6.13
$$i = C \frac{dU}{dt}$$
 or $V(k) = \frac{1}{2} \int_{-\infty}^{k} i(x) dx = V(kn) + \frac{1}{2} \int_{-\infty}^{k} i(x) dx$

if or $t \in [0, 2n]$, $V(t) = \frac{1}{2} \int_{-\infty}^{k} \int_{-\infty}^{\infty} i(x) dx = 7.565 t^{2} (in V)$

of $t = 2ms$, $V(2m) = 3V$

for $t \in [2m, 4m]$ $V(4) = V(2m) + \frac{15m}{5\mu} (t - 2m) = 3 + 363 (t - 2m)$

of $t = 4ms$, $V(4m) = 9V$

for $t \in [4m, 6m]$ $V(t) = V(4m) - \frac{5m}{5\mu} (t - 4m) = 9 - 163 (t - 4m)$

of $t = 6m$, $V(6m) = 7V$

for $t \in [6m, 8m]$ $V(t) = V(6m) + \frac{1}{5\mu} \int_{-\infty}^{\infty} \frac{1}{2m} \int_{-\infty}^{\infty} i(t - 6m)$

of $t = 6m$, $V(8) = 6V$

The every slowed in the copacitor is $\frac{1}{2} CV^{2}$, so

of $t = 1.4ms$, $V(1.9m) = 1.47 \Rightarrow t = \frac{1}{2} 5\mu \cdot 1.47 = 5.4 \mu J$
 $t = 3.3ms$, $V(3.3m) = 6.9 \Rightarrow t = 199 \mu J$
 $t = 4.3ms$, $V(3.3m) = 6.9 \Rightarrow t = 199 \mu J$
 $t = 6.7ms$, $V(8.3m) = 6.9 \Rightarrow t = 199 \mu J$
 $t = 6.7ms$, $V(8.3m) = 6.9 \Rightarrow t = 199 \mu J$
 $t = 6.7ms$, $V(8.3m) = 6.9 \Rightarrow t = 199 \mu J$
 $t = 6.7ms$, $V(8.3m) = 6.9 \Rightarrow t = 199 \mu J$
 $t = 6.7ms$, $V(8.3m) = 6.9 \Rightarrow t = 199 \mu J$
 $t = 6.7ms$, $V(8.3m) = 6.9 \Rightarrow t = 199 \mu J$
 $t = 6.7ms$, $V(8.3m) = 6.9 \Rightarrow t = 199 \mu J$
 $t = 6.7ms$, $V(8.3m) = 6.9 \Rightarrow t = 199 \mu J$

To find the peak, we note that

To find the slope is
$$\frac{1}{2} = \frac{5}{2} \approx 0$$
 $\frac{1}{2} \int s \, dc = 5 \, (A)$

$$V_{c} = \frac{15}{15} \cdot 25 = 15(V) \Rightarrow 5_{c} = \frac{1}{2} \cdot CV^{2} = \frac{1}{2} \cdot 56 - 3 \cdot 1V^{2} = 0.56 \text{ J}$$

$$I_{L} = \frac{25}{(10+15)(a)} = 1(A) \Rightarrow 5_{L} = \frac{1}{2} LI^{2} = \frac{1}{2} \cdot 5.5 \cdot 1^{2} = 0.25 \text{ J}$$

- 7.46 The step-by-step method for discontinuous variables (i.e. other than capacitor voltages and inductor currents)
 can be described as follows
 - I. Solve for ve (or 12) 5 Replace Cap(or Ind) by a voltage (or current) source ve (t) (or 12(4)) and solve the next ting circuit.
 - II. 1) Find $V_c(0^-)$ (or $I_c(0^+)$) with the txo-circuit.

 2) Set $V_c(0^+) = V_o(0^-)$ (or $I_c(0^+) = I_c(0^-)$) and substitute the capacitor with a voltage source $V_c(0^+)$ (or. the includer with a current source $I_c(0^+)$).

3) Compute the initial condition for the variable of interest, say x, such that $\infty(0+) = \text{value for the $t>0-circuit}$ (with the caps replaced by voltage sources).

4). Compute x(00) for the too circuit

s) Compute Rom as seen by the capacitor (or inductor) for the tro circuit.

6) x(6) = x(0) + [x(0)-x(0)] = 1/2 3 T=RTHC (0 Pa/L)

For our problem,

$$\frac{2}{3}$$
 $\frac{1}{2}$ $\frac{1}$

$$=\frac{1}{2}mA$$