\,morpholinyl,\,oxazolyl,\,oxolanyl,\,piperidyl,$

piridyl, pyrazolyl, pyridyl, pyrimidyl, pyrindidyl, quinolyl, quinoxalyl, thiazolidyl, thiazolyl, t

halogen is fluoro, chloro, bromo, or iodo;

or a salt thereof.

- 3. A compound according to claim 2, wherein
- R₁ represents
- (i) C₁-C₁₀ alkyl,

C1-C10 alkyl substituted by substituent(s) independently selected from

- •oxo,
- ·di-propylaminocarbonyl,
- ·methoxy substituted by carbocyclic aryl.
- ·methylcarbonyloxy,
- carbocyclic aryloxy,
- ·halogenated carbocyclic aryloxy,
- ·carbocyclic aryloxy substituted by nitro,
- ·heterocyclyloxy substituted by methyl,
- substituted heterocyclyl-ethylideneaminooxy,
- *tert-butoxycarbonylamino,
- ·carbocyclic arylcarbonylamino,
- •C1-C2 alkylthio,
- •C1-C2 alkylthio substituted by substituent(s) independently selected from
- .. halogenated carbocyclic aryl,
- ..carbocyclic aryl substituted by methoxy,
- ·carbocyclic arylthio,
- ·hetrocyclylthio substituted by nitro,
- ·hetrocyclylthio substituted by methyl,
- •C5-C6 cycloalkyl,
- •C5-C6 cycloalkenyl,
- ·carbocyclyl substituted by substituent(s) independently selected from
- ••halogen,
- ••methyl,
- ••methoxy.
- . ethenyl substituted by carbocyclic aryl substituted methylsulfinyl,
- ·carbocyclic aryl,
- ·carbocyclic arvl substituted by substituent(s) independently selected from
- ··halogen,
- ••hydroxy,
- ••nitro.
- ••C1-C4 alkyl.
- ...C1-C4 alkyl substituted by substituent(s) independently selected from

- ...oxo.
- · · · carbocyclic aryl.
- ...heterocyclyl,
- ••C1-C4 alkoxy.
- .. halogenated C1-C4 alkoxy,
- ••C1-C4 alkoxy substituted by carbocyclic aryl,
- ..carbocyclic aryloxy,
- .. halogenated mono-carbocyclic arylaminocarbonyl,
- ..carbocyclic aryl,
- ··heterocyclyl,
- ·heterocyclyl,
- •heterocyclyl substituted by substituent(s) independently selected from
- ••C1-C2 alkyl.
- .. C1-C2 substituted by carbocyclic arvl.
- ••methoxy.
- ..methoxy substituted by carbocyclic aryl,
- ··carbocyclic aryl,
- .. halogenated carbocyclic arvl.
- (ii) C2-C3 alkenyl substituted by substituent(s) independently selected from
- ·carbocyclic aryl,
- ·halogenated carbocyclic aryl,
- ·carbocyclic aryl substituted by nitro,
- (iii) C3-C6 cycloalkyl,
- C3-C6 cycloalkyl substituted by substituent(s) independently selected from
- ·methyl substituted by oxo.
- ·methyl substituted by carbocyclic aryl,
- ·carbocyclic aryl,
- (iv) carbocyclyl,
- (v) carbocyclic aryl,
- carbocyclic aryl substituted by substituent(s) independently selected from
- ·halogen,
- ·hydroxy,

```
·cyano,
 ·nitro,

 C<sub>1</sub>-C<sub>9</sub> alkyl,

•C1-C9 alkyl substituted by substituent(s) independently selected from
··halogen.
••oxo.
··carbocyclic aryl,
..carbocyclic aryl substituted by methyl,
··carbocyclic aryloxy,
•C1-C7 alkoxy.

 halogenated C<sub>1</sub>-C<sub>7</sub> alkoxy,

    C<sub>1</sub>-C<sub>7</sub> alkoxy substituted by carbocyclic aryl,

·methylcarbonyloxy,
·carbocyclic aryloxy,
·carbocyclic aryloxy substituted by methoxy,
·amino.
·di-methylamino,

    propargynylcarbonylamino substituted by carbocyclic aryl,

·carbocyclic arylsulfonylamino substituted by methyl,

    (carbocyclic aryl)NHC(O)NH substituted by halogenated methoxy,

·halogenated methylthio,
·carbocyclic arylthio substituted by cyano,

    di-propylamino sulfonyl,

*mono- or di- ethylaminocarbonyl substituted by carbocyclic aryl.
·carbocyclic aryl,
·heterocyclyl substituted by methyl,
·heterocyclyl substituted by halogenated carbocyclic aryl,
(vi) heterocyclyl,
or heterocyclyl substituted by substituent(s) independently selected from
·halogen,
nitro.
```

1076

•C1-C4 alkvl.

•C1-C4 alkyl substituted by substituent(s) independently selected from

- ••halogen,
- ..methylthio substituted by halogenated carbocyclic aryl,
- ··carbocyclic aryl,
- .. halogenated carbocyclic aryl,
- ··heterocyclyl,
- ·methoxy,
- ·carbocyclic aryloxy,
- ·carbocyclic aryloxy substituted by methyl,
- ·C1-C3 alkylthio,
- propenylthio,
- ·carbocyclic arylthio,
- C₁-C₃ alkylsulfonyl,
- *carbocyclic arylsulfonyl substituted by C1-C4 alkyl,
- ·carbocyclic aryl,
- ·halogenated carbocyclic aryl,
- ·carbocyclic arvl substituted by methyl,
- ·carbocyclic aryl substituted by nitro,
- ·heterocyclyl;

R2 is methylamino or dimethylamino;

L is selected from Formula Va. VIIIa, or IXa:

wherein R4 and R5 are independently selected from H or C1-C3 alkyl:

wherein carbocyclic aryl is phenyl, naphthyl, anthranyl, or biphenyl;

carbocyclyl is 1-oxo-indanyl, 9-oxo-fluorenyl, indenyl, anthraquinonyl, C-fluoren-

9-ylidene, 1,2,3,4-tetrahydro-naphthyl, or bicyclo[2.2.1]hepteny;

heterocyclyl is 1,2,3-thiadiazolyl, 1,2,3-triazolyl, 1,2-dihydro-3-oxo-pyrazolyl, 1,3-

dioxo-isoindolyl, 1H-indolyl, 1H-pyrrolyl, 1-oxo-3H-isobenzofuranyl, 2,3-dihydro-

benzo[1,4]dioxinyl, 2,4-dihydro-3-oxo-pyrazolyl, 2H-benzopyranyl, 2-oxo-benzopyranyl,

3,4-dihydro-2H-benzo[b][1,4]dioxepinyl, 4-oxo-3,4-dihydro-phthalazinyl, 4-oxo-

benzopyranyl, 9,10,10-trioxo-thioxanthenyl, 9H-xanthenyl, azetidinyl, benzimidazolyl,

benzo[1,3]dioxolyl, benzo[2,1,3]oxadiazolyl, benzo[b]thienyl, furyl, imidazolyl, isoxazolyl, morpholino, morpholinyl, oxolanyl, piperidyl, piridyl, pyrazolyl, pyridyl, quinolyl.

quinoxalyl, thiazolidyl, thiazolyl, thienyl, thiolanyl, 2,3-dihydro-1-oxo-isoindolyl, 2,3dihydro-benzofuryl, 2-oxo-pyrrolidinyl, 4-oxo-1,5,6,7-tetrahydro-indolyl, cinnolyl, pyrimidyl, pyrrolidyl, tetrahydro-thienyl, benzofuranyl, or benzothiazolyl; halogen is fluoro, chloro, bromo, or iodo; or a salt thereof. 4. A compound according to claim 3, wherein R₁ represents (i) C1-C10 alkyl substituted by substituent(s) independently selected from ·oxo, ·di-propylaminocarbonyl, ·methoxy substituted by carbocyclic aryl, methylcarbonyloxy, ·carbocyclic aryloxy, ·halogenated carbocyclic aryloxy, ·carbocyclic aryloxy substituted by nitro, ·heterocyclyloxy substituted by methyl, ·substituted heterocyclyl-ethylideneaminooxy, .tert-butoxycarbonylamino, ·carbocyclic arylcarbonylamino, •C1-C2 alkylthio, C₁-C₂ alkylthio substituted by substituent(s) independently selected from halogenated carbocyclic aryl,

- .. carbocyclic aryl substituted by methoxy,
- ·carbocyclic arylthio.
- ·hetrocyclylthio substituted by nitro.
- ·hetrocyclylthio substituted by methyl,
- •C5-C6 cycloalkenyl,
- ·carbocyclyl substituted by substituent(s) independently selected from
- ··halogen,
- ..methyl,
- ..methoxy,

```
.ethenyl substituted by carbocyclic aryl substituted methylsulfinyl,
```

