MA2252 Introduction to computing

lectures 17-18

Review of linear algebra

Matias Ruiz

November 2023

Sets

A set or (space) is a collection of objects.

Table 12.1 Various Sets of Numbers and Corresponding Notations Used to Denote Them		
Set Name	Symbol	Description
Naturals	N	$\mathbb{N} = \{1, 2, 3, 4, \cdots\}.$
Wholes	W	$\mathbb{W} = \mathbb{N} \cup \{0\}$
Integers	$\mathbb Z$	$\mathbb{Z} = \mathbb{W} \cup \{-1, -2, -3, \cdots\}$
Rationals	\mathbb{Q}	$\mathbb{Q} = \{ \frac{p}{q} : p \in \mathbb{Z}, q \in \mathbb{Z} \setminus \{0\} \}$
Irrationals	\mathbb{I}	I is the set of real numbers not expressible as a fraction of integers.
Reals	\mathbb{R}	$\mathbb{R} = \mathbb{Q} \cup \mathbb{I}$
Complex Number	s \mathbb{C}	$\mathbb{C} = \{a + bi : a, b \in \mathbb{R}, i = \sqrt{-1}\}$

Vector spaces

Let S be a set. S is a vector space if it satisfies some extra properties:

- ▶ if $u \in S$ and $v \in S$, then $u + v \in S$.
- ▶ if $u \in S$ and $\alpha \in \mathbb{R}$ (or \mathbb{C}), then $\alpha u \in S$

$$\Rightarrow \alpha u + \beta v \in S$$
, where $\beta \in \mathbb{R}$ (or \mathbb{C}).

Excerise: Which of the following sets are or aren't vector spaces

- 1. $\{(x,y) \text{ with } x,y \in \mathbb{R} \text{ such that } x+y=0\}$
- 2. $\{(x,y) \text{ with } x,y \in \mathbb{R} \text{ such that } x+y=1\}$
- 3. The space of differentiable functions
- 4. The space of polynomials of degree *n*.

Vector spaces

Let S be a set. S is a vector space if it satisfies some extra properties:

- ▶ if $u \in S$ and $v \in S$, then $u + v \in S$.
- ▶ if $u \in S$ and $\alpha \in \mathbb{R}$ (or \mathbb{C}), then $\alpha u \in S$

$$\Rightarrow \alpha u + \beta v \in S$$
, where $\beta \in \mathbb{R}$ (or \mathbb{C}).

Excerise: Which of the following sets are or aren't vector spaces

- 1. $\{(x,y) \text{ with } x,y \in \mathbb{R} \text{ such that } x+y=0\}$
- 2. $\{(x,y) \text{ with } x,y \in \mathbb{R} \text{ such that } x+y=1\}$
- 3. The space of differentiable functions
- 4. The space of polynomials of degree n.
- 5. The space \mathbb{P}_n of polynomials of degree equal or less than n.

The vector space \mathbb{R}^n

$$\mathbb{R}^n := \{(x_1, x_2, \dots, x_n) \text{ with } x_1, x_2, \dots, x_n \in \mathbb{R}\}$$

If $u \in \mathbb{R}^n$ one typically writes

$$u = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

ightharpoonup if $\alpha \in \mathbb{R}$ then

$$\alpha u := \begin{pmatrix} \alpha x_1 \\ \vdots \\ \alpha x_n \end{pmatrix}$$

ightharpoonup if $v=(y_1,y_2,\ldots,y_n)\in\mathbb{R}^n$

$$u + v := \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{pmatrix}$$

The vector space \mathbb{R}^n

Some standard operations on \mathbb{R}^n :

transpose:

$$u = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 , $u' = (x_1, \dots, x_n)$

- norm: $||u|| = \sqrt{x_1^2 + x_2^2 + \ldots + x_n^2}$
- p-norm of a vector: $||u||_p = (x_1^p + x_2^p + ... + x_n^p)^{1/p}$
- ross product: $u \times v = ||u|| ||v|| \sin(\theta) \hat{n}$; for $u, v \in \mathbb{R}^3$

Linear combinations and linear independence

Definition (linear combination)

For $\alpha_k \in \mathbb{R}$ and $u_k \in \mathbb{R}^n$

$$\sum_{k=1}^{m} \alpha_k u_k$$

is called a linear combination.

Definition (linear independence)

$$\sum_{k=1}^{m} \alpha_k u_k = 0$$

only if
$$\alpha_1 = \alpha_2 = \cdots = \alpha_m = 0$$

Dimension of a vector space

Definition (Dimension of a vector space)

The dimension of S is the maximum number of linear independent vectors.

Definition (Basis of a vector space)

A set of n linearly independent vectors of a space of dimension n.

 \Rightarrow for any $u \in S$ there exist unique $\alpha_k \in \mathbb{R}$ such that

$$u = \sum_{k=1}^{n} \alpha_k u_k$$

- ► The dimension of a subspace of *S* is less or equal than the dimension of *S*.
- Vector spaces of the same dimension are "similar".

Linear transformations

Definition (Linear operator)

An operator L acting from a vector space S to a vector space E is a linear operator if

$$L(\alpha u + \beta v) = \alpha L(u) + \beta L(v)$$

- ► A linear operator is completely determined by its action over a basis. Why?
- ightharpoonup \Rightarrow linear operators can be represented by a matrix.

