COURS DE MM4

3 avril 2015

Sommaire

Ι	Algèbre						
	Rappels, espaces vectoriels						
1	Formes quadratiques						
	1 Formes linéaires, espace dual	5					
	Formes bilinéaires	10					
	3 Formes quadratiques	17					
2	Espaces euclidiens						
	1 Produit scalaire, normes euclidiennes	21					
	2 Projections orthogonales	24					
	3 Endomorphismes des espaces euclidiens	26					
	4 Isométries des espaces euclidiens	30					
II	Analyse	34					
3	Intégrale de RIEMANN	35					
	1 Intégrale de Riemann sur $[a,b]$	35					
	2 Intégrale double de fonctions à deux variables						
4	Suites et séries de fonctions	48					
	1 Suites de fonctions	48					
	2 Séries de fonctions	55					
5	Séries entières						

Première partie

Algèbre

Table des matières

	Ita	ippeis,	espaces vectoriels 2				
1	For	Formes quadratiques 5					
	1	Form	es linéaires, espace dual				
		1.1	Formes linéaires				
		1.2	Espace dual				
		1.3	Applications transposées				
		1.4	Représentation matricielle				
	2	Form	es bilinéaires				
		2.1	Définition				
		2.2	Matrice d'une forme bilinéaire				
		2.3	Formes quadratiques				
		2.4	Formes dégénérées				
		2.5	Coniques et quadriques				
	3	Form	es quadratiques				
		3.1	Définitions et propriétés				
		3.2	Coniques et quadriques				
2	$\mathbf{E}\mathbf{s}_{\mathbf{j}}$	Espaces euclidiens 21					
	1	Produ	uit scalaire, normes euclidiennes				
		1.1	Inégalité de Cauchy-Schwarz				
	2	Proje	ctions orthogonales				
		2.1	Définition				
		2.2	Procédé d'orthonormalisation de Gram-Schmidt 25				
	3	Endo	morphismes des espaces euclidiens				
		3.1	Endomorphisme adjoint				
		3.2	Intermède				
	4	Isomé	étries des espaces euclidiens				
		4.1	Isométries en dimension 2				
		4.2	Isométries de l'espace				

Rappels, espaces vectoriels

Soit E un espace vectoriel sur un corps K. La structure d'espace vectoriel définit l'addition d'éléments de E et la multiplication par un scalaire d'un élément de E.

Soit $(v_1, \ldots, v_n) \in E^n$. $z \in E$ est une combinaison linéaire de (v_1, \ldots, v_n) s'il existe $(\lambda_1, \ldots, \lambda_n) \in \mathbf{K}^n$ tel que

$$z = \sum_{i=1}^{n} \lambda_i \cdot v_i.$$

Définition 0.2

Soit $(v_1, \ldots, v_n) \in E^n$. Cette famille est dite *libre* (ou linéairement indépendante) si

$$\sum_{i=1}^{n} \lambda_i \cdot v_i = 0 \implies (\lambda_1, \dots, \lambda_n) = (0, 0, \dots, 0).$$

REMARQUE. Dans une famille libre, aucun vecteur n'est nul. En effet, si

$$v_1 = 0$$

alors $(1,0,\ldots,0)$ est une combinaison linéaire où les facteurs sont non tous nuls donnant

F est un sous-espace vectoriel de E si :

- 1. $F \subset E$; 2. $0_E \in F$; 3. stabilité par multiplication :

$$\forall v \in F, \forall \lambda \in \mathbf{K}, \ \lambda \cdot v \in F ;$$

4. stabilité par addition

$$\forall v_1, v_2 \in F, \ v_1 + v_2 \in F.$$

EXEMPLE. Avec $E = \mathbb{R}^2$, le sous-ensemble

$$F = \left\{ (x, y) \,\middle|\, y = x^2 \right\}$$

n'est pas un sous-espace vectoriel. En effet, si $v=(x,y)\in F$ est le vecteur non nul alors pour $\lambda \in \mathbf{K} \setminus \{0,1\}$ on a pas

$$\lambda \cdot y = \lambda^2 \cdot x^2.$$

Définition 0.4

Soient F un sous-espace vectoriel de E et $(v_1,\ldots,v_n)\in F^n$. Cette famille est dite génératrice de F si pour tout $v \in F$ il existe $(\lambda_1, \dots, \lambda_n)$ tels que

$$v = \sum_{i=1}^{n} \lambda_i \cdot v_i.$$

Soient F un sous-espace vectoriel de E et $B=(v_1,\ldots,v_n)\in F^n$. B est une base de Fsi B est libre et génératrice de F.

Proposition 0.6

Soit F un sous-espace vectoriel de E et $B=(v_1,\ldots,v_n)$ une base de F. Pour tout vecteur $v \in F$ il existe une unique collection $(\lambda_1, \dots, \lambda_n) \in \mathbf{K}^n$ tel que

$$v = \sum_{i=1}^{n} \lambda_i \cdot v_i.$$

Remarque. Si on se donne une base $B = (v_1, \ldots, v_n)$ d'un sous-espace vectoriel F de E alors on peut écrire une bijection entre F et \mathbf{K}^n :

$$\phi: v = \sum_{i=1}^{n} \lambda_i \cdot v_i \mapsto (\lambda_1, \dots, \lambda_n).$$

Soit F un sous-espace vectoriel de E. Si $B = (v_1, \ldots, v_n)$ et $B' = (w_1, \ldots, w_l)$ sont deux bases de F alors n = l.

Définition 0.8

Soit F un sous-espace vectoriel de E. La dimension de F est le nombre d'éléments de vecteurs d'une base de F. On note ce nombre dim F.

Définition 0.9

Soient E, F deux K-espaces vectoriels et $f: E \to F$. On dit que f est une application

- f(λ · v) = λ · f(v) pour tous λ ∈ **K** et v ∈ E;
 f(v₁ + v₂) = f(v₁) + f(v₂) pour tous v₁, v₂ ∈ E.

Définition 0.10

Soit $f: E \to F$ une application linéaire.

- 1. $\operatorname{Ker}(f)=\{v\in E\,|\, f(v)=0_F\}$ est le noyau de f; 2. $\operatorname{Im}(f)=\{f(v)\,|\, v\in E\}$ est l'image de f.

Théorème 0.11

Soit $f:E\to F$ une application linéaire.

$$\dim E = \dim \operatorname{Ker}(f) + \dim \operatorname{Im}(f).$$

Soit $f: E \to F$ avec dim E = n, dim F = m. On identifie f à une matrice $A \in \mathcal{M}_{m,n}(\mathbf{K})$. Soit $B = (e_1, \ldots, e_n)$ une base de E et soit $B' = (f_1, \ldots, f_m)$ une base de F. Pour tout $v \in F$ il existe une combinaison unique $(\lambda_1, \ldots, \lambda_m) \in \mathbf{K}^m$ telle que

$$v = \sum_{i=1}^{n} \lambda_i f_i.$$

On pose

$$(v)_{B'} = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_m \end{pmatrix} \in \mathbf{K}^m.$$

On définit

$$A = ((f(e_1))_{B'} \quad (f(e_2))_{B'} \quad \dots \quad (f(e_n))_{B'}) \in \mathcal{M}_{m,n}(\mathbf{K})$$

comme étant la matrice de f dans les bases B, B'.

Chapitre 1

Formes quadratiques

1 FORMES LINÉAIRES, ESPACE DUAL

1.1 Formes linéaires

Soit E un **K**-espace vectoriel.

Définition 1.1

Une forme linéaire sur E est une application linéaire de E dans \mathbf{K} .

Comme Im(f) est un sous-espace vectoriel de \mathbf{K} , sa dimension est soit nulle soit égale à un. Ainsi, Im(f) est soit :

- réduit à $\{0\}$;
- égal à K.

Proposition 1.2

Si dim $E=n<\infty$ et si f est une forme linéaire non nulle sur E alors

$$\dim \operatorname{Ker}(f) = n - 1.$$

DÉMONSTRATION

On a par le théorème du rang :

$$n = \dim E = \dim \operatorname{Ker}(f) + \dim \operatorname{Im}(f) = \dim \operatorname{Ker}(f) + 1.$$

EXEMPLE. Soit $E = \mathcal{M}_{m,1}(\mathbf{K})$. Pour $v \in E$, on a

$$v = \begin{pmatrix} v_1 \\ \vdots \\ v_m \end{pmatrix}$$
.

Soit $u \in \mathcal{M}_{m,1}(\mathbf{K})$, on considère l'application :

$$f_u(v) = {}^t u \cdot v \in \mathbf{K}.$$

REMARQUE. Soit E un **K**-espace vectoriel de dimension finie muni d'une base (e_1, \ldots, e_n) et soit $f: E \to \mathbf{K}$ une forme linéaire. On pose le vecteur $u = \begin{pmatrix} u_1 & \ldots & u_n \end{pmatrix} \in E$ définit par :

$$\forall i \leq n, \ u_i = f(e_i).$$

Soit $v \in E$, on a:

$$f(v) = f\left(\sum_{i=1}^{n} v_i e_i\right)$$
$$f(v) = \sum_{i=1}^{n} v_i f(e_i)$$
$$f(v) = \sum_{i=1}^{n} v_i u_i$$
$$f(v) = {}^tu \cdot v.$$

1.2 Espace dual

DÉFINITION 1.3

Soit E un **K**-espace vectoriel. Le dual de E, noté E^* est l'ensemble des formes linéaires sur E.

 E^* est muni d'une addition : soient $f_1, f_2 \in E^*$:

$$\forall x \in E, \ (f_1 + f_2)(x) = f_1(x) + f_2(x).$$

Mais aussi d'une multiplication par un scalaire : soient $f \in E^*, \lambda \in \mathbf{K}$:

$$\forall x \in E, \ (\lambda f)(x) = \lambda \cdot f(x).$$

 E^* a donc une structure de **K**-espace vectoriel.

DÉFINITION 1.4 (Base duale)

Soit E un **K**-espace vectoriel et soit (e_1, \ldots, e_n) une base de E.

Pour tout $v \in E$, il existe une unique collection $(\lambda_1, \ldots, \lambda_n) \in \mathbf{K}^n$. On définit une collection de formes linéaires (e_1^*, \ldots, e_n^*) où pour tout $i \leq n$:

$$e_i^*(v) = \lambda_i$$
.

Proposition 1.5

Soit E un **K**-espace vectoriel de dimension finie muni d'une base (e_1, \ldots, e_n) . La base duale, (e_1^*, \ldots, e_n^*) , est une base du dual.

$$\dim E^* = \dim E.$$

DÉMONSTRATION

On montre que (e_1^*, \dots, e_n^*) est génératrice et libre.

1. Soient $x^* \in E^*$ et $x \in E$.

$$x^{*}(x) = x^{*} \left(\sum_{i=1}^{n} x_{i} e_{i} \right)$$

$$x^{*}(x) = \sum_{i=1}^{n} x_{i} x^{*}(e_{i})$$

$$x^{*}(x) = \sum_{i=1}^{n} x^{*}(e_{i}) \cdot e_{i}^{*}(x)$$

$$x^{*}(x) = \left(\sum_{i=1}^{n} x^{*}(e_{i}) e_{i}^{*} \right) (x).$$

Ainsi, toute forme linéaire s'écrit comme combinaison linéaire de (e_1^*, \ldots, e_n^*) .

2. Soit $(\lambda_1, \ldots, \lambda_n) \in \mathbf{K}^n$ tel que

$$\sum_{i=1}^{n} \lambda_i e_i^* = 0.$$

C'est-à-dire:

$$\forall x \in E, \ \sum_{i=1}^{n} \lambda_i e_i^*(x) = 0.$$

On choisit n vecteurs $x \neq 0$ particuliers :

$$e_i^*(e_j) = \delta_{ij}.$$

Ainsi, pour e_j fixé :

$$\sum_{i=1}^{n} \lambda_i e_i^*(e_j) = \lambda_j = 0.$$

Donc $(\lambda_1, \ldots, \lambda_n) = 0_{\mathbf{K}^n}$.

Proposition 1.6

Soit E un \mathbf{K} -espace vectoriel et soit f une forme linéaire sur E non nulle. Soit $H = \mathrm{Ker}(f)$. Si g est une forme linéaire telle que $H \subset \mathrm{Ker}(g)$ alors il existe $\lambda \in \mathbf{K}$ tel que $g = \lambda f$.

DÉMONSTRATION

Si $f \neq 0$ alors il existe $x_0 \in E$ tel que $f(x_0) \neq 0$. Soit $x \in E$,

$$x = x - \frac{f(x)}{f(x_0)}x_0 + \frac{f(x)}{f(x_0)}x_0.$$

On a alors

$$f\left(x - \frac{f(x)}{f(x_0)}x_0\right) = 0$$

et donc

$$g(x) = \frac{f(x)}{f(x_0)}g(x_0)$$

et donc $\lambda = g(x_0)/f(x_0)$ convient.

Lemme 1.7

Soit E un **K**-espace vectoriel de dimension finie égale à n. Pour tout $x \in E$ non nul il existe $x^* \in E^*$ tel que $x^*(x) \neq 0$.

DÉMONSTRATION

On considère la base de E, (e_1, \ldots, e_n) , où $e_1 = x$ et la base duale (e_1^*, \ldots, e_n^*) . Comme $e_1^*(x) = 1$, e_1^* convient.

Théorème 1.8

Soit E un **K**-espace vectoriel de dimension $n < \infty$ et soit (f_1, \ldots, f_k) une famille libre de formes linéaires avec k < n. En posant $H_i = \text{Ker}(f_i)$, on a

$$\dim \bigcap_{i=1}^k H_i = n - k.$$

On complète (f_1,\ldots,f_k) en une base du dual, $B^*=(f_1,\ldots,f_k,\ldots,f_n)$. On définit

$$u: \begin{cases} E \to \mathbf{K}^n \\ x \mapsto (f_1(x), \dots, f_n(x)) \end{cases}$$

Montrons que u est injective. Soit $x \in E$ tel que u(x) = 0. Comme (f_1^*, \ldots, f_n^*) est une base, toute forme s'écrit comme combinaison linéaire de ces vecteurs. Or u(x) = 0 et donc toute forme s'annule en x et par le lemme précédent ce n'est possible que si x = 0. Donc u est injective et donc bijective puisque dim $E = \dim \mathbf{K}^n = n$.

$$\bigcap_{i=1}^{k} H_i = u^{-1}(T)$$

οù

$$T = \{ y \in \mathbf{K}^n \mid y_1 = 0, \dots, y_k = 0 \}$$

Or dim T = n - k.

Corollaire 1.9

Soit (f_1, \ldots, f_n) une base de E^* . Il existe une base (v_1, \ldots, v_n) de E telle que $f_i(v_j) = \delta_{ij}$.

DÉMONSTRATION

En gardant le même u de la démonstration précédente, on a

$$u(x) = (f_1(x), \dots, f_n(x)).$$

Comme u est un isomorphisme, on définit pour tout $j \leq n$:

$$v_j = u^{-1}(e_j)$$

où (e_1,\ldots,e_n) est la base canonique de \mathbf{K}^n

1.3 Applications transposées

Soient E, F deux **K**-espaces vectoriels.

Définition 1.10

Soit $a:E\to F$ une application linéaire. On définit :

$$^ta:F^*\to E^*$$

par

$$^t a(y^*) = y^*(a).$$

EXEMPLE. Avec $E = \mathcal{M}_{n,1}(\mathbf{R})$ et $F = \mathcal{M}_{m,1}(\mathbf{R})$, les duaux sont :

$$E^* = \mathcal{M}_{1,n}(\mathbf{R}), \ F^* = \mathcal{M}_{1,m}(\mathbf{R}).$$

Soit $A \in \mathcal{M}_{m,n}(\mathbf{R})$ et on définit :

$$\forall x \in E, \ a(x) = Ax.$$

On définit la forme y^* sur F par :

$$\forall y \in F, \ y^*(y) = \sum_{i=1}^m y_i^* y_i = \begin{pmatrix} y_1^* & \dots & y_m^* \end{pmatrix} \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}.$$

On définit alors

$$\forall x \in E, \ ^t a(y^*)(x) = \begin{pmatrix} y_1^* & \dots & y_m^* \end{pmatrix} A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = {}^t \begin{pmatrix} {}^t A \begin{pmatrix} y_1^* \\ \vdots \\ y_m^* \end{pmatrix} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

L'application transposée est représentée par la matrice transposée de l'application.

