

www.sites.google.com/site/faresfergani

<u>السنة الدراسية : 2015/2014</u>

لمحتوى المفاهيمي :

مفاهيم أساسية في الكيمياء

الفرد الكيميائي و النوع الكيميائي

• الفرد الكيميائي و النوع الكيميائي :

- نطلق إسم الفرد الكيميائي على كل الدقائق المجهرية المكونة للمادة سواء كان جزيئا أو ذرة أو شاردة
- النوع الكيميائي هو مجموعة من الأفراد الكيميائية المتماثلة (جزيئات ، شوارد ، ذرات) نتعامل معها على المستوى العياني .

أمثلة:

- جزيء الماء \rightarrow فرد كيميائي .
- -غاز الأكسجين \rightarrow نوع كيميائي -
 - $_{-}$ ذرة الكربون $_{+}$ فرد كيميائي .
- $_{-}$ محلول الصود \rightarrow نوع كيميائي .
- \hat{m} ريط نحاس \rightarrow نوع كيميائي .
- شاردة الكلور \rightarrow فرد كيميائي .

<u>المقادير المولية</u>

• مفهوم المول و عدد أفوقادور :

- الكيميائيون في حياتهم اليومية يتعاملون مع أعدادا كبيرة جدا لما يتعلق الأمر بالأفراد الكيميائية (ذرات ، جزيئات ، شوارد) و لتجنب هذه الأعداد الكبيرة جدا ، فكروا في تغيير سلم التداول ، فاختاروا وحدة جديدة تدعى المول (mol) تختزل من خلالها الأرقام الكبيرة جدا للأفراد الكيميائية .
- المول هو كمية من المادة قدر ها $1 \, \mathrm{mol}$ تحتوي على العدد 10^{23} . 10^{23} من الأفراد الكيميائية لهذه المادة ، و نفس هذا العدد يمثل عدد الذرات الموجودة في $12 \, \mathrm{g}$ من الكربون $12^{12} \, \mathrm{c}$.
- يسمى العدد 10^{23} . 6.02 . 6.02 . 10^{23} ، يرمز له بالرمز N_A ، فالمول إذن هو كمية من المادة تحتوي على عدد أفوقادرو من الأفراد الكيميائية لهذه المادة .

الكتلة المولية الذرية لعنصر كيميائي :

- الكتلة المولية الذرية لعنصر كيميائي X التي يرمز لها بـ M و حدتها الغرام على المول (g/mol) ، هي كتلة 1 مول (1mol) من ذرات هذا العنصر أي كتلة $6.02 \cdot 10^{23}$ (عدد أفوقادور) من ذرات هذا العنصر .

- الكتلة المولية الذرية لبعض العناصر الكيميائية:

الكتلة المولية M	العنصر الكيميائي			
g . mol ⁻¹	العدد الكتلي A	الرمز	الإسم	
12	12	С	الكربون	
1	1	Н	الهيدروجين	
16	16	O	الأكسجين	
14	14	N	الآزوت	
11	11	Na	الصوديوم	
35.5	37 6 35	Cl	الكلور	

• الكتلة المولية الجزيئية :

- الكتلة المولية الجزيئية لنوع كيميائي هي كتلة mol من جزيئات هذا النوع الكيميائي يرمز لها أيضا بـ M و حدتها g/mol .
- تساوي الكتلة المولية الجزيئية لنوع كيميائي مجموع الكتل المولية الذرية للعناصر الكيميائية المكونة للنوع الكيميائي . الكيميائي بحيث كل كتلة مولية مضروبة في عدد ذرات كل عنصر موجود في جزئ هذا النوع الكيميائي . أمثاة .

$$M(H_2O) = 2 M(H) + M(O)$$

$$M(H_2O) = (2.1) + (16) = 18 \text{ g/mol}$$

$$M(CO_2) = M(C) + 2 M(O)$$

$$M(CO_2) = (12) + (2.16) = 44 \text{ g/mol}$$

● الحجم المولى لغاز:

- الحجم المولى لغاز الذي هو حجم $1 \mod 1$ من هذا الغاز يرمز له بـ $V_{\rm M}$ و حدته اللتر على المول (L/mol) - في الشروط النظامية أين يكون الضغط مساوي للضغط الجوي العادي (P=1 atm) ، و درجة الحرارة $\sim 0^0$ المساوية لـ $\sim 0^0$ يكون الحجم المولى مساوى لـ $\sim 0^0$ أي

$$V_M = 22.4 \text{ L/mol}$$

ملاحظة: يمكن تلخيص ما قلناه سابقا في المخطط التالي:

تعيين كمية المادة لعينة من نوع كيميائى:

- نوع كيميائي معرف بكتلته m:

نعلم أن مولاً واحداً لأي عينة من نوع كيميائي X كتلها بالغرام هي الكتلة المولية M ، و عليه لحساب كمية المادة الموجودة في كتلة معية m من نفس النوع الكيميائي نستعمل القاعدة الثلاثية كما يلي:

$$\begin{cases} 1 \text{ mol } (X) \to M_X \text{ g} \\ n \text{ mol } (X) \to m_X \text{ g} \end{cases}$$

و منه یکون:

$$n_{X} = \frac{m_{X}}{M(X)}$$

- نوع كيميائي معرف بعدد أفراده الكيميائية y :

 $N_{A} = 6.02 \cdot 10^{23}$ يحتوي على $N_{A} = 6.02 \cdot 10^{23}$ جزيء من هذا النوع الكيميائي، و عليه لحساب كمية المادة الموجودة في عدد معين ٧ من جزيئات نفس النوع الكيميائي نستعمل القاعدة الثلاثية كما يلى:

و منه یکون:

$$n_X = \frac{y}{N_A}$$

- نوع كيميائي غازي معرف بحجمه $\frac{V_{gaz}}{V_{gaz}}$: نعلم أن مو لا واحدا لأي عينة من نوع كيميائي X حجمها V_{M} ، و عليه لحساب كمية المادة الموجودة في حجم معين بنوع الكيميائي نستعمل القاعدة الثلاثية كما يلي : $m V_{gaz}$

$$\left\{ \begin{array}{l} 1 \ \text{mol} \ (X) \ \rightarrow V_M \ L \\ n \ \text{mol} \ (X) \ \rightarrow \ V_{\text{gaz}} L \end{array} \right.$$

و منه یکون:

$$\boxed{ n_X = \frac{V_{gaz}}{V_M} }$$

- نوع كيميائي سائل معرف بحجمه $\frac{V_\ell}{X}$: الكتلة الحجمية لنوع كيميائي سائل $\frac{V_\ell}{X}$ ، هي حاصل قسمة كتلة عينة منه $\frac{V_\ell}{X}$ على الحجم $\frac{V_\ell}{X}$ النفس العينة ، يعبر عنها

.
$$ho_X = rac{m_X}{V_X}$$
 : بالعلاقة

$$m_X = \rho_X V_X$$

ا دينا سابقا : $n_{\rm X}=rac{{
m m}_{
m X}}{
m M}$ ومنه يصبح

$$n_{_{X}}=\frac{\rho_{_{X}}V_{_{X}}}{M}$$

ملاحظة : يمكن دمج العلاقات السابقة في علاقة واحدة كما يلي :

$$n_{_{X}}=\frac{m_{_{X}}}{M}=\frac{V_{_{gaz}}}{V_{_{M}}}=\frac{y}{N_{_{A}}}=\frac{\rho_{_{X}}.V_{_{X}}}{M}$$

<u>التمرين (1):</u>

 $M(H)=1\ g/mol$, $M(C)=12\ g/mol$, $M(O)=16\ g/mol$, $M(N)=14\ g/mol$ $\rho(CH_3COOH) = 1050 \text{ g/L}$, $\rho(air) = 1.29 \text{ g/L}$

الجزء الأول

النشادر هو غاز صيغته NH₃ .

1- أحسب كتلته المولية الجزيئية

2- ما هي كمية المادة الموجودة في $0.68~{
m g}$ من النشادر .

3- ما هي كمية المادة الموجودة في £ 15.68 من غاز النشادر في الشرطين النظاميين.

4- أحسب كتلة L 8.96 من غاز النشادر في الشرطين النظاميين .

5- أحسب كتلة جزىء واحد من النشادر.

الجزء الثاني :

الجرء التاني : حمض الخل هو سائل صيغته الجزيئية CH₃COOH .

1- أحسب كتلته المولية

2- ما هي كمية المادة في 200 mL من حمض الخل.

3- ما هو عدد الجزيئات في 1 mL من حمض الخل.

الجزء الثالث : أكمل الجدول التالي :

النوع	الطبيعة	الكتلة المولية	كمية المادة	الكتلة	عدد الأفراد	الحجم
النوع الكيميائي	الطبيعة	M(g/mol)	n(mol)	m(g)	Y	الحجم V(L)
NH ₃	غاز		0.1			
CH ₃ COOH	سائل			12		
Fe	صلب	56			$1.806 \cdot 10^{23}$	///////
CH ₄	غاز					8.96
H ₂ O	سائل					9.10 ⁻³
Na	صلب	23	0.6			///////

الأحوية :

<u>الجزء الأول</u> 1- ا<u>لكتلة المولية لـ NH₃ :</u>

$$M(NH_3) = M(N) + 3M(H)$$

 $M(NH_3) = 14 + (3.1) = 17$ g/mol

2- كمية المادة في 0.68 g من NH₃:

$$n(NH_3) = \frac{m(NH_3)}{M}$$
$$n(NH_3) = \frac{0.68}{17} = 0.04 \text{ mol}$$

$_{2}$ كمية المادة في $_{2}$ 15.68 من $_{3}$ من $_{3}$ الشرطين النظاميين $_{2}$

$$n(NH_3) = \frac{V(NH_3)}{V_M}$$
$$n(NH_3) = \frac{15.68}{22.4} = 0.7 \text{ mol}$$

4- كتلة $\sim 8.96~{
m L}$ من $\sim 100~{
m MH}$ في الشرطين النظاميين $\sim 100~{
m MH}$

$$\frac{m(NH_3)}{M(NH_3)} = \frac{V(NH_3)}{V_M} \rightarrow m(NH_3) = \frac{V(NH_3).M(NH_3)}{V_M}$$
$$m(NH_3) = \frac{8.96 . 17}{22.4} = 6.8 g$$

<u>5- كتلة جزيء واحد من النشادر :</u>

$$\frac{m(NH_3)}{M} = \frac{Y}{N_A}$$

$$\frac{m(NH_3)}{M} = \frac{1}{N_A} \rightarrow m(NH_3) = \frac{M}{N_A}$$

$$m(NH_3) = \frac{17}{6.02 \cdot 10^{23}} = 2.82 \cdot 10^{-23} \text{ g}$$

$$\begin{split} M(CH_3COOH) &= M(C) + 3M(H) + M(C) + 2M(O) + M(H) \\ M(CH_3COOH) &= 12 + (3 . 1) + 12 + (2 . 16) + 1 = 60 \text{ g/mol} \end{split}$$

$$n(CH_3COOH) = \frac{\rho \cdot V(CH_3COOH)}{M}$$

 $n(CH_3COOH) = \frac{1050 \cdot 0.2}{60} = 3.5 \text{ mol}$

$$\frac{Y}{N_{A}} = \frac{\rho \cdot V(CH_{3}COOH)}{M} \rightarrow Y = \frac{N_{A} \cdot \rho \cdot V(CH_{3}COOH)}{M}$$

$$Y = \frac{6.02 \cdot 10^{23} \cdot 1050 \cdot 10^{-3}}{60} = 1.05 \cdot 10^{22}$$

النوع	الطبيعة	الكتلة المولية	كمية المادة	الكتلة	عدد الأفراد	الحجم
الكيميائي	الطبيع	M(g/mol)	n(mol)	m(g)	Y	V(L)
NH_3	غاز	17	0.1	1.7	$6.020 \cdot 10^{22}$	2.24
CH ₃ COOH	سائل	60	0.2	12	$1.204 \cdot 10^{23}$	
Fe	صلب	56	0.3	16.8	$1.806 \cdot 10^{23}$	///////
CH_4	غاز	16	0.4	6.4	$2.408 \cdot 10^{23}$	8.96
H_2O	سائل	18	0.5	9	$3.010 \cdot 10^{23}$	9.10 ⁻³
Na	صلب	23	0.6	13.8	$3.612 \cdot 10^{23}$	///////

الكتلة الحجمية و الكثافة

• الكتلة المجمية لنوع كيميائي (صلب، سائل، غاز):

- الكتلة الحجمية التي يرمز لها بـ ρ لنوع كيميائي (صلب أو سائل أو غاز) ، هي حاصل قسمة كتلة عينة من هذا النوع الكيميائي على الحجم V لنفس العينة V ، و نكتب :

$$\rho = \frac{m}{V}$$

- تقدر الكتلة الحجمية عادة بالغرام على اللتر (g/L) و يمكن أيضا أن تقدر بـ (kg/m^3)

 $V=V_M$ و حجمها M=M : الكتلة المولية للغاز) ، و حجمها $V=V_M$ ، تكون كتلتها M=M : الحجم المولي) و عليه يمكن كتابة عبارة الكتلة الحجمية لغاز كما يلي : V_M : الحجم المولي) و عليه يمكن كتابة عبارة الكتلة الحجمية لغاز كما يلي :

$$\boxed{\rho_{\text{gaz}} = \frac{M_{(\text{gaz})}}{V_{M}}}$$

• كثافة جسم صلب أو سائل :

- تقاس الكثافة التي يرمز لها بـ d لنوع كيميائي X (صلب أو سائل) بالنسبة للماء ، و تساوي حاصل الكتلة الحجمية للنوع الكيميائي X على الكتلة الحجمية للماء H_2O ، و نكتب :

$$d = \frac{\rho_{(X)}}{\rho_{(H_2O)}}$$

- لا تقدر الكثافة بوحدة .

