An Earthly Model of the Divine Coincidence

Pascal Michaillat, Emmanuel Saez

January 2024

Available at https://pascalmichaillat.org/15/

BENIGNO, EGGERTSSON (2023): DIVINE COINCIDENCE?

BENIGNO, EGGERTSSON (2023): DIVINE COINCIDENCE?

GITTI (2023): DIVINE COINCIDENCE?

GITTI (2023): DIVINE COINCIDENCE?

AN EARTHLY MODEL OF DIVINE COINCIDENCE

- economical business-cycle model structure (Michaillat, Saez 2022)
 - identical households sell and buy chauffeur services
 - drivers find customers through matching ⇒ unemployment
 - utility from being chauffeured and wealth ⇒ AD curve
- price competition through directed search (Moen 1997)
 - chauffeurs with higher prices are hired more slowly
 - chauffeurs with lower prices are hired more quickly
- price rigidity from quadratic price-adjustment costs (Rotemberg 1982)
- divine coincidence appears: $\pi = \bar{\pi} \iff u = u^*$

DIVINE COINCIDENCE IN THE EARTHLY MODEL

DIVINE COINCIDENCE IN THE EARTHLY MODEL

DIVINE COINCIDENCE IN THE EARTHLY MODEL

PHASE DIAGRAM OF THE EARTHLY MODEL

PHASE DIAGRAM OF THE EARTHLY MODEL

PHASE DIAGRAM OF THE EARTHLY MODEL (TAYLOR)

PHASE DIAGRAM OF THE EARTHLY MODEL (TAYLOR)

PHASE DIAGRAM OF THE EARTHLY MODEL (PEG)

NEGATIVE AD OR MONETARY-POLICY SHOCK

NEGATIVE AD OR MONETARY-POLICY SHOCK

OUTWARD SHIFT OF THE BEVERIDGE CURVE (PANDEMIC)

OUTWARD SHIFT OF THE BEVERIDGE CURVE (PANDEMIC)

SIMILARITIES WITH NEW KEYNESIAN DYNAMICS

- dynamical properties of the models are similar
 - dynamical system is a source with sufficient concerns for wealth
 - even with interest-rate peg and at the ZLB
 - required concerns for wealth are lower with higher price rigidity
- when dynamical system is a source:
 - economy jumps to steady state and remains there
 - no anomalies at the ZLB (Michaillat, Saez 2021)
- fluctuations in output caused by fluctuations in unemployment
 - instead of fluctuations in markups
- fluctuations in inflation caused by fluctuations in customer queues
 - instead of fluctuations in marginal costs

Assumptions and derivation of the model

US LABOR-FORCE PARTICIPATION ≈ ACYCLICAL

▶ Return to theory

US MARGINAL ATTACHMENT RATE ≈ 1% LABOR FORCE

Return to theory

LOG UNEMPLOYMENT AND VACANCY RATES

[▶] Return to Beveridge curve

HOUSEHOLD UTILITY

• household $j \in [0, 1]$ maximizes utility

$$\int_0^\infty e^{-\delta t} \left\{ \ln \left(c_j(t) \right) + \sigma \cdot \left[\frac{b_j(t)}{\rho(t)} - \frac{b(t)}{\rho(t)} \right] \right\} \, dt$$

- δ > 0: time discount rate
- σ > 0: status concerns
- $c_i(t) = \int_0^1 c_{ik}(t) dk$: consumption of chauffeur services
- $b_i(t)$: saving in government bonds
- $b(t) = \int_0^1 b_j(t) dj$: aggregate wealth

MATCHING BETWEEN CHAUFFEURS AND CUSTOMERS

- household $k \in [0, 1]$ has d_k chauffeurs
 - $-y_{ik}$ chauffeurs work for household j
 - $-y_k = \int_0^1 y_{ik}(t) dk$ chauffeurs are employed
 - $-u_k = d_k y_k$ chauffeurs are unemployed
- household j sends v_{jk} customers to parking lot k to hire chauffeurs
 - $-v_k = \int_0^1 v_{jk}(t) dj$ customers are hiring chauffeurs
- matching function determines flow of new matches on parking lot *k*:

$$h_k = \omega \cdot \sqrt{u_k \cdot v_k}$$

- market tightness $\theta_k = v_k/u_k$ determines trading rates
 - customer-finding rate: $f(\theta_k) = h_k/u_k = \omega \cdot \sqrt{\theta_k}$
 - chauffer-finding rate: $q(\theta_k) = h_k/v_k = \omega/\sqrt{\theta_k}$

