

OF COLLEGE

Computer Science and Engineering University of California, San Diego http://cri.ucsd.edu

October 2024

Outline

- Introduction
- 2 Bracket based methods
- 3 Downhill Simplex
- Powell's Method
- 5 Conjugate Descent/Gradient
- 6 Stochastic Search
- Dynamic Programming
- 8 Summary

Introduction

- We have discussed approximation and root finding. We can leverage these methods to study optimization.
- Most of robotics is about optimization
- Best trajectory between two points
- Best fit of a model to a swarm of data
- Optimal coverage of an area for fire monitoring
- Energy efficient travel from San Diego to Hawaii by water

H. I. Christensen (UCSD) Math for Robotics Oct 2024 3

Literature

- Numerical Recipes: Chapter 10
- Numerical Renaissance: Chap 14-16. (Part III)

Example 1

• Optimization of trajectories at high speed

Path Planning

Optimization

Optimization

- So what is optimization?
- Finding extrema for a function over a domain
- Minimum or maximum is immaterial as we can use f or -f
- In many cases we will have local and global extrema
- Consider both deterministic and stochastic approaches

Outline

- 1 Introduction
- Bracket based methods
- 3 Downhill Simplex
- 4 Powell's Method
- 5 Conjugate Descent/Gradient
- 6 Stochastic Search
- Dynamic Programming
- 8 Summary

Golden section

- For bracketing of roots we use bi-section as a basis.
- We can use a similar technique to find an extremum
- We need two points to bracket a root!
- How many points do we need to bracket an extremum?

Golden section

- For bracketing of roots we use bi-section as a basis.
- We can use a similar technique to find an extremum
- We need two points to bracket a root!
- How many points do we need to bracket an extremum?
- We need three points to bracket.
- If we have a triplet a < b < c. Iff f(b) is smaller than f(a) and f(c), then we have a minimum within [a, c]

Golden Section

- Pick a point between (a,b) or (b,c) and evaluate
- Suppose $x \in (b, c)$ and f(x) < f(b) then our new triple is (b, x, c)
- Consider the function

• How would you choose a new value of x?

Golden Section (cont.)

• Consider (a, b, c)

$$\frac{b-a}{c-a} = w \qquad \frac{c-b}{c-a} = 1 - w$$

• Lets assume $x \in (b, c)$ and

$$\frac{x-b}{c-a}=z$$

The next bracket is then w+z or 1-w

Golden Section (cont.)

Consider (a, b, c)

$$\frac{b-a}{c-a} = w \qquad \quad \frac{c-b}{c-a} = 1 - w$$

• Lets assume $x \in (b, c)$ and

$$\frac{x-b}{c-a}=z$$

- The next bracket is then w+z or 1-w
- If we want to make the intervals equal

$$z = 1 - 2w$$
 when $w < \frac{1}{2}$

• z should be the same distance from b and c and b is from a and c

$$\frac{z}{1-w} = w$$

• we can rewrite to replace z and get the equation

$$w^2 - 3w + 1 = 0 \Rightarrow w = \frac{3 - \sqrt{5}}{2} \approx 0.38197$$

• Widely used to select iteration strategies

Parabolic Interpolation

- We covered Brent's method in root finding and in interpolation
- If we have a triple (a, b, c) and the values f(a), f(b), f(c) we can generate a 2nd order interpolation

$$x = b - \frac{1}{2} \frac{(b-a)^2 [f(b) - f(c)] - (b-c)^2 [f(b) - f(a)]}{(b-a)[f(b) - f(c)] - (b-c)[f(b) - f(a)]}$$

• When would this fail?

Parabolic Interpolation

- We covered Brent's method in root finding and in interpolation
- If we have a triple (a, b, c) and the values f(a), f(b), f(c) we can generate a 2nd order interpolation

$$x = b - \frac{1}{2} \frac{(b-a)^2 [f(b) - f(c)] - (b-c)^2 [f(b) - f(a)]}{(b-a) [f(b) - f(c)] - (b-c) [f(b) - f(a)]}$$

- When would this fail?
- When the triple pair is co-linear!
- The remedy is to use golden section for the co-linear case

H. I. Christensen (UCSD) Math for Robotics Oct 2024

1-D search w. derivative information

- If we have the triple (a, b, c) and f(a), f(b), f(c)
- In addition we have f'(b)
- You can use the sign of f'(b) to choose the next bracket

