TTK 4240 – Løsningsforslag 10

1 TEKSTSPØRSMÅL

Svar kort på følgende spørsmål (1-5 setninger er tilstrekkelig)

a) Hva mener vi med rotor og stator i en elektrisk maskin?

Svar: Rotor er den roterende delen, mens stator er den stasjonære (ikke-roterende) delen.

b) Hva mener vi med feltvikling og armaturvikling i en elektrisk maskin?

Svar. Feltvikling har som mål å bygge opp et magnetisk felt som binder sammen rotor og stator. Feltviklingen kan plasseres både i rotor og i stator.

Armaturviklingen har som mål å skape et indusert moment ved hjelp av sin strøm I_A samt feltet til feltviklingen. Armaturviklingen kan også plasseres både i rotor eller i stator.

c) I en maskin med permanentmagneter, hvilken vikling erstatter magnetene (felt eller armatur)?

Svar: Magneter setter opp et mer eller mindre konstant magnetfelt, og erstatter dermed oppgaven til *feltviklingen*

d) Forklar forskellen (gjerne ved bruk av skisse) på shunteksitert DC-maskin og separat eksitert DC-maskin (shunt excited and separately excited DC machines).

Svar:

Shunt-eksitert betyr at feltviklingen mates med samme spenning som armaturviklingen. Dette gir en enkel oppbygning, men har ulempen at vi ikke kan styre feltstrømmen uavhengig av spenningen V_A .

Separat eksitert betyr at feltviklingen forsynes fra en egen spenningskilde, og dermed kan fluksen ϕ styres uavhengig av spenningen V_A . Dette gir en ekstra frihet ved styringen til maskinen.

Se følgende figur hvor A) er en separat eksitert DC-maskin, mens B) er shunt-eksitert

Figur 1: A) Separat eksitert DC-maskin, B) Shunt-eksitert DC-maskin

e) Hva er forskjellen på en ordinær DC-maskin og en børsteløs DC-maskin (brushless DC machine)?

Svar: En vanlig DC-maskin benytter børster og kommutator for å likerette den induserte spenningen. Med andre ord så er strømmen som flyter i rotor egentlig en vekselsstrøm, men sett fra kilden er den en likestrøm.

Den børsteløs DC-maskin har mange likhetstrekk med en vanlig AC-maskin, men er i tillegg utstyrt med en AC/DC-omformer fra forsyningen. Det er vanlig å benytte permanentmagneter i rotor

f) Hva er de to hovedtypene AC-maskiner som brukes? Hvilken av dem brukes i store kraftverk med ytelse > 50 MW?

Svar: Asynkronmaskin (induksjonsmaskin) og synkronmaskin. De aller største maskinene (>50 MW) er alltid synkronmaskiner. Dette er fordi det er vanskelig å dyrt å lage andre typer maskiner for så store ytelser. I tillegg bidrar synkronmaskinen til spennings- og frekvensregulering av kraftnettet.

2 DC-MASKIN

Figur 2 viser en separat eksitert DC-maskin. Vi skal i hele oppgaven anta at spenningen V_A er konstant.

Figur 2: Separat eksitert DC-maskin

Oppgitt informasjon:

$$V_A = 100 V$$
$$R_A = 0.2 \Omega$$

Anta at fluksen ϕ er proporsjonal med feltspenningen V_F . I oppgave b-c antar vi at V_F og dermed ϕ er konstant.

a) Utviklet effekt som blir overført til/fra lasten er lik $P_{dev} = T_{dev} \omega_m$. Vis at dette er lik $P_{el} = E_A I_A$ som er den omsatte effekten i den induserte spenningskilden.

Svar:

Basert på moment- og turtallsligningen til en DC-maskin får vi:

$$P_{dev} = T_{dev}\omega_m = \left(k\phi I_A\right)\left(\frac{E_A}{k\phi}\right) = E_A I_A = P_{el}$$

b) Anta at $E_A = 95 V$. Hvor stor blir strømmen I_A og utviklet effekt P_{dev} ?

Svar:

Finner strømmen som
$$I_A = \frac{V_A - E_A}{R_A} = \frac{100 - 95}{0.2} = 25 A$$

Effekten blir da $P_{dev} = E_A I_A = 95 \cdot 25 = 2375 W$

c) I tomgang ($T_{dev}=0$) blir turtallet $n_m=1000~{
m o/min}$. Hva er turtallet når lasten trekker $P_{dev}=3~kW$?