COST OF UNEMPLOYMENT AND HIRING

- · unemployed chauffeurs wait in their parking lot
 - no home production
 - no income
- each v_{jk} customer looking for a chauffeur is driven to parking lot k by one of the y_{jk} chauffeurs from household k working for household j
 - consumption < output: $c_{jk} = y_{jk} v_{jk}$

BALANCED FLOWS AND UNEMPLOYMENT

- chauffeur-customer relationships separate at rate s > 0
- number of employed chauffeurs in household k:

$$\dot{y}_k = f(\theta_k) \cdot u_k - s \cdot y_k = f(\theta_k) \cdot u_k - s \cdot [d_k - u_k]$$

- US flows are always approximately balanced (Michaillat, Saez 2021)
 - assume that flows are balanced in all (j, k) cells
 - in particular flows are balanced in all household k: $\dot{y}_k = 0$
- tightness determines unemployment:

$$u_k = \frac{s}{s + f(\theta_k)} \cdot d_k = u(\theta_k) \cdot d_k$$

BALANCED FLOWS AND MATCHING WEDGE

number of employed chauffeurs from household j in household k:

$$\dot{y}_{jk} = q(\theta_k) \cdot v_{jk} - s \cdot y_{jk} = q(\theta_k) \cdot [y_{jk} - c_{jk}] - s \cdot y_{jk}$$

- flows are balanced in all (j, k) cells: $\dot{y}_{jk} = 0$
- tightness determines the wedge between consumption and output:

$$y_{jk} = \frac{q(\theta_k)}{q(\theta_k) - s} \cdot c_{jk} = [1 + \tau(\theta_k)] \cdot c_{jk}$$

PRODUCTIVE EFFICIENCY ON PARKING LOT k

efficient allocation maximizes chauffeur services consumed

$$c_k = \frac{y_k}{1 + \tau(\theta_k)} = \frac{1 - u(\theta_k)}{1 + \tau(\theta_k)} \cdot d_k$$

- efficient tightness θ_k^* maximizes $[1 u(\theta_k)]/[1 + \tau(\theta_k)]$
- efficiency condition: share of unemployed workers $u(\theta_k^*)$ = share of consumption devoted to matching $\tau(\theta_k^*)$
- up to a first-order approximation: vacancy ≈ unemployment
 - just like in sufficient-statistic analysis

DIRECTED SEARCH AND PRICE/TIGHTNESS COMPETITION

- all chauffeurs from household k charge price p_k per unit time
- expenditure by household j on chauffeurs k is

$$p_k \cdot y_{jk} = p_k \cdot [1 + \tau(\theta_k)] \cdot c_{jk}$$

- all chauffeurs are perfectly substitutable
- $p_k \cdot [1 + \tau(\theta_k)]$ must be the same across sellers (Moen 1997)
 - if not, there are cheaper chauffeurs available
 - or chauffeurs that can be hired with less wait
- \rightarrow for all $k, p_k \cdot [1 + \tau(\theta_k)] = p \cdot [1 + \tau(\theta)]$

EFFECT OF SELLING PRICE ON LOCAL TIGHTNESS

• price chosen by household j determines the tightness θ_i it faces:

$$p_j[1+\tau(\theta_j)] = p[1+\tau(\theta)] \implies \theta_j = \tau^{-1} \left(\frac{p}{p_j}[1+\tau(\theta)] - 1\right)$$

- the function τ^{-1} is increasing, so θ_i is decreasing in p_i
 - a high price leads to low tightness, high unemployment
 - a low price leads to high tightness, low unemployment