- *carbocyclic aryl substituted by substituent(s) independently selected from
- ··halogen,
- ··hydroxy,
- ••nitro.
- ··C₁-C₄ alkyl,
- ••C1-C4 alkyl substituted by substituent(s) independently selected from
- •••oxo.
- · · · carbocyclic aryl,
- ...heterocyclyl,
- ••C₁-C₄ alkoxy,
- ••halogenated C1-C4 alkoxy,
- ••C1-C4 alkoxy substituted by carbocyclic aryl,
- ··carbocyclic aryloxy,
- ··halogenated mono-carbocyclic arylaminocarbonyl,
- ··carbocyclic aryl,
- ··heterocyclyl,
- •heterocyclyl substituted by substituent(s) independently selected from
- ··C₁-C₂ alkyl,
- .. C1-C2 substituted by carbocyclic aryl,
- ··methoxy.
- ..methoxy substituted by carbocyclic aryl,
- ··carbocyclic aryl,
- ··halogenated carbocyclic aryl,
- (ii) C2-C3 alkenyl substituted by substituent(s) independently selected from
- ·carbocyclic aryl,
- ·halogenated carbocyclic aryl,
- ·carbocyclic aryl substituted by nitro,
- (iii) C_3 - C_6 cycloalkyl substituted by substituent(s) independently selected from
- ·methyl substituted by oxo,
- ·methyl substituted by carbocyclic aryl,
- ·carbocyclic aryl,

- (iv) carbocyclyl,
- (v) carbocyclic aryl substituted by substituent(s) independently selected from
- ·halogen,
- ·hydroxy,
- ·cyano,
- •nitro.
- •C1-C9 alkyl.
- •C1-C9 alkyl substituted by substituent(s) independently selected from
- ..halogen,
- ..oxo.
- ··carbocyclic aryl,
- ..carbocyclic aryl substituted by methyl,
- ..carbocyclic aryloxy,
- •C1-C7 alkoxy,
- halogenated C₁-C₇ alkoxy,
- •C1-C7 alkoxy substituted by carbocyclic aryl,
- ·methylcarbonyloxy,
- ·carbocyclic aryloxy,
- ·carbocyclic aryloxy substituted by methoxy,
- ·amino.
- ·di-methylamino.
- propargynylcarbonylamino substituted by carbocyclic aryl,
- ·carbocyclic arylsulfonylamino substituted by methyl,
- •(carbocyclic aryl)NHC(O)NH substituted by halogenated methoxy,
- ·halogenated methylthio,
- ·carbocyclic arylthio substituted by cyano,
- ·di-propylamino sulfonyl,
- mono- or di- ethylaminocarbonyl substituted by carbocyclic arvl.
- ·carbocyclic aryl,
- ·heterocyclyl substituted by methyl,
- ·heterocyclyl substituted by halogenated carbocyclic aryl,
- (vi) or heterocyclyl substituted by substituent(s) independently selected from

- ·halogen,
- •nitro.
- •C₁-C₄ alkyl,
- •C1-C4 alkyl substituted by substituent(s) independently selected from
- ··halogen,
- . methylthio substituted by halogenated carbocyclic aryl,
- ··carbocyclic aryl,
- ··halogenated carbocyclic aryl,
- ..heterocyclyl,
- ·methoxy,
- ·carbocyclic aryloxy,
- ·carbocyclic aryloxy substituted by methyl,
- ·C1-C3 alkylthio,
- ·propenylthio,
- ·carbocyclic arylthio,
- •C1-C3 alkylsulfonyl,
- ·carbocyclic arylsulfonyl,
- carbocyclic arylsulfonyl substituted by C₁-C₄ alkyl,
- ·carbocyclic aryl,
- ·halogenated carbocyclic aryl,
- ·carbocyclic aryl substituted by methyl,
- ·carbocyclic aryl substituted by nitro,
- ·heterocyclyl;

L is selected from Formula XX - XXII:

wherein carbocyclic aryl is phenyl, naphthyl, or biphenyl; carbocyclyl is 1-oxo-indanyl, 9-oxo-fluorenyl, indenyl, anthraquinonyl, C-fluoren-

9-ylidene, 1,2,3,4-tetrahydro-naphthyl, or bicyclo[2.2.1]hepteny;

heterocyclyl is 1,2,3-thiadiazolyl, 1,2,3-triazolyl, 1,2-dihydro-3-oxo-pyrazolyl, 1*H*-indolyl, 1*H*-pyrrolyl, 2,4-dihydro-3-oxo-pyrazolyl, 2*H*-benzopyranyl, 4-oxo-benzopyranyl, azetidinyl, benzo[b]thienyl, furyl, isoxazolyl, morpholinyl, piperidyl, piridyl, pyrazolyl, pyridyl, quinolyl, thiazolidyl, thiazolyl, thienyl, thiolanyl, 2,3-dihydro-1-oxo-isoindolyl, 2,3-dihydro-benzofuryl, 2-oxo-benzopyranyl, 2-oxo-pyrrolidinyl, 4-oxo-1,5,6,7-tetrahydro-indolyl, 9*H*-xanthenyl, cinnolyl, imidazolyl, morpholino, pyrimidyl, pyrrolidyl, tetrahydro-thienyl, benzofuranyl, or benzothiazolyl;

halogen is fluoro, chloro, bromo, or iodo; or a salt thereof.

- 5. A compound according to claim 4, wherein
- R₁ represents
- (i) C1-C5 alkyl substituted by substituent(s) independently selected from
- ·oxo,
- ·di-propylaminocarbonyl,
- ·methoxy substituted by carbocyclic aryl,
- ·methylcarbonyloxy,
- ·carbocyclic aryloxy.
- ·halogenated carbocyclic aryloxy,
- carbocyclic aryloxy substituted by nitro,
- ·heterocyclyloxy substituted by methyl,
- *substituted heterocyclyl-ethylideneaminooxy,
- ${\it *tert-} but oxy carbony lamino,$
- ·carbocyclic arylcarbonylamino,
- ${}^{ullet}C_1{}^{-}C_2$ alkylthio,
- •C1-C2 alkylthio substituted by substituent(s) independently selected from
- ··halogenated carbocyclic aryl,
- ··carbocyclic aryl substituted by methoxy,
- ·carbocyclic arylthio,
- ·hetrocyclylthio substituted by nitro,
- ·hetrocyclylthio substituted by methyl,

```
·cyclohexenyl,
```

- ·carbocyclyl substituted by substituent(s) independently selected from
- ··halogen,
- ••methyl,
- ••methoxy.
- . ethenyl substituted by carbocyclic aryl substituted methylsulfinyl,
- ·carbocyclic aryl substituted by substituent(s) independently selected from
- ··halogen,
- ••hydroxy,
- ..nitro.
- .. C1-C4 alkyl,
- ••C1-C4 alkyl substituted by substituent(s) independently selected from
- •••oxo,
- · · · carbocyclic aryl,
- •••heterocyclyl.
- ••C1-C2 alkoxy,
- .. halogenated C1-C2 alkoxy,
- ••C1-C2 alkoxy substituted by carbocyclic aryl,
- ..carbocyclic aryloxy,
- .. halogenated mono-carbocyclic arylaminocarbonyl,
- ··carbocyclic aryl,
- ..heterocyclyl,
- •heterocyclyl substituted by substituent(s) independently selected from
- ••C1-C2 alkyl,
- .. C1-C2 substituted by carbocyclic aryl,
- ..methoxy,
- ..methoxy substituted by carbocyclic aryl,
- ..carbocyclic aryl,
- ··halogenated carbocyclic aryl,
- (ii) C2-C3 alkenyl substituted by substituent(s) independently selected from
- ·carbocyclic aryl,
- ·halogenated carbocyclic aryl.

```
·carbocyclic aryl substituted by nitro,
 (iii) C3-C6 cycloalkyl substituted by substituent(s) independently selected from
 ·methyl substituted by oxo,
 ·methyl substituted by carbocyclic aryl,

    carbocyclic arvl.

(iv) carbocyclyl,
(v) carbocyclic aryl substituted by substituent(s) independently selected from
·halogen,
·hydroxy,
·cvano.
·nitro.
·C1-C4 alkyl,
•C1-C2 alkyl substituted by substituent(s) independently selected from
··halogen,
..oxo.
··carbocyclic aryl,
..carbocyclic aryl substituted by methyl,
··carbocyclic aryloxy,
·C1-C2 alkoxy,
·halogenated C1-C2 alkoxy,
*C1-C2 alkoxy substituted by carbocyclic aryl.
·methylcarbonyloxy,
·carbocyclic aryloxy,
·carbocyclic aryloxy substituted by methoxy,
·amino.
·di-methylamino.

    propargynylcarbonylamino substituted by carbocyclic aryl,

ecarbocyclic arylsulfonylamino substituted by methyl,
•(carbocyclic aryl)NHC(O)NH substituted by halogenated methoxy,
·halogenated methylthio.
·carbocyclic arylthio substituted by cyano,
```

