| Priogram Nie: Plant B1                                                                                         |              |                                   |  |  |  |
|----------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------|--|--|--|
| white R Perogram to create a wector contai-<br>ving following & walves and perform the<br>following wherations |              |                                   |  |  |  |
| H 3 D 5 Q 9 H 5                                                                                                |              |                                   |  |  |  |
| b. Find the range                                                                                              |              |                                   |  |  |  |
| Janua ary                                                                                                      | 35th and 78  | th percentile and standard devia- |  |  |  |
| - ition<br>1. Juind ith                                                                                        |              |                                   |  |  |  |
| b. Find the                                                                                                    | Z-ulione gé  | y walke walke                     |  |  |  |
| 0                                                                                                              | 2 - M<br>- H | 16                                |  |  |  |
| 3                                                                                                              | - a<br>-1    | H 1                               |  |  |  |
| H<br>4<br>5                                                                                                    | 0            | 0                                 |  |  |  |
| 5 9                                                                                                            |              |                                   |  |  |  |
|                                                                                                                | 5<br>Ex = 32 | $25$ $2(x-m)^{d} = H8$            |  |  |  |



d. Valianu of Sample:

$$\int_{0}^{3} = \sum (x - \mu)^{3} = \frac{48}{8} = \frac{48}{1} = \frac{61511}{1}$$
Standard Queriation

 $\int_{0}^{4} = \int \frac{\sum (2 - \mu)^{3}}{n - 1} = \int \frac{48}{7} = \frac{2 \cdot 6186}{7}$ 
U. Interquartile Range =  $93 - 91$ 
 $\frac{9}{100} = \frac{9}{25} = \frac{25}{100} \times 8 = 0.25 \times 8 = 2$ 
And term + 3 rd term =  $\frac{2+3}{3} = \frac{5}{3} = \frac{2.5}{3}$ 
 $\frac{9}{15} = \frac{15}{100} \times 8 = 0.75 \times 8 = 6$ 
 $\frac{9}{15} = \frac{15}{100} \times 8 = 0.75 \times 8 = 6$ 
 $\frac{9}{15} = \frac{15}{100} \times 8 = 0.75 \times 8 = 6$ 
 $\frac{9}{15} = \frac{15}{100} \times 8 = 0.75 \times 8 = 6$ 
 $\frac{9}{15} = \frac{15}{100} \times 8 = 0.75 \times 8 = 6$ 
 $\frac{9}{15} = \frac{15}{100} \times 8 = 0.75 \times 8 = 6$ 
 $\frac{9}{15} = \frac{15}{100} \times 8 = 0.75 \times 8 = 6$ 
 $\frac{9}{15} = \frac{15}{100} \times 8 = 0.75 \times 8 = 6$ 
 $\frac{9}{15} = \frac{15}{100} \times 8 = 0.75 \times 8 = 6$ 
 $\frac{9}{15} = \frac{15}{100} \times 8 = 0.75 \times 8 = 6$ 
 $\frac{9}{15} = \frac{15}{100} \times 8 = 0.75 \times 8 = 6$ 
 $\frac{9}{15} = \frac{15}{100} \times 8 = 0.75 \times 8 = 6$ 
 $\frac{9}{15} = \frac{15}{100} \times 8 = 0.75 \times 8 = 6$ 
 $\frac{9}{15} = \frac{15}{100} \times 8 = 0.75 \times 8 = 6$ 
 $\frac{9}{15} = \frac{15}{100} \times 8 = 0.75 \times 8 = 6$ 
 $\frac{9}{15} = \frac{15}{100} \times 8 = 0.75 \times 8 = 6$ 
 $\frac{9}{15} = \frac{15}{100} \times 8 = 0.75 \times 8 = 6$ 
 $\frac{9}{15} = \frac{15}{100} \times 8 = 0.75 \times 8 = 6$ 
 $\frac{9}{15} = \frac{15}{100} \times 8 = 0.75 \times 8 = 6$ 
 $\frac{9}{15} = \frac{15}{100} \times 8 = 0.75 \times 8 = 6$ 
 $\frac{9}{15} = \frac{15}{100} \times 8 = 0.75 \times 8 = 6$ 
 $\frac{9}{15} = \frac{15}{100} \times 8 = 0.75 \times 8 = 6$ 
 $\frac{9}{15} = \frac{15}{100} \times 8 = 0.75 \times 8 = 2$ 
 $\frac{9}{15} = \frac{15}{100} \times 8 = 0.75 \times 8 = 2$ 
 $\frac{9}{15} = \frac{15}{100} \times 8 = 0.75 \times 8 = 2$ 
 $\frac{9}{15} = \frac{15}{100} \times 8 = 0.75 \times 8 = 2$ 
 $\frac{9}{15} = \frac{15}{100} \times 8 = 0.75 \times 8 = 2$ 
 $\frac{9}{15} = \frac{15}{100} \times 8 = 0.75 \times 8 = 2$ 
 $\frac{9}{15} = \frac{15}{100} \times 8 = 0.75 \times 8 = 2$ 
 $\frac{9}{15} = \frac{15}{100} \times 8 = 0.75 \times 8 = 2$ 
 $\frac{9}{15} = \frac{15}{100} \times 8 = 0.75 \times 8 = 2$ 
 $\frac{9}{15} = \frac{15}{100} \times 8 = 0.75 \times 8 = 2$ 
 $\frac{9}{15} = \frac{15}{100} \times 8 = 0.75 \times 8 = 2$ 
 $\frac{9}{15} = \frac{15}{100} \times 9 = \frac{15}{100}$ 

