Chem QA & Reactions Appendix

Chang Si Yuan August 9, 2017

(ver 0.3.1)

A catalog of reactions to be understood and recalled for the GCE "A"-level Chemistry Paper, including Organic and Inorganic Qualitative Analysis for both the theory and practical papers.

These notes are meant for free, public use, but at the reader's own risk.

Good luck with your exams.

1 **Common Inorganic Reactions**

1.1 **Precipitate Solubility**

1.1.1 Table of Solubilities

SO₂ decolorizes acidified purple KMnO₄ filter paper.

NO₂ is a brown, pungent gas which (oxidizes?) FeSO₄ solution, turning green solution brown.

NH₃ is a pungent gas which turns moist red litmus paper

	Group 1,	Hg ⁺ ,	blue _{bb} 2+	Ba ²⁺ ,	Else	
	NH ₄ ⁺	Ag^+	PD	Ca ²⁺		
NO ₃	1. All nitrates are soluble]	
Χ-	2. All Group 1	3. Hal	ides of Hg, Ag and Pb are insoluble	tions	for	Inorganic
SO ₄ ²⁻	and ammoniums		4. Sulfates of Pb, Ba and Ca are in	soluble		
OH ⁻ , CO ₃ ²⁻ , PO ₄ ²⁻ , S ₂ ⁻	are soluble	5. Most other salts are insoluble				
Z.Z.I ATIIOIS						

1.1.2 K_{sp} Comparison

1.2 Acid/Base Reactions

Acid/Base Titration Indicators

SO_3^{2-} produces a white ppt of BaSO₃, which dissolves in

 NO_3^- produces NH₃ when heated in NaOH with Al(s).

NO₂ produces NH₃ when heated in NaOH with Al(s) and produces NO₂ when reacted with HCl.

1.3 **Redox Reactions and Reagents**

KMnO₄ is a strong oxidizing agent which will turn from purple to colorless Mn²⁺. Brown ppt of MnO₂ forms when insufficient acid is present.

K₂Cr₂O₇ is a strong oxidizing agent which will turn from orange to green Cr³⁺.

KI is a reducing agent which may turn from colorless to brown I_2 , possibly reducing Fe^{3+} to form brown solution and reducing Cu²⁺ to form cream ppt of Cul. Use starch solution to tell if I2 is present in small concentrations, alternatively use (starchy) waste paper.

 $\mathbf{0}_2$ in air can oxidize:

- green Fe²⁺ solution to brown Fe³⁺ solution
- green Fe(OH)₂ ppt to brown Fe(OH)₃ ppt
- off-white $Mn(OH)_2$ ppt to brown MnO_2 ppt;
- white BaSO₃ ppt soluble in acid to white BaSO₄ ppt insoluble in acid.

 H_2O_2 can either act as a reducing agent to form H_2O , oxidizing agent (vs Fe^{2+}) to form O_2 or spontaneously decompose to form both, especially in presence of a transition metal catalyst.

Tests for Inorganic Compounds

2.1 **Tests for Gases**

O₂ relights a glowing splint.

 \mathbf{H}_2 extinguishes a lit splint with a 'pop' sound.

CO₂ forms white ppt of Ca(OH)₂ when bubbled into limewater $Ca(CO_3)(aq)$.

acid to produce SO₂.

2.2.2 Halide Anions

 CO_2 .

 I^- produces yellow ppt with AgNO₃, insoluble in NH₃(aq).

Br produces cream ppt with AgNO₃, insoluble in $NH_3(aq)$.

CI⁻ produces white ppt with AgNO₃, soluble in NH₃(aq) due to the formation of the diamminesilver complex.

2.2.3 Cations

	Soln	NaOH	
		White ppts	
Ba ²⁺	-	-	
Ca ²⁺	-	White	
Zn ²⁺	-	White, soluble	
Al ³⁺	-	White, soluble	
Mg ²⁺	-	White	
		Colored ppts	
Cu ²⁺	Blue	Blue	
Cr ³⁺	Green	Green, soluble to green	
Fe ²⁺	Pale Green	Dirty Green	
Fe ³⁺	Brown	Brown	
Mn ²⁺	-	Off-white	

CuCO₃ can be green or blue depending on its concentra-

 Fe^{2+} and Fe^{3+} react with $Fe(CN_6)^{3-}$ to form a deep blue ppt of $Fe_4[Fe(CN_6)]_3$ (turnbull's ppt).

Fe³⁺ reacts with SCN⁻ to form a blood red coloration.

2.3 Tests for Inorganic Compounds, by Re- 3.1.4 Hydroxy Compounds actants and Conditions

3 Common Organic Reactions

3.1.3 Halogenoalkanes

- 3.1.6 Carboxylic Acids
- 3.1.7 Nitrogen Compounds
- 3.1.8 Arenes
- 3.1.9 Phenols
- 3.1.10 Other Aromatic Species
- 3.2 Organic Reactions, by Reagents and Conditions
- 3.2.1 Acid Reactions
- 3.2.2 Base Reactions
- 3.2.3 Reduction
- 3.2.4 Oxidation
- 3.2.5 With Cyanides
- 3.2.6 With Halogens

4 Tests for Organic Compounds

- 4.1 Tests to Identify Species
- 4.2 Tests to Differentiate between Species