Recycling 101: The Fundamentals of Recycling Systems, Markets, and Economics

Natalie Starr and Ted Siegler DSM Environmental Services www.DSMenvironmental.com

Intended Audience

- Those new to recycling
 - Want a general overview
- Those who want an update on emerging collection and processing technologies
 - Focused on residential and commercial recycling

Format and Content

- > Fundamentals of
 - Recycling Systems
 - Markets
 - Economics
- Open discussion throughout
 - If I could learn only one thing about recycling before I leave it would be ...

What is Recycling?

- Recovery of materials for use in another product that would otherwise be destined for disposal
- Different from reuse, where material is recovered and used "as is"
- Not to be confused with waste reduction where materials never enter the supply chain, nor generate GHG emissions from the point of extraction on

Why is Recycling Important?

- Recycling reduces environmental impacts including GHG emissions:
 - Impacts from cutting, skidding, transporting, grinding, pulping, and producing paper are greater than those released to collect, process, transport, and re-pulp
 - 14 of 18 largest Superfund sites and 45% of all toxics released are associated with hard rock mining
 - Extraction and harvesting of resources is having a devastating effect on the earth's ecosystem including biological diversity

System of Recycling

Collection: First Step in Recycling

Collection represents 40 – 60% of total waste management costs (US EPA) and has the greatest environmental impact

Types of Collection

- Individual transport to drop-offs
- Collection of source separated materials
 - At the household
 - At commercial, institutional, industrial facilities
- Dual stream collection
- > Single stream collection

Drop-Off Recycling

- Household
- > Deposit Containers
- > Small Businesses

Drop-off Collection Equipment

- Igloos
- **Dumpsters**
- > Roll-offs
- > Small balers
- > Reverse Vending Machines

Reverse Vending (Photo Source: TOMRA)

Drop-Off Issues

- High participation when drop-off located where refuse is collected
- Low participation with curbside refuse collection
- Driving material to drop-off has costs, monetary and environmental
- Un-manned drop-offs can lead to high contamination rates
- Processing of material at drop-offs can be costly

Issue of Special Trips is Critical

- Drop-Off Recycling
 - Recent surveys in Knoxville, TN found that average recycler drives 150 miles per year to drop off recyclables
- Stand Alone Redemption Centers
 - Recent MA surveys showed that special trips reduced value of nickel to 3 – 4 cents
- > At Retail Locations
 - Even at retail locations, people drive out of their way to recycle

Collection of Source Separated Materials

- Household
 - Rarely done anymore
- Commercial
 - High volume/value, homogenous material

Front Loader For Dumpsters

Source Separated Issues

- Remain dominant collection system for commercial wastes
- Low residential capture rates
- Inefficient utilization of trucks and crews in residential collection applications
- Low residue rates
- Low processing costs
- Cleaner material

Dual Stream

Set out of mixed paper and commingled containers

Dual Stream: Over the top dump

Single Stream

- > All materials collected together
- Often associated with rolling carts and automation

Single Stream Issues

- High capture rates
- Can use refuse packer trucks
- Opportunities for co-collection
- Higher residue rates
- > Impact on paper and plastic

Co-Collection

- Single stream provides opportunity for cocollection of refuse and recyclables
- Benefits:
 - Fewer trucks
 - Lower environmental impact
 - Potentially lower system-wide costs
- > Problems:
 - Sizing of compartments
 - Location of refuse and recycling tipping points

Automated Co-Collection

Split Truck Split Cart

Automated dual carts

How Do You Measure Collection Success?

- > Participation Rate
- Capture Rate
- Recycling Rates
- Cost
- **Environmental**
 - GHG Emissions (Carbon Footprint)
 - Other Emissions

Definitions

- Participation Rate
 - Percent of households who set out recycling
 - Usually measured as monthly participation
- Capture Rate
 - Percent of potentially recyclable material set out for recycling (as opposed to set out as refuse) from a participating household

How Do You Increase Participation and Capture Rates?

- Simplify set-out requirements:
 - Single Stream
 - Carts (volume equal to refuse)
- Public education and promotion
 - Participation will decline over time without continued education and promotion
- Create economic incentives:
 - Pay-as-you-Throw (PAYT)
 - Recycle Bank/Reward System

Problems with Using Recycling Rate to Measure Success

- > Rewards big consumers
- Weight based
- No universal agreement on what materials count for recycling
 - Bulky wastes
 - Scrap metal
 - Junk autos
 - C&D debris

Problem With Using Weight

- Source reduction is reducing the weight of materials
 - Plastic bottles substituted for glass bottles
 - Thin-walling of aluminum, steel, and plastic containers
 - Reduction in size and number of pages of newspaper
- Result can be declining recycling rate even with higher participation and capture rates

Recycling Rate Quiz: What was Your State's Recycling Rate last year?

- 12%
- >21%
- >27%
- 61%
- 68%
- 72%
- Could be all of the above you get what you count

A Better Measurement: Recovery Rate

Participation Rate x Capture Rate = Recovery Rate

Example:

100 tons of newspaper available 80% participation x 70% capture = 56% of newspaper recovered

Public Space Recycling

- Many cities are incorporating public space recycling into their recycling programs
 - Parks
 - Street Baskets
 - Rest Areas
 - Airports
 - Special Events

Opportunities and Challenges

- Much of the material generated in public spaces is not recyclables
 - Coffee and soda cups
 - Fast food packaging
 - Food waste
 - Illegal disposal
- But there are materials that can be recycled
 - PET bottles
 - Newspaper

Processing: After you collect it, what do you do with it?

