PSA: Topology on Metric Spaces

A1) Suppose (X,d_x) and (Y,d_Y) are metric spaces, $f:X\to Y$ is a mapping. Prove that the two following definitions of continuity is equivalent:

- Suppose $x_0 \in X$, if for any $\{x_n\}_{n\geqslant 1} \subset X$ such that $\lim_{n\to\infty} x_n = x_0$, we have $\lim_{n\to\infty} f(x_n) = f(x_0)$, then we say f is continuous at x_0 . If f is continuous at every point $x\in X$, then f is a continuous mapping.
- Suppose $x_0 \in X$, $y_0 = f(x_0) \in Y$. If for any $\varepsilon > 0$, there exists $\delta > 0$ such that for any $d_X(x,x_0) < \delta$, $x \in X$, we have $d_Y(f(x),f(x_0)) < \varepsilon$, we call f continuous at x_0 . If f is continuous at every point $x \in X$, then f is a continuous mapping. Proof: 1=>2: If there exists $\varepsilon > 0$ such that for any $n \geqslant 1$, there exists x_n such that $d_X(x_0,x_n) < 1/n$ but $d_Y(f(x_n),f(x_0)) > \varepsilon$, then $\lim_{n \to \infty} x_n = x_0$ but $\lim_{n \to \infty} f(x_n) \neq f(x_0)$, a contradiction. 2=>1: For any $\{x_n\}_{n\geqslant 1} \subset X$ such that $\lim_{n \to \infty} x_n = x_0$, and any $\varepsilon > 0$, take the corresponding δ and N such that $n > N \implies d(x_n,x_0) < \delta$. Then for any n > N, $d(x_n,x_0) < \delta$ so $d(f(x_n),f(x_0)) < \varepsilon$, hence $\lim_{n \to \infty} f(x_n) = f(x_0)$.

A2) (X,d) is a metric space. For any $x\in X$, r>0, let $B(x,r)=\{y\in X:d(x,y)< r\}$. Proved that for any $x\in X$, r>0, if $x'\in B(x,r)$, then there exists r'>0 such that $B(x',r')\subset B(x,r)$.

If $U=\bigcup_{\alpha\in\mathcal{A}}B(x_\alpha,r_\alpha)$, then we call U an open set. Prove that $U\subset X$ is open iff for any $x\in U$, there exists $\delta_x>0$ such that $B(x,\delta_x)\subset U$.

Proof: If $x' \in B(x,r)$, let r' = r - d(x,x'), then for any $y \in B(x',r')$, $d(x,y) \leqslant d(x,x') + d(x',y) < d(x,x') + r' = r$, hence $y \in B(x,r)$ so $B(x',r') \subset B(x,r)$. If for any $x \in U$, there exists $\delta_x > 0$ such that $B(x,\delta_x) \subset U$, then $U = \bigcup_{x \in U} B(x,\delta_x)$ is open. If U is open then for any $x \in U$, suppose $x \in B(x_\alpha,r_\alpha)$ for some $\alpha \in \mathcal{A}$, then there exists $\delta_x > 0$ such that $B(x,\delta_x) \subset B(x_\alpha,r_\alpha) \subset U$.

A3) Let $\mathcal T$ denote all open sets on (X,d). Prove that $\mathcal T$ is a topology.

Proof: 1. $\emptyset \in \mathcal{T}$, $X = \bigcup_{x \in X} B(x,1) \in \mathcal{T}$. 2. If $\{U_{\alpha} : \alpha \in J\} \subset \mathcal{T}$, where $U_{\alpha} = \bigcup_{x \in \mathcal{A}_{\alpha}} B(x,r_{\alpha,x})$ then let $\mathcal{A} = \bigcup_{\alpha \in J} \mathcal{A}_{\alpha}$,

$$igcup_{lpha \in J} U_lpha = igcup_{x \in \mathcal{A}} B(x, \sup_{lpha, x \in \mathcal{A}_lpha} r_{lpha, x}) \in \mathcal{T}.$$

3. If $U_1,\cdots,U_n\in\mathcal{T}$, where $U_k=igcup_{x\in\mathcal{A}_k}B(x,r_{k,x})$, then let $\mathcal{A}=igcup_{k=1}^n\mathcal{A}_k$

$$igcap_{k=1}^n U_k = igcup_{x \in \mathcal{A}} B(x, \min_{x \in \mathcal{A}_k} r_{k,x}) \in \mathcal{T}.$$

Therefore \mathcal{T} is a topology on X.

