Zürcher Hochschule für Angewandte Wissenschaften



# ZÜRCHER HOCHSCHULE FÜR ANGEWANDTE WISSENSCHAFTEN DEPARTEMENT LIFE SCIENCES UND FACILITY MANAGEMENT INSTITUT FÜR UMWELT UND NATÜRLICHE RESSOURCEN

# Laktofermentation von Fischgülle

Bachelorarbeit HS 2012 SBUI\_09

#### von

## **Pascal Schmid**

Bachelorstudiengang Umweltingenieurwesen 2009-2012

Abgabedatum: 20.12.2012

Fachkorrektoren:

Andreas Schönborn, ZHAW

Alex Mathis, ZHAW

# Zusammenfassung

Fischzucht wird vermehrt in Kreislaufanlagen ausserhalb der Landwirtschaftszone betrieben. Die UrbanFarmers AG plant Aquaponic-Dachfarmen im urbanen Raum. Um die Kreisläufe weiter zu schliessen, soll auch die Fischgülle weiterverwertet werden. Diese Arbeit zeigt, unter welchen Bedingungen eine Laktofermentation von Fischgülle möglich ist, damit sie ohne Geruchsemmissionen stabilisiert und gelagert werden kann.

Die Versuche wurden im Labormassstab durchgeführt. Angeimpft wurden die Ansätze mit *Lactobacillus plantarum*, *Lactobacillus casei* und *Pediococcus acidilactici*. Die Fischgülle wurde während 12 Tagen bei 37 °C fermentiert. Vor und nach der Fermentation wurden Lactat, die flüchtigen Fettsäuren, die titrierbare Gesamtsäure und die Trockenrückstände analysiert. Der pH-Wert und die Gasentwicklung wurden täglich gemessen.

Zuerst wurde der optimale Glukoseanteil im Gärgut ermittelt. Angeimpft wurde mit 2.39E+08 KbE / g Ausgangsmaterial. Die besten Ergebnisse werden mit einem Glukoseanteil von 2 % und 2.5 % im Gärgut erzielt. Der pH sinkt am ersten Tag unter 4 und stabilisiert sich bei einem Wert von 3.63 bis 3.76. Die Laktofermentation verläuft zwar mit höheren Glukoseanteilen (5 %; 7.5 %; 10 % Glukose) besser, nach 4 Tagen findet jedoch eine starke CO<sub>2</sub>-Entwicklung statt. Unterhalb von 2 % Glukose findet keine Milchsäuregärung mehr statt. Bei 1 % und 1.5 % Glukose wird vor allem Butyrat gebildet.

Anschliessend wurde bei einem Glukoseanteil von 2 % die optimale Bakterienzahl zum Animpfen ermittelt. Die Laktofermentation läuft bei allen Konzentrationen von 3.0E+06 KbE / g bis 2.43E+08 KbE / g ab. Je mehr Bakterien jedoch als Starterkultur zugegeben werden, desto schneller stabilisiert sich der pH auf einem tieferen pH. Dazu kommt, dass mehr Lactat und weniger Acetat und Butyrat gebildet wird.

Die Versuche zeigen, dass eine Stabilisierung und somit eine geruchsneutrale Lagerung von Fischgülle durch Laktofermentation möglich ist.

## **Abstract**

Recirculation systems are gaining increased popularity amongst fisheries outside of the agricultural zone. Urban Farmers AG is planing aquaponic rooftop farms in urban areas. In order to close more material cycles, the fish manure should also be recycled. This work shows under which conditions fish manure can be stabilized and stored without odour emission by performance of lactofermentation.

All experiments were performed on laboratory scale. The experiments were inoculated with *Lactobacillus plantarum*, *Lactobacillus casei* and *Pediococcus acidilactici*. The fish manure was fermented for 12 days at 37 °C. Before and after the ferme ntation, lactate, volatile fatty acids, total titratable acid and the dry residues were analyzed. Gas formation and pH values were monitored daily.

At first, the optimal glucose level was determined in the digestate, for which the inoculation took place with 2.39E+08 cfu / g of starting material. Best results are obtained with a glucose level of 2 % and 2.5 % in the digestate. On the first day the pH drops below 4 and then stabilizes at a value of 3.63 to 3.76. It is shown that the lacto-fermentation works better with higher proportions of glucose (5 %, 7.5 % and 10 % glucose). But after 4 days, there is a strong evolution of CO<sub>2</sub>. A ratio of glucose below 2 % is more favourable due to suppression of lactic acid fermentation. For even lower ratios of glucose between 1 % and 1.5 % mainly butyrate is formed.

Subsequently, with a glucose content of 2 %, the optimal number of bacteria for inoculation was determined. The lacto-fermentation runs at all tested concentrations from 3.0E+06 cfu / g to 2.43E+08 cfu / g. The more bacteria are added as a starter culture, the faster the pH stabilizes at a lower pH which is in favour of lactate whilst less acetate and butyrate are formed.

The hereby performed experiments show that stabilization and odorless storage of fish manure by lacto-fermentation is possible.

# Inhaltsverzeichnis

| 1 | Einleitu  | ng                                                          | 8  |
|---|-----------|-------------------------------------------------------------|----|
| 2 | Grundla   | ngen                                                        | 10 |
|   | 2.1 Mile  | chsäurebakterien                                            | 10 |
|   | 2.2 Mile  | chsäuregärung                                               | 10 |
|   |           |                                                             |    |
|   | 2.3 Silie | erung                                                       | 11 |
|   | 2.4 Hyg   | gienisierende Wirkung der Laktofermentation                 | 12 |
|   | 2.5 Sta   | nd der Forschung bei der Laktofermentation von Fäkalstoffen | 13 |
|   | 2.5.1     | Verwendete Milchsäurebakterien                              | 13 |
|   | 2.5.2     | Zugabe von Molasse                                          | 13 |
|   | 2.5.3     | Zugabe von Kohle                                            | 14 |
|   | 2.5.4     | Analyseparameter                                            | 14 |
| 3 | Materia   | und Methoden                                                | 15 |
|   | 3.1 Ma    | terial                                                      | 15 |
|   | 3.1.1     | Stämme                                                      |    |
|   | 3.1.2     | Medium                                                      | 15 |
|   | 3.1.3     | Glukose                                                     |    |
|   | 3.1.4     | Fischgülle                                                  |    |
|   | 3.2 Vor   | gehen                                                       | 16 |
|   | 3.2.1     | Bakterien                                                   | 16 |
|   | 3.2.2     | Versuche                                                    | 17 |
|   | 3.2.3     | Analytik                                                    | 19 |
| 4 | Resulta   | te                                                          | 21 |
|   | 4.1 Vor   | versuche 2 (VV2)                                            | 21 |
|   | 4.1.1     | Fragestellung                                               | 21 |
|   | 4.1.2     | pH-Verlauf und Gasentwicklung                               | 21 |
|   | 4.1.3     | TR/oTR                                                      | 22 |
|   | 4.1.4     | Lactat / flüchtige Fettsäuren                               | 23 |
|   | 4.1.5     | Fazit VV2                                                   | 24 |
|   | 4.2 HV    | 1                                                           | 24 |
|   | 4.2.1     | Fragestellung                                               | 24 |
|   | 4.2.2     | pH-Verlauf / Gasentwicklung                                 | 25 |
|   | 4.2.3     | TR/oTR                                                      | 26 |
|   | 4.2.4     | Lactat / flüchtige Fettsäuren                               | 27 |
|   |           |                                                             |    |

|   | 4.2.          | 5 Fazit HV1                                                | . 28 |
|---|---------------|------------------------------------------------------------|------|
|   | 4.3           | Hauptversuche 2                                            | . 28 |
|   | 4.3.          | 1 Fragestellung                                            | . 28 |
|   | 4.3.2         | 2 pH-Verlauf / Gasentwicklung                              | . 28 |
|   | 4.3.3         | 3 TR / oTR                                                 | . 29 |
|   | 4.3.4         | 4 Lactat / flüchtige Fettsäuren                            | . 30 |
|   | 4.3.          | 5 Fazit HV2                                                | . 31 |
|   | 4.4           | Hauptversuche 3 (HV3)                                      | . 31 |
|   | 4.4.          | 1 Fragestellung                                            | . 31 |
|   | 4.4.2         | 2 pH-Verlauf / Gasentwicklung                              | . 32 |
|   | 4.4.3         | 3 TR / oTR                                                 | . 33 |
|   | 4.4.4         | 4 Lactat / flüchtige Fettsäuren                            | . 34 |
|   | 4.4.          | 5 Fazit HV3                                                | . 35 |
|   | 4.5           | Langzeitstabilität                                         | . 35 |
| 5 | Disk          | kussion                                                    | 37   |
| · |               |                                                            |      |
|   | 5.1           | Einfluss der Glukose-Konzentration                         |      |
|   | 5.1.          |                                                            |      |
|   | 5.1.2         |                                                            |      |
|   | 5.1.3         |                                                            |      |
|   | 5.1.4<br>5.1. |                                                            |      |
|   |               | ·                                                          |      |
|   | 5.2           | Einfluss der Anzahl MSB als Starterkultur                  |      |
|   | 5.2.          | ·                                                          |      |
|   | 5.2.2         |                                                            |      |
|   | 5.2.3         |                                                            |      |
|   | 5.2.4         |                                                            |      |
|   | 5.2.          | 5 Empfohlene Anzahl MSB als Starterkultur                  | . 39 |
|   | 5.3           | Einfluss der Temperatur                                    | . 40 |
|   | 5.4           | Langzeitstabilität                                         | . 40 |
|   | 5.5           | Vergleichende Betrachtung mit Resultaten aus der Literatur | . 41 |
|   | 5.6           | Weiteres Vorgehen zur Anwendung auf der UrbanFarm          | . 42 |
|   | 5.7           | Fazit                                                      | . 42 |
| 6 | Lite          | raturverzeichnis                                           | . 43 |
|   |               |                                                            | -    |

# Liste der Abkürzungen

| Déion.          | Deionisiert                                        |
|-----------------|----------------------------------------------------|
| FFS             | Flüchtige Fettsäuren                               |
| FG              | Fischgülle                                         |
| Glu             | Glukose                                            |
| HV1             | Hauptversuch 1                                     |
| HV2             | Hauptversuch 2                                     |
| HV3             | Hauptversuch 3                                     |
| L. casei        | Lactobacillus casei LMG 6904                       |
| L. plantarum    | Lactobacillus plantarum DSM 20174                  |
| Lb.c.           | Lactobacillus casei LMG 6904 (in Diagrammen)       |
| Lb.p.           | Lactobacillus plantarum DSM 20174 (in Diagrammen)  |
| M.R.S.          | De Man, Rogosa; Sharpe                             |
| MO              | Mikroorganismen                                    |
| MSB             | Milchsäurebakterien                                |
| oTR             | Organischer Trockenrückstand                       |
| P. acidilactici | Pediococcus acidilactici LMG 11384                 |
| Pe.a.           | Pediococcus acidilactici LMG 11384 (in Diagrammen) |
| RT              | Raumtemperatur                                     |
| TGS             | Titrierbare Gesamtsäure                            |
| TR              | Trockenrückstand                                   |
| TUHH            | Technische Universität Hamburg                     |
| VV2             | Vorversuch 2                                       |

# 1 Einleitung

Fischgülle entsteht als Nebenprodukt bei der Fischzucht. Sie besitzt einen hohen Nährstoffanteil an Phosphor und Stickstoff und gilt landwirtschaftsrechtlich als Hofdünger. Sie kann auf einem Bauernhof also problemlos in der Jauchegrube gesammelt und aufs Feld ausgebracht werden. In Zukunft werden jedoch immer mehr Fischzuchten als Kreislaufanlagen betrieben werden. Da dies unabhängig von Gewässeranbindung und Zonenplanung möglich ist, gibt es immer mehr Fischzuchten ausserhalb der Landwirtschaftszone.

Das Problem dabei ist die Lagerung der Fischgülle. Wenn sie aerob in einem offenen Behälter gelagert wird, ist dies mit einer störenden Geruchsemmission verbunden. Wird sie jedoch anaerob in einem verschlossenen Behälter gelagert, beginnt die Methangasgärung. Dies führt zur Bildung von flüchtigen Fettsäuren, CO<sub>2</sub>, H<sub>2</sub>, Methan und H<sub>2</sub>S, welche aus dem Behälter entweichen müssen. Dies ist wiederum mit einer Geruchsemmission verbunden. Eine Idee wäre nun, die Fischgülle durch eine Laktofermentation anaerob zu stabilisieren.

Die Laktofermentation ist durch die Haltbarmachung von Nahrungsmitteln und der Grünfuttersilage bestens bekannt (Axelsson, 2004; Mayo et al., 2010; Thaysen, 2001; Wang et al., 2002). Dabei werden wasserlösliche Kohlenhydrate durch Milchsäurebakterien in organische Säuren umgewandelt. Durch diese pH-Absenkung wird die Silage oder das Nahrungsmittel konserviert. Es wird zwischen einer hetero- und einer homofermentativen Laktofermentation unterschieden. Bei der homofermentativen Milchsäuregärung wird Glukose zu Laktat abgebaut. Dieser Vorgang verläuft anaerob und im Vergleich zum heterofermentativen Weg ohne Gasentwicklung (Axelsson, 2004).

Die Laktofermentation hat durch die pH-Absenkung eine hygienisierende Wirkung auf das Gärgut (Krüger & Scheinemann, 2010). Bei Behandlungen von Pouletabfällen (Deshmukh & Patterson, 1997; El-Jalil, Zinedine, & Faid, 2008), Fischereiabfällen (Faid et al., 1997) und Nahrungsmittelabfällen (Yang et al., 2005) mit MSB konnten die Pathogene grösstenteils entfernt werden (siehe Kapitel 2.4). Eine weitere interessante Anwendung findet die Laktofermentation im Bereich der "Terra Preta Sanitation". Dort werden die Fäkalstoffe gesammelt und zusammen mit Kohle, MSB oder EM (effizienten Mikroorganismen) und Gesteinsmehl während 3 Wochen einer Laktofermentation unterzogen. Anschliessend wird das Material wurmkompostiert (Factura et al., 2010; Krüger & Scheinemann, 2010; Yemaneh et al., 2012).

Die geruchsneutrale Lagerung und auch die "Terra Preta Sanitation" bieten eine Schnittstelle zu der UrbanFarmers AG, durch welche diese Arbeit finanziert wird. Die UrbanFarmers AG wurde 2011 gegründet und bereits mit dem Schweizer Nachhaltigkeitspreis «Prix Nature» ausgezeichnet (Kulawik, 2012). Die UrbanFarmers haben das Potential der Schweizer Fischzucht bemerkt. Der Import von Fisch betrug 2011 69'985 t (Wert 654 Mio. Fr.). Dazu kommt, dass der jährliche Ver-

zehr von Fisch in den letzten 20 Jahren um 15 % auf 9 kg/Person zugenommen hat (Schweizerischer Bauernverband, 2012). Sie möchten deshalb auf ungenutzten Dachflächen in der Stadt Aquaponic-Anlagen betreiben. So werden die Lebensmittel gleich dort produziert, wo sie auch verbraucht werden. Weite Transportwege entfallen. Das Zusammenspiel aus Fischzucht und Pflanzenanbau bringt den Vorteil, dass das Fischabwasser gleich als Dünger für die Pflanzen dient. Somit ist für das Pflanzenwachstum praktisch kein zusätzlicher Dünger erforderlich. Das Fischwasser wird durch einen Biofilter und Pflanzenkulturen gereinigt. Trotzdem muss noch ein Trommelfilter verwendet werden. Nach diesem fällt Fischgülle an, welche weiterbehandelt werden muss. Ein interessanter Ansatzpunkt für die UrbanFarmers wäre die Stabilisierung der Fischgülle durch Laktofermentation. Anschliessend kann sie z.B. wurmkompostiert und als Wurmerde weiterverkauft werden.

Diese Arbeit soll abklären, unter welchen Bedingungen eine Laktofermentation von Fischgülle möglich ist. Dies würde eine geruchsneutrale Stabilisierung und Lagerung der Fischgülle ermöglichen.

## 2 Grundlagen

#### 2.1 Milchsäurebakterien

Die MSB umfassen gram-positive, nicht sporulierende, fakultativ anaerobe Kokken oder Stäbchen, welche als Hauptendprodukt aus der Fermentation von Kohlenhydraten Laktat bilden (Axelsson, 2004). Die typischen Vertreter sind die Gattungen *Lactobacillus, Lactococcus, Streptococcus, Pediococcus, Oenococcus, Enterococcus* und *Leuconostoc* (Mayo et al., 2010).

Die MSB können je nach Stoffwechselweg in drei verschiedene Gruppen unterteilt werden (Brookes & Buckle, 1992).

- Gruppe 1: Obligat homofermentativ: Hexosen werden im Embden-Meyerhof-Parnas-Weg in Laktat umgewandelt. Pentosen und Glukonat können nicht umgewandelt werden.
- Gruppe 2: Fakultativ heterofermentativ: Im Normalfall wird Hexose homofermentativ zu Laktat umgewandelt. Bei bestimmten Bedingungen wird jedoch ein Gemisch aus Milch-, Essig-, Ameisensäure und Ethanol gebildet. Pentose wird heterofermentativ zu Laktat und Acetat abgebaut.
- Gruppe 3: Obligat heterofermentativ: Hexose wird zu Laktat, CO<sub>2</sub> und Acetat oder Ethanol fermentiert. Pentose zu Laktat und Acetat.

Lb. plantarum und Lb. casei sind fakultativ heterofermentative MSB, Pediococci sind homofermentativ (Axelsson, 2004).

## 2.2 Milchsäuregärung

Bei der Milchsäuregärung werden wasserlösliche Kohlenhydrate durch Milchsäurebakterien in organische Säuren (hauptsächlich Lactat) umgewandelt. Zucker ist dabei die Energie- und Kohlenstoffquelle für die MSB. Bevor die Polysaccharide jedoch verwertet werden können, müssen sie durch Hydrolyse in Monosaccharide zerlegt werden. In Abbildung 1 sind die verschiedenen Wege des Glukose-Abbaus aufgeführt (Mayo et al., 2010).

Bei der homofermentativen Fermentation, dem Embden-Meyerhof-Parnas-Weg (A), wird 1 Hexose zu 2 Lactat abgebaut, wobei 2 ATP frei werden. CO<sub>2</sub> wird nicht gebildet. Unter bestimmten Bedingungen, wie z.B. der Kohlenstofflimitierung, kann sich die homofermentative Gärung in eine Mixedacid Gärung (B) verändern. In diesem Fall werden neben Lactat auch Formiat, Ethanol, Acetat und CO<sub>2</sub> gebildet. Die maximale Acetatproduktion von Lb. plantarum findet bei aeroben Bedingungen unter Glukosemangel statt. In diesem Fall wird das Acetat aus Lactat gebildet.

Bei der heterofermentativen Milchsäuregärung, dem Phosphoketolase-Weg (C), wird 1 Pentose zu 1 Lactat und 1 Acetat abgebaut und 2 ATP freigesetzt. Im Falle von Hexosen wird 1 Glukose oder 1 Fructose zu 1 Lactat, 1 Ethanol und 1 CO<sub>2</sub> abgebaut, wobei 1 ATP frei wird. Energetisch gesehen lohnt sich der Abbau von Pentosen für die heterotrophen MSB mehr, da pro Molekül Zucker 1 ATP mehr gebildet wird.



