Minimum vertex coloring on Graphs(r,l)

Matheus S. D'Andrea Alves, Uéverton dos Santos Souza

August 2017

Universidade Federal Fluminense

Overral

Introduction

The problem

Our approach

First results

The relation between list coloring and minimum coloring in Graph(r,l)

Final results

Conclusion

Introduction

Undergraduated student at:

- Universidade Federal Fluminense Interested in:
 - Graph theory
 - Complexity analysis
 - Software engineering

You can find me here:

- github.com/MSDandrea
- telegram.me/MSDandrea

The problem

Basic concepts

Graph(r,I)

Any graph in the class of graphs that can be partitionated in r independent sets and I cliques

Minimum vertex coloring

A minimum vertex coloring is an assignment of a color among k colors to each vertex of a graph such that no edge connects two identically colored vertices and k is the smallest value to obtain a k-coloring

THE QUESTION:
When does this problem begins to be NP-Complete?
And why?

Our approach

The idea

Build a dichotomy to the problem, based on the \emph{r} and \emph{l} values.

Gather the results and search for a pattern in the problem behavior.

- A null Graph (i.e. a Graph(0,0)) is 0-colorable.
- •
- •
- •
- •

- A null Graph (i.e. a Graph(0,0)) is 0-colorable.
- A empty Graph (i.e. a Graph(1,0)) is 1-colorable.
- •
- •
- •

- A null Graph (i.e. a Graph(0,0)) is 0-colorable.
- \bullet A empty Graph (i.e. a $\mathsf{Graph}(1{,}0))$ is 1-colorable.
- A bipartide Graph (i.e. a Graph(2,0)) is 2-colorable.
- •
- •

The starting point was the following:

- A null Graph (i.e. a Graph(0,0)) is 0-colorable.
- A empty Graph (i.e. a Graph(1,0)) is 1-colorable.
- A bipartide Graph (i.e. a Graph(2,0)) is 2-colorable.
- A Complete Graph (i.e. a Graph(0,1)) is k-colorable where k = #V(G).

•

- A null Graph (i.e. a Graph(0,0)) is 0-colorable.
- A empty Graph (i.e. a Graph(1,0)) is 1-colorable.
- A bipartide Graph (i.e. a Graph(2,0)) is 2-colorable.
- A Complete Graph (i.e. a Graph(0,1)) is k-colorable where k = #V(G).
- A Split Graph (i.e. a Graph(1,1)) is k-colorable where k = #V(C) such that C is the Maximal clique in G.

Further

Theorem

Minimum vertex coloring of Graph(0,2) is Polynomial.

Proof.

A Graph(0,2) is a Graph that can be partiotionated into 2 cliques, finding the maximal clique in this case is polynomial. Once we have the maximal clique, we known that the graph can be colored with k colors, such that K is the maximal clique cardinality.

Further

Theorem

Minimum vertex coloring of Graph(3,0) is Polynomial.

Proof.

Beacause we know that the Graph is a Graph(3,0) we known it can be colored at most with 3 colors. To find out if it can be colored with 2 or one color is polynomial, implying that minimum vertex coloring of Graph(3,0) is Polynomial.

Further

Theorem

Minimum vertex coloring of Graph(4,0) is NP-Complete.

Proof.

We know that the Graph is a Graph(4,0), therefore it can be colored at most with 4 colors. We need to discover if it can be colored with 3 colors; Note that if the graph is a planar graph then 3-coloring is NP-Complete, therefore minimum vertex coloring of Graph(4,0) is NP-Complete.

