WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:
 C12N 15/13, 15/10, 15/62, 15/70, 1/21, C07K 1/04, G01N 33/53

(11) International Publication Number:

WO 97/08320

(43) International Publication Date:

6 March 1997 (06.03.97)

(21) International Application Number:

PCT/EP96/03647

A1

(22) International Filing Date:

19 August 1996 (19.08.96)

----- 1006 (10 00 06

(81) Designated States: AU, CA, JP, US, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(30) Priority Data:

95113021.0 18 August 1995 (18.08.95) EP (34) Countries for which the regional or

international application was filed:

DE et al.

incriancias apparament was juca. Dis et a

(71) Applicant (for all designated States except US): MORPHOSYS GESELLSCHAFT FÜR PROTEINOPTIMIERUNG MBH [DE/DE]; Frankfurter Ring 193a, D-80807 München (DE).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): KNAPPIK, Achim [DE/DE]; Killerstrasse 16, D-82166 Gräfelfing (DE). PACK, Peter [DE/DE]; Franz-Wolter-Strasse 4, D-81925 München (DE). ILAG, Vic [PH/DE]; Knorrstrasse 85, D-80807 München (DE). GE, Liming [CN/DE]; Nestroystrasse 17, D-81373 München (DE). MORONEY, Simon [NZ/DE]; Osterwaldstrasse 44, D-80805 München (DE). PLÜCKTHUN, Andreas [DE/CH]; Möhrlistrasse 97, CH-8006 Zürich (CH).
- (74) Agent: VOSSIUS & PARTNER; P.O. Box 86 07 67, D-81634 München (DE).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: PROTEIN/(POLY)PEPTIDE LIBRARIES

(57) Abstract

The present invention relates to synthetic DNA sequences which encode one or more collections of homologous proteins/(poly)peptides, and methods for generating and applying libraries of these DNA sequences. In particular, the invention relates to the preparation of a library of human-derived antibody genes by the use of synthetic consensus sequences which cover the structural repertoire of antibodies encoded in the human genome. Furthermore, the invention relates to the use of a single consensus antibody gene as a universal framework for highly diverse antibody libraries.

Database of human lg gene segments Translation in amino acid sequences Alignment of protein sequences Rearranged Germline sequences sequences Computation of Assignment to families germline counterpart Assignment to Database of used families germline families Computation of Analysis of consensus sequences canonical structures Structural Analysis Design of CDRs Gene Design Synthetic combinatorial antibody library

13

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
ΑU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JР	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	· KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	MIL	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

/);

Protein/(Poly)peptide Libraries

Field of the Invention

The present invention relates to synthetic DNA sequences which encode one or more collections of homologous proteins/(poly)peptides, and methods for generating and applying libraries of these DNA sequences. In particular, the invention relates to the preparation of a library of human-derived antibody genes by the use of synthetic consensus sequences which cover the structural repertoire of antibodies encoded in the human genome. Furthermore, the invention relates to the use of a single consensus antibody gene as a universal framework for highly diverse antibody libraries.

Background to the Invention

All current recombinant methods which use libraries of proteins/(poly)peptides, e.g. antibodies, to screen for members with desired properties, e.g. binding a given ligand, do not provide the possibility to improve the desired properties of the members in an easy and rapid manner. Usually a library is created either by inserting a random oligonucleotide sequence into one or more DNA sequences cloned from an organism, or a family of DNA sequences is cloned and used as the library. The library is then screened, e.g. using phage display, for members which show the desired property. The sequences of one or more of these resulting molecules are then determined. There is no general procedure available to improve these molecules further on.

Winter (EP 0 368 684 B1) has provided a method for amplifying (by PCR), cloning, and expressing antibody variable region genes. Starting with these genes he was able to create libraries of functional antibody fragments by randomizing the CDR3 of the heavy and/or the light chain. This process is functionally equivalent to the natural process of VJ and VDJ recombination which occurs during the development of B-cells in the immune system.

However the Winter invention does not provide a method for optimizing the binding affinities of antibody fragments further on, a process which would be functionally equivalent to the naturally occurring phenomenon of "affinity maturation", which is provided by the present invention. Furthermore, the Winter invention does not provide for artificial variable region genes, which represent a whole family of

structurally similar natural genes, and which can be assembled from synthetic DNA oligonucleotides. Additionally, Winter does not enable the combinatorial assembly of portions of antibody variable regions, a feature which is provided by the present invention. Furthermore, this approach has the disadvantage that the genes of all antibodies obtained in the screening procedure have to be completely sequenced, since, except for the PCR priming regions, no additional sequence information about the library members is available. This is time and labor intensive and potentially leads to sequencing errors.

The teaching of Winter as well as other approaches have tried to create large antibody libraries having high diversity in the complementarity determining regions (CDRs) as well as in the frameworks to be able to find antibodies against as many different antigens as possible. It has been suggested that a single universal framework may be useful to build antibody libraries, but no approach has yet been successful.

Another problem lies in the production of reagents derived from antibodies. Small antibody fragments show exciting promise for use as therapeutic agents, diagnostic reagents, and for biochemical research. Thus, they are needed in large amounts, and the expression of antibody fragments, e.g. Fv, single-chain Fv (scFv), or Fab in the periplasm of E. coli (Skerra & Plückthun, 1988; Better et al., 1988) is now used routinely in many laboratories. Expression yields vary widely, however. While some fragments yield up to several mg of functional, soluble protein per liter and OD of culture broth in shake flask culture (Carter et al., 1992, Plückthun et al. 1996), other fragments may almost exclusively lead to insoluble material, often found in so-called inclusion bodies. Functional protein may be obtained from the latter in modest yields by a laborious and time-consuming refolding process. The factors influencing antibody expression levels are still only poorly understood. Folding efficiency and stability of the antibody fragments, protease lability and toxicity of the expressed proteins to the host cells often severely limit actual production levels, and several attempts have been tried to increase expression yields. For example, Knappik & Plückthun (1995) could show that expression yield depends on the antibody sequence. They identified key residues in the antibody framework which influence expression yields dramatically. Similarly, Ullrich et al. (1995) found that point mutations in the CDRs can increase the yields in periplasmic antibody fragment expression. Nevertheless, these strategies are only applicable to a few antibodies. Since the Winter invention uses existing repertoires of antibodies, no influence on expressibility of the genes is possible.

Furthermore, the findings of Knappik & Plückthun and Ullrich demonstrate that the knowledge about antibodies, especially about folding and expression is still increasing. The Winter invention does not allow to incorporate such improvements into the library design.

The expressibility of the genes is important for the library quality as well, since the screening procedure relies in most cases on the display of the gene product on a phage surface, and efficient display relies on at least moderate expression of the gene.

These disadvantages of the existing methodologies are overcome by the present invention, which is applicable for all collections of homologous proteins. It has the following novel and useful features illustrated in the following by antibodies as an example:

Artificial antibodies and fragments thereof can be constructed based on known antibody sequences, which reflect the structural properties of a whole group of homologous antibody genes. Therefore it is possible to reduce the number of different genes without any loss in the structural repertoire. This approach leads to a limited set of artificial genes, which can be synthesized de novo, thereby allowing introduction of cleavage sites and removing unwanted cleavages sites. Furthermore, this approach enables (i), adapting the codon usage of the genes to that of highly expressed genes in any desired host cell and (ii), analyzing all possible pairs of antibody light (L) and heavy (H) chains in terms of interaction preference, antigen preference or recombinant expression titer, which is virtually impossible using the complete collection of antibody genes of an organism and all combinations thereof.

The use of a limited set of completely synthetic genes makes it possible to create cleavage sites at the boundaries of encoded structural sub-elements. Therefore, each gene is built up from modules which represent structural sub-elements on the protein/(poly)peptide level. In the case of antibodies, the modules consist of "framework" and "CDR" modules. By creating separate framework and CDR modules, different combinatorial assembly possibilities are enabled. Moreover, if two or more artificial genes carry identical pairs of cleavage sites at the boundaries of each of the genetic sub-elements, pre-built libraries of sub-elements can be inserted in these genes simultaneously, without any additional information related to any particular gene sequence. This strategy enables rapid optimization of, for example, antibody affinity, since DNA cassettes encoding libraries of genetic sub-elements can be (i), pre-built, stored and reused and (ii), inserted in any of these

¢

..

sequences at the right position without knowing the actual sequence or having to determine the sequence of the individual library member.

Additionally, new information about amino acid residues important for binding, stability, or solubility and expression could be integrated into the library design by replacing existing modules with modules modified according to the new observations.

The limited number of consensus sequences used for creating the library allows to speed up the identification of binding antibodies after screening. After having identified the underlying consensus gene sequence, which could be done by sequencing or by using fingerprint restriction sites, just those part(s) comprising the random sequence(s) have to be determined. This reduces the probability of sequencing errors and of false-positive results.

The above mentioned cleavage sites can be used only if they are unique in the vector system where the artificial genes have been inserted. As a result, the vector has to be modified to contain none of these cleavage sites. The construction of a vector consisting of basic elements like resistance gene and origin of replication, where cleavage sites have been removed, is of general interest for many cloning attempts. Additionally, these vector(s) could be part of a kit comprising the above mentioned artificial genes and pre-built libraries.

The collection of artificial genes can be used for a rapid humanization procedure of non-human antibodies, preferably of rodent antibodies. First, the amino acid sequence of the non-human, preferably rodent antibody is compared with the amino acid sequences encoded by the collection of artificial genes to determine the most homologous light and heavy framework regions. These genes are then used for insertion of the genetic sub-elements encoding the CDRs of the non-human, preferably rodent antibody.

Surprisingly, it has been found that with a combination of only one consensus sequence for each of the light and heavy chains of a scFv fragment an antibody repertoire could be created yielding antibodies against virtually every antigen. Therefore, one aspect of the present invention is the use of a single consensus sequence as a universal framework for the creation of useful (poly)peptide libraries and antibody consensus sequences useful therefor.

Detailed Description of the Invention

The present invention enables the creation of useful libraries of (poly)peptides. In a first embodiment, the invention provides for a method of setting up nucleic acid sequences suitable for the creation of said libraries. In a first step, a collection of at least three homologous proteins is identified and then analyzed. Therefore, a dafabase of the protein sequences is established where the protein sequences are aligned to each other. The database is used to define subgroups of protein sequences which show a high degree of similarity in both the sequence and, if information is available, in the structural arrangement. For each of the subgroups a (poly)peptide sequence comprising at least one consensus sequence is deduced which represents the members of this subgroup; the complete collection of (poly)peptide sequences represent therefore the complete structural repertoire of the collection of homologous proteins. These artificial (poly)peptide sequences are then analyzed, if possible, according to their structural properties to identify unfavorable interactions between amino acids within said (poly)peptide sequences or between said or other (poly)peptide sequences, for example, in multimeric proteins. Such interactions are then removed by changing the consensus sequence accordingly. The (poly)peptide sequences are then analyzed to identify subelements such as domains, loops, helices or CDRs. The amino acid sequence is backtranslated into a corresponding coding nucleic acid sequence which is adapted to the codon usage of the host planned for expressing said nucleic acid sequences. A set of cleavage sites is set up in a way that each of the sub-sequences encoding the sub-elements identified as described above, is flanked by two sites which do not occur a second time within the nucleic acid sequence. This can be achieved by either identifying a cleavage site already flanking a sub-sequence of by changing one or more nucleotides to create the cleavage site, and by removing that site from the remaining part of the gene. The cleavage sites should be common to all corresponding sub-elements or sub-sequences, thus creating a fully modular arrangement of the sub-sequences in the nucleic acid sequence and of the subelements in the corresponding (poly)peptide.

In a further embodiment, the invention provides for a method which sets up two or more sets of (poly)peptides, where for each set the method as described above is performed, and where the cleavage sites are not only unique within each set but also between any two sets. This method can be applied for the creation of (poly)peptide libraries comprising for example two α -helical domains from two different proteins, where said library is screened for novel hetero-association domains.

In yet a further embodiment, at least two of the sets as described above, are derived from the same collection of proteins or at least a part of it. This describes libraries comprising for example, but not limited to, two domains from antibodies such as VH and VL, or two extracellular loops of transmembrane receptors.

In another embodiment, the nucleic acid sequences set up as described above, are synthesized. This can be achieved by any one of several methods well known to the practitioner skilled in the art, for example, by total gene synthesis or by PCR-based approaches.

In one embodiment, the nucleic acid sequences are cloned into a vector. The vector could be a sequencing vector, an expression vector or a display (e.g. phage display) vector, which are well known to those skilled in the art. Any vector could comprise one nucleic acid sequence, or two or more nucleic sequences, either in different or the same operon. In the last case, they could either be cloned separately or as contiguous sequences.

In one embodiment, the removal of unfavorable interactions as described above, leads to enhanced expression of the modified (poly)peptides.

In a preferred embodiment, one or more sub-sequences of the nucleic acid sequences are replaced by different sequences. This can be achieved by excising the sub-sequences using the conditions suitable for cleaving the cleavage sites adjacent to or at the end of the sub-sequence, for example, by using a restriction enzyme at the corresponding restriction site under the conditions well known to those skilled in the art, and replacing the sub-sequence by a different sequence compatible with the cleaved nucleic acid sequence. In a further preferred embodiment, the different sequences replacing the initial sub-sequence(s) are genomic or rearranged genomic sequences, for example in grafting CDRs from nonhuman antibodies onto consensus antibody sequences for rapid humanization of non-human antibodies. In the most preferred embodiment, the different sequences are random sequences, thus replacing the sub-sequence by a collection of sequences to introduce variability and to create a library. The random sequences can be assembled in various ways, for example by using a mixture of mononucleotides or preferably a mixture of trinucleotides (Virnekäs et al., 1994) during automated oligonucleotide synthesis, by error-prone PCR or by other methods well known to the practitioner in the art. The random sequences may be completely randomized or biased towards or against certain codons according to

the amino acid distribution at certain positions in known protein sequences. Additionally, the collection of random sub-sequences may comprise different numbers of codons, giving rise to a collection of sub-elements having different lengths.

In another embodiment, the invention provides for the expression of the nucleic acid sequences from a suitable vector and under suitable conditions well known to those skilled in the art.

In a further preferred embodiment, the (poly)peptides expressed from said nucleic acid sequences are screened and, optionally, optimized. Screening may be performed by using one of the methods well known to the practitioner in the art, such as phage-display, selectively infective phage, polysome technology to screen for binding, assay systems for enzymatic activity or protein stability. (Poly)peptides having the desired property can be identified by sequencing of the corresponding nucleic acid sequence or by amino acid sequencing or mass spectrometry. In the case of subsequent optimization, the nucleic acid sequences encoding the initially selected (poly)peptides can optionally be used without sequencing. Optimization is performed by repeating the replacement of sub-sequences by different sequences, preferably by random sequences, and the screening step one or more times.

The desired property the (poly)peptides are screened for is preferably, but not exclusively, selected from the group of optimized affinity or specificity for a target molecule, optimized enzymatic activity, optimized expression yields, optimized stability and optimized solubility.

In one embodiment, the cleavage sites flanking the sub-sequences are sites recognized and cleaved by restriction enzymes, with recognition and cleavage sequences being either identical or different, the restricted sites either having blunt or sticky ends.

The length of the sub-elements is preferably, but not exclusively ranging between 1 amino acid, such as one residue in the active site of an enzyme or a structure-determining residue, and 150 amino acids, as for whole protein domains. Most preferably, the length ranges between 3 and 25 amino acids, such as most commonly found in CDR loops of antibodies.

The nucleic acid sequences could be RNA or, preferably, DNA.

In one embodiment, the (poly)peptides have an amino acid pattern characteristic of a particular species. This can for example be achieved by deducing the consensus sequences from a collection of homologous proteins of just one species, most preferably from a collection of human proteins. Since the (poly)peptides comprising consensus sequences are artificial, they have to be compared to the protein sequence(s) having the closest similarity to ensure the presence of said characteristic amino acid pattern.

In one embodiment, the invention provides for the creation of libraries of (poly)peptides comprising at least part of members or derivatives of the immunoglobulin superfamily, preferably of member or derivatives of the immoglobulins. Most preferably, the invention provides for the creation of libraries of human antibodies, wherein said (poly)peptides are or are derived from heavy or light chain variable regions wherein said structural sub-elements are framework regions (FR) 1, 2, 3, or 4 or complementary determining regions (CDR) 1, 2, or 3. In a first step, a database of published antibody sequences of human origin is established where the antibody sequences are aligned to each other. The database is used to define subgroups of antibody sequences which show a high degree of similarity in both the sequence and the canonical fold of CDR loops (as determined by analysis of antibody structures). For each of the subgroups a consensus sequence is deduced which represents the members of this subgroup; the complete collection of consensus sequences represent therefore the complete structural repertoire of human antibodies.

These artificial genes are then constructed e.g. by total gene synthesis or by the use of synthetic genetic subunits. These genetic subunits correspond to structural sub-elements on the (poly)peptide level. On the DNA level, these genetic subunits are defined by cleavage sites at the start and the end of each of the sub-elements, which are unique in the vector system. All genes which are members of the collection of consensus sequences are constructed such that they contain a similar pattern of corresponding genetic sub-sequences. Most preferably, said (poly)peptides are or are derived from the HuCAL consensus genes: $V\kappa1$, $V\kappa2$, $V\kappa3$, $V\kappa4$, $V\lambda1$, $V\lambda2$, $V\lambda3$, VH1A, VH1B, VH2, VH3, VH4, VH5, VH6, $C\kappa$, $C\lambda$, CH1 or any combination of said HuCAL consensus genes.

This collection of DNA molecules can then be used to create libraries of antibodies or antibody fragments, preferably Fv, disulphide-linked Fv, single-chain Fv (scFv), or Fab fragments, which may be used as sources of specificities against new target antigens. Moreover, the affinity of the antibodies can be optimized using pre-built library cassettes and a general procedure. The invention provides a method for identifying one or more genes encoding one or more antibody fragments which

binds to a target, comprising the steps of expressing the antibody fragments, and then screening them to isolate one or more antibody fragments which bind to a given target molecule. Preferably, an scFv fragment library comprising the combination of HuCAL VH3 and HuCAL Vλ2 consensus genes and at least a random sub-sequence encoding the heavy chain CDR3 sub-element is screened for binding antibodies. If necessary, the modular design of the genes can then be used to excise from the genes encoding the antibody fragments one or more genetic sub-sequences encoding structural sub-elements, and replacing them by one or more second sub-sequences encoding structural sub-elements. The expression and screening steps can then be repeated until an antibody having the desired affinity is generated.

Particularly preferred is a method in which one or more of the genetic subunits (e.g. the CDRs) are replaced by a random collection of sequences (the library) using the said cleavage sites. Since these cleavage sites are (i) unique in the vector system and (ii) common to all consensus genes, the same (pre-built) library can be inserted into all artificial antibody genes. The resulting library is then screened against any chosen antigen. Binding antibodies are selected, collected and used as starting material for the next library. Here, one or more of the remaining genetic subunits are randomized as described above.

A further embodiment of the present invention relates to fusion proteins by providing for a DNA sequence which encodes both the (poly)peptide, as described above, as well as an additional moiety. Particularly preferred are moieties which have a useful therapeutic function. For example, the additional moiety may be a toxin molecule which is able to kill cells (Vitetta et al., 1993). There are numerous examples of such toxins, well known to the one skilled in the art, such as the bacterial toxins Pseudomonas exotoxin A, and diphtheria toxin, as well as the plant toxins ricin, abrin, modeccin, saporin, and gelonin. By fusing such a toxin for example to an antibody fragment, the toxin can be targeted to, for example, diseased cells, and thereby have a beneficial therapeutic effect. Alternatively, the additional moiety may be a cytokine, such as IL-2 (Rosenberg & Lotze, 1986), which has a particular effect (in this case a T-cell proliferative effect) on a family of cells. In a further embodiment, the additional moiety may confer on its (poly)peptide partner a means of detection and/or purification. For example, the fusion protein could comprise the modified antibody fragment and an enzyme commonly used for detection purposes, such as alkaline phosphatase (Blake et al., 1984). There are numerous other moieties which can be used as detection or purification tags, which are well known to the practitioner skilled in the art. Particularly preferred are peptides comprising at least five histidine residues (Hochuli et al., 1988), which are able to bind to metal ions,

and can therefore be used for the purification of the protein to which they are fused (Lindner et al., 1992). Also provided for by the invention are additional moieties such as the commonly used C-myc and FLAG tags (Hopp et al., 1988; Knappik & Plückthun, 1994).

By engineering one or more fused additional domains, antibody fragments or any other (poly)peptide can be assembled into larger molecules which also fall under the scope of the present invention. For example, mini-antibodies (Pack, 1994) are dimers comprising two antibody fragments, each fused to a self-associating dimerization domain. Dimerization domains which are particularly preferred include those derived from a leucine zipper (Pack & Plückthun, 1992) or helix-turn-helix motif (Pack et al., 1993).

All of the above embodiments of the present invention can be effected using standard techniques of molecular biology known to anyone skilled in the art.

In a further embodiment, the random collection of sub-sequences (the library) is inserted into a singular nucleic acid sequence encoding one (poly)peptide, thus creating a (poly)peptide library based on one universal framework. Preferably a random collection of CDR sub-sequences is inserted into a universal antibody framework, for example into the HuCAL H3k2 single-chain Fv fragment described above.

In further embodiments, the invention provides for nucleic acid sequence(s), vector(s) containing the nucleic acid sequence(s), host cell(s) containing the vector(s), and (poly)peptides, obtainable according to the methods described above.

In a further preferred embodiment, the invention provides for modular vector systems being compatible with the modular nucleic acid sequences encoding the (poly)peptides. The modules of the vectors are flanked by restriction sites unique within the vector system and essentially unique with respect to the restriction sites incorporated into the nucleic acid sequences encoding the (poly)peptides, except for example the restriction sites necessary for cloning the nucleic acid sequences into the vector. The list of vector modules comprises origins of single-stranded replication, origins of double-stranded replication for high- and low copy number plasmids, promotor/operator, repressor or terminator elements, resistance genes, potential recombination sites, gene III for display on filamentous phages, signal sequences, purification and detection tags, and sequences of additional moieties.

The vectors are preferably, but not exclusively, expression vectors or vectors suitable for expression and screening of libraries.

In another embodiment, the invention provides for a kit, comprising one or more of the list of nucleic acid sequence(s), recombinant vector(s), (poly)peptide(s), and vector(s) according to the methods described above, and suitable host cell(s) for producing the (poly)peptide(s).

In a preferred embodiment, the invention provides for the creation of libraries of human antibodies. In a first step, a database of published antibody sequences of human origin is established. The database is used to define subgroups of antibody sequences which show a high degree of similarity in both the sequence and the canonical fold (as determined by analysis of antibody structures). For each of the subgroups a consensus sequence is deduced which represents the members of this subgroup; the complete collection of consensus sequences represent therefore the complete structural repertoire of human antibodies.

These artificial genes are then constructed by the use of synthetic genetic subunits. These genetic subunits correspond to structural sub-elements on the protein level. On the DNA level, these genetic subunits are defined by cleavage sites at the start and the end of each of the subelements, which are unique in the vector system. All genes which are members of the collection of consensus sequences are constructed such that they contain a similar pattern of said genetic subunits.

This collection of DNA molecules can then be used to create libraries of antibodies which may be used as sources of specificities against new target antigens. Moreover, the affinity of the antibodies can be optimised using pre-built library cassettes and a general procedure. The invention provides a method for identifying one or more genes encoding one or more antibody fragments which binds to a target, comprising the steps of expressing the antibody fragments, and then screening them to isolate one or more antibody fragments which bind to a given target molecule. If necessary, the modular design of the genes can then be used to excise from the genes encoding the antibody fragments one or more genetic subsequences encoding structural sub-elements, and replacing them by one or more second sub-sequences encoding structural sub-elements. The expression and screening steps can then be repeated until an antibody having the desired affinity is generated.

Particularly preferred is a method in which one or more of the genetic subunits (e.g. the CDR's) are replaced by a random collection of sequences (the library) using the said cleavage sites. Since these cleavage sites are (i) unique in the vector system and (ii) common to all consensus genes, the same (pre-built) library can be inserted into all artificial antibody genes. The resulting library is then screened against any chosen antigen. Binding antibodies are eluted, collected and used as starting material for the next library. Here, one or more of the remaining genetic subunits are randomised as described above.

Definitions

Protein:

The term protein comprises monomeric polypeptide chains as well as homo- or heteromultimeric complexes of two or more polypeptide chains connected either by covalent interactions (such as disulphide bonds) or by non-covalent interactions (such as hydrophobic or electrostatic interactions).

Analysis of homologous proteins:

The amino acid sequences of three or more proteins are aligned to each other (allowing for introduction of gaps) in a way which maximizes the correspondence between identical or similar amino acid residues at all positions. These aligned sequences are termed homologous if the percentage of the sum of identical and/or similar residues exceeds a defined threshold. This threshold is commonly regarded by those skilled in the art as being exceeded when at least 15% of the amino acids in the aligned genes are identical, and at least 30% are similar. Examples for families of homologous proteins are: immunoglobulin superfamily, scavenger receptor superfamily, fibronectin superfamilies (e.g. type II and III), complement control protein superfamily, cytokine receptor superfamily, cystine knot proteins, tyrosine kinases, and numerous other examples well known to one of ordinary skill in the art.

Consensus sequence:

Using a matrix of at least three aligned amino acid sequences, and allowing for gaps in the alignment, it is possible to determine the most frequent amino acid residue at each position. The consensus sequence is that sequence which comprises the amino acids which are most frequently represented at each position. In the event that two or more amino acids are equally represented at a single position, the consensus sequence includes both or all of those amino acids.

Removing unfavorable interactions:

The consensus sequence is per se in most cases artificial and has to be analyzed in order to change amino acid residues which, for example, would prevent the resulting molecule to adapt a functional tertiary structure or which would block the interaction with other (poly)peptide chains in multimeric complexes. This can be done either by (i) building a three-dimensional model of the consensus sequence using known related structures as a template, and identifying amino acid residues within the model which may interact unfavorably with each other, or (ii) analyzing the matrix of aligned amino acid sequences in order to detect combinations of amino

acid residues within the sequences which frequently occur together in one sequence and are therefore likely to interact with each other. These probable interaction-pairs are then tabulated and the consensus is compared with these "interaction maps". Missing or wrong interactions in the consensus are repaired accordingly by introducing appropriate changes in amino acids which minimize unfavorable interactions.

Identification of structural sub-elements:

Structural sub-elements are stretches of amino acid residues within a protein/(poly)peptide which correspond to a defined structural or functional part of the molecule. These can be loops (e.g. CDR loops of an antibody) or any other secondary or functional structure within the protein/(poly)peptide (domains, α -helices, β -sheets, framework regions of antibodies, etc.). A structural sub-element can be identified using known structures of similar or homologous (poly)peptides, or by using the above mentioned matrices of aligned amino acid sequences. Here the variability at each position is the basis for determining stretches of amino acid residues which belong to a structural sub-element (e.g. hypervariable regions of an antibody).

Sub-sequence:

A sub-sequence is defined as a genetic module which is flanked by unique cleavage sites and encodes at least one structural sub-element. It is not necessarily identical to a structural sub-element.

Cleavage site:

A short DNA sequence which is used as a specific target for a reagent which cleaves DNA in a sequence-specific manner (e.g. restriction endonucleases).

Compatible cleavage sites:

Cleavage sites are compatible with each other, if they can be efficiently ligated without modification and, preferably, also without adding an adapter molecule.

Unique cleavage sites:

A cleavage site is defined as unique if it occurs only once in a vector containing at least one of the genes of interest, or if a vector containing at least one of the genes of interest could be treated in a way that only one of the cleavage sites could be used by the cleaving agent.

Corresponding (poly)peptide sequences:

Sequences deduced from the same part of one group of homologous proteins are called corresponding (poly)peptide sequences.

Common cleavage sites:

A cleavage site in at least two corresponding sequences, which occurs at the same functional position (i.e. which flanks a defined sub-sequence), which can be hydrolyzed by the same cleavage tool and which yields identical compatible ends is termed a common cleavage site.

Excising genetic sub-sequences:

A method which uses the unique cleavage sites and the corresponding cleavage reagents to cleave the target DNA at the specified positions in order to isolate, remove or replace the genetic sub-sequence flanked by these unique cleavage sites.

Exchanging genetic sub-sequences:

A method by which an existing sub-sequence is removed using the flanking cleavage sites of this sub-sequence, and a new sub-sequence or a collection of sub-sequences, which contain ends compatible with the cleavage sites thus created, is inserted.

Expression of genes:

The term expression refers to in vivo or in vitro processes, by which the information of a gene is transcribed into mRNA and then translated into a protein/(poly)peptide. Thus, the term expression refers to a process which occurs inside cells, by which the information of a gene is transcribed into mRNA and then into a protein. The term expression also includes all events of post-translational modification and transport, which are necessary for the (poly)peptide to be functional.

Screening of protein/(poly)peptide libraries:

Any method which allows isolation of one or more proteins/(poly)peptides having a desired property from other proteins/(poly)peptides within a library.

Amino acid pattern characteristic for a species:

A (poly)peptide sequence is assumed to exhibit an amino acid pattern characteristic for a species if it is deduced from a collection of homologous proteins from just this species.

PCT/EP96/03647 WO 97/08320

Immunoglobulin superfamily (IgSF):

The IgSF is a family of proteins comprising domains being characterized by the immunoglobulin fold. The IgSF comprises for example T-cell receptors and the immunoglobulins (antibodies).

Antibody framework:

A framework of an antibody variable domain is defined by Kabat et al. (1991) as the part of the variable domain which serves as a scaffold for the antigen binding loops of this variable domain.

Antibody CDR:

The CDRs (complementarity determining regions) of an antibody consist of the antigen binding loops, as defined by Kabat et al. (1991). Each of the two variable domains of an antibody Fv fragment contain three CDRs.

HuCAL:

Acronym for Human Combinatorial Antibody Library. Antibody Library based on modular consensus genes according to the invention (see Example 1).

Antibody fragment:

Any portion of an antibody which has a particular function, e.g. binding of antigen. Usually, antibody fragments are smaller than whole antibodies. Examples are Fv, disulphide-linked Fv, single-chain Fv (scFv), or Fab fragments. Additionally, antibody fragments are often engineered to include new functions or properties.

Universal framework:

One single framework which can be used to create the full variability of functions, specificities or properties which is originally sustained by a large collection of different frameworks, is called universal framework.

Binding of an antibody to its target:

The process which leads to a tight and specific association between an antibody and a corresponding molecule or ligand is called binding. A molecule or ligand or any part of a molecukle or ligand which is recognized by an antibody is called the target.

Replacing genetic sub-sequences

A method by which an existing sub-sequence is removed using the flanking cleavage sites of this sub-sequence, and a new sub-sequence or collection of sub-

PCT/EP96/03647 WO 97/08320

sequences, which contains ends compatible with the cleavage sites thus created, is inserted.

Assembling of genetic sequences:

Any process which is used to combine synthetic or natural genetic sequences in a specific manner in order to get longer genetic sequences which contain at least parts of the used synthetic or natural genetic sequences.

Analysis of homologous genes:

The corresponding amino acid sequences of two or more genes are aligned to each other in a way which maximizes the correspondence between identical or similar amino acid residues at all positions. These aligned sequences are termed homologous if the percentage of the sum of identical and/or similar residues exceeds a defined threshold. This threshold is commonly regarded by those skilled in the art as being exceeded when at least 15 per cent of the amino acids in the aligned genes are identical, and at least 30 per cent are similar.

Legends to Figures and Tables

Fig. 1: Flow chart outlining the process of construction of a synthetic human antibody library based on consensus sequences.

- Fig. 2: Alignment of consensus sequences designed for each subgroup (amino acid residues are shown with their standard one-letter abbreviation). (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. The positions are numbered according to Kabat (1991). In order to maximize homology in the alignment, gaps (—) have been introduced in the sequence at certain positions.
- Fig. 3: Gene sequences of the synthetic V kappa consensus genes. The corresponding amino acid sequences (see Fig. 2) as well as the unique cleavage sites are also shown.
- Fig. 4: Gene sequences of the synthetic V lambda consensus genes. The corresponding amino acid sequences (see Fig. 2) as well as the unique cleavage sites are also shown.
- Fig. 5: Gene sequences of the synthetic V heavy chain consensus genes. The corresponding amino acid sequences (see Fig. 2) as well as the unique cleavage sites are also shown.
- Fig. 6: Oligonucleotides used for construction of the consensus genes. The oligos are named according to the corresponding consensus gene, e.g. the gene Vκ1 was constructed using the six oligonucleotides O1K1 to O1K6. The oligonucleotides used for synthesizing the genes encoding the constant domains Cκ (OCLK1 to 8) and CH1 (OCH1 to 8) are also shown.
- Fig. 7A/B: Sequences of the synthetic genes encoding the constant domains Cκ
 (A) and CH1 (B). The corresponding amino acid sequences as well as unique cleavage sites introduced in these genes are also shown.
- Fig. 7C: Functional map and sequence of module M24 comprising the synthetic Cλ gene segment (huCL lambda).
- Fig. 7D: Oligonucleotides used for synthesis of module M24.
- Fig. 8: Sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vκ2. The signal sequence (amino acids 1 to 21) was derived from the *E. coli* phoA gene (Skerra &

Plückthun, 1988). Between the phoA signal sequence and the VH3 domain, a short sequence stretch encoding 4 amino acid residues (amino acid 22 to 25) has been inserted in order to allow detection of the single-chain fragment in Western blot or ELISA using the monoclonal antibody M1 (Knappik & Plückthun, 1994). The last 6 basepairs of the sequence were introduced for cloning purposes (EcoRI site).

- Fig. 9: Plasmid map of the vector plG10.3 used for phage display of the H3κ2 scFv fragment. The vector is derived from plG10 and contains the gene for the lac operon repressor, lacl, the artificial operon encoding the H3κ2-gene3ss fusion under control of the lac promoter, the lpp terminator of transcription, the single-strand replication origin of the *E. coli* phage f1 (F1_ORI), a gene encoding β-lactamase (bla) and the ColEI derived origin of replication.
- Fig. 10: Sequencing results of independent clones from the initial library, translated into the corresponding amino acid sequences. (A) Amino acid sequence of the VH3 consensus heavy chain CDR3 (position 93 to 102, Kabat numbering). (B) Amino acid sequences of 12 clones of the 10-mer library. (C) Amino acid sequences of 11 clones of the 15-mer library, *: single base deletion.
- Fig. 11: Expression test of individual library members. (A) Expression of 9 independent clones of the 10-mer library. (B) Expression of 9 independent clones of the 15-mer library. The lane designated with M contains the size marker. Both the gp3-scFv fusion and the scFv monomer are indicated.
- Fig. 12: Enrichment of specific phage antibodies during the panning against FITC-BSA. The initial as well as the subsequent fluorescein-specific sub-libraries were panned against the blocking buffer and the ratio of the phage eluted from the FITC-BSA coated well vs. that from the powder milk coated well from each panning round is presented as the "specificity factor".
- Fig. 13: Phage ELISA of 24 independent clones after the third round of panning tested for binding on FITC-BSA.
- Fig. 14: Competition ELISA of selected FITC-BSA binding clones. The ELISA signals (OD_{405nm}) of scFv binding without inhibition are taken as 100%.
- Fig. 15: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against FITC-BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering).

Fig. 16: Coomassie-Blue stained SDS-PAGE of the purified anti-fluorescein soft fragments: M: molecular weight marker, A: total soluble cell extract after induction, B: fraction of the flow-through, C, D and E: purified scFv fragments 1HA-3E4, 1HA-3E5 and 1HA-3E10, respectively.

- Fig. 17: Enrichment of specific phage antibodies during the panning against β-estradiol-BSA, testosterone-BSA, BSA, ESL-1, interleukin-2, lymphotoxin-β, and LeY-BSA after three rounds of panning.
- Fig. 18: ELISA of selected ESL-1 and B-estradiol binding clones
- Fig. 19: Selectivity and cross-reactivity of HuCAL antibodies: in the diagonal specific binding of HuCAL antibodies can be seen, off-diagonal signals show non-specific cross-reactivity.
- Fig. 20: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against β-estradiol-BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat . numbering). One clone is derived from the 10mer library.
- Fig. 21: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against testosterone-BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering).
- Fig. 22: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against lymphotoxin-ß, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering). One clone comprises a 14mer CDR, presumably introduced by incomplete coupling of the trinucleotide mixture during oligonucleotide synthesis.
- Fig. 23: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against ESL-1, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering). Two clones are derived from the 10mer library. One clone comprises a 16mer CDR, presumably introduced by chain elongation during oligonucleotide synthesis using trinucleotides.
- Fig. 24: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering).
- Fig. 25: Schematic representation of the modular pCAL vector system.
- Fig. 25a: List of restriction sites already used in or suitable for the modular HuCAL genes and pCAL vector system.
- Fig. 26: List of the modular vector elements for the pCAL vector series: shown are only those restriction sites which are part of the modular system.

Fig. 27: Functional map and sequence of the multi-cloning site module (MCS)

- Fig. 28: Functional map and sequence of the pMCS cloning vector series.
- Fig. 29: Functional map and sequence of the pCAL module M1 (see Fig. 26).
- Fig. 30: Functional map and sequence of the pCAL module M7-III (see Fig. 26).
- Fig. 31: Functional map and sequence of the pCAL module M9-II (see Fig. 26).
- Fig. 32: Functional map and sequence of the pCAL module M11-II (see Fig. 26).
- Fig. 33: Functional map and sequence of the pCAL module M14-Ext2 (see Fig. 26).
- Fig. 34: Functional map and sequence of the pCAL module M17 (see Fig. 26).
- Fig. 35: Functional map and sequence of the modular vector pCAL4.
- Fig. 35a: Functional maps and sequences of additional pCAL modules (M2, M3, M7I, M7II, M8, M10II, M11II, M12, M13, M19, M20, M21, M41) and of low-copy number plasmid vectors (pCALO1 to pCALO3).
- Fig. 35b:List of oligonucleotides and primers used for synthesis of pCAL vector modules.
- Fig. 36: Functional map and sequence of the ß-lactamase cassette for replacement of CDRs for CDR library cloning.
- Fig. 37: Oligo and primer design for Vκ CDR3 libraries
- Fig. 38: Oligo and primer design for Vλ CDR3 libraries
- Fig. 39: Functional map of the pBS13 expression vector series.
- Fig. 40: Expression of all 49 HuCAL scFvs obtained by combining each of the 7 VH genes with each of the 7 VL genes (pBS13, 30°C): Values are given for the percentage of soluble vs. insoluble material, the total and the soluble amount compared to the combination H3κ2, which was set to 100%. In addition, the corresponding values for the McPC603 scFv are given.
- Table 1: Summary of human immunoglobulin germline sequences used for computing the germline membership of rearranged sequences. (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. (1) The germline name used in the various calculations, (2) the references number for the corresponding sequence (see appendix for sequence related citations), (3) the family where each sequence belongs to and (4), the various names found in literature for germline genes with identical amino acid sequences.
- Table 2: Rearranged human sequences used for the calculation of consensus sequences. (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. The table summarized the name of the sequence (1),

		·

Table 1B: Human lambda germline gene segments

Used Name ¹	Reference ²	Family ³	Germline genes
DPL1	1	1	
DPL2	1	1	HUMLV1L1
DPL3	1	1	HUMLV122
DPL4	1	1	VLAMBDA 1.1
HUMLV117	2	1	
DPL5	1	1	HUMLV117D
DPL6	1	1	
DPL7	1	1	IGLV1S2
DPL8	1	1	HUMLV1042
DPL9	1	1	HUMLV101
DPL10	1	2	
VLAMBDA 2.1	3	2	
DPL11	1	Ź	
DPL12	1	2	
DPL13	1	2	
DPL14	1	2	
DPL16	1	3	Humlv418; IGLV3S1
DPL23	1	3	VI III.1
Humlv318	4	3	
DPL18	1	7	4A; HUMIGLVA
DPL19	11	7	•
DPL21	1	8	VL8.1
HUMLV801	5	8	
DPL22	1	9	
DPL24	1	unassigne	d VLAMBDA N.2
gVLX-4.4	6	10	

ج على المجاورة المجا

Table 1C: Human heavy chain germline gene segments

Used Name ¹	Reference ²	Family ³	Germline genes
VH1-12-1	19	1	DP10; DA-2; DA-6
VH1-12-8	22	1	RR.VH1:2
VH1-12-2	6	1	hv1263
VH1-12-9	7	1	YAC-7; RR.VH1.1; 1-69
VH1-12-3	19	1	DP3
VH1-12-4	· 19	1	DP21; 4d275a; VH7a
VH1-12-5	18	1	1-4.1b; V1-4.1b
VH1-12-6	21	1	1D37; VH7b; 7-81; YAC-10
VH1-12-7	19	1 -	DP14; VH1GRR; V1-18
VH1-13-1	10	1	71-5; DP2
VH1-13-2	10	1	E3-10
VH1-13-3	19	1	DP1
VH1-13-4	12	1	V35
VH1-13-5	8	1	V1-2b
VH1-13-6	18	1	I-2; DP75
VH1-13-7	21	1	V1-2
VH1-13-8	19	1	DP8
VH1-13-9	3	1	1-1
VH1-13-10	19	1	DP12
VH1-13-11	15	1	V13C
VH1-13-12	18	1	I-3b; DP25; V1-3b
VH1-13-13	3	1	1-92
VH1-13-14	- 18	1	I-3; V1-3
VH1-13-15	19	1	DP15; V1-8
VH1-13-16	3	1	21-2; 3-1; DP7; V1-46
VH1-13-17	16	1	HG3
VH1-13-18	19	1	DP4; 7-2; V1-45
VH1-13-19	27	1	COS 5
VH1-1X-1	19	1	DP5; 1-24P
VH2-21-1	18	2	II-5b
VH2-31-1	2	2	VH2S12-1
VH2-31-2	2	2	VH2S12-7
VH2-31-3	2	2	VH2S12-9; DP27
VH2-31-4	2	2	VH2S12-10
VH2-31-5	14	2	V2-26; DP26; 2-26
VH2-31-6	15	2	VF2-26

49
SUBSTITUTE SHEET (RULE 26)

Table 1C: (continued)

Used Name'	Reference ²	Family ³	Germline genes
VH2-31-7	19	2	DP28; DA-7
VH2-31-14	7	2	YAC-3; 2-70
VH2-31-8	2	2	VH2S12-5
VH2-31-9	2	2	VH2S12-12
VH2-31-10	18	2	II-5; V2-5
VH2-31-11	2	2	VH2S12-2; VH2S12-8
VH2-31-12	2	2	VH2S12-4; VH2S12-6
VH2-31-13	2	2	VH2S12-14
VH3-11-1	13	3	v65-2; DP44
VH3-11-2	19	3	DP45
VH3-11-3	3	3	13-2; DP48
VH3-11-4	19	3	DP52
VH3-11-5	14	3	v3-13
VH3-11-6	19	3	DP42
VH3-11-7	3	3	8-1B; YAC-5; 3-66
VH3-11-8	14	3	V3-53
VH3-13-1	3	3	22-2B; DP35; V3-11
VH3-13-5	19	3	DP59; VH19; V3-35
VH3-13-6	25	3	f1-p1; DP61
VH3-13-7	19	3	DP46; GL-SJ2; COS 8; hv3005; hv3005f3; 3d21b; 56p1
VH3-13-8	24	3	VH26
VH3-13-9	5	3	vh26c
VH3-13-10	19	3	DP47; VH26; 3-23
VH3-13-11	3	3	1-91
VH3-13-12	19	3	DP58
VH3-13-13	3	3	1-9III; DP49; 3-30; 3d28.1
VH3-13-14	24	3	3019B9; DP50; 3-33; 3d277
VH3-13-15	27	. 3	COS 3
VH3-13-16	19	3	DP51
VH3-13-17	16	3.	H11
VH3-13-18	19	3	DP53; COS 6; 3-74; DA-8
VH3-13-19	19	3	DP54; VH3-11; V3-7
VH3-13-20	14	3	V3-64; YAC-6
VH3-13-21	14	3	V3-48
VH3-13-22	14	3	V3-43; DP33
VH3-13-23	14	3	V3-33

50

Table 1C: (continued)

Used Name'	Reference	Family	Germline genes
VH3-13-24	14	3	V3-21; DP77
VH3-13-25	14	3	V3-20; DP32
VH3-13-26	14	3	V3-9; DP31
VH3-14-1	3	3	12-2; DP29; 3-72; DA-3
VH3-14-4	7	. 3	YAC-9; 3-73; MTGL
VH3-14-2	4	3	VHD26
VH3-14-3	19	3 .	DP30
VH3-1X-1	1	3	LSG8.1; LSG9.1; LSG10.1; HUM12IGVH; HUM13IGVH
VH3-1X-2	1	3	LSG11.1; HUM4IGVH
VH3-1X-3	3	3	9-1; DP38; LSG7.1; RCG1.1; LSG1.1; LSG3.1; LSG5.1; HUM15IGVH; HUM2IGVH; HUM9IGVH
VH3-1X-4	1	3	LSG4.1
VH3-1X-5	1	3	LSG2.1
VH3-1X-6	1	3	LSG6.1; HUM10IGVH
VH3-1X-7	18	3 ,	3-15; V3-15
VH3-1X-8	1	3	LSG12.1; HUM5IGVH
VH3-1X-9	14	3	V3-49
VH4-11-1	22	4	Tou-VH4.21
VH4-11 - 2	17	4	VH4.21; DP63; VH5; 4d76; V4-34
VH4-11-3	23	4	4.44
VH4-11-4	23	4	4.44.3
VH4-11-5	23	4	4.36
VH4-11-6	23	4	4.37
VH4-11-7	18	4	IV-4; 4.35; V4-4
VH4-11-8	17	4	VH4.11; 3d197d; DP71; 58p2
VH4-11-9	20	4	H7
VH4-11-10	20	4	H8
VH4-11-11	20	4	H9
VH4-11-12	17	4	VH4.16
VH4-11-13	23	4	4.38
VH4-11-14	17	4	VH4.15
VH4-11-15	11	4	58
VH4-11-16	10	4	71-4; V4-59
VH4-21-1	11	4	11
VH4-21-2	17	4	VH4.17; VH4.23; 4d255; 4.40; DP69
VH4-21-3	17	4	VH4.19; 79; V4-4b

Table 1C: (continued)

Used Name'	Reference ²	Family ³	Germline genes
VH4-21-4	19	4	DP70; 4d68; 4.41
VH4-21-5	19	4	DP67; VH4-4B
VH4-21-6	17	4	VH4.22; VHSP; VH-JA
VH4-21-7	17	4	VH4.13; 1-9II; 12G-1; 3d28d; 4.42; DP68; 4-28
VH4-21-8	26	4	hv4005; 3d24d
VH4-21-9	. 17	4	VH4.14
VH4-31-1	23	4	4.34; 3d230d; DP78
VH4-31-2	23	4	4.34.2
VH4-31-3	19	4	DP64; 3d216d
VH4-31-4	19	4	DP65; 4-31; 3d277d
VH4-31-5	23	4	4.33; 3d75d
VH4-31-6	20	4	H10
VH4-31-7	20	4	. H11
VH4-31-8	23	4	4.31
VH4-31-9	23	4	4.32
VH4-31-10	20	4	3d277d
VH4-31-11	20	4	3d216d
VH4-31-12	20	4	3d279d
VH4-31-13	17	4	VH4.18; 4d154; DP79
VH4-31-14	8	4	V4-39
VH4-31-15	11 .	4	2-1; DP79
VH4-31-16	23	4	4.30
VH4-31-17	17	4	VH4.12
VH4-31-18	10	4	71-2; DP66
VH4-31-19	23	4	4.39
VH4-31-20		4	V4-61
VH5-12-1	9	5	VH251; DP73; VHVCW; 51-R1; VHVLB; VHVCH; VHVTT; VHVAU; VHVBLK; VhAU; V5-51
VH5-12-2	17	5	VHVJB
VH5-12-3	3	5	1-v; DP80; 5-78
VH5-12-4	9	5	VH32; VHVRG; VHVMW; 5-2R1
VH6-35-1	4	6	VHVI; VH6; VHVIIS; VHVITE; VHVIJB; VHVICH; VHVICW; VHVIBLK; VHVIMW; DP74; 6-1G1; V6-1

Table 2A: rearranged human kappa sequences

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference
III-3R	108	1	08	1	1,1%	70
No.86	109	1	08	3	3,2%	80
AU AU	108	1	08	6	6,3%	103
ROY	108	1	08	6	6,3%	43
IC4	108	1	08	6	6,3%	70
HIV-B26	106	1	08	3	3,2%	8
GRI	108	1	08	8	8,4%	30
AG	106	1	08	8	8,6%	116
REI	108	1	08	9	9,5%	86
CLL PATIENT 16	88	1	08	2	2,3%	122
CLL PATIENT 14	87	1	08	2	2,3%	122
CLL PATIENT 15	88	1	08	2	2,3%	122
GM4672	108	1	08	11	11,6%	24
HUM. YFC51.1	108	1	08	12	12,6%	110
LAY	108	1	08	12	12,6%	48
HIV-b13	106	1	08	9	9,7%	8
MAL-NaCl	108	1	08	13	13,7%	102
STRAb SA-1A	108	1	02	0	0,0%	120
HuVHCAMP	108	1	08	13	13,7%	100
CRO	108	1	02	10	10,5%	30
Am107	108	1	02	12	12,6%	108
WALKER	107	1	02	4	4,2%	57
III-2R	109	1	A20	0	0,0%	70
FOG1-A4	107	1	A20	4	4,2%	41
HK137	95	1	L1	0	0,0%	10
CEA4-8A	107	1	02	7	7,4%	41
Va'	95	1	L4	0	0,0%	90
TR1.21	108	1	02	4	4,2%	92
HAU	108	*	02	6	6,3%	123
HK102	95		L12(1)	0	0.0%	9
H20C3K	108		L12(2)	3	3,2%	125
CHEB	108		02	7	7,4%	5
HK134	95		L15(2)	0	0,0%	10
TEL9	108		02	9	9,5%	73

WO 97/08320

Table 2A: (continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
TR1.32	103	1	02	3	3,2%	92
RF-KES1	97	1	A20	4	4,2%	121
WES	108	. 1	L5	10	10,5%	61
DILp1	95	1	04	1	1,1%	70
SA-4B	107	1	L12(2)	8	8,4%	120
HK101	95	1	L15(1)	0	0,0%	9
TR1.23	108	1	02	5	5,3%	92
HF2-1/17	108	1	A30	0	0,0%	4
2E7	108	1	A30	1	1,1%	62
33.C9	107	1	L12(2)	7	7,4%	126
3D6	105	1	L12(2)	2	2,1%	34
I-2a	108	1	L8	8	8,4%	70
RF-KL1	97	1	L8	4	4,2%	121
TNF-E7	108	1	A30	9	9,5%	41
TR1.22	108	1	02	7	7,4%	92
HIV-B35	106	1	02	2	2,2%	8
HIV-b22	106	1	02	2	2,2%	8
HIV-b27	106	1	02	2	2,2%	8
HIV-B8	107	1	02	10	10,8%	8
HIV-b8	107	1	02	10	10,8%	8
RF-SJ5	95	1	· A30	5	5,3%	113
GAL(I)	108	1	A30	6	6,3%	64
R3.5H5G	108	. 1	02	6	6,3%	70
HIV-b14	106	1	A20	2	2,2%	8
TNF-E1	105	1	·L5	8	8,4%	41
WEA	108	1	A30	8	8,4%	37
EU	108	1	L12(2)	5	5,3%	40
FOG1-G8	108	1	L8	11	11,6%	41
1X7RG1	108		L1	8	8,4%	70
BLI	108		L8	3	3,2%	72
KUE	108		L12(2)	11	11,6%	. 32
LUNm01	108		L12(2)	10	10,5%	6
HIV-b1	106		A20	4	4,3%	8
HIV-S4	103		02	2	2,2%	8
			54-			

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
CAR	107	1	L12(2)	11	11,7%	79
	107	1	L12(2)	11	11,6%	50
BR. CLL PATIENT 10	88	1	02	0	0,0%	122
CLL PATIENT 12	88	1	02	0	0.0%	122
KING	108	1 .	L12(2)	12	12,6%	30
	95	1	L24	0	0,0%	46
V13 CLL PATIENT 11	87	1	02	0	0,0%	122
CLL PATIENT 13	87	1	02	0	0,0%	122
	88	. 1	012	1	1,1%	122
CLL PATIENT 9	106	1	A20	9	9,7%	8
HIV-B2	106	1	A20	9	9,7%	8
HIV-b2	88	1	A20	1	1,1%	122
CLL PATIENT 5	88	. '	L8	2	2,3%	122
CLL PATIENT 1	88	1	L8	0	0,0%	122
CLL PATIENT 2	88	1	L5	0	0,0%	122
CLL PATIENT 7 CLL PATIENT 8	88	1	L5	0	0,0%	122
	105	1	L5	11	12,0%	8
HIV-b5 CLL PATIENT 3	87	1	L8	1	1,1%	122
	88	1	L9	0	0,0%	122
CLL PATIENT 4 CLL PATIENT 18	85	1	L9	6	7,1%	122
CLL PATIENT 17	86	1	L12(2)	7	8,1%	122
_	107		A27	11	11,7%	8
HIV-b20	108		L12(2)	20	21,1%	68
2C12	108		L12(2)	20	21,1%	68
1B11	108	•	L12(2)	21	22,1%	68
1H1	108		L12(2)	21	22,1%	68
2A12	109		A27	0	0,0%	66
CUR	109		A27	0	0,0%	16
GLO	96		A27	0	0,0%	121
RF-TS1	109		A27	0	0,0%	67
GAR'	10:		A27	0	0,0%	. 66
FLO	10		A27	0	0.0%	91
PIE	10		A27	1	1,0%	51
HAH 14.1	10		A27	1	1,0%	51
HAH 14.2	10	, ,				

55

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference ⁷
HAH 16.1	109	3	A27	1	1,0%	51
NOV	109	3	A27	1	1,0%	52
33.F12	108	3	A27	1	1,0%	126
8E10	110	3	A27	1	1,0%	25
TH3	109	3	A27	1	1,0%	25
HIC (R)	108	3	A27	0	0,0%	51
SON	110	3	A27	1	1,0%	67
PAY	109	3	A27	1	1,0%	66
GOT	109	3	A27	1	1,0%	67
mAbA6H4C5	109	3	A27	. 1	1,0%	12
BOR'	109	3	A27	2	2,1%	84
RF-SJ3	96	3	A27	2	2,1%	121
SIE	109	3	A27	2	2.1%	15
ESC	109	3	A27	2	2,1%	98
HEW'	110	3	A27	2	2,1%	98
YES8c	109	3	A27	3	3,1%	33
TI	109	3	A27	3	3,1%	114
mAb113	109	3	A27	3	3,1%	71
HEW	107	3	A27	0	0,0%	94
BRO	106	. 3	A27	0	0,0%	94
ROB	106	3	· A27	. 0	0,0%	94
NG9	96	3	A27	4	4,2%	11
NEU	109	3	A27	4	4,2%	66
WOL	109	3	A27	4	4,2%	2
35G6	109	3	A27	4	4.2%	59
RF-SJ4	109	3	A11	0	0,0%	88
KAS	109	3	A27	4	4,2%	84
BRA	106	3	A27	1	1,1%	94
HAH	106	3	A27	1	1,1%	94
HIC	105	3	A27	0	0,0%	94
FS-2	109	. 3	A27	6	6,3%	87
JH'	107	3	A27	6	6,3%	38
EV1-15	109	3	A27	6.	6,3%	83
SCA	108		A27	6	6,3%	65
			56			

SUBSTITUTE SHEET (RULE 26)

WO 97/08320 .

Table 2A: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference
mAb112	109	3	A27	6	6,3%	71
SIC	103	3	A27	3	3,3%	94
SA-4A	109	3	A27	6	6,3%	120
SER	108	3	A27	6	6,3%	98
GOL'	109	3	A27	7	7,3%	82
B5G10K	105	3	A27	9	9,7%	125
HG2B10K	110	3	A27	-9	9,4%	125
Taykv322	105	3	A27	5	5,4%	52
CLL PATIENT 24	89	3	A27	1	1,1%	122
HIV-b24	107	3	A27	7	7,4%	8
HIV-b6	107	3	A27	7	7,4%	8
Taykv310	99	3	A27	1	1,1%	52
KA3D1	108	3	L6	0	0,0%	85
19.E7	107	3	L6	0	0,0%	126
rsv6L	109	3	A27	12	12,5%	7
Taykv320	98	3	A27	1	1,2%	52
Vh	96	3	L10(2)	0	0,0%	89
LS8	108	3	L6	1	1,1%	109
LS1	108	3	L6	1	1,1%	109
LS2S3-3	107	3	L6	2	2,1%	99
LS2	108	3	L6	1,	1,1%	109
LS7	108	3	L6	1	1,1%	109
LS2S3-4d	107	3	L6	2	2,1%	99
LS2S3-4a	107	3	L6	2	2,1%	. 99
LS4	108	3	L6	1	1,1%	109
LS6	108	3	L6	1	1,1%	109
LS2S3-10a	107		L6	2	2.1%	99
LS2S3-8c	107		L6	2	2.1%	99
LS5	108		L6	1	1,1%	109
LS2S3-5	107		L6	3	3,2%	99
LUNm03	109		A27	13	13,5%	6
IARC/BL41	108		A27	13	13,7%	55
slkv22	99		A27	3	3,5%	13
POP	108		L6	4	4,2%	111

5**7**

WO 97/08320

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
LS2S3-10b	107	3	L6	3	3,2%	99
LS2S3-8f	107	3	L6	3	3,2%	99
LS2S3-12	107	3	L6	3	3,2%	99
HIV-B30	107	3	A27	11	11,7%	8
HIV-B20	107	3	A27	11	11,7%	8
HIV-b3	108	3	A27	11	11,7%	8
HIV-s6	104	3	A27	9	9,9%	8
YSE	107	3	L2/L16	1	1,1%	72
POM	109	3	L2/L16	9	9,4%	53
Humkv328	95	3	L2/L16	1	1,1%	19
CLL	109	3	L2/L16	3	3,2%	47
LES	96	3	L2/L16	3	3,2%	38
HIV-s5	104	3	A27	11	12,1%	8
HIV-s7	104	3	A27	11	12,1%	8
slkv1	99	3	A27	7	8,1%	13
Humka31es	95	3	L2/L16	4	4,2%	18
sikv12	101	. 3	A27	8	9,2%	13
RF-TS2	95	3	L2/L16	3 -	3,2%	121
II-1	109	3	L2/L16	4	4,2%	70
HIV-s3	105	3	A27	13	14,3%	8
RF-TMC1	96	3	L6	10	10,5%	121
GER	109	3	L2/L16	7 .	7,4%	75
GF4/1.1	109	3	L2/L16	8	8,4%	36
mAb114	109	3	L2/L16	6	6,3%	71
HIV-loop13	109	3	L2/L16	7	7,4%	8
bkv16	86	3	L6	. 1	1,2%	13
CLL PATIENT 29	86	3	L6	1	1,2%	122
slkv9	98	3	L6	3	3,5%	13
bkv17	99	3	L6	1	1,2%	13
slkv14	99	3	L6	1	1,2%	13
slkv16	101	3	16	2	2,3%	13
bkv33	101		L6	4	4,7%	13
slkv15	99		L6	2	2,3%	13
bkv6	100		L6	3	3,5%	13

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germlines	% diff. to germline ⁶	Reference'
R6B8K	108	3	L2/L16	12	12,6%	125
AL 700	107	3	L2/L16	9	9,5%	117
slkv11	100	3	L2/L16	3	3,5%	13
sikv4	97	3	L6	4	4,8%	13
CLL PATIENT 26	87	3	L2/L16	1	1,1%	122
AL Se124	103	3	L2/L16	9	9,5%	117
slkv13	100	3	L2/L16	6	7,0%	13
bkv7	100	3	L2/L16	5	5,8%	13
bkv22	100	3	L2/L16	6	7,0%	13
CLL PATIENT 27	84	3	L2/L16	0	0,0%	122
bkv35	100	3	L6	8	9,3%	13
CLL PATIENT 25	87	3	L2/L16	4	4,6%	122
slkv3	86	3	L2/L16	7	8,1%	13
slkv7	99	1	02	7	8,1%	13
HuFd79	111	3	L2/L16	24	24,2%	21
RAD	99	3	A27	9	10,3%	78
CLL PATIENT 28	83	3	L2/L16	4	4,8%	122
REE	104	3	L2/L16	25	27,2%	95
FR4	99	3	A27	8	9,2%	77
MD3.3	92	3	Fe	1	1,3%	54
MD3.1	92	3	ŗ6	0	0,0%	54
GA3.6	92	3	L6	2	2,6%	54
M3.5N	92	3	L6	3	3,8%	54
WEI'	82	3	A27	0	0,0%	65
MD3.4	92	3	L2/L16	1	1,3%	54
MD3.2	91	3	L6	3	3,8%	54
VER	97	3	A27	19	22,4%	20
CLL PATIENT 30	78	3	L6	. 3	3,8%	122
M3.1N	92	3	L2/L16	1	1,3%	54
MD3.6	91	3	L2/L16	0	0,0%	54
MD3.8	91	3	L2/L16	0	0,0%	54
GA3.4	92	3	L6	7	9,0%	54
M3.6N	92	3	A27	0	0,0%	54
MD3.10	92	3	A27	0	0,0%	54

59

WO 97/08320

Table 2A: (continued)

Name¹	.aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
MD3.13	91	3	A27	0	0,0%	54
MD3.7	93	3	A27	0	0,0%	54
MD3.9	93	3	A27	0	0,0%	54
GA3.1	93	3	A27	6	7,6%	54
bkv32	101	3	A27	5	5,7%	13
GA3.5	93	3	A27	5	6,3%	54
GA3.7	92	3	A27	_7	8,9%	54
MD3.12	92	3	A27	2	2,5%	54
M3.2N	90	3	L6	6	7,8%	54
MD3.5	92	. 3	A27	1	1,3%	54
M3.4N	91	. 3	L2/L16	8	10,3%	54
M3.8N	91	3	L2/L16	7	9,0%	54
M3.7N	92	3	A27	3	3,8%	54
GA3.2	92	3	A27	9	11,4%	54
GA3.8	93	3	A27	4	5,1%	54
GA3.3	92	3	A27	8	10,1%	54
M3.3N	92	3	A27	5	6,3%	54
B6	83	3	A27	8	11,3%	78
E29.1 KAPPA	78	3	L2/L16	0	0,0%	22
SCW	108	1	08	12	12,6%	31
REI-based CAMPATH-9		1	08	14	14,7%	39
RZ	107	1	08	14	14,7%	50
Bi	108	1	08	14	14,7%	14
AND	107	1	02	13	13,7%	69
2A4	109	1	02	12	12,6%	23
KA	108		08	19	20,0%	107
MEV	109	•	02	14	14,7%	29
DEE	106		02	13	14,0%	76
OU(IOC)	108		02	18	18,9%	60
HuRSV19VK	111		08	21	21,0%	115
SP2	108		02	17	17,9%	93
BJ26	99		08	21	24,1%	1
NI	112		08	24	24,2%	106
BMA 0310EUCIV2	106		L12(1)	21	22,3%	105

WO 97/08320

Table 2A: (continued)

Name¹	8a²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
CLL PATIENT 6	71	1	A20	0	0,0%	122
BJ19	85	1	08	16	21,9%	1
GM 607	113	2	A3	0	0,0%	58
R5A3K	. 114	2	А3	1	1,0%	125
R1C8K	114	2	A 3	1	1,0%	125
VK2.R149	113	2	A 3	. 2	2,0%	118
TR1.6	109	2	A3	4	4,0%	92
TR1.37	104	2	A3	5	5,0%	92
FS-1	113	2	A3	6	6,0%	87
TR1.8	110	2	A3	6	6,0%	92
NIM	113	2	A3	8	8,0%	28
Inc	112	2	A3	11	11,0%	35
TEW	107	. 2	A 3	6	6,4%	96
CUM	114	2	01	7	6,9%	44
HRF1	71	2	A 3	4	5,6%	124
CLL PATIENT 19	87	2	A3	0	0,0%	122
CLL PATIENT 20	87	2	A 3	0	0,0%	122
MIL	112	2	A 3	16	16,2%	26
FR	113	2	A 3	20	20,0%	101
MAL-Urine	83	1	02	6	8,6%	102
Tayky306	73	3	A27	1	1,6%	52
Taykv312	75	3	A27	1	1,6%	52
HIV-b29	93	3	A27	14	17,5%	8
1-185-37	110		A27	0	0,0%	119
1-187-29	110		A27	0	0,0%	119
П117	110		A27	9	9,4%	63
HIV-loop8	108		A27	16	16,8%	8
rsv23L	108		A27	16	16,8%	7
HIV-b7	107		A27	14	14,9%	8
HIV-611	107		A27	15	16,0%	8
HIV-LC1	107		A27	19	20,2%	8
HIV-LC7	107		A27	20	21,3%	8
HIV-LC22	107		A27	21	22,3%	8
HIV-LC13	10		A27	- 21	22,3%	8
1114-6613	.0	. •	61			

WO 97/08320

Table 2A: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
HIV-LC3	107	3	A27	21	22,3%	8
HIV-LC5	107	3	A27	21	22,3%	8
HIV-LC28	107	3	A27	21	22,3%	8
HIV-b4	107	3	A2 7	22	23,4%	8
CLL PATIENT 31	87	3	A27	15	17,2%	122
HIV-loop2	108	3	L2/L16	17	17,9%	8
HIV-loop35	108	3 .	L2/L16	17	17,9%	8
HIV-LC11	107	3	A27	23	24,5%	8
HIV-LC24	107	3	A27	23	24,5%	8
HIV-b12	107	3	A27	24	25,5%	8
HIV-LC25	107	3	A27	24	25,5%	8
HIV-b21	107	3	A27	24	25,5%	8
HIV-LC26	107	3	A27	26	27,7%	8
G3D10K	108	1	L12(2)	12	12,6%	125
Π125	108	ì	L5	8	8,4%	63
HIV-s2	103	3	A27	28	31,1%	8
265-695	108	1 ,	L5	7	7,4%	3
2-115-19	108	1	A30	2	2,1%	119
rsv13L	107	1	02.	20	21,1%	7
HIV-b18	106	1	02	14	15,1%	8
RF-KL5	98	3	L6	36	36,7%	97
ZM1-1	113	2	A17	7	7,0%	3
HIV-s8	103	1	08	16	17,8%	. 8
K- EV15	95	5	B2	0	0,0%	112
RF-TS3	100	2	A23	0	0,0%	121
HF-21/28	111	· 2	A17	1	1,0%	17
RPMI6410	113	2	A17	1	1,0%	42
JC11	113	2	A17	1	1,0%	49
0-81	114	2	A17	5	5,0%	45
FK-001	113	4	В3	0	0.0%	81
CD5+.28	101	4	B 3	1	1,0%	27
LEN	114	4	B3	1	1,0%	104
UC	114	4	В3	1	1,0%	111
CD5+.5	101	. 4	В3	1	1,0%	27
			62			

Table 2A: (continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
CD5+.26	101	4	В3	1	1,0%	27
CD5+.12	101	4	В3	2	2.0%	27
CD5+.23	101	4	В3	2	2,0%	27
CD5+.7	101	4	В3	2	2,0%	27
VJI	113	4	В3	3	3,0%	56
LOC	113	4	В3	3	3,0%	72
MAL	113	4	В3	3	3,0%	72
CD5+.6	101	4	B 3	3	3,0%	27
H2F	113	4	В3	3	3,0%	70
PB17IV	114	4	В3	4	4,0%	74
CD5+.27	101	4	B 3	4	4,0%	27
CD5+.9	101	4	B 3	4	4,0%	27
CD528	101	4	В3	5	5,0%	27
CD526	101	4	В3	6	5,9%	27
CD5+.24	101	4	B 3	6	5,9%	27
CD5+.10	101	4	B 3	6	5,9%	27
CD519	101	4	В3	6	5,9%	27
CD518	101	4	В3	7	6,9%	27
CD516	101	. 4	В3	8	7,9%	27
CD524	101	4	В3	8	7,9%	27
CD517	101	4	В3	10	9,9%	27
MD4.1	92	4	В3	0	0,0%	54
MD4.4	92	4	B 3	0	0,0%	54
MD4.5	92	4	B3	0	0,0%	54
MD4.6	92	4	B3	0	0,0%	54
MD4.7	92	4	B3	0	0,0%	54
MD4.2	92	4	В3	1	1,3%	54
MD4.3	92	4	B3	5	6,3%	54
CLL PATIENT 22	87	2	A17	2	2,3%	122
CLL PATIENT 23	84	2	A17	2	2,4%	122

Table 2B: rearranged human lambda sequences

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
WAH	110	1	DPL3	7	7%	68
1B9/F2	112	1	DPL3	7	7%	9
DIA	112	1	DPL2	7	7%	36
mAb67	89	1	DPL3	0	0%	29
HiH2	110	1	DPL3	12	11%	3
NIG-77	. 112	1	DPL2	9	9%	72
OKA .	112	1	DPL2	7	7%	84
KOL	112	1	DPL2	12	11%	40
T2:C5	111	1	DPL5	0	0%	6
T2:C14	110	. 1	DPL5	0	0%	6
PR-TS1	110	1	DPL5	0	0%	55
4G12	111	1	DPL5	1	1%	35
KIM46L	112	1	HUMLV117	0	0%	8
Fog-B	111	1	DPL5	3	3%	31
9F2L	111	1	DPL5	3	3%	79
mAb111	110	1	DPL5	3	3%	48
PHOX15	111	1	DPL5	4	4%	49
BL2	111	1	DPL5	4	4%	74
NIG-64	111	1	DPL5	4	4%	72
RF-SJ2	100	.1	DPL5	6	6%	78
AL EZI	112	1	DPL5	7	7%	41
ZIM	112	• 1	HUMLV117	7	7%	18
RF-SJ1	100	1.	DPL5	9	9%	78
IGLV1.1	98	1	DPL4	0	0%	1
NEW	112	1	HUMLV117	11	10%	42
CB-201	87	1	DPL2	1	1%	62
MEM	109	1	DPL2	6	6%	50
H210	111	. 2	DPL10	4	4%	45
NOV	110		DPL10	8	8%	25
NEI	111		DPL10	8	8%	24
AL MC	110		DPL11	6	6%	28
MES	112		DPL11	8	8%	84
FOG1-A3	111		DPL11	9	9%	27
AL NOV	112		DPL11 ≪4	7	7%	28

WO 97/08320

Table 2B: (continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
LIBACT 1	110	2	DPL11	4	4%	82
HMST-1	108	2	DPL12	9	9%	52
HBW4-1	110	2	DPL11	11	11%	34
WH	110	2	DPL11	7	7%	82
11-50	110	2	DPL12	8	8%	3
HBp2	113	2	DPL11	12	11%	73
NIG-84	112	2	DPL11	9	9%	58
VIL	111	2	DPL12	10	10%	61
TRO	108	2	DPL11	15	15%	76
ES492	89	2	DPL12	1	1%	7
mAb216	109	3	DPL16	0	0%	49
BSA3	110	3	DPL16	0	0%	27
THY-29 PR-TS2	108	3	DPL16	0	0%	55
E29.1 LAMBDA	107	3	DPL16	1	1%	13
mAb63	109	3	DPL16	2	2%	29
TEL14	110	3	DPL16	6	6%	49
	108	3	DPL16	7	7 %	39
6H-3C4 SH	109	3	DPL16	7	7%	70
AL GIL	109		DPL16	8	8%	23
H6-3C4	108		DPL16	8	8%	83
V-lambda-2.DS	111		DPL11	3	3%	15
8.12 ID	110		DPL11	3	3%	81
DSC	111		DPL11	3	3%	56
PV11	110		DPL11	1	1%	56
33.H11	110		DPL11	4	40/0	81
AS17	111		DPL11	7	7%	56
SD6	110		DPL11	7	7%	56
KS3	110		DPL11	9	9%	56
PV6	110		DPL12	5	5%	. 56
NGD9	110		DPL11	7	7%	56
MUC1-1	11		DPL11	11	10%	27
A30c	11		DPL10	6	6%	56
KS6	11		DPL12	6	6%	56
TEL13	11		DPL11 65	11	10%	49

Table 2B: (continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
AS7	110	2	DPL12	6	6%	56
MCG	112	2	DPL12	12	11%	20
U266L	110	2	DPL12	13	12%	77
PR-SJ2	110	2	DPL12	14	13%	55
BOH	112	2	DPL12	11	10%	37
TOG	111	2	DPL11	19	18%	53
TEL16	111	2	DPL11	19	18%	49
No.13	110	2	DPL10	14	13%	52
BO	112	2	DPL12	18	17%	80
WIN	112	2	DPL12	17	16%	11
BUR	104	2	DPL12	15	15%	46
NIG-58	110	2	DPL12	20	19%	69
WEIR	112	2	DPL11	26	25%	21
THY-32	111	1	DPL8	8	8%	27
TNF-H9G1	111	1	DPL8	9	9%	27
mAb61	111	1	DPL3	1	1%	29
LV1L1	98	1	DPL2	0	Ο%	54
НА	113	1	DPL3	14	13%	63
LA1L1	111	1	DPL2	3	3%	54
RHE	112	1	DPL1	17	16%	22
K1B12L	113	1	· DPL8	17	16%	79
LOC	113	1	DPL2	15	14%	84
NIG-51	112	1	DPL2	12	11%	67
NEWM	104	1	DPL8	23	22%	10
MD3-4	106	3	DPL23	14	13%	4
COX	112	1	DPL2	13	12%	84
HiH10	106	3	DPL23	13	12%	3
VOR	112	1	DPL2	16	15%	16
AL POL	113	. 1	DPL2 ·	16	15%	57
CD4-74	111	1	DPL2	19	18%	27
AMYLOID MOL	102	3	DPL23	15	15%	30
OST577	108	3	Humlv318	10	10%	4
NIG-48	113	3 1	DPL3	42	40%	66
CARR	108	3	DPL23	18	17%	19
			66			

WO 97/08320

Table 2B: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
ALCO	108	3	DPL23	14	13%	29
mAb60	99	3	DPL23	25	26%	32
NIG-68	107	3	DPL23	26	25%	59
KERN	107	3	DPL23	17	16%	19
ANT	110	3	DPL23	18	17%	85
LEE	94	3	DPL23	17	17%	19
CLE	98	8	DPL21	0	0%	81
VL8	110	3	Humlv318	23	22%	38
MOT		3	DPL23	26	25%	33
GAR	108 98	8	DPL21	5	5%	81
32.B9		3	Humlv318	24	23%	19
PUG	108	3 8	HUMLV801	52	50%	6
T1	115	7	DPL18	4	4%	60
RF-TS7	96	8	HUMLV801	51	49%	75
YM-1	116		HUMLV801	20	19%	44
кене	112	8	HUMLV801	20	19%	44
K5C7	112	8	HUMLV801	20	19%	44
K5B8	112	8	HUMLV801	20	19%	44
K5G5	112	8	HUMLV801		18%	44
K4B8	112	8	HUMLV801		16%	44
K6F5	112	8	DPL23	22	21%	47
HIL	108	3		20	19%	19
KIR	109		DPL23	19	18%	84
CAP	109		DPL23	22	21%	43
1B8	110		DPL23		18%	19
SH0	108		DPL23	19	19%	. 19
HAN	108		DPL23	20	3%	12
cML23	96		DPL23	3	3% 7%	55
PR-SJ1	96		DPL23	7	9%	5
BAU	107		DPL23	9		19
TEX	99		DPL23	8	8%	51
X(PET)	107		DPL23	9	9%	
DOY	100		DPL23	9	9%	19
COT	10	6 3	DPL23	13	12%	19
Pag-1	11	1 3	Humlv31	8 5	5%	31
			67			

6 z.

