

พลังงานลม (Wind Energy)

ศิริชัย วัฒนาโสภณ

วัตถุประสงค์

- สามารถอธิบายถึงความแตกต่างระหว่างกำลังงานและพลังงานได้
- สามารถอธิบายถึงที่มาของลมได้
- รู้จักกังหันลมแต่ละประเภท
- สามารถนำพลังงานลมไปประยุกต์ใช้ได้
- สามารถอธิบายหลักการทำงานของกังหันลมผลิตไฟฟ้าได้

กำลังงานและพลังงาน (Power and Energy)

พลังงาน (J) = กำลังงาน (W) x เวลา (s)

การเกิดลม

- เนื่องจากความแตกต่างของอุณหภูมิสองแห่ง
 - อากาศเมื่อได้ความร้อนจะขยายตัว อากาศร้อนจึงลอยตัวสูงขึ้นอากาศที่อุณหภูมิต่ำ กว่าบริเวณข้างเคียงจะเคลื่อนที่เข้าแทนที่ การเคลื่อนที่ของอากาศเนื่องจากสองแห่ง มีอุณหภูมิต่างกันทำให้เกิดลม

แผนที่ศักยภาพพลังงานลมของประเทศไทย

WIND RESOURCE ASSESSMENT OF THAILAND

BACK TO INDEX

WIND MAPS INCLUDING CALM

กำลังและความเร็วลมรวมช่วงลมสงบ

Month - เดือน

1	2	3	4	<u>5</u>	6
7	8	9	10	11	12

เฉลียรายปี (Annaul Average)

กรมพัฒนาและส่งเสริมพลังงาน

DEPARTMENT OF ENERGY DEVELOPMENT AND PROMOTION

สนับสนุนโดย กองทุนเพื่อส่งเสริมการอนุรักษ์พลังงาน แผนที่ศักยภาพพลังงานลมของประเทศไทย

FINAL REPORT

WIND MAPS EXCLUDING CALM

กำลังและความเร็วลมไม่รวมช่วงลมสงบ

Month - เดือน

1	2	3	4	5	6
7	8	9	10	11	12

เฉลียรายปี (Annaul Average)

จัดทำโคย บริษัท เฟลโลว์ เอ็นจิเนียร์ส คอนซัลแดนตส์ จำกัด FELLOW ENGINEERS CONSULTANTS CO. ,LTD.

http://www2.dede.go.th/renew/Twm/main.htm

แผนที่ศักยภาพพลังงานลมของประเทศไทย

CHON BURI WIND MAP EXCLUDING CALM – ANNUAL AVERAGE แผนที่ศักยภาพพลังงานลม จ.ชลบุรี ไม่รวมช่วงลมสงบ - เฉลี่ยรายปี

No. / AMPHOE(shuna)	LONG	LAT	CLASS
1.Ko Si Chang (ช.เศา ะลีกั ง)	100.83	13.14	1.3
2.Bang La Mung (ช.บางละมุง)	100.94	13.02	1.2
3.Bo Thong (อ.บ่อทอง)	101.46	13.23	1.2
4.Ban Bung (ธ.บ้านปิ๋ง)	101.27	13.33	1.2
5.Phan Thong (ธ.พานทรง)	101.08	13.51	1.2
6.Phanat Nikhom (จ.พนัสนิคม)	101.19	13.46	1.2
7.Muang Chon Buri (จ.เมืองขอบุรี)	101.01	13.35	1.2
8.Sri acha (ธ.ศรีรา ศา)	100.94	13.18	1.2
9.Sattahip (ช.สัททีบ)	100.95	12.63	1.3
10.Nong Yai (ธ.หนองให ญ่)	101.4	13.2	1.2
11.Chan (สิ่ง ช.เลาะจันทร์)	101.36	13.38	1.2

CHON BURI WIND MAP INCLUDING CALM - ANNUAL AVERAGE แผนที่คักยภาพพลังงานลม จ.ชลบุรี รวมช่วงลมลงบ - เฉลี่ยรายปี

No. / AMPHOE(shus)	LONG	LAT	CLASS
1.Ko Si Chang (ช.เศา ะลีกั ง)	100.83	13.14	1.2
2.Bang La Mung (ช.บางละมุง)	100.94	13.02	1.2
3.Bo Thong (a.uiawaa)	101.46	13.23	1.2
4.Ban Bung (ช.บ้านบึง)	101.27	13.33	1.2
5.Phan Thong (ช.พานทรง)	101.08	13.51	1.2
6.Phanat Nikhom (ช.พนัสนิคม)	101.19	13.46	1.2
7.Muang Chon Buri (ร.เมืองขอบุรี)	101.01	13.35	1.2
8.Sri acha (ช.ศรีราจา)	100.94	13.18	1.2
9.Sattahip (ช.ลัททีบ)	100.95	12.63	1.2
10.Nong Yai (จ.ทนองใหญ่)	101.4	13.2	1.2
11.Chan (สิ่ง ช.เลาะจันทร์)	101.36	13.38	1.2

