CS1200: Intro. to Algorithms and their Limitations

Anshu & Vadhan

Lecture 19: NP and NP-completeness

Harvard SEAS - Fall 2024

2024-11-07

1 Announcements

- Salil OH 11-12pm; Anurag zoom OH Fri 1:30-2:30 pm
- Next SRE moved to Thursday 11/14.

Recommended Reading:

• MacCormick §12.0–12.3, Ch. 13

2 Polynomial-Time Reductions

Definition 2.1. For computational problems Π and Γ , we write $\Pi \leq_p \Gamma$ if there is a polynomial-time reduction R from Π to Γ . That is, there is a constant $c \geq 0$ such that R runs in time at most $O(N^c)$ on inputs of length N, counting oracle calls as one time step. Equivalently, there is a constant d such that $\Pi \leq_{O(N^d),O(N^d)\times O(N^d)} \Gamma$.

Some examples of polynomial-time reduction that we've seen include:

- 3-Coloring \leq_p SAT (Lecture 15)
- LongPath \leq_p SAT (SRE 5)
- IntervalScheduling-Decision \leq_p Sorting (Lecture 4). In this case a simpler polynomial time reduction is to solve the IntervalScheduling-Decision in time $O(n^2)$, call the Sorting oracle on some input and then ignore the oracle's output. What made the reduction from Lecture 4 useful that it ran in *linear* time (so not obvious how to solve without sorting), something that is lost by only referring to it as a polynomial-time reduction.

Using polynomial-time reductions to compare problems fits nicely with the study of the classes P_{search} and P, since they are "closed" under such reductions:

Lemma 2.2. Let Π and Γ be computational problems such that $\Pi \leq_p \Gamma$. Then:

- 1. If $\Gamma \in \mathsf{P}_{\mathsf{search}}$, then $\Pi \in \mathsf{P}_{\mathsf{search}}$.
- 2. If $\Pi \notin \mathsf{P}_{\mathsf{search}}$, then $\Gamma \notin \mathsf{P}_{\mathsf{search}}$.
- Proof. 1. Since $\Pi \leq_p \Gamma$, we have $\Pi \leq_{T_R,q \times h} \Gamma$ for $T_R(N), q(N), h(N) = O(N^d)$ for some constant d. Suppose that $\Gamma \in \mathsf{P}_{\mathsf{search}}$, i.e. Γ can be solved in time $T_\Gamma(N) = O(N^b)$ for some $b \geq 0$. Then by Lemma 3.2 from Lecture 4 (restated in Lection 17), Π can be solved in time

$$O\left(T_R(N) + q(N) \cdot T_{\Gamma}(h(N))\right) = O\left(N^d + N^d \cdot \left(N^d\right)^b\right) = O\left(N^{d \cdot (b+1)}\right),$$

So $\Pi \in \mathsf{P}_{\mathsf{search}}$.

2. Contrapositive of Item 1

This lemma means that we can use polynomial-time reductions both positively—to show that problems are in P_{search} — and negatively—to give evidence that problems are not in P_{search} . For example, under the assumption that 3-Coloring is not in P_{search} , it follows that SAT is not in P_{search} , by the above lemma and the fact that 3-Coloring $\leq_p \mathsf{SAT}$ (SRE5). As always, the direction of the reduction is crucial!

Another very useful feature of polynomial-time reductions is that they compose with each other:

Lemma 2.3. If $\Pi \leq_p \Gamma$ and $\Gamma \leq_p \Theta$ then $\Pi \leq_p \Theta$.

This follows from Problem 2 in Problem Set 2, and then using the definition of polynomial time reduction.

3 NP

Figure 1: Can you find a cat?

Roughly speaking, $\mathsf{NP}_{\mathsf{search}}$ consists of the computational problems where valid outputs can be verified in polynomial time. This is a very natural requirement; what's the point in searching for something if we can't recognize when we've found it?

Definition 3.1. A computational problem $\Pi = (\mathcal{I}, \mathcal{O}, f)$ is in $\mathsf{NP}_{\mathsf{search}}$ if the following conditions hold:

1. All valid outputs are of polynomial length: There is a polynomial p such that for every $x \in \mathcal{I}$ and every $y \in f(x)$, we have $|y| \leq p(|x|)$, where |z| denotes the bitlength of z.

