Bref formulaire Transferts Thermiques

Chaleur

Flux de chaleur :

 Φ en W

Quantité d'énergie thermique qui traverse une surface par unité de temps

Densité de flux de chaleur :

 $\phi en W/m^2$

Quantité d'énergie thermique qui traverse une surface par unité de temps et de surface

Loi de Fourier

$$\vec{\phi} = -\lambda \ gra\vec{d}(T)$$

Avec λ , conductivité thermique du matériau en Wm-1K-1

Résistance thermique et résistance thermique surfacique d'une paroi

$$\Delta T = \frac{e}{\sqrt{S}}\Phi = R\Phi$$

 $\Delta T = rac{e}{\lambda S} \Phi = R \Phi$ avec R résistance thermique en K/W

$$\Delta T=rac{e}{\lambda}\phi=R_s\phi$$
 avec R_s résistance thermique surfacique en m²K/W

D R5- R*S

Résistance thermique d'un cylindre creux

$$\Delta T = R_{cyl}\Phi$$
 avec $R_{cyl} = \frac{Ln(R_2/R_1)}{\lambda 2\pi L}$

Loi des résistances thermiques

Les résistances thermiques en série s'ajoutent

Capacité calorifique

Cp en J kg-1 K-1

Source de chaleur $\,Q\,$

$$\dot{Q} = mC_p \frac{dT}{dt}$$

Equation de la chaleur en conduction

Source de chaleur volumique \dot{q}

$$\frac{dT}{dt} - \frac{\lambda}{\rho C_p} \nabla^2 T = \frac{\dot{q}}{\rho C_p}$$

$$rac{\lambda}{
ho C_p} = D$$
, diffusivité thermique du matériau en m²/s

Détermination de D par la méthode flash laser

 $t_{1/2}$: temps de montée à la moitié de la température maxi, d : épaisseur du matériau. $D=0.138 rac{d^2}{t_{1/2}}$

$$D = 0.138 \frac{d^2}{t_{1/2}}$$

Convection naturelle

$$\phi = h(T_p - T_\infty)$$
 avec h en Wm-2K-1

$$R = \frac{1}{hS}$$

$$R_S = \frac{1}{h}$$

Nombres de Biot et de Fourier, refroidissement d'un solide par convection

$$B_i = rac{hL_c}{\lambda}$$
 $F_o = rac{Dt}{L_c^2}$

 L_c est une longueur caractéristique de l'objet. Pour une sphère de rayon r, L_c =r/3

Si Bi est petit (<0.1), alors :
$$\frac{T-T_{\infty}}{T_0-T_{\infty}}=exp(-B_i.F_o)=exp(-t/\tau)\quad \text{avec}\ \tau=\frac{\rho C_p L_c}{h}$$

Rayonnement : flux, flux monochromatique, émittance, émittance monochromatique

Flux émis par une source radiante : $\Phi(W)$

Flux monochromatique = « flux émis par chaque longueur d'onde » Φ_{λ} (W/m~ou~W/nm) $\Phi=\int_{0}^{\infty}\Phi_{\lambda}d\lambda$

Emittance = densité de flux : $M=\frac{\Phi}{S}$ en W/m²

Emittance monochromatique : $M_{\lambda}=rac{\Phi_{\lambda}}{S}\,$ en W/m³ ou W/m²/nm

 $M = \int_0^\infty M_\lambda d\lambda$

Rayonnement incident, réfléchi, transmis, absorbé

Flux incident (Φi) = Flux réfléchi (Φr) + Flux transmis (Φt) + Flux absorbé (Φa)

Réflectivité : $r = \Phi r / \Phi i$ Transmissivité : $t = \Phi t / \Phi i$ Absorptivité : $a = \Phi a / \Phi i$

r+a+t=1

Corps noir

a=1, t=0, r=0

Loi de Stefan Boltzman

Emittance du corps noir : M^0 $(W/m^2) = \sigma T^4$ avec $\sigma = 5.67 \, 10^{-8} \, Wm^{-2}K^{-4}$

Loi de Planck

Distribution spectrale de l'émittance : $M^0=\int_0^\infty M_\lambda^0 d\lambda$

$$M_{\lambda}^{0} = \frac{a}{\lambda^{5}(exp(b/\lambda T)-1)}$$

 $a = 3.741 \ 10^{-16} = 2\pi hc^2$ avec h constante de Planck = 6.62 10^{-34} Js

b = 0.0143 = hc/k avec k constante de Boltzmann = 1.38 10^{-23} [K-1]

Loi de Wien

Longueur d'onde du maximum de l'émission : $\lambda_{max}\left(\mu m\right)=\frac{2898}{T}$

Equilibre du rayonnement entre 2 surfaces de corps noirs

 S_1 et S_2 surfaces planes parallèles, bilan du flux de S_1 vers S_2 : $\Phi = \sigma S(T_1^4 - T_2^4)$ S_1 et S_2 en influence totale (S_2 entoure S_1) et S_1 convexe: $\Phi = \sigma S_1(T_1^4 - T_2^4)$

Corps « gris », émissivité ε

Emittance : $M = \epsilon \sigma T^4$

Emittance monochromatique : $M_{\lambda}=\epsilon M_{\lambda}^0$ en supposant ϵ indépendant de λ

Loi de Kirchhoff

Emissivité = absorptivité (vrai pour toute longueur d'onde)