- تعرف أيضا كثافة نوع كيميائي (صلب أو سائل) بالنسبة للماء على أنها حاصل قسمة كتلة عينة من هذا النوع الكيميائي على كتلة عينة أخرى من الماء لها نفس الحجم.

كثافة نوع كيهبائي غازي:

- تقاس كثافة نوع كيميائي غازي بالنسبة للهواء ، و تساوي حاصل الكتلة الحجمية للنوع الكيميائي X على الكتلة الحجمية للهواء التي تقدر بـ 1.29~g/L و نكتب :

$$d = \frac{\rho_{(gaz)}}{\rho_{(air)}}$$

- تعرف أيضا كثافة نوع كيميائي (غازي) بالنسبة للهواء على أنها حاصل قسمة كتلة عينة من هذا النوع كيميائي على كتلة عينة أخرى من الهواء لها نفس الحجم، وعليه نكتب:

$$d = \frac{\frac{m_{gaz}}{V}}{\frac{m_{air}}{V}}$$

و إذا أخذنا V=22.4 من الغاز و L=22.4 من الهواء و كالأهما مقاسين في الشرطين النظاميين أين يكون الحجم المولى مساوي لـ $V_{\rm M} = 22.4 \ {
m l/mol}$ يكون :

$$\begin{split} &m(gaz) = M_{gaz} \\ &m(air) = \rho_{air} \;.\; 22.4 \; \approx 29 \; g \end{split}$$

يصبح لدينا:

$$d = \frac{\frac{m_{gaz}}{V}}{\frac{m_{air}}{V}} = \frac{\frac{M_{gaz}}{22.4}}{\frac{29}{22.4}}$$

ومنه:

$$d = \frac{M_{gaz}}{29}$$

و هي عبارة كثافة غاز في الشرطين النظاميين.

ملاحظة : نتعامل مع أبخرة الأنواع الكيميائية مثلما نتعامل مع الغازات تماما .

<u>التمرين (2):</u>

. CH_3COOH و حمض الخل هو سائل صيغته الجزيئية C_3H_8 ، و حمض الخل هو سائل صيغته الجزيئية

أ- الكتلة المولية الجزيئية لغاز البروبان و كذا الكتلة المولية لحمض الخل .

ب- الكتلة الحجمية لغاز البروبان و بطريقتين مختلفتين أوجد كثافة غاز البروبان في الشرطين النظاميين .

جـ الكتلة الحجمية لحمض الخل

. $\rho(H_2O)=1000$ g/L ، $\rho_{air}=1.29$ g/L ، $d(CH_3COOH)=1.05$ يعطى :

. d=2.55 هي $C_nH_{2n}O_2$ و كثافة بخاره بالنسبة للهواء هي $C_nH_{2n}O_2$ - نوع كيميائي (A) صيغته الجزيئية من الشكل

أ- أحسب الكتلة المولية للنوع الكيميائي A.

ب- عبر عن الكتلة المولية للنوع الكيميائي بدلالة n (n : عدد ذرات الكربون) .

جـ استنتج قيمة n و اكتب الصيغة الجزيئية المجملة للنوع الكيميائي A .

M(H) = 1 g/mol , M(C) = 12 g/mol , M(O) = 16 g/mol: يعطى

<u>الأجوبة :</u>

1- أ- الكتلة المولية الجزيئية لغاز البروبان و الكتلة المولية لحمض الخل:

•
$$M(C_3H_8) = 3M(C) + 8M(H)$$

 $M(C_3H_8) = (3.12) + (8.1) = 44 \text{ g/mol}$

• $M(CH_3COOH) = M(C) + 3M(H) + M(C) + 2M(O) + M(H)$ $M(CH_3COOH) = 12 + (3.1) + 12 + (2.16) + 1 = 60 \text{ g/mol}$

ب- الكتلة الحجمية لغاز البروبان:

$$\rho(C_3H_8) = \frac{M(C_3H_8)}{V_M} = \frac{44}{22.4} = 1.96 \text{ g/L}$$

- كثافة غاز البروبان <u>:</u> الطريقة الأولى <u>:</u> بما أن البروبان عبارة عن غاز يكون :

$$d = \frac{\rho(C_3H_8)}{\rho(air)} \rightarrow d = \frac{1.96}{1.29} = 1.52$$

الطريقة الثانية:

$$d = \frac{M(C_3H_8)}{29} \rightarrow d = \frac{44}{29} = 1.52$$

جــ الكتلة الحجمية لحمض الخل : يما أن حمض الخل عيارة عن سائل يكون :

$$d = \frac{\rho(CH_3COOH)}{\rho(H_2O)} \rightarrow \rho(CH_3COOH) = d \cdot \rho(H_2O)$$

 $\rho(CH_3COOH) = 1.05.1000 = 1050 \text{ g/L}$

2- أ- الكتلة المولية للنوع الكيميائي A:

$$d = \frac{M(A)}{29} \rightarrow M(A) = d.29$$

 $M(A) = 2.55 \cdot 29 \approx 74 \text{ g/mol}$

 $M(A) = M(C_nH_{2n}O_2) = n M(C) + 2n M(H) + 2 M(O)$

M(A) = (n.12) + (2n.1) + (2.16)

 $M(A) = 12n + 2n + 32 \rightarrow M(A) = 14 n + 32$

الصيغة الجزيئية المجملة للنوع الكيميائي A :
 مما سبق .

$$M(A) = 74 \text{ g/mol}$$

$$M(A) = 14 n + 32$$

بالمطابقة ·

$$14 n + 32 = 74 \rightarrow n = \frac{74 - 32}{14} = 3$$

و منه فالصيغة المجملة للنوع الكيميائي (A) هي $C_3H_6O_2$

<u>المحاليل المائية و تراكيزها</u>

<u>• المحلول المائي و التركيز المولي :</u>

- نحصل على محلول كيميائي لنوع كيميائي X بحل (إذابة) كمية من هذا النوع الكيميائي في حجم معين من الماء المقطر (مذيب).

- حجم المحلول الناتج مساوي لحجم المذيب (يهمل الزيادة في الحجم أثناء الانحلال).
- يتميز المحلول المآئي المتحصل عليه بمقدار فيزيائي يدعى التركيز المولي ، يرمز له بـ C و وحدته المول على اللتر (mol/L) ، و هو يساوي حاصل قسمة كمية مادة النوع الكيميائي المنحل X (المذاب) ، على حجم الماء المقطر (المذيب) و نكتب :

$$C = \frac{n_X}{V}$$

- يمكن قول أن التركيز المولى لمحلول مائى هو كمية مادة النوع الكيميائى المنحل X في 1L من هذا المحلول.

● التركيز الكتلي لمحلول مائي :

التركيز الكتلي الذي يرمز له بـ C_m ووحدته الغرام على اللتر g/L) لمحلول مائي لنوع كيميائي X هو حاصل قسمة كتلة النوع الكيميائي X المنحل على حجم الماء المقطر (المذيب) أي :

$$C_{\rm m} = \frac{m_{\rm X}}{V}$$

- يمكن قول أن التركيز الكتلي $C_{
m m}$ لمحلول مائي هو كتلة النوع الكيميائي المنحل X في 1 من هذا المحلول .

<u>• العلاقة بين التركيز المولي C و التركيز الكتلي C.</u>

: دينا ايضا
$$C_{\rm m}=\frac{m_{\rm X}}{V}$$
 و لدينا

$$n_X = \frac{m_X}{M} \rightarrow m_X = M.n_X$$

ومنه تصبح عبارة C_m كما يلى :

$$C_{m} = \frac{M.n_{X}}{V} = M\frac{n_{X}}{V}$$

وحيث أن : يمكن كتابة العلاقة التالية : $C = \frac{n_X}{V}$

$$C_m = M.C \leftrightarrow C = \frac{C_m}{M}$$

• تمدیده (تخفیف) محلول :

- تمديد محلول تركيزه المولي C_1 أو تخفيفه هو إضافة الماء المقطر إليه للحصول على محلول جديد تركيزه المولي $C_2 < C_1$.

- أثناء التمديد لا يحدث تفاعل كيميائي لذلك لا يحدث تغير في كمية مادة النوع الكيميائي المنحل أثناء التمديد ، بمعنى إذا كان كمية مادة النوع الكيميائي في المحلول الأصلي هي n_1 ، و كانت كمية مادة نفس النوع الكيميائي في المحلول الممدد هي n_2 يكون :

$$n_1 = n_2 \rightarrow C_1 V_1 = C_2 V_2$$

- تسمى هذه العلاقة بقانون التمديد .

• معامل التمديد f:

- تمديد محلول f مرة (f معامل التمديد) يعني إضافة الماء المقطر إليه حتى يصبح حجمه مساوي f ضعف من الحجم الابتدائي ، بمعنى ، إذا كان V_1 هو حجم المحلول الابتدائي و V_2 هو حجم المحلول الابتدائي :

$$V_2 = f V_1$$

- بتطبيق قانون التمديد السابق يمكن كتابة:

$$C_1V_1 = C_2V_2$$

 $C_1V_1 = C_2(fV_1)$

إذن :

$$C_2 = \frac{C_1}{f}$$

- يمكن تلخيص ما قلناه في الشكل التالي:

- يمكن كتابة عبارة معامل التمديد كما يلى :

$$f = \frac{V_2}{V_1} = \frac{C_1}{C_2}$$

مثال: لدينا محلول (A) تركيزه المولي $C_1 = 2 \mod / L$ ، عندما نأخذ عينة منه و نمددها (A) مرة نحصل على محلول \mathbf{C}_2 جدید تر کیز ہ المو لی

$$C_2 = \frac{C_1}{100} = \frac{2}{100} = 0.02 \text{ mol/L}$$

ملاحظة مهمة: عندما نأخذ عينة من محلول (A) تركيزه المولي C_1 يكون التركيز المولي للعينة هو نفسه التركيز المولي للمحلول

مثال:

<u>التمرين (3):</u>

 $200~\mathrm{mL}$ قمنا بحل g من هيدروكسيد الصوديوم NaOH قمنا بحل و لتحضير محلول (B) لهيدروكسيد الصوديوم النقي في من الماء المقطر

- ر. (B) أوجد التركيز المولي للمحلول
- 2- أوجد بطريقتين مختلفتين التركيز (الكتلي للمحلول (B).
- $_{\rm C}$ من المحلول (B) المنحلة في $_{\rm NaOH}$ من المحلول (B) .

4- نأخذ 10 mL من المحلول (B) و نضيف لها 90 mL من الماء المقطر .

أ- كيف تسمى هذه العملية .

ب- ما هو حجم المحلول الجديد ، استنتج معامل التمديد f . ج- أوجد بطريقتينِ مختلفتين التركيز المولي للمحلول الجديد .