WO 97/08320

Table 2B: (continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
DIS	107	3	Humlv318	2	2%	19
WIT	108	3	Humlv318	. 7	7%	19
I.RH	108	3	Humlv318	12	11%	19
S1-1	108	3	Humiv318	12	11%	52
DEL	108	3	Humlv318	14	13%	17
TYR	108	3	Humlv318	11	10%	19
J.RH	109	3	Humlv318	13 ·	12%	19
тно	112	2	DPL13	38	36%	26
LBV	113	1	DPL3	38	36%	2
WLT	112	1	DPL3	33	31%	. 14
SUT	112	2	DPL12	37	35%	65

Table 2C: rearranged human heavy chain sequences

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference
21/28	119	1	VH1-13-12	0	0.0%	31
8E10	123	1	VH1-13-12	0	0,0%	31
MUC1-1	118	1	VH1-13-6	4	4,1%	42
	98	1	VH1-13-12	10	10,2%	75
gF1	98	1	VH1-13-6	2	2,0%	26
VHGL 1.2	98	1	VH1-13-6	0	0,0%	81
HV1L1 RF-TS7	104	1	VH1-13-6	3	3,1%	96
E55 1.A15	106	1	VH1-13-15	1	1,0%	26
HA1L1	126	1	VH1-13-6	7	7,1%	81
UC	123	1	VH1-13-6	5	5,1%	115
WIL2	123	1	VH1-13-6	6	6,1%	55
R3.5H5G	122	1	VH1-13-6	10	10,2%	70
N89P2	123	1	VH1-13-16	11	11,2%	77
mAb113	126	1	VH1-13-6	10	10,2%	71
LS2S3-3	125	1	VH1-12-7	5	5,1%	98
LS2S3-12a	125	1	VH1-12-7	5	5,1%	98
LS2S3-5	125	1	VH1-12-7	5	5,1%	98
LS2S3-12e	125	1	VH1-12-7	5	5,1%	98
LS2S3-4	125	1	VH1-12-7	5	5,1%	98
LS2S3-10	125	1	VH1-12-7	5	5,1%	98
LS2S3-12d	125	1	VH1-12-7	6	6,1%	98
LS2S3-8	125	1	VH1-12-7	5	5,1%	98
L5233-0 LS2	125	1	VH1-12-7	6	6,1%	113
LS4	105	1	VH1-12-7	6	6,1%	113
LS5	125		VH1-12-7	6	6,1%	113
LS1	125		VH1-12-7	6	6,1%	113
LS6	125		VH1-12-7	6	6,1%	113
LS8	125		VH1-12-7	7	7.1%	113
THY-29	122		VH1-12-7	0	0,0%	42
1B9/F2	122		VH1-12-7	10	10,2%	21
51P1	122		VH1-12-1	0	0.0%	105
NEI	127		VH1-12-1	0	0.0%	55
AND	127		VH1-12-1	0	0,0%	55
L7	127		VH1-12-1	0	0,0%	54
L7 L22	124		VH1-12-1	0	0,0%	54
L22 L24	12		VH1-12-1	0	0,0%	54
LZT			65			

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
L26	116	1	VH1-12-1	0	0,0%	54
L33	119	1	VH1-12-1	0	0,0%	54
L34	117	1	VH1-12-1	0	0,0%	54
L36	118	1	VH1-12-1	0	0,0%	54
L39	120	1	VH1-12-1	0	0,0%	54
L41 .	120	1	VH1-12-1	. 0	0,0%	54
L42	125	1	VH1-12-1	0	0,0%	54
VHGL 1.8	101	1	VH1-12-1	0	0,0%	26
783c	127	1	VH1-12-1	0	0,0%	22
X17115	127	1	VH1-12-1	0	0,0%	37
L25	124	1	VH1-12-1	0	0,0%	54
L17	120	1	VH1-12-1	1	1,0%	54
L30	127	1	VH1-12-1	1	1,0%	54
L37	120	1	VH1-12-1	. 1	1,0%	54
TNF-E7	116	1 .	VH1-12-1	2	2,0%	42
mÁb111	122	1	VH1-12-1	7 ·	7,1%	71
III-2R	122	1	VH1-12-9	3	3,1%	70
KAS	121	1	VH1-12-1	7	7.1%	79
YES8c	122	1	VH1-12-1	8	8,2%	34
RF-TS1	123	1	VH1-12-1	8	8,2%	82
BOR'	121	1	VH1-12-8	7	7,1%	79
VHGL 1.9	101	1	· VH1-12-1	8	8,2%	26
mAb410.30F305	117	1	VH1-12-9	5	5,1%	52
EV1-15	127		VH1-12-8	10	10,2%	78
mAb112	122		VH1-12-1	11	11,2%	71
EU	117		VH1-12-1	11	11,2%	28
H210	127	_	VH1-12-1	12	12,2%	66
	104		VH1-12-1	0	0,0%	111
TRANSGENE	93	1	VH1-12-1	0	0,0%	30
CLL2-1	97	1	VH1-12-1	0	0,0%	29
CLL10 13-3	99	1	VH1-12-7	4	4,1%	113
LS7	87	1	VH1-12-7	0	0,0%	30
ALL7-1	91	1	VH1-12-7	1	1,0%	30
CLL3-1			VH1-12-7	0	0,0%	30
ALL56-1	85		VH1-13-6	1	1,0%	30
ALL1-1	87		VH1-13-8		0,0%	30
ALL4-1	94	1	VH1-13-6 ₹C		0,0 10	50

Table 2C: (continued)

				Diff +-	0/2 #1:EE A-	Reference'
Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germlines	% diff. to germline ⁶	אבובווכוונפ
		raminy	gene			
ALL56 15-4	85	1	VH1-13-8	5	5.1%	29
CLL4-1	88	1	VH1-13-1	1	1,0%	30
Au92.1	98	1	VH1-12-5	0	0,0%	49
RF-TS3	120	1	VH1-12-5	1	1,0%	82
Au4.1	98	1	VH1-12-5	1	1,0%	49
HP1	121	1	VH1-13-6	13	13,3%	110
BLI	127	1	VH1-13-15	5	5,1%	72
No.13	127	. 1	VH1-12-2	19	19,4%	76
TR1.23	122	1	VH1-13-2	23	23,5%	88
S1-1	125	. 1	VH1-12-2	18	18,4%	76
TR1.10	119	1	VH1-13-12	14	14,3%	88
E55 1.A2	102	1 .	VH1-13-15	3	3,1%	26 .
SP2	119	1	VH1-13-6	15	15,3%	89
TNF-H9G1	111	1	VH1-13-18	2	2,0%	42
G3D10H	127	1	VH1-13-16	19	19,4%	127
TR1.9	118	1	VH1-13-12	14	14,3%	88
TR1.8	121	1	VH1-12-1	24	24,5%	88
LUNm01	127	1	VH1-13-6	22	22,4%	9
K1B12H	127	1	VH1-12-7	23	23,5%	127
L3B2	99	1	VH1-13-6	. 2	2,0%	46
ss2	100	1	VH1-13-6	2	2,0%	46
No.86	124	1	VH1-12-1	20	20,4%	76
TR1.6	124	1	VH1-12-1	19	19,4%	88
ss7	99	1	VH1-12-7	3	3,1%	46
s5B7	102	1	VH1-12-1	0	0,0%	46
s6A3	97	1	VH1-12-1	0	0.0%	46
ss6	99	1	VH1-12-1	0	0.0%	46
L2H7	103	1	VH1-13-12	0	0.0%	46
s6BG8	93	1	VH1-13-12	0	0,0%	46
s6C9	107	1	VH1-13-12	0	0,0%	46
HIV-b4	124	1	VH1-13-12	21	21,4%	12
HIV-b12	124	1	VH1-13-12	21	21,4%	12
L3G5	98	1	VH1-13-6	1	1,0%	46
22	115	1	VH1-13-6	11	11,2%	118
L2A12	99	1	VH1-13-15	3	3,1%	46
PHOX15	124		VH1-12-7	20	20,4%	73
- ··-			71			

WO 97/08320

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
LUNm03	127	1	VH1-1X-1	18	18,4%	9
CEA4-8A	129	1	VH1-12-7	1	1,0%	42
M60	121	2 .	VH2-31-3	3	3,0%	103
HiH10	127	2	VH2-31-5	9	9,0%	4
COR	119	2	VH2-31-2	11	11,0%	91
2-115-19	124	2	VH2-31-11	8	8,1%	124
OU	125	2	VH2-31-14	20	25,6%	92
HE	120	2	VH2-31-13	19	19.0%	27
CLL33 40-1	78	2	VH2-31-5	2	2.0%	29
E55 3.9	88	3	VH3-11-5	7	7,2%	26
MTFC3	125	3	VH3-14-4	21	21,0%	131
MTFC11	125	3	VH3-14-4	21	21,0%	131
MTFJ1	114	3	VH3-14-4	21	21,0%	131
MTFJ2	114	3	VH3-14-4	21	21,0%	131
MTFUJ4	100	3	VH3-14-4	21	21,0%	131
MTFUJ5	100	3	VH3-14-4	21	21,0%	131
MTFUJ2	100	3	VH3-14-4	2 2	22,0%	131
MTFC8	125	3	VH3-14-4	23	23,0%	131
TD e Vq	113	3	VH3-14-4	0	0,0%	16
rMTF	114	3	VH3-14-4	5	5,0%	131
MTFUJ6	100	3	VH3-14-4	10	10,0%	131
RF-KES	107	3	· VH3-14-4	. 9	9.0%	85
N51P8	126	3	VH3-14-1	9	9.0%	77
TEI	119	3	VH3-13-8	21	21,4%	20
33.H11	115	3	VH3-13-19	10	10,2%	129
SB1/D8	101	3	VH3-1X-8	14	14,0%	2
38P1	119	3	VH3-11-3	0	0,0%	104
BRO'IGM	119		VH3-11 - 3	13	13,4%	19
NIE	119		VH3-13-7	15	15,3%	87
3D6	126		VH3-13-26	5	5,1%	35
ZM 1-1	112		VH3-11-3	8	8,2%	5
E55 3.15	110		VH3-13-26	0	0,0%	26
gF9	108		VH3-13-8	15	15,3%	75
THY-32	120		VH3-13-26		3,1%	42
RF-KL5	100		VH3-13-26		5,1%	96
OST577	122		VH3-13-13		6,1%	5
0313//	122	. •	72			

Table 2C: (continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
ВО .	113	3	VH3-13-19	15	15,3%	10
Π125	121	3	VH3-13-10	15	15,3%	64
2-115-58	127	3	VH3-13-10	11	11,2%	124
KOL	126	3	VH3-13-14	16	16,3%	102
mAb60	118	3	VH3-13-17	14	14,3%	45
RF-AN	106	3	VH3-13-26	8	8,2%	85
BUT	115	3	VH3-11-6	13	13,4%	119
KOL-based CAMPATH-		•				
9	118	3	VH3-13-13	16	16,3%	41
B1	119	3	VH3-13-19	13	13,3%	53
N98P1	127	3	VH3-13-1	13	13,3%	7 7
П117	107	3	VH3-13-10	12	12,2%	64
WEA	114	3	VH3-13-12	15	15,3%	40
HIL	120	3	VH3-13-14	14	14,3%	23
s5A10	97	. 3	VH3-13-14	0	0,0%	46
s5D11	98	3	VH3-13-7	0 .	0,0%	46
s6C8	100	3	VH3-13-7	0	0,0%	46
s6H12	98	3	VH3-13-7	0	0,0%	46
VH10.7	119	3	VH3-13-14	16	16,3%	128
HIV-loop2	126		VH3-13-7	16	16,3%	12
HIV-loop35	126		VH3-13-7	16	16,3%	12
TRO	122		VH3-13-1	13	13,3%	61
SA-4B	123		VH3-13-1	15	15,3%	1 2 5
L2B5	98	3	VH3-13-13	0	0,0%	46
s6E11	95	3	VH3-13-13	0	0.0%	46
s6H7	100		VH3-13-13	0	0,0%	46
ss1	102		VH3-13-13	0	0.0%	46
ss8	94	3	VH3-13-13	0	0,0%	46
DOB	120		VH3-13-26	21	21,4%	116
THY-33	115		VH3-13-15	20	20,4%	42
NOV	118		VH3-13-19	14	14,3%	38
rsv13H	120		VH3-13-24	20	20,4%	11
L3G11	98		VH3-13-20	2	2,0%	46
L2E8	99		VH3-13-19	0	0.0%	46
L2D10	101		VH3-13-10	1	1,0%	46
L2E7	98		VH3-13-10		1,0%	46

Table 2C: (continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
3A10	100	3	VH3-13-24	0	0,0%	46
_3A10 _2E5	97	3	VH3-13-2	1	1,0%	46
•	119	3	VH3-13-7	21	21,4%	67
BUR s4D5	107	3	VH3-11-3	1	1,0%	46
19	116	3	VH3-13-16	4	4,1%	118
s5D4	99	3	VH3-13-1	0	0,0%	46
	100	3	VH3-13-1	0	0.0%	46
s6A8 HIV-loop13	123	3	VH3-13-12	17	17,3%	12
•	112	3	VH3-11-8	18	18,6%	88
TR1.32	97	3	VH3-11-3	1	1,0%	46
L2B10	114	3	VH3-11-8	21	21,6%	88
TR1.5 s6H9	101	3	VH3-13-25	0	0,0%	46
	112	3	VH3-13-1	6	6,1%	118
8 . 23	115	3	VH3-13-1	6	6,1%	118
23 7	115	3	VH3-13-1	4	4,1%	118
TR1.3	120	3	VH3-11-8	20	20,6%	88
18/2	125		VH3-13-10	0	0,0%	32
18/9	125	3	VH3-13-10	0	0,0%	31
30P1	119	3	VH3-13-10	0	0,0%	106
HF2-1/17	125	3	VH3-13-10	0	0,0%	8
A77	109	3	VH3-13-10	0	0,0%	44
B19.7	108		· VH3-13-10	0	0,0%	44
M43	119		VH3-13-10	0	0,0%	103
1/17	125		VH3-13-10	0	0,0%	31
18/17	125		VH3-13-10	0	0,0%	31.
E54 3.4	109		VH3-13-10	0	0,0%	26
LAMBDA-VH26	98	3	VH3-13-10	1	1,0%	95
E54 3.8	111		VH3-13-10	1	1,0%	26
GL16	106		VH3-13-10	1	1,0%	44
4G12	125		VH3-13-10		1,0%	56
A73	106		VH3-13-10		2,0%	44
AL1.3	111		VH3-13-10		3,1%	117
3.A290	118		VH3-13-10		2,0%	108
Ab18	127		VH3-13-8	2	2,0%	100
E54 3.3	109		VH3-13-10	3	3,1%	26
254 3.3 35G6	12		VH3-13-10		3,1%	57

ダ4 SUBSTITUTE SHEET (RULE 26)

WO 97/08320

Table 2C: (continued)

Name¹	aa² C	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
	107	3	VH3-13-10	5	5,1%	44
495	•	3	VH3-13-10	5	5,1%	100
4b25	128	3	VH3-13-10	4	4,1%	7 7
N87	126	3	VH3-13-10	6	6,1%	2
ED8.4	99	3 3	VH3-13-10	6	6,1%	82
RF-KL1	122	3	VH3-13-10	2	2,0%	117
AL1.1	112	3	VH3-13-10	1	1,0%	117
AL3.11	102	3	VH3-13-8	6	6,1%	129—
32.B9	127	3	VH3-13-10	2	2,0%	117
TK1	109		VH3-13-10	8	8,2%	115
POP	123	3	VH3-13-10	9	9,2%	127
9F2H	127	3	VH3-13-10	9	9,2%	10
VD	115	3	VH3-13-10	8	8,2%	74 `
Vh38Cl.10	121	3	VH3-13-10	8	8,2%	74
Vh38Cl.9	121	3	VH3-13-10	. 8	8,2%	74
Vh38Cl.8	121	3	VH3-11-8	0	0,0%	104
63P1	120	3	VH3-11-8	0	0,0%	104
60P2	117	3	VH3-11-0	· 2	2,0%	117
AL3.5	90	3	VH3-13-10	10	10,2%	39
GF4/1.1	123	3	VH3-13-10		12,2%	100
Ab21	126	3	VH3-13-10 VH3-13-17	2	2,0%	16
TD d Vp	118	3	VH3-13-17	_	8,2%	74
Vh38Cl.4	119	3	VH3-13-10	_	8,2%	74
Vh38Cl.5	119				1,0%	117
AL3.4	104		VH3-13-10	_	2,0%	42.
FOG1-A3	115		VH3-13-19		1,0%	81
HA3D1	117	_	VH3-13-21 VH3-13-24		0,0%	26
E54 3.2	112		VH3-13-2-	_	2,0%	51
mAb52	128		VH3-13-12	_	2,0%	51
mAb53	128		VH3-13-1	_	2,0%	51
mAb56	128		VH3-13-1	_	2,0%	
mAb57	128		VH3-13-1 VH3-13-1	_	2,0%	
mAb58	12		VH3-13-1 VH3-13-1	_	2,0%	
mAb59	12		VH3-13-1 VH3-13-1		2,0%	
mAb105	12		-	_	2,0%	
mAb107	12		VH3-13-1		0,0%	
E55 3.14	11	0 3	VH3-13-1	i 🦁 U	2,2	
			女内			

75

WO 97/08320 PCT/EP96/03647

Table 2C: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference'
	106	3	VH3-13-19	1	1,0%	94
F13-28	127	3	VH3-13-18	4	4,1%	51
mAb55		3	VH3-13-24	6	6,1%	72
YSE	117 106	3	VH3-13-19	2	2,0%	26
E55 3.23	101	3	VH3-13-1	3	3,1%	85
RF-TS5	124	3	VH3-13-2	7	7,1%	77
N42P5		3	VH3-13-16	7	7,1%	42
FOG1-H6	110	3	VH3-13-19	11	11,2%	47
0-81	115	3	VH3-13-12	11	11,2%	. 12
HIV-s8	122	3	VH3-13-19	12	12,2%	71
mAb114	125	3	VH3-13-16 VH3-13-2	4	4.1%	129
33.F12	116	3	VH3-1X-3	0	0,0%	101
484	119	3	VH3-1X-3	0	0,0%	103
M26	123	3	VH3-1X-3	0	0,0%	26
VHGL 3.1	100	3 3	VH3-1X-3	1	1,0%	26
E55 3.13	113		VH3-1X-6	3	3,0%	2
SB5/D6	101	3	VH3-1X-6	3	3,0%	2
RAY4	101	3	VH3-1X-3	5	5,0%	112
82-D V-D	106	3	VH3-1X-3	5	5,0%	72
MAL	129	3	VH3-1X-6	5	5,0%	72
LOC	123	3	VH3-1X-6	11	11,0%	2
LSF2	101	3	· VH3-1X-6	41	11,0%	1
HIB RC3	100		VH3-1X-3	0	0,0%	104
56P1	119		VH3-13-7	0	0,0%	103
M72	122		VH3-13-7	0	0,0%	103
M74	121			0	0,0%	26
E54 3.5	105		VH3-13-7	0	0,0%	63
2E7	123		VH3-13-7	0	0,0%	104
2P1	117		VH3-13-7		1,0%	83
RF-SJ2	127		VH3-13-7 VH3-13-7		1,0%	85
PR-TS1	114			_	0.0%	18
KIM46H	12		VH3-13-13	_	2,0%	26
E55 3.6	10		VH3-13-7		1,0%	26
E55 3.10	10		VH3-13-13		1,0%	108
3.B6	11		VH3-13-1		1,0%	_
E54 3.6	11		VH3-13-1			
FL2-2	11	4 3	VH3-13-1	3 1	1,0%	00

76

WO 97/08320

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference'
RF-SJ3	112	3	VH3-13-7	2	2.0%	85
	105	3	VH3-13-14	1	1,0%	26
E55 3.5	121	3	VH3-13-13	1	1,0%	73
BSA3	119	3	VH3-13-7	3 .	3,1%	130
HMST-1	126	3	VH3-13-13	4	4,1%	82
RF-TS2	109	3	VH3-13-15	0	0,0%	26
E55 3.12	126	3	VH3-13-14	3	3,1%	129
19.E7	119	3	VH3-13-13	6	6,1%	130
11-50	120	3	VH3-13-15	2	2,0%	25
E29.1	108	3	VH3-13-7	6	6,1%	26
E55 3.16	117	3	VH3-13-7	7	7,1%	42
TNF-E1	127	3	VH3-13-13	6	6,1%	83
RF-SJ1	116	3	VH3-13-7	8	8,2%	42
FOG1-A4	117	3	VH3-13-15	4	4,1%	42
TNF-A1	107	3	VH3-13-14	8	8,2%	85
PR-SJ2	124	3	VH3-13-13	10	10,2%	33
HN.14	124	3	VH3-13-7	12	12,2%	65
CAM'	121	3	VH3-13-7	9	9,2%	12
HIV-B8	125	3	VH3-13-7	9	9,2%	12
HIV-b27		3	VH3-13-7	9	9,2%	12
HIV-b8	125	3	VH3-13-7	9	9,2%	12
HIV-s4	125		VH3-13-7	9	9,2%	12
HIV-B26	125		VH3-13-7	10	10,2%	12
HIV-B35	125		VH3-13-7	10	10,2%	12
HIV-b18	125	•	VH3-13-7	11	11,2%	.12
HIV-b22	125		VH3-13-7	12	12,2%	12
HIV-b13	125		VH3-13-7	24	24,0%	24
333	117		VH3-14-4	24	24,0%	24
1H1	120		VH3-14-4		23,0%	24
1B11	120		VH3-13-19		1,0%	29
CLL30 2-3	86				19,4%	36
GA	110		VH3-13-7	_	3,1%	7
JeB	99		VH3-13-14		10,2%	
GAL	110		VH3-13-19	_	18,0%	
K6H6	11		VH3-1X-6	. =	18,0%	
K4B8	11		VH3-1X-6	_		
K5B8	11	9 3	VH3-1X-6	3 18	18,0%	

WO 97/08320

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
K5C7	119	3	VH3-1X-6	19	19,0%	60
K5G5	119	3	VH3-1X-6	19	19,0%	60
K6F5	119	3	VH3-1X-6	19	19,0%	60
	98	3	VH3-13-10	1	1,0%	117
AL3.16	98	3	VH3-13-10	3	3,1%	77
N86P2	95	3	VH3-13-16	· 7	7,1%	77
N54P6	126	4	VH4-11-2	0	0,0%	3
LAMBDA HT112-1	121	4	VH4-11-2	0	0,0%	43
HY18	126	4	VH4-11-2	0	0,0%	45
mAb63	105	4	VH4-11-2	0	0,0%	86
FS-3	111	4	VH4-11-2	0	0,0%	86
FS-5	107	4	VH4-11-2	0	0,0%	86
FS-7	110	4	VH4-11-2	0	0,0%	86
FS-8	105	4	VH4-11-2	0	0,0%	85
PR-TS2	103	4	VH4-11-2	0	0.0%	85
RF-TMC	102	4	VH4-11-2	1	1,0%	15
mAb216	122	4	VH4-11-2	1	1,0%	52
mAb410.7.F91	124	4	VH4-11-2	1	1,0%	15
mAbA6H4C5	127	4	VH4-11-2	2	2,1%	100
Ab44	124	4	VH4-11-2	3	3,1%	59
6H-3C4	108	4	VH4-11-2	6	6,2%	86
FS-6		4	· VH4-11-2	6	6,2%	84
FS-2	114	4	VH4-11-2	7	7,2%	62
HIG1	126		VH4-11-2	8	8,2%	86
FS-4	105		VH4-11-2	9	9,3%	125
SA-4A	123		VH4-11-2	10	10,3%	9 9
LES-C	119	4	VH4-11-9	16	16,5%	58
DI	78		VH4-11-3	8	8,1%	100
Ab26	126		VH4-31-12		15,2%	110
TS2	124		VH4-31-12 VH4-11-7	16	16,5%	5
265-695	115		VH4-11-7	_	19,2%	93
WAH	129		VH4-31-13 VH4-11-8	22	22,7%	6
268-D	122		VH4-11-8	_	0,0%	104
58P2	118				1,0%	45
mAb67	128		VH4-21-4	_	2.1%	108
4.L39	115		VH4-11-8	_	3,0%	75
mF7	11	1 4	VH4-31-13	, ,	3,0%	, ,

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference
33.C9	122	4	VH4-21-5	7	7,1%	129
Pag-1	124	4	VH4-11-16	5	5,2%	50
ray-i B3	123	4	VH4-21-3	8	8,2%	53
IC4	120	4	VH4-11-8	6	6,2%	70
C6B2	127	4	VH4-31-12	4	4,0%	48
N78	118	4	VH4-11-9	11	11,3%	7 7
B2	109	4	VH4-11-8	12	12,4%	53
WRD2	123	4	VH4-11-12	6	6,2%	90
mAb426.4.2F20	126	4	VH4-11-8	2	2,1%	52
E54 4.58	115	4	VH4-11-8	. 1	1,0%	26
WRD6	123	4	VH4-11-12	10	10,3%	90
mAb426.12.3F1.4	122	4	VH4-11-9	-4	4,1%	52
E54 4.2	108	4	VH4-21-6	2	2,0%	26
WIL	127	4	VH4-31-13	0 .	0,0%	90
COF	126	4	VH4-31-13	0	0,0%	90
LAR	122	4	VH4-31-13	2	2,0%	90
WAT	125	4	VH4-31-13	4	4,0%	90
mAb61	123	4	VH4-31-13	5	5,1%	45
WAG	127	4	VH4-31-4	0	0.0%	90
RF-SJ4	108	4	VH4-31-12	2	2,0%	85
E54 4.4	110		VH4-11-7	. 0	0,0%	26
E55 4.A1	108		VH4-11-7	0	0,0%	26
PR-SJ1	103		VH4-11-7	1	1,0%	85
E54 4.23	111		VH4-11-7	1	1,0%	26
CLL7 7-2	97	4	VH4-11-12	0	0,0%	29
	95	4	VH4-11-12	0	0,0%	104
37P1 ALL52 30-2	91	4	VH4-31-12		4,0%	29
EBV-21	98	5	VH5-12-1	0	0,0%	13
CB-4	98		VH5-12-1	0	0,0%	13
CLL-12	98		VH5-12-1	0	0,0%	13
L3-4	98		VH5-12-1	0	0,0%	13
CLL11	98		VH5-12-1	0	0,0%	17
CORD3	98		VH5-12-1	0	0,0%	17
CORD4	98		VH5-12-1	0	0,0%	17
CORD8	98		VH5-12-1	0	0,0%	17
	98		VH5-12-1		0,0%	17
CORD9	30	, ,	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•	•	

Zq

WO 97/08320

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene	Diff. to germline ⁵	% diff. to germline ⁶	Reference
CD+1	98	5	VH5-12-1	0	0,0%	17
CD+3	98	5	VH5-12-1	0	0,0%	- 17
CD+4	98	5	VH5-12-1	0	0,0%	17
CD-1	98	5	VH5-12-1	0	0,0%	17
CD-5	98	5	VH5-12-1	0	0,0%	17
VERG14	98	5	VH5-12-1	0	0,0%	17
PBL1	98	5	VH5-12-1	0	0,0%	17
PBL10	98	5	VH5-12-1	0	0,0%	17
STRAb SA-1A	127	5	VH5-12-1	0	0,0%	125
DOB'	122	5	VH5-12-1	0	0,0%	97
VERG5	98	5	VH5-12-1	0	0,0%	. 17
PBL2	98	5	VH5-12-1	1	1,0%	17
Tu16	119	5	VH5-12-1	1	1,0%	49
PBL12	9 8	5	VH5-12-1	1	1,0%	17
CD+2	9 8	5	VH5-12-1	1	1,0%	17
CORD10	98	5	VH5-12-1	1	1,0%	17
PBL9	98	- 5	VH5-12-1	1	1,0%	17
CORD2	98	5	VH5-12-1	2	2,0%	17
PBL6	98	5	VH5-12-1	2	2,0%	17
CORD5	98	5	VH5-12-1	2	2,0%	17
CD-2	98	5	VH5-12-1	. 2	2,0%	17
CORD1	98	5	VH5-12-1	2	2,0%	17
CD-3	98	5	VH5-12-1	3	3,1%	17
VERG4	98	5	VH5-12-1	. 3	3,1%	17
PBL13	98	.5	VH5-12-1	3	3,1%	.17
PBL7	98	5	VH5-12-1	3	3,1%	17
HAN	119	5	VH5-12-1	3	3,1%	97
VERG3	98	. 5	VH5-12-1	3	3,1%	17
PBL3	98	5	VH5-12-1	3	3,1%	17
VERG7	98	5	VH5-12-1	3	3,1%	17
PBL5	94	5	VH5-12-1	0	0,0%	17
CD-4	98	5	VH5-12-1	4	4,1%	17
CLL10	98		VH5-12-1	4	4,1%	17
PBL11	98		VH5-12-1	4	4,1%	17
CORD6	98		VH5-12-1	.4	4,1%	17
-01.00	98		VH5-12-1	5	5,1%	17

PCT/EP96/03647 WO 97/08320

Table 2C: (continued)

Name¹	aa² (Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
		5	VH5-12-1	0	0,0%	103
83P2	119	5	VH5-12-1	6	6,1%	17
VERG9	98	5	VH5-12-1	6	6,1%	17
CLŢ6	98	5	VH5-12-1	7	7,1%	17
PBL8	98	5	VH5-12-1	3	3,1%	100
Ab2022	120	5	VH5-12-4	0	0,0%	97
CAV	127	5 5	VH5-12-4	0	0,0%	97
HOM,	120	5 5	VH5-12-4	0	0,0%	97
PET	127	5 5	VH5-12-4	0	0,0%	97
ANG	121	5 5	VH5-12-4	0	0,0%	97
KER	121	5 5	VH5-12-4	0	0,0%	107
5.M13	118	5	VH5-12-4	1	1,0%	49
Au2.1	118	5	VH5-12-1	9	9,2%	110
WS1	126	5	VH5-12-4	1	1,0%	16
TD Vn	98	5 5	VH5-12-1	9	9,2%	73
TEL13	116	5	VH5-12-4	2	2,0%	26
E55 5.237	112	5	VH5-12-1	10	10,2%	17
VERG1	98	5 5	VH5-12-1	10	10,2%	42
CD4-74	117	, 5 5	VH5-12-1	11	11,2%	6
257-D	125	5	VH5-12-1	11	11,2%	17
CLL4	98	5	VH5-12-1	11	11,2%	17
CLL8	98		VH5-12-1	12	12,2%	120
Ab2	124	5	VH5-12-1	12	12,2%	120
Vh383ex	98	5	VH5-12-2	11	11,2%	17
CLL3	98		VH5-12-1	12	12,2%	49
Au59.1	122		VH5-12-1	12	12,2%	73
TEL16	117	_	VH5-12-1	0	0,0%	103
M61	104		VH5-12-1		5,1%	49
Tu0	99		VH5-12-1	_	13,3%	121
P2-51	122	_	VH5-12-1		11,2%	12
P2-54	122		VH5-12-1	_	9,2%	12
P1-56	119		VH5-12-		10,2%	0 12
P2-53	12		VH5-12-		19,4%	o 12
P1-51	12	_	VH5-12-		3,1%	12
P1-54	12	-	VH5-12-		4,1%	12
P3-69 P3-9	12 11	•	VH5-12-		4,1%	0 12
		•	81			

WO 97/08320

Table 2C: (continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
1-185-37	125	5	VH5-12-4	0	0,0%	124
1-187-29	125	5	VH5-12-4	0	0,0%	124
P1-58	128	5	VH5-12-4	10	10,2%	121
P2-57	118	5	VH5-12-4	3	3,1%	121
P2-55	123	5	VH5-12-1	5	5,1%	121
P2-56	123	5	VH5-12-1	20	20,4%	121
P2-50	122	5	VH5-12-1	11	11,2%	121
P3-60	122	5	VH5-12-1	8	8,2%	121
P1-57	123	5	VH5-12-1	4	4,1%	121
P1-55	122	5	VH5-12-1	14	14,3%	121
MD3-4	128	5	VH5-12-4	12	12,2%	5
P1-52	121	5	VH5-12-1	11	11,2%	121
CLL5	98	5	VH5-12-1	13	13,3%	17
CLL7	98	5	VH5-12-1	14	14,3%	17
L2F10	100	5	VH5-12-1	1	1,0%	46
L3B6	98	5	VH5-12-1	1	1,0%	46
VH6.A12	119	6	VH6-35-1	13	12,9%	122
s5A9	102	6	VH6-35-1	1	1,0%	46
s6G4	99	6	VH6-35-1	1	1,0%	46
ss3	99	6	VH6-35-1	1	1,0%	46
6-1G1	101	6	VH6-35-1	0	0,0%	14
F19L16	107	6	· VH6-35-1	0	0,0%	68
L16	120	6	VH6-35-1	0	0,0%	69
M71	121	6	VH6-35-1	0	0,0%	103
ML1	120	6	VH6-35-1	0	0,0%	69
F19ML1	107	6	VH6-35-1	0	0,0%	68
15P1	127	6	VH6-35-1	0	0,0%	104
VH6.N1	121	6	VH6-35-1	0	0,0%	122
VH6.N11	123		VH6-35-1	0	0,0%	122
VH6.N12	123		VH6-35-1	0	0,0%	122
VH6.N2	125		VH6-35-1	0	0,0%	122
VH6.N5	125		VH6-35-1	0	0,0%	122
VH6.N6	127		VH6-35-1	0	0,0%	122
VH6.N7	126		VH6-35-1	0	0,0%	122
VH6.N8	123		VH6-35-1	0	0,0%	122
VH6.N9	123		VH6-35-1	0	0.0%	122

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ²
VH6.N10	123	6	VH6-35-1	0	0,0%	122
VH6.A3	123	6	VH6-35-1	0	0,0%	122
VH6.A1	124	6	VH6-35-1	0	0,0%	122
VH6.A4	120	6	VH6-35-1	0	0,0%	122
E55 6.16	116	6	VH6-35-1	0	0,0%	26
E55 6.17	120	6	VH6-35-1	0	0,0%	26
E55 6.6	120	6	VH6-35-1	0	0.0%	26
VHGL 6.3	102	6	VH6-35-1	0	0,0%	26
CB-201	118	6	VH6-35-1	0	0,0%	109
VH6.N4	122	6	VH6-35-1	0	0,0%	122
E54 6.4	109	6	VH6-35-1	1	1,0%	26
VH6.A6	126	6	VH6-35-1	1	1,0%	122
E55 6.14	120	6	VH6-35-1	1	1,0%	26
E54 6.6	107	6	VH6-35-1	1	1,0%	26
E55 6.10	112	- 6	VH6-35-1	1	1,0%	26
E54 6.1	107	6	VH6-35-1	2	2,0%	26
E55 6.13	120	6	VH6-35-1	2	2,0%	26
E55 6.3	120	6	VH6-35-1	2	2,0%	26
E55 6.7	116	6	VH6-35-1	2	2,0%	26
E55 6.2	120	6	VH6-35-1	2	2,0%	26
E55 6.X	111	6	VH6-35-1	2	2,0%	26
E55 6.11	111	6	VH6-35-1	3	3,0%	26
VH6.A11	118	6	VH6-35-1	3	3,0%	122
A10	107	. 6	VH6-35-1	3	3,0%	68
E55 6.1	120	6	VH6-35-1	4	4,0%	26
FK-001	124	6	VH6-35-1	4	4,0%	65
VH6.A5	121	6	VH6-35-1	.4	4,0%	122
VH6.A7	123	6	VH6-35-1	4	4,0%	122
HBp2	119	6	VH6-35-1	4	4.0%	4
Au46.2	123	6	VH6-35-1	5	5,0%	49
A431	106		VH6-35-1	5	5,0%	68
VH6.A2	120		VH6-35-1	5	5,0%	122
VH6.A9	125		VH6-35-1	8	7,9%	122
VH6.A8	118		VH6-35-1	10	9,9%	122
VH6-FF3	118		VH6-35-1	2	2,0%	123
VH6.A10	126		VH6-35-1	12	11,9%	122

Table 2C: (

(continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
VH6-EB10	117	6	VH6-35-1	3	3,0%	123
VH6-E6	119	6	VH6-35-1	· 6	5,9%	123
VH6-FE2	121	6	VH6-35-1	6	5,9%	123
VH6-EE6	116	6	VH6-35-1	6	5,9%	123
VH6-FD10	118	6	VH6-35-1	6	5,9%	123
VH6-EX8	113	6	VH6-35-1	6	5,9%	123
VH6-FG9	121	6	VH6-35-1	8	7,9%	123
VH6-E5	116	6	VH6-35-1	9	8,9%	123
VH6-EC8	122	6	VH6-35-1	9	8,9%	123
VH6-E10	120	6	VH6-35-1	10	9,9%	123
VH6-FF11	122	6	VH6-35-1	11	10,9%	123
VH6-FD2	115	6	VH6-35-1	11	10,9%	123
CLL10 17-2	88	6	VH6-35-1	4	4,0%	29
VH6-BB11	94	6	VH6-35-1	4	4,0%	123
VH6-B41	93	6	VH6-35-1	7	6,9%	123
JU17	102	6	VH6-35-1	3	3,0%	114
VH6-BD9	96	6	VH6-35-1	11	10,9%	123
VH6-BB9	94	6	VH6-35-1	12	11,9%	123

WO 97/08320 . PCT/EP96/03647

Table 3A: assignment of rearranged V kappa sequences to their germline counterparts

Family ^t	Name	Rearranged ²	Sum
1	VkI-I	28	
1	Vk1-2	0	
1	Vk1-3	1	
1	Vk1-4	0	
i	Vk1-5	7	•
ł	Vk1-6	0	
1	Vk1-7	0	
1	Vk1-8	2	
1	Vk1-9	9	
1	Vk1-10	0	
1	Vk1-11	1	
1	Vk1-12	7	
1	Vk1-13	1	
i	Vk1-14	7	
1	Vk1-15	2	
Į.	Vk1-16	2	
1	Vk1-17	16	
I	Vk1-18	1	
j	Vk1-19	33	
1	Vk1-20	ı	
ı	Vk1-21	1	
1	Vk1-22	0	
i	Vk1-23	0 .	119 entries
2	Vk2-1	0	
2	Vk2-2	1	
2	Vk2-3	0	
2	Vk2-4	0	
2	Vk2-5	0	
2	Vk2-6	16	
2	Vk2-7	0	
2	Vk2-8	0	
2	Vk2-9	1	
2	Vk2-10	0	
2	Vk2-11	7	
2	Vk2-12	0	25 entries
3	Vk3-I	ı	
3	Vk3-2	0	

WO 97/08320

Table 3A: (continued)

Family 1	Name	Rearranged ²	Sum
3	Vk3-3	35	
3	Vk3-4	115	
3	Vk3-5	0	
. 3	Vk3-6	0	
. 3	Vk3-7	1	
3	Vk3-8	40	192 entries
4	Vk4-1	33	33 entries
5	Vk5-1	1	1 entry
6	Vk6-1	0	
6	Vk6-2	0	0 entries
7	Vk7-1	0	0 entries

WO 97/08320 PCT/EP96/03647

Table 3B: assignment of rearranged V lambda sequences to their germline counterparts

Family ¹	Name	Rearranged ²	Sum
1	DPL1	1	
1	DPL2	14	
1	DPL3	6	
1	DPL4	1	
1	HUMLV117	4	
1	DPL5	13	
1 .	DPL6	0	
1	DPL7	. 0	
1	DPL8	3	
1	DPL9	0	42 entries
2	DPL10	5	
2	VLAMBDA 2.1	0	
2	DPL11	23	
2	DPL12	15	
· 2	DPL13	0	
2	DPL14	0	43 entries
3	DPL16	10	
3	DPL23	19	
3	Humlv318	9	38 entries
7	DPL18	1	
7	DPL19	0	1 entries
8	DPL21	2	
8	HUMLV801	6	8 entries
9	DPL22	0	0 entries
unassigned	DPL24	0	0 entries
10	gVLX-4.4	0	0 entries

WO 97/08320 . PCT/EP96/03647

Table 3C: assignment of rearranged V heavy chain sequences to their germline counterparts

Family ¹	Name	Rearranged ²	Sum
1	VH1-12-1	38	
1	VH1-12-8	2	
1	VH1-12-2	2	
1	VH1-12-9	2	
1	VH1-12-3	0	
1	VH1-12-4	0 .	
1	VH1-12-5	3	
1	VH1-12-6	0	
1	VH1-12-7	23	
1	VH1-13-1	1	
1.	VH1-13-2	1	
1	VH1-13-3	. 0	
1	VH1-13-4	0	
1	VH1-13-5	0	
1	VH1-13-6	17	
1	VH1-13-7	0	
1	VH1-13-8	3	
1	VH1-13-9	0	
1	VH1-13-10	0	
1	VH1-13-11	0	
1	VH1-13-12	10	
1	VH1-13-13	0	
1	VH1-13-14	0	
1	VH1-13-15	4	
1	VH1-13-16	2	
1	VH1-13-17	0	
1	VH1-13-18	1	
1	VH1-13-19	0	
1	VH1-1X-1	1	110 entries
2	VH2-21-1	0	
2	VH2-31-1	0	
2	VH2-31-2	. 1	
2	VH2-31-3	1	
2	VH2-31-4	0	
2	VH2-31-5	2	
2	VH2-31-6	0	
2	VH2-31-7	0	

8₽

WO 97/08320

Table 3C: (continued)

Family ¹	Name	Rearranged ²	Sum
2	VH2-31-14	1	
2	VH2-31-8	0	
2	VH2-31-9	0	
2	VH2-31-10	0	
2	VH2-31-11	1	
2	VH2-31-12	0	
2	VH2-31-13	1	7 entries
3	VH3-11-1	0	
3	VH3-11-2	0	
3	VH3-11-3	5	
3	VH3-11-4	0	
3	VH3-11-5	1	
3	VH3-11-6	1	
3 .	VH3-11-7	0	
3	VH3-11-8	5	
3	VH3-13-1	9	
3	VH3-13-2	3	
3	VH3-13-3	0	
3	VH3-13-4	0	
3	VH3-13-5	0	
3	VH3-13-6	0	
3	VH3-13-7	32	
3	VH3-13-8	4	
3	VH3-13-9	0	
3	VH3-13-10	46	
3	VH3-13-11	0	
3	VH3-13-12	11	
3	VH3-13-13	17	
3	VH3-13-14	8	
3	VH3-13-15	4	
3	VH3-13-16	3	
3	VH3-13-17	. 2	
3	VH3-13-18	1	
3	VH3-13-19	13	
3	VH3-13-20	1	
3	VH3-13-21	1	
3	VH3-13-22	0	

WO 97/08320

Table 3C: (continued)

Family ¹	Name	Rearranged ²	Sum
3	VH3-13-23	0	
3	VH3-13-24	4	
3	VH3-13-25	1	
3	VH3-13-26	6 .	
3	VH3-14-1	1	
3	VH3-14-4	15	
3	VH3-14-2	0	•
3	VH3-14-3	0	
3	VH3-1X-1	0	•
3	VH3-1X-2	0	
	VH3-1X-3	6	
3 3	VH3-1X-4	0	
3	VH3-1X-5	0	
3	VH3-1X-6	11	
3	VH3-1X-7	0	
3	VH3-1X-8	1	
3	VH3-1X-9	0	212 entries
4	VH4-11-1	. 0	
4	VH4-11-2	20	
4	VH4-11-3	0	
4	VH4-11-4	0	i
4	VH4-11-5	0	
4	VH4-11-6	0	
4	VH4-11-7	5	
4	VH4-11-8	7	
4	VH4-11-9	3	
4	VH4-11-10	0	
4	VH4-11-11	0	
4	VH4-11-12	4	
4	VH4-11-13	0	
4	VH4-11-14	. 0	•
4	VH4-11-15	0	
4	VH4-11-16	1	
4	VH4-21-1	0	
4	VH4-21-2	0	
4		1	
4	VH4-21-4	1	

Table 3C: (continued)

Family ¹	Name	Rearranged ²	Sum
4	VH4-21-5	1	
4	VH4-21-6	1	
. 4	VH4-21-7	0	
4	VH4-21-8	0	
4	VH4-21-9	0	
4	VH4-31-1	0	
4	VH4-31-2	0	
4	VH4-31-3	0	
4	VH4-31-4	2	
4	VH4-31-5	0	
4	VH4-31-6	0	
4	VH4-31-7	0	
4	VH4-31-8	0	
4	VH4-31-9	0	
4	VH4-31-10	0	
4	VH4-31-11	0	
4	VH4-31-12	4	
4	VH4-31-13	· 7	
4	VH4-31-14	0	
4	VH4-31-15	0	
4 '	VH4-31-16	0	
4	VH4-31-17	. 0	
4	VH4-31-18	0	
4	VH4-31-19	0	
4	VH4-31-20	0	57 entries
5	VH5-12-1	82	
5	VH5-12-2	1	
5	VH5-12-3	0	
5	VH5-12-4	14	97 entries
6	VH6-35-1	74	74 entries

PCT/EP96/03647

WO 97/08320
Table 4A: Analysis of V kappa subgroup 1

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	kappa subgroup 1 Framework I															
amino acid'		7	က	4 1	S (٥	7	6 0	6	10	=	12	ದ	14	5	16
A		1							1				102	<u> </u>	1	
В			1	<u></u>		1										
С														1		
D	64										<u></u>					
E	8		14												1	
F									1	6				1		
G																10
Н																
.		65													4	
К			1								<u></u>					
L		6		21							96		1			
М	1			66							<u> </u>					
N	ļ										ļ					
P			<u> </u>					103		1	÷	2			1	•••••
Q		<u> </u>	62			88					1	ļ				
R																
5		<u> </u>	ļ				89		102	:	-	103		103	•••••	
T		1			88					18	· · · · · · · · · · · · · · · · · · ·					
V		1	9				<u> </u>			ļ	8		2		98	
W		<u> </u>	<u>.</u>	ļ			<u> </u>	<u></u>		ļ	<u> </u>	ļ	<u>:</u>	<u> </u>		ļ
X	1						ļ		<u> </u>	ļ	-	<u>.</u>	<u></u>		<u></u>	<u></u>
Y	L	<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>		╄	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>
	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u></u>	<u> </u>	ऻ	ļ		<u> </u>	<u> </u>	<u> </u>	<u> </u>
unknown (?)		_		ļ		<u> </u>	<u> </u>	-			-		<u></u>		<u></u>	
not sequenced	3	1 3	1 18	18	17	16	16	2			┿				100	
sum of seq²	74	4 7	4 87	7 87	88	89	89	103	104	10	5 10	5 105	105	105	105	
oomcaa3	6	4 6	5 6	2 66	88	88	:	:	:		•	6 103				1(
mcaa ⁴	D	1	0	М	Ţ	Q	S	Р	S	S	L	<u> </u>	Α	S	V	(
rel. oomcaas	900	3006	710%	26%	100%	1 /066	100%	100%	080	70%	0.10%	980%	%2.b	986	d30%	
pos occupied		4			2 1		2	:		1	4	3 :	1	•	3 !	5

52 SUBSTITUTE SHEET (RULE 26)

WO 97/08320
Table 4A: Analysis of V kappa subgroup 1

amino acid'	17	18	19	20	21	22	23	24	25	56	27	⋖	Ω .	ا ن	
А			1	1		1			103						
В											1				
. C							105								
D	101														
E	2							1	1		2				
F					2										
G										1					
Н											1				
1			6	4	101	1									
К								2			1				
L								1		! ! !					
М									**********	ļ					•••••
N									*********	1	ļļ.				•••••
P											<u> </u>				
Q								20		<u></u>	100				
R		94						81			ļ				
S	.	5		1						102	1				
T	ļ	6		99		103			1	1					
V	ļ	ļ	98		2				ļ <u>.</u>	ļ	ļ				
W	ļ							•••••	ļ	-					
X	1	<u></u>							<u> </u>						·
Υ	1	<u> </u>			V. <u>-</u>					<u> </u>		405	405	105	10
	ļ	ļ				ļ				<u> </u>		105	105	105	10
unknown (?)	8					ļ									
not sequenced		<u> </u>								- 40	105	105	105	105	10
sum of seq²	105	105	105	105	105	105	105	105	10	5 10	105	105	105	105	10
oomcaa,	101		:	:	·····	•	-		•	•	2 100	105	105	105	11
mcaa'	D	R	V	T	1	Ţ		R	A	S	Q	<u> </u>		-	
rel. oomcaas	95%	%06	93%	94%	96%	%86	100%	770%	9000	90-70	95%	100%	100%	100%	
pos occupied		4 (•••••••••••	·	·:·····	3 3		1	:	3	4 5	1	1	1	

Table 4A: Analysis of V kappa subgroup 1

4A. Allaly313 01	CDRI														
amino acid¹	ш	ட	28	29	30	31	32	33	34	35	36	37	38	33	40
А					1	1		1	42						
В												1	1		
. C							1								
D			25		1	5	7					1			
E					<u> </u>		1					2			
F				1	1		7				6				
G			25		7	3			4						
Н					1	2	2		1			2			
1				98	1	4			1						
К						7								95	
L	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				2	1		101					<u> </u>		
M											-				
N			6		16	42			50						
Р															102
Q												98	103	2	
R					16	3	2							3	1
S			41	2	57	32	3	1	1						1
T			7			4			4					1	
V			1	4	1			1							
W							21			104					
X									1						
Y					1		60				98				
-	105	105													
unknown (?)														3	
not sequenced						1									
sum of seq ²	105	105	105	105	105		:	:	:	:		:			:
oomcaa,	105	105	41	98	57	42	60	·····	50	104			103	************	102
mcaa*		_	S	1	S	N	Υ	L	N	W	Y	Ω	Q	Κ	Р
rel. oomcaa'	100%	100%	39%	93%	54%	40%	58%	97%	48%	100%	94%	94%	%66	91%	%86
pos occupied6	1	1	6	4	12	11	9		•	i	2	5	2	4	3

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

A: Allalysis of A		newor													R II		
amino acid'	41	42	43	44	45	46	47	48	ç	4 D	င္သ	5	52	: :	3	54	55
Α			94						ļ		50	95			_		
В													·····				
. C									ļ				··	-			
D									ļ		21	1	1	ļ	1		
E	1	3			1	1			ļ		1		1	·			33
F						1			-	3			1	-			
G	100		1					ļ	ļ		9	2		-			
Н		,						ļ	-	2			ļ	<u>.</u>			1
1		1				1		100)				<u></u>	-	1		
K		95			86			ļ			16		ļ	-	2		5
L		1				89	103	*********						.ļ		101	
M		<u> </u>					<u></u>		2				<u> </u>	-			
N					10		ļ	ļ			2	} !	ļ	<u> </u>	25		
Р	<u> </u>	<u> </u>	ļ	104	••••		<u> </u>	-			1		ļ	-			
Q		1			1	<u> </u>		<u> </u>				ļ	ļ				62
R					3	3	ļ					<u></u>	ļ		1	1	
S	<u> </u>		<u></u>		1	ļ <u>.</u>	<u> </u>		-	5		 	9		41	2	•••••
T		3		ļ	1						1	†	·†	1	31		
V	<u> </u>		9		ļ	9)					1	<u> </u>		1		
W	<u></u>		ļ	ļ	<u> </u>	<u> </u>						<u> </u>		-			
X	<u> </u>			ļ	1	ļ						<u></u>			1		
Υ		<u> </u>	┷		<u> </u>	92			-	+			<u>. </u>				
	<u> </u>		<u> </u>		ļ	<u> </u>				******	ļ	-					
unknown (?)	<u></u>	3		ļ		-	_					.		_	1	1	ļ
not sequence	d _							2	3	3			1	1	104		
sum of seq ²	10	4 10	4 104														
oomcaa ³	10	0 9	5 9	1 104			:				:			99		101	
mcaa*	G	K	Α	Р	K	L			1	Y	Α	Α		5	S	L	(
rel. oomcaa ^s	300	96%	9/616	100%	020%	02-00	0/08	100%	%86	% 006	700%	72%	0 <u>61</u> 6	92%	39%	9/0/6	
pos occupied		•••••			1	.8	6	1	2		4 1	0	6	6	g) (3

Table 4A: Analysis of V kappa subgroup 1

amino acid'	26	57	28	29	09	61	29	33	64	65	99	29	89	69	2
	3								T		2	1	1	1	
Α	3			1	_										,
B															
<u>C</u>						-									67
<u>D</u>	1												1		30
E	_						103					3			
F		405	1				103		105	4	101		102		
<u>G</u>	2	105													
Н	ļ						1	3							
<u></u>	3		4			1									,
<u>K</u>	1							1							
L														1	
<u> </u>															
N	6											••••••			
Р	1			101	2					1		******			
Q	-	<u> </u>			<u>i</u>	102		1		1		************		2	
<u>R</u>	1	}			100	103		98		96		100	j		
<u>S</u>	68			•••••••••••••	103			<u> </u>		30			<u></u>	101	
T	19			1		1		Z							
<u>V</u>	- -		99				1	••••••	 !	<u> </u>	<u> </u>				
<u>W</u>										ļ	1		1	<u> </u>	
<u>X</u>	_		1		************				<u>-</u>			1			
Υ											<u></u>	<u> </u>			İ
	_								<u> </u>	<u> </u>	<u> </u>	<u></u>	-		ļ
unknown (?	<u>) </u>					ļ			ļ			ļ			
not sequence	:d]	<u> </u>						105	100	100	105	109	106	105	11
sum of seq	105	105	105	105	105	105	105	105	10:	10:	103	100	100	101	
oomcaaı	······	3 105		•	:	:	:	÷.	•						
mcaa'	S	G	V	Р	S	R	F	S			6	7	G	T	
rel. oomcaa		100%	940/0	%96	98%	%86	%86	930%	100%	010%	%96	96.0%	97.66 97.00))))	
pos occupie	}		•••••••••••••••••••••••••••••••••••••••				•	! !	5	1	5 4	4	4	4 4	4

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

.	Fra	amev	vork	111				·										ب
amino acid¹	71	72	73	ì	/4	ر د	76	77	7	<u> </u>		<u>8</u>	8	9	3 3		84	82
Α		3					1		<u>.</u>			2		<u> </u>			101	1
В						1					3		2	-				
. C														-				
D							1							1	01			
E									_				83					
F	102	1	2	1										-		73		******
G									4			•••••••••••••••••••••••••••••••••••••••	1	<u> </u>			2	
Н		····	ļ											-				
			ļ			99	5						<u> </u>	-		17		
K			ļ										ļ			1		•••••••
L			8	11				ļ		103	1					1		1
M		<u>.</u>	<u> </u>				*********	<u> </u>					ļ					1
N	<u></u>	ļ					7		4				ļ					1
Р	ļ							-				97		-				
Q	ļ	ļ	ļ					<u> </u>	_		97	·	ļ	-				
R	ļ		ļ				2	·	1		2	·}				1		
S	<u></u>	·••••••••	2		1		86		94				<u> </u>			1	••••••	9
T	ļ	98	3		102		2	-	1			ļ	 			11		
V	11		-	2		4	<u></u>			1		ļ						
W	ļ		<u> </u>					-				<u>.</u>	·	1	2			<u> </u>
X	. 	ļ			1		ļ									*******		
Y		<u> </u>	÷				╄	-	-			╁		+			<u> </u>	╁
	-	-	-					-				<u> </u>						-
unknown (?)	8		_		4		ļ		1	1		2	2	2	2	2		<u>.</u>
not sequence sum of seq ²			1	1				1									;	÷
	:	•	:		÷	•	•			103				83	101	73	10	1 9
oomcaa,					102		8 (••••				!		E	D	F		
mcaa ⁴	F	Ţ		L	T	<u> </u>			S							<u> </u>		
rel. oomcaa	5 7000	3840	94%	78%	%86	950%		8370	90%	%66	7070	344/6	94%	81%	%86	710%		000
pos occupied		3		3	3		3	7	5	1	2	4	3	5	2		5	2

ንኦ

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

					•					CDR I	11					
amino acid'	98	87	88	83	90	91	92	93	94	95	4	8	U	۵	ш	Ŀ
Α					1	7	1		5	1						
В				2	3									<u></u>	<u></u>	
. C			102											<u></u>	<u></u>	
D							23	5	1				<u> </u>	<u></u>		
E							1	1		1	1	<u></u>	<u> </u>	<u> </u>		
F		7				3			13				<u> </u>		<u></u>	
G						1		1	2	1		1				
Н		1		4	6	7	3	1								
		<u>.</u>					4	1	2	1		<u> </u>				
K	1				7		1						<u></u>			
L				7		6	2		18	2						
М																
N						6	31	19	1							
Р									1	82	6					
Q				90	86	1	2									
Ŗ						1		2	2	**********						
S	1					27	3	58	5	10						
T						3	1	15	25							
V									5							
W									1							
X																
Y	101	93				42	32	1	23							_
_										3	82	88	89	89	89	89
unknown (?)		1														
not sequenced	2	3	3	2	2	1	1	1	1	4	16	16	16	16	16	16
sum of seq²	103	102	102	103	103	104	104	104	104	101	89	89	89	89	89	89
oomcaa³	101	93	102	90	86	42	32	58	25	82	82	88	89	89	89	89
mcaa'	Υ	Υ	С	۵	Ω	Υ	Υ	S	T	Р	- [- 1	-	-	-	-
rel. oomcaas	98%	91%	100%	87%	83%	40%	31%	26%	24%	81%	92%	%66	100%	100%	100%	100%
pos occupied ⁶	3	3	1	4	5	11	12	10	14	8		1	Ī		1	1

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

sis of V kappa		\neg					Fran	nev	ork	I۷					
amino acid¹	96	97	86	66	100	101	102	103	104	105	106	⋖	107	108	sun
A	1														62
В					1					1					1
· C															20
D	1									15					45
E					2					65					25
F	6		86								2				45
G				87	29	87								2	89
Н	2	1									ļ				4
1	5								1		72				60
K	1	1						77					7 9		48
L	18	1	1						22	4	2				79
М		1									5				7
N	1										1		2		23
Р	6				7									1	62
Q	1				48					1					86
R	6							6					2	70	41
S	2	2			<u> </u>					<u></u>	<u> </u>				163
T	2	82		<u></u>	<u></u>		87	3			ļ		2		102
V	2		<u></u>	<u></u>	<u></u>	ļ		1	63		3				44
W	15		<u></u>		<u> </u>	<u> </u>			<u></u>		<u></u>			<u></u>	14
Χ				<u></u>	<u></u>		ļ	<u></u>	<u> </u>	ļ		ļ		<u></u>	
Y	16	<u> </u>		<u></u>	<u>.</u>				<u></u>	<u> </u>	<u> </u>			<u> </u>	5
_		1			<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u></u>	<u>.</u>	ļ	85	<u></u>	1	12
unknown (?)					<u>.</u>			<u> </u>				ļ	ļ		
not sequence															
sum of seq²															
oomcaa											5 72				
mcaa¹	L	T	F	G	G	G	Ţ	K	٧	E	1		K	R	
rel. oomcaa	, JOO	920%	%b6	100%	750W	100%	100%	89%	730%	750%	85%	100%	%E6	95%	
pos occupied	;	****	••••					:		:		•	:	4 4	1

Table 4B: Analysis of V kappa subgroup 2

											Fra	mev	wor	k I							
amino acid'	-	2	٠,	4	ည	9	7	. &	σ.	, 0	=	12	13	4	15	16	17	18	19	20	21
Α						I			T										2:	2	T
В																					
. с										Ī			1			-					
D	14							Ī					1			Ī		Ī	1		
E	3																15	5			
F									1	1											
G																22		-			
Н																					
		8																			22
К																					
<u>L</u>		3		1					17		18		Ī		6						
M		<u> </u>		15																	
N		<u> </u>																<u> </u>			
Р			ļ					18				18			15			22			
Q			<u></u>			18											7				
R			<u></u>	<u> </u>																	
S							18			17										22	
Ţ					17									21							
V		6	17	1									18			••••••					
W																					
X							•						•••••	•••••							
Y																					
-																					
unknown (?)					1																
not sequenced	5	5	5	5	4	4	4	4	4	4	4	4	4	1	1				***************************************		
sum of seq²	17	17	17	17	18	18	18	18	18	18	18	18	18	21	21	22	22	22	22	22	22
oomcaa³	14	8	17	15	17	18	18	18	17	17	18	18	18	21	15	22	15	22	22	22	22
mcaa*	D	ı	٧	М	Ţ	Q	S	Р	L	S	L	Р	٧	Т	Р	G	Ε	Р	Α	S	1
rel. oomcaa'	82%	47%	100%	%88	94%	100%	100%	100%	94%	94%	100%	100%	100%	100%	71%	100%	089%	100%	100%	100%	100%
pos occupied ⁶	2	•	:	:	:	:	:	:	:	:		:		:	2		-	····· ·	1	1	1

Table 4B: Analysis of V kappa subgroup 2

	•			3 30		<u> </u>						CL	ORI									Т	
amino acid	ין '	22	23	24	25		27	∀	В	ပ	_			٠ 5	87	53	 ဓ္က		32	33	34	35	20
Α					T		_	_				_	<u> </u>			Ī	_						Ť
В									•••••	ļ	<u> </u>					-				•••••	İ		-
· C			22						•••••											••••••	ļ	ļ	<u> </u>
D									•••••			 I	<u> </u>		9		1	1			11	<u> </u>	-
E								1	•••••					-									<u> </u>
F								·····		•••••				<u> </u>			2						-
G								Ī		•••••		1	1	<u> </u>	2	2					••••		<u> </u>
Н								Ī			16	·÷·····			<u> </u>				1		1		<u></u>
l								Ť			•		-	<u> </u>									
K				1							•••••			<u> </u>				1					
L							1	1	22	13		ļ							<u>.</u> .	22			
M										1	•	.		<u> </u>	<u> </u>								
N								-		İ	*****	<u> </u>	<u> </u>	10))	<u> </u>	7 1	2	<u> </u>		9		
Р					Ī			Ī			•••••		<u> </u>		<u></u>	-	<u></u>	-					•••••
Q		1				2	1							ļ		-							••••••
R			2	1	<u> </u>			1				2		İ		·	 	-				<u>i</u>	
S	2	1		2	2 2:	2	2	2		····		19	:	1		<u> </u>	-						******
Ţ								1							ļ	·	, ,	 3					*****
V								Ī		8	•	•••••		<u></u>	ļ !	ļ	`						•••••
W	I				<u> </u>			Ī			1		••••••	<u> </u>		<u> </u>	 					22	•••••
X		Ī						1						1		1	ļ	-			1	:	••••
Y					1		<u> </u>	1			4			1		11	÷	2	1				15
-								Ī	Ī				22				İ	Ť		Ť	Ť	_	_
unknown (?)	.					ľ	-	Ī							••••	 -	-					<u>-</u>	
not sequenced													•••••		•••••		•		-				••••
sum of seq ²	22	22	2 22	22	22	22	22	2:	2 2	2 2	22	22	22	22	22	22	22	22	2 2	2 2	2	22	<u> </u>
oomcaa,				22																			
mcaa¹				S																			
rel. oomcaa'	95%		:	100%	:	•		:		:		:		•	_								- %89
pos occupied ^a	2	1									4		:	•••••	:	5		:	·÷····	1		1	••••

Table 4B: Analysis of V kappa subgroup 2

,						ewo											DR				
amino acid'	37	38	33	6	4	42	43	44	45	46	47	48	49	20	5	52	23	54	55	26	57
Α																			14		
В																					
- C																					
D																			7		
E									1												
F																					
G					22										12				1		2
Н																					
										1		22									
K			15											5							
L	16									14	21			14	1						
M																					
N																	18			•••••	<u></u>
Р				22				21												•••••	
Q	6	22				22			12					1							ļ
R			7						8	7				1	-			22			<u></u>
5	ļ						21								2	22	2	•••••		22	
<u>T</u>	ļ																1				<u></u>
<u>V</u>	ļ										1				6						<u> </u>
W	ļ	<u></u>																			<u></u>
X		<u> </u>																			<u>.</u>
Υ	<u> </u>					-					_	_	21				1				_
-	ļ	ļ						ļ		<u> </u>	<u></u>	ļ						<u></u>			<u> </u>
unknown (?)	ļ		<u> </u>		ļ <u>.</u>	<u></u>				ļ	ļ	ļ							<u></u>		<u></u>
not sequenced	3	<u> </u>	<u> </u>	_			1		-	_			1		1	_	-	22	22	22	
sum of seq ²		÷ · · · · · · ·	22	:		•	•	•	:	:	:	:	:	:	;	;	:	:	:	:	i
oomcaa,		•	15	:	?···-	: :		?	·		:		:				1		:		:
mcaa¹		†····	K		:	:	:	Ī	7		:	1	÷	L	:	}	N	-	Α		
rel. oomcaas	73%	100%	9%89	100%	100%	100%	100%	100%	57%	64%	95%	100%	100%	9/0/9	57%	100%	82%	100%	64%	100%	
pos occupied	2	1	2	1	1	1	1	7	:	:	:	1	1	4	4	1	4	1	3	1	

WO 97/08320

Table 4B: Analysis of V kappa subgroup 2

		·												Fra	mev	vork	: 111				
amino acid'	28	59	9	61	62	83	4	65	99	67	89	69	2	7	72	73	74	75	92	77	78
A																					••••
В																					
. с				<u>.</u>																	••••
D			22				1				1		22								
E																					
F					21									22							
G							21		22		21										
Н																					
1																	1	21			
K																	19				
L																21	1				
М																					
N																					
Р		22																			
Q																					
R				20				1												20	
S				1		22		21		22									20	1	
T				1								22			21	<i></i>			1		
V	22				1											<u>.</u>			<u></u>		2
W																					
Χ																			ļ		<u></u>
Y																			<u> </u>		<u>_</u>
_	Г																				<u> </u>
unknown (?)	1	<u></u>													1			<u></u>	<u></u>	ļ	<u>.</u>
not sequenced																1	1	1	1	1	_
sum of seq?	3	22	22	22	22	22	22	22	22	22	22	22	22	22	22	21	21	21	21	21	1
oomcaa ³	22	22	22	20	21	22	21	21	22	22	21	22	22	22	21	21	19	21	20	20	1
mcaa*		Р	·			S	······	·····		:	G		-	F	T	L	Κ	1	•	R	:
rel. oomcaas	·····	÷)5%	%001	35%	35%	%001	100%	35%	100%	100%	100%	95%	100%	%06	100%	95%	95%	
pos occupied																					·†··

WO 97/08320

Table 4B: Analysis of V kappa subgroup 2

C 40. Allerysis of				ogii													С	DR			
amino acid'	79	80	.81	82	83	84	85	98	87	88	89	90	91	92	93	94	95	۷	8	ပ	۵
Α		20											14			1					
В												1			1						
· C										21											
D			1	21																	
E	19		20																		
F .																					
G	1					21							6			1		2			
Н													1		7	•••					
							1									1					
K																					
L							1							12			2				
M											21										
N																					
Р		1								•••••						2	16	1			
Q	1											20			13						
R														1							
S																3	2				
T														8		7					
V					21		19														
W																6					
X																					
Υ								21	21												
-																		14	17	17	17
unknown (?)																					
not sequenced	_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	5	5	5	5
sum of seq ²	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	20	17	17	17	17
oomcaa3	19	20	20	21	21	21	19	21	21	21	21	20	14	12	13	7	16	14	17	17	17
mcaa*	Ε	Α	Ε	D	٧	G	٧	Υ	Υ	С	М	۵	Α	L	Q	Ţ	Ρ	-	-	-	-
rel. oomcaa'	%06	95%	95%	100%	100%	100%	%06	100%	100%	100%	100%	95%	67%	27%	62%	33%	80%	82%	100%	100%	100%
pos occupied ^a	3	2	2	1	1	1	3	1	1	1	1	2	3	3	3	7	3	3	1	1	1

WO 97/08320

Table 4B: Analysis of V kappa subgroup 2

analysis of V kapp		uogi	ouş	, 2					Fra	mev	vorl	· IV					
amino acid'	ш	ш	96	- 26	86	66	901	101	102	103	104	105	106	∢	107	108	sum
Α																	71
В		•					••••					1			•••••		3
С																	43
D																	112
E												13					71
, F			1		17												72
G						17	2	16				1					233
Н					••••												26
			3										14				94
K										12					13		66
L			2								11						219
М																	37
N																	56
Р			1														159
Q			1				14										159
R										4						12	126
S									•••••								325
T				17					16								140
V											5						146
W			2														31
X																	3
Υ			7														123
-	17	17				<u></u>								13			134
unknown (?)																	2
not sequenced	5	5	5	5	5	5	6	6	6	6	6	7	8	9	9	10	211
sum of seq ²	17	17	17	17	17	17	16	16	16	16	16	15	14	13	13	12	
oomcaa'	17	17	7	17	17	17	14	16	16	12	11	13	14	13	13	12	
mcaa'	-	-	Υ	Ţ	F	G	Q	G	Ţ	K	L	Ε	1	-	Κ	R	
rel. oomcaas	100%	100%	410%	100%	100%	100%	88%	100%	100%	75%	%69	87%	100%	100%	100%	100%	
pos occupied ^a	1	1	7	1	1	1	2	1	1	2	2	3	1	1	1	1	i i

105

WO 97/08320

Table 4C: Analysis of V kappa subgroup 3

											Fram	ewor	kΙ			
amino acid'	_	2	က	4	2	9	^	∞	<u>ი</u>	2	=	2	<u>ლ</u>			16
Α		5					2		27						1	• ••••••••••
В	1															
С			į									2				
D	2								14							
E	76		27													
F .	į	1					<u></u>							1		
G	1								82						1	152
Н										1						
1		75						<u></u>			<u>-</u>					
К	3															
L		4	1	104			1				150		129		1	•••••
М	5			13												
N														5	<u></u>	
Р								124							147	
Q						123							<u></u>			
R					1	<u></u>								<u> </u>		
S							119		3	1		150	1	141		
T		2			117				•••••	147				5	*******	
V		1	89	1			1				1		22		1	
W																<u> </u>
Χ																<u></u>
Υ								<u></u>								<u> </u>
		ļ	ļ	ļ	<u></u>	ļ		ļ	ļ	ļ	<u></u>				•••••	<u></u>
unknown (?)	ļ	<u> </u>	<u> </u>	ļ	ļ	<u></u>	ļ	<u> </u>	ļ		<u> </u>					
not sequenced					<u> </u>	<u> </u>			<u> </u>	-				<u> </u>		_
sum of seq'	88	88									151					
oomcaa,	76	75	89	104	117	123	119	124	82	147	150	<u> </u>	129	•	:	: .
mcaa*	E	1	V	L	T	Q	S	Р	G	Ţ	L	S	L	S	Р	- 0
rel. oomcaas	96%	85%	76%	%88	%66	100%	97%	100%	65%	%66	%66	%66	85%	93%	97%	
pos occupied ⁶		-	1	•	Ī		1	1	-	•	3 2		3	3 4	(3

WO 97/08320

Table 4C: Analysis of V kappa subgroup 3

- 4C. / (nat y 513 0 /	<u></u>	<u> </u>														CDRI
amino acid'	17	18	19	20	21	22	23	24	25	56	27	V		U	۵	ш
Α			178	2					166	1						
В																
. С							181			1						
D	6					<u>.</u>		<u></u>								
E	146	1									1					
F					7	1										
G	1	1							7	1		1				
Н											17					
1		1		5	2											
K		1						5								
L					173		•••••				1	1				
·M																
N												9				
Р																
Q											159					
R		175						176		1	1	10				
S						180			7	175		87				
T		1		174					7	2		1				
V		1	4	1					1			1				
W								1								
X																
Y						1					1					
												72	182	182	182	182
unknown (?)											1					
not sequenced																
sum of seq ⁷	153	181	182	182	182	182	181	182	182	181	181	182	182	182	182	182
oomcaa,	146	175	178	174	173	180	181	176	166	175	159	87	182	182	182	182
mcaa•	Ε	R	Α	Ţ	L	S	С	R	Α	S	Q	S	-	-	-	-
rel. oomcaa ^s	92%	97%	%86	%96	95%	%66	100%	92%	91%	97%	980%	48%	100%	100%	100%	100%
pos occupied ^a			2	4	3	3			5		6	8	1	1	1	1

WO 97/08320 ·

Table 4C: Analysis of V kappa subgroup 3

4C. Analysis of															Fran	newo
amino acid'	L	28	29	30	31	32	33	34	35	36	37	38	39	4	4	42
Α				1	1			181								
В																
С																
D			1	1	2	1										
E						1							1			1
F .		1				7				1						
G			2	7	3	1		2						1	184	
Н			1			2				1		12	1	1		
l		24	4	1	1											
K				1	1								153			
L		8	1			1	176					3				2
·M						••••										
N			3	12	25	32										
Р					1									170		
Q					1	1					183	167	1			181
R			10	3	18	16		1			1		27	5		
S		72	86	151	118	4								5		
Ţ		1	1	3	8	1							1			
V		76	68		1		7					3		2		
W			5						185							
Х																
Y				1	1	115				183						
-	182															
unknown (?)											1					
not sequenced																
sum of seq ²	182	182	182	181	181	182	183	184	185	185	185	185	184	184	184	184
oomcaa,	182	76	86	151	118	115	176	181	185	183	183	167	153	170	184	181
mcaa¹	-	٧	S	S	S	Υ	L	Α	W	Υ	Q	Q	K	Р	G	Q
rel. oomcaas	100%	42%	47%	83%	65%	63%	%96	98%	100%	%66	%66	%06	83%	92%.	100%	%86
pos occupied ⁶	1		11	<u> </u>		12	:		1						1	

Table 4C: Analysis of V kappa subgroup 3

	rk II		. og. c							(DR I	1				
amino acid¹	43	44	45	46	47	48	49	50	51	52	53	54	55	26	57	28
Α	176							4	147				176	1		
В																
. <u>C</u>									1							
D								43					2		4	
E																
F				1		1	4									
G								125					2	10	179	
Н							9		1							
						178								1		168
K			1								7	1				
L		1		179	174	1										
· M						3					1					
N			1					1			53			2		
Р	5	184								2			2	2		
Q							1									
R			182					1			4	180				
S							3	6	4	179	74	1		5		
T	3								11	2	44			164		2
V				3	9			3	19				3			15
W					•••••		1					1				
X																
Y							165								2	
-	ļ			••••••												
unknown (?)			1		•••••											
not sequenced	•															
						 :		**********		183						:
oomcaa,	176	184	182	179	174	178	165	125	147	179	74	180	176	164	179	168
mcaa*	Α	Р	R	L	L	1	Υ	G	Α	S	S	R	Α	Ţ.	G	١
rel. oomcaa'	%96	99%	0/86	98%	95%	97%	%06	989%	80%	98%	40%	%86	95%	%68	97%	91%
pos occupied [«]	3	2	3	3	2	4	6	7	6	3	6	4	5	7	3	3

WO 97/08320

Table 4C: Analysis of V kappa subgroup 3

													F	rame	work	Ш
amino acid'	59	9	61	62	63	64	65	99	67	89	69	70	71	72	73	74
A		68						3		5	3	1		3		
В																
. c																
D		112				1						152				
E								1		1		30				
F			<u> </u>	183									183		2	
G		<u></u>	<u></u>	<u> </u>	<u> </u>	184	3	178	_	177						
Н	.	1	<u> </u>	ļ	<u> </u>	<u></u>	<u> </u>	<u>.</u>				<u></u>				
1		<u> </u>	<u> </u>	1	<u> </u>	<u>.</u>	<u> </u>	<u> </u>				<u>.</u>	<u> </u>	1		3
K		<u> </u>	1	<u> </u>			<u> </u>	<u> </u>	<u> </u>	<u></u>	<u> </u>		<u> </u>			
L	 	<u></u>		1	<u>.</u>		<u> </u>		<u></u>						182	
- M	ļ			<u></u>	<u></u>		<u> </u>	1	<u> </u>	ļ						
N		1					<u> </u>		<u></u>					1		
Р	177															
Q							<u> </u>		<u> </u>			1				
R			182		2		1				2					
S	7				180		179		185		3			7		2
Ţ	1		2		3		2				177			172		179
V		3						1		1						
W										1						
X																
Υ													1			
_																
unknown (?)								1								
not sequenced																
sum of seq²	185	185	185	185	185	185	185	185	185	185	185	184	184	184	184	184
oomcaa³	177	112	182	183	180	184	179	178	185	177	177	152	183	172	182	179
mcaa'	Р	D	R	F	S	G	S	G	S	G	Т	D	F	T	L	Т
rel. oomcaas	%96	61%	%86	%66	97%	%66	97%	%96	100%	%96	%96	83%	%66	93%	%66	92%
pos occupied ⁶	3	5	3	3	3	2	:		1		:	4	:	:	-	

Table 4C: Analysis of V kappa subgroup 3

·	<u>`</u>	, ,		<u> </u>												
amino acid'	75	92	77	78	79	8	8	82	83	84	82	98	87	88	68	06
Α							3			174						
В					1											
. c									2				1	182		
D			1				3	182								
Ε					149		175									2
F		1							178		2	1	4			
G			3					1		2						
Н											1				1	7
	178							1	1		9					
K							1									
L				178		1			1		7		1			1
M										1	5			<u> </u>		
N	1	5														
Р						149										
Q					34									1	181	155
R		1	111							3						1
S		169	65			34			1				2			
T		8	4							1						8
V	4			6					1	3	159					7
W																
Х																
Υ	1										1	183	176		1	2
-																
unknown (?)																
not sequenced				-												
sum of seq²	184	184	184	184	184	184	182	184	184	184	184	184	184	183	183	183
oomcaa³	178	169	111	178	149	149	175	182	178	174	159	183	176	182	181	155
mcaa'	1	S	R	Ĺ	Ε	Р	Ε	D	F	Α	V	Y	Υ	С	Ω	Q
rel. oomcaas	97%	92%	%09	97%	81%	81%	%96	%66	9/0/6	95%	%98	%66	% 96	%66	%66	85%
pos occupied ⁶	4	5	5	2	3	;	4	3	6	:	:	2	5	2	3	8

Table 4C: Analysis of V kappa subgroup 3

E 4C. Alialysis U		рро	3009	Toup		CDR	Ш							T		
amino acid'	91	92	93	94	95	⋖		U	۵	ш	ц,	96	97	86	66	100
Α			1	3 :	3 :	3			Ī	T				T	Ī	1
В								<u> </u>		-						***************************************
· C	2	2			1					Ī	<u> </u>		2			-
D		8	3 !	5				<u> </u>				<u> </u>		1		
Ε		2	2							•	<u> </u>		1		<u> </u>	
F .	5		2	2									,	166		
G	1	104	15	5	1		2	2				1	1		166	41
Н	4	1										2	2			-
1		<u> </u>	1			1						4	l e			
K			2		<u> </u>	1						1	<u> </u>			1
L		<u></u>		2	7	5						42				
·M		1			1	2										
N		28	71							Ī		1				
Р				1	139	24			<u> </u>			7	2			9
Q	1	<u> </u>	1		3	1						3		<u> </u>		114
R	34	2	3	<u> </u>	2	2						19				
S	2	3 3	58	102	15	2	<u> </u>					1	8			
T		2	13	1	1	- 2						1	154			
V					3	. 1						2				
W				69								24				
Χ														·		
Υ	134	1	1									43				
_			3	3	7	127	167	169	169	169	169	8	1	1	1	1
unknown (?)																
not sequenced						14	14	14	14	14	14	14	17	16	16	16
sum of seq ²	183	183	183	182	182	169	169	169	169	169	169	169	166	167	167	167
oomcaa¹	:	•			:									166	·····÷	•••••••••••••••••••••••••••••••••••••••
mcaa'	Υ	G	:		Р	-	-	-	-	-	-	Υ	T	F	G	Q
rel. oomcaa ^s	73%	57%	39%	26%	76%	75%	%66	100%	100%	100%	100%	25%	93%	%66	%66	0/089
pos occupied ^a	8	11		•	11	12		1	1	1	1		······································	······	2	6

WO 97/08320

Table 4C: Analysis of V kappa subgroup 3

or a mappa sabg			rame	work	: IV	-				1
amino acid'	101	102	103	104	105	106	⋖	107	108	- sum
А						Ī				1345
В							•		<u> </u>	2
С						<u> </u>	<u> </u>	<u> </u>		375
D		1			23		İ	 	<u> </u>	564
Ε			3		141	<u> </u>	<u> </u>		<u> </u>	759
F					-	6				765
G	166								1	1804
Н					1					64
l						143				803
K			152					157		489
L				54		1			2	1596
M						3				36
N		1					<u>.</u>	3		255
Р		1		1						1147
Q			1		1					1314
R			9			2		4	134	1326
S		2								2629
T		162	1					1		1593
V				111		11				6 46
W										287
X										
Υ			1							1014
-	1	1	1	1	1	1	166	1	1	2151
unknown (?)										4
not sequenced	16	16	15	16	16	16	17	17	- 45	337
sum of seq ⁷	167	167	168	167	167	167	166	166	138	
oomcaa,	166	162	152	111	141	143	166	157	134	
mcaa¹	G	T	K	٧	Ε	1	-	Κ	R	
rel. oomcaa'	%66	92%	%06	0/099	84%	%98	100%	95%	97%	٠
pos occupied ^a	2	5	7	•••••	5 1 3	7	1	5	4	

Table 4D: Analysis of V kappa subgroup 4

C 4D. Allalysis of V									_		Fra	mew	ork	ı				
amino acid'	_	2	က	4	S	9	7	8	6	0	=	12	13	14	15	16	17	18
А												24					1	
В																		
· C										1						1		
D	25								26									
E	<u> </u>																25	
F			<u> </u>															
G			<u>.</u>	<u></u>	<u> </u>		<u></u>					1				24		·
Н			<u>.</u>						<u> </u>	<u>.</u>				<u> </u>				
		26								<u></u>				<u> </u>				
K			<u></u>	<u></u>	<u></u>	1	<u>.</u>		<u>.</u>					<u>.</u>				
L	<u> </u>		<u>.</u>	1							26			<u>.</u>	26			
. м				24									*********					
N	1												***	<u>.</u>				
Р	ļ							26				1						
Q	 		1			25												
R	ļ												······································					26
S						•••••	26			25				26		1		
T					26								••••					
V			25	1									26					
W													•••••					
Х																		
· Y																		
-							······											
unknown (?)																		
not sequenced	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
sum of seq ²	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26
oomcaa,	25	26	25	24	26	25	26	26	26	25	26	24	26	26	26	24	25	26
mcaa'	D	1	٧	М	Ţ	Q	S	Р	D	S	L	Α	٧	S	L	G	E	R
rel. oomcaa ⁵	%96	100%	%96	92%	100%	%96	100%	100%	100%	%96	100%	92%	100%	100%	100%	92%	%96	100%
pos occupied ^a	2	1	:	;	:	2		:		2	1	•••••••••••••••••••••••••••••••••••••••	1	1	1			1

WO 97/08320

Table 4D: Analysis of V kappa subgroup 4

														DRI				
amino acid'	19	20	21	22	23	24	25	26	27	A	മ	U	۵	w	u.	78	53	30
A	26						1				1							
В																		
С					33													
D											1		1			1		
E																		••••
F ·																		
G																		
Н						.,												
			26							••••	1							
K						33										2		3(
L ·	<u> </u>										2	_31						
· M																		
N	ļ			26			<u> </u>				ļ					30	31	
Р	. .	ļ					1								1		<u> </u>	
Q						<u> </u>	<u></u>		32		<u> </u>			····		<u> </u>	<u> </u>	<u> </u>
R	. 	<u></u>			<u></u>		<u> </u>		1	<u> </u>	<u> </u>						1	<u> </u>
<u> </u>					ļ		31	33	ļ	33	ļ	ļ		32	32		1	<u> </u>
T		26			ļ	<u> </u>	<u> </u>	ļ	ļ	<u></u>		<u> </u>		1				<u> </u>
<u>V</u>					<u> </u>		<u> </u>	<u> </u>	<u>.</u>		28	2				<u> </u>		-
W	ļ				ļ		ļ		<u></u>		ļ	ļ				<u></u>	-	ļ
X	. .	<u> </u>		ļ	ļ	ļ	ļ	ļ	<u> </u>	<u></u>		ļ		ļ		<u> </u>	ļ	ļ
Υ	_	<u> </u>			<u> </u>	<u> </u>		<u> </u>		<u> </u>	<u> </u>	<u> </u>	32	<u> </u>	_	<u> </u>	<u> </u>	<u> </u>
	. .		<u></u>	ļ	ļ	<u></u>	ļ		ļ	ļ		ļ	<u></u>	<u> </u>		<u> </u>	ļ	ļ
unknown (?)	<u>.</u>			ļ	<u>.</u>			ļ	<u></u>	ļ		ļ				<u> </u>		-
not sequenced			-			<u> </u>			<u> </u>	<u> </u>	<u> </u>		_	-	-	<u> </u>	<u> </u>	<u> </u>
sum of seq ²		26	••••••	• •••••••	• ••••••	••••••	••••••					:	:	:	:	;	÷	•
oomcaa3	26	26	26	26	33	3	3 3	33	3 32	33	3 28	3 31	32	32	:	:	:	•
mcaa*	Α	Ţ	1	N	С	K	S	S	Q	S	٧	L	Υ	S	S	N	N	
rel. oomcaas	100%	100%	100%	100%	100%	8001	940%	100%	%2.b	100%	85%	94%	92%	970%	92.6	91%	940%	2
pos occupied ⁶		1 1	1		1	1	:	•			1 !	5 2	:	•	2	2	3	3

Table 4D: Analysis of V kappa subgroup 4

		oa su	<u>.</u>	<u> </u>							Fran	new	ork I	1				
amino acid'	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
Α				32						2								
В																		
· C																		
D										••••								
· E		<u></u>	<u></u>								1							
F .																		
G											32							
Н						2												
1	<u> </u>													*****				32
K									33						32			
L			33													29	33	
· M				·														1
N	33																	
Р										31			31	3 3				
Q							32	33				32						
R							1					1			1			
S													2					
<u> </u>				1														
<u>V</u>																4		·····
W					33													,
X																		
Υ		3 3				31												
-						•••••												
unknown (?)																		
not sequenced																		
sum of seq ²	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33
oomcaa,	33	33	33	32	33	31	32	33	33	31	32	32	31	33	32	29	33	32
mcaa'	N	Υ	L	Α	W	Υ	Q	Q	K	Р	G	Q	Р	Р	K	L	L	1
rel. oomcaas	100%	100%	100%	97%	100%	94%	97%	100%	100%	94%	97%	97%	94%	100%	97%	989%	100%	92%
pos occupied ⁶	1	1	1	2	1		2	1	1	•	:	:		1			1	

Table 4D: Analysis of V kappa subgroup 4

					CD	RI				\bot			_			·						
amino acid'	49	20	5	ដ	7 (2	54	55	ŭ	2	<u>ر</u>	88	ď	3 6	3 2	5 5	20	<u> </u>	64	65	99	; —
Α			30)																	ļ	
В													<u> </u>								<u> </u>	
С													<u> </u>			<u></u>					<u> </u>	
D														:	33							
E	1							3	2								_				-	•
F -		<u> </u>						<u> </u>					<u>.</u>				33				<u> </u>	••••
G		<u>.</u>						<u> </u>			33							1	33		3	33
Н	<u> </u>	<u>.</u>						ļ	_					_							ļ	
		<u> </u>				1		<u> </u>	_ _	_											<u> </u>	
K		<u></u>					•••••	ļ										 .			<u> </u>	
L		<u></u>						ļ												ļ	-	••••
М		<u>.</u>						<u> </u>	_					_					<u></u>		<u>.</u>	
N		<u> </u>				2		ļ	_										<u> </u>		-	
Р					1								-	33		1				ļ	-	
Q		<u> </u>					ļ	ļ	_			ļ						·	ļ	<u> </u>		
R		<u> </u>					33	<u> </u>	_			<u> </u>			_	32				<u> </u>	_	
S				1	31	1		ļ		33		<u> </u>						32	<u></u>	3	3	
<u>T</u>				2	1	29		<u> </u>				ļ							<u></u>	-		•••
V		<u>.</u>					ļ	<u> </u>	1			3	33						<u> </u>	 		
W		3	33				ļ	<u>.</u>	_			ļ							<u> </u>	-		
X		_					ļ	-	_			-					•••••			-		
Υ	3	3		_			<u> </u>	╧	_			<u> </u>	4	_		_		_	<u> </u>	+	4	=
-							ļ	- -				-										
unknown (?)						<u></u>												<u> </u>	-			
not sequence	1	_	_			<u> </u>	<u> </u>	<u> </u>	_			╇	4					_				=
sum of seq ²	3	3	33	33	33	3	3 3	3	33	33	33	3	33	33	33	33	33	3	3 3	3	33	
oomcaa,	3	33	33	30	31	29	9 3	•		:	;	:	:				:	•				
mcaa'		Y	W	Α	S	Ţ	F	}	Ε	S		•••••	٧		D	R	F	S	···÷·····		S	••••
rel. oomcaa		100%	100%	91%	94%	%000	0000	0,001	926	100%	1000	2	100%	100%	100%	97%	100%	20.0	0/2/6	0/2001	100%	
pos occupied	ر. 	1	1		3	:	4	1	2	1		1	1	1	1	2		1	2	1	1	_

WO 97/08320

Table 4D: Analysis of V kappa subgroup 4

40: Analysis of V				<u>·</u> -		ame	worl	k III										• •
amino acid'	129	89	69	20	71	72	73	74	75	9/	77	78	79	8	- 18	82	83	84
Α														33				32
В																		
. C																		
D				32												33		<u></u>
E															33			
F					32													
G		33		1														1
Н	<u> </u>													<u></u>				
<u> </u>	.								33			<u> </u>						
K	ļ														•••••			
<u></u>							33					32						
. M	.											1						
N	ļ									2	1							
P						•••••												
Q	Į		••••••										32					•••••
R			••••										1					•••••
S	33									30	32							
Ţ			33			33		33		1								•••••
V	ļ				1												33	· · · · · · · · · · · · · · · · · · ·
W																		
X																		
Y																		
_																		
unknown (?)																		
not sequenced																		
sum of seq ²	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33
oomcaa ¹	33	33	33	32	32	33	33	33	33	30	32	32	32	33	33	33	33	32
mcaa'	S	G	Ţ	D	F	Ţ	L	T	1	S	5	L	Q	Α	Ε	D	٧	Α
rel. oomcaas	100%	100%	100%	97%	97%	100%	100%	100%	100%	91%	97%	92%	97%	100%	100%	100%	100%	97%
pos occupied ^a	1	1	1	2		1	1	**********	1		:		:	1	1	1	1	2

WO 97/08320

Table 4D: Analysis of V kappa subgroup 4

4D. Allalysis Of V											C	DR II	11					
amino acid'	82	98	87	88	68	96	91	92	93	94	95	V	മ	U	۵	ш	<u>u</u>	96
Α										1								
В																		
· c				33														
D								1	1									
Е																		
F			1					1										
G									2	_								
Н			1		3													
										2								
К																		
L						1		2		1	3							1
M																		
N									4	4								
Р										1	29	1						4
Q					30	32					1							1
R									1			1						2
5	ļ						2		23	•••••••	•••••••••••••••••••••••••••••••••••••••							1
T -									2	22								
V	33																	
W																		2
X	ļ																	
ΥΥ		33	31				31	29										1
_	ļ											13	15	15	15	15	15	3
unknown (?)	ļ							••••••						• • •		10		
not sequenced														_	:		18	_
sum of seq'				: :	:	:			:	33								
oomcaa³		•		• · · · · · · · · · · · · · · · · · · ·	:	<u> </u>			:	22		13	15	15	15	15	15	
mcaa*	V	Υ	Y	С	Q	Q	Y	Y	S	i	Р	-	-		-			Р
rel. oomcaas	100%	100%	94%	100%	91%	92%	94%	88%	70%	67%	988%	87%	100%	100%	100%	100%	100%	27%
pos occupied ^a	1	1	3	1	2	2	2	4	6	7	3	3	1	1	1	1	1	8

