Sistema operativo y programas

domingo, 18 de octubre de 2020 1

Los sistemas operativos permiten admistrar el CPU para permitir la ejecución de varios programas

Cuándo yo prendo una computadora ...

- El primer programa que se ejecuta es el sistema operativo
- Al correr otros programas, el sistema operativo le da un turno a cada uno
- El SO toma y pasa el control. Cada programa tiene la ilusión de que se ejecuta solo, pero en realidad está compartiendo el tiempo del procesador

Lo mismo paso con los dispositivos ...

el sistema operativo permite abstraernos de los dispositivos y darnos alguna manera de interactuar de una manera más simple desde los programas

eso lo hace mediante los drivers. (* subprogramas específico para cada dispositivo)

* el programa le pide al SO -> el SO llama a los drivers que son los que se comunican con el dispositivo

DRIVERS

- S	on	distintos	para	cada	dispositivo	
-----	----	-----------	------	------	-------------	--

- son subprogram	as
------------------	----

Como funciona INT 7

domingo, 18 de octubre de 2020

INTERRUPCIONES POR SOFTWARE

- Son similares a las subrutinas
- Programa llama al SO (mediante la interrupción)
- SO interactúa con los dispositivos (mediante los drivers)

Instrucción INT 7

- Similar a Write ("cadena") de Pascal
- Pensarlo como una subrutina
- Parámetros de entrada:
 - o Bx: dirección del primer carácter de la cadena
 - o Al: cantidad de caracteres de la cadena
- Parámetro de salida
 - Ninguno.

Se pasa en **bx** el inicio de la cadena

Y se pasa en **al** el largo de la cadena

De esa manera se imprime "Hola!" en la pantalla usando la INT 7

¿Cómo se decodifica una cadena?

Dirección	Valor	Dirección	Valor
1000h	Н	1000h	48h
1001h	0	1001h	4Fh
1002h	L	1002h	4Ch
1003h	А	1003h	41h
1004h	!	1004h	21h
1005h	?? (basura)	1005h	?? (basura)
	1000h 1001h 1002h 1003h 1004h	1000h H 1001h O 1002h L 1003h A 1004h !	1000h H 1000h 1001h O 1001h 1002h L 1002h 1003h A 1003h 1004h ! 1004h

Mov al, 5

Le dice a mi programa que son solo 5
caracteres, así no procesa la basura

Si no quiero, o no sé, cuantos
caracteres ocupa mi cadena, lo que
puedo hacer es

Mov al, offset fin - offset cadena

Cómo funciona INT 6

domingo, 18 de octubre de 2020 16:30

Instrucción INT 6

- Similar al red (variable) de Pascal
 - Solo lee caracteres
 - Lee de a uno!
- Pensarlo como una subrutina
- Parámetros de entrada
 - Ninguno
- Parámetros de salida
 - o Bx: dirección dónde se almacena el carácter

¿Cómo se utiliza?

Leo un carácter

Lo almaceno en la variable "car"

Código:

```
org 1000h
car db ?

org 2000h
mov bx , offset car
int 6
int 6
end
```


Bien ... ¿Pero cómo leo VARIOS caracteres?

Voy a tener un espacio de memoria de 5 caracteres dónde estará basura en un principio

Hago un arreglo en cadena db dónde no tengo nada, tengo basura

En el loop lo primero que hago es leer un carácter

Lo segundo es el inc bx para apuntar al siguiente carácter

Decremento a cl

Si cl llega a 0, salgo del programa

.... Si no , vuelvo al loop

¿Cómo hago para leer hasta cierto carácter? (sin longitud fija)

```
org 1000h
car_fin db "."; creo una variable fin, con el valor de un punto.
cadena db ?; importante el signo de pregunta porque no reserva
; importante que la cadena esté abajo de car_fin, sino lo sobreescribo

org 2000h
mov cl , car_fin ; luego para comparar
mov bx , offset cadena ; dónde arranca la cadena
v loop: int 6
cmp [bx] , cl ; acá comparo si llegó al fin
jz fin ; como no llegó , sigue
inc bx ; me va a la siguiente posición de memoria
jmp loop ; salgo al loop nuevamente

fin: int 0
END
```

