অনুক্রম ও ধারা

 নিচের অনুক্রমগুলো সমান্তর, গুণোত্তর, ফিবোনাচ্চি নাকি কোনোটিই নয়? কেন? সাধারণ পদ নির্ণয়সহ ব্যাখ্যা করো।

(i) 2, 5, 10, 17,.....

সমাধানঃ এটি সমান্তর নয় কারণ এর সাধারণ অন্তর ভিন্ন ভিন্ন।

যেমনঃ

আবার,

এটি গুণোত্তর নয় কারণ এর সাধারণ অনুপাত ভিন্ন ভিন্ন।

যেমনঃ

২্য় পদ
$$\div$$
 ১ম পদ $= 5 \div 2 = 2.5$

এটি ফিবোনাক্কি নয় কারণ এর পরবর্তী যে কোনো পদ পূর্ববর্বর্তী দুটি পদের সমষ্টির সমান নয়। যেমনঃ

১ম পদ + ২য় পদ =
$$2+5 \neq 10$$
 (৩য় পদ);

২য় পদ + ৩য় পদ =
$$5+10 \neq 17$$
 (৪র্থ পদ)

সাধারণ পদ নির্ণয়ঃ

লক্ষ করি

এখান থেকে লিখতে পারি.

$$\overline{1}$$
, $2.a_3 - a_2 + 2 = a_4$

বা,
$$a_n = 2a_{n\text{-}1} - a_{n\text{-}2} + 2$$
 [নির্নেয় সাধারন পদ]

(ii) 2, 7, 12, 17,.....

সমাধানঃ এটি সমান্তর কারণ এর সাধারণ অন্তর অভিন্ন।যেমনঃ

হয় পদ
$$-$$
 ১ম পদ $= 7 - 2 = 5$

সাধারণ পদ নির্ণয়ঃ

এখানে.

১ম পদ a, সাধারণ অন্তর d হলে সমান্তান্তর অনুক্রমের **বীজগণিতীয় রূপঃ** a, a+d, a+2d, a+3d ·····

এই অনুসারে, nতম পদ, $a_n = a + (n-1)d = 2 + (n-1)5$ [নির্নেয় সাধারণ পদ]

(iii) -12, 24, -48, 96,.....

সমাধানঃ এটি গুণোন্তর কারণ এর সাধারণ অনুপাত অভিন্ন।

যেমনঃ

সাধারণ পদ নির্ণয়ঃ

এখানে.

১ম পদ a, সাধারণ অনুপাত r হলে গুণোন্তর অনুক্রমের **বীজগণিতীয়** রূপঃ a, ar, ar^2 , ar^3 , \cdots

এই অনুসারে, nতম পদ, a_n = arⁿ⁻¹ = -12.(-2)ⁿ⁻¹ [নির্নেয় সাধারণ পদ]

(iv) 13, 21, 34, 55,.....

সমাধানঃ এটি ফিবোনাচ্চি কারণ এর পরবর্তী যে কোনো পদ পূর্ববর্বর্তী দুটি

পদের সমষ্টির সমান। যেমনঃ

সাধারণ পদ নির্ণয়ঃ

পদ কে F দ্বারা চিহ্নিত করলে,

সুত্রমতে n তম পদ, $F_n=F_{n-1}+F_{n-2}$ [নির্ণেয় সাধারন পদ]

(v) 5,
$$-3$$
, $9/5$, $-27/25$,.....

সমাধানঃ এটি গুণোন্তর কারণ এর সাধারণ অনুপাত অভিন্ন।

যেমনঃ

২য় পদ ÷ ১ম পদ =
$$(-3) \div 5 = -3/_5$$

৩য় পদ
$$\div$$
 ২য় পদ $= \frac{9}{5} \div (-3) = \frac{-3}{5}$

সাধারণ পদ নির্ণয়ঃ

এখানে, ১ম পদ a, সাধারণ অনুপাত r হলে গুণোন্তর অনুক্রমের **বীজগণিতীয়** রূপঃ a, ar, ar^2 , ar^3 , \cdots

এই অনুসারে, nতম পদ, $a_n=ar^{n-1}=5.(-3/5)^{n-1}$ [নির্নেয় সাধারণ পদ]

$$(vi)$$
 $\frac{1}{3}$, $\frac{2}{3}$, $\frac{4}{3}$, $\frac{8}{3}$,...

<mark>সমাধানঃ</mark> এটি গুণোন্তর কারণ এর সাধারণ অনুপাত অভিন্ন।

যেমনঃ ২য় পদ
$$\div$$
 ১ম পদ $= \frac{2}{3} \div \frac{1}{3} = 2$

৩য় পদ
$$\div$$
 ২য় পদ $=4/_3\div 2/_3=2$

সাধারণ পদ নির্ণয়ঃ

এখানে, ১ম পদ a, সাধারণ অনুপাত r হলে গুণোন্তর অনুক্রমের বীজগণিতীয় রূপঃ a, ar, ar^2 , ar^3 , \cdots

এই অনুসারে, nতম পদ, $a_n=ar^{n-1}=1/3,2^{n-1}$ [নির্নেয় সাধারণ পদ]

২. নিচের অনুক্রমগুলোর শৃন্যস্থান পুরণ করো।

(iv) ____,
$$10x^2$$
, $50x^3$, ____,

সমাধানঃ (i) 2, 9, 16, 23, 30, 37, 44.

[Hint: a_n = a+(n-1)d সূত্রমতে]

(ii) -35, -25, -15, -5, 5, 15.

[Hint: a_n = a+(n-1)d সূত্রমতে]

(iii) 32, 23, 14, 5, -4, -13.

