Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра	Систем Ъ	^и правления и	Инфо	рматики Ј	Группа	P3340
тафодра	011010111 0	iipabereiiiii ii	11190	p		<u> </u>

Лабораторная работа №11 "Исследование математической модели пьезоэлектрического исполнительного устройства"

Вариант - 10

Выполнила	<u>Ким А.</u>	(подпись		
Проверил			(фамилия, и.о.)	(подпись)
п <u>п</u>	_ 20r.		Санкт-Петербург,	20 <u></u> Γ.
Работа выполнен	на с оценкой			
Лата зашиты "	II.	20	Γ.	

Цель работы: Изучение математических моделей и исследование характеристик исполнительного устройства, построенного на основе пьезоэлектрического двигателя микроперемещений.

Исходные данные. Исходные данные для выполнения работы приведены в таблице 1.

Таблица 1 – Исходные данные

C_P	m	K_O	K_d	T_u	F_B	U_{Pm}	U_m
Н/м	ΚΓ	H/B	Нс/м	мс	Н	В	В
$4,2\cdot 10^6$	0,25	10	$0,75\cdot 10^2$	0,15	3	300	10

$$K_u = U_{Pm}/U_m = 300/10 = 30$$

Коэффициенты передачи K_u^{-1}, K_F, K_V, K_X определяются так, чтобы обеспечить соответствие максимального значения измеряемого сигнала уровню $10~\mathrm{B}$ на выходе измерительного устройства.

$$K_u^{-1} = 0,0333$$

$$K_F = 0,005$$

$$K_V = 4, 2$$

$$K_X = 14000$$

1 Математическое моделирование модели пьезоэлектрического исполнительного устройства

На основе структурной схемы, представленной на рисунке 1, составим схему моделирования $\Pi \mathcal{I}$ (рисунок 2).

Рисунок 1 - Структурная схема пьезоэлектрического исполнительного устройства

Рисунок 2 - Схема моделирования ПД

Построим графики переходных процессов при $F_B=0{
m H}$ и U=10B (рисунок 3):

Рисунок 3 – Графики переходных процессов при $F_B=0{
m H}$ и U=10В

2 Исследование влияния массы нагрузки m на вид переходных процессов

Диапазон изменения массы нагрузки m: $\pm 50\%$ от заданного значения. Графики переходных процессов представлены на рисунке 4.

Рисунок 4 - Графики переходных процессов при различных значениях т

По временным диаграммам определим время переходного процесса t_{Π} , величину перерегулирования σ и установившееся значение X_{u} . Занесём результаты в таблицу 2.

Таблица 2 - Характеристики системы при меняющейся массе нагрузки

т, кг	$t_\Pi,$ мс	$\sigma,\%$	X_y
0,125	0.010	61,8	10
0,250	0.019	75	10
0,375	0.030	62	10

3 Исследование влияния T_u на вид переходных процессов

Изменение T_u в сторону увеличивая исходного значения постоянной времени в 2, 4 и 6 раз. Графики переходных процессов представлены на рисунке 5.

Рисунок 5 – Графики переходных процессов при различных значениях T_u

По результатам моделирования определим время переходных процессов t_{Π} , величину перерегулирования σ и установившееся значение X_y . Занесём результаты в таблицу 3.

Таблица 3 - Характеристики системы при меняющейся постоянной времени

T_u , c	t_Π , MC	σ , %	X_y	s_1	s_2	s_3
0,3	0,016	55	10	-3333,33	-150-i4096,03	-150+i4096,03
0,6	0,013	25	10	-1666,67	-150-i4096,03	-150+i4096,03
0,9	0,012	10	10	-1111,11	-1500-i4096,03	-150+i4096,03

