Sisteme logice secventiale complexe

Unitate de executie Unitate de comandă Microprogramare

S.l. Dr. Ing. Vlad-Cristian Miclea

Universitatea Tehnica din Cluj-Napoca Departamentul Calculatoare

CUPRINS

- 1) Introducere
- 2) Definirea problemei
- 3) Unitatea de executie
 - Arhitectura circuitului
 - Designul componentelor
- 4) Unitatea de comanda
 - Semnalele de control
 - UC cablata
 - UC microprogramata
- 5) Microprogramare
 - Microoperatii
 - Generarea urmatoarei instructiuni microinstructiuni
 - Programul de control
- 6) Concluzii

PLAN CURS

- Partea 1 VHDL
 - 1. FPGA
 - 2. Limbajul VHDL 1
 - 3. Limbajul VHDL 2
 - 4. Limbajul VHDL 3
- Partea 2 Implementarea sistemelor numerice
 - 5. Realizarea unui sistem numeric complex; Unitate de executie
 - 6. Unitate de comanda; Microprogramare
- Partea 3 Automate
 - 7. Automate finite
 - 8. Stari
 - 9. Automate sincrone
 - 10. Automate asincrone
 - 11. Identificarea automatelor
 - 12. Automate fara pierderi
 - 13. Automate liniare
- Partea 4 Probleme si discutii

CONTEXT

Sisteme numerice sincrone complexe

- Realizarea unor sisteme digitale complexe
- Se va discuta abordarea, definirea, analiza, implementarea si testarea onor sisteme hardware complexe
- Exemplu: un cuptor de gatit
- Se va discuta realizarea componentelor principale: UC si UE
- Unitate de executie
 - Numaratoare, registre, MUX-uri, ALU
 - Trebuie accesate la momentul potrivit
- Unitate de comanda/control
 - Generare semnale de control
 - Generarea urmatoarei stari
 - Unitate cablata (hardwired)
 - Microprogramare

Definirea problemei

- Cuptor de gatit exemplul de la laborator (putin mai complicat)
 - Gateste la 4 temperaturi predefinite: 180, 200, 220, 240 grade
 - preincalzire
 - In fiecare secunda, temperatura creste cu 10 grade;
 - Gateste 25 de minute
 - La sfarsit, se poate extinde perioada cu o valoare de baza de 50 de minute, la care se poate aduna sau reduce 5, 8 sau 12 min fata de perioada de gatire extra

Detalii:

- Se asteapta pana cand se apasa buton "Start"
- Daca Start, se asteapta alege temp se asteapta introducerea temp (V0,V1,V2,V3);
- Se preincalzeste cuptorul; Apare un led "Preincalzire"
- Apoi se stinge "Preincalizre", se aprinde "InsertMancare" (se sta maxim 5 min)
- Daca se introduce mancarea, se apasa "Buton_gatire" si se asteapta 25 min (se afiseaza "Gatire")
- Dupa finalizare gatire, se asteapta extindere gatire
- Daca se doreste extra-gatire, se alege optiunea dorita
- Se calculeaza timpul de extra-gatire
- Se asteapta timpul de gatire suplimentare; Apare un led "Extra_gatire"
- La final, se stinge ledul "Gatire" si Extra-gatire si se asteapta un nou proces

Abordarea problemei

Top-down

- Se incepe de la "cutia neagra" a sistemului
- Se cauta componentele conceptuale
- Pe baza lor, se gandesc componente Implementabile
- Daca exista componente complexe, ele vor fi la randul lor separate in sub-componente

Bottom-up

- Se vor realiza sub-componentele simple (ex. porti logice)
- Pe baza lor, se vor construi componentele necesare

Top-Down (MBSE)

Mechanism

Low Fidelity

System (Product)

Concept Geometry &

Packaging Performance

Structural

Reg. Driven

- Componentele vor fi integrate conform componentelor conceptuale
- Se vor realiza legaturile intre componente
- Vom realiza sistemul final, care trebuie sa corespunda formal cutiei negre realizata initial

Schema bloc

- Evidentiaza intrarile si iesirile sistemului
- Pot exista intrari/iesiri care sa nu fie evidente (ex buton pt validare date)
- Se identifica use-case-urile sistemului
 - Se identifica pas-cu-pas fiecare etapa prin care trece sistemul
 - Se vor descoperi eventualele actiuni ascunse
 - Pot fi adaugate eventuale semnale de intrare/iesire

Schema bloc - componente

- Prima divizare conceptuala a sistemului: UC vs UE
- Unitate de comanda/control
 - Logica de control din sistem
- Unitate de executie
 - Resursele necesare pentru system
 - Componentele (alcatuite eventual din sub-componente)

Schema bloc - componente

- Separarea semnalelor necesara
- Semnale de date
 - Intrari:
 - Valori necesare pt anumite lucruri
 - Adrese, timpi, cost-uri etc.
 - lesiri:
 - Valori de afisat pt utilizator
 - Timp ramas, temperatura curenta etc.
 - Pentru sistemul nostru...
- Semnale de control
 - Intrari:
 - Butoane de confirmare, butoane de anulare
 - lesiri:
 - Avertizarea utilizatorului indrumarea lui pentru pasul current
 - Led-uri, semnale sonore etc.
 - Pentru sistemul nostru...