"3

Table 4D: Analysis of V kappa subgroup 4

llysis of V kappa		Cup	<u> </u>			Fra	ımev	work	IV				\neg	
amino acid'	97	86	66	100	101			104		106	۷.	107	108	sun
Α				_										18
В														
С														6
D														15
E									14					10
· F		15												8
G			15	4	15									22
Н														
l										14				13
K							14					13		15
L								4						25
М	1													2
N												1		13
Р						1								19
Q				11				1						26
R							1		1			1	11	11
S	2									1				49
<u> </u>	12					14								23
<u>V</u>								9						19
<u> </u>							-	1						6
Χ														
Υ														25
											15			10
unknown (?)														
not sequenced	18	18	18	18	18	18	18	18	18	18	18	18	22	51
sum of seq ⁷	15	· 15	15	15	15	15	15	15	15	15	15	15	11	
oomcaa ³	12	15	15	11	15	14	14	9	14	14	15	13	11	
mcaa*	T	F	G	Q	G	T	K	٧	Ε	١	-	Κ	R	
rel. oomcaa'	%08	100%	100%	73%	100%	93%	93%	%09	93%	93%	100%	87%	100%	
pos occupied ⁶	3	1	1	2	1	2			2		1	3	1	

/20

Table 5A: Analysis of V lambda subgroup 1

												Fran	iewo	rk l						
amino acid	-	7	,	η,	4	2	ဖ	7	æ	6	10	=	12	5	4	15	9	17	8	19
Α					T							19		18	20					
В		******	Ī			Ī														
· C		••••	Ī																	
D																				
E																			1	
F .																				
G														22			42			
Н	2																			
				1								1								
K																			14	
L				1	41							1				•••••				
М																				
N																				
Р								41	41						1	41				
Q	22			1			41											42	:	<u></u>
R		<u> </u>									ļ		<u> </u>			<u></u>	ļ	<u></u>	25	
5		3	39							41			41			1	<u></u>	ļ	1	 -
Ţ						41					ļ	<u> </u>	ļ		19		ļ	<u> </u>	1	·
V		<u>.</u>	1	38						ļ	<u></u>	20		1	1	ļ	ļ	<u></u>	ļ <u>-</u>	4
W		ļ							ļ	ļ	ļ	ļ		<u></u>			ļ	ļ		<u>.</u>
Χ									ļ	<u> </u>	ļ			ļ		ļ			<u></u>	
Y		<u>.</u>							<u></u>	<u> </u>	<u>.</u>	ļ	ļ	ļ		ļ		ļ	-	-
Z	16									<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	-	<u> </u>	╄
-										<u> </u>	41	<u> </u>		<u></u>	ļ	-	ļ	 		<u> </u>
unknown (?)								<u> </u>	ļ	<u> </u>	<u> </u>	ļ		 	ļ	ļ		<u> </u>	<u> </u>	-
not sequence			2								1			1			<u> </u>		<u> </u>	<u> </u>
sum of seq ²	4() .	40	41	41	41	41	41	41	4	41	4	4	41	41	42	42	42	4.	<u> </u>
oowcaa,	2	2	39	38	41	41	1	:	:	•	•			22						
mcaa'	0		S	٧	L	Ţ	Q	Р	·					G	Α					
rel. oomcaa	, vo s	2	%8 6	93%	100%	100%	100%	100%	100%	100%	100%	4004	001 0001	54%	490%	9080	100%	100%		2 3
pos occupied				:	:					••••	;	•••••••	•••••	1 :	:		•	1	1	5

WO 97/08320 Table 5A: Analysis of V lambda subgroup 1

											CE	RI							
amino acid'	20	21	22	23	24	25	26	27	۵	ш	28	29	30	31	4	32	33	34	35
Α	2							1				2	2			1			
В																			•••••
С				42															••••••
D										3			3	1		3		1	
E													1						
F					1				1						1	1			
G						42	3	1			2	39	4	2					
Н			·											2		2		2	
<u> </u>	1	41								1	37							1	
K										1			1						
L		1									1								
М											1								
N								2	1	37			13	31	2		1	9	
Р																1			
Q																1			
R							1	1					5						
S	1		42		38		34	34	38				13	1	1	3		19	
T	38				3		4	3	2			1		1		7		2	
V											1					2	40		
W																			42
X																			
Υ														4	1	20		7	
Z																			
_										·					36				
unknown (?)																			
not sequenced														·	1	1	1	1	
sum of seq ²	42	42	42	42	42	42	42	42	42	42	42	42	42	42	41	41	41	41	42
oomcaa ³	38	41	42	42	38	42	34	34	38	37	37	39	13	31	36	20	40	19	42
mcaa'	T	1	S	С	S	G	S	S	S	N	1	G	N	N	-	Υ	٧	S	W
rel. oomcaas	%06	%86	100%	100%	% 06	100%	81%	81%	% 06	%88	88%	93%	31%	74%	%88	49%	%86	46%	100%
pos occupied ⁶	:	:		1	;	1	}				•		8		:	10		i	:

WO 97/08320 PCT/EP96/03647

Table 5A: Analysis of V lambda subgroup 1

															T				
						Fran	new	ork I	ľ						<u> </u>				
amino acid'	36	37	38	39	6	4	42	43	44	45	46	47	48	49	20	51	52	53	54
Α	<u> </u>						4	40									1		
В		<u> </u>	<u> </u>	<u> </u>															
. С	<u> </u>	<u> </u>																	
D						1									13	10	8		
E									•	2					5			1	
F	1			4					• • • • • • • • • • • • • • • • • • • •					1					
G				<u></u>		39							•••••		1				
Н	1	1	6	1					•••••		•••••			1				1	
													40		1				
К							1			35					1	1		18	
L			1	31							41	40						1	1
М							1						1					1	
N										1	•				3	28	30	2	
. Р					42	1			42										
Q		39	34															15	
R		2		1		1	Ī			4					7			2	40
S								1			•••••		***************************************	*********	9	2	3	1	
T							36	1							1				
V			1	5							1	2	1						
W																			1
Χ																			
Y	40													40	1	1			
Z																			
-																			_
unknown (?)										1			********						
not sequenced																			
sum of seq²	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42
oomcaa¹	40	39	34	31	42	39	36	40	42	35	41	40	40	40	13	28	30	18	40
mcaa¹	Υ	Q	Q	L	Р	G	T	Α	Ρ	K	L	L	1	Υ	D	N	N	Κ	R
rel. oomcaas	95%	93%	81%	74%	100%	93%	96%	92%	100%	83%	98%	95%	95%	95%	31%	37%	71%	43%	95%
pos occupied ^a		•••••••			1	•••••••••••••••••••••••••••••••••••••••	•	3		4			:		10	5	*******	*******	3

WO 97/08320 ·

PCT/EP96/03647

Table 5A: Analysis of V lambda subgroup 1

	CI	OR II						Τ											
amino acid'	55	56	<	æ	ပ	٥	ш	57	58	59	9	61	62	83	64	65	99	⋖	æ
Α	1											Ī			5	;			
В											<u> </u>				Ī		Ī		
· C											1				Ī			-	
D											38		-						
Е	<u></u>																		
F.													38						
G								41			2				36				
Н											1		<u></u>		<u> </u>	<u> </u>		<u> </u>	
1									17		<u> </u>		3			<u> </u>		Ī	
K								<u> </u>						••••	<u> </u>		38		
L		1								1									
M														•	<u> </u>	••••••••••••••••••••••••••••••••••••••	············		
N														*******					
Р	38							• • • • • • • • • • • • • • • • • • •		38									
Q				Ī									••••••	••••••					
R												42		********			4		
S	2	40								2		Ī		42		42			
Ţ															1				
V									24				1						
W																			
X																			
Y																			
Z																			
-			41	41	41	41	42											42	42
unknown (?)																			-
not sequenced	1	1						1	1	1	1								
sum of seq²	41	41	41	41	41	41	42	41	41	41	41	42	42	42	42	42	42	42	42
oomcaa³	38	40	41	41	41	41	42	41	24	38	38	42	38	42	36	42	38	42	42
mcaa¹	Р	S	-	-	-	-	-	G	٧	Р	D	R	F	S	G	S	Κ	-	-
rel. oomcaa ⁵	93%	%86	100%	100%	100%	100%	100%	100%	59%	93%	93%	100%	%06	100%	%98	0001	%06	100%	100%
pos occupied ⁶	3	2	1	1	1	1	1										********	:	1

Table 5A: Analysis of V lambda subgroup 1

				Fr	ame	wor	k III												
amino acid'	67	89	69	20	71	72	73	74	75	92	77	78	79	8	81	82	83	84	82
Α		1	3		41			24						2				38	1
В													Ī		Ī	<u></u>	<u> </u>	<u> </u>	
· c										<u> </u>	1		Ī	<u> </u>	<u> </u>	Ī			
D		1		-	<u> </u>	<u> </u>		1	<u> </u>	1			1		1	41			37
E				}	<u> </u>	1			······	<u> </u>	<u> </u>		1		24	}	42		1
F	1			 !		†	·}	<u> </u>		<u> </u>	<u></u>	ļ							•••••
G		40	<u> </u>	<u> </u>	<u> </u>	<u> </u>		17	ļ	1	42	!			15				
Н				 !	· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u> </u>		!		<u> </u>	ļ	1			•••••			2
				<u> </u>		<u></u>	<u> </u>	<u> </u>	41		<u> </u>		<u> </u>		•••••	•••••			1
К							ļ	<u> </u>		<u> </u>			·			•••••			
L					İ		42	<u> </u>		!		41				•••••		******	
М												•••••							
N										ļ						1		••••••	
Р	1													2					•
Q	Ĭ			·					······				31	••••••					
R	Ĭ						•••••		••••••				8	····÷					
S	42		1	42		24				20				20		······ 		1	
T			38	********		18			•••••••	21				17		····· i		3	
V				•	1		•••••	1	1			1		1	•				••••••
W							•••••		••••••	•••••			1		2				
X				••••••					•••••										
Y						•								•••••					
Z									••••			•••••							
_					·										_	Ť	寸	T	_
unknown (?)			·····		-								*****						
not sequenced				*******			•••••					İ		·····†					
sum of seq ²	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42
		•••••••••••••••••••••••••••••••••••••••	••••••••	•••••••	******	••••••	•••••••••••••	••••••••••	••••••••	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	*******	•••••••••••••••••••••••••••••••••••••••	20	•••••••••••••••••••••••••••••••••••••••	••••••	•••••••••••••••••••••••••••••••••••••••		
mcaa'		•			Α	:	······:	Α	••••••••••	Т	:	L	•••••••	*****	E	•••••••	•••••••••••••••••••••••••••••••••••••••	Α	•••••
rel. oomcaa ^s	%00 I	%56	%06	%00I	%86			•••••••••••••••••••••••••••••••••••••••	%86	•••••••••••••••••••••••••••••••••••••••	100%	••••••	••••••	•••••••	57%	0/086	· %001	%06	%88
pos occupied [«]		•••••	••••••		<u>ი</u> 2				ნ 2	:	1	2	:	:	<u>\$</u>	6 2	= 1		

WO 97/08320 Table 5A: Analysis of V lambda subgroup 1

										CDF	111								
amino acid'	98	87	88	83	90	91	92	93	94	95	⋖	<u> </u>	ပ	۵	ш	<u>. </u>	96	6	86
Α				22	15			1				16					4	1	·····
В																	_		
С			42																
D							39	17			7								
E												1					1		
F		2								1									3
G				14				1				-17	1			<u>ļ</u>	5	1	
Н		1											1						
1								,			1							1	
K											1								
L				1			<u></u>			37			1					1	
M							ļ											1	
N			, <u>.</u>				2	2			9	1							
Р				<u></u>	<u> </u>	ļ	<u> </u>		ļ	1							6		
Q				3	<u> </u>		<u> </u>	<u> </u>	<u> </u>					<u> </u>					
R				<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	5	1	2			<u> </u>			2		
S	<u></u>	<u></u>		<u> </u>	4	ļ	<u> </u>	17	35	ļ	18		1				1		
Ţ		ļ	<u> </u>	<u> </u>	22		ļ	1	1	<u> </u>	1								
V		ļ	<u> </u>	1	ļ	<u></u>	<u> </u>	1	<u> </u>	1	ļ	2						34	
W		ļ	ļ		ļ	38	<u> </u>	<u> </u>	ļ	ļ	ļ						7		ļ
X	<u> </u>	ļ		<u> </u>	ļ	ļ	ļ	<u> </u>		ļ	ļ	ļ							
Y	42	39			<u> </u>	3	<u> </u>	1	<u> </u>		ļ						3		-
Z		<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	Ļ	<u> </u>			<u> </u>							-
-						<u> </u>	<u> </u>	<u> </u>	<u> </u>		2	4	35	39	38	38	1	<u> </u>	-
unknown (?)		<u> </u>		<u> </u>	<u> </u>	ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ							-
not sequence	d					-i	1		1			1	<u> </u>					-	÷
sum of seq ²	42	42	42	41	41	4	1 4	41	41	41	41	4.1	39	39	38	38	39	39	
oomcaa³	42	39	42	2 22	2 22	2 3	3 39					17	35	39	38	38	<u></u>	34	• • • • • • • • • • • • • • • • • • • •
mcaa*	Υ	Υ	С	Α	Ţ	N	D	D	S	L	<u>S</u>	G		-	_	-	٧	٧	-
rel. oomcaa ^s	100%	93%	1000%	5.40%	5.40%	930%	920%	410%	85%	%U6	440%	41%	% 06	100%	100%	100%	23%	87%	
pos occupied	1	-7	1	•		•	ī	2			5 8	•••••••••	7	•	1	1	10) (5

Table 5A: Analysis of V lambda subgroup 1

		•	1	Fran	iewo	ork ľ	V					
amino acid'	66	001	101	102	103	104	105	106	⋖	107	108	sum
Α												285
В						<u></u>		Ī	<u> </u>			
С		· · · · · · · · · · · · · · · · · · ·										84
D		[******								224
E		1		•••••								81
F												87
G	36	31	36	••••						26		559
Н												25
1												188
K					30							141
L						25			34			344
M												5
N					1							176
Р						•					1	296
Q					3				1		18	251
R					1					2		156
S		1								2		720
Т		3		36	1		36					359
V						11		36	1			282
W										1		92
X												
Y												202
Z											·	16
-												524
unknown (?)	·											
not sequenced	4	6	6	6	6	_6	6	6	6	10	22	141
sum of seq'	36	36	36	36	36	36	36	36	36	31	19	
oomcaa,	36	31	36	36	30	25	36	36	34	26	18	
mcaa'	G	G	G	T	K	L	Ţ	٧	L	G	Q	
rel. oomcaas	100%	%98	100%	100%	83%	%69	100%	100%	94%	84%	95%	
pos occupied ⁶	1	4	1	1	5	2	1	1	3	4	2	

Table 5B: Analysis of V lambda subgroup 2

										··-	Fra	mev	vork	1					
amino acid'	-	2	က	4	ა	မ	7	8	6	2	=	12	13	14	15	16	17	18	19
А			35	5				30)		6	3	1	1		Ī			
В																<u> </u>	<u> </u>		
· C																			
D																1			
E		<u> </u>	<u> </u>	ļ															
F .	<u> </u>	ļ	ļ	<u> </u>	<u> </u>	<u> </u>													
G	<u> </u>	ļ	ļ	ļ		<u> </u>		<u> </u>			<u> </u>		42			42	<u></u>		
Н	2		<u> </u>	<u> </u>	ļ	ļ		ļ	ļ	ļ	ļ	ļ	<u> </u>	ļ	<u> </u>	<u></u>	1	ļ	
11	<u> </u>		1	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u></u>	ļ	ļ	<u> </u>	<u> </u>	<u>.</u>	<u> </u>	ļ	<u> </u>	28
K	ļ		<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u></u>	<u> </u>	ļ	<u> </u>	<u> </u>	 .	<u> </u>	<u></u>		<u> </u>	
<u>L</u>		<u> </u>	<u> </u>	40	<u> </u>	<u> </u>	ļ	<u>.</u>	<u></u>	<u> </u>	<u> </u>	<u></u>	<u> </u>	ļ <u>.</u>	3	<u></u>	<u> </u>	ļ	1
M	 	ļ	ļ	<u> </u>		<u> </u>		<u></u>	<u> </u>	<u></u>	<u> </u>			<u> </u>	<u> </u>	ļ			
N	 	<u> </u>	ļ	ļ	<u> </u>					ļ	ļ				<u> </u>				
Р	 	ļ	ļ	<u></u>		<u> </u>	42	6		ļ	ļ				40		•••••	·	
Q	22		4			41				ļ					·····		42		
R	ļ		ļ			ļ		6	1										
<u>S</u>		41				<u> </u>			40	<u></u>		42		42				43	
T					42				1			******		••••••					
<u>V</u>		1	2								36								14
W							•												
X					********		•••••		<u>.</u>										
Y 7						•••••			••••••	·····									
Z	16									4.5									_
- (2)										42									
unknown (?)		1	1		1	1													
not sequenced sum of seq ²																-			
oomcaa ¹		•••••••••••••••••••••••••••••••••••••••		•••••••••••••••••••••••••••••••••••••••	••••••	•••••••	•••••••	••••••	••••••••••	•••••••	42	••••••	••••••••••••	·····÷		····÷	•••••	·······	••••••
	: :	:						•••••			36			•••••••••••••••••••••••••••••••••••••••		•••••••••	••••••		28
mcaa•	u	S	Α		Ţ	Q	:	Α	S			S	G	2	Р	G	Q		
rel. oomcaa ^s	55%	%86	83%	100%	100%	98%	100%	71%	95%	100%	%98	100%	%86	%86	93%	%86	%86	100%	65%
pos occupied ⁶	3	2	4	1	1	1	1	3	3	1	2	1	2	2	2	2	2	1	3

WO 97/08320

Table 5B: Analysis of V lambda subgroup 2

•			F	ram	ewo	rk IV	·					
amino acid'	66	8	101	102	103	104	105	106	⋖	107	108	sum
А		1										280
В												
С												99
D												188
E												107
F												113
G	42	33	42							19		567
Н												48
1							1					184
Κ					36							189
L						28			40			264
М												29
N					1							146
Р												238
Q				ļ	1						14	250
R		1	ļ	<u> </u>	2	ļ				4		121
S			<u></u>	<u> </u>	<u> </u>	<u></u>	1			2		831
T		7		41	<u></u>	<u> </u>	40					398
V		<u> </u>	<u>.</u>	<u> </u>	<u> </u>	14	ļ	42	1			327
W	.	<u></u>	<u>.</u>	<u> </u>	ļ	<u> </u>	ļ					48
X	.	ļ	<u> </u>	ļ	ļ	<u> </u>	ļ			••••		
Υ	ļ			<u>.</u>	1	ļ	ļ			,,,,,		285
Z				<u> </u>		<u> </u>						16
	<u> </u>			ļ		<u>.</u>		ļ			<u></u>	555
unknown (?)	<u> </u>	<u> </u>		<u>.</u>	ļ	<u> </u>	<u>.</u>	ļ			<u> </u>	8
not sequenced	_			÷		1		1	•	15	_	80
sum of seq?	·	÷	•••••••	··•	•••••••	•••••		42	•		14	
oomcaa³	42	33	3 42	2 41	36	28	40	42	40	19	14	<u> </u>
mcaa*	G	G	G	Ţ	K	L	T	V	L	G	0	-
rel. oomcaas	100%	190%	100%	100%	88%	67%	95%	100%	%86	26%	100%	
pos occupied	1		4	1	!	5 2	2 3	3 1	2	3	1	L

134

WO 97/08320 ·

Table 5C: Analysis of V lambda subgroup 3

													Fr	ame	worl	(1						
amino acid'		7	۲,	, ,	‡	2	9	7		∞	6	2	2 =	: 5	7 5	. 4	<u> </u>	2 4	2	- 1	<u>~</u>	19
Α			I	I		1			1	2		7				2	0	1		_		27
В											<u> </u>	_			_			_				
. С								<u>.</u>			<u> </u>											
D			<u>.</u>	5				1	10		<u> </u>	-	_						_			
E			2	0				_	_		<u> </u>	_				1		_	1			
F	1		1				<u> </u>				ļ		_		1			1				
G				1			ļ												37			
Н							<u> </u>				-	_										
					_		<u> </u>				-	_								2		
K							<u> </u>				-				<u></u>				<u> </u>			
L		<u>.</u>		<u></u>	37		<u> </u>	_			-	-		4		1		9				
M		ļ					<u> </u>	_			-										*******	
N		ļ		<u></u>			 -				-							27				1
Р		ļ					-		26	3	5	1						27		36		
Q	4	ļ		4				38	*****		-									30		ļ
R		ļ					<u> </u>			ļ	_	_										
S	13		14			ļ	1		1	<u> </u>	·	28			37		18				38	<u> </u>
Ţ	ļ				*******	3	6			<u> </u>	1	_								<u> </u>	30	10
<u>V</u>	ļ	┇.	_	8	1			_		_	-	2		34		36				<u> </u>	<u> </u>	
W		<u>.</u>				<u> </u>				 										<u> </u>	<u> </u>	
Χ						-				-											 	
<u> </u>		-	23							-		_								. 	<u> </u>	·
Z	<u> </u>	4			<u> </u>	<u> </u>	<u> </u>	_		╄	\dashv	_					<u> </u>	-	_	<u> </u>	-	-
_	2	0			ļ					-			38							<u> </u>	 	-
unknown (?)	ļ				·	-				-										 		
not sequenced	<u> </u>	4			_	┿	-			+	_	-		20	20	20	20	20	20	2 2	2 2	Q 1
sum of seq ^z	3	8	38	38	38	3 3	38	38	3	8	38	38	38	38	38	38	აი	30 27	30	7 2	e 3	g :
oomcaa3	2	0					- 3		•	•			38		ر د	36 V	20 A	27 P	G	, 3 C	0 3	
mcaa¹		-	Υ	E	L		Ţ	Q	P	.		<u>S</u>	-	٧	S	V			·		<u></u>	
rel. oomcaas		53%	61%	53%	0.70%	2/ /2	95%	100%	7000	0/20	92%	74%	100%	%68	97%	95%	53%	71%	070%	2010	0,000	0 0 0 1
pos occupied		•			1		3	1	:	4			1	•	:	•	•	4	١.	2	2	1

WO 97/08320

Table 5C: Analysis of V lambda subgroup 3

_												CD	RI								
amino acid'	20	21	22	23	24	25	36	27	/7	، د	<u> </u>	28	53	30	7	;	۲ ج	35	۔ پر	34	35
Α			1						5						1	1			21	3	
В	••••			-					<u></u>					<u> </u>	_	<u> </u>					
· C		********		38	3									<u> </u>			_			5	
D		• • • • • • • • • • • • • • • • • • • •						30	1					1	0			3		1	
E								2	2				1		3	6					
F .														<u> </u>		1		2	_		
G						9 3	88		1				23	<u> </u>	4						ļ
Н			-					1						ļ				2		9	<u> </u>
i		38										9		<u> </u>		1		<u> </u>			ļ
K									7					<u>.</u>	2	13					<u> </u>
L			Ī									28		<u> </u>							ļ
M	1															1					<u> </u>
N				2				4	9			1		-	2			1		2	-
P				1										3							-
Q						10							ļ	<u>.</u>		4					-
R	25					<u></u>			2				1		1	<u> </u>			1		-
S	ç			1		19			10				ļ		11	2		8		14	ł
T	3	3	3	33					1			<u></u>	<u> </u>	1	4					<u> </u>	
V			<u>.</u>			<u></u>						ļ	<u> </u>	<u></u>				1	15)	-
W										ļ 		<u> </u>									
X										<u> </u>	ļ	ļ		_						-	-
Y	<u> </u>							1		<u> </u>	ļ	ļ	-			8		20		1	4
Z										<u> </u>	<u> </u>	L	╄	4		-			<u> </u>	$\frac{\bot}{\top}$	<u> </u>
-									<u> </u>	38	38	<u> </u>	-				37	.	ļ		-
unknown (?)				<u>.</u>					<u> </u>	ļ	<u> </u>	<u> </u>	_						<u> </u>	<u> </u>	
not sequence	d								<u> </u>		_	<u> </u>	╧	_			1				+
sum of seq'	3	8 3	18	38	38	38	38	38	38	38	38	3 3	8 :	38	38	37	37	37	3	8 3	8
oomcaa,	2	5	38	33	38	19	38	30	10	38	3 38	3 2	8 2	23	11	13	37	20	2	1 1	4
mcaa'				T	С	S	_	D	S		_	l		G	S	K	-	Υ	<i>F</i>	١ !	5
rel. oomcaa ^s		0,40	100%	87%	100%	20%	100%	9/06/	2,50%	100%	100%	2 2 2	7.4-70	61%	29%	35%	100%	54%	č	55%	37%
pos occupied	· · · · ·		·				<u> </u>		·· ·	· · · · · · · · · · · · · · · · · · ·	····		•	5		1	1	ŧ		4	7

Table 5C: Analysis of V lambda subgroup 3

•							Fran	nev	ork	: 11							_			~	4
ımino acid¹	36	37	32	3	33	40	41	42	5	}	44	45	46	47	48	49		51		:	
Α			Ī]:	23			<u> </u>	<u> </u>		<u> </u>	<u> </u>	1		1	
В							<u> </u>	_	┈	_			<u> </u>	ऻ	<u> </u>	<u> </u>		-		<u> </u>	
C							<u> </u>	_	_ _				<u> </u>	-	 -		<u> </u>		2	8	
D					,,		<u> </u>	_	_	_		ļ	_	-	╂			22		· · · · · · · · · · · · · · · · · · ·	3
E				1			<u> </u>	_	_				-	-	-	ļ	÷	3	· [<u></u>
F	3	}					<u>.</u>		_				-	_	-	-	2	<u>.</u>	2		
G							3	6	_			-		-		_		3	-		1
Н							<u>.</u>		1			-		-			-	2	+-	1	-
						<u> </u>	<u>.</u>	_	_			-	1	-	2	B	-	2	- 	1 1	3
K					32	2					<u> </u>	-	_	_		_	-		1		
L				2	ļ						<u> </u>	-	6 3		1	1	-	-	+	1	<u> </u>
М					<u> </u>	_	<u>.</u>	_			├-		-	1		<u> </u>			1 1	9	9
N			_		ļ	_	-				╀-	_		-	-	-	_			_	
P					<u>.</u>	3	6	_	1		13	8	-					9			1
Q			37	35	5	1			36		-	_	-	-				1	1		1 3
R		_	1			4		2		ļ	-	-		-		-				10	1
<u>S</u>					<u> </u>	1	2			11	4	-	-	-					2	4	
T				ļ						╂	+	-	31	4	37	9	·				
<u>V</u>		_		ļ						╁	1	\dashv	31		-						
W				<u> </u>	-					-	-	\dashv		-							
X				-						╫	-	-			_	_	35				
Y		35		-					-		+			一		_					
Z				÷	\	+			╄	╬	\dashv	_	_	_	寸						
_									-	┿					-						
unknown			<u> </u>	-				<u> </u>	╫		-				İ						
not sequen	ced		<u> </u>	+	_	20	20	1 2	<u> </u>	<u>.</u>	38	38	38	38	38	38	38	38	38	38	38 13
sum of se		38	3	8	38	38	36	3	6	16	23	38	31	33	37	28	35	9	22	19	13 K
oomcaa		35	3	1	<u>ქ</u> ნ	32 K) (D	2		0	 A	Р	٧	l	٧	1	Υ	D	D	N	Κ
mcaa' rel. oomc	5	Υ		8 1	u %	%	, r	2 2	9	%	<u></u> 8	%O(40%	2%	40%	38%	50%	34%
pos occup	3 3"	920		97.	920	84(0		C _D	3	<u>6</u>	12	8	8	6 2	1 7	6	7	1 2	3	7 9

WO 97/08320

Table 5C: Analysis of V lambda subgroup 3

	CDI							丄											"		
amino acid'	22	26	<	_ c	ه د	ے ر) L	u [<u>ک</u> د	χ χ	<u>က</u>	8	61	<u>.</u>		3 5	<u>ة</u> 5	5	<u>~</u>	⋖	æ —
Α		1	1					_								_					•••••
В		,	<u> </u>					_	_					 	-						
С													ļ	-	_						
D			<u> </u>				_					9	 	-	_						
E							_	_				27	<u> </u>		_	_					
F													ļ	3	8						
G									38					_			38				
H													ļ		_						
·										37			ļ	- -	_						
K				<u></u>									ļ								
L						<u>.</u>							-								
М												ļ	ļ		-						
N												ļ		_					21		
P	37	,	1								36	<u></u>	_								
Q												<u></u>		_							
R												<u> </u>	3	8	_	_					
S		1 3	36			<u> </u>					1	<u> </u>	_		_	38		38	12		<u> </u>
T					<u> </u>							<u> </u>	-						5	ļ	ļ
V											ļ	ļ	<u>.</u>		_				<u> </u>	<u> </u>	<u>l</u>
W											<u></u>	<u> </u>	<u> </u>						<u></u>	<u></u>	-
Χ												ļ			_				ļ	ļ	ļ
Υ													_	_				ļ		<u></u>	-
Z											Ļ	<u> </u>	<u> </u>	_				<u> </u>	<u> </u>	<u> </u>	÷
-				38	38	38	38	38		<u> </u>	ļ								<u>.</u>	38	} :
unknown (?)									<u></u>	ļ	ļ	<u> </u>	1					<u> </u>	<u>.</u>	-	<u> </u>
not sequence	d									•		1	1	_				<u> </u>	╄	╄	+
sum of seq	3	8	38	38	38	38	38	38	38	37	7 3	7 3	7	38	38	38	38	3	3 3	3 3	3
oomcaa,	3	7	36	38	38	38	38	38	38	3	7 3	6 2	27	38	38	38	38	3	3 2	1 3	3
mcaa*		0	•••••••••••••••••••••••••••••••••••••••	-	-	-	-	-	G	:	:			R	F	S	G	S	N		-
rel. oomcaa	5	9/0/6	92%	%00	%00	100%	%00 00	%00 l	00001	90001	200	0/ /G	73%	100%	100%	100%	100%	4000	2 %	3000	
pos occupied	Ž				÷	:	7									1	Ī	1	1	3	1

WO 97/08320

Table 5C: Analysis of V lambda subgroup 3

•					rame										_		2	3	.4	Ŋ	
amino acid'	29	89	69	70	71	72	73	74	75	- - - -	77		-			-	: :	83		:	=
Α					1 36	3	<u> </u>	_	1	ļ	<u> </u>		11	1	34	<u> </u>		ļ	38		••
В		<u>.</u>		<u> </u>		<u> </u>	_	_								<u> </u>					••
. С		<u> </u>				<u>.</u>	_		-		-					<u> </u>	20	<u> </u>		3	 7
D		<u></u>	<u> </u>	<u> </u>			_	_	_	_	-	_				<u> </u>	38	38	<u> </u>	†	<u>'</u> .
E	<u></u>	<u>.</u>					_			_				10		14		130	-	-	
F	.	<u> </u>	_				_	_	_		_	_		*******		10		-	-	-	
G	<u> </u>	3	7						-			28					-			<u> </u>	
H		<u>.</u>	_	1							-						 	-		-	
1	<u> </u>		_			_	1		1 3	7	1						-	+-	<u> </u>	 	
K	.	<u>.</u>		1				_	-						 -	-	2	†	_		••
L		<u> </u>		_				38								10		╫			••
M		_				_			_		_			<u> </u>			-		1	-	
N		_		28				_			1			<u> </u>	-		-	<u> </u>			
P	_					_		_		_				2!			-		-		
Q			1						_			10		÷	1	+	+	-	-	<u> </u>	
R	_											10		<u> </u>	-	1	-		<u> </u>		
S	3	17		2		· †	11		_		23		13		-	2	-		†		•••
T	_	1		6	37		25	<u></u>	36		12		14		1	1	1	-	_	_	
V	_	_				2				1				1	-			1	1	<u> </u>	
W													<u> </u>		-		-	_			•••
X													-			-					_
Y	_											•••••	-					-			_
Z	-						_	-	_				Ť	Ť	Ť	Ť					_
													<u> </u>					Ī			
unknown (I												-								
not sequence sum of sec	eo.	_		20	20	20	20	20	38	38	38	38	3 3	18	38	38	38	38	38	38	
	۱' إ	38	38	38	38	ა <u>გ</u>	ან ან	20	20	77	23	2	8 1	4	25	34	14	38	38	38	
oomcaa,		37	37	28	37 T	٥٥ ۸	7 7	1	T	<u>ی</u> ر ۱	ς	G	·	V	Q	Α	E	D	Е	Α	
mcaa'							Ì	•	•	1	•	•	•	7		Ī				 %	***************************************
rel. oomca	ıa ^s	37%	37%	74%	926	95%	%99	100%	95%	97%	61%	7.40%	7 400	37%	%99	%68	37%	100%	100%	100%	
pos occupi		رن	<u>, U,</u>	1	- 2		7			:	!	:	2	1	5	;	:	1	1	1	

WO 97/08320

Table 5C: Analysis of V lambda subgroup 3

										_	. 1	CDR									
amino acid'	98	87	5 6	88	68	8	91	92	93	94	, ,	95	⋖	6 0	ပ	٥	w.	ш.	96	97	8
Α						13	3	2		ļ		1	2		_				4		
В				<u> </u>						<u> </u>				<u> </u>							
. С				38						ļ	_										
D	ļ	<u></u>	_					32	1	<u> </u>	1		6								
E	.	ļ			1					<u> </u>	_			2					2		
F .	.	ļ	2						2	ļ											3
G	.	ļ					·			ļ	3	14	3			1			3	1	
Н	<u> </u>	<u>.</u>						<u> </u>	ļ					12	1						<u> </u>
1	<u> </u>	<u> </u>							ļ	ļ										4	<u> </u>
K		ļ		_			<u> </u>	<u> </u>	<u> </u>	<u> </u>			1					<u></u>			<u> </u>
L	ļ	Ļ			1		<u> </u>	ļ	1	ļ		1		1	1				4		!
М	ļ	<u> </u>					ļ		<u> </u>	<u> </u>	1								1	1	<u> </u>
N	<u> </u>	<u> </u>			10		<u> </u>	2	1	<u> </u>	2		10	1				ļ		<u> </u>	-
Р	<u> </u>	ļ					<u></u>	ļ	ļ		1				3		••••		1		_
Q					25		ļ					1	1	:							-
R			_				10		÷	<u> </u>	2			2					<u> </u>	<u> </u>	-
S		<u> </u>			1	14	1		28	3	26	13	:	1				1	<u> </u>	ļ	<u> </u>
Ţ		<u>.</u>				<u> </u>	1	<u> </u>	<u> </u>	3		7	2	<u> </u>			<u> </u>	ļ	ļ		-
V						11		<u> </u>	<u> </u>	-				ļ			<u> </u>	<u> </u>	 -	28	3
W		<u> </u>				ļ	23	3 .	<u> </u>	_		••••••	<u> </u>				<u> </u>	<u> </u>	1	<u> </u>	-
X			_				ļ	-	<u> </u>	- -			ļ	ļ	ļ		ļ	ļ		<u> </u>	-
Υ	38	3	36			ļ	<u>.</u>	ļ	<u> </u>		1		1	3	1			ļ	3	-	-
Z						<u> </u>	₋	<u> </u>	<u> </u>	1			<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>	<u> </u>	÷
an		_			ļ	ļ	<u> </u>		ļ	_	•••••		10	15	31	36	37	36	5	-	<u> </u>
unknown (?)		1			<u>.</u>		ļ	_	<u> </u>	4	******	<u> </u>	<u> </u>		<u> </u>	<u></u>	ļ	<u> </u>	-	<u> </u>	
not sequence		╧				<u> </u>	<u> </u>			1	1						=	1	-	-	1
sum of seq ²	3	В	38	38	38	3	3 3	8 3	7 3	7	37	37	36	37	37	37	3	7 3	7 3	7 3	7
oomcaa,	3	8	36	38	25										31	36	3	7 30			
mcaa'	Y		Υ	С	Q	S	N	/ D	9	5	S	G	N	-	-	-	-	-		V	
rel. oomcaa	7000	2)5%	100%	360%	370%	2, 72	06.00	0600	0/04/	20%	38%	280%	410%	84%	97%	10000	9200	7000	750%	0.07
pos occupied					÷	•							•	2		1	:	1	:	:	6

Table 5C: Analysis of V lambda subgroup 3

	-			F	ram	ewo	rk IV						
	amino acid'	66	001	101	102	103	104	105	106	4	107	108	sum
	А												265
	В	<u>†</u>		Ī		<u>-</u>							
	С			Ī							1		82
I	D		i										225
	E					2							145
	F												90
	G	35	31	35							24		461
	Н												32
	l												160
	K					30							110
	L						28			33			233
	М									+			17
	N												126
	Р									1			249
	Q											. 7	275
	R					2							154
	S										2		501
	T		4	<u> </u>	35			3 5					347
	V			<u> </u>			7		35				308
	W		<u></u>	<u> </u>	<u> </u>								62
	X		ļ	<u> </u>	ļ								
	Υ		<u></u>	ļ	<u> </u>								211
	Z												
	_		ļ		<u> </u>		<u> </u>						603
	unknown (?)	ļ	<u></u>	<u> </u>	<u> </u>	<u></u>	<u> </u>						1
	not sequenced	,—	=	$\dot{=}$	3		3				•	28	89
	sum of seq ²	35	35	35	35	34	35	35	35	34	27	7	
	oomcaa3	35	31	35	35	30	28	35	35	33	24	7	
	mcaa*	G	G	G	T	K	L	Ţ	٧	L	G	0	
	rel. oomcaa'	100%	%68	100%	100%	88%	%08	100%	100%	92/6	%68	100%	
	pos occupied ⁶	1	2	2 1	1	3	3 2	1	1	2	3	1	

Table 6A: Analysis of V heavy chain subgroup 1A

ſ														Fr	ame	wor	k l				
amino acidi	, -	2	· ·	4 ı	Ω ,	ဖ	7	8	6	10	=	12	13	14	15	16	17	18	19	2	7
Α					1	14			60							24	1	<u> </u>	<u> </u>	<u> </u>	
В																		ļ	<u> </u>	-	••••
· C																		<u> </u>	-	<u> </u>	
D		<u> </u>																<u> </u>	╬	-	
E	1				2	1		2		64								<u> </u>	-	-	
F																		<u> </u>	-	-	
G								58	1			ļ			64	<u></u>	<u></u>	ļ	-	-	
Н			2							ļ	<u> </u>	ļ		ļ <u>-</u>		ļ	<u> </u>	ļ	-	-	••••
1		2			_					<u> </u>	ļ	<u> </u>	<u></u>		ļ	<u> </u>	<u> </u>	<u> </u>	-	_	
K		2							<u> </u>	<u> </u>		÷	64	<u> </u>		<u> </u>	<u></u>	 	6	U	
L			2	59					ļ	<u> </u>	3	<u> </u>	<u> </u>	<u> </u>		ļ	<u> </u>	 	-		
M		1							ļ	ļ	ļ	<u> </u>	ļ			<u> </u>	<u> </u>	-		-	
N								ļ	ļ	 -		6			<u></u>	-	-	 	-		
<u>P</u>									ļ	<u> </u>		-		63		<u> </u>	<u> </u>	-	-	-	••••
Q	53		56		2	45		<u> </u>	-	<u> </u>	ļ	-			-	! -	 			3	
R									<u> </u>	<u> </u>	<u> </u>	1	ļ		<u> </u>	-		<u>. </u>		<u> </u>	
<u>S</u>	 						60	-	1 3	3		-	ļ	1	-	41	63	5		1	
T								<u> </u>	<u> </u>	-	 	-		-		 	╁		4		6
V	2	55		1	55			<u> </u>	ļ	-	6	1	-		-	-	-	0	4		
W	ļ				- 			-	<u> </u>	-	-	-	-	-	-	-	-				
<u>X</u>							-	ļ	ļ	-	-		-	-	-	-	-	-			,
Y						ļ		-	-	-	-	-		-		-	-				••••
Z	3					<u> </u>	<u> </u>	╄	<u> </u>	╬	╬	<u> </u>	┿	╬	 	╬	-	÷	$\dot{-}$	+	=
		ļ					-	-						-	-	-				<u>i</u>	••••
unknown (?)		<u> </u>	ļ						_	_	_						6	6	6	6	
not sequence	<u>d 11</u>	10	10	10	10	10) 10) 1	0	<u>ь</u>	b	b: '	b .	6			 -		_		=
sum of seq ²	59	60	60	60	60	60) 6	0 6	0 6	4 6	4 6	4 6	4: 0	4: 0 4: 6	4 0 2 6	4 0	n 6	2	54: 54:	6N	
oomcaa ³	******	• ••••••	·	59 L							4 b	1 5 / K	/	4: b	3 6	4 4	5 (5	V	K	
mcaa ⁴	ļ	٧	<u>.</u>	<u></u>	ļ							-									
rel. oomcaa ^s	%U6	92%	93%	%86	92%	750%	200	200	0/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2	94%	200	9200	0260		30%	200	0770	აგგ ი	100%	94%	-
pos occupied	:		•	:	:							2		1	2	1	2	2	1	3	<u>.</u>

WO 97/08320

Table 6A: Analysis of V heavy chain subgroup 1A

														_	DRI						_
amino acid'	21	22	23	24	25	26	27	28	29	30	31	4	60	32	33	34	35	36	33	38	=
Α				62	2			1		ļ	<u> </u>		_	-	41	<u> </u>	<u> </u>		_		
В							<u>.</u>	ᆜ	<u> </u>	<u> </u>	ļ			_	-	-				-	
· C		6	3				<u> </u>	_	<u> </u>	ļ	<u> </u>	<u>.</u>		_	_	-					
D		<u> </u>			<u>.</u>			1	ļ	<u>.</u>				-	-	-	-			-	-
E					_				-	ļ	<u>.</u>			-	_		_	-			
F .		<u>.</u>	<u>.</u>	<u>.</u>			_		69	3	<u>.</u>	_		_	3		3		-	-	
G					1	6	9 4	1		1		-			2	3					
Н							_			<u> </u>	1				1			1		1	
			<u>.</u>		_				1								1	1			
K			6	3					-		1	1				1	2				
L		<u>.</u>					_										4			-	
M	_		<u></u>									_						4	-		
N	[-							-	_	2	5				1					••••
P	_	_			_		_		_									-		-	*****
Q			_							-		_									70
R			1	1						-	1	1			2			60	-		
S		33			† -	68		1			10					3		4			
Ţ		1			2				8		25	3				1			-	69	
V																			70		••••
W																_					
X					_										64						••••
Y								27							07						
Z		_	_		_	- 			_		_		70	70	\dashv						_
													70	-/-							
unknown (
not sequence sum of se	ced	6	6	6	5	2	0	70	70	70	70	70	70	70	70	70	70	70	70	70	7
		64	64	64	65	80	69	/U	70	ر ر د ر	۸۸	ڊر در	70	70	64	41	61	60	70	69	
oomcaa ¹						68 S	69 G	41 G	ъв: Т		5	S	-	-	Υ	Α	1	S	W	٧	İ
mcaa*		>	<u> </u>	K	÷	ļ							.0	۰					2		
rel. oomca		%86	%86	%86	95%		100%	29%						÷	91%	29%	87%	- [7
pos occup	ied ⁶	2	2	2	3	1	1	4	3	2	e	; ;	5 1	1	4	6		ļ !	5 1	1 2	2

WO 97/08320

Table 6A: Analysis of V heavy chain subgroup 1A

				F	ran	nev	vorl	11															
amino acid'	33	40	41	42	7 5	4 ئ	44	45	46	47	: ;	δ 5	49	20	5	52	م	٠ ،	· α	ر. 	23	54	2
Α		70]					ļ	<u>.</u>		_	1				-	5					
В			<u> </u>	<u> </u>					<u> </u>	<u> </u>	<u></u>					ļ	<u> </u>						
. С			<u> </u>	<u> </u>					ļ	<u> </u>						<u> </u>	-						
D			<u> </u>	<u>.</u>					ļ	<u> </u>	<u></u>	<u>i</u>			<u> </u>	ļ	-						
E			ļ				.,	<u> </u>	69	3							-	-				39	
F .			<u> </u>					ļ	-						2		-	_				39	
G			ļ	1 6	8		69	ļ			1		69	39			- -	1					68
Н	<u> </u>	<u> </u>	ļ	1				ļ	_	<u>.</u>	<u>.</u>					-	_						
1	ļ	<u> </u>	<u> </u>		_			ļ						ļ	65	3	B				34		
K	<u> </u>	<u> </u>	<u> </u>					<u> </u>						<u> </u>	<u></u>	<u> </u>							<u> </u>
L			<u> </u>	<u>.ļ</u>	1			6	8			1		1	<u> </u>	-					2	†	<u> </u>
М								<u>.</u>	_			67	ļ	ļ	<u>.</u>		2				4	Ť	<u></u>
N		<u>.</u>	<u>.</u>	<u>.</u>			<u> </u>	ļ	_					ļ		-	4				3	22	-
Р	<u></u>	<u>.</u>	6	8					1	_			ļ	ļ	-	-	-	44					-
Q	69)				69		ļ			_		<u></u>	ļ	ļ	-					·	1	ļ
R	1	<u> </u>	<u> </u>		1			<u> </u>					ļ		1	_					1	·†	
S		<u>.</u>				1	<u></u>	<u>.</u>			1	1	<u> </u>	ļ	<u>.</u>	···[2				<u> </u>	- 	
T	1			<u>Ì</u>			<u></u>				<u></u>		ļ	<u> </u>	+		2	4	********		÷	·†	3
V			<u>.</u>				<u> </u>	_				1	<u> </u>	ļ	· 	2	2	16				1	<u> </u>
W		<u> </u>							1		67		ļ	2	6						<u> </u>	ļ	-
Χ		<u>.</u>						_	_						_		-			ļ <u>.</u>	<u> </u>	_	
Y	_									_	1										20	J	
Z			╧				╧	_		 			<u> </u>	<u> </u>	÷	÷	_			 	<u> </u>	┿	+
-		<u>.</u>					_					ļ						,	70	70)		-
unknown (?)						<u> </u>						<u> </u>	<u>.</u>	<u>.</u>						<u> </u>	-		
not sequence	d	<u> </u>	╧			<u>. </u>			_	_		_	<u> </u>	┿	4	4	_			 	┿	\dotplus	_
sum of seq ²	7	0 7	0	70	70	7	0 7	0	70	70	70	7	0 7	0 7	0 7	0	70	70	70	70) 7	0 7	0
oomcaa,	6	9 7	0	68	68	6	9 6	9	68	69	67	6	7 6	9 3	9 (55	38	44	70	7() 3	4 3	9 (
mcaa'	()	Α	Ρ	:	:		.				. 		3 (•••••		Р	-	-	-		:
rel. oomcaa	, 3	99%	0001	97%	17%	%000	02-66	39%	37%	%66	%9£	703	0,00	0/25	26%	93%	54%	63%	100%	100%		49%	26%0
pos occupied				******	െ	1	22	. رد	<u></u>	رن.	<u> </u>	1		: <u>.</u>			. . 6			1	1 1	····	6

144

WO 97/08320

Table 6A: Analysis of V heavy chain subgroup 1A

	С	DR	11											L_										_
amino acid	26	57	a a	3	23	8	61	62	8	64	Ü	<u> </u>	99	67	89	- 5		? ;	- 	72	7.	7	7	—
Α	1	34	4			69				<u> </u>		_		ļ	<u> </u>		_		13			<u> </u>	<u> </u>	
В								<u> </u>	<u> </u>	<u> </u>		_	****	<u> </u>	<u> </u>	-	_ -						╫	
· C		<u> </u>					<u></u>	<u> </u>	<u> </u>	<u> </u>					-		_					<u> </u>	╁	••••
D	15	ļ		1			<u> </u>		ļ	ļ	<u>.</u>	2		ļ	-	-	_			70		<u> </u>	╁	
E	<u> </u>	<u> </u>				ļ	ļ	_		<u>.</u>	1			-	-						33	<u> </u>	+	•••
F	.				1	<u> </u>	ļ		4	8				- 3	}		4					-	+	
G	1	ļ	_			ļ	ļ		3			67		-			-				<u></u>	-		
Н	<u>.</u>	ļ		1		<u> </u>				_				-	-	_					ļ	<u> </u>		,
	4	<u> </u>				<u> </u>	ļ			-			<u> </u>	-		1 4	14					3	-	•••
K	1	<u> </u>		2	1	ļ	ļ	4	7	<u></u>	1		ļ	<u> </u>	_							2		
L	1	<u> </u>	1			<u> </u>			2	2	<u></u>		ļ	_	2		1		3		<u> </u>	-		•••
М		<u> </u>				<u> </u>							ļ				21				 			,
N	9)		59		<u>.</u>		_ 1	8				ļ		-						╬			•••
Р	1	1	7				_		_				<u> </u>								-			•••
Q		1	1		ļ		7	0		_	64		-						•••••		-	1		•••
R		2			<u> </u>	_			2		1		6	9					••	<u> </u>			0	
S			1	2	ļ	_	1	_	-	_			<u>.</u>			_		5		ļ		7		6
T	3	4	26	4	<u> </u>	_	_	_			3		 	-		66		65	24	<u> </u>				
V					<u> </u>	<u>.</u>							1		55	3				<u> </u>				
W					ļ					_									<u></u>	 				
<u> </u>					-		-						-						<u> </u>	╬		-		
Y				1	6	8												<u> </u>	<u> </u>	-				
Z	_	4		_	<u> </u>	_	<u> </u>		-	_		<u> </u>	÷	\dashv	_	_		<u> </u>	<u> </u>	╁	$\frac{+}{1}$	Ť	-	=
-		_		ļ	ļ							ļ						<u> </u>	ļ					
unknown ()			ļ	<u>.</u>							<u> </u>						-		<u>.</u>				
not sequenc	ed	_		_	╧	4	 		_			÷	\dotplus	_			70	-	1 7	-	20	70	70	_
sum of seq	'	70	70	7	0	70	70	70	70	70	70) 7	0	70	70	/0	/(70); / -: ^	U .	7 () :	70	70	-
oomcaa,		******			9	68	69	70	47	48	64	1 6	57	69	65	66 T	44	1 6: T	o: 4	3 \	/U: D:	33 E	<u>/U</u> S	<u>:</u> .
mcaa*	•		Α	. <u>I</u>	<u>I</u>	i.				*******			<u>.</u> .	R		ļ	·!				 .			1
rel. oomca	a ^s	%61	%6t	2	3470	97%	%66	100%	%29	%69	910%	2	%96	%66	93%	94%	4000	920%	2	<u></u>	100%		100%	٠.
pos occupio		<u>.</u>	<u> </u>		<u>~</u>	<u>~ </u>	 	1		7		_	3	2	3	7	ı.	4	2	3	1	5	1	

WO 97/08320 ·

Table 6A: Analysis of V heavy chain subgroup 1A

					_	_		rk li													
amino acid'	92	77	78	79	Ş	3	<u></u>	82	⋖	8	ပ	83	84	82	98	84	88	8	8	91	92
Α			64				1						3			1	70	<u> </u>	<u> </u>		
В			<u> </u>	<u> </u>	<u> </u>													ļ	ļ		
· C			<u> </u>	<u> </u>	<u> </u>												<u> </u>		<u> </u>		70
D			<u> </u>	<u> </u>	ļ		2								70		<u></u>	<u> </u>	ļ		
E			<u> </u>	ļ		_	64							44			<u> </u>		<u> </u>		
F			<u> </u>	ļ	ļ	_												1	1	2	ļ
G			<u>.</u>			.				1									ļ	<u></u>	ļ
Н			<u>.</u>		<u> </u>				1				<u></u>	ļ				ļ	<u> </u>	ļ	
l		1	<u>.</u>		1			3	1	1			ļ	<u> </u>			ļ	2	<u> </u>	<u> </u>	<u> </u>
K		<u> </u>	<u> </u>	<u> </u>	<u>.</u>							3	<u> </u>	ļ	ļ		<u> </u>	ļ	ļ	<u> </u>	<u> </u>
L			<u>.</u>		<u>.</u>	3		63			70		<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ	2	†	<u> </u>	<u> </u>
М			<u> </u>	<u>.</u>	6	57						<u> </u>	ļ	ļ	ļ	1	ļ	1	<u> </u>	ļ	ļ
N	4		<u> </u>						1	16		ļ	<u></u>	<u> </u>		<u> </u>	ļ	ļ	<u>.</u>	ļ	
Р		<u></u>	<u>.</u>						<u> </u>			ļ	ļ	ļ			ļ	ļ	-		<u>.</u>
Q		ļ			1		3		ļ	ļ			ļ					ļ	ļ	ļ	<u>.</u>
R	3	<u> </u>						ļ	23	1		62		ļ	ļ		ļ	-		ļ	<u>.</u>
S	62	<u> </u>		1				ļ	41	49	ļ	ļ	67	<u> </u>	ļ	- 	<u> </u>	<u> </u>	<u> </u>	<u> </u>	-
Ţ	1	69	9	2					3	2	<u> </u>	4	_	<u> </u>	<u> </u>	67	-	<u> </u>	<u> </u>	-	<u>!</u>
V		<u> </u>	<u> </u>	3	<u>.</u>			4	<u></u>	<u></u>	ļ	1	ļ	<u> </u>	<u> </u>	ļ	<u> </u>	64	1	<u> </u>	-
W	<u> </u>	<u> </u>	<u> </u>		<u>.</u>			ļ	ļ	<u> </u>	ļ	ļ		<u> </u>	ļ		-	-	<u>.</u>	-	
X		<u> </u>						ļ	ļ	ļ	ļ	ļ	ļ	-	-		-	-			<u>.</u>
Υ		ļ		€	8			ļ	ļ	<u> </u>	<u> </u>	-		ļ			-		6	9 6	3
Z		L						<u> </u>	<u> </u>	Ļ_	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	 	<u> </u>	<u> </u>	╬-	Ļ	
_		<u>.</u>	<u>.</u>					ļ		<u> </u>	ļ	ļ	. ļ				-				
unknown (?)	_	<u> </u>						ļ	_		<u> </u>	<u> </u>	ļ		-		<u> </u>				
not sequence	d_							<u> </u>	<u> </u>	<u> </u>	<u> </u>	Ļ	╧	┿	<u> </u>	+	+	\dotplus	\dotplus	_	+
sum of seq ²	7() 7	0 7	0	0	70	70) 7(7(70	7(70) 70	0 7) 7) 7	0 7	0 7	0 7	0 7	0
oomcaa¹	6	2 6	9 6	34 (8	67	64	6	3 4	49	7() 6	2 6	7 4	4 7	0 6	7 7	0 6	4 6	9 6	8
mcaa*	.	i		Α	.		. į		S		L	÷		 					/ <u> </u>	' Y	
rel. oomcaa ^s	9000	2 3	3300	91%	97%	%96	31%	9000	200%	20% 20%	100%	9000	960%	2000	1000%	800	30.00		0 5 6 7	2000	0/ /C
pos occupied			<u> </u>		~	<u></u>	1				_	1	4	2	2	1	Δ	1	5	2	2

148

WO 97/08320

Table 6A: Analysis of V heavy chain subgroup 1A

											С	DR	111									
amino acid'	93	94	g.	3	96	92	86	66	90	4	۵	<u> </u>	ر	٥	ш	ட	ပ	I	_ 	_	×	101
Α	66	2	1	6		1	1	1	4		1	2	2	1	1		1	1	1	2		1
В																_						
. С						1	1	16	2		<u>.</u>	1	1	7	2	_1		<u></u>				
D			1	6	5	3		3	5		4	3	4			1	1	14				59
E				9				2				1			1			1				
F						1	3		2	ļ		3	1	2		2	1				28	2
G		2	2 1	4	13	20	10	14	5	2	0	15	16	3	3	4	15	1	1	7		
Н										<u></u>		1	1	1		1						
					2	5	2	2		<u> </u>	2	2	1	1			1					
K		į	5			2	1			<u> </u>	1											
L			1	4	4	2	5	2	1	<u>.</u>	1		4	2		1			1		1	
М				1		2		1	<u></u>		1			1	1						10	<u> </u>
N					2	2	1	2	1	ļ	2	2	2	2			1	1	4			ļ
P					20	3		1	3	<u>.</u>	2	2	2	4	2	1	4	1		1		-
Q					1			1		<u>.</u>	1	1	1								ļ	ļ
R		5	5	1	5	7	8	1	4			2		1		16		ļ				ļ
S			1	1	5	5	5	5	21		5	11	8	4	3		2	1	ļ	2	<u> </u>	ļ
T	1		3	3	5	4	1	3	4	<u> </u>	2	5	2		1			1	1	<u> </u>	ļ	<u> </u>
V	3	3		3	2	4	3	3	3	}	4	2	2	2	1	2	1	<u> </u>	<u></u>	ļ	<u> </u>	<u> </u>
W					1	1	3	} 1					2	<u> </u>	3		ļ	ļ	1	5	1	<u> </u>
X										<u> </u>					ļ	ļ	<u> </u>	ļ		ļ	-	ļ
Y			1		2	3	3 20) !	5	1	9	1	2	11	20	10	6	9	10	7	1	<u> </u>
Z						<u> </u>	<u> </u>		<u> </u>					<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	Ļ	┿
_					1	2	2	2	3	6	11	11	14	23	26	26	31	34	46	:	:	:
unknown (?)														<u> </u>	1		1	1	·÷	·÷	2	·-÷····
not sequence	d						2			4	4					5 5	÷		5 5			5
sum of seq ²	7	0 7	70	68	68	3 6	8 6	6 6	6 6	6	66	65	65	6	65	65	65	6	6	6	5 6	5 6
oomcaa ³	6	6 5	55	16	20) 2	0 2	0 1	6 2	1	20	15	16	2	3 26	26	3	1 34	1 40	3 3	9 2	8 5
mcaa ⁴	ļ		R	Α	Р	G	Y	′ (3	5	G	-	_		-		-	-	-	_ -	F	-
rel. oomcaa	5	3440	%62	24%	790%	7000	0,567	2000	206	32%	30%	23%	250%	250%	40%	400%	480%	520%	710%	2 00	400%	45%0
pos occupied	1e	·/-i	۰	10	1	<u></u> 4. 1	<u>ρ</u> 1	<u> </u>	8 1	5	15	17	1	7 1	5 1	2 1	1 1	1 1	0	8	7	6

14 × SUBSTITUTE SHEET (RULE 26)

Table 6A: Analysis of V heavy chain subgroup 1A

	Γ					Fr	ame	ew	ork	١٧							
amino acid'	102	103	104		105	106	107	:	108	109	110	2	=	112	113	<u> </u>	um
Α	Ī	<u> </u>	T			-	T	1									670
В	ļ	 -	1	-			<u> </u>	Ť									
C	-	 		1			T	Ī	•••••								165
D	-	<u> </u>	1	1													308
E		<u> </u>	1														297
F	2	2															226
G	1		ç	8		5	9	1	1					ļ	_		928
Н					1					<u>.</u>							14
······································		3								<u> </u>		4		_		_	286
K					3			1						ļ.			325
L		3			1				4()	1			-	_		386
М		1				ļ	_		:	3				-			189
N					1									-			176
Р		5								_				╀		_1	238
Q					52	2			ļ	-				-			494
R						<u> </u>			<u> </u>					-		_	351
S					<u> </u>	_	_		<u> </u>	<u>.</u>			ļ	-	53	51	972
Ţ		_	_		<u> </u>		-	54	1			51	Ţ <u>.</u>	-	1		736
V	1	5		1	<u> </u>	-			 	1	54		5	4		1	699 243
W			59		<u> </u>	1			-	-			-	+			24.
X					-				-	-			-	+			54:
Y	_	34		1	-				-				ļ	-			37
Z	_				╄	4	_		+	+		_	╁	÷		_	57
_	_	1			-				-			<u></u>	┼	-			,
unknown (В.,				_		11	1	1	1.4	1 /	15	. 1	6	16	17	-{
not sequenc		5	9			==		,	_	_			:	•		•	:
sum of sec	•	65	61	6	1 (oU.	59	5	0	00 40	50) D	1 (54	57	5	1. 1
oomcaa,	ļ		59			52 Q	59 G	:	4! [40 L	54 V			V	. J.3 S	S	
mcaa'		Υ	W			u		-				·					
rei. oomca	a¹	52%	97%	70.10	0,00	87%	100%		96%	71%	%96 6	%000	2	100%	980%	9050	0.00
pos occupi	ed"	q	3	1	4	7	1		3	5	:	3	2	1	2	2	3

148

WO 97/08320

Table 6B: Analysis of V heavy chain subgroup 1B

Γ															F	ram	ewo	rk l				_
mino acid'		7	m	4	r.	. 4	p 1	_	8	6	0	11	12	13	14	15	16	17	<u>~</u>	6	20	!
A	T			T	T	T	T			32							3	4		_	ļ	
В				<u> </u>	Ī		Ī									_	<u>.</u>	<u> </u>	<u> </u>		<u>.</u>	
С	1		<u> </u>	1	-							<u> </u>						<u>.</u>			-	•••
D	Ť			<u> </u>	Ī		Ī							<u> </u>			<u>.</u>	1			-	•••
E		1	 			5	1				35	5									_	
F			<u> </u>	1										_					_	_	-	
G			†	-					2	7						3	5					
Н	·		ļ	1												1						
			· •	Ī								<u>.</u>									-	1
K		3	3	1								<u> </u>	3	4 3	3				_	_ 3	3	
L			<u> </u>	3 2	26	1										_						•••
М				Ī	1	1			<u> </u>					_								
N			1											_		_		_			_	
P		1							<u>.</u>		1	_			:	33			1			
Q	21		1	20			26															
R	1							_						1	2							
S								2	7									1	34		_	
T		Ī									1					1					2	
V	3	3 2	1			20						<u>.</u>	35							35		3
W		Ī					<u></u>		.			<u></u>							<u></u>			•••
X												_										
Υ							<u>.</u>															
Z							<u>L</u>	╧	<u> </u>	_	_	<u> </u>	<u> </u>								_	=
								_	_													
unknown (?)						ļ		4									г	Ε	5	5	5	-
not sequence	d 1	5	15	15	13	13	3 1	3	13	13	6	5	5	5	5							=
sum of seq	2	5	25	25	27	2	7 2	7	27	27	34	35	35	35	35	35	35	35	30	35	22	1
oomcaa,	2	1	21	20	26	20) 2	6	27	27	32	35	35	34	33 v	33 D	35	. 34 Δ	34	35 V	K	1
mcaa'										G			ļ	<u> </u>	·	·····	· · · · · · · · · · · · · · · · · · ·	:				i
rel. oomcaa	5	34%	34%	30%	%9t	7.40%	24.	%96	100%	100%	94%	100%	100%	97%	94%	94%	100%	970%	970%	100%		- :
pos occupie	٦۴ <u> </u>	بيد	ບ.	<u></u>		<u> </u>	Λ	2	1	1	3	1	1	2	2	1	3 1	1 2	2 :	2 1	2	2

Table 6B: Analysis of V heavy chain subgroup 1B

																	ORI						
amino acid'	21	22	23	3 6	+ 7	72	76	27	28	29	30	3	31	⋖	ω	32	33	34	35	2	2 6	3 6	<u>۾</u>
Α		Ī		3	10					<u> </u>	<u>.</u>	_	2				6	_	<u> </u>	-	-	-	
В		_				_				<u> </u>	<u> </u>	<u>.</u>	_				<u> </u>	<u> </u>	<u> </u>	-	-	-	
. С		3	5		_ļ	_			<u> </u>	<u> </u>	<u>.</u>	-	_			<u> </u>	╄-	 	<u> </u>	-	-		 1
D	_	<u>.</u>		_	_				<u> </u>	<u> </u>		_	1					5	<u> </u>	1		-	!
E				3		_			ļ	-	-	_	1			-	-	-	╁	-	_		
F	<u>.</u>				_	_		2	ļ	3	9				ļ		2	2	 	+	_	-	
G	<u></u>				1		40		<u> </u>			1	14		ļ	-	-		+		-		
H	_				_			ļ	<u> </u>	_	_	_			ļ	-	3		3	4			
	_							<u> </u>	<u> </u>	<u> </u>	_ -	1			<u> </u>	-	-		}	-		-	
K				28				ļ <u>.</u>	<u> </u>	-					<u> </u>	<u> </u>	<u> </u>					2	
L								ļ	<u> </u>	<u> </u>	1		1		ऻ	-	-		5				
<u>M</u>	. 							<u> </u>	-	-					ļ	-	-	2:		 3			
N								1	ļ	+		1	3		-		-		1	<u> </u>	-		
P		<u>.</u>						-	-	-					-	-		1	-	1	_	-	
Q		_	_	2				-	-	_			1	<u></u>	-	-	1	-	-		-		 3
R				2				-		2			4.5		-			1	-	- 	\dashv		<u> </u>
<u>S</u>	3	5		_		40		-		5			15	<u> </u>	-	-		1	+				
T	-				3		ļ	 		2		34		<u> </u>	-				2		_	38	
<u>V</u>	- -	-			1		ļ	-	1			1	1	<u> </u>		-		-	-	1	40		
W	_						<u> </u>	-		-				<u> </u>	-	-	-		-				
X	_						<u> </u>	+	-			•••••	<u> </u>	<u> </u>			2 1		-	1			_
<u>Y</u>	-						<u> </u>	3	ь	-			1	-	-		-	_					-
<u>Z</u>		4				_	╀	+	╬	+	_		╁	1	0 • 4	<u> </u>	+	-	Ť		_		-
						<u> </u>	-			-		••••	-	- 4	0 4	<u> </u>		-					<u></u>
unknown (?	H	_				<u> </u>	-		-				 	<u> </u>					-				<u> </u>
not sequence	ea	5	5	5	5		<u> </u>		+	40	40	40	1	1 4	<u> </u>	<u> </u>	10	40 4	10	40	40	40	<u> </u>
sum of seq	' [35	35	35	35	4() 4	0 4	U	4U:	4U 20	4L	/; 4\ 	J 4	0	เก	22	19	23	34	40	38	
oomcaa,			35 C												-	-	Υ.	19 : Y	M	Н	W	٧	-
mcaa'	ļ.,			!	<u> </u>	· <u>†</u> ·····	··•						:				-						
rel. oomcaa	35	100%	100%	80%	%98	100%		200	%06 06	%08	%86	250%			900L		••••••	48%	7	85%	:	÷	•
pos occupie	ď"	1	1	4		1	1	1	4	4	2	(6 1	0	1	1	5	11	5	5	1		2

WO 97/08320

Table 6B: Analysis of V heavy chain subgroup 1B

_				Fi	ame	wor	k II					_	<u> </u>								 ^
mino acid'	33	40	41	42	43	44	45	46	47	48	49	20	5	52	<u>ح</u>	<u> </u>	ں 	53	:		ന്
Α		39		T		1				Ī	1		<u></u>	<u> </u>	7	<u> </u>	<u> </u>	1	<u> </u>	-	
В							<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		ऻ_	-	<u> </u>	<u> </u>	<u> </u>	-	
. C								<u> </u>	<u> </u>	ļ	ļ	<u> </u>	ļ.,	-	┼-	-	 	-	┼-	-	
D				<u> </u>			<u> </u>	<u> </u>	_	<u>.</u>	<u> </u>	<u> </u>		-	1	╬-	-	٠		1	
E					1		ļ	38	9	-	-	<u> </u>	-	-	-	-	-		- 	1	
F .					_	_		2	<u> </u>			-		<u> </u>	-		-		1	_	
G			_	3	9	2	8	_	<u> </u>		39)	1	-	-	1			-	1	
Н			<u>. </u>									ļ	-		-		-		2	+	
		<u> </u>				_ _	_				3	-	3	4	+	-	-		+	1	
K	<u></u>	<u> </u>		_		1						-		_			-		-		•••••
L				1			3	7	_					1	_				+		
M	_				_		_	_		3	7	-	2	4					0	12	
N	<u>.</u>	<u> </u>			_		_	_				-			15		-				
Р			1 3	34				1		_		-	-			11	_		-		
Q	3	9		_	:	39			1	-		_					_		3	1	
R		1					10	_	-	_		-	4		2				:-	20	<u></u>
<u>S</u>	_			1			1			_			-		1				-	3	÷
T				4	_		_						-		1	1			<u> </u>		-
<u>V</u>												-					-		十		<u> </u>
W					<u> </u>			_		40		-	33			-		-			<u> </u>
X		_						_	_									-	2		Ť
Y													-+					-			
Z		4	4	_		_	-	_			_	-	\dashv	+	╼╪	寸	40	40			Ť
_	-													-							†
unknown (?																				<u> </u>	Ť
not sequenc	ed	_	_				40	40	40	40	40	40	40	40	40	40	40	40	40	4	0
sum of seq	'	40	40	40	40	40	40	40	40	40	37	20	77	7∆	35	31	40	40	20	2	0
oomcaa,		*****		,	Ŧ					40 W	37 M	G	33 W) 1	N	Р	-	-	N		5
mcaa'	ļ		Α	•	:	Ω		; ,	<u>;</u>	<u> </u>	ļ						٩	چ.		<u> </u>	
rel. oomca	a³	%86	%86	85%	%86	%86	70%	93%	986%	100%	93%	980%	83%	85%	•		;	 	† <u>-</u> -	- <u>-</u> -	50%
pos occupio	ed"	2	2	4	2	2	4	3	2	1		2	4	4	5	4	1	1	1	9	8

WO 97/08320

Table 6B: Analysis of V heavy chain subgroup 1B

,	C	:DR	11																	
amino acid	26	57	28	59	09	61	62	63	64	65	99	29	89	69	8	71	72	73	74	75
А	1	2			27	2				1		1				2				12
В																				
С																				
D	1									4							35			
E	2		2			1				1						1				
F.				4				39						3						
G	15		6		1					34										
Н			1	1													1			
		1	1									1	1	13						22
. K	2	2	8				36		1							1				· ••• ••• ••
L						1		1						1						
М														23				1		1
N	17		18				1										4			
Р																			3	
Q						36			37											
R			2				1		2		37					34		1		
S	1			2	11		1									1			37	
Т		35	2		1		1						39		40	1		38		5
V	1						·					38								
W											3									
Х																				
Υ				33																
Z																				
-																				
unknown (?)																				
not sequenced																				
sum of seq'	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
	17	*******	÷				·		:	:				: :		:	:	;	:	•
mcaa'	••••••••	T	N			Q	····	····	•	G	·	٧				:				ı
rel. oomcaas	13%	38%	45 %	33%	98%	%06	%OE	98%	93%	85%	93%	95%	98%	58%	100%	85%	88%	95%	93%	55%
pos occupied ⁶	:	:	:	:	•	·	5	•	3	•	2	•	: :	:	:	: _	•	:	2	<u> </u>

WO 97/08320

Table 6B: Analysis of V heavy chain subgroup 1B

,							ewo	_															
amino acid'	9/	77	7.0	0/	79	8	8	82	∢	~	، د	, ر		84	82	98	87	88	8	8	3 3		85
Α			3	35						<u> </u>				1	2			40	<u> </u>	<u> </u>			
В										ļ			ļ.						<u> </u>	<u> </u>			••••
· C										ļ									<u> </u>	ļ			37
D	1						4			<u> </u>					19	40			1	<u> </u>			•••
E							35			ļ	_				19				ļ				
F				1						ļ				2			•••••		<u> </u>		_	2	1
G		ļ					1		1	ļ	2								ļ	<u>.</u>	_		
Н		<u> </u>						<u> </u>	<u> </u>	ļ	<u></u>								ļ	.ļ			
1		<u>!</u>	1					<u> </u>	<u></u>	<u> </u>				•••••				ļ	ļ	1			
K									<u> </u>	<u> </u>			1			<u></u>		ļ	<u> </u>	<u>.</u>			
L						2		39	<u> </u>	<u>.</u>		39						ļ	·†·····	2	<u></u>		
М						37	<u> </u>	1	<u> </u>	ļ					-		<u></u>	<u> </u>	ļ	2			••••
N	7	<u> </u>					<u> </u>	<u> </u>	1	<u> </u>	2								ļ		<u> </u>		
Р									ļ					1	ļ	ļ	ļ		ļ	<u>.</u>		1	••••
Q							ļ			_	_				ļ	ļ	ļ	ļ					
R	4	1			, 1 1 1 1 1 1			<u> </u>		2	16		37		<u></u>			ļ	ļ	ļ			
S	2	7			1	<u> </u>	<u> </u>	ļ	3	5 :	20		1	36	ļ	ļ		ļ	<u>.</u>	<u></u>	1	1	
T		1	39				<u> </u>	<u> </u>		1			1		ļ	ļ	40)	<u> </u>				
٧				4		1			<u> </u>	1		1			ļ	ļ	<u> </u>	-	3	3	_		
W						<u> </u>	<u>.</u>	<u> </u>		_ _					<u> </u>		ļ	-	-				
X															<u>.</u>		ļ	ļ					
Y					39					_				ļ		-			-		38	35	
Z		1			<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>!</u>	1				<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	-	_			<u></u>
_					<u> </u>	<u> </u>	ļ		_				ļ	ļ			-						<u></u>
unknown (?)					<u> </u>	<u>.</u>		_	_	_			ļ	<u> </u>	-	-		<u> </u>	<u> </u>	_			<u> </u>
not sequence	d	1			<u> </u>	Ļ		╧	<u> </u>	4			<u> </u>	<u> </u>	┿	-	-	┿	$\dot{-}$	1	1		÷
sum of seq ²	4	0	40	40	4() 4(0 4	0 4	0 4	0	40	40	40	4() 4	0 4) 4	0 4	0 :	39	39	39	
oomcaa ³																9 4	0 4	0 4	0	33	38	35	
mcaa'		5	T	Α	Υ	N	1 [L !	S	S	L	R	S	C					٧	1	Υ	-
rel. oomcaa	5	0/n8c	%86	38%	780%	3000	32.00	88%	98%	88%	20%	%86	93%	9000	3000	1000%		2001	% 001	85%	97%	%06	
pos occupie	:			:	:	:	:		:	:	:	:		:	1	3	1	1	1	5	2	4	Į.

