

Alba 131L

1877

A.M./F.M. battery operated portable radio receiver

Circuit diagram of the Alba 131L radio receiver. Component numbers used in the circuit diagram and tables, correspond with those used in the manufacturer's service manual, with exception of the switches.

Introduction

Alba model 131L is a ten transistor and seven semi-conductor diode, three waveband a.m./f.m. portable radio receiver. A feature of the circuit is the inclusion of an a.f. pre-amplifier when switched to v.h.f./f.m.

Wavebands covered by this receiver are: l.w. 857-2,000m, m.w. 187-567m and v.h.f./f.m. 87-104Mc/s. An internal ferrite rod aerial is used for reception in the long and medium wavebands, a telescopic aerial for v.h.f. No provision is made for the connection of an external aerial.

A maximum audio output of 500mW is handled with a 4in dia loudspeaker of 8Ω impedance which is in series with a normally closed miniature jack. This jack is used for the connection of an earphone or external loudspeaker of impedance not less than 8Ω . The internal loudspeaker being muted on insertion of a miniature jack plug.

(Continued overleaf col. 1)

Component values and locations

Resistors	R32	15k Ω	B1	C8	3pF	A1	C60	0.02 μ F	A1
R1	220 Ω	A1	R33	47k Ω	A2	C9	5pF	A1	C61
R2	2.2k Ω	A1	R34	10k Ω	A2	C10	500pF	A1	C62
R3	5.6k Ω	B1	R35	1k Ω	A2	C11	25pF	A1	C64
R4	33k Ω	A1	R36	68 Ω	A2	C12	1,000pF	A1	0.04 μ F
R5	1.8k Ω	A1	R37	2.2k Ω	A2	C13	12pF	A1	0.02 μ F
R6	2.2k Ω	A1	R38	10k Ω	A2	C14	40pF	B1	10pF
R7	5.1k Ω	A1	R40	390 Ω	A2	C15	5pF	B1	200 μ F
R8	2.2k Ω	B2	R41	56 Ω	A2	C16	20pF	B1	B2
R9	82k Ω	B1	R42	1k Ω	A2	C18	10pF	B1	A1
R10	10k Ω	B1	R43	68 Ω	A1	C19	0.01 μ F	B1	CT4
R11	680 Ω	B1	R44	1k Ω	A1	C20	5,000pF	B1	CT5
R12	150 Ω	B1	R45	68 Ω	A1	C21	0.01 μ F	B1	CT6
R13	5.6k Ω	B2	R46	2.2k Ω	B2	C22	85pF	A1	CV1
R14	1k Ω	B2	R47	2.2k Ω	A1	C23	165pF	B1	CV2
R15	220 Ω	B2	R48	56k Ω	A2	C24	3,000pF	A1	CV3
R16	270 Ω	B2	R49	3.9k Ω	A2	C25	10pF	A1	CV4
R17	560 Ω	B2	R50	100 Ω	A1	C26	270pF	A1	
R18	1.5k Ω	B2	R51	1.5k Ω	A2	C27	10 μ F	B1	
R19	1k Ω	B2	R52	330k Ω	B1	C28	1,000pF	B1	L1
R20	1k Ω	B2	VR1	100k Ω	A1	C29	10pF	B1	L2
R21	10k Ω	B2	VR2	100k Ω	B2	C30	4pF	B1	L3
R22	1k Ω	B2	VR3	10k Ω	A2	C31	0.02 μ F	B1	L4
R23	100k Ω	B2				C32	0.04 μ F	B1	L5
R24	100k Ω	B2				C33	12pF	B2	L6 a/b
R25	3.3k Ω	B2				C34	4pF	B2	L7
R26	15k Ω	B1	C2	0.01 μ F	A1	C35	0.02 μ F	B2	L8
R27	4.7k Ω	B1	C3	0.02 μ F	A1	C36	0.02 μ F	B1	L9
R28	3.3k Ω	B1	C4	80pF	A1	C37	25pF	B2	L11
R29	15k Ω	B1	C5	1,000pF	A1	C38	0.01 μ F	B2	L12
R30	100 Ω	A1	C6	5 μ F	A1	C39	0.01 μ F	B2	L13
R31	2.2k Ω	B1	C7	10pF	A1	C40	5 μ F	B2	L14
						C41	1,000pF	B2	T1
						C42	1,000pF	B2	T2
						C43	5 μ F	B2	T3
						C44	5,000pF	B2	T4
						C45	5 μ F	A2	T5
						C46	0.02 μ F	B2	T6
						C47	0.02 μ F	B2	T7
						C48	200 μ F	B2	T8
						C49	5 μ F	A2	T9
						C50	30 μ F	A1	Miscellaneous
						C51	5 μ F	A2	D2-D5
						C52	30 μ F	A2	D1, D6, 1S188
						C53	200 μ F	A2	B1
						C54	0.01 μ F	B2	D7
						C55	0.01 μ F	B2	S1-S15
						C56	200 μ F	B2	S16
						C57	200pF	A2	† Ferrite rod aerial
						C58	200pF	A2	** Loudspeaker

