Advanced Algorithms

Geometric Algorithm

Intersection of Two Line Segments

To determine whether two line segments intersect, we check whether each segment straddles the line containing the other. A segment $\overline{p_1p_2}$ straddles a line if point p_1 lies on one side of the line and point p_2 lies on the other side. A boundary case arises if p_1 or p_2 lies directly on the line. Two line segments intersect if and only if either (or both) of the following conditions holds:

- 1. Each segment straddles the line containing the other.
- 2. An endpoint of one segment lies on the other segment. (This condition comes from the boundary case.)

Intersection of Two Line Segments

Intersection of Two Line Segments

Intersection of Two Line Segments

Intersection of Two Line Segments

$$(p_{4} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{3} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{1} - p_{3}) \times (p_{4} - p_{3}) = 0$$

$$(p_{1} - p_{3}) \times (p_{4} - p_{3}) = 0$$

$$(p_{3} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{3} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{3} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{3} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{3} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{3} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{3} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{3} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{3} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{3} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{3} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{3} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{3} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{3} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{3} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{3} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{3} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{3} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{3} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{3} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{3} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{3} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{3} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{3} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{3} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{3} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{3} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{3} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{3} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{3} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{3} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{3} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{3} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{3} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{3} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{3} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{3} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{3} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{3} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{3} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{3} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{3} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{3} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{3} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{3} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{3} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{3} - p_{1}) \times (p_{2} - p_{1}) = 0$$

$$(p_{$$

Intersection of Two Line Segments

$$P_{3}(3,3)$$
 $d_{2}=0$

$$P_{2}(3,3)$$
 $d_{2}=0$
 $P_{3}(5,5)$ $d_{3}=0$
 $P_{4}(8,8)$ $d_{4}=0$

Intersection of Two Line Segments

Algorithm

```
SEGMENTS-INTERSECT (p_1, p_2, p_3, p_4)
 1 d_1 \leftarrow \text{DIRECTION}(p_3, p_4, p_1)
 2 d_2 \leftarrow DIRECTION(p_3, p_4, p_2)
 3 d_3 \leftarrow DIRECTION(p_1, p_2, p_3)
 4 d_4 \leftarrow \text{DIRECTION}(p_1, p_2, p_4)
5 if ((d_1 > 0 \text{ and } d_2 < 0)) (d_1 < 0 \text{ and } d_2 > 0)) and
                  ((d_3 > 0 \text{ and } d_4 < 0)) \text{ or } (d_3 < 0 \text{ and } d_4 > 0))
         then return TRUE
 7 elseif d_1 = 0 and ON-SEGMENT (p_3, p_4, p_1)
        then return TRUE
 9 elseif d_2 = 0 and ON-SEGMENT (p_3, p_4, p_2)
10
         then return TRUE
11 elseif d_3 = 0 and ON-SEGMENT (p_1, p_2, p_3)
          then return TRUE
13 elseif d_4 = 0 and ON-SEGMENT (p_1, p_2, p_4)
          then return TRUE
14
15 else return FALSE
DIRECTION (p_i, p_j, p_k)
1 return (p_k - p_i) \times (p_j - p_i)
ON-SEGMENT (p_i, p_j, p_k)

1 if \min(x_i, x_j) \le x_k \le \max(x_i, x_j) and \min(y_i, y_j) \le y_k \le \max(y_i, y_j)
        then return TRUE
         else return FALSE
```

Time Complexity

• Time complexity of the above algorithm is Θ (c)

