AMENDMENTS TO THE CLAIMS

1	1.	(Currently Amended) A method for marking one or more packets of data in a
2		packet-switched network based on achieved flow bandwidth information within
3		the network, comprising the computer-implemented steps of:
4		receiving a first group of one or more packets of a data flow from the network;
5		marking [[a]]the first group of one or more packets of [[a]]said data flow with a
6		first behavioral treatment value, wherein the first behavioral treatment
7	,	value directs devices within the network to treat the first group of one or
8		more packets with a first quality of service treatment;
9		transmitting the first group of one or more packets of said data flow in the
10		network;
11		determining an achieved flow bandwidth for the data flow based on data traffic
12		within the network;
13		determining a second behavioral treatment value based on the achieved flow
14		bandwidth for the data flow within the network; and
15		receiving a second group of one or more packets of said data flow from the
16		network;
17		marking [[a]]the second group of one or more packets of said data flow with said
18		second behavioral treatment value, wherein the second behavioral
19		treatment value directs devices within the network to treat the second
20		group of one or more packets with a second quality of service treatment;
21		and ·

22		transmitting the second group of one or more packets of said data flow in the
23		network.
1	2.	(Original) The method as recited in Claim 1, wherein:
2		the step of marking a first group of one or more packets includes the step of
3		storing a first differentiated services codepoint (DSCP) value in each
4		header of the first group of one or more packets of a data flow;
5		the step of determining a second behavioral treatment value includes the step of
6		determining a second DSCP value; and
7		the step of marking a second group of one or more packets includes the step of
8		storing the second DSCP value in each header of the second group of one
9		or more packets of a data flow.
1	3.	(Original) The method as recited in Claim 1, further comprising the steps of:
2		determining packet flow characteristics of the first group of one or more packets
3		of a data flow; and
4		determining the second behavioral treatment value based on the available
5		bandwidth within the network and the packet flow characteristics of the
6		first group of one or more packets of a data flow.
1	4.	(Original) The method as recited in Claim 1, further comprising the steps of:
2		establishing a Quality of Service (QoS) policy for applying a per-hop-behavior
3		treatment for forwarding packets within a flow in said network; and
4		generating the first behavioral treatment value based on the established QoS
5		policy.

1	5.	(Currently Amended) A computer-readable medium carrying one or more
2		sequences of instructions for marking one or more packets of data in a packet-
3		switched network based on achieved flow bandwidth information within the
4		network, wherein execution of the one or more sequences of instructions by one or
5		more processors causes the one or more processors to perform the steps of:
6		receiving a first group of one or more packets of a data flow from the network;
7		marking [[a]]the first group of one or more packets of [[a]]said data flow with a
8		first behavioral treatment value, wherein the first behavioral treatment
9		value directs devices within the network to treat the first group of one or
10		more packets with a first quality of service treatment;
11		transmitting the first group of one or more packets of said data flow in the
12		network;
13		determining an achieved flow bandwidth for the data flow based on data traffic
14		within the network;
15		determining a second behavioral treatment value based on the achieved flow
16		bandwidth for the data flow within the network; and
17		receiving a second group of one or more packets of said data flow from the
18		network;
19		marking [[a]]the second group of one or more packets of said data flow with said
20		second behavioral treatment value, wherein the second behavioral
21		treatment value directs devices within the network to treat the second
22		group of one or more packets with a second quality of service treatment;
23		<u>and</u>

24		transmitting the second group of one or more packets of said data flow in the
25		network.
1	6.	(Original) The computer-readable medium as recited in Claim 5, wherein:
2		the step of marking a first group of one or more packets includes the step of
3		storing a first differentiated services codepoint (DSCP) value in each
4		header of the first group of one or more packets of a data flow;
5		the step of determining a second behavioral treatment value includes the step of
6		determining a second DSCP value; and
7		the step of marking a second group of one or more packets includes the step of
8		storing the second DSCP value in each header of the second group of one
9		or more packets of a data flow.
1	7.	(Original) The computer-readable medium as recited in Claim 5, further
2		comprising instructions for performing the steps of:
3		determining packet flow characteristics of the first group of one or more packets
4		of a data flow; and
5		determining the second behavioral treatment value based on the available
6		bandwidth within the network and the packet flow characteristics of the
7		first group of one or more packets of a data flow.
1	8.	(Original) The computer-readable medium as recited in Claim 5, further
2		comprising instructions for performing the steps of:
3		establishing a Quality of Service (QoS) policy for applying a per-hop-behavior
4		treatment for forwarding packets within a flow in said network; and

