

Service Manual

• DEH-915RDSZRN and CXA-915RDSZRN

ORDER NO.
CRT1579

The chapter 1 of this Service Manual will not be reprinted. On your additional orders, we may supply only the chapter 2. For the chapter 1, please make copies and attach to the chapter 2 at your side if necessary.

MULTI-CD CONTROL FM/MW/LW TUNER DECK AMPLIFIER

DEH-915RDSZRN EW,X1B
DETACH GRILLE ASSY
CXA-915RDSZRN EW,X1B

- These models have been installed in RENAULT ESPACE, CLIO and 19 CABRIO.

Model	RENAULT Part No.
DEH-915RDSZRN	7700841007
CXA-915RDSZRN	7700841008

- See the service manual CX-540(CRT1574) for the CD mechanism description, disassembly and circuit description.
- The CD mechanism employed in this model is one of CX-540 series.

CONTENTS

CHAPTER 1

1. SPECIFICATIONS	1-3
2. OPERATION	1-3
3. DISASSEMBLY	1-12
4. CONNECTOR FUNCTION DESCRIPTION	1-13
5. ADJUSTMENT	1-25
6. ERROR NUMBERS AND NEW TEST MODE	1-37
7. EXPLODED VIEW PARTS LIST	1-40
8. ELECTRICAL PARTS LIST	1-43

CHAPTER 2

1. BLOCK DIAGRAM	2-3
2. EXPLODED VIEW	2-5
3. CIRCUIT DIAGRAM AND PATTERN	
3.1 CD MECHANISM MODULE	2-14
3.2 TUNER AMP UNIT	2-20
3.3 KEY BOARD UNIT(CXA-915RDSZRN)	2-25
3.4 FM/AM TUNER UNIT	2-29
3.5 CONNECTOR UNIT	2-33
4. PACKING METHOD	2-34

PIONEER ELECTRONIC CORPORATION

4-1, Meguro 1-Chome, Meguro-ku, Tokyo 153, Japan

PIONEER ELECTRONICS SERVICE INC. P.O.Box 1760, Long Beach, California 90801 U.S.A.

PIONEER ELECTRONICS OF CANADA, INC. 300 Allstate Parkway Markham, Ontario L3R 0P2 Canada

PIONEER ELECTRONIC [EUROPE] N.V. Haven 1087 Keetberglaan 1, 9120 Melsele, Belgium

PIONEER ELECTRONICS AUSTRALIA PTY.LTD. 178-184 Boundary Road, Braeside, Victoria 3195, Australia TEL:[03]580-9911

© PIONEER ELECTRONIC CORPORATION 1994

K-FFD.APR. 1994 Printed in Japan

CHAPTER 1

● CD Player Service Precautions

1. For pickup unit(CGY1031) handling, please refer to "Disassembly"(CX-540 Service Manual CRT1574). During replacement, handling precautions shall be taken to prevent an electrostatic discharge(protection by a short pin).
2. During disassembly, be sure to turn the power off since an internal IC might be destroyed when a connector is plugged or unplugged.

● Before transporting this product, always perform the following procedure :

1. Insert the test disc (TCD-784) and play track number 2.
2. Switch the source to "tuner".
3. Eject the test disc.

SAFETY INFORMATION

1. Safety Precautions for those who Service this Unit.

- Follow the adjustment steps (see pages 1-25 through 1-34) in the service manual when servicing this unit. When checking or adjusting the emitting power of the laser diode exercise caution in order to get safe, reliable results.

Caution:

1. During repair or tests, minimum distance of 13cm from the focus lens must be kept.
2. During repair or tests, do not view laser beam for 10 seconds or longer.
2. A "CLASS 1 LASER PRODUCT" label is affixed to the top of the player.
3. The triangular label is attached to the mechanism unit frame.

4. Specifications of Laser Diode

Specifications of laser radiation fields to which human access is possible during service.

Wavelength = 785 nanometers

Radiant power = 69.7 microwatts(Through a circular aperture stop having a diameter of 80 millimeters)
0.55 microwatts(Through a circular aperture stop having a diameter of 7 millimeters)

1. SPECIFICATIONS

General

Power source 14.4 V DC (10.5 — 16 V allowable)
 Grounding system Negative type
 Max. current consumption 9 A
 Dimensions
 (chassis) 178 (W) × 50 (H) × 150 (D) mm
 (front face) 188 (W) × 58 (H) × 20 (D) mm
 Weight 1.5 kg

Amplifier

Max. power output 4 × 15 W (DIN45324)
 4 × 07 W (DIN45500)
 Load impedance 4Ω (4 — 8Ω allowable)
 Preout output level/
 output impedance 500 mV/1 kΩ
 Tone controls (bass) ±10 dB (100 Hz)
 (treble) ±10 dB (10 kHz)
 Loudness contour +10 dB (100 Hz), +7 dB (10 kHz)
 (volume: -30 dB)

CD player

System Compact disc audio system
 Usable discs Compact disc
 Signal format Sampling frequency: 44.1 kHz
 Number of quantization bits: 16; linear
 Frequency characteristics 5 — 20,000 Hz (±1 dB)

Signal-to-noise ratio 94 dB (1 kHz) (IEC-A network)
 Dynamic range 90 dB (1 kHz)
 Number of channels 2 (stereo)

FM tuner

Frequency range 87.5 — 108 MHz
 Usable sensitivity 11 dBf (1.0μV/75Ω, mono, S/N: 30 dB)
 50 dB quieting sensitivity 16 dBf (1.7μV/75Ω, mono)
 Signal-to-noise ratio 70 dB (IEC-A network)
 Distortion 0.3% (at 65 dBf, 1 kHz, stereo)
 Frequency response 30 — 15,000 Hz (±3 dB)
 Stereo separation 40 dB (at 65 dBf, 1 kHz)

MW tuner

Frequency range 531 — 1,602 kHz
 Usable sensitivity 18μV (25 dB) (S/N: 20 dB)
 Selectivity 50 dB (±9 kHz)

LW tuner

Frequency range 153 — 281 kHz
 Usable sensitivity 30μV (30 dB) (S/N: 20 dB)
 Selectivity 50 dB (±9 kHz)

Note:

Specifications and the design are subject to possible modification without notice due to improvements.

2. OPERATION

● CXA-915RDSZRN(DETACH GRILLE ASSY)

● SATELLITE

● DISPLAY

Changing the Source

(unfold the page 1-3)

Parts Identification

[9] Source

Changing the Source

Each time the button [9] is pressed, the source will change in the following sequence:

Built-in CD player → AM (MW/LW) → FM → OFF

- If there is no disc in the built-in CD player, the source will not change to "built-in CD player".
- MW and LW are combined in one band.

Adjusting the Audio

(unfold the page 1-3)

Parts Identification

[1] Volume/Audio adjustment

[12] Shift

[17] Loudness

Volume Adjustment

Pressing the (+) side of button [1] increases the volume, while the (-) side decreases it. (Display shows "VOL 00" ~ "VOL 30".)

- When driving your vehicle, be sure to keep the volume of the unit set low enough to allow you to hear sounds coming from outside.

Mode Selection

Each press of button [12] changes the mode as follows:

Balance adjustment (FAD/BAL) → Tone adjustment (BAS/TRE) → Loudness adjustment (LOUD)

- When you're adjusting fader, balance, bass or treble, the indicator will stop at the center setting. About 4 seconds after adjustment, the display returns to its previous state.

Balance Adjustment

Press button [12] to select balance adjustment mode. ("FAD" appears on the display.) Adjust the fader using the (+) or (-) side of button [1]. To adjust the balance, press either the (◀) or (▶) side of button [1] to turn on BAL.

Fader

Press the (+) side of button [1] to raise the volume of the front speaker only. Press the (-) side of the button to raise the volume of the rear speaker only.

(Display shows "FAD F9" ~ "FAD R9".)

- Please set "FAD 0" when using 2 speaker system.

Balance

Pressing the (◀) side of button [1] shifts the balance to the left speaker, while the (▶) side shifts it to the right speaker. (Display shows "BAL L9" ~ "BAL R9".)

Tone Adjustment

Press button [12] to select tone adjustment mode. ("BAS" appears.) Select the tone you wish to adjust using the (◀) or (▶) side of button [1]. Press (▶) to switch BAS → TRE. Press (◀) to switch TRE → BAS.

Bass Adjustment

Select the Bass mode.

Pressing the (+) side of button [1] increases bass, while the (-) side decreases bass. (Display shows "BAS -6" ~ "BAS +6".)

Treble Adjustment

Select Treble adjustment mode.

Pressing the (+) side of button [1] increases treble, while the (-) side decreases treble. (Display shows "TRE -6" ~ "TRE +6".)

Loudness Adjustment

This "loudness" function enhances both the high and low ranges of sound to give even more power to output even at low volume. Press button [12] to select loudness adjustment mode. (The "LOUD" indicator appears on the display.)

Pressing the (▶) side of button [1] turns the loudness function on (LOUD [17] light up), pressing the (◀) side turns it off.

Using the Tuner

(unfold the page 1-3)

Parts Identification

- [1] Tuning
Seek/Manual
Local Seek Sensitivity
- [4] Local mode
- [5] BSM/Preset Scan
- [6] FM Monaural
- [7] AF/REG
- [8] TA/EON
- [9] Source
- [10] Band
- [11] Preset
- [14] Preset Number
- [15] FM Stereo
- [16] Local mode
- [18] Manual
- [19] FM Monaural
- [20] REG
- [21] EON
- [22] TP
- [23] AF
- [24] TA
- [25] Frequency
- [26] Band

Electronic Tuner

Frequency allocation differs depending upon the area. This unit has been designed in accordance with the frequency allocations for Western Europe, Asia, the Middle and Near East, Africa, Australia and Oceania. Use in other areas may result in improper reception of AM. The RDS function does not work in regions with no RDS broadcast services.

Listening to the Radio

1. Select MW/LW or FM band by pressing source button [9].
• For details, refer to "Changing the Source" on page 1-4.
2. FM consists of 3 bands. Select the band by pressing button [10]. Each time the button is pressed, the band will change in the following sequence:
FM1 → FM2 → FM3
3. Use seek tuning or manual tuning to tune to a radio station.
3-1. Set the tuning mode to "seek" or "manual" by pressing the (◀) and (▶) sides of button [1] simultaneously.
Repeat this operation to switch to the other tuning mode. (When the manual tuning mode is set, "MANU" [18] will be displayed.)

- 3-2. Tune by Press (◀) or (▶) of button [1].
(When there is a stereo broadcast, "○" [15] will be displayed.)

Seek Tuning:

When the button is pressed, stations whose signal strength is above a certain level will be tuned automatically.

Manual Tuning:

When the button is pressed, the frequency will change by one step up or down.

Using the Preset Memory

The radio stations can be stored in memory under buttons 1 to 6 of [11].

1. Tune in to the station to be stored in memory.
2. Store the station in memory by pressing one of the buttons (1 to 6) for at least 2 seconds. When the [14] number stops blinking, the station will be stored in memory under the button pressed.
• Up to 18 FM stations and 6 MW/LW stations can be stored in memory.

Preset Tuning

The radio stations stored in memory can be recalled by pressing the respective button 1 to 6 of [11]. The station stored under that button will be recalled. (The number of the button pressed will be displayed at [14].)

Using the Best Stations Memory (BSM)

The radio stations having a strong signal can be tuned automatically and stored in memory under buttons 1 to 6 [11]. Press button [5] for at least 2 seconds. (The "BSM" will blink.) After "BSM" stops blinking, the stations will be stored in memory under buttons 1 to 6 of [11].

- BSM can be canceled mid-operation by pressing button [5].
- The stations will be stored under buttons 1 to 6 in the order of their signal strength. The strongest station will be stored under button 1, followed by stations with lower signal strengths.
- If there are fewer than 6 stations whose signal is strong, there will be spare memory.
- It will take almost 30 seconds for BSM to be completed.

Preset Scan Tuning

This recalls in sequence all the stations stored in memory under the buttons [11] for 8 seconds each. Press button [5]. (The [14] number will blink.) To cancel, press the button again. After the desired station is tuned, cancel the preset scan tuning. The station will then continue to be received.

- Stations stored in memory under the buttons [11] but whose signal is weak will not be recalled.

Local Seek Tuning

When the local mode is set, the seek tuning's sensitivity level will become high and only stations with a strong signal will be seek tuned. The local mode's seek sensitivity can be adjusted.

Setting the Local Mode

Press button [4]. (The "LOC.S" [16] will light.) To cancel the local mode, press the button again.

Adjusting the Local Seek Sensitivity

There are 4 local seek sensitivity steps for FM and 2 steps for MW/LW.

- LOC-4 is the highest seek tuning sensitivity level. Only the stations with a strong signal are tuned. LOC-3, LOC-2, and LOC-1 in descending order enables the tuning of stations with a respectively weaker signal.
1. Set to local seek sensitivity adjustment mode. Press button [4] for at least 2 seconds. (The current sensitivity level "LOC-2" will be displayed.)
 - The local seek sensitivity adjustment mode will be canceled after about 5 seconds.
 2. Adjust the sensitivity level by pressing (◀) or (▶) of button [1].

FM Monaural Reception

If a stereo broadcast has a lot of noise, switching to the monaural reception mode will reduce the noise. Press button [6]. ("MONO" [19] will appear on the display.) To cancel, press the button again.

Using the RDS Function**What is RDS?**

RDS (Radio Data System) according to a CENELEC EN50067 is a system for transmitting data signals from FM broadcast transmitter along with the normal sound program. These data signals, which are imperceptible to listeners, are intended to aid radio listeners in tuning their receivers to a desired station. RDS receivers can decode these data signals for display or control purposes.

