1 Notation

Variable	Meaning
ρ	Density matrix
$ \psi angle$	State vector
$D(\alpha)$	Displacement operator
α	A complex number or a vector of complex numbers $\alpha = \begin{pmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_n \end{pmatrix}^T$
I	Identity matrix, note that the dimension of I will vary with context
$\int_{\mathbb{C}} d^2 \alpha$	Integral over the complex plane. Can for example be done in
	the real and imaginary part of α , or polar coordinates.
$\chi(\alpha,\alpha^*),\chi_{\rho}(\alpha)$	(Wigner) Characteristic function. The subscript indicates the associated operator.
a,a^{\dagger}	Ladder operators. Often vectors over n modes $a = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \end{pmatrix}^T$
q, p	Quadrature operators. Often vectors over n modes.
C_{lpha}, C_a	Vector of complex numbers or operators, $C_{\alpha} = \begin{pmatrix} \alpha \\ \alpha^* \end{pmatrix}$, $C_a = \begin{pmatrix} a \\ a^{\dagger} \end{pmatrix}$
$\overline{\operatorname{Tr}\left\{A\right\}}$	Has two possible meanings depending on context. If A is matrix of
	numbers, then it is the sum of the diagonal of A . If A
	is a matrix of operators, e.g. $A = \rho \begin{pmatrix} a & a^{\dagger} \\ a^{\dagger} & a \end{pmatrix} = \begin{pmatrix} \rho a & \rho a^{\dagger} \\ \rho a^{\dagger} & \rho a \end{pmatrix}$,
	then the trace is over Hilbert space, $\operatorname{Tr} \{A\} = \begin{pmatrix} \operatorname{Tr} \{\rho a\} & \operatorname{Tr} \{\rho a^{\dagger}\} \\ \operatorname{Tr} \{\rho a^{\dagger}\} & \operatorname{Tr} \{\rho a\} \end{pmatrix}$.
$ar{C}$	Mean amplitude, or displacement, $\bar{C} = \text{Tr} \{ \rho C_a \}$.
Σ	Covariance matrix for the amplitudes,
	$\Sigma = \frac{1}{2} \operatorname{Tr} \left\{ \rho \left(C_a \otimes C_a^T + C_a^T \otimes C_a \right) \right\} - \operatorname{Tr} \left\{ \rho C_a^T \right\} \otimes \operatorname{Tr} \left\{ \rho C_a \right\}$
Ω	$\Sigma = \frac{1}{2} \operatorname{Tr} \left\{ \rho \left(C_a \otimes C_a^T + C_a^T \otimes C_a \right) \right\} - \operatorname{Tr} \left\{ \rho C_a^T \right\} \otimes \operatorname{Tr} \left\{ \rho C_a \right\}$ The symplectic form $\Omega = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$
H_G	Hamiltonian that is at most quadratic in the ladder operators
$\overline{M_+, D_+}$	Bogoliubov transformation and displacement associated
	to the unitary transformation $e^{itH_G}C_ae^{-itH_G}=M_+C_a+D_+$
V, J	Submatrices of the M_+ , i.e. $M_+ = \begin{pmatrix} V & J \\ J^* & V^* \end{pmatrix}$
z, z^*	Subvectors of D_+ , i.e. $D_+ = \begin{pmatrix} z \\ z^* \end{pmatrix}$

Variable	Meaning
$\overline{M, D}$	Bogoliubov transformation and displacement associated
	to the unitary transformation, $e^{-itH_G}C_ae^{itH_G}=MC_a+D$.
x, y	Vectors of real numbers.
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	Constant characterizing quadrature convention,
	$q=rac{k_c}{2}\left(a^\dagger+a ight), p=rac{k_c}{2}i\left(a^\dagger-a ight)$
T, T_k	Matrices that converts α, α^* to real and imaginary parts,
	$T=\left(egin{array}{cc} rac{1}{2}I, & rac{1}{2}I \ -rac{1}{2}iI, & rac{1}{2}iI \end{array} ight), T_k=k_{ m c}T$
R_Q	Vector of quadrature operators $R_Q = \begin{pmatrix} q \\ p \end{pmatrix}$
S_+, μ_+	Symplectic matrix and displacement associated with the
	transformation $e^{itH_G}R_Qe^{-itH_G}$
S, μ	Symplectic matrix and displacement associated with the
	transformation $e^{-itH_G}R_Qe^{itH_G}$
R_X, R_Y, R_Λ	Vectors of real numbers put into a bi-partite structure, $R_{\Lambda}=\left(egin{array}{c} \Lambda_q \ \Lambda_p \end{array} ight)$
$\frac{\chi_{\rho}^{(Q)}\left(R_{\Lambda}\right)}{\bar{R}}$	Quadrature characteristic function associated with state ρ
\bar{R}	Quadrature average $\bar{R} = \text{Tr} \{ \rho R_Q \}$
\overline{Q}	Quadrature covariance matrix
	$Q = \frac{1}{2} \operatorname{Tr} \left\{ \rho \left(R_Q \otimes R_Q^T + R_Q^T \otimes R_Q \right) \right\} - \operatorname{Tr} \left\{ \rho R_Q^T \right\} \otimes \operatorname{Tr} \left\{ \rho R_Q \right\}$
$W_{\rho}(R_X)$	Wigner function of the state ρ .
A	Absolute value of scalar A and determinant of matrix A
$\langle A \rangle$	Expectation value of the operator $A = \text{Tr} \{ \rho A \}$
\otimes	The Kronecker product of two arrays $A\otimes B$
A^H	Superscript H mean the conjugate transpose of A .
A^*	Elementwise complex conjugation of A .