ลม (wind)

- ลม คือ อากาศที่เคลื่อนที่
- เกณฑ์สำหรับพิจารณาสภาพลม
 - ความเร็วลม Anemometer
 - ทิศทางลม ศรลม

ลม (wind)

- ▶ ลมที่นำมาใช้ประโยชน์ส่วนมากคือลมที่อยู่ใกล้ผิวโลก เรียกว่า ลมผิวพื้น
- ลมที่พัดในบริเวณพื้นผิวโลกภายใต้ความสูงประมาณ 1 km เหนือพื้นดิน
- ความเร็วลมมีการเปลี่ยนแปลงขึ้นอยู่กับระดับความสูง ดังแสดงในภาพ

ลม (wind)

กำลังของลม

$$P_{w} = \frac{1}{2} \rho A v^{3}$$

ho คือ ความหนาแน่นของอากาศ (kg/m^3) ho คือ พื้นที่หน้าตัด (m^2) ho คือ ความเร็วลม (m/s)

กังหันลม (wind turbine)

- เครื่องจักรกลอย่างหนึ่งที่สามารถรับและแปลงพลังงานจลน์จากการเคลื่อนที่ ของลมให้เป็นพลังงานกลได้
- กำลังงานที่กังหันสามารถสกัดได้จากกระแสลม

$$P_{w} = \frac{1}{2} C_{p} \rho A v^{3}$$

$$C_P$$
 คือ สัมประสิทธิ์กำลังงาน (Power Coefficient) มีค่าสูงสุด 0.59

การประยุกต์ใช้พลังงานลม

กังหันลมเพื่อการสูบน้ำ

- สูบน้ำเพื่อการบริโภค
- สูบน้ำเพื่อการชลประทาน
- หมุนเวียนน้ำ
- เพื่อใช้ประโยชน์ทั่วไป เช่น ทำนาเกลือ ทำการกักเก็บน้ำ

กังหันลมเพื่อการผลิตไฟฟ้า

กังหันลมเพื่อการสูบน้ำ

กังหันลมแนวแกนตั้ง (Vertical Axis Wind Turbine)

- มีแกนหมุนและใบพัดตั้งฉากกับการเคลื่อนที่ของลม
- มีประสิทธิภาพในการเปลี่ยนพลังงานต่ำ
- สามารถรับลมได้ทุกทิศทาง
- การใช้งานน้อย

- มีแกนหมุนขนานกับทิศทางของลมโดยมีใบพัดเป็นตัวตั้งฉากรับแรงลม
- มีอุปกรณ์ควบคุมกังหันให้หันไปตามทิศทางของกระแสลม เรียกว่า หางเสือ

▶ ใบกังหัน (Turbine Blades)

- o กังหันลมที่มีจำนวนใบมากจะใช้กับงานที่ต้องการแรงบิด (Torque) สูง
- กังหันลมที่มีจำนวนใบน้อยจะใช้กับงานที่ต้องการความเร็วรอบสูง

▶ เครื่องกำเนิดไฟฟ้า (Generator)

แผนภูมิแสดงกำลังไฟฟ้าและช่วงการทำงานของกังหันลมแบบต่างๆ

ขนาด	ф (m)	ความเร็ว (m/s)	กำลังไฟฟ้า	แรงดันไฟฟ้า
200 W	2.1	2.5 - 6	250	12/24 V
300 W	2.5	2.5 - 7	400	24 V
500	2.5	2.5 - 8	700	24/36 V
1 kW	2.7	2.5 - 9	1.3 kW	48 V
2 kW	3.1	2.5 - 9	2.5 kW	120/240 V
5 kW	6.4	2.5 - 10	6 kW	240 V
10 kW	8	2.5 - 10	12 kW	240/360 V
20 kW	8	2.5 - 12	25 kW	420 V

ระบบการติดตั้งกังหันลมเพื่อผลิตไฟฟ้า

ระบบการติดตั้งใช้งานแบบเดี่ยว (Stand Alone System)

เป็นระบบการติดตั้งกังหันลมเพื่อผลิตไฟฟ้าที่สามารถนำกระแสไฟฟ้าที่ ได้ไปใช้กับอุปกรณ์ไฟฟ้าได้โดยตรง

ระบบการติดตั้งใช้งานแบบเชื่อมต่อเข้าสู่ระบบสายส่ง(Grid Connected System)

