Содержание

1	Руб	ежный контроль 2	3
	1.1	Сформулировать определение несовместных событий. Как связаны свойства несов-	
		местности и независимости событий?	3
	1.2	Сформулировать геометрическое определение вероятности	3
	1.3	Сформулировать определение сигма-алгебры событий. Сформулировать ее основ-	
		ные свойства	3
	1.4	Сформулировать аксиоматическое определение вероятности. Сформулировать ос-	
		новные свойства вероятности	4
	1.5	Записать аксиому сложения вероятностей, расширенную аксиому сложения веро-	
		ятностей и аксиому непрерывности вероятности. Как они связаны между собой? .	5
	1.6	Сформулировать определение условной вероятности и ее основные свойства	5
	1.7	Сформулировать теоремы о формулах умножения вероятностей для двух событий	
		и для произвольного числа событий	6
	1.8	Сформулировать определение пары независимых событий. Как независимость двух	
		событий связана с условными вероятностями их осуществления?	6
	1.9	Сформулировать определение попарно независимых событий и событий, независи-	
		мых в совокупности. Как эти свойства связаны между собой?	6
	1.10	Сформулировать определение полной группы событий. Верно ли, что некоторые	
		события из полной группы могут быть независимыми?	7
	1.11	Сформулировать теорему о формуле полной вероятности	7
	1.12	Сформулировать теорему о формуле Байеса	7
	1.13	Дать определение схемы испытаний Бернулли. Записать формулу для вычисления	
		вероятности осуществления ровно k успехов в серии из n испытаний	8
	1.14	Записать формулы для вычисления вероятности осуществления в серии из n испы-	
		таний а) ровно k успехов, б) хотя бы одного успеха, в) от k1 до k2 успехов	8
	1.15	Сформулировать определение элементарного исхода случайного эксперимента и	
		пространства элементарных исходов. Сформулировать классическое определение	
		вероятности. Привести пример.	8
	1.16	Сформулировать классическое определение вероятности. Опираясь на него, дока-	
		зать основные свойства вероятности	9
	1.17	Сформулировать статистическое определение вероятности. Указать его основные	
		недостатки	10

1.18	Сформулировать определение сигма-алгебры событий. Доказать ее основные свой-	
	ства	10
1.19	Сформулировать аксиоматическое определение вероятности. Доказать свойства ве-	
	роятности для дополнения события, для невозможного события, для следствия со-	
	бытия	11
1.20	Сформулировать аксиоматическое определение вероятности. Сформулировать свой-	
	ства вероятности для суммы двух событий и для суммы произвольного числа со-	
	бытий. Доказать первое из этих свойств	12
1.21	Сформулировать определение условной вероятности. Доказать, что она удовлетво-	
	ряет трем основным свойствам безусловной вероятности	13
1.22	Доказать теоремы о формулах умножения вероятностей для двух событий и для	
	произвольного числа событий	13
1.23	Сформулировать определение пары независимых событий. Сформулировать и до-	
	казать теорему о связи независимости двух событий с условными вероятностями	
	их осуществления	14
1.24	Сформулировать определение попарно независимых событий и событий, независи-	
	мых в совокупности. Показать на примере, что из первого не следует второе	15
1.25	Доказать теорему о формуле полной вероятности	15
1.26	Доказать теорему о формуле Байеса	15
1.27	Доказать формулу для вычисления вероятности осуществления ровно k успехов в	
	серии из n испытаний по схеме Бернулли	15

1 Рубежный контроль 2

1.1 Сформулировать определение несовместных событий. Как связаны свойства несовместности и независимости событий?

Определение.

События A и B называются несовместными, если их произведение пусто. В противном случае события A и B называются совместными.

Определение.

События A и B называются независимыми, если $P(AB) = P(A) \cdot P(B)$.

Как связаны

Если события несовместные, то они не могут быть независимыми.

1.2 Сформулировать геометрическое определение вероятности.

Геометрическое определение вероятности является обобщением классического определения на случай, когда $|\Omega| = \infty$.

