

ELETROMAGNETISMO I – CÁLCULO E ELETROSTÁTICA

Sandro Dias Pinto Vitenti

Departamento de Física – CCE – UEL

1. Considere uma esfera dielétrica uniformemente carregada de raio a.

- (a) Encontre o campo elétrico dentro e fora da esfera usando a Lei de Gauss.
- (b) Encontre o potencial e o campo elétrico dentro e fora da esfera usando as equações de Poisson e Laplace.
- 2. Dado uma partícula de carga q_1 na posição $x_1 = (a, 0, 0)$ e uma placa condutora infinita e aterrada no plano $y \times z$, faça:
 - (a) Calcule o potencial elétrico no volume definido por $V = \{x \in \mathbb{R}^3 | x^1 > 0\}$ usando o método das imagens.
 - (b) Uma segunda carga q_2 é colocada na posição $x_2 = (a, b, 0)$, calcule o potencial elétrico em V.
 - (c) Calcule a carga superficial induzida na placa nas duas configurações acima. Bonus, é possível generalizar a solução do potencial para uma distribuição ρ definida em V? Como seria o resultado?
- 3. Considere dois cilindros condutores concêntricos,
 - (a) Deduza o operador Laplaciano em coordenadas cilíndricas.
 - (b) Considerando que não há cargas entre os cilindros, resolva a equação de Laplace na região entre eles usando o método da separação de variáveis.
- 4. Em um campo elétrico $E = E_0 e_3$ é colocada uma esfera condutora de raio R e carga q_t de forma que ela distorce o campo em sua proximidade. Calcule o potencial eletrostático V no exterior da esfera. Considere $V = V_0(r) + V_1(r) \cos \theta$, utilize as condições de contorno e a equação de Laplace.