PRICE RIGIDITY

- inflation for household k: $\pi_k(t) = \dot{p}_k(t)/p_k(t)$
- changing prices is costly (Rotemberg 1982)
 - $-\rho(\pi_k) = \frac{\kappa}{2} \cdot [\pi_k \bar{\pi}]^2$: share of workers devoted to pricing
 - κ > 0: price-adjustment cost
 - unexpected price changes require communication with customers (Zbaracki et al 2004)
- l_k : labor-force participants from household k
- because of price-adjustment costs:

$$d_k = [1 - \rho(\pi_k)] \cdot l_k$$

HOUSEHOLD BUDGET CONSTRAINT

law of motion of government bond holdings for household j:

$$\dot{b}_j = i \cdot b_j - \int_0^1 p_k y_{jk} \, dk + p_j y_j$$

because of matching and directed search, expenditure becomes:

$$\int_0^1 p_k y_{jk} dk = \int_0^1 p_k [1 + \tau(\theta_k)] c_{jk} dk$$
$$= p \cdot [1 + \tau(\theta)] \cdot \int_0^1 c_{jk} dk$$

because of matching and price rigidity, income becomes:

$$p_j \cdot y_j = p_j \cdot [1 - u(\theta_j(p_j))] \cdot d_j = p_j \cdot [1 - u(\theta_j(p_j))] \cdot [1 - \rho(\pi_j)] \cdot l_j$$

SOLUTION TO HOUSEHOLD MAXIMIZATION BY HAMILTONIAN

Hamiltonian of household j's maximization is

$$\mathcal{H}_{j} = \ln(c_{j}) + \sigma \cdot \left[\frac{b_{j}}{p} - \frac{b}{p}\right]$$

$$+ \mathcal{A}_{j} \cdot \left[i \cdot b_{j} - p \cdot [1 + \tau(\theta)] \cdot c_{j} + p_{j} \cdot [1 - u(\theta_{j}(p_{j}))] \cdot [1 - \rho(\pi_{j})] \cdot l_{j}\right]$$

$$+ \mathcal{B}_{j} \cdot \pi_{j} \cdot p_{j}$$

- control variables: c_i , π_i
- state variables: b_j, p_j
- costate variables: A_j , B_j
- we focus on symmetric solution of model
 - all households behave the same, can drop j

FIRST-ORDER CONDITION WITH RESPECT TO CONSUMPTION

•
$$d\mathcal{H}_i/dc_i = 0$$

$$\Leftrightarrow 1/c_i = A_i \cdot p \cdot [1 + \tau(\theta)]$$

$$\Leftrightarrow 1/\mathcal{A} = p \cdot [1 + \tau(\theta)] \cdot c$$

$$\Leftrightarrow$$
 1/ $\mathcal{A} = p \cdot y$

$$\Leftrightarrow$$
 $-\ln(A) = \ln(p) + \ln(y)$

taking time derivative yields:

$$-\frac{\dot{\mathcal{A}}}{\mathcal{A}} = \pi + \frac{\dot{y}}{y}$$

FIRST-ORDER CONDITION WITH RESPECT TO INFLATION

•
$$d\mathcal{H}_i/d\pi_i = 0$$

$$\Leftrightarrow \mathcal{B}_{j} \cdot p_{j} = \mathcal{A}_{j} \cdot p_{j} \cdot [1 - u(\theta_{j}(p_{j}))] \cdot \rho'(\pi_{j}) \cdot l_{j}$$

$$\Leftrightarrow \mathcal{B} = \mathcal{A} \cdot [1 - u(\theta)] \cdot \rho'(\pi) \cdot l$$

$$\Leftrightarrow \mathcal{B} = \mathcal{A} \cdot [1 - u(\theta)] \cdot \kappa \cdot (\pi - \overline{\pi}) \cdot l$$

$$\Leftrightarrow \mathcal{B} = \mathcal{A} \cdot \frac{\kappa[\pi - \overline{\pi}]}{1 - o(\pi)} \cdot y$$

$$\Leftrightarrow \ln(\mathcal{B}) = \ln(\mathcal{A}) + \ln(y) + \ln(\kappa) + \ln(\pi - \overline{\pi}) - \ln(1 - \rho(\pi))$$

taking time derivative yields:

$$\frac{\dot{\mathcal{B}}}{\mathcal{B}} = \frac{\dot{\mathcal{A}}}{\mathcal{A}} + \frac{\dot{y}}{y} + \frac{\dot{\pi}}{\pi - \overline{\pi}} \cdot \frac{1 + \rho(\pi)}{1 - \rho(\pi)}$$

FIRST-ORDER CONDITION WITH RESPECT TO SAVING

•
$$d\mathcal{H}_{j}/db_{j} = \delta \cdot \mathcal{A}_{j} - \dot{\mathcal{A}}_{j}$$

