BIG DATA

<u>Introdução ao Big Data</u>

Tema da Aula: Text Mining

Coordenação:

Prof. Dr. Adolpho Walter Pimazzi Canton

Profa. Dra. Alessandra de Ávila Montini Prof.: **Dino Magri**

Contatos:

- E-mail: <u>professor.dinomagri@gmail.com</u>
- Twitter: https://twitter.com/prof_dinomagri
- LinkedIn: http://www.linkedin.com/in/dinomagri
- Site: http://www.dinomagri.com

Coordenação:

Prof. Dr. Adolpho Walter Pimazzi Canton

Profa. Dra. Alessandra de Ávila Montini

Currículo

- (2014-Presente) Professor no curso de Extensão, Pós e MBA na Fundação Instituto de Administração (FIA) – www.fia.com.br
- (2018-Presente) Pesquisa e Desenvolvimento de Big Data e Machine Learning na Beholder (http://beholder.tech)
- (2013-2018) Pesquisa e Desenvolvimento no Laboratório de Arquitetura e Redes de Computadores (LARC) na Universidade de São Paulo – <u>www.larc.usp.br</u>
- (2012) Bacharel em Ciência da Computação pela Universidade do Estado de Santa Catarina (UDESC) – <u>www.cct.udesc.br</u>
- (2009/2010) Pesquisador e Desenvolvedor no Centro de Computação Gráfica –
 Guimarães Portugal www.ccg.pt
- Lattes: http://lattes.cnpq.br/5673884504184733

Material das aulas

- Caso esteja utilizando seu próprio computador, realize o download de todos os arquivos e salve na Área de Trabalho para facilitar o acesso.
 - Lembre-se de instalar os softwares necessários conforme descrito no documento de Instalação (InstalaçãoPython3v1.2.pdf).

 Nos computadores da FIA os arquivos já estão disponíveis, bem como a instalação dos softwares necessários.

- Objetivo
- Mineração de Texto
- Processamento Linguagem Natural
- Classificação do Texto
- Desenvolvimento
- Referências

- Objetivo
- Mineração de Texto
- Processamento Linguagem Natural
- Classificação do Texto
- Desenvolvimento
- Referências

 O objetivo dessa aula é introduzir os conceitos envolvidos na mineração de texto através do desenvolvimento de uma aplicação que realiza análise de sentimento.

- Objetivo
- Mineração de Texto
- Processamento Linguagem Natural
- Classificação do Texto
- Desenvolvimento
- Referências

- Como vimos, existem diversas formas de obter dados.
- As evoluções que ocorreram nas áreas de Big Data, Mídias Sociais, Mobile e Computação em nuvem, possibilitam um aumento exponencial no volume dos dados.
- O grande desafio é extrair dados não estruturados para realizar análises e tomar as decisões necessárias para cada tipo de negócio.

- Internet
- Blogs
- Noticias
- E-mails
- Livros
- Mídias Sociais

- Tradução de texto
- Identificação dos atos de fala
- Extração de informação
- Categorização de texto
- Atendimento por Bots
- Análise de mídias sociais
- Filtragem de Spam
- Análise de sentimento
- •

- Logo, o processo de descoberta de conhecimento no conjunto de dados é muito importante.
 - KDD Knowledge Discovery in Databases

• É um processo automático, sistemático e analítico que possibilita realizar a mineração nos dados.

Fonte: Silva (2016)

- Mineração de texto (Text Mining) é um processo que constitui a descoberta de padrões, associações e mudanças para a produção do conhecimento.
- A mineração de texto é uma área ampla com diversos conceitos e possui diferentes abordagens e técnicas.

- Iremos realizar a mineração de texto com foco na análise de sentimento (positivo, negativo ou neutro) em comentários coletados no Youtube.
- As principais etapas envolvidas:
 - Coleta dos dados (texto)
 - Processamento do texto
 - Criação do classificador
 - Utilização do classificador gerado nos dados do Youtube.

- Objetivo
- Mineração de Texto
- Processamento Linguagem Natural
- Classificação do Texto
- Desenvolvimento
- Referências

- Linguagem natural é aquela utilizada para comunicação entre pessoas.
- Em contraste com as linguagens artificiais
 (linguagem de programação e notações
 matemáticas), as linguagens evoluem à medida
 que passam de geração para geração, sendo
 difícil defini-las por meio de regras explicitas.

- O estudo do processamento de linguagem natural (PLN) tem como objetivo criar técnicas computacionais para que seja possível compreender os textos.
- Desta forma, é necessário abstrair e estruturar a língua a partir das regras dos idiomas em que os textos estão escritos.
- Existem diversas técnicas que podem ser utilizadas para abstrair e estruturar um texto, elas devem ser analisadas no contexto de cada aplicação, observando seus objetivos.