Lemme 1.11

On a:

1. soient:

$$E \xrightarrow{a} F \xrightarrow{b} G$$
,

alors

$$^{t}(b \circ a) = ^{t}a \circ ^{t}b$$
;

2. ${}^{t}I_{d} = I_{d}$

3. soit $A: E \to F$ inversible, ${}^t\left(A^{-1}\right) = {}^t\left(A^{-1}\right)^{-1}$.

DÉMONSTRATION

Dans l'ordre:

1. On a:

$$\begin{split} \forall z^* \in G^*, \forall x \in E, \ ^t(b \circ a)(z^*)(x) &= z^*((b \circ a)(x)) \\ &= {}^tb(z^*(a(x))) \\ &= {}^ta \circ {}^tb(z^*(x)). \end{split}$$

1.4 Représentation matricielle

Soit $a: E \to F$ une application linéaire de **K**-espaces vectoriels. On associe à a la matrice $A = \max(a, e, f)$ où e est une base de E et f une base de F. On a

$$A = \begin{pmatrix} f(a(e_1)) & \dots & f(a(e_i)) & \dots & f(a(e_n)) \end{pmatrix}$$

avec

$$f(v) = \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix}, \ v = \sum_{i=1}^m x_i f_i.$$

On définit $B = \max({}^t a, \boldsymbol{f}^*, \boldsymbol{e}^*)$. On a

$$B = \begin{pmatrix} e^*(^ta(f_1^*)) & \dots & e^*(^ta(f_m^*)) \end{pmatrix}.$$

C'est-à-dire :

$$B_{ij} = {}^{t}a(f_{j}^{*})(e_{i}) = f_{j}^{*}(a(e_{i})) = A_{ji}.$$

Finalement

$$B = {}^{t}A.$$

2 Formes bilinéaires

2.1 Définition

Soient E, F deux **K**-espaces vectoriels.

Définition 2.1

Soit:

$$\varphi: E \times F \to \mathbf{K}$$

une application. C'est une application bilinéaire si elle vérifie les conditions suivantes :

1. pour tout $y \in F$,

$$x \mapsto \varphi(x,y) : E \to \mathbf{K}$$

est linéaire;

2. pour tout $x \in E$,

$$y \mapsto \varphi(x,y) : F \to \mathbf{K}$$

est linéaire

EXEMPLES.

1. Prenons $E = F = \mathbf{R}^n$. Pour $x = (x_1, \dots, x_n)$ et $y = (y_1, \dots, y_n)$, l'application

$$\varphi(x,y) = \sum_{i=1}^{n} x_i y_i$$

est une forme bilinéaire, c'est le produit scalaire euclidien.

2. En prenant $E=F={\bf R}^4$ (l'espace-temps). Si $x\in {\bf R}^4$, on note $x=(x_1,x_2,x_3,t)$. On définit

$$\varphi_2(x, x') = x_1 x_1' + x_2 x_2' + x_3 x_3' - ctt'.$$

REMARQUE. Il existe des vecteurs x non nuls tels que $\varphi_2(x,x) = 0$. L'ensemble des ces vecteurs est appelé le « cône de lumière ».

3. Avec $E = F = \mathcal{C}([0,1])$, on considère :

$$\forall f \in E, \forall g \in G, \ \varphi(f,g) = \int_0^1 f(x)g(x) \, \mathrm{d}x.$$

Remarque. Si $\varphi: E \times F \to \mathbf{K}$ est une application bilinéaire, on peut définir

$$D_{\omega}: F \to E^*$$

définie par

$$\forall y \in F, \forall x \in E, \ D_{\varphi}(y)(x) = \varphi(x, y).$$

2.2 Matrice d'une forme bilinéaire

Soient E, F deux **K**-espaces vectoriels, $\mathbf{e} = (e_1, \dots, e_m)$ une base de E et $\mathbf{f} = (f_1, \dots, f_n)$ une base de F. Soit φ une forme bilinéaire sur $E \times F$.

Soit $x = \sum_{i=1}^{m} x_i e_i$ un vecteur de E et $y = \sum_{i=1}^{n} y_i f_i$ un vecteur de F.

$$\varphi(x,y) = \sum_{i=1}^{m} \sum_{j=1}^{n} x_i y_j \varphi(e_i, f_j).$$

Définition 2.2

On définit la matrice $\Phi \in \mathcal{M}_{m,n}(\mathbf{K})$ par

$$\Phi_{i,j} = \varphi(e_i, f_j),$$

On a alors

$$\varphi(x,y) = {}^{t}X\Phi Y$$

avec

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix}, \ Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}.$$

Si on prend P et Q inversibles telles que X = PX' et Y = QY' alors Pour

$$\Phi' = {}^t P \Phi Q$$

on a

$$\varphi(x,y) = {}^t X' \Phi' Y'.$$

Définition 2.3

Une forme bilinéaire sur $E \times E$ est dite symétrique si

$$\forall x \in E, \forall y \in E, \ \varphi(x,y) = \varphi(y,x).$$

Définition 2.4

Soient E un **K**-espace vectoriel et φ une forme bilinéaire symétrique sur $E \times E$. On dit que x et y de E sont φ -orthogonaux si $\varphi(x,y)=0$.

Définition 2.5

Soit $A \subset E$. On définit l'orthogonal de A:

$$A^{\perp} = \{ x \in E \mid \forall y \in A, \ \varphi(x, y) = 0 \}.$$

Proposition 2.6

- Soit $A \subset E$, 1. A^{\perp} est un sous-espace vectoriel; 2. si $A_1 \subset A_2$ alors $A_2^{\perp} \subset A_1^{\perp}$; 3. $A \subset A^{\perp \perp}$.

DÉMONSTRATION

Montrons le point 2 :

Soit $x \in A_2^{\perp}$, pour tout $y \in A_1$, $\varphi(x,y) = 0$ puisque $y \in A_2$. Donc $x \in A_1^{\perp}$.

Exemple: L'espace-temps de Minkowski. Soit

$$\varphi_2: (\mathbf{R}^2)^2 \to \mathbf{R}^2$$

définit pour $x = (x_1, t)$ par :

$$\varphi_2(x, x') = x_1 x_1' - tt'.$$

Le vecteur x = (1, 2) a pour orthogonal (non unique) y = (2, 1).

2.3 Formes quadratiques

Soit E un **K**-espace vectoriel.

Définition 2.7

Soit φ une forme bilinéaire symétrique sur E. La forme quadratique Q associée à φ comme étant l'application

$$Q: E \to \mathbf{K}$$

définie par

$$Q(x) = \varphi(x, x).$$

Exemple. En prenant $\varphi: \mathbf{R}^3 \times \mathbf{R}^3 \to \mathbf{R}$ définie par

$$\varphi(x,y) = x_1y_1 + x_2y_2 + x_3y_3,$$

la forme quadratique associée est

$$Q(x) = x_1^2 + x_2^2 + x_3^3$$
.

Pour $\varphi: \mathbf{R}^4 \times \mathbf{R}^4 \to \mathbf{R}$ définie par

$$\varphi(x,y) = x_1y_1 + x_2y_2 + x_3y_3 - x_4y_4$$

on a

$$Q(x) = x_1^2 + x_2^2 + x_3^2 - x_4^2.$$

Lemme 2.8

Supposons que ${\bf K}$ soit de caractéristique différente de 2 et soit $Q:E\to {\bf R}$ une forme quadratique. La forme bilinéaire symétrique φ associée est définie par

$$\forall x \in E, \forall y \in E, \ 2\varphi(x,y) = Q(x+y) - Q(x) - Q(y).$$

DÉMONSTRATION

$$\begin{split} Q(x+y) &= \varphi(x+y,x+y) \\ Q(x+y) &= \varphi(x,x+y) + \varphi(y,x+y) \\ Q(x+y) &= Q(x) + \varphi(x,y) + \varphi(y,x) + Q(y) \\ Q(x+y) &= Q(x) + Q(y) + 2\varphi(x,y). \end{split}$$

Théorème 2.9

Soient E un \mathbf{K} -espace vectoriel de dimension $n < \infty$, où \mathbf{K} est de caractéristique différente de 2, et φ une forme bilinéaire symétrique sur E.

Il existe une base (e_1, \ldots, e_n) de E formée de vecteurs φ -orthogonaux.

DÉMONSTRATION

On procède par récurrence sur n.

1. Pour n = 1 on prend $e_1 \neq 0$.

2. Supposons que tout K-espace vectoriel de dimension n-1 vérifie le résultat. Si $\varphi=0$ alors il suffit de compléter la base.

Supposons que $\varphi \neq 0$. Il existe $(x,y) \in E^2$ tel que $\varphi(x,y) \neq 0$. Il existe donc par le résultat précédent $v \in E$ tel que $Q(v) \neq 0$ et alors $\varphi(v,v) \neq 0$. Posons $e_1 = v$. On définit

$$G = \left\{ e_1 \right\}^{\perp}.$$

C'est un sous-espace vectoriel de dimension n-1 §1 et donc il existe une base ψ -orthogonale (e_2,\ldots,e_n) de G pour la forme linéaire ψ définie par $\psi(x,y)=\varphi(x,y)$ pour tous $x,y\in G$. La famille (e_1,\ldots,e_n) forme alors une base où les vecteurs sont φ -orthogonaux deux à deux.

2.4 Formes dégénérées

Soit E un **K**-espace vectoriel.

Définition 2.10

Soit φ une forme bilinéaire symétrique sur E. Le noyau de φ , noté N_{φ} , est

$$N_{\varphi} = \{ x \in E \mid \forall y \in E, \ \varphi(x, y) = 0 \}.$$

Exemple. Pour $E = \mathbb{R}^4$ et la forme

$$\varphi(x,y) = x_1 y_1 + x_3 y_3$$

on a

$$N_{\varphi} = \left\{ x \in \mathbf{R}^4 \,\middle|\, x_1 = x_3 = 0 \right\}.$$

Définition 2.11

Soit φ une forme bilinéaire symétrique sur E de dimension finie. Le rang de φ (noté r) est

$$r = \dim E - \dim N_{\omega}$$
.

REMARQUE. C'est également le rang de la matrice associée à φ dans la base \mathcal{B} , où \mathcal{B} est une base de E.

Exemple. En reprenant l'exemple précédent, posons

$$F = \left\{ x \in \mathbf{R}^4 \,\middle|\, x_2 = x_4 = 0 \right\}.$$

On a $F^{\perp} = N_{\varphi}$ et $F^{\perp \perp} = E$. Avec

$$G = \left\{ x \in \mathbf{R}^4 \,\middle|\, x_1 = 0 \right\}$$

on a

$$G^{\perp} = \left\{ y \in \mathbf{R}^4 \,\middle|\, \forall x \in G, \ \varphi(x, y) = 0 \right\} = \left\{ y \in \mathbf{R}^4 \,\middle|\, y_3 = 0 \right\} \supset N_{\varphi}.$$

^{§1.} Si on prend $D(x) = \varphi(x, e_1)$ qui est une forme linéaire sur E alors son noyau est un sous-espace vectoriel de E de dimension n-1 et $\operatorname{Ker} D = \{e_1\}^{\perp}$.

Théorème 2.12

Soit E de dimension $n < \infty$ et soit φ une forme bilinéaire symétrique. Si $F \subset E$ est un sous-espace vectoriel alors

$$\dim F + \dim F^{\perp} - \dim F \cap N_{\varphi} = \dim E.$$

DÉMONSTRATION

On considère le cas où $F \cap N_{\varphi} = \{0\}.$

Soit F de dimension k < n et soit $\mathcal{B} = (e_1, \dots, e_k)$ une base de F.

$$F^{\perp} = \{ x \in E \mid \forall i \le k, \ \varphi(x, e_i) = 0 \}.$$

Posons $l_i: E \to \mathbf{K}$ définie par

$$l_i(x) = \varphi(x, e_i).$$

On a:

$$F^{\perp} = \bigcap_{i=1}^{k} \operatorname{Ker}(l_i).$$

Or par le résultat 1.8, si (l_1, \ldots, l_k) est une famille libre alors la dimension de cette intersection est égale à n-k et alors dim $F + \dim F^{\perp} = \dim E$. Il s'agit donc de montrer que (l_1, \ldots, l_k) est une famille libre.

Soit $(c_1, \ldots, c_k) \in \mathbf{K}^k$, supposons que

$$\sum_{i=1}^{k} c_i l_i = 0.$$

C'est équivalent à

$$\forall x \in E, \ \varphi\left(x, \sum_{i=1}^{l} c_i e_i\right) e = 0.$$

Or cela veut dire que $\sum_{i=1}^k c_i e_i$ appartient à F et N_{φ} et donc cette somme est nulle et comme (e_1, \ldots, e_k) est une base, les coefficients (c_1, \ldots, c_k) sont tous nuls. Ainsi, (l_1, \ldots, l_k) est une famille libre.

Supposons maintenant que $F \cap N_{\varphi} \neq \{0\}$. On montre que $\dim F^{\perp} + k - \dim(F \cap N_{\varphi}) = n$. On prend une base de $F \cap N_{\varphi} : (e_1, \ldots, e_j)$ et on la complète en une base de F, on obtient $(e_1, \ldots, e_j, e_{j+1}, \ldots, e_k)$. Il faut montrer que $F^{\perp} = \{y \in E \mid \forall i \in \{j+1, j+2, \ldots, k\}, \varphi(y, e_i) = 0\}$.

DÉMONSTRATION

Soit F de dimension k < n et supposons que $F \cap N_{\varphi}$ soit de dimension j. Soit (e_1, \ldots, e_n) une base de E φ -orthogonale telle que pour $i \leq j$ on ait $e_i \in F \cap N_{\varphi}$ et pour $i \leq k$ on ait $e_i \in F$. On a :

$$\varphi = \Psi_{i,j} e_i^* \otimes e_j^*.$$

Soit $\left\{l^i\right\}_{i\leq k}$ une famille de formes sur E définie par

$$l^i = \Psi_{i,j} e_i^*$$
.

On définit l'application linéaire :

$$M = l^i e_i : E \to F.$$

On a:

$$\dim \operatorname{Im} M = \dim F - \dim F \cap N_{\varphi}$$

et comme Ker $M = F^{\perp}$ on a

$$\dim E = \dim \operatorname{Im}(M) + \dim \operatorname{Ker}(M) = \dim F - \dim F \cap N_{\varphi} + \dim F^{\perp}.$$

2.5 Coniques et quadriques

Les coniques sont des courbes de ${\bf R}^2.$

Figure 1.1 – Ellipse

 $Figure\ 1.2-Parabole$

FIGURE 1.3 – Hyperbole

Les quadriques sont des surfaces dans l'espace \mathbb{R}^3 .

Les coniques (et les quadriques) sont des ensembles de points de \mathbf{R}^2 (resp. \mathbf{R}^3) dont les coordonnées cartésiennes $x=(x_1,x_2)\in\mathbf{R}^2$ (resp. $x=(x_1,x_2,x_3)\in\mathbf{R}^3$) satisfont :

$$Q(x) + l(x) + c = 0$$

où c est une constante, Q(x) une fonction de la forme :

$$Q(x) = \sum_{i,j=1}^{n} a_{i,j} x_i x_j$$

(si n=2 alors c'est une conique, si n=3 c'est une quadrique) et l(x) une application linéaire.

QUELQUES RAPPELS. Rappelons quelques résultats précédents :

Théorème 2.13

Soit φ une forme bilinéaire symétrique sur un **K**-espace vectoriel E de dimension finie. Il existe une base (e_1, \ldots, e_n) de E telle que $\varphi(e_i, e_j) = 0$ si $i \neq j$.

Proposition 2.14

Soit F un sous-espace vectoriel de E muni d'une forme bilinéaire symétrique. Alors

$$\dim F + \dim F^{\perp} - \dim F \cap N_{\varphi} = \dim E.$$

Définition 2.15

 φ est non dégénérée si $N_{\varphi} = \{0\}.$

REMARQUE. Si φ est non dégénérée alors $\dim F + \dim F^{\perp} = \dim E$ et dans ce cas-ci $F = F^{\perp \perp}$. En effet, comme $F \subset F^{\perp \perp}$ et d'après la formule précédente, on a

$$\dim F + \dim F^{\perp} = \dim F^{\perp} + \dim F^{\perp \perp} = \dim E$$

et donc dim $F = \dim F^{\perp \perp}$ d'où $F = F^{\perp \perp}$.

En conséquence, si $\Phi = \text{mat}(\varphi, \boldsymbol{e}, \boldsymbol{e})$, *i.e.* $\Phi_i, j = \varphi(e_i, e_j)$ pour tous i, j. Alors si \boldsymbol{e} est une base φ -orthogonale alors Φ est diagonale.