Пусть

- 1) $|\Omega| \subseteq \mathbb{R}^n$;
- 2) $\mu(\Omega|<\infty$, где μ некая мера. Если n=1, то μ это длина; если n=2, то μ площадь; если n=3 объём. Можно определить меры и при больших n;
- 3) Возможность принадлежности некоторого элементарного исхода случайного эксперимента событию $A \subseteq \Omega$ пропорциональна мере этого события и не зависит от формы события A и его расположения внутри Ω .

Тогда Определение.

Вероятностью случайного события $A\subseteq\Omega$ называют число

$$P(A) = \frac{\mu(A)}{\mu(\Omega)} \tag{1}$$

1.3 Сформулировать определение сигма-алгебры событий. Сформулировать ее основные свойства.

Для строгого аксиоматического определения вероятности необходимо уточнить понятие события:

1) Данное выше определение события как произвольного подмножества множества Ω в случае бесконечного множества Ω приводит к противоречивой теории (см. парадокс Рассела);

- 2) Таким образом, необходимо в качестве события рассматривать не все возможные подмножества множества Ω , а лишь некоторые из них;
- 3) Набор подмножеств множества Ω , выбранных в качестве событий, должен обладать рядом свойств. Понятно, что если A и B связанные со случайным экспериментом события и известно, что в результате эксперимента они произошли (или не произошли), то естественно знать, произошли ли события $A+b, A\cdot B, \ldots$

Эти соображения приводят к следующему определению.

Пусть

1. Ω — пространство элементарных исходов, связанных с некоторым случайным экспериментом; 2. $\beta \neq \emptyset$ — система (набор) подмножеств в множестве Ω .

Определение.

 β называется сигма-алгеброй событий, если выполнены условия:

- 1) если $A \in \beta$, то $\overline{A} \in \beta$;
- 2) если $A_1, \ldots, A_n, \cdots \in \beta$, то $A_1 + \cdots + A_n + \cdots \in \beta$

Свойства

- 1) $\Omega \in \beta$;
- $2) \varnothing \in \beta;$
- 3) если $A_1, \ldots A_n, \ldots \in \beta$, то $A_1 \cdot A_2 \cdot \ldots A_n \ldots \in \beta$;
- 4) если $A_1, A_2 \in \beta$, то $A_1 \setminus A_2 \in \beta$
 - 1.4 Сформулировать аксиоматическое определение вероятности. Сформулировать основные свойства вероятности.

Пусть

- 1) Ω пространство элементарных исходов случайного эксперимента;
- 2) β сигма-алгебра, заданная на Ω .

Определение

Вероятностью (вероятностной мерой) называется функция $P:\beta \to R$

- 1) $\forall A \in \beta = > P(A) \geqslant 0$; (аксиома неотрицательности);
- 2) $P(\Omega) = 1$ (аксиома нормированности);
- 3) Если A_1, \ldots, A_n, \ldots попарно несовместные события, то вероятность осуществления их суммы равна сумме вероятностей осуществления каждого из них по отдельности: $P(A_1 + \cdots + A_n + \ldots) = P(A_1) + \cdots + P(A_n) + \ldots$ (расширенная аксиома сложения).
- 1) $P(\overline{A}) = 1 P(A);$
- 2) $P(\emptyset) = 0$;
- 3) Если $A \subseteq B$, то $P(A) \leqslant P(B)$;

- 4) $\forall A \in \beta : 0 \leqslant P(a) \leqslant 1$;
- 5) P(A+B) = P(A) + P(B) P(AB), где A, B $\in \beta$;
- 6) Для любого конечного набора событий A_1, \ldots, A_n верно

$$P(A_1 + \dots + A_n) = + \sum_{1 \le i_1 \le n} P(A_{i_1}) - \sum_{1 \le i_1 \le i_2 \le n} P(A_{i_1}, A_{i_2}) + \sum_{1 \le i_1 \le i_2 \le i_3 \le n} P(A_{i_1}, A_{i_2}, A_{i_3}) - \dots$$
(2)

1.5 Записать аксиому сложения вероятностей, расширенную аксиому сложения вероятностей и аксиому непрерывности вероятности. Как они связаны между собой?

