Ring Theory Homeworks

Remark 0.1. Unless otherwise specified, we're working with commutative rings with unity 1.

Homework 7 1

Remark 1.1. Problems 1-4 are on group theory. Focus on Ring Theory for this exam (problems 5-8).

Problem 1.2. $S = \{ \begin{vmatrix} a & b \\ -b & a \end{vmatrix} \mid a, b \in \mathbb{R} \}$. Verify that S is a ring (with unity) and show that it is isomorphic to the field of complex numbers.

I'll leave the first part as an exercise to the reader (to prove S is a ring). To do this, you would need to prove S is an abelian group under addition while also maintaining closure under multiplication, multiplicative associativity, and distributivity.

To show that S is isomorphic to the field of complex numbers, we will show that the homomorphism $\varphi: a+bi \to \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$ is injective and surjective.

For injectivity, we need to show that if
$$z_1, z_2 \in \mathbb{C}$$
 and $\varphi(z_1) = \varphi(z_2) \implies z_1 = z_2$.
Assume $\varphi(a + bi) = \begin{bmatrix} a & b \\ -b & a \end{bmatrix} = \begin{bmatrix} a' & b' \\ -b' & a' \end{bmatrix} = \varphi(a' + b'i)$

$$\Rightarrow \begin{bmatrix} a-a' & b-b' \\ -b-(-b') & a-a' \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$\Rightarrow a = a' \text{ and } b = b' \Rightarrow a+bi = a'+b'i \Rightarrow \text{injective}.$$

For surjectivity, all the matrices are of the form $\begin{bmatrix} a & b \\ -b & a \end{bmatrix}$ such that $a,b \in \mathbb{R}$ and the element $a+bi \in \mathbb{C}$ maps to it \implies surjective because we can always find an a+bi for every matrix in S $\therefore \varphi$ is an isomorphism.

Problem 1.3. Prove $\mathbb{Q}[\sqrt(3)]$ is a field.

Proof. To do this, I will prove that $\mathbb{Q}[\sqrt(3)]$ is a subfield of \mathbb{R} . For $a+b\sqrt(3),c+d\sqrt(3)\in\mathbb{Q}[\sqrt(3)],$ $(a+b\sqrt(3))+(c+d\sqrt(3))=(a+c)+(b+d)\sqrt(3)\in\mathbb{Q}(\sqrt(3))$ \implies closed under addition.

 $(a + b\sqrt{3}) * (c + d\sqrt{3}) = (ac + 3bd) + (ad + bc)\sqrt{3} \in \mathbb{Q}[\sqrt{3}] \implies \text{closed under multiplication.}$ Suppose $a \neq 0$ and $b \neq 0$. Then, $\frac{1}{a + b\sqrt{3}} = \frac{a - b\sqrt{3}}{a^2 - 3b^2} = \frac{a}{a^2 - 3b^2} + (\frac{-b}{a^2 - 3b^2})\sqrt{3}$. Since $a^2 - 3b^2 \neq 0$ (because $\sqrt(3)$ is irrational), $\frac{a}{a^2-3b^2}, \frac{-b}{a^2-3b^2} \in \mathbb{Q} \implies \frac{1}{a+b\sqrt(3)} \in \mathbb{Q}[\sqrt(3)] \implies$ existence of multiplicative inverses.

 $\mathbb{Q}[\sqrt{(3)}]$ is a subfield of \mathbb{R}

Problem 1.4. Determine whether $I = \{ \begin{bmatrix} 0 & n \\ 0 & m \end{bmatrix} \mid n, m \in \mathbb{Z} \}$ is an ideal in $R = \{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \mid a, b, c \in \mathbb{Z} \}$.

Proof. To prove $I \triangleleft R$, we must prove product absorption such that given $x \in I$, $r \in R \implies$ $rx = xr \in I$.

For some $n, m, a, b, c \in \mathbb{Z}$, we can define $x = \begin{bmatrix} 0 & n \\ 0 & m \end{bmatrix} \in I$, $r = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \in R$.