- Para realizar a análise de sentimento, as técnicas de PLN comumente utilizadas são:
 - Normalização
 - Eliminação dos termos irrelevantes
 - Redução do termo ao radical
 - Representação dos documentos

 Para melhor entendimento das etapas envolvidas no préprocessamento, considere os seguintes documentos (frases):

Doc 01	Ambiente agradável e tranquilo. Comida e música com qualidade. Adoramos o filé à parmegiana!!!!!
Doc 02	O filé à parmegiana da cidade. Ambiente agradável e qualidade no atendimento.
Doc 03	O filé à parmegiana com fritas é uma delícia.

- Normalização
- Eliminação dos termos irrelevantes
- Redução do termo ao radical
- Representação dos atributos

Normalização

- Retira-se a pontuação dos textos, acentos, caracteres especiais.
- Realiza-se a padronização de todas as palavras em minúsculo.
- Separa a frase por palavras

Normalização

 As regras de normalização dependem do contexto da análise desejada.

Doc 01	<pre>'ambiente' 'agradavel' 'e' 'tranquilo' 'comida' 'e' 'musica' 'com' 'qualidade' 'adoramos' 'o' 'file' 'a' 'parmegiana'</pre>
Doc 02	'o' 'file' 'a' 'parmegiana' 'da' 'cidade' 'ambiente' 'agradavel' 'e' 'qualidade' 'no' 'atendimento'
Doc 03	'o' 'file' 'a' 'parmegiana' 'com' 'fritas' 'e' 'uma' 'delicia'

- Normalização
- Eliminação dos termos irrelevantes
- Redução do termo ao radical
- Representação dos atributos

Eliminação dos termos irrelevantes

- É importante eliminar palavras muito frequentes em todos os documentos como artigos, preposições e conjunções; pois não possuem significado relevante para a construção da análise e podem aumentar consideravelmente a estrutura de indexação do conjunto final dos dados.
- Essas palavras, também são conhecidas como Stop-words.
- Podem representar uma redução de 30 a 50% do tamanho do conjunto final.

Eliminação dos termos irrelevantes (stop-words)

 É um processo que deve ser executado de forma iterativa e interativa.

Doc 01	<pre>'ambiente' 'agradavel' 'tranquilo' 'comida' 'musica' 'qualidade' 'adoramos' 'file' 'parmegiana'</pre>
Doc 02	'file' 'parmegiana' 'cidade' 'ambiente' 'agradavel' 'qualidade' 'atendimento'
Doc 03	'file' 'parmegiana' 'fritas' 'delicia'

- Normalização
- Eliminação dos termos irrelevantes
- Redução do termo ao radical
- Representação dos atributos

Redução do termo ao radical

- Lematização (Stemming) é uma técnica utilizada para reduzir a palavra em seu radical de acordo com as regras do idioma.
- Por exemplo, a palavra amor pode variar em amado, amou, amará, amante, entre outras. Essa variação é dada pela identificação e retirada do seu afixo, "am".
- Essa tarefa reduz as variações de uma palavra para um conceito comum, aumentando a força do atributo e reduzindo o tamanho da estrutura de indexação.

Redução do termo ao radical

- Uma técnica possível de stemming, é a retirada dos sufixos das palavras. Essa abordagem utiliza os seguintes passos:
 - Passo 1: são removidos sufixos terminados pela letra s;
 - Passo 2: são removidos alguns sufixos de adjetivos e substantivos, além de formas verbais no pretérito e no particípio passado;
 - Passo 3: s\u00e3o retirados os principais sufixos formadores de plural de substantivos e adjetivos;
 - Passo 4: são tratadas palavras que são exceção às regras sufixais.
- O processo de lematização para a língua portuguesa é o RSLP (Removedor de Sufixos da Língua Portuguesa), que utiliza o algoritmo de Porter.

Redução do termo ao radical

 É importante analisar quais benefícios se adquiri utilizando essa etapa em diferentes algoritmos.

Doc 01	'ambient' 'agrad' 'tranquil' 'comid' 'music' 'qualidad' 'ador' 'fil' 'parmegian'
Doc 02	'fil' 'parmegian' 'cidad' 'ambient' 'agrad' 'qualid' 'atend'
Doc 03	'fil' 'parmegian' 'frit' 'delici'

- Normalização
- Eliminação dos termos irrelevantes
- Redução do termo ao radical
- Representação dos atributos

Representação dos atributos

- O conjunto de dados final é criado utilizando uma representação vetorial dos atributos.
- Basicamente atribui-se o valor 1 para representar a presença do atributo no documento e 0 para ausência.

