Proteins

Saturday, 7 April 2018 12:34 pm

Proteins do "things"

- There are 4 main classes of proteins
 - Catalysis
 - Transport
 - o Structural
 - Motor

Peptides form when the COOH bonds with the NH₂ in a condensation reaction

• These form amine bonds or "peptide bonds"

• Number of possible structures - 20^n structures where n = length of the peptide

Construction of Peptides

- 1. DNA is transcribed to mRNA (template for the peptide chain)
- 2. mRNA is fed through the ribosome (rRNA)
- 3. tRNA carries AA to bind to form the polypeptide
- 4. tRNA is released

Structure of Proteins

- Proteins have specific 3D structures
- The structure specifies the function
- There are up to 4 levels of structure
- The structure is held together by four types of interaction forces
 - Hydrophobic Effect Hydrophobic regions group together forcing out H₂O. These regions take energy to separate
 - \circ H Bonds Polar groups bind together when their dipoles interact. NH_3^+ and COO^- groups interact to form secondary structures
 - London Dispersion Forces Medium to weak range interaction between all matter as spontaneous dipoles exist from quantum uncertainty.
 - o Electrostatic Interactions Long range, strong interaction between acidic and basic R-groups

The Layers of Structure

- 1. Primary The sequence of amino acids
- 2. Secondary Backbone interactions of amino acids forming bulk H Bonds (α helicies and β sheets
- 3. Tertiary Protein folding, interaction between R-Groups
- 4. Quaternary Multiple proteins, organic compounds and inorganic compounds binding together to form the final structure

. . .

4. Quaternary - Multiple proteins, organic compounds and inorganic compounds binding together to form the final structure

Primary Structure

- · Not particularly reactive
- · Planar structure within the peptide bond
- Rigid
- Large dipole moment

Secondary Structure

Common α Helix

- Right handed helix (Rotates clockwise from the NH_3^+ terminus)
- · Stabilised by H bonds between nearby residues
- Form from residues 4 AA apart in primary structure
- Peptide bonds are parallel to the helix

Features

- Structure is too small for pretty much anything to fit inside of
- Outer dimensions of α helix are the same as the major groove of DNA
- It's possible to have properties on one side of the helix and not the other (e.g. hydrophobic on one side)
- Typically formed from small hydrophobic residues
- Proline and glycine break an α helix
- Attractive or repulsive forces 3-4 residues part also break the α helix

Common β sheets

- H bonds between distant (primary) residues
- ullet Formed by the combination of tetrahedral lpha carbon and planar peptide bonds
- R-groups stick up and down alternating per amino acid
- Multiple β sheets can H bond with each other
 - o Can be parallel or antiparallel
 - o Antiparallel have shorter H bonds and are therefore a stronger structure

- β turns occur when β sheets do a 180° turn, requires one of two AA to occur
 - o Proline forces the bend because of its shape
 - o Glycine allows it to bend because of it's small functional group
- Takes 4 AA to form a turn, AA 2 or 3 in that sequence must be Pro or Gly

Tertiary Structure

- The overall spacial arrangement between individual polypeptides
- · Stabilised by many interactions
 - Hydrophobic interactions
 - $\circ \quad \hbox{Disulphide bonds between cysteine}$
 - These residues can be far apart in the primary structure
- Two major classes of tertiary structure
 - Fibrous water soluble
 - o Globular lipid soluble

Motifs

- Secondary structure interactions that create complex tertiary structures
- They form globular proteins

E.g. β - α - β loop

 α - α corner

Quaternary Structure

• Multiple proteins, organic compounds and inorganic compounds binding together to form the final structure

Protein Modification

- Cofactors (non AA molecules) can be added to the quaternary structure
- Often inorganic, particularly metals
- Coenzymes organic cofactors
- Prosthetic groups covalently attached cofactors

Analysis

- Proteins can be separated for analysis based on
 - o Charge
 - Size
 - o Affinity for ligands
 - o Solubility
 - o Hydrophobicity
- Proteins can be sequenced using mass spectrometry
 - o Involves breaking up the molecule and measuring it's constituent parts