

Estimate tools

Terence Tao

 $May\ 11,\ 2025$

Chapter 1

Introduction

Introduction goes here.

Chapter 2

Orders of magnitude

The hyperreals ${}^*\mathbb{R}$ are already defined in Mathlib, using a Lean-canonically chosen ultrafilter on \mathbb{N} . One could consider generalizing the hyperreal construction to other filters or ultrafilters, but given the extensive library support for the Mathlib hyperreals, and the fact that it already enjoys enough of a transfer principle for most applications, we will base our theory here on the Mathlib hyperreals.

Definition 1 (Positive hyperreals). Positive Hyperreal, Positive Hyperreal.less sim, Positive Hyperreal.ll The positive hyperreals $*\mathbb{R}^+$ are the set of hyperreals $X \in *\mathbb{R}$ such that X > 0. (Note that X could be infinitesimal or infinite).

If X,Y are positive hyperreals, we write $X\lesssim Y$ if $X\leq CY$ for some real C>0. We write $X\asymp Y$ if $X\lesssim Y\lesssim X$. We write $X\ll Y$ if $X\leq \varepsilon Y$ for all real $\varepsilon>0$.

Lemma 2 (Lesssim order). pos-hyperrealPositiveHyperreal.asym_preorder \lesssim is a pre-order on ${}^*\mathbb{R}^+$, with \asymp the associated equivalence relation, and \ll the associated strict order. Any two positive hyperreals are comparable under \lesssim .

Proof. Easy. \Box

Definition 3 (Orders of magnitude). less sim-orderOrderOfMagnitude, PositiveHyperreal.order,PositiveHyperred of the positive hyperreals by the relation of asymptotic equivalence. For a positive hyperreal X, we let $\Theta(X)$ denote the order of magnitude of X; this is a surjection from ${}^*\mathbb{R}^+$ to \mathcal{O} .

Lemma 4 (Theta kernel). ord-defPositiveHyperreal.order_eq_iff, PositiveHyperreal.order_le_iff, Positi

Proof. Easy. \Box

Definition 5 (Ordering on magnitudes). theta-kernelOrderOfMagnitude.linearOrderWe linearly order \mathcal{O} by the requirement that $\Theta(X) \leq \Theta(Y)$ if and only if $X \lesssim Y$, and $\Theta(X) < \Theta(Y)$ if and only if $X \ll Y$.

Definition 6 (One). ord-defWe define $1 := \Theta(1)$.

Lemma 7 (Constants trivial). one-defReal.order_o f_p osWehave $\Theta(C) = 1$ for all real C > 0.

Proof. Easy. \Box

Definition 8 (Arithmetic on magnitudes). theta-kernelOrderOfMagnitude.add, OrderOfMagnitude.mul, OrderOfMagnitude.powWe define addition on \mathcal{O} by the requirement that $\Theta(X) + \Theta(Y) = \Theta(X + Y)$ for positive hyperreals X, Y. Similarly we define multiplication, inverse, and division. We define real exponentiation by requiring that $\Theta(X^{\alpha}) = \Theta(X)^{\alpha}$ for positive hyperreals X and real α .

Lemma 9 (Addition is tropical). *mag-arith For all orders of magnitude* $\Theta(X)$, $\Theta(Y)$, we have $\Theta(X) + \Theta(Y) = \max(\Theta(X), \Theta(Y))$.

Proof. Easy. \Box

Corollary 10 (Additive commutative monoid). tropical-add \mathcal{O} is an ordered additive idempotent commutative monoid.

Proof. Easy. \Box

Lemma 11 (Commutative semiring). mag-arith \mathcal{O} is a multiplicative ordered commutative group that distributes over addition. (It is not a semiring in the Mathlib sense because it does not have a zero element.)

Proof. tropical-add Easy.

Lemma 12 (Power laws). mag-arith Let $\Theta(X)$, $\Theta(Y)$ be orders of magnitude, and α , β be real numbers.

- (i) We have $\Theta(XY)^{\alpha} = \Theta(X^{\alpha}Y^{\alpha})$ and $\Theta(X/Y)^{\alpha} = \Theta(X^{\alpha}/Y^{\alpha})$.
- (ii) We have $\Theta(X^{\alpha\beta}) = \Theta(X^{\alpha})^{\beta}$.
- (iii) We have $\Theta(X)^0 = 1$, $\Theta(X)^1 = \Theta(X)$, and $\Theta(X)^{-1} = 1/\Theta(X)$.
- (iv) We have $\Theta(1)^{\alpha} = 1$.
- (v) We have $\Theta(X+Y)^{\alpha} = \Theta(X)^{\alpha} + \Theta(Y)^{\alpha}$ for $\alpha \geq 0$.
- (vi) If $\alpha > 0$ and $\Theta(X) < \Theta(Y)$, then $\Theta(X)^{\alpha} < \Theta(Y)^{\alpha}$.
- (vii) If $\alpha > 0$, then $\Theta(X) \leq \Theta(Y)$, if and only if $\Theta(X)^{\alpha} \leq \Theta(Y)^{\alpha}$, and $\Theta(X) < \Theta(Y)$ if and only if $\Theta(X)^{\alpha} < \Theta(Y)^{\alpha}$.
- (viii) If $\alpha \leq 0$ and $\Theta(X) \leq \Theta(Y)$, then $\Theta(X)^{\alpha} \geq \Theta(Y)^{\alpha}$.
- (ix) If $\alpha < 0$, then $\Theta(X) \leq \Theta(Y)$, if and only if $\Theta(X)^{\alpha} \geq \Theta(Y)^{\alpha}$, and $\Theta(X) < \Theta(Y)$ if and only if $\Theta(X)^{\alpha} > \Theta(Y)^{\alpha}$.

