

Data Privacy

Protecting Your Data from Anyone

Yubin Xia

Data Privacy

- Data can be used everywhere
 - Risk management
 - Medicine
 - Recommended system
 - ...
- Data can be stolen easily
 - Everyone who uses your data can steal it

Data Privacy

- What's the target of data privacy system?
 - Allow data to be used, and
 - Protect data from being stolen
- What will be introduced?
 - Basic data privacy method
 - ZKP, OT, HE, sMPC, TEE, DP
 - Systems which try to enforce data privacy

Trusted Execution Environment

Problem

- Alice wants to ask Bob (e.g., a cloud) to perform calculation on her data
- Naïve method: Sending Data to Bob

- Alice wants to ask Bob (e.g., a cloud) to perform calculation on her data
- Naïve method: Sending Data to Bob

Trusted Execution Environment I have **computing** resource and TEE! I have **Data!** Data Alice Bob (cloud)

- Alice wants to ask Bob (e.g., a cloud) to perform calculation on her data
- Naïve method: Sending Data to Bob
- Bob cloud construct a TEE

What is TEE

Different TEEs

- Software TEE
 - VM-based TEE
 - Same privilege protection
- ARM TrustZone
- Intel SGX
- AMD SME/SEV
- SANCTUM

Zero-Knowledge Proof

Problem

- Alice tries to prove to Bob that she has the answer of a difficult problem (e.g., a NP problem)
- Naïve method: Sending A to Bob

Problem

- Alice tries to prove to Bob that she has the answer of a difficult problem (e.g., a NP problem)
- Naïve method: Sending A to Bob
 - Problem: Bob will get the answer A

Zero-Knowledge Proof I have the answer A of the problem P! Alice OK, I can verify the proof. Bob

- Alice tries to prove to Bob that she has the answer of a difficult problem (e.g., a NP problem).
- Zero-Knowledge Proof
 - Completeness: Alice can construct the proof if she has A
 - Soundness: Alice cannot construct the proof if she doesn't have A
 - Zero-knowledge: Bob knows nothing about A

Interactive Zero-Knowledge Proof I am prover: P promise challenge response Bob

- P has answer x of a problem L, and tries to prove it with > 1 iterations:
 - Step-1: P transfers \boldsymbol{L} to $\boldsymbol{L'}$, and promises that $\boldsymbol{L'}$ is transferred from \boldsymbol{L} and she has the answer $\boldsymbol{x'}$
 - Step-2: V challenges P
 - Step-3: P shows the proof of the answer x', which will not leak x
 - V trusts that P has x when P always meets the challenge

Graph Isomorphism

• If $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are isomorphic, there exist a bijection function ϕ , that for any $(u, v) \in E_1$, exist $\phi(u, v) \in E_2$

Graph Isomorphism

- If $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are isomorphic, there exist a bijection function ϕ , that for any $(u, v) \in E_1$, exist $\phi(u, v) \in E_2$
- G_e and G_f are isomorphic
 - $\phi = \{1_1->2_5, 1_2->2_6, 1_3->2_4, 1_4->2_3, 1_5->2_1, 1_6->2_2\}$

Graph Isomorphism w/ Interactive ZKP

Bob

- Select a random bijection function π
- Calculate $G_f' \simeq G_f$ with π

$$G_f' \simeq G_f \simeq G_e$$

Ask Alice to prove $extbf{\emph{G}}_{\sigma} \simeq extbf{\emph{G}}_f'$

• Select a random $\sigma \in \{e, f\}$

If $\sigma = \mathbf{f}$, send π If $\sigma = \mathbf{e}$, send $\pi \cdot \emptyset$

Verify that $oldsymbol{G}_{\sigma} \simeq oldsymbol{G}_f'$

Graph Isomorphism w/ Interactive ZKP

- Select a random bijection function π
- Calculate $G_f' \simeq G_f$ with π

Ask Alice to prove $G_{\sigma} \simeq G_f'$

• Select a random $\sigma \in \{e, f\}$

Require too much interactions!

• Verify that $G_{\sigma} \simeq G_f'$

Non-Interactive ZKP

Proof

- Select a random bijection function π_1
- ullet Calculate $G_{f1}^{\prime} \simeq G_f$ with π_1
- Get the σ_1 = Oracle(G'_{f1})
- Generate proof $\pi_1 \cdot \emptyset \Rightarrow$

I am a trusted Random Oracle!
I can provide a random
sequence.

