

Guia do Professor

Vídeo

Os Infinitos de Cantor

Série Matemática na Escola

Objetivos

- Abordar os temas de cardinalidade, conjuntos e subconjuntos infinitos, correspondência biunívoca;
- Apresentar uma demonstração matemática simples usando o Método da "Redução ao Absurdo";
- 3. Incentivar o aluno a pensar abstratamente com exemplos contra-intuitivos.

ATENÇÃO Este Guia do Professor serve apenas como apoio ao video ao qual este documento se refere e não pretende esgotar o assunto do ponto de vista matemático ou pedagógico.

LICENÇA Esta obra está licenciada sob uma licença Creative Commons @@@\$

Os Infinitos de Cantor

Série

Matemática na Escola

Conteúdos

Conjuntos Infinitos, Cardinalidade, Demonstração por Redução ao Absurdo, Método da Diagonal de Cantor, A existência de diferentes números cardinais infinitos.

Duração

Aprox. 14 minutos.

Objetivos

- Aprofundar a noção de conjuntos numéricos infinitos e cardinalidade
- 2. Dar um exemplo do Método de Lógica : "Redução ao Absurdo".
- 3. Mostrar um exemplo simples mas contra-intuitivo, desafiando os alunos a expandir o raciocínio lógico.

Sinopse

O vídeo mostra a conversa do matemático George Cantor com seu amigo Lukas Zweig. Cantor muito animado com sua nova descoberta explica ao amigo o seu hoje famoso Método da Diagonal para demonstrar um fato até então impensável: que existem infinitos maiores do que outros!

Material relacionado

Áudios: *Infinito I, Infinito II;* Vídeos: *A razão dos Irracionais*

Introdução

Sobre a série

A série Matemática na Escola aborda o conteúdo de matemática do ensino médio através de situações, ficções e contextualizações. Os programas desta série usualmente são informativos e podem ser introdutórios de um assunto a ser estudado em sala de aula ou fechamentos de um tema ou problema desenvolvidos pelo professor. Os programas são ricos em representações gráficas para dar suporte ao conteúdo mais matemático e pequenos documentários trazem informações interdisciplinares.

Sobre o programa

O vídeo aborda os conceitos de conjuntos infinitos e cardinalidade. Mais precisamente, o vídeo mostra como se pode contar (ou não contar) os elementos de um conjunto infinito. A demonstração de que o conjunto dos números reais não é enumerável pelo Método da Diagonal de Cantor é o tour de force da Teoria dos conjuntos infinitos a qual os alunos podem apreciar já que o argumento é simples e conciso. Além disto, o vídeo apresenta o argumento de Cantor como uma aplicação do método de prova de teoremas em matemática chamado Método de Redução ao Absurdo inventado pelos antigos matemáticos gregos. Este método é utilizado, por exemplo, para demonstrar que a raiz quadrada de 2 é um número irracional. Veja por exemplo o vídeo A razão dos Irracionais onde isto é demonstrado. Este vídeo tem o mérito de tornar simples um dos conceitos mais abstratos da mente humana: o infinito.

Matemático alemão George Cantor (1845-1918) o inventor da moderna Teoria dos Conjuntos e dos chamados Números Transfinitos.

Figura 2 Cena do vídeo "Os Infinitos de Cantor"

Sugestões de atividades

Antes da execução

- 1. Como o vídeo trata de um tema bastante abstrato, os números cardinais infinitos, os quais são relacionados com a contagem de elementos de vários conjuntos, é recomendável que o professor faça uma revisão de conjuntos e relações entre conjuntos, principalmente de correspondência biunívoca e sobrejetora (correspondência bijetora) que é o núcleo do argumento do matemático Cantor, no vídeo.
- 2. Seria interessante para os alunos entenderem um pouco melhor o vídeo, que o professor lesse ou distribuísse uma sinopse do vídeo com um resumo da vida e obra de George Cantor.
- 3. Também é interessante mostrar algumas fotos de Cantor em projeção e mostrar em um mapa ou globo onde o matemático nasceu, trabalhou etc para fazer um contexto histórico mais relevante.

