<u>Лекция 9.</u> Приложение на принцип на Белман към задача за определяне на оптимално разпределение на капиталовложения

Задачата за определяне на оптимално разпределение на капиталовложения е сходна със задачата за раницата. Сходствата се изразяват в следното: и двете задачи са

- линейни целевата функция и ограниченията са линейни;
- целочислени;
- за максимална стойност на целевата функция.

За решаването им могат да се ползват методи от линейното оптимиране, които са за решанане на целочислени задачи като метод на отсичащите равнини, метод на разклоняване и отсичане и др. При реализиране на метода на разклоняване и отсичане изчислителният процес се състои в последователно намиране на все по-добри целочислени решения, последното от които е оптималното. Предимство на този метод е, че винаги дава решение — или оптималното, или решение близко до него. За разлика от метода на отсичащите равнини, при който или се получава оптимално решение (евентуално с големи изчислителни усилия), или — не дава решение. Задачите освен с методите на целочисленото оптимиране могат да бъдат решени и с подходите на динамичното оптимиране, при това става по-елегантно и с по-малко изчислителни усилия. Динамичните алгоритми са итерационни и по отношение на сложност са подобри от линейните алгоритми. Това се дължи на факта, че намаляват размерността на оптимизационната задача като я декомпозират на по-прости задачи, решава се поетапно като на всеки етап се намира оптимално решение, а решението на изходната задача се получава на последния етап.

Ще си припомним основни елементи и алгоритъм за решаването на задачата за раницата, за да направим преход към задачата за оптимално разпределение на капиталовложения.

9.1. Задача за раницата

9.1.1. Постановка на задачата

Зададени са предмети от n на брой типа, от които се съставя общ товар. Предметът от j — тия тип има тегло v_j и полезност c_j , j=1,...,n. Необходимо е да се определи товар с максимална обща полезност, чието тегло не надхвърля зададена стойност w (общо максимално тегло на раницата) — таблица 9.1.

Предмет	Ед. тегло	Ед. цена	Мах тегло
			на раницата
Π_{1}	v_1	c_1	
П2	v_2	c_2	w
•••	•••	•••	
Π_{n}	v_n	c_n	

Таблица 9.1.

По колко на брой предмета от всеки вид да се натоварят в раницата, така че общата им полезност да е максимална?

9.1.2. Математически модел на задачата

Нека x_i е броят предмети от вид π_i , j=1,...,n, които могат да се натоварят в раницата.

$$f(x_1,\dots,x_n) = \sum_{j=1}^n c_j\,x_j = c_1x_1 + \dots + c_nx_n o max$$
 при ограничения:
$$\left\{ \sum_{j=1}^n v_jx_j \le w \atop x_j \ge 0, x_j -$$
 цели числа

9.1.3. Решение на задачата с алгоритъм на Белман

Дефинираме всички елементи от алгоритьма на Белман:

• Етап E_i разглежда задачата при товарене в раницата на предмет от вид π_i , j=1, ..., n, τ .e.

 E_1 – товарене на предмет от вид Π_1 ;

 E_2 — товарене на предмет от вид Π_1 и Π_2 ;

- E_n товарене на предмет от вид $\Pi_1, \Pi_2, ..., \Pi_n;$ y_j сумарните тегла на етап $E_j, j=1,...,n;$ $y_j=0,1,...,w;$
- f_i функция на Белман, изразяваща общата максимална полезност на етап E_j , j=11, ..., n;
- Рекурентни формули:

За пълнота въвеждаме етап E_0 с тегло y_0 и функция на Белман f_0 :

$$f_0(y_0) \equiv 0$$

За пълнота въвеждаме етап
$$E_0$$
 с тегло y_0 и функция на Белман f_0 :
$$f_0(y_0) \equiv 0$$
 За етапите E_1, E_2, \dots, E_n използваме рекурентната формула на Белман:
$$f_j(y_j) = \max_{x_j=0,1,\dots\left[\frac{y_j}{v_j}\right]} \{c_j x_j + f_{j-1} \big(y_j - v_j x_j\big)\}, y_j = 0,1,\dots,w, j = 1,\dots,n$$

като за последния етап търсим само $f_n(w)$, т.е. не е необходимо за всеки аргумент y_i на функцията f_i да намираме стойността ѝ, тъй като няма да ни трябват повече в задачата.

На последния етап намираме и решението на изходната задача

$$f_n(w) = f_{max}$$

но за да го опишем е необходимо използването на обратния ход на алгоритъма на Белман.