Outline

- 1 Introduction
- 2 Bracket based methods
- 3 Downhill Simplex
- 4 Powell's Method
- 5 Conjugate Descent/Gradient
- 6 Stochastic Search
- Dynamic Programming
- 8 Summary

Simplex Method

- Assume we have no gradient information or access to formal model.
- A simplex in N dimensions is composed of N+1 points. Connected by straight lines
 - A 2D simplex is a triangle
 - A 3D simplex is a tetrahedron.
- We have N+1 points x_1, \ldots, x_{N+1}

Downhill Simplex Algorithm

- Initial simple
 - Order the values of the vertices: $f(x_1) \le f(x_2) \le ... \le f(x_{N+1})$
- Compute x_0 , the centroid of all points except x_{N+1}
- Reflection compute $x_r = x_0 + \alpha(x_0 x_{N+1})$, with $\alpha > 0$ if the reflection is better than $f(x_{N-1})$ replace. Restart
- Expansion if $f(x_r) < f(x_1)$ compute $x_e = x_0 + \gamma(x_r x_0)$ if $f(x_e) < f(x_r)$ replace x_{N+1} else replace x_{N+1} with x_r . Restart
- Contraction If $f(x_r) > f(x_N)$ compute $x_c = x_0 + \rho(x_{N+1} x_0)$ with $\rho < .5$. If $f(x_c) < f(x_{N+1})$ replace and restart
- Shrink Replaces all points except x_1 with $x_i = x_1 + \sigma(x_i x_1)$ and restart
- Terminate when update is below a threshold.

Simplex illustration

Initial simplex with vertices **a**, **b**, **c**, so that $f(\mathbf{a}) < f(\mathbf{b}) < f(\mathbf{c})$

Reflection & contraction: $d-p = -\frac{1}{2}(c-p)$ with d-cperpendicular to b-a.

Downhill Simplex Method

Reflection: d-p = -(c-p) with d-c perpendicular to b-a.

Contraction: d-p = ½(c-p) with d-c perpendicular to b-a.

Reflection & expansion: d-p = -2(c-p) with d-c perpendicular to b-a.

Multiple contraction: (d-a)/(b-a) = (e-a)/(c-a)

Simplex example

Outline

- 1 Introduction
- 2 Bracket based methods
- 3 Downhill Simplex
- Powell's Method
- 5 Conjugate Descent/Gradient
- 6 Stochastic Search
- Dynamic Programming
- Summary

Powell's Method

- Assume you have an n-dimensional function $f(\vec{x})$ and a starting point P_0 .
- We can use the local gradient to search for an extremum
- We can generate a new estimate

$$P_{new} = P_{old} + \lambda \vec{n}$$

Locally we can generate a Taylor expansion

$$f(x) = f(P) + \sum_{i} \frac{\partial f}{\partial x_{i}} x_{i} + \frac{1}{2} \sum_{ij} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} x_{i} x_{j} + \dots$$

or

$$f(x) \approx \vec{c} - b\vec{x} + \frac{1}{2}\vec{x}^T A \vec{x}$$

where

$$egin{array}{lll} ec{c} & = & f(P) \ b & = & -\nabla f_P \ A_{ij} & = & rac{\partial^2 f}{\partial x_i \partial x_j} & ext{Hessian Matrix} \end{array}$$

Also remember

$$\nabla f = Ax - b$$

at an extremum

Powell's Method

Initialize N unit vectors

$$u_i = e_i \ i \in 1...N$$

- Start at point P_0
- ② For i=1 to N
- **3** Move along P_i from P_{i-1} along u_i
- **5** Set $u_N = P_n P_0$
- Move P_n to minimum value
- Might generate linear degenerate solutions

Oct 2024

Outline

- Introduction
- 2 Bracket based methods
- 3 Downhill Simplex
- Powell's Method
- 5 Conjugate Descent/Gradient
- 6 Stochastic Search
- Dynamic Programming
- 8 Summary

