Sparse Learning for Noisy Data/Labels:

A Simple yet Effective Framework for Vision Applications

Yikai Wang yikai-wang.github.io

Yanwei Fu http://yanweifu.github.io

School of Data Science Fudan University

Sparse Learning for Noise Data Detection

Examples of Noisy Data/Outliers

Outliers are the irregular data compared with the majority of the dataset.

Figures from

[1] towardsdatascience.com/this-article-is-about-identifying-outliers-through-funnel-plots-using-the-microsoft-power-bi-d7ad16ac9ccc

[2] en.wikipedia.org/wiki/Outlier#/media/File:Standard_deviation_diagram_micro.svg

[3] medium.com/analytics-vidhya/its-all-about-outliers-cbe172aa1309

Noisy Data in Label Space

Random Corruptions

Annotator mistakes

Noisy search engine results

Shogun: Total War - IGN ign.com

Aug 21, 1192 CE: First S... nationalgeographic.org

Baal Ascension Materials: What To Farm For G... forbes.com

Complex/Confusing items identified

Identify Noisy Data in Label Space

Noisy One-hot Labels Deep Features
$$Y = X\beta$$

$$Y \in \mathbb{R}^{n \times c} \quad X \in \mathbb{R}^{n \times d} \quad \beta \in \mathbb{R}^{d \times c}$$

$$\beta \text{ is sensitive to noisy data!}$$

Approximated Linear Assumption in Networks

Identify Noisy Data in Label Space: The Indicator

Linear system
$$Y=X\beta+\gamma$$
 with Noisy Data/Labels

$$y = x^{\top} \beta + \varepsilon + \gamma$$

 γ_i equals to the residual predict error $\gamma_i = y_i - x_i^{\top} \hat{\beta}$

Row residuals fail to detect outliers at leverage points.

$$y = x^{\top} \beta + \varepsilon + \gamma$$

 γ_i equals to the residual predict error $\gamma_i = y_i - x_i^{\top} \hat{\beta}$

Leave-one-out externally studentized residual:

$$t_i = \frac{y_i - \boldsymbol{x}_i^{\top} \hat{\beta}_{(i)}}{\hat{\sigma}_{(i)} (1 + \boldsymbol{x}_i (\boldsymbol{X}_{(i)}^{\top} \boldsymbol{X}_{(i)})^{-1} \boldsymbol{x}_i)^{1/2}}$$

 \Leftrightarrow test whether $\gamma = 0$ in $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \gamma \mathbf{1}_i + \boldsymbol{\varepsilon}$.

$$y = x^{\top} \beta + \varepsilon + \gamma$$

 γ_i equals to the residual predict error $\gamma_i = y_i - x_i^{\top} \hat{\beta}$

Leave-one-out externally studentized residual:

$$t_i = rac{y_i - m{x}_i^{ op} \hat{eta}_{(i)}}{\hat{\sigma}_{(i)} (1 + m{x}_i (m{X}_{(i)}^{ op} m{X}_{(i)})^{-1} m{x}_i)^{1/2}}$$

 \Leftrightarrow test whether $\gamma = 0$ in $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \gamma \mathbf{1}_i + \boldsymbol{\varepsilon}$.

When there are multiple outliers:

- 1. masking: multiple outliers may mask each other and being undetected;
- 2. swamping: multiple outliers may lead the large t_i for clean data.

$$y = x^{\top} \beta + \varepsilon + \gamma$$

 γ_i equals to the residual predict error $\gamma_i = y_i - x_i^{\top} \hat{\beta}$

Leave-one-out externally studentized residual:

$$t_i = rac{y_i - m{x}_i^{ op} \hat{eta}_{(i)}}{\hat{\sigma}_{(i)} (1 + m{x}_i (m{X}_{(i)}^{ op} m{X}_{(i)})^{-1} m{x}_i)^{1/2}}$$

