

FAKULTAS TEKNOLOGI INFORMASI

STATISTIK PROBABILITAS [MI113 / 2 SKS]

Pertemuan 05

PERHITUNGAN DEVIATION (VARIANCE & STANDARD DEVIATION), KORELASI DAN REGRESI

Tujuan Pembelajaran

- Mahasiswa dapat memahami tentang menghitung variance dan standard deviation
- Mahasiswa dapat memahami tentang korelasi dan regresi

Topik Pembahasan

- □ Perhitungan *Deviation*
 - Variance
 - ☐ Standard Deviation
- □ Korelasi
- □ *Regresi*

- □Ukuran seberapa jauh sebuah kumpulan bilangan tersebar.
 - □ Sample Variance

$$s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}$$

$$s^{2} = \frac{1}{n-1} \left\{ \sum_{i=1}^{n} x_{i}^{2} - \frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n} \right\}$$

☐ Sample Standard Deviation

$$s = \sqrt{s^2}$$

Contoh

Tentukan variance dan standard deviation dari data sampel

3, 5, 7, 7, 38!

- □ Jawab
 - □ Hitung Mean

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$= \frac{1}{5} (3 + 5 + 7 + 7 + 38)$$

$$= \frac{60}{5}$$

$$= 12$$

□ Variance

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}$$

$$s^{2} = \frac{(3-12)^{2} + (5-12)^{2} + (7-12)^{2} + (7-12)^{2} + (38-12)^{2}}{(5-1)}$$

$$= \frac{(-9)^{2} + (-7)^{2} + (-5)^{2} + (-5)^{2} + (26)^{2}}{4}$$

$$= \frac{81 + 49 + 25 + 25 + 676}{4}$$

$$= \frac{856}{4}$$

$$= 214$$

☐ Standard Deviation

$$s = \sqrt{s^2}$$
$$= \sqrt{214}$$
$$= 14,6287$$

□ Population Variance

$$\sigma^2 = \frac{\sum_{i=1}^n f_i (x_i - \bar{x})^2}{n}$$

☐ Standard Deviation

$$\sigma = \sqrt{\sigma^2}$$

- □ Keterangan
 - $\Box \sigma^2 = population variance$
 - $\Box \sigma = standard deviation$
 - \Box n = banyaknya data
 - \Box f_i = frekuensi terjadinya suatu pengamatan untuk data yang dikelompokkan
 - $\square x_i = titik tengah interval ke i$
 - $\Box \bar{x} = \sum_{i=1}^{n} f_i x_i$

- ☐ Contoh
 - ☐ Tentukan *variance* dan *standard deviation* dari data populasi berikut!

USIA AKI MOBIL	f_i	x_i	$f_i x_i$
1,68 - 2,39	2	2,035	4,070
2,40 - 3,11	2	2,755	5,510
3,12 - 3,83	4	3,475	13,900
3,84 - 4,55	11	4,195	46,145
4,56 - 5,27	10	4,915	49,150
5,28 - 5,99	5	5,695	28,475
6,00 - 6,71	2	6,359	12,718

- Jawab
 - ☐ Population Variance

USIA AKI MOBIL	f_i	x_i	$f_i x_i$
1,68 - 2,39	2	2,035	4,070
2,40 - 3,11	2	2,755	5,510
3,12 - 3,83	4	3,475	13,900
3,84 - 4,55	11	4,195	46,145
4,56 - 5,27	10	4,915	49,150
5,28 - 5,99	5	5,695	28,475
6,00 - 6,71	2	6,359	12,718
-	36	-	159,968

$$\bar{x} = \frac{159,968}{36}$$

USIA AKI MOBIL	f_i	x_i	$f_i x_i$	$x_i - \overline{x}$	$(x_i - \overline{x})^2$	$f_i(x_i-\overline{x})^2$
1,68 - 2,39	2	2,035	4,070	-2,409	5,803281	11,60656
2,40 - 3,11	2	2,755	5,510	-1,689	2,852721	5,705442
3,12 - 3,83	4	3,475	13,900	-0,969	0,938961	3,755844
3,84 - 4,55	11	4,195	46,145	-0,249	0,062001	0,682011
4,56 - 5,27	10	4,915	49,150	0,471	0,221841	2,21841
5,28 - 5,99	5	5,695	28,475	1,251	1,565001	7,825005
6,00 - 6,71	2	6,359	12,718	1,915	3,667225	7,33445
\sum	36		159,968			39,12772

□ Population Variance

$$\sigma^2 = \frac{\sum_{i=1}^n f_i (x_i - \bar{x})^2}{n}$$

$$=\frac{39,12772}{36}$$

$$= 1,08688$$

□ Population Standard Population

$$\sigma = \sqrt{\sigma^2}$$

$$= \sqrt{39,12772}$$

$$= 6,25522$$

Korelasi

- **□** Koefisien Korelasi
 - □Korelasi menunjukkan adanya hubungan suatu variabel dengan variabel yang lain, dengan sifat kuantitatif
 - □Koefisien Korelasi adalah nilai yang menunjukkan kuat tidaknya korelasi
 - □Nilai Koefisien Korelasi : $-1 \le r \le 1$
 - □ Koefisien penentuan (*coefficient of determination*), menunjukkan besarnya sumbangan/kontribusi variabel bebas terhadap variabel terikat : 2

□ Definisi

- ☐ Metode untuk menentukan hubungan suatu variabel dengan yang lainnya untuk melihat seberapa besar pengaruhnya.
- ☐ Merupakan rumus yang bisa digunakan untuk menganalisis data dari yang sederhana, sampai yang jumlahnya begitu banyak atau kompleks.

TERIMA KASIH