Problem 1.5. Find all the maximal ideals in $\mathbb{Z}_6 \times \mathbb{Z}_{15}$, and in each case describe the quotient ring.

Since the prime divisors of 12 are 2 and 3, the prime ideals are $\{0\}$, $\{0, 2, 4, 6, 8, 10\}$, and $\{0, 3, 6, 9\}$ \Longrightarrow the 2 maximal ideals are $J = \{0, 2, 4, 6, 8, 10\}$ and $K = \{0, 3, 6, 9\}$ such that \mathbb{Z}_{12}/J contains 2 elements $(\frac{12}{6} = 2)$ and \mathbb{Z}_{12}/K contains 3 elements $(\frac{12}{4} = 3)$.

2 Homework 8

In the first four exercises, R and S are rings (with 1) and : $R \to S$ is a ring homomorphism.

Problem 2.1. If φ is surjective and $I \triangleleft R$, show that $\varphi(I) \triangleleft S$.

Proof. To show that this is true, we only need to show that for all $s_1, s_2 \in S$ such that $s_1 \in \varphi(I)$, $\exists r_1, r_2 \in R$ such that $r_1 \in I \lhd R$. This really implies that for our given elements of s, we must prove that $s_1s_2 \in \varphi(I)$ and $s_1 + s_2 \in \varphi(I)$. Both of these follow from the properties of ring homomorphisms such that $\varphi(r_1 + r_2) = \varphi(r_1) + \varphi(r_2) = s_1 + s_2$ and $r_1 + r_2 \in I \implies s_1 + s_2 \in \varphi(I)$. Moreover, $\varphi(r_1r_2) = \varphi(r_1) * \varphi(r_2) = s_1s_2 \in \varphi(I)$ and $r_1r_2 \in I \implies s_1s_2 \in \varphi(I)$. $\therefore \varphi(I) \lhd S$.

Problem 2.2. Prove that if $\varphi(I)$ is a prime ideal of S, then I is a prime ideal for R.

Proof. It follows from the fourth isomorphism theorem in Ring Theory (lattice theorem) that for a commutative ring homomorphism, $\varphi: R \to S$, if $\varphi(I) \lhd S$, then φ determines an injection: $\tilde{\varphi}: R/I \to S/\varphi(I)$. In this case, $\varphi(I) \lhd S$ is prime $\iff S/\varphi(I)$ is an integral domain. Note that $R/\tilde{\varphi}^{-1}(\varphi(I))$ embeds $S/\tilde{\varphi}^{-1}(\varphi(I))$. Since a subring of an integral domain is in turn an integral domain, $\tilde{\varphi}^{-1}(\varphi(I)) = I$ is necessarily prime.

Problem 2.3. Does this follow for maximal ideals? (same as last question)

Proof. This is not the case and we will see why by assuming it is the case and working backwards. An ideals $J \triangleleft S$ is maximal if and only if S/J is a field. Moreover, if we set I to be the preimage of J, R/I embeds the field S/J. However, subrings of fields are not necessarily also fields. Therefore, maximal ideals are not 'transferrable' in the same way that prime ideals can be transferred. However, if φ is surjective, then the embedding $\tilde{\varphi}$ is surjective and therefore φ is an isomorphism and \mathbb{R}/I is a field (so I is a maximal ideal of R).

Problem 2.4. Assume that R is a field and that S is not the zero ring. Prove that φ is injective.

Proof. R is a field \Longrightarrow the only ideals of R are R or $\{0\}$. If $S \neq \{0\}$, then the fact that $R \triangleleft R \Longrightarrow \varphi(S) \triangleleft S$ and this ensures based on the properties of the homomorphism that $\forall r \in R, \exists ! \ s \in S$ such that $\varphi(r) = s$. This achieves the definition of injectivity for φ .

Problem 2.5. Show that $Z(\mathbf{H}) = R$ where **H** denotes the skew field of quaternions.