Abbildung 1: Wege des Glukose Metabolismus. A. Homofermentativ; B. Mixed-acid Metabolismus; C. Heterofermentativ; D. Leloir Weg (Mayo et al., 2010)

## 2.3 Silierung

Die Silage dient der Konservierung von Futtermitteln, wobei durch minimale Nährstoffverluste ein Futtermittel mit hohem Futterwert erreicht wird (McDonald, Henderson & Heron, 1991). Der Vorgang basiert auf der Laktofermentation durch MSB, welche wasserlösliche Kohlenhydrate, Proteine und Faserbestandteile anaerob zu organischen Säuren hydrolisieren (Pitt, 1992). Dies führt zu einer Senkung des pH-Wertes und somit zu einer Hemmung anderer unerwünschter Mikroorganismen (siehe Kapitel 2.4). Die Silage ist stabil, wenn in anaerobem Verhältnis keine Veränderung mehr auftritt. Bei der Entnahme können Probleme auftreten, wenn durch die Verbindung mit Luft-

sauerstoff die aeroben Mikroorganismen (v.a. Hefen Schimmelpilze, Bazillen und Essigsäurebakterien) reaktiviert werden (Weinberg & Muck, 1996).

Bei einem ungenügenden pH-Abfall besteht die Gefahr, dass sich Clostridien vermehren. Dies führt zu der Sekundär- oder Buttersäuregärung, bei welcher die Milchsäure zu Buttersäure und die Aminosäuren zu NH<sub>3</sub> umgewandelt werden. Dies führt zu einem Anstieg des pH-Wertes und zu Trockenmassenverlusten (Pahlow & Honig, 1986).

Die Silierung läuft besser ab, je höher der Gehalt an wasserlöslichen Kohlenhydraten, bzw. leicht vergärbaren Zuckern ist (Lang, Looser & Kühbauch, 1972). Für eine optimale Laktofermentation sollte der Anteil an wasserlöslichen Kohlenhydraten im Gärsubstrat mindestens 2 bis 3 % der Frischmasse ausmachen (Henderson & McDonald, 1984).

Vergärbarkeitskoeffizient nach Schmidt et al., (1971): VK = TM + 8 x Z / PK. Dabei ist TM die Trockenmasse in Prozent des Gärguts, Z der Zuckergehalt in Prozent der TM und PK die Pufferkapazität, welche diejenige Menge an Milchsäure ausdrückt, welche benötigt wird, um 100 g Frischmaterial auf pH 4 einzustellen. Wenn der VK höher als 45 liegt und der NO<sub>3</sub>-Gehalt über 0.5 g/kg TM liegt, oder ein Keimbesatz von mindestens 10<sup>5</sup> MSB/g Frischmasse herrscht, ist mit grosser Wahrscheinlichkeit eine Buttersäurefreie Silage möglich (Weissbach & Honig, 1996).

Für die Animpfung der Silage genügt meist eine Konzentration von 10<sup>5</sup>–10<sup>6</sup> lebenden Zellen pro Gramm Gärgut (Weinberg & Muck, 1996).

## 2.4 Hygienisierende Wirkung der Laktofermentation

Tabelle 1 zeigt die Hemmwirkung von *Lactobacillus plantarum* und *Pediococcus acidilactici* auf gesundheitsgefährdende MO's in Poulet Abfällen. Dazu wurden die Abfälle mit den MSB angeimpft und während 7-10 Tagen bei 30 ℃ bebrütet (El-Jalil , Zinedine & Faid, 2008).

Tabelle 1: Hemmwirkung von *Lb. plantarum* und *Pe. acidilactici* auf Bakterien, abgeändert (El-Jalil, Zinedine & Faid, 2008)

|                        | % Hemmung     |                  |  |  |
|------------------------|---------------|------------------|--|--|
|                        | Lb. plantarum | Pe. acidilactici |  |  |
| Staphylococcus aureus  | 75            | 50               |  |  |
| Lisrteria sp.          | 100           | 100              |  |  |
| E. fecalis             | 60            | 40               |  |  |
| Escherichia coli       | 80            | 0                |  |  |
| Proteus sp.            | 0             | 0                |  |  |
| Shigella dysenteria    | 50            | 0                |  |  |
| Salmonella enteritica  | 50            | 0                |  |  |
| Pseudomonas aerugenosa | 60            | 0                |  |  |

Bei einem pH-Wert von 4,1-4,5 kann *E. coli* noch Zellteilungen durchführen, solange andere Bedingungen nicht zusätzlich limitierend wirken, wie etwa eine Laktatkonzentration in der Umgebung die über 25-50 mmol (ca. 2,25- 4,5g/l) beträgt (Presser, Ratkowsky & Ross, 2007).

Weiter haben Versuche an der veterinärmedizinischen Fakultät in Leipzig gezeigt, dass sich durch die "Terra Preta"-Technologie *Listeria monocytogenes*, *Salmonella Anatum*, *Salmonella Senftenberg*, *E. coli O157* und *Staphylococcus aureus* innerhalb von drei Tagen inaktivieren. ECBO-Viren werden innerhalb von 1-2 Wochen und Spulwurmeier innerhalb von 8 Wochen inaktiviert (Krüger & Scheinemann, 2010).

## 2.5 Stand der Forschung bei der Laktofermentation von Fäkalstoffen

#### 2.5.1 Verwendete Milchsäurebakterien

Versuche an der TUHH in Hamburg ergaben, dass sich die Kombination von *Lactobacillus planta- rum*, *Lactobacillus casei* und *Pediococcus acidilactici* am besten für die Laktofermentation von menschlichen Fäkalien eignet. Bei Zugabe von 10% Molasse wurde der pH schneller abgesenkt und stabilisierte sich am Ende der Fermentation auf einem tieferen Wert (3.92), als wenn jedes MSB einzeln verwendet wurde (Yemaneh et al., 2012).

## 2.5.2 Zugabe von Molasse

Weiter ergaben die Versuche, dass bei einer Zugabe von 10 % (g/g) Molasse der pH in den ersten 5 Tagen von 5.2 auf einen Wert kleiner 4 fällt und bis zum Ende der Fermentation so bleibt. Weiter steigt die Konzentration von Milchsäure und von titrierbarer Gesamtsäure an, während die Produktion von flüchtigen Fettsäuren zurückgeht. Der Fäkalgestank wird durch einen säuerlichen Geruch ersetzt, welcher tolerierbar ist. Die E.coli-Bakterien sind nach 5 Tagen Fermentation eliminiert. Bei der TS und oTS sind keine Unterschiede erkennbar. (Yemaneh et al., 2012). FFS sind zu ca. 90 % für den schlechten Geruch verantwortlich (Sato et al., 2001).

Bei Zugabe von 5% (g/g) Molasse sinkt der pH-Wert auf 4.7 und der Fäkalgestank wird nicht vollständig eliminiert. Die E. coli sind nach 5 Tagen noch vorhanden, nach 3 Wochen jedoch auch eliminiert (Yemaneh et al., 2012).

Wenn nur die MSB ohne Molasse zugegeben werden, findet praktisch keine Veränderung in den Analyseparametern statt, da sich in den Fäkalien zu wenig Zucker befindet. Es ist jedoch möglich andere Zuckerquellen zu verwenden. So z.B. Küchenabfälle, deren Kohlenhydrate zuvor durch Hydrolyse in Monosacchariden aufgeschlossen wurden (Yemaneh et al., 2012).

## 2.5.3 Zugabe von Kohle

Wenn zusätzlich zu 10 % Molasse noch 10 % Kohle zugegeben werden, hat das einen positiven Effekt auf den Geruch. Er verschwindet praktisch vollständig und hat ausser einem leichten Anstieg des pH-Wertes keinen Einfluss auf die Fermentation (Yemaneh et al., 2012).

## 2.5.4 Analyseparameter

Der pH-Wert genügt nach den aktuellen Forschungen der veterinärmedizinischen Fakultät Leipzig für die Beurteilung der Fermentation. Denn mit Start der Fermentation steigt die Azidität an. Wichtig ist, dass je nach Ausgangssubstrat das anaerobe Milieu und der tiefe pH für eine Gewisse Zeit aufrechterhalten wird (Krüger & Scheinemann, 2010).

## 3 Material und Methoden

## 3.1 Material

#### **3.1.1 Stämme**

Verwendet wurden die gefriergetrockneten Stämme *Pediococcus acidilactici* LMG 11384 und *Lactobacillus casei* LMG 6904, welche bei der BCCM (Belgian Co-ordinated Collections of Microorganisms) bestellt wurden. Sowie der Stamm *Lactobacillus plantarum* DSM 20174 als Reinkultur auf Agar, welcher vom ILGI (Institut für Lebensmittel- und Getränkeinnovation) der ZHAW Wädenswil bezogen wurde (Kontaktinformation siehe Anhang Seite 48).

#### 3.1.2 Medium

Für die Kultivierung der MSB wurde die M.R.S. Bouillon der der Firma OXOID mit der Produktnummer CM0359B verwendet. Es ist ein nicht-selektives Medium speziell für das Wachstum von MSB.

Tabelle 2: Inhaltsstoffe in g/l

| Pepton aus Casein                     | 10   |
|---------------------------------------|------|
| Fleischextrakt                        | 8    |
| Hefeextrakt                           | 4    |
| D(+)Glucose                           | 20   |
| Tween 80                              | 1 ml |
| di-Kaliumhydrogenphosphat             | 2    |
| Natriumacetat x 3 H <sub>2</sub> O    | 5    |
| Triammoniumcitrat                     | 2    |
| Magnesiumsulphat x 7 H <sub>2</sub> O | 0.2  |
| Mangansulphat x 4 H₂O                 | 0.05 |
| pH 6.2 ± 0.2 bei 25 ℃                 |      |

#### 3.1.3 Glukose

Die Glukose wurde im Coop Wädenswil gekauft. Sie ist dort mit einem Glukosegehalt von 91 % in 180 g Päckchen erhältlich.

## 3.1.4 Fischgülle



Abbildung 2: Sammlung der FG

Die Fischgülle stammt aus dem Tilapiabecken der ZHAW Wädenswil. Gefüttert werden die Fische mit dem Futter Hokovit Tilapia Vegi. Das Wasser wird mit einem Trommelfilter gereinigt. Das in Intervallen anfallende Rückspülwasser wird durch ein Vlies gefiltert, welches an einer Bäckerkiste angebracht wurde (Abbildung 2). Die so anfallende Fischgülle wird eine Woche lang gesammelt und anschliessend während 24 h abgetropft.

Tabelle 3: Elementaranalyse des TR der verwendeten Fischgülle [% vom TR]

|                         | C <sub>total</sub> [%] | C <sub>org</sub> [%] | H [%] | N [%] | P [%] |
|-------------------------|------------------------|----------------------|-------|-------|-------|
| Fischgülle vom 22.11.12 | 42.1                   | 41.3                 | 5.31  | 5.53  | 2.1   |

## 3.2 Vorgehen

#### 3.2.1 Bakterien

In diesen Versuchen wird mit Reinkulturen gearbeitet. Deshalb werden alle Arbeitsschritte mit sterilem Material im Flow Bench ausgeführt. Arbeitsmaterial und Medium werden im Autoklaven während 15 min bei 121 °C sterilisiert.

Präparation: Die MSB werden in einem 200 ml Erlenmeyerkolben in 100 mL M.R.S.-Broth suspendiert. Bei Pe. acidilactici und Lb. casei wird dabei wie in der Anleitung vom BCCM beschrieben vorgegangen (siehe Anhang Seite 52). Lb. plantarum wird mit einem Spatel von der Agar-Platte ins Medium transferiert. Anschliessend werden die Erlenmeyerkolben mit Alufolie zugedeckt und in einem Schüttler bei 37 ℃ bebrütet. Nach 24 h werde n die Bakterien noch einmal überimpft. Dazu wird von jedem Stamm 1 ml Bakteriensuspension in 100 ml frisches Medium gegeben und wieder bei 37 ℃ im Schüttler bebrütet. Nach 20 h befinden sich die MSB im exponentiellen Wachstum (Yemaneh et al., 2012) und können weiterverwendet werden.

**Kulturerhaltung:** Die MSB werden im Gefrierschrank bei -86 ℃ eingela gert. Dazu wird die Bakteriensuspension im exponentiellen Wachstum mit steril filtriertem Glyzerin versetzt, so dass eine Endkonzentration von 15 % Glyzerin entsteht. Das Glyzerin wird vor der Filtration 1:1 mit H<sub>2</sub>O deion. verdünnt, damit es besser handhabbar ist. Anschliessend werden von jedem Stamm 5 Portionen à 7 ml in 15 ml Falcon Tubes abgefüllt und eingefroren. Da Glyzerin für die MSB toxisch ist, sollten sie nach dem Vermischen schnell eingefroren werden.

Animpfen: Die gefrorenen MSB werden dem Gefrierschrank entnommen und bei Raumtemperatur aufgetaut. Anschliessend werden je 1 ml in einem 200 ml Erlenmeyerkolben in 100 ml Medium suspendiert. Die Kolben werden mit Alufolie zugedeckt und im Schüttler bei 37 ℃ bebrütet. Nach 24 h werden je 1 ml der Bakterien in einem 300 ml Erlenmeyerkolben in 200 ml Medium suspendiert und 20 h im Schüttler bei 37 ℃ bebrütet. Ans chliessend wird mit dem OD600 die Bakteriendichte ermittelt und je nach Ansatz die entsprechende Anzahl MSB zugegeben.

#### 3.2.2 Versuche



Abbildung 3: Ansätze der Hauptversuchsreihe 3

Die Ansätze einer Versuchsreihe werden entsprechend der Zusammensetzung (Tabelle 4 bis Tabelle 7) gemischt. Jeder Ansatz wird doppelt durchgeführt. Dazu wird die 2.5-fache Menge des Ansatzes in 1 I Schottflaschen gemischt und gut geschüttelt. Dann wird die entsprechende Menge in je 2 Soda-Club Flaschen abgefüllt. Das restliche Material wird für die Startwert-Analysen verwendet. So kann sichergestellt werden, dass die beiden Ansätze das gleiche Mischverhältnis aufweisen. Anschliessend werden die Flaschen verschlossen und geschüttelt während 12 Tagen bei 37 °C fermentiert.

VV2

Tabelle 4: Übersicht über die Ansätze des VV2

|     |                   | FG [g] | Glu 91% [g] | Lb.p [ml] | Lb.c [ml] | Pc.a [ml] |
|-----|-------------------|--------|-------------|-----------|-----------|-----------|
| 1   | FG                | 250.0  | 0           | 0         | 0         | 0         |
| 1-D | FG                | 250.0  | 0           | 0         | 0         | 0         |
| 2   | FG / 10%Glu       | 222.5  | 27.5        | 0         | 0         | 0         |
| 2-D | FG / 10%Glu       | 222.5  | 27.5        | 0         | 0         | 0         |
| 3   | FG / MSB          | 250.0  | 0           | 11.7      | 10.5      | 7.8       |
| 3-D | FG / MSB          | 250.0  | 0           | 11.7      | 10.5      | 7.8       |
| 4   | FG / 10%Glu / MSB | 222.5  | 27.5        | 11.7      | 10.5      | 7.8       |
| 4-D | FG / 10%Glu / MSB | 222.5  | 27.5        | 11.7      | 10.5      | 7.8       |

Die zugegebene MSB-Menge entspricht je Stamm 2.07E+08 KbE / g Ausgangsmaterial.

HV1

Tabelle 5: Übersicht über die Ansätze des HV1

|   |                    | FG [g] | Glu 91% [g] | Lb. p [ml] | Lb. c [ml] | Pc. a [ml] |
|---|--------------------|--------|-------------|------------|------------|------------|
| 1 | FG                 | 400.0  | 0           | 0          | 0          | 0          |
| 2 | FG / MSB           | 400.0  | 0           | 7.5        | 8.1        | 8.4        |
| 3 | FG / 2.5%Glu / MSB | 389.0  | 11.0        | 7.5        | 8.1        | 8.4        |
| 4 | FG / 5%Glu / MSB   | 378.0  | 22.0        | 7.5        | 8.1        | 8.4        |
| 5 | FG / 7.5%Glu / MSB | 367.0  | 33.0        | 7.5        | 8.1        | 8.4        |
| 6 | FG / 10%Glu / MSB  | 356.0  | 44.0        | 7.5        | 8.1        | 8.4        |

Die zugegebene MSB-Menge entspricht je Stamm 7.98E+07 KbE / g Ausgangsmaterial

## HV2

Tabelle 6: Übersicht über die Ansätze des HV2

|   |                    | FG [g] | Glu 91% [g] | Lb.p [ml] | Lb.c [ml] | Pc.a [ml] |
|---|--------------------|--------|-------------|-----------|-----------|-----------|
| 1 | FG                 | 400.0  | 0           | 0         | 0         | 0         |
| 2 | FG / 0.5%Glu / MSB | 397.8  | 2.2         | 8.2       | 6.5       | 5.0       |
| 3 | FG / 1%Glu / MSB   | 395.6  | 4.4         | 8.2       | 6.5       | 5.0       |
| 4 | FG / 1.5%Glu / MSB | 393.4  | 6.6         | 8.2       | 6.5       | 5.0       |
| 5 | FG / 2%Glu / MSB   | 391.2  | 8.8         | 8.2       | 6.5       | 5.0       |
| 6 | FG / 2.5%Glu / MSB | 389.0  | 11.0        | 8.2       | 6.5       | 5.0       |

Die zugegebene MSB-Menge entspricht je Stamm 7.98E+07 KbE / g Ausgangsmaterial

#### HV3

Tabelle 7: Übersicht über die Ansätze des HV3

|   |          | FG<br>[g] | Glu 91%<br>[g] | Lb.p<br>[ml] | Lb.c<br>[ml] | Pc.a<br>[ml] | Lb.p<br>[KbE/g] | Lb.c<br>[KbE/g] | Pc.a<br>[KbE/g] |
|---|----------|-----------|----------------|--------------|--------------|--------------|-----------------|-----------------|-----------------|
| 1 | FG       | 400.0     | 0              | 0            | 0            | 0            | 0               | 0               | 0               |
| 2 | 1.00E+06 | 391.2     | 8.8            | 0.161        | 0.103        | 0.095        | 1.00E+06        | 1.00E+06        | 1.00E+06        |
| 3 | 3.00E+06 | 391.2     | 8.8            | 0.482        | 0.308        | 0.286        | 3.00E+06        | 3.00E+06        | 3.00E+06        |
| 4 | 9.00E+06 | 391.2     | 8.8            | 1.446        | 0.923        | 0.859        | 9.00E+06        | 9.00E+06        | 9.00E+06        |
| 5 | 2.70E+07 | 391.2     | 8.8            | 4.337        | 2.769        | 2.578        | 2.70E+07        | 2.70E+07        | 2.70E+07        |
| 6 | 8.10E+07 | 391.2     | 8.8            | 13.012       | 8.308        | 7.733        | 8.10E+07        | 8.10E+07        | 8.10E+07        |

## 3.2.3 Analytik

**Druck/Gasentstehung:** Der Druck in der Soda-Clubflasche wird während der Fermentationszeit täglich gemessen. Durch das bekannte Volumen der Gasphase in der Flasche kann das entstandene Gasvolumen berechnet werden Dieses wird bei Normalbedingungen angegeben ( $p_0 = 101'325 \text{ Pa}$ ;  $T_0 = 273.15 \text{ K}$ ). Dazu wird folgende Formel verwendet: pV = nRT. Das entstandene Gas wird anschliessend in einen Gassack abgelassen und mit dem Manometer analysiert. Dazu ist jedoch eine Gasmenge von mindestens einem Liter notwendig.



