Chapter 10

Straight Lines

- The lines $p(p^2 + 1)x y + q = 0$ and $(p^2 + 1)^2x +$ 1. $(p^2 + 1)y + 2q = 0$ are perpendicular to a common line for [AIEEE-2009]
 - (1) Exactly one value of p
 - (2) Exactly two values of p
 - (3) More than two values of p
 - (4) No value of p
- Three distinct points A, B and C are given in the 2. 2 - dimensional coordinate plane such that the ratio of the distance of any one of them from the point (1, 0) to the distance from the point (-1, 0)

is equal to $\frac{1}{3}$. Then the circumcentre of the triangle ABC is at the point [AIEEE-2009]

- (1) $\left(\frac{5}{4}, 0\right)$ (2) $\left(\frac{5}{2}, 0\right)$
- (3) $\left(\frac{5}{3},0\right)$
- (4) (0, 0)
- The line L given by $\frac{x}{5} + \frac{y}{b} = 1$ passes through the 3. point (13, 32). The line K is parallel to L and has the equation $\frac{x}{c} + \frac{y}{3} = 1$. Then the distance between L and K is [AIEEE-2010]
 - (1) $\frac{23}{\sqrt{15}}$
- (2) $\sqrt{17}$
- (3) $\frac{17}{\sqrt{15}}$
- (4) $\frac{23}{\sqrt{17}}$
- The lines x + y = |a| and ax y = 1 intersect each other in the first quadrant. Then the set of all possible values of *a* is the interval [AIEEE-2011]
 - $(1) \ (-1, \infty)$
- (2) (-1, 1]
- (3) $(0, \infty)$
- $(4) \quad [1, \infty)$

- If A(2, -3) and B(-2, 1) are two vertices of a triangle and third vertex moves on the line 2x + 3y= 9, then the locus of the centroid of the triangle [AIEEE-2011]
 - (1) 2x + 3y = 3 (2) 2x 3y = 1

 - (3) x y = 1 (4) 2x + 3y = 1
- 6. If the line 2x + y = k passes through the point which divides the line segment joining the points (1, 1) and (2, 4) in the ratio 3 : 2, then *k* equals [AIEEE-2012]
 - (1) 5

- (2) 6
- (3) 11/5
- (4) 29/5
- A line is drawn through the point (1, 2) to meet the coordinate axes at P and Q such that it form a triangle OPQ where O is the origin. If the area of the triangle OPQ is least, then the slope of the line PQ is [AIEEE-2012]
 - (1) -4
- (2) -2
- (3) -1/2
- (4) -1/4
- A ray of light along $x + \sqrt{3}y = \sqrt{3}$ gets reflected upon reaching x-axis, the equation of the reflected ray is [JEE (Main)-2013]

 - (1) $y = x + \sqrt{3}$ (2) $\sqrt{3}y = x \sqrt{3}$

 - (3) $v = \sqrt{3}x \sqrt{3}$ (4) $\sqrt{3}v = x 1$
- 9. The x-coordinate of the incentre of the triangle that has the coordinates of mid points of its sides as (0, 1), (1, 1) and (1, 0) is [JEE (Main)-2013]
 - (1) $2 + \sqrt{2}$ (2) $2 \sqrt{2}$
- - (3) $1+\sqrt{2}$
- (4) $1-\sqrt{2}$
- 10. Let PS be the median of the triangle with vertices P(2, 2), Q(6, -1) and R(7, 3). The equation of the line passing through (1, -1) and parallel to PS is

[JEE (Main)-2014]

- (1) 4x + 7y + 3 = 0 (2) 2x 9y 11 = 0
- (3) 4x 7y 11 = 0 (4) 2x + 9y + 7 = 0

11.	of intersection of the	on-zero numbers. If the point lines $4ax + 2ay + c = 0$ and s in the fourth quadrant and two axes then [JEE (Main)-2014]
	(1) $3bc - 2ad = 0$	(2) $3bc + 2ad = 0$
	(3) $2bc - 3ad = 0$	(4) $2bc + 3ad = 0$
12.		, having both co-ordinates as e interior of the triangle with

vertices (0, 0), (0, 41) and (41, 0), is

[JEE (Main)-2015]

- (1) 901
- (2) 861
- (3) 820
- (4) 780
- 13. Locus of the image of the point (2, 3) in the line $(2x-3y+4)+k(x-2y+3)=0, k \in R$, is a [JEE (Main)-2015]
 - (1) Straight line parallel to x-axis
 - (2) Straight line parallel to y-axis
 - (3) Circle of radius $\sqrt{2}$
 - (4) Circle of radius $\sqrt{3}$
- 14. Two sides of a rhombus are along the lines,

x - y + 1 = 0 and 7x - y - 5 = 0. If its diagonals intersect at (-1, -2), then which one of the following is a vertex of this rhombus?

[JEE (Main)-2016]

(1)
$$(-3, -8)$$
 (2) $\left(\frac{1}{3}, -\frac{8}{3}\right)$

(3)
$$\left(-\frac{10}{3}, -\frac{7}{3}\right)$$
 (4) $(-3, -9)$

15. Let k be an integer such that the triangle with vertices (k, -3k), (5, k) and (-k, 2) has area 28 sq. units. Then the orthocentre of this triangle is at the point [JEE (Main)-2017]

$$(1) \left(1, \frac{3}{4}\right)$$

(1)
$$\left(1, \frac{3}{4}\right)$$
 (2) $\left(1, -\frac{3}{4}\right)$

$$(3) \left(2, \frac{1}{2}\right)$$

(3)
$$\left(2, \frac{1}{2}\right)$$
 (4) $\left(2, -\frac{1}{2}\right)$

16. A straight line through a fixed point (2, 3) intersects the coordinate axes at distinct points P and Q. If O is the origin and the rectangle OPRQ is completed, then the locus of R is

[JEE (Main)-2018]

- (1) 3x + 2y = 6 (2) 2x + 3y = xy
- (3) 3x + 2y = xy (4) 3x + 2y = 6xy

- 17. Consider the set of all lines px + qy + r = 0 such that 3p + 2q + 4r = 0. Which one of the following statements is true? [JEE (Main)-2019]
 - (1) The lines are all parallel
 - (2) The lines are not concurrent
 - (3) The lines are concurrent at the point $\left(\frac{3}{4}, \frac{1}{2}\right)$
 - (4) Each line passes through the origin
- 18. Let S be the set of all triangles in the xy-plane, each having one vertex at the origin and the other two vertices lie on coordinate axes with integral coordinates. If each triangle in S has area 50 sq. units, then the number of elements in the set S is:

[JEE (Main)-2019]

(1) 9

(2) 32

(3) 36

- (4) 18
- 19. Let the equations of two sides of a triangle be 3x - 2y + 6 = 0 and 4x + 5y - 20 = 0. If the orthocentre of this triangle is at (1, 1), then the equation of its third side is [JEE (Main)-2019]
 - (1) 26x 122y 1675 = 0
 - (2) 122y 26x 1675 = 0
 - (3) 122y + 26x + 1675 = 0
 - (4) 26x + 61y + 1675 = 0
- 20. If the line 3x + 4y 24 = 0 intersects the x-axis at the point A and the y-axis at the point B, then the incentre of the triangle OAB, where O is the [JEE (Main)-2019] origin is
 - (1) (4, 3)
- (2) (3,4)
- (3) (4, 4)
- (4) (2, 2)
- 21. A point P moves on the line 2x 3y + 4 = 0. If Q(1, 4) and R(3, -2) are fixed points, then the locus of the centroid of $\triangle PQR$ is a line

[JEE (Main)-2019]

- (1) Parallel to y-axis (2) With slope $\frac{3}{2}$
- (3) With slope $\frac{2}{3}$ (4) Parallel to x-axis
- Two vertices of a triangle are (0, 2) and (4, 3). If its orthocentre is at the origin, then its third vertex lies in which quadrant? [JEE (Main)-2019]
 - (1) Fourth
 - (2) Third
 - (3) First
 - (4) Second

23.	The straight line $x + 2y = $ axes at A and B . A circle and the origin. Then the	is drawn through A, B sum of perpendicular
	distances from A and B	on the tangent to the
	circle at the origin is	[JEE (Main)-2019]

- **(1)** √5
- (3) $4\sqrt{5}$
- 24. In a triangle, the sum of lengths of two sides is x and the product of the lengths of the same two sides is y. If $x^2 - c^2 = y$, where c is the length of the third side of the triangle, then the circumradius of the triangle is [JEE (Main)-2019]
 - (1) $\frac{c}{\sqrt{3}}$
- (2) $\frac{3}{2}y$

(3) $\frac{c}{3}$

- (4) $\frac{y}{\sqrt{3}}$
- If in a parallelogram ABDC, the coordinates of A, B and C are respectively (1, 2), (3, 4) and (2, 5), then the equation of the diagonal AD is

[JEE (Main)-2019]

- (1) 5x + 3y 11 = 0
- (2) 3x + 5y 13 = 0
- (3) 3x 5y + 7 = 0
- (4) 5x 3y + 1 = 0
- 26. If the straight line, 2x 3y + 17 = 0 is perpendicular to the line passing through the points (7, 17) and $(15, \beta)$, then β equals

[JEE (Main)-2019]

- (2) -5

(3) 5

- (4)
- 27. A point on the straight line, 3x + 5y = 15 which is equidistant from the coordinate axes will lie only in [JEE (Main)-2019]
 - (1) 4th quadrant
 - (2) 1st quadrant
 - (3) 1st, 2nd and 4th quadrants
 - (4) 1st and 2nd quadrants

- 28. Suppose that the points (h, k), (1, 2) and (-3, 4)lie on the line L_1 . If a line L_2 passing through the points (h, k) and (4, 3) is perpendicular to L_1 , then $\frac{k}{h}$ equals [JEE (Main)-2019]
 - (1) 3
- (2) $-\frac{1}{7}$

(3) 0

- (4) $\frac{1}{3}$
- Slope of a line passing through P(2, 3) and intersecting the line, x + y = 7 at a distance of 4 units from P, is [JEE (Main)-2019]
 - (1) $\frac{\sqrt{7}-1}{\sqrt{7}+1}$
- (2) $\frac{1-\sqrt{7}}{1+\sqrt{7}}$
- (3) $\frac{\sqrt{5}-1}{\sqrt{5}+1}$
- (4) $\frac{1-\sqrt{5}}{1+\sqrt{5}}$
- A rectangle is inscribed in a circle with a diameter lying along the line 3y = x + 7. If the two adjacent vertices of the rectangle are (-8, 5) and (6, 5), then the area of the rectangle (in sq. units) is

