Reinforcement Learning

Bartlett

ntroduction

 Theory

Algorithms

Question:

Bootcamp 6: Reinforcement Learning

William H. Guss, James Bartlett {wguss, james}@ml.berkeley.edu Machine Learning at Berkeley

April 22, 2016

Overview

Reinforcement Learning

> Guss & Bartlett

. . .

miroducti

...---,

Algorithm

Question

- 1 Introduction
- 2 Theory
- 3 Algorithms
- 4 Questions

Reinforcement Learning

> Guss & Bartlett

Introduction

Theory

Algorithm

Question

How would you solve pacman with machine learning?

Reinforcement Learning

> Guss & Bartlett

Introduction

Theory

Algorithm

Question

How would you solve pacman with machine learning?

Find a model which takes screen pixels to actions:

$$\pi_{\theta}: s_t \mapsto a_t.$$

Reinforcement Learning

> Guss & Bartlett

Introduction

Algorithm

Theory

How would you solve pacman with machine learning?

Find a model which takes screen pixels to actions:

$$\pi_{\theta}: s_t \mapsto a_t.$$

What is your loss function? Data?

Behavioral Cloning

Reinforcement Learning

> Guss & Bartlett

Introduction

Theory

Algorithm

Questic

Behavioral Cloning: Supervised learning in MDPs using and expert agent expert π^* !

Given expert examples $\mathcal{D}=(s_t,a_t=\pi^*(s_t))$ and a model π_{θ} find θ^* st

$$\theta^* = \operatorname*{argmin}_{\theta} \mathcal{L}(a_t, \pi_{\theta}(s_t)).$$

where \mathcal{L} is some loss function.

- Show, don't tell!
- No complicated machinery, just standard ML.

Behavioral Cloning

Reinforcement Learning

Bartlet

Introduction

Algorithm

Issue: Compounding Error

Given some irreducible error $\epsilon = 0.001$

Reinforcement Learning

Guss & Bartlett

Introduction

Theory

Algorithm

Questions

Solution: Reinforcement Learning

Reinforcement Learning

Guss &

Introduction

Theory

Algorithm

Questio

 Supervised learning is not the most general formulation of learning.

Solution: Reinforcement Learning

Reinforcement Learning

Guss &

Introduction

Theory

Algorithm

- Supervised learning is not the most general formulation of learning.
- Humans learn through reward and penalty

Solution: Reinforcement Learning

Reinforcement Learning

Introduction

Can we make algorithms which improve with crude reward signals?

Machine learning without explicit objective functions

Reinforcement Learning (RL)

The Core Idea

Reinforcement Learning

> Guss & Bartlett

troduction

Theory

Algorithm:

Questior

- Models (agents) take action a_t in some environment.
- Environment provides state s_t , reward r_t .
- Models learn to maximize reward r_t , $\forall t$.

Markov Decision Process (MDP)

Reinforcement Learning

Bartiett

Introductio

Theory

Algorithm

Ŭ

Environment, $E = (S, A, R, \rho, r)$.

- $lue{1}$ State space, ${\cal S}$
- 2 Action space, A
- f 3 Reward space, $\cal R$
- 4 Transition distribution, $\rho(s' \mid s, a)$. Given a previous state s and action a, environment gives s'.
- **5** Reward function $r(s, a) \in \mathcal{R}$.

Markov Property: $\rho(s' \mid s, a)$ depends only on s, a not previous states!

Markov Decision Process (MDP)

Reinforcement Learning

> Guss & Bartlett

ntroductio

Theory

Algorithm

Question

Example MDP

Pacman as an MDP

Reinforcement Learning

Theory

- $\mathcal{S} = \mathbb{R}^{256 \times 256}$, images as state space.
- $\blacksquare \mathcal{A} = \{\uparrow, \downarrow, \rightarrow, \leftarrow\}$, joystick as action space.
- $r(s_t, a_t) = \text{change in}$ score.
- $\rho(s_{t+1} \mid s_t, a_t) = \mathsf{next}$ frame of game after joystick action a_t .

Policies/Agents

Reinforcement Learning

Bartlett

ntroductio

Theory

Algorithm

.

Two different types of agents

- Deterministic policy $a = \pi(s)$ acts in E.
- \blacksquare Stochastic policy $a \sim \pi(a|s)$ gives a probability distibution over actions.

