# Métodos de Estimação Pontual

Ben Dêivide de Oliveira Batista

6 de março de 2016

### Sumário

1 Inferência Estatística

- 2 Métodos de estimação pontual
  - Método dos momentos
  - Método da Máxima Verossimilhança
  - Método dos Mínimos Quadrados



 $X_1, X_2, \ldots, X_n$ 



$$X_1, X_2, \dots, X_n \Rightarrow T_n = t(X_1, X_2, \dots, X_n)$$



- $X_1, X_2, \dots, X_n \Rightarrow T_n = t(X_1, X_2, \dots, X_n)$
- $T_n(\text{Estimador Pontual}) \to \theta \text{ (Parâmetro)}$



- $X_1, X_2, \ldots, X_n \Rightarrow T_n = t(X_1, X_2, \ldots, X_n)$
- $T_n(\text{Estimador Pontual}) \rightarrow \theta \text{ (Parâmetro)}$
- Métodos de estimação pontual:



$$X_1, X_2, \dots, X_n \Rightarrow T_n = t(X_1, X_2, \dots, X_n)$$

- $T_n$ (Estimador Pontual)  $\rightarrow \theta$  (Parâmetro)
- Métodos de estimação pontual:
  - Método dos momentos



$$X_1, X_2, \ldots, X_n \Rightarrow T_n = t(X_1, X_2, \ldots, X_n)$$

- $T_n$ (Estimador Pontual)  $\rightarrow \theta$  (Parâmetro)
- Métodos de estimação pontual:
  - Método dos momentos
  - Método da Máxima Verossimilhança



$$X_1, X_2, \dots, X_n \Rightarrow T_n = t(X_1, X_2, \dots, X_n)$$

■ 
$$T_n(\text{Estimador Pontual}) \rightarrow \theta \text{ (Parâmetro)}$$

- Métodos de estimação pontual:
  - Método dos momentos
  - Método da Máxima Verossimilhança
  - Método dos Mínimos Quadrados



#### Método dos momentos

### Definição 1 (Momentos amostrais)

Seja uma amostra aleatória  $X_1, X_2, \ldots, X_n$  com fdp ou fp  $f_X(x; \boldsymbol{\theta})$ , com  $\boldsymbol{\theta} = [\theta_1, \theta_2, \ldots, \theta_k]' \in \Theta$  em que  $\Theta$  é o espaço paramétrico. O k-ésimo momento amostral, denotado por  $M_k$ , é definido por

$$M_k = \frac{1}{n} \sum_{i=1}^n X_i^k,$$
 (1)

e o k-ésimo momento amostral em torno da média amostral  $\bar{X}$ , denotado por  $M_k'$ , é definido por

$$M'_{k} = \frac{1}{n} \sum_{i=1}^{n} (X - \bar{X})^{k}.$$
 (2)

Método dos momentos

## Definição 2 (Momentos populacionais)

Seja uma amostra aleatória  $X_1, X_2, \ldots, X_n$  com fdp ou fp  $f_X(x; \boldsymbol{\theta})$ , com  $\boldsymbol{\theta} = [\theta_1, \theta_2, \ldots, \theta_k]' \in \Theta$  em que  $\Theta$  é o espaço paramétrico. O k-ésimo momento populacional, denotado por  $\mu_k$ , é definido por

$$\mu_k = E[X^k],\tag{3}$$

e o k-ésimo momento populaciona em torno da média populacional  $\mu=E[X]$ , denotado por  $\mu_k'$ , é definido por

$$\mu_k' = E[(X - \mu)^k]. \tag{4}$$



#### └ Método dos momentos

## Definição 2 (Momentos populacionais)

Seja uma amostra aleatória  $X_1, X_2, \ldots, X_n$  com fdp ou fp  $f_X(x; \boldsymbol{\theta})$ , com  $\boldsymbol{\theta} = [\theta_1, \theta_2, \ldots, \theta_k]' \in \Theta$  em que  $\Theta$  é o espaço paramétrico. O k-ésimo momento populacional, denotado por  $\mu_k$ , é definido por

$$\mu_k = E[X^k], \tag{3}$$

e o k-ésimo momento populaciona em torno da média populacional  $\mu=E[X]$ , denotado por  $\mu_k'$ , é definido por

$$\mu_k' = E[(X - \mu)^k]. \tag{4}$$

Geralmente  $\mu_k$  ou  $\mu'_k$  é função dos k parâmetros  $\theta_1, \theta_2, \dots, \theta_k$ 

