

Sea
$$m_{rs} = \sum_{j=1}^{p} |x_{rj} - x_{sj}|$$
 la distancia de Manhattan donde P= (x_{r1}, x_{r2},..., x_{rp}) y

Q= $(x_{s1}, x_{s2},..., x_{sp})$ son dos observaciones de una matriz de datos $X_{(nxp)}$.

Probar que es una métrica.

Simetría: d(P,Q) = d(Q,P)

$$\mathsf{m}_{\mathsf{rs}} = \sum_{j=1}^{\mathsf{p}} |\mathsf{Xrj} - \mathsf{Xsj}|$$

$$\mathsf{m}_{\mathsf{sr}} = \sum_{j=1}^{p} |\mathsf{X}\mathsf{sj} - \mathsf{Xrj}|$$

Sabemos que: |a|=|-a|

$$|\mathbf{x}_{rj}-\mathbf{x}_{sj}|=|-(\mathbf{x}_{rj}-\mathbf{x}_{sj})| \Rightarrow |\mathbf{x}_{rj}-\mathbf{x}_{sj}|=|\mathbf{x}_{sj}-\mathbf{x}_{rj}|$$

Tomando sumatorias:

$$\sum_{j=1}^{p} |Xrj - Xsj| = \sum_{j=1}^{p} |Xsj - Xrj|$$

$$\mathbf{m_{rs}} = \mathbf{m_{sr}}$$

No negatividad:
$$d(P,Q)>0$$
, si $P \neq Q$

Si P
$$\neq$$
 Q, \Rightarrow X_{rj} \neq X_{sj}
$$\Rightarrow |Xrj - Xsj| \neq 0$$
$$\Rightarrow \mathbf{m_{rs}} > \mathbf{0}$$

Identidad: d(P,P)=0

$$m_{rr} = \sum_{j=1}^{p} |Xrj - Xrj| = 0$$
$$\Rightarrow |Xrj - Xrj| = 0 \ \forall j$$

Definición:
$$d(P,Q) = 0$$
, si $P=Q$
Si $P=Q \Rightarrow x_{rj} = x_{sj}$, $\forall j$

$$d(P,Q) = m_{rs} = \sum_{j=1}^{p} \sqrt{|Xrj - Xrj|}$$

$$\Rightarrow m_{rs} = 0 \Rightarrow d(P,Q) = 0$$

Desigualdad triangular: $d(P,R)+d(R,Q) \ge d(P,Q)$

Sea R=
$$(x_{h1}, x_{h2},..., x_{hp})$$

Tal que: $|x_{rj}-x_{sj}| = |x_{rj}-x_{hj}+x_{hj}-x_{sj}|$
 $\Rightarrow |x_{rj}-x_{sj}| = |x_{rj}-x_{hj}+x_{hj}-x_{sj}| \le |x_{rj}-x_{hj}|+|x_{hj}-x_{sj}|$
 $\Rightarrow m_{rs} \le m_{rh} + m_{hs}$

CONCLUSIÓN: m_{rs} es una métrica

Sea $\mathbf{W}(nxp) = [\mathbf{w}_i]$ tal que $\mathbf{w}_i = \mathbf{S}^{-1/2}(\mathbf{x}_i - \bar{\mathbf{x}})$. Encontrar la expresión matemática para la matriz de covarianzas.

Analizamos **w**_i:

$$\mathbf{w}_{i} = \mathbf{S}^{-1/2} (\mathbf{x}_{i} - \bar{\mathbf{x}})$$

$$(px1) \quad (pxp) \quad (px1)$$

$$\mathbf{w}'_{i} = (\mathbf{x}_{i} - \bar{\mathbf{x}})' \mathbf{S}^{-1/2}$$

$$(1xp) \quad (1xp) \quad (pxp)$$

$$(1xp) \quad (1xp) \quad (pxp)$$

$$(1xp) \quad (1xp) \quad (pxp)$$

$$W = \begin{pmatrix} (\mathbf{x}_{1} - \bar{\mathbf{x}})' \\ (\mathbf{x}_{2} - \bar{\mathbf{x}})' \\ \vdots \\ (\mathbf{x}_{n} - \bar{\mathbf{x}})' \end{pmatrix} \mathbf{S}^{-1/2} = (\mathbf{I}_{n} - \frac{1}{2}\mathbf{J}_{n}) \mathbf{X} \mathbf{S}^{-1/2} = \mathbf{H} \mathbf{X} \mathbf{S}^{-1/2} \implies \mathbf{W} = \mathbf{H} \mathbf{X} \mathbf{S}^{-1/2}$$

