Stage Olimpiadi - Geometria

Fabio Lilliu

February 2025

1 Teoria

1.1 Punti notevoli

Problema 1 (Febbraio 16, 2014) Sia ABC un triangolo acutangolo. Siano AM, BN e CL le mediane, che si intersecano nel baricentro G. Siano M_0 , N_0 e L_0 i punti medi di AG, BG e CG, rispettivamente. Mostrare che i sei punti M, M_0 , N, N_0 , L, L_0 giacciono su una circonferenza se e solo se ABC è equilatero.

1.2 Congruenza

Problema 2 (Febbraio 16, 2022) Sia ABC un triangolo, sia r la bisettrice interna dell'angolo acuto BAC e siano K la proiezione di B su r, L la proiezione di K su AB e D il simmetrico di B rispetto ad L. Chiamiamo infine H il piede dell'altezza del triangolo ABC uscente da B. Dimostrare che:

- BH = 2LK;
- KA biseca l'angolo HKD ;
- il triangolo ADH è isoscele.

1.3 Angoli e circonferenze

Problema 3 (Febbraio 17, 2012) Sia ABC un triangolo acutangolo; sia O il suo circocentro e siano P, Q i punti (diversi da A) in cui rispettivamente l'altezza uscente dal vertice A e il prolungamento di AO incontrano la circonferenza circoscritta ad ABC.

- Si dimostri che gli angoli BAP e QAC sono congruenti;
- ullet Si dimostri che i triangoli BCP e CBQ sono congruenti;
- Si dimostri che, detti M e N i punti medi di AB e AC, l'area del quadrilatero ABPC vale quattro volte l'area del quadrilatero AMON.

Problema 4 (Febbraio 17, 2016) Sia ABCD un rettangolo con AB > BC e sia ω la sua circonferenza circoscritta. Siano E e F rispettivamente le intersezioni (distinte da A) della bisettrice dell'angolo BAD con il lato CD e la circonferenza ω . La perpendicolare a DF passante per E interseca la corda DF in G e l'arco DF non contenente C nel punto H. Si dimostri che:

- i segmenti DF e F B hanno la stessa lunghezza;
- i triangoli DEG e DHG sono congruenti;
- i segmenti HF e F C sono uquali.

1.4 Quadrilateri inscritti

Problema 5 (Febbraio 16, 2015) Sia ABCD un quadrilatero convesso tale che AB = AC = AD e BC < CD. La bisettrice dell'angolo BAD interseca internamente CD in M e il prolungamento di BC in N. Dimostrare che

- il quadrilatero ABCM 'e inscrittibile in una circonferenza;
- i triangoli ANB e ABM sono simili.

Problema 6 (Febbraio 15, 2021) Sia ABCD un rettangolo e sia E un punto arbitrario, diverso da C, sul lato DC. Sia H la proiezione di E sulla diagonale AC e sia K la proiezione di C sulla semiretta AE.

- Dimostrare che K giace sulla circonferenza circoscritta ad ABCD e che il quadrilatero CKEH è ciclico, cioè inscrivibile in una circonferenza.
- Dimostrare che angolo $CKB + angolo CKH = 90^{\circ}$
- Dimostrare che K, H, B sono allineati se e solo se ABCD è un quadrato

1.5 Similitudini

Problema 7 (Febbraio 16, 2011) Sia ABC un triangolo acutangolo, e siano D, E i piedi delle altezze uscenti da A, B. Siano A_0 il punto medio di AD, B_0 il punto medio di BE. CA_0 interseca BE in X, CB_0 interseca AD in Y. Dimostrare che esiste una circonferenza passante per i punti A_0 , B_0 , X, Y.

2 Esercizi

Esercizio 1 (Febbraio 15,2023) Sia ABCD un trapezio isoscele di base maggiore AB tale che la bisettrice dell'angolo in D passi per B. Supponiamo che la bisettrice dell'angolo in A intersechi il lato BC nel punto P. Dimostrare che AB = AP se e solo se la bisettrice dell'angolo PAD passa per C.

Esercizio 2 (Febbraio 16, 2019) Sia ABC un triangolo isoscele su base BC e siano D, E punti sui lati AB, BC rispettivamente, tali che che le rette DE e AC risultino parallele. Si consideri inoltre il punto F sulla retta DE che si trova dalla parte opposta di D rispetto ad E ed 'e tale che F E sia congruente ad AD. Detto O il circocentro del triangolo BDE, dimostrare che i punti O, F, A, D giacciono su una circonferenza

Esercizio 3 (Febbraio 17,2020) Sia ABC un triangolo scaleno con BC > CA > AB. Siano ω e γ le circonferenze passanti per A di centro, rispettivamente, B e C. Esse intersecano il segmento BC in M e N, rispettivamente. Costruiamo Z come il simmetrico di A rispetto al punto medio di MN.

- Chiamata P l'intersezione di ZM con AC, mostrare che CPM è isoscele.
- Detta X l'intersezione di ZM con ω distinta da M, mostrare che BX e AC sono parallele.
- Detta Y l'intersezione di ZN con γ distinta da N, mostrare che A, X e Y sono allineati.