

SF1624 Algebra och geometri Tentamen fredag, 20 oktober 2017

Skrivtid: 08:00-11:00 Tillåtna hjälpmedel: inga

Examinator: Tilman Bauer

Tentamen består av sex uppgifter som vardera ger maximalt sex poäng.

Del A på tentamen utgörs av de två första uppgifterna. Till antalet erhållna poäng från del A adderas dina bonuspoäng. Poängsumman på del A kan dock som högst bli 12 poäng. Bonuspoängen beräknas automatiskt. Antal bonuspoäng framgår från resultatsidan.

De två följande uppgifterna utgör del B och de två sista uppgifterna del C, som främst är till för de högre betygen.

Betygsgränserna vid tentamen kommer att ges av

Betyg	A	В	C	D	E	Fx
Total poäng	27	24	21	18	16	15
varav från del C	6	3	_	_	_	_

För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt att följa. Det innebär speciellt att införda beteckningar ska definieras, att den logiska strukturen tydligt beskrivs i ord eller symboler och att resonemangen är väl motiverade och tydligt förklarade. Lösningar som allvarligt brister i dessa avseenden bedöms med högst tre poäng.

DEL A

1. Betrakta det homogena linjära ekvationssystemet $A\vec{x}=\vec{0}$, där

$$A = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 2 & 1 & 1 & 2 \\ 4 & -1 & 1 & k \end{bmatrix}$$

där k är en konstant.

(a) Lös ekvationssystemet då k = 3. (3 p)

- (b) Bestäm värdet på konstanten k så att lösningsmängden till $A\vec{x} = \vec{0}$ blir ett två-dimensionellt delrum av \mathbb{R}^4 och bestäm sedan en bas för detta delrum. (3 **p**)
- **2.** Matrisen A har egenvärdena -1 och 2 med motsvarande egenvektorer $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ och $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$.

(b) Bestäm A.

3. Låt

$$\mathcal{E} = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$$

vara standardbasen för \mathbb{R}^2 och låt

$$\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \end{bmatrix} \right\}.$$

(a) Visa att \mathcal{B} är en bas för \mathbb{R}^2 . (1 p)

(b) Bestäm koordinatvektorn
$$[\vec{v}]_{\mathcal{B}}$$
 för vektorn $\vec{v} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$. (2 p)

(c) Bestäm matriser M och N sådana att

$$[\vec{x}]_{\mathcal{E}} = M [\vec{x}]_{\mathcal{B}} \quad \text{och} \quad [\vec{x}]_{\mathcal{B}} = N [\vec{x}]_{\mathcal{E}}$$
 för alla vektorer \vec{x} i \mathbb{R}^2 . (3 p)

4. Låt

$$A = \begin{bmatrix} -2 & 0 \\ 1 & 1 \\ 1 & -1 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

(a) Bestäm alla vektorer som ligger i båda $\operatorname{Col}(A)$ och $\operatorname{Col}(B)$. Förklara varför alla vektorer som ligger i båda $\operatorname{Col}(A)$ och $\operatorname{Col}(B)$ bildar ett delrum i \mathbb{R}^3 och beräkna dess dimension.

(4 p)

(b) Bestäm en vektor i Col(A) som inte ligger i Col(B).

(2 p)

DEL C

- **5.** Visa att sammansättningen av två speglingar i olika linjer genom origo i \mathbb{R}^2 är en rotation kring origo. (6 p)
- **6.** Låt V vara vektorrummet av alla 2×2 -matriser och $f \colon V \to V$ den linjära avbildning som ges av

$$f(M) = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} M.$$

Välj en godtycklig bas \mathcal{B} till V. Låt A vara matrisen $[f]_{\mathcal{B}}$ till f med avseende på basen \mathcal{B} . Beräkna determinanten av A. OBS: det är inte determinanten till $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ som sökes! (6 p)