Representação dos documentos

	ador	agrad	ambient	atend	cidad	comid	delici	fil	frit	music	parmegian	qualidad	tranquil
Doc 01	1	1	1	0	0	1	0	1	0	1	1	1	1
Doc 02	0	1	1	1	1	0	0	1	0	0	1	1	0
Doc 03	0	0	0	0	0	0	1	1	1	0	1	0	0

- Objetivo
- Mineração de Texto
- Processamento Linguagem Natural
- Classificação do Texto
- Desenvolvimento
- Referências

Classificação do Texto

- Uma vez que temos o conjunto de dados podemos realizar sua classificação em Positivo, Negativo e Neutro.
- Para realizar a classificação existem diversos métodos:
 - Manual
 - Baseado em regras
 - Estatístico/Probabilístico

- Iremos utilizar o algoritmo Naive Bayes para criar um modelo e realizar a classificação do texto.
- É um algoritmo probabilístico de classificação que se baseia no teorema de Bayes, cujo intuito é reconhecer padrões e realizar predições.
- É um classificador denominado ingênuo, pois assume que os atributos são independentes entre si.
- Tem custo computacional significativo para determinar a hipótese ótima.

- Na teoria da probabilidade, o teorema de Bayes mostra a relação entre uma probabilidade condicional e a sua inversa, ou seja, a probabilidade de uma hipótese, dada a observação de uma evidência; e a probabilidade da evidência, dada pela hipótese.
- Por exemplo: qual a probabilidade de chover (hipótese), dado que está ventando e com muitas nuvens (evidência)?

- O classificador Naive Bayes é capaz de reconhecer os padrões presentes nos dados de entrada e é utilizado para fazer predições em novos dados.
- Considere um conjunto de dados que possui as seguintes frases:

Frase original	Frase pré-processada	Classe
Me sinto completamente amado	sint complet am	Positivo
Eu estou muito bem hoje	bem hoj	Positivo
Eu sinto amor por você	sint am	Positivo
Isso me deixa apavorada	deix apavor	Negativo
Este lugar é apavorante	lug apavor	Negativo

As probabilidades são calculadas:

	si	nt	complet		am		bem		hoj		deix		apavor		lug	
Emoção	S	N	S	N	S	N	S	N	S	N	S	N	S	N	S	N
	2	3	1	4	2	3	1	4	1	4	1	4	2	3	1	4
Positivo	2/2	1/2	1/1	2/4	2/2	1/2	1/1	2/4	1/1	2/4	0	2/4	0	2/2	0	2/4
3/5	2/2	1/3	1/1	2/4	2/2	1/3	1/1	2/4	1/1	2/4	0	3/4	0	3/3	0	3/4
Negativo	0	2/3	0	2/4	0	2/3	0	2/4	0	2/4	1/1	1/4	2/2	0	1/1	1/4
2/5																

- Como a frase "Me sinto completamente bem neste lugar" será classificada?
 - Frase pré-processada: sint complet bem lug
 - Desta forma, teremos:
 - sint=S, complet=S, am=N, bem=S, hoje=N, deix=N, apavor=N, lug=S

Verifica-se a probabilidade de ser Positivo e a probabilidade de ser
 Negativo.

As probabilidades são calculadas:

	sint		complet		am		bem		hoj		deix		apavor		lug	
Emoção	S	N	S	N	S	N	S	N	S	N	S	N	S	N	S	N
	2	3	1	4	2	3	1	4	1	4	1	4	2	3	1	4
Positivo	2/2	4/2	4.44	2/4	2 /2	4/2	4./4	2/4	4 /4	2/4	•	2/4	0	2/2	0	2/4
3/5	2/2	1/3	1/1	2/4	2/2	1/3	1/1	2/4	1/1	2/4	0	3/4	0	3/3	0	3/4
Negativo	0	2/3	0	2/4	0	2/3	0	2/4	0	2/4	1/1	1/4	2/2	0	1/1	1/4
2/5																

