

Trenton Cathcart

Power Systems

Experiment 9,10 & 11: Design with Power Flow"

April 19, 2023

Table of Contents

I. List of Tables:	2
II. List of Figures:	2
III. Objectives:	2
IV. Equipment Used:	2
V. Background Theory:	3
VI. Preliminary Calculations:	3
VII. Procedure/Result/Analysis:	3
I. PowerWorld Simulations:	3
II. Optimization:	5
VIII. Conclusion:	9
IX. References:	9
X. Appendix:	9

I. List of Tables:

- A. Table 1: Successful Bus Combinations
- B. Table 2: PU Bus Values

II. List of Figures:

- A. Figure 1: Ideal Contingency Analysis Output
- B. Figure 2: ACSR Table
- C. Figure 3: PAI69 PU Calculation
- D. Figure 4: TIM69 PU Calculation
- E. Figure 5: PowerWorld Output

III. Objectives:

The objective of this project is to perform a thorough analysis and develop an optimal design for connecting a new 200 MW wind farm to the existing power grid while minimizing cost and maintaining the reliability of the power system. To achieve this objective, the project focuses on evaluating various combinations of buses for connecting the wind farm to the existing 69 kV substations and identifying the optimal right-of-way line that minimizes energy losses and adheres to the given security constraints. By leveraging advanced features of the PowerWorld Simulator and employing a systematic approach to analyzing power flow, contingency scenarios, and system reinforcements, the project aims to arrive at a cost-effective and reliable solution for integrating the new wind farm into the power system.

IV. Equipment Used:

• PowerWorld Simulator: A software tool used for power flow analysis, contingency analysis, and system optimization in the transmission planning process.

EE3541 Trenton Cathcart Date: 04/19/2023

V. Background Theory:

The power transmission system is a critical component of the electrical grid, responsible for the efficient and reliable transfer of electricity from generation plants to distribution networks that ultimately deliver power to consumers. High voltage transmission systems offer several advantages, including reduced energy losses, lower construction costs per unit of power, and efficient long-distance power transfer. However, the transmission capacity in the US has been decreasing due to factors such as aging infrastructure, regulatory and permitting challenges, and insufficient investment in transmission infrastructure. Since the mid-1990s, transmission planning has evolved to address these challenges and adapt to new priorities, such as the increased emphasis on renewable energy integration and the effects of deregulation and competition on the power industry. Power flow analysis is a crucial part of transmission planning, as it provides insights into the power transfer between buses, line loading, and voltage levels under various operating conditions. This information is essential for making informed decisions on system upgrades, reinforcements, and new capacity additions, ensuring the continued reliability and efficiency of the power grid. In this project, we aim to apply the principles of power flow analysis and transmission planning to design a cost-effective solution for integrating a new 200 MW wind farm into the existing power grid while maintaining system reliability and adhering to the given security constraints.

VI. Preliminary Calculations:

No preliminary calculations required

VII. Procedure/Result/Analysis:

I. PowerWorld Simulations:

In the PowerWorld simulations, a total of 64 different cases were analyzed to determine the best combination of buses for connecting the new 200 MW wind farm to the existing 69 kV substations. Each combination was thoroughly tested to ensure compliance with the given security constraints, such as no errors, no overloading of PU, not exceeding 100% of their limit values, and not surpassing the generators' reactive power limits. The Contingency Analysis tool was utilized to perform these tests and evaluate the performance of each combination under various operating conditions. Out of the 64 cases analyzed, only 6 met all the requirements and passed the security constraints. An example of an ideal contingency output can be observed in **Figure 1** below. To further compare these combinations, the system MWh losses for each case were determined using the 'Run' command in PowerWorld. A comprehensive list of the combinations and their corresponding losses can be found in **Table 1** below. After examining the losses and other factors, the PAI and TIM69 bus combination was identified as the most optimal choice, as it exhibited the lowest losses and zero resistance. This selection allowed for further investigation into minimizing costs while maintaining system reliability and adhering to the given security constraints.

Figure 1: Ideal Contingency Analysis Output

ATTEMPTS	L1	L2	LOSS	VIOLATIONS
5	PAI	TIM69	8.35	0
7	PAI	RAY	11.08	0
8	PAI	ZEB	10.58	0
41	TIM69	PAI	8.36	0
42	TIM69	PETE	7.9	0
53	RAY	TIM69	8.4	0

Table 1: Successful Bus Combinations

II. Optimization:

In order to optimize the design and minimize costs, the inbuilt PU calculator within PowerWorld and the supplied ASCR table were utilized to determine the values of Ra and Xa per mile for each line composition (Drake, Cardinal, Pheasant, and Falcon) and their respective distances to the buses. As these were short lines, they did not have any capacitive reactances. The Ra and Xa values were retrieved from the ACSR table (**Figure 2**) and entered into the PU calculator. The final calculations for all combinations can be seen in **Table 2**.