Verify

- Get the σ_1 = Oracle(G'_{f1})
- Verify $G'_{f1} \simeq G_e$

Graph	Value
G_{f1}'	<i>σ</i> =e
G_{f2}'	σ =f
G_{f3}'	<i>σ</i> =e
•••	•••

Oblivious Transfer

OT

Problem

- Alice has $\{m_0, m_1\}$ and Bob wants to get m_{σ}
 - Alice may know the m_{σ}
 - Bob may get both m₀ and m₁

Oblivious Transfer

- Scenario: message transfer
 - A sender has a message list $\{m_0, m_1, \dots, m_n\}$
 - A receiver wants to get k target messages from sender

- Properties: oblivious and secure
 - Oblivious: sender cannot know which messages are received
 - Secure: receiver can only get the target messages

1-out-of-2 OT

- Generate (K_{pub}, K_{prv})
- Select random numbers r_0 , r_1

V

- Generate a key k
- $V = Enc(K_{pub}, k) \oplus r_{\sigma},$ $\sigma \in \{0, 1\}$

- $\bullet \quad k_0 = Dec(K_{prv}, V \oplus r_0)$
- $\bullet \quad k_1 = Dec(K_{prv}, V \oplus r_1)$
- $\bullet \quad C_0 = Enc(k_0, m_0)$
- $\bullet \quad C_1 = Enc(k_1, m_1)$

$$C_0, C_1$$

$$m_{\sigma} = Dec(k, C_{\sigma})$$

More OT Protocols

- Different numbers of selected messages
 - 1-out-of-2 OT:
 - 1-out-of-n OT
 - k-out-of-n OT
- Implementation method
 - Non-adaptive OT
 - Adaptive OT
 - Publicly Verifiable OT
 - ...

Homomorphic Encryption

ΗE

- Alice wants to ask Bob (e.g., a cloud) to perform calculation on her data
- Naïve method: Sending data to Bob

- Alice wants to ask Bob (e.g., a cloud) to perform calculation on her data
- Naïve method: Sending Data to Bob
 - Bob will get the data

Homomorphic Encryption

- Alice sends CT=encrypt(Key, Data) and function f to the Cloud
- Cloud calculates CT'= Evaluate(f, CT) = Encrypt(Key, f(Data))
- Alice gets f(Data) = Decrypt(Key, CT')

SWHE and FHE

- HE: Homomorphic Encryption
 - $Enc(f(m_1, m_2)) = Eval_f(Enc(m_1), Enc(m_2))$
- SWHE: Somewhat Homomorphic Encryption
 - Support **limited** kinds of operation
 - $f(m_1, m_2) = m_1 \cdot m_2$ (e.g., RSA)
 - $f(m_1, m_2) = m_1 + m_2$
- FHE: Full Homomorphic Encryption
 - Support all kinds of operations
 - Addition and multiplication

Secure Multi-Party Computing

SMPC

Problem

- Multiple parties (at least 2) work together to calculate a function
 - Enforce the data privacy for each party

Yao's Protocol

- Two-party computing
- Semi-honest adversary
 - Each party must follow the protocol
- Generic protocol
 - Can securely compute any functionality
- GC(Garbled Circuits)+OT(Oblivious Transfer)

Millionaire Problem

- Money: Wang has i, Lee has j, i and j are between 1 to 10
- Lee (money: j)
 - Chose a random big integer x
 - K = enc{Key_{pub} of Wang, x}
 - Send c=K-j to Wang
- Wang (money: i)
 - Decrypt with Key_{pri} of Wang ten number: c+1, c+2...c+10, get y1, y2... y10
 - Chose a prime number p
 - Calculate d1 = y1 mod p
 - For n=i to 10, d_n++ , other no change
 - Send d1 to d10 to Lee
- Lee
 - Check dj, if dj == $x \mod p$, then $i \ge j$; else i < j

Garbled Circuits

- Represent functions as Boolean circuits
 - Basic gates: AND, OR, NOT
 - Adding numbers
 - Comparing numbers
 - Multiplying numbers
 - Computing AES
- Represent input and output as wires

Garbled Circuits

- An encrypted circuits together with a pair of keys (k_0,k_1) for every wire so that for any gate, given one key for every input wire:
 - It is possible to compute the key of the corresponding gate output
 - It is impossible to learn anything else

Yao's Protocol on GC

- Input: \mathbf{x} and \mathbf{y} of length \mathbf{n} from P_1 and P_2
- P₁ generates a garbled circuit G(C)
 - K_L⁰, K_L¹ are the keys on wire W_L
 - Let $\mathbf{w_1}$, \cdots $\mathbf{w_n}$ be the input wires of P_1 and $\mathbf{w_{n+1}}$, \cdots $\mathbf{w_{2n}}$ be the input wires of P_2
- P_1 sends to P_2 **G(C)** and strings $K_1^{x_1}, ..., K_n^{x_n}$
- P_1 and P_2 run **n** OTs in parallel
 - P_1 inputs (K_{n+1}^0, K_{n+1}^1)
 - P₂ inputs y_i
- Given all keys, P2 computes **G(C)** and obtains **C(x,y)**

