

Sequential Model-Based Algorithm
Configuration
SMAC

Bayesian Hyperparameter Optimization

- Red: f(x) the hyperparameter response surface
- Green: our estimation of f(x)
 - In Bayes terms P(y | x) with y model score (f(x)) and x hyperparameters

Bayesian Hyperparameter Optimization

- Red: f(x) the hyperparameter response surface
- Green: our estimation of f(x)
 - In Bayes terms P(y | x) with y model score (f(x)) and x hyperparameters
 - Gaussian Process

• SMAC

- Red: f(x) the hyperparameter response surface
- Green: our estimation of f(x)
 - In Bayes terms P(y | x) with y model score (f(x)) and x hyperparameters
 - Gaussian Process
 - Random Forests
 - (Gradient boosted trees)

SMAC

- Approximating f(x) is a regression problem
- Hyperparameters are the input "predictive" variables
- f(x) is our response variable or target

Hyperparam 1	Hyperparam 2	Hyperparam 3	Hyperparam 4	f(x) – model performance
0.1	1	512	32	0.65
0.01	2	48	16	0.78
0.005	3	12	8	0.89
0.03	2	250	1	0.66

SMAC

- Approximating f(x) is a regression problem
- Hyperparameters are the input "predictive" variables
- f(x) is our response variable or target

Hyperparam 1	Hyperparam 2	Hyperparam 3	Hyperparam 4	f(x) – model performance
0.1	1	512	32	0.65
0.01	2	48	16	0.78
0.005	3	12	8	0.89
0.03	2	250	1	0.66

- Predict f(x) for unseen values of the hyperparameters
- Decide where to sample next Acquisition functions

 With a trained decision tree, every new observation will be allocated to an end node

 In the trained tree, each end node contains a bunch of training observations

- In the trained tree, each end node contains a bunch of training observations
 - It is possible to derive a mean and standard deviation for f(x)

Random Forests – mean and error

- In the trained tree, each end node contains a bunch of training observations
 - It is possible to derive a mean and standard deviation for f(x)

Acquisition Functions – Scikit-Optimize

- Probability of Improvement (PI)
- Expected Improvement (EI)
- Upper (or Lower) confidence bound (UCB or LCB)

Acquisition Functions – SMAC

• Expected Improvement (EI) of the log transformed cost

$$EI(\boldsymbol{\theta}) := E[I_{\exp}(\boldsymbol{\theta})] = f_{min} \Phi(v) - e^{\frac{1}{2}\sigma_{\boldsymbol{\theta}}^2 + \mu_{\boldsymbol{\theta}}} \cdot \Phi(v - \sigma_{\boldsymbol{\theta}}),$$

$$v := \frac{\ln(f_{min}) - \mu_{\theta}}{\sigma_{\theta}}$$

THANK YOU

www.trainindata.com