RDS digital signal includes various data, such as PI, PS, AF, TP, TA and EON.

PI.....Program Identification Code

PSProgram Service Name

AFList of Alternative Frequencies

TP.....Traffic Program Identification Code (Similar to SK signal of ARI system)

TATraffic Announcement Code (Similar to DK signal of ARI system)

EONEnhanced Other Network Information Code.(In some countries. EON is not offered by broadcasters.)

RDS Function of this Unit

This unit has the following functions for making use of RDS data.

- PS, the name of the currently listened station is displayed.
- AF (Alternative Frequency) function. This enables the receiver to automatically retune to more suitable frequencies transmitting the same program.
- TP/TA, EON, user selectable reception of the traffic information service, offered by RDS.

Network/Station Name Display

Switch the tuner on and choose one of the three FM bands.

When you tune into an RDS station with manual or seek tuning, the frequency display changes to the network/station name display after a few seconds by means of the PS code.

- The RDS functions of this unit use RDS codes transmitted along with FM broadcasts. RDS doesn't work on the MW or LW bands.
- The RDS functions may not work properly in areas where the RDS transmissions are at an experimental stage or where there are flaws in the broadcasting system.
- Press button [6] for two seconds or more to switch to frequency display. The frequency will only be indicated when the button is pressed.

AF Function

This receiver retunes automatically to a more suitable transmitter, contained in the list of Alternative Frequencies (AF), to enable the motorist to keep listening to programs in the same network.

Example:

If a motorist travels as shown below, from point A to point B, (and has selected AF function) then the receiver will automatically retune to a more suitable frequency transmitting the same program. This is shown by the automatic retuning from 98.5 MHz to 107.5 MHz to 96.0 MHz to 102.5 MHz.

To activate the Alternative Frequency Function, hold down button [7], "AF" [23] will appear on the display. Once tuned to a RDS station, as long as you drive within an area served by the same network, the receiver will automatically retune to a more suitable station transmitting the same program, by utilizing the data in the AF list.

- "PI SEEK" will appear on the display, if the AF function has been selected, and a suitable AF station cannot be found. In this case, the receiver will mute the radio sound and search the frequency band, in order to find a station with the same PI code. The receiver will return to the original frequency if the same or related PI code can not be found.

- The AF function will not work in the following cases:
 - when the receiver is tuned to a non-RDS station. (local station)
 - when the RDS station does not transmit any AF list data.
 - when the receiver can not receive the AF list due to disturbances.

When the receiver is unable to find a PI code the "AF" [23] indicator will flash on the display.

Thus indicating that the AF function cannot be performed.

Preset recall

- When recalling preset stations in the AF mode, the tuner will be tuned to the stored frequency and the AF function will be operative i.e. when the signal of the recalled station is weak or has a different PI, the radio will look into the AF list and if necessary start a PI-seek in order to find a station with the same or related PI code.

When the tuner is performing a PI seek "PI SEEK" is shown on the display.

If the PI seek is successful, the tuner will be tuned to the new frequency that transmits the same programme service (i.e. with the same PI code) and the display will show the stored PS.

If the PI seek is not successful, the tuner will return to the stored frequency. If a new station (with a different PI code) would be received on this frequency, this station will become audible. The display will show the frequency instead of PS.

- When recalling preset stations in the AF=OFF mode, the tuner will be tuned to the stored frequency and the display will show the stored PS. In case the tuned station has a PI code that is different from the stored one, the tuner will accept the new PI code and stay tuned to the initial frequency. The display will show the new PS when the signal of the tuned station is strong enough.

Listening to Regional Stations

In some countries a particular programme service may "opt out" during a certain part of the day in several regional variants at particular locations. Since these regional variants are broadcasting a different programme they temporarily have a PI and a PS that is different from the main programme service. The PI's are mostly "generically linked". The AF list may either be common for all regional variants or each regional variant may have its own AF list. In other countries there may be regional stations which are not an "opt out" of a particular main programme service but which have an independent existence. These regional stations all have a different PS. Their PI's may be "generically linked" and their AF lists may carry frequencies which are alternatives for that regional station only.

1) Regional OFF Mode

In the default condition, with the AF button [7] switched ON, the receiver is in the REG OFF mode. In this case the receiver will switch automatically to regional variants of the tuned programme service along the journey. This is of benefit when the regional variants just carry the same programme, but will become annoying if the receiver switches back and forth between different programmes. In this case it is recommended to put the receiver in the REG ON mode.

2) Regional ON Mode

When the radio is put in the REG ON mode, the radio will remain tuned to a specific regional variant as long as it is available. Press button [7] for two seconds or more to put the radio in the REG ON mode. "REG" [20] will appear on the display. Press down button [7] for two seconds or more to cancel the REG ON mode, i.e. to put the radio back in the default REG OFF mode. "REG" [20] will disappear from the display.

Traffic Information Reception**TP and EON-TP function**

When a traffic information station (TP station) is selected, "TP" [22] lights on the display, thus indicating traffic report can be received through this station. The "EON TP" [21] indicator will light on the display when a selected station (this network) is broadcasting EON information which cross-references at least one program service which carries traffic information, thus indicating traffic report can be received through another program service by using the EON function of this unit.

In both cases, by briefly pressing button TA [8], Traffic report waiting status will be entered. However, if you wish not to interrupt your radio program (eg: classical music program) by traffic report, the EON function of this unit can be set to OFF. Pressing button [8] for more than 2 seconds, changes the status of the EON function, EON ON ⇔ EON OFF.

This indication is shown on the display for approximately 3 seconds.

If only the "EON TP" [21] indicator is on but the EON function of this unit is OFF, it is not possible to receive traffic report through another program service. In this case, "TA" [24] (if traffic report waiting status is set to ON) will flash on the display to indicate this situation.

Traffic information reception by EON-TP**Traffic Announcement Volume Adjustment**

- The volume level for traffic information broadcasting is temporarily stored in memory. The next time you listen to traffic information, the previous volume level is used. If the volume level you receive is lower than the previous setting, the volume is not reduced, but set to VOL 15.

TA Reception during CD play

- If the radio is already set to the FM band and tuned to a TP or EON-TP station, even when listening to the CD player, when the button [8] is pushed ("TA" [24] is shown on the display), traffic report waiting will begin. When a traffic report begins, the system will switch from CD to the traffic report.

BSA function

- While button [8] is on, ("TA" [24] is shown on the display) and AF is off, and you are listening to CD player, should the TP station become weak, the radio will start BSA (Best TP Station Auto Search) 10 seconds after "TP" [22] disappears from the display. The tuner will automatically tune to the strongest TP station in the area, and will stand by for a traffic bulletin. BSA does not work when the AF function is selected, press button [7] to turn the AF function off.

TP Alarm Function

- In AF mode, about 30 seconds after "TP" [22] disappears from the display, which occurs if the signal from the TP station becomes weak, an alarm sounds for 10 seconds to tell you to tune to another TP stations.

Tuning Functions on each RDS modes

Tuning Mode	AF Mode	TA Mode & AF Plus TA Mode
Seek tuning will stop to find.	RDS Stations	TP or EON-TP Station
BSM will select and memorize in presets.	RDS Stations	TP Stations

Non-RDS station such as those using the Swedish MBS system may be tuned in as RDS station, but this is due to both systems using the same 57 kHz subcarrier frequency and is not a malfunction of the unit.

Tuning Steps

The tuning step is normally 50 kHz during seek tuning on an FM band. However this tuning step changes to 100 kHz when the set is in AF or TP mode. In some countries it may be desired to set a tuning step of 50 kHz in AF mode by holding down the ① of button [11] while turning the ignition key from OFF to ON.

- During manual tuning, the step does not change; it remains fixed at 50 kHz.
- The tuning step will return to 100 kHz if the batteries supply is temporarily disconnected.
- In AF mode, only those stations being broadcast at 100 kHz steps are subject to AF reception (CENELEC STANDARD).

Playing Compact Discs
(unfold the page 1-3)**Parts Identification**

- [1] Track Number Search
Fast Forward and Reverse
- [2] Eject
- [3] Disc Insertion Slot
- [9] Source
- [11] ① Pause
② Repeat
③ Random play
- [27] Manual
- [28] Playback time
- [29] Track number

Discs

- Only use compact discs (optical digital audio discs) bearing the mark shown below.

- Do not use cracked, scratched, or warped discs.
- Do not touch the disc's playing side.
Handle the disc as shown below.

- Do not affix any label on the disc.

- Do not apply any vinyl record spray, anti-static agent, benzene, paint thinner, or any other volatile chemicals.
- Do not play a dirty disc. Use a soft cloth to clean a dirty disc as shown below. Wipe the disc outward from the center.

- Do not place the disc in high temperatures and direct sunlight.
- Be sure to store the disc in its case.

CD Playing Environment

- Disc playback may be interrupted by sudden road shock.
- When the air temperature is low and the car heater is turned on, condensation on the disc and internal parts of the unit may prevent proper playback operation. If this happens, turn off the unit and wait one hour until the condensation is gone. Also, use a soft cloth to wipe off any condensation from the disc.

Listening to the CD Player

1. With the label side up, insert a disc into [3]. Playback will start. (The track number [29] and playback time [28] will be displayed.)
 - *Do not insert the disc with the label side down. Doing so may scratch the disc.*
 - If the disc stops midway while it is being inserted or if there is no playback after a disc is inserted, something may be wrong with the disc. Eject the disc and check it.
2. Turn ON/OFF the disc playback. Press button [9] to change the source.
 - For details, refer to "Changing the Source" on page 1-4.
3. Eject the disc by pressing button [2].
 - *If the disc is not removed within 10 seconds after ejection, it will be inserted again.*

Auto Stop

When playback of the final track ends during normal play, the unit switches back to the original source.

Using Track Number Search, Fast Forward and Reverse

1. Set the mode to "track number search" or "fast forward and reverse". Press the (\blacktriangleleft) and (\triangleright) sides of button [1] simultaneously. Each time this is repeated, the mode will switch between the track number search mode and fast forward and reverse mode. (When the fast forward and reverse mode is set, "MANU" [27] will light.)
2. Execute a track number search or fast forward and reverse by pressing (\blacktriangleleft) and (\triangleright) of button [1].
 - Playback sound can be heard during fast forward and reverse.

Pausing

The disc playback can be stopped temporarily by pressing ① of button [11]. (The "PAUSE" will be displayed.) To cancel the pause, press the button again.

Repeat

1. To repeat the music you are listening to, press button ② of [11] ("RPT" will appear on the display).
2. To cancel music repeat, press button ② of [11] to turn off "RPT".

Random Play

1. To play music randomly, press button ③ of [11] ("RDM" will appear on the display). Once the current track has been played, the microprocessor will randomly select the next and subsequent tracks.
2. To cancel random play, press button ③ of [11] to turn off "RDM".
 - *Since selections are played in random order, the same selection may be played twice in succession.*

Error Display

If there is a problem with CD playback, an error code will be displayed.
(Ex.: "ERROR-10")

D: Display

C: Cause

T: Treatment

- D: ERROR-11, 12, 14, 17, 30**
C: The disc is dirty.
T: Clean the disc.
- D: ERROR-11, 12, 17, 30**
C: The disc is scratched.
T: Replace the disc.
- D: ERROR-11, 14, 17**
C: The disc is inserted with the label side down.
T: Insert the disc with the label side up.
- D: ERROR-14**
C: An unrecorded CD-R is being used.
T: Check the disc.
- D: ERROR-10, 11, 12, 14, 17, 30, A0**
C: Electrical or mechanical fault.
T: Turn off the car's ignition and turn it back on again. Or change the source to another one and then change it back to CD.
- D: HEAT**
C: The CD player's internal temperature is high.
T: Wait until the CD player's internal temperature goes down.

Using the satellite (unfold the page 1-3)

Adjusting the Audio

[32] Volume

Volume

Pull the (+) side to raise the volume. Pull the (-) side to lower the volume.

Attenuator

Simultaneously pulling the positive (+) and negative (-) sides of the button [32] decreases the sound volume immediately by 20 dB. Pulling them again will resume the sound volume.

Changing the Source

[30] Changing the Source

Press the button for two seconds or more to switch the source OFF as follows.

Using the Radio

[30] Changing the band

Press the button for two seconds or less to switch the band.

[31] Preset Channel

It is possible to recall broadcasting stations stored in the memory of the preset button. Switch the channel using the dial.

[33] Seek Tuning

When the button is pressed, stations whose signal strength is above certain level will be tuned automatically.

Using the CD Player

[31] Track Number Search

Turn the dial to search for the desired track (track number) in the disc currently being played.

[33] Pausing

1. Press this button to pause during disc playback.
2. Press the button again to release the pause.

3. DISASSEMBLY

● Removing the Case

1. Remove the three screws.
2. Insert and turn a flat screwdriver at locations indicated by arrows to remove the case.

● Removing the Detach Grille Assy

1. Press the detach button, and then pull detach grille Assy.

Fig.1

● Removing the Chassis Unit

1. Remove the two screws C and two screws D.
2. Remove the screw E.
3. Stretch the claw.
4. Remove the chassis Unit

Fig.3

● Removing the Panel Unit

1. Remove the screw B and disconnect the two stoppers indicated by arrows.
2. Disconnect the connector.

● Removing the CD Mechanism Module

1. Remove the four screws A.
2. Disconnect the connector.
3. Remove the CD Mechanism Module.

Fig.2

4. CONNECTOR FUNCTION DESCRIPTION

Fig.4

DEH-915RDSZRN, CXA-915RDSZRN

● ICs

DEH-915RDSZRN

PA2021B

PA2022A

NJM4558L

NJM4558MD

*LC7538JMHS

IC's marked by * are MOS type.
Be careful in handling them
because they are very liable to
be damaged by electrostatic
induction.

