Victor Ströele

Roteiro

Definição: Autômatos Finitos

Exemplos Exercícios

Linguagens Regulares

Roteiro da Aula 2

1 Definição: Autômatos Finitos Sintaxe Semântica

- 2 Exemplos e Exercícios
- 3 Linguagens Regulares Propriedades de Fechamento

Victor Ströele

Roteiro

Definição: Autômatos

Sintaxe Semântica

Evennlos

Exercícios

Linguagen Regulares

Sintaxe

Um Autômato Finito Determinístico (AFD) é uma tupla $A = (Q, \Sigma, \delta, q_0, F)$, onde:

 $Q \\ \Sigma \\ \delta: Q \times \Sigma \to Q \\ q_0 \in Q \\ F \subseteq Q$

conjunto finito de estados alfabeto finito de símbolos função de transição estado inicial conjunto de estados finais

Victor Ströele

Roteiro

Definição: Autômatos

Sintaxe

Semântica

Exercícios

Regulares

Exemplo

Autômato Finito Determinístico A_1

$$A_{1} = (Q = \{1, 2, 3, 4\},$$

$$\Sigma = \{0, 1\},$$

$$\delta = \{((1, 0), 2), ((1, 1), 4), ((2, 0), 3), ((2, 1), 4), ((3, 0), 1), ((3, 1), 4), ((4, 0), 4), ((4, 1), 4)\},$$

$$q_{0} = 1,$$

$$F = \{1\})$$

Victor Ströele

Roteiro

Definição: Autômatos

Sintaxe Semântica

_ .

Exercícios

Linguagens Regulares

Exemplo

Isto não é um AFD! Por quê?

$$A_{1} = (Q = \{1, 2, 3, 4\},$$

$$\Sigma = \{0, 1\},$$

$$\delta = \{((1, 0), 2), ((2, 0), 3), ((2, 1), 4), ((2, 1), 2), ((3, 0), 1), ((3, 1), 4), ((4, 0), 4), ((4, 1), 4)\},$$

$$q_{0} = 1,$$

$$F = \{1, 2, 3\})$$

Sejam $A=(Q,\Sigma,\delta,q_0,F)$ um AFD e $w=w_1w_2w_3\ldots w_n$ uma palavra sobre Σ

Dizemos que A aceita w se existe uma següência de estados de $Q, r = r_0, r_1, \ldots, r_n$, tal que:

- **1** $r_0 = q_0$; e
- **2** $\delta(r_i, w_i) = r_{i+1}$ para todo 0 < i < n-1; e
- $r_n \in F$.

A sequência r é chamada de trajetória de A sobre w

Victor Ströele

Rotein

Definição: Autômato:

Sintaxe

Semântica

Exemplos

Linguagen

Regulares

Semântica

A Linguagem aceita por um AFD A é:

$$\mathcal{L}(A) = \{ w \mid A \text{ aceita } w \}$$

Victor Ströele

Roteiro

Definição: Autômatos Finitos

Exemplos e Exercícios

Linguagens Regulares

Exemplo

Que linguagem aceita A_2 ?

 A_2 :

Victor Ströele

Roteiro

Definição: Autômatos

Exemplos e Exercícios

Linguagens Regulares

Exemplo

Que linguagem aceita A_3 ?

Victor Ströele

Roteiro

Definição: Autômatos Finitos

Exemplos e Exercícios

Linguagens Regulares

Discussão: o que é Determinismo?

Victor Ströele

Roteiro

Definição: Autômatos

Exemplos e

Linguagens Regulares

Discussão: o que é Determinismo?

Para todo AFD A e para toda palavra $w \in \Sigma^*$, existe exatamente uma trajetória de A sobre w

Roteiro

Definição: Autômatos Finitos

Exemplos e Exercícios

Linguagen: Regulares

Exercícios

Construa um AFD para cada uma das seguintes linguagens sobre $\Sigma = \{0,1\}$:

- $\mathcal{L}_1 = \Sigma^*$
- $\mathcal{L}_2 = \{w \mid w \text{ termina em } 0 \text{ e } |w| \geq 3\}$
- $\mathcal{L}_3 = \{w \mid w \text{ possui pelo menos um } 1 \text{ e}$ tem um número par de 0's $\}$

Victor Ströele

Linguagens Regulares

Propriedades de

Linguagens Regulares

Linguagem Regular

Uma linguagem $\mathcal{L} \subseteq \Sigma^*$ é Regular se existe um AFD A tal que $\mathcal{L}(A) = \mathcal{L}.$

Victor Ströele

Roteiro

Definição: Autômatos

Exemplos Exercícios

Exercícios

Linguagens Regulares

Propriedades de Fechamento

Linguagem Regular

• Existem linguagens que não são regulares?

Victor Ströele

Roteiro

Definição Autômato Finitos

Exemplos Exercícios

Linguagens

Regulares
Propriedades of Fechamento

Linguagem Regular

- Existem linguagens que não são regulares?
- Veremos mais tarde que a seguinte linguagem não é regular: $\{0^n1^n\mid n\geq 0\}$

Victor Ströele

Roteiro

Definição: Autômato Finitos

Exemplos e Exercícios

Linguagens Regulares

Propriedades de Fechamento

Propriedade de Fechamento

- Se \mathcal{L} é regular, será que $\overline{\mathcal{L}}$ também é regular?
- As linguagens regulares são fechadas sobre várias operações. Se uma linguagem $\mathcal K$ e $\mathcal L$ são regulares, então:
 - K ∪ L
 - $\mathcal{K} \cap \mathcal{L}$
 - K − L
 - $\overline{\mathcal{L}}$ e $\overline{\mathcal{K}}$
 - SÃO TODAS REGULARES

Victor Ströele

Roteire

Definição: Autômatos

Exemplos Exercícios

Linguager

Propriedades de Fechamento

Complementação

• Se ${\mathcal L}$ é regular, será que $\overline{{\mathcal L}}$ também é regular?

Victor Ströele

Roteiro

Definição: Autômatos Finitos

Exemplos Exercícios

Linguagen

Propriedades de Fechamento

Complementação

• Se \mathcal{L} é regular, será que $\overline{\mathcal{L}}$ também é regular?

Victor Ströele

Roteiro

Definição: Autômatos Finitos

Exemplos Exercícios

Linguagen

Propriedades de Fechamento

Complementação

• Se \mathcal{L} é regular, será que $\overline{\mathcal{L}}$ também é regular?

Victor Ströele

Roteiro

Definição: Autômatos

Exemplos Exercícios

Exercícios

Propriedades de Fechamento

Complementação

• Se \mathcal{L} é regular, será que $\overline{\mathcal{L}}$ também é regular?

 Dizemos que a classe de linguagens regulares é fechada por complementação