Domácí úkol na 3.3.2025

Logistické zobrazení

1. Naprogramujte výpočet trajektorie délky N logistického zobrazení

$$x_{n+1} = f(x_n) = ax_n(1 - x_n), (1)$$

kde

- $x_0 \in (0,1)$ je počáteční podmínka,
- $x_n \in (0,1)$ je hodnota v diskrétním časovém kroku n,
- $a \in \langle 0, 4 \rangle$ je růstový parametr zobrazení.
- 2. Vykreslete graf trajektorie.
- 3. Vykreslete bifurkační diagram logistického zobrazení na intervalu $a \in \langle a_{\min}, a_{\max} \rangle$. Jedná se o množinu bodů, jejichž x-ová souřadnice je hodnota parametru a a y-ová souřadnice jsou hodnoty x_n pro $M \leq n \leq N$; parametr M udává čas potřebný k relaxaci.
- 4. Vypočítejte odhad *Ljapunovova exponentu* pro logistické zobrazení a vykreslete ho do grafu na intervalu $a \in \langle a_{\min}, a_{\max} \rangle$. Ljapunovův exponent je definován jako

$$\lambda = \lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} \ln |f'(x_j)|,$$
 (2)

Limitu $n \to \infty$ aproximujte rozumně velkým číslem N_{λ} .

- 5. Nalezněte numericky několik nejnižších bifurkačních bodů a_j^b na intervalu $a \in \langle 3, 3.56994567 \rangle$, tj. bodů, ve kterých se zdvojnásobuje perioda asymptotické trajektorie. První bifurkační bod je $a_j^b = 3$.
- 6. Z hodnot a_i^b odhadněte Feigenbaumovu konstantu δ definovanou jako

$$\delta = \lim_{j \to \infty} \frac{a_{j+1}^b - a_j^b}{a_{j+2}^b - a_{j+1}^b}.$$
 (3)

Vypracovaný úkol nahrajte do modulu Studijní mezivýsledky v SISu. Před odevzdáním úkolu se přesvědčte, že program neobsahuje žádné syntaktické chyby a že je z kódu pochopitelné, jak ho spustit, aby vrátil hledaný výsledek. Pokud řešení obsahuje více souborů, uložte je do jednoho souboru typu ZIP a nahrajte tento soubor.