Application Layer: Video Streaming and CDNs Study-Ready Notes

Compiled by Andrew Photinakis

October 17, 2025

Contents

1	Vid	eo Streaming and CDNs: Context		
2	Mu	ltimedia: Video Fundamentals		
	2.1	Video Basics		
	2.2	Video Compression Techniques		
	2.3	Video Encoding Standards		
3	Stre	eaming Stored Video		
	3.1	Basic Scenario		
	3.2	Main Challenges		
	3.3	Streaming Process		
4	Stre	eaming Stored Video: Technical Challenges		
	4.1	Continuous Playout Constraint		
	4.2	Additional Challenges		
	4.3	Playout Buffering Mechanism		
5	Dyr	Dynamic Adaptive Streaming over HTTP (DASH)		
	5.1	DASH Server Operations		
	5.2	DASH Client Operations		
	5.3	Client Intelligence in DASH		
6	Con	atent Distribution Networks (CDNs)		
	6.1	The Scaling Challenge		
	6.2	Option 1: Single Mega-Server		
	6.3	Option 2: CDN - Distributed Approach		
	6.4	CDN Operation Process		
	6.5	Over-the-Top (OTT) Challenges		
		· ()		

[Summary: The application layer encompasses various network services and protocols including web, email, DNS, and multimedia streaming. Video streaming and CDNs represent key modern applications addressing scalability and quality challenges.]

1 Video Streaming and CDNs: Context

- Stream video traffic: Major consumer of Internet bandwidth
 - Netflix, YouTube, Amazon Prime: 80% of residential ISP traffic (2020)
- Challenge: Scale How to reach \sim 1 billion users?
- Challenge: Heterogeneity
 - Different users have different capabilities
 - Wired versus mobile connections
 - Bandwidth-rich versus bandwidth-poor users
- Solution: Distributed, application-level infrastructure

[Summary: Video streaming dominates Internet traffic and faces challenges of massive scale and diverse user conditions, solved through distributed infrastructure like CDNs.]

2 Multimedia: Video Fundamentals

2.1 Video Basics

- Video: Sequence of images displayed at constant rate
 - Example: 24 images/second (frames per second)
- Digital image: Array of pixels
 - Each pixel represented by bits
- Coding: Use redundancy within and between images to decrease bits needed

2.2 Video Compression Techniques

- Spatial coding (within image):
 - Instead of sending N values of same color (all purple), send only two values:
 - Color value (purple) and number of repeated values (N)
- **Temporal coding** (from one image to next):
 - Instead of sending complete frame at i+1, send only differences from frame i

2.3 Video Encoding Standards

- CBR (Constant Bit Rate): Video encoding rate fixed
- VBR (Variable Bit Rate): Video encoding rate changes as spatial/temporal coding changes
- Examples:
 - MPEG 1 (CD-ROM): 1.5 Mbps
 - MPEG 2 (DVD): 3-6 Mbps
 - MPEG 4 (Internet): 64 Kbps 12 Mbps

[Mnemonic: S-T-V - Spatial (within frame), Temporal (between frames), Variable bit rate] [Summary: Video compression uses spatial (within frame) and temporal (between frames) redundancy reduction. Encoding can be constant or variable bit rate depending on content complexity.]

3 Streaming Stored Video

3.1 Basic Scenario

Figure 1: Basic video streaming architecture

3.2 Main Challenges

- Server-to-client bandwidth varies over time due to network congestion
 - Congestion can occur in home network, access network, network core, or video server
- Packet loss and delay due to congestion affect:
 - Playout timing (delays)
 - Video quality

3.3 Streaming Process

- Video sent from server through network
- Network delay affects arrival timing
- Video received and played out at client (e.g., 30 frames/sec)

• Streaming: Client plays early part while server sends later part simultaneously

[Summary: Video streaming involves simultaneous transmission and playback, facing challenges of variable network conditions that affect timing and quality.]

4 Streaming Stored Video: Technical Challenges

4.1 Continuous Playout Constraint

- During client video playout, timing must match original recording timing
- Network delays are variable (jitter)
- Solution: Client-side buffer to compensate for jitter

4.2 Additional Challenges

- Client interactivity:
 - Pause, fast-forward, rewind, jump through video
- Video packets may be lost and require retransmission

4.3 Playout Buffering Mechanism

Figure 2: Playout buffering compensates for network delay variations

- Client-side buffering and playout delay compensate for:
 - Network-added delay
 - Delay jitter

[Concept Map: Network variability \rightarrow Jitter \rightarrow Buffering need \rightarrow Continuous playout] [Summary: Client buffers smooth out network jitter to maintain continuous playout, while supporting user controls and handling packet loss.]

