An introduction to Bayesian modeling using R and JAGS

Instructors Kent Holsinger Xiaojing Wang

University of Connecticut

22 July 2015

Overview of the Workshop

- Focus on using R and JAGS for Bayesian analysis
- Linear regression including mixed modeling Kent Holsinger
 - Simple linear regression
 - Multiple regression (including random effects)
- Multicollinearity Xiaojing Wang
 - Hierarchical independent prior distributions
 - Variable selection

Linear Regression

One of the most common statistical procedures in ecology and evolution. For example,

- ▶ Data on LMA from 535 individuals in the genus *Protea* (42 species, 48 sites, 142 unique site/species combinations)
- ▶ Data on mean annual temperature for each of those sites

Linear Regression

In R

```
> summarv(lm(lma ~ mat, data=tmp))
Call:
lm(formula = lma ~ mat, data = tmp)
Residuals:
      Min
                10
                      Median
                                    30
                                             Max
-0.025126 -0.005781 -0.000785 0.004647 0.044444
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0521895 0.0027116 19.246 < 2e-16 ***
           -0.0013587 0.0001785 -7.611 1.24e-13 ***
mat
___
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.009815 on 533 degrees of freedom
Multiple R-squared: 0.09803, Adjusted R-squared: 0.09634
F-statistic: 57.93 on 1 and 533 DF, p-value: 1.241e-13
```

Linear Regression

Remember basic assumptions of simple linear regression

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

 $\epsilon_i \sim N(0, \sigma^2)$

Here's another way to write that

$$y_i \sim N(\mu_i, \sigma^2)$$

 $\mu_i = \beta_0 + \beta_1 x_i$

The second way of writing the model will be more convenient for us, so that's the approach we'll use.

Statistical Analysis

Statistical inference is the process of learning about the general characteristics of a population from a sample.

- ▶ Characteristics often expressed in terms of parameters θ .
- ▶ Measurements on the subset of members given by numerical values *Y*.
- ▶ Before the data are observed, both Y and θ are unknown.
- ▶ A probability model is assumed for observed data if we knew θ is the truth.
- ▶ What if we have prior information about θ ?

Bayesian Inference

Bayesian inference allows us to update prior beliefs with the observed data to quantify uncertainty about θ .

- ▶ Prior Distribution: $p(\theta)$
- ▶ Sampling Model (likelihood): $p(y \mid \theta)$
- Posterior Distribution

$$p(\theta \mid y) = \frac{p(y \mid \theta)p(\theta)}{p(y)}$$

► Calculating p(y) is typically very challenging. Use MCMC (implemented in JAGS) to estimate $p(\theta \mid y)$.

Metropolis-Hastings Algorithm

For θ_j

- lacktriangle Propose a new $heta_j^* \sim q(heta_j^*| heta_j^{(t)})$
- Calculate Metropolis-Hastings ratio

$$\alpha = \frac{p(Y|\theta_j^*)p(\theta_j^*)/q(\theta_j^*|\theta_j^{(t)})}{p(Y|\theta_j^{(t)})p(\theta_j^{(t)})/q(\theta_j^{(t)}|\theta_j^*)}$$

• if $\alpha < 1$ set

$$\theta_j^{(t+1)} = \begin{cases} \theta_j^* & \text{with probability } \alpha \\ \theta_j^{(t)} & \text{with probability } 1 - \alpha \end{cases}$$

If
$$\alpha > 1$$
 set $\theta_j^{(t+1)} = \theta_j^*$

- Repeat for $j = 1, \ldots, J$
- ▶ Repeat for t = 1, ..., T

Linear Regression - as a Bayesian

We start with the sampling model $p(y \mid \theta)$, where $\theta = (\beta_0, \beta_1, \sigma^2)'$,

$$y_i \sim N(\mu_i, \sigma^2),$$

 $\mu_i = \beta_0 + \beta_1 x_i,$

and x_i is the value of the covariate in individual i. Then we add prior distributions $p(\theta)$,

$$eta_0 \sim \mathsf{N}(0, au^{-1}),$$
 $eta_1 \sim \mathsf{N}(0, au^{-1}),$
 $\sigma^2 = rac{1}{ au_{resid}},$
 $au_{resid} \sim \mathsf{Gamma}(1, \phi)$

