Paper Number(s): **E1.2**

ISE1.2

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE UNIVERSITY OF LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2001

EEE/ISE PART I: M.Eng., B.Eng. and ACGI

DIGITAL ELECTRONICS I

Wednesday, 13 June 10:00 am

There are FIVE questions on this paper.

Question 1 is compulsory.

Answer THREE questions, including Question 1.

Time allowed: 2:00 hours

CARETTON CEPY

Examiners: Naylor, P.A. and Coonick, A.H.

[Question 1 is compulsory]

1. a) State De Morgan's Theorem and hence miminise the function $f = A.\overline{B}.C + B.C + A.\overline{C}$.

- [4]
- b) Which one of the following statements best describes the expression 'setup time'?
- [4]
- (i) The amount of time a clock signal must wait before making a transition,
- (ii) The period of time before a clock transition during which the input data can't change,
- (iii) The interval of time prior to a clock transition during which a change in data could cause metastability.
- (iv) The time taken for a device to arrive in a stable state,
- (v) The duration of time taken by a device for its output to respond to changes in its input.
- c) Determine the Boolean function f.

[4]

[4]

[4]

d) An 8-bit microprocessor register contents is displayed as \$A1 where \$ indicates hexadecimal. What is the corresponding decimal value assuming 2's complement binary format?

Convert the decimal number 3.14 into BCD.

Convert the decimal number 3.25 into single precision binary floating-point format.

e) Draw the Karnaugh map of the following function:

$$f = A.\overline{B} + C(\overline{D} \oplus (A \oplus B)) + A.\overline{C}.D$$

State the number of gates required to implement this function, not counting inverters.

2. a) Describe the architecture of PALs with the aid of one or more illustrative diagrams.

[4]

[4]

Indicate clearly how a PAL device would be programmed to implement a full adder.

b) A 64x1-bit ROM is programmed as indicated in the table below. Deduce a minimal Boolean expression for the output in terms of the inputs.

[7]

	Col 0 Cells 0-7	Col 1 Cells 8-15	Col 2 Cells 16-23	Col 3 Cells 24-31	Col 4 Cells 32-39	Col 5 Cells 40-47	Col 6 Cells 48-55	Col 7 Cells 56-63
Row 0	1	1	0	0	0	0	0	0
Row 1	1	0	0	0	0	0	0 .	0
Row 2	0	0	0	0	0	0	0	0
Row 3	0	0	0	0	0	0	0	0
Row 4	1	0	0	0	0	0	0	0
Row 5	1	0	0	0	0	0	0	0
Row 6	0	0	0	0	0	0	0	0
Row 7	0	1	0	0	0	0	0	0

c) Show how a multiplexer with two data inputs can be used to implement a 2-input OR gate.

[5]

3. A warning indicator is to be designed using four red LEDs arranged in a line, spaced by 1.5 cm. To alert the user to danger, the LEDs are to light in the following repeating pattern.

Time Instant	LED3	LED2	LED1	LED0
1	0	0	0	0
2	0	0	0	0
3	0	0	©	0
4	0	0	0	0
5	0	0	0	0
6	0	0	0	0
Etc				

The symbol O indicates the LED is off; © indicates the LED is on.

Design a synchronous state machine to control the LEDs. Show the details of the design and sketch a circuit diagram of your state machine.

State how you would connect the LEDs to the state machine outputs.

[17]

[3]

4. Consider the number X as a 4-bit signed 2's complement binary number formed from the bits X3, X2, X1 and X0. Design a circuit to compute the square of X, giving the result also in signed 2's complement binary. Show in your design relevant truth tables and all other working.

[20]

Sketch the resulting circuit diagram of your circuit.

5. Derive the Boolean equations of a single bit comparator with input bits A, B, > and < and outputs A>B and A<B, where the inputs > and < are override inputs. Sketch the corresponding circuit diagram.

[7]

Show how your comparator can be used to compare two 4-bit signed 2's complement numbers.

[7]

Determine the best-case and worst-case time to make a 4-bit comparison if each gate (including inverters) has a propagation delay of T seconds. Give examples of bit patterns for the two 4-bit numbers which correspond to the best-case and worst-case timing.

[6]

E1.2

1.a)
$$\overline{X} \cdot \overline{Y} = \overline{X} + \overline{Y}$$
, $\overline{X} + \overline{Y} = \overline{X} \cdot \overline{Y}$

$$f = ABC + BC + AC = A(B+C) + BC$$
$$= A(BC) + BC = A + BC$$

2 a) PAL architecture - bookwork.

Full adder S = ABC + ABC + ABC + ABC c = AB + c (A+B)

b) 3 bits for Row, I bit for column.

