Definition 0.0.1 (Metric Space). A set X, whose elements we shall call *points*, is said to be a *metric space* if with any two points p and q of X there is associated a real number d(p,q) called the *distance* from p to q, such that

- (a) d(p,q) > 0 if $p \neq q$; d(p,p) = 0;
- (b) d(p,q) = d(q,p);
- (c) $d(p,q) \le d(p,r) + d(r,q)$ for any $r \in X$.
- \bullet Suppose a subset Y of X is a metric space, with the same distance function.
- Y must also be a metric space with the same distance function as X (metric).

Definition 0.0.2. • By the *segment* (a,b) we mean the set of all $x \in \mathbb{R}$ such that a < x < b.

- We call an *interval* [a, b] to mean the set of all $x \in \mathbb{R}$ such that $a \le x \le b$ for $a, b \in \mathbb{R}$ with a < b.
- We call a half-open interval either [a, b) or (a, b] to mean $a \le x < b$ and $a < x \le b$, respectively.
- We call a k-cell to mean that if $a_i < b_i$, for i = 1, ..., k, the set of all points $x = (x_1, x_2, ..., x_k) \in \mathbb{R}^k$ whose coordinates satisfy $a_i \le x_i \le b_i (1 \le i \le k)$.
- If $x \in \mathbb{R}^k$ and r > 0, the open (or closed) ball B with center at x and radius r is defined to be the set

$$B(x,r) = \{ y \in \mathbb{R}^k : |y - x| < r \}$$

or alternatively, $|y - x| \le r$.

• We call a set $E \subset \mathbb{R}^k$ convex if

$$\lambda x + (1 - \lambda)y \in E$$

whenever $x, y \in E$, and $0 < \lambda < 1$.

Definition 0.0.3. Let X be a metric space. All points and sets mentioned below are understood to be elements and subsets of X.

- (a) A neighborhood of p is a set $N_r(p)$ consisting of all q such that d(p,q) < r for some r > 0. The number r is called the radius of $N_r(p)$.
- (b) A point p is a *limit point* of the set E if every neighborhood of p contains a point $q \neq p$ such that $q \in E$.
- (c) If $p \in E$ and p is not a limit point of E, then p is called an isolated point of E.
- (d) E is closed if every limit point of E is a point of E.
- (e) A point p is an interior point of E if there is a neighborhood N of p such that $N \subset E$.
- (f) E is open if every point of E is an interior point of E.

- (g) The complement of E (denoted by E^c) is the set of all points $p \in X$ such that $p \neq E$.
- (h) E is perfect if E is closed and if every point of E is a limit point of E.
- (i) E is bounded if there exists a $M \in \mathbb{R}$ and $q \in X$ such that d(p,q) < M for all $p \in E$.
- (j) E is dense in X if every point of X is a limit point of E, or a point of E (or both).

Remark. In \mathbb{R}^1 , neighborhoods are segments and in \mathbb{R}^2 neighborhoods are interiors of circles.

Theorem 0.0.1 (Neighborhoods are Open). Every neighborhood is an open set.

Proof. Let $p \in X$. Consider the neighborhood $N_r(p)$ for some r > 0. Let $y \in X$. Similarly, we can construct a neighborhood $N_h(y)$ for some h > 0. Observe that the distance between p and y is

$$d(p, y) = r - h.$$

Our goal is to show that $N_h(y) \subset N_r(p)$ in order for $N_r(p)$ to be open. Let $x \in N_h(y)$. Using the triangle inequality, we can see that

$$d(p,x) \le d(p,y) + d(y,x)$$

$$< (r-h) + h$$

$$= r$$

This tells us that $x \in N_r(p)$, proving that $N_r(p)$ is an open set.

Theorem 0.0.2. If p is a limit point of a set E, then every neighborhood of p contains infinitely many points of E.

Proof. Suppose for sake of contradiction that there exists a neighborhood N of p which contains only a finite number of points of E. Let q_1, q_2, \ldots, q_n be the points of $N \cap E$ such that $q_m \neq p$ for all m. Observe that

$$r = \min_{1 \le m \le n} d(p, q_m) > 0$$

since each $d(p, q_m) > 0$. Since each $d(p, q_m) < \delta_m$ and not $d(p, q_m) = \delta_m$, we have that none of the $q_m \in N_r(p)$ where $q_m \neq p$. So, p must not be a limit point of E which is a contradiction. Thus, every neighborhood of p must contain infinitely many points of E.

Corollary. A finite point set has no limit points.

Example 0.0.1 (Examples of Closed, Open, Perfect, Bounded Sets). (a) The set of all $z \in \mathbb{C}$ such that |z| < 1. **Open and Bounded**

- (b) The set of all $z \in \mathbb{C}$ such that $|z| \leq 1$. Closed, Perfect, Bounded
- (c) A nonempty finite set. (Closed, Bounded)
- (d) The set of all integers. (Closed)

(e) The set

$$E = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}.$$

Note that no point of E is a limit point of E; that is, there are no limit points contained in E. **Bounded**

- (f) The set of all complex numbers (that is, \mathbb{R}^2).
- (g) The segment (a, b). (Bounded)

Note that (g) is not open in \mathbb{R}^1 but open in \mathbb{R}^2 .

Theorem 0.0.3. Let $\{E_{\alpha}\}$ be a (either finite or infinite) collection of sets E_{α} . Then

$$\left(\bigcup_{\alpha} E_{\alpha}\right)^{c} = \bigcap_{\alpha} (E_{\alpha}^{c}).$$

Theorem 0.0.4. A set E is open if and only if its complement is closed.

Proof.