Листок №Г3

Кодирование

Наша цель была научиться говорить о выводимости в РА языком арифметики. В прошлом листке мы поняли, что рекурсивные функции могут быть хорошим подспорьем в этом деле. Осталось эту возможность реализовать.

Пусть Σ не более чем счётная сигнатура, содержащая функциональные символы $\{f_i^n\}$, предикатные символы $\{R_i^n\}$, переменные v_0, v_1, \ldots Например, положим = как R_0^2 , 0 как f_0^0 , S есть f_0^1 и так далее. Наша цель приписать гёделевы номера объектам языка, чтобы разным объектам соответствовали разные натуральные числа, а смысл слова мог бы определяться примитивно-рекурсивным образом. Обозначив гёделев номер объекта A как A, распределим номера, скажем, так:

$$\lceil v_i \rceil \coloneqq \langle 1, i \rangle, \lceil f_i^n \rceil \coloneqq \langle 2, \langle n, i \rangle \rangle, \lceil R_i^n \rceil \coloneqq \langle 3, \langle n, i \rangle \rangle, \lceil \neg \rceil \coloneqq \langle 4, 0 \rangle, \lceil \rightarrow \rceil \coloneqq \langle 4, 1 \rangle, \lceil \forall \rceil \coloneqq \langle 4, 3 \rangle.$$

Задача Г3.1. Объясняет почему квантору существования и остальным логическим связкам не нужны отдельные гёделевые номера.

Дальше можно этот язык расширить на более сложные конструкции, например: $\lceil (A \to B) \rceil = \langle [\to], \lceil A], \lceil B \rceil \rangle$, $\lceil \forall v_i \mid A \rceil = \langle [\forall], \lceil v_i \rceil, \lceil A \rceil \rangle$.

Задача Г3.2. Докажите, что $\mathrm{Tm}(x)= \ll x$ есть гёделев номер терма» является примитивно рекурсивной.

Задача Г3.3. Докажите, что $AtFm(x) = \langle x \rangle$ есть гёделев номер атомарной формулы» является примитивно рекурсивной.

Задача ГЗ.4. Докажите, что Fm(x) = «x есть гёделев номер формулы» является примитивно рекурсивной

Определение. *Нумерал*
$$\underline{n}$$
 — это терм $\underline{S(\dots S(0)\dots)}$

Задача Г3.5. Покажите, что $nm(x) \coloneqq \lceil \underline{x} \rceil$ и $\operatorname{Num}(x) = \langle x \rangle$ есть гёделев номер нумерала» примитивно рекурсивны.

Задача ГЗ.6. Докажите, что Sub(x, i, y) = «результат подстановки в x выражения y вместо свободных вхождений переменной v_i » является примитивно рекурсивной. Другими словами, если $x = \lceil \varphi \rceil$, то выполняется $Sub(\lceil \varphi \rceil, i, \lceil t \rceil) = \lceil \varphi \lceil v_i/t \rceil \rceil$.

Задача Г3.7. Докажите, что $Free(x, y) = \langle x \rangle$ есть гёделев номер переменной, имеющей свободное вхождение в выражение с номером $y \rangle$ является примитивно рекурсивной.

Задача ГЗ.8. Покажите, что следующие предикаты примитивно рекурсивны «x есть код подформулы формулы с кодом y», «t подстановочен в φ вместо свободного вхождения переменной v_i »,

Определение. Пусть $Ax_i(x) = \langle x \text{ есть код применения } i\text{-ой аксиомы Cl} \rangle$, $Log(x) = \bigvee Ax_i(x)$, $MP(x,y,z) = (y = \langle [\to], x,y \rangle) \& x,y,z \in Fm$ (выводимость по modus ponens), $Gen(x,i,y) = (y = \langle [\forall], [v_i], x \rangle)$ (применение квантора всеобщности).

Задача ГЗ.9. Покажите, что Ax_i , Log, MP, Gen являются примитивно рекурсивными.

Задача Г3.10. Докажите, что $\Pr(x,y) = \langle x \rangle$ есть вывод y в языке предикатов» является примитивно рекурсивной.