PhD project

Linking forest management and species distribution models: a theoretical approach under climate change

Willian Vieira^{1,*}

¹Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada *w.vieiraw@gmail.com

Abstract

TODO:

- Abiotic and biotic constraints
- Forest management
- Theoretical approach (SDM, Disturbance, resilience calculus, alternative stable state and early warning signals)
- All study case: Québec Forest ressource
- All methods
- Better description of thesis structure
- Abstract Short reference style
- Change LATEXcolor syntax

Contents

1	What is going on?	3
2	Preliminary objectives	4
3	Mechanisms of delayed biotic response	4
	Biotic Mechanisms	4
	3.2 Abiotic Mechanisms	5
4	Forest management	5
	4.1 Forest productivity	6
5	Theoretical approach	6
	5.1 Range dynamics theory	6
	5.2 Disturbance	6
	5.3 Resilience	6
	5.4 Transition period - Alternative Stable States?	7
	5.5 Early warnings?	7
6	Study case: the Quebec forest resource	7
7	Methods	8
	7.1 Modeling	8
	7.1.1 Species Distribution Models	8
	7.1.2 Integral Projection Models	8
	7.2 Bayesian approach	8
8	Thesis structure	8

(Pfister, 1993, p. 231)

1 What is going on?

Climate change is an increasing trending topic both in non-scientific (Capstick et al., 2015) and scientific environment (Figure 1), transforming our world as a metamorphosis of practice and acting (Beck, 2016). According to IPCC (Cubasch et al., 2013), humans activities are contributing to increase the concentration of greenhouse gases, which can lead to increase the mean temperature and the strength of extreme climate events. This global change has an impact in different biological processes, from local species constraints (e.g. low regeneration Treyger and Nowak, 2011), shift in species' range (Boisvert-Marsh et al., 2014; Monleon and Lintz, 2015) and in community composition (Dieleman et al., 2015) to range retractions and extinction (Thomas et al., 2006), impacting biodiversity at different scales (Peñuelas et al., 2013).

Species distribution models (SDM; defined in section 7.1.1) is one of the most popular method to predict species' range shift under climate change, providing a wide range of applications, as in biodiversity conservation and management (Guisan and Thuiller, 2005; Guisan et al., 2013). However, these models are generally phenomenological and distributed at equilibrium with climate (e.g. Pigot and Tobias, 2013), being an issue when species observation does not reflect its niche (Schurr et al., 2012). Furthermore, they do not consider important determinants of range limits as demography (Louthan et al., 2015), ecological constraints (Wisz et al., 2013; Pigot and Tobias, 2013) and species absences data (Koshkina et al., 2017), inducing non-accurately projection of the future spatial distribution of a species (Tavecchia et al., 2016).

Figure 1: Frequency of the keyword "Climate change" used in publications indexed on Google Scholar (1940 - 2013) and Web of Science (1994 - 2015)

spatial distribution of a species (Tavecchia et al., 2016). Considering this determinants, trees' migration rate following climate change will be slower than predicted (Bertrand et al., 2011; Sittaro et al., 2017), increasing the climatic debt (Bertrand et al., 2016).

The climatic debt is a measure of the lag (or disequilibrium) of plant communities with climate change, integrated in an environmental context (Bertrand et al., 2016). Essl et al. (2015) has listed twelve mechanisms that contribute to delayed biodiversity responses, among them, changes appears at ecosystem (loss and degradation), community (secessional, biotic interaction, species removal and invasion) and population (evolutionary and adaptive) levels. Physical changes cause biotic changes that directly and indirectly promotes species' persistence and species' migration (Bertrand et al., 2016). This mechanisms of persistence (measured by resistance) and migration (measured by recovery) leads to a climate debt and migration credit, respectively (Bertrand et al., 2016) but also a concept of resilience (Oliver et al., 2015, see section 5.3). Therefore, this lag under climate change promotes extinction debt, being a challenging for biodiversity conservation (Kuussaari et al., 2009) and productivity (Lasch et al., 2002). Identify the mechanisms shaping

delayed biotic response of systems to environment, its resilience as well as alternatives to mitigate ecological constraints, is crucial to access the vulnerability of biodiversity to climate change and improve forecasts and biodiversity management (Essl et al., 2015; Oliver et al., 2015; Bertrand et al., 2016).