Método dos momentos

### Definição 3 (Método dos momentos)

O método dos momentos consiste em igualar (1) e (3) ou (2) e (4), formando as k equações

$$M_j = \mu_j(\theta_1, \theta_2, \dots, \theta_k), \text{ para } j = 1, 2, \dots, k,$$
 (5)

ои

$$M'_{j} = \mu'_{j}(\theta_{1}, \theta_{2}, \dots, \theta_{k}), \text{ para } j = 1, 2, \dots, k,$$
 (6)

sendo  $\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_k$  suas soluções. Diremos que  $\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_k$  são os estimadores de  $\theta_1, \theta_2, \dots, \theta_k$  pelo método dos momentos.

└ Métodos de estimação pontual

└ Método dos momentos

### Exemplo 1

Seja uma amostra aleatória  $X_1, X_2, \ldots, X_n$  de uma normal com média  $\mu$  e variância  $\sigma^2$  desconhecidos. Denote  $(\theta_1, \theta_2) = \mu, \sigma^2$ . Vamos estimar os parâmetros  $\mu$  e  $\sigma^2$  pelo método dos momentos.

## Definição 4 (Função de verossimilhança)

Seja uma amostra aleatória  $X_1, X_2, \ldots, X_n$  (iid) com fdp ou fp conjunta  $f_{\boldsymbol{X}}(\boldsymbol{x};\theta)$ , com  $\theta \in \Theta$  em que  $\Theta$  é o espaço paramétrico. Considere ainda  $x_1, x_2, \ldots, x_n$  a realização da amostra aleatória  $X_1, X_2, \ldots, X_n$ , então a função de verossimilhança é definida por

$$L(\theta; x_1, x_2, \dots, x_n) = L(\theta; \boldsymbol{x}) = f_{\boldsymbol{X}}(\boldsymbol{x}; \theta) = \prod_{i=1}^n f_X(x_i; \theta). \quad (7)$$

└ Método da Máxima Verossimilhança

# Definição 5 (Método da máxima verossimilhança)

Seja uma função de verossimilhança  $L(\theta;x_1,x_2,\ldots,x_n)$  para uma amostra aleatória  $X_1,X_2,\ldots,X_n$ . Então o método da máxima verossimilhança é a forma de encontrar um  $\hat{\theta}=\vartheta(x_1,x_2,\ldots,x_n)$ , que é o valor estimado de  $\theta\in\Theta$  que maximiza  $L(\theta;x_1,x_2,\ldots,x_n)$ . Dizemos que  $\hat{\theta}=\vartheta(X_1,X_2,\ldots,X_n)$  é o estimador de máxima verossimilhança de  $\theta$ .

■ Para maximizar  $L(\theta; x_1, x_2, \dots, x_n)$ , tomamos a sua derivada em relação a  $\theta$ , igualamos a zero e resolvemos o sistema para obtenção de  $\hat{\theta} = \vartheta(X_1, X_2, \dots, X_n)$ ;

- Para maximizar  $L(\theta; x_1, x_2, \ldots, x_n)$ , tomamos a sua derivada em relação a  $\theta$ , igualamos a zero e resolvemos o sistema para obtenção de  $\hat{\theta} = \vartheta(X_1, X_2, \ldots, X_n)$ ;
- Posteriormente, devemos identificar se a segunda derivada de  $L(\theta; x_1, x_2, \ldots, x_n)$  é negativa para saber se  $\hat{\theta}$  é um ponto de máximo.

- Para maximizar  $L(\theta; x_1, x_2, \ldots, x_n)$ , tomamos a sua derivada em relação a  $\theta$ , igualamos a zero e resolvemos o sistema para obtenção de  $\hat{\theta} = \vartheta(X_1, X_2, \ldots, X_n)$ ;
- Posteriormente, devemos identificar se a segunda derivada de  $L(\theta; x_1, x_2, \ldots, x_n)$  é negativa para saber se  $\hat{\theta}$  é um ponto de máximo.
- Muitas vezes esse processo torna-se complicado.

