Project: Hotel Management Data Analysis using SQL

Objective

To analyze hotel booking and operational data, uncovering insights on revenue, occupancy, guest preferences, and seasonal trends across Atliq Grands properties using SQL queries on three main tables: `fact_bookings`, `fact_aggregated_bookings`, and `properties`.

- 1. Database and Table Setup
- # 1.1 Database Creation

CREATE DATABASE IF NOT EXISTS hotel_management;

USE hotel_management;

A new database `hotel_management` is created to house all tables needed for the project.

1.2 Creating `fact_bookings` Table

CREATE TABLE IF NOT EXISTS fact_bookings (

```
booking_id VARCHAR(255) PRIMARY KEY,
  property_id INT,
  booking_date DATE,
 check_in_date DATE,
  checkout_date DATE,
  no_guests INT,
 room_category VARCHAR(100),
  booking_platform VARCHAR(100),
 ratings_given FLOAT NULL,
  booking_status VARCHAR(50),
 revenue_generated DECIMAL(10, 2),
 revenue_realized DECIMAL(10, 2)
);
This table stores individual booking details, including booking and
check-in dates, room category, guest count, booking platform, and
revenue.
# 1.3 Creating `fact_aggregated_bookings` Table
CREATE TABLE IF NOT EXISTS fact_aggregated_bookings (
 property_id INT,
 check_in_date DATE,
  room_category VARCHAR(100),
```

```
successful_bookings INT,
  capacity INT
);
This table contains aggregated booking data by date and room category,
detailing successful bookings and property capacity.
# 1.4 Creating `properties` Table
CREATE TABLE IF NOT EXISTS properties
  property_id INT PRIMARY KEY,
  property_name VARCHAR(100)
  category VARCHAR(50),
  city VARCHAR(50)
`properties` holds property details, including property names,
categories, and locations.
2. Data Insertion and Transformation
```

Data is loaded into tables with date fields transformed using `STR_TO_DATE` to standardize formats.

```
-- Insert and transform dates for temp bookings
```

INSERT IGNORE INTO fact_bookings (booking_id, property_id, booking_date, check_in_date, checkout_date, no_guests, room_category, booking_platform, ratings_given, booking_status, revenue_generated, revenue_realized)

SELECT

booking_id,

property_id,

STR_TO_DATE(booking_date, '%d-%m-%Y'),

STR_TO_DATE(check_in_date, '%d-%m-%Y'),

STR_TO_DATE(checkout_date, '%d-%m-%Y'),

no_guests,

room_category,

booking_platform,

NULLIF(ratings_given, ") AS ratings_given,

booking_status,

revenue_generated,

revenue_realized

FROM temp_bookings;

• • •

3. Analysis Queries and Results

3.1 Total Revenue per Property

Calculates each property's total revenue, helping identify topperforming properties.

SELECT

p.property_name,

SUM(fb.revenue_realized) AS total_revenue

FROM

fact_bookings fb

JOIN

properties p ON fb.property_id = p.property_id

GROUP BY

p.property_name

ORDER BY

total_revenue DESC;

...

3.2 Occupancy Percentage by Property

Calculates occupancy rates by dividing successful bookings by capacity for each property.

SELECT

p.property_name,

(SUM(fab.successful_bookings) / SUM(fab.capacity)) * 100 AS occupancy_percentage

FROM

fact_aggregated_bookings fab

JOIN

properties p ON fab.property_id = p.property_id

GROUP BY

p.property_name

ORDER BY

occupancy_percentage DESC;

• • • •

3.3 Average Rating per Property

Retrieves the average customer rating per property, indicating guest satisfaction levels.

SELECT

p.property_name,

AVG(fb.ratings_given) AS average_rating

FROM

fact_bookings fb

JOIN

properties p ON fb.property_id = p.property_id

WHERE

fb.ratings_given IS NOT NULL

GROUP BY

p.property_name

ORDER BY

average_rating DESC;

	property_name	occupancy_percentage
•	Atliq Blu	62.0163
	Atliq Palace	59.9985
	Atliq City	59.5096
	Atliq Bay	58.4144
	Atliq Exotica	57.2570
	Atliq Grands	52.6031
	Atliq Seasons	44.6212

...

