Terceira lista de matemática II

Prof.: Max Jáuregui

- 1. Sejam os vetores bidimensionais $\vec{A}=(1,3),\,\vec{B}=(2,5)$ e $\vec{C}=(3,-1).$ Faça o seguinte:
 - (a) Represente graficamente o vetor \vec{A} colocando sua origem na origem do sistema de coordenadas.
 - (b) Represente graficamente o vetor \vec{B} colocando sua origem no ponto (3,-1).
 - (c) Usando as coordenadas calcule a soma $\vec{A} + \vec{B} + \vec{C}$. Por outro lado, construa o vetor soma de forma gráfica e compare seus resultados.
 - (d) Determine o vetor $2\vec{A} 3\vec{B} + \vec{C}$.
 - (e) Encontre um vetor unitário paralelo a \vec{A} .
- 2. Mostre que o vetor tridimensional $\vec{A}=(1,3,1)$ pode ser escrito como uma combinação linear dos vetores $\vec{B}=(1,1,1)$ e $\vec{C}=(2,3,2)$.
- 3. Dê um exemplo de um conjunto $X \subset \mathbb{R}^2$ que tenha dois vetores L.I. cujas primeiras coordenadas sejam iguais a 1.
- 4. Mostre que o conjunto $X = \{(1,2,3), (4,5,6), (7,6,8)\} \subset \mathbb{R}^3 \text{ \'e L.D.}$
- 5. Mostre que o conjunto $\mathcal{B} = \{(-1,1,2),(1,1,1),(1,-1,-1)\} \subset \mathbb{R}^3$ é uma base de \mathbb{R}^3 .
- 6. Escreva o vetor $(1,0,0) \in \mathbb{R}^3$ como uma combinação linear dos vetores da base \mathcal{B} do exercício anterior.
- 7. Dados os vetores tridimensionais $\vec{A}=(1,2,3),\,\vec{B}=(-1,0,1)$ e $\vec{C}=(1,2,1).$ Faça o seguinte:
 - (a) Calcule $\vec{A} \cdot \vec{B} \in \vec{A} \cdot \vec{C}$.
 - (b) Mostre que os vetores \vec{B} e \vec{C} são ortogonais.
 - (c) Calcule $|\vec{B} + \vec{C}|^2$. Compare seu resultado com $|\vec{B}|^2 + |\vec{C}|^2$.
 - (d) Determine o ângulo entre os vetores $\vec{A} \in \vec{B}$.
 - (e) Calcule $|\vec{A} \vec{B}|^2$. Compare seu resultado com $|\vec{A}|^2 + |\vec{B}|^2 2\vec{A} \cdot \vec{B}$.
- 8. Considere um triângulo no qual dois dos seus lados têm comprimentos 3 e 5 respectivamente e formam um ângulo de 60°. Com essas informações, determine o comprimento do terceiro lado.
- 9. Dados os vetores tridimensionais $\vec{A}=(2,1,1), \ \vec{B}=(1,1,1)$ e $\vec{C}=(2,2,2).$ Faça o seguinte:

- (a) Calcule $\vec{A} \times \vec{B}$, $\vec{A} \times \vec{C}$ e $\vec{B} \times \vec{C}$.
- (b) Calcule $\vec{B} \times \vec{A}$, $\vec{C} \times \vec{A}$ e $\vec{C} \times \vec{B}$. Compare com o item anterior.
- (c) Calcule $\vec{A} \cdot (\vec{A} \times \vec{B})$ e $\vec{B} \cdot (\vec{A} \times \vec{B})$.
- (d) Determine a área do paralelogramo construído a partir dos vetores \vec{A} e \vec{C} .
- 10. Dê um exemplo de um vetor não-nulo que seja ortogonal ao vetor tridimensional $\vec{A}=(1,2,3).$
- 11. Dê um exemplo de um vetor não-nulo que seja ortogonal aos vetores tridimensionais $\vec{A}=(1,1,1)$ e $\vec{B}=(1,0,1)$ simultaneamente.
- 12. Encontre o volume do paralelepípedo construído a partir dos vetores tridimensionais $\vec{A} = (1, 2, 1), \vec{B} = (-1, 2, 1)$ e $\vec{C} = (0, -1, 2)$.