Project Design Phase-II Technology Stack (Architecture & Stack)

Date	03 October 2022	
Team ID	PNT2022TMID10672	
Project Name	Efficient Water Quality Analysis And Prediction	
	Using Machine Learning	
Maximum Marks	4 Marks	

Technical Architecture:

Table-1: Components & Technologies:

S.No	Component	Description	Technology
1.	User Interface	The user get easy interaction through web based	HTML, CSS, Python
		water quality analysis (UI).	
2.	Application Logic-1	Logic for a process in the application based on	Python
		given water quality metrics.	
3.	Application Logic-2	Logic for prediction of water quality throughanalysing	Python
		with various parameters in the	
		application.	
4.	Application Logic-3	Logic for detection of water quality that confirming with	Python
		water quality index(Good, partially good, poor)	
		in the application	
5.	Database	Data format for processing	MySQL
6.	Cloud Database	Database Service on Cloud	IBM DB2
7.	File Storage	To store files/ data for the process	Local Filesystem
8.	Machine Learning Model	Classification and clustering are techniques used indata	Clustering and classification Model.
		mining to analyse collected data.	
		Classification is used to label data, while clustering	
		is used to group similar data instances together.	
9.	Infrastructure (Server / Cloud)	Application Deployment on Local System / Cloud	Local web server
		Local Server Configuration: built-in flask webserver	

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source Frameworks	Micro web framework written in python	Flask
2.	Security Implementations	Flask-Security allows you to quickly add common security mechanisms to your Flask application. They include Session-based authentication, Role management.	Flask Security & Validation
3.	Scalable Architecture	Flask is also highly scalable as it can process a high number of requests each day. This micro framework modularize the entire code and let developers work on independent chunks and use them as the code base grows.	Flask
4.	Availability	High compatibility with the latest technologies and allows customization.	Flask
5.	Performance	 Integrated support for unit testing. RESTful request dispatching. Uses Jinja templating. Support for secure cookies (client-side sessions) 100% WSGI 1.0 compliant 	Flask