¿Cómo cuento caracteres?

```
org 1000h

car_fin db "."; creo una variable fin, con el valor de un punto.

car_a db "a"

cant_a db 0

cadena db ?; importante el signo de pregunta porque no reserva

; importante que la cadena esté abajo de car_fin, sino lo sobreescribo

org 2000h

mov bx , offset cadena

or loop: int 6

mov al , [bx] ; el carácter lo paso a al

cmp al , car_fin ; lo comparo si es el último o no

jz fin ; si es el último salto

; si no, sigo:

cmp al , car_a ; compara el carácter con la a

jnz loop ; si no es una a , va a saltar

inc cant_a ; al ser a, la cuenta

fin: int 0

END
```

Interrupciones por Hardware

domingo, 18 de octubre de 2020

¿Qué son las interrupciones por Hardware?

Debido a que la velocidad de los dispositivos externos es infinitamente menor (?) que la de, por ejemplo, el procesador, tiene que haber una manera para permitir la comunicación entre todos estos.

La manera tradicional es la consulta de estado o polling,

Otra manera, son las interrupciones por hardware

El polling

Pregunta constantemente si el dispositivo está ocupado y si lo está, espera

En este caso, la CPU va a estar esperando un montón de tiempo a un dispositivo mucho más lento

Interrupciones por hardware

La CPU ejecuta un programa de manera normal (como veníamos hasta ahora) sin preocuparse por la interrupción de los dispositivos.

Entonces en algún momento alguien aprieta una tecla que genera una señal, que le dice a la CPU "Espera, te quiero interrumpir"

En ese momento la CPU para de ejecutar el programa y ejecuta la subrutina para atender esta interrupción (manejador_int)

Mecanismo de interrupción

- 1. Dispositivo interrumpe al programa en ejecución
- 2. Se apila el PSW (en el caso del simulador, los flags, pero es toda la información necesaria para regresar al programa) ya que no sé cuándo me va a interrumpir la interrupción (que me puede cambiar los flags)

 Programa en ejecución

 Pila

- 4. Se maneja o atiende la interrupción
- 5. Se desapila y regresa al programa principal

Interrupciones por software

- INT 0 (HLT)
- INT 6 (leo un carácter)
 - o BX tiene la dirección dónde está almacenado dicho carácter
- INT 7 (imprime un string)
 - o BX tiene la dirección dónde comienza dicho string
 - AL contiene la cantidad de caracteres a imprimir

¿Y qué tienen que ver?

Bueno, las interrupciones por software utilizan el mismo mecanismo que las interrupciones por hardaware. Usan un número para saber que tipo de subrutina ejecutar y tiene que ver con esto:

PIC - Dispositivo interno

domingo, 18 de octubre de 2020

¿Cómo interrumpir con varios dispositivos de E/S?

La CPU tan solo tiene una sola línea de interrupción, por lo cuál se usa el PIC

El PIC puede tener conectado varios dispositivos

Dispositivo interno: PIC

- Es el "secretario" de la CPU
- · Permite conectar varios dispositivos a la vez
- Decide qué interrupciones dejar pasar

Las conexiones del PIC

Sólo va a tener 8 líneas de entradas, de las cuáles solo vamos a utilizar 4.

En la entrada 0 está el F10

En la línea 1 está el timer

En la línea 2 está el hand-shake

En la línea 3 va estar el CDMA

La 4 , 5 , 6 y 7 están libres.

El PIC se comunica con la CPU gracias a la línea **int** y la CPU se conecta con el PIC con la línea **intA**.

Además el PIC y la CPU se conecta mediante los buses para intercambiar un poco más de información.

