You are going build an RNN by hand to perform sentiment analysis on simple descriptions of basketball players.

Construct a trained RNN in the style of example1.py. Supply all the weights, biases, activation functions, etc.

The abbreviated version of English you will encounter has just 13 words:

\mathbf{word}	encoding
he	1000000000000
she	0100000000000
is	0010000000000
and	0001000000000
but	0000100000000
not	0000010000000
very	0000001000000
tall	000000100000
fast	000000010000
strong	000000001000
short	000000000100
slow	0000000000010
_	

weak

For example, one valid sentence is: "She is strong and fast but not very tall."

Let's agree on some general rules for how such sentences are interpreted.

1. Positive adjectives are worth 1 point.

0000000000001

- 2. Negative adjectives are worth -1 point.
- 3. "Very" implies adding ± 1 point to the adjective that follows.
- 4. "Not" implies ignoring the adjective that follows.

In the previous sentence, "strong" and "fast" each contribute one point. "Very tall" would contribute two except that "not" causes us to ignore it. So the example sentence scores two points.

In a file titled hw14_solution.py, define a dictionary called spec.

Run hw14_evaluate.py, making sure that your solution file is on the Python path. If you're unsure whether the result is satisfactory, ask the instructor or TA.

NOTE: For this assignment, we may evaluate your submission against additional examples that you will not see.