WO 97/08320

Table 6B: Analysis of V heavy chain subgroup 1B

										CDF										
amino acid'	93	94	92	96	97	86	66	001	⋖	80	ပ	٥	ш	ட	ဖ	I	_	_	~	5
Α	37	1	6		1	1		2	3	1	3		1					5		
В								<u> </u>												
· C		1				3		<u> </u>		2	1									
D			7		5	2	3	1	5	4		1		2	2	1	2			27
E			2		1			1	1		2		1		1					
F				1	1	3		į	2	1	1	1	1					2	15	
G		1	7	7	5	5	9	4	7	1	3		2	2	1		1	3		1
Н			1				2			1	1									
1		1		1	1	3	1	1	1	1	1	1					<u></u>		1	
K		1			1				1	1		1		1			1			
L			2	4	4	4	3			1	2	1	1	2		1	<u></u>		2	
M				2		1	1								1				4	
N					1			1		1	1	1			3		1			1
Р				6	4				1	1		3	2				1			
Q					1							1	2	1						
R	1	31		5	1	1	3					1		1				1		
S		1	3	3	1	4	3	6	3	2	2	1		1						
T		2	1	1	2	2	1	5	1	1	1		1			1		1		
V	1		7	1	1		1	3	1	2		1			1	2	1			1
W			1		1		2	2		1	1					1		4		
X																				
Y				5	5	4	2	3		4	3	3	2	1	2	· 5	6	2		
Z																				
_				1	1	4	6	8	10	11	14	20	23	25	25	25	23	18	11	6
unknown (?)																			3	<u></u>
not sequenced	1	1	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	4	4	4
sum of seq ²	39	39	37	37	37	37	37	37	36	36	36	36	36	36	36	36	36	36	36	36
oomcaa ¹	ļ	31			Ţ'		····	********		,		20			:	•	•	•	•	•
mcaa*	Α	R	D	G	D	G	G	-	-	-	-	-	-	-	-	-	_	-	F	D
rel. oomcaas	95%	79%	19%	19%	14%	14%	24%	22%	28%	31%	39%	9099	64%	%69	%69	%69	64%	50%	42%	75%
pos occupied ^e		·	•	•	•	•	•	:	:	:	14	:	÷	è	•	•	:	:	;	5

WO 97/08320

Table 6B: Analysis of V heavy chain subgroup 1B

						Fr	ame	ewc	rk	IV					ل	
amino acid	102	103	2	5	105	106	107-	9	001	109	110	-		- :		sum
Α			I								Ţ			_		340
В						ļ		<u>.</u>								
С						<u> </u>	_	<u> </u>			<u> </u>		-			79
D		2				<u> </u>	_	_ _			<u>.</u>			_		179
E			_		1	<u> </u>				ļ	_	_				159
F		1				ļ	_	<u>.</u>		ļ	_					130
G				27		2	6			ļ			1			450
Н		1								ļ						51
		7								<u> </u>		3				113
K						2		_		<u> </u>	<u> </u>					194
L					<u></u>				12	<u> </u>			1			204
М									2	2	_					144
N		1														138
Р		1			<u>.</u>	1										128
0					2	3				ļ						253
R					.		_			1	_					247
S		3					ļ					1		18		-11
T					_		_	21		6	†	16		1		390
V		6			_						21	<u> </u>	18		<u></u>	342
W			29	ļ					ļ	<u>ļ</u>					 	158
X				ļ	_				ļ						<u> </u>	-
Υ		11		ļ	_				ļ	-					-	29
Z	_			<u> </u>	4	4			<u> </u>	<u> </u>					┿	╣"
_	_	3		<u> </u>					ļ	_				ļ	-	39
unknown (?)			ļ	_				ļ	_						 2 45
not sequenc	ed	4	11	1	3	13	14	19)	19	19	20	20	<u>Z</u>	1 2	<u>리</u> 43
sum of sec	1 '											20				
oomcaa ³			******		•••••			2	1			16 T			ਰ]	S .
mcaa ⁴		Y	٧	(G	<u></u>	G		<u>.</u>	L	٧	T	V			
rel. oomca	ıa ^s	31%	100%	2	100%	85%	100%	100%	2	27%	100%	80%	%U6	9020	0,00	100%
pos occupi	ede	10)		1		1		1	4	1	1	3	3	2	1

WO 97/08320 ·

Table 6C: Analysis of V heavy chain subgroup 2

																ewo				
mino acid'	_	2	က	4	2	9	7	∞	6	2	1	12		14		<u>9</u>	17		<u></u>	7
A										3	<u> </u>		<u> </u>	<u> </u>		-	<u> </u>	-	╬-	-
В		<u> </u>	<u> </u>	_	<u>.</u>	<u> </u>			<u>.</u>	<u>.</u>	<u> </u>	<u>-</u>	<u> </u>	-		<u> </u>	╁_		-	<u> </u>
. С			<u>.i</u>		<u> </u>	<u>.</u>		<u>.ļ</u>	<u> </u>		<u>.</u>	<u> </u>					-	-		-
D						ļ		<u>.</u>	<u>.</u>		ļ	-		-			_	-	-	-
E	1					(3		_		-		_	-		-	2	-	-	+
F		<u> </u>			<u> </u>					_	-			-	_	-	-		-	
G							_		6		-						-	-	-	
Н									<u>.</u>		<u>.</u>			-				-		
1		<u> </u>	1								<u>.</u>					_			-	-
K						3				<u></u>				6		1			_ _	
L					6							6	-	-					6	
М																-				
N								1			_		_	_			_			
Р								1		6					6		_	1	_	
Q		2										-	_				4		-	-
R						2				<u>ļ</u>							-		 	-
S		<u>.</u>						4						_		_				
T		<u></u>	<u></u>	6		1			_		2		-	_		5		5		6
V			5								1		6							
W																				
Х																	_			
Y																				
Z		3						_	_	_	_		-	_	\dashv	-	+	-	_	_
unknown (2)																_			1
not sequenc	- 11	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1
sum of seq	,	6	6	6	6	6	6	6	6	6	6	······	6	6	6	6	6	6	6	6
oomcaa³	- 1	3	5	6	6	3	6	*****	*******	·	3	6	6	6	6	5	4	5	6	6 T
mcaa*		Z	٧	T	L	K	Ε	S		Р	Α	L	٧	K	Р	T	Q	T	L	
rel. oomca	a ^s	%O	83%	%00	100%	%O:	%00	37%	100%	100%	20%	100%	100%	100%	100%	83%	%29	83%	100%	100%
pos occupio						<u>ი</u>		i		: :		1		1	1	2	2	2	1	1

WO 97/08320 ·

Table 6C: Analysis of V heavy chain subgroup 2

•	**															CDI	RI						
amino acid¹	21	22	23	24	25	3 6	07	27	28	29	30	31	٨	α.	۶ ،	32	33	34	35	36	2	; ;	8
Α									1				1	Ī			1		<u> </u>	ļ	.ļ		
8				<u> </u>									ļ							<u> </u>	_		
. C		7		<u> </u>								<u> </u>	ļ	<u> </u>			2	*******	<u> </u>	<u> </u>			
D				<u> </u>								<u> </u>	1			_				<u> </u>		<u> </u> -	
Ε				<u> </u>								ļ	ļ		_				ļ	<u> </u>	<u> </u>		
F			<u></u>		3			6		1				ļ	_					ļ	<u> </u>		
G			<u></u>				7						<u> </u>	<u>.</u>	4		3		3	<u> </u>	<u>.</u>		
Н												<u> </u>	<u> </u>	<u>.</u>	_				ļ	<u> </u>	<u>.</u>		
												<u> </u>	<u>.</u>		1				<u> </u>	<u> </u>	<u></u> ļ	7	
K													<u>.</u>	<u>.</u>		ļ			<u> </u>	ļ	<u>.</u>		
L					2			1		6	<u> </u>	<u> </u>		<u>.</u>					<u> </u>	ļ		<u></u>	
M							İ									5			<u> </u>	<u> </u>		_	
N											<u> </u>	1	2						ļ	ļ	-		
P													ļ						ļ	<u> </u>	_	_	
Q											<u> </u>	<u> </u>	<u>.</u>							<u> </u>			
R	l		-												2		1		ļ	<u>.</u>			
S	 	<u></u>	1			6		,	6		(:	2	4				<u> </u>		1			
T	6	1	(3							1		3	1			•••••	ļ	<u> </u>				
V	1	<u> </u>	1	Ī	2	Ī										2		7	<u>, </u>	<u> </u>			••••
W		1	Ī	Ī	Ī			٠										<u> </u>	<u> </u>	_	7		
Χ	·	1	1	<u> </u>														<u> </u>	<u> </u>				•••
Y	1	1		Ī	Ī	1												<u> </u>	<u>.</u>	1		_	
Z	1	1					*******												<u> </u>				
******************************	T			T														ļ	ļ	<u>.</u>			
unknown (?)	1	1	-															<u> </u>	<u> </u>		<u> </u>		
not sequence	В																	<u> </u>					_
sum of seq²		3	7	7	7	7	7	7	,	,	7	7	7	7	7	7	7	,	7	7	7	7	
oomcaa ₃	(3	7	6	3	6	7	6	3 (3	6	6	3	4	4	5	3	3	7	4	7	7	
mcaa ⁴	T		1		F	S	G	F	S	Ī	2		r !	5	G	M	G	V	! !	5	W	١	
rel. oomcaas	1000	%0001	200	0,00	43%	%98	100%	86%	960%	9050	2 6	0600	45%	5/%	57%	71%	43%	200	200	0/ ₂ /رد	100%	100%	-
pos occupied			-	·	•••••••	******	•••••••	:					•	4			:		1	2	1	1	

SUBSTITUTE SHEET (RULE 26)

WO 97/08320

Table 6C: Analysis of V heavy chain subgroup 2

•				Fra	mev	vork	: II													
amino acid'	39	40	41	42	43	44	45	46	47	48	49	20	51	25	⋖	8	U	53	54	22
Α						6					7									
В																				
· C																				
D				İ										2					3	6
E			į					7												
F														2						
G		1		7		1														
Н			į									2								1
1													6							
K			<u> </u>		6															•••••
L			į				7			7		2	1	1						******
M																				······
N																			3	
Р		5	7																	
Q	6																			·····
R	1				1							2								,
S		1																2		
T																				
V																				
W									7			1						4		
X														1				1	1	
Υ														1	1					
Z																				
									ļ						6	7	7			
unknown (?)	ļ						ļ	ļ												
not sequenced																				
sum of seq ²	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7		
oomcaa ³	6		÷		····	····	7	į	÷	÷	÷	2		2	6	7	7	·		÷
mcaa ⁴	Q	Р	Р	G		ļ. 	L	Ε	<u></u>	-		 			-	-	-	W	D	U
rel. oomcaas	%98	71%	100%	100%	%98	%98	100%	100%	100%	100%	100%	29%	%98	29%	%98	100%	100%	57%	43%	%98
pos occupied ⁶	•	•	:		2	į	:	į	•		•	•	2	:	:	1	1	3	3	2

WO 97/08320

Table 6C: Analysis of V heavy chain subgroup 2

		DR																		
amino acid'	26	22	28	59	90	61	62	63	64	65	99	29	89	69	20	7	72	73	74	75
Α																				
В																				
. C																				
D	5																6	1		
E	1								1											
F		1		1																
G																				
Н				1																
														6						
K	1	6							4							6				6
L								7				7								
М.																				
N																	1			
. Р						2														
Q																				
R			2			1			2		7					1				1
S			2		6		7			4			1		5				7	
T						4				3			6		2			6		
V														1						
W				1			·													
X					1															
Y			3	4															,	
Z																				
-																				
unknown (?)																				
not sequenced	<u> </u>																			
sum of seq ²	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
oomcaa3	5	6	3	4	6	4	7	7	4	4	7	7	••••••••	6	********	*****		÷	÷	÷
mcaa'	D	K	Υ	Υ	S	T	S	L	K	S	R	L	T	ı	S	K	D	T	S	K
rel. oomcaa⁵	71%	%98	43%	57%	%98	57%	100%	100%	57%	27%	100%	100%	%98	%98	71%	%98	%98	%98	100%	%98
pos occupied ^e	:	:	:	:	2		1	i		2	1	1	2	2	2	2	2	2	1	2

Table 6C: Analysis of V heavy chain subgroup 2

				ſ	ram	ewo	rk I	11												
amino acid'	9/	77	28	79	8	8	82	⋖	8	ပ	83	84	82	98	87	88	83	6	91	92
Α													1			5				
В																				
. C			ļ																	
D	<u></u>	<u> </u>	<u> </u>								6			7						
<u> </u>	ļ																			
F .	ļ				1		••••••							****						
G														*******		2				
Н	ļ																			
·	ļ			:		2		1												
K																				
L					6															
M	ļ						7			5										
N	5								6		1									
Р												7								
Q		7																		
R																				
S	2																			
Ţ						5		5							7		7			
V			7	7						1			6							
W																				
X					•															
Υ																		7	7	
Z																				
-								1	1	1										
unknown (?)																				
not sequenced																				
sum of seq ²	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
oomcaa ³	5	7	7	7	6	5	7	5	6	5	6	7	6	7	7	5	7	7	7	
mcaa*	N	Q	٧	٧	L	T	М	T	N	М	D	Р	٧	D	T	Α	T	Υ	Υ	(
rel. oomcaas	71%	100%	100%	100%	96%	71%	100%	71%	96%	71%	%98	100%	%98	100%	100%	71%	100%	100%	100%	,000
pos occupied"	2	1	1	1	2	2			2	:	:	1	2	1	1	2	1	1	1	

Table 6C: Analysis of V heavy chain subgroup 2

												DR I	_										<u>لـ</u>
amino acid	93	94	ę,	5 9	5 6	6	86	66 	100	4	: α	٠ د	<i>ر</i>	ם כ	u L	<u>. (</u>	:5 	工	_	<u> </u>	<u> </u>	2	<u>.</u>
Α	5									1	2	1	ļ		_					 	-	-	
В	<u> </u>								<u> </u>	<u> </u>		<u>.</u>		_						 	-	-	 -
. С	<u> </u>	<u></u>							<u> </u>	<u> </u>	_ _		_							-	-	+	
D		<u> </u>	_ _						<u> </u>	<u> </u>			_						<u> </u>	+		- -	6
E		ļ	<u> </u>							2			1						<u> </u>	-	-	- -	
F	<u>. </u>	<u> </u>							<u> </u>			_							ļ	-	_	3	
G		ļ					1	1	ļ	_	1	2	1	1	1	1			ļ	-	-		 .
Н		<u> </u>	1		1				<u> </u>										<u> </u>	-		-	
		<u> </u>		3			2		<u> </u>	_ _									<u> </u>	-		-	••••
K		<u> </u>						1	<u> </u>	<u>.</u>									<u> </u>		_ -	-	
L		<u> </u>							_	1		1							-		- †	1	
M.	1	<u> </u>							<u> </u>	1									╬			2	
N		<u> </u>			1	2					_	<u> </u>						ļ	ļ	1	_		DO-1 0
Р		_		_	1	1			<u> </u>		1							ļ	-		_	-	
Q	_	<u>.</u>		1								_						ļ	-				
R		<u>.</u>	6	1			1				1							<u> </u>				- -	
S					1		1		1	ļ.	<u></u>							<u> </u>	-				
T		<u>.</u>			1				1		1							<u> </u>	-				
V		2		1	1	1			1	1			1					-	-		_		
W							1	<u> </u>	_								1	<u> </u>	-	-	1		
X		_							_									-	-				
Y						2							1	2	1	1	1	<u> </u>			2		
Z								Ļ		4	_	_					_	 	<u> </u>	_		-	=
-							<u> </u>	ļ	_			2	2	3	4	4	4	4	6	5	3		
unknown (?)	<u> </u>						ļ									-	_	_	_			
not sequence	ed			1	1	1	1	Ļ	1	1				-	_		-	1	1	1	1	1	-
sum of seq	2	7	7	6	6	6	6	3	6	6						1	1		6	6	6	6	-
oomcaa ³		5	6	3	<u></u>	<u> </u>	1	2	1	2		2	2	3	4		<u> </u>	4	6	5	3	3 F	
mcaa'		A	R	1	Н	N	1		G	Ε	Α	-	-	-		-	-	-	_	-	-		-
rel. oomcaa	35	71%	%98	50%	17%	33%	33%	2	17%	33%	33%	33%	33%	20%	90/9	67%	2 70%	0/./0	100%	83%	20%	20%	:
pos occupie	-	•••••		ŧ	-			5	6		•	1	:	;	•	3 :	3	3	1	2	3	3	

Table 6C: Analysis of V heavy chain subgroup 2

						ame]	
amino acid'	102	103	104	105	106	107	108	109	110	Ξ	112	113	SUI	m
A											<u> </u>	ļ] :	35
В							<u> </u>	<u> </u>						
С							<u> </u>			<u> </u>		ļ	-{	16
D						_	<u> </u>		_	-	-	-		43
E					_				<u> </u>	_	_	-	{	21
F						_	-	_		-	-	-		18
G		<u> </u>		6		6				_	-		-	5 5
Н		<u>.</u>					<u> </u>			_	_			6
1		<u> </u>						<u> </u>		<u> </u>	_		···-{	29
K					1			1		-	_			42
L		1				_		3				_		78
M		<u> </u>					_	_		_	_			20
N		<u> </u>				_	_			_				23
Р		1	_			_		1	-	-	-		-	41
Q			_		3		_	_	_		_			23
R		-	_		2	_	_	-					_	4
<u> </u>				_		_	_			_		6	3	8:
T							6	1	_	5	_			10: 6
VV		3					-		6	+	6			2
W			6											2
Χ								-	_					3
Y		1	_					_		_	-			
Z		_	_	-	+	<u>-</u>	_	\dashv	\dashv	_	-		╣	5
-										-				•
unknown (4					_			1	1	1	1	4	5
not sequenc	=;=	1	1	1	1	1	1			-	-			Ì
sum of sec	'	6	6	6	6	6						- -	3	
oomcaa ₃	ļ	3			3	••••					٧		S	
mcaa ⁴			······································	G										
rel. oomca	a'	20%	100%	100%	20%	100%	100%	20%	100%	83%	100%	100%	100%	
pos occupio	ed" [4	1	1	3	1	1	4	1	2	1	1	1	

WO 97/08320

Table 6D: Analysis of V heavy chain subgroup 3

L															~	e E	4 Fr	15
amino acid'	-	7	·	٠ -	4	2	9	٢	`	∞ ——	6	2	· ·	- ; 	<u> </u>			_
Α						1			1			12			1		3	1
В				1				1					ļ		_			
C													ļ					
D	1	.,						1				16	<u> </u>					
E	110			9		15	16	6			9		-			8		2
F			_				ļ							4				
G		.,					ļ			181	193	174	4		1			202
Н			_	5								<u> </u>				4		
							ļ	_				<u> </u>	-		9			
K			5	3			<u> </u>						_			26		•••••
L		<u> </u>	1	5	176	43	<u> </u>				<u> </u>	<u> </u>	_	140			1	
М	ļ	1	2		1		ļ				ļ		-					
N							-					-	1				194	•••••
P											ļ	-				162		
Q	41	ļ		138			3	12				-				102		
R		ļ		6		<u> </u>	-				<u> </u>	-					8	
5		ļ				ļ	-		178				2			 -		
T	ļ	<u> </u>	_		ļ	<u> </u>			1				-		195		<u></u>	
<u> </u>	5	1	47		1	11	8				-			02	193		<u> </u>	<u> </u>
<u>W</u>			_			<u> </u>	-				-				********			ļ
X	<u> </u>	-				-	-					-	-		······································		-	-
Υ		_				-	-		•••••		-	-						
Z	.	B .	 		┼	┿	÷			<u> </u>	┿	+	┪					
-		_				-	-									<u> </u>		-
unknown (?)		_					-	22	<u>.</u>		1 1	0	7	6	E		6 (6
not sequence	<u>d 4</u>	7	47	45	3	3 .	2	100	32								6 20	$\overline{}$
sum of seq ²	16	5 1	65	16	/ 1/	۶ ۱۱ ۲	3U	160	170	10	1 10	12 1	74	140	19	16	2 19	4 2
oomcaa,	***************************************		147 V	138 Q			18: /	166 E	178 S	G	(3	G	L	V	Q	P	(
mcaa'	E		٧	u													_	
rel. oomcaa		0/ ₀ /9	90%	%0.5 a		0/26	%99	92%	0000		300t	%96	85%	%89	9,0%		0/6/	94 4
pos occupied		5	4		7	4	5	4	:	3	1	2	5	3	1	4	7	4

WO 97/08320

PCT/EP96/03647

Table 6D: Analysis of V heavy chain subgroup 3

	work							نيند است			·				
amino acid'	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
A								183	192		1				
В															
· C						1	209								
D															7
E	8							8			3		1		
F		1	1			1						201		201	
G	134								2		207				3
Н															1
								2				3	17	1	
K				15											4
			205		201							6		3	•
M			1										1	***********	•••••
N				·									10		10
Р								1					2		
Q			1												
R	62			191											11
S		206				207		4	2	209			15		174
<u> </u>	4	1		2				4	4			1	163		
V					8			7	9				1	6	
W															
X															
Y												·····			
Z															
_	ļ														
unknown (?)	ļ														
not sequenced															
sum of seq ²									•	•		:	:	:	:
oomcaa ₁	:			*************	:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	:			1					
mcaa'	G	S	L	R	L	S	С	Α	Α			F	T	F	S
rel. oomcaa ^s	64%	%66	%66	92%	%96	%66	100%	988%	92%	100%	%86	95%	78%	95%	83%
pos occupied ⁶			4		:			7	5	1	3	4	8	4	7

WO 97/08320 .

Table 6D: Analysis of V heavy chain subgroup 3

				CDF	11									Fr	ame
amino acid'	31	V	8	32	33	34	35	36	37	38	39	5	4	42	43
Α	1			17	80		1			1		187		1	
В															
· C												1		1	
D	26			3	7		2								
E	1				10									1	1
F				5											
G	13				31		1					2		209	
Н				4			88								
l	1			1		15			12						
K	7										1				20
L	3					3			2	3	1	2	1		
М						193					-				
N	35			8	3		34								
Р				1			1			<u></u>		4	191		
Q											209		1		
R	7									207		7			
S	103			17	8		72					3	14		
T	9				15		10					4	5		
٧	2				7	1			197			2			
W					30			212							
Χ	1														
Y	1			154	19		3								
Z															
_		210	210												
unknown (?)															
not sequenced	2			2	2				1	1	1		<u> </u>		
sum of seq ²	210							212							
oomcaa	103	210	210	154	80	193	88	212	197	207				209	20
mcaa*	S	-	-	Υ	Α	М	Н	W	٧	R	Q	Α	Р	G	k
rel. oomcaas	49%	100%	100%	73%	38%	91%	42%	100%	93%	%86	%66	88%	%06	%66	
pos occupied			ļ		<u> </u>		•	1	·	:	:) 5		

WO 97/08320 .

Table 6D: Analysis of V heavy chain subgroup 3

	work	II													
amino acid'	44	45	46	47	48	49	20	51	52	⋖	8	U	53	54	25
Α	1					77	42		1	2		14		7	
В			3							1					
- C									;				1		
D			1							7			94	8	3
E			198						3	2	1		2		1
F							7	1	2	1				1	8
G	207					33	11		10	46			4	163	85
Н							6			1					
1					3		3	191		1					1
К								1	37	2	30		3	1	
L		211			5		12	1							
М							1	1							
N							13		7	9	2		13	11	1
Р		1								1			1		
Q			7				7			10					
R	1						24	1	17	5	1		2		16
S	3			1		102	11	9	118	43		1	74	17	82
Т							3	5	4	2	·	13	12	3	3
V			3		204		49	2		1		6			
W				210			1		8	6					
X													4		3
Y				1		•••••••	22		5	58					8
Z		•••••	••••••			************									
-										14	178	178	2	1	1
unknown (?)															
not sequenced															
sum of seq ²	212	212	212	212	212	212	212	212	212	212	212	212	212	212	212
oomcaa³			198		***************************************	***********								:	•
mcaa'	G	L	E	W		S	٧	1	S	Υ	-	-	D	G	G
rel. oomcaa ^s	%86	100%	93%	%66	%96	48%	23%	%06	56%	27%	84%	84%	44%	77%	40%
pos occupied ⁶			တ် 5				ک 15						:		
pos occopico				J			ادا	·							

WO 97/08320 .

Table 6D: Analysis of V heavy chain subgroup 3

_		DR II																	_
amino acid'	26	57	28	5	n n	9	61	<u> </u>	70		64		3 6	8	<u> </u>	89	69		₹ —
Α	9	1	-	2		74	3	3				<u> </u>				1		-	
В	1	2		_								<u> </u>					<u> </u>	-	
. С								_				<u> </u>					<u> </u>	-	
D	11	*********	1	7			16	0				-						-	
E	8	3		2				1				2				******	<u> </u>		
F	1			3	2							-			207				
G	5	1		5		4		5				2	12	1			-		
Н	1			4			ļ					-						_	
1	3	37	<u></u>	2			<u> </u>			8						14	20	18	
K	1	61				******	ļ				19	9		8			╬	-	
L	1	1	<u>.</u>	1		1	ļ	_							1	<u> </u>	-	1	•••••
М	8	<u></u>		2		1										<u></u>	-		
N	51			4			<u>.</u>	2				2				ļ	-		
Р	1	1				6	<u> </u>	8	18			1			····		-		
Q	3		2									2		2	***********	<u> </u>	-		
R	5	. 4	1			5	5				<u> </u>	6		201			-	_	
S	48	}		11			4		193		ļ	_			2		7		211
Ţ	42	9	7	5			7	_			<u> </u>	_				18	9	_	
V			2			10	0	2		204		-				<u> </u>		3	
W				2			<u>.</u>					_			ļ	-			
X		4		1			_	1			-			··	ļ		_		
Υ		9	1	51	210				1	ļ	-					1	1		
Z										<u> </u>	 -	4			┼	 -	+		
_										<u> </u>	_				<u> </u>	_			
unknown (?)						ļ				ļ	-								
not sequence	ď					<u> </u>	4			<u> </u>	+	_				<u> </u>		212	
sum of seq ²	21	2 2	2	212	212	21	2	212	212	21	2 2	12	212	212	2 21	2 2	12	212	2
oomcaa,	5	1 9	97	151	210) 17	74				4 1	99	212	20	1 20)7: 1	89	208	2
mcaa*	٨	1	ſ	Υ	Υ	ļ	١	D	S	V		K	G	R	F		T		
rel. oomcaa	5	24%	46%	71%	% 000		82%	75%	010%	2 3	36/0	94%	100%	050%	200	98%	930%	%86	
pos occupie	-	19			-		9				2	6			4	5	5	3	3

WO 97/08320 ·

Table 6D: Analysis of V heavy chain subgroup 3

•										Fram	ewor	k III			
amino acid'	71	72	73	74	75	92	77	78	79	80	81	82	⋖	8	U
Α				57			1	8						1	
В											2				
. С															
D		199	38		2	2			1				10		
E		6			4						5				
F .									13						
G													1	4	
Н						1			1		2		2		
l			1				2	2				3	1	1	
K					186	6							3		
L								188		209		3	1		212
М	1				2		10	3		2	`	205			
N		5	170		2	188					3		181	10	
Р							1								
Q					7						199				
R	211				1	1							2	8	
S				153	8	10	56		3				6	186	
T							142				1		4	2	
V				1				11		1		1			
W															
X		2	2			4							1		 .
Y									194						
Z						·									
_															
unknown (?)	.		· · · · · · · · · · · · · · · · · · ·												
not sequenced	7		1												
sum of seq'	•••••	•		***********	: • • • • • • • • • • • • • • • • • • •	;	;			212				:	:
oomcaa ³	211	199				;·····	:			209					: .
mcaa*	R	D	N	S	K	N	T	L	Υ	L	Q	M	N	S	L
rel. oomcaa'	100%	94%	81%	73%	88%	%68	67%	%68	92%	%66	94%	97%	85%	988%	100%
pos occupied ^a	2	4	4	:	i	7	6	*************	5	3	6	4	11	7	1

WO 97/08320 .

Table 6D: Analysis of V heavy chain subgroup 3

•															
amino acid'	83	84	85	98	87	88	83	99	91	92	93	94	95	96	97
Α		149	1		1	207					173	2	15	9	11
В			***********												
C			••••••						1	210		5	2		1
D		5	15	209								2	54	7	6
E	1		190	·									11	2	11
F							1		15			1		9	6
G	1	1	6			4	1				2	8	34	26	35
н		1							1					3	11
		8					2						4	15	10
К	30											60	4	3	5
L							18					1	6	11	7
M					2		1							6	1
N		1		1								2	20	4	3
Р		9									1	3	4	29	10
Q				1								5	3	9	2
R	177											103	9	30	19
S		1			1							3	9	8	11
Т	3	28			207		1				25	15	7	6	20
V		9					187				10	1	7	7	15
W										1			3	4	3
X				1											
Y						•••••		211	194				12	9	8
Z															
													1	3	4
unknown (?)							······································								
not sequenced					1										
sum of seq ²	·····			212			***************************************						***************************************		
oomcaa3	:	***************	**********	209				************		******************************					
mcaa ⁴	R	Α	E	D	T	Α	٧	Υ	Υ	С	Α	R	D	R	G
rel. oomcaas	83%	70%	%06	%66	%86	%86	89%	100%	92%	100%	82%	49%	26%	15%	18%
pos occupied ⁶	5			4	4	2	7	1	4	2	5	14	18	20	21

WO 97/08320

Table 6D: Analysis of V heavy chain subgroup 3

•					CDF	RIII									
amino acid'	98	66	100	٧	æ	ပ	۵	ш	ட	9	I		<u> </u>	×	<u></u>
Α	7	13	7	9	6	2	3	5	5		9		13		2
В															
· C	13	5		1	2	11	3		2					1	
D	11	7	10	4	2	3	10	3	3	1		3	2		146
Е	6	3	1	13		1	1								1
F .	3	5	4	5	5	6	3	5	7	2		1	1	65	1
G	34	17	35	17	14	23	10	5	1	5	3	2	32		6
Н	3	4	3	2	9	2		1	3	1	2	8	1		
ı	6	11	4	4	3	1	3	10	3	3	2		1	2	
K	2	11			3	1									
L	26	13	4	12	8	2	6	3	10	3				2	1
М		1	2								1			32	
N	4	6	4	3	2	2	6				2	5			2
Р	6	5	5	6	9	8	2	3	2	1		3		9	
Q	4		1	1	1	1	. 1					1			
R	4	10	9	7	5	5	2	3	1		1		2		4
S	16	28	27	25	24	8	11	9	3		2		1	1	1
T	6	12	9	17	17	1	2	5	1	9					
V	13	7	15	4	3	6	2	12		1	1	1	·····i		
W	6	5	6	7	2	4				1		6	10		
X				1											1
Y	16	14	17	5	8	18	20	13	20	25	28	32	28		
Z															
_	12	21	35	54	73	87	102	110	126	135	134	120		71	**********
unknown (?)							3						3		
not sequenced					-										
sum of seq ²	198	198	198	197	196	192	:			:					;
oomcaa ₁	34			54	73	87	102	110	126	135	134	120	91	71	146
mcaa'	G	S	G	-	-	-	-		-	-	-	-	-	-	D
rel. oomcaas	17%	14%	18%	27%	37%	45%	54%	58%	67%	72%	71%	65%	49%	38%	78%
pos occupied ⁶	20	20	19	20	19	20		14	14	12	12	13	12	8	11

Table 6D: Analysis of V heavy chain subgroup 3

·					Fr	amev	vork l	V					
amino acid'	102	103	104	105	106	107	108	109	110	111	112	113	sum
Α	1		1			2							1767
В				1							-		13
С													470
D	2												1121
E					1								832
F	2												807
G			140		130		1						2743
Н	4												179
ı	15								1	1			651
κ				13									933
L	10			1			91					2	1881
. M							6						496
N	1					1							844
Р	17					1	1						56 8
Q				111									9 49
R				8									1413
S	7	1									118	110	3009
T .						123	27		122			1	1426
V	34		1			1		125		119			1851
W		158											6 86
X													26
Y	82												1598
Z													8
-	9	2	2	2	2	2	2	2	2	2	1	1	2023
unknown (?)													12
not sequenced	27	50	67	75	78	81	83	84	86	89	92	97	1650
sum of seq ²	184	161	144	136	133	130	128	127	125	122	119	114	
oomcaa,	82	158	140	111	130	123	91	125	122	119	118	110	
mcaa*	Y	W	G	Q	G	T	L	V	T	V	S	S	
rel. oomcaa ^s	45%	%86	97%	82%	%86	95%	71%	%86	%86	98%	%66	%96	
pos occupied ⁶	12												

Table 6E: Analysis of V heavy chain subgroup 4

														F	ram	ewo	rk I			
amino acid'	-	7	က	4	r,	9	7	æ	6	0	=	12	13	4	15	16	17	8	19	20
А									19)				1			1		1	T
В									1	<u> </u>	<u>†</u>	<u> </u>					<u> </u>	<u> </u>		<u> </u>
. С										Ī	Ī	Ī					<u> </u>	<u> </u>	<u> </u>	<u> </u>
D										1								1		<u> </u>
E		<u> </u>				32										44				
F	<u> </u>																			
G		<u></u>	<u>.</u>		<u></u>			54	1	53		-				2				
Н		<u> </u>	4	<u></u>	2															
		<u></u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>								
K		<u> </u>	<u> </u>	<u> </u>			<u></u>					1	54						1	
L	ļ	7		54		<u> </u>					53	19		1				53		50
M	ļ	<u> </u>	<u> </u>	<u></u>	<u> </u>				<u></u>			<u> </u>	<u></u>		<u></u>					
N	ļ	ļ	<u> </u>	<u> </u>	ļ			ļ				<u> </u>					<u></u>			
Р	ļ		<u> </u>	ļ	<u> </u>			ļ	33					51	1	<u></u>				2
Q	52		50		51	20										7				
R	1		<u> </u>															••••••		<u> </u>
<u>S</u>			<u> </u>				33								52				52	
<u> </u>			<u></u>						1								52			
V		47				1						34		********	*******					1
W							20													
X						••••	•••••													
Y																				
Z	_1																			
-																				
unknown (?)							•••••													
not sequenced	3	3	3	3	4	4	4	3	3	4	4	3	3	4	4	4	4	4	3	4
	:								•••••••••••••••••••••••••••••••••••••••	·	************		54	•••••••••••••••••••	••••••••		·····÷	-	••••••	
:				54	•••••••••••••••••••••••••••••••••••••••	•••••••	•••••••				53	•••••••	54	•••••••••••••	• ••••••••	44	52	53	52	50
mcaa'	Q	٧	Q	L	Q	E	S	G	Р	G	L	٧	K	Р	S	Ε	T	L	S	L
rel. oomcaa ^s	%96	87%	93%	100%	%96	%09	62%	100%	61%	100%	100%	63%	100%	%96	98%	83%	%86	100%	%96	94%
pos occupied ⁶	3	2			•	3	2	1	4	1	1	3	1	3	;		•	1	3	3

WO 97/08320

Table 6E: Analysis of V heavy chain subgroup 4

														CE	RI					
amino acid'	21	22	23	24	25	26	27	28	29	30	31	4	8	32	33	34	35	36	37	38
Α			22											1						
В																				
. С		53													1					
D			1								4	1	1	1			1			
È																				
F					1				22					1	1				1	
G						53	5 3				21	3	4				8			
Н							1							2						
			1					1	32										51	
K																				
L																			1	
M						••••••			<u>-</u>											
N									······································	1	1		2	2			1			
Р						*********		3												
Q											1									
R						1				3	2		1							57
S			2		35			51	1	52	25	5	9	1			44		1	
T	53		29								2	1					3			
V				55		1			1										3	
W												1			2	56		57		
Χ							••••													
Υ					19		1							48	52				••••	
Z							••••••													
_												45	39							
unknown (?)											••••				*******			•		
not sequenced	4	4	2	2	2	2	2	2	1	1	1		********	1	1	1				
sum of seq ²	53	53	55	55	55	55	55	55	56	56	56	56	56	56	56	56	57	57	57	5
oomcaa¹			i			••••••				*********					52					
mcaa*	T	····	T	٧									-	Υ	Υ	W	S	W	١	R
rel. oomcaas	100%	100%	53%	%001	34%	96%	%9€	33%	57%	33%	15%	30%	%0 ₂	%98	93%	100%	77%	100%	%68	100%
pos occupied ⁶		<u> </u>	<u> </u>	1	:	;	:	:	4			6			4		i	•		:

WO 97/08320

Table 6E: Analysis of V heavy chain subgroup 4

				Fra	ame	wor	k II													
amino acid'	39	40	41	42	43	44	45	46	47	48	49	20	51	52	4	æ	ပ	23	54	22
А			8	1							1									
В .																				
· c																				
D														1				1		
E				1				56				22								
F												1		1						
G				55		55					56	1						1		57
Н		2																24		
ı										54		1	54							
K		·			54															
L		1					55			2										<u></u>
. М																				
N														21						
Р		50	49				2													
Q	56							1				1								
R					3	2						9		1						
S		3										7		1					52	
Т	1	1																8	5	
V										1			3							
w									56											
Х																				
Y		,							1			15		32				23		
Z																				
-															57	57	57			
unknown (?)																				
not sequenced																				
sum of seq²	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57
oomcaa,				**********					**********		56			••••••				•••••		
mcaa*	Q	Р	Ρ	G	K	G	L	Ε	W	ı	G	E	I	Υ	-	-	-	Н	S	G
						Ω	.0	-			6		.0		%	%	%	.0	.0	%
rel. oomcaa ⁵	%86	%88	%98	%96	95%	%96	_% 96	98%	98%	95%	98%	39%	95%	26%	0	100	100	42%	91%	9
pos occupied	: :		: :	: :		:	:		: :	: :										•

174

Table 6E: Analysis of V heavy chain subgroup 4

		CDR	11						-		-	Τ								
amino acid'	26	57	58	29	99	61	62	63	64	. 65	99	29	89	69	70	71	72	73	74	75
Α		1								Ī	1		1			1				1
В																				
· C		<u> </u>														<u> </u>	<u> </u>	<u></u>		
D			2									1					55			
E		<u></u>															1			
F	<u> </u>	<u> </u>		3														1		
G	1	İ	<u>.</u>	<u> </u>	<u> </u>					1										
Н	<u> </u>	<u></u>	2	<u></u>																
	1	1	<u>.</u>	<u>.</u>	<u></u>							1	1	48		3				
K					1				53									1		51
L						1		55				1				3				1
M														7				2		
N	2		40		53								2							1
Р						54		1												
Q																	1			
R	2								3		56									2
S	49		1		2		56			56			1		56			1	57	
T	1	54	1			1			1				51		1			52		
V	1	1										53		2		50	<u>-</u>			1
W																				
X																				*********
Υ			11	54														******		*****
Z																				
-												•								
unknown (?)																	Ī			
not sequenced					1	1	1	1				1	1						<u> </u>	
sum of seq ²	57	57	57	57	56	56	56	56	57	57	57	56	56	57	57	57	57	57	57	57
oomcaa³	:	:			:		•			1	56						····· ·	•		
mcaa'	S	T	N	Υ	N	Р	S	L	K	S	R	٧	Τ	ı	S	٧	D	Τ	S	K
rel. oomcaa ^s	%98	95%	70%	95%	95%	%96	100%	%86	93%	%86	%86	95%	91%	84%	%86	%88	%96	91%	100%	%68
pos occupied ⁶			6	2	3	3	:	:	:	:	2		:	:		:	7		1	:

Table 6E: Analysis of V heavy chain subgroup 4

					Frai	new	ork	111												
amino acid'	76	77	78	79	8	8	82	⋖	8	ပ	83	84	82	98	87	88	83	6	91	92
Α												55	57	,		57				
В																Ī		Ī	Ī	
. С					Ī			Ī			1	1	<u> </u>		<u> </u>	Ī	Ī		İ	57
D					1	<u> </u>		1	-	<u> </u>	<u> </u>	<u> </u>		57	,	1	<u> </u>	<u> </u>	Ī	<u> </u>
E			Ī	Ī		1		<u> </u>	Ī	1	<u> </u>	Ī	<u> </u>	T		1			<u> </u>	<u> </u>
F .			54			1	-	<u> </u>	1			<u> </u>	<u> </u>	ļ		1	<u> </u>	1		<u> </u>
G								1		1	 		<u> </u>		-	<u> </u>	1	†	<u> </u>	†····· ··
Н					1		ļ	ļ		•		<u> </u>	<u> </u>			1	†	<u> </u>	<u> </u>	-
			1		Ī			1		 -	3	<u> </u>	<u> </u>		 	1	<u></u>	<u> </u>		<u> </u>
К	3	1			<u> </u>	46		2	 	 	<u> </u>	<u> </u>		<u> </u>		<u> </u>	i	 	<u> </u>	<u> </u>
Ĺ		3	1		5 5	ļ	53		<u> </u>	2	<u> </u>	<u> </u>			ļ		1	 	<u> </u>	
M		<u> </u>	Ī	<u> </u>	Ī	1	1		 	1					<u> </u>		1	 		
N	54	<u> </u>	<u> </u>	Ī	Ī	3		3	1									 		
Р	[<u> </u>	<u> </u>		Ì		•••••		ļ				•••••			ļ	•••••			
Q		54	••••••		1	1	******						•••••		ļ		•••••			
R			• !		• •	2	******	2				1					•••••			
S			1	57	<u> </u>	2	1	44	55	•••••	1				2				1	
Т						1		4			53			•••••	55			•••••		
V							2	••••		54		1					55			
W														*****	••••		*******	•		
Х							•								•••••					
Y				••••••											********			57	56	
Z ·														•••••						
-																				
unknown (?)	-		•		•••••															
not sequenced		*******								<u>-</u>										
sum of seq?	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57
· 1		;	54		:											••••••	••••••	<u>.</u>		
mcaa'	N	•	F	S	L	Κ	L	S	S	٧	T	Α	Α	D	T		٧	Υ	Υ	С
rel. oomcaas	95%	95%	95%	100%	%96	81%	93%	77%	%96	95%	93%	%96	100%	100%	%96	100%	%96	100%	%86	100%
pos occupied ⁶	:		4	1	3	8	4	7		3	***********	3	1	1	2	1	3	1	2	1

WO 97/08320 .

Table 6E: Analysis of V heavy chain subgroup 4

·										CDI	RIII									
amino acid'	93	94	95	96	97	86	66	100	٧	80	ပ	۵	ш	ŭ.	g	Ξ		_	×	101
Α	56		3	3	3	2	5	4	2	2	4		2	1		1	1	12		
В																				
· C					1				1											
D			6		5	5	5	4	3	2	4	3	1		1	2	1			41
E			- 6	1	1	2	1			1	3	1	2	1						
F				4	1	1		2	3	2	2		1	1					31	
G			25	9	10	8	10	11	4	7	7	6	1	1	1	2	1	9		
Н			1				1						1			1				2
1				1		2	4	1	3	2	3		1						1	
K			2	1						2	2			1						
L			2	6	7	3	5	3	2	4	1	5	3	3		1				
М				1	4		3	1		2	1			-					9	
N				3					2	1	1	5	1	1			2			
Р				4	5	3	1	1	2	1	1	1	2	3	1	2	1			
Q					1	1		1			1	1			3					1
R		54	4	12	2	5	5	3	2	3	1	2			2	1	<u></u>			
S		1	1	4	8	8	1	2	5	7	4	2	1	1	1					
Т		1	1	2	1	3	4	4	3	3			1	1	1					
V	1	1	4	2	2	5	4	4	7	3	1	2	1							
W			1	2	1	2	2	4	5	1	1	2		2	1		3	2		
X																				
Y				1	4	5	3	6	4	2	3	4	8	4	8	3	5	8		2
Z																				
_						1	2	4	6	9	11	16	23	27	29	34	31	14	4	
unknown (?)									•••••					1			1	1	1	
not sequenced			1	1	1	1	1	2	3	3	6	7	8	9	9	10	11	11	11	11
sum of seq ²	57	57	56	56	56	56	56	55	54	54	51	50	49	48	48	47	46	46	46	46
oomcaa¹	:	}	÷	12			····	********		9	11	16	23	27	29	34	31	14		41
mcaa*	Α	R	G	R	G	G	G	G	٧	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaa ^s	%86	95%	45%	21%	18%	14%	18%	20%	13%	17%	22%	32%	47%	26%	%09	72%	67%	30%	%29	89%
pos occupied ⁶	2	4	12	16	16	16	16	16	16	18		13	15	13	10	9	8	5	4	4

Table 6E: Analysis of V heavy chain subgroup 4

	Г				Fra	me	worl	k IV					
amino acid'	102	103	104	105	106	107	108	109	110	111	112	113	sun
А	Γ					1			1				33:
В		<u></u>	<u> </u>				<u> </u>	<u> </u>			<u></u>		
С		<u> </u>		-,			<u> </u>	<u> </u>		<u> </u>			11:
D													210
E													176
F													13!
G			41		40	1							674
Н	1								1				4:
ı	9					1							282
K				3									278
L	4						19						540
М							9						43
N						1							204
Р	3			2								2	281
Q				29									334
R	1			4			1						250
S	1			1							36	33	986
T				1		33	8		34				532
V	12							36		36			488
W		46											267
X													
Υ	16											-	455
Z													1
•													466
unknown (?)													4
not sequenced	10	11	16	17	17	20	20	21	21	21	21	22	426
sum of seq²	47	46	41	40	40	37	37	36	36	36	36	35	
oomcaa,	16			••••			19			36	•••••••	······	
mcaa*	Υ	W	G	Q	G	T	L	٧	Ţ	٧	S	S	
rel. oomcaa ^s	34%	100%	100%	73%	300% 100%	%68	51%	100%	94%	100%	100%	94%	
pos occupied ⁶	8	1	1	6	1	5	4	1	3	1	1	2	

Table 6F: Analysis of V heavy chain subgroup 5

								-						Fra	mev	vor	k I			_
amino acid'	_	7	က	4	S	9	7	8	6	10	=	12	13	14	15	9	17	2	61	70
. A					1			1	89		1			1				<u> </u>		
В																				
· C							1													
D										2										
Е	88	1			2				4	93						92				
F														_			1			
G	1							92			ļ				94					
Н									<u></u>	ļ	<u> </u>	ļ								
									ļ	ļ	ļ	ļ								96
K								<u> </u>	<u> </u>	ļ	ļ	94	94						77	
L		1		91		2		ļ	<u> </u>	ļ	<u> </u>	<u> </u>						95		
М	<u> </u>							ļ	ļ	ļ	3	ļ					<u> </u>		1	
N										ļ	<u> </u>	ļ					ļ			
Р	<u> </u>		ļ	1				ļ	1	<u> </u>	<u> </u>	<u> </u>		94						ļ
Q	. 3		92		1	90	ļ	ļ	ļ			<u> </u>				3			1	<u></u>
R	<u> </u>	ļ	ļ			1		ļ	<u> </u>	ļ		1	1		1		ļ	!	17	<u> </u>
S	<u> </u>	<u> </u>	<u> </u>				92		ļ	ļ	ļ	<u> </u>					94	<u> </u>	<u> </u>	<u> </u>
T	 	<u> </u>	<u> </u>			<u></u>	<u> </u>	<u> </u>	<u> </u>	ļ	<u> </u>	 					ļ	<u> </u>	<u></u>	<u> </u>
V	<u> </u>	90	ļ	<u> </u>	89				1	ļ	91	<u> </u>					<u> </u>	<u> </u>	<u> </u>	<u> </u>
W	<u> </u>	<u> </u>	<u> </u>	<u> </u>		ļ	<u>.</u>	ļ	ļ	<u> </u>	ļ	 					<u> </u>	<u> </u>	<u> </u>	<u> </u>
X	<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ	<u> </u>	ļ		ļ	<u> </u>	<u> </u>	ļ	ļ			ļ	<u> </u>	ļ	<u> </u>	<u> </u>
Y	<u> </u>	<u>.</u>		ļ		ļ	ļ	ļ	<u> </u>	ļ	<u> </u>		ļ			ļ	ļ		ļ	
Z	<u></u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	╄	<u> </u>	╄	<u> </u>					<u> </u>	上	╄-
_		<u>.</u>	ļ	ļ	<u> </u>	ļ		<u> </u>					<u> </u>		<u></u>	ļ	<u> </u>	ļ	ļ	<u>.</u>
unknown (?)	<u> </u>	<u>.</u>	<u>.</u>	<u>.</u>	<u></u>	<u>.</u>	<u> </u>	<u> </u>	.ļ		<u> </u>		ļ				-	<u> </u>	<u> </u>	
not sequenced	<u>: [</u>												2 2			_			-	
sum of seq'	92	92	92	92	93	93	9.	3 9	3 9	5 9	5 9	5 9	95	95	95	95	9	95	9) 96
oomcaa ³	• • • • • • • • • • • • • • • • • • • •		•••••••	••••••	••••••	··;····							94							/: 9t
mcaa'	E	٧	Q	L	V	0	S	G	, Α	\	. V	K	K	Р	G					
rel. oomcaa ^s	%946 046%	98%	100%	%66	%96	√0∠b	9000	9000	0.000	0.440	20-00	0600 0000	%66	%66	%66	م27%	0000	100%	%00a	100%
pos occupied	:				į		3	•	. !	•	•	:	2 2	•	•	:	:	:	:	4

WO 97/08320 ·

Table 6F: Analysis of V heavy chain subgroup 5

								····						CE	RI					
amino acid'	21	22	23	24	25	56	. 27	28	29	30	31	∢	8	32	33	34	35	36	37	38
Α				3	2					4							8		1	
В														·						
· C		96						1			1									
D								2			2						1			
E						2					1									
F .					3		6		97		·			2					.,	
G				92		93					1						72			
H											1			4						1
1				·						4						93				.,
K			89					1												
L															1				2	
М			1										-			1			1	<u></u>
N			1					2		4	14			2						
Р					1										*******					1
Q			4																	
R			1			1		2							1					95
S	94			1	90			84		10	61			2	2		15			·
Ţ	2							5		75	16					2	1			
V																1			93	
W															93			97		·
Χ																				
Υ							90							87						
Z																				
•												97	97	_						
unknown (?)																				
not sequenced	1	1	1	1	1	1	1													
sum of seq²	96	96	96	96	96	96	96	97	97	97	97	97	97	97	97	97	97	97	97	97
oomcaaı	94	96	89	92	90	93	90	84	97	75	61	97	97	87	93	93	72	97	93	95
mcaa'	S	С	K	G	S	G	Υ	S	F	T	S	-	-	Y	W	I	G	W	٧	R
rel. oomcaaʻ	%86	100%	93%	%96	94%	97%	94%	87%	100%	77%	63%	00001	100%	% 06	%96	%96	74%	100%	%96	%86
pos occupied ^a		1			:			:				1							: :	3

Table 6F: Analysis of V heavy chain subgroup 5

•				Fr	ame	wor	k II						Γ							
amino acid'	39	40	41	42	43	44	45	46	47	48	49	20	51	25	<	8	ပ	53	54	52
Α			1			1									1			2	1	
В																				
· C														1				1		
D														14				8	9 3	
E					3			97											2	
F												1		2						
G				97		96					95							69	1	
Н														3	1					
1										1		75	92							
K		1			94															
L							94			2		2	1							
M		92								89			1							
N																				
Р			96				2							1	93					1
Q	97						1													
R		1									1	14						1		
S												1			1			16		96
Т		1										3	1		1					
V		2								5	1	1	2							
W									94											
X																				
Y									3					76						
Z																				
-																97	97			
unknown (?)																				
not sequenced																				
sum of seq?	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97
oomcaa,	97	92	96	97	94	96	94				******		92	76	93	97	97	69	93	96
mcaa'	Q	:	Р	G	K	G	L	Ε	W	М	G	١	ı	Υ	Р	-	-	G	D	S
rel. oomcaa ^s	100%	95%	%66	100%	92%	%66	92%	100%	97%	92%	%86	77%	95%	78%	%96	100%	100%	71%	%96	%66
pos occupied ^a			:		:	:							:				1	······	*****	

WO 97/08320 ·

Table 6F: Analysis of V heavy chain subgroup 5

•	С	DR I	1																	
amino acid'	26	57	28	23	09	5	62	8	64	65	99	62	88	69	2	7	72	73	74	75
Α		6					1									88				
В																				
· C					1					1										
D	77									2							97			
E	3								2									2		
F				2				91				1		3						
G	1									94										
Н											15									
l		4	1					1				3		88						9
K			2															93		
L						1		4							2		••••••••••••••••••••••••••••••••••••••			
М														3						ļ
N	2		14	2								_						ļ		
Р						95	1		1										1	.
Q		ļ	ļ						91		81						<u></u>	1	÷	ļ
R	<u> </u>	<u></u>	78	ļ					3		1			1			ļ	1	÷	<u> </u>
<u>S</u>	2	2	<u> </u>	ļ	95	1	95	1					1		95		<u></u>	<u> </u>	96	<u> </u>
T	<u> </u>	85	2	<u> </u>	1	<u> </u>	<u> </u>	<u> </u>					96				<u> </u>	ļ	<u></u>	<u> </u>
<u>V</u>		<u> </u>	<u> </u>	1	<u> </u>	<u> </u>	<u> </u>	<u> </u>				93		2		9	<u> </u>	ļ	ļ	<u> </u>
W	.	<u> </u>	<u> </u>	<u> </u>	<u></u>	ļ	<u> </u>	ļ									<u></u>	<u> </u>	<u> </u>	<u>.</u>
Χ	ļ	<u></u>	<u> </u>	<u> </u>				ļ									ļ	<u> </u>		-
Υ	12	ļ	ļ	92	ļ		ļ	ļ								ļ	<u></u>	-	<u> </u>	<u>.</u>
<u>Z</u>	L	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u></u>						<u> </u>	<u> </u>	<u> </u>	_	<u> </u>
_	<u></u>	<u> </u>	<u> </u>	<u> </u>	ļ	ļ	ļ	ļ	ļ	ļ						<u></u>	<u></u>	<u>.</u>	<u> </u>	<u>.</u>
unknown (?)	ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ	-	ļ	ļ	<u> </u>	<u> </u>					<u></u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>
not sequenced	<u> </u>				<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	_	<u> </u>								-	_
sum of seq ⁷	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	′ : 9
oomcaa3	77		·÷····	• ••••••			;	•••		•	81	•	: _						3 96 S	5 . 5
mcaa'	D	T	R	Υ	S	Р	S	F	Q	G	Q	V	T	1	S	A	D	<u>†</u>	د :	
rel. oomcaa⁵	29%	88%	%08	%56	0/86	980%	980%	94%	94%	97%	84%	%96	%66	91%	%86	91%	100%	96%	7066	
pos occupied		• .	•	:	:	:	:	3 4	1		3	•	:	:	:		,	1! .	4	2

Table 6F: Analysis of V heavy chain subgroup 5

						me																	
amino acid'	9/	77	78	9 6	2 6	3 3	- G	82	۷	~	٠ (ر —		84	82	88	2			£ 3	8 -	9	92
A			1 9	1						ļ			1	96	-			2	13				
В		<u> </u>								_		_			<u> </u>								0.5
. С	<u> </u>	<u> </u>						1		<u> </u>	_	_			<u> </u>	-							95
D		<u> </u>			1					-	-	_			ļ	9	6			_			
E							1				_	_	1	ļ	ļ								<u></u>
F		<u>.</u>			1				_		_	_		ļ	-						2	6	<u></u>
G										3	1			ļ					4				ļ
Н	_						3		ļ					ļ	-	_	_						<u> </u>
		<u>.</u>							<u> </u>					<u> </u>	-		-	2		9		<u></u>	
K		<u>.</u>							<u> </u>	- -			91	<u> </u>	-				<u> </u>	1		ļ	<u> </u>
L			<u> </u>			96			ļ			97		<u> </u>	-	_				2		<u> </u>	
M									<u> </u>	_	_			ļ	-					84		<u></u>	
N		7	<u></u>						ļ	2	2		<u> </u>		-			2				<u> </u>	
Р				1						_	_		ļ	-	-	-						<u> </u>	-
Q					_		93		-	_	_		ļ									<u> </u>	-
R		1		_					1	1	3		1	3								 	-
<u>S</u>		37	2	1	1					90	91		ļ			96		5		1	<u> </u>	 	
<u> </u>		2	94	2				<u> </u>	-	1			<u> </u>	1	1	1		88		1	<u> </u>	<u> </u>	-
<u>V</u>				2		1		<u> </u>	_				<u> </u>				1				<u> </u>		
W								9	5				<u> </u>		-						<u> </u>		
Х							ļ		_				<u>.</u>								<u> </u>	4 8	
Y					94								-	_					·	ļ	9	4 6	9
Z						<u> </u>	<u> </u>	╇	4	_		_	┿	<u> </u>	<u> </u>	4				_	÷	+	÷
_						<u> </u>	ļ	-													-		
unknown (?)								_			 								<u> </u>	-	1	2
not sequenc	ed				_	<u> </u>	<u> </u>	┿	-		_	<u>! </u>	_	 		07	~-	~~	0.7	-		_	
sum of sec		97	97	97	97	97	9	7 9	97	97	97	9	7 :	3 7	97	9/	9/	9/	9/	9	/ S	14	80
oomcaa ₃	ļ	*******	94			96	9	3 !	95	90	91	9	7 : !	91 K	96 A	ყ <u>ხ</u> <	. D	ъ Т	9.	N	1	Υ Υ	Υ .
mcaa'		S 	T	Α	Υ	L		1	٧٧	<u></u>	<u> </u>	1	·÷·-	<u></u>				ļ					
rel. oomca	a ^s	%06	97%	94%	0/0Lb	%000	200	30%0	%86	93%	940/	300	100%	94%	%66	%66	%66	910%	960%				94%
pos occupio	۰٩٠		3						- 3		:	4	1	5					1		5		2

WO 97/08320

Table 6F: Analysis of V heavy chain subgroup 5

												:DR											_ -
amino acid'	93	94	95	}	96	97	86	66	100	. <	٠ ،	٥	ပ	٥	w	u	٠ ر) J	c -	- 	-	∠	=
Α	92			1	1	2			3	4	3	2		1	<u> </u>			1		_ -	4		2
В			<u> </u>					<u> </u>	<u>.</u>					ļ	<u> </u>	-						_	
C			<u>.</u>	<u>l</u>			1	<u> </u>	1	1			2	 	 -	1				_			~~
D					3	3	3		3	1	2	1	1	1	2		2	1	1	2			37
E	<u> </u>	ļ		1	1	1	2			_ _	1	1		ļ		_	1			1		20	
F		ļ				1	ļ	ļ	3	.		3	******	·		1						26	
G				1	9	11	12	1	2	5	2	4	3	10)	2	1				5		••••
Н		<u> </u>		10	1		2	2			1	1		<u> </u>	1								
		<u></u>			3			2	2	1	1	4	1	<u>.</u>	1		1	1					
K	<u> </u>	<u> </u>	1	1	1	<u> </u>		1	3	1				-					2				
L		<u> </u>		11	2	3		1	1	2	5		1	<u> </u>		1		1				10	•••••
M						2	2	1	1	_	1	1	11	<u> </u>	1	_						10	
N					1	<u></u>		2		1	1	2	ļ	<u>.</u>		1					2		•••••
P				5	1		1	3	1	2					1	1	1	1					
Q			1	3	2		_	1	1	4	2	1	-	2		-							
R			92	7	9		2	2		2	1		÷	2									
S		<u>.</u>	1	1	3		2	6	4	4	5	3	· †···· ·		3	2	2			1		1	
Ţ		1		1	3	}	2	1	2	6	3		·†	6	1		1		<u></u>				
٧		2		2	4	1	4	_	1		1	2	<u> </u>			1							<u></u>
W				1	<u> </u>		2	1					ļ	1		2		1		1	1		<u> </u>
X				*******																			<u> </u>
Y						1	6	3	6	9	8		7	2	1	2	6	8	9	9	10		-
Z					<u> </u>						<u> </u>	<u> </u>	<u> </u>		<u> </u>								_
-					<u> </u>			1	1	2	8	1	0 1	6	23	•		31	32	:	:	:	<u>.</u>
unknown (?)				<u>.</u>	_					<u> </u>	<u> </u>		_		1	*******		1	÷	÷	·÷·····	<u></u>
not sequenc	ed	2	2	52	5	2 5	2	52	52	52	52	5	2 5	52	52	52	52	52	52	52	52	53	
sum of seq	7	95	95	45	4	5 4	15	45	45	45	45	4	5 4	15	45	45	45	45	45	45	45): 44	<u> </u>
oomcaa'		92	92	11									0	16	23	30	30	31	32	30	22	2: Zt) ·
mcaa*		Α	R	L	(3	G	G	G	Υ	Y	ļ	-	-	-	-		<u> </u>	<u> </u>	<u> </u>	<u> </u>		
rel. oomca:	a*	92%	37%	740%	2, 70	0/ ₀ 07	24%	27%	27%	20%	180%	300	0/077	36%	51%	%29	%29	%69	71%	67%	490%	2000	5
pos occupie		ر ب	ر <u>ن</u> ۸	1	:: 3: 1	16	14	18	16	15	5 1	6 1	5	14	11	11	ç	9 8	3 4	ļ (6	6	4

WO 97/08320

Table 6F: Analysis of V heavy chain subgroup 5

of V neavy chain					Fr	ame	ewe	ork	I۷]	
amino acid'	7 5	<u>50</u>	104	105						110	111	112		?	sum
A	T	T			Ī	T	T							1	611
В					 	1							<u> </u>		
С					1	1	<u>-</u> -								205
D	1	1			T	-	Ī								458
E				1	1	-									404
F	2														256
G			41		4	1									1065
Н									<u></u>						44
1	9								<u> </u>		2				588
К					3				<u>.</u>						650
L	2	.,						25		1					549
М								8	<u> </u>						303
N															64
Р	2						1						1		414
Q				3	4										612
R					3			<u></u>	ļ						351
S	2							ļ	<u> </u>				40	39	li
Т	1						40	-	8		39			••••••	604
V	11	<u> </u>		<u></u>				<u> </u>		40	_	41			594
W		43	3		-		•••••	ļ							432
X		ļ			_		••••	-	_ _						720
Y	13				_			ļ							738
Z	_	<u> </u>	<u> </u>	_	_			lacksquare	4	<u> </u>				<u> </u>	∄
_	2	2	-		<u>į</u>									<u> </u>	635
unknown (?)	<u>.</u>								_						- 4 7 1678
not sequenced	5.	2 5	4	56	56	56	50	6 5	06	56	56	50	30	3	7 10/0
sum of seq ²	4	5 4	3	41	41	41	4	1 4	41	41	41	41	41	4	<u>, </u>
oowcaa,	******	*******	•••••	:						40 V	39 T	41 V	41 S	ک ر د	J
mcaa*		\	<u>.</u>			G	-		L	•••••	ļ <u>.</u>	ļ			
rel. oomcaa'	3006	0,67	100%	100%	83%	100%	200	3840	61%	98%	95%	100%	000		20,20
pos occupied	:		:			:		2	3	•				2	2
							æ	5							

SUBSTITUTE SHEET (RULE 26)

Table 6G: Analysis of V heavy chain subgroup 6

•																	Fr		_	ork			_	_	_
amino acid'	-		, ,	ر -	+ ı	ი	ဖ	7	œ	0	ח	2	=	5	1		14	15	· · ·		<u>-</u>		6	7	=
Α								ļ							1				_	-					
В		<u>.</u>		<u>ļ.</u>			····		ļ				ļ						- -						
. C	_				_			<u> </u>	_				<u> </u>	_	_				-					<u> </u>	
D				_	_			<u> </u>					<u> </u>		+			<u></u>	-	‡					
E	<u> </u>	_		_				-	_	-			ļ	-	-			-	-					 	
F	<u> </u>		_	_	_			. 		_			<u> </u>					ļ							•
G				_			•••••			2		67	ļ					-				•••••		-	•••
Н				<u>ļ</u> .					_ _				ļ					<u>.</u>					ļ	 -	
ļ					_			-	_				<u> </u>					-					<u></u>	-	•••
K								-					<u> </u>			68	ļ <u>.</u>	-				67	ļ ₁	6	
L					52		ļ	-					Ε.	8	1		<u> </u>	-				07			
M							ļ						-					-				<u></u>	<u>. </u>	-	••••
N							ļ		_						••••			-				<u> </u>	-	 I	
Р	_							_ -			68		- -				6			68		<u></u>	-	<u> </u>	,
Q		52		52		51	5	2				ļ	-			ļ				00		<u> </u>	-		
R						1	ļ	_				ļ	1			<u></u>	<u></u>		<u></u>			ļ	6	i	•••
S							.ļ		52			<u> </u>	<u>.</u>			ļ	-	1	68	•••••	68	. <u> </u>		-	
T						ļ						<u> </u>	<u></u>			<u> </u>	-				00		_ <u> </u> 1		
<u>V</u>		<u> </u>	52			<u> </u>						 			66	<u> </u>	-	+			<u> </u>	 	<u> </u>	-	•••
W					ļ	ļ	<u>.</u>	_				-				ļ	-				ļ	<u> </u>	-		
X						-	_ _					-				-	-					-			•••
Υ					-	ļ					ļ					-			•••••	ļ <u>.</u>					,
Z					<u> </u>	<u> </u>	┿	-	_		<u> </u>	÷	+		_	┿	\dotplus	+		<u> </u>	÷	÷	÷	+	=
_				<u> </u>	<u> </u>	ļ	_				ļ	-								ļ	 				
unknown (?)			ļ	ļ	-					ļ	_	_									6	<u> </u>		
not sequenc	ed	22	22	22	22	2 2	2	22	22	22	!	6	6	6				6				==			-
sum of sec	'	52	52	52	52	2 5	2	52	52	52	6	8	68	68	6	8 6	8 (08 0-	60	Ь	9 0	0 (70	66	
oomcaa ³		• • • • • • • • • •	52	•	••••							8	67	68	6	6 6	8 (b/ D	bb	C	8 6	8 ([)/ L	S	
mcaa'	,	Q	٧	Q	L	<u>;</u>	7		S	<u>.</u>	. ;) 			<u>.</u>		<u>.</u>			·					
rel. oomca				00001	9000	2	%86 0%86	100%	100%	100%		000 000	%66	100%	7010	00/6	% 001	%66	100%	300	********		*****	970%	•
pos occupio	- 46		1		1	1	2	1	1		1	1	2	1		3	1	2		1	1	1	2	3	

WO 97/08320 .

Table 6G: Analysis of V heavy chain subgroup 6

															DRI						-
amino acid'	21	22	23	24	25	26	27	28	29	30	31	٥	ς α	3 6	33	34	35	36	37	88	=
Α	1		67						<u> </u>	<u> </u>		<u>.ļ</u>	_	6	6 6	7		-	<u>.</u>	<u> </u>	
В					<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u>.</u>	<u> </u>	<u> </u>	_				-	-	┪—	╁	•••
C		68				<u>.</u>	<u></u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	_					-	-		-	•••
D							68		<u> </u>	<u> </u>	<u> </u>	1				_	-	1	-	+	•••
E								<u> </u>	<u> </u>		<u> </u>	_					-	-	-	_	***
F .								<u> </u>	_		2	_			1	1	-	-	_	1	•••
G				1		69)			<u> </u>				3	1	2	-	_		-	
Н										<u>.</u>	_							1		_	
				6	4				<u>.</u>	_		-	2				_	1	. 7	U:	•••
K								<u>.</u>		<u>.</u>		_	3								•
L							<u> </u>	_		4											
M				<u> </u>			_			ᆜ											
N								1	_			2	66					70			
Р											_							-	_		
Q																_					
R											_	2						_	-		7
S		1			1	69		(69		68	:		67		3	<u>!</u>	1			•••
T	6	57						_			4	_2	1	4		1				2	
V				1	4			_ -		70			•••••		6				74		•••
W			1	_													74		/4		•••
Х								_												1	•••
Y													1	ļ							•••
Z						_	_	4	_	_	_		<u> </u>	<u>!</u>			<u> </u>	_	-		=
-		<u> </u>											<u>.</u>	<u></u>							
unknown (?)											1	ļ	<u>.</u>	ļ						-
not sequenc	ed	5	5	5	5	5	5	5	5	4			_	 	7.4	7.4	7.4	74	74	74	=
sum of sec	7	69	69	69	69	69	69	69	69	70	70	74	74	1 /4	. /4	. 74	74	70	74	70	1
oowcaa,						69	69	68	69	70	68	66	5 6	5 6	A	Δ	W	N	W	1	+
mcaa'			С				G			<u>:</u>	S	. 		.		••••••		·•••••	······		
rel. oomca	ıa ^s	92%	%66	92%	93%	100%	100%	990%	100%	100%	970%	700a	9000	0.70	9008	91%	100%	95%	100%	•	:
pos occupi	ed"	3	2	3	3	1	١	2	1	1		2	5	6	3 4	1 5	1	5	1		4

Table 6G: Analysis of V heavy chain subgroup 6

				1	Fran	new	ork	11						_							_		
amino acid'	33	40	41	, ;	7 7	43	44	45	46	47	9	9 9	9	က	5	52	∀	C	۰ ۵	ں 	 	5.	55
Α				1	1										1		<u> </u>				1		
В			Ī														<u> </u>	_		_			•••••
. C									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u> </u>	<u>.</u>					<u> </u>	ļ	-					
D										<u> </u>	<u>.</u>					<u> </u>	<u> </u>	<u>.</u>					
E									74	4_		<u> </u> .				ļ	<u> </u>						
F .										ļ						2		1	_		1	*******	
G							74		<u> </u>		_		74	1	······		-					1	
Н									<u> </u>	<u> </u>		<u></u> į.				ļ	ļ	1					<u></u>
									<u> </u>	<u> </u>	<u>.</u>					ļ	ļ						ļ
K	1					1			<u> </u>	<u>.</u>	<u>ļ</u>					ļ	ļ		1		•••••	66	<u> </u>
L	1			<u>.</u>				74	<u> </u>			74				<u> </u>		_				<u> </u> 	<u> </u>
М									<u> </u>	<u>.</u>						<u> </u>	ļ						<u></u>
N									<u> </u>	<u> </u>							-	_				1	<u> </u>
Р				73					ļ							ļ							<u></u>
Q	72	2						ļ									_	_				<u></u>	<u> </u>
R						73		<u></u>	<u> </u>					73			<u>.</u>	_	72			<u></u>	<u> </u>
S		7	4	1	73			<u></u>		<u>.</u>				<u></u>	ļ	ļ	<u>.</u>	_	1	.,	72	·÷	ļ
T							*******	<u> </u>		<u>.</u>					7:	3	_					5	5
٧														ļ	ļ	-	-				<u></u>		<u> </u>
W		<u>.</u>						<u> </u>			74			<u></u>	ļ		-			<u> </u>	<u> </u>	-	7
Х								ļ	_	<u>ļ.</u>				ļ	<u> </u>						<u> </u>	-	-
Y								ļ						ļ	ļ	_ 7	2	72			<u> </u>	<u>.</u>	
Z								<u> </u>		<u> </u>				<u> </u>	<u> </u>	┿	<u> </u>	_			<u> </u>	<u> </u>	<u> </u>
-								_					ļ	ļ	<u> </u>	_				74	ļ		
unknown (?)													ļ	<u> </u>	ļ	_	_ _			<u> </u>	<u> </u>		-
not sequence	d						<u> </u>		╧				_	<u> </u>	Ļ	<u> </u>	4			<u> </u>	!	<u> </u>	+
sum of seq	7	4 7	4	74	74	74	74	4 7	4 7	74	74	74	74	74	7	4 7	4	74	74	74	7	4 7	4
oomcaa,	7	2 7	74	73	73	73	74	4 7	4	74	74	74	74	7.	3 7	3 7	'2	72	72	74	7	2 6	6
mcaa'	()	S	Р	S	.i	G				W	L	G			Γ	Y	Y	R		- 	, k	
rel. oomcaa	5 6	0/./6	100%	%66	%66	%66	100%		% 001	100%	100%	100%	100%	4000	2 2	3300	9/0/6	92%	970%	100%	2070	0/ 20	22.00
pos occupie		···· <u>·</u>			Ī	i	•	1	1			•	:	1	2	2	2	3	:	3	1	3	5

Table 6G: Analysis of V heavy chain subgroup 6

		CDF	l II									<u>_</u>	_					 -	2		4	5	
amino acid'	26	57	25	2 2	8	61	<u> </u>	3 8	3 2	5 6	0	9	6	<u></u>	-:	1	- -			· .	:	-	_
A					73	1	<u> </u>		_		_				2		-	6		1	<u> </u>	-	-
В		<u> </u>	_			<u> </u>		_		_ -				<u> </u>					••••••	<u> </u>	 	<u>.</u>	
· C	<u> </u>	<u> </u>	<u> </u>	_	1		_	_ _	_ _		-		<u> </u>		-	- -	_			<u> </u>	<u> </u>	-	•••
D	<u>.</u>	ļ	6	8		_	1	_	-				<u> </u>	-	-	-	2		73	1	┼-		 2
E	1	<u> </u>		3	_		7		-	1	_		ļ	-						ļ	-	-	۲
F	7	_				_							ļ		-					-	-	+-	••••
G		<u>.</u>		1		_		1		_	8		<u>.</u>	-					ļ	<u> </u>	-		
Н		<u> </u>						_					<u> </u>	-	_								•••
						_	1						6	5	2 7	1			<u></u>		1		···
K			1			_ _		_		67			-		- -		1		<u> </u>		•		
L		1					5		2	_			-	4							1		••••
M		<u>.</u>					_	_				ļ		1					<u> </u>				
N		2	65	1				_	_	1		<u> </u>	-	_			69			-			
Р						1	1	_	_		i.	<u> </u>						66	-		-		
Q										2			1	_					<u>.</u>				
R		<u>l</u>	1					_		3		7	3						.			73	
S		2	2	1	1			73			66	<u> </u>			1		2	1	<u> </u>		11	1	
T			4	ļ		_						<u> </u>		<u>†</u>	69	1							
V							58		72			ļ		4		2		ļ	1	<u> </u>			
W												-						<u> </u>					
X																		 					•••
Y		60	1		72					ļ	ļ						ļ	-					
Z						_			<u> </u>		<u> </u>	\dotplus	$\frac{\perp}{\uparrow}$	-			<u> </u>	╬	+	\dashv			=
_						_				<u> </u>	<u> </u>						ļ	-					
unknown (?)			<u> </u>	· .					<u> </u>	-							-					
not sequenc	ed		-	<u> </u>		_		<u> </u>	_	<u> </u>	╄	+	4				 	+	_	74	74	71	-
sum of sec	a' [74	74	74	74	74	74	74	74	74	7	4	74	74	74	74	/	4 /	4	74	71	77	
oomcaa,	į,				72				72	6	6	6	73	65	69 T	/	l b	9: t	р Р	/3 D	, i	, <u>, , , , , , , , , , , , , , , , , , </u>	-
mcaa¹		Y	N	D	Υ		••••••	·						1	•								-
rel. oomca	a ^s	31%	9/088	920%	97%	%66	78%	%66	9200	910	2	%68	%66	%88	93%	9690		95°C	%68	%66	%96	930%	:
pos occupi		يد	1			2	-	,	2	2	٠.	2	ว	4	_		3	4	4	2	4	2	

WO 97/08320 ·

Table 6G: Analysis of V heavy chain subgroup 6

						ame																	
amino acid'	9/	77	7.0	, ,	8/	<u>8</u>	8	83	, <	< ∙	ω	ပ	83	8	0 0	3 6	8 6	<u> </u>	8 	& ————————————————————————————————————	8	91	92
Α							,,						ļ	_		1	_		74				<u> </u>
В		<u> </u>						<u>.</u>	_				<u> </u>			-							<u> </u>
· C	<u> </u>	<u> </u>						<u> </u>	_				ļ	_									73
D		<u> </u>						ļ		3			ļ				73						<u> </u>
E		<u> </u>								_			<u> </u>			73							<u></u>
F				71				_		_	1		ļ						_			3	
G		<u>.</u>		<u></u>				<u>.</u>	_				ļ	_			1						<u> </u>
Н	1	<u>.</u>	<u>.</u>				2	2		1			ļ									ļ	ļ
1		<u> </u>		1				_	_				<u> </u>							2		<u> </u>	ļ
K				<u></u>						4		ļ	ļ				_					ļ	<u> </u>
L			1		<u> </u>	74			72			<u> </u>	<u> </u>										╬
М									1			11	1	_		_				2		<u> </u>	-
N	74	4					<u> </u>			63		ļ	<u>.</u>	_								<u> </u>	1
Р							ļ					ļ			70							-	-
Q			72			,	7	1				ļ									<u> </u>	<u>.</u>	-
R			1					1		1	ļ	ļ	<u>.</u>								<u> </u>		-
S		<u>.</u>			74		<u>.</u>			1	73	<u> </u>		1	3					<u></u>	<u> </u>		
T				İ			<u> </u>			1	<u> </u>	<u> </u>		73				74	••••	<u> </u>	<u> </u>	1	
V				2			<u> </u>		1		<u> </u>	7	3							70	<u> </u>	-	_
W							<u> </u>				<u> </u>	<u> </u>								<u> </u>	<u> </u>	-	
X											<u> </u>								,	<u> </u>	<u> </u>		
Y											<u> </u>	_								<u> </u>	7	3 7	0
Z						<u> </u>					<u> </u>	<u> </u>		_						<u>!</u> _	<u> </u>	<u>.</u>	-
_											<u> </u>	_							ļ	<u> </u>	ļ		
unknown (?)									<u> </u>	<u> </u>	<u>.</u>							ļ	<u> </u>	 -	_	
not sequence	ed										L		_		1				<u> </u>	<u> </u>	Ļ	<u> </u>	<u></u>
sum of seq	, 7	74	74	74	74	7	4	74	74	74	7	4 7	74	74	73	74	74	74	74	1 7	4 7	4	74
oomcaa ³		74	72	71	74	7	4	71	72	63	3 7	3 7	73	73	70	73		74			0 7	3	70
mcaa ⁴	****		Q	÷	÷		••••	:	L	:	•		٧	T	Р	Ε	D	T		V		Y	Y
rel. oomcaa)5	100%	92%	%96	100%	1000%	200	%96	92%	850%		33,40	%66	%66	%96	%66	%66	100%	100%	2 60	0,-0,-0	0/n66	95%
pos occupie	•						•••••	••••							2	•	•		<u> </u>	1	3	2	3

WO 97/08320

Table 6G: Analysis of V heavy chain subgroup 6

												DI.	RIII										_	_	1
amino acid'	93	94	90	5	96	97	98	66	5	4	: 0	χ 	ပ	۵	. u	<u>ں</u>	u.	9	I	_ -	 	<u> </u>		5	=
Α	69		1	1	1	3	12		4	3	2	5			В	_			<u> </u>	-	-	10	1		•
В							<u> </u>	<u> </u>			_		<u> </u>	<u> </u>	_	_	 -			-	-				••
· C						1		<u> </u>	1		_	1	<u></u>		1	1		<u></u>	<u> </u>	-					
D			į	19	4	3	7	<u></u>	4	3	1	6	_	1	1	1		<u> </u>			_			62	-
E				10	4	2	1	<u> </u>	2	2	1	2						<u> </u>	-		1			<u> </u>	 A
F .	1			1	1	1			1	2	3			2	_		1			-			38	-	+
G	1			16	4	15	1	5 1	1	8	6	2	2	5	1	8	6		1			17		-	••
Н					1	<u></u>		1		_	1	1	<u> </u>	1	1	- -		-	-	1	1	1		<u></u>	
1		<u>.</u>			1		2	1	2		5		<u> </u>				-	-					<u> </u>	╫	
K		<u> </u>	1	1	1	ļ	1	1	1	1					1			_	_				{	<u> </u>	•••
L		<u> </u>		1	8	3	4	2	3	2	1						-	1	5		<u>l</u>		1	- :	••
М					1	<u> </u>				1				5			ļ	_		-			<u> </u>	-	
N				1		3	1	2	1	1	1		3	_	2			1		1	3		 	+-	-
Р					1()	4		5	3			5	1			1		_				 	-	
Q				1		1	1	1				ļ		1			_						-		••
R			69	1		7	8	1	8	8	3	<u> </u>	_ _	1	1		5					ļ	-	-	
S		<u></u>	3	Ę		5	5	7	6	7	3	ļ	4	2				_		1	1	<u> </u>			•••
T				1		1	4	3	4	4		÷	3	1				1				<u> </u>		2	
V		3	1		1	5	1	9				<u> </u>		9	5	_	1	1				<u> </u>			•••
W				ļ	1	6	8		3	2		<u> </u>				-					4	-	4		••
X				<u> </u>							ļ	-				-	_				1.	ļ	<u>_</u>		•••
Y		_		ļ	_	6	4	2	2	2		Ĝ.	6	2	4	-	2	1	8	8	- 14	1			
Z	_			Ļ	<u> </u>	_	<u> </u>			23	<u> </u>	<u> </u>	-			+	+		F 7	5.0		1 2	Ω	12	_
_				<u> </u>	_	2	3	7	14	23	2	5	33	41	4/		53	54	٥/ ا	50		7 2	.0		
unknown (?))		ļ	<u> </u>	_					-	<u> </u>	_			ļ	-		6 1		·		<u>-</u> -	1	1	
not sequence	ed			╧	╧	1	2	2			4	1										 -	_	_	=
sum of seq	, [74	74	4 7	'3	72	71	71	72	72	2 7	2	72	72	/	<u> </u>	12	12	/ Z	1 Z	, E	0	7 E	38	
oomcaa ₃	ļ	69	7	•				_	14	1 2:	3 2	5	33	41	4	/	53 -	54	ے/ ۔) D	7: 3	-	-	F	-
mcaa*		Α	R		D	Р	G	G	-	-	-	-	-		-				•••••		-				
rel. oomcaa	a ⁵	93%	900	35.40	%97	14%	21%	21%	100%	20%	32.70	35%	46%	57%	2	920	74%	75%	79%	7 80%		0200	39%	53%	-
pos occupie	أير	<u>_</u>	2	22.1	2		,,		-	7 .	c														;

Table 6G: Analysis of V heavy chain subgroup 6

						Frar	nev	VO1	k I\	7					
amino acid,	102	103	2	5 9	105	106	107	108	100	5 :	2 :	- :	711		sum
Α			T	T					2						494
В		•••••													
С															147
D				Ī	Ī		-			1					403
E				Ī											186
F	2			1									2		150
G			4	19		50									571
Н	2							<u> </u>							18
	9						3	<u> </u>		1					304
К					1			<u> </u>	1						293
L	5							2	6						632
М									8						31
N								_	_						436
Р	4				6			_	_	_		_		_1	387
Q		_			40			_	_						539
R					2		<u> </u>		_						495
S	4	1		1				!	_				43	46	1271
T		1					4	5	4		45				640
V	2	1					ļ	┇	2	46		48			647
W			65		<u> </u>	<u> </u>	ļ		5						398
X	<u> </u>				ļ	ļ	ļ	-							
Y	1	9				<u> </u>	<u> </u>	-							518
Z	_	╝			<u> </u>	<u> </u>	<u> </u>	<u> </u>	_						
		2			ļ	ļ	-	_						<u> </u>	585
unknown (?)					<u> </u>	<u> </u>	1	-							13
not sequence	₫	5	8	23	24	23	3 2	4	25	25	28	25	28	26	580
sum of seq ²	6	8	65	50	49	50) 4	9	48	48	45	48	45	47	
oowcaa,			********								45 T			46 S	
mcaa ⁴			W	<u></u>	- -					<u></u>	T		-	·	
rel. oomcaa	, ,	31%	100%	980	820%	100%	2	92%	54%	%96	100%	100%	%96	980%))
pos occupied	:			•		•	:	3			:	:		2	•
							10	12-							

10/2

Appendix to Tables 1A-C

A. References of rearranged sequences

References of rearranged human kappa sequences used for alignment

- 1 . Alescio-Zonta, L. & Baglioni, C. (1970) Eur.J.Biochem., 15, 450-463.
- 2 Andrews, D.W. & Capra, J.D. (1981) Biochemistry, 20, 5816-5822.
- 3 Andris, J.S., Ehrlich, P.H., Ostberg, L. & Capra, J.D. (1992) J.Immunol., 149, 4053-4059.
- 4 Atkinson, P.M., Lampman, G.W., Furie, B.C., Naparstek, Y., Schwartz, R.S., Stollar, B.D. & Furie, B. (1985) J.Clin.Invest., 75, 1138-1143.
- Aucouturier, P., Bauwens, M., Khamlichi, A.A., Denoroy, L. Spinelli, S., Touchard, G., Preud'homme, J.-L. & Cogne, M. (1993) J.Immunol., 150, 3561-3568.
- 6 Avila, M.A., Vazques, J., Danielsson, L., Fernandez De Cossio, M.E. & Borrebaeck, C.A.K. (1993) Gene, 127, 273-274.
- Barbas lii, C.F., Crowe, Jr., J.E., Cababa, D., Jones, T.M., Zebedee, S.L., Murphy, B.R., Chanock, R.M. & Burton, D.R. (1992) Proc.Natl.Acad.Sci.Usa, 89, 10164-10168.
- 8 Barbas, C.F., lii, et al. (1993) J-Mol-Biol., 230, 812-23.
- 9 Bentley, D.L. & Rabbitts, T.H. (1980) Nature, 288, 730-733.
- 10 Bentley, D.L. & Rabbitts, T.H. (1983) Cell, 32, 181-189.
- 11 Bentley, D.L. (1984) Nature, 307, 77-80.
- 12 Bhat, N.M., Bieber, M.M., Chapman, C.J., Stevenson, F.K. & Teng, N.N.H. (1993) J.Immunol., 151, 5011-5021.
- 13 Blaison, G., Kuntz, J.-L. & Pasquali, J.-L. (1991) Eur.J.Immunol., 21, 1221-1227.
- Braun, H., Leibold, W., Barnikol, H.U. & Hilschmann, N. (1971) Z.Physiol.Chem., 352, 647-651; (1972) Z.Physiol.Chem., 353, 1284-1306.
- 15 Capra, J.D. & Kehoe, J.M. (1975) Adv.Immunology, 20, 1-40.; Andrews, D.W. & Capra, J.D. (1981) Proc.Nat.Acad.Sci.Usa, 78, 3799-3803.
- Capra, J.D. & Kehoe, J.M. (1975) Adv.Immunology, 20, 1-40.; Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983) J.Immunol., 131, 1322-1325.
- 17 Chastagner, P., Theze, J. & Zouali, M. (1991) Gene, 101, 305-306.

18 Chen, P.P., Robbins, D.L., Jirik, F.R., Kipps, T.J. & Carson, D.A. (1987) J.Exp.Med, 166, 1900-1905.

- 19 Chen, P.P., Robbins, D.L., Jirik, F.R., Kipps, T.J. & Carson, D.A. (1987) J.Exp.Med, 166, 1900-1905; Liu, M.-F., Robbins, D.L., Crowley, J.J., Sinha, S., Kozin, F., Kipps, T.J., Carson, D.A. & Chen.P.P. (1989) J.Immunol., 142, 688-694.
- 20 Chersi, A. & Natali, P.G. (1978) Immunochemistry, 15, 585-589.
- 21 Co, M.S., Deschamps, M., Whitley, R.J. & Queen, C. (1991) Proc.Natl.Acad.Sci.Usa, 88, 2869–2873.
- 22 Cuisinier, A.-M., Fumoux, F., Fougereau, M. & Tonnelle, C. (1992) Mol.Immunol., 29, 1363-1373.
- Davidson, A., Manheimer-Lory, A., Aranow, C., Peterson, R., Hannigan, N. & Diamond, B. (1990) J.Clin.Invest., 85, 1401-1409.
- Denomme, G.A., Mahmoudi, M., Edwards, J.Y., Massicotte, H., Cairns, E. & Bell, D.A. (1993) Hum.Antibod.Hybridomas, 4, 98-103.
- Dersimonian, H., Mcadam, K.P.W.J., Mackworth-Young, C. & Stollar, B.D. (1989)
 J.Immunol., 142, 4027-4033.
- Dreyer, W.J., Gray, W.R. & Hood, L. (1967) Cold Spring Harbor Symp. Quantitative Biol., 32, 353-367.
- 27 Ebeling, S.B., Schutte, M.E.M. & Logtenberg, T. (1993) Eur.J.Immunol., 23, 1405-1408.
- 28 Eulitz, M. & Kley, H.-P. (1977) Immunochem., 14, 289-297.
- 29 Eulitz, M. & Linke, R.P. (1982) Z.Physiol.Chem., 363, 1347-1358.
- 30 Eulitz, M., Breuer, M., Eblen, A., Weiss, D.T. & Solomon, A. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- 31 Eulitz, M., Gotze, D. & Hilschmann, N. (1972) Z.Physiol.Chem., 353, 487-491; Eulitz, M. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 842-866.
- 32 Eulitz, M., Kley, H.P. & Zeitler, H.J. (1979) Z.Physiol.Chem., 360, 725-734.
- Ezaki, I., Kanda, H., Sakai, K., Fukui, N., Shingu, M., Nobunaga, M. & Watanabe, T. (1991)

 Arthritis And Rheumatism, 34, 343-350.
- 34 Felgenhauer, M., Kohl, J. & Ruker, F. (1990) Nucl. Acids Res., 18, 4927.
- Ferri, G., Stoppini, M., Iadarola, P., Bellotti, V. & Merlini, G. (1989) Biochim.Biophys.Acta, 995, 103-108.

Gillies, S.D., Dorai, H., Wesolowski, J., Majeau, G., Young, D., Boyd, J., Gardner, J. & James, K. (1989) Bio/Tech., 7, 799-804.

- 37 Goni, F. & Frangione, B. (1983) Proc.Nat.Acad.Sci.Usa, 80, 4837-4841.
- Goni, F.R., Chen, P.P., Mcginnis, D., Arjonilla, M.L., Fernandez, J., Carson, D., Solomon, A., Mendez, E. & Frangione, B. (1989) J.Immunol., 142, 3158-3163.
- Gorman, S.D., Clark, M.R., Routledge, E.G., Cobbold, S.P. & Waldmann, H. (1991) Proc.Natl.Acad.Sci.Usa, 88, 4181-4185.
- 40 Gottlieb, P.D., Cunningham, B.A., Rutishauser, U. & Edelman, G.M. (1970) Biochemistry, 9, 3155–3161.
- Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., Mccafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. & Winter, G. (1993) Embo J., 12, 725-734.
- Hieter, P.A., Max, E.E., Seidman, J.G., Maizel, J.V., Jr. & Leder, P. (1980) Cell, 22, 197-207;
 Klobeck, H.G, Meindl, A., Combriato, G., Solomon, A. & Zachau, H.G. (1985) Nucl. Acids
 Res., 13, 6499-6513; Weir, L. & Leder, P. (1986)
- Hilschmann, N. & Craig, L.C. (1965) Proc.Nat.Acad.Sci.Usa, 53, 1403-1409; Hilschmann, N. (1967) Z.Physiol.Chem., 348, 1077-1080.
- 44 Hilschmann, N. & Craig, L.C. (1965) Proc.Nat.Acad.Sci.Usa, 53, 1403-1409; Hilschmann, N. (1967) Z.Physiol.Chem., 348, 1718-1722; Hilschmann, N. (1969) Naturwissenschaften, 56, 195-205.
- Hirabayashi, Y., Munakata, Y., Sasaki, T. & Sano, H. (1992) Nucl. Acids Res., 20, 2601.
- Jaenichen, H.-R., Pech, M., Lindenmaier, W., Wildgruber, N. & Zachau, H.G. (1984) Nuc.Acids Res., 12, 5249-5263.
- Jirik, F.R., Sorge, J., Fong, S., Heitzmann, J.G., Curd, J.G., Chen, P.P., Goldfien, R. & Carson, D.A. (1986) Proc.Nat.Acad.Sci.Usa, 83, 2195-2199.
- 48 Kaplan, A.P. & Metzger, H. (1969) Biochemistry, 8, 3944-3951.; Klapper, D.G. & Capra, J.D. (1976) Ann.Immunol.(Inst.Pasteur), 127c, 261-271.
- 49 Kennedy, M.A. (1991) J.Exp.Med., 173, 1033-1036.
- 50 Kim, H.S. & Deutsch, H.F. (1988) Immunol., 64, 573-579.
- 51 Kipps, T.J., Tomhave, E., Chen, P.P. & Carson, D.A. (1988) J.Exp.Med., 167, 840-852.
- 52 Kipps, T.J., Tomhave, E., Chen, P.P. & Fox, R.I. (1989) J.Immunol., 142, 4261-4268.
- 53 Klapper, D.G. & Capra, J.D. (1976) Ann.Immunol.(Inst.Pasteur), 127c, 261-271.

- 54 Klein, U., Kuppers, R. & Rajewsky, K. (1993) Eur.J.Immunol., 23, 3272-3277.
- Klobeck, H.G. Meindl, A., Combriato, G., Solomon, A. & Zachau, H.G. (1985) Nucl. Acids Res., 13, 6499-6513.
- Klobeck, H.G., Bornkammm, G.W., Combriato, G., Mocikat, R., Pohlenz, H.D. & Zachau, H.G. (1985) Nucl.Acids Res., 13, 6515-6529.
- 57 Klobeck, H.G., Combriato, G. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 6995-7006.
- 58 Klobeck, H.G., Solomon, A. & Zachau, H.G. (1984) Nature, 309, 73-76.
- 59 Knight, G.B., Agnello, V., Bonagura, V., Barnes, J.L., Panka, D.J. & Zhang, Q.-X. (1993) J.Exp.Med., 178, 1903-1911.
- 60 Kohler, H., Shimizu, A., Paul, C. & Putnam, F.W. (1970) Science, 169, 56-59. (Kaplan, A.P. & Metzger, H. (1969) Biochemistry, 8, 3944-3951.)
- 61 Kratzin, H., Yang, C.Y., Krusche, J.U. & Hilschmann, N. (1980) Z.Physiol.Chem., 361, 1591-1598.
- 62 Kunicki, T.J., Annis, D.S., Gorski, J. & Nugent, D.J. (1991) J.Autoimmunity, 4, 433-446.
- Larrick, J.W., Wallace, E.F., Coloma, M.J., Bruderer, U., Lang, A.B. & Fry, K.E. (1992)
 Immunological Reviews, 130, 69-85.
- 64 Laure, C.J., Watanabe, S. & Hilschmann, N. (1973) Z.Physiol.Chem., 354, 1503-1504.
- Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983)

 J.Immunol., 131, 1322-1325.
- Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983) J.Immunol., 131, 1322–1325.
- Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983)

 J.Immunol., 131, 1322–1325. Pons-Estel, B., Goni, F., Solomon, A. & Frangione, B. (1984)

 J.Exp.Med., 160, 893.
- 68 Levy, S., Mendel, E., Kon, S., Avnur, Z. & Levy, R. (1988) J.Exp.Med., 168, 475-489.
- 69 Liepnieks, J.J., Dwulet, F.E. & Benson, M.D. (1990) Mol.Immunol., 27, 481-485.
- 70 Manheimer-Lory, A., Katz, J.B., Pillinger, M., Ghossein, C., Smith, A. & Diamond, B. (1991) J.Exp.Med., 174, 1639-1652.
- 71 Mantovani, L., Wilder, R.L. & Casali, P. (1993) J.Immunol., 151, 473-488.
- 72 Mariette, X., Tsapis, A. & Brouet, J.-C. (1993) Eur.J.Immunol., 23, 846-851.
- Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., Mccafferty, J., Griffiths, A.D. & Winter, G. (1991) J.Mol.Biol., 222, 581-597.

