Contents

1	Gro	Groups														1						
	1.1	Group Actions																				1
		Applications																				

ii CONTENTS

Chapter 1

Groups

1.1 Group Actions

Definition 1. A right action of a group G on a nonempty set X is a function

$$X \times G \to X, \quad (x,g) \mapsto xg,$$

such that:

i. x(gh) = (xg)h for all $g, h \in G$ and $x \in X$;

ii. x1 = x for all $x \in X$.

The set X is called a G-set. A left action is defined in a similar fashion.

Example 1. Let S_n be the symmetric group of degree n. Then, S_n acts on the set $\{1, \ldots, n\}$ from the right in a rather natural way:

$$\{1,\ldots,n\}\times S_n\to\{1,\ldots,n\}\,,\quad (x,\alpha)\mapsto x^\alpha.$$

Example 2. Let G be a group. Then, G acts on itself from the right by conjugation:

$$G \times G \to G$$
, $(x,g) \mapsto x^g = g^{-1}xg$.

Definition 2. Let X be a G-set. Then, for any $x \in X$, following common terminology, we define:

i. The G-orbit of x in X to be the set:

$$orb(x,G) = \{y \in G : y = gx \text{ for some } g \in G\};$$

ii. The G-stabilizer of x in G to be the set

$$stab(x,G) = \{g \in G : xg = x\}.$$

Proposition 1. Let X be a G-set. Then, the binary relation given by

$$(1.1) \forall x, y \in X: x \equiv y \mod G \iff \exists g \in G: xg = y,$$

is an equivalence relation on X. Moreover, the equivalence class

$$\{y \in X : x \equiv y \mod G\},\$$

equals orb(x, G), the G-orbit of x, for any point $x \in X$.

Proof. For any given x, y and z in X, we have that:

- 1. $x \equiv x \mod G$ for every $x \in X$, since x1 = x;
- 2. If $x \equiv y \mod G$, then xg = y for some $g \in G$. But, then $yg^{-1} = x$ and so $y \equiv x \mod G$;
- 3. If $x \equiv y \mod G$ and $y \equiv z \mod G$, then we have that xg = y and yh = z for certain $g, h \in G$. Therefore, x(gh) = (xg)h = yh = z and so $x \equiv z \mod G$.

Now, notice that if $y \in \{y \in X : x \equiv y \mod G\}$, then y = xg for some $g \in G$. Conversely, for any $g \in G$, $xg \equiv x \mod G$ because $g^{-1} \in G$ and $(xg)g^{-1} = x(gg^{-1}) = x1 = x$. Therefore, we conclude that

$$\{y \in X : x \equiv y \mod G\} = \{xq : q \in G\} = \operatorname{orb}(x, G).$$

This completes the proof.

Suppose that X is a finite G-set. Let $T \subset X$ be a set with the following properties:

- 1. $X = \bigcup \{ \operatorname{orb}(x, G) : x \in T \}.$
- 2. $\forall x, x' \in T : x \neq x' \implies \operatorname{orb}(x, G) \cap \operatorname{orb}(x', G) = \emptyset;$

Then, it's clear that

(1.2)
$$|X| = \sum_{x \in T} |\operatorname{orb}(x, G)| = \sum_{x \in T} (G : \operatorname{stab}(x, G)).$$

Proposition 2. Let X be a G-set. Then, for any $x \in X$, stab(x,G) is a subgroup of G and the cardinality of orb(x,G), the G-orbit of x, equals the index(G:stab(x,G)) of stab(x,G) in G.

