An Introduction to Quantum Natural Language Processing (QNLP)

Part 3:

Diagrammatic Quantum Theory

- Process Theory Boxes and Wires
- States, Effects & Numbers Kets, Bras & Scalars

- Process Theory Boxes and Wires
- ❖ States, Effects & Numbers Kets, Bras & Scalars
- Circuit Diagrams Parallel & Sequential Composition

- Process Theory Boxes and Wires
- States, Effects & Numbers Kets, Bras & Scalars
- Circuit Diagrams Parallel & Sequential Composition
- String Diagrams Cups & Caps

A Process Theory consists of :

A Process Theory consists of :

i. A collection T of system-types represented by wires

A Process Theory consists of :

- i. A collection T of system-types represented by wires
- ii. A collection P of processes represented by boxes, where for each process in P, the input types and output types are taken from T

A Process Theory consists of :

- i. A collection T of system-types represented by wires
- ii. A collection P of processes represented by boxes, where for each process in P, the input types and output types are taken from T
- iii. A means of 'wiring processes together'. An operation that interprets a diagram of processes in P as a process in P

Box named 'h' is called a process

- Box named 'h' is called a process
- The wires 'A' and 'D' represent the inputs and outputs respectively. These wires are the system-types or types

➤ Box named 'g' is called a process

- > Box named 'g' is called a process
- The wires 'B' and 'D' represent the inputs, 'A' and 'C' represent the outputs. These wires are the system-types or types

```
light light telescope light light
```


Functions (types = sets)

- Functions (types = sets)
- Relations (types = sets)

- Functions (types = sets)
- Relations (types = sets)
- Linear maps (types = vector or Hilbert spaces)

- Functions (types = sets)
- Relations (types = sets)
- Linear maps (types = vector or Hilbert spaces)
- Classical Processes (types = classical systems)

Examples

- Functions (types = sets)
- Relations (types = sets)
- Linear maps (types = vector or Hilbert spaces)
- Classical Processes (types = classical systems)
- Quantum Processes (types = classical & quantum systems)

Process Theory Concludes

States, Effects & Numbers – Kets, Bras & Scalars States – Dirac Kets

States, Effects & Numbers – Kets, Bras & Scalars States – Dirac Kets

States – Dirac Kets

Denoted by |state>

States, Effects & Numbers – Kets, Bras & Scalars States – Dirac Kets

- Denoted by |state>
- > These processes do not have any inputs

Effects – Dirac Bras

Effects – Dirac Bras

Denoted by <effect |</p>

- Denoted by <effect |</p>
- > These processes do not have any outputs and dual to states

- Denoted by <effect |</p>
- > These processes do not have any outputs and dual to states
- Used to model tests

- Denoted by <effect |</p>
- > These processes do not have any outputs and dual to states
- Used to model tests
- > Example is discarding of a system

Numbers – Scalars

Numbers – Scalars

Processes without any inputs and outputs

- Processes without any inputs and outputs
- > Represent scalar values

States, Effects & Numbers Concludes

Parallel Composition

Parallel Composition

Parallel Composition

➤ Denoted by ⊗ symbol and works by placing diagrams side-by-side

Parallel Composition

- ➤ Denoted by ⊗ symbol and works by placing diagrams side-by-side
- > Follows associativity property and has unit too

Parallel Composition

- ➤ Denoted by ⊗ symbol and works by placing diagrams side-by-side
- > Follows associativity property and has unit too
- ➤ Also valid for system types

Sequential Composition

Sequential Composition

Sequential Composition

Denoted by • symbol

Sequential Composition

$$\begin{pmatrix}
 & E & F \\
 & g & \\
 & g & \\
 & G & B
\end{pmatrix}
\circ
\begin{pmatrix}
 & C & D \\
 & a & b \\
 & A & B
\end{pmatrix}
=
\begin{pmatrix}
 & G & B \\
 & G & B
\end{pmatrix}$$

- ➤ Denoted by symbol
- Process on right happens first and then process on the left

Sequential Composition

$$\begin{pmatrix}
 & E & F \\
 & g & g \\
 & & b \\
 & & B
\end{pmatrix}
=
\begin{pmatrix}
 & C & D \\
 & & B \\
 & & B
\end{pmatrix}$$

- Denoted by symbol
- Process on right happens first and then process on the left
- > Follows associativity property and has unit too

No Directed Cycles

No Directed Cycles

No Directed Cycles

> No directed cycles should be present in a circuit diagram

Circuit Diagrams Conclude

String diagrams depicts the phenomena of entanglement in a pictorial way

- String diagrams depicts the phenomena of entanglement in a pictorial way
- String diagrams provides a way to express nonseparable and separable processes in a diagrammatic fashion

- String diagrams depicts the phenomena of entanglement in a pictorial way
- String diagrams provides a way to express nonseparable and separable processes in a diagrammatic fashion
- Cups and Caps can be utilized to compose different states together

- String diagrams depicts the phenomena of entanglement in a pictorial way
- String diagrams provides a way to express nonseparable and separable processes in a diagrammatic fashion
- Cups and Caps can be utilized to compose different states together
- String diagrams are very useful for the study of QNLP algorithms such as DisCoCat

Cups

Cups

Cups – Rule 1

Cups – Rule 2

Cups – Bell Effects

$$\langle Bell | = \backslash$$

Cups – Bell Effects

$$\langle Bell | = \bigcup$$

Cups denote the entangling effect or entanglement in Dirac Bra form!

Caps

Caps – Rule 1

Caps – Rule 2

String Diagrams – Cups & Caps Caps – Bell States

$$|Bell\rangle =$$

String Diagrams – Cups & Caps Caps – Bell States

$$|Bell\rangle =$$

Caps denote the entangling effect or entanglement in Dirac Ket form!

String Diagrams Conclude

References

- ❖ Bob Coecke, "Foundations for Near Term Quantum Natural Language Processing", https://arxiv.org/abs/2012.03755
- ❖ Bob Coecke, "Compositionality as we see it, everywhere around us", https://arxiv.org/abs/2110.05327
- Stephen Clark, "Something Old, Something New: Grammar-based CCG Parsing with Transformer Models", https://arxiv.org/abs/2109.10044
- ❖ Bob Coecke, Aleks Kissinger, "Picturing Quantum Processes", Cambridge University Press, 2017
- ❖ Joachim Lambek, "From Word to Sentence: A Computational Algebraic Approach to Grammar", Polimetrica s.a.s., 2008

Thank you so much!