6		policy.
1	9. (Curr	rently Amended) A computer apparatus comprising:
2	a pro	cessor; and
3	a me	mory coupled to the processor, the memory containing one or more
4		sequences of instructions for marking one or more packets of data in a
5		packet-switched network based on achieved flow bandwidth information
6		within the network, wherein execution of the one or more sequences of
7		instructions by the processor causes the processor to perform the steps of:
8		receiving a first group of one or more packets of a data flow from the
9		network;
10		marking [[a]]the first group of one or more packets of [[a]]said data flow
11		with a first behavioral treatment value, wherein the first behavioral
12		treatment value directs devices within the network to treat the first
13		group of one or more packets with a first quality of service treatment
14		transmitting the first group of one or more packets of said data flow in the
15		network;
16		determining an achieved flow bandwidth for the data flow based on data
17		traffic within the network;
18		determining a second behavioral treatment value based on the achieved
19		flow bandwidth for the data flow within the network; and
20		receiving a second group of one or more packets of said data flow from the
21		network;

generating the first behavioral treatment value based on the established QoS

Docket No.: 50325-0106

5

22		marking [[a]]the second group of one or more packets of said data flow
23		with said second behavioral treatment value, wherein the second
24		behavioral treatment value directs devices within the network to treat
25		the second group of one or more packets with a second quality of
26		service treatment; and
27		transmitting the second group of one or more packets of said data flow in
28		the network.
1	10.	(Original) The computer apparatus as recited in Claim 9, wherein:
2		the step of marking a first group of one or more packets includes the step of
3		storing a first differentiated services codepoint (DSCP) value in each
4		header of the first group of one or more packets of a data flow;
5		the step of determining a second behavioral treatment value includes the step of
6		determining a second DSCP value; and
7		the step of marking a second group of one or more packets includes the step of
8		storing the second DSCP value in each header of the second group of one
9		or more packets of a data flow.
1	11.	(Original) The computer apparatus as recited in Claim 9, further comprising
2		instructions for performing the steps of:
3		determining packet flow characteristics of the first group of one or more packets
4		of a data flow; and

5		determining the second behavioral treatment value based on the available
6		bandwidth within the network and the packet flow characteristics of the
7		first group of one or more packets of a data flow.
1	12.	(Original) The computer apparatus as recited in Claim 9, further comprising
2		instructions for performing the steps of:
3		establishing a Quality of Service (QoS) policy for applying a per-hop-behavior
4		treatment for forwarding packets within a flow in said network; and
5		generating the first behavioral treatment value based on the established QoS
6		policy.
1	13.	(Currently Amended) A network device configured for marking one or more
2		packets of data in a packet-switched network based on achieved flow bandwidth
3		information within the network, comprising:
4		means for receiving a first group of one or more packets of a data flow from the
5		network;
6		means for marking [[a]]the first group of one or more packets of [[a]]said data
7		flow with a first behavioral treatment value, wherein the first behavioral
8		treatment value directs devices within the network to treat the first group
9		of one or more packets with a first quality of service treatment;
10		means for transmitting the first group of one or more packets of said data flow in
11		the network;
12		means for determining an achieved flow bandwidth for the data flow based on
13		data traffic within the network;

14		means for determining a second behavioral treatment value based on the achieved
15		flow bandwidth for the data flow within the network; and
16		means for receiving a second group of one or more packets of said data flow from
17		the network;
18		means for marking [[a]]the second group of one or more packets of said data flow
19		with said second behavioral treatment value, wherein the second
20		behavioral treatment value directs devices within the network to treat the
21		second group of one or more packets with a second quality of service
22		treatment; and
23		means for transmitting the second group of one or more packets of said data flow
24		in the network.
1	14.	(Currently Amended) A method for marking one or more packets of data in a
2		packet-switched network based on achieved flow bandwidth information
3		within the network, comprising the computer-implemented steps of:
4		causing one or more network devices to receive a first group of one or more
5		packets of a data flow from the network;
6		causing the one or more network devices to mark [[a]]the first group of one or
7		more packets of [[a]]said data flow with a first behavioral treatment
8		value, wherein the first behavioral treatment value directs devices
9		within the network to treat the first group of one or more packets with
10		a first quality of service treatment;
11		causing the one or more network devices to transmit the first group of one or
12		more packets of said data flow in the network;