9.1.4. Примери

Пример 9.1. Да се реши задачата за раницата:

Предмет	Ед. тегло	Ед. цена	Мах тегло на раницата
П1	$v_1 = 1$	$c_1 = 3$	
П2	$v_2 = 2$	$c_2 = 7$	w=5
П3	$v_3 = 3$	$c_3 = 10$	

Решение

Eman E_0 :

$$f_0(0) \equiv 0$$

 $Eman\ E_1$: разглеждаме само п $_1$

$$f_{\blacksquare}(\blacksquare) = \blacksquare;$$

$$f_1(1) = 1.3 = 3$$
; $f_1(2) = 2.3 = 6$; $f_1(3) = 3.3 = 9$;

$$f_1(4) = 4.3 = 12$$
; $f_1(5) = 5.3 = 15$.

 $Eman\ E_2$: разглеждаме Π_1 и Π_2

$$f_2(0) = 0;$$

$$f_2(1) = \max_{x_2 = \underline{0}} \left\{ \underline{c_2 x_2 + f_1 (1 - v_2, x_2)} \right\} = \max_{x_2 = \underline{0}} \left\{ \underline{7.0 + f_1 (1)} \right\} = \max_{x_2 = \underline{0}} \left\{ \underline{0 + 3} \right\} = \underline{3}$$

$$f_{2}(2) = \max_{x_{2}=0,\underline{1}} \left\{ c_{2}.0 + f_{1}(2-v_{2}.0); \underline{c_{2}.1 + f_{1}(2-v_{2}.1)} \right\} = 0$$

$$f_{2}(0) = 0;$$

$$f_{2}(1) = \max_{x_{2} = \underline{0}} \left\{ \underline{c_{2}x_{2} + f_{1}(1 - v_{2}.x_{2})} \right\} = \max_{x_{2} = \underline{0}} \left\{ \underline{7.0 + f_{1}(1)} \right\} = \max_{x_{2} = \underline{0}} \left\{ \underline{0 + 3} \right\} = \underline{3};$$

$$f_{2}(2) = \max_{x_{2} = 0,\underline{1}} \left\{ \underline{c_{2}.0 + f_{1}(2 - v_{2}.0)}; \underline{\underline{c_{2}.1 + f_{1}(2 - v_{2}.1)}} \right\} =$$

$$= \max_{x_{2} = 0,\underline{1}} \left\{ 7.0 + f_{1}(2); \underline{7.1 + f_{1}(0)} \right\} = \max_{x_{2} = 0,\underline{1}} \left\{ 0 + 6; \underline{7 + 0} \right\} = \max_{x_{2} = 0,\underline{1}} \left\{ 6; \underline{7} \right\} = \underline{7};$$

$$f_{2}(3) = \max_{x_{2}=0,\underline{1}} \left\{ c_{2}.0 + f_{1}(3 - v_{2}.0); \underline{c_{2}.1 + f_{1}(3 - v_{2}.1)} \right\} =$$

$$= \max_{x_{2}=0,\underline{1}} \left\{ 7.0 + f_{1}(3 - 2.0); \underline{7.1 + f_{1}(3 - 2.1)} \right\} =$$

