Оглавление

1	Аналитическая часть			
	1.1	Рормализация задачи	2	
	1.2	I		
	1.3			
	1.4	Анализ баз данных и систем управления базами данных	4	
		.4.1 Классификация баз данных по месту хранения инфор-		
		мации	5	
		.4.2 Обзор in-memory СУБД	6	
		.4.3 Выбор СУБД для решения задачи	9	
			10	
Литература				

1 Аналитическая часть

В данном разделе приведена формализация задачи и данных, рассмотрены типы пользователей и требуемый функционал. Представлен анализ способов хранения данных и систем управления базами данных, а также произведен выбор оптимальной для решения поставленной задачи системы управления базой данных.

1.1 Формализация задачи

Необходимо спроектировать и реализовать базу данных для онлайнмониторинга состояния трасс и подъемников горнолыжного курорта. Также необходимо разработать интерфейс, позволяющий работать с данной базой для получения и изменения хранящейся в ней информации и мониторинга очередей к подъемникам в онлайн-режиме. Требуется реализовать, как минимум, три вида ролей – пользователь, сотрудник лыжного патруля и администратор.

1.2 Формализация данных

База данных должна хранить информацию о:

- rpaccax;
- подъемниках;
- связях трасс и подъемников (на одном подъемнике можно добраться до нескольких трасс, и до одной трассы можно добраться на нескольких подъемниках);
- турникетах;
- проездных картах;
- считываниях карт на турникетах подъемников;

- сообщениях о происшествиях;
- пользователях;
- группах пользователей.

В таблице 1.1 приведены категории и сведения о данных.

Таблица 1.1: Категории и сведения о данных

Категория	Сведения
Трассы	ID трассы, название трассы, уровень
Трассы	сложности, открытость/закрытость.
	ID подъемника, название подъемника,
Подъемники	открытость/закрытость, количество мест,
	время подъема, время в очереди.
Связи трасс и подъемников	ID записи, ID подъемника, ID трассы.
Турникеты	ID турникета, ID подъемника,
Турникеты	открытость/закрытость.
Проездные карты	ID карты, дата и время активации, тип.
Считывания карт на	ID записи, ID турникета, ID карты,
турникетах подъемников	дата и время считывания.
Сообщения о	ID сообщения, ID отправителя,
происшествиях	ID прочитавшего, текст сообщения.
Пользователи	ID пользователя, ID карты, email (логин),
TIONDOODATENN	пароль, ID группы пользователей.
Группы пользователей	ID группы пользователей, права доступа.

1.3 Типы пользователей

В соответствии с поставленной задачей необходимо разработать приложение с возможностью аутентификации пользователей, что делит их, прежде всего, на авторизованных и неавторизованных. Для управления приложением необходима ролевая модель: авторизованный (обычный) пользователь, сотрудник лыжного патруля и администратор.

Для каждого типа пользователя предусмотрен свой набор функций:

- неавторизованный пользователь:
 - регистрация,

- аутентификация,
- просмотр информации о состоянии трасс и подъемников,
- просмотр информации о связях трасс и подъемников;

• авторизованный пользователь:

- выход,
- просмотр информации о состоянии трасс и подъемников,
- просмотр информации о связях трасс и подъемников,
- отправка сообщений о происшествиях;

• сотрудник лыжного патруля:

- выход,
- просмотр и изменение информации о состоянии трасс и подъемников,
- просмотр и изменение информации о связях трасс и подъемников,
- просмотр сообщений о происшествиях;

• администратор:

- выход,
- просмотр и изменение всей информации, доступной в базе данных, в том числе права доступа групп и отдельных пользователей.

1.4 Анализ баз данных и систем управления базами данных

Для реализации поставленной задачи необходимо выбрать подходящую базу данных (БД) и систему управления базой данных (СУБД).

БД – это упорядоченный набор структурированной информации или данных, которые обычно хранятся в электронном виде в компьютерной системе. СУБД – это совокупность программных и лингвистических средств общего или специального назначения, обеспечивающих управление созданием и использованием баз данных [1].

1.4.1 Классификация баз данных по месту хранения информации

По месту хранения информации БД можно разделить на [2]:

- традиционные, которые хранят информацию на жестком диске или другом постоянном носителе;
- in-memory databases (IMDB) (резидентные базы данных), которые хранят информацию непосредственно в оперативной памяти.

IMDB появились как ответ традиционным БД в связи со снижением стоимости оперативной памяти, что позволяет хранить весь набор операционных данных непосредственно в памяти, увеличивая тем самым скорость их обработки более чем в 1000 раз [3].