Conjugate gradient descent

If we have the gradient from

$$f(x) \approx \vec{c} - b\vec{x} + \frac{1}{2}\vec{x}^T A \vec{x}$$

- We can do a steepest descent
 - \bigcirc Start at P_0
 - ② Compute $\nabla f(P_i)$
 - \odot move in the direction of gradient to point P_i
 - repeat
- We can construct a set of conjugate vectors

$$\begin{array}{lcl} g_{i+1} & = & g_i - \lambda A h_i \\ h_{i+1} & = & g_{i+1} + \gamma_i h_i \\ \lambda_i & = & \frac{g_i g_j}{h_i A h_i} \\ \gamma_i & = & \frac{g_{i+1} g_{i+1}}{g_i g_i} \end{array}$$

Outline

- 1 Introduction
- 2 Bracket based methods
- 3 Downhill Simplex
- 4 Powell's Method
- 5 Conjugate Descent/Gradient
- 6 Stochastic Search
- Dynamic Programming
- 8 Summary

Stochastic Search

- So far we have used direct functional values for optimization.
- The search has been deterministic
- Sometimes the search space is too large
- What if we use a sampling based approach?
- Some possible examples
 - Traveling salesman
 - Layout of silicon for chips
- Loosely based on Boltzmann distribution

$$P(E) = exp(-E/kT)$$

 where E is energy/entropy, T is temperature, and k is the Boltzmann constant.

H. I. Christensen (UCSD) Math for Robotics Oct 2024

Metropolis Algorithm

- Transformed into an algorithm by 1953 by Metropolis
- Algorithm
- Let $s = s_0$
- For k = 0 to k_{max}
 - $T = temperature(k/k_{max})$
 - Pick random neighbor $s_{new} = neighbor(T)$
 - If $(P(S, T) \leq random(0, 1)$
 - $s = s_{new}$
- Return S

H. I. Christensen (UCSD) Math for Robotics Oct 2024

Simulated Annealing

- Description of possible configurations
- A way to generate random perturbation of a configuration
- An objective function whose minimization is the objective
- A control variable that is lowered over times.

Oct 2024

Example - traveling salesman

- A salesman has to visit N cities at locations (x_i, y_i) returning to the original city
- Each city to be visited only once
- Minimize the travel route
- Problem in the optimal sense is known to be NP-hard.

Simple Example - Traveling Salesman

The optimal tour:
A B C D E

Vacation Planning

Going to Italy for vacations

SRC https://mirkomiorelli.github.io/SA_TSP/

H. I. Christensen (UCSD) Math for Robotics Oct 2024 30 / 41

Vacation Planning - Temperature

Going to Italy for vacations

SRC https://mirkomiorelli.github.io/SA_TSP/

H. I. Christensen (UCSD) Math for Robotics Oct 2024 31

Vacation Planning - Random initialization

Going to Italy for vacations

SRC https://mirkomiorelli.github.io/SA_TSP/

H. I. Christensen (UCSD) Math for Robotics Oct 2024 32

Vacation Planning - Random initialization

Going to Italy for vacations

SRC https://mirkomiorelli.github.io/SA_TSP/

Outline

- 1 Introduction
- 2 Bracket based methods
- 3 Downhill Simplex
- Powell's Method
- 5 Conjugate Descent/Gradient
- 6 Stochastic Search
- Dynamic Programming
- 8 Summary

Dynamic Programming

- So far we have considered functional optimization and stochastic optimization
- What if we have a limited set of action to optimize across?
- Say optimizing a set of actions to traverse a graph?
- A strategy to could be
 - Generate a cost-map across the state space
 - Backtrack to find the optimal set of actions

H. I. Christensen (UCSD) Math for Robotics Oct 2024 35 / 41

Dynamic programming

- A number of different names / approaches has been used
 - Bellman, Dijkstra, Viterbi, ...
- Selection a state space for optimization
- Identifying a set of possible actions
- Formulation of an objective function

Example navigation

TRIVIAL EXAMPLE OF BELLMAN'S OPTIMALITY PRINCIPLE

Example navigation

Shortest Path: network figure

Outline

- Introduction
- 2 Bracket based methods
- 3 Downhill Simplex
- Powell's Method
- 5 Conjugate Descent/Gradient
- 6 Stochastic Search
- Dynamic Programming
- Summary

Summary

- Optimization is a key objective in robotics
 - Robotics is many cases is about formulation of a graph
 - Optimization of an objective function across the graph
- Considered deterministic and stochastic approaches to optimization
- Covered the basics and gave an impression of the fundamentals

Questions

Questions

H. I. Christensen (UCSD) Math for Robotics Oct 2024