Soient $v, w \in E$ et $(e_1, \ldots, e_n), (e'_1, \ldots, e'_n)$ deux bases de E. Donnons-nous les décompositions : $v = \sum x_i e_i, w = \sum y_i e_i, v = \sum x'_i e_i$ et $w = \sum y'_i e_i$. On note

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \ X' = \begin{pmatrix} x_1' \\ \vdots \\ x_n' \end{pmatrix}, \ Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}, \ Y' = \begin{pmatrix} y_1' \\ \vdots \\ y_n' \end{pmatrix}.$$

Il existe une matrice P inversible telle que X = PX' et Y = PY'. On a

$$\varphi(v, w) = {}^{t}X\Phi Y = {}^{t}X'\Phi'Y'$$

avec Φ' la matrice dans la base e'. Si e' est une base orthogonale alors

$$\varphi(v, w) = \sum_{i=1}^{n} \varphi(e'_i, e'_i) x'_i y'_i.$$

En particulier

$$\varphi(v,v) = \sum_{i=1}^{n} \varphi(e'_i, e'_i) (x'_i)^2.$$

Pour n = 3 on aurait

$$\varphi(v,v) = \lambda_1(x_1')^2 + \lambda_2(x_2')^2 + \lambda_3(x_3')^2$$

où $\lambda_i = \varphi(e_i', e_i')$.

3 Formes quadratiques

3.1 Définitions et propriétés

Soit E un **K**-espace vectoriel.

Définition 3.1

 $Q:E\to \mathbf{K}$ est une forme quadratique s'il existe une forme bilinéaire φ telle que $Q(x)=\varphi(x,x)$ pour tout $x\in E.$

Proposition 3.2

Pour tout $\lambda \in \mathbf{K}$ et pour tout $x \in E$

$$Q(\lambda x) = \lambda^2 Q(x).$$

EXEMPLE. Pour $E = \mathbf{R}^3$, $\mathbf{K} = \mathbf{R}$ on a par exemple la forme quadratique :

$$Q(x) = x_1^2 + 3x_1x_2 + 5x_2x_3.$$

On peut trouver comme forme bilinéaire associée :

$$\varphi_1(x,y) = x_1y_1 + 3x_1y_2 + 5x_2y_3.$$

On a également comme forme $\varphi_2(x,y) = \varphi_1(y,x)$. Il y a une forme symétrique :

$$\varphi_s(x,y) = \frac{1}{2}(\varphi_1(x,y) + \varphi_2(x,y)).$$

DÉFINITION 3.3

On appelle forme polaire de Q, la forme bilinéaire symétrique sur E définie par

$$2\varphi(x,y) = Q(x+y) - Q(x) - Q(y).$$

Proposition 3.4

Soient E un **K**-espace vectoriel de dimension finie, φ une forme bilinéaire symétrique et $e = (e_1, \dots, e_n)$ une base φ -orthogonale. Si

$$q = \operatorname{card} \left\{ i \le n \, | \, \varphi(e_i, e_i) = 0 \right\}$$

alors

$$q = \dim N_{\omega}$$
.

REMARQUE. q ne dépend pas du choix de la base orthogonale.

DÉMONSTRATION

Supposons que $e = (e_1, \ldots, e_k, e_{k+1}, \ldots, e_n)$ tel que $\varphi(e_j, e_j) = 0$ si, et seulement si, $k < j \le n$. On montre que (e_{k+1}, \ldots, e_n) est une base de N_{φ} . On sait que c'est une famille libre et donc il suffit de montrer qu'elle est génératrice.

Soit $v \in N_{\varphi}$ tel que

$$v = c_1 e_1 + \ldots + c_k e_k + c_{k+1} e_{k+1} + \ldots c_n e_n.$$

Comme $\varphi(v, e_j) = 0$ pour tout j on a $c_i = 0$ pour tout $i \leq k$. Ainsi, v est une combinaison linéaire des e_i pour i > k et donc la famille (e_{k+1}, \ldots, e_n) est génératrice.

Théorème de Sylvester)

Soit E un \mathbf{R} -espace vectoriel de dimension finie muni d'une forme bilinéaire symétrique φ . Il existe un entier r tel que pour toute base $\mathbf{e} = (e_1, \dots, e_n)$ φ -orthogonale de E on ait

$$r = \operatorname{card} \left\{ i \le n \, | \, \varphi(e_i, e_i) > 0 \right\}.$$

DÉMONSTRATION

Soient r, s tels que $0 \le r \le s \le n$. Soit (f_1, \ldots, f_n) une base orthogonale de E telle que

$$\varphi(f_i, f_i) > 0, 1 \le i \le r$$

$$\varphi(f_i, f_i) < 0, r + 1 \le i \le s$$

$$\varphi(f_i, f_i) = 0, s + 1 \le i \le n.$$

Soit (f'_1, \ldots, f'_n) une base orthogonale de E telle que pour (r', s') on ait les mêmes conditions que précédemment. Il faut montrer r = r' (qui implique alors s = s').

On considère la collection

$$(f_1,\ldots,f_r,f'_{r'+1},\ldots,f'_n).$$

Si cette famille est libre, elle a $r+n-r' \leq n$ éléments et donc $r \leq r'$. Mais le même argument pour la famille symétrique $(f'_1, \ldots, f'_{r'}, f_{r+1}, \ldots, f_n)$ montre que $r' \leq r$ et donc r = r'. Supposons que l'on ait

$$c_1 f_1 \dots + c_r f_r + d_{r'+1} f'_{r'+1} + \dots d_n f'_n = 0$$

c'est-à-dire

$$v = c_1 f_1 + \ldots + c_r f_r = -(d_{r'+1} f'_{r'+1} + \ldots, d_n f'_n) = -w.$$

On a $\varphi(v,v) = \varphi(w,w)$ c'est-à-dire :

$$c_1^2 \varphi(f_1, f_1) + \ldots + c_r^2 \varphi(f_r, f_r) = d_{r'+1}^2 \varphi(f'_{r'+1}, f'_{r'+1}) + \ldots + d_n^2 \varphi(f'_n, f'_n).$$

Or le terme de gauche est positif par hypothèse et celui de droite négatif. Donc les deux termes sont nuls et donc $c_i = 0$ pour $i \le r$ et donc v = 0 et v = 0. Comme v et v = 0 sont des combinaisons de vecteurs libres, les coefficients sont tous nuls et donc la famille est libre.

Définition 3.6

Soit φ une forme bilinéaire symétrique sur E, un \mathbf{R} -espace vectoriel. On dit que φ est de signature (p,q) s'il existe une base orthogonale (e_1,\ldots,e_n) telle que

$$p = \text{card} \{i \le n \mid \varphi(e_i, e_i) > 0\}, \ q = \text{card} \{i \le n \mid \varphi(e_i, e_i) < 0\}.$$

Définition 3.7

Soit Q une forme quadratique sur E, un \mathbf{R} -espace vectoriel, et soit φ sa forme polaire. On dit que :

- 1. φ (ou Q) est positive si $\varphi(x,x) \ge 0$ pour tout $x \in E$;
- 2. φ (ou Q) est définie positive si $\varphi(x,x) > 0$ pour tout x non nul.

3.2 Coniques et quadriques

Les coniques et les quadriques sont des ensembles (respectivement dans \mathbb{R}^2 et \mathbb{R}^3) d'expression générale :

$${x \in \mathbf{R}^n \mid Q(x) + l(x) + c = 0}$$

où c est une constante et

$$Q(x) = \sum_{i,j=1}^{n} b_{ij} x_i x_j, \ l(x) = \sum_{i=1}^{n} a_i x_i$$

avec les b_{ij} et a_i réels.

Il est possible de trouver P inversible telle que $X' = P^{-1}X$ avec

$$Q(X') = \sum_{i=1}^{n} \lambda_i (x_i')^2$$

et $\lambda_i = Q(e_i)$. De plus

$$l(X') = APX' = \sum_{i=1}^{n} a'_i x'_i.$$

Le nombre de λ_i positifs et négatifs ne dépend pas du choix de la base orthogonale utilisée pour construire P.

Je suppose que coniques et quadriques sont des ensembles dont les coordonnées satisfont :

$$\sum_{i=1}^{n} \lambda_i x_i^2 + \sum_{i=1}^{n} a_i x_i + c = 0.$$
 (1.1)

1. Si les λ_i sont tous non nuls alors

$$\lambda_i x_i^2 + a_i x_i = \lambda_i \left(x_i^2 + \frac{a_i}{\lambda_i} x_i \right) = \lambda_i \left(x_i^2 + \frac{a_i}{\lambda_i} x_i + \left(\frac{a_i}{2\lambda_i} \right)^2 \right) - \frac{a_i^2}{4\lambda_i}.$$

Finalement l'équation 1.1 est équivalente à

$$\sum_{i=1}^{n} \lambda_i (x_i')^2 + c - \sum_{i=1}^{n} \frac{a_i^2}{4\lambda_i} = 0$$

avec

$$x_i' = x_i + \frac{a_i}{2\lambda_i}$$

et en posant $c'=c-\sum_{i=1}^n\frac{a_i^2}{4\lambda_i}$ on a une équivalence :

$$\sum_{i=1}^{n} \lambda_i (x_i')^2 + c' = 0.$$

2. S'il existe un λ_i nul et un λ_j non nul alors on suppose qu'il existe m tel que λ_j est non nul pour tout $j \leq m$ et $\lambda_i = 0$ pour tout i > m. L'équation 1.1 est alors équivalente à :

$$\sum_{j=1}^{m} \lambda_j (x_j')^2 + \sum_{j=m+1}^{n} a_j x_j' + c = 0$$

avec

$$\forall j \le m, \ x_j' = x_j + \frac{a_j}{2\lambda_j}$$

 et

$$\forall j > m, \ x_j' = x_j.$$

Pour n=2, les coniques. 1. Si λ_1 et λ_2 sont non nuls alors l'équation est sous la forme

$$\lambda x_1^2 + \mu x_2^2 = \delta$$

avec $\lambda = \lambda_1$ et $\mu = \lambda_2$.

	Si $\lambda > 0$ et $\mu > 0$	Si $\lambda > 0$ et $\mu < 0$
Si $\delta < 0$	La conique est vide	La conique est une hyperbole d'équation :
		$\left(\frac{x_1}{a}\right)^2 - \left(\frac{x_2}{b}\right)^2 = -1$
		avec $a = \sqrt{\frac{-\delta}{\lambda}}, \ b = \sqrt{\frac{\delta}{\mu}}.$
Si $\delta > 0$	La conique est une ellipse d'équation :	La conique est une hyperbole d'équation :
	$\left(\frac{x_1^2}{a}\right)^2 + \left(\frac{x_2^2}{b}\right)^2 = 1$	$\left(\frac{x_1}{a}\right)^2 - \left(\frac{x_2}{b}\right)^2 = 1$
	avec $a = \sqrt{\frac{\delta}{\lambda}}, \ b = \sqrt{\frac{\delta}{\mu}}.$	avec $a = \sqrt{\frac{\delta}{\lambda}}, \ b = \sqrt{\frac{-\delta}{\mu}}.$
Si $\delta = 0$	La conique est réduite à $\{0\}$	La conique est deux droites sécantes

2. Si $\lambda_2=0$ et $\lambda_1\neq 0$ alors l'équation se met sous la forme

$$\lambda x_1^2 + ax_2 + k = 0.$$

C'est une parabole si $a \neq 0$.

Chapitre 2

Espaces euclidiens

1 Produit scalaire, normes euclidiennes

Définition 1.1

Un espace euclidien est un espace vectoriel réel de dimension finie muni d'une forme bilinéaire symétrique définie positive, φ .

On dit que φ est le produit scalaire de l'espace vectoriel et on note

$$\forall x \in E, \forall y \in E, \ \varphi(x,y) = \langle x, y \rangle.$$

REMARQUE. Si E est muni d'une forme bilinéaire symétrique définie positive mais sans supposer que E est de dimension finie alors E est un espace pré-hilbertien.

Exemples usuels:

- 1. \mathbf{R}^n avec $\varphi_1(x, y) = x_1 y_1 + \ldots + x_n y_n$.
- 2.

$$l_2 = \left\{ (a_k)_{k \in \mathbf{N}} \mid \forall k \in \mathbf{N}, \ a_k \in \mathbf{R} \ \text{et} \ \sum_{k=0}^{+\infty} |a_k|^2 < +\infty \right\}$$

avec le produit scalaire

$$\varphi_2(x,y) = \sum_{k=0}^{+\infty} x_k y_k,$$

et comme

$$|x_k y_k| \le \frac{1}{2} (x_k^2 + y_k^2)$$

alors le produit scalaire est bien défini (il converge absolument). l_2 est un espace pré-hilbertien.

3. $\mathcal{C}([0,1])$ l'ensemble des fonctions continues sur [0,1] avec

$$\varphi_3(f,g) = \int_0^1 f(t)g(t) dt.$$

1.1 Inégalité de Cauchy-Schwarz

Définition 1.2

L'application

$$E \ni x \mapsto ||x|| = \sqrt{\langle x, x \rangle}$$

est appelée la norme de $x \in E$.

Proposition 1.3 (Inégalité de Cauchy-Schwarz)

Pour tous x, y de E:

$$|\langle x, y \rangle| \le ||x|| ||y||.$$

DÉMONSTRATION

Soit $t \in \mathbf{R}$,

$$\langle tx + y, tx + y \rangle \ge 0$$

et en développant on a :

$$t^{2}\langle x, x \rangle + 2t\langle x, y \rangle + \langle y, y \rangle \ge 0.$$

Le membre de gauche est un polynôme en t de la forme $at^2 + bt + c$. Cette inégalité est vraie aussi si, et seulement si, $4 |\langle x, y \rangle|^2 - 4 \langle y, y \rangle \langle x, x \rangle \le 0$ c'est-à-dire

$$\left|\langle x, y \rangle \rangle\right|^2 \le (x, x)(y, y)$$

et donc

$$|(x,y)| \le ||x|| ||y||.$$

Lemme 1.4

L'application $x \mapsto ||x||$ satisfait :

- $$\begin{split} &1. \ \|x\| = 0 \text{ si, et seulement si } x = 0 \,; \\ &2. \ \|\lambda x\| = |\lambda| \, \|x\| \text{ pour tout } \lambda \in \mathbf{R} \text{ et pour tout } x \in E \,; \\ &3. \ \|x + y\| \leq \|x\| + \|y\| \text{ pour tous } x, y \in E. \end{split}$$

DÉMONSTRATION

Pour l'inégalité triangulaire on utilise l'inégalité de CAUCHY-SCHWARZ :

$$||x + y||^2 = \langle x + y, x + y \rangle$$

$$= ||x||^2 + ||y||^2 + 2(x, y)$$

$$\leq ||x|| + ||y||^2 + 2||x|| ||y||$$

$$\leq (||x|| + ||y||)^2.$$

Lemme 1.5 (Identité du parallélogramme)

Pour tous $x, y \in E$ on a :

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2).$$

DÉMONSTRATION

Par définition,

$$||x||^2 = \langle x, x \rangle$$

et donc

$$||x + y||^2 = \langle x + y, x + y \rangle$$
$$= \langle x, x \rangle + 2 \langle x, y \rangle + \langle y, y \rangle$$
$$= ||x||^2 + 2 \langle x, y \rangle + ||y||^2.$$

Remarque. Le « théorème » de Pythagore est valide. En effet, si $x\bot y$ alors

$$||x + y||^2 = ||x||^2 + ||y||^2.$$

Proposition 1.6

Soit $(x_1, \ldots, x_n) \in E^n$ une collection de vecteurs orthogonaux deux à deux. On a :

$$\left\| \sum_{i=1}^{n} x_i \right\|^2 = \sum_{i=1}^{n} \|x_i\|^2.$$

DÉMONSTRATION

Par récurrence sur n. C'est vrai pour n=2 et

$$\left\| \sum_{i=1}^{n} x_i \right\|^2 = \left\| \sum_{i=1}^{n-1} x_i + x_n \right\|^2$$

or x_n est orthogonal à la somme puisqu'il est orthogonal à chaque x_i pour i < n. Ainsi,

$$\left\| \sum_{i=1}^{n} x_i \right\|^2 = \left\| \sum_{i=1}^{n-1} x_i \right\|^2 + \|x_n\|^2$$

et par hypothèse de récurrence la propriété est vraie.

Proposition 1.7

Soit $(x_1, \ldots, x_n) \in E^n$. Si les x_i sont tous non nuls et orthogonaux deux-à-deux alors la famille (x_1, \ldots, x_n) est libre.