Figure 2: Can you verify that the cat is in the red circle?

2. All valid outputs are verifiable in polynomial time: There's a polynomial-time verifier V that, given $x \in \mathcal{I}$ and a potential output y, decides whether $y \in f(x)$.

(Remark on terminology: NP_{search} is often called FNP in the literature, and is closely related to, but slightly more restricted than, the class PolyCheck defined in the MacCormick text.)

Examples:

1. Satisfiability:

$$\mathcal{I} = \{ \text{Boolean formulas } \varphi(z_1, \dots, z_n), n \in \mathbb{N} \}$$

$$\mathcal{O} = \{ \text{Assignments } \alpha \in \{0, 1\}^n, n \in \mathbb{N} \}$$

$$f(\varphi) = \{ \alpha : \varphi(\alpha) = 1 \}$$

We can verify if a potential assignment α' satisfies φ in polynomial time by (a) checking that α' is indeed a valid assignment (i.e. an array of 0's and 1's), and (b) substituting α' into φ and checking whether $\varphi(\alpha') = 1$. Note that $|\alpha'| = n \le |\varphi|$ so the solutions are of polynomial length.

2. GraphColoring:

$$f(G, k) = \{c : V \to [k] \text{ a proper } k \text{ coloring}\}\$$

Our verifier takes in G, k and $c': V \to [k]$ and checks that for every edge $(u, v), c'(u) \neq c'(v)$, which runs in time O(m). Equivalently, we can check that every color class defines an independent set. Furthermore, $|c'| = n \lceil \log k \rceil \leq |(G, k)|^2$, so the solution is not too long.

3. IndependentSet-ThresholdSearch:

$$f(G, k) = \{S \subset V : |S| \ge k, \text{ S is an independent set}\}$$

Verifier takes G, k and S' and checks that for every pair of vertices $u, v \in S'$, there is no edge between u, v. Further, it checks that $|S'| \ge k$.

¹Note that we do not assume $y \in \mathcal{O}$, so the verifier should reject if $y \notin \mathcal{O}$, i.e. y is ill-formed.

Potential non-example:

1. IndependentSet-OptimizationSearch:

$$f(G) = \{S \subseteq V : S \text{ is an independent set in } G \text{ of maximum } size\}$$

Even though this problem does not appear to be in NP_{search} (its still an open question in the theory of computing!), it reduces in polynomial time to IndependentSet-ThresholdSearch, which is in NP_{search} (to be discussed next week in the course).

The following proposition shows that every problem in NP_{search} can be solved in exponential time.

Proposition 3.2. $NP_{search} \subseteq EXP_{search}$.

Proof.

Exhaustive search! We can enumerate over all possible solutions and check if any is a valid solution.

```
1 ExhaustiveSearch
Input : x \in \mathcal{I}
2 for y \in \mathcal{O} such that |y| \leq p(|x|) do
3 | if V(x,y) = 1(accept) then
4 | return y
5 return \bot
```

This has runtime $O(2^{p(n)} \cdot (n+p(n))^c)$ which is bounded by the exponential $O(2^{n^d})$, where $d = \deg(p) + 1$.

So now our diagram of complexity classes looks like this:

P_{search} IndependentSet? 3-D Matching?

SAT? P_{search} BipartiteMatching
IntervalScheduling
2-SAT ShortestWalks
Sorting 2-Coloring

Remarks:

- P_{search} vs NP_{search} : Somewhat counterintuitively, $P_{search} \nsubseteq NP_{search}$. This due to artificial examples that you may see later in the course, but most of the natural problems in P_{search} are also in NP_{search} (like all of the green problems in the above diagram).
- Class NP: Every problem in NP_{search} has a corresponding decision problem (deciding whether
 or not there is a solution). The class of such decision problems is called NP. We will discuss
 the class NP more next week.

We still have question marks next to all of the blue problems; we don't know whether they (and thousands of other important problems in NP_{search}) are in P_{search} or not. We will now try to get a handle on these questions.