[JEE (Main)-2019]

(1) 56

(2) 84

(3) 72

- (4) 98
- 31. If the two lines x + (a 1)y = 1 and $2x + a^2y = 1$ $(a \in R - \{0, 1\})$ are perpendicular, then the distance of their point of intersection from the origin [JEE (Main)-2019] is
 - (1) $\sqrt{\frac{2}{5}}$
- (2) $\frac{\sqrt{2}}{5}$

(3) $\frac{2}{5}$

- Lines are drawn parallel to the line 4x 3y + 2 = 0, at a distance $\frac{3}{5}$ from the origin. Then which one of the following points lies on any of these [JEE (Main)-2019] lines?
 - (1) $\left(\frac{1}{4}, -\frac{1}{3}\right)$
- (2) $\left(\frac{1}{4}, \frac{1}{3}\right)$
- (3) $\left(-\frac{1}{4}, \frac{2}{3}\right)$ (4) $\left(-\frac{1}{4}, -\frac{2}{3}\right)$

33.	The equation $y = \sin x \sin(x + 2) - \sin^2(x + 1)$ represents a straight line lying in
	[JEE (Main)-2019]

- (1) Third and fourth quadrants only
- (2) First, third and fourth quadrants
- (3) First, second and fourth quadrants
- (4) Second and third quadrants only
- 34. A plane which bisects the angle between the two given planes 2x y + 2z 4 = 0 and x + 2y + 2z 2 = 0, passes through the point

[JEE (Main)-2019]

- (1) (1, -4, 1)
- (2) (2, -4, 1)
- (3) (1, 4, -1)
- (4) (2, 4, 1)
- 35. A triangle has a vertex at (1, 2) and the mid points of the two sides through it are (-1, 1) and (2, 3). Then the centroid of this triangle is

[JEE (Main)-2019]

- (1) $\left(\frac{1}{3}, 2\right)$
- $(2) \quad \left(\frac{1}{3}, \frac{5}{3}\right)$
- $(3) \left(\frac{1}{3}, 1\right)$
- $(4) \quad \left(1, \frac{7}{3}\right)$
- 36. A straight line L at a distance of 4 units from the origin makes positive intercepts on the coordinate axes and the perpendicular from the origin to this line makes an angle of 60° with the line x + y = 0. Then an equation of the line L is

[JEE (Main)-2019]

(1)
$$(\sqrt{3} + 1)x + (\sqrt{3} + 1)y = 8\sqrt{2}$$

(2)
$$(\sqrt{3} - 1)x + (\sqrt{3} + 1)y = 8\sqrt{2}$$

- $(3) \quad \sqrt{3}x + y = 8$
- (4) $x + \sqrt{3}y = 8$
- 37. Two sides of a parallelogram are along the lines, x + y = 3 and x y + 3 = 0. If its diagonals intersect at (2, 4) then one of its vertex is

[JEE (Main)-2019]

- (1) (2, 1)
- (2) (3, 5)
- (3) (2, 6)
- (4) (3, 6)
- 38. The locus of the mid-points of the perpendiculars drawn from points on the line, x = 2y to the line x = y is [JEE (Main)-2020]
 - (1) 5x 7y = 0
- (2) 2x 3y = 0
- (3) 3x 2y = 0
- (4) 7x 5y = 0

- 39. Let two points be A(1, -1) and B(0, 2). If a point P(x', y') be such that the area of $\triangle PAB = 5$ sq. units and it lies on the line, $3x + y 4\lambda = 0$, then a value of λ is [JEE (Main)-2020]
 - (1) 3 (2) 4
 - (3) 1 (4) -3
- 40. Let C be the centroid of the triangle with vertices (3, -1), (1, 3) and (2, 4). Let P be the point of intersection of the lines x + 3y 1 = 0 and 3x y + 1 = 0. Then the line passing through the points C and P also passes through the point

[JEE (Main)-2020]

- (1) (-9, -6)
- (2) (-9, -7)
- (3) (9,7)
- (4) (7, 6)
- 41. The set of all possible values of θ in the interval (0, π) for which the points (1, 2) and ($\sin\theta$, $\cos\theta$) lie on the same side of the line x + y = 1 is

[JEE (Main)-2020]

- (1) $\left(0, \frac{\pi}{2}\right)$
- (2) $\left(\frac{\pi}{4}, \frac{3\pi}{4}\right)$
- (3) $\left(0, \frac{\pi}{4}\right)$
- $(4) \quad \left(0, \ \frac{3\pi}{4}\right)$
- 42. If a $\triangle ABC$ has vertices A(-1, 7), B(-7, 1) and C(5, -5), then its orthocentre has coordinates

[JEE (Main)-2020]

- (1) (-3, 3)
- $(2) \quad \left(-\frac{3}{5}, \frac{3}{5}\right)$
- (3) (3, -3)
- (4) $\left(\frac{3}{5}, -\frac{3}{5}\right)$
- 43. A triangle *ABC* lying in the first quadrant has two vertices as A(1, 2) and B(3, 1). If $\angle BAC = 90^\circ$, and $ar(\triangle ABC) = 5\sqrt{5}$ sq. units, then the abscissa of the vertex *C* is [JEE (Main)-2020]
 - (1) $1+\sqrt{5}$
- (2) $1+2\sqrt{5}$
- (3) $2\sqrt{5}-1$
- (4) $2 + \sqrt{5}$
- 44. If the perpendicular bisector of the line segment joining the points P(1, 4) and Q(k, 3) has y-intercept equal to -4, then a value of k is

[JEE (Main)-2020]

- (1) $\sqrt{14}$
- (2) √15

(3) -4

(4) -2

45.	A ray of light coming from the point $(2, 2\sqrt{3})$ is
	incident at an angle 30° on the line $x = 1$ at the point A . The ray gets reflected on the line $x = 1$ and meets x -axis at the point B . Then, the line AB passes through the point [JEE (Main)-2020]
	(1) $\left(3, -\frac{1}{\sqrt{3}}\right)$ (2) $\left(3, -\sqrt{3}\right)$

(3)
$$(4, -\sqrt{3})$$
 (4) $(4, -\frac{\sqrt{3}}{2})$

46. Let *L* denote the line in the *xy*-plane with *x* and *y* intercepts as 3 and 1 respectively. Then the image of the point (–1, –4) in this line is

[JEE (Main)-2020]

(1)
$$\left(\frac{29}{5}, \frac{8}{5}\right)$$
 (2) $\left(\frac{29}{5}, \frac{11}{5}\right)$

(3)
$$\left(\frac{8}{5}, \frac{29}{5}\right)$$
 (4) $\left(\frac{11}{5}, \frac{28}{5}\right)$

47. Let A(1, 0), B(6, 2) and $C\left(\frac{3}{2}, 6\right)$ be the vertices of a triangle ABC. If P is a point inside the triangle ABC such that the triangles APC, APB and BPC have equal areas, then the length of the line segment PQ, where Q is the point $\left(-\frac{7}{6}, -\frac{1}{3}\right)$, is _____. [JEE (Main)-2020]

48. If the line, 2x - y + 3 = 0 is at a distance $\frac{1}{\sqrt{5}}$ and $\frac{2}{\sqrt{5}}$ from the lines $4x - 2y + \alpha = 0$ and $6x - 3y + \beta = 0$, respectively, then the sum of all possible values of α and β is _____.

[JEE (Main)-2020]

[JEE (Main)-2021]

49. A man is walking on a straight line. The arithmetic mean of the reciprocals of the intercepts of this line on the coordinate axes is $\frac{1}{4}$. Three stones A, B and C are placed at the points (1, 1), (2, 2) and (4, 4) respectively. Then which of these stones is/are on

- (1) C only
- (2) B only
- (3) All the three

the path of the man?

(4) A only

- 50. The image of the point (3, 5) in the line x y + 1 = 0, lies on : [JEE (Main)-2021]
 - (1) $(x-4)^2 + (y+2)^2 = 16$
 - (2) $(x-4)^2 + (y-4)^2 = 8$
 - (3) $(x-2)^2 + (y-2)^2 = 12$
 - (4) $(x-2)^2 + (y-4)^2 = 4$
- 51. The intersection of three lines x y = 0, x + 2y = 3 and 2x + y = 6 is a :

[JEE (Main)-2021]

- (1) None of the above (2) Isosceles triangle
- (3) Right angled triangle (4) Equilateral triangle
- 52. Let A(-1, 1), B(3, 4) and C(2, 0) be given three points. A line y = mx, m > 0, intersects lines AC and BC at point P and Q respectively. Let A_1 and A_2 be the areas of \triangle ABC and \triangle PQC respectively, such that A_1 = 3 A_2 , then the value of m is equal to :

[JEE (Main)-2021]

- (1) 2 (2) 3
- (3) $\frac{4}{15}$ (4) 1
- 53. In a triangle PQR, the co-ordinates of the points P and Q are (-2, 4) and (4, -2) respectively. If the equation of the perpendicular bisector of PR is 2x y + 2 = 0, then the centre of the circumcircle of the Δ PQR is [JEE (Main)-2021]
 - (1) (-2, -2)
- (2) (0, 2)
- (3) (1, 4)
- (4) (-1, 0)
- 54. Let tanα, tanβ and tanγ; α, β, $\gamma \neq \frac{(2n-1)\pi}{2}$, $n \in \mathbb{N}$ be the slopes of three line segments OA, OB and OC, respectively, where O is origin. If circumcentre of ΔABC coincides with origin and its orthocentre lies on y-axis, then the value of

$$\left(\frac{\cos 3\alpha + \cos 3\beta + \cos 3\gamma}{\cos \alpha \, \cos \beta \, \cos \gamma}\right)^2 \ \text{is equal to} \ \underline{\hspace{1cm}}.$$

[JEE (Main)-2021]

55. The equation of one of the straight lines which passes through the point (1, 3) and makes an angle $tan^{-1}\left(\sqrt{2}\right) \text{ with the straight line, } y+1=3\sqrt{2}x \text{ is :}$

[JEE (Main)-2021]