### Definição 6 (Função de Log-verossimilhança)

Se  $L(\theta; x_1, x_2, ..., x_n)$ , expressão (7), é a função de verossimilhança, então

$$l(\theta; \boldsymbol{x}) = l(\theta; \boldsymbol{x}) = \log L(\theta; \boldsymbol{x}), \tag{8}$$

é a função de log-verossimilhança, para  $x = [x_1, x_2, \dots, x_n]'$ .

└ Método da Máxima Verossimilhança

### Exemplo 2

Seja uma amostra aleatória  $X_1, X_2, \ldots, X_n$  de uma normal com média  $\mu$  e variância  $\sigma^2=1$ . Vamos obter o estimador de  $\mu$  pelo método da máxima verossimilhança.

### ■ Modelo de regressão:

$$Y = X\theta + \varepsilon, \tag{9}$$

$$\boldsymbol{Y}_{n\times 1} = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix}, \ \boldsymbol{X}_{n\times p'} = \begin{bmatrix} 1 & x_{11} & x_{12} & \dots & x_{1p} \\ 1 & x_{21} & x_{22} & \dots & x_{2p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & \dots & x_{np} \end{bmatrix},$$

$$oldsymbol{ heta}_{p' imes 1} = \left| egin{array}{c} eta_0 \ eta_1 \ dots \ eta_p \end{array} 
ight| \ \mathbf{e} \ oldsymbol{arepsilon}_{n imes 1} = \left| egin{array}{c} arepsilon_1 \ arepsilon_2 \ dots \ arepsilon_n \end{array} 
ight|, \ p' = p+1$$

Modelo de regressão:

$$Y = X\theta + \varepsilon, \tag{10}$$

As pressuposições para esse modelo são:

■  $E[\varepsilon] = \mathbf{0}$ , sendo  $\mathbf{0}$  um vetor de zeros de dimensão  $n \times 1$ , ou equivalentemente  $E[\mathbf{Y}] = \mathbf{X}\boldsymbol{\theta}$ ;

Modelo de regressão:

$$Y = X\theta + \varepsilon, \tag{10}$$

As pressuposições para esse modelo são:

- $E[\varepsilon] = \mathbf{0}$ , sendo  $\mathbf{0}$  um vetor de zeros de dimensão  $n \times 1$ , ou equivalentemente  $E[\mathbf{Y}] = \mathbf{X}\boldsymbol{\theta}$ ;
- $Var[\varepsilon] = I\sigma^2$ , sendo I uma matriz identidade de dimensão  $n \times n$ , ou equivalentemente  $Var[Y] = I\sigma^2$ ;

Modelo de regressão:

$$Y = X\theta + \varepsilon, \tag{10}$$

As pressuposições para esse modelo são:

- $E[\varepsilon] = \mathbf{0}$ , sendo  $\mathbf{0}$  um vetor de zeros de dimensão  $n \times 1$ , ou equivalentemente  $E[\mathbf{Y}] = \mathbf{X}\boldsymbol{\theta}$ ;
- $Var[\boldsymbol{\varepsilon}] = \boldsymbol{I}\sigma^2$ , sendo  $\boldsymbol{I}$  uma matriz identidade de dimensão  $n \times n$ , ou equivalentemente  $Var[\boldsymbol{Y}] = \boldsymbol{I}\sigma^2$ ;
- $cov[\varepsilon_i, \varepsilon_j] = 0$  para todo  $i \neq j$ , ou equivalentemente,  $cov[Y_i, Y_j] = 0$ .

└ Método dos Mínimos Quadrados

## Teorema 1 (Método de mínimos quadrados)

Se  $Y = X\theta + \varepsilon$ , em que X é  $n \times p'$  de posto p' < n, então o valor de  $\hat{\theta} = [\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p]'$  que minimiza  $\varepsilon' \varepsilon$  é igual a

$$\hat{\boldsymbol{\theta}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{Y}.\tag{11}$$

Assim,  $\hat{ heta}$  é conhecido como estimador de mínimos quadrados de heta.

Método dos Mínimos Quadrados

### Exemplo 3

Seja um modelo de regressão linear simples do tipo  $Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$  para i = 1, 2, ..., n. De modo matricial, temos

$$\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix},$$

em que está desejando estudar a relação entre a distância (pés) que um carro percorre até sua parada em função da velocidade limite (milhas por hora). (Dados: cars do programa R)