- 74 Marsh, P., Mills, F. & Gould, H. (1985) Nuc. Acids Res., 13, 6531-6544.
- 75 Middaugh, C.R. & Litman, G.W. (1987) J.Biol.Chem., 262, 3671-3673.
- 76 Milstein, C. & Deverson, E.V. (1971) Biochem.J., 123, 945-958.
- 77 Milstein, C. (1969) Febs Letters, 2, 301-304.
- 78 Milstein, C. (1969) Febs Letters, 2, 301-304.
- 79 Milstein, C.P. & Deverson, E.V. (1974) Eur.J.Biochem., 49, 377-391.
- 80 Moran, M.J., Andris, J.S., Matsumato, Y.-I., Capra, J.D. & Hersh, E.M. (1993) Mol.Immunol., 30, 1543-1551.
- Nakatani, T., Nomura, N., Horigome, K., Ohtsuka, H. & Noguchi, H. (1989) Bio/Tech., 7, 805-810.
- 82 Newkirk, M., Chen, P.P., Carson, D., Posnett, D. & Capra, J.D. (1986) Mol.Immunol., 23, 239-244.
- 83 Newkirk, M.M., Gram, H., Heinrich, G.F., Ostberg, L., Capra, J.D. & Wasserman, R.L. (1988) J.Clin.Invest., 81, 1511–1518.
- 84 Newkirk, M.M., Mageed, R.A., Jefferis, R., Chen, P.P. & Capra, J.D. (1987) J.Exp.Med., 166, 550-564.
- Olee, B.T., Lu, E.W., Huang, D.-F., Soto-Gil, R.W., Deftos, M., Kozin, F., Carson, D.A. & Chen, P.P. (1992) J.Exp.Med., 175, 831-842.
- Palm, W. & Hilschmann, N. (1973) Z.Physiol.Chem., 354, 1651-1654; (1975)
 Z.Physiol.Chem., 356, 167-191.
- Pascual, V., Victor, K., Lelsz, D., Spellerberg, M.B., Hamblin, T.J., Thompson, K.M., Randen, I., Natvig, J., Capra, J.D. & Stevenson, F.K. (1991) J.Immunol., 146, 4385-4391.
- Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S.-M., Natvig, J.B. & Capra, J.D. (1992) Scand.J.Immunol., 36, 349-362.
- 89 Pech, M. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 9229-9236.
- 90 Pech, M., Jaenichen, H.-R., Pohlenz, H.-D., Neumaier, P.S., Klobeck, H.-G. & Zachau, H.G. (1984) J.Mol.Biol., 176, 189-204.
- 91 Pons-Estel, B., Goni, F., Solomon, A. & Frangione, B. (1984) J.Exp.Med., 160, 893-904.
- 92 Portolano, S., Mclachlan, S.M. & Rapoport, B. (1993) J.Immunol., 151, 2839-2851.
- Portolano, S., Seto, P., Chazenbalk, G.D., Nagayama, Y., Mclachlan, S.M. & Rapoport, B. (1991) Biochem.Biophys.Res.Commun., 179, 372-377.

94 Pratt, L.F., Rassenti, L., Larrick, J., Robbins, B., Banks, P.M. & Kipps, T.J. (1989) J.Immunol., 143, 699-705.

- 95 Prelli, F., Tummolo, D., Solomon, A. & Frangione, B. (1986) J.Immunol., 136, 4169-4173.
- 96 Putnam, F.W., Whitley, E.J., Jr., Paul, C.& Davidson, J.N. (1973) Biochemistry, 12, 3763-3780.
- 97 Randen, I., Pascual, V., Victor, K., Thompson, K.M., Forre, O., Capra, J.D. & Natvig, J.B. (1993) Eur.J.Immunol., 23, 1220–1225.
- 98 Rassenti, L.Z., Pratt, L.F., Chen, P.P., Carson, D.A. & Kipps, T.J. (1991) J.Immunol., 147, 1060-1066.
- 99 Reidl, L.S., Friedman, D.F., Goldman, J., Hardy, R.R., Jefferies, L.C. & Silberstein, L.E. (1991)
 J.Immunol., 147, 3623-3631.
- 100 Riechmann, L., Clark, M., Waldmann, H. & Winter, G. (1988) Nature, 332, 323-327.
- Riesen, W., Rudikoff, S., Oriol, R. & Potter, M. (1975) Biochemistry, 14, 1052-1057; Riesen,
 W.F., Braun, D.G. & Jaton, J.C. (1976) Proc.Nat.Acad.Sci.Usa, 73, 2096-2100; Riesen, W.F.
 & Jaton, J.C. (1976) Biochemistry, 15, 3829.
- 102 Rodilla Sala, E., Kratzin, D.H., Pick, A.I. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Schiechl, H. & Hilschmann, N. (1971) Z.Physiol.Chem., 352, 111-115; (1972)Z.Physiol.Chem., 353, 345-370.
- 104 Schneider, M. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 1164-1168.
- 105 Shearman, C.W., Poliock, D., White, G., Hehir, K., Moore, G.P., Kanzy, E.J. & Kurrle, R. (1991) J.Immunol., 147, 4366-4373.
- 106 Shinoda, T. (1973) J.Biochem., 73, 433-446.
- 107 Shinoda, T. (1975) J.Biochem., 77, 1277-1296.
- Shinoda, T., Takenawa, T., Hoshi, A. & Isobe, T. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic Publishers, Dordrecht/Boston/London, Pp.157-
- 109 Silberstein, L.E., Litwin, S. Et Carmack, C.E. (1989) J.Exp.Med., 169, 1631-1643.
- 110 Sims, M.J., Hassal, D.G., Brett, S., Rowan, W., Lockyer, M.J., Angel, A., Lewis, A.P., Hale, G., Waldmann, H. & Crowe, J.S. (1993) J.Immunol., 151, 2296-2308.

111 Spatz, L.A., Wong, K.K., Williams, M., Desai, R., Golier, J., Berman, J.E., Alt, F.W. & Latov, N. (1990) J.Immunol., 144, 2821–2828.

- Stavnezer, J., Kekish, O., Batter, D., Grenier, J., Balazs, I., Henderson, E. & Zegers, B.J.M. (1985) Nucl. Acids Res., 13, 3495-3514.
- 113 Straubinger, B., Thiebe, R., Pech, M. & Zachau, H.G. (1988) Gene, 69, 209-214.
- Suter, L., Barnikol, H.U., Watanabe, S. & Hilschmann, N. (1969) Z.Physiol.Chem., 350, 275-278; (1972) Z.Physiol.Chem., 353, 189-208.
- Tempest, P.R., Bremner, P., Lambert, M., Taylor, G., Furze, J.M., Carr, F.J. & Harris, W.J. (1991) Bio/Tech., 9, 266-271.
- 116 Titani, K., Shinoda, T. & Putnam, F.W. (1969) J.Biol.Chem., 244, 3550-3560.
- Toft, K.G., Olstad, O.K., Sletten, K. & Westermark, P. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Van Es, J.H., Aanstoot, H., Gmelig-Meyling, F.H.J., Derksen, R.H.W.M. & Logtenberg, T. (1992) J.Immunol., 149, 2234-2240.
- 119 Victor, K.D., Pascual, V., Lefvert, A.K. & Capra, J.D. (1992) Mol.Immunol., 29, 1501-1506.
- 120 Victor, K.D., Pascual, V., Williams, C.L., Lennon, V.A. & Capra, J.D. (1992) Eur.J.Immunol., 22, 2231-2236.
- 121 Victor, K.D., Randen, I., Thompson, K., Forre, O., Natvig, J.B., Fu, S.M. & Capra, J.D. (1991) J.Clin.Invest., 87, 1603–1613.
- 122 Wagner, S.D. & Luzzatto, L. (1993) Eur.J.Immunol., 23, 391-397.
- . 123 Watanabe, S. & Hilschmann, N. (1970) Z.Physiol.Chem., 351, 1291-1295.
- 124 Weisbart, R.H., Wong, A.L., Noritake, D., Kacena, A., Chan, G., Ruland, C., Chin, E., Chen, I.S.Y. & Rosenblatt, J.D. (1991) J.Immunol., 147, 2795–2801.
- 125 Weng, N.-P., Yu-Lee, L.-Y., Sanz, I., Patten, B.M. & Marcus, D.M. (1992) J.Immunol., 149, 2518-2529.
- 126 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur J. Immunol., 22, 1719-1728.

References of rearranged human lambda sequences used for alignment

Alexandre, D., Chuchana, P., Brockly, F., Blancher, A., Lefranc, G. & Lefranc, M.-P. (1989) Nuc.Acids Res., 17, 3975.

2 Anderson, M.L.M., Brown, L., Mckenzie, E., Kellow, J.E. & Young, B.D. (1985) Nuc. Acids Res., 13, 2931-2941.

- 3 Andris, J.S., Brodeur, B.R. & Capra, J.D. (1993) Mol.Immunol., 30, 1601-1616.
- 4 Andris, J.S., Ehrlich, P.H., Ostberg, L. & Capra, J.D. (1992) J.Immunol., 149, 4053-4059.
- Baczko, K., Braun, D.G., Hess, M. & Hilschmann, N. (1970) Z.Physiol.Chem., 351, 763-767; Baczko, K., Braun, D.G. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 131-154.
- 6 Berinstein, N., Levy, S. & Levy, R. (1989) Science, 244, 337-339.
- 7 Bhat, N.M., Bieber, M.M., Chapman, C.J., Stevenson, F.K. & Teng, N.N.H. (1993) J.Immunol., 151, 5011-5021.
- 8 Cairns, E., Kwong, P.C., Misener, V., Ip, P., Bell, D.A. & Siminovitch, K.A. (1989) J.Immunol., 143, 685-691.
- 9 Carroll, W.L., Yu, M., Link, M.P. & Korsmeyer, S.J. (1989) J.Immunol., 143, 692-698.
- 10 Chen, B.L. & Poljak, R.J. (1974) Biochemistry, 13, 1295-1302.
- 11 Chen, B.L., Chiu, Y.Y.H., Humphrey, R.L. & Poljak, R.J. (1978) Biochim.Biophys.Acta, 537, 9-21.
- 12 Combriato, G. & Klobeck, H.G. (1991) Eur.J.Immunol., 21, 1513-1522.
- 13 Cuisinier, A.-M., Fumoux, F., Fougereau, M. & Tonnelle, C. (1992) Mol.Immunol., 29, 1363-1373.
- 14 Dwulet, F.E., Strako, K. & Benson, M.D. (1985) Scand.J.Immunol., 22, 653-660.
- 15 Elahna, P., Livneh, A., Manheimer-Lory, A.J. & Diamond, B. (1991) J.Immunol., 147, 2771-2776.
- Engelhard, M., Hess, M. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 85-88; Engelhard,
 M. & Hilschmann, N. (1975) Z.Physiol.Chem., 356, 1413-1444.
- 17 Eulitz, M. (1974) Eur.J.Biochem., 50, 49-69.
- 18 Eulitz, M., Breuer, M. & Linke, R.P. (1987) Biol.Che.Hoppe-Seyler, 368, 863-870.
- 19 Eulitz, M., Murphy, C., Weiss, D.T. & Solomon, A. (1991) J.Immunol., 146, 3091-3096.
- 20 Fett, J.W. & Deutsch, H.F. (1974) Biochemistry, 13, 4102-4114.
- 21 Fett, J.W. & Deutsch, H.F. (1976) Immunochem., 13, 149-155.; Jabusch, J.R. & Deutsch, H.F. (1982) Mol.Immunol., 19, 901-906.
- 22 Furey, W. Jr., Wang, B.C., Yoo, C.S. & Sax, M. (1983) J.Mol.Biol., 167, 661-692.
- 23 Fykse, E.-M., Sletten, K., Husby, G. &t Cornwell, G.G., Iii (1988) Biochem.J., 256, 973-980.

24 Garver, F.A. & Hilschmann, N. (1971) Febs Letters, 16, 128-132; (1972) Eur.J.Biochem., 26, 10-32.

- 25 Gawinowicz, M.A., Merlini, G., Birken, S., Osserman, E.F. & Kabat, E.A. (1991) J.Immunol., 147, 915-920.
- 26 Ghiso, J., Solomon, A. & Frangione, B. (1986) J.Immunol., 136, 716-719.
- 27 Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., Mccafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. & Winter, G. (1993) Embo J., 12, 725-734.
- Gullasken, N., Idso, H., Nilsen, R., Sletten, K., Husby, G. & Cornwell, G.G. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Harindranath, N., Goldfarb, I.S., Ikematsu, H., Burastero, S.E., Wilder, R.L., Notkins, A.L. & Casali, P. (1991) Int.Immunol., 3, 865-875.
- 30 Holm, E., Sletten, K. & Husby, G. (1986) Biochem.J., 239, 545-551.
- 31 Hughes-Jones, N.C., Bye, J.M., Beale, D. & Coadwell, J. (1990) Biochem.J., 268, 135-140.
- 32 Kametani, F., Yoshimura, K., Tonoike, H., Hoshi, A., Shinoda, T. & Isobe, T. (1985) Biochem.Biophys.Res.Commun., 126, 848-852.
- 33 Kiefer, C.R., Mcguire, B.S., Jr., Osserman, E.F. & Garver, F.A. (1983) J.Immunol., 131, 1871-1875.
- 34 Kiefer, C.R., Patton, H.M., Jr., Mcquire, B.S., Jr. & Garver, F.A. (1980) J.Immunol., 124, 301-306.
- 35 Kishimoto, T., Okajima, H., Okumoto, T. & Taniguchi, M. (1989) Nucl. Acids Res., 17, 4385.
- 36 Klafki, H.-W., Kratzin, H.D., Pick, A.I., Eckart, K. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- 37 Kohler, H., Rudofsky, S. & Kluskens, L. (1975) J.Immunology, 114, 415-421.
- 38 Kojima, M., Odani, S. & Ikenaka, T. (1980) Mol.Immunol., 17, 1407-1414.
- Komori, S., Yamasaki, N., Shigeta, M., Isojima, S. & Watanabe, T. (1988) Clin.Exp.Immunol., 71, 508-516.
- Kratzin, H.D., Palm, W., Stangel, M., Schmidt, W.E., Friedrich, J. & Hilschmann, N. (1989) Biol.Chem.Hoppe-Seyler, 370, 263-272.

Kratzin, H.D., Pick, A.I., Stangel, M. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic Publishers, Dordrecht/Boston/London, Pp.181-

- 42 Langer, B., Steinmetz-Kayne, M. & Hilschmann, N. (1968) Z.Physiol.Chem., 349, 945-951.
- 43 Larrick, J.W., Danielsson, L., Brenner, C.A., Wallace, E.F., Abrahamson, M., Fry, K.E. & Borrebaeck, C.A.K. (1989) Bio/Tech., 7, 934-938.
- 44 Levy, S., Mendel, E., Kon, S., Avnur, Z. & Levy, R. (1988) J.Exp.Med., 168, 475-489.
- Lewis, A.P., Lemon, S.M., Barber, K.A., Murphy, P., Parry, N.R., Peakman, T.C., Sims, M.J., Worden, J. & Crowe, J.S. (1993) J.Immunol., 151, 2829–2838.
- 46 Liu, V.Y.S., Low, T.L.K., Infante, A. & Putnam, F.W. (1976) Science, 193, 1017-1020; Infante, A. & Putnam, F.W. (1979) J.Biol.Chem., 254, 9006-9016.
- 47 Lopez De Castro, J.A., Chiu, Y.Y.H. & Poljak, R.J. (1978) Biochemistry, 17, 1718–1723.
- 48 Mantovani, L., Wilder, R.L. & Casali, P. (1993) J.Immunol., 151, 473-488.
- 49 Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., Mccafferty, J., Griffiths, A.D. & Winter, G. (1991) J.Mol.Biol., 222, 581-597.
- 50 Mihaesco, E., Roy, J.-P., Congy, N., Peran-Rivat, L. & Mihaesco, C. (1985) Eur.J.Biochem., 150, 349-357.
- 51 Milstein, C., Clegg, J.B. & Jarvis, J.M. (1968) Biochem.J., 110, 631-652.
- 52 Moran, M.J., Andris, J.S., Matsumato, Y.-I., Capra, J.D. & Hersh, E.M. (1993) Mol.Immunol., 30, 1543-1551.
- 53 Nabeshima, Y. & Ikenaka, T. (1979) Mol.Immunol., 16, 439-444.
- Olee, B.T., Lu, E.W., Huang, D.-F., Soto-Gil, R.W., Deftos, M., Kozin, F., Carson, D.A. & Chen,
 P.P. (1992) J.Exp.Med., 175, 831-842.
- Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S.-M., Natvig, J.B. & Capra, J.D. (1992) Scand.J.Immunol., 36, 349–362.
- 56 Paul, E., Iliev, A.A., Livneh, A. & Diamond, B. (1992) J.Immunol., 149, 3588-3595.
- Pick, A.I., Kratzin, H.D., Barnikol-Watanabe, S. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Ponstingl, H. & Hilschmann, N. (1969) Z.Physiol.Chem., 350, 1148-1152; (1971)
 Z.Physiol.Chem., 352, 859-877.

Ponstingl, H., Hess, M. & Hilschmann, N. (1968) Z.Physiol.Chem., 349, 867-871; (1971)
 Z.Physiol.Chem., 352, 247-266.

- 60 Randen, I., Pascual, V., Victor, K., Thompson, K.M., Forre, O., Capra, J.D. & Natvig, J.B. (1993) Eur.J.Immunol., 23, 1220–1225.
- 61 Scholz, R. & Hilschmann, N. (1975) Z.Physiol.Chem., 356, 1333-1335.
- 62 Settmacher, U., Jahn, S., Siegel, P., Von Baehr, R. & Hansen, A. (1993) Mol.Immunol., 30, 953-954.
- 63 Shinoda, T., Titani, K. & Putnam, F.W. (1970) J.Biol.Chem., 245, 4475-4487.
- Sletten, K., Husby, G. & Natvig, J.B. (1974) Scand.J.Immunol., 3, 833-836.; Sletten, K., Natvig, J.B., Husby, G. & Juul, J. (1981) Biochem.J., 195, 561-572.
- Solomon, A., Frangione, B. & Franklin, E.C. (1982) J.Clin.Invest., 70, 453-460.; Frangione, B., Moloshok, T. & Solomon, A. (1983) J.Immunol., 131, 2490-2493.
- 66 Takahashi, N., Takayasu, T., Isobe, T., Shinoda, T., Okuyama, T. & Shimizu, A. (1979) J.Biochem., 86, 1523-1535.
- Takahashi, N., Takayasu, T., Shinoda, T., Ito, S., Okuyama, T. & Shimizu, A. (1980) Biomed.Res., 1, 321-333.
- Takahashi, Y., Takahashi, N., Tetaert, D. & Putnam, F.W. (1983) Proc.Nat.Acad.Sci.Usa, 80, 3686-3690.
- Takayasu, T., Takahashi, N., Shinoda, T., Okuyama, T. & Tomioka, H. (1980) J.Biochem., 89, 421-436.
- 70 Titani, K., Wikler, M., Shinoda, T. & Putnam, F.W. (1970) J.Biol.Chem., 245, 2171-2176.
- 71 Toft, K.G., Sletten, K. & Husby, G. (1985) Biol.Chem.Hoppe-Seyler, 366, 617-625.
- Tonoike, H., Kametani, F., Hoshi, A., Shinoda, T. & Isobe, T. (1985) Biochem.Biophys.Res.Commun., 126, 1228-1234.
- 73 Tonoike, H., Kametani, F., Hoshi, A., Shinoda, T. & Isobe, T. (1985) Febs Letters, 185, 139-141.
- 74 Tsujimoto, Y. & Croce, C.M. (1984) Nucl.Acids Res., 12, 8407-8414.
- Tsunetsugu-Yokota, Y., Minekawa, T., Shigemoto, K., Shirasawa, T. & Takemori, T. (1992) Mol.Immunol., 29, 723-728.
- 76 Tveteraas, T., Sletten, K. & Westermark, P. (1985) Biochem.J., 232, 183-190.
- 77 Vasicek, T.J. & Leder, P. (1990) J.Exp.Med., 172, 609-620.

78 Victor, K.D., Randen, I., Thompson, K., Forre, O., Natvig, J.B., Fu, S.M. & Capra, J.D. (1991) J.Clin.Invest., 87, 1603–1613.

- 79 Weng, N.-P., Yu-Lee, L.-Y., Sanz, I., Patten, B.M. & Marcus, D.M. (1992) J.Immunol., 149, 2518-2529.
- 80 Wikler, M. & Putnam, F.W. (1970) J.Biol.Chem., 245, 4488-4507.
- 81 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.
- Yago, K., Zenita, K., Ohwaki, I., Harada, Y., Nozawa, S., Tsukazaki, K., Iwamori, M., Endo, N., Yasuda, N., Okuma, M. & Kannagi, R. (1993) Mol.Immunol., 30, 1481-1489.
- 83 Yamasaki, N., Komori, S. & Watanabe, T. (1987) Mol.Immunol., 24, 981-985.
- 84 Zhu, D., Kim, H.S. & Deutsch, H.F. (1983) Mol.Immunol., 20, 1107-1116.
- 85 Zhu, D., Zhang, H., Zhu, N. & Luo, X. (1986) Scientia Sinica, 29, 746-755.

References of rearranged human heavy chain sequences used for alignment

- Adderson, E.E., Azmi, F.H., Wilson, P.M., Shackelford, P.G. & Carroll, W.L. (1993) J.Immunol., 151, 800-809.
- 2 Adderson, E.E., Shackelford, P.G., Quinn, A. & Carroll, W.L. (1991) J.Immunol., 147, 1667-1674.
- 3 Akahori, Y., Kurosawa, Y., Kamachi, Y., Torii, S. & Matsuoka, H. (1990) J.Clin.Invest., 85, 1722-1727.
- 4 Andris, J.S., Brodeur, B.R. & Capra, J.D. (1993) Mol.Immunol., 30, 1601-1616.
- 5 Andris, J.S., Ehrlich, P.H., Ostberg, L. & Capra, J.D. (1992) J.Immunol., 149, 4053-4059.
- Andris, J.S., Johnson, S., Zolla-Pazner, S. & Capra, J.D. (1991) Proc.Natl.Acad.Sci.Usa, 88, 7783-7787.
- 7 Anker, R., Coniey, M.E. & Pollok, B.A. (1989) J.Exp.Med., 169, 2109-2119.
- Atkinson, P.M., Lampman, G.W., Furie, B.C., Naparstek, Y., Schwartz, R.S., Stollar, B.D. & Furie, B. (1985) J.Clin.Invest., 75, 1138-1143.;Lampman, G.W., Furie, B., Schwartz, R.S., Stollar, B.D. & Furie, B.C. (1989)
- 9 Avila, M.A., Vazques, J., Danielsson, L., Fernandez De Cossio, M.E. & Borrebaeck, C.A.K. (1993) Gene, 127, 273-274.
- 10 Bakkus, M.H.C., Heirman, C., Van Riet, I., Van Camp, B. & Thielemans, K. (1992) Blood, 80, 2326-2335.

Barbas Iii, C.F., Crowe, Jr., J.E., Cababa, D., Jones, T.M., Zebedee, S.L., Murphy, B.R., Chanock, R.M. & Burton, D.R. (1992) Proc.Natl.Acad.Sci.Usa, 89, 10164-10168.

- Barbas, C.F., Iii, Collet, T.A., Amberg, W., Roben, P., Binley, J.M., Hoekstra, D., Cababa, D., Jones, T.M., Williamson, R.A., Pilkington, G.R., Haigwood, N.L., Cabezas, E., Satterthwait, A.C., Sanz, I. & Burton, D.R. (1993) J.Mol.Biol., 230, 812-823.
- 13 Berman, J.E., Humphries, C.G., Barth, J., Alt, F.W. & Tucker, P.W. (1991) J.Exp.Med., 173, 1529-1535.
- Berman, J.E., Mellis, S.J., Pollock, R., Smith, C.L., Suh, H., Heinke, B., Kowal, C., Surti, U., Chess, L., Cantor, C.R & Alt, F.W. (1988) Embo J., 7, 727-738.
- Bhat, N.M., Bieber, M.M., Chapman, C.J., Stevenson, F.K. & Teng, N.N.H. (1993) J.Immunol., 151, 5011-5021.
- 16 Bird, J., Galili, N., Link, M., Stites, D. & Sklar, J. (1988) J.Exp.Med., 168, 229-245.
- 17 Cai, J., Humphries, C., Richardson, A. & Tucker, P.W. (1992) J.Exp.Med., 176, 1073-1081.
- 18 Cairns, E., Kwong, P.C., Misener, V., Ip, P., Bell, D.A. & Siminovitch, K.A. (1989) J.Immunol., 143, 685-691.
- 19 Capra, J.D. & Hopper, J.E. (1976) Immunochemistry, 13, 995-999; Hopper, J.E., Noyes, C., Heinrikson, R. & Kessel, J.W. (1976) J.Immunol., 116, 743-746.
- 20 Capra, J.D. & Kehoe, J.M. (1974) Proc.Nat.Acad.Sci.Usa, 71, 845-848.
- 21 Carroll, W.L., Yu, M., Link, M.P. & Korsmeyer, S.J. (1989) J.Immunol., 143, 692-698.
- 22 Chen, P.P., Liu, M.-F., Glass, C.A., Sinha, S., Kipps, T.J. & Carson, D.A. (1989) Arthritis & Rheumatism, 32, 72-76; Kipps, T.J., Tomhave, E., Pratt, L.F., Duffy, S., Chen, P.P. & Carson, D.A. (1989) Proc.Natl.Acad.Sci.Usa, 86, 5913-5917.
- 23 Chiu, Y.Y.H., Lopez De Castro, J.A. & Poljak, R.J. (1979) Biochemistry, 18, 553-560.
- 24 Cleary, M.L., Meeker, T.C., Levy, S., Lee, E., Trela, M., Sklar, J. & Levy, R. (1986) Cell, 44, 97-106.
- 25 Cuisinier, A.-M., Fumoux, F., Fougereau, M. & Tonnelle, C. (1992) Mol.Immunol., 29, 1363-1373.
- Cuisinier, A.-M., Gauthier, L., Boubli, L., Fougereau, M. & Tonnelle, C. (1993) Eur.J.Immunol., 23, 110-118.
- Cunningham, B.A., Gottlieb.P.D., Pflumm, M.N. & Edelman, G.M. (1971) Progress In Immunology (B.Amos, Ed.), Academic Press, N.Y., Pp.3-24.

Cunningham, B.A., Rutishauser, U., Gall, W.E., Gottlieb, P.D., Waxdal, M.J. & Edelman, G.M. (1970) Biochemistry, 9, 3161-3170.

- 29 Deane, M. & Norton, J.D. (1990) Eur.J.Immunol., 20, 2209-2217.
- 30 Deane, M. & Norton, J.D. (1991) Leukemia, 5, 646-650.
- 31 Dersimonian, H., Schwartz, R.S., Barrett, K.J. & Stollar, B.D. (1987) J.Immunol., 139, 2496-2501.
- Dersimonian, H., Schwartz, R.S., Barrett, K.J. & Stollar, B.D. (1987) J.Immunol., 139, 2496-2501; Chen, P.P., Liu, M.-F., Sinha, S. & Carson, D.A. (1988) Arth.Rheum., 31, 1429-1431.
- Desai, R., Spatz, L., Matsuda, T., Ilyas, A.A., Berman, J.E., Alt, F.W., Kabat, E.A. & Latov, N. (1990) J.Neuroimmunol., 26, 35-41.
- Ezaki, I., Kanda, H., Sakai, K., Fukui, N., Shingu, M., Nobunaga, M. & Watanabe, T. (1991)
 Arthritis And Rheumatism, 34, 343-350.
- 35 Felgenhauer, M., Kohl, J. & Ruker, F. (1990) Nucl. Acids Res., 18, 4927.
- 36 Florent, G., Lehman, D. & Putnam, F.W. (1974) Biochemistry, 13, 2482-2498.
- 37 Friedlander, R.M., Nussenzweig, M.C. & Leder, P. (1990) Nucl. Acids Res., 18, 4278.
- 38 Gawinowicz, M.A., Merlini, G., Birken, S., Osserman, E.F. & Kabat, E.A. (1991) J.Immunol., 147, 915-920.
- 39 Gillies, S.D., Dorai, H., Wesolowski, J., Majeau, G., Young, D., Boyd, J., Gardner, J. & James, K. (1989) Bio/Tech., 7, 799-804.
- 40 Goni, F. & Frangione, B. (1983) Proc.Nat.Acad.Sci.Usa, 80, 4837-4841.
- 41 Gorman, S.D., Clark, M.R., Routledge, E.G., Cobbold, S.P. & Waldmann, H. (1991)
 Proc.Natl.Acad.Sci.Usa, 88, 4181-4185.
- Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., Mccafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. & Winter, G. (1993) Embo J., 12, 725-734.
- 43 Grillot-Courvalin, C., Brouet, J.-C., Piller, F., Rassenti, L.Z., Labaume, S., Silverman, G.J., Silberstein, L. & Kipps, T.J. (1992) Eur.J.Immunol., 22, 1781-1788.
- Guillaume, T., Rubinstein, D.B., Young, F., Tucker, L., Logtenberg, T., Schwartz, R.S. & Barrett, K.L. (1990) J.Immunol., 145, 1934-1945; Young, F., Tucker, L., Rubinstein, D., Guillaume, T., Andre-Schwartz, J., Barrett, K.J., Schwartz, R.S. & Logtenberg, T. (1990)
- 45 Harindranath, N., Goldfarb, I.S., Ikematsu, H., Burastero, S.E., Wilder, R.L., Notkins, A.L. & Casali, P. (1991) Int.Immunol., 3, 865-875.

46 Hillson, J.L., Oppliger, I.R., Sasso, E.H., Milner, E.C.B. & Wener, M.H. (1992) J.Immunol., 149, 3741–3752.

- 47 Hirabayashi, Y., Munakata, Y., Sasaki, T. & Sano, H. (1992) Nucl. Acids Res., 20, 2601.
- 48 Hoch, S. & Schwaber, J. (1987) J.Immunol., 139, 1689-1693.
- 49 Huang, C., Stewart, A.K., Schwartz, R.S. & Stollar, B.D. (1992) J.Clin.Invest., 89, 1331-1343.
- 50 Hughes-Jones, N.C., Bye, J.M., Beale, D. & Coadwell, J. (1990) Biochem.J., 268, 135-140.
- 51 Ikematsu, H., Harindranath, N., Ueki, Y., Notkins, A.L. & Casali, P. (1993) J.Immunol., 150, 1325-1337.
- 52 Ikematsu, H., Kasaian, M.T., Schettino, E.W. & Casali, P. (1993) J.Immunol., 151, 3604-3616.
- 53 Kelly, P.J., Pascual, V., Capra, J.D. & Lipsky, P.E. (1992) J.Immunol., 148, 1294-1301.
- 54 Kipps, T.J. & Duffy, S.F. (1991) J.Clin.Invest., 87, 2087-2096.
- 55 Kipps, T.J., Tomhave, E., Pratt, L.F., Duffy, S., Chen, P.P. & Carson, D.A. (1989) Proc.Natl.Acad.Sci.Usa, 86, 5913-5917.
- Kishimoto, T., Okajima, H., Okumoto, T. & Taniguchi, M. (1989) Nucl. Acids Res., 17, 4385.
- 57 Knight, G.B., Agnello, V., Bonagura, V., Barnes, J.L., Panka, D.J. & Zhang, Q.-X. (1993)
 J.Exp.Med., 178, 1903-1911.
- 58 Kohler, H., Shimizu, A., Paul, C., Moore, V. & Putnam, F.W. (1970) Nature, 227, 1318-1320; Florent, G., Lehman, D. & Putnam, F.W. (1974) Biochemistry, 13, 2482-2498
- Komori, S., Yamasaki, N., Shigeta, M., Isojima, S. & Watanabe, T. (1988) Clin.Exp.Immunol., 71, 508-516.
- 60 Kon, S., Levy, S. & Levy, R. (1987) Proc.Natl.Acad.Sci.Usa, 84, 5053-5057.
- Kratzin, H., Altevogt, P., Ruban, E., Kortt, A., Staroscik, K. & Hilschmann, N. (1975) Z.Physiol.Chem., 356, 1337-1342; Kratzin, H., Altevogt, P., Kortt, A., Ruban, E. & Hilschmann, N. (1978) Z.Physiol.Chem., 359, 1717-1745.
- 62 Kudo, A., Ishihara, T., Nishimura, Y. & Watanabe, T. (1985) Gene, 33, 181-189.
- 63 Kunicki, T.J., Annis, D.S., Gorski, J. & Nugent, D.J. (1991) J.Autoimmunity, 4, 433-446.
- 64 Larrick, J.W., Wallace, E.F., Coloma, M.J., Bruderer, U., Lang, A.B. & Fry, K.E. (1992) Immunological Reviews, 130, 69–85.
- 65 Lehman, D.W. & Putnam, F.W. (1980) Proc.Nat.Acad.Sci.Usa, 77, 3239-3243.

66 Lewis, A.P., Lemon, S.M., Barber, K.A., Murphy, P., Parry, N.R., Peakman, T.C., Sims, M.J., Worden, J. & Crowe, J.S. (1993) J.Immunol., 151, 2829-2838.

- 67 Liu, V.Y.S., Low, T.L.K., Infante, A. & Putnam, F.W. (1976) Science, 193, 1017-1020.
- Logtenberg, T., Young, F.M., Van Es, J., Gmelig-Meyling, F.H.J., Berman, J.E. & Alt, F.W. (1989) J.Autoimmunity, 2, 203-213.
- 69 Logtenberg, T., Young, F.M., Van Es, J.H., Gmelig-Meyling, F.H.J. & Alt, F.W. (1989)
 J.Exp.Med., 170, 1347-1355.
- Manheimer-Lory, A., Katz, J.B., Pillinger, M., Ghossein, C., Smith, A. & Diamond, B. (1991) J.Exp.Med., 174, 1639-1652.
- 71 Mantovani, L., Wilder, R.L. & Casali, P. (1993) J.Immunol., 151, 473-488.
- 72 Mariette, X., Tsapis, A. & Brouet, J.-C. (1993) Eur.J.Immunol., 23, 846-851.
- 73 Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., Mccafferty, J., Griffiths, A.D. & Winter, G. (1991) J.Mol.Biol., 222, 581-597.
- 74 Meeker, T.C., Grimaldi, J., O'rourke, R., Loeb, J.Juliusson, G. & Einhorn, S. (1988) J.Immol., 141, 3994-3998.
- 75 Milili, M., Fougereau, M., Guglielmi, P. & Schiff, C. (1991) Mol.Immunol., 28, 753-761.
- 76 Moran, M.J., Andris, J.S., Matsumato, Y.-I., Capra, J.D. & Hersh, E.M. (1993) Mol.Immunol., 30, 1543-1551.
- 77 Mortari, F., Wang, J.-Y. & Schroeder, Jr., H.W. (1993) J.Immunol., 150, 1348-1357.
- Newkirk, M.M., Gram, H., Heinrich, G.F., Ostberg, L., Capra, J.D. & Wasserman, R.L. (1988) J.Clin.Invest., 81, 1511–1518.
- 79 Newkirk, M.M., Mageed, R.A., Jefferis, R., Chen, P.P. & Capra, J.D. (1987) J.Exp.Med., 166, 550–564.
- 80 Nickerson, K.G., Berman, J., Glickman, E., Chess, L. & Alt, F.W. (1989) J.Exp.Med., 169, 1391-1403.
- 81 Olee, B.T., Lu, E.W., Huang, D.-F., Soto-Gil, R.W., Deftos, M., Kozin, F., Carson, D.A. & Chen, P.P. (1992) J.Exp.Med., 175, 831-842.
- 82 Pascual, V., Randen, I., Thompson, K., Sioud, M.Forre, O., Natvig, J. & Capra, J.D. (1990)

 J.Clin.Invest., 86, 1320-1328.
- Pascual, V., Randen, I., Thompson, K., Sioud, M.Forre, O., Natvig, J. & Capra, J.D. (1990) J.Clin.Invest., 86, 1320-1328; Randen, I., Brown, D., Thompson, K.M., Hughes-Jones, N., Pascual, V., Victor, K., Capra, J.D., Forre, O. & Natvig, J.B. (1992)

Pascual, V., Victor, K., Lelsz, D., Spellerberg, M.B., Hamblin, T.J., Thompson, K.M., Randen, I., Natvig, J., Capra, J.D. & Stevenson, F.K. (1991) J.Immunol., 146, 4385-4391.

- Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S.-M., Natvig, J.B. & Capra, J.D. (1992) Scand.J.Immunol., 36, 349-362.
- Pascual, V., Victor, K., Spellerberg, M., Hamblin, T.J., Stevenson, F.K. & Capra, J.D. (1992) J.Immunol., 149, 2337-2344.
- Ponstingl, H., Schwarz, J., Reichel, W. & Hilschmann, N. (1970) Z.Physiol.Chem., 351,
 1591–1594.; Ponstingl, H. & Hilschmann, N. (1976) Z.Physiol.Chem., 357, 1571–1604.
- 88 Portolano, S., Mclachlan, S.M. & Rapoport, B. (1993) J.Immunol., 151, 2839-2851.
- Portolano, S., Seto, P., Chazenbalk, G.D., Nagayama, Y., Mclachlan, S.M. & Rapoport, B. (1991) Biochem.Biophys.Res.Commun., 179, 372-377.
- 90 Pratt, L.F., Szubin, R., Carson, D.A. & Kipps, T.J. (1991) J.Immunol., 147, 2041-2046.
- 91 Press, E.M. & Hogg, N.M. (1970) BiochemJ., 117, 641-660.
- 92 Putnam, F.W., Shimizu, A., Paul., C., Shinoda, T. & Kohler, H. (1971) Ann.N.Y.Acad.Sci., 190, 83-103.
- Putnam, F.W., Takahashi, N., Tetaert, D., Debuire, B. & Lin, L.C. (1981)
 Proc.Nat.Acad.Sci.Usa, 78, 6168-6172.;Takahashi, N., Tetaert, D., Debuire, B., Lin, L. & Putnam, F.W. (1982) Proc.Nat.Acad.Sci.Usa, 79, 2850-2854.
- 94 Raaphorst, F.M., Timmers, E., Kenter, M.J.H., Van Tol, M.J.D., Vossen, J.M. & Schuurman, R.K.B. (1992) Eur.J.Immunol., 22, 247-251.
- Rabbitts, T.H., Bentley, D.L., Dunnick, W., Forster, A., Matthyssens, G. & Milstein, C. (1980) Cold Spring Harb.Symp.Quanti.Biol., 45, 867-878; Matthyssens, G. & Rabbitts, T.H. (1980) Proc.Nat.Acad.Sci.Usa, 77, 6561-6565.
- 96 Randen, I., Pascual, V., Victor, K., Thompson, K.M., Forre, O., Capra, J.D. & Natvig, J.B. (1993) Eur.J.Immunol., 23, 1220–1225.
- 97 Rassenti, L.Z. & Kipps, T.J. (1993) J.Exp.Med., 177, 1039-1046.
- 98 Reidl, L.S., Friedman, D.F., Goldman, J., Hardy, R.R., Jefferies, L.C. & Silberstein, L.E. (1991)
 J.Immunol., 147, 3623-3631.
- 99 Roudier, J., Silverman, G.J., Chen, P.P., Carson, D.A. & Kipps, T.J. (1990) J.Immunol., 144, 1526-1530.
- 100 Sanz, I., Casali, P., Thomas, J.W., Notkins, A.L. & Capra, J.D. (1989) J.Immunol., 142, 4054-4061.

101 Sanz, I., Dang, H., Takei, M., Talal, N. & Capra, J.D. (1989) J.Immunol., 142, 883-887.

- 102 Schmidt, W.E., Jung, H-.D., Palm, W. & Hilschmann, N. (1983) Z.Physiol.Chem., 364, 713-747.
- 103 Schroeder, H.W., Jr. & Wang, J.Y. (1990) Proc.Natl.Acad.Sci.Usa, 87, 6146-6150.
- 104. Schroeder, H.W., Jr., Hillson, J.L. & Perlmutter, R.M. (1987) Science, 238, 791-793.
- 105 Schroeder, H.W., Jr., Hillson, J.L. & Perlmutter, R.M. (1987) Science, 238, 791-793; Chen, P.P., Liu, M.-F., Glass, C.A., Sinha, S., Kipps, T.J. & Carson, D.A. (1989) Arthritis & Rheumatism, 32, 72-76.
- Schroeder, H.W., Jr., Hillson, J.L. & Perlmutter, R.M. (1987) Science, 238, 791-793; Chen,
 P.P., Liu, M.-F., Sinha, S. & Carson, D.A. (1988) Arth.Rheum., 31, 1429-1431.
- 107 Schutte, M.E., Ebeling, S.B., Akkermans, K.E., Gmelig-Meyling, F.H. & Logtenberg, T. (1991) Eur.J.lmmunol., 21, 1115-1121.
- Schutte, M.E., Ebeling, S.B., Akkermans, K.E., Gmelig-Meyling, F.H.J. & Logtenberg, T. (1991) Eur.J.Immunol., 21, 1115-1121.
- 109 Settmacher, U., Jahn, S., Siegel, P., Von Baehr, R. & Hansen, A. (1993) Mol.Immunol., 30, 953-954.
- 110 Shen, A., Humphries, C., Tucker, P. & Blattner, F. (1987) Proc.Natl.Acad.Sci.Usa, 84, 8563-
- 111 Shimizu, A., Nussenzweig, M.C., Mizuta, T.-R., Leder, P. & Honjo, T. (1989) Proc.Natl.Acad.Sci.Usa, 86, 8020-8023.
- 112 Shin, E.K., Matsuda, F., Fujikura, J., Akamizu, T., Sugawa, H., Mori, T. & Honjo, T. (1993) Eur.J.Immunol., 23, 2365–2367.
- 113 Silberstein, L.E., Litwin, S. & Carmack, C.E. (1989) J.Exp.Med., 169, 1631-1643.
- 114 Singal, D.P., Frame, B., Joseph, S., Blajchman, M.A. & Leber, B.F. (1993) Immunogenet., 38, 242.
- 115 Spatz, L.A., Wong, K.K., Williams, M., Desai, R., Golier, J., Berman, J.E., Alt, F.W. & Latov, N. (1990) J.Immunol., 144, 2821-2828.
- 116 Steiner, L.A., Garcia-Pardo, A. & Margolies, M.N. (1979) Biochemistry, 18, 4068-4080.
- 117 Stewart, A.K., Huang, C., Stollar, B.D. & Schwartz, R.S. (1993) J.Exp.Med., 177, 409-418.
- 118 Thomas, J.W. (1993) J.Immunol., 150, 1375-1382.
- 119 Torano, A. & Putnam, F.W. (1978) Proc.Nat.Acad.Sci.Usa, 75, 966-969.

120 Van Der Heijden, R.W.J., Bunschoten, H., Pascual, V., Uytdehaag, F.G.C.M., Osterhaus, A.D.M.E. & Capra, J.D. (1990) J.Immunol., 144, 2835-2839.

- 121 Van Der Stoep, N., Van Der Linden, J. & Logtenberg, T. (1993) J.Exp.Med., 177, 99-107.
- 122 Van Es, J.H., Gmelig-Meyling, F.H.J. & Logtenberg, T. (1992) Eur.J.Immunol., 22, 2761-2764.
- 123 Varade, W.S., Marin, E., Kittelberger, A.M. & Insel, R.A. (1993) J.Immunol., 150, 4985-4995.
- 124 Victor, K.D., Pascual, V., Lefvert, A.K. & Capra, J.D. (1992) Mol.Immunol., 29, 1501-1506.
- 125 Victor, K.D., Pascual, V., Williams, C.L., Lennon, V.A. & Capra, J.D. (1992) Eur.J.Immunol., 22, 2231-2236.
- 126 Watanabe, S., Barnikol, H.U., Horn, J., Bertram, J. & Hilschmann, N. (1973)Z.Physiol.Chem., 354, 1505-1509.
- 127 Weng, N.-P., Yu-Lee, L.-Y., Sanz, I., Patten, B.M. & Marcus, D.M. (1992) J.Immunol., 149, 2518-2529.
- 128 White, M.B., Word, C.J., Humphries, C.G., Blattner, F.R. & Tucker, P.W. (1990) Mol.Cell.Biol., 10, 3690-3699.
- 129 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.
- 130 Yago, K., Zenita, K., Ohwaki, I., Harada, Y., Nozawa, S., Tsukazaki, K., Iwamori, M., Endo, N., Yasuda, N., Okuma, M. & Kannagi, R. (1993) Mol.Immunol., 30, 1481-1489.
- 131 Zelenetz, A.D., Chen, T.T. & Levy, R. (1992) J.Exp.Med., 176, 1137-1148.

B. References of germline sequences

References of human germline kappa sequences

- 1 Cox, J.P.L., Tomlinson, I.M. & Winter, G. (1994) Eur.J.Immunol., 24, 827-836.
- 2 Huber, C., Et Al. (1993) Eur.J.Immunol., 23, 2868.
- 3 Klobeck, H.G., Bornkammm, G.W., Combriato, G., Mocikat, R., Pohlenz, H.D. & Zachau, H.G. (1985) Nucl.Acids Res., 13, 6515-6529.
- 4 Lautner-Rieske, A., Huber, C., Meindl, A., Pargent, W., Schäble, K.F., Thiebe, R., Zocher, I. & Zachau, H.G. (1992) Eur.J.Immunol. 22, 1023.
- Lorenz, W., Schäble, K.F., Thiebe, R., Stavnezer, J. & Zachau, H.G. (1988) Mol.Immunol., 25, 479.

Pargent, W., Meindl, A., Thiebe, R., Mitzel, S. & Zachau, H.G. (1991) Eur.J.Immunol., 21, 1821–1827.

- 7 Pech, M. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 9229-9236.
- 8 Pech, M., Jaenichen, H.-R., Pohlenz, H.-D., Neumaier, P.S., Klobeck, H.-G. & Zachau, H.G. (1984) J.Mol.Biol., 176, 189-204.
- Scott, M.G., Crimmins, D.L., Mccourt, D.W., Chung, G., Schable, K.F., Thiebe, R., Quenzel, E.-M., Zachau, H.G. & Nahm, M.H. (1991) J.Immunol., 147, 4007-4013.
- Stavnezer, J., Kekish, O., Batter, D., Grenier, J., Balazs, I., Henderson, E. & Zegers, B.J.M. (1985) Nucl. Acids Res., 13, 3495-3514.
- Straubinger, B., Huber, E., Lorenz, W., Osterholzer, E., Pargent, W., Pech, M., Pohlenz, H.-D., Zimmer, F.-J. & Zachau, H.G. (1988) J.Mol.Biol., 199, 23-34.
- 12 Straubinger, B., Thiebe, R., Huber, C., Osterholzer, E. & Zachau, H.G. (1988) Biol.Chem.Hoppe-Seyer, 369, 601-607.

References of human germline lambda sequences

- 1 Williams, S.C. & Winter, G. (1993) Eur.J.Immunol., 23, 1456-1461.
- Siminovitch, K.A., Misener, V., Kwong, P.C., Song, Q.-L. & Chen, P.P. (1989) J.Clin.Invest., 84, 1675-1678.
- Brockly, F., Alexandre, D., Chuchana, P., Huck, S., Lefranc, G. & Lefranc, M.-P. (1989) Nuc.Acids.Res., 17, 3976.
- Daley, M.D., Peng, H.-Q., Misener, V., Liu, X.-Y., Chen, P.P. & Siminovitch, K.A. (1992) Mol.Immunol., 29, 1515-1518.
- 5 Deftos, M., Soto-Gil, R., Quan, M., Olee, T. & Chen, P.P. (1994) Scand. J. Immunol., 39, 95.
- 6 Stiernholm, N.B.J., Kuzniar, B. & Berinstein, N.L. (1994) J. Immunol., 152, 4969-4975.
- 7 Combriato, G. & Klobeck, H.G. (1991) Eur.J.Immunol., 21, 1513-1522.
- 8 Anderson, M.L.M., Szajnert, M.F., Kaplan, J.C., Mccoll, L. & Young, B.D. (1984) Nuc. Acids Res., 12, 6647-6661.

References of human germline heavy chain sequences

- Adderson, E.E., Azmi, F.H., Wilson, P.M., Shackelford, P.G. & Carroll, W.L. (1993) J.Immunol., 151, 800-809.
- 2 Andris, J.S., Brodeur, B.R. & Capra, J.D. (1993) Mol.Immunol., 30, 1601-1616.

Berman, J.E., Mellis, S.J., Pollock, R., Smith, C.L., Suh, H., Heinke, B., Kowal, C., Surti, U., Chess, L., Cantor, C.R & Alt, F.W. (1988) Embo J., 7, 727-738.

- Buluwela, L. & Rabbitts, T.H. (1988) Eur.J.Immunol., 18, 1843-1845.; Buluwela, L., Albertson, D.G., Sherrington, P., Rabbitts, P.H., Spurr, N. & Rabbitts, T.H. (1988) Embo J., 7, 2003-2010.
- 5 Chen, P.P., Liu, M.-F., Sinha, S. & Carson, D.A. (1988) Arth.Rheum., 31, 1429-1431.
- 6 Chen, P.P., Liu, M.-F., Glass, C.A., Sinha, S., Kipps, T.J. & Carson, D.A. (1989) Arthritis & Rheumatism, 32, 72-76.
- 7 Cook, G.P. et al. (1994) Nature Genetics 7, 162-168.
- 8 Haino, M. et al., (1994). J. Biol. Chem. 269, 2619-2626
- 9 Humphries, C.G., Shen, A., Kuziel, W.A., Capra, J.D., Blattner, F.R. & Tucker, P.W. (1988) Nature, 331, 446-449.
- 10 Kodaira, M., Kinashi, T., Umemura, I., Matsuda, F., Noma, T., Ono, Y. & Honjo, T. (1986)
 J.Mol.Biol., 190, 529-541.
- 11 Lee, K.H., Matsuda, F., Kinashi, T., Kodaira, M. & Honjo, T. (1987) J.Mol.Biol., 195, 761-768.
- Matsuda, F., Lee, K.H., Nakai, S., Sato, T., Kodaira, M., Zong, S.Q., Ohno, H., Fukuhara, S. & Honjo, T. (1988) Embo J., 7, 1047-1051.
- 13 Matsuda, F., Shin, E.K., Hirabayashi, Y., Nagaoka, H., Yoshida, M.C., Zong, S.Q. & Honjo, T. (1990) Embo J., 9, 2501–2506.
- Matsuda, F., Shin, E.K., Nagaoka, H., Matsumura, R., Haino, M., Fukita, Y., Taka-Ishi, S., Imai, T., Riley, J.H., Anand, R. Et, Al. (1993) Nature Genet. 3, 88-94
- Nagaoka, H., Ozawa, K., Matsuda, F., Hayashida, H., Matsumura, R., Haino, M., Shin, E.K., Fukita, Y., Imai, T., Anand, R., Yokoyama, K., Eki, T., Soeda, E. & Honjo, T. (1993).

 (Temporal)
- Rechavi, G., Bienz, B., Ram, D., Ben-Neriah, Y., Cohen, J.B., Zakut, R. & Givol, D. (1982) Proc.Nat.Acad.Sci.Usa, 79, 4405-4409.
- Sanz, I., Kelly, P., Williams, C., Scholl, S., Tucker, P. & Capra, J.D. (1989) Embo J., 8, 3741-3748.
- 18 Shin, E.K., Matsuda, F., Fujikura, J., Akamizu, T., Sugawa, H., Mori, T. & Honjo, T. (1993) Eur.J.Immunol., 23, 2365-2367.
- 19 Tomlinson, Im., Walter, G., Marks, Jd., Llewelyn, Mb. & Winter. G. (1992) J.Mol.Biol. 227, 776-798.

20 Van Der Maarel, S., Van Dijk, K.W., Alexander, C.M., Sasso, E.H., Bull, A. & Milner, E.C.B. (1993) J.Immunol., 150, 2858-2868.

- Van Dijk, K.W., Mortari, F., Kirkham, P.M., Schroeder, Jr., H.W. & Milner, E.C.B. (1993). Eur.J.Immunol., 23, 832-839.
- Van Es, J.H., Aanstoot, H., Gmelig-Meyling, F.H.J., Derksen, R.H.W.M. & Logtenberg, T. (1992) J.Immunol., 149, 2234-2240.
- Weng, N.-P., Snyder, J.G., Yu-Lee, L.-Y. & Marcus, D.M. (1992) Eur.J.Immunol., 22, 1075-1082.
- 24 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.lmmunol., 22, 1719-1728.
- Olee, T., Yang, P.M., Siminovitch, K.A., Olsen, N.J., Hillson, J.L., Wu, J., Kozin, F., Carson, D.A.&Chen, P.P. (1991) J. Clin. Invest. 88, 193-203.
- 26 Chen, P.P.& Yang, P.M. (1990) Scand. J. Immunol. 31, 593-599.
- 27 Tomlinson, M., Walter, G., Cook&Winter, G. (Unpublished)

Claims

1. A method of setting up one or more nucleic acid sequences encoding one or more (poly)peptide sequences suitable for the creation of libraries of (poly)peptides said (poly)peptide sequences comprising amino acid consensus sequences, said method comprising the following steps:

- deducing from a collection of at least three homologous proteins one or more (poly)peptide sequences comprising at least one amino acid consensus sequence;
- (b) optionally, identifying amino acids in said (poly)peptide sequences to be modified so as to remove unfavorable interactions between amino acids within or between said or other (poly)peptide sequences;
- (c) identifying at least one structural sub-element within each of said (poly)peptide sequences;
- (d) backtranslating each of said (poly)peptide sequences into a corresponding coding nucleic acid sequence;
- (e) setting up cleavage sites in regions adjacent to or between the ends of sub-sequences encoding said sub-elements, each of said cleavage sites:
 - (ea) being unique within each of said coding nucleic acid sequences;
 - (eb) being common to the corresponding sub-sequences of any said coding nucleic acids.
- 2. A method of setting up two or more sets of one or more nucleic acid sequences comprising executing the steps described in claim 1 for each of said sets with the additional provision that said cleavage sites are unique between said sets.
- 3. The method of claim 2 in which at least two of said sets are deduced from the same collection of at least three homologous proteins.
- 4. The method according to any one of claims 1 to 3, wherein said setting up further comprises the synthesis of said nucleic acid coding sequences.
- The method according to any one of claims 1 to 4, further comprising the cloning of said nucleic acid coding sequences into a vector.

 The method according to any one of claims 1 to 5, wherein said removal of unfavorable interactions results in enhanced expression of said (poly)peptides.

- 7. The method according to any one of claims 1 to 6, further comprising the steps of:
 - cleaving at least two of said cleavage sites located in regions adjacent to or between the ends of said sub-sequences; and
 - (g) exchanging said sub-sequences by different sequences; and
 - (h) optionally, repeating steps (f) and (g) one or more times.
- 8. The method according to claim 7, wherein said different sequences are selected from the group of different sub-sequences encoding the same or different sub-elements derived from the same or different (poly)peptides.
- 9. The method according to claims 7 or 8, wherein said different sequences are selected from the group of:
 - (i) genomic sequences or sequences derived from genomic sequences;
 - (ii) rearranged genomic sequences or sequences derived from rearranged genomic sequences; and
 - (iii) random sequences.
- 10. The method according to any one of claims 1 to 9 further comprising the expression of said nucleic acid coding sequences.
- 11. The method according to any one of claims 1 to 10 further comprising the steps of:
 - (i) screening, after expression, the resultant (poly)peptides for a desired property;
 - (k) optionally, repeating steps (f) to (i) one or more times with nucleic acid sequences encoding one or more (poly)peptides obtained in step (i).
- 12. The method according to claim 11, wherein said desired property is selected from the group of optimized affinity or specificity for a target molecule, optimized enzymatic activity, optimized expression yields, optimized stability and optimized solubility.

13. The method according to any one of claims 1 to 12, wherein said cleavage sites are sites cleaved by restriction enzymes.

- 14. The method according to any one of claims 1 to 13, wherein said structural sub-elements comprise between 1 and 150 amino acids.
- 15. The method according to claim 14, wherein said structural sub-elements comprise between 3 and 25 amino acids.
- 16. The method according to any one of claims 1 to 15, wherein said nucleic acid is DNA.
- 17. The method according to any one of claims 1 to 16, wherein said (poly)peptides have an amino acid pattern characteristic of a particular species.
- 18. The method according to claim 17, wherein said species is human.
- 19. The method according to any one of claims 1 to 18, wherein said (poly)peptides are at least part of members or derivatives of the immunoglobulin superfamily.
- 20. The method according to claim 19, wherein said members or derivatives of the immunoglobulin superfamily are members or derivatives of the immunoglobulin family.
- 21. The method according to claim 19 or 20, wherein said (poly)peptides are or are derived from heavy or light chain variable regions wherein said structural sub-elements are framework regions (FR) 1, 2, 3, or 4 or complementary determining regions (CDR) 1, 2, or 3.
- 22. The method according to claim 20 or 21, wherein said (poly)peptides are or are derived from the HuCAL consensus genes: Vκ1, Vκ2, Vκ3, Vκ4, Vλ1, Vλ2, Vλ3, VH1A, VH1B, VH2, VH3, VH4, VH5, VH6, Cκ, Cλ, CH1 or any combination of said HuCAL consensus genes.
- 23. The method according to any one of claims 20 to 22, wherein said derivative of said immunoglobulin family or said combination is an Fv, disulphide-linked Fv, single-chain Fv (scFv), or Fab fragment.

The method according to claims 22 to 23, wherein said derivative is an scFv fragment comprising the combination of HuCAL VH3 and HuCAL Vλ2 consensus genes that comprises a random sub-sequence encoding the heavy chain CDR3 sub-element.

- 25. The method according to any one of claims 1 to 24, wherein at least part of said (poly)peptide sequences or (poly)peptides is connected to a sequence encoding at least one additional moiety or to at least one additional moiety, respectively.
- 26. The method according to claim 25, wherein said connection is formed via a contiguous nucleic acid sequence or amino acid sequence, respectively.
- 27. The method according to claims 25 to 26, wherein said additional moiety is a toxin, a cytokine, a reporter enzyme, a moiety being capable of binding a metal ion, a peptide, a tag suitable for detection and/or purification, or a homo- or hetero-association domain.
- 28. The method according to any one of claims 10 to 27, wherein the expression of said nucleic acid sequences results in the generation of a repertoire of biological activities and/or specificities, preferably in the generation of a repertoire based on a universal framework.
- 29. A nucleic acid sequence obtainable by the method according to any of claims1 to 28.
- A collection of nucleic acid sequences obtainable by the method according to any of claims 1 to 28.
- 31. A recombinant vector obtainable by the method according to any of claims 5 to 28.
- 32. A collection of recombinant vectors obtainable by the method according to any of claims 5 to 30.
- 33. A host cell transformed with the recombinant vector according to claim 31.

34. A collection of host cells transformed with the collection of recombinant vectors according to claim 32.

- 35. A method of producing a (poly)peptide or a collection of (poly)peptides as defined in any of claims 1 to 28 comprising culturing the host cell according to claim 33 or the collection of host cells according to claim 34 under suitable conditions and isolating said (poly)peptide or said collection of (poly)peptides.
- 36. A (poly)peptide devisable by the method according to any one of claims 1 to 3, encoded by the nucleic acid sequence according to claim 29 or obtainable by the method according to any one of claims 4 to 28 or 35.
- 37. A collection of (poly)peptides devisable by the method according to any one of claims 1 to 3, encoded by the collection of nucleic acid sequences according to claim 30 or obtainable by the method according to any one of claims 4 to 28 or 35.
- 38. A vector suitable for use in the method according to any of claims 5 to 28 and 35 characterized in that said vector is essentially devoid of any cleavage site as defined in claim 1(e) and 2.
- 39. The vector according to claim 38 which is an expression vector.
- 40. A kit comprising at least one of;
 - (a) a nucleic acid sequence according to claim 29;
 - (b) a collection of nucleic acid sequences according to claim 30;
 - (c) a recombinant vector according to claim 31;
 - (d) a collection of recombinant vectors according to claim 32;
 - (e) a (poly)peptide according to claim 36;
 - (f) a collection of (poly)peptides according to claim 37;
 - (g) a vector according to claim 38 or 39; and optionally,
 - (h) a suitable host cell for carrying out the method according to claim 35.
 - 41. A method of designing two or more genes encoding a collection of two or more proteins, comprising the steps of:

- (a) either
 - (aa) identifying two or more homologous gene sequences, or
 - (ab) analyzing at least three homologous genes, and deducing two or more consensus gene sequences therefrom,
- (b) optionally, modifying codons in said consensus gene sequences to remove unfavourable interactions between amino acids in the resulting proteins,
- (c) identifying sub-sequences which encode structural subelements in said consensus gene sequences
- (d) modifying one or more bases in regions adjacent to or between the ends of said sub-sequences to define one or more cleavage sites, each of which:
 - (da) are unique within each consensus gene sequence,
 - (db) do not form compatible sites with respect to any single sub-sequence,
 - (dc) are common to all homologous sub-sequences.
- 42. A method of preparing two or more genes encoding a collection of two or more proteins, comprising the steps of :
 - (a) designing said genes according to claim 41, and
 - (b) synthesizing said genes.
- 43. A collection of genes prepared according to the method of claim 42.
- 44. A collection of two or more genes derived from gene sequences which:
 - (a) are either homologous, or represent consensus gene sequences derived from at least three homologous genes, and

- carry cleavage sites, each of which: (b)
 - lie at or adjacent to the ends of genetic sub-sequences which encode structural sub-elements,
 - (bb) are unique within each gene sequence,
 - (bc) do not form compatible sites with respect to any single subsequence, and
 - (bd) are common to all homologous sub-sequences.
- The collection of genes according to either of claims 43 or 44 in which each of said gene sequences has a nucleotide composition characteristic of a 45. particular species.
- The collection of genes according to claim 45 in which said species is human. 46.
- The collection of genes according to any of claims 43 to 46 in which one or more of said gene sequences encodes at least part of a member of the 47. immunoglobulin superfamily, preferably of the immunoglobulin family.
- The collection of genes according to claim 47 in which said structural subelements correspond to any combination of framework regions 1, 2, 3, and 4, 48. and/or CDR regions 1, 2, and 3 of antibody heavy chains.
- The collection of genes according to claim 47 in which said structural subelements correspond to any combination of framework regions 1, 2, 3, and 4, 49. and/or CDR regions 1, 2, and 3 of antibody light chains.
- A collection of vectors comprising a collection of gene sequences according 50. to any of claims 43 to 49.

51. The collection of vectors according to claim 50 comprising the additional feature that the vector does not comprise any cleavage site that is contained in the collection of genes according to any of claims 43 to 49.

- 52. A method for identifying one or more genes encoding one or more proteins having a desirable property, comprising the steps of:
 - (a) expressing from the collection of vectors according to either of claims50 or 51 a collection of proteins.
 - (b) screening said collection to isolate one or more proteins having a desired property.
 - (c) identifying the genes encoding the proteins isolated in step (b),
 - (d) optionally, excising from the genes encoding the proteins isolated in step (b) one or more genetic sub-sequences encoding structural subelements, and replacing said sub-sequence(s) by one or more second sub-sequences encoding structural sub-elements, to generate new vectors according to either of claims 50 or 51.
 - (e) optionally, repeating steps (a) to (c).
 - 53. A method for identifying one or more genes encoding one or more antibody fragments which binds to a target, comprising the steps of:
 - (a) expressing from the collection of vectors according to either of claims50 or 51 a collection of proteins,
 - (b) screening said collection to isolate one or more antibody fragments which bind to said target,
 - (c) identifying the genes encoding the proteins isolated in step (b),
 - (d) optionally, excising from the genes encoding the antibody fragments isolated in step (b) one or more genetic sub-sequences encoding structural sub-elements, and replacing said sub-sequence(s) by one or

more second sub-sequences encoding structural sub-generate new vectors according to either of claims 50 or 51,

- (e) optionally, repeating steps (a) to (c).
- 54. A kit comprising two or more genes derived from gene sequences which:
 - (a) are either homologous, or represent consensus gene sequences derived from at least three homologous genes, and
 - (b) carry cleavage sites, each of which:
 - (ba) lie at or adjacent to the ends of genetic sub-sequences which encode structural sub-elements,
 - (bb) are unique within each gene sequence,
 - (bc) do not form compatible sites with respect to any single subsequence, and
 - (bd) are common to all homologous sub-sequences.
- 55. A kit comprising two or more genetic sub-sequences which encode structural sub-elements, which can be assembled to form genes, and which carry cleavage sites, each of which:
 - (a) lie at or adjacent to the ends of said genetic sub-sequences,
 - (b) do not form compatible sites with respect to any single sub-sequence, and
 - (d) are common to all homologous sub-sequences.

Figure 1: construction of a synthetic human antibody library based on consensus sequences

SUBSTITUTE SHEET (RULE 26)

Figure 2A: VL kappa consensus sequences

VK1 CDRI VK2 D I Q M T Q S P S S L S A S V G D R V T I T C R A S Q V S S D I L S L S P G E R A T L S C R S S Q S L L S P G L S L S C R S S Q S L L S P G L S L S C R S S Q S L L S C R S S Q S L L S C R S S Q S L L S C R S S Q S L L S C R S S Q S L L S C R S S Q S L L S C R S S Q S L L S C R S S Q S L L S C R S S Q S L L S C R S S Q S L L S C R R S S Q S L L S C R R S S Q S L L S C R R S S Q S L L S C R R S S Q S L L S C R R S S Q S L L R C R R R R R L L I Y R A S S L R W Y Q Q R P G R A P R L L I Y R A S S R C R R S S R R V R S S N R R R R R R R R R R R R R R R R
--

SUBSTITUTE SHEET (RULE 26)
2 / 204

Ü
رز
Ξ.
2
5
ັ
Š
Š
⋽
ë
ē.
≥
≍
consensu
~
ă
арр
G
~
₹
_
2A:
\approx
Figure
⊃
O
üΞ

0 0 7 7 7	S
·) >	V Y Y C Q Q H Y T T P P T F G Q G T K V E I K

SUBSTITUTE SHEET (RULE 26)

Figure 2B: VL lambda consensus sequences

		 1			ا م،	<u></u>	(0	(D
82 -	>	-		\square	78	9	9	(C)
3 Z		1			99	S	S	S
	S	-			99	۵	ط	۵_
S 27 CD	S	\triangleleft		=	79	\propto	\propto	8
97 0	\vdash			CDR II	53	O	Z	
97 0	G	0		0	25	Z	S	S
N 24	-	S			19	Z	>	
CZ C	J	ပ			90	Q		Δ.
22 \	S	ν			67	>	>	>
12 -	_				84	-	_	
1 20 ⊢	\vdash	œ			LÞ		Σ	>
61>		A			97	س		
81 ~	S	-			St	\prec	\prec	>
1/1/0	O	a		7	77	جم	٥	ط
91 0	9	9		framework 2	43	⋖	⋖	Ø
Sila	_	ما		\Š	77	-	\prec	O
- ti <	S	A		E	17	9	9	G
4 El a		>		fre	07	مـ	ط	۵
framework		S			39	-	エ	¥
11 3	_	>			38		O	O
frai or i		1		j	37		O	O
6	_	S			98	 >	>	>
8 0	- ⋖	۵.			35		3	3
1 1 1 1 0	_	۵			7 78	S	S	S
	d d	O			33	: >	>	⋖
G F	_	—		_	35	: >	>	>
- -	<u></u>			CDRI	A	1	Z	1
	> <	س		ار	99 18 18 18 18 18 18 18 18 18 18 18 18 18	z	>	\succeq
7 1	Λ V	· >-			08		<u> </u>	
		· ~			6	ی ر	<u>ت</u>	ن ر
9 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		VA3 SYELTOF	- -	·		7	V V V C C V V V	777 G D K -
•	\$ \$	\$ \$				>	>	>

SUBSTITUTE SHEET (RULE 26)

Figure 2B: VL lambda consensus sequences

	85 86 87 87 87 87 87 87 87 87 87 87 87 87 87	SKSGTSA	N S S N S	SNSG			I framework 4	46 86 76 86 701 701 801 701 701	TPPVFGGGTKLTVLG	TPPVFGGGTKLTVLG	TPPVFGGGTKLTVLG	
	1							2	ł			
								1	i		1	
		1	: 峑	z					1		1	
	92	9/~	, v						-			
	75	·					=	76		<u></u>	_	
	53) V	 			CDRIII	65 65	 -	· >-	>	
	79	9 4	_ LL	- LL			ال	16		I	工	
	L		- u	ـــــــــــــــــــــــــــــــــــــ	- 1			06	a	C 0 0 H	COOH	
	0			- ე <u>ი</u>				68	0	O	0	
	l 8	G >	> >	> -		•] 88	U	ں	ں ا	
L	~ ب	- L		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					\$	W2 C 0 0	W3	

SUBSTITUTE SHEET (RULE 26) 5 / 204

sednences
consensus
chain
heavy
2C: V
Figure

framework 3 777 77 77 77 77 77 77 77 77 77 77 77 7	CDRIII framework 4 97 99 90 A B C 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13
Figure 2C: V heavy chain consensus sequences CDRII CDRII S 9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	framework 3 framework 3 86 88 89 99 99 99 99 99 99 90 90

CTATAGGTCT ACTGGGTCTC GGGCAGATCG GACTCGCGCT CGCACCCACT GATATCCAGA TGACCCAGAG CCCGTCTAGC CTGAGCGCGA GCGTGGGTGA ᠐ > ഗ Ø S Ы S ഗ Д ~~~~~~ BanII ഗ O Figure 3A: V kappa 1 (Vk1) gene sequence Ö EcoRV ~ ~ ~ ~ ~ ~

ഗ ഗ Н ᠐ O ഗ Ø ፈ PstI ပ E HЕ > 召

TCGTGTGACC ATTACCTGCA. GAGCGAGCCA GGGCATTAGC AGCTATCTGG AGCACACTGG TAATGGACGT CTCGCTCGGT CCCGTAATCG TCGATAGACC

~~~~~~ AseI Ц ᆸ X Д Ø × ~~~~~~ ധ SexAI വ 又 Ø O Y W ~ ~ ~ ~ ~ ~ KpnI K

CGICTITGGI CCATITCGIG GCTITGAIAA ITAAAIACGI CGTGGTACCA GCAGAAACCA GGTAAAGCAC CGAAACTATT AATTTATGCA GCACCATGGT

BamHI Ŋ ഗ G ഗ لتا 只 ഗ വ SanDI > G ഗ Ø Н ഗ ഗ Ø

GCCAGCAGCT TGCAAAGCGG GGTCCCGTCC CGTTTTAGCG GCTCTGGATC

~~~~~~~

?

CGGTCGTCGA ACGTTTCGCC CCAGGGCAGG GCAAAATCGC CGAGACCTAG Figure 3A: V kappa 1 (Vk1) gene sequence (continued)

H Eco57I 띠 Д Ø Д ഗ ഗ Н Н Ä Е ш Н G

BbsI

BamHI

GAAGACTTTG GGTAATCGTC GGACGTTGGA CTTCTGAAAC CCATTAGCAG CCTGCAACCT CGGCACTGAT TTTACCCTGA GCCGTGACTA AAATGGGACT

Д ₽ \succ 二 Ø Ø Ö \succ \succ

~~~~~ MscI

G

استا

⊱

Д

GAAACCGGTC CTTTGGCCAG CCCCCCCGAC GGGCGGCTG CATTATACCA GTAATATGGT CGACCTATTA TTGCCAGCAG GCTGGATAAT AACGGTCGTC

BsiWI ~ ~ ~ ~ K X Н 团

>

又

Е

G

TGCATGC ACGTACG GGTACGAAAG TTGAAATTAA CCATGCTTTC AACTTTAATT

SUBSTITUTE SHEET (RULE 26)

Н

Ø

ſΞ

Figure 3B: V kappa 2 (Vk2) gene sequence

GAGGCCCGCT CTCCGGGCGA 团 O Д Н GACGGTCACT CTGCCAGTGA > Д Ы TGACCCAGAG CCCACTGAGC GGGTGACTCG Ø Ы Д ~~~~~ BanII ACTGGGTCTC Ŋ Ø Еч  $\mathbf{z}$ CTATAGCACT GATATCGTGA > ECORV 1 2 2 2 2 2

Z S 耳 Ц Н Ŋ Ø Ŋ Ŋ 召 PstI U S Ŋ Ø Д

GTATCGTTGC CATAGCAACG GAAGCAGCCA AAGCCTGCTG CTTCGTCGGT TTCGGACGAC TAATCGACGT ATTAGCTGCA GCCTGCGAGC CGGACGCTCG

S Ø ~~~~~ Ŋ SexAI Д X Q Ц × KpnI 3 Д Ц × Z  $\succ$ 

Ø

Д

TTCGGGCGTC AACCAGGTCA AAGCCCGCAG TTGGTCCAGT GCTATAACTA TCTGGATTGG TACCTTCAAA ATGGAAGTTT CGATATTGAT AGACCTAACC

ĸ Д 1 2 2 2 2 2 2 2 2 Д SanDI ک 2 S Ø ĸ Z Ŋ Ç Ц × Н AseI 口 Н

CGGATCGTTT GCCTAGCAAA TCACCCCAGG AGTGGGGTCC CAACCGTGCC GTTGGCACGG CTATTAATTT ATCTGGGCAG TAGACCCGTC GATAATTAAA

G

Figure 3B: V kappa 2 (Vk2) gene sequence (continued)

AGCCGTGTGG  $\gt$ ĸ S CCTGAAAATT Н × Ц CCGATTTTAC Н 띠 Ω Н GGATCCGGCA Ö BamHI 2 2 2 2 2 2 S G S G S

TCGCCACACC Д E Е GGACTTTTAA × 工 Ø Ø GGCTAAAATG Ö × CCTAGGCCGT > G > ATCGCCGAGA Ω TAGCGGCTCT 口 Ø

BbsI Eco57I 回

ATGGTGGGGC TACCACCCCG AGCAGCATTA TCGTCGTAAT ATAATAACGG TATTATTGCC GCACCCGCAC AAGCTGAAGA CGTGGGCGTG TTCGACTTCT

2222 BsiWI RT 又 团 > 노 H ტ Ø MscI Ö Įщ Н Д

ပ္ပ TAATTTGCAT GAAAGTTGAA ATTAAACGTA CTTTCAACTT CCGACCTTTG GCCAGGGTAC CGGTCCCATG GGCTGGAAAC

回 CTGAGCCTGT CTCCGGGCGA GACTCGGACA GAGGCCCGCT <u>ෆ</u> Д ഗ Н ഗ 口 CTATAGCACG ACTGGGTCTC GGGCCGCTGG TGACCCAGAG CCCGGCGACC Н Ø Ы Banll ഗ Figure 3C: V kappa 3 (Vk3) gene sequence O ⊱ П GATATCGTGC ECORV ~ ~ ~ ~ ~ ~ ~

S ഗ S > ഗ Ø ഗ Ø ĸ PstI ပ ഗ П ⊱ Ø  $\alpha$ 

CTGAGCTGCA.GAGCGAGCCA GAGCGTGAGC AGCAGCTATC TCGTCGATAG TGCACGCTGG GACTCGACGT CTCGCTCGGT CTCGCACTCG ACGTGCGACC

~~~~~ AseI Ы Н 召 Д Ø Ø ഗ SexAI Щ 又 Ø Ø KpnI X M Ø 口

TAATTAATA ATTAATTAAT GTGGCGCAGA CACCGCGTCT ACCGCACCAT GGTCGTCTTT GGTCCAGTTC TGGCGTGGTA CCAGCAGAAA CCAGGTCAAG

G BamHI ഗ ڻ ഗ 区 Ø SanDI S C Е Ø K ഗ ഗ Ø Ò

regegreece ececerrity ececercies GGCGCGAGCA GCCGTGCAAC

Figure 3C: V kappa 3 (Vk3) gene sequence (continued)

CCGCGCTCGT CGGCACGTTG ACCCCAGGGC CGCGCAAAAT CGCCGAGACC Ω

Eco57I ~~~~~ ഠ ഠ 口 ഗ ഗ Н H Н H ш Ω E G

ഗ

TAGGCCGTGC CTAAAATGGG ACTGGTAATC GTCGGACCTT GGACTTCTGA CCTGAAGACT ATCCGGCACG GATTTTACCC TGACCATTAG CAGCCTGGAA BamHI

BbsI

MscI ᠐ ۲ı Н Д Д H E \succ 田 Ø Ø Ö \succ × > Ø ഥ GACCTTTGGC CTGGAAACCG GGTGGGGCGG TIGCGGIGIA TIAITGCCAG CAGCATIAIA CCACCCGCC AACGCCACAT AATAACGGTC GTCGTAATAT

Q G T K V E I K R T BsiwI MscI

CAGGGTACGA AAGTTGAAAT TAAACGTACG GTCCCATGCT TTCAACTTTA ATTTGCATGC 口

Figure 3D: V kappa 4 (Vĸ4) gene sequence

CTGGCGGTGA GCCTGGGCGA O Ц S > Ø Ц ഗ Д Д BanII ഗ Ø Н Σ > ECORV ~ ~ ~ ~ ~ ~ ~

GACCGCCACT CGGACCCGCT GGGCCTATCG TGACCCAGAG CCCGGATAGC ACTGGGTCTC GATATCGTGA CTATAGCACT

Ŋ V L W Ø Ŋ W. 区 PstI ပ Z Н Е ď

凶

Ŋ

ATTAACTGCA GAAGCAGCCA GAGCGTGCTG TATAGCAGCA ATATCGTCGT TAATTGACGT CTTCGTCGGT CTCGCACGAC TGCACGCTGG ACGTGCGACC

Q Ċ SexAI Д × Ø Q KpnI X M Ø ᆸ × Z X Z

Д

Д

TGGTACCAGC AGAAACCAGG TCAGCCGCCG TCTTTGGTCC AGTCGGCGGC ACCATGGTCG TGTTGTTTTT GATAGACCGC ACAACAAAA CTATCTGGCG

召 Д Д ~~~~~~~ SanDI > ෆ ഗ 口 ĸ Н S Ø 3 × Н AseI L L ×

GAAAGCGGGG TCCCGGATCG CTTTCGCCCC AGGGCCTAGC ATCCACCCGT TAGGTGGGCA TTTGATAATT AAATAACCCG AAACTATTAA TTTATTGGGC

Z

Figure 3D: V kappa 4 (Vk4) gene sequence (continued)

TAAAGCAGGG ATTTCGTCCC Ŋ Ŋ Н CGTGACTAAA ATGGGACTGG GCACTGATTT TACCCTGACC Н П H Гц Д H Ö TCTGGATCCG BamHI 11111 ഗ ტ Ŋ G S ہتا

Н H × H Ø Ø Ö × × > AAAATCGCCG AGACCTAGGC Ø > Ω 团 TTTTAGCGGC Ø 口

AATATGGTGG TTATACCACC CGGTCGTCGT GCCAGCAGCA GTGTATTATT CACATAATAA TGCAAGCTGA AGACGTGGCG ACGITCGACI TCIGCACCGC

BsiWI 22222 公 又 Н 回 > K E ტ Ø 22222 MscI Ċ щ 더 Д

Д

GAAATTAAAC GTACG CTTTAATTTG CATGC TACGAAAGTT ATGCTTTCAA GGCGGCTGGA AACCGGTCCC CCGCCGACCT TTGGCCAGGG

X GCGGCTTTGA CGACTAAATA CCCGGGACGG CGCCGAAACT GCTGATTTAT TGTGACCATC TCGTGTAGCG GCAGCAGCAG CAACATTGGC AGCAACTATG AGTGGCGCAC CAGGTCAGCG GTCCAGTCGC 民 1 2 2 2 2 2 BamHI ഗ Ø Н ტ Z 口 Ö SexAI Ŋ S CGTCGTCGTC GTTGTAACCG 口 Д TCACCGCGTG ſτι Ċ 노 Ø 区 Н Д 1 1 1 1 1 1 U Ω Z BbeI ď S GGGCCCTGCC S Д CGGAAGTCAC GCCTTCAGTG 드 > Eco57I 2222 > ഗ P G XmaI S ტ വ Д Bsu36I ACTCGACCAT GGTCGTCAAC TGAGCTGGTA CCAGCAGTTG ഗ Ç ACACTGGTAG AGCACATCGC GTCTCGCACG ACTGGGTCGG TGACCCAGCC Ц Д Д ഗ Oⁱ Ø Figure 4A: V lambda 1 (VA.1) gene sequence BSSSI 区 C Q 듼 ഗ Ø KpnI X M 口 CAGAGCGTGC Z Н > Z 듼 ഗ ഗ Ω > >

SUBSTITUTE SHEET (RULE 26)

Figure 4A: V lambda 1 (VA.1) gene sequence (continued)

| GCGGATCCAA
CGCCTAGGTT | S E D
BbsI | AGCGAAGACG
TCGCTTCTGC | V F G
TGTGTTTGGC | | |
|--------------------------|---------------|--|--|-----------------|--------------------|
| GATCGTTTTA
CTAGCAAAAT | 0
1
0 | GGGCCTGCAA
CCCGGACGTT | Q H Y T T P P P CAGCCCGCC GTCGTAATAT GGTGGGGGGGG | | |
| AGGCGTGCCG
TCCGCACGGC | SASLAIT | TTGCGATTAC
AACGCTAATG | Q H Y
CAGCATTATA
GTCGTAATAT | L G
MscI | TCTTGGC
AGAACCG |
| AGCGTCCCTC | S A S L | AAGCGGCACC AGCGCGAGCC
TTCGCCGTGG TCGCGCTCGG | Y C Q
TTATTGCCAG
AATAACGGTC | K L T V
HpaI | ÆL |
| GATAACAACC
CTATTGTTGG | S
G | AAGCGGCACC
TTCGCCGTGG | E A D Y
AAGCGGATTA
TTCGCCTAAT | EI
D | GGCGGCACGA |

2222

S Ø ~~~~~~ O SexAI Д S C S > ഗ Ø Д Ø Figure 4B: V lambda 2 (Vλ2) gene sequence Н Ц Ø S Ø

AGCGGCTCAC CAGGTCAGAG TCGCCGAGTG GTCCAGTCTC AGCTTCAGTG TCGAAGTCAC Eco57I ACTGGGTCGG TGACCCAGCC GTCTCGCGTG CAGAGCGCAC

Eco57I ~~~~~~ Z × Ö Ç \gt Ω Ø S Е r ۲ U BSSSI Ŋ Н Н

GGCTATAACT CCGATATTGA GCTACACCCG CGATGTGGGC CATGATCGTC GTACTAGCAG CATTACCATC TCGTGTACGG AGCACATGCC ~~~~~~ GTAATGGTAG

Н \mathbf{z} Ц 又 Д BbeI æ × ~~~~~ XmaI O Д 耳 Ø Ø KpnI × 3 S > \succ

ACTGATGATT TGACTACTAA AGGCGCCGAA TCCGCGGCTT CATCCCGGGA GTAGGGCCCT ATGTGAGCTG GTACCAGCAG TACACTCGAC CATGGTCGTC Ŋ BamHI ග ß ĮΉ 吖 Z S > G Bsu36I S Д 凶 Z S > Ω ×

AATCGCCTAG TTAGCGGATC AGCAACCGTT TCGTTGGCAA TATGATGTGA GCAACCGTCC CTCAGGCGTG CGTTGGCAGG GAGTCCGCAC ATACTACACT

Figure 4B: V lambda 2 (VA.2) gene sequence (continued)

| E
BbsI | CAAAAGCGGC AACACCGCGA GCCTGACCAT TAGCGGCCTG CAAGCGGAAGGTTTTCGCCGG TTGTGGCGCT CGGACTGGTA ATCGCCGGAC GTTCGCCTTC | দৈ | ATACCACCCC GCCTGTGTTT
TATGGTGGGG CGGACACAAA | | |
|----------------|---|-------------------------------------|--|---------------|---|
| н
Вр
~~ | 1007
1007 | > ∆ | PTG | | |
| , A | AGC
ICG | Д | CTC | | |
| Q | CAS | | 0
0
0 | | |
| ت | TG
AC | | ည
ဗိုဗ္ဗ | | |
| S
G
L | 1000
1000
1000 | E | ACC | | |
| O |)
)
)
) | E | \CC. | | |
| ഗ | rag
atc | | AT?
TAI | | |
| Н | E A | ≯ | ΕĄ | H } | 0
0
0 |
| <u> </u> | CCA | 耳。 | CA7 | V L G
MscI | TG |
| _ | GA(| Q | CAG | H | TCJ
AGA |
| H | CC7
GG2 | Ø | AG(| > | CGTTCTTGGC
GCAAGAACCG |
| W | 0 U | | TTATTATTGC CAGCAGCATT
AATAATAACG GTCGTCGTAA | E4 } | ပ္ပစ္ |
| N T A S | CG7 | O | PTG
AAC | K L T
HpaI | raa
Att |
| <u>.</u> | 999 | \Rightarrow | TAT
AT? | | AGT' |
| | CAC | > | rat
ata | * | GAZ |
| Z | AATT | | F Z | | √ <u>□</u> |
| O | 3GC | Ω | GGA | ъ | 19C7 |
| ഗ | 909 | A | AGC, | ניז | 9090 |
| K S G
BamHI | laa
Itt | D E A D Y Y C Q Q H Y T T P
Bbsi | ACGAAGCGGA TTATTATTGC CAGCAGCATT
TGCTTCGCCT AATAATAACG GTCGTCGTAA | G
G
T | GGCGGCGCA CGAAGTTAAC CGTTCTTGGC
CCGCCGCCGT GCTTCAATTG GCAAGAACCG |
| r
Ban | ~
CAZ
GT. | D E
BbsI | AC
TG | Ö | 900 |

SUBSTITUTE SHEET (RULE 26)

AATACTACTA

GTCCGCGGTC AAGACCACTA

CAGGCGCCAG

GAAACCCGGG CTTTGGGCCC

GGTACCAGCA CCATGGTCGT

22222 KpnI

~ ~ ~ ~ ~ BbeI

XmaI Д

TTCTGGTGAT TTATGATGAT

Д

Ω

×

Н

>

П

>

A P

Ø

ტ

X

O!

