INDEX OF EXHIBITS

EXHIBIT	Title/Description
1	Plaintiff's Notice of Intent to Sue Letter (February 22, 2019)
2	USPS Certified Mail Return Receipts and Delivery Confirmation for NOI
3	Excerpted pages from U.S. EPA, Clean Air Act Stationary Source Civil Penalty Policy (October 25, 1991)
4	Excerpted pages from U.S. EPA, Clean Air Act National Stack Testing Guidance (April 27, 2009)
5	Excerpted pages from Indiana Department of Environmental Management, Stack Test Guide (last revised August 1, 2018)
6	Excerpted pages from Whiting Refinery Air Emission Statements for 2016-2018
7	Excerpted pages from October 8-12, 2018 Performance Test Reports for Boilers 31, 32, 33, and 34, and corresponding IDEM OAQ Compliance Memorandum (January 10, 2019)
8	Enforcement Referral Letter from Rick Massoels, IDEM Deputy Director of Northwest Regional Office, to Linda Wilson, BP Products North America, Inc. (April 8, 2016)
9	Excerpted pages from October 20, 2015 Performance Test Report for Boiler 32 & corresponding IDEM OAQ Compliance Memorandum (July 25, 2016)
10	Excerpted pages from January 28, 2016 Performance Test Report for Boiler 32 & corresponding IDEM OAQ Compliance Memorandum (June 1, 2016).
11	Excerpted pages from November 1-3, 2016 Performance Test Reports for Boilers 32 and 36, and corresponding IDEM OAQ Compliance Memorandum (September 18, 2017)
12	Excerpted pages from October 10, 2017 Performance Test Report for Boiler 32 & corresponding IDEM OAQ Compliance Memorandum (March 23, 2018)
13	Excerpted pages from October 21, 2015 Performance Test Report for Boiler 36 & corresponding IDEM OAQ Compliance Memorandum (July 25, 2016)
14	Excerpted pages from April 16, 2019 Performance Test Report for Boiler 36

EXHIBIT 1

ENVIRONMENTAL

INTEGRITY PROJECT

Suite 1100

Washington, DC 200005 Main: 202-296-8800

Fax: 202-296-8822

www.environmentalintegrity.org

Via Certified Mail, Return Receipt Requested

February 22, 2019

Donald Porter Whiting Refinery Manager BP Whiting Refinery 2815 Indianapolis Boulevard Whiting, IN 46394

HSSE Manager BP Whiting Refinery 2815 Indianapolis Boulevard Whiting, IN 46394

Jessica L. Gonzalez Managing Attorney – HSSE BP Products North America Inc. 150 W. Warrenville Road Mail Code 200-1 W Naperville, IL 60563 Acting EPA Administrator Andrew R. Wheeler U.S. Environmental Protection Agency Office of the Administrator (1101A) 1200 Pennsylvania Avenue, NW Washington, DC 20460

Office of the Indiana Attorney General Environmental Litigation Division Indiana Government Center South – Fifth Floor 301 West Washington Street Indianapolis, IN 46204

Chief, Air Compliance and Enforcement Branch Indiana Department of Environmental Management 100 North Senate Avenue MC 61-53, IGCN 1003 Indianapolis, IN 46204-2251

RE: Notice of Intent to Sue for Violations of the Clean Air Act at the BP Whiting No. 3 Stanolind Power Station Boilers 31, 32, 33, 34, 36, Duct Burners, and Select Catalytic Reduction systems in Whiting, Lake County, Indiana.

Dear Sirs or Madams:

Pursuant to 42 U.S.C. § 7604(b) of the Clean Air Act, the Environmental Integrity Project ("EIP") is writing in their individual capacity and on behalf of the Sierra Club (collectively, "Citizens"), to provide you with notice of our intent to file suit against BP Products North America, Inc. ("BP") to enforce against past, current, and ongoing violations of the Clean Air Act, 42 U.S.C. § 7401 *et seq.*, at BP's No. 3 Stanolind Power Station Boilers 31, 32, 33, 34, and 36, as well as their associated duct burners and Select Catalytic Reduction systems, located at the BP Whiting Refinery at 2815 Indianapolis Boulevard, in the City of Whiting, Lake County, Indiana 46394. Citizens request the opportunity to meet with you within 45 days to discuss resolution of the matters raised in this Clean Air Act notice letter.

I. BACKGROUND

No. 3 Stanolind Power Station ("3SPS"), also identified as Unit ID 503, contains five

individual boilers, all of which burn refinery gas, natural gas, or liquefied petroleum gas. Boilers 31 and 32 were originally installed in 1948, Boilers 33 and 34 were installed in 1951, and Boiler 36 was installed in 1953 (collectively, the "3SPS Boilers"). Each Boiler is rated at a maximum heat input capacity of 575 MMBtu/hour.

All five 3SPS Boilers were modified in 2008 as a contemporary project to the Whiting Refinery Modernization Project ("WRMP"), a significant expansion of the Whiting Refinery that allowed it to process heavy crude oil from the Canadian tar sands. *See* Whiting Refinery Title V Part 70 Permit, No. T 089-38868-00453 (January 29, 2018) Section D.24.4(x) ("Emissions Unit Description"). Each of the 3SPS Boilers is equipped with a conventional burner and a Select Catalytic Reduction ("SCR") system. From 2010 to 2011, each 3SPS Boiler was also modified to install a direct-fired duct burner, each rated at 41 mmBTU/hr, equipped with low-NOx burners, and controlled by the SCR system. Each 3SPS Boiler, its associated Duct Burner, and SCR system are collectively referred to as Stacks 503-01 through 503-05, respectively.¹

The violations identified below significantly increase emissions of particulate matter ("PM"), including inhalable particles that are 10 micrograms or less in diameter ("PM $_{10}$ "). Extensive, peer-reviewed studies have demonstrated that human exposure to PM has well-documented links to serious health risks, such as a wide array of respiratory issues, heart attacks and irregular heartbeat, aggravated asthma, and premature death in individuals with heart or lung disease. Because particle size is directly related to their potential for causing health problems, fine particles less than 10 micrometers in diameter like PM $_{10}$ pose the greatest risks due to their ability to penetrate deep into the lungs and enter the bloodstream. EPA has not identified any "safe" level of exposure to particulates, and health risks increase in proportion to increases in fine particle pollution.

II. APPLICABLE CLEAN AIR ACT REQUIREMENTS

The Whiting Refinery is subject to applicable provisions of the Indiana State Implementation Plan ("SIP"), which is a set of state laws and regulations designed to protect air quality in Indiana and, more specifically, to achieve compliance with federally promulgated national ambient air quality standards ("NAAQS"). SIPs are required by Section 110 of the Clean Air Act ("CAA"), 42 U.S.C. § 7410, and must be approved by the U. S. Environmental Protection Agency ("EPA").

SIPs additionally require sources to obtain CAA permits for project construction or modification. Once issued, the requirements of such permits are federally enforceable. Sources must also obtain and periodically renew operating permits under Title V of the CAA, which incorporate all applicable requirements, including federally enforceable permits for construction or modification issued by a State pursuant to its SIP. *See generally* 326 IAC 2-1.1-2 *et seq*.

associated Duct Burner, and SCR system (respectively) in the context of violations of the applicable 0.010 lb/mmBtu PM_{10} emissions limitation (including for violations preceding the 2016 permit).

2

¹ See Significant Permit Modification, No. SSM 089-36656-00453 (issued June 14, 2016), Section D.24.4(b)(2). IDEM did not start using the terms Stacks 503-01 through Stack 503-05 to refer to each 3SPS Boiler, its associated Duct Burner, and SCR system collectively, until this 2016 permit revision. As these designations are merely terms of art and do not affect any of BP's actual obligations under its Title V permit, for the purpose of simplicity the remainder of this notice letter will use Stacks 503-01 through 503-05 when referring to each collective 3SPS Boiler,

Violations of emission limits and other requirements enumerated in Title V permits or specified in the SIP are independently enforceable under federal law. *See* 326 IAC 2-2-1(v). Here, BP's federally enforceable Title V permits and Indiana's SIP impose two specific limits on the emissions of PM₁₀ applicable to each 3SPS Boiler and its associated Duct Burner and SCR system.

The Indiana SIP includes provisions that limit PM_{10} emissions from each of the five 3SPS Boiler stacks at Whiting Refinery to no more than 0.0075 lb/mmBtu and 4.28 lb/hour. 326 IAC 6.8-2-6(a). These PM_{10} emissions limitations apply separately to each stack serving³ the 3SPS Boilers and are specific to the Boilers – they do not apply to the Duct Burners or collateral emissions associated with SCR. 326 IAC 6.8-2-6(d) makes clear that these PM_{10} emissions limitations include **both** filterable and condensable PM_{10} emissions. *Id.* (stating that the emission limits in subsection (a) "apply to the sum of the filterable (front half) and condensible (back half) [sic] particulate matter."). These SIP provisions were approved by EPA in 2008 pursuant to 40 C.F.R. Part 52, Subpart P, and became effective on May 30, 2008.

These SIP PM₁₀ emissions limitations have also been explicitly incorporated as requirements of BP's federally enforceable Title V, Part 70 Operating Permit for the BP Whiting Refinery issued by the Indiana Department of Environmental Management ("IDEM"). As the Indiana SIP itself recognizes, any requirements or emissions limitations established in a Title V operating permit are also federally enforceable, regardless of whether such limits are included in the SIP. . 326 IAC 2-2-1(v)(1)-(3); see also 326 IAC 2-1.1-4(a) ("Federal provisions") (stating that "[n]othing in this article shall allow for the circumvention or violation of any federal law or regulation[.]").

Finally, States are also authorized, through their SIPs, to impose additional emissions limitations on individual sources pursuant to the CAA's Prevention of Significant Deterioration ("PSD") and Nonattainment New Source Review ("NSR") programs. *See generally* 326 IAC 2-1.1-4, 2-2 and 2-3 (Indiana SIP provisions implementing PSD and NSR). States determine the specific emissions limitations applicable under these programs, the limits themselves are federally enforceable requirements. Pursuant to this authority, IDEM established an additional PM₁₀ emissions limitation for Whiting Refinery in its Title V operating permit, which limits the **combined** PM₁₀ emissions from each 3SPS Boiler stack, its associated Duct Burner, and collateral SCR emissions, to 0.010 lb/mmBtu. *See* Whiting Refinery Title V Part 70 Permit, No. T 089-38868-00453 (January 29, 2018) ("2018 Title V Permit"), Section D.24.4(b)(2). This

3

² 326 IAC 2-2-1(v) states that federally enforceable limitations and conditions include all of the following: (1) requirements developed pursuant to 40 CFR Part 60 and 40 CFR Part 61; (2) requirements within the Indiana SIP; and (3) any permit requirements established pursuant to 40 CFR Part 52.21 or 40 CFR Part 51, Subpart I, "including operating permits issued under an EPA-approved program that is incorporated into the SIP and expressly requires adherence to any permit issued under the program."

³ 326 IAC 6.8-2-2(2) clarifies that when an emissions limitation applies to "each stack serving" a facility/facilities, that said emissions limitation applies to each individual stack of the multiple stacks serving the facility/facilities.

⁴ See U.S. EPA. Final Rule: Approval and Promulgation of Air Quality Implementation Plans; Indiana; Revisions to Particulate Matter Rules. 73 Fed. Reg. 23356 (April 30, 2008). The Final Rule also states that the test methods BP must use to demonstrate compliance "are designed to capture both the filterable and condens[a]ble PM fractions." *Id.* at 23357.

 PM_{10} emissions limitation also explicitly includes both filterable and condensable PM_{10} . *Id.* at Section D.24.11(b).

A. The 2012, 2015, 2016, and 2018 Title V Operating Permits

As stated above, BP's PM₁₀ emissions limitations are explicitly incorporated as enforceable requirements in the Title V, Part 70 Operating Permit for BP's Whiting Refinery issued by IDEM. While Whiting Refinery's Title V permit has been subject to numerous modifications and renewals over the past decade, four are directly relevant here: Permit No. SSM 089-32033-00453 (issued December 3, 2012); Permit No. T 089-30396-00453 (issued December 8, 2014); Permit No. SSM 089-36656-00453 (issued June 14, 2016); and Permit No. T 089-38868-00453 (issued January 29, 2018). Each permit is described briefly below, and Table 1 provides a summary of each and its applicable PM₁₀ requirements.

On December 3, 2012, BP was issued a Significant Source Modification Permit No. SSM 089-32033-00453 ("2012 Title V Permit"), which established several new requirements for direct-fired Duct Burners 31, 32, 33, 34, and 36, which had recently been installed at 3SPS. In relevant part, Section D.24.1.1 limited PM₁₀ emissions (filterable and condensable) from each 3SPS Boiler to 0.0075 lb/mmBtu and 4.28 lb/hour. Further, Section D.24.4(b)(3) limited PM₁₀ emissions from Stacks 503-01 through 503-05⁵ to 0.010 lb/mmBtu.

On December 8, 2014, BP was issued Part 70 Operating Permit Renewal, No. T 089-30396-00453, which became effective on January 1, 2015 ("2015 Title V Permit"). The 2015 Title V Permit retained both PM_{10} emissions limits unchanged from the 2012 Title V Permit, in the same corresponding sections.

On June 14, 2016, BP was issued Significant Permit Modification, No. SSM 089-36656-00453 ("2016 Title V Permit"). As noted previously, while the 2016 Title V Permit revised the language of Section D.24.4(b) to clarify its original intent (and re-numbered some provisions), it did not modify either PM_{10} emissions limit or any obligations relating to these limits.

On January 29, 2018, BP was issued Significant Permit Modification, No. T 089-38868-00453 ("2018 Title V Permit") for the 2015 Title V Permit. The 2018 Title V Permit retained both PM₁₀ emissions limits unchanged from the 2016 Title V Permit, in the same corresponding sections. However, it included a new Section D.24.11(b), which imposed additional compliance testing requirements for PM and PM₁₀ at the 3SPS Boilers and Stacks 503-01 through 503-05.

_

⁵ Section D.24.4(b), as originally drafted in the 2012 Title V Permit, was poorly worded and left some ambiguity as to whether the 0.010 lb/mmBtu limit was also intended to apply to emissions from the 3SPS Duct Burners. IDEM rectified this language in Permit No. SSM 089-36656-00453 (June 14, 2016) to explicitly clarify the provision's original intent that the 0.010 lb/mmBtu limit applies to all combined emissions from Stacks 503-01 through 503-05. *See* IDEM, Technical Support Document for SSM 089-36656-00453 at page 24.

Table 1 Permits and Associated PM₁₀ Limits

Permit	2012 Permit	2015 Permit	2016 Permit	2018 Permit
Dates Applicable	12/3/2012 -	1/1/2015 -	6/14/2016 -	1/29/2018 -
	12/31/2014	6/14/2016	1/29/2018	Present
	0.0075 lb/mmBtu	0.0075 lb/mmBtu	0.0075 lb/mmBtu	0.0075 lb/mmBtu
PM ₁₀ Limit (3SPS Boilers Only)	4.28 lb/hour	4.28 lb/hour	4.28 lb/hour	4.28 lb/hour
	See D.24.1.1	See D.24.1	See D.24.1	See D.24.1
PM ₁₀ Limit	0.010 lb/mmBtu	0.010 lb/mmBtu	0.010 lb/mmBtu	0.010 lb/mmBtu
(Stacks 503-01 through 503-05)	See D.24.4(b)(3)	See D.24.4(b)(3)	See D.24.4(b)(2)	See D.24.4(b)(2)

B. Requirements for Demonstrating Compliance

Upon a failed stack test, BP is out of compliance with its PM₁₀ emissions limitations until it successfully demonstrates compliance. Indiana's SIP imposes clear requirements for demonstrating compliance with the 0.0075 lb/mmBtu and 4.28 lb/hour PM₁₀ emissions limitations specifically applicable to each 3SPS Boiler at Whiting Refinery through periodic stack testing "in accordance with the procedures set forth in 40 CFR 60, Appendix A, Methods 1-5*, or other procedures approved by the commissioner and U.S. EPA." *See* 326 IAC 6.8-1-3. This provision also explicitly incorporates "*40 CFR 60, Appendix A, Methods 1-5" by reference into the Indiana SIP. The SIP also states that total quantities of PM emissions at Whiting Refinery "shall be determined in accordance with" 40 CFR 51, Appendix M, Method 201A, 40 CFR 51, Appendix M, Method 202A, or 40 CFR 60, Appendix A, Method 5, and that alternatives to these methods may only be used "if they are approved in writing by U.S. EPA prior to the test." 326 IAC 6.8-2-6(d).

EPA's longstanding interpretation of the CAA is that "the CAA requires continuous compliance with emissions limits[.]" *See* U.S. EPA, Clean Air Act National Stack Testing Guidance (April 27, 2009)⁶ at 14 (citing 42 U.S.C. § 7602(k)). In order to ensure sources comply with their emissions limitations "without interruption," the CAA authorizes penalties for multiple days of continuing violations, and establishes a presumption that violations are continuous until the source proves that it is in compliance. *Id.* (citing 42 U.S.C. § 7413(e)). Consequently, on a failed stack test, violations are "assumed to be continuous from the first provable date of violation until the source demonstrates compliance." *See* U.S. EPA, Clean Air Act Stationary

5

⁶ EPA's 2009 Stack Testing Guidance applies to "[a]ny performance testing conducted for the purposes of determining and demonstrating compliance with the applicable standards of 40 CFR Parts 60, 61, and 63 using promulgated test methods, other test methods or procedures cited in the applicable subpart(s), or alternative test methods approved by the Administrator under §§ 60.8, 61.13, or 63.7." *See* 2009 Guidance at page 3.

BP is explicitly required by the Indiana SIP to determine compliance with its SIP PM_{10} emissions limitations using the applicable standards of 40 CFR Part 60, Appendix A, Methods 1-5. 326 IAC 6.8-1-3; 326 IAC 6.8-2-6(d). Therefore, EPA's 2009 Stack Test Guidance is applicable here.

Source Civil Penalty Policy (October 25, 1991) at 11-12; see also 42 U.S.C. § 7413(e).

Section D.24.11(b) of the 2018 Title V Permit states that in order to demonstrate compliance with Condition D.24.4, BP "shall perform PM and PM₁₀ testing" of each Stack 503-01 through 503-05 "at least once every 5.0 years from the date of the most recent valid compliance demonstration." Section D.24.11(b) further provides that all "[t]esting shall be conducted in accordance with the provisions of 326 IAC 3-6 (Source Sampling Procedures)," which incorporates federal testing standards at Subpart 60, and notes that Section C of the Permit "contains the Permittee's obligation with regard to the performance testing required by this condition."

Section C.19 of the 2018 Title V Permit, entitled "Actions Related to Noncompliance Demonstrated by a Stack Test," states that when "the results of a stack test... exceed the level specified in any condition of this permit," BP "shall submit a description of its response actions to IDEM, OAQ, no later than seventy-five (75) days after the date of the test," and perform a retest to demonstrate compliance "no later than one hundred eighty (180) days after the date of the test." BP remains in continuing violation of this performance testing requirement until it successfully performs the required retest (which does not need to successfully demonstrate compliance for the purposes of this specific testing requirement).

III. VIOLATIONS OF THE CLEAN AIR ACT

As discussed further below, BP's available stack test reports show that BP has exceeded both the 0.0075 lb/mmBtu and 4.28 lb/hour PM₁₀ emissions limitations applicable to each 3SPS Boiler and the 0.010 lb/mmBtu PM₁₀ emissions limitations applicable to each Stack 503-01 through 503-05 on multiple occasions, in violation of the requirements of Indiana's SIP, BP's Title V Operating Permit for the Whiting Refinery, and 42 U.S.C. § 7661a(a). The information presented below is sufficient to enable BP to ascertain the nature of each alleged violation, and when and where it occurred.

The information below encompasses **all** stack tests for 3SPS, from the years 2012 to present, that Citizens have been able to obtain through IDEM's website, Virtual File Cabinet, and other publicly available records. With the sole exception of the Boiler 32 Test on October 10, 2017, all stack test results show that BP has failed to meet its applicable PM₁₀ emissions limitations at the 3SPS Boilers or Stacks 503-01 through 503-05. Consequently, per the requirements of Indiana's SIP, BP's Title V permits, and relevant EPA guidance, with the exception of the brief period of compliance following the October 10, 2017 test, **all** of the following violations alleged have been continuous from the first provable date of violation, are currently ongoing, and continuing for each day until BP successfully demonstrates compliance with the applicable limits in accordance with the procedures set forth in 40 CFR 60, Appendix A, Methods 1-5 and 326 IAC 3-6.

The results of these stack tests are summarized in Table 2 below. Text in red indicates a violation of an applicable PM_{10} emissions limitation.

Table 2 – 2015-2018 Stack Test Results for 3SPS Boilers and Stacks 503-01 through 503-05

Test Date(s)	Unit(s) ⁷	Filterable	Condensable	Total	Filterable	Condensable	Total
		lb/mmBtu	lb/mmBtu	lb/mmBtu	lb/hour	lb/hour	lb/hour
8/3/20158	Boiler 32	-	-	0.0171	-	-	10.33
	and Stack						
8/5/20159	Boiler 36	-	-	0.0151	-	=	9.42
	and Stack						
10/20/2015	Boiler 32	0.00653	=	0.0177	0.365	9.572	9.937
	and Stack						
10/21/2015	Boiler 36	-	=	0.0137	0.287	7.501	7.788
	and Stack						
1/28/2016	Boiler 32	0.0018	0.018	0.02	0.9796	10.0497	11.029
	and Stack						
11/1/2016 -	Boiler 32	INVALID	INVALID	INVALID	INVALID	INVALID	INVALID
11/2/2016	and Stack						
11/2/2016 –	Boiler 36	0.001	0.02	0.021	-	12.95	12.95
11/3/2016	and Stack						
10/10/2017	Boiler 32	0.003	0.0017	0.0048	2.059	1.164	3.223
	and Stack						
10/8/2018	Boiler 31	0.0043	0.0112	0.0154	2.588	6.73	9.318
	and Stack						
10/9/2018	Boiler 32	0.0036	0.0126	0.0163	2.232	7.77	10.002
	and Stack						
10/11/2018	Boiler 33	0.0053	0.0098	0.0151	3.156	5.853	9.009
	and Stack						
10/12/2018	Boiler 34	0.0051	0.0063	0.0114	3.3	4.075	7.375
	and Stack						

 $^{^7}$ The data provided in each of BP's stack tests indicate that they account for PM $_{10}$ emissions from both the 3SPS Boilers individually, as well as their associated Duct Burners and SCRs, and their compliance certifications indicate that they have been submitted to demonstrate compliance with both the boiler-specific PM $_{10}$ limitations and the combined PM $_{10}$ limitation for Stacks 503-01 through 503-05. The stack tests, however, do not clearly state precisely how BP calculated emissions from each separate unit. While Citizens have not been able to determine from these stack tests precisely what methodology BP used to account for emissions from each separate unit, the results for each stack test clearly indicate that BP failed both limits regardless. (It is particularly worth noting that in almost all cases, BP's test results indicate that it far exceeded **both** PM $_{10}$ limits on the basis of condensable PM $_{10}$ **alone**). As discussed further below, IDEM has also determined that the results of each of these stack tests demonstrated noncompliance with both limits.

⁸ Citizens have been unable to obtain BP's reports for the August 3, 2015 stack test at Boiler 32 and the August 5, 2015 stack test at Boiler 36, as they are not publicly available through IDEM's website or Virtual File Cabinet. The results for these two tests have been obtained from an April 8, 2016 letter sent from IDEM to BP regarding these two tests. *See* Enforcement Referral Letter from Rick Massoels, IDEM Deputy Director of Northwest Regional Office, to Linda Wilson, BP Products North America, Inc. (April 8, 2016).

⁹ See supra note 8.

A. Violations of the Indiana SIP and Title V Permit PM₁₀ Limits at 3SPS Boiler 31 and Stack 503-01

October 8, 2018

On October 8, 2018, BP's stack performance test for Boiler 31 recorded an average PM₁₀ emissions rate of 0.0154 lb/mmBtu, and 9.318 lb/hour. *See* Compliance Emissions Test Report, Boiler 31 Stack (October 8, 2018) at Section 3.0, Page 4. Based on these results, IDEM determined that BP was out of compliance with its PM₁₀ emissions limitations for both Boiler 31 and Stack 503-01 on October 8, 2018. *See* Office Memorandum re: BP Products North America, Inc. from Thomas A. Kline, IDEM Office of Air Quality, to Rick Massoels, Deputy Director of the Northwest Regional Office (January 10, 2019). The following violations are currently ongoing, and continuing for each day until BP successfully demonstrates compliance with the limit in accordance with the procedures set forth in 40 CFR 60, Appendix A, Methods 1-5 and 326 IAC 3-6.

Claim 1: Effective October 8, 2018, Boiler 31 is in violation of the 0.0075 lb/mmBtu and 4.28 lb/hour PM_{10} emissions limitations applicable to each 3SPS Boiler stack under Indiana SIP provision 326 IAC 6.8-2-6(a). These violations are ongoing, and have continued for 138 days through February 22, 2019.¹⁰

Claim 2: Effective October 8, 2018, Boiler 31 is in violation of Section D.24.1 of its 2018 Title V Permit, which explicitly incorporates the 0.0075 lb/mmBtu and 4.28 lb/hour PM₁₀ emissions limitations of 326 IAC 6.8-2-6(a), making them enforceable conditions of that permit. These violations are ongoing, and have continued for 138 days through February 22, 2019.

Claim 3: Effective October 8, 2018, Stack 503-01 is in violation of Section D.24.4(b)(2) of its 2018 Title V Permit, which limits PM₁₀ emissions at each combined Boiler Stack 503-01 through 503-05 to 0.010 lb/mmBtu. These violations are ongoing, and have continued for 138 days through February 22, 2019.

B. Violations of the Indiana SIP and Title V Permit PM₁₀ Limits at 3SPS Boiler 32 and Stack 503-02

1. August 3, 2015

On August 3, 2015, BP's stack performance test for Boiler 32 recorded an average PM₁₀ emissions rate of 0.0171 lb/mmBtu, and 10.33 lb/hour. *See* Enforcement Referral Letter from Rick Massoels, IDEM Deputy Director of Northwest Regional Office, to Linda Wilson, BP Products North America, Inc. (April 8, 2016). Based on these results, IDEM determined that BP was out of compliance with its PM₁₀ emissions limitations for both Boiler 32 and Stack 503-02 on August 3, 2015. *Id*.

Claim 1: Effective August 3, 2015, Boiler 32 was in violation of the 0.0075 lb/mmBtu

¹⁰ Table 3 provides a summary of each unit's violations, the date ranges for said violations, and the calculated total days of continuous violation based on those date ranges.

and 4.28 lb/hour PM₁₀ emissions limitations applicable to each 3SPS Boiler stack under Indiana SIP provision 326 IAC 6.8-2-6(a). These violations continued each day until October 10, 2017, for a total of 799 days, when BP's stack performance test for Boiler 32 recorded an average PM₁₀ emissions rate of 0.0048 lb/mmBtu, and 3.223 lb/hour. *See* Compliance Emissions Test Report, Boiler 32 Stack (October 10, 2017) at Section 3.0, Page 4.

