Advanced Mathematics: Vector Algebra and Analytic Geometry in Space

Date: 2025 年 2 月 7 日

WHU

Lai Wei

已知
$$(\vec{a} \times \vec{b}) \cdot \vec{c} = 2$$
,求 $\left[(\vec{a} \times \vec{b}) \times (\vec{b} + \vec{c}) \right] \cdot (\vec{c} + \vec{a})$ 。
Solution

$$\begin{split} & \left[(\vec{a} \times \vec{b}) \times (\vec{b} + \vec{c}) \right] \cdot (\vec{c} + \vec{a}) \\ & = \left[\vec{a} \times \vec{b} + \vec{a} \times \vec{c} + \vec{b} \times \vec{b} + \vec{b} \times \vec{c} \right] \cdot (\vec{c} + \vec{a}) \end{split}$$

由 $\vec{b} \times \vec{b} = 0$,故

$$\begin{split} & \left[(\vec{a} \times \vec{b}) \times (\vec{b} + \vec{c}) \right] \cdot (\vec{c} + \vec{a}) \\ &= \left[\vec{a} \times \vec{b} + \vec{a} \times \vec{c} + \vec{b} \times \vec{c} \right] \cdot (\vec{c} + \vec{a}) \\ &= \left[\vec{a} \ \vec{b} \ \vec{c} \right] + \left[\vec{a} \ \vec{c} \ \vec{c} \right] + \left[\vec{b} \ \vec{c} \ \vec{c} \right] + \left[\vec{a} \ \vec{b} \ \vec{a} \right] + \left[\vec{a} \ \vec{c} \ \vec{a} \right] + \left[\vec{b} \ \vec{c} \ \vec{a} \right] \end{split}$$

显然, 当混合积中只有不同的两个向量时(可认为这三个向量共面), 该混合积值为0。于是

$$\begin{split} & \left[(\vec{a} \times \vec{b}) \times (\vec{b} + \vec{c}) \right] \times (\vec{c} + \vec{a}) \\ & = \left[\vec{a} \ \vec{b} \ \vec{c} \right] + \left[\vec{b} \ \vec{c} \ \vec{a} \right] \end{split}$$

由于

$$\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$$

而

$$\begin{bmatrix} \vec{b} \ \vec{c} \ \vec{a} \end{bmatrix} = \begin{vmatrix} b_x & b_y & b_z \\ c_x & c_y & c_z \\ a_x & a_y & a_z \end{vmatrix}$$

所以

$$\left[\vec{a}\,\vec{b}\,\vec{c}\right] = \left[\vec{b}\,\vec{c}\,\vec{a}\right]$$

于是

$$\left[(\vec{a} \times \vec{b}) \times (\vec{b} + \vec{c}) \right] \times (\vec{c} + \vec{a}) = 2 \ \left[\vec{a} \ \vec{b} \ \vec{c} \right]$$

Give an appropriate positive constant c such that $f(n) \le c \cdot g(n)$ for all n > 1.

1.
$$f(n) = n^2 + n + 1$$
, $g(n) = 2n^3$

2.
$$f(n) = n\sqrt{n} + n^2$$
, $g(n) = n^2$

3.
$$f(n) = n^2 - n + 1$$
, $g(n) = n^2/2$

Solution

We solve each solution algebraically to determine a possible constant c.

Part One

$$n^{2} + n + 1 =$$

$$\leq n^{2} + n^{2} + n^{2}$$

$$= 3n^{2}$$

$$\leq c \cdot 2n^{3}$$

Thus a valid c could be when c=2.

Part Two

$$n^{2} + n\sqrt{n} =$$

$$= n^{2} + n^{3/2}$$

$$\leq n^{2} + n^{4/2}$$

$$= n^{2} + n^{2}$$

$$= 2n^{2}$$

$$\leq c \cdot n^{2}$$

Thus a valid c is c = 2.

Part Three

$$n^{2} - n + 1 =$$

$$\leq n^{2}$$

$$\leq c \cdot n^{2}/2$$

Thus a valid c is c = 2.

Let $\Sigma = \{0, 1\}$. Construct a DFA A that recognizes the language that consists of all binary numbers that can be divided by 5.

Let the state q_k indicate the remainder of k divided by 5. For example, the remainder of 2 would correlate to state q_2 because 7 mod 5 = 2.

图 1: DFA, A, this is really beautiful, ya know?

Justification

Take a given binary number, x. Since there are only two inputs to our state machine, x can either become x0 or x1. When a 0 comes into the state machine, it is the same as taking the binary number and multiplying it by two. When a 1 comes into the machine, it is the same as multiplying by two and adding one.

Using this knowledge, we can construct a transition table that tell us where to go:

	$x \mod 5 = 0$	$x \mod 5 = 1$	$x \mod 5 = 2$	$x \mod 5 = 3$	$x \mod 5 = 4$
x_0	0	2	4	1	3
x1	1	3	0	2	4

Therefore on state q_0 or $(x \mod 5 = 0)$, a transition line should go to state q_0 for the input 0 and a line should go to state q_1 for input 1. Continuing this gives us the Figure 1.