Аксиома сложения

Сложение — для \forall конечного набора попарно несовместных событий $A_1, \ldots A_n$ вероятность осуществления их суммы равна сумме вероятностей каждого из них по отдельности: $P(A_1 + \ldots + A_n) = P(A_1) + \ldots + P(A_n)$.

Расширенная Аксиома сложения

Если A_1, \ldots, A_n, \ldots — попарно несовместные события, то вероятность осуществления их суммы равна сумме вероятностей осуществления каждого из них по отдельности: $P(A_1 + \ldots + A_n + \ldots) = P(A_1) + \ldots + P(A_n) + \ldots$

Непрерывность

Для любой неубывающей последовательности событий $A_1\subseteq A_2\subseteq\cdots\subseteq A_n\subseteq\ldots$ и события $A=\bigcup_i A_i$ верно

$$P(A) = \lim_{i \to \infty} P(A_i). \tag{3}$$

Связанность

Из аксиомы сложения и непрерывности следует расширенная аксиома сложения.

1.6 Сформулировать определение условной вероятности и ее основные свойства.

Пусть

- 1) A и B два события, связанные с одним случайным экспериментом;
- 2) дополнительно известно, что в результате произошло событие B и P(B)>0.

Условной вероятностью осуществления события A при условии, что произошло B, называется число

$$P(A|B) = \frac{P(AB)}{P(B)}, P(B) \neq 0.$$
 (4)

Свойства

- 1) $P(A|B) \ge 0$;
- 2) $P(\Omega|B) = 1;$
- 3) $P(A_1 + \ldots + A_n + \ldots | B) = P(A_1 | B) + \ldots + P(A_n | B) + \ldots$
 - 1.7 Сформулировать теоремы о формулах умножения вероятностей для двух событий и для произвольного числа событий.

Теорема. Формула умножения вероятностей для двух событий **Пусть**

- 1) A, B события;
- 2) P(A) > 0.

Тогда
$$P(AB) = P(A) P(B|A)$$

Теорема Формула умножения вероятностей для n событий

- 1) $A_1, ..., A_n$ события;
- 2) $P(A_1 \cdot \cdots > 0)$.

Тогда

$$P(A_1 \cdot A_2 \cdot \dots \cdot A_n) = P(A_1)P(A_2|A_1)P(A_3|A_1A_2) \cdot \dots \cdot P(A_n|A_1) \cdot \dots \cdot A_{n-1}.$$
 (5)

1.8 Сформулировать определение пары независимых событий. Как независимость двух событий связана с условными вероятностями их осуществления?

Пусть

А и В — два события, связанные с некоторым случайным экспериментом.

Определение

События A и B называется независимыми, если P(AB) = P(A) P(B).

Замечание

Разумеется, в качестве определения независимых событий логично было бы использовать условия P(A|B) = P(A) или P(B|A) = P(B). Однако эти условия имеют смысл лишь тогда, когда P(A) или P(B) отличны от нуля. Условие же P(AB) = P(A)P(B) работает всегда.

1.9 Сформулировать определение попарно независимых событий и событий, независимых в совокупности. Как эти свойства связаны между собой?

Определение

События $A_1, \ldots A_n$ называется попарно независимыми, если

$$\forall \forall i \neq j; i, j \in \{1, \dots, n\} P(A_i A_j) = P(A_i) P(A_j)$$
(6)

Определение

События $A_1, \dots A_n$ называется попарно независимыми в совокупности, если

$$\forall k \in \{2, \dots, n\} \forall \forall i_1 < i_2 < \dots < i_k : P(A_{i_1}, \dots, A_{i_k}) = P(A_{i_1}) \cdot \dots P(A_{i_k})$$
 (7)

1.10 Сформулировать определение полной группы событий. Верно ли, что некоторые события из полной группы могут быть независимыми?