Claim 2: Effective August 3, 2015, Boiler 32 was in violation of Section D.24.1 of the 2015 Title V Permit, which explicitly incorporates the 0.0075 lb/mmBtu and 4.28 lb/hour PM₁₀ emissions limitations of 326 IAC 6.8-2-6(a), making them enforceable conditions of that permit. These violations continued each day until October 10, 2017, for a total of 799 days.

Claim 3: Effective August 3, 2015, Stack 503-02 was in violation of Section D.24.4(b)(3) of the 2015 Title V Permit, which limits PM_{10} emissions at each combined Boiler, Duct Burner, and SCR stack to 0.010 lb/mmBtu. These violations continued each day until October 10, 2017, for a total of 799 days.

2. October 20, 2015

On October 20, 2015, BP's stack performance test for Boiler 32 recorded an average PM₁₀ emissions rate of 0.0177 lb/mmBtu, and 9.937 lb/hour. *See* Compliance Emission Test, Boiler 32 Stack (October 20, 2015) at Table 4-1, Page 4-2. Based on these results, IDEM determined that BP was out of compliance with its PM₁₀ emissions limitations for both Boiler 32 and Stack 503-02 on October 20, 2015. *See* Office Memorandum re: BP Products North America, Inc. from Doug Van Demark, IDEM Office of Air Quality, to Rick Massoels, Deputy Director of the Northwest Regional Office (July 25, 2016).

Claim 1: Effective October 20, 2015, Boiler 32 remained in violation of the 0.0075 lb/mmBtu and 4.28 lb/hour PM₁₀ emissions limitations applicable to each 3SPS Boiler stack under Indiana SIP provision 326 IAC 6.8-2-6(a). These violations continued each day until October 10, 2017.

Claim 2: Effective October 20, 2015, Boiler 32 remained in violation of Section D.24.1 of the 2015 Title V Permit, which explicitly incorporates the 0.0075 lb/mmBtu and 4.28 lb/hour PM₁₀ emissions limitations of 326 IAC 6.8-2-6(a), making them enforceable conditions of that permit. These violations continued each day until October 10, 2017.

Claim 3: Effective October 20, 2015, Stack 503-02 remained in violation of Section D.24.4(b)(3) of the 2015 Title V Permit, which limits PM_{10} emissions at each combined Boiler Stack 503-01 through 503-05 to 0.010 lb/mmBtu. These violations continued each day until October 10, 2017.

3. <u>January 28, 2016</u>

On January 28, 2016, BP's stack performance test for Boiler 32 recorded an average PM₁₀ emissions rate of 0.02 lb/mmBtu, and 11.029 lb/hour. *See* Report on Particulate Testing, Boiler 32 Stack (January 28, 2016) at Table 2-1, Page 2-1. Based on these results, IDEM

determined that BP was out of compliance with its PM_{10} emissions limitations for both Boiler 32 and Stack 503-02 on January 28, 2016. See Office Memorandum re: BP Whiting from Luke Boyer, IDEM Office of Air Quality, to Rick Massoels, Deputy Director of the Northwest Regional Office (June 1, 2016).

Claim 1: Effective January 28, 2016, Boiler 32 remained in violation of the 0.0075 lb/mmBtu and 4.28 lb/hour PM₁₀ emissions limitations applicable to each 3SPS Boiler stack under Indiana SIP provision 326 IAC 6.8-2-6(a). These violations continued each day until October 10, 2017.

Claim 2: Effective January 28, 2016, Boiler 32 remained in violation of Section D.24.1 of the 2015 Title V Permit, which explicitly incorporates the 0.0075 lb/mmBtu and 4.28 lb/hour PM_{10} emissions limitations of 326 IAC 6.8-2-6(a), making them enforceable conditions of that permit. These violations continued each day until October 10, 2017.

Claim 3: Effective January 28, 2016, Stack 503-02 remained in violation of Section D.24.4(b)(3) of the 2015 Title V Permit, which limits PM₁₀ emissions at each combined Boiler Stack 503-01 through 503-05 to 0.010 lb/mmBtu. These violations continued each day until October 10, 2017.

4. November 2, 2016

On November 2, 2016, BP's stack performance test for Boiler 32 recorded an average PM₁₀ emissions rate of 0.0047 lb/mmBtu, and 2.806 lb/hour. *See* Compliance Emissions Test Report, Boiler 32 Stack and Boiler 36 Stack (November 1-3, 2016) at Section 3.0, Page 5. However, IDEM's review found that the reported results were invalid, because BP's report had not included the sum of all filterable and condensable PM₁₀ in calculating PM₁₀, as explicitly required by 326 IAC 6.8-2-6 and BP's Title V Permit. *See* Office Memorandum re: BP Products North America from Kale Popp, IDEM Office of Air Quality, to Rick Massoels, Deputy Director of the Northwest Regional Office (September 18, 2017). Accordingly, IDEM determined that because PM₁₀ emissions could not be accurately calculated from Boiler 32, the stack test could not be used for compliance determination. Accordingly, IDEM determined that BP was out of compliance with its PM₁₀ emissions limitations for both Boiler 32 and Stack 503-02 on November 2, 2016. *Id*.

Claim 1: Effective November 2, 2016, Boiler 32 remained in violation of the 0.0075 lb/mmBtu and 4.28 lb/hour PM₁₀ emissions limitations applicable to each 3SPS Boiler stack under Indiana SIP provision 326 IAC 6.8-2-6(a). These violations continued each day until October 10, 2017.

Claim 2: Effective November 2, 2016, Boiler 32 remained in violation of Section D.24.1 of the 2016 Title V Permit, which explicitly incorporates the 0.0075 lb/mmBtu and 4.28 lb/hour PM₁₀ emissions limitations of 326 IAC 6.8-2-6(a), making them enforceable conditions of that permit. These violations continued each day until October 10, 2017.

Claim 3: Effective November 2, 2016, Stack 503-02 remained in violation of Section

D.24.4(b)(2) of the 2016 Title V Permit, which limits PM₁₀ emissions at each combined Boiler Stack 503-01 through 503-05 to 0.010 lb/mmBtu. These violations continued each day until October 10, 2017.

5. October 9, 2018

On October 9, 2018, BP's stack performance test for Boiler 32 recorded an average PM₁₀ emissions rate of 0.0163 lb/mmBtu, and 10.002 lb/hour. *See* Compliance Emissions Test Report, Boiler 32 Stack (October 9, 2018) at Section 3.0, Page 4. Based on these results, IDEM determined that BP was out of compliance with its PM₁₀ emissions limitations for both Boiler 32 and Stack 503-02 on October 9, 2018. *See* Office Memorandum re: BP Products North America, Inc. from Thomas A. Kline, IDEM Office of Air Quality, to Rick Massoels, Deputy Director of the Northwest Regional Office (January 10, 2019).

Claim 1: Effective October 9, 2018, Boiler 32 is in violation of the 0.0075 lb/mmBtu and 4.28 lb/hour PM_{10} emissions limitations applicable to each 3SPS Boiler stack under Indiana SIP provision 326 IAC 6.8-2-6(a). These violations are ongoing, and have continued for 137 days through February 22, 2019.

Claim 2: Effective October 9, 2018, Boiler 32 is in violation of Section D.24.1 of the 2018 Title V Permit, which explicitly incorporates the 0.0075 lb/mmBtu and 4.28 lb/hour PM₁₀ emissions limitations of 326 IAC 6.8-2-6(a), making them enforceable conditions of that permit. These violations are ongoing, and have continued for 137 days through February 22, 2019.

Claim 3: Effective October 9, 2018, Stack 503-02 is in violation of Section D.24.4(b)(2) of the 2018 Title V Permit, which limits PM_{10} emissions at each combined Boiler Stack 503-01 through 503-05 to 0.010 lb/mmBtu. These violations are ongoing, and have continued for 137 days through February 22, 2019.

C. Violations of the Indiana SIP and Title V Permit PM₁₀ Limits at 3SPS Boiler 33 and Stack 503-03

1. October 11, 2018

On October 11, 2018, BP's stack performance test for Boiler 33 recorded an average PM₁₀ emissions rate of 0.0151 lb/mmBtu, and 9.009 lb/hour. *See* Compliance Emissions Test Report, Boiler 33 Stack (October 11, 2018) at Section 3.0, Page 4. Based on these results, IDEM determined that BP was out of compliance with its PM₁₀ emissions limitations for both Boiler 33 and Stack 503-03 on October 11, 2018. *See* Office Memorandum re: BP Products North America, Inc. from Thomas A. Kline, IDEM Office of Air Quality, to Rick Massoels, Deputy Director of the Northwest Regional Office (January 10, 2019).

Claim 1: Effective October 11, 2018, Boiler 33 is in violation of the 0.0075 lb/mmBtu and 4.28 lb/hour PM₁₀ emissions limitations applicable to each 3SPS Boiler stack under Indiana SIP provision 326 IAC 6.8-2-6(a). These violations are ongoing, and have continued for 135 days through February 22, 2019.

Claim 2: Effective October 11, 2018, Boiler 33 is in violation of Section D.24.1 of the 2018 Title V Permit, which explicitly incorporates the 0.0075 lb/mmBtu and 4.28 lb/hour PM₁₀ emissions limitations of 326 IAC 6.8-2-6(a), making them enforceable conditions of that permit. These violations are ongoing, and have continued for 135 days through February 22, 2019.

Claim 3: Effective October 11, 2018, Stack 503-03 is in violation of Section D.24.4(b)(2) of the 2018 Title V Permit, which limits PM_{10} emissions at each combined Boiler Stack 503-01 through 503-05 to 0.010 lb/mmBtu. These violations are ongoing, and have continued for 135 days through February 22, 2019.

D. Violations of the Indiana SIP and Title V Permit PM_{10} Limits at 3SPS Boiler 34 and Stack 503-04

1. October 12, 2018

On October 12, 2018, BP's stack performance test for Boiler 34 recorded an average PM₁₀ emissions rate of 0.0114 lb/mmBtu, and 7.375 lb/hour. *See* Compliance Emissions Test Report, Boiler 34 Stack (October 12, 2018) at Section 3.0, Page 4. Based on these results, IDEM determined that BP's compliance with its PM₁₀ emissions limitations could not be determined for either Boiler 34 or Stack 503-04 on October 12, 2018. *See* Office Memorandum re: BP Products North America, Inc. from Thomas A. Kline, IDEM Office of Air Quality, to Rick Massoels, Deputy Director of the Northwest Regional Office (January 10, 2019). While IDEM's memorandum does not explain its determination further, the results of BP's performance test demonstrate facially clear violations of both PM₁₀ emissions limitations on October 12, 2018.

Claim 1: Effective October 12, 2018, Boiler 34 is in violation of the 0.0075 lb/mmBtu and 4.28 lb/hour PM₁₀ emissions limitations applicable to each 3SPS Boiler stack under Indiana SIP provision 326 IAC 6.8-2-6(a). These violations are ongoing, and have continued for 134 days through February 22, 2019.

Claim 2: Effective October 12, 2018, Boiler 34 is in violation of Section D.24.1 of the 2018 Title V Permit, which explicitly incorporates the 0.0075 lb/mmBtu and 4.28 lb/hour PM₁₀ emissions limitations of 326 IAC 6.8-2-6(a), making them enforceable conditions of that permit. These violations are ongoing, and have continued for 134 days through February 22, 2019.

Claim 3: Effective October 12, 2018, Stack 503-04 is in violation of Section D.24.4(b)(2) of the 2018 Title V Permit, which limits PM_{10} emissions at each combined Boiler Stack 503-01 through 503-05 to 0.010 lb/mmBtu. These violations are ongoing, and have continued for 134 days through February 22, 2019.

E. Violations of the Indiana SIP and Title V Permit PM₁₀ Limits at 3SPS Boiler 36 and Stack 503-05

1. August 5, 2015

On August 5, 2015, BP's stack performance test for Boiler 36 recorded an average PM₁₀ emissions rate of 0.0151 lb/mmBtu, and 9.42 lb/hour. *See* Enforcement Referral Letter from Rick Massoels, IDEM Deputy Director of Northwest Regional Office, to Linda Wilson, BP Products North America, Inc. (April 8, 2016). Based on these results, IDEM determined that BP was out of compliance with its PM₁₀ emissions limitations for both Boiler 36 and Stack 503-05 on August 5, 2015. *Id*.

Claim 1: Effective August 5, 2015, Boiler 36 was in violation of the 0.0075 lb/mmBtu and 4.28 lb/hour PM₁₀ emissions limitations applicable to each 3SPS Boiler stack under Indiana SIP provision 326 IAC 6.8-2-6(a). These violations are ongoing, and have continued for 1,298 days through February 22, 2019.

Claim 2: Effective August 5, 2015, Boiler 36 was in violation of Section D.24.1 of the 2015 Title V Permit, which explicitly incorporates the 0.0075 lb/mmBtu and 4.28 lb/hour PM_{10} emissions limitations of 326 IAC 6.8-2-6(a), making them enforceable conditions of that permit. These violations are ongoing, and have continued for 1,298 days through February 22, 2019.

Claim 3: Effective October 20, 2015, Stack 503-05 was in violation of Section D.24.4(b)(3) of the 2015 Title V Permit, which limits PM₁₀ emissions at each combined Boiler Stack 503-01 through 503-05 to 0.010 lb/mmBtu. These violations are ongoing, and have continued for 1,298 days through February 22, 2019.

2. October 21, 2015

On October 21, 2015, BP's stack performance test for Boiler 36 recorded an average PM₁₀ emissions rate of 0.0137 lb/mmBtu, and 7.788 lb/hour, *See* Compliance Emission Test, Boiler 36 Stack (October 21, 2015) at Table 4-1, Page 4-2. Based on these results, IDEM determined that BP was out of compliance with its PM₁₀ emissions limitations for both Boiler 36 and Stack 503-05 on October 21, 2015. *See* Office Memorandum re: BP Products North America, Inc. from Doug Van Demark, IDEM Office of Air Quality, to Rick Massoels, Deputy Director of the Northwest Regional Office (July 25, 2016).

Claim 1: Effective October 21, 2015, Boiler 36 remained in violation of the 0.0075 lb/mmBtu and 4.28 lb/hour PM₁₀ emissions limitations applicable to each 3SPS Boiler stack under Indiana SIP provision 326 IAC 6.8-2-6(a). These violations are ongoing.

Claim 2: Effective October 21, 2015, Boiler 36 remained in violation of Section D.24.1 of the 2015 Title V Permit, which explicitly incorporates the 0.0075 lb/mmBtu and 4.28 lb/hour PM₁₀ emissions limitations of 326 IAC 6.8-2-6(a), making them enforceable conditions of that permit. These violations are ongoing.

Claim 3: Effective October 21, 2015, Stack 503-05 remained in violation of Section D.24.4(b)(3) of the 2015 Title V Permit, which limits PM₁₀ emissions at each combined Boiler Stack 503-01 through 503-05 to 0.010 lb/mmBtu. These violations are ongoing.

3. November 3, 2016

On November 3, 2016, BP's stack performance test for Boiler 36 recorded an average PM₁₀ emissions rate of 0.0079 lb/mmBtu, and 4.741 lb/hour. *See* Compliance Emissions Test Report, Boiler 32 Stack and Boiler 36 Stack (November 1-3, 2016) at Section 3.0, Page 7. However, IDEM's review found that the reported results were invalid, because BP's report had not included the sum of all filterable and condensable PM₁₀ in calculating PM₁₀, as explicitly required by 326 IAC 6.8-2-6 and BP's 2016 Title V Permit. *See* Office Memorandum re: BP Products North America from Kale Popp, IDEM Office of Air Quality, to Rick Massoels, Deputy Director of the Northwest Regional Office (September 18, 2017).

Upon recalculating the results, IDEM determined that Boiler 36 had actually averaged a PM₁₀ emissions rate of 0.021 lb/mmBtu, and 12.95 lb/hour. *Id.* This was a violation of the Indiana SIP PM₁₀ emissions limitations specifically applicable to the 3SPS Boilers, 2016 Permit Section D.24.1; 326 IAC 6.8-2-6, as well as a separate violation of the 0.010 lb/mmBtu PM₁₀ emissions limitation applicable to each combined Boiler Stack. 2016 Title V Permit Section D.24.4(b)(2). Based on these results, IDEM determined that BP was out of compliance with its PM₁₀ emissions limitations for both Boiler 36 and Stack 503-05 on November 3, 2016. *See* Office Memorandum re: BP Products North America from Kale Popp, IDEM Office of Air Quality, to Rick Massoels, Deputy Director of the Northwest Regional Office (September 18, 2017).

Claim 1: Effective November 3, 2016, Boiler 36 remained in violation of the 0.0075 lb/mmBtu and 4.28 lb/hour PM₁₀ emissions limitations applicable to each 3SPS Boiler stack under Indiana SIP provision 326 IAC 6.8-2-6(a). These violations are ongoing.

Claim 2: Effective November 3, 2016, Boiler 36 remained in violation of Section D.24.1 of the 2016 Title V Permit, which explicitly incorporates the 0.0075 lb/mmBtu and 4.28 lb/hour PM₁₀ emissions limitations of 326 IAC 6.8-2-6(a), making them enforceable conditions of that permit. These violations are ongoing.

Claim 3: Effective November 3, 2016, Stack 503-05 remained in violation of Section D.24.4(b)(2) of the 2016 Title V Permit, which limits PM₁₀ emissions at each combined Boiler Stack 503-01 through 503-05 to 0.010 lb/mmBtu. These violations are ongoing.

F. Violations of the Title V Permit Compliance Testing Requirements at 3SPS Boiler 36 and Stack 503-05

Section C.19(b) of the 2016 Title V Permit explicitly states that when "the results of a stack test... exceed the level specified in any condition of this permit," BP is required to perform a retest to demonstrate compliance "no later than one hundred eighty (180) days after the date of the test." As noted above, BP's November 3, 2016 stack performance test for Boiler 36

demonstrated violations of its applicable PM₁₀ emissions limitations for both Boiler 36 and Stack 503-05. May 2, 2017 was the final day in the 180-day period in which BP was required to conduct a retest at Boiler 36. To date, BP has not retested to demonstrate compliance with its applicable PM₁₀ emissions limitations for either Boiler 36 or Stack 503-05.

Claim 1: Effective May 3, 2017, BP is in violation of its requirement under Section C.19(b) of the 2016 Title V Permit to perform a retest to demonstrate compliance at Boiler 36 and Stack 503-05 "no later than one hundred eighty (180) days" after the November 3, 2016 stack test failure. These violations are on-going, and have continued for 661 days through February 22, 2019.

IV. AUTHORITY TO BRING SUIT

Section 304 of the CAA authorizes citizens, upon providing a 60-day notice of intent, to bring suit "against any person... who is alleged to have violated (if there is evidence that the alleged violation has been repeated) or to be in violation of [] an emission standard or limitation" established under the CAA. 42 U.S.C. § 7604(a)(1). Section 304 defines "emission standard or limitation" in relevant part as any "emission limitation, standard of performance or emission standard," which includes "any other standard, limitation, or schedule established under any permit issued under [Title V] or under any applicable State implementation plan approved by the Administrator, any permit term or condition, and any requirement to obtain a permit as a condition of operation." 42 U.S.C. § 7604(f)(1)-(4).

As discussed above, BP's stack test reports show that BP is currently in violation of its applicable PM₁₀ emissions limitations under Indiana SIP provision 326 IAC 6.8-2-6(a), Section D.24.1 of its Title V Operating Permit, and Section D.24.4(b) of its Title V Operating Permit at Boilers 31, 32, 33, 34, and 36, and Stacks 503-01 through 503-05. Furthermore, there is clear evidence that these violations have been repeated, as 11 of the 12 stack tests performed at the 3SPS Boilers and Stacks 503-01 through 503-05 since August of 2015 show that they have failed their applicable PM₁₀ emissions limitations, with five of these stack test failures occurring at Boiler 32 and Stack 503-02 alone. Moreover, with the sole exception of the October 10, 2017 Boiler 32 stack test, **no** available stack tests indicate that BP has **ever** successfully demonstrated compliance with the applicable PM₁₀ emissions limitations for the 3SPS Boilers or Stacks 503-01 through 503-05. Consequently, BP has currently accrued **8,584 days of continuous violations** of its applicable PM₁₀ emissions limitations and stack testing requirements since August of 2015:

Table 3: Total Days of Continuous Violation

		Days in Violation of:				
Unit(s)	Date Range of Violations	326 IAC 6.8-2-6(a)	Section D.24.1	Section D.24.4(b)	Section C.19	Total Days
Boiler 31 and Stack 503-01	10/8/2018 – Present	138	138	138	-	414
Boiler 32 and Stack 503-02	8/3/2015 – 10/10/2017	799	799	799	-	2,397
Boiler 32 and Stack 503-02	10/9/2018 – Present	137	137	137	-	411
Boiler 33 and Stack 503-03	10/11/2018 - Present	135	135	135	-	405
Boiler 34 and Stack 503-04	10/12/2018 - Present	134	134	134	-	402
Boiler 36 and Stack 503-05	8/5/2015 – Present	1,298	1,298	1,298	-	3,894
Boiler 36 and Stack 503-05	5/3/2017 – Present	-	-	-	661	661
TOTAL DAYS OF VIOLATIONS					8,584 days	

42 U.S.C. § 7604(f)(4). Section 113 of the CAA provides that any person who is in violation of any such emission standard, limitation, or other permit condition or requirement, may be subject to "a civil penalty of not more than \$25,000 per day for each violation." 42 U.S.C. § 7413(b). The amount of this statutory civil penalty is subject to a mandatory inflation adjustment under EPA's 2018 Civil Monetary Penalty Inflation Rule, 11 promulgated pursuant to the Federal Civil Penalties Inflation Adjustment Act of 1990 and the Federal Civil Penalties Inflation Adjustment Act Improvements Act of 2015. Applying this mandatory inflation adjustment, violations of Section 113(b) of the CAA which occur after November 2, 2015, and for which penalties are assessed at any time on or after January 15, 2018, are subject to an adjusted civil penalty of \$97,229 per day, for each violation. 12 In total, 8,402 days of the violations alleged above occurred after November 2, 2015, and are subject to this adjusted

¹¹ U.S. Environmental Protection Agency. *Final Rule: Civil Monetary Penalty Inflation Adjustment Rule*. 83 Fed. Reg. 1190 (January 10, 2018).

¹² *Id*. at 1193.

maximum civil penalty, while **182** days of the violations above occurred on or prior to November 2, 2015 and are subject to the base statutory maximum civil penalty.

V. PERSONS RESPONSIBLE FOR VIOLATIONS

The Whiting Refinery is owned and operated by BP Products North America Inc., a subsidiary of BP p.l.c.. BP Products North America Inc. is the legal owner and operator of the Whiting Refinery, is in control of day to day operations, and is therefore a "person" as defined by the Clean Air Act who is responsible for the violations alleged herein.

VI. PERSONS GIVING NOTICE

The Environmental Integrity Project is a nonpartisan, nonprofit watchdog organization founded in 2002 by former Environmental Protection Agency enforcement attorneys to advocate for more effective enforcement of environmental laws at the national, state, and local level. EIP's main office is located at 1000 Vermont Avenue NW, Suite 1100, Washington, D.C. 20005. EIP's three main organizational objectives are: (1) to illustrate through objective facts and figures how the failure to enforce or implement environmental laws increases pollution and negatively affects the public's health; (2) to hold federal and state agencies, as well as individual corporations, accountable for failing to enforce or comply with environmental laws; and (3) to help local communities in key states obtain the protection of environmental laws.

The Sierra Club is the nation's oldest environmental grassroots organization, and has more than 3.5 million members and supporters nationwide. Sierra Club is incorporated in the State of California as a nonprofit public benefit corporation, and its national office is located at 2101 Webster Street, Suite 1300, Oakland, CA 94612. In coordination with its national community of volunteers, advocates, and grassroots activists, Sierra Club is dedicated to protecting, preserving, and restoring the quality of our natural and human environments, and practicing and promoting the responsible use of ecosystems and resources. Sierra Club is a leading non-governmental organization in the efforts to educate and mobilize the public on issues of climate change, fossil fuel energy, and clean energy, and conducts multiple public campaigns around these issues. Several of Sierra Club's members live in close proximity to the BP Whiting Refinery, are potentially exposed to particulate emissions from the BP Whiting Refinery, including the unlawful emissions of PM₁₀ from the 3SPS Boilers and Boiler Stacks described above, and would ordinarily have standing to sue in their own right.

VII. CONCLUSION

BP has violated the PM_{10} emissions limitations required both by the Indiana SIP and its Title V operating permit for Whiting Refinery on multiple occasions at the 3SPS Boilers and their associated Stacks. Evidence suggests that these violations are both ongoing and recurring, and almost certain to recur in the future absent intervention.

Accordingly, this letter serves to notify BP that, in accordance with Section 304(b)(1)(A) of the CAA, Citizens intend to file suit in a federal district court to remedy these violations of the CAA identified above at any time upon the expiration of the 60-day period after the postmarked

date of this letter. 40 C.F.R. §§ 54.2 and 54.3. In doing so, Citizens may seek to obtain declaratory relief, enjoin future violations of limitations, compel compliance with the requirements of the CAA, the Indiana SIP, and BP's Title V Operating Permit, abate pollution, recover attorney's fees and costs of litigation, and obtain any other relief that may be necessary or appropriate.

If you believe any of the above information is incorrect, believe you are currently in compliance with the Clean Air Act, would like to take steps to permanently correct any of the described violations, or have any questions concerning this letter or the described violations, please contact me as soon as possible at (202) 263-4441, or at the address or email listed below for the undersigned. As mentioned above, we welcome and would be happy to meet with you, within 45 days of this notice letter, to discuss resolution of the matters raised.

