COMS 512 Homework 0

Boudhayan Banerjee

January 27, 2016

- 1. As p is a propositional variable, p can be either True or False. We denote True with tt and False with ff.
 - a) $tt \to p$ If p = tt then $tt \to p \equiv tt$, If p = ff then $tt \to p \equiv ff$.
 - b) $p \to tt$ If p = tt then $p \to tt \equiv tt$, If p = ff then $p \to tt \equiv tt$.
 - c) $ff \rightarrow p$ If p = tt then $ff \rightarrow p \equiv tt$, If p = ff then $ff \rightarrow p \equiv tt$.
 - d) $p \to ff$ If p = tt then $p \to ff \equiv ff$, If p = ff then $p \to ff \equiv tt$.
- 2. We can prove the given expression is a tautology by constructing the truth table of the premises.

Α	В	С	A -> B	B -> C	A -> C	(A -> B) ^ (B -> C)	[(A -> B) ^ (B -> C)]->(A -> C
tt	tt	tt	tt	tt	tt	tt	tt
tt	tt	ff	tt	ff	ff	ff	tt
tt	ff	tt	ff	tt	tt	ff	tt
tt	ff	ff	ff	tt	ff	ff	tt
ff	tt	tt	tt	tt	tt	tt	tt
ff	tt	ff	tt	ff	tt	ff	tt
ff	ff	tt	tt	tt	tt	tt	tt
ff	ff	ff	tt	tt	tt	tt	tt

First we create the truth table for $A \to B$, $B \to C$ and $A \to C$. Then we find the truth table for $(A \to B) \land (B \to C)$. Finally we find the truth table for the given expression. As all the

term in the given expression turn out to be True, we can conclude that the expression is a tautology.

3. Let us consider the following Kripke Structure, where $S = \{s_0, s_1, s_2, s_3, s_4\}, S = \{s_0\}$ is the initial state, the transition relation,

$$R = \{(s_0, s_1), (s_0, s_2), (s_1, s_2), (s_1, s_3), (s_2, s_1), (s_2, s_3), (s_3, s_1), (s_3, s_4), (s_4, s_3)\}.$$

Lets take $X = \{s_0, s_1\}$. The PreImage function of X will be $PreImage(X, R) = \{s_0, s_2, s_3\}$. Next we need to find the PostImage function of this PreImage set. The PostImage function will be $PostImage(\{s_0, s_2, s_3\}, R) = \{s_1, s_2, s_3, s_4\}$.

We can see that $\{s_0, s_1\} \not\subseteq \{s_1, s_2, s_3, s_4\}$.i.e $X \not\subseteq PostImage(\{s_0, s_2, s_3\}, R)$. Therefore from this counter-example, we can conclude that $X \not\subseteq PostImage(Preimage(X, R), R)$.

4. By the definition of Kripke structure we know that every state of the Kripke structure must have at least one outgoing edge.

Now if we consider a set of states $X \subseteq S$ and try to find their PostImage set Y, then every state from X will have at least one state in Y that it can reach in one step.

i.e. if
$$s \subseteq X$$
 then $\exists s' \in Y$ s.t $(s, s') \in R$.

Hence every state in Y has at least one predecessor state in X.therefore if we construct the Preimage set of Y it will cover all those states that belong to set X.i.e. $X \subseteq PreImage(Y, R)$.

Therefore $X \subseteq PreImage(PostImage(X, R), R)$.