統計的モデリング基礎⑤ ~ロジスティック回帰~

鹿島久嗣 (情報学科 計算機科学コース)

DEPARTMENT OF INTELLIGENCE SCIENCE
AND TECHNOLOGY

マーケティング分野への応用を対象とした参考書

マーケティングの統計モデル

出版社:朝倉出版 発刊年月: 2015.8 ISBN: 4254128533

A5判;192ページ

マーケティングを題材としながら、基本的な統計的モデリングの方法が 学べる

ロジスティック回帰

最尤推定:

データをもっともよく再現するパラメータを推定値とする

- n個のデータ $x_1, x_2, ..., x_n$ から確率モデル $f(x \mid \theta)$ のパラメータ θ を推定したい
- n個のデータが(互いに独立に)生成される確率(尤度):

$$L(\theta) = \prod_{i=1}^{n} f(x_i \mid \theta)$$

北度最大になるパラメータを推定値êとする

$$\hat{\theta} = \operatorname{argmax}_{\theta} \prod_{i=1}^{n} f(x_i \mid \theta) = \operatorname{argmax}_{\theta} \sum_{i=1}^{n} \log f(x_i \mid \theta)$$

もっともデータを生成する確率が高い(「最も尤もらしい」)

実際には対数

尤度で扱うこと

が多い

最尤推定の利点: モデリングの自動化

- 最尤推定の利点:確率モデルの形(データの生成プロセスの仮定)を決めればモデル パラメータが自動的に決まる
 - ただし、最大化問題を解く必要がある
 - 離散分布、ポアソン分布、正規分布などは解析的に解が 求まる
 - 線形回帰(正規分布でノイズが載る)は連立方程式 (一応、解析的な解)
 - 多くのモデルでは、最適化問題を数値的に解く必要がある

判別問題:

ダミー変数を従属変数として説明(予測)する問題

- データ (n 組の独立変数と従属変数)
 - •独立変数: $(\mathbf{x}^{(1)},\mathbf{x}^{(2)},...,\mathbf{x}^{(n)})$
 - (ダミー) 従属変数: $(y^{(1)}, y^{(2)}, ..., y^{(n)}), y^{(i)} \in \{+1, -1\}$

以降、表記上の利便性からダミー従属変数を {0,1} でなく {+1,-1} と表記する (本質的な違いはナシ)

ロジスティック回帰モデル: ダミー変数を従属変数とするモデル

- 以前、重回帰モデルでダミー変数を従属変数とすると、 厳密には少しおかしいという話だった → もっときちんと扱いたい
 - 重回帰モデル $y = \mathbf{\beta}^{\mathsf{T}}\mathbf{x}$ の従属変数の値域は実数全体
- 従属変数の値域が{-1,+1}もしくは(0,1) (Y = +1となる確率)となるようにしたい
- ロジスティック回帰モデル:

$$P(Y = 1 | \mathbf{x}, \boldsymbol{\beta}) = \frac{1}{1 + \exp(-\boldsymbol{\beta}^{\mathsf{T}} \mathbf{x})} = \sigma(\boldsymbol{\beta}^{\mathsf{T}} \mathbf{x})$$

• σ : ロジスティック関数 (σ : $\mathbb{R} \to (0,1)$)

ロジスティック回帰モデルの例: 線形回帰モデルの出力を[0,1]に変換

■ ロジスティック回帰モデルは従属変数Y = 1となる確率を与える:

$$P(Y = 1 | \mathbf{x}, \boldsymbol{\beta}) = \sigma(\beta_1 x_1 + \beta_2 x_2 + \dots + \beta_D x_D + \alpha)$$

- σ : ロジスティック関数 (σ : $\mathbb{R} \to (0,1)$)
- σ(·)の中身は線形回帰モデルと同じ (∈ ℝ)
- モデルパラメータ $\beta = (\beta_1, \beta_2, ..., \beta_D, \alpha)^{\mathsf{T}}$ において
 - β_d : 独立変数 x_d が従属変数に与える影響
 - $\beta_d > 0$ のとき、 $x_d > 0$ はY = 1となる方向に貢献; $x_d < 0$ はY = -1となる方向に貢献している

ロジスティック回帰モデルの対数尤度:

凸関数なので大局解が存在するが解析解はない

■対数尤度: $L(\boldsymbol{\beta}) = -\sum_{i=1}^{n} \log(1 + \exp(-y^{(i)}\boldsymbol{\beta}^{\mathsf{T}}\mathbf{x}^{(i)}))$

$$\left(= \sum_{i=1}^{n} \delta(y^{(i)} = 1) \log \frac{1}{1 + \exp(-\boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}^{(i)})} + \delta(y^{(i)} = -1) \log \left(1 - \frac{1}{1 + \exp(-\boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}^{(i)})} \right) \right)$$