Depois da execução

- 1. O professor pode agora desafiar os alunos a mostrar que alguns conjuntos numéricos são enumeráveis, simplesmente pedindo a eles que "inventem" um processo, um método de enumeração. Abaixo apresentamos três exemplos, mas o professor pode inventar muitos outros.
- 2. Exemplos de enumeração e cardinalidade de alguns conjuntos numéricos

Obs: A notação de números de elementos (cardinalidade) de um conjunto A, por exemplo, é: #(A).

Exemplo 1: O conjunto dos números pares $P = \{2,4,6,8,10,...\}$ é enumerável.

Solução: Basta fazer a a correspondência bijetora:

$$1 \rightarrow 2$$
, $2 \rightarrow 4$, $3 \rightarrow 6$, $4 \rightarrow 8$, $5 \rightarrow 10$,..., $n \rightarrow 2n$,....

Assim enumeramos todos os pares e daí #(P)=#(N).

Obs: Mostre que a correspondência acima é bijetora.

Exemplo 2: O conjunto dos Números Inteiros Z é enumerável.

$$Z = \{..., -4, -3, -2, -1, 0, 1, 2, 3, 4, ...\}$$

A enumeração pode ser feita assim:

 $1 \rightarrow 0$; $2 \rightarrow -1$, $3 \rightarrow 1$, $4 \rightarrow -2$, $5 \rightarrow 2$, $6 \rightarrow -3$, $7 \rightarrow 3$, $8 \rightarrow -4$, etc

daí temos que #(Z) =#(N), ou seja: <u>o conjunto dos números inteiros é</u> enumerável.

Exemplo 3: Demonstre para os alunos que o conjunto dos números irracionais *I* não pode ser enumerável usando a seguinte sequencia de argumentos:

a) Se A e B são enumeráveis então a união $A \cup B$ é enumerável.

Demonstração: Como A e B são enumeráveis, podemos fazer uma lista (enumeração) de cada um deles, isto é:

$$A = \{a_1, a_2, a_3, a_4, ...\}$$

$$B = \{b_1, b_2, b_3, b_4, ...\}$$

Agora A \cup B = {a₁, b₁, a₂, b₂, a₃, b₃,...} que podemos enumerar como:

$$1 \rightarrow a_1$$
, $2 \rightarrow b_1$, $3 \rightarrow a_2$, $4 \rightarrow b_2$, $5 \rightarrow a_3$, $6 \rightarrow b_3$, $7 \rightarrow a_4$,...

e portanto $A \cup B$ é enumerável.

b) No vídeo foi mostrado que os racionais Q é enumerável e que os reais R não é enumerável. Como $R = Q \cup I$ então o conjunto dos irracionais I não pode ser enumerável, se não, pelo argumento acima o conjunto dos reais R seria enumerável.

Sugestões de leitura

1. Dois bons livros (mas há muitos outros em português e inglês) sobre a história da matemática são:

Carl B. Boyer, História da Matemática, Edgar Blucher Edt. 1974, ISBN 8521205139 ou 9788521205135.

Howard W. Eves, Introdução `a História da Matemática, Editora da UNICAMP.

2. Nos seguintes sites (em português) o professor pode encontrar material sobre a vida e obra de Cantor. Há muitos outros sites sobre Cantor e sua obra em inglês na Internet.

George Cantor, http://pt.wikipedia.org/wiki/Argumento_de_diagonalização_de_Cantor
http://www.educ.fc.ul.pt/docentes/opombo/seminario/cantor/vidacan
tor.htm. Acessos em 10 mar. 2011.

Ficha técnica

Autor Adolfo Maia Júnior Revisor Samuel Rocha de Oliveira Coordenador de audiovisual Prof. Dr. José Eduardo Ribeiro de Paiva Coordenador acadêmico Prof. Dr. Samuel Rocha de Oliveira

Universidade Estadual de Campinas

Reitor Fernando Ferreira Costa Vice-reitor Edgar Salvadori de Decca Pró-Reitor de Pós-Graduação Euclides de Mesquita Neto

Instituto de Matemática, Estatística e Computação Científica Diretor Jayme Vaz Jr. Vice-diretor Edmundo Capelas de Oliveira