5- نأخذ 10 mL أخرى من المحلول (B) و نضيف لها g 0.4 و من هيدروكسيد الصوديوم NaOH . أوجد التركيز المولى للمحلول الجديد

يعطى :

$$M(Na) = 23 \text{ g/mol}$$
, $M(O) = 16 \text{ g/mol}$, $M(H) = 1 \text{ g/mol}$

الأجوبة :

1- التركيز المولى للمحلول (B):

$$C = \frac{n_0(NaOH)}{V} = \frac{\frac{m_0(NaOH)}{M}}{V} = \frac{m_0(NaOH)}{M.V}$$

•
$$M(NaOH) = 23 + 26 + 1 = 40 \text{ g/mol}$$

•
$$C = \frac{4}{40.0.2} = 0.5 \text{ mol/L}$$

$$C_{\rm m} = \frac{m_0}{V}$$
 $C_{\rm m} = \frac{4}{0.2} = 20 \,\text{g/L}$

$C_{\rm m} = M.C = 40.0.5 = 20 \text{ g/L}$

الطريقة الثانية:

3- كمية مادة NaOH المنحلة في Ma 50 من المحلول (B):

 $n'(NaOH) = C'.V' = 0.5 \cdot 0.05 = 2.5 \cdot 10^{-2} \text{ mol}$

4- أ- تسمى هذه العملية بالتمديد

 v_1 حجم المحلول الجديد : v_2 هو حجم المحلول قبل التمديد و بعده على الترتيب ، v_3 حجم الماء المقطر المضاف يكون: $V_2 = V_1 + V_0 = 0.01 + 0.09 = 0.1 L$

معامل التمديد : عندما نمدد المحلول f مرة يكون حجمه الجديد (f ضعف) الحجم المحلول الابتدائي أي :

$$V_2 = f V_1 \rightarrow f = \frac{V_2}{V_1}$$

 $f = \frac{0.1}{0.01} = 10$

<u>جـ</u>ـ تركيز المحلول الجديد الطريقة الأولى :

- أثناء التمديد لا تتغير كمية المادة لذا بكون:

$$\begin{split} &n_2(NaOH) = n_1(NaOH) \\ &C_2V_2 = C_1V_1 \\ &C_2(V_1 + V_0) = C_1V_1 \ \to \ C_2 = \frac{C_1V_1}{(V_1 + V_0)} \\ &C_2 = \frac{0.5 \cdot 0.01}{0.01 + 0.09} = 0.05 \text{ mol/L} \end{split}$$

الطريقة الثانية:

عندما نمدد المحلول 10 مرات يكون:

$$C_2 = \frac{C_1}{10} = \frac{0.5}{10} = 0.05 \text{ mol/L}$$

5- تركيز المحلول الجديد:

NaOH في هذه الحالة لا يحدث تفاعل و عليه فإن كمية مادة NaOH في المحلول الجديد (B) مساوية لكمية مادة NaOH في هذه الحالة لا يحدث تفاعل و عليه فإن كمية مادة NaOH الموجودة في الكتلة المضافة أي : $n_2(NaOH) = n_1(NaOH) + n(NaOH)$

$$C_{2} V_{2} = C_{1} V_{1} + \frac{m(NaOH)}{M} \rightarrow C_{2} = \frac{C_{1} V_{1} + \frac{m(NaOH)}{M}}{V_{1}}$$

$$C_{2} = \frac{(0.5 \cdot 0.01) + \frac{0.4}{40}}{0.01} = 1.5 \text{ mol/L}$$

<u>التمرين (4):</u>

للحصول على محلول (A) لكلور الهيدروجين تركيزه المولي $C=2 \; mol/L$ ، قمنا عند الشرطين النظاميين بحل حجم $V_{(HCl)}$ من غاز كلور الهيدروجين في $V_{(HCl)}$ من الماء المقطر .

1- أوجد قيمة V_(HCl) .

2- أوجد حجم الماء المقطر اللازم إضافته إلى 10 mL من المحلول (A) حتى نحصل على محلول تركيزه المولي 0.5 mol/L.

(A) حتى المحلول (A) من المحلول الهيدروجين المحلول (A) من المحلول (B) من المحلول (A) من المحلول (A) من المحلول المحلول المهيدروجين تركيزه المولى $3 \mod / L$.

4- نأخذ mL من المحلول (A) و نضيف لها mL 40 من محلول آخر لكلور الهيدروجين تركيزه المولي 10 mL . أوجد تركيز المحلول الجديد .

5- انطلاقا من المحلول (A) السابق و عن طريق التمديد نريد تحضير عينة من المحلول (A) حجمها $V_2 = 20 \, \mathrm{mL}$ و تركيزها المولي $V_2 = 20 \, \mathrm{mL}$. صف البروتوكول التجريبي اللازم لذلك .

الأجوبة :

$$C = \frac{n_0(HCl)}{V} = \frac{\frac{V_{(HCl)}}{V_M}}{V} = \frac{V_{(HCl)}}{V_M.V} \rightarrow V_{(HCl)} = C.V_M.V$$

$$V_{(HCl)} = 2.22.4.0.1 = 4.48 L$$

<u>2- حجم الماء المقطر اللازم إضافته:</u>

 $n_2(HCl) = n_1(HCl)$

$$C_2V_2 = C_2V_1$$

$$C_2(V_1 + V_0) = C_1V_1$$

$$V_1 + V_0 = \frac{C_1 V_1}{C_2} \rightarrow V_0 = \frac{C_1 V_1}{C_2} - V_1$$

$$V_0 = \frac{2.0.01}{0.5} - 0.01 = 0.03 L = 30 mL$$

<u>َ- حجم كلور الهيدروجين اللازم إضافته :</u>

لايحدث تفاعل كيميائي في هذه الحالة لذا تكون كمية مادة HCl في المحلول الجديد مساوية لكمية HCl في المحلول الابتدائي مضاف إليها كمية HCl في الغاز المضاف و عليه :

$$n_2(HCl) = n_1(HCl) + n(HCl)$$

$$\boldsymbol{C}_2\boldsymbol{V}_2 = \boldsymbol{C}_1\boldsymbol{V}_1 + \frac{\boldsymbol{V}(\boldsymbol{H}\boldsymbol{C}\boldsymbol{I})}{\boldsymbol{V}_{\boldsymbol{M}}}$$

$$\frac{V(HCl)}{V_{M}} = C_{2}V_{2} - C_{1}V_{1} \rightarrow V(HCl) = V_{M} (C_{2}V_{2} - C_{1}V_{1})$$

$$V(HC1) = 22.4 ((3.0.01) - (2.0.01)) = 0.224 L$$

<u>4- تركيز المحلول الجديد :</u>

بما أنه لم يحدث تحول كيميائي بين المحلولين (1) ، (2) يكون:

$$n(HCl) = n_1(HCl) + n_2(HCl)$$

$$C(V_1 + V_2) = C_1V_1 + C_2V_2 \rightarrow C = \frac{C_1V_1 + C_2V_2}{V_1 + V_2}$$

$$C = \frac{(2.0.01) + (1.0.04)}{0.01 + 0.04} = 1.2 \text{ mol/L}$$

<u>5- البروتوكول التجريبي :</u>

- نحسب أو (A) و ليكن (HCl) اللازم أخذه من المحلول (A) و ليكن (HCl)
 - أثناء التمديد لا تتغير كمية المادة لذا يكون:

$$C_1V_1 = C_2V_2 \rightarrow V_1 = \frac{C_2V_2}{C_1}$$

$$V_1 = \frac{0.5.0.02}{2} = 5.10^{-3} L = 5 \text{ mL}$$

و هو الحجم اللازم أخذه من المحلول (A) و يخضع لاحقا إلى التمديد .

بواسطة ماصة عيارية نأخذ mL 5 من المحلول (A) و نضعها في حوجلة عيارية سعتها 20~mL ، ثم نضيف لها الماء المقطر إلى غاية بلوغ التدريجة 20~mL ، نكون بذلك قد حضرنا 20~mL من محلول كلور الهيدروجين ذو تركيز مولى C = 0.5~mol/L .

التحول الكيميائي و التفاعل الكيميائي

● التحول الكيميائي :

- نقول أنه حدث تحول كيميائي في جملة كيميائية ما ، إذا حدث تغير في حالة هذه الجملة ، كاختفاء أنواع كيميائية و ظهور أنواع كيميائية جديدة .

التفاعل الكيهيائي:

- التفاعل الكيميائي هو نموذج للتحول الكيميائي يتم على المستوى المجهري ، أي يتم بين أفراد الأنواع الكيميائية ، كارتباط فرد كيميائي (ذرة ، جزئ ، شاردة ...) أو أكثر لنوع كيميائي ، مع فرد كيميائي أو أكثر لنوع كيميائي آخر قصد تشكيل فرد كيميائي جديد لنوع كيميائي آخر .
- يعبر عن التفاعل الكيميائي بمعادلة تسمى معادلة التفاعل الكيميائي، و التي تتكون من طرفين ، الأول يكون على اليسار و فيه تكتب رموز و صيغ الأفراد الكيميائية المختفية خلال التفاعل الكيميائي و التي تسمى متفاعلات ، الطرف الثاني يكون على اليمين و فيه تكتب رموز و صيغ الأفراد الكيميائية المتشكلة خلال التفاعل الكيميائي و التي تسمى نواتج ، وبين الطرفين الأول و الثاني يوضع رمز تساوي (=) تبين جهة التفاعل التي تكون اصطلاحا من اليسار إلى اليمين .
 - ترفق رموز و صيغ المتفاعلات و النواتج الرموز التالية و التي تدل على حالة المتفاعلات و النواتج .
 - aq) ، ($g \rightarrow ade$) ، ($g \rightarrow ade$) ، ($g \rightarrow ade$) . ($g \rightarrow ade$) .
- لكي يتحقق ما يسمى بمبدأ إنحفاظ العنصر الكيميائي (عدد ذرات كل عنصر قبل التفاعل الكيميائي مساوي لعدد ذرات نفس العنصر بعد التفاعل الكيميائي) ، و مبدأ انحفاظ الشحنة (مجموع شحن الأفراد الكيميائية المتفاعلة مساوي لمجموع شحن الأفراد الكيميائية الناتجة) ، توضع أمام صيغ و رموز الأنواع الكيميائية معاملات (أرقام) تدعى المعاملات الستوكيومترية ، بحيث تكون هذه المعاملات أصغر عدد طبيعي ممكن، ونحصل بذلك على الشكل النهائي لمعادلة التفاعل الكيميائي .

أمثلة:

$$\begin{array}{l} 2\;H_{2\,(g)}\;+\;O_{2\,(g)}\;=\;2\;H_{2}O_{\,\,(\ell)}\\ CH_{4\,(g)}\;+\;2\;O_{2\,(g)}\;=\;CO_{2\,(g)}\;+\;2\;H_{2}O_{\,(\ell)}\\ Cu^{2+}_{\ (aq)}\;+\;Fe_{\,(s)}\;=\;Cu_{\,(s)}\;+\;Fe^{2+}_{\ (aq)}\\ N_{2\,(g)}\;+\;3\;H_{2\,(g)}\;=\;2\;NH_{3\,(\,g\,)}\\ 5Fe^{3+}_{\ (aq)}\;+\;MnO_{4\,(aq)}^{-}\;+\;8H^{+}_{\ (aq)}\;=\;5Fe^{3+}_{\ (aq)}\;+\;Mn^{2+}_{\ (aq)}\;+\;4H_{2}O_{(\ell)}\\ 6Fe^{3+}_{\ (aq)}\;+\;Cr_{2}O_{7}^{\,2-}_{\ (aq)}\;+\;14H^{+}_{\ (aq)}\;=\;6Fe^{3+}_{\ (aq)}\;+\;2Cr^{3+}_{\ (aq)}\;+\;7H_{2}O_{(\ell)} \end{array}$$

<u>تقدم التفاعل و جدول التقدم</u>

• هفههم تقدم التفاعل :

من أجل متابعة تحول كيميائي لجملة في المستوى العياني من حالة ابتدائية إلى نهائية يقترح الاتحاد الدولي للكيمياء البحتة والتطبيقية " IUAPC " وسيلة تدعى تقدم التفاعل x (مقدرا بالمول mol) والذي يمكن توضيحه كالتالي : - نعتبر التحول الكيميائي المتمثل في احتراق الميثان بغاز الأكسجين و المنمذج بالمعادلة الكيميائية التالية :

$$CH_{4(g)} + 2 O_{2(g)} = CO_{2(g)} + 2 H_2O_{(\ell)}$$

من هذه المعادلة يمكن قول ما يلي:

- على المستوي المجهري :
- لو حدث التفاعل مرة : يختفي 1 جزئ من CH_4 ، CH_4 ، CO_2 ، ليتشكل 1 جزئ من CO_2 ، و جزئ من الماء .
- لو حدث التفاعل 2 مرة : يختفي 2 جزئ من CH_4 ، CH_4 ، 4 جزئ من CO_2 ، ليتشكل 2 جزئ من CO_2 ، 4 جزئ من الماء .

