PROBABILITY

T SIVA PARVATHI - FWC22089

- 13.4.5 ¹ Find the probability distribution of the number of successes in two tosses of a die, where a success is defined as
 - (a) number greater than 4
 - (b) six appears on at least one die

Solution: Given that a die tossed two times,

RV	Values	Description
X_1	{1,2,3,4,5,6}	first toss of a die
X_2	{1,2,3,4,5,6}	second toss of a die

Table 2: Random Variables(RV) X_1 and X_2

(a) number greater than 4

$$\Pr(X_1 > 4) = 1 - \Pr(X_1 \le 4) = \frac{1}{3}$$
 (13.4.1.1)

$$\Pr(X_2 > 4) = 1 - \Pr(X_2 \le 4) = \frac{1}{3}$$
 (13.4.1.2)

Probability distribution of getting number greater that 4 is,

$$\Pr(X_1 > 4) \times \Pr(X_2 > 4) = \frac{1}{3} \times \frac{1}{3} = \frac{1}{9}$$
 (13.4.1.3)

(b) six appears on at least one die

$$\Pr\left(X_1 \neq 6\right) = \frac{5}{6} \tag{13.4.2.4}$$

$$\Pr\left(X_2 \neq 6\right) = \frac{5}{6} \tag{13.4.2.5}$$

Probability distribution of not getting six on atleast one die is,

$$\Pr(X_1 \neq 6) \times \Pr(X_2 \neq 6) = \frac{5}{6} \times \frac{5}{6} = \frac{25}{36}$$
 (13.4.2.6)

we know that, total probability = 1

By substracting (13.4.2.6) from total probability we get the required outcome.

So, the probability distribution of getting six on at least one die is,

$$\implies 1 - \frac{25}{36} = \frac{11}{36} \tag{13.4.2.7}$$

¹Read question numbers as (CHAPTER NUMBER).(EXERCISE NUMBER).(QUESTION NUMBER)