A4) (X,d) is a metric space. If $F\subset X$ and F^C is open, then we call F a closed set. Prove that F is closed iff for any sequence $\{x_n\}_{n\geqslant 1}\in F$, if $\lim_{n\to\infty}x_n=x$ then $x\in F$.

Proof: Suppose F is closed, if a sequence $\{x_n\}_{n\geqslant 1}$ satisfy $\lim_{n\to\infty}x_n=x$ and $x\in F^C$, then there exists $\varepsilon>0$ such that $B(x,\varepsilon)\subset F^C$. However $B(x,\varepsilon)\cap\{x_n\}\neq\emptyset$, leading to contradiction.

If for any sequence $\{x_n\}_{n\geqslant 1}$ such that $\lim_{n\to\infty}x_n=x$, there is $x\in F$, then for any $x\in F^C$, if for any $\varepsilon>0$ $B(x,\varepsilon)\not\subset F^C$, then for any $n\geqslant 1$, take $x_n\in B(x,\varepsilon)\cap F$. The sequence $\{x_n\}$ has the limit $\lim_{n\to\infty}x_n=x$ but $x\in F^C$, a contradiction. Hence F is closed.

A5) Prove that

- 1. \emptyset and X are closed sets.
- 2. Any intersection of closed sets are still closed.
- 3. Finite unions of closed sets are still closed. Proof: Use A3) and de Morgan's theorem.

A6) Suppose (X,d_X) and (Y,d_Y) are metric spaces and $f:X\to Y$, then the following statements are equivalent:

- 1. *f* is continuous.
- 2. For any $U\subset Y$ open, $f^{-1}(U)$ is an open set in X.
- 3. For any $F\subset Y$ closed, $f^{-1}(F)$ is a closed set in X. Proof: 1=>2: If f is continuous, then for any $U\subset Y$ open, consider any point $x\in f^{=1}(U)$. Let $y=f(x)\in U$, then there exists $\varepsilon>0$ such that $B(y,\varepsilon)\subset U$. Since f is continuous, there exists $\delta>0$ such that for any $x'\in B(x,\delta)$, $f(x')\in B(y,\varepsilon)\subset U$, hence $B(x,\delta)\subset f^{-1}(U)$. Therefore $f^{-1}(U)$ is an open set in X. 2=>1: For any $x\in X$ and $\varepsilon>0$, consider the open set $U=B(y,\varepsilon)$, where y=f(x). Since $x\in f^{-1}(U)$ and $f^{-1}(U)$ is an open set, there exists $\delta>0$ such that $B(x,\delta)\subset f^{-1}(U)$, therefore f is continuous. 2<=>3: Note that $f^{-1}(Y\backslash A)=X\backslash f^{-1}(A)$.

A7) Let A' be the set of limit points of A. Prove that $ar{A}=A'\cup A.$

Proof: For any closed set $F\supset A$, by A4) we know $A'\subset F$, hence $A'\cup A\subset \bar{A}$. Consider a sequence $\{x_n\}_{n\geqslant 1}\subset A'\cup A$ such that $\lim_{n\to\infty}x_n=x$ exists, for any $n\geqslant 1$ we can find a $y_n\in A$ such that $d(x_n,y_n)\leqslant 2^{-n}$, hence $\lim_{n\to\infty}y_n=\lim_{n\to\infty}x_n=x$ so $x\in A'\cup A$. Therefore $A'\cup A$ is closed, and hence $\bar{A}=A'\cup A$.