1084

di-propylamino sulfonyl.

```
•mono- or di- ethylaminocarbonyl substituted by carbocyclic aryl,
·carbocyclic aryl,
·heterocyclyl substituted by methyl,

    heterocyclyl substituted by halogenated carbocyclic aryl,

(vi) or heterocyclyl substituted by substituent(s) independently selected from
·halogen.
·nitro.
•C1-C4 alkyl.
•C1-C4 alkyl substituted by substituent(s) independently selected from
··halogen,
.methylthio substituted by halogenated carbocyclic aryl,
··carbocyclic aryl.
··halogenated carbocyclic aryl,
··heterocyclyl,
methoxy,
·carbocyclic aryloxy,
·carbocyclic aryloxy substituted by methyl,
•C1-C3 alkylthio,
·propenylthio,
·carbocyclic arylthio,

 C<sub>1</sub>-C<sub>3</sub> alkylsulfonyl,

·carbocyclic arylsulfonyl,

    carbocyclic arylsulfonyl substituted by methyl,

    carbocyclic aryl,

·halogenated carbocyclic aryl,
·carbocyclic aryl substituted by methyl,
·carbocyclic aryl substituted by nitro,
·heterocyclyl;
        wherein carbocyclic aryl is phenyl, naphthyl, or biphenyl;
        carbocyclyl is 1-oxo-indanyl, indenyl, 9-oxo-fluorenyl, 1,2,3,4-tetrahydro-naphthyl,
or bicyclo[2.2.1]hepteny;
```

heterocyclyl is 1H-indolyl, 2,4-dihydro-3-oxo-pyrazolyl, furyl, pyrazolyl, pyridyl,

thienyl, 1,2,3-triazolyl, 1*H*-pyrrolyl, 2,3-dihydro-1-oxo-isoindolyl, 2,3-dihydro-benzofuryl, 2*H*-benzopyranyl, 2-oxo-benzopyranyl, 4-oxo-1,5,6,7-tetrahydro-indolyl, imidazolyl, isoxazolyl, morpholino, morpholinyl, pyrazolyl, pyrimidyl, quinolyl, thiazolyl, tetrahydro-thienyl, benzofuranyl, or benzothiazolyl;

halogen is fluoro, chloro, bromo, or iodo; or a salt thereof.

 $\mbox{6. A compound according to claim 5 of Formua I selected from the group consisting of} \label{eq:figure}$

; or, in case of, a salt thereof.

7. A compound according to claim 3, wherein R_1 represents

- (i) C1-C10 alkyl,
- C1-C10 alkyl substituted by substituent(s) independently selected from
- •C5-C6 cycloalkyl,
- ·carbocyclic aryl,
- ·heterocyclyl,
- (ii) C3-C6 cycloalkyl,
- (iii) carbocyclic aryl,
- (iv) or heterocyclyl;
 - L is selected from Formula XX XXII;

wherein carbocyclic aryl is phenyl, naphthyl, anthranyl, or biphenyl;

heterocyclyl is 1,3-dioxo-isoindolyl, 1*H*-indolyl, 1-oxo-3*H*-isobenzofuranyl, 2,3-

dihydro-benzo[1,4]dioxinyl, 3,4-dihydro-2*H*-benzo[b][1,4]dioxepinyl, 4-oxo-3,4-dihydro-phthalazinyl, 9,10,10-trioxo-thioxanthenyl, 9*H*-xanthenyl, benzimidazolyl,

benzo[1,3]dioxolyl, benzo[2,1,3]oxadiazolyl, benzo[b]thienyl, furyl, imidazolyl, isoxazolyl, morpholino, oxolanyl, piperidyl, pyridyl, quinoxalyl, thienyl, quinolyl, or benzothiazolyl; or a salt thereof.

8. A compound according to claim 7, wherein

R₁ represents

- (i) C₁-C₄ alkyl,
- C1-C4 alkyl substituted by substituent(s) independently selected from
- ·cyclopentyl,
- ·carbocyclic aryl,
- ·heterocyclyl,
- (ii) carbocyclic aryl,
- (iii) or heterocyclyl;

wherein carbocyclic aryl is phenyl, naphthyl, anthranyl, or biphenyl; heterocyclyl is 9H-xanthenyl, benzo[1,3]dioxolyl, benzo[2,1,3]oxadiazolyl,

 ${\tt benzo[b] thienyl, thienyl, 1H-indolyl, quinoxalyl, quinolyl, or benzothiazolyl;}$

or a salt thereof.

9. A compound according to claim 8 of Formua I thereof selected from the group consisting of

; or, in case of, a salt thereof.

10. A compound according to claim 1, wherein Q is Fomura II; R_1 represents

rel rebro

(i) C₁-C₁₀ alkyl,

C1-C10 alkyl substituted by substituent(s) independently selected from

·halogen,

·hydroxy,

·oxo,

•C1-C3 alkoxy,

•C1-C3 alkoxy substituted by substituent(s) independently selected from

··carbocyclic aryl,

..heterocyclyl,

.. heterocyclyl substituted by C1-C3 alkyl,

·carbocyclic aryloxy,

*carbocyclic aryloxy substituted by substituent(s) independently selected from

••halogen,

••nitro,

••carbocyclic aryl,

••carbocyclic aryl substituted by C1-C3 alkoxy,

··C₁-C₄ alkyl,

••C₁-C₄ alkyl substituted by substituent(s) independently selected from

***mono- or di-C1-C3 alkylamino,

•••mono- or di-C1-C3 alkylamino substituted by carbocyclic aryl,

•••mono- or di-C1-C3 alkylamino substituted by halogenated carbocyclic aryl,

·mono- or di-C1-C3 alkylamino,

 ${}^{\bullet}$ mono- or di-C₁-C₃ alkylamino substituted by substituent(s) independently selected from

••cyano,

••carbocyclic aryl,

··heterocyclyl,

·mono- or di-carbocyclic arylamino,

mono- or di-carbocyclic arylamino substituted by C₁-C₃ alkyl,

•C1-C3 alkylcalbonylamino,

•C1-C4 alkoxycalbonylamino,

- ·carbocyclic arylsulfonylamino,
- carbocyclic arylsulfonylamino substituted by substituent(s) independently selected from
 nitro.
- ••C1-C3 alkyl.
- ••mono- or di-C1-C3 alkylamino,
- •C1-C3 alkylthio.
- •C1-C3 alkylthic substituted by substituent(s) independently selected from
- **mono- or di-carbocyclic arylamino,
- ··halogenated mono- or di-carbocyclic arylamino,
- ··carbocyclic aryl,
- . carbocyclic aryl substituted by substituent(s) independently selected from
- •••halogen,
- · · · C₁-C₃ alkoxy,
- ·carbocyclic arylthio.
- ·carbocyclic arylthio substituted by substituent(s) independently selected from
- ••halogen,
- ••C₁-C₃ alkyl,
- ·carbocyclic arylsulfonyl,
- ·halogenated carbocyclic arylsulfonyl.
- ·heterocyclylthio,
- •C3-C6 cycloalkyl,
- •C3-C6 cycloalkyl substituted by C1-C3 alkyl,
- ·carbocyclyl,
- •carbocyclyl substituted by substituent(s) independently selected from
- ••halogen,
- ••C₁-C₃ alkyl,
- ••C2-C3 alkenyl,
- ••C2-C3 alkenyl substituted by carbocyclic aryl,
- ••C₂-C₃ alkenyl substituted by carbocyclic aryl substituted C₁-C₃ alkylsulfinyl,
- ·carbocyclic aryl,
- ·carbocyclic aryl substituted by substituent(s) independently selected from
- ··halogen,

- ··hydroxy,
- ··nitro,
- ··C₁-C₄ alkyl,
- ••C1-C4 alkyl substituted by substituent(s) independently selected from
- •••halogen,
- •••hvdroxy,
- · · · carbocyclic aryl,
- •••mono- or di-carbocyclic arylamino,
- •••mono- or di-carbocyclic arylamino substituted by substituent(s) independently selected from
- · · · · halogen,
- ····nitro,
- · · · · C₁-C₃ alkyl.
- ····C₁-C₃ alkoxy,
- · · · · halogenated C1-C3 alkoxy,
- ••C1-C3 alkoxy,
- ••C1-C3 alkoxy substituted by substituent(s) independently selected from
- ···halogen,
- ···carbocyclic aryl,
- ··carbocyclic aryloxy,
- ••C1-C3 alkoxycarbonyl,
- ••mono- or di-C1-C3 alkylamino,
- ••C1-C3 alkylthio,
- ··halogenated C1-C3 alkylthio,
- ••C1-C3 alkylsulfonyl,
- ••C3-C6 cycloalkyl,
- ··carbocyclic aryl,
- ··heterocyclyl,
- ·heterocyclyl,
- •heterocyclyl substituted by substituent(s) independently selected from
- ••C₁-C₃ alkyl,
- ••C1-C3 alkoxy,

