Octal 3-State Noninverting Buffer/Line Driver/Line Receiver

These octal buffers and line drivers and designed specifically to improve both the performance and density of three-state memory address drivers, clock drivers, and busoriented receivers and transmitters.

This devise features high fan-out, improved fan-in, and 400 mV noise margin.

It can be used to drive terminated lines down to 133 ohms.

- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- P-N-P Inputs Reduce D-C Loading
- Hysteresis at Inputs Improves Noise Margins

LOGIC DIAGRAM

PIN $20=V_{CC}$ PIN 10 = GND

PIN ASSIGNMENT

ENABLE A [1●	36 ⊒ v _{CC}
AI 🛚 2	19 ENABLE B
YR ≛ 🗓 3	IS YAI
A2 🛚 4	17 [‡] B4
YR3 🛚 5	16
A3 🛚 6	15 B3
YB2 🛚 7	14] YA3
A± [R	13 3 82
VRi 🛚 9	12 YA4
GNID □ 10	ц þ ві

FUNCTION TABLE

Inputs	Outputs	
Enable A, Enable B	A,B	YA,YB
L	L	L
L	Н	Н
Н	X	Z

X=don't care Z = high impedance

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	7.0	V
$V_{\rm IN}$	Input Voltage	7.0	V
V _{OUT}	Output Voltage	5.5	V
Tstg	Storage Temperature Range	-65 to +150	°C

^{*}Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Max	Unit
V_{CC}	Supply Voltage	4.75	5.25	V
V_{IH}	High Level Input Voltage	2.0		V
$V_{\rm IL}$	Low Level Input Voltage		0.8	V
I_{OH}	High Level Output Current		-15	mA
I_{OL}	Low Level Output Current		24	mA
T_{A}	Ambient Temperature Range	0	+70	°C

DC ELECTRICAL CHARACTERISTICS over full operating conditions

				Guaranteed Limit		
Symbol	Para	meter	Test Conditions	Min	Max	Unit
V_{IK}	Input Clamp Vol	ltage	$V_{CC} = min, I_{IN} = -18 \text{ mA}$		-1.5	V
V_{OH}	High Level Outp	out Voltage	$V_{\rm CC}$ = min, $I_{\rm OH}$ = -1.0 mA	2.7		V
			$V_{\rm CC}$ = min, $I_{\rm OH}$ = -3.0 mA	2.4		
			$V_{\rm CC} = \min$, $I_{\rm OH} = -15$ mA	2.0		
V_{OL}	Low Level Outp	ut Voltage	$V_{CC} = min, I_{OL} = 12 \text{ mA}$		0.4	V
			$V_{CC} = min, I_{OL} = 24 \text{ mA}$		0.5	
V _{T+} - V _{T-}	Hysteresis		$V_{CC} = min$	0.2		V
I_{OZH}	Output Off Curre	ent HIGH	$V_{CC} = max$, $V_{OUT} = 2.7 \text{ V}$		20	μΑ
I_{OZL}	Output Off Curre	ent LOW	$V_{CC} = \text{max}, V_{OUT} = 0.4 \text{ V}$		-20	μΑ
I_{IH}	High Level Inpu	t Current	$V_{CC} = \text{max}, V_{IN} = 2.7 \text{ V}$		20	μΑ
			$V_{CC} = \text{max}, V_{IN} = 7.0 \text{ V}$		0.1	mA
$I_{\rm IL}$	Low Level Input Current		$V_{CC} = \text{max}, V_{IN} = 0.4 \text{ V}$		-0.2	mA
I_{O}	Output Short Circuit Current		$V_{CC} = max, V_O = 0 V$ (Note 1)	-40	-225	mA
I_{CC}	Supply	Outputs High	$V_{CC} = max$		27	mA
	Current	Outputs Low	Outputs open		46	
		All outputs disabled			54	

note 1: Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second

AC ELECTRICAL CHARACTERISTICS ($T_A = 25$ °C, $V_{CC} = 5.0$ V, $t_r = 15$ ns,

 $t_{\rm f} = 6.0 \; {\rm ns}$

Symbol	Parameter Test Condition Min		Max	Unit	
t _{PLH}	Propagation Delay, Data to Output			18	ns
t _{PHL}	Propagation Delay, Data to Output	$C_L = 45 \text{ pF},$ $R_L = 667 \Omega$		18	ns
t_{PZH}	Output Enable Time			23	ns
t_{PZL}	Output Enable Time			30	ns
t_{PHZ}	Output Disable Time	$C_L = 5 pF$		18	ns
t_{PLZ}	Output Disable Time	$R_L = 667 \Omega$		25	ns

 t_{PZL} - S1 closed, S2 opened t_{PZH} - S1 opened, S2 closed t_{PLZ} , t_{PHZ} - S1 and S2 closed

Figure 1. Switching Waveforms (See Figure 3)

NOTES A. C_L includes probe and jig capacitance. B. All diodes are 1N916 or 1N3064.

Figure 3. Test Circuit

NOTES A. C_L includes probe and jig capacitance. B. All diodes are 1N916 or 1N3064.

Figure 4. Test Circuit

EXPANDED LOGIC DIAGRAM