Svar:

<u>Viktig:</u> Observer først at i tomgang så blir $I_A=0$ siden $T_{dev}=0$. Dermed blir $E_A=V_A=100~V$.

Bruker tomgangsinformasjonen til å finne verdien til $k\phi$:

$$E_A = k\phi\omega_m = k\phi \left(n_m \cdot \frac{2\pi}{60}\right)$$

$$k\phi = \frac{60E_A}{2\pi n_m} = \frac{60 \cdot 100}{2\pi \cdot 1000} = \frac{3}{\pi} = 0.9549 \text{ Vs/rad}$$

Strømmen $I_{\cal A}$ kan finnes uten å bruke denne verdien:

$$\begin{split} V_A &= R_A I_A + E_A \quad P_{dev} = 3000 = E_A I_A \\ \Rightarrow V_A &= R_A \frac{P_{dev}}{E_A} + E_A \\ \Rightarrow E_A^2 - E_A V_A + R_A P_{dev} = 0 \\ \Rightarrow E_A^2 - 100 E_A + 600 = 0 \\ E_A &= 93.59 \quad \lor \quad E_A = 6.41 \end{split}$$

For å vite hvilken av løsningene som er realistisk må vi vite at E_A typisk er innenfor $\pm 15\,\%$ av V_A . Hvis løsningen $E_A=6.41\,V$ skulle vært gyldig ville strømmen I_A blitt $\frac{3000}{6.41}=468\,A$, noe som er en gigantisk strøm for en 100 V – motor. Vi konkluderer dermed med at $E_A=93.59\,V$.

Vi kan dermed finne turtallet som

$$E_A = k\phi\omega_m \Rightarrow \omega_m = \frac{E_A}{k\phi} = \frac{93.59}{0.9549} = 98.01 \text{ rad/s}$$

$$n_m = 98.01 \frac{\text{rad}}{\text{s}} \cdot \frac{60}{2\pi} \frac{\text{s}}{\text{min}} \frac{\text{o}}{\text{rad}} = 935.9 \text{ o/min}$$

(både ω_m og n_m er godkjente svar når det bare blir spurt etter turtall uten å spesifisere enhet)

d) Fra driftstilfellet hvor $P_{dev}=3~kW$ halveres plutselig feltspenningen V_F . Lastmomentet T_{dev} holdes konstant. Hva blir det nye turtallet ω_m , samt utviklet effekt P_{dev} ?

Svar:

Når fluksen halveres får vi en ny verdi for $k\phi=\frac{0.9549}{2}=0.4774$. Siden lastmomentet holdes konstant er dette ekvivalent med en dobling av strømmen I_A siden $T_{dev}=k\phi I_A$. Basert på spenning og effekt fra oppgave c) finner vi strømmen $I_A=2\cdot\frac{3000}{93.59}=64.11\,A$.

Fra strømmen finner vi spenningen $E_A = V_A - R_A I_A = 100 - 0.2 \cdot 64.11 = 87.18 V$.

Omsatt effekt blir dermed:

$$P_{dev} = E_A I_A = 87.18 \cdot 64.11 = 5589 W$$

Turtallet/rotasjonshastigheten blir:

$$\omega_m = \frac{E_A}{k\phi} = \frac{87.18}{0.4774} = 182.81 \text{ rad/s}$$

$$n_m = 182.81 \frac{\text{rad}}{\text{s}} \cdot \frac{60}{2\pi} \frac{\text{s}}{\text{min}} \frac{\text{o}}{\text{rad}} = 1744 \text{ o/min}$$

3 EKSEMPEL PÅ BRUK AV DC-MOTOR - NESEHÅRTRIMMER

Personen på bildet måtte dessverre anskaffe seg en nesehårtrimmer pga. sterkt økende hårvekst. Alternativet fristet mindre: pinsett i kombinasjon med en lettere sadistisk kjæreste...

Figur 3: Illustrasjonsfoto, samt elektrisk ekvivalent av nesehårtrimmer drevet av DC-motor

En nesehårtrimmer er i likhet med mange andre små elektriske applikasjoner drevet av en DC-motor. Batteriet er representert ved spenningskilden V_A . Ved å benytte en shunt-eksitert motor som vist i figuren vil batteriet forsyne feltviklingen og armaturviklingen samtidig.

Vi ser i denne oppgaven bort fra batteriet sin interne motstand, dvs. batterispenningen V_A er konstant.