Linear Regression - in R+JAGS¹

Rescale all variables to mean of 0, standard deviation of 1

```
Inference for Bugs model at "simple-linear-regression.jags", fit using jags,
5 chains, each with 10000 iterations (first 5000 discarded), n.thin = 5
n.sims = 5000 iterations saved
                               2.5%
                                                 50%
                                                         75%
                                                               97.5% Rhat n.eff
            mu.vect sd.vect
                                        25%
              0.000 0.041 -0.082
                                    -0.028
                                              0.000
                                                       0.028 0.080 1.001 5000
beta 0
             -0.313 0.041
                           -0.393
                                    -0.341
                                             -0.314
                                                      -0.285
                                                               -0.231 1.002 1900
beta.mat
sigma.resid
             0.953 0.029
                            0.897
                                    0.933
                                               0.952
                                                       0.972
                                                              1.012 1.001 3700
```

Compare with Im() results from R

Residual standard error: 0.9506 on 533 degrees of freedom

¹simple-linear-regression.jags

Robust Regression

What do we do with outliers?

- ► Could delete the observation if we have good evidence that it's an error.
- Probably better to use an approach that leaves the data in and gives less weight to outliers.

Robust Regression³

Use a Cauchy distribution ("fat tails") instead of normal for prior on regression coefficients and residual error.²

		Coefficient estimates			
Model	Data set	$eta_{f 0}$	etamat		
Simple	Original	0.000	-0.313		
	Modified	0.028	-0.372		
Robust	Original	-0.078	-0.294		
	Modified	-0.079	-0.293		

Estimates not affected by extreme outlier when using Cauchy prior.

²t distribution with 1 degree of freedom in JAGS

³robust-linear-regression.jags

Multiple Linear Regression

Simple generalization of what we've already seen

$$y_i \sim N(\mu_i, \sigma^2),$$

 $\mu_i = \beta_0 + \sum_{k=1}^K \beta_k x_{ik},$

where x_{ik} is the value of the kth covariate in individual i. The priors are

$$\begin{array}{rcl} \beta_k & \sim & \mathsf{N}(0,\tau^{-1}), & k=0,\ldots,K \ , \\ \\ \sigma^2 & = & \frac{1}{\tau_{\mathit{resid}}} \ , \\ \\ \tau_{\mathit{resid}} & \sim & \mathsf{Gamma}(1,\phi). \end{array}$$

Multiple Linear Regression⁴

From JAGS

```
Inference for Bugs model at "multiple-linear-regression.jags", fit using jags,
5 chains, each with 10000 iterations (first 5000 discarded), n.thin = 5
n.sims = 5000 iterations saved
```

```
2.5%
                                     25%
                                            50%
                                                    75%
                                                          97.5% Rhat n.eff
           mu.vect sd.vect
beta.0
             0.000
                   0.040 -0.078
                                  -0.027
                                           0.000
                                                  0.028
                                                          0.078 1.001
                                                                      4800
           0.106
                  0.073 -0.036
                                  0.058
                                           0.105
                                                  0.154
                                                          0.251 1.001
                                                                     5000
beta.cdd
beta.elev
          -0.319 0.094
                          -0.500
                                  -0.384
                                          -0.319
                                                  -0.256
                                                          -0.136 1.001
                                                                     5000
beta.inso
           0.054 0.053
                          -0.048
                                  0.018
                                          0.054
                                                  0.091
                                                          0.157 1.001 5000
beta.map
          -0.022
                  0.078
                          -0.178 -0.074
                                          -0.020
                                                  0.031
                                                         0.129 1.001 5000
          -0.463
                  0.114
                          -0.688
                                  -0.541
                                          -0.461
                                                  -0.385
                                                          -0.243 1.001 5000
beta.mat
beta ratio
          -0.016
                  0.079 -0.172 -0.069
                                          -0.013
                                                  0.039
                                                          0.134 1.001 5000
sigma.resid
          0.939 0.029
                         0.884
                                  0.919
                                          0.939
                                                  0.958
                                                          1.000 1.001 5000
```

Compare to Im() from R

```
| Estimate Std. Error t value \Pr(>|t|) | CIntercept| -3.520e-17 | 4.052e-02 | 0.000 1.000000 | cdd | 1.051e-01 | 7.315e-02 | 1.437 | 0.151291 | elev | -3.184e-01 | 5.534e-02 | -3.339 | 0.000899 | *** | inso | 5.288e-02 | 5.287e-02 | 1.000 | 0.317702 | map | -2.309e-02 | 7.749e-02 | -0.298 | 0.765836 | mat | -4.629e-01 | 1.147e-01 | -4.037 | 6.2e-05 | *** | ratio | -1.481e-02 | 7.944e-02 | -0.186 | 0.852218 | |
```