 \Leftrightarrow test whether $\gamma = 0$ in $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \gamma \mathbf{1}_i + \boldsymbol{\varepsilon}$.

$$oldsymbol{y} = oldsymbol{X}eta + oldsymbol{\epsilon} + oldsymbol{\gamma}$$

Identify Noisy Data in the Dataset

$$y_i = x_i^{\top} \beta + \varepsilon + \gamma_i \qquad \qquad \qquad \hat{\gamma}_i \qquad \qquad O = \{i : \hat{\gamma}_i \neq 0\}$$

$$\underset{\boldsymbol{\beta},\boldsymbol{\gamma}}{\operatorname{argmin}} L\left(\boldsymbol{\beta},\boldsymbol{\gamma}\right) \coloneqq \|\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{\gamma}\|_{F}^{2} + \lambda R\left(\boldsymbol{\gamma}\right)$$

Simplification

$$\underset{\boldsymbol{\beta}, \boldsymbol{\gamma}}{\operatorname{argmin}} L \left(\boldsymbol{\beta}, \boldsymbol{\gamma} \right) \coloneqq \left\| \boldsymbol{Y} - \boldsymbol{X} \boldsymbol{\beta} - \boldsymbol{\gamma} \right\|_{\mathrm{F}}^{2} + \lambda R \left(\boldsymbol{\gamma} \right)$$

$$\frac{\partial L}{\partial \beta} = 0 \quad \middle| \quad \hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top} \boldsymbol{X})^{\dagger} \boldsymbol{X}^{\top} (\boldsymbol{Y} - \boldsymbol{\gamma})$$

$$\operatorname{argmin} \left\| \boldsymbol{Y} - \boldsymbol{X} \left(\boldsymbol{X}^{\top} \boldsymbol{X} \right)^{\dagger} \boldsymbol{X}^{\top} (\boldsymbol{Y} - \boldsymbol{\gamma}) - \boldsymbol{\gamma} \right\|_{\mathrm{F}}^{2} + \lambda R \left(\boldsymbol{\gamma} \right)$$

$$H = \boldsymbol{X} \left(\boldsymbol{X}^{\top} \boldsymbol{X} \right)^{\dagger} \boldsymbol{X}^{\top} \quad \middle| \quad \tilde{\boldsymbol{X}} = \boldsymbol{I} - \boldsymbol{H}, \tilde{\boldsymbol{Y}} = \tilde{\boldsymbol{X}} \boldsymbol{Y}$$

$$\operatorname{argmin} \left\| \tilde{\boldsymbol{Y}} - \tilde{\boldsymbol{X}} \boldsymbol{\gamma} \right\|_{\mathrm{F}}^{2} + \lambda R \left(\boldsymbol{\gamma} \right)$$

A linear regression problem!

Wang et al. Instance Credibility Inference for Few-Shot Learning. CVPR 2020

Wang et al. How to Trust Unlabeled Data? Instance Credibility Inference for Few-Shot Learning. IEEE TPAMI 2021.

Wang et al. Scalable Penalized Regression for Noise Detection in Learning with Noisy Labels. CVPR 2022.

Solving Gamma in Linear Regression

$$\underset{\boldsymbol{\gamma}}{\operatorname{argmin}} \left\| \tilde{\boldsymbol{Y}} - \tilde{\boldsymbol{X}} \boldsymbol{\gamma} \right\|_{\mathrm{F}}^{2} + \lambda R \left(\boldsymbol{\gamma} \right)$$

How to select λ ?

We regard $\hat{\gamma} = f(\lambda)$.

- heuristics rules $\lambda = 2.5\hat{\sigma}$?
 - ricaristics raics $\pi = 2.50$.
- Cross-validation?
- Data adaptive techniques?
- AIC, BIC?

It is hard to select a proper λ .

When
$$\lambda \to \infty$$
, $\hat{\gamma} \to 0$.