3.4 Revenue and Occupancy Split by City and Property

Breaks down revenue and occupancy rates by city and property, showing regional performance.

SELECT

p.city,

p.property_name,

SUM(fb.revenue_realized) AS total_revenue,

(SUM(fab.successful_bookings) / SUM(fab.capacity)) * 100 AS occupancy_percentage

FROM

fact_bookings fb

<mark>JOIN</mark>

fact_aggregated_bookings fab ON fb.property_id = fab.property_id
AND fb.check_in_date = fab.check_in_date AND fb.room_category =
fab.room_category

<mark>JOIN</mark>

properties p ON fb.property_id = p.property_id

GROUP BY

p.city, p.property_name

ORDER BY

total_revenue DESC;

	property_name	average_rating
١	Atliq Blu	3.9596500820120286
	Atliq Palace	3.749544626593807
	Atliq Bay	3.7089285714285714
	Atliq City	3.6947993159641888
	Atliq Exotica	3.6192409173939515
	Atliq Grands	3.099875501452483
	Atlig Seasons	2.2948564593301435

...

3.5 Weekly Revenue Trends

This query identifies weekly revenue trends to detect seasonality and peak booking periods.

SELECT

YEAR(fb.check_in_date) AS year,

WEEK(fb.check_in_date) AS week_number,

SUM(fb.revenue_realized) AS weekly_revenue

FROM

fact_bookings fb

GROUP BY

year, week_number

ORDER BY

year, week_number;

city	property_name	total_revenue	occupancy_percentage
Mumbai	Atliq Exotica	637334964.00	69.0078
Mumbai	Atliq Palace	304533240.00	69.1726
Delhi	Atliq Palace	267407994.00	69.3636
Mumbai	Atliq City	263988648.00	55.5951
Bangalore	Atliq Bay	247330620.00	68.8367
Bangalore	Atliq City	245629035.00	68.7782
Mumbai	Atliq Grands	224192226.00	56.0689
Mumbai	Atliq Blu	221754936.00	68.7278

Bangalore	Atliq Blu	218890080.00	55.8345
Hyderabad	Atliq Bay	207767730.00	68.8260
Bangalore	Atliq Palace	205788015.00	55.8044
Mumbai	Atliq Seasons	198376485.00	46.7986
Hyderabad	Atliq City	183021600.00	69.1206
Bangalore	Atliq Exotica	180070380.00	55.9128
Delhi	Atliq Blu	173800200.00	68.8509
Delhi	Atliq Bay	169312710.00	55.5894
Hyderabad	Atliq Blu	168121350.00	68.7407
Delhi	Atliq City	164796534.00	56.1329
Bangalore	Atliq Grands	163483020.00	46.3374
Mumbai	Atliq Bay	155742474.00	46.5738
Hyderabad	Atliq Exotica	143532060.00	46.7677
Hyderabad	Atliq Grands	138739530.00	55.7577
Hyderabad	Atliq Palace	134516340.00	55.3429
Delhi	Atliq Grands	108183516.00	68.7680

3.6 Occupancy by Day Type (Weekend vs Weekday)

Calculates occupancy rates for weekends and weekdays, allowing for strategic pricing decisions.

SELECT

p.property_name,

CASE

WHEN DAYOFWEEK(fab.check_in_date) IN (1, 7) THEN 'Weekend'

ELSE 'Weekday'

END AS day_type,

(SUM(fab.successful_bookings) / SUM(fab.capacity)) * 100 AS occupancy_percentage

FROM

fact_aggregated_bookings fab

<mark>JOIN</mark>

properties p ON fab.property_id = p.property_id

GROUP BY

p.property_name, day_type

ORDER BY

p.property_name, day_type;

Atliq Bay	Weekday	51.9095
Atliq Bay	Weekend	74.0741
Atliq Blu	Weekday	54.9577
Atliq Blu	Weekend	79.0091
Atliq City	Weekday	52.6580

Atliq City	Weekend	76.0042
Atliq Exotica	Weekday	50.8384
Atliq Exotica	Weekend	72.7091
Atliq Grands	Weekday	46.6783
Atliq Grands	Weekend	66.8666
Atliq Palace	Weekday	53.3070
Atliq Palace	Weekend	76.1076
Atliq Seasons	Weekday	39.5559
Atliq Seasons	Weekend	56.8156

...