PA3029A

● Pin Functions (PD4533B)

Pin No.	Pin Name	I/O	Output Format	Function and Operation
1	NC			Not used
2	RDSRST	O	C	Reset output for RDS IC
3	RDSSEL	O	C	Select output for RDS IC
4	AVSS			A/D GND
5	RDSEN	O	C	Enable output for RDS IC
6	RDSRDY	I		Ready input from RDS IC
7	AVREF1	I		A/D converter reference voltage
8	KYDT	I		Key data input
9	DPDT	O	C	Display data output
10	RST	O	C	LSI reset output
11	RDSDI	I		Serial data input for RDS IC
12	RDSDO	O	C	Serial data output for RDS IC
13	RDSCCK	O	C	Serial clock output for RDS IC
14	A0	O	C	LSI data control signal
15	STB	O	C	LSI Strobe output
16	XSI	I		LSI data input
17	XSO	O	C	LSI data output
18	XSCK	O	C	LSI clock output
19	CONT	O	C	Servo driver power supply control
20	LOAD	O	C	Loading motor LOAD control
21	EJET	O	C	Loading motor EJECT control
22	POWER	O	C	CD +5V control
23	NC			Not used
24	CDMUTE	O	C	CD mute output
25	TMUTE	O	C	Tuner mute output
26	VDCNT	O	C	VD control input
27	FOK	I	C	FOK signal input
28	MIRR	I	C	Mirror detector input
29	LOCK	I	C	Spindle lock detector input
30	CLAMP	I		Disc clamp sense input
31	HOME	I	C	Home position detector input
32	FECNT	I/O	C	Not used
33	VSS			GND
34	VDSENS	I		VD over voltage sense input
35	VMC	O	C	Not used
36	NC			Not used
37	ADENA	O	N	AVREF enable output
38	NC			Not used
39	CDPW	O	N	CD power control
40	NC			Not used
41	SYSPW	O	C	System power supply control output
42	BLGT	O	C	LCD back light control output
43	VLCDPW	O	C	Power supply control output for LCD driver
44	SVVDD	O	C	Key board unit power supply control output
45	PEE	O	C	Beep tone output
46	VDT	O	C	Data output for electronic volume
47	VST	O	C	Strobe pulse output for electronic volume
48	VCK	O	C	Clock output for electronic volume
49	PCL	O	C	Clock adjustment output
50	FM/AM	O	C	FM/AM power select output
51	MONO	O	C	Forced mono output
52-54	NC			Not used
55	TEL	I		TEL mute input
56	MUTE	O	C	Mute output
57,58	NC			Not used
59	SD	I		Tuner SD input

Pin No.	Pin Name	I/O	Output Format	Function and Operation
60	RESET	I		Reset input
61	REMIN	I		Remote control signal input
62	BSENS	I		Back up power sense input
63	ASENS	I		ACC power sense input
64	PDI	I		Data input from PLL IC
65	PDO	O C		Data output for PLL IC
66	PCK	O C		Serial clock output for PLL IC
67	PCE	O C		Chip enable output for PLL IC
68	VDD			Power supply
69	X2			Crystal oscillator connection pin
70	X1			Crystal oscillator connection pin
71	IC			Connect to GND
72	XT2			Not used
73	TESTIN	I		Test program mode input
74	AVDD			Positive power supply terminal for A/D converter
75	AVREF0	I		A/D converter reference voltage
76	SL	I		Signal level input from tuner
77	TEMP	I		Temperature detector
78	DINC	I		Disc insert sense input
79	EJTD	I		Disc eject position sense input
80	DSENS	I		Grille detach sense

Output Format	Meaning
C	CMOS
N	N channel open drain

*PD4533B

PA2023A

● Pin Functions (CWV1044)

Pin No.	Pin Name	I/O	Function and Operation
1	VDD		Power supply for RDS controller
2	GND		GND
3	RDSRDY	I	Ready input from system control IC
4	RDSEN	O	Enable output for system control IC
5	RDSCK	I	Serial clock input from system control IC
6-9	RDSDT 7-4	I/O	Data input/output to system control IC
10	RDSSEL	I	Select input from system control IC
11	RDSRST	I	Reset input from system control IC
12	SCHK	I	Unit check input
13	TUNSEL	I	FM/AM tuner unit select input
14-16	VACANT		
17	GND		GND
18	COMP	I	FM composite signal input
19	FM 5V(VCC)		Power supply decoder
20	BPF OUT	O	Band pass filter test output
21	SL CHK	O	SL check output
22	FL CHK	O	FL check output
23	SD	I	RDS decode control input
24	SL(FM)	I	Signal level input from tuner
25	SK	I	SK signal detect input
26	RLOCK	O	RDS test output
27	DK	O	DK signal detect output
28	ERROR	O	Disapprove of error correction output
29	CORR	O	Error output
30	RECEIVE	O	RDS synchronizing test output

CWV1044

PAJ001A

● Pin Functions (PD4402B)

Pin No.	Pin Name	I/O	Output Format	Function and Operation
1-3	IN1,IN0,IN2	I		Remote control key return input
4-7	NC			Not used
8	REMOUT	O	C	Key data output
9-16	NC			Not used
17	VSS			GND
18-23	NC			Not used
24	X2			Crystal oscillator connection pin
25	X1			Crystal oscillator connection pin
26	VDD			Power supply
27-29	NC			Not used
30	VSS			GND
31	RST	I		Reset input
32-41	NC			Not used
42	L5	O	N	Remote control key strobe output
43,44	L1,L0	O	N	Remote control key strobe output

*PD4402B

● Pin Functions(UPC2571GS)

Pin No.	Pin Name	I/O	Function and Operation
1	VCC		VCC
2	BP-	I	TE zero cross amplifier input
3	BPO	O	TE zero cross amplifier output
4	WC+		Not used
5	WC-		Not used
6	GND1		GND
7	QDH		Not used
8	QDO		Not used
9	A	I	A signal input
10	C	I	C signal input
11	B	I	B signal input
12	D	I	D signal input
13	E	I	E signal input
14	F	I	F signal input
15	PIN	I	APC amplifier input
16	LA	O	APC amplifier output
17	LAON		APC amplifier ON/OFF switching
18	REFI	I	Reference voltage input
19	REFO	O	Reference voltage output
20	GND2		GND
21	RF+	I	RF amplifier non-inverting input
22	RF-	I	RF amplifier inverting input
23	RFO	O	RF amplifier output
24	RF1		Not used
25	ENVB		Not used
26	ENBP		Not used
27	NC		Non connection
28	TE1O	O	Tracking error amplifier 1 output
29	TE2+	I	Tracking error amplifier 2 non-inverting input
30	TE2-	I	Tracking error amplifier 2 inverting input
31	TE2O	O	Tracking error amplifier 2 output
32	FE1+	I	Focus error amplifier 1 non-inverting input
33	FE1O	O	Focus error amplifier 1 output
34	FE2+	I	Focus error amplifier 2 non-inverting input
35	FE2-	I	Focus error amplifier 2 inverter input
36	FE2O	O	Focus error amplifier 2 output

UPC2571GS

● Pin Functions(UPD63700GF)

Pin No.	Pin Name	I/O	Function and Operation
1	D.GND		Logic circuit GND
2	RFOK	O	RFOK detection signal output terminal
3	MIRR	O	MIRR detection signal output terminal
4	TBC	I	Tracking filter bank switching terminal
5	HOLD	I	Hold control signal input terminal
6	D.VDD		VDD for logic circuit
7	RST	I	System reset
8	AO	I	Control signal distinguishing data from microcomputer
9	STB	I	Signal latching serial data inside LSI
10	SCK	I	Clock input terminal for serial data input and output
11	SO	O	Serial data and status signal output
12	SI	I	Serial data input
13	TM2	I	Double speed playback control terminal
14	D.GND		Logic circuit GND
15	TEST	I	Test terminal
16	STBY	I	Stand-by input terminal
17	CTLV	I	Control terminal for clock generation VCO used by digital PLL in double speed playback mode
18	POUT	O	Output terminal for phase comparison between EFM signal and bit clock
19	D.GND		Logic circuit GND
20	VCO	I	Inverter input
21	VCO	O	Inverter output
22	D.VDD		VDD for logic circuit
23	PLCK	O	Bit clock monitor terminal
24	LOCK	O	"H" when synchronization signal and frame counter output coincide at EFM demodulator
25	WFCK	O	Signal insuring one-frame period by bit clock dividing signal
26	RFCK	O	Oscillation clock divider signal, output pin for signal giving 1-frame sync.
27	C4M	O	Output terminal for signal having four the frequency of LRCK
28	C16M	O	Oscillation clock output terminal
29	D.GND		Logic circuit GND
30	XTAL	I	Oscillation continuation terminal
31	XTAL	O	Oscillation continuation terminal
32	D.VDD		VDD for logic circuit
33	SCKO	O	Clock output terminal for audio serial data
34	LRCK	O	Signal distinguishing between left and right channel DOUT terminal output
35	DOUT	O	Serial audio data output terminal
36	TX	O	Digital audio interface data output terminal
37	FLAG	O	Flag signal indicating that the current audio data output of incorrectable data
38	EMPH	O	Emphasis information output
39	WDCK	O	Output terminal for signal having double the frequency of LRCK
40	C2D3	O	Output terminal indicating C2 error correction status
41	SFSY	O	Signal indicating subcode one-frame synchronization
42	SBSY	O	Signal indicating head of subcode block
43	SBSO	O	Subcode data output terminal
44	SBCK	I	Subcode data read clock input terminal
45	D.GND		Logic circuit GND
46,47	C1D1,C1D2	O	Output terminal indicating C1 error correction status
48,49	C2D1,C2D2	O	Output terminal indicating C2 error correction status
50	T4	I	Selects between focus and tracking modulation mode
51	T5	I	Selects motor PWM output mode
52	T6	I	Sets focus PWM output mode
53	T7	I	Sets tracking PWM output mode
54	D.VDD		VDD for logic circuit
55	MRD	O	PWM negative output terminal for the spindle loop filter
56	MFD	O	PWM positive output terminal for the spindle loop filter
57	SRD	O	PWM negative output terminal for the thread loop filter
58	SFD	O	PWM positive output terminal for the thread loop filter

DEH-915RDSZRN, CXA-915RDSZRN

Pin No.	Pin Name	I/O	Function and Operation
59	D.GND		Logic circuit GND
60	TRD	O	PWM negative output terminal for the tracking loop filter
61	TFD	O	PWM positive output terminal for the tracking loop filter
62	FRD	O	PWM negative output terminal for the focus loop filter
63	FFD	O	PWM positive output terminal for the focus loop filter
64	D.VDD		VDD for logic circuit
65	OUTSEL	I	Sets PWM output mode for the motor system
66	TEC1	I	Tracking error input terminal
67	TEC0	I	Tracking error input terminal
68	A.VDD		VDD for analog circuit
69,70	VR2,VR1	I	A/D converter input
71	TE	I	Tracking error input terminal
72	FE	I	Focus error input terminal
73	RFB	I	RFB signal input terminal
74	RFP	I	RFP signal input terminal
75	A.GND		Analog circuit GND
76	REFOUT	O	A/D converter midpoint voltage output terminal inside LSI
77	RFI	I	RF signal input terminal for EFM comparator
78	ASI	I	Level comparing input for RF signal comparison
79	EFM	O	EFM signal output terminal
80	A.VDD		VDD for analog circuit

*UPD63700GF

PQ05TZ51

XRA6285FP

*TC9268F

TA2063F

CXA-915RDSZRN**● Pin Functions (PD6122A)**

Pin No.	Pin Name	I/O	Function and Operation
1	VSS		GND
2	X1		Crystal oscillator connection pin
3	X0		Crystal oscillator connection pin
4	RESET	I	Reset Input
5,6	MOD1,0	I	Model select input
7	DILMX	O	Function LED select output
8	KYDT	O	Key data output
9	DPDT	I	Display data input
10	REMIN	I	Remote control pulse input
11	SILMO	O	Illumination color select output
12	SILMG	O	Function LED select output
13-16	KD4-KD1	I	Key sense input
17-22	KDT6-1	O	Key strobe output
23	VDD		5V
24-34	NC		Not used
35-73	SEG38-0		LCD segment output
74-77	COM3-0	O	LCD common output
78-80	VLCD-V1		Power supply terminal

*PD6122A

5. ADJUSTMENT

5.1 CD PLAYER SECTION

1) Precautions

- This unit uses a single power supply (+5V) for the regulator. The signal reference potential, therefore, is connected to REFO(approx. 2.5V) instead of GND. If REFO and GND are connected to each other by mistake during adjustments, not only will it be impossible to measure the potential correctly, but the servo will malfunction and a severe shock will be applied to the pick-up. To avoid this, take special note of the following.
Do not connect the negative probe of the measuring equipment to REFO and GND together. It is especially important not to connect the channel 1 negative probe of the oscilloscope to REFO with the channel 2 negative probe connected to GND.
Since the frame of the measuring instrument is usually at the same potential as the negative probe, change the frame of the measuring instrument to floating status.
If by accident REFO comes in contact with GND, immediately switch the regulator or power OFF.
- Always make sure the regulator is OFF when connecting and disconnecting the various filters and wiring required for measurements.
- Before proceeding to further adjustments and measurements after switching regulator ON, let the player run for about one minute to allow the circuits to stabilize.
- Since the protective systems in the unit's software are rendered inoperative in test mode, be very careful to avoid mechanical and /or electrical shocks to the system when making adjustment.
- Test mode starting procedure
Switch ACC, back-up ON while pressing the **4** and **6** keys together.