13	determining an achieved flow bandwidth for the data flow based on data
14	traffic within the network;
15	determining a second behavioral treatment value based on the achieved flow
16	bandwidth for the data flow within the network; and
17	causing the one or more network devices to receive a second group of one or
18	more packets of said data flow from the network;
19	causing the one or more network devices to mark [[a]]the second group of one
20	or more packets of said data flow with said second behavioral
21	treatment value, wherein the second behavioral treatment value directs
22	devices within the network to treat the second group of one or more
23	packets with a second quality of service treatment; and
24	causing the one or more network devices to transmit the second group of one
25	or more packets of said data flow in the network.
15.	(Previously Presented) The method as in claim 1, wherein the first behavioral
	treatment is determined without regard to the achieved flow bandwidth.
16.	(Previously Presented) The method as in claim 1, wherein the second behavioral
	treatment is a behavioral treatment that provides a lower level of service than
	other available choices of behavioral treatments; and
	wherein the second behavioral treatment provides a high enough level of service
	to accommodate the achieved flow bandwidth.

Docket No.: 50325-0106

l	17.	(Previously Presented) The method as in claim 1, wherein the second behavioral
2		treatment is a behavioral treatment that provides a minimum level of service that
3		is a sufficient level of service to accommodate the achieved flow bandwidth.
l	18.	(Previously Presented) The method as in claim 1, wherein the step of marking the
2		first group is performed by at least communicating the first behavioral treatment
3		to a differentiated services node located at a border of a differentiated services
1		domain; and
5		wherein the step of marking the second group is performed by at least
6		communicating the second behavioral treatment to the differentiated
7		services node.
l	19.	(Previously Presented) A method as in claim 1, further comprising repeating the
2		step of determining the achieved flow bandwidth and steps that follow the step of
3		determining the achieved flow bandwidth.
l	20.	(Previously Presented) A method as in claim 1, further comprising repeating the
2		step of determining the achieved flow bandwidth and steps that follow the step of
3		determining the achieved flow bandwidth multiple times, therein enhancing
1		efficiency of the network on an on going basis.
l	21.	(Previously Presented) The method as in claim 1, wherein the step of determining
2 .		the achieved flow bandwidth is performed by at least estimating the achieved flow
3		bandwidth based on Management Information Base (MIB) variables.

1	22.	(Previously Presented) The method as in claim 1, wherein the step of determining
2		the achieved flow bandwidth is performed by at least checking a Transfer Control
3		Protocol/ Internet Protocol (TCP/IP) window size and determining a value for the
4		achieved flow bandwidth based on the TCP/IP window size.
1	23.	(Previously Presented) The method as in claim 1, wherein the step of determining
2		the achieved flow bandwidth is based on reception quality feedback from a Real-
3		Time Transport Protocol (RTP) receiver.
1	24.	(Currently Amended) A method for marking one or more packets of data in a
2		packet-switched network based on achieved flow bandwidth information within
3		the network, comprising the computer-implemented steps of:
4		receiving a first group of packets of a plurality of data flows from the network;
5		marking [[a]]the first group of packets of [[a]]said plurality of data flows with an
6		initial set of behavioral treatment values, wherein the first set of behavioral
7		treatment values direct devices within the network to treat the first group
8		of packets with an initial set of quality of service treatments;
9		transmitting the first group of packets of said plurality of data flows in the
10		network;
11		determining achieved flow bandwidths, wherein an achieved flow bandwidth is
12		determined for each of the plurality of data flows based on data traffic
13		within the network;
14		determining an updated set of behavioral treatment values based on the achieved
15		flow bandwidths within the network; and

16		receiving a second group of packets of said plurality of data flows from the
17		network;
18		after the steps of marking the first group and determining the updated set of
19		behavioral treatment values, marking [[a]]the second group packets of said
20		plurality of data flows with said updated set of behavioral treatment
21		values, wherein the updated set of behavioral treatment values direct
22		devices within the network to treat the second group of packets with an
23		updated set of quality of service treatments; and
24		transmitting the second group of packets of said plurality of data flows in the
25		network.
1	25.	(Previously Presented) A method for performing packet marking comprising the
2		computer-implemented steps of:
3		defining an initial set of Quality of Service (QoS) values for coloring packets
4		within a plurality of data flows, wherein each of the QoS values indicates
5		an allocation of bandwidth;
6		coloring a first group of one or more packets of a given data flow selected from
7		the plurality of data flows, without regard to an achieved flow bandwidth,
8		by at least
9		communicating the initial set of QoS values to each of one or more edge
10		differentiated services domain nodes that are located at one or
11		more edges of a differentiated services domain, and
12		the one or more edge differentiated services domain nodes using one or
13		more of the initial set of QoS values to color the first group;