Q

3

Figure 4C: V lambda 3 (Vλ3) gene sequence

| E | BAC | 70 | TACGCGAGCT
ATGCGCTCGA |
|-------------------------------|--|------------------------------------|--|
| Ø | CAC | | GA(|
| ڻ | 3GT
CA | « | 0
0
0
0
0 |
| xAI | CAC | × | TA(
AT(|
| я
Se | AC CAGGT
TG GTCCA | ₩ | AA
T'T |
| A | , CGC 7 | | ATA
PAT |
| > | GTT | Н | CG2
GC1 |
| L T Q P P S V A P G Q T SexAI | AGCGTTGCAC CAGGTCAGAC
TCGCAACGTG GTCCAGTCTG | S C S G D A L G D K Y A S
3ssSI | CGCGCGTATC TCGTGTAGCG GCGATGCGCT GGGCGATAAA
GCGCGCATAG AGCACATCGC CGCTACGCGA CCCGCTATTT |
| .> | TG
AC | 니 | CT |
| • | CTTCAG
GAAGTC
ECO57I | æ | 300
300 |
| υ | CTTCAG
SAAGTC
Eco57I | Д | AT(|
| ф | GCCTTCAGTG
CGGAAGTCAC
Eco57I | | 999 |
| Ωι | | ტ | o c |
| Q | AGC | Ŋ | AGC |
| . | 0
0
0
0 | SH | rGT
ACA |
| F | TGACCCAGCC
ACTGGGTCGG | S C
BssSI | TCGTG |
| Ъ | | — | |
| 臼 | SAA(| H | TAT
ATA |
| > | ratc
atac | A
R | GCG' |
| S | AGCTATGAAC
TCGATACTTG | A | 0
0
0
0 |

SUBSTITUTE SHEET (RULE 26) 20 / 204

Figure 4C: V lambda 3 (VA.3) gene sequence (continued)

CCAACAGCGG GGTTGTCGCC Ö Ŋ Z BamHI Ŋ TTTAGCGGAT AAATCGCCTA ഗ S ſι GGGCCTTGCG CCCGGAACGC 只 ഠ Д GGAGTCCGTA CCTCAGGCAT Н Ç Bsu36I Д AGACTGGCAG TCTGACCGTC 又 Д S

4 团 Д BbsI 闰 Ø Ø Н Ö ഗ Н Н Ц Н Ø Н Z

ATATGGTGGG GCGGACACAA ACCGCCGCCG TGGCGGCGGC TCAGGCGGAA GACGAAGCGG AATCGCCGTG AGTCCGCCTT CTGCTTCGCC ტ U Y T T P P V F TATACCACCC CGCCTGTGTT TTAGCGGCAC GGTCGTCGTA Q Q H CCAGCAGCAT TGGGACTGGT CAACACCGCG ACCCTGACCA ATTATTAG TAATAATAAC GTTGTGGCGC

T K L T V L G HpaI MscI

ACGAAGTTAA CCGTTCTTGG C TGCTTCAATT GGCAAGAACC G

ᆸ

口

Σ

×

CGGGCAGCAG GCCCGTCGTC S S C Д CACTTTTTG GTGAAAAAAC 又 又 > GICCACGITA ACCAAGICAG ACCGCGCTI TGGCGCGGAA ഠ Ø Ö CAGGTGCAAT TGGTTCAGTC Ŋ Figure 5A: V heavy chain 1A (VH1A) gene sequence Õ > Q MfeI > Ø

ഗ Ŋ L E ტ BspEI 12222 <u>ග</u> ഗ Ø × C S \gt × >

TCGATACGCT AGCTATGCGA CCTCCGGAGG CACTTTTAGC GTGAAAATCG TCGACGTTTC GGAGGCCTCC AGCTGCAAAG CGTGAAAGTG GCACTTTCAC

W V R Q A P G Q G L E W
BstXI

Ö

. ص

Σ

AATCGACCCA CGCGGTTCGG GGACCCGTCC CAGAGCTCAC CTACCCGCCG GTCTCGAGTG GATGGGCGGC GCGCCAAGCC CCTGGGCAGG TTAGCTGGGT

GCGCAGAAGT TTCAGGGCCG CGCGTCTTCA AAGTCCCGGC Q A. Q. K ATTATTCCGA TTTTTGGCAC GGCGAACTAC TAATAAGGCT AAAAACCGTG CCGCTTGATG A N Y F G T Д

Ø ۲ ഗ Н S 团 Д Ø Н Н BSTEII >

SUBSTITUTE SHEET (RULE 26)

ഗ

GGTTAGCTCA G CCAATCGAGT C

Figure 5A: V heavy chain 1.A (VH1A) gene sequence (continued)

| GETGACCATT ACCGCGGATG AAAGCACCAG CACCGCGTAT ATGGAACTGA
CCACTGGTAA TGGCGCCTAC TTTCGTGGTC GTGGCGCATA TACCTTGACT | Y Y C A R W G
BSSHII | ACGGCCGTGT ATTATTGCGC GCGTTGGGGC
TGCCGGCACA TAATAACGCG CGCAACCCCG | G Q G T L V T
Styl | GGCCAAGGCA CCCTGGTGAC CCGGTTCCGT GGGACCACTG | |
|--|-------------------------|--|-----------------------|--|------------|
| AAAGCACCAG
TTTCGTGGTC | T A V Y
EagI | ACGGCCGTGT
TGCCGGCACA | D Y W | GGATTATTGG
CCTAATAACC | |
| ACCGCGGATG
TGGCGCCTAC | S
E | GCAGCCTGCG TAGCGAAGAT
CGTCGGACGC ATCGCTTCTA | F Y A M | GGCGATGGCT TTTATGCGAT
CCGCTACCGA AAATACGCTA | ł |
| GGTGACCATT ACCGCGGATG | S S L R | GCAGCCTGCG
CGTCGGACGC | В О В
В | GGCGATGGCT
CCGCTACCGA | V S S BlpI |

Figure 5B: V heavy chain 18 (VH1B) gene sequence

| ഗ | AG
TC |
|------------------------------------|---|
| A | 555
555
555
555
555
555
555
555
555
55 |
| <u>ro</u> | CGGGCGCGAG
GCCCGCGCTC |
| വ | ပ္ပစ္ |
| × | AAA
TTT |
| × | GTGAAAAAAC
CACTTTTTTG |
| > | GTGAAAAAAC
CACTTTTTTG |
| ជា | CGGCGCGGAA |
| A | 0000 |
| ტ | ၁၁၁၁ |
| လ | AG |
| Q | CAG |
| L V Q S G A E V K K P G A S
fei | rggttcagag
accaagtctc |
| L
feI | AT
TA |
| Z O Z | GGT |
| \triangleright | GTC |
| Q | CAGGTGCAAT
GTCCACGTTA |

TACCTTTACC AGCTATTATA TCGATAATAT TCGACGTTTC GGAGGCCTAT ATGGAAATGG CCTCCGGATA 1111 CGTGAAAGTG AGCTGCAAAG GCACTTTCAC

GICTCGAGIG GAIGGGCIGG <u>ෆ</u> \mathbf{z} 3 111111 回 XhoI ტ Ø U ρι BstXI Ø O K > 3 田 Σ

3

 \bowtie

×

ഗ

Н

ш

Н

×

U

വ

Ø

X

C

ഗ

>

×

>

BSPEI

A Q K F Q G R GCGCAGAAGT TTCAGGGCCG CGCGTCTTCA AAGTCCCGGC CACGAACTAC GTGCTTGATG Z E ATTAACCCGA ATAGCGGCGG TAATTGGGCT TATCGCCGCC S G G Д z

CAGAGCTCAC CTACCCGACC

ACGIGACCCA GGCGGIICGG GGACCCGICC

TGCACTGGGT

CCGCCAAGCC CCTGGGCAGG

ATGGAACTGA TACCTTGACT Ö Н 3 回 ĸ \mathbf{z} BSSHII TGGGCACTAT GGTCGTAATC GTGGCGCATA CACCGCGTAT Ø \triangleright ပ Ø × Н × CCAGCATTAG വ > Н EagI TA S Figure 58: V heavy chain 18 (VH1B) gene sequence (continued) H ACCCGTGATA Δ Ω 回 R S Н GGTGACCATG CCACTGGTAC 又 Σ Ц 1111111 V T BstEII S ഗ

ATTATTGCGC GCGTTGGGGC TAATAACGCG CGCAACCCCG ACGGCCGTGT TGCCGGCACA CGTCGGACGC ATCGCTTCTA GCAGCCTGCG TAGCGAAGAT

Н ტ Styl Ø C 3 × Ω Σ Ø × ſΉ Ü Ω G

Н

Н

GGCCAAGGCA CCCTGGTGAC CCGGTTCCGT GGGACCACTG GGATTATTGG CCTAATAACC CCGCTACCGA AAATACGCTA GGCGATGGCT TTTATGCGAT

V S S V BlpI

GGTTAGCTCA G CCAATCGAGT C

Е Ø Н Ы × > 口 Ø Д G വ Figure 5C: V heavy chain 2 (VH2) gene sequence ഥ Ы MfeI > Ø

GICCACGITA ACTITCITIC GCCGGCCGG GACCACTITG GCTGGGTTTG CAGGIGCAAT IGAAAGAAAG CGGCCCGGCC CIGGIGAAAC CGACCCAAAC

Н S Ц ഗ 'n BSPEI ~~~~~ ᠐ ഗ ĮΉ ₽ ပ ₽. ᆸ ₽ Ы

G

ഗ

CCTGACCCTG ACCTGTACCT TTTCCGGATT TAGCCTGTCC ACGTCTGGCG TGGACATGGA AAAGGCCTAA ATCGGACAGG TGCAGACCGC GGACTGGGAC

~~~~~~ XhoI ᆸ Ø 又 ~~~~~~~~~~~ G М BstXI Д Ø K Н 3 ഗ

Н

3

띠

AACCGCACCC GACCTAAGCG GTCGGCGGAC CCTTTCGGGA GCTCACCGAC TIGGCGIGGG CIGGATICGC CAGCCGCCIG GGAAAGCCCT CGAGIGGCIG

MluI 又 口 ഗ Н ഗ  $\succ$  $\succ$ × Ω 3 Ω Ц Ø

CGGACTTTTG GCTCTGATTG ATTGGGATGA TGATAAGTAT TATAGCACCA GCCTGAAAAC ACTATTCATA ATATCGTGGT TAACCCTACT CGAGACTAAC

>

ტ

>

Н

Н

>

> Ø Z × NspVഗ Н Figure 5C: V heavy chain 2 (VH2) gene sequence (continued) Ω ¥ ഗ Н H Ц MluI

ATACTTCGAA AAATCAGGTG GTGCTGACTA CACGACTGAT TTTAGTCCAC TATGAAGCTT ATTAGCAAAG TAATCGTTTC GCGTCTGACC CGCAGACTGG 1111

Z 24 BSSHII Ø Ö × Н Ø Н Ω > Д Ω Σ Z Н  $\mathbf{z}$ 

GATACGGCCA CCTATTATTG CGCGCGTTGG GGATAATAAC GCGCGCAACC CTATGCCGGT TGACCAACAT GGACCCGGTG ACTGGTTGTA CCTGGGCCAC

Н Н O StyI Q G 3  $\succ$ Ω Σ K × Ľı O Ω G

>

ACCCCGGTTC CGTGGGACCA GGCGGCGATG GCTTTTATGC GATGGATTAT TGGGGCCAAG GCACCCTGGT CTACCTAATA CGAAAATACG CCGCCGCTAC

T V S S BlpI

GACGGTTAGC TCAG CTGCCAATCG AGTC

G

Figure 5D: V heavy chain 3 (VH3) gene sequence

口

CGGGCGGCAG GCCGCCGTC വ Ü Ċ μ CTGGTGCAAC GACCACGTTG O<sup>i</sup> > Н CTTCACGTTA ACCACCTTTC GCCGCCGCG ეყეეყეენე U Ö G GAAGTGCAAT TGGTGGAAAG S 回 > ~~~~~~ Mfel Õ >

Ø × ഗ S ſΉ Н ഥ BSPEI U ഗ Ø Ø ပ ഗ Н 召 Н

CCTCCGGATT TACCTTTAGC AGCTATGCGA TCGATACGCT Ø ഗ TCGACGCGC GGAGGCCTAA ATGGAAATCG CCTGCGTCTG AGCTGCGCGG GGACGCAGAC

> 3 111111 口 Xhol O × Ċ Д BstXI Ø O K > 3 ഗ Σ

ACTCGACCCA CGCGGTTCGG GGACCCTTCC CAGAGCTCAC CCACTCGCGC TGAGCTGGGT GCGCCAAGCC CCTGGGAAGG GTCTCGAGTG GGTGAGCGCG

CGCCTATCGC ACTITCCGGC GCGGATAGCG TGAAAGGCCG K G R > ഗ A D ATTAGCGGTA GCGGCGGCAG CACCTATTAT TAATCGCCAT CGCCGCCGTC GTGGATAATA ¥ ⊟ ტ ტ ა S G

Figure 5D: V heavy chain 3 (VH3) gene sequence (continued)

Σ O Н × Н Н Z × 111111 NspV ഗ Z Ω 22222 PmlI ĸ ഗ Н H ſτι

GACGTTTACT CACCCTGTAT CTGCAAATGA TAAGCTTTTT GTGGGACATA ATTCGAAAAA TCACGTGATA AGTGCACTAT AAAATGGTAA TTTACCATT

U 3 K 222222 BSSHII Ø U ×  $\succ$ > EagI Ø Н Ω 回 Ø 又 Н S

Z

TAATAACGCG CGCAACCCCG ACGGCCGTGT ATTATTGCGC GCGTTGGGGC TGCCGGCACA TGTCGGACGC ACGCCTTCTA ACAGCCTGCG TGCGGAAGAT

G D G F Y A M D Y W G Q G Styl

Н

Н

Е

GGCCAAGGCA CCCTGGTGAC CCGGTTCCGT GGGACCACTG GGCGATGGCT TTTATGCGAT GGATTATTGG CCTAATAACC CCGCTACCGA AAATACGCTA

V S S V BlpI

GGTTAGCTCA G CCAATCGAGT C

Figure 5E: V heavy chain 4 (VH4) gene sequence

| Ħ          |   |
|------------|---|
| 臼          |   |
| Ω          |   |
| Д          |   |
| ×          |   |
| >          |   |
| 긔          |   |
| Ŋ          |   |
| വ          |   |
| O          |   |
| တ          |   |
| 国          |   |
| Q          |   |
| e I        | 1 |
| Q<br>M f.e |   |
| >          |   |
| Ø          |   |

CGAGCGAAAC GCTCGCTTTG CTGGTGAAAC GACCACTTTG CAGGTGCAAT TGCAAGAAAG TGGTCCGGGC ACCAGGCCCG ACGTTCTTTC GTCCACGTTA

| ×            |     |       |
|--------------|-----|-------|
| ×            |     |       |
| ഗ            |     |       |
| ഗ            |     |       |
| Н            |     |       |
| ഗ            |     |       |
| <sub>ග</sub> |     |       |
| Ö            | pEI | 111   |
| ഗ            | Bs] | 1 2 2 |
| >            |     |       |
| ۲            |     |       |
| ບ            |     |       |
| H            |     |       |
| Ы            |     |       |
| ഗ            |     |       |
| ᆸ            |     |       |

AGCTATTATT TCGATAATAA TITCCGGAGG CAGCATIAGC AAAGGCCTCC GTCGTAATCG TGGACGTGGC ACCTGCACCG CCTGAGCCTG GGACTCGGAC

C Н 3 XhoI 团 Н C × r Д BstXI Д Ø 召 Н 3 S 3

×

GATTGGCTAT CTAACCGATA CAGAGCTCAC GTCTCGAGTG GGACCCTTCC CCTGGGAAGG TCGCCAGCCG CCTCGACCTA AGCGGTCGGC GGAGCTGGAT

> BSTEII ø ഗ × Ц ഗ Д Z × Z H S Ö ഗ  $\succ$ ⋈

AAAGCCGGGT TTTCGGCCCA CCGAGCCTGA GGCTCGGACT CAACTATAAT GTTGATATTA GCGGCAGCAC CGCCGTCGTG ATTTATTATA TAAATAATAT

Figure 5E: V heavy chain 4 (VH4) gene sequence (continued)

| T I S V D T S K N Q F S L K L S<br>steii nspv | AAACTGAGCA<br>TTTGACTCGT |             |
|-----------------------------------------------|--------------------------|-------------|
| 4                                             | AAACI<br>TTTGA           | M           |
| <b>-</b>                                      |                          | ρ           |
| S                                             | )<br>(G)<br>(G)          | ~           |
| Ē                                             | GTTTAGCCTG<br>CAAATCGGAC | C           |
| a                                             |                          | >           |
| <b>7</b>                                      | <b>የ) (</b> ን            | <b>&gt;</b> |
|                                               | AAZ                      | **          |
| × >                                           | CCAAAAAC(<br>GCTTTTTG    | F           |
| S<br>NspV                                     |                          | _           |
| H                                             | ACT<br>TGA               | ŧ           |
| Ω                                             | STTGATACTT<br>CAACTATGAA | ı           |
| >                                             | $\mathcal{O}$            | •           |
| လ                                             | AGC<br>PCG               | ı           |
| нн                                            | ATT?<br>PAAI             |             |
| T I<br>BstEII                                 | GACCATTAGC<br>CTGGTAATCG |             |

| )<br>)<br>:                                                                         | TTGGGGCGGC<br>AACCCCGCCG                       |
|-------------------------------------------------------------------------------------|------------------------------------------------|
| BSSHII                                                                              | ATTGCGCGCG<br>TAACGCGCGC                       |
| A A D I A V I I C A I I C A I I C A I I B SSHII C C C C C C C C C C C C C C C C C C | GGCGGATACG GCCGTGTATT<br>CCGCCTATGC CGGCACATAA |
| S \( \text{T} \) \( \text{A} \)                                                     | GCGTGACGGC                                     |

| >           |
|-------------|
| H           |
| >           |
| H           |
| E           |
| YI G        |
| Q G<br>StyI |
| G ,         |
| 3           |
| ×           |
| Ω           |
| Z           |
| Æ           |
| ×           |
| ĮŢ.         |
| Ŋ           |
| Ω           |
|             |

TGGTGACGGT ACCACTGCCA TTATTGGGGC CAAGGCACCC AATAACCCCG GTTCCGTGGG ATGCGATGGA TACGCTACCT CTACCGAAAA GATGGCTTTT

S S BlpI TAGCTCAG

Ø

Ŀ

Д

Н

ഗ

됴 G Д 又 又  $\gt$ 띠 Ø G Figure 5F: V heavy chain 5 (VH5) gene sequence ഗ Ø > O MfeI 口

CACTITITIG GCCCGCTITC CGGGCGAAAG CGGCGCGGAA GTGAAAAAAC CTTCACGTTA ACCAAGTCTC GCCGCGCCTT GAAGTGCAAT TGGTTCAGAG

ഗ H ſΞ ഗ  $\succ$ BSPEI G ഗ G × Ö S 又 ᆸ

3

TICCTITACG AGCIATIGGA TCGATAACCT CAAGGCCTAT AAGGAAATGC GTTCCGGATA TCGACGTTTC AGCTGCAAAG GGACTTTTAA CCTGAAAATT

G Σ 3 ~~~~~ L E XhoI G × G ~~~~~~~~~~~ Д BstXI Σ Ø ĸ > 3 G

Н

CTACCCGTAA GATGGGCATT CAGAGCTCAC GTCTCGAGTG CGCGGTCTAC GGACCCTTCC CCTGGGAAGG GCGCCAGATG TTGGCTGGGT AACCGACCCA

TTCAGGGCCA ATGGGCAATA AGAGGCTCGA AAGTCCCGGT TCTCCGAGCT ഗ TACCCGTTAT TAAATAGGCC CGCTATCGCT ATTTATCCGG GCGATAGCGA Ω ഗ Ω G Д

Н

3

Figure 5F: V heavy chain 5 (VH5) gene sequence (continued)

Ø Н Ø ᆮ S Н ഗ X Ω Ø ഗ V T BstEII

CTTCAATGGA GAAGTTACCT TCGCGCCTAT TTTCGTAATC GTGGCGCATA AGCGCGGATA AAAGCATTAG CACCGCGTAT GGTGACCATT CCACTGGTAA ~~~~~~

G 3 K BSSHII Ø ပ Σ Ø Н ഗ ď  $\times$ 口 ഗ

ഗ

CGTCGGACTT TCGCTCGCTA TGCCGGTACA TAATAACGCG CGCAACCCCG GCAGCCTGAA AGCGAGCGAT ACGGCCATGT ATTATTGCGC GCGTTGGGGC

Н H ᠐ StyI Ø G 3  $\succ$ Ω Σ K  $\succ$ استا G Ω

~~~~

⊱

GGCCAAGGCA CCCTGGTGAC GGGACCACTG CCGGTTCCGT CCTAATAACC GGCGATGGCT TTTATGCGAT GGATTATTGG CCGCTACCGA AAATACGCTA

V S S BlpI GGTTAGCTCA G CCAATCGAGT C

~ ~ ~ ~ ~

G

Figure 5G: V heavy chain 6 (VH6) gene sequence

Ħ Ø ഗ Щ X > П G Д G ഗ Ø Ø ~~~~~~ MfeI Н > Ø

CAGGTGCAAT TGCAACAGTC TGGTCCGGGC CTGGTGAAAC CGAGCCAAAC GCTCGGTTTG GACCACTTTG GICCACGITA ACGITGICAG ACCAGGCCCG

ഗ Z S ഗ > ഗ BSPEI ~~~~~ G ഗ \mathbf{H} Ø Ö . Е П ഗ 口

AGCAACAGCG TCGTTGTCGC AAAGGCCTCT ATCGCACTCG TAGCGTGAGC TTTCCGGAGA TGGACACGCT ACCTGTGCGA GGACTCGGAC CCTGAGCCTG

Н 3 回 XhoI G ĸ G Д BstXI ഗ Ø ĸ 3 \mathbf{z} 3 Ø . K

GGCGTGGCCT CGAGTGGCTG CCGCACCGGA GCTCACCGAC GTCAGAGGAC CAGTCTCCTG CTGGATTCGC GACCTAAGCG CGGCGTGGAA GCCGCACCTT

> TIGCTAATAC GCCACTCGCA AACGATTATG CGGTGAGCGT ഗ > Z Q CAAATGGTAT GTTTACCATA 3 又 GGCCGTACCT ATTATCGTAG CCGGCATGGA TAATAGCATC ഗ ĸ \succ T

S

ഥ Ø Z 又 NspVഗ Е Figure 5G: V heavy chain 6 (VH6) gene sequence (continued) Д Z BsaBI 公 ഗ 区

CAGTTTAGCC GTCAAATCGG CTTTTCGGCC TAATGGTAGT TGGGCCTATG AAGCTTTTTG TTCGAAAAAC GAAAAGCCGG ATTACCATCA ACCCGGATAC

~~~~~

~~~~~~~~~

BSSHII ¥ × > EagI Ø Н Ω ഥ Д Н > ഗ Z 口 Ø

Ы

CGGCCGTGTA TTATTGCGCG ACGTTGACTT GTCGCACTGG GGCCTTCTAT GCCGGCACAT AATAACGCGC TGCAACTGAA CAGCGTGACC CCGGAAGATA

~~~~~ Q ( StyI G 3  $\succ$ Ω Σ Ø  $\succ$ Ľ G Ω . ෆ ഗ BSSHII

Н

 O

~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~

GCCAAGGCAC CTAATAACCC CGGTTCCGTG GATTATTGGG CGCTACCGAA AATACGCTAC CGTTGGGGCG GCGATGGCTT TTATGCGATG GCAACCCCGC

~~~~~ s s BlpI ഗ

E

>

Ц

GTTAGCTCAG CAATCGAGTC CCTGGTGACG GGACCACTGC

- Figure 6: oligonucleotides for gene synthesis
- **O1K1** 5'- GAATGCATACGCTGATATCCAGATGACCCAGAG-CCCGTCTAGCCTGAGC -3'
 - **01K2** 5'- CGCTCTGCAGGTAATGGTCACACGATCACCCAC-GCTCGCGCTCAGGCTAGACGGCC -3'
- **O1K3** 5'- GACCATTACCTGCAGAGCGAGCCAGGGCATTAG-CAGCTATCTGGCGTGGTACCAGCAG -3'
- **O1K4** 5'- CTTTGCAAGCTGCTGGCTGCATAAATTAATAGT-TTCGGTGCTTTACCTGGTTTCTGCTGGTACCACGCCAG -3'
- **O1K5** 5'- CAGCCAGCAGCTTGCAAAGCGGGGTCCCGTCCC-GTTTTAGCGGCTCTGGATCCGGCACTGATTTTAC -3'
- **O1K6** 5'- GATAATAGGTCGCAAAGTCTTCAGGTTGCAGGC-TGCTAATGGTCAGGGTAAAATCAGTGCCGGATCC -3'
- **02K1** 5'- CGATATCGTGATGACCCAGAGCCCACTGAGCCT-GCCAGTGACTCCGGGCGAGCC -3'
- **O2K2** 5'- GCCGTTGCTATGCAGCAGGCTTTGGCTGCTTCT-GCAGCTAATGCTCGCAGGCTCGCCCGGAGTCAC -3'
- **O2K3** 5'- CTGCTGCATAGCAACGGCTATAACTATCTGGAT-TGGTACCTTCAAAAACCAGGTCAAAGCCC -3'
- **O2K4** 5'- CGATCCGGGACCCCACTGGCACGGTTGCTGCCC-AGATAAATTAATAGCTGCGGGCTTTGACCTGGTTTTTTG -3'
- **O2K5** 5'- AGTGGGGTCCCGGATCGTTTTAGCGGCTCTGGA-TCCGGCACCGATTTTACCCTGAAAATTAGCCGTGTG -3'
- **O2K6** 5'- CCATGCAATAATACACGCCCACGTCTTCAGCTT-CCACACGCCTAATTTTCAGGG -3'
- O3K1 5'- GAATGCATACGCTGATATCGTGCTGACCCAGAG-CCCGG -3'
- O3K2 5'- CGCTCTGCAGCTCAGGGTCGCACGTTCGCCCGG-AGACAGGCTCAGGGTCGCCGGGCTCTGGGTCAGC -3'
- **O3K3** 5'- CCCTGAGCTGCAGAGCGAGCCAGAGCGTGAGCA-GCAGCTATCTGGCGTGGTACCAG-3'

Figure 6: (continued)

- O3K4 5'- GCACGGCTGCTCGCGCCATAAATTAATAGACGC-GGTGCTTGACCTGGTTTCTGCTGGTACCACGCCAGATAG -3'
- O3K5 5'- GCGCGAGCAGCCGTGCAACTGGGGTCCCGGCGC-GTTTTAGCGGCTCTGGATCCGGCACGGATTTTAC -3'
- O3K6 5'- GATAATACACCGCAAAGTCTTCAGGTTCCAGGC-TGCTAATGGTCAGGGTAAAATCCGTGCCGGATC -3'
- **04K1** 5'- GAATGCATACGCTGATATCGTGATGACCCAGAG-CCCGGATAGCCTGGCG -3'
- O4K2 5'- GCTTCTGCAGTTAATGGTCGCACGTTCGCCCAG-GCTCACCGCCAGGCTATCCGGGC -3'
- **O4K3** 5'- CGACCATTAACTGCAGAAGCAGCCAGAGCGTGC-TGTATAGCAGCAACAACAAAACTATCTGGCGTGGTACCAG -3'
- **04K4** 5'- GATGCCCAATAAATTAATAGTTTCGGCGGCTGA-CCTGGTTCTGCTGGTACCACGCCAGATAG -3'
- **O4K5** 5'- AAACTATTAATTTATTGGGCATCCACCCGTGAA-AGCGGGGTCCCGGATCGTTTTAGCGGCTCTGGATCCGGCAC-3'
- **04K6** 5'- GATAATACACCGCCACGTCTTCAGCTTGCAGGG-ACGAAATGGTCAGGGTAAAATCAGTGCCGGATCCAGAGCC -3'
- O1L1 5'- GAATGCATACGCTCAGAGCGTGCTGACCCAGCC-GCCTTCAGTGAGTGG -3'
- O1L2 5'- CAATGTTGCTGCTGCTGCCGCTACACGAGATGG-TCACACGCTGACCTGGTGCGCCACTCACTGAAGGCGGC -3'
- **O1L3** 5'- GGCAGCAGCAGCAACATTGGCAGCAACTATGTG-AGCTGGTACCAGCAGTTGCCCGGGAC -3'
- O1L4 5'- CCGGCACGCCTGAGGGACGCTGGTTGTTATCAT-AAATCAGCAGTTTCGGCGCCCGTCCCGGGCAACTGC -3'
- O1L5 5'- CCCTCAGGCGTGCCGGATCGTTTTAGCGGATCC-AAAAGCGGCACCAGCGCGAGCCTTGCG -3'

Figure 6: (continued)

O1L6 5'- CCGCTTCGTCTTCGCTTTGCAGGCCCGTAATCG-CAAGGCTCGCGCTGG -3'

- **02L1** 5'- GAATGCATACGCTCAGAGCGCACTGACCCAGCC-AGCTTCAGTGAGCGGC -3'
- O2L2 5'- CGCTGCTAGTACCCGTACACGAGATGGTAATGC-TCTGACCTGGTGAGCCGCTCACTGAAGCTGG -3'
- **O2L3** 5'- GTACGGGTACTAGCAGCGATGTGGGCGGCTATA-ACTATGTGAGCTGGTACCAGCAGCATCCCGG -3'
- O2L4 5'- CGCCTGAGGGACGGTTGCTCACATCATAAATCA-TCAGTTTCGGCGCCCTTCCCGGGATGCTGCTGGTAC -3'
- **O2L5** 5'- CAACCGTCCCTCAGGCGTGAGCAACCGTTTTAG-CGGATCCAAAAGCGGCAACACCGCGAGCC -3'
- O2L6 5'- CCGCTTCGTCTTCCGCTTGCAGGCCGCTAATGG-TCAGGCTCGCGGTGTTGCCG -3'
- O3L1 5'- GAATGCATACGCTAGCTATGAACTGACCCAGCC-GCCTTCAGTGAGCG -3'
- O3L2 5'- CGCCCAGCGCATCGCCGCTACACGAGATACGCG-CGGTCTGACCTGGTGCAACGCTCACTGAAGGCGGC -3'
- O3L3 5'- GGCGATGCGCTGGGCGATAAATACGCGAGCTGG-TACCAGCAGAAACCCGGGCAGGCGC -3'
- O3L4 5'- GCGTTCCGGGATGCCTGAGGGACGGTCAGAATC-ATCATAAATCACCAGAACTGGCGCCTGCCCGGGTTTC -3'
- O3L5 5'- CAGGCATCCCGGAACGCTTTAGCGGATCCAACA-GCGGCAACACCGCGACCCTGACCATTAGCGG -3'
- O3L6 5'- CCGCTTCGTCTTCCGCCTGAGTGCCGCTAATGG-TCAGGGTC -3'
- O1246H1 5'- GCTCTTCACCCCTGTTACCAAAGCCCAG-GTGCAATTG -3'
- O1AH2 5'- GGCTTTGCAGCTCACTTTCACGCTGCTGCCCGG-TTTTTTCACTTCCGCGCCAGACTGAACCAATTGCACCTGGGC-TTTG -3'

Figure 6: (continued)

- **O1AH3** 5 ' GAAAGTGAGCTGCAAAGCCTCCGGAGGCACTTT-TAGCAGCTATGCGATTAGCTGGGTGCGCCAAGCCCCTGGGCAG GGTC -3 '
- O1AH4 5'- GCCCTGAAACTTCTGCGCGTAGTTCGCCGTGCC-AAAAATCGGAATAATGCCGCCCATCCACTCGAGACCCTGCCC-AGGGGC -3'
- **O1AH5** 5 ' GCGCAGAAGTTTCAGGGCCGGGTGACCATTACC GCGGATGAAAGCACCAGCACCGCGTATATGGAACTGAGCAGCC TGCG -3 '
- **O1ABH6** 5'- GCGCGCAATAATACACGGCCGTATCTTCGCT-ACGCAGGCTGCTCAGTTCC -3'
- O1BH2 5 ' GGCTTTGCAGCTCACTTTCACGCTCGCGCCCGG-TTTTTTCACTTCCGCGCCCGCTCTGAACCAATTGCACCTGGGC-TTTG -3 '
- O1BH3 5 ' GAAAGTGAGCTGCAAAGCCTCCGGATATACCTT-TACCAGCTATTATATGCACTGGGTCCGCCAAGCCCCTGGGCAG GGTC -3 '
- **O1BH4** 5 ' GCCCTGAAACTTCTGCGCGTAGTTCGTGCCGCC-GCTATTCGGGGTTAATCCAGCCCATCCACTCGAGACCCTGCCCAGGGGC -3 '
- **O1BH5** 5 ' GCGCAGAAGTTTCAGGGCCGGGTGACCATGACC CGTGATACCAGCATTAGCACCGCGTATATGGAACTGAGCAGCC TGCG -3 '
- **O2H3** 5'- CTGACCCTGACCTGTACCTTTTCCGGATTTAGC-CTGTCCACGTCTGGCGTTGGCGTGGGCTGGATTCGCCAGCCGCCTGGGAAAG -3'
- O2H4 5'- GCGTTTTCAGGCTGGTGCTATAATACTTATCAT-CATCCCAATCAATCAGAGCCAGCCACTCGAGGGCTTTCCCAGG CGGCTGG -3'

Figure 6: (continued)

- **02H5** 5'- GCACCAGCCTGAAAACGCGTCTGACCATTAGCA-AAGATACTTCGAAAAATCAGGTGGTGCTGACTATGACCAACAT GG -3'
- O2H6 5'- GCGCGCAATAATAGGTGGCCGTATCCACCGGGT-CCATGTTGGTCATAGTCAGC -3'
- O3H1 5'- CGAAGTGCAATTGGTGGAAAGCGGCGGCCCT-GGTGCAACCGGGCGGCAG -3'
- O3H2 5'- CATAGCTGCTAAAGGTAAATCCGGAGGCCGCCCAGCTCAGACGCAGGCTGCCGCCCGGTTGCAC -3'
- O3H3 5'- GATTTACCTTTAGCAGCTATGCGATGAGCTGGG-TGCGCCAAGCCCCTGGGAAGGGTCTCGAGTGGGTGAG -3'
- O3H4 5'- GGCCTTTCACGCTATCCGCATAATAGGTGCTGC-CGCCGCTACCGCTAATCGCGCTCACCCACTCGAGACCC -3'
- O3H5 5'- CGGATAGCGTGAAAGGCCGTTTTACCATTTCAC-GTGATAATTCGAAAAACACCCTGTATCTGCAAATGAACAG-3'
- O3H6 5'- CACGCGCGCAATAATACACGGCCGTATCTTCCG-CACGCAGGCTGTTCATTTGCAGATACAGG -3'
- O4H2 5'- GGTCAGGCTCAGGGTTTCGCTCGGTTTCACCAG-GCCCGGACCACTTTCTTGCAATTGCACCTGGGCTTTG -3'
- **O4H3** 5'- GAAACCCTGAGCCTGACCTGCACCGTTTCCGGA-GGCAGCATTAGCAGCTATTATTGGAGCTGGATTCGCCAGCCGC-3'
- **O4H5** 5'- CGGCAGCACCAACTATAATCCGAGCCTGAAAAG-CCGGGTGACCATTAGCGTTGATACTTCGAAAAACCAGTTTAGCCTG -3'
- O4H6 5'- GCGCGCAATAATACACGGCCGTATCCGCCGCCG-TCACGCTGCTCAGTTTCAGGCTAAACTGGTTTTTCG -3'

- Figure 6: (continued)
- **O5H1** 5'- GCTCTTCACCCCTGTTACCAAAGCCGAAGTGCA-ATTG -3'
- **O5H2** 5'- CCTTTGCAGCTAATTTTCAGGCTTTCGCCCGGT-TTTTTCACTTCCGCGCCGCTCTGAACCAATTGCACTTCGGCTTTGG -3'
- **O5H4** 5'- CGGAGAATAACGGGTATCGCTATCGCCCGGATA-AATAATGCCCATCCACTCGAGACCCTTCCCAGGCATCTGGCGC
- **O5H5** 5'- CGATACCCGTTATTCTCCGAGCTTTCAGGGCCA-GGTGACCATTAGCGCGGATAAAAGCATTAGCACCGCGTATCTT
- **O5H6** 5'- GCGCGCAATAATACATGGCCGTATCGCTCGCTT-TCAGGCTGCTCCATTGAAGATACGCGGTGCTAATG -3'
- **O6H2** 5'- GAAATCGCACAGGTCAGGCTCAGGGTTTGGCTC-GGTTTCACCAGGCCCGGACCAGACTGTTGCAATTGCACCTGG-GCTTTG -3'
- O6H3 5'- GCCTGACCTGTGCGATTTCCGGAGATAGCGTGA-GCAGCAACAGCGCGGCGTGGAACTGGATTCGCCAGTCTCCTGGGCG-3'
- **O6H4** 5'- CACCGCATAATCGTTATACCATTTGCTACGATA-ATAGGTACGGCCCAGCCACTCGAGGCCACGCCCAGGAGACTG-GCG -3'
- **O6H5** 5'- GGTATAACGATTATGCGGTGAGCGTGAAAAGCC-GGATTACCATCAACCCGGATACTTCGAAAAACCAGTTTAGCCTGC -3'
- **O6H6** 5'- GCGCGCAATAATACACGGCCGTATCTTCCGGGG-TCACGCTGTTCAGTTGCAGGCTAAACTGGTTTTTC -3'
- OCLK1 5 ' GGCTGAAGACGTGGGCGTGTATTATTGCCAGCA-GCATTATACCACCCCGCCGACCTTTGGCCAGGGTAC -3 '
 SUBSTITUTE SHEET (RULE 26)

Figure 6: (continued)

- OCLK2 5'- GCGGAAAAATAAACACGCTCGGAGCAGCCACCG-TACGTTTAATTTCAACTTTCGTACCCTGGCCAAAGGTC -3'
- OCLK3 5'- GAGCGTGTTTATTTTTCCGCCGAGCGATGAACA-ACTGAAAAGCGGCACGGCGAGCGTGGTGCCTGCTG -3'
- OCLK4 5' CAGCGCGTTGTCTACTTTCCACTGAACTTTCGC-TTCACGCGGATAAAAGTTGTTCAGCAGGCACACCACGC -3'
- OCLK5 5'- GAAAGTAGACAACGCGCTGCAAAGCGGCAACAG-CCAGGAAAGCGTGACCGAACAGGATAGCAAAGATAG -3'
- OCLK6 5 ' GTTTTTCATAATCCGCTTTGCTCAGGGTCAGGG-TGCTGCTCAGAGAATAGGTGCTATCTTTGCTATCCTGTTCG -3 '
- OCLK7 5'- GCAAAGCGGATTATGAAAAACATAAAGTGTATG-CGTGCGAAGTGACCCATCAAGGTCTGAGCAGCCCGGTG -3'
- OCLK8 5'- GGCATGCTTATCAGGCCTCGCCACGATTAAAAG-ATTTAGTCACCGGGCTGCTCAGAC -3'
- OCH1 5'- GGCGTCTAGAGGCCAAGGCACCCTGGTGACGGT-TAGCTCAGCGTCGAC -3'
- OCH2 5'- GTGCTTTTGCTGCTCGGAGCCAGCGGAAACACG-CTTGGACCTTTGGTCGACGCTGAGCTAACC -3'
- OCH3 5'- CTCCGAGCAGCAAAAGCACCAGCGGCGCACGG-CTGCCCTGGGCTGCCTGGTTAAAGATTATTTCC -3'
- OCH4 5'- CTGGTCAGCGCCCCGCTGTTCCAGCTCACGGTG-ACTGGTTCCGGGAAATAATCTTTAACCAGGCA -3'
- OCH5 5'- AGCGGGGCGCTGACCAGCGGCGTGCATACCTTT-CCGGCGGTGCTGCAAAGCAGCGGCCTG -3'
- OCH6 5'- GTGCCTAAGCTGCTCGGCACGGTCACAACG-CTGCTCAGGCTATACAGGCCGCTGCTTTGCAG -3'
- OCH7 5'- GAGCAGCAGCTTAGGCACTCAGACCTATATTTG-CAACGTGAACCATAAACCGAGCAACACC -3'
- OCH8 5'- GCGCGAATTCGCTTTTCGGTTCCACTTTTTTAT-CCACTTTGGTGTTGCTCGGTTTATGG -3'

Figure 7A: sequence of the synthetic Ck gene segment

Q 口 Ω വ щ Д ᄺ Н ہتا > S Д K Ø BsiWI TITCCGCCGA GCGATGAACA CGCTACTTGT AAAGGCGGCT CGTGTTTATT GCACAAATAA GACGAGGCTC CTGCTCCGAG GCATGCCACC CGTACGGTGG

TTGAAAATAG AACTTTTATC CCGTGCCGCT CGCACCACAC GGACGACTTG G T A S V V C L L N GGCACGGCGA GCGTGGTGTG CCTGCTGAAC ACTGAAAAGC TGACTTTTCG

P R E A K V Q W K V D N A L Q S G CGCGTGAAGC GAAAGTTCAG TGGAAAGTAG ACAACGCGCT GCAAAGCGGC ACCTITCATC TGTTGCGCGA CGTTTCGCCG GCGCACTICG CTTTCAAGTC

GCACCTATTC TCGTTTCTAT CGTGGATAAG ഗ AGCAAAGATA X U CGAACAGGAT TIGICGGICC TITCGCACIG GCTIGICCIA Ø 团 AACAGCCAGG AAAGCGTGAC s S 回 S O

TTTGTATTTC AAACATAAAG ш CCTAATACTT GGATTATGAA Ω. ACCCTGACCC TGAGCAAAGC TGGGACTGGG ACTCGTTTCG X A ល 디 TCTGAGCAGC AGACTCGTCG ഗ

Figure 7A: sequence of the synthetic Ck gene segment (continued)

GTAGTTCCAG ACTCGTCGGG L S S P TGAGCAGCCC H Q G I CATCAAGGTC GCTTCACTGG E V T CGAAGTGACC ACATACGCAC

F N R G E A * SphI

S

TCTTTTAATC GTGGCGAGGC CTGATAAGCA TGC AGAAAATTAG CACCGCTCCG GACTATTCGT ACG

Figure 78: sequence of the synthetic CH1 gene segment

ഗ ഗ ш K П Д لتا > ഗ Д G × E Ø

BlpI SalI

CGAGTCGCAG CTGGTTTCCA GGTTCGCACA AAGGCGACCG AGGCTCGTCG TICCGCIGGC ICCGAGCAGC CCAAGCGTGT GCTCAGCGTC GACCAAAGGT

GGCTGCCTGG TTAAAGATTA CCGACGGACC AATTTCTAAT × > GC TITICGIGGI CGCCGCGIG CCGACGGGAC AAAAGCACCA GCGGCGCAC GGCTGCCCTG A A L SGGT S F

GACTGGTCGC CTGACCAGCG L L CCAGTCACCG TGAGCTGGAA CAGCGGGGCG GGTCAGTGGC ACTCGACCTT GTCGCCCCGC S G S W N P V T V AAAGGGCCTT TTTCCCGGAA 띠

CACGACGITT CGTCGCCGGA CATATCGGAC GTATAGCCTG GIGCIGCAAA GCAGCGGCCI SGL ഗ O I V GCGTGCATAC CTTTCCGGCG CGCACGTATG GAAAGGCCGC V H T G

TTAGGCACTC AGACCTATAT AATCCGTGAG TCTGGATATA Ø G T CTCGTCGTCG GAGCAGCAGC ഗ ഗ ഗ AGCAGCGTTG TGACCGTGCC TCGTCGCAAC ACTGGCACGG) L > S

Figure 78; sequence of the synthetic CH1 gene segment (continued)

AACGTIGCAC TIGGTATITG GCTCGTIGIG GTTTCACCTA TTTTTTCACC TIGCAACGIG AACCAIAAAC CGAGCAACAC CAAAGIGGAI AAAAAAGIGG N Z H K P

ГIJ

AACCGAAAAG CGAATTCTGA TAAGCTT TTGGCTTTTC GCTTAAGACT ATTCGAA

Figure 7C: functional map and sequence of module 24 comprising the synthetic CX gene segment (huCL lambda)

Figure 7C: functional map and sequence of module 24 comprising the synthetic CI gene segment (huCL lambda) (continued)

| CCCCGCCTGT
GGGGCGGACA | DrallI
~~~
AAAGCCGCAC
TTTCGGCGTG | GGCGAACAAA | CCGTGACAGT
GGCACTGTCA | GAGACCACCA
CTCTGGTGGT |
|--------------------------|---|--|--------------------------|--|
| CATTATACCA
GTAATATGGT | MscI DrallI ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | AAGAATTGCA
TTCTTAACGT | TATCCGGGAG
ATAGGCCCTC | GCCCCGTCAA GGCGGGAGTG
CGGGGCAGTT CCGCCCTCAC |
| TTGCCAGCAG
AACGGTCGTC | HpaI
~~~~~
TAACCGTTCT
A ATTGGCAAGA | GCTGTTTCCG CCGAGCAGCG AAGAATTGCA
CGACAAAGGC GGCTCGTCGC TTCTTAACGT | TAGCGACTTT
ATCGCTGAAA | |
| | GGCACGAAG
CCGTGCTTC | | TGTGCCTGAT
ACACGGACTA | GGCCTGGAAG GCAGATAGCA
CCGGACCTTC CGTCTATCGT |
| CTTCTGCTTC GCCTAATATTC | GTTTGGCGGC | Dralll

GGAGTGTGAC
GCTCACACTG | GCGACCCTGG | GGCCTGGAAG |
| 1 | 51 | 101 | 151 | 201 |

Figure 7C: functional map and sequence of module 24 comprising the synthetic CI gene segment (huCL lambda) (continued)

GIGGGAGGIT TGTICGIIG ITGIICAIGC GCCGGICGIC GAIAGACICG CACCCTCCAA ACAAAGCAAC AACAAGTACG CGGCCAGCAG CTATCTGAGC 251

RleAI

TCGATGTCGA CGGTCCAGTG CTGACGCCTG AGCAGTGGAA GTCCCACAGA AGCTACAGCT GCCAGGTCAC GACTGCGGAC TCGTCACCTT CAGGGTGTCT 301

StuI

~ ~ ~ ~ ~ ~

CGTACTCCCC TCGTGGCACC TTTTTTGGCA ACGCGGCTGA CTCCGGACTA GAGGCCTGAT GCATGAGGGG AGCACCGTGG AAAAAAACCGT TGCGCCGACT 351

SphI

~ ~ ~ ~ ~ ~

AAGCATGC TTCGTACG

401

Figure 7D: oligonucleotides used for synthesis of module M24 containing CA gene segment

M24: assembly PCR

M24-A: GAAGACAAGCGGATTATTGCCAGCAGCATTATACCACCCCGCCTGTGTTTGGCGGCG-

GCACGAAGTTAACCGTTC

M24-B: CAATTCTTCGCTGCTCGGCGGAAACAGCGTCACACTCGGTGCGGCTTTCGGCTGGCCAA-

GAACGGTTAACTTCGTGCCGC

M24-C: CGCCGAGCAGCAAGAATTGCAGGCGAACAAAGCGACCCTGGTGTGCCTGATTAGCGACT-

TTTATCCGGGAGCCGTGACA

M24-D: 16TTTGGAGGGTGTGGTCTCCCACTCCCGCCTTGACGGGGCTGCTATCTGCCTTCCAG-

GCCACTGTCACGGCTCCCGG

M24-E: CCACACCCTCCAAACAAAGCAACAAGTACGCGGCCAGCAGCTATCTGAGCCTGACGC-

CTGAGCAGTGGAAGTCCCACAGAAGCTACAGCTG

M24-F: GCATGCTTATCAGGCCTCAGTCGGCGCAACGGTTTTTTCCACGGTGCTCCCCTCATGCGT-

GACCTGGCAGCTGTAGCTTC

Д H Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-VK2 SapI Н Ø ᆸ Ø S Oⁱ X

CGTGATAACG TGACCGTGAG AATGGCAACG AGAAGTGGGG TTACCGTTGC TCTTCACCCC GCACTATIGC ACTGGCACIC ATGAAACAAA TACTTTGTTT

C Ŋ 回 > 111111 Q L MfeI > 团 Ω × × Ω Ø × 듼 >

CTTTCGCCGC GCAATTGGTG GAAAGCGGCG CGTTAACCAC TTCTACTTCA GCCGACTACA AAGATGAAGT CGGCTGATGT ACAATGGTTT TGTTACCAAA

BSPEI Ø 4 U ഗ ᆸ R Н ഗ U Ö щ Ø > Н

ഗ

CGCCGGACCA CGTTGGCCCG CCGTCGGACG CAGACTCGAC GCGCCGGAGG U GCGGCCTGGT GCAACCGGGC GGCAGCCTGC GTCTGAGCTG CGCGGCCTCC

Ø

Ø

ĸ

>

3

ഗ

Σ

Ø

×

ഗ

S

۲ų

Н

GGATITACCI TTAGCAGCTA TGCGATGAGC TGGGTGCGCC AAGCCCCTGG BstXI BspEI ш

CCTAAATGGA AATCGTCGAT ACGCTACTCG ACCCACGCGG TTCGGGGACC

G

G

Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vk2 (continued) ഗ U S Ø S > XhoI U

CCGTCGTGGA GGCAGCACCT CGCGCTAATC GCCATCGCCG GCGCGATTAG CGGTAGCGGC GAAGGGTCTC GAGTGGGTGA CTCACCCACT 1111 CTTCCCAGAG

NspV 1111 Z Д ~~~~~~ PmlI ഗ Н ہتا 又 U X > ഗ Ω Ø × ×

GGTAAAGTGC ACTATTAAGC CCATITCACG IGATAATICG CCGGCAAAAT GGCCGTTTTA TAATACGCCT ATCGCACTTT ATTATGCGGA TAGCGTGAAA

EagI ----터 Ω 回 Ø ĸ Н ഗ Z Σ Ø Н × Н Н Z NspV

CIGCGIGCGG AAGAIACGGC TTCTATGCCG GACGCACGCC AAAAACACCC TGTATCTGCA AATGAACAGC TTACTTGTCG ACATAGACGT TTTTTGTGGG

Ω Σ K × ſщ U Ω G G 3 K Ø \succ

Eagl BssHII

GCGATGGATT TGCGCGCGTT GGGGGGGGA TGGCTTTTAT CGTGTATTAT

CAACGGCTAT GTTGCCGATA

CTGCAGAAGC AGCCAAAGCC TGCTGCATAG

TCGGTTTCGG ACGACGTATC

GACGTCTTCG

GCTCGTAATC CGAGCATTAG

G

Z

S

田

Ц

П

ഗ

O

ഗ

S

ĸ

ഗ

Н

ഗ

K

GGCGAGCCTG CCGCTCGGAC GTTCCGATAT CAAGGCTATA Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-VK2 (continued) ECORV GCTCAGCGGG TGGCGGTTCT CGAGTCGCCC ACCGCCAAGA 1111 GCACATAATA ACGCGCGCAA CCCCGCCGCT ACCGAAAATA CGCTACCTAA Д Ω 回 ഗ U Ü CAGAGCCCAC TGAGCCTGCC AGTGACTCCG GICTCGGGTG ACTCGGACGG TCACTGAGGC GGAGCGGTGG CGGTGGTTCT GGCGGTGGTG CCTCGCCACC GCCACCAAGA CCGCCACCAC щ O Н G S BlpI > C ഗ щ ATTGGGGCCA AGGCACCCTG GTGACGGTTA CACTGCCAAT ഗ V T V Н G S G Н TAACCCCGGT TCCGTGGGAC Ŋ Ч BanII U လ ഗ ტ Ø Styl GCACTACTGG <u>ෆ</u> CGTGATGACC CCGCCGCCAC GGCGCCGGTG Ø Н G U Σ ECORV ტ > G

SUBSTITUTE SHEET (RULE 26)

53 / 204

Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vk2 (continued) AseI ß Ø U SexAI Q KpnI Ω

CGCAGCTATT GCGTCGATAA GGTCAAAGCC CCAGTTTCGG ATTGGTACCT TCAAAAACCA TAACCATGGA AGTTTTTGGT TTGATAGACC AACTATCTGG

S ſΞι K . Д Д Eco01091 U ഗ Ø K Z ഗ G Н \bowtie AseI

GCAAAATCGC CGTTTTAGCG GGCAGCAACC GIGCCAGIGG GGICCCGGAI CACGGTCACC CCAGGGCCTA CCGTCGTTGG TTAAATAGAC AATTTATCTG

回 召 വ ¥ Н Н ſτι Д H <u>ල</u> BamHI ტ S

d

TTTAATCGGC ACACCTTCGA GCTCTGGATC CGGCACCGAT TTTACCCTGA AAATTAGCCG TGTGGAAGCT AAATGGGACT CGAGACCTAG GCCGTGGCTA

Н Д Д H H × 田 Ø Oⁱ ပ G > Ω BbsI

GTAATATGGT GGGGCGGCTG CCCGCCGAC CATTATACCA TTGCCAGCAG AACGGTCGTC GCGTGTATTA CGCACATAAT GAAGACGTGG CTTCTGCACC

11111

G

| | Frequency | | | | |
|----------------------------|----------------------|--|--|--|--|
| | 103 | | | | |
| | 105 | | | | |
| | 101 | | | | |
| | 1000
1000
1000 | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | A001 | | | | |
| | 100 | | | | |
| | 66 | | | | |
| | 86 | | | | |
| 'n | Z 6 | | | | |
| inder | 96 | | | | |
| BSA t | <i>9</i> 6 | | | | |
| ysis of | 7 6 | | | | |
| anal | 63 | | | | |
| Juence | 26
26 | | | | |
| Figure 24: Sequence analys | | | | | |

| 4 | 4 | 7 | | - | 7 | - | 13 | ധ. | | | |
|--------------|------------|------------|---------------|--------------|----------|--------------|--------------|-------------|-------------|----------------|-------------|
| ≥ | ≯ | 3 | 3 | ≯ | > | 3 | 8 | 3 | 3 | ≥ | 3 |
| - | > | > | > | > | >- | >- | > | > | > | >- | > |
| | Ω | Ω | 0 | | | | | | Ω | ۵ | |
| ı | ட | Σ | Σ | ≥ | Σ | u. | ட | Σ | ட | ı | Σ |
| ı | ~ | O | | O | | \checkmark | \checkmark | œ | u. | 1 | _ |
| 1 | | ı | 1 | œ | 1 | ı | ı | ı | ı | 1 | 1 |
| ı | æ | œ | œ | œ | | æ | ~ | ≥ | 8 | ı | œ |
| i | > | S | _ | م | _ | > | œ | | ¥ | 1 | 8 |
| 1 | ட | . ~ | < | ≥ | Σ | 3 | - | 工 | S | ı | O |
| للا | · 🗸 | · 🗸 | 9 | · ~ | | α | · 🛩 | : > | × | ட | ¥ |
| ⊢ | · _ | <i>ر</i> |) > | . ⋖ | : > | | . 0 | > | · | س . | <u> </u> |
| LL. | . ц | ı u | ىل ر | با. ر | ≥ ب | : ц | ıL | , C |) ц | · > | ш |
| ر |) <u>_</u> | א נ | <u> </u> | у п | <u> </u> | ۸ ۲ | צו | - | - 🗠 | : – | . W |
| ч | _ 4 | | ے ر | ב ל | : z | : > | <u>-</u> ц | | 4 ≥ | : > | - U- |
| ני |) C | J - | . u | 2 د | <u> </u> | ے ب |) C | צ ל | 2 2 | <i>-</i> C | 0 |
| ٥ | ۵ ک | ے ۵ | د ۵ | ۵ ک | د ۵ | ے ۵ | < a | <u> </u> | _ α | < \(\alpha \) | <u> </u> |
| < | < | ζ < | < < | < < | < < | ζ < | < < | ζ < | (< | < < | < 4 |
| _ | | ر ر |
ر | ر ر | ر ز | ر ر | ر ر | ر ر | ر ر | ے ر | ے ر |

Figure 24: Sequence analysis of BSA binders

| Frequency | 2 | - | - | ~ | _ | - |
|------------|----------|-----|----------|------------|-----------|----------------|
| 103 | ≶ | ≥ | ≷ | ≥ | ≥ | <u> </u> |
| 105 | >- | > | > | > | > | > |
| 101 | | | ۵ | ۵ | | Ω |
| 100E | ⋝ | ட | Σ | Σ | Σ | ட |
| 100D | > | œ | œ | O | > | u. |
| J001 | > | ட | > | S | ≥ | I |
| 1008 | Q | >- | > | ≥ | Z | — |
| A001 | | Z | ш | S | ط | _ |
| 001 | ⋖ | > | Σ | لــــ | ⋖ | ۵. |
| 66 | > | Σ | O | ~ | ≥ | \checkmark |
| 86 | ய | > | ш | > | \propto | ட |
| ۷6 | 9 | - | ட | لى . | S | 9 |
| 96 | O | u | . Ц | · × | ۵ | . ₉ |
| 96 | | > | · > | | · >- | . 🗅 |
| 7 6 | α | . œ | <u> </u> | · œ | · œ | · œ |
| 63 | ⋖ | ∶ | < ⊲ | < < | ∶ | : ∢ |
| 76 | | , c | ے ر | ے ر | ر ر | ں ر |

St||

IMP-Figure 25: modular pCAL vector system

WO 97/08320 PCT/EP96/03647

Figure 25a: List of unique restriction sites used in or suitable for HuCAL genes or pCAL vectors

| unique restriction site | Isoschizomers |
|-------------------------|-----------------------------------|
| Aatll | |
| AfIII | Bfrl, BspTl, Bst98l |
| Ascl | |
| Asel | Vspl, Asnl, PshBl |
| BamHI | Bstl |
| Bbel | Ehel, Kasl, Narl |
| Bbsl | BpuAl, Bpil |
| BgIII | |
| Blpl | Bpu1102I,CellI, Blpl |
| BsaBl | Maml, Bsh1365l, BsrBRI |
| BsiWl | Pfl23II, SpII, Sunl |
| BspEl | AccIII, BseAI, BsiMI, Kpn2I, Mrol |
| BsrGl | Bsp1407I, SspBI |
| BssHII | Paul |
| BstEll | BstPl, Eco911, Eco0651 |
| BstXI | 1 |
| Bsu36l | Aocl, Cvnl, Eco81 |
| Dralll | |
| DsmAl | D 171 Folyl FooF21 Ymall |
| Eagl | BstZl, EclXl, Eco52l, Xmalll |
| Eco57l | Drall |
| Eco01091 | Dian / |
| EcoRI | Eco32I |
| EcoRV | LCOSZI |
| Fsel | |
| HindIII | 1 |
| Hpal | Acc65l, Asp718l |
| Kpnl | Accosi, 75p7 10. |
| Mlul | Ball, MluNl |
| Mscl | Dail, Milater |

WO 97/08320 PCT/EP96/03647

Figure 25a: List of unique restriction sites used in or suitable for HuCAL genes or pCAL vectors

| unique restriction site | Isoschizomers |
|-------------------------|---------------------------------------|
| Munl | Mfel |
| Nhel | |
| Nsil | Ppu10l, EcoT22l, Mph1103l |
| NspV | Bsp119l, BstBl, Csp45l, Lspl, Sful |
| Pacl | |
| Pmel | |
| PmII | BbrPl, Eco72l, PmaCl |
| Psp5II | PpuMI |
| Pstl | / / / / / / / / / / / / / / / / / / / |
| Rsrll | (Rsril), Cpol, Cspl |
| SanDI | |
| Sapl | |
| SexAl | |
| Spel | |
| Sfil | Di I Deal Nepl |
| Sphl | Bbul, Pael, Nspl |
| Stul | Aatl, Eco147l |
| Styl | Eco130l, EcoT14l |
| Xbal | BspLU11II |
| Xhol | PaeR7I |
| Xmal | Aval, Smal, Cfr91, PspAl |

| 1 | NO 97/08320 | | | | | | |
|--|-------------------------------------|---|-------------------|--|------------|------------------------|---|
| | reference | Skerra et al. (1991)
Bio/Technology 9, | 273-278 | Hoess et al. (1986)
Nucleic Acids Res.
2287-2300 | see M2 | | Ge et al., (1994) Expressing antibodies in E. coli. In: Antibody engineering: A practical approach. IRL Press, New York, pp 229–266 |
| - | template | A | pASK30 | (synthetic) | Counthatio | 10X, Sprii (Syriuleue) | vector
plG10 |
| | sites to be
inserted | Δatli | | lox, BgIII | 1420 | lox, sprii | none |
| | sites to be
removed | 2x Vspl | (Asel) | 2x Vspl
(Asel) | | none | Sphl,
BamHl |
| nodules | functional element | عد | promotor/operator | Cre/lox
recombination site | Crollov' | recombination site | gllip of filamentous
phage with N-
terminal
myctail/amber
codon |
| Figure 26: list of pCAL vector modules | module/flan-
king
restriction | sites | Aatil-lacp/o- | BgIII-lox- | | Xbal-lox -
Sphl | EcoRI-
gIIIlong-
HindIII |
| Figure 26: | No N | | M
M | M2 | | M3 | M7-1 |
| | | | | | | | |

| Ş |
|-----------------------|
| <u>~</u> |
| \supset |
| Ŧ |
| × |
| r modul |
| ၽ |
| |
| ≂ |
| \simeq |
| 7 |
| T. |
| vector |
| ٠. |
| |
| ۹, |
| \circ |
| pCAL , |
| Ę, |
| $\overline{}$ |
| _ |
| list |
| .2 |
| = |
| |
| 9 |
| 2 |
| igure 26: |
| = |
| 3 |
| $\boldsymbol{\sigma}$ |
| .= |

| W | O 97/08320 | | | | · | FCITEI | |
|--|---|--|-------------------------------|----------------|--|---|---|
| | see M7-1 | see M7-I | see M3 | see M1 | see M1 | see M1 | see M1 |
| | vector
plG10 | vector
plG10 | (synthetic) | (synthetic) | pASK30 | pASK30 | pASK30 |
| | | · | lox | Pacl, Fsel | Pacl, Fsel,
BsrGl | BsrGl, Nhel | BsrGl, Nhel |
| | Sphl | Sphl, Bbsl | none | none | Vspl,
Eco57l,
BssSl | Dralll
(Banll not
removed) | Dralll,
Banll |
| nodules | truncated gillp of
filamentous phage
with N-terminal Gly-
Ser linker | truncated gillp of filamentous phage with N-terminal myctail/amber codon | Cre/lox
recombination site | lpp-terminator | Paci/Fsel-bla-beta-lactamase/bla
BsrGl (ampR) | origin of single-
stranded replication | origin of single-
stranded replication |
| Figure 26: list of pCAL vector modules | M7-II EcoRI-gIIIss- | M7-III EcoRI-gIIIss-
HindIII | Sphl-lox-
HindIII | HindIII-lpp- | | BsrGI-f1 ori-
Nhel | BsrGI-f1 ori-
Nhel |
| Figure 26 | M7-11 | M7-III | M8 | M9-11 | M10- | M11- | M11- |

Figure 26: list of pCAL vector modules

| M12 BgIII-lox- R14- BgIII-colEl- R15 BgIII cat- R16 Xbal-phoA- R27 Xbal-phoA- R17 Xbal-phoA- R18 Signal sequence of FLGG Configuration tage R19 Xbal-phoA- R19 Kbal-phoA- R19 Kbal-phoA- R19 Xbal-phoA- R19 Kbal-phoA- R | WO 97/08320 | | | | | 101/2130 |
|--|--|-------------------------------|--|---|----------------------------------|--------------------------|
| M12 Nhel-p15A- origin of double- NspV Bglll stranded replication Stranded replication M13 Bglll-lox- Cre/lox none Xmnl Ext2 Nhel stranded replication removed) M14- Bglll-ColEl- origin of double- (BssSl not Stranded replication removed) Ext2 Nhel stranded replication removed) M17 Aatll-cat- acetyltransferase/ Styl/Ncol cat (camR) M18 EcoRl phosphatase A (synthetic) EcoRl phosphatase A (synthetic) KA30-phos- signal sequence of phosphatase A (synthetic) EcoRl phosphatase A (synthetic) | Rose, R.E. (1988)
Nucleic Acids Res.
16, 355 | see M3 | Yanisch-Peron, C.
(1985) Gene
33,103-119 | Cardoso, M. &
Schwarz,S. (1992)
J. Appl.
Bacteriol.72, 289-
293 | | Bic |
| M12 Nhel-p15A- origin of double- BssSI, VspI, BgIII-lox- Cre/lox none Ext2 Nhel stranded replication removed) M14- BgIII-ColEl- origin of double- (BssSI not stranded replication removed) M17 AatII-cat- acetyltransferase/ Styl/Ncol cat (camR) M19 Xbal-phoA- signal sequence of (synthetic) phosphatase A to signal sequence of phosphatase A to phosphatase A to signal sequence of phosphatase A to signal sequence of phosphatase A to signal sequence of phosphatase A to signal sequence of phosphatase A to signal sequence of phosphatase A to signal sequence of phosphatase A to signal sequence of synthetic) | pACYC184 | (synthetic) | pUC19 | pACYC184 | (synthetic) | (synthetic) |
| M12 Bglll stranded replication M13 Bglll-lox- recombination site M14- Bglll-ColEl- origin of double- Ext2 Nhel stranded replication Chloramphenicol- acetyltransferase/ Bglll cat (camR) M17 Aatll-cat- acetyltransferase/ Bglll squence of phosphatase A EcoRl phoA- signal sequence of phosphatase A FLAG-EcoRl phosphatase A+ FLAG-EcoRl FLAG detection tag | J | BgIII, lox,
Xmnl | BgIII, Nhel | | | · |
| M12 Bglll stranded replication M13 Bglll-lox- recombination site M14- Bglll-ColEl- origin of double- Ext2 Nhel stranded replication Chloramphenicol- acetyltransferase/ Bglll cat (camR) M17 Aatll-cat- acetyltransferase/ Bglll squence of phosphatase A EcoRl phoA- signal sequence of phosphatase A FLAG-EcoRl phosphatase A+ FLAG-EcoRl FLAG detection tag | BssSI, VspI,
NspV | none | Eco571
(BssS1 not
removed) | BspEI, MscI,
Styl/Ncol | (synthetic) | (synthetic) |
| M12
M13
M14-
Ext2
M19
M19
M20 | origin of double-
stranded replication | Cre/lox
recombination site | origin of double-
stranded replication | chloramphenicol-
acetyltransferase/
cat (camR) | signal sequence of phosphatase A | signa
phos
FLAG |
| | Nhel-p15A-
BgIII | BgIII-lox-
BgIII | BgIII-ColEI-
Nhel | Aatil-cat-
Bgiil | Xbal-phoA-
EcoRI | Xbal-phoA-
FLAG-EcoRI |
| | M12 | M13 | M14-
Ext2 | | | |

| modules |
|-------------|
| = |
| ∍ |
| ਲੂ |
| O |
| Ε |
| ≍ |
| ¥ |
| vector |
| ٩ |
| |
| pCAL |
| Α, |
| ب |
| 2 |
| o |
| 0 |
| _ |
| .⊻ |
| : list |
| <i>::</i> : |
| ure 26: |
| |
| 2 |
| _ |

| WO 97/08320 | | |
|--|--|---|
| Lee et al. (1983)
Infect. Immunol.
264-268 | see M1 | Lindner et al.,
(1992) Methods: a
companion to
methods in
enzymology 4, 41-
56 |
| (synthetic) | pASK30 | (synthetic) |
| | | |
| (synthetic) | BstXI,
MluI,BbsI,
BanII,
BstEII,
HpaI, BbeI,
VspI | (synthetic) |
| heat-stable enterotoxin II signal (synthetic) sequence | lac-repressor | poly-histidine tail |
| M21 Xbal-stll- enter | Afill-laci-
Nhel | EcoRI-Histail-
HindIII |
| M21 | M41 | M42 |

Figure 27: functional map and sequence of MCS module

SUBSTITUTE SHEET (RULE 26) 80 / 204

BsrGI

PacI Figure 27: functional map and sequence of MCS module (continued)

HindIII

| | ?
?
?
?
? | ? | | |
|-------------|---|---|---|--|
| | ACATGTAAGC | TICCCCCCCC | CCTTAATTAA | ACATGTAAGC TTCCCCCCC CCTTAATTAA CCCCCCCCC TGTACACCCC |
| t | TGTACATTCG | TGTACATTCG AAGGGGGGGG GGAATTAATT | GGAATTAATT | GGGGGGGG ACATGTGGGG |
| | NheI | | BglII | Aatii Xbai |
| | ~ | ~ ~ | 1 | ~ |
| 71 | CCCCCGCTA | 222222222 | CCAGATCTCC | CCCCCCCTA GCCCCCCCC CCAGATCTCC CCCCCCCGA CGTCCCCCT |
| l
) | GGGGGGCGAT | 999999999 | GGGGGGCGAT CGGGGGGGG GGTCTAGAGG | GGGGGGCT GCAGGGGGGA |
| | | | | |
| | XbaI | SphI | | EcoRI AatII |
| | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 1 | | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 101 | CTAGACCCCC | CCCCGCATG | CTAGACCCCC CCCCGCATG CCCCCCCC | CGAATTCGAC GTC |
|
 -
 | GATCTGGGGG | GGGGCGTAC | 9999999999 | GGGGGCGTAC GGGGGGGGG GCTTAAGCTG CAG |

WO 97/08320 PCT/EP96/03647

Figure 28: functional map and sequence of pMCS cloning vector

| TTGTTTATTT
AACAAATAAA | KE K CECCO F F |
|--|----------------|
| GAACCCCTAT
CTTGGGGATA | |
| Figure 28: functional map and sequence of pMCS cloning vector (continued) 1 CAGGTGGCAC TTTTCGGGGA AATGTGCGCG GAACCCCTAT TTGTTTTTAAA GTCCACCGTG AAAAGCCCCT TTACACGCGC CTTGGGGATA AACAAATAAA | |

| | TTGGGACTAT | TTTATG TAAGTTTATA CATAGGGGG INCICIO | |
|------------|--------------|-------------------------------------|--|
| ATGAGACAAT | A THOUTOUTON | | |
| CHAPCCCCTC | | CATAGGCGAG | |
| TATAKATE | ATTCHARTE | TAAGTTTATA | |
| | TTCTAAATAC | AAGATTTATG | |
| | 51 | | |

| AATGCTTCAA TAATATTGAA AAAGGAAGAG TATGAGTATT CAACATTTCC
TTACGAAGTT ATTATAACTT TTTCCTTCTC ATACTCATAA GTTGTAAAGG | TGTTTTGCT |
|--|-----------|
| rcaa taatattgaa aaaggaagag tatgagtatt c
agtt attataactt tttccttctc atactcataa g | |
| AAAGGAAGAG
TTTCCTTCTC | |
| TAATATTGAA
ATTATAACTT | |
| AATGCTTCAA
TTACGAAGTT | |
| 101 | |

| | ACAAAAACGA | AGCGGGA ATAAGGGAAA AAACGCCGIA AAICGCII TA | |
|-----------------|-----------------------|---|--|
|)) T.T.つ)り.TTT. | D A A C C C A A B G G | | |
| TTTGCGGCA'I' | | AAACGCCGIA | |
| | TATOOTTAL | ATAAGGGAAA | |
| | につつつのことのより | CACAGCGGGA | |
| • | 151 | | |

Eco57I

| AGTTGGGTGC TCAACCCACG BSSSI | |
|-----------------------------|--|
| SCTGAAGATC
SGACTTCTAC | |
| GTAAAAGAT
CATTTTCT? | |
| CGCTGGTGA
GCGACCACT | |
| CACCCAGAAA
GTGGGTCTTT | |
| 201 | |

ACGAGTGGGT TACATCGAAC TGGATCTCAA CAGCGGTAAG ATCCTTGAGA TGCTCACCCA ATGTAGCTTG ACCTAGAGTT GTCGCCATTC TAGGAACTCT BssSI 251

Figure 28: functional map and sequence of pMCS cloning vector (continued)

XmnI

TGTGGTGCTA CGGACATCGT TACCGTTGTT GCAACGCGTT Figure 28: functional map and sequence of pMCS cloning vector (continued) CTGCTCGCAC

AseI

CAATTAATAG GTTAATTATC CTCGGCCCTT 22222 CACTTCTGCG TTCCCGGCAA AAGGGCCGTT AATGAGATCG TTACTCTAGC GTTGCAGGAC CCGCTTGATG GGCGAACTAC TGATAATTGA ACTATTAACT 701

TCGCACCCAG AGCGTGGGTC GGAGCCGGTG CCTCGGCCAC ACTATTTAGA TGATAAATCT CCAAATAACG GGTTTATTGC CCGGCTGGCT GGCCGACCGA 801

GAGCCGGGAA

GTGAAGACGC

CAACGTCCTG

CCGCCTATTT

TGACCTACCT

ACTGGATGGA

751

GGCGGATAAA

AGGCCATAGC TCCCGTATCG ACCATTCGGG TGGTAAGCCC TGGGGCCAGA ACCCCGGTCT TAACGTCGTG ATTGCAGCAC AGCGCCATAG TCGCGGTATC 851

GATACCTACT TGCTTTATCT CTATGGATGA ACGAAATAGA TCAGTCCGTT CACGACGGG AGTCAGGCAA GTGCTGCCCC ATCAATAGAT TAGTTATCTA 901

AACTGTCAGA TTGACAGTCT TTCGTAACCA AAGCATTGGT CTCACTGATT GAGTGACTAA CAGATCGCTG AGATAGGTGC TCTATCCACG GTCTAGCGAC 951

GTAAAAATTA CATTTTAAT AAATTTTGAA TTTAAAACTT AAATCTAACT TTTAGATTGA AGTATATATG TCATATATAC GGTTCAAATG CCAAGTTTAC 1001

Figure 28: functional map and sequence of pMCS cloning vector (continued)

| GACCAAAATC
CTGGTTTTAG | TAGAAAAGAT
ATCTTTTCTA | TGCTGCTTGC
ACGACGAACG | GGATCAAGAG
CCTAGTTCTC | CGCAGATACC
GCGTCTATGG | | TTCAAGAACT
AAGTTCTTGA | ACCAGTGGCT
TGGTCACCGA |
|--------------------------|--------------------------|--------------------------|--------------------------|--|------------------|--------------------------|--------------------------|
| ATAATCTCAT
TATTAGAGTA | TCAGACCCCG
AGTCTGGGGC | GCGCGTAATC
CGCGCATTAG | TTTGTTTGCC
AAACAAACGG | C TTCAGCAGAG
G AAGTCGTCTC
Eco57I | ?
?
?
? | AGGCCACCAC
TCCGGTGGTG | TAATCCTGTT
ATTAGGACAA |
| ATCCTTTTTG
TAGGAAAAAC | CCACTGAGCG | CTTTTTTTCT
GAAAAAAAGA | CCAGCGGTGG
GGTCGCCACC | GGTAACTGGC
CCATTGACCG
EC | ì | AGCCGTAGTT
TCGGCATCAA | CTCGCTCTGC
GAGCGAGACG |
| CTAGGTGAAG
GATCCACTTC | AGTTTTCGTT
TCAAAAGCAA | TCTTGAGATC
AGAACTCTAG | ACCACCGCTA
TGGTGGCGAT | TTTTTCCGAA
AAAAAGGCTT | | CTTCTAGTGT
GAAGATCACA | GCCTACATAC
CGGATGTATG |
| TTAAAAGGAT
AATTTTCCTA | CCTTAACGTG
GGAATTGCAC | CAAAGGATCT
GTTTCCTAGA | AAACAAAAAA
TTTGTTTTTT | CTACCAACTC
GATGGTTGAG | 1 | AAATACTGTC
TTTATGACAG | CTGTAGCACC
GACATCGTGG |
| 1051 | 1101 | 1151 | 1201 | 1251 | | 1301 | 1351 |
| | | _ | HIDOTITHE | CUEST /2(# E | 26) | | |