PIC - Registros internos

110 10	egisti os ili	100						
EOI		20H	EOI: para finalizar una interrupción					
IMR		21H	IMR: interrupciones habilitadas					
IIVIK		ZIH	IRR: interrupciones pedidas					
IRR		22H	ISR: interrupciones en ejecución					
ISR		23H	INTO a INT7: ID de interrupciones de cada dispositivo					
INTO		24H						
INT1		25H	IMR/IRR/ISR					
INT2		26H	Son registros de estados / configuraciones					
			o 8 bits					
INT3		27H	○ 1 bit por conexión					
INT4		28H	• IMR: Interrupciones habilitadas IMR = 0FFh -> 111111111					
INT5		29H	Interruprion Mask Register					
INT6		30H	○ 0 -> habilitada , 1 -> deshabilitada = 0FDh -> 1111 1101					
			a El timar actá habilitada					

INT5	29H		Interruprion Mask Register	0	Todas las interrupciones deshabilitadas
INT6	30H		0 -> habilitada , 1 -> deshabilitada	= OF	
			0 -> habilitada , 1 -> enmáscarada	0	El timer está habilitado
INT7	31H		Interrupciones pedidas	IRR = 0 ->	> 00000000
			Interrupt Request Register	0	Ningún dispositivo está esperando para interrumpir a la
			0 -> no pedida , 1 -> pedida		CPU
			Interrupciones en ejecución	ISR = 0 =	0 00000000
			Interrupt In-Service Register	0	La CPU no está atendiendo ninguna interrupción (no
			0 -> no en ejecución , 1 -> en ejecución		está ejecutando la subrutina manejadora de ninguna
					interrupción)
IMR vs	IRR / ISR				
• 11	MR				
	o Registro de o	configuración			
	 Puedo escrib 	oirlo			
	■ Mov al	, <máscara></máscara>			
	• Out 21h	h , al ; 21 ah es	s porque ahí está el IMR		
• IF	RR e ISR				
	Son disposit	ivos internos d	del pic		
	o Registro de	estado			
	 Sólo lectura 				
		vamos a leer			
	 Sólo pa 	ara ver en el s	imulador		

Vector de interrupciones

jueves, 22 de octubre de 2020 19:04

¿Cómo es que el número de interrupción se puede asociar a la subrutina que maneja

la interrupción?

Para eso un enfoque que funciona es que el PIC en los registros INTO , INT1 , INT2 e INT3

Para independizarse del tamaño de la memoria, lo que tiene el PIC es un identificador de 8 bits; así que tenemos un "pasito" extra para llegar desde la interrupción hacía la subrutina que la atiende. Para esto tenemos el VECTOR DE INTERRUPCIONES.

VECTOR DE INTERRUPCIONES:

Cuándo yo hago una interrupción, lo que se hace es ir al PIC y el PIC va a buscar el identificador (del 0 al 256 porque es 1B) y con el identificador de interrupción va al vector de interrupciones, dónde encontrará la dirección (codificada en el vector) dónde se encuentra la subrutina a llamar.

Es un proceso de dos pasos.

Es un número de 8bits independiente de la arquitectura de la computadora.

¿Qué es el vector de interrupciones?

Bueno , el vector de interrupciones no es más que un cacho de memoria que tiene un uso especial. De la misma manera que la pila que está al fin de la memoria (y tiene su uso especial) el vector de interrupciones está en el principio, ocupando los primeros 1024 B (1K -> del 0H al 400H)

- Hay 4B para codificar la dirección, por eso siempre multiplico por 4 para buscar la subrutina. Si bien solo se utilizan los dos primeros bytes, los que hicieron el procesador son precavidos y reservaron 4 ¿Por qué? Mejor prevenir que llorar en Assembly (?)
- Siempre estamos manejando tres números: el ID de la dirección (el del PIC) otro es la dirección en el vector de interrupciones (correspondiente al ID) y otro es la dirección a la subrutina.

¿Cómo funciona?

- 1. Tengo una interrupción X
- 2. Apilo el estado
- 3. Acceso al vector de interrupciones, con ID * 4
- 4. Salto a la rutina
- 5. Se maneja la interrupción con la subrutina de atención o manejador
- 6. Desapilo y vuelvo al programa.

