CSL003P1M: Probability and Statistics End-Sem

December 29, 2021

Duration: $2\frac{1}{2}$ hours Total Marks: 43 Maximum Marks: 40

- 1. A deck of n numbered cards $(1, 2, \ldots, n)$ is arranged randomly. Let X be the random variable which denotes the number of matches (cards in their natural place). Find E[X] and Var(X).
- 2. Let X be a continuous random variable having the density $f_X(x) = (1/2)e^{-|x|}, -\infty < x < \infty$.
 - (a) Find $M_X(t)$.
 - (b) Use $M_X(t)$ to find a formula for $E[X^{2n}]$ and $E[X^{2n+1}]$.

[2+3]

3. Let X have a gamma distribution with parameters α and λ . Show that

$$P\left\{X \geq \frac{2\alpha}{\lambda}\right\} \leq \left(\frac{2}{e}\right)^{\alpha}.$$

[5]

- 4. Suppose X follows the exponential distribution. Find the density of Y when
 - (a) $Y = X^2$
 - (b) Y = |X|

[2+2]

5. Given that the density of X and Y is

$$f(x,y) = \frac{2}{(1+x+y)^3}, \quad x > 0, y > 0,$$

find (a)
$$F(x, y)$$
, (b) $f_X(x)$, (c) $f_Y(y|X = x)$.

[2+2+2]

6. Suppose that X and Y are independent random variables with the same exponential density

$$f(t) = \theta e^{-\theta t}, \quad t > 0.$$

Find the joint density function of X + Y and X/Y. [5]

7. Given $f(x_1, ..., x_n | \theta) = \frac{e^{-x^2/2\theta}}{\sqrt{2\pi\theta}}$, let the estimator for the parameter θ is

$$\sum_{i=1}^{n} X_i^2$$

where X_1, \ldots, X_n is a random sample from $f(x_1, \ldots, x_n | \theta)$. Is the estimator be an unbiased estimator of θ ? Justify your answer. [6] 8. There are two different techniques a given manufacturer can employ to produce batteries. A random selection of 12 batteries produced by technique I and of 14 produced by technique II resulted in the following capacities (in ampere hours):

Technique I		Techni	Technique II	
140	132	144	134	
136	142	132	130	
138	150	136	146	
150	154	140	128	
152	136	128	131	
144	142	150	137	
		130	135	

Assumption: The sample data have been obtained from two different normal populations with a common variance.

- (a) Determine a 90 percent level two-sided confidence interval for the difference in means.
- (b) If the manufacturer is interested in testing hypothesis that there is no applicable difference in the mean capacities of batteries produced by either method, what conclusion should be drawn at the 5 percent level of significance?

[3+2+2]