Matrices

A matrix of size $n \times m$ is a collection of m column vectors of \mathbb{R}^n

$$A = \begin{pmatrix} u_{1,1} & u_{1,2} & \dots & u_{1,m} \\ \vdots & & & \vdots \\ u_{n,1} & u_{n,2} & \dots & u_{n,m} \end{pmatrix} = (u_1 \mid u_2 \mid \dots \mid u_m)$$

- The traspose $A' = \begin{pmatrix} u_1' \\ \vdots \\ u_n' \end{pmatrix}$
- ▶ The space of matrices of size $n \times m$ is a vector space
- ▶ Multiplication with a column vector $\alpha \in \mathbb{R}^m$

$$A\alpha := \sum_{k=1}^{m} \alpha_k u_k$$

- rank(A) = dimension of the "span" of its column (or row) vectors
- ▶ the null space of A: $N(A) = \{v \in \mathbb{R}^m \text{ such that } Av = 0\}$

Square matrices

A matrix of size $n \times n$.

- |A| = determinant of A.
- Inverse A^{-1} is such that $AA^{-1} = A^{-1}A = I$ with I = identity matrix

Linear systems of equations

Introduction

A system of linear equations is represented as

$$\begin{vmatrix}
 a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\
 a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\
 \vdots \\
 a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_2
 \end{vmatrix}
 (1)$$

The aim of this lecture is to find solution to the above system.

Consider first this simple equation:

$$ax = b, \quad a, b \in \mathbb{R}.$$
 (2)

Find a solution in the following cases.

- 2 a = 0 and $b \neq 0$
- **3** a = 0 and b = 0

The solutions in the three cases:

- x=b/a (unique solution)
- 2 $x = \emptyset$ (no solution
- $x \in \mathbb{R}$ (infinitely many solutions)

Now consider this matrix equation:

$$Ax = b ag{3}$$

where A is a $n \times n$ matrix. Find a solution in the following cases.

- $|A| = 0 \text{ and } b \neq \underline{0}$
- **3** |A| = 0 and b = 0

The solutions in the three cases:

- $x = A^{-1}b$ (unique solution)
- $x = \emptyset$ (no solution)

Here, N(A) means nullspace of matrix A.

Question: What is the solution to (3) when $|A| \neq 0$ and b = 0?

Backslash operator

 $x = A \setminus b$ solves the system (1) of linear equations Ax = b.

Example: Solve the system of equations:

$$2x + y = 4$$
$$x - y = -1$$
(4)

Here,
$$A = \begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix}$$
 and $b = \begin{bmatrix} 4 \\ -1 \end{bmatrix}$.

So,
$$x = A \setminus b$$
 gives $x = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

Question: Can you find this solution using MATLAB's inv() function?

Backslash operator (contd.)

Demo

Backslash operator (contd.)

- If A is a square matrix then $A \setminus b$ and inv(A) * b are equivalent.
- For scalars a and b, $a \setminus b$ solves the equation ax = b. So, $a \setminus b$ and b/a are equivalent.

Backslash operator (contd.)

Let us return back to system of equations (1).

For solving this system, $x = A \setminus b$ gives unexpected results when

- the system has no solution.
- 2 the system has infinitely many solutions. In this case, a particular solution may be found using x = pinv(A) * B. Here, pinv(A) computes the 'pseudo-inverse' of A.

Rank method

Rank can be used to determine if the system (1) has no solution, unique solution or infinitely many solutions.

- Non-homogeneous equations $(Ax = b, b \neq 0)$
 - ① $rank(A) < rank([A \ b]) \implies No solution$
 - 2 $rank(A) = rank([A \ b]) = n \implies Unique solution$
 - 3 $rank(A) = rank([A \ b]) = k < n \implies$ Infinitely many solutions
- Homogeneous equations (Ax = 0)
 - \bigcirc $rank(A) = n \implies$ Unique solution (the trivial solution)
 - 2 $rank(A) = k < n \implies$ Infinitely many solutions

Finding solutions

For non-homogeneous equations:

- First, check the existence of solution using Rank method.
- If the solution exists and is unique, find the solution using $x = A \setminus b$.
- If there are infinitely many solutions, first find the particular solution (say x^*) using $x^* = pinv(A) * b$. The general solution is given by $x = x^* + N(A)$ where N(A) is the nullspace of A.

Follow these steps to find the nullspace N(A):

- Use MATLAB's null(A) function to create a matrix containing orthonormal basis of N as column vectors.
- Let P = null(A) and p = nullity of A. Then p = n rank(A), (Why?)
- The nullspace of A is then given by

$$N(A) = c_1 * P(:,1) + c_2 * P(:,2) + \cdots + c_p P(:,p)$$

where the constants $c_1, c_2, \cdots, c_p \in \mathbb{R}$.

Example: Solve the system of equations:

$$x + y + z + w = 6$$

$$x + 2y - 3z - w = -4$$

$$y - 4z - 2w = -10$$

$$2x + 3y - 2z = 2$$
(5)

Demo

For homogeneous equations:

- Find rank(A). If rank(A) = n, then the trivial solution x = 0 is the only solution.
- Otherwise, the solution is x = N(A).