$$\underbrace{\left\{7.0 + f_1(3 - 2.0); \frac{7.1 + f_1(3 - 2.1)}{2.1}\right\}}_{1} = \underbrace{\left\{7.0 + f_1(3 - 2.0); \frac{7.1 + f_1(3 - 2.1)}{2.1}\right\}}_{1} = \underbrace{\left\{7.0 + f_1(3 - 2.0); \frac{7.1 + f_1(3 - 2.1)}{2.1}\right\}}_{1} = \underbrace{\left\{7.0 + f_1(3 - 2.0); \frac{7.1 + f_1(3 - 2.1)}{2.1}\right\}}_{1} = \underbrace{\left\{7.0 + f_1(3 - 2.0); \frac{7.1 + f_1(3 - 2.1)}{2.1}\right\}}_{1} = \underbrace{\left\{7.0 + f_1(3 - 2.0); \frac{7.1 + f_1(3 - 2.1)}{2.1}\right\}}_{1} = \underbrace{\left\{7.0 + f_1(3 - 2.0); \frac{7.1 + f_1(3 - 2.1)}{2.1}\right\}}_{1} = \underbrace{\left\{7.0 + f_1(3 - 2.0); \frac{7.1 + f_1(3 - 2.1)}{2.1}\right\}}_{1} = \underbrace{\left\{7.0 + f_1(3 - 2.0); \frac{7.1 + f_1(3 - 2.1)}{2.1}\right\}}_{1} = \underbrace{\left\{7.0 + f_1(3 - 2.0); \frac{7.1 + f_1(3 - 2.1)}{2.1}\right\}}_{1} = \underbrace{\left\{7.0 + f_1(3 - 2.0); \frac{7.1 + f_1(3 - 2.1)}{2.1}\right\}}_{1} = \underbrace{\left\{7.0 + f_1(3 - 2.0); \frac{7.1 + f_1(3 - 2.1)}{2.1}\right\}}_{1} = \underbrace{\left\{7.0 + f_1(3 - 2.0); \frac{7.1 + f_1(3 - 2.1)}{2.1}\right\}}_{1} = \underbrace{\left\{7.0 + f_1(3 - 2.0); \frac{7.1 + f_1(3 - 2.1)}{2.1}\right\}}_{1} = \underbrace{\left\{7.0 + f_1(3 - 2.0); \frac{7.1 + f_1(3 - 2.1)}{2.1}\right\}}_{1} = \underbrace{\left\{7.0 + f_1(3 - 2.0); \frac{7.1 + f_1(3 - 2.1)}{2.1}\right\}}_{1} = \underbrace{\left\{7.0 + f_1(3 - 2.0); \frac{7.1 + f_1(3 - 2.1)}{2.1}\right\}}_{1} = \underbrace{\left\{7.0 + f_1(3 - 2.0); \frac{7.1 + f_1(3 - 2.1)}{2.1}\right\}}_{1} = \underbrace{\left\{7.0 + f_1(3 - 2.0); \frac{7.1 + f_1(3 - 2.0)}{2.1}\right\}}_{1} = \underbrace{\left\{7.0 + f_1(3 - 2.0); \frac{7.1 + f_1(3 - 2.0)}{2.1}\right\}}_{1} = \underbrace{\left\{7.0 + f_1(3 - 2.0); \frac{7.1 + f_1(3 - 2.0)}{2.1}\right\}}_{1} = \underbrace{\left\{7.0 + f_1(3 - 2.0); \frac{7.1 + f_1(3 - 2.0)}{2.1}\right\}}_{1} = \underbrace{\left\{7.0 + f_1(3 - 2.0); \frac{7.1 + f_1(3 - 2.0)}{2.1}\right\}}_{1} = \underbrace{\left\{7.0 + f_1(3 - 2.0); \frac{7.1 + f_1(3 - 2.0)}{2.1}\right\}}_{1} = \underbrace{\left\{7.0 + f_1(3 - 2.0); \frac{7.1 + f_1(3 - 2.0)}{2.1}\right\}}_{1} = \underbrace{\left\{7.0 + f_1(3 - 2.0); \frac{7.1 + f_1(3 - 2.0)}{2.1}\right\}}_{1} = \underbrace{\left\{7.0 + f_1(3 - 2.0); \frac{7.1 + f_1(3 - 2.0)}{2.1}\right\}}_{1} = \underbrace{\left\{7.0 + f_1(3 - 2.0); \frac{7.1 + f_1(3 - 2.0)}{2.1}\right\}}_{1} = \underbrace{\left\{7.0 + f_1(3 - 2.0); \frac{7.1 + f_1(3 - 2.0)}{2.1}\right\}}_{1} = \underbrace{\left\{7.0 + f_1(3 - 2.0); \frac{7.1 + f_1(3 - 2.0)}{2.1}\right\}}_{1} = \underbrace{\left\{7.0 + f_1(3 - 2.0); \frac{7.1 + f_1(3 - 2.0)}{2.1}\right\}}_{1} = \underbrace{\left\{7.0 + f_1(3 - 2.0); \frac{7.1 + f_1(3 - 2.0)}{2.1}\right\}}_{1} = \underbrace{\left\{7.0 + f_1(3 - 2.0); \frac{7.1 + f_1(3 - 2.0)}{2.1}\right\}}_{1} = \underbrace{\left\{7.0 + f_1(3 - 2.0); \frac{7.1 + f_1(3 - 2.0)}{2.1}\right\}}_{1} = \underbrace{\left\{$$

$$= \max_{x_2=0,\underline{1}} \left\{ 0 + f_1(3); \underline{7 + f_1(1)} \right\} = \max_{x_2=0,\underline{1}} \left\{ 0 + 9; \underline{7 + 3} \right\} = \underline{10};$$

$$= \max_{x_2=0,\underline{1}} \left\{ 0 + f_1(3); \underline{7 + f_1(1)} \right\} = \max_{x_2=0,\underline{1}} \left\{ 0 + 9; \underline{7 + 3} \right\} = \underline{10};$$

$$f_2(4) = \max_{x_2=0,1,\underline{2}} \left\{ c_2.0 + f_1(4 - v_2.0); c_2.1 + f_1(4 - v_2.1); \underline{c_2.2 + f_1(4 - v_2.2)} \right\} =$$

$$= \max_{x_2=0,1,\underline{2}} \left\{ 7.0 + f_1(4 - 2.0); 7.1 + f_1(4 - 2.1); \underline{7.2 + f_1(4 - 2.2)} \right\} =$$

$$= \max_{x_2=0,1,\underline{2}} \left\{ 0 + f_1(4); 7 + f_1(2); \underline{14 + f_1(0)} \right\} = \max_{x_2=0,1,\underline{2}} \left\{ 0 + 12; 7 + 6; \underline{14 + 0} \right\} =$$

$$= \max_{x_2=0,1,\underline{2}} \left\{ 12; 13; \underline{14} \right\} = \underline{14}$$