(1)
$$4\sqrt{2}x - 5y - (5 + 4\sqrt{2}) = 0$$

(2)
$$4\sqrt{2}x + 5y - 4\sqrt{2} = 0$$

(3)
$$4\sqrt{2}x + 5y - (15 + 4\sqrt{2}) = 0$$

(4)
$$5\sqrt{2}x + 4y - (15 + 4\sqrt{2}) = 0$$

56.	The number of integral values of m so that the
	abscissa of point of intersection of lines $3x + 4y = 9$
	and y = mx + 1 is also an integer, is :

[JEE (Main)-2021]

(1) 0

(2) 3

(3) 1

- (4) 2
- 57. Let the equation of the pair of lines, y = px and y = qx, can be written as (y - px)(y - qx) = 0. Then the equation of the pair of the angle bisectors of the lines $x^2 - 4xy - 5y^2 = 0$ is

[JEE (Main)-2021]

(1)
$$x^2 - 3xy + y^2 = 0$$
 (2) $x^2 + 3xy - y^2 = 0$

(2)
$$x^2 + 3xy - y^2 = 0$$

(3)
$$x^2 - 3xy - y^2 = 0$$
 (4) $x^2 + 4xy - y^2 = 0$

$$(4) \quad x^2 + 4xy - y^2 = 0$$

- 58. Two sides of a parallelogram are along the lines 4x + 5y = 0 and 7x + 2y = 0. If the equation of one of the diagonals of the parallelogram is 11x + 7y = 9, then other diagonal passes through the point [JEE (Main)-2021]
 - (1) (2, 2)
- (2) (2, 1)
- (3) (1,3)
- (4) (1, 2)
- 59. Let ABC be a triangle with A(-3, 1) and $\angle ACB = \theta$,

 $0 < \theta < \frac{\pi}{2}$. If the equation of the median through B

is 2x + y - 3 = 0 and the equation of angle bisector of C is 7x - 4y - 1 = 0, then $\tan \theta$ is equal to

[JEE (Main)-2021]

(1) 2

(3) $\frac{4}{3}$

- 60. Let A be a fixed point (0, 6) and B be a moving point (2t, 0). Let M be the mid-point of AB and the perpendicular bisector of AB meets the y-axis at C. The locus of the mid-point P of MC is

[JEE (Main)-2021]

- (1) $3x^2 + 2y 6 = 0$ (2) $2x^2 + 3y 9 = 0$
- (3) $3x^2 2y 6 = 0$ (4) $2x^2 3y + 9 = 0$
- 61. Two circles each of radius 5 units touch each other at the point (1, 2). If the equation of their common tangent is 4x + 3y = 10, and $C_1(\alpha, \beta)$ and $C_2(\gamma, \delta)$, $C_1 \neq C_2$ are their centres, then $|(\alpha + \beta) (\gamma + \delta)|$ is equal to ____

[JEE (Main)-2021]

62. If p and q are the lengths of the perpendiculars from the origin on the lines, $x \csc \alpha - y \sec \alpha = k \cot 2\alpha$ and $x\sin\alpha + y\cos\alpha = k\sin2\alpha$ respectively, then k^2 [JEE (Main)-2021] is equal to:

- (1) $2p^2 + q^2$
- (2) $p^2 + 4q^2$
- (3) $4p^2 + q^2$
- (4) $p^2 + 2q^2$
- 63. Let A be the set of all points (α, β) such that the area of triangle formed by the points (5, 6), (3, 2) and (α, β) is 12 square units. Then the least possible length of a line segment joining the origin to a point in A, is [JEE (Main)-2021]
 - (1) $\frac{8}{\sqrt{5}}$

(2) $\frac{16}{\sqrt{5}}$

(3) $\frac{4}{\sqrt{5}}$

- 64. A man starts walking from the point P(-3, 4), touches the x-axis at R, and then turns to reach at the point Q(0, 2). The man is walking at a constant speed. If the man reaches the point Q in the minimum time, then $50(PR)^2 + (RQ)^2$ is equal [JEE (Main)-2021]
- 65. If a straight line passing through the point P(-3, 4)is such that its intercepted portion between the coordinate axes is bisected at P, then its equation [JEE (Main)-2021]
 - (1) 3x 4y + 25 = 0 (2) 4x 3y + 24 = 0
 - (3) x y + 7 = 0 (4) 4x + 3y = 0
- 66. Let the area of the triangle with vertices $A(1, \alpha)$, $B(\alpha, 0)$ and $C(0, \alpha)$ be 4 sq. units. If the points $(\alpha, -\alpha)$, $(-\alpha, \alpha)$ and (α^2, β) are collinear, then β is equal to [JEE (Main)-2022]
 - (1) 64

(2) -8

(3) -64

- (4) 512
- 67. Let R be the point (3, 7) and let P and Q be two points on the line x + y = 5 such that PQR is an equilateral triangle, Then the area of $\triangle PQR$ is

[JEE (Main)-2022]

(2) $\frac{25\sqrt{3}}{2}$

(1) 39

(2) 41

(3) 51

- (4) 63
- 69. Let a triangle be bounded by the lines $L_1: 2x + 5y = 10$; $L_2: -4x + 3y = 12$ and the line L_3 , which passes through the point P(2, 3), intersects L_2 at A and L_1 at B. If the point P divides the linesegment AB, internally in the ratio 1: 3, then the area of the triangle is equal to [JEE (Main)-2022]
 - (1) $\frac{110}{13}$
- (2) $\frac{132}{13}$

- (3) $\frac{142}{13}$
- (4) $\frac{151}{13}$
- 70. The distance between the two points A and A' which lie on y = 2 such that both the line segments AB and A'B (where B is the point
 - (2, 3)) subtend angle $\frac{\pi}{4}$ at the origin, is equal to

[JEE (Main)-2022]

(1) 10

(2) $\frac{48}{5}$

(3) $\frac{52}{5}$

- (4) 3
- 71. A line, with the slope greater than one, passes through the point A(4, 3) and intersects the line x y 2 = 0 at the point B. If the length of the line segment AB is $\frac{\sqrt{29}}{3}$, then B also lies on the line

[JEE (Main)-2022]

- (1) 2x + y = 9
- (2) 3x 2y = 7
- (3) x + 2y = 6
- (4) 2x 3y = 3
- 72. The equations of the sides AB, BC and CA of a triangle ABC are 2x + y = 0, x + py = 15a and x y = 3 respectively. If its orthocentre is
 - $(2, a), -\frac{1}{2} < a < 2$, then p is equal to _____.

[JEE (Main)-2022]

- 73. Let A(1, 1), B(-4, 3), C(-2, -5) be vertices of a triangle ABC, P be a point on side BC, and Δ_1 and Δ_2 be the areas of triangles APB and ABC, respectively. If $\Delta_1: \Delta_2 = 4: 7$, then the area enclosed by the lines AP, AC and the x-axis is [JEE (Main)-2022]
 - (1) $\frac{1}{4}$

(2) $\frac{3}{4}$

(3) $\frac{1}{2}$

- (4) 1
- 74. The equations of the sides AB, BC and CA of a triangle ABC are 2x + y = 0, x + py = 39 and x y = 3 respectively and P(2, 3) is its circumcentre. Then which of the following is **NOT** true?

[JEE (Main)-2022]

- (1) $(AC)^2 = 9p$
- (2) $(AC)^2 + p^2 = 136$
- (3) $32 < \operatorname{area}(\Delta ABC) < 36$
- (4) $34 < area(\triangle ABC) < 38$
- 75. Let m_1 , m_2 be the slopes of two adjacent sides of a square of side a such that $a^2 + 11a + 3(m_1^2 + m_2^2) = 220$. If one vertex of the square is $(10(\cos\alpha \sin\alpha), 10(\sin\alpha + \cos\alpha))$,

where $\alpha \in \left(0, \frac{\pi}{2}\right)$ and the equation of one diagonal

is $(\cos \alpha - \sin \alpha)x + (\sin \alpha + \cos \alpha)y = 10$, then $72(\sin^4 \alpha + \cos^4 \alpha) + a^2 - 3a + 13$ is equal to

[JEE (Main)-2022]

(1) 119

(2) 128

(3) 145

- (4) 155
- 76. Let $A(\alpha, -2)$, $B(\alpha, 6)$ and $C(\frac{\alpha}{4}, -2)$ be vertices

of a $\triangle ABC$. If $\left(5, \frac{\alpha}{4}\right)$ is the circumcentre of $\triangle ABC$,

then which of the following is **NOT** correct about $\triangle ABC$. [JEE (Main)-2022]

- (1) area is 24
- (2) perimeter is 25
- (3) circumradius is 5
- (4) inradius is 2

(1) $\sqrt{2}$

(2) 2

(3) $2\sqrt{2}$

- (4) 4
- 78. Let the point $P(\alpha, \beta)$ be at a unit distance from each of the two lines $L_1: 3x-4y+12=0$, and $L_2: 8x+6y+11=0$. If P lies below L_1 and above L_2 , then $100(\alpha+\beta)$ is equal to
 - (1) -14

(2) 42

(3) -22

(4) 14

[JEE (Main)-2022]

- 79. Let the circumcentre of a triangle with vertices A(a, 3), B(b, 5) and C(a, b), ab > 0 be P(1, 1). If the line AP intersects the line BC at the point $Q(k_1, k_2)$, then $k_1 + k_2$ is equal to : [JEE (Main)-2022]
 - (A) 2

(B) $\frac{4}{7}$

(C) $\frac{2}{7}$

- (D) 4
- 80. A ray of light passing through the point P(2,3) reflects on the x-axis at point A and the reflected ray passes through the point Q(5,4). Let R be the point that divides the line segment AQ internally into the ratio 2:1. Let the co-ordinates of the foot of the perpendicular M from R on the bisector of the angle PAQ be (α,β) . Then, the value of $7\alpha + 3\beta$ is equal to [JEE (Main)-2022]

Chapter 10

Straight Lines

1. Answer (1)

Lines perpendicular to same line are parallel to each other.

$$prime -p(p^2 + 1) = p^2 + 1$$

$$\Rightarrow p = -1$$

:. There is exactly one value of p.

2. Answer (1)

Let (x, y) denote the coordinates of A, B and C.