- - على المستوى العياني:
- ا جزئ من O_2 من O_3 ، ليتشكل O_4 ، O_4 بخزئ من O_4 ، O_4 ، جزئ من O_5 ، ليتشكل O_8 ، الماء . O_8 بخزئ من الماء .
- $^{\circ}$ (CO $_2$ بخرئ من $^{\circ}$ (1 mol) جرئ من $^{\circ}$ (2 mol) جرئ من $^{\circ}$ (1 mol) جرئ من $^{\circ}$ (2 mol) جرئ من الماء .
- ا لو حدث التفاعل O_2 مرة : يختفي (2 mol) جزئ من O_3 ، (2 N_A) ايتشكل الو حدث التفاعل (2 N_A) المرة : يختفي (4 mol) جزئ من O_3 ، (2 mol)
- ا ليتشكل O_2 مرة : يختفي (O_2 مرة) جزئ من O_3 مرة (O_3 مرة) جزئ من O_4 مرة (O_4 من O_5 من

.....

ليتشكل (x mol) جزئ من (x Ma) جزئ من (x Ma) جزئ من (x Ma) جزئ من (x Ma) جزئ من (x mol) جزئ من (x mol)

و هو يمثل عدد مرات حدوث التفاعل السابق مقدرا بـ (أفوقادرو مرة) أي بالمول (mol) و يستعمل في المستوى العياني فقط.

• جِدول التقدم و التقدم النهائي :

- جدول التقدم هو عبارة عن جدول وصفي للجملة يمكن من خلاله تناول الحصيلة الكمية من حالة ابتدائية إلى حالة نهائية ، مرورا بحالة انتقالية لحظية كما موضح في المثال التالي :

حالة الجملة	x التقدم (mol)	N _{2 (g)} -	$+ 3 H_{2(g)} =$	2 NH _{3 (g)}
الحالة الابتدائية $t=0$	0	1	4	0
الحالة الانتقالية t	X	1 - x	4 - 3x	2x
الحالة النهائية t _f	X_{f}	1 - x _f	4 - 3x _f	$2x_{\rm f}$

- يعبر جدول التقدم على كميات المادة للأنواع الكيميائية المتواجدة في الجملة الكيميائية (متفاعلات و نواتج) في لحظة معينة من التحول الكيميائي .
- يسمى العدد الأعظمي لمرات حدوث التفاعل مقدر بأفوقادرو مرة (أو بالمول) بالتقدم الأعظمي ، يرمز له بـ x_{max ، و} يسمى المتفاعل الذي اختفى كليا و الذي كان سبب في توقف تطور التحول الكيميائي بالمتفاعل المحد

الأعظمي X_{max} و يقال عن هذا التحول الكيميائي بسبب اختفاء كلي لأحد المتفاعلات يكون التقدم النهائي X_{f} مساوي للتقدم الأعظمي X_{max} و يقال عن هذا التحول الكيميائي أنه تام ، بينما إذا لم يختفي أحد من المتفاعلات كليا عندما يتوقف تطور التحول الكيميائي يكون التقدم النهائي X_{f} أقل من التقدم الأعظمي X_{max} ، و يقال عن هذا التحول الكيميائي أنه غير تام ، يمكن اختصار هذا القول فيما يلي :

- . $\mathrm{x_f} = \mathrm{x_{max}} \leftarrow$ قاعل تام
- . $x_f < x_{max} \leftarrow$ قاعل غير تام
- إذا اختفت كل المتفاعلات كليا في نهاية التفاعل يقال عن التحول الكيميائي أنه في الشروط الستوكيومترية
 - في التفاعل المعبر عنه بالمعادلة الكيميائية التالية :

$$\alpha A + \beta B = \delta C + \lambda D$$

يمكن إثبات أن التحول الكيميائي المنمذج بهذا التفاعل يكون في الشروط الستوكيومترية إذا تحقق:

$$\frac{n_0(A)}{\alpha} = \frac{n_0(B)}{\beta}$$

<u>التمرين (5) :</u>

نسخن سلكا من الحديد Fe حتى الاحمرار ، ثم ندخله بسرعة داخل قارورة تحتوي على غاز الكلور Cl_2 ، نلاحظ تشكل دخان يميز كلور الحديد الثلاثي $FeCl_3$.

- 1- أكتب معادلة التفاعل الكيميائي المنمذج لهذا التحول الكيميائي .
- Cl_2 عاز الكلور 20.16 L من الحملة الكيميائية تتكون في الحالة الإبتدائية من g 44.8 من الحديد ، و g من غاز الكلور مقاس في الشرطين النظاميين .
 - أ- أحسب كمية مادة كل من الحديد و غاز الكلور في الحالة الابتدائية .
 - ب- بين إن كان هذا التحول الكيميائي في الشروط الستوكيومترية أم لا .
 - جـ مثل جدول تقدم التفاعل لهذا التحول الكيميائي ، ثم عين التقدم النهائي و المتفاعل المحد إن وجد .
 - 3- ما هي الأنواع الكيميائية المتواجد في الجملة الكيميائية عند نهاية التفاعل .
 - 4- أوجد ما يلى في نهاية التفاعل:
 - أ- كتلة كلور التحديد الثلاثي الناتج.
 - ب- كتلة الحديد المتبقى .
 - جـ- حجم غاز كلور الهيدروجين المتفاعل في الشرطين النظاميين .
 - . M(Cl) = 35.5 g/mol ، M(Fe) = 56 g/mol : يعطى

<u>الأجوبة :</u>

1- معادلة التفاعل:

$$2Fe_{(s)} + 3Cl_{2(g)} = 2FeCl_{3(s)}$$

2- أ- كمية مادة Cl2 ، Fe في الحالة الابتدائية:

$$n_0(\text{Fe}) = \frac{m}{M} = \frac{44.8}{56} = 0.8 \,\text{mol}$$

$$n_0(Cl_2) = \frac{V(Cl_2)}{V_M} = \frac{20.16}{22.4} = 0.9 \text{ mol}$$

ب- إثبات أن التحول في الشروط الستوكيومترية أم لا:

يكونُ التحولُ الكيميائي المنمذج بالمعادلة السابقة في الشروط الستوكيومترية إذا تحقق:

$$\frac{n_0(Fe)}{2} = \frac{n_0(Cl_2)}{3}$$

مما سبق:

•
$$n_0(Fe) = 0.8 \text{ mol } \rightarrow \frac{n_0(Fe)}{2} = 0.4 \text{ mol}$$

■
$$n_0(Cl_2) = 0.9 \text{ mol } \rightarrow \frac{n_0(Cl_2)}{3} = 0.3 \text{ mol}$$

. الأحظ $\frac{n_0(Fe)}{2} \neq \frac{n_0(Cl_2)}{3}$ ، إذن التفاعل المنمذج بالمعادلة السابقة ليس في الشروط الستوكيومترية

حالة الجملة	التقدم	2Fe _(s) -	+ 3Cl _{2 (g)}	$= 2 \text{FeCl}_3$
ابتدائية	$\mathbf{x} = 0$	0.8	0.9	0
انتقالية	X	0.8 - 2x	0.9 - 3x	2x
نهائية	$\mathbf{x}_{\mathbf{f}}$	$0.8 - 2x_{\rm f}$	$0.9 - 3x_{\rm f}$	$2x_f$

• التقدم النهائي : - إذا اختفى Fe كليا :

$$0.8 - 2x = 0 \rightarrow x = 0.4 \text{ mol}$$

- إذا اختفى Cl₂ كليا:

$$0.9-3\ x=0\ \to\ x=0.3\ mol$$

. Cl₂ و المتفاعل المحد هو $x_{max} = x_f = 0.3 \text{ mol}$ إذن

3- الأنواع الكيميائية المتواجدة في الجملة و كتلتها:

- الأنواع الكيميائية : علور الحديد الثلاثي FeCl₃ الناتج .
 - الحديد Fe المتبقى من التفاعل .

4- أ- كتلة كلور الحديد الثلاثي الناتج في نهاية التفاعل : من جدول التقدم كمية مادة كلور الحديد الثلاثي الناتج في نهاية التفاعل هي :

$$x_f(FeCl_3) = 2 x_f = 2 \cdot 0.3 = 0.6 \text{ mol}$$

لدينا

$$n_f(FeCl_3) = \frac{m_f(FeCl_3)}{M}$$

و منه:

 $m_f(FeCl_3) = n_f(FeCl_3) \cdot M(FeCl_3)$

- $M(FeCl_3) = 25 + (3.35.5) = 162.5 \text{ g/mol}$
- $m_f(FeCl_3) = 0.6 \times 162.5 = 97.5 g$

ب- كتلة الحديد المتبقي في نهاية التفاعل:

من جدول التقدم أيضاً كمية مادة الحديد المتبقي في نهاية التفاعل هي:

$$n_f(Fe) = 0.8 - 2x_f = 0.8 - (2.0.3) = 0.2 \text{ mol}$$

لدينا

$$n_f(Fe) = \frac{m_f(Fe)}{M}$$

و منه:

$$m_f(Fe) = n_f(Fe) . M(Fe)$$

$$m_f(Fe) = 0.2.56 = 11.2g$$

ب- حجم غاز الكلور المتفاعل في نهاية التفاعل:

من جدول التقدم كمية مادة غاز الكلور المتفاعلة في نهاية التفاعل هي :

$$n_f(Cl_2) = 3x_f = 3 \cdot 0.3 = 0.9 \text{ mol}$$

لدبنا

$$n_f(Cl_2) = \frac{V(Cl_2)}{V_M}$$

و منه:

 $V(Cl_2) = n_f(Cl_2) \cdot M(Cl_2)$

- $M(Cl_2) = (2.35.5) = 71 \text{ g/mol}$
- $V_f(Cl_2) = 0.9.22.4 = 20.16 L$

التركيز المولي لمحول يشوارده

● التركيز المولي لمحلول بشوارده :

نعتبر نوع كيميائي شاردي صيغته من الشكل $A_{\alpha}B_{\beta}$ ، ينحل في حجم V من الماء المقطر ، التفاعل الكيميائي المنمذج لهذا الانحلال يعبر عنه بالمعادلة الكيميائية التالية :

 $A_{\alpha}B_{\beta}=\alpha\;A^{^{n+}}+\beta\;B^{^{m\text{-}}}$

إذا كانت n_0 هي كمية المادة للنوع الكيميائي $A_{\alpha}B_{\beta}$ المنحلة في حجم V من الماء المقطر يعبر عن التركيز المولي للمحلول الناتج بالعبارة :

$$C = \frac{n_0}{V}$$

 B^{m-} ، A^{n+} ، التركيز المولي للمحلول الناتج بالشوارد A^{n+} ، A^{n+} و الذي يرمز له على الترتيب ب B^{m-} ، العلاقة :

$$\left[A^{n+}\right] = \frac{n(A^{n+})}{V} , \quad \left[B^{m-}\right] = \frac{n(B^{m-})}{V}$$

- حيث (\mathbf{A}^{n+}) هي كمية مادة كل من \mathbf{A}^{n+} و \mathbf{A}^{n+} في المحلول الناتج $\mathbf{n}(\mathbf{B}^{m-})$ ، $\mathbf{n}(\mathbf{A}^{n+})$

● العلاقة بين التركيز المولى للمحلول بالتركيز المولى للمحلول بشوارده:

نمثل جدول التقدم للتفاعل المنمذج لانحلال النوع الكيميائي $A_{\alpha}B_{\beta}$ في الماء المقطر (التحول السابق) .