Lasten til denne motoren vil være effekten som trengs for å kutte hårene. Dette opplever motoren som et lastmoment T_{dev} . Vi gjør en forenklet antagelse om at T_{dev} er proporsjonal med antall hårstrå inni klipperen: $T_{dev} = c \cdot h$, hvor h er antall hårstrå kuttet per sekund og c er en konstant.

Bruk følgende informasjon:

$$V_A = 1.5 V$$

$$R_A = 0.1 \Omega$$

 $c = 0.01 \text{ Nm} \cdot \text{s/hårstrå}$

a) Tomgangsturtallet, dvs. turtallet når $T_{dev}=0$ er $n_{tomgang}=300$ o/min . Når motoren blir belastet vil turtallet falle noe. Hva blir turtallet hvis vi prøver å klippe 4 hårstrå per sekund?

Svar:

Finner først verdien til $k\phi$. I tomgang er $E_A=V_A$ siden $I_A=0$. Vi har dermed:

$$k\phi = \frac{E_A}{\omega_m} = \frac{1.5}{300 \cdot \frac{2\pi}{60}} = 0.0477 \text{ Vs/rad}$$

Kan så finne lastmomentet: $T_{dev} = 0.01 \cdot 4 = 0.04 \ Nm$. Dette gir en armaturstrøm lik:

$$I_A = \frac{T_{dev}}{k\phi} = \frac{0.04}{0.0477} = 0.8387 A$$

Kan dermed finne den induserte spenningen E_A :

$$E_A = V_A - R_A I_A = 1.5 - 0.1 \cdot 0.8378 = 1.4162 V$$

Turtallet blir da:

$$\omega_m = \frac{E_A}{k\phi} = \frac{1.4162}{0.0477} = 29.69 \text{ rad/s}$$

$$n_m = 29.69 \cdot \frac{60}{2\pi} = 283.5$$
 o/min

b) Batteriet kan maksimalt levere 5 Watt. Effektforbruket i feltviklingen er konstant lik 0.5 Watt. Hvor mange hårstrå per sekund er det maksimalt mulig å klippe?

Svar:

Dette betyr at det går 4.5 Watt til armaturviklingen. Siden batterispenningen er konstant lik 1.5 volt kan vi finne I_A direkte:

$$I_A = \frac{P_A}{V_A} = \frac{4.5 W}{1.5 V} = 3 A$$

Dette gir et moment lik:

$$T_{dev} = k\phi I_A = 0.0477 \cdot 3 = 0.1431 \ Nm$$

Antall hårstrå blir da:

$$h = \frac{T_{dev}}{0.01} = 14.31 \text{ hårstrå/s}$$

4 ASYNKRONMASKIN (INDUKSJONSMASKIN)

En asynkronmaskin er en genial konstruksjon oppfunnet bl.a. av Nikolai Tesla. Rotoren er konstruert på en slik måte at ved å sette spenning på statorvikling (armaturvikling) så vil det både flyte strøm i stator, samt bli indusert et magnetfelt i rotor. På grunn av en liten differanse i rotasjonsfart mellom rotor og stator så fører denne kombinasjonen til et netto moment som kan overføre effekt til en last.

Kjært barn har mange navn. Den kalles *asynkronmaskin* fordi rotor ikke roterer med samme fart som frekvens til statorstrømmen. Den kalles *induksjonsmaskin* fordi det magnetiske feltet blir *indusert* av statorstrømmen, i motsetning til en dedikert feltvikling slik som i andre elektriske maskiner.

Vi skal i denne øvingen benytte en forenklet modell av asynkronmaskinen (enklere enn i Hambley), se Figur 4. Aktive og reaktive tap i viklingene modelleres med resistans R_s og L_s . Effekten som blir omsatt i motstanden R_{load} er den nyttiggjorte effekten overført til lasten. R_{load} må derfor ikke forveksles med en tapsmotstand, siden effekten omsatt i den blir nyttiggjort til mekanisk arbeid.

Figur 4: Forenklet modell av asynkronmaskin

Bruk følgende tallverdier:

$$V_s = 230 \text{ V(rms)}$$

$$R_{\rm S} = 0.1 \, \Omega$$

$$L_{\rm S} = 5 \, mH$$

a) Anta at $R_{load}=20~\Omega$. Hva blir overført effekt til lasten? Hva blir tilført effekt fra kilden?