Sincerely,

/s/ Eric Schaeffer
Eric V. Schaeffer
Director
Environmental Integrity Project
1000 Vermont Avenue NW, Suite 1100
Washington, DC 20005
(202) 263-4440
eschaeffer@environmentalintegrity.org

/s/ Sanghyun Lee
Sanghyun Lee
Attorney
Environmental Integrity Project
1000 Vermont Avenue NW, Suite 1100
Washington, DC 20005
(202) 263-4441
slee@environmentalintegrity.org

Counsel for Environmental Integrity Project and Sierra Club

CC (Via Email):

Aaron Isherwood Phillip S. Berry Managing Attorney Sierra Club 2101 Webster St., Suite 1300 Oakland, CA 94612

CC (Via Certified Mail):

Cathy Stepp, Regional Administrator U.S. Environmental Protection Agency Region 5 Ralph Metcalfe Federal Building 77 West Jackson Boulevard Chicago, IL 60604-3590 Governor Eric J. Holcomb Office of the Governor 200 W. Washington Street Room 206 Indianapolis, IN 46204

EXHIBIT 2

2. Article Number (Transfer from service label) XOT8 TT30 0000 3847 T422

9590 9402 4633 8323 6699 19

□ Adult Signature

Adult Signature Restricted Delivery

Certified Mail®

☐ Certified Mail Restricted Delivery ☐ Collect on Delivery

Collect on Delivery Restricted Delivery sured Mail sured Mail Restricted Delivery ver \$500)

☐ Registered Mail Restricted Delivery

☐ Return Receipt for Merchandise

☐ Signature Confirmation™ ☐ Signature Confirmation Restricted Delivery

4633 8353 6696 36

United States Postal Service Sender: Please print your name, address, and ZIP+4® in this box Environmental Integrity Project 1000 Vermont Avenue NW

First-Class Mail Postage & Fees Paid USPS Permit No. G-10

United States Postal Service Sender: Please print your name, address, and ZIP+4® in this box Sanghyun Lee Environmental Integrity Project 1000 Vermont Avenue NW Suite 1100 Washington, DC 2005-4903

9402 4633 8323

First-Class Mail Postage & Fees Paid USPS Permit No. G-10

United States Postal Service

Sender: Please print your name, address, and ZIP+4® in this box® Environmental Integrity Project 1000 Vermont Avenue NW Washington, DC 2005-4903

SENDER: COMPLETE THIS SECTION COMPLETE THIS SECTION ON DELIVERY USDC INAND Case items 9-5, Vario 0337-PPS page 24 of 105 COOUI AD GIGHature /illed/09/06/19 ☐ Agent Print your name and address on the reverse Addressee so that we can return the card to you. B. Received by (Printed Name) C. Date of Delivery Attach this card to the back of the mailpiece, or on the front if space permits. 1. Article Addressed to: Cathy Stepp, Regional Administrato If YES, enter delivery address below: □ No Ralph Metcalfe Federal Buildin 77 West Jackson Bouleward 3. Service Type ☐ Priority Mail Express® ☐ Registered Mail™ ☐ Adult Signature Registered Mail Restricted Delivery Return Receipt for Merchandise Signature Confirmation™ Signature Confirmation ☐ Adult Signature Restricted Delivery ☐ Certified Mail® 9590 9402 4633 8323 6696 67 ☐ Certified Mail Restricted Delivery ☐ Collect on Delivery ☐ Collect on Delivery Restricted Delivery 2. Article Number (Transfer from service label) ☐ Insured Mail sured Mail Restricted Delivery /er \$500) Restricted Delivery 7018 1130 0000 3841 1293 PS Form 3811, July 2015 PSN 7530-02-000-9053 Domestic Return Receipt COMPLETE THIS SECTION ON DELIVERY **SENDER:** COMPLETE THIS SECTION A. Signature ■ Complete items 1, 2, and 3. Agent ■ Print your name and address on the reverse ☐ Addressee so that we can return the card to you. B. Received by (Printed Name) Date of Delivery Attach this card to the back of the mailpiece, 26/ or on the front if space permits. ☐ Yes D. Is delivery address different from item 1? 1. Article Addressed to: If YES, enter delivery address below: □ No Office of the Indiana Attorney General Environmental Litigation Division Indian Government Conter South - 5th Floor 301 West Washington Street Indianapolis, IN 46204 Service Type ☐ Priority Mail Express® ☐ Registered Mail™ ☐ Registered Mail Restricted Delivery ☐ Adult Signature Adult Signature Restricted Delivery Certified Mail® 9590 9402 4633 8323 6696 29 ☐ Certified Mall Restricted Delivery ☐ Return Receipt for Merchandise Collect on Delivery ☐ Signature Confirmation™ Collect on Delivery Restricted Delivery 2. Article Number (Transfer from service label) ☐ Signature Confirmation ured Mail Restricted Delivery red Mail Restricted Delivery r \$500) 7018 1130 0000 3841 1316 Domestic Return Receipt PS Form 3811, July 2015 PSN 7530-02-000-9053 COMPLETE THIS SECTION ON DELIVERY SENDER: COMPLETE THIS SECTION A. Signature Complete items 1, 2, and 3. ☐ Agent ■ Print your name and address on the reverse □ Addressee so that we can return the card to you. C. Date of Delivery B. Received by (Printed Name) Attach this card to the back of the mailpiece, INA 10 4 or on the front if space permits. 1. Article Addressed to: If YES, enter delivery address below: BP Whiting Refinery 2815 Indianapolis Boulevard Service Type ☐ Priority Mail Express® □ Registered Mail™ ☐ Adult Signature ☐ Registered Mail Restricted Delivery ☐ Return Receipt for Merchandise ☐ Adult Signature Restricted Delivery ☑ Certified Mall® ☐ Certified Mall Restricted Delivery 9590 9402 4633 8323 6696 05 ☐ Collect on Delivery ☐ Collect on Delivery Restricted Delivery ☐ Signature Confirmation™ 2. Article Number (Transfer from service label) Signature Confirmation Restricted Delivery ured Mail Restricted Delivery 7018 1130 0000 3841 1347

PS Form 3811, July 2015 PSN 7530-02-000-9053

Domestic Return Receipt

First-Class Mail filed 09/966648 Feespande 25 of 105 Permit No. G-10

United States Postal Service Sender: Please print your name, address, and ZIP+4® in this box Environmental Integrity Project 1000 Vermont Avenue NW Suite 1100 Washington, DC 20005-4903

First-Class Mail Postage & Fees Paid USPS Permit No. G-10

United States Postal Service Sender: Please print your name, address, and ZIP+4® in this box Washington, DC 20005-4903

1946 EEEA EE64PF

First-Class Mail Postage & Fees Paid USPS Permit No. G-10

United States Postal Service Sender: Please print your name, address, and ZIP+4® in this box Environmental Integrity Project 1000 Vermont Avenue MW Suite 1100 Svite 1100 Washington, DC 20005-4903

Sanghyun Lee

From: auto-reply@usps.com

Sent: Monday, March 25, 2019 1:37 PM

To: Sanghyun Lee

Subject: USPS® Item Delivered, Left with Individual 70181130000038411286

Hello Sanghyun Lee,

Your item was delivered to an individual at the address at 9:03 am on February 26, 2019 in INDIANAPOLIS, IN 46204.

Tracking Number: <u>70181130000038411286</u>

Delivered, Left with Individual

Tracking & Delivery Options

My Account

Visit <u>USPS Tracking</u>® to check the most up-to-date status of your package. Sign up for <u>Informed Delivery</u>® to digitally preview the address side of your incoming letter-sized mail and manage your packages scheduled to arrive soon! To update how frequently you receive emails from USPS, log in to your <u>USPS.com</u> account.

Want regular updates on your package? Set up text alerts.

Remove X

Tracking Number: 70181130000038411286

Expected Delivery on

TUESDAY

Exhibit 2 Page 8

February 25, 2019, 12:46 am

26 FEBRUARY 2019 (7)

by **8:00pm** ①

Status

February 26, 2019 at 9:03 am Delivered, Left with Individual INDIANAPOLIS, IN 46204

Get Updates V

Delivered Text & Email Updates **Tracking History** February 26, 2019, 9:03 am Delivered, Left with Individual INDIANAPOLIS, IN 46204 Your item was delivered to an individual at the address at 9:03 am on February 26, 2019 in INDIANAPOLIS, IN 46204. February 25, 2019, 5:45 pm Delivery Attempted - No Access to Delivery Location INDIANAPOLIS, IN 46204 February 25, 2019, 11:28 am Arrived at Unit INDIANAPOLIS, IN 46204

EXHIBIT 3

CLEAN AIR ACT STATIONARY SOURCE CIVIL PENALTY POLICY OCTOBER 25, 1991

b. Toxicity of the pollutant

Violations of NESHAPs emission standards not handled by a separate appendix and non-NESHAP emission violations involving pollutants listed in Section 112(b)(1) of the Clean Air Act Amendments of 1990': \$15,000 for each hazardous air pollutant for which there is a violation.

c. Sensitivity of environment (for SIP and NSPS cases only).

The penalty amount selected should be based on the status of the air quality control district in question with respect to the pollutant involved in the violation.

1. Nonattainment Areas

i. Ozone:

Extreme \$18,000 Severe 16,000 Serious 14,000 Moderate 12,000 Marginal 10,000

ii. Carbon Monoxide and Particulate Matter:

Serious \$14,000 Moderate 12,000

- iii. All Other Criteria Pollutants: \$10,000
- 2. Attainment area PSD Class I: \$ 10,000
- 3. Attainment area PSD Class II or III: \$ 5,000
- d. Length of time of violation

To determine the length of time of violation for purposes of calculating a penalty under this policy, violations should be assumed to be continuous from the first provable date of violation until the source demonstrates compliance if there have been no significant process or operational changes. If the source has affirmative evidence, such as continuous emission monitoring data,

An example of a non-NESHAP violation involving a hazardous air pollutant would be a violation of a volatile organic compound (VOC) standard in a State Implementation Plan involving a VOC contained in the Section 112(b)(1) list of pollutants for which no NESHAP has yet been promulgated.

to show that the violation was not continuous, appropriate adjustments should be made. In determining the length of violation, the litigation team should take full advantage of the presumption regarding continuous violation in Section 113(e)(2). This figure should be assessed separately for each violation, including procedural violations such as monitoring, recordkeeping and reporting violations. For example, if a source violated an emissions standard, a testing requirement, and a reporting requirement, three separate length of violation figures should be assessed, one for each of the three violations based on how long each was violated.

Months	Dollars
0 - 1	\$ 5,000
2 - 3	8,000
4 - 6	12,000
7 - 12	15,000
13 - 18	20,000
19 - 24	25,000
25 - 30	30,000
31 - 36	35,000
37 - 42	40,000
43 - 48	45,000
49 - 54	50,000
55 - 60	55,000

2. Importance to the regulatory scheme

The following violations are also very significant in the regulatory scheme and therefore require the assessment of the following penalties:

Work Practice Standard Violations:

- failure to perform a work practice requirement: \$10,000-15,000 (See Appendix III for Asbestos NESHAP violations.)

Reporting and Notification Violations:

- failure to report or notify: \$15,000
- late report or notice: \$5,000
- incomplete report or notice: \$5,000 \$15,000 (See Appendix III for Asbestos NESHAP violations.)

Recordkeeping Violations:

- failure to keep required records: \$15,000
- incomplete records: \$5,000 \$15,000

EXHIBIT 4

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

WASHINGTON, D.C. 20460

APR 27 2009

OFFICE OF **ENFORCEMENT AND** COMPLIANCE ASSURANCE

MEMORANDUM

SUBJECT: Issuance of the Clean Air Act National Stack Testing Guidance

Lisa C. Lund Lyn Lund
Director FROM:

Director

Office of Compliance

TO: Regional Compliance/Enforcement Division Directors

Attached is a copy of the revised Clean Air Act National Stack Testing Guidance. Final guidance was initially issued on September 30, 2005. At the time of issuance, the Agency indicated that notice and comment rulemaking would be conducted regarding the appropriate circumstances in which an extension of performance test deadlines may be allowed by regulation. This document incorporates the ensuing regulatory revisions which allow source owners or operators to petition for an extension to the test deadlines as a result of a force majeure event. It also includes other minor clarifications and revisions based on feedback we have received since issuance of the 2005 guidance. This revised guidance supersedes the 2005 guidance.

We appreciate the feedback that we have received from each of your offices as well as from state/local agencies. If you or your staff has any questions concerning the guidance, please contact Mamie Miller at (202) 431-7011, or Robert Lischinsky at (202) 564-2628.

Attachment

cc: Regional Air Compliance/Enforcement Branch Chiefs Pamela Mazakas, Acting Director, Air Enforcement Division, Office of Civil Enforcement Peter Tsirigotis, Director, Sector Policies and Programs Division, Office of Air Quality Planning and Standards (OAQPS) Richard Wayland, Director, Air Quality Assessment Division, OAQPS Compliance and Enforcement Committee Co-Chairs, The National Association of Clean Air Agencies (NACAA)

Page 14

- If the delegated agency chooses not to observe the test, prior review of the site-specific test plan is even more critical to ensure that the test is conducted in such a manner so as to satisfy the regulatory requirements.
- If the delegated agency was not provided timely notification and an opportunity to observe the stack test consistent with applicable regulatory requirements, the resulting test data may be rejected and a new stack test may be required. If this situation prevents the facility from completing a valid stack test within the requisite time frame, the facility is in violation of the requirement to conduct a stack test and demonstrate compliance. However, if the facility provided timely notice and the delegated agency did not respond or declined to observe the test, the test results should not be rejected solely because the test was not observed by agency personnel.

5. REPRESENTATIVE TESTING CONDITIONS

- The CAA requires that facilities comply with emissions limitations and emissions standards on a continuous basis. The Act defines the terms "emissions limitation " and "emission standard " in Section 302(k), 42 U.S.C. § 7602(k), as meaning "a requirement established by the state or the Administrator which limits the quantity, rate, or concentration of emissions of air pollutants on a continuous basis " (emphasis added). The statute also authorizes penalties for multiple days of violations and establishes a presumption of continuing violations if certain conditions are met. CAA Section 113(e)(1) and (2), 42 U.S.C. §§ 7413(e)(1) and (2). EPA has consistently, in rulemaking and policy statements over many years, taken the position that the CAA requires continuous compliance with emissions limits except where compliance is explicitly excused. See, e.g., Guidance entitled "Definition of 'Continuous Compliance' and Enforcement of **O&M Violations**," (June 24, 1982) ("In the strict legal sense, sources are required to meet, without interruption, all applicable emissions limitations and other control requirements, unless such limitations specifically provide otherwise."); Credible Evidence Rulemaking, 62 FR 8314, 8323, 8324, 8326 8314 (Feb. 24, 1997) (emissions limits require continuous compliance) (consistent with any averaging times) except during periods when compliance is specifically excused).
- Since the CAA requires continuous compliance with emissions limits except where explicitly excused, EPA interprets applicable regulations to require that any stack test that is conducted within the scope of this guidance must demonstrate that a facility is capable of complying with the applicable emissions standards at all times. The NSPS and MACT programs require that performance tests be conducted under such conditions as the Administrator specifies based upon the representative performance of the affected facility. See 40 CFR §§ 60.8© and 63.7(e). The MACT program further defines representative performance as normal operating conditions. 43 CFR § 63.7(e). Operations during periods of startup, shutdown and malfunction do not constitute representative conditions for the purposes of a performance test. 40 CFR §§ 60.8(c)

⁴ Complying with the applicable standards "at all times " does not include allowable periods of start-up, shutdown, and malfunction as provided in 40 CFR §§ 60.8 (c) and 63.7(e)(1).

Page 15

and 63.7(e). The Part 61 NESHAP program requires that emission tests be conducted "under such conditions as the Administrator shall specify "based on design and operational characteristics of the source." 40 CFR § 61.13(e). Individual standards may more specifically define operating conditions under which performance tests should be conducted. In the absence of such specifications, the question often arises as to what operating conditions should be used when conducting a stack test. If operating conditions are not indicated by the applicable requirements in individual standards, they should be developed as part of the site-specific test plan.

- In light of the fact that: (a) the Act requires that facilities continuously comply with emission limits; (b) the NSPS, MACT, and NESHAP programs all require that performance tests be conducted under such conditions as the Administrator specifies; and © the NSPS and MACT programs further require that such tests be conducted under representative operating conditions; EPA recommends that performance tests be performed under those representative (normal) conditions that:
 - represent the range of combined process and control measure conditions under which the facility expects to operate (regardless of the frequency of the conditions); and
 - are likely to most challenge the emissions control measures of the facility with regard to meeting the applicable emission standards, but without creating an unsafe condition.
- The following are factors that should be considered in developing the plan for a performance test that challenges to the fullest extent possible a facility's ability to meet emissions limits.
 - For a facility operating under an emission rate standard (e.g., lb/hr) or concentration standard (e.g., $\mu g/m^3$), normal process operating conditions producing the highest emissions or loading to a control device would generally constitute the most challenging conditions with regard to the emissions standard. If operating at maximum capacity would result in the highest levels of emissions, operating at this level would not create an unsafe condition, and the facility expects to operate at that level at least some of the time, EPA recommends that the facility should conduct a stack test at maximum capacity or the allowable/permitted capacity.
 - For a facility operating under a control or removal efficiency standard (e.g., 98 percent control or removal of a specified pollutant), lower emissions loading at the inlet of a control device within the range of expected process operating conditions may often be the most challenging emissions control scenario for purposes of achieving the applicable standard. For facilities required to achieve such control or removal efficiency standards,

EPA recommends that the performance test include operating the facility under such expected lower emissions loading conditions.

- The test plan should generally include use of fuel, raw materials, and other

Page 17

Soot-Blowing Emissions in Subpart D Compliance Testing" (August 31, 1987); from Kathleen M. Bennett to Directors, Air & Waste Management Divisions "Restatement of Guidance on Emissions Associated with Soot-Blowing" (May 7, 1982); from Edward E. Reich to Sandra S. Gardebring "Representative Testing Requirements" (November 21, 1980); Memoranda from Edward E. Reich to Leslie Carothers "Integration of Soot-Blowing Emissions with Routine Operating Data for Existing Facilities" (March 12, 1979); from Edward E. Reich to Enforcement Division Directors, Air and Hazardous Material Division Directors, and Surveillance and Analysis Division Directors "NSPS Determination - Subpart D" (March 6, 1979); and Memoranda from Edward E. Reich to Robert L. Markey "Determination of Applicability to Subpart D" (June 29, 1977).

6. STOPPAGES

- The primary issue is whether it is appropriate to stop a stack test being conducted to determine and demonstrate compliance once it has been started, and if so, under what circumstances.
- There are no regulatory provisions in the NSPS, NESHAP, or MACT programs that address whether a facility is allowed to stop a stack test once it has been started. Depending on the circumstances surrounding the stoppage, the facility may be found in violation of the requirement to conduct a stack test, the underlying regulatory requirement, or both. For example:
 - If a facility stopped the stack test because it was exceeding applicable emission standards and would have failed the test, it would be considered in violation of both the requirement to conduct a stack test (if it does not complete a performance test by the applicable deadline) and to comply with the underlying regulatory requirement or permit condition. Consistent with 40 CFR §§ 60.11 and 61.12, any credible evidence may be used to demonstrate non-compliance. For major sources, the test should be reported in the Title V quarterly or semi-annual deviation reports, and taken into consideration as part of the annual compliance certifications. In addition, the stoppage should be reported as a failure in the national air data system, and an enforcement action should be initiated and penalties assessed consistent with the HPV Policy and CAA Civil Penalty Policy.
 - If a facility is forced to stop a test due to a Force Majeure Event, the facility shall provide written notification to the Administrator in accordance with the applicable

to stack tests required by 40 CFR Parts 60, 61, and 63.

Page 18

regulations. The performance test shall be conducted as soon as practicable after the force majeure occurs. Whether to grant an extension to the performance test deadline is solely within the discretion of the Administrator. Until an extension has been approved by the Administrator, the facility remains strictly subject to the performance test requirements of the applicable regulations. 40 CFR §§ 60.8(a)(1-4), 61.13(a)(3-6), 63.7(a)(4).

7. POSTPONEMENTS

- The primary issue is whether it is appropriate to postpone a stack test to determine and demonstrate compliance once it has been scheduled, and if so, under what circumstances. See also the discussion of delays in conducting the performance test in the Section, "Stack Test Notifications."
- Postponements should be treated similar to stoppages. If a postponement results in the facility failing to complete the test within the required time frame, the facility is in violation of the requirement to test.
- Regardless of whether the postponement affects a facility's ability to test in a timely manner, the delegated agency should carefully scrutinize the circumstances surrounding the postponement to determine whether the facility was in violation of the underlying emission limitations, and therefore, postponed the test to avoid a documented violation. Consistent with 40 CFR §§ 60.11 and 61.12, any credible evidence may be used to demonstrate non-compliance or compliance.

8. TEST REPORTS

- The primary issue is what information is needed to adequately document the results of a stack test conducted to determine and demonstrate compliance.
- The written test report should be sufficient to assess compliance with the underlying regulatory requirements, permit conditions, or enforcement order, and adherence to the test requirements. When reviewing the site-specific test plan, the delegated agency should identify for the facility any information that should be included in the test report. During the actual test program, there are usually modifications to the procedures specified in the site-specific test plan, and these modifications should be documented in the test report.
- Similar to the site-specific test plan, certain basic elements should be addressed in a test report to document the testing conditions and results, and enable the delegated agency to determine whether a complete and representative stack test was performed. For a prototype of a sufficiently detailed test report, see *Emission Measurement Center Guideline Document* (GD-043), "*Preparation and Review of Emission Test Reports*," (December 1998) (www.epa.gov/ttn/emc/guidlnd.html). If the test report does not contain sufficient information with which to adequately review the testing process and data results, it is within the discretion of

EXHIBIT 5

The timeframe for conducting a stack test is usually outlined in a specific rule or a permit. Testing is usually required within 180 days after initial startup for new units. Periodic testing may occur over the life of a permit, such as once every five (5) years. Please consult your permit or the specific rule for the timeframes for conducting a test. Generally, sources cannot be granted an extension to a testing requirement unless allowed or identified in a rule or permit. Individual rules may establish different time periods for testing, and some may be shorter than the general provisions. For example, in 40 CFR 63.152(b), the "notice of compliance status" must be submitted by sources subject to NESHAP subpart G within 150 calendar days after the specified compliance dates. Should you have an issue or problem with the timeframe or test date, please consult the compliance data section prior to the date of the required test.

Observation of Tests

On the day of the compliance test, IDEM may choose to have an observer present for the testing. If present, the observer will discuss all applicable requirements with the source prior to the test being initiated. In some cases, an observer may not be present; therefore, it is the responsibility of the source to ensure the testing is conducted representative conditions. Should there be questions prior to or during the test, IDEM staff are available to assist you. A list of IDEM staff is available in appendix B.

Representative Testing Conditions

The source should verify production rates will meet the rates specified in 326 IAC 3-6-3 (b) (1), (2), or (3), and should record production rates periodically during the test. Sufficient information to allow for the production rates during the individual test runs to be determined must be recorded. Any applicable air pollution control device parameters required to be monitored by the source's permit should also be recorded in 15 minute increments or more frequently as applicable. Both production rates and parametric monitoring results should be included in the final test report that will be sent to IDEM. A source may elect to provide these records to their testing contractor for incorporation into the test report,

the report once they receive it from their consultant. During the test, the source should document if any production problems or malfunctions occurred that might influence the results of the test. If an observer is on site, issues of this nature may be discussed with the observer; however, if no observer is present, you may contact a member of the compliance data section directly using the information contained in appendix B of this guidance. It is important that potential problems be identified during the test. While the test company is still on site, further conditional runs may be conducted as necessary to replace potentially biased test runs. If all parties are in agreement that a particular run or runs were conducted under emergency or malfunction conditions, these test runs may then be disqualified and replaced with the conditional test runs.

Test Reports

After the test has been concluded, a source has 45 days to submit the results of the testing to the Compliance Data Section pursuant to 326 IAC 3-6-4(b). The compliance data section reviews the results and confirms compliance. The test report is then filed for future reference if necessary. For non-compliant tests, a source must follow the "actions related to non-compliance" condition in their permit (usually contained in section C of most permits under the section titled, "corrective actions and response steps").