Abbildung 4: Gasvolumen

pH: Nach der Gasmessung wird der pH-Wert direkt im Reaktionsbehälter gemessen. Gemessen wird vor der Fermentation und täglich während der 12 tägigen Fermentationszeit. Nach der Messung wird die Flasche 2 Mal mit der Vakuumpumpe auf -700 mbar evakuiert und mit N₂ geflutet. Anschliessen werden die Flaschen wieder bei 37 ℃ g eschüttelt. Nach 30 min wird das durch den Temperaturanstieg ausgedehnte Gas aus der Flasche abgelassen.

**HPLC / GC:** Die Proben werden in 50 ml Falcon-Tubes 15 min bei 9'000 U/min zentrifugiert. Der Überstand wird anschliessend in ein neues 50 ml Falcon Tube geleert und bei -18 ℃ gelagert. Für die Analyse werden die Proben bei Raumtemperatur aufgetaut und in 15 ml Falcon Tubes bei 12'000 U/min zentrifugiert. Der Überstand wird mit 20 ml Spritzen durch 0.45 μm Filteraufsätze gepresst.

Die genauen Analyse-Methoden für GC und HPLC können dem Anhang auf den Seiten 53 und 54 entnommen werden.

**Titrierbare Gesamtsäure:** Wird vor und nach der Fermentation ermittelt. Die unfiltrierten Proben werden mit  $H_2O$  déion. im Verhältnis 1:1 verdünnt und im Kühlschrank auf 4-6  $^{\circ}$ C abgekühlt. Anschliessend werden sie mit 0.1 molarer NaOH bis zum pH 8.3 (Umschlagspunkt Phenolphthalein) titriert.

**Trockenrückstand:** Die Proben werden in Aluschalen gefüllt, so dass der Boden überall bedeckt ist. Anschliessend werden sie im Trockenschrank bei 105 ℃ über Nacht getrocknet.

Organische Trockenmasse: Den TR wird im Mörser zerkleinert und gleichmässig in eine Aluschale verteilt. Anschliessend wird ca. 2 ml Ethanol 70 % zugegeben und entzündet. Dann wird die Aluschale mit TR 60 Minuten im vorgeheizten Muffelofen bei 550 ℃ verglüht. Die Schalen werden entnommen und im Exsikkator ausgekühlt.

Geruch: Der Geruch wird vor und nach der Fermentation mit der menschlichen Nase beurteilt.

**OD600**: Die Bakteriensuspension wird 25-fach verdünnt. Dazu wird 5 ml der Bakteriensuspension in einem 25 ml Messkolben mit Medium auf 25 ml aufgefüllt. Davon werden 0.8 ml entnommen und zusammen mit 3.2 ml Medium in eine Küvette gegeben. Dann wird mit einem Photospektrometer die Extinktion bei einer Wellenlänge von 600 nm ermittelt. Als Nullwert wird das Medium gemessen.

## 4 Resultate

## 4.1 Vorversuche 2 (VV2)

## 4.1.1 Fragestellung

Die Vorversuche 2 wurden durchgeführt, um abzuklären, ob Fischgülle einer Laktofermentation unterzogen werden kann. Auch soll abgeklärt werden, ob das tägliche öffnen der Ansätze den Versuch beeinflussen. Deshalb wurde die tägliche pH-Messung nur bei den Ansätzen 1,2,3 und 4 durchgeführt. Die Ansätze mit der Zusatzbezeichnung D wurden während der 12 tägigen Fermentationszeit nicht geöffnet. Die Rohdaten des VV2 befinden sich im Anhang ab Seite 55.

## 4.1.2 pH-Verlauf und Gasentwicklung



Abbildung 5: pH-Verlauf des VV2

Der pH der Ansätze 2 und 4 mit 10 % Glukose sinkt schon am 1. Tag massiv ab (Abbildung 5). Bei Ansatz 4 auf einen Wert von 3.69. Nach der 12 tägigen Fermentationszeit weist Ansatz 2 einen pH von 3.47 auf und befindet sich noch am Sinken. Ansatz 4 stabilisiert sich nach 5 Tagen bei einem pH-Wert von 3.59. Die Ansätze 1 und 3 ohne Glukose stabilisieren sich bis zum Ende der Messung nicht. Ihr pH verläuft fast identisch. Nur, dass der Ansatz mit MSB aufgrund des sauren Mediums bei einem tieferen Wert startet. Ohne Glukose beträgt der minimale Messwert 5.45 nach 5 Tagen. Danach steigt der pH wieder an, wobei die Zunahme am Schluss am höchsten ist (siehe Anhang Seite 56).



Abbildung 6: Durchschnittliche Gasentwicklung des VV2

Die Ansätze 2 und 4, mit 10% Glukose, haben während 2 Tagen eine hohe CO<sub>2</sub> Entwicklung (Abbildung 6). Diese ist bei Ansatz 4 am höchsten und beträgt am 4. Tag 1.5 I/Tag. Ab dem 8. Tag stabilisiert sich die Gasentwicklung bei Werten zwischen -21 und 8 ml/Tag. Die Ansätze 1 und 3 stabilisieren sich bis zu Messende nicht. Die Gasentwicklung steigt gegen Schluss bei Ansatz 1 auf 67 ml/Tag an. Bei Ansatz 3 auf 129 ml/Tag.

Tabelle 8: Gesamte durchschnittliche Gasentwicklung während den 12 Tagen [ml]

| FG  | FG / 10% Glu | FG / MSB | FG / 10% Glu / MSB |
|-----|--------------|----------|--------------------|
| 384 | 2172         | 687      | 2549               |

Die gesamte Gasentwicklung während den 12 Tagen ist bei den Ansätzen mit 10 % Glukose am höchsten. MSB führt zu einer höheren Gasentwicklung (Tabelle 8).

## 4.1.3 TR/oTR



Abbildung 7: TR des VV2; rechts der Endwert in Abhängigkeit vom Startwert

Durch die Fermentation nimmt der TR bei den Ansätzen 2 und 4 stärker ab, als bei 1 und 3 ohne Glukose (Abbildung 7). Der Vergleich zwischen Ansatz 2 und 4 zeigt, dass der TR durch die Zugabe von MSB, im Vergleich zum Startwert, um ca. 15 % mehr auf 55 % abnimmt.



Abbildung 8: oTR des VV2; rechts der Endwert in Abhängigkeit vom Startwert

Der oTR ist bei den Ansätzen mit Glukose höher als bei den Anderen (Abbildung 8). Der oTR am Fermentationsende beträgt bei den Ansätzen 1-3 zwischen 86 % und 92 % vom Startwert. Bei Ansatz 4 beträgt er mit 81 % vom Startwert am wenigsten.

## 4.1.4 Lactat / flüchtige Fettsäuren



Abbildung 9: Übersicht über die Endwerte der FFS des VV2 (FFS im Detail siehe Anhang Seite 57)

Bei den Versuchen 2 und 4 Milchsäure ist entstanden (Abbildung 9). Beim 2 ist auch noch eine grosse Menge Buttersäure entstanden. Die 3. Häufigste FFS ist Acetat, gefolgt von Propionat. Bei Versuch 4 sind nach Abzug von Laktat am wenigsten FFS entstanden (Tabelle 9).

Tabelle 9: Durchschnittliche Summe der FFS ohne Lactat bei Fermentationsende [mg/l]

| FG    | FG / 10% Glu | FG / MSB | FG / 10% Glu / MSB |
|-------|--------------|----------|--------------------|
| 3'588 | 7'128        | 3'137    | 1'600              |

Lactat: Wird nur bei den Versuchen 2 und 4 gebildet. Beim Ansatz 4 wird mehr als 21 g/l gebildet.

**Acetat**: Beim Ansatz 2 wird am wenigsten gebildet. Auffallend ist, dass Ansatz 3-D am Ende kein Acetat aufweist.

**Propionat**: Ansatz 4 bildet am wenigsten Propionat. Grundsätzlich kann gesagt werden, dass die Zugabe von Glukose und/oder die Zugabe von MSB dazu führt, dass weniger Propionat gebildet wird.

Isobutyrat: Wird nur bei den Ansätzen 1 und 3 gebildet.

**Butyrat**: Bei Ansatz 4 ist die Endkonzentration mit 93 mg/l am tiefsten. Bei Ansatz 1 beträgt sie schon 400 mg/l. Bei Ansatz 2 ist sie am höchsten und beträgt mehr als 5.2 g/l.

**Isovaleriat**: Wird vor allem bei den Ansätzen 1 und 3 gebildet. Bei Ansatz 4 ist die Endkonzentration mit 10 mg/l sehr gering.

Valeriat: Wird vor allem bei Ansatz 1 (154 mg/l) und Ansatz 3 (326 mg/l) gebildet. Bei Ansatz 4 beträgt die Endkonzentration 13 mg/l.

Capronat: Wird bei Ansatz 3 und 2-D gebildet. Bei Ansatz 4 ist die Endkonzentration am kleinsten.

#### 4.1.5 Fazit VV2

Die VV2 zeigen, dass mit FG eine Laktofermentation durchgeführt werden kann. Die Versuchsreihe mit der Bezeichnung D weist keine regelmässigen Abweichungen von den täglich geöffneten Ansätzen auf. Somit kann gesagt werden, dass die Analysen keinen Einfluss auf die Versuche haben.

## 4.2 HV1

## 4.2.1 Fragestellung

Aus den VV2 ist bekannt, dass die FG mit Zugabe von Glukose und MSB stabilisiert werden kann. Ein Problem ist jedoch noch die hohe CO<sub>2</sub>-Entwicklung, welche auf Glukose zurückzuführen ist. Die Hauptversuche 2 sollen nun die optimale Glukosekonzentration im Fermentationsmaterial abklären. Nachfolgend die Resultate des HV1. Die Rohdaten dazu befinden sich im Anhang ab Seite 58.

## 4.2.2 pH-Verlauf / Gasentwicklung



Abbildung 10: Durchschnittlicher pH-Verlauf des HV1

Bei einer Zugabe von 2.5 % bis 10 % Glukose besteht kein Unterschied im pH-Verlauf (Abbildung 10). Der pH der Ansätze 3-6 sinkt in den ersten 24 h bereits unter einen Wert von 3.86 und stabilisiert sich nach 3 Tagen bei Werten zwischen 3.61 bis 3.71 (Anhang Seite 59).

Die Kontrollen 1 und 2 verhalten sich in den ersten 8 Tagen gleich (Ansatz 2 startet aufgrund der MSB jedoch bei einem tieferen pH-Wert). Anschliessend steigt der pH an und befindet sich nach 12 Tagen auf einem Wert von 6.9, Tendenz steigend. Ansatz 1 beginnt nach 10 Tagen zu steigen und befindet sich nach 12 Tagen auf einem Wert von 6.5, Tendenz steigend. Der tiefste Wert beträgt 5.46 am 2. Tag.



Abbildung 11: Durchschnittliche Gasentwicklung des HV1

Bei Glukosekonzentrationen von mehr als 2.5 % nimmt die Gasentwicklung mit der Glukosekonzentration zu (Abbildung 11). Bei den Ansätzen 5b und 6b ist die CO<sub>2</sub>-Entwicklung am 5. Und 6. Tag so hoch, dass der maximale Messwert des Manometers von 5.194 bar überschritten wird. Daraufhin wird die Druckmessung für die Versuche 4-6 abgebrochen. Ansatz 3 mit 2.5 % Glukose

pendelt sich ab dem 3. Tag bei einem Wert zwischen -2 und 20 ml/Tag ein. Bei Ansatz 1 entsteht ab dem 10, bei Ansatz 2 ab dem 9. Tag Methangas.

#### 4.2.3 TR/oTR



Abbildung 12: TR des HV1; rechts der durchschnittliche Endwert in Abhängigkeit vom Startwert

Der Start-TR steigt, je mehr Glukose zugegeben wird (Abbildung 12). Der TR am Fermentationsende ist bei den Ansätzen 3-6 mit Glukose ungefähr gleich gross. Daher ist der End-TR im Vergleich zum Startwert kleiner, je mehr Glukose zugegeben wird.



Abbildung 13: oTR des HV1; rechts der durchschnittliche Endwert in Abhängigkeit vom Startwert

Der oTR der Ansätze 3-6 steigt, je mehr Glukose zugegeben wird (Abbildung 13). Der oTR nach Fermentationsende beträgt bei diesen Ansätzen um die 62 %. Beim Ansatz 3 mit 2.5 % Glukose beträgt der oTR nach der Fermentation noch 98 % des Startwerts. Bei den Versuchen 3-6 nimmt er im Verhältnis zum Startwert stärker ab, je mehr Glukose enthalten ist.



## 4.2.4 Lactat / flüchtige Fettsäuren

Abbildung 14: Übersicht über die durchschnittlichen Endwerte der FFS des HV1 (FFS im Detail Anhang Seite 60)

Abbildung 14 zeigt, dass nach der Fermentation alle Ansätze mit Glukose eine Laktatkonzentration von über 20 g/l aufweisen. Während bei den beiden Kontrollen 1+2 sämtliche FFS vertreten sind, sind es bei den Ansätzen 3-6 neben dem Laktat vor allem Acetat, Propionat und Buttersäure.

Tabelle 10: Durchschnittliche Endkonzentration der FFS ohne Laktat der HV1 [mg/l]

| FG    | FG/MSB | 2.5% Glu MSB | 5% Glu MSB | 7.5% Glu MSB | 10% Glu MSB |
|-------|--------|--------------|------------|--------------|-------------|
| 2'205 | 2'131  | 1'958        | 1'822      | 1'689        | 1'481       |

Nachfolgend die FFS im Detail. Falls nicht anders angegeben, handelt es sich bei den Wertangaben um durchschnittliche Endwerte der Ansätze a+b.

**Lactat**: Wird bei den Ansätzen 3-6 gebildet. Am meisten bei Ansatz 6 mit 23.4 g/l. Mit der Glukosekonzentration steigt auch der Produktion von Lactat.

**Acetat:** Wird vor allem bei den Ansätzen 3-6 gebildet. Die höchste Endkonzentration hat Ansatz 3 mit 1.17 g/l. Mit Erhöhung der Glukosekonzentration sinkt die Endkonzentration des Acetats. Ansatz 6 hat nur noch 0.93 g/l. Bei Ansatz 2 beträgt die Endkonzentration ca. ¼ des Startwertes.

**Propionat**: Bei den Ansätzen 3-6 beträgt die Endkonzentration zwischen 516 mg/l und 456 mg/l. Mit Erhöhung der Glukosekonzentration nimmt Propionat tendenziell leicht ab. Bei den Ansätzen 1 (888 mg/l) und 2 (880 mg/l) beträgt die Konzentration ca. gleich viel. Nur MSB ohne Glukose hat also keinen Einfluss.

Isobutyrat: Wird vor allem bei den Versuchen 1 (113 mg/l) und 2 (170 mg/l) gebildet.

**Butyrat:** Am höchsten ist die Endkonzentration bei Ansatz 1 mit 436 mg/l. Von Ansatz 3 (239 mg/l) bis Ansatz 6 (76 mg/l) nimmt sie ziemlich gleichmässig ab.

Isovaleriat: Wird vor allem bei den Ansätzen 1 (201 mg/l) und 2 (230 mg/l) gebildet.

Valeriat: Wird vor allem bei den Ansätzen 1 (177 mg/l) und 2 (313 mg/l) gebildet.

Capronat: Wird nur bei den Ansätzen 1 (20 mg/l) und 2 (71 mg/l) gebildet.

## 4.2.5 Fazit HV1

Die HV1 zeigen, dass bei Glukosekonzentrationen von 2.5 % bis 10 % eine Milchsäuregärung stattfindet. Bei 2.5 % Glukose findet auch die extreme CO<sub>2</sub>-Entwicklung nicht statt. Die minimale Glukosekonzentration welche für eine Laktofermentation benötigt wird, konnte noch nicht ermittelt werden. Daher ist es noch nicht möglich zu sagen, wie viel Glukose der Fermentation optimaler Weise zugegeben werden soll.

## 4.3 Hauptversuche 2

## 4.3.1 Fragestellung

Die Hauptversuche 2 werden durchgeführt, um die minimale Glukosekonzentration zu ermitteln, welche für eine Laktofermentation von Fischgülle benötigt wird. Nachfolgend sind die Resultate des HV2 aufgeführt. Die Rohdaten befinden sich im Anhang ab Seite 61.

## 4.3.2 pH-Verlauf / Gasentwicklung



Abbildung 15: Durchschnittlicher pH-Verlauf des HV2

Der pH der Versuche 5+6 fällt innert 24 h auf einen Wert kleiner 4 (Abbildung 15). Ansatz 5 pendelt sich bei einem Wert von 3.76 ein und Ansatz 6 stabilisiert sich bei einem Wert von 3.63. Bei den Ansätzen 2-5 fällt der pH am ersten Tag auch, doch am 2. Tag beginnt er schon wieder zu steigen und befindet sich am 12. Tag bei einem Wert von 5.29 bis 5.41. Ansatz 1 fällt am ersten

Tag auf 5.52 und steigt dann bis zum 11. Tag kontinuierlich auf einen Wert von 5.74 an. Am 12 Tag beträgt der pH 6.14, Tendenz steigend (Anhang Seite 62).



Abbildung 16: Durchschnittliche Gasentwicklung des HV2

Ansatz 3 weist am 3. Tag und Ansatz 4 am 5. und 6. Tag eine CO<sub>2</sub>-Entwicklung von über 450 ml pro Tag auf (Abbildung 16). Weiter ist die CO<sub>2</sub>-Entwicklung am 1. Tag grösser, wenn mehr Glukose im Fermentationsmaterial enthalten ist. Die Ansätze 5 und 6 pendeln sich ab dem 10. Tag auf einem Wert zwischen -1 ml/Tag und 2 ml/Tag ein. Auf der anderen Seite steigt bei den Ansätzen 1 und 2 die Gasentwicklung ab dem 10. Tag an. Die totale durchschnittliche Gasentwicklung ist bei den Ansätzen mit 2% und 2.5% Glukose am geringsten (Tabelle 11).

Tabelle 11: Gesamte durchschnittliche Gasentwicklung über die 12 Tage [ml]

| FG  | 0.5% Glu / MSB | 1% Glu / MSB | 1.5% Glu / MSB | 2% Glu / MSB | 2.5% Glu / MSB |
|-----|----------------|--------------|----------------|--------------|----------------|
| 604 | 598            | 1192         | 1555           | 494          | 496            |

## 4.3.3 TR / oTR



Abbildung 17: TR des HV2; rechts der durchschnittliche Endwert in Abhängigkeit vom Startwert

Der Start-TR steigt mit Zugabe von Glukose (Abbildung 17). Bei Ansatz 4 mit 1.5 % Glukose nimmt der TR im Vergleich zum Startwert am meisten ab. Bei Ansatz 5 mit 2 % Glukose am wenigsten.



Abbildung 18: oTR des HV2; rechts der durchschnittliche Endwert in Abhängigkeit vom Startwert

Der oTR steigt durch Zugabe von Glukose an (Abbildung 18). Der oTR beträgt beim Ansatz 4 92 % vom Startwert und nimmt somit am meisten ab. Die Ansätze 5 und 6 sind mit 99 % vom Startwert praktisch unverändert.

