Logistics systems planning I Optimization of logistics systems Transportation planning – Minimum spanning tree problem

Univ.-Prof. Dr. Michael Schneider

Deutsche Post Chair-Optimization of Distribution Networks (DPO)

RWTH Aachen University

 $\verb|schneider@dpo.rwth-aachen.de|\\$

Course agenda

- Fundamentals
- Transportation planning
 - Introduction
 - Shortest path problems
 - Minimum spanning tree problem
 - Traveling salesman problem
 - Vehicle routing problems
 - Arc routing problems
- Warehouse planning
- 4 Introduction to location planning

Definition, applications, optimality conditions Kruskal's algorithm Prim's algorithm

Goals of the section:

- Define the problem
- Identify situations in which minimum spanning trees are sought
- Understand optimality conditions
- Understand and manually carry out algorithms of Kruskal and Prim

Agenda

- 1 Minimum spanning tree problem
 - Definition, applications, optimality conditions
 - Kruskal's algorithm
 - Prim's algorithm

Spanning trees

Spanning tree

In a connected graph (V, E), a spanning tree is a connected acyclic subgraph (W, T) with W = V and $T \subseteq E$.

- (V, T) is a spanning tree of (V, E)
- \Leftrightarrow (V, T) is a connected subgraph with |V| 1 edges
- \Leftrightarrow (V, T) is an acyclic subgraph with |V| 1 edges
- \Leftrightarrow for each pair of nodes in V, there exists a unique path in (V, T) connecting the nodes
- \Leftrightarrow adding an arbitrary edge to (V, T) generates exactly one elementary cycle
- \Leftrightarrow (V, T) decomposes into exactly two components if an arbitrary edge from T is removed

The minimum spanning tree problem

Minimum spanning tree (MST)

In a connected weighted graph (V, E, c_{ij}) , a spanning tree (V, T) is called minimum spanning tree if $c(T) = \sum_{\{i,j\} \in T} c_{ij}$ is minimum for all spanning trees.

Minimum spanning tree problem – applications

- Applications: Construction of distance or cost-minimal networks, e.g.,
 - Pipeline and other supply networks (gas, water, electricity, oil, ...) connecting the source with the consumers
 - Communication networks, e.g., wiring in computer networks
 - Shortest street network for connecting a set of locations

The minimum spanning tree problem – Example

$$\Rightarrow c(T) = 2 + 2 + 3 + 3 + 3 + 4 = 17$$

The minimum spanning tree problem

When determining shortest paths of a node s to all other nodes in a graph, the result was a so-called shortest paths tree.

- Can you solve the shortest path problem in an undirected graph by determining an MST?
- Can you solve the MST problem by determining the shortest paths tree?
- Are the objective functions of MST and shortest path problem identical?
- Does it matter that we assume an undirected graph for the MST problem?

Cut optimality conditions I

■ Assume we remove an edge $\{v, w\} \in T$ from a spanning tree (V, T)

- The tree decomposes into two components
 - \blacksquare the node sets of the components are V_{vw} and W_{vw}
 - the cut-set S_{vw} consists of all edges with one end node in V_{vw} and the other one in W_{vw} :

$$S_{vw} = \{\{i,j\} \in E | i \in V_{vw} \text{ and } j \in W_{vw}\}$$

■ The spanning tree can only be an MST, if no other edge $\{i,j\} \in S_{vw}$ is shorter than $\{v,w\}$ (if a shorter edge existed, we could use it to replace $\{v,w\}$). It necessarily holds:

$$c_{ij} \geq c_{vw}$$
 for all $\{i,j\} \in S_{vw}$

Cut optimality conditions II

The conditions are also sufficient.

Cut optimality conditions

Given a weighted graph $G=(V,E,c_{ij})$ and a spanning tree (V,T). (V,T) is an MST

if and only if

for each edge $\{v, w\} \in T$ it holds

$$c_{ij} \geq c_{vw}$$

for all edges $\{i, j\} \in S_{vw}$.

Path optimality conditions

■ Assume we add an edge $\{i,j\} \notin T$ into a spanning tree (V,T)

- This leads to an elementary cycle
 - \blacksquare the nodes i and i are connected through a unique path in T
 - this path P_{ii} and the edge $\{i, j\}$ form an elementary cycle
- The spanning tree can only be an MST, if no edge $\{v, w\} \in P_{ij}$ is longer than $\{i, j\}$ (if there was a longer edge, we could exchange it with $\{i, j\}$). Necessarily, it has to hold:

$$c_{vw} \leq c_{ij}$$
 for all $\{v, w\} \in P_{ij}$

Path optimality conditions

These conditions are also sufficient.

