逻辑代数基础

一、逻辑运算

1、与AND

表达式: $F = AB = A \cdot B$

真值表:

A	В	F
0	0	0
0	1	0
1	0	0
1	1	1

逻辑符号:

2、或 OR

表达式: F = A + B

真值表:

A	\boldsymbol{B}	F
0	0	0
0	1	1
1	0	1
1	1	1

逻辑符号:

$$A$$
 ≥ 1 $\rightarrow F$ $\rightarrow F$

3、非

表达式: $F = \overline{A} = A'$

真值表:

A	F
0	1
1	0

逻辑符号:

4、与非NAND

表达式: $Z=\overline{XY}$

真值表:

逻辑符号:

5、或非 NOR

表达式: $Z = \overline{X + Y}$

真值表:

逻辑符号:

$$X \longrightarrow Z$$
 $Y \longrightarrow NOR$

6、异或XOR

表达式: $F = X \oplus Y$

真值表: (奇数个1返回1, 偶数个1返回0)

$F = X \in$	∆ <i>V</i>	X	Y	Z	F
$\Gamma - \Lambda$	7 1	0	0	0	0
XY	F	0	0	1	1
$\frac{\Lambda}{0}$	$\frac{1}{0}$	0	1	0	1
0 1	1	0	1	1	0
1 0	1	1	0	0	1
1 1	0	1	0	1	0
1 1	U	1	1	0	0
		1	1	1	1

逻辑符号:

7、同或 XNOR

表达式: $F = \overline{X \oplus Y} = X \odot Y$

真值表: (奇数个1返回0, 偶数个1返回1)

$$F = \overline{X \oplus Y} \quad F = X \odot Y$$

$$\begin{array}{c|cccc}
 & X & 1 & 2 & F \\
\hline
 & 0 & 0 & 0 & 1 \\
\hline
 & X & Y & F \\
\hline
 & 0 & 0 & 1 & 0 \\
\hline
 & 0 & 1 & 0 & 0 \\
\hline
 & 0 & 1 & 0 & 0 \\
\hline
 & 0 & 1 & 1 & 1 \\
\hline
 & 1 & 0 & 0 & 0 \\
\hline
 & 1 & 1 & 1 & 0 & 1 \\
\hline
 & 1 & 1 & 0 & 1 & 1 \\
\hline
 & 1 & 1 & 1 & 0 & 1 \\
\hline
 & 1 & 1 & 1 & 0 & 1 \\
\hline
 & 1 & 1 & 1 & 0 & 1
\end{array}$$

逻辑符号:

8、汇总

		与 AND	或 OR	与非 NAND	或非 NOR	异或 XOR	同或 XNOR
X	Υ	F=XY	F=X+Y	$F = \overline{XY}$	$F = \overline{X + Y}$	F=X ⊕ Y	F=X⊙Y
0	0	0	0	1	1	0	1
0	1	0	1	1	0	1	0
1	0	0	1	1	0	1	0
1	1	1	1	0	0	0	1

二、逻辑运算律

1、基本公式

序号	公 式	序号	公 式
1	$0 \cdot A = 0$	10	1' = 0 $0' = 1$
2	$1 \cdot A = A$	11	1+A=1
3	$A \cdot A = A$	12	0 + A = A
4	$A \cdot A' = 0$	13	A + A = A
5	$A \cdot B = B \cdot A$	14	A + A' = 1
6	$A \cdot (B \cdot C) = (A \cdot B) \cdot C$	15	A + B = B + A
7	$A \cdot (B + C) = A \cdot B + A \cdot C$	16	A + (B+C) = (A+B) + C
8	$(A \cdot B)' = A' + B'$	17	$A + B \cdot C = (A + B) \cdot (A + C)$
9	(A')' = A	18	$(A+B)'=A'\cdot B'$

2、运算律

1、交换律
$$AB=BA$$
 $A+B=B+A$

2、结合律
$$\frac{A (BC) = (AB) C}{A + (B + C) = (A + B) + C}$$

3、分配率
$$A(B+C) = AB + AC$$

 $A+BC = (A+B)(A+C)$

4、摩根公式
$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

 $\overline{A + B} = \overline{A} \cdot \overline{B}$