$$= \max_{x_2=0,1,\underline{2}} \left\{ 7.0 + f_1(4-2.0); 7.1 + f_1(4-2.1); \underline{7.2 + f_1(4-2.2)} \right\} =$$

$$= \max_{x_2=0,1,\underline{2}} \left\{ 0 + f_1(4); 7 + f_1(2); \underline{14 + f_1(0)} \right\} = \max_{x_2=0,1,\underline{2}} \left\{ 0 + 12; 7 + 6; \underline{14 + 0} \right\} = \max_{x_2=0,1,\underline{2}} \left\{ 0 + 12; 7 + 6; \underline{14 + 0} \right\} = \max_{x_2=0,1,\underline{2}} \left\{ 0 + 12; 7 + 6; \underline{14 + 0} \right\} = \max_{x_2=0,1,\underline{2}} \left\{ 0 + 12; 7 + 6; \underline{14 + 0} \right\} = \max_{x_2=0,1,\underline{2}} \left\{ 0 + 12; 7 + 6; \underline{14 + 0} \right\} = \max_{x_2=0,1,\underline{2}} \left\{ 0 + 12; 7 + 6; \underline{14 + 0} \right\} = \max_{x_2=0,1,\underline{2}} \left\{ 0 + 12; 7 + 6; \underline{14 + 0} \right\} = \max_{x_2=0,1,\underline{2}} \left\{ 0 + 12; 7 + 6; \underline{14 + 0} \right\} = \max_{x_2=0,1,\underline{2}} \left\{ 0 + 12; 7 + 6; \underline{14 + 0} \right\} = \min_{x_2=0,1,\underline{2}} \left\{ 0 + 12; 7 + 6; \underline{14 + 0} \right\} = \min_{x_2=0,1,\underline{2}} \left\{ 0 + 12; 7 + 6; \underline{14 + 0} \right\} = \min_{x_2=0,1,\underline{2}} \left\{ 0 + 12; 7 + 6; \underline{14 + 0} \right\} = \min_{x_2=0,1,\underline{2}} \left\{ 0 + 12; 7 + 6; \underline{14 + 0} \right\} = \min_{x_2=0,1,\underline{2}} \left\{ 0 + 12; 7 + 6; \underline{14 + 0} \right\} = \min_{x_2=0,1,\underline{2}} \left\{ 0 + 12; 7 + 6; \underline{14 + 0} \right\} = \min_{x_2=0,1,\underline{2}} \left\{ 0 + 12; 7 + 6; \underline{14 + 0} \right\} = \min_{x_2=0,1,\underline{2}} \left\{ 0 + 12; 7 + 6; \underline{14 + 0} \right\} = \min_{x_2=0,1,\underline{2}} \left\{ 0 + 12; 7 + 6; \underline{14 + 0} \right\} = \min_{x_2=0,1,\underline{2}} \left\{ 0 + 12; 7 + 6; \underline{14 + 0} \right\} = \min_{x_2=0,1,\underline{2}} \left\{ 0 + 12; 7 + 6; \underline{14 + 0} \right\} = \min_{x_2=0,1,\underline{2}} \left\{ 0 + 12; 7 + 6; \underline{14 + 0} \right\} = \min_{x_2=0,1,\underline{2}} \left\{ 0 + 12; 7 + 6; \underline{14 + 0} \right\} = \min_{x_2=0,1,\underline{2}} \left\{ 0 + 12; 7 + 6; \underline{14 + 0} \right\} = \min_{x_2=0,1,\underline{2}} \left\{ 0 + 12; 7 + 6; \underline{14 + 0} \right\} = \min_{x_2=0,1,\underline{2}} \left\{ 0 + 12; 7 + 6; \underline{14 + 0} \right\} = \min_{x_2=0,1,\underline{2}} \left\{ 0 + 12; 7 + 6; \underline{14 + 0} \right\} = \min_{x_2=0,1,\underline{2}} \left\{ 0 + 12; 7 + 6; \underline{14 + 0} \right\} = \min_{x_2=0,1,\underline{2}} \left\{ 0 + 12; 7 + 6; \underline{14 + 0} \right\} = \min_{x_2=0,1,\underline{2}} \left\{ 0 + 12; 7 + 6; \underline{14 + 0} \right\} = \min_{x_2=0,1,\underline{2}} \left\{ 0 + 12; 7 + 6; \underline{14 + 0} \right\} = \min_{x_2=0,1,\underline{2}} \left\{ 0 + 12; 7 + 6; \underline{14 + 0} \right\} = \min_{x_2=0,1,\underline{2}} \left\{ 0 + 12; 7 + 6; \underline{14 + 0} \right\} = \min_{x_2=0,1,\underline{2}} \left\{ 0 + 12; 7 + 6; \underline{14 + 0} \right\} = \min_{x_2=0,1,\underline{2}} \left\{ 0 + 12; 7 + 6; \underline{14 + 0} \right\} = \min_{x_2=0,1,\underline{2}} \left\{ 0 + 12; 7 + 6; \underline{14 + 0} \right\} = \min_{x_2=0,1,\underline{2}} \left\{ 0 + 12; 7 + 6; \underline{14 + 0} \right\} = \min_{x_2=0,1,\underline{2}} \left\{ 0 + 12; 7 + 6; \underline{14 + 0} \right\} = \min_{x_2=0,1,\underline{2}} \left\{ 0 + 12; 7 + 6; \underline{14 + 0} \right\} = \min_{x_2=0,1,\underline{2}} \left\{ 0 + 12; 7 + 6; \underline{14 + 0} \right\} = \min_{x_2=0,1,\underline{2}} \left\{ 0 + 12;$$