3.7 Booking Distribution by Platform

Determines which booking platforms guests use most frequently, informing targeted marketing.

SELECT

fb.booking_platform,

COUNT(fb.booking_id) AS total_bookings,

(COUNT(fb.booking_id) / (SELECT COUNT(*) FROM fact_bookings)) * 100 AS booking_percentage

FROM

fact_bookings fb

GROUP BY

fb.booking_platform

ORDER BY

total_bookings DESC;

	booking_platform	total_bookings	booking_percentage
•	others	55066	40.9139
	makeyourtrip	26898	19.9851
	logtrip	14756	10.9637
	direct online	13379	9.9406
	tripster	9630	7.1551
	journey	8106	6.0227
	direct offline	6755	5.0189

...

Conclusion

The analysis delivers a data-backed perspective on property performance, revenue drivers, guest preferences, and occupancy trends, empowering Atliq Grands with insights for enhancing revenue management, occupancy optimization, and marketing strategies.

This data analysis can be instrumental in guiding Atliq Grands' decision-making in several strategic ways:

1. Revenue Maximization:

- High and Low-Performing Properties: By identifying properties that consistently generate high revenue, management can analyze their successful features and replicate these strategies across lower-performing properties. For example, luxury amenities at high-revenue locations might be expanded to mid-range properties to attract similar guest profiles.
- Platform-Based Marketing: The analysis of bookings by platform shows which channels guests prefer, allowing for targeted advertising. Atliq Grands could focus promotional budgets on high-traffic platforms, potentially negotiating exclusive deals or partnerships to increase direct bookings.

2. Occupancy Optimization:

- Capacity Management: Understanding occupancy trends by property and by day type (weekday vs. weekend) allows Atliq Grands to adjust room pricing dynamically. They might offer discounted rates on weekdays to boost occupancy or create special weekend packages to maximize revenue when demand is high.
- Seasonal and Weekly Trends: Insights into seasonal peaks and weekly revenue fluctuations allow for proactive resource allocation. Staff schedules, maintenance, and supply levels can be adjusted to match expected demand, ensuring efficient operations and reduced operational costs.

3. Customer Experience Enhancement:

- Guest Satisfaction Insights: The average rating analysis helps management identify properties where guest satisfaction may be lagging. By pinpointing common complaints or issues at these locations, Atliq Grands can address problems that impact ratings, such as cleanliness, room comfort, or service. Focused improvements could drive better ratings, leading to higher customer loyalty and repeat bookings.

- Room Category Adjustments: Analyzing occupancy and revenue by room type provides data to fine-tune room offerings. For instance, if luxury rooms have consistently high occupancy, adding more rooms in this category or upgrading mid-tier rooms to luxury might align with demand.

4. Market Expansion and Localization:

- City-Specific Performance: Atliq Grands can assess which markets have the highest revenue and occupancy rates with detailed performance data across different cities. This can inform decisions on where to open new properties, or where existing properties might benefit from further investment. Properties in low-performing regions might require localized marketing strategies or tailored amenities to align with local guest preferences.

5. Operational Efficiency:

- Strategic Resource Allocation: Insights into capacity and booking patterns help Atliq Grands allocate resources more efficiently. For example, if certain cities have consistently lower occupancy, operational costs can be adjusted accordingly, perhaps by reducing inventory or staffing during off-peak seasons.
- Revenue Realization Analysis: With data on actual revenue realized versus generated, Atliq Grands can investigate any discrepancies, such as discounts or cancellations. Addressing these issues can improve revenue collection processes, leading to better financial health.

6. Improved Competitive Positioning:

- Targeted Service Improvements: By continually monitoring and analyzing guest feedback through ratings, Atliq Grands can differentiate itself by consistently enhancing guest experience areas that matter most, helping it to stand out in a competitive market.
- Localized Marketing and Pricing Strategies: Insights from city-specific data, seasonal trends, and platform preferences enable Atliq Grands to refine marketing campaigns. This tailored approach can boost brand presence in key markets, attract new customers, and retain current ones.

By leveraging data insights in these ways, Atliq Grands can make more data-driven, effective business decisions, leading to improved profitability, customer satisfaction, and a stronger market presence in the hospitality industry.