14		estimating traffic bandwidth within the network based on bandwidth information
15		corresponding to a current traffic pattern of the network, wherein the
16		traffic bandwidth estimated includes an achieved flow bandwidth for the
17		given data flow;
18		determining an updated set of QoS values for coloring packets within the plurality
19		of data flows, based on the traffic bandwidth estimated,
20		wherein the updated set of QoS values provide lower levels of service than
21		other available choices of QoS values, and
22		wherein the updated set of QoS values provide a high enough level of
23		service to accommodate the traffic bandwidth estimated;
24		coloring a subsequent group of one or more packets of the given data flow with
25		the one or more of updated set of QoS values by at least
26		communicating the updated set of QoS values to each of one or more edge
27		differentiated services domain nodes, and
28		the one or more edge differentiated services domain nodes using one or
29		more of the updated set of QoS values to color the subsequent
30		group;
31		repeating the steps of estimating traffic bandwidth, determining an updated set of
32		QoS values, and coloring a subsequent group multiple time, therein tuning
33		the network on an ongoing basis.
1	26.	(Previously Presented) The method as in claim 24, wherein the initial set of QoS
2		values is an initial set of Differentiated Services Codepoint (DSCP) values;
3		wherein the updated set of QoS values is an updated set of DSCP values;

4		wherein the step of estimating traffic bandwidth further comprises the steps of:
5		defining one or more QoS policies that specify target bandwidth values
6		and a range of possible services for each the plurality of data
7		flows, wherein a given target bandwidth value is specified for the
8		given data flow, and wherein the given target bandwidth identifies
9		a specific bandwidth that is desirous or required by the given data
10		flow;
11		gathering information about the traffic bandwidth; and
12		determining the traffic bandwidth based on the information gathered.
1	27.	(Previously Presented) The method of claim 1, wherein the data flow is
2		associated with only one behavioral treatment at any given time.
1	28.	(Previously Presented) The method of claim 24, wherein each data flow is
2		associated with only one behavioral treatment at any given time.
1	29.	(Previously Presented) The method of claim 1, wherein the achieved flow
2		bandwidth is a percentage of the network bandwidth.
1	30.	(Previously Presented) The method claim 29, wherein the second behavioral
2		treatment results in the dataflow having a different achieved flow bandwidth,
3		which is a different percentage of the network bandwidth.
1	31.	(Previously Presented) The method of claim 1, wherein the determining of the
2		second behavioral treatment is in response to a determination of achieved flow
3		bandwidth resulting form the determining of the achieved flow bandwidth.

2 3	<i>32</i> .	(Previously Presented) The computer-readable medium as in claim 5, wherein the first behavioral treatment is determined without regard to the achieved flow bandwidth.
1	33.	(Previously Presented) The computer-readable medium as in claim 5, wherein the
2		second behavioral treatment is a behavioral treatment that provides a lower level
3		of service than other available choices of behavioral treatments; and
4		wherein the second behavioral treatment provides a high enough level of service
5		to accommodate the achieved flow bandwidth.
1	34.	(Previously Presented) The computer-readable medium as in claim 5, wherein the
2		second behavioral treatment is a behavioral treatment that provides a minimum
3		level of service that is a sufficient level of service to accommodate the achieved
4		flow bandwidth.
1	35.	(Previously Presented) The computer-readable medium as in claim 5, wherein the
2		step of marking the first group is performed by at least communicating the first
3		behavioral treatment to a differentiated services node located at a border of a
4		differentiated services domain; and
5		wherein the step of marking the second group is performed by at least
6		communicating the second behavioral treatment to the differentiated
7		services node.
1	36.	(Previously Presented) A computer-readable medium as in claim 5, wherein the
2		method further comprises repeating the step of determining the achieved flow