DÉMONSTRATION

Supposons:

$$c_1x_1 + \ldots + c_nx_n = 0$$

alors

$$||c_1x_1+\ldots+c_nx_n||=0$$

et comme ils sont orthogonaux deux-à-deux :

$$c_1^2 ||x_1||^2 + \ldots + c_n^2 ||x_n||^2 = 0.$$

Or $||x_i||^2 \neq 0$ pour tout i car x_i non nuls et donc les coefficients sont tous nuls. Donc la famille considérée est libre.

Théorème 1.8

Soit E un espace euclidien de dimension finie. Il existe une base orthonormée.

DÉMONSTRATION

On sait qu'il existe une base orthogonale : (u_1, \ldots, u_n) . Mais la famille (e_1, \ldots, e_n) définie pour tout $i \leq n$ par :

$$e_i = \frac{u_i}{\|u_i\|}$$

est une base orthonormée.

Remarque. Soit (e_1,\ldots,e_n) une base orthonormée de E et soit $x\in E$ tel que

$$x = \sum_{i=1}^{n} c_i e_i.$$

Alors

$$c_i = \langle x, e_i \rangle$$
.

Soit $u: E \to E$ et A sa matrice associée dans la base $\mathbf{e} = (e_1, \dots, e_n)$. Si $A = (a_{i,j})_{\substack{i \le n \ j \le n}}$ alors

$$a_{i,j} = \langle e_i, u(e_i) \rangle$$
.

2 Projections orthogonales

2.1 Définition

Définition 2.1

Soient E un espace euclidien, F un sous-espace vectoriel de E et $x \in E$. La projection orthogonale de x sur F est un vecteur y de F tel que $x - y \in F^{\perp}$. On note y par $P_F(x)$.

 $P_F(x)$ est bien défini :

1. Unicité : soient y_1 et y_2 des vecteurs de F tels que $x-y_1$ et $x-y_2$ sont dans F^{\perp} . On a

$$(x-y_2)-(x-y_1)=y_1-y_2\in F^{\perp}$$

or $y_1 - y_2 \in F$ et donc $y_1 - y_2 = 0$.

2. Existence (en dimension finie) : il existe une base orthonormée de F, (e_1, \ldots, e_k) . On pose

$$y = \sum_{i=1}^{k} \langle x, e_i \rangle e_i.$$

Et on a bien y - x orthogonal à F.

Proposition 2.2

Soient E un espace euclidien, $x \in E$ et F un sous-espace vectoriel. Alors $P_F(x)$ est le vecteur de F le plus proche de x. C'est-à-dire :

$$||P_F(x) - x|| = \inf_{z \in F} ||z - x||.$$

DÉMONSTRATION Soit $z \in F$,

$$||x - z||^2 = ||x - P_F(x) + P_F(x) - z||^2$$
$$= ||x - P_F(x)||^2 + ||P_F(x) - z||^2$$
$$\ge ||x - P_F(x)||^2.$$

REMARQUE. On a $||P_F(x)|| \le ||x||$, en effet :

$$||x||^2 = ||P_F(x) + x - P_F(x)||^2 = ||P_F(x)||^2 + ||x - P_F(x)||^2 \ge ||P_F(x)||^2.$$

Proposition 2.3

Soient E un espace euclidien et F un sous-espace vectoriel.

$$E = F \oplus F^{\perp}$$
.

DÉMONSTRATION Soit $x \in E$, on a

$$x = P_F(x) + x - P_F(x).$$

De plus $F \cap F^{\perp} = \{0\}$ et donc $E = F \oplus F^{\perp}$.

2.2 Procédé d'orthonormalisation de GRAM-SCHMIDT

REMARQUE. Soit F un sous-espace vectoriel de E et soit (e_1, \ldots, e_k) une base orthonormée de F. Si $x \notin F$ alors $y = x - P_F(x)$ est un vecteur de F^{\perp} . On définit

$$e_{k+1} = \frac{y}{\|y\|}.$$

On a bien que e_{k+1} est orthogonal à tous les autres e_i . Ainsi, $(e_1, \ldots, e_k, e_{k+1})$ est une famille orthonormée (et libre).

Théorème 2.4 (Algorithme de Gram-Schmidt)

Soit E un espace euclidien et soit (f_1, \ldots, f_n) une base de E. On définit par récurrence une base orthonormée de E:

- 1. $e_1 = f_1/||f_1||$.
- 2. On suppose qu'on a construit (e_1, \ldots, e_k) une famille orthonormée telle que

$$F = \operatorname{Vect}(f_1, \dots, f_k) = \operatorname{Vect}(e_1, \dots, e_k).$$

On définit alors

$$u_{k+1} = f_{k+1} - P_F(f_{k+1}), \ e_{k+1} = \frac{u_{k+1}}{\|u_{k+1}\|}.$$

Le vecteur e_{k+1} appartient bien à l'espace engendré par $(f_1, \ldots, f_k, f_{k+1})$ et $e_{k+1} \in F^{\perp}$. Ainsi, (e_1, \ldots, e_{k+1}) est un système orthonormée de vecteurs.

3. On continue jusqu'à ce que k = n.

Exemple. Avec \mathbb{R}^3 muni de :

$$\langle x, y \rangle = x_1 y_1 + x_2 y_2 + x_3 y_3.$$

On considère la base :

$$(f_1, f_2, f_3) = \left(\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right).$$

On pose:

$$e_1 = f_1$$
.

Avec $F_1 = \text{Vect}(f_1)$ on a:

$$u_2 = f_2 - P_{F_1}(f_2).$$

 $P_{F_1}(f_2) = \langle f_2, f_1 \rangle f_1 = 1 \cdot f_1.$

Ainsi,

$$u_2 = f_2 - f_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}.$$

On pose alors

$$e_2 = \frac{u_2}{\|u_2\|} = u_2.$$

On définit $F_2 = \text{Vect}(e_1, e_2)$, on a

$$u_3 = f_3 - P_{F_2}(f_3).$$

$$P_{F_2}(f_3) = \langle f_3, e_1 \rangle e_1 + \langle f_3, e_2 \rangle e_2$$

= 1 \cdot e_1 + 1 \cdot e_2.

On a finalement,

$$e_3 = u_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

Théorème 2.5

Soit E un espace euclidien et soit l une forme linéaire sur E. Il existe un unique vecteur y tel que

$$\forall x \in E, \ l(x) = \langle y, x \rangle.$$

DÉMONSTRATION

Si l=0 alors on choisit y=0. Supposons qu'il existe $x_0 \in E$ tel que $l(x_0)=1$. Soit $F=\mathrm{Ker}(l)$. On pose $z_0=P_F(x_0)$ et on pose $y_0=x_0-z_0$. Finalement, on prend

$$y = \frac{y_0}{\|y_0\|^2}.$$

On a bien:

$$\langle y, x \rangle = \langle y, x - l(x)y_0 + l(x)y_0 \rangle$$
$$\langle y, x \rangle = \langle y, x - l(x)y_0 \rangle + \langle y, l(x)y_0 \rangle$$
$$\langle y, x \rangle = \langle y, x - l(x)y_0 \rangle + l(x) \frac{\langle y_0, y_0 \rangle}{\|y_0\|^2}.$$

On conclut car $x - l(x)y_0 \in F = \text{Ker}(l)$. En effet :

$$l(x - l(x)y_0) = l(x) - l(x)l(y_0) = l(x) - l(x)l(x_0) = 0.$$

3 Endomorphismes des espaces euclidiens

3.1 Endomorphisme adjoint

Théorème 3.1

Soit E un espace euclidien et soit $u:E\to E$ un endomorphisme. Il existe une unique application linéaire $u^*:E\to E$ telle que :

$$\langle y, u(x) \rangle = \langle u^*(y), x \rangle$$
.

Définition 3.2

 u^* est *l'adjoint* de u.

Pour tout y, l'application $x \mapsto \langle y, u(x) \rangle$ est une forme linéaire sur E. Par le théorème précédent, il existe $y^* \in E$ tel que

$$\langle y^*, x \rangle = \langle y, u(x) \rangle$$
.

L'application :

$$u^*: y \mapsto y^*$$

convient.

Opérations sur l'adjoint. Si u est un endomorphisme de E:

- 1. $u^{**} = u$;
- 2. pour tout $\lambda \in \mathbf{R}$, $(\lambda u)^* = \lambda u^*$;
- 3. si v est un endomorphisme sur E, $(u+v)^* = u^* + v^*$.

DÉFINITION 3.3

Soit E un espace euclidien et u un endomorphisme de E. On dit que u est symétrique

Représentation matricielle. Soit u un endomorphisme de E, un espace euclidienne, et soit $A = (a_{i,j})_{i,j}$ la matrice de u dans la base e où $e = (e_1, \ldots, e_n)$ est une base orthonormée. On a :

$$\forall i, j \leq n, \ a_{i,j} = \langle e_i, u(e_j) \rangle.$$

Si B désigne la matrice dans la base e de u^* alors

$$B = {}^{t}A$$
.

Si u est symétrique alors

$$^{t}A = A.$$

3.2Intermède

En posant:

$$\mathbf{C}^n = \{ Z = (z_1, \dots, z_n) \, | \, z_i \in \mathbf{C} \},$$

on définit sur $\mathbf{C}^n \times \mathbf{C}^n$:

$$(Z, Z') \mapsto \langle \langle Z, Z' \rangle \rangle = z_1 \overline{z_1'} + \ldots + z_n \overline{z_n'}.$$

Proposition 3.4

- 1. $\langle \langle Z, Z' \rangle \rangle = \overline{\langle \langle Z', Z \rangle \rangle};$ 2. $\langle \langle Z, Z' \rangle \rangle = {}^t Z \cdot \overline{Z'};$ 3. $\langle \langle Z, Z \rangle \rangle > 0 \text{ si } Z \neq 0;$ 4. si $A \in \mathcal{M}_n(\mathbf{C}) \text{ alors } \langle \langle AZ, Z' \rangle \rangle = \langle Z, {}^t \overline{A} Z' \rangle.$

Théorème 3.5

Soit A une matrice réelle $n \times n$ symétrique. Alors si λ est une valeur propre de A alors

Soit λ une valeur propre de A. Soit $Z \in \mathbb{C}^n$ tel que $Z \neq 0$ et

$$AZ = \lambda Z$$
.

On a:

$$\begin{split} & \langle \langle AZ, Z \rangle \rangle = \lambda \, \langle \langle Z, Z \rangle \rangle \\ & \langle \langle AZ, Z \rangle \rangle = \left\langle \left\langle Z, {}^t \overline{A} \right\rangle \right\rangle = \left\langle \left\langle Z, AZ \right\rangle \right\rangle \\ & \langle \langle AZ, Z \rangle \rangle = \left\langle \left\langle Z, \lambda Z \right\rangle \right\rangle = \overline{\lambda} \, \langle \left\langle Z, Z \right\rangle \rangle \,. \end{split}$$

Donc $\lambda = \overline{\lambda}$ et donc $\lambda \in \mathbf{R}$.

Théorème 3.6

Soit A une matrice symétrique réelle. Alors A possède un vecteur propre réel non nul.

DÉMONSTRATION

A possède toujours un vecteur propre, Z, dans \mathbf{C}^n pour une certaine valeur propre $\lambda \in \mathbf{C}$. Mais par le résultat précédent, $\lambda \in \mathbf{R}$.

Posons Z=X+iY avec $X,Y\in\mathbf{R}^n$ non tous deux nuls. On a :

$$AZ = \lambda Z$$

$$A(X + iY) = \lambda(X + iY)$$

$$\begin{cases}
AX = \lambda X \\
AY = \lambda Y
\end{cases}$$

et donc X ou Y sont deux vecteurs propres réels de A avec pour valeur propre $\lambda \in \mathbf{R}$.

Corollaire 3.7

Soit E un espace euclidien et u un endomorphisme de E symétrique. u possède un vecteur propre x non nul de valeur propre réelle.

DÉMONSTRATION

Soit A la matrice associée de u dans une base orthonormée, $\mathbf{e} = (e_1, \dots, e_n)$. Il existe $X \in \mathbf{R}^n$ tel que

$$AX = \lambda X$$

pour un certain $\lambda \in \mathbf{R}$. Si

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

alors le vecteur :

$$x = \sum_{i=1}^{n} x_i e_i$$

convient.

Théorème 3.8

Soit $u: E \to E$ un endomorphisme symétrique et soit $x \in E$ un vecteur propre non nulle de u. Si $y \in E$ est orthogonal à x alors u(y) est orthogonal à x.

Supposons que $\langle x, y \rangle = 0$. Alors :

$$\langle x, u(y) \rangle = \langle u(x), y \rangle$$

= $\langle \lambda x, y \rangle$
= $\lambda \langle x, y \rangle = 0$.

Théorème 3.9 (Spectral)

Soit E un espace euclidien et soit $u: E \to E$ un endomorphisme symétrique. Il existe orthonormée de vecteurs propre, $\mathbf{e} = (e_1, \dots, e_n)$, de u et on a que $A = \operatorname{Mat}(u, \mathbf{e}, \mathbf{e})$ est diagonale.

DÉMONSTRATION

Par récurrence sur $n = \dim E$.

- 1. Si n = 1 alors c'est vérifié.
- 2. Soit $n \geq 2$, supposons le résultat vrai pour $\dim E = n-1$. On sait qu'il existe $x \in E$ qui est vecteur propre de u. Soit $F = x^{\perp}$, F est de dimension n-1. F est un espace euclidien, il s'agit donc de montrer que u laisse stable F. Par le résultat précédent, si y est orthogonal à x, i.e. $y \in F$, alors u(y) est également orthogonal à x et donc $u(F) \subset F$. Par hypothèse de récurrence, il existe une base orthonormée (e_1, \ldots, e_{n-1}) de vecteurs propres de $u_{|F}$. Mais par définition de F, $(e_1, \ldots, e_{n-1}, x/||x||)$ est donc une base orthonormée de E formée de vecteurs propres de u.

COROLLAIRE 3.10

Soit A une matrice symétrique réelle $(n \times n)$ alors il existe une matrice orthogonale U telle que

$$^tUAU = D$$

où D est diagonale.

Définition 3.11

Soit U une matrice $n \times n$. U est dite orthogonale si, et seulement si,

$$^{t}UU = I_{n}$$
.

Remarque. U est orthogonale si, et seulement si, ses colonnes forment une base orthonormée de \mathbb{R}^n muni du produit scalaire usuel.

DÉMONSTRATION

A est la représentation matricielle d'un certain endomorphisme symétrique, u, de \mathbf{R}^n muni du produit scalaire habituel. D'après le théorème spectral, il existe une base $\mathbf{f} = (f_1, \dots, f_n)$ orthonormée de vecteurs propres de u. La matrice, D, de u dans la base \mathbf{f} est diagonale. Avec $U = \text{Mat}(I_d, \mathbf{f}, \mathbf{e})$ avec \mathbf{e} la base canonique, on a

$$U^{-1}AU = D.$$

Puisque f est orthonormée, on a :

$$(^tUU)_{i,j} = \langle f_i, f_j \rangle = \delta_{i,j}.$$

Mais alors ${}^tUU = I_d$ et donc $U^{-1} = {}^tU$.

4 Isométries des espaces euclidiens

Théorème 4.1

Soit E un espace euclidien et u un endomorphisme de E. Les propriétés suivantes sont équivalentes :

1. Pour tous x, y de E:

$$\langle u(x), u(y) \rangle = \langle x, y \rangle$$
.

2. Pour tout $x \in E$:

$$||u(x)|| = ||x||.$$

3. u est bijective et

$$u^{-1} = u^*.$$

DÉMONSTRATION

1 implique 2. En effet, pour $x = y \in E$ on a

$$||u(x)||^2 = ||x||^2.$$

2 implique 1. Par la relation

$$2\langle x, y \rangle = \|x + y\|^2 - \|x\|^2 - \|y\|^2$$

pour tous $x, y \in E$. On a alors

$$2\langle u(x), u(y) \rangle = \|u(x) + u(y)\|^2 - \|u(x)\|^2 - \|u(y)\|^2 = \|u(x+y)\|^2 - \|x\|^2 - \|y\|^2 = 2\langle x, y \rangle.$$

2 implique 3. On a $\operatorname{Ker} u = \{0\}$ par définition de la norme. Donc u injective mais u est un endomorphisme donc u est bijective. De plus :

$$\langle u^{-1}(x), y \rangle = \langle u(u^{-1}(x)), u(y) \rangle = \langle x, u(y) \rangle$$

et donc $u^{-1} = u^*$.