[**Hint:** a_n = a+(n-1)d সূত্রমতে]

(iv) 2x, $10x^2$, $50x^3$, $250x^3$, $1250x^4$,

[Hint: a_n = arⁿ⁻¹ সূত্রমতে]

৩. ছকের খালি ঘরগুলো পূরণ করো।

[বি.দ্রঃ আমরা এই ছকেই সমাধানের ফল দ্বারা খালি ঘরগুলো পূরণ করে দিয়েছি, আর নিন্মে সমাধানের পদ্ধতি বিস্তারিত দেয়া হয়েছে।

ক্রমিক	১ম	সাধারণ	পদসংখ্যা	n তম	S_n
নং	পদ	অন্তর	n	পদ	
	a	d		a_n	
i.	2	5	10	47	245
ii.	-37	4	10	-1	-190
iii.	29	-4	14	-23	42
iv.	34	-2	13	10	286
v.	3/4	1/2	15	31/4	255
vi.	9	-2	18	-25	-144
vii.	7	7/3	13	35	1820/3
viii.	-4	7	25	164	2000
ix.	8	-3/4	15	_5/2	165/4
x.	2	2	50	100	2550

সমাধানঃ i) n তম পদ a_n = a + (n - 1)d

$$=2+(10-1)5$$

$$= 2 + 9 \times 5$$

$$= 2 + 45 = 47$$

সমষ্টি
$$S_n = \frac{1}{2}.n\{2a + (n-1)d\}$$

$$= \frac{1}{2} \times 10 \{2 \times 2 + (10 - 1)5\}$$

$$= 5 (4+9\times5)$$

$$= 5 \times 49 = 245$$

ii. [বি.দ্রঃ পাঠ্যবইয়ে S_n এর মান -180 দেওয়া আছে, আমরা যাচাই বাছাই করে পেয়েছি এটা
-190 হলে গ্রহণযোগ্য হয় এবং সেই অনুসারে সমাধান দেয়া হলো। তোমাদের মতামত থাকলে
আমাদের জানিও।

আমরা জানি, $S_n = \frac{1}{2}.n\{2a + (n-1)d\}$

$$\exists 1, 2S_n = n\{2a + (n-1)d\}$$

$$\sqrt{1}$$
, $-380 = n(-74+4n-4)$

$$\sqrt{1}$$
, $-380 = -74$ n $+4$ n²-4n

$$\sqrt{1}$$
, $-190 = -37n + 2n^2 - 2n$

$$\sqrt{1}$$
, $-190 = -39n + 2n^2$

$$4n - 39n + 2n^2 + 190 = 0$$

$$\sqrt{3}$$
, $2n^2-39n+190=0$

$$4n^2 - 20n - 19n + 190 = 0$$

$$\sqrt[4]{2}$$
, $2n(n-10)-19(n-10)=0$

[n এর মান ভগ্নাংশ হতে পারে না]

আবার,

সূত্রমতে,
$$a_n = a + (n - 1)d$$

$$\overline{a}$$
, $a_n = -37 + 9 \times 4$

$$\overline{a}$$
, $a_n = -37 + 36$

$$\therefore a_n = -1$$

iii. আমরা জানি

$$a_n = a + (n - 1)d$$

$$\sqrt{1}$$
, $-23 = 29 - 4n + 4$

$$\sqrt{3}$$
, $4n = -23-29-4$

বা,
$$4n = -56$$

$$\therefore$$
 n = $-56/_4 = 14$

আবার, আমরা জানি,

$$S_n = \frac{1}{2}.n\{2a + (n-1)d\}$$

$$4$$
, $S_n = 7\{58 + 13(-4)\}$

$$\overline{A}$$
, $S_n = 7(58-52)$

বা,
$$S_n = 7 \times 6$$

$$\therefore$$
 S_n =42

iv) আমরা জানি,

$$a_n = a + (n - 1)d$$

$$\overline{1}$$
, $10 = a + 12 \times (-2)$

$$\overline{1}$$
, $10 = a - 24$

$$\overline{a}$$
, $a = 10 + 24$

$$\therefore$$
 a = 34

আবার,

আমরা জানি,
$$S_n = \frac{1}{2}.n\{2a + (n-1)d\}$$

বা,
$$S_n = \frac{1}{2}.13\{2 \times 34 + (13 - 1)(-2)\}$$
 মান বসিয়ে

$$\exists 1, S_n = \frac{1}{2}.13\{68 + 12(-2)\}\$$

$$4$$
, $S_n = \frac{1}{2}.13\{68 - 24\}$

$$\overline{A}$$
, $S_n = \frac{1}{2}.13 \times 44$

$$\therefore$$
 S_n = 286

v) আমরা জানি,
$$a_n = a + (n - 1)d$$

বা,
$$31/_4 = \frac{3}{4} + (n-1)\frac{1}{2}$$
 মান বসিয়ো

$$\sqrt{31} = 3 + 2n - 2$$

$$\overline{1}$$
, $31 = 2n + 1$

বা,
$$2n = 31-1$$

বা,
$$2n = 30$$

$$\therefore$$
 n = 15

আবার,
$$S_n = \frac{1}{2}.n\{2a + (n-1)d\}$$

$$\exists 1, S_n = \frac{1}{2}.15\{2\times^3/_4 + (15-1)\frac{1}{2}\}$$

$$\exists 1, S_n = \frac{1}{2}.15\{\frac{3}{2} + (14)\frac{1}{2}\}$$

$$\exists 1, S_n = \frac{1}{2}.15\{17/2\}$$

বা,
$$S_n = 255$$

vi) আমরা জানি, $S_n = \frac{1}{2}.n\{2a + (n-1)d\}$

$$4$$
, $2S_n = n\{2a + (n-1)d\}$

বা,
$$2 \times -144 = n\{2 \times 9 + (n-1)(-2)\}$$
 [মান বসিয়ে]

$$\sqrt{1}$$
, $-288 = n(18-2n+2)$

$$\sqrt{1}$$
, $-288 = 18n-2n^2+2n$

$$\sqrt{1}$$
, $-288 = 20$ n -2 n²

$$\sqrt{1}$$
, $20n-2n^2+288=0$

$$\sqrt{1}$$
, $-2n^2+20n+288=0$

$$4n^2 - 20n - 288 = 0$$

$$\sqrt{n^2-10}$$
 n^2-10 n^2-10

বা,
$$n^2$$
-10n-144 = 0

$$\sqrt{n^2-18n+8n-144}=0$$

$$\sqrt[4]{n(n-18)} + 8(n-18) = 0$$

অথবা, n=8

[গ্রহনযোগ্য নয়]

আবার,
$$a_n = a + (n - 1)d$$

বা,
$$a_n = 9 + (18-1)(-2)$$
 [মান বসিয়ে]

$$\overline{a}$$
, $a_n = 9 + 17(-2)$

$$\overline{a}$$
, $a_n = 9 - 34$

$$\therefore$$
 $a_n = -25$

vii) আমরা জানি.

$$a_n = a + (n - 1)d$$

$$\sqrt{35} = 7 + 12d$$

$$d = \frac{28}{12} = \frac{7}{3}$$

আবার,
$$S_n = \frac{1}{2}.n\{2a + (n-1)d\}$$

বা,
$$S_n = \frac{1}{2}.13\{2 \times 7 + (35 - 1)^7/_3\}$$
 [মান বসিয়ো

$$\overline{A}$$
, $S_n = \frac{1}{2}.13\{14 + (34) \times \frac{7}{3}\}$

$$\P, S_n = \frac{1}{2}.13(14 + \frac{238}{3})$$

$$4, S_n = \frac{1}{2}.13(\frac{42}{3} + \frac{238}{3})$$

$$\exists 1, S_n = \frac{1}{2}.13(\frac{280}{3})$$

$$\exists 1. S_n = \frac{3640}{6}$$

$$S_n = \frac{1820}{3}$$

viii) আমরা জানি.

