

Simple and Deterministic Matrix Sketching

Presented by:

Hristo Georgiev and Huibin Shen

Department of Information and Computer Science Aalto University, School of Science

March 24, 2014

¹Authored by Edo Liberty and and won the *KDD-2013 best paper* award[4].

Content

- Background
- Related work
- Frequent directions
- ► Experiments and Results
- ► Conclusion

What is a sketch?

Well, not exactly ...

What is a sketch? (cont.)

- ► A sketch of a matrix *A* is another matrix *B* which is significantly smaller than *A*, but still approximates it well.
- A good sketch matrix is one on which some computations can be performed, without *much* loss of precision.
- Formally, consider a large matrix $A \in \mathbb{R}^{n \times d}$ with n rows and d columns
 - ▶ a sketch matrix B is one s.t. $B \in \mathbb{R}^{\ell \times d}$,
 - ► containing only $\ell \ll n$ rows and $A^T A \approx B^T B$.
- Especially useful when working with data streams.

Why would we need a sketch?

A range of common ML/DM tasks, e.g.

- Dimensionality reduction
- Clustering
- Classification
- Regression
- Signal denoising
- Approximate matrix multiplication
- Recommendation
- Reconstruction
- etc.

Content

- Background
- Related work
- Frequent directions
- ► Experiments and Results
- ► Conclusion

How do we get a sketch?

Three existing main classes:

- Random-projection: use a (random) projection matrix for dimensionality reduction
- Hashing: use a subspace embedding S that embeds the row space of the original matrix into a lower-dimensional subspace - in O(nnz) time!
- Sampling: Column Subset Selection problem
 - select a set of rows directly, thus implicitly maintaining sparsity

How do we get a sketch? (cont.)

Proposed fourth approach, Frequent-directions

- ▶ $O(d\ell)$ space complexity, error decays proportionally to $1/\ell$,
- ▶ as opposed to the $1/\sqrt{\ell}$ error-decay of the existing approaches.
- Sketch update operations per row in A require amortised O(dℓ) operations.

A novel sampling approach?

Anyone fancy a 'cool' PhD topic?

Item frequency estimation

- Used to uncover frequent items in an item stream
- ► (Re-)Invented (at least!) four times [6, 1, 3, 5]²

Goal. Use $O(\ell)$ space as opposed to O(d), where $\ell \ll d$

- ▶ to produce estimates g_i, s.t.
- ▶ $|f_i g_i| \le 2n/\ell$, for all item types i simultaneously.

Matrix setting. Use Frequent-directions to uncover any direction in space *x*

²[Misra and Gries, 1982; Demaine et al., 2002; Karp et al., 2003; Metwally, 2005]

Item frequency estimation

The algorithm:

Repeat until there are less than ℓ unique items left {

- ► Get item $A_t = a_i$ from stream, for t = 1, ..., n
- If a bucket/counter for item type i already exists
 - Increment f_i accordingly.
- ► *Else If* a free slot k exists, s.t. $1 \le k \le \ell$
 - Create new bucket/counter at position k for item type i, and
 - Store the item in f_i
- ► Else
 - Find median count $\delta = f_{\ell/2}$ of items, and
 - ► Remove exactly min (δ, f_i) appearances from each bucket $i = 1, ..., \ell$

```
}
```


Claim. For each item type i,

- g_i is a good approximation for its true frequency f_i (even in the case of $g_i = 0$),
- ▶ 'Good': $|f_i g_i| \le 2n/\ell$.

Proof.

- ► Each item-type is deleted at most once per iteration:
 - ▶ $g_i \leq f_i$
- ▶ Each counter is decreased by at most δ_t at time t:

•
$$g_i \ge f_i - \sum_t \delta_t \Leftrightarrow f_i - g_i \le \sum_t \delta_t$$

Putting this together:

▶
$$0 \le \sum_i g_i \le \sum_t 1 - (\ell/2) \cdot \delta_t = n - (\ell/2) \cdot \sum_t \delta_t$$

$$\blacktriangleright \sum_t \delta_t \leq 2n/\ell \Leftrightarrow |f_i - g_i| \leq 2n/\ell.$$

- If one sets $\ell > 1/\varepsilon$,
 - Then any item that appears more than εn times in the stream must appear in the final sketch.
- ▶ Set $\ell = 2/\varepsilon$:
 - ▶ $|f_i g_i| \le \varepsilon n$.
- ▶ Further, if one takes k/ε instead of $2/\varepsilon$, one gets a rank-k approximation result![2]

Content

- Background
- Related work
- Frequent directions
- Experiments and Results
- ► Conclusion

The *Frequent-directions* algorithm

Represent the frequency of a direction (unit vector):

Assume the directions of A are indicator vectors of the items:

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

- Frequency of second item $e_2 = (0, 1, 0, 0)^T$: $||Ae_2||^2 = ||(0, 1, 0, 1)^T||^2 = 0^2 + 1^2 + 0^2 + 1^2 = 2.$
- ► Generalize the directions to unit vector $\{x : ||x|| = 1\}$ and the frequency of a direction is $||Ax||^2$.