Docket No.: 50325-0106 16

3		bandwidth and steps that follow the step of determining the achieved flow
4		bandwidth.
1	37.	(Previously Presented) A computer-readable medium as in claim 5, wherein the
2		method further comprises repeating the step of determining the achieved flow
3		bandwidth and steps that follow the step of determining the achieved flow
4		bandwidth multiple times, therein enhancing efficiency of the network on an on
5		going basis.
1	38.	(Previously Presented) The computer-readable medium as in claim 5, wherein the
2		step of determining the achieved flow bandwidth is performed by at least
3		estimating the achieved flow bandwidth based on Management Information Base
4		(MIB) variables.
1	39.	(Previously Presented) The computer-readable medium as in claim 5, wherein the
2		step of determining the achieved flow bandwidth is performed by at least
3		checking a Transfer Control Protocol/ Internet Protocol (TCP/IP) window size
4		and determining a value for the achieved flow bandwidth based on the TCP/IP
5		window size.
1	40.	(Previously Presented) The computer-readable medium as in claim 5, wherein the
2		step of determining the achieved flow bandwidth is based on reception quality
3		feedback from a Real-Time Transport Protocol (RTP) receiver.
1	41.	(Currently Amended) A computer-readable medium carrying one or more
2		sequences of instructions for marking one or more packets of data in a packet-

switched network based on achieved flow bandwidth information within the
network, wherein execution of the one or more sequences of instructions by one or
more processors causes the one or more processors to perform the method
comprising:
receiving a first group of packets of a plurality of data flows from the network;
marking [[a]]the first group of packets of [[a]]said plurality of data flows with an
initial set of behavioral treatment values, wherein the first set of behavioral
treatment values direct devices within the network to treat the first group
of packets with an initial set of quality of service treatments;
transmitting the first group of packets of said plurality of data flows in the
network:
determining achieved flow bandwidths, wherein an achieved flow bandwidth is
determined for each of the plurality of data flows based on data traffic
within the network;
determining an updated set of behavioral treatment values based on the achieved
flow bandwidths within the network; and
receiving a second group of packets of said plurality of data flows from the
network;
after the steps of marking the first group and determining the updated set of
behavioral treatment values, marking [[a]]the second group packets of said
plurality of data flows with said updated set of behavioral treatment
values, wherein the undated set of behavioral treatment values direct

25		devices within the network to treat the second group of packets with an
26		updated set of quality of service treatments; and
27		transmitting the second group of packets of said plurality of data flows in the
28		network.
1	42.	(Previously Presented) A computer-readable medium carrying one or more
2		sequences of instructions for marking one or more packets of data in a packet-
3		switched network based on achieved flow bandwidth information within the
4		network, wherein execution of the one or more sequences of instructions by one
5		or more processors causes the one or more processors to perform the method
6		comprising:
7		defining an initial set of Quality of Service (QoS) values for coloring packets
8		within a plurality of data flows, wherein each of the QoS values indicates
9		an allocation of bandwidth;
10		coloring a first group of one or more packets of a given data flow selected from
11		the plurality of data flows, without regard to an achieved flow bandwidth,
12		by at least
13		communicating the initial set of QoS values to each of one or more edge
14		differentiated services domain nodes that are located at one or
15		more edges of a differentiated services domain, and
16		the one or more edge differentiated services domain nodes using one or
17		more of the initial set of QoS values to color the first group;
18		estimating traffic bandwidth within the network based on bandwidth information
19		corresponding to a current traffic pattern of the network, wherein the

20		traffic bandwidth estimated includes an achieved flow bandwidth for the
21		given data flow;
22		determining an updated set of QoS values for coloring packets within the plurality
23		of data flows, based on the traffic bandwidth estimated,
24		wherein the updated set of QoS values provide lower levels of service than
25		other available choices of QoS values, and
26		wherein the updated set of QoS values provide a high enough level of
27		service to accommodate the traffic bandwidth estimated;
28		coloring a subsequent group of one or more packets of the given data flow with
29	•	the one or more of updated set of QoS values by at least
30		communicating the updated set of QoS values to each of one or more edge
31		differentiated services domain nodes, and
32		the one or more edge differentiated services domain nodes using one or
33		more of the updated set of QoS values to color the subsequent
34		group;
35		repeating the steps of estimating traffic bandwidth, determining an updated set of
36		QoS values, and coloring a subsequent group multiple time, therein tuning
37		the network on an ongoing basis.
1	43.	(Previously Presented) The computer-readable medium as in claim 41, wherein
2		the initial set of QoS values is an initial set of Differentiated Services Codepoint
3		(DSCP) values;
4		wherein the updated set of QoS values is an updated set of DSCP values;
5		wherein the step of estimating traffic bandwidth further comprises the steps of:

20

6		defining one or more QoS policies that specify target bandwidth values
7		and a range of possible services for each the plurality of data
8		flows, wherein a given target bandwidth value is specified for the
9		given data flow, and wherein the given target bandwidth identifies
10		a specific bandwidth that is desirous or required by the given data
11		flow;
12		gathering information about the traffic bandwidth; and
13		determining the traffic bandwidth based on the information gathered.
1	44.	(Previously Presented) The computer-readable medium of claim 5, wherein the
2		data flow is associated with only one behavioral treatment at any given time.
1	45.	(Previously Presented) The computer readable medium of claim 41, wherein each
2		data flow is associated with only one behavioral treatment at any given time.
1	46.	(Currently Amended) The computer-readable medium of claim 5, wherein the
2		achieved flow bandwidth is a percentage of the network bandwidth.
1	47.	(Previously Presented) The computer-readable medium claim 46, wherein the
2		second behavioral treatment results in the dataflow having a different achieved
3		flow bandwidth, which is a different percentage of the network bandwidth.
1	48.	(Previously Presented) The computer-readable medium of claim 5, wherein the
2		determining of the second behavioral treatment is in response to a determination
3		of achieved flow bandwidth resulting form the determining of the achieved flow
4		bandwidth.

1	49.	(Previously Presented) The computer apparatus as in claim 9, wherein the first
2		behavioral treatment is determined without regard to the achieved flow
3		bandwidth.
1	50.	(Previously Presented) The computer apparatus as in claim 9, wherein the second
2		behavioral treatment is a behavioral treatment that provides a lower level of
3		service than other available choices of behavioral treatments; and
4		wherein the second behavioral treatment provides a high enough level of service
5		to accommodate the achieved flow bandwidth.
1	51.	(Previously Presented) The computer apparatus as in claim 9, wherein the second
2		behavioral treatment is a behavioral treatment that provides a minimum level of
3		service that is a sufficient level of service to accommodate the achieved flow
4		bandwidth.
1	52.	(Previously Presented) The computer apparatus as in claim 9, wherein the step of
2		marking the first group is performed by at least communicating the first
3		behavioral treatment to a differentiated services node located at a border of a
4		differentiated services domain; and
5		wherein the step of marking the second group is performed by at least
6		communicating the second behavioral treatment to the differentiated
7		services node.

Docket No.: 50325-0106 22

1 53. (Previously Presented) A computer apparatus as in claim 9, wherein the method 2 further comprises repeating the step of determining the achieved flow bandwidth 3 and steps that follow the step of determining the achieved flow bandwidth. (Previously Presented) A computer apparatus as in claim 9, wherein the method 1 54. 2 further comprises repeating the step of determining the achieved flow bandwidth 3 and steps that follow the step of determining the achieved flow bandwidth multiple times, therein enhancing efficiency of the network on an on going basis. 4 1 55. (Previously Presented) The computer apparatus as in claim 9, wherein the step of 2 determining the achieved flow bandwidth is performed by at least estimating the 3 achieved flow bandwidth based on Management Information Base (MIB) 4 variables. 1 56. (Previously Presented) The computer apparatus as in claim 9, wherein the step of 2 determining the achieved flow bandwidth is performed by at least checking a 3 Transfer Control Protocol/ Internet Protocol (TCP/IP) window size and determining a value for the achieved flow bandwidth based on the TCP/IP 5 window size. 1 57. (Previously Presented) The computer apparatus as in claim 9, wherein the step of determining the achieved flow bandwidth is based on reception quality feedback 2 3 from a Real-Time Transport Protocol (RTP) receiver. 1 58. (Currently Amended) A computer apparatus comprising:

23

Docket No.: 50325-0106

a processor; and

2

3	a memory coupled to the processor, the memory containing one or more
4	sequences of instructions for marking one or more packets of data in a
5	packet-switched network based on achieved flow bandwidth information
6	within the network, wherein execution of the one or more sequences of
7	instructions by the processor causes the processor to perform the method
8	including at least:
9	receiving a first group of packets of a plurality of data flows from the network;
10	marking [[a]]the first group of packets of [[a]]said plurality of data flows with an
11	initial set of behavioral treatment values, wherein the first set of behavioral
12	treatment values direct devices within the network to treat the first group
13	of packets with an initial set of quality of service treatments;
14	transmitting the first group of packets of said plurality of data flows in the
15	network;
16	determining achieved flow bandwidths, wherein an achieved flow bandwidth is
17	determined for each of the plurality of data flows based on data traffic
18	within the network;
19	determining an updated set of behavioral treatment values based on the achieved
20	flow bandwidths within the network; and
21	receiving a second group of packets of said plurality of data flows from the
22	network;
23	after the steps of marking the first group and determining the updated set of
24	behavioral treatment values, marking [[a]]the second group packets of said
25	plurality of data flows with said updated set of behavioral treatment