Sw =
$$\frac{1}{n}$$
 W'HW = $\frac{1}{n}$ S^{-1/2} X'H'HHXS^{-1/2} = Ip

(1xp) (1xp) (pxp)

$$\longrightarrow$$
 Sw = Ip

Se trata de estudiar la estructura de ventas de una empresa que distribuye 10 productos (i=1,...,n) en 8 mercados (j=1,...,p). Sabiendo que k_{ij} representa el valor de las ventas del producto i en el mercado j en una tabla de contingencia T(i,j), verifique que $d^2(i,i')$ es una medida de distancia. Tal que,

$$d^{2}(i,i') = \sum_{j} \left(\frac{f_{ij}}{f_{i}\sqrt{f_{j}}} - \frac{f_{i'j}}{f_{i'}\sqrt{f_{j}}} \right)^{2}$$

 $f_i=k_i/k$, $f_{ij}=k_{ij}/k$, $k=\sum_{i,j}k_{ij}$, $k_i=\sum_jk_{ij}$, $k_j=\sum_ik_{ij}$.

Kii frecuencia absoluta

fii frecuencia relativa

Tabla de Contingencia

j	1	2	 8
1	f ₁₁	f ₁₂	f _{1,8}
2	f ₂₁	f ₂₂	f _{2,8}
•••			
10	f _{10,1}	f _{10,2}	f _{10,8}

La misma expresión de distancia:

$$d^{2}(i,i') = \sum_{j} \frac{1}{f_{j}} \left[\frac{f_{ij}}{f_{i}} - \frac{f_{i'j}}{f_{i'}} \right]^{2}$$

Simetría: d(i,i')=d(i',i)

$$d(i,i') = \sqrt{\sum_{j} \frac{1}{f_{j}} \left[\frac{f_{ij}}{f_{i}} - \frac{f_{i'j}}{f_{i'}} \right]^{2}}$$

$$= \sqrt{\sum_{j} \frac{1}{f_{j}} \left[-\left(\frac{f_{i'j}}{f_{i'}} - \frac{f_{ij}}{f_{i}}\right) \right]^{2}}$$

$$= \sqrt{\sum_{j} \frac{1}{f_{j}} \left[\frac{f_{i'j}}{f_{i'}} - \frac{f_{ij}}{f_{i}} \right]^{2}}$$

$$= d(i',i)$$

No negatividad: d(i,i')>0

Si $i\neq i' \Rightarrow$ para alguna j:

$$\frac{f_{ij}}{f_i} \neq \frac{f_{i'j}}{f_{i'}}$$

$$\frac{f_{ij}}{f_i} - \frac{f_{i'j}}{f_{i'}} \neq 0$$

$$\frac{1}{f_i} \left[\frac{f_{ij}}{f_i} - \frac{f_{i'j}}{f_{i'}} \right]^2 > 0$$

$$\Rightarrow$$

$$\rightarrow$$

Identidad: d(i,i')=0, entonces, i=i'

$$d(i,i')=0 \qquad \Rightarrow \qquad d^{2}(i,i') = \sum_{j} \frac{1}{f_{j}} \left[\frac{f_{ij}}{f_{i}} - \frac{f_{i'j}}{f_{i'}} \right]^{2} = 0$$

$$\Rightarrow \qquad \frac{f_{ij}}{f_{i}} - \frac{f_{i'j}}{f_{i'}} = 0$$

$$\Rightarrow \qquad \frac{f_{ij}}{f_{i}} = \frac{f_{i'j}}{f_{i'}}$$

$$\Rightarrow \qquad i = i'$$

CONCLUSIÓN: d(i,i') es una distancia

Demostrar que para un conjunto de datos se cumple lo siguiente:

$$\frac{1}{np} \sum_{j=1}^{n} (x_j - \bar{x})' S^{-1}(x_j - \bar{x}) = 1$$

Analizando los términos de la sumatoria:

$$\frac{1}{np} \sum_{i=1}^{n} (X_i - \bar{X})' S^{-1} (X_i - \bar{X})$$
 (Variables aleatorias univariadas)

$$\frac{1}{np}\sum_{i=1}^{n}(X_{i}-\bar{X})'S^{-1}(X_{i}-\bar{X}) = \frac{1}{np}\sum_{i=1}^{n}Tr[(X_{i}-\bar{X})'S^{-1}(X_{i}-\bar{X})]$$

$$\rightarrow$$

$$= \frac{1}{np} \sum_{i=1}^{n} Tr[S^{-1}(X_i - \bar{X})(X_i - \bar{X})']$$

(propiedad de traza)

$$= \frac{1}{np} Tr \left[\sum_{i=1}^{n} S^{-1} \frac{n}{n} (X_i - \bar{X}) (X_i - \bar{X})' \right]$$

$$= \frac{1}{np} Tr[nS^{-1} \sum_{i=1}^{n} \frac{1}{n} (X_i - \bar{X})(X_i - \bar{X})']$$