First results

Partial Dichotomy

r	0	1	2	3	4		n
0	P	Р	Р	?	?		?
1	P	P	?	?	?		?
2	P	?	?	?	?		?
3	P	?	?	?	?		?
4	NPc	NPc	NPc	NPc	NPc		NPc
:	:	:	:	:	:	٠.	NPc
n	NPc	NPc	NPc	NPc	NPc		NPc

 $\textbf{Table 1:} \ \ \mathsf{Partial} \ \ \mathsf{dichotomy} \ \ \mathsf{of} \ \ \mathsf{the} \ \ \mathsf{minimum} \ \ \mathsf{coloring} \ \ \mathsf{problem} \ \ \mathsf{on} \ \ \mathsf{Graph}(\mathsf{r},\mathsf{l})$

Theorem

Minimum vertex coloring is NP-Complete for Graph(r,l+1) if list coloring is NP-Complete for Graph(r,l)

Proof.

The proof consists in showing that a solution for the list coloring problem in a Graph(r,l) G, implies in a solution for the minimum color problem in a Graph(r,l+1) H_G .

In order to do so, we need to show that:

- If a graph G(r,l) has a proper list coloring then H_G is k-colorable for k=total number of colors in the lists (1).
- If H_G is k-colorable then G has a proper list coloring (2).

(1):

Let G be a Graph(r,I) such that each vertex $v \in V(G)$ has a color list; Each list has at least one color of the Set: $C = \{c_1, c_2, c_3, ..., c_k\}$.

Let G be a **yes** instance for the list coloring problem, we build a clique K, where each vertex $u \in V(K)$ represents a color of C.

Note that the clique K has exactly k vertices, thereafter, we can colorize K with only k colors, without becoming restrictive whe can asume that the vertex $u_i \in K$ will be colored with the color c_i .

Supose $H_G = G \cup K$, and that for every vertex $u_i \in V(K)$ and every vertex $v_j \in V(G)$ add a edge $E(u_i, v_j)$ in H_G iff c_i is not a color present on the list of v_j .

Using this construction, the coloring of K does not conflict with the color pattern solution found for G, implying in a minimum proper coloring of H_G .

(2):

We know that the graph H_G is a Graph(r,l+1) and has a k-coloring. Let K be the maximal clique in H_G . We also know that k is the number of vertices in K.

Note that the removal of K from H_G (which will become G) does not affect it's proper coloring, also note that for the remaining vertex $v \in V(G)$ we can now build a list of colors from their formers non-neighboors in K in such a way that it does not affect it's proper coloring.

In that way we show that, if H_G is k-colorable, G is a yes instance for the list coloring problem. \Box

Corollaries

With this result we can say that:

- Minimum proper coloring of Graph(1,2) is NP-Complete.
 NP-Completeness of list coloring of split graphs was demonstrated by Jensen et al. at "Generalized coloring for tree-like graphs".
- Minimum proper coloring of Graph(2,1) is NP-Complete.
 NP-Completeness of list coloring of bipartide graphs was demonstrated by Fellows et al. at "List Coloring and Precoloring Extension are W[1]-hard parameterized by treewidth".
- Minimum proper coloring of Graph(0,3) is NP-Complete.
 NP-Completeness of list coloring of Graph(0,2) graphs was demonstrated by Jensen et al. at "Complexity results for the optimum cost chromatic partition problem".

Final result

These results allow us to finish our dichotomy.

r	0	1	2	3	4		n
0	P	Р	Р	NPc	NPc		NPc
1	P	P	NPc	NPc	NPc		NPc
2	P	NPc	NPc	NPc	NPc		NPc
3	P	NPc	NPc	NPc	NPc		NPc
4	NPc	NPc	NPc	NPc	NPc		NPc
:	:	:	:	:	:	٠	NPc
n	NPc	NPc	NPc	NPc	NPc		NPc

Table 2: Dichotomy of the minimum coloring problem on $\operatorname{Graph}(r,l)$

Conclusion

Conclusion

We were sucessfull in answering our first questioning, and discovered a interesting relation between two coloring problems applied to the Graph(r,l) class.

Future works:

- Why the problem behave that way?
- ullet Does the Minimum vertex coloring problem has a parametrized solution for Graph(r,l)?

THANK YOU!

Questions?