Proof. Let $x \in X$ be given. The identity element of G obviously belongs to $\operatorname{stab}(x,G)$ and, for any pair of elements $g,h \in \operatorname{stab}(x,G)$, we have that

$$x(gh^{-1}) = (xg)h^{-1} = xh^{-1} = (xh)h^{-1} = x(hh^{-1}) = x1 = x,$$

and as such $gh^{-1} \in \operatorname{stab}(x, G)$. Therefore, $\operatorname{stab}(x, G)$ is a subgroup of G. Now, regarding the function

$$G/\operatorname{stab}(x,G) \to \operatorname{orb}(x,G), \quad \operatorname{stab}(x,G)g \mapsto xg.$$

it's true that

$$xg = xh \iff x(gh^{-1}) = x \iff gh^{-1} \in \operatorname{stab}(x, G)$$

 $\iff \operatorname{stab}(x, G)g = \operatorname{stab}(x, G)h,$

for every pair of elements $g, h \in G$, from what it follows that $\operatorname{stab}(x, G)g \mapsto xg$ is an injective function, as well as

$$y \in \operatorname{orb}(x, G) \iff \exists g \in G : y = xg \implies \operatorname{stab}(x, G)g \mapsto y = xg,$$

which shows that $\operatorname{stab}(x,G)g \mapsto xg$ is also onto. Henceforth, $|\operatorname{orb}(x,G)| = (G : \operatorname{stab}(x,G))$ as claimed. This completes the proof.

1.2 Applications

Here we closely follow [?].

Proposition 3. Let G be a finite p-group. Then, the center of G is not trivial.

Proof. Let G act on itself from the right by conjugation. Then, we have that

$$orb(x, G) = \{x^g : g \in G\} = \{x\} \iff x \in Z(G),$$

for any $x \in G$. By Lagrange's Theorem, the number

$$(G: \operatorname{stab}(x, G)) = |\operatorname{orb}(x, G)|,$$

is a divisor of |G| that is greater than 1 for every $x \in G \setminus Z(G)$ (thus, divisible by p). Since

$$|G| = \sum_{x \in T} |\operatorname{orb}(x, G)|$$

$$= \sum_{x \in T \cap Z(G)} |\operatorname{orb}(x, G)| + \sum_{x \in T \setminus Z(G)} |\operatorname{orb}(x, G)|$$

$$= |Z(G)| + \sum_{x \in T \setminus Z(G)} (G : \operatorname{stab}(x, G))$$

we get that |Z(G)| is also divisble by p.

Theorem 1 (Cauchy). Let G be a finite group and p be a prime divisor of |G|. Then, there is some $g \in G$ such that |g| = p.

Proof. The graph of the function

$$f: G^{p-1} \to G, \quad (x_1, \dots, x_{p-1}) \mapsto \left(\prod_{i=1}^{p-1} x_i\right)^{-1},$$

is the set

$$\Omega = \left\{ (x_1, \dots, x_p) \in G^p : \prod_{i=1}^p x_i = 1 \right\},$$

which has $|G|^{p-1}$ elements in total, a number divisible by p. Consider the action of the additive group \mathbb{Z}_p on the set Ω from the right given by

$$(x_1, x_2 \dots, x_{p-1}, x_p) \cdot \bar{1} = (x_p, x_1 \dots, x_{p-2}, x_{p-1}).$$

The \mathbb{Z}_p -orbit of a point $x=(x_1,\ldots,x_p)\in\Omega$ consists of the element x alone if, and only if, the coordinates $x_1,x_2,\ldots,x_{p-1},x_p$ of x are all equal to one another, that is, $x_1=x_2=\cdots=x_{p-1}=x_p$. This is certainly the case for the element $(1,\ldots,1)\in\Omega$ whose coordinates are all equal to the identity element of G. Let $T\subset\Omega$ be a transveral for the action of \mathbb{Z}_p on Ω , meaning that:

1.
$$\Omega = \bigcup \{ \operatorname{orb}(x, \mathbb{Z}_p) : x \in T \};$$

2.
$$\forall x, x' \in T : x \neq x' \implies \operatorname{orb}(x, \mathbb{Z}_p) \cap \operatorname{orb}(x', \mathbb{Z}_p) = \emptyset$$
.