Path optimality conditions

Given a weighted graph $G=(V,E,c_{ij})$ and a spanning tree (V,T). (V,T) is an MST

if and only if

for each edge $\{i, j\} \notin T$

$$c_{vw} \leq c_{ij}$$

holds for all edges $\{v, w\}$ of the unique path in T from i to j.

Agenda

- 1 Minimum spanning tree problem
 - Definition, applications, optimality conditions
 - Kruskal's algorithm
 - Prim's algorithm

Kruskal's algorithm

■ The MST problem can be solved efficiently with the following greedy algorithm

```
Algorithm 1: Kruskal's algorithm

// connected weighted Graph (V, E, c_{ij})
SET T := \emptyset
SORT edges by increasing cost c_{ij}
for \{i, j\} \in E according to sorting do

if inserting \{i, j\} doesn't lead to a cycle in (V, T) then

L T := T \cup \{\{i, j\}\}\}
if |T| = |V| - 1 then
L STOP

// Output: edges T of the MST (V, T)
```

Kruskal's algorithm – Example

Kruskal's algorithm

Why is the spanning tree (V, T) constructed with Kruskal's algorithm minimum?

- Consider any edge $\{i,j\} \notin T$
 - $\{i,j\}$ was not added to the graph because it would have formed a cycle with the previously added edges
 - because of the sorting of the edges, all of theses edges are shorter (or of the same length)
 - ightarrow the path optimality conditions are satisfied for $\{i,j\}$
- Because this argument holds for all edges $\{i,j\} \notin T$, path optimality conditions are entirely satisfied

Kruskal's algorithm

Note:

- How to check efficiently whether adding an edge leads to a cycle
- Idea:
 - save the connected components of T as sets of nodes (note that they form a forest). Example: for a graph with 6 vertices and $T = \{\{1,5\},\{3,5\},\{4,6\}\}$, the connected components are $\{\{1,3,5\},\{2\},\{4,6\}\}$
 - if i and j are in different node sets, adding the edge $\{i,j\}$ does not lead to a cycle
- Efficient implementations use so-called *union-find algorithms*, which are able to carry out the required operations (merging sets and testing whether two elements are in the same set) very fast

Agenda

- Minimum spanning tree problem
 - Definition, applications, optimality conditions
 - Kruskal's algorithm
 - Prim's algorithm

Prim's algorithm

The MST problem can be solved efficiently with the following greedy algorithm

Algorithm 2: Prim's algorithm

```
\begin{tabular}{ll} // & Input: & connected weighted Graph $(V,E,c_{ij})$ SET $S:=\{v_0\}$ for any node $v_0\in V$ \\ & \textbf{while } S\neq V $ \textbf{do} $ \\ & & DETERMINE $\{i,j\}\in \delta(S)$ $(i\in S,j\notin S)$ \\ & & with $c_{ij}=\min_{\{v,w\}\in \delta(S)$} c_{vw}$ \\ & & SET $S:=S\cup \{j\}$ \\ // & Output: & Edges $T$ of MST $(V,T)$ \\ \end{tabular}
```

■ The correctness of Prim's algorithm can be proven based on cut optimality conditions (Ahuja et al. (1993), p.519 and p.523)

Prim's algorithm – Example

Want to learn more?

Kruskal's algorithm:

- https://www-m9.ma.tum.de/graph-algorithms/mst-kruskal/ index_de.html
- https://courses.cs.washington.edu/courses/cse373/16wi/ Hashing/visualization/Kruskal.html

Prim's algorithm:

- https:
 //www-m9.ma.tum.de/graph-algorithms/mst-prim/index_de.html
- https://visualgo.net/en/mst

Descriptions:

- https://www.youtube.com/watch?v=GJ17vvqY6aE
- http://de.wikipedia.org/wiki/Algorithmus_von_Kruskal

Outlook

MST problems are often used in algorithms for other optimization problems:

- as a relaxation of the TSP
- as a component in Christofides tree heuristic for the TSP
- as a component of a heuristic for the rural postman problem

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. *Network Flows: Theory, Algorithms, and Applications*. Prentice Hall, Englewood Cliffs, New Jersey, 1993. ISBN 0-13-617549-X.