Transistor table

Transistor	A.M. Emitter (V)	Base (V)	Collector (V)	F.M. Emitter (V)	Base (V)	Collector (V)
TR1	2SA440	...	5.3	5.0	—	4.7
TR2	2SA440	...	5.2	5.2	—	3.7
TR3	2SA324	...	4.2	4.0	0.04	3.3
TR4	2SA321	...	5.0	4.7	0.06	4.5
TR5	2SA321	...	4.6	4.1	0.17	4.0
TR6	2SB185	...	3.2	2.6	0	3.0
TR7	2SB185	...	4.7	4.4	1.5	4.3
TR8	2SB186	...	4.1	3.9	0.3	4.1
TR9	2SB22	...	5.98	5.8	2.9	5.98
TR10	2SB22	...	2.88	2.7	0	2.88

SWITCH CODING
v = closed on V.H.F./F.M.
l = closed on L.W.
m = closed on M.W.

1877

Alba 131L

Continued from overleaf—

Operating power is supplied by four type LPU2 cells or their equivalent, the quiescent current is quoted as 19mA.

Transistor analysis

Transistor voltages quoted in the table overleaf were obtained from data supplied by the manufacturers. They were measured under quiescent conditions with a model 8 Avometer and are all positive with respect to battery negative.

Circuit alignment

Equipment required.—An r.f. signal generator covering the range 100kc/s-2 Mc/s amplitude modulated 30 per cent at 400c/s; an f.m. sweep generator with the following ranges: 10.7Mc/s deviated 300kc/s at 50c/s, 87Mc/s and 104Mc/s deviated 25kc/s at 1kc/s on each range; an r.f. coupling coil; an a.f. output meter to match 8Ω terminated with a miniature jack plug; an oscilloscope (c.r.o.); a shunt diode rectifier network made up with a 2,000pF capacitor, an OA79 diode and a 33kΩ resistor (see illustration col. 3), and one each 0.01μF and 0.1μF capacitors.

During a.m. alignment attenuate input signal so that the receiver output does not exceed 50mW thereby preventing a.g.c. action masking alignment peaks.

Switch on test equipment and allow approximately 15 minutes to warm up. Pre-set volume control to maximum and connect a.f. output meter via earphone jack. All a.m. i.f. and r.f. signals are fed

Fig.1.

Fig. 2.

I.F. response curves.

in via the r.f. coupling coil which should be loosely coupled to the ferrite rod aerial assembly.

- 1.—Switch receiver to m.w. and tune to 550m. Feed in a 470kc/s a.m. signal and adjust **T8**, **T7** and **T6** for maximum output. Repeat until no further improvement can be obtained.
- 2.—With receiver still tuned to 550m, feed in a 545kc/s a.m. signal and adjust **L13** and **L6a** (by sliding coil former along ferrite rod) for maximum output.
- 3.—Tune receiver to 200m and feed in a 1,500kc/s a.m. signal. Adjust **CT6** and **CT3** for maximum output.
- 4.—Repeat operations 2 and 3 until no further improvement can be obtained.

