Faculty of Mathematics, Physics and Informatics Comenius University in Bratislava

Neural Networks

Lecture 7

Self-organizing map

Igor Farkaš 2018

Feature mapping

biologically motivated models

model with extracted features

e.g. mapping from retina to cortex -> orientation map

- introduced topology of neurons in the map
- winner-take-most due to neuron cooperation

Simple competitive learning

- · unsupervised learning
- linear neurons
- winner: $y_{i*} = \max_i \{ \boldsymbol{w}_i^T . \boldsymbol{x} \}$
 - i.e. best matching unit i*
- · winner-take-all adaptation:

$$\Delta w_{i*} = \alpha (x - w_{i*}) \qquad \alpha \in (0,1)$$
$$\|w_{i*}\| = 1$$

- · risk of "dead" neurons
- algorithm: in each iteration:
 - (1) find winner, (2) adapt its weights
- · useful for clustering

Lateral interactions in the map

Mexican hat function (1D case)

$$y_i(t+1) = s(z_i + \sum_{k=-K}^{K} l_{ik}.y_{i+k}(t))$$

initial response $z_i = w_i^T \cdot x$

inhibition too weak

(Farkaš, 1997)

Neighborhood function in SOM

- computationally efficient substitute for lateral interactions
- neurons adapt only within the winner neighborhood
- neighborhood radius decreases in time
- rectangular neighborhood (below)

• alternative: gaussian neighborhood, e.g.

$$h(i^*, i) = \exp\left\{-\frac{d_E^2(i^*, i)}{\lambda^2(t)}\right\}$$
$$\lambda(t) = \lambda_i \cdot (\lambda_f/\lambda_i)^{t/t_{max}}$$

Example: 2D random inputs, 20x20 neurons

SOM algorithm (ED version*)

(Kohonen, 1982)

• randomly choose an input x

Neighborhood size λ

Ordering

• find winner *i** for *x*

$$i^* = \operatorname{arg\,min}_i \| \mathbf{x} - \mathbf{w}_i \|$$

• update weights within the neighborhood

$$\mathbf{w}_{i}(t+1) = \mathbf{w}_{i}(t) + \alpha(t)h(i*,i)[\mathbf{x}(t) - \mathbf{w}_{i}(t)]$$

- update SOM parameters (neighborhood, learning rate)
- repeat until stopping criterion is met

fine-tuning

derived from a general Hebbian form:

$$\Delta w_i = \alpha y_i x - g(y_i) w_i$$

SOM as input-output mapping:

$$x \rightarrow \{1, 2, ..., m\}$$

$$\boldsymbol{x} \rightarrow \boldsymbol{y}, \quad \boldsymbol{y} = [y_1, y_2, ..., y_m]$$

where e.g. $y_i = \exp(-\|x - w_i\|^2)$

Special effects

^{*} i.e. based on Euclidean distance

Magnification property

• SOM roughly approximates input data distribution

2D:

Somatosensory homunculus in the brain

Theory for 1D: $w(x) \propto p(x)^{2/3}$ (Ritter, 1991)

SOM simultaneously performs two tasks

Vector quantization

(if number of inputs > number of neurons)

Voronoi compartments:

$$V_i = \{x \mid ||x - w_i|| < ||x - w_i||\}, \ \forall j \neq i$$

Quant. error: $QE = \frac{1}{N} \sum_{p} ||\mathbf{x}_{p} - \mathbf{w}_{i*}||^{2}$

Voronoi tessellation

Topology preserving mapping

Cost function e.g. (Kohonen, 1991)

various measures of topology preservation proposed

Main properties of SOM

- Approximation of the input space (input data) by the grid of neurons → vector quantization theory
- Topological ordering preservation of similarities between input and output spaces
- Density matching reflecting the variations in the statistics of input distribution
- Feature selection via nonlinear mapping → principal curves or surfaces (Hastie and Stuetzle, 1989)
 - SOM as a nonlinear generalization of PCA

Comparison of SOM to PCA

• feature extraction and mapping, difference in feature representation

PCA

(linear) principal components One unit represents 1 dimension

11

SOM

(nonlinear) principal manifold More units represent 1 dimension 10

12

Application: Minimum spanning tree

Input vector encoding:

Α	В	С	D	Е	F	G	Н	Ι	J	K	L	Μ	N	О	Р	О	R	S	Т	U	V	W	Х	Y	Z	1	2	3	4	5
1	2	3	4	5	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
0	0	0	0	0	1	2	3	4	5	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
																														6
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2	3	4	1	2	3	4	2	2	2	2	2
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2	3	4	5

Application: Robotic arm control

$$\begin{split} \theta(\mathbf{u}) &= \theta_i + \mathbf{A}_i.(\mathbf{u} - \mathbf{w}_i) & \qquad \mathbf{w}_i \leftarrow \mathbf{w}_i + \varepsilon.h(i,i^*).(\mathbf{u} - \mathbf{w}_i) \\ \theta_i \leftarrow \theta_i + \varepsilon.h(i,i^*).\Delta\theta_i \\ \mathbf{A}_i \leftarrow \mathbf{A}_i + \varepsilon.h(i,i^*).\Delta\mathbf{A}_i \end{split}$$
 (Walter & Schulten 1993)

Application: Data visualization

- 7x10 SOM with hexa grid
- trained on 4D Iris data
- 3 classes

13

15

- · Neuron labels generated
- · according to votes
- Plots of component weights reveal an order

Application: Semantic maps

Attribute map

Words $\mathbf{x} = [\mathbf{x}_{symbol}; \mathbf{x}_{attr}]$, i.e. concatenation of (16-dim) symbolic (one-hot) and binary attribute vectors (13-dim), of 3 categories (is, has, likes to). Testing done using $\mathbf{x} = [\mathbf{x}_{symbol}; \mathbf{0}]$.

Role-based map

Words represented in contexts, i.e. $x = [x_{symbol}; x_{context}]$, using sentence templates [noun - verb - adverb/noun]. Symbol = 7-dim. vector (of unit length), (average L-R) context = 14-dim. (random projection used). Labeling based on $x = [x_{symbol}; 0]$.

(Ritter & Kohonen, 1989)

14

Application: WEBSOM

- e.g. collection of cca 12000 Encyclopaedia Britannica documents
- Used for information retrieval
- Random mapping (of word vectors) useful: preserves similarities
- Based on co-occurrence of 40000 words in documents
- SOM with cca 12000 nodes

(Kaski et al, 1998)

Dot-product version of SOM

- randomly choose an input x
- find winner *i** for *x*

$$i^* = \operatorname{arg\,max}_i \{ \boldsymbol{x}^T \cdot \boldsymbol{w}_i \}$$

· update weights within the neighborhood

$$w_{i}(t+1) = \frac{w_{i}(t) + \alpha(t) \cdot h(i^{*}, i) \cdot x(t)}{\|w_{i}(t) + \alpha(t) \cdot h(i^{*}, i) \cdot x(t)\|}$$

- update SOM parameters (neighborhood, learning rate)
- repeat until stopping criterion is met

Example: DP-SOM map trained on 3D vectors $\mathbf{s} = [s_1, s_2, s_3]$ created from 2D $\mathbf{x} = [x_1, x_2]$ as

$$s_1 = 1 \cdot \cos(x_1) \cdot \cos(x_2)$$

$$s_2 = 1 \cdot \sin(x_1) \cdot \cos(x_2)$$

$$s_3 = 1 \cdot \sin(x_2)$$

19

(a) (b) (c) (c) (1000 10000

18

· Weight vector ordering independent of the input vectors' norms

Related self-organizing NN algorithms

• Can be viewed as unsupervised data approximation with undirected graph G = (V,C), $V = \{\mathbf{w}_i\}$ ~ vertices, $C[m \times m]$ ~ (symmetric) connection matrix

Examples:

- Topology-Representing network (Martinetz & Schulten 1994)
 - Flexible net topology, fixed number of units
- Growing Cell Structures (Bruske & Sommer, 1995)
 - Flexible topology and number of units (they can be removed or added based on max. quantization error)
- useful for non-stationary data distributions

Summary

- self-organizing map a very popular algorithm
 - principles of competition and cooperation, unsupervised learning
 - performs vector quantization and topology-preserving mapping
- · useful for data clustering and visualization
- theoretical analysis of SOM limited to simple cases
- · various self-organizing algorithms developed
 - main purpose: data clustering
 - not all implement dimensionality-reducing mapping
 - flexible architectures possible

20