DCC062 - Sistemas Operacionais

Cap. 4 – Gerenciamento de Memória

Prof. Marcelo Moreno

moreno@ice.ufjf.br

Gerenciamento Básico de Memória

Monoprogramação

Gerenciamento de Memória

- Todo programador deseja contar com memória:
 - Grande
 - Rápida
 - Não volátil
- Hierarquia de memórias
 - · Pequena quantidade de memória rápida, de alto custo cache
 - Quantidade considerável de memória de velocidade média, custo médio memória principal
 - Enorme quantidade de armazenamento não-volátil de velocidade e custo baixos disco
- O gerenciador de memória trata a hierarquia de memórias

Relocação e Proteção

- Não se sabe com certeza onde o programa será carregado na memória
 - Localizações de endereços de variáveis e de código de rotinas não podem ser absolutos
- Solução 1: instruções do programa são modificadas segundo o segmento de memória em que ele será carregado
 - Não resolve proteção!
 - Bits de proteção podem ser usados, funcionando como chaves de acesso
- Solução 2: uso de valores base e limite
 - Localizações de endereços são somadas ao valor base antes de serem mapeadas na memória física
 - · Localizações de endereços maiores que o limite indicam erro

Troca de Processos (Swap)

Algoritmos para Seleção de Segmento

- Algoritmos usados para a escolha do segmento a ser tomado para alocação por um processo
 - First fit
 - Next Fit
 - Best fit
 - Worst fit
 - Buddy System

Seleção de Segmento - First fit

Seleção de Segmento - Next fit

								1	٧
A8	20	15	10	25	8	50			4
A30	20	15	10	25	8	30	20		
D15	45			25	8	30	20		
A15		45		25	8	30	15	5	4
								-	4

Seleção de Segmento - Best fit

Seleção de Segmento - Worst Fit

A8	20	15	8	2	25	58	3	
A30	20	15	8	2	25	30	28	3
D15	35		8	2	25	30	28	3
A15	35		8	2	25	30	15	13
L								-

A8	20	15	10	25	8	50	
A8 A30 D15	20	15	10	25	8	30	20
D15	45			25	8	30	20
A15	15 30			25	8	30	20

Memória Virtual

•	128							
A20	32:20	32			6	4		
A15	32:20	16:15	16		64			
A10	32:20	16:15	16:10		64			
A25	32:20	16:15	16:15 16:10		32:25	32		
D20	32	16:15	6:15 16:10		32:25	32		
D10	32	16:15	16		32:25	32		
A8	32	16:15	8:8	8	32:25	32		
A30	32:30	16:15	8:8	8	32:25	32		
D15	32:30	16	8:8	8	32:25	32		
A15	32:30	16:15	8:8	8	32:25	32		
D8	32:30	16:15	5 16		32:25	32		
D30	32	32 16:15		6	32:25	32		
D15	64				32:25	32		

Alocação Buddy System

Barramento

Paginação

Dan Ciância da

Paginação

Envolvimento S.O e Paginação

- Quatro circunstâncias de envolvimento:
 - Criação de processo
 - determina tamanho do programa e cria tabela de páginas
 - Execução de processo
 - MMU é reinicializada com tabela para novo processo
 - Ocorrência de falta de página
 - determina endereço virtual que causou a falta
 - descarta, se necessário, uma página antiga
 - carrega página requisitada para a memória
 - Terminação de processo
 - Libera tabela de páginas, frames de páginas, e espaço em disco usado

Algoritmos para Substituição de Páginas

- Algoritmos usados para a escolha de qual página será removida da memória principal para dar lugar a outra
 - Ótimo
 - Não usada recentemente (NRU)
 - Primeira a Entrar, Primeira a Sair (FIFO)
 - Segunda Chance (SC)
 - Relógio (Clock)
 - Menos recentemente usada (LRU)
 - Conjunto de Trabalho (Working set)
 - WSClock

Substituição de Páginas: Ótimo

- Algoritmo Ótimo:
 - Rotular cada página com quantas instruções faltam para que ela seja realmente usada
 - Substituir a página que será necessária o mais a frente possível, ou seja, a que possui maior rótulo
 - · Adia a ocorrência da falta para o mais tarde possível
 - Ótimo, mas não realizável
- Próximo uso pode ser estimado
 - Registro do uso da página em execuções anteriores do processo
- Muito bom para comparações. Inviável na prática.