3 implique 2. En effet, pour tous $x, y \in E$,

$$\langle u^{-1}(x), y \rangle = \langle x, u(y) \rangle$$
.

En particulier, pour x = u(y) on a

$$||y||^2 = ||u(y)||^2.$$

Définition 4.2

Soit E un espace euclidien et u un endomorphisme de E. u est une isométrie si elle satisfait une de ces trois propriétés.

Définition 4.3

Soit F un sous-espace vectoriel de E, un espace euclidien. La symétrie orthogonale par rapport à F est donnée pour tout $x \in E$ par

$$s_F(x) = x - 2(x - p_F(x)) = 2p_F(x) - x$$

où p_F est la projection orthogonale sur p_F .

REMARQUE. Si (e_1, \ldots, e_n) est une base orthonormée de E et si u est une isométrie alors $(u(e_1), \ldots, u(e_n))$ est une base orthonormée de E.

Proposition 4.4

Si λ est une valeur propre d'une isométrie u alors $\lambda = \pm 1$.

DÉMONSTRATION

Soit x un vecteur propre non nul de valeur propre λ , on a

$$||x|| = ||u(x)|| = |\lambda| ||x||.$$

Proposition 4.5

Soit u une isométrie de E et soit F un sous-espace vectoriel de E tel que $u(F) \subset F$. F^{\perp} est stable par $u: u(F^{\perp}) \subset F^{\perp}$.

DÉMONSTRATION

Remarquons que si F est stable par u alors u(F) = F puisque u est un automorphisme. Soit $y \in F^{\perp}$, il s'agit de montrer que $u(y) \in F^{\perp}$, c'est-à-dire que pour tout $x \in F$,

$$\langle u(y), x \rangle = 0$$

mais il existe $z \in F$ tel que x = u(z). Or,

$$\langle u(y), u(z) \rangle = \langle y, z \rangle = 0.$$

Lemme 4.6

Soit E un espace euclidien de dimension n et soit F un sous-espace vectoriel de dimension k. Il existe $\mathcal{B} = (e_1, \ldots, e_n)$ orthonormée telle que (e_1, \ldots, e_k) est une base orthonormée de F

Proposition 4.7

Si s est une symétrie orthogonale par rapport à F alors

$$\det(s) = (-1)^{n-k}$$

où $n = \dim E$ et $k = \dim F$.

DÉMONSTRATION

Soit (e_1, \ldots, e_n) une base orthonormée telle que (e_1, \ldots, e_k) est une base orthonormée de F et (e_{k+1}, \ldots, e_n) une base orthonormée de F^{\perp} .

Soit $S = Mat(s, \mathcal{B}, \mathcal{B})$, on a

$$S = \begin{pmatrix} I_k & 0 \\ 0 & -I_{n-k} \end{pmatrix}.$$

D'où

$$\det(s) = (-1)^{n-k}.$$

Théorème 4.8

Soit E un espace euclidien tel que dim $E = n \ge 2$. Toute isométrie de E est composée d'au plus n symétries orthogonales par rapport à des hyperplans.

4.1 Isométries en dimension 2

Soit E un espace euclidien de dimension 2.

Proposition 4.9

Soit $\mathcal{B} = (e_1, e_2)$ une base orthonormée de E. L'endomorphisme u de E est une isométrie si, et seulement si, $A = \text{Mat}(u, \mathcal{B}, \mathcal{B})$ est de la forme

$$A = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \text{ ou } A = \begin{pmatrix} a & b \\ b & -a \end{pmatrix}$$

avec $a^2 + b^2 = 1$.

DÉMONSTRATION

Pour $a, b \in \mathbf{R}$, si $f(e_1) = ae_1 + be_2$ alors on peut remarquer

$$(f(e_1))^{\perp} = \operatorname{Vect}(-be_1 + ae_2).$$

Mais f est une isométrie si, et seulement si,

- 1. $a^2 + b^2 = 1$;
- 2. $f(e_2) \in (f(e_1))^{\perp}$.

Il existe donc λ tel que $f(e_2) = \lambda(-be_1 + ae_2)$. Mais comme $||f(e_2)|| = 1$ on en déduit $\lambda = \pm 1$. Donc $A = (f(e_1) - f(e_2))$ est de la forme :

$$A = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \text{ ou } A = \begin{pmatrix} a & b \\ b & -a \end{pmatrix}.$$

Proposition 4.10

Soit $u: E \to E$ une isométrie. u est une symétrie orthogonale par rapport à une droite si, et seulement si, det(u) = -1.

DÉMONSTRATION

On a vu que $\det(u) = (-1)^{2-k}$ où k est la dimension de F tel que u est une symétrie orthogonale par rapport à F.

Si u est une symétrie orthogonale par rapport à une droite alors det(u) = -1.

Si det(u) = -1 alors c'est une symétrie orthogonale, nécessairement par rapport à un espace de dimension 1, c'est-à-dire une droite.

Définition 4.11

Si u est une isométrie de déterminant 1 alors on dit que u est une rotation.

Si det(u) = 1 alors la matrice de u dans une base \mathcal{B} orthonormée est

$$A = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

avec $a^2+b^2=1$. Il existe un unique $\theta\in[0,2\pi[$ tel que $a=\cos\theta$ et $b=\sin\theta.$ Ainsi,

$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

est bien la représentation d'une rotation d'angle θ .

Lemme 4.12

Si $u: E \to E$ est une isométrie telle que $\det(u) = 1$ alors u ne possède pas de valeurs propres.

u est de la forme dans une base ${\mathcal B}$ orthonormée :

$$A = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}.$$

Le polynôme caractéristique est alors :

$$\chi_A(\lambda) = (a - \lambda)^2 + b^2 = 0$$

si $u \neq id$ alors $b \neq 0$ et χ_A n'a pas de racine.

4.2 Isométries de l'espace

Soit E un espace euclidien de dimension 3.

Proposition 4.13

Soit u une isométrie telle que $u \neq id$.

- 1. 1 est valeur propre et $\dim E(1)=1$ (E(1) est le sous-espace propre associé à la valeur propre 1).
- 2. Soit $P = (E(1))^{\perp}$. On a $u(x) \in P$ pour tout $x \in P$. De plus $h : P \to P$ définie par h(x) = u(x) est une rotation de P.

Définition 4.14

On définie :

- 1. Une isométrie $u: E \to E$ est une rotation si $\det u = 1$.
- 2. L'axe de rotation est E(1).
- 3. L'angle (ou mesure de la rotation) est l'angle de la rotation de $h: P \to P$.

Proposition 4.15

Soit u une isométrie telle que $\det(u) = -1$. u est une symétrie orthogonale par rapport à un plan ou il existe s et r respectivement une symétrie orthogonale et une rotation tels que $u = r \circ s = s \circ r$.

Deuxième partie

Analyse

Table des matières

3	Intégrale de RIEMANN				
	1	Intégr	rale de Riemann sur $[a,b]$	35	
		1.1	Continuité	41	
	2	2 Intégrale double de fonctions à deux variables			
		2.1	Intégration sur un rectangle	42	
		2.2	Intégration sur domaines plus généraux	45	
		2.3	Coordonnées polaires	47	
4	Suites et séries de fonctions				
	1	Suites	s de fonctions	48	
		1.1	Définitions	48	
		1.2	Suites de nombres réels et normes	51	
		1.3	Limites fonctionnelles	51	
		1.4	Continuité	52	
		1.5	Dérivabilité	53	
		1.6	Intégrabilité	54	
	2	Séries	s de fonctions	55	
		2.1	Rappel sur les séries numériques	55	
		2.2	Séries de fonctions	56	
5	Séi	ries en	tières	59	

Chapitre 3

Intégrale de RIEMANN

1 INTÉGRALE DE RIEMANN SUR [a,b]

Soit [a, b] un intervalle de **R** avec a < b.

Définition 1.1

Une subdivision de [a, b] est la donnée de $n \in \mathbb{N}^*$ et d'une suite de points, $\{x_0, \dots, x_n\}$ telle que

$$a = x_0 < x_1 < \ldots < x_n = b.$$

Les intervalles $]x_{i-1}, x_i[$ pour $1 \le i \le n$ sont les intervalles de la subdivision.

Définition 1.2

Une fonction $\varphi : [a, b] \to \mathbf{R}$ est dite *en escaliers* s'il existe une subdivision π de [a, b] telle que φ est constante les intervalles de π .

On dit alors que π est adaptée à φ .

Définition 1.3

Soit $\pi = (n, \{x_0, \dots, x_n\})$ et soit $\rho = (p, \{z_0, \dots, z_p\})$. On dit que ρ est plus fine que π si p > n et si $\{x_0, \dots, x_n\} \subset \{z_0, \dots, z_p\}$.

Lemme 1.4

Si $\varphi : [a, b] \to \mathbf{R}$ est en escaliers, π est une subdivision adaptée à φ et ρ une subdivision plus fine que π alors ρ est adaptée à φ .

DÉMONSTRATION

Chaque intervalle de ρ est dans un intervalle de π et donc φ est constante sur chacun d'eux.

Lemme 1.5

Soient $\varphi, \psi : [a, b] \to \mathbf{R}$ des fonctions en escaliers. Soient π et ρ des subdivisions adaptées à chacune. Il existe une subdivision σ adaptée aux deux fonctions.

DÉMONSTRATION

Supposons que $\pi = (n, \{x_0, \dots, x_n\})$ et $\rho = (p, \{z_0, \dots, z_p\})$. On construit σ en ordonnant $\{x_0, \dots, x_n\} \cup \{z_0, \dots, z_p\}$. σ est alors plus fine que π et ρ et donc elle est adaptée à φ et ψ .

Lemme 1.6

Si φ est ψ sont des fonctions en escaliers de [a,b] alors :

1. $\lambda \varphi + \mu \psi$ sont en escaliers pour tous $\lambda, \mu \in \mathbf{R}$;

- 2. $\max(\varphi, \psi)$ est en escaliers;
- 3. $\min(\varphi, \psi)$ est en escaliers.

Définition 1.7

Soit φ une fonction en escaliers et soit $\pi = (n, \{x_0, \dots, x_n\})$ une subdivision adaptée à φ . L'intégrale de φ sur [a, b] est définie par :

$$E(\varphi, \pi) = \sum_{i=1}^{n} \varphi(\xi_i)(x_i - x_{i-1}).$$

avec $\xi_i \in]x_i, x_{i-1}[.$

On note

$$E(\varphi, \pi) = \int_a^b \varphi(t) \, \mathrm{d}t.$$

REMARQUE. La valeur de $E(\varphi, \pi)$ ne dépend pas de la subdivision π choisie. En effet, si σ est plus fine que π alors $E(\varphi, \sigma) = E(\varphi, \pi)$. On considère le cas où on rajoute un point z à $\{x_0, \ldots, x_n\}$ tel que $z \in]x_{i_0-1}, x_{i_0}[$. On a

$$E(\varphi, \sigma) = \sum_{j=1}^{i_0-1} \varphi(\xi_j)(x_j - x_{j-1}) + \varphi(\xi_{i_0})(z - x_{i_0-1}) + \varphi(\xi_{i_0})(x_{i_0} - z) + \sum_{j=i_0+1}^n \varphi(\xi_j)(x_j - x_{j-1})$$

$$= \sum_{j=1}^n \varphi(\xi_j)(x_j - x_{j-1}) = E(\varphi, \pi).$$

De plus, si π et ρ sont des subdivisions adaptées alors il existe σ plus fine que π et ρ et qui est adaptée à φ . On a alors $E(\varphi, \pi) = E(\varphi, \sigma) = E(\varphi, \rho)$.

Proposition 1.8

Soient φ et ψ des fonctions en escaliers de [a, b].

1. Pour tout $\lambda \in \mathbf{R}$,

$$\int_a^b (\lambda \varphi + \psi)(t) dt = \lambda \int_a^b \varphi(t) dt + \int_a^b \psi(t) dt.$$

2. Si $\varphi \leq \psi$ alors

$$\int_a^b \varphi(t) \, \mathrm{d}t \le \int_a^b \psi(t) \, \mathrm{d}t.$$

3.

$$\left| \int_a^b \varphi(t) \, \mathrm{d}t \right| \le \int_a^b |\varphi(t)| \, \mathrm{d}t$$

DÉMONSTRATION

Montrons le 2.

Soit σ une subdivision adaptée à φ et ψ avec $\sigma = (n, \{x_0, \dots, x_n\})$.

$$\int_{a}^{b} \varphi(t) dt = \sum_{j=1}^{n} \varphi(\xi_{j})(x_{j} - x_{j-1}) \le \sum_{j=1}^{n} \psi(\xi_{j})(x_{j} - x_{j-1}) = \int_{a}^{b} \psi(t) dt.$$

Soit f une fonction bornée sur [a,b], i.e. il existe c tel que pour tout $x \in [a,b], |f(x)| \le c$. Soient

$$A = \left\{ \int_{a}^{b} \varphi_{1}(t) dt \, \middle| \, \varphi_{1} \leq f \right\}$$
$$B = \left\{ \int_{a}^{b} \varphi_{2}(t) dt \, \middle| \, \varphi_{2} \geq f \right\}.$$

A est majoré. En effet, $f(x) \leq c$ pour tout $x \in [a,b]$ et donc si $\varphi_1 \leq f$ alors $\varphi_1(x) \leq c$ pour tout $x \in [a,b]$. Comme $x \mapsto c$ est en escaliers,

$$\int_{a}^{b} \varphi_{1}(t) \, \mathrm{d}t \le c(b-a).$$

De même, B est minoré. On pose

$$M = \sup A < +\infty,$$

$$m = \inf B > -\infty.$$

Définition 1.9

Soit f une fonction bornée sur [a,b]. f est intégrable au sens de RIEMANN sur [a,b] si M=m.

DÉFINITION 1.10 (Définition équivalente)

Soit f une fonction bornée sur [a,b]. f est intégrable au sens de RIEMANN si pour tout $\varepsilon>0$, il existe φ_1 et φ_2 en escaliers tels que

$$\varphi_1 \leq f, \ \varphi_2 \geq f \ \text{et} \ \int_a^b (\varphi_2 - \varphi_1)(t) \, \mathrm{d}t \leq \varepsilon.$$

NOTATION. Si f est intégrable alors on note

$$\int_{a}^{b} f(t) \, \mathrm{d}t = M = m$$

son intégrale.

Contre-exemple. Soit h la fonction de Dirichlet définie sur I = [0, 1] par :

$$h(x) = \begin{cases} 1 & \text{si } x \in \mathbf{Q} \\ 0 & \text{sinon} \end{cases}.$$

h n'est pas intégrable au sens de RIEMANN.

Soit φ_1 une fonction en escaliers telle que $\varphi_1 \leq h$. Soit π une subdivision adaptée à φ_1 . Sur chaque intervalle de π il existe un irrationnel, y, où h(y) = 0 et donc $\varphi_1(x) \leq 0$ pour tout x. De même pour φ_2 en escaliers telle que $\varphi_2 \geq h$. On a $\varphi_2 \geq 1$ et donc $M \neq m$.

Proposition 1.11

Soit f bornée sur [a,b]. f est intégrable au sens de RIEMANN si, et seulement si, pour tout $\varepsilon>0$ il existe φ,ψ en escaliers telles que $|f-\varphi|\leq \psi$ et $\int_a^b \psi(t)\,\mathrm{d}t<\varepsilon$.

DÉMONSTRATION

Si f est intégrable alors $\psi = \varphi_2 - \varphi_1$ et $\varphi = \varphi_1$ convient.

Réciproquement, on pose $\varphi_1 = \varphi - \psi$ et $\varphi_2 = \varphi + \psi$.