Чтобы рассчитать значения корней характеристического уравнения получим передаточную функцию. Для этого будем рассматривать исполнительное пьезоэлектрическое устройство как упругую механическую систему. В этом случае математическая модель может быть получена на основе уравнения баланса сил в пьезодвигателе:

$$F_{y} = F_{O} + F_{\Pi} + F_{d} + F_{B}, \tag{1}$$

где $F_y=C_px$ — усилие упругой деформации ПД, $F_O=K_OU_p$ — усилие, вызванное обратным пьезоэффектом, $F_{\rm Д}=-m\frac{d^2x}{dt^2}$ — динамическое усилие в ПД, $F_d=-K_d\frac{dx}{dt}$ — демпфирующее

усилие, обусловленное механическими потерями, F_B — внешнее воздействие, х — перемещение, C_p — коэффициент упругости, K_O — коэффициент обратного пьезоэффекта, U_p — напряжение на электродах $\Pi Д$, т — масса перемещаемой нагрузки, K_d — коэффициент демпфирования.

Подставив перечисленные равенства в уравнение (1), получим:

$$m\ddot{x} + K_d \dot{x} + C_p x = K_O U_p + F_B \tag{2}$$

Составленная по уравнению (2) передаточная функция будет выглядеть следующем образом:

 $W_{\rm By}(s) = \frac{K_O U_p + F_B}{ms^2 + K_d s + C_p} \tag{3}$

Управление $\Pi Д$ осуществляется от высоковольтного усилителя, который, в нашем случае, описывается апериодическим звеном первого порядка:

$$W(s) = \frac{K_u}{T_u s + 1} \tag{4}$$

Исходя из того, что ВУ и ПД соединены последовательно, имеем передаточную следующую функцию:

$$W(s) = \frac{K_u(K_O U_p + F_B)}{(T_u s + 1)(ms^2 + K_d s + C_p)}$$
(5)

Найдем корни характеристического уравнения для всех сочетаний параметров и запишем результат в таблицу 3.

4 Исследование влияния коэффициента упругости C_p на вид переходных процессов

Исследования проводились при значениях коэффициента упругости $0.5C_p$ и $2C_p$ при $F_B=3$ Н и U=0В. Графики переходных процессов изображены на рисунке 6.

Рисунок 6 – Графики переходных процессов при различных значениях коэффициента упругости

5 Построение асимптотической ЛАЧХ исполнительного устройства

Представим передаточную функцию (3) в виде колебательного звена:

$$W(s) = \frac{\frac{K_0}{C_p}}{\frac{m}{C_p}s^2 + \frac{K_d}{C_p}s + 1}.$$
 (6)

Асимптотическая логарифмическая амплитудная характеристика будет иметь нулевой на-клон на уровне

$$20\lg\frac{K_0}{C_p} = 20\lg\frac{10}{4, 2\cdot 10^6} = -112, 4дБ$$
 (7)

до сопрягающей частоты

$$\omega_c = \sqrt{\frac{C_p}{m}} = \sqrt{\frac{0, 5 \cdot 10^8}{0, 3}} = 4099$$
рад/с. (8)

После сопрягающей частоты график пойдёт под наклоном в -40 дБ/дек. Таким образом асимптотическая ЛАЧХ будет выглядить так как показано на рисунке 7:

Рисунок 7 - Асимптотическая ЛАЧХ исполнительного устройства

Вывод

В ходе лабораторной работы было проведено исследование пьезоэлектрического устройства. Были выявлены изменения в переходных процессах системы путём изменения таких параметров как масса нагрузки, постоянная времени, коэффициент упругости.

Как видно из таблицы 2 при уменьшении массы нагрузки установившееся значение перемещения остаётся постоянным, а значение времени переходного процесса и перерегулирования уменьшается.

При исследовании влияния постоянной времени вольтного усилителя было показано, что её увеличение ведёт к уменьшению перерегулирования, а также к уменьшению одного из корней характеристического уравнения, что можно увидеть в таблице 3.

Из графиков (рисунок 6) видно, что при увеличении значения коэффициента упругости пьезоэлемента увеличивается установившееся значение перемещения пьезокерамических пластин.