Пусть Ω — пространство элементарных исходов, связанных с некоторым случайным экспериментом, а (Ω, β, P) — вероятностное пространство этого случайного эксперимента.

Определение

События $H_1, \ldots, H_n \in \beta$ образуют полную группу событий, если

- 1) $P(H_i) > 0, i = 1, n;$
- 2) $H_iH_j = \varnothing i \neq j$;
- 3) $H_1 + \dots H_n = \Omega$.

События из полной группы могут быть независимыми?

Нет, не могут быть, так как они несовместные.

1.11 Сформулировать теорему о формуле полной вероятности.

Теорема Формула полной вероятности

Пусть

- 1) H_1, \ldots, H_n полная группа событий
- 2) $A \in \beta$ событие.

Тогда (это выражение называется формулой полной вероятности):

$$P(A) = P(A|H_1)P(H_1) + \dots + P(A|H_n)P(H_n)$$
(8)

1.12 Сформулировать теорему о формуле Байеса.

Теорема

Пусть

- 1) H_1, \ldots, H_n полная группа событий;
- 2) P(A) > 0.

Тогда

$$P(H_i|A) = \frac{P(A|H_i)P(H_i)}{P(A|H_1)P(H_1) + \dots + P(A|H_n)P(H_n)}, i = \overline{1, n}.$$
 (9)

1.13 Дать определение схемы испытаний Бернулли. Записать формулу для вычисления вероятности осуществления ровно k успехов в серии из n испытаний.

Определение.

Схемой испытаний Бернули называется серия из однотипных экспериментов указанного вида, в которой отдельные испытания независимы, то есть вероятность реализации успеха в n-ом испытании не зависит от исходов первого, второго, . . . , i-1-ого испытаний.

Теорема

Пусть проводится серия из n испытаний по схеме Бернули с вероятностью успеха р. Тогда $P_n(k)$ есть вероятность того, что в серии из n испытаний произойдет ровно k успехов:

$$P_n(k) = C_n^k p^k q^{n-k} (10)$$

- 1.14 Записать формулы для вычисления вероятности осуществления в серии из n испытаний a) ровно k успехов, б) хотя бы одного успеха, в) от k1 до k2 успехов.
- 1) $P_n(k) = C_n^k p^k q^{n-k}$;
- 2) $P(A) = 1 P(\overline{A}) = 1 P_n(0) = 1 C_0^i p^0 q^{n-0} = 1 q^n;$
- 3) $P_n(k_1 \leqslant k \leqslant k_2) = \sum_{i=k_1}^{k_2} C_n^i p^i q^{n-i}$
 - 1.15 Сформулировать определение элементарного исхода случайного эксперимента и пространства элементарных исходов. Сформулировать классическое определение вероятности. Привести пример.

Определение.

Множество Ω всех исходов данного случайного эксперимента называют пространством элементарных исходов.

- 1) Каждый элементарный исход является «неделимым», т. е. он не может быть разбит на более «мелкие» исходы;
- 2) В результате каждого эксперимента обязательно имеет место ровно один из входящих в элементарных исходов.

Пример

Из колоды в 36 карт извлекают одну карту.

$$\Omega = \{6_{\text{пик},\dots,T_{\text{пик}},6_{\text{треф}},\dots,\dots,T_{\text{червей}}}\}, |\Omega| = 36.$$
(11)

Можно определить событие A= извлечена карта красной масти, то есть $A=\{6_{\text{бубей}},\ldots,T_{\text{бубей}},6_{\text{червей}},\ldots,T_{\text{червей}}\},\ |A|=18.$ Если в результате эксперимента извлечена 6, то все событие A целиком наступило.