Resurse necesare

- Trebuie definite legaturile dintre UC si UE
- Resursele necesare pentru a lua decizii
- Pattern f intalnit:
 - UC transmite un enable sau reset pentru a activa/dezactiva o resursa
 - Resursa (parte din UE) genereaza semnale spre UC pentru a lua decizii
 - Orice informatie pe baza careia se ia o decizie trebuie sa vina de la o Resursa
- Resursele
 - Circuite simple, care pot fi implementate direct
 - Numaratoare, MUX-uri, Registre, Memorii
 - Resurse complexe (algoritmi)
 - · Apar in prima descompunere ca niste cutii negre mai mici
 - Trebuie descompuse mai departe in sub-componente (pot avea inclusive sub-UC)
- O resursa poate genera iesiri spre utilizator
 - Ex: Putem vizualiza timpul de gatire
 - Afisarea valorii de la un numarator

UNITATEA DE EXECUTIE

Sinteza unității de execuție UE

- se bazează pe folosirea unui limbaj de descriere
- conduce la realizarea cablată a unității de execuţie
- realizarea rezultă din interconectarea componentelor combinaţionale şi secvenţiale disponibile sub formă de circuite integrate sau realizate in VHDL
- se folosesc în principal:
 - Memorii ROM, multiplexoare şi unităţi aritmetice şi logice pentru componentele combinaţionale
 - numărătoare şi registre pentru componentele secvenţiale

METODA GENERALĂ DE SINTEZĂ

Etapele sintezei UE

- 1. declararea a resurselor UE, alaturi de descrierea funcţională a sistemului numeric, cu ajutorul unei organigrame în care limbajul de descriere se aplică registrelor şi resurselor UE
- 2. construirea schemei UE şi declararea eventualelor registre şi a resurselor adiţionale
- 3. realizarea UE cu ajutorul componentelor combinaţionale şi secvenţiale MSI disponibile sau implementarea lor folosind limbajul VHDL

Organigrama (digrama de stari)

- Notatii:
 - Stari cercuri
 - stare reprezinta un moment de timp (o perioada)
 - Decizii romb-uri
 - Intrari in sistem, pot veni din exterior sau de la componente
 - Afisari dreptunghi-uri
 - lesiri din sistem, pot merge spre exterior sau spre alte componente
 - lesirile pot fi inainte, sau dupa decizii
 - De obicei, fiecare iesire/decizie apare dupa o stare
 - Pot fi iesiri care sa depinda doar de stare
 - Pot fi iesiri care sa depinda de decizii
- Tabla/drawio realizata impreuna

Schema bloc (iteratia 2)

- Pe baza organigramei ne dam seama de noile intrari/iesiri
- Pot exista intrari/iesiri care sa nu fie evidente (ex buton pt validare date)
 - SelTempOk buton pentru validarea seletiei temperaturii
 - GatireExtraOk buton pentru validarea extinderii temperaturii
 - SemnExtra creste/descreste timpul de gatire poate fi un sw
- Pot fi si altele, gasite la o noua iteratie

Componente principale (iteratia 2)

- Apar semnalele de control
 - De la UC spre UE
 - Rol de enable, load, reset sau de transmisie date
- Semnalele de raspuns
 - De la UE spre UC
 - Finalizare numarare

Resurse necesare - cuptor

- Numarator pentru temperatura (max 240C) => 8 biti
 - Poate fi pornit (En), resetat (Rst) sau incarcat cu o valoare predefinita (Ld)
- Numarator pentru gatire (25min) => 5 biti
 - Poate fi pornit (En) sau resetat (Rst)
- Numarator pentru asteptare gatire (5min) => 3 biti
 - Poate fi pornit (En) sau resetat (Rst)
- ALU (sumator/scazator) pentru generare timp Extra-gatire
 - $\max 50+12 = 62 => 6 \text{ biti}$
 - Are nevoie de un semnal pentru stabilire operatie
- Numarator pentru extra-gatire (max 50+12) => 6 biti
 - Poate fi pornit (En), resetat (Rst) sau incarcat cu o valoare predefinita (Ld)