Desta forma, podemos calcular as probabilidades:

$$- P(positivo) = 3/5 * 2/2 * 1/1 * 1/3 * 1/1 * 2/4 * 3/4 * 3/3 * 0$$

- P(negativo) = 2/5 * 0 * 0 * 2/3 * 0 * 2/4 * 2/4 * 1/4 * 0 * 1/1

Caso algum atributo nunca ocorra para uma classe, podemos utilizar o
 Correção de Laplace que soma 1 a contagem de todas as combinações da classe e valor de atributo. Por exemplo:

	sint		complet		am		bem		hoj		deix		apavor		lug	
Emoção	S	N	S	N	S	N	S	N	S	N	S	N	S	N	S	N
	2 (3)	3	1	4	2	3	1	4	1	4	1	4	2	3	1	4
Positivo	2/2	1 /2	1 /1	2/4	2/2	1 /2	1 /1	2/4	1 /1	2/4	0	2/4	0	2/2	0	2/4
3/5 (3/6)	(2/3)	1/3	1/1	2/4	2/2	1/3	1/1	2/4	1/1	2/4	0	3/4	0	3/3	0	3/4
Negativo	0	0./0				2 /2		2/1		2/1			2 /2			
2/5 (3/6)	(1/3)	2/3	0	2/4	0	2/3	0	2/4	0	2/4	1/1	1/4	2/2	0	1/1	1/4

- Como o conjunto de dados que estamos utilizando nesse exemplo é muito pequeno, vamos ignorar esses valores, pois quando adicionamos um novo documento para corrigir o valor 0, ele passa a representar 1/3, sendo uma probabilidade muito próxima da outra classe (2/3), o que impactaria significativamente o resultado final da probabilidade que estamos calculando.
 - Isso não ocorre com corpus muito grande, pois o valor da probabilidade é relativamente pequeno.
- Desta forma, podemos calcular as probabilidades:
 - P(positivo) = 3/5 * 2/2 * 1/1 * 1/3 * 1/1 * 2/4 * 3/4 * 3/3 = 0,075
 - P(positivo) = (0,075 / 0,092) * 100 = **81,52%**
 - P(negativo) = 2/5 * 2/3 * 2/4 * 2/4 * 1/4 * 1/1 = 0.017
 - P(negativo) = (0,017 / 0,092) * 100 = 18,48%

Logo, a frase "Me sinto completamente bem neste lugar" será classificada, como Positivo com 81,52%.

Referência: Estudo empírico do impacto do tamanho do corpus no desempenho do classificador Naive Bayes (Paola Cunha, 2018).

Conteúdo da Aula

- Objetivo
- Mineração de Texto
- Processamento Linguagem Natural
- Classificação do Texto
- Desenvolvimento
- Referências

- Utilizaremos a biblioteca NLTK do Python.
- É uma plataforma para criação de programas Python para trabalhar com dados de linguagem humana.
- Ele fornece interfaces fáceis de usar para mais de 50 corpora e recursos léxicos, além é claro de conter um conjunto de ferramentas para processar o texto, como:
 - Classificação, tokenização, derivação, marcação, análise e raciocínio semântico.
- Os autores originais foram Steven Bird, Edward Loper, Ewan Klein.
- A primeira versão foi publicada em 2001.

- Originalmente projetada para ensinar os conceitos envolvido no processamento de linguagem natural.
- Tem sido adotada na área de pesquisa & desenvolvimento de diversas empresas.
- É uma biblioteca com foco na simplicidade,
 consistência e modularidade.

Para instalar, abra o CMD ou Terminal e digite:

pip install nltk

- Como nosso objetivo é realizar a classificação de texto em positivo, negativo e neutro precisamos de uma base histórica com frases previamente classificadas.
- Iremos utilizar uma base de dados contendo tweets relacionados à Copa do Mundo de 2018, devidamente classificadas.
- Essa base será utilizada para criarmos o nosso classificador
 Naive Bayes.

 Abra o arquivo "aula9-parte1-nltk.ipynb"

 Depois que o classificador foi criado e testado, iremos utilizalo para realizar a classificação dos comentários do YouTube capturados de vídeos com o tema da copa do mundo.

Abra o arquivo "aula9-parte2-analise-sentimento.ipynb"

Conteúdo da Aula

- Objetivo
- Mineração de Texto
- Processamento Linguagem Natural
- Classificação do Texto
- Desenvolvimento
- Referências

Referências Bibliográficas

 Natural Language Processing with Python - Steven Bird, Ewan Klein e Edward Loper - O'Reilly, 2016.

Python Text Processing with NLTK 2.0 Cookbook - Jacob Perkins
 - Packt, 2010.

 Recuperação de Informação – Ricardo Baeza-Yates, Berthier Ribeiro-Neto, Bookman, 2013.

Referências Bibliográficas

Introdução à Mineração de dados – Leandro Augusto da Silva,
 Sarajane Marques Peres, Clodis Boscarioli, Elsevier, SBC, 2016.

- Data Science from Scratch Joel Grus O'Reilly, 2015.
- Python for Data Analysis Wes McKinney USA: O'Reilly, 2013.
- As referências de links utilizados podem ser visualizados em http://urls.dinomagri.com/refs