$$S_n = \frac{1}{2}.n\{2a + (n-1)d\}$$

$$\sqrt{1}$$
, $2000 = \frac{1}{2} \cdot 25(2a + 24 \times 7)$

$$41,2000 = \frac{1}{2}.25(2a + 168)$$

$$\overline{4}$$
, $(2a + 168) = \frac{2000 \times 2}{25}$

$$41, 2a+168 = 160$$

$$\overline{1}$$
, $2a = 160-168$

বা.
$$2a = -8$$

আবার.

$$a_n = a + (n - 1)d$$

$$a_n = -4 + (25 - 1)7$$
 মান বসিয়ে

$$a_n = -4 + 24 \times 7$$

$$a_n = -4 + 168$$

$$a_n = 164$$

ix) আমরা জানি.

$$S_n = \frac{1}{2}.n\{2a + (n-1)d\}$$

$$\sqrt[4]{165}/4 = \sqrt[4]{2.15} \{2a + 14 \times (-\sqrt[4]{4})\}$$

$$4 = \frac{1}{2} \cdot 15(2a - \frac{21}{2})$$

$$\boxed{4}, \frac{1}{2}.15(2a - \frac{21}{2}) = \frac{165}{4}$$

$$\overline{4}$$
, $(2a - \frac{21}{2}) = \frac{11}{2}$

$$\overline{1}$$
, $2a = \frac{11}{2} + \frac{21}{2}$

$$\overline{1}$$
, $2a = \frac{32}{2}$

$$\sqrt[3]{a} = \frac{32}{4}$$

বা,
$$a = 8$$

আবার,

$$a_n = a + (n - 1)d$$

$$a_n = 8 + (15 - 1)(-\frac{3}{4})$$
 [মান বসিয়ে]

$$a_n = 8 + 14 \times (-\frac{3}{4})$$

$$a_n = 8 - \frac{21}{2}$$

$$a_n = {}^{16}/_2 - {}^{21}/_2$$

$$a_n = -5/2$$

x) আমরা জানি,

$$S_n = \frac{1}{2}.n\{2a + (n-1)d\}$$

$$4$$
, $2S_n = n\{2a + (n-1)d\}$

বা,
$$2 \times 2550 = n\{2.2 + (n-1)2\}$$
 [মান বসিয়ে]

$$4 = n(4+2n-2)$$

$$4n+2n^2-2n$$

$$\overline{1}$$
, $5100 = 2n + 2n^2$

$$4$$
, $2550 = n + n^2$

$$\boxed{n + n^2 + 2550} = 0$$

$$\sqrt{n^2+n+2550}=0$$

$$7, n^2 + 51n - 50n + 2550 = 0$$

$$4, (n+51)(n-50)=0$$

অথবা, n=51 [গ্রহনযোগ্য নয়]

আবার, $a_n = a + (n - 1)d$

বা,
$$a_n = 2 + (50-1)2$$
 [মান বসিয়ে]

$$\overline{a}$$
, $a_n = 2 + 49 \times 2$

$$\overline{a}$$
, $a_n = 2 + 98$

∴
$$a_n = 100$$

৪. তোমার পড়ার ঘরের মেঝেতে তুমি সমবাহু ত্রিভুজাকৃতির একটি মোজাইক করতে চাও, যার বাহুর দৈর্ঘ্য 12 ফুট। মোজাইকে সাদা ও নীল রঙের টাইলস থাকবে। প্রতিটি টাইলস 12 ইঞ্চি দৈর্ঘ্যবিশিষ্ট সুষম ত্রিভুজাকৃতি। টাইলসগুলো বিপরীত রঙে বসিয়ে মোজাইকটি সম্পুর্ণ করতে হবে।

ক) ত্রিভুজাকৃতির মোজাইকটির একটি মডেল তৈরি করো।

সমাধানঃ আমি আমার ঘরে সমবাহু ত্রিভুজ আকৃতির একটা মোজাইক করতে চাই যার প্রতি বাহুর দৈর্ঘ্য ১২ ফুট। এবং এই মোজাইক করার জন্য আমি কতগুলো নীল ও কতগুলো সাদা টাইলস বেছে নিয়েছি যেখানে প্রতিটি টাইলস সমবাহু এবং বাহুর দৈর্ঘ্য ১২ ইঞ্চি। এখন টাইলসগুলো বিপরীত রঙে বসানোর জন্য আমি একটি মডেল তৈরি করেছি, মডেলটি নিন্মরূপঃ

খ) প্রত্যেক রঙের কয়টি করে টাইলস লাগবে?

সমাধানঃ সমবাহু ত্রিভুজাকৃতি মোজাইক এর বাহু AB = BC = CA = 12ফুট।

সুষম ত্রিভুজাকৃতি টাইলস এর বাহুর দৈর্ঘ্য =12 ইঞ্চি =1 ফুট। তাহলে, মডেল অনুসারে, ত্রিভুজাকৃতি মোজাইক এর বাহু BC বরাবর স্থাপিত নীল টাইলস এর সংখ্যা $=(12\div1)$ টি =12 টি। অর্থাৎ ১ম ধাপে নীল টাইলস এর সংখ্যা a=12 আবার.

সমবাহু ব্রিভুজাকৃতি মোজাইক ABC এর উচ্চতা= $\left(\sqrt{\frac{3}{2}}\right)$.12 ফুট। সুষম ব্রিভুজাকৃতি টাইলস এর উচ্চতা = $\left(\sqrt{\frac{3}{2}}\right)$.1ফুট।

তাহলে.