EXHIBIT 6

JSDC IN/ND case 2:19-cv-00337-PPS

AIR EMISSION STATEMENT CERTIFICATION

State Form 52052 (3-05)

State Form 52052 (3-05)
INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT

Instructions:
This is a required form for each air emission statement as well as any modifications. The certification supplied with a source's permit may be used in lieu of this form

IDEM - Office of Air Quality Technical Support and Modeling Section - Mail Code 61-51 100 N. Senate Avenue Indianapolis, IN 46204-2251 Telephone: (317) 233-0178 or Toli Free: 1-800-451-6027 x30178 (within Indiana)

page 45 of 105

document 1-2 __filed 09/06/19

http://www.emissions.IN.gov/

"Responsible Official" has the same meaning as defined in 326 IAC (34), and is usually designated in the General Information section of the

Part A: Conta	ct Information	
Part A is intended to provide basic information about the company Air Emission Statement preparer in case there is a question about		ation on the
Company Name: BP Products North America Inc Whiting R	2. Source ID: 1808900003	
3. Mailing Address:		
City: State:	ZIP Code:	
4. Name of Emission Statement Preparer: Julie	Kendall	····
5. Title of Emission Statement Preparer(optional): En	vironmental Specialist	
6 . Telephone Number: (219)-370-3131 7 . Facsimil	e Number: <i>(optional):</i>	
8. Electronic Mail Address (optional): julie.kendall@bp.	com	
Part B: Emiss	ions Summary	
Part B is intended to aid in the review of data and to collect inform	·	
Emissions Statement Pollutants (Plant Wide)		Emitted
Ammonia(NH3) Carbon Monoxide (CO)	State of Indiana	49.9500 847.7900
Lead (PB)	State of Indiana	0.0311
Nitrogen Dioxide (NO2)	JUL - 1 2017	1485.1700
Primary PM Condensible Only (All Less Than 1 Micron)(PM-CON)		509.7400
Primary PM10, Filterable Portion Only(PM10-FiL)	Dept of Environmetal Management Office of Air Quality	467.2100
Primary PM2.5, Filterable Portion Only(PM25-FIL)	Office of Air Quality	235.7400
Sulfur Dioxide (SO2)	of Air Quality samene	387.8700
Volatile Organic Compounds (VOC)		927.1835
Part 70 Permit Billable Hazardous Air Pollutants (Plant Wi	de) Tons i	Emitted
No Billable Hazardous Air Pollutants reported!		0.0000
Part C: Signature of	Responsible Official	
I hereby certify that the information in this emission statement is a to the prepares and on a reasonable inquiry into records and pers accurate, and complete.	ccurate based on reasonable estimates using data	
Don Porter	Refinery Manager	
Name of Responsible Official (typed or printed)	Title of Responsible Official	
Double	June 27, 2017	
Signature of Responsible Official	Date (month, day, year)	

6/26/2017 Page 17 of 42 Group IDUSDC 1866ND cago of 109scription333sP\$PS document 1-2 filed 09/06/19 page 46 of 105 Percent Quarterly Throughput Winter: 25 Fall: 25 Spring: 25 Summer: 25 Davs Per Week: 7 Weeks Per Year: 52 Hours Per Day: 24 Hours Per Year: 8760 Process ID: 50301A Description: 3SPS - Blr 1 503-01 Stack: SCC: 10200701 Description: 3SPS - Blr 1 Industrial Stack Type: Vertical Process Gas 200 Height: Petroleum Refinery Gas 10 Diameter: **Heat Content:** 1200 500 Temperature: **Sulfur Content:** 0 Velocity: 25 **Ash Content:** 0 115000 Gas Flow: 3095847 Million BTUs Throughput: Material: **Process Gas** Input/Output/: Process Material Used (Input) Overall Control Effciency **Pollutant Estimation Method Factor Emission (Tons)** PM10-FIL **Engineering Judgement** 0 15.48 VOC **Engineering Judgement** 0 8.36 0 Engineering Judgement NH3 0 5.71 0 PM25-FIL Engineering Judgement 0 0 0 PM-CON **Engineering Judgement** 0 18.58 0 **CEMS - Continuous Emission Monitoring** CO 0 0 8.06 **CEMS - Continuous Emission Monitoring** SO2 0 0 15.35 NOX **CEMS - Continuous Emission Monitoring** 0 50 22.84 7439921 **Engineering Judgement** 0 0.0008 0 Process ID: 50301B Description: 3SPS - Duct Burner 1 503-01 Stack: SCC: 10200701 3SPS - Bir 1 Description: Industrial Stack Type: Vertical Process Gas Height: 200 Petroleum Refinery Gas Diameter: 10 1200 **Heat Content:** Temperature: 500 **Sulfur Content:** 0 25 Velocity: 0 **Ash Content:** Gas Flow: 115000 242919 Million BTUs Throughput: Material: Process Gas Input/Output/: Process Material Used (Input) **Overall Control Effciency Pollutant Estimation Method Factor Emission (Tons)** CO Engineering Judgement 0 0.63 0 NH3 Engineering Judgement 0 0.45 0 State/Local Speciation Profile 0 PM-CON 1.46 0 Engineering Judgement 0 PM10-FIL 0 1.21 VOC Engineering Judgement 0 0.66 0 Engineering Judgement 0 7439921 0.0001 0 NOX **Engineering Judgement** 0 1.75 0 PM25-FIL **Engineering Judgement** 0 0 0 **Engineering Judgement** 0 SO₂ 1.21 0 3SPS - Blr 2 Process ID: 50302A Description: 503-02 Stack:

SCC: 10200701

Industrial Process Gas

Petroleum Refinery Gas

Heat Content: Sulfur Content:

1200 0

Ash Content: 0

2748324 Throughput: Material:

Process Gas

3SPS - Blr 2 Description: Stack Type: Vertical Height: 200 10 Diameter: Temperature: 500 Velocity:

25 Gas Flow: 115000

Input/Output/:

Process Material Used (Input)

		·		, , ,
<u>Pollutant</u>	Estimation Method	<u>Factor</u>	Overall Control Effciency	Emission (Tons)
NH3	Engineering Judgement	0	0	5.08
PM10-FIL	Engineering Judgement	0	0	20.59
PM-CON	Engineering Judgement	0	0	19.70

Million BTUs

6/26/2017 Page 18 of 42

Group IDUSDC I MAND ca കേൾ be വേള് വി ca de care and bear and care and company and care and

Percent Quarterly Throughput

Winter: 25 Spring: 25 Summer: 25 Fall: 25

Days Per Week: 7 Weeks Per Year: 52 Hours Per Day: 24 Hours Per Year: 8760

Process ID: 50302A Description: 3SPS - Bir 2

 SCC:
 10200701
 Stack:
 503-02

 Industrial
 Description:
 3SPS - Bir 2

 Process Gas
 Stack Type:
 Vertical

 Petrology Refinery Gas
 Height:
 200

Petroleum Refinery Gas
Heat Content: 1200

Sulfur Content: 0

Temperature: 500

Sulfur Content: 0 Velocity: 25
Ash Content: 0 Gas Flow: 115000

Material: Process Gas Input/Output/: Process Material Used (Input)

Factor Overall Control Effciency Pollutant **Estimation Method Emission (Tons)** Engineering Judgement 7439921 0 0.0007 **CEMS - Continuous Emission Monitoring** CO 0 0 9.35 CEMS - Continuous Emission Monitoring SO₂ 0 0 13.23 CEMS - Continuous Emission Monitoring NOX 0 50 23.87 Engineering Judgement 0 PM25-FIL 0 0 **Engineering Judgement** VOC 0 2.75 0

Process ID: 50302B Description: 3SPS - Duct Burner 2

 SCC:
 10200701
 Stack:
 503-02

 Industrial
 Description:
 3SPS - Blr 2

 Process Gas
 Stack Type:
 Vertical

 Height:
 200

Petroleum Refinery Gas Diameter: 10 **Heat Content:** 1200 Temperature: 500 **Sulfur Content:** 0 25 Velocity: 0 **Ash Content:** Gas Flow: 115000 191805 Million BTUs Throughput:

Material: Process Gas Input/Output/: Process Material Used (Input)

Overall Control Effciency Pollutant Estimation Method Factor Emission (Tons) CEMS - Continuous Emission Monitoring CO 0 0.65 0 **CEMS - Continuous Emission Monitoring** SO₂ 0 0.93 0 State/Local Speciation Profile 0 PM-CON 1.39 0 **Engineering Judgement** 0 PM25-FIL 0 0 **Engineering Judgement** 0 PM10-FIL 0 1.45 0 VOC **Engineering Judgement** 0.19 0 **CEMS - Continuous Emission Monitoring** 0 NOX 1.60 0 NH3 **Engineering Judgement** 0 0 0.36 **Engineering Judgement** 7439921 0 0.0000 0

Process ID: 50303A Description: 3SPS - Blr 3

503-03 Stack: SCC: 10200701 3SPS - Blr 3 Description: Industrial Stack Type: Vertical Process Gas 200 Height: Petroleum Refinery Gas 10 Diameter: 1200 **Heat Content:** 500 Temperature: Sulfur Content: 0 Velocity: 25 **Ash Content:** 0 Gas Flow: 115000

Million BTUs

Material: Process Gas Input/Output/: Process Material Used (Input)

Overall Control Effciency Estimation Method Factor Emission (Tons) **Pollutant** Engineering Judgement 15.86 PM10-FIL 0 0 **CEMS - Continuous Emission Monitoring** 0 NOX 26.01 50 NH3 Engineering Judgement 0 5.84 0 VOC **Engineering Judgement** 0 8.56 0 **CEMS - Continuous Emission Monitoring** SO₂ 0 15.57 0 PM-CON **Engineering Judgement** 0 0 19.03

3171859

Throughput:

Group IDUSDC IBUSND case ip 109scrip (100)337SP\$PS document 1-2 filed 09/06/19 page 48 of 105

Page 19 of 42

Percent Quarterly Throughput

Winter: 25 Spring: 25 Summer: 25 Fall: 25

Days Per Week: 7 Weeks Per Year: 52 Hours Per Day: 24 Hours Per Year: 8760

Process ID: 50303A Description: 3SPS - Bir 3

 SCC:
 10200701
 Stack:
 503-03

 Industrial
 Description:
 3SPS - Bir 3

 Process Gas
 Stack Type:
 Vertical

Petroleum Refinery Gas

Heat Content: 1200

Heat Content: 1200

Height: 200

Diameter: 10

Sulfur Content: 0 Temperature: 500

Ash Content: 0 Velocity: 25

Throughput: 3171859 Million BTUs Gas Flow: 115000

Material: Process Gas Input/Output/: Process Material Used (Input)

Pollutant **Estimation Method Factor Overall Control Effciency Emission (Tons) CEMS - Continuous Emission Monitoring** CO 0 0 10.80 PM25-FIL **Engineering Judgement** 0 0 0 7439921 **Engineering Judgement** 0 0.0008 0

Process ID: 50303B Description: 3SPS - Duct Burner 3

 SCC:
 10200701
 Stack:
 503-03

 Industrial
 Description:
 3SPS - Blr 3

 Process Gas
 Stack Type:
 Vertical

 Height:
 200

Petroleum Refinery Gas

Heat Content: 1200

Sulfur Content: 0

Temperature: 500

Sulfur Content: 0 Velocity: 25
Ash Content: 0 Million BTUs Gas Flow: 115000

Material: Process Gas Input/Output/: Process Material Used (Input)

Pollutant Overall Control Effciency Estimation Method Factor Emission (Tons) CEMS - Continuous Emission Monitoring CO 0 0 0.72 CEMS - Continuous Emission Monitoring SO2 0 1.09 0 7439921 **Engineering Judgement** 0 0.0001 0 CEMS - Continuous Emission Monitoring NOX 0 1.74 0 State/Local Speciation Profile PM-CON 0 1.32 0 PM10-FIL Engineering Judgement 0 0 1.10 Engineering Judgement PM25-FIL 0 0 0 VOC Engineering Judgement 0 0.60 0 NH3 **Engineering Judgement** 0 0.41 0

Process ID: 50304A Description: 3SPS - Blr 4

SCC: 10200701
Industrial
Process Gas
Petroleum Refinery Gas

Stack: 503-04
Description: 3SPS - Blr 4
Stack Type: Vertical
Height: 200
Diameter: 10

Diameter: **Heat Content:** 1200 Temperature: 500 0 Sulfur Content: 25 Velocity: 0 **Ash Content:** Gas Flow: 115000 3630566 Million BTUs Throughput:

Material: Process Gas Input/Output/: Process Material Used (Input)

<u>Pollutant</u>	Estimation Method	<u>Factor</u>	Overall Control Effciency	Emission (Tons)
NOX	CEMS - Continuous Emission Monitoring	0	50	31.48
7439921	Engineering Judgement	0	0	0,0009
PM25-FIL	Engineering Judgement	0	0	0
PM-CON	Engineering Judgement	0	0	21.78
SO2	CEMS - Continuous Emission Monitoring	0	0	17.62
PM10-FIL	Engineering Judgement	0	0	18.15
СО	CEMS - Continuous Emission Monitoring	0	0	10.42
VOC	Engineering Judgement	0	0	9.80
NH3	CEMS - Continuous Emission Monitoring	0	0	6.70

Group IDUSDC ISMOND cae வெற்றி நிலை முற்றி நிலை document 1-2 filed 09/06/19 page 49 of 105

Percent Quarterly Throughput

Winter: 25 Spring: 25 Summer: 25 Fall: 25

Days Per Week: 7 Weeks Per Year: 52 Hours Per Day: 24 Hours Per Year: 8760

Process ID: 50304B Description: 3SPS - Duct Burner 4

 SCC:
 10200701
 Stack:
 503-04

 Industrial
 Description:
 3SPS - Blr 4

 Process Gas
 Stack Type:
 Vertical

 Petroleum Refinery Gas
 Height:
 200

 Diameter:
 10

10 Diameter: 1200 **Heat Content:** 500 Temperature: **Sulfur Content:** 0 25 Velocity: **Ash Content:** 0 115000 Gas Flow: 240314 Million BTUs Throughput:

Material: Process Gas Input/Output/: Process Material Used (Input)

Overall Control Effciency Pollutant **Estimation Method Factor Emission (Tons) CEMS - Continuous Emission Monitoring** S₀₂ 0 1.17 PM-CON State/Local Speciation Profile 0 1.44 0 NOX CEMS - Continuous Emission Monitoring 0 2.05 0 CO CEMS - Continuous Emission Monitoring 0 0.71 0 Engineering Judgement NH₃ 0 0.44 0 VOC **Engineering Judgement** 0 0.65 0 **Engineering Judgement** PM10-FIL 0 Ω 1.20 **Engineering Judgement** 0 PM25-FIL 0 0 Engineering Judgement 7439921 0 0.0001 0

Process ID: 50305A Description: 3SPS - Blr 6

 SCC:
 10200701
 Stack:
 503-05

 Industrial
 Description:
 3SPS - Blr 6

 Stack Type:
 Vertical

Process Gas
Petroleum Refinery Gas
Piameter: 10

 Heat Content:
 1200
 Diameter:
 10

 Sulfur Content:
 0
 Temperature:
 500

 Ash Content:
 0
 Velocity:
 25

 Throughput:
 3220775
 Million BTUs
 Gas Flow:
 115000

Material: Process Gas Input/Output/: Process Material Used (Input)

Overall Control Effciency Pollutant Estimation Method Factor **Emission (Tons)** Engineering Judgement PM-CON 0 18.67 0 VOC Engineering Judgement 0 0 0.97 **CEMS - Continuous Emission Monitoring** 0 NOX 25.85 50 Engineering Judgement 0 NH3 0 5.93 **Engineering Judgement** 0 PM25-FIL n 0 **CEMS - Continuous Emission Monitoring** 0 CO 11.88 0 **SO2 CEMS - Continuous Emission Monitoring** 0 0 15.60 PM10-FIL **Engineering Judgement** 0 20.42 0 **Engineering Judgement** 7439921 0 0.0008 0

Stack:

503-05

Process ID: 50305B Description: 3SPS - Duct Burner 6

SCC: 10200701 3SPS - Bir 6 Description: Industrial Stack Type: Vertical Process Gas Height: 200 Petroleum Refinery Gas Diameter: 10 **Heat Content:** 1200 500 Temperature:

 Sulfur Content:
 0
 Velocity:
 25

 Ash Content:
 0
 Gas Flow:
 115000

Material: Process Gas Input/Output/: Process Material Used (Input)

Factor Overall Control Effciency Pollutant Estimation Method Emission (Tons) CEMS - Continuous Emission Monitoring 0 1.76 NOX 0 State/Local Speciation Profile 0 PM-CON 1.31 0 PM25-FIL **Engineering Judgement** 0 0 0

6/26/2017 Page 21 of 42

Group ID JSDC IS ND case เก็บ เป็น Dcase เก็บ เก็บ เก็บ ครั้ง document 1-2 filed 09/06/19 page 50 of 105

Percent Quarterly Throughput

Winter: 25 Spring: 25 Summer: 25 Fall: 25

Days Per Week: 7 Weeks Per Year: 52 Hours Per Day: 24 Hours Per Year: 8760

Stack:

503-05

Process ID: 50305B Description: 3SPS - Duct Burner 6

SCC: 10200701

Industrial Description: 3SPS - BIr 6
Process Gas Stack Type: Vertical

Petroleum Refinery Gas

Height: 200

Diameter: 10

Sulfur Content: 0 Temperature: 500

Ash Content: 0 Velocity: 25

Throughput: 227510 Million BTUs

Material: Process Gas Input/Output/: Process Material Used (Input)

Overall Control Effciency Pollutant Estimation Method <u>Factor</u> **Emission (Tons) CEMS - Continuous Emission Monitoring** SO2 0 0 1.10 CO **CEMS - Continuous Emission Monitoring** 0 0.84 0 **Engineering Judgement** 0 1.44 PM10-FIL 0 7439921 Engineering Judgement 0 0.0001 0 Engineering Judgement 0 NH3 0.42 0 VOC **Engineering Judgement** 0 0.07 0

JSDC IN/ND case 2:19-cv-00337-PPS

AIR EMISSION STATEMENT CERTIFICATION

State Form 52052 (3-05)

State Form 52052 (3-05)
INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT

Instructions:
This is a required form for each air emission statement as well as any modifications. The certification supplied with a source's permit may be used in lieu of this form

IDEM - Office of Air Quality Technical Support and Modeling Section - Mail Code 61-51 100 N. Senate Avenue Indianapolis, IN 46204-2251 Telephone: (317) 233-0178 or Toll Free: 1-800-451-6027 x30178 (within Indiana) http://www.emissions.IN.gov/

document 1-2 filed 09/06/19 page 51 of 105

"Responsible Official" has the same meaning as defined in 326 IAC (34), and is usually designated in the General Information section of the

Pa	rt A: Contact Inforn	nation	
Part A is intended to provide basic information about Air Emission Statement preparer in case there is a qu	the company submittin- uestion about the report	g an Air Emission Staten t.	nent and information on the
1. Company Name: BP Products North America Inc	Whiting R	2. Source ID:	1808900003
3. Mailing Address:			
City:	State:	ZIP Code:	
4. Name of Emission Statement Preparer:	Julie	Kendall	
5. Title of Emission Statement Preparer(optional):	Environmenta	al Specialist	
6. Telephone Number: (219)-370-3131	7. Facsimile Number	:(optional):	
8. Electronic Mail Address (optional): julie.	kendall@bp.com		
Pa	rt B: Emissions Sun	nmary	
Part B is intended to aid in the review of data and to	collect information abou	t billable hazardous air p	
Emissions Statement Pollutants (Plant Wide)		Ross	Tons Emitted
Ammonia(NH3) Carbon Monoxide (CO)		Received State of Indiana	56.9700 588.3857
Lead (PB)			0.0344
Nitrogen Dioxide (NO2)		JUL - 2 2018	
Primary PM Condensible Only (All Less Than 1 Micro	on)(PM-CON) Dept of	· E	436.2304
Nitrogen Dioxide (NO2) Primary PM Condensible Only (All Less Than 1 Micro Primary PM10, Filterable Portion Only(PM10-FIL) Primary PM2.5, Filterable Portion Only(PM25-FIL)		Office of Mana	451.6005
Primary PM2.5, Filterable Portion Only(PM25-FIL)	, ,	Office of Air Quality	ement 246.1102
Sulfur Dioxide (SO2)			322.5529
Volatile Organic Compounds (VOC)	44 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	hdus 11.1100 11.1100 11.1100 11.110 11.110 11.110 11.110 11.110 11.110 11.110 11.110 11.110 11.110 11.110 11.1	659.0846
Part 70 Permit Billable Hazardous Air Pollutant	ts (Plant Wide)		Tons Emitted
No Billable Hazardous Air Pollutants reported!			0.0000
Part C: S	ignature of Respons	sible Official	
I hereby certify that the information in this emission s to the prepares and on a reasonable inquiry into recoaccurate, and complete.	tatement is accurate ba	sed on reasonable estim	nates using data available f the source, and is true,
Durano Poerre	'ટ ક	ENER MARKER	
Name of Responsible Official (typed or printed)	Title	of Responsible Official	
Dra De		00 (23/8	
Signature of Responsible Official	Date	(month, day, year)	

document 1-2

filed 09/06/19

page 52 of 105

Percent Quarterly Throughput

Winter: 25 Days Per Week:

7

3565884

Spring: 25

Weeks Per Year:

Million BTUs

Summer: 25

52

Fall: 25 Hours Per Day: 24

Hours Per Year:

8760

Process ID: 50301A Description: 3SPS - Blr 1

SCC: 10200701

Industrial Process Gas

Petroleum Refinery Gas

1200 **Heat Content: Sulfur Content:** 0

Ash Content: 0

Throughput:

Process Gas Material:

Stack:

503-01

Description: Stack Type:

3SPS - Bir 1 Vertical

Height: Diameter:

200 10

Temperature: 500 25 Velocity: Gas Flow: 115000

Input/Output/:

Process Material Used (Input)

<u>Pollutant</u>	Estimation Method	<u>Factor</u>	Overall Control Effciency	Emission (Tons)
PM10-FIL	Engineering Judgement	0	0	17.83
PM-CON	Engineering Judgement	0	0	21.40
VOC	Engineering Judgement	0	0	9.63
PM25-FIL	Engineering Judgement	0	0	0
7439921	Engineering Judgement	0	0	0.0009
SO2	CEMS - Continuous Emission Monitoring	0	0	16.67
NOX	CEMS - Continuous Emission Monitoring	0	50	28.14
NH3	Engineering Judgement	0	0	6.53
CO	CEMS - Continuous Emission Monitoring	0	0	16.25

Process ID: 50301B

Description: 3SPS - Duct Burner 1

SCC: 10200701

Industrial Process Gas

Petroleum Refinery Gas

Heat Content: Sulfur Content:

1200 0 0

Ash Content: Throughput:

264921

Million BTUs

Material: Process Gas

3SPS - Bir 1 Description: Vertical Stack Type: 200 Height: Diameter: 10

503-01

503-02

Vertical

200

10

500

25

115000

3SPS - Bir 2

Temperature: 500 Velocity: 25 Gas Flow: 115000

Input/Output/:

Stack:

Height:

Diameter:

Velocity:

Gas Flow:

Temperature:

Description:

Stack Type:

Stack:

Process Material Used (Input)

<u>Pollutant</u>	Estimation Method	<u>Factor</u>	Overall Control Effciency	Emission (Tons)
CO	Engineering Judgement	0	0	0.94
NH3	Engineering Judgement	0	0	0.49
VOC	Engineering Judgement	0	0	0.72
PM10-FIL	Engineering Judgement	0	0	1.32
7439921	Engineering Judgement	0	0	0.0001
NOX	Engineering Judgement	0	0	2.06
PM25-FIL	Engineering Judgement	0	0	0
SO2	Engineering Judgement	0	0	1.24
PM-CON	State/Local Speciation Profile	0	0	1.59

Process ID: 50302A Description: 3SPS - Blr 2

SCC: 10200701

Industrial Process Gas

Petroleum Refinery Gas

1200

Heat Content: Sulfur Content:

0 **Ash Content:** 0

Throughput: 3697950 Million BTUs

Process Gas Material:

Input/Output/:

Process Material Used (Input)

<u>Pollutant</u>	Estimation Method	<u>Factor</u>	Overall Control Effciency	Emission (Tons)
PM25-FIL	Engineering Judgement	0	0	0
7439921	Engineering Judgement	0	0	0.0009
PM-CON	Engineering Judgement	0	0	2.96

Group IDUSDC INVID case 2: 195 CMp (M) 337 SPSS

document 1-2 filed 09/06/19

page 53 of 105

Percent Quarterly Throughput

Winter: 25 Days Per Week:

7

Spring: 25

Summer: 25

52

Fall: 25 Hours Per Day: 24

Hours Per Year:

8760

Process ID: 50302A

Weeks Per Year: Description: 3SPS - Blr 2

Million BTUs

SCC: 10200701 Industrial Process Gas

Petroleum Refinery Gas

1200 **Heat Content: Sulfur Content:** 0

Ash Content: 0 Throughput:

3697950 Material: Process Gas Stack: Description:

503-02 3SPS - Blr 2

Stack Type: Height: Diameter:

Vertical 200 10

Temperature: 500 25 Velocity: Gas Flow: 115000

Process Material Used (Input) Input/Output/:

503-02

Vertical

200

10

25

500

115000

3SPS - Blr 2

		-		
<u>Pollutant</u>	Estimation Method	<u>Factor</u>	Overall Control Effciency	Emission (Tons)
CO	CEMS - Continuous Emission Monitoring	0	0	16.43
VOC	Engineering Judgement	0	0	3.70
SO2	CEMS - Continuous Emission Monitoring	0	0	17.30
PM10-FIL	Engineering Judgement	0	0	8.69
NOX	CEMS - Continuous Emission Monitoring	0	50	28.65
NH3	Engineering Judgement	0	0	6.77

Process ID: 50302B

Description: 3SPS - Duct Burner 2

SCC: 10200701 Industrial Process Gas

Petroleum Refinery Gas

Heat Content: 1200 **Sulfur Content:** 0 Ash Content: 0

Throughput: 225605 Material: Process Gas Million BTUs

Million BTUs

Input/Output/: Process Material Used (Input)

Stack:

Height:

Diameter:

Velocity:

Gas Flow:

Description:

Stack Type:

Temperature:

<u>Pollutant</u>	Estimation Method	<u>Factor</u>	Overall Control Effciency	Emission (Tons)
VOC	Engineering Judgement	0	0	0.23
PM-CON	State/Local Speciation Profile	0	0	0.18
SO2	CEMS - Continuous Emission Monitoring	0	0	1.06
PM10-FIL	Engineering Judgement	0	0	0.53
PM25-FIL	Engineering Judgement	0	0	0
7439921	Engineering Judgement	0	0	0.0001
CO	CEMS - Continuous Emission Monitoring	0	0	0.96
NH3	Engineering Judgement	0	0	0.41
NOX	CEMS - Continuous Emission Monitoring	0	0	1.71

Process ID: 50303A Description: 3SPS - Blr 3

SCC: 10200701 Industrial Process Gas

Petroleum Refinery Gas

1200 **Heat Content: Sulfur Content:** 0 **Ash Content:** 0

2423542 Throughput: Material: Process Gas

Stack: Description: Stack Type:

503-03 3SPS - Blr 3 Vertical

Height: 200 10 Diameter: 500 Temperature: Velocity: 25 Gas Flow: 115000

Input/Output/:

Process Material Used (Input)

. 733335 345	pui	mpas curpus:			
Estimation Method	<u>Factor</u>	Overall Control Effciency	Emission (Tons)		
Engineering Judgement	0	0	12.12		
Engineering Judgement	0	0	4.43		
Engineering Judgement	0	0	14.54		
Engineering Judgement	0	0	6.54		
CEMS - Continuous Emission Monitoring	0	. 0	11.58		
CEMS - Continuous Emission Monitoring	0	50	18.94		
	Engineering Judgement Engineering Judgement Engineering Judgement Engineering Judgement CEMS - Continuous Emission Monitoring	Estimation MethodFactorEngineering Judgement0Engineering Judgement0Engineering Judgement0Engineering Judgement0CEMS - Continuous Emission Monitoring0	Estimation Method Engineering Judgement Engineering Judgement Engineering Judgement Engineering Judgement Engineering Judgement Engineering Judgement OCEMS - Continuous Emission Monitoring OCEMS - Continuous Emission Monitoring		

6/26/2018 Page 19 of 42

Group ID USDC IS NO case 2:19-cypno333sps document 1-2 filed 09/06/19 page 54 of 105

Percent Quarterly Throughput

Winter: 25 Spring: 25 Summer: 25 Fall: 25

Days Per Week: 7 Weeks Per Year: 52 Hours Per Day: 24 Hours Per Year: 8760

503-03

Process ID: 50303A Description: 3SPS - Blr 3

SCC: 10200701 Stack:

Industrial Description: 3SPS - Bir 3
Process Gas Stack Type: Vertical

Petroleum Refinery Gas

Height: 200

Diameter: 10

 Heat Content:
 1200
 Temperature:
 500

 Sulfur Content:
 0
 Velocity:
 25

 Ash Content:
 2423542
 Million BTUs
 Gas Flow:
 115000

Material: Process Gas Input/Output/: Process Material Used (Input)

Pollutant Estimation Method Factor Overall Control Effciency Emission (Tons) PM25-FIL Engineering Judgement 0 0 CEMS - Continuous Emission Monitoring SO₂ 0 11.55 0 **Engineering Judgement** 0 7439921 0.0006 0

Process ID: 50303B Description: 3SPS - Duct Burner 3

 SCC:
 10200701
 Stack:
 503-03

 Industrial
 Description:
 3SPS - Blr 3

 Process Gas
 Stack Type:
 Vertical

Throughput: 148279 Million BTUs Gas Flow: 115000

Material: Process Gas Input/Output/: Process Material Used (Input)

Pollutant Factor Overall Control Effciency Estimation Method Emission (Tons) CEMS - Continuous Emission Monitoring CO 0 0.68 0 **Engineering Judgement** 0 NH3 0 0.27 VOC **Engineering Judgement** 0 0.40 0 NOX CEMS - Continuous Emission Monitoring 0 1.13 0 SO₂ CEMS - Continuous Emission Monitoring 0 0.71 0 **Engineering Judgement** PM10-FIL 0 0.74 0 State/Local Speciation Profile PM-CON 0 0 0.89 **Engineering Judgement** PM25-FIL 0 0 0 7439921 Engineering Judgement 0 0 0.0000

