	IBM Machine Learning Course 6: Time Series and Survival Analysis Topic: WDIData 1. Introduction The primary World Bank collection of development indicators, compiled from officially-recognized international sources. It presents the most
In [91]:	current and accurate global development data available, and includes national, regional and global estimates. We will use the dataset to predict the growth of GDP per capita in Africa. 2. Explorative data analysis 2.1 load Data # Setupi
	<pre>import warnings warnings.filterwarnings('ignore') import os #os.chdir('data') import pandas as pd from pandas import DataFrame import matplotlib as plt import matplotlib.pyplot as plt from matplotlib import pyplot import seaborn import warnings</pre>
In [92]:	<pre>import seaborn as sns warnings.filterwarnings('ignore') from sklearn.preprocessing import scale import statsmodels.formula.api as sm from statsmodels.compat import lzip import numpy as np import statsmodels.api as sm data=pd.read_csv('WDIData.csv')</pre>
Out[93]:	## the columns names data.columns Index(['Country Name', 'Country Code', 'Indicator Name', 'Indicator Code',
Out[95]: In [96]:	<pre>data_sf.shape (67158, 64) ## process the indicator data_sf['Indicator Name']=data_sf['Indicator Name'].str.replace('(',':').str.replace(')',':') data_sf=data_sf[data_sf['Indicator Name'].str.contains("GDP per capita, PPP :current international")==True]</pre>
In [99]: In [100]:	<pre>data_sf.index=data_sf['Country Name'] data_sf=data_sf[data_sf.index.str.contains('Sao Tome and Principe South Sudan Papua New Guinea Equatori al Guinea Mauritius') == False] data_sf=data_sf.fillna(method='bfill',axis=1) data_sf=data_sf.fillna(method='ffill',axis=1) data_sf=data_sf.iloc[:,34:-2] ts=data_sf.mean() ts=pd.DataFrame(ts) ts.columns=['GDP per capita']</pre>
In [103]:	<pre>pandas.core.frame.DataFrame 2.2 Time Series plot plt.plot(ts.index, ts['GDP per capita']) plt.xlabel("Time") plt.xticks(rotation=90) plt.ylabel("GDP per capita") Text(0, 0.5, 'GDP per capita')</pre>
	2750 - 2500 - 2500 - 20
In [104]:	From the time series figure above, the visual inspection of the time plot clearly indicates that Sub-Saharan GDP PPP per capita follows a positive additive growth pattern. The mean and the variance are clearly not constant. Therefore, we regard it as a non-stationary time series. (further below we will discuss the importance of making the time series stationary for model building) 2.3 Time Series plot after log transformation plt.plot(ts.index, np.log(ts['GDP per capita']))
	plt.xlabel("Time") plt.xticks(rotation=90) plt.ylabel("GDP per capita after log transformation") Text(0, 0.5, 'GDP per capita after log transformation')
	The "smoothing effect" of the log transformation is valuable both for making patterns of the data easy interpretable. The see that the log transformed time seriues follows the same growth dynamic as the original time series.
In [105]: In [106]: In [107]:	
Out[107]:	GDP per capita change mean 1990 1197.366395 0.000000 0.032117 1991 1224.418997 0.022593 0.032117 1992 1228.560880 0.003383 0.032117 1993 1242.968652 0.011727 0.032117 1994 1251.163635 0.006593 0.032117 1995 1301.800159 0.040472 0.032117 1996 1362.174107 0.046377 0.032117 1998 1426.551421 0.015926 0.032117 1999 1455.040204 0.019970 0.032117
	2000 1498.337921 0.029757 0.032117 2001 1553.223076 0.036631 0.032117 2002 1592.887054 0.025537 0.032117 2003 1629.603599 0.023050 0.032117 2004 1719.167925 0.054961 0.032117 2005 1823.445154 0.060656 0.032117 2007 2045.521734 0.055838 0.032117 2008 2120.336366 0.036575 0.032117 2010 2260.632555 0.044956 0.032117 2011 2368.841606 0.047867 0.032117 2012 2495.229737 0.053354 0.032117 2013 2596.584649 0.040619 0.032117
In [108]:	<pre>2014 2697.879522 0.039011 0.032117 2015 2743.933573 0.017070 0.032117 2016 2800.082624 0.020463 0.032117 2017 2890.453204 0.032274 0.032117 plt.plot(ts.index, ts['change']) plt.plot(ts.index, ts['mean'], 'r', label="mean") plt.xlabel("Time") plt.xlabel("Time") plt.xticks(rotation=90)</pre>
Out[108]:	plt.ylabel("GDP per capita percentage change") Text(0, 0.5, 'GDP per capita percentage change') 0.06 0.05 0.00
In [109]:	Analyzing the growth dynamic of the time series; We can identify some cyclic patterns. Thus, from 1990 to 1994 the growth is the lowest of the series. From 1994 to 1996 we see growth accelearating, with a slowdown in 1998. From 1998 to 2007, growth reaccelerates progressively (expect for the period 2001-2003); reaching a peak in 2006 (6.16%) (pre-depression period). The post-depression dynamics are marked by a recovery of the growth rates (rates higher than series 3% average) with a sharp drop in 2015 (growth of 1.5%). As of this year, the recent period initiates a bullish tends towards the 3% average of the series. 3. Model building 3.1 Dickey-Fuller Test from statsmodels.tsa.stattools import adfuller