Residual standard error: 0.9373 on 528 degrees of freedom

⁴multiple-linear-regression.jags

Multiple Linear Regression with Species Random Effect

 $\gamma_i^{(s)}$ denotes the mean for species s to which inidividual i belongs

$$y_{i} \sim N(\mu_{i}, \sigma_{resid}^{2}),$$

$$\mu_{i} = \beta_{0} + \sum_{k=1}^{K} \beta_{k} x_{ik} + \gamma_{i}^{(s)},$$

$$\sigma_{resid}^{2} = \frac{1}{\tau_{resid}},$$

$$\tau_{resid} \sim Gamma(1, \phi),$$

$$\gamma_{i}^{(s)} \sim N(0, \sigma_{species}^{2}),$$

$$\sigma_{species}^{2} = \frac{1}{\tau_{species}},$$

$$\tau_{species} \sim Gamma(1, \phi),$$

$$\beta_{k} \sim N(0, \tau^{-1}), \quad k = 0, \dots, K.$$

Multiple Linear Regression with Species Random Effect

Alternatively

$$y_{i} \sim \mathsf{N}(\mu_{i}, \sigma_{resid}^{2}) ,$$

$$\mu_{i} = \beta_{0i}^{(s)} + \sum_{k=1}^{K} \beta_{k} x_{ik} ,$$

$$\sigma_{resid}^{2} = \frac{1}{\tau_{resid}} ,$$

$$\tau_{resid} \sim \mathsf{Gamma}(1, \phi) ,$$

$$\beta_{0i}^{(s)} \sim \mathsf{N}(\beta_{0}, \sigma_{species}^{2}) ,$$

$$\sigma_{species}^{2} = \frac{1}{\tau_{species}} ,$$

$$\tau_{species} \sim \mathsf{Gamma}(1, \phi) ,$$

$$\beta_{k} \sim \mathsf{N}(0, \tau^{-1}) , \quad k = 0, \dots, K .$$

Multiple Linear Regression with Species Random Effect⁵

```
0.055 -0.024
                                                      0.118
beta.cdd
               0.081
                                       0.045
                                              0.082
                                                              0.188 1.001
                                                                           3100
beta.elev
              -0.201
                              -0.408
                                     -0.274
                                              -0.201
                                                     -0.128
                                                              0.010 1.002
                                                                           2400
                       0.108
              -0.073
                              -0.187 -0.112
                                             -0.073
                                                     -0.034
                                                                           3400
beta.inso
                      0.058
                                                              0.040 1.001
beta.map
              -0.418
                       0.083
                             -0.581 -0.474 -0.419
                                                     -0.362
                                                             -0.257 1.001
                                                                           5000
beta.mat
               0.093
                       0.110 -0.117
                                      0.020
                                              0.092
                                                      0.169
                                                              0.307 1.001
                                                                           5000
             0.427
                       0.078
                              0.278 0.374
                                              0.427
                                                      0.478
                                                              0.578 1.001
                                                                           4800
beta.ratio
beta.zero
              -0.064
                      0.154 -0.369 -0.167 -0.062
                                                      0.037
                                                              0.241 1.001
                                                                           5000
sigma.resid
               0.545
                              0.511
                                       0.532
                                              0.544
                                                      0.556
                                                              0.581 1.001
                                                                           3100
                       0.023
               0.966
                       0.117
                             0.767
                                       0.884
                                              0.960
                                                      1.036
                                                              1.218 1.001
sigma.species
                                                                           5000
```

Compare to Imer() From R

```
Random effects:
Groups
          Name
                      Variance Std.Dev.
 species (Intercept) 0.8951
                              0.9461
Residual
                     0.2924
                              0.5408
Number of obs: 535, groups:
                            species, 42
Fixed effects:
           Estimate Std. Error t value
(Intercept) -0.06289
                       0.14898 -0.422
            0.07941
                     0.05576
cdd
                                1.424
                     0.10946 -1.812
elev
           -0.19835
inso
           -0.07259
                      0.05791 -1.254
           -0.42009
                      0.08176 -5.138
map
mat
            0.09811
                       0.10893
                                 0.901
ratio
            0.43022
                       0.07776
                                 5.533
```

⁵random-effect-multiple-regression.jags

Multiple Linear Regression with Species Random Effect

Problems with Multicollinearity

- Variables may appear to be unimportant (when they are).
- Coefficient estimates are unstable and hard to interpret (can estimate combinations of coefficients but not individual coefficients).