With
$$R(\gamma) = \sum_{i=1}^{n} ||\gamma_i||_2$$
, γ vanishes instance by instance.

$$C_i = \sup\{\lambda : \|\hat{\gamma}_i(\lambda)\| \neq 0\}$$

This can be sovled by GLMnet[1].

Solving Gamma in Linear Regression

$$\underset{\boldsymbol{\gamma}}{\operatorname{argmin}} \left\| \tilde{\boldsymbol{Y}} - \tilde{\boldsymbol{X}} \boldsymbol{\gamma} \right\|_{\mathrm{F}}^{2} + \lambda R \left(\boldsymbol{\gamma} \right)$$

When
$$\lambda \to \infty$$
, $\hat{\gamma} \to 0$.

With
$$R(\gamma) = \sum_{i=1}^{n} ||\gamma_i||_2$$
, γ vanishes instance by instance.

$$C_i = \sup\{\lambda : \|\hat{\gamma}_i(\lambda)\| \neq 0\}$$

This can be sovled by GLMnet[1].

Instance Credibility Inference

$$\underset{\boldsymbol{\beta}, \boldsymbol{\gamma}}{\operatorname{argmin}} L\left(\boldsymbol{\beta}, \boldsymbol{\gamma}\right) \coloneqq \left\|\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{\gamma}\right\|_{\mathrm{F}}^{2} + \lambda R\left(\boldsymbol{\gamma}\right)$$

$$\underset{\boldsymbol{\gamma}}{\operatorname{argmin}} \left\|\tilde{\boldsymbol{Y}} - \tilde{\boldsymbol{X}}\boldsymbol{\gamma}\right\|_{\mathrm{F}}^{2} + \lambda R\left(\boldsymbol{\gamma}\right)$$

$$C_i = \sup\{\lambda : \|\hat{\gamma}_i(\lambda)\| \neq 0\}$$

Wang et al. Instance Credibility Inference for Few-Shot Learning. CVPR 2020

Wang et al. How to Trust Unlabeled Data? Instance Credibility Inference for Few-Shot Learning. IEEE TPAMI 2021.

Wang et al. Scalable Penalized Regression for Noise Detection in Learning with Noisy Labels. CVPR 2022.

Noise Set Recovery

When will the model identify all the outliers?

Assume ε is i.i.d zero-mean sub-Gaussian noise. We give three conditions:

• (C1: Restricted eigenvalue)

$$\lambda_{\min} \left(\tilde{\boldsymbol{U}}_{S}^{\top} \tilde{\boldsymbol{U}}_{S} \right) = C_{\min} > 0.$$

• (C2: Irrepresentability) $\exists \eta \in (0,1]$,

$$\left\| ilde{m{U}}_{S^c}^ op ilde{m{U}}_S \left(ilde{m{U}}_S^ op ilde{m{U}}_S
ight)^{-1}
ight\|_{\infty} \leq 1 - \eta.$$

• (C3: Large error)

$$\vec{\gamma}_{\min} \coloneqq \min_{i \in S} |\vec{\gamma}^*| > h\left(\lambda, \eta, \tilde{U}, \vec{\gamma}^*\right).$$

A non-asymptotic probabilistic result

Based on these conditions, we could provide the following theorem:

Theorem 1 (Identifiability of ICI). Let $\lambda \geq \frac{2\sigma\sqrt{\mu_{\tilde{U}}}}{\eta}\sqrt{\log cn}$. Then with probability greater than $1-2(cn)^{-1}$, the problem has a unique solution $\hat{\gamma}$ satisfies the following properties:

1) If C1 and C2 hold, the wrong-predicted instances indicated by ICI has no false positive error, i.e., $\hat{S} \subseteq S$ and hence $\hat{O} \subseteq O$, and

$$\left\|\hat{\vec{\gamma}}_S - \vec{\gamma}_S^*\right\|_{\infty} \le h\left(\lambda, \eta, \tilde{U}, \tilde{\gamma}^*\right);$$

2) If C1, C2, and C3 hold, ICI will identify all the correctly-predicted instance, i.e., $\hat{S} = S$ and hence $\hat{O} = O$ (in fact sign $(\hat{\vec{\gamma}}) = \text{sign}(\vec{\gamma}^*)$).