$$= \frac{1n}{np}Tr[S^{-1}S] = \frac{1n}{np}Tr[I_{pxp}] = \frac{1n}{np}p = 1$$

$$\Rightarrow$$

$$\frac{1}{np} \sum_{i=1}^{n} (X_i - \bar{X})' S^{-1} (X_i - \bar{X}) = 1$$

Sea \mathbf{D}^2_{ij} el cuadrado de la distancia de Mahalanobis entre las observaciones $\mathbf{x}_i, \ \mathbf{x}_j \in \mathsf{R}^p$ y $\mathbf{S} = (1/n)\mathbf{X}'\mathbf{H}\mathbf{X}$ la matriz de covarianzas a partir de la muestra $\mathbf{X}_{(nxp)}$.

Demuestre que $\sum_{i}\sum_{j}\mathbf{D}^{2}_{ij}=2n^{2}p$.

De los datos del problema:

$$D_{ij}^2 = (X_i - X_j)'S^{-1}(X_i - X_j)$$
 (i)

Sumamos y restamos \overline{X} en cada paréntesis

$$D_{ij}^{2} = [X_{i} - \overline{X}]' S^{-1} [X_{i} - \overline{X}] + [X_{j} - \overline{X}]' S^{-1} [X_{j} - \overline{X}] - 2 [X_{i} - \overline{X}]' S^{-1} [(X_{j} - \overline{X}]' S^{-1} [(X_{j} - \overline{X})' S^{-1} [(X_{j$$

Sea:
$$g_{ii}=[X_i-\overline{X}]'\,S^{-1}\,[X_i-\overline{X}]$$

$$g_{jj}=[X_j-\overline{X}]'\,S^{-1}\,[X_j-\overline{X}]$$
 en (i)
$$g_{ij}=[X_i-\overline{X}]'\,S^{-1}\,[(X_j-\overline{X}]$$

$$D_{ij}^2 = \boldsymbol{g}_{ii} + \boldsymbol{g}_{jj} - 2 \boldsymbol{g}_{ij}$$
 (ii)

Analizamos cada componente:

$$m{g_{ii}} = [m{X_i} - ar{m{X}}]' \, m{S^{-1}} \, [m{X_i} - ar{m{X}}]$$
 (Variable aleatoria univariada) (1xp) (pxp) (px1)

$$g_{ii} = tr[X_i - \overline{X}]' S^{-1} [X_i - \overline{X}]$$

$$oldsymbol{g_{ii}} = oldsymbol{tr} \left[oldsymbol{S^{-1}} \left[oldsymbol{X_i} - oldsymbol{\overline{X}}
ight] \left[oldsymbol{X_i} - oldsymbol{\overline{X}}
ight]'
ight]$$
 (Propiedad de traza)

Sumatoria sobre i:

$$\sum_{i} g_{ii} = \sum_{i} tr[S^{-1}[X_i - \overline{X}][X_i - \overline{X}]']$$

$$\sum_{i} g_{ii} = tr[S^{-1} \sum_{i} [X_i - \overline{X}][X_i - \overline{X}]']$$
(iii)

Sabemos que:

$$S = \frac{1}{n} \sum_{i} [X_i - \overline{X}][X_i - \overline{X}]'$$
 en (iii)

$$\sum_{i} g_{ii} = tr[S^{-1}nS]$$

Escuela Profesional de Ingeniería Estadística – FIEECS
FSM71 - ESTADÍSTICA MULTIVARIADA

1. DISTANCIA - EJERCICIOS
Prof. Luis Huamanchumo de la Cuba

 \rightarrow

$$\sum_{i} g_{ii} = n * tr[S^{-1}S]$$

 \Rightarrow

$$\sum_{i} g_{ii} = n * tr[I_p]$$

 \rightarrow

$$\sum_i g_{ii} = np$$

Sumando respecto a j:

$$\sum_{j,i} \boldsymbol{g}_{ii} = \boldsymbol{n}^2 \boldsymbol{p} \tag{iv}$$

Análogamente respecto a g_{ii}:

$$\sum_{i,j} g_{jj} = n^2 p \tag{V}$$

Para g_{ii}:

$$g_{ij} = [X_i - \overline{X}]' S^{-1} [(X_j - \overline{X}]]$$

$$\sum_{i,j} g_{ij} = \sum_{i,j} [X_i - \overline{X}]' S^{-1} [(X_j - \overline{X}] = 0$$
 (vi)

De (iv), (v) y (vi) en (ii):

$$D_{ij}^2 = n^2 p + n^2 p - s(0)$$

$$\Rightarrow$$

$$D_{ij}^2 = 2n^2p$$

UNIVERSIDAD NACIONAL DE INGENIERIA