## 4.3.4 Lactat / flüchtige Fettsäuren



Abbildung 19: Übersicht über die durchschnittlichen Endwerte der FFS des HV2 (FFS im Detail Anhang Seite 64)

Abbildung 19 zeigt, dass nur bei einer Glukosekonzentration von 2 % - 2.5 % Lactat gebildet wird. Bei den Ansätzen 3 und 4 wird vor allem Butyrat gebildet, bei Ansatz 1+2 vor allem Acetat. Bis zu einer Glukosekonzentration von 1.5 % werden sämtliche FFS gebildet, bei 5 und 6 vor allem Lactat, Acetat Propionat und Butyrat. Bei den Ansätzen 5+6 werden am wenigsten FFS gebildet, wenn Lactat abgezogen wird (Tabelle 12).

Tabelle 12: Summe der FFS ohne Lactat [mg/l]

| FG   | 0.5% Glu / MSB | 1% Glu / MSB | 1.5% Glu / MSB | 2% Glu / MSB | 2.5% Glu / MSB |
|------|----------------|--------------|----------------|--------------|----------------|
| 4983 | 7746           | 10919        | 12702          | 3194         | 3165           |

Nachfolgend die FFS im Detail. Falls nicht anders angegeben, handelt es sich bei Wertangaben um durchschnittliche Endwerte der Ansätze a+b.

Lactat: Wird nur bei den Ansätzen 5 (17.4g/l) und 6 (19.9 g/l) gebildet.

**Acetat**: Am wenigsten wird bei den Ansätzen 4 bis 6 gebildet (1.37 -1.43 g/l), am meisten bei Ansatz 2 (3.72 g/l).

Propionat: Am meisten wird bei Ansatz 4 gebildet (2.1 g/l), am wenigsten bei Ansatz 2 (0.9 g/l).

**Isobutyrat**: Von Ansatz 1 (180 mg/l) bis Ansatz 4 (578 mg/l) nimmt die Endkonzentration stetig zu. Bei Ansatz 5+6 wird kein Isobutyrat gebildet.

**Butyrat**: Die Ansätze 5 (647 mg/l) und 6 (591 mg/l) weisen die niedrigste Endkonzentration auf. Bei 3 (5.7 g/l) und 4 (7.7 g/l) ist sie am höchsten.

**Isovaleriat**: Bei den Ansätzen 1 (323mg/l) bis 4 (141 mg/l) nimmt die Konzentration stetig ab. Bei 5+6 wird kein Isovaleriat gebildet.

**Valeriat**: Bei den Ansätzen 5 (25 mg/l) und 6 (21 mg/l) ist die Konzentration am geringsten. Bei Ansatz 2 (711 mg/l) am höchsten.

**Capronat**: Bei den Ansätzen 5 und 6 wird keine Capronat gebildet. Bei Ansatz 1 (40 mg/l) wenig. Bei den Ansätzen 2 bis 4 zwischen 762mg/l und 492 mg/l.

## 4.3.5 Fazit HV2

Die minimale Glukosekonzentration, welche für die Laktofermentation von Fischgülle benötigt wird, beträgt 2 % Glukose.

## 4.4 Hauptversuche 3 (HV3)

## 4.4.1 Fragestellung

Der optimale prozentuale Anteil von Glukose im Fermentationsmaterial ist nach HV1 und HV2 bekannt und beträgt 2 % bis 2.5 %. Nun soll diese Versuchsreihe noch abklären, mit welcher Anzahl MSB die Laktofermentation angeimpft werden muss, damit sie gut abläuft. Nachfolgend sind die Resultate des HV3 aufgeführt. Die Rohdaten dazu befinden sich im Anhang ab Seite 65.

## 4.4.2 pH-Verlauf / Gasentwicklung



Abbildung 20: Durchschnittlicher pH-Verlauf des HV3

Der Start-pH ist tiefer, je mehr MSB dazugegeben werden (Abbildung 20). Dies aufgrund des sauren Mediums. Je mehr MSB zugegeben werde, desto schneller sinkt der pH des Fermentationsmaterials ab. So beträgt der pH der höchsten MSB-Konzentration nach einem Tag 3.62, der pH der niedrigsten MSB-Konzentration nach einem Tag4.63. Am 2. Tag befindet sich der pH aller Ansätze mit MSB auf einem Wert kleiner 4. Ab dem 3. Tag stabilisieren sich die Ansätze 2-6 auf Werten zwischen 3.42 und 3.62, wobei der tiefste pH der höchsten MSB Zugabe entspricht. Die Kontrolle 1 stabilisiert sich nicht (Anhang 66).



Abbildung 21: Durchschnittliche Gasentwicklung des HV3

Am ersten Tag besteht die höchste CO<sub>2</sub>-Entwicklung (Abbildung 21). Sie beträgt zwischen 675 ml/Tag und 143 ml/Tag, wobei sie umso höher ist, je weniger MSB zum Animpfen verwendet werden. Die Kontrolle 1 entwickelt am Anfang am wenigsten CO<sub>2</sub>. Ab dem 6. Tag verlaufen die Ansätze 2-6 praktisch identisch und stabilisieren sich ab dem 9. Tag bei Werten zwischen 2 und 5 ml/Tag.

Tabelle 13: Gesamte entstandene Gasmenge in 12 Tagen [ml]

| FG  | 1.00E+06 | 3.00E+06 | 9.00E+06 | 2.70E+07 | 8.10E+07 |
|-----|----------|----------|----------|----------|----------|
| 917 | 967      | 837      | 730      | 557      | 267      |

Je höher die MSB-Konz. zum Animpfen ist, desto weniger CO<sub>2</sub> wird während der Laktofermentation produziert (Tabelle 13), da sich die Gasentwicklung schneller auf einem tiefen Wert einpendelt.

## 4.4.3 TR / oTR



Abbildung 22: TR des HV3; rechts der durchschnittliche Endwert in Abhängigkeit von Startwert

Der Start TR nimmt durch die Verdünnung mit dem Medium ab, je mehr MSB zugegeben werden. Der End-TR nimmt von Ansatz 2 (4.47 %) bis Ansatz 6 (4.82 %) stetig zu. Je mehr MSB zum Animpfen zugegeben werden, desto höher ist der Endwert im Vergleich zu Startwert (Abbildung 22).



Abbildung 23: oTR des HV3; rechts der durchschnittliche Endwert in Abhängigkeit vom Startwert

Der End-oTR nimmt minim zu, je mehr MSB zugegeben werden (von 83.4 % auf 85.9 %). Der End-oTR bewegt sich bei allen Ansätzen zwischen 97.3 % und 100 % vom Startwert (Abbildung 23).

# 4.4.4 Lactat / flüchtige Fettsäuren



Abbildung 24: Übersicht über die durchschnittlichen Endwerte der FFS des HV3 (FFS im Detail Anhang Seite 67)

Abbildung 24 zeigt, dass sich bei den Ansätzen 2 bis 6 Lactat bildet. Weiter entsteht vor allem Acetat, Butyrat und Propionat. Je mehr MSB zugegeben werden, desto weniger FFS ausser Lactat entstehen (Tabelle 14).

Tabelle 14: Summe der FFS ohne Lactat [mg/l]

| FG    | 1.00E+06 | 3.00E+06 | 9.00E+06 | 2.70E+07 | 8.10E+07 |
|-------|----------|----------|----------|----------|----------|
| 2'471 | 4'862    | 4'336    | 3'838    | 3'033    | 1'749    |

Nachfolgend die FFS im Detail. Falls nicht anders angegeben, handelt es sich bei Wertangaben um durchschnittliche Endwerte der Ansätze a+b.

Lactat: Entsteht nur bei den Ansätzen 2 (12.3 g/l) bis 6 (17.2 g/l) und nimmt gleichmässig zur MSB-Konzentration zu.

**Acetat**: Entsteht bei den Ansätzen 2 (1.83 g/l) bis 6 (0.92 g/l). Je höher die MSB-Zahl beim Animpfen ist, desto weniger Acetat entsteht. Bei der Kontrolle 1 nimmt Acetat ab.

**Propionat**: Wird vor allem bei der Kontrolle 1 gebildet.

**Isobutyrat**: Wird vor allem bei der Kontrolle 1 gebildet.

**Butyrat**: Wird bei Ansätzen 2 (1.9 g/l) bis 6 (193 mg/l) gebildet. Endkonzentration nimmt ab, je mehr MSB zum Animpfen verwendet werden.

**Isovaleriat**: Wird vor allem bei Kontrolle 1 gebildet.

**Valeriat**: Wird bei Ansatz 1 (187 mg/l) bis Ansatz 5 (39mg/l) gebildet. Je mehr MSB zum Animpfen verwendet werden, desto weniger entsteht.

**Capronat**: Wird bei Ansatz 2 (244 mg/l) bis 5 (11 mg/l) gebildet. Je mehr MSB zum Animpfen verwendet werden, desto weniger entsteht.

#### 4.4.5 Fazit HV3

Die Milchsäuregärung läuft bei allen angeimpften Ansätzen ab. Bei einer höheren Anzahl zum Animpfen steigt die Lactatkonzentration an und sinkt die Butyrat- und Acetatkonzentration ab.

## 4.5 Langzeitstabilität

Die Ansätze 5 und 6 des HV2, bei welchen die Laktofermentation erfolgreich ist, werden anaerob bei 37 ℃ für 3 Wochen weiter geschüttelt. Anschlie ssend werden nochmals die Analysen durchgeführt und mit den Resultaten vom Fermentationsende verglichen. Die Rohdaten dazu befinden sich im Anhang auf Seite 63.



Abbildung 25: Durchschnittliche Veränderung der Ansätze 5+6 des HV2, 3 Wochen nach Fermentationsende

Der pH steigt bei beiden Ansätzen leicht an. Bei Ansatz 5 mit 0.2 Einheiten mehr wie bei Ansatz 6 (0.11). Die TGS steigt bei beiden Ansätzen an bei Ansatz 6 um 9.97 mmol/g. Der TR steigt bei beiden Ansätzen leicht an, der oTR sinkt bei beiden Ansätzen leicht ab (Abbildung 25).



Abbildung 26: Durchschnittliche Veränderung der FFS der Ansätze 5+6 des HV2, 3 Wochen nach Fermentationsende. Ohne Lactat.

Bei Ansatz 5 sinkt Lactat um 340 mg/l ab, während Acetat (+80 mg/l) und Butyrat (+126 mg/l) ansteigen. Bei Ansatz 6 verhält es sich genau umgekehrt. Bei 6 steigt Lactat um 1470 mg/l an, während Acetat (-40 mg/l) und Butyrat (-112.1 mg/l) sinken. Propionat sinkt bei beiden Ansätzen ab. Bei 6 (-150.3 mg/l) stärker. Auffallend bei Ansatz 5 sind auch die Zunahmen von Valeriat (+35.7 mg/l) und Capronat (+23.4 mg/l). Isovaleriat verändert sich bei beiden Ansätzen nicht signifikant (Abbildung 26).

# 5 Diskussion

# 5.1 Einfluss der Glukose-Konzentration

### 5.1.1 pH-Verlauf / Gasvolumen

Ab 2 % Glukose im Gärgut sinkt der pH bereits am ersten Tag auf einen Wert von < 4. Dies ist für eine optimale Stabilisierung notwendig. Denn unterhalb einem pH-Wert von 4.5 werden Clostriden gehemmt (Thöni, 1988). Oberhalb von 2 % Glukose stabilisiert sich der pH bei einem Wert unter 3.78.

Bei 2 % Glukose wird über die Fermentationsdauer von 12 Tagen am wenigsten Gas gebildet. Dies ist für die Lagerung in einem verschlossenen Kübel und wegen der kleinsten Gärverluste am besten geeignet.

Bei Glukoseanteilen im Gärgut von 5 %, 7.5 % und 10 % wird nach 4 Tagen eine starke CO<sub>2</sub>-Entwicklung beobachtet. Dies, obwohl der pH-Wert bereits zwischen 3.6 und 3.7 liegt. Die Ursache dafür könnte eine Hefe sein, welche die übriggebliebene Glukose vergärt. Bei Grassilagen ist das oftmals ein Problem, wenn in der Silage hohe Restzuckergehalte enthalten sind, wie sie bei einer rein homofermentativen Silierung auftreten können (BARNETT, PAYNE & YARROW, 2000). Nach Thöni (1988) können Hefen bis zu einem pH-Wert von 3 auftreten.

Interessant ist, dass bei 1 % und 1.5 % ein gleichzeitiger Anstieg des pH und der CO<sub>2</sub>-Entwicklung stattfindet. Die CO<sub>2</sub>-Entwicklung wird durch die Buttersäuregärung ausgelöst. Der pH steigt vermutlich an, weil durch die Umwandlung von Glukose die Substratbelastung sinkt, was zu einem geringeren H<sub>2</sub>-Partialdruck führt (Bischofberger et al., 2005). Die gebildete Buttersäure liegt aufgrund des pKs von 4.82 in undissoziiertem Zustand vor (Banemann, 2010).

#### 5.1.2 Trockenrückstände

Bei 2 % und 2.5 % Glukose wird im Vergleich zum Startwert am wenigsten TR und oTR abgebaut. Dies wird als optimal erachtet, da dies am wenigsten Gärverluste bedeutet.

Bei 5 % bis 10 % nimmt die Abnahme des TR und des oTR mit der Glukosekonzentration zu. Dies, weil der Restzucker zu CO<sub>2</sub> umgewandelt wird.

Bei den Glukosekonzentrationen von 1 % und 1.5 % nimmt der TR und oTR im Vergleich zum Startwert ab. Dies hängt mit der Buttersäuregärung zusammen, welch die Glukose umsetzt, wobei CO<sub>2</sub> und H<sub>2</sub> entsteht.

#### 5.1.3 FFS und Lactat

Lactat wird erst ab einem Glukoseanteil von 2 % im Gärsubstrat gebildet. Grundsätzlich kann gesagt werden, je mehr Glukose im Substrat enthalten ist, desto mehr Lactat wird gebildet. Die restlichen flüchtigen Fettsäuren nehmen ab, je mehr Lactat gebildet wird. So wird von 2.5 % bis 10 % Glukose neben Lactat noch Acetat und Propionat gebildet. Die restlichen FFS sind nicht mehr nennenswert. Voraussetzung dafür ist jedoch, dass der pH bereits am ersten Tag auf einen Wert unter 4 sinkt und das Gärgut mit MSB angeimpft wird.

Wenn im Gärgut 1 % und 1.5 % Glukose enthalten ist, wird vor allem Butyrat gebildet. Dies wird auf eine ungenügende pH-Absenkung am Anfang zurückgeführt. Nach Bischofberger et al., (2005) ist die Zusammensetzung der org. Gärsäuren sehr stark vom Substrat abhängig. Herrscht ein Substratüberschuss, führt die zu höheren Wasserstoffpartialdrücken (schwach saurer pH). Dies führt zur vermehrten Bildung von Propion- und Buttersäure. Wenn der pH unter 4.5 liegt, wird vorwiegend Milchsäure gebildet.

Bei einem Glukoseanteil von 0.5 % im Gärsubstrat wird hauptsächlich Acetat gebildet. Wenn während der Versäuerungsphase eine geringe Substratbelastung herrscht, wird durch den niedrigen Wasserstoffpartialdruck ( $p_{H2}$  < 10-4; neutraler pH) vorwiegend Essigsäure,  $H_2$  und  $CO_2$  aus der Glukose gebildet (Bischofberger et al., 2005).

Isovaleriat, Valeriat und Capronat werden überwiegend bei 0.5 % bis 1.5 % Glukose gebildet. Und zwar am meisten bei 0.5 % und am wenigsten bei 1.5 % Glukose. Dies hängt wieder mit dem Wasserstoffpartialdruck zusammen. Denn je höher der Wasserstoffpartialdruck ist, desto mehr reduzierte Verbindungen wie Propion-, Butter- Valerian oder Capronsäure werden gebildet (SCHERER, 1995).

### 5.1.4 Geruch

Ab einer Glukose Konzentration von 2 % riecht das Gärgut Silage ähnlich. Wegen dem intensiven säuerlichen Geruch konnten keine Unterschiede festgestellt werden.

Unterhalb von 2 % Glukose riecht das Gärgut unverkennbar faulig nach Mist.

### 5.1.5 .Empfohlene Glukose-Konzentration

Empfohlen wird eine Glukosekonzentration im Gärgut von 2 %. Der pH pH liegt nach 24 h bei einem Wert von 3.91 und stabilisiert sich anschliessend bei einem Wert von 3.77. Dies ist die geringste getestete Glukose-Konzentration, bei welcher die Laktofermentation noch abläuft. Die Gasentwicklung und der Massenverlust sind bei dieser Konzentration am geringsten.

# 5.2 Einfluss der Anzahl MSB als Starterkultur

Dieser Abschnitt bezieht sich auf den HV3. Die Versuche wurden mit einer Glukosekonzentration von 2 % durchgeführt.

### 5.2.1 pH-Verlauf / Gasvolumen

Der pH sinkt umso schneller ab, je mehr MSB zum Animpfen verwendet werden. Wird mit mehr als 2.7E+07 KbE/g Stamm angeimpft, sinkt der pH-Wert bereits am ersten Tag auf einen Wert <4. Bei 9.0E+06 KbE/g je Stamm und weniger, sinkt der pH erst am 2 Tag auf einen Wert kleiner 4.

Solange der pH höher als 4.5 liegt, werden flüchtige Fettsäuren gebildet. Dies ist mit einer CO<sub>2</sub>und H<sub>2</sub>- Entwicklung verbunden (Cimatoribus, C., Fischer, K. & Kranert, M. 2010). Je höher die Anzahl MSB beim Animpfen ist, desto weniger Gasentwicklung findet während der Fermentation statt. Deshalb ist in diesem Fall die Anzahl von 8.1E+07 am besten geeignet.

### 5.2.2 Trockenrückstände

Der TR nimmt im Vergleich zum Startwert mehr ab, wenn mit weniger MSB angeimpft wird. Dies ist auf den verzögerten Eintritt der homofermentativen Milchsäuregärung zurückzuführen, welche kein CO<sub>2</sub> produziert (siehe Kapitel 2.2.).

### 5.2.3 FFS

Grundsätzlich kann gesagt werden, dass die Lactatkonzentration im Gärgut steigt, je mehr MSB zum Animpfen verwendet werden. Gleichzeitig nehmen Essigsäure und Buttersäure ab. Dies ist wiederum auf die Wasserstoffpartialdrücke im Gärgut zurückzuführen. Bei geringem H<sub>2</sub>-Partialdruck wird zuerst Essigsäure gebildet. Anschliessend sinkt der pH und es wird Buttersäure gebildet, bis der pH unter 4.5 fällt. Dann wird Milchsäure produziert (Bischofberger et al., 2005).

#### 5.2.4 Geruch

Alle angeimpften Ansätze riechen Silage ähnlich. Wegen dem intensiven teils stechenden Geruch konnten keine Unterschiede festgestellt werden.

Die Kontrolle riecht unverkennbar faulig nach Mist.

# 5.2.5 Empfohlene Anzahl MSB als Starterkultur

Hier müssen einige Faktoren gegeneinander abgewogen werden. Auf der einen Seite haben wir die schnelle pH-Absenkung und die damit verbundene geringe Gasentwicklung, wenn das Gärgut

mit 8.1E+07 KbE/g je Stamm angeimpft wird. Auf der anderen Seite wird mehr Medium für die Anzucht der Bakterien benötigt. Bei 8.1E+07 KbE/g je Stamm wird pro kg Gärgut 75 ml M.R.S.-Broth benötigt.