Different sMPC Protocols

- Two-party
 - Yao's protocol
 - TinyOT protocol
 - Obliv-C

- Multi-party
 - BMR protocol
 - GMW protocol
 - SPDZ protocol

Differential privacy

DP

Problem

Name	Salary		
Alice	100		
Bob	80		
Brown	200		
Tom	120		

 Alice can perform queries on Bob's database, but cannot access a single database entry

Problem

Name	Salary		
Alice	100		
Bob	80		
Brown	200		
Tom	120		

- Alice can perform queries on Bob's database, but cannot access a single database entry
 - Naïve method: reject Alice to access single entry

Problem

Name	Salary
Alice	100
Bob	80
Brown	200
Tom	120

- Alice can perform queries on Bob's database, but cannot access a single database entry
 - Naïve method: reject Alice to access single entry

Differential privacy

- Allow user to perform a random function M on data set $D = \{a_1, \dots a_n\}$, but get nothing about any individual entry of D
- M is ε-DP if:
 - For all datasets **D** and **D**'that differ on a single element, $Pr(M(D) = x) \le e^{\varepsilon} * Pr(M(D') = x)$
- Security properties
 - Robustness to post-processing
 - User can perform any operation on the result of M, and get nothing about the individual entry of D
 - Composability
 - Group privacy

When DP is Enabled

Name	Salary	
Alice	100	
Bob	80	
Brown	200	
Tom	120	

How to Implement a DP Algorithm

- Adding noisy to the function that we want to compute
 - Translate the function f to a random algorithm M
- Existing Mechanism
 - Laplace mechanism
 - Gaussian mechanism
 - ..

Occlumency: Privacy-preserving Remote Deep-learning Inference Using SGX (MobiCom'2019)

OCCLUMENCY

Concerns in Cloud-driven Deep Learning

Sensitive data is exposed to leak / tampering

Cloud Offloading is Inevitable, but Risky

- Practical method to support mobile DL
 - Easily supports a large model with high accuracy
 - Consumes less resources
 - Addresses device heterogeneity
- Privacy concerns!
 - User data can be disclosed
 - Image, video, audio, activities, health/medical data
- More critical for mobile/IoT services
 - Life-immersive: data from users' daily life

Cloud Offloading is Inevitable, but Risky

Cloud

- High computational power
- Sacrifices privacy

On-device

- High privacy protection
- Sacrifices accuracy/speed

This paper aims to build a **secure cloud**-based solution to strike the balance between privacy, speed and accuracy

Occlumency

A cloud-driven DL inference system preserving user privacy

- Key approach: SGX enclaves
 - Commodity TEE with the highest protection level
 - Prevent memory access even from OS / hypervisor
- Protects:
 - User data disclosure
 - Inference result manipulation

Stakeholders of Occlumency

Challenge: Limited Memory Size

- SGX's physical memory is very small (128 MB)
 - DNN requires 100MB ~ 1GB of memory
 - Windows -- fails
 - Linux -- makes frequent page swapping

Challenge: Limited Memory Size

- SGX's physical memory is very small (128 MB)
 - DNN requires 100MB ~ 1GB of memory DNN
 - ⇒ Frequent page swapping
- SGX's paging is expensive
 - Swaps-out memory into untrusted memory
 - Involves encryption, redundancy checking, ...
- SGX slows down the inference speed
 - Takes 7x longer latency to infer VGG, YOLO

Enabling DL to Run within Small Memory

Observation -- three dominant memory usages of DNN:

- 1) Model weights (parameters)
- 2) Intermediate feature maps
- 3) Conv. layer computation

Model weights 540 MB Feature maps 61 MB

Memory Usage of VGG-16

0,	•	
Others		6 MB

327 MB

3) Conv. layer

Enabling DL to Run within Small Memory

Observation -- three dominant memory usages of DNN:

- 1) Model weights (parameters)
- 2) Intermediate feature maps
- 3) Conv. layer computation

Approach of Occlumency

- 1) Model weights (parameters)
- 2) Intermediate feature maps
- 3) Conv. layer computation

- 1) On-demand weight loading
- 2) Memory-efficient FM allocation
- 3) Partitioned convolution

1) On-demand Weights Loading

- Saves memory used to load weights (~500MB for VGG-16)
- Idea: Not protecting model weights
 - Our goal is to protect the user privacy
 - Model weights are irrelevant to user data
- Keeps weight in unprotected memory & copies into enclaves on demand

1-1) New Problem 1: Weight Corruption Threat

- Weight may be corrupted
 - Weights are no longer protected in enclaves
 - Weight manipulation attacks will lead to wrong inference results
- Solution: Model integrity checking
 - Hash checking-based weight modification detection
 - Compares hash value of each layer

1-2) New Problem 2: Computation Bottleneck

- Additional computation bottlenecks:
 - Weight copying (on-demand weight loading)
 - Hash checking (model integrity checking)
- Parallel pipeline
 - Weight copy / Hash check / Inference
 - Reduces ~17.5% of latency