Then, we have that

$$|\Omega| = \sum_{x \in T} |\operatorname{orb}(x, \mathbb{Z}_p)| = \sum_{|\operatorname{orb}(x, \mathbb{Z}_p)| = 1} 1 + \sum_{|\operatorname{orb}(x, \mathbb{Z}_p)| > 1} (\mathbb{Z}_p : \operatorname{stab}(x, \mathbb{Z}_p)).$$

Since

$$|\Omega|$$
 and $\sum_{|\operatorname{orb}(x,\mathbb{Z}_p)|=1} (\mathbb{Z}_p : \operatorname{stab}(x,\mathbb{Z}_p)),$

are both divisible by p, so is

$$\sum_{|\operatorname{orb}(x,\mathbb{Z}_p)|>1} 1.$$

This last sum would be equal to zero if there were no \mathbb{Z}_p -orbits of size 1 at all in Ω , but as we've already seen there's that of the element $x = (1, \ldots, 1)$. Therefore, there must exist some $g \in G$, $g \neq 1$, with

$$\operatorname{orb}((x,\ldots,x),\mathbb{Z}_p) = \{(x,\ldots,x)\},\,$$

from what we get that $x^p = 1$. This completes the proof.

Proposition 4. Let G be a finite group and p a prime divisor of |G|, say $|G| = p^{\alpha}m$ with $\alpha > 0$ and (p, m) = 1. Then, there exists $H \leq G$ such that $|H| = p^{\alpha}$.

Proof. Let

$$\Omega(p,G) = \{X \subset G : |X| = p^{\alpha}\},\,$$

be the set of all the sets of order p^{α} in G. Our objective is to show that there is a subgroup of G among the elements of $\Omega(p, G)$. First, notice that p does not divide

$$|\Omega(p,G)| = {|G| \choose p^{\alpha}} = \frac{|G| \cdots (|G|-i) \cdots (|G|-p^{\alpha}+1)}{p^{\alpha} \cdots (p^{\alpha}-i) \cdots 1}.$$

In fact, for any $i \in \{1, \dots, p^{\alpha} - 1\}$, we get that:

- i. If p^{β} divides $|G| i = p^{\alpha}m i$, then p^{β} also divides $p^{\alpha} i$ since, if there is a $q \in \mathbb{Z}$ such that $p^{\alpha}m i = qp^{\beta}$, then $i = (p^{\alpha-\beta}m q)p^{\beta}$ with $p^{\alpha-\beta}m q \in \mathbb{Z}$, so p^{β} divides both p^{α} and i. Thus, p^{β} divides the difference $p^{\alpha} i$;
- ii. If p^{β} divides $p^{\alpha} i$, then $p^{\alpha} i = qp^{\beta}$ for some $q \in \mathbb{Z}$. So, we get that $i = (p^{\alpha-\beta} q) p^{\beta}$ and, because $p^{\alpha-\beta} q$ belongs to \mathbb{Z} , p^{β} divides i. Thus, p^{β} divides the difference $p^{\alpha}m i$.

Now, let G act on $\Omega(p,G)$ from the right by translations:

$$\Omega(p,G) \times G \to \Omega(p,G), \quad (X,g) \mapsto Xg,$$

where $Xg = \{xg : x \in X\}$. Now, because we have that

$$|\Omega(p,G)| = \sum_{X \in T} |\operatorname{orb}(X,G)|,$$

and p does not divide $|\Omega(p,G)|$, we know that p does not divide $|\operatorname{orb}(X_0,G)|$ for some $X_0 \in \Omega(p,G)$. Take $H = \operatorname{stab}(X_0,G)$. It follows that p^{α} divides |H| since, by Lagranges's Theorem, it divides

$$|G| = (G : \operatorname{stab}(X_0, G)) |\operatorname{stab}(X_0, G)| = |\operatorname{orb}(X_0, G)| |H|,$$

and p does not divide $|\operatorname{orb}(X_0,G)|$. Thus, $p^{\alpha} \leq |H|$. Now, take any $a \in X_0$ and define

$$H \to X_0, \quad g \mapsto ag.$$

Notice that ag belongs to X_0 for every $g \in H = \operatorname{stab}(X_0, G)$, so the function above is well defined. It's clearly injective, so $|H| \leq |X_0| = p^{\alpha}$. Therefore, $|H| = p^{\alpha}$. This completes the proof.