Code Mas	Circular Mas			Alun		Alumnum		Alumanum.		umanum		s Steel		Steel	Steel	Steel		Copper			Geometric		r _a Resistance (Ohma per Conductor pei Mile)							ng Inductive Reactance (ohms per conductor per	x' Shunt Capacitive Reaciance (megohns per
				Strand Diameter		Strand	Ourside Diameter	Equivalent* Circular Mris or	Ulcmate Strength	Weight (pounds per	Mean Radius at 60 Hz	Current Carrying Capacity!	25*	C (77%)	Small Cu	ments	50°C		Current A apacinyt	Lopera x	mile at 1 ft spacing all currents)	per mile at 1 (1 spacing)									
Word	Aluminum			(inches)	_	(inches)	(inches)	AWG	(pounds) mile)		(amps)	dc	25 Hz	50Hz	60 Hz	đe	25 Hz	50 Hz	60 Hz	60 Hz	60 Hz										
Joree Thrasher Krivi Bluebind Chukar	7515000 2312000 2167000 2156000 1781000	76 76 72 84 84	4 4 4	0 1819 0 1744 0 1735 0 1602 0 1456	19 19 7 19 19	0 0849 0 0814 0 1157 0 0961 0 0874	1 880 1 802 1 735 1 762 1 602		61 700 57 300 49 800 60 300 51 000		0.0595 0.0595 0.0570 0.0588 0.0534									0.0450 0.0482 0.0511 0.0505 0.0598	0 337 0 342 0 348 0 344 0 355	0.0755 0.0767 0.0778 0.0774 0.0802									
Falcon Parrol Plover Marsin Pheasans Grackle	1 590 000 1 510 500 1 431 000 1 351 000 1 272 000 1 192 500	54 54 54 54 54 54	3 3 3 3 3	0 1716 0 1673 0 1628 0 1582 0 1535 0 1486	19 19 19 19 19	0 1030 0 1034 0 0977 0 0949 0 0921 0 0692	1.545 1.506 1.465 1.424 1.382 1.338	950 000 950 000 900 000 850 000 900 000 750 000	56 000 53 200 50 400 47 600 44 800 43 100	10 777 10 237 9 699 9 160 8 621 8 082	0.0520 0.0507 0.0493 0.0479 0.0465 0.0450	1 380 1 340 1 300 1 250 1 200 1 160	0.0618 0.0652 0.0691 0.0734	0.0735	0.0621 0.0655 0.0694 0.0737	0 0591 0 0622 0 0656 0 0655 0 0738 0 0788	0.0680 0.0718 0.0761 0.0808	0.0819	0.0675 0.0710 0.0749 0.0792 0.0840 0.0894	0.0720 0.0760 0.0803 0.0851	0.359 0.362 0.365 0.369 0.372 0.376	0 0814 0 0821 0 0830 0 0838 0 0847 0 0857									
Finch Curlew Cardinal Canary Crano Condor	1 113 000 1 033 500 954 000 900 000 874 500 795 000	54 54 54 54 54 54	3 3 3	0 1436 0 1384 0 1329 0 1291 0 1273 0 1214	19 7 7 7 7	0 0862 0 1384 0 1329 0 1291 0 1273 0 1214	1 293 1 246 1 196 1 162 1 146 1 093	700 000 650 000 600 000 566 000 550 000	40 200 37 100 34 200 32 300 31 400 28 500	7544 7019 6479 6112 5940 5399	0.0435 0.0420 0.0403 0.0391 0.0396 0.0368	1110 1060 1010 970 950 900	0.0839 0.0903 0.0979 0.104 0.107 0.117	0.0840 0.0905 0.0980 0.104 0.107 0.118	0.0842 0.0907 0.0981 0.104 0.107 0.118	0.0844 0.0909 0.0962 0.104 0.106 0.119	0.0994 0.1078 0.1145 0.1178	0.1005 0.1088 0.1155 0.1188		0.1185	0 380 0 385 0 390 0 393 0 395 0 401	0.0867 0.0878 0.0890 0.0898 0.0903 0.0917									
Drake Mellerd Crow Starling Redwing Flamingo	795 000 795 000 715 500 715 500 715 500 666 600	26 30 54 26 30 54	2 2 3 2 2 2	0 1749 0 1628 0 1151 0 1659 0 1544 0 3111	7 19 7 7 19 7	01360 0.0977 0.1151 01290 0.0926 0.1111	1.108 1.140 1.036 1.051 1.061 1.000	500 000 500 000 450 000 450 000 450 000 419 000	31 200 38 400 26 300 26 100 34 600 24 500	5770 6517 4859 5193 5865 4527	0.0375 0.0393 0.0349 0.0355 0.0372 0.0337	900 910 830 840 840 800	0 117 0 117 0 131 0 131 0 131 0 140	0 117 0 117 0 131 0 131 0 131 0 140	0.117 0.117 0.131 0.131 0.131 0.131	0 117 0 117 0 132 0 131 0 131 0 141	0 1288 0 1442 0.1442 0.1442	0.1288 0.1452 0.1442 0.1442	0.1288 0.1472 0.1442 0.1442	0.1482	0 399 0 393 0 407 0 405 0 399 0 412	0 0912 0 0904 0 0932 0 0928 0 0920 0 0943									
Rook Grosbeak Egret Peacock Squab Dove	536 000 536 000 636 000 605 000 605 000 556 500	54 26 30 54 26 26	3 2 2 3 2 2 2 2	0 1085 0 1584 0 1456 0 1059 0 1525 0 1463	7 7 19 7 7	01065 01216 00874 01059 01186 01138	0 977 0 990 1 019 0 953 0 966 0 927	400 000 400 000 400 000 380 500 380 500 350 000	23 500 25 000 31 500 22 500 24 100 22 400	4319 4616 5213 4109 4391 4039	0.0329 0.0335 0.0359 0.0321 0.0327 0.0313	770 780 780 750 750 760 730	0 147 0 147 0 147 0 154 0 154 0 168	0.147 0.147 0.147 0.155 0.154 0.168	0 148 0 147 0 147 0 155 0 154 0 168	0.148 0.147 0.147 0.165 0.164 0.168	0.1618 0.1618 0.1695 0.1700	0.1618 0.1618 0.1715 0.1720	0.1678 0.1618 0.1618 0.1755 0.1720 0.1859	0.1618 0.1618 0.1775 0.1720	0.414 0.412 0.406 0.417 0.415 0.420	0 0950 0 0946 0 0937 0 0957 0 0953 0 0965									
Eagle Hawk Hen Ibrs Lark	556 500 477 000 477 000 397 500 397 500	30 26 30 26 30	2 2 2 2 2 2	0 1362 0 1355 0 1261 0.1236 0.1151	7 7 7 7 7	0.1362 0.1054 0.1261 0.0961 0.1151	0 953 0 858 0 883 0 783 0 805	350 000 300 000 300 000 250 000 250 000	27 200 19 430 23 300 16 190 19 980	4 588 3 462 3 933 2 885 3 277	0.0328 0.0290 0.0304 0.0265 0.0278	730 670 670 590 600	0.168 0.196 0.195 0.235 0.235	0.168 0.196 0.196	0.158 0.195 0.196 ame as d	0.168 0.196 0.196	0 1849 0 216 0 216 0 259 0 259		0.1859 aone as d		0.415 0.430 0.424 0.441 0.435	0.0957 0.0988 0.0980 0.1015 0.1006									
Linner Onole Osmich Piper Parindge	336 400 300 000 300 000	26 30 26 30 26	2 2 2 2 2 2	0.1138 0.1059 0.1074 0.1000 0.1013	7 7 7 7 7	0.0855 0.1059 0.0835 0.1000 0.0788	0.721 0.741 0.680 0.700 0.642	4/0 4/0 188 700 188 700 3/0	14050 17040 12650 15430 11260	2442 2774 2178 2473 1936	0.0244 0.0255 0.0230 0.0241 0.0217	530 530 490 500 460	0.278 0.278 0.311 0.311 0.360				0.306 0.306 0.342 0.342 0.385				0.451 0.445 0.458 0.462 0.465	0.1039 0.1032 0.1057 0.1049 0.1074									