Then,
$$\frac{(x-1)^2+y^2}{(x+1)^2+v^2}=\frac{1}{9}$$

$$\Rightarrow$$
 9x² + 9y² - 18x + 9 = x² + y² + 2x + 1

$$\Rightarrow 8x^2 + 8y^2 - 20x + 8 = 0$$

$$x^2 + y^2 - \frac{5}{2}x + 1 = 0$$

 \therefore A, B, C lie on a circle with $C\left(\frac{5}{4},0\right)$.

3. Answer (4)

$$\frac{13}{5} + \frac{32}{b} = 1 \Rightarrow \frac{32}{b} = -\frac{8}{5} : b = -20$$

The line K must have equation

$$\frac{x}{5} - \frac{y}{20} = a$$
 or $\frac{x}{5a} - \frac{y}{20a} = 1$

Comparing with
$$\frac{x}{c} + \frac{y}{3} = 1$$

Given
$$20a = -3$$
, $c = 5a = -\frac{3}{4}$

Distance between lines is

$$=\frac{|a-1|}{\sqrt{\frac{1}{25} + \frac{1}{400}}} = \frac{\left|\frac{-3}{20} - 1\right|}{\sqrt{\frac{17}{400}}} = \frac{23}{\sqrt{17}}$$

4. Answer (4)

Given

$$x + y = |a|$$

$$\frac{x}{1} + \frac{y}{-1} = 1$$

∴ x + y = a.

...(i) for Ist quadrant

(1, a – 1)

$$ax - y = 1$$
. ...(ii)

After solving (i) & (ii)

$$\Rightarrow x = 1$$

$$\therefore y = a - 1$$

Clearly $a - 1 \ge 0$

$$\Rightarrow a \ge 1$$

$$\Rightarrow a \in [1, \infty)$$

5. Answer (4)

Let vertex of C be $\left(t, \frac{9-2t}{3}\right)$

Let (h, k) be centroid

$$h = \frac{t+2-2}{3}, k = \frac{-3+1+\frac{9-2t}{3}}{3}$$

$$h = \frac{t}{3} \qquad \dots (i)$$

$$k = \frac{-6 + 9 - 2t}{9}$$
 ...(ii)

from (i) and (ii)

$$k = \frac{3 - 2(3h)}{9}$$

$$9k = 3 - 6h$$

$$6h + 9k = 3$$

$$2h + 3k = 1$$

Required locus is

$$2x + 3y = 1$$

6. Answer (2)

7.

8. Answer (2)

Answer (2)

Slope of incident ray = $-\frac{1}{\sqrt{3}}$

$$\Rightarrow \alpha = 150^{\circ}$$

∴ Slope of reflected ray = tan30°

$$= \frac{1}{\sqrt{3}}$$

 \therefore Reflected ray is $y = \frac{1}{\sqrt{3}}(x - \sqrt{3})$

$$\Rightarrow \sqrt{3}v = x - \sqrt{3}$$

9. Answer (2)

Required triangle is $\triangle OAB$ So, x co-ordinate of incentre

$$= \frac{2 \times 0 + 2 \times 2 + 2\sqrt{2} \times 0}{2 + 2 + 2\sqrt{2}}$$

$$= \frac{4}{\sqrt{2}}$$

$$=\frac{2}{2+\sqrt{2}}$$

$$= 2 - \sqrt{2}$$

10. Answer (4)

S is mid-point of QR

So
$$S = \left(\frac{7+6}{2}, \frac{3-1}{2}\right) = \left(\frac{13}{2}, 1\right)$$

Slope of PS =
$$\frac{2-1}{2-\frac{13}{2}} = -\frac{2}{9}$$

Equation of line
$$\Rightarrow y - (-1) = -\frac{2}{9}(x-1)$$

$$9v + 9 = -2x + 2 \Rightarrow 2x + 9v + 7 = 0$$

11. Answer (1)

Let $(\alpha, -\alpha)$ be the point of intersection

$$\therefore 4a\alpha - 2a\alpha + c = 0 \implies \alpha = -\frac{c}{2a}$$

and
$$5b\alpha - 2b\alpha + d = 0 \Rightarrow \alpha = -\frac{d}{3b}$$

$$\Rightarrow$$
 3bc = 2ad

$$\Rightarrow$$
 3bc - 2ad = 0

Alternative method:

The point of intersection will be

$$\frac{x}{2ad - 2bc} = \frac{-y}{4ad - 5bc} = \frac{1}{8ab - 10ab}$$

$$\Rightarrow x = \frac{2(ad - bc)}{-2ab}$$

$$\Rightarrow y = \frac{5bc - 4ad}{-2ab}$$

∴ Point of intersection is in fourth quadrant so x is positive and y is negative.

Also distance from axes is same

So x = -y (: distance from x-axis is -y as y is negative)

$$\frac{2(ad-bc)}{-2ab} = \frac{-(5bc-4ad)}{-2ab}$$

$$2ad - 2bc = -5bc + 4ad$$

$$\Rightarrow 3bc - 2ad = 0 \qquad ...(i)$$

12. Answer (4)

Total number of integral coordinates as required $= 39 + 38 + 37 + \dots + 1$

$$=\frac{39\times40}{2}=780$$

13. Answer (3)

After solving equation (i) & (ii)

$$2x - 3y + 4 = 0$$
 ...(i)

$$2x - 4y + 6 = 0$$
 ...(ii)

$$x = 1$$
 and $y = 2$

Slope of $AB \times Slope$ of MN = -1

$$\frac{b-3}{a-2} \times \frac{\frac{b+3}{2}-2}{\frac{a+2}{2}-1} = -1$$

$$(y-3)(y-1) = -(x-2)x$$

$$y^2 - 4y + 3 = -x^2 + 2x$$

$$x^2 + y^2 - 2x - 4y + 3 = 0$$

Circle of radius = $\sqrt{2}$

14. Answer (2)

Point of intersection of sides

$$x - y + 1 = 0$$

and
$$7x - y - 5 = 0$$

$$\therefore$$
 $x = 1, y = 2$

Slope of
$$AM = \frac{4}{2} = 2$$

$$\therefore \quad \text{Equation of } BD: y+2=-\frac{1}{2}(x+1)$$

$$\Rightarrow$$
 $x + 2y + 5 = 0$

Solving
$$x + 2y + 5 = 0$$
 and $7x - y - 5 = 0$

$$x = \frac{1}{3}, y = -\frac{8}{3} \Rightarrow \left(\frac{1}{3}, -\frac{8}{3}\right)$$

15. Answer (3)

Area =
$$\begin{vmatrix} 1 & k & -3k & 1 \\ 5 & k & 1 \\ -k & 2 & 1 \end{vmatrix} = 28$$

$$\begin{vmatrix} k-5 & -4k & 0 \\ 5+k & k-2 & 0 \\ -k & 2 & 1 \end{vmatrix} = \pm 56$$

$$(k^2 - 7k + 10) + 4k^2 + 20k = \pm 56$$

$$5k^2 + 13k + 10 = \pm 56$$

$$5k^2 + 13k - 46 = 0$$

$$5k^2 + 13k - 46 = 0$$

$$5k^2 + 13k - 46 = 0$$
 $5K^2 + 13K + 66 = 0$ $5k^2 + 13k - 46 = 0$

$$k = \frac{-13 \pm \sqrt{169 + 920}}{10}$$

For k = 2

Equation of AD,

$$x = 2$$
 ...(i)

Also equation of BE,

$$y-2=\frac{1}{2}(x-5)$$

$$2y - 4 = x - 5$$

$$x-2y-1=0$$
 ...(ii)

Solving (i) & (ii), 2y = 1

$$y=\frac{1}{2}$$

Orthocentre is $\left(2, \frac{1}{2}\right)$

16. Answer (3)

Let the equation of line be $\frac{x}{a} + \frac{y}{b} = 1$...(i)

(i) passes through the fixed point (2, 3)

$$\Rightarrow \frac{2}{3} + \frac{3}{b} = 1 \qquad \dots (ii)$$

P(a, 0), Q(0, b), O(0, 0), Let R(h, k),

Midpoint of *OR* is $\left(\frac{h}{2}, \frac{k}{2}\right)$

Midpoint of PQ is $\left(\frac{a}{2}, \frac{b}{2}\right)$ $\Rightarrow h = a, k = b \dots$ (iii)

From (ii) & (iii),

$$\frac{2}{h} + \frac{3}{k} = 1$$
 \Rightarrow locus of $R(h, k)$

$$\frac{2}{x} + \frac{3}{v} = 1$$
 $\Rightarrow 3x + 2y = xy$

17. Answer (3)

$$px + qy + r = 0$$

$$\Rightarrow$$
 4px + 4qy + 4r = 0

$$\Rightarrow$$
 4px - 3p + 4qy - 2q + 3p +2q + 4r = 0

$$\Rightarrow$$
 4px - 3p + 4qy - 2q = 0

$$\Rightarrow p(4x-3) + q(4y-2) = 0$$

i.e.
$$(4x-3) + \lambda (4y-2) = 0$$
 Where $\lambda = \frac{q}{p}$

$$\therefore$$
 Set of lines are passing through $x = \frac{3}{4}$, $y = \frac{1}{2}$

18. Answer (3)

One of the possible $\triangle OAB$ is A(a, 0) and B(0, b).

Area of $\triangle OAB = \frac{1}{2} |ab|$.

$$|ab| = 100$$

$$|a| |b| = 100$$

but
$$100 = 1 \times 100$$
, 2×50 , 4×25 , 5×20 or 10×10

$$\therefore$$
 For 1 × 100, $a = 1$ or -1 and $b = 100$ or -100

.. Total possible pairs are 8.

and for 10 × 10 total possible pairs are 4.

 \therefore Total number of possible triangles with integral coordinates are $4 \times 8 + 4 = 36$.