Пусть

- 1) Ω пространство исходов некоторого случайного эксперимента ($|\Omega| = N < \infty$);
- по условиям эксперимента нет оснований предпочесть тот или иной элементарный исход остальным (в таком случает говорят, что все элементарные исходы равновозможны);
- 3) существует событие $A \subseteq \Omega$, мощность $|A| = N_A$

Определение

Вероятностью осуществления события А называется число

$$P(A) = \frac{N_A}{N}. (12)$$

1.16 Сформулировать классическое определение вероятности. Опираясь на него, доказать основные свойства вероятности

- 1) Ω пространство исходов некоторого случайного эксперимента ($|\Omega| = N < \infty$);
- по условиям эксперимента нет оснований предпочесть тот или иной элементарный исход остальным (в таком случает говорят, что все элементарные исходы равновозможны);
- 3) существует событие $A\subseteq \Omega,$ мощность $|\mathbf{A}|=N_A$

Определение

Вероятностью осуществления события А называется число

$$P(A) = \frac{N_A}{N}. (13)$$

Свойства вероятности:

- 1) Вероятность P(A) > 0 (неотрицательна);
- 2) $P(\Omega) = 1;$
- 3) если A, B несовместные события, то P(A + B) = P(A) + P(B).

Доказательство

- 1) T.K. $N_A \ge N > 0 = P(A) = \frac{N_A}{N} \ge 0$.
- 2) Принимая во внимание, что $N_\Omega = |\Omega| = N$, получается $P(\Omega) = \frac{N_\Omega}{N} = \frac{N}{N} = 1$.
- 3) Т.к. Ω конечно, A, B $\subseteq \Omega$, то получается, что A, B конечны. Существует формула |A+B|=|A|+|B|-|AB|; Т.к A и B несовместные, то AB $=\varnothing$, из чего следует, что $N_{a+b}=N_a+B_b$. Таким образом,

$$P(A+B) = \frac{N_{a+b}}{N} = \frac{N_a + N_b}{N} = \frac{N_a}{N} + \frac{N_b}{N} = P(A) + P(B).$$
 (14)

1.17 Сформулировать статистическое определение вероятности. Указать его основные недостатки.

- 1) Некоторый случайный эксперимент произведен n раз;
- 2) при этом некоторые наблюдаемое в этом эксперименте событие A произошло nA раз.

Определение

Вероятностью осуществление события А называют эмпирический (то есть найденный экспериментальный путем) предел:

$$P(A) = \lim_{n \to \infty} = \frac{n_a}{n}.$$
 (15)

У статического определения полным-полно недостатков:

- 1) никакой эксперимент не может быть произведен бесконечное много раз;
- 2) с точки современной математики статическое определение является архаизмом, так как не дает достаточно базы для дальнейшего построения теории.

1.18 Сформулировать определение сигма-алгебры событий. Доказать ее основные свойства.

Для строгого аксиоматического определения вероятности необходимо уточнить понятие события:

- 1) Данное выше определение события как произвольного подмножества множества Ω в случае бесконечного множества Ω приводит к противоречивой теории (см. парадокс Рассела);
- 2) Таким образом, необходимо в качестве события рассматривать не все возможные подмножества множества Ω , а лишь некоторые из них;
- 3) Набор подмножеств множества Ω , выбранных в качестве событий, должен обладать рядом свойств. Понятно, что если A и B связанные со случайным экспериментом события и известно, что в результате эксперимента они произошли (или не произошли), то естественно знать, произошли ли события $A+b, A\cdot B, \ldots$

Эти соображения приводят к следующему определению.

Пусть

1. Ω — пространство элементарных исходов, связанных с некоторым случайным экспериментом; 2. $\beta \neq \emptyset$ — система (набор) подмножеств в множестве Ω .

Определение.

 β называется сигма-алгеброй событий, если выполнены условия:

- 1) если $A \in \beta$, то $\overline{A} \in \beta$;
- 2) если $A_1, \ldots A_n, \ldots \in \beta$, то $A_1 + \ldots + A_n + \ldots \in \beta$

Свойства

- 1) $\Omega \in \beta$;
- $2) \varnothing \in \beta;$
- 3) если $A_1, \ldots A_n, \cdots \in \beta$, то $A_1 \cdot A_2 \cdot \ldots A_n \cdot \cdots \in \beta$;
- 4) если $A_1, A_2 \in \beta$, то $A_1 \setminus A_2 \in \beta$