A8) Suppose (Y,d_Y) and (Z,d_Z) are metric spaces, define the metric on $Y\times Z$:

$$d_{Y imes Z}: (Y imes Z)^2 o \mathbb{R}_{\geqslant 0}, \, ((y_1,z_1),(y_2,z_2)) o \sqrt{d_Y(y_1,y_2)^2 + d_Z(z_1,z_2)^2}.$$

Prove that this defines a metric and the projection mappings are continuous:

$$\pi_Y: Y \times Z \to Y, \ (y,z) \mapsto y; \ \pi_Z: Y \times Z \to Z, \ (y,z) \mapsto z.$$

Given a mapping $F:X\to Y\times Z$, then F is continuous iff $\pi_Y\circ F$ and $\pi_Z\circ F$ are both continuous.

Proof:
$$d((y_1,z_1),(y_2,z_2))=0 \iff (y_1,z_1)=(y_2,z_2),$$
 $d((y_1,z_1),(y_2,z_2))=d((y_2,z_2),(y_1,z_1)),$ and $d((y_1,z_1),(y_2,z_2))\leqslant d((y_1,z_1),(y_3,z_3))+d((y_3,z_3),(y_2,z_2))$ (since

 $\sqrt{(x+y)^2+(u+v)^2}\leqslant \sqrt{x^2+u^2}+\sqrt{y^2+v^2})\text{, hence }d_{Y\times Z}\text{ is a metric.}$ Note that $d((y_1,z_1),(y_2,z_2)\geqslant d(y_1,y_2)$, hence π_Y and π_Z are continuous. $d((y_1,z_1),(y_2,z_2))\leqslant d(y_1,y_2)+d(z_1,z_2)\text{, hence }F\text{ is continuous iff }\pi_Y\circ F\text{ and }\pi_Z\circ F\text{ are both continuous.}$

A9) Prove that the operators + and \cdot on real numbers are continuous.

Proof: For any $(x,y),(u,v)\in\mathbb{R}^2$,

$$|(x+y)-(u+v)| \le |x-u|+|y-v| \le 2|(x,y)-(u,v)|.$$

Hence + is uniformly continuous.

$$|x \cdot y - u \cdot v| \leqslant |x| \cdot |y - v| + |v| \cdot |x - u|.$$

Therefore • is continuous.

A10) Prove that the operators + and \cdot on $\mathbf{M}_n(\mathbb{R})$ are continuous.

Proof: The proof of A9) only uses the properties of norms, and the fact that $||A \cdot B|| \leq ||A|| \cdot ||B||$. This also holds for the norm $||A|| = \sup_{|\mathbf{x}|=1} |A\mathbf{x}|$ on $\mathbf{M}_n(\mathbb{R})$, therefore + and \cdot are continuous on $\mathbf{M}_n(\mathbb{R})$.

A11) Prove that $\mathbf{GL}_n(\mathbb{R})$ is an open set on $\mathbf{M}_n(\mathbb{R})$.

Proof: The mapping $\det: \mathbf{M}_n(\mathbb{R}) \to \mathbb{R}$ is continuous, since view as $\det: \mathbb{R}^{n^2} \to \mathbb{R}$ it is a multi-linear mapping. The set $\mathbf{GL}_n(\mathbb{R}) = \det^{-1}(\{x \in \mathbb{R} : x \neq 0\})$, where $\{x \in \mathbb{R} : x \neq 0\}$ is an open set on \mathbb{R} , therefore $\mathbf{GL}_n(\mathbb{R})$ is an open set on $\mathbf{M}_n(\mathbb{R})$.

A12) Prove that ${ m Inv}:{f GL}_n({\Bbb R}) o{f GL}_n({\Bbb R}), A\mapsto A^{-1}$ is continuous.

Proof: Note that for any $A,B\in\mathbf{GL}_n(\mathbb{R})$,

$$||A^{-1} - B^{-1}|| \le \frac{||A - B||}{||A|| \cdot ||B||}.$$

Hence Inv is continuous.

PSB

Prove the following equalities:

B1)
$$\lambda>0$$
, $\lim_{x o\infty}rac{x^n}{e^{\lambda x}}=0$.