เป็นระบบการติดตั้งกังหันลมเพื่อผลิตไฟฟ้าที่เชื่อมต่อเข้าสู่ระบบสายส่ง โดยกระแสไฟฟ้าที่ได้จะผ่านเข้าสู่ระบบสายส่งก่อนที่จะส่งจ่ายไปสู่ผู้ใช้ไฟฟ้า

ระบบการติดตั้งใช้งานแบบเดี่ยว (Stand Alone System)

ระบบการติดตั้งใช้งานแบบเชื่อมต่อเข้าสู่ระบบสายส่ง

เกณฑ์พิจารณาการติดตั้งกังหันลม

- ตรวจสอบและประเมินค่าศักยภาพชองพลังงานลมในพื้นที่
- ประเมินความต้องการพลังงานจากพลังงานลมที่เป็นจริง
- เลือกแบบกังหันที่เหมาะสม
 - ความเร็วลมพิกัด (Rated wind speed)
- วิเคราะห์ทางเศรษฐศาสตร์
 - ต้นทุนกังหันลมผลิตไฟฟ้า
 - ค่าดำเนินการและบำรุงรักษา (ประมาณปีละ 4% ของราคากังหันลม)
 - ราคากระแสไฟฟ้า

กังหันลมแบบแกนแนวตั้ง ที่บ้านอ่าวไผ่ อ.ศรีราชา จ.ชลบุรี

กังหันลมแบบแกนแนวนอน (แบบล้อจักรยาน) ที่บ้านอ่าวไผ่ อ.ศรีราชา จ.ชลบุรี

- กังหันลมผลิตไฟฟ้าที่ลำตะคอง อ.สีคิ้ว จ.นครราชสีมา
 - ความเร็วลม 6 m/s
 - ติดตั้ง 2 ชุด งบประมาณ 145 ล้านบาท
 - มีความสูง 68 เมตร กำลังการผลิตชุดละ 1.25 MW รวม 2.5 MW

- การไฟฟ้าฝ่ายผลิตแห่งประเทศไทยก็ทำการทดสอบกังหันลมผลิตไฟฟ้า บริเวณแหลมพรหมเทพ จังหวัดภูเก็ต ตั้งแต่ปี พ.ศ. 2539
 - กังหันลม BWC EXCEL-R/240 ขนาด 10 kW 2 ตัว จากประเทศอเมริกา
 - กังหันลม Nord Tank ขนาด 150 kW จากประเทศเดนมาร์ค

Wind Turbine Generator Components & Specification

Type: NTK 150/25

02.01.00 TECHNICAL DATA

1. MAIN SPECIFICATIONS

Nominal rating	:	150	kW
Rotor diameter	:	24.6	m
Swept rotor area	:	475	m^2
Hub height	:	32.5	m
Rotor speed	:	38	rpm
Complete weight approx.	:	21	tons

2. ROTOR

Number of blades	:	3	
Diameter	:	24.6	m
Swept rotor area	:	475	m²
Hub height standard	•	32.5	m
Rotor speed (Sync.)	;	37.6	rpm
Tip speed (Sync.)	:	48.4	m/s
Rotor shaft tilt	;	4	0
Tip setting	;	-0.5	0
Solidity	;	7.3	%
Power regulation	:		Stall
Orientation	;		Upwind
Complete weight approx.	:	3.9	tons

13.	GENERATOR
-----	------------------

Manufacturer

Manufacturer			ADD MOTOR
Type	:		M3CA 315 SMA, 4-pole
Enclosure	:		IP54, closed, jacket cooled
Form of mounting	:		B3, foot mounted
Insulation class	:		Class F
Frequency	:	50	Hz
Name plate rating	:	150	kW/Class B temperature rise
Maximum power rating	:	165	kW/Class F temperature rise
Full load current at 150 kW	:	275	Ampere
No load current	:	122	Ampere
Voltage	:	3 x 400	Volt
Rotation	:	1500 - 1512	RPM
KVAr no load	:	72	kVAr
KVAr full load	:	119	kVAr
Weight	•	750	kg
Generator load		Efficiency %	Power factor
125 %	:	95.0	: 0.82
100 %	:	95.0	: 0.80
75 %	:	94.6	: 0.75
50 %	:	93.4	: 0.65
25 %	:	89.1	: 0.42

ABB MOTOR

8. GEARBOX

8.1. General

Design : Two step parallel shafts/helical

Ratio : 1:39.90

Low speed shaft nom. : 38.0 rpm
High speed shaft max. : 1512 rpm
Nominal mechanical power : 175 kW

