CMSC 330: Organization of Programming Languages

Context-Free Grammars

Motivation

- Programs are just strings of text
 - But they're strings that have a certain structure
 - A C program is a list of declarations and definitions
 - A function definition contains parameters and a body
 - · A function body is a sequence of statements
 - A statement is either an expression, an if, a goto, etc.
 - · An expression may be assignment, addition, subtraction, etc
- We want to solve two problems
 - We want to describe programming languages precisely
 - We need to describe more than the regular languages
 - Recall that regular expressions, DFAs, and NFAs are limited in their expressiveness

CMSC 330

Context-Free Grammars (CFGs)

- A way of generating sets of strings or languages
- They subsume regular expressions (and DFAs and NFAs)
 - There is a CFG that generates any regular language
 - (But regular expressions are a better notation for languages that are regular.)
- They can be used to describe programming languages
 - They describe the parsing process (mostly)

Formal Definition

- A context-free grammar G is a 4-tuple:
 - $-\Sigma$ a finite set of *terminal* or *alphabet* symbols
 - · Often written in lowercase
 - N − a finite, nonempty set of *nonterminal* symbols
 - · Often written in uppercase
 - It must be that $N \cap \Sigma = \emptyset$
 - P a set of *productions* of the form $N \rightarrow (\Sigma | N)^*$
 - Informally this means that the nonterminal can be replaced by the string of zero or more terminals or nonterminals to the right of the \to
 - $-S \in N$ the start symbol

CMSC 330 3 CMSC 330 4

Example: Arithmetic Expressions (Limited)

•
$$\Sigma = \{ +, -, *, (,), a, b, c \}, N = \{ E \}$$

 $P = \{ E \rightarrow a, E \rightarrow b, E \rightarrow c, E \rightarrow E + E,$
 $E \rightarrow E - E, E \rightarrow E * E, E \rightarrow (E) \}, S = E$

- An expression E is either a letter a, b, or c
- Or an E followed by + followed by an E
- etc.
- · This describes or generates a set of strings
 - $\{a, b, c, a+b, a+a, a*c, a-(b*a), c*(b+d),...\}$
- Example strings not in the language
 - d, c(a), a+, b**c, etc.

CMSC 330

5

Notational Shortcuts

- If not specified, assume the left-hand side of the first listed production is the start symbol
- Usually productions with the same left-hand sides are combined with
- If a production has an empty right-hand side it means ε
- Using these shortcuts we could instead write this grammar as

$$E \rightarrow a \mid b \mid c \mid E+E \mid E-E \mid E^*E \mid (E)$$

CMSC 330 6

Another Example Grammar

• $S \rightarrow aS \mid T$ $T \rightarrow bT \mid U$ $U \rightarrow cU \mid \epsilon$

Sentential Forms and Derivations

- A sentential form is a string of terminals and nonterminals produced from that grammar's start symbol
 - The start symbol is a sentential form for a grammar
 - If αAβ is a sentential form for a grammar, where (α and β ϵ (N|Σ)*), and A \rightarrow γ is a production, then αγβ is a sentential form for the grammar
 - In this case, we say that $\alpha A\beta$ derives $\alpha \gamma \beta$ in one step, which is written as $\alpha A\beta \Rightarrow \alpha \gamma \beta$
- ⇒+ is used to indicate a derivation of one or more steps
- ⇒ indicates a derivation of zero or more steps

CMSC 330

Example

$$\begin{split} S &\rightarrow aS \mid T \\ T &\rightarrow bT \mid U \\ U &\rightarrow cU \mid \epsilon \end{split}$$

A derivation:

$$-$$
 S ⇒ aS ⇒ aT ⇒ aU ⇒ acU ⇒ ac

- Abbreviated as S ⇒⁺ ac
- So S, aS, aT, aU, acU, ac are all sentential forms for this grammar
- $-S\Rightarrow T\Rightarrow U\Rightarrow \epsilon$
- · Is there any derivation

$$-S \Rightarrow + ccc$$
? $S \Rightarrow + Sa$?
 $-S \Rightarrow + bab$? $S \Rightarrow + bU$?

11

The Language Generated by a CFG

The language generated by a grammar G is

$$L(G) = \{ w \mid w \in \Sigma^* \text{ and } S \Rightarrow^+ w \}$$

- (where S is the start symbol of the grammar and Σ is the alphabet for that grammar)
- · I.e., all sentential forms with only terminals
- I.e., all strings over Σ that can be derived from the grammar's start symbol by applying one or more productions

CMSC 330

Example (cont'd)

$$S \rightarrow aS \mid T$$

 $T \rightarrow bT \mid U$
 $U \rightarrow cU \mid \epsilon$

- Generates what language?
- Do other grammars generate this language?

$$S \rightarrow ABC$$
 $A \rightarrow aA \mid \varepsilon$
 $B \rightarrow bB \mid \varepsilon$
 $C \rightarrow cC \mid \varepsilon$