Proof: By definition, for x>0, $e^{\lambda x}\geqslant (\lambda x)^{n+1}/(n+1)!$. Hence for any $\varepsilon>0$, let $M=\frac{(n+1)!}{\lambda^{n+1}\varepsilon}$, then for any x>M,

$$\left| rac{x^n}{e^{\lambda x}}
ight| \leqslant rac{(n+1)!}{\lambda^{n+1} x} < arepsilon.$$

Therefore

$$\lim_{x o\infty}rac{x^n}{e^{\lambda x}}=0.$$

B2) $\alpha > 0$, then

$$\lim_{x o\infty}x^{lpha}\log\left(1+rac{1}{x}
ight)=egin{cases}\infty,&lpha>1;\ 1,&lpha=1;\ 0,&0$$

Proof: If $0<\alpha<1$, then for any $\varepsilon>0$, there exists $\delta=\varepsilon^{1/(\alpha-1)}$ such that for any $x>\delta$,

$$\left|x^{lpha}\log\left(1+rac{1}{x}
ight)
ight|\leqslant x^{lpha-1}$$

If $\alpha>1$, then for any $\varepsilon>0$, there exists $\delta=(2\varepsilon)^{1/\alpha-1}$ such that for any $x>\delta$,

$$\left|x^{lpha}\log\left(1+rac{1}{x}
ight)
ight|\geqslantrac{x^{lpha}}{x+1}\geqslantrac{1}{2}x^{lpha-1}>arepsilon.$$

If $\alpha=1$, then for any $\varepsilon>0$, there exists $\delta=1/\varepsilon$ such that for any $x>\delta$,

$$1-arepsilon \leqslant rac{x}{x+1} \leqslant x \log \left(1+rac{1}{x}
ight) \leqslant 1.$$

Therefore

$$\lim_{x o\infty}x^lpha\log\left(1+rac{1}{x}
ight)=egin{cases}\infty,&lpha>1;\ 1,&lpha=1;\ 0,&0$$

B3)
$$\lim_{x \to 0^+} x^{-n} e^{-1/x^2} = 0$$
.

Proof: If x<1, then $e^{-1/x^2}\leqslant e^{-1/x}\leqslant (n+1)!x^{n+1}$, hence for any $\varepsilon>0$, let $\delta=\varepsilon/(n+1)!$, then for any $x\in(0,\delta)$, $x^{-n}e^{-1/x^2}\leqslant(n+1)!x\leqslant\varepsilon$. Therefore

$$\lim_{x o 0^+} x^{-n} e^{-1/x^2} = 0.$$

B4) We know that $\lim_{x o 0} rac{\sin x}{x} = 1$. Calculate

$$\lim_{x\to 0} rac{\cos x-1}{x}$$
, and $\lim_{x\to 0} rac{\cos x-1}{x^2/2}$.

Solution: For any $\varepsilon>0$, there exists $\delta>0$ such that for any $|x|<\delta$, $\sin x\in ((1-\varepsilon)x,(1+\varepsilon)x)$. Hence

$$\left|\frac{\cos x - 1}{x}\right| \leqslant \left|\frac{\sqrt{1 - \sin^2 x} - 1}{x}\right| \leqslant \left|\frac{\sin^2 x}{x(\sqrt{1 - \sin^2 x} + 1)}\right| \leqslant (1 + \varepsilon)^2 x \leqslant \delta (1 + \varepsilon)^2.$$

Therefore

$$\lim_{x\to 0}\frac{\cos x-1}{x}=0.$$

Likewise

$$\left|\frac{\cos x-1}{x^2/2}+1\right|\leqslant \left|\frac{\sin^2 x-x^2(1+\sqrt{1-\sin^2 x})/2}{x^2/2\cdot(\sqrt{1-\sin^2 x}+1)}\right|\leqslant (2\varepsilon+\sqrt{1-\sin^2 x}-1).$$

Therefore

$$\lim_{x\to 0}\frac{\cos x-1}{x^2/2}=-1.$$

PSC: Root of Function:

C1) Prove that $x^3+2x-1=0$ has exactly one root which lies in (0,1).

