## Цель работы:

- а) освоение методов интерполяции функций;
- б) совершенствование навыков по алгоритмизации и программированию вычислительных задач.

#### Задание:

Составить схему алгоритма и программу на языке C/C++ решения задачи по теме «Интерполяция» в соответствии с индивидуальным заданием.

#### Вариант 14

Значения х: -1.0, -0.5, 0.0, 0.67, 1.0

Значения у: 1.0, -0.25, 0.0, 0.67, 1.0

Метод интерполяции: метод Лагранжа

#### Общая постановка задачи:

При решении различных практических задач результаты исследований оформляются в виде таблиц, отображающих зависимость одной или нескольких измеряемых величин от одного определяющего параметра (аргумента). Такого рода таблицы представлены обычно в виде двух или более строк (столбцов) и используются для формирования математических моделей.

Таблично заданные в математических моделях функции обычно записываются в таблицы вида:

| X        | $X_{\theta}$ | $X_{I}$  | ••• | $X_n$    |
|----------|--------------|----------|-----|----------|
| $Y_1(X)$ | $Y(X_0)$     | $Y(X_1)$ | ••• | $Y(X_n)$ |
| •••      | •••          | •••      | ••• | •••      |
| $Y_m(X)$ | $Y(X_0)$     | $Y(X_1)$ | ••• | $Y(X_n)$ |

**(1)** 

Ограниченность информации, представленной такими таблицами, в ряде случаев требует получить значения функций  $Y_j(X)$  (j=1,2,...,m) в точках X, не совпадающих с узловыми точками таблицы  $X_i$  (i=0,1,2,...,n). В таких случаях необходимо определить некоторое аналитическое выражение  $\varphi_j(X)$  для вычисления приближенных значений исследуемой функции  $Y_j(X)$  в произвольно задаваемых точках X. Функция  $\varphi_j(X)$  используемая для определения приближенных значений функции  $Y_j(X)$  называется аппроксимирующей

функцией (от латинского *approximo* - приближаюсь). Близость аппроксимирующей функции  $\varphi_j(X)$  к аппроксимируемой функции  $Y_j(X)$  обеспечивается выбором соответствующего алгоритма аппроксимации.

Все дальнейшие рассмотрения и выводы мы будем делать для таблиц, содержащих исходные данные одной исследуемой функции (т. е. для таблиц с m=1).

#### Интерполяция каноническим полиномом

Метод интерполяции функции каноническим полиномом основывается на построении интерполирующей функции как полинома в виде [ 1 ]

$$\varphi(x) = P_n(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$$
(4)

Коэффициенты  $c_i$  полинома (4) являются свободными параметрами интерполяции, которые определяются из условий Лагранжа:

$$P_{i}(x_{i}) = Y_{i}, \quad (i = 0, 1, ..., n)$$
 (5)

Используя (4) и (5) запишем систему уравнений

$$c_{0} + c_{1}x_{0} + c_{2}x_{0}^{2} + ... + c_{n}x_{0}^{n} = Y_{0}$$

$$c_{0} + c_{1}x_{1} + c_{2}x_{1}^{2} + ... + c_{n}x_{1}^{n} = Y_{1}$$

$$...$$

$$c_{0} + c_{1}x_{n} + c_{2}x_{n}^{2} + ... + c_{n}x_{n}^{n} = Y_{n}$$
(6)

Вектор решения  $c_i$  ( i = 0, 1, 2, ..., n) системы линейных алгебраических уравнений (6) существует и может быть найден, если среди узлов  $x_i$  нет совпадающих. Определитель системы (6) называется определителем Вандермонда<sup>1</sup> и имеет аналитическое выражение [ 2 ].

Для определения значений коэффициентов  $c_i$  (i = 0, 1, 2, ..., n) систему уравнений (5) можно записать в векторно-матричной форме

Он равен нулю тогда и только тогда, когда  $\mathbf{x}_i = \mathbf{x}_j$  для некоторых  $i \neq j$ . (Материал из Википедии — свободной энциклопедии)

$$A*C=\overline{Y}, \qquad (7)$$

где A, матрица коэффициентов, определяемых таблицей степеней вектора аргументов  $X = (x_i^0, x_i, x_i^2, ..., x_i^n)^T$  (i = 0, 1, 2, ..., n)

$$\mathbf{A} = \begin{vmatrix} 1 & \mathbf{x}_0 & \mathbf{x}_0^2 & \dots & \mathbf{x}_0^n \\ 1 & \mathbf{x}_1 & \mathbf{x}_1^2 & \dots & \mathbf{x}_1^n \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \mathbf{x}_n & \mathbf{x}_n^2 & \dots & \mathbf{x}_n^n \end{vmatrix},$$
(8)

 ${\it C}$  - вектор-столбец коэффициентов  ${\it c}_i$  (i = 0, 1, 2, ..., n), а  $\overline{\it Y}$  - вектор-столбец значений  ${\it Y}_i$  (i = 0, 1, 2, ..., n) интерполируемой функции в узлах интерполяции.

