

Application of the Quantum Approximate Optimization
Algorithm to the MaxCut problem

Quantum Information Project, AP3421-PR

Santiago Vallés-Sanclemente, Isacco Gobbi, Olexiy Fedorets

13th February 2020

#### Table of Contents

- QAOA
- 2 MaxCut
- Qiskit implementation
- 4 Results
- Conclusion

# Why QAOA?

- Proposed by E. Farhi and J. Goldstone in 2014
- Approximates solutions to NP-hard optimization problems (for some time better than classical algorithms)

# Why QAOA?

- Proposed by E. Farhi and J. Goldstone in 2014
- Approximates solutions to NP-hard optimization problems (for some time better than classical algorithms)
- Algorithm suitable for noisy intermediate-scale quantum computers (NISQ)  $\rightarrow$  low circuit-depth, small number of qubits
- Only one qubit per variable required: hard to beat!

# What is QAOA? - Quantum Approximate Optimization Algorithm

- Combinatorial optimization problems: finding an optimal object from a finite set
- An approximation algorithm returns a solution to a combinatorial optimization problem that is provably close to optimal

# What is QAOA? - Quantum Approximate Optimization Algorithm

- Combinatorial optimization problems: finding an optimal object from a finite set
- An approximation algorithm returns a solution to a combinatorial optimization problem that is provably close to optimal
- Optimality defined with respect to some target function C(z) of an n-bit string  $z \in \{0,1\}^n$  that needs to be maximized
- m-clause target function  $C(z) = \sum_{k=1}^{m} C_k(z)$   $C_k(z) = +1$  if z satisfies clause k  $C_k(z) = 0$  if z does not satisfy clause k

• Circuit consists of alternating cost unitary  $\hat{U}_C(\gamma) = \exp(-i\gamma C(z))$  and mixing unitary  $\hat{U}_B(\beta) = \exp\left(-i\beta \sum_{j=1}^n \hat{X}_j\right)$ 

<sup>&</sup>lt;sup>1</sup>Farhi et al., "A Quantum Approximate Optimization Algorithm", 2014 > > > > <

- Circuit consists of alternating cost unitary  $\hat{U}_C(\gamma) = \exp(-i\gamma C(z))$  and mixing unitary  $\hat{U}_B(\beta) = \exp\left(-i\beta \sum_{j=1}^n \hat{X}_j\right)$
- Build variational state:

$$|\psi(\boldsymbol{\beta}, \boldsymbol{\gamma})\rangle = \hat{U}_{B}(\beta_{p})\hat{U}_{C}(\gamma_{p})\dots\hat{U}_{B}(\beta_{1})\hat{U}_{C}(\gamma_{1})|+\rangle^{\otimes n}$$

- Circuit consists of alternating cost unitary  $\hat{U}_C(\gamma) = \exp(-i\gamma C(z))$  and mixing unitary  $\hat{U}_B(\beta) = \exp\left(-i\beta \sum_{j=1}^n \hat{X}_j\right)$
- Build variational state:  $|\psi(\beta, \gamma)\rangle = \hat{U}_B(\beta_p)\hat{U}_C(\gamma_p)\dots\hat{U}_B(\beta_1)\hat{U}_C(\gamma_1)|+\rangle^{\otimes n}$
- Measure expectation value  $\langle \psi(\beta, \gamma) | C(z) | \psi(\beta, \gamma) \rangle$

- Circuit consists of alternating cost unitary  $\hat{U}_C(\gamma) = \exp(-i\gamma C(z))$  and mixing unitary  $\hat{U}_B(\beta) = \exp\left(-i\beta \sum_{j=1}^n \hat{X}_j\right)$
- Build variational state:  $|\psi(\beta, \gamma)\rangle = \hat{U}_B(\beta_p)\hat{U}_C(\gamma_p)\dots\hat{U}_B(\beta_1)\hat{U}_C(\gamma_1)|+\rangle^{\otimes n}$
- Measure expectation value  $\langle \psi(\beta,\gamma) | \mathcal{C}(z) | \psi(\beta,\gamma) \rangle$
- Explore the solution space of 2p angles  $\beta = (\beta_1,..,\beta_p) \in [0,\pi]^p, \ \gamma = (\gamma_1,..,\gamma_p) \in [0,2\pi]^p$  to maximize  $\langle C(z) \rangle$
- ullet Guaranteed to find global maximum of  $\langle C(z) 
  angle$  for  $p o \infty$

# The QAOA circuit<sup>2</sup>



<sup>&</sup>lt;sup>2</sup>Alam et al., "Analysis of Quantum Approximate Optimization Algorithm under Realistic Noise in Superconducting Qubits", 2019

# Classical optimization - Differential Evolution<sup>3</sup>

 DE-algorithm performs global optimization of a function via genetic evolution

 $<sup>\</sup>frac{3}{2}$  Sriboonchandr, "Improved Differential Evolution Algorithm for Flexible Job Shop Scheduling Problems", 2019

 $<sup>^3</sup>$ Storn and Price, "Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces", 2019

# Classical optimization - Differential Evolution<sup>3</sup>

- DE-algorithm performs global optimization of a function via genetic evolution
- Evaluates each solution candidate until the variation of the function is under the given threshold

 $<sup>^3</sup>$ Sriboonchandr, "Improved Differential Evolution Algorithm for Flexible Job Shop Scheduling Problems", 2019

 $<sup>^3</sup>$ Storn and Price, "Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces", 2019

# Classical optimization - Differential Evolution<sup>3</sup>

- DE-algorithm performs global optimization of a function via genetic evolution
- Evaluates each solution candidate until the variation of the function is under the given threshold
- Parallelizable!
- Numerous algorithm parameters like mutation strength, population size etc. need to be tuned tediously