	adf, pvalue, usedlag, nobs, critical_values, icbest = adfuller(ts['GDP per capita']) print("ADF: ", adf) print("p-value: ", pvalue) print("Critical Values: ", critical_values) ADF: 1.1308280964281299 p-value: 0.9954713272901851 Critical Values: {'1%': -3.7112123008648155, '5%': -2.981246804733728, '10%': -2.6300945562130176} it is evident that there is a trend in the data and that the data is not trend stationary. The result of the Dickey-Fuller Test also confirms it. 3.2 Time series decomposition
In [110]:	from statsmodels.tsa.seasonal import seasonal_decompose decomposition = seasonal_decompose(x=ts['GDP per capita'], model='additive', freq=5) fig = decomposition.plot() plt.show() GDP per capita 1990 1990 1990 1990 1990 1990 1990 19
	1990 1990 1990 1990 1990 1990 1990 1990
	3.3 Stationarize the time series We assume that we can remove the trend/seasonality from our data using the first order differencing. (we take the first differences between values in the series, the order tells us how far apart these values are) Yt-Yt-1 y_diff = (ts['GDP per capita']).diff().dropna() y_diff = pd.Series(y_diff) plt.plot(y_diff.index, y_diff.values) plt.xlabel("Time") plt.xticks(rotation=90)
Out[112]:	plt.ylabel("GDP per capita after first order differencing") Text(0, 0.5, 'GDP per capita after first order differencing')
In [113]:	adf, pvalue, usedlag, nobs, critical_values, icbest = adfuller(y_diff) print("ADF: ", adf) print("p-value: ", pvalue) print("Critical Values: ", critical_values) ADF: -1.9634815818189286 p-value: 0.30281102583766106 Critical Values: {'1%': -3.7112123008648155, '5%': -2.981246804733728, '10%': -2.6300945562130176} We see that our p value got a lot closer to 0.05, however, we still don't have a stationary series. The application of the first difference seems to have extracted quite well the trend as well and made the time series standard deviation
In [114]:	stationary. However, the test statistic is still larger than the critical value for a significance level of 5%. Second-Order Differencing As our differenced data is still not stationary another differencing step has to be included. This step indicates a higher order integration of the underlying process. We interpret the second level of differenced data as the "change of changes". y_diff2 = (ts['GDP per capita']).diff().diff().dropna() y_diff2 = pd.Series(y_diff2)
	plt.plot(y_diff2.index, y_diff2.values) plt.xlabel("Time") plt.xticks(rotation=90) plt.ylabel("GDP per capita after second order differencing") Text(0, 0.5, 'GDP per capita after second order differencing')
	O O O O O O O O O O O O O O O O O O O
[n [116]:	adf, pvalue, usedlag, nobs, critical_values, icbest = adfuller(y_diff2) print("ADF: ", adf) print("p-value: ", pvalue) print("Critical Values: ", critical_values) ADF: -4.1167136633141075 p-value: 0.000908715565435346 Critical Values: {'1%': -3.7883858816542486, '5%': -3.013097747543462, '10%': -2.6463967573696143}
In [117]:	We see that the DF test statistic is already smaller that 1% percent significance. 3.4 ARIMA(p, d, q) model ACF plot
	ax.set_facecolor('silver') plt.rc('xtick', labelsize=16) sm.graphics.tsa.plot_acf(y_diff2,ax=ax,lags=25) plt.show() Autocorrelation 10 0.8 0.6
	0.4 0.2 0.0 -0.2 -0.4 -0.6 0 5 10 15 20 25
[n [118]:	PACF plot
	1.0 -
	ORDER p The PACF shows conveys the pure correlation between a lag and the series. Order 3 is the first a
	bove the significance line. We choose this value in order to keep the model as simple as possible. ORDER d We already detected order of integration 2 in order to make the series stationary. ORDER q
In [119]:	<pre>Using ACF plot we can gauge the number of MA terms. An MA term is technically, the error of the lagged forecast. Order 3 is the first above the significance line; we choose this value in orde r to keep the model as simple as possible.</pre> <pre>mod = sm.tsa.statespace.SARIMAX(ts['GDP per capita'].values, order=(3,2,3), enforce_stationarity=True, enforce_invertibility=True, maxiter=1000, method='css') results1 = mod.fit() print(results1.summary())</pre>
	SARIMAX Results Sarimax Sarima
	ar.L1 0.2980 0.757 0.394 0.694 -1.185 1.781 ar.L2 0.1719 0.749 0.229 0.819 -1.297 1.640 ar.L3 -0.7630 0.473 -1.614 0.107 -1.690 0.164 ma.L1 -0.5444 0.814 -0.669 0.503 -2.139 1.050 ma.L2 -0.3436 1.030 -0.334 0.739 -2.361 1.674 ma.L3 0.5536 0.616 0.899 0.368 -0.653 1.760 sigma2 439.7074 208.825 2.106 0.035 30.418 848.997 Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB): 0.32 Prob(Q): 0.97 Prob(JB): 0.85
