Bilgisayar Mühendisliğine Giriş Dersi Final sorusu(2014)

PC = 0 durumunda makine çalışmaya başladığına göre,

address content address content

00	25	07	00
01	03	08	34
02	A5	09	04
03	02	0A	B0
04	35	0B	03
05	03	0C	C0
06	24	0D	00

R5) saklayıcısının içeriğini X) bit kadar kadar ROTATE et

R5 saklayıcısının içeriği '03' bu içeriğin ikili karşılığını bulup ROTATE işlemi uyguluyoruz,

1. adim
$$\rightarrow$$
 1000 000 1

2. adim \rightarrow 1100 0000

R5 saklayıcısının içeriğini ROTATE ettikten sonra sonucu tekrar (1100 0000) → (C0) 16'lık sayı karşılığını R5 saklayıcısına yüklüyoruz.

3 5 03 PC = 02

R5) saklayıcısının içeriğini (XY) adresine depola(STORE).

M(03) ← R5 // 03 bellek gözüne R5 saklayıcısının içeriğini depoluyoruz yani 03 adresinin yeni içeriği C0.

2 4 00 PC = 03

(R4) ← '00' //R4 saklayıcısına(XY)'ni yükle.

3 4 04 PC = 04

R4) saklayıcısının içeriğini (XY) adresine depola(STORE).

NOT: PC=02 adımından sonra **'03'** adresinin yeni içeriği **C0,** PC=04 adımından sonra **'04'** adresinin yeni içeriği ise **'00'** olarak değişir.

PC = 04 //makine bu adımda bir işlem yapmıyor

R0 saklayıcısının içeriği, **R0**(**B** Op-Code şartı gereği) saklayıcısına eşit ise XY adresine git değil ise bu adımı atla(JUMP).

//R0 Saklayıcımız olmadığından dolayı makine bu adımı atlayacaktır(JUMP)

C 0 0 0 PC = 05 //makine durdu

HALT, yani durdur komutu

A. Makine durduğunda R5=? ____C0

B. Makine durduğunda PC=? ___05

C. Makine durduğunda M(04)=?___00 //PC=03 adımında gercekleşmiş