الحالة	التقدم	$A_{\alpha}B_{\beta}$ =	$= \alpha A^{n+}$	$+ \beta B^{m-}$
ابتدائية	$\mathbf{x} = 0$	n_0	0	0
انتقالية	X	n ₀ - x	αχ	βх
نهائية	X_f	$n_0 - x_f$	αx_f	βx_f

- لدبنا:

$$C = \frac{n_0}{V}$$

$$\bullet \left[A^{+n} \right] = \frac{n(A^{+n})}{V} \rightarrow \left[A^{n+} \right] = \frac{\alpha x_f}{V}$$

من جدول التقدم و في حالة أن التفاعل تام بمعنى النوع الكيميائي $A_{lpha} B_{eta}$ انحل كليا في الماء يكون :

 $n_0 - x_f = 0 \rightarrow x_f = n_0$

ليصبح :

$$\begin{split} \left[A^{n+}\right] &= \frac{\alpha \, x_f}{V} \, \rightarrow \left[A^{n+}\right] = \frac{\alpha \, n_0}{V} = \alpha \frac{n_0}{V} \, \rightarrow \left[A^{n+}\right] = \alpha \, C \\ \left[B^{m-}\right] &= \frac{\beta \, x_f}{V} \, \rightarrow \left[B^{m-}\right] = \frac{\beta \, n_0}{V} = \beta \frac{n_0}{V} \, \rightarrow \left[B^{m-}\right] = \beta \, C \end{split}$$

نتیجه : فی محلول مائی شار دي نقي ترکیزه المولي C و صیغة الشار دیة $(\alpha A^{n+} + \beta B^{m-})$ یکون :

$$\left[A^{n+}\right] = \alpha C$$
, $\left[B^{m-}\right] = \beta C$

متال-1: متال-1: معلول كبريتات الحديد الثلاثي ($^{-2}$ 4 + $^{-2}$ 5) ، تركيزه المولي $^{-1}$ 4 المحلول يكون : $^{-1}$ 5 محلول كبريتات الحديد الثلاثي ($^{-2}$ 4 + $^{-1}$ 5 محلول كبريتات الحديد الثلاثي ($^{-1}$ 4 + $^{-1}$ 5 محلول كبريتات الحديد الثلاثي ($^{-1}$ 4 + $^{-1}$ 5 محلول كبريتات الحديد الثلاثي ($^{-1}$ 4 + $^{-1}$ 5 محلول كبريتات الحديد الثلاثي ($^{-1}$ 4 + $^{-1}$ 5 محلول كبريتات الحديد الثلاثي ($^{-1}$ 4 + $^{-1}$ 5 محلول كبريتات الحديد الثلاثي ($^{-1}$ 4 + $^{-1}$ 5 محلول كبريتات الحديد الثلاثي ($^{-1}$ 4 + $^{-1}$ 5 محلول كبريتات الحديد الثلاثي ($^{-1}$ 4 + $^{-1}$ 5 محلول كبريتات الحديد الثلاثي ($^{-1}$ 4 + $^{-1}$ 5 محلول كبريتات الحديد الثلاثي ($^{-1}$ 4 + $^{-1}$ 5 محلول كبريتات الحديد الثلاثي ($^{-1}$ 4 + $^{-1}$ 4 محلول كبريتات الحديد الثلاثي ($^{-1}$ 4 + $^{-1}$ 4 + $^{-1}$ 4 محلول كبريتات الحديد الثلاثي ($^{-1}$ 4 + $^{-1}$ 4 + $^{-1}$ 4 + $^{-1}$ 4 محلول كبريتات الحديد الثلاثي ($^{-1}$ 4 + $|Fe^{3+}| = 2C = 2.0.2 = 0.4 \text{ mol/L}$ $|SO4^{2-}| = 3C = 3.0.2 = 0.6 \text{ mol/L}$

مثال-2: محلول حمض کلور الهيدروجين ($^ ^+$ +Cl $^-$) ، ترکيزه $^-$ ، ترکيزه کلور الهيدروجين ($^-$ المحلول يکون : $^ [H_3O^+] = C = 0.5 \text{ mol/L}$ $[C1^{-}] = C = 0.5 \text{ mol/L}$

<u>التمرين (6) :</u>

أكتب الصيغة الشاردية و الصيغة الإحصائية (المجملة) للأنواع الكيميائية التالية : كلور الصوديوم ، هيدروكسيد الكالسيوم ، هيدروكسيد الصوديوم ، هيدروكسيد التنائي ، هيدروكسيد الحديد الثلاثي ، نترات البوتاسيوم ، برمنغنات البوتاسيوم ، كبريتات الحديد الثلاثي ، بيروكسوديكبريتات البوتاسيوم ، ثيوكبريتات الصوديوم .

اسمها	الشاردة	اسمها	الشاردة
الكلور	Cl	الصوديوم	Na^+
النترات	NO_3	البوتاسيوم	K^{+}
البرمنغنات	MnO_4	الكالسيوم	Ca ²⁺
ثنائي الكرومات	$\operatorname{Cr}_2\operatorname{O}_7^{2-}$	الحديد الثنائي	Fe ²⁺
الكبريتات	SO_4^{2-}	الحديد الثلاثي	Fe ³⁺
الهيدروكسيد	HO	الأمونيوم	NH_4^+
البيروكسو ديكبريتات	$S_2O_8^{2-}$	الصوديوم	Na ⁺
الثيوكبريتات	$S_2O_3^{2-}$		

<u>الأجوبة :</u>

الصيغة الشاردية و الإحصائية للمحاليل:

الصيغة المجملة	الصيغة الشاردية	اسم النوع الكيميئي
NaCl	$(Na^+ + Cl^-)$	كلور الصوديوم
Ca(OH) ₂	$(Ca^{2+} + 2HO^{-})$	هيدروكسيد الكالسيوم
NaOH	$(Na^+ + HO^-)$	هيدروكسيد الصوديوم
Fe(OH) ₂	$(Fe^{2+} + 2HO^{-})$	هيدروكسيد الحديد الثنائي
Fe(OH) ₃	$(Fe^{3+} + 3HO^{-})$	هيدروكسيد الحديد الثلاثي
KNO ₃	$(K^+ + NO_3^-)$	نترات البوتاسيوم
KMnO ₄	$(K^+ + MnO_4^-)$	برمنغنات البوتاسيوم
$K_2Cr_2O_7$	$(2K^+ + Cr_2O_7^{2-})$	ثنائي كرومات البوتاسيوم
$Fe_2(SO_4)_3$	$(2Fe^{3+} + 3SO_4^{2-})$	كبريتات الحديد الثلاثي
$K_2S_2O_8$	$(2K^{+} + S_{2}O_{8}^{2-})$	بروكسوديكبريتات البوتاسيوم
$Na_2S_2O_3$	$(2Na^{+}_{(aq)} + S_2O_3^{-2})$	ثيوكبريتات الصوديوم

<u>التمرين (7) :</u>

لدينا محلول من كبرتات النحاس (${\rm Cu}^{2+}_{(aq)}+{\rm SO_4}^2$) ذو اللون الأزرق حجمه 600 mL ، تركيزه المولي ${\rm Cu}^{2+}_{(aq)}+{\rm SO_4}^2$ ، تركيزه المولي مرفق ${\rm C}=0.6~{\rm mol/L}$ ، أدخلنا فيه صفيحة من الألمنيوم Al كتلتها ${\rm m}=13.5~{\rm g}$. نلاحظ حدوث تحول كيميائي مرفق باختفاء كلي للون الأزرق . التحول الكيميائي الحادث منمذج بالمعادلة :

$$2Al_{(s)} + 3Cu^{2+}_{(aq)} = 2Al^{3+}_{(aq)} + 3Cu_{(aq)}$$

- 1- على ماذا يدل اختفاء اللون الأزرق .
 - 2- أنشئ جدول التقدم لهذا التفاعل .
- $_{\rm X_f}$ محددا المتفاعل المحد $_{\rm X_f}$

4- اعتمادا على جدول التقدم أوجد في نهاية التفاعل:

أ- كتلة النحاس المتر سبة .

ب- كتلة الألمنيوم المتفاعلة .

جـ تركيز المحلول الناتج بالشوارد +A13+

. M(Al) = 27 g/mol ، M(Cu) = 63.5 g/mol : يعطى

الأجوية :

. (أصل هذا اللون) Cu^{2+} يدل اختفاء اللون الأزرق على اختفاء كلى لشوارد النحاس

2- جدول التقدم:

حالة الجملة	التقدم	2A1 _(s) -	$+ 3Cu^{2+}$ (aq	$_{0} = 2Al_{(s)}$	+ 3 Cu (s)
ابتدائية	$\mathbf{x} = 0$	0.5	0.36	0	0
انتقالية	X	0.5 - 2x	0.36 - 3x	2x	3x
نهائية	X_{f}	$0.58 - 2x_{\rm f}$	$0.36 - 3x_{\rm f}$	$2x_{\rm f}$	$3x_f$

$$\mathbf{n}_0(Cu^{2+}) = \left[Cu^{2+}\right]V = CV = 0.6.0.6 = 0.6 \text{ mol}$$

$$n_0(Al) = \frac{m(Al)}{M} = \frac{13.5}{27} = 0.5 \text{ mol}$$

3- مقدار التقدم النهائي و المتفاعل المحد: - إذا اختفى Al كليا:

$$0.5 - 2x = 0 \rightarrow x = 0.25$$

- إذا اختفى +Cu²⁺ كليا:

$$0.36 - 3 x = 0 \rightarrow x = 0.12 \text{ mol}$$

. Cu^{2+} و المتفاعل المحد هو $x_{max}=x_f=0.12~mol$: إذن

4- أ- كتلة النحاس المترسبة : من جدول التقدم كمية مادة النحاس المترسبة في نهاية التفاعل هي :

$$n_f Cu) = 3x_f = 3 . 0.12 = 0.36 \text{ mol}$$

و منه :

$$n_f(Cu) = \frac{m_f(Cu)}{M} \rightarrow m_f(Cu) = n_f(Cu) \cdot M(Cu)$$

$$m_f(Cu) = 0.36.63.5 = 22.86 g$$

ب- كتلة الألمنيوم المتفاعلة : من جدول التقدم كمية مادة الألمنيوم المتفاعلة في نهاية التفاعل هي :

$$n_f(Al) = 2x_f = 2 \cdot 0.12 = 0.24 \text{ mol}$$

و منه:

$$n_f(Al) = \frac{m_f(Al)}{M} \rightarrow m_f(Al) = n_f(Al) \cdot M(Al)$$

 $m_f(Al) = 0.24 \cdot 27 = 6.48 \text{ g}$

$$m_f(Al) = 0.24.27 = 6.48 g$$

جـ تركيز المحلول الناتج بالشوارد $_{1}^{+3}$ في نهاية التفاعل :

$$[Al^{3+}]_f = \frac{n_f (Al^{3+})}{V}$$
 (V = 600 mL = 0.6 L)

من جدول التقدم كمية مادة شوارد الألمنيوم المتشكلة عند نهاية التفاعل هي :

$$n_f(Al^{3+}) = 2x_f = 2 \cdot 0.12 = 0.24 \text{ mol}$$

بالتعويض في عبارة $\left[Al^{3+}\right]_{f}$ نجد :

$$[Al^{3+}]_f = \frac{0.24}{0.6} = 0.4 \text{ mol/L}$$

التمرين (8):

لدينا محلول من كبريتات الحديد الثنائي $({\rm Fe}^{2+}_{(aq)} + {\rm SO_4}^{2-}_{(aq)})$ حجمه $200~{\rm mL}$ محمه ${\rm Te}^{2+}_{(aq)} + {\rm SO_4}^{2-}_{(aq)}$ ، أدخلنا فيه صفيحة من الألمنيوم ${\rm Al}$ كتاتها ${\rm m}_0$. نلاحظ حدوث تحول كيميائي مرفق باختفاء كلي للون الأخضر المميز لشوارد التنائي ${\rm Fe}^{2+}$ كما نلاحظ أيضا اختفاء كلي لقطعة الألمنيوم و تشكل راسب نزنه بعد ترشيح المحلول الناتج فنجد ${\rm m} = 6.72~{\rm g}$. التحول الكيميائي الحادث منمذج بالمعادلة :

$$2Al_{(s)} + 3Fe^{2+}_{(aq)} = 2Al^{3+}_{(aq)} + 3Fe_{(s)}$$

- 1- على ماذا يدل اختفاء اللون الأخضر .
 - 2- أنشئ جدول التقدم لهذا التفاعل .
- 3- هل يوجد متفاعل محد ؟ أوجد مقدار التقدم النهائي Xf
 - 4- اعتمادا على جدول التقدم أوجد:
 - أ- كتلة الألمنيوم الابتدائية ${
 m m}_0$.
 - ب- التركيز المولي C_0 لمحلول كبريتات الحديد الثنائي .
- جـ تركيز المحول الناتج بالشوارد $A1^{3+}$ و بالشوارد SO_4^{2-} في نهاية التفاعل
 - يعطى : M(Al) = 27 g/mol ، M(Fe) = 56 g/mol

<u>الأجوبة :</u>

 $_{-}$ يدل اختفاء اللون الأخضر على اختفاء كلي لشوارد الحديد الثنائي ${
m Fe}^{2+}$ أصل هذا اللون $_{-}$

<u>2</u>- جدول التقدم :

حالة الجملة	التقدم	2A1 _(S) +	$-3Fe^{3+}_{(aq)} =$	$2Al^{3+}_{(aq)} +$	3Fe (s)
ابتدائية	$\mathbf{x} = 0$	$n_0(Al)$	$n_0(Fe^{3+})$	0	0
انتقالية	X	$n_0(Al) - 2x$	$n_0(Fe^{3+}) - 2x$	2x	3x
نهائية	$x_f = x_{max}$	$n_0(Al) - 2x_f$	$n_0(Fe^{3+}) - 2x_f$	$2x_{\rm f}$	$3x_f$

<u>3- المتفاعل المحد:</u>

لا يوجد متفاعل محد لأن كل من المتفاعلين $+ e^{2}$ و A1 اختفى كليا في نهاية التفاعل أي أن التحول الكيميائي الحادث في الشروط الستوكيومترية .