Application factor : $K_A = 1.3$

18. TOWER

Manufacturer : NORDTANK design
Conical tubular steel

Type : Conical tub

Tower height : 31 m

Plate/flange materials : Steel 37.2

Bolt material : ISO 8.8/10.9 hot dip galvanized

Protection : Epoxy painted

Weld seam control : Weld cl. B norm according to DS 412

Through a lockable door in the tower

Access : Infought a lockable do

Tower ascent : Internal ladder

Access to the nacelle : From nacelle platform

Total weight approx. : 11 tons

(m/s)	(kW)
0	0.0
1	0.0
2	0.0
3 .	0.0
4	2.4
5	13.3
6	30.4
7	49.3
8	70.9
9	93.3
10	116.3
11 .	136.7
12	153.9
13	164.5
14	168.0
15	167.4
16	165.1
17	162.4
18	160.9
19	160.4
20	160.0
21	160.0
22	160.0
23	160.0
24	160.0

ผลกระทบจากการใช้กังหันลม

- ด้านพื้นที่ กังหันลมจะต้องติดตั้งอยู่ห่างกัน 5-10 ของความสูงกังหัน แต่การติดตั้ง กังหันลมจะไม่ส่งผลกระทบต่อการใช้ประโยชน์จากพื้นที่ต่างๆ
- ด้านทัศนะวิสัย กังหันลมที่ติดตั้งอยู่ตามทุ่งหญ้า สร้างความสวยงาม สร้าง จินตนาการ และความคิดต่างๆ ให้กับผู้พบเห็น
- ด้านเสียง ระดับของเสียงในบริเวณอาคาร บ้านเรือนหรือที่พักอาศัยที่จะเป็นอันตราย ต่อมนุษย์อยู่ที่ไม่เกิน 40 เดซิเบล ที่ระยะห่างไม่เกิน 250 เมตร
- ความยั่งยืน การทำงานของกังหันลมผลิตไฟฟ้าไม่ก่อให้เกิดมลพิษ สามารถใช้เป็น เทคโนโลยีเพื่อการผลิตไฟฟ้าทดแทนการใช้พลังงานจากเชื้อเพลิงฟอสซิลและนิวเคลียร์ ดังนั้นเทคโนโลยีกังหันลมจึงเป็นอีกทางเลือกหนึ่งของการพัฒนาอย่างยั่งยืน

สรุป

ลมคือการเคลื่อนที่ของอากาศ อันเนื่องมาจากการเกิดความแตกต่าง ของอุณหภูมิหรือความกดอากาศระหว่างแหล่งต่างๆ บนพื้นโลก กังหันลมเป็น อุปกรณ์ที่ทำหน้าที่เปลี่ยนพลังงานจลน์จากการเคลื่อนที่ของลมให้เป็นพลังงาน กล พลังงานกลที่ได้สามารถนำไปใช้โดยตรงหรือนำไปประยุกต์ใช้สำหรับการ ผลิตกระแสไฟฟ้าโดยผ่านเครื่องกำเนิดไฟฟ้า

ในปัจจุบันได้มีการใช้เพื่อทดแทนการผลิตไฟฟ้าจากพลังงานซากดึกดำ บรรพ์ในอัตราส่วนที่มากขึ้นเรื่อยๆ เพราะพลังงานลมเป็นพลังงานสะอาดไม่ ก่อให้เกิดภาวะมลพิษที่ร้ายแรง และเป็นพลังงานที่ไม่มีต้นทุนในส่วนของ แหล่งกำเนิด

คำถามทบทวน

- จงอธิบายกระบวนการเกิดลม
- จงอธิบายถึงหลักการทำงานโดยทั่วไปในการนำเอาพลังงานลมมาใช้
- จงให้ความหมายและบอกความแตกต่างของช่วงเริ่มความเร็วลมและช่วงความเร็วลม
- จงบอกถึงประเภทของกังหันลมและลักษณะทั่วไปมาพอสังเขป
- จงบอกถึงส่วนประกอบหลักๆ ที่สำคัญของกังหันลมที่ใช้ในการผลิตไฟฟ้า
- จงบอกถึงส่วนประกอบหลักๆ ที่สำคัญของกังหันลมที่ใช้ในการสูบน้ำ
- จงกล่าวถึงศักยภาพและความเหมาะสมในการใช้พลังงานลมในประเทศไทย
- จงกล่าวถึงผลกระทบจากการใช้พลังงานลมมาพอสังเขป

เอกสารอ้างอิง

- http://www.i15.p.lodz.pl/strony/EIC/ec/energy.html
- http://www2.dede.go.th/renew/Twm/main.htm
- http://www.thaigoodview.com/library/contest2552/type1/science03/1 6/contents/p01.html
- http://th.wikipedia.org/
- http://www.eia.doe.gov/backgrndfig22.htm
- http://www.engineo.co.th/products/AVANTIS/AVANTIS%20wind%20tu rbine.html

