Process Automation Laboratory - Anti windup

Kjartan Halvorsen

2020-09-21

Two -tank model

Feedback control

The PID - practical form

The parameter N is chosen to limit the influence of noisy measurements. Typically,

The PID - practical aspects

Äström & Hägglund (1988) PID controllers: Theory, design and tuning, 2nd ed Instrument Society of America.

Approximating nonlinear systems with linear models

- Model is accurate only in neighborhood of operating point for which system is approximated.
- Solution: Divide operating range into many regions, with separate PID parameters for each region

Approximating high-order systems with low-order models

- Only accurate for low frequencies
- ▶ Beware of behavior for high-frequency input to the closed-loop system

The PID - practical aspects, contd

When do PID controllers work well?

- ▶ The plant dynamics can be well approximated with low-order model
- Demands on performance not too high

More sophisticated control needed when

- ► Higher order dynamics
- Oscillatory modes
- Long deadtime

The PID - practical aspects, contd

Choice of controller

- 1. P-controller if damping and steady-state error satisfied
- 2. PI-controller if steady-state error must be zero (often 1st order dynamics)
- 3. PID-controller if PI does not give sufficient damping (often 2nd order dynamics)
- 4. Tuning parameter τ_c for SIMC tuning method:
 - ightharpoonup Smaller (=faster) than au if sufficiently damped and limitations on input signal not violated.
 - ▶ larger (=slower) than τ if more damping required or smaller input signal required.

The PID - Parallel form, solution

$$u(t) = k_c \left(e(t) + \underbrace{\frac{1}{\tau_i} \int_0^t e(\xi) d\xi}_{u_D(t)} + \underbrace{\tau_d \frac{d}{dt} (-y(t))}_{u_D(t)} \right)$$

The PID - Integral signal

Activity Sketch the error signal e(t) and the integral signal $u_i(t)$ (use $\tau_i = 1$)

The PID - Integral signal - Solution

Integral windup

Video by Tomás Alejandro Lugo Salinas (MTY)

Anti-windup using back-calculation