Proof. If $a \in \mathbb{R}$ then $aq = qa \ \forall \ q \in \mathbf{H}$ because a commutes with i, j, k. Conversely, let q = a + bi + cj + dk lie in $Z(\mathbf{H})$. Then, $iq = qi \implies -b + a + dj - ck = -b + ai - dj + ck$. Equating coefficients yields $c = 0 = d \implies q = a + bi$. Moreover, $qj = jq \implies b = 0$, so $q = a \in \mathbb{R}$ as required.

Problem 2.6. Let R be a finite commutative ring with unity. Show that every prime ideal in R is a maximal ideal in R.

Proof. Let I be a prime ideal in R. Since I is prime, R/I is an integral domain and R is finite $\implies R/I$ is a finite integral domain $\implies R/I$ is a field $\implies I$ is a maximal ideal in R.

Problem 2.7. Let I, J be ideals in a ring R.

- 1. Show that $I + J = \{a + b \mid a \in I, b \in J\}$ is an ideal.
- 2. Show that $IJ = \{a_1b_1 + a_2b_2 + ... + a_nb_n \mid a_i \in I, b_i \in J\}$ is an ideal.
- 3. Show that $IJ \subseteq I \cap J$.
- 4. If R is commutative and I + J = R, show that $IJ = I \cap J$.
- 1. Proof. To check if it is an ideal, we will verify that it is closed under addition and that it maintains product absorption. For any x = a + b, y = c + d such that $a, c \in I$, $b, d \in J \Longrightarrow$ by definition of I + J, $x, y \in I + J$. In this case, $x + y = (a + c) + (b + d) \in I + J$ because $a + c \in I$ and $b + d \in J$. Moreover, if we take $r \in R$, $xr = ar + br \Longrightarrow ar \in I$ and $br \in J$ because $I, J \triangleleft R$. Therefore, $xr \in I + J$ by definition $\Longrightarrow I + J$ is an ideal.
- 2. Proof. To prove that IJ is an ideal, we will verify that it is closed under addition and it maintains product absorption. For any $x \in I$, $y \in J$ $xy \in I$ and xyinJ based on the properties of product absorption for those two ideals. Moreover, $xy \in IJ$ by definition. Based on the properties of I, J, for $r \in R$, $xr \in I$ $yr \in J$ and, therefore, $xyr \in IJ \implies IJ$ maintains product absorption. \square
- 3. Proof. $\forall x \in I \cap J, x \in I \text{ and } x \in J \text{ by definition. But (wlog) for all } y \in I, \text{ if } z \in J \implies yz \in I \text{ and } yz \in J \text{ based on product absorption for both ideals. Therefore } \forall yz \in IJ, yz \in I \cap J \implies IJ \subseteq I \cap J.$
- 4. Proof. $I \cap J = (I \cap J)R = (I \cap J)(I + J) = I(I \cap J) + J(I \cap J)$. We know that $I \cap J \subseteq I$ and $I \cap J \subseteq J$ by definition of intersection $\implies I(I \cap J) + J(I \cap J) \subseteq IJ + IJ = IJ \implies I \cap J = IJ$.

Problem 2.8. Let D be an integral domain and $a, b \in D$. Show that $\langle a \rangle = \langle b \rangle$ if and only if a = ub for some unit u in U(D).

Proof. " \rightarrow ": There are two cases that arise from $\langle a \rangle = \langle b \rangle$. (1) $a \in \langle b \rangle \implies \exists u \in D$ such that a = ub and (2) $b \in \langle a \rangle \implies \exists v \in D$ such that b = va. Both (1) and (2) $\implies a = u(va) = uva \implies a - uva = 0 \implies a(1 - uv) = 0$ and, because D has no zero divisors (because it is an integral domain), either $a = 0 \implies b = v * a = 0 \implies a = 1 * b$ such that u = 1 or $1 - uv = 0 \implies uv = vu = 1 \implies u, v \in U(D)$.