التقدم النهائي :

النوع الكيميائي الذي قمنا بترشيحه هو النوع الكيميائي المترسب في نهاية التفاعل هو الحديد (لأن الألمنيوم اختفى كليا) ، لذا كتلة الحديد المترسبة في نهاية التفاعل هي $m_f(Fe) = 6.72 \ g$ و لدينا :

$$n_f (Fe) = \frac{m_f (Fe)}{M(Fe)} = \frac{6.72}{56} = 0.12 \text{ mol}$$

من جدول التقدم و عند نهاية التفاعل يكون:

$$n_f(Fe) = 3x_f \rightarrow x_f = \frac{n_f(Fe)}{3}$$

$$x_f = \frac{0.12}{3} = 0.04 \text{ mol}$$

4- أ- كتلة <u>ا</u>لألمنيوم الابتدائية :

الألمنيوم اختفى كليا في نهاية التفاعل لذا يكون من جدول التقدم:

و لدينا:

$$n_0(Al) = \frac{m_0}{M} \rightarrow m_0 = n_0(Al). M$$

$$m_0 = 0.08 \cdot 27 = 2.16 g$$

$$n_0(Fe^{3+}) = [Fe^{3+}]_0 V = C_0 V \rightarrow C_0 = \frac{n_0(Fe^{3+})}{V}$$

$$C_0 = \frac{0.12}{0.2} = 0.6 \text{ mol/L}$$

 SO_4^{2-} ، $A1^{3+}$ بالشوارد $A1^{3+}$ ، ناتر کیز المولی للمحلول الناتج بالشوارد

$$\bullet \left[Al^{3+} \right] = \frac{n_f \left(Al^{3+} \right)}{V}$$

من جدول التقدم كمية مادة شوارد الألمنيوم الناتجة عند نهاية التفاعل هي:

 $n_f(Al^{3+}) = 2x_f = 2 \cdot 0.04 = 0.08 \text{ mol}$

V = 0.2~L التحول الكيميائي لا يتغير و يبقى على حاله كما كان في الحالة الابتدائية أي

$$[A1^{3+}]_f = \frac{0.08}{0.2} = 0.4 \text{ mol/L}$$

•
$$\left[SO_4^{2--} \right]_f = \frac{n_f (SO_4^{-2})}{V}$$

شوارد ${\rm SO_4}^2$ لم تدخل إلى التفاعل و عليه فإن كمية مادة ${\rm SO_4}^2$ في نهاية التفاعل هي نفسها كمية مادة ${\rm SO_4}^2$ في الحالة الابتدائية لذا يكون:

$$n_f(SO_4^{2-}) = n_0(SO_4^{2-}) = [SO_4^{2-}]_0^{-} V = C_0^{-}V$$

يصبح لدينا:

$$[SO_4^{2-}]_0 = \frac{C_0 V}{V} = C_0 = 0.6 \text{ mol/L}$$

<u>قانون الغاز المثالي</u>

● قانون الغاز المثالي:

إذا شغل غاز مثالى حجم V تحت ضغط P و درجة حرارة مطلقة T ، و كانت كمية مادة هذا الغاز هي n فإنه يعبر عن هذه المقادير بالعلاقة:

$$PV = nRT$$

تسمى هذه العلاقة بقانون الغاز المثالي ، حيث R الثابت العام للغازات المثالية و المقدر بـ 8.31 SI .

- \overline{n} مية المادة \overline{n} ، كمية المادة \overline{n} ، كمية المادة \overline{n} ، كمية المادة \overline{n} ، كمية المادة \overline{n} . ($T^{\circ}K = \theta^{\circ}C + 273$) نامول (moL) ، درجة الحرّارة المطلقة T بالكلفن (K°) علماً أن
 - نذكر بوحدات أخرى للضغط:
 - البار (Bar) حبث: 1bar = 10⁵ Pa
 - الضغط الجوى (atm) حيث: 1atm = 1.013 . 10⁵ Pa

• عبارة المجم المولى لغاز في شروط كيفية من الضغطو درجة الحرارة:

الحجم المولي $m V_{M}$ هو حجم m 1 mol (m n=1) من أي غاز ، بالتعويض في قانون الغاز المثالي نجد : $P V_M = R T$

ومنه:

$$V_{M} = \frac{R T}{P}$$

مثال : P=2 atm نقيس الحجم المولي لغاز في شروط يكون فيها الضغط P=2 atm ، و درجة الحرارة $27^{\circ}\mathrm{C}$.

$$V_{\rm M} = \frac{8.31(27 + 273)}{2 \cdot 1.013 \cdot 10^5} = 1.23 \cdot 10^{-2} \, \text{m}^3 = 12.3 \, \text{L}$$

الصعحة

<u>ناقلية محلول شاردي</u>

الناقلية G لمحلول مائي شاردي :

- يكون المحلول المائي ناقل للتيار الكهربائي إذا كان يحتوي على شوارد موجبة و شوارد سالبة ، و تزداد ناقلية هذا المحلول للتيار الكهربائي كلما كان تركيزه بهذه الشوارد أكبر .
- يعبر عن ناقلية المحلول للتيار الكهربائي بمقدار يدعى الناقلية يرمز له بG ووحدته في نظام الوحدات الدولية السيمنس (S) ، حيث يكون المحلول ناقل للتيار الكهربائي أكثر كلما كان G أكبر .
- لقياس النَاقلية G لمحلول ما نقوم بحصر جُزء (حجم) من هذا المحلول بين صفيحتين معدنيتين متماثلتين مساحة سطح كل منها S وتفصل بينهما مسافة L ، ثم نطبق عليهما بواسطة مولد من نوع GBF توترا كهربائيا .

- تسمي جملة الصفيحتين المذكورتين و الفضاء (الحجم) المحدد بينهما خلية قياس الناقلية (الشكل-2) و تدعى هاتين الصفيحتين بلبوسي الخلية .
 - تتميز الخلية بثابت يدعى ثابت الخلية ، يرمز له بـ K و وحدته المتر (m) و يعبر عنه بالعلاقة :

$$K = \frac{S}{L}$$

(m) عساحة سطح أحد لبوسي الخلية تقدر بـ (m^2) ، و (m^2) البعد بين لوبسي الخلية يقدر بـ (m)

- إذا كانت U هي قيمة التوتر الذي يشير إليه مقياس الفولط الموصول على التفرع مع خلية قياس الناقلية ، و I هي قيمة شدة التيار التي يشير إليها مقياس الأمبير الموصول على التسلسل مع خلية قياس الناقلية ، يعبر عن ناقلية المحلول بالعلاقة التالية :

$$G = \frac{I}{U}$$

• المقاومة R:

- تعرف مقاومة محلول مائي شاردي و التي يرمز لها بR ووحدتها الأوم Ω) على أنها مقلوب الناقلية G لهذا المحلول أي :

$$R = \frac{1}{G} = \frac{U}{I}$$

• الناقلية النوعية ٥ لمحلول شاردي:

مو a نابت التناسب a ووحدتها الخلية a أي a ثابت التناسب a التناسب a تناسب a ووحدتها السيمنس على المتر a و نكتب a ثابت يميز المحلول يدعى الناقلية النوعية للمحلول يرمز لها بa ووحدتها السيمنس على المتر a

$$G = \sigma K$$

• الناقلية النوعية المولية λ:

- تجريبيا يمكن إثبات أن الناقلية النوعية لمحلول σ تتناسب طرديا مع التركيز المولي C لهذا المحلول أي $\delta = a$ ، ثابت التناسب a هو ثابت يميز المحلول يدعى الناقلية النوعية المولية للنوع الكيميائي المنحل في المحلول يرمز له ب λ و وحدته $\delta = a$ و نكتب :

$$\sigma = \lambda \ C$$

. $(1 mol/L = 10^3 mol/m^3 : نذکر أن (mol/m^3) و يقدر بـ (mol/L = 10^3 mol/m^3 : نذکر أن المولي للمحلول و يقدر بـ (mol/L = 10^3 mol/m^3 : ندکر أن المولي المحلول و يقدر بـ (mol/L = 10^3 mol/m^3 : ندکر أن المحلول و يقدر بـ (mol/L = 10^3 mol/m^3 : ندکر أن المحلول و يقدر بـ (mol/L = 10^3 mol/m^3 : ندکر أن المحلول و يقدر بـ (mol/m^3 المحلول و يقد$

● الناقلية النوعية المولية للشاردة الموجبة (Xⁿ⁺) و للشاردة السالبة (½ · λ(Y · m).

في محلول شاردي يحتوي على الشوارد X^{n+} ، Y^{m-} سواء دخلت في التفاعل (تظهر في المعادلة الكيميائية) أم لم تدخل في التفاعل (لا تظهر في المعادلة الكيميائية) تعطى عبارة الناقلية النوعية σ لهذا المحلول بعلاقة آخرى بدلالة الناقلية النوعية المولية الشاردية $\lambda(X^{n+})$ ، $\lambda(X^{m-})$ كما يلي :

$$\sigma = \lambda C = \lambda(X^{n+})[X^{n+}] + \lambda(Y^{m-})[Y^{m-}] + \dots$$

- إذا كان لدينا محلول مائي نقي ناتج عن انحلال النوع الكيميائي $X_a Y_b \to X_a Y_b \to a \ X^{n+} + b Y^{m-}$

فإنه يعبر عن الناقلية النوعية المولية λ بدلالة الناقلية النوعية المولية الشار دية $\lambda(Y^{-m})$ ، $\lambda(X^{+n})$ كما يلى :

$$\lambda = a\lambda(X^{n+}) + b\lambda(Y^{m-})$$

مثال:

$Fe_2(SO_4)_{3(s)} = 2Fe^{3+}_{(aq)} + 3SO_4^{2-}_{(aq)}$	$NaCl_{(s)} = Na^{+}_{(aq)} + Cl^{-}_{(aq)}$
$\lambda = 2\lambda(\text{Fe}^{3+}) + 3\lambda(\text{SO}_4^{2-})$	$\lambda = \lambda(Na^+) + \lambda(Cl^-)$

- نذكر أنه في محلول ذو الصيغه الشاردية $(aX^{n+} + bY^{m-})$ و التركيز المولي C و الذي نحصل عليه بحل كمية من النوع الكيميائي X_aY_b في حجم V من الماء المقطر يكون :

$$C = \frac{n(X_a Y_b)}{V}$$

$$[X^{n+}] = \frac{n(X^{n+})}{V} = a C$$

$$[Y^{m-}] = \frac{n(Y^{m-})}{V} = b C$$

• جدول قيم الناقلية النوعية المولية لبعض الشوارد في درجة الحرارة العادية 25°c:

. سالبة	شوارد	موجبة	شوارد
$\lambda (\text{mS.m}^2/\text{mol})$	الصيغة	$\lambda(\text{mS.m}^2/\text{mol})$	الصيغة
19.9	OH	35.0	H_3O^+
7.63	Cl	5.01	Na ⁺
7.81	Br ⁻	7.35	\mathbf{K}^{+}
7.70	I	6.19	Ag^+
7.14	NO_3	11.9	Ca ²⁺

التمرين (9) :

mol/L التركيز: mol/m^3 التركيز: mol/m^3 التركيز: mol/m^3 التركيز: mol/L التركيز: mol/m^3 $. C_2 = 1200 \text{ mol/m}^3$: التركيز

الأحوية :

التحويل:

$$\bullet \ C_1 = 0.0025 \ mo/L = 0.0025 \ \frac{mol}{L} = 0.0025 \ \frac{1mol}{10^{-3} \ m^3} = \frac{0.0025 \ .1}{10^{-3}} \ mol/m^3 = 2.5 \ mol/m^3$$

•
$$C_2 = 1200 \text{ mol/m}^3 = 1200 \frac{\text{mol}}{\text{m}^3} = 1200 \frac{\text{mol}}{10^3 \text{L}} = \frac{1200}{10^3} \text{mol/L} = 1.2 \text{ mol/L}$$

<u>التمرين (10):</u>

 $m L=1~cm^2$ لدينا خلية قياس الناقلية البعد بين لبوسيها m L=1~cm و مساحة سطح أحد لبوسيها المتماثلين

1- أحسب ثابت الخلية K

C - بو اسطة هذه الخلية قمنا بقياس الناقلية لمحلول شار دي تركيزه المولى C فوجدنا C

أ- ما هي القيمة التي يشير إليها مقياس الأمبير إذا علمت أن مقياس الفولط يشير إلى القيمة U=5V .

