# Simple Linear Regression Model Building

### Data science for Engineers

# In this lecture

- Simple linear regression
  - · Loading the data from .txt file
  - · Plot the data
  - Build linear model
  - · Look at summary of the model



Simple Linear regression

# Loading data

- Dataset 'bonds' is given in ".txt" format
- To load data from the file the function used is read.delim( )



### Simple Linear regression

Data science for Engineers

# read.delim()

Reads a file in table format and creates a data frame from it

SYNTAX

### read.delim(file,row.names=1)

| ше        | are to be read from. Each row of the table appears as one line of the file.                                                                                                                                                                |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| row.names | a vector of row names. This can be a vector giving the actual row names, or a single number giving the column of the table which contains the row names, or character string giving the name of the table column containing the row names. |





# Loading data

 Assuming that bonds.txt is in your current working directory

bonds <- read.delim("bonds.txt", row.names=1)</pre>

 The data is saved into a data frame 'bonds'



Simple Linear regression

Data science for Engineers

# Viewing data

 View(bonds) will display the dataframe in a tabular format

| Ø V Filter |            |          |
|------------|------------|----------|
| *          | CouponRate | BidPrice |
| - 1        | 7.000      | 92.94    |
| 2          | 9.000      | 101.44   |
| 3          | 7.000      | 92.66    |
| 4          | 4.125      | 94.50    |

head(bonds) and tail(bonds)
 will display the first and last six rows
 from the dataframe



Simple Linear regression

## Description of dataset

- The data has two variables CouponRate and BidPrice.
- CouponRate refers to the fixed interest rate that the issuer pays to the lender.
- BidPrice is the price someone is willing to pay for the bond.



Simple Linear regression

Data science for Engineers

## Structure of the data

- Each variable and its data type
- str() input is dataframe
- See whether each of the variable datatypes are same as you expect them to be
- If not coerce

```
> str(bonds)
'data.frame': 35 obs. of 2 variables:
$ CouponRate: num 7 9 7 4.12 13.12 ...
$ BidPrice : num 92.9 101.4 92.7 94.5
```



Simple Linear regression

# Summary of the data

 Gives mean and five number summary

### > summary(bonds)

| CouponRate     | BidPrice       |  |
|----------------|----------------|--|
| Min. : 3.000   | Min. : 88.00   |  |
| 1st Qu.: 8.062 | 1st Qu.: 95.95 |  |
| Median : 8.875 | Median :100.38 |  |
| Mean : 8.921   | Mean :102.14   |  |
| 3rd Qu.:10.438 | 3rd Qu.:108.11 |  |
| Max. :13.125   | Max. :119.06   |  |



Simple Linear regression

Data science for Engineers

# Plotting the data



# Building linear regression model

- Building linear model using the function
   lm()
- Syntax: lm(formula, data)

lm(dependent var~independent var)

bondsmod <- lm(bonds\$BidPrice~bonds\$CouponRate)</pre>

or

bondsmod <- lm(BidPrice~CouponRate, data = bonds)

$$\widehat{y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 x_i + \epsilon_i$$

Intercept Slope

Simple Linear regression

Data science for Engineers



# Fitting the regression line over the plot

plot(bonds\$CouponRate,bonds\$BidPrice,
 main = "Bid Price vs Coupon Rate",
 xlab = "Coupon Rate",
 ylab = "Bid Price")
abline(bondsmod)



Simple Linear regression

12

# Model summary

```
bondsmod <- lm(BidPrice~CouponRate,data = bonds)</pre>
```



Simple Linear regression

Data science for Engineers

## Model summary

Simple Linear regression

1

```
lm(formula = BidPrice ~ CouponRate, data = bonds)
                                                                     Difference between observed and
   Residuals: =
                                                                    predicted/fitted values
   Min 1Q Median 3Q Max
-8.249 -2.470 -0.838 2.550 10.515
                                                                     Five number summary of residuals
                                                                     Estimates of slope and intercept
   Coefficients:
                                                                     parameter
Estimate Std. Error t value Pr(>|t|) \beta_0 (Intercept) 74.7866 \frac{s_{\beta_0}}{\rho_0} 2.8267 26.458 < 2e-16 ***
   CouponRate
                    3.0661 s_{\hat{\beta}_1} 0.3068
                                           9.994 1.64e-11 ***
                                                                                   Estimated standard
                                                                                  deviation for the
   Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1 slope and intercept
   Residual standard error: 4.175 on 33 degrees of freedom
   Multiple R-squared: 0.7516, Adjusted R-squared: 0.7441
   F-statistic: 99.87 on 1 and 33 DF, p-value: 1.645e-11
```

○ Ø ® @ ⊝ Simple Linear regression

Data science for Engineers

Model summary



Simple Linear regression

15