- ••C1-C3 alkoxy substituted by carbocyclic aryl,
- · · carbocyclic aryl.
- ··halogenated carbocyclic aryl,
- (ii) C2-C8 alkenyl,
- C2-C8 alkenyl substituted by substituent(s) independently selected from
- ·halogen.
- ·C₁-C₃ alkoxy,
- •C1-C3 alkoxy substituted by carbocyclic aryl,
- ·carbocyclic aryl,
- •carbocyclic aryl substituted by substituent(s) independently selected from
- ••halogen,
- ..hydroxy,
- ••C1-C3 alkoxy,
- ••halogenated C1-C3 alkoxy,
- ·heterocyclyl,
- ·heterocyclyl substituted by nitro,
- (iii) C2-C4 alkynyl,
- C2-C4 alkynyl substituted by carbocyclic aryl,
- (iv) C3-C6 cycloalkyl,
- C₃-C₆ cycloalkyl substituted by substituent(s) independently selected from
- •C1-C3 alkyl,
- •C1-C3 alkyl substituted by substituent(s) independently selected from
- ••hydroxy,
- ••oxo.
- ··carbocyclic aryl,
- ·mono- or di-C1-C3 alkylamino,
- •mono- or di-C1-C3 alkylamino substituted by carbocyclic aryl,
- ·carbocyclic aryl,
- (v) C3-C6 cycloalkeyl,
- C3-C6 cycloalkeyl substituted by C1-C3 alkyl,
- (vi) carbocyclyl,
- carbocyclyl substituted by substituent(s) independently selected from

```
hydroxy.
nitro.
(vii) carbocyclic aryl,
carbocyclic aryl substituted by substituent(s) independently selected from
·halogen,
·hydroxy,
·cyano,
·nitro,
·C1-C9 alkyl,
•C1-C9 alkyl substituted by substituent(s) independently selected from
··halogen,
..hydroxy,
..oxo.
••C1-C3 alkoxy,
··carbocyclic aryloxy,
**mono- or di-C1-C3 alkylamino-N-oxy,
**mono- or di-C1-C3 alkylamino.
••mono- or di-C1-C3 alkylamino substituted by carbocyclic aryl,
..mono- or di-carbocyclic arylamino,
••mono- or di-carbocyclic arylamino substituted by C1-C3 alkoxy.
··carbocyclic aryl,
.. halogenated carbocyclic aryl,
..heterocyclyl,
.. heterocyclyl substituted by C1-C3 alkyl,
•C2-C3 alkenyl,

 C<sub>2</sub>-C<sub>3</sub> alkenyl substituted by carbocyclic arvl.

•C1-C9 alkoxy,
•C1-C9 alkoxy substituted by substituent(s) independently selected from
••hydroxy,
··halogen,
..carboxy,
..mono- or di-C1-C3 alkylamino,
```

```
··carbocyclic aryl,
```

- .. halogenated carbocyclic aryl,
- ..heterocyclyl,
- . heterocyclyl substituted by substituent(s) independently selected from
- · · · heterocyclyl,
- ...heterocyclyl substituted by substituent(s) independently selected from
- ····halogen,
- ····C₁-C₃ alkyl,
- · · · · halogenated C1-C3 alkyl,
- •C2-C3 alkenyloxy,
- •C1-C3 alkylcarbonyloxy,
- ·carbocyclic aryloxy,
- •carbocyclic aryloxy substituted by substituent(s) independently selected from
- ••halogen,
- ••C₁-C₄ alkyl,
- ..halogenated C1-C4 alkyl,
- ••C₁-C₃ alkoxy,
- ·heterocyclyloxy,
- •heterocyclyloxy substituted by substituent(s) independently selected from
- ··halogen.
- ••C1-C3 alkyl.
- . halogenated C1-C3 alkyl,
- ·(carbocyclic aryl)S(O)2O,
- carboxy,
- C₁-C₃ alkoxycarbonyl,
- ·mono- or di-C1-C3 alkylaminocarbonyl,
- •mono- or di-C1-C3 alkylaminocarbonyl substituted by carbocyclic aryl,
- ·amino,
- •mono- or di-C1-C4 alkylamino,
- *mono- or di-C1-C4 alkylamino substituted by cyano,
- *mono- or di-carbocyclic arylamino,
- •C1-C3 alkylcarbonylamino,

```
·carbocyclic arylsulfonylamino,
```

- carbocyclic arylsulfonylamino substituted by C₁-C₃ alkyl,
- ·(carbocyclic aryl)NHC(O)NH,
- •(carbocyclic aryl)NHC(O)NH substituted by C1-C3 alkoxy,
- •(carbocyclic aryl)NHC(O)NH substituted by haloganated C1-C3 alkoxy,
- •C1-C3 alkylthio,
- ·halogenated C1-C3 alkylthio,
- ·carbocyclic arylthio,
- ·halogenated carbocyclic arylthio,
- *carbocyclic arylthio substituted by C1-C3 alkyl,
- ·heterocyclylthio,
- •C1-C3 alkylsulfonyl,
- •mono- or di-C1-C3 alkylaminosulfonyl,
- ·carbocyclic aryl,
- ·carbocyclic aryl substituted by substituent(s) independently selected from
- ..C1-C7 alkyl,
- .. halogenated C1-C7 alkyl.
- ·heterocyclyl,
- •heterocyclyl substituted by substituent(s) independently selected from
- ••C1-C3 alkyl,
- ··carbocyclic arvl.
- ··halogenated carbocyclic aryl,
- (viii) heterocyclyl,
- or heterocyclyl substituted by substituent(s) independently selected from
- ·halogen,
- hydroxy,
- •cyano,
- ·nitro.
- •C1-C4 alkyl,
- •C1-C4 alkyl substituted by substituent(s) independently selected from
- ··halogen,
- ..hvdroxv.

```
••oxo.
```

- ••C1-C3 alkylcarbonyloxy,
- ••C1-C3 alkoxycarbonyl,
- ••C1-C3 alkylthio,
- ••C1-C3 alkylthio substituted by carbocyclic aryl,
- ••C1-C3 alkylthio substituted by halogenated carbocyclic aryl.
- ··carbocyclic aryl,
- ..carbocyclic aryl substituted by substituent(s) independently selected from
- · · · halogen,
- •••nitro.
- ··heterocyclyl,
- •C1-C3 alkoxy,
- •C1-C3 alkoxy substituted by carbocyclic aryl,
- ·carbocyclic aryloxy,
- carbocyclic aryloxy substituted by C₁-C₃ alkyl,
- •mono- or di-C1-C3 alkylamino,
- •C1-C4 alkylcarbonylamino,
- C₁-C₃ alkylthio,
- ·carbocyclic arylthio,
- ·halogenated carbocyclic arylthio,
- carbocyclic arylthio substituted by C₁-C₃ alkoxycarbonyl,
- ·heterocyclylthio,
- ·heterocyclylthio substituted by C1-C3 alkyl,
- C₁-C₃ alkylsulfonyl,
- ·carbocyclic arylsulfonyl,
- carbocyclic arylsulfonyl substituted by C₁-C₄ alkyl,
- C₁-C₃ alkoxycarbonyl,
- ·carbocyclic aryl,
- *carbocyclic aryl substituted by substituent(s) independently selected from
- ··halogen,
- ••nitro.
- ••C1-C3 alkyl.