2 Preliminary objectives

The primary objective of my thesis is to study if forest management can increase the speed of transition (i.e. recovery resilience) from temperate to boreal forests observed in the North Eastern America. To achieve, I will use theoretical models parameterized from a forest inventory database, focusing on tracking uncertainty using Bayesian approach. As an outcome, I will create a decision make tool to improve management strategies that take climate change into account.

My PhD is based in four questions so far:

- (i) Which mechanisms are affecting the delayed biotic response to climate change? What is the origin, direction and intensity of these mechanisms?
- (ii) How can forest management affect these mechanisms to increase resilience and therefore speed up the response?
- (iii) How these mechanisms interact at local and global scale?
- (iv) How can these mechanisms be used to inform applied management to enhance the resilience and productivity?

3 Mechanisms of delayed biotic response

Mechanisms shaping delayed biotic response and resilience act at different scales and usually they interact with each other across scales, which makes the process sometime difficult to track and therefore to mitigate. Furthermore, there is a focus attention in mechanisms at the metapopulation level where local mechanisms are often ignored (Hylander and Ehrlén, 2013), creating a knowledge gap in understanding all the possibles mechanisms as well as its interactions. In this context, I will start my thesis trying to identify how we can increase forest resilience by managing these mechanisms, or more specific, how to decrease the recovery time of a system from a disturbance to a steady state (theories described in section 5). Here, I present some mechanisms that may be affecting the delayed response to climate change, as well as forest resilience, in which may become possible topics I will be testing during my thesis using SDM, working both at local and large scale.

3.1 Biotic Mechanisms

Biotic mechanisms affect the delayed response from individual and population species to community level. At the individual scale, the lifecycle characteristics of a species j, represented by demography patters, is a mechanism able to alter the time response from environmental perturbations. For example, species with a high growth rate will recover faster (Grman et al., 2010), which then we can expect a high recovery resilience. In parallel, the sensitivity of a species also plays an important role in its response to perturbations; sensitives species respond more quickly

and also has a high recovery resilience. In other hands, both species (high growth and sensitivity) has a low resistance to environmental changes; it means that, if they have a low adaptive phenotypic plasticity, they will not be able to survive. Phenotypic plasticity is the change (behaviour, morphology or physiology) of an individual in response to the environmental change (Price et al., 2003); this adaptive process is mechanism that increase both species resistance and recovery resilience.

However, species rarely experience identical impacts of environmental change due to interactions between traits, landscape composition, and the scale at which they experience environmental drivers [41,42].

Species interaction Explain the role species interaction can play on its distribution range. http://www.sciencedirect.com/science/article/pii/S0169534715002475 The perceived threat of climate change is often evaluated from species distribution models that are fitted to many species independently and then added together. This approach ignores the fact that species are jointly distributed and limit one another (Clark et al., 2014).

Joint species distribution?

Interactions between land-use and climate also can underestimate species resilience in distribution models (Goring and Williams, 2017).

3.2 Abiotic Mechanisms

4 Forest management

Lessons from large-scale environmental management successes, for example measures to reduce the causes of 'acid rain' (Fowler et al. 1982), show that action at local and global scales must complement each other if wide-scale environmental management efforts are to be successful. Present some motivations, advantages and disadvantages in considering forest management. (in Rhodes 2015)

It is clear that some factors will be more amenable to management (e.g., population-level genetic variability, landscape structure [18,31]) than others (e.g., environmental sensitivity of individual species, presence of alternative stable states). In Olivier 2015

Four major strategies are available to mitigate carbon emissions through forestry activities: (i) to increase forested land area through reforestation (6), (ii) to increase the carbon density of existing forests at both stand and landscape scales, (iii) to expand the use of forest products that sustainably replace fossil-fuel CO2 emissions, and (iv) to reduce emissions from deforestation and degradation. in Managing forests for climate change mitigation (Science)

 $http://onlinelibrary.wiley.com/doi/10.1111/j.1752-4571.2010.00157.x/full \\ http://www.sciencedirect.com/science/article/pii/S0006320715301762$

Interesting argument about who should peak do winners from Webster et al. (2017). They say that *Predict-and-prescribe management may erode diversity by focusing on 'winners'*.