Process ID: 50304A Description: 3SPS - Blr 4

 SCC:
 10200701
 Stack:
 503-04

 Industrial
 Description:
 3SPS - Blr 4

 Process Gas
 Stack Type:
 Vertical

 Petroleum Refinery Gas
 Height:
 200

Heat Content: 1200

Sulfur Content: 0

Ash Content: 0

Diameter: 10

Temperature: 500

Velocity: 25

Throughput: 3232491 Million BTUs

Material: Process Gas Input/Output/: Process Material Used (Input)

Pollutant **Estimation Method** Factor **Overall Control Effciency Emission (Tons)** PM10-FIL Engineering Judgement 0 16.16 0 CEMS - Continuous Emission Monitoring 0 5.92 NH3 0 CEMS - Continuous Emission Monitoring NOX 0 50 18.55 Engineering Judgement PM25-FIL 0 0 0 **Engineering Judgement** VOC 0 0 8.73 SO2 CEMS - Continuous Emission Monitoring 0 15,64 0 Engineering Judgement PM-CON 0 19.39 0 7439921 Engineering Judgement 0 0.0008 0 CEMS - Continuous Emission Monitoring CO 0 11.40 0

Gas Flow:

115000

Group IDUSDC INVIND case 2:19 CY-00337 PS document 1-2 filed 09/06/19 page 55 of 105

Percent Quarterly Throughput

Winter: 25 Spring: 25 Summer: 25 Fall: 25

7 Days Per Week: Weeks Per Year: 52 Hours Per Day: 24 Hours Per Year: 8760

Process ID: 50304B Description: 3SPS - Duct Burner 4

503-04 Stack: SCC: 10200701 3SPS - Bir 4 Description: Industrial Stack Type: Vertical **Process Gas** Height: 200

Petroleum Refinery Gas 10 Diameter: 1200 Temperature: 500

Heat Content: Sulfur Content: 0 Velocity: 25 0 **Ash Content:** 115000 Gas Flow: 202193 Million BTUs Throughput:

Material: Process Gas Input/Output/: Process Material Used (Input)

Pollutant Estimation Method <u>Factor</u> **Overall Control Effciency Emission (Tons) Engineering Judgement** PM10-FIL 0 1.01 0 **CEMS - Continuous Emission Monitoring** 0 CO 0.70 0 NOX **CEMS - Continuous Emission Monitoring** 0 1.15 0 **CEMS - Continuous Emission Monitoring** SO2 0 0.98 0 **Engineering Judgement** NH3 0 0.37 0 State/Local Speciation Profile PM-CON 0 1.21 0 Engineering Judgement 0 PM25-FIL 0 0 Engineering Judgement 7439921 0 0.0000 0 VOC **Engineering Judgement** 0 0.55 0

Process ID: 50305A 3SPS - Blr 6 Description:

503-05 Stack: SCC: 10200701 3SPS - Blr 6 Description: Industrial Stack Type: Vertical Process Gas

200 Height: Petroleum Refinery Gas Diameter: 10 1200 **Heat Content:**

Temperature: 500 0 **Sulfur Content:** Velocity: 25 **Ash Content:** 0 Gas Flow: 115000 3613984 Million BTUs **Throughput:**

Material: Process Gas Process Material Used (Input) Input/Output/:

Pollutant Estimation Method Factor Overall Control Effciency Emission (Tons) VOC **Engineering Judgement** 0 1.08 0 7439921 Engineering Judgement 0 0.0009 0 S₀₂ **CEMS - Continuous Emission Monitoring** 0 16.87 0 14.28 PM10-FIL **Engineering Judgement** 0 0 PM25-FIL **Engineering Judgement** 0 0 0 **CEMS - Continuous Emission Monitoring** CO 0 15.79 0 **CEMS - Continuous Emission Monitoring** NOX 0 50 29.26 **Engineering Judgement** 0 NH3 6.62 0 PM-CON **Engineering Judgement** 0 3.07 0

Process ID: 50305B Description: 3SPS - Duct Burner 6

Stack: 503-05 SCC: 10200701 3SPS - Blr 6 Description: Industrial Vertical Stack Type: Process Gas 200 Height: Petroleum Refinery Gas 10 Diameter:

1200 **Heat Content:** 500 Temperature: Sulfur Content: 0 Velocity: 25 0 **Ash Content:** Gas Flow: 115000 Million BTUs 240441 Throughput:

Process Gas Material: Input/Output/: Process Material Used (Input)

Pollutant Estimation Method Factor **Overall Control Effciency Emission (Tons) Engineering Judgement** NH3 0 0 0.44 NOX **CEMS - Continuous Emission Monitoring** 0 1.93 0 **Engineering Judgement** ٥ 7439921 0.0001 0

6/26/2018 Page 21 of 42

Group IDUSDC INVIND case in 19st in 10337sP\$PS document 1-2 filed 09/06/19 page 56 of 105

Percent Quarterly Throughput

Winter: 25 Spring: 25 Summer: 25 Fall: 25

Days Per Week: 7 Weeks Per Year: 52 Hours Per Day: 24 Hours Per Year: 8760

Process ID: 50305B Description: 3SPS - Duct Burner 6

 SCC:
 10200701
 Stack:
 503-05

 Industrial
 Description:
 3SPS - Bir 6

 Process Gas
 Stack Type:
 Vertical

Petroleum Refinery Gas
Heat Content: 1200

Content: 1200

Temperature: 500

Heat Content: 1200

Sulfur Content: 0

Ash Content: 0

Temperature: 500

Velocity: 25

Gas Flow: 115000

Material: Process Gas Input/Output/: Process Material Used (Input)

Pollutant Estimation Method Factor Overall Control Effciency Emission (Tons) PM-CON State/Local Speciation Profile 0 0.20 **CEMS - Continuous Emission Monitoring** SO2 0 1.12 0 PM10-FIL Engineering Judgement 0 0.95 0 **Engineering Judgement** 0 PM25-FIL 0 0 **Engineering Judgement** VOC 0 0.07 0 CEMS - Continuous Emission Monitoring 0 CO 0 1.04

ISDC_{AES-01}IN/ND case 2:19-cv-00337-PPS

AIR EMISSION STATEMENT CERTIFICATION

State Form 52052 (3-05)

State Form 52032 (3-05)
INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT

Instructions:
This is a required form for each air emission statement as well as any modifications. The certification supplied with a source's permit may be used in lieu of this form

IDEM - Office of Air Quality Technical Support and Modeling Section - Mail Code 61-51 100 N. Senate Avenue Indianapolis, IN 46204-2251 Telephone: (317) 233-0178 or Toll Free: 1-800-451-6027 x30178 (within Indiana) http://www.emissions.IN.gov/

page 57 of 105

document <u>1-2</u> <u>filed 09/06/19</u>

"Responsible Official" has the same meaning as defined in 326 IAC (34), and is usually designated in the General Information section of the

Pai	rt A: Contact Inforn	nation		
Part A is intended to provide basic information about the Air Emission Statement preparer in case there is a qu			ement and inform	ation on the
Company Name: BP Products North America Inc.	Whiting R	2. Source ID:	1808900003	
3. Mailing Address:				
City:	State:	ZIP Code:		
4. Name of Emission Statement Preparer:	ulie	Kendall		
5. Title of Emission Statement Preparer(optional):	Environment	al Specialist		***************************************
6. Telephone Number: (219)-370-3131	7. Facsimile Number	:(optional):		
	rendall@bp.com			-
	t B: Emissions Sur	nmary		
Part B is intended to aid in the review of data and to c	ollect information abou	ıt billable hazardous ai		
Emissions Statement Pollutants (Plant Wide)			Tons E	Emitted
Ammonia(NH3)		State of	Ved	54.4000
Carbon Monoxide (CO)	THE RESIDENCE OF THE PROPERTY	OF I	ndiana	542.1000
Lead (PB)	And the second of the second of the	JIII · .	1	0.0346
Nitrogen Dioxide (NO2)		JUL-1	2019	1377.9800
Primary PM Condensible Only (All Less Than 1 Micro	n)(PM-CON) Do	Pt of Fnui		362.8743
Primary PM10, Filterable Portion Only(PM10-FIL)	· <mark></mark> 	Office of hetal	Mana	380.0743
Primary PM2.5, Filterable Portion Only(PM25-FIL)		ept of Environmetal Office of Air Qu	iality ment	194.8000
Sulfur Dioxide (SO2)			······································	290.7429
Volatile Organic Compounds (VOC)			1	624.1481
Part 70 Permit Billable Hazardous Air Pollutant	s (Plant Wide)		Tons E	Emitted
No Billable Hazardous Air Pollutants reported!		The second secon		0.0000
Part C: Signature	gnature of Respons	sible Official		
I hereby certify that the information in this emission state to the prepares and on a reasonable inquiry into record accurate, and complete.	atement is accurate ba	sed on reasonable est		
DONANO W POPLER	$\overline{\mathcal{N}}$	BP RUBLER	U.	
Name of Responsible Official (typed or printed)	Title	e of Responsible Offici	al	#
Donato		6/27/19		
Signature of Responsible Official	Date	(month, day, year)		

Page 17 of 42 document 1-2 filed 09/06/19 page 58 of 105

Group ID: USDC IN/ND case 2:19-cy-00337-PPS Group Description: 3SPS

Percent Quarterly Throughput

Spring: 25 Summer: 25 Winter: 25 Fall: 25

7 Weeks Per Year: 52 8760 Days Per Week: Hours Per Day: 24 Hours Per Year:

Stack:

Description:

Temperature:

Input/Output/:

Velocity:

Gas Flow:

Process ID: 50301A Description: 3SPS - Blr 1

SCC: 10200701

Industrial Stack Type: **Process Gas** Height: Petroleum Refinery Gas Diameter:

1200 **Heat Content:**

Sulfur Content: 0 **Ash Content:** 0

2971505 Million BTUs Throughput:

Material: Process Gas

Pollutant Estimation Method Factor Overall Control Effciency Emission (Tons) Engineering Judgement 0 PM10-FIL 14.86 0 Engineering Judgement 0 PM-CON 17.83 0 **CEMS - Continuous Emission Monitoring** SO₂ 0 10.59 0 PM25-FIL **Engineering Judgement** 0 0 0 CEMS - Continuous Emission Monitoring CO 0 13.73 0 **CEMS - Continuous Emission Monitoring** NOX 0 21.77 50 NH3 Engineering Judgement 0 5.47 0 VOC **Engineering Judgement** 0 0 5.93 7439921 **Engineering Judgement** 0 0.0007 0

Process ID: 50301B Description: 3SPS - Duct Burner 1

SCC: 10200701 Industrial

Process Gas

Petroleum Refinery Gas

1200 **Heat Content: Sulfur Content:** 0 **Ash Content:** 0

219076 Throughput:

Material: Process Gas

503-01 Stack: Description: 3SPS - Blr 1 Vertical Stack Type: Height: 200 Diameter: 10 500

Temperature: Velocity: 25 Gas Flow: 115000

Input/Output/: Process Material Used (Input)

503-01

Vertical

200

10

500

25

115000

Process Material Used (Input)

3SPS - Bir 1

<u>Pollutant</u>	Estimation Method	<u>Factor</u>	Overall Control Effciency	Emission (Tons)
SO2	Engineering Judgement	0	0	0.79
PM25-FIL	Engineering Judgement	0	0	0
VOC	Engineering Judgement	0	0	0.44
NH3	Engineering Judgement	0	0	0.40
7439921	Engineering Judgement	0	0	0.0001
NOX	Engineering Judgement	0	0	1.55
PM-CON	State/Local Speciation Profile	0	0	1.31
CO	Engineering Judgement	0	0	0.98
PM10-FIL	Engineering Judgement	0	0	1.10

Million BTUs

Million BTUs

Process ID: 50302A Description: 3SPS - Bir 2

SCC: 10200701 Industrial Process Gas

Petroleum Refinery Gas

1200 **Heat Content: Sulfur Content:** 0 0 Ash Content: Throughput: 2797136

Material: Process Gas

503-02 Stack: 3SPS - Blr 2 Description: Stack Type: Vertical Height: 200 10 Diameter: 500 Temperature: Velocity: 25

Gas Flow: 115000

input/Output/: Process Material Used (Input)

<u>Pollutant</u> CO	Estimation Method CEMS - Continuous Emission Monitoring	Factor	Overall Control Efficiency	Emission (Tons) 14.96
PM-CON	Engineering Judgement	0	0	2.24
VOC	Engineering Judgement	0	0	2.03

Exhibit 6 Page 14

Group เปรา ISON ISON cassoup เปรา ISON cassoup cassoup เปรา ISON cassoup ca

Percent Quarterly Throughput

Winter: 25 Spring: 25 Summer: 25 Fall: 25

Days Per Week: 7 Weeks Per Year: 52 Hours Per Day: 24 Hours Per Year: 8760

Process ID: 50302A Description: 3SPS - Blr 2

 SCC:
 10200701
 Stack:
 503-02

 Industrial
 Description:
 3SPS - Bir 2

 Process Gas
 Stack Type:
 Vertical

Petroleum Refinery Gas

Height: 200

Diameter: 10

Heat Content: 1200

Sulfur Content: 0 Temperature: 500

Ash Content: 0 Velocity: 25

Throughput: 2797136 Million BTUs

Material: Process Gas Input/Output/: Process Material Used (Input)

Emission (Tons) **Estimation Method Factor** Overall Control Effciency **Pollutant Engineering Judgement** 0 0.0007 7439921 Engineering Judgement NH3 0 0 5.14 Engineering Judgement 0 PM25-FIL 0 0 **CEMS - Continuous Emission Monitoring** NOX 0 50 22.25 Engineering Judgement 0 PM10-FIL 6.57 0 **CEMS - Continuous Emission Monitoring** 0 SO2 0 10.59

Process ID: 50302B Description: 3SPS - Duct Burner 2

 SCC:
 10200701
 Stack:
 503-02

 Industrial
 Description:
 3SPS - Bir 2

 Stack Type:
 Vertical

Process Gas
Petroleum Refinery Gas

Content: 1300

Diameter: 10

Heat Content: 1200

Sulfur Content: 0

Ash Content: 0

Throughput: 177290

Million BTUs

Diameter: 10

Temperature: 500

Velocity: 25

Gas Flow: 115000

Material: Process Gas Input/Output/: Process Material Used (Input)

Pollutant Estimation Method Factor **Overall Control Effciency Emission (Tons) CEMS - Continuous Emission Monitoring** 0 1.35 NOX 0 0 PM-CON State/Local Speciation Profile 0.14 0 **CEMS - Continuous Emission Monitoring** 0 CO 0.94 0 CEMS - Continuous Emission Monitoring 0 0.68 SO2 0 **Engineering Judgement** 0 0.0000 7439921 0 **Engineering Judgement** 0 PM10-FIL 0.42 0 VOC Engineering Judgement 0 0 0.13 Engineering Judgement PM25-FIL 0 0 0 **Engineering Judgement** 0 NH3 0 0.33

Process ID: 50303A Description: 3SPS - Blr 3

503-03 Stack: SCC: 10200701 3SPS - Bir 3 Description: Industrial Vertical Stack Type: Process Gas Height: 200 Petroleum Refinery Gas 10 Diameter: 1200 **Heat Content:**

 Heat Content:
 1200
 Diameter:
 10

 Sulfur Content:
 0
 Temperature:
 500

 Ash Content:
 0
 Velocity:
 25

 Throughput:
 3451532
 Million BTUs
 Gas Flow:
 115000

Material: Process Gas Input/Output/: Process Material Used (Input)

<u>Pollutant</u>	Estimation Method	<u>Factor</u>	Overall Control Effciency	Emission (Tons)
SO2	CEMS - Continuous Emission Monitoring	0	0	13.07
NOX	CEMS - Continuous Emission Monitoring	0	50	26.49
PM10-FIL	Engineering Judgement	0	0	17.26
PM25-FIL	Engineering Judgement	0	0	0
VOC	Engineering Judgement	0	0	7.34
CO	CEMS - Continuous Emission Monitoring	0	0	17.69

Page 19 of 42 6/24/2019

Group IDUSDC IBUSND Cacoopi Description 3375PSS filed 09/06/19 document 1-2 page 60 of 105

Percent Quarterly Throughput

Summer: 25 Fall: 25 Winter: 25 Spring: 25

8760 Days Per Week: 7 Weeks Per Year: 52 Hours Per Day: 24 Hours Per Year:

Stack:

503-03

Process ID: 50303A Description: 3SPS - Blr 3

SCC: 10200701 Description: 3SPS - Bir 3 Industrial Stack Type: Vertical **Process Gas** Height: 200

Petroleum Refinery Gas Diameter: 10 **Heat Content:** 1200 500 Temperature:

Sulfur Content: 0 25 Velocity: Ash Content: 0 115000 Gas Flow: 3451532 Million BTUs Throughput:

Process Gas Process Material Used (Input) Material: Input/Output/:

Overall Control Effciency Pollutant Estimation Method Factor **Emission (Tons) Engineering Judgement** NH3 0 0 6.35 **Engineering Judgement** 0 20.71 PM-CON 0 **Engineering Judgement** 0 0.0008 7439921 0

Process ID: 50303B Description: 3SPS - Duct Burner 3

Stack: 503-03 SCC: 10200701 3SPS - Blr 3 Description: Industrial Stack Type: Vertical **Process Gas**

Height: 200 Petroleum Refinery Gas Diameter: 10 1200 **Heat Content:** 500

Temperature: 0 **Sulfur Content:** 25 Velocity: **Ash Content:** 0 Gas Flow: 115000 232132 Million BTUs Throughput:

Process Gas Process Material Used (Input) Material: Input/Output/:

Estimation Method Factor Overall Control Effciency Emission (Tons) Pollutant PM25-FIL **Engineering Judgement** 0 0 0 **CEMS - Continuous Emission Monitoring** 0 1.77 NOX 0 0 PM-CON State/Local Speciation Profile 0 1.39 Engineering Judgement 0 PM10-FIL 0 1.16 Engineering Judgement 0 VOC 0 0.49 **CEMS - Continuous Emission Monitoring** 0 CO 1.18 0 CEMS - Continuous Emission Monitoring 0 SO2 0 0.88 **Engineering Judgement** 0 0.0001 7439921 0 **Engineering Judgement** 0 0.43 NH3 0

Description: 3SPS - Blr 4 Process ID: 50304A

503-04 Stack: SCC: 10200701 3SPS - Blr 4 Description: Industrial Stack Type: Vertical Process Gas 200 Height: Petroleum Refinery Gas Diameter: 10

1200 **Heat Content:** 500 Temperature: 0 **Sulfur Content:** 25 Velocity: Ash Content: 0 **Gas Flow:** 115000 3548332 Million BTUs

Process Gas Input/Output/: Process Material Used (Input) Material:

Factor Overall Control Effciency Emission (Tons) Pollutant Estimation Method Engineering Judgement 0 21.29 PM-CON **Engineering Judgement** 0 VOC 7.57 0 NOX **CEMS - Continuous Emission Monitoring** 0 25.04 50 PM25-FIL **Engineering Judgement** 0 0 7439921 **Engineering Judgement** 0 0 0.0009 **Engineering Judgement** 0 PM10-FIL 17.74 O **CEMS - Continuous Emission Monitoring** 0 CO 0 13.44 CEMS - Continuous Emission Monitoring 0 6.53 NH3 0 **CEMS - Continuous Emission Monitoring** 0 SO₂ 0 13.44

Throughput:

filed 09/06/19

page 61 of 105

Percent Quarterly Throughput

Winter: 25

Spring: 25

Group IDUSDC INVID Caero 20 1025 CND 10033375PSS

Summer: 25 Fall: 25

Hours Per Year: Days Per Week: Weeks Per Year: 52 8760 7 Hours Per Day: 24

Process ID: 50304B Description: 3SPS - Duct Burner 4

SCC: 10200701 Industrial Process Gas

Petroleum Refinery Gas

Heat Content: 1200 **Sulfur Content:** Ash Content: 0

241653 Million BTUs Throughput:

Material: Process Gas Stack: 503-04 3SPS - Bir 4 Description: Vertical Stack Type:

200 Height: 10 Diameter: Temperature: 500 Velocity: 25 Gas Flow: 115000

Input/Output/: Process Material Used (Input)

503-05

Vertical

200

10

25

500

115000

503-05

Vertical

200

3SPS - Blr 6

3SPS - Bir 6

	-	•	
Estimation Method	<u>Factor</u>	Overall Control Effciency	Emission (Tons)
CEMS - Continuous Emission Monitoring	0	0	0.92
CEMS - Continuous Emission Monitoring	0	0	0.90
Engineering Judgement	0	0	1.21
CEMS - Continuous Emission Monitoring	0	0	1.72
Engineering Judgement	0	0	0
Engineering Judgement	0	0	0.0001
State/Local Speciation Profile	0	0	1.45
Engineering Judgement	0	0	0.44
Engineering Judgement	0	0	0.51
	CEMS - Continuous Emission Monitoring CEMS - Continuous Emission Monitoring Engineering Judgement CEMS - Continuous Emission Monitoring Engineering Judgement Engineering Judgement State/Local Speciation Profile Engineering Judgement	CEMS - Continuous Emission Monitoring 0 CEMS - Continuous Emission Monitoring 0 Engineering Judgement 0 CEMS - Continuous Emission Monitoring 0 Engineering Judgement 0 Engineering Judgement 0 State/Local Speciation Profile 0 Engineering Judgement 0	CEMS - Continuous Emission Monitoring 0 0 CEMS - Continuous Emission Monitoring 0 0 Engineering Judgement 0 0 CEMS - Continuous Emission Monitoring 0 0 Engineering Judgement 0 0 Engineering Judgement 0 0 State/Local Speciation Profile 0 0 Engineering Judgement 0 0

Process ID: 50305A Description: 3SPS - Blr 6

SCC: 10200701 Industrial **Process Gas**

Petroleum Refinery Gas

Heat Content: 1200 **Sulfur Content:** 0 0 **Ash Content:**

2908277 Throughput: Material: Process Gas Million BTUs

Million BTUs

Input/Output/: Process Material Used (Input)

Stack:

Height:

Diameter:

Velocity:

Gas Flow:

Temperature:

Description:

Stack Type:

<u>Pollutant</u>	Estimation Method	<u>Factor</u>	Overall Control Effciency	Emission (Tons)
CO	CEMS - Continuous Emission Monitoring	0	0	13.09
PM-CON	Engineering Judgement	0	0	2.47
PM10-FIL	Engineering Judgement	0	0	11.49
VOC	Engineering Judgement	0	0	0.87
SO2	CEMS - Continuous Emission Monitoring	0	0	10.99
NH3	Engineering Judgement	0	0	5.36
7439921	Engineering Judgement	0	0	0.0007
PM25-FIL	Engineering Judgement	0	0	0
NOX	CEMS - Continuous Emission Monitoring	0	50	22.70

Description: 3SPS - Duct Burner 6 Process ID: 50305B

SCC: 10200701 Industrial Process Gas

Petroleum Refinery Gas

1200 **Heat Content: Sulfur Content:** 0 **Ash Content:** 0

Material:

Throughput: 212457 Process Gas

10 Diameter: Temperature: 500 25 Velocity: Gas Flow: 115000

Stack:

Height:

Description:

Stack Type:

Input/Output/:

Process Material Used (Input)

Pollutant Estimation Method <u>Factor</u> **Overall Control Effciency Emission (Tons)** PM25-FIL Engineering Judgement 0 0 0 **Engineering Judgement** PM10-FIL 0 0.84 0 **CEMS - Continuous Emission Monitoring** CO 0 0 0.96

Exhibit 6 Page 17

6/24/2019 Page 21 of 42

Group IDUSDC ISOUND cacoo ip 109scrip@003337SPSPS document 1-2 filed 09/06/19 page 62 of 105

Percent Quarterly Throughput

212457

Throughput:

Winter: 25 Spring: 25 Summer: 25 Fall: 25

Days Per Week: 7 Weeks Per Year: 52 Hours Per Day: 24 Hours Per Year: 8760

Stack:

503-05

Process ID: 50305B Description: 3SPS - Duct Burner 6

scc: 10200701

Industrial Description: 3SPS - Bir 6
Industrial Stack Type: Vertical
Process Gas
Petroleum Refinery Gas
Piantana 200
Piantana 3SPS - Bir 6
Stack Type: Vertical
Position: 3SPS - Bir 6
Stack Type: Vertical
Position: 200
Position: 3SPS - Bir 6

Heat Content: 1200 Temperature: 500
Sulfur Content: 0 Velocity: 25
Ash Content: 0 Gas Flow: 115000

Million BTUs

Material: Process Gas Input/Output/: Process Material Used (Input)

Factor Overall Control Effciency Emission (Tons) **Pollutant Estimation Method CEMS - Continuous Emission Monitoring** SO2 0 0.80 VOC **Engineering Judgement** 0 0.06 0 0 Engineering Judgement 0.0001 7439921 0 NOX **CEMS - Continuous Emission Monitoring** 0 1.60 0 Engineering Judgement 0 NH3 0.39 0 PM-CON State/Local Speciation Profile 0 0.18 0

EXHIBIT 7

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT **Indianapolis**

OFFICE MEMORANDUM

To:

Rick Massoels

Date: January 10, 2019

From:

Thomas A. Kline TAK

Thru: Dave Cline A

Subject:

BP Products North America Inc., Whiting Business Unit

Source ID: 089-00453

Permit Number: T089-38868-00453

228496

City: Whiting

County: Lake

Protocol Reviewer: SLF

Field Observer: SLF

Test Company: Mostardi Platt

The Compliance Data Section has reviewed this report and found the sampling procedures used and results obtained to be acceptable to this office. A copy of the test report is filed in the Compliance Data Section. The following is a summary of the test results.

Unit Tested: No. 3 Stanolind Power Station (SPS) – Unit ID 503 - #31 Boiler

Dates of tests: October 8, 2018

Test Purpose: Compliance Type of Fuel: Refinery gas

Pollution Control Equipment: none for particulate or VOC

Permitted APCD Parameters: none APCD Parameters During Testing: n/a

Pollutants:

PM, PM10, Opacity, VOC

Test methods:

1-5, 9, 25A, 202

Maximum Operating Rate:

575 mmBtu/hr 528 mmBtu/hr

Average Operating Rate During Test:

PM Emisson Limit:

0.012 lb/mmBtu (326 IAC 2-2)

PM Emission Rate:

0.0043 lb/mmBtu

PM10 Emission Limit:

0.03 gr/dscf (326 IAC 6.8-1-2)

PM10 Emission Rate:

0.009 gr/dscf

PM10 Emisson Limit:

0.010 lb/mmBtu (326 IAC 2-2) 0.0075 lb/mmBtu (326 IAC 6.8-2-6)

PM10 Emission Rate:

0.0043 lb/mmBtu (front half) 0.0112 lb/mmBtu (back half)

0.0155 lb/mmBtu (total)

PM10 Emission Limit:

4.28 lb/hr (326 IAC 6.8-2-6)

PM10 Emission Rate:

2.61 lb/hr (front half) 6.73 lb/hr (back half)

9.34 lb/hr (total)

USDC IN/ND case 2:19-cv-00337-PPS document 1-2 filed 09/06/19 page 65 of 105 Continued: Unit Tested: No. 3 Stanolind Power Station (SPS) – Unit ID 503 - #31 Boiler

Allowable Opacity:

20% (326 IAC 5-1-2)

Six Minute Opacity:

0%

Average Opacity:

0%

VOC Emission Limit:

0.0054 lb/mmBtu (326 IAC 2-2)

VOC Emission Rate:

0.00002 lb/mmBtu

Status: In Compliance for PM, Opacity, and VOC. Out of Compliance for PM10.