$$f_{2}(5) = \max_{x_{2}=0,1,\underline{2}} \left\{ c_{2}.0 + f_{1}(5-v_{2}.0); c_{2}.1 + f_{1}(5-v_{2}.1); \underline{c_{2}.2 + f_{1}(5-v_{2}.2)} \right\} =$$

$$= \max_{x_{2}=0,1,\underline{2}} \left\{ 7.0 + f_{1}(5-2.0); 7.1 + f_{1}(5-2.1); \underline{7.2 + f_{1}(5-2.2)} \right\} =$$

$$= \max_{x_2=0,1,\underline{2}} \left\{ 0 + f_1(5); 7 + f_1(3); \underline{14 + f_1(1)} \right\} = \max_{x_2=0,1,\underline{2}} \left\{ 0 + 15; 7 + 9; \underline{14 + 3} \right\} =$$

$$= \max_{x_2=0,1,2} \left\{ 15; 16; \underline{17} \right\} = \underline{17}$$

$$= \max_{x_2=0,1,\underline{2}} \{15; 16; \underline{17}\} = \underline{17}$$

*Eman E*₃: разглеждаме Π_1 , Π_2 и Π_3

$$f_{\$}(\$) = \max_{x_3 = \underline{0}, \underline{1}} \left\{ \underline{c_3.0 + f_2(5 - v_3.0)}; \underline{c_3.1 + f_2(5 - v_3.1)} \right\} = \\ = \max_{x_3 = \underline{0}, \underline{1}} \left\{ \underline{10.0 + f_2(5 - 3.0)}; \underline{10.1 + f_2(5 - 3.1)} \right\} = \\ = \max_{x_3 = \underline{0}, \underline{1}} \left\{ \underline{0 + f_2(5)}; \underline{10 + f_2(2)} \right\} = \max_{x_3 = \underline{0}, \underline{1}} \left\{ \underline{0 + 17}; \underline{10 + 7} \right\} = \max_{x_3 = \underline{0}, \underline{1}} \left\{ \underline{17}; \underline{17} \right\} = \underline{17}$$

Тогава

$$f_3(5) = f_{max} = 17$$

Прилагаме обратния ход на алгоритъма на Белман и получаваме: (Имаме поне две решения, но ще опишем едно от тях.)

Π_{j}	п ₁	П2	П3	Проверка
x_j	0 бр.	1 бр.	1 бр.	$f_{max} = 17$
v_{j}	1	2	3	$0.1 + 1.2 + 1.3 = 5 \le 5 = w$
c_{j}	3	7	10	$0.3 + 1.7 + 1.10 = 17 = f_{max}$

Пример 9.2. Да се реши задачата за раницата:

Предмет	Ед.	Ед.	Мах тегло
	тегло	цена	на раницата
Π_{1}	$v_1 = 13$	$c_1 = 19$	
П2	$v_2 = 19$	$c_2 = 23$	w = 100

Решение

Eman E_0 :