- ··halogenated C1-C3 alkyl,
- ••C₁-C₃ alkoxy,
- .. halogenated C1-C3 alkoxy,
- ·heterocyclyl,
- ·heterocyclyl substituted by substituent(s) independently selected from
- ••C₁-C₃ alkyl,
- .. halogenated C1-C3 alkyl,
- ••C1-C3 alkoxy.
- ••C₁-C₃ alkoxycarbonyl;

Y is -(CH₂)_m, m is 0 or 1;

wherein carbocyclic aryl is phenyl, naphthyl, biphenyl, or phenanthryl; carbocyclyl is 9H-fluorenyl, 9-oxo-fluorenyl, acenaphthyl, anthraquinonyl, indanyl, or indenyl:

heterocyclyl is 1,2,3-thiadiazolyl, 1,2,3-triazolyl, 1,2-dihydro-3-oxo-pyrazolyl, 1,3,4-thiadiazolyl, 1,3-dioxo-isoindolyl, 1,3-dioxolanyl, 1H-indolyl, 1H-pyrrolo[2,3-c]pyridyl, 1H-pyrrolyl, 2,2',5',2"-terthiophenyl, 2,2'-bithiophenyl, 2,3-dihydro-1-oxo-isoindolyl, 2,3-dihydro-benzo[1,4]dioxinyl, 2,3-dihydro-benzofuryl, 2,4-dihydro-3-oxo-pyrazolyl, 2H-benzopyranyl, 2-oxo-pyrrolidinyl, 3,4-dihydro-2H-benzo[1,4]oxazinyl, 3,4-dihydro-2H-benzo[b][1,4]dioxepinyl, 4H-benzo[1,3]dioxinyl, 4H-benzopyranyl, 4-oxo-1,5,6,7-tetrahydro-indolyl, 4-oxo-benzopyranyl, 9H-carbazolyl, 9H-xanthenyl, azetidinyl, benzimidazolyl, benzo[1,3]dioxolyl, benzofbyl, benzofuryl, benzothiazolyl, firryl, imidazo[2,1-b]thiazolyl, imidazolyl, isoxazolyl, morpholino, morpholinyl, oxolanyl, piperazyl, piperidyl, pyrazolo[5,1-b]thiazolyl, pyrazolyl, pyridyl, pyrimidyl, pyrrolidyl, quinoyl, quinoxalyl, thiazolidyl, thiazolyl, thienyl, or thiolanyl;

halogen is fluoro, chloro, bromo, or iodo;

or a salt thereof.

- A compound according to claim 10, wherein
 R₁ represents
- (i) C_1 - C_{10} alkyl substituted by substituent(s) independently selected from \cdot methoxy,
- ·methoxy substituted by carbocyclic aryl,

- ·carbocyclic aryloxy,
- ·halogenated carbocyclic aryloxy,
- mono-C₁-C₂ alkylamino substituted by cyano,
- mono- or di-C₁-C₂ alkylamino substituted by carbocyclic aryl.
- ·mono-carbocyclic arylamino,
- ·mono-carbocyclic arylamino substituted by methyl,
- ·carbocyclic arylsulfonylamino substituted by methyl,
- ·carbocyclic aryl,
- *carbocyclic aryl substituted by substituent(s) independently selected from
- ••halogen,
- ••nitro,
- ••C1-C4 alkyl,
- ••C1-C4 alkyl substituted by carbocyclic aryl,
- ••C1-C4 alkyl substituted by hydroxy,
- ••C1-C2 alkoxy,
- ••halogenated C1-C2 alkoxy,
- ·heterocyclyl substituted by carbocyclic aryl.
- (ii) C2-C8 alkenyl substituted by substituent(s) independently selected from
- ·methoxy substituted by carbocyclic aryl,
- ·carbocyclic aryl,
- ·carbocyclic aryl substituted by methoxy,
- (iii) C2-C4 alkynyl substituted by carbocyclic aryl,
- (iv) cyclohexyl substituted by carbocyclic arylmethyl,
- (v) carbocyclyl,
- (vi) carbocyclic aryl,
- carbocyclic aryl substituted by substituent(s) independently selected from
- halogen,
- ·hydroxy,
- ·cyano,
- ·amino.
- •C1-C9 alkyl.
- halogenated C₁-C₀ alkyl.

```
•C1-Co alkoxy.
•C1-C9 alkoxy substituted by substituent(s) independently selected from
..halogen.
.. halogenated carbocyclic aryl,

    propenyloxy,

·methylamino,
·di-C1-C2 alkylamino,

    di-C<sub>1</sub>-C<sub>2</sub> alkylamino substituted by cyano.

·methylthio,
·halogenated methylthio,
(vii) heterocyclyl,
or heterocyclyl substituted by substituent(s) independently selected from

 halogen,

•C1-C4 alkvl.
•C1-C4 alkyl substituted by hydroxy,

    C<sub>1</sub>-C<sub>4</sub> alkyl substituted by carbocyclic aryl,

·methoxy,
•C1-C2 alkoxycarbonyl,
·carbocyclic arylthio substituted by methoxycarbonyl,

    carbocyclic aryl,

    carbocyclic arvl substituted by substituent(s) independently selected from

..halogen.
.. halogenated methyl,
·heterocyclyl:
        R2 is methylamino or dimethylamino;
       L is selected from Formula Va, VIIIa, or IXa;
        wherein carbocyclic aryl is phenyl, naphthyl, biphenyl, or phenanthryl;
        carbocyclyl is 9H-fluorenyl, acenaphthyl, or anthraquinonyl;
        heterocyclyl is 1,2,3-thiadiazolyl, 1,2,3-triazolyl, 1,2-dihydro-3-oxo-pyrazolyl, 1,3-
dioxolanyl, 1H-indolyl, 1H-pyrrolyl, 2,2',5',2"-terthiophenyl, 2,2'-bithiophenyl, 2,3-
dihydro-benzo[1,4]dioxinyl, 3,4-dihydro-2H-benzo[1,4]oxazinyl, 4-oxo-benzopyranyl, 9H-
carbazolyl, 9H-xanthenyl, benzimidazolyl, benzo[1,3]dioxolyl, benzo[b]thienyl, benzofuryl,
```

benzothiazolyl, furyl, imidazolyl, isoxazolyl, oxolanyl, pyrazolo[5,1-b]thiazolyl, pyrazolyl, pyridyl, pyrimidyl, quinolyl, quinoxalyl, thiazolidyl, thiazolyl, thienyl, 2H-benzopyranyl, 4H-benzo[1,3]dioxinyl, azetidinyl, imidazo[2,1-b]thiazolyl, morpholinyl, or 2,3-dihydrobenzofuryl;

halogen is fluoro, chloro, bromo, or iodo; or a salt thereof

- 12. A compound according to claim 11, wherein
- R₁ represents
- (i) C1-C7 alkyl substituted by substituent(s) independently selected from
- ·methoxy,
- ·methoxy substituted by carbocyclic aryl,
- ·carbocyclic aryloxy,
- ·halogenated carbocyclic aryloxy,
- ·mono-ethylamino substituted by cyano,
- ·di-methylamino substituted by carbocyclic aryl,
- ·mono-carbocyclic arylamino,
- ·mono-carbocyclic arylamino substituted by methyl,
- ·carbocyclic arylsulfonylamino substituted by methyl,
- carbocyclic aryl,
- carbocyclic arvl substituted by substituent(s) independently selected from
- -carbocycne ary
- ••halogen,
 ••nitro.
- ••C1-C4 alkvl.
- .. C1-C4 alkyl substituted by carbocyclic aryl,
- ••C₁-C₄ alkyl substituted by hydroxy,
- ··metoxy,
- .. halogenated methoxy.
- ·heterocyclyl substituted by carbocyclic aryl,
- (ii) C2-C7 alkenyl substituted by substituent(s) independently selected from
- ·methoxy substituted by carbocyclic aryl,
- ·carbocyclic aryl,

```
·carbocyclic aryl substituted by methoxy,
```

- (iii) butynyl substituted by carbocyclic aryl,
- (iv) cyclohexyl substituted by carbocyclic arylmethyl,
- (v) carbocyclyl,
- (vi) carbocyclic aryl,
- carbocyclic aryl substituted by substituent(s) independently selected from
- ·halogen,
- ·hydroxy,
- ·cyano,
- ·amino.
- •C1-C2 alkyl,
- ·halogenated methyl,
- •C1-C3 alkoxy,
- *C1-C3 alkoxy substituted by substituent(s) independently selected from
- ··halogen,
- ··halogenated carbocyclic aryl,
- ·propenyloxy,
- di-C₁-C₂ alkylamino,
- ·di-C1-C2 alkylamino substituted by cyano,
- ·methylthio.
- ·halogenated methylthio,
- (vii) heterocyclyl,
- or heterocyclyl substituted by substituent(s) independently selected from
- •halogen,
- •C1-C3 alkyl,
- C₁-C₃ alkyl substituted by hydroxy,
- •C1-C3 alkyl substituted by carbocyclic aryl,
- ·methoxy,
- ·ethoxycarbonyl.
- ·carbocyclic arylthio substituted by methoxycarbonyl,
- ·carbocyclic aryl,
- ·carbocyclic aryl substituted by substituent(s) independently selected from

```
··halogen,
```

··halogenated methyl.