Forest management in a theoretical view was actually not very much explored and so I consider it a kind of gap we should better explore. Read Becknell et al. (2015) for an overview.

paper: Temporal stability in forest productivity increases with tree diversity due to asynchrony in species dynamics

However, this translation is limited by significant knowledge gaps including the following: (i) difficulties in detecting changes in resilience (Batt et al. 2013), (ii) a lack of evidence and agreement to support successful preventative management actions (Barrett et al. 2014) and (iii) the need to work across multiple geopolitical scales to achieve effective management (Servos et al. 2013). (In Rhodes 2015 at app eco)

An operational model for resilience-based management Step 1: Detecting ecological sensitivity to pressures Step 2: Developing more effective resilience-based management measures Step 3: Achieving adaptive governance

4.1 Forest productivity

Robert m'a envoyé quelques articles qui discutent des facteurs qui contrôlent la dominance des arbustes éricacées en forêt boréale et de leur possible impacte sur la productivité forestière.

5 Theoretical approach

Read the section recent developments in predicting changes in species distribution from Ehrlen and Morris (2015)

5.1 Range dynamics theory

What theories can help us to describe species range under climate change? How to integrate forest management in this theory? -> Metapopulation dynamics theory <-

5.2 Disturbance

Pass through the main disturbance theories basing mainly in Pulsford et al. (2016)

5.3 Resilience

A classical definition of resilience in ecology is the ability of ecosystems to absorb changes and still persist (Holling, 1973). The concept was further developed in other context (e.g. social-ecological systems), and a more contemporary definition considers resilience as (i) the amount of disturbance the system can absorb, (ii) the degree the system is able to self-organize and (iii) the degree of learning capacity to adapt to disturbance (Cumming, 2011). We have therefore two concepts, the time to **recovery** to stability and accommodated external changes (Pimm, 1984; Folke et al., 2002) and the **resistance** of a particular ecological state to change (Peterson et al., 1998). Although Oliver et al. (2015) treat both resistance and recovery as related aspects of resilience, I prefer to keep these concepts separated in (i) recovery resilience (or engineering resilience) and (ii) resistance where both are englobed in ecological resilience (Hodgson et al., 2015; Nimmo et al., 2015). Ecological resilience can be affected by different mechanisms from species to landscape levels, but biodiversity shows to be crucial to maintain long-term resilience of ecosystem services (Oliver et al., 2015).

It is also important to not confuse recovery resilience with stability of a system. Recovery resilience is the rate and extent of "restoration" of a system while stability is when the system maintains stable following small perturbations over time. Before introduce the method to calculate recovery resilience, we must know what is the equilibrium and stability (Box 1) of a system, as well as these measures are relative and careful must be taken when choosing resilience of what to what (Carpenter et al., 2001).

$$E = mc^2$$
 Formula of the universe (1)

Box 2. Environmental transition (see Oliver2015)

$$E = mc^2$$
 Formula of the universe (2)

(iii) But how to calculate it in a analytical way? To implement the results from these or other studies in management projects, it is necessary to disentangle the many meanings and measures of resilience and related stability concepts (In Mori at TREE). Now introduce the calculus of λ by Jacobian matrix (Box 2). The Jacobian matrix has been used in different applications, from local models [...] to meta-ecosystems models (Gravel et al., 2016)

5.4 Transition period - Alternative Stable States?

The existence of single equilibria is still often assumed in the literature, with critical implications for conservation and restoration. – An important feature of this concept (resilience) is the emphasis on possible alternative system properties that are associated with renewal and reorganization after disturbance (In Mori 2016 at TREE)

Resilience-based management does not typically seek to increase the rate of return to an original state, which often implicitly assumes the existence of a single equilibrium, but instead recognizes that many natural systems could have multiple attractors [2, 3]. (In Mori 2016 at TREE)

5.5 Early warnings?

Resilience indicators: prospects and limitations for early warnings of regime shifts

For precautionary biodiversity management, the identification of robust early-warning signals (e.g., critical slowing down of recovery rates after perturbations) of approaching thresholds (tipping points) of losses of biodiversity or ecosystem services [9] is urgently needed (in Essl2015)

6 Study case: the Quebec forest resource

Explain here where I am going to work and also why I am choosing this area.

7 Methods

Here we see a briefly presentation of possible methods will be used in the thesis.

7.1 Modeling

Why and how modeling?