Policy Trajectories

$$s_1 \xrightarrow{\pi} a_1 \xrightarrow{\rho,r} s_2, r_2 \xrightarrow{\pi} a_2 \xrightarrow{\rho,r} \cdots$$

Value under a policy

Reinforcement Learning

Bartlett

Introduction

Theory

Algorithms

Questio

The **state value** is a function of a given state for an agent π defined as

$$V^{\pi}(s_t) = \mathbb{E}\left[\sum_{n=t+1}^{\infty} \gamma^n r(s_n, \pi(s_n))\right]$$

- $oldsymbol{1}$ γ is the discount factor
- \mathbf{Z} $\pi(s_n)$ is the action the agent π makes after seeing state s_n .
- $r(s_n, \pi(s_n))$ is the reward the agent gets from taking that action.

Value under a policy

Reinforcement Learning

Bartlett

Introductio

Theory

Algorithms

Questior

The **state-action value** for an agent π is defined such that

$$Q^{\pi}(s_t, a_t) = \mathbb{E}\left[\underbrace{r(s_t, a_t)}_{\text{reward for } a_t} + V^{\pi}(s_t)\right]$$

• Given some state s_t , the *best* agent, π^* is one that take action

$$a_t = \operatorname*{argmax}_{a} Q(s_t, a).$$

Problems in Reinforcement Learning

Reinforcement Learning

Bartlett

Introduction

Theory

Algorithms

. ..

Policy Optimization: maximize the expected reward with respect to a policy π ;

$$\pi^* = \operatorname*{argmax}_{\pi} \mathbb{E} \left[\sum_{t=0}^{\infty} r_t \right]$$

- **Policy Evaluation:** Given some fixed policy π compute expected return.
 - \blacksquare Computing $Q^\pi,\,V^\pi,$ and other expectations on policy rollout.
 - Lets us perform policy optimization!

Reinforcement Learning

> Guss & Bartlet

ntroduction

I heory

Algorithms

Question

Behavioural Cloning Q Learning Actor Critic Models

Q-Learning (State-action Value Iteration)

Reinforcement Learning

Guss & Bartlet

Introduction

Theory

Algorithms

- T

The action-value function (simplified).

1 The future expected reward of an agent π is

$$Q^{\pi}(s_t, a_t) = \underbrace{r(s_t, a_t)}_{\text{reward for } a_t} + \sum_{n=t+1}^{\infty} \gamma^n r(s_n, \pi(s_n))$$

The Bellman equation gives us

$$Q^{\pi}(s_t, a_t) = r_t + \gamma Q^{\pi}(s_{t+1}, \pi(s_{t+1}))$$

٤1

3 Given some state s_t , the **best** agent, π^* is one that take action

$$a_t = \arg\max_{a} Q(s_t, a).$$

Q-Learning (State-action Value Iteration)

Reinforcement Learning

Bartlett

Introduction

Theory

Algorithms

Juestions

TODO: DO THESE SLIDES The action-value function (simplified).

1 The Q function for π^* is

$$Q^*(s_t, a_t) = r_t + \gamma \arg \max_{a} Q^{\pi}(s_{t+1}, a).$$

- 2 We can approximate this with deep learning!
 - **1** Make a neural network $\mathcal{N}: \mathcal{S} \to \mathbb{R}^n$ which predicts the future reward of taking each possible action

$$\mathcal{N}(s_t) = \begin{pmatrix} Q^*(s_t, a_1) \\ Q^*(s_t, a_2) \\ \vdots \\ Q^*(s_t, a_n) \end{pmatrix}$$

Q-Learning (State-action Value Iteration)

Reinforcement Learning

Bartlet

Theory

Algorithms

A

Deep Q-Learning

Policy Iteration

Reinforcement Learning

Bartlett

ntroduction

1 neory

Algorithms

....

Deep Determisitic Policy Gradient

- **1** Actor neural network $\mu: \mathcal{S} \to \mathcal{A}$
- 2 Critic network $Q^{\mu}: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$
- 3 Performance of μ is $Q^{\mu}(s_t, \mu(s_t))$. Maximize performance! $\nabla_W Q^{\mu}(s_t, a_t) = \nabla_a Q^{\mu}(s_t, a) \cdot \nabla_W \mu(s_t)$

Reinforcement Learning

> Guss & Bartlett

ntroduction

Theory

Algorithms

Questions

Questions?