CS561: Artificial Intelligence

Neural Networks: Perceptron and Backpropagation

Pushpak Bhattacharyya
CSE Dept.,
IIT Patna
From 02/09/19

AI Perspective (post-web)

Symbolic AI

Connectionist AI is contrasted with Symbolic AI

Symbolic AI - Physical Symbol System Hypothesis

Every intelligent system can be constructed by storing and processing symbols and nothing more is necessary.

Symbolic AI has a bearing on models of computation such as

Turing Machine Von Neumann Machine Lambda calculus

Turing Machine & Von Neumann Machine

Turing machine

VonNeumann Machine

Challenges to Symbolic AI

Motivation for challenging Symbolic AI A large number of computations and information process tasks that living beings are comfortable with, are not performed well by computers!

The Differences

Brain computation in living beings	TM computation in	
<u>computers</u>		
Pattern Recognition	Numerical Processing	
Learning oriented	Programming oriented	
Distributed & parallel processing	Centralized & serial	
processing		
Content addressable	Location addressable	

The human brain

Seat of consciousness and cognition

Perhaps the most complex information processing machine in nature

Higher brain (responsible for higher needs)

Maslow Hierarchy

Neuron - "classical"

Dendrites

- Receiving stations of neurons
- Don't generate action potentials

Cell body

 Site at which information received is integrated

Axon

- Generate and relay action potential
- Terminal
 - Relays information to next neuron in the pathway

http://www.educarer.com/images/brain-nerve-axon.jpg

Perceptron

The Perceptron Model

A perceptron is a computing element with input lines having associated weights and the cell having a threshold value. The perceptron model is motivated by the biological neuron.

Step function / Threshold function
y = 1 for
$$\Sigma w_i x_i$$
 >=0
=0 otherwise

Features of Perceptron

- Input output behavior is discontinuous and the derivative does not exist at $\Sigma w_i x_i = \theta$
- $\sum w_i x_i \theta$ is the net input denoted as net
- Referred to as a linear threshold element linearity because of x appearing with power 1
- y= f(net): Relation between y and net is nonlinear

Computation of Boolean functions

AND of 2 inputs

X1	x2	У
0	0	0
0	1	0
1	0	0
1	1	1

The parameter values (weights & thresholds) need to be found.

Computing parameter values

w1 * 0 + w2 * 0 <=
$$\theta$$
 → θ >= 0; since y=0
w1 * 0 + w2 * 1 <= θ → w2 <= θ ; since y=0
w1 * 1 + w2 * 0 <= θ → w1 <= θ ; since y=0
w1 * 1 + w2 * 1 > θ → w1 + w2 > θ ; since y=1
w1 = w2 = = 0.5

satisfy these inequalities and find parameters to be used for computing AND function.

Other Boolean functions

- OR can be computed using values of w1 = w2 =
 and = 0.5
- XOR function gives rise to the following inequalities:

$$w1 * 0 + w2 * 0 <= \theta \rightarrow \theta >= 0$$

 $w1 * 0 + w2 * 1 > \theta \rightarrow w2 > \theta$
 $w1 * 1 + w2 * 0 > \theta \rightarrow w1 > \theta$
 $w1 * 1 + w2 * 1 <= \theta \rightarrow w1 + w2 <= \theta$

No set of parameter values satisfy these inequalities.

Threshold functions

```
n # Boolean functions (2^2^n) #Threshold Functions (2<sup>n2</sup>)
1 4 4
2 16 14
3 256 128
4 64K 1008
```

- Functions computable by perceptrons threshold functions
- #TF becomes negligibly small for larger values of #BF.
- For n=2, all functions except XOR and XNOR are computable.

AND of 2 inputs

X1	x2	У
0	0	0
0	1	0
1	0	0
1	1	1

The parameter values (weights & thresholds) need to be found.

