# CPSC 420 Lecture 24: Today's announcements:

- ► Examlet 3 on Mar 17 in class. Closed book & no notes
- ▶ Reading: Randomized Algorithms [by Motwani and Raghavan]

### Today's Plan

- Online Algorithms
  - ► Hiring problem ✓
  - Page replacement
  - List Update
  - Experts

# Any Marking Algorithm is k-competitive

Marking Algorithm MARK

| Warking Algorithm WARK                          |            |    |    |    |    |    |     |    |    |    |    |
|-------------------------------------------------|------------|----|----|----|----|----|-----|----|----|----|----|
| 0. Start with all k pages in cache unmarked     |            |    |    |    |    |    |     |    |    |    |    |
| 1. On page request p                            |            |    |    |    |    |    |     |    |    |    |    |
| 2. if p not in cache then                       |            |    |    |    |    |    |     |    |    |    |    |
| 3. evict any unmarked page                      |            |    |    |    |    |    |     |    |    |    |    |
| (if no unmarked page, first unmark all k pages) |            |    |    |    |    |    |     |    |    |    |    |
| 5. bring <i>p</i> into cache                    |            |    |    |    |    |    |     |    |    |    |    |
| 6. mark p                                       |            |    |    |    |    |    |     |    |    |    |    |
| 0. 1                                            | . Illain p |    |    |    |    |    |     |    |    |    |    |
|                                                 | Α          | В  | C  | D  | В  | Α  | В   | С  | D  | Α  | В  |
| MARK                                            | •A         | •A | •A | •D | ∙D | •D | •D  | •C | •C | •C | ∙B |
|                                                 | Υ          | •B | •B | В  | ∙B | ∙B | •B  | В  | •D | •D | D  |
|                                                 | Z          | Z  | •C | C  | C  | •A | •A  | Α  | Α  | •A | Α  |
|                                                 | *          | *  | *  | *  | •  | *  | ~ - | *  | *  |    | *  |
| FIFO                                            | Α          | В  | С  | D  | D  | Α  | В   | С  | D  | Α  | В  |
| - compe                                         | HINE       | Α  | В  | C  | C  | D  | A   | В  | C  | D  | Α  |
| - compr                                         | Z          | Υ  | Α  | В  | В  | C  | D   | Α  | В  | C  | D  |
|                                                 | *          | *  | *  | *  |    | *  | *   | *  | *  | *  | *  |

# Any Marking Algorithm is k-competitive

#### Marking Algorithm MARK

- 0. Start with all k pages in cache unmarked
- 1. On page request *p*
- 2. if *p* not in cache then
- evict any unmarked page
   (if no unmarked page, first unmark all k pages)
- 5. bring p into cache
- 6. mark *p*

#### Proof.

Partition  $p_1, p_2, \ldots, p_n$  into **phases**, a maximal subsequence with k distinct pages. (The first starts with  $p_1$ .) Assume  $p_1$  is not in cache MARK faults  $\leq k$  times per phase.)

OPT must have the first page  $p_i$  of a phase in cache at the beginning of a phase. Since the remainder of the phase plus the first page of the next phase consists of k different pages (different from  $p_i$ ), OPT must fault at least once during these requests.

 $\Rightarrow$  OPT faults  $\geq$  #phases -1 times.

#### Online Hide and Seek

Mouse hides in one of *m* hiding spots.

Cat looks in one spot each time step.

If Cat finds Mouse, Mouse runs to another spot.

Cost = #times Mouse moves

OPT = min #times future-knowing Mouse must move



#### Online Hide and Seek

Mouse hides in one of *m* hiding spots. Cat looks in one spot each time step. If Cat finds Mouse, Mouse runs to another spot.

Cost = #times Mouse moves

OPT = min # times future-knowing Mouse must move

$$OPT(1\ 2\ 3\ 4\ 1\ 2\ 3\ 4) = 2$$

#### Online Hide and Seek

Mouse hides in one of *m* hiding spots. Cat looks in one spot each time step. If Cat finds Mouse, Mouse runs to another spot.

