PROPOSED AMENDMENTS TO THE CLAIMS IN APPLICATION 10/642,440

A listing of the claims presented in this patent application appears below. This listing replaces all prior versions and listing of claims in this patent application.

Claim 1 (Currently Amended): A compound having a structure of including resolved enantiomers, solvates, diastercomers and pharmacoutically acceptable salts thereof, said compound comprising Formula I:

or resolved enantiomers, diastereomers or pharmaceutically acceptable salts thereof; wherein

an A group is bonded to at least one of the carbons at the 5, 6, 7 or 8 position of the bicyclic ring, and the ring is substituted by up to three independent R³ groups;

X is N;

 R^1 is a substituted or unsubstituted[[,]] monocyclic or bicyclic, aryl moiety phenyl; R^2 is H or a substituted or unsubstituted C_{1-8} alkyl;

 R^3 is hydrogen, halogon, eyano, nitro[[,]] C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_3 - C_{10} cycloalkyl, C_3 - C_{10} cycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heteroarylalkyl, heteroarylalkyl, $NR^4SO_2R^5$ — $SO_2NR^6R^4$ — $C(O)R^6$,— $C(O)OR^6$ [[,]] - $OC(O)R^6$, $NR^4C(O)OR^5$, $NR^4C(O)R^6$,— $C(O)NR^4R^6$ [[,]] - NR^4R^6 , $NR^4C(O)NR^4R^6$ [[,]] or - OR^6 , - $S(O)R^5$,— SO_2R^5 [[,]] where each of the above alkyl, alkenyl, alkynyl, cycloalkyl[[,]] and aryl[[,]] heteroaryl and heteroeyelyl portion of R^3 is optionally substituted with one to five groups independently selected from oxo, halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, $NR^4SO_2R^5$, $SO_2NR^6R^4$, $C(O)R^6$, $C(O)OR^6$, $C(O)OR^6$ [[,]] - $OC(O)R^6$, $NR^4C(O)OR^5$,— $NR^4C(O)OR^6$, $NR^4C(O)OR$

A is $-(U)_nZ$, where n is 0;

Z is

where W and V are selected independently from CR⁷R⁸, CR⁸R⁹, O, [[-S]] S, SO, SO₂, provided

if W is O, [[-S]] \underline{S} , SO, SO₂, then V is CR^8R^9 , and provided that R^6 directly bonded to Z is not H;

Z includes one or more R⁸ or R⁹ groups, wherein said R⁸ and R⁹ groups may be bonded to the same or different atoms;

R⁴ is H or C₁₋₆ alkyl;

R⁵ is trifluoromethyl, C₁-C₁₀ alkyl, C₃-C₁₀ cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclylalkyl, where each alkyl, cycloalkyl, aryl, heteroaryl, heterocyclylalkyl is optionally substituted with one to five groups independently selected from oxo, halogen, cyano, nitro, OR⁶, NR⁴R⁶, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl;

R⁶, R⁸ and R⁹ are independently selected from hydrogen, trifluoromethyl, C₁-C₁₀ alkyl, (CH₂)₀₋₄C₃-C₁₀ cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, where each alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl is optionally substituted with one to five groups independently selected from oxo, halogen, cyano, nitro, OR⁶, NR⁶R⁸, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl;

 R^7 is hydrogen, halogen, cyano, nitro, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_3 - C_{10} cycloalkyl, C_3 - C_{10} cycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, -NR 4 SO $_2$ R 5 -SO $_2$ NR 6 R 4 , -C(O)R 6 , -C(O)OR 6 , -OC(O)R 6 , -NR 4 C(O)OR 5 , -NR 4 C(O)NR 4 R 6 , -NR 4 C(O)NR 4 R 6 , -NR 4 C(O)NR 4 R 6 , -OR 6 , -S(O)R 5 , -SO $_2$ R 5 , where each of the above alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl and heterocyclyl portion of R 3 is

optionally substituted with one to five groups independently selected from oxo, halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, $-NR^4SO_2R^5$, $-SO_2NR^6R^4$, $-C(O)R^6$, $-C(O)OR^6$, $-OC(O)R^6$, $-NR^4C(O)OR^5$, $-NR^4C(O)CR^6$, $-C(O)NR^4R^6$, $-NR^4R^6$, $-NR^4C(NCN)NR^4R^6$, $-OR^6$, $-S(O)R^5$, $-SO_2R^5$, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl;

an R⁴ group and an R⁶ group may be independently joined to complete a 3 to 10 membered cyclic ring optionally containing additional heteroatoms selected from the group consisting of O, S, SO, SO₂ and NR⁶ where each ring carbon may be optionally substituted with one to three groups independently selected from halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, aryl, OR⁸, NR⁶R⁸, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; provided said ring does not contain two adjacent O or two adjacent S atoms;