Constraints on w1, w2 and θ

w1 * 0 + w2 * 0 <=
$$\theta$$
 → θ >= 0; since y=0
w1 * 0 + w2 * 1 <= θ → w2 <= θ ; since y=0
w1 * 1 + w2 * 0 <= θ → w1 <= θ ; since y=0
w1 * 1 + w2 * 1 > θ → w1 + w2 > θ ; since y=1
w1 = w2 = = 0.5

These inequalities are satisfied by ONE particular region

Perceptron training

Perceptron Training Algorithm (PTA)

Preprocessing:

The computation law is modified to

$$y = 1$$
 if $\sum w_i x_i > \theta$

$$y = o \text{ if } \sum w_i x_i < \theta$$

PTA – preprocessing cont...

2. Absorb θ as a weight

3. Negate all the zero-class examples

Example to demonstrate preprocessing

OR perceptron

```
1-class <1,1>, <1,0>, <0,1>
0-class <0,0>
```

Augmented x vectors:-

Negate 0-class:- <1,0,0>

Example to demonstrate preprocessing cont..

Now the vectors are

```
X_0 X_1 X_2 X_1 X_2 X_3 X_4 X_5 X_6 X_6 X_6 X_6 X_6 X_7 X_8 X_8
```

Perceptron Training Algorithm

- Start with a random value of w ex: <0,0,0...>
- 2. Test for $wx_i > 0$ If the test succeeds for i=1,2,...nthen return w
- 3. Modify w, $w_{next} = w_{prev} + x_{fail}$

PTA on NAND

Preprocessing

NAND Augmented:

X2 X1 X0 Y

0 0 -1 1

0 1 -1 1

1 0 -1 1

1 1 -1 0

NAND-0 class Negated

 X_2 X_1 X_0

Vo: 0 0 -1

 V_1 : 0 1 -1

V2: 1 0 -1

V3: -1 -1 1

Vectors for which W=<W2 W1 W0> has to be found such that W. Vi > 0

PTA Algo steps

Algorithm:

1. Initialize and Keep adding the failed vectors until W. Vi > 0 is true.

Step 0: W =
$$<0, 0, 0>$$

W1 = $<0, 0, 0> + <0, 0, -1>$ {V0 Fails}
= $<0, 0, -1>$
W2 = $<0, 0, -1> + <-1, -1, 1>$ {V3 Fails}
= $<-1, -1, 0>$
W3 = $<-1, -1, 0> + <0, 0, -1>$ {V0 Fails}
= $<-1, -1, -1>$
W4 = $<-1, -1, -1> + <0, 1, -1>$ {V1 Fails}
= $<-1, 0, -2>$

Trying convergence

$$W5 = \langle -1, 0, -2 \rangle + \langle -1, -1, 1 \rangle$$
 {V3 Fails}
$$= \langle -2, -1, -1 \rangle$$

$$W6 = \langle -2, -1, -1 \rangle + \langle 0, 1, -1 \rangle$$
 {V1 Fails}
$$= \langle -2, 0, -2 \rangle$$

$$W7 = \langle -2, 0, -2 \rangle + \langle 1, 0, -1 \rangle$$
 {V0 Fails}
$$= \langle -1, 0, -3 \rangle$$

$$W8 = \langle -1, 0, -3 \rangle + \langle -1, -1, 1 \rangle$$
 {V3 Fails}
$$= \langle -2, -1, -2 \rangle$$

$$W9 = \langle -2, -1, -2 \rangle + \langle 1, 0, -1 \rangle$$
 {V2 Fails}
$$= \langle -1, -1, -3 \rangle$$

Trying convergence

W15 =
$$\langle -2, -1, -4 \rangle + \langle -1, -1, 1 \rangle$$
 {V3 Fails}
= $\langle -3, -2, -3 \rangle$
W16 = $\langle -3, -2, -3 \rangle + \langle 1, 0, -1 \rangle$ {V2 Fails}
= $\langle -2, -2, -4 \rangle$
W17 = $\langle -2, -2, -4 \rangle + \langle -1, -1, 1 \rangle$ {V3 Fails}
= $\langle -3, -3, -3 \rangle$
W18 = $\langle -3, -3, -3 \rangle + \langle 0, 1, -1 \rangle$ {V1 Fails}
= $\langle -3, -2, -4 \rangle$
W2 = $\langle -3, -2, -4 \rangle$

Succeeds for all vectors

PTA convergence

Statement of Convergence of PTA

Statement:

Whatever be the initial choice of weights and whatever be the vector chosen for testing, PTA converges if the vectors are from a linearly separable function.