Доказательства

- 1) По определению $\beta \neq \emptyset \Rightarrow \exists A \subseteq Q : A \in \beta$; из определения сигма-алгебры (аксиома 1) $\exists (A + \overline{A}) \in \beta$; т.к $A + \overline{A} = \Omega$, то $\Omega \in \beta$.
- 2) Т.к. $\Omega \in \beta$, то, по аксиоме 1, $\overline{\Omega} \in \beta$, а $\overline{\Omega} = \emptyset \Rightarrow \emptyset \in \beta$.
- 3) ИЗ существования событий $A_1,\ldots,A_n,\cdots\in\beta$ по аксиоме 1 следует, что $\exists\overline{A_1},\ldots,\overline{A_n},\ldots,\in\beta$, и из аксиомы 1 существование дополнение этого объединения: $\overline{\overline{A_1},\ldots,\overline{A_n},\ldots},\in\beta$ $\Rightarrow^{\text{Де-Морган}}\overline{\overline{A_1},\ldots,\overline{A_n},\ldots,\in\beta}$, что тривиально преобразуется в $A_1,\ldots,A_n,\ldots,\in\beta$.
 - 1.19 Сформулировать аксиоматическое определение вероятности. Доказать свойства вероятности для дополнения события, для невозможного события, для следствия события.

Пусть

- 1) Ω пространство элементарных исходов случайного эксперимента;
- 2) β сигма-алгебра, заданная на Ω .

Определение

Вероятностью (вероятностной мерой) называется функция $P:\beta \to R$

- 1) $\forall A \in \beta = P(A) \ge 0$; (аксиома неотрицательности);
- 2) $P(\Omega) = 1$ (аксиома нормированности);
- 3) Если A_1, \ldots, A_n, \ldots попарно несовместные события, то вероятность осуществления их суммы равна сумме вероятностей осуществления каждого из них по отдельности: $P(A_1 + \cdots + A_n + \ldots) = P(A_1) + \cdots + P(A_n) + \ldots \text{ (расширенная аксиома сложения)}.$

- 1) По аксиоме 2 сигма-алгебры $\exists A + \overline{A} = \Omega$; по аксиоме вероятности 2 $P(\Omega) = 1 = P(A + \overline{A})$; по аксиоме вероятности 3 (A, \overline{A}) несовместны), $P(A + \overline{A}) = P(A) + P(\overline{A}) = 1 \Rightarrow P(\overline{A}) = 1 P(A)$;
- $2) \ P(\varnothing) = P(\overline{\Omega}); \ \text{по свойству } 1 \ P(\varnothing) = 1 P(\Omega) = \ {}_{\textbf{l}} \ \Omega = 1 \ (\text{по аксиоме } 2) \ {}_{\textbf{l}} \ = 0;$
- 3) $A \subseteq B \Rightarrow B = A + (B \backslash A)$ Тогда $P(B) = P(A + (B \backslash A)) = (A, B \backslash A)$ несовместны, используем аксиому 3 $= P(A) = P(B \backslash A) \geqslant P(A) \Rightarrow P(B \backslash A) \geqslant P(B) \geqslant P(A)$.
 - 1.20 Сформулировать аксиоматическое определение вероятности. Сформулировать свойства вероятности для суммы двух событий и для суммы произвольного числа событий. Доказать первое из этих свойств.

Пусть

- 1) Ω пространство элементарных исходов случайного эксперимента;
- 2) β сигма-алгебра, заданная на Ω .

