Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model
- Methods for Performance Evaluation
 - How to obtain reliable estimates
- Methods for Model Comparison
 - How to compare the relative performance among competing models

Metrics for Performance Evaluation

- Focus on the predictive capability of a model
 - Rather than how fast it takes to classify or build models, scalability, etc.
- Confusion Matrix:

	PREDICTED CLASS		
ACTUAL CLASS		Class=Yes	Class=No
	Class=Yes	a	b
	Class=No	С	d

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Metrics for Performance Evaluation

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	a (TP)	B (FN)
	Class=No	c (FP)	d (TN)

Most widely-used metric:

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Cost Matrix

	PREDICTED CLASS		
ACTUAL CLASS	C(i j)	Class=Yes	Class=No
	Class=Yes	C(Yes Yes)	C(No Yes)
	Class=No	C(Yes No)	C(No No)

C(i | j): Cost of misclassifying class j example as class i

- Accuracy is a useful measure if
 - C(Yes | No)=C(No | Yes) and C(Yes | Yes)=C(No | No)
 - P(Yes) = P(No) (class distribution are equal)

Cost vs. Accuracy

Cost Matrix	PREDICTED CLASS		
ACTUAL CLASS	C(i j)	+	-
	+	-1	100
	-	1	0

Model M ₁	PREDICTED CLASS		
ACTUAL CLASS	C(i j)	+	~
	+	150	40
	-	60	250

$$Cost = 3910$$

$$Cost = 4255$$

Cost-Sensitive Measures

Precision (p) =
$$\frac{a}{a+c}$$

Recall (r) =
$$\frac{a}{a+b}$$

F-measure (F) =
$$\frac{2rp}{r+p}$$
 = $\frac{2a}{2a+b+c}$

- Precision is biased towards C(Yes | Yes) & C(Yes | No)
- Recall is biased towards C(Yes | Yes) & C(No | Yes)
- F-measure is biased towards all except C(No | No)

Weighted Accuracy =
$$\frac{w_1 a + w_4 d}{w_1 a + w_2 b + w_3 c + w_4 d}$$

Methods for Performance Evaluation

- How to obtain a reliable estimate of performance
- Performance of a model may depend on other factors besides the learning algorithm:
 - Class distribution
 - Cost of misclassification
 - Size of training and test sets

Learning Curve

Data Mining Sanjay Ranka Spring 2011

- Learning curve shows how accuracy changes with varying sample size
- Requires a sampling schedule for creating a learning curve
 - Arithmetic sampling
 - Geometric sampling
- Effect of small sample size
 - Bias in the estimate
 - Variance of the estimate

Methods for Estimation

- Holdout
 - Reserve 2/3 for training and 1/3 for testing
- Random sub-sampling
 - Repeated holdout
- Cross validation
 - Partition data into k disjoint subsets
 - k-fold: train on k-1 partitions, test on the remaining one
 - Leave-one-out: k=n
- Stratified sampling
 - Over-sampling vs. Under-sampling
- Bootstrap
 - Sampling with replacement

Receiver Operating Characteristic (ROC)

- Developed in 1950s for signal detection theory to analyze noisy signals
 - Characterize the trade-off between positive hits and false alarms
- ROC curve plots TP (on the y-axis) against FP (on the x-axis)
- Performance of each classifier represented as a point on the ROC curve
 - changing the threshold of algorithm, sample distribution or cost matrix changes the location of the point

ROC Curve

- 1-dimensional data set containing 2 classes (positive and negative)
- Any point located at x > t is classified as positive

Data Mining Sanjay Ranka Spring 2011

ROC Curve

(TP,FP):

- (0,0): declare everything to be negative class
- (1,1): declare everything to be positive class
- (1,0): ideal
- Diagonal line:
 - Random guessing
 - Below diagonal line:
 - prediction is opposite of the true class

Using ROC for Model Comparison

- No model consistently outperforms the other
 - M1 is better for small FPR
 - M2 is better for large FPR
- Area under the ROC curve
 - Ideal, area = 1
 - Random guess,area = 0.5