A

B, C, D

A

	A	B	S	on fon!
_	0	0	0	O
	0	0_	(0
	0	1	0	
	0	((b
	{	O	O.	. 0
	1	0	ι	
	(١.	o	
	,	,	,	

Let B=0 then Ontput=A+S

3 d 7

Transition table

Q,	Qo	0,+		<u>L</u> 3	T5	41	Lo
0	0	0		, t	ł	0	O
0	!	1.	O	0	(:	1	0
)	0	1	1	0	0	. (, t
)	1 1	0	0		((0

Next-State logic

$$Q_{0} + Q_{0}$$

Output Logic

$$L3 = \overline{Q_1} \cdot \overline{Q_2} , L2 = \overline{Q_1} + \overline{Q_2}$$
 $L1 = \overline{Q_1} + \overline{Q_2} , L0 = \overline{Q_1} \cdot \overline{Q_2}$

The LEDs will require a current of the order of a milliamp. Connect using appropriate driver.

	1			•				A CONTRACTOR
, X3 x5 x1 x0	Q7	Q 6	as	04	۵3	& 5	01	00
0 0 0 0	0	U	ð	ø	10	ð	0	0
0001	0	O	0	0	٥	ပ	0	1
0017	0	0	0	o	o	\mathcal{A}_{i}	0	ی
0011	0	. ,0	0	O	$\sim 10^{-6}$	O	0	1
0 , 0 0	0	O	. O		0	0	ø	J
0101	9	0		1	r	0	8	1
0110	O	0	1	0	0		O	0
0 11 1	0	0		· · · · i	0	0	0	1
1000	0	1	0	0	Ó	0	0	0
1001	O	0		(Ø	0	O	1
6 10	0	O		Ö	0	T_{ij}	O	0
1011	0	0	6	1	t.	6	· , o · ,	ſ,,
(0 0	o .	Ø	O		0	0	0	б
1 0 1	0	. 0	Ø	υ	• • • • • • • • • • • • • • • • • • •	0	0	. 18.
1 1 0	0	o	0	0	0		0	0
	0	0	• •	ø	0	0	0	(

Q7 = Q1 = 0, Q6 = x3. x2 x1. x0, Q0 = x0

	- ac	XIX	0			1	×I		
Q		07 11			04	6.9	נס	11	10
		0 0			مه				
		0 1		×3×	(2 01				9
Y3XS .		and the second s			11	1	υ	0	0
	4				10	0	1	1	0

$$QS = \overline{X}_{5}.X_{2}.X_{1}$$

$$+ X_{3}.\overline{X}_{2}(\overline{X}_{1}.X_{0} + \overline{X}_{1}.\overline{X}_{0})$$

$$Q4 = \overline{x3} \times 2 \times 0 + \times 2 \times 1 \times 0$$

+ $\times 3 \times 2 \times 0$

	x(x o	OK 1K
<u>Q3</u>	00 m 11 10 02	00 01 11 10
00	001000	0 0 0 1
x3 x2 or	0 1 0 0 x3x2 01	0 0 0
16	Te ≰ in the control of	0 0 0
10	10010	0 0 0

Ciranit diagrams follow directly from these equations

6 4 7

A	B	> % 4 < %	A > B	ACB
* **	X	0 1	O	1
×	X			0
×	\times		0	0
0	0	00	0	0
0	1	0 0	0	
	0	0 0		0
	1	00	0	0

			A, 3					A, B	
	A>B	00	57	1)	10	A <b< td=""><td>00</td><td>0 1 11</td><td>(0</td></b<>	00	0 1 11	(0
	700	0	0	0		6 79		ن ر	0
>,<	01	0	0	0	\circ	0 (ţ	$I_{i,j} = I_{i,j}$	1.
	100	0	o	0	0	14	0	0 0	0
	()		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		$\langle \langle 1 \rangle \rangle$. 10	\ 0	0 0	0
	, , , , , , , , , , , , , , , , , , ,				<u> </u>		-		
	A > B =	- >	< +	A.B	. -	A < B =	5, <	FĀB.	$\sum_{i=1}^{n} \frac{\partial f_{i}}{\partial x_{i}} dx_{i}$

18 A3 > B3 -> A is negative, b positive. A < B

18 A3 < B3 -> A is positive, b negative. A > B

18 A3 = B3 -> result depends on unsigned

comparison of A[2.0] with B[2.0].

Implemented wing 3-layer logic, each comparate requires 3T seconds. Best case is AS/BO comparison buly, eg 0000/0001, corresponding to 3T seconds. Worst ask is 4 x 3T seconds eg 1000/0000 7 & 7 E1.Z