Proof of Convergence of PTA

- Suppose w_n is the weight vector at the nth step of the algorithm.
- At the beginning, the weight vector is w₀
- Go from w_i to w_{i+1} when a vector X_j fails the test $w_i X_j > 0$ and update w_i as

$$W_{i+1} = W_i + X_j$$

 Since Xjs form a linearly separable function,

```
\exists w* s.t. w*X<sub>i</sub> > 0 \forallj
```

Proof of Convergence of PTA (cntd.)

Consider the expression

$$G(w_n) = \underline{w_n \cdot w^*}$$

$$| w_n |$$
where $w_n =$ weight at nth iteration

- $G(w_n) = |w_n| \cdot |w^*| \cdot \cos \theta$ $|w_n|$
 - where θ = angle between w_n and w^*
- $G(w_n) = |w^*| \cdot \cos \theta$
- $G(w_n) \le |w^*|$ (as $-1 \le \cos \theta \le 1$)

Behavior of Numerator of G

```
 \begin{aligned} w_n \cdot w^* &= \left(w_{n-1} + X^{n-1}_{fail}\right) \cdot w^* \\ &= W_{n-1} \cdot W^* + X^{n-1}_{fail} \cdot W^* \\ &= \left(W_{n-2} + X^{n-2}_{fail}\right) \cdot W^* + X^{n-1}_{fail} \cdot W^* \dots \\ &= W_0 \cdot W^* + \left(X^0_{fail} + X^1_{fail} + \dots + X^{n-1}_{fail}\right) \cdot W^* \\ &= W^* \cdot X^i_{fail} \text{ is always positive: note carefully}  \end{aligned}
```

- Suppose $|X_j| \ge \delta$, where δ is the minimum magnitude.
- Num of $G \ge |w_0 \cdot w^*| + n \delta \cdot |w^*|$
- So, numerator of G grows with n.

Behavior of Denominator of G

- $\begin{aligned} & | w_n | = \sqrt{w_n \cdot w_n} \\ & = \sqrt{(w_{n-1} + X^{n-1}_{fail})^2} \\ & = \sqrt{(w_{n-1})^2 + 2 \cdot w_{n-1} \cdot X^{n-1}_{fail} + (X^{n-1}_{fail})^2} \\ & \le \sqrt{(w_{n-1})^2 + (X^{n-1}_{fail})^2} \qquad (as \ w_{n-1} \cdot X^{n-1}_{fail} \\ & \le 0) \\ & \le \sqrt{(w_0)^2 + (X^0_{fail})^2 + (X^1_{fail})^2 +} + (X^{n-1}_{fail})^2 \end{aligned}$
- $|X_i| \le \rho$ (max magnitude)
- So, Denom $\leq \sqrt{(w_0)^2 + n\rho^2}$

Some Observations

- Numerator of G grows as n
- Denominator of G grows as √ n
 - => Numerator grows faster than denominator
- If PTA does not terminate, G(w_n) values will become unbounded.

Some Observations contd.

- But, as |G(w_n)| ≤ |w*| which is finite, this is impossible!
- Hence, PTA has to converge.
- Proof is due to Marvin Minsky.

Feedforward Network and Backpropagation

Example - XOR

Gradient Descent Technique

Let E be the error at the output layer

$$E = \frac{1}{2} \sum_{i=1}^{p} \sum_{i=1}^{n} (t_i - o_i)_j^2$$

- t_i = target output; o_i = observed output
- i is the index going over n neurons in the outermost layer
- j is the index going over the p patterns (1 to p)
- Ex: XOR:- p=4 and n=1

Weights in a FF NN

- w_{mn} is the weight of the connection from the nth neuron to the mth neuron
- E vs \overline{w} surface is a complex surface in the space defined by the weights w_{ii}
- $-\frac{\delta E}{\delta w_{m}}$ gives the direction in which a movement of the operating point in the w_{mn} coordinate space will result in maximum decrease in error

$$\Delta w_{mn} \propto -\frac{\delta E}{\delta w_{mn}}$$

Backpropagation algorithm

- Fully connected feed forward network
- Pure FF network (no jumping of connections over layers)