 $<sup>\</sup>frac{3}{2}$ Sriboonchandr, "Improved Differential Evolution Algorithm for Flexible Job Shop Scheduling Problems", 2019

 $<sup>^3</sup>$  Storn and Price, "Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces", 2019

#### Table of Contents

- QAOA
- MaxCut
- Qiskit implementation
- 4 Results
- Conclusion

#### MaxCut

- Graph: G = (V, E) where V is the set of nodes of the graph and E is the set of edges
- ullet Cut: partition of the vertices set V into two disjoint subsets S and  $\overline{S}$
- MaxCut: find a cut that crosses the greatest number of edges



$$\begin{array}{l} V {=} \{0, 1, 2, 3, 4\} \\ E {=} \{(2, 0), (2, 1), (2, 3), \\ (2, 4), (0, 1), (3, 4)\} \end{array}$$

#### MaxCut: cost function

$$C(z) = \frac{1}{2} \sum_{(i,j) \in E} (1 - z_i z_j)$$

Any cut divides V in two subsets S and  $\overline{S}$  such that  $S \cap \overline{S} = \emptyset$  and  $S \cup \overline{S} = V$ 

- Input:  $z = \{z_1, z_2, ..., z_n\}$  string of S:  $z_i = +1$  if node  $i \in S$  $z_i = -1$  if node  $i \in S$
- Output: number of crossed edges



# MaxCut: an example



Cut 
$$S = \{2,4\}$$
  
 $\Rightarrow z = \{-1,-1,+1,-1,+1\}$ 

$$C(z) = \frac{1}{2} \sum_{(i,j) \in E} (1 - z_i z_j)$$

$$= \frac{1}{2} (6 - z_2 z_0 - z_2 z_1 - z_2 z_3 - z_2 z_4 - z_0 z_1 - z_3 z_4)$$

$$= \frac{1}{2} (6 + 1 + 1 + 1 - 1 - 1 + 1) = 4$$

# MaxCut: implementation in a quantum circuit

Cost function  $\rightarrow$  Cost Hamiltonian

$$\hat{\mathcal{H}} = \frac{1}{2} \sum_{(i,j) \in E} (1 - \hat{\mathcal{Z}}_i \otimes \hat{\mathcal{Z}}_j)$$

- $\hat{Z}_i$  is Z-gate acting on qubit i
- Each qubit represents one node
- $z = \{z_1, z_2, ..., z_n\} \rightarrow z = |1\rangle |2\rangle ... |n\rangle$

#### Table of Contents

- QAOA
- 2 MaxCut
- Qiskit implementation
- 4 Results
- Conclusion

# Qiskit

IBM's Qiskit Python module has been used to implement the QAOA algorithm in the following backends:

- qiskit's QASM-simulator with depolarizing noise on 1-qubit and 2-qubit gates.
- IBM's Yorktown 5 qubit Quantum Computer.

$$q - \frac{U_1}{W} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\gamma} \end{pmatrix}$$

$$q - \frac{R_x}{\beta} - \left( \frac{\cos \frac{\beta}{2}}{-i \sin \frac{\beta}{2}} - i \sin \frac{\beta}{2} \right)$$

## Quantum Circuit

• For the Star Graph with 4 nodes we have:



#### Table of Contents

- QAOA
- 2 MaxCut
- Qiskit implementation
- Results
- Conclusion

# Star Graph (Single layer)

• Simulation run locally using qiskit's QASM-simulator without noise.





# Star Graph (Single layer)

• Simulation run locally using qiskit's QASM-simulator without noise.





# Star Graph (Triple layer)

• Simulation run locally using qiskit's QASM-simulator without noise.





#### Cost function

Expressing the measurement outcomes as  $z = \{-1, +1\}$ , the associated cost function is:

$$C(z) = \frac{1}{2} \sum_{(i,j) \in E} (1 - z_i z_j)$$







Triple layer 
$$(p = 3)$$

# **Butterfly Graph**

- The Butterfly Graph can be analyzed with IBM's Yorktown quantum computer.
- Yorktown hardware data: relaxation/dephasing time  $\sim 25-80 \mu s$ , readout error  $\sim 0.02$





## **Butterfly Graph**

- The Butterfly Graph can be analyzed with IBM's Yorktown quantum computer.
- Yorktown hardware data: relaxation/dephasing time  $\sim 25-80 \mu s$ , readout error  $\sim 0.02$
- We have also analyzed it with qiskit's QASM-simulator.





## **Butterfly Graph**

- The Butterfly Graph can be analyzed with IBM's Yorktown quantum computer.
- Yorktown hardware data: relaxation/dephasing time  $\sim 25-80 \mu s$ , readout error  $\sim 0.02$
- We have also analyzed it with qiskit's QASM-simulator.







# V9E15 Graph

- V9E15: 9 vertices, 15 edges
- One solution: all edges cut!





#### Table of Contents

- QAOA
- 2 MaxCut
- Qiskit implementation
- 4 Results
- Conclusion

#### Conclusion

- QAOA works! And even better for more layers, as long as there is no noise
- We are limited by the classical optimizer:
  - it takes 100-200 calls of the circuit to converge to optimal  $(\beta, \gamma)$  (slightly more in case of execution on hardware)
  - ullet over 50% of the time is spent in the DE-routine (in case of simulation)
- When running on hardware we are limited by the quantum-classical feedback loop, which resets our position in the IBMQ queue

#### Future work

 Test different classical optimizers and run the code on a faster computer.

 Include readout errors and relaxation times in our simulated noise model.

 Analyze larger graphs on larger quantum computers, such as IBM's Melbourne 15 qubit QC

# Thank you very much for your attention!

Any question?