Lecture 13: Physics-Informed Neural Networks (PINNs)

Sergei V. Kalinin

Building Linear Neuron

Input:
$$x = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}$$

Weights:
$$\boldsymbol{w} = \begin{bmatrix} w_1 \\ \vdots \\ w_m \end{bmatrix}$$

Linear
$$z = w_1x_1 + ... + w_mx_m + b =$$

transform: $= w^Tx + b$

Output:
$$\sigma(z) = \begin{cases} 1 & \text{if } z \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

From S. Raschka, Machine Learning with PyTorch and Scikit-Learn

Training Linear Neuron

- Initialize the weights and bias unit to o or small random numbers
- For each training example, **x(i)**:
- Compute the output value, $y(i) = w^Tx(i) + b$
- Update the weights and bias unit: $w_j \coloneqq w_j + \Delta w_j$ and $b \coloneqq b + \Delta b$
- Where $\Delta w_j = \eta (y^{(i)} \hat{y}^{(i)}) x_j^{(i)}$ and $\Delta b = \eta (y^{(i)} \hat{y}^{(i)})$

Each weight, w_i , corresponds to a feature, x_i , in the dataset,

- η is the **learning rate** (typically a constant between 0.0 and 1.0),
- $y^{(i)}$ is the **true class label** of the *i*th training example,
- $\hat{y}^{(i)}$ is the **predicted class label**

Putting Neurons Together

- Composed of multiple layers of artificial neurons.
- Each layer processes inputs received, applies a transformation (weights, biases, activation function), and passes the output to the next layer.
- Training a DNN involves adjusting weights and biases using backpropagation and a chosen optimization algorithm.
- The deep architecture enable the network to learn complex and abstract patterns in data.

Activation functions

Loss functions for supervised ML

A loss function, also known as a cost function, quantifies the difference between the predicted values and the actual target values. It guides the training of neural networks by providing a measure to minimize during optimization

Mean Squared Error (MSE): Used for regression problems.

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

Measures the average squared difference between actual and predicted values

Cross-Entropy Loss: Used for classification problems.

$$CE = -\sum_{i=1}^{N} y_i \log(\hat{y}_i)$$

Measures the performance of a classification model whose output is a probability value between o and 1

- Loss functions provide the primary feedback signal for learning.
- The choice of loss function can significantly affect the model's performance and convergence

Backpropagation

Backpropagation is a mechanism used to update the weights in a neural network efficiently, based on the error rate obtained in the previous epoch (i.e., iteration). It effectively distributes the error back through the network layers

- **Forward Pass:** Calculating the predicted output, moving the input data through the network layers
- Loss Function: Determining the error by comparing the predicted output to the actual output
- **Backward Pass:** Computing the gradient of the loss function with respect to each weight by the chain rule
- **Weight Update:** Adjusting the weights of the network in a direction that minimally reduces the loss (gradient descent)

Input Data \rightarrow Forward Pass \rightarrow Calculate Loss \rightarrow Backward Pass \rightarrow Update Weights

https://medium.com/@14prakash/back-propagation-is-very-simple-who-made-it-complicated-97b794c97e5c

Neural Network Based Regression

$$Loss_{reg} = rac{1}{N} \sum_{i}^{N} (f(x_i| heta) - y_i)^2 + \lambda || heta||_2^2$$

https://medium.com/@theo.wolf/physics-informed-neural-networks-a-simple-tutorial-with-pytorch-f28a890b874a

Physics-Informed Neural Networks

We have:

- a differential equation g(x, y) = 0,
- some data $\{x_i, y_i\}$ and
- a neural network $f(x \mid \theta)$ that approximates y.

For a PINN, we would get a loss function that looks like the following,

$$Loss_{PINN} = \underbrace{\frac{1}{N}\sum_{j}^{N}||f(x_{j}| heta) - y_{j}||_{2}^{2}}_{ ext{Data loss}} + \lambda \underbrace{\frac{1}{M}\sum_{i}^{M}||g(x_{i},f(x_{i},| heta))||_{2}^{2}}_{ ext{Physics loss}}$$

- Here x_i are *collocation* points. These can be any value we want them to be, usually you would want them to be in the range of values we are interested in.
- The x_i and y_i are our data.
- We can also add a parameter controlling the relative strength of the data loss function and the physics loss function, here we use λ .
- And then just train as you would any other neural network.

https://medium.com/@theo.wolf/physics-informed-neural-networks-a-simple-tutorial-with-pytorch-f28a890b874a

PINNs are Very Recent

George Em Karniadakis

FOLLOW

The Charles Pitts Robinson and John Palmer Barstow Professor of Applied Mathematics and Engineering

Verified email at brown.edu - Homepage

Math+Machine Learning Probabilistic Scientific Com... Stochastic Multiscale Mode...