$$1 = 3$$
;  $3 - 4 = -1 = -1 = -0.3831$ 

$$a = H$$
;  $\frac{H-H}{2.61} = \frac{D}{2.61} = \frac{D}{2}$ 

$$2 = 4 \quad ; \quad \frac{H-H}{2.61} = \frac{D}{2.61} = \frac{D}{2}$$

$$2=5$$
;  $5-4=1=0.3831$   
 $2.61=0.3831$ 

$$2 = 5$$
;  $\frac{5-4}{2.61} = \frac{1}{2.61} = \frac{0.3831}{2.61}$ 

$$3=9$$
;  $9-4$  =  $\frac{5}{2.61}$  =  $\frac{1.9157}{}$ 

VALUED



| Progear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n No                                               | : P.        | 201 0                                   |                                           |         |                                  |                                                                  |           |                                      |                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------|-----------------------------------------|-------------------------------------------|---------|----------------------------------|------------------------------------------------------------------|-----------|--------------------------------------|-----------------|
| house and it inspense useffice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ype w                                              | apt a       | to.                                     | find                                      | the ben | uore<br>veen u<br>uring<br>ethod | lahe<br>adve<br>Ka<br>(D                                         | en weekse | coeffice<br>ment<br>Pearlo<br>meth   | ient<br>n's     |
| Fuem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10m                                                | 2           | 3                                       | 4                                         | 5       | 6                                | 7                                                                | 8         | 9                                    | 10              |
| Advertis<br>- unt Es<br>Lin Jaki                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 11                                               | 13          | 14                                      | 16                                        | 16      | 15                               | 15                                                               | 14        | 13                                   | 13              |
| Salv V<br>-me (Rs<br>Lakhs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | olu                                                | 50          | 55                                      | 60                                        | 65      | 65                               | 65                                                               | 60        | 60                                   | 50              |
| Calculation of Kail Pearson's coefficient of coefficient of coefficient of coefficient $x$ Frien $x$ $y$ $x = x - \hat{x}$ $x^2$ $y = y - \hat{y}$ $y^2$ $x = x - \hat{x}$ $x^3$ $y = y - \hat{y}$ $y = y - y$ |                                                    |             |                                         |                                           | coll-   |                                  |                                                                  |           |                                      |                 |
| Fiem  1 2 3 4 5 6 7 8 9 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11<br>13<br>14<br>16<br>16<br>15<br>15<br>14<br>13 | 5 6 6 6 6 5 | 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | x = x $-3$ $-1$ $0$ $2$ $1$ $0$ $-1$ $-1$ |         | 0<br>H<br>H<br>I<br>I            | y=<br>-2<br>-3<br>2<br>7<br>1<br>7<br>2<br>2<br>7<br>7<br>7<br>8 |           | 49<br>49<br>49<br>49<br>4<br>4<br>64 | 0 44 7 7 0 -2 8 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 140<br>£x                                          | 16 1 195    | 580<br>Ey                               |                                           |         | aa<br>Ex <sup>a</sup>            |                                                                  |           | 360<br>Eya                           | 70<br>Exy       |

$$\bar{x} = \frac{\xi x}{n} = \frac{140}{10} = \frac{14}{10}$$

correlation coefficient = 
$$\sigma = \frac{\xi ay}{\sqrt{\xi x^2 - \xi y^2}}$$

$$= \frac{70}{\sqrt{22 \times 360}}$$

There exist a positive correlation of higher degree between cadvertisement uspence cand