Proof: Let $f(x) = x^3 + 2x - 1$, then f(0) = -1 and f(1) = 2, so f(0) < 0 < f(1). Since f is continuous and monotonically increasing on (0,1), there is exactly one root in (0,1).

C2) Suppose $0 \leqslant \lambda < 1$, b > 0, determine whether the equation $x - \lambda \sin x = b$ has a solution.

Solution:

C3) Prove that $\sin x = 1/x$ has infinitely many roots.

Proof: For any $n\in\mathbb{N}$, let $x_n=(2n+1/2)\pi$, $y_n=(2n+3/2)\pi$, and $f(x)=\sin x-1/x$, then $f(x_n)=1-1/x_n>0$, $f(y_n)=-1-1/y_n<0$, therefore f has a root in (x_n,y_n) , and hence f has infinitely many roots.

C4) Assume $f\in C([0,2])$ and f(0)=f(2). Prove that f(x)-f(x+1)=0 has a root in [0,1].

Proof: Let g(x)=f(x)-f(x+1), then g(0)=f(0)-f(1)=-g(1) and $g\in C([0,1])$. Therefore g has a root in [0,1].

C5) Prove that $x^3+3=e^x$ has a solution in $\mathbb R.$

Proof: Let $f(x)=e^x-x^3-3$, then $\lim_{x\to\infty}f(x)=\infty$ and $\lim_{x\to-\infty}f(x)=-\infty$, therefore f has a root in $\mathbb R$.

C6) Suppose $f:[0,2] o\mathbb{R}$ is continuous and f(0)=f(2) then there exists $x\in[1,2]$ such that f(x)=f(x-1).

Exactly the same as C4)?

C7) $f:\mathbb{R} o \mathbb{R}$, Prove that if for any $c \in \mathbb{R}$, $|f^{-1}(c)| = 2$, then f is not continuous.

Proof: If f is continuous on \mathbb{R} , suppose $f^{-1}(0)=\{a< b\}$, then $f|_{[a,b]}$ is bounded. Suppose $f\left(\frac{a+b}{2}\right)>0$, then for any $t\in(a,b)$, f(t)>0 (otherwise $|f^{-1}(0)|>2$). Consider an arbitrary $M>y=\sup_{x\in[a,b]}f(x)$, and take $t\in f^{-1}(M)$. Assume t< a, then f(t)=M>y/2>f(a)=0, hence there exists $s\in(t,a)$ such that f(s)=y/2. However there are at least two elements of $f^{-1}(y/2)$ in (a,b), leading to contradiction.

C8) Suppose the continuous function $f:[a,b] \to \mathbb{R}$ is injective. If f(a) < f(b), prove that f is monotonically increasing.

Proof: Otherwise suppose f(u) > f(v) for some u < v. Note that for any $c \in (a,b)$, f(a) < f(c) < f(b), otherwise $f(c) < f(a) \implies \exists d \in (c,b), f(d) = f(a)$, or $f(c) > f(b) \implies \exists d \in (a,c), f(d) = f(b)$. Hence a < u < v < b. Likewise consider u < v < b we get f(u) > f(v) > f(b), and by a < u < v we get f(a) > f(u) > f(v), therefore f(a) > f(b), a contradiction.

PSD: Calculation of Limits

n, m are positive integers.

(1)

$$\lim_{x o\infty}rac{a_0x^n+a_1x^{n-1}+\cdots+a_n}{b_0x^m+b_1x^{m-1}+\cdots+b_m} = egin{cases} 0, & m>n, \ \infty, & m< n, a_0>0, \ -\infty, & m< n, a_0<0, \ rac{a_0}{b_0}, & m=n. \end{cases}$$

(2) a > 1, b > 0

$$\lim_{x\to\infty}\frac{x^b}{a^x}=0.$$

(3) a > 0

$$\lim_{x\to\infty}\frac{\log x}{x^a}=0.$$

(4) a > 0

$$\lim_{x o 0^+} x^a \log x = 0.$$

(5)

$$\lim_{x o\infty}\left(rac{x^2+1}{x^2-2}
ight)^{x^2}=\lim_{x o\infty}\left(rac{x+1}{x-2}
ight)^x=e^3.$$