19. Answer (1)

$$\left(x_1,\frac{3x_1+6}{2}\right)$$

$$:: m_{AH}.m_{BC} = -1$$

$$\left(\frac{20 - 4x_2}{\frac{5}{x_2 - 1}} - 1\right) \times \frac{3}{2} = -1$$

$$\frac{15-4\,x_2}{5(x_2-1)}=-\frac{2}{3}$$

$$45 - 12 x_2 = -10 x_2 + 10$$

$$2x_2 = 35 \Longrightarrow x_2 = \frac{35}{2}$$

$$\Rightarrow A\left(\frac{35}{2},-10\right)$$

$$m_{BH}.m_{CA} = -1$$

$$\left(\frac{3x_1}{2} + 3 - 1\right) \left(-\frac{4}{5}\right) = -1$$

$$\frac{(3x_1+4)}{2(x_1-1)} \times 4 = 5$$

$$\Rightarrow 6x_1 + 8 = 5x_1 - 5 \Rightarrow x_1 = -13 \Rightarrow \left(-13, \frac{-33}{2}\right)$$

 \Rightarrow Equation of line AB is

$$y + 10 = \left(\frac{-\frac{33}{2} + 10}{-13 - 35}\right) \left(x - \frac{35}{2}\right)$$

$$\Rightarrow$$
 -61y -610 = -13x + $\frac{455}{2}$

$$\Rightarrow$$
 - 122 y - 1220 = -26 x + 455

$$\Rightarrow$$
 26 x - 122 y - 1675 = 0

20. Answer (4)

$$8 - r + 6 - r = 10$$

$$\Rightarrow$$
 2r = 4

$$\Rightarrow r = 4$$

21. Answer (3)

Let centroid G be (α, β)

we have
$$3\alpha = 1 + 3 + h \Rightarrow h = 3\alpha - 4$$

$$3\beta = 4 - 2 + k \implies k = 3\beta - 2$$

but P(h, k) lies on 2x - 3y + 4 = 0

$$\Rightarrow$$
 2(3\alpha - 4) - 3 (3\beta - 2) + 4 = 0

$$\Rightarrow 6\alpha - 9\beta - 8 + 6 + 4 = 0$$

$$\Rightarrow$$
 $6\alpha - 9\beta + 2 = 0$

Locus: 6x - 9y + 2 = 0

Slope
$$=\frac{6}{9} = \frac{2}{3}$$

22. Answer (4)

$$m_{BC} \times m_{AH} = -1$$

$$\Rightarrow m_{BC} = -\frac{1}{m_{AB}}$$

$$\Rightarrow m_{BC} = \frac{\beta - 3}{\alpha - 4} = 0$$

$$\Rightarrow \beta = 3$$

$$m_{AB} \times m_{CH} = -1$$

$$\Rightarrow \frac{1}{4} \times \frac{\beta}{\alpha} = -1$$
$$\Rightarrow \beta = -4\alpha$$

$$\Rightarrow \alpha = -\frac{3}{4}$$

Vertex C Is
$$\left(\frac{-3}{4},3\right)$$

 \Rightarrow Vertex C lies in second quadrant.

Let equation of circle be $x^2 + y^2 + 2gx + 2fy = 0$

As length of intercept on x axis is $1 = 2\sqrt{g^2 - c}$

$$\Rightarrow |g| = \frac{1}{2}$$

length of intercept on y-axis = $\frac{1}{2} = 2\sqrt{f^2 - c}$

$$\Rightarrow$$
 $|f| = \frac{1}{4}$

Equation of circle that passes through given points

is
$$x^2 + y^2 - x - \frac{y}{2} = 0$$

Tangent at (0, 0) is $\frac{x}{2} + \frac{y}{4} = 0$

$$\Rightarrow$$
 2x + y = 0

Sum of perpendicular distance = $\frac{\frac{1}{2} + 2}{\sqrt{5}} = \frac{\sqrt{5}}{2}$.

24. Answer (1)

$$a + b = x$$

$$ab = y$$

$$x^2 - c^2 = y \implies (a + b)^2 - c^2 = ab$$

$$\Rightarrow (a+b-c)(a+b+c) = ab$$

$$\Rightarrow 2(s-c)(2s) = ab$$

$$\Rightarrow$$
 4s(s - c) = ab

$$\Rightarrow \frac{s(s-c)}{ab} = \frac{1}{4}$$

$$\Rightarrow \cos^2 \frac{c}{2} = \frac{1}{2}$$

$$\Rightarrow$$
 cos c = $-\frac{1}{2}$ \Rightarrow c = 120°

$$\Rightarrow \quad \Delta = \frac{1}{2} ab \text{ (sin } 120^\circ\text{)} = \frac{\sqrt{3}}{4} ab$$

$$\Rightarrow R = \frac{abc}{\sqrt{3} ab} = \frac{c}{\sqrt{3}}$$

25. Answer (4)

Mid-point of AD = mid-point of BC

$$\left(\frac{x_1+1}{2}, \frac{y_1+2}{2}\right) = \left(\frac{3+2}{2}, \frac{4+5}{2}\right)$$

$$(x_1, y_1) = (4, 7)$$

:. Equation of AD:
$$y-7 = \frac{2-7}{1-4}(x-4)$$

$$y-7=\frac{5}{3}(x-4)$$

$$3y - 21 = 5x - 20$$

$$5x - 3v + 1 = 0$$

26. Answer (3)

Slope of straight line =
$$\frac{-2}{-3} = \frac{2}{3}$$

Slope of line passing through two points = $\frac{\beta - 17}{15 - 7}$ = $\frac{\beta - 17}{8}$

$$m_1 m_2 = -1$$

$$\left(\frac{2}{2}\right)\left(\frac{\beta-17}{2}\right)=-1$$

27. Answer (4)

A point which is equidistant from both the axes lies on either y = x and y = -x.

As it is given that the point lies on the line 3x + 5y = 15

So the required point is:

$$3x + 5y = 15$$

$$\frac{x + y = 0}{x = -\frac{15}{2}}, \quad y = \frac{15}{2} \Rightarrow \left(\frac{15}{2}, \frac{15}{2}\right) \left\{2^{\text{nd}} \text{ quadrant}\right\}$$

$$3x + 5y = 15$$

or
$$\frac{x = y}{x = \frac{15}{8}}$$
, $y = \frac{15}{8} \Rightarrow \left(\frac{15}{8}, \frac{15}{8}\right) \left\{1^{st} \text{ quadrant}\right\}$

$$\begin{vmatrix} h & k & 1 \\ 1 & 2 & 1 \\ -3 & 4 & 1 \end{vmatrix} = 0 \Rightarrow -2h - 4k + 10 = 0$$

$$\Rightarrow$$
 h + 2k = 5 ...(i)

$$m_{L_1} = \frac{4-2}{-3-1} = \frac{2}{-4} = -\frac{1}{2} \implies m_{L_2} = 2$$

$$\Rightarrow m_{L_2} = \frac{k-3}{h-4} = 2 \Rightarrow k-3 = 2h-8$$

$$2h - k = 5$$
 ...(ii

from (i) and (ii),

$$h = 3, k = 1 \Rightarrow \frac{k}{h} = \frac{1}{3}$$

29. Answer (2)

Point at 4 units from P(2, 3) will be $A(4\cos\theta + 2, 4\sin\theta + 3)$ will satisfy x + y = 7

$$\Rightarrow$$
 $\cos \theta + \sin \theta = \frac{1}{2}$ on squaring

$$\Rightarrow \overline{\sin 2\theta = \frac{-3}{4}} \Rightarrow \frac{2 \tan \theta}{1 + \tan^2 \theta} = -\frac{3}{4}$$

$$\Rightarrow$$
 3tan² θ + 8tan θ + 3 = 0

$$\Rightarrow$$
 $\tan \theta = \frac{-8 \pm 2\sqrt{7}}{6}$ (Ignoring –ve sign)

$$\Rightarrow \tan \theta = \frac{-8 + 2\sqrt{7}}{6} = \frac{1 - \sqrt{7}}{1 + \sqrt{7}}$$

30. Answer (2)

Perpendicular bisector of AB will pass from centre.

$$\therefore$$
 Equation of perpendicular bisector $x = -1$

Hence centre (-1, 2)

$$D = (\alpha, \beta) \Rightarrow \frac{\alpha + 6}{2} = -1 & \frac{\beta + 5}{2} = 2$$

 $\alpha = -8 & \beta = -1 & D = (-8, -1)$

31. Answer (1)

For perpendicular
$$m_1 m_2 = -1$$

$$\left(\frac{-1}{a-1}\right)\left(\frac{-2}{a^2}\right) = -1$$

$$\Rightarrow$$
 2 = $a^2 (1 - a)$

$$\Rightarrow a^3 - a^2 + 2 = 0$$

$$\Rightarrow$$
 $(a + 1) (a^2 + 2a + 2) = 0$

Hence, lines are x - 2y = 1 and 2x + y = 1

$$\therefore \quad \text{Intersection point} \left(\frac{3}{5}, \frac{-1}{5} \right)$$

Distance from origin =
$$\sqrt{\frac{9}{25} + \frac{1}{25}} = \sqrt{\frac{10}{25}} = \sqrt{\frac{2}{5}}$$

32. Answer (3)

Let straight line be
$$4x - 3y + \alpha = 0$$

Given
$$\frac{3}{5} = \frac{\alpha}{5}$$

$$\Rightarrow \alpha = \pm 3$$

Line is
$$4x - 3y + 3 = 0$$
 or $4x - 3y - 3 = 0$

Clearly
$$\left(-\frac{1}{4}, \frac{2}{3}\right)$$
 satisfies $4x - 3y + 3 = 0$

33. Answer (1)

$$y = \sin x \cdot \sin(x + 2) - \sin^2(x + 1)$$

$$= \frac{1}{2}\cos(-2) - \frac{\cos(2x+2)}{2} - \left[\frac{1-\cos(2x+2)}{2}\right]$$

Graph of y lies in

III and IV Quadrant

34. Answer (2)

Equation of angle bisectors;

$$\frac{x+2y+2z-2}{3} = \pm \frac{2x-y+2z-4}{3}$$

$$\Rightarrow x - 3y - 2 = 0$$
 or $3x + y + 4z - 6 = 0$

Only (2, -4, 1) lies on the second plane

35. Answer (1)

Co-ordinates of vertex B and C are B(-3, 0) and C(3, 4)

Centroid
$$G\left(\frac{3-3+1}{3}, \frac{0+4+2}{3}\right)$$

36. Answer (2)

If perpendicular makes an angle of 60° with the line x + v = 0

Then the perpendicular makes an angle of 15° or 75° with *x*-axis. So the equation of line will be

$$x\cos 75^{\circ} + y\sin 75^{\circ} = 4 \text{ or } x\cos 15^{\circ} + y\sin 15^{\circ} = 4$$

$$\left(\sqrt{3}-1\right)x+\left(\sqrt{3}+1\right)y=8\sqrt{2}$$

or
$$3(\sqrt{3}+1)x+(\sqrt{3}-1)v=8\sqrt{2}$$

By rotating the normal towards the line x + y = 0 in anticlockwise sense we get the answer (2).

