Particle spectrograph

Wave operator and propagator

Source constraints		
SO(3) irreps	Fundamental fields	Multiplicities
$\tau_0^{#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta}==0$	1
$\tau_0^{\#_1} - 2 i k \sigma_0^{\#_1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha} + 2 \partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}$	1
$t_1^{\#2}\alpha + 2ik \ \sigma_1^{\#2}\alpha = 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2 \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	3
$t_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$	3
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha} \tau^{\chi\beta} + \partial_{\chi}\partial^{\beta} \tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi} t^{\beta\alpha} + 2 \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$t_{2+}^{\#1}\alpha\beta - 2ik \sigma_{2+}^{\#1}\alpha\beta == 0$	$t_{2+}^{\#1}\alpha\beta - 2\bar{i}k \sigma_{2+}^{\#1}\alpha\beta == 0 - \bar{i}(4\partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}t^{\chi\delta} + 2\partial_{\delta}\partial^{\delta}\partial^{\alpha}t^{\chi})$	5
	$3 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$	
	$3 \partial_{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$	
	$4\ i \ k^{X}\ \partial_{arepsilon}\partial_{\chi}\partial^{eta}\partial^{lpha}\sigma^{\deltaarepsilon}_{\ \ \delta}$ -	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon}$ -	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$	
	$6 \ i \ k^{\chi} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha}$ -	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau_{\chi}^{\chi}$ -	
	$4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta\epsilon}_{\delta}) == 0$	
Total constraints/gauge generators:	ge generators:	16

Quadratic (free) action
S ==
$\iiint (\frac{1}{6} \left(6 t_1 \omega^{\alpha_i}_{ \alpha} \omega_i^{\theta} + 6 f^{\alpha\beta} \tau_{\alpha\beta} + 6 \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} - 12 t_1 \omega_{\alpha\theta}^{\theta} \partial_i f^{\alpha_i} + 12 t_1$
$\omega_{,\ \theta}^{\ \theta}\partial'f^{\alpha}_{\ \alpha}$ -6 $t_{1}\partial_{i}f^{\theta}_{\ \theta}\partial'f^{\alpha}_{\ \alpha}$ -12 $r_{1}\partial_{\beta}\omega_{,\ \theta}^{\ \theta}\partial'\omega^{\alpha\beta}_{\ \alpha}$ +
$12 r_1 \partial_i \omega_{\beta \theta}^{\theta} \partial^i \omega^{\alpha \beta}_{\alpha} - 6 t_1 \partial_i f^{\alpha i} \partial_{\theta} f_{\alpha}^{\theta} +$
$12 t_1 \partial' f^{\alpha}_{\alpha} \partial_{\theta} f_{i}^{\theta} + 12 r_1 \partial_{\alpha} \omega^{\alpha \beta i} \partial_{\theta} \omega_{\beta}^{\theta} -$
$24 r_1 \partial' \omega^{\alpha\beta}_{\alpha} \partial_{\theta} \omega_{\beta}^{\ \theta}$, $-12 r_1 \partial_{\alpha} \omega^{\alpha\beta} \partial_{\theta} \omega_{\beta}^{\ \theta} +$
$24 r_1 \partial' \omega^{\alpha\beta}_{\alpha} \partial_{\theta} \omega_{i\beta}^{\theta} + 4 t_1 \omega_{i\theta\alpha} \partial^{\theta} f^{\alpha i} + 4 t_2 \omega_{i\theta\alpha} \partial^{\theta} f^{\alpha i} -$
$4t_1\partial_\alpha f_{_{l\theta}}\partial^\theta f^{\alpha l}+2t_2\partial_\alpha f_{_{l\theta}}\partial^\theta f^{\alpha l}-4t_1\partial_\alpha f_{_{\theta l}}\partial^\theta f^{\alpha l}-$
$t_2\partial_{\alpha}f_{\theta_l}\partial^{\theta}f^{\alpha_l}+2t_1\partial_{\imath}f_{\alpha\theta}\partial^{\theta}f^{\alpha_l}-t_2\partial_{\imath}f_{\alpha\theta}\partial^{\theta}f^{\alpha_l}+$
$4t_1\partial_\theta f_{\alpha i}\partial^\theta f^{\alpha i}+t_2\partial_\theta f_{\alpha i}\partial^\theta f^{\alpha i}+2t_1\partial_\theta f_{i\alpha}\partial^\theta f^{\alpha i}-$
$t_2 \partial_{\theta} f_{i\alpha} \partial^{\theta} f^{\alpha i} + 2 (t_1 + t_2) \omega_{\alpha i\theta} (\omega^{\alpha i\theta} + 2 \partial^{\theta} f^{\alpha i}) +$
$2 \omega_{\alpha\theta} ((t_1 - 2t_2) \omega^{\alpha\theta} + 2(2t_1 - t_2) \partial^{\theta} f^{\alpha}) -$
$8 r_1 \partial_{\beta} \omega_{\alpha_{i}\theta} \partial^{\theta} \omega^{\alpha\beta_{i}} + 8 r_2 \partial_{\beta} \omega_{\alpha_{i}\theta} \partial^{\theta} \omega^{\alpha\beta_{i}} +$
$4r_1\partial_\beta\omega_{\alpha\theta_I}\partial^\theta\omega^{\alpha\beta_I}-4r_2\partial_\beta\omega_{\alpha\theta_I}\partial^\theta\omega^{\alpha\beta_I}-16r_1\partial_\beta\omega_{I\theta\alpha}$
$\partial^{\theta}\omega^{\alpha\beta\prime} + 4 r_2 \partial_{\beta}\omega_{\prime\theta\alpha}\partial^{\theta}\omega^{\alpha\beta\prime} - 4 r_1 \partial_{\prime}\omega_{\alpha\beta\theta}\partial^{\theta}\omega^{\alpha\beta\prime} -$
$2 r_2 \partial_i \omega_{\alpha\beta\theta} \partial^\theta \omega^{\alpha\beta i} + 4 r_1 \partial_\theta \omega_{\alpha\beta i} \partial^\theta \omega^{\alpha\beta i} +$
$2 r_2 \partial_\theta \omega_{\alpha\beta_l} \partial^\theta \omega^{\alpha\beta_l} + 4 r_1 \partial_\theta \omega_{\alpha_l\beta} \partial^\theta \omega^{\alpha\beta_l} -$
$4r_2\partial_{\theta}\omega_{lpha_ieta}\partial^{\theta}\omega^{lphaeta_i}))[t,x,y,z]dzdydxdt$