Dazu kommt, dass es für die Langzeitstabilität ev. von Vorteil sein kann, wenn im Gärgut mehr Essig- und Buttersäure enthalten ist. Denn bei einer Silage liegt die Milchsäure (pKs = 3,86) bei einem pH von 3.3 - 4.2 grösstenteils dissoziiert vor. Essigsäure als schwache Säure (pKs = 4.75) liegt jedoch grösstenteils undissoziiert vor (Banemann, 2010). Und nach (Adams & Hall, 1988) sind es die undissoziierten Säuren, welche die eigentliche Hemmwirkung auslösen.

Aufgrund dieser Faktoren wird als Starterkultur eine Anzahl von 2.7E+07 KbE/g je Stamm empfohlen. Dies entspricht 25 ml Medium für 1 kg Gärgut.

# 5.3 Einfluss der Temperatur

Die Versuche wurden im Labor bei 37 ℃ durchgeführt. Die Temperatur wurde aufgrund der Möglichkeiten im Labor so gewählt, damit alle Ansätze unter gleichen Bedingungen, geschüttelt ablaufen können. Nun stellt sich die Frage, welche Veränderungen zu erwarten sind, wenn die Versuche bei 20 ℃ durchgeführt werden.

Die Versäuerungs- und Acetogene-Bakterien haben eine optimale enzymatische und mikrobielle Aktivität bei 35  $^{\circ}$ C und 55  $^{\circ}$ C (Cimatoribus, C., Fis cher, K. & Kranert, M. 2010). Aus diesem Grund kann man davon ausgehen, dass sich der pH bei tieferen Temperaturen nicht so schnell absenkt.

Bei der Versäuerung saccharidhaltiger Abwässer kann ein Einfluss der Temperatur auf die Stoffwechselprodukte nachgewiesen werden. Bei Temperaturen kleiner 30 °C wird das Gleichgewicht in Richtung Milch-, Propion- und Buttersäure verschoben. Bei Temperaturen über 30 °C wird überwiegend Essig- und Buttersäure gebildet (Taddigs, 2000). Bei den in dieser Arbeit durchgeführten Versuchen wurde deutlich mehr Acetat und Butyrat als Propionat gebildet. Es kann also angenommen werden, dass bei tieferen Temperaturen mehr Lactat und Propionat gebildet wird.

# 5.4 Langzeitstabilität

Die Langzeitstabilität wurde nur bei den Ansätzen getestet, welche erfolgreich einer Laktofermentation unterzogen wurden. Dies war bei HV1 (bei 2.5 % Glukose) und HV2 (2 % und 2.5 % Glukose) der Fall.

Der Ansatz der HV1 wurde aerob aufbewahrt und verschimmelte während des Tests. Dies ist darauf zurückzuführen, dass durch die Sauerstoffzufuhr der pH anstieg und Schimmelsporen aktiviert wurden.

Bei 2 % Glukose sinkt die Lactatkonzentration, während Acetat und Butyrat gebildet werden. Bei 2.5 % Glukose verhält es sich genau umgekehrt. Auffallend bei 2 % Glukose sind auch die Zunahmen von Valeriat und Capronat. Der pH der beiden Ansätze hat sich nur minim um 0.1 bis 0.2 erhöht. Bei 2 % Glukose ist ev. Eine Sekundärgärung abgelaufen, welche Lactat in Butyrat umwandelt. Hier sind weitere Versuche durchzuführen (ist mit den HV3 im Gange).

# 5.5 Vergleichende Betrachtung mit Resultaten aus der Literatur

Die Veterinärmedizinische Fakultät in Leipzig führte Versuche zur Laktofermentation von Kuhdung mit EM durch. Die Resultate der FFS werden mit den Resultaten aus dem HV2 verglichen. Interessant ist, dass beim Ansatz mit EM bei 37 °C die Lac tatkonzentration geringer ist als bei 21 °C. Die Begründung nach Krüger & Scheinemann, (2010) ist, dass das Lactat von Lactatspaltern verstoffwechselt wird. Dies erklärt auch die erhöhte Buttersäurekonzentration. Der Vergleich von EM; 37 °C und dem HV2 zeigt, dass die Laktofermentation be sser abläuft, wenn mit MSB-Reinkulturen angeimpft wird und die Gärung homofermentativ abläuft.

Tabelle 15: Vergleich zwischen den Endwerten der FFS des HV2 (2 % und 2.5 % Glukose bei 37  $^{\circ}$ C) und einer Laktofermentation von Kuhdung mit EM bei 21  $^{\circ}$ C und 37  $^{\circ}$ C (Krüger & Scheinemann, 2010).

|                             | EM ; 21 ℃ | EM ; 37 ℃ | HV2; 5<br>2 % Glu | HV2; 6<br>2.5 % Glu |
|-----------------------------|-----------|-----------|-------------------|---------------------|
| Milchsäure [g/kg OS]        | 26.0      | 6.7       | 17.4              | 19.9                |
| Essigsäure [g/kg OS]        | 11.2      | 9.8       | 1.4               | 1.4                 |
| Propionsäure [mg/kg OS]     | 2000      | 1290      | 1105              | 1089                |
| i-Buttersäure [mg/kg OS]    | 100       | 90        | 14                | 13                  |
| n-Buttersäure [mg/kg OS]    | 900       | 4690      | 647               | 591                 |
| i-Valerisansäure [mg/kg OS] | 100       | 100       | 23                | 21                  |
| n-Valerisansäure [mg/kg OS] | < 50      | 790       | 25                | 21                  |
| n-Capronsäure [mg/kg OS]    | < 50      | 2670      | 11                | NN                  |

Die TUHH Hamburg macht Versuche im Bereich "Terra Preta Sanitation". Eine Erkenntnis von Yemaneh et al., (2012) ist, dass die Laktofermentation von menschlichen Fäzes besser abläuft, wenn zum Animpfen *Lb. plantarum*, *Lb. casei* und *Pe. acidilactici* kombiniert verwendet werden. Bei Versuchen mit Fäzes erreichten sie bei Raumtemperatur einen pH von 3.92 und eine Milchsäurekonzentration von 38.73 g/l. Die Versuche in dieser Arbeit erreichten mit einem pH zwischen 3.42 und 3.81 tiefere Werte, bildeten jedoch mit maximal 23.4 g/l weniger Lactat. Die Ursache für den tieferen pH-Wert wird in der höheren Temperatur und der damit zusammenhängenden höheren Aktivität der Versäuerungsbakterien gesehen (Cimatoribus, C., Fischer, K. & Kranert, M. 2010). Die höhere Lactat-Konzentration könnte aufgrund der Fermentation bei einer Temperatur unter 30 °C entstanden sein (Taddigs, 2000).

# 5.6 Weiteres Vorgehen zur Anwendung auf der UrbanFarm

Die Versuche haben gezeigt, dass mit Fischgülle eine Laktofermentation durchführbar ist. Es fehlen jedoch die praktischen Versuche. Diese sollten schnellst möglich durchgeführt werden, um abzuklären, ob die Laktofermentation auch bei 20 ° ungeschüttelt abläuft. Aufgrund der Aussagen in Kapitel 5.3 und 5.5 ist nicht mit grösseren Schwierigkeiten zu rechnen. Abzuklären ist auch die Langzeitstabilität dieser Versuche.

Ein weiterer wichtiger Punkt ist auch das Handling der MSB. In diesen Versuchen wurden die drei Stämme immer kombiniert zum Animpfen verwendet, weil die Laktofermentation so am effektivsten abläuft (Yemaneh et al., 2012). Ev. wäre es für die UrbanFarmers einfacher, nur mit einem Stamm zu arbeiten. Deshalb wäre es sinnvoll, eine Versuchsreihe durchzuführen, bei welcher jeder Stamm einzeln zum Animpfen verwendet wird. Wenn der pH auch am ersten Tag unter einen Wert von 4 fällt, könnte auch mit diesem Stamm alleine gearbeitet werden. Weiter muss abgeklärt werden, wie die Fischgülle angeimpft werden soll. Ev. ist es möglich, direkt mit den tiefgefrorenen MSB anzuimpfen, ohne dass sie in frisches Medium überimpft werden.

Wichtig, im Hinblick auf eine Kompostierung des fermentierten Materials, ist die Abklärung, ob die benötigten 10 % Kohle für eine "Terra Preta"-ähnliche Komposterde schon vor der Fermentation zugegeben werden sollen. Interessant dabei ist, dass durch die Zugabe der Kohle der Geruch des Gärguts noch besser unterdrückt wird (Yemaneh et al., 2012). Ev. kann dann mit weniger MSB angeimpft werden, ohne dass es durch die erhöhte FFS-Konzentration zu Geruchsemmissionen kommt.

### 5.7 Fazit

Die Versuche zeigen, dass die Fischgülle durch Laktofermentation stabilisiert werden kann.

Empfohlen wird eine Glukosekonzentration im Gärgut von 2 %. Der pH liegt nach 24 h bei einem Wert von kleiner als 4 und stabilisiert sich anschliessend bei einem Wert unter 3.8. Als Starterkultur wird eine Anzahl von 2.7E+07 KbE/g je Stamm empfohlen. Dies entspricht 25 ml Medium für 1 kg Gärgut.

# 6 Literaturverzeichnis

- ADAMS, M. R., HALL, C. J., (1988). Grothw inhibition of foodborne pahtogens by lactic and acetic acids and their mixutres. International Journal of Food Science & Technology, 23(3), S. 287 291.
- Axelsson, L. (2004). Lactic Acid Bacteria: Classification and Physiology. In S. Salminen, A. Wright & A. Ouwehand (Hrsg.), Lactic Acid Bacteria Microbial and Functional Aspects (Third Edition). New York: Marcel Dekker, Inc.
- Banemann. D. (2010).Einfluss der Silierung und des Verfahrensablaufs der Biomassebereitstellung auf den Methanertrag unter Berücksichtigung eines Milchsäurebakteriensiliermittels.
- BARNETT, J. A., PAYNE, R.W. & YARROW, D., (2000). Yeasts Characteristics and identification. Mycopathologia, 149(3), S159-160.
- Bischofsberger, W., Dichtl, N., Rosenwinkel, K. H., Seyfried, C. F. & Böhnke, B. (2005). Anaerobtechnik. Berlin: Springer.
- Brookes, R. M. & Buckle, A. E. (1992). Lactic acid bacteria in plant silage. In: J. Thaysen (Hrsg.), Einfluss von Milchsäurebakterien (Lactobacillus plantarum) und Melasse auf die Qualität von Grassilagen und die Leistung von Milchkühen.
- Cimatoribus, C., Fischer, K. & Kranert, M. (2010). Biologische Verfahren. In: M. Kranert & K. C. Landwehr (Hrsg.), Einführung in die Abfallwirtschaft (4. Auflage). Wiesbaden: Vieweg + Teubner.
- Deshmukh, A. C. & Patterson, P. H. (1997). Preservation of Hatchery Waste by Lactic Acid Fermentation. 1. Laboratory Scale Fermentation. Poultry Science, 76(9), S. 1212-19.
- El-Jalil, M.H., Zinedine, A. & Faid, M. (2008). Some Microbiological and Chemical Properties of Poultry Wastes Manure After Lactic Acid Fermentation. Int. Journal of Agriculture & Biology, 10(4), S. 405–411
- Factura, H., Bettendorf, T., Buzie, C., Pieplow, H., Reckin, J. & Otterpohl, R. (2010). Terra Preta Sanitation: re-discovered from an ancient Amazonian civilisation integrating sanitation, bio-waste management and agriculture.
- Faid, M., Zouiten, A., Elmarrakchi, A. & Achkari-Begdouri A. (1997). Biotransformation of fish waste into a stable feed ingredient. Food Chemistry, 60(1), S. 13-18.
- Henderson, A. R. & McDonald, P. (1984). The effect of a range of commercial inoculants on the biochemical changes during the ensilage of grass in laboratory studies. In: J. Thaysen

- (Hrsg.), Einfluss von Milchsäurebakterien (Lactobacillus plantarum) und Melasse auf die Qualität von Grassilagen und die Leistung von Milchkühen.
- Krüger, M. & Scheinemann, H. (2010). Labor- und Felduntersuchung zur Abfall-/Klärschlammverwertung aus dezentralen Abwasserbehandlungen für die Herstellung hochwertiger Schwarzerdeböden (Terra Preta).
- Kulawik, M. (2012). Lebensmittel von der Dachfarm. Haustech, 25 (1/2), S. 53-54.
- Lang, V., Looser, S. & Kühbauch, W. (1972). Zum Einfluss einiger Faktoren auf auf den Gehalt an löslichen Kohlenhydraten im Aufwuchs einer Weidelgras-Weisskleeweide. In: J. Thaysen (Hrsg.), Einfluss von Milchsäurebakterien (Lactobacillus plantarum) und Melasse auf die Qualität von Grassilagen und die Leistung von Milchkühen.
- Mayo, B., Piekarczyk, T. A., Fernández, M., Kowalczyk, M., Álvarez, P. & Bardowsky, J. (2010). Updates in the Metabolism of Lactic Acid Bacteria. In: F. Mozzi, R. R. Raya & G. M. Vignolo (Hrsg.). Iowa: Wiley-Blackwell.
- McDonald P., Henderson, N. & Heron, S. (1991). The biochemistry of silage, II. Edition. In: J. Thaysen (Hrsg.), Einfluss von Milchsäurebakterien (Lactobacillus plantarum) und Melasse auf die Qualität von Grassilagen und die Leistung von Milchkühen.
- Pahlow, G. & Honig, H. (1986). Wirkungsweise und Einsatzgrenzen von Silage-Impfkulturen aus Milchsäurebakterien. In: J. Thaysen (Hrsg.), Einfluss von Milchsäurebakterien (Lactobacillus plantarum) und Melasse auf die Qualität von Grassilagen und die Leistung von Milchkühen.
- Pitt, R.E., (1992). Microbial and enzymatic additives for ensiling. In: J. Thaysen (Hrsg.), Einfluss von Milchsäurebakterien (Lactobacillus plantarum) und Melasse auf die Qualität von Grassilagen und die Leistung von Milchkühen.
- Presser, K. A., Ratkowsky, D. A., & Ross, T. (2007). Modelling the Growth Rate of Escherichia coli as a Function of pH and Lactic Acid Concentration. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 63 (6), S. 2355–2360.
- Sato, H., Hirose, T., Kimura, T., Moriyama, Y. & Nakashimab, Y. (2001). Analysis of malodorous volatile substances of human waste: Feces and urine. Journal of Health Science, 47(5), S. 483-490.
- SCHERER P., (1995). Vergärung. In: Thomé-Kozmiensky, K. J. (Hrsg.), Biologische Abfallbehandlung. Berlin: EF-Verlag für Energie- und Umwelttechnik.
- Schmidt, L., Weissbach, F., Wernecke, K. D. & Hein, E. (1971). Erarbeitung von Parametern für die Vorhersage und Steuerung des Gärverlaufs bei der Grünfuttersilierung. In: J. Thaysen

- (Hrsg.), Einfluss von Milchsäurebakterien (Lactobacillus plantarum) und Melasse auf die Qualität von Grassilagen und die Leistung von Milchkühen.
- Schweizerischer Bauernverband (2012). Statistik zu Produktion und Verbrauch von Fisch. © BFS Statistisches Lexikon der Schweiz.
- TADDIGS, T. (2000). Untersuchung der Versäuerung und des Einsatzes von Hydrozyklonen in In: D. Anaerobanlagen. Banemann (Hrsg.), Einfluss der Silierung und des Verfahrensablaufs der Biomassebereitstellung Methanertrag auf den unter Berücksichtigung eines Milchsäurebakteriensiliermittels.
- Thaysen, J. (2001). Einfluss von Milchsäurebakterien (Lactobacillus plantarum) und Melasse auf die Qualität von Grassilagen und die Leistung von Milchkühen.
- Thöni, E. (1988): Lebensgrundlagen von Mikroorganismen. In: D. Banemann (Hrsg.), Einfluss der Silierung und des Verfahrensablaufs der Biomassebereitstellung auf den Methanertrag unter Berücksichtigung eines Milchsäurebakteriensiliermittels.
- Wang, Q., Narita, J., Xie, W., Ohsumi, Y., Kusano, K., Shirai, Y. & Ogawa, H. I. (2002). Effects of anaerobic/aerobic incubation and storage temperature on preservation and deodorization of kitchen garbage. Bioresource Technology, 84(3), S. 213-220.
- Weinberg, Z. G. & Muck, R. E. (1996). New trends and opportunities in the development and use of inoculants for silage. FEMS Microbiology Reviews, 19(1), S. 53–68.
- Weissbach, F. & Honig, H. (1996). Über die Vorhersage und Steuerung des Gärverlaufs bei der Silierung von Grünfutter aus extensivem Anbau. In: J. Thaysen (Hrsg.), Einfluss von Milchsäurebakterien (Lactobacillus plantarum) und Melasse auf die Qualität von Grassilagen und die Leistung von Milchkühen.
- Yang, S.Y., Ji, K.S., Baik, Y.H., Kwak, W.S. & McCaskey T.A. (2005). Lactic acid fermentation of food waste for swine feed. Bioresource Technology, 97(15), S. 1858–1864.
- Yemaneh, A., Bulbo, M., Factura, H., Buzie, C. & Otterpohl, R. (2012). Development of System for Waterless Collection of Human Excreta by Application of Lactic Acid Fermentation Process in Terra Preta Sanitation System. Unveröffentlicht.

# Verzeichnis der Bilder

Abbildung 1: Wege des Glukose Metabolismus. A. Homofermentativ; B. Mixed-acid Metabolismus; C. Heterofermentativ; D. Leloir Weg (Mayo et al., 2010) ......11 Abbildung 5: pH-Verlauf des VV2 .......21 Abbildung 9: Übersicht über die Endwerte der FFS des VV2 (FFS im Detail siehe Anhang Seite 57)......23 Abbildung 10: Durchschnittlicher pH-Verlauf des HV1 ......25 Abbildung 12: TR des HV1; rechts der durchschnittliche Endwert in Abhängigkeit vom Startwert......26 Abbildung 13: oTR des HV1; rechts der durchschnittliche Endwert in Abhängigkeit vom Startwert .......26 Abbildung 14: Übersicht über die durchschnittlichen Endwerte der FFS des HV1 (FFS im Detail Anhang Seite 60).... 27 Abbildung 15: Durchschnittlicher pH-Verlauf des HV2 .......28 Abbildung 18: oTR des HV2; rechts der durchschnittliche Endwert in Abhängigkeit vom Startwert ......30 Abbildung 19: Übersicht über die durchschnittlichen Endwerte der FFS des HV2 (FFS im Detail Anhang Seite 64).... 30 Abbildung 23: oTR des HV3; rechts der durchschnittliche Endwert in Abhängigkeit vom Startwert ......33 Abbildung 24: Übersicht über die durchschnittlichen Endwerte der FFS des HV3 (FFS im Detail Anhang Seite 67).... 34 Abbildung 25: Durchschnittliche Veränderung der Ansätze 5+6 des HV2, 3 Wochen nach Fermentationsende ....... 35 Abbildung 26: Durchschnittliche Veränderung der FFS der Ansätze 5+6 des HV2, 3 Wochen nach Fermentationsende.