ب- استنتج قيمة مقاو مة المحلول R

ج- أحسب الناقلية النوعية & لهذا المحلول .

د- إذا علمت أن هذا المحلول هو هيدروكسيد الكالسيوم $(Ca^{2+} + 2HO^{-})$. أوجد التركيز المولى لهذا المحلول مقدرا

جـ أحسب الناقلية النوعية المولية λ لهيدر وكسيد الكالسيوم بطريقتين مختلفتين

عطي :

$$\lambda(\text{Ca}^{2+}) = 11.9. \ 10^{-3} \ \text{S.m}^2/\text{mol}$$

 $\lambda(\text{OH}^-) = 19.9. \ 10^{-3} \ \text{S.m}^2/\text{mol}$

<u>الأجوبة :</u>

1- ثابت الخلية:

$$K = \frac{S}{L}$$

$$K = \frac{10^{-4} (m^2)}{10^{-2} (m)} = 10^{-2} m$$

2- أ- القيمة التي يشير إليها مقياس الأمبير:

$$G = \frac{I}{IJ} \rightarrow I = G.U$$

 $I = 1.034 \cdot 10^{-3} \cdot 5 = 5.17 \cdot 10^{-3} A = 5.17 mA$

ب- قيمة مقاومة المحلول

$$U=RI \to R=\frac{U}{I}$$

$$R = \frac{5}{5.17.10^{-3}} = 967.11\Omega$$

جـ الناقلية النوعية:

$$\delta = \frac{G}{K} \rightarrow \delta = \frac{1.034 \cdot 10^{-3}}{10^{-2}} = 0.1034 \text{ S/m}$$

د- قيمة االتركيز المولي:

$$\sigma = \lambda (Ca^{2+}) \left[Ca^{2+} \right] + \lambda (HO^{-}) \left[HO^{-} \right]$$

$$\sigma = \lambda(Ca^{2+})(C) + \lambda(HO^{-})(2C)$$

$$\sigma = (\lambda(Ca^{2+}) + 2\lambda(HO^{-}))C \rightarrow C = \frac{\sigma}{\lambda(Ca^{2+}) + 2\lambda(HO^{-})}$$

$$C = \frac{0.1034}{11.9.10^{-3} + (2.19.9.10^{-3})} = 2 \text{ mol/m}^3 = 2.10^{-3} \text{ mol/L}$$

هـ الناقلية النوعية المولية λ:

$$\lambda = \lambda (Ca^{2+}) + 2\lambda (HO^{-})$$

 $\lambda = 11.9 \cdot 10^{-3} + (2 \cdot 19.9 \cdot 10^{-3}) = 5.147 \cdot 10^{-2} \text{ S.m}^{2}/\text{mol}$

الطريقة (2) :

$$\sigma = \lambda C \rightarrow \lambda = \frac{\sigma}{C} \rightarrow \lambda = \frac{0.1034}{2} = 5.147.10^{-2} \text{ S.m}^2/\text{mol}$$

<u>التمرين (11) :</u>

1- نحل كمية من هيدروكسيد الكالسيوم $\operatorname{Ca}(\operatorname{OH})_2$ في الماء المقطر فنحصل على محلول حجمه V و تركيزه المولي C ، التفاعل الكيميائي المنمذج للتحول الكيميائي الحادث يعبر عنه بالمعادلة :

$$Ca(OH)_2 = Ca^{2+} + 2HO^{-}$$

أ- مثل جدول التقدم المنمذج لهذا التفاعل .

ب- أكتب عبارة الناقلية النوعية σ للمحلول الناتج:

• بدلالة الناقلية G للمحلول و الثابت k للخلية .

 $\lambda(\mathrm{Ca}^{2+})$ و الناقلية المولية الشاردية $\lambda(\mathrm{HO}^{-})$ ، و الناقلية المولية الشاردية $\lambda(\mathrm{Ca}^{2+})$

2- نضيف كمية قدر ها n_0 من ميثانوات الإيثيل $HCOOC_2H_5$ إلى محلول هيدر وكسيد الكالسيوم السابق ، يحدث تحول كيميائي ينمذج بمعادلة التفاعل الكيميائي التالية :

$$HCOOC_2H_5 + HO^- = HCOO^- + C_2H_5OH$$

أ- مثل جدول التقدم لهذا التفاعل .

ب- أثبت أن عبارة الناقلية النوعية σ للمحلول الناتج هي من الشكل : $\sigma=a$ x+b ، حيث a ثابتين يطلب كتابة عبارتهما .

المعابرة أكسدة- إرجاع

● مفموم تفاعل الأكسدة و الإرجاع و الأكسدة الإرجاعية :

- الأكسدة: هو كل تفاعل كيميائي يحدث فيه فقدان إلكترون أو أكثر من طرف فرد كيميائي .
 - الإرجاع: هو كل تفاعل كيميائي يحدث فيه إكتساب إلكترون أو أكثر من طرف فرد كيميائي .
 - المرجع: هو الفرد الكيميائي الذي يفقد الإلكترونات في تفاعل الأكسدة.
 - المؤكسد : هو الفرد الكيميائي الذي يكتسب الإلكترونات في تفاعل الإرجاع .
- الأكسدة الإرجاعية: هو كل تفاعل كيميائي يحدث فيه تبادل إلكتروني بين المرجع و المؤكسد حيث يفقد المرجع إلكترون أو أكثر ليلتقطه المؤكسد.

ملاحظة:

تفاعلي الأكسدة و الإرجاع يحدثان في آن واحد و لا يحدث تفاعل أكسدة بدون إرجاع كما لا يحدث تفاعل إرجاع من دون تفاعل أكسدة .

و هفهوم الثنائية هؤكسد – مرجع (مر/هؤ):

في الحالة العامة يرمز للثنائية مؤكسد – مرجع بالرمز (مر/مؤ) حيث (مر) هو المرجع ، و (مؤ) هو المؤكسد و هذه الثنائية توافقها معادلة نصفية الكترونية تكون من الشكل :

● أهثلة عن الثنائيات (مر/موً):

$$Mg \longrightarrow Mg^{2+} + 2e^{-}$$
 $Na \longrightarrow Na^{+} + e^{-}$
 $Fe \longrightarrow Fe^{2+} + 2e^{-}$
 $Fe^{2+} \longrightarrow Fe^{3+} + e^{-}$
 $Cl_{2} + e^{-}$
 (Mg^{2+}/Mg)
 (Na^{+}/Na)
 (Fe^{2+}/Fe)
 (Fe^{3+}/Fe^{2+})
 (Cl_{2}/Cl_{1})

$$H_2 \longrightarrow 2H^+ + 2e^ (H_3O^+/H_2)$$

 $Mn^{2+} + 4H_2O \longrightarrow MnO_4^- + 8H^+ + 5e^ (MnO_4^-/Mn^{2+})$
 $2Cr^{3+} + 7H_2O \longrightarrow Cr_2O_7^{-2} + 14H^+ + 6e^ (Cr_2O_7^{-2}/Cr^{3+})$

ملاحظة:

- إن حدوث الأكسدة الإرجاعية الواردة في المثالين الأخيرين لا تتم وفق ذلك إلا في وجود وسط حمضي ، لذا ظهرت في المعادلة النصفية الإلكترونية الشاردة +H .

كيفية كتابة معادلة الأكسدة الإرجاعية :

لكتابة معادلة الأكسدة الإرجاعية في وسط حمضي نتبع الخطوات التالية:

- نقسم معادلة الأكسدة الإرجاعية إلى معادلتين نصفيتين إحداهما أكسدة و الأخرى إرجاع.

- نوازن في كل معادلة نصفية الذرات التي عانت الأكسدة و الذرات التي عانت الإرّجاع (الذرات الأساسية ، أي الذرات ما عدا الأكسجين و الهيدروجين).

- نوازن في كل معادلة نصفية ذرات الأكسجين و ذلك بإضافة جزيئة ماء H_2O واحدة مقابل كل ذرة أكسجين ناقصة في الطرف الذي يحتوي على العدد الأصغر من ذرات الأكسجين.

- نوازن في كل معادلة نصفية ذرات الهيدروجين و ذلك بإضافة شاردة هيدروجين H^+ مقابل كل ذرة هيدروجين ناقصة في ناقصة في المكان المناسب ، و يمكن أيضا إضافة شاردة هيدرونيوم (H_3O^+) مقابل كل ذرة هيدروجين ناقصة في الطرف الذي يحتوي على العدد الأصغر من ذرات الهيدروجين ، و في نفس الوقت نضيف و بنفس العدد جزيئات الماء H_2O إلى الطرف الآخر .

- لتحقيق مبدأ انحفاظ الشحنة (مجموع الشحنات قبل التفاعل مساوي لمجموع الشحنات بعد التفاعل) ، نوازن في كل معادلة نصفية الشحنات و ذلك بإضافة عدد مناسب من الإلكترونات في الطرف الذي يحتوي على قيمة شحنة أكبر .

- بهدف الحصول على عدد الإلكترونات المفقودة في تفاعل الأكسدة مساوي لعدد الإلكترونات المكتسبة في تفاعل الإرجاع نضرب طرفي معادلة الأكسدة في عدد مناسب و طرفي معادلة الإرجاع في عدد مناسب آخر ، و بجمع المعادلتين الناتجتين طرفا إلى طرف ، نحصل على معادلة الأكسدة الإرجاعية .

● أمثلة عن تفاعلات الأكسدة الإرجاعية في وسطحمضي:

 $\frac{1}{2}$ ارجاع شاردة البرمنغنات $\frac{1}{2}$ MnO بواسطة شاردة الحديد الثلاثي $\frac{1}{2}$

 $= (Fe^{3+}/Fe^{2+})$ ، (MnO_4^-/Mn^{2+}) : هي الثقائيات (مر/مؤ) الداخلة في التفاعل هي : (Fe^{3+}/Fe^{2+}) ،

المناعل على التّفاعل تَتَأْكسدت شو الرد الحديد الّثنائي ${\rm Fe}^{2+}$ إلى شو الرد الحديد الثلاثي وفق معادلة الأكسدة التالية: ${\rm Fe}^{2+}={\rm Fe}^{3+}+{\rm e}^{-}$

 Mn^{2+} في الوقت الذي تتأكسد فيه شوارد الحديد الثنائي ، ترجع شوارد البرمنغنات $\mathrm{MnO_4}^{-}$ إلى شوارد المنغنيز وفق معادلة الإرجاع ذات الخطوات التالية :

 MnO_4 = Mn^{2+}

 $MnO_4^{\cdot} = Mn^{2+} + 4H_2O$

 $MnO_4^- + 8H^+ = Mn^{2+} + 4H_2O$

 $MnO_4^- + 8H^+ + 5e^- = Mn^{2+} + 4H_2O$

- بضرب طرفي معادلة الأكسدة في العدد (5) و طرفي معادلة الإرجاع في العدد (1) نجد :

 $5Fe^{2+} = 5Fe^{3+} + 5e^{-1}$

 $MnO_4^- + 8H^+ + 5e^- = Mn^{2+} + 4H_2O$

- بجمع المعادلتين الناتجتين طرف إلى طرف نجد:

 $5Fe^{2+} + MnO_4^- + 8H^+ + 5e^- = 5Fe^{3+} + Mn^{2+} + 4H_2O + 5e^-$

و باختزال عدد الإلكترونات نحصل علة معادلة الأكسدة الإرجاعية التالية:

$$5Fe^{2+} + MnO_4^- + 8H^+ = 5Fe^{3+} + Mn^{2+} + 4H_2O$$

- إذا وازنا ذرات الهيدروجين بشوار د الهيدرونيوم ${}^{+}$ ${}^{+}$ باتباع نفس الخطوات نحصل على المعادلة التالية:

$$5Fe^{2+} + MnO_4^- + 8H_3O^+ = 5Fe^{3+} + Mn^{2+} + 12H_2O$$

نكتب باختصار المعادلات كما يلى:

$$\times 5 \mid Fe^{2+} = Fe^{3+} + e^{-}$$

$$\times 1$$
 | MnO₄⁻ + 8H⁺ + 5e⁻ = Mn²⁺ + 4H₂O

$$5Fe^{2+} + MnO_4^- + 8H^+ = 5Fe^{3+} + Mn^{2+} + 4H_2O$$

 $\frac{cr_2O_7^{-2}}{cr_2O_7^{-2}}$ بو المتائي الكرومات $\frac{cr_2O_7^{-2}}{cr_2O_7^{-2}}$ المتائيات (مر/مؤ) الداخلة في التفاعل هي : $\frac{cr_2O_7^{-2}}{cr_2O_7^{-2}}$ ، $\frac{cr_2O_7^{-2}}{cr_2O_7^{-2}}$:

$$\times 6 \mid Fe^{2+} = Fe^{3+} + e^{-}$$

$$\times 1$$
 | $Cr_2O_7^{2-} + 14H^+ + 6e^- = 2Cr^{3+} + 7H_2O$

$$6Fe^{2+} + Cr_2O_7^{2-} + 14H^+ = 6Fe^{3+} + 2Cr^{3+} + 7H_2O$$

مثال-3: (إرجاع شاردة الهيدرونيوم H_3O^+ إلى جزيء غاز الهيدروجين H_2 بواسطة الألمنيوم H_3O^+

■ الثتائيات (مر/مو) الداخلة في التفاعل هي : (Al³+/Al) ، (Al³+/Al) الداخلة في التفاعل على الداخلة في التفاعل الداخلة في التفاعل الداخلة في التفاعل ال

$$\times 2 \mid A1 = A1^{3+} + 3e^{-}$$

$$\times 3 \mid 2H_3O^+ + 2e^- \rightarrow H_2 + 2H_2O$$

$$2Al + 6H_3O^+ = 2Al^{3+} + 3H_2 + 6H_2O$$

• المدف من المعايرة اللونية :

- تهدف طريقة المعايرة بصفة عامة إلى تحديد كمية المادة لنوع كيميائي في أحد المحاليل التالية : محلول حمضي ، محلول أساسي ، محلول مؤكسد ، محلول مرجع .