Unit Tested: No. 3 Stanolind Power Station (SPS) – Unit ID 503 - #32 Boiler

Dates of tests: October 9, 2018
Test Purpose: Compliance
Type of Fuel: Refinery gas

Pollution Control Equipment: none for particulate or VOC

Permitted APCD Parameters: none APCD Parameters During Testing: n/a

.

PM, PM10, Opacity, VOC

Maximum Operating Rate:

575 mmBtu/hr 492 mmBtu/hr

Average Operating Rate During Test:

0.012 lb/mmBtu (326 IAC 2-2)

PM Emission Limit: PM Emission Rate:

Pollutants:

0.0036 lb/mmBtu

PM10 Emission Limit:

0.03 gr/dscf (326 IAC 6.8-1-2)

PM10 Emission Rate:

0.01 gr/dscf

PM10 Emisson Limit:

0.010 lb/mmBtu (326 IAC 2-2) 0.0075 lb/mmBtu (326 IAC 6.8-2-6)

PM10 Emission Rate:

0.0036 lb/mmBtu (front half) 0.0126 lb/mmBtu (back half)

0.0162 lb/mmBtu (total)

PM10 Emission Limit:

4.28 lb/hr (326 IAC 6.8-2-6)

PM10 Emission Rate:

2.23 lb/hr (front half) 7.78 lb/hr (back half) 10.01 lb/hr (total)

Allowable Opacity:

20% (326 IAC 5-1-2)

Six Minute Opacity: Average Opacity:

0% 0%

VOC Emission Limit:

0.0054 lb/mmBtu (326 IAC 2-2)

VOC Emission Rate:

0.00002 lb/mmBtu

Status: In Compliance for PM, Opacity, and VOC. Out of Compliance for PM10.

Unit Tested: No. 3 Stanolind Power Station (SPS) – Unit ID 503 - #33 Boiler

PPAGGG

Dates of tests: October 11, 2018
Test Purpose: Compliance
Type of Fuel: Refinery gas

Pollution Control Equipment: none for particulate or VOC

Permitted APCD Parameters: none APCD Parameters During Testing: n/a

Pollutants:

PM, PM10, Opacity, VOC

Test methods:

1-5, 9, 25A, 202

Maximum Operating Rate:

575 nunBtu/hr

Average Operating Rate During Test:

517 nunBtu/hr

PM Emisson Limit:

0.012 lb/mmBtu (326 IAC 2-2)

PM Emission Rate:

0.0053 lb/mmBtu

PM10 Emission Limit:

0.03 gr/dscf (326 IAC 6.8-1-2)

PM10 Emission Rate:

0.006 gr/dscf

PM10 Emisson Limit:

0.010 lb/nmrBtu (326 IAC 2-2) 0.0075 lb/mrnBtu (326 IAC 6.8-2-6)

0.0053 lb/mmBtu (front half)

PM10 Emission Rate:

0.0098 lb/mmBtu (back half)

0.0151 lb/mmBtu (total)

PM10 Emission Limit:

4.28 lb/hr (326 IAC 6.8-2-6)

PM10 Emission Rate:

3.16 lb/hr (front half) 5.86 lb/hr (back half)

9.02 lb/hr (total)

Allowable Opacity:

20% (326 IAC 5-1-2)

Six Minute Opacity: Average Opacity:

0% 0%

VOC Emission Limit:

0.0054 lb/mmBtu (326 IAC 2-2)

VOC Emission Rate:

0.00008 lb/mmBtu

Status: In Compliance for PM, Opacity, and VOC. Out of Compliance for PM10.

Unit Tested: No. 3 Stanolind Power Station (SPS) - Unit ID 503 - #34 Boiler

228500

Dates of tests: October 12, 2018
Test Purpose: Compliance
Type of Fuel: Refinery gas

Pollution Control Equipment: none for particulate or VOC

Permitted APCD Parameters: none APCD Parameters During Testing: n/a

Average Operating Rate During Test:

Pollutants:

PM, PM10, Opacity, VOC

Test methods:

1-5, 9, 25A, 202

Maximum Operating Rate:

575 mmBtu/hr 548 mmBtu/hr

PM Emisson Limit:

0.012 lb/mmBtu (326 IAC 2-2)

PM Emission Rate:

0.0051 lb/mmBtu

PM10 Emission Limit:

0.03 gr/dscf (326 IAC 6.8-1-2)

PM10 Emission Rate:

0.007 gr/dscf

PM10 Emisson Limit:

0.010 lb/mmBtu (326 IAC 2-2)

0.0075 lb/mmBtu (326 IAC 6.8-2-6)

PM10 Emission Rate:

0.0051 lb/mmBtu (front half) 0.0063 lb/mmBtu (back half) 0.0114 lb/mmBtu (total)

PM10 Emission Limit:

4.28 lb/hr (326 IAC 6.8-2-6)

PM10 Emission Rate:

3.30 lb/hr (front half) 4.08 lb/hr (back half) 7.38 lb/hr (total)

Allowable Opacity:

20% (326 IAC 5-1-2)

Six Minute Opacity: Average Opacity:

0%

0 1 3

0%

VOC Emission Limit:

0.0054 lb/mmBtu (326 IAC 2-2)

VOC Emission Rate:

0.00004 lb/mmBtu

Status: In Compliance for PM, Opacity, and VOC. Compliance Cannot be Determined for PM10.

cc: Thomas Kline-Office of Air Quality

Compliance Emissions Test Report

BP Products North America, Inc.
Whiting Refinery

Boiler 31 Stack Whiting, Indiana October 8, 2018

Received State of Indiana

NOV 2 6 2018

DeptotEnvironmentalManagement State of Indiana

Report Submittal Date November 8, 2018

© Copyright 2018 All rights reserved in Mostardi Platt

Project No. M184006A

3.0 TEST RESULT SUMMARIES

Client: **BP Products North America, Inc.**

Facility: **Whiting Refinery** Test Location: 3 SPS Boiler 31 Stack

Test Method: 5/202

Source Condition Date Start Time End Time	Normal 10/8/18 8:50 10:05 Run 1	Normal 10/8/18 10:44 12:11 Run 2	Normal 10/8/18 12:40 13:54 Run 3	Average	
Stack Cond		ruii 2	ivali 3	Average	
Average Gas Temperature, °F	476.5	476.2	473.6	475.4	
Flue Gas Moisture, percent by volume	15.0%	15.2%	15.0%	15.1%	
Average Flue Pressure, in. Hg	29.38	29.32	29.38	29.36	
Gas Sample Volume, dscf	57.430	57.859	56.892	57.394	
Average Gas Velocity, ft/sec	86.799	87.622	86.348	86.923	
Gas Volumetric Flow Rate, acfm	261,779	264,262	260,418	262,153	
Gas Volumetric Flow Rate, dscfm	123,102	123,845	122,915	123,287	
Gas Volumetric Flow Rate, scfm	144,910	146,055	144,600	145,188	
Average %CO ₂ by volume, dry basis	7.7	7.7	7.9	7.8	
Average %O ₂ by volume, dry basis	6.8	6.8	6.9	6.8	
Isokinetic Variance	102.9	103.0	102.1	102.7	
Calculated Fuel Factor Fd, dscf/mmBtu	8,252.7	8,250.1	8,247.7	8,250.2	
Filterable Particulate N	Matter (Met				
grams collected	0.01235	0.00756	0.00743	0.00911	
grains/acf	0.0016	0.0009	0.0010	0.0012	
grains/dscf	0.0033	0.0020	0.0020	0.0024	
lb/hr	3.501	2.140	2.123	2.588	
Ib/mmBtu (Calculated Fd Factor)	0.0058	0.0035	0.0035	0.0043	
Condensable Particulate Matter (Method 202)					
grams collected	0.02149	0.02395	0.02561	0.02368	
grains/acf	0.0027	0.0030	0.0033	0.0030	
grains/dscf	0.0058	0.0064	0.0069	0.0064	
lb/hr	6.092	6.780	7.318	6.730	
Ib/mmBtu (Calculated Fd Factor)	0.0101	0.0112	0.0122	0.0112	
Total Particulate N			0.00004		
grams collected	0.03384	0.03151	0.03304	0.03280	
grains/acf	0.0043	0.0039	0.0043	0.0042	
grains/dscf	0.0091	0.0084	0.0089	0.0088	
(lb/hr)	9.593	8.920	9.441	9.318	
Ib/mmBtu (Calculated Fd Factor)	0.0159	0.0147	0.0157	0.0154	

Compliance Emissions Test Report

BP Products North America, Inc.
Whiting Refinery
Boiler 32 Stack
Whiting, Indiana
October 9, 2018

Received State of Indiana

NOV 2 6 2018

DiptolEnvironmentalManagement
State of Indiana

Report Submittal Date November 8, 2018

© Copyright 2018 All rights reserved in Mostardi Platt

Project No. M184006B

3.0 TEST RESULT SUMMARIES

Client: **BP Products North America, Inc.**

Facility: **Whiting Refinery** Test Location: 3 SPS Boiler 32 Stack

Test Method: 5/202

Source Condition Date Start Time	Normal 10/9/18 8:15	Normal 10/9/18 9:55	Normal 10/9/18 11:35		
End Time	9:29	11:10	12:49	A	
Stack Cond	Run 1	Run 2	Run 3	Average	
Average Gas Temperature, °F	437.5	436.8	437.1	437.1	
Flue Gas Moisture, percent by volume	15.8%	16.0%	16.0%	15.9%	
Average Flue Pressure, in. Hg	29.22	29.22	29.22	29.22	
Gas Sample Volume, dscf	54.563	54.928	55.452	54.981	
Average Gas Velocity, ft/sec	80.094	81.270	80.421	80.595	
Gas Volumetric Flow Rate, acfm	241,558	245,105	242,545	243,069	
Gas Volumetric Flow Rate, dscfm	116,865	118,401	117,124	117,463	
Gas Volumetric Flow Rate, scfm	138,807	140,950	139,438	139,732	
Average %CO ₂ by volume, dry basis	8.5	8.5	8.4	8.5	
Average %O ₂ by volume, dry basis	5.9	5.9	5.9	5.9	
Isokinetic Variance	103.0	102.3	104.4	103.2	
Calculated Fuel Factor Fd, dscf/mmBtu	8,228.5	8,226.4	8,224.1	8,226.3	
Filterable Particulate N	/latter (Met	hod 5)	*****		
grams collected	0.00861	0.00900	0.00605	0.00789	
grains/acf	0.0012	0.0012	0.0008	0.0011	
grains/dscf	0.0024	0.0025	0.0017	0.0022	
lb/hr	2.439	2.566	1.690	2.232	
Ib/mmBtu (Calculated Fd Factor)	0.0040	0.0041	0.0028	0.0036	
Condensable Particulate					
grams collected	0.02958	0.02542	0.02751	0.02750	
grains/acf	0.0040	0.0034	0.0037	0.0037	
grains/dscf	0.0084	0.0071	0.0077	0.0077	
lb/hr	8.379	7.247	7.685	7.770	
Ib/mmBtu (Calculated Fd Factor)	0.0137	0.0117	0.0125	0.0126	
Total Particulate Matter (5/202)					
grams collected	0.03819	0.03442	0.03356	0.03539	
grains/acf	0.0052	0.0046	0.0045	0.0048	
grains/dscf	0.0108	0.0096	0.0094	0.0099	
(lb/hr)	10.818	9.813	9.375	10.002	
Ib/mmBtu (Calculated Fd Factor)	0.0177	0.0158	0.0153	0.0163	

Compliance Emissions Test Report

BP Products North America, Inc.
Whiting Refinery
Boiler 33 Stack
Whiting, Indiana
October 11, 2018

Received State of Indiana

NOV 2 6 2018

Deprotenvironmental Management State of Indiana

Report Submittal Date November 8, 2018

© Copyright 2018 All rights reserved in Mostardi Platt

Project No. M184006C

3.0 TEST RESULT SUMMARIES

Client:

BP Products North America, Inc.

Facility:

Whiting Refinery Test Location: 3 SPS Boiler 33 Stack

Test Method:

Test Method: 5/202					
Source Condition	Normal	Normal	Normal	Normal	
Date	10/11/18	10/11/18	10/11/18	10/11/18	
Start Time	8:25	10:07	12:40	14:34	
End Time	9:40	11:22	13:55	15:49	Runs 1, 2, and 4
	Run 1	Run 2	Run 3	Run 4	Average
	ick Conditi	ons			
Average Gas Temperature, °F	483.4	483.1	483.0	485.1	483.9
Flue Gas Moisture, percent by volume	14.4%	13.1%	14.3%	13.9%	13.8%
Average Flue Pressure, in. Hg	29.09	29.09	29.09	29.09	29.09
Gas Sample Volume, dscf	56.715	56.83	57.952	57.914	57.153
Average Gas Velocity, ft/sec	86.772	87.530	89.364	88.770	87.691
Gas Volumetric Flow Rate, acfm	261,697	263,985	269,515	267,723	264,468
Gas Volumetric Flow Rate, dscfm	121,937	124,922	125,773	125,197	124,019
Gas Volumetric Flow Rate, scfm	142,393	143,682	146,718	145,408	143,828
Average %CO ₂ by volume, dry basis	8.2	7.2	8.0	8.2	7.9
Average %O ₂ by volume, dry basis	6.4	8.2	6.5	6.6	7.1
Isokinetic Variance	102,6	100.3	101.6	102.0	101.6
Calculated Fuel Factor Fd, dscf/mmBtu	8,249.7	8,246.6	8,268.4	8,277.8	8,258.0
Filterable Part	ticulate Ma	tter (Method	5)		
grams collected	0.01146	0.00998	0.01069	0.01157	0.01100
grains/acf	0.0015	0.0013	0.0013	0.0014	0.0014
grains/dscf	0.0031	0.0027	0.0028	0.0031	0.0030
lb/hr	3.259	2.901	3.068	3.308	3.156
Ib/mmBtu (Calculated Fd Factor)	0.0053	0.0053	0.0049	0.0053	0.0053
Condensable Par	ticulate Ma	tter (Method	202)		
grams collected	0.02125	0.01836	0.05326	0.02160	0.02040
grains/acf	0.0027	0.0024	0.0066	0.0027	0.0026
grains/dscf	0.0058	0.0050	0.0142	0.0058	0.0055
lb/hr	6.042	5.338	15.288	6.180	5.853
lb/mmBtu (Calculated Fd Factor)	0.0098	0.0097	0.0243	0.0099	0.0098
	iculate Mat	tter (5/202)			
grams collected	0.03271	0.02834	0.06395	0.03320	0.03142
grains/acf	0.0042	0.0037	0.0079	0.0041	0.0040
grains/dscf	0.0089	0.0077	0.0170	0.0089	0.0085
(lb/hr)	9.301	8.239	18.356	9.488	9.009
Ib/mmBtu (Calculated Fd Factor)	0.0151	0.0150	0.0292	0.0152	0.0151

1.0 EXECUTIVE SUMMARY

document 1-2

MOSTARDI PLATT conducted a compliance emissions test program for BP Products North America, Inc. on October 12, 2018 at the Whiting Refinery in Whiting, Indiana on the Boiler 34 Stack. This report summarizes the results of the test program and test methods used.

The test location, test dates, and test parameters are summarized below.

TEST INFORMATION					
Test Location	Test Date	Test Parameters			
Boiler 34 Stack	October 12, 2018	Filterable Particulate Matter (FPM), Condensable Particulate Matter (CPM), Total Particulate Matter (TPM), Volatile Organic Compounds (VOC), and Visible Emissions			

The purpose of the test program was to demonstrate the above test parameter emissions during normal operating conditions to satisfy the regulatory permit limits. Selected results of the test program are summarized below. A complete summary of emission test results follows the narrative portion of this report.

TEST RESULTS						
Test Location	Test Parameter	Emission Limits	Emission Rate			
Boiler 34 Stack	PM ₁₀ (as TPM)	0.010 lb/mmBtu	0.0051 lb/mmBtu			
	TPM	0.012 lb/mmBtu	0.0114 lb/mmBtu			
	VOC	0.0054 lb/mmBtu	0.00004 lb/mmBtu			
	VE	20%	0%			

Emissions on lb/mmBtu basis were determined by using a calculated F_d Factors supplied by the plant for each test run. All of the filterable and condensable particulate matter were considered to be PM₁₀. Operating data as provided by BP Products North America, Inc. are included in Appendix A.

The identifications of individuals associated with the test program are summarized below.

TEST PERSONNEL INFORMATION					
Location	Address	Contact			
Test Facility	BP Products North America, Inc.	Mr. Paul Drayton			
	Whiting Refinery	Environmental Specialist			
	2815 Indianapolis Boulevard	(219) 370-8084 (phone)			
	Whiting, Indiana 46394	Paul.Drayton@bp.com			
Testing Company	Mostardi Platt	Mr. Stuart L. Burton			
Representative	888 Industrial Drive	Senior Project Manager			
	Elmhurst, Illinois 60126	(630) 993-2100 (phone)			
		sburton@mp-mail.com			

The test crew consisted of Messrs. B. Collins, B. Garcia, C. Buglio, C. Eldridge, C. Trezak, P. Coleman, and S. Burton of Mostardi Platt.

Project No. M184006D Boiler 34 Stack

3.0 TEST RESULT SUMMARIES

Client: BP Products North America, Inc.

Facility: **Whiting Refinery** Test Location: 3 SPS Boiler 34 Stack

Test Method: 5/202

Source Condition	Normal	Normal	Normal	
Date Start Time	10/12/18	10/12/18	10/12/18	
Start Time	7:48	9:26	11:00	
End Time	9:02	10:39 Run 2	12:13 Run 3	Avorogo
Stack Cond	Run 1	Ruii Z	Ruii 3	Average
Average Gas Temperature, °F	482.5	480.5	482.8	
Flue Gas Moisture, percent by volume	14.2%	14.1%	14.2%	14.2%
Average Flue Pressure, in. Hg	29.20	29.20	29.20	29.20
Gas Sample Volume, dscf	56.525	56.841	57.361	56.909
Average Gas Velocity, ft/sec	87.301	88.097	88.099	87.832
Gas Volumetric Flow Rate, acfm	263,294	265,694	265,700	264,896
Gas Volumetric Flow Rate, dscfm	123,573	125,044	124,528	124,382
Gas Volumetric Flow Rate, scfm	143,950	145,570	145,214	144,911
Average %CO ₂ by volume, dry basis	8.7	8.1	8.6	8.5
Average %0 ₂ by volume, dry basis	5.7	6.5	6.0	6.1
Isokinetic Variance	100.9	100.2	101.6	100.9
Calculated Fuel Factor Fd, dscf/mmBtu	8,269.6	8,257.0	8,268.1	8,264.9
Filterable Particulate N	Natter (Me <u>t</u> l	nod 5)		
grams collected	0.01972	0.00792	0.00660	0.01141
grains/acf	0.0025	0.0010	0.0008	0.0014
grains/dscf	0.0054	0.0021	0.0018	0.0031
lb/hr	5.702	2.304	1.895	3.300
Ib/mmBtu (Calculated Fd Factor)	0.0087	0.0037	0.0029	0.0051
Condensable Particulate				
grams collected	0.01137	0.01278	0.01818	0.01411
grains/acf	0.0015	0.0016	0.0023	0.0018
grains/dscf	0.0031	0.0035	0.0049	0.0038
lb/hr	3.287	3.718	5.220	4.075
Ib/mmBtu (Calculated Fd Factor)	0.0050	0.0059	0.0081	0.0063
Total Particulate N			0.00470	
grams collected	0.03109	0.02070	0.02478	0.02552
grains/acf grains/dscf	0.0040	0.0026 0.0056	0.0031	0.0032
grains/dscr <mark>Ib/hr</mark>	0.0085 8.989	6.022	0.0067 7.115	0.0069 7.375
Ib/mmBtu (Calculated Fd Factor)	8.989 0.0137	0.0022	7.115 0.0110	0.0114
in/illindia (Calculated Fd Factor)	0.0137	0.0090	0.0110	0.0114

Project No. M184006D Boiler 34 Stack Exhibit 7 Page 12

<u>USDC IN/ND case 2:19-cv-00337-PPS</u> document 1-2 filed 09/06/19 page 77 of 105

Indiana Department of Environmental Management

We Protect Hoosiers and Our Environment.

Northwest Regional Office • 330 W. US Highway 30, Suite F • Valparaiso, IN 46385

(888) 209-8892 • (219) 464-0233 • Fax (219) 464-0553 • www.idem.IN.gov

Michael R. Pence

Governor

April 8, 2016

Carol S. Comer

Commissioner

VIA CERTIFIED MAIL 71.90 0005 2710 0048 1542

Linda Wilson BP Products North America, Inc. 2815 Indianapolis Boulevard Whiting, Indiana 46394

> RE: Enforcement Referral BP Products North America, Inc. T089-35729-00453

Whiting, Indiana - Lake County

Dear Ms. Wilson:

ANNIVERSARY

A review of the results of compliance testing conducted at BP Products North America, Inc., on August 3 and 5, 2015 was completed by the Office of Air Quality. This review showed that PM₁₀ emissions from the No. 3 Stanolind Power Station Boiler #32 and Boiler #36 exceeded the limitations set forth in Permit T089-35729-00453, as described below, in violation of Permit Conditions D.24.1 and D.24.4(b)(3), 326 IAC 6.8-2-6, and 326-IAC 2-2.

Boiler #32 August 3, 2015

Allowable PM₁₀ Emissions: 0.0075 lb/MMBtu

Averaged PM₁₀ Emissions: 0.0171 lb/MMBtu 326 IAC 6.8-2-6/ D.24.1

Allowable PM₁₀ Emissions: 0.010 lb/MMBtu

Averaged PM₁₀ Emissions: 0.0171 lb/MMBtu 326 IAC 2-2/ D.24.4(b)(3)

Allowable PM₁₀ Emissions: 4.28 lb/hr

Averaged PM₁₀ Emissions: 40.33 | lb/hr 326 IAC 6.8-2-6/ D.24.1

Boiler #36 August 5, 2015

Allowable PM₁₀ Emissions: 0.0075 lb/MMBtu

Averaged PM₁₀ Emissions: 0.0151 lb/MMBtu 326 IAC 6.8-2-6/ D.24.1

Allowable PM₁₀ Emissions: 0.010 lb/MMBtu

Averaged PM₁₀ Emissions: 0.0151 lb/MMBtu 326 IAC 2-2/ D.24.4(b)(3)

Allowable PM₁₀ Emissions: 4.28 lb/hr

This matter will be processed as an enforcement case for appropriate action. IDEM would like to take this opportunity to encourage discussions concerning the facts of the case, any additional information that may be available, and to provide you with information concerning the enforcement process.

To discuss this matter or schedule an informational meeting concerning this matter, please contact Kevin Sokolowski at 219-781-4262 – direct and 888-209-8892 or ksokolow@idem.in.gov fifteen (15) days after receipt of this letter.

Please note Section C.19 in your T089-35729-00453 Operating Permit, <u>Actions Related to Noncompliance Demonstrated by a Stack Test</u>, requires a retest to demonstrate compliance shall be performed no later than one hundred eighty (180) days after the date of the test. Pursuant to 326 IAC 3-6-2, a test protocol form shall be submitted thirty-five (35) days prior to the intended test date.

Sincerely,

Rick Massoels, Deputy Director Northwest Regional Office

IDEM

ACES No. 195022, 195401

RGM:ska

cc: Kale Popp - Compliance Data Section Kevin Sokolowski – Northwest Regional Office

DEPARTMENT OF ENVIRONMENTAL MANAGEMENT OFFICE OF AIR QUALITY

OFFICE MEMORANDUM

To: Rick Massoels

From:

Doug Van Demark

Date: July 25, 2016 Through: Dave Cline \(\int_{\alpha} \)

Subject: BP Products North America, Inc

Source 1D:

89 453 Whiting

KP

Permit #: 30396

City:

Protocol Reviewer:

County: Lake Observer: KP

Test Company:

ARI Environmental, Inc.

The Compliance Data Section has reviewed this report and found the sampling procedures used and results obtained to be acceptable to this office. A copy of the test report is filed in the Compliance Data Section. The following is a summary of the test.

Date of Test:

Unit Tested

Test Purpose: Type of Fuel:

Air Pollution Control Device (APCD)

APCD Permitted Parameters

Maximum Operating Rate: Average During Test:

Test Methods:

October 20, 2015

No. 3 Stanolind Power Station (3SPS) Boiler #32 & associated duct burner - \90630

Compliance Refinery Gas

Selective Catalytic Reduction (SCR) system exhausting to Stack 503-02

575 mmbtu/hr 356.4667 mmbtu/hr

1-4, 5, 9 & 202

Pollutant Permit Condition:

Permitted Limits: Average Measured Emissions:

STATUS:

PM (filterable) Method 5

D.24.2 326 IAC 6.8-1-2

0.03 gr/dscf 0.000361 gr/dscf

In Compliance with permitted emission limits at 62% of the permitted maximum rate.

Permit Condition:

Permitted Limits:

Average Measured Emissions:

STATUS:

D.24.4(b)(2) 326 IAC 2-2

0.012 lb/mmbtu (duct burner limitation) 0.000653 lb/mmbtu (duct burner limitation)

In Compliance with permitted emission limits at 62% of the permitted maximum rate.

Pollutant

PM10* (filterable & condensable) Method 5 & 202

Permit Condition: Permitted Limits:

0.0075 lbs/mmbtu 4.28 lbs/hr 0.0177 lbs/mmbtu 10.01 lbs/hr

D.24.1 326 1AC 6.8-2-6

Average Measured Emissions: STATUS:

Out of compliance with permitted emission limits at 62% of the permitted maximum rate.

Permit Condition:

Permitted Limits:

D.24.4(b)(3) 326 IAC 2-2

0.01 lbs/mmbtu

Average Measured Emissions:

Run 1 Method 5 only 0.000851 lbs/mmbtu Run 2 Method 5 only 0.000626 lbs/mmbtu Run 3 Method 5 only 0.000483 lbs/mmbtu Average Method 5 only 0.000653 lbs/mmbtu

Run 1 Method 202 only 0.016724 lbs/mmbtu Run 2 Method 202 only 0.01350 lbs/mmbtu Run 3 Method 202 only 0.021024 lbs/mmbtu Average Method 202 only 0.017083 lbs/mmbtu

Run 1 PM10 (5 & 202) 0.017574 lbs/mmbtu Run 2 PM10 (5 & 202) 0.014129 lbs/mmbtu Run 3 PM10 (5 & 202) 0.021507 lbs/mmbtu Average PM10 (5 & 202) 0.017737 lbs/mmbtu

STATUS:

Out of compliance based on condensable PM only with permitted emission limits at 62% of the permitted maximum rate

USDC IN/ND case 2:19-cv-00337-PPS document 1-2 filed 09/06/19 page 81 of 105

Pollutant

Opacity

Permit Condition:

C.2 326 IAC 5-1

Permitted Limits:

30%

Average Measured Emissions:

STATUS:

In Compliance with permitted emission limits at 62% of the permitted maximum rate.