-	$\mathfrak{r}_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$\frac{i\sqrt{2} k(2k^2 r_1 + t_1)}{(t_1 + 2k^2 t_1)^2}$	0	$\frac{2k^2(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$	
	$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0	
	$\sigma_{1^-\alpha}^{\#2}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	$\frac{2k^2r_1+t_1}{(t_1+2k^2t_1)^2}$	0	$-\frac{i\sqrt{2}k(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$,,#2 <i>f</i> #1 <i>f</i> #2
	$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$,,,#1
	${\mathfrak l}_{1}^{\#1}_{\alpha\beta}$	$\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	$\frac{i k (t_1 + 4 t_2)}{3 (1 + k^2)^2 t_1 t_2}$	$\frac{k^2 (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0	$f^{#_1}$
	$\sigma_{1}^{\#2}_{+}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3 (1 + k^2) t_1 t_2}$	$\frac{t_1+4t_2}{3(1+k^2)^2t_1t_2}$	$-\frac{i k (t_1+4 t_2)}{3 (1+k^2)^2 t_1 t_2}$	0	0	0	0	, , , , , , , , , , , , , , , , , , ,
	$\sigma_{1}^{\#1}{}_{\alpha\beta}$		$\frac{\sqrt{2} (t_1 - 2t_2)}{3(1 + k^2) t_1 t_2}$	$-\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	0	0	0	0	"" # ₁ "
		$J_1^{\#1} + \alpha \beta$	$J_1^{\#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_1^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} + ^{lpha}$	$\tau_1^{\#2} + \alpha$	

