

Cambridge Assessment International Education

Cambridge International Advanced Level

CANDIDATE NAME									
CENTRE NUMBER					CANDIDATE NUMBER				
MATHEMATICS								97	09/52
Paper 5 Mecha	nics 2 (M	2)			C	Octobe	r/Nov	embe	r 2019
						1	hour	15 m	inutes
Candidates ansv	wer on the	Questio	n Pape	r.					
Additional Materials: List of Formulae (MF9)									

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

Where a numerical value for the acceleration due to gravity is needed, use 10 m s⁻².

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 50.

distance of t	urface. The particle for	particle is prom O .	rojected f	iorizonta	lly from	O with sp	eed 4 m s	¹ . Find	the gre
••••••••	••••••	•••••	•••••	••••••	••••••	••••••	•••••••••	•••••	••••••
		,						•••••	
•••••	•••••			•••••	•••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •
									. ,
•••••	•••••	•••••	•••••	•••••	•••••	•••••		•••••	
	•••••			••••••	•••••	••••••		•••••	• • • • • • • • • • • • • • • • • • • •
••••••	••••••	••••••	••••••	••••••	••••••	••••••	•	••••••	••••••
•••••	•••••		•••••	•••••	•••••	•••••		•••••	
•••••	•••••		•••••	••••••	•••••	•••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •
				•••••	•••••	•••••		•••••	•••••
•••••	•••••	••••••	•••••	••••••	••••••	••••••	•••••••	•••••	• • • • • • • • • • • • • • • • • • • •
									• • • • • • • • • • • • • • • •
		, 							

2

A small ball is projected from a point O on horizontal ground at an angle of 30° above the horizontal.

•		••••••
•		••••••••••
•		
a) 1	Hence find the equation of the trajectory of the ball.	
- , .	rence and the equation of the trajectory of the cum	
•		
•		••••••
•		•••••

of <i>P</i> .	when the a	cceleratio	n of P is	4 m s ⁻² d	lownward	ls, find th	ie extensi	on of the	string and	I the
	•••••		•••••					•••••	•••••	
•••••	•••••		•••••	••••••			•••••	•••••	••••••	• • • • • • • •
			•••••	•••••			•••••	•••••	•••••	•••••
							•••••			· • • • • • • • • • • • • • • • • • • •
										· • • • • • • • • • • • • • • • • • • •
•••••	••••••	••••••	••••••	••••••		•	•••••	•••••	•••••	•••••
•••••	••••••	••••••	••••••	••••••	•••••	•••••	•••••	•••••	•••••	•••••
•••••			•••••	••••••			•••••		•••••	•••••
										· • • • • • • • • • • • • • • • • • • •
							•••••			· • • • • • • • • • • • • • • • • • • •
••••	•••••	•••••••	•••••	•••••			••••	•••••	•••••	•••••
•••••	•••••	••••••	••••••	••••••	•••••	•••••	•••••	••••••	••••••	•••••
•••••	•••••	••••••	••••••	••••••	•••••	•••••	•••••	••••••	••••••	••••••
•••••	•••••		•••••	•••••			•••••	••••••	•••••	•••••

A particle is projected from a point O on horizontal ground with speed $V \,\mathrm{m\,s^{-1}}$ at an angle of 60°

	Find V .	
		••••••
		••••••
		••••••
(ii)	Calculate the distance of the particle from O at the instant 3 s after projection.	
(ii)	Calculate the distance of the particle from O at the instant 3 s after projection.	
(ii)		

A and B are two fixed points on a vertical axis with A above B. A particle P of mass $0.4 \,\mathrm{kg}$ is attached to A by a light inextensible string of length $0.5 \,\mathrm{m}$. The particle P is attached to B by another light inextensible string. P moves with constant speed in a horizontal circle with centre O between A and B. Angle $BAP = 30^{\circ}$ and angle $ABP = 70^{\circ}$ (see diagram).

(i)	Given that the tensions in the two strings are equal, find the speed of P . [5]

© UCLES 2019 9709/52/O/N/19

•	•		
	. .		
•	•		
•	•		
•	•		
•	. .		
•	•		
	. .		
•	•		
	. .		
•	 •		
	. .		
_			
•			
•	 •		
•	•		
•	•		
	•	,	
•	•		

6

:	A particle P of mass 0.2 kg is projected horizontally from a fixed point O on a smooth horizont surface. When the displacement of P from O is x m the velocity of P is v m s ⁻¹ . A horizontal force of variable magnitude $0.09\sqrt{x}$ N directed away from O acts on P . An additional force of constant magnitude 0.3 N directed towards O acts on P .
	(i) Show that $v \frac{dv}{dx} = 0.45\sqrt{x} - 1.5$.
	(ii) Find the value of x for which the acceleration of P is zero.

9709/52/O/N/19 © UCLES 2019

projection.				[
	 		 	•••••
	 		 	•••••
	 		 	•••••
	 		 	•••••
	 		 	•••••
	 		 	•••••
	 		 	•••••
	 		 	•••••
	 		 	•••••
	 •••••	•••••	 •••••	

7

ABCD is a uniform lamina in the shape of a trapezium which has centre of mass G. The sides AD and BC are parallel and 1.8 m apart, with AD = 2.4 m and BC = 1.2 m (see diagram).

(i)	Show that the distance of G from AD is 0.8 m .	[4]
	lamina is freely suspended at A and hangs in equilibrium with AD making arwertical.	n angle of 30° with
(ii)	Calculate the distance AG .	[2]

© UCLES 2019 9709/52/O/N/19

With the lamina still freely suspended at A a horizontal force of magnitude 7 N acting in the plane of the lamina is applied at D. The lamina is in equilibrium with AG making an angle of 10° with the downward vertical.

© UCLES 2019 9709/52/O/N/19

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.