Problem (Problem 1): Let R be a Euclidean domain with norm N, and let

$$m = \min\{N(x) \mid x \in R \setminus \{0\}\}.$$

Show that any $u \in R \setminus \{0\}$ satisfying N(u) = m is invertible.

Solution: Let u satisfy N(u) = m. Applying the division algorithm, we find that

$$1 = uq + r$$
,

where r = 0 or N(r) < N(u). In the former case, we find that $q = u^{-1}$, while the latter case violates the assumption that N(u) is of minimal value.

Problem (Problem 2): Show that in a UFD every irreducible element is prime. Conclude that if R is a Noetherian domain, then R is a UFD if and only if every irreducible element is prime.

Solution: Let R be a UFD, and let h be an irreducible element such that $h \mid ab$ for some $a, b \in R$.

Write the unique (up to associates) factorizations into irreducibles for a and b, giving

$$a = a_1 a_2 \cdots a_r$$

 $b = b_1 b_2 \cdots b_s$.

Therefore, for some $k \in R$, we have

$$hk = (a_1a_2 \cdots a_r)(b_1b_2 \cdots b_s).$$

Since h is irreducible, and the factorizations for a and b are unique up to associates, there is some $u_j \in R^{\times}$ such that $h = u_j a_j$ or some $v_k \in R^{\times}$ such that $h = v_k b_k$ (else we would have a different factorization for ab into irreducibles). Thus, h|a or h|b depending on which of these hold, so that h is prime.

Since we already know that primes are irreducible, it follows that, in a Noetherian domain, since every element has at least one factorization into irreducibles, such a factorization is unique if and only if every irreducible element is prime.

Problem (Problem 4): Let R be a domain in which every prime ideal is principal. Show that R is a PID by using the following suggestions.

- (i) Assume that the set of nonprincipal ideals is nonempty. Then, use Zorn's Lemma to find a maximal element I in it.
- (ii) Since I is not prime, there exist $a, b \in R$ such that $ab \in I$ but $a, b \notin I$. Let $I_a = I + (a)$, and let J be defined by

$$J = \{ x \in R \mid xI_{\alpha} \subseteq I \}.$$

Verify that J is an ideal of R. Deduce a contradiction by showing that $I = I_{\alpha}J$.

Solution: Let \mathcal{X} be the set of all nonprincipal ideals of R, ordered by inclusion. Suppose toward contradiction that \mathcal{X} were nonempty. Let $\{K_{\alpha}\}_{\alpha\in A}=\mathcal{C}\subseteq \mathcal{X}$ be a chain in \mathcal{X} , and let $I=\bigcup_{\alpha\in A}K_{\alpha}$, which is an upper bound for \mathcal{C} . We claim that I is nonprincipal.

Suppose not. Then, I = (v) for some $v \in R$; since $v \in I$, it follows that $v \in K_{\alpha}$ for some $\alpha \in A$, meaning that $(v) \subseteq K_{\alpha}$, or that $K_{\alpha} = I = (v)$, which would contradict the assumption that K_{α} is nonprincipal.

Since I is nonprincipal, I is not prime, so there exists some $ab \in I$ with $a \notin I$ and $b \notin I$. Letting $I_a = I + (a)$, since $I \subseteq I_a$, we must $I_a = (u)$ for some $u \in R$.

Let

$$J = \{ x \in R \mid x(I + (a)) \subseteq I \}.$$

Observe that J is closed under subtraction, since if $x, y \in J$, we have

$$(x - y)(I + (a)) = x(I + (a)) - y(I + (a))$$

since I is closed under subtraction. Similarly, if $r \in R$, then

$$rx(I + (a)) = r(x(I + (a)))$$

$$\subseteq I,$$

since I is closed under multiplication by elements from R. Thus, J is an ideal. In particular, since J contains I and $b \notin I$, J must be a principal ideal of the form (v), so that $I_{\alpha}J = (uv)$ is principal as well.

Now, we observe that elements of $I_{\alpha}J$ are of the form

$$\sum_{k=1}^{n} (x_k + r_k a)(s_k \nu) = \sum_{k=1}^{n} x_k (s_k \nu) + s_k \nu (r_k a)$$

$$\in L$$

so that $I_{\alpha}J \subseteq I$.