Identifiability in reality: sub-Gaussian noise

$$\mathbb{E}\left[\hat{\varepsilon}\right] \approx 10^{-19}$$

$$\operatorname{Var}\left[\hat{\varepsilon}\right] \approx 0.99$$

Sparse Learning in Few-Shot Learning

Definition of Few-Shot Learning

Tackle machine learning problem with only limited training data provided.

Motivation

Wang et al. How to Trust Unlabeled Data? Instance Credibility Inference for Few-Shot Learning. IEEE TPAMI 2021

Framework

Sparse Learning in ICI

$$y_i = x_i^{\top} \beta + \varepsilon + \gamma_i$$

$$\underset{\boldsymbol{\beta},\boldsymbol{\gamma}}{\operatorname{argmin}} L\left(\boldsymbol{\beta},\boldsymbol{\gamma}\right) \coloneqq \left\|\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{\gamma}\right\|_{\mathrm{F}}^{2} + \lambda R\left(\boldsymbol{\gamma}\right)$$

$$\underset{\boldsymbol{\gamma}}{\operatorname{argmin}} \left\| \tilde{\boldsymbol{Y}} - \tilde{\boldsymbol{X}} \boldsymbol{\gamma} \right\|_{\mathrm{F}}^{2} + \lambda R \left(\boldsymbol{\gamma} \right)$$

Sparse Learning: Extend to Logistic Regression

$$\underset{\boldsymbol{\beta}, \boldsymbol{\gamma}}{\operatorname{argmin}} L\left(\boldsymbol{\beta}, \boldsymbol{\gamma}\right) \coloneqq \left\|\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{\gamma}\right\|_{\mathrm{F}}^{2} + \lambda R\left(\boldsymbol{\gamma}\right) \qquad \qquad \boldsymbol{Y}_{i,c} = \frac{\exp\left(\boldsymbol{X}_{i,\cdot}\boldsymbol{\beta}_{\cdot,c} + \boldsymbol{\gamma}_{i,c}\right)}{\sum_{l=1}^{C} \exp\left(\boldsymbol{X}_{i,\cdot}\boldsymbol{\beta}_{\cdot,l} + \boldsymbol{\gamma}_{i,l}\right)} + \boldsymbol{\varepsilon}_{i,c}$$

$$\underset{\boldsymbol{\gamma}}{\operatorname{argmin}} \left\|\boldsymbol{Y} - \boldsymbol{X}\left(\boldsymbol{X}^{\top}\boldsymbol{X}\right)^{\dagger} \boldsymbol{X}^{\top} \left(\boldsymbol{Y} - \boldsymbol{\gamma}\right) - \boldsymbol{\gamma}\right\|_{\mathrm{F}}^{2} + \lambda R\left(\boldsymbol{\gamma}\right) \qquad \qquad \boldsymbol{\bar{X}} = \left(\boldsymbol{X}, \boldsymbol{I}\right) \qquad \boldsymbol{\bar{\beta}} = (\boldsymbol{\beta}, \boldsymbol{\gamma})^{\top}$$

$$\underset{\boldsymbol{\gamma}}{\operatorname{argmin}} \left\|\tilde{\boldsymbol{Y}} - \tilde{\boldsymbol{X}}\boldsymbol{\gamma}\right\|_{\mathrm{F}}^{2} + \lambda R\left(\boldsymbol{\gamma}\right) \qquad \qquad \boldsymbol{Y}_{i,c} = \frac{\exp\left(\boldsymbol{\bar{X}}_{i,\cdot}\boldsymbol{\bar{\beta}}_{\cdot,c}\right)}{\sum_{l=1}^{C} \exp\left(\boldsymbol{\bar{X}}_{i,\cdot}\boldsymbol{\bar{\beta}}_{\cdot,c}\right)} + \boldsymbol{\varepsilon}_{i,c}$$