- Test mode cancellation
Switch ACC, back-up OFF.
- Disc detection during loading and eject operations is performed by means of a photo transistor in this unit. Consequently, if the inside of the unit is exposed to a strong light source when the outer casing is removed for repairs or adjustment, the following malfunctions may occur.
*During PLAY, even if the eject button is pressed, the disc will not be ejected and the unit will remain in the PLAY mode.
*The unit will not load a disc.
When the unit malfunctions this way, either re-position the light source, move the unit or cover the photo transistor.
- When loading and unloading discs during adjustment procedures, always wait for the disc to be properly clamped or ejected before pressing another key. Otherwise, there is a risk of the actuator being destroyed.
- Turn power off when pressing the button **TR+** or the button **TR-** key for focus search in the test mode. (Or else lens may stick and the actuator may be damaged.)
- SINGLE/4TRK/10TRK/32TRK will continue to operate even after the key is released. Tracking is closed the moment C-MOVE is released.
- JUMP MODE resets to SINGLE as soon as power is switched off.

● Flow Chart

● Measuring Equipment and Jigs

Adjustment	Measuring equipment & jigs
1 Tracking Error Offset Adjustment 1	DC V Meter
2 Grating Check / Adjustment 1	Oscilloscope, ABEX TCD-784 (or SONY TYPE 4), L.P.F., Clock Driver
3 Grating Adjustment 2	Oscilloscope, Grating Adjustment Filter (B.P.F.), mV Meter, ABEX TCD-784 (or SONY TYPE 4), L.P.F., Clock Driver
4 Tracking Balance Adjustment 1	Oscilloscope, Low-pass Filter, ABEX TCD-784 (or SONY TYPE 4)
5 Focus Bias Adjustment	Oscilloscope, ABEX TCD-784 (or SONY TYPE 4)
6 RFO Offset Adjustment	Oscilloscope, ABEX TCD-784 (or SONY TYPE 4)
7 Tracking Error Offset Adjustment 2	DC V Meter
8 Tracking Balance Adjustment 2	Oscilloscope, Low-pass Filter, ABEX TCD-784 (or SONY TYPE 4)

● Adjustment Point

Fig.5

● Test Point

Fig.6

1 Tracking Error Offset Adjustment 1

• Purpose :	To adjust the offset of the tracking pre-amp to zero.
• Symptoms of Mal-adjustment :	
Track search NG, Carriage runaway, Poor playability.	
• Measuring Equipment / Jig	• DC V Meter
• Measuring Point	• TEY
• Test Disc , Mode	• No disc, TEST MODE
• Adjustment Point	• VR1001(TE OFFSET VR)

Adjustment Procedure

- 1.Switch the regulator on.
- 2.Using VR1001, adjust TEY to $0 \pm 25\text{mV}$ w.r.t. REFO.

2 Grating Check / Adjustment 1

• Purpose :	To check that the PU grating is correctly aligned after the PU unit has been replaced.
• Symptoms of Mal-adjustment :	
Unable to play disc, track skip during search, search NG.	
• Measuring Equipment / Jig	• Oscilloscope, L.P.F., Clock Driver
• Measuring Point	• E, F
• Test Disc , Mode	• ABEX TCD-784 (or SONY TYPE 4), TEST MODE
• Adjustment Point	• Grating hole

Adjustment Procedure

- 1.Load disc and switch regulator on.
- 2.Position the PU in the center of the disc using the TR+ & TR- keys.
- 3.Press key 3 to close focus and once more to close spindle.
- 4.Refering to the photographs given check that the grating is within $\pm 45^\circ$. If not, it should be possible to make a fine adjustment to the grating by slowly tuning the grating screw. If, however during the adjustment the lissajous figure is seen to "FLIP" then the null point must be found and the adjustment made from there(see next section).

Lissajous figure (AC input)
Horizontal axis E 10mV/div.
Vertical axis F 10mV/div.

60°=NG

Waveform 1

**45°=OK
(Limit)**

Waveform 2

**0°=BEST
(Doesn't become
a single line due
to eccentricity)**

Waveform 3

3 Grating Adjustment 2

Purpose :

This needs to be done if the previous adjustment was unsuccessful.

Symptoms of Mal-adjustment :

Unable to play disc, track skipping, track search NG.

Measuring Equipment / Jig	Oscilloscope, Grating Adjustment filter (BPF), mV Meter, L.P.F., Clock Driver
Measuring Point	TEY, E, F
Test Disc , Mode	ABEX TCD-784 (or SONY TYPE 4), TEST MODE
Adjustment Point	Grating hole

Adjustment Procedure

1. Load disc and switch regulator on.
2. Position PU unit in the center of the disc using the TR+ & TR- keys.
3. Press key 3 to close focus and press once more to close spindle.
4. While monitoring the output of the BPF connected to TEY, slowly turn the grating screw. The output voltage should pass through many minimums; search for the minimum which is clearly smaller than the rest - this is the "null point", where the E & F sub-beams are lined up with the tracks on the disc.
5. From this null point, turn the grating screw clockwise (as seen from the underside of the PU unit) until the lissajous waveform is a single line (or close as possible) as shown in the photograph.

Lissajous figure (AC input)

Horizontal axis E 10mV/div.

Vertical axis F 10mV/div.

Null Point=180°

Waveform 4

"Rough" adjustment=90°

Waveform 5

Final adjustment=0°

Waveform 6

4 Tracking Balance Adjustment 1

Purpose :	To equate the sensitivity of the F channel to that of the E channel.
Symptoms of Mal-adjustment :	Track search NG, Poor playability carriage runaway.
Measuring Equipment / Jig	Oscilloscope, L.P.F.
Measuring Point	TEY
Test Disc , Mode	ABEX TCD-784 (or SONY TYPE 4), TEST MODE
Adjustment Point	VR1002 (T.BAL VR)

+5% NG

±0% OK

Adjustment Procedure

- 1.Load Disc and switch the regulator on.
- 2.Position the PU unit in the center of the disc using the TR+ & TR- keys.
- 3.Close focus by pressing key 3.
- 4.Observing the TEY waveform on the oscilloscope, adjust VR1002 until the positive and negative halves have the same amplitude (see waveform 7-9).

Check

After adjustment the TEY waveform should have an amplitude of 1.5 ± 0.65 Vpp (ABEX-784 or SONY TYPE 4) (Providing focus bias is OK)

-5% NG

5 Focus Bias Adjustment

Purpose :

To adjust the focus servo reference so that the RF waveform is an optimum.

Symptoms of Mal-adjustment :

Difficulty in closing focus, poor playability.

Measuring Equipment / Jig

Oscilloscope

Measuring Point

RFO

Test Disc , Mode

ABEX TCD-784 (or SONY TYPE 4),
NORMAL MODE

Adjustment Point

VR1003 (FE BIAS VR)

Adjustment Procedure

1. Play track number 18.
2. Adjust VR1003 so that the RFO waveform amplitude is a maximum and eye pattern is optimum.

Check

After adjustment the RFO waveform should have an amplitude of 1.7 ± 0.65 Vpp (ABEX-784 or SONY TYPE 4)

Waveform 10

NG

AC Mode Before adjustment

Waveform 11

6 RFO Offset Adjustment

Purpose

To adjust the RFO waveform offset to an optimum.

Symptoms of Mal-adjustment

Difficulty in closing focus, poor playability.

• Measuring Equipment / Jig	• Oscilloscope
• Measuring Point	• RFO
• Test Disc , Mode	• ABEX TCD-784 (or SONY TYPE 4), NORMAL MODE
• Adjustment Point	• VR1004 (RFO OFFSET VR)

Adjustment Procedure

1. Play track number 18.
2. Adjust VR1004 so that the peak value of the upper envelope of the RFO waveform is at +1.1VDC w.r.t. REFO.(See waveform 12-14)

DC Mode
0.2V/div.
0.5μs/div.

+100mV NG

Waveform 12

OK

1.1V

REFO

Waveform 13

-100mV NG

REFO →

Waveform 14

7 Tracking Error Offset Adjustment 2

- **Purpose :**
To check the offset of the tracking pre-amp is zero and adjust if necessary.
- **Symptoms of Mal-adjustment :**
Track search NG, Carriage runaway, Poor playability.

• Measuring Equipment / Jig	• DC V Meter
• Measuring Point	• TEY
• Test Disc , Mode	• No disc, TEST MODE
• Adjustment Point	• VR1001(TE OFFSET VR)

Adjustment Procedure

- 1.Switch the regulator on.
- 2.Using VR1001, adjust TEY to $0 \pm 25\text{mV}$ w.r.t. REFO.

8 Tracking Balance Adjustment 2

- **Purpose :**
To equate the sensitivity of the F channel to that of the E channel. This needs only be done if the TE OFFSET volume was re-adjusted in the previous step.
- **Symptoms of Mal-adjustment:**
Track search NG,Poor playability, carriage runaway.

• Measuring Equipment / Jig	• Oscilloscope, L.P.F.
• Measuring Point	• TEY
• Test Disc , Mode	• ABEX TCD-784 (or SONY TYPE 4), TEST MODE
• Adjustment Point	• VR1002 (T.BAL VR)

Adjustment Procedure

- 1.Load Disc and switch the regulator on.
- 2.Position the PU unit in the center of the disc using the TR+ & TR- keys.
- 3.Close focus by pressing key 3.
- 4.Observing the TEY waveform on the oscilloscope, adjust VR1002 until the positive and negative halves have the same amplitude (See waveform 7-9).

Check

After adjustment the TEY waveform should have an amplitude of $1.5 \pm 0.65 \text{ Vpp}$ (ABEX-784 or SONY TYPE 4)

5.2 TUNER SECTION

● Connection Diagram

NOTE:

Select C1 so that total capacity of 80pF is attained from the direction of the receiver jack.

Z: Output impedance of SSG.

Fig.7

AM ADJUSTMENT

	No.	AM SSG(400Hz,30%)		Displayed Frequency(kHz)	Adjustment Point	Adjustment Method (Switch Position)
		Frequency(kHz)	Level(dB μ V)			
IF	1	999	20	999	T204,T205,	mV Meter(1) : Maximum

FM ADJUSTMENT

Modulation M:MONO MOD., 400Hz 100%(75kHz Dev.)
 S:STEREO MOD., 1kHz, L or R=90%, Pilot=10%(67.5kHz+7.5kHz Dev.)

NOTE:Before proceeding to further adjustments after switching power ON, let the tuner run for ten minutes to allow the circuits to stabilize.

	No.	FM SSG		Displayed Frequency(MHz)	Adjustment Point	Adjustment Method (Switch Position)
		Frequency(MHz)	Level(dBf)			
TUN Volt	1	108.0 M	65	108.0	T4	DC V Meter(1) : 6.5V±0.1V
IF	1	98.1 M	65	98.1	T51	Center Meter:0
ANT,RF	1	98.1 M	10	98.1	T1,T3	mV Meter(1) : Maximum
IFT	1	98.1 M	10	98.1	T2	mV Meter(1) : Maximum (STEREO MODE)
Soft Mute	1	98.1 M	65	98.1		mV Meter(1) : A (STEREO MODE)
	2	98.1 M	15	98.1	VR52	mV Meter(1) : A-3dB
MPX	1	98.1 S	65	98.1	VR152	mV Meter(1) : Separation Maximum
ARC	1	98.1 S	40	98.1	VR151	mV Meter(1) : Separation 5dB
SD	1	98.1 S	22	98.1	VR51	DC V Meter(1) : Approx. 5V (SEEK:ON)

FM SL ADJUSTMENT

Modulation MONO MOD., 400Hz 100%(75kHz Dev.)

No.	FM SSG		Displayed Frequency(MHz)	Adjustment Point	Adjustment Method (Switch Position)
	Frequency(MHz)	Level(dBf)			
1	106.1	52	106.1	VR771	DC V Meter(2) : 2.25V±0.05V

6. ERROR NUMBERS AND NEW TEST MODE

● Error Number Indication

If the CD should fail to operate or if an error has taken place during operation the player will enter into the error mode, and the cause of the error will be numerically indicated.

This is aimed at assisting in analysis or repair.

(1) Basic Means of Display

- With ERROR indicated in "MODE" on IP-BUS Display data, an error code is transmitted by the use of MIN and SEC.

The MIN and SEC data will be identical.

- Examples of Display ERROR-XX

(2) Error Codes

Error Code	Classification	Description	Cause/Detail
10	ELECTRIC	Carriage home failure	Carriage doesn't move to or from the innermost position →Home switch failed and/or carriage immobile
11	ELECTRIC	Focus failure	Focus failed →Defects, disc upside-down, severe vibration
12	ELECTRIC	SETUP failure Subcode failure	Spindle failed to lock or subcode unreadable →Spindle defective, defect, severe vibration
14	ELECTRIC	Mirror failure	Unrecorded CD-ROM The disc is upside-down, defects, vibration
17	ELECTRIC	Set up failure	AGC protect failed →Defects, disc upside-down, severe vibration
30	ELECTRIC	Search time out	Failed to reach target address →Carriage/tracking defective and/or defects
A0	SYSTEM	Power failure	Power overvoltage or short circuit detected →Switching transistor defective and/or power abnormal

"defects" means scratches, dirt etc on the surface of the disc.