| Perogean N          | o: Raer B3                                                     | 1 |  |  |  |  |
|---------------------|----------------------------------------------------------------|---|--|--|--|--|
| compute i           | compute the venuesia                                           |   |  |  |  |  |
| the following data. |                                                                |   |  |  |  |  |
| x y                 |                                                                |   |  |  |  |  |
| 2 18                | 36 4 324                                                       | 1 |  |  |  |  |
| 4 12                | 140                                                            |   |  |  |  |  |
| 5 10                | 50 20 100                                                      |   |  |  |  |  |
| 8 7                 | 48 36 64<br>56 64 49                                           |   |  |  |  |  |
| 5                   | 65                                                             |   |  |  |  |  |
| CL = 36 1 2 y :     | 60   Exy = 293   Ex2=266   Ey 2 = 706                          |   |  |  |  |  |
| 4 on x              |                                                                |   |  |  |  |  |
| Ey = Na             |                                                                |   |  |  |  |  |
| 60 = 60             | $60 = 60 + 366 \rightarrow 1$ $293 = 360 + 2666 \rightarrow 2$ |   |  |  |  |  |
| Forom               | 1 and $a = 7 60 + 366 = 60 \times 36$                          |   |  |  |  |  |
|                     | 36a + 266b = 293 × 293                                         |   |  |  |  |  |
|                     |                                                                |   |  |  |  |  |
|                     | = 7 2160 + 12966 = 2160 $2160 + 15966 = 1758$                  |   |  |  |  |  |
|                     |                                                                |   |  |  |  |  |
| (-) $(-)$ $(-)$     |                                                                |   |  |  |  |  |
| -300b = H0a         |                                                                |   |  |  |  |  |
| b = 402             |                                                                |   |  |  |  |  |
| -300                |                                                                |   |  |  |  |  |
|                     | b = -1.34                                                      |   |  |  |  |  |
| ) JE = 2:           | $x = \frac{36}{6} = \frac{60}{6} = \frac{10}{10}$              |   |  |  |  |  |
| n                   | n 6 =                                                          |   |  |  |  |  |

$$\frac{byx = n \, \xi xy - \dot{\xi} x \, \xi y}{n \, \xi \, x^{2} - (\xi x)^{2}} = \frac{b \, x \, 293 - 36 \, x \, 60}{6 \, x \, 266 - (36)^{2}} = \frac{-402}{300}$$

= -1.34

Regression requarion rol y on x ui, (y-y)=byx(x-x) (y-10)=-1.3H(x-6)y=-1.3Hx+8.0H+10

y = -1.34x + 18.04

VALUED

Porogram No: Part BH

The time taken by to large igroup to strudents to compute so piece sof nomework, T ininutes are normally ediskibuled with a mean of 53 minutes and wandard ideviation of 65. Find the probab-- ility that the time traken by a dandom whe--dert from the group to complete this chome--work will be les shan 60 minutes havite R belieft to find the peobability that the time taken by a random wheders from the group to complete this homework

- (a) will be des whom 60 minutes
- de) Burwell 50 and 80 minutes

M=57 ==6.5 P(X<60)=? P(50<2<80)=?

P(x < 60) = 2 = x - M = 60 - 57 = 3 = 0.46156.5 6.5

The peobaliting associated with Z= 0.4615 w



Adding the above peobability walke with

0.5 eque une dolution i a p(x<60) = 0.1772 + 0.5

:. p(x <60) =0.6772

 $b \cdot P(50 < x < 80) = Z = \frac{x - \mu}{6.5} = \frac{50 - 57}{6.5} = \frac{-1.0769}{}$ 

The probability raleonated with z = -1.0769 is 0.3577

 $Z = \frac{\chi - M}{6.5} = \frac{3.5384}{6.5}$ 

The peobability associated with Z= 3.5384 is



M = 57

Adding the valore probability Values i'd.

