B22228 - Assignment

1. Construct a Simulink model for load frequency control for given data

Fig.- Block diagram of load frequency control

$ au_g$	$ au_T$	Н	D	R	ΔP_L
0.2	0.5	5	0.8	0.05	0.45 pu
0.2	0.5	5	0.8	0.05	0.2pu

Comment the effect of $\Delta \boldsymbol{P}_L$ variation on Frequency nadir.

ANSWER:

- For ΔP_L=0.2 (blue graph): The frequency deviation is less pronounced here, with a higher frequency nadir. This shows that a smaller load change leads to a less severe dip in frequency. the frequency nadir is -1.485e-02.
- For ΔP_L=0.45 (yellow graph): The frequency deviation is more in this case, and the nadir (lowest frequency point) is lower. This indicates that a larger load change causes a deeper dip in frequency, resulting in a lower frequency nadir i.e -3.344e-02

Conclusion:

Increasing the load change (ΔP_L) lowers the frequency nadir i.e increasing the deeper dip , causing the system to experience a greater frequency deviation. Thus, a larger load disturbance results in a more pronounced drop in frequency.