Figure 2: ACSR Table

Cost	\$625,000			Cost	\$750,000		
Miles	Drake	PU Ra	PU Xa	Miles	Cardinal	PU Ra	PU Xa
6	PAI	0.016232	0.050284	6	PAI	0.014216	0.049149
7.4	PETE	0.020019	0.062016	7.4	PETE	0.017532	0.060618
12	DEMAR	0.032464	0.100567	12	DEMAR	0.028431	0.098299
4.5	GROSS	0.012174	0.037713	4.5	GROSS	0.010662	0.036862
11.2	HISKY	0.0303	0.093863	11.2	HISKY	0.026536	0.091745
13	Tim	0.035169	0.108948	13	Tim	0.0308	0.10649
15	RAY	0.04058	0.125709	15	RAY	0.035539	0.122873
11	ZEB	0.029758	0.092187	11	ZEB	0.026062	0.090107
Cost	\$825,000			Cost	\$900,000		
Miles	Pheasant	PU Ra	PU Xa	Miles	Falcon	PU Ra	PU Xa
6	PAI	0.010725	0.046881	6	PAI	0.00862	0.045243
7.4	PETE	0.013227	0.05782	7.4	PETE	0.010631	0.055799
12	DEMAR	0.021449	0.093762	12	DEMAR	0.01724	0.090485
4.5	GROSS	0.008043	0.035161	4.5	GROSS	0.006465	0.033932
11.2	HISKY	0.020019	0.087511	11.2	HISKY	0.016091	0.084453
13	Tim	0.023237	0.101575	13	Tim	0.018677	0.098026
15	RAY	0.026812	0.117202	15	RAY	0.02155	0.113106
11	ZEB	0.019662	0.085948	11	ZEB	0.015803	0.082945

