Assignment 7.2

Question 1:

Consider dysprosium (Dy), which is a rare earth metal with a density of $8.54~g~cm^{-3}$ and atomic mass of $162.50~g~mol^{-1}$. If the saturation magnetization of Dy near absolute zero of temperature is $2.4x10^6~Am^{-1}$, what is the magnetic moment per atom in Bohr-magneton μ_B ? What is the exchange energy E_{ex} in eV per atom in Dy if the Curie temperature is 85~K?

Ouestion 2:

The energy of a domain wall depends on two main factors: the exchange energy $E_{\rm ex}$ (J/atom) and magnetocrystalline energy K (J m⁻³). If a is the interatomic distance, δ 'is the wall thickness, then it can be shown that the potential energy per unit area of the wall is

$$U_{\text{wall}} = \frac{\pi^2 E_{\text{ex}}}{2a\delta} + K\delta$$
 Potential energy of a domain wall

Show that the minimum energy occurs when the wall has the thickness

$$\delta' = \left(\frac{\pi^2 E_{\text{ex}}}{2aK}\right)^{1/2}$$
 domain wall thickness

and show that when $\delta = \delta'$, the exchange and anisotropy energy contributions are equal.

Question 3:

Estimate the potential energy and wall thickness of a domain wall for Ni. The properties of Ni are given in Table 8.4 from lecture notes.