0.3577 Land 0.4998, give the solution is a
p (50 < x < 80) = 0.3577 + 0.499

= D.85 75

P(50 < x < 90) = 0.8575

```
Perogeam No: Part B5
White is shift to perform the following using
binomial edistribution
i of n=4 and p=0-10, find P(x=3)
ii of n=12 and p=0-45, find P(5 <= x <=7)
in = 4, p=0.10, q=1-p=1-0.10=0.9, x=3
Binomial edictibution p(x) = {}^{n}C_{x} \cdot p^{x} \cdot q^{n-x}
                        = \frac{u(x(0.1.0)^3 \times (0.5)^{4-3}}{3}
                        = 4! \times (0.10)^3 \times (0.9)^7
                      = H \times 6.001 \times 0.9 = 0.0036
           P(x=3) = 0.0036
11. n=12 p=0.45 q=0.55 x=5,6,7
  Binomial idistribution P(x=5)= nC2 px-9 n-x
                                   = \frac{12}{5} \left( \left( x \left( 0.45 \right)^5 x \left( 0.55 \right)^5 \right)^{-1}
                              = 12! x (0.45) 5x (0.55)7
                              7/51
                            = 792x0.01845x0.015224
                           = 0.22245
  Binomial idittibution = p(x=6)= "Cx.px.qn-x
```

= 12 1 × (0.45) 6 × (0.55) 6 = 12 1 × (0.45) 6 × (0.55) 6 6!6!

= 9.24 x 0.008803 x 0.02768

= 0 21236

Binomial idiskilention  $P(x=7) = {}^{n}C_{x} \cdot p^{x} \cdot q^{n-x}$   $= {}^{12}C_{1} \times (0.45)^{1} \times 0.55)^{5}$   $= {}^{12} \cdot 1 \times (0.45)^{1} \times (0.55)^{5}$   $= {}^{5} \cdot 1^{1}$ 

= 792 x0.00373 x0-05073

= b-14865

P(5 < = x < = 7) = P(x = 5) + P(x = 6) + P(x = 7)= 0.21236 + 0.14865

= 6.58346

P (5<=x<=7) = 0.58346

```
Program No: Part B6
Reefolm the following weing written idistributi-
- on between 200 and 240
i. P(x) 230)
ii P (205 < x < 220)
w=200 b=240
Mean = \mu = \frac{a+b}{2} = \frac{200+240}{2} = \frac{440}{2} = \frac{220}{2}
Standard Alwiahion = 0 = b-a = 240-200 = 40
                             Jia Jia 3.4641
 Height = y(x) = \frac{1}{(b-a)} = \frac{1}{(240-200)} = \frac{1}{40} = \frac{0.025}{40}
 i. p (2>230)
   2,=230 22=240
  p(x > 230) = x_2 - x_1 = 240 - 230 = 10 = 6.25
                 b-a 240-200 40
            P (x > 230) = 0.25
 ii P (205 < x < 220)
   x_1 = 205, x_2 = 220
  P(205 \le x \le 220) = x_2 - x_1 = 220 - 205 = 15 = 0.375
                               240-200 40
                         5-0
```





Program No: Part B7

Tollowing are the Groves of max wertical jumps before and after the Haining program their whether the Haining program is helpful to the Grident (Use Paired it-test)

|   |        | ,       |             |     |        | 1.50    |
|---|--------|---------|-------------|-----|--------|---------|
|   |        | Max Vee | rical Jump  |     |        |         |
|   |        |         | After Geain |     |        | (d-d')2 |
|   | Plant  |         | -ng progea  | d   | d-d'   | (a-a)   |
|   | Player | -geam   | -m          |     |        |         |
|   | 1      | 22      | 24          | - 2 | -1.05  | 1.1025  |
|   | 2      | 20      | 22          | -2  | -1.05  | 1.1025  |
|   | 3      | 19      | 19          | 0   | 0.95   | 0.9025  |
| - | H      | ан      | 22          | 2   | 2.95   | 8.7075  |
| - | 5      | 25      | 28          | -3  | 2.05   | H. 0205 |
|   | 6      | 25      | 26          | -1  | -0.05  | 0.0025  |
| 1 | 7      | 28      | 28          | 0   | 0.95   | 0.9025  |
|   | 8      | 22      | ан          | - a | -1.05  | 1.1025  |
| 1 | 9      | 30      | 30          | 0   | 0.95   | 0.9025  |
| 1 | 10     | 27      | 29          | -2  | -1.05  | 1.1025  |
| 1 | 11     | 2H      | 25          | -!  | - 6.05 | 0.0025  |
| 1 | 12     | 18      | 20          | -2  | -1.05  | 1.1025  |
| - | 13     | 16      | 17          | -1  | - 0.05 | 0.0025  |
|   | 14     | 19      | 18          |     | 1.95   | 3.8025  |
|   | 15     | 19      | 18          |     | 1.95   | 3.8025  |
|   | 16     | 28      | 28          | D   | 0.95   | 0.9025  |
|   | 17     | 24      | 26          | -d  | -1.05  | 1.1025  |
|   | 18     | 25      | 27          | -2  | -1.05  | 1.1025  |
|   | 19     | 25      | 27          | -2  | -1.05  | 1.1025  |
|   | 20     | 23      | 24          | -1  | - 0.05 | 0.025   |
|   |        |         |             | -10 |        | - 40    |