Alternative Bayesian solutions:

- Independent Prior Distributions
- Variable Selection

Hierarichal Model with Independent Priors

Hierarchical Model:

$$eta_j | \lambda_j, \sigma^2 \sim \mathsf{N}(0, \sigma^2/\lambda_j)$$
 $\lambda_j | \sigma^2 \sim \mathsf{Gamma}(1/2, 1/2)$ $1/\sigma^2 \sim \mathsf{Gamma}(
u_0/2,
u_0 \sigma_0^2/2)$

- Leads to nice conjugate updates for all full conditionals
- Easy to code in JAGS
- Allows each parameter to have own precision with mean 1

Cauchy Prior

First two equations imply that $\beta_j | \sigma^2 \sim \mathsf{Cauchy}(0, \sigma^2)$

$$p(\beta) = \frac{1}{\pi\sigma} \left(1 + \frac{\beta^2}{\sigma^2} \right)^{-1},$$

leading to a collapsed model

$$egin{align} Y|oldsymbol{eta}, \sigma^2 &\sim \mathsf{N}(Xoldsymbol{eta}, \sigma^2 I_n) \;, \ eta_j|\sigma^2 &\sim \mathsf{Cauchy}(0,\sigma^2) \;, \ 1/\sigma^2 &\sim \mathsf{Gamma}(
u_0/2,
u_0\sigma_0^2/2) \;. \end{aligned}$$

No nice full conditional for β_i .

Cauchy Prior⁶

Independent N(0,1)

```
beta.cdd
                0.081
                         0.055
                                -0.024
                                         0.045
                                                  0.082
                                                          0.118
                                                                   0.188 1.001
                                                                                3100
beta.elev
               -0.201
                         0.108
                                -0.408
                                        -0.274
                                                 -0.201
                                                         -0.128
                                                                   0.010 1.002
                                                                                 2400
beta.inso
               -0.073
                         0.058
                                -0.187
                                        -0.112
                                                 -0.073
                                                         -0.034
                                                                   0.040 1.001
                                                                                3400
               -0.418
                         0.083
                                -0.581
                                        -0.474
                                                 -0.419
                                                         -0.362
                                                                  -0.257 1.001
                                                                                5000
beta.map
                                                                   0.307 1.001
beta.mat
                0.093
                         0.110
                                -0.117
                                         0.020
                                                  0.092
                                                          0.169
                                                                                5000
beta.ratio
                0.427
                         0.078
                                 0.278
                                         0.374
                                                  0.427
                                                          0.478
                                                                   0.578 1.001
                                                                                4800
                                -0.369
                                         -0.167
                                                 -0.062
                                                          0.037
                                                                   0.241 1.001
                                                                                5000
beta.zero
               -0.064
                         0.154
sigma.resid
                0.545
                         0.023
                                 0.511
                                         0.532
                                                  0.544
                                                          0.556
                                                                   0.581 1.001
                                                                                3100
sigma.species
                0.966
                         0.117
                                 0.767
                                         0.884
                                                  0.960
                                                          1.036
                                                                   1.218 1.001
                                                                                 5000
```

Independent hierarchical

beta.cdd	0.084	0.055	-0.026	0.048	0.085	0.122	0.188 1.	003 1300
beta.elev	-0.191	0.104	-0.394	-0.262	-0.190	-0.120	0.009 1.	004 800
beta.inso	-0.077	0.059	-0.192	-0.117	-0.077	-0.038	0.039 1.	001 5000
beta.map	-0.400	0.082	-0.562	-0.455	-0.401	-0.344	-0.240 1.	004 870
beta.mat	0.084	0.107	-0.129	0.013	0.084	0.157	0.288 1.	009 370
beta.ratio	0.416	0.079	0.262	0.363	0.417	0.469	0.570 1.	007 510
beta.zero	-0.060	0.142	-0.338	-0.154	-0.061	0.035	0.224 1.	002 2700
sigma.resid	0.545	0.018	0.512	0.533	0.544	0.556	0.580 1.	001 5000
sigma.species	0.958	0.114	0.767	0.876	0.947	1.028	1.211 1.	001 5000

⁶hierarchical-prior-multiple-regression.jags

Stochastic Search Variable Selection

The Spike-and-Slab prior:

$$\beta_j \mid \gamma_j, c, \tau_j^{-1} \sim (1 - \gamma_j) \mathcal{N}(0, \tau_j^{-1}) + \gamma_j \mathcal{N}(0, \tau_j^{-1}c^2),$$

 $\gamma_j \mid \pi_j \sim Bernoulli(\pi_j).$

SPIKE&SLAB

- $\gamma_j = 0$: Variable not in the model;
- $\gamma_j = 1$: Variable in the model;
- ► Calibration of hyper-parameters c, τ_j^{-1} needed.