SCHEMA ŞI DECLARAŢIA ADIŢIONALĂ

Resurse

- schema UE interconectează resursele alese conform organigramei
- schema poate eventual să conţină resurse adiţionale
- schema UE pentru cuptor face apel la 2 resurse suplimentare:
 - ROM_tmp_{4x8} = memorie ROM pentru stocarea temperaturilor posibile
 - ROM_extra_{4x6} = memorie ROM pentru stocarea extinderile posibile

SCHEMA UE - CUPTOR

REALIZAREA SCHEMEI UE

Realizare

- alegerea circuitelor fizice pentru resurse şi registre, pentru a se efectua operaţiile din organigramă şi a interconecta variabilele de informaţie conform schemei
- se pun în evidență pentru registre și resurse:
 - operaţiile care trebuie efectuate
 - integratele utilizate, cu funcțiile lor
 - schema logică de interconectare

Resursa Memorie ROM_temp

- Pastreaza cele 4 temperaturi pentru gatit
- 180, 200, 220, 240 pot fi pastrate pe 8 biti
- Nevoie de 4 adrese => 2 biti pentru adresare
- Vom avea o memorie de 2² x 8b (capacitate = 32b)
- Structura memoriei (zecimal):
 - ROM(0) 180
 - ROM(1) 200
 - ROM(2) 220
 - ROM(3) 240

Resursa Memorie ROM_extra

- Pastreaza cele 3 valori de timp pentru extra-gatit
- 5, 8, 12– pot fi pastrate pe 4 biti;
- Vor trebui adunate cu 50 => total pe 6 biti
 - · pastram si valorile curente pe acelasi nr de biti, pentru simplitate
- Nevoie de 3 adrese => 2 biti pentru adresare
- Vom avea o memorie de 2^2 x 6b (capacitate = 24b)
- Structura memoriei:
 - ROM(0) 000101
 - ROM(1) 001000
 - ROM(2) 001100
 - ROM(3) neutilizata (XXXXXX)

Resursa ALU (sumator-scazator)

- Operatiile efectuate:
 - A+B
 - A-B
- Calculeaza timpul extra de gatit

- Va insuma/scadea din valoarea predefinita 50 valoarea citita din ROM_extra
- Se poate folosi un sumator-scazator pe 6 biti
 - Inversare B (poarta XOR cu Oper)
 - Oper (rol de carry in):
 - 0 pt adunare
 - 1 pt scadere
 - 6 Sumatoare complete (FA)

Operatie	Descriere	Oper
ADD	(C6,S5,S4,S3,S2,S1,S0)=(A5,A4,A3,A2,A1,A0) + (B5,B4,B3,B2,B1,B0)+(0,0,0,0,0,0)	0
SUBTRACT	$(C6,S5,S4,S3,S2,S1,S0)=(A5,A4,A3,A2,A1,A0) + (\overline{B5}, \overline{B4}, \overline{B3}, \overline{B2}, \overline{B1}, \overline{B0})+(0,0,0,0,0,1)$	1

Resursa Numarator Temp

- Numarator descrescator pe 8 biti modulo Data (valoarea maxima data din ROM)
- Va avea o iesire FinCnt_Temp care va fi adevarata cand au trecut s-a ajuns la X grade, unde X este incarcat
 - Vom numara descrescator, incepand de la valoarea introdusa (pt simplificarea problemei)
 - FinCnt_Temp va fi generat cand numaratorul va ajunge la 0
 - va fi generat prin $\overline{Q7Q6Q5Q4Q3Q2Q1Q0}$ (00000000)
- Trebuie pornit la momentul potrivit Nevoie de enable (En_tmp)
 - Functioneaza pe ceas, deci are nevoie de CLK
 - Are nevoie de reset, pentru a reincepe o numarare
- Trebuie incarcat (in momentul in care este prima data pornit)
 - Are nevoie de un Ld care va fi activ DOAR la pornire

Resursa Numarator Temp

- Operatiile efectuate sunt:
 - NOP inefectiva
 - CNT_Temp <- 0
 - CNT_Temp <- Data
 - CNT_Temp <- CNT_Temp 1

Oper	Descriere	Rst_t	Ld_t	En_t
Reset	(Q7,Q6,Q5,Q4,Q3,Q2,Q1,Q0) = (0,0,0,0,0,0,0,0)	1	X	X
Hold	(Q7,Q6,Q5,Q4,Q3,Q2,Q1,Q0) = (Q7,Q6,Q5,Q4,Q3,Q2,Q1,Q0)	0	0	0
Load	(Q7,Q6,Q5,Q4,Q3,Q2,Q1,Q0)=(D7,D6,D5,D4,D3,D2,D1,D0)	0	1	1
Count	$(Q7,Q6,Q5,Q4,Q3,Q2,Q1,Q0)=(Q7,Q6,Q5,Q4,Q3,Q2,Q1,Q0) - (0,0,0,0,0,0,0,1)] \mod 256$	0	0	1