<u>Ejemplo</u>

Quiero hacer una interrupción con la tecla F10.

- i. En el pic configura como 10 la ID;
- ii. Va a la posición 40 del vector de interrupciones;
- iii. El vector de interrupciones tiene la de la subrutina.

¿Cómo elijo el ID de interrupción?

- Cualquier número entre 0 y 255
- Las interrupciones por software también utilizan el vector, así que tienen posiciones en el vector de interrupciones ocupadas.
 - > ID s ocupadas:

• 0
■ 6
• 7
Libres: el resto
No usar la misma dos veces, lo que si.

Configuración del PIC

jueves, 22 de octubre de 2020 19:39			
Pasos para configurar el PIC para una INT			
1. Configurar el registro IMR. Para habilitar las	interrupciones que nos interesan.		
2. Configurar el registro INTX, dónde X es la lín	ea de interrupción		
a. INTO para el F10			
b. INT1 para el Timer			
c.			
d			
3. Implementar la subrutina de atención que to	ermina con:		
a. Mandar el valor 20h al registro EOI (de	l PIC) para que el PIC se entere que terminó la		
interrupción.			
b. Instrucción <i>iret</i> (interrupt return)			
4. Poner dirección de la subrutina en el vector	de interrupciones. Muy importante.		
Ejemplo:			
Escribir un programa			
Subrutina "saludar"			
o Que imprime el mensaje "Hola" en pan	talla		
Cada vez que se presiona f10			
o Se llama a la subrutina			
Pasos			
0. Definiciones EQU	2. Configurar el registro INTO	Or	g 1000h
Una definición por cada registro a utilizar	• F10 conectada a la línea 0 Out INTO , al	Ms	sj db "chau"
• EOI EQU 20H	Registro INTO tiene e ID de interrupo	ciones	
IMR EQU 21H	Elijo un ID de forma arbiatraria	Or	g 3000h (3)
• INTO EQU 24H	■ El 24, por ejemplo	Sa	ludar: mov bx , offset msj
	3. Escribir la subrutina		Mov al , 4
1. Configurar el registro IMR	Imprime "chau"		Int 7
• F10 conectada a la línea 0	• Finaliza		Mov al , 20 h
 Habilitación depende del bit 0 	Escribe 20h en EOI		Out eoi , al
(menos significativo) del IMR	Vuelve con iret		Iret
• IMR Mov al , 0FEh	 Lo mismo para todas las subrutinas 	de interrupción	
 1 deshabilitado Out IMR , al 			Org 2000h
0 habilitado	4. Dirección de la subrutina en el Vector de inte	errupciones	CLI
□ 1111 1110	• El ID de interrupciones es 24 (índice)	_	Mov al , 0FEh (1)
□ OFEh	Posición 24 del vector	Nov bx , 96	Out IMR, al
	■ Dirección 24 * 4 = 96 decimal	Mov word PTR [bx] , 3000h	

■ Dirección 24 * 4 = 96 decimal

• Dirección de la subrutina = 3000h

Mov al , 24 (2)

Out INTO, al

Mov bx , 96 (4)

Mov WORD PTR [bx], 3000h

PERO ¿QUÉ PASA SI A MITAD DE LA CONFIGURACIÓN ALGUIEN ME APRETA F10?

Instrucciones CLI y STI

- Sirven para desactivar (y activar) las interrupciones mientras se configura (o termina de) el PIC
- CLI
 - Dochabilita

