Real Analysis Qualifying Exam

January, 2002

Instructions: Below you will find 8 problems. Each problem is worth 10 points. Only the best 6 scores will be added.

Time: 2 hours.

NOTATIONS: $\mathbb{R} = \text{set of all real numbers}$; $\lambda = \text{Lebesgue measure on } \mathbb{R}$; $L^p(I, d\lambda) = \text{the space of real-valued Lebesgue measurable functions on } I$ with $\int_I |f|^p d\lambda < \infty$ (I = any interval, p > 0).

- 1. Give an example of a set $A \subset \mathbb{R}$, which is not Lebesgue measurable.
- **2.** Let K be a compact Hausdorff space, and let $(f_n)_{n=1}^{\infty}$ be a sequence of continuous real-valued functions on K, such that for every $x \in K$ one has:
 - (i) $f_1(x) \ge f_2(x) \ge f_3(x) \ge \dots$
 - (ii) $\lim_{n\to\infty} f_n(x) = 0$.

Prove that $\lim_{n\to\infty} f_n = 0$ uniformly.

3. Suppose $(f_n)_{n=1}^{\infty}$ is a sequence in $L^1(\mathbb{R}, d\lambda)$, such that

$$\lim_{n \to \infty} \int_{\mathbb{R}} |f_n| \, d\lambda = 0. \tag{*}$$

- (a) Prove that there exists a subsequence $(f_{n_k})_{k=1}^{\infty}$ of $(f_n)_{n=1}^{\infty}$, with $\lim_{k\to\infty} f_{n_k} = 0$, a.e.
- (b) Given an example of a sequence $(f_n)_{n=1}^{\infty}$, satisfying (*), but which is not convergent a.e. to 0.

- **4.** Let C[0,1] denote the Banach space of all real-valued continuous functions on [0,1]. (The norm on C[0,1] is defined by $||f|| = \max_{t \in [0,1]} |f(t)|$.)
 - (a) Prove that any finite dimensional linear subspace V of C[0,1] is closed in the norm topology.
 - (b) Prove that if V is a linear subspace of C[0,1], which has a countable infinite linear basis, then V is not closed in the norm topology. (HINT: Use Baire's Theorem.)
- **5.** Let $f \in L^2([-\pi, \pi], d\lambda)$ be a function with the property:

$$\int_{-\pi}^{\pi} f(x) \sin nx \, dx = 0, \ \forall n \in \mathbb{N}.$$

Prove that f(-x) = f(x), a.e.

- **6.** Let $f \in L^1(\mathbb{R}, d\lambda)$, and let $(f_n)_{n=1}^{\infty}$ be a sequence in $L^1(\mathbb{R}, d\lambda)$, with
 - (i) $\lim_{n\to\infty} f_n = f$, a.e.
 - (ii) $\lim_{n\to\infty} ||f_n||_1 = ||f||_1$.

Prove that $\lim_{n\to\infty} ||f_n - f||_1 = 0$.

7. Let $f \in L^1(\mathbb{R}, d\lambda)$. Prove that

$$\lim_{n \to \infty} \int_{\mathbb{R}} f(x) \sin nx \, dx = 0.$$

8. Let (X, \mathcal{M}, μ) be a σ -finite measure space, and let $\{E_{\lambda}\}_{{\lambda} \in \Lambda} \subset \mathcal{M}$ be a disjoint collection. Prove that the set

$$S = \{ \lambda \in \Lambda : \mu(E_{\lambda}) > 0 \}$$

is at most countable.