GCCTATGGAA

GGGGGGCGGA

| Figure 28: functional map and sequence of pMCS cloning vector (continued) | 1 |
|---|---|
| ing vector | |
| pMCS clon | |
| equence of | |
| map and s | |
| functional | |
| Figure 28: | |

| CAAGACGATA | TCGTGCACAC | CCTACAGCGT |
|--|--|---|
| GTTCTGCTAT | AGCACGTGTG | GGATGTCGCA |
| GCTGCCAGTG GCGATAAGTC GTGTCTTACC GGGTTGGACT CAAGACGATA
CGACGGTCAC CGCTATTCAG CACAGAATGG CCCAACCTGA GTTCTGCTAT | GGTCGGGCTG AACGGGGGGT TCGTGCACAC
CCAGCCCGAC TTGCCCCCCA AGCACGTGTG | ACCTACACCG AACTGAGATA CCTACAGCGT TGGATGTGGC TTGACTCTAT GGATGTCGCA |
| GTGTCTTACC | GGTCGGGCTG | ACCTACACCG |
| CACAGAATGG | CCAGCCCGAC | TGGATGTGGC |
| GCGATAAGTC | GTTACCGGAT AAGGCGCAGC | AGCCCAGCTT GGAGCGAACG |
| CGCTATTCAG | CAATGGCCTA TTCCGCGTCG | TCGGGTCGAA CCTCGCTTGC |
| 1401 GCTGCCAGTG GC | GTTACCGGAT AAGGCGCAGC | AGCCCAGCTT |
| CGACGGTCAC CG | CAATGGCCTA TTCCGCGTCG | TCGGGTCGAA |
| 1401 | 1451 | 1501 |

| SAGCTATGAG AAAGCGCCAC GCTTCCCGAA GGGAGAAAGG CGGACAGGTA
CTCGATACTC TTTCGCGGTG CGAAGGGCTT CCCTCTTTCC GCCTGTCCAT | rccggtaagc ggcagggtcg gaacaggaga gcgcacgagg gagcttccag
aggccattcg ccgtcccagc cttgtcctct cgcgtgctcc ctcgaaggtc |
|--|--|
| GAGCTATGAG AAAGCGCCAC GCTTCCCGAA GGGAGAAAGG CGGACAGGTA
CTCGATACTC TTTCGCGGTG CGAAGGGCTT CCCTCTTTCC GCCTGTCCAT | GCGCACGAGG
CGCGTGCTCC
BSSSI |
| GCTTCCCGAA
CGAAGGGCTT | GAACAGGAGA
CTTGTCCTCT |
| AAAGCGCCAC
TTTCGCGGTG | GGCAGGGTCG
CCGTCCCAGC |
| GAGCTATGAG | TCCGGTAAGC
AGGCCATTCG |
| 1551 | 1601 |
| SUBSTIT | TUTE SHEET |

| | AAACGC CTGGTATCTT TATAGTCCTG TCGGGTTTCG CCACCTCTGA | TTTGCG GACCATAGAA ATATCAGGAC AGCCCAAAGC GGTGGAGACT | |
|------|--|--|--|
| · () | .I.C.G.G.G.I."I."I.C.G. | AGCCCAAAGC | |
| | TATAGTCCTG | ATATCAGGAC | |
| | CTGGTATCTT | GACCATAGAA | |
| | GGGGAAACGC | CCC | |
| ne\ | 1651 |)
) | |

~~~~~

| GCAG CTAAAAACAC TACGAGCAGT CCCCCCCCCCT CGGATACCTT | CAGC AACGCGGCCT TTTTACGGTT CCTGGCCTTT TGCTGGCCTT |
|---------------------------------------------------|--------------------------------------------------|
| CCCCCCCCCT                                        | CCTGGCCTTT                                       |
| TACGAGCAGT                                        | TTTTACGGTT                                       |
| GAACTCGCAG CTAAAAACAC TACGAGCAGT                  | AACGCGGCCT                                       |
| GAACTCGCAG                                        | AAACGCCAGC                                       |
| H<br>O<br>H                                       | 1751                                             |

CTTGAGCGTC GATTTTTGTG ATGCTCGTCA

1701

TITGCGGTCG TIGCGCCGGA AAAAIGCCAA GGACCGGAAA ACGACCGGAA Figure 28: functional map and sequence of pMCS cloning vector (continued)

| BsrGI<br>~~~~<br>CCCCCTGTA<br>GGGGGACAT      | Aatii<br>CCCCGACGTC<br>GGGCTGCAG                                                                            | ECORI<br>SAA TTCACGT<br>CTT AAGTGCA                      |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| HindIII                                      | BsrGI Nhel BglII AatII  CACCCCCC CCGCTAGCCC CCCCCCCAG ATCTCCCCCC CCCGACGTC GTGGGGGGG GGGGGGGGGGG GGGGCTGCAG | Sphi ccarccccccccaa TTCACGT GCGTACGGGG GGGGGGCTT AAGTGCA |
| CCCCCCCTT                                    | Bg<br>CCCCCCCAG<br>GGGGGGGTC                                                                                |                                                          |
| HindIII<br>~~~~~<br>GTAAGCTTCC<br>CATTCGAAGG | Nhel<br>~~~~~~<br>CCGCTAGCCC<br>GGCGATCGGG                                                                  | xbal<br>cccccccccccccccccccccccccccccccccccc             |
| TTGCTCACAT                                   | BsrGI<br>~~<br>CACCCCCCC<br>GTGGGGGGG                                                                       | XbaI<br>CCCCCTCTAG A                                     |
| 1801                                         | 1851                                                                                                        | 1901                                                     |
|                                              | SUBSTIT                                                                                                     | UTE SHEET (RULE 2                                        |

Figure 29: functional map and sequence of pCAL module M1



SUBSTITUTE SHEET (RULE 28)

Figure 29: functional map and sequence of pCAL module M1

AatII

CCGAAATGTG GGCTTTACAC CTCACTCATT AGGCACCCCA TCCGTGGGGT GAGTGAGTAA CTGCAGAATT ACACTCAATC GACGTCTTAA TGTGAGTTAG

GATAACAATT CTATTGTTAA AAATACGAAG GCCGAGCATA CAACACACCT TAACACTCGC CGGCTCGTAT GTTGTGTGGA ATTGTGAGCG TTTATGCTTC 51

XbaI

22222

AGTGTCCT TTGTCGATAC TGGTACTAAT GCTTAAAGAT CT GA TCACACAGGA AACAGCTATG ACCATGATTA CGAATTTCTA

SUBSTITUTE SHEET (RULE 26)

101





Figure 30: functional map and sequence of pCAL module M7-II (continued)

| で出てて日でで | ンドンのででです。 5                           | CGAGC ACHIOCACHA GAGACTCCTC CTAGACATCC CACCACCGAG |            |
|---------|---------------------------------------|---------------------------------------------------|------------|
|         | CTCTGAGGAG GATCTGTAGGGGGGG GATCTGTAGG | CTAGACATCC                                        |            |
|         | CTCTGAGGAG                            | GAGACTCCTC                                        |            |
|         | TAPUCT ACT                            | を行うすりのはなりは                                        | ICITOCITO  |
| ECORI   |                                       | GAATTCGAGC                                        | CTTAAGCICG |
|         | •                                     | ~                                                 |            |

| CCGGT GATTTTGATT ATGAAAGAT GGCAAACGCT AATAAGGGGG<br>GGCCA CTAAAACTAA TACTTTTCTA CCGTTTGCGA TTATTCCCCC |
|-------------------------------------------------------------------------------------------------------|
| GGCAAACGCT<br>CCGTTTGCGA                                                                              |
| ATGAAAAGAT<br>TACTTTTCTA                                                                              |
| r gattttgatt<br>a ctaaaactaa                                                                          |
| TGGTTCCGGT<br>ACCAAGGCCA                                                                              |
| 51                                                                                                    |

| 1 CTATGACCGA AAATGCCGAT GAAAACGCGC TACAGTCTGA CGCTAAAGGC<br>GATACTGGCT TTTACGGCTA CTTTTGCGCG ATGTCAGACT GCGATTTCCG |
|--------------------------------------------------------------------------------------------------------------------|
| TACAGTCTGA<br>ATGTCAGACT                                                                                           |
| GAAAACGCGC<br>CTTTTGCGCG                                                                                           |
| AAATGCCGAT<br>TTTACGGCTA                                                                                           |
| CTATGACCGA                                                                                                         |
| 101                                                                                                                |

| PTGATT CTGTCGCTAC TGATTACGGT GCTGCTATCG ATGGTTTCAT<br>AACTAA GACAGCGATG ACTAATGCCA CGACGATAGC TACCAAAGTA | • |
|----------------------------------------------------------------------------------------------------------|---|
| GCTGCTATCG<br>CGACGATAGC                                                                                 |   |
| TGATTACGGT<br>ACTAATGCCA                                                                                 |   |
| CTGTCGCTAC<br>GACAGCGATG                                                                                 |   |
| AAACTTGATT<br>TTTGAACTAA                                                                                 |   |
| 151                                                                                                      |   |

| TGGTGACGTT TCCGGCCTTG CTAATGGTAA TGGTGCTACT GGTGATTTTG<br>ACCACTGCAA AGGCCGGAAC GATTACCATT ACCACGATGA CCACTAAAAC |  |
|------------------------------------------------------------------------------------------------------------------|--|
| TGGTGCTACT<br>ACCACGATGA                                                                                         |  |
| CTAATGGTAA<br>GATTACCATT                                                                                         |  |
| TCCGGCCTTG<br>AGGCCGGAAC                                                                                         |  |
| TGGTGACGTT<br>ACCACTGCAA                                                                                         |  |
| 201                                                                                                              |  |

## XmnI

TTAATGAATA ATTTCCGTCA ATATTTACCT TCCCTCCCTC AATCGGTTGA TTAGCCAACT AATTACTTAT TAAAGGCAGT TATAAATGGA AGGGAGGGAG 301

st map and sequence of pCAL module M7-11 (continued)

| TTTTCTATTG                                                       | TATA TOTAL                 | AGAAAATATA                       | TIALLICE TACTGCGTAACA TACTGCGTAA | Argacacac                |         |                                                | si.       |
|------------------------------------------------------------------|----------------------------|----------------------------------|----------------------------------|--------------------------|---------|------------------------------------------------|-----------|
| of pCAL MODULE TO THE TOTAL ACCATATGAA THITCHAFTG                | TGGTATAC'I'I'              | AATAAACTTA TTCCGTGGTG TCTTTGCGTT | TTTGCTAACA                       | AAACGATTGT               |         |                                                |           |
| CCCTGGTAA                                                        | TTTGTCT"I"G GCGCGACCATT    | TTCCGTGGTG<br>AAGGCACCAC         | * mmmm TACG                      | TAAAAGATGC               |         |                                                |           |
| f pCAL modern                                                    | rttgtct"i"fg<br>raacagaaac | AATAAACTTA<br>AATAAACTTA         | TALLALIA TALL                    | TTATGTATGT<br>AATACATACA | HindIII | TAAGGAGTCT TGATAAGCTT<br>ATTCCTCAGA ACTATTCGAA |           |
| Figure 30: functional map and sequence of pCAL module man Figure | ATGTCGCCCT 1               |                                  |                                  | GTTGCCACCT<br>CAACGGTGGA |         | TAAGGAGTCT<br>ATTCCTCAGA                       |           |
| gure 30: func                                                    | 351                        | 107                              | ι<br>)                           | 451                      |         | 501                                            |           |
| ίΞ                                                               |                            |                                  |                                  |                          | SUBST   | ITUTE SHEET                                    | (RULE 26) |
|                                                                  |                            |                                  |                                  |                          |         | 93 / 204                                       |           |

93 / 204





Figure 31: functional map and sequence of pCAL module M9-II (continued)

HindIII

GGGGGGGGG AAGCTTGACC TGTGAAGTGA AAAATGGCGC AGATTGTGCG TCTAACACGC TTTTACCGCG CCCCCCCC TTCGAACTGG ACACTTCACT

PacI

~~~~~~

FseI

gegegege ecceecties CCCCCCCCC CGGCCGGACC TTAATTAAAG

TGTAAAAAA ACAGACGGCA AATTAATTTC ACATTTTTT TGTCTGCCGT

51

BsrGI

GGGGGGGTGT ACAGGGGGGG CCCCCCACA TGTCCCCCCC

SUBSTITUTE SHEET (RULE 25)

101

Figure 32: functional map and sequence of pCAL module M11-III

SUBSTITUTE SHEET (RULE 26) 96 / 204

Figure 32: functional map and sequence of pCAL module M11-III (continued)

| | NheI | | | | |
|-----|--------------------------|--------------------------|--------------------------|----------------------------|--------------------------|
| ⊣ | GCTAGCACGC | GCCCTGTAGC
CGGGACATCG | GGCGCATTAA
CCGCGTAATT | ეეემეემემე
ემემეემემემე | TGTGGTGGTT
ACACCACCAA |
| 51 | ACGCGCAGCG | TGACCGCTAC | ACTTGCCAGC | GCCCTAGCGC | CCGCTCCTTT |
| | TGCGCGTCGC | ACTGGCGATG | TGAACGGTCG | CGGGATCGCG | GGCGAGGAAA |
| 101 | CGCTTTCTTC | CCTTCCTTTC | TCGCCACGTT | CGCCGGCTTT | CCCCGTCAAG |
| | GCGAAAGAAG | GGAAGGAAAG | AGCGGTGCAA | GCGGCCGAAA | GGGGCAGTTC |
| 151 | CTCTAAATCG | GGGCATCCCT | TTAGGGTTCC | GATTTAGTGC | TTTACGGCAC |
| | GAGATTTAGC | CCCGTAGGGA | AATCCCAAGG | CTAAATCACG | AAATGCCGTG |
| 201 | CTCGACCCCA | AAAAACTTGA | TTAGGGTGAT | GGTTCTCGTA | GTGGGCCATC |
| | GAGCTGGGGT | TTTTTGAACT | AATCCCACTA | CCAAGAGCAT | CACCCGGTAG |
| 251 | GCCCTGATAG | ACGGTTTTTC | GCCCTTTGAC | GTTGGAGTCC | ACGTTCTTTA |
| | CGGGACTATC | TGCCAAAAAG | CGGGAAACTG | CAACCTCAGG | TGCAAGAAAT |
| 301 | ATAGTGGACT
TATCACCTGA | CTTGTTCCAA
GAACAAGGTT | ACTGGAACAA
TGACCTTGTT | CACTCAACCC
GTGAGTTGGG | TATCTCGGTC |
| 351 | TATTCTTTTG | , ATTTATAAGG | GATTTTGCCG | ATTTCGGCCT | ATTGGTTAAA |

Figure 32: functional map and sequence of pCAL module M11-III (continued)

TAAATATTCC CTAAAACGGC TAAAGCCGGA TAACCAATTT ATAAGAAAAC

TTTATATT AAAATATTAA CTTAAAATTG GAATTTTAAC TTAAATTGCG AATTTAACGC ATTTAACAAA TAAATTGTTT AAATGAGCTG TTTACTCGAC 401

BsrGI

2222

451 CGTTTACAAT TTCATGTACA GCAAATGTTA AAGTACATGT

Figure 33: functional map and sequence of pCAL module M14-Ext2

SUBSTITUTE SHEET (RULE 26) 99 / 204

| 3 | |
|---|---|
| 2 | |
| 5 | |
| 2 | |
| 711 | |
| ì | |
| <u> </u> | |
| ≥
• | |
| ᅙ | |
| Ē | |
| 7 | |
| ਹੂ - | |
| ō | |
| ည | |
| Je L | |
| ğ | |
| Ď | |
| ā | |
| nap | |
| ie | 1 |
| ü | |
| Ē | |
| Ę | |
| ä | |
| ė
3 | |
| ž | |
| Figure 33: functional map and sequence of pCAL module M14-EXIZ (column acc) | |
| | |

| | | | | | 1 |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------|
| GGGCTGAACG | CGCAGCGGTC | CCGGATAAGG | ACGATAGTTA | TGGACTCAAG | 351 |
| CTTACCGGGT
GAATGGCCCA | TAAGTCGTGT
ATTCAGCACA | CCAGTGGCGA
GGTCACCGCT | GTGGCTGCTG
CACCGACGAC | CCTGTTACCA
GGACAATGGT | 301 |
| CTCTGCTAAT
GAGACGATTA | ACATACCTCG
TGTATGGAGC | AGCACCGCCT
TCGTGGCGGA | AGAACTCTGT
TCTTGAGACA | CACCACTTCA
GTGGTGAAGT | 251 |
| GTAGTTAGGC
CATCAATCCG | TAGTGTAGCC
ATCACATCGG | ACTGTTCTTC
TGACAAGAAG | GATACCAAAT
CTATGGTTTA | GCAGAGCGCA | 201 |
| ACTGGCTACA
TGACCGATGT | TCCGAAGGTA
AGGCTTCCAT | CAACTCTTTT
GTTGAGAAAA | CAAGAGCTAC
GTTCTCGATG | TTTGCCGGAT
AAACGGCCTA | 151 |
| CGGTGGTTTG
GCCACCAAAC | CCGCTACCAG
GGCGATGGTC | AAAAAAACCA
TTTTTTGGT | GCTTGCAAAC | GTAATCTGCT | 101 |
| TTTTCTGCGC
AAAAGACGCG | GAGATCCTTT
CTCTAGGAAA | GGATCTTCTT
CCTAGAAGAA | AAAGATCAAA
TTTCTAGTTT | ACCCCGTAGA 7 | 51 |
| TGAGCGTCAG
ACTCGCAGTC | TTCGTTCCAC | AACGTGAGTT T | AAAATCCCTT I | AGATCTGACC 1 | `
~ |

| C GCGTCGCCAG CCCGACTTGC | TO THE STATE OF TH |
|---|--|
| Figure 33: functional map and sequence of pCAL module M14-Ext2 (continued) ACCTGAGTTC TGCTATCAAT GGCCTATTCC GCGTCGCCAG CCCGACTTGC | |

| ST GCACACAGCC CAGCTTGGAG CGAACGACCT ACACCGAACT
CA CGTGTGTCGG GTCGAACCTC GCTTGCTGGA TGTGGCTTGA |
|--|
| CGAACGACCT
GCTTGCTGGA |
| CAGCTTGGAG
GTCGAACCTC |
| GCACACAGCC
CGTGTGTCGG |
| GGGGGTTCGT G |
| 401 |
| |

| SCTA CAGCGTGAGC TATGAGAAAG CGCCACGCTT CCCGAAGGGA
SGAT GTCGCACTCG ATACTCTTTC GCGGTGCGAA GGGCTTCCCT | CAST CASCEDANCIS GTAAGCGGCA GGGTCGGAAC AGGAGAGCGC |
|--|---|
| A CAGCGTGAGC TATGAGAAAG CGCCACGCTT CO
T GTCGCACTCG ATACTCTTTC GCGGTGCGAA GO | GGGTCGGAAC |
| TATGAGAAAG
ATACTCTTTC | GTAAGCGGCA |
| CAGCGTGAGC
GTCGCACTCG | でして中々よびでなり |
| GAGATACCTA
CTCTATGGAT | . 0 |
| 451 | |
| | |

| CGGA CAGGTATCCG GTAAGCGGCA GGGICGGAAC MOCTCTCGCG GCCT GTCCATAGGC CATTCGCCGT CCCAGCCTTG TCCTCTCGCG | |
|--|---|
| CGGA CAGGTATCCG GTAAGCGGCA GGGICGGAAC TOCTCTCGCG
GCCT GTCCATAGGC CATTCGCCGT CCCAGCCTTG TCCTCTCGCG | |
| GTAAGCGGCA
CATTCGCCGT | |
| CAGGTATCCG
GTCCATAGGC | |
| GAAAGGCGGA
CTTTCCGCCT | |
| 501 | |
| CUSCTI | _ |

| GTCCTGTCGG
CAGGACAGCC | | i | |
|--------------------------|-------|------------------|--|
| татстттата
атабааатат | | | |
| AAACGCCTGG
TTTGCGGACC | | | |
| rtccaggggg
aaggtcccc | | | |
| CGAGGGAG | Bsssl | \
\
\
\ | |
| 551 | | | |
| ITE SHEET (RL | JLE : | 26) | |

| GTTTCGCCAC CTCTGACTTG AGCGTCGATT TTTGTGATGC TCGTCAGGGG
CAAAGCGGTG GAGACTGAAC TCGCAGCTAA AAACACTACG AGCAGTCCCC | SCCT ATGGAAAAAC GCCAGCAACG CGGCCTTTTT ACGGTTCCTG
CGGA TACCTTTTTG CGGTCGTTGC GCCGGAAAAA TGCCAAGGAC |
|--|--|
| TTTGTGATGC | CGGCCTTTTT
GCCGGAAAAA |
| AGCGTCGATT TCGCAGCTAA | GCCAGCAACG
CGGTCGTTGC |
| CTCTGACTTG
GAGACTGAAC | ATGGAAAAAC
TACCTTTTTG |
| GTTTCGCCAC | GGCGGAGCCT
CCGCCTCGGA |
| 601 | 651 |

Figure 33: functional map and sequence of pCAL module M14-Ext2 (continued)

NheI

GCCTTTTGCT GGCCTTTTGC TCACATGGCT AGC CGGAAAACGA CCGGAAAACG AGTGTACCGA TCG

701

SUBSTITUTE SHEET (RULE 26) 103 / 204

Figure 34: functional map and sequence of pCAL module M17 (continued)

| • | _ | | | |
|---|---|---|----|--|
| | 1 | - |) | |
| | (| - | ٦. | |
| | | | | |

| ACTA | TCAT | 1 | |
|---|---|--|---------|
| AAGATC | | | |
| 子 女 女 女 り 子 女 女 女 女 女 女 女 女 女 女 女 女 女 女 | ACGTOGG GTGAGGTTCC AACT"I"I'CACC ALAALGAATI TETTTAGAT | TGCAGCC CACTCCAAGG TTGAAAGTGG TATTACTTTA LICINGIST | |
| | AAC'I"I"I'CACC | TTGAAAGTGG | |
| | GTGAGGTTCC | CACTCCAAGG | |
| 1 1 1 1 1 | SSUCTO | COLUCTOCAGCC | , , , , |
| | - | 4 | |

| AGGAAGCTAA | GATATACCAC CGTTGATATA TCCCAATGGC |
|---|--|
| TCCTTCGATT | CTATATGGTG GCAACTATAT AGGGTTACCG |
| TCAGGAGCTA | CGTTGATATA |
| AGTCCTCGAT | GCAACTATAT |
| TAT TTTTTGAGTT ATCGAGATTT ATA AAAAACTCAA TAGCTCTAAA | GATATACCAC
CTATATGGTG |
| TTTTGAGTT | AAA AAAATCACTG G |
| AAAAACTCAA | TTT TTTTAGTGAC O |
| CCGGGCGTAT | AATGGAGAAA AAAATCACTG
TTACCTCTTT TTTTAGTGAC |
| 51 | 101 |

| TAAAGA ACATTTTGAG GCATTTCAGT CAGTTGCTCA ATGTACCTAT
SATTTCT TGTAAACTC CGTAAAGTCA GTCAACGAGT TACATGGATA |
|--|
| CAGTTGCTCA
GTCAACGAGT |
| GCATTTCAGT
CGTAAAGTCA |
| ACATTTTGAG
TGTAAAACTC |
| ATCGTAAAGA
TAGCATTTCT |
| 151 |
| STITUTE S |

| GACCG TTCAGCTGGA TATTACGGCC TTTTTAAAGA CCGTAAAGAA |
|---|
| TTTTTAAAGA
AAAATTTCT |
| TATTACGGCC
ATAATGCCGG |
| TTCAGCTGGA
AAGTCGACCT |
| AACCAGACCG
TTGGTCTGGC |
| 201 |

| THE SOUR AND MEMBER OF CONTINAT TORCATION GCCCGCCIGA | COCCCCCACT | TATTCGTG TTCAAAATAG GUUGGAAAIA AGIGIMMAGE GOOGO |
|--|---|---|
| TCACATTCTT | 4 4 7 4 4 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 | 70.70.70.70.70.70 |
| CGGCCTTTAT | K E K K ((((((((((((((((| GCCGGAAATA |
| | ARGITITUTE | TTCAAAATAG |
| | AAATAAGCAC | TTTATTCGTG |
| ٠ | 251 | |

| CGTATGCCAA TGAAAGACGG TGAGACGG TGAGACGG | TITE TO SOME ACTIONS ACTORDORS | , 1
1
1
1
1 | |
|---|--------------------------------|-------------------------|---|
| TGAAAGACGG | してはしていませんな | | |
| CGTATGGCAA | 出出している。日本でで | GCATACCG11 | |
| いしていているのでしてい | | PACGAGT GGGCCTCAAG GCA | |
| | 'I'GAATGCICA | ACTTACGAGT | 1 |
| (| 0 | | |

ATATGGGATA GTGTTCACCC TTGTTACACC GTTTTCCATG AGCAAACTGA 351

Figure 34: functional map and sequence of pCAL module M17 (continued)

| TCGTTTGACT | AACGTTTTCA TCGCTCTGGA GTGAATACCA CGACGATTTC CGGCAGTTTC
TTGCAAAAGT AGCGAGACCT CACTTATGGT GCTGCTAAAG GCCGTCAAAG | TACACATATA TTCGCAAGAT GTGGCGTGTT ACGGTGAAAA CCTGGCCTAT
ATGTGTATAT AAGCGTTCTA CACCGCACAA TGCCACTTTT GGACCGGATA | THE THE CEANTER GAATATGTTT THEGTERS CCAATECCTE |
|--|--|--|--|
| CAAAAGGTAC | CGACGATTTC
GCTGCTAAAG | ACGGTGAAAA
TGCCACTTTT | TTCGTCTCAG |
| AACAATGTGG | GTGAATACCA
CACTTATGGT | GTGGCGTGTT
CACCGCACAA | GAATATGTTT |
| CACAAGTGGG | TCGCTCTGGA
AGCGAGACCT | TTCGCAAGAT
AAGCGTTCTA | GGTTTATTGA |
| Figure 34: functional map and sequence of post income many and seq | AACGTTTTCA TCGCTCTGGA GTGAATACCA CGACGATTTC CGGCAGTTTC | TACACATATA
ATGTGTATAT | |
| Figure 34: fui | 401 | 451 | П
С |

CTGATGCCGC TGGCGATTCA GGTTCATCAT GCCGTTTGTG ATGGCTTCCA TACCGAAGGT CGACAAGGTG GCTGTTCCAC GACAACTTCT CTGTTGAAGA TCGCCCCCGT TTTCACTATG GGCAAATATT ATACGCAAGG CCACTCAAAG TGGTCAAAAC TAAATTTGCA TCGGTTATAC AGCGGGGCA AAAGTGATAC CCGTTTATAA TATGCGTTCC AGCCAATATG ATTTAAACGT GGTGAGTTTC ACCAGTTTTG CCAAATAACT AAGGGATTTC 601 651 551

GGTTAGGGAC

CTTATACAAA AAGCAGAGTC

GGTTTATTGA

TTCCCTAAAG

AATTACAACA GTACTGCGAT GAGTGGCAGG TTAATGTTGT CATGACGCTA CTCACCGTCC CGGCAAACAC CCAAGTAGTA TGTCGGCAGA ATGCTTAATG TACGAATTAC GACTACGGCG ACCGCTAAGT ACAGCCGTCT 701

GCGGGGCGTA ATTTTTTAA GGCAGTTATT GGGTGCCCTT AAACGCCTGG 751

CGCCCCGCAT TAAAAAAYYT CCGTCAATAA CCCACGGGAA TTTGCGGACC Figure 34: functional map and sequence of pCAL module M17 (continued)

BgllI

801

TGCTAGATCT TCC ACGATCTAGA AGG

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

| | | | | . . |
|-------|--|--|---|---|
| | TGGTGGCTCT
ACCACCGAGA | ATAAGGGGGC
TATTCCCCCG | GCTAAAGGCA
CGATTTCCGT | TGGTTTCATT |
| | ATCTGTAGGG
TAGACATCCC | GCAAACGCTA ATAAGGGGGC
CGTTTGCGAT TATTCCCCCG | AAAACGCGCT ACAGTCTGAC GCTAAAGGCA
TTTTGCGCGA TGTCAGACTG CGATTTCCGT | CTGCTATCGA |
| | TCTGAGGAGG ATCTGTAGGG TGGTGGCTCT
AGACTCCTCC TAGACATCCC ACCACCGAGA | TGAAAAGATG
ACTTTTCTAC | AAAACGCGCT
TTTTGCGCGA | GATTACGGTG |
| | GAAGCTGATC
CTTCGACTAG | GGTTCCGGTG ATTTTGATTA
CCAAGGCCAC TAAAACTAAT | TATGACCGAA AATGCCGATG AAAACGCGCT ACAGTCTGAC GCTAAAGGCA ATACTGGCTT TTACGGCTAC TTTTGCGCGA TGTCAGACTG CGATTTCCGT | A A CTT CATT CATTACGGTG CTGCTATCGA TGGTTTCATT |
| EcoRI | AATTCGAGCA GAAGCTGATC TCTGAGGAGG ATCTGTAGGG
TTAAGCTCGT CTTCGACTAG AGACTCCTCC TAGACATCCC | GGTTCCGGTG
CCAAGGCCAC | TATGACCGAA
ATACTGGCTT | A A C THTG A THC |
| | Н | 51 | 101 | 1
1
1 |
| | | | | |

| ACCAAAGTAA | GTGATTTTGC
CACTAAAACG | AATTCACCTT
TTAAGTGGAA |
|---|--|--|
| AACTTGATTC TGTCGATGA CTAATGCCAC GACGATAGCT ACCAAAGTAA | GGTGACGTTT CCGGCCTTGC TAATGGTAAT GGTGCTACTG GTGATTTTGC
CCACTGCAAA GGCCGGAACG ATTACCATTA CCACGATGAC CACTAAAACG | TGGCTCTAAT TCCCAAATGG CTCAAGTCGG TGACGGTGAT AATTCACCTT
ACCGAGATTA AGGGTTTACC GAGTTCAGCC ACTGCCACTA TTAAGTGGAA |
| CTAATGCCAC | TAATGGTAAT
ATTACCATTA | CTCAAGTCGG
GAGTTCAGCC |
| TGTCGCIACI
ACAGCGATGA | CCGGCCTTGC
GGCCGGAACG | TCCCAAATGG
AGGGTTTACC |
| AACTTGATTC
TTGAACTAAG | GGTGACGTTT
CCACTGCAAA | TGGCTCTAAT
ACCGAGATTA |
| 151 | 201 | 251 |
| | | 001 |

TAATGAATAA TTTCCGTCAA TATTTACCTT CCCTCCTCA ATCGGTTGAA TAGCCAACTT GGGAGGGAGT ATAAATGGAA ATTACTTATT AAAGGCAGTT 301

XmnI

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

| TTTCTATTGA
AAAGATAACT | CTTTTATATG
GAAAATATAC | ACTGCGTAAT
TGACGĆATTA | CGCAGATTGT
GCGTCTAACA | 开
3
5
5
5
5 | 9900990000
0099009999 | GTTAAAATTC
CAATTTTAAG | |
|---|--------------------------|--------------------------|--|----------------------------|--------------------------|--------------------------|------------|
| CCATATGAAT GGTATAGGTATAGGTATAGGTATAGTAGTATAGTTA | CTTTGCGTTT
GAAACGCAAA | TTGCTAACAT
AACGATTGTA | TGAAAAATGG
ACTTTTTACC | 1 | AAGGGGGGGG | TTAATATTT
AATATAAAA | |
| CGCTGGTAAA
GCGACCATTT | TCCGTGGTGT
AGGCACCACA | TTTTCTACGT
AAAAGATGCA | ACCTGTGAAG
TGGACACTTC | Pacl | CGTTTAATTA
GCAAATTAAT | ATTGTAAACG | |
| TTGTCTTTGG
AACAGAAACC | ATAAACTTAT
TATTTGAATA | TATGTATGTA
ATACATACAT | HindIII
~~~~~
GATAAGCTTG
CTATTCGAAC | | TTTTGTCTGC
AAAACAGACG | | ACAIGIACLI |
| TGTCGCCCTT | TTGTGACAAA
AACACTGTTT | TTGCCACCTT
AACGGTGGAA | AAGGAGTCTT
TTCCTCAGAA | | GCGACATTTT
CGCTGTAAAA | TGGGGGGGG | とうことのことのこと |
| 351 | 401 | 451 | 501 | | 551 | 601 | |

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

| AGGCCGAAAT
TCCGGCTTTA | GGGTTGAGTG
CCCAACTCAC | GGACTCCAAC
CCTGAGGTTG | TACGAGAACC
ATGCTCTTGG | GCACTAAATC
CGTGATTTAG | AAAGCCGGCG | GCGCTAGGGC
CGCGATCCCG |
|------------------------------|------------------------------|--------------------------|--------------------------|--------------------------|-------------------|---|
| TTTAACCAAT AAATTGGTTA 1 | GACCGAGATA (CTGGCTCTAT | TAAAGAACGT | GATGGCCCAC
CTACCGGGTG | GTGCCGTAAA
CACGGCATTT | CTTGACGGGG | |
| CAGCTCATTT GTCGAGTAAA | CAAAAGAATA
GTTTTCTTAT | AGTCCACTAT
TCAGGTGATA | CTATCAGGGC
GATAGTCCCG | TGGGGTCGAG
ACCCCAGCTC | CGATTTAGAG | |
| TTTGTTAAAT C
AAACAATTTA C | CCTTATAAAT (
GGAATATTTA (| TTGGAACAAG | GAAAAACCGT
CTTTTTGGCA | TCAAGTTTTT
AGTTCAAAAA | BanII AGGGAGCCCC | |
| GCGTTAAATT 1
CGCAATTTAA 1 | CGGCAAAATC (GCCGTTTTAG | GT CA | GTCAAAGGGC | ATCACCCTAA
TAGTGGGATT | GGAACCCTAA | CCTTGGGGATT
AACGTGGCGA
TTGCACCGCT |
| 651 | 701 | 751 | 801 | 851 | 901 | 951 |
| | | | | er overt Ø | III E 26) | |

SUBSTITUTE SHEET (RULE 26)

9090090099 252522522 GCGACGCGCA TTGGTGGTGT CGCTGCGCGT AACCACACA Figure 35: functional map and sequence of modular vector pCAL4 (continued) GCTGGCAAGT GTAGCGGTCA CGACCGTTCA CATCGCCAGT

NheI

~~~~~

| AAAGGCCAGC                                             | TTTCCATAGG                                                                                                       | CTCCGCCCCC CTGACGAGCA TCACAAAAAT CGACGCTCAA GTCAGAGGTG | GCGAAACCCG ACAGGACTAT AAAGATACCA GGCGTTTCCC CCTGGAAGCT               | • |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------|---|
| TTTCCGGTCG                                             | AAAGGTATCC                                                                                                       | GAGGCGGGGG GACTGCTCGT AGTGTTTTTA GCTGCGAGTT CAGTCTCCAC | CGCTTTGGGC TGTCCTGATA TTTCTATGGT CCGCAAAGGG GGACCTTCGA               |   |
| GCGTGCTAGC CATGTGAGCA AAAGGCCAGC                       | AAGGCCGCGT TGCTGGCGTT TTTCCATAGG                                                                                 | CGACGCTCAA                                             | GGCGTTTCCC                                                           |   |
| CGCACGATCG GTACACTCGT TTTCCGGTCG                       | TTCCGGCGCA ACGACCGCAA AAAGGTATCC                                                                                 | GCTGCGAGTT                                             | CCGCAAAGGG                                                           |   |
| GCGTGCTAGC                                             | AAGGCCGCGT                                                                                                       | TCACAAAAAT                                             | AAAGATACCA                                                           |   |
| CGCACGATCG                                             | TTCCGGCGCA                                                                                                       | AGTGTTTTTA                                             | TTTCTATGGT                                                           |   |
| GCTACAGGGC                                             | GAACCGTAAA<br>CTTGGCATTT                                                                                         | CTGACGAGCA                                             | GCGAAACCCG ACAGGACTAT AAAGATACCA<br>CGCTTTGGGC TGTCCTGATA TTTCTATGGT |   |
| TTAATGCGCC GCTACAGGGC GCGTGCTAGC CATGTGAGCA AAAGGCCAGC | AAAAGGCCAG GAACCGTAAA AAGGCCGCGT TGCTGGCGTT TTTCCATAGG<br>TTTTCCGGTC CTTGGCATTT TTCCGGCGCA ACGACCGCAA AAAGGTATCC | CTCCGCCCCC                                             | GCGAAACCCG<br>CGCTTTGGGC                                             |   |
| 1051                                                   | 1101                                                                                                             | 1151                                                   | 1201                                                                 |   |

BssSI

CGGAAAGAGG GAAGCCCTTC GCACCGCGAA AGAGTATCGA GTGCGACATC GCCTTTCTCC CTTCGGGAAG CGTGGCGCTT TCTCATAGCT CACGCTGTAG CTCTCCTGTT CCGACCCTGC CGCTTACCGG ATACCTGTCC TATGGACAGG GAGAGGACAA GGCTGGGACG GCGAATGGCC GGGAGCACGC CCCTCGTGCG 1301

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

|     | ACACACGTGC                                        | CTATCGTCTT<br>GATAGCAGAA         | CAGCCACTGG<br>GTCGGTGACC        | GAGTTCTTGA<br>CTCAAGAACT       | TGGTATCTGC<br>ACCATAGACG       | GCTCTTGATC<br>CGAGAACTAG       | TGCAAGCAGC<br>ACGTTCGTCG                 | GATCTTTTCT<br>CTAGAAAAGA     |
|-----|---------------------------------------------------|----------------------------------|---------------------------------|--------------------------------|--------------------------------|--------------------------------|------------------------------------------|------------------------------|
|     | CAAGCTGGGC TGI<br>GTTCGACCCG ACA                  | TATCCGGTAA CTA<br>ATAGGCCATT GAS | CCACTGGCAG CA(<br>GGTGACCGTC GT | CGGTGCTACA GA<br>GCCACGATGT CT | GAACAGTATT TG<br>CTTGTCATAA AC | AGAGTTGGTA GO<br>TCTCAACCAT CO | TTTTTTGTT TO AAAAAAAAAAAAAAAAAAAAAAAAAAA | AAGATCCTTT G<br>TTCTAGGAAA C |
|     | TCGTTCGCTC CAGCAGCGAGCGAGCGAGCGAGCGAGCGAGCGAGCGAG | CGCTGCGCCT T<br>GCGACGCGGA A     | CGACTTATCG CGCTGAATAGC          | GGTATGTAGG (CCATACATCC         | TACACTAGAA (ATGTGATCTT         | CTTCGGAAAA<br>GAAGCCTTTT.      | GTAGCGGTGG<br>CATCGCCACC                 | GGATCTCAAG<br>CCTAGAGTTC     |
|     | TCGGTGTAGG T<br>AGCCACATCC A                      | _                                | CGGTAAGACA C                    | AGCAGAGCGA (TCGTCTCGCT         | TAACTACGGC<br>ATTGATGCCG       | AGCCAGTTAC<br>TCGGTCAATG       | ACCACCGCTG<br>TGGTGGCGAC                 | CAGAAAAAAA<br>GTCTTTTTT      |
|     | GTATCTCAGT T                                      | _                                | -                               |                                | AGTGGTGGCC                     | GCTCTGCTGT<br>CGAGACGACA       | CGGCAAACAA                               | AGATTACGCG<br>TCTAATGCGC     |
| 200 | 1351                                              | 1401                             | 1451                            | 1501                           | 1551                           | 1601                           | 1651                                     | 1701                         |
|     |                                                   |                                  |                                 | SUBSTITU                       | JTE SHEET (                    | <b>HULE 20)</b>                |                                          |                              |

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

| GGATTTTGGT                   | TTAAAAAAT                       | CATTAAGCAT | TGAATCGCCA               | CATAGTGAAA | CAAAACTGGT | TCAATAAACC               |
|------------------------------|---------------------------------|------------|--------------------------|------------|------------|--------------------------|
| CCTAAAACCA                   | AATTTTTTA                       | GTAATTCGTA | ACTTAGCGGT               | GTATCACTTT | GTTTTGACCA | ; AGTTATTTGG             |
| TCACGTTAAG                   | AATAACTGCC                      | TGTTGTAATT | ATGATGAACC               | AATATTTGCC | ACGTTTAAAT | AAACATATTC               |
| AGTGCAATTC                   | TTATTGACGG                      | ACAACATTAA | TACTACTTGG               | TTATAAACGG | TGCAAATTTA | TTTGTATAAG               |
| GAACGAAAAC                   | TAAGGGCACC                      | ATCGCAGTAC | CACAAACGGC               | CCTTGCGTAT | CATATTGGCT | CTGAGACGAA               |
| CTTGCTTTTG                   | ATTCCCGTGG                      | TAGCGTCATG | GTGTTTGCCG               | GGAACGCATA | GTATAACCGA | GACTCTGCTT               |
| ACGCTCAGTG C                 | ACCAGGCGTT 'TGGTCCGCAA          | CCTGCCACTC | TGGAAGCCAT               | CACCTTGTCG | AGAAGTTGTC | CAGGGATTGG               |
| TGCGAGTCAC                   |                                 | GGACGGTGAG | ACCTTCGGTA               | GTGGAACAGC | TCTTCAACAG | GTCCCTAACC               |
| ACGGGGTCTG A<br>TGCCCCAGAC 1 | BgllI<br>~~~~~~<br>CAGATCTAGC i | TACGCCCCGC | TCTGCCGACA<br>AGACGGCTGT | GCGGCATCAG | ACGGGGGCGA | GAAACTCACC<br>CTTTGAGTGG |
| 1751                         | 1801                            | 1851       | 1901                     | 1951       | 2001       | 2051                     |
|                              | SUBSTITUTE SHEET (RULE 26)      |            |                          |            |            |                          |

| rccagagcga<br>aggrctcgct | GGGTGAACAC<br>CCCACTTGTG | GAACTCCGGG<br>CTTGAGGCCC                                                                                                                                                                                                | GATAAAACTT<br>CTATTTTGAA                                                                                                                                                                                                                                                                         | TCCAGCTGAA<br>AGGTCGACTT                                                                                                                      | CTCAAAATGT<br>GAGTTTTACA                                                                                                                                                                                                                                                                                                                                                                                     | CAGTGATTTT<br>GTCACTAAAA                                                                                                                                                                                                                                                                           |
|--------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| _                        | GGTGTAACAA<br>CCACATTGTT | TTGCCATACG<br>AACGGTATGC                                                                                                                                                                                                | ATAAAGGCCG<br>TATTTCCGGC                                                                                                                                                                                                                                                                         | GGCCGTAATA<br>CCGGCATTAT                                                                                                                      | ,                                                                                                                                                                                                                                                                                                                                                                                                            | GTGGTATATC<br>CACCATATAG                                                                                                                                                                                                                                                                           |
| _                        |                          | CCGTCTTTCA<br>GGCAGAAAGT                                                                                                                                                                                                | AAGAATGTGA<br>TTCTTACACT                                                                                                                                                                                                                                                                         | TCTTTAAAAA<br>AGAAATTTTT                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                              | TATATCAACG<br>ATATAGTTGC                                                                                                                                                                                                                                                                           |
| •                        | _                        | CACCAGCTCA<br>GTGGTCGAGT                                                                                                                                                                                                | TCAGGCGGGC                                                                                                                                                                                                                                                                                       | TTCTTTACGG<br>AAGAAATGCC                                                                                                                      | ATAGGTACAT<br>TATCCATGTA                                                                                                                                                                                                                                                                                                                                                                                     | GCCATTGGGA<br>CGGTAACCCT                                                                                                                                                                                                                                                                           |
| •                        |                          | TATCCCATAT                                                                                                                                                                                                              | TGAGCATTCA                                                                                                                                                                                                                                                                                       | GTGCŤTATTT<br>CACGAATAAA                                                                                                                      | CGGTCTGGTT                                                                                                                                                                                                                                                                                                                                                                                                   | TCTTTACGAT<br>AGAAATGCTA                                                                                                                                                                                                                                                                           |
| 2151                     | 2201                     | Sans 2251                                                                                                                                                                                                               | TITUTE SHE                                                                                                                                                                                                                                                                                       | T 9321                                                                                                                                        | 2401                                                                                                                                                                                                                                                                                                                                                                                                         | 2451                                                                                                                                                                                                                                                                                               |
|                          | TATATGTGTA               | TATATGTGTA GAAACTGCCG GAAATCGTCG TGGTATTCAC ATATACACAT CTTTGACGGC CTTTAGCAGC ACCATAAGTG ATATACACAT CTTTGCT CATGGAAAAC GGTGTAACAA TGAAAACGTT TCAGTTTGCT CATGGAAAAC GGTGTAACAA ACTTTGCAA AGTCAAACGA GTACCTTTTG CCACATTGTT | 2151 TATATGTGTA GAAACTGCCG GAAATCGTCG TGGTATTCAC TATATACACAT CTTTGACGC CTTTAGCAGC ACCATAAGTG ACATATCACA CTTTAGCAAAAC GGTGTAACAA CATTTGCA AGTCAAACGA GTACCTTTTG CCACATTGTT CACTTTTGCAA AGTCAAACGT GCGTCTTTCA TTGCCATACG CCACATACG ACCCAGCTCA GGCAGAAAGT AACGGTATA GTGGTCGAGT GGCAGAAAGT AACGGTATA | TATATGTGTA GAAACTGCCG GAAATCGTCG TGGTATTCAC TATATACACAT CTTTGACGGC CTTTAGCAGC ACCATAAGTG ACTTTAGCAGC ACCATAACAG GCTTTTGCAAACGTTTTGCAAACGAAACG | TATATGTGTA GAAACTGCCG GAAATCGTCG TGGTATTCAC TATATACACAT CTTTGACGC CTTTAGCAGC ACCATAAGTG ACATATACACAT TCAGTTTGCT CATGGAAAAC GGTGTAACAA GATCATTGCA AGTCAAACGA GTACCTTTTG CCACATTGTT CACCAGCTCA CCGTCTTTTG CCACATTGTT CACCAGCTCA GGCAGAAGT AACGGTATGC GAAGAATGTGA ATAAAGGCCG TTCTTAACACT TATTTCCGGC TTCTTTACGC TTCTTTACACT TATTTCCGGC TCACGTAATA AAGAAATGCC AGAAATTTT CCGGCATTAT TCTTTACGC AGAAATTTT CCGGCATTAT | TATATGTGTA GAAACTGCCG GAAATCGTCG TGGTATTCAC TGAAAACGCAT CTTTGACGC CTTTAGCAGC ACCATAAGTG AGAAAACGTT TCAGTTTGCT CATGGAAAAC GGTGTAACAA GCTCTTTTGCAAACGTTTGTT CAGTCTTTGCAAACGTTTGTT CAGTCTTTGCAAACGTTTGTT CAGTCATATGTT CAGGCGGCTCAACGT GCCAGAAAGT AACGGTATGC CAGAAAAGT AACGGTATGC CAGAAATGTCAAAAAAAAAA |

| ACTCAAAAA<br>TGAGTTTTT                                                                                                                    | GGAACCTCAC<br>CCTTGGAGTG                       | AGGCTTTACA<br>TCCGAAATGT<br>GGATAACAAT<br>CCTATTGTTA                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| nctional map and sequence of modular vector pCAL4 (continued) TTTCTCCATT TTAGCTTCCT TAGCTCCTGA AAATCTCGAT AACTCAAAAAAAAAA                 | GGTGAAAGTT GGAACCTCAC<br>CCACTTTCAA CCTTGGAGTG | ATGTGAGTTA GCTCACTCAT TAGGCACCCC AGGCTTTACA<br>TACACTCAAT CGAGTGAGTA ATCCGTGGGG TCCGAAATGT<br>CCGGCTCGTA TGTTGTGTGG AATTGTGAGC GGATAACAAT<br>GGCCGAGCAT ACAACACACC TTAACACTCG CCTATTGTTA |
| CTGA                                                                                                                                      | ATTTCATTAT<br>TAAAGTAATA                       | GCTCACTCAT<br>CGAGTGAGTA<br>TGTTGTGTGG<br>ACAACACACC                                                                                                                                     |
| e of modular vector pCAL4 (continued) TTAGCTTCCT TAGCTCCTGA AATCGAAGGA ATCGAGGACT                                                         | TAGTGATCTT<br>ATCACTAGAA                       | ATGTGAGTTA<br>TACACTCAAŢ<br>CCGGCTCGTA<br>GGCCGAGCAT                                                                                                                                     |
| Figure 35: functional map and sequence of modular vector pCAL4 (continued) 2501 TTTCTCCATT TTAGCTTCCT TAGCTC AAAGAGGTAA AATCGAAGGA ATCGAC | ATACGCCCGG<br>TATGCGGGCC                       | Aatii<br>CCGACGTCTA<br>GGCTGCAGAT<br>CTTTATGCTT<br>GAAATACGAA                                                                                                                            |
| Figure 35: fu<br>2501                                                                                                                     | 2551                                           | 2601                                                                                                                                                                                     |
|                                                                                                                                           |                                                | SUBSTITUTE S                                                                                                                                                                             |

|    | FINE CONTRACTOR AND CONTRACTOR ACCAMPATATION ACAGEATICG | しけいるようしようよ          | * * D. D. D. D. D. D. D. D. D. D. D. D. D. |                |
|----|---------------------------------------------------------|---------------------|--------------------------------------------|----------------|
|    | ACGAATTTCT                                              | K C K K K B B C C B | TGC1 THERAGE                               |                |
|    | GACCATGATT                                              |                     | CIGGIACIAA                                 | -              |
|    | 日々日しじなりてよる日                                             | AAACAGC 1111        | TTTGTCGATA                                 |                |
|    |                                                         | T'I'CACACAGG        |                                            | )) 10 10 10 CC |
| 3U | 1                                                       | 2701                |                                            |                |

SphI

XbaI

EcoRI

22222 55555 2751

SSTITUTE SHEET (RULE 26)

115 / 204





SUBSTITUTE SHEET (RULE 26) 116 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

Σ

AatII

GACGICITAA IGIGAGITAG CICACICAIT AGGCACCCCA GGCITTACAC TCCGTGGGGT CCGAAATGTG GAGTGAGTAA ACACTCAATC CTGCAGAATT

GATAACAATT CTATTGTTAA CAACACACCT TAACACTCGC CGGCTCGTAT GTTGTGTGGA ATTGTGAGCG GCCGAGCATA AAATACGAAG TTTATGCTTC 51

XmnI

XbaI

222222

CATATTACAT GTATAATGTA TCACACAGGA AACAGCTATG ACCATGTCTA GAATAACTTC AGTGTGTCCT TTGTCGATAC TGGTACAGAT CTTATTGAAG

SphI

ACG TCAATAGCGT CGCTATACGA AGTTATCGCA GCGATATGCT

151

SUBSTITUTE SHEET (RULE 26) 117 / 204

101

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)



**M3** 47 bp

AatlI 1111

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

Z

BglII

AGATCTCATA ACTTCGTATA ATGTATGCTA TACGAAGTTA TGACGTC TCTAGAGTAT TGAAGCATAT TACATACGAT ATGCTTCAAT ACTGCAG

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)



Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

#### (long): 1-L

ECORI

|             | STG GTGGTGGATC TGCGTGCGCT GAAACGGTTG AAAGTTGTTT |  |
|-------------|-------------------------------------------------|--|
|             | STG GTGGTGGATC TGCGTGCGCT GAAACGGTTG AAAGTTGTTT |  |
|             | TGCGTGCGCT<br>ACGCACGCGA                        |  |
| -           | GTGGTGGATC<br>CACCACCTAG                        |  |
| 1 1 1 1 1 1 | GAATTCGGTG<br>CTTAAGCCAC                        |  |
|             | Т                                               |  |

| AAAGACGAC    | TTTCTGCTGT        |
|--------------|-------------------|
|              | ATTGCAGACC        |
| TTCATTAC     | <b>LAAGTAAATG</b> |
| CATACAGAAA P | GTATGTCTTT :      |
| AGCAAAATCC   | TTTTAGG           |
| 51           | <br>              |

| GAATGCTACA<br>CTTACGATGT | GTACATGGGT<br>CATGTACCCA |
|--------------------------|--------------------------|
| GCTGTCTGTG<br>CGACAGACAC | CAGTGTTACG<br>GTCACAATGC |
| AACTATGAGG<br>TTGATACTCC | TGACGAAACT<br>ACTGCTTTGA |
| TCGTTACGCT<br>AGCAATGCGA | TTTGTACTGG<br>AAACATGACC |
| AAACTTTAGA<br>TTTGAAATCT | GGCGTTGTAG               |
| 101                      | 151                      |
| SUBSTITUT                |                          |
| 12                       | 1 / 204                  |

|    | TCTGAGGGTG                   | AGACTCCCAC                                |
|----|------------------------------|-------------------------------------------|
|    | GGTGGTGGC                    | CCCACCACC GACTTTACT CCCACCACCG AGACTCCCAC |
|    | CTGAAAATGA                   | CACTTTACT                                 |
|    | rggg ctrgctatcc ctgaaaatga G | SPATASOVAS                                |
|    | CTAT                         |                                           |
|    | 201                          | •                                         |
| UL | .E 2                         | :6)                                       |

| ACCTCCTGAG   | TGGAGGACTC     |
|--------------|----------------|
| S GCGGTACTAA | CGCCATGATT     |
| rcrgagggrg   | AGACTCCCAC     |
| GGGTGGCGGT 1 | ACT CCCACCGCCA |
| GCGGTTCTGA   | GCCAAGACT      |
| 251          |                |

| CC CTCTCGACGG                    | GAGAGCTGCC   |
|----------------------------------|--------------|
| GGGCTATACT TATATCAACC CTCTCGACGG | ATATAGTTGG   |
| GGGCTATACT                       | CCCGATATGA P |
| CACCTATTCC                       | GTGGATAAGG   |
| TACGGTGATA                       | ATGCCACTAT   |
| 301                              |              |

SHEET (R

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| AATCCTTCTC<br>TTAGGAAGAG | TAATAGGTTC<br>ATTATCCAAG | TTACTCAAGG<br>AATGAGTTCC | TCATCAAAAG<br>AGTAGTTTTC | CGCTTTCCAT<br>GCGAAAGGTA | GCCAATCGTC               | GGTGGTGGTT               | TTCTGAGGGT               |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| CGCTAATCCT               | TGTTTCAGAA               | ACGGGCACTG               | CACTCCTGTA               | TCAGAGACTG               | GAATATCAAG               | CGGCGGCTCT               | AGGGTGGCGG               |
| GCGATTAGGA               | ACAAAGTCTT               |                          | GTGAGGACAT               | AGTCTCTGAC               | CTTATAGTTC               | GCCGCCGAGA               | TCCCACCGCC               |
| AGCAAAACCC               | AATACTTTCA               | AACTGTTTAT               | ATTACCAGTA               | AACGGTAAAT               | ATTTGTTTGT               | TCAATGCTGG               | GGTGGCTCTG               |
| TCGTTTTGGG               | TTATGAAAGT               | TTGACAAATA               | TAATGGTCAT               | TTGCCATTTA               | TAAACAAACA               | AGTTACGACC               | CCACCGAGAC               |
| CCTGGTACTG               | TCAGCCTCTT               | AGGGGGCATT               | GTTAAAACTT               | CGCTTACTGG               | ATGAGGATTT               | CAACCTCCTG               | CTCTGAGGGT               |
|                          | AGTCGGAGAA               | TCCCCCGTAA               | CAATTTTGAA               | GCGAATGACC               | TACTCCTAAA               | GTTGGAGGAC               | GAGACTCCCA               |
| CACTTATCCG (GTGAATAGGC   | TTGAGGAGTC A             | CGAAATAGGC<br>GCTTTATCCG | CACTGACCCC<br>GTGACTGGGG | CCATGTATGA<br>GGTACATACT | TCTGGCTTTA<br>AGACCGAAAT | TGACCTGCCT<br>ACTGGACGGA | CTGGTGGCGG<br>GACCACCGCC |
| 351                      | 401                      | 451                      | 501                      | 551                      | 601                      | 651                      | 701                      |

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

|                          |            | •                        |                          |                          |           |                          |                          |
|--------------------------|------------|--------------------------|--------------------------|--------------------------|-----------|--------------------------|--------------------------|
| CCGGTGATTT               | ACCGAAAATG | TGATTCTGTC               | ACGTTTCCGG               | TCTAATTCCC               | XmnI      | GAATAATTTC               | GCCCTTTTGT               |
| GGCCACTAAA               | TGGCTTTTAC | ACTAAGACAG               | TGCAAAGGCC               | AGATTAAGGG               |           | CTTATTAAAG               | CGGGAAAACA               |
| GGCTCTGGTT<br>CCGAGACCAA | GGGGCTATG  | AAGGCAAACT<br>TTCCGTTTGA | TTCATTGGTG<br>AAGTAACCAC | TTTTGCTGGC<br>AAAACGACCG |           | CACCTTTAAT<br>GTGGAAATTA | GTTGAATGTC<br>CAACTTACAG |
| TTCCGGTGGT               | ACGCTAATAA | TCTGACGCTA               | TATCGATGGT               | CTACTGGTGA               |           | GGTGATAATT               | CCCTCAATCG               |
| AAGGCCACCA               | TGCGATTATT | AGACTGCGAT               | ATAGCTACCA               | GATGACCACT               |           | CCACTATTAA               | GGGAGTTAGC               |
| AGGGAGGCGG               | AAGATGGCAA | CGCGCTACAG               | ACGGTGCTGC               | GGTAATGGTG               |           | AGTCGGTGAA               | TACCTTCCAT               |
| TCCCTCCGCC               | TTCTACCGTT | GCGCGATGTC               | TGCCACGACG               | CCATTACCAC               |           | TCAGCCACTT               | ATGGAAGGTA               |
| GGCGGCTCTG               | TGATTATGAA | CCGATGAAAA               | GCTACTGATT               | CCTTGCTAAT               |           | AAATGGCTCA               | CGTCAATATT               |
| CCGCCGAGAC               | ACTAATACTT | GGCTACTTTT               | CGATGACTAA               | GGAACGATTA               |           | TTTACCGAGT               | GCAGTTATAA               |
| 751                      | 801        | 851                      | 0 0 0 1                  | TE SHEET (F              | VII F 26) | 1001                     | 1051                     |
|                          |            |                          | 30031110                 | IL SHEET (F              | ردی جنوب  |                          |                          |

|                              | Ē                |
|------------------------------|------------------|
|                              | 6                |
| <del>=</del>                 | Ē                |
| une                          | 5                |
| ont <u>i</u>                 | E                |
| S<br>S                       | ζ                |
| tor                          | E                |
| Š                            | Ē                |
| ਤੋ                           | E                |
| d b                          | •                |
| s ar                         | E                |
| 븕                            | •                |
| or modules and               | I                |
|                              | (                |
| AL vect                      | THE CHURCH THEFT |
| 8                            | - (              |
| al pC                        | 1                |
| tion                         |                  |
| ġ                            |                  |
| of                           |                  |
| SSS                          |                  |
| uen                          |                  |
| seq                          |                  |
| and                          |                  |
| al maps and sequences of add |                  |
| Ë                            |                  |
| ona                          |                  |
| ncti                         |                  |
| <br>J.                       |                  |
| 35a                          |                  |
| ure.                         |                  |
| Ë                            | n                |
|                              |                  |

| F F F F F F F F F F F F F F F F F F F    | I GACAAAATAA                | CTGTTTTATT      |            |
|------------------------------------------|-----------------------------|-----------------|------------|
|                                          | CT ATGAATTTTC TATTGAT'LGT G | T ATAACTAACA    |            |
| i                                        | ATGAATTTTC                  | TACTTAAAAG      |            |
|                                          | GGTAAACCCT                  | を でして 単単年で で 本で | CCALLIGGGA |
| ול שמי ומווכנוסוומו ווופלט מווג מלבנויים | TOUCUT                      |                 | GAAACCGCGA |
| ITE 334. FUILCIOIIAI                     | 1101                        | 1011            |            |

| GCGTTTCTTT TATATGTTGC CACCITITATG | GAAA ATATACAACG GTGGAAATAC |  |
|-----------------------------------|----------------------------|--|
|                                   | ACCACAGAAA CGCAAAGAAA      |  |
| A CHHAPHOOG PGGTGTCTTT            | TGAATAAGGC ACC             |  |
| 1 7 1 1                           | T C T T                    |  |

| AGTCTTGATA            | A CAMPONANCE APPRICACE GCATTATTCC TCAGAACTAT |
|-----------------------|----------------------------------------------|
| TAACATACTG CGTAATAAGG | GCATTATTCC                                   |
| TAACATACTG            | DAPTATOTTA                                   |
| TH CTACGTTTGC         | じしなべんしつまるい                                   |
| ተን ጥር ጥል ጥጥጥ          | 1                                            |
| -                     | T 0 7 T                                      |

HindIII

HindI ~~~~ AGCTT TCGAA 1251

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)



SUBSTITUTE SHEET (RULE 25) 125 / 204

## Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

### M 7-II (SS-TAG):

#### ECORI

22222

- GTGATTTTGA CACTAAAACT AGACCAAGGC TCTGGTTCCG GCCACCACCG CGGTGGTGGC GAGGCGGTTC CTCCGCCAAG CGGGAATTCG GCCCTTAAGC
- GAAAATGCCG CTTTTACGGC CCGATACTGG GGCTATGACC GATTATTCCC CTAATAAGGG ATGGCAAACG TACCGTTTGC TTATGAAAAG AATACTTTTC 51
- AAGACAGCGA TTCTGTCGCT CGTTTGAACT GCAAACTTGA GACGCTAAAG CTGCGATTTC CGATGTCAGA GCTACAGTCT TACTTTGCG ATGAAAACGC 101
- TTTCCGGCCT AAAGGCCGGA TAACCACTGC ATTGGTGACG GCTACCAAAG CGATGGTTTC CACGACGATA GTGCTGCTAT TGACTAATGC ACTGATTACG 151
- AATTCCCAAA TTAAGGGTTT CTGGTGATTT TGCTGGCTCT GACCACTAAA ACGACCGAGA TTACCACGAT AATGGTGCTA ACGATTACCA TGCTAATGGT 201

#### XmnI

TAATTTCCGT ATTAAAGGCA CTTTAATGAA GAAATTACTT GATAATTCAC CTATTAAGTG CGGTGACGGT GCCACTGCCA TGGCTCAAGT ACCGAGTTCA 251

GAATGTCGCC Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

GAAAACAGAA CTTTTGTCTT CTTACAGCGG GTTATAAATG GAAGGGAGGG AGTTAGCCAA TCAATCGGTT CTTCCCTCCC CAATATTTAC 301

AAAATAAACT TTTTATTGA ACTAACACTG TGATTGTGAC AATTTTCTAT TTAAAAGATA TTTGGTATAC TGGCGCTGGT AAACCATATG ACCGCGACCA

351

GAAATACATA CTTTATGTAT AAAGAAATA TACAACGGTG ATGTTGCCAC TTTCTTTAT ACAGAAACGC TGTCTTTGCG ATAAGGCACC TATTCCGTGG 401

HindIII

GAACTATTCG CTTGATAAGC TTATTCCTCA AATAAGGAGT CATACTGCGT GTATGACGCA CGTTTGCTAA GCAAACGATT CATAAAAGAT GTATTTTCTA 451

Hi ~ 501 TT

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)



**Σ** 47 bo

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

.. დ Σ SphI

11111

TACGAAGTTA ATGCTTCAAT GCATGCCATA ACTTCGTATA ATGTACGCTA CGTACGGTAT TGAAGCATAT TACATGCGAT

TAAGCTT ATTCGAA

HindIII

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)



SUBSTITUTE SHEET (RULE 26) 130 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

#### M 10-II:

#### BsrGI

| AACCCTGATA | TTGGGACTAT |
|------------|------------|
| ATGAGACAAT | TACTCTGTTA |
| GTATCCGCTC | CATAGGCGAG |
| ATTCAAATAT | TAAGTTTATA |
| GGGGGTGTAC | CCCCACATG  |
| <b>~</b>   | I          |

|    | 5      | AATGCTTCAA | A TAATATIGAA | AAAGGAAGAG | A AAAGGAAGAG TATGAGTATT | CAACATTTCC |
|----|--------|------------|--------------|------------|-------------------------|------------|
|    | ł<br>) | ACGAAGTT   | ATTATAACTT 1 | TTCCTTCTC  | ATACTCATAA              | GTTGTAAAGG |
| SU | •      |            |              |            |                         |            |

| TGTTTTTGCT   | ACAAAAACGA |
|--------------|------------|
| TTTGCCTTCC   | AAACGGAAGG |
| TTTGCGGCAT   | AAACGCCGTA |
| TATTCCCTTT T | ATAAGGGAAA |
| GTGTCGCCCT   | AGCG       |
| _            | l          |

| <i>T</i>   | က္           |
|------------|--------------|
| AGTTGGGTG  | TCAACCCAC    |
| GCTGAGGATC | CGACTCCTAG   |
| AGTAAAAGAT | CATTTTCTA    |
| CGCTGGTGAA | GCGACCACTT 1 |
| CACCCAGAAA | TGGGTCTTT    |
| 151        | <br> -<br>   |
| HEE        | T (RU        |

## GCGAGTGGGT TACATCGAAC TGGATCTCAA CAGCGGTAAG ATCCTTGAGA CGCTCACCCA ATGTAGCTTG ACCTAGAGTT GTCGCCATTC TAGGAACTCT CGCTCACCCA 201

#### XmnI

GITITCGCCC CGAAGAACGI ITICCAAIGA IGAGCACIII IAAAGIICIG ATTTCAAGAC ACTCGTGAAA GCTTCTTGCA AAAGGTTACT CAAAAGCGGG 251

BSTITUTE SHEET (RULE 26) 131 / 204

|                                                            | ָ<br>כ               |
|------------------------------------------------------------|----------------------|
| ol vector modules and pCAL vectors (continued)             | COCOCO CHOUSE IN THE |
| ဥ                                                          | (                    |
| tors                                                       | f                    |
| Vec                                                        | È                    |
| S                                                          | E                    |
| ф                                                          |                      |
| Sar                                                        |                      |
| dule                                                       | 1                    |
| ě                                                          | 1                    |
| ţō                                                         |                      |
| Š                                                          |                      |
| 5a: Functional maps and sequences of additional pCAL vecto |                      |
| al F                                                       |                      |
| itio                                                       |                      |
| add                                                        |                      |
| ð                                                          |                      |
| S                                                          |                      |
| her                                                        |                      |
| 56                                                         |                      |
| anc                                                        |                      |
| aps                                                        |                      |
| <u>=</u>                                                   |                      |
| ion                                                        |                      |
| nuc                                                        |                      |
| <br>T                                                      |                      |
| 35                                                         |                      |
| oure                                                       |                      |
| Figure 35a: Function                                       |                      |
|                                                            |                      |

| AGCAACTCGG                | TCACCAGTCA               | ATGCAGTGCT               | TGACAACGAT                       |
|---------------------------|--------------------------|--------------------------|----------------------------------|
| TCGTTGAGCC                | AGTGGTCAGT               | TACGTCACGA               |                                  |
| GCCGGGCAAG                | GGTTGAGTAC               | TAAGAGAATT               | TGAGTGATAA CACTGCGGCC AACTTACTTC |
| CGGCCCGTTC                | CCAACTCATG               | ATTCTCTTAA               |                                  |
| CCGTATTGAC                | AGAATGACTT               | GGCATGACAG               | CACTGCGGCC                       |
| GGCATAACTG                | TCTTACTGAA               | CCGTACTGTC               |                                  |
| CGGTATTATC                | CACTATTCTC               | TCTTACGGAT               | TGAGTGATAA                       |
| GCCATAATAG                | GTGATAAGAG               | AGAATGCCTA               |                                  |
| 301 CTATGTGGCG GATACACGGC | TCGCCGCATA<br>AGCGGCGTAT | CAGAAAAGCA<br>GTCTTTTCGT | GCCATAACCA                       |
| 301<br>301                | 351                      | 401                      | 451                              |
| رد<br>د                   |                          |                          | ;                                |

# CGGTATTGGT ACTCACTATT GTGACGCCGG TTGAATGAAG ACTGTTGCTA

| CG AAGGAGCTAA CCGCTTTTTT GCACAACATG GGGGATCATG<br>GC TTCCTCGATT GGCGAAAAA CGTGTTGTAC CCCCTAGTAC |
|-------------------------------------------------------------------------------------------------|
| GCACAACATG<br>CGTGTTGTAC                                                                        |
| CCGCTTTTTT<br>GGCGAAAAAA                                                                        |
| AAGGAGCTAA                                                                                      |
| CGGAGGACCG<br>GCCTCCTGGC                                                                        |
| 501                                                                                             |
| itiite ous:                                                                                     |

CATACCAAAC GTATGGTTTG

SUBSTITUTE SHEET (RULE 28)

sequences of additional pCAL vector modules and pCAL vectors (continued)

| CTCGGCCCTT<br>GAGCCGGGAA                                                 | AGCGTGGGTC<br>TCGCACCCAG | TCCCGTATCG<br>AGGGCATAGC | ACGAAATAGA<br>TGCTTTATCT | TAACTGTCAG<br>ATTGACAGTC | TCATTTTTAA<br>AGTAAAAATT | TGACCAAAAT<br>ACTGGTTTTA | GTAGAAAAGA<br>CATCTTTTCT |
|--------------------------------------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| CACTTCTGCG<br>GTGAAGACGC                                                 | GGAGCCGGTG<br>CCTCGGCCAC | TGGTAAGCCC<br>ACCATTCGGG | CTATGGATGA<br>GATACCTACT | AAGCATTGGG<br>TTCGTAACCC | ATTTAAAACT<br>TAAATTTTGA | GATAATCTCA<br>CTATTAGAGT | GTCAGACCCC<br>CAGTCTGGGG |
| TGCAGGAC                                                                 | TGATAAATCT<br>ACTATTTAGA | TGGGGCCAGA<br>ACCCCGGTCT | AGTCAGGCAA<br>TCAGTCCGTT | CTCACTGATT<br>GAGTGACTAA | CTTTAGATTG<br>GAAATCTAAC | GATCCTTTTT<br>CTAGGAAAAA | TCCACTGAGC<br>AGGTGACTCG |
| GGCGGATAAA GT<br>CCGCCTATTT CP                                           | GGTTTATTGC '             | ATTGCAGCAC<br>TAACGTCGTG | CACGACGGGG<br>GTGCTGCCCC | AGATAGGTGC<br>TCTATCCACG | CTCATATATA<br>GAGTATATAT | TCTAGGTGAA<br>AGATCCACTT | GAGTTTTCGT               |
| re 35a: Functional maps and sequences of add 701 ACTGGATGGA (TGACCTACCT) | CCGGCTGGCT               | TCGCGGTATC<br>AGCGCCATAG | TAGTTATCTA<br>ATCAATAGAT | CAGATCGCTG<br>GTCTAGCGAC | ACCAAGTTTA<br>TGGTTCAAAT | TTTAAAAGGA<br>AAATTTTCCT | CCCTTAACGT<br>GGGAATTGCA |
| : 35a: Functional<br>701                                                 | 751                      | 801                      | 805 1<br>8 5 1           | STITUTE SH               | EET (RULE 2              | 1001                     | 1051                     |
| <del>ي</del>                                                             |                          |                          | 555                      | _ ,,, _ , _ , _ ,        |                          | •                        |                          |

PacI

FseI

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

TCAAAGGATC TTCTTGAGAT CCTTTTTGAT AATGGCCGGC CCCCCCCTT AGTTTCCTAG AAGAACTCTA GGAAAAACTA TTACCGGCCG GGGGGGGAA

1101

PacI ~~~~~ 51 AATTAAGGGG

1151 AATTAAGGGG GGG TTAATTCCCC CCC

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)



SUBSTITUTE SHEET (RULE 26) 135 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

#### M11-II:

| C GCCCTGTAGC GGCGCATTAA GCGCGGCGGG 7 G CGGGACATCG CCGCGTAATT CGCGCCGCCC 7 G TGACCGCTAC ACTTGCCAGC GCCCTAGCGC C C ACTGGCGATG TGAACGGTCG CGGGATCGCG C C CCTTCCTTTC TCGCCACGTT CGCCGGCTTT ( C GGAAGGAAAG AGCGGTGCAA GCGGCCGAAA ( C GGGGCTCCCT TTAGGGTTCC GATTTAGTGC ( C CCCCGAGGGA AATCCCAAGG CTAAATCACG C C CCCGAGGGA AATCCCAAGG CTAAATCACG ATTTTTGAACT AATCCCAAGG CTAAATCAGG CAAACTTTC GCGAAACTG CAAGGCCTCAGG CCCAAAACTG CAACCTCAGG CAAACTCAAAACTG CAAACTCAGG CAAACTCAAAACTG CAAACTCAAAACTG CAAACTCAAAACTG CAAACTCAAAACTG CAAACCTCAAAACTG CAAACCTCAAAACTG CAAACCTCAAAACTG CAAACCTCAAAACTG CAAACCTCAAAACTG CAAACTCAAAACTG CAAACTCAAAACTG CAAACTCAAAACTG CAAACTCAAAACTG CAAAACTCA CAAACTCAAAACTG CAAAACTCA CAAAACTCAAAACTG CAAAAACTG CAAAACTCAAAACTG CAAAAACTCAAAAACTG CAAAAACTCAAAAACTG CAAAAACTG CAAAAAACTG CAAAAACTG CAAAAAACTG CAAAAAACTG CAAAAAACTG CAAAAAAAAACTG CAAAAAAAACTG CAAAAAAAACTG CAAAAAAACTG CAAAAAAAACTG CAAAAAAAAAA | TGTGGTGGTT<br>ACACCACCAA                |      | TGTGGTGGTT<br>ACACCACCAA<br>CCGCTCCTTT<br>GGCGAGGAAA | CCCCGTCAAG<br>GGGGCAGTTC | TTTACGGCAC<br>AAATGCCGTG                    | GTGGGCCATC<br>CACCCGGTAG | ACGTTCTTTA<br>TGCAAGAAAT |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------|------------------------------------------------------|--------------------------|---------------------------------------------|--------------------------|--------------------------|
| C GCCCTGTAGC GGCGCATTAA G CGGGACATCG CCGCGTAATT G TGACCGCTAC ACTTGCCAGC C ACTGGCGATG TGAACGGTCG C CCTTCCTTTC TCGCCACGTT G GGAAGGAAAG AGCGGTGCAA  Banii  Banii  C CCCCGAGGGA AATCCCAAGG C CCCCGAGGGA TTAGGGTGAT ST TTTTGAACT AATCCCACTA AG ACGGTTTTC GCCCTTTGACTGAACTGAAACTGAAAACTTGAAACTGAAAACTTGAAACTGAAAACTGAAAACTGAAAACTGAAAAACTGAAAACTGAAAACTGAAAACTGAAAAACTGAAAAACTGAAAAACTGAAAAACTGAAAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                       |      |                                                      |                          |                                             |                          |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |      |                                                      |                          | TTAGGGTTCC<br>AATCCCAAGG                    | TTAGGGTGAT<br>AATCCCACTA | GCCCTTTGAC<br>CGGGAAACTG |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |      |                                                      | CCTTCCTTTC               | BanII<br>~~~~~~<br>GGGGCTCCCT<br>CCCCGAGGGA | AAAAACTTGA<br>TTTTTGAACT | ACGGTTTTTC<br>TGCCAAAAAG |
| Nhel<br>GCTAGCA<br>GCTAGCA<br>CGATCGT<br>TGCGCGT<br>TGCGCGT<br>GCGAAAC<br>GAGATT<br>CTCGAC<br>GAGATT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NheI<br>~~~~~<br>CTAGCACGC<br>GATCGTGCG | Nnel | ပ္ဖ ဖွပ                                              | CGCTTTCTTC<br>GCGAAAGAAG | CTCTAAATCG<br>GAGATTTAGC                    | CTCGACCCCA<br>GAGCTGGGGT | GCCCTGATAG               |
| 1 51 101 201 201 251 251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Н                                       |      | 1 51                                                 |                          |                                             | 201                      | 251                      |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

ATAGAGCCAG TATCTCGGTC CACTCAACCC GTGAGTTGGG TATCACCTGA GAACAAGGTT TGACCTTGTT CTTGTTCCAA ACTGGAACAA ATAGTGGACT 301

GATTTTGCCG ATTTCGGCCT ATTGGTTAAA CTAAAACGGC TAAAGCCGGA TAACCAATTT TATTCTTTTG ATTTATAAGG TAAATATTCC ATAAGAAAAC

CTTAAAATTG TTTTATAATT AAATGAGCTG ATTTAACAAA AATTTAACGC GAATTTTAAC TTAAATTGCG

AAAATATTAA

TAAATTGTTT TTTACTCGAC

401

351

BsrGI

TTCATGTACA GCAAATGTTA AAGTACATGT CGTTTACAAT

SUBSTITUTE SHEET (RULE 26) 137 / 204

451

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)



SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

|    | CT                           | STT                      | GCA                      | TCA<br>AGT               | TTT                      | 3000<br>3000               | GCGA<br>CGCT             |
|----|------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|----------------------------|--------------------------|
|    | CGCGTAATCT<br>GCGCATTAGA     | TTCGTAGGTT<br>AAGCATCCAA | GAGGAGCGCA<br>CTCCTCGCGT | CATGACTTCA<br>GTACTGAAGT | GTGGTGCTTT<br>CACCACGAAA | GATAAGGCGC<br>CTATTCCGCG   | CTTGGAGCGA<br>GAACCTCGCT |
|    | TTTTGGTCTG C                 | AGGGCGGTTT T             | AACTGGCTTG<br>TTGACCGAAC | TTAACCGGCG<br>AATTGGCCGC | GCTGCTGCCA<br>CGACGACGGT | . ATAGTTACCG<br>TATCAATGGC | TACAGTCCAG<br>ATGTCAGGTC |
|    | CTTGAGATCG GAACTCTAGC        | ACCGCCTTGC               | GAACCGAGGT               | CAGTTTAGCC<br>GTCAAATCGG | ATTACCAGTG<br>TAATGGTCAC | ACTCAAGACG<br>TGAGTTCTGC   | GGTTCGTGCA               |
|    | AGATGATCTT C<br>TCTACTAGAA ( |                          | CCAACTCTTT               | CTTGTCCTTT<br>GAACAGGAAA | CTCTAAATCA<br>GAGATTTAGT | TCCGGGTTGG<br>AGGCCCAACC   | CTGAACGGGG<br>GACTTGCCCC |
| •• | Sglii<br>~~~~~<br>GATCTAATA  |                          | _                        | _                        | AGACTAACTC<br>TCTGATTGAG | TGCATGTCTT<br>ACGTACAGAA   | AGCGGTCGGA               |
|    | ,                            | 51                       | 101                      | 151                      | 201                      | 251                        | 301                      |
|    |                              |                          | SUBS                     | STITUTE SHE              | ET (RULE 2               | 6)                         |                          |

TTTGCGCCGG AAACGCGGCC ACTGCCTACC CGGAACTGAG TGTCAGGCGT GGAATGAGAC TGACGGATGG GCCTTGACTC ACAGTCCGCA CCTTACTCTG Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) 351

AgeI

| AGGAGAGCGC            | GTCCTGTCGG    | TTGTCAGGGG                 | ACTTCCCTGT               | TTCGTAAGCC               | CAGTGAGCGA               |
|-----------------------|---------------|----------------------------|--------------------------|--------------------------|--------------------------|
| TCCTCTCGCG            | CAGGACAGCC    | AACAGTCCCC                 | TGAAGGGACA               | AAGCATTCGG               | GTCACTCGCT               |
| AGGCAGGAAC AGGAGAGCGC | TATCTTTATA G1 | TTCGTGATGC TJ              | CGCCCTCTC AC             | CTCCGCCCCG T'            | CGTAGCGAGT C             |
| TCCGTCCTTG TCCTCTCGCG | ATAGAAATAT C2 | AAGCACTACG AA              | GCCGGGAGAG TO            | GAGGCGGGGC A             | GCATCGCTCA G             |
| GTAAACCGAA A          | AAACGCCTGG T  | AGCGTCAGAT '<br>TCGCAGTCTA | GGCTTTGCCG<br>CCGAAACGGC | TCCAGGAAAT<br>AGGTCCTTTA | AACGACCGAG<br>TTGCTGGCTC |
| AATGACACCG            | CGCCAGGGGG    | CACTGATTTG                 | ATGGAAAAAC               | CCTGGCATCT               | GCCGCAGTCG               |
| TTACTGTGGC            |               | GTGACTAAAC                 | TACCTTTTTG               | GGACCGTAGA               | CGGCGTCAGC               |
| ATAACAGCGG            | AGGAGGGAGC    | GTTTCGCCAC                 | GGCGGAGCCT               | TAAGTATCTT               | ATTTCCGCTC               |
| TATTGTCGCC            | TCCTCCCTCG    | CAAAGCGGTG                 |                          | ATTCATAGAA               | TAAAGGCGAG               |
| 401                   | 451           | 501                        | 551                      | 601                      | 651                      |
|                       |               |                            | (DINE)                   | 201                      |                          |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| AgeI       | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | ACCGGTGCAG<br>TGGCCACGTC                       |
|------------|-----------------------------------------|------------------------------------------------|
|            |                                         | CTGCTGACGC<br>GACGACTGCG                       |
|            |                                         | ATCACATATT<br>TAGTGTATAA                       |
|            |                                         | A TATATCCTGT<br>I ATATAGGACA                   |
| <b>\</b> . |                                         | GGAAGCGGAA TATATCCTGT<br>CCTTCGCCTT ATATAGGACA |
|            |                                         | 701                                            |

|        |                | 22222222      |            |                                                        |
|--------|----------------|---------------|------------|--------------------------------------------------------|
| נ<br>ר | COMPACATA      | GAAGCACTTC    | ACTGACACCC | HILL ACTION OF GAAGCACTIC ACTIGACACCC TCATCAGIGC       |
| Ω      |                |               |            | けいるしよじなよじょ                                             |
|        | <br>GGACGGTGTA | CI.I.CGI.GAAG | TGACIGIGGG | AAAA GGACGGTGTA CI"I'CGI'GAAG I'GACI'GI'GGG AGIAGI'COO |
|        |                |               |            |                                                        |

XmnI

| NheI | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | CACTCCGCTA | GTGAGGCGAT CG          |
|------|-----------------------------------------|------------|------------------------|
|      | -                                       | AGCCAGTATA | TORGETCATAT GTGAGGCGAT |
|      |                                         | CAACATAGTA | 中々したなけつませい             |
|      |                                         | 801        |                        |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)



BgllI

XmnI

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 13:

Bglii

11111

TACGAAGTTA TTCAGATCT ATGCTTCAAT AAGTCTAGA

AGATCTCATA ACTTCGTATA ATGTATGCTA TCTAGAGTAT TGAAGCATAT TACATACGAT TCTAGAGTAT

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)



Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 41:

| GATAGCGCCC   | ACGITATACG | TGCAATATGC               | CCGCGTGGTG<br>GGCGCACCAC     | TGGAAGCGGC<br>ACCTTCGCCG | CAACTGGCGG<br>GTTGACCGCC | GGCCCTGCAC<br>CCGGGACGTG | ATCAACTGGG<br>TAGTTGACCC |
|--------------|------------|--------------------------|------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| _            | CCATACCGIA |                          | AGACCGTTTC (<br>TCTGGCAAAG ( | CGGGAAAAG<br>GCCCTTTTTC  | CGTGGCACAA               | CCTCCAGTCT<br>GGAGGTCAGA | TCTCGCGCCG<br>AGAGCGCGGC |
|              | _          | TGGTGAATGI<br>ACCACTTACA | GTCTCTTATC<br>CAGAGAATAG     | TGCGAAAACG<br>ACGCTTTTGC | TTCCTAACCG<br>AAGGATTGGC | GGCGTTGCCA<br>CCGCAACGGT | GGCGATTAAA<br>CCGCTAATTT |
| AATGGCGCAA 1 | -          | CAATTCAGGG<br>GTTAAGTCCC | GTATGCCGGT                   | GCCACGTTTC<br>CGGTGCAAAG | CTGAATTACA<br>GACTTAATGT | GTTGCTGATT<br>CAACGACTAA | AAATTGTCGC<br>TTTAACAGCG |
| NheI<br>     | Ü          | GGAAGAGAGT<br>CCTTCTCTCA | ATGTCGCAGA<br>TACAGCGTCT     | AACCAGGCCA<br>TTGGTCCGGT | GATGGCGGAG               | GCAAACAGTC<br>CGTTTGTCAG | GCGCCGTCGC               |
|              | 4          | 51                       | 101                          | TE SHEET (F              | 201                      | 251                      | 301                      |

SUBSTITUTE SHEET (RULE 26) 151 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| GAAGCCTGTA<br>CTTCGGACAT     | GCTGATTATT<br>CGACTAATAA   | CTGCCTGCAC<br>GACGGACGTG | CCCATCAACA<br>GGGTAGTTGT | GGAGCATCTG<br>CCTCGTAGAC | CATTAAGTTC<br>GTAATTCAAG      | CTCACTCGCA<br>GAGTGAGCGT | TGCCATGTCC<br>ACGGTACAGG |
|------------------------------|----------------------------|--------------------------|--------------------------|--------------------------|-------------------------------|--------------------------|--------------------------|
| AAGCGGCGTC (<br>TTCGCCGCAG ( | GTGTCAGTGG<br>CACAGTCACC   | GCTGTGGAAG<br>CGACACCTTC | TGACCAGACA<br>ACTGGTCTGT | GACTGGGCGT<br>CTGACCCGCA | TTAGCTGGCC<br>AATCGACCGG      | GCATAAATAT<br>CGTATTTATA | GCGACTGGAG<br>CGCTGACCTC |
| TGGTAGAACG /                 | CTCGCGCAAC                 | GGATGCTATT<br>CCTACGATAA | TTGATGTCTC<br>AACTACAGAG | GACGGTACGC<br>CTGCCATGCG | _<br>AATCGCGCTG<br>TTAGCGCGAC | TGGCTGGCTG               | GAACGGGAAG<br>CTTGCCCTTC |
| GTCGTGTCGA 3                 | GCACAATCTT (<br>CGTGTTAGAA | TGGATGACCA<br>ACCTACTGGT | GCGTTATTTC<br>CGCAATAAAG | CTCCCATGAG<br>GAGGGTACTC | GCCACCAGCA<br>CGGTGGTCGT      | CGTCTGCGTC<br>GCAGACGCAG | GCCGATAGCG<br>CGGCTATCGC |
| TGCCAGCGTG (ACGGTCGC)        |                            | AACTATCCGC<br>TTGATAGGCG | TAATGTTCCG<br>ATTACAAGGC | GTATTATTT<br>CATAATAAAA  | GTCGCATTGG<br>CAGCGTAACC      | TGTCTCGGCG<br>ACAGAGCCGC | ATCAAATTCA<br>TAGTTTAAGT |
| 351                          | 401                        | 451                      | 501                      | 551                      | 601                           | 651                      | 701                      |
|                              |                            |                          | SUBSTIT                  | UTE SHEET                | (F.ULE 26)                    |                          |                          |
|                              |                            |                          |                          | 152 / 204                |                               |                          |                          |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| CTGC<br>GACG                 | ATTA                       | CGAC                     | AAACA<br>TTTGT           | ACTCT<br>IGAGA           | TGGTG<br>ACCAC           | CTCCCGCGC                | CGACTGGAAA<br>GCTGACCTTT |
|------------------------------|----------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| TTCCCACTGC<br>AAGGGTGACG     | CGTGCCATTA<br>GCACGGTAAT   | GGGATACGAC<br>CCCTATGCTG | CCATCAAACA<br>GGTAGTTTGT | CTGCAACTCT<br>GACGTTGAGA | CTCACTGGTG<br>GAGTGACCAC | CTCCC                    |                          |
| GAGGGCATCG C                 | GGGCGCAATG                 | TCTCGGTAGT<br>AGAGCCATCA | CCGCTGACCA<br>GGCGACTGGT | GGACCGCTTG<br>CCTGGCGAAC | TGTTGCCCGT<br>ACAACGGGCA | CAAACCGCCT<br>GTTTGGCGGA | ACAGGTTTCC<br>TGTCCAAAGG |
| AATGCTGAAT G<br>TTACGACTTA ( | AGATGGCGCT (<br>TCTACCGCGA | GGTGCGGACA               | TTATATCCCG<br>AATATAGGGC | AAACCAGCGT<br>TTTGGTCGCA | GGCAATCAGC<br>CCGTTAGTCG | TCCCAATACG<br>AGGGTTATGC | AGCTGGCACG<br>TCGACCGTGC |
| AAACCATGCA A<br>TTTGGTACGT I | GCCAACGATC A               | GCTGCGCGTT (             | ACAGCTCATG '             | CTGCTGGGGC<br>GACGACCCCG | GGCGGTGAAG<br>CCGCCACTTC | CCACCCTGGC               | TCACTGATGC<br>AGTGACTACG |
| GGTTTTCAAC A                 |                            |                          | ຫ ບ                      | GGATTTTCGC               | CTCAGGGCCA               | AAAAGAAAAA<br>TTTTCTTTTT | GTTGGCCGAT               |
| 751                          | 801                        | 851                      | 901                      | 951                      | 1001                     | 1051                     | 1101                     |
| י<br>ס<br>ט                  |                            |                          | SUZGTI                   | TUTE SHEE                | T (RULE 26)              |                          |                          |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