### Интерполяционная формула Лагранжа

Предложенный Лагранжем алгоритм построения интерполирующих функций по таблицам (1) предусматривает построение интерполяционного многочлена  $L_n(x)$  в виде

$$L_{n}(x) = l_{0}(x) + l_{1}(x) + ... + l_{n}(x)$$
(11)

где  $\boldsymbol{l}_{i}\!\left(\boldsymbol{x}\right)$  - многочлен степени  $\boldsymbol{n}$ , для которого выполняются условия

$$m{l}_i(m{x}_k) = egin{cases} m{Y}_i, \ ext{ecли} \ m{i} = m{k}, \ 0, \ ext{ecли} \ m{i} 
eq m{k}. \end{cases}$$

Очевидно, что выполнение для (10) условий (11) определяет выполнение условий (2) постановки задачи интерполяции.

Многочлены  $\boldsymbol{l}_{i}(x)$  записываются следующим образом

$$l_{i}(x) = q_{i}(x-x_{0})(x-x_{1}) \cdot ... \cdot (x-x_{i-1})(x-x_{i+1}) \cdot ... (x-x_{n}).$$
(13)

Здесь  $q_j$  - константа, значение которой определяется с учётом (12) как

$$q_{i} = \frac{Y_{i}}{(x_{i} - x_{0})...(x_{i} - x_{i-1})(x_{i} - x_{i+1})...(x_{i} - x_{n})}, (i = 0,1,2,...,n)$$
(14)

Отметим, что ни один множитель в знаменателе формулы (14) не равен нулю. Вычислив значения констант  $c_i$ , можно использовать их для вычисления значений интерполируемой функции в заданных точках.

Формула интерполяционного многочлена Лагранжа (11) с учётом формул (13) и (14) может быть записана в виде

$$L_{n}(x) = \sum_{i=0}^{n} q_{i}(x - x_{0})(x - x_{1}) \cdot \dots \cdot (x - x_{i-1})(x - x_{i+1}) \cdot \dots \cdot (x - x_{n})$$
 (15)

## Аналитические расчеты:

Расчеты в программе Excel приведены на рисунке 1. Красным отмечены точки экстраполяции (вне исходного интервала), зеленым - интерполяции.

| Nº | X     | Y     | <b>q</b> i | l <sub>0</sub> (X) | l <sub>1</sub> (X) | l <sub>2</sub> (X) | l <sub>3</sub> (X) | l <sub>4</sub> (X) | <b>Урасч(X)</b> |
|----|-------|-------|------------|--------------------|--------------------|--------------------|--------------------|--------------------|-----------------|
| 0  | -1,00 | 1,00  | 0,599      | 1,000              | 0,000              | 0,000              | 0,000              | 0,000              | 1,000           |
| 1  | -0,50 | -0,25 | 0,570      | 0,000              | -0,250             | 0,000              | 0,000              | 0,000              | -0,250          |
| 2  | 0,00  | 0,00  | 0,000      | 0,000              | 0,000              | 0,000              | 0,000              | 0,000              | 0,000           |
| 3  | 0,67  | 0,67  | -1,551     | 0,000              | 0,000              | 0,000              | 0,670              | 0,000              | 0,670           |
| 4  | 1,00  | 1,00  | 1,010      | 0,000              | 0,000              | 0,000              | 0,000              | 1,000              | 1,000           |
|    | -1,4  |       |            | 3,748              | 1,585              | 0,000              | -1,876             | 1,054              | 4,511           |
|    | -0,8  |       |            | 0,380              | -0,241             | 0,000              | 0,134              | -0,071             | 0,202           |
|    | -0,3  |       |            | -0,045             | -0,151             | 0,000              | -0,085             | 0,041              | -0,240          |
|    | 0,5   |       |            | 0,025              | 0,036              | 0,000              | 0,582              | -0,129             | 0,515           |
|    | 0,8   |       |            | -0,016             | -0,021             | 0,000              | 0,581              | 0,246              | 0,789           |
|    | 1,5   |       |            | 0,746              | 0,887              | 0,000              | -5,816             | 6,288              | 2,104           |