*Note:

The PM10 Lake County SIP limit includes both filterable and condensable PM10. The condensable PM10 (M202) emissions alone were

above the PM10 emission limits.

**Note: Emissions were sampled from Stack 503-02 after the addition of the duct burner emissions. Boiler #32 326 IAC 6.8-2-6 PM10 limits are independent of the duct burner emissions. By using this appoach it is not possible to isolate emissions from either source in order to determine compliance with applicable limits of either source.

TEST REPORT

COMPLIANCE EMISSION TEST

POWER STATION NO. 3 - BOILER 32 STACK

BP PRODUCTS NORTH AMERICA, INC. WHITING, INDIANA

PREPARED FOR:

BP PRODUCTS NORTH AMERICA, INC.

Whiting Refinery 2918 Indianapolis Blvd. Whiting, Indiana 46394

E-mail: kenard.taylor@bp.com Attention: Mr. Ken Taylor

ARI Environmental, Inc. 951 Old Rand Road, Unit 106 Wauconda, Illinois 60084 Phone: 847.487.1580 Ext. 117

Fax: 847.487.1587

E-mail: sflaherty@montrose-env.com

Steve Flaherty

Senior Project Manager Source Testing Division

ARI Project No. 566-178 ARI Proposal No. 36415

BP Purchase Order No. 3000463136

Test Date: October 20, 2015

Report Issuance Date: November 16, 2015

ise 2:19-cv-00337-PPS documental documental land of the Analytica, in the decimal of the control of the contro

Power Station No. 3 - Boiler 32 Stack

Test Date: 10/20/15
Page: 12 of 12

SECTIONFOUR

Test Results

TABLE 4-1. POWER STATION NO. 3 - BOILER 32 STACK PM TEST RESULTS

TEST RUN NO. : TEST DATE : TEST TIME :	10/20/2015 <u>10:58 - 12:55</u>	2 10/20/2015 <u>13:55 - 15:35</u>	3 10/20/2015 <u>16:23 - 17:58</u>	<u>Average</u>
Process Data Boiler steam load, 1,000 lb/hr	356.8	358.5	354.1	356.5
Stack Gas Parameters			•	
Temperature, av. °F	370.3	368.7	369.2	369.4
Velocity, av. ft/sec	73.651	71.767	70.416	71,945
Volume flow, acfm	222,127	216,444	212,370	216,980
Volume flow, scfm Volume flow, dscfm	138,694 119,729	135,407 116,852	132,789 116,114	135,630 117,565
	8,321,670	8,124,430	7,967,322	8,137,807
·	7,183,733	7,011,104	6,966,856	7,053,898
Moisture, av. % vol	13.67	13.70	12.56	13.31
CO ₂ , av. % vol, db	8.0	8.3	8.5	8.3
O ₂ , av. % vol, db	7.5	17.0	6.8	7.1
Sample Train Data	;	•	΄,	
Time, min.	90.0	90.0	90.0	
Volume, dscf	58.866	57.209	56.279	
Volume, dscm	1.667	1.620	1.594	
Isokinetic ratio, %	99.5	99.0	98.0	
Particulate Matter	The same			
Filterable PM collected, mg	1.75	1.30	1.00	1.35
Concentration	The same by the same of the sa			
gr/dscf	0.0005	0.0004	0.0003	0.0004
lb/dscf x 10 ⁻⁶	0.0656	0.0501	0.0392	0.0516
Emission rate				
lb/hr	0.471	0.351	0.273	0.365
Condensable PM collected, mg	34.41	28.03	43.56	35.33
Concentration		0.0070	0.0440	0.0005
gr/dscf	0.0090 1.2890	0.0076 1.0803	0.01 1 9 1.7066	0.0095 1.3586
lb/dscf x 10 ⁻⁶ Emission rate	1.2090	1.0003	1.7000	1.3500
lb/hr	9.257	7.572	11.886	9.572
Total PM collected, mg	36.16	29.33	44.56	36.68
Concentration	•			
gr/dscf	- 0.0095	0.0079	0.0122	0.0099
lb/dscf x 10 ⁻⁶	1.3546	1.1304	1.7458	1.4103
Emission rate (b/hr)	9_728	7.923	12.159	9.937
(b/MMBtu)	0.0176	7.923 0.0141	0.0214	0.0177
	, 5.0110	0.0171	0.0214	7
Visible Emissions	- 71	_	_	
Opacity, %	0	0	0	0

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT OFFICE OF AIR QUALITY

OFFICE MEMORANDUM

To: Rick Massoels Date: June 1, 2016

From: Luke Boyer LA Thru: Dave Cline

Subject: BP Whiting

Source ID: T089-00453 Permit Number: T089-35729-00453

City: Whiting County: Lake
Protocol Reviewer: H.D.Vandermark Field Observer: N/A

Test Company: Clean Air Engineering, Inc

The Compliance Data Section has reviewed this report and found the sampling procedures used and results obtained to be acceptable to this office. A copy of the test report is filed in the Compliance Data Section. The following is a summary of the test results.

Unit Tested: Stanolind Power Station Boiler #32ー (つる38)

Dates of tests: January 28, 2016 Test Purpose: Permit Required

Type of Fuel: N/A

Pollution Control Equipment: Selective Catalytic Reduction

Permitted APCD Parameters: No Requirement APCD Parameters during Testing: N/A

Maximum Operating Rate: 575 MMBtu/hr Average During Tests: 455 MMBtu/hr

Pollutants: Opacity, PM-10 Test methods: 1-4, 5, 9, 202

0.010 lb/MMBtu (326 IAC 2-2)
PM-10 Limit: 4.28 lb/hr (326 IAC 6.8-2-6) 0.0075 lb/MMBtu (326 IAC 6.8-2-6)

 PM-10 Emission Rate:
 10.22 lb/hr
 0.02218 lb/MMBtu

 10.07 lb/hr
 0.02384 lb/MMBtu

 10.95 lb/hr
 0.02354 lb/MMBtu

10.41 lb/hr (Average) 0.02318 lb/MMBtu (Average)

Allowable Opacity: 20% (326 IAC 5-1)

Average Opacity: 0% Highest 6-Minute Opacity: 0%

STATUS: Out of Compliance (at 79 % maximum permitted capacity)*

*Note: According to (326 IAC 6.8-2-6) PM-10 includes filterable and condensable results. Total emissions exceeded the limit as well as the condensable emissions when taken alone. Source is aware of results and is doing diagnostic testing to see if these were actual condensables or artifacts that formed after testing. Source is planning on retesting but has not picked a date.

cc: L.Boyer, IDEM IDEM Central File Room

BP Whiting 2185 Indianapolis Blvd Whiting, IN 46394

REPORT ON PARTICULATE TESTING

Performed for: BP WHITING BOILER 32 WHITING, IN

Client Reference No: 3000490168 CleanAir Project No: 12917 Revision 0: March 8, 2016

To the best of our knowledge, the data presented in this report are accurate, complete, error free and representative of the actual emissions during the test program. Clean Air Engineering operates in conformance with the requirements of ASTM D7036-04 Standard Practice for Competence of Air Emission Testing Bodies.

Submitted by,

Jaci Åmundsen

Project Engineer jamundsen@cleanair.com

847-654-4521

Reviewed by,

Ken Sullivan Project Engineer

ksullivan@cleanair.com

847-654-4527

BP WHITING WHITING, IN

Client Reference No: 3000490168 CleanAir Project No: 12917

2-1

RESULTS **Table 2-1:** Stack - FPM / CPM / TPM Run No. Average Jan 28 Jan 28 Jan 28 Date (2016) Start Time (approx.) 11:46 13:35 15:27 12:50 14:39 16:31 Stop Time (approx.) **Process Conditions** 8,337 8,336 8,331 8,334 Oxygen-based F-factor (dscf/MMBtu) H Actual heat input (MMBtu/hr) 491 471 501 488 **Gas Conditions** 7.8 8.1 8.1 8.0 O₂ Oxygen (dry volume %) Carbon dioxide (dry volume %) 7.4 7.3 7.2 7.3 CO2 424 424 424 424 Sample temperature (°F) T_s B. Actual water vapor in gas (% by volume) 12.2 12.1 12.0 12.1 Gas Flow Rate 248,000 238,000 255,000 247,000 Volumetric flow rate, actual (acfm) Q_a 143.000 138,000 148.000 143,000 Q, Volumetric flow rate, standard (scfm) 126,000 Volumetric flow rate, dry standard (dscfm) 126,000 121,000 130,000 Q_{std} Sampling Data 42.54 44.68 43.94 V_{mstd} Volume metered, standard (dscf) 44.62 104.6 103.7 101.3 103.2 Isokinetic sampling (%) %1 **Laboratory Data** 0.00307 0.00259 0.00213 m_n Total FPM (g) 0.02570 0.02621 0.02774 m_{CPM} Total CPM (g) 0.02987 0.02876 0.02880 m_{Part} Total particulate matter (g) DLC Detection level classification ADL **ADL ADL FPM Results** 1.52E-07 1.05E-07 1.30E-07 1.34E-07 C_{sd} Particulate Concentration (lb/dscf) Particulate Concentration (gr/dscf) 0.00106 0.000939 0.000734 0.000911 C_{sd} 1 15 0.974 0.819 0.980 Particulate Rate (lb/hr) E_{Fd} Particulate Rate - F_d-based (lb/MMBtu) 0.00202 0.00182 0.00143 0.00176 Particulate Rate - Heat Input-based (Ib/MMBtu) 0.00233 0.00207 0.00163 0.00201 E_{Hi} **CPM Results** Particulate Concentration (lb/dscf) 1.27E-06 1.36E-06 1.37E-06 1.33E-06 0.00889 0.00951 0.00958 0.00932 Particulate Concentration (gr/dscf) 9.59 10.0 Particulate Rate (lb/hr) 9.87 10.7 $E_{lb/hr}$ 0.0185 0.0186 0.0180 Particulate Rate - F_d-based (lb/MMBtu) 0.0169 0.0206 Particulate Rate - Heat Input-based (Ib/MMBtu) 0.0195 0.0210 0.0213 E_{Hi} **Total Particulate Matter Results** 1.42E-06 1.49E-06 1.47E-06 1.46E-06 Particulate Concentration (lb/dscf) C_{sd} 0.00995 0.0104 0.0103 0.0102 Particulate Concentration (gr/dscf) $\mathsf{E}_{\mathsf{lb/hr}}$ 10.7 10.8 11.5 11.0 Particulate Rate (lb/hr) 0.0189 0.0203 0.0201 0.0198 Particulate Rate - F_d-based (lb/MMBtu) Particulate Rate - Heat Input-based (Ib/MMBtu) 0.0226 0.0219 0.0230 0.0230

Average includes 3 runs.

Detection level classifications are defined as follows:

ADL = Above Detection Level - all fractions are above detection limit

020516 152821

Revision 0, Final Report

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT Indianapolis

OFFICE MEMORANDUM

To: From: Rick Massoels Kale Popp Date: September 18, 2017 Thru: Dave Cline

Subject:

BP Products North America

Source ID: 089-00453

City: Whiting

Protocol Reviewer: NONE

Permit Number: #38381

County: Lake

Field Observer: NONE

The Compliance Data Section has reviewed this report and found the sampling procedures used and results obtained to be acceptable to this office. A copy of the test report is filed in the Compliance Data Section. The following is a summary of the test results.

Unit Tested: No. 3 Stanolind Power Station Boiler #32

207186

why woi

Via!

Dates of tests: November 1-2, 2016 Test Purpose: Compliance

Type of Fuel: Refinery Fuel Gas

Pollution Control Equipment: Selective Catalytic Reduction

Permitted APCD Parameters: NONE APCD Parameters during test: NONE

Pollutants: PM, PM10, Sulfate PM, Opacity

Test methods: 1-4, 5/202, 8A, 9

Maximum Operating Rate:

575 MMBtu/hr

Average Operating Rate During Test:

456.36 MMBtu/hr

Permitted PM:

0.012 lb/MMBtu [326 IAC 2-2] 0.03 gr/dscf [326 IAC 6.8-1-2]

Tested PM:

0.0016 lb/MMBtu 0.001 gr/dscf

Permitted PM10:

0.010 lb/MMBtu [326 IAC 2-2] 0.0075 lb/MMBtu [326 IAC 6.8-2-6]

Total Total

4.28 lb/hr [326 IAC 6.8-2-6]

Tested PM10:

Condensable

0.010 lb/MMBtu

Total Total 0.012 lb/MMBtu 7.13 lb/hr

Permitted Opacity:

20% [326 IAC 5-1]

Tested Opacity:

0 용

STATUS:

In Compliance for PM and Opacity, Cannot Be Determined for PM10, Out of Compliance for PM10 (at 79% maximum permitted capacity)

NOTE: Method 8A was conducted to test for sulfate condensable PM. In the submitted report the sulfates were deducted from the condensable PM weights. The sulfate condensable PM was deemed as a portion of the condensable PM and therefore was not deducted from the results within my review of the report. State rule 326 IAC 6.8-2-6 applies to the sum of filterable and condensable

particulate matter.

207187 Unit Tested: No. 3 Stanolind Power Station Boiler #36

Dates of tests: November 2-3, 2016

Test Purpose: Compliance

Type of Fuel: Refinery Fuel Gas

Pollution Control Equipment: Selective Catalytic Reduction

Permitted APCD Parameters: NONE APCD Parameters during test: NONE

Pollutants: PM, PM10, Sulfate PM, Opacity

Test methods: 1-4, 5/202, 8A, 9

Maximum Operating Rate: 575 MMBtu/hr

Average Operating Rate During Test: 466.87 MMBtu/hr

0.012 lb/MMBtu [326 IAC 2-2] Permitted PM:

0.03 gr/dscf [326 IAC 6.8-1-2]

Tested PM: 0.00095 lb/MMBtu

0.001 gr/dscf

0.010 lb/MMBtu [326 IAC 2-2] Permitted PM10:

Total 0.0075 lb/MMBtu [326 IAC 6.8-2-6]

Total 4.28 lb/hr [326 IAC 6.8-2-6]

Tested PM10: Condensable 0.020 lb/MMBtu

Total 0.021 lb/MMBtu Total 12.95 lb/hr

Permitted Opacity: 20% [326 IAC 5-1]

Tested Opacity: 08

STATUS: In Compliance for PM and Opacity, Out of Compliance for PM10

(at 81% maximum permitted capacity)

NOTE: Method 8A was conducted to test for sulfate condensable PM. In the submitted report the sulfates were deducted from the condensable PM weights. The sulfate condensable PM was deemed as a portion of the condensable PM and therefore was not deducted from the results within my review of the report. State rule 326 IAC 6.8-2-6 applies to the sum of filterable and condensable particulate matter.

K. Popp, IDEM cc:

IDEM Central File Room

Compliance Emissions Test Report

BP Products North America, Inc.
Whiting Refinery
Boiler 32 Stack and Boiler 36 Stack
Whiting, Indiana
November 1 through 3, 2016

Report Submittal Date December 28, 2016

Received State of Indiana

JAN 03 2017

1-2

DeptofEnvironmentalManagement
State of Indiana

© Copyright 2016 All rights reserved in Mostardi Platt

Project No. M164405

Client:

BP Products North America, Inc.

Facility: Test Location: Boiler 32 Stack

Whiting Refinery

Test Method: 5/202/8A

Run 1	Source Condition Date Start Time End Time	Normal 11/1/16 9:20 10:57	Normal 11/1/16 11:22 12:59	Normal 11/1/16 13:30 15:07	Normal 11/2/16 8:20 9:57				
Average Gas Temperature, *F				Run 3	Run 4	Average			
Flue Gas Moisture, percent by volume 14.3% 14.1% 14.6% 13.7% 14.2%				450.7	440.4				
Average Flue Pressure, in. Hg Gas Sample Volume, dscf 71.916 72.404 71.388 73.580 72.322	_ · · · · · · · · · · · · · · · · · · ·								
Gas Sample Volume, dscf									
Average Gas Velocity, ft/sec 80.519 81.737 80.270 81.461 80.997									
Gas Volumetric Flow Rate, acfm 242,840 246,513 242,088 245,681 244,281	•								
Gas Volumetric Flow Rate, dscfm 117,230 119,511 116,163 120,535 118,360 Gas Volumetric Flow Rate, scfm 136,770 139,056 136,097 139,701 137,906 136,097 139,701 137,906 136,097 139,701 137,906 136,097 139,701 137,906 136,097 139,701 137,906 136,097 139,701 137,906 136,097 136,097 139,701 137,906 136,097 136,09	5								
Gas Volumetric Flow Rate, scfm 136,770 139,056 136,097 139,701 137,906 Average %CO₂ by volume, dry basis 8.4 8.3 8.2 8.1 8.3 Average %O₂ by volume, dry basis 103,2 101.9 103.3 102.7 102.8 103.0 102.8 103.0 102.8 103.0 102.8 103.0 102.8 103.0 102.8 103.0 102.8 103.0 102.8 103.0 102.8 103.0 102.8 103.0 102.8 103.0 103.0 102.8 103.0 103.0 102.8 103.0 102.8 103.0 103									
Average %CO₂ by volume, dry basis 8.4 8.3 8.2 8.1 8.3 Average %O₂ by volume, dry basis 6.4 6.4 6.5 6.6 6.5 Isokinetic Variance 103.2 101.9 103.3 102.7 102.8 Calculated Fuel Factor Fd, dsc/fmmBtu 8,263.0 8,262.0 8,259.0 8,217.0 8,250.3 Filterable Particulate Matter (Method 5) grams collected mg/dscm 3.143 1.610 1.830 2.112 2.1736 grains/dscf 0.0007 0.0003 0.0004 0.0005 0.0005 grains/dscf 0.0014 0.0007 0.0008 0.0009 0.0010 Ib/hr 1.380 0.720 0.796 0.953 0.982 Ib/mmBtu (Calculated Fd Factor) 0.0023 0.0012 0.0014 0.0016 Condensable Particulate Matter (Method 202) grams collected 0.0316 0.0271 0.0294 0.0261 0.0286 grains/dscf 0.0033 0.0028 0.0030 0.00027 0.0030 grains/dscf 0.0033 0.0028 0.0030 0.0027 0.0030 grains/dscf 0.0068 0.0068 0.0064 0.0055 0.0061 Ib/hr 6.813 5.916 6.327 5.650 6.177 Ib/mmBtu (Calculated Fd Factor) 0.0115 0.0098 0.0109 0.0094 0.0104 Sulfate Analysis (Anion Scan) grams collected 0.0250 0.0200 0.0180 0.0220 0.0213 grains/dscf 0.0054 0.0043 0.0039 0.0046 0.0046 Ib/hr 5.390 4.366 3.874 4.770 4.600 Ib/mmBtu (Calculated Fd Factor) 0.0091 0.0073 0.0067 0.0079 0.0078 Sulfuric Acid Analysis (Method 8A) Ib/mmBtu (Calculated Fd Factor) 0.0094 0.0005 0.0005 0.0005 Ib/mmBtu (Calculated Fd Factor) 0.0004 0.0005 0.0005 0.0005 Total Particulate Matter (Methods 5/202/8A)	•		•						
Average %02 by volume, dry basis Isokinetic Variance 103.2 101.9 103.3 102.7 102.8 103.2 101.9 103.3 102.7 102.8 103.2 101.9 103.3 102.7 102.8 103.2 101.9 103.3 102.7 102.8 103.2 101.9 103.3 102.7 102.8 103.2 103.2 103.3 102.7 102.8 103.3 102.7 102.8 103.2 103.3 102.7 102.8 103.3 103.7 102.8 103.3 103.7 103.3 103.3 103.7 103.3 103.3 103.7 103.3 103.3 103.7 103.3 103.3 103.3 103.7 103.3 103.			•		-				
Sokinetic Variance 103.2 101.9 103.3 102.7 102.8									
Calculated Fuel Factor Fd, dscffmmBtu 8,263.0 8,262.0 8,259.0 8,217.0 8,250.3									
Filterable Particulate Matter (Method 5) grams collected 0.0064 0.0033 0.0037 0.0044 0.0045 mg/dscm 3.143 1.610 1.830 2.112 2.1736 grains/dscf 0.0007 0.0003 0.0004 0.0005 0.0005 grains/dscf 0.0014 0.0007 0.0008 0.0009 0.0010 lb/hr 1.380 0.720 0.796 0.953 0.962 lb/mmBtu (Calculated Fd Factor) 0.0023 0.0012 0.0014 0.0016 0.0016 Condensable Particulate Matter (Method 202) grams collected 0.0316 0.0271 0.0294 0.0261 0.0286 grains/dscf 0.0033 0.0028 0.0030 0.0027 0.0030 grains/dscf 0.0068 0.0058 0.0064 0.0055 0.0061 lb/hr 6.813 5.916 6.327 5.650 6.177 lb/mmBtu (Calculated Fd Factor) 0.0115 0.0098 0.0109 0.0094 0.0104 Sulfate Analysis (Anion Scan) grams collected 0.0250 0.0200 0.0180 0.0220 0.0213 grains/dscf 0.0026 0.0021 0.0019 0.0023 0.0022 grains/dscf 0.0054 0.0043 0.0039 0.0046 0.0046 lb/hr 5.390 4.366 3.874 4.770 4.600 lb/mmBtu (Calculated Fd Factor) 0.0091 0.0073 0.0067 0.0079 0.0078 Sulfate Analysis (Methods A) lb/lmmBtu (Calculated Fd Factor) 0.0094 0.0005 0.0005 0.0004 0.0005 lb/mmBtu (Calculated Fd Factor) 0.0004 0.0005 0.0005 0.0004 0.0005 lb/mmBtu (Calculated Fd Factor) 0.0004 0.0005 0.0005 0.0004 0.0005 Total Particulate Matter (Methods 5/202/8A)									
grams collected 0.0064 0.0033 0.0037 0.0044 0.0045 mg/dscm 3.143 1.610 1.830 2.112 2.1736 grains/acf 0.0007 0.0003 0.0004 0.0005 0.0007 0.0007 0.0007 0.0007 0.0007 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0007 0.0005				8,259.0	8,217.0	8,250.3			
mg/dscm 3.143 1.610 1.830 2.112 2.1736 grains/acf 0.0007 0.0003 0.0004 0.0005 0.0005 grains/dscf 0.0014 0.0007 0.0008 0.0009 0.0010 ib/hr 1.380 0.720 0.796 0.953 0.962 ib/mmBtu (Calculated Fd Factor) 0.0023 0.0012 0.0014 0.0016 0.0016 Condensable Particulate Matter (Method 202) grams collected 0.0316 0.0271 0.0294 0.0261 0.0286 grains/dscf 0.0033 0.0028 0.0030 0.0027 0.0030 grains/dscf 0.0068 0.0058 0.0064 0.0055 0.0061 ib/hr 6.813 5.916 6.327 5.650 6.177 ib/mmBtu (Calculated Fd Factor) 0.0115 0.0098 0.0109 0.0094 0.0104 Sulfate Analysis (Anion Scan) grains/dscf 0.0026 0.0210 0.0180 0.0220 0.0213 grains/dscf 0.0026 0.0021 0.0019 0.0023 0.0022 grains/dscf 0.0054 0.0043 0.0039 0.0046 0.0046 ib/hr 5.390 4.366 3.874 4.770 4.600 ib/mmBtu (Calculated Fd Factor) 0.0091 0.0073 0.0067 0.0078 Sulfuric Acid Analysis (Method 8A) ib/hr 0.264 0.272 0.266 0.265 0.267 ib/mmBtu (Calculated Fd Factor) 0.0004 0.0005 0.0005 0.0004 0.0005 Total Particulate Matter (Methods 5/202/8A)				0.0027	0.0044	0.0045			
grains/acf 0.0007 0.0003 0.0004 0.0005 0.0005 grains/dscf 0.0014 0.0007 0.0008 0.0009 0.0010 ib/hr 1.380 0.720 0.796 0.953 0.962 ib/mmBtu (Calculated Fd Factor) 0.0023 0.0012 0.0014 0.0016 0.0016 Condensable Particulate Matter (Method 202) grams collected 0.0316 0.0271 0.0294 0.0261 0.0286 grains/dscf 0.0033 0.0028 0.0030 0.0027 0.0030 grains/dscf 0.0068 0.0058 0.0064 0.0055 0.0061 ib/hr 6.813 5.916 6.327 5.650 6.177 ib/mmBtu (Calculated Fd Factor) 0.0115 0.0098 0.0109 0.0094 0.0104 Sulfate Analysis (Anion Scan) grams collected 0.0250 0.0200 0.0180 0.0220 0.0213 grains/dscf 0.0056 0.0021 0.0019 0.0023 0.0022 grains/dscf 0.0056 0.0021 0.0019 0.0023 0.0022 grains/dscf 0.0054 0.0043 0.0039 0.0046 0.0046 ib/hr 5.390 4.366 3.874 4.770 4.600 ib/mmBtu (Calculated Fd Factor) 0.0091 0.0073 0.0067 0.0079 0.0078 Sulfuric Acid Analysis (Method 8A) ib/mmBtu (Calculated Fd Factor) 0.0004 0.0005 0.0005 0.0004 0.0005 Total Particulate Matter (Methods 5/202/8A)	_								
By	=								
Ib/hr 1.380 0.720 0.796 0.953 0.962 Ib/mmBtu (Calculated Fd Factor) 0.0023 0.0012 0.0014 0.0016 0.0016 Condensable Particulate Matter (Method 202) Grams collected 0.0316 0.0271 0.0294 0.0261 0.0286 Grains/acf 0.0033 0.0028 0.0030 0.0027 0.0030 Grains/dscf 0.0068 0.0058 0.0064 0.0055 0.0061 Ib/hr 6.813 5.916 6.327 5.650 6.177 Ib/mmBtu (Calculated Fd Factor) 0.0115 0.0098 0.0109 0.0094 0.0104 Sulfate Analysis (Anion Scan) Grams collected 0.0250 0.0200 0.0180 0.0220 0.0213 Grains/dscf 0.0026 0.0021 0.0019 0.0023 0.0022 Grains/dscf 0.0054 0.0043 0.0039 0.0046 0.0046 Ib/hr 5.390 4.366 3.874 4.770 4.600 Ib/mmBtu (Calculated Fd Factor) 0.0091 0.0073 0.0067 0.0079 0.0078 Sulfuric Acid Analysis (Method 8A) Ib/hr 0.264 0.272 0.266 0.265 0.267 Ib/mmBtu (Calculated Fd Factor) 0.0004 0.0005 0.0005 0.0004 0.0005 Total Particulate Matter (Methods 5/202/8A)	_								
Ib/mmBtu (Calculated Fd Factor) 0.0023 0.0012 0.0014 0.0016 0.0016 Condensable Particulate Matter (Method 202) grams collected 0.0316 0.0271 0.0294 0.0261 0.0286 grains/acf 0.0033 0.0028 0.0030 0.0027 0.0030 grains/dscf 0.0068 0.0058 0.0064 0.0055 0.0061 Ib/hr 6.813 5.916 6.327 5.650 6.177 Ib/mmBtu (Calculated Fd Factor) 0.0115 0.0098 0.0109 0.0094 0.0104 Sulfate Analysis (Anion Scan) grams collected 0.0250 0.0200 0.0180 0.0220 0.0213 grains/acf 0.0026 0.0021 0.0019 0.0023 0.0022 grains/dscf 0.0054 0.0043 0.0039 0.0046 0.0046 Ib/hr 5.390 4.366 3.874 4.770 4.600 Ib/mmBtu (Calculated Fd Factor) 0.0091 0.0073 0.0067 0.0079 0.0078 Sulfuric Acid Analysis (Method 8A) Ib/hr 0.264 0.272 0.266 0.265 0.267 Ib/mmBtu (Calculated Fd Factor) 0.0004 0.0005 0.0005 0.0004 0.0005 Total Particulate Matter (Methods 5/202/8A)	_								
Condensable Particulate Matter (Method 202) grams collected									
grams collected 0.0316 0.0271 0.0294 0.0261 0.0286 grains/acf 0.0033 0.0028 0.0030 0.0027 0.0030 grains/dscf 0.0068 0.0058 0.0064 0.0055 0.0061 lb/hr 6.813 5.916 6.327 5.650 6.177 Ib/mmBtu (Calculated Fd Factor) 0.0115 0.0098 0.0109 0.0094 0.0104 Sulfate Analysis (Anion Scan) grams collected 0.0250 0.0200 0.0180 0.0220 0.0213 grains/acf 0.0026 0.0021 0.0019 0.0023 0.0022 grains/dscf 0.0026 0.0021 0.0019 0.0023 0.0022 grains/dscf 0.0054 0.0043 0.0039 0.0046 0.0046 lb/hr 5.390 4.366 3.874 4.770 4.600 Ib/mmBtu (Calculated Fd Factor) 0.0091 0.0073 0.0067 0.0079 0.0078					0.0010	0.0010			
grains/acf 0.0033 0.0028 0.0030 0.0027 0.0030 grains/dscf 0.0068 0.0058 0.0064 0.0055 0.0061 lb/hr 6.813 5.916 6.327 5.650 6.177 Sulfate Analysis (Anion Scan) grams collected 0.0250 0.0020 0.0180 0.0020 0.0180 0.0220 0.0213 grains/acf 0.0026 0.0021 0.0019 0.0023 0.0022 0.0023 0.0022 grains/dscf 0.0054 0.0043 0.0039 0.0046 0.0046 0.0046 0.0046 lb/hr 5.390 4.366 3.874 4.770 4.600 Ib/mmBtu (Calculated Fd Factor) 0.0091 0.0073 0.0067 0.0079 0.0078 Sulfuric Acid Analysis (Method 8A) Ib/hr 0.264 0.272 0.266 0.265 0.265 0.267 Ib/mmBtu (Calculated Fd Factor) 0.0004 0.0005 0.0005 0.0004 0.0005					0.0261	0.0286			
By	<u> </u>								
Ib/hr 6.813 5.916 6.327 5.650 6.177 Ib/mmBtu (Calculated Fd Factor) 0.0115 0.0098 0.0109 0.0094 0.0104 Sulfate Analysis (Anion Scan) Grams collected 0.0250 0.0200 0.0180 0.0220 0.0213 Grains/acf 0.0026 0.0021 0.0019 0.0023 0.0022 Grains/dscf 0.0054 0.0043 0.0039 0.0046 0.0046 Ib/hr 5.390 4.366 3.874 4.770 4.600 Ib/mmBtu (Calculated Fd Factor) 0.0091 0.0073 0.0067 0.0079 0.0078 Sulfuric Acid Analysis (Method 8A) Ib/hr 0.264 0.272 0.266 0.265 0.267 Ib/mmBtu (Calculated Fd Factor) 0.0004 0.0005 0.0005 0.0004 0.0005 Total Particulate Matter (Methods 5/202/8A)	=								
Sulfate Analysis (Anion Scan) Grams collected 0.0250 0.0200 0.0180 0.00220 0.00213									
Sulfate Analysis (Anion Scan) grams collected 0.0250 0.0200 0.0180 0.0220 0.0213 grains/acf 0.0026 0.0021 0.0019 0.0023 0.0022 grains/dscf 0.0054 0.0043 0.0039 0.0046 0.0046 lb/hr 5.390 4.366 3.874 4.770 4.600 Ib/mmBtu (Calculated Fd Factor) 0.0091 0.0073 0.0067 0.0079 0.0078 Sulfuric Acid Analysis (Method 8A) Ib/hr 0.264 0.272 0.266 0.265 0.267 Ib/mmBtu (Calculated Fd Factor) 0.0004 0.0005 0.0005 0.0004 0.0005 Total Particulate Matter (Methods 5/202/8A)									
grams collected 0.0250 0.0200 0.0180 0.0220 0.0213 grains/acf 0.0026 0.0021 0.0019 0.0023 0.0022 grains/dscf 0.0054 0.0043 0.0039 0.0046 0.0046 lb/hr 5.390 4.366 3.874 4.770 4.600 Ib/mmBtu (Calculated Fd Factor) 0.0091 0.0073 0.0067 0.0079 0.0078 Sulfuric Acid Analysis (Method 8A) Ib/hr 0.264 0.272 0.266 0.265 0.267 Ib/mmBtu (Calculated Fd Factor) 0.0004 0.0005 0.0005 0.0004 0.0005 Total Particulate Matter (Methods 5/202/8A)				0.0109	0.0094	0.0104			
grains/acf 0.0026 0.0021 0.0019 0.0023 0.0022 grains/dscf 0.0054 0.0043 0.0039 0.0046 0.0046 lb/hr 5.390 4.366 3.874 4.770 4.600 Ib/mmBtu (Calculated Fd Factor) 0.0091 0.0073 0.0067 0.0079 0.0078 Sulfuric Acid Analysis (Method 8A) Ib/hr 0.264 0.272 0.266 0.265 0.267 Ib/mmBtu (Calculated Fd Factor) 0.0004 0.0005 0.0005 0.0004 0.0005 Total Particulate Matter (Methods 5/202/8A)				0.0180	0.0220	0.0213			
grains/dscf 0.0054 0.0043 0.0039 0.0046 0.0046 Ib/hr 5.390 4.366 3.874 4.770 4.600 Ib/mmBtu (Calculated Fd Factor) 0.0091 0.0073 0.0067 0.0079 0.0078 Sulfuric Acid Analysis (Method 8A) Ib/hr 0.264 0.272 0.266 0.265 0.267 Ib/mmBtu (Calculated Fd Factor) 0.0004 0.0005 0.0005 0.0004 0.0005 Total Particulate Matter (Methods 5/202/8A)	•								
Ib/hr 5.390 4.366 3.874 4.770 4.600 Ib/mmBtu (Calculated Fd Factor) 0.0091 0.0073 0.0067 0.0079 0.0078 Sulfuric Acid Analysis (Method 8A) Ib/hr 0.264 0.272 0.266 0.265 0.267 Ib/mmBtu (Calculated Fd Factor) 0.0004 0.0005 0.0005 0.0004 0.0005 Total Particulate Matter (Methods 5/202/8A)	<u> </u>								
Ib/mmBtu (Calculated Fd Factor) 0.0091 0.0073 0.0067 0.0079 0.0078	_								
Sulfuric Acid Analysis (Method 8A) Ib/hr 0.264 0.272 0.266 0.265 0.267 Ib/mmBtu (Calculated Fd Factor) 0.0004 0.0005 0.0005 0.0004 0.0005 Total Particulate Matter (Methods 5/202/8A)									
Ib/hr				0,0001	0.0010	- 0.0070 T			
Ib/mmBtu (Calculated Fd Factor) 0.0004 0.0005 0.0005 0.0004 0.0005 Total Particulate Matter (Methods 5/202/8A)				0.266	0.265	0.267			
Total Particulate Matter (Methods 5/202/8A)									
lb/hr 3.067 2.542 3.515 2.098 <mark>2.806</mark>					2.098	2.806			
(Ib/mmBtu (Calculated Fd Factor) 0.0051 0.0042 0.0061 0.0035 0.0047									