 $\Leftrightarrow \frac{\sigma}{p} + \mathcal{A}_{j} \cdot i = \delta \cdot \mathcal{A}_{j} - \dot{\mathcal{A}}_{j}$

reshuffling terms yields:

$$\frac{\dot{A}}{A} = \delta - i - \frac{\sigma}{p \cdot A}$$

• using $1/A = p \cdot y$ finally gives:

$$\frac{\mathcal{A}}{\mathcal{A}} = \delta - (i + \sigma \cdot y)$$

FIRST-ORDER CONDITION WITH RESPECT TO PRICE [1]

•
$$d\mathcal{H}_j/dp_j = \delta \cdot \mathcal{B}_j - \dot{\mathcal{B}}_j$$

 $\Leftrightarrow \mathcal{A}_j \cdot (1-u_j) \cdot (1-\rho(\pi_j)) \cdot l_j - \mathcal{A}_j \cdot p_j \cdot (1-\rho(\pi_j)) \cdot l_j \cdot u'(\theta_j) \cdot \theta'(p_j) + \mathcal{B}_j \cdot \pi_j = \delta \cdot \mathcal{B}_j - \dot{\mathcal{B}}_j$

we have the following derivatives:

$$u'(\theta_j) = -\frac{[1 - u(\theta_j)] \cdot u(\theta_j)}{2 \cdot \theta_j}, \qquad \theta'(p_j) = -\frac{2 \cdot \theta_j}{\tau(\theta_j) \cdot p_j}$$

• hence, $p_j \cdot u'(\theta_j) \cdot \theta'(p_j) = (1 - u(\theta_j))$ ·

FIRST-ORDER CONDITION WITH RESPECT TO PRICE [2]

reshuffling terms gives:

$$(\delta - \pi_j) \cdot \mathcal{B}_j - \dot{\mathcal{B}}_j = \mathcal{A}_j \cdot y_j \cdot \left[1 - \frac{u(\theta_j)}{\tau(\theta_j)} \right]$$
$$-\frac{\dot{\mathcal{B}}_j}{\mathcal{B}_j} = \pi_j - \delta + \frac{\mathcal{A}_j \cdot y_j}{\mathcal{B}_j} \cdot \left[1 - \frac{u(\theta_j)}{\tau(\theta_j)} \right]$$

• using $[1 - \rho(\pi_i)]/[\kappa(\pi_i - \overline{\pi})] = \mathcal{A}_i \cdot y_i/\mathcal{B}_i$, we finally get:

$$-\frac{\dot{\mathcal{B}}}{\mathcal{B}} = \pi - \delta + \frac{1}{\kappa} \cdot \frac{1 - \rho(\pi)}{\pi - \overline{\pi}} \cdot \left[1 - \frac{u(\theta)}{\tau(\theta)}\right]$$

LINEARIZED SYSTEM

- set $i = i^* + \phi(\pi \overline{\pi})$ and linearize differential equations around $(u^*, \overline{\pi})$
- deviations from efficient steady state: $\hat{u} = u u^*$, $\hat{\pi} = \pi \overline{\pi}$
- linearized AD curve: $\dot{u} = (1 u^*) \cdot [\sigma \cdot l \cdot \hat{u} + (1 \phi)\hat{\pi}]$
- steady-state linearized AD curve: $\hat{\pi} = -[\sigma/(1 \phi)] \cdot l \cdot \hat{u}$
 - slope depends on policy rule
 - under Taylor principle ($\phi > 1$), standard increasing AD curve
- linearized AS curve: $\dot{\pi} = \delta \hat{\pi} + 2/[\kappa u^*(1 u^*)]\hat{u}$
- steady state linearized AS curve: $\hat{\pi} = -2/[\delta \kappa u^*(1 u^*)]\hat{u}$
 - recover downward-sloping Phillips curve in (unemployment, inflation) plane

SPECIAL CASES

- consider AD and AS curves in (y, π) plane
- AD curve without wealth in the utility ($\sigma = 0$)
 - horizontal: $\pi = i \delta$
 - real rate = discount rate
 - inflation is determined one-for-one by policy rate (Fisher effect)
 - degenerate: does not involve output
- AS curve without price rigidity (κ = 0)
 - vertical: $y = y^* = (1 u^*) \cdot l$
 - unemployment is always efficient, irrespective of inflation