CCTCCGGCAA GGAGGCCGTT GCGGGCAGTG AGGCTACCCG ATAAAAGCGG CTTCCTGACA CGCCCGTCAC TCCGATGGGC TATTTTCGCC GAAGGACTGT 1151

Aflii

111111

1201 TTGTTTTGCA GCCCACTTAA G

AACAAAACGT CGGGTGAATT C

SUBSTITUTE SHEET (RULE 26) 154 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)



SUBSTITUTE SHEET (RULE 26) 155 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

|         | TIT |
|---------|-----|
| pCAL0-1 | Bg  |

TTTTTAAT AAAAAATTA AGGGCACCAA TAACTGCCTT ATTGACGGAA TCCCGTGGTT GTCCGCAAAT CAGGCGTTTA CTAGATCGTG GATCTAGCAC 1111

AATTCGTAAG TTAAGCATTC AACATTAAGT TGCCACTCAT CGCAGTACTG TTGTAATTCA GCGTCATGAC GCGGGGGGG ACGGTGAGTA ეეენეეეეენე 51

TTAGCGGTCG AATCGCCAGC GATGAACCTG CTACTTGGAC GTTTGCCGTA GAAGCCATCA CAAACGGCAT CTTCGGTAGT ACGGCTGTAC TGCCGACATG 101

TTGCGTATAA TATTTGCCCA TAGTGAAAAC GGAACAGCGG AACGCATATT ATAAACGGGT ATCACTTTTG GGCATCAGCA CCTTGTCGCC CCGTAGTCGT

TTTGACCACT AAACTGGTGA TTCAACAGGT ATAACCGATG CAAATTTAGT GTTTAAATCA AAGTTGTCCA TATTGGCTAC GGGGCGAAG CCCCCCTTC 201

GAGACGAAAA ACATATTCTC AATAAACCCT TTATTTGGGA CCCTAACCGA CTCTGCTTTT TGTATAAGAG GGGATTGGCT AACTCACCCA TTGAGTGGGT 251

TCCGGTCCAA AAGTGGCATT GTGCGGTGTA GAACGCTTAT AGGCCAGGTT TTCACCGTAA CACGCCACAT CTTGCGAATA TTAGGGAAAT AATCCCTTTA 301

SUBSTITUTE SHEET (RULE 26)

151

TATGIGIAGA AACTGCCGGA AATCGTCGTG GTATTCACTC CAGAGCGATG Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

CACTTGTGAT GTGAACACTA GTCTCGCTAC TTTTGCAAAG TCAAACGAGT ACCTTTTGCC ACATTGTTCC AGTTTGCTCA TGGAAAACGG TGTAACAAGG CATAAGTGAG ATACACATCT TTGACGGCCT TTAGCAGCAC AAAACGTTTC 401 351

ACTCCGGGTG CGGTATGCCT TGAGGCCCAC GCCATACGGA CAGAAAGTAA CCAGCTCACC GTCTTTCATT AGGGTATAGT GGTCGAGTGG TCCCATATCA 451

AAAGGCCGGA TAAAACTTGT TTTCCGGCCT ATTTTGAACA CTTACACTTA GAATGTGAAT AGCATTCATC AGGCGGGCAA TCGTAAGTAG TCCGCCCGTT 501

CCGTAATATC TTTAAAAAGG GCTTATTTT CTTTACGGTC

GTCGACTTGC CAGCTGAACG

GTCTGGTTAT AGGTACATTG AGCAACTGAC TGAAATGCCT CAAAATGTTC AAATTTTTCC GGCATTATAG GAAATGCCAG CGAATAAAA

TCCATGTAAC TCGTTGACTG ACTTTACGGA GTTTTACAAG CAGACCAATA

TITACGAIGC CAITGGGAIA IAICAACGGI GGIAIAICCA GIGAITITIT CACTAAAAAA AAATGCTACG GTAACCCTAT ATAGTTGCCA CCATATAGGT 651

TCTCCATITI AGCTTCCTTA GCTCCTGAAA ATCTCGATAA CTCAAAAAT CGAGGACTTT TAGAGCTATT GAGTTTTTTA AGAGGTAAAA TCGAAGGAAT 701

SUBSTITUTE SHEET (RULE 26)

157 / 204

551

601

TTGGAGTGGG AACCTCACCC GTGATCTTAT TTCATTATGG TGAAAGTTGG AAGTAATACC ACTTTCAACC Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) CACTAGAATA TGCGGGCCAT ACGCCCGGTA 751

CCGTGGGGTC CGAAATGTGA GCTTTACACT GGCACCCCAG AGTGAGTAAT TCACTCATTA CACTCAATCG GACGTCTAAT GTGAGTTAGC CTGCAGATTA AatII ~~~~ 801

ATAACAATTT TATTGTTAAA AATACGAAGG CCGAGCATAC AACACCTT AACACTCGCC TTGTGTGGAA TTGTGAGCGG TTATGCTTCC GGCTCGTATG 851

GAATTTCTAG ACCCCCCCC ~~~~~

XbaI

1666666666HindIII CTTAAAGATC TGTCGATACT GGTACTAATG CCATGATTAC CACACAGGAA ACAGCTATGA GTGTGTCCTT 901

ATAAGCTTGA TATTCGAACT AACTTCGTAT AATGTACGCT ATACGAAGTT TATGCTTCAA TTACATGCGA TTGAAGCATA CGCATGCCAT GCGTACGGTA 12222 951

SphI

AAACAGACGG CGACATTTT TTTGTCTGCC GCTGTAAAAA GCAGATTGTG CGTCTAACAC GAAAAATGGC CTTTTTACCG GGACACTTCA CCTGTGAAGT 1001

SUBSTITUTE SHEET (RULE 23)

| ਨੂ           |          |
|--------------|----------|
| Ĕ            |          |
| ou<br>ou     |          |
| ک<br>آ       |          |
| Ē            |          |
| _<br>≺e      | ۲        |
| ব্র          | F ()     |
| p<br>b       | ſ        |
| Sa           |          |
| 큵            |          |
| ě            |          |
| ţo           |          |
| Ve           |          |
| Ŗ            |          |
| al p         |          |
| ion          |          |
| dit          |          |
| of a         |          |
| ies (        |          |
| renc         |          |
| )<br>Sed     |          |
| <sub>S</sub> |          |
| ps a         |          |
| ma           |          |
| Pug          |          |
| cţi          |          |
| Fun          |          |
| 53.          | ;        |
| ج<br>م       | )        |
|              | <u>y</u> |
| i            | -        |

| BsrGI                     | GTACATGAAA<br>CATGTACTTT | TTGTTAAATC<br>AACAATTTAG | CTTATAAATC<br>GAATATTTAG | TGGAACAAGA<br>ACCTTGTTCT | AAAACCGTC<br>TTTTTGGCAG  | CAAGTTTTTT<br>GTTCAAAAAA | BanII<br>~~~~~<br>GGGAGCCCCC<br>CCCTCGGGGG |
|---------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------------------------|
|                           | GGGGGGGGT                | CGTTAAATTT<br>GCAATTTAAA | GGCAAAATCC<br>CCGTTTTAGG | TGTTCCAGTT<br>ACAAGGTCAA | TCAAAGGGCG<br>AGTTTCCCGC | TCACCCTAAT<br>AGTGGGATTA | GAACCCTAAA<br>CTTGGGATTT                   |
| FseI                      | GGGCCGGCCT               | TTAAAATTCG<br>AATTTTAAGC | GGCCGAAATC<br>CCGGCTTTAG | GGTTGAGTGT<br>CCAACTCACA | GACTCCAACG<br>CTGAGGTTGC | ACGAGAACCA<br>TGCTCTTGGT | CACTAAATCG<br>GTGATTTAGC                   |
|                           | AGGGGGGGGG (TCCCCCCCCC   | TAATATTTG<br>ATTATAAAAC  | TTAACCAATA<br>AATTGGTTAT | ACCGAGATAG<br>TGGCTCTATC | AAAGAACGTG<br>TTTCTTGCAC | ATGGCCCACT<br>TACCGGGTGA | TGCCGTAAAG<br>ACGGCATTTC                   |
| PacI                      | AA'                      | TTGTAAACGT<br>AACATTTGCA | AGCTCATTTT<br>TCGAGTAAAA | AAAAGAATAG<br>TTTTCTTATC | GTCCACTATT<br>CAGGTGATAA | TATCAGGGCG               | GGGGTCGAGG                                 |
| riguic 33a. i anctionii i | 1051                     | 1101                     | 1151                     | 1201                     | 1251                     | 1301                     | 1351                                       |
| riguic 33                 |                          |                          | SUI                      | BSTITUTE SI<br>159 /     | HEET (RULE<br>204        | 26)                      |                                            |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| AAAGGAAGGG<br>TTTCCTTCCC | TAGCGGTCAC<br>ATCGCCAGTG | CTACAGGGCG<br>GATGTCCCGC | GATGAGGGTG                                | AgeI              | CCGGTGCGTC<br>GGCCACGCAG | CACTGACTCG<br>GTGACTGAGC | ACGAACGGG  |
|--------------------------|--------------------------|--------------------------|-------------------------------------------|-------------------|--------------------------|--------------------------|------------|
| ACGTGGCGAG 1             | CTGGCAAGTG               | TAATGCGCCG<br>ATTACGCGGC | TGTTGGCACT<br>ACAACCGTGA                  | •                 | AAAGGCTGCA<br>TTTCCGACGT | CTTCCTCGCT               | GAAATGGCTT |
| AAGCCGGCGA TTCGGCCGCT    | CGCTAGGGCG<br>GCGATCCCGC | CCGCCGCGCT               | TGGCTTACTA                                |                   | GCAGGAGAAA<br>CGTCCTCTT  | ATATATTCCG<br>TATATAAGGC | GCGCCGAGCG |
| TTGACGGGGA A             | AAGGAGCGGG<br>TTCCTCGCCC | ACCACCACAC<br>TGGTGGTGTG | GAGTGTATAC<br>CTCACATATG                  | ·<br><del> </del> | GCTTCATGTG               | GTGATACAGG               | TCGTTCGACT |
| GATTTAGAGC CTAAATCTCG    | AAGAAAGCGA<br>TTCTTTCGCT | GCTGCGCGTA               | NheI<br>~~~~~<br>CGTGCTAGCG<br>GCACGATCGC | IrmX              | TCAGTGAAGT GAGTCA        | AGCAGAATAT<br>TCGTCTTATA | CTACGCTCGG |
| 1401                     | 1451                     | 1501                     | 1551                                      |                   | 1601                     | 1651                     | 1701       |
|                          |                          |                          | SUBSTITUTE SHEE                           | r (Rule           | 26)                      |                          |            |

AATAGGCCAT

GGCGACGCGG

AAGTCAGGCT

TTCAGTCCGA

GAACCCCCCG

CTGTATGCAC GACATACGTG

2051

CCGCTGCGCC TTATCCGGTA

CGCCGCTCGC CTTTACCGAA TGCTTGCCCC Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

GGTTCGACCT CCAAGCTGGA GCAAACAGAG CGTTTGTCTC CTCCTGCGCT CTCCTGTTCC GAGGACAAGG TCCTGATATT AGGACTATAA GACAAGCATC CTGTTCGTAG CTTCACTCTC GAAGTGAGAG CGTCAAGCGA CAATACCGGC GCAGTTCGCT GTTATGGCCG GAGGACGCGA CTTTGGGCTG GGCGGGGGA CAGTGGTGGC GAAACCCGAC GGTCCTTCTA TGAATTGTCC TCCATAGGCT CCGCCCCCT ACTTAACAGG AAGGCCCATC TTCCGGGTAG AGTAAGGCGA TCATTCCGCT CGTTTCCCCC TGGCGGCTCC TGCTTTAGAC TGCGAGTTTA GTCACCACCG GCAAAGGGGG ACCGCCGAGG CCGGCGCCGT TTCGGCAAAA AGGTATCCGA CCAGGAAGAT ACTGTGAGTC TGACACTCAG TGCCTTTCGG TTTACCGGTG AAATGGCCAC ACGAAATCTG ACGCTCAAAT GGCCGCGCA AAGCCGTTTT GATGCGAGCC AGCAAGCTGA GACCTTCTAC CTGGAAGATG ~~~~~ AgeI ATTCCACGCC TAAGGTGCGG ACGGAAAGCC TCTATGGTCC AGATACCAGG GCCTCTAAAG CGGAGATTTC 1951 2001 1901 1851 1801 1751 SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

|                          |                          |                                                |                                                |                          |        | -                        |
|--------------------------|--------------------------|------------------------------------------------|------------------------------------------------|--------------------------|--------|--------------------------|
| ACCACTGGCA<br>TGGTGACCGT | TCATGCGCCG<br>AGTACGCGGC | TCCTCCAAGC<br>AGGAGGTTCG                       | CAGAGAACCT ACGAAAAACC<br>GTCTCTTGGA TGCTTTTTGG | ACGCGCAGAC<br>TGCGCGTCTG |        |                          |
| ATGCAAAAGC<br>TACGTTTTCG | AGTCTTGAAG<br>TCAGAACTTC | GTGACTGCGC<br>CACTGACGCG                       | CAGAGAACCT<br>GTCTCTTGGA                       | GCAAGAGATT<br>CGTTCTCTAA |        |                          |
| CCGGAAAGAC<br>GGCCTTTCTG | TAGAGGAGTT<br>ATCTCCTCAA | ACAAGTTTTA<br>TGTTCAAAAT                       | GTTGGTAGCT<br>CAACCATCGA                       | CGTTTTCAGA<br>GCAAAAGTCT | BglII  | CATCTTATT.<br>GTAGAATAA  |
| TGAGTCCAAC<br>ACTCAGGTTG | GTAATTGATT<br>CATTAACTAA | AACTGAAAGG ACAAGTTTTA<br>TTGACTTTCC TGTTCAAAAT | GGTTCAAAGA<br>CCAAGTTTCT                       | GCGGTTTTTT<br>CGCCAAAAAA | ·      | TCAAGAAGAT<br>AGTTCTTCTA |
| ACTATCGTCT<br>TGATAGCAGA | GCAGCCACTG<br>CGTCGGTGAC | GTTAAGGCTA                                     | CAGTTACCTC<br>GTCAATGGAG                       | GCCCTGCAAG<br>CGGGACGTTC |        | CAAAACGATC<br>GTTTTGCTAG |
| 2101                     | 2151                     | 2201                                           | 2251                                           | 2301                     |        | 2351                     |
|                          |                          | ;                                              |                                                | E SHEET (RU<br>2 / 204   | LE 25) |                          |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)



SUBSTITUTE SHEET (RULE 26) 163 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

pCAL0-2:

BSrGI

CGTTAAATTT GCAATTTAAA AACATTTGCA ATTATAAAAC AATTTTAAGC TTGTAAACGT TAATATTTTG TTAAAATTCG GTACATGAAA CATGTACTTT 1 1 1 1 1

GGCCGAAATC GGCAAAATCC CCGGCTTTAG CCGTTTTAGG TCGAGTAAAA AATTGGTTAT AGCTCATTTT TTAACCAATA TTGTTAAATC AACAATTTAG 51

CCAACTCACA ACAAGGTCAA GGTTGAGTGT TGTTCCAGTT AAAAGAATAG ACCGAGATAG TTTTCTTATC TGGCTCTATC GAATATTTAG CTTATAAATC 101

CTGAGGTTGC GTCCACTATT AAAGAACGTG GACTCCAACG TTTCTTGCAC ACCTTGTTCT CAGGTGATAA TGGAACAAGA

AGTTTCCCGC

TCAAAGGGCG

ATGGCCCACT ACGAGAACCA TCACCCTAAT TGCTCTTGGT AGTGGGATTA TACCGGGTGA ATAGTCCCGC AAAAACCGTC TATCAGGGCG TTTTGGCAG 201

GGGGTCGAGG TGCCGTAAAG CACTAAATCG GAACCCTAAA GTGATTTAGC CTTGGGATTT ACGCCATTTC CCCCAGCTCC CAAGTTTTTT GTTCAAAAAA 251

BanII

? ? ? ?

GGGAGCCCCC GATTTAGAGC TTGACGGGGA AAGCCGGCGA ACGTGGCGAG 301

SUBSTITUTE SHEET (RULE 20) 164 / 204

151

|                                                                                                       | TGCACCGCTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| free free free free mans and sequences of additional pCAL vector modules and pCAL vectors (continued) | Highre 358; Functional maps and expenses of the particular particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the particular procedure of the |

| ARGA AAGAAAGCGA AAGGAGCGGG CGCTAGGGCG CTGGCAAGTG | TCCC TICITICGCT TICCICGCCC GCGAICCCGC GACCGTICAC |
|--------------------------------------------------|--------------------------------------------------|
| CGCTAGGGCG                                       | GCGATCCCGC                                       |
| AAGGAGCGGG                                       | TTCCTCGCCC                                       |
| AAGAAAGCGA                                       | TTCTTTCGCT                                       |
| けいけるないじょく                                        | SH                                               |
| ר<br>ה                                           | n .                                              |

| CAC GCTGCGCGTA ACCACCACAC CCGCCGCGCT TAATGCGCCG<br>GTG CGACGCGCAT TGGTGGTGTG GGCGGCGCGA ATTACGCGGC |      |
|----------------------------------------------------------------------------------------------------|------|
| CCGCCGCGCT<br>GGCGGCGCGA                                                                           |      |
| ACCACCACAC<br>TGGTGGTGTG                                                                           |      |
| GCTGCGCGTA                                                                                         | NheI |
| TAGCGGTCAC<br>ATCGCCAGTG                                                                           |      |
| 401                                                                                                |      |

| TGTTGGCACT               | Agel |
|--------------------------|------|
| TGGCTTACTA<br>ACCGAATGAT |      |
| GAGTGTATAC               | It   |
| CGTGCTAGCG               | IcmX |
| CTACAGGGCG<br>GATGTCCCGC |      |
| 451                      |      |

| TGTTGGCACT<br>ACAACCGTGA                             | AgeI    | AAAGGCTGCA<br>TTTCCGACGT                                             | CTTCCTCGCT<br>GAAGGAGCGA                                                                                                 |
|------------------------------------------------------|---------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| TGGCTTACTA TGTTGGCACT<br>ACCGAATGAT ACAACCGTGA       |         | GCAGGAGAAA<br>CGTCCTCTTT                                             | Agel<br>CCGGTGCGTC AGCAGAATAT GTGATACAGG ATATATTCCG CTTCCTCGCT<br>GGCCACGCAG TCGTCTTATA CACTATGTCC TATATAAGGC GAAGGAGCGA |
| GAGTGTATAC<br>CTCACATATG                             | H       | GATGAGGGTG TCAGTGAAGT GCTTCATGTG<br>CTACTCCCAC AGTCACTTCA CGAAGTACAC | GTGATACAGG<br>CACTATGTCC                                                                                                 |
| CG CGTGCTAGCG GAGTGTATAC<br>GC GCACGATCGC CTCACATATG | XmnI    | TCAGTGAAGT<br>AGTCACTTCA                                             | AGCAGAATAT<br>TCGTCTTATA                                                                                                 |
| CTACAGGGCG<br>GATGTCCCGC                             |         | GATGAGGGTG<br>CTACTCCCAC                                             | Agel<br>~~~~~<br>CCGGTGCGTC<br>GGCCACGCAG                                                                                |
| 451                                                  |         | 501                                                                  | 551                                                                                                                      |
| SUBSTITUTE                                           | SHEET ( | RULE 26)                                                             |                                                                                                                          |

CACTGACTCG CTACGCTCGG TCGTTCGACT GCGGCGAGCG GAAATGGCTT 601

GGCGACGCGG

AAGTCAGGCT

CTTGGGGGGC

GACATACGTG

GGTTCGACCT

CTTTACCGAA

| ACTTAACAGG                                             | CCGCCCCCCT                       | GAAACCCGAC                                             | CTCCTGCGCT                                              |
|--------------------------------------------------------|----------------------------------|--------------------------------------------------------|---------------------------------------------------------|
| TGAATTGTCC                                             |                                  | CTTTGGGCTG                                             | GAGGACGCGA                                              |
| ACGAACGGGG CGGAGATTTC CTGGAAGATG CCAGGAAGAT ACTTAACAGG | AAGCCGTTTT TCCATAGGCT CCGCCCCCT  | GACAAGCATC ACGAAATCTG ACGCTCAAAT CAGTGGTGGC GAAACCCGAC | AGGACTATAA AGATACCAGG CGTTTCCCCCC TGGCGGCTCC CTCCTGCGCT |
| TGCTTGCCCC GCCTCTAAAG GACCTTCTAC GGTCCTTCTA TGAATTGTCC | TTCGGCAAAA AGGTATCCGA GGCGGGGGA  | CTGTTCGTAG TGCTTTAGAC TGCGAGTTTA GTCACCACCG CTTTGGGCTG | TCCTGATATT TCTATGGTCC GCAAAGGGGG ACCGCCGAGG GAGGACGCGA  |
| CTGGAAGATG                                             | AAGCCGTTTT<br>TTCGGCAAAA         | ACGCTCAAAT<br>TGCGAGTTTA                               | CGTTTCCCCC                                              |
| CGGAGATTTC                                             | GAAGTGAGAG GGCCGCGCGA AAGCCGTTTT | ACGAAATCTG                                             | AGATACCAGG                                              |
| GCCTCTAAAG                                             | CTTCACTCTC CCGGCGCCGT TTCGGCAAAA | TGCTTTAGAC                                             | TCTATGGTCC                                              |
| ACGAACGGGG                                             | GAAGTGAGAG                       | GACAAGCATC                                             | AGGACTATAA                                              |
| TGCTTGCCCC                                             | CTTCACTCTC                       |                                                        | TCCTGATATT                                              |
| 651                                                    | 701                              | 751                                                    | 801                                                     |
|                                                        |                                  | SUBS                                                   | STITUTE SH                                              |

## AgeI

| STTATGGCCG                                             | GCAGTTCGCT<br>CGTCAAGCGA                                                     | CCGCTGCGCC                                      |
|--------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------|
| TCC TGCCTTTCGG TTTACCGGTG TCATTCCGCT GTTATGGCCG        |                                                                              | GGA CTGTATGCAC GAACCCCCCG TTCAGTCCGA CCGCTGCGCC |
| TTTACCGGTG<br>AAATGGCCAC                               | CTC ATTCCACGCC TGACACTCAG TTCCGGGTAG<br>GAG TAAGGTGCGG ACTGTGAGTC AAGGCCCATC | GAACCCCCCG                                      |
| TCC TGCCTTTCGG TTTACCGGTG<br>AGG ACGGAAAGCC AAATGGCCAC | ATTCCACGCC<br>TAAGGTGCGG                                                     | CTGTATGCAC                                      |
| CTCCTGTTCC<br>GAGGACAAGG                               | CGTTTGTCTC<br>GCAAACAGAG                                                     | CCAAGCTGGA                                      |
| 851                                                    | 901                                                                          | 951                                             |

SUBSTITUTE SHEET (RULE 26)

#### INTERNATIONAL SEARCH REPORT Int onal Application No

information on patent family members

Int onal Application No PCT/EP 96/03647

| Patent document | Publication date | Patent<br>mem                                                        |                                                                                       | Publication<br>date                                                                          |     |
|-----------------|------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----|
| EP-A-0368684    | 16-05-90         | AU-B-<br>AU-A-<br>CA-A-<br>DE-D-<br>DE-T-<br>ES-T-<br>WO-A-<br>JP-T- | 634186<br>4520189<br>2002868<br>68913658<br>68913658<br>2052027<br>9005144<br>3502801 | 18-02-93<br>28-05-90<br>11-05-90<br>14-04-94<br>08-09-94<br>01-07-94<br>17-05-90<br>27-06-91 | . — |
| WO-A-9511998    | 04-05-95         | AU-A-<br>EP-A-                                                       | 8091694<br>0725838                                                                    | 22-05-95<br>14-08-96                                                                         | •   |

#### INTERNATIONAL SEARCH REPORT

Int sonal Application No PCT/EP 96/03647

|            |                                                                                                                                                                                                                                                                                                                                                                       | re1/21 30/030         |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|            | ation) DOCUMENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                                                                                                                                                            | Relevant to claim No. |
| Category * | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                                                                                                                    |                       |
| A          | NUCLEIC ACIDS RESEARCH, vol. 21, no. 9, 11 May 1993, page 2265/2266 XP000575849 WATERHOUSE P ET AL: "COMBINATORIAL INFECTION AND IN VIVO RECOMBINATION: A STRATEGY FOR MAKING LARGE PHAGE ANTIBODY REPERTOIRES" see the whole document                                                                                                                                | 1-55                  |
| A          | WO 95 11998 A (UNITED BIOMEDICAL INC) 4 May 1995 see the whole document                                                                                                                                                                                                                                                                                               | 1-55                  |
| A          | ANNALES DE BIOLOGIE CLINIQUE, vol. 49, no. 4, April 1991, PARIS, FR, pages 231-242, XP000407361 R.H. MELOEN ET AL.: "The use of peptides to reconstruct conformational determinants" see page 231, right-hand column, paragraph 2 - page 233, right-hand column, line 4                                                                                               | 1-55                  |
|            | CHEMICAL ABSTRACTS, vol. 122, no. 3, 16 January 1995 Columbus, Ohio, US; abstract no. 24865z, COX, JONATHAN P. L. ET AL: "A directory of human germ-line V.kappa. segments reveals a strong bias in their usage" page 227; column 1; XP002024224 cited in the application see abstract & EUR. J. IMMUNOL. (1994), 24(4), 827-36 CODEN: EJIMAF; ISSN: 0014-2980, 1994, | 1-55                  |
|            |                                                                                                                                                                                                                                                                                                                                                                       |                       |
|            |                                                                                                                                                                                                                                                                                                                                                                       |                       |
|            |                                                                                                                                                                                                                                                                                                                                                                       |                       |
|            |                                                                                                                                                                                                                                                                                                                                                                       | ·                     |
|            |                                                                                                                                                                                                                                                                                                                                                                       | ·                     |
|            |                                                                                                                                                                                                                                                                                                                                                                       |                       |
|            |                                                                                                                                                                                                                                                                                                                                                                       |                       |
|            |                                                                                                                                                                                                                                                                                                                                                                       |                       |
|            |                                                                                                                                                                                                                                                                                                                                                                       |                       |
|            |                                                                                                                                                                                                                                                                                                                                                                       |                       |
| 1          |                                                                                                                                                                                                                                                                                                                                                                       |                       |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| ATGCAAAAGC<br>TACGTTTTCG | AGTCTTGAAG<br>TCAGAACTTC | GTGACTGCGC<br>CACTGACGCG | CAGAGAACCT<br>GTCTCTTGGA | GCAAGAGATT               |        | GATCTAGCAC<br>CTAGATCGTG | ಶಾಲಾದಿದ್ದರು              |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------|--------------------------|--------------------------|
| ATGCAAAAGC<br>TACGTTTTCG | AGTCT<br>TCAGA           | GTGAC<br>CACTG           | CAGAG                    | GCAAG                    | Bglii  | GATC1<br>CTAG2           | )<br>၁၁၁၅၁               |
| CCGGAAAGAC<br>GGCCTTTCTG | TAGAGGAGTT<br>ATCTCCTCAA | ACAAGTTTTA<br>TGTTCAAAAT | GTTĠGTAGCT<br>CAACCATCGA | CGTTTTCAGA<br>GCAAAAGTCT |        | CATCTTATTA<br>GTAGAATAAT | AAAAAAATTA<br>TTTTTAAT   |
| TGAGTCCAAC<br>ACTCAGGTTG | GTAATTGATT<br>CATTAACTAA | AACTGAAAGG<br>TTGACTTTCC | GGTTCAAAGA<br>CCAAGTTTCT | GCGGTTTTTT<br>CGCCAAAAAA |        | TCAAGAAGAT<br>AGTTCTTCTA | TAACTGCCTT<br>ATTGACGGAA |
| ACTATCGTCT<br>TGATAGCAGA | GCAGCCACTG               | GTTAAGGCTA<br>CAATTCCGAT | CAGTTACCTC<br>GTCAATGGAG | GCCCTGCAAG<br>CGGGACGTTC |        | CAAAACGATC<br>GTTTTGCTAG | AGGGCACCAA<br>TCCCGTGGTT |
| TTATCCGGTA<br>AATAGGCCAT | ACCACTGGCA<br>TGGTGACCGT | TCATGCGCCG               | TCCTCCAAGC<br>AGGAGGTTCG | ACGAAAAACC<br>TGCTTTTTGG |        | ACGCGCAGAC<br>TGCGCGTCTG | CAGGCGTTTA<br>GTCCGCAAAT |
| 1001                     | 1051                     | 1101                     | 1151                     | 1201                     |        | 1251                     | 1301                     |
|                          |                          | ,                        | SUBSTITUTE               | SHEET (RU                | LE 26) |                          |                          |

GTGAACACTA TCCCATATCA CACTTGTGAT AGGGTATAGT

TGTAACAAGG ACATTGTTCC

TGGAAAACGG ACCTTTTGCC

AGTTTGCTCA TCAAACGAGT

1701

|                                             | ( |
|---------------------------------------------|---|
| tors (continued)                            |   |
| vectors (c                                  | 1 |
| nd pCAL vector                              | 1 |
| nal pCAL vector modules and pCAL vect       |   |
| onal pCAL ve                                |   |
| s of additi                                 |   |
| ctional maps and sequences of additional po |   |
| ıal maps an                                 |   |
| :. Fun                                      |   |
| Figure 35a                                  | • |
|                                             |   |

| TGCCGACATG                                       | GGCATCAGCA               | GGGGCGAAG                | AACTCACCCA               | TTAGGGAAAT                     | TATGTGTAGA | AAAACGTTTC               |
|--------------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------------|------------|--------------------------|
| ACGGCTGTAC                                       | CCGTAGTCGT               | CCCCCGCTTC               | TTGAGTGGGT               | AATCCCTTTA                     | ATACACATCT | TTTTGCAAAG               |
| TTAAGCATTC                                       | AATCGCCAGC               | TAGTGAAAAC               | AAACTGGTGA               | AATAAACCCT                     | CTTGCGAATA | CAGAGCGATG               |
| AATTCGTAAG                                       | TTAGCGGTCG               | ATCACTTTTG               | TTTGACCACT               | TTATTTGGGA                     | GAACGCTTAT | GTCTCGCTAC               |
| TTGTAATTCA                                       | GATGAACCTG<br>CTACTTGGAC | TATTTGCCCA<br>ATAAACGGGT | GTTTAAATCA<br>CAAATTTAGT | ACATATTCTC<br>TGTATAAGAG       | CACGCCACAT | GTATTCACTC<br>CATAAGTGAG |
| CGCAGTACTG TTGT                                  | CAAACGGCAT               | TTGCGTATAA               | TATTGGCTAC               | GAGACGAAAA                     | TTCACCGTAA | AATCGTCGTG               |
|                                                  | GTTTGCCGTA               | AACGCATATT               | ATAACCGATG               | CTCTGCTTTT                     | AAGTGGCATT | TTAGCAGCAC               |
| Figure 35a: Functional maps and sequences of auc | GAAGCCATCA               | CCTTGTCGCC               | AAGTTGTCCA               | GGGATTGGCT                     | AGGCCAGGTT | AACTGCCGGA               |
| 1351 TGCCACTCAT ACGGTGAGTA                       | CTTCGGTAGT               | GGAACAGCGG               | TTCAACAGGT               | CCCTAACCGA                     |            | TTGACGGCCT               |
| Figure 35a: Functional                           | 1401                     | 1451                     | 1201<br>1501             | TSST<br>UTE SHEET<br>168 / 204 | (RULE 26)  | 1651                     |

|                                                                                                          | ζ                                     |
|----------------------------------------------------------------------------------------------------------|---------------------------------------|
|                                                                                                          | C C C C C C C C C C C C C C C C C C C |
|                                                                                                          | ť                                     |
| _                                                                                                        | ζ                                     |
| peq                                                                                                      | Ę                                     |
| <u>Ξ</u>                                                                                                 |                                       |
| Ö                                                                                                        | •                                     |
| S<br>S                                                                                                   | ۴                                     |
| ğ                                                                                                        | 7                                     |
| Š                                                                                                        | Ì                                     |
| Ä                                                                                                        | 6                                     |
| ပ္ရ                                                                                                      | t                                     |
| p                                                                                                        | į                                     |
| Sa                                                                                                       | (                                     |
| 품                                                                                                        | (                                     |
| ρo                                                                                                       | 1                                     |
| <u>-</u>                                                                                                 | i                                     |
| S.                                                                                                       | 1                                     |
| Š                                                                                                        |                                       |
| 3                                                                                                        |                                       |
| ā                                                                                                        |                                       |
| na                                                                                                       |                                       |
| ij                                                                                                       |                                       |
| ğ                                                                                                        |                                       |
| of 8                                                                                                     |                                       |
| S                                                                                                        |                                       |
| in C                                                                                                     |                                       |
| ğ                                                                                                        |                                       |
| Se                                                                                                       |                                       |
| and                                                                                                      |                                       |
| S                                                                                                        |                                       |
| ma                                                                                                       |                                       |
| -E                                                                                                       |                                       |
| Ö                                                                                                        |                                       |
| nct                                                                                                      |                                       |
| Ē                                                                                                        |                                       |
| 53.                                                                                                      | ,                                     |
| 2                                                                                                        | ,                                     |
| =                                                                                                        |                                       |
| Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) |                                       |
|                                                                                                          |                                       |

| AGCATTCATC<br>TCGTAAGTAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GCTTATTTT<br>CGAATAAAAA  | GTCTGGTTAT<br>CAGACCAATA | TTTACGATGC<br>AAATGCTACG | TCTCCATTTT<br>AGAGGTAAAA | ACGCCCGGTA<br>TGCGGGCCAT | Aatii<br>~~~~~~<br>GACGTCTAAT<br>CTGCAGATTA | TTATGCTTCC |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------------------------|------------|
| ACTCCGGGTG 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TAAAACTTGT (ATTTTGAACA)  | CAGCTGAACG               | CAAAATGTTC<br>GTTTTACAAG | GTGATTTTT<br>CACTAAAAAA  | CTCAAAAAAT<br>GAGTTTTTTA | AACCTCACCC<br>TTGGAGTGGG                    | GCTTTACACT |
| · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AAAGGCCGGA<br>TTTCCGGCCT | CCGTAATATC<br>GGCATTATAG | TGAAATGCCT<br>ACTTTACGGA | GGTATATCCA<br>CCATATAGGT | ATCTCGATAA<br>TAGAGCTATT | TGAAAGTTGG<br>ACTTTCAACC                    | GGCACCCCAG |
| GTCTTTCATT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GAATGTGAAT<br>CTTACACTTA | TTTAAAAAGG<br>AAATTTTTCC | AGCAACTGAC<br>TCGTTGACTG | TATCAACGGT<br>ATAGTTGCCA | GCTCCTGAAA<br>CGAGGACTTT | TTCATTATGG                                  | TCACTCATTA |
| ure 35a: Functional maps and sequences of additional pCAL vector incuries and pCAL vector incuries and pCAL vector incuries and pCAL vector. COABLA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CABARGA CA | AGGCGGGCAA<br>TCCGCCCGTT | CTTTACGGTC<br>GAAATGCCAG | AGGTACATTG               | CATTGGGATA<br>GTAACCCTAT | AGCTTCCTTA<br>TCGAAGGAAT | GTGATCTTAT                                  | GTGAGTTAGC |
| jure 35a: Functional<br>1751                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1801                     | 1851                     | SUBSTIL                  | TESHEET 1921             | T 0 0 2 (RULE 26)        | 2051                                        | 2101       |

CACTCAATCG AGTGAGTAAT CCGTGGGGTC CGAAATGTGA AATACGAAGG Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

CCGAGCATAC AACACCTT AACACTCGCC TATTGTTAAA GTGTGTCCTT TIGIGIGAA TIGIGAGCGG ATAACAATIT CACACAGGAA GGCTCGTATG 2151

~~~~~ SphI ~~~~~~ XbaI

CGCATGCCAT GCGTACGGTA CTTAAAGATC TGGGGGGGGG ACAGCTATGA CCATGATTAC GAATTTCTAG ACCCCCCCC GGTACTAATG TGTCGATACT 2201

CCTGTGAAGT AACTTCGTAT AATGTACGCT ATACGAAGTT ATAAGCTTGA 2251

170 / 204

HindIII

GTTTAATTAA GGACACTTCA 122222 PacI TTACATGCGA TATGCTTCAA TATTCGAACT CGACATTTT TTTGTCTGCC GAAAAATGGC GCAGATTGTG TTGAAGCATA 2301 SUBSTITUTE SHEET (RULE 26)

CAAATTAATT GCTGTAAAA AAACAGACGG CTTTTTACCG CGTCTAACAC FseI

AGGAAACTAG GGGGGGGC CGGCCATTAT CAAAAGGAT CTCAAGAAGA TCCTTTGATC GAGTTCTTCT GTTTTTCCTA GCCGGTAATA 500000000 2351

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| GTTAAGGGAT | CTTTTAAATT | AACTTGGTCT | GCGATCTGTC | GATAACTACG | TACCGCGAGA | CCAGCCGGAA | CATCCAGTCT |
|--------------------------------------|-----------------------|--------------|------------|--------------------------|--------------------------|------------|--------------------------|
| CAATTCCCTA | GAAAATTTAA | TTGAACCAGA | CGCTAGACAG | CTATTGATGC | ATGGCGCTCT | GGTCGGCCTT | GTAGGTCAGA |
| GAAAACTCAC | CACCTAGATC | TATATGAGTA | ACCTATCTCA | CCGTCGTGTA | GCTGCAATGA | AATAAACCAG | TATCCGCCTC |
| CTTTTGAGTG | GTGGATCTAG | ATATACTCAT | TGGATAGAGT | GGCAGCACAT | CGACGTTACT | TTATTTGGTC | ATAGGCGGAG |
| TCAGTGGAAC | AAAGGATCTT | ATCTAAAGTA | TCAGTGAGGC | GCCTGACTCC | TGGCCCCAGT | ATTTATCAGC | CCTGCAACTT |
| AGTCACCTTG | TTTCCTAGAA | TAGATTTCAT | AGTCACTCCG | CGGACTGAGG | | TAAATAGTCG | GGACGTTGAA |
| GGTCTGACGC C | AGATTATCAA | TTTTAAATCA | CAATGCTTAA | ATCCATAGTT | GCTTACCATC | CCGGCTCCAG | CAGAAGTGGT |
| | TCTAATAGTT | AAAATTTAGT | GTTACGAATT | TAGGTATCAA | CGAATGGTAG | GGCCGAGGTC | GTCTTCACCA |
| TTTTCTACGG CAAAAGATGCC | TTTGGTCATG AAACCAGTAC | AAAAATGAAG ' | GACAGTTACC | TATTTCGTTC
ATAAAGCAAG | ATACGGGAGG
TATGCCCTCC | CCCACGCTCA | GGGCCGAGCG
CCCGGCTCGC |
| 2401 | 2451 | 2501 | 2551 | 2601 | 2651 | 2701 | 2751 |
| SUBSTITUTE SHEET (RULE 26) 171 / 204 | | | | | | | |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| TTAATAGTTT
AATTATCAAA | CGCTCGTCGT
GCGAGCAGCA | GCGAGTTACA
CGCTCAATGT | GTCCTCCGAT
CAGGAGGCTA | GTTATGGCAG
CAATACCGTC | CTTTTCTGTG
GAAAAGACAC | TGCGGCGACC
ACGCCGCTGG | CCACATAGCA
GGTGTATCGT |
|--------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| AGTTCGCCAG
TCAAGCGGTC | CGTGGTGTCA
GCACCACAGT | AACGATCAAG
TTGCTAGTTC | AGCTCCTTCG
TCGAGGAAGC | ATCACTCATG
TAGTGAGTAC | CCGTAAGATG
GGCATTCTAC | GAATAGTGTA
CTTATCACAT | TAATACCGCG
ATTATGGCGC |
| TAGAGTAAGT
ATCTCATTCA | CTACAGGCAT
GATGTCCGTA | TCCGGTTCCC
AGGCCAAGGG | AAAAGCGGTT
TTTTCGCCAA | CCGCAGTGTT
GGCGTCACAA | GTCATGCCAT
CAGTACGGTA | GTCATTCTGA
CAGTAAGACT | CAATACGGGA
GTTATGCCCT |
| GCCGGGAAGC | GTTGCCATTG | TTCATTCAGC
AAGTAAGTCG | TGTTGTGCAA
ACAACACGTT | AGTAAGTTGG
TCATTCAACC | TTCTCTTACT
AAGAGAATGA | ACTCAACCAA
TGAGTTGGTT | TGCCCGGCGT
ACGGGCCGCA |
| ATTAACTGTT G
TAATTGACAA | GCGCAACGTT C | TTGGTATGGC | TGATCCCCCA ACTAGGGGGGT | CGTTGTCAGA | CACTGCATAA
GTGACGTATT | ACTGGTGAGT
TGACCACTCA | GAGTTGCTCT |
| 2801 | 2851 | 2901 | 2951 | 3001 | 3051 | 3101 | 3151 |
| SUBSTITUTE SHEET (RULE 20) 172 / 204 | | | | | | | |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

XmnI

| CTC | 909;
3000 | GAG | 1000
1000 | LTTA
AAAT | | |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------|------------|
| GCGAAAACTC
CGCTTTTGAG | CCACTCGCGC
GGTGAGCGCG | TCTGGGTGAG
AGACCCACTC | GGCGACACGG
CCGCTGTGCC | GAAGCATTTA
CTTCGTAAAT | | |
| GTTCTTCGGG | TCGATGTAAC | CACCAGCGTT | AGGGAATAAG | CAATATTATT | BsrGI | ATTTGAAT |
| CAAGAAGCCC | AGCTACATTG | GTGGTCGCAA | TCCCTTATTC | GTTATAATAA | | TAAACTTA |
| ATTGGAAAAC | GAGATCCAGT | CTTTTACTTT | GCCGCAAAAA | CTTCCTTTTT | | GCGGATACAT |
| TAACCTTTTG | CTCTAGGTCA | GAAAATGAAA | CGGCGTTTTT | GAAGGAAAAA | | CGCCTATGTA |
| AGTGCTCATC | TACCGCTGTT | TCCTCAGCAT | AAGGCAAAAT | AAATGTTGAA TACTCATACT | | TGTCTCATGA |
| TCACGAGTAG | ATGGCGACAA | AGGAGTCGTA | TTCCGTTTTA | TTTACAACTT ATGAGTATGA | | ACAGAGTACT |
| GAACTTTAAA | TCAAGGATCT | ACCCAACTGA | CAAAAACAGG | AAATGTTGAA | | TCAGGGTTAT |
| CTTGAAATTT | AGTTCCTAGA | TGGGTTGACT | GTTTTTGTCC | TTTACAACTT | | AGTCCCAATA |
| 3201 | 3251 | 3301 | 3351 | 3401 | | 3451 |
| | | SUBSTIT | UTE SHEET
173 / 204 | (RULE 26) | | |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

SUBSTITUTE SHEET (RULE 26) 174 / 204

PacI

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| AatII | GACGTCTAAT
CTGCAGATTA | TTATGCTTCC
AATACGAAGG | CACACAGGAA
GTGTGTCCTT | Sphi
ccargccar
gcgracggra | CCTGTGAAGT
GGACACTTCA |
|---------------|--------------------------|---------------------------|--------------------------|---------------------------------|--|
| | ACGAAGTTAT
TGCTTCAATA | GCTTTACACT
CGAAATGTGA | ATAACAATTT
TATTGTTAAA | ACCCCCCCC
TGGGGGGGGG | |
| | TGTATGCTAT
ACATACGATA | GGCACCCCAG
CCGTGGGGGTC | TTGTGAGCGG | XbaI ~~~~~CAATTTCTAG A | |
| | CTTCGTATAA
GAAGCATATT | TCACTCATTA
AGTGAGTAAT | TTGTGTGGAA | CCATGATTAC | |
|)-3:
BglII | GATCTCATAA
CTAGAGTATT | GTGAGTTAGC | GGCTCGTATG
CCGAGCATAC | ACAGCTATGA | TGTCGATACT
AACTTCGTAT
TTGAAGCATA |
| pCALO-3: | Н | 51 | 101 | 151 | 201 |

TATITICGITC ATCCATAGIT GCCTGACTCC CCGTCGTGTA GATAACTACG ATAAAGCAAG TAGGTATCAA CGGACTGAGG GGCAGCACAT CTATTGATGC

551

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| GTTTAATTAA | CHITITIACCG CGICTAACAC GCIGTAAAAA AAACAGACGG CAAATTAATT |
|--------------------------------------|---|
| TTTGTCTGCC | AAACAGACGG |
| CGACATTTTT | GCTGTAAAAA |
| CCAGATTGTG | CGTCTAACAC |
|)
)
)
)
)
)
)
) | CTTTTTACCG |
| | 727 |

FseI

| TCCTTTGATC | GTTAAGGGAT | CTTTTAAATT | AACTTGGTCT | GCGATCTGTC |
|----------------------|-----------------------|--------------|----------------------|-----------------------|
| AGGAAACTAG | CAATTCCCTA | GAAAATTTAA | TTGAACCAGA | CGCTAGACAG |
| TCC1
AGG2 | GTTZ | CTT.
GAA | | |
| CTCAAGAAGA | GAAACTCAC | CACCTAGATC | TATATGAGTA | ACCTATCTCA |
| GAGTTCTTCT | CTTTTGAGTG | GTGGATCTAG | ATATACTCAT | TGGATAGAGT |
| CAAAAAGGAT | | AAAGGATCTT | ATCTAAAGTA | TCAGTGAGGC |
| GTTTTTCCTA | | TTTCCTAGAA | TAGATTTCAT | AGTCACTCCG |
| | GGTCTGACGC TCAGTGGAAC | AGATTATCAA | TTTTAAATCA | GACAGTTACC CAATGCTTAA |
| | CCAGACTGCG AGTCACCTTG | TCTAATAGTT | AAAATTTAGT | CTGTCAATGG GTTACGAATT |
| GGGGGGGC CGGCCATTAT | TTTTCTACGG | TTTGGTCATG | AAAAATGAAG | GACAGTTACC |
| CCCCCCCCG GCCGGTAATA | AAAAGATGCC | AAACCAGTAC | TTTTTACTTC | CTGTCAATGG |
| 301 | 351 | 401 | 451 | 501 |
| | CHECT | ITI ITE QUES | T (P!# F 90) | |

SUBSTITUTE SHEET (RULE 20)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| ATGCAAAAGC
TACGTTTTCG | AGTCTTGAAG
TCAGAACTTC | GTGACTGCGC
CACTGACGCG | CAGAGAACCT
GTCTCTTGGA | GCAAGAGATT
CGTTCTCTAA | BglII | | 555555555555555555555555555555555555555 |
|----------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-----------|--------------------------|---|
| CCGGAAAGAC 1
GGCCTTTCTG | TAGAGGAGTT
ATCTCCTCAA | ACAAGTTTTA
TGTTCAAAAT | GTTGGTAGCT
CAACCATCGA | CGTTTTCAGA
GCAAAAGTCT | 1 | CATCTTATTA GTAGAATAAT | г дадададтта
А ттттттадт |
| TGAGTCCAAC | GTAATTGATT
CATTAACTAA | AACTGAAAGG
TTGACTTTCC | GGTTCAAAGA
CCAAGTTTCT | GCGGTTTTTT
CGCCAAAAAA | | TCAAGAAGAT | TAACTGCCTT
PATTGACGGAA |
| ACTATCGTCT ' | | GTTAAGGCTA
CAATTCCGAT | CAGTTACCTC
GTCAATGGAG | GCCCTGCAAG
CGGGACGTTC | | CAAAACGATC
GTTTTGCTAG | AGGGCACCAA
TCCCGTGGTT |
| · _ | ACCACTGGCA C | | TCCTCCAAGC | ACGAAAAACC
TGCTTTTTGG | | ACGCGCAGAC | CAGGCGTTTA
GTCCGCAAAT |
| 1001 | 1051 | 1101 | 1151 | 1201 | (DINES | 1251 | 1301 |
| | | | SUESIII | UTE SHEET
167 / 204 | (i) ULL 4 | | |

AAATGTTGAA TACTCATACT CTTCCTTTTT CAATATTATT GAAGCATTTA

GTTTTTGTCC TTCCGTTTTA CGGCGTTTTT TCCCTTATTC CCGCTGTGCC

CAAAAACAGG AAGGCAAAAT

1301

ACCCAACTGA TCCTCAGCAT CTTTTACTTT CACCAGCGTT TCTGGGTGAG TGGGTTGACT AGGAGTCGTA GAAAATGAAA GTGGTCGCAA AGACCCACTC GCCGCAAAAA AGGGAATAAG GGCGACACGG TAACCTTTTG CAAGAAGCCC CGCTTTTGAG TCAAGGATCT TACCGCTGTT GAGATCCAGT TCGATGTAAC CCACTCGCGC GCGAAAACTC GGTGTATCGT CCACATAGCA ACGCCGCTGG GAAAAGACAC TGCGGCGACC CTTTTCTGTG AGTTCCTAGA ATGGCGACAA CTCTAGGTCA AGCTACATTG ATTGGAAAAC GTTCTTCGGG CTCAACGAGA ACGGGCCGCA GTTATGCCCT ATTATGGCGC GAGTIGCTCT TGCCCGGCGT CAATACGGGA TAATACCGCG GTCATTCTGA GAATAGTGTA CTTATCACAT CCGTAAGATG GTGACGTATT AAGAGAATGA CAGTACGGTA GGCATTCTAC Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) XmnI TGACCACTCA TGAGTTGGTT CAGTAAGACT CACTGCATAA TTCTCTTACT GTCATGCCAT CTTGAAATTT TCACGAGTAG GAACTTTAAA AGTGCTCATC ACTGGTGAGT ACTCAACCAA 1251 1201 1151 1101 1051 1001 EET (RULE 26) SUBSTITUTE 178 / 204

BanII ~~~~~

AGTCCCGCTA

TITACAACTT ATGAGTATGA GAAGGAAAAA GTTATAATAA CTTCGTAAAT Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

BsrGI

TCAGGGCGAT GGCCCACTAC GAGAACCATC ACCCTAATCA AGTTTTTGG CCGGGTGATG CTCTTGGTAG TGGGATTAGT TCAAAAAACC TCTTGCACCT GAGGTTGCAG TTTCCCGCTT TTTGGCAGAT AAAGGGCGAA AAACCGTCTA CTCATTTTT AACCAATAGG CCGAAATCGG CAAAATCCCT TATAAATCAA GAACAAGAGT CTTGTTCTCA GTTTTAGGGA ATATTTAGTT CAATTTAGTC GTTAAATCAG GCGGATACAT ATTTGAATGT ACATGAAATT TAAACTTACA TGTACTTTAA GCTCTATCCC AACTCACAAC AAGGTCAAAC AAGAATAGAC CGAGATAGGG TTGAGTGTTG TTCCAGTTTG CATITICCAAT TATAAACAA TITITAAGCGC AATITAAAAA TTAAATTTTT CCACTATTAA AGAACGTGGA CTCCAACGTC GGCTTTAGCC GTAAACGTTA ATATTTTGTT AAAATTCGCG AGTCCCAATA ACAGAGTACT CGCCTATGTA GAGTAAAAA TTGGTTATCC TCAGGGTTAT TGTCTCATGA GGTGATAATT TTCTTATCTG 1651 1551 1601 1501 1401 1451 SUBSTITUTE SHEET (RULE 26)

CAGAATATGT GATACAGGAT ATATTCCGCT TCCTCGCTCA CTGACTCGCT GTCTTATACA CTATGTCCTA TATAAGGCGA AGGAGCGAGT GACTGAGCGA

2001

1951

AGTGAAGTGC TTCATGTGGC AGGAGAAAAA AGGCTGCACC GGTGCGTCAG TCACTTCACG AAGTACACCG TCCTCTTTTT TCCGACGTGG CCACGCAGTC

| CTCGGGGGCT | AGGAAGGGAA
TCCTTCCCTT | GCGGTCACGC
CGCCAGTGCG | ACAGGGCGCG
TGTCCCGCGC | TTGGCACTGA TGAGGGTGTC
AACCGTGACT ACTCCCACAG | AgeI |
|--|---|--|---|--|-----------|
| TGGGATTTCC | GTGGCGAGAA
CACCGCTCTT | GGCAAGTGTA
CCGTTCACAT | ATGCGCCGCT
_TACGCGGCGA | | Aç
~~~ |
| CCGTAAAGCA CTAAAICGGA TICCO TCGGGGGCT GGCATTTCC CTCGGGGGCT | GACGGGGAAA GCCGGCGAAC GTGGCGAGAA AGGAAGGGAA | CTAGGGCGCT GGCAAGTGTA GCGGTCACGC
GATCCCGCGA CCGTTCACAT CGCCAGTGCG | TGCGCGTAAC CACCACACCC GCCGCGTTA ATGCGCCGCT
ACGCGCATTG GTGGTGTGGG CGGCGCGAAT TACGCGGCGA | GCTTACTATG
CGAATGATAC | |
| CCGTAAAGCA
GGCATTTCGT | GACGGGGAAA
CTGCCCCTTT | GGAGCGGGCG
CCTCGCCCGC | TGCGCGTAAC CACCACACCC
ACGCGCATTG GTGGTGTGGG | GTGTATACTG
CACATATGAC | |
| GGTCGAGGTG | TTTAGAGCTT | GAAAGCGAAA GGAGCGGGCG | TGCGCGTAAC | NheI
~~~~~~
TGCTAGCGGA
ACGATCGCCT | XmnI |
| 1701 | 1751 | 1801 | 1851 | 1901 | |
| | | | SUBSTIT | TUTE SHEET (RULE :
180 / 204 | 26) |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| | | | | | • | |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--|--------------------------|
| GAACGGGGCG
CTTGCCCCGC | AGTGAGAGGG
TCACTCTCCC | CAAGCATCAC
GTTCGTAGTG | GACTATAAAG
CTGATATTTC | CCTGTTCCTG
GGACAAGGAC | TTTGTCTCAT | AAGCTGGACT; TTCGACCTGA |
| AATGGCTTAC
TTACCGAATG | TTAACAGGGA
AATTGTCCCT | GCCCCCTGA
CGGGGGGACT | AACCCGACAG
TTGGGCTGTC | CCTGCGCTCT
GGACGCGAGA | TATGGCCGCG | AGTTCGCTCC |
| GGCGAGCGGA | AGGAAGATAC
TCCTTCTATG | CATAGGCTCC
GTATCCGAGG | GTGGTGGCGA | GCGGCTCCCT
CGCCGAGGGA | ATTCCGCTGT [°]
TAAGGCGACA | CCGGGTAGGC |
| GTTCGACTGC (CAAGCTGACG | GGAAGATGCC | GCCGTTTTTC
CGGCAAAAAG | GCTCAAATCA
CGAGTTTAGT | TTTCCCCCTG | AgeI
~~~~~~
TACCGGTGTC
ATGGCCACAG | ACACTCAGTT
TGTGAGTCAA |
| ACGCTCGGTC (| GAGATTTCCT
CTCTAAAGGA | CCGCGGCAAA | GAAATCTGAC
CTTTAGACTG | ATACCAGGCG
TATGGTCCGC | CCTTTCGGTT
GGAAAGCCAA | TCCACGCCTG
AGGTGCGGAC |
| 2051 | 2101 | 2151 | 2201 | 2251 | 2301 | 2351 |
| | | | SUBSTITU | TE SHEET (RU | jle 40) | |

ATCCGGTAAC CAGTCCGACC GCTGCGCCTT Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) GTATGCACGA ACCCCCCGTT

CGACGCGGAA TAGGCCATTG CATACGTGCT TGGGGGGCAA GTCAGGCTGG

CACTGGCAGC GTGACCGTCG CGTTTTCGTG GCAAAAGCAC TATCGTCTTG AGTCCAACCC GGAAAGACAT

ATGCGCCGGT AGAACTTCAG TACGCGGCCA TCTTGAAGTC ATAGCAGAAC TCAGGTTGGG CCTTTCTGTA AGCCACTGGT AATTGATTTA GAGGAGTTAG 2501 2451

CTCCTCAATC TCGGTGACCA TTAACTAAAT

CTGACGCGAG GAGGTTCGGT AAGTTTTAGT GACTGCGCTC CTCCAAGCCA TTCAAAATCA ATTCCGATTT GACTTTCCTG TAAGGCTAAA CTGAAAGGAC

2551

2601

182 / 204

CAATGGAGCC AAGTTTCTCA ACCATCGAGT CTCTTGGATG TTCAAAGAGT TGGTAGCTCA GAGAACCTAC GTTACCTCGG

CTTTTTGGCG

GAAAAACCGC

AAAAGTCTCG TTCTCTAATG CGCGTCTGGT GCGCAGACCA TTTTCAGAGC AAGAGATTAC GGTTTTTCG CCAAAAAAGC GGACGTTCCG CCTGCAAGGC 2651 SUBSTITUTE SHEET (MULE 26)

TCTTATTA AGAATAAT TTCTTCTAGT AAACGATCTC AAGAAGATCA TTTGCTAGAG 2701

PCT/EP96/03647 WO 97/08320

Figure 35b: List of oligonucleotides used for synthesis of modules

M1: PCR using template

NoVspAatII: TAGACGTC

M2: synthesis

BloxA-A: TATGAGATCTCATAACTTCGTATAATGTACGCTATACG-

AAGTTAT

BloxA-B: TAATAACTTCGTATAGCATACATTATACGAAGTTATG-

AGATCTCA

M3: PCR, NoVspAatII as second oligo

XloxS-muta: CATTTTTGCCCTCGTTATCTACGCATGCGATAACTTCGTA-TAGCGTACATTATACGAAGTTATTCTAGACATGGTCATAGCTGTTTCCTG

M7-I: PCR

gIIINEW-fow: GGGGGGAATTCGGTGGTGGTGGATCTGCGTGCGCTG-

AAACGGTTGAAAGTTG

gIIINEW-rev: CCCCCCAAGCTTATCAAGACTCCTTATTACG

M7-II: PCR

glllss-fow: GGGGGGGAATTCGGAGGCGGTTCCGGTGGTGGC

M7-III: PCR

glllsupernew-fow: GGGGGGGGAATTCGAGCAGAAGCTGATCTCT-

GAGGAGGATCTGTAGGGTGGTGGCTCTGGTTCCGGTGATTTTG

SUBSTITUTE SHEET (AULE 26)

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

M8: synthesis

lox514-A: CCATAACTTCGTATAATGTACGCTATACGAAGTTATA

lox514-B: AGCTTATAACTTCGTATAGCGTACATTATACGAAGT-

TATGGCATG

M9II: synthesis

M9II-fow: AGCTTGACCTGTGAAGTGAAAAATGGCGCAGATT-

M9II-rev: GTACACCCCCCCCAGGCCGGCCCCCCCCCCTTTAA-

TTAAACGGCAGACAAAAAAAAATGTCGCACAATCTGCG

M10II: assembly PCR with template

bla-fow: GGGGGGGTGTACATTCAAATATGTATCCGCTCATG

bla-seq4: GGGTTACATCGAACTGGATCTC

bla1-muta: CCAGTTCGATGTAACCCACTCGCGCACCCAACTGATC-

CTCAGCATCTTTTACTTTCACC

blall-muta: ACTCTAGCTTCCCGGCAACAGTTAATAGACTGGATG-

GAGGCGG

bla-NEW: CTGTTGCCGGGAAGCTAGAGTAAG

bla-rev: CCCCCCTTAATTAAGGGGGGGGGCCGGCCATTATCAAA-

AAGGATCTCAAGAAGATCC

M11II/III: PCR, site-directed mutagenesis

SUBSTITUTE SHEET (NULE 26) 184 / 204

PCT/EP96/03647 WO 97/08320

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

f1-fow: GGGGGGGCTAGCACGCCCCTGTAGCGGCGCATTAA

f1-rev: CCCCCCTGTACATGAAATTGTAAACGTTAATATTTTG

f1-t133.muta: GGGCGATGGCCCACTACGAGAACCATCACCCTAATC

M12: assembly PCR using template

p15-fow: GGGGGGAGATCTAATAAGATGATCTTCTTGAG

p15-NEWI: GAGTTGGTAGCTCAGAGAACCTACGAAAAACCGCCCTG-

CAAGGCG

p15-NEWII: GTAGGTTCTCTGAGCTACCAACTC

p15-NEWIII: GTTTCCCCCTGGCGGCTCCCTCCTGCGCTCTCCTGTTCCT-

GCC

p15-NEWIV: AGGAGGGAGCCGCCAGGGGGAAAC

p15-rev: GACATCAGCGCTAGCGGAGTGTATAC

M13: synthesis

BloxXB-A: GATCTCATAACTTCGTATAATGTATGCTATACGAAGTTA-

TTCA

BloxXB-B: GATCTGAATAACTTCGTATAGCATACATTATACGAAGTTA-

TGAGA

M14-Ext2: PCR, site-directed mutagenesis

ColEXT2-fow: GGGGGGGAGATCTGACCAAAATCCCTTAACGTGAG

Col-mutal: GGTATCTGCGCTCTGCTGTAGCCAGTTACCTTCGG

SUBSTITUTE SHEET (RULE 28)

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

Col-rev: CCCCCCGCTAGCCATGTGAGCAAAAGGCCAGCAA

M17: assembly PCR using template

CAT-1: GGGACGTCGGGTGAGGTTCCAAC

CAT-2: CCATACGGAACTCCGGGTGAGCATTCATC

CAT-3: CCGGAGTTCCGTATGG

CAT-4: ACGTTTAAATCAAAACTGG

CAT-5: CCAGTTTTGATTTAAACGTAGCCAATATGGACAACTTCTTC-

GCCCCGTTTTCACTATGGGCAAATATT

CAT-6: GGAAGATCTAGCACCAGGCGTTTAAG

M41: assembly PCR using template

LAC1: GAGGCCGGCCATCGAATGGCGCAAAAC

LAC2: CGCGTACCGTCCTCATGGGAGAAAATAATAC

LAC3: CCATGAGGACGGTACGCGACTGGGCGTGGAGCATCTGGTCGCA-

TTGGGTCACCAGCAAATCCGCTGTTAGCTGGCCCATTAAG

LAC4: GTCAGCGGCGGGATATAACATGAGCTGTCCTCGGTATCGTCG

LAC5: GTTATATCCCGCCGCTGACCACCATCAAAC

LAC6: CATCAGTGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGT4TTG-

GGAGCCAGGGTGGTTTTTC

LAC7: GGTTAATTAACCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCC-

AGCTGCATCAGTGAATCGGCCAAC

M41-MCS-fow: CTAGACTAGTGTTTAAACCGGACCGGGGGGGGGCTT-

AAGGGGGGGGGGG

SUBSTITUTE SHEET (RULE 26)

PCT/EP96/03647 WO 97/08320

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

M41-MCS-rev: CTAGCCCCCCCCCCCCTTAAGCCCCCCCCGGTCCGGT-

TTAAACACTAGT

M41-fow: CTAGACTAGTGTTTAAACCGGACCGGGGGGGGGGCTTAA-

GGGGGGGGGGG

M41-rev: CCCCCCTTAAGTGGGCTGCAAAACAAACGGCCTCC-

TGTCAGGAAGCCGCTTTTATCGGGTAGCCTCACTGCCCGCTTTCC

M41-A2: GTTGTTGTGCCACGCGGTTAGGAATGTAATTCAGCTCCGC

M41-B1: AACCGCGTGGCACAACAAC

M41-B2: CTTCGTTCTACCATCGACACGACCACGCTGGCACCCAGTTG

M41-C1: GTGTCGATGGTAGAACGAAG

M41-CII: CCACAGCAATAGCATCCTGGTCATCCAGCGGATAGTT-

AATAATCAGCCCACTGACACGTTGCGCGAG

M41-DI: GACCAGGATGCTATTGCTGTGG

M41-DII: CAGCGCGATTTGCTGGTGGCCCAATGCGACCAGATGC

M41-EI: CACCAGCAAATCGCGCTG

M41-EII: CCCGGACTCGGTAATGGCACGCATTGCGCCCAGCGCC

M41-FI: GCCATTACCGAGTCCGGG

M42: synthesis

Eco-H5-Hind-fow: AATTCCACCATCACCATTGACGTCTA

Eco-H5-Hind-rev: AGCTTAGACGTCAATGGTGATGATGGTGG

Figure 36: functional map and sequence of ß-lactamase-MCS module

Figure 36: functional map and sequence of B-lactamase-MCS module (continued)

| | | | BsiwI NspV | GTACGTTCGA
CATGCAAGCT | | | TCAAAAAGGA
AGTTTTTCCT | CTCAGTGGAA
GAGTCACCTT | AAAAGGATCT
TTTTCCTAGA |
|------|--------|-------------|----------------------------|--|------|-----------|---|--|---|
| StyI | Psp5II | Eco01091 | }
}
}
}
}
} | | | FSeI | CCGCCCATTA | GGGTCTGACG
CCCAGACTGC | GAGATTATCA
CTCTAATAGT |
| • | | BstXI | I MscI | AAGCCCCTGG CCAAGGTCCC
TTCGGGGACC GGTTCCAGGG | | | GGATC CGGTACCAGG
CCTAG GCCATGGTCC | CTTTTCTACG
GAAAAGATGC | TTTTGGTCAT
AAAACCAGTA |
| | | I98 | ~~
BstEI | TCAGGTGACC | PmlI | BamHI | CACGTGGATC
GTGCACCTAG | TCTCAAGAAG ATCCTTTGAT
AGAGTTCTTC TAGGAAACTA | CGAAAACTCA CGTTAAGGGA.
GCTTTTGAGT GCAATTCCCT |
| | | MluI Bsu36I | .~
HpaI | ງ
ປຸງ
ປຸງ | | NspVBsaBI | AGATTACCAT CACGTGGATC TCTAATGGTA GTGCACCTAG | TCTCAAGAAG
AGAGTTCTTC | CGAAAACTCA
GCTTTTGAGT |
| | | | | 126 | | | 176 | 226 | 276 |

SUBSTITUTE SHEET (RULE 26) 189 / 204

Figure 36: functional map and sequence of 8-lactamase-MCS module (continued)

| TAGAGTAAGT ATCTCATTCA CTACAGGCAT | GCCGGGAAGC
CGGCCCTTCG
GTTGCCATTG | ATTAACTGTT
TAATTGACAA
GCGCAACGTT
CGCGTTGCAA | CATCCAGTCT
GTAGGTCAGA
TTAATAGTTT
AATTATCAAA | | 626 |
|----------------------------------|--|--|--|--------------------------|-----|
| CCTGCAACTT
GGACGTTGAA | CAGAAGTGGT
GTCTTCACCA | GGGCCGAGCG | CCAGCCGGAA
GGTCGGCCTT | AATAAACCAG
TTATTTGGTC | 576 |
| ATTTATCAGC
TAAATAGTCG | CCGGCTCCAG
GGCCGAGGTC | CCCACGCTCA
GGGTGCGAGT | TACCGCGAGA
ATGGCGCTCT | GCTGCAATGA | 526 |
| TGGCCCCCAGT
ACCGGGGGTCA | GCTTACCATC
CGAATGGTAG | ATACGGGAGG
TATGCCCTCC | GATAACTACG
CTATTGATGC | CCGTCGTGTA
GGCAGCACAT | 476 |
| GCCTGACTCC
CGGACTGAGG | ATCCATAGTT
TAGGTATCAA | TATTTCGTTC
ATAAAGCAAG | GCGATCTGTC | ACCTATCTCA
TGGATAGAGT | 426 |
| TCAGTGAGGC
AGTCACTCCG | CAATGCTTAA
GTTACGAATT | TGACAGTTAC
ACTGTCAATG | AAACTTGGTC ' | ATATATGAGT
TATATACTCA | 376 |
| AATCTAAAGT
TTAGATTTCA | GTTTTAAATC
CAAAATTTAG | TAAAAATGAA (
ATTTTTACTT (| CCTTTTAAAT
GGAAAATTTA | TCACCTAGAT (A AGTGGATCTA | 326 |

SUBSTITUTE SHEET (RULE 26)

Figure 36: functional map and sequence of B-lactamase-MCS module (continued)

| | TCCGGTTCCC
AGGCCAAGGG | AAAAGCGGTT
TTTTCGCCAA | CCGCAGTGTT
GGCGTCACAA | GTCATGCCAT
CAGTACGGTA | GTCATTCTGA
CAGTAAGACT | CAATACGGGA
GTTATGCCCT | ATTGGAAAAC
TAACCTTTTG | GAGATCCAGT
CTCTAGGTCA |
|------------------|-------------------------------|------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|----------------------------|
| | _ | • | | _ | _ | | | |
| | TTCATTCAGC
AAGTAAGTCG | TGTTGTGCAA
ACAACACGTT | AGTAAGTTGG
TCATTCAACC | TTCTCTTACT
AAGAGAATGA | ACTCAACCAA
TGAGTTGGTT | TGCCCGGCGT
ACGGGCCGCA | AGTGCTCATC
TCACGAGTAG | TACCGCTGTT
. ATGGCGACAA |
| | TTGGTATGGC 3 | TGATCCCCCA ' | CGTTGTCAGA
GCAACAGTCT | CACTGCATAA
GTGACGTATT | ACTGGTGAGT
TGACCACTCA | GAGTTGCTCT
CTCAACGAGA | GAACTTTAAA
CTTGAAATTT | TCAAGGATCT
AGTTCCTAGA |
| | CGCTCGTCGT T'
GCGAGCAGCA A | GCGAGTTACA T
CGCTCAATGT A | GTCCTCCGAT C | GTTATGGCAG C | CTTTTCTGTG GAAAAGACAC | TGCGGCGACC
ACGCCGCTGG | CCACATAGCA
GGTGTATCGT | GCGAAAACTC
CGCTTTTGAG |
| - | CGTGGTGTCA C | | | TG
AC | CCGTAAGATG | GAATAGTGTA
CTTATCACAT | TAATACCGCG | GTTCTTCGGG
CAAGAAGCCC |
| נושמור שמי ישייי | 726 | 176 | 826 | 876 | 926 | 976 | 1026 | 1076 |
| | | | | SUBSTITU | ITE SHEET (F | RULE 26) | | |

Figure 36: functional map and sequence of $extit{B-lactamase-MCS}$ module (continued)

| CTTTTACTTT
GAAAATGAAA | GCCGCAAAAA
CGGCGTTTTT | CTTCCTTTTT
GAAGGAAAAA | GCGGATACAT
CGCCTATGTA | XhoI | BssHII | ATGGCTCGAG
TACCGAGCTC | |
|-----------------------------------|------------------------------|--------------------------|--------------------------|---------|-----------|---------------------------|-------------|
| TCTTCAGCAT CAGAAGTCGTA GECO57I | AAGGCAAAAT G
TTCCGTTTTA C | TACTCATACT (ATGAGTATGA) | TGTCTCATGA (| } | Bbel Asel | GGCGCCATTA | TD. |
| ACCCAACTGA TGGGTTGACT | CAAAAACAGG
GTTTTTGTCC | AAATGTTGAA
TTTACAACTT | TCAGGGTTAT
AGTCCCAATA | PstI | BssSI | ACGAGCTGCA
FIGCTCGACGT | BspEI BsrGI |
| CCACTCGTGC
GGTGAGCACG
BSSSI | TCTGGGTGAG
AGACCCACTC | GGCGACACGG | GAAGCATTTA
CTTCGTAAAT | | EagI | ACTCGGCCG | |
| TCGATGTAAC (
AGCTACATTG | CACCAGCGTT
GTGGTCGCAA | AGGGAATAAG
TCCCTTATTC | CAATATTATT
GTTATAATAA | | | ATTTGAATGT
TAAACTTACA | BSSHII |
| 1126 | 1176 | 1226 | 1276 | | | 1326 | |
| | | SUBST | TTUTE SHEE | T (RULE | 26) | | |

CATGAAATT GTACTTTAA CGCGCTTCAG CGCTTTGTCT TCCGGATGTA GCGCGAAGTC GCGAAACAGA AGGCCTACAT BCo571 Figure 36: functional map and sequence of 8-lactamase-MCS module (continued) 1 1 1 1 1

SUBSTITUTE SHEET (RULE 26) 193 / 204 Figure 37: Oligo and primer design for Vk CDR3 libraries

O_K3L_5 5'- G C C T G C A A G C G G A A G A C Bbsl

Vk1 & Vk3 5'- G C C C T G C A A G C G G A A G A C

Vk2 5'- G C C C T G C A A G C G G A A G A C E D

Vk4 5'- G C C C T G C A A G C G G A A G A C

Figure 37: Oligo and primer design for Vk CDR3 libraries

40 30 20 -3' Q F Α TGCGACTTATTATTGC CAT C Y G CAT TATTG C GGGCGTGTA G CAT G G C G G T G T A T T A T T G C G Α C D E F G CAT H 1 K L M N P CAG Q R S

> SUBSTITUTE SHEET (RULE 26) 195 / 204

T

W

80% Q

Figure 37: Oligo and primer design for VK CDR3 libraries

9 50 3'- G G A T A C C T G ACCT

G T A C C T

G

|) | O O T |
|---------------|------------|
| G C T G C T | GCT |
| | |
| GATGATGAT | G A T |
| G A G G A G | GAG |
| TTT | TTT |
| GGTGGTGGT | GGT |
| CAT | CAT |
| ATT | ATT |
| A A G A A G | AAG |
| CTT | CTT |
| ATG | ATG |
| ΑΛΤΛΛΤΔΑΤΑΑΙ | AAT |
| CCTCCT | CCT |
| C A G C A G | CAG |
| CGTCGI | CGT |
| TCTTCTTCTTCTC | |
| A C T A C T | A C T |
| GTT | GTT |
| T G G | TGG |
| TATTAT | TAT |
| 50% Y 80% | P |
| 30% T | -
: 00/ |

SUBSTITUTE SHEET (RULE 26) 196 / 204

Figure 37: Oligo and primer design for Vκ CDR3 libraries

Figure 38: Oligo and primer design for VA CDR3 libraries

Figure 38: Oligo and primer design for VA CDR3 libraries

SUBSTITUTE SHEET (RULE 26) 199 / 204

Figure 38: Oligo and primer design for VA CDR3 libraries

| 09 | 2
G G G G
GGCGGCGGC | ₩
T K L
ACGAAGTTA |
|---|--|-------------------------|
| gap gap - G C T G C T G C T | | |
| GATGATGATGAT GAGGAGGAG TTTTTTTTTTTTTT GGTGGTGGT CATCATCAT ATTATTATT AAGAAGAAG CTTCTTCTTCTT ATGATGATG AATAATAAT CCTCCTCCTCCT CAGCAGCAG CGTCGTCGT TCTTCTTCTTCT ACTACTACT ACTACT | T Variability 3.32E+05 5.98E+06 1.08E+08 | |
| St | UBSTITUTE SHEET (RULE 26) | |

SUBSTITUTE SHEET (RULE 26) 200 / 204

Figure 38: Oligo and primer design for VA CDR3 libraries

SUBSTITUTE SHEET (RULE 25) 202 / 204

Figure 40: Expression data for HuCAL scFvs (pBS13, 30°C)

| | | | | | | , | - (|
|-----------|-------|------------|-------|--------------------|--------|-------|--------|
| | | S | ξ | К4 | 71 | 75 | 73 |
| % soluole | _ | 1 | | | 7000 | 210% | 200% |
| A P 1 4 | £10% | 7,00g | 52% | 4.7% | 0/0R | 0/10 | |
| HIA | 0/210 | 2 | 2 | | 700 | 2000 | 260% |
| | 200% | 480% | 0/099 | 48% | 4/2/0 | 33% | 2000 |
| HIB | 0200 | 2 |) (| 7 | 2,07.0 | 2006 | 450% |
| 3 | 470% | 570% | 46% | 4500 | 3/2/0 | 20%0 | 2/2 |
| HZ | 2/1 | 5 | . | | 7000 | 710% | 70°C |
| - | 0/020 | 67% | 26% | 0/019 | 80%0 | 0/-1/ | 2 |
| T. | 0/200 | 2 | | | ,01 | 2000 | 7000 |
| | 200% | 50% | 51% | 44% | 45% | 33%0 | 10/274 |
| H4 | 02.00 | 2 1 2 | . (| 700 | 707 | 150% | 470% |
| Ļ | 7007 | 490% | 46% | 0/ ₀ /9 | 24% | 40.40 | 2 |
| CH | 2 2 2 | 2 | | 1 | 707 | | 710% |
| | 000 | 780% | 54% | 4/1/0 | 45% | 0/200 | 210 |
| 9H | 200 | 2 | | | | | |
| | | | | | | | |

| Total amount | κ1 | 2 | Ã | κ4 | 7 | λ2 | ೮ |
|------------------|-------|--------|--------|-------|-----|--------|--------|
| compared to H3K2 | | | | | | 1001 | 1007 |
| A 41. | 00000 | 940/0 | 166% | 272% | | 150% | 0/08/ |
| AI H | 2021 | 2 | 1000 | 7000 | • | 1500% | 1010/0 |
| 1110 | 2190% | 122% | 0/n68 | 13340 | | 0,000 | - |
| عات | 2 2 | | 7000 | 1000 | • | 800% | 970% |
| П | 186% | 223% | 2089/0 | 182% | | | ? |
| 71 | | • | | C 10% | | 130% | 47% |
| T7 | 20% | | | 24% | | 2 | |
| 2 |) (| č | | 770% | | 1070/0 | 251% |
| VH | 3/% | 55% | | 0/0// | | 2 |) |
| † 1 | 7000 | 2010% | 1670/0 | 830% | 93% | 128% | 115% |
| <u>_</u> | 3840 | 0/-107 | | 2 | | | 1000 |
| | 020 | 1170/0 | | 109% | | 215% | 0/08/7 |
| ЧP | 2 | 2 | • | | : | | |

Figure 40: Expression data for HuCAL scFvs (pBS13, 30°C)

| Soluble amount | Ţ | ż | ر
د | 77 | 7.1 | 72 | 73 |
|------------------|----------|------|--------|--------|------|------|------|
| compared to H3K2 | Z | 2 | 2 | †
2 | | 7 | 3 |
| H1A | 191% | 88% | 121% | 122% | 26% | 211% | 76% |
| H18 | 124% | 95% | 83% | 107% | 9067 | 142% | 29% |
| H2 | 126% | 204% | 139% | 130% | %99 | 20% | 70% |
| : H | 63% | ı | 81% | 49% | %69 | 143% | 61% |
| H4 | 40% | 47% | 49% | 54% | 95% | 22% | 125% |
| H2 | %69 | 158% | 116% | 80% | 72% | 84% | 84% |
| 9H | 85% | 122% | 87% | 17% | 162% | 162% | 212% |
| | McPC | | | | | | |
| soluble | 38% | | | | | | |
| %H3k2 total | 117% | | | | | | |
| %H3k2 soluble | %69 | | | | | | |

SUBSTITUTE SHEET (RULE 26) 204 / 204

INTERNATIONAL SEARCH REPORT

Inv onal Application No PCT/EP 96/03647

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C12N15/13 C12N15/10 C12N1/21 C12N15/70 C12N15/62 G01N33/53 C07K1/04 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 6 C12N C07K G01N Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category * 1-55 EP 0 368 684 A (MEDICAL RES COUNCIL) 16 A May 1990 cited in the application see the whole document 1-55 EUROPEAN J. IMMUNOLOGY, Α vol. 23, July 1993, VCH VERLAGSGESELLSCHAFT MBH, WEINHEIM, BRD, pages 1456-1461, XP000616572 "Cloning and S.C. WILLIAMS AND G. WINTER: sequencing of human immunoglobulin V-lambda gene segments" cited in the application see the whole document -/--Patent family members are listed in annex. Further documents are listed in the continuation of box C. Х X T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the Special categories of cited documents: 'A' document defining the general state of the art which is not considered to be of particular relevance "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "E" earlier document but published on or after the international document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 1 1. 02. 97 30 January 1997 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Hornig, H

1

| | INTERNATIONAL SEARCH REPORT | tr inonal Application No PCT/EP 96/03647 |
|-----------|--|--|
| (Continu | ation) DOCUMENTS CONSIDERED TO BE RELEVANT | Relevant to claim No. |
| ategory * | Citation of document, with indication, where appropriate, of the relevant passages | Relevant to claim No. |
| A | PROC. NATL.ACAD SCI., vol. 89, May 1992, NATL. ACAD SCI.,WASHINGTON,DC,US;, pages 4457-4461, XP002024223 C. F. BARBAS III ET AL.: "Semisynthetic combinatorial antibody libraries: a chemical solution to the diversity problem" cited in the application see the whole document | 1-55 |
| A | PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 89, no. 21, 1 November 1992, pages 10026-10030, XP000322464 COLLET TA ET AL: "A BINARY PLASMID SYSTEM FOR SHUFFLING COMBINATORIAL ANTIBODY LIBRARIES" see the whole document | 1-55 |
| A | PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 89, no. 8, 15 April 1992, pages 3576-3580, XP000384398 GRAM H ET AL: "IN VITRO SELECTION AND AFFINITY MATURATION OF ANTIBODIES FROM A NAIVE COMBINATORIAL IMMUNOGLOBULIN LIBRARY" see the whole document | 1-55 |
| A | PROTEIN ENGINEERING, vol. 8, no. 1, 1 January 1995, pages 81-89, XP000500393 KNAPPIK A ET AL: "ENGINEERED TURNS OF RECOMBINANT ANTIBODY IMPROVE ITS IN VIVO FOLDING" cited in the application see the whole document | 1-55 |
| A | ANNUAL REVIEW OF IMMUNOLOGY, vol. 12, 1 January 1994, pages 433-455, XP000564245 WINTER G ET AL: "MAKING ANTIBODIES BY PHAGE DISPLAY TECHNOLOGY" cited in the application see the whole document | 1-55 |
| A | JOURNAL OF MOLECULAR BIOLOGY, vol. 224, no. 2, 1 January 1992, pages 487-499, XP000564649 FOOTE J ET AL: "ANTIBODY FRAMEWORK RESIDUES AFFECTING THE CONFORMATION OF THE HYPERCARIABLE LOOPS" cited in the application see the whole document | 1-55 |

1

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

SUBSTITUTE SMEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

19: Σ

SphI XbaI

GATAACGTGA CTATTGCACT AAACAAAGCA TTTGTTTCGT GCGTAGGAGA AAATAAAATG TTTATTTAC CGCATCCTCT AGATCTCGTA TCTAGAGCAT

Sapi

ECORI

11111

GAATTC CTTAAG

ATGGTTTCGG TACCAAAGCC CCGTTGCTCT TCACCCCTGT GGCAACGAGA AGTGGGGACA

SUBSTITUTE SHEET (RULE 26)

CCGTGAGAAT

GGCACTCTTA

51

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

20: Σ

SphI XbaI

CTATTGCACT TCTAGAGCAT GCGTAGGAGA AAATAAAATG AAACAAAGCA TTTGTTTCGT AGATCTCGTA CGCATCCTCT TTTATTTAC

GATAACGTGA

SapI

51

GACTACAAAG CTGATGTTTC ATGGTTTCGG TACCAAAGCC AGTGGGGACA TCACCCCTGT CCGTTGCTCT GGCAACGAGA CCGTGAGAAT GGCACTCTTA

ECORI MunI

ATGAAGTGCA ATTGGAATTC TACTTCACGT TAACCTTAAG

SUBSTITUTE SHEET (RULE 26)

101

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

SUBSTITUTE SHEET (RULE 26) 148 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 21:

XbaI

11111

TATGAAAAG AATATCGCAT TTCTTCTTGC TTATAGCGTA AAGAAGAACG CTCCACTAAA ATACTTTTC GAGGTGATTT TCTAGAGGTT AGATCTCCAA

ECORI 11111 Nsil

GAATTC CTTAAG CAAAAAAGAT AACGATGTTT ACGTATGCGA TTGCTACAAA TGCATACGCT GTTTTTTCTA TAGATACAAG ATCTATGTTC

SUBSTITUTE SHEET (PULE 26)

51