(6)

$$\lim_{x o\infty}(x-\sqrt{x^2-a})=\lim_{x o\infty}rac{a}{x+\sqrt{x^2-a}}=0.$$

(7)

$$\lim_{x\to\infty}\sqrt{x+1}-\sqrt{x-1}=\lim_{x\to\infty}\frac{2}{\sqrt{x+1}-\sqrt{x-1}}=0.$$

(8)

$$\lim_{x\to 0}\frac{(1+x)(1+2x)(1+3x)-1}{x}=1+2+3=6.$$

(9)

$$\lim_{x o 1}rac{x+x^2+\cdots+x^n-n}{x-1}=rac{n(n+1)}{2}.$$

(10)

$$\lim_{x \to 1} \frac{x^{100} - 2x + 1}{x^{50} - 2x + 1} = \frac{49}{24}.$$

(11)

$$\lim_{x\to 1}\left(\frac{m}{1-x^m}-\frac{n}{1-x^n}\right)=\frac{m-n}{2}.$$

Proof: Note that

$$\lim_{x \to 1} \left(\frac{m}{1 - x^m} - \frac{n}{1 - x^n} \right) = \lim_{x \to 1} \frac{m(1 + x + \dots + x^{n-1}) - n(1 + x + \dots + x^{m-1})}{(1 + x + \dots + x^{m-1})(1 + x + \dots + x^{m-1})(1 - x)}$$

$$= \frac{1}{mn} \cdot \lim_{x \to 1} \frac{m(x - 1 + \dots + x^{n-1} - 1) - n(x - 1 + \dots + x^{m-1} - 1)}{1 - x}$$

$$= \frac{1}{mn} \cdot (-m(1 + 2 + \dots + (n-1)) + n(1 + 2 + \dots + (m-1)))$$

$$= \frac{m - n}{2}.$$

(12)

$$\lim_{x o 0}rac{(1+x)^a-1}{x}=a.$$

(diverges if a=0).

(13)

$$\lim_{x\to 1}\frac{x^a-1}{x^b-1}=\frac{a}{b}.$$

(14)

$$\lim_{x o\infty}(\log x)^{1/x}=\lim_{x o\infty}e^{(\log\log x)/x}=1.$$

(15) a, b > 0

$$\lim_{x o 0}\left(rac{a^x+b^x}{2}
ight)^{1/x}=\sqrt{ab}.$$

(16)

$$\lim_{x o\infty}\sqrt[k]{(x+a_1)(x+a_2)\cdots(x+a_k)}-x$$

Proof: Let $y=(x+a_1)(x+a_2)\cdots(x+a_k)$ and $s=a_1+\cdots+a_k$, then

$$rac{sx^{k-1}}{ky^{(k-1)/k}} \leqslant \sqrt[k]{y} - x = rac{y - x^k}{y^{(k-1)/k} + \dots + x^{k-1}} \leqslant rac{sx^{k-1} + \prod_{i=1}^k \left(1 + a_i
ight)x^{k-2}}{kx^{k-1}}.$$

Therefore

$$\lim_{x o\infty}\sqrt[k]{y}-x=s=\sum_{i=1}^k a_i.$$

(17)

$$\lim_{x o 0}rac{(\sqrt{1+x^2}+x)^n-(\sqrt{1+x^2}-x)^n}{x}=2n.$$

(18)

$$\lim_{x o rac{\pi}{2}}(\sin x)^{ an x}=1.$$

(19)

$$\lim_{x\to\infty}\left(\sin\frac{1}{x}+\cos\frac{1}{x}\right)^x=e.$$

(20) $\alpha > 0$,

$$\lim_{x o\infty}rac{\sqrt{x+\sqrt{x+\sqrt{x}}}}{x^lpha}=egin{cases} 0, & lpha>rac{1}{2},\ 1, & lpha=rac{1}{2},\ \infty, & lpha<rac{1}{2}. \end{cases}$$