AGGREGATE DEMAND: DISCOUNTED EULER EQUATION

from optimal consumption and saving:

$$\frac{\dot{y}}{y} = (i - \pi + \mathbf{\sigma} \cdot \mathbf{y}) - \delta$$

- $i \pi$: real interest rate, financial return on saving
- * $\sigma \cdot y$: MRS between wealth & consumption, hedonic return on saving
 - discounted Euler equation (McKay, Nakamura, Steinsson 2017)
 - from wealth in the utility function (Michaillat, Saez 2021)
- in steady state (\dot{y} = 0), nondegenerate AD curve:

$$y = \frac{\delta - i + \pi}{\sigma}$$

AGGREGATE SUPPLY: PHILLIPS CURVE

• from optimal pricing:

$$\dot{\pi} \cdot \frac{1 + \rho(\pi)}{1 - \rho(\pi)} = \delta \cdot (\pi - \overline{\pi}) - \frac{1}{\kappa} \cdot [1 - \rho(\pi)] \cdot \left[1 - \frac{u(\theta)}{\tau(\theta)}\right]$$

- κ: price-adjustment cost
- $1 \frac{u(\theta)}{\tau(\theta)}$: tightness gap
 - $u(\theta)$: share of idle drivers waiting for a job
 - $-\tau(\theta)$: share of idle drivers waiting for a match
 - zero iff $\theta = \theta^*$
 - positive iff $\theta > \theta^*$
- in steady state ($\dot{\pi}$ = 0), nonlinear AS curve:

$$\delta \cdot (\pi - \overline{\pi}) = \frac{1}{\kappa} \cdot [1 - \rho(\pi)] \cdot \left[1 - \frac{u(\theta)}{\tau(\theta)}\right]$$

DIVINE COINCIDENCE APPEARS IN PHILLIPS CURVE

recall steady-state Phillips curve:

$$\kappa \cdot \delta \cdot (\pi - \overline{\pi}) = [1 - \rho(\pi)] \cdot \left[1 - \frac{u(\theta)}{\tau(\theta)}\right]$$

- inflation is on target $(\pi = \overline{\pi})$ iff
 - $-1 \frac{u(\theta)}{\tau(\theta)} = 0$
 - $\Leftrightarrow u(\theta) = \tau(\theta)$
 - \Leftrightarrow tightness and unemployment are efficient ($\theta = \theta^*, u = u^*$)

OPTIMAL MONETARY POLICY

- optimal nominal interest rate i* ensures:
 - inflation is on target: $\pi = \overline{\pi}$
 - unemployment is efficient: $u = u^*$
- optimal policy can take different forms:
 - interest-rate peg: $i = i^*$
 - Taylor rule with $\phi > 0$: $i = i^* + \phi \cdot (\pi \overline{\pi})$
- from AD curve:

$$-\delta - i^* + \overline{\pi} = \sigma \cdot y^* = \sigma \cdot (1 - u^*) \cdot l$$

$$\Leftrightarrow i^* = \overline{\pi} + \delta - \sigma \cdot (1 - u^*) \cdot l$$

- by divine coincidence, just need to target efficient unemployment
 - no need to compute i*

DYNAMICAL PROPERTIES OF THE LINEARIZED MODEL

$$\begin{bmatrix} \dot{u}(t) \\ \dot{\pi}(t) \end{bmatrix} = \begin{bmatrix} \sigma y^* & (1 - \phi)(1 - u^*) \\ \frac{2}{\kappa u^*(1 - u^*)} & \delta \end{bmatrix} \begin{bmatrix} \hat{u}(t) \\ \hat{\pi}(t) \end{bmatrix}$$

- solution is unique iff dynamical system is a source
 - ⇔ trace > 0 and determinant > 0
- trace: $\delta + \sigma y^* > 0$
 - trace > 0 for any σ ≥ 0
- determinant: $\delta \sigma y^* 2(1 \phi)/(\kappa u^*)$
 - no wealth in utility (σ = 0): determinant > 0 iff ϕ > 1 (Taylor)
 - − interest-rate peg (ϕ = 0): determinant > 0 iff σ > 2/($\kappa \delta u^* y^*$)
 - fixed inflation (κ → ∞): determinant > 0 iff σ > 0