Определение

Вероятностью (вероятностной мерой) называется функция $P:\beta\to R$

- 1) $\forall A \in \beta = > P(A) \geqslant 0$; (аксиома неотрицательности);
- 2) $P(\Omega) = 1$ (аксиома нормированности);
- 3) Если A_1, \ldots, A_n, \ldots попарно несовместные события, то вероятность осуществления их суммы равна сумме вероятностей осуществления каждого из них по отдельности: $P(A_1 + \cdots + A_n + \ldots) = P(A_1) + \cdots + P(A_n) + \ldots$ (расширенная аксиома сложения).
- 1) $\forall A,B:A+B=A+(B\backslash A),$ при этом $A\cdot (B\backslash A)=\varnothing.$ В соответствии с аксиомой 3,

$$P(A+B) = P(A) = P(A) + P(B \setminus A) \tag{16}$$

 $B = AB + (B \setminus A),$

причем (AB)(B \setminus A) = \emptyset

По аксиоме 3, имеем $P(B)=P(AB)+P(B\backslash A)\Rightarrow P(B\backslash A)=P(B)-P(AB)$. Подставим результат 16 и получим

$$P(A+B) = P(A) + P(B) - P(AB), A, B \in \beta$$
 (17)

2) Для любого конечного набора событий A_1, \ldots, A_n верно

$$P(A_1 + \dots + A_n) = + \sum_{1 \le i_1 \le n} P(A_{i_1}) - \sum_{1 \le i_1 \le i_2 \le n} P(A_{i_1}, A_{i_2}) + \sum_{1 \le i_1 \le i_2 \le i_3 \le n} P(A_{i_1}, A_{i_2}, A_{i_3}) - \dots$$
(18)

1.21 Сформулировать определение условной вероятности. Доказать, что она удовлетворяет трем основным свойствам безусловной вероятности.

Пусть

- 1) A и B два события, связанные с одним случайным экспериментом;
- 2) дополнительно известно, что в результате произошло событие B и P(B)>0.

Условной вероятностью осуществления события A при условии, что произошло B, называется число

$$P(A|B) = \frac{P(AB)}{P(B)}, P(B) \neq 0.$$
 (19)

Свойства

- 1) $P(A_1 + \ldots + A_n + \ldots | B) = \frac{P((A_1 + \ldots + A_n + \ldots)B)}{P(B)} = \frac{1}{P(B)} \cdot P(A_1B + A_2B + \cdot + A_nB + \ldots) = A_i, A_j$ несовместны, $i \neq j; A_iB \subseteq A_i, A_jB \subseteq A_j \Rightarrow (A_iB) \cap (A_jB) = \varnothing$, и тогда по аксиоме вероятности $3 = \frac{1}{P(B)} \cdot [P(A_1B) + \ldots + P(A_nB) + \ldots] = ($ ряд $) = \frac{P(A_1B)}{P(B)} + \ldots + \frac{P(A_nB)}{P(B)} + \ldots = P(A_1|B) + \ldots + P(A_n|B) + \ldots$
- 2) Для любого конечного набора событий A_1, \ldots, A_n верно

$$P(A_1 + \dots + A_n) = + \sum_{1 \le i_1 \le n} P(A_{i_1}) - \sum_{1 \le i_1 \le i_2 \le n} P(A_{i_1}, A_{i_2}) + \sum_{1 \le i_1 \le i_2 \le i_3 \le n} P(A_{i_1}, A_{i_2}, A_{i_3}) - \dots$$
(20)

1.22 Доказать теоремы о формулах умножения вероятностей для двух событий и для произвольного числа событий.

Теорема. Формула умножения вероятностей для двух событий **Пусть**

- 1) A, B события;
- 2) P(A) > 0.

Тогда
$$P(AB) = P(A) P(B|A)$$

Доказательство.

 $T.к. \ P(A) > 0$, то определена условная вероятность

$$P(B|A) = \frac{P(AB)}{P(A)} \tag{21}$$

из чего напрямую следует

$$P(AB) = P(A)P(B|A) \tag{22}$$

Теорема

Формула умножения вероятностей для n событий

Пусть

- 1) $A_1, \ldots A_n$ события;
- 2) $P(A_1 \cdot ... \cdot A_{n-1}) > 0.$ Тогда

$$P(A_1 \cdot A_2 \cdot \dots \cdot A_n) = P(A_1)P(A_2|A_1)P(A_3|A_1A_2) \cdot \dots \cdot P(A_n|A_1 \cdot \dots \cdot A_{n-1})$$
 (23)