37. Answer (4)

x - y + 3 = 0 and x + y = 3 are perpendicular lines intersection point of x - y + 3 = 0 and x + y = 3 is A(0, 3).

$$\Rightarrow$$
 M is mid-point of *AC* \Rightarrow *C*(4, 5)

Let $D(x_1, x_1 + 3)$ and $B(x_2, 3 - x_2)$

$$\Rightarrow x_1 + x_2 = 4, \qquad x_1 + 3 + 3 - x_2 = 8$$

$$\Rightarrow x_1 = 3, x_2 = 1$$

Option (4) is correct.

M is mid-point of DB

38. Answer (1)

Let coordinate of P is $(2\lambda, \lambda)$ and coordinate of mid-point M is (x_1, y_1) .

:. Coordinate of Q

$$=(2x_1-2\lambda, 2y_1-\lambda)$$

 \therefore Q lies on line y = x

$$\therefore \quad \lambda = 2x_1 - 2y_1 \qquad \qquad \dots (i)$$

(Slope of line PQ) · (Slope of line y = x) = -1

$$\therefore \quad \frac{\lambda - y_1}{2\lambda - x_1} = -1$$

$$\therefore \quad \lambda = \frac{x_1 + y_1}{3} \qquad \qquad \dots (ii)$$

From equation (i) and (ii) : $5x_1 = 7y_1$

$$\therefore$$
 Required locus is $5x = 7y$.

39. Answer (1)

Given $3x' + y' = 4\lambda$

and
$$\begin{vmatrix} x' & y' & 1 \\ 1 & -1 & 1 \\ 0 & 2 & 1 \end{vmatrix} = 10$$

$$\Rightarrow$$
 |x' (-3) - y'(1) + 1(2)| = 10

$$\Rightarrow |-4\lambda + 2| = 10$$

$$\Rightarrow$$
 2 - 4 λ = + 10 or 2 - 4 λ = -10

$$\Rightarrow \lambda = -2 \text{ or } \lambda = 3$$

40. Answer (1)

Centroid D(2, 2)

Point of intersection of given lines; $P\left(-\frac{1}{5}, \frac{2}{5}\right)$

Equation of line joining *D* and *P*;

$$y-2=\frac{8}{11}(x-2)$$

$$\Rightarrow$$
 11 $y = 8x + 6$

Only (-9, -6) satisfy this equation

Let
$$f(x, y) = x + y - 1$$

$$f(1, 2).f(\sin\theta, \cos\theta) > 0$$

$$\Rightarrow$$
 2[sin θ + cos θ – 1] > 0

$$\Rightarrow \sin\theta + \cos\theta > 1$$

$$\Rightarrow \sin\left(\theta + \frac{\pi}{4}\right) > \frac{1}{\sqrt{2}}$$

$$\Rightarrow \theta + \frac{\pi}{4} \in \left(\frac{\pi}{4}, \frac{3\pi}{4}\right)$$

$$\Rightarrow \theta \in \left(0, \frac{\pi}{2}\right)$$

42. Answer (1)

Here
$$m_{BC} = \frac{-6}{12} = \frac{-1}{2}$$

So
$$m_{AD} = 2$$

So equation of
$$AD \Rightarrow y - 7 = 2(x + 1)$$

$$2x - y + 9 = 0$$

Now

$$m_{AC} = \frac{12}{-6} = -2 \Rightarrow m_{BE} = \frac{1}{2}$$

So equation of
$$BE \Rightarrow (y-1) = \frac{1}{2}(x+7)$$

$$\Rightarrow 2y - 2 = x + 7 \Rightarrow x - 2y + 9 = 0$$
 ...(ii)

On solving (i) and (ii)

$$2x - y + 9 = 0$$

$$x - 2y + 9 = 0$$

$$2x - y + 9 = 0$$

$$\frac{2x - 4y + 18 = 0}{-3y - 9 = 0}$$

$$\Rightarrow$$
 y = 2

$$\Rightarrow$$
 x = -3

So
$$H = (-3, 3)$$

Slope of line
$$AB = -\frac{1}{2}$$

Slope of line
$$AC = 2$$

Length of
$$AB = \sqrt{5}$$

$$\therefore \quad \frac{1}{2}AB \cdot AC = 5\sqrt{5}$$

$$AC = 10$$

$$\therefore$$
 Coordinate of $C = (1 + 10 \cos\theta, 2 + 10 \sin\theta)$

Here
$$\tan \theta = 2$$
 $\Rightarrow \cos \theta = \frac{1}{\sqrt{5}}, \sin \theta = \frac{2}{\sqrt{5}}$

$$\therefore$$
 Coordinate of $C = (1 + 2\sqrt{5}, 2 + 4\sqrt{5})$

$$\therefore$$
 abscissa of vertex C is $1+2\sqrt{5}$

44. Answer (3)

...(i)

Mid point of line segment PQ is $\left(\frac{k+1}{2}, \frac{7}{2}\right)$

Slope of PQ is
$$\frac{1}{1-k}$$

So equation of perpendicular bisector of PQ is

$$y - \frac{7}{2} = (k-1) \left[x - \frac{k+1}{2} \right]$$

 \therefore Line passes through (0, -4); then

$$-\frac{15}{2} = -\frac{(k^2 - 1)}{2} \quad \Rightarrow \quad k = \pm 4$$

45. Answer (2)

Equation of incident line AP is

$$y - 2\sqrt{3} = \sqrt{3}(x - 2)$$

 $\sqrt{3}x - y = 0$...(1)

Image of P w.r.t. line x = 1

is point
$$Q = (0, 2\sqrt{3})$$
.

Equation of reflected Ray AB:

$$y - \sqrt{3} = \frac{2\sqrt{3} - \sqrt{3}}{0 - 1}(x - 1)$$

$$\sqrt{3}x + y = 2\sqrt{3}$$

 \therefore Point $(3,-\sqrt{3})$ lies on line AB.

46. Answer (4)

Line is
$$\frac{x}{3} + y = 1$$

$$x + 3v - 3 = 0$$

Let image be (α, β)

Hence,
$$\frac{\alpha+1}{1} = \frac{\beta+y}{3} = -\frac{2(-1-12-3)}{10}$$

$$\alpha+1=\frac{\beta+4}{3}=\frac{16}{5}$$

$$\Rightarrow \alpha = \frac{11}{5}, \beta = \frac{28}{5}$$

47. Answer (05)

P is centroid of $\triangle ABC$

$$\therefore P\left(\frac{1+6+\frac{3}{2}}{3},\frac{0+6+2}{3}\right) = \left(\frac{17}{6},\frac{8}{3}\right)$$

$$\Rightarrow PQ = \sqrt{\left(\frac{17}{6} + \frac{7}{6}\right)^2 + \left(\frac{8}{3} + \frac{1}{3}\right)^2} = 5$$

48. Answer (30)

$$L_1: 2x - y + 3 = 0$$

$$L_1: 4x - 2y + \alpha = 0$$

$$L_1: 6x - 3y + \beta = 0$$

Distance between L_1 and L_2 ;

$$\left| \frac{\alpha - 6}{2\sqrt{5}} \right| = \frac{1}{\sqrt{5}} \implies \left| \alpha - 6 \right| = 2$$

$$\Rightarrow \alpha = 4, 8$$

Distance between L_1 and L_3 ;

$$\left| \frac{\beta - 9}{3\sqrt{5}} \right| = \frac{2}{\sqrt{5}} \implies \left| \beta - 9 \right| = 6$$

$$\Rightarrow \beta = 15, 3$$

Sum of all values = 4 + 8 + 15 + 3 = 30

49. Answer (2)

Let line be
$$\frac{x}{a} + \frac{y}{b} = 1$$
 ...(i)

given
$$\frac{\frac{1}{a} + \frac{1}{b}}{2} = \frac{1}{4}$$

$$\Rightarrow \frac{1}{a} + \frac{1}{b} = \frac{1}{2} \qquad ...(ii)$$

By (i) and (ii), we get

$$\frac{x}{a} + \left(\frac{1}{2} - \frac{1}{a}\right)y = 1$$

$$\Rightarrow \lambda(x-y)+\left(\frac{y}{2}-1\right)=0$$

:. Represents family of line passing through (2, 2)

50. Answer (4)

Given the point (3, 5)

and the line x - y + 1 = 0

So, let the image is (x, y)

So, we have

$$\frac{x-3}{1} = \frac{y-5}{-1} = -\frac{2(3-5+1)}{1+1}$$

$$\Rightarrow$$
 x = 4, y = 4

 \Rightarrow Point (4, 4)

Which will satisfy the curve

$$(x-2)^2 + (y-4)^2 = 4$$

as
$$(4-2)^2 + (4-4)^2$$

$$= 4 + 0 = 4$$

51. Answer (2)

The given three lines are x - y = 0, x + 2y = 3 and 2x + y = 6 then point of intersection

lines
$$x - y = 0$$
 and $x + 2y = 3$ is $(1, 1)$

lines
$$x - y = 0$$
 and $2x + y = 6$ is (2, 2)

and lines
$$x + 2y = 3$$
 and $2x + y = 0$ is $(3, 0)$

The triangle ABC has vertices A(1, 1), B(2, 2) and C(3, 0)

$$\therefore$$
 AB = $\sqrt{2}$, BC = $\sqrt{5}$ and AC = $\sqrt{5}$

∴ ∆ABC is isosceles

52. Answer (4)

$$y = mx$$
 ...(i)

Equation of AC

$$x + 3y = 2$$

...(ii)

(i) and (ii)

$$\Rightarrow P\left(\frac{2}{3m+1}, \frac{2m}{3m+1}\right)$$

Equation of BC is

$$y = 4x - 8$$

$$\Rightarrow Q \equiv \left(\frac{8}{4-m}, \frac{8m}{4-m}\right)$$

$$A_1 = \frac{1}{2} \begin{vmatrix} -1 & 1 & 1 \\ 2 & 0 & 1 \\ 3 & 4 & 1 \end{vmatrix} = \frac{13}{2}$$

$$A_2 = \frac{1}{3}A_1 = \frac{13}{6}$$

$$\Rightarrow \frac{1}{2} \begin{vmatrix} 2 & 0 & 1 \\ \frac{8}{4-m} & \frac{8m}{4-m} & 1 \\ \frac{2}{3m+1} & \frac{2m}{3m+1} & 1 \end{vmatrix} = \frac{13}{6}$$