Morin et thuiller 2009:What then are the best strategies for obtaining accurate predictions for changes in the distributions of deciduous temperate trees? At the scale of the geographic distribution of species, no experiments in situ can be reasonably carried out to predict possible range shifts (Woodward 1987). Modeling therefore appears the most feasible and efficient way to establish useful predictions (Lovejoy and Hannah 2005, Thuiller 2007), and several kinds of models have been developed during the previous decade for this purpose. As reviewed by Midgley et al. (2007), these models fall into two main classes: vegetation-type models (dynamic global vegetation models [DGVMs]) and species-specific models (niche-based and process-based).

7.1.1 Species Distribution Models

Nice resume about SDM in Morán-Ordóñez et al. (2016).

7.1.2 Integral Projection Models

the predictive powers of state and transition models are relatively low and their ability to deal with uncertainty is limited (Bashari, Smith and Bosch, 2008; Phillips, 2011).

7.2 Bayesian approach

I should be writing and not playing with LATEX

8 Thesis structure

The first part of the thesis will be a general introduction in French where I will probably use a part of this document and present the big picutre of my thesis.

The first chapter will try to answer the question Can forest management increase forest resilience to climate change?. The paper will work with an analytical and sensitivity analysis in a metapopulation dynamics model to understand the impact of forest management on increasing forest resilience.

In the second chapter I am going to build a landscape model that will consider both forest management and species interaction.

The third chapter I am going to build another model but in a local scale. I have to find a good biological reason for that.

The fourth chapter will then integrate both landscape and local model into one. Here I will also track the uncertainty of the model by bayesian approach.

Finally, I will try to introduce my PhD reflexions into the big picture of ecology, management and ecosystem services. In an integrative and synthetic approach (more appropriate for a *Forum*

ection), I will discuss my main results, its application and mainly the point of depart for future prosperous work.	9

References

- U. Beck. The metamorphosis of the world: How climate change is transforming our concept of the world. Polity Press John Wiley & Sons, Cambridge, UK, 2016. ISBN 0745690254.
- J. M. Becknell, a. R. Desai, M. C. Dietze, C. a. Schultz, G. Starr, P. a. Duffy, J. F. Franklin, a. Pourmokhtarian, J. Hall, P. C. Stoy, M. W. Binford, L. R. Boring, and C. L. Staudhammer. Assessing Interactions Among Changing Climate, Management, and Disturbance in Forests: A Macrosystems Approach. *BioScience*, 65(3):263–274, 2015. ISSN 0006-3568. doi: 10.1093/biosci/biu234. URL http://bioscience.oxfordjournals.org/cgi/doi/10.1093/biosci/biu234.
- R. Bertrand, J. Lenoir, C. Piedallu, G. Riofrío-Dillon, P. de Ruffray, C. Vidal, J.-C. Pierrat, and J.-C. Gégout. Changes in plant community composition lag behind climate warming in lowland forests. *Nature*, 479(7374):517–520, 2011. ISSN 0028-0836. doi: 10.1038/nature10548. URL http://www.nature.com/doifinder/10.1038/nature10548.
- R. Bertrand, G. Riofrío-Dillon, J. Lenoir, J. Drapier, P. de Ruffray, J.-C. Gégout, and M. Loreau. Ecological constraints increase the climatic debt in forests. *Nature Communications*, 7(August):12643, 2016. ISSN 2041-1723. doi: 10.1038/ncomms12643. URL http://www.nature.com/doifinder/10.1038/ncomms12643.
- L. Boisvert-Marsh, C. Périé, and S. de Blois. Shifting with climate? Evidence for recent changes in tree species distribution at high latitudes. *Ecosphere*, 5(7):art83, 2014. ISSN 2150-8925. doi: 10.1890/ES14-00111.1. URL http://doi.wiley.com/10.1890/ES14-00111.1.
- S. Capstick, L. Whitmarsh, W. Poortinga, N. Pidgeon, and P. Upham. International trends in public perceptions of climate change over the past quarter century. *Wiley Interdisciplinary Reviews: Climate Change*, 6(1):35–61, jan 2015. ISSN 17577799. doi: 10.1002/wcc.321. URL http://doi.wiley.com/10.1002/wcc.321.
- S. Carpenter, B. Walker, J. M. Anderies, and N. Abel. From Metaphor to Measurement: Resilience of What to What? *Ecosystems*, 4(8):765–781, 2001. ISSN 1435-0629. doi: 10.1007/s10021-001-0045-9. URL http://dx.doi.org/10.1007/s10021-001-0045-9.
- J. S. Clark, A. E. Gelfand, C. W. Woodall, and K. Zhu. More than the sum of the parts: Forest Climate response from join specise distributions. *Ecological Applications*, 24(5):990–999, 2014. ISSN 10510761. doi: 10.1890/13-1015.1.
- U. Cubasch, D. Wuebbles, D. Chen, M. C. Facchini, D. Frame, N. Mahowald, and J. G. Winther. Introduction. In T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, B. V, and P. M. Midgley, editors, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, chapter Introducti, pages 119–158. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.
- G. S. Cumming. Spatial resilience in social-ecological systems. Springer Science & Business Media, London, 2011. ISBN 9400703074.