Remark 2.9. If R is just a commutative ring with 1 and $a, b \in R$, then $\langle a \rangle = \langle b \rangle$ does not necessarily imply that a = ub with $u \in U(R)$.

" \leftarrow " a=ub with $u\in U(D)\implies a\in < b>$ and therefore $< a>\subseteq < b>$. However, because $u\in U(D)$, it follows that (given $u^{-1}\in D$), $b=u^{-1}a\in < a>\implies < b>\subseteq < a>$. Therefore, < a> = < b>.

Problem 2.10. In the ring of Gaussian integers $\mathbb{Z}[i]$, consider the ideal J = <1+i>.

- 1. Show that $2 \in J$.
- 2. Find all the cosets of J in $\mathbb{Z}[i]$.
- 3. Describe the quotient ring $\mathbb{Z}[i]/J$.
- 1. $(1+i)*(1-i)=2\in J$. The consequence is that $2r\in J\ \forall\ r\in R$.
- 2. Two ways of solving this:
 - (a) Proof. Let $r=a+bi\in R$ with $a,b\in \mathbb{Z}$ be given. Since $2R\subseteq J$, we can reduce a and b modulo 2 without changing the coset r+J, i.e. if r'=a'+b'i with $a,b\in \mathbb{Z}$ and $a'\equiv a \mod 2$, $b'\equiv b \mod 2$, then r+J=r'+J since $r-r'\in 2R\subseteq J$. So, $r+J\in \{J,1+J,i+J,(1+i)+J\}$. Now, $1+i\in J\implies (1+i)+J=J$. Furthermore, i+J=-i+J since $2i\in J$ and -i+J=1+J since $1+i\in J$. Finally, $J\ne 1+J$ since $1\notin J$: If we had $1\in J$, then there exists $a+bi\in R$ $(a,b\in \mathbb{Z})$ with $(a+bi)(1+i)=1\implies |a+bi|^2*|1+i|^2=1^2=1\implies (a^2+b^2)2=1$, which is impossible for $a,b\in \mathbb{Z}$ $(\implies a^2+b^2=0 \text{ or } \ge 1)$. Therefore, there are precisely 2 cosets modulo J, namely J and J and J in other words, J in other words.
 - (b) Proof. We directly compute the multiples of 1+i in R. r=a+bi with $a,b\in\mathbb{Z}\implies r(1+i)=(a+bi)(1+i)=a+ai+bi+bi^2=(a-b)+(a+b)i$. Note that $a-b\equiv a+b\pmod 2$ since $(a+b)-(a-b)=2b\in 2\mathbb{Z}$. Claim: $J=\{m+ni\mid m,n\in\mathbb{Z}\text{ and }m\equiv n\mod 2\}=:J'.$ We just saw that $J=\{r(1+i)\mid r\in R\}\subseteq J'.$ Now, let $m+ni\in J'$ with $m\equiv n\mod 2$ be given. Then, $a=\frac{m+n}{2}$ and $b=\frac{n-m}{2}$ are in $\mathbb{Z}\implies r=a+bi\in R$ and r(1+i)=(a-b)+(a+b)i=m+ni. this shows that every element of J' is in J=<1+i>, i.e. $J'\subseteq J\subseteq J'\implies J=J'.$ Now, with this description of J, it is easy to see that R/J has precisely two elements such that $J=\{m+ni\mid m,n\mathbb{Z} \text{ and }m\equiv n\mod 2\}$ and $R\setminus J=\{m+ni\mid m,n\in\mathbb{Z} \text{ and }m\not\equiv n\mod 2\}=1+J.$
- 3. By (2), $R/J = \{J, 1+J\} = \{0_{R/J}, 1_{R/J}\}$. Hence, R/J is the field with 2 elements $\{0, 1\}$, a copy of \mathbb{Z}_2 .
 - Remark 2.11. The last statement is best generalized as follows: If S is any ring with 1 such that |S| = p and p is a prime, then $S \cong \mathbb{Z}_p$ (and so S is a field). Note first that, since |S| = p, (S, +) is isomorphic to the cyclic group \mathbb{Z}_p . This implies that $char(S) = p \implies$ the prime subring S_0 of S is isomorphic to the ring (=field here) \mathbb{Z}_p . But $|S_0| = p = |S| \implies S_0 = S \implies S \cong \mathbb{Z}_p$