·heterocyclyl;

L is selected from Formula XX - XXII;

wherein carbocyclic aryl is phenyl, naphthyl, or biphenyl;

carbocyclyl is acenaphthyl;

heterocyclyl is 1H-indolyl, 1H-pyrrolyl, 2,3-dihydro-benzo[1,4]dioxinyl, 9H-

 $carbazolyl,\ benzo[1,3] dioxolyl,\ furyl,\ pyrazolyl,\ thienyl,\ 4-oxo-benzopyranyl,\ azetidinyl,$

 $imidazo[2,1-b]thiazolyl,\ pyridyl,\ imidazolyl,\ 2,3-dihydro-benzofuryl,\ or\ benzo[b]thienyl;$

halogen is fluoro, chloro, bromo, or iodo;

or a salt thereof.

 $13. \ A \ compound \ according \ to \ claim \ 12 \ of \ Formua \ I \ selected \ from \ the \ group \\ consisting \ of$

PCT/US02/31059

; or, in case of, a salt thereof.

14. A compound according to claim 1, wherein Q is Fomura II; R_1 represents

- (i) C₁-C₁₆ alkyl,
- C1-C16 alkyl substituted by substituent(s) independently selected from
- ·halogen,
- ·carbocyclyl,
- ·carbocyclic aryl,
- ·carbocyclic aryl substituted by substituent(s) independently selected from
- ..halogen.
- ··nitro,
- ··C₁-C₃ alkyl,
- .. halogenated C1-C3 alkyl,
- .. C1-C3 alkoxy,
- .. halogenated C1-C3 alkoxy,
- (ii) C2-C3 alkenyl,
- C2-C3 alkenyl substituted by carbocyclic aryl,
- (iii) carbocyclic aryl,
- carbocyclic aryl substituted by substituent(s) independently selected from
- ·halogen,
- ·cyano,
- ·nitro.
- •C1-C5 alkyl,
- •C1-C5 alkyl substituted by substituent(s) independently selected from
- ··halogen,
- ••oxo.
- •C2-C3 alkenyl,
- ·C1-C4 alkoxy,
- ··halogen,
- ··heterocyclyl,
- ..halogenated heterocyclyl,
- ·carbocyclic aryloxy,

·carbocyclic aryloxy substituted by substituent(s) independently selected from

- ··halogen,
- ••nitro.
- ·heterocyclyloxy,
- heterocyclyloxy substituted by substituent(s) independently selected from
- ··halogen.
- ••C1-C3 alkyl,
- .. halogenated C1-C3 alkyl,
- ·C1-C3 alkoxycarbonyl,
- *mono- or di-C1-C4 alkylamino,
- •C1-C3 alkylcarbonylamino,
- ·carbocyclic aryl diazo,
- •carbocyclic aryl diazo substituted by mono- or di- C1-C3 alkylamino,
- •C1-C3 alkylsulfonyl,
- ·carbocyclic aryl,
- (iv) heterocyclyl,
- or heterocyclyl substituted by substituent(s) independently selected from
- halogen,
- C₁-C₃ alkyl,
- •C1-C3 alkyl substituted by substituent(s) independently selected from
- ··halogen.
- ..oxo,
- ··carbocyclic arylcarbonylamino,
- ··halogenated carbocyclic arylcarbonylamino,
- ..heterocyclyl,
- . heterocyclyl substituted by substituent(s) independently selected from
- •••halogen,
- · · · C₁-C₃ alkyl,
- •••halogenated C1-C3 alkyl,
- •C1-C3 alkoxy,
- •C1-C3 alkylcarbonylamino,
- ·carbocyclic arylsulfonyl,

```
•C1-C3 alkoxycarbonyl,
·carbocyclic aryl,
·halogenated carbocyclic aryl,

    heterocyclyl,

·heterocyclyl substituted by substituent(s) independently selected from
··halogen,
··C<sub>1</sub>-C<sub>3</sub> alkyl,
••halogenated C1-C3 alkyl;
       Y is -S(O)2-;
       wherein carbocyclic aryl is phenyl, biphenyl, or naphthyl;
       carbocyclyl is 7,7-dimethyl-2-oxo-bicyclo[2,2,1]heptyl:
       heterocyclyl is 1,2,3,4-tetrahydro-isoquinolyl, 1,2,3-thiadiazolyl, 1H-pyrrolyl,
benzo[2,1,3]oxadiazolyl, benzo[b]thienyl, furyl, imidazolyl, isoxazolyl, pyrazolyl, pyridyl,
quinolyl, thiazolyl, or thienyl;
       halogen is fluoro, chloro, bromo, or iodo:
       or a salt thereof.
```

 $15.\,\mathrm{A}$ compound according to claim 14 of Formua I selected from the group consisting of

; or, in case of, a salt thereof.

16. A compound according to claim 1, wherein Q is Fomura II;

R₁ is selected from H, -CO₂'Bu, or -CO₂Bn (Bn is a benzyl group);

R₂ is methylamino or dimethylamino;

L is selected from Formula XX - XXII:

Y is a single bond;

or a salt thereof.

- 17. A method for modulating the G-protein receptor, SLC-1, comprising the step of contacting said SLC-1 with a MCH receptor antagonist.
- 18. A method for modulating the G-protein receptor, SLC-1, comprising the step of contacting said SLC-1 with a compound of claims 1-16.
- 19. The method of prophylaxis or treatment of obesity, obesity related disorders, anxiety, or depression in mammals in need of such treatment comprising administering to the mammal a therapeutically effective amount of a compound having the composition of any of claims 1-16.
- 20. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound having the composition of any of claims 1-16.

Fig. 1

IP3 Assay 293 Cells

SEQUENCE LISTING

<110>	Arena Pharmaceuticals, Inc.	
<120>	MCH Receptor Antagonists	
<130>	AREN-0238	
<160>	12	
<170>	PatentIn version 3.0	
<210>	1	
<211>	30	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	Novel Sequence	
<400> gtgaag	1 ettg ectetggtge etgeaggagg	30
<210>	2	
<211>	31	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	Novel Sequence	
<400>	2	

gcagaa	ttcc cggtggcgtg	ttgtggtgc	СС			31
<210>	3					
<211>	24					
<212>	DNA					
<213>	Artificial					
<220>						
<223>	Novel Sequence					
<400> catgag	3 ctgg tggatcatga	aggg				24
<210>	4					
<211>	24					
<212>	DNA					
<213>	Artificial					
<220>						
<223>	Novel Sequence					
<400> atgaag	4 ggca tgcccaggag	aaag				24
<210>	5					
<211>	1349					
<212>	DNA					
<213>	Artificial					
<220>						
<223>	Novel Sequence					
<400> atggaco	5 otgg aagcotogot	gctgcccact	ggtcccaatg	ccagcaacac	ctctgatggc	60
cccgata	acc teacttegge	aggatcacct	cctcgcacgg	ggagcatete	ctacatcaac	120

atcatcatgo	cttcggtgtt	cggcaccatc	tgcctcctgg	gcatcatcgg	gaactccacg	180
gtcatcttcg	cggtcgtgaa	gaagtccaag	ctgcactggt	gcaacaacgt	ccccgacatc	240
ttcatcatca	acctctcggt	agtagatoto	ctctttctcc	tgggcatgcc	cttcatgatc	300
caccagetca	tgggcaatgg	ggtgtggcac	tttggggaga	ccatgtgcac	cctcatcacg	360
gccatggatg	ccaatagtca	gttcaccagc	acctacatcc	tgaccgccat	ggccattgac	420
cgctacctgg	ccactgtcca	cccatctct	tccacgaagt	tccggaagcc	ctctgtggcc	480
accctggtga	totgcctcct	gtgggccctc	tccttcatca	gcatcacccc	tgtgtggctg	540
tatgccagac	tcatcccctt	cccaggaggt	gcagtgggct	gcggcatacg	cctgcccaac	600
ccagacactg	acctctactg	gttcaccctg	taccagtttt	tcctggcctt	tgccctgcct	660
tttgtggtca	tcacagccgc	atacgtgagg	atcctgcaga	aggtgaagtc	ctctggaatc	720
cgagtgggct	cctctaagag	gaagaagtet	gagaagaagg	tcacccgcac	agccatcgcc	780
atctgtctgg	tettetttgt	gtgctgggca	ccctactatg	tgctacagct	gacccagttg	840
tccatcagcc	gcccgaccct	cacctttgtc	tacttataca	atgcggccat	cagcttgggc	900
tatgccaaca	gctgcctcaa	cccctttgtg	tacatcgtgc	tctgtgagac	gttccgcaaa	960
cgcttggtcc	tgtcggtgaa	gcctgcagcc	caggggcagc	ttcgcgctgt	cagcaacgct	1020
cagacggctg	acgaggagag	gacagaaagc	aaaggcacct	gatacttccc	ctgccaccct	1080
gcacacctcc	aagtcagggc	accacaacac	gccaccggga	gagatgctga	gaaaaaccca	1140
agaccgctcg	ggaaatgcag	gaaggccggg	ttgtgagggg	ttgttgcaat	gaaataaata	1200
cattccatgg	gctcacacgt	tgctggggag	gcctggagtc	aggtttgggg	ttttcagata	1260
tcagaaatcc	cttgggggag	caggatgaga	cctttggata	gaacagaagc	tgagcaagag	1320
aacatgttgg	tttggataac	cggttgcac				1349