REMARQUE. Soit f RIEMANN-intégrable sur [a,b]. Si φ,ψ en escaliers telles que $|f-\varphi| \le \psi$ alors

$$\left| \int_a^b f(x) \, \mathrm{d}x - \int_a^b \varphi(x) \, \mathrm{d}x \right| \le \int_a^b \psi(x) \, \mathrm{d}x.$$

Proposition 1.12 (Linéarité et majoration)

On a:

1. Soient f_1 et f_2 RIEMANN-intégrables sur [a,b]. Pour tous $\lambda_1, \lambda_2 \in \mathbf{R}, \lambda_1 f_1 + \lambda_2 f_2$ est RIEMANN-intégrable et

$$\int_{a}^{b} (\lambda_{1} f_{1} + \lambda_{2} f_{2})(x) dx = \lambda_{1} \int_{a}^{b} f_{1}(x) dx + \lambda \int_{a}^{b} f_{2}(x) dx.$$

2. Si f et g sont RIEMANN-intégrables sur [a, b] avec $f \leq g$ alors

$$\int_{a}^{b} f(x) \, \mathrm{d}x \le \int_{a}^{b} g(x) \, \mathrm{d}x.$$

3. Si f est Riemann-intégrable alors $x\mapsto |f(x)|$ est Riemann-intégrable et

$$\left| \int_{a}^{b} f(x) \, \mathrm{d}x \right| \le \int_{a}^{b} |f(x)| \, \mathrm{d}x.$$

DÉMONSTRATION

On démontre :

2. On a

$$\int_a^b f(x) \, \mathrm{d}x = \sup_{\varphi \le f} \int_a^b \varphi(x) \, \mathrm{d}x \le \sup_{\varphi \le g} \int_a^b \varphi(x) \, \mathrm{d}x = \int_a^b g(x) \, \mathrm{d}x.$$

3. Soit $\varepsilon>0$, il existe φ et ψ en escaliers telles que $|f-\varphi|\leq \psi$ et $\int \psi<\varepsilon$. On a $||f|-|\varphi||\leq |f-\varphi|\leq \psi$. Donc |f| est RIEMANN-intégrable, $-|f|\leq f\leq |f|$ donc

$$\left| \int_{a}^{b} f(x) \, \mathrm{d}x \right| \le \int_{a}^{b} |f(x)| \, \mathrm{d}x.$$

1. Supposons $|\lambda_1| + |\lambda_2| \le 1$. f_1 et f_2 sont RIEMANN-intégrables. Alors pour tout $\varepsilon > 0$, il existe φ_1, φ_2 et ψ_1, ψ_2 telles que $|f_{1,2} - \varphi_{1,2}| \le \psi_{1,2}$ et $\int \psi_{1,2} < \varepsilon$. D'où

$$\left|\lambda_{1}+f_{1}+\lambda_{2}f_{2}-\lambda_{1}f_{1}-\lambda_{2}\varphi_{2}\right|\leq\left|\lambda_{1}\right|\psi_{1}+\left|\lambda_{2}\right|\psi_{2}=\tilde{\psi}$$

 et

$$\int_{a}^{b} \tilde{\psi}(x) \, \mathrm{d}x < |\lambda_{1}| \, \varepsilon + |\lambda_{2}| \, \varepsilon < \varepsilon.$$

D'où $\lambda_1 f_1 + \lambda_2 f_2$ intégrable.

Définition 1.13

Soit $\pi = (n, \{x_0, \dots, x_n\})$ une subdivision de [a, b]. On note $\delta(\pi)$ le pas de la subdivision.

$$\delta(\pi) = \max(x_i - x_{i-1}).$$

Soit π une subdivision de $[a,b], (\pi,\xi)=(\pi,\{\xi_1,\ldots,\xi_n\})$ est une division pointée si

Définition 1.15

Soit $f:[a,b]\to \mathbf{R}$ et soit (π,ξ) une subdivision pointée. La somme de RIEMANN $\sum_{\pi,\xi}(f)$ est donnée par

$$\sum_{\pi,\xi} (f) = \sum_{i=1}^{n} f(\xi_i) (x_i - x_{i-1}).$$

Proposition 1.16 (Linéarité de la somme de Riemann)

On a

$$\sum_{\pi,\xi} (f+g) = \sum_{\pi,\xi} (f) + \sum_{\pi,\xi} (g).$$

Remarque. Si φ est en escaliers sur [a, b] alors

$$\varphi = \sum_{i=1}^{n} \lambda_i \mathbb{1}_{I_i}$$

où $I_i \subset [a,b]$.

Théorème 1.17 (Riemann)

Soit f une fonction de [a,b] dans ${\bf R}.$ Si f est RIEMANN-intégrable alors

$$\forall \varepsilon > 0, \exists \eta > 0, \forall (\pi, \xi), \ \delta(\pi) < \eta \implies \left| \sum_{\pi, \xi} (f) - \int_a^b f(x) \, \mathrm{d}x \right| < \varepsilon.$$

Soit J un intervalle inclus dans [a, b]. Pour toute subdivision pointé (π, ξ) ,

$$\left| \sum_{\pi,\xi} (\mathbb{1}_J) - \int_a^b \mathbb{1}_J(x) \, \mathrm{d}x \right| = \left| \sum_{\pi,\xi} (\mathbb{1}_J) - l(J) \right| \le 2\delta(\pi)$$

avec l(J) la longueur de J.

Proposition 1.19

$$\forall \varepsilon > 0, \eta n > 0, \forall (\pi, \xi), \ \delta(\pi) < \eta \implies \left| \sum_{\pi, \xi} (\varphi) - \int_a^b \varphi(x) \, \mathrm{d}x \right| < \varepsilon.$$

DÉMONSTRATION

Si φ est en escalier, il existe λ_i , pour $i=1,\ldots,n$ tels que

$$\varphi = \sum_{i=1}^{n} \lambda_i \mathbb{1}_{I_i}.$$

Soit $\varepsilon > 0$, il existe $\eta > 0$ tel que pour toute subdivision pointée (π, ξ) telle que $\delta(\pi) < \eta$ et

$$\left| \sum_{\pi,\xi} (\mathbb{1}_{J_i}) - \int_a^b \mathbb{1}_{J_i}(x) \, \mathrm{d}x \right| < \varepsilon/(2n)$$

et on conclut par l'inégalité triangulaire.

THÉORÈME 1.20 (RIEMANN)

Soit f:[a,b] RIEMANN-intégrable. Alors pour tout $\varepsilon>0$ il existe $\eta>0$ tel que pour toute subdivision (π,ξ) telle que $\delta(\pi)<\eta$:

$$\left| \sum_{\pi,n} f - \int_{a}^{b} f \right| < \varepsilon.$$

DÉMONSTRATION

f est Riemann-intégrable si, et seulement si

$$\sup_{\varphi_1 \leq f} \int_a^b \varphi_1 = \int_a^b f = \inf_{\varphi_2 \geq f} \int_a^b \varphi_2.$$

Soit $\varepsilon > 0$. Il existe φ_1, φ_2 en escaliers qui encadrent f et dont les intégrales sont $\varepsilon/2$ proches de f. Comme φ_1 et φ_2 sont RIEMANN-intégrables, il existe $\eta_1, \eta_2 > 0$ tels que pour toute subdivision (π, ξ) telle que $\delta(\pi) < \min(\eta_1, \eta_2) = \eta$.

$$\left| \sum_{\pi,\xi} \varphi_1 - \int_b^c \varphi_1 \right| < \varepsilon/2 \text{ et } \left| \sum_{\pi,\xi} \varphi_2 - \int_a^b \varphi_2 \right| < \varepsilon/2.$$

Lemme 1.21 (Relation de Chasles)

Soient a < b < c. f est RIEMANN-intégrable sur [a, c] si, et seulement si, f est RIEMANN-intégrable sur [a, b] et [b, c] et

$$\int_a^c f(t) dt = \int_a^b f(t) dt + \int_b^c f(t) dt.$$

On a

$$\int_{a}^{b} f - \varepsilon \le \int_{a}^{b} \varphi_{1} - \varepsilon/2$$

Soit (π, ξ) tel que $\delta(\pi) < \eta$ alors

$$\int_{a}^{b} f - \varepsilon \le \sum_{\pi, \xi} \varphi_1 \le \sum_{\pi, \xi} f.$$

On a de même

$$\int_{a}^{b} f + \varepsilon \ge \sum_{\pi, xi} f$$

on a alors

$$\left| \int_a^b f - \sum_{\pi, \xi} f \right| \le \varepsilon.$$

1.1 Continuité

DÉFINITION 1.22 (Continuité sur un compact) f est continue sur [a, b] si

$$\forall \varepsilon > 0, \forall x \in [a, b], \exists \eta > 0, \forall y \in [a, b], |x - y| < \eta \implies |f(x) - f(y)| < \varepsilon.$$

DÉFINITION 1.23 (Continuité uniforme sur un compact)

f est uniformément continue sur $\left[a,b\right]$ si :

$$\forall \varepsilon > 0, \exists \eta > 0, \forall (x, y) \in [a, b]^2, |x - y| < \eta \implies |f(x) - f(y)| < \varepsilon.$$

Théorème 1.24 (Heine)

f est continue sur [a, b] si, et seulement si, f est uniformément continue sur [a, b].

Théorème 1.25

Si f est continue sur [a, b] alors f est RIEMANN-intégrable sur [a, b].

DÉMONSTRATION

Soit $(\pi = (n, (x_0, \dots, x_n))$ une subdivision de [a, b]. Soient $\varepsilon > 0$ et

$$\varphi_{\pi}: x \mapsto f(a) \mathbb{1}_{a}(x) + \sum_{i \in \{1, \dots, n\}} f(x_{i}) \mathbb{1}_{]x_{i-1}, x_{i}]}(x).$$

Comme f est continue sur un compact, elle est uniformément continue sur [a, b]. Donc

$$\exists \eta > 0, \forall (x,y), |x-y| < \eta \implies |f(x) - f(y)| < \frac{\varepsilon}{b-a}$$

donc pour π telle que $\delta(\pi) < \eta$ on a

$$|f(x) - \varphi_{\pi}(x)| < \frac{\varepsilon}{b-a}.$$

Comme φ_{π} est en escaliers, f est RIEMANN-intégrable.

Théorème 1.26

Si f est monotone sur [a, b], alors f est RIEMANN-intégrable.

DÉMONSTRATION

Soit $\varepsilon > 0$ et π une subdivision telle que $x_i - x_{i-1} = h$ et $h < \varepsilon/[f(b) - f(a)]$. On pose

$$\varphi_1: x \mapsto \sum_{i=1}^n f(x_{i-1}) \mathbb{1}_{[x_{i-1}, x_i[}(x)]$$

et

$$\varphi_2: x \mapsto \sum_{i=1}^n f(x_i) \mathbb{1}_{]x_{i-1}, x_i]}(x).$$

On a

$$\int_{a}^{b} \varphi_{1}(x) dx = h[f(a) + f(a+h) + \dots + f(a+(n-1)h)]$$

et

$$\int_{a}^{b} \varphi_2(x) dx = h[f(a+h) + \dots f(b)]$$

d'où

$$\int_{a}^{b} (\varphi_1 - \varphi_2)(x) \, \mathrm{d}x = h(f(b) - f(a)) < \varepsilon.$$

Théorème 1.27

Si f est C^1 sur [a, b] alors

$$f(b) - f(a) = \int_a^b f'(t) dt.$$

DÉMONSTRATION

Soit π une subdivision $(n,(x_0,\ldots,x_n))$. Par le théorème des accroissements finis,

$$\forall i, \exists \xi_i \in [x_{i_1}, x_i], \ f(x_i) - f(x_{i-1}) = f'(\xi_i)(x_i - x_{i-1}).$$

D'où

$$\sum_{\pi,\mathcal{E}} f' = \sum_{i=1}^{n} f'(\xi_i)(x_i - x_{i-1}) = \sum_{i=1}^{n} f(x_i) - f(x_{i-1}) = f(b) - f(a).$$

De plus, f' est intégrable donc

$$\lim_{\delta(\pi)\to 0} \sum_{\pi,\xi} (f') = \int_a^b f'(t) \, \mathrm{d}t$$

d'où

$$f(b) - f(a) = \int_a^b f'(t) dt.$$

2 Intégrale double de fonctions à deux variables

Intégration sur un rectangle

Soit $P = [a, b] \times [c, d]$ un pavé de \mathbb{R}^2 .

Définition 2.1

Une subdivision de P est la donnée d'un couple (π_x, π_y) où π_x (resp. π_y) est une subdivision de [a, b] (resp. [c, d]).

Si $\pi_x = (x_0, x_1, \dots, x_m)$ et $\pi_y = (y_0, y_1, \dots, y_n)$ alors les rectangles de la subdivision sont les

$$R_{ij} = [x_{i-1}, x_i] \times [y_{j-1}, y_j]$$

pour tous $1 \le i \le m$ et $1 \le j \le n$.

Définition 2.2

La fonction $\varphi: P \to \mathbf{R}$ est en escaliers s'il existe une subdivision π de P telle que φ est constante sur les rectangles de π . π est alors une subdivision adaptée à φ .

Définition 2.3

Soit φ une fonction en escaliers sur $P=[a,b]\times [c,d]$. L'intégrale de φ sur P est définie

$$\int_{P} \varphi = \sum_{i=1}^{n} \sum_{i=1}^{m} c_{i,j} (x_i - x_{i-1}) (y_j - y_{j-1})$$

où $((x_0,\ldots,x_m),(y_0,\ldots,y_n))$ est une subdivision adaptée à φ et $c_{i,j}$ est la valeur de φ

Définition 2.4

Soit $f: P \to \mathbf{R}$ bornée. Soient M (resp. m) la borne supérieure (resp. inférieure) des intégrales des fonctions en escaliers inférieures (resp. supérieures) à f en tout point sur P.

fest $int\'{e}grable~au~sens~de$ Riemann siM=met on définit

$$\int_{P} f = M = m.$$

Définition 2.5

Soit $f: P \to \mathbf{R}$ bornée. f est intégrable sur P si pour tout $\varepsilon > 0$ il existe φ_1 et φ_2 en escaliers telles que $\varphi_1 \le f \le \varphi_2$ et

$$\int_{P} \varphi_2 - \varphi_1 < \varepsilon.$$

Proposition 2.6

Soit $f: P \to \mathbf{R}$ bornée. f est RIEMANN-intégrable si, et seulement si, pour tout $\varepsilon > 0$, il existe φ, ψ en escaliers telles que $|f - \varphi| \le \psi$ et

$$\int_{n} \psi < \varepsilon.$$

Proposition 2.7

Soit P un pavé de ${\bf R}^2$ et soient f et g RIEMANN-intégrables sur P. Alors :

1. pour tous $\lambda, \mu \in \mathbf{R}, \lambda f + \mu g$ est RIEMANN-intégrable et

$$\int_{P} \lambda f + \mu g = \lambda \int_{P} f + \mu \int_{P} g ;$$

2. l'application $(x,y) \mapsto |f(x,y)|$ est Riemann-intégrable sur P et

$$\left| \int_{P} f \right| \le \int_{P} |f|.$$

Définition 2.8

Soit π une subdivision de $P = [a, b] \times [c, d]$. On prend pour tous i, j dans les bornes de π , $\xi_{ij} \in R_{ij}$. (π, ξ) est une subdivision pointée.

Définition 2.9

Soit $f: P \to \mathbf{R}$ et (π, ξ) une subdivision pointée. La somme de RIEMANN associée est

$$\sum_{\pi,\mathcal{E}} (f) = \sum_{i=1}^{m} \sum_{j=1}^{n} f(\xi_{ij}) |R_{ij}|$$

où $|R_{ij}|$ est l'aire de R_{ij} .

Définition 2.10

Si $\pi = (\pi_x, \pi_y)$ est une subdivision de P. Alors $\delta(\pi) = \max(\delta(\pi_x), \delta(\pi_y))$ est le pas de π .

Théorème 2.11 (Riemann)

Soit $f:P\to\mathbf{R}.$ Si f est Riemann-intégrable sur P alors

$$\forall \varepsilon > 0, \exists \eta > 0, \forall (\pi, \xi), \ \delta(\pi) < \eta \implies \left| \sum_{\pi, \xi} (f) - \int_P f \right| < \varepsilon.$$

REMARQUE. Si φ est une fonction en escaliers sur P alors il existe une subdivision π de P et $(c_{ij}) \in \mathbf{R}^{nm}$ telle que pour tous $x, y \in [a, b] \times [c, d]$

$$\varphi(x,y) = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} \mathbb{1}_{R_{ij}}(x,y).$$

Lemme 2.12 (Fubini pour les fonctions en escaliers)

Soit $\varphi: P \to \mathbf{R}$ en escaliers.

- 1. Pour tout $x \in [a, b]$ (resp. $y \in [c, d]$), la fonction $y \mapsto \varphi(x, y)$ (resp. $x \mapsto \varphi(x, y)$) est en escaliers.
- 2. La fonction

$$x \mapsto \int_{c}^{d} \varphi(x, y) \, \mathrm{d}y$$

est en escaliers sur [a, b]. De même,

$$y \mapsto \int_a^b \varphi(x,y) \, \mathrm{d}x$$

est en escaliers sur [c, d].

3. On a

$$\int_{P} \varphi = \int_{a}^{b} \left(\int_{c}^{d} \varphi(x, y) \, dy \right) dx = \int_{c}^{d} \left(\int_{a}^{b} \varphi(x, y) \, dx \right) dy.$$

DÉMONSTRATION (2. et 3.)