Connection to SVD of A:

- $A = U\Sigma V^T \Leftrightarrow U^T A = \Sigma V^T \Leftrightarrow Au = \sigma v.$
- ► $||Au||^2 = ||\sigma v||^2 = \sigma^2$.

Change u to x:

The frequency of a direction is indicated by the square of corresponding singular value σ^2 .

```
The algorithm:
    Input: \ell, A \in \mathbb{R}^{n \times d}
    B \leftarrow \text{all zeros matrix} \in \mathbb{R}^{\ell \times d}
    for i = 1, \ldots, n do
           Insert ith row of A into zero valued row of B
           if B has no zero valued rows then
                  [U, \Sigma, V] \leftarrow SVD(B)
                 \delta \leftarrow \sigma_{\ell/2}^2

\overset{\vee}{\Sigma} \leftarrow \overset{\vee}{\sqrt{\max(\Sigma^2 - I_{\ell}\delta, 0)}} \\
B \leftarrow \overset{\vee}{\Sigma} V^T

           end if
    end for
```


 $[U, \Sigma, V] \leftarrow SVD(B)$.

$$\delta \leftarrow \sigma_{\ell/2}^2$$
.

The *Frequent-directions* algorithm (cont.) $\overset{\Sigma}{\Sigma} \leftarrow \sqrt{\max(\Sigma^2 - I_\ell \delta, 0)} \\ \mathcal{B} \leftarrow \overset{\Sigma}{\Sigma} \mathcal{V}^T$

$$\overset{\sim}{\Sigma} \leftarrow \sqrt{\max(\Sigma^2 - I_{\ell}\delta, 0)} \\
B \leftarrow \overset{\sim}{\Sigma}V^T$$

Properties of the sketch matrix B

In summary:

- ► $A^TA \succ B^TB \succ 0$.
- $||A^TA B^TB|| \le 2||A||_f^2/\ell.$
- ▶ Let $A = [A_1; A_2]$ and B_1 , B_2 is the sketches of A_1 and A_2 . A sketch C of $B = [B_1; B_2]$ can be shown that:

$$||A^T A - C^T C|| \le 2||A||_f^2/\ell.$$

Content

- Background
- Related work
- Frequent directions
- Experiments and Results
- ► Conclusion

Experiments

For a synthetic matrix n = 10000, d = 1000. Error $||A^TA - B^TB||$ against sketch size ℓ with.

Experiments (cont.)

Running time.

Experiments (cont.)

Linear in n and m (ℓ fix to 100).

Clustering experiment

Clustering experiment (cont.)

K-means on Sketch

Clustering experiment (cont.)

$$B = \begin{pmatrix} 43.0030 & 56.8110 \\ -55.9340 & 32.3390 \\ 0.5011 & 0.8654 \\ -0.9427 & -0.3336 \\ 0 & 0 \\ \vdots & \vdots \end{pmatrix}$$

$$A^{T}A = \begin{pmatrix} 4979.0 & 75.7 \\ 75.7 & 5021.0 \end{pmatrix}, B^{T}B = \begin{pmatrix} 4979.0 & 75.6 \\ 75.6 & 5020.9 \end{pmatrix}$$

Conclusion

- ▶ In terms of $||A^TA B^TB||$, the proposed sketching algorithm is more accurate than sampling, hashing and random projections.
- The proposed algorithm runs reasonably fast
 - ▶ in fact, faster than random projection, slower than sampling.
- The proposed algorithm is linear in the scale of the input size.
- Choose your sketching algorithm according to your task!

Thank you!

Questions?

References

Erik D Demaine, Alejandro López-Ortiz, and J Ian Munro.

Frequency estimation of internet packet streams with limited space.

In Algorithms-ESA 2002, pages 348–360. Springer, 2002.

Mina Ghashami and Jeff M Phillips.

Relative errors for deterministic low-rank matrix approximations. *arXiv preprint arXiv:1307.7454*, 2013.

Richard M Karp, Scott Shenker, and Christos H Papadimitriou.

A simple algorithm for finding frequent elements in streams and bags.

ACM Transactions on Database Systems (TODS), 28(1):51–55, 2003.

Edo Liberty.

Simple and deterministic matrix sketching.

In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 581–588. ACM, 2013.

References (cont.)

Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi.

Efficient computation of frequent and top-k elements in data streams.

In Database Theory-ICDT 2005, pages 398-412. Springer, 2005.

Jayadev Misra and David Gries.

Finding repeated elements.

Science of computer programming, 2(2):143–152, 1982.

Roman Vershynin.

Spectral norm of products of random and deterministic matrices.

Probability Theory and Related Fields, 150(3-4):471–509, 2011.