Heats of Atom Combination and Heats of Formation

substance	$\Delta H_{ac}^o~(\mathrm{kJ/mol_{rxn}})$	$\Delta H_f^o \; (\mathrm{kJ/mol_{rxn}})$
$\overline{\mathrm{H}(g)}$	0	218.2
C(g)	0	716.682
N(g)	0	470.4
O(g)	0	249.4
C(s, graphite)	-716.682	0
C(s, diamond)	-714.787	1.90
$\mathrm{H}^{+}(aq)$	-217.65	0
$\mathrm{OH^-}(aq)$	-696.81	-229.94
$H_2(g)$	-435.30	0
$N_2(g)$	-945.408	0
$O_2(g)$	-498.340	0
$\mathrm{CH}_4(g)$	-1662.09	-74.85
$CO_2(g)$	-1608.531	-393.5
$H_2O(g)$	-926.29	-241.8
$H_2O(l)$	-970.30	-285.5
$NH_3(g)$	-1171.76	-46.3
$NO_2(g)$	-937.86	33.85
$N_2O_4(g)$	-1932.93	9.66