26		values, wherein the updated set of behavioral treatment values direct
27		devices within the network to treat the second group of packets with an
28		updated set of quality of service treatments; and
29		transmitting the second group of packets of said plurality of data flows in the
30		<u>network</u> .
1	5 9.	(Previously Presented) A computer apparatus comprising:
2		a processor; and
3		a memory coupled to the processor, the memory containing one or more
4		sequences of instructions for marking one or more packets of data in a
5		packet-switched network based on achieved flow bandwidth information
6		within the network, wherein execution of the one or more sequences of
7		instructions by the processor causes the processor to perform the method
8		including at least:
9		defining an initial set of Quality of Service (QoS) values for coloring packets
10		within a plurality of data flows, wherein each of the QoS values indicates
11		an allocation of bandwidth;
12		coloring a first group of one or more packets of a given data flow selected from
13		the plurality of data flows, without regard to an achieved flow bandwidth,
14		by at least
15		communicating the initial set of QoS values to each of one or more edge
16		differentiated services domain nodes that are located at one or more edges
17		of a differentiated services domain, and

18	the one or more edge differentiated services domain nodes using one or more of
19	the initial set of QoS values to color the first group;
20	estimating traffic bandwidth within the network based on bandwidth information
21	corresponding to a current traffic pattern of the network, wherein the
22	traffic bandwidth estimated includes an achieved flow bandwidth for the
23	given data flow;
24	determining an updated set of QoS values for coloring packets within the plurality
25	of data flows, based on the traffic bandwidth estimated,
26	wherein the updated set of QoS values provide lower levels of service than other
27	available choices of QoS values, and
28	wherein the updated set of QoS values provide a high enough level of service to
29	accommodate the traffic bandwidth estimated;
30	coloring a subsequent group of one or more packets of the given data flow with
31	the one or more of updated set of QoS values by at least
32	communicating the updated set of QoS values to each of one or more edge
33	differentiated services domain nodes, and
34	the one or more edge differentiated services domain nodes using one or more of
35	the updated set of QoS values to color the subsequent group;
36	repeating the steps of estimating traffic bandwidth, determining an updated set of
37	QoS values, and coloring a subsequent group multiple time, therein tuning
38	the network on an ongoing basis.

1	60.	(Previously Presented) The computer apparatus as in claim 58, wherein the initial
2		set of QoS values is an initial set of Differentiated Services Codepoint (DSCP)
3		values;
4		wherein the updated set of QoS values is an updated set of DSCP values;
5		wherein the step of estimating traffic bandwidth further comprises the steps of:
6		defining one or more QoS policies that specify target bandwidth values
7		and a range of possible services for each the plurality of data
8		flows, wherein a given target bandwidth value is specified for the
9		given data flow, and wherein the given target bandwidth identifies
10		a specific bandwidth that is desirous or required by the given data
11		flow;
12		gathering information about the traffic bandwidth; and
13		determining the traffic bandwidth based on the information gathered.
1	61.	(Previously Presented) The computer apparatus of claim 9, wherein the data flow
2		is associated with only one behavioral treatment at any given time.
1	62.	(Previously Presented) The computer apparatus of claim 58, wherein each data
2		flow is associated with only one behavioral treatment at any given time.
1	63.	(Currently Amended) The computer apparatus of claim 9, wherein the achieved
2		flow bandwidth is a percentage of the network bandwidth.

27

64. (Previously Presented) The computer apparatus claim 63, wherein the second 1 2 behavioral treatment results in the dataflow having a different achieved flow bandwidth, which is a different percentage of the network bandwidth. 3 (Previously Presented) The computer apparatus of claim 9, wherein the 65. 1 determining of the second behavioral treatment is in response to a determination 2 of achieved flow bandwidth resulting form the determining of the achieved flow 3 4 bandwidth.