[Taking points anticlockwise]

$$15m^2 - 11m - 4 = 0$$

$$m = 1, \frac{-4}{15}$$
 But $(m > 0)$

$$m = 1$$

53. Answer (1)

Mid point of PQ
$$\equiv \left(\frac{-2+4}{2}, \frac{4-2}{2}\right) \equiv (1, 1)$$

Slope of PQ =
$$\frac{4+2}{-2-4} = -1$$

Slope of perpendicular bisector of PQ = 1

Equation of perpendicular bisector of PQ

$$y-1=1(x-1)$$

$$\Rightarrow$$
 v = x

Solving with perpendicular bisector of PR

Circumcentre is (-2, -2)

54. Answer (144)

- ... Origin is circumcentre, then let A(rcosα, rsinα) B(rcosβ, rsinβ) and C(rcosγ, rsinγ)
- ... Orthocentre lies on y-axis, then cosα + cosβ + cosγ = 0

$$\Rightarrow \cos^3 \alpha + \cos^3 \beta + \cos^3 \gamma = 3\cos \alpha \cdot \cos \beta \cdot \cos \gamma$$

Now,
$$\cos 3\alpha + \cos 3\beta + \cos 3\gamma$$

= 4 ($\cos^3 \alpha + \cos^3 \beta + \cos^3 \gamma$)

$$\frac{\cos 3\alpha + \cos 3\beta + \cos 3\gamma}{\cos \alpha \cos \beta \cos \gamma} = 12$$

Let slope of line be m

$$\Rightarrow$$
 m - 3 $\sqrt{2}$ = $\pm\sqrt{2} \pm 6$ m

$$\Rightarrow$$
 m \mp 6 m = $\pm\sqrt{2} + 3\sqrt{2}$

$$\Rightarrow m = -\frac{4\sqrt{2}}{5} \text{ or } \frac{2\sqrt{2}}{7}$$

Hence line can be

$$y-3=\frac{-4\sqrt{2}}{5}(x-1)$$

$$\Rightarrow 5y - 15 = -4\sqrt{2}x + 4\sqrt{2}$$

$$\Rightarrow 4\sqrt{2}x + 5y - (15 + 4\sqrt{2}) = 0$$

56. Answer (4)

$$3x + 4y = 9 \times 1$$

$$\frac{mx - y = -1 \times 4}{(3 + 4m)x = 5}$$

$$\Rightarrow x = \frac{5}{3 + 4m} \qquad m = -1 \text{ and } -2 \text{ only}$$

gives x-coordinate as integer

57. Answer (2)

Pair of bisector for $ax^2 + 2hxy + by^2 = 0$ are

$$\frac{x^2 - y^2}{a - b} = \frac{xy}{h}$$

:. for
$$x^2 - 4xy - 5y^2 = 0$$
 are

$$\frac{x^2 - y^2}{1 + 5} = \frac{xy}{-2}$$

$$\Rightarrow -x^2 + v^2 - 3xv = 0$$

$$\Rightarrow x^2 - v^2 + 3xv = 0$$

On solving equation 4x + 5y = 0

and 11x + 7y = 9 we get

$$B = \left(\frac{5}{3}, -\frac{4}{3}\right)$$

and on solving equation

$$7x + 2y = 0$$
 and $11x + 7y = 9$, we get

Coordinate of D =
$$\left(-\frac{2}{3}, \frac{7}{3}\right)$$

$$\therefore \quad \text{Mid point of BD} = M = \left(\frac{1}{2}, \frac{1}{2}\right)$$

- \therefore Equation of other diagonal is y = x
- .. Point (2, 2) lies on other diagonal.
- 59. Answer (3)

$$E\left(\frac{x_3-3}{2}, \frac{y_3+1}{2}\right)$$
 lies on $2x + y - 3 = 0$

$$\Rightarrow 2\left(\frac{x_3-3}{2}\right)+\frac{y_3+1}{2}-3=0$$

$$\Rightarrow 2x_3 + y_3 - 11 = 0 ...(i)$$

 $C(x_3, y_3)$ lies on $7x - 4y - 1 = 0$

$$\therefore 7x_3 - 4y_3 - 1 = 0$$
 ...(ii)

(i) & (ii)
$$\Rightarrow C = (x_3, y_3) = (3, 5)$$

 $A'(x_2, y_2)$ is image of A and is given by

$$\frac{x_2+3}{7} = \frac{y_2-1}{-4} = -2\left(\frac{7(-3)-4(1)-1}{7^2+(-4)^2}\right) = \frac{4}{5}$$

$$\Rightarrow A' \equiv (x_2, y_2) \equiv \left(\frac{13}{5}, \frac{-11}{5}\right)$$

$$m_{AC} = m_1 = \frac{5-1}{3-(-3)} = \frac{2}{3}$$

$$m_{BC} = m_2 = \frac{5 + \frac{11}{5}}{3 - \frac{13}{5}} = 18$$

$$\tan \theta = \frac{18 - \frac{2}{3}}{1 + 18 \times \frac{2}{3}} = \frac{2}{3}$$

A(0, 6) and B(2t, 0)

Let mid point AB be m = (t, 3)

and
$$m_{AB} = \frac{-6}{2t} = \frac{-3}{t}$$

: Equation of perpendicualr bisector is

$$y-3=\frac{t}{3}(x-t)$$

$$\Rightarrow$$
 3y - 9 = tx - t^2

$$C \equiv \left(0, \frac{9-t^2}{3}\right)$$

Let mid point of MC be (h, k)

$$\therefore \frac{t+0}{2} = h \text{ and } \frac{3+9-t^2}{3} = 2k$$

$$\Rightarrow$$
 9 + 9 - $(2h)^2$ = 6k

$$\Rightarrow$$
 18 – 4 x^2 = 6 y

$$\Rightarrow$$
 2x² + 3y - 9 = 0

61. Answer (40)

$$M_{C_1C_2} = \frac{3}{4} \Rightarrow \cos\theta = \frac{4}{5}, \sin\theta = \frac{3}{5}$$

Point
$$\frac{x-1}{\frac{4}{5}} = \frac{y-2}{\frac{3}{5}} = \pm 5$$
 (by parametric form of line)

$$x - 1 = \pm 4$$
 or $y - 2 = \pm 3$

$$x = 5$$
, $y = 5$ or $x = -3$, $y = -1$

$$C_1(5, 5)$$
 and $C_2(-3, -1)$

$$|(\alpha + \beta) (\gamma + \delta)| = |(5 + 5) (-3 - 1)| = 40$$

62. Answer (3)

$$p = \left| \frac{k \cot 2\alpha}{\sqrt{\sec^2 \alpha + \csc^2 \alpha}} \right| \Rightarrow p^2 = \frac{k^2}{4} \cos^2 2\alpha$$

and
$$q = \frac{k \sin 2\alpha}{\sqrt{\sin^2 \alpha + \cos^2 \alpha}} \Rightarrow q^2 = k^2 \sin^2 2\alpha$$

So,
$$4p^2 + q^2 = k^2$$

63. Answer (1)

$$|4\alpha - 2\beta - 8| = 24$$

$$|2\alpha - \beta - 4| = 12$$

Locus =
$$2x - y - 4 = 12$$
, $2x - y - 4 = -12$

$$2x - y - 16 = 0$$
, $2x - y + 8 = 0$

Required length = minimum perpendicular distance from origin

$$= \min \left\{ \frac{16}{\sqrt{5}}, \frac{8}{\sqrt{5}} \right\} = \frac{8}{\sqrt{5}}$$

64. Answer (1250)

To minimize distance PR + RQ

Take mirror image of P in y = 0

$$P' = (-3, -4)$$

If we join P'Q we will get required R

Equation of P'Q \Rightarrow y = 2x + 2 So R = (-1, 0)

$$P = (-3, 4) R(-1, 0) Q(0, 2)$$

$$PR^2 + RQ^2 = 20 + 5 = 25$$

P is midpoint of AB

So
$$x = -3 \times 2$$

$$x = -6$$

and
$$v + 0 = 2 \times 4$$

$$y = 8$$

Now equation AB is

$$\frac{x}{-6} + \frac{y}{8} = 1$$

$$\Rightarrow$$
 $4x-3y+24=0$

66. Answer (3)

: $A(1, \alpha)$, $B(\alpha, 0)$ and $C(0, \alpha)$ are the vertices of $\triangle ABC$ and area of $\triangle ABC = 4$

$$\therefore \quad \begin{vmatrix} 1 \\ 2 \\ 0 & \alpha & 1 \\ 0 & \alpha & 1 \end{vmatrix} = 4$$

$$\Rightarrow \left| 1(1-\alpha) - \alpha(\alpha) + \alpha^2 \right| = 8$$

$$\Rightarrow \alpha = \pm 8$$

Now, $(\alpha, -\alpha)$, $(-\alpha, \alpha)$ and (α^2, β) are collinear.

$$\Rightarrow$$
 8(8- β) + 8(-8-64) + 1(-8 β - 8 × 64) = 0

$$\Rightarrow 8-\beta-72-\beta-64=0$$

$$\Rightarrow \beta = -64$$

67. Answer (4)

Altitude of equilateral triangle,

$$\frac{\sqrt{3}I}{2} = \frac{5}{\sqrt{2}}$$

$$I = \frac{5\sqrt{2}}{\sqrt{3}}$$

Area of triangle
$$=\frac{\sqrt{3}}{4}I^2 = \frac{\sqrt{3}}{4} \cdot \frac{50}{3} = \frac{25}{2\sqrt{3}}$$

68. Answer (3)

$$\begin{cases} 2x + y = 4 \\ 2x + 6y = 14 \end{cases} y = 2, x = 3$$

Let C(k, 4 - 2k)