- So grammars are not unique

Parse Trees

- A parse tree represents a derivation:
 - The root node is the start symbol
 - Each interior node is a nonterminal
 - The children of a node are the symbols on the righthand side of the production applied to that nonterminal
 - The leaves are all terminal symbols
- Reading the leaves left-to-right shows the string corresponding to the tree

CMSC 330

12

Example

$$S \Rightarrow aS \Rightarrow aT \Rightarrow aU \Rightarrow acU \Rightarrow ac$$

$$\begin{split} S &\rightarrow aS \mid T \\ T &\rightarrow bT \mid U \\ U &\rightarrow cU \mid \epsilon \end{split}$$

CMSC 330 13

Parse Trees for Expressions

 A parse tree shows the structure of an expression as it corresponds to a grammar

$$E \rightarrow a \mid b \mid c \mid d \mid E+E \mid E-E \mid E*E \mid (E)$$

CMSC 330

Another Example

- Is a in the language generated by this $S \rightarrow a \mid SbS$ grammar?
- How about aba?
 - Yes, there are two possible derivations
 - $\underline{S} \Rightarrow \underline{S}bS \Rightarrow ab\underline{S} \Rightarrow aba$
 - This is a *leftmost derivation*
 - At every step, apply production to leftmost nonterminal
 - S ⇒ SbS ⇒ Sba ⇒ aba
 - This is a *rightmost* derivation
 - Both derivations have the same parse tree
 - A parse tree has a unique leftmost and a unique rightmost derivation
 - · Parse trees don't show the order productions were applied

Another Example (cont'd)

$$S \rightarrow a \mid SbS$$

Is ababa in this language?

A leftmost derivation

$$\underline{S}$$
 ⇒ \underline{S} bS ⇒ ab \underline{S} ⇒ ab \underline{S} bS ⇒ ababS ⇒ ababa

Another leftmost derivation

$$\underline{S}$$
 ⇒ \underline{S} bS ⇒ \underline{S} bSbS ⇒ ababa ⇒ ababa

16

CMSC 330 15 CMSC 330

Ambiguity

- A string is ambiguous for a grammar if it has more than one parse tree
 - Equivalent to more than one leftmost (or more than one rightmost) derivation
- A grammar is ambiguous if it generates an ambiguous string
 - It can be hard to see this with manual inspection
- Exercise: can you create an unambiguous grammar which generates the same language?

Are these Grammars Ambiguous?

$$\begin{split} S &\rightarrow aS \mid T \\ T &\rightarrow bT \mid U \\ U &\rightarrow cU \mid \epsilon \end{split}$$

$$\begin{split} S \rightarrow T \mid T \\ T \rightarrow Tx \mid Tx \mid x \mid x \end{split}$$

CMSC 330 18

More on Leftmost/Rightmost Derivations

Is the following derivation leftmost or rightmost?

$$S \Rightarrow aS \Rightarrow aT \Rightarrow aU \Rightarrow acU \Rightarrow ac$$

- There's at most one nonterminal in each sentential form, so there's no choice between left or right nonterminals to expand
- How about the following derivation?
 - \underline{S} ⇒ \underline{S} bS ⇒ \underline{S} bS ⇒ \underline{S} babS ⇒ abab \underline{S} ⇒ ababa

Tips for Designing Grammars

1. Use recursive productions to generate an arbitrary number of symbols

$$A \rightarrow xA \mid \epsilon$$
 Zero or more x's $A \rightarrow yA \mid y$ One or more y's

2. Use separate nonterminals to generate disjoint parts of a language, and then combine in a production

$$G = S \rightarrow AB$$

$$A \rightarrow aA \mid \epsilon$$

$$B \rightarrow bB \mid \epsilon$$

$$L(G) = a^*b^*$$

CMSC 330 19 CMSC 330 20

Tips for Designing Grammars (cont'd)

3. To generate languages with matching, balanced, or related numbers of symbols, write productions which generate strings from the middle

```
\{a^nb^n \mid n \ge 0\} (not a regular language!)
S \rightarrow aSb \mid \epsilon
Example: S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb
{a^nb^{2n} | n \ge 1}
S \rightarrow aSbb \mid abb
```

CMSC 330 21

Tips for Designing Grammars (cont'd)

```
\{a^nb^m \mid m \ge 2n, n \ge 0\}
S \rightarrow aSbb \mid B \mid \epsilon
B \rightarrow bB \mid b
```

The following grammar also works:

 $S \rightarrow aSbb \mid B$ $B \rightarrow bB \mid \epsilon$

How about the following?

 $S \rightarrow aSbb \mid bS \mid \epsilon$

Tips for Designing Grammars (cont'd)

```
\{a^nb^ma^{n+m} \mid n \ge 0, m \ge 0\}
Rewrite as anbmaman, which now has matching
superscripts (two pairs)
```

Would this grammar work?

 $S \rightarrow aSa \mid B$ $B \rightarrow bBa \mid ba$

Corrected:

 $S \rightarrow aSa \mid B$ $B \rightarrow bBa \mid \epsilon$

The outer anan are generated first, then the inner bmam

CMSC 330 22

CMSC 330 23