

Diversity-Based Trajectory and Goal Selection with Hindsight Experience Replay

Tianhong Dai¹, Hengyan Liu¹, Kai Arulkumaran^{1,2}, Guangyu Ren¹, and Anil Anthony Bharath¹

November 9, 2021

¹Imperial College London, London, United Kingdom

²Araya Inc., Tokyo, Japan

Table of contents

- 1. Sparse Reward Setting in Deep Reinforcement Learning
- 2. Hindsight Experience Replay
- 3. Our Method
- 4. Experiment Settings
- 5. Results
- 6. Conclusion

Sparse Reward Setting in Deep Reinforcement Learning

Sparse Reward Setting in DRL

In many real-world scenarios, an agent faces the challenge of sparse extrinsic reward. A typical condition is where an agent has to reach a goal and only receives a positive or non-negative reward signal when the agent is close enough to the target.

· Pros

- No need for designing reward functions manually with specific domain knowledge.
- Dense reward functions might only lead to specific solutions.

Cons

- Difficult to achieve positive feedback in the environment.
- Lead to longer training time or even fail to get a promising policy.

Goal-Oriented RL with Sparse Reward Setting

RL can be expanded to the multi-goal setting, where the agent's policy and the environment's reward function $\mathcal{R}(s_t, a_t)$ are also conditioned on a goal g.

- Desired goal g: the desired configuration of a target object (e.g., position).
- Achieved goal g_{t+1}^{ac} : the current configuration of a target object.

Figure 1: Description of goal-oriented environment.

Goal-Oriented RL with Sparse Reward Setting

The reward function can be defined as:

$$\mathcal{R}\left(g, g_{t+1}^{ac}\right) := \begin{cases} 0 & \text{if } \left\|g_{t+1}^{ac} - g\right\| \le \epsilon \\ -1 & \text{otherwise.} \end{cases} \tag{1}$$

Thus, it is difficult to achieve non-negative reward from the environment. Hindsight Experience Replay

Introduction of HER

Hindsight experience replay (HER) was proposed to improve the learning efficiency of goal-oriented RL agents in sparse reward settings: when past experience is replayed to train the agent, the desired goal g is replaced (in "hind-sight") with the achieved goal g_{t+1}^{ac} , generating many positive experiences.

Figure 2: Illustration of hindsight goal relabelling.

Limitations of HER and Previous Works

· Limitations

- It can be inefficient in its use of uniformly sampling transitions during training.

• HER with Energy-Based Prioritisation (HEBP) [Zhao et al., 2018]

- Assume semantic knowledge about the goal-space and use the energy of the target objects to sample trajectories with high energies, and then samples transitions uniformly.
- Curriculum-Guided HER (CHER) [Fang et al., 2019]
 - Sample trajectories uniformly, and then sample transitions based on a mixture of proximity to the desired goal and the diversity of the samples.

Our Method

Diversity-Based Trajectory and Goal Selection with HER

In this work, we introduce diversity-based trajectory and goal selection with HER (DTGSH; See Fig. 1), which samples trajectories based on the diversity of the goals achieved within the trajectory, and then samples transitions based on the diversity of the set of samples.

- · Converges faster and reaches higher rewards than prior work.
- · Without requiring domain knowledge or tuning a curriculum.
- Based on a single concept determinantal point processes (DPPs)

Figure 3: Illustration of DTGSH.

Determinantal Point Processes (DPPs)

Formally, for a discrete set of points $\mathcal{Y} = \{x_1, x_2, \cdots, x_N\}$, a point process \mathcal{P} is a probability measure over all $2^{|\mathcal{Y}|}$ subsets. \mathcal{P} is a DPP if a random subset \mathbf{Y} is sampled with probability:

$$\mathcal{P}_{L}(Y = Y) = \frac{\det(L_{Y})}{\sum_{Y' \subseteq \mathcal{Y}} \det(L_{Y'})} = \frac{\det(L_{Y})}{\det(L + I)},$$
 (2)

The kernel matrix L can be represented as the Gram matrix $L = X^T X$, where each column of X is the feature vector of an item in \mathcal{Y} . The determinant, $\det(L_Y)$, represents the (squared) volume spanned by vectors $x_i \in Y$.