মডেলটিতে, মোট ধাপ সংখ্যা $n=\left(\sqrt{\frac{3}{2}}\right)$. $12\div\left(\sqrt{\frac{3}{2}}\right)$.1=12

এবং, ADE এর উচ্চতা =
$$\left(\sqrt{\frac{3}{2}}\right)$$
.12- $\left(\sqrt{\frac{3}{2}}\right)$.1= $\left(\sqrt{\frac{3}{2}}\right)$.11 ফুট।

এখন আমরা জানি সমবাহু ত্রিভুজের উচ্চতা $=\left(\sqrt{\frac{3}{2}}\right)$.a, এই সূত্র

অনুসারে $\left(\sqrt{\frac{3}{2}}\right)$.11 উচ্চতা বিশিষ্ট ত্রিভুজটি সমবাহু হবে এবং যার প্রতি বাহুর দৈর্ঘ্য 11 ফুট।

তাহলে, DE বরাবর নীল টাইলস রাখা যাবে (11÷1)টি= 11 টি। অর্থাৎ ২য় ধাপে নীল টাইলস এর সংখ্যা = 11

তাহলে, সমান্তর ধারা অনুসারে, সাধারন অন্তর d= (11-12) = -1 সূতরাং,

মডেলটিতে মোট নীল টাইলস এর সংখ্যা S_n

$$= \frac{1}{2}.n\{2a + (n-1)d\}$$

$$= \frac{1}{2}.12\{2.12 + (12 - 1)(-1)\}$$

$$=6{24+11(-1)}$$

$$=6(24-11)$$

$$= 6 \times 13 = 78 \ \hat{b}$$

এখন আবার.

মডেল অনুসারে, DE বরাবর সাদা টাইলস আছে 11টি কারণ DE = 11 ফুট। নীল টাইলসের ক্ষেত্রে প্রয়োগকৃত সকল সূত্র ও নিয়ম সাদা টাইলস এর ক্ষেত্রে ব্যবহার করলে সেক্ষেত্রে আমরা পাই,

$$a = 11, n = 11, d = -1$$

তাহলে, মোট সাদা টাইলস এর সংখ্যা S_n

$$= \frac{1}{2}.n \{2a + (n-1)d\}$$

$$= \frac{1}{2}.11\{2.11 + (11 - 1)(-1)\}$$

$$= \frac{1}{2}.11\{22 + 10(-1)\}$$

$$= \frac{1}{2}.11(22 - 10)$$

$$= \frac{1}{2}.11 \times 12$$

গ) মোট কতগুলো টাইলস প্রয়োজন হবে?

<mark>সমাধানঃ</mark> সমবাহু ত্রিভুজাকৃতি মোজাইক এর বাহুর দৈর্ঘ্য=12 ফুট।

 \therefore সমবাহু গ্রিভুজাকৃতি মোজাইক এর ক্ষেত্রফল= $\sqrt{rac{3}{4}}\cdot(12)^2$ বর্গ ফুট।

সুষম ত্রিভুজাকৃতি টাইলস এর বাহুর দৈর্ঘ্য = 12 ইঞ্চি = 1 ফুট।

 \therefore সুষম ত্রিভুজাকৃতি টাইলস এর ক্ষেত্রফল = $^{\sqrt{3}}/_4.(1)^2$ বর্গ ফুট। অর্থাৎ

সমবাহু ত্রিভুজাকৃতি মোজাইক সম্পূর্ণ করতে সুষম ত্রিভুজাকৃতি টাইলস

লাগবে
$$\frac{\sqrt{\frac{3}{4}}\cdot(12)^2}{\sqrt{\frac{3}{4}\cdot(1)^2}}$$

$$=(12)^2 \, \hat{\mathbb{D}}$$

৫. ছকের খালি ঘরগুলো পুরণ করো।

্বি.দ্রঃ অনুক্রম ও ধারা অধ্যায়ের এই ৫ নং সমস্যার ছক পূরণ করেই প্রকাশ করা হলো। কিভাবে ছক এ উত্তর বসানো হয়েছে তা ছকের নিচে সূত্র সহকারে বিস্তারিত দেয়া হয়েছে।

_					
ক্রমিক	১ম	সাধারণ	পদসংখ্যা	nত্য	সমষ্টি
নং	পদ	অনুপাত	n	পদ	S_n
	a	r		a_n	
i.	128	1/2	9	1/2	511/2
ii.	1	-3	8	-2187	-1640
iii.	$^{1}/\sqrt{_{2}}$	-√2	9	8√2	$(^{31}/\sqrt{_2}$ -
					7)
iv.	2	-2	7	128	86
v.	2	2	7	128	254
vi.	12	2	7	768	1524
vii.	27	1/3	5	1/3	121/3
viii.	3	4	6	3072	4095

i)
$$a_{n} = ar^{n-1}$$

$$\overline{1}$$
, $(\frac{1}{2})^{n-1} = \frac{1}{256}$

$$\overline{1}$$
, $(\frac{1}{2})^{n-1} = (\frac{1}{2})^8$

$$\therefore$$
 n = 9

আবার.

$$S_n = a(1-r^n) \div (1-r)$$

বা,
$$S_n = 128(1 - \frac{1}{2}) \div (1 - \frac{1}{2})$$
 [মান বসিয়ে..]

$$\overline{A}$$
, $S_n = 128(1-\frac{1}{512}) \div \frac{1}{2}$

$$\overline{A}$$
, $S_n = 128(511/_{512}) \times 2$

$$S_n = \frac{511}{2}$$

$ii) a_n = ar^{n-1}$

বা,
$$-2187 = a(-3)^{8-1}$$
 [মান বসিয়ে..]

$$\overline{1}$$
, $-2187 = a(-3)^7$

$$\overline{1}$$
, $-2187 = -2187a$

$$\therefore$$
 a = 1

এবং
$$S_n = a(1-r^n) \div (1-r)$$

$$S_n = 1\{1-(-3)^8\} \div \{1-(-3)\}$$
 [মান বসিয়ে..]

$$S_n = (1-6561) \div 4$$

$$S_n = -6560 \div 4$$

$$S_n = -1640$$

iii)
$$a_n = ar^{n-1}$$

বা,
$$8\sqrt{2} = (\frac{1}{\sqrt{2}})(-\sqrt{2})^{n-1}$$
 [মান বসিয়ে..]

$$\sqrt{16} = (-\sqrt{2})^{n-1}$$

$$\exists 1, (-\sqrt{2})^{n-1} = (-\sqrt{2})^8$$

আবার,
$$S_n = a(1-r^n) \div (1-r)$$

বা,
$$S_n = (\frac{1}{\sqrt{2}})\{1-(-\sqrt{2})^9\} \div \{1-(-\sqrt{2})\}$$
 ্যমান বসিয়ে]

$$\overrightarrow{\text{at}}, \ S_n = (\frac{1}{\sqrt{2}})\{1^9 - (-\sqrt{2})^9\} \div \{1 - (-\sqrt{2})\}$$

$$\overrightarrow{A}, S_n = (\frac{1}{\sqrt{2}})[(1^3)^3 - \{(-\sqrt{2})^3\}^3] \div \{1 - (-\sqrt{2})\}$$

$$\{1-(-\sqrt{2})\}$$
 [সূত্র $a^3-b^3=(a-b)(a^2+ab+b^2$ ব্যবহার করে]