an R⁶ group and an R⁸ group may be independently joined to complete a 3 to 10 membered cyclic ring optionally containing additional heteroatoms selected from the group consisting of O, S, SO, SO₂ and NR⁶ where each ring carbon may be optionally substituted with one to three groups independently selected from halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, aryl, OR⁸, NR⁶R⁸, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; provided said ring does not contain two adjacent O or two adjacent S atoms;

an R⁷ group and an R⁸ group may be independently joined to complete a 3 to 10 membered cyclic ring optionally containing additional heteroatoms selected from the group consisting of O, S, SO, SO₂ and NR⁶ where each ring carbon may be optionally substituted with one to three groups independently selected from halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, aryl, OR⁸, NR⁶R⁸, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; provided said ring does not contain two adjacent O or two adjacent S atoms; and

an R⁸ group and an R⁹ group may be independently joined to complete a 3 to 10 membered cyclic ring optionally containing additional heteroatoms selected from the group consisting of O, S, SO, SO₂ and NR⁶ where each ring carbon may be optionally substituted with

one to three groups independently selected from halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, aryl, OR^8 , NR^6R^8 , heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; provided said ring does not contain two adjacent O or two adjacent S atoms.

Claim 2: (Canceled).

Claim 3 (Currently Amended): The compound of claim 1, wherein [[a]] the A group is bonded to at least one of the carbons at the 6 or 7 position of the bicyclic ring.

Claim 4 (Previously Amended): The compound of claim 1, wherein \mathbb{R}^2 is hydrogen, and \mathbb{R}^3 is hydrogen or \mathbb{OR}^6 .

Claim 5 (Previously Amended): The compound of claim 3, wherein \mathbb{R}^3 is hydrogen or $\mathbb{C}\mathbb{R}^6$.

Claim 6 (Original Claim): The compound of claim 1, wherein R² is hydrogen.

Claim 7 (Previously Amended): The compound of claim 1, wherein Z is

and W is O.

Claim 8 (Previously Amended): The compound of claim 5, wherein Z is

$$R^8$$
 N
 N
 N
 N
 N

and W is O.

Claim 9 (Original Claim): The compound of claim 1, wherein the R⁴ group and the R⁶ group are independently joined to complete a 3 to 10 membered cyclic ring optionally containing additional heteroatoms selected from the group consisting of O, S, SO, SO₂ and NR⁶ where each ring carbon may be optionally substituted with one to three groups independently selected from halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, aryl, OR⁸, NR⁶R⁸, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; provided said ring does not contain two adjacent O or two adjacent S atoms.

Claim 10 (Original Claim): The compound of claim 1, wherein the R⁶ group and the R⁸ group are independently joined to complete a 3 to 10 membered cyclic ring optionally containing additional heteroatoms selected from the group consisting of O, S, SO, SO₂ and NR⁶ where each ring carbon may be optionally substituted with one to three groups independently selected from halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, aryl, OR⁸, NR⁶R⁸, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; provided said ring does not contain two adjacent O or two adjacent S atoms.

Claim 11 (Previously Amended): The compound of claim 1, wherein the R⁷ group and the R⁸ group are independently joined to complete a 3 to 10 membered cyclic ring optionally containing additional heteroatoms selected from the group consisting of O, S, SO, SO₂ and NR⁶ where each ring carbon may be optionally substituted with one to three groups independently selected from halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido,

aryl, OR⁸, NR⁶R⁸, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; provided said ring does not contain two adjacent O or two adjacent S atoms.

Claim 12 (Original Claim): The compound of claim 1, wherein the R⁸ group and the R⁹ group are independently joined to complete a 3 to 10 membered cyclic ring optionally containing additional heteroatoms selected from the group consisting of O, S, SO, SO₂ and NR⁶ where each ring carbon may be optionally substituted with one to three groups independently selected from halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, aryl, OR⁸, NR⁶R⁸, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; provided said ring does not contain two adjacent O or two adjacent S atoms.

Claim 13 (Currently Amended): A method of treating hyperproliferative diseases inflammation and cancer of the colon, ovary, bladder, breast, stomach, esophagus, lung, uterus and prostate in a mammal comprising administering a therapeutically effective amount of the compound defined in claim 1 to said mammal.

Claim 14 (Currently Amended): A method of treating hyperproliferative diseases inflammation and cancer of the colon, ovary, bladder, breast, stomach, esophagus, lung, uterus and prostate in a mammal comprising administering a therapeutically effective amount of the compound defined in claim 2 to said mammal.

Claim 15 (Currently Amended): A method of treating hyperproliferative diseases inflammation and cancer of the colon, ovary, bladder, breast, stomach, esophagus, lung, uterus and prostate in a mammal comprising administering a therapeutically effective amount of the compound defined in claim 3 to said mammal.

