Página Principal / Mis cursos / Métodos Numéricos 2022 - 1S / Grupo 4 y 5 / Tarea 4, grupo 5.

Comenzado el	viernes, 17 de junio de 2022, 15:56
Estado	Finalizado
Finalizado en	viernes, 17 de junio de 2022, 17:54
Tiempo	1 hora 58 minutos
empleado	
Calificación	4.5 de 5.0 (90 %)

Correcta

Se puntúa 0.7 sobre 0.7

Considere el problema con valores en la frontera (P.V.F.)

$$\left\{egin{aligned} 3y''(x)+\cos(\pi x)y'(x)&=2e^xy(x)+s(x), \qquad 2\leq x\leq 5\ ,\ y\left(2
ight)&=4,\ y\left(5
ight)&=eta. \end{aligned}
ight.$$

Sabemos que, para $2 \le x \le 5$, la aproximación a la solución de los P.V.I's:

$$3z''(x) + \cos(\pi x)z'(x) = 2e^x z(x), \qquad 2 \le x \le 5$$

$$z(2) =$$

0

~

$$z'(2) = \frac{1}{1}$$

~

У

$$3w''(x) + \cos(\pi x)w'(x) = 2e^x w(x) + s(x), \qquad 2 \le x \le 5 \; ,$$

$$w(2) =$$

4

V

$$w'(2) = 0$$

~

obtenidas por el método de Runge-Kutta 4 con tamaño de paso $h=\dfrac{3}{5}$, está dada por:

	x_0	x_1	x_2	x_3	x_4	x_5
z(x)	$z(x_0)$	0.4899	1.0835	1.9475	2.5884	3.1641
w(x)	$w(x_0)$	3.0753	-1.2808	-11.1267	-21.4734	-35.7612

Si la aproximación a la solución del P.V.F. obtenida con el método del disparo en x_3 es 8.9710, es decir, $y(x_3) \approx 8.9710$, entonces el valor de β para este P.V.F. es:

-3.1085

~

Incorrecta

Se puntúa 0.0 sobre 0.5

Si aplica el método del disparo lineal con 40 pasos para aproximar y(2) en el siguiente P.V.F.

$$y''(x) = -2y' - 2y + e^{-x} + \operatorname{sen}(2x), \qquad 0 \le x \le 4,$$

$$y(0) = 0.6$$
,

$$y(4) = -0.1$$

se obtiene:

-0.2331

X (Respuesta con 4 decimales)

Pregunta 3

Correcta

Se puntúa 0.7 sobre 0.7

Use format short

El movimiento de una partícula, esta dado por la siguiente ecuación diferencial

$$rac{d^2y}{dt^2} + 6rac{dy}{dt} - rac{y}{25} = e^{t/3}$$

donde y(t)es es el desplazamiento (dado en metros) en un instante de tiempo t que está dado en segundos. Si en un tiempo t=0, la partícula ya ha tenido un desplazamiento de 1 (y(0)=1) y ademas, esta parte con una velocidad de 0.28m/s (y'(0)=0.28). Queremos encontrar información cada 0.5 segundos hasta el tiempo t=6.

A los 6 segundos, empleando el método de Runge-Kutta de orden 4, la partícula habrá recorrido

3.1512

metros.

Correcta

Se puntúa 0.6 sobre 0.6

Considere el problema con valores en la frontera (P.V.F.) siguiente

$$\begin{cases} y''(x)+\sin(x)y'(x)=\cos(x)y(x)+\tan^{-1}(3x), & -2\leq x\leq 0\ ,\\ y(-2)=\alpha,\\ y(0)=\beta. \end{cases}$$

Estamos interesados en aplicar el método de diferencias finitas centradas para aproximar la solución y de este P.V.F. con tamaño de paso $h=\frac{1}{4}$.

Completar y seleccionar la opción correcta.

Si denotamos por w_i la aproximación de $y(x_i)$ (recordemos que por notación del texto guía y de clase, $w_0=\alpha$), la ecuación en diferencias que se obtiene al aplicar el método de diferencias finitas centradas con tamaño de paso $h=\frac{1}{4}$ es

$${\cal A}_i \, w_{i+1} + {\cal B}_i \, w_i + {\cal C}_i \, w_{i-1} = an^{-1}(3x_i), \qquad i = 0$$

1

7

✓ ,···

 \bigcirc 16 + 4 cos(x_i)

donde el valor \mathcal{A}_i es :

- \bigcirc 16 $-2\cos(x_i)$
- $\bigcirc 16 2\sin(x_i)$
- \bigcirc 16 + 4 sin(x_i)
- \bigcirc 16 + 2 $cos(x_i)$
- \bigcirc 16 $-4\sin(x_i)$
- $0.16 4\cos(x_i)$
- $0.16 + 2\sin(x_i)$

el valor de \mathcal{B}_i es :