- 5.—Switch receiver l.w. and tune to 1,900m. Feed in a 158kc/s a.m. signal and adjust **L12** and **L8** (by sliding coil former along ferrite rod) for maximum output.
- 6.—Tune receiver to 900m and feed in a 333kc/s a.m. signal. Adjust **CT5** and **CT4** for maximum output.
- 7.—Repeat operations 5 and 6 until no further improvement can be obtained. Disconnect a.m. signal generator.
- 8.—Switch receiver to v.h.f./f.m. and tune to a signal free position in the waveband. Connect the f.m. sweep generator via a 0.01μF capacitor to **TP2** and chassis (**TP1**), and the c.r.o. via the diode network to **TP3** and chassis. Detune **T5**.
- 9.—Feed in a 10.7Mc/s signal deviated 300kc/s at 50c/s. Adjust **T4**, **T3**, **T2** and **T1** for maximum amplitude, symmetrical about 10.7Mc/s (see Fig.1). Attenuate input signal so that response amplitude is just large enough to produce a recognizable pattern.

- 10.—Disconnect and remove diode network, then connect c.r.o. via a 0.1μF capacitor to **TP5** and chassis.
- 11.—Feed in a 10.7Mc/s signal 300kc/s at 50c/s. Adjust **T4** for a symmetrical 'S' curve, and **T5** to centre 10.7Mc/s marker in the straight portion of the curve (see Fig. 2).
- 12.—Repeat operations 9-11 for optimum response. Disconnect c.r.o.
- 13.—Tune receiver to 87Mc/s pre-set volume control to maximum and feed in an 87Mc/s f.m. signal deviated 25kc/s at 1kc/s. Adjust **L5** and **L3** for maximum output.
- 14.—Tune receiver to 104Mc/s and feed in a 104Mc/s f.m. signal deviated 25kc/s at 1kc/s. Adjust **CT2** and **CT1** for maximum output.
- 15.—Repeat operations 13 and 14 until no further improvement can be obtained.

Shunt diode network.

Sensitivity

M.w./a.m. sensitivity for 50mW output.—1Mc/s a.m. signal via a 5,000pF capacitor to **TR3** base: 7μV, 470kc/s a.m. signal via a 0.1μF capacitor to the following stages: **TR3** base 3μV., **TR4** base 80μV., **TR5** base 1.4mV., **D5** anode 35mV.

V.h.f./f.m. sensitivity for 0.5V across C40—90Mc/s c.w. via a 0.1μF capacitor to **TP2** 56μV. 10.7Mc/s c.w. via a 5pF capacitor to the following stages: **TR2** emitter 11mV., **TR3** base 14mV., **TR4** base 90mV., **TR5** base 180mV. For a 50mW output, a 90Mc/s signal deviated 25kc/s at 1kc/s fed via a 0.1μF capacitor to **TP2**: 3.5μV.

Dismantling

Remove control knobs (pull off), then with reference to the sketch illustrating component locations on printed panel, unscrew and remove four screws and washers 'A'. The lower right hand screw secures fibre board shield. Unscrew and remove screw 'B' from bottom of case, then unsolder v.h.f./f.m. aerial lead at printed panel end. The chassis may now be lifted clear of case.

When replacing chassis make sure that the fibre washer between printed panel and the top right hand fixing pillar is in position.

Waveband switches, S1-S15.

General notes

Drive cord replacement. — To replace drive cord remove chassis as described under "Dismantling". Prepare a suitable length of drive cord and with the tuning drum rotated fully clockwise route the cord as illustrated in sketch (right), making $2\frac{1}{2}$ turns anti-clockwise (winding from the rear) around the control spindle.

Adjustments. — Switch receiver to v.h.f./f.m. and adjust **VR1** for 0.13V measured across **R1**. Switch receiver to m.w. and adjust **VR2** for 0.06V measured at **TR4** collector. Note: Both these measurements were made under quiescent conditions.

Sketch of the drive cord assembly.

Additional notes and modifications

Manufacturer's service department

Alba (Radio and Television) Limited,
52-70, Tabernacle Street,
London, E.C.2.

(Telephone: CLErkenwell 1322)

Component side view of the printed panel as seen from rear of the receiver.