<210> 6

<211> 446

<212> PRT

<213> Homo Sapien

<220>

<223> Novel Sequence

<400 Met 1		Leu	Glu	Ala 5	Ser	Leu	Leu	Pro	Thr 10	Gly	Pro	Asn	Ala	Ser 15	Asn
Thr	Ser	Asp	Gly 20	Pro	Asp	Asn	Leu	Thr 25	Ser	Ala	Gly	Ser	Pro 30	Pro	Arg
Thr	Gly	Ser 35	Ile	Ser	Tyr	Ile	Asn 40	Ile	Ile	Met	Pro	Ser 45	Val	Phe	Gly
Thr	Ile 50	Cys	Leu	Leu	Gly	Ile 55	Ile	Gly	Asn	Ser	Thr 60	Val	Ile	Phe	Ala
Val 65	Val	Lys	Lys	Ser	Lys 70	Leu	His	Trp	Cys	Asn 75	Asn	Val	Pro	Asp	Ile 80
Phe	Ile	Ile	Asn	Leu 85	Ser	Val	Val	Asp	Leu 90	Leu	Phe	Leu	Leu	Gly 95	Met
Pro	Phe	Met	Ile 100	His	Gln	Leu	Met	Gly 105	Asn	Gly	Val	Trp	His 110	Phe	Gly
Glu	Thr	Met 115	Суз	Thr	Leu	Ile	Thr 120	Ala	Met	Asp	Ala	Asn 125	Ser	Gln	Phe
Thr	Ser 130	Thr	Tyr	Ile	Leu	Thr 135	Ala	Met	Ala	Ile	Asp 140	Arg	Tyr	Leu	Ala
Thr 145	Val	His	Pro	Ile	Ser 150	Ser	Thr	Lys	Phe	Arg 155	Lys	Pro	Ser	Val	Ala 160
Thr	Leu	Val	Ile	Cys 165	Leu	Leu	Trp	Ala	Leu 170	Ser	Phe	Ile	Ser	Ile 175	Thr
Pro	Val	Trp	Leu 180	Tyr	Ala	Arg	Leu	Ile 185	Pro	Phe	Pro	Gly	Gly 190	Ala	Val
Gly	Суз	Gly 195	Ile	Arg	Leu	Pro	Asn 200	Pro	Asp	Thr	Asp	Leu 205	Tyr	Trp	Phe
Thr	Leu 210	Tyr	Gln	Phe	Phe	Leu 215	Ala	Phe	Ala	Leu	Pro 220	Phe	Val	Val	Ile
Thr 225	Ala	Ala	Tyr	Val	Arg 230	Ile	Leu	Gln	Lys	Val 235	Lys	Ser	Ser	Gly	Ile 240
Arg	Val	Gly	Ser	Ser 245	Lys	Arg	Lys	Lys	Ser 250	Glu	Lys	Lys	Val	Thr 255	Arg
Thr	Ala	Ile	Ala 260	Ile	Cys	Leu	Val	Phe 265	Phe	۷al	Cys	Trp	Ala 270	Pro	Tyr
Tyr	Val	Leu 275	Gln	Leu	Thr	Gln	Leu 280	Ser	Ile	Ser	Arg	Pro 285	Thr	Leu	Thr
Phe	Val	Tyr	Leu	Tyr	Asn	Ala	Ala	Ile	Ser	Leu	Gly	Tyr	Ala	Asn	Ser

	290					295					300						
Cys 305	Leu	Asn	Pro	Phe	Val 310	Tyr	Ile	Val	Leu	Cys 315	Glu	Thr	Phe	Arg	Lys 320		
Arg	Leu	Val	Leu	Ser 325	Val	Lys	Pro	Ala	Ala 330	Gln	Gly	Gln	Leu	Arg 335	Ala		
Val	Ser	Asn	Ala 340	Gln	Thr	Ala	Asp	Glu 345	Glu	Arg	Thr	Glu	Ser 350	Lys	Gly		
Thr	Tyr	Phe 355	Pro	Cys	His	Pro	Ala 360	His	Leu	Gln	Val	Arg 365	Ala	Pro	Gln		
His	Ala 370	Thr	Gly	Arg	Asp	Ala 375	Glu	Lys	Asn	Pro	Arg 380	Pro	Leu	Gly	Lys		
Cys 385	Arg	Lys	Ala	Gly	Leu 390	Gly	Val	Val	Ala	Met 395	Lys	Ile	His	Ser	Met 400		
Gly	Ser	His	Val	Ala 405	Gly	Glu	Ala	Trp	Ser 410	Gln	Val	Trp	Gly	Phe 415	Gln		
Ile	Ser	Glu	Ile 420	Pro	Trp	Gly	Ser	Arg 425	Met	Arg	Pro	Leu	Asp 430	Arg	Thr		
Glu	Ala	Glu 435	Gln	Glu	Asn	Met	Leu 440	Val	Trp	Ile	Thr	Gly 445	Cys				
<210 <211		7															
<212	> 1	ANO															
<213	> 1	Artii	icia	al													
<220	>																
<223	> 1	lovel	Sec	quen	e												
<400 gate			ıaggt	gaaq	rt co	etetç	ıgaat	: ccc	gagto	igge	tect	ctaa	ıga ç	gaaç	gaagtc	6	0
tgag	aaga	ag														7	0
<210	> 8	1															
<211	> 7	1															
<212	> I	NA															
<213	> 7	rtif	icia	al													

<220>							
<223>	Novel Sequence						
<400> gtgacc	8 ttct tctcagactt	cttcctctta	gaggagccca	ctcggattcc	agaggacttc		60
accttc	tgca g						71
<210>	9						
	30						
<212>							
<213>	Artificial						
<220>							
<223>	Novel Sequence						
<400> gtgaag	9 cttg cccgggcagg	atggacctgg					30
<210>	10						
<211>	24						
<212>	DNA						
<213>	Artificial						
<220>							
<223>	Novel Sequence						
<400> atctag	10 aggt gcctttgctt	tetg					24
<210> <211> <212> <213>	2133						
<400> atggac	11 ctgg aagcctcgct	getgeceact	ggtcccaatg	ccagcaacac	ctctgatggc	60	
cccgat	aacc tcacttcggc	aggatcacct	cctcgcacgg	ggagcatete	ctacatcaac	120	

atcatcatgc etteggtgtt eggcaccate tgceteetgg gcatcategg gaactecacg 180 gtcatcttcq cggtcgtgaa gaagtccaag ctqcactggt gcaacaacgt ccccgacatc 240 tteateatea accteteggt agtagatete etetttetee tgggeatgee etteatgate 300 caccagetea tgggcaatgg ggtgtggcac tttggggaga ccatgtgcac cetcatcacq 360 gecatggatg ccaatagtea gtteaceage acetacatee tgacegecat ggccattgae 420 egetacetgg ccactgteca eeccatetet tecaegaagt teeggaagee etetgtggee 480 accetgqtqa tetgeeteet qtgqqceete teetteatea geateaceee tgtqtqqctq 540 tatgccagac tcatcccctt cccaggaggt gcagtgggct gcggcatacg cctgcccaac 600 ccagacactg acctetactg gttcaccctg taccagtttt tectggcett tgccctgcct 660 tttgtggtca tcacagccgc atacgtgagg atcctgcagc gcatgacgtc ctcagtggcc 720 cocqcctccc agggcagcat coggctgcgg acaaagaggg tgacccgcac agccatcgcc 780 atotqtotqq tottottqt qtqctqqqca coctactatq tqctacaqct qacccaqttq 840 tocateagec geocgaccet cacetttgte tacttataca atgeggecat cagettggge 900 tatgecaaca getgecteaa eeeetttgtg tacategtge tetgtgagac gttccgcaaa 960 egettggtee tgteggtgaa geetgeagee caggggeage ttegegetgt cageaacget 1020 cagacggctg acgaggagag gacagaaagc aaaggcacct ctagaatggg ctgcacactg 1080 agcgctgagg acaaggeggc cgtggagcgc agcaagatga tcgaccgcaa cctccgggag 1140 gacggagaga aggcagegeg cgaggteaag ctgetgetge tgggtgetgg tgaateeggg 1200 aagagcacaa ttgtgaagca gatgaaaatt atccacgagg ctggctactc agaggaagag 1260 tgtaagcagt acaaagcagt ggtctacagc aacaccatcc agtccatcat tgccatcatt 1320 agagecatgg ggagattgaa aategacttt ggagaegetg ctegtgegga tgatgetege 1380 caactetteg tgettgetgg ggetgeagag gaaggettta tgaccgegga getegeegge 1440 gtcataaaga qactgtqqaa ggacagcggt gtgcaagcct qcttcaacag atcccgggag 1500 taccagetga acgattegge ggegtactac etgaatgact tggacagaat agcacaacca 1560 aattacatcc caacccaqca gqatqttctc agaactaqaq tqaaaacqac gqqaattgtg 1620 qaaacccact ttactttcaa agatettcat tttaaaatqt ttqacqtgqg aqqccagaga 1680 tcagagogga agaagtggat tcactgcttt gaaggogtga ctgccatcat cttctgtgtg 1740 geoctgagtg actatgacet ggttettget gaggatgaag aaatgaaceg gatgeatgaa 1800 aqcatgaaqc tqttcqataq catatgtaac aacaaqtqqt ttacqqacac atccatcate 1860