											_				
0	$\bar{i} k t_1$	0	0	0							$\omega_{2}^{\#1}_{\alpha\beta\chi}$	0	0	$_1 + \frac{t_1}{2}$	
0	0	0	0	0										$k^2 r_1 +$	
0	$\frac{t_1}{\sqrt{2}}$	0	0	0							$f_2^{#1}$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0	
0	$-k^2 r_1 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$-\bar{l}kt_1$							$\omega_{2}^{\#1}{}_{\alpha\beta} \ f_{2}^{\#1}{}_{\alpha\beta}$	<u>t1</u> 2	$\frac{ikt_1}{\sqrt{2}}$	0	
(7	- k ²					, ,#1	4 #1	_ #2		#1		$\omega_2^{#1} +^{\alpha\beta}$	$f_2^{\#1} + \alpha \beta$	$\omega_{2^{-}}^{\#1} +^{lphaeta\chi}$	
$t_1 + t_2$	0	0	0	0	$\omega_{\scriptscriptstyle 0^+}^{\scriptscriptstyle \#1}$ †	$\omega_{0}^{#1}$	$f_{0+}^{\#1}$ $i \sqrt{2} kt_1$	$f_{0^{+}}^{#2}$		$\omega_0^{\#1}$		ω_2^*	f#	$\omega_{2}^{\#1}$	
$\frac{1}{3} k^2 (t_1 + t_2)$	•))	J	$f_{0}^{#1}$ †	$-t_1$ $-i \sqrt{2} kt_1$	$\frac{1 \sqrt{2} k t_1}{-2 k^2 t_1}$	0		0	Χβχ				+t1
$ t_2 $					$f_{0}^{#2}$ †	0	0	0		0	$\sigma_{2^{-}}^{\#1}{}_{lphaeta\chi}$	0	0	2 2	2 k ² r ₁ +t ₁
$i k (t_1 + t_2)$	0	0	0	0	$\omega_{0}^{#1}$ †	0	0	0	k ²	$r_2 + t_2$	β	$\frac{2k}{12}$	2 -		
$-\frac{1}{3}ik$					_	$\sigma_{0}^{\#1}$	$ au_{0}^{\#1}$	τ_0^{i}	#2 0 ⁺	$\sigma_0^{\#1}$	$ au_2^{\#1}$	$2i\sqrt{2}k$	4 k ²	0	
$\frac{2t_2}{2}$					$\sigma_{0}^{\#1}$ †	$-\frac{1}{(1+2k^2)^2t_1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2}$	$\frac{1}{t_1}$	0	0	θ	- 1	,		
$\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	0	0	0	0	$ au_{0}^{\#1}$ †	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$	$-\frac{2k^2}{(1+2k^2)^2}$	$\frac{1}{2t_1}$	0	0	$\sigma_{2}^{\#1}{}_{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$2 \overline{i} \sqrt{2} k$ $(1 + 2) 2 \sqrt{2} + 4$	0	
$f_1^{\#1} + ^{\alpha \beta}$	$\omega_1^{\#1} +^{lpha}$	$+^{\alpha}$	$+^{\alpha}$	+α	$\tau_{0}^{\#2}$ †	0	0	(0	0		$ + \alpha \beta $	$+\alpha\beta$		
$f_1^{\#1}$	$\omega_{1}^{\#\bar{1}}$	$\omega_1^{\#2} +^{\alpha}$	$f_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$f_{1}^{\#2} +^{\alpha}$	$\sigma_0^{\#1}$ †	0	0		0	$\frac{1}{k^2 r_2 + t_2}$		$\sigma_{2}^{\#1} + \alpha \beta$	$\tau_2^{\#1} + \alpha \beta$	$\sigma_{\tilde{x}}^{*1} + \alpha \beta \chi$	7
								•							

Massive and massless spectra

? /	
$J^P = 0^-$	-
k^{μ}	
? ?	

Massive partic	le
Pole residue:	$-\frac{1}{r_2} > 0$
Polarisations:	1
Square mass:	$-\frac{t_2}{r_2} > 0$
Spin:	0
Parity:	Odd

(No massless particles)

Unitarity conditions

 $r_1 < 0 \&\& r_2 < 0 \&\& t_1 > 0 \&\& t_2 > 0$