Substituição de Páginas: FIFO

- Primeira a Entrar, Primeira a Sair (FIFO)
 - Mantém uma lista encadeada de todas as páginas
 - Página mais antiga na cabeça da lista
 - Página que chegou por último na memória no final da lista
 - Na ocorrência de falta de página
 - Página na cabeça da lista é removida
 - Nova página adicionada no final da lista
 - Desvantagem
 - Página há mais tempo na memória pode ser usada com muita frequência

Substituição de Páginas: NRU

- Não Usada Recentemente (NRU)
 - Cada página tem os bits Referenciada (R) e Modificada (M)
 - Bits são colocados em 1 sempre que a página é referenciada (R) e modificada (M)
- As páginas são classificadas
 - · Classe 0: não referenciada, não modificada
 - Classe 1: não referenciada, modificada
 - Classe 2: referenciada, não modificada
 - Classe 3: referenciada, modificada
- NRU remove página aleatoriamente da classe de ordem mais baixa que não esteja vazia

Substituição de Páginas: SC

- Segunda Chance
 - Levar em conta o bit R da página mais antiga (cabeça)

Substituição de Páginas: Relógio

- Relógio (Clock)
 - Manter as páginas em uma lista circular

Substituição de Páginas: LRU

- Simulação em Software
 - Algoritmo Não Usada Frequentemente (NUF)
 - Com Aging

Substituição de Páginas: LRU

- Menos Recentemente Usada (LRU)
 - Assume que páginas usadas recentemente logo serão usadas novamente
 - Retira da memória página que há mais tempo não é usada
 - Uma lista encadeada de páginas deve ser mantida
 - A página mais recentemente usada no início da lista, a menos usada no final da lista
 - Atualização da lista à cada referência à memória
 - Alternativamente, manter contador em cada entrada da tabela de página, com auxílio de hardware
 - Escolhe página com contador de menor valor
 - Zera o contador periodicamente

Substituição de Páginas: Conjunto de Trabalho

- Conjunto de Trabalho (Working Set)
 - O conjunto de trabalho é o conjunto de páginas usadas pelas k referências mais recentes à memória
 - w(k,t) é o tamanho do conjunto de trabalho no instante t

Substituição de Páginas: Conjunto de Trabalho

Conjunto de Trabalho (Working Set)

Substituição de Páginas: Comparação

Algoritmo	Comentário				
Ótimo	Não implementável, mas útil como um padrão de desempenho				
NUR (não usada recentemente)	Muito rudimentar				
FIFO (primeira a entrar, primeira a sair)	Pode descartar páginas importantes				
Segunda chance	Algoritmo FIFO bastante melhorado				
Relógio	Realista				
MRU (menos recentemente usada)	Excelente algoritmo, porém difícil de ser implementado de maneira exata				
NFU (não frequentemente usada)	Aproximação bastante rudimentar do MRU				
Envelhecimento (aging)	Algoritmo bastante eficiente que se aproxima bem do MRU				
Conjunto de trabalho	Implementação um tanto cara				
WSClock	Algoritmo bom e eficiente				

Substituição de Páginas: WSClock

Tratamento de Faltas de Página

- 1. Hardware desvia a execução para o núcleo
- 2. Salva conteúdo de registradores e outras informações voláteis
- 3. SO determina a página virtual necessária
- 4. SO checa validade de endereço, busca moldura de página
- 5. Se moldura de página selecionada foi modificada (suja), salvá-la em disco
- 5. SO busca em disco página virtual referenciada
- 7. Tabela de páginas é atualizada
- 3. Estado da instrução que causou falta de página é recuperado
-). Processo que causou falta de página é escalonado para executar
- 10. Programa continua

Exercícios

Dado um sistema de memória virtual com páginas de 4K palavras, e como tabela de páginas:

Pág. Virtual	Frame página	Pede-se:
(12 bits)	(8 bits)	a) O endereço físico do endereço virtual 0x1ABC.
0x000	0x04	b) O endereço virtual do endereço físico 0x4310.
0x001	0x01	c) O maior tamanho de processo possível.
0x002	0x43	d) O tamanho máximo da memória física.
0x003	0x14	,
•••	•••	Obs.: 0x é uma notação para números hexadecimais

Exercícios

Dado um sistema com memória virtual que utiliza o algoritmo de substituição de páginas "Menos Recentemente Usada" e que possua 4 frames de página. Mostre passo-a-passo a situação da memória física frente à seguinte sequência de acesso a páginas virtuais: 0, 1, 2, 3, 0, 4, 5, 0, 1, 2, 1, 3, 1, 0. Marque para cada passo se houve falha (MISS) ou acerto (HIT) no acesso à página. Responda quantas falhas e acertos ocorrem no total.

