Chapter I. Fundamental Concepts

1.1 Hilbert space and State Vector

Hilbert space a generalization (26.30)

(an have any finite dian.

(infinite)

· Hilbert space dimension à QM: aux examples.

=DSpM-12 oherin

 $\begin{pmatrix} \star \\ \circ n \end{pmatrix} \begin{pmatrix} \uparrow \\ \psi \end{pmatrix} \begin{pmatrix} \uparrow \\ \psi \end{pmatrix} \begin{pmatrix} \uparrow \\ \uparrow m \\ \psi \end{pmatrix} \begin{pmatrix} \uparrow \\ \circ m \\ \psi \end{pmatrix}$ and available? (accessible)

of possible configurations
= 2N A dim. of H-space.

= a free panticle

" (this just flying in any direction)

I "position": can be anything!

- H-spru donension : infinite!

ct. What about "momentum"?

It's conserved.

-D H-space is just a point it p is known.

reduced into

· What does " a generalization" mean? - H-space: a vector space LD works just like in 20 or 30 Euclideanspace In 30 E-space $\vec{X} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \mathcal{N} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \mathcal{A} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + \mathcal{A} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ " bas B" men products are nell-defined! length, angla. In H-space ex spm-t chains 至言 a、(イレイ・・・) acas, in tan (L u + ···) in gen. - State vector + a3 (UTU) namy toms. and, the inner products it's a linear are also defined! compination! (T L T) L (L L T) No overlaps! onthogonal Math. - formulation of a "state vector" Lo Boa-Ket notition. (Dinac)

1.2 Kets, Bras, Operators.

- · H space : a complex vector space -
- (1) a state vector = a "ket" vector 1017
 works like a "vector".
 - addition: 177 = 107 + 187
 - addition is commutative: $|\alpha| + |\beta| = |\beta| + |\alpha|$ for all $|\alpha|$ and $|\beta|$
 - there exizts a "null" vector $|Q\rangle$. $|\alpha\rangle + |Q\rangle = |Q\rangle + |Q\rangle = |Q\rangle$
 - multiplication by any c-number: la'? = cla?.
 - distributine law: a (12) + (3) = a(2) + a(5)
 - (2) an observable, an operator, an eigenfect.

" an observable car be represented by an operator!"

=D A 1017 = another ket in general.

an operator

- Eigenfet = Eigenvector & eigen "

 A 1027 = 021 017, A 1027 = 02 (027

 a number (eigenvalue)
- Eigenetate: a physical state corresponding to an eigenbet. ex. $S_{\pm} | S_{\pm}; + \gamma = \frac{t}{2} | S_{\pm}; + \gamma$, $S_{\pm} | S_{\pm}; - \gamma = -\frac{t}{2} | S_{\pm}; - \gamma$

=D N-dim H-space of A.

$$\pm$$
 spanned by N eigenfects of A.
 $|\alpha\rangle = \sum_{\alpha} C_{\alpha'} |\alpha'\rangle$

H-spree of A

(3) Bra space and Inner Products

: B dud to the bet space

ket a Dual Correspondence

vee. To

Tf 177 = Cald? + Cp1 p?

Ca Kal + CB KBl.
complex conj.

- Inner product: RBIX7 = (KPI) (Id)

€ a generalization of XT. X

<BId> = dd(B)* : complex comj.

(a) a) = (a) gc?* 70.

: positive definite metriz unless 1d2 = 1&7.
- this is exential to the probabilistic interpretation of Q.M.

" normalization:
$$|\chi\rangle = \frac{1}{|\chi|} |\alpha\rangle$$
=D $|\alpha\rangle$ | $|\alpha$

(4) Openators.

- Cummulatine and officiative addition
$$X+Y=Y+X \ , \quad X+(Y+Z)=(x+Y)+Z$$

- duelity:

- Hammitran op: X = Xt

$$-(XY)^{+}=Y^{+}X^{+}$$

- Outen product :of 182, 181 · 1874d1 & This is also an operator. (a.f. Lalp) = number) (6) Associative Axiom. · (1/3><01) · 177 = 1/37 · (60177) LD it rotates 187 into the direction of (B). · Hermition = (x/X/B) broof. (BIXIX) = (BI. (XIX)) $= \left[\left(\left\langle \alpha \mid X^{+} \right) \cdot \left(\beta \right\rangle \right]^{*}$ = (a|x+1B) = (a|X|B) 1.3 Base Kets and Matrix (1) Eigenfets of an observable Tepresentation Theorem. Eigenvalues of a Hemitra op : Real Ergenvectors corrs. diff. eigenvalues are " orthogonal"!

```
proof.
```

Eigenfect of A: $\frac{1}{2}|a_{i}\rangle$, Eigenvalues: $\frac{1}{2}a_{i}$?

-D $A|a_{i}\rangle = a_{i}|a_{i}\rangle$, $\langle a_{j}|A = \Omega; *\langle a_{j}|$ (A: Henritzen)

Then, $(a_{i} - a_{j}*)\langle a_{j}|a_{i}\rangle = 0$

if $a_i = a_5$, $a_i = a_2^*$ (since $\langle a_i | a_i \rangle \neq 0$)

(eigenvalues are real)

Q onthogonal eighbets) Gince $a_{i}-a_{j}^{*}=a_{i}-a_{j}^{*}+a_{i}$

Espendets are normalized: Lajlai? = Sij

(2) Eigenbets as Base Fotos.

recoil: an arbitrary ket (d) in H-space of A.

- Dexpansion with the eigenbets of A. ({1073}).

la? = Z Caela? A

how, we know (a by $|a| \times$ Ca = $|a| \neq \alpha$? (since |a|a'? = |a|a'?)

(onthogonality)

Now, one can convite $|a\rangle$ as $|a\rangle = \left[\frac{2}{a}|a\rangle\langle a|a\rangle\right]. |a\rangle$

completeness relation Z | a7{a| = 1 ; (closure)

very important

ex. Lala? = 1 - D condition for Ca? $\langle \alpha | \alpha \rangle = \langle \alpha | \cdot \sum_{\alpha} | \alpha \rangle \langle \alpha | \cdot | \alpha \rangle$ = \[\langle | \langle a | \la

Another expression with a projection operator

- projection operator def. \(\sigma = \lanka\)

meaning: /a/x/ = La/d/ /a/

A selects the portra of the (at 1d) parallel to 1a)

(a7)

 $\sum_{\alpha} \Lambda_{\alpha} = I$ Completness:

Summing up all projes

The has to be
a complete of

ton a continuous parameter a,

(da (a)(a) =]