Types of Processing

- Source separated materials to:
 - Paper packing house
 - Scrap metal dealer
- Dual Stream materials recovery facilities
- Single Stream materials recovery facilities

Key is High Density Baler Typically Horizontal

Dual Stream MRFs

- Most common facilities used for curbside and drop-off materials (+/- 400 plants)
- Accept mixed containers and mixed paper
- > Typically operate two lines
- Manual and mechanical separation
- > Densification and sale to brokers
- Typically charge for containers, pay or revenue share for paper

Single Stream MRFs

- > Accept all materials mixed together
- Mechanically and manually separate
- Largest growth in new processing plants
- Higher capital cost
- Higher operating costs
- Lower labor cost
- Allow lower cost collection

Benefits of Single Stream Processing

- Collection of bottles and cans from commercial businesses/workplace
- Collection of bottles and cans and paper from public spaces
- Equipment can handle higher levels of contamination
 - Public space recycling typically results in high levels of contamination

Marketing and End Uses

Brokers, Reclaimers and End Users

- Brokers: Purchase and sell large volumes of separated materials
- Reclaimers: Further process separated materials
- End Users: Manufacturers such as paper and steel mills, plastic molders

Reclaimers

- Primarily For Plastics
 - Buy bales of separated plastics
 - Wash
 - Grind
 - Remove contaminants
 - Pelletize
 - Sell to end users or compounders

Glass Benefication Plants

- Serve similar function to plastic reclaimers
 - Purchase whole or broken glass
 - Grind
 - Remove contaminants
 - Sell to end users (may be affiliated with end user)
- Used to be glass bottle manufacturers only
- Now used to process glass from MRFs

End Users

- ► Paper mills
- ► Glass bottle manufacturers
- Insulation manufacturers (glass or paper)
- > Aluminum sheet producers
- >Steel mills
- Plastic product producers
- End uses may be partially or totally of recycled commodities

Paper Mills

- Different mills use different paper grades
 - Depends on what they produce
- Purchase baled material, by grade
- Break bales, re-pulp
- Screen and float out contaminants
- ▶ Bleach depending on brightness of final product

Paper Is A Commodity

- ► Global marketplace
- Price fluctuates with demand
 - Increased prices when paper mills operating at high capacity or high export demand
 - High demand for corrugated in spring for next Christmas
 - Compete with virgin pulp

Paper Recovery Rates

- >2008 Estimates (AF&PA):
 - Overall recovery of fiber estimated at 57%
 - Corrugated at 80%

Source: DSNY BWPR

Source: Paper Stock Report (1994 – 2009)

Average national scrap paper prices

The mean prices paid by paper mills for 18 commonly-traded grades of scrap paper across the U.S. Prices are per shortton, FOB seller's dock, based on bi-weekly surveys conducted by The Paper Stock Report

Recovered Paper and Paperboard End Uses

(Source: AF&PA 2008)

- Roughly 6 percent goes into newsprint
- >36 percent is exported
- >30 percent is made into containerboard
- Remainder to other uses
 - Writing paper, cellulose insulation, egg cartons, roofing papers

Steel

- >Heavy Iron
- Light Iron
- > Steel Cans
- >Other metals

- Steel mills typically only buy from brokers, not MRFs
- Charge of scrap metal depends on type of furnace (electric arc, basic oxygen)

Aluminum

- Highest value municipal material
- Takes ½ energy to make new aluminum from scrap aluminum
- Scrap prices driven by:
 - Bauxite prices
 - Cost of electricity
 - Aluminum demand

Five year index

(Source: Metalprices.com)

Glass

- Lowest value material but highest weight
- ► Bottle-to-Bottle
 - Flint
 - Amber
 - Green
- ➤ Green has low value too much imported beer and wine
- Aggregate largest end use
- Fiberglass new use, but requires low contamination

Plastic

- Different From Other Materials
 - Typically purchased ready for application from reclaimer
 - Very low tolerance for contaminants
 - Very low tolerance in many cases for multiple grades
 - Very low tolerance for wrong melt index within single grade
 - Typically does not go back to bottles

Other Materials/Other Markets

- Organics
- **Electronics**
- Textiles (carpet and clothing)
- **→** Other Plastic Containers
- Plastic Film
- C&D materials

Buy Recycled

- At the end of the day, a company's decision to use recycled materials comes down to:
 - Cost
 - How does scrap compare to virgin after including cost to clean up contaminants
 - Consumer demand
 - If you MUST have bright white, ultra soft tissue paper – it might not be recycled
 - If construction materials not readily available, may not be purchased for the job

Why Buy Recycled

- ➤ Global Warming
- > Resource Depletion
- > Environmental Degradation

Global Warming

- In most cases the Greenhouse Gas Emissions from recycling are less than for virgin material use
- Trees cut down for paper no longer are available for carbon absorption
- Carbon released to cut, skid, transport, grind, pulp, and produce paper is greater than carbon released to collect, process, transport, and repulp.

Recycling reduces the need to extract and convert resources to new products

(Source: EPA)

Resource Depletion

- **Petroleum**
- **Bauxite**
- > Iron Ore
- **Trees**

Environmental Degradation

- Hard rock mining represents 45 % of all toxics released and 14 of 15 largest Superfund sites (Source: American Retroworks)
- Cutting trees leads to increased road building, soil erosion, and water degradation
- Impacts associated with drilling, pumping, and transporting oil

Organics Recovery

- In contrast to materials recycling, GHG emissions impact of organics recovery is primarily associated with the reduction of methane generation at the landfill
- Methane is 23 times more potent GHG than carbon
- Organics decomposition are primary source of methane generation in landfills

But

- It is not a given that recycling is better for the environment. We need:
 - Efficient collection systems to reduce transport impacts
 - Low contamination to reduce processing inputs and wastes
 - Efficient manufacturers shipping recyclables and products with recycled content back to China significantly reduces the global warming benefits!