

NºMec. Nome:

Notas: - O seu teste está numerado no canto superior direito. Assine a folha de presenças na linha com esse nº.

- só é permitida calculadora sem capacidade de comunicação e material de escrita em papel; todo o restante material (incluindo pasta/mochila, portátil/tablet e telemóvel) deve ser depositado na parte baixa do anfiteatro;
- em cada questão só há uma resposta correcta; uma resposta certa vale 1 valor, uma errada desconta 0,2 valores e uma não resposta vale 0 valores; as respostas têm de ser assinaladas com um X na grelha abaixo; mais do que um X por coluna é considerado como resposta errada;
- duração do teste: 80 minutos, sem tolerância.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
(a)																				
(b)																				
(c)																				
(d)																				

- **01.** na resistência R mediu-se uma tensão V e uma corrente I. Qual das seguintes respostas é falsa ?
 - (a) P = V I
- **(b)** $P = R I^2 \times (c) P = V/I$
- **(d)** $P = V^2/R$
- **02.** Com R1=R2=R3=R, a resistência equivalente é dada por:

 - (a) $Req = R/3 \times (b) Req = 2R/3$
 - (c) Req = 3R / 2 (d) Req = 3R

- **03.** Neste divisor de corrente:
 - (a) $I_1 = I_2$
- \times **(b)** I₁ = 2 I₂
- (c) $I_2 = 2 I_1$
- (d) $I_2 = -I_1$

- **04.** Aplicando sobreposição a tensão V é dada pela soma:
 - (a) $80 + 10 = 90 \text{ V} \times \text{(b)} 40 + 5 = 45 \text{ V}$

 - (c) 40 5 = 40 V (d) 80 10 = 70 V

- **05.** A potência dissipada na resistência de 2 Ω é de:
 - (a) 6 W
- **(b)** 12 W
- **(c)** 18 W
- (d) 36 W

- **06.** A potência dissipada em R2 é de 10W. Calcule I:

 - (a) I = 0.50 A × (b) I = 0.75 A
 - (c) I = 1,25 A (d) I = 2,00 A

- **07.** Os dois circuitos são equivalentes quando:
 - (a) $V_{TH} = 4 \text{ V e R}_{TH} = 28 \text{ k}\Omega$
 - **(b)** V_{TH} = 4 V e R_{TH} = 20 k Ω
 - \times (c) V_{TH} = 6 V e R_{TH} = 20 k Ω
 - **(d)** V_{TH} = 6 V e R_{TH} = 28 k Ω

- **08.** Os dois circuitos são equivalentes quando:
 - (a) $I_N = 200 \text{ mA}$; $R_N = 12 \Omega$
 - **(b)** $I_N = 200 \text{ mA}$; $R_N = 50 \Omega$
 - (c) $I_N = 500 \text{ mA}$; $R_N = 20 \Omega$
- × (d) I_N = 500 mA; R_N = 12 Ω

В

- **09.** Para o sinal da figura, determine o *duty-cycle* e o valor médio:
 - (a) $\partial = 40\%$; $v_{\text{med}} = -1 \text{ V}$
- **(b)** $\partial = 40\%$; $v_{\text{med}} = 1 \text{ V}$
- (c) $\partial = 60\%$; $v_{\text{med}} = -1 \text{ V}$
- **x (d)** $\partial = 60\%$; $v_{\text{med}} = 1 \text{ V}$

- 10. Para o sinal da figura, determine a frequência e o valor eficaz:
 - (a) 20 Hz; 230 V
- **(b)** 20 Hz; 325 V
- \times (c) 50 Hz; 230 V
- (d) 50 Hz; 325 V

- **11.** Para o sinal da figura, determine o tempo de subida:
 - (a) 5 ns
- \times (b) 8 ns
- (c) 10 ns
- (d) 30 ns

12. Considere que o interruptor está fechado há muito tempo. Em t = 0s, o interruptor abre, desligando a fonte de 10V do resto do circuito. Ao fim de 1ms qual o valor de V2.

$$\times$$
 (c) 1,84 V

(d) 3,68 V

- **13.** O circuito à direita é do tipo Passa-Alto (PA) ou Passa-Baixo (PB) ? Determine a sua frequência de corte. (se necessário aproxime o resultado)
 - \times (a) PA / 80 kHz
- **(b)** PB / 80 kHz
- (c) PA / 0.5 MHz
- (**d**) PB / 0,5 MHz

- **14.** No circuito à direita $R = 2 \text{ k}\Omega$ e C = 1 nF. Se Vi for uma sinusoide de 2 kHz, aproximadamente, temos que:
 - (a) $V_0 = -V_i$
- **(b)** $Vo \ll Vi$
- \times (c) $V_0 = V_i$
- (d) $Vo \gg Vi$

- **15.** Num circuito LC série, existe uma frequência (dita de ressonância) para a qual, em módulo, as impedâncias da bobina e do condensador são iguais (|**Z**L| = |**Z**C|). Com L = 100μH e C = 25nF, determine essa frequência:
 - (a) 628 kHz
- **(b)** 16 kHz
- \times (c) 100 kHz
- (d) 628 kHz
- **16.** Para o circuito à direita considere $V\gamma = 0.6V$ e determine R2:
- \times (a) 3,3 k Ω
- **(b)** 3,6 k Ω
- (c) $3.9 \text{ k}\Omega$
- (d) $4,3 \text{ k}\Omega$

17. Considere os diodos ideais. Em qual dos circuitos se obtém a maior corrente em módulo?

- **18.** No circuito considere $V\gamma = 0.6V$ e que Vz1 = Vz2 = 2.4V.
 - O sinal de entrada é, em módulo, de 5V, mas desconhece-se a polaridade. Cada zener suporta 500mW. Determine o valor mínimo da resistência que garanta que esta potência não é ultrapassada:

- (a) $2,4 \Omega$
- **(b)** 4.0Ω
- \times (c) 9,6 Ω
- (d) $12,5 \Omega$
- **19.** No circuito considere $V\gamma = 0.8V$ e $R_L = 20 \Omega$.
 - O sinal de entrada é uma sinusoide de 50Hz com 16Vrms. Determine, com uma precisão melhor que $\pm 10\%$, o valor do condensador de filtragem para obter um *ripple* de 2V:

- **(a)** 3600 μF
- \times **(b)** 5000 µF
- (c) $7200 \mu F$
- **(d)** 10000 μF
- **20.** No circuito considere $V\gamma = 0.6V$ e Vz = 12V.
 - O sinal de entrada é uma sinusoide de 50Hz com 16Vrms. Determine, com uma precisão melhor que ±2%, o valor de pico da corrente no zener:

- (a) 0 mA
- **(b)** 10 mA
- × (c) 15 mA
- (d) 45 mA