If $x \in I$, then since $x \in I_{\alpha}$, and $I_{\alpha} = (u)$, it follows that $x = \ell u$ for some $\ell \in R$. Additionally, since $rx \in I$ for arbitrary $r \in R$, it follows that $r\ell u = \ell ru \in I$, meaning that $\ell(u) \subseteq I$, meaning that $\ell \in J$. Thus, $x \in I_{\alpha}J$, implying that $I = I_{\alpha}J$, meaning I is principal, which is a contradiction of the fact that I is (allegedly) not principal.

Problem (Problem 5): Consider the following factorization into irreducibles in the ring $R = \mathbb{Z}[\sqrt{-5}]$:

$$2 \cdot 3 = \left(1 + \sqrt{-5}\right) \left(1 - \sqrt{-5}\right).$$

9a Show that the elements $2,3,1 \pm \sqrt{-5}$ are irreducible but not prime.

9b Next, consider the following 4 ideals:

$$P_{1} = (2, 1 + \sqrt{-5})$$

$$P_{2} = (2, 1 - \sqrt{-5})$$

$$P_{3} = (3, 1 + \sqrt{-5})$$

$$P_{4} = (3, 1 - \sqrt{-5})$$

Show that all of P_1 , P_2 , P_3 , P_4 are prime ideals.

9c Show that
$$P_1P_3 = (1 + \sqrt{-5})$$
, $P_2P_4 = (1 - \sqrt{-5})$, $P_3P_4 = (3)$, and $P_1 = P_2$.

Solution:

(a) We consider the norm N: $\mathbb{Z}[\sqrt{-5}] \to \mathbb{N}$, given by $a + b\sqrt{-5} \mapsto a^2 + 5b^2$. This norm is multiplicative, so we may establish the irreducibility of the elements 2, 3, $1 \pm \sqrt{-5}$ using this norm. If there were a

factorization of 2 into non-units ab, then

$$4 = N(2)$$
$$= N(a)N(b),$$

implying that N(a) = N(b) = 2 (as elements have norm 1 if and only if they are units). Yet, there are no $x, y \in \mathbb{Z}$ such that $x^2 + 5y^2 = 2$, as we would have $2 = x^2$ modulo 5, but the only squares in $\mathbb{Z}/5\mathbb{Z}$ are 1 and 4.

Similarly, if there were a factorization of 3 into non-units ab, then

$$9 = N(a)N(b),$$

meaning that N(a) = N(b) = 3, so by a similar reasoning, if $x^2 + 5y^2 = 3$, then $x^2 = 3$ modulo 5, which cannot happen by a similar reasoning.

Finally, if there were a factorization of $1 \pm \sqrt{-5}$ into non-units ab, then

$$6 = N(a)N(b),$$

meaning N(a) = 2 and N(b) = 3 or vice versa. By similar reasoning, this cannot happen.

Additionally, observe that the units of $\mathbb{Z}\left[\sqrt{-5}\right]$ are ± 1 , as $x^2 + 5y^2 = 1$ for $x, y \in \mathbb{Z}$ if and only if $x = \pm 1$.

Now, to see that $2,3,1\pm\sqrt{-5}$ are not prime, observe that $2|6=\left(1+\sqrt{-5}\right)\left(1-\sqrt{-5}\right)$, but 2 does not divide either $1\pm\sqrt{-5}$, as we have just established that they are irreducible, and similarly for 3 and vice versa.

(b) By the third isomorphism theorem, we see that

$$\mathbb{Z}\left[\sqrt{-5}\right]/P_1 \cong \frac{\mathbb{Z}\left[\sqrt{-5}\right]/(2)}{P_1/(2)}.$$

Focusing our attention on $\mathbb{Z}\left[\sqrt{-5}\right]/(2)$, we observe that an arbitrary $a + b\sqrt{-5} \in \mathbb{Z}\left[\sqrt{-5}\right]$ has the pair (a,b) satisfying either (0,0), (0,1), (1,0), or (1,1) modulo 2, meaning that $\mathbb{Z}\left[\sqrt{-5}\right]/(2)$ is an abelian group with four elements, none of which has order greater than 2. Hence, as abelian groups, we have

$$\mathbb{Z}\left[\sqrt{-5}\right]/(2) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}.$$

Additionally, we see that $P_1/(2)$ has elements of the form $a+a\sqrt{-5}$, where $a\equiv 0$ or 1 modulo 2, hence $P_1/(2)$ is isomorphic to $\mathbb{Z}/2\mathbb{Z}$ (once again as abelian groups). By the third isomorphism theorem, it then follows that $\mathbb{Z}\left[\sqrt{-5}\right]/P_1\cong\mathbb{Z}/2\mathbb{Z}$ as abelian groups. Yet, since $\mathbb{Z}/2\mathbb{Z}$ is a field, it also follows that P_1 is maximal, and thus prime.