● New Test Mode(laging operation and setup analysis)

The single CD player plays in normal mode. After being set up, it will display FOK (focus), LOCK (spindle), subcode, sound skip, protection against a mechanical error or the like, occurrence of an error, cause and time of an expiry, if any, (and disk number)

During the setup, the CD software operation status (internal RAM and C-point)is displayed.

(1) How to enter NEW TEST Mode

See the test mode flow chart Page 1-26.

(2) Relations of keys between TEST and NEW TEST Modes

Keys	Test Mode		New Test Mode	
	Regulator OFF	Regulator ON	PLAY in progress	Error Occurred, Protection Activated
BAND/REL	Regulator ON	Regulator OFF	—	Time of occurrence/ cause of error select
TR+	—	FWD-Kick	TR+	—
TR-	—	REV-Kick	TR-	—
1	—	Tracking close	PAUSE	—
2	—	Tracking open	REPEAT	—
3	—	Focus close	RANDOM	—
TR+ & TR-	To New Test Mode	Focus Mode Select	AUTO/MANU	TRACK No./ time of occurrence select

Operations, such as EJECT, CD ON/OFF, etc. are performed normally

(3) Error Cause (Error Number) Code

Error Code	Classification	Mode	Description	Cause/Detail
40	ELECTRIC	PLAY	FOK=L	Put out of focus
41	ELECTRIC	PLAY	LOCK=L 150ms	Scratch, Spindle unlock Stain, Vibration,
42	ELECTRIC	PLAY	Subcode unacceptable 500ms	Failed to read subcode Servo defect, etc...
43	ELECTRIC	PLAY	Sound skipped	Last address memory operated

(4) Indicating an Operation Status During Setup

Status No.	Description	Protection operation
01	Carriage home mode started	None
02	Carriage moving inwards	10-second time out, Home switch failed
03	Carriage moving outwards	10-second time out, Home switch failed
05	Carriage moving outwards	None
11	Setup started	None
12	Spindle turn/Focus search started	None
13	Waiting for focus closure (XSI=L)	Failure to close focus
10, 14	Waiting for focus closure (FOK=H)	Failure to close focus
15, 16, 17	Focus closed, Tracking open	Focus disrupted
18	During focus AGC Subcode waiting	Focus disrupted
19	During tracking AGC	Disrupted focus
20	Waiting for MIRR, LOCK or subcode read Carriage closed, SPINDLE=ADAPTIVE	Focus disrupted, MIRR NG, Failure to lock, failed to read subcode

(5) Example of Display.

·SET UP in progress

TNo.	Min	Sec
11	11	11

·Operation (PLAY, SEARCH, etc.) in progress perfectly identical with that in the normal mode.

·Protection/Error upon occurrence

(a) Error number indicated

ERROR-xx

Select the display with the BAND/REL key.

(b) Track number and
absolute time indicated

TNo. Min Sec

10 40 05

7. EXPLODED VIEW PARTS LIST

● DEH-915RDSZRN(Exploded View:Page 2-5)

NOTES:

- Parts marked by “*” are generally unavailable because they are not in our Master Spare Parts List.
- Parts marked by “◎”are not always kept in stock. Their delivery time may be longer than usual or they may be unavailable.

● Parts List

Mark	No.	Description	Part No.	Mark	No.	Description	Part No.
1	Screw	BMZ26P050FMC		31	FM/AM Tuner Unit	CWE1313	
2	Screw	BMZ26P050FZK		32	Connector Unit	CWX1698	
3	Screw	BMZ26P080FMC		33	Holder Unit	CXA6244	
4	Screw	BMZ30P050FMC		34	Screw	BPZ20P060FMC	
5	Screw	BMZ30P120FMC		35	Spring	CBH1659	
6	Screw	CBA1177		36	Socket	CKS2782	
7	Case	CNB1791		37	Holder	CNC4943	
8	Earth Plate	CNC5130		38	Holder	CNC4944	
9	Earth Plate	CNC5456		39	P.C.Board	CNP3532	
10	Cushion	CNM3886		40	Arm	CNV3696	
11	Insulator	CNM3893		41	Arm	CNV3697	
12	Insulator	CNM3894		42	Detach Mechanism Unit	CXA5188	
13	Spacer	CNM3908		43	Panel Unit	CXA5913	
14	P.C.Board	CNP3534		44	Screw	PMS20P030FZK	
15	Bush	CNV3253		45	Connector(CN953)	CKM1088	
*	16	Clamper	CNV3954	46	Connector(CN952)	CKS2905	
	17	Tuner Amp Unit	CWX1697	47	Holder	CNC5144	
	18	Chassis Unit	CXA6243	48	Washer	CBF1039	
	19	CD Mechanism Module	CXK2810	49	Spring	CBH1484	
	20	Screw	BMZ26P120FMC	50	Arm	CNV3292	
21	Screw	BMZ30P050FMC		51	Arm	CNV3293	
22	Connector(CN601)	CKS1529		52	Holder Unit	CXA5124	
23	Connector(CN651)	CKS1546		53	Antenna Jack	CKX1043	
24	Holder	CNC4881		54	Holder	CNC4880	
25	Holder	CNC4882		55	IC(IC971)	PA2023A	
26	Holder	CNC5013		56	Transistor(Q981)	2SD2396	
27	Bracket	CNC5146		57	IC(IC551)	PA3029A	
28	Insulator	CNM3825		58	Insulator	CNM4077	
29	Fuse(FU901)	CEK1136					
30	Heat Sink	CNR1307					

● CXA-915RDSZRN(Exploded View:Page 2-7)

● Parts List

Mark	No.	Description	Part No.
1	Case	CNS2269	
2	Cushion	CNM3074	
3	Screw	BUZ20P100FZK	
4	Button	CAC3744	
5	Button	CAC3880	
6	Button	CAC3881	
7	Button(+-)	CAC4041	
8	Button(<>)	CAC4042	
9	Button(SOURCE)	CAC4043	
10	Button(EJECT)	CAC4044	
11	Button(S)	CAC4045	
12	Cover	CNS2818	
13	Grille	CNS3053	
14	Key Board Unit	CWX1699	
15	LCD	CAW1242	
16	Holder	CNC5009	
17	Spacer	CNM4042	
* 18	Plate	CNM4098	
19	Lens	CNV3671	
20	Rubber	CNV3672	
21	Connector	CNV3673	
22	Rubber	CNV3675	
23	Plug(CN901)	CKS2402	

● CD Mechanism Module(Exploded View:Page 2-9)

● Parts List

Mark	No.	Description	Part No.
1	Screw	PMS26P040FMC	
2	Control Unit	CWX1641	
3	Connector(CN1001)	CKS1955	
4	Connector(CN1701)	CKS2775	
5	Connector(CN1002)	CKS2811	
6	Connector(CN1801)	CKS2196	
7	CD Mechanism Unit	CXA6475	
8	Screw	BMZ20P030FMC	
9	Screw	BSZ20P040FMC	
10	Screw	CBA1041	
11	Screw	CBA1077	
12	Screw	CBA1230	
13	Screw	CBA1296	
14	Washer	CBF1038	
15	Washer	CBF1060	
16	Spring	CBH1415	
17	Spring	CBH1417	
18	Spring	CBH1418	
19	Spring	CBH1421	
20	Spring	CBH1423	
21	Spring	CBH1457	
22	Spring	CBH1552	
23	Spring	CBH1553	
24	Spring	CBH1554	
25	Spring	CBH1555	
26	Spring	CBH1556	
27	Spring	CBH1557	
28	Spring	CBH1558	
29	Spring	CBH1559	
30	Spring	CBH1560	
31	Spring	CBH1576	
32	Spring	CBH1577	
33	Spring	CBH1578	
34	Spring	CBH1583	
35	Spring	CBH1628	
36	Spring	CBL1170	
37	Spring	CBL1171	
38	Spring	CBL1172	
39	Connector	CDE4147	
40	PU Unit	CGY1031	

Mark	No.	Description	Part No.	Mark	No.	Description	Part No.
	41	Shaft	CLA2220		76	Plate	CNV3629
	42	Roller	CLA2255		77	Guide	CNV3694
	43	Shaft	CLA2256		78	P.C.Board	CNP3418
	44	Frame	CNC4888		79	P.C.Board	CNP3666
	45	Arm	CNC4889		80	Screw Unit	CXA2375
	46	Lever	CNC4891		81	Motor Unit(M2)	CXA4649
	47	Lever	CNC4892		82	Chassis Unit	CXA5602
	48	Bracket	CNC4893		83	Arm Unit	CXA5603
	49	Arm	CNC4895		84	Arm Unit	CXA5604
	50	Arm	CNC4898		85	Bracket Unit	CXA5605
	51	Bracket	CNC5424		86	Lever Unit	CXA5606
	52	Spacer	CNM3315		87	Arm Unit	CXA5607
	53	Sheet	CNM4071		88	Arm Unit	CXA5608
	54	Sheet	CNM3693		89	Gear Unit	CXA5609
	55	Bracket	CNM3917		90	Motor Unit(M1)	CXA5703
	56	Belt	CNT1053		91	Bracket Unit	CXA5938
	57	Clamper Unit	CXA6552		92	Frame Unit	CXA6192
	58	Guide	CNV2891		93	Motor Unit(M3)	CXA6456
*	59	Holder	CNV3276		94	Screw	JFZ17P035FNI
*	60	Roller	CNV3412		95	Screw	JFZ20P014FMC
	61	Damper	CNV3974		96	Screw	JFZ20P020FZK
	62	Arm	CNV3565		97	Screw	JFZ20P025FMC
	63	Arm	CNV3566		98	Photo-transistor	PT4800
	64	Gear	CNV3567		99	Washer	YE15FUC
	65	Gear	CNV3568		100	Washer	YE20FUC
	66	Gear	CNV3569		101	Spacer	CNM3999
	67	Gear	CNV3570		102	Sheet	CNM4028
	68	Arm	CNV3571		103	Spring	CHB1662
	69	Holder	CNV3572		104	Spacer	CNC5436
	70	Gear	CNV3573		105	Screw	JFZ20P045FMC
	71	Holder	CNV3574				
	72	Holder	CNV3575				
	73	Holder	CNV3576				
	74	Rack	CNV3577				
	75	Arm	CNV3578				

8. ELECTRICAL PARTS LIST

NOTE:

- Parts whose parts numbers are omitted are subject to being not supplied.
- The part numbers shown below indicate chip components.

Chip Resistor

RS1/OS000J, RS1/OOS000J

Chip Capacitor (except for CQS.....)

CKS....., CCS....., CSZS.....

=====Circuit Symbol & No. Part Name=====	Part No.	=====Circuit Symbol & No. Part Name=====	Part No.
● DEH-915RDSZRN		R 7 14	RS1/16S563J
Unit Number : CWE1313		R 8	RS1/16S152J
Unit Name : FM/AM Tuner Unit		R 9	RS1/16S473J
MISCELLANEOUS		R 11	RS1/16S474J
IC 1	PA2021B	R 12	RS1/16S123J
IC 2	PA2022A	R 13 15 217	RS1/16S563J
Q 1	3SK195	R 17 206	RS1/16S102J
Q 2 202	2SC2712	R 21 22	RS1/16S560J
Q 3	DTC124EU	R 51 74	RS1/16S391J
Q 51	DTC124TU	R 52	RS1/16S152J
Q 52	2SC4207	R 53	RS1/16S751J
Q 53	2SA1586	R 55 157	RS1/16S682J
Q 201	2SK435	R 56	RS1/16S332J
D 1	1SV172-F1	R 58 73 203	RS1/16S102J
D 2 3 4	KV1410-F1	R 60	RS1/16S123J
D 5	MA151WK-MT	R 72	RS1/16S391J
D 6 151 202	MA157-MR	R 101	RS1/16S224J
D 201	MA157-MR	R 102 222	RS1/16S822J
D 203	SVC203CP	R 103	RS1/16S223J
L 1	Inductor	R 104	RS1/16S822J
L 2 52	Ferri-Inductor	LCTBR12K2125	RS1/16S272J
L 51	Ferri-Inductor	LAU150K	RS1/16S103J
L 201	Ferri-Inductor	LAU2R2K	RS1/16S103J
L 202	Coil 1mH	LAU4R7K	RS1/16S153J
L 203	Inductor	CTF1026	RS1/16S183J
L 204	Ferri-Inductor	R 151 152	RS1/16S272J
L 205	Ferri-Inductor	R 153	RS1/16S103J
L 206	Inductor	R 154 155 202	RS1/16S103J
T 1	Coil	R 156	RS1/16S153J
T 203	Inductor	R 158	RS1/16S183J
T 204	Ferri-Inductor	LAU390K	RS1/16S222J
T 205	Ferri-Inductor	LAU680K	RS1/16S222J
T 206	Inductor	LAU330K	RS1/16S823J
T 1	Coil	CTF1198	RS1/16S225J
T 203	Coil	CTC1078	RS1/16S752J
T 204	Coil	R 159 216	RS1/16S103J
T 205	Coil	R 204 213	RS1/16S222J
CF 1 51 52	Ceramic Filter	R 205	RS1/16S823J
CF 201	Ceramic Filter	CTF1077	RS1/16S225J
CF 202	Ceramic Resonator	CTF1077	RS1/16S822J
X 151	Crystal Resonator	CTE1079	RS1/16S333J
X 201	Semi-fixed 47kΩ(B)	CTE1081	RS1/16S330J
VR 51	Semi-fixed 68kΩ(B)	CTF1292	RS1/16S330J
VR 52	Semi-fixed 10kΩ(B)	CTF1291	RS1/16S473J
VR 151	Semi-fixed 22kΩ(B)	CTF1300	CCSRCH220J50
VR 152	Capacitor with Discharge Gap	CSS1308	CCSRCH390J50
AR 1	DSP-201M	CSS1111	CKSQYB473K16
RESISTORS		CCP1210	CCSRCH070D50
R 1		CCP1211	CCSRCH270J50
R 2		CCP1206	CKSRYB222K50
R 3 10 16 18 20		CCP1208	CCSRCH470J50
R 4 5		DSP-201M	CCSRSH090D50
R 6		C 1 54	CKSRYB223K25
		C 2	CCSRTH070D50
		C 3 102 154 163 203 210	CKSQYB104K25
		C 4	CCSRCH070D50
		C 5 53	CCSRCH470J50
		C 6	CKSRYB222K50
		C 7	CCSRCH040C50
		C 8 105	CKSRYB222K50
		C 9 16	CCSRCH470J50
		C 10	CCSRSH090D50
		C 11	CKSRYB223K25
		C 12	CCSRTH070D50
		C 13	CCSRCH070D50
		C 14	CKSRYB103K50
		C 15 22 55 101 151 164 219 220 225 227	CKSQYB104K25
		RS1/16S223J	
		RS1/16S271J	
		RS1/16S223J	
		RS1/16S0R0J	
		RS1/16S680J	