# **Tabellenverzeichnis**

| Tabelle 1: Hemmwirkung von <i>Lb. plantarum</i> und <i>Pe. acidilactici</i> auf Bakterien, abgeandert (El-Jalil, Zinedine | & Faid, |
|---------------------------------------------------------------------------------------------------------------------------|---------|
| 2008)                                                                                                                     | 12      |
| Tabelle 2: Inhaltsstoffe in g/I                                                                                           | 15      |
| Tabelle 3: Elementaranalyse des TR der verwendeten Fischgülle [% vom TR]                                                  | 16      |
| Tabelle 4: Übersicht über die Ansätze des VV2                                                                             | 18      |
| Tabelle 5: Übersicht über die Ansätze des HV1                                                                             | 18      |
| Tabelle 6: Übersicht über die Ansätze des HV2                                                                             | 18      |
| Tabelle 7: Übersicht über die Ansätze des HV3                                                                             | 19      |
| Tabelle 8: Gesamte durchschnittliche Gasentwicklung während den 12 Tagen [ml]                                             | 22      |
| Tabelle 9: Durchschnittliche Summe der FFS ohne Lactat bei Fermentationsende [mg/l]                                       | 23      |
| Tabelle 10: Durchschnittliche Endkonzentration der FFS ohne Laktat der HV1 [mg/l]                                         | 27      |
| Tabelle 11: Gesamte durchschnittliche Gasentwicklung über die 12 Tage [ml]                                                | 29      |
| Tabelle 12: Summe der FFS ohne Lactat [mg/l]                                                                              | 30      |
| Tabelle 13: Gesamte entstandene Gasmenge in 12 Tagen [ml]                                                                 | 33      |
| Tabelle 14: Summe der FFS ohne Lactat [mg/l]                                                                              | 34      |
| Tabelle 15: Vergleich zwischen den Endwerten der FFS des HV2 (2 % und 2.5 % Glukose bei 37 °C) und einer                  |         |
| Laktofermentation von Kuhdung mit EM bei 21 °C und 37 °C (Krüger & Scheinemann, 2010)                                     | 41      |

# **Anhang**

# Kontaktinformationen MSB

Kontaktinformation: Nadine Tollens

University Gent - Faculty of Sciences

BCCMtm/LMG Bacteria Collection

B-9000 Gent

Tel. +32-9-2645107

Nadine.Tollens@UGent.be

BCCM: http://bccm.belspo.be/

Birgit Oechslin

ZHAW Wädenswil

CH-8810 Wädenswil

Tel. +41-58-9345480

oech@zhaw.ch

# **Verwendete Materialien**

### **Bakterien**

# Präparation

- Autoklav CV-EL 18 I GS der CERTOCLAV Sterilizer GmbH
- Flow Bench von Köttermann
- Bunsenbrenner
- Glasstab
- Glasschneider
- Pasteurpipetten
- Kolbenhubpipette mit 1000 µl Spitzen
- Schüttler
- 6 x 200 ml Erlenmeyerkolben
- Alufolie
- Spatel

# Kulturerhaltung

- Gefrierschrank -86 ℃
- sterile 20 ml Einwegspritze
- steriler 0.45 µm Filteraufsatz für Spritze
- 15 x 15 ml Falcon Tubes

### Animpfen

- Autoklav CV-EL 18 I GS der CERTOCLAV Sterilizer GmbH
- Flow Bench von Köttermann
- Schüttler
- Kolbenhubpipette mit 1000 µl Spitzen
- 3 x 200 ml Erlenmeyerkolben
- 3 x 300 ml Erlenmeyerkolben
- Alufolie

### Versuche

- Soda-Club Flaschen
- Gummistopfen
- Spritzennadel (Kanüle)
- Hahn
- Swiffel

- Alu Verschraubdeckel
- Schüttler
- 1 I Glasschottflaschen mit Deckel
- Laborwaage von Mettler Toledo Genauigkeit 0.01 g
- Trichter
- Spatel
- Pipetten
- Membranvakuumpumpe
- Digitales Manometer LEO 2 von Keller Genauigkeit 0,1 % FS
- N<sub>2</sub>-Flasche

# **Analytik**

### **Druckmessung**

- Manometer LEO 2 von Keller Genauigkeit 0,1 % FS
- Dräger X-am 7000
- 3 I SKC-Gas Säcke

### pH-Messung

- Metrohm pH-Meter 691
- Membranvakuumpumpe
- N<sub>2</sub>-Flasche
- Manometer LEO 2 von Keller Genauigkeit 0,1 % FS

### HPLC / GC

- 50 ml Falcon Tubes
- Hettich Zentrifuge Universal 320 R
- Gefrierschrank -18 ℃
- 15 ml Falcon Tubes
- 20 ml Einwegspritzen
- 0.45 µm Filteraufsätze
- Vials

### Titrierbare Gesamtsäure

- 100 ml Bechergläser
- Magnetrührer mit Rührstäbchen
- Metrohm pH-Meter 691
- Dosimat 665 von Metrohm

- Laborwaage von Mettler Toledo Genauigkeit 0.01 g
- 25 ml Messzylinder
- Kühlschrank 4-6 ℃

### TR / oTR

- Aluschalen
- Waage von Mettler Toledo PJ360 Delta Range Genauigkeit bis 60 g 0.001 g
- Heraeus Trockenschrank UT6120
- Heraeus Muffelofen MR170
- Exikator
- Greifzange
- Streichhölzer

### **OD600**

- Spectrophotometer Hach Lange DR3800
- 3 x 25 ml Messkolben
- 5 ml Kolbenhubpipette mit Spitzen
- 1 ml Kolbenhubpipette mit Spitzen
- Greiner Küvetten

# Belebung der gefriergetrockneten Bakterien



Cultures need at least two times subculturing before they can be optimally used in experiments.

Freeze dried cultures stored in their intact glass ampoules at  $4^{\circ}C$  to  $6^{\circ}C$  in the dark, generally remain viable for many years after production.

# Bestimmung von organischen Säuren mittels Gas Chromatographie (GC)

| Säule                   | HP_Innovax Länge 60 m, ID 0.25 und Film 0.25 μm Aglilent, Art.Nr. 19091N-136m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |  |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| Detektor                | FID (250 ℃ Wasserstoff 25 ml/min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |  |
| Trägergas               | Wasserstoff, const. Flow 2.3 ml/min, Druck 150 kPa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |  |
| Inlett                  | Split 5:1, 200 ℃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |  |  |
| Temperatur<br>Programm  | 60 ℃ Hold 3 Min, Rampe 5 ℃/min 230 ℃, Hold 5 Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |  |  |
| Injectionsvolumen       | 1 μΙ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |  |  |
| Retentions-Zeit         | nsäure: 16.4 Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |  |  |
|                         | uttersäure: 17.1 Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |  |  |
|                         | Buttersäure: 18.5 Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |  |
|                         | Isovaleriansäure: 19.5 Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |  |
|                         | Valeriansäure: 21.0 Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |  |
|                         | Hexansäure: 23.3 Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |  |  |
|                         | Int. Std. Oenantsäure: 25.5 Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |  |
| Proben-<br>vorbereitung | 0.6 g Kaliumchlorid werden in einem 8 ml Vial mit Schraubverschluss vorgelegt. 3 ml Gülle und 60 µl Phosphorsäure 85 % werden dazu pipettiert. Die Vials werden geschlossen und so lange geschüttelt, bis sich das Kaliumchlorid gelöst hat.  Danach werden 3 ml Hexan MTBE 1:1 mit 50 mg/l Oenantsäure (interner Standard) dazu pipettiert. Die Vials müssen schnell geschlossen werden, um eine Verdunstung des Lösungsmittels zu vermeiden. Die Proben werden geschüttelt und anschliessend so lange stehen gelassen, bis sich die zwei Phasen trennen.  Die obere Phase wird für die Analytik verwendet. |  |  |  |  |  |  |  |  |  |  |

# **Bestimmung von Lactat und Acetat mittels HPLC**

| Säule              | Aminex HPX-87H Ion Exclusion Column 300 x 7.8 mm, 9 µm<br>Bio-Rad Nr.: 125-0140 |
|--------------------|---------------------------------------------------------------------------------|
| Vorsäule           | Micro-Guard Catio-Cartridge, Bio-Rad Nr.: 125-0129                              |
| Detektor           | Brechungsindex-Detektor                                                         |
| Eluent             | 2.5 mmol/l H <sub>2</sub> SO <sub>4</sub>                                       |
| Fluss              | 0.6 ml/Min                                                                      |
| Temperatur         | 40 ℃                                                                            |
| Injectionsvolumen  | 25 μΙ                                                                           |
| Kalibration HPLC   | Lactat: 200 - 30'000 mg/l                                                       |
|                    | Acetat: 200 - 30'000 mg/l                                                       |
| Retentions-Zeit    | Lactat: ≈13 Min                                                                 |
|                    | Acetat: ≈15 Min                                                                 |
| Probenvorbereitung | Die Proben werden 1:1 verdünnt, filtriert und direkt eingespritzt.              |

# Rohdaten der Vorversuche 2

### Startwerte

|                      |     | рН   | titr. Säure | TR     | oTR    | Lactat | Acetat | Propionat | Isobutyrat | Butyrat | Isovaleriat | Valeriat | Capronat | Geruch       |
|----------------------|-----|------|-------------|--------|--------|--------|--------|-----------|------------|---------|-------------|----------|----------|--------------|
|                      |     |      | [mmol/l]    | [%]    | [%]    | [g/l]  | [g/I]  | [mg/l]    | [mg/l]     | [mg/l]  | [mg/l]      | [mg/l]   | [mg/l]   |              |
| FG                   | 1   | 6.07 | 11.33       | 5.42%  | 56.52% | NN     | 0.76   | 284       | NN         | 67      | NN          | NN       | NN       | Gülle / Mist |
| FG                   | 1-D | 6.07 | 11.33       | 5.33%  | 56.89% | 0.36   | 1.14   | 266       | NN         | 62      | NN          | NN       | NN       | Gülle / Mist |
| FG / 10% Glu         | 2   | 6.12 | 12.64       | 13.73% | 84.37% | 0.26   | 0.58   | 457       | NN         | 110     | 15          | 11       | NN       | Gülle / Mist |
| FG / 10% Glu         | 2-D | 6.12 | 12.64       | 13.56% | 83.23% | 0.24   | 0.58   | 418       | NN         | 95      | NN          | 11       | NN       | Gülle / Mist |
| FG / MSB             | 3   | 5.50 | 24.32       | 5.14%  | 58.11% | 1.92   | 1.02   | 358       | NN         | 87      | 11          | NN       | NN       | Gülle / Mist |
| FG / MISB            | 3-D | 5.50 | 24.32       | 5.29%  | 58.32% | 1.82   | 0.96   | 279       | NN         | 65      | NN          | NN       | NN       | Gülle / Mist |
| FC / 400/ Cli. / MSB | 4   | 5.44 | 24.18       | 11.79% | 82.63% | 1.76   | 0.86   | 342       | NN         | 72      | NN          | NN       | NN       | Gülle / Mist |
| FG / 10% Glu / MSB   | 4-D | 5.44 | 24.18       | 12.05% | 83.20% | 1.74   | 0.82   | 260       | NN         | 54      | NN          | NN       | NN       | Gülle / Mist |

### **Endwerte**

|                    |     | рН   | titr. Säure | TR     | oTR    | Lactat | Acetat | Propionat | Isobutyrat | Butyrat | Isovaleriat | Valeriat | Capronat | Geruch       |
|--------------------|-----|------|-------------|--------|--------|--------|--------|-----------|------------|---------|-------------|----------|----------|--------------|
|                    |     |      | [mmol/l]    | [%]    | [%]    | [g/l]  | [g/l]  | [mg/l]    | [mg/l]     | [mg/l]  | [mg/l]      | [mg/l]   | [mg/l]   |              |
| FG                 | 1   | 6.05 | 13.17       | 4.66%  | 48.78% | NN     | 2.16   | 908       | 82         | 405     | 133         | 157      | 26       | Gülle / Mist |
| F-G                | 1-D | 6.10 | 17.63       | 4.82%  | 49.45% | NN     | 1.56   | 891       | 89         | 443     | 146         | 154      | 24       | Gülle / Mist |
| FG / 10% Glu       | 2   | 3.47 | 257.79      | 10.54% | 75.31% | 14.7   | 0.88   | 397       | NN         | 5205    | NN          | 15       | 34       | Silage       |
| FG / 10 /6 Glu     | 2-D | 3.54 | 246.10      | 9.50%  | 76.39% | 17.4   | 0.42   | 469       | NN         | 6466    | 16          | 40       | 315      | Silage       |
| FG/MSB             | 3   | 6.70 | 8.25        | 4.30%  | 53.28% | NN     | 1.84   | 705       | 131        | 904     | 181         | 347      | 157      | Gülle / Mist |
| FG / WISB          | 3-D | 6.76 | 12.99       | 4.44%  | 51.27% | NN     | NN     | 661       | 129        | 597     | 177         | 326      | 119      | Gülle / Mist |
| FG / 10% Glu / MSB | 4   | 3.59 | 171.41      | 6.53%  | 66.44% | 21.34  | 1.06   | 400       | NN         | 95      | 10          | 12       | 10       | Silage       |
| FG/ 10/0 Glu/ MSB  | 4-D | 3.61 | 184.47      | 6.55%  | 67.60% | 22.2   | 1.12   | 368       | NN         | 91      | 10          | 13       | 12       | Silage       |

pH-Verlauf

|                    |   | Start | 1. Tag | 2. Tag | 3. Tag | 4. Tag | 5. Tag | 6. Tag | 7. Tag | 8. Tag | 9. Tag | 10. Tag | 11. Tag | 12. Tag |
|--------------------|---|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|---------|
| FG                 | 1 | 6.07  | 5.72   | 5.57   | 5.49   | 5.55   | 5.52   | 5.55   | 5.59   | 5.62   | 5.63   | 5.67    | 5.78    | 6.05    |
| FG / 10% Glu       | 2 | 6.12  | 4.57   | 4.26   | 4.33   | 4.65   | 4.30   | 3.97   | 3.78   | 3.68   | 3.62   | 3.56    | 3.51    | 3.47    |
| FG / MSB           | 3 | 5.50  | 5.79   | 5.66   | 5.56   | 5.48   | 5.45   | 5.48   | 5.50   | 5.54   | 5.60   | 5.72    | 6.68    | 6.70    |
| FG / 10% Glu / MSB | 4 | 5.44  | 3.69   | 3.55   | 3.53   | 3.61   | 3.59   | 3.59   | 3.57   | 3.59   | 3.58   | 3.58    | 3.59    | 3.59    |

### **Druck-Verlauf**

|                     |     | 1. Tag | 2. Tag | 3. Tag | 4. Tag | 5. Tag | 6. Tag | 7. Tag | 8. Tag | 9. Tag | 10. Tag | 11. Tag | 12. Tag |
|---------------------|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|---------|
|                     | 1   | i. iug | z. rug | o. rug | 4. Tug | o. rug | o. rug | 7. Tug | o. rug | J. Tug | 10. 149 | in rug  | 12. Tug |
| FG                  | 1   | 104    | 26     | 108    | 28     | 29     | 17     | 73     | 6      | 27     | 27      | 31      | 84      |
|                     | 1-D | 209    | 10     | 63     | 15     | 20     | 11     | 35     | 14     | 22     | 26      | 46      | 116     |
| FG / 10% Glu        | 2   | 524    | 86     | 224    | 820    | 853    | 43     | 109    | 0      | 18     | 7       | -6      | 18      |
| FG / 10 / Glu       | 2-D | 465    | 230    | 151    | 752    | 1535   | 352    | 47     | 3      | -1     | -8      | -20     | 5       |
| FG/MSB              | 3   | 157    | 93     | 54     | 20     | 36     | 14     | 55     | 2      | 26     | 46      | 102     | 218     |
| FG / WISB           | 3-D | 179    | 48     | 26     | 9      | 48     | 23     | 60     | 43     | 98     | 219     | 318     | 171     |
| FG / 10% Glu / MSB  | 4   | 187    | 58     | 1636   | 2308   | 92     | 27     | 80     | 0      | 3      | -2      | -24     | 12      |
| FG / 10% GIU / WISB | 4-D | 58     | 63     | 207    | 2154   | 650    | 74     | 30     | 1      | -1     | -4      | -38     | -4      |

# FFS der VV2 im Detail



# Rohdaten HV1

# Startwerte

|                     |   | рН   | titr. Säure | TR     | oTR    | Lactat | Acetat | Propionat | Isobutyrat | Butyrat | Isovaleriat | Valeriat | Capronat | Geruch       |
|---------------------|---|------|-------------|--------|--------|--------|--------|-----------|------------|---------|-------------|----------|----------|--------------|
|                     |   |      | [mmol/l]    | [%]    | [%]    | [g/l]  | [g/I]  | [mg/l]    | [mg/l]     | [mg/l]  | [mg/l]      | [mg/l]   | [mg/l]   |              |
| FG                  | 1 | 5.96 | 13.63       | 6.66%  | 52.10% | NN     | 0.66   | 280       | NN         | 57      | 15          | 12       | NN       | Gülle / Mist |
| FG / MSB            | 2 | 5.49 | 21.17       | 6.61%  | 53.87% | 0.96   | 0.82   | 256       | NN         | 50      | 11          | NN       | NN       | Gülle / Mist |
| FG / 2.5% Glu / MSB | 3 | 5.45 | 21.35       | 8.37%  | 64.05% | 0.8    | 0.54   | 246       | NN         | 48      | 9           | NN       | NN       | Gülle / Mist |
| FG / 5% Glu / MSB   | 4 | 5.49 | 21.48       | 10.65% | 71.39% | 0.78   | 0.58   | 303       | 10         | 52      | 10          | NN       | NN       | Gülle / Mist |
| FG / 7.5% Glu / MSB | 5 | 5.47 | 21.32       | 13.07% | 75.99% | 1.54   | 0.94   | 390       | NN         | 69      | 14          | NN       | NN       | Gülle / Mist |
| FG / 10% Glu / MSB  | 6 | 5.48 | 21.43       | 15.21% | 79.93% | 1.04   | 0.58   | 287       | NN         | 59      | 12          | 10       | NN       | Gülle / Mist |