cttttcctga acaagaagga cctcttcgaa gagaagatca aaaagagtcc cctcacqata 1920 tgctatccag aatatgcagg ctcaaacaca tatgaagagg cggctgcgta tatccagtgt 1980 cagtttgaag acctcaataa aaqqaaqqac acaaaqqaaa tttacaccca cttcacttgc 2040 gecaeggata egaagaatgt geagtitgtg tiegatgetg taaeggaegt catcataaag 2100 aataacctaa aagactgtgg tetettetaa tet 2133 <210> 12 <211> 709 <212> PRT <213> Homo Sapien <400> 12 Met Asp Leu Glu Ala Ser Leu Leu Pro Thr Gly Pro Asn Ala Ser Asn Thr Ser Asp Gly Pro Asp Asn Leu Thr Ser Ala Gly Ser Pro Pro Arg Thr Gly Ser Ile Ser Tyr Ile Asn Ile Ile Met Pro Ser Val Phe Gly Thr Ile Cys Leu Leu Gly Ile Ile Gly Asn Ser Thr Val Ile Phe Ala Val Val Lys Lys Ser Lys Leu His Trp Cys Asn Asn Val Pro Asp Ile Phe Ile Ile Asn Leu Ser Val Val Asp Leu Leu Phe Leu Leu Gly Met Pro Phe Met Ile His Gln Leu Met Gly Asn Gly Val Trp His Phe Gly Glu Thr Met Cys Thr Leu Ile Thr Ala Met Asp Ala Asn Ser Gln Phe 115 Thr Ser Thr Tyr Ile Leu Thr Ala Met Ala Ile Asp Arg Tyr Leu Ala Thr Val His Pro Ile Ser Ser Thr Lys Phe Arg Lys Pro Ser Val Ala 155 Thr Leu Val Ile Cys Leu Leu Trp Ala Leu Ser Phe Ile Ser Ile Thr 165 170 Pro Val Trp Leu Tyr Ala Arg Leu Ile Pro Phe Pro Gly Gly Ala Val Gly Cys Gly Ile Arg Leu Pro Asn Pro Asp Thr Asp Leu Tyr Trp Phe 195

Thr	Leu 210	Tyr	Gln	Phe	Phe	Leu 215	Ala	Phe	Ala	Leu	Pro 220		Val	Val	Ile
Thr 225	Ala	Ala	Tyr	Val	Arg 230	Ile	Leu	Gln	Arg	Met 235		Ser	Ser	Val	Ala 240
Pro	Ala	Ser	Gln	Arg 245	Ser	Ile	Arg	Leu	Arg 250	Thr	Lys	Arg	Val	Thr 255	Arg
Thr	Ala	Ile	Ala 260	Ile	Cys	Leu	Val	Phe 265	Phe	Val	Cys	Trp	Ala 270	Pro	Tyr
Tyr	Val	Leu 275	Gln	Leu	Thr	Gln	Leu 280	Ser	Ile	Ser	Arg	Pro 285	Thr	Leu	Thr
Phe	Val 290	Tyr	Leu	Tyr	Asn	Ala 295	Ala	Ile	Ser	Leu	Gly 300	Tyr	Ala	Asn	Ser
Cys 305	Leu	Asn	Pro	Phe	Val 310	Tyr	Ile	Val	Leu	Cys 315	Glu	Thr	Phe	Arg	Lys 320
Arg	Leu	Val	Leu	Ser 325	Val	Lys	Pro	Ala	Ala 330	Gln	Gly	Gln	Leu	Arg 335	Ala
Val	Ser	Asn	A1a 340	Gln	Thr	Ala	Asp	Glu 345	Glu	Arg	Thr	Glu	Ser 350	Lys	Gly
Thr	Ser	Arg 355	Met	Gly	Суз	Thr	Leu 360	Ser	Ala	Glu	Asp	Lys 365	Ala	Ala	Val
Glu	Arg 370	Ser	Lys	Met	Ile	Asp 375	Arg	Asn	Leu	Arg	Glu 380	Asp	Gly	Glu	Lys
Ala 385	Ala	Arg	Glu	Val	Lys 390	Leu	Leu	Leu	Leu	Gly 395	Ala	Gly	Glu	Ser	Gly 400
Lys	Ser	Thr	Ile	Val 405	Lys	Gln	Met	Lys	Ile 410	Ile	His	Glu	Ala	Gly 415	Tyr
Ser	Glu	Glu	Glu 420	Cys	Lys	Gln	Tyr	Lys 425	Ala	Val	Val	Tyr	Ser 430	Asn	Thr
Ile	Gln	Ser 435	Ile	Ile	Ala	Ile	Ile 440	Arg	Ala	Met	Gly	Arg 445	Leu	Lys	Ile
Asp	Phe 450	Gly	Asp	Ala	Ala	Arg 455	Ala	Asp	Asp	Ala	Arg 460	Gln	Leu	Phe	Val
Leu 465	Ala	Gly	Ala	Ala	Glu 470	Glu	Gly	Phe	Met	Thr 475	Ala	Glu	Leu	Ala	Gly 480
Val	Ile	Lys	Arg	Leu 485	Trp	Lys	Asp	Ser	Gly 490	Val	Gln	Ala	Cys	Phe 495	Asn
Arg	Ser	Arg	Glu 500	Tyr	Gln	Leu	Asn	Asp 505	Ser	Ala	Ala	Tyr	Tyr 510	Leu	Asn

Asp	Leu	Asp 515	Arg	Ile	Ala	Gln	Pro 520	Asn	Tyr	Ile	Pro	Thr 525	Gln	Gln	Asp
Val	Leu 530	Arg	Thr	Arg	Val	Lys 535	Thr	Thr	Gly	Ile	Val 540	Glu	Thr	His	Ph∈
Thr 545	Phe	Lys	Asp	Leu	His 550	Phe	Lys	Met	Phe	Asp 555	Val	Gly	Gly	Gln	Arg 560
Ser	G1u	Arg	Lys	Lys 565	Trp	Ile	His	Cys	Phe 570	Glu	Gly	Val	Thr	Ala 575	Ile
Ile	Phe	Cys	Val 580	Ala	Leu	Ser	Asp	Tyr 585	Asp	Leu	Val	Leu	Ala 590	Glu	Asp
Glu	Glu	Met 595	Asn	Arg	Met	His	G1u 600	Ser	Met	Lys	Leu	Phe 605	Asp	Ser	Ile
Cys	Asn 610	Asn	Lys	Trp	Phe	Thr 615	Asp	Thr	Ser	Ile	Ile 620	Leu	Phe	Leu	Asn
Lys 625	Lys	Asp	Leu	Phe	Glu 630	Glu	Lys	Ile	Lys	Lys 635	Ser	Pro	Leu	Thr	Ile 640
Cys	Tyr	Pro	Glu	Tyr 645	Ala	Gly	Ser	Asn	Thr 650	Tyr	Glu	Glu	Ala	Ala 655	Ala
Tyr	Ile	Gln	Cys 660	Gln	Phe	Glu	Asp	Leu 665	Asn	Lys	Arg	Lys	Asp 670	Thr	Lys
Glu	Ile	Tyr 675	Thr	His	Phe	Thr	Cys 680	Ala	Thr	Asp	Thr	Lys 685	Asn	Val	Gln
Phe	Val 690	Phe	Asp	Ala	Val	Thr 695	Asp	Val	Ile	Ile	Lys 700	Asn	Asn	Leu	Lys
Asp 705	Cys	Gly	Leu	Phe											