$$oldsymbol{Y}_{i,c} = rac{\exp{(oldsymbol{X}_{i,.}oldsymbol{eta}_{.,c} + oldsymbol{\gamma_{i,c}})}}{\sum_{l=1}^{C}\exp{(oldsymbol{X}_{i,.}oldsymbol{eta}_{.,l} + oldsymbol{\gamma_{i,l}})}} + oldsymbol{arepsilon_{i,c}}$$
 $ar{oldsymbol{ar{x}}} = (oldsymbol{X}, oldsymbol{I})$ $ar{ar{eta}} = (oldsymbol{eta}, oldsymbol{\gamma})^{ op}$

$$oldsymbol{Y}_{i,c} = rac{\exp\left(oldsymbol{ar{X}}_{i,.}oldsymbol{ar{eta}}_{.,c}
ight)}{\sum_{l=1}^{C}\exp\left(oldsymbol{ar{X}}_{i,.}oldsymbol{ar{eta}}_{.,l}
ight)} + oldsymbol{arepsilon}_{i,c}$$

Identifiability in Reality: Conditions and Accuracy

Satisfied Assumptions	None	C1	C1 and C2	All
Improved Episodes Total Episodes I/T	0	$424 \\ 793 \\ 53.5\%$	$1035 \\ 1164 \\ 88.9\%$	$40 \\ 43 \\ 93.0\%$

1) In more than half of the experiments the assumptions C1-C2 are satisfied. Most of them (89.0%) will achieve better performance after self-taught with ICI.

Identifiability in Reality: Conditions and Accuracy

Satisfied Assumptions	None	C1	C1 and C2	All
Improved Episodes Total Episodes I/T	0	$424 \\ 793 \\ 53.5\%$	$1035 \\ 1164 \\ 88.9\%$	$40 \\ 43 \\ 93.0\%$

2) When all the assumptions are satisfied, we will get better performance in a high ratio (93.0%).

Identifiability in Reality: Conditions and Accuracy

Satisfied Assumptions	None	C1	C1 and C2	All
Improved Episodes Total Episodes I/T	0 0	$424 \\ 793 \\ 53.5\%$	$1035 \\ 1164 \\ 88.9\%$	$40 \\ 43 \\ 93.0\%$

3) Even if C2-C3 are not satisfied, we still have the chance of improving the performance (53.5%).

Sparse Learning

Definition of learning with noisy labels

Framework

Stage 1: Feature Learning

Stage 2: Sample Selection

Wang et al. Scalable Penalized Regression for Noise Detection in Learning with Noisy Labels. CVPR 2022.

Make it scalable to large datasets

Strategies to help train the network

• Append a $\ell_q(q < 1)$ penalty to encourage the linear relation between feature and one-hot encoded vector:

$$\mathcal{L}\left(oldsymbol{x}_{i},oldsymbol{y}_{i}
ight)=1_{i\notin O}\left(\mathcal{L}_{ ext{CE}}\left(oldsymbol{x}_{i},oldsymbol{y}_{i}
ight)+\lambda\left\|oldsymbol{x}_{i}^{ op}W_{ ext{fc}}
ight\|_{q}
ight)$$

• Use CutMix to further exploit the support of noisy data

$$\tilde{\boldsymbol{x}} = \boldsymbol{M} \odot \boldsymbol{x}_{\text{clean}} + (1 - \boldsymbol{M}) \odot \boldsymbol{x}_{\text{noisy}}$$

$$\tilde{\boldsymbol{y}} = \lambda \boldsymbol{y}_{\text{clean}} + (1 - \lambda) \boldsymbol{y}_{\text{noisy}}$$

Label precision performance