Par la remarque et la linéarité de l'intégrale, il suffit de le montrer pour les fonctions indicatrices de $Q = I \times J = [\alpha, \beta[\times[\gamma, \delta[\subset P.$ On prend donc $\varphi = \mathbb{1}_Q.$ On a :

$$\int_{P} \mathbb{1}_{Q} = (\beta - \alpha)(\delta - \gamma).$$

Pour tous $(x, y) \in P$,

$$\mathbb{1}_{Q}(x,y) = \mathbb{1}_{[\alpha,\beta[}(x)\mathbb{1}_{[\gamma,\delta[}(y).$$

Ainsi.

$$\int_c^d \mathbb{1}_Q(x,y) \, \mathrm{d}y = \mathbb{1}_{[\alpha,\beta[} \int_c^d \mathbb{1}_{[\gamma,\delta[}(y) \, \mathrm{d}y = \mathbb{1}_{[a,b[}(x)(\delta-\gamma).$$

Donc

$$\int_a^b \int_c^d \mathbb{1}_Q(x, y) \, \mathrm{d}y \, \mathrm{d}x = (\beta - \alpha)(\delta - \gamma).$$

Et de même en considérant [a, b] en premier temps.

Théorème 2.13 (Fubini)

Soit $f: P \to \mathbf{R}$ avec $P = [a, b] \times [c, d]$ et f est Riemann-intégrable sur P. Si pour tout $x \in [a, b], y \mapsto f(x, y)$ est Riemann-intégrable sur [c, d] alors

$$x \mapsto \int_{a}^{d} f(x, y) \, \mathrm{d}y$$

est Riemann-intégrable sur [a, b] et

$$\int_{P} f = \int_{a}^{b} \int_{c}^{d} f(x, y) \, \mathrm{d}y \, \mathrm{d}x.$$

De même en échangeant les rôles de x et y.

$$\int_{P} f = \int_{c}^{d} \int_{a}^{b} f(x, y) \, \mathrm{d}x \, \mathrm{d}y.$$

DÉMONSTRATION

On note

$$F(x) = \int_{c}^{d} f(x, y) \, \mathrm{d}y$$

définie pour tout $x \in [a, b]$. On montre que F est RIEMANN-intégrable sur [a, b], *i.e.* pour tout $\varepsilon > 0$,

$$\left| \int_{P} f - \int_{a}^{b} F(x) \, \mathrm{d}x \right| < \varepsilon.$$

Pour tout $\varepsilon > 0$, il existe φ_1, φ_2 en escaliers sur P telles que $\varphi_1 \le f \le \varphi_2$ et $\int_P (\varphi_2 - \varphi_1) < \varepsilon$. On pose pour tout $x \in [a, b]$,

$$\Phi_1(x) = \int_c^d \varphi_1(x, y) \, \mathrm{d}y \le F(x) \le \int_c^d \varphi_2(x, y) \, \mathrm{d}y = \Phi_2(x).$$

Comme Φ_1 et Φ_2 sont en escaliers et

$$\int_{a}^{b} \Phi_{2} - \Phi_{1} = \int_{P} (\varphi_{2} - \varphi_{1}) < \varepsilon$$

par le lemme précédent, F est intégrable. De plus

$$\int_{P} \varphi_1 = \int_{a}^{b} \Phi_1 \le \int_{a}^{b} F \le \int_{a}^{b} \Phi_2 = \int_{P} \varphi_2$$

et donc

$$\int_{P} \varphi_1 - \varphi_2 \le \int_{a}^{b} F - \int_{P} f \le \int_{P} (\varphi_2 - \varphi_1)$$

d'où

$$\left| \int_a^b F - \int_P f \right| \le \int_P \varphi_2 - \varphi_1 < \varepsilon.$$

2.2 Intégration sur domaines plus généraux

Définition 2.14

f est RIEMANN-intégrable à support borné sur ${\bf R}^2$ s'il existe un pavé P tel que f(x)=0 pour $x\not\in P$ et si f est RIEMANN-intégrable sur tout pavé $Q\supset P$. Dans ce cas, on note

$$\int_{Q} f = \int f.$$

Définition 2.15

Soit $A \subset \mathbf{R}^2$. On dit que A est quarrable si :

1. A est borné;

2. $\mathbb{1}_A$ est Riemann-intégrable à support borné.

L'aire de la surface est donnée par

$$|A| = \int \mathbb{1}_A.$$

Proposition 2.16

Soit $g:[a,b]\to \mathbf{R}$ positive et RIEMANN-intégrable alors

$$A = \{(x, y) \in \mathbf{R}^2 \, \middle| \, x \in [a, b], 0 \le y \le g(x) \}$$

est un ensemble quarrable de \mathbb{R}^2 et

$$|A| = \int_a^b g(x) \, \mathrm{d}x.$$

Définition 2.17

Soit $A \subset \mathbf{R}^2$ quarrable et soit $f: \mathbf{R}^2 \to \mathbf{R}$. On dit que f est RIEMANN-intégrable sur A si $\mathbbm{1}_A f$ est RIEMANN-intégrable à support borné. On définit

$$\int_A f = \int \mathbb{1}_A f = \int_P \mathbb{1}_A f$$

où $P \supset A$.

Proposition 2.18

Soit $g:[a,b]\to \mathbf{R}$, positive et RIEMANN-intégrable. Soit

$$A = \{(x, y) \in \mathbf{R}^2 \mid x \in [a, b], 0 \le y \le g(x) \}.$$

Soit f RIEMANN-intégrable sur A et telle que pour tout $x \in [a, b]$, la fonction $y \mapsto f(x, y)$ est RIEMANN-intégrable sur [0, g(x)]. Alors l'application

$$x \mapsto \int_0^{g(x)} f(x, y) \, \mathrm{d}y$$

est Riemann-intégrable sur $\left[a,b\right]$ et

$$\int_a^b \int_0^{g(x)} f(x, y) \, \mathrm{d}y \, \mathrm{d}x = \int_A f.$$

EXEMPLE. Avec [a, b] = [0, 1], g(x) = x et $f(x, y) = x^2y$ on a :

$$\int_{A} f = \int_{0}^{1} \int_{0}^{x} x^{2} y \, dy \, dx$$

$$= \int_{0}^{1} x^{2} \left[\frac{y^{2}}{2} \right]_{0}^{x} dx$$

$$= \int_{0}^{1} \frac{x^{4}}{2} \, dx$$

$$= \left[\frac{x^{5}}{10} \right]_{0}^{1} = \frac{1}{10}.$$

Coordonnées polaires

EXEMPLE. On cherche à intégrer sur le domaine

$$D = \{(x, y) \in \mathbf{R}^2 \mid x^2 + y^2 \le R^2, \ y \ge 0\}$$

la fonction

$$f(x,y) = e^{-(x^2 + y^2)/2}.$$

$$\int_D f = \int_{-R}^R \int_0^{\sqrt{R^2 - x^2}} e^{-(x^2 + y^2)/2} \, \mathrm{d}y \, \mathrm{d}x.$$

L'application:

$$T \colon \begin{cases}]0, +\infty[\times] - \pi, \pi[\to \mathbf{R}^2 \setminus \{(x,0) \mid x \le 0\} \\ (r,\theta) \mapsto (r\cos\theta, r\sin\theta) \end{cases}$$

est inversible.

Soit $f: \mathbf{R}^2 \to \mathbf{R}$, Riemann-intégrable sur un domaine quarrable D. Soit \hat{f} définie sur $]0,+\infty[\times]-\pi,\pi[$ par $\hat{f}(r,\theta)=rf(r\cos\theta,r\sin\theta).$ Alors \hat{f} est intégrable sur $T^{-1}(D)$ et

$$\hat{f}(r,\theta) = rf(r\cos\theta, r\sin\theta).$$

$$\int_D f = \int_{T^{-1}(D)} \hat{f}.$$

$$\int_D f = \int_0^R \int_0^\pi r e^{-r^2/2} \, \mathrm{d}\theta \, \mathrm{d}r = \pi \int_0^R r e^{-r^2/2} = \pi (1 - e^{-R^2/2}).$$

Pour

$$D_R = \left\{ (x, y) \in \mathbf{R}^2 \mid x^2 + y^2 \le R^2 \right\}$$

on a

$$\int_{D_R} f = 2 \int_D f = 2\pi (1 - e^{-R^2/2}).$$

Problème.

$$I = \int_{-\infty}^{+\infty} e^{-x^2/2} dx$$

$$I^2 = \int_{-\infty}^{+\infty} e^{-x^2/2} dx \int_{-\infty}^{+\infty} e^{-y^2/2} dy$$

$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-(x^2+y^2)/2} dx dy$$

$$= \lim_{R \to +\infty} \int_{D_R} f = 2\pi$$

$$I = \sqrt{2\pi}.$$

Chapitre 4

Suites et séries de fonctions

1 SUITES DE FONCTIONS

1.1 **Définitions**

Exemple. Pour $n \in \mathbb{N}$, on définit

$$\forall x \in \mathbf{R}, \ f_n(x) = \frac{1}{1 + nx^2}.$$

Pour tout x non nul,

$$\lim_{n\to +\infty}\frac{1}{1+nx^2}=0.$$

Si x = 0, alors $f_n(0) = 1$ pour tout n.

 f_n « tend » vers la fonction :

$$\forall x \in \mathbf{R}, \ f(x) = \delta_{x,0}$$

et on a montré que pour tout $x \in \mathbf{R}$, $f_n(x) \to f(x)$ quand $n \to +\infty$. Soit $X \subset \mathbf{R}$.

Définition 1.1

Soit $f_n: X \to \mathbf{R}$ définie pour $n \in \mathbf{N}$. On dit que $(f_n)_{n \in \mathbf{N}}$ converge simplement (ou ponctuellement) vers $f: X \to \mathbf{R}$ si

$$\forall x \in X, \lim_{n \to +\infty} f_n(x) = f(x).$$

REMARQUE. La limite simple d'une suite de fonctions continues n'est pas nécessairement continue.

Définition 1.2

Soit $f: X \to \mathbf{R}$. La norme uniforme de f est

$$||f||_{X,u} = \sup \{|f(x)| | x \in X\}.$$

Si f n'est pas bornée sur X alors $||f||_{X,u} = +\infty$.

Remarque. Si $x \mapsto |f(x)|$ atteint son maximum sur X en x_0 alors $||f||_{X,u} = |f(x_0)|$.

Définition 1.3

La distance entre $f,g:X\to {\bf R}$ est

$$d(f,g) = ||f - g||_{X,u}.$$

EXEMPLES.

1. Soit $a \in \mathbf{R}_+^*$ et $f: x \mapsto xe^{-ax}$ pour $x \in X = [0, +\infty[$.

On a

$$||f|| = \frac{1}{ea}.$$

2. Pour $f: x \mapsto 1 - e^{-x}$.

On a

$$||f|| = 1.$$

Définition 1.4

Soit E un **K**-espace vectoriel. Soit $\|\cdot\|: E \to \mathbf{K}$. C'est une norme si :

- 1. pour tous $x, y \in E$, ||x + y|| = ||x|| + ||y||;
- 2. pour tout $\lambda \in \mathbf{K}$ et pour tout $x \in E$, $\|\lambda x\| = |\lambda| \|x\|$;
- 3. pour tout $x \in E$, ||x|| = 0 si, et seulement si, x = 0.

EXEMPLES. Soit C([a, b]) l'ensemble des fonctions continues définies sur [a, b]. On définit, pour $f \in C([a, b])$, et p > 0,

$$||f||_p = \left(\int_a^b |f(x)|^p dx\right)^{1/p}$$

et alors $\|\cdot\|_p$ est une norme, la norme L^p .

$$||f||_{\infty} = \sup_{x \in [a,b]} |f(x)|$$

est une norme.

Proposition 1.5

Soit $X \subset \mathbf{R}$. $\|\cdot\|_{X,u}$ est une norme sur l'espace vectoriel des fonctions bornées sur X.

Définition 1.6

Soit $f_n: X \to \mathbf{R}$ pour $n \in \mathbf{N}$. La suite $(f_n)_{n \in \mathbf{N}}$ converge uniformément vers $f: X \to \mathbf{R}$ si

$$\lim_{n \to +\infty} ||f_n - f||_{X,u} = 0.$$

Proposition 1.7

La convergence uniforme implique la convergence simple.

DÉMONSTRATION

Supposons que f_n converge uniformément vers f sur X. On sait que

$$\forall \varepsilon > 0, \exists N, \forall n \ge N, \|f_n - f\| < \varepsilon.$$

En particulier,

$$\forall x \in X, |f_n(x) - f(x)| \le ||f_n - f||$$

d'où le résultat.

Définition 1.8

Soit $X \subset \mathbf{R}$. $x_0 \in \mathbf{R}$ est adhérent à X si

$$\forall \varepsilon > 0, \exists y \in X, |x - y| < \varepsilon.$$

L'ensemble des points adhérents à X est notée \overline{X} .

1.2 Suites de nombres réels et normes

Soit $(a_n)_{n \in \mathbb{N}}$ une suite telle que $a_n \in \mathbb{R}$ pour tout n entier. S'il existe $a \in \mathbb{R}$ tel que pour tout $\varepsilon > 0$, il existe $N \in \mathbb{N}$ tel

$$\forall \varepsilon > 0, \exists N \in \mathbf{N}, \forall n \in \mathbf{N}, \ n \ge \mathbf{N} \implies |a_n - a| < \varepsilon.$$

Définition 1.9

On dit que (a_n) est une suite de CAUCHY si

$$\forall \varepsilon > 0, \exists N \in \mathbf{N}, \forall n \in \mathbf{N}, \forall m \in \mathbf{N}, (n \ge N \text{ et } m \ge N) \implies |a_n - a_m| < \varepsilon.$$

Proposition 1.10

Si (a_n) est une suite de nombres réels, elle est convergente si, et seulement si, elle est de CAUCHY.

Remarques. Soit E un espace vectoriel muni d'une norme, $\|\cdot\|$.

- 1. Pour tous $v, w \in E$, $|||v|| ||w||| \le ||v w||$.
- 2. Une suite de vecteurs $(v_n)_{n\in\mathbb{N}}$ converge vers $v\in E$ si

$$\forall \varepsilon > 0, \exists N \in \mathbf{N}, \forall n \in \mathbf{N}, \ n \ge N \implies \|v_n - v\| < \varepsilon.$$

3. D'après le premier et le second point, si (v_n) converge vers v alors

$$\lim_{n \to +\infty} \|v_n\| = \|v\|.$$

1.3 Limites fonctionnelles

Soit (f_n) une suite de fonctions de $X \to \mathbf{R}$, telle que $\lim f_n(x)$ existe pour tout $x \in X$. Soit $f(x) = \lim f_n(x)$.

Soit $x_0 \in \overline{X}$, est-ce qu'on a

$$\lim_{x \to x_0} f(x) = \lim_{n \to +\infty} \lim_{x \to x_0} f_n(x)?$$

Proposition 1.11

Soit (f_n) une suite convergent uniformément vers f sur X. Si pour $x_0 \in \overline{X}$ tel que pour tout n, $\lim_{x\to x_0} f_n(x) = l_n \in \mathbf{R}$, alors $\lim_{x\to x_0} l_n(x) = l_n \in \mathbf{R}$, alors $l_n(x) = l_n(x)$.

DÉMONSTRATION

On montre que $(l_n)_{n\in\mathbb{N}}$ est de CAUCHY. Pour tout $x\in X$ et pour tous $n,m\in\mathbb{N}$,

$$|f_n(x) - f_m(x)| \le ||f_n - f_m||_{X,u}.$$

Donc

$$\lim_{x \to x_0} |f_n(x) - f_m(x)| = |l_n - l_m| \le ||f_n - f_m||.$$

Or pour tout $\varepsilon > 0$ on peut prendre n et m assez grands tels que $||f_n - f_m|| < \varepsilon$ par hypothèse de convergence uniforme.

