Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет Компьютерных сетей и систем

Кафедра Информатики

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1

по курсу «Интеллектуальный анализ информации»

Сжатие графической информации линейной рециркуляционной сетью

Студент: Проверил: гр. 758641 Ивашенко В.П.

Ярош Г.И.

СОДЕРЖАНИЕ

СЖАТИЕ І	ГРАФИЧЕСКОЙ ИНФОРМАЦИИ ЛИНЕЙНОЙ	
РЕЦИРКУ.	ЛЯЦИОННОЙ СЕТЬЮ	3
1. Цель	· · · · · · · · · · · · · · · · · · ·	3
	работы	
3. Полу	- /ченные результаты	4
4. Выво		7

СЖАТИЕ ГРАФИЧЕСКОЙ ИНФОРМАЦИИ ЛИНЕЙНОЙ РЕЦИРКУЛЯЦИОННОЙ СЕТЬЮ.

1. Цель

Ознакомиться, проанализировать и получить навыки реализации модели линейной рециркуляционной сети для задачи сжатия графической информации. Исследовать эффективность применения рециркуляционной сети для сжатия изображения.

2. Ход работы

Для проведения исследования было выбрано изображение формата JPG размером 1600x1245 пикселей (Рис. 1).

Рис. 1. Исходное изображение.

Далее оно было разбито на L=19920 прямоугольников размером 10x10 пикселей. Каждый такой прямоугольник был преобразован в вектор значений длинной $n=10\cdot 10\cdot 3=300$.

Данный вектор предназначен, как вход для рециркуляционной сети. Соответственно, сеть на внешнем слое имеет n=300 нейронов. На внутреннем скрытом находится p=300 / z=50 нейронов, где z=4 – степень сжатия изображения. Функция активации скрытого слоя – линейная.

Перед обучением нейронной сети выборка была разбита на две части – обучающую, непосредственно для обучения, и тестовую для проверки эффективности работы нейросети.

Нейросеть обучалась с помощью метода стохастического градиентного спуска с адаптивным шагом обучения. В качестве начального значения шага обучения было выбрано lr=0.01.

Обучение останавливалось при достижении среднеквадратичной ошибки значения меньше изначально заданного е.

3. Полученные результаты

После создания модели линейной рецеркуляционной сети было проведено исследование эффективности ее работы для сжатия изображения при переменных входных параматрах.

Зависимость количества эпох обучения от степени сжатия z приведена в таблице 1 и на рисунке 2. Допустимая ошибка е равна 0.0005, коэффициент обучения lr = 0.01. Из зависимости видно, что с ростом коэффициента сжатия растет и количество эпох, необходимых для обучения модели.

Таблица 1. Зависимость количества эпох обучения от степени сжатия

Z	2	3	4	5	6	7	8	9	10
Epochs	2	3	3	6	5	8	12	22	44

Рис. 2. Зависимость количества эпох от степени сжатия

Зависимость количество эпох от заданной допустимой среднеквадратичной ошибки е приведена в таблице 2 и на рисунке 3. Степень сжатия z установлена в 4, коэффициент обучения lr равен 0.001.

Таблица 2. Зависимость количества эпох обучения от допустимой ошибки

e	2e-4	3e-4	4e-4	5e-4	6e-4	7e-4	8e-4	9e-4
Epochs	12	6	4	3	3	3	2	1

Рис. 3. Зависимость количества эпох от допустимой ошибки

Зависимость количества эпох обучения от коэффициента обучения lr при степени сжатия z=4 и допустимой ошибке e=0.005 приведена в таблице 3 и на рисунке 4. Зависимость отражает тот факт, что быстрее всего модель обучается при знаениии коэффициента обучения lr=0.01.

Таблица 3. Зависимость количества эпох обучения от допустимой ошибки

lr	1e-1	1e-2	1e-3	1e-4	1e-5
Epochs	192	3	102	500	500

Рис. 4. Зависимость количества эпох обучения от допустимой ошибки

Количество эпох обучения для разлиных изображений приведено в таблице 4 и на рисунке 5 при допустимой ошибке e=0.005, степени сжатия z=4 и коэффициенте обучения lr=0.01.

Таблица 4. Количество эпох обучения для различных изображений.

Изображение	Размер	Размер	Количество
China China 11	1600x1245	выборки 16000	эпох 3
	1000x788	6310	361
	2560x1440	29491	6
	2048x1152	19024	46
	2459x1503	23483	1

Рис. 5. Количество эпох обучения для различных изображений

4. Вывод

В результате работы была построена модель линейной рецирцуляционной сети с адаптивным шагом обучения. Было проведенно исследование эффективности ее применения для сжатия графической информации.