- L(β)は凸関数:
 - ・大局解がある
 - ・解析解はない

ロジスティック回帰のパラメータ推定: 非線形最適化法によって、パラメータ更新を繰り返す

■ 最尤推定の目的関数(最大化):

$$L(\boldsymbol{\beta}) = -\sum_{i=1}^{n} \log(1 + \exp(-y^{(i)}\boldsymbol{\beta}^{\mathsf{T}}\mathbf{x}^{(i)}))$$

- •解析解は得られないが、凸関数(1次元の場合、2階微分が≦0)
- 数値的な最適化手法を使う
 - パラメータの更新をくりかえす: $\beta^{NEW} \leftarrow \beta + d$

$$\beta$$
 $\beta + d$

パラメータの更新:

目的関数をもっとも改善するような更新を行う

■ 更新 $\beta^{\text{NEW}} \leftarrow \beta + d$ によって目的関数の値が変化する:

$$L_{\mathbf{w}}(\mathbf{d}) = -\sum_{i=1}^{n} \ln(1 + \exp(-y^{(i)}(\mathbf{\beta} + \mathbf{d})^{\mathsf{T}}\mathbf{x}^{(i)}))$$

■ *L*_β(**d**)を最大化する更新差分 **d*** を見つけよ:

$$\mathbf{d}^* = \operatorname{argmax}_{\mathbf{d}} L_{\mathbf{\beta}}(\mathbf{d})$$

最良のパラメータ更新差分の決定: 目的関数をテイラー展開で2次近似

■目的関数のテイラー展開:

3次以上の項

$$L_{\boldsymbol{\beta}}(\mathbf{d}) = L(\boldsymbol{\beta}) + \mathbf{d}^{\mathsf{T}} \nabla L(\boldsymbol{\beta}) + \frac{1}{2} \mathbf{d}^{\mathsf{T}} \boldsymbol{H}(\boldsymbol{\beta}) \mathbf{d} + O(\mathbf{d}^{3})^{\mathsf{T}}$$

• 勾配:
$$\nabla L(\boldsymbol{\beta}) = \left(\frac{\partial L(\boldsymbol{\beta})}{\partial \beta_1}, \frac{\partial L(\boldsymbol{\beta})}{\partial \beta_2}, \dots, \frac{\partial L(\boldsymbol{\beta})}{\partial \beta_D}\right)^{\top}$$

• β において目的関数が最も急な方向

・ヘッセ行列: $[H(\mathbf{\beta})]_{i,j} = \frac{\partial^2 L(\mathbf{\beta})}{\partial \beta_i \partial \beta_j}$

•β周辺での目的関数の「曲がり方」

ニュートン法:

2次近似した目的関数を最小化する解を求める

■ テイラー展開で3次以降の項を無視する:

3次以上の項

$$L_{\beta}(\mathbf{d}) \approx L(\beta) + \mathbf{d}^{\mathsf{T}} \nabla L(\beta) + \frac{1}{2} \mathbf{d}^{\mathsf{T}} H(\beta) \mathbf{d} + O(\mathbf{d}^{3})^{\mathsf{L}}$$

- ■最大化するためにdで微分: $\frac{\partial L_{\beta}(\mathbf{d})}{\partial \mathbf{d}} \approx \nabla L(\mathbf{\beta}) + H(\mathbf{\beta})\mathbf{d}$
- これを= 0 とおいて解くと: d = −H(β)⁻¹∇L(β) < 実際には連立 方程式を解く

ニュートン法:

$$\boldsymbol{\beta}^{\text{NEW}} \leftarrow \boldsymbol{\beta} - \boldsymbol{H}(\boldsymbol{\beta})^{-1} \nabla L(\boldsymbol{\beta})$$

$$\beta - H(\beta)^{-1} \nabla L(\beta) \qquad \beta - H(\beta)^{-1} \nabla L(\beta)$$

線形探索付きニュートン法: 近似は厳密には正しくないので線形探索と組み合わせる

■ ニュートン法の更新 $\beta^{\text{NEW}} \leftarrow \beta - H(\beta)^{-1} V L(\beta)$ は2次近似が正しいことを仮定している:

$$L_{\beta}(\mathbf{d}) \approx L(\beta) + \mathbf{d}^{\mathsf{T}} \nabla L(\beta) + \frac{1}{2} \mathbf{d}^{\mathsf{T}} H(\beta) \mathbf{d}$$

- 近似なので、厳密には正しくない
- そこで、更新の向きのみを採用して、更新の量 η は別途決める: $\boldsymbol{\beta}^{\text{NEW}} \leftarrow \boldsymbol{\beta} \boldsymbol{\eta} \boldsymbol{H}(\boldsymbol{\beta})^{-1} \nabla L(\boldsymbol{\beta})$
- ■更新の量(学習率) η > 0の決定法:
 - ステップ数とともに適当に減衰させる