Théorème 1.12

Soit (f_n) une suite uniformément convergente vers f sur X. Soit $x_0 \in \overline{X}$ tel que $\lim_{x\to x_0} f_n(x) = l_n$ pour tout $n \in \mathbb{N}$. Alors

$$\lim_{x \to x_0} \lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} \lim_{x \to x_0} f_n(x).$$

DÉMONSTRATION (Technique des trois ε)

On montre que

$$\forall \varepsilon > 0, \exists \eta > 0, \forall x \in X, |x - x_0| < \eta \implies |f(x) - l| < \varepsilon$$

où $l = \lim l_n$. Pour tout $n_0 \in \mathbf{N}$,

$$|f(x) - l| \le |f(x) - f_{n_0}(x)| + |f_{n_0}(x) - l_{n_0}| + |l_{n_0} - l|.$$

Soit $\varepsilon > 0$. Par définition des limites, il existe n_0 tel que pour tout x, $|f(x) - f_{n_0}(x)|$ et $|l_{n_0} - l|$ par $\varepsilon/3$. Il existe également $\eta > 0$ tel que si $x \in X$ et si $|x - x_0| < \eta$ alors $|f_{n_0}(x) - l_{n_0}| < \varepsilon/3$. Finalement, pour $x \in X$ tel que $|x - x_0| < \eta$ on a $|f(x) - l| < \varepsilon$.

1.4 Continuité

Théorème 1.13

Soit I un intervalle de \mathbf{R} et soit $(f_n)_{n\in\mathbb{N}}$ avec pour tout $n\in\mathbb{N}$, $f_n:I\to\mathbf{R}$ continue en $x_0\in I$. Si $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers $f:I\to\mathbf{R}$. Alors f est continue en x_0 . En particulier, la limite uniforme de fonctions continues sur X est continue sur X.

DÉMONSTRATION

 f_n est continue en x_0 , donc pour tout $n \in \mathbf{N}$

$$\lim_{x \to x_0} f_n(x) = f_n(x_0).$$

On veut montrer que $\lim_{x\to x_0} f(x) = f(x_0)$. Mais on sait que

$$f(x_0) = \lim_{n \to +\infty} f_n(x_0)$$

donc il faut montrer

$$\lim_{x \to x_0} \lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} \lim_{x \to x_0} f_n(x).$$

Mais c'est vrai par le résultat précédent.

REMARQUE. La convergence uniforme ne préserve pas la dérivabilité. En effet, la suite $(f_n)_{n\in\mathbb{N}^*}$ définie sur \mathbf{R} par

$$f_n(x) = \sqrt{x^2 + \frac{1}{n^2}}$$

converge uniformément vers $x\mapsto |x|$ qui n'est pas dérivable en 0.

1.5 Dérivabilité

Proposition 1.14

Soit I un intervalle ouvert et soit $(f_n)_{n\in\mathbb{N}}$ avec pour tout $n, f_n: I \to \mathbf{R}$ dérivable sur I et tel que la suite (f'_n) converge uniformément sur I vers g.

S'il existe $x_0 \in I$ tel que $(f_n(x_0))$ converge alors $(f_n(x))$ converge pour tout $x \in I$.

En particulier, si $f(x) = \lim f_n(x)$ alors pour tout $J \subset I$ borné, (f_n) converge uniformément sur J vers f.

DÉMONSTRATION

On montre que pour tout $x\in I$, la suite de terme général $f_n(x)-f_n(x_0)$ est une suite de CAUCHY. Pour $y_n=f_n(x)-f_n(x_0)$ et $\varphi(x)=f_m(x)-f_n(x)$ on a :

$$|y_m - y_n| = |\varphi(x) - \varphi(x_0)| \le |\varphi'(c)| |x - x_0|$$

où $c \in I$ d'après le théorème des accroissements finis. Mais

$$|\varphi'(c)| = |f'_m(c) - f'_n(c)| \le ||f'_m - f'_n||$$

qui peut être rendu suffisamment petit pour n assez grand.

Théorème 1.15

Soit I un intervalle ouvert. Soit $f_n: I \to \mathbf{R}$ des fonctions indexées par $n \in \mathbf{N}$, dérivables et telles que :

- 1. La suite $(f'_n)_{n \in \mathbb{N}}$ converge uniformément vers $g: I \to \mathbb{R}$ sur I.
- 2. Il existe $x_0 \in I$ tel que $(f_n(x_0))$ converge.

Alors:

- 1. $(f_n(x))$ converge pour tout $x \in I$ et on pose $f(x) = \lim f_n(x)$.
- 2. Pour tout intervalle J borné dans I, (f_n) converge uniformément sur J.
- 3. $f: I \to \mathbf{R}$ est dérivable et f' = g.

DÉMONSTRATION 1. Déjà démontré.

2. On regarde pour $x \in I$,

$$\left| \overbrace{f_m(x) - f_m(x_0)}^{y_m} - \overbrace{(f_n(x) - f_n(x_0))}^{y_n} \right| \le \|f'_m - f'_n\| |x - x_0| ..$$

En passant à la limite $n \to +\infty$ on a :

$$|f_m(x) - f_m(x_0) - (f(x) - f(x_0))| \le ||f'_m - g|| |x - x_0|.$$

En effet, si (h_n) converge uniformément vers h alors $\lim ||h_n|| = ||h||$. Soit $J \subset [-M, M]$. On a alors pour tout $x \in J$,

$$|f_m(x) - f_m(x_0) - (f(x) - f(x_0))| \le 2M||f'_m - g||$$

et donc

$$|f_m(x) - f(x)| \le 2M||f'_m - g|| + |f_m(x_0) - f(x_0)|$$

mais comme le membre de droite ne dépend pas de x,

$$||f_m - f|| \le 2M||f'_m - g|| + |f_m(x_0) - f(x_0)||$$

et le membre de droite tend bien vers 0 quand $m \to +\infty$.

3. Soit $x_1 \in I$, on pose $I^* = I \setminus \{x_1\}$ et f_n^* définie sur I^* par

$$f_n^*(x) = \frac{f_n(x) - f_n(x_1)}{x - x_1}.$$

On pose également pour $x \in I^*$:

$$f^*(x) = \frac{f(x) - f(x_1)}{x - x_1}.$$

On montre que

$$\lim_{n \to +\infty} \|f^* - f_n^*\| = 0.$$

On sait que pour tout $x \in I^*$,

$$|f_n^*(x) - f_m^*(x)| \le ||f_n' - f_m'||.$$

Pour tout $\varepsilon > 0$, il existe N tel que pour tous $n, m \ge N$ on a $||f'_n - f'_m|| \le \varepsilon$ et on fait tendre m vers l'infini ce qui donne

$$|f_n^*(x) - f^*(x)| \le \varepsilon$$

pour $n \ge N$ et pour tout $x \in I^*$. Finalement,

$$\sup_{x \in I^*} |f_n^*(x) - f^*(x)| \le \varepsilon.$$

Contre-exemple. On considère sur [0,1]:

$$f_n(x) = x\left(1 + \frac{1}{n}\right) + (-1)^n.$$

On a $f'_n(x) = 1 + 1/n$, pour g = 1 on a $||f'_n - g|| \to 0$ mais $(f_n(x))$ ne converge nulle part.

1.6 Intégrabilité

En posant $f_n(x) = x^n$ pour $x \in [0,1]$ on a que f_n ne converge pas uniformément vers $\delta_{1,x}$ mais pourtant $\int_0^1 f_n \to 0$ et $\int_0^1 \delta_{1,x} dx = 0$. On a pu dans ce cas échanger l'intégrale

et la limité alors que la convergence n'est pas uniforme.

Théorème 1.16

Soit (f_n) une suite de fonctions intégrables sur [a,b] qui converge uniformément vers fsur [a, b]. Alors f est intégrable et

$$\int_{a}^{b} f = \lim_{n \to +\infty} \int_{a}^{b} f_{n}.$$

Soit $f:[a,b]\to \mathbf{R}$. Si pour tout $\alpha>0$ il existe $f_\alpha:[a,b]\to \mathbf{R}$ telle que : 1. $||f_\alpha-f||\le \alpha$; 2. f_α est intégrable sur [a,b]; alors f est intégrable sur [a,b].

DÉMONSTRATION

Soit $\varepsilon > 0$ et soit $\alpha = \varepsilon/[4(b-a)]$. Il existe f_{α} et g_1, g_2 en escaliers telles que $g_1 \le f_{\alpha} \le g_2$ et $\int g_2 - g_1 < \varepsilon/2$. f_{α} est intégrable et $||f - f_{\alpha}|| \le \alpha$. On définit $h_1 = g_1 - \alpha$ et $h_2 = g_2 + \alpha$ en escaliers. On a :

$$h_1 = g_1 - \alpha \le f_\alpha - \alpha \le f \le f_\alpha + \alpha \le g_2 + \alpha = h_2.$$

De plus $\int g_2 - g_1 < \varepsilon/2 + 2\alpha(b-a) = \varepsilon$.

DÉMONSTRATION (Théorème)

Il reste à démontrer

$$\lim_{n \to +\infty} \int_{a}^{b} f_{n} = \int_{a}^{b} f.$$

Mais

$$\left| \int_{a}^{b} f_{n} - \int_{a}^{b} f \right| = \left| \int_{a}^{b} (f_{n} - f) \right| \le \int_{a}^{b} |f_{n}(x) - f(x)| \, \mathrm{d}x \le (b - a) \|f_{n} - f\| \to 0.$$

$\mathbf{2}$ SÉRIES DE FONCTIONS

Rappel sur les séries numériques

Soit $(a_n)_{n\in\mathbb{N}}$ une suite de nombres complexes. Soit $(S_n)_{n\in\mathbb{N}}$, de terme général

$$\forall n \in \mathbf{N}, \ S_n = \sum_{k=0}^n a_k,$$

la suite des sommes partielles.

- 1. On dit que la série de terme général a_n converge si (S_n) converge et on note la limite $\sum_{k=0}^{\infty} a_k$.
- 2. On dit que $\sum a_n$ converge absolument si $\sum |a_n|$ converge. Si $\sum |a_n|$ converge alors $\sum a_n$ converge.
- 3. Si (a_n) et (b_n) sont deux suites de nombres réels positifs telles que $a_n \leq b_n$ pour tout $n \in \mathbb{N}$. Alors si $\sum b_n$ converge alors $\sum a_n$ converge.

2.2 Séries de fonctions

Soit X une partie de \mathbf{R} . Soit $(f_n)_{n\in\mathbb{N}}$ une suite d'applications de $X\to\mathbf{R}$. Pour tout $x\in X$, $(f_n(x))_{n\in\mathbb{N}}$ est une suite numérique. On peut considérer le problème de la convergence de $\sum f_n(x)$ pour $x\in X$.

Définition 2.1

Pour tous les $x \in X$ tels que $\sum f_n(x)$ converge, on définit

$$S(x) = \lim_{n \to +\infty} \sum_{k=0}^{n} f_k(x) = \sum_{k=0}^{+\infty} f_k(x).$$

On définit $(S_n)_{n \in \mathbb{N}}$ la suite de fonctions définie par :

$$\forall n \in \mathbf{N}, \forall x \in X, \ S_n(x) = \sum_{k=0}^n f_k(x).$$

Si S est défini pour $X' \subset X$ alors S est la limite simple de (S_n) sur X'.

REMARQUE. Si $\sum f_n(x)$ converge de somme S, on définit $R_n(x) = S(x) - S_n(x)$ et on a $\lim R_n(x) = 0$. Réciproquement, soient $S: X \to \mathbf{R}$ et (R_n) vérifiant pour tout $n \in \mathbf{N}$:

$$R_n(x) = S(x) - \sum_{k=0}^{n} f_k(x) = S(x) - S_n(x).$$

Si pour $x \in X$, $\lim R_n(x) = 0$ alors $\sum f_n(x)$ converge de somme S(x).

DÉFINITION 2.2 (Convergence normale)

Soit $\sum f_n$ une série de fonctions définies sur $X \neq \emptyset$ et à valeurs dans \mathbf{R} . $\sum f_n$ converge normalement si la série numérique $\sum \|f_n\|_{X,u}$ est convergente.

Exemple. Pour

$$X_1 = \left\{ x \in \mathbf{R} \,\middle|\, |x| \le \frac{1}{2} \right\}$$

et $h_n(x) = x^n$, la série $\sum h_n(x)$ converge normalement sur X_1 . En effet,

$$||h_n||_{X_1,u} = \sup_{x \in X_1} |h_n(x)| = \frac{1}{2^n}$$

et $\sum 1/2^n$ converge en tant que série géométrique de raison 1/2. Mais sur

$$X_2 = \{x \in \mathbf{R} \mid |x| \le 1\}$$

on a $||h_n||_{X_2,u} = 1$ et donc $\sum ||h_n||_{X_2,u}$ diverge.

Définition 2.3

Soit $\sum f_n$ pour $f_n: X \to \mathbf{C}$ une série de fonctions. Soit (v_n) une suite de nombres réels strictement positifs. On dit que $\sum v_n$ est une série majorante pour $\sum f_n$ si

$$\forall n \in \mathbb{N}, \forall x \in X, |f_n(x)| \le v_n.$$

Proposition 2.4

 $\sum f_n$ est normalement convergente si, et seulement si, elle admet une série majorante convergente.

Exemple. On regarde la série de la suite (f_n) définie sur X par

$$\forall n \in \mathbf{N}, \forall x \in \mathbf{R}, \ f_n(x) = \frac{\sin(nx)}{1 + nx^8 + x^{24} + n^2}.$$

On a pour tout $n \in \mathbb{N}$ et tout $x \in \mathbb{R}$:

$$|f_n(x)| \le \frac{1}{1+n^2} \sim \frac{1}{n^2}$$

qui est de série convergente. Donc $\sum f_n$ est normalement convergente.

Proposition 2.5

Soit (f_n) une suite de fonctions définies de X dans \mathbf{R} telle que $\sum f_n$ converge normalement. Alors (S_n) est uniformément convergente vers S où $S(x) = \lim S_n(x)$ pour tout $x \in X$

DÉMONSTRATION

On procède en deux parties.

1. On montre que la limite de $S_n(x)$ quand $n \to +\infty$ existe pour tout $x \in X$ si, et seulement si, $\sum f_n(x)$ est convergente. On a

$$\sum_{k=0}^{n} |f_n(x)| \le \sum_{k=0}^{n} ||f_n||_{X,u} = T_n$$

et T_n converge car $\sum ||f_n||_{X,u}$ converge. Par comparaison $\sum |f_n(x)|$ converge. Donc pour tout $x \in X$, $\sum |f_n(x)|$ converge et donc $\sum f_n(x)$ converge et donc $S(x) = \sum f_n(x)$ est bien définie.

2. On montre que le reste converge uniformément vers 0, i.e.

$$\sup_{x \in X} |S(x) - S_n(x)| \underset{n \to +\infty}{\longrightarrow} 0.$$

Pour tout $n \in \mathbb{N}$ et tout $x \in X$,

$$|S(x) - S_n(x)| = \left| \sum_{k=n+1}^{+\infty} f_k(x) \right|$$

$$\leq \sum_{k=n+1}^{+\infty} |f_k(x)|$$

$$\leq \sum_{k=n+1}^{+\infty} ||f_k||_{X,u}.$$

Mais

$$\sum_{k=n+1}^{+\infty} ||f_k||_{X,u} \to 0$$

car c'est le reste de $\sum ||f_n||_{X,u}$.

Théorème 2.6

Soit $X \subset \mathbf{R}$ et $x_0 \in \overline{X}$. Si $\sum f_n$ converge normalement sur X et si f_n admet une limite

en x_0 alors on a

$$\sum_{n=0}^{+\infty} \lim_{x \to x_0} f_n(x) = \lim_{x \to x_0} \sum_{n=0}^{+\infty} f_n(x).$$

DÉMONSTRATION

$$S_n(x) = \sum_{k=0}^n f_k(x).$$

On sait que S_n converge uniformément, on en conclut en utilisant le théorème d'échange de limites pour les suites de fonctions.

Théorème 2.7

Soit $\sum f_n$ qui converge normalement sur X et telle que f_n est une fonction continue sur X pour tout $n \in \mathbb{N}$. Alors

$$S(x) = \sum_{k=0}^{+\infty} f_k(x)$$

est une fonction continue.

Soit I un intervalle de \mathbf{R} et soit $f_n: I \to \mathbf{R}$ dérivable sur I pour tout n et telle que 1. $\sum f'_n$ converge normalement; 2. il existe x_0 tel que $\sum f_n(x_0)$ converge. Alors $\sum f_n(x) = S(x)$ est dérivable pour tout $x \in I$ et $S'(x) = \sum f'_n(x)$.

Théorème 2.9

Soit $\sum f_n$ qui converge normalement sur [a,b] et telle que f_n est intégrable pour tout n. Alors $\sum f_n$ est intégrable sur [a,b] et

$$\int_a^b \sum_{n=0}^{+\infty} f_n = \sum_{n=0}^{+\infty} \int_a^b f_n.$$

Chapitre 5

Séries entières