Definition 3. Let G be a finite group and p a prime divisor of |G|, say $|G| = p^{\alpha}m$ with $\alpha > 0$ and (p, m) = 1. Then, a subgroup $H \leq G$ of order $|H| = p^{\alpha}$ is called a p-Sylow subgroup of G. Let

$$Syl(p,G) = \{ H \leqslant G : |H| = p^{\alpha} \}.$$

be the set of all p-Sylow subgroups of G and $n_p = |Syl(p,G)|$ be the number of p-Sylow subgroups of G.

Lemma 1. Let G be a finite group and p a prime divisor of |G|. Then, for any $H \in Syl(p,G)$ and any p-subgroup P of G, we have $P \cap N_G(H) = P \cap H$.

Proof. We argue by contradiction. Suppose that $P \cap H < P \cap N_G(H)$ and then take any $x \in P \cap (N_G(H) \setminus H)$. Now, $H\langle x \rangle \leq G$ because $H\langle x \rangle = \langle x \rangle H$ since $x \in N_G(H)$. Also, |x| is a power of p becase $p \in P$ and, finally, $p \notin H$ implies that $(\langle x \rangle : H \cap \langle x \rangle) > 1$. Thus, we conclude that

$$|H\langle x\rangle| = \frac{|H||x|}{|H \cap \langle x\rangle|} > |H|,$$

which is a contradiction since no p-subgroup of G has order greater than that of a p-Sylow subgroup of G. Therefore, we must have $P \cap N_G(H) = P \cap H$. \square

Theorem 2. Let G be a finite group and p a prime divisor of |G|, say $|G| = p^{\alpha}m$ with $\alpha > 0$ and (p, m) = 1. Then, we have that:

i. $n_p \equiv 1 \pmod{p}$;

ii. for any given $H \in Syl(p,G)$, we have that

$$Syl(p,G) = \{H^g : g \in G\},\,$$

that is, any two p-Sylow subgroups of G are conjugate to one another;

iii. n_p divides m.

Proof. Let $H \in \text{Syl}(p, G)$ be any p-Sylow subgroup of G. Let H act on Syl(p, G) from the right by conjugation:

$$\operatorname{Syl}(p,G) \times H \to \operatorname{Syl}(p,G), \quad (K,g) \mapsto K^g = g^{-1}Kg.$$

Notice that, for any $K \in Syl(p, G)$, it's true that

$$stab(K, H) = \{x \in H : K^x = K\} = N_G(K) \cap H = K \cap H.$$

Then, we get that

$$n_p = \sum_{K \in T} |\operatorname{orb}(K, H)| = \sum_{K \in T} (H : \operatorname{stab}(K, H))$$
$$= \sum_{K \in T} (H : H \cap N_G(K)) = \sum_{K \in T} (H : K \cap H),$$

and because $(H:K\cap H)$ is a power of p that is equal to 1 exactly once, namely, for K=H, we conclude that $n_p\equiv 1\pmod{p}$.

Now we would like to show that any p-subgroup of G lies in some p-Sylow subgroup of G. Let P be any p-subgroup of G and let it act on $\mathrm{Syl}(p,G)$ from the right by conjugation

$$Syl(p, G) \times P \to Syl(p, G), \quad (K, x) \mapsto K^x.$$

Since p does not divide

$$n_p = \sum_{K \in T} |\operatorname{orb}(K, P)| = \sum_{K \in T} (P : \operatorname{stab}(K, P)) = \sum_{K \in T} (P : K \cap P),$$

there must exist some $K \in \mathrm{Syl}(p,G)$ such that $(P:K \cap P)=1$ but, then $P \subset K$. In particular, if H,K are any p-Sylow subgroups G, then there exists $x \in G$ such that $H^x = K$.

Finally, because we now know that

$$Syl(p, G) = \{H^x : x \in G\},\$$

we get that

$$n_p = |\operatorname{orb}(H, G)| = (G : N_G(H)) = \frac{(G : H)}{(N_G(H) : H)} = \frac{m}{(N_G(H) : H)},$$

that is, n_p is a divisor of m.