CH-105 INORGANIC TUTORIAL - I

Topic-I

- **Q-I.1.** The boiling point of the inert gases are as follows: He-4~K, Ne-10~K, Ar-100~K, Kr-170~K and Xe-220K. Rationalize the trend observed.
- **Q-I.2.** Between the two reactions listed below, predict the following (i) in which direction the reaction equilibrium lies (ii) qualitatively predict which reaction is favourable using the following absolute η values.

$$HCI + LiH \longrightarrow LiCI + H_2$$

 $8.0 \quad 4.08 \qquad 4.75 \quad 8.7$
 $HOF + LiH \longrightarrow LiF + H_2O$
 $7.82 \quad 4.08 \qquad 5.87 \quad 9.5$

- **Q-I.3**. Predict the relative solubility trend in water for the following two sets of molecules. (a) NaF, NaCl, NaBr, NaI (b) CuF, CuCl, CuBr and CuI. Briefly rationalize your answer.
- **Q-I.4**. Using hard-soft concepts, which of the following reactions are predicted to have an equilibrium constant greater than 1? Unless otherwise stated, assume gas-phase or hydrocarbon solution and 25°C.

(a)
$$R_3PBBr_3 + R_3NBF_3 \rightleftharpoons R_3PBF_3 + R_3NBBr_3$$

(c)
$$[AgCl_2]^{2-}(aq) + 2CN^{-}(aq) \rightleftharpoons [Ag(CN)_2]^{-}(aq) + 2Cl^{-}(aq)$$

Q-I.5. Draw at least two possible interactions that can exist between 1,3,5-trinitrobenzene and benzene.

CH-105 INORGANIC TUTORIAL - I

Topic-II

Q-II.1. Why are the metals Al and Ti are not produced by pyrometallurgical extraction of Al_2O_3 and TiO_2 ? What will be a better method to produce such metals?

Q-II.2. The Ellingham diagram of metal oxides is given below. Depict how to obtain (a) Mg from MgO using Al and Ti metals (b) Al from Al₂O₃ using Mg and Ti metals (c) Ti from TiO₂ using Mg and Al in the graph given below.

CH-105 INORGANIC TUTORIAL - I

Q-II.3. To a silver nitrate solution, an aluminium rod is initially inserted. After ~20 minutes, a magnesium rod is inserted to the same solution. After another 20 minutes, O_2 is bubbled into the solution at a slightly elevated temperature. What are the products formed at each stage? (You may use the following redox potentials $Al^{3+}/Al = -1.66 \text{ V}$; $Ag^{+}/Ag = +0.80 \text{ V}$; $Mg^{2+}/Mg = -2.36 \text{ V}$; $O_2/2O^{2-} = +1.36 \text{ V}$).