Claim 16 (Currently Amended): A method of treating hyperproliferative diseases inflammation and cancer of the colon, ovary, bladder, breast, stomach, esophagus, lung, uterus

and prostate in a mammal comprising administering a therapeutically effective amount of the compound defined in claim 4 to said mammal.

Claim 17 (Currently Amended): A method of treating hyperproliferative diseases inflammation and cancer of the colon, ovary, bladder, breast, stomach, esophagus, lung, uterus and prostate in a mammal comprising administering a therapeutically effective amount of the compound defined in claim 5 to said mammal.

Claim 18 (Currently Amended): A method of treating hyperproliferative diseases inflammation and cancer of the colon, ovary, bladder, breast, stomach, esophagus, lung, uterus and prostate in a mammal comprising administering a therapeutically effective amount of the compound defined in claim 6 to said mammal.

Claim 19 (Currently Amended): A method of treating hyperproliferative diseases inflammation and cancer of the colon, ovary, bladder, breast, stomach, esophagus, lung, uterus and prostate in a mammal comprising administering a therapeutically effective amount of the compound defined in claim 7 to said mammal.

Claim 20 (Currently Amended): A method of treating hyperproliferative diseases inflammation and cancer of the colon, ovary, bladder, breast, stomach, esophagus, lung, uterus and prostate in a mammal comprising administering a therapeutically effective amount of the compound defined in claim 8 to said mammal.

Claim 21 (Currently Amended): A method of treating hyperproliferative diseases inflammation and cancer of the colon, ovary, bladder, breast, stomach, esophagus, lung, uterus and prostate in a mammal comprising administering a therapeutically effective amount of the compound defined in claim 9 to said mammal.

Claim 22 (Currently Amended): A method of treating hyperproliferative diseases inflammation and cancer of the colon, ovary, bladder, breast, stomach, esophagus, lung, uterus and prostate in a mammal comprising administering a therapeutically effective amount of the compound defined in claim 10 to said mammal.

Claim 23 (Currently Amended): A method of treating hyperproliferative diseases inflammation and cancer of the colon, ovary, bladder, breast, stomach, esophagus, lung, uterus and prostate in a mammal comprising administering a therapeutically effective amount of the compound defined in claim 11 to said mammal.

Claim 24 (Currently Amended): A method of treating hyperproliferative diseases inflammation and cancer of the colon, ovary, bladder, breast, stomach, esophagus, lung, uterus and prostate in a mammal comprising administering a therapeutically effective amount of the compound defined in claim 12 to said mammal.

Claim 25 (Previously Presented): The compound of claim 1, wherein R¹ is selected from the structures:

Claim 26 (Previously Presented): The compound of claim 7, wherein R⁶ is an optionally substituted alkyl or cycloalkyl.

Claim 27 (Previously Presented): The compound of claim 26, wherein R⁶ is methyl, ethyl, CH₂CF₃, CH₂CH₂OH, or cyclopropyl.

Claim 28 (Previously Presented): The compound of claim 26, wherein R⁸ and R⁹ are independently an optionally substituted alkyl.

Claim 29 (Previously Presented): The compound of claim 28, wherein R⁸ and R⁹ are independently CH₂OH, CH₂NMe₂ or CH₂O-t-butyl.

Claim 30 (Previously Presented): The compound of claim 26, wherein R⁸ and R⁹ together with the atoms to which they are attached form an optionally substituted heterocyclic ring.

Claim 31 (Previously Amended): The compound of claim 7, wherein Z is selected from the structures:

Claim 32 (Previously Presented): The compound of claim 1, wherein Z is

Claim 33 (Previously Presented): The compound of claim 32, wherein R⁶ is an optionally substituted alkyl.

Claim 34 (Previously Amended): The compound of claim 33, wherein R⁶ is methyl.

Claim 35 (Previously Presented): The compound of claim 34, wherein Z is

Claim 36 (Previously Amended): The compound of claim 1, selected from:

N4-[3-Chloro-4-(3-fluorobenzyloxy)-phenyl]-N6-(3-methyl-oxazolidin-2-ylidene)-quinazoline-4,6-diamine;

N-4-[3-Chloro-4-(3-fluorobenzyloxy)-phenyl]-N6-(3-ethyl-oxazolidin-2-ylidene)-quinazoline-4,6-diamine;

(2-{4-[3-Chloro-4-(3-fluorobenzyloxy)-phenylamino]-quinazolin-6-ylimino}-3-methyloxazolidin-5-yl)-methanol;

2-(2-{4-[3-Chloro-4-(3-fluorobenzyloxy)-phenylamino]-quinazolin-6-ylimino}-oxazolidin-3-yl)-ethanol;