Figure 4: Illustration of determinant.

Diversity-Based Trajectory Selection

We propose a diversity-based prioritization method to select valuable trajectories for efficient training. We hypothesise that trajectories that achieve diverse goal states g_t^{ac} are more valuable for training.

Figure 5: Illustration of diversity-based trajectory selection.

Diversity-Based Trajectory Selection

The diversity d_{τ_j} of each partial trajectory τ_j can be computed as:

$$d_{\tau_j} = \det(L_{\tau_j}), \tag{3}$$

where L_{τ_i} is the kernel matrix of partial trajectory τ_i :

$$L_{\tau_i} = M^{\mathsf{T}} M, \tag{4}$$

and $M = [\hat{g}_n^{ac}, \hat{g}_{n+1}^{ac}, \cdots, \hat{g}_{n+b-1}^{ac}]$, where each \hat{g}^{ac} is the ℓ_2 -normalised version of the achieved goal g^{ac} . Finally, the diversity $d_{\mathcal{T}}$ of trajectory \mathcal{T} is the sum of the diversity of its N_p constituent partial trajectories:

$$d_{\mathcal{T}} = \sum_{j=1}^{N_p} d_{\tau_j}.\tag{5}$$

The probability $p(T_i)$ of sampling trajectory T_i from a replay buffer of size N_e is:

$$p(\mathcal{T}_i) = \frac{d\tau_i}{\sum_{n=1}^{N_e} d\tau_n}.$$
 (6)

Diversity-Based Goal Selection

In order to form a minibatch with diverse goals for more efficient learning, we use *k*-DPPs for sampling goals. Compared to the standard DPP, a *k*-DPP is a conditional DPP where the subset *Y* has a fixed size *k*, with the probability distribution function:

$$\mathcal{P}_{L}^{k}(\mathbf{Y} = \mathbf{Y}) = \frac{\det(L_{\mathbf{Y}})}{\sum_{|\mathbf{Y'}|=k} \det(L_{\mathbf{Y'}})}.$$
 (7)

- 1. Uniformly sample a transition from each of the *m* trajectories, and relabel them using hindsight to form *m* candidate transitions.
- 2. A k-DPP is used to sample k (k < m) transitions based on the relabelled goals g' (i.e. candidate goals).
- 3. Use *k* selected transitions to train the model.

Diversity-Based Goal Selection

(a) Plot of candidate goals and selected goals.

(b) Kernel density estimation of the distributions of goals.

Figure 6: Visualisation of k = 32 goals selected from m = 100 candidate goals of the Push task using either uniform sampling or k-DPP sampling.

Experiment Settings

Environments

We evaluate our proposed method on five challenging robotic manipulation tasks.

Figure 7: Robotic manipulation environments. (a-b) use the Fetch robot, and (c-e) use the Shadow Dexterous Hand.

Results

Comparison with Previous Works - Learning Curve

Figure 8: Success rate of DTGSH and baseline approaches.

Comparison with Previous Works - Quantitative Results

	Push	Pick&Place	EggFull	BlockRotate	PenRotate
DDPG	0.09±0.01	0.04±0.00	0.00±0.00	0.01±0.00	0.00±0.00
DDPG+HER	1.00±0.00	0.89±0.03	0.11±0.01	0.55±0.04	0.15±0.02
DDPG+HEBP	$1.00 {\pm} 0.00$	0.91±0.03	0.14±0.02	0.59±0.02	0.20±0.03
DDPG+CHER	1.00±0.00	0.91±0.04	0.15±0.01	0.54±0.04	0.17±0.03
DDPG+DTGSH	1.00±0.00	0.94±0.01	0.17±0.03	0.62±0.02	0.21±0.02

Table 1: Final mean success rate \pm standard deviation, with best results in **bold**.

Conclusion

Conclusion

Our experiments empirically show that DTGSH achieves:

- · Faster learning speed and higher final performance.
- Does not require semantic knowledge of the goal space.
- · Does not require tuning a curriculum.

Thank You For Listening.