# **Endwerte**

|                      |    | рН   | titr. Säure | TR    | oTR    | Lactat | Acetat | Propionat | Isobutyrat | Butyrat | Isovaleriat | Valeriat | Capronat | Geruch       |
|----------------------|----|------|-------------|-------|--------|--------|--------|-----------|------------|---------|-------------|----------|----------|--------------|
|                      |    |      | [mmol/l]    | [%]   | [%]    | [g/I]  | [g/I]  | [mg/l]    | [mg/l]     | [mg/l]  | [mg/l]      | [mg/l]   | [mg/l]   |              |
| FG                   | 1a | 6.40 | 6.97        | 6.29% | 48.64% | 1.02   | 0.74   | 1012      | 95         | 379     | 179         | 163      | 18       | Gülle / Mist |
| rG                   | 1b | 6.60 | 5.61        | 6.31% | 48.64% | 0.32   | NN     | 763       | 131        | 493     | 224         | 191      | 22       | Gülle / Mist |
| FG / MSB             | 2a | 6.92 | 3.63        | 6.05% | 49.33% | 0.66   | 0.2    | 979       | 180        | 318     | 235         | 325      | 72       | Gülle / Mist |
| FG / WISB            | 2b | 6.88 | 3.45        | 6.07% | 48.89% | 0.66   | 0.24   | 780       | 160        | 174     | 225         | 301      | 70       | Gülle / Mist |
| FG / 2.5% Glu / MSB  | 3a | 3.72 | 171.36      | 6.83% | 62.57% | 20.34  | 1.2    | 461       | NN         | 201     | 16          | 10       | NN       | Silage       |
| FG / 2.5% Glu / WISB | 3b | 3.71 | 171.94      | 7.98% | 62.98% | 20.7   | 1.14   | 571       | 12         | 277     | 14          | 12       | NN       | Silage       |
| FG / 5% Glu / MSB    | 4a | 3.71 | 175.44      | 8.16% | 62.75% | 22.16  | 1.12   | 421       | 12         | 220     | 15          | 13       | NN       | Silage       |
| FG / 5% GIU / WSB    | 4b | 3.71 | 168.01      | 8.15% | 62.87% | 21.2   | 1.1    | 546       | 10         | 172     | 14          | NN       | NN       | Silage       |
| FG / 7.5% Glu / MSB  | 5a | 3.71 | 174.59      | 8.51% | 63.72% | 22.98  | 1      | 564       | 10         | 122     | 14          | 11       | NN       | Silage       |
| FG / 7.5% Glu / WSB  | 5b | 3.69 | 183.34      | 8.41% | 62.75% | 23.8   | 1.08   | 439       | NN         | 123     | 14          | NN       | NN       | Silage       |
| EC / 109/ Clu / MCP  | 6a | 3.68 | 171.36      | 8.35% | 63.71% | 23.48  | 0.92   | 456       | NN         | 76      | 13          | 14       | NN       | Silage       |
| FG / 10% Glu / MSB   | 6b | 3.67 | 168.60      | 8.34% | 63.51% | 23.4   | 0.94   | 456       | NN         | 75      | 13          | NN       | NN       | Silage       |

# pH-Verlauf

|                      |    | Start | 1. Tag | 2. Tag | 3. Tag | 4. Tag | 5. Tag | 6. Tag | 7. Tag | 8. Tag | 9. Tag | 10. Tag | 11. Tag | 12. Tag |
|----------------------|----|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|---------|
| FG                   | 1a | 5.96  | 5.51   | 5.51   | 5.51   | 5.54   | 5.55   | 5.58   | 5.57   | 5.59   | 5.58   | 5.69    | 6.06    | 6.40    |
|                      | 1b | 5.96  | 5.49   | 5.49   | 5.50   | 5.51   | 5.54   | 5.57   | 5.58   | 5.59   | 5.63   | 5.71    | 6.26    | 6.60    |
| FG / MSB             | 2a | 5.49  | 5.45   | 5.46   | 5.45   | 5.45   | 5.48   | 5.56   | 5.58   | 5.66   | 5.86   | 6.34    | 6.78    | 6.92    |
| FG / IVISB           | 2b | 5.49  | 5.46   | 5.46   | 5.47   | 5.48   | 5.49   | 5.55   | 5.60   | 5.65   | 5.96   | 6.53    | 6.80    | 6.88    |
| FG / 2.5% Glu / MSB  | 3a | 5.45  | 3.84   | 3.67   | 3.67   | 3.63   | 3.64   | 3.67   | 3.68   | 3.67   | 3.69   | 3.70    | 3.70    | 3.72    |
| FG / 2.5% Glu / MSB  | 3b | 5.45  | 3.88   | 3.67   | 3.65   | 3.63   | 3.65   | 3.67   | 3.69   | 3.68   | 3.70   | 3.69    | 3.70    | 3.71    |
| FC / F0/ Cli. / MCD  | 4a | 5.49  | 3.80   | 3.66   | 3.65   | 3.64   | 3.66   | 3.67   | 3.71   | 3.67   | 3.70   | 3.69    | 3.68    | 3.71    |
| FG / 5% Glu / MSB    | 4b | 5.49  | 3.79   | 3.65   | 3.66   | 3.65   | 3.66   | 3.68   | 3.71   | 3.68   | 3.72   | 3.71    | 3.69    | 3.71    |
| FG / 7.5% Glu / MSB  | 5a | 5.47  | 3.77   | 3.66   | 3.64   | 3.64   | 3.65   | 3.66   | 3.69   | 3.67   | 3.68   | 3.68    | 3.68    | 3.71    |
| FG / 1.5 % Glu / MSB | 5b | 5.47  | 3.79   | 3.65   | 3.64   | 3.64   | 3.65   | 3.69   | 3.69   | 3.67   | 3.68   | 3.67    | 3.68    | 3.69    |
| FG / 10% Glu / MSB   | 6a | 5.48  | 3.79   | 3.63   | 3.62   | 3.63   | 3.63   | 3.65   | 3.70   | 3.68   | 3.70   | 3.69    | 3.68    | 3.68    |
| FG / 10% GIU / MSB   | 6b | 5.48  | 3.80   | 3.62   | 3.60   | 3.63   | 3.62   | 3.65   | 3.70   | 3.67   | 3.70   | 3.69    | 3.69    | 3.67    |

# **Druck-Verlauf**

|                      |    | 1. Tag | 2. Tag | 3. Tag | 4. Tag | 5. Tag | 6. Tag | 7. Tag | 8. Tag | 9. Tag | 10. Tag | 11. Tag | 12. Tag |
|----------------------|----|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|---------|
| FG                   | 1a | 222    | 97     | 66     | 60     | 47     | 63     | 72     | 62     | 72     | 130     | 250     | 486     |
|                      | 1b | 215    | 105    | 70     | 65     | 44     | 55     | 57     | 43     | 76     | 179     | 347     | 536     |
| FG / MSB             | 2a | 237    | 102    | 76     | 55     | 47     | 63     | 80     | 82     | 216    | 605     | 558     | 346     |
| FG / WISB            | 2b | 231    | 102    | 72     | 57     | 47     | 59     | 84     | 97     | 272    | 627     | 443     | 395     |
| FG / 2.5% Glu / MSB  | 3a | 565    | 50     | 35     | 16     | 13     | 21     | 15     | 18     | -4     | 9       | 66      | 62      |
| FG / 2.5% Glu / WISB | 3b | 563    | 70     | 35     | 24     | 15     | 24     | 14     | 5      | -2     | 9       | 13      | 16      |
| EC / E0/ Cli. / MCD  | 4a | 546    | 63     | 41     | 55     | 208    | 577    |        |        |        |         |         |         |
| FG / 5% Glu / MSB    | 4b | 513    | 60     | 33     | 21     | 315    | 2585   |        |        |        |         |         |         |
| FG / 7.5% Glu / MSB  | 5a | 516    | 55     | 30     | 8      | 471    | 2413   |        |        |        |         |         |         |
| FG / 7.5% GIU / WISB | 5b | 501    | 52     | 32     | 14     | 1111   | 5194   |        |        |        |         |         |         |
| FG / 10% Glu / MSB   | 6a | 448    | 47     | 30     | 24     | 1668   | 3900   |        |        |        |         |         |         |
| FG / 10% GIU / WSB   | 6b | 425    | 47     | 34     | 22     | 2120   | 5194   |        |        |        |         |         |         |

# FFS der HV1 im Detail



# **Rohdaten HV2**

# Startwerte

|                     |   | рН   | titr. Säure | TR    | oTR    | Lactat | Acetat | Propionat | Isobutyrat | Butyrat | Isovaleriat | Valeriat | Capronat | Geruch       |
|---------------------|---|------|-------------|-------|--------|--------|--------|-----------|------------|---------|-------------|----------|----------|--------------|
|                     |   |      | [mmol/l]    | [%]   | [%]    | [g/I]  | [g/I]  | [mg/l]    | [mg/l]     | [mg/l]  | [mg/l]      | [mg/l]   | [mg/l]   |              |
| FG                  | 1 | 6.24 | 10.75       | 5.71% | 51.29% | NN     | 0.54   | 358.74    | 16.86      | 128.30  | 27.01       | 19.51    | NN       | Gülle / Mist |
| FG / 0.5% Glu / MSB | 2 | 5.85 | 18.56       | 5.23% | 57.88% | 0.72   | 0.64   | 348.22    | 13.85      | 144.32  | 19.00       | 17.58    | NN       | Gülle / Mist |
| FG / 1% Glu / MSB   | 3 | 5.82 | 19.23       | 5.60% | 60.86% | 0.76   | 0.66   | 364.17    | 13.93      | 141.59  | 21.87       | 18.03    | NN       | Gülle / Mist |
| FG / 1.5% Glu / MSB | 4 | 5.83 | 19.23       | 5.92% | 63.24% | 0.74   | 0.64   | 370.21    | 14.57      | 106.79  | 20.81       | 15.67    | NN       | Gülle / Mist |
| FG / 2% Glu / MSB   | 5 | 5.85 | 19.20       | 6.37% | 65.34% | 0.74   | 0.64   | 376.15    | 18.50      | 119.04  | 29.07       | 20.34    | NN       | Gülle / Mist |
| FG / 2.5% Glu / MSB | 6 | 5.84 | 19.01       | 7.05% | 65.76% | 0.74   | 0.64   | 377.88    | 15.55      | 151.27  | 23.00       | 20.35    | NN       | Gülle / Mist |

# **Endwerte**

|                      |    | pН   | titr. Säure | TR    | oTR    | Lactat | Acetat | Propionat | Isobutyrat | Butyrat | Isovaleriat | Valeriat | Capronat | Geruch       |
|----------------------|----|------|-------------|-------|--------|--------|--------|-----------|------------|---------|-------------|----------|----------|--------------|
|                      |    |      | [mmol/l]    | [%]   | [%]    | [g/I]  | [g/l]  | [mg/l]    | [mg/l]     | [mg/l]  | [mg/l]      | [mg/l]   | [mg/l]   |              |
| FG                   | 1a | 6.20 | 22.47       | 4.59% | 49.32% | NN     | 2.18   | 1152.32   | 192.35     | 679.22  | 340.86      | 358.56   | 21.52    | Gülle / Mist |
| ru                   | 1b | 6.08 | 20.76       | 4.53% | 51.32% | NN     | 2.58   | 993.59    | 168.12     | 689.48  | 304.31      | 328.00   | 57.60    | Gülle / Mist |
| FG / 0.5% Glu / MSB  | 2a | 5.25 | 41.40       | 4.14% | 54.23% | NN     | 3.3    | 967.12    | 365.74     | 1517.97 | 246.17      | 748.95   | 744.24   | Gülle / Mist |
| FG / 0.5% GIU / WISB | 2b | 5.32 | 38.56       | 4.19% | 56.59% | NN     | 3.24   | 823.66    | 387.73     | 1439.49 | 257.41      | 673.94   | 780.43   | Gülle / Mist |
| FG / 1% Glu / MSB    | 3a | 5.41 | 32.97       | 4.52% | 56.85% | NN     | 2.34   | 1257.88   | 367.71     | 5651.01 | 199.76      | 381.55   | 553.72   | Gülle / Mist |
| FG / 1% GIU / WSB    | 3b | 5.40 | 33.28       | 4.51% | 56.19% | NN     | 2.38   | 1347.31   | 476.27     | 5715.73 | 222.16      | 404.83   | 540.86   | Gülle / Mist |
| FG / 1.5% Glu / MSB  | 4a | 5.34 | 46.66       | 4.67% | 57.58% | NN     | 1.38   | 2160.60   | 543.84     | 7736.59 | 139.49      | 230.91   | 489.51   | Gülle / Mist |
| FG / 1.5% Glu / WSB  | 4b | 5.29 | 50.50       | 4.65% | 58.47% | NN     | 1.44   | 2052.41   | 613.06     | 7741.50 | 141.79      | 230.04   | 505.20   | Gülle / Mist |
| FG / 2% Glu / MSB    | 5a | 3.75 | 146.66      | 5.63% | 64.12% | 17.38  | 1.32   | 1120.21   | 12.16      | 615.84  | 22.80       | 22.06    | NN       | Silage       |
| FG / 2% GIU / WISB   | 5b | 3.78 | 145.85      | 5.67% | 65.33% | 17.36  | 1.42   | 1089.30   | 15.08      | 677.17  | 22.55       | 26.99    | 11.46    | Silage       |
| EC / 2 F9/ Ch. / MCB | 6a | 3.64 | 172.97      | 6.03% | 65.22% | 20.2   | 1.46   | 1113.17   | 13.78      | 590.93  | 21.37       | 22.41    | NN       | Silage       |
| FG / 2.5% Glu / MSB  | 6b | 3.62 | 170.89      | 5.95% | 65.38% | 19.62  | 1.4    | 1064.87   | 12.15      | 590.52  | 19.87       | 20.06    | NN       | Silage       |

# pH-Verlauf

|                      |    | Start | 1. Tag | 2. Tag | 3. Tag | 4. Tag | 5. Tag | 6. Tag | 7. Tag | 8. Tag | 9. Tag | 10. Tag | 11. Tag | 12. Tag |
|----------------------|----|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|---------|
| FG                   | 1a | 6.24  | 5.65   | 5.63   | 5.69   | 5.67   | 5.74   | 5.70   | 5.59   | 5.63   | 5.63   | 5.68    | 5.82    | 6.20    |
| 19                   | 1b | 6.24  | 5.49   | 5.54   | 5.57   | 5.56   | 5.60   | 5.62   | 5.61   | 5.64   | 5.63   | 5.64    | 5.66    | 6.08    |
| FG / 0.5% Glu / MSB  | 2a | 5.85  | 5.00   | 5.42   | 5.39   | 5.35   | 5.37   | 5.36   | 5.34   | 5.35   | 5.34   | 5.31    | 5.29    | 5.25    |
| FG / 0.5% Glu / WSB  | 2b | 5.85  | 4.75   | 5.36   | 5.37   | 5.35   | 5.37   | 5.37   | 5.33   | 5.37   | 5.36   | 5.35    | 5.35    | 5.32    |
| FG / 1% Glu / MSB    | 3a | 5.82  | 4.16   | 4.56   | 5.67   | 5.62   | 5.64   | 5.63   | 5.62   | 5.62   | 5.50   | 5.47    | 5.45    | 5.41    |
| FG / 1% Glu / WSB    | 3b | 5.82  | 4.12   | 4.55   | 5.68   | 5.62   | 5.62   | 5.62   | 5.57   | 5.59   | 5.52   | 5.46    | 5.44    | 5.40    |
| FG / 1.5% Glu / MSB  | 4a | 5.83  | 3.91   | 3.96   | 4.04   | 4.13   | 4.80   | 5.34   | 5.39   | 5.38   | 5.34   | 5.35    | 5.35    | 5.34    |
| FG / 1.5% Glu / WSB  | 4b | 5.83  | 3.90   | 3.92   | 4.00   | 4.05   | 4.37   | 5.04   | 5.32   | 5.36   | 5.32   | 5.31    | 5.30    | 5.29    |
| FG / 2% Glu / MSB    | 5a | 5.85  | 3.89   | 3.63   | 3.70   | 3.71   | 3.72   | 3.72   | 3.75   | 3.76   | 3.75   | 3.74    | 3.75    | 3.75    |
| FG / 2/6 GIU / WISB  | 5b | 5.85  | 3.92   | 3.65   | 3.71   | 3.72   | 3.75   | 3.76   | 3.74   | 3.78   | 3.79   | 3.78    | 3.78    | 3.78    |
| FG / 2.5% Glu / MSB  | 6a | 5.84  | 3.89   | 3.60   | 3.61   | 3.59   | 3.62   | 3.64   | 3.62   | 3.62   | 3.63   | 3.63    | 3.65    | 3.64    |
| FG / 2.5% GIU / WISB | 6b | 5.84  | 3.88   | 3.57   | 3.59   | 3.59   | 3.62   | 3.62   | 3.61   | 3.63   | 3.63   | 3.63    | 3.63    | 3.62    |

# **Druck-Verlauf**

|                       |    | 1. Tag | 2. Tag | 3. Tag | 4. Tag | 5. Tag | 6. Tag | 7. Tag | 8. Tag | 9. Tag | 10. Tag | 11. Tag | 12. Tag |
|-----------------------|----|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|---------|
| FG                    | 1a | 133    | 95     | 82     | 70     | 53     | 74     | 86     | 103    | 93     | 91      | 157     | 248     |
| FG                    | 1b | 109    | 82     | 69     | 64     | 36     | 42     | 43     | 45     | 55     | 73      | 101     | 237     |
| FG / 0.5% Glu / MSB   | 2a | 392    | 232    | 71     | 50     | 36     | 42     | 44     | 40     | 46     | 53      | 93      | 119     |
| FG / 0.5% GIU / WISB  | 2b | 386    | 337    | 67     | 2      | -4     | 52     | 40     | 25     | 33     | 43      | 42      | 51      |
| FG / 1% Glu / MSB     | 3a | 477    | 198    | 1190   | 83     | 55     | 62     | 36     | 41     | 47     | 32      | 33      | 46      |
| FG / 1 /6 GIU / MGB   | 3b | 489    | 203    | 1166   | 70     | 51     | 63     | 41     | 44     | 36     | 31      | 35      | 42      |
| FG / 1.5% Glu / MSB   | 4a | 578    | 102    | 51     | 144    | 1144   | 644    | 151    | 75     | 51     | 28      | 15      | 20      |
| FG / 1.5% Glu / WSB   | 4b | 573    | 87     | 58     | 82     | 564    | 1085   | 288    | 91     | 53     | 27      | 25      | 29      |
| FG / 2% Glu / MSB     | 5a | 600    | 83     | 40     | 31     | 5      | 20     | 3      | 3      | 7      | -3      | 4       | 3       |
| FG / 2 / 8 GIU / WISB | 5b | 613    | 73     | 49     | 39     | 9      | 283    | 7      | 8      | 14     | 5       | 2       | -3      |
| FG / 2.5% Glu / MSB   | 6a | 641    | 100    | 51     | 36     | 4      | 9      | -3     | 2      | 0      | -4      | 3       | 6       |
| FG / 2.5% GIU / WISB  | 6b | 626    | 85     | 47     | 40     | 44     | 68     | 49     | 47     | 42     | 11      | -5      | 3       |

# 3 Wochen nach Fermentationsende

|                      |    | рН   | titr. Säure | TR    | oTR    | Lactat | Acetat | Propionat | Isobutyrat | Butyrat | Isovaleriat | Valeriat | Capronat |
|----------------------|----|------|-------------|-------|--------|--------|--------|-----------|------------|---------|-------------|----------|----------|
|                      |    |      | [mmol/l]    | [%]   | [%]    | [mg/l] | [mg/l] | [mg/l]    | [mg/l]     | [mg/l]  | [mg/l]      | [mg/l]   | [mg/l]   |
| FG / 2% Glu / MSB    | 5a | 3.93 | 149.55      | 5.74% | 62.77% | 17280  | 1360   | 1114.24   | 33.69      | 652.30  | 30.04       | 50.26    | 18.32    |
|                      | 5b | 3.99 | 145.20      | 5.86% | 61.91% | 16780  | 1540   | 930.40    | 13.74      | 881.95  | 20.31       | 70.12    | 39.95    |
| FG / 2.5% Glu / MSB  | 6a | 3.71 | 180.63      | 6.22% | 63.08% | 22160  | 1400   | 901.68    | 12.09      | 440.71  | 19.90       | 18.35    | 0.00     |
| FG / 2.5% GIU / MISB | 6b | 3.77 | 183.17      | 5.98% | 63.83% | 20600  | 1380   | 975.77    | 14.93      | 516.53  | 23.96       | 21.34    | 0.00     |