• あるいは、線形探索: $\eta^* = \operatorname{argmax}_{\eta} L(\boldsymbol{\beta} - \eta \boldsymbol{H}(\boldsymbol{\beta})^{-1} \nabla L(\boldsymbol{\beta}))$

適当な初期値から始めて、 目的関数が改善しない間 は η を半分にしていく

最急降下法*:

ヘッセ行列を使わずに、シンプルで軽い更新を繰り返す

- ヘッセ行列の逆行列(もしくは連立方程式を解く)は高コスト:
 - ニュートン法の更新: $\beta^{\text{NEW}} \leftarrow \beta \eta H(\beta)^{-1} \nabla L(\beta)$
- 最急降下法:

単位行列

- ヘッセ行列の逆行列 $H(oldsymbol{eta})^{-1}$ を -Iで置き換える: $oldsymbol{eta}^{\mathrm{NEW}} \leftarrow oldsymbol{eta} + \eta \nabla L(oldsymbol{eta})$
 - 勾配VL(β) は最も急な(目的関数が最も増加する)向き
 - 学習率 η は線形探索で求める:

$$\beta - \eta \nabla L(\beta) \qquad \beta - \eta \nabla L(\beta)$$

確率的最適化とミニバッチ学習: データの部分集合を用いた効率的な推定

- ■目的関数は各データの対数尤度の和: $L(\mathbf{\beta}) = \sum_{i=1}^n \ell_{\mathbf{k}}^{(i)}$
- 勾配 $\frac{\partial L(\beta)}{\partial \beta} = \sum_{i=1}^{n} \frac{\partial \ell^{(i)}}{\partial \beta}$ の計算は O(n) かかる

i番目のデータの 対数尤度

- 勾配をデータ1個で近似: $\frac{\partial L(\beta)}{\partial \beta} \approx n \frac{\partial \ell^{(i)}}{\partial \beta}$
 - 確率的最適化:毎回データをランダムに選ぶ
 - オンライン推定も可能 (時刻tのデータの $\ell^{(t)}$ を使う)
- ミニバッチ学習:1 < m < n 個のデータで勾配を近似:

$$\frac{\partial L(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} \approx \frac{n}{m} \sum_{j \in \text{MiniBatch}} \frac{\partial \ell^{(i)}}{\partial \boldsymbol{\beta}}$$

ロジスティック回帰の勾配計算: 比較的簡単に計算可能

■対数尤度: $L(\boldsymbol{\beta}) = -\sum_{i=1}^{n} \ln(1 + \exp(-y^{(i)}\boldsymbol{\beta}^{\mathsf{T}}\mathbf{x}^{(i)}))$

$$\frac{\partial L(\beta)}{\partial \beta} = -\sum_{i=1}^{n} \frac{1}{1 + \exp(-y^{(i)}\beta^{\mathsf{T}}\mathbf{x}^{(i)})} \frac{\partial (1 + \exp(-y^{(i)}\beta^{\mathsf{T}}\mathbf{x}^{(i)}))}{\partial \beta}$$

$$= \sum_{i=1}^{n} \frac{1}{1 + \exp(-y^{(i)}\beta^{\mathsf{T}}\mathbf{x}^{(i)})} \exp(-y^{(i)}\beta^{\mathsf{T}}\mathbf{x}^{(i)}) y^{(i)}\mathbf{x}^{(i)}$$

$$= \sum_{i=1}^{n} (1 - f(y^{(i)}|\mathbf{x}^{(i)}, \boldsymbol{\beta})) y^{(i)}\mathbf{x}^{(i)}$$

$$\frac{\exists \alpha}{\beta \alpha} (1 - f(y^{(i)}|\mathbf{x}^{(i)}, \boldsymbol{\beta})) y^{(i)}\mathbf{x}^{(i)}$$

$$\frac{\exists \alpha}{\beta \alpha} (1 - f(y^{(i)}|\mathbf{x}^{(i)}, \boldsymbol{\beta})) y^{(i)}\mathbf{x}^{(i)}$$

練習問題: ポアソン回帰の最尤推定

- (前回出てきた)ポアソン回帰の最尤推定
 - 対数尤度:

$$L(\boldsymbol{\beta}) = \sum_{i=1}^{n} y^{(i)} \boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}^{(i)} - \sum_{i=1}^{n} \exp(\boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}^{(i)}) + \text{const.}$$

- 解析解は求まらない
- 最急勾配法の更新式を求めてみる

まとめ: ロジスティック回帰

- ロジスティック回帰:
 - ダミー変数y ∈ {+1,−1}を従属変数とするモデル
 - y = +1である確率を出力する
 - 最尤推定の対数尤度は、大域解をもつが、解析解をもたない
 - 非線形最適化法によって、最適解を求める
 - ニュートン法、再急降下法、確率的勾配法、...