DEH-915RDSZRN,CXA-915RDSZRN

Circuit Symbol & No. Part Name										Part No.	Circuit Symbol & No. Part Name										Part No.		
C 17										CCSRRH100D50													
C 18										CCSRRH080D50													
C 19	20	21	52	62	71	74	201	207	209	CKSRYB103K50							R 1001				RS1/8S100J		
C 23										CEA3R3M50LL							R 1002				RS1/8S120J		
C 24	29	73	106	213						CKSRYB223K25							R 1003	1201 1307 1309			RS1/16S103J		
C 25										CKSRYB882K50							R 1004	1013 1024 1025 1311 1315 1318 1708			RS1/16S102J		
C 26	28	231								CEA101M16LL							R 1005				RS1/16S823J		
C 51	223									CKSRYB103K50							R 1006				RS1/16S182J		
C 56	162	211								CEA010M50LL							R 1007				RS1/16S333J		
C 57	64	86	237							CCSRCH101J50							R 1011	1012			RS1/16S683J		
C 58										CKSRYB153K25							R 1014	1015 1310			RS1/16S473J		
C 60										CEAR47M50LL							R 1018				RS1/16S622J		
C 61										CEAR22M50LL							R 1019				RS1/16S563J		
C 63										CKSQYB104K25							R 1020				RS1/16S622J		
C 65										CEA0R1M50LL							R 1021				RS1/16S513J		
C 103										CKSQYB222K50							R 1022				RS1/16S133J		
C 104										CEA4R7M35LL							R 1027				RS1/16S183J		
C 152	153									CKSRYB223K25							R 1028				RS1/16S822J		
C 155										CEAR47M50LL							R 1301	1302			RS1/16S222J		
C 156										CKSQYB563K16							R 1303	1606 1607			RS1/16S223J		
C 158	212									CEA100M16LL							R 1304				RS1/16S123J		
C 159										CKSRYB331K50							R 1305	1306 1705			RS1/16S332J		
C 160										CKSYB105K16							R 1308				RS1/16S163J		
C 161										CKSQYB104K25							R 1314				RS1/16S0R0J		
C 202										CKSRYB332K50							R 1317				RS1/16S473J		
C 204										CCSRCH120J50							R 1601				RS1/16S301J		
C 205										CCSRCH560J50							R 1604	1605			RS1/16S102J		
C 206	221									CCSRCH680J50							R 1608	1609			RS1/16S162J		
C 208										CEA470M16LL							R 1610				RS1/16S103J		
C 214	230									CKSRYB472K50							R 1801	1802			RS1/8S821J		
C 215	228									CKSRYB103K50							CAPACITORS						
C 216										CCSRCH100D50							C 1001	1008 1010 1011 1303				CKSRYB102K50	
C 217										CCSRCH221J50							C 1002	1609 1706				CEV101M6R3	
C 218	234									CEA220M16LL							C 1003					CKSQYB104K16	
C 222										CCSRCH150J50							C 1004					CCSRCH101J50	
C 224										CCSRUJ181J50							C 1005						
C 226										CEA4R7M35LL							C 1006					CKSRYB561K50	
C 229										CEAR68M50LL							C 1007	1704				CKSYB334K16	
C 232										CCSRCH390J50							C 1009					CCSRCH181J50	
C 233										CKSRYB332K50							C 1012	1307 1310 1605 1608				CKSRYB103K50	
C 235										CKSQYB104K25							C 1013					CKSRYB472K50	
C 236										CKSRYB223K25							C 1014					CCSRCH220J50	
Unit Number : CWX1641										C 1015	1016 1017 1018 1201 1202							CKSYF105Z16					
Unit Name : Control Unit										C 1021								CKSYB104K16					
MISCELLANEOUS										C 1022								CKSRYB332K50					
IC 1001										UPC2571GS							C 1023					CKSRYF561Z25	
IC 1201										UPD63700GF							C 1301	1302				CKSRYF683Z25	
IC 1301										PA3026							C 1304					CKSRYF152K50	
IC 1302										XRA6285FP							C 1305					CKSRYF151K50	
IC 1303										NJM4558M							C 1308					CKSRYF103Z50	
IC 1601										TC9268F							C 1309					CEV470M16	
IC 1602										TA2063F							C 1601						
IC 1701										PQ05TZ51							C 1602					CCSRCH100D50	
Q 1001										2SB1260							C 1603	1604 1705				CKSRYF224K16	
Q 1601 1602										2SD1781K							C 1606	1607				CCSRCH090D50	
Q 1603										2SB709A							C 1612					CEV220M6R3	
D 1601										MA151WA-MN							C 1613	1614					
D 1701 1702 1703 1704										SC016-2							C 1701	1702				CEV4R7M35	
D 1801 1802										CL200IRX							C 1703					CCSRCH100D50	
L 1601										LCTBR39K2125							Unit Number : CWX1697						
X 1601										Crystal Resonator	CSS1067							Unit Name : Tuner Amp Unit					
S 1801 1802										Switch(Home,Clamp)	CSN1028							MISCELLANEOUS					
VR1001										Semi-fixed 2.2kΩ (B)	CCP1177							IC 471					NJM4558L
VR1002										Semi-fixed 22kΩ (B)	CCP1183							IC 481					LC7538JMHS
VR1003 1004										Semi-fixed 47kΩ (B)	CCP1185							IC 482	483				NJM4558MD
																	IC 501					LC72140M	
																	IC 551					PA3029A	

DEH-915RDSZRN, CXA-915RDSZRN

=====Circuit Symbol & No. Part Name=====		Part No.	=====Circuit Symbol & No. Part Name=====	Part No.
IC 601		PD4533B	R 517 518 519 520	RD1/4PS222JL
IC 602		PD4402B	R 523	RS1/10S563J
IC 771		CWV1044	R 524	RS1/10S101J
IC 961		PAJ001A	R 527	RS1/10S821J
IC 971		PA2023A	R 528	RS1/10S680J
Q 451 452 502 504 508 771 773		2SC2712	R 532 781	RS1/10S152J
Q 453 454		DTC343TK	R 539 540 541 547 605 606 616 651 652 657	RS1/10S102J
Q 455 456		DTC114TK	R 542	RS1/10S822J
Q 457		2SA1162	R 543	RS1/10S330J
Q 501		2SC3295	R 551 552 553 554	RS1/10S152J
Q 503		2SC3098	R 555 556	RS1/10S2R2J
Q 505 509		2SK208	R 557 678 959 965	RD1/4PS102JL
Q 510		DTA114TS	R 558 559 560 561 562 563 564 565	RD1/4PS2R2JL
Q 551 601 604 606 957 983		UN2211	R 570	RD1/4PS752JL
Q 602 982		UN2111	R 571	RS1/10S560J
Q 603 605 607 956		2SB1238	R 572	RS1/10S682J
Q 608		DTC114ES	R 607	RD1/4PS102JL
Q 681		2SC3421	R 609	RS1/10S0R0J
Q 682		DTC123JS	R 614	RS1/10S330J
Q 683		2SC2458	R 617	RD1/4PS473JL
Q 772		DTC124EK	R 620	RS1/10S683J
Q 958		2SA1048	R 621 671 672 673 679 772 773 774 775 776	RS1/10S473J
Q 959		DTA114TS	R 622 624	RD1/4PS222JL
Q 981		2SD2396	R 623 625	RS1/10S104J
D 501 971		MA151WK-MT	R 626	RS1/10S183J
D 504 505		MA3027H	R 628 958	RD1/4PS272JL
D 601		MA151A-MA	R 630	RS1/10S562J
D 602 603 611 612 613 614 615 616 771 953		ISS133	R 634	RS1/10S472J
D 681		HZS7R5JB1	R 635	RD1/4PS100JL
D 772		MTZ4R7B	R 638 645 646 647 957 968 973	RS1/10S472J
D 951		SIB01-02	R 639	RD1/4PS103JL
D 956		ERA15-10VH	R 640 771	RS1/10S471J
D 957 961		ERA15-02VH	R 653 654 655 656	RS1/10S681J
D 958 959 972 973 982		1SS133	R 658 659 660 662 663 664 677 780 783 972	RS1/10S102J
D 962		MA719-VH	R 666	RS1/10S393J
D 981		RB100AVH	R 667	RS1/10S155J
D 984		HZS9LC3	R 668 669 670 674 675 676 981	RD1/4PS471JL
L 501	Ferri-Inductor Inductor Ferri-Inductor	CTF-157	R 681	RD1/4PS221JL
L 502 601 602 604		LPSQ2R2K	R 682	RD1/4PS3R3JL
L 603		LAU220K	R 683	RS1/10S222J
L 701	Inductor	LPSQ2R2K	R 684	RS1/10S103J
TH 801	Thermistor	CCX1008	R 777 778 967	RS1/10S473J
IB 551 552		CWW1338	R 784	RS1/10S101J
X 501	Crystal Resonator	CSS1011	R 951	RS1/10S513J
X 601	Crystal Resonator	CSS1023	R 960	RD1/4PS3R3JL
X 602	Crystal Resonator	CSS1029	R 961	RD1/4PS823JL
VR 771	Semi-fixed 2.2kΩ(B)	VRMB6VS222	R 962	RS1/10S363J
BZ 601	Buzzer	CPV1011	R 963	RS1/10S684J
	FM/AM Tuner Unit	CWE1313	R 964	RD1/4PS474JL
	Connector Unit	CWX1698	R 969	RD1/4PS273JL
RESISTORS			R 971	RS1/10S104J
R 451 452 514 515 521 522 602 604 618 619		RS1/10S473J	R 975	RS1/10S473J
R 455 456 457 458 463 464 529 533 536 538		RS1/10S102J	R 976	RS1/10S103J
R 459 460 505 952 956		RS1/10S223J	R 977	RS1/10S105J
R 467 468 488 489 490 491 492 493 494 495		RS1/10S103J	R 982	RD1/4PS221JL
R 471 472 525 782		RS1/10S32J	R 983	RS1/10S393J
R 473 474		RD1/4PS153JL	R 984	RS1/10S473J
R 475 476		RS1/10S273J	R 999	RS1/10S0R0J
R 477 478		RD1/4PS331JL		CAPACITORS
R 483 484		RS1/10S0R0J		
R 485 486 487 566 567 568 569 629 633 966		RD1/4PS472JL	C 451 452 516	CEA4R7M35LL
R 503 508 509 512 516 530 627 632 636 637		RS1/10S472J	C 471 472 481 482 483 484 485 486 491 492	CEA100M16LL
R 504 511 513 534 535 601 603 680		RS1/10S222J	C 473 474 626	CCSQCH560J50
R 506 526		RS1/10S221J	C 475 951 963	CCH1149
R 507 531 665 974		RS1/10S103J	1000 μF/16V	CKSYB224K25
R 510		RS1/10S123J	C 487 488	

DEH-915RDSZRN, CXA-915RDSZRN

=====Circuit Symbol & No. Part Name=====

C 489 490		CKSQYB272K50
C 493 494 506 507 610 958		CKSQYB223K50
C 495 496		CKSQYB562K50
C 497 498 499 500 612 613		CCSQCH330J50
C 501 505 509 512 517 701		CCSQCH101J50
C 502 513 602 603 607 623 624 957 982		CKSQYB473K50
C 504 510 514 523 772 952 954 961		CKSQYB103K50
C 511		CKSQYB681K50
C 515		CFTNA474J50
C 518 519		CCSQCH120J50
C 520	4.7 μ F/16V	CCH1005
C 551 552 554 555 606 614 615 616 617 618		CKSQYB102K50
C 553 567 568 569 570 773		CEA100M16LL
C 556	3300 μ F/16V	CCH1150
C 557 558 601 609		CKSQYB104K25
C 559 560 561 562 563 564 565 566		COMA104J50
C 571 572 573 574		CCSQCH220J50
C 575		CEA4R7M35LL
C 604 605		CCSQCH150J50
C 608 953 971		CEA010M50LL
C 611		CKSYF105Z25
C 619 983		CKSQYB102K50
C 620		CKSQYB472K50
C 621	0.47 μ F/5.5V	CCL1014
C 622		CKSQYB473K50
C 625		CEA4R7M35LL
C 627		CKSQYB104K25
C 628		CKSQYB473K50
C 681		CEA010M50LL
C 771		CEAR47M50LL
C 774		CKDYB102K50
C 956		CEA010M50LL
C 962		CEAR22M50LL
C 964		CEA330M10LL
C 965		CEA220M6R3LL
C 966		CEA2R2M50LL
C 972		CEA470M10LL
C 973		CEA101M10LL
C 974		CEAS221M10
C 975		CEAS331M10
C 981		CEAS331M16

Unit Number : CWX1698
 Unit Name : Connector Unit

L 951	Coil	CTH1113
FU 901	Fuse 10A	CEK1136
C 991		CEAS471M16
C 992 993		CKPYF223Z25L

Unit Number :
 Unit Name : Detector P.C.Board

P 1 2	Photo Transistor	PT4800
-------	------------------	--------

Miscellaneous Parts List

M 1	Motor Unit(Spindle)	CXA5703
M 2	Motor Unit(Carriage)	CXA4649
M 3	Motor Unit(Loading)	CXA6456
	PU Unit	CGY1031

=====Circuit Symbol & No. Part Name=====

● CXA-915RDSZRN

Unit Number : CWX1698
 Unit Name : Key Board Unit

MISCELLANEOUS

IC 901		PD6122A
D 901 902		MA153-MC
D 903		MA3068M
L 901	Coil	LCTB150K3216
X 901		CSS1084

RESISTORS

R 901 902 903 908		RS1/8S222J
R 909 910		RS1/8S471J
R 911 912 913 914 915 916 917 918 919		RS1/10S471J
R 920		RS1/10S121J
R 922		RS1/8S0R0J

CAPACITORS

C 901 902 903 904		CKSQYB103K25
-------------------	--	--------------

Service Manual

ORDER NO.
CRZ1579

The chapter 1 of this Service Manual will not be reprinted. On your additional orders, we may supply only the chapter 2. For the chapter 1, please make copies and attach to the chapter 2 at your side if necessary.