# **Endwerte der HV2 im Detail**



# **Rohdaten HV3**

# Startwerte

|                        |   | pН   | titr. Säure | TR    | oTR    | Lactat | Acetat | Propionat | Isobutyrat | Butyrat | Isovaleriat | Valeriat | Capronat | Geruch     |
|------------------------|---|------|-------------|-------|--------|--------|--------|-----------|------------|---------|-------------|----------|----------|------------|
|                        |   |      | [mmol/l]    | [%]   | [%]    | [g/l]  | [g/I]  | [mg/l]    | [mg/l]     | [mg/l]  | [mg/l]      | [mg/l]   | [mg/l]   |            |
| FG                     | 1 | 6.03 | 22.39       | 3.67% | 79.22% | NN     | 0.54   | 477.28    | 44.73      | 115.02  | 118.11      | 28.44    | NN       | Gülle/Mist |
| FG / 2% Glu / 1.00E+06 | 2 | 5.93 | 42.83       | 5.11% | 85.28% | NN     | 0.6    | 525.58    | 41.26      | 127.02  | 109.21      | 27.77    | NN       | Gülle/Mist |
| FG / 2% Glu / 3.00E+06 | 3 | 5.88 | 42.03       | 5.10% | 86.45% | NN     | 0.6    | 523.09    | 38.74      | 113.36  | 102.15      | 26.56    | NN       | Gülle/Mist |
| FG / 2% Glu / 9.00E+06 | 4 | 5.87 | 41.01       | 5.19% | 85.09% | 0.24   | 0.62   | 518.59    | 39.28      | 113.07  | 99.55       | 26.68    | NN       | Gülle/Mist |
| FG / 2% Glu / 2.70E+07 | 5 | 5.77 | 43.11       | 5.10% | 86.17% | 0.44   | 0.64   | 497.70    | 38.89      | 112.83  | 100.03      | 26.51    | NN       | Gülle/Mist |
| FG / 2% Glu / 8.10E+07 | 6 | 5.53 | 60.90       | 5.02% | 85.77% | 1      | 0.68   | 485.52    | 35.19      | 100.85  | 91.58       | 23.41    | NN       | Gülle/Mist |

### **Endwerte**

|                         |    | pН   | titr. Säure | TR    | oTR    | Lactat | Acetat | Propionat | Isobutyrat | Butyrat | Isovaleriat | Valeriat | Capronat | Geruch     |
|-------------------------|----|------|-------------|-------|--------|--------|--------|-----------|------------|---------|-------------|----------|----------|------------|
|                         |    |      | [mmol/l]    | [%]   | [%]    | [g/I]  | [g/l]  | [mg/l]    | [mg/l]     | [mg/l]  | [mg/l]      | [mg/l]   | [mg/l]   |            |
| FG                      | 1a | 6.57 | 10.87       | 3.33% | 77.39% | NN     | 0.46   | 1088.72   | 223.84     | 143.38  | 440.04      | 190.71   | NN       | Gülle/Mist |
| FG                      | 1b | 6.59 | 10.77       | 3.32% | 77.20% | NN     | 0.36   | 1111.44   | 212.60     | 53.54   | 474.39      | 183.72   | NN       | Gülle/Mist |
|                         | 2a | 3.61 | 168.86      | 4.45% | 83.39% | 12.46  | 1.84   | 528.50    | 43.65      | 2040.69 | 110.28      | 152.66   | 233.68   | Silage     |
| FG / 2% Glu / 1.00E+06  | 2b | 3.61 | 166.76      | 4.49% | 83.61% | 12.2   | 1.82   | 560.08    | 43.05      | 1832.04 | 108.10      | 156.22   | 254.84   | Silage     |
| 50 / 00/ OL / 0 005 00  | 3a | 3.54 | 172.58      | 4.52% | 83.97% | 13.46  | 1.7    | 594.72    | 39.99      | 1693.67 | 100.26      | 96.23    | 141.63   | Silage     |
| FG / 2% Glu / 3.00E+06  | 3b | 3.54 | 173.26      | 4.51% | 84.20% | 13.52  | 1.7    | 544.77    | 42.15      | 1679.53 | 105.20      | 97.28    | 136.00   | Silage     |
| EQ / 00/ Qby / 0 00E 00 | 4a | 3.47 | 179.73      | 4.63% | 84.51% | 15.02  | 1.64   | 673.55    | 45.25      | 1285.62 | 110.91      | 66.09    | 53.78    | Silage     |
| FG / 2% Glu / 9.00E+06  | 4b | 3.48 | 180.21      | 4.57% | 84.41% | 14.82  | 1.5    | 586.53    | 41.90      | 1453.73 | 105.84      | 62.70    | 49.83    | Silage     |
|                         | 5a | 3.41 | 185.85      | 4.71% | 84.89% | 16.52  | 1.34   | 655.08    | 44.00      | 968.85  | 111.98      | 41.08    | 10.86    | Silage     |
| FG / 2% Glu / 2.70E+07  | 5b | 3.44 | 179.06      | 4.71% | 84.82% | 15.9   | 1.32   | 572.80    | 39.28      | 812.74  | 102.37      | 36.79    | NN       | Silage     |
|                         | 6a | 3.41 | 183.24      | 4.81% | 85.61% | 17.44  | 0.92   | 475.27    | 36.55      | 189.07  | 92.65       | 23.06    | NN       | Silage     |
| FG / 2% Glu / 8.10E+07  | 6b | 3.42 | 172.58      | 4.82% | 85.85% | 16.98  | 0.92   | 487.21    | 37.32      | 196.95  | 96.96       | 23.84    | NN       | Silage     |

# pH-Verlauf

|                         |    | Start | 1. Tag | 2. Tag | 3. Tag | 4. Tag | 5. Tag | 6. Tag | 7. Tag | 8. Tag | 9. Tag | 10. Tag | 11. Tag | 12. Tag |
|-------------------------|----|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|---------|
| FG                      | 1a | 6.03  | 5.79   | 5.82   | 5.79   | 5.83   | 6.03   | 6.33   | 6.73   | 6.85   | 6.82   | 6.78    | 6.71    | 6.57    |
| FG                      | 1b | 6.03  | 5.76   | 5.76   | 5.80   | 5.86   | 6.05   | 6.34   | 6.64   | 6.84   | 6.81   | 6.79    | 6.72    | 6.59    |
|                         | 2a | 5.93  | 4.64   | 3.72   | 3.51   | 3.56   | 3.58   | 3.61   | 3.58   | 3.59   | 3.60   | 3.62    | 3.62    | 3.61    |
| FG / 2% Glu / 1.00E+06  | 2b | 5.93  | 4.62   | 3.70   | 3.56   | 3.58   | 3.61   | 3.64   | 3.61   | 3.61   | 3.62   | 3.63    | 3.62    | 3.61    |
|                         | 3a | 5.88  | 4.46   | 3.67   | 3.48   | 3.49   | 3.53   | 3.58   | 3.52   | 3.53   | 3.53   | 3.55    | 3.53    | 3.54    |
| FG / 2% Glu / 3.00E+06  | 3b | 5.88  | 4.48   | 3.65   | 3.49   | 3.49   | 3.52   | 3.57   | 3.53   | 3.52   | 3.54   | 3.55    | 3.55    | 3.54    |
| 50 / 00/ Ob. / 0 005 00 | 4a | 5.87  | 4.19   | 3.54   | 3.43   | 3.44   | 3.46   | 3.49   | 3.47   | 3.47   | 3.47   | 3.49    | 3.48    | 3.47    |
| FG / 2% Glu / 9.00E+06  | 4b | 5.87  | 4.20   | 3.57   | 3.42   | 3.43   | 3.47   | 3.50   | 3.45   | 3.46   | 3.48   | 3.48    | 3.47    | 3.48    |
| 50 /00/ 01 /0 705 07    | 5a | 5.77  | 3.89   | 3.50   | 3.39   | 3.39   | 3.41   | 3.44   | 3.41   | 3.39   | 3.41   | 3.43    | 3.42    | 3.41    |
| FG / 2% Glu / 2.70E+07  | 5b | 5.77  | 3.81   | 3.51   | 3.40   | 3.38   | 3.42   | 3.45   | 3.43   | 3.43   | 3.42   | 3.45    | 3.44    | 3.44    |
|                         | 6a | 5.53  | 3.62   | 3.44   | 3.38   | 3.37   | 3.40   | 3.42   | 3.39   | 3.39   | 3.41   | 3.42    | 3.42    | 3.41    |
| FG / 2% Glu / 8.10E+07  | 6b | 5.53  | 3.61   | 3.45   | 3.37   | 3.38   | 3.41   | 3.42   | 3.40   | 3.41   | 3.41   | 3.42    | 3.42    | 3.42    |

# Druckverlauf

|                        |    | 1. Tag | 2. Tag | 3. Tag | 4. Tag | 5. Tag | 6. Tag | 7. Tag | 8. Tag | 9. Tag | 10. Tag | 11. Tag | 12. Tag |
|------------------------|----|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|---------|
| FG                     | 1a | 149    | 105    | 119    | 119    | 131    | 200    | 239    | 184    | 130    | 123     | 119     | 105     |
| rG                     | 1b | 159    | 90     | 114    | 113    | 124    | 181    | 233    | 196    | 135    | 128     | 107     | 101     |
|                        | 2a | 1243   | 288    | 68     | 53     | 35     | 30     | 24     | 24     | 13     | 9       | 4       | 8       |
| FG / 2% Glu / 1.00E+06 | 2b | 1261   | 283    | 76     | 47     | 38     | 22     | 17     | 18     | 7      | 6       | 7       | 9       |
| 50 / 00/ OL / 0 005 00 | 3a | 1184   | 140    | 61     | 50     | 40     | 26     | 20     | 18     | 8      | 8       | 9       | 5       |
| FG / 2% Glu / 3.00E+06 | 3b | 1179   | 131    | 56     | 44     | 36     | 24     | 19     | 18     | 10     | 8       | 8       | 9       |
| 50 / 00/ OL / 0 005 00 | 4a | 1058   | 61     | 81     | 43     | 28     | 21     | 17     | 12     | 7      | 6       | 3       | 7       |
| FG / 2% Glu / 9.00E+06 | 4b | 1101   | 67     | 51     | 44     | 34     | 23     | 16     | 14     | 8      | 3       | 11      | 6       |
| 50 / 00/ 01 / 0 505 05 | 5a | 791    | 62     | 48     | 40     | 37     | 21     | 18     | 16     | 8      | 6       | 8       | 6       |
| FG / 2% Glu / 2.70E+07 | 5b | 780    | 60     | 50     | 36     | 31     | 23     | 17     | 12     | 9      | 7       | 6       | 9       |
| 50 / 00/ 01 / 0 405 05 | 6a | 277    | 76     | 38     | 34     | 28     | 20     | 14     | 11     | 6      | 3       | 7       | 4       |
| FG / 2% Glu / 8.10E+07 | 6b | 280    | 80     | 42     | 29     | 24     | 18     | 13     | 12     | 5      | 4       | 9       | 7       |

# **Endwerte der HV3 im Detail**



# Aufgabenstellung

| Studienja | ahrgang     | SBUI 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
|-----------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Titel     |             | Anaerobe Vergärung von Fäkalstoffen mit Milchsäurebakterien                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
| 6.1.1.1 \ | /ertraulich | □ ja 🛛 nein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
| Fachgebi  | iet         | NNRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| Namen     | Student     | Pascal Schmid, Tel: 077 447 35 06, schmipa1@students.zhaw.ch                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
|           | 1. Kor-     | Andreas Schönborn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
|           | rektor      | ZHAW Wädenswil, GE 205, Tel: 058 934 58 10, sand@zhaw.ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
|           | 2. Kor-     | Alex Mathis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
|           | rektor      | ZHAW Wädenswil, GP 100, Tel: 058 934 59 16, mase@zhaw.ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| 3.        |             | Ralf Otterpohl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
|           | Korrektor   | TUHH Hamburg, Institut für Abwasserwirtschaft und Gewässerschutz, ro@tuhh.de                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
| Ausgang   | slage       | Wasserlose Toiletten (z.B. Komposttoiletten) sind aus Sicht des Gewässerschutzes sehr erwünscht da mit ihnen die Entstehung von Abwasser komplett vermieden wird. In vielen Ländern ohne geregelte Abwasserentsorgung wären solche Toilettensysteme ein grosser Fortschritt im Vergleich zu heute. In der Praxis haben wasserlose Toiletten oft den Ruf, unhygienisch zu sein und schlecht zu riechen. Komposttoiletten jedoch riechen nicht, wenn sie richtig betrieben werden. Aber genau das ist häufig das Problem. |  |  |  |  |  |  |  |
|           |             | Im System der "Terra Preta Sanitation" werden rohe Fäkalien unter Luftabschluss mit Milchsäurebakterien vergoren. Da dies weitgehend geruchsneutral abläuft, eröffnet sich eine neue Möglichkeit für eine wasserlose Sanitärtechnologie, die sich prinzipiell auch in dicht überbauten Städten umsetzen liesse, an denen heute keine Kanalisation besteht.  Eine andere denkbare Anwendung wäre die Vorkonditionierung von Klärschlamm                                                                                  |  |  |  |  |  |  |  |
|           |             | für die Weiterverarbeitung in der hydrothermalen Karbonisierung (HTC), welche heute bei Klärschlamm mit starken Geruchsemissionen verbunden ist.                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |

# Zielsetzungen

Es sollen systematische Versuche zur Milchsäurevergärung von Fäkalmaterialien durchgeführt werden. Dazu soll zunächst die Milchsäuregärung an sich, sowie ihr Einsatz im Bereich der "Terra preta sanitation" recherchiert werden.

Um das Risiko des Kontakts mit Humanpathogenen möglichst klein zu halten, sollen die Versuche zunächst mit Schweinefäkalien (z.B. Gülle) durchgeführt werden. Diese haben den Vorteil, leicht und in grosser Menge verfügbar zu sein. Es sollen parallele Versuche angesetzt werden, um verschiedene Stämme von Milchsäurebakterien (z.B. EM, Mischung von J. Reckin), Volumenverhältnisse, Co-Substrate und Reaktionsbedingungen auszutesten. Der Gärfortschritt soll mittels olfaktorischem Monitoring, mit der Messung von Gasen im Überstand, sowie von pH und wenn möglich verschiedenen Säuren im Substrat überwacht werden.

Die erfolgversprechendsten Ansätze sollen, wenn möglich, mit menschlichen Fäkalien in einem Praxistest getestet werden.

# Erwartete Resultate

Bachelorarbeit gemäss Weisungen der ZHAW

Poster

Mündliche Prüfung

Spezieller Inhalt:

- Literaturrecherche zu Milchsäuregärung und Terra preta sanitation
- Praxisnahe Versuche mit Schweinefäkalien
- Praxistest mit menschlichen Fäkalien
- Beurteilung der Versuche mit analytischen Messungen

# Inhaltsverzeichnis **Abstract** (provisorisch) Inhaltsverzeichnis Liste der Abkürzungen 1. Einleitung und Fragestellung 2. Grundlagen 2.1. Komposttoiletten 2.2. Fäkalstoffe: Zusammensetzung und Problematik der Vergärung 2.3. Terra preta sanitation 2.4. Milchsäuregärung 3. Material und Methoden 3.1. Verwendete Materialien 3.2. Materialbeschaffung 3.3. Versuchsvarianten / Durchführung 3.4. Messparameter 3.5. Vergleichswerte ermitteln 4. Ergebnisse und Diskussion 4.1. Versuch 1 4.2. Versuch 2 4.3. Versuch 3 4.4. Referenzwerte 4.5. Praxisversuch 5. Schlussfolgerungen 5.1. Fazit aus den Versuchen 5.2. Ausblick 6. Literatur 6.1. Bücher und Zeitschriften 6.2. Internet 7. Verzeichnis der Bilder

Anhang



- Meilensteine: 1. Besprechung der Versuchsplanung
  - 2. Besprechung der 1. Versuchsreihe
  - 3. Halbzeitgespräch
  - 4. Abgabe der Vorabversion
  - 5. Abgabe der Arbeit

hellgrau = Nebentätigkeit

dunkelgrau = Haupttätigkeit

Donnerstag, 20. Dezember 2012, 12.00 Uhr

| Bemerkungen              | Personal:          | Analyse (über Labor Umweltanalytik)                     |
|--------------------------|--------------------|---------------------------------------------------------|
|                          | Material:          | Komposttoilette, EM, Substrate, Fäkalien, Ansatzgefässe |
|                          | Finanzen:          | Ja (gemäss Budgetplan)                                  |
| Arbeitsort               | Zu Hause, Labor Un | nweltbiotechnologie in Wädenswil                        |
| Unterschrift Korrektor 1 |                    | Unterschrift Korrektor 2                                |
|                          |                    |                                                         |
|                          |                    |                                                         |
|                          |                    |                                                         |
|                          |                    |                                                         |
| Unterschrift Student     |                    |                                                         |
|                          |                    |                                                         |
|                          |                    |                                                         |
|                          |                    |                                                         |
|                          |                    |                                                         |

Plagiate verstossen gegen die Urheberrechte, eine Verletzung dieser Rechte wird gemäss der Studien- und Prüfungsordnung für die Bachelorstudiengänge der Hochschule Wädenswil vom 01.09.2006 in § 38, 39 geregelt

# Plagiatserklärung

#### **ERKLÄRUNG**

betreffend das selbständige Verfassen einer Bachelorarbeit im Departement Life Sciences und Facility Management

Mit der Abgabe dieser Bachelorarbeit versichert der/die Studierende, dass er/sie die Arbeit selbständig und ohne fremde Hilfe verfasst hat.

Der/die unterzeichnende Studierende erklärt, dass alle verwendeten Quellen (auch Internetseiten) im Text oder Anhang korrekt ausgewiesen sind, d.h. dass die Bachelorarbeit keine Plagiate enthält, also keine Teile, die teilweise oder vollständig aus einem fremden Text oder einer fremden Arbeit unter Vorgabe der eigenen Urheberschaft bzw. ohne Quellenangabe übernommen worden sind.

Bei Verfehlungen aller Art treten der Paragraph 38\*) (Unredlichkeit und Verfahren bei Unredlichkeit) der Studien- und Prüfungsordnung für die Bachelor-Studiengänge der Hochschule Wädenswil vom 1. September 2006 sowie die Bestimmungen der Disziplinarmassnahmen der Hochschulordnung in Kraft.

| Ort, Datum: | Unterschrift: |
|-------------|---------------|
|             |               |
|             |               |
|             |               |

Das Original dieses Formulars ist bei der ZHAW-Version aller abgegebenen Bachelorarbeiten zu Beginn der Dokumentation nach dem Abstract bzw. dem Management Summary mit Original-Unterschriften und -Datum (keine Kopie) einzufügen.

#### \*) 38. Unredlichkeit

Bei Unredlichkeit gilt die Prüfung, Arbeit oder jede andere zu erbringende Leistung als nicht bestanden, eine Note wird nicht erteilt. Unredlichkeiten können den Ausschluss von der Prüfung, die Ungültigerklärung eines Leistungsnachweises sowie die Verweigerung oder die Ungültigerklärung des Diploms zur Folge haben.
In der Regel ist die ganze Prüfung, Arbeit oder andere zu erbringende Leistung anlässlich des nächsten ordentlichen Termins zu wiederholen. Über Ausnahmen entscheidet die Leitung der Fachabteilung und die Leiterin Studium.

