Introduction To Lighting

(SENG 463 - Game Programming)

Dr.Çağatay ÜNDEĞER

Research and Innovation Director SimBT Inc.

e-mail:

cagatay.undeger@simbt.com.tr cagatay@undeger.com

Outline

- Direct & Indirect Lighting
- Global Illumination
- Baking
- Progressive Lightmapper
- Light Types
- Phong Illumination Model

2

Lighting

 Eye see objects by sensing rays of light directly comming from lights or reflected from objects

Lighting

- Every time a light hits an object,
- it is modified depending on the properties of object material

Direct & Indirect Lighting

- Direct lighting occurs if light is reflected from a surface once before reach the eyes
- Indirect lighting occurs if light is reflected from multiple surfaces before reach the eyes

Global Illumination

The more indirect bouncing the more realistic

Baking

• Preprocess and calculate all the lighting into a large texture. In run-time use the texture.

Baking

Overlap lightmap texture on top of objects

Progressive Lightmapper

- If you cannot use baked static light maps
 - You can use progressive lightmapper
- It is a path tracing base light mapper and
- It will realistically simulate light bouncing in the scene
- It actually uses baked lightmaps again, but maps are updated progressively and refined in time.
- It will take time to make the scene look good

Progressive Lightmapper

See for details https://youtu.be/VnG2gOKV9dw
https://youtu.be/foMZJrwRGr0

Light Types

- Point
- Directional
- Spot
- Area (For baked lightmaps only)

Point Lights

- A Point Light is located at a point in space
- Sends light out in all directions equally.
- The direction of light hitting a surface is the line from the point of contact back to the center of the light object.
- The intensity diminishes with distance from the light, reaching zero at a specified range.

 Light intensity is inversely proportional to the square of the distance from the source.

Directional Lights

- Usefull for creating effects such as sunlight in your scenes.
- Behaving in many ways like the sun
- Directional lights can be thought of as distant light sources which exist infinitely far away.
- A Directional Light doesn't have any identifiable source position
 - The light object can be placed anywhere in the scene.
- All objects in the scene are illuminated as if the light is always from the same direction.
- The distance of the light from the target object isn't defined and so the light doesn't diminish.

Spot Lights

- Like a Point Light, a Spot Light has a specified location and range over which the light falls off.
- A Spot Light is constrained to an angle, resulting in a cone-shaped region of illumination.
- The center of the cone points in the forward (Z) direction of the light object.
- Light also diminishes at the edges of a Spot Light's cone.
- Widening the angle increases the width of the cone and with it increases the size of this fade.

Area Lights

- Define an Area Light by one of two shapes in space: a rectangle or a disc.
- An Area Light emits light from one side of that shape.
- Emitted light spreads uniformly in all directions across that shape's surface area.
- The Range property determines the size of that shape.
- The intensity of the illumination provided by an Area Light diminishes at a rate determined by the inverse square of the distance from the light source
- Only of baked lighting

Basic Illumination Model

- Basic illumination model used in computer graphics for lighting computations is Phong Illumination Model.
- It has 3 components:
 - Diffuse Reflection
 - Specular Reflection
 - Ambient light

Diffuse lighting

Specular lighting

Basic (Phong) Illumination Model

- Three terms linearly combined:
 - Diffuse component for the amount of incoming light reflected equally in all directions
 - Specular component for the amount of light reflected in a mirror-like fashion
 - Ambient term to approximate light arriving via other surfaces

Ambient Light

- Reflected light from the environment and the nearby objects cause other objects to illuminate
- Also called background light
- Constant color reflected from all points on the surface.
- Tells us how bright the surface will look like when no light source can directly reach the surface
- When used alone, does not produce very interesting pictures

Ambient lighting only

Modeling Ambient Light

- We can use an ambient intensity parameter I_a that describes the level of ambient light in a scene.
- Every object in the scene will be illuminated by this amount independent of the surface orientation and viewer location.
- But different surfaces may reflect different amount of ambient light based on their absorbance/reflectance properties. We can model this by a constant factor for each surface:

- The light that is reflected in all directions is called diffuse reflection.
- The reflected light is independent of the viewing position (equally bright from all viewing directions)
- But the light position with respect to the surface orientation is important to determine the light reflected from the surface.
- When an object is illuminated with white light the original color of the object is what we see as the diffuse reflection.
- If a blue object is illuminated with red light, it will appear black.

Modeling Diffuse Reflection

 Orientation of the surface determines the amount of light incident on the surface

Given the angle θ between the surface normal and the incident light direction, we can write the diffuse reflection equation as:

$$I_{1,diff} = k_d I_{1,incident}$$
$$= k_d I_1 \cos \theta$$

Ambient Light vs. Diffuse Reflection

Ambient lighting only

With diffuse lighting

Specular reflection

- Light reflected from a certain spot on the object is concentrated and appears as a lot brighter compared to other spots. This is due to specular reflection and is an important property of shiny objects.
- Specular reflection is both dependent on the light direction, surface orientation, and viewer position

Modeling Specular Reflection

Let us try to picture specular reflection

- The specular reflection angle equals angle of incidence
- The specular reflection is visible only at directions close to \mathbf{R} . Shiny surfaces like mirrors have a narrow specular reflection range (given as parameter n_s , specular-reflection exponent.)

Specular Reflection In Phong Lighting

• The most common lighting model in computer graphics:

$$I_{specular} = k_s I_{light} (\cos \phi)^{n_{shiny}}$$

- The n_{shiny} term is a purely empirical constant that varies the rate of falloff
- Though this model has no physical basis, it works (sort of) in practice

The Shininess Coefficient n_s

- Values between 100 and 200 correspond to metals
- Values between 5 and 10 give surface that look like plastic

Diffuse vs. Specular Reflection

Diffuse Reflection

Diffuse and Specular Reflection