ď.	U.S. Salan	

7	
ΥĒ	
1.3	

1 1000 to 1-d 12	in keepingalan	
=	3	

7000	5520	
in		

à		
-		

Client: **BP Products North America, Inc.** Facility: Whiting Refinery

Test Location: Boiler 36 Stack Test Method: 5/202/8A

Source Condition	Normal	Normal	Normal	Normal	
Date	11/2/16	11/3/16	11/3/16	11/3/16	
Start Time	12:30	8:15	10:20	12:20	
End Time	14:07	9:53	11:57	13:57	
	Run 1	Run 2	Run 3	Run 4	Average
	Condition				
Average Gas Temperature, °F	456.9	456.5	456.2	454.3	456.0
Flue Gas Moisture, percent by volume	14.3%	11.9%	14.5%	12.1%	13.2%
Average Flue Pressure, in. Hg	29.21	29.21	29.21	29.21	29.21
Gas Sample Volume, dscf	75.112	76.099	74.898	75.988	75.524
Average Gas Velocity, ft/sec	84.150	83.955	84.175	83.685	83.991
Gas Volumetric Flow Rate, acfm	253,791	253,202	253,866	252,387	253,312
Gas Volumetric Flow Rate, dscfm	122,219	125,511	122,114	125,154	123,750
Gas Volumetric Flow Rate, scfm	142,681	142,414	142,840	142,305	142,560
Average %CO ₂ by volume, dry basis	8.0	8.2	8.1	7.9	8.1
Average %O₂ by volume, dry basis	6.8	6.9	6.8	6.8	6.8
Isokinetic Variance	103.4	102.0	103.1	102.1	102.7
Calculated Fuel Factor Fd, dscf/mmBtu	8,227.0	8,266.0	8,246.0	8,243.0	8,245.5
Filterable Partice	ulate Matte	r (Method 5)			
grams collected	0.0052	0.0049	0.0022	0.0058	0.0045
mg/dscm	2.445	2.274	1.037	2.695	2.1129
grains/acf	0.0005	0.0005	0.0002	0.0006	0.0005
grains/dscf	0.0011	0.0010	0.0005	0.0012	0.0010
<mark>lb/h</mark> r	1.119	1.069	0.474	1.263	0.981
Ib/mmBtu (Calculated Fd Factor)	0.0019	0.0018	8000.0	0.0021	0.0017
Condensable Particulate Matter (Method 202)					
grams collected	0.0539	0.0575	0.0570	0.0524	0.0552
grains/acf	0.0053	0.0058	0.0056	0.0053	0.0055
grains/dscf	0.0111	0.0117	0.0117	0.0106	0.0113
(lb/hr)	11.599	12.543	12.291	11.410	11.961
Ib/mmBtu (Calculated Fd Factor)	0.0193	0.0206	0.0205	0.0186	0.0198
Sulfate Ana					
grams collected	0.0380	0.0410	0.0410	0.0370	0.0393
grains/acf	0.0038	0.0041	0.0041	0.0037	0.0039
grains/dscf	0.0078	0.0083	0.0084	0.0075	0.0080
lb/hr	8.178	8.943	8.841	8.060	8.506
Ib/mmBtu (Calculated Fd Factor)	0.0136	0.0147	0.0147	0.0131	0.0140
Sulfuric Acid A					
lb/hr	0.270	0.404	0.266	0.276	0.304
Ib/mmBtu (Calculated Fd Factor)	0.0004	0.0007	0.0004	0.0004	0.0005
Total Particulate Matter (Methods 5/202/8A)					
lb/hr	4.810	5.073	4.190	4.889	4.741
Ib/mmBtu (Calculated Fd Factor)	0.0080	0.0084	0.0070	0.0080	0.0079

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT Indianapolis

OFFICE MEMORANDUM

To: Rick Massoels Date: March 23, 2018

From: Jarrod C. Fisher J(F) Thru: Dave Cline DA

Subject: BP Products North America, Inc. -- Whiting Business Unit

Source ID: 089-00453 Permit Number: T089-38**3g**1-00453

City: Whiting County: Lake

Protocol Reviewer: JCF Field Observer: HDV

Test Company: Mostardi Platt

The Compliance Data Section has reviewed this report and found the sampling procedures used and results obtained to be acceptable to this office. A copy of the test report is filed in the Compliance Data Section. The following is a summary of the test results.

Unit Tested: No. 3 Stanolind Power Station (SPS) - Unit ID 503 - #32 Boiler

Dates of tests: October 10, 2017

Test Purpose: Retest

Type of Fuel: Refinery Fuel Gas

Pollution Control Equipment: None (SCR downstream of sample location)

APCD Parameters During Tests: NA

Pollutant: PM, PM10, Opacity Test methods: 1-4, 5, 9, 202

Maximum Operating Rate: 575 MMBtu/hr Average Operating Rate During Test: 506.4 MMBtu/hr

PM Emission Limit: 0.03 gr/dscf (326 IAC 6.8-1-2)

PM Emission Rate: 0.0017 gr/dscf

PM Emission Limit: 0.012 lb/MMBtu (326 IAC 2-2)

PM Emission Rate: 0.003 lb/MMbtu

PM10 Emission Limits: 0.0075 lb/MMBtu, 4.28 lb/hr (326 IAC 6.8-2-6)

0.010 lb/MMBtu (326 IAC 2-2)

PM10 Emission Rate: 0.0047 lb/MMBtu, 3.23 lb/hr

Opacity Limit: 20% (326 IAC 5)

Average Opacity: 0.0% Highest 6-minute average: 0.0%

Status: In Compliance

cc: Jarrod Fisher-Office of Air Quality

Compliance Emissions Test Report

BP Products North America, Inc.
Whiting Refinery
Boiler 32 Stack
Whiting Indiana

Whiting, Indiana October 10, 2017

Received State of Indiana

NOV 27 2017
11-22
DeptofEnvironmentalManagement
State of Indiana

Report Submittal Date November 3, 2017

© Copyright 2017
All rights reserved in
Mostardi Platt

Project No. M174104

3.0 TEST RESULT SUMMARIES

Client: **BP Products North America**

Facility: **Whiting Refinery**

Test Location: Boiler 32 **Test Method:** 5/202

Source Condition	Normal	Normal	Normal	
Date	10/10/17	10/10/17	10/10/17	
Start Time	9:05	10:58	12:50	
End Time	10:32	12:22	14:12	
	Run 1	Run 2	Run 3	Average
Stack Cond				
Average Gas Temperature, °F	179.3	176.4	176.5	177.4
Flue Gas Moisture, percent by volume	13.3%	15.0%	15.3%	14.5%
Average Flue Pressure, in. Hg	28.21	28.21	28.21	28.21
Gas Sample Volume, dscf	88.007	74.147	73.365	78.506
Average Gas Velocity, ft/sec	47.570	52.722	53.859	51.384
Gas Volumetric Flow Rate, acfm	191,805	212,578	217,162	207,182
Gas Volumetric Flow Rate, dscfm	129,504	141,395	143,928	138,276
Gas Volumetric Flow Rate, scfm	149,367	166,292	169,865	161,841
Average %CO ₂ by volume, dry basis	7.5	7.5	7.6	7.5
Average %O ₂ by volume, dry basis	7.0	7.1	6.9	7.0
Isokinetic Variance	102.3	105.3	102.4	103.3
Calculated Fuel Factor Fd, dscf/mmBtu	8,114.0	8,109.0	8,105.0	8,109.3
Filterable Particulate N	/latter (Met	hod 5)		
grams collected	0.01109	0.00612	0.00954	0.00892
mg/dscm	4.450	2.915	4.592	3.9857
grains/acf	0.0013	8000.0	0.0013	0.0011
grains/dscf	0.0019	0.0013	0.0020	0.0017
lb/hr	2.158	1.544	2.475	2.059
Ib/mmBtu (Calculated Fd Factor)	0.0034	0.0022	0.0035	0.0030
Condensable Particulate	Matter (Met	thod 202)		
grams collected	0.00344	0.00680	0.00427	0.00484
grains/acf	0.0004	0.0009	0.0006	0.0006
grains/dscf	0.0006	0.0014	0.0009	0.0010
lb/hr	0.669	1.715	1.108	1.164
Ib/mmBtu (Calculated Fd Factor)	0.0011	0.0025	0.0016	0.0017
Total Particulate N	<mark>/latter</mark> (5/20			
grams collected	0.01453	0.01292	0.01381	0.01375
grains/acf	0.0017	0.0017	0.0019	0.0018
grains/dscf	0.0025	0.0027	0.0029	0.0027
(lb/hr)	2.827	3.259	3.583	3.223
Ib/mmBtu (Calculated Fd Factor)	0.0045	0.0047	0.0051	0.0048

DEPARTMENT OF ENVIRONMENTAL MANAGEMENT OFFICE OF AIR QUALITY

OFFICE MEMORANDUM

To: Rick Massoels From:

Doug Van Demark

Subject:

Source ID: City:

Protocol Reviewer: Test Company:

BP Products North America, Inc.

00453 Whiting KP

ARI Environmental, Inc.

office. A copy of the test report is filed in the Compliance Data Section. The following is a summary of the test.

Date: July 25, 2016

Through: Dave Cline

Permit #: 30396 County: Lake Observer: KP

The Compliance Data Section has reviewed this report and found the sampling procedures used and results obtained to be acceptable to this

Date of Test: October 21, 2015

No. 3 Stanolind Power Station (3SPS) Boiler #36 - 190631 Unit Tested

Test Purpose: Compliance Type of Fuel: Refinery Gas

Air Pollution Control Device (APCD) SCR exhausting to Stack 503-05 N/A

APCD Permitted Parameters

Maximum Operating Rate: 575.00 mmbtu/hr Average During Test: 350.07 mmbtu/hr

1-4, 5, 9 & 202 Test Methods:

PM (filterable) Method 5 Pollutant Permit Condition: D.24.2 326 IAC 6.8-1-2 Permitted Limits: 0.03 gr/dscf Average Measured Emissions: 0.00028 gr/dscf

> STATUS: In compliance with permitted emission limits at 61% of the permitted maximum rate.

> > D.24.4(b)(2) 326 IAC 2-2

0.012 lbs/mmbtu (duct burner limitation) 0.00051 lbs/mmbtu (duct burner limitation)

STATUS: In compliance with permitted emission limits at 61% of the permitted maximum rate.

Pollutant PM10* (filterable & condensable) Method 5 & 202 D.24.1 326 IAC 6.8-2-6

Permitted Limits: 0.0075 lbs/mmbtu 4.28 lbs/hr 0.0133 lbs/mmbtu 7.84 lbs/hr

STATUS: Out of compliance with permitted emission limits at 61% of the permitted maximum rate.

Permit Condition: D.24.4(b)(3) 326 IAC 2-2 Permitted Limits: 0.01 lbs/mmbtu Measured Emissions: Run 1 Method 5 only 0.00049 lbs/mmbtu

Run 2 Method 5 only 0.00078 lbs/mmbtu Run 3 Method 5 only 0.00025 lbs/mmbtu

> Average Method 5 only 0.00051 lbs/mmbtu Run 1 Method 202 only 0.01206 lbs/mmbtu Run 2 Method 202 only 0.01346 lbs/mmbtu

Run 3 Method 202 only 0.01435 lbs/mmbtu Average Method 202 only 0.01329 lbs/mmbtu

Run 1 Method 5 & 202 0.01255 lbs/mmbtu Run 2 Method 5 & 202 0.01424 lbs/mmbtu Run 3 Method 5 & 202 0.01460 lbs/mmbtu Average Method 5 & 202 0.01380 lbs/mmbtu

STATUS: Out of Compliance based on condensable PM only with permitted emission limits at 61% of the permitted maximum rate.

USDC IN/ND case 2:19-cv-00337-PPS filed 09/06/19 page 100 of 105 document 1-2

Pollutant

Opacity

Permit Condition:

C.1 326 IAC 5-1

Permitted Limits:

20%

Average Measured Emissions:

STATUS: In compliance with permitted emission limits at 61% of the permitted maximum rate.

*Note: The PM10 Lake County SIP limit includes both filterable and condensable PM10. The condensable PM10 (M202) emissions alone were above the PM10 emission limits.

** Note: Emissions were sampled from Stack 503-02 after the addition of the duct burner emissions. Boiler #32 326 IAC 6.8-2-6 PM10 limits are independent of the duct burner emissions. By using this appoach it is not possible to isolate emissions from either source in order to determine compliance with applicable limits of either source.

cc Van Demark

TEST REPORT

POWER STATION NO. 3 - BOILER 36 STACK

BP PRODUCTS NORTH AMERICA, INC. WHITING, INDIANA

PREPARED FOR:

BP PRODUCTS NORTH AMERICA, INC.

Whiting Refinery 2918 Indianapolis Blvd. Whiting, Indiana 46394 E-mail: kenard.taylor@bp.com

Attention: Mr. Ken Taylor

ARI Environmental, Inc. 951 Old Rand Road, Unit 106 Wauconda, Illinois 60084 Phone: 847.487.1580 Ext. 117

Fax: 847.487.1587

E-mail: sflaherty@montrose-env.com

Steve Flaherty

Senior Project Manager Source Testing Division

ARI Project No. 566-179 ARI Proposal No. 36415 BP Purchase Order No. 3000463136

Test Date: October 21, 2015

Report Issuance Date: November 16, 2015

Power Station No. 3 - Boiler 36 Stack

Test Date: 10/21/15
Page: 12 of 12

Test Results

SECTIONFOUR

TABLE 4-1. POWER STATION NO. 3 - BOILER 36 STACK PM TEST RESULTS

TEST RUN NO. : TEST DATE : TEST TIME :	1 10/21/2015 <u>09:55 - 11:38</u>	2 10/21/2015 <u>12:25 - 14:05</u>	3 10/21/2015 <u>14:45 - 16:23</u>	<u>Average</u>
Process Data Boiler steam load, 1,000 lb/hr	351.8	349.2	349.2	350.1
Stack Gas Parameters Temperature, av. °F Velocity, av. ft/sec Volume flow, acfm Volume flow, scfm Volume flow, dscfm Volume flow, dscfh Volume flow, dscfh Moisture, av. % vol CO ₂ , av. % vol, db O ₂ , av. % vol, db	364.2 72.848 219,704 138,341 119,186 8,300,463 7,151,142 13.85 8.3 6.9	364.2 72.684 219,211 138,013 118,317 8,280,796 7,099,019 14.27 8.3 7.1	364.4 72.289 218,019 137,257 117,544 8,235,427 7,052,646 14.36 8.3 7.1	364.3 72.607 218,978 137,870 118,349 8,272,228 7,100,936 14.16 8.3 7.0
Sample Train Data Time, min Volume, dscf Volume, dscm Isokinetic ratio, %	90.0 58.106 1.646 98.6	90.0 58.049 1.644 99.2	90.0 58.659 1.661 101.0	
Particulate Matter Filterable PM collected, mg Concentration	1.00	1.65	0.55	1.07
gr/dscf lb/dscf x 10 ⁻⁶ Emission rate	0.0003 0.0379	0.0004 0.0627	0.0001 0.0207	0.0003 0.0404
lb/hr	0.271	0.445	0.146	0.287
Condensable PM collected, mg Concentration	24.51	(28.35)	30.99	27.95
gr/dscf Ib/dscf x 10 ⁻⁶ Emission rate	0.0065 0.9301	0.0075 1.0768	0.0082 1.1648	0.0074 1.0572
lb/hr	6.649	7.642	8.212	7.501
Total PM collected, mg Concentration	25.51	30.00	31.54	29.02
gr/dscf lb/dscf x 10 ⁻⁶ Emission rate	0.0068 0.9681	0.0080 1.1395	0.0083 1.1855	0.0077 1.0977
lb/hr lb/MMBtu	6.921 0.0120	8.087 0.0143	8.358 0.0148	7 <u>788</u> 0.0137
Visible Emissions Opacity, %	0	0	0	0

Compliance Emissions Test Report

BP Products North America, Inc.
Whiting Refinery
3 SPS Boiler 36 Stack
Whiting, Indiana
April 16, 2019

Report Submittal Date May 9, 2019

© Copyright 2019 All rights reserved in Mostardi Platt

Project No. M191606

Client: BP Products North America, Inc.

Facility: Whiting Refinery
Test Location: 3 SPS Boiler 36 Stack

Test Method: 5/202

Source Condition Date Start Time End Time	Normal 4/16/19 9:00 10:15 Run 1	Normal 4/16/19 11:10 12:25 Run 2	Normal 4/16/19 13:00 14:15 Run 3	Average
Stack Cond	itions			
Average Gas Temperature, °F	408.1	409.8	412.9	410.3
Flue Gas Moisture, percent by volume	13.8%	14.1%	14.2%	14.0%
Average Flue Pressure, in. Hg	29.09	29.09	29.09	29.09
Gas Sample Volume, dscf	46.859	45.905	46.041	46.268
Average Gas Velocity, ft/sec	84.996	83.826	83.994	84.272
Gas Volumetric Flow Rate, acfm	256,341	252,813	253,321	254,158
Gas Volumetric Flow Rate, dscfm	130,616	128,231	127,834	128,894
Gas Volumetric Flow Rate, scfm	151,583	149,203	148,967	149,918
Average %CO ₂ by volume, dry basis	7.5	7.6	7.6	7.6
Average %O ₂ by volume, dry basis	7.4	7.0	7.0	7.1
Isokinetic Variance	101.3	101.1	101.7	101.4
Calculated Fuel Factor Fd, dscf/mmBtu	8,122.0	8,124.6	8,126.4	8,124.3
Filterable Particulate M	Natter (Metl			
grams collected	0.00220	0.00205	0.00182	0.00202
grains/acf	0.0004	0.0003	0.0003	0.0003
grains/dscf	0.0007	0.0007	0.0006	0.0007
lb/hr	0.811	0.757	0.668	0.745
Ib/mmBtu (Calculated Fd Factor)	0.0013	0.0012	0.0011	0.0012
Condensable Particulate				
grams collected	0.01293	0.01631	0.02051	0.01658
grains/acf	0.0022	0.0028	0.0035	0.0028
grains/dscf	0.0043	0.0055	0.0069	0.0056
lb/hr	4.767	6.026	7.532	6.108
Ib/mmBtu (Calculated Fd Factor)	0.0076	0.0096	0.0120	0.0097
Total Particulate N		•		
grams collected	0.01513	0.01836	0.02233	0.01861
grains/acf	0.0026	0.0031	0.0038	0.0032
grains/dscf	0.0050	0.0062	0.0075	0.0062
lb/hr	5.578	6.783	8.200	6.854
Ib/mmBtu (Calculated Fd Factor)	0.0089	0.0108	0.0131	0.0109