PHYSICS DATA SHEET

Constants

Constants
Acceleration due to gravity
near Earth $ \vec{a}_g = 9.81 \text{ m/s}^2$
Gravitational constant $G = 6.67 \times 10^{-11} \mathrm{N \cdot m^2/kg^2}$
Radius of the Earth $r_E = 6.37 \times 10^6 \text{ m}$
Mass of the Earth $M_E = 5.97 \times 10^{24} \text{ kg}$
Elementary Charge $e = 1.60 \times 10^{-19} \mathrm{C}$
Coulomb's Law Constant $k = 8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$
Electron Volt $1eV = 1.60 \times 10^{-19} J$
Index of Refraction of Air. $n = 1.00$
Speed of Light in Vacuum $c = 3.00 \times 10^8 \text{m/s}$
Planck's Constant
$h = 4.14 \times 10^{-15} \text{eV} \cdot \text{s}$
Atomic Mass Unit $u = 1.66 \times 10^{-27} \text{ kg}$

Physics Principles

- **0** Uniform motion $(\vec{F}_{net} = 0)$
- **1** Accelerated motion $(\vec{F}_{net} \neq 0)$
- **2** Uniform circular motion (\vec{F}_{net} is radially inward)
- 3 Work-energy theorem
- **4** Conservation of momentum
- **5** Conservation of energy
- 6 Conservation of mass-energy
- **7** Conservation of charge
- **8** Conservation of nucleons
- **9** Wave-particle duality

Prefixes	Used with	SI Units
		Exponential
	Symbol	
atto	a	10 ⁻¹⁸
femto	f	10 ⁻¹⁵
pico	p	10 ⁻¹²
nano	n	10 ⁻⁹
micro	μ	10 ⁻⁶
milli	m	10 ⁻³
centi	с	10 ⁻²
deci	d	10 ⁻¹
deka	da	10 ¹
hecto	h	10^2
kilo	k	10^3
mega	M	10^6
	G	
tera	T	10 ¹²

Particles		
	Charge	Mass
Alpha Particle	+2 <i>e</i> 6.	$65 \times 10^{-27} \text{ kg}$
Electron	–1 <i>e</i> 9.	$11\times10^{-31}~\mathrm{kg}$
Proton	+1 <i>e</i> 1.	$67 \times 10^{-27} \text{ kg}$
Neutron	0 1.	$67 \times 10^{-27} \text{ kg}$

First-Generation Fermions

	Charge	Mass
Electron	–1 <i>e</i>	0.511 MeV/c^2
Positron	+1 <i>e</i>	0.511 MeV/c^2
Electron neutrino, v	0	$ < 50 \text{ eV/c}^2$
Electron antineutrino	$, \overline{\nu} \dots 0 \dots$	$ < 50 \text{ eV/c}^2$
Up quark, u	$+\frac{2}{3}e$	~5 MeV/c ² *
Anti-up quark, \overline{u}	$-\frac{2}{3}e$	~5 MeV/c ² *
Down quark, d	$-\frac{1}{3}e$	~10 MeV/c ² *
Anti-down quark, \overline{d} .	$+\frac{1}{3}e$	~10 MeV/c ² *

^{*}Current models seem to suggest a significantly lower mass of these quarks than those in this table

EQUATIONS

Kinematics

$$\vec{v}_{\text{ave}} = \frac{\Delta \vec{d}}{\Delta t}$$

$$\vec{d} = \vec{v}_{\rm f} t - \frac{1}{2} \vec{a} t^2$$

$$\vec{a}_{\rm ave} = \frac{\Delta \vec{v}}{\Delta t}$$

$$\vec{a}_{\rm ave} = \frac{\Delta \vec{v}}{\Delta t}$$
 $\vec{d} = \left(\frac{\vec{v}_{\rm f} + \vec{v}_{\rm i}}{2}\right)t$

$$\vec{d} = \vec{v}_i t + \frac{1}{2} \vec{a} t^2$$

$$\vec{d} = \vec{v}_{i}t + \frac{1}{2}\vec{a}t^{2}$$
 $v_{f}^{2} = v_{i}^{2} + 2ad$

$$\left|\vec{v}_{\rm c}\right| = \frac{2\pi r}{T}$$

$$\left|\vec{v}_{\rm c}\right| = \frac{2\pi r}{T}$$
 $\left|\vec{a}_{\rm c}\right| = \frac{v^2}{r} = \frac{4\pi^2 r}{T^2}$

Dynamics

$$\vec{a} = \frac{\vec{F}_{\text{net}}}{m}$$

$$\vec{a} = \frac{\vec{F}_{\text{net}}}{m}$$
 $\left| \vec{F}_{\text{g}} \right| = \frac{Gm_1m_2}{r^2}$

$$\left| \vec{F}_{\rm f} \right| = \mu \left| \vec{F}_{\rm N} \right| \qquad \left| \vec{g} \right| = \frac{Gm}{r^2}$$

$$|\vec{g}| = \frac{Gm}{r^2}$$

$$\vec{F}_{\rm s} = -k\vec{x}$$
 $\vec{g} = \frac{\vec{F}_{\rm g}}{dt}$

$$\vec{g} = \frac{\vec{F}_{\rm g}}{m}$$

Momentum and Energy

$$\vec{p} = m\vec{v}$$

$$E_{\rm k} = \frac{1}{2} m v^2$$

$$\vec{F}\Delta t = m\Delta \vec{v}$$
 $E_{\rm p} = mgh$

$$E_{\rm p} = mgh$$

$$W = |\vec{F}| |\vec{d}| \cos \theta \qquad E_{p} = \frac{1}{2} kx^{2}$$

$$E_{\rm p} = \frac{1}{2}kx^2$$

$$W = \Delta E$$

$$P = \frac{W}{t}$$

Waves

$$T = 2\pi \sqrt{\frac{m}{k}} \qquad m = \frac{h_i}{h_o} = \frac{-d_i}{d_o}$$

$$m = \frac{h_{i}}{h_{o}} = \frac{-d_{i}}{d_{o}}$$

$$T = 2\pi \sqrt{\frac{l}{g}}$$

$$T = 2\pi \sqrt{\frac{l}{g}} \qquad \frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i}$$