Svar:

Finner først total impedans sett fra kilden:

$$Z_{tot} = R_s + j\omega L_s + R_{load} = 20 + 0.1 + j \cdot 2\pi \cdot 50 \cdot 5 \cdot 10^{-3} = 20.1 + j1.5708 = 20.16e^{j4.469} \Omega$$

Kildestrømen blir:

$$I_s = \frac{V_s}{Z_s} = \frac{230e^{j0}}{20.16e^{j4.469}} = 11.409e^{-j4.469} A$$

Overført effekt til last blir:

$$P_{load} = R_{load} \cdot \left| I_{load} \right|^2 = 2603 \, W$$

Tilført effekt fra kilden blir:

$$S_s = V_s I_s^* = 230e^{j0} \cdot 11.409e^{-(-j4.469)} = 2624.1e^{j4.469}$$

$$P_s = 2624\cos(4.469) = 2616W$$

$$Q_s = 2624\sin(4.469) = 204.47 VAr$$

b) Lastens effektbehov blir så satt til 5 kW. Hvilken verdi av R_{load} oppfyller dette? Hvor store blir aktive og reaktive tap i dette tilfellet?

Svar: Kan finne et uttrykk for absoluttverdien til I_s som funksjon av R_{load} og P_{load} :

$$P_{load} = R_{load} \left| I_s \right|^2 \Rightarrow \left| I_s \right| = \sqrt{\frac{P_{load}}{R_{load}}}$$

Kan også finne et annet uttrykk for absoluttverdien til strømmen basert på kretsligningen:

$$\left|I_{s}\right| = \frac{\left|V_{s}\right|}{\left|Z_{tot}\right|} = \frac{\left|V_{s}\right|}{\sqrt{\left(R_{s} + R_{load}\right)^{2} + \left(\omega L_{s}\right)^{2}}}$$

Setter disse lik hverandre:

$$\sqrt{\frac{P_{load}}{R_{load}}} = \frac{|V_s|}{\sqrt{(R_s + R_{load})^2 + (\omega L_s)^2}}$$

$$(R_s + R_{load})^2 + (\omega L_s)^2 = \frac{|V_s|^2}{P_{load}} R_{load}$$

$$R_{load}^2 + R_{load} \left(2R_s - \frac{|V_s|^2}{P_{load}}\right) + (\omega L_s)^2 + R_s^2 = 0$$

$$R_{load}^2 - 10.38R_{load} + 2.477 = 0$$

$$R_{load} = 10.14 \Omega \vee R_{load} = 0.2444 \Omega$$

Begge løsningene er gyldige. Vi kan imidlertid forkaste $R_{load}=0.244$ av praktiske hensyn siden denne vil gi en urimelig høy strøm (ca 140 A). Det er imidlertid ikke nødvendig å kunne argumentere for dette hvis det hadde vært en eksamensoppgave.

Strømmen tilhørende den mest realistiske løsningen blir:

$$|I_s| = \sqrt{\frac{P_{load}}{R_{load}}} = \sqrt{\frac{5000}{10.14}} = 22.21 A$$

Aktive og reaktive tap finnes fra:

$$P_{loss} = R_1 |I_s|^2 = 0.1 \cdot 22.21^2 = 49.31 W$$

 $Q_{loss} = X_1 |I_s|^2 = 774.5 VAr$

c) Anta nå at Figur 4 viser kretsen for en fase til en trefase asynkronmaskin. Linjespenningen er $V_{LL} = 400\,V$. Bruk samme verdi for R_s , L_s , R_{load} som i oppgave a) og finn overført effekt til lasten. Finn også tilført aktiv og reaktiv effekt.

Svar: Vi vet allerede impedansen per fase fra oppgave a) : $Z_{tot} = R_s + j\omega L_s + R_{load} = 20.16e^{j4.469}$ Ω

Det er linjespenning som er oppgitt, vi må regne denne om til fasespenning for å regne effekten per fase:

$$V_{ph} = \frac{V_{LL}}{\sqrt{3}} = 230.94 \, V$$

Finner så fasestrømmen:

$$I_{ph} = \frac{V_{ph}}{Z_{tot}} = \frac{230.94}{20.16e^{j4.469}} = 11.455e^{-j4.469}$$

Finner så effekten P_{load} :

$$P_{load} = 3R_{load} |I_s|^2 = 3 \cdot 20 \cdot 11.455^2 = 7872 W$$

Tilført effekt blir:

$$S_{3ph} = 3V_{ph}I_{ph}^* = 3.230.94.11.455e^{-(-j4.469)} = 7936.3e^{j4.469} VA$$

$$P_{3ph} = 7936.3\cos(4.469) = 7912.1W$$

$$Q_{3ph} = 7936.3\sin(4.469) = 618.4 VAr$$