MULTI-CD CONTROL FM/MW/LW TUNER DECK AMPLIFIER

DEH-915RDSzRN EW,X1B
DETACH GRILLE ASSY
CXA-915RDSzRN EW,X1B

- These models have been installed in RENAULT ESPACE, CLIO and 19 CABRIO.

Model	RENAULT Part No.
DEH-915RDSzRN	7700841007
CXA-915RDSzRN	7700841008

- See the service manual CX-540(CRT1574) for the CD mechanism description, disassembly and circuit description.
- The CD mechanism employed in this model is one of CX-540 series.

CHAPTER 2

CONTENTS

CHAPTER 2

1. BLOCK DIAGRAM	2-3
2. EXPLODED VIEW	2-5
3. CIRCUIT DIAGRAM AND PATTERN	
3.1 CD MECHANISM MODULE.....	2-14
3.2 TUNER AMP UNIT.....	2-20
3.3 KEY BOARD UNIT(CXA-915RDSzRN).....	2-25
3.4 FM/AM TUNER UNIT.....	2-29
3.5 CONNECTOR UNIT.....	2-33
4. PACKING METHOD	2-34

PIONEER ELECTRONIC CORPORATION

4-1, Meguro 1-Chome, Meguro-ku, Tokyo 153, Japan

PIONEER ELECTRONICS SERVICE INC. P.O.Box 1760, Long Beach, California 90801 U.S.A.

PIONEER ELECTRONICS OF CANADA, INC. 300 Allstate Parkway Markham, Ontario L3R 0P2 Canada

PIONEER ELECTRONIC [EUROPE] N.V. Haven 1087 Keetberglaan 1, 9120 Melsele, Belgium

PIONEER ELECTRONICS AUSTRALIA PTY.LTD. 178-184 Boundary Road, Braeside, Victoria 3195, Australia TEL:[03]580-9911

© PIONEER ELECTRONIC CORPORATION 1994

K-FFD.APR. 1994 Printed in Japan

DEH-915RDSZRN, CXA-915RDSZRN

● LCD(CAW1242)

SEGMENT

Fig.1

COMMON

Fig.2

1. BLOCK DIAGRAM

Fig.3

2. EXPLODED VIEW

● DEH-915RDSZRN(Parts List : Page 1-40)

Fig.4

● CXA-915RDSZRN(Parts List : Page 1-41)

Fig.5

● CD Mechanism Module(Parts List : Page 1-4)

Fig.6

● Waveforms

Note: 1. The encircled numbers denote measuring pointes in the circuit diagram.

2. Reference voltage
REFO: 2.5V

diagram.

0.5ms/div.
part passes

1ms/div.

5ms/div.
(FWD)0.5s/div.
(8cm)

3. CIRCUIT DIAGRAM AND PATTERN

3.1 CD MECHANISM MODULE

● Connection Diagram

A

B

C

D

3. CIRCUIT DIAGRAM AND PATTERN

3.1 CD MECHANISM MODULE

● Connection Diagram

A

PU UNIT(CGY1031)

CONTROL UNIT
CN1001DETECTOR
P.C.BOARD

DETECTOR P.C.BOARD

CONTROL UNIT
CN1801

CONTROL UNIT

IC. Q
ADJIC302
IC301
IC303IC1601
IC1602Q1601
Q1602
Q1603
IC1201IC1701
Q1001

Fig.7

● Circuit Diagram

Fig.8

3.2 TUNER AMP UNIT

● Circuit Diagram

TUNER AMP UNIT (CWX1697)

Fig.9

● Connection Diagram

Fig.10

3.3 KEY BOARD UNIT(CXA-915RDSZRN)

● Circuit Diagram

Fig.11

● Connection Diagram

A

3

c

D

Fig.12

3.4 FM/AM TUNER UNIT

● Circuit Diagram

NOTE :

- Symbol indicates a resistor.
- No differentiation is made between chip resistors and discrete resistors.

— Symbol indicates a capacitor.

No differentiation is made between chip capacitors and discrete capacitors.

Decimal points for resistor and capacitor fixed values are expressed as:
 $2.2 \rightarrow R022$
 $0.022 \rightarrow R022$

● Connection Diagram

Fig.14

3.5 CONNECTOR UNIT

- Circuit Diagram

Fig.15

- Connection Diagram

Fig.16

4. PACKING METHOD

4.1 DEH-915RDSZRN

Fig.17

- Parts List(DEH-915RDSZRN/EW)

Mark No.	Description	Part No.
1	Owner's Manual	CRD1741
2	Protector	CHP1619
3	Polyethylene Bag	CEG-162
4	Protector	CHP1620
5	Contain Box	CHL2456

1 Owner's Manual Language : English, French, Italian, German, Dutch, Spanish, Portuguese

● The DEH-915RDSZRN/X1B Parts List enumerates the parts which differ from those for the DEH-915RDSZRN/EW only. The parts other than those enumerated in the DEH-915RDSZRN/X1B Parts List are identical with those in the DEH-915RDSZRN/EW Parts List, to which you are requested to refer, accordingly.

Mark No.	Description	DEH-915RDSZRN/EW	DEH-915RDSZRN/X1B
		Part No.	Part No.
2	Protector	CHP1619	UHP-010
3	Polyethylene Bag	CEG-162	UEG-002
4	Protector	CHP1620	UHG-010
5	Contain Box	CHL2456	UHD-016

4.2 CXA-915RDSZRN

Fig.18

● Parts List(CXA-915RDSZRN/EW)		* Non Spare Part
Mark No.	Description	Part No.
1	Cover	CEG1086
2	Case	CNS2269
*	3 Cover	CEG1124
*	4 Paper Sheet	CHW1219
*	5 Partition	CHW1220
6	Contain Box	CHL2491

● The CXA-915RDSZRN/X1B Parts List enumerates the parts which differ from those for the CXA-915RDSZRN/EW only. The parts other than those enumerated in the CXA-915RDSZRN/X1B Parts List are identical with those in the CXA-915RDSZRN/EW Parts List, to which you are requested to refer, accordingly.

Mark No.	Description	CXA-915RDSZRN/EW	CXA-915RDSZRN/X1B
		Part No.	Part No.
*	4 Paper Sheet	CHW1219(X3)	UHW-001(X5)
*	5 Partition	CHW1220
6	Contain Box	CHL2491	UHD-015

Service Manual

ORDER NO.
CRT1574

CD MECHANISM MODULE

CX-540

- This service manual describes operation of the CD mechanism incorporated in models listed in the table below.
- When performing repairs use this manual together with the specific manual for model under repair.

Model	Service Manual	CD Mechanism Module	CD Mechanism Unit
DEH-605RDS/EW,X1B/EW	CRT1563	CXK2810	CXA6475
DEH-505SDK/GR			
DEH-505/EW,X1B/EW			
DEH-405SDK/GR			
DEH-505/UC	CRT1570	CXK2800	CXA5970
DEH-503/ES			
DEH-45/UC			
DEH-405/UC			
DEH-305/US			
DEH-303/ES			
DEH-205/UC			
DEH-203/ES			

CONTENTS

1. CIRCUIT DESCRIPTION.....	2
2. MECHANISM DESCRIPTION	16
3. DISASSEMBLY	19

1. CIRCUIT DESCRIPTION

1.1 PRE-AMPLIFIER STAGE (IC1001 UPC2571GS)

The optical signals are converted to voltage signals using an i/v amplifier inside the PU unit.

These voltage signals (A - F) are further processed by this pre-amp stage.

The pre-amplifier performs the following tasks

- > Automatic power control of the PU unit's laser diode.
- > Generation of an equalized RF signal from the photo-detector outputs (A - D).
- > Generation of a focus error signal from the photo-detector outputs (A - D).
- > Generation of a tracking error signal from the photo-detector outputs (E & F).
- > Generation of a tracking zero crossing signal from the photo-detector outputs (E & F).

This IC runs from a single voltage supply (+5V). The reference voltage for this IC, the PU unit, and all the servo circuitry is REFO. This is obtained from pin 19 of the pre-amp ; which in turn is derived from the output REFOUT of the servo LSI, IC1201, UPD63700GF. The voltages REFOUT and REFO should be at +2.5V DC with respect to GND. All measurements and observations should be made using REFO as the reference as this is a buffered output. Care should be taken not to inadvertently short REFO to GND.

Fig.1 : UPC2571GS BLOCK DIAGRAM

1) Automatic Power Control (APC)

The laser diode's junction voltage varies greatly with temperature ; causing large output variations in optical power. To avoid this, a monitor diode is used in a feedback circuit to keep the optical power constant. As two different manufacturer's laser diodes are used the LD current falls into two broad bands : approx. 40mA and approx. 60mA.

Fig.2 : APC CIRCUIT

2) RF Amplifier

This performs a simple summation of the photo-detector outputs A,B,C & D, amplifies, and equalizes to produce the RF signal at RFO. The RF eye pattern may be monitored here. The RFO OFFSET volume is used to ensure that the RFO waveform has the correct offset relative to the FOK threshold level inside the servo LSI UPD63700GF. The FOK signal is used in the focus close sequence, and during play to control the defect circuit inside the UPD63700GF.

The AC coupled RFO signal, RFI, is used by the UPD63700GF to generate the EFM signal which is used in turn by the DSP spindle CLV control sections.

For low frequency signals :

$$\text{VRFO} = (A+B+C+D) \times (R1018+R1019)/10k = (A+B+C+D) \times 6.22$$

The RFO waveform should have an amplitude of approx. 1.9Vpp, with its upper envelope at +1.1V DC w.r.t. REFO.

Fig.3 : RFO AMPLIFIER

3) Focus Error Amplifier

This produces a focus error signal used as the basis for the focus servo.

$$\text{VFEY} = ((A+C)-(B+D)) \times 5 \times (R1007/20k)/10k = \text{FEY} \times 6.23 \quad (\text{FEY} = \text{PU unit focus error})$$

The S-Curve at FEY should have an amplitude of approx. 1.9Vpp.

The second amplifier stage is also a low pass filter, $f_c=11\text{kHz}$, and has a bias volume adjustment. This adjustment is used to vary the reference bias level of the focus servo loop and is adjusted to obtain an optimum eye pattern at RFO.

Fig.4 : FOCUS ERROR AMPLIFIER

4) Tracking Error Amplifier

This produces the tracking error signal used in the tracking servo loop.

$$VTEY = (25 \times E) - (25 \times F \times 2 \times 10k / (T.BAL + 10k))$$

Normally, the sensitivity of E & F are the same and T.BAL=10k

$$\Rightarrow VTEY = 25 \times (E-F)$$

If, however, the E and F sensitivities are different the T.BAL volume can be used to cancel out the unbalance. The offset adjustment TE OFFSET is to cancel any DC offsets from the photo-detectors or op-amps to ensure the reference bias for the servo loop is at zero. Maladjustment of either of these pre-sets will result in poor tracking performance and susceptibility to skipping.

For a typical unit, the TEY level should be approx. 1.8 Vpp.

Fig.5 : TRACKING ERROR AMPLIFIER

5) Tracking Zero Crossing Amplifier

TEC1 is basically an amplified, AC coupled, version of the TEY waveform. It is used by the servo LSI IC1201, UPD63700GF to locate the zero crossing points of the TEY signal to :

- 1) Determine how many tracks have been crossed during track jumping or a carriage move operation.
 - 2) Determine in which direction the lens is moving when attempting to close tracking. This is used in the "tracking brake" circuit described later.