TITLE	CITED BY	YEAR
Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations M Raissi, P Perdikaris, GE Karniadakis Journal of Computational physics 378, 686-707	8076	2019
The WienerAskey polynomial chaos for stochastic differential equations D Xiu, GE Karniadakis SIAM journal on scientific computing 24 (2), 619-644	5612	2002
Spectral/hp element methods for computational fluid dynamics G Karniadakis, SJ Sherwin Oxford University Press, USA	3468	2005
Discontinuous Galerkin methods: theory, computation and applications B Cockburn, GE Karniadakis, CW Shu Springer Science & Business Media	2941 *	2012
Physics-informed machine learning GE Karniadakis, IG Kevrekidis, L Lu, P Perdikaris, S Wang, L Yang Nature Reviews Physics 3 (6), 422-440	2836	2021
Microflows and nanoflows: fundamentals and simulation G Karniadakis, A Beskok, N Aluru Springer Science & Business Media	2737	2006
High-order splitting methods for the incompressible Navier-Stokes equations GE Karniadakis, M Israeli, SA Orszag Journal of computational physics 97 (2), 414-443	1771	1991
Modeling uncertainty in flow simulations via generalized polynomial chaos D Xiu, GE Karniadakis Journal of computational physics 187 (1), 137-167	1734	2003
Report: a model for flows in channels, pipes, and ducts at micro and nano scales A Beskok, GE Karniadakis Microscale thermophysical engineering 3 (1), 43-77	1495	1999

Cited I	by		VIEW ALL	
		All	Since 2019	
Citation h-index i10-inde	(98280 138 588	58004 99 466	
			20000	
	1	15000		
		ъΗ	10000	
- 1	5000			
2017 2018 2019 2020 2021 2022 2023 2024				
Public access VIEWAL				
Public	access		VIEW ALL	
17 artic			VIEW ALL 286 articles	
	cles			
17 artic	cles	andates	286 articles	
17 artic	ilable	andates	286 articles	
17 artic	ilable on funding ma	andates	286 articles	
not ava	ilable on funding ma	andates ethodist Univers	286 articles available	
17 articonot ava	cles illable on funding ma thors Ali Beskok Southern Me	ethodist Univers	286 articles available	
17 articonot ava	cles illable on funding ma thors Ali Beskok Southern Me Michael S. T Henry L. and	ethodist Univers riantafyllou d Grace Dohert	286 articles available sity y Prof	

NNs and PINNs for a simple cooling problem

$$rac{dT(t)}{dt} = r(T_{env} - T(t))$$

T(t): temperature

 T_{env} : temperature of the environment

r: cooling rate

NNs Solution

$$rac{dT(t)}{dt} = r(T_{env} - T(t))$$

T(t): temperature

 T_{env} : temperature of the environment

r: cooling rate

Setting up PINN

$$g(t,T) = rac{dT(t)}{dt} - r(T_{env} - T(t)) = 0$$
 $g(t,f(t| heta)) = rac{df(t| heta)}{dt} - r(T_{env} - f(t| heta))$ $Loss_{PINN} = \underbrace{rac{1}{10}\sum_{j}^{10}(f(t_{j}| heta) - T_{j})^{2}}_{ ext{data loss}} + \lambda \underbrace{rac{1}{M}\sum_{i}^{M}\left(rac{df(t_{i}| heta)}{dt_{i}} - r(T_{env} - f(t_{i}| heta))
ight)^{2}}_{ ext{physics loss}}$

To take the derivative of your neural network, *torch.autograd* module has a function called *grad()* which does exactly that (you can even take higher order derivatives). Just ensure that *create_graph* is set to True

PINN for known cooling rate

But what if the cooling rate is unknown?

Our differential equation is then $g(t, T \mid r) = o$ where r is unknown. Thanks to PyTorch, all we need to do is just one small change: add r as a differentiable parameter.