Indian Institute of Technology Roorkee MAN-001(Mathematics-1): B. Tech. I Year

Autumn Semester: 2018-19 Tutorial Sheet-1: Matrix Algebra

(1) Reduce each of the following matrices into row echelon form and then find their ranks:

(a)
$$\begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 7 & 8 & 9 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 2 & 4 & 6 \\ -1 & 3 & 2 \\ 1 & 4 & 6 \\ 2 & 8 & 7 \end{bmatrix}$$
 (c)
$$\begin{bmatrix} 0 & 1 & 2 \\ 4 & 6 & 0 \\ 3 & 1 & 2 \end{bmatrix}$$
 (d)
$$\begin{bmatrix} 1 & 1 & 2 & 0 & -4 \\ 1 & 2 & 0 & -4 & 1 \\ 2 & 0 & -4 & 1 & 1 \\ 0 & -4 & 1 & 1 & 2 \\ -4 & 1 & 1 & 2 & 0 \end{bmatrix}$$

- (2) Examine the following set of vectors over \mathbb{R} for linear dependence:
 - (a) $\{(1,2,3), (2,1,6), (3,3,9)\}$
 - (b) $\{(1,-1,1), (2,1,1), (8,1,5)\}$
 - (c) $\{(1,1,-1,1), (1,-1,2,-1), (3,1,0,1)\}$
 - (d) $\{(1,2,-2), (-1,3,0), (0,-2,1)\}$

(3) (a) Find the conditions/values of α and β for which the matrix

$$\left(\begin{array}{ccc}
\alpha & 1 & 2 \\
0 & 2 & \beta \\
1 & 3 & 6
\end{array}\right)$$

has (i) rank = 1 (ii) rank = 2 (iii) rank = 3.

(b) For what values of α and β is the following system consistent?

$$2x + 4y + (\alpha + 3)z = 2$$
$$x + 3y + z = 2$$
$$(\alpha - 2)x + 2y + 3z = \beta$$

(4) Solve the following system of linear equations by Gauss elimination method:

(5) Consider the following systems of linear equations:

Find the values of unknown constant(s) such that each of the above systems has

1

- (i) no solution (ii) a unique solution (iii) infinitely many solutions.
- (6) Use Gauss elimination method to show that following system has no solution:

$$2\sin x - \cos y + 3\tan z = 3$$

$$4\sin x + 2\cos y - 2\tan z = 10$$

$$6\sin x - 3\cos y + \tan z = 9$$

- (7) Let P_2 be the set of all polynomials of degree 2 or less. Use Gauss elimination method to find all polynomials $f \in P_2$: f(1) = 2 and f(-1) = 6.
- (8) Find the values of k for which the following system of equations has
 - (i) trivial solution (ii) non-trivial solution.

$$(3k-8)x+3y+3z=0
(a) 3x+(3k-8)y+3z=0
3x+3y+(3k-8)z=0$$
(b) $(k-1)x+(3k+1)y+2kz=0$
 $(k-1)x+(4k-2)y+(k+3)z=0$
 $(k-1)x+(3k+1)y+2kz=0$

(9) By employing elementary row operations, find the inverse of the following matrices:

$$(a) \left(\begin{array}{ccc} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{array}\right) \ (b) \left(\begin{array}{ccc} 2 & 4 & 5 \\ 1 & 2 & 3 \\ 3 & 5 & 6 \end{array}\right) \ (c) \left(\begin{array}{ccc} 1 & -1 & 2 \\ 2 & 1 & 0 \\ 3 & 4 & 1 \end{array}\right) \ (d) \left(\begin{array}{ccc} 1 & 1 & 1 & 1 \\ 2 & 1 & 3 & 0 \\ 3 & 0 & 2 & 5 \\ 2 & 1 & 1 & 3 \end{array}\right)$$

- (10) If p is a solution of a non-homogeneous system AX = Y, then show that v + p is also a solution of AX = Y, for every solution v of the homogeneous system AX = 0.
- (11) (a) Let A be an $n \times n$ matrix. Prove the following two statements:
 - (i) If A is invertible and AB = 0 for some $n \times n$ matrix B, then B = 0.
 - (ii) If A is not invertible, then there exists an $n \times n$ matrix B such that AB = 0
- (b) If $A = \begin{bmatrix} 1 & 2 & -1 & 3 \\ -2 & 1 & 0 & 1 \\ 0 & 5 & -2 & 7 \\ -1 & 3 & -1 & 4 \end{bmatrix}$, find a 4×4 matrix $B \neq 0$ such that AB = 0.