4 NP_{search}-Completeness

Unfortunately, although it is widely conjectured, we do not know how to prove that $NP_{search} \nsubseteq P_{search}$. As we will see next week, this is an equivalent formulation of the famous P vs. NP problem, considered one of the most important open problems in computer science and mathematics. However, even without resolving the P vs. NP conjecture, we can give strong evidence that problems are not solvable in polynomial time by showing that they are NP_{search} -complete:

Definition 4.1 (NP-completeness, search version). A problem Γ is NP_{search}-complete if:

- 1. Γ is in NP_{search}
- 2. Γ is NP_{search} -hard: For every computational problem $\Pi \in NP_{\text{search}}$, $\Pi \leq_p \Gamma$.

We can think of the NP-complete problems as the "hardest" problems in NP. Indeed:

Proposition 4.2. Suppose Γ is NP_{search} -complete. Then $\Gamma \in P_{\text{search}}$ iff $NP_{\text{search}} \subseteq P_{\text{search}}$.

Proof. We first show that if $\Gamma \in \mathsf{P}_{\mathsf{search}}$, then $\mathsf{NP}_{\mathsf{search}} \subseteq \mathsf{P}_{\mathsf{search}}$. For every problem $\Pi \in \mathsf{NP}_{\mathsf{search}}$, we have that $\Pi \leq_p \Gamma$. Lemma 2.2 now ensures that $\Pi \in \mathsf{P}_{\mathsf{search}}$. Thus, $\mathsf{NP}_{\mathsf{search}} \subseteq \mathsf{P}_{\mathsf{search}}$.

On the other hand, if $NP_{search} \subseteq P_{search}$, then $\Gamma \in P_{search}$, using the fact that $\Gamma \in NP_{search}$. This completes the proof.

In other words, if any NP_{search}-complete problem is in P_{search}, then all problems in NP_{search} are in P_{search}. Remarkably, there are natural NP-complete problems. The first one is CNF-Satisfiability:

Theorem 4.3 (Cook–Levin Theorem). SAT is NP_{search}-complete.

This can be interpreted as strong evidence that SAT is not solvable in polynomial time. If it were, then *every* problem in $\mathsf{NP}_{\mathsf{search}}$ would be solvable in polynomial time. We will return to a proof of the Cook–Levin Theorem later in the course.

5 More NP_{search}-complete Problems

Once we have one $\mathsf{NP}_{\mathsf{search}}$ -complete problem, we can get others via reductions from it. Consider the computational problem 3-SAT, which is obtained when we restrict the number of literals in each clause of SAT.

Input	: A CNF formula φ on n variables $z_0, \ldots z_{n-1}$ in which each clause has
	width at most 3 (i.e. contains at most 3 literals)
Output	: An $\alpha \in \{0,1\}^n$ such that $\varphi(\alpha) = 1$ (if one exists)

Computational Problem 3-SAT

Theorem 5.1. 3-SAT is NP_{search}-complete.

Proof. The full proof is deferred to Lecture 20. The proof follows in two steps.

- 1. 3SAT is in NP_{search}: Our verifier can check if an assignment α satisfies the 3CNF formula (the same verifier as for SAT).
- 2. 3SAT is NP_{search}-hard: Since every problem in NP_{search} reduces to SAT (Theorem 4.3), all we need to show is SAT \leq_p 3SAT (since reductions compose Lemma 2.3).

The reduction algorithm from SAT to 3SAT has the following components (Figure 3). First, we give an algorithm R which takes a SAT instance φ to a 3SAT instance φ' .

SAT instance
$$\varphi \xrightarrow{\text{polytime R}} 3\text{SAT}$$
 instance φ'

Then we feed the instance φ' to our 3SAT oracle and obtain a satisfying assignment β to φ' or \bot if none exists. If we get \bot from the oracle, we return \bot , else we transform β into a satisfying assignment to φ using another algorithm S.

SAT assignment
$$\alpha \xleftarrow{\text{polytime S}}$$
 3SAT assignment β

Figure 3: Reduction algorithm from SAT to 3SAT.