2) Memory-efficient Feature Map Allocation

- Reduces the required memory to load intermediate feature-maps (FM)
- Idea: Releasing unnecessary FMs
 - Profiles when each FM can be released in advance
 - Immediately deallocates FMs already used

3) Partitioned Convolution

 Reduces memory overhead of Conv. that exceeds the SGX heap limit

3) Partitioned Convolution

- Reduces memory overhead of Conv. that exceeds the SGX heap limit
- Idea: Breaking down big operations into smaller jobs
 - e.g., Partition by 2 → requires 2x less memory

3) Partitioned Convolution

- Reduces memory overhead of Conv. that exceeds the SGX heap limit
- Idea: Breaking down big operations into smaller jobs
 - e.g., Partition by 2 → requires 2x less memory
- Adaptively partitions by 2, 4, 8, ...
 - Runs Conv. layer within limited memory size

Memory Usage Evaluation

- 1) Can Occlumency run DNN within SGX's memory limit?
 - Occlumency successfully runs DNN models within SGX's heap limit
 - Ex) Reduced memory for VGG-19:
 - Original: 980MB
 - Occlumency: 74MB

Inference Latency Evaluation

- 2) How much the Occlumency can enhance the inference speed?
 - 3.0 ~ 4.3x faster than **SGX-paging**

- 3) How much is the overhead of Occlumency?
 - 72% overhead compared to Native

Oblivious Multi-Party Machine Learning on Trusted Processors (USENIX Security'2016)

OBLIVIOUS MULTI-PARTY MACHINE

Machine Learning on Cloud

Machine Learning on Cloud

Machine Learning on Cloud with TEE

Threat Model

- Any party may be malicious
- The cloud can be malicious
 - Memory & Network observer
 - Hardware attackers (on mem bus)
 - Perform side-channel attacks
- Assumptions:
 - Code does not leak secrets
 - Do not consider leakage through time or power channels

System Design

- Data: encryption
 - Input and output are encrypted
 - Data outside of enclave is encrypted
- Code: secure enclave
 - Trusted processors (SGX)
- Data accesses:
 - Side channel protection
 - Memory, disk, and network are accessed obliviously

SGX's Vulnerabilities

- Side channel attack
 - Malicious OS still controls page fault handler
 - If know the photo
 processing algorithm, can
 get the image by
 monitoring page fault
 - Not 100% accurate, but still good enough

Side-channel Protection

- Memory side-channel
- Security guarantee:
 - Data oblivious
 - Given two inputs and a memory trace, one cannot distinguish which one was executed
- Memory accesses only depends on public information
 - E.g., number of instances, number of labels
- Assumption: register-to-register manipulation is data oblivious

Library of Oblivious Primitives LibO

- In assembly:
 - ogreater, omove, oless, oequal
 - oget
 - get the ith array element (hide i)

mov rcx, x mov rdx, y cmp rcx, rdx setg al retn

omove()		
mov	rcx, cond	
mov	rdx, x	
mov	rax, y	
test	rcx, rcx	
cmovz	rax, rdx	
retn		

Oblivious Operation

Non-oblivious

```
int max(int x, int y) {
  if (x > y) return x;
  else return y;
}
```

Oblivious

```
int max(int x, int y) {
  bool getX = ogreater(x, y);
  return omove(getX, x, y);
}
```

Optimized Oblivious Array Access

- Naïve method
 - Scan the array
 - Just actually load/store a single element
- Observation
 - Attacker can only trace memory access at cache line granularity
- Optimization
 - Scan arrays at cache line granularity
 - Leveraging AVX2 vector instructions

Optimized Oblivious Array Access

Other Oblivious ML Algorithms

- Decision trees
- Support Vector Machines
- Neural Network
- Matrix Factorization
- K-Means clustering

Evaluation

Algorithm	SGX+enc.	SGX+enc.+obl.	Dataset	Parameters	Input size	# Instances
K-Means	1.91	2.99	MNIST	k=10, d=784	128MB	70K
CNN	1.01	1.03				
SVM	1.07	1.08	SUSY	k=2, d=18	307MB	2.25M
Matrix fact.	1.07	115.00	MovieLens	<i>n</i> =943, <i>m</i> =1,682	2MB	100K
Decision trees	1.22	31.10	Nursery	k=5, d=27	358KB	6.4K
					•	•

Baseline is processing the data in plaintext without SGX protection.

Different Data Privacy Systems

- Data privacy + ML
 - Sage (SOSP'19)
 - Oblivious multi-party ML (USENIX Security'16)
 - Chiron, ···
- Data privacy + Database
 - CryptDB (SOSP'11)
 - EnclaveDB (S&P'18), ···
- Data privacy + Data analysis
 - Opaque (NDSI'17)
- More ···