For signals in the range 500Hz - 5kHz:

$$VTEC1 = R1005/R1006 \times (E-F) = 45.5 \times (E-F)$$

Typically TEC1 is around 4.2Vpp, this means that the TEC1 signal level may be greater than the saturation limit of the op-amp and the signal will clip. However, since the servo LSI only uses the zero-crossing points, this is not critical.

Fig.6 : TRACKING ZERO CROSSING AMPLIFIER

1.2 SERVO STAGE (UPD63700GF)

All the servo equalization & sequencing, such as focus closing, track jumping, carriage moving etc. are performed in this LSI, as well as all the DSP functions : data decoding, error protection, interpolation etc. The signals FE & TE are digitized and processed by the servo block to produce the focus, tracking & carriage drive signals, in a PWM format.

The RFI signal is converted to the EFM signal which is decoded by the DSP block to produce an audio signal ; during this process, a spindle servo error signal is also generated and used by the servo block to produce a spindle drive signal, again in PWM form.

The PWM waveforms are filtered, to remove the PWM carrier, amplified by the driver IC1301 PA3026, and output to the corresponding actuators.

1) Focus Servo System

The main focus equalization takes place inside the UPD63700GF (figure 7). The equalizer response can be measured between FEX and FIN and has the shape shown in figure 8.

Fig.7 : FOCUS SERVO BLOCK DIAGRAM

Fig.8 : FOCUS EQUALIZER

In order to smoothly close focus the lens must first be within approx. $5\mu\text{m}$ of the "just focused" position. This position is achieved by a focus search sequence. The lens is moved up and down using a triangular wave search voltage while the spindle motor is kicked and kept rotating at an appropriate speed. The servo LSI monitors the FE and RFO signals and, at an appropriate point, automatically closes focus.

The conditions for focus close are :

- 1) The lens is moving from a far to a near position relative to the disc,
- 2) FOK = HIGH (5V),
- 3) FZD (IC internal signal) was latched high and
- 4) FE = 0 (w.r.t. REFO).

When the focus servo closes, the servo LSI's serial data

output port, XSO, will show a high-low transition. This is received by the microcomputer as an indication that the servo loop was closed and after about 25mS it begins monitoring the FOK output, via a LPF, to verify that focus is still closed ; in the event of FOK becoming low for an appreciable time, the microcomputer will take appropriate action.

The various signal levels which contribute to focus close are shown in figure 9, which shows the case where focus close has been inhibited.

In TEST MODE, using FOCUS CLOSE MODE 1, conditions 2 & 3 can be inhibited to allow the S-Curve, focus search voltage and the actual lens movement to be observed at ease.

Fig.9 : FOCUS CLOSING SEQUENCE

a) FOK CIRCUIT

The FOK circuit inside the servo LSI compares the lower envelope of the RFO signal with a threshold level fixed by the microcomputer. Should the envelope level fall below this FOK level then FOK becomes high. This is used during focus close as stated and also during play to control a defect circuit, which switches the focus &

tracking servos into a hold mode should the RFO envelope become disrupted by dirt, grease etc, thus increasing the player's defect response (figure 10). The FOK threshold is approx. +920mV w.r.t. REFO. It is for this reason that the upper envelope should be adjusted to +1.1V DC w.r.t. REFO.

Fig.10 : DEFECT CIRCUIT

b) FZD CIRCUIT

The FZD circuit inside the servo IC compares the absolute value of the FE signal to a threshold value and outputs a high/low signal which is then used in the focus close sequence as stated.

At power on, the microcomputer switches the laser diode off and reads the value of the FE bias via the servo LSI's A/D port. The FZD threshold is set 200mV above this bias level.

Fig.11 : FZD CIRCUIT

2) Tracking Servo System

The main tracking equalization takes place inside the UPD63700GF (figure 12). The equalizer response can be measured between TEX and TIN and will have the shape shown in figure 13.

Fig.12 : TRACKING SERVO BLOCK DIAGRAM

Fig.13 : TRACKING EQUALIZER

a) Track Jumping

Track jumping is performed automatically by the servo LSI upon receipt of the appropriate command from the microcomputer. The present microcomputer is programmed to use 1,4,10 & 32 track jump commands to achieve searching. The 32 track jump command may be used in pairs (64 tracks) or triplets (100 track) as required. In TEST MODE the 1,4,10,32 & 100 track jump and carriage move sequences may be observed by selecting the appropriate mode.

Note that the number of tracks jumped is controlled by setting an internal counter to half the total value and then counting this down using the zero crossing edges of TEC1. Once the counter is at zero, a brake pulse of

fixed duration is output to bring the lens to a halt; allowing tracking to be closed and normal play to continue.

For a fixed period of time after a multi-track jump has been performed, a "tracking brake" circuit is activated in conjunction with a "gain-up" equalizer to ensure that the servo achieves stabilization before entering normal play.

Manual track search, in normal mode, uses a group of single track jumps to achieve FWD/REV at approx. ten times normal play speed.

The figures 14 & 15 show the timing charts for the single and multiple jump commands.

Fig.14 : SINGLE TRACK JUMP

Fig.15 : MULTI TRACK JUMP

b) Tracking Brake Circuit (Figure 16)

This relies on determining which direction the lens is moving and only outputting the portion of the drive waveform which acts to oppose this motion. Direction

of motion is deduced from TEC1 and the MIRR signal and knowledge of their phase relation.

Note : Equalizer output assumed to have same phase as TEC1.

Fig.16 : TRACKING BRAKE CIRCUIT

c) MIRROR Circuit

The MIRR circuit indicates if the laser beam is on or off track.

MIRR = 'H' => off track, MIRR = 'L' => on track.

MIRR is generated by detecting the upper and lower envelopes of the RFO waveform and producing a difference signal which is then compared with a peak-held version of itself to determine if the envelope size has dropped below a certain percentage.

If so, this is assumed to be due to the beam going off-track ; in practice dirt on the disc can also give the same effect (see figure 17).

Fig.17 : MIRROR CIRCUIT & SIGNAL DIAGRAM

3) Carriage Servo System

The carriage servo system takes its input from the low frequency component of the tracking equalizer output. This is amplified and equalized, and the output fed to the carriage motor via the PWM converter, LPF and driver IC. The gain of the equalizer is set so that when the lens is offset from its center by a set amount the voltage at the carriage motor is enough to overcome friction and move the carriage forward.

Because the carriage motor will only begin moving when the applied voltage is great enough to overcome friction the drive voltage is cut-off inside the servo LSI until it reaches an appropriate level ; thus saving on wasted power dissipation.

Due to eccentricity of the disc etc. the threshold level may be crossed several times before the carriage assembly actually moves. This can result in a series of pulses being applied to the carriage motor.

Fig.18 : CARRIAGE SERVO CIRCUIT

Fig.19 : CARRIAGE WAVEFORM

4) Spindle Servo

The spindle servo has a number of different modes :

- (i) Kick : Used at set-up to bring the spindle up to speed from stand-still.
- (ii) Offset : This is used i) At set-up, after spindle kick and before AGC has finished.
ii) During play if focus is suddenly disrupted.
- (iii) Adaptive Servo : This is the CLV mode which ensures that the linear velocity of the disc as seen by the laser spot is kept constant. During play, a timing signal is extracted from the EFM signal and used to generate speed and phase error signals. These error signals are summed and fed into a servo equalizer to produce a drive signal via the PWM converter.
- (iv) Brake : This is used to bring the disc to a stop quickly, for ejection or when CD source is deselected or for any other reason. The servo LSI puts out a brake level and monitors the EFM signal. When the longest pattern in the EFM signal is longer than a fixed amount an internal flag is set. By monitoring this flag the microcomputer can judge when the disc has stopped and proceed to eject etc. If this flag is not set within a certain time limit the servo is switched to STOP mode and eject is implemented after a wait period.

- (v) Stop : This occurs at power on or during disc eject. The spindle motor voltage is zero.
- (vi) Rough : This is used in normal mode to control the linear velocity of the disc when the carriage is being moved for fast access. A speed signal is deduced from the EFM waveform and input to the spindle equalizer. This mode should be used in TEST MODE to perform the grating adjustment.

a) EFM Comparator

This circuit 'squares' up the analog RF signal into a digital EFM signal. In order to ensure minimum errors it is necessary to use a feedback circuit to match the DC level of the threshold to the center of the RF waveform. This circuit (shown in the spindle servo block diagram) uses the fact that the EFM signal should have no DC component. By feeding back the EFM signal's DC level the threshold level changes until the DC level is zero and the threshold, by definition, is at the exact center of the RFI waveform. The filtering in the feedback has been adjusted to ensure minimum error.

Fig.20 : SPINDLE CIRCUIT

6) Power Supply & Loading Motor

Figure 23 shows the block diagram of the power supply and loading motor.

The CD module receives VD (9V) and splits this up into BVD (8.3V), VM (7.6V), and V1 (7.0V) which supply the 4ch servo driver, loading motor and 5V regulator respectively. VD is also used directly by the disc detection LED's. The 4ch driver and laser diode are enabled by the CONT line from the microcomputer. The 5V supply to the servo LSI, pre-amp and audio circuits is enabled by the CD5VON line. The loading motor has no separate enabling input ; the control lines LOAD and EJ serve the same purpose.

Fig.23 : POWER SUPPLY & LOADING MOTOR

2. MECHANISM DESCRIPTION

● Disc Loading

- There are two photo transistors in front and behind the rubber roller that convey the disc, and two corresponding LEDs mounted on the unit pcb. (When the LEDs light, the photo transistor voltage is L.)
- When the disc is inserted to a point in front of the rubber rollers, a H voltage is recorded on the photo transistor in the front section(P1) and the loading motor starts.
- The motor drive is transmitted via the gears, the rubber rollers revolve, and the disc is conveyed. The rubber rollers are held on the tip of the loading arm by the strength of the loading arm spring, and the guide arm is in the raised position. This gives the guide arm and rubber roller a suitable adhesive strength to push forward the disc which is positioned between them.
- The clamper arm distinguishes the size of the disc and has a centering mechanism which clamps the disc in the center of the spindle motor.

The centering arm and centering lever are a single unit on top of the clamper arm, which keeps the fulcrum movement centered.

Centering pins and lock arms are attached to the tips of the centering arm.

The centering pins are positioned so that when an 8cm disc is positioned above the spindle motor it's external edge touches the pins. Lock arms revolve around the centering pins. For an 8cm disc it is locked in place by the clamper arms. For a 12cm disc, the lock is released and moves according to the broken line in figure 25.

The position of the detect arm which is mounted on the centering arm at the bottom right of the figure differs for 8cm and 12cm discs. When a disc is positioned above the spindle motor the detect lever, which moves in a clockwise direction on the outside edge, moves to the lower section of the figure.

Fig.24

Fig.25

● Clamp Operation

- 1.The rack gear in contact with the detect lever is engaged with the gear driven by the loading motor, thereby moving the L arm in the arrow direction. The clamper arm, which had been raised by the L arm, moves down and clamps the disc.

The lock lever which interlocks with the L arm moves the loading arm.

As a result, the rubber roller is pushed down, leaving the disc. At the same time, the guide arm moves down, too. At the position where the lock lever turns the clamp switch on, loading comes to an end.

Fig.26

● Mechanism Lock

- 1.In the eject condition two lock arms are positioned in the frame hole and the front side of the floating section is locked in both vertical and horizontal directions.

The L arm moves the rotating lock lever to the left. The mechanical lock arms L and R move in the directions designated by the arrows and the floating section is released from the frame.

Fig.27

● Eject

1.The eject mechanism operates by reversing the rotation which takes place when the loading motor loads. The L arm moves and operates the mechanical lock, the clamp is released, the roller is applied, and the disc is conveyed. In the case of a 12cm disc the loading motor stops at the position at which the photo transistor lights at the rear of the rubber roller section.

However, in the case of an 8cm disc, motor revolution stops after a fixed period of time. In this process the disc type is recognized during play, by the voltage of the photo transistor(P1) located in front of the rubber rollers.

3. DISASSEMBLY

● How to Remove the Dampers

(Fig.28)

1. While keeping the CX-540 powered on, insert a disc and put it into play mode (with the arm unit lowered).
2. Power off the CX-540 while in play mode.
3. Unplug the connector and remove the CX-540.

Fig.28

(Fig.29)

4. Unfasten the four screws marked with arrows.
5. Unfasten the two screws A and remove the frame.

6. Unfasten the two screws B and remove both damper and holder at the two locations.

Fig.29

(Fig.30)

7. Remove the frame unit.
8. Unfasten the two screws and remove both damper and holder at the two locations.

Fig.30

● How to Remove the Spindle Motor

(Fig.31)

1. Remove spring A as marked with an arrow.
2. Remove springs B and C and the arm unit.
3. Remove spring D and the lever.

4. Turn the support wheel so that the screw head becomes visible through the hole.
5. Unfasten the two screws and remove the spindle motor.

Fig.31

● How to Remove the Loading Motor

(Fig.32)

1. Remove the washer and the arm.
2. Remove the spring.

Fig.32

(Fig.33)

3. Unfasten the two screws and remove the bracket unit.

Fig.33

(Fig.34)

4. Unfasten screw C and remove both gear unit and gear.
5. Unfasten the two screws D and remove the loading motor.

Fig.34

● How to Remove the PU Unit and the Carriage

Motor

(Fig.35)

1. Latch spring E as marked with an arrow in the illustration.
2. Attach a short pin to protect the PU unit.
3. Unplug the connector.
4. Unfasten the screw and remove spring F.
5. Remove the PU unit.

Fig.35

(Fig.36)

6. Unfasten screw E and remove the holder, belt and screw unit.
7. Unfasten the two screws F and remove the carriage motor.

Fig.36