বা,
$$S_n = (\frac{1}{\sqrt{2}})[\{1-(-\sqrt{2})\}\{1^2+1.(-\sqrt{2})+(-\sqrt{2})^2\}\{1-2\sqrt{2}+8\}]$$

$$\div\{1-(-\sqrt{2})\}$$
 [সূত্র $a^3-b^3=(a-b)(a^2+ab+b^2$ ব্যবহার করে]

$$\exists i, S_n = (\frac{1}{\sqrt{2}})[\{1-(-\sqrt{2})\}(1-\sqrt{2}+2)\{1-2\sqrt{2}+8\} \div \{1-(-\sqrt{2})\}\}$$

$$\exists \uparrow, S_n = (\frac{1}{\sqrt{2}})(1 - \sqrt{2} + 2) (1 - 2\sqrt{2} + 8)$$

$$\overrightarrow{A}, S_n = (\frac{1}{\sqrt{2}})(1 - \sqrt{2} + 2 - 2\sqrt{2} + 4 + 4\sqrt{2} + 8 - 8\sqrt{2} + 16)$$

$$\overline{A}$$
, $S_n = (\frac{1}{\sqrt{2}})(-7\sqrt{2} + 31)$

$$\exists i, S_n = (\frac{1}{\sqrt{2}})(31 - 7\sqrt{2})$$

$$\therefore S_n = (\frac{31}{\sqrt{2}} - 7)$$

$iv) a_n = ar^{n-1}$

$$\overline{1}$$
, $128 = a(-2)^{7-1}$

বা,
$$128 = a(-2)^6$$

$$\therefore$$
 a = 2

এবং,
$$S_n = a(1-r^n) \div (1-r)$$

$$\exists 1, S_n = 2 \times 129 \div 3$$

$$\therefore S_n = 86$$

$v) S_n = a(1-r^n) \div (1-r)$

$$7, 254 = 2(1-2^n) \div (1-2)$$

$$4$$
, $254 = 2(1-2^n) \div (-1)$

$$\overline{1}$$
, $254 = -2(1-2^n)$

বা,
$$2^n = 128$$

আবার,
$$a_n = ar^{n-1}$$

$$\overline{a}$$
, $a_n = 2.2^{7-1}$

∴
$$a_n = 128$$

$vi) a_n = ar^{n-1}$

$$\sqrt[4]{r^{n-1}} = \frac{768}{12}$$

$$\therefore$$
 rⁿ = 64r ·····.(i)

আবার,
$$S_n = a(1-r^n) \div (1-r)$$

$$\overline{1}$$
, $1524 = 12(1-r^n) \div (1-r)$

$$\overline{\P}$$
, $(1-r^n) \div (1-r) = \frac{1524}{12}$

$$\vec{1}, (1-r^n) \div (1-r) = 127$$

$$\overline{1}$$
, $(1-r^n) = 127(1-r)$

বা,
$$-r^n = 127-127r - 1$$

(i) ও (ii) থেকে পাই,

$$64r = 127r - 126$$

$$\overline{1}$$
, $r = \frac{126}{63}$

$$\therefore$$
 r = 2

এখন, r এর মান (i) নং এ বসিয়ে পাই,

$2^{n} = 64 \times 2$

$vii) a_n = ar^{n-1}$

$$\sqrt[3]{1}$$
, $\sqrt[1]{3} = 27(\sqrt[1]{3})^{n-1}$

$$\sqrt[3]{1/3}^{n-1} = 1/3$$

$$\overline{4}$$
, $(1/3)^{n-1} = 1/3 \times 27$

$$\sqrt[4]{n-1} = \frac{1}{81}$$

$$\sqrt[4]{1/3}^{n-1} = (1/3)^4$$

এবং,
$$S_n = a(1-r^n) \div (1-r)$$

$$\exists 1, S_n = (27-1/9) \div (1-1/3)$$

$$\exists 1, S_n = (243/_{9}-1/_{9}) \div (3/_{3}-1/_{3})$$

$$\overline{4}$$
, $S_n = \frac{242}{9} \div \frac{2}{3}$

বা,
$$S_n = \frac{242}{9} \times \frac{3}{2}$$

বা,
$$S_n = \frac{121}{3}$$

viii)
$$S_n = a(1-r^n) \div (1-r)$$

$$4095 = a(1-4^6) \div (1-4)$$

$$4095 = a(1-4096) \div (-3)$$

$$4095 = a(-4095) \div (-3)$$

$$\overline{a}$$
, $a = \frac{4095}{1365}$

$$\therefore$$
 a = 3

আবার,
$$a_n = ar^{n-1}$$

$$\overline{a}$$
, $a_n = 3.4^{6-1}$

বা,
$$a_n = 3.4^5$$

$$a_n = 3072$$

চিত্ৰ নং	চিত্ৰ	কয়েন সংখ্য
1	•	1
2		3
3		6
4	****	10
,		

n	সারির সংখ্যাগুলো	সারির সংখ্যাগুলোর সমষ্টি
1	1, 1	1 + 1 = 2
2	1, 2, 1	1+2+1=4
3	1 3 3 1	1+3+3+1=8
4	1 4 6 4 1	1+4+6+4+1=16

ক) ছ

. বি.

ছক – ২

চিত্রটি গঠন করে কয়েন সংখ্যা নির্ণয় করো।

সমাধানঃ ছক — ১ এর অনুক্রমের চিত্রটি পর্যবেক্ষন করি। প্রতিটি চিত্রে, চিত্র সংখ্যার সমান সংখ্যক কয়েন এর সারি আছে, এক সারি থেকে অপর সারিতে কয়েনের বৃদ্ধির হার 1 এবং ১ম সারিতে 1টি মাত্র কয়েন আছে। তাহলে. ১০ম চিত্রে.