- \circ $\sin(x_i) 32$
- \bigcirc $-32-\cos(x_i)$
- \circ $-\sin(x_i)-32$
- $\bigcirc 32 \cos(x_i)$
- $\bigcirc 32 \sin(x_i)$
- \circ $\cos(x_i) 32$
- \bigcirc 32 + $\sin(x_i)$
- \circ $\cos(x_i) + 32$

y el valor de C_i es :

- \bigcirc 16 + 4 cos(x_i)
- \bigcirc 16 $-4\sin(x_i)$

- \bigcirc 16 $-2\cos(x_i)$
- \bigcirc 16 + 2 $\sin(x_i)$
- \bigcirc 16 $-4\cos(x_i)$
- \bigcirc 16 + 2 $cos(x_i)$
- $0.16 + 4\sin(x_i)$
- 0 $16-2\sin(x_i)$

Correcta

Se puntúa 0.6 sobre 0.6

Utilice format long para los cálculos

Al utilizar el método de diferencias finitas centradas de orden $O(h^2)$ con una discretización de 50 pasos para hallar el valor aproximado de x(0.5), siendo x(t) la solución del problema con valores en la frontera:

$$x''(t) = -(1+t)x'(t) + 2x(t) + (1-t^2)e^{-t}$$

$$x(0) = -1, x(1) = 0.$$

la aproximación obtenida de x(0.5) es:

-0.303253988970378

Pregunta 6

Correcta

Se puntúa 0.6 sobre 0.6

Al resolver el siguiente problema elíp<u>tic</u>o por el método de diferencias finitas de cinco puntos con tamaño de paso $h=\frac{1}{4}=k$:

 $u_{xx} + u_{yy} = y$ en la región $R = \{(x,y): 0 < x < 1, 0 < y < 1\}$

con condiciones de frontera

$$u(x,0)=x^3$$
 y $u(x,1)=x^3$ para $0\leq x\leq 1$,

$$u(0,y)=0$$
 y $u(1,y)=1$ para $0\leq y\leq 1$

la aproximación que se obtiene para $u(\frac{1}{4},\frac{1}{2})$ usando format short es:

0.1122

Correcta

Se puntúa 0.6 sobre 0.6

Un modelo presa-depredador. En un cierto hábitat viven conejos y lobos, cuyas poblaciones en un instante t denotamos por x(t) e y(t), respectivamente. El modelo matemático correspondiente establece que x(t) e y(t) verifican el sistema:

$$x'(t) = Ax(t) - Bx(t)y(t)$$

$$y'(t) = Cx(t)y(t) - Dy(t)$$

Si A=2, B=0.01, C=0.0001, D=0.4, al aplicar el método clásico de Runge-Kutta de cuarto orden con 50 pasos para aproximar x(3) e y(3) ($0 \le t \le 3$) en el caso x(0)=2000 e y(0)=100, usando **format short y expresando la respuesta en números enteros (con redondeo)**, se obtiene:

$$x(3) =$$

7259

$$y(3) =$$

Correcta

Se puntúa 0.7 sobre 0.7

Considere el problema elíptico de la forma

$$\left\{egin{aligned} u_{xx}(x,y) + u_{yy}(x,y) &= ext{sen}(xy), & a < x < b, & c < y < d, \ u(x,c) &= g_3(x), & u(x,d) &= g_4(x), & a \leq x \leq b, \ u(a,y) &= g_1(y), & u(b,y) &= g_2(y), & c \leq y \leq d. \end{aligned}
ight.$$

donde $g_3,\ g_4$ son funciones definidas en el intervalo [a,b] y $g_1,\ g_2$ funciones definidas en el intervalo [c,d].

La fórmula que se obtiene al emplear el método de diferencias finitas centradas en la región $\left[3,\frac{15}{4}\right] \times \left[1,\frac{9}{5}\right]$ usando tamaños de paso en la variable x de $h=\frac{1}{4}$ y en la variable y de $k=\frac{1}{5}$ es:

 $\checkmark w_{i+1,j} +$

 $\checkmark w_{i,j-1} +$

 $\checkmark w_{i,i+1} = \operatorname{sen}(x_i y_i)$

16

16

82

25

25

válida para i=

~ ,...,

2

y y j = 1

• ,...,

Las aproximaciones de u obtenidas al aplicar el método de diferencias finitas centradas son:

$w_{i,j}$	x_0	x_1	x_2	x_3
y_0	0.1411	-0.1082	-0.3508	-0.5716
y_1	-0.4425	-0.3742	-0.5151	-0.9775
y_2	-0.8716	-0.5338	A	-0.8589
y_3	-0.9962	-0.5330	-0.3007	-0.2794
y_4	-0.7728	-0.4198	0.0168	0.4500

donde el valor aproximado de $A=u\left(x_{2},y_{2}
ight) pprox$

→ Taller 16 Ecuaciones hiperbólicas

Ir a...

Quiz 3 - Grupo 5 - TANDA 2: 9-9.50am ►