Gradient Descent Equations

$$\Delta w_{ji} = -\eta \frac{\delta E}{\delta w_{ji}} (\eta = \text{learning rate}, 0 \le \eta \le 1)$$

$$\delta E = \delta E = \delta net.$$

$$\frac{\delta E}{\delta w_{ji}} = \frac{\delta E}{\delta net_j} \times \frac{\delta net_j}{\delta w_{ji}} (net_j = \text{input at the j}^{th} \text{ layer})$$

$$\frac{\delta E}{\delta net_{j}} = -\delta j$$

$$\Delta w_{ji} = \eta \delta j \frac{\delta net_j}{\delta w_{ii}} = \eta \delta j o_i$$

Backpropagation – for outermost layer

$$\delta j = -\frac{\delta E}{\delta net_j} = -\frac{\delta E}{\delta o_j} \times \frac{\delta o_j}{\delta net_j} (net_j = \text{input at the } j^{th} \text{ layer})$$

$$E = \frac{1}{2} \sum_{p=1}^{m} (t_p - o_p)^2$$

Hence,
$$\delta j = -(-(t_j - o_j)o_j(1 - o_j))$$

$$\Delta w_{ji} = \eta(t_j - o_j)o_j(1 - o_j)o_i$$

Backpropagation for hidden lavers

 δ_k is propagated backwards to find value of δ_j

Backpropagation – for hidden layers $\Delta w_{ii} = \eta \delta j o_i$

$$\Delta w_{ji} = \eta \delta j o_{i}$$

$$\delta j = -\frac{\delta E}{\delta net_{j}} = -\frac{\delta E}{\delta o_{j}} \times \frac{\delta o_{j}}{\delta net_{j}}$$

$$= -\frac{\delta E}{\delta o_{j}} \times o_{j} (1 - o_{j})$$

$$= -\sum_{k \in \text{next layer}} (\frac{\delta E}{\delta net_{k}} \times \frac{\delta net_{k}}{\delta o_{j}}) \times o_{j} (1 - o_{j})$$
Hence, $\delta_{j} = -\sum_{k \in \text{next layer}} (-\delta_{k} \times w_{kj}) \times o_{j} (1 - o_{j})$

$$= \sum_{k \in \text{next layer}} (w_{kj} \delta_{k}) o_{j} (1 - o_{j})$$

General Backpropagation Rule

General weight updating rule:

$$\Delta w_{ji} = \eta \delta j o_i$$

Where

$$\delta_j = (t_j - o_j)o_j(1 - o_j)$$
 for outermost layer

$$= \sum_{k \in \text{next layer}} (w_{kj} \delta_k) o_j (1 - o_j) o_i \text{ for hidden layers}$$

How does it work?

 Input propagation forward and error propagation backward (e.g. XOR)

Can Linear Neurons Work?

$$h_1 = m_1(w_1x_1 + w_2x_2) + c_1$$

$$h_1 = m_1(w_1x_1 + w_2x_2) + c_1$$

$$Out = (w_5h_1 + w_6h_2) + c_3$$

$$= k_1x_1 + k_2x_2 + k_3$$

Note: The whole structure shown in earlier slide is reducible to a single neuron with given behavior

$$Out = k_1x_1 + k_2x_2 + k_3$$

Claim: A neuron with linear I-O behavior can't compute X-OR.

Proof: Considering all possible cases:

[assuming 0.1 and 0.9 as the lower and upper thresholds]

For (0,0), Zero class:
$$m(w_1.0+w_2.0-\theta)+c<0.1$$

 $\Rightarrow c-m.\theta<0.1$

For (0,1), One class:
$$m(w_2.1+w_1.0-\theta)+c>0.9$$

 $\Rightarrow m.w_1-m.\theta+c>0.9$

For (1,0), One class: $m.w_1 - m.\theta + c > 0.9$

For (1,1), Zero class: $m.W_1 - m.\theta + c > 0.9$

These equations are inconsistent. Hence X-OR can't be computed.

Observations:

- A linear neuron can't compute X-OR.
- A multilayer FFN with linear neurons is collapsible to a single linear neuron, hence no a additional power due to hidden layer.
- 3. Non-linearity is essential for power.