কয়েন এর সারি সংখ্যা n = 10

সারি থেকে সারিতে কয়েনের বৃদ্ধির হার বা সাধারণ অন্তর d= 1

১ম সারিতে কয়েনের সংখ্যা a = 1

অতএব, ১০ম চিত্রে মোট কয়েন এর সংখ্যা S_n

$$= \frac{1}{2}.n\{2a + (n-1)d\}$$

$$= \frac{1}{2}.10(2.1+(10-1)1)$$

$$=5(2+9.1)$$

$$=5(2+9)$$

$$=5\times11$$

= 55

ফলে, দশম পদ 55 এর জন্য চিত্রটি নিন্মরুপঃ

•••••

খ) প্রদত্ত তথ্যের আলোকে nতম চিত্রের কয়েন সংখ্যা নির্ণয় করো।

সমাধানঃ ছক – ১ এর অনুক্রমের চিত্রটি পর্যবেক্ষন করি। প্রতিটি চিত্রে, চিত্র সংখ্যার সমান সংখ্যক কয়েন এর সারি আছে, এক সারি থেকে অপর সারিতে কয়েনের বৃদ্ধির হার 1 এবং ১ম সারিতে 1টি মাত্র কয়েন আছে।

তাহলে, \boldsymbol{n} তম চিত্রে, $\,$ কয়েন এর সারি সংখ্যা $=\boldsymbol{n}$

সারি থেকে সারিতে কয়েনের বৃদ্ধির হার বা সাধারণ অন্তর d=1

১ম সারিতে কয়েনের সংখ্যা a = 1

অতএব. N তম চিত্রে মোট কয়েন এর সংখ্যা S.,

$$= \frac{1}{2}.n\{2a + (n-1)d\}$$

$$= \frac{1}{2}.n\{2.1 + (n-1)1\}$$

$$= \frac{1}{2}.n\{2 + (n-1)\}$$

$$= \frac{1}{2}.n(2+n-1)$$

$$= \frac{1}{2}.n(n+1)$$
 [Ans.]

গ) n = 5 হলে, ছক-২ এর ২য় কলামের সংখ্যাগুলো নির্ণয় করো এবং দেখাও যে, nতম সারির সংখ্যাগুলোর সমষ্টি 2ⁿ সূত্রকে সমর্থন করে।

সমাধানঃ ছক – ২ পর্যবেক্ষন করে পাই.

প্রতিটি সারিতে ১ম ও শেষ সংখ্যা হলো 1 এবং মাঝের সংখ্যাগুলো হলো পূর্বের সারির পাশাপাশি দুইটি সংখ্যার যোগফলের সমান।

সেই অনুসারে, n = 5 এর ক্ষেত্রে আমরা পাই,

অতএব, n = 5 হলে,

ছক-২ এর ২য় কলামের সংখ্যাগুলোঃ 1, 5, 10, 10, 5, 1

nতম সারির সংখ্যাগুলোর সমষ্টিঃ

১ম সারির সংখ্যাগুলোর সমষ্টি = 2 = 21

২য় সারির সংখ্যাগুলোর সমষ্টি = 4 = 22

৩য় সারির সংখ্যাগুলোর সমষ্টি = $8 = 2^3$

৪র্থ সারির সংখ্যাগুলোর সমষ্টি = $16 = 2^4$

∴ n তম সারির সংখ্যাগুলোর সমষ্টি = 2ⁿ [দেখানো হলো]

ঘ) প্রতিটি সারির সমষ্টিগুলো নিয়ে একটি ধারা তৈরি করো এবং ধারাটির ১ম n সংখ্যক পদের সমষ্টি 2046 হলে, n এর মান নির্ণয় করো।

সমাধানঃ প্রতিটি সারির সমষ্টিগুলো নিয়ে একটি ধারা তৈরি করা হলো যা নিমরুপঃ

$$2 + 4 + 8 + 16 + \cdots$$

এখন, ধারাটিতে, ১ম পদ a = 2

সাধারণ অনুপাত $r = 4 \div 2 = 2$

পদসংখ্যা = n

সমষ্টি $S_n = 2046$

আমরা জানি, $S_n = a(1-r^n) \div (1-r)$

 $\boxed{4}, 2046 = 2(1-2^n) \div (1-2)$

4, $2046 = 2(1-2^n) \div (-1)$

$$\overline{1}$$
, $-2(1-2^n) = 2046$

$$\overline{1}$$
, $-2^n = -1024$

বা,
$$2^n = 1024$$

বা,
$$2^n = 2^{10}$$

$$\therefore$$
 n = 10

৭. n এর মান নির্ণয় করো, যেখানে $n \in N$.

[বিদ্রঃ \sum এর উপর n এবং নিচে k=1 সাইটে লেখা না যাওয়ায় শুধুমাত্র \sum দ্বারা প্রকাশ করেছি; তোমরা পাঠ্যপুস্তক অনুসারে লিখবে।

i)
$$\sum (20 - 4k) = -20$$

$$(20-4.1)+(20-4.2)+(20-4.3)+\cdots(20-4n)=-20$$

$$4(1+2+3+\cdots.n) = -20$$

$$4, 20n - 4.\frac{1}{2}.n\{2.1 + (n-1)1\} = -20$$

$$[S_n = \frac{1}{2}.n\{2a + (n - 1) d\}$$
 এর সূত্র প্রয়োগ করে]

$$\sqrt{1}$$
, $20n - 2$, $n(2 + n - 1) = -20$

$$4n = -20$$

$$\sqrt{3}$$
, $20n - 2n^2 - 2n = -20$

$$\sqrt{31}$$
, $-2n^2 + 18n = -20$

$$4n - 2n^2 + 18n + 20 = 0$$

বা,
$$2n^2$$
- $18n - 20 = 0$

$$\sqrt[3]{n^2 - 9n - 10} = 0$$

$$\sqrt{n^2-10n+n-10}=0$$

$$\sqrt[4]{n(n-10)} + 1(n-10) = 0$$

$$\P$$
, $(n+1)(n-10) = 0$

∴
$$n+1 = 0$$

∴ n=10

[n এর মান ঋনাত্মক হতে পারে না]

ii) $\sum (3k+2) = 1105$

সমাধানঃ এখানে, k = 1, 2, 3, · · · · n

$$(3.1+2)+(3.2+2)+(3.3+2)+\cdots+(3.n+2)=1105$$

$$7, 3(1+2+3+\cdots n) + 2n = 1105$$

$$4, 3.\frac{1}{2}.n\{2.1 + (n-1).1\} + 2n = 1105$$

$$S_n = \frac{1}{2}.n\{2a + (n-1)d\}$$
 এর সূত্র প্রয়োগ করে]

$$\sqrt{3}$$
, $\sqrt{2}$, $\sqrt{2}$ $\sqrt{2}$

$$\sqrt[4]{3.1/2}.n(n+1) + 2n = 1105$$

$$\sqrt[4]{3.1/2.(n^2+n)} + 2n = 1105$$

$$\sqrt[3]{(n^2+n)} + 4n = 2210$$

$$\boxed{3}, 3n^2 + 3n + 4n = 2210$$

$$\sqrt{3}$$
, 3 n²+7n – 2210 = 0

$$4n - 3n^2 - 78n + 85n - 2210 = 0$$

$$4n(n-26) + 85(n-26) = 0$$

$$\overline{1}$$
, $(n-26)(3n+85) = 0$

∴
$$n-26 = 0$$

$$\therefore$$
 n= 26

$$\underline{\text{iii)} \sum (-8). (0.5)^{k-1} = -\frac{255}{16}}$$

সমাধানঃ এখানে, $k = 1, 2, 3, \dots n$

$$(-8) \cdot (0.5)^{1-1} + (-8) \cdot (0.5)^{2-1} + (-8) \cdot (0.5)^{3-1} + \cdots + (-8) \cdot (0.5)^{n-1} = -255/16$$