- N-4-[3-Chloro-4-(3-fluorobenzyloxy)-phenyl]-N6-(4-dimethylaminomethyl-3-methyloxazolidin-2-ylidene)-quinazoline-4,6-diamine;
- (S)-N6-(4-tert-Butoxymethyl-3-methyl-oxazolidin-2-ylidene)-N4-[3-chloro-4-(3-fluoro-phenoxymethyl)-phenyl]-quinazoline-4,6-diamine;
- (S)-(2-{4-[3-Chloro-4-(3-fluorophenoxymethyl)-phenylamino]-quinazolin-6-ylimino}-3-methyl-oxazolidin-4-yl)-methanol;
- (2-{4-[3-Chloro-4-(3-fluorophenoxymethyl)-phenylamino]-quinazolin-6-ylimino}-3-methyl-oxazolidin-5-yl)-methanol;
- {3-Methyl-2-[4-(3-methyl-4-phenoxyphenylamino)-quinazolin-6-ylimino]-oxazolidin-5-yl}-methanol;
- (2-{4-[3-Chloro-4-(6-methylpyridin-3-yloxy)-phenylamino]-quinazolin-6-ylimino}-3-methyl-oxazolidin-5-yl)-methanol;
- N4-(4-Benzenesulfonylphenyl)-N6-(3-methyloxazolidin-2-ylidene)-quinazoline-4,6-diamine;
- {2-[4-(4-Benzenesulfonylphenylamino)-quinazolin-6-ylimino]-3-methyl-oxazolidin-5-yl}-methanol;
- N4-(4-Benzenesulfonylphenyl)-N6-(3-cyclopropyloxazolidin-2-ylidene)-quinazoline-4,6-diamine;
- N6-(Dimethylhexahydropyrrolo[3,4-d]oxazol-2-ylidene)-N4-(3-methyl-4-phenoxyphenyl)-quinazoline-4,6-diamine;
- N4-[3-Chloro-4-(thiazol-2-ylmethoxy)-phenyl]-N6-(3-methyloxazolidin-2-ylidene)-quinazoline-4,6-diamine;
- N4-[3-Chloro-4-(pyridin-2-ylmethoxy)-phenyl]-N6-(dimethyl-3-oxa-1,8-diaza-spiro[4.5]dec-2-ylidene)-quinazoline-4,6-diamine;
- [2-{4-[3-Chloro-4-(3-fluorobenzyloxy)-phenylamino]-quinazolin-6-ylimino}-3-(2,2,2-trifluoroethyl)-oxazolidin-5-yl]-methanol; and
- N4-[3-Chloro-4-(3-fluorobenzyloxy)-phenyl]-N6-(1-methylpyrrolidin-2-ylidene)-quinazoline-4,6-diamine.

Claim 37 (Currently Amended): A compound including resolved enantiomers, diastercomers and pharmaceutically acceptable salts thereof, said compound comprising having a structure of Formula I:

$$\begin{array}{c} & & NR^1R^2 \\ & & & \\ & & & \\ R^3 & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

or resolved enantiomers, diastereomers or pharmaceutically acceptable salts thereof, wherein

X is N;

R¹ is selected from the structures:

 R^2 is hydrogen or a substituted or unsubstituted C_{1-8} alkyl;

 R^3 is hydrogen, halogen, eyano, nitro[[,]] C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_3 - C_{10} cycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclylalkyl, $-NR^4SO_2R^5$ - $-SO_2NR^6R^4$, $-C(O)R^6$, $-C(O)OR^6$ [[,]] $-OC(O)R^6$, $-NR^4C(O)OR^5$, $-NR^4C(O)R^6$, $-C(O)NR^4R^6$ [[,]] $-NR^4R^6$, $-NR^4C(O)NR^4R^6$ [[,]] $-OR^6$, $-S(O)R^5$, $-NR^4C(O)NR^4R^6$ [[,]] $-OR^6$, $-S(O)R^5$, $-OR^6$, -

SO₂R⁵[[,]] where each of the above alkyl, alkenyl, alkynyl, cycloalkyl[[,]] <u>and</u> aryl[[,]] <u>heteroaryl</u> and heteroeyelyl portion of R³ is optionally substituted with one to five groups independently selected from oxo, halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, NR⁴SO₂R⁵, SO₂NR⁶R⁴, C(O)R⁶, C(O)OR⁶[[,]] -OC(O)R⁶, NR⁴C(O)OR⁵, NR⁴C(O)OR⁶, C(O)NR⁴R⁶, NR⁴C(O)NR⁴R⁶[[,]] -OR⁶, S(O)R⁵, SO₂R⁵[[,]] aryl[[,]] and arylalkyl[[,]] heteroaryl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl;

A is $-(U)_nZ$, where

n is 0; and

Z is selected from the following structures:

Claim 38: (Canceled).

Claim 39 (Currently Amended): The compound of claim 37, wherein R² is hydrogen.

Claim 40 (Currently Amended): The compound of claim 37, wherein R³ is hydrogen.