Similarly, since

$$\mathbb{Z}\left[\sqrt{-5}\right]/P_2 \cong \frac{\mathbb{Z}\left[\sqrt{-5}\right]/(2)}{P_2/(2)},$$

we may use the same process as we showed for P_1 , but with $a - a\sqrt{-5}$ instead of $a + a\sqrt{-5}$, to show that $\mathbb{Z}\left[\sqrt{-5}\right]/P_2 \cong \mathbb{Z}/2\mathbb{Z}$.

Concerning P_3 and P_4 , we use a similar process but with (3) replacing (2). We see then that arbitrary $\alpha + b\sqrt{-5} \in \mathbb{Z}\left[\sqrt{-5}\right]$ has (α, b) modulo 3 isomorphic to $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ as abelian groups; Since $\alpha \pm \alpha\sqrt{-5} \in \mathbb{Z}\left[\sqrt{-5}\right]$ has $\alpha \equiv 0, 1, 2$ modulo 3, it follows that $\left(3, 1 \pm \sqrt{-5}\right)/(3) \cong \mathbb{Z}/3\mathbb{Z}$ as abelian groups, meaning that $\mathbb{Z}\left[\sqrt{-5}\right]/P_3 \cong \mathbb{Z}/3\mathbb{Z}$ and $\mathbb{Z}\left[\sqrt{-5}\right]/P_4 \cong \mathbb{Z}/3\mathbb{Z}$, so that both P_3 and P_4 are maximal, hence prime.

(c) First, we observe that $2 + (-1)(1 + \sqrt{-5}) = 1 - \sqrt{-5}$, meaning that the generators of P_1 are contained in P_2 and vice versa. Thus, $P_1 = P_2$.

Next, by taking products of ideals, we see that

$$P_1P_3 = \left(6, 3 + 3\sqrt{-5}, 2 + 2\sqrt{-5}, -4 + 2\sqrt{-5}\right)$$

$$P_2P_4 = \left(6, 3 - 3\sqrt{-5}, 2 - 2\sqrt{-5}, -4 - 2\sqrt{-5}\right)$$

$$P_3P_4 = \left(9, 6, 3 + 3\sqrt{-5}, 3 - 3\sqrt{-5}\right).$$

Immediately, we see that $3 \in P_3P_4$, and that we may write 3 = 9 - 6, so that $P_3P_4 = (3)$.

Concerning P_1P_3 and P_2P_4 , we see that $1 + \sqrt{-5} \in P_1P_3$ by taking $3 + 3\sqrt{-5} + (-1)(2 + 2\sqrt{-5})$, while the generators of P_1P_3 can be found by evaluating

$$6 = \left(1 + \sqrt{-5}\right)\left(1 - \sqrt{-5}\right)$$
$$3 + 3\sqrt{-5} = \left(1 + \sqrt{-5}\right)(3)$$
$$2 + 2\sqrt{-5} = \left(1 + \sqrt{-5}\right)(2)$$
$$-4 + 2\sqrt{-5} = \left(1 + \sqrt{-5}\right)\left(1 + \sqrt{-5}\right).$$

Thus, $P_1P_3 = (1 + \sqrt{-5})$.

Similarly, we may find that $1-\sqrt{-5} \in P_2P_4$ by taking $3-3\sqrt{-5}+(-1)\left(2-2\sqrt{-5}\right)$, while the generators of P_2P_4 can be found by evaluating

$$6 = \left(1 - \sqrt{-5}\right)\left(1 + \sqrt{-5}\right)$$
$$3 - 3\sqrt{-5} = \left(1 - \sqrt{-5}\right)(3)$$
$$2 - 2\sqrt{-5} = \left(1 - \sqrt{-5}\right)(2)$$
$$-4 - 2\sqrt{-5} = \left(1 - \sqrt{-5}\right)\left(1 - \sqrt{-5}\right).$$

Thus, $P_2P_4 = (1 - \sqrt{-5})$.