$$71, (-8). \{(0.5)^0 + (0.5)^1 + (0.5)^2 + \dots + (0.5)^{n-1}\} = -255/_{16}$$

$$\boxed{1, (-8). \{(0.5)^0 + (0.5)^1 + (0.5)^2 + \dots + (0.5)^{n-1}\} = -255/16}$$

$$[S_n = a(1-r^n) \div (1-r)$$
 সূত্রমতে]

$$\boxed{1.(1-0.5^{\rm n}) \div 0.5} = \frac{255}{128}$$

$$4$$
, $(1-0.5^{\rm n}) \div 0.5 = \frac{255}{128}$

$$\sqrt[4]{(1-\frac{1}{2}n)} \div \frac{1}{2} = \frac{255}{128}$$

$$\sqrt[4]{(1-1/2^n)} = \frac{255}{256}$$

$$4^{-1/2}n = \frac{255}{256} - 1$$

$$\sqrt[4]{1}$$
 $\sqrt{2^n} = \frac{255}{256} - 1$

$$\sqrt[4]{1}_{2^n} = -1/2_{256}$$

$$\sqrt[4]{2^n} = \frac{1}{256}$$

$$\therefore$$
 n = 8

iv) $\sum (3)^{k-1} = 3280$

সমাধানঃ এখানে, $k=1,\,2,\,3,\,\cdots$ ে. n

$$(3)^{1-1} + (3)^{2-1} + (3)^{3-1} + \dots + (3)^{n-1} = 3280$$

$$\overline{4}$$
, $(3)^0 + (3)^1 + (3)^2 + \cdots + (3)^{n-1} = 3280$

$$4$$
, $(3)^0 \cdot (1-3^n) \div (1-3) = 3280$

$$\overline{4}$$
, 1.(1-3ⁿ) \div (-2) = 3280

$$\overline{4}$$
, $(1-3^n) = 3280 \times (-2)$

$$\overline{4}$$
, $-3^n = -6560-1$

$$\overline{4}$$
, $-3^n = -6561$

বা,
$$3^n = 6561$$

$$\overline{4}$$
, $3^n = 3^8$

$$\therefore$$
 n = 8

- ৮. একটি সমান্তর ধারার প্রথম, দ্বিতীয় ও ১০তম পদ যথাক্রমে একটি গুণোত্তর ধারার প্রথম, চতুর্থ ও ১৭তম পদের সমান।
- ক) সমান্তর ধারার ১ম পদ a, সাধারণ অন্তর d এবং গুণোত্তর সাধারণ অনুপাত r হলে, ধারা দুইটি সমন্বয়ে দুইটি সমীকরণ গঠন করো।

সমাধানঃ সূত্র অনুসারে,

প্রদত্ত সমান্তর ধারায়,

প্রদত গুণোত্তর ধারায়

$$8$$
র্থ পিদ = $ar^{4-1} = ar^3$

শর্ত অনুসারে,

: নির্ণেয় দুইটি সমীকরণঃ $a+d=ar^3$ ও $a+9d=ar^{16}$

খ) সাধারণ অনুপাত r এর মান নির্ণয় করো।

সমাধানঃ ক হতে পাই, a+d = ar³

$$\exists i, r = 3\sqrt{(1+d/a)} \cdots (i)$$

গ) গুণোত্তর ধারাটির ১০তম পদ 5120 হলে, a ও d এর মান নির্ণয় করো।

সমাধানঃ পরে দেয়া হবে…..

ঘ) সমান্তর ধারাটির ১ম 20টি পদের সমষ্টি নির্ণয় করো।

সমাধানঃ পরে দেয়া হবে…..

৯. একটি সমবাহু ত্রিভুজ আঁকো। এর বাহুগুলোর মধ্যবিন্দু সংযোগ করে আরেকটি সমবাহু ত্রিভুজ আঁকো।ওই ত্রিভুজের বাহুগুলোর মধ্যবিন্দু সংযোগ করে আরেকটি সমবাহু ত্রিভুজ আঁকো। এইভাবে পর্যায়ক্রমে ১০টি ত্রিভুজ অঙ্কন করলে এবং সর্ববহিস্থ ত্রিভুজটির প্রতি বাহুর দৈর্ঘ্য 64 মিমি হলে, সবগুলো ত্রিভুজের পরিসীমার সমষ্টি কত হবে নির্ণয় করো।

সমাধানঃ

একটি সমবাহু ত্রিভুজ ABC আঁকি যার প্রতি বাহুর দৈর্ঘ্য 64 মিমি অর্থাৎ ABC ত্রিভুজের পরিসীমা = $3 \times 64 \text{mm} = 192 \text{mm}$. এখন ABC এর বাহুগুলোর মধ্যবিন্দু সংযোগ করে আরেকটি সমবাহু ত্রিভুজ DEF আঁকি। এখন আমরা জানি, ত্রিভূজের যেকোনো দুইটি বাহুর মধ্যবিন্দুর সংযোজক সরলরেখা উহার তৃতীয় বাহুর অর্ধেক। তাহলে, DF = ½AC = ½×64 \text{mm} =

 $32 \mathrm{mm}$. এখন, যেহেতু অঙ্কিত DEF সমবাহু গ্রিভুজ সেহেতু DE=EF=DF= $32 \mathrm{mm}$ অর্থাৎ DEF এর পরিসীমা = $3 \times 32 \mathrm{mm} = 96 \mathrm{mm}$. আবার, DEF এর বাহুগুলোর মধ্যবিন্দু সংযোগ করে আরেকটি সমবাহু গ্রিভুজ GHI আঁকি। তাহলে, GH=HI=IG= $\frac{1}{2} \times 32 \mathrm{mm} = 16 \mathrm{mm}$ অর্থাৎ GHI এর পরিসীমা = $3 \times 16 \mathrm{mm} = 48 \mathrm{mm}$. একইভাবে পর্যায়ক্রমে ১০টি গ্রিভুজ আঁক। এখন, এইভাবে পর্যায়ক্রমে যদি অসীম গ্রিভুজ আঁকা হয় তাহলে আমরা গ্রিভুজগুলোর পরিসীমাগুলোকে একটি ধারা আকারে লিখতে পারি যা নিন্মরুপঃ $192 + 96 + 48 + \cdots$