- C. M. Dieleman, B. A. Branfireun, J. W. Mclaughlin, and Z. Lindo. Climate change drives a shift in peatland ecosystem plant community: Implications for ecosystem function and stability. *Global Change Biology*, 21(1):388–395, 2015. ISSN 13652486. doi: 10.1111/gcb.12643.
- J. Ehrlen and W. F. Morris. Predicting changes in the distribution and abundance of species under environmental change. *Ecology Letters*, 18(3):303–314, 2015. ISSN 14610248. doi: 10.1111/ele.12410.
- F. Essl, S. Dullinger, W. Rabitsch, P. E. Hulme, P. Pyšek, J. R. U. Wilson, and D. M. Richardson. Delayed biodiversity change: No time to waste. *Trends in Ecology and Evolution*, 30(7):375–378, 2015. ISSN 01695347. doi: 10.1016/j.tree.2015.05.002.
- C. Folke, S. Carpenter, T. Elmqvist, L. Gunderson, C. S. Holling, and B. Walker. Resilience and sustainable development: building adaptive capacity in a world of transformations. *AMBIO:* A journal of the human environment, 31(5):437–440, 2002. ISSN 0044-7447.
- S. J. Goring and J. W. Williams. Effect of historical land-use and climate change on tree-climate relationships in the upper Midwestern United States. *Ecology Letters*, pages 461–470, 2017. ISSN 1461023X. doi: 10.1111/ele.12747. URL http://doi.wiley.com/10.1111/ele.12747.
- D. Gravel, F. Massol, and M. A. Leibold. Stability and complexity in model meta-ecosystems. *Nature Communications*, 7(10):12457, aug 2016. ISSN 2041-1723. doi: 10.1038/ncomms12457. URL http://ieeexplore.ieee.org/document/4309856/http://www.nature.com/doifinder/10.1038/ncomms12457.
- E. Grman, J. A. Lau, D. R. Schoolmaster, and K. L. Gross. Mechanisms contributing to stability in ecosystem function depend on the environmental context. *Ecology Letters*, 13(11):1400–1410, 2010. ISSN 14610248. doi: 10.1111/j.1461-0248.2010.01533.x.
- A. Guisan and W. Thuiller. Predicting species distribution: Offering more than simple habitat models. *Ecology Letters*, 8(9):993–1009, 2005. ISSN 1461023X. doi: 10.1111/j.1461-0248.2005. 00792.x.
- A. Guisan, R. Tingley, J. B. Baumgartner, I. Naujokaitis-Lewis, P. R. Sutcliffe, A. I. T. Tulloch, T. J. Regan, L. Brotons, E. Mcdonald-Madden, C. Mantyka-Pringle, T. G. Martin, J. R. Rhodes, R. Maggini, S. A. Setterfield, J. Elith, M. W. Schwartz, B. A. Wintle, O. Broennimann, M. Austin, S. Ferrier, M. R. Kearney, H. P. Possingham, and Y. M. Buckley. Predicting species distributions for conservation decisions. *Ecology Letters*, 16(12):1424–1435, 2013. ISSN 1461023X. doi: 10.1111/ele.12189.
- D. Hodgson, J. L. McDonald, and D. J. Hosken. What do you mean, 'resilient'? *Trends in Ecology and Evolution*, 30(9):503-506, 2015. ISSN 01695347. doi: 10.1016/j.tree.2015.06.010. URL http://dx.doi.org/10.1016/j.tree.2015.06.010.
- C. S. Holling. Resilience and Stability of Ecological Systems. *Annual Review of Ecology and Systematics*, 4(1):1-23, 1973. ISSN 0066-4162. doi: 10.1146/annurev.es.04.110173.000245. URL http://www.annualreviews.org/doi/10.1146/annurev.es.04.110173.000245.