Ключевыми преимуществами IMDB, в сравнении с традиционными БД, считаются следующие [4]:

- быстрота выполнения операций;
- эффективное сохранение зафиксированных данных, которые используются не часто, на жестком диске;
- высокая пропускная способность систем, критичных к производительности.

Обратной стороной этих достоинств являются следующие недостатки:

• однопоточность и эффективная утилизация только одного ядра ЦП, что не позволяет в полной мере воспользоваться возможностями современных многоядерных серверов;

• энергозависимость и привязка к размеру оперативной памяти.

В практическом плане IMDB-системы особенно востребованы в тех приложениях работы с данными в реальном времени, где требуется минимальное время отклика [5].

Основным требованием к разрабатываемой БД является предоставление возможности **онлайн**-мониторинга состояния объектов горнолыжного курорта. То есть задача предполагает постоянное добавление и изменение данных, а также быструю отзывчивость на запросы пользователя.

Таким образом, задача является типовым примером использования inmemory БД. И поскольку в современных СУБД существуют надежные и достаточно простые способы устранения указанных недостатков IMDB, было принято решение использовать именно этот подход к хранению данных.

1.4.2 Обзор in-memory СУБД

Memcached

Memcached - это высокопроизводительная система кэширования данных в оперативной памяти, предназначенная для использования в ускорении динамических веб-приложений за счет уменьшения нагрузки на базу данных. Меmcached относится к семейству решений для управления данными NoSQL и основана на модели данных с ключевыми значениями [6].

Данная СУБД спроектирована так, чтобы все операции имели алгоритмическую сложность O(1), то есть время выполнения любой операции не зависит от количества хранящихся ключей. Это означает, что некоторые операции или возможности, реализация которых требует всего лишь линейного (O(n)) времени, в ней отсутствуют. Так, например, в Memcached отсутствует возможность группировки ключей.

Memcached не является надежным хранилищем – возможна ситуация, когда ключ будет удален из кэша раньше окончания его срока жизни.

Управление внутренней памятью Memcached более эффективно в простейших случаях использования (при кэшировании относительно небольших и статических данных), поскольку оно потребляет сравнительно мало ресурсов памяти для метаданных. Строки (единственный тип данных, поддерживаемый Memcached) идеально подходят для хранения данных, которые только читаются, потому что строки не требуют дальнейшей обработки. Тем не менее, эффективность управления памятью Memcached быстро уменьшается, когда размер данных является динамическим, после чего память Memcached может стать фрагментированной [7].

Еще одно преимущество Memcached – достаточно простая масштабируемость: поскольку данная система многопоточна, ее можно увеличить, просто предоставив больше вычислительных ресурсов. Однако это может привести к потере части или всех кэшированных данных (в зависимости от того, используется ли постоянное хеширование).

Redis

Redis [8] – резидентная система управлениями базами данных класса NoSQL с открытым исходным кодом.

Основной структурой данных, с которой работает Redis является структура типа «ключ-значение», причем значения могут быть пяти различных типов. Данная СУБД используется как для хранения данных, так и для реализации кэшей и брокеров сообщений.

Redis хранит данные в оперативной памяти и снабжена механизмом «снимков» и журналирования, что обеспечивает постоянное хранение данных. Существует поддержка репликации данных типа master-slave, транзакций и пакетной обработки комманд.

Redis позволяет осуществлять мелкомасштабный контроль за вытеснением данных, предоставляя выбор из шести различных политик вытеснения [9].

К недостаткам Redis можно отнести отсутствие вторичных индексов и триггеров. Также транзакции в данной СУБД не удовлетворяют свойствам ACID (Atomicity – Атомарность, Consistency – Согласованность, Isolation – Изолированность, Durability – Долговечность) [10].

Tarantool

Tarantool [11] – это платформа in-memory вычислений с гибкой схемой хранения данных для эффективного создания высоконагруженных приложений. Включает себя базу данных и сервер приложений на языке программирования Lua [12].

Записи в Tarantool хранятся в пространствах (space) – аналог таблицы в реляционной базе данных SQL. Внутри пространства находятся кортежи (tuples), которые похожи на строку в таблице SQL.

