DISCUSSION LOG

Sikang Yan

University of Kaiserslautern yan@rhrk.uni-kl.de

February 6, 2019

KW13

In our cloth simulation, we follow the precedure written by Rohmer et al.. We consider to begin with the $Defomation\ gradient\ \mathbf{F}$, which is defined by

$$\mathbf{F} = \frac{\partial \mathbf{x}}{\partial \mathbf{X}},\tag{1}$$

where the \mathbf{x} denotes the deformed vector and the \mathbf{X} denotes the reference vector.

Since we have no further information about the mapping from ${\bf X}$ to ${\bf x}$, we use the vector $({\bf u_1},{\bf u_2})$ and $(\overline{{\bf u_1}},\overline{{\bf u_2}})$ to approximate the Defomation gradient, which is defined as

$$\mathbf{F} = \left[\mathbf{u}_{1}, \mathbf{u}_{2}\right] \left[\overline{\mathbf{u}_{1}}, \overline{\mathbf{u}_{2}}\right]^{-1},\tag{2}$$

Attention should be paid especially:

- eq.(2) characrize only the 2D deformation of each triangle.
- in Rohmer et al. F is symbolised as T.

Sikang Yan (TUK)

Short title

February 6, 2019 2/9

KW13

We provide here our code preceed with concrete data:

• faces(i,j) is the jth vertex of the ith triangle, here we choose the face(0,0), face(0,1), face(0,2) as examples and calculate the VecT and VecR for face(0,0).

cloth_vec

$$VecT = el_1 VertT_1 - el_1 VertT_2$$
; $el_1 VertT_1 - el_1 VertT_3$ (3)

$$VecR = el_1 VertR_1 - el_1 VertR_2$$
; $el_1 VertR_1 - el_1 VertR_3$ (4)

cloth_vec

$$VecT = [0.771842 - 0.0144887 \ 6.39045] - [0.780121 - 0.0186188 \ 6.37318]$$
 (5)

$$[0.771842 - 0.0144887 \ 6.39045] - [0.737177 - 0.00912791 \ 6.39292]$$

$$VecR = [0.759919 - 0.015194 \ 6.38401] - [0.767822 - 0.0212492 \ 6.3669];$$
 (7)

$$[0.7599190.015194 \ 6.38401] - [0.726977 \ -0.00749985 \ 6.38692]$$
 (8)

(9)

(9)

such that

cloth_vec

$$VecT = [-0.0079 \ 0.0061 \ 0.0171 \ 0.0329 \ -0.0077 \ -0.0029];$$
 (10)

$$VecR = [-0.0083 \ 0.0041 \ 0.0173 \ 0.0347 \ -0.0054 \ -0.0025];$$
 (11)

(12)

5/9

where the first 3 entries of VecR is the vector $\mathbf{u_1}$ and the last 3 entries of VecR is the vector $\mathbf{u_2}$. VecT analogiously.

cloth_eig_2D

we use here Eigen :: Map to transform the vector VecT and VecR to 2 * 2 2D deformation gradient \mathbf{F} .

$$\mathbf{F} = \begin{bmatrix} -0.0083 & 0.0347 \\ 0.0041 & -0.0054 \end{bmatrix} \begin{bmatrix} -0.0079 & 0.0329 \\ 0.0061 & -0.0077 \end{bmatrix}^{-1}$$
(13)

hence the F has a rotation information R and a stretch information U,

$$F = RU. (14)$$

we use $\mathbf{F}^T\mathbf{F}$ to eliminate the ratotion information to obtain det $\mathbf{R}=1$

$$\mathbf{F}^{T}\mathbf{F} = (\mathbf{R}\mathbf{U})^{T}\mathbf{R}\mathbf{U} \tag{15}$$

$$=\mathbf{U}^{T}\mathbf{R}^{T}\mathbf{R}\mathbf{U} \tag{16}$$

$$=\mathbf{U}^2\tag{17}$$

$$=\mathbf{C} \tag{18}$$

and using decomposition, if we have the form

$$\mathbf{C} = \lambda_1^2 \mathbf{v}_1 \mathbf{v}_1^T + \lambda_2^2 \mathbf{v}_2 \mathbf{v}_2^T \tag{19}$$

then we could obtain the **U** by applying

$$\mathbf{U} = \lambda_1 \mathbf{v}_1 \mathbf{v}_1^T + \lambda_2 \mathbf{v}_2 \mathbf{v}_2^T \tag{20}$$

the main backdraw of Rohmer et al. is that this is only applied for 2D problem, thus we need a new algorithm, which can also take the consideration for the vertical deformation. Therefore, the *Kabisch Algorithm* is introduced.

// to do

8/9

use < boost > to collect all ply files name, which are stored in *_filename* as well as *_output* in std :: vector. Later I could only pass the index i and i+1 for the inputs, and the eigenvector can be calculated automatically and saved.

Problem might be the allocation memory (?) since I don't delete any temporary datas while the calculation. Let's see. from 0-1 EigNorm1 8758 NaN?

9/9