5 Dynamic Adaptive Streaming over HTTP (DASH)

5.1 DASH Server Operations

- Divides video file into multiple chunks
- Each chunk encoded at multiple different rates
- Different rate encodings stored in different files
- Files replicated in various CDN nodes
- Manifest file: Provides URLs for different chunks

5.2 DASH Client Operations

- Periodically estimates server-to-client bandwidth
- Consults manifest, requests one chunk at a time
- Chooses maximum coding rate sustainable given current bandwidth
- Can choose different coding rates at different times
- Can request from different servers

5.3 Client Intelligence in DASH

- When to request chunk:
 - Prevents buffer starvation or overflow
- What encoding rate to request:
 - Higher quality when more bandwidth available
- Where to request chunk:
 - From URL server "close" to client
 - Or from server with high available bandwidth

 $Streaming\ video = Encoding + DASH + Playout\ buffering$

[Mnemonic: C-W-W - Chunk, When, What, Where - Client decides these three aspects] [Summary: DASH adapts video quality dynamically by breaking content into chunks encoded at multiple rates, with clients intelligently selecting optimal chunks based on current network conditions.]

6 Content Distribution Networks (CDNs)

6.1 The Scaling Challenge

• How to stream content (from millions of videos) to hundreds of thousands of *simultaneous* users?

6.2 Option 1: Single Mega-Server

- Single point of failure
- Point of network congestion
- Long (and possibly congested) paths to distant clients
- Conclusion: This solution doesn't scale

6.3 Option 2: CDN - Distributed Approach

- Store/serve multiple copies of videos at multiple geographically distributed sites
- Two deployment strategies:
 - Enter Deep: Push CDN servers deep into many access networks
 - * Close to users
 - * Example: Akamai 240,000 servers in ¿120 countries (2015)
 - **Bring Home:** Smaller number (10's) of larger clusters in POPs near access networks
 - * Example: Limelight

6.4 CDN Operation Process

- 1. CDN stores copies of content at CDN nodes
- 2. Subscriber requests content, service provider returns manifest
- 3. Using manifest, client retrieves content at highest supportable rate
- 4. May choose different rate or copy if network path congested

6.5 Over-the-Top (OTT) Challenges

- $\bullet\,$ OTT: "Over the Top" Internet host-host communication as service
- Key challenges coping with congested Internet from the "edge":
 - What content to place in which CDN node?

- From which CDN node to retrieve content?
- At which rate to retrieve content?

[Concept Map: Scaling problem \rightarrow Single server fails \rightarrow Distributed CDN solution \rightarrow Enter deep/Bring home strategies \rightarrow Manifest-based adaptive delivery] [Summary: CDNs solve scaling challenges through geographically distributed content replication, with strategies focusing on proximity to users and intelligent content delivery decisions.]

Exam Questions

Video Fundamentals

- 1. Compare and contrast spatial versus temporal video coding, providing examples of each.
- 2. What are the advantages of VBR over CBR for video encoding? When might CBR be preferred?
- 3. Explain how both spatial and temporal coding reduce the bitrate required for video transmission.

Streaming Challenges

- 1. Describe the "continuous playout constraint" and explain how client-side buffering addresses it.
- 2. What network factors can cause variations in video streaming quality, and how do they manifest to the end user?
- 3. Why is simple retransmission of lost packets problematic for real-time video streaming?

DASH and Adaptive Streaming

- 1. Explain the three key decisions a DASH client must make for each video chunk request.
- 2. How does the manifest file enable adaptive bitrate streaming in DASH?
- 3. What metrics might a DASH client use to determine the appropriate encoding rate to request?

CDNs and Distribution

- 1. Compare the "enter deep" and "bring home" CDN deployment strategies, including advantages of each.
- 2. Explain how a CDN helps overcome the scaling limitations of a single mega-server approach.

3. What are the main OTT challenges in content distribution, and how do CDNs address them?

[Exam Questions: Comprehensive coverage of video encoding, streaming challenges, adaptive streaming, and CDN architectures with practical application scenarios.]