Table 2: PU Bus Values

The PU values were then input into the simulation to calculate the new total power losses for the selected PAI & TIM69 combination. Examples of these PU entries for the TIM PAI combination can be observed in **Figures 3 & 4**. The PowerWorld output for the Drake line is shown in **Figure 5**.

Figure 3: PAI69 PU Calculation

Figure 4: TIM69 PU Calculation

Figure 5: PowerWorld Output

With the MWh losses for each line type determined, the total power loss cost for each line was calculated, considering that each MWh costs \$50 and multiplying that by the number of hours in 5 years. The MWh losses were: Drake - 12.74 MWh, Cardinal - 12.33 MWh, Pheasant - 11.58 MWh, and Falcon - 11.1 MWh. The total power loss costs associated with these losses were: Drake - \$27,939,000, Cardinal - \$27,020,100, Pheasant - \$25,359,800, and Falcon - \$24,363,000.

The construction costs per mile for each line type were: Falcon - \$900,000, Pheasant - \$825,000, Cardinal - \$750,000, and Drake - \$625,000. Given that TIM69 was 12 miles away from the wind farm and PAI was 6 miles away, the total construction costs were calculated by multiplying these costs by 18. The resulting construction costs were: Drake - \$11.25 million, Cardinal - \$13.5 million, Pheasant - \$14.85 million, and Falcon - \$16.2 million.

These construction costs were then added to the MWh losses to reach a total for each: Drake - \$39.15 million, Cardinal - \$40.5 million, Pheasant - \$40.21 million, and Falcon - \$40.5 million. Based on these calculations, the Drake line was chosen as the most cost-effective option for

construction, achieving the lowest total cost over a 5-year period. These calculations can further be observed at the end within **Appendix 1.**

VIII. Conclusion:

In conclusion, this project successfully achieved its objective of designing an optimal solution for connecting a new 200 MW wind farm to the existing power grid while minimizing cost and maintaining system reliability. Through the use of PowerWorld Simulator, a systematic approach was employed to analyze 64 different cases, ultimately identifying the PAI and TIM69 bus combination as the most optimal choice. This combination had the lowest losses and zero resistance, making it ideal for further cost optimization. The project also involved a comprehensive analysis of various line compositions (Drake, Cardinal, Pheasant, and Falcon) and their respective construction costs and energy losses. By employing the PU calculator and the ASCR table, the most cost-effective line composition was determined to be the Drake line, which had the lowest total cost over a 5-year period. This project has demonstrated the importance of power flow analysis, contingency planning, and thorough evaluation of various design options in transmission planning. The results obtained provide a strong foundation for future projects involving the integration of renewable energy sources into the existing power grid. The methodology and tools utilized in this project can serve as valuable resources for power engineers and planners seeking to develop cost-effective and reliable solutions for power transmission system design and optimization.

IX. References:

None

X. Appendix:

Appendix 1: Construction

Construction Cost = Distance • Cost per mile $Falcon = 18 \ miles • \$900,000 \frac{\$}{mile} = \$16.2 \ Million$ $Pheasant = 18 \ miles • \$825,000 \frac{\$}{mile} = \$14.85 \ Million$ $Cardinal = 18 \ miles • \$750,000 \frac{\$}{mile} = \$13.5 \ Million$ $Drake = 18 \ miles • \$625,000 \frac{\$}{mile} = \$11.25 \ Million$

 $MWh\ Cost = MWh(Loss) \bullet 50\$ \bullet Hours\ in\ Five\ years$ Drake = 12.74 $MWh\ *\ \$50/MWh\ *\ 43,800\ hours\ =\ \$27,939,000$ Cardinal = 12.33 $MWh\ *\ \$50/MWh\ *\ 43,800\ hours\ =\ \$27,020,100$ Pheasant = 11.58 $MWh\ *\ \$50/MWh\ *\ 43,800\ hours\ =\ \$25,359,800$ Falcon = 11.1 $MWh\ *\ \$50/MWh\ *\ 43,800\ hours\ =\ \$24,363,000$

Losses