3 Homework 9

In the first two exercises, R_1 and R_2 are nonzero commutative rings with 1, $I_1 \triangleleft R_1$, $I_2 \triangleleft R_2$.

Problem 3.1. 1. Verify that $I_1 \times I_2 = \{(a,b) \mid a \in I_1, b \in I_2\}$ is an ideal of $R_1 \times R_2$.

- 2. Prove that **every** ideal I of $R_1 \times R_2$ is of the form $I_1 \times I_2$ for suitable ideals I_1 of R_1 and I_2 of R_2 (Hint: if (a, b) is an element of I, show that (a, 0) and (0, b) are also in I).
- 1. Proof. For $a_1, a_2 \in I_1, b_1, b_2 \in I_2, c_1 \in R_1, d_1 \in R_2$, it follows from the fact that $I_1 \triangleleft R_1$ and $I_2 \triangleleft R_2 \implies (a_1, b_1), (a_2, b_2) \in I_1 \times I_2$. Moreover, $(a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2) \in I_1 \times I_2$ because $a_1 + a_2 \in I_1$ and $b_1 + b_2 \in I_2$. Moreover, for $(c_1, d_1) \in R_1 \times R_2$ $(a_1, b_1) * (c_1, d_1) = (a_1c_1, b_1d_1) \in I_1 \times I_2$ because $a_1c_1 \in I_1$ and $b_1d_1 \in I_2$ based on the product absorption properties of $I_1, I_2 \implies I_1 \times I_2 \triangleleft R_1 \times R_2$.

- 2. Proof. $0_{R_1} \in I_1, \ 0_{R_2} \in I_2$ because $I_1 \lhd R_1, I_2 \lhd R_2 \implies (0,0) \in I_1 \times I_2$. Therefore, if $(a,b) \in I = I_1 \times I_2 \implies (a,0_{R_2}) \in I$ and $(0_{R_1},b) \in I$ because $0_{R_2} \in I_2$ and $0_{R_1} \in I_1$. Now, define $I_1 := \{a \in R_1 \mid (a,b) \in I \text{ and } b \in R_2\} \lhd R_1, \ I_2 := \{b \in R_2 \mid (a,b) \in I \text{ and } a \in R_1\} \lhd R_2$. $\therefore I_1 \times I_2 = I \lhd R_1 \times R_2$.
- **Problem 3.2.** 1. Show that the map $\varphi: R_1 \times R_2 \to (R_1/I_1) \times (R_2/I_2)$ defined by $\varphi(a,b) = (a+I_1,b+I_2)$ is a surjective ring homomorphism with kernel $I_1 \times I_2$. Deduce that the quotient ring $(R_1 \times R_2)/(I_1 \times I_2)$ is isomorphic to $(R_1/I_1) \times (R_2/I_2)$.
 - 2. If I_1 is a maximal ideal of R_1 and I_2 is a maximal ideal of R_2 , show that $I_1 \times R_2$ and $R_1 \times I_2$ are maximal ideals of $R_1 \times R_2$.
 - 3. Show that all maximal ideals of $R_1 \times R_2$ are of the form described in (2).
 - 1. Proof. Let $\varphi(a,b) = (a+I_1,b+I_2) \in R_1/I_1 \times R_2/I_2 \implies \varphi$ is surjective because the homomorphism maps to every element in its image. Let $(a,b) \in I_1 \times I_2$. Then, $\varphi(a,b) = 0 \implies I_1 \times I_2 \subseteq Kern(\varphi)$. Suppose that $(a,b) \notin I_1 \times I_2$. Wlog $a \notin I_1 \implies \varphi(a,b) = (a+I_1,b+I_2) \neq (0,0)$ since $a+I_1 \neq I_1 \implies$ by the first isomomorphism theorem for rings, $\frac{R_1 \times R_2}{I_1 \times I_2} \cong \frac{R_1}{I_1} \times \frac{R_2}{I_2}$
 - 2. Proof. Suppose $I_1 \times J_1 \lhd R_1 \times R_2$ and $I_1 \times J_1 \subseteq I_1 \times R_1$. Because I_2 is the maximal ideal of $R_2 \Longrightarrow J_1 = I_2 \Longrightarrow I_1 \times J_1 = I_1 \times I_2$ or $J_1 = R_2 \Longrightarrow I_1 \times J_1 = I_1 \times R_2$. This proves that $I_1 \times R_2$ is a maximal ideal of $R_1 \times R_2$.