In [120]:	Heteroskedasticity (H): Prob(H) (two-sided): Warnings: [1] Covariance matrix calculated using the outer product of gradients (complex-step). Diagnostic plots for standardized residuals results1.plot diagnostics(figsize=(15, 12),lags=25)
	Standardized residual for "y" Histogram plus estimated density O.5 -
	0.3 0.2 0.1 0.1 0.2 0.1 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.3 0.2 0.3 0.2 0.3 0.3 0.2 0.3 0.3 0.2 0.3 0.3 0.2 0.3 0.3 0.2 0.3 0.3 0.2 0.3 0.3 0.3 0.3 0.3 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
	Normal Q-Q
	-0.25 -0.50 -0.75 -1.00 0 5 10 15 20 25 Theoretical Quantiles
In [121]:	3.5 In-sample prediction and out-of-sample forecasting of SSA GDP per capita to 2030 forecast=results1.predict(start=0,end=40) forecast=pd.DataFrame(forecast, columns = ['projection']) forecast.index=['1990', '1991', '1992', '1993', '1994', '1995', '1996', '1997', '1998',
	<pre>plt.plot(ts.index, ts['GDP per capita']) plt.xlabel("Time") plt.xticks([]) plt.plot(forecast.iloc[2:].index, forecast.iloc[2:].projection, 'r', label="projection", alpha=0.5) plt.xticks(rotation=90) plt.ylabel("GDP per capita") Text(0, 0.5, 'GDP per capita') 4000 3500 68 3000 7</pre>
in [123]:	Time prediction_summary=results1.get_prediction(start=0, end=40).summary_frame() prediction_summary.index=['1990-01-01', '1991-01-01', '1992-01-01', '1993-01-01', '1994-01-01', '1995-01 -01', '1996-01-01', '1997-01-01', '1998-01-01', '1999-01-01', '2000-01-01', '2001-01-01', '2002-01-01', '2003-01-01', '2004-01-01', '2005-01-01', '2006-01-01', '2007-01-01', '2008-01-01', '2009-01-01', '2010-01-01', '2011-01-01', '2012-01-01', '2013-01-01', '2014-01-01', '2015-01-01', '2016-01-01', '2021-01-01', '2018-01-01', '2019-01-01', '2020-01-01', '2021-01-01', '2022-01-01', '2023-01-01', '2028-01-01', '2029-01-01', '2026-01-01', '2027-01-01', '2028-01-01', '2029-01-01', '2030-01-01']
	'2028-01-01', '2029-01-01', '2030-01-01'] prediction_summary.iloc[2:].mean_ci_lower.values array([1200.62721681, 1181.22565248, 1211.67851755, 1223.38645796,
In [125]:	3092.3048825 , 3135.44404492, 3173.23344925, 3210.96303624, 3255.89370761, 3301.8298849 , 3344.46628208, 3376.22103027, 3398.81712572, 3415.09673727, 3432.96420588]) plt.plot(ts.index, ts['GDP per capita']) plt.xlabel("Time") plt.xticks([]) plt.plot(forecast.iloc[2:].index, forecast.iloc[2:].projection, 'r', label="projection", alpha=0.5) plt.plot(forecast.iloc[2:].index, prediction_summary.iloc[2:].mean_ci_lower.values, color='r', label="ARIMA model 95% Lower CI", alpha=0.5)
Out[125]:	<pre>plt.plot(forecast.iloc[2:].index, prediction_summary.iloc[2:].mean_ci_upper.values,</pre>
	4. Conclusion Taking into account the underlying patterns of both time series, without a structural change in the regional GDPpc time series, SSA will continue being the underdog of the global economy for the next decade and the divergence with the world average is only likely to increase. Our model indicates that if the current underlying trends are to continue, the regional GDPpc as a percentatge of the world average will
In []:	Our model indicates that if the current underlying trends are to continue, the regional GDPpc as a percentatge of the world average will decrease to around 15% at the end of the 30s decade from the current value of around 17%. The current structural trend of the region's GDPpc growth remains weak. A much more explosive growth pattern is highly needed to converge with the world average. Returning to pre crisis levels of around 5% growth would bring the region in the convergence world average path. Altough, its true that the region is experiencing a much explosive population growth than the rest of the world; it also departs from a much lower position, which allows to accumulate higher scaled levels of economic output. Many economists suggest that SSA is too resourced-focus and manufacture-absent, which historical data tells it is the "standard model" followed by the majority of countries to have successfully transitioned from low-to middle or high income status. It's also true that western agricultural and commercial policies are still very damaging to SSA economic interests, but the region will only converge with the world average if decisive "game-changing" socio-economic and institutional reforms are implemented. Regarding the later, the Ethiopian example one of the poorest countries in the world in 2000 and now one of the fastest-growing economies in the world, sheds some light, into the path to follow for the most vulnerable nations.