- بتحديد كمية المادة يمكن تحديد مقادير أخرى مثل تركيز المحلول المائي ، كتلة النوع الكيميائي المنحل ، ناقلية
- يوضح الشكل التالى التجهيز المستعمل للمعايرة ، و المتكون أساسا من:
- كأس بيشر يحتوي على المحلول المراد معايرة و الذي يسمى محلول معاير .
- · سحاحة تحتوي على المحلول المستعمل في المعايرة و الذي يسمي **محلول معاير**
- رحاج أو مخلاط مغناطيسي يستعمل لخلط المزيج المتحصل عليه في كأس بيشر
- أثناء المعايرة نضيف تدريجيا بواسطة السحاحة المحلول المعاير إلى المحلول المعاير الموجود بالبيشر إلى غاية

بلوغ ما يسمى نقطة التكافؤ ، و عند التكافؤ يكون التفاعل المنمذج للمعايرة في الشروط الستوكيوتية ، أي تتفاعل كل كمية مادة المتفاعل في المحلول المعاير المضاف .

- نكشف على التكافؤ في المعايرة اللونية بتغير لون المتفاعل في المحلول المعاير ، أو بتغير لون نوع كيميائي نضيفه إلى المحلول المعاير .

- نعتبر أن التفاعل المنمذج للمعايرة من الشكل:

$$\alpha\;A+\beta\;B=\delta\;C+\lambda\;D$$

نمثل جدول التقدم لتفاعل المعايرة:

المرحلة	التقدم	αΑ	+ βΒ	$= \delta C$	$+ \lambda D$
ابتدائية	$\mathbf{x} = 0$	n_{0A}	n_{0B}	0	0
انتقالية	X	$n_{0A} - \alpha x$	$n_{0B} - \beta x$	δx	λx
تكافؤ	$x = x_E$	$n_{0A} - \alpha x_E$	$n_{0B} - \beta x_E$	δx_E	$\lambda x_{\rm E}$

حيث : $x_{\rm E}$ هو مقدار التقدم عند حدوث التكافؤ ، $n_{0\rm A}$ هي كمية مادة النوع الكيميائي المنحلة في المحلول المعاير ، $n_{0\rm B}$ هي كمية مادة النوع الكيميائي المنحلة في المحلول المعاير .

- عند التكافؤ يكون التفاعل في الشروط الستوكيومترية لذا يكون:

$$n_{0A} - \alpha x_E = 0 \rightarrow x_E = \frac{n_{0A}}{\alpha}$$

$$n_{0B} - \beta x_E = 0 \rightarrow x_E = \frac{n_{0B}}{\beta}$$

المطابقة نجد:

$$\frac{n_{0A}}{\alpha} = \frac{n_{0B}}{\beta} \leftrightarrow \frac{[A]_0 V_A}{\alpha} = \frac{[B]_0 V_{BE}}{\beta}$$

- حيث : $V_{
m A}$ هو حجم المحلول المعاير ، و $V_{
m BE}$ هو حجم المحلول المعايـر المضاف عند التكافؤ

- هناك أنواع من المعايرة نتطرف في درسنا هذا إلى نوعين هما: المعايرة اللونية و المعايرة بواسطة الناقلية.

- في المعايرة بواسطة الناقلية نرفق إلى التجهيز السابق جهاز قياس الناقلية ، و أثناء المعايرة نقوم بقياس الناقلية للمزيج الموجود في البيشر و ذلك عند كل إضافة ، نسجل النتائج في جدول ثم نرسم المخطط البياني $G = f(V_B)$ الذي يعبر عن تغيرات ناقلية المزيج بدلالة حجم المحلول المعاير و عند التكافؤ تبلغ الناقلية قيمة حدية (الشكل) .

التمرين (12):

نعاير C_1 من محلول كبريتات الحديد الثنائي $(Fe^{2+} + SO_4^{2-})$ تركيزه المولى C_1 مجهول) بمحلول برمنغنات البوتاسيوم ($\mathrm{K}^{+} + \mathrm{MnO}_{4}$) تركيزه المولى $\mathrm{C}_{2} = 0.2 \; \mathrm{mol/L}$ ، نلاحظ اختفاء اللون الأخضر المميز لشوارد الحديد الثنائي بعد إضافة $m V_2 = 5~mL$ من محلول بر منغنات البوتاسيوم .

1- أرسم شكل تخطيطي لعملية المعايرة محددا عليه البيانات اللازمة .

2- على ماذا يدل اختفاء اللون الأخضر

3- اكتب معادلة تفاعل الأكسدة الإرجاعية المنمذج للمعايرة علما أن الثنائيتين (مر/مؤ) الداخلتين في التفاعل هما: (Fe^{3+}/Fe^{2+}) , (MnO_4^{-}/Mn^{2+})

4- مثل جدول التقدم للتفاعل.

رمنغنات V_{2E} ، V_{2E} ، V_{1} ، V_{2} ، V_{1} ، V_{2} ، V_{1} ، V_{2} هو حجم محلول برمنغنات V_{2E} ، علما أن V_{2E} هو حجم محلول برمنغنات البوتاسيوم اللازم للتكافؤ

6- أوجد قيمة C_1 التركيز المولى لمحلول كبريتات الحديد الثنائي الذي قمنا بمعايرته .

الأجوبة :

1- الرسم التخطيطي للمعايرة:

 $_{-}$ يدل اختفاء اللون الأخضر على اختفاء كلى لشوارد الحديد الثنائى ${
m Fe}^{2+}$ أصل هذا اللون $_{-}$

3- معادلة التفاعل:

$$\times 5 | Fe^{2+} = Fe^{3+} + e^{-}$$

$$\times 1$$
 $MnO_4^- + 8H^+ + 5e^- = Mn^{2+} + 4H_2O$

$$\overline{5Fe^{2+} + MnO_4^{-} + 8H^+} = 5Fe^{3+} + Mn^{2+} + 4H_2O$$

4- جدول التقدم:

الحالة	التقدم	5Fe ²⁺ +	MnO_4	+ 8H ⁺ =	$= 5 \text{Fe}^{3+}$	$+ Mn^{2+}$	+ 4H ₂ O
ابتدائية	$\mathbf{x} = 0$	$n_0(Fe^{2+})$	$n_0(MnO_4)$	بزيادة	0	0	بزيادة
انتقالية	X	$n_0(\text{Fe}^{2+}) - 5x$	$n_0(MnO_4)$ - x	بزيادة	5x	X	بزيادة
تكافؤ	\mathbf{x}_{E}	$n_0(\text{Fe}^{2+}) - 5x_E$	$n_0(MnO_4) - x_E$	بزيادة	$5x_{\rm E}$	$x_{\rm E}$	بزيادة

5- العلاقة بين V_{2E} ، V₂ ، V₁ ، C₁ بين

عند التكافؤ يكون التحول الكيميائي الحادث أثناء المعايرة في الشروط الستوكيومترية ، لذا يكون :

•
$$n_0(Fe^{2+}) - 5x_E = 0 \rightarrow x_E = \frac{n_0(Fe^{2+})}{5}$$
(1)

•
$$n_0(MnO_4^-) - x_E = 0 \rightarrow x_E = n_0(MnO_4^-)$$
(2)

من (1) ، (2)

$$\frac{n_0(Fe^{2+})}{5} = n_0(MnO_4^{-1}) \rightarrow \frac{C_1V_1}{5} = C_2V_{2E} \rightarrow C_1V_1 = 5C_2V_{2E}$$

<u>6- قيمة 6- </u>

من العلاقة السابقة نكتب:

$$C_1 = \frac{5C_2V_{2E}}{V_1} \rightarrow C_1 = \frac{5.0, 2.5.10^{-3}}{20.10^{-3}} = 0,25 \text{ mol/L}$$

التمرين (13):

1- لتحضير محلول (A) لثنائي كرومات البوتاسيوم ($^{-2}_{2}C_{7}^{2}$) ، قمنا بحل $^{-2}_{2}$ 0 من ثنائي كرومات البوتاسيوم النقي $^{-2}_{2}$ 4 في $^{-2}_{2}$ 4 من الماء المقطر .

أ- أكتب معادلة انحلال ثنائي كرومات البوتاسيوم في الماء المقطر .

ب- أوجد التركيز \mathbf{C}_0 للمحلول الناتج:

. M(Cr) = 52 g/mol ، M(O) = 16 g/mol ، M(K) = 39 g/mol : يعطى

2- للتأكد من قيمة التركيز C_0 السابقة نأخذ 10~mL من المحلول السابق و نمددها 10~nc مرات فنحصل على محلول ممدد تركيزه المولي C_1 ، نأخذ $V_1=20~\text{mL}$ من هذا المحلول الممدد و نعايرها بمحلول كبريتات الحديد الثنائي $V_1=20~\text{mL}$ ، ناخذ $V_2=6~\text{mL}$) تركيزه المولي $V_2=6~\text{mL}$ ، نلاحظ أنه يلزم للتكافؤ إضافة $V_2=6~\text{mL}$ من محلول كبريتات الحديد الثنائي .

: أ. أكتب معادلة التفاعل المنمذج لتفاعل المعايرة إذا علمت أن الثنائيتين (مر/مؤ) الداخلتين في التفاعل هما أ. أكتب معادلة التفاعل المنمذج لتفاعل المعايرة إذا علمت أن الثنائيتين (${\rm Fe}^{3+}/{\rm Fe}^{2+}$) , ${\rm (Cr}_2{\rm O}_7^{2-}/{\rm Cr}^{3+})$

ب- أوجد التركيز المولي C_1 للمحلول الممدد المعاير ثم استنتج التركيز المولي C_0 للمحلول C_1 الابتدائي .

<u>الأجوبة :</u>

: K₂Cr₂O₇ اـ أ- معادلة انحلال

$$K_2Cr_2O_7 = 2K^+ + Cr_2O_7^{2-}$$

ب- التركيز المولي C_0 للمحلول الناتج:

$$C_0 = \frac{n_0(K_2Cr_2O_4)}{V} = \frac{\frac{m_0}{M}}{V} = \frac{m_0}{M.V}$$

$$M = (2.39) + (2.52) + (7.16) = 294 \text{ g/mol}$$

$$C_0 = \frac{2,94}{294.0.1} = 0.1 \text{ mol/L}$$

ب- التركيز C_1 للمحلول الممدد و التركيز C_0 للمحلول الابتدائي : عند التكافؤ ·

$$\frac{n_0(Fe^{3+})}{6} = n_0(Cr_2O_7^{2-})$$

$$\frac{C_2V_{2E}}{6} = C_1V_1 \rightarrow C_1 = \frac{C_2V_{2E}}{6V_1}$$

$$C_1 = \frac{0.2 \cdot 6 \cdot 10^{-3}}{6 \cdot 20 \cdot 10^{-3}} = 10^{-2} \text{ mol/L}$$

و كون أن المحلول الممدد المعاير مدد 10 مرات يكون:

$$C_1 = \frac{C_0}{10} \rightarrow C_0 = 10 \ C_1 = 10 \ . \ 10^{-2} = 0.1 \ mol/L$$

و هي نفس النتبجة المتحصل عليها سابقا