- K. Hylander and J. Ehrlén. The mechanisms causing extinction debts. *Trends in Ecology and Evolution*, 28(6):341–346, 2013. ISSN 01695347. doi: 10.1016/j.tree.2013.01.010.
- V. Koshkina, Y. Wang, A. Gordon, R. M. Dorazio, M. White, and L. Stone. Integrated species distribution models: combining presence-background data and site-occupany data with imperfect detection. *Methods in Ecology and Evolution*, 8(4):420–430, 2017. ISSN 2041210X. doi: 10.1111/2041-210X.12738.
- M. Kuussaari, R. Bommarco, R. K. Heikkinen, A. Helm, J. Krauss, R. Lindborg, E. Öckinger, M. Pärtel, J. Pino, F. Rodà, C. Stefanescu, T. Teder, M. Zobel, and I. Steffan-Dewenter. Extinction debt: a challenge for biodiversity conservation. *Trends in Ecology and Evolution*, 24(10):564–571, 2009. ISSN 01695347. doi: 10.1016/j.tree.2009.04.011.
- P. Lasch, M. Lindner, M. Erhard, F. Suckow, and a. Wenzel. Regional impact assessment on forest structure and functions under climate change—the Brandenburg case study. *Forest Ecology and Management*, 162(1):73–86, 2002. ISSN 03781127. doi: 10.1016/S0378-1127(02)00051-8.
- A. M. Louthan, D. F. Doak, and A. L. Angert. Where and When do Species Interactions Set Range Limits? *Trends in Ecology and Evolution*, 30(12):780–792, 2015. ISSN 01695347. doi: 10.1016/j.tree.2015.09.011. URL http://dx.doi.org/10.1016/j.tree.2015.09.011.
- V. J. Monleon and H. E. Lintz. Evidence of tree species' range shifts in a complex landscape. *PLoS ONE*, 10(1):1–17, 2015. ISSN 19326203. doi: 10.1371/journal.pone.0118069.
- A. Morán-Ordóñez, J. J. Lahoz-Monfort, J. Elith, and B. A. Wintle. Evaluating 318 continental-scale species distribution models over a 60-year prediction horizon: what factors influence the reliability of predictions? *Global Ecology and Biogeography*, pages 1–14, 2016. ISSN 1466822X. doi: 10.1111/geb.12545. URL http://doi.wiley.com/10.1111/geb.12545.
- D. G. Nimmo, R. Mac Nally, S. C. Cunningham, A. Haslem, and A. F. Bennett. Vive la résistance: Reviving resistance for 21st century conservation. *Trends in Ecology and Evolution*, 30(9):516–523, 2015. ISSN 01695347. doi: 10.1016/j.tree.2015.07.008. URL http://dx.doi.org/10.1016/j.tree.2015.07.008.
- T. H. Oliver, M. S. Heard, N. J. B. Isaac, D. B. Roy, D. Procter, F. Eigenbrod, R. Freckleton, A. Hector, C. D. L. Orme, O. L. Petchey, V. Proença, D. Raffaelli, K. B. Suttle, G. M. Mace, B. Martín-López, B. A. Woodcock, and J. M. Bullock. Biodiversity and Resilience of Ecosystem Functions. *Trends in ecology & evolution*, 30(11):673–684, 2015. ISSN 18728383. doi: 10.1016/j.tree.2015.08.009.
- J. Peñuelas, J. Sardans, M. Estiarte, R. Ogaya, J. Carnicer, M. Coll, A. Barbeta, A. Rivas-Ubach, J. Llusià, M. Garbulsky, I. Filella, and A. S. Jump. Evidence of current impact of climate change on life: A walk from genes to the biosphere. *Global Change Biology*, 19(8):2303–2338, 2013. ISSN 13541013. doi: 10.1111/gcb.12143.
- G. Peterson, C. R. Allen, and C. S. Holling. Original Articles: Ecological Resilience, Biodiversity, and Scale. *Ecosystems*, 1(1):6–18, 1998. ISSN 1432-9840. doi: 10.1007/s100219900002. URL http://link.springer.com/10.1007/s100219900002.