$$f_0(0) \equiv 0$$

*Eman E*₁: разглеждаме само
$$\Pi_1$$

$$f_1(0) = f_1(1) = \dots = f_1(12) = 0$$

$$f_1(13) = f_1(14) = \dots = f_1(25) = 1.19 = 19$$

$$f_1(26) = f_1(27) = \dots = f_1(38) = 2.19 = 38$$

$$f_1(39) = f_1(40) = \cdots = f_1(51) = 3.19 = 57$$

$$f_1(52) = f_1(53) = \dots = f_1(64) = 4.19 = 76$$

$$f_1(65) = f_1(66) = \dots = f_1(77) = 5.19 = 95$$

$$f_1(78) = f_1(79) = f_1(80) = f_1(81) = \cdots = f_1(90) = 6.19 = 114$$

$$f_1(91) = f_1(92) = \cdots = f_1(100) = 7.19 = 133$$

 $Eman\ E_2$: разглеждаме Π_1 и Π_2

$$f_{\mathbf{Z}}(\mathbf{100}) = \max_{x_2 = 0, \mathbf{I}, 2, 3, 4, 5} \begin{cases} c_2.0 + f_1(100 - v_2.0) \\ \frac{c_2.1 + f_1(100 - v_2.1)}{c_2.2 + f_1(100 - v_2.2)} \\ c_2.3 + f_1(100 - v_2.3) \\ c_2.4 + f_1(100 - v_2.4) \\ c_2.5 + f_1(100 - v_2.5) \end{cases} = \max_{x_2 = 0, \mathbf{I}, 2, 3, 4, 5} \begin{cases} 23.0 + f_1(100 - 19.0) \\ \frac{23.1 + f_1(100 - 19.1)}{23.2 + f_1(100 - 19.3)} \\ 23.3 + f_1(100 - 19.3) \\ 23.4 + f_1(100 - 19.4) \\ 23.5 + f_1(100 - 19.5) \end{cases}$$

Лекция 9. Приложение на принцип на Белман към задача за определяне на оптимално разпределение на капиталовложения

$$=\max_{x_{2}=0,\underline{1},2,3,4,5} \begin{cases} 0+f_{1}(100) \\ \underline{23+f_{1}(81)} \\ 46+f_{1}(62) \\ 69+f_{1}(43) \\ 92+f_{1}(24) \\ 115+f_{1}(5) \end{cases} =\max_{x_{2}=0,\underline{1},2,3,4,5} \begin{cases} 0+133 \\ \underline{23+114} \\ 46+76 \\ 69+57 \\ 92+19 \\ 115+0 \end{cases} =\max_{x_{2}=0,\underline{1},2,3,4,5} \begin{cases} \frac{133}{137} \\ \frac{137}{122} \\ 126 \\ 111 \\ 115 \end{cases} =\underline{187}$$

Тогава

$$f_2(100) = f_{max} = 137$$

 $f_2(100) = f_{max} = 137$ Прилагаме обратния ход на алгоритъма на Белман и получаваме:

Π_{j}	П1	П2	Проверка
x_j	6 бр.	1 бр.	$f_{max}=137$
v_{j}	13	19	$6.13 + 1.19 = 97 \le 100 = w$
c_{j}	19	23	$6.19 + 1.23 = 137 = f_{max}$

9.2. Задача за определяне на оптимално разпределение на капиталовложения

9.2.1. Постановка на задачата

Една голяма компания има n на брой предприятия, между които трябва да се разпределят общо C мерни парични единици инвестиции. Предприятията са задали свои бизнес планове (таблица 9.2):

Предприятия Бизнес	п ₁		п ₂		•••	Π_{n}	
планове	$c_1 \mid R_1$		$c_2 \mid R_2$			c_n	R_n
k_0	c_{01}	$R_1(c_{01})$	c_{02}	$R_2(c_{02})$	•••	c_{0n}	$R_n(c_{0n})$
k_1	c_{11}	$R_1(c_{11})$	c_{12}	$R_2(c_{12})$	•••	c_{1n}	$R_n(c_{1n})$
•••	•••	•••	•••	•••	•••	•••	•••
k_m	c_{m1}	$R_1(c_{m1})$	c_{m2}	$R_2(c_{m2})$	•••	c_{mn}	$R_n(c_{mn})$

 c_{ij} — инвестиция (в мерни парични единици) по бизнес план k_i , $i=0,1,\dots,m,$ на предприятие π_{i} , j = 1, 2, ..., n

 $R_i(c_{ij})$ — печалба (в мерни парични единици) при инвестиция c_{ij} , $i=0,1,\dots,m,j=1$ 1,2,...,n

Да се намери такова разпределение на общите инвестиции между предприятията, така че общата печалба от тях да е максимална и всяко предприятие може да работи по не повече от един бизнес план.

9.2.2. Математически модел на задачата

 $x_{ij} = egin{cases} 1, \ \text{има направена инвестиция по бизнес план } k_i$ на предприятие $\pi_j \quad i = 0,1,\dots,m \\ 0,$ няма направена инвестиция по бизнес план k_i на предприятие $\pi_j \quad j = 1,2,\dots,n \end{cases}$

$$f(x_{11}, \dots, x_{mn}) = \sum_{i=0}^{m} \sum_{j=1}^{n} R_j(c_{ij}) x_{ij} = R_1(c_{01}) x_{01} + \dots + R_n(c_{mn}) x_{mn} \to max$$

при ограничения:

$$\begin{cases} \sum_{i=0}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \leq C \\ \sum_{i=0}^{m} x_{ij} \leq 1, j = 1, ..., n \\ x_{j} = \{0,1\} \end{cases}$$

Забележка. Задачата може да се определи като задача за раницата с булеви променливи или задача за назначение.

9.2.3. Решение на задачата с алгоритъм на Белман

Дефинираме всички елементи от алгоритьма на Белман:

Етап E_i разглежда инвестициите в предприятие π_i , j = 1, ..., n, т.е.