Resursa Numarator Extra

- Numarator descrescator pe 6 biti modulo Data (dat de date din ROM)
- Va avea o iesire FinCnt_Extra care va fi adevarata cand au trecut X minute, unde X este incarcat
 - FinCnt_Extra va fi generat cand numaratorul va ajunge la 0
 - va fi generat prin $\overline{Q5Q4Q3Q2Q1Q0}$ (000000)
- Trebuie pornit la momentul potrivit Nevoie de enable (En_extra)
 - Functioneaza pe ceas, deci are nevoie de CLK
 - Are nevoie de reset, pentru a reincepe o numarare
- Trebuie incarcat (in momentul in care este prima data pornit)
 - Are nevoie de un Ld_extra care va fi activ DOAR la pornire

Resursa Numarator Extra

- Operatiile efectuate sunt:
 - NOP inefectiva
 - CNT_Extra <- 0
 - CNT_Extra <- Data_Extra
 - CNT_Extra <- CNT_Extra 1

Oper	Descriere	Rst_e	Ld_e	En_e
Reset	(Q5,Q4,Q3,Q2,Q1,Q0)=(0,0,0,0,0,0)	1	X	X
Hold	(Q5,Q4,Q3,Q2,Q1,Q0) = (Q5,Q4,Q3,Q2,Q1,Q0)	0	0	0
Load	(Q5,Q4,Q3,Q2,Q1,Q0)=(D5,D4,D3,D2,D1,D0)	0	1	1
Count	$(Q5,Q4,Q3,Q2,Q1,Q0)=(Q5,Q4,Q3,Q2,Q1,Q0)-(0,0,0,0,0,1)] \mod 64$	0	0	1

Resursa Numarator 25 min

- Numarator pe 5 biti modulo 25
- Va avea o iesire FinCnt5 care va fi adevarata cand au trecut 5 minute
 - FinCnt25 va fi generat prin Q4Q3 $\overline{Q2Q1}$ Q0 (25 = 11001)
- Trebuie pornit la momentul potrivit Nevoie de enable (En_25)
 - Functioneaza pe ceas, deci are nevoie de CLK
 - Are nevoie de reset, pentru a reincepe o numarare
- Operatiile efectuate sunt:
 - NOP inefectiva, CNT_25 <- 0 sau CNT_25 <- CNT_25 + 1

Operatie	Descriere	Rst_25	En_25
Reset	(Q4,Q3,Q2,Q1,Q0)=(0,0,0,0,0)	1	X
Hold	(Q4,Q3,Q2,Q1,Q0) = (Q4,Q3,Q2,Q1,Q0)	0	0
Count	$(Q4,Q3,Q2,Q1,Q0)=[(Q4,Q3,Q2,Q1,Q0)+(0,0,0,1)] \mod 32$	0	1

Resursa Numarator 5 min

- Numarator pe 3 biti modulo 5
- Va avea o iesire FinCnt5 care va fi adevarata cand au trecut 5 minute
 - FinCnt5 va fi generat prin $Q2\overline{Q1}Q0$
- Trebuie pornit la momentul potrivit Nevoie de enable (En_5)
 - Functioneaza pe ceas, deci are nevoie de CLK
 - Are nevoie de reset, pentru a reincepe o numarare
- Operatiile efectuate sunt:
 - NOP inefectiva, CNT_5 <- 0 sau CNT_5 <- CNT_5 + 1

Operatie	Descriere	Rst_5	En_5
Reset	(Q2,Q1,Q0)=(0,0,0)	1	X
Hold	(Q2,Q1,Q0)=(Q2,Q1,Q0)	0	0
Count	$(Q2,Q1,Q0)=[(Q2,Q1,Q0)+(0,0,1)] \mod 8$	0	1

Resurse - extra

- Resurse necesare ca sistemul sa functioneze pe FPGA
- Divizor de frecventa
 - Toate operatiile sunt in minute
 - Ceasul de pe FPGA perioada de 10 ns
 - Nevoie de divizare aplicare ceas divizat peste tot
- Generare de monoimpuls pentru butoane
 - Nu putem conecta un buton la ceas
 - Butoanele imperfect nevoie sa luam impulsul o singura data
- Afisoare 7 segmente (SSD)
 - Valorile de pe numaratoare ar trebui afisate
 - Cea mai buna optiune: SSD
 - Nevoie de un circuit special pentru generarea de anod si catod