Рисунок 1– Результат расчетов в программе Excel



Рисунок 2. Таблица и диаграмма, отображающая результаты интерполяции по Лагранжу

### Блок схемы:

### addPoint():



## **Lagrange():**



#### main():



## Листинг кода программы:

```
#include <iostream>
#include <vector>
using namespace std;
vector<double> addPoint() {
  int n;
  double iX;
  vector<double> point;
  cout << "\nВведите количество дополнительных точек: ";
  cin >> n;
  cout << endl;
  for (int i = 0; i < n; i++) {
     cout << "x[" << i << "] = ";
     cin >> iX;
     point.push_back(iX);
  cout << endl;
  return point;
double lagrange(vector<double> x, vector<double> y, double point) {
  double result = 0.0;
  for (int i = 0; i < x.size(); i++) {
     double term = y[i];
     for (int j = 0; j < x.size(); j++) {
       if (i != j) {
          term *= (point - x[j]) / (x[i] - x[j]);
     }
     result += term;
  return result;
}
int main() {
  bool global_break = false;
  int choice = 0;
  while (!global break) {
     cout << "1 - использовать узловые точки по умолчанию\n2 - ввести узловые точки вручную\n0 -
завершить выполнение программы\n";
     .
cout << "\nВаш выбор: ";
     cin >> choice;
     switch (choice){
       case 0:
          global_break = true;
          cout << "\nВыполнение программы завершено\n";
          break;
       case 1: {
          vector<double> x = \{-1.0, -0.5, 0.0, 0.67, 1.0\};
          vector<double> y = \{1.0, -0.25, 0.0, 0.67, 1.0\};
          cout << endl;
          for (int i = 0; i < x.size(); ++i) {
```

```
printf("x[%u] = %5.2f", i, x[i]);
          printf("\ty[%u] = %5.2f\n", i, y[i]);
       vector<double> point = addPoint();
       for (int i = 0; i < point.size(); ++i) {
          double Yinterp;
          Yinterp = lagrange(x, y, point[i]);
          printf("Yintern[%u] = %.3f\n", i, Yinterp);
       cout << endl;
       global_break = true;
       break;
     case 2: {
       int n;
       vector<double> x;
       vector<double> y;
       cout << "/nВведите количество точек интерполяции: ";
       cin >> n;
       for (int i = 0; i < n; ++i) {
          double xi, yi;
          cout << "x[" << i << "] = ";
          cin >> xi;
          cout << "y[" << i << "] = ";
          cin >> yi;
          x.push_back(xi);
          y.push_back(yi);
       }
       vector<double> point = addPoint();
       for (int i = 0; i < point.size(); ++i) {
          double Yinterp;
          Yinterp = lagrange(x, y, point[i]);
          printf("Yintern[%u] = %.3\n", i, Yinterp);
       cout << endl;
       global_break = true;
       break;
     default:
       cout << "\nТакого действия нет. Повторите ввод:\n\n";
  }
return 0;
```

# Результат работы программы:

#### 1 – используются данные из аналитических расчетов:

```
1 - использовать узловые точки по умолчанию
2 - ввести узловые точки вручную
0 - завершить выполнение программы
Ваш выбор: 1
x[0] = -1.00
                    y[0] = 1.00
x[1] = -0.50
                    y[1] = -0.25
                    y[2] = 0.00
x[2] = 0.00
x[3] = 0.67
                    y[3] = 0.67
x[4] = 1.00
                    y[4] = 1.00
Введите количество дополнительных точек: 6
x[0] = -1.4
x[1] = -0.8

x[2] = -0.3
x[3] = 0.5
x[4] = 0.8
x[5] = 1.5
Yintern[0] = 4.511
Yintern[0] = 4.511

Yintern[1] = 0.202

Yintern[2] = -0.240

Yintern[3] = 0.515

Yintern[4] = 0.789

Yintern[5] = 2.104
```

Рис 3. Данные из аналит. расчетов

## 2 – ручной ввод:

```
1 — использовать узловые точки по умолчанию
2 — ввести узловые точки вручную
0 — завершить выполнение программы
Ваш выбор: 2
Введите количество точек интерполяции: 5

x[0] = -1
y[0] = 1

x[1] = -0.5
y[1] = -0.25

x[2] = 0
y[2] = 0
x[3] = 0.67
y[3] = 0.67
x[4] = 1
y[4] = 1
```

```
Введите количество дополнительных точек: 6

x[0] = -1.4
x[1] = -0.8
x[2] = -0.3
x[3] = 0.5
x[4] = 0.8
x[5] = 1.5

Yintern[0] = 4.511
Yintern[1] = 0.202
Yintern[2] = -0.240
Yintern[3] = 0.515
Yintern[4] = 0.789
Yintern[5] = 2.104
```

Рис 4. Ручной ввод

## Сравнение результатов аналитического и программного расчета:

|          | аналитический | программный |
|----------|---------------|-------------|
| X = -1.4 | 4.511         | 4.511       |
| X = -0.8 | 0.202         | 0.202       |
| X = -0.3 | -0.24         | -0.24       |
| X = 0.5  | 0.515         | 0.515       |
| X = 0.8  | 0.789         | 0.789       |
| X = 1.5  | 2.104         | 2.104       |

Исходя из данных таблицы (все данные совпадают), мы можем сделать вывод, что программа работает верно.

### Вывод:

В ходе выполнения практической работы №3 была написана программа, которая решает задачу интерполяции функции используя при этом метод Лагранжа. Результат программного расчета при одинаковых входных данных полностью совпал с

результатом аналитического расчета, что говорит о том, что программа работает корректно и выдает правильные результаты.