 E_1 – разглежда инвестициите в предприятие Π_1 ;

 E_2 — разглежда инвестициите в предприятие Π_1 и Π_2 ;

 E_n – разглежда инвестициите в предприятие $\Pi_1, \Pi_2, ..., \Pi_n$;

- y_i сумарните тегла на етап E_i , j=1,...,n; $y_i=0,1,...,C;$
- f_{i} функция на Белман, изразяваща общата максимална печалба на етап E_{i} , j=1, ..., n;
- Рекурентни формули:

За пълнота въвеждаме етап E_0 с тегло y_0 и функция на Белман f_0 :

$$f_{2}(y_{2}) = 0$$

$$f_0(y_0)\equiv 0$$
 За етапите E_1,E_2,\ldots,E_n използваме рекурентната формула на Белман:
$$f_j(y_j)=\max_{c_{ij}=0,1,\ldots,y_j}\{R_j(c_{ij})+f_{j-1}(y_j-c_{ij})\},$$
 $y_j=0,1,\ldots,C, i=0,1,\ldots,m, \qquad j=1,\ldots,n$

като за последния етап търсим само $f_n(C)$, т.е. не е необходимо за всеки аргумент y_j на функцията f_j да намираме стойността ѝ, тъй като няма да

ни трябват повече в задачата.

На последния етап намираме и решението на изходната задача

$$f_n(C) = f_{max}$$
,

но за да го опишем е необходимо използването на обратния ход на алгоритъма на Белман.

Пример 9.3. Една високотехнологична компания има три предприятия, между които трябва да се разпределят общо 5 млн. € инвестиции. Предприятията са представили свои бизнес планове, в които са предложили инвестиции (в млн. €) и съответните печалби от тези инвестиции по всеки бизнес план и са представени в следната таблица:

Предприятия Бизнес	П1		П2		П3	
планове	c_1	R_1	c_2	R_2	c_n	R_n
k_0	0	0	0	0	0	0
$\frac{k_1}{k_1}$	1	2	2	3	1	2
$\frac{\mathbf{k_2}}{\mathbf{r}}$	3	5	3	5	2	4
k_3	-	-	4	6	4	6

Да се намери такова разпределение на общите инвестиции между предприятията, така че общата печалба от тях да е максимална и всяко предприятие може да работи по не повече от един бизнес план.

Решение Eman E_0 : $f_0(0) \equiv 0$ $Eman\ E_1$: инвестиции в Π_1 $f_1(0) = R_1(0) = 0; f_{\blacksquare}(\blacksquare) = R_{\blacksquare}(\blacksquare) = 2; f_1(2) = R_1(2) = 2;$ $f_1(3) = R_1(3) = 5$; $f_1(4) = R_1(4) = 5$; $f_1(5) = R_1(5) = 5$ $f_1(3) = R_1(3) = 3, \ f_1(1) = 1.$ Етап E_2 : инвестиции в Π_1 и Π_2 $f_2(0) = \max_{c_{i2}=0} \{R_2(c_{i2}) + f_1(0-c_{i2})\} = \max_{c_{i2}=0} \{R_2(0) + f_1(0-0)\} = \max_{c_{i2}=0} \{0 + f_1(0)\} = 0$ $= \max_{c_{i2}=0} \{0 + 0\} = 0$ $f_{2}(1) = \max_{c_{i2} = \underline{0}, 1} \{R_{2}(c_{i2}) + f_{1}(1 - c_{i2})\} = \max_{c_{i2} = \underline{0}, 1} \left\{ \frac{R_{2}(0) + f_{1}(1 - 0)}{R_{2}(1) + f_{1}(1 - 1)} \right\} = \\ = \max_{c_{i2} = \underline{0}, 1} \left\{ \frac{0 + f_{1}(1)}{0 + f_{1}(0)} \right\} = \max_{c_{i2} = \underline{0}, 1} \left\{ \frac{0 + 2}{0 + 0} \right\} = \underline{2}$ $f_{2}(2) = \max_{c_{i2} = 0, 1, \underline{2}} \{R_{2}(c_{i2}) + f_{1}(2 - c_{i2})\} = \max_{c_{i2} = 0, 1, \underline{2}} \left\{ \frac{R_{2}(0) + f_{1}(2 - 0)}{R_{2}(1) + f_{1}(2 - 1)} \right\} = \\ = \max_{c_{i2} = 0, 1, \underline{2}} \left\{ \frac{0 + f_{1}(2)}{0 + f_{1}(1)} \right\} = \max_{c_{i2} = 0, 1, \underline{2}} \left\{ \frac{0 + 2}{0 + 2} \right\} = \underline{3}$ $(R_{2}(0) + f_{2}(0) + f_{3}(0) + f_{3}(0) + f_{3}(0) + f_{4}(0) = \underline{3} + \underline{0} + \underline{0}$ $f_{2}(3) = \max_{c_{i2} = \underline{0}, 1, \underline{2}, \underline{3}} \{R_{2}(c_{i2}) + f_{1}(3 - c_{i2})\} = \max_{c_{i2} = \underline{0}, 1, \underline{2}, \underline{3}}$