Inference for Variable Selection

- ► Highest posterior model (HPM): Select a model that has been visited most often.
- ▶ Median probability model (MPM): Select variables that appear at least in 50% of visited models.

Alternative spike and slab models

- Popular approach in genomic research;
- Variants:
 - Conjugate version:

$$\beta_j \mid \gamma_j, c, \tau_j^{-1} \sim (1 - \gamma_j) \mathcal{N}(0, \sigma^2 \tau_j^{-1}) + \gamma_j \mathcal{N}(0, \sigma^2 \tau_j^{-1} c^2).$$

▶ Replace the spike normal in Spike-and-Slab prior by Dirac, i.e.,

$$\beta_j \mid \gamma_j, \tau_j^{-1} \sim (1 - \gamma_j)\delta_0 + \gamma_j \mathcal{N}(0, \tau_j^{-1}).$$

Variable selection – Dirac + Normal⁷

Independent N(0,1)

```
beta.cdd
                0.081
                         0.055
                                -0.024
                                         0.045
                                                 0.082
                                                          0.118
                                                                  0.188 1.001
                                                                                3100
beta.elev
               -0.201
                        0.108
                                -0.408
                                        -0.274
                                                -0.201
                                                         -0.128
                                                                  0.010 1.002
                                                                                2400
beta.inso
               -0.073
                        0.058
                                -0.187
                                        -0.112
                                                -0.073
                                                         -0.034
                                                                  0.040 1.001
                                                                                3400
beta.map
               -0.418
                        0.083
                                -0.581
                                        -0.474
                                                -0.419
                                                         -0.362
                                                                 -0.257 1.001
                                                                                5000
                0.093
                                -0.117
                                         0.020
                                                          0.169
                                                                  0.307 1.001
                                                                                5000
beta.mat
                        0.110
                                                 0.092
                0.427
                        0.078
                                0.278
                                         0.374
                                                 0.427
                                                          0.478
                                                                                4800
beta.ratio
                                                                  0.578 1.001
               -0.064
                        0.154
                                -0.369
                                        -0.167
                                                -0.062
                                                          0.037
                                                                  0.241 1.001
                                                                                5000
beta.zero
sigma.resid
                0.545
                        0.023
                                 0.511
                                         0.532
                                                 0.544
                                                          0.556
                                                                  0.581 1.001
                                                                                3100
                0.966
                                 0.767
                                         0.884
                                                 0.960
                                                          1.036
                                                                  1.218 1.001
                                                                                5000
sigma.species
                        0.117
```

$\mathsf{Dirac} + \mathsf{N}(0,1)$

beta.cdd	0.002	0.015	0.000	0.000	0.000	0.000	0.039	1.029	1100
beta.elev	-0.277	0.112	-0.457	-0.349	-0.292	-0.224	0.000	1.016	310
beta.inso	-0.003	0.019	-0.052	0.000	0.000	0.000	0.000	1.054	460
beta.map	-0.473	0.075	-0.609	-0.523	-0.478	-0.429	-0.306	1.012	440
beta.mat	0.015	0.060	0.000	0.000	0.000	0.000	0.240	1.009	1100
beta.ratio	0.378	0.057	0.282	0.343	0.374	0.407	0.516	1.002	1800
beta.zero	-0.061	0.151	-0.355	-0.160	-0.060	0.039	0.240	1.001	5000
sigma.resid	0.546	0.023	0.512	0.533	0.545	0.557	0.581	1.001	5000
sigma.species	0.948	0.116	0.750	0.868	0.939	1.019	1.193	1.002	2100