#### Online Hide and Seek

Mouse hides in one of *m* hiding spots. Cat looks in one spot each time step. If Cat finds Mouse, Mouse runs to another spot.

#### Online Hide and Seek

Mouse hides in one of *m* hiding spots.

Cat looks in one spot each time step.

If Cat finds Mouse, Mouse runs to another spot.

#### Online Hide and Seek

Mouse hides in one of m hiding spots. Cat looks in one spot each time step. If Cat finds Mouse, Mouse runs to another spot.

#### Online Hide and Seek

Mouse hides in one of m hiding spots. Cat looks in one spot each time step. If Cat finds Mouse, Mouse runs to another spot.



## Randomized Marking Mouse

If Mouse follows a deterministic strategy, there is a sequence S of Cat probes that causes

$$\mathsf{MouseCost}(S) \geq (m-1)\mathsf{OPT}(S)$$

$$m-1=$$
 cache size  $m=$  different pages  $Mouse=$  page not in cache  $Cat \ probes=$  page requests  $Must \ move=$  page fault

### Randomized Marking Mouse (RMM)

- Start at random spot
- If Cat probes a spot, mark it
- If Cat probes Mouse's spot,
   Mouse moves to random unmarked spot
- If Mouse is at last unmarked spot, clear marks [phase ends]

## Randomized Marking Mouse performance

Claim:  $E[\mathsf{RMMCost}(S)] \leq O(\log m)\mathsf{OPT}(S)$ 

Proof: Initially, RMM is equally likely to be at any of the m spots.

1st probe finds Mouse with probability 1/m.

Whether Mouse is found or not, Mouse is at each of the m-1 unmarked spots with prob. 1/(m-1).

2nd probe (to unmarked spot) finds Mouse with prob 1/(m-1). Mouse is at each of the m-2 unmarked spots with prob. 1/(m-2). Etc.

Let  $X_i = \begin{cases} 1 & \text{if Mouse found on } i \text{th probe to unmarked spot} \\ 0 & \text{otherwise} \end{cases}$ 

$$E[\# ext{times found per phase}] = E[X_1 + X_2 + \cdots + X_m]$$
  $\leq rac{1}{m} + rac{1}{m-1} + \cdots + rac{1}{1} = O(\log m)$ 

OPT moves once per phase.

## Is Totally Random Mouse (TRM) better?

TRM runs to a random spot if found.

Consider the Methodical Cat (MC):

- Probe spots 1, 2, 3, ... until Mouse found
- Repeat

What does the OPT mouse do?

## Is Totally Random Mouse (TRM) better?

TRM runs to a random spot if found.

Consider the Methodical Cat (MC):

- Probe spots 1, 2, 3, ... until Mouse found
- Repeat

What does the OPT mouse do? Hide in spot m

E[# times RM found before MC probes m] = E[# rolls of m -sided dice before m] = m

 $\Rightarrow$  RM is *m*-competitive.

## Random Marking Mouse is best

Claim: Any Mouse A has  $E[A(S)] \in \Omega(\log m) OPT(S)$ 

#### Proof:

Idea: Show that a Cat exists that will cause  $E[A(S)] \in \Omega(\log m)$  regardless of the Mouse.

Random Cat (RC) probes a random spot with each probe. RC finds Mouse with prob.  $\frac{1}{m}$  no matter what Mouse does.

 $\Rightarrow E[A(S)]$  after t probes is  $\frac{t}{m}$ .

How many RC probes until RC examines every spot?

Coupon Collector Problem  $\Rightarrow \Theta(m \log m)$ 

So OPT Mouse (that knows RC's probes) moves once in sequence S of  $\Omega(m \log m)$  probes, while Mouse A moves

$$E[A(S)] \in \frac{\Omega(m \log m)}{m} = \Omega(\log m)$$
 times.