$$T = \frac{1}{f}$$

$$T = \frac{1}{f} \qquad \frac{\sin \theta_1}{\sin \theta_2} = \frac{\lambda_1}{\lambda_2} = \frac{v_1}{v_2} = \frac{n_2}{n_1}$$

$$v = f\lambda$$

$$v = f\lambda \qquad \qquad \lambda = \frac{d\sin\theta}{n}$$

$$f_{\rm o} = \left(\frac{v}{v \mp v_{\rm s}}\right) f_{\rm s}$$
 $\lambda = \frac{dx}{nl}$

$$\lambda = \frac{dx}{nl}$$

Electricity and Magnetism

$$\left| \vec{F}_{\rm e} \right| = \frac{kq_1q_2}{r^2}$$

$$\Delta V = \frac{\Delta E}{q}$$

$$\left| \vec{E} \right| = \frac{kq}{r^2} \qquad I = \frac{q}{t}$$

$$I = \frac{q}{t}$$

$$\vec{E} = \frac{\vec{F}_{\rm e}}{q}$$

$$ec{E} = rac{ec{F}_{
m e}}{q} \hspace{1cm} \left| ec{F}_{
m m}
ight| = I \, l_{\perp} \left| ec{B}
ight|$$

$$\left| \vec{E} \right| = \frac{\Delta V}{\Delta d}$$

$$\left| \vec{F}_{\rm m} \right| = q v_{\perp} \left| \vec{B} \right|$$

$$V = B \, v \, l \sin \theta$$

$$V = IR$$

Atomic Physics

$$W = hf_{o}$$

$$W = hf_{o}$$
 $E = hf = \frac{hc}{\lambda}$

$$E_{\rm k\,max} = q_{\rm e} V_{\rm stop}$$
 $N = N_{\rm o} \left(\frac{1}{2}\right)^{\rm n}$

$$N = N_{\rm o} \left(\frac{1}{2}\right)$$

Quantum Mechanics and Nuclear Physics

$$\Delta E = \Delta mc^2$$

$$E = pc$$

$$p = \frac{h}{\lambda}$$

$$p = \frac{h}{\lambda} \qquad \Delta \lambda = \frac{h}{mc} (1 - \cos \theta)$$

$$\lambda = \frac{h}{p} = \frac{h}{mv}$$

Trigonometry and Geometry

$$\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}}$$

$$m = \frac{\Delta y}{\Delta x}$$

Line

$$\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}$$

$$y = mx + b$$

$$\tan \theta = \frac{\text{opposite}}{\text{adjacent}}$$

$$c^2 = a^2 + b^2$$

Rectangle =
$$lw$$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Triangle =
$$\frac{1}{2}ab$$

Circle = πr^2

$$c^2 = a^2 + b^2 - 2ab\cos C$$

Circumference

Circle =
$$2\pi r$$

Graphing Calculator Window Format

$$x: \left[x_{\min}, x_{\max}, x_{\mathrm{scl}}\right]$$

$$y:[y_{\min},y_{\max},y_{\mathrm{scl}}]$$

Periodic Table of the Elements

1 H																	2 He
1.01 hydrogen																	4.00 helium
3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
lithium	beryllium											boron	carbon	nitrogen	oxygen	fluorine	neon
11 Na	12 Mg											13 AI	14 Si	15 P	16 S	17 CI	18 Ar
22.99 sodium	24.31 magnesium											26.98 aluminium	28.09 silicon	30.97 phosphorous	32.07 sulfur	35.45 chlorine	39.95 argon
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 C 0	28 N i	29 C u	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.64	74.92	78.96	79.90	83.80
potassium	calcium	scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gallium	germanium	arsenic	selenium	bromine	krypton
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
	87.62	88.91	91.22	92.91	95.94	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.75	127.60	126.90	131.29
rubidium	strontium	yttrium	zirconium	niobium	molybdenum	technetium	ruthenium	rhodium	palladium	silver	cadmium	indium	tin	antimony	tellurium	iodine	xenon
55 Cs	56 Ba	57-71	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
132.91	137.33		178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.21	208.98	(209)	(210)	(222)
cesium	barium	00 400	hafnium	tantalum	tungsten	rhenium	osmium	iridium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
87 Fr	88 Ra	89-103	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112Uub	113 Uut	114Uuq	115Uup	116Uuh	117Uus	118Uuo
(223)	(226)		(261)	(262)	(266)	(264)	(277)	(268)	(271)	(272)	(285)	(284)	(289)	(288)	(292)	(?)	(294)
francium	radium		rutherfordium	dubnium	seaborgium	bohrium	hassium	meitnerium	darmstadtium	roentgenium	ununbium	ununtrium	ununquadium	ununpentium	ununhexium	ununseptium	ununoctium

57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
138.91	140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium
89 Ac	90 Th	91 Pa	92 U	93 N p	94 Pu	95 Am	96 Cm	97 Bk	98 C f	99 Es	100Fm	101 M d	102 No	103 Lr
(227) actinium	232.04 thorium	231.04 protactinium	238.03 uranium	(237) neptunium	(244) plutonium	(243) americium	(247) curium	(247) berkelium	(251) californium	(252) einsteinium	(257) fermium	(258) mendelevium	(259) nobelium	(262) lawrencium