COEN 317: Distributed Systems

Spring 2020
Homework Assignment 3
Due: Tuesday, 6/2/2020 @11:59pm

- 1) In a certain system, each process typically uses a critical section many times before another process requires it. Explain why Ricart and Agrawala's mutual exclusion algorithm is inefficient for this case, and describe how to improve its performance.
- 2) In the Bully algorithm, a recovering process starts an election and will become the new coordinator if it has a higher identifier than the current incumbent. Is this a necessary feature of the algorithm?
- 3) A distributed system may have multiple, independent critical regions. Imagine that process 0 wants to enter critical region A and process 1 wants to enter critical region B. Can Ricart and Agrawala's algorithm lead to deadlocks? Explain your answer.
- 4) Consider a deadlock detection scheme for a single server. Describe precisely when edges are added to and removed from the wait-for-graph. Illustrate your answer with respect to the following transactions T, U and V at the server:

T	U	V
	Write(i, 66)	
Write(i, 55)		
		Write(i, 77)
	Commit	

When U releases its write lock on a_i, both T and V are waiting to obtain write locks on it. Does your scheme work correctly if T (first come) is granted the lock before V? If your answer is 'No', then modify your description.

5) The transactions T and U at the server are defined as follows:

T: x := Read(i); Write(j, 44);

U: Write(i, 55); Write(j, 66);

(a) T

Initial values of a_i and a_i are 10 and 20. Which of the following interleavings are serially equivalent and which could occur with two-phase locking?

(b) T

U

(4)		~	(0)	-	•
	x := Read(i);			x := Read(i);	
		Write(i, 55);		Write(j, 44);	
	Write(j, 44);				Write(i, 55);
		Write(j, 66);			Write(j, 66);
(c)	T	U	(d)	T	U
		Write(i, 55);			Write(i, 55);
		Write(j, 66);		x := Read(i);	
	x := Read(i);				Write(j, 66);
	Write(j, 44);			Write(j, 44);	
		-	•		