- R. D. Pfister. The need and potential for ecosystem management in forests of the inland west. In G. N. Aplet, N. Johnson, J. T. Olson, and V. A. Sample, editors, *Defining sustainable forestry*, chapter The need a, pages 217–239. Island Press, The Wilderness Society, Washington, DC, 1993.
- A. L. Pigot and J. A. Tobias. Species interactions constrain geographic range expansion over evolutionary time. *Ecology Letters*, 16(3):330–338, 2013. ISSN 1461023X. doi: 10.1111/ele. 12043. URL http://doi.wiley.com/10.1111/ele.12043.
- S. L. Pimm. The complexity and stability of ecosystems. *Nature*, 307(26):321-326, 1984. ISSN 0028-0836. doi: 10.1038/315635c0. URL http://www.nature.com/doifinder/10.1038/315635c0.
- T. D. Price, A. Qvarnstrom, and D. E. Irwin. The role of phenotypic plasticity in driving genetic evolution. *Proceedings of the Royal Society B: Biological Sciences*, 270(1523):1433–1440, 2003. ISSN 0962-8452. doi: 10.1098/rspb.2003.2372. URL http://rspb.royalsocietypublishing.org/cgi/doi/10.1098/rspb.2003.2372.
- S. A. Pulsford, D. B. Lindenmayer, and D. A. Driscoll. A succession of theories: Purging redundancy from disturbance theory. *Biological Reviews*, 91(1):148–167, 2016. ISSN 1469185X. doi: 10.1111/brv.12163.
- F. M. Schurr, J. Pagel, J. S. Cabral, J. Groeneveld, O. Bykova, R. B. O'Hara, F. Hartig, W. D. Kissling, H. P. Linder, G. F. Midgley, B. Schröder, A. Singer, and N. E. Zimmermann. How to understand species' niches and range dynamics: A demographic research agenda for biogeography. *Journal of Biogeography*, 39(12):2146–2162, 2012. ISSN 03050270. doi: 10.1111/j.1365-2699.2012.02737.x.
- F. Sittaro, A. Paquette, C. Messier, and C. A. Nock. Tree range expansion in eastern North America fails to keep pace with climate warming at northern range limits. *Global Change Biology*, pages 1–10, 2017. ISSN 13652486. doi: 10.1111/gcb.13622.
- G. Tavecchia, S. Tenan, R. Pradel, J. M. Igual, M. Genovart, and D. Oro. Climate-driven vital rates do not always mean climate-driven population. *Global Change Biology*, 22(12):3960–3966, 2016. ISSN 13652486. doi: 10.1111/gcb.13330.
- C. D. Thomas, A. M. A. Franco, and J. K. Hill. Range retractions and extinction in the face of climate warming. *Trends in Ecology and Evolution*, 21(8):415–416, 2006. ISSN 01695347. doi: 10.1016/j.tree.2006.05.012.
- A. L. Treyger and C. A. Nowak. Changes in tree sapling composition within powerline corridors appear to be consistent with climatic changes in New York State. *Global Change Biology*, 17 (11):3439–3452, 2011. ISSN 13541013. doi: 10.1111/j.1365-2486.2011.02455.x.
- M. S. Webster, M. A. Colton, E. S. Darling, J. Armstrong, M. L. Pinsky, N. Knowlton, and D. E. Schindler. Who Should Pick the Winners of Climate Change? *Trends in Ecology & Evolution*, 32(3):167–173, 2017. ISSN 01695347. doi: 10.1016/j.tree.2016.12.007. URL http://linkinghub.elsevier.com/retrieve/pii/S0169534716302415.

M. S. Wisz, J. Pottier, W. D. Kissling, L. Pellissier, J. Lenoir, C. F. Damgaard, C. F. Dormann, M. C. Forchhammer, J. A. Grytnes, A. Guisan, R. K. Heikkinen, T. T. Høye, I. Kühn, M. Luoto, L. Maiorano, M. C. Nilsson, S. Normand, E. Öckinger, N. M. Schmidt, M. Termansen, A. Timmermann, D. A. Wardle, P. Aastrup, and J. C. Svenning. The role of biotic interactions in shaping distributions and realised assemblages of species: Implications for species distribution modelling. *Biological Reviews*, 88(1):15–30, 2013. ISSN 14647931. doi: 10.1111/j.1469-185X.2012.00235.x.