ı	Sirven para desactivar (y activar) las interrupciones mientras se co	onfigura (o termina de) el PIC		
	• CLI		STI	
	Deshabilita			
	• STI			p (bucle infinito)
	⊙ Habilita		End	
	 Siempre que se configura el PIC, se lo "encierra" entre ambas instru 	ıcciones		
	Se deshabilita no desde el PIC, sino desde el procesador todas las i			
	VERSIONES ALTERNATIVAS			
	Paso 4	Mov bx , 96	mov bx , 96	
	Declarar variables con un valor	Mov WORD PTR [bx], 3000h	mov WORD PTR [bx] , saludar	
	Modifica la memoria			
	ORG X	Org 96		
	o Indica dónde	Dir_ saludar dw 3000h		
	Podemos utilizarlo para escribir en el vector de interrupciones			
	PASO 2 : CONSTANTE PARA EL ID	Org 96	org 96	
	El ID de interrupciones no queda claro en el código	Dw 3000h	dir_saludar dw saludar	
	No se sabe cuándo se va a ejecutar la interrupción Push ax			
	Diseñar las subrutinas para que preserven los registros. *resto*			
	Pop ax			
	Pop bx			

Interrupciones con la tecla F10

viernes, 23 de octubre de 2020 14:44

- Escribir un programa
 - o Ejecutar un lazo infinito
 - Nunca termina
 - o Cuente el número de veces que se presiona la tecla F10
 - Acumule este valor en el registro DX

Interrupciones con el Timer

viernes, 23 de octubre de 2020

Timer (temperorizador)

Posee dos registros de 8 bits

- COMP (10h): Registro de comparación.
- CONT (11h): Registro contador
 - Se incrementa una vez por segundo automáticamente.

Cuándo COMP = CONT

• BEEP, interrupción del Timer.

EJEMPLO

Implementar un programa que espere 10 segundos y , luego de esos 10 muestre un "hola"

Nota: Es MUY importante primero mandarle 0 al CONT y luego establecer el tiempo en el COMP

```
int equ 2sh
int equ 2sh
cont equ 1sh
comp eq
```

Apuntes prácticos (youtube) página 16

Timer con reinicio

viernes, 23 de octubre de 2020 15:25

• Escribir un programa que muestre en pantalla la cadena de caracteres "No debo programar en assembler" repetidamente cada 5 segundos

• El programa nunca termina

```
Cuál es el truco?

REINICIAR

Iniciar CONT = 0

Asignar COMP = 5

Cada vez que CONT = COMP ...

Reiniciar cont = 0
```

```
im equ 20h
im equ 21h
inti equ 25h

cont equ 10h
comp equ 11h

org 1000h
mensaje db "No debo programar en Assembly"
inti equ 25h

comp equ 11h

org 3000h
im emsaje db "No debo programar en Assembly"
inti equ 25h

comp equ 11h

org 3000h
im emsaje db "No debo programar en Assembly"
inti equ 20h
inti equ
```

Registro CONT

viernes, 23 de octubre de 2020 16:22

- Se incrementa una vez por segundo
- Es de 8 bits
 - o Puede contar hasta 255
 - ¿Qué sucede después?
 - Vuelve a 0

¿Qué pasa con CONT cuándo CONT = COMP?

- Se dispara una interrupción
- ¿Valor de CONT?
 - o No vuelve a 0
 - o Sigue incrementándose

Timer y F10

viernes, 23 de octubre de 2020

15:47

Escribir un programa que muestre en pantalla la cadena de caracteres "No debo programar en Assembly" repetidamente cada 5 segundos El programar termina cuándo se presiona la tecla F10

¿Cómo vamos a hacer esto? : Finalizar con FLAG

- Inicializamos el FLAG en 0
- El programa principal termina cuándo FLAG = 1
- Para eso, el manejador de instrucciones cuándo presiono F10 tiene que
 - o Poner el flag en 1

manejador: mov al , 0

out cont, al

; ejecuta cada 5 segundos

```
; cONSTANTES
EOI equ 20h
imr equ 21h
int0 equ 24h
int1 equ 25h
cont equ 10h
comp equ 11h
; VARIABLES
org 1000h
mensaje db "No debo programar en Assembly"
fin db?
flag db 0
; RUTINAS
org 3200h
manejadorF10: mov flag , 1 ; indica al programa principal que deje de ejecutarse
; y vuelva a INT 0
         mov al, 20h
         out EOI , al
         iret
org 3000h
```