Now $AB^2 = AC^2$

$$5^{2} + (-1)^{2} = (6 - k)^{2} + (-3 + 2k)^{2}$$

$$\Rightarrow 5k^2 - 24k + 19 = 0$$

$$(5k-19)(k-1)=0 \implies k=\frac{19}{5}$$

$$C\left(\frac{19}{5}, -\frac{18}{5}\right)$$

Centroid (α , β)

$$\alpha = \frac{6+1+\frac{19}{5}}{3} = \frac{18}{5}$$

$$\beta = \frac{1+2-\frac{18}{5}}{3} = -\frac{1}{5}$$

Now, $15(\alpha + \beta)$

$$15\left(\frac{17}{5}\right) = 51$$

69. Answer (2)

$$L_1$$
: $2x + 5y = 10$

$$L_2: -4x + 3y = 12$$

Solving L_1 and L_2 we get

$$C \equiv \left(\frac{-15}{13}, \frac{32}{13}\right)$$

Now, let
$$A\left(x_1, \frac{1}{3}(12+4x_1)\right)$$

and
$$B\left(x_2, \frac{1}{5}(10-2x_2)\right)$$

$$\therefore \quad \frac{3x_1 + x_2}{4} = 2$$

and
$$\frac{(12+4x_1)+\frac{10-2x_2}{5}}{4}=3$$

So,
$$3x_1 + x_2 = 8$$
 and $10 x_1 - x_2 = -5$

So,
$$(x_1, x_2) = (\frac{3}{13}, \frac{95}{13})$$

$$A = \left(\frac{3}{13}, \frac{56}{13}\right) \text{ and } B = \left(\frac{95}{13}, \frac{-12}{13}\right)$$

$$= \left|\frac{1}{2} \left(\frac{3}{13} \left(\frac{-44}{13}\right) \frac{-56}{13} \left(\frac{110}{13}\right) + 1 \left(\frac{2860}{169}\right)\right|$$

$$= \frac{132}{13} \text{ sq. units}$$

70. Answer (3)

Let $A(\alpha, 2)$ Given B(2, 3)

$$m_{OA} = \frac{2}{\alpha} \& m_{OB} = \frac{3}{2}$$

$$\tan\frac{\pi}{4} = \left| \frac{\frac{2}{\alpha} - \frac{3}{2}}{1 + \frac{2}{\alpha} \cdot \frac{3}{2}} \right| \Rightarrow \frac{4 - 3\alpha}{2\alpha + 6} = \pm 1$$

$$4 - 3\alpha = 2\alpha + 6$$
 & $4 - 3\alpha = -2\alpha - 6$

$$\alpha = \frac{-2}{5} \& \alpha = 10$$

$$A\left(-\frac{2}{5},2\right)$$
 & A'(10,2) and B(2,3)

$$AA' = 10 + \frac{2}{5} = \frac{52}{5}$$

71. Answer (3)

Let inclination of required line is θ .

So, the coordinates of point B can be assumed as

$$\left(4 - \frac{\sqrt{29}}{3}\cos\theta, 3 - \frac{\sqrt{29}}{3}\sin\theta\right)$$

which satisfies x - y - 2 = 0.

$$4 - \frac{\sqrt{29}}{3}\cos\theta - 3 + \frac{\sqrt{29}}{3}\sin\theta - 2 = 0$$

$$\sin\theta - \cos\theta = \frac{3}{\sqrt{29}}$$

By squaring,

$$\sin 2\theta = \frac{20}{29} = \frac{2\tan\theta}{1+\tan^2\theta}$$

 $\tan \theta = \frac{5}{2}$ only (because slope is greater than 1)

$$\sin\theta = \frac{5}{\sqrt{29}}, \cos\theta = \frac{2}{\sqrt{29}}$$

Point
$$B:\left(\frac{10}{3},\frac{4}{3}\right)$$

which also satisfies x + 2y = 6.

72. Answer (3)

Slope of
$$AH = \frac{a+2}{1}$$

Slope of
$$BC = -\frac{1}{p}$$

$$p = a + 2 \qquad \dots (i)$$

Coordinate of
$$C = \left(\frac{18p - 30}{p + 1}, \frac{15p - 33}{p + 1}\right)$$

Slope of HC

$$=\frac{\frac{15p-33}{p+1}-a}{\frac{18p-30}{p+1}-2}$$

$$=\frac{15p-33-(p-2)(p+1)}{18p-30-2p-2}$$

$$=\frac{16p-p^2-31}{16p-32}$$

$$\therefore \frac{16p - p^2 - 31}{16p - 32} \times -2 = -1$$

$$p^2 - 8p + 15 = 0$$

$$p = 3 \text{ or } 5$$

But if p = 5 then a = 3 not acceptable

$$p = 3$$

73. Answer (3)

$$\frac{\Delta_1}{\Delta_2} = \frac{\frac{1}{2} \times BP \times AH}{\frac{1}{2} \times BC \times AH} = \frac{4}{7}$$

$$P\left(\frac{-20}{7},\frac{-11}{7}\right)$$

Line
$$AC: y-1=2(x-1)$$

Intersection with x-axis = $\left(\frac{1}{2}, 0\right)$

Line
$$AP: y-1=\frac{2}{3}(x-1)$$

Intersection with x-axis =
$$\left(\frac{-1}{2}, 0\right)$$

Vertices are
$$(1, 1), \left(\frac{1}{2}, 0\right)$$
 and $\left(\frac{-1}{2}, 0\right)$

Area =
$$\frac{1}{2}$$
 sq. unit

74. Answer (4)

Intersection of 2x + y = 0 and x - y = 3: A(1, -2)

Equation of perpendicular bisector of AB is

$$x - 2y = -4$$

Equation of perpendicular bisector of AC is

$$x + y = 5$$

Point B is the image of A in line x - 2y + 4 = 0,

which can be obtained as $B\left(\frac{-13}{5}, \frac{26}{5}\right)$.

Similarly vertex C: (7, 4).

Equation of line BC: x + 8y = 39

So,
$$p = 8$$

$$AC = \sqrt{(7-1)^2 + (4+2)^2} = 6\sqrt{2}$$

Area of triangle ABC = 32.4

75. Answer (2)

One vertex of square is

$$(10 (\cos \alpha - \sin \alpha), 10 (\sin \alpha + \cos \alpha))$$

and one of the diagonal is

$$(\cos \alpha - \sin \alpha) x + (\sin \alpha + \cos \alpha) y = 10$$

So, the other diagonal can be obtained as

$$(\cos\alpha + \sin\alpha)x - (\cos\alpha - \sin\alpha)y = 0$$

So, point of intersection of diagonal will be

$$(5(\cos\alpha - \sin\alpha), 5(\cos\alpha + \sin\alpha)).$$

Therefore, the vertex opposite to the given vertex is (0,0).

So, the diagonal length = $10\sqrt{2}$

Side length (a) = 10

It is given that

$$a^2 + 11a + 3(m_1^2 + m_2^2) = 220$$

$$m_1^2 + m_2^2 = \frac{220 - 100 - 110}{3} = \frac{10}{3}$$

and $m_1 m_2 = -1$

Slopes of the sides are $tan\alpha$ and $-cot\alpha$

$$\tan^2 \alpha = 3$$
 or $\frac{1}{3}$

$$72(\sin^4\alpha + \cos^4\alpha) + a^2 - 3a + 13$$

$$=72 \cdot \frac{\tan^4 \alpha + 1}{\left(1 + \tan^2 \alpha\right)^2} + a^2 - 3a + 13 = 128$$

76. Answer (2)

Circumcentre of ∆ABC

$$= \left(\frac{\alpha + \frac{\alpha}{4}}{2}, \frac{6-2}{2}\right)$$

$$=\left(\frac{5\alpha}{8},2\right)$$

$$=\left(5,\frac{\alpha}{4}\right)$$

$$\Rightarrow \alpha = 8$$

area(
$$\triangle ABC$$
) = $\frac{1}{2} \cdot \frac{3\alpha}{4} \times 8 = 24$ sq. units

Perimeter =
$$8 + \frac{3\alpha}{4} + \sqrt{8^2 + \left(\frac{3\alpha}{4}\right)^2}$$

$$= 8 + 6 + 10 = 24$$

Circumradius =
$$\frac{10}{2}$$
 = 5

$$r = \frac{\Delta}{s} = \frac{24}{12} = 2$$

$$AB: x-2y+1=0$$

 $AC: 2x-y-1=0$ $A(1, 1)$

Altitude from B is $BH = x + 2y - 7 = 0 \Rightarrow B(3, 2)$

Altitude from C is $CH = 2x + y - 7 = 0 \Rightarrow C(2, 3)$

Centroid of $\triangle ABC = G(2, 2)$ $OG = 2\sqrt{2}$

78. Answer (4)

$$L_1: 3x - 4y + 12 = 0$$

$$L_{3}: 8x + 6y + 11 = 0$$

Equation of angle bisector of L_1 and L_2 of angle containing origin

$$2(3x-4y+12) = 8x+6y+11$$

$$2x + 14y - 13 = 0$$
 ...(i)

$$\frac{3\alpha - 4\beta + 12}{5} = 1$$

$$\Rightarrow$$
 $3\alpha - 4\beta + 7 = 0$...(ii

Solution of 2x + 14y - 13 = 0 and 3x - 4y + 7 = 0

gives the required point $P(\alpha, \beta)$, $\alpha = \frac{-23}{25}$, $\beta = \frac{53}{50}$

$$100(\alpha + \beta) = 14$$

79. Answer (2)

Let D be mid-point of AC, then

$$\frac{b+3}{2}=1 \Rightarrow b=-1$$

Let E be mid-point of BC,

$$\frac{5-b}{b-a} \cdot \frac{\frac{\left(3+b\right)}{2}}{\frac{a+b}{2}-1} = -1$$

On Putting b = -1, we get a = 5 or -3

But a = 5 is rejected as ab > 0

$$A(-3, 3), B(-1, 5), C(-3, -1), P(1, 1)$$

Line $BC \Rightarrow y = 3x + 8$

Line
$$AP \Rightarrow y = \frac{3-x}{2}$$

Point of intersection $\left(\frac{-13}{7}, \frac{17}{7}\right)$

80. Answer (31)

$$\frac{4}{5-\alpha} = \frac{3}{\alpha-2} \Rightarrow 4\alpha - 8 = 15 - 3\alpha$$

$$\alpha = \frac{23}{3}$$

$$A = \left(\frac{23}{7}, 0\right) Q = (5, 4)$$

$$R = \left(\frac{10 + \frac{23}{7}}{3}, \frac{8}{3}\right)$$

$$=\left(\frac{31}{7},\frac{8}{3}\right)$$

Bisector of angle PAQ is $X = \frac{23}{7}$

$$\Rightarrow M = \left(\frac{23}{7}, \frac{8}{3}\right)$$

So, $7\alpha + 3\beta = 31$