 Conversely, suppose that $J_1 \times I_2 \lhd R_1 \times R_2$ and $J_1 \times I_2 \subseteq R_1 \times I_1$. Because I_1 is the maximal ideal of $R_1 \Longrightarrow J_1 = I_1 \Longrightarrow J_1 \times I_2 = I_1 \times I_2$ or $J_1 = R_1 \Longrightarrow J_1 \times I_2 = R_1 \times I_2$. This shows that $R_1 \times I_2$ is a maximal ideal of $R_1 \times R_2$.
 - 3. Proof. $I \times R_2 \triangleleft R_1 \times R_2$ (WTS Maximal). Suppose $\exists I_1 \times I_2 \triangleleft R_1 \times R_2$ and $I_1 \times I_2 > I \times R_2$ $\Longrightarrow I_1 > I \implies I_1 = R_1$. Similarly, for $R_1 \times I \triangleleft R_1 \times R_2$, suppose $\exists I_1 \times I_2 \triangleleft R_1 \times R_2$ and $I_1 \times I_2 > R_1 \times I \implies I_2 > I \implies I_2 = R_2$. This shows that any maximal ideal of $R_1 \times R_1$ takes this form.

Problem 3.3. Find an example of a nonzero commutative ring R and a polynomial f(x) with deg(f(x)) > 0 such that f(x) is a unit of R[x].

2x + 1 in $\mathbb{Z}/4\mathbb{Z}$. Specifically, $(2x + 1)^2 = 4x^2 + 4x + 1 = 1$ in $\mathbb{Z}/4\mathbb{Z}$

Problem 3.4. Let $\Upsilon : \mathbb{Z}[x] \to \mathbb{Z}[i]$ be the (by 2.3.3 uniquely determined) ring homomorphism which is the identity when restricted to \mathbb{Z} and satisfied $\Upsilon(x) = i$.

- 1. Compute $\Upsilon(2+3x+4x^2-5x^3+x^4)$ i.e. write it in the form a+bi with $a,b\in\mathbb{Z}$.
- 2. Prove that the principal ideal $\langle x^2 + 1 \rangle$ of $\mathbb{Z}[x]$ is equal to the kernel of Υ .
- 3. Decide whether $\langle x^2 + 1 \rangle$ is a prime or a maximal ideal of $\mathbb{Z}[x]$.
- 1. $\Upsilon(2+3x+4x^2-5x^3+x^4)=2+3i+4i^2-5i^3+i^4=-1+8i$
- 2. $\forall (x^2+1)=i^2+1=-1+1=0 \implies x^2+1 \in Kern(\curlyvee) \implies \langle x^2+1> \subseteq Kern(\curlyvee),$ since $Kern(\curlyvee) \lhd \mathbb{Z}[x]$. Now assume that $f(x) \in Kern(\curlyvee)$. We first apply the <u>division algorithm</u> (2.3.7) to f(x) and $g(x)=x^2+1\in\mathbb{Z}[x]$. Note that $l(x^2+1)=1\in U(\mathbb{Z})$. So there exists $q(x), r(x) \in \mathbb{Z}[x]$ with $f(x)=q(x)(x^2+1)+r(x)$ and r(x)=0 or $deg(r(x))< deg(x^2+1)=2$. The latter implies that r(x)=a+bx with $a,b\in\mathbb{Z}$ (If r(x)=0, then a=b=0). Now we use