<u>Лекция 9.</u> Приложение на принцип на Белман към задача за определяне на оптимално разпределение на капиталовложения

$$\begin{split} f_{2}(4) &= \max_{c_{i2}=0,1,2,\underline{3},4} \{R_{2}(c_{i2}) + f_{1}(4-c_{i2})\} = \max_{c_{i2}=0,1,2,\underline{3},4} \left\{ \begin{matrix} R_{2}(0) + f_{1}(4-0) \\ R_{2}(1) + f_{1}(4-1) \\ R_{2}(2) + f_{1}(4-2) \\ R_{2}(3) + f_{1}(4-2) \\ R_{2}(3) + f_{1}(4-3) \\ R_{2}(4) + f_{1}(4-3) \end{matrix} \right\} = \\ &= \max_{c_{i2}=0,1,2,\underline{3},4} \left\{ \begin{matrix} 0 + f_{1}(4) \\ R_{2}(2) + f_{1}(4-2) \\ R_{2}(3) + f_{1}(4-3) \\ R_{2}(4) + f_{1}(4-3) \end{matrix} \right\} = \underbrace{max}_{c_{i2}=0,1,2,\underline{3},4} \left\{ \begin{matrix} 0 + f_{1}(3) \\ 0 + f_{1}(3) \\ S + f_{1}(1) \\ 6 + f_{1}(0) \end{matrix} \right\} = \underbrace{max}_{c_{i2}=0,1,2,\underline{3},4,5} \left\{ \begin{matrix} 0 + f_{1}(5-0) \\ R_{2}(0) + f_{1}(5-0) \\ R_{2}(1) + f_{1}(5-1) \\ R_{2}(2) + f_{1}(5-2) \\ R_{2}(3) + f_{1}(5-3) \\ R_{2}(3) + f_{1}(5-3) \\ R_{2}(4) + f_{1}(5-4) \\ R_{2}(5) + f_{1}(5-5) \end{matrix} \right\} = \underbrace{max}_{c_{i2}=0,1,2,3,4,5} \left\{ \begin{matrix} 0 + f_{1}(5) \\ 0 + f_{1}(4) \\ S + f_{1}(2) \\ 6 + f_{1}(1) \\ 6 + f_{1}(0) \end{matrix} \right\} = \underbrace{max}_{c_{i2}=0,1,2,3,4,5} \left\{ \begin{matrix} 0 + f_{1}(5) \\ 0 + f_{2}(5) \\ S + f_{3}(5) \\ S + f_{3}(5) \\ S + f_{3}(5) \\ S + f_{3}(6) \\ S + f_{3}($$

*Eman E*₃: инвестиции в Π_1 , Π_2 и Π_3

$$f_{\bullet}(\bullet) = \max_{c_{i3}=0,\underline{1},\underline{0},3,4,5} \{R_{3}(c_{i3}) + f_{2}(5 - c_{i3})\} = \max_{c_{i3}=0,\underline{1},\underline{0},3,4,5} \begin{cases} \frac{R_{3}(0) + f_{2}(5 - 0)}{R_{3}(1) + f_{2}(5 - 1)} \\ \frac{R_{3}(2) + f_{2}(5 - 2)}{R_{3}(3) + f_{2}(5 - 3)} \\ R_{3}(4) + f_{2}(5 - 4) \\ R_{3}(5) + f_{2}(5 - 5) \end{cases} = \max_{c_{i3}=0,\underline{1},\underline{0},3,4,5} \begin{cases} \frac{0 + f_{2}(5)}{2 + f_{2}(4)} \\ \frac{2 + f_{2}(4)}{4 + f_{2}(3)} \\ 4 + f_{2}(2) \\ 6 + f_{2}(1) \\ 6 + f_{2}(0) \end{cases} = \max_{c_{i3}=0,\underline{1},\underline{0},3,4,5} \begin{cases} \frac{0 + 8}{2 + 7} \\ \frac{2 + 7}{4 + 3} \\ \frac{4 + 3}{6 + 2} \\ 6 + 0 \end{cases} = \underline{\underline{0}}$$

$$f_{3}(5) = f_{max} = 9$$

Прилагаме обратния ход на алгоритъма на Белман и получаваме:

(Имаме поне две решения, но ще опишем едно от тях.)

Π_{j}	П1	П2	П3	Проверка
k_i	k_1	k_1	k_2	$f_{max} = 9$
c_{ij}	1	2	2	$1+2+2\leq 5$
$R_j(c_{ij})$	2	3	4	$2+3+4=9=f_{max}$