Доказательство

- 1) Обозначив $k = \overline{1, n-1}$, имеем $A_1 \cdot \ldots \cdot A_k \supseteq A_1 \cdot \ldots \cdot A_{n-1}$. По свойству 3 вероятности $P(A_1 \cdot \ldots \cdot A_k) \geqslant P(A_1 \cdot \ldots \cdot A_{n-1}) > 0$. Следовательно, все условные вероятности, входящие в первую часть доказываемой формулы, определены, и можно задавать условные вероятности по типу $P(A_n | A_1 A_2 \ldots A_{n-1})$, и, следовательно, можно пользоваться формулой умножения вероятностей для двух событий.
- 2) Последовательно применим формулу умножения вероятностей для двух событий $(P(A_{mf}B_{mf}) = P(A_{mf})P(B_{mf}|A_{mf}))$:

$$P(\underbrace{A_{1} \cdot \ldots \cdot A_{n-1} \cdot A_{n}}_{A_{mf_{1}}} \cdot \underbrace{A_{n}}_{B_{mf_{1}}}) = \underbrace{P(\underbrace{A_{1} \cdot \ldots \cdot A_{n-2} \cdot A_{n-1}}_{A_{mf_{2}}} \cdot \underbrace{A_{n-1}}_{B_{mf_{2}}}) \cdot P(\underbrace{A_{n}}_{A_{n}} \mid \underbrace{A_{1} \cdot \ldots \cdot A_{n-1}}_{A_{n-1}}) = \underbrace{P(\underbrace{A_{1} \cdot \ldots \cdot A_{n-3} \cdot A_{n-2} \cdot A_{n-1}}_{A_{mf_{3}}} \cdot P(\underbrace{A_{n-1}}_{A_{mf_{3}}} \mid \underbrace{A_{1} \cdot \ldots \cdot A_{n-2}}_{A_{mf_{2}}}) \cdot P(A_{n} \mid A_{1} \cdot \ldots \cdot A_{n-1}) = \underbrace{A_{mf_{3}}}_{B_{mf_{3}}} = \underbrace{P(A_{1})P(A_{2} \mid A_{1})P(A_{3} \mid A_{1}A_{2}) \cdot \ldots \cdot P(A_{n} \mid A_{1} \cdot \ldots \cdot A_{n-1})}_{P(A_{n} \mid A_{1} \cdot \ldots \cdot A_{n-1})}$$

1.23 Сформулировать определение пары независимых событий. Сформулировать и доказать теорему о связи независимости двух событий с условными вероятностями их осуществления.

Пусть A и B — два события, связанные с некоторым случайным экспериментом.

Определение

События A и B называются независимыми, если P(AB) = P(A)P(B).

Теорема

- 1) Пусть P(B) > 0. Утверждение «А и B независимы» равносильно P(A|B) = P(A);
- 2) Пусть P(A) > 0. Утверждение «A и B независимы» равносильно P(B|A) = P(B);

Доказательство

1) Сначала докажем, что если A и B — независимые, то P(A|B) = P(A). По определению независимых событий, P(AB) = P(A)P(B). По определению условной вероятности,

$$P(A|B) = \frac{P(AB)}{P(B)} = \frac{P(A) \cdot P(B)}{P(B)} = P(A)$$
 (24)

Теперь докажем обратное Пусть P*=(A|B)=P(A). Докажем, что P(AB)=P(A)P(B)

$$P(AB) = ^{\text{по формуле умножения вероятностей}} P(B) \cdot P(A|B)^{=P(A)} = P(B)P(A)$$
 (25)

- 2) Доказательство второго пункта теоремы аналогично.
 - 1.24 Сформулировать определение попарно независимых событий и событий, независимых в совокупности. Показать на примере, что из первого не следует второе.
 - 1.25 Доказать теорему о формуле полной вероятности.
 - 1.26 Доказать теорему о формуле Байеса.

Теорема

1.27 Доказать формулу для вычисления вероятности осуществления ровно k успехов в серии из n испытаний по схеме Бернулли..