Reference Sheet for CO233 Computational Methods

Autumn 2017

1 The \mathbb{R}^n and \mathbb{C}^n Vector Spaces

- Convex combination: triangle $a\mathbf{u} + b\mathbf{v} + c\mathbf{w}$ with vertices $\mathbf{u}, \mathbf{v}, \mathbf{w}$ and $0 \le a, b, c \le 1$ and a + b + c = 1, for $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^3$.
- Inner product: $\mathbf{u} \cdot \mathbf{v} = \sum_{i=1}^{3} \mathbf{u}_{i} \mathbf{v}_{i} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta$ for $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{3}$, where $\|\mathbf{u}\| = \sqrt{\mathbf{u}_{1}^{2} + \mathbf{u}_{2}^{2} + \mathbf{u}_{3}^{2}}$.
- Inner product: $\langle \boldsymbol{v}, \boldsymbol{w} \rangle = \sum_{i=1}^n = \boldsymbol{v}_i^* \boldsymbol{w}_i$ for $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{C}^n$.
- Norm: $\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$.

Representation of Linear Maps

- Linear map $\mathbb{R}^n \to \mathbb{R}^m$: can be represented by the real matrix $A \in \mathbb{R}^{m \times n}$:
 - For all $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{R}^n$, $\boldsymbol{A}(\boldsymbol{v} + \boldsymbol{w}) = \boldsymbol{A}\boldsymbol{v} + \boldsymbol{A}\boldsymbol{w}$.
 - For all $\mathbf{v} \in \mathbb{R}^n$, $c \in \mathbb{R}$, $\mathbf{A}(c\mathbf{v}) = c(\mathbf{A}\mathbf{v})$.
- Extends simply to \mathbb{C}^n .

2 Norms

2.1 Vector Norms

A vector norm on \mathbb{R}^n is a real-valued map

$$\|\cdot\|:\mathbb{R}^n\to\mathbb{R}$$

which satisfies:

- 1. For any non-zero vector $\boldsymbol{x} \in \mathbb{R}^n$, $\|\boldsymbol{x}\| > 0$.
- 2. For any scalar λ and $\mathbf{x} \in \mathbb{R}^n$, $\|\lambda \mathbf{x}\| = |\lambda| \|\mathbf{x}\|$
- 3. For two vectors $x, y \in \mathbb{R}^n$, $||x + y|| \le ||x|| + ||y||$.

The l_p Norms

$$\left\|oldsymbol{v}
ight\|_p = \left(\sum_{i=1}^n \left|oldsymbol{v}_i
ight|^p
ight)^{1/p}$$

Properties

• For any vector \boldsymbol{x} , $\|\boldsymbol{x}\|_{\infty} \leq \|\boldsymbol{x}\|_{2} \leq \|\boldsymbol{x}\|_{1}$.

2.2 Cauchy-Schwartz Inequality

$$|\langle u, v \rangle| \le ||\boldsymbol{u}|| \, ||\boldsymbol{v}||$$

Proof

- Consider $\lambda u + v$.
- Since the length of any vector is non-negative, $0 \le (\lambda u + v)(\lambda u + v)$.
- Therefore $\lambda = \frac{\langle u, v \rangle}{\|\mathbf{u}\|^2}$.

2.3 Matrix Norms

A matrix norm on $\mathbb{R}^{m \times n}$ is a real-valued map.

3 Linear Independence

For $a_i \in \mathbb{R}^m$, with i = 1, ..., k, the a_i s are linearly independent if whenever $x_i \in \mathbb{R}$, we have $\sum_{i=1}^k x_i a_i = 0$, then $x_i = 0$ for i = 1, ..., k.

Methods for Determining Linear Independence Columns of \boldsymbol{A} are linearly independent if:

- Calculate determinant. Find $\det(\mathbf{A}) \neq 0$.
- Solve $\mathbf{A}\mathbf{x} = 0$. Find $\mathbf{x} = 0$.