Problem 4

Write part of Quick-Sort(list, start, end)

- 1: **function** QUICK-SORT(list, start, end)
- 2: **if** $start \ge end$ **then**
- 3: return
- 4: end if
- 5: $mid \leftarrow PARTITION(list, start, end)$
- 6: Quick-Sort(list, start, mid 1)
- 7: QUICK-SORT(list, mid + 1, end)
- 8: end function

Algorithm 1: Start of QuickSort

Suppose we would like to fit a straight line through the origin, i.e., $Y_i = \beta_1 x_i + e_i$ with i = 1, ..., n, $E[e_i] = 0$, and $Var[e_i] = \sigma_e^2$ and $Cov[e_i, e_j] = 0, \forall i \neq j$.

Part A

Find the least squares esimator for $\hat{\beta}_1$ for the slope β_1 .

Solution

To find the least squares estimator, we should minimize our Residual Sum of Squares, RSS:

$$RSS = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$
$$= \sum_{i=1}^{n} (Y_i - \hat{\beta}_1 x_i)^2$$

By taking the partial derivative in respect to $\hat{\beta}_1$, we get:

$$\frac{\partial}{\partial \hat{\beta}_1}(RSS) = -2\sum_{i=1}^n x_i(Y_i - \hat{\beta}_1 x_i) = 0$$

This gives us:

$$\sum_{i=1}^{n} x_i (Y_i - \hat{\beta}_1 x_i) = \sum_{i=1}^{n} x_i Y_i - \sum_{i=1}^{n} \hat{\beta}_1 x_i^2$$
$$= \sum_{i=1}^{n} x_i Y_i - \hat{\beta}_1 \sum_{i=1}^{n} x_i^2$$

Solving for $\hat{\beta}_1$ gives the final estimator for β_1 :

$$\hat{\beta_1} = \frac{\sum x_i Y_i}{\sum x_i^2}$$

Part B

Calculate the bias and the variance for the estimated slope $\hat{\beta}_1$.

Solution

For the bias, we need to calculate the expected value $E[\hat{\beta}_1]$:

$$E[\hat{\beta}_1] = E\left[\frac{\sum x_i Y_i}{\sum x_i^2}\right]$$

$$= \frac{\sum x_i E[Y_i]}{\sum x_i^2}$$

$$= \frac{\sum x_i (\beta_1 x_i)}{\sum x_i^2}$$

$$= \frac{\sum x_i^2 \beta_1}{\sum x_i^2}$$

$$= \beta_1 \frac{\sum x_i^2 \beta_1}{\sum x_i^2}$$

$$= \beta_1$$

Thus since our estimator's expected value is β_1 , we can conclude that the bias of our estimator is 0.

For the variance:

$$\operatorname{Var}[\hat{\beta}_{1}] = \operatorname{Var}\left[\frac{\sum x_{i}Y_{i}}{\sum x_{i}^{2}}\right]$$

$$= \frac{\sum x_{i}^{2}}{\sum x_{i}^{2}} \operatorname{Var}[Y_{i}]$$

$$= \frac{\sum x_{i}^{2}}{\sum x_{i}^{2}} \operatorname{Var}[Y_{i}]$$

$$= \frac{1}{\sum x_{i}^{2}} \operatorname{Var}[Y_{i}]$$

$$= \frac{1}{\sum x_{i}^{2}} \sigma^{2}$$

$$= \frac{\sigma^{2}}{\sum x_{i}^{2}}$$

Prove a polynomial of degree k, $a_k n^k + a_{k-1} n^{k-1} + \ldots + a_1 n^1 + a_0 n^0$ is a member of $\Theta(n^k)$ where $a_k \ldots a_0$ are nonnegative constants.

证明. To prove that $a_k n^k + a_{k-1} n^{k-1} + \ldots + a_1 n^1 + a_0 n^0$, we must show the following:

$$\exists c_1 \exists c_2 \forall n \geq n_0, \ c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)$$

For the first inequality, it is easy to see that it holds because no matter what the constants are, $n^k \le a_k n^k + a_{k-1} n^{k-1} + \ldots + a_1 n^1 + a_0 n^0$ even if $c_1 = 1$ and $n_0 = 1$. This is because $n^k \le c_1 \cdot a_k n^k$ for any nonnegative constant, c_1 and a_k .

Taking the second inequality, we prove it in the following way. By summation, $\sum_{i=0}^{k} a_i$ will give us a new constant, A. By taking this value of A, we can then do the following:

$$a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n^1 + a_0 n^0 =$$

$$\leq (a_k + a_{k-1} \dots a_1 + a_0) \cdot n^k$$

$$= A \cdot n^k$$

$$< c_2 \cdot n^k$$

where $n_0 = 1$ and $c_2 = A$. c_2 is just a constant. Thus the proof is complete.

Evaluate
$$\sum_{k=1}^{5} k^2$$
 and $\sum_{k=1}^{5} (k-1)^2$.

Problem 19

Find the derivative of $f(x) = x^4 + 3x^2 - 2$

Problem 6

Evaluate the integrals $\int_0^1 (1-x^2) dx$ and $\int_1^\infty \frac{1}{x^2} dx$.