⁷dirac-plus-normal-multiple-regression.jags

Variable selection – Dirac + Normal

Dirac + N(0,1)

```
beta cdd
               0.002
                        0.015
                                0.000
                                        0.000
                                                        0.000
                                                                0.039 1.029
                                                0.000
                                                                             1100
beta.elev
             -0.277
                        0.112
                               -0.457
                                       -0.349
                                               -0.292
                                                       -0.224
                                                                0.000 1.016
                                                                              310
beta.inso
              -0.003
                       0.019
                              -0.052
                                       0.000
                                                0.000
                                                        0.000
                                                                0.000 1.054
                                                                              460
beta.map
              -0.473
                        0.075
                              -0.609
                                       -0.523 -0.478
                                                       -0.429
                                                               -0.306 1.012
                                                                              440
               0.015
                        0.060
                               0.000
                                        0.000
                                                0.000
                                                        0.000
                                                                0.240 1.009
beta.mat
                                                                             1100
              0.378
                        0.057
                              0.282
                                       0.343
                                                0.374
                                                        0.407
                                                                0.516 1.002
                                                                             1800
beta.ratio
              -0.061
                        0.151
                              -0.355
                                       -0.160
                                               -0.060
                                                        0.039
                                                                0.240 1.001
                                                                             5000
beta.zero
sigma.resid
               0.546
                        0.023
                                0.512
                                        0.533
                                                0.545
                                                        0.557
                                                                0.581 1.001
                                                                             5000
sigma.species
                0.948
                        0.116
                                0.750
                                        0.868
                                                0.939
                                                        1.019
                                                                1.193 1.002
                                                                             2100
```

Posterior conditioned on $\gamma_i > 0$

```
beta cdd:
            0.04
                      0.057 (-0.042, 0.168)
 beta.elev:
            0.93
                     -0.298 (-0.459, -0.134)*
 beta.inso:
            0.05
                     -0.061 (-0.188, 0.059)
 beta.map:
           1.00
                     -0.473 (-0.609, -0.306)*
            0.11
                     0.142 (-0.111, 0.367)
  beta.mat:
                      0.379 (0.283, 0.516)*
beta.ratio:
           1.00
```

Model Selection

Selection of a single model has the following problems

- ▶ When the criteria suggest that several models are equally good, what should we report? Still pick only one model?
- ▶ What do we report for our uncertainty after selecting a model?

Typical analysis ignores model uncertainty!

Bayesian Model Choice

- ▶ Models for the variable selection problem are based on a subset of the x_1, \dots, x_p variables.
- ▶ Encode models with a vector $\gamma = (\gamma_1, \dots, \gamma_p)'$ where $\gamma_j \in \{0, 1\}$ is an indicator for whether variable x_j should be included in the model M_{γ} . Notice $\gamma_j = 0 \Leftrightarrow \beta_j = 0$.
- **Each** value of γ represents one of the 2^p models.
- ▶ Under model M_{γ} :

$$Y \mid oldsymbol{eta}, oldsymbol{\gamma}, au \sim \mathcal{N}(oldsymbol{X_{\gamma}}oldsymbol{eta_{\gamma}}, au^{-1} oldsymbol{\mathsf{I}})$$

where X_{γ} is the design matrix using the columns in X where $\gamma_j=1$ and β_{γ} is the subset of β that are non-zero.

Bayesian Model Model Choice (Protea data)

Bayesian Model Model Choice (Protea data)

Bayesian Model Averaging

Rather than use a single model, BMA uses all (or potentially a lot) models, but weights model predictions by their posterior probabilities (measure of how much each model is supported by the data).

Posterior model probabilities

$$P(M_j \mid Y) = \frac{P(Y \mid M_j)P(M_j)}{\sum_j P(Y \mid M_j)P(M_j)},$$

Marginal likelihod of a model is

$$P(Y \mid M_{\gamma}) = \int \int P(Y \mid \beta_{\gamma}, \tau) P(\beta_{\gamma} \mid \gamma, \tau) P(\tau \mid \gamma) d\beta_{\gamma} d\tau.$$

▶ Probability $\beta_j \neq 0$: $\sum_{M_i:\beta_i \neq 0} P(M_j \mid Y)$.

Bayesian Model Averaging (Continued)

Predictions

$$P(Y^{new} \mid Y) = \sum_{j} P(Y^{new} \mid Y, M_j) P(M_j \mid Y),$$

where

$$P(Y^{new} \mid Y, M_{\gamma}) = \int P(Y^{new} \mid Y, \beta_{\gamma}, \tau) P(\beta_{\gamma}, \tau \mid Y) d\beta_{\gamma} d\tau.$$