Tarantool объединяет в себе преимущества, характерные для кэша:

- «горячие данные»;
- оптимальная работа при высокой параллельной нагрузке;
- низкая задержка (99% запросов < 1 мс, 99.9% запросов < 3 мс);
- поддерживаемая загрузка на запись до 1 миллиона транзакций в секунду на одном ядре ЦПУ;
- система работает постоянно, не нужно делать перерыв на профилактические работы,

и достоинства классических СУБД:

- персистентность;
- транзакции со свойствами ACID;
- наличие репликации (master-slave и master-master);
- наличие хранимых процедуры.
- поддержка первичных и вторичных индексов (в том числе, составных).

В Tarantool реализован механизм «снимков» текущего состояния хранилища и журналирования всех операций, что позволяет восстановить состояние базы данных после ее перезагрузки.

К недостаткам данной СУБД можно отнести относительно малое количество поддерживаемых языков (C, C#, C++, Erlang, Go, Java, JavaScript, Lua, Perl, PHP, Python, Rust) [11], а также более высокий порог входа по сравнению с ранее рассмотренными СУБД [9].

1.4.3 Выбор СУБД для решения задачи

В данной работе не предполагается хранение в БД очень большого количества информации, и в этом случае требованию о коротком времени отклика удовлетворяют все рассмотренные СУБД.

Для удобного хранения данных, указанных в пункте 1.2, СУБД должна предоставлять несколько типов данных, таких как строки, целые числа, числа с плавающей запятой. Этому требованию не удовлетворяет Memcached.

Для того, чтобы предоставить пользователям перечисленные в пункте 1.3 функции, в СУБД должна быть реализована возможность создания вторичных индексов, а также триггеров или хранимых процедур (для выполнения сложных вычислений). Данному требованию не удовлетворяет Redis.

При этом необходимо надежное хранение данных, без риска их потери даже в случае сбоя в системе, а также реализация ACID транзакций.

Всем перечисленным требованиям удовлетворяет Tarantool, поэтому именно эта СУБД была выбрана для использования в данной работе.

Вывод

В данном разделе была проведена формализация задачи и данных, рассмотрены типы пользователей и требуемый функционал. В результате анализа способов хранения данных и рассмотрения IMDB-систем, в качестве СУБД для данной работы был выбран Tarantool.

Литература

- [1] Что такое база данных | Oracle Россия и СНГ [Электронный ресурс]. Режим доступа: https://www.oracle.com/ru/database/what-is-database/ (дата обращения: 25.03.2022).
- [2] Системы и технологии баз данных в памяти | Microsoft [Электронный ресурс]. Режим доступа: https://docs.microsoft.com/ru-ru/sql/relational-databases/in-memory-database?view=sql-server-ver15 (дата обращения: 25.03.2022).
- [3] In-Memory. База данных в оперативной памяти | ECM-Journal [Электронный ресурс]. Режим доступа: https://ecm-journal.ru/material/In-Memory-Baza-dannykh-v-operativnojj-pamjati (дата обращения: 27.03.2022).
- [4] In-Memory Database [Электронный ресурс]. Режим доступа: https://ru.bmstu.wiki/IMDB_(In-memory_Database) (дата обращения: 27.03.2022).
- [5] 4 крупных примера внедрения Tarantool | Big Data School [Электронный ресурс]. Режим доступа: https://www.bigdataschool.ru/blog/tarantool-use-cases-and-advantages.html (дата обращения: 27.03.2022).
- [6] Memcached a distributed memory object caching system [Электронный ресурс]. Режим доступа: https://memcached.org/ (дата обращения: 15.04.2022).
- [7] Memcached | Распределенное хранилище данных типа «ключзначение» [Электронный ресурс]. Режим доступа: https:// memcached.org/ (дата обращения: 15.04.2022).
- [8] Redis is an open source (BSD licensed), in-memory data structure store, used as a database, cache, and message broker [Электронный ресурс]. Режим доступа: https://redis.io/ (дата обращения: 01.04.2022).
- [9] Преимущества Redis [Электронный ресурс]. Режим доступа: https://aws.amazon.com/ru/redis/ (дата обращения: 01.04.2022).

- [10] Транзакции, ACID, CAP | GeekBrains [Электронный ресурс]. Режим доступа: https://gb.ru/posts/acid_cap_transactions (дата обращения: 07.06.2021).
- [11] Tarantool Платформа In-тетогу вычислений [Электронный ресурс]. Режим доступа: https://www.tarantool.io/ru/ (дата обращения: 01.04.2022).
- [12] The Programming Language Lua [Электронный ресурс]. Режим доступа: http://www.lua.org/ (дата обращения: 01.04.2022).