that $f(x) \in Kern(\Upsilon)$: $0 = \Upsilon(f(x)) = \Upsilon(q(x)(x^2 + 1) + r(x)) = \Upsilon(q(x)) \Upsilon(x^2 + 1) + \Upsilon(a + bx) = \Upsilon(q(x)) * 0 + \Upsilon(a + bx) = \Upsilon(a + bx) = a + bi$ but if a + bi = 0 in $\mathbb{Z}[i]$, then $a = b = 0 \implies \underline{r(x) = 0}$. Hence, $f(x) = q(x)(x^2 + 1) \in \langle x^2 + 1 \rangle$. Since $f(x) \in Kern(\Upsilon)$ was arbitrary, this shows that $Kern(\Upsilon) \subseteq \langle x^2 + 1 \rangle \subseteq Kern(\Upsilon) \implies Kern(\Upsilon) = \langle x^2 + 1 \rangle$

3. Υ is surjective (by $\Upsilon(a+bx)=a+bi\ \forall\ a,b\in\mathbb{Z}$), and so by the isomorphism theorem 2.1.11 $\mathbb{Z}[x]/< x^2+1>=\mathbb{Z}[x]/Kern(\Upsilon)\cong\mathbb{Z}[i]$. Since $\mathbb{Z}[i]$ is an integral domain but not a field, it follows from 2.2.8 and 2.2.7 that $< x^2+1>$ is a prime ideal but <u>not a maximal ideal</u> of $\mathbb{Z}[x]$

Problem 3.5. Show that the principal ideal $\langle x^2 + 1 \rangle$ of $\mathbb{R}[x]$ is a maximal ideal.

Proof. $< x^2 + 1 >$ is a prime ideal (from the previous question) $\implies \mathbb{R}[x]/< x^2 + 1 >$ is an integral domain and because $\mathbb{R}[x]$ is finite, $\mathbb{R}[x]/< x^2 + 1 >$ is a finite integral domain $\implies R[x]/< x^2 + 1 >$ is a field. WTS \exists isomomorphism $\varphi : \mathbb{R}[x]/< x^2 + 1 > \to \mathbb{C}$ which maps $\varphi(-ax^2 + bx) \to a + bi$. Because this covers all $a + bi \in \mathbb{C} \implies \varphi$ is surjective because we only need to change $a, b \in \mathbb{R}$ for $-ax^2 + bx$ to map to all of the elements in \mathbb{C} of the form a + bi. φ is surjective $\iff < x^2 + 1 >$ is a maximal ideal.

4 Homework 10

Problem 4.1. Prove that the polynomials q(x) and r(x) in the Division Algorithm are uniquely determined.

Proof. Suppose we have $f(x) = q_1(x)g(x) + r_1(x)$ and $f(x) = q_2(x)g(x) + r_2(x)$ such that $r_i(x) = 0$ or $deg(r_i(x)) < deg(g(x))$. Subtracting the two equations, we get $0 = [q_1(x) - q_2(x)]g(x) + [r_1(x) - r_2(x)]$. Therefore, $[q_1(x) - q_2(x)]g(x) = r_2(x) - r_1(x)$. We must have $r_2(x) - r_1(x) = 0$ because if this isn't true, then $deg[r_2(x) - r_1(x)] < deg(g(x))$ (which is a clear contradiction). Therefore, we must have $r_1(x) = r_2(x)$ and because $q_1(x) - q_2(x) = 0 \implies q_1(x) = q_2(x)$.