(21) $\alpha > 0$,

$$\lim_{x o 0^+}rac{\sqrt{x+\sqrt{x+\sqrt{x}}}}{x^lpha}=egin{cases} 0, & lpha<rac{1}{8},\ 1, & lpha=rac{1}{8},\ \infty, & lpha>rac{1}{8}. \end{cases}$$

Proof: Note that for $x \in (0,1)$,

$$x^{1/8-lpha}\leqslant rac{\sqrt{x+\sqrt{x+\sqrt{x}}}}{x^lpha}\leqslant 2x^{1/8-lpha}.$$

And for any $\varepsilon>0$ there exists $\delta=(1+\varepsilon)\varepsilon$ such that for any $x<\delta$, $\sqrt{x+\sqrt{x+\sqrt{x}}}<\varepsilon x^{1/8}$. Therefore

$$\lim_{x o 0^+}rac{\sqrt{x+\sqrt{x+\sqrt{x}}}}{x^lpha}=egin{cases} 0, & lpha<rac{1}{8},\ 1, & lpha=rac{1}{8},\ \infty, & lpha>rac{1}{8}. \end{cases}$$

Problem E

Prove that for any $A \subset \mathbb{R}$ that is countable, there exists a monotonic function $f : \mathbb{R} \to \mathbb{R}$, such that the set of discontinuities of f is exactly A.

Proof: Let $A=\{x_1,x_2,\cdots\}$ and $f(x)=\sup\{1-2^n:x_n< x\}$, (define $\sup\emptyset=0$) then f is monotonically increasing and the set of discontinuities is exactly A.

Problem F

f:[0,1]
ightarrow [0,1] is monotonic. Prove that f has a fixed point.

Proof: Otherwise suppose that f has no fixed points. Let $S=\{t\in[0,1]:f(t)>t\}$ and $x=\sup S$. Note that $0\in S$ so S is non-empty. If $x\in S$, then f(x)>x so f(f(x))>f(x) (f is monotonic) then $x< f(x)\in S$ which leads to contradiction. If $x\not\in S$, then f(x)< x. Take $y\in (f(x),x)\cap S$, (y exists since $x=\sup S$) then f(x)>f(y)>y>f(x), a contradiction.

Problem G

Consider all self-homeomorphisms of [0,1], i.e.

$$\operatorname{Homeo}([0,1]) = \{f: [0,1] \to [0,1]: f \text{ is a continuous bijective}\}$$

We know that for any $f \in \operatorname{Homeo}([0,1])$, $f^{-1} \in \operatorname{Homeo}([0,1])$. Suppose $f,g \in \operatorname{Homeo}([0,1])$ and the only fixed points of f,g are 0,1. Prove that there exists $h \in \operatorname{Homeo}([0,1])$, such that

$$h \circ f \circ h^{-1} = g.$$

Proof: Take $x_0=1/2$, and let $I_n=[f^n(x_0),f^{n+1}(x_0)]$, $J_n=[g^n(x_0),g^{n+1}(x_0)]$. Note that $(0,1)=\bigcup_{n\in\mathbb{Z}}I_n=\bigcup_{n\in\mathbb{Z}}J_n$. Define $h_0:I_0\to J_0,\ x\mapsto kx+b$ such that the line h_0 passes (x_0,x_0) and $(f(x_0),g(x_0))$, i.e. $x\mapsto \frac{g(x_0)-x_0}{f(x_0)-x_0}(x-x_0)+x_0$. Define $h_n:I_n\to J_n,\ x\mapsto g^n\circ f^{-n}(x)$, and $h:[0,1]\to[0,1]$ such that

$$h(x) = egin{cases} x, & x \in \{0,1\}, \ h_n(x), & x \in I_n. \end{cases}$$

Then for any $x\in I_n$, $f(x)\in I_{n+1}$ hence $h(f(x))=g^{n+1}\circ f^{-n}(x)=g(h(x))$. Since h maps I_n to J_n bijectively, h is a bijection on [0,1]. For any $x\in I_n\cap I_{n+1}$ the value of h does not depend on which interval we choose, and h is continuous on any interval I_n , therefore h is a continuous bijection.