সাধারন অনুপাত
$$r = 96 \div 192 = \frac{1}{2}$$

তাহলে, এই ধারার nতম পদের সমষ্টি S_n

$$= a(1-r^n) \div (1-r)$$

$$= 192(1-\frac{1}{2}n) \div (1-\frac{1}{2})$$

শর্তানুসারে, অঙ্কিত ত্রিভূজ সংখ্যা 10 অর্থাৎ n=10 এর ক্ষেত্রে, ধারাটির সমষ্টি

$$= 192(1 - \frac{1}{2}10) \div (1 - \frac{1}{2})$$

$$= 192(1 - \frac{1}{2}10) \div \frac{1}{2}$$

$$=384(1-\frac{1}{2})$$

$$=384(1-\frac{1}{1024})$$

$$=384 - \frac{384}{1024}$$

$$=384 - \frac{3}{8}$$

$$=\frac{384\times4-3}{}$$

$$=\frac{3069}{8}$$
 মি.মি. (Ans.)

১০. শাহানা তার শিক্ষা প্রতিষ্ঠানে একটি চারা গাছ রোপণ করল। এক বছর পর চারা গাছটির উচ্চতা 1.5 ফুট হলো। পরবর্তী বছর এর উচ্চতা 0.75 ফুট বৃদ্ধি পেল। প্রতি বছর গাছটির উচ্চতা পূর্বের বছরের বৃদ্ধিপ্রাপ্ত উচ্চতার 50% বাড়ে। এভাবে বাড়তে থাকলে 20 বছর পরে গাছটির উচ্চতা কত ফট হবে?

সমাধানঃ ১ বছর পর চারা গাছটির উচ্চতা = 1.5 ফুট

২ বছর পর চারা গাছটির উচ্চতা বৃদ্ধি পেল = 0.75 ফুট

৩ বছর পর চারা গাছটির উচ্চতা বৃদ্ধি পেল= 0.75 এর 50%

= 0.375 ফুট

৪ বছর পর চারা গাছটির উচ্চতা বৃদ্ধি পেল= 0.375এর 50%

= 0.1875 ফুট

তাহলে, উচ্চতা বৃদ্ধির ধারাঃ $0.75+0.375+0.1875+\cdots$ এখানে, a=0.75; $r=0.375\div0.75=0.1875\div0.375=\frac{1}{2}$; এবং, n=19 কারণ গাছের বৃদ্ধি ২য় বছর থেকে শুরু হয়। তাহলে, nতম বছরে গাছের মোট বৃদ্ধির পরিমাণ S_n

$$= a(1-r^n) \div (1-r)$$

$$= 0.75(1 - \frac{1}{2})^{19} \div (1 - \frac{1}{2})$$

$$=0.75(1-\frac{1}{2})^{19} \div \frac{1}{2}$$

$$= 1.5(1 - \frac{1}{2})^{19}$$

$$= 1.5(1 - \frac{1}{524288})$$

$$=1.5(524287/524288)$$

= 1.49999714 ফট

তাহলে, ২০ বছরে গাছটির উচ্চতা হবে

- = ১ম বছরেরের গাছের উচ্চতা + ১৯ বছরের গাছটির বৃদ্ধি
- = 1.5 + 1.49999714 ফুট
- = 2.99999714 ফুট
- ১১. তুমি তোমার পরিবারের গত ছয় মাসের খরচের হিসাব জেনে নাও। প্রতি মাসের খরচকে একেকটি পদ বিবেচনা করে সম্ভব হলে একটি ধারায় রূপান্তর করো। তারপর নিচের সমস্যাগুলো সমাধানের চেষ্টা করো।
- ক) ধারা তৈরি করা সম্ভব হয়েছে কী? হলে, কোন ধরনের ধারা পেয়েছ ব্যাখা করো।

<mark>সমাধানঃ</mark> হ্যাঁ ধারা তোরি করা হয়েছে। আমি একটি সামন্তর ধারা পেয়েছি। গত ছয় মাসে আমার পরিবারের খরচ নিন্মরুপঃ

মাস	খরচ (টাকা)
১ম	6000
২য়	6200
৩য়	6400
8র্থ	6600
৫ম	6800
৬ষ্ট	7000

এখানে, a=6000; d=6200-6000=200; n=6; অর্থাৎ এটি একটি সমান্তর ধারা।

খ) ধারার সমষ্টিকে একটি সমীকরণের মাধ্যমে প্রকাশ করো।

সমাধানঃ উপরোক্ত তথ্য হতে আমরা যে ধারাটি পাই তা নিন্মরুপঃ $6000+6200+6400+\cdots$

$$=6000 + (6000 + 200) + (6000 + 200 + 200) + \cdots$$

$$= a + (a+d) + (a+d+d) + \cdots$$

[১ম পদ,
$$6000 = a$$
, সাধারন অস্তর $200 = d$ ধরে]

$$= an + d\{(1+2+3+\cdots (n-1))\}$$

$$= \frac{2an}{2} + d.^{n}/_{2}(n-1)$$

$$= \frac{1}{2}n\{2a+(n-1)d\}$$

= ধারার সমষ্টি $\mathbf{S_n}$

অতএব, প্রাপ্ত সমীকরণ, $S_n = \frac{1}{2}.n\{2a + (n-1)d\}$

গ) পরবর্তী ছয় মাসে সম্ভাব্য মোট কত খরচ হতে পারে তা নির্ণয় করো। সমাধানঃ উপরোক্ত তথ্য হতে.

পরবর্তি ১ম মাসের খরচ = 7000 + 200 = 7200

- পরবর্তী ছয় মাসের মোট খরচ
 - $= \frac{1}{2}.n\{2a + (n-1)d\}$
 - $= \frac{1}{2}.6\{2.7000 + (6 1)200\}$
 - $=3(14000 + 5 \times 200)$
 - =3(14000+1000)

- $= 3 \times 15000$
- = 45000 টাকা।
- ঘ) পরিবারের মাসিক/বার্ষিক খরচ সম্পর্কে তোমার উপলব্ধিবোধ লিপিবদ্ধ করো।

সমাধানঃ পারিবারিক খরচ সম্পর্কে আমার উপলব্ধি হলো বর্তমান বাজার ব্যবস্থায় আমাদের খরচ দিন দিন বৃদ্ধি পাচ্ছে।