CPSC 420 Lecture 6 : Today's announcements:

- Examlet 1 on Jan 27 in class.
- ► Reading: Linear Programming [Intro to Algs 4th Ed. by Cormen, Leiserson, Rivest, Stein Ch. 29-29.2, pg 817]
- ▶ Reading: Maximum Flows & Minimum Cuts [Algorithms by Erickson Ch. 10]

Today's Plan

- Linear Programming
- Network Flow

Linear Programming

General Problem We are given a set of variables. We want to assign real values to them so that:

- 1. They satisfy given linear equations and/or inequalities.
- 2. They maximize (or minimize) a given linear "objective" function.

max
$$x_1 + 6x_2$$

 $x_1 \le 200$
 $x_2 \le 300$
 $x_1 + x_2 \le 400$
 $x_1, x_2 \ge 0$

Linear Programming

General Problem We are given a set of variables. We want to assign real values to them so that:

- 1. They satisfy given linear equations and/or inequalities.
- 2. They maximize (or minimize) a given linear "objective" function.

Linear Programming

Optimum point exists unless

infeasible The feasible set is empty.

E.g. $x_1 < 1 \text{ and } x_1 > 3$

unbounded The feasible set is unbounded (in the direction of optimization).

E.g. max $(x_1 + x_2)$ where $x_1, x_2 \ge 0$.

Simplex algorithm Dantzig 1947

- 1. Start at a vertex v of the feasible set
- 2. While there is a neighbor v' of v with better objective value
- 3. v = v'

	profit	demand
Box 1	\$1	\leq 200 boxes/day
Box 2	\$6	\leq 300 boxes/day
Box 3	\$13	unlimited

We can produce \leq 400 boxes/day. Box 3 uses three times the filling as Box 2 and total filling is enough for 600 Box 2's per day.

$$max$$
 $x_1 + 6x_2 + 13x_3$
 $x_1 + v_2 + x_3 \le 460$
 $x_2 + 3x_3 \le 600$
 $x_2 \ge 0$

	profit	demand
Box 1	\$1	\leq 200 boxes/day
Box 2	\$6	\leq 300 boxes/day
Box 3	\$ 13	unlimited

We can produce \leq 400 boxes/day. Box 3 uses three times the filling as Box 2 and total filling is enough for 600 Box 2's per day.

$$\max x_1 + 6x_2 + 13x_3$$

$$x_1 \le 200$$

$$x_2 \le 300$$

$$x_1 + x_2 + x_3 \le 400$$

$$x_2 + 3x_3 \le 600$$

$$x_1, x_2, x_3 > 0$$

$$\max x_1 + 6x_2 + 13x_3$$

$$x_1 \le 200$$

$$x_2 \le 300$$

$$x_1 + x_2 + x_3 \le 400$$

$$x_2 + 3x_3 \le 600$$

$$x_1, x_2, x_3 \ge 0$$

Bandwidth allocation

Need to connect each pair of users with ≥ 2 units.

Per unit AB pays \$3, BC pays \$2, AC pays \$4

Two paths satisfy each connection:

- a short path: $A \rightarrow a \rightarrow b \rightarrow B$ for AB
- a long path: A o a o c o b o B for AB

6 11
10 13 8
n Short and long path

Let
$$x_{AB}$$
 and x'_{AB} be AB bandwidth routed on short and long path

$$\chi_{AB} + \chi_{AB} + \chi_{AB} + 2(\chi_{BC} + \chi_{BC}) + f(\chi_{AC} + \chi_{AC})$$
 $\chi_{AB} + \chi_{AB} + \chi_{BC} + \chi_{BC} + \chi_{BC} \leq 10$

Bandwidth allocation

Need to connect each pair of users with ≥ 2 units

Per unit AB pays \$3, BC pays \$2, AC pays \$4

Two paths satisfy each connection:

a short path: $A \rightarrow a \rightarrow b \rightarrow B$ for AB a long path: $A \rightarrow a \rightarrow c \rightarrow b \rightarrow B$ for AB

12

Let x_{AB} and x'_{AB} be AB bandwidth routed on short and long path

max
$$3(x_{AB} + x'_{AB}) + 2(x_{BC} + x'_{BC}) + 4(x_{AC} + x'_{AC})$$

 $x_{AB} + x'_{AB} + x_{BC} + x'_{BC} \le 10$
 $x_{AB} + x'_{AB} + x_{AC} + x'_{AC} \le 12$
 $x_{AB} + x'_{AC} + x'_{BC} \le 6$
 $x_{AB} + x'_{AB} \ge 2$

Bandwidth allocation

Need to connect each pair of users with ≥ 2 units.

Per unit AB pays \$3, BC pays \$2, AC pays \$4

Two paths satisfy each connection:

a short path: $A \rightarrow a \rightarrow b \rightarrow B$ for AB a long path: $A \rightarrow a \rightarrow c \rightarrow b \rightarrow B$ for AB

Let x_{AB} and x_{AB}' be AB bandwidth routed on short and long path

$$\max \ 3(x_{AB} + x'_{AB}) + 2(x_{BC} + x'_{BC}) + 4(x_{AC} + x'_{AC})$$

$$x_{AB} + x'_{AB} + x_{BC} + x'_{BC} \le 10$$

$$x_{AB} + x'_{AB} + x_{AC} + x'_{AC} \le 12$$

$$x_{AB} + x'_{AC} + x'_{BC} \le 6$$

$$x_{AB} + x'_{AB} \ge 2$$

$$\vdots$$

Solution:
$$\begin{array}{ccccc} x_{AB} & x_{AB} & x_{BC} & x_{BC} & x_{AC} & x_{AC} \\ 0 & 7 & 1.5 & 1.5 & 0.5 & 4.5 \end{array}$$

12

13

Network Flows

A **flow network** is a directed graph G = (V, E) in which each edge $(u, v) \in E$ has a positive **capacity** c(u, v) (non-edges have capacity 0).

G contains a **source** vertex s and a **sink** vertex t.

A **flow** is an assignment f of real numbers to edges of G:

1.
$$0 \le f(u, v) \le c(u, v)$$

2. For all
$$v \neq s$$
, t $\sum_{u} f(u, v) = \sum_{w} f(v, w)$ flow which

The **size** (or **value**) of a flow is: $size(f) = \sum_{(s,v) \in E} f(s,v)$

Goal: Find flow with maximum size.

Network Flows [Harris & Ross 1955]