 (12) Consider a 4×5 matrix $A = \begin{bmatrix} 1 & 7 & -1 & -2 & -1 \\ 3 & 21 & 0 & 9 & 0 \\ 2 & 14 & 0 & 6 & 1 \\ 6 & 42 & -1 & 13 & 0 \end{bmatrix}$.
- - (a) Find the row-reduced echelon form of
 - (b) Find an invertible matrix P such that $PA = \begin{bmatrix} 1 & 7 & -1 & -2 & -1 \\ 0 & 0 & 3 & 15 & 3 \\ 0 & 0 & 2 & 10 & 3 \\ 0 & 0 & 5 & 25 & 6 \end{bmatrix}$.

 (c) Find the equation of a plane $ay_1 + by_2 + cy_3 = d$ such that for each column vector $V = (a_1, a_2, a_3)^T$ the acceptance $AY = V = (a_1, a_2, a_3)^T$ the acceptance $AY = V = (a_1, a_2, a_3)^T$.
 - $Y = (y_1, y_2, y_3, d)^T$, the equation AX = Y has a solution.
 - (d) If $X = (x_1, x_2, x_3, x_4, x_5)^T$, then find the conditions on x_1, x_2, x_3, x_4, x_5 such that AX = 0.

ANSWERS

(3) (a) (i) Not possible (ii)
$$\alpha = \frac{1}{3}$$
 or $\beta = 4$ (iii) $\alpha \neq \frac{1}{3}$, $\beta \neq 4$ (b) $\alpha = 3$ and $\beta = 1$; or $\alpha = -2$ and $\beta = 6$; or $\alpha \neq 3, -2$.

(b)
$$\alpha = 3$$
 and $\beta = 1$; or $\alpha = -2$ and $\beta = 6$; or $\alpha \neq 3, -2$

(5) (a) (i)
$$a+b+c\neq 0$$
 (ii) Not possible (iii) $a+b+c=0$

(b) (i)
$$\lambda = -3$$
 (ii) $\lambda \neq -3, 2$ (iii) $\lambda = 2$

(c) (i)
$$\lambda = 1$$
 and $p + q - 2r \neq 0$ OR $\lambda = 1$ and $q \neq r$ OR $\lambda = -2$ and $p + q + r \neq 0$

(ii)
$$\lambda \neq 1, -2$$

(iii)
$$\lambda = 1$$
 and $p = q = r$ OR $\lambda = -2$ and $p + q + r = 0$

(7)
$$f = (4-k)x^2 - 2x + k, \ k \in \mathbb{R}$$

(8) (a) (i)
$$k \neq \frac{2}{3}, \frac{11}{3}$$
 (ii) $k = \frac{2}{3}$ or $\frac{11}{3}$ (b) (i) $k \neq 0, 3$ (ii) $k = 0$ or 3

$$(9) (a) \frac{1}{2} \begin{bmatrix} 1 & -1 & 1 \\ -8 & 6 & -2 \\ 5 & -3 & 1 \end{bmatrix} (b) \begin{bmatrix} -3 & 1 & 2 \\ 3 & -3 & -1 \\ -1 & 2 & 0 \end{bmatrix} (c) \frac{1}{13} \begin{bmatrix} 1 & 9 & -2 \\ -2 & -5 & 4 \\ 5 & -7 & 3 \end{bmatrix} (d) \frac{1}{4} \begin{bmatrix} -16 & 4 & -4 & 12 \\ 5 & -1 & -1 & 0 \\ 9 & -1 & 3 & -8 \\ 6 & -2 & 2 & -4 \end{bmatrix}$$

(11) (b)
$$\begin{bmatrix} 1 & -1 & 1 & 0 \\ 2 & -7 & 2 & -5 \\ 5 & 0 & 5 & 5 \\ 0 & 5 & 0 & 5 \end{bmatrix}$$
 (This is just one solution. The matrix B is not unique).

(12) (a)
$$\begin{bmatrix} 1 & 7 & 0 & 3 & 0 \\ 0 & 0 & 1 & 5 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ -3 & 1 & 0 & 0 \\ -2 & 0 & 1 & 0 \\ -6 & 0 & 0 & 1 \end{bmatrix}$$

(c)
$$y_1 + y_2 + y_3 = d$$

(d)
$$x_1 + 7x_2 + 3x_4 = 0$$
, $x_3 + 5x_4 = 0$, $x_5 = 0$.