Vitamins

Ryan Collison MLS (ASCP)^{CM} SC^{CM}

Objectives

- Students will recall the common and chemical names for each vitamin
- Students will categorize the vitamins based on solubility
- Students will relate each vitamin to its purpose
- Students will correlate symptoms to a toxicity or deficiency of each vitamin
- Students will compare methods of patient preparation and chemical analysis
- Students will identify the purpose of testing each vitamin

Vitamins are....

- Organic compounds required in small amounts
- Not significantly synthesized by body
 - Mostly obtained through diet
- Grouped by their function NOT structure
 - They belong to a diverse group of chemicals
- 2 Main categories
 - Fat soluble: stored until needed
 - Water soluble: Not stored, require regular consumption

nor.or

Fat Soluble Vitamins

Common Name	Chemical Name
Vitamin A	Retinol
Vitamin D	Tocopherol
Vitamin E	Calciferol
Vitamin K	Napthoquinone Derivatives

Water Soluble Vitamins

Common Name	Chemical Name
Vitamin B1	Thiamin
Vitamin B2	Riboflavin
Vitamin B3	Niacin
Vitamin B6	Pyridoxine
Vitamin B9	Folate
Vitamin B12	Cobalamin