= -19

= 39.95

Ho: 0=0 w (u,-42)=0) The ros population mean is agual HI: Droom(u, -M2) to the two popularion mean are less than o  $a' = \frac{2d}{n} = \frac{-19}{20} = \frac{-0.95}{}$  $\sigma^{2} = (d-d^{1})^{2} = 32.95 = 1.7342$ o = J1.7342 = 1.31689 t test =  $t = d^2 - D$ sd In  $\frac{-0.95 - 0}{1 \cdot 31689} = \frac{-0.95}{0.2944}$ 4.4721 = - 3.2269 To Calculate the neirical it value of = n-1 = 20-1 Aupha = d = 0.01 (99.1. confidence devel) td, n-1 = to.01, 19 = -2.539 The observed it value is -3.2269 and ceitical t value is -2.539, i.e. -3.2269 <-2.539 . We reject the Null Hypothesis

|                         | ,  | 0                          |
|-------------------------|----|----------------------------|
| 1                       | 2  | 3                          |
| 29                      | 32 | 25                         |
| 27                      | 33 | 24                         |
| 30                      | 31 | 24                         |
| 27                      | 34 | 25                         |
| 28                      | 30 | 25                         |
| A STATE OF THE STATE OF |    | THE PERSON NAMED IN COLUMN |

$$T_{j}$$
:  $T_{i}$  = 141  $T_{a}$  = 160  $T_{3}$  = 123  $n_{3}$  = 5  $n_{3}$  = 5  $n_{3}$  = 5  $\bar{x}_{3}$  = 24.6  $\bar{x}_{3}$  = 32  $\bar{x}_{3}$  = 24.6

T = 141+160+123 = H24

N = 5+5+5 = 15

x = HaH /15 = 28.2666

```
Ho: " W, = Wa = M3
HI: At least some sof the unear is different from
whee
SSC = & nj (z; - z) a
  = [5 (a8. a - 28. 26666) 2+5 (3a-28. 2666) 2+5 (24.6-
                    28.2666)27
  = [5 (0.0044) + 5 (13.9382) +5 (13.4439)]
   = [0.022 + 69.691 + 67.2195]
    = 136.9325
 55E = 2 & (z; -z;)2
   =(29-28\cdot2)^2+(27-28\cdot2)^2+(30-28\cdot2)^2+(27-28\cdot2)^4
    (28-28.2)^{2}+(32-32)^{2}+(33-32)^{2}+(31+32)^{2}+
   (3H-32)2+(30-32)2+(25-24.6)2+(24-24.6)2+
   (24-24.6)2 + (25-24.6)2+ (25-24.6)2
  = 0.6H + 1.4H + 3.2H + 1.4H + 0.0H + 0 + 1 + + +
   H + H + 0.16 + 0.36 + 0.16 + 0.16
  SST = SSC + SSE
   = 136.9325+18
      = 154.9325
```

$$55T = \frac{1}{2} \frac{c}{8} \left( x, -\overline{x} \right)^{2}$$

$$= \left[ 29 - 38 \cdot 2666 \right)^{2} + \left( 37 - 38 \cdot 2666 \right)^{2} + \left( 30 - 28 \cdot 2666 \right)^{2} + \left( 31 - 28 \cdot 2666 \right)^{2} + \left( 34 - 28 \cdot 2666 \right)^{2} + \left( 33 - 38 \cdot 2666 \right)^{2} + \left( 34 - 28 \cdot 2666 \right)^{2} + \left( 34 - 28 \cdot 2666 \right)^{2} + \left( 35 - 28 \cdot 2666 \right)^{2} + \left( 34 - 28 \cdot 2666 \right)^{2} + \left( 35 - 28 \cdot 2666 \right)^{2} + \left$$

 $mSE = \frac{SSE}{df_E} = \frac{18}{19} = \frac{1.5}{19}$ 

 $F = \frac{MSC}{MSE} = \frac{68.4667}{1.5} = \frac{45.6444}{}$ 

Chihical F Value

 $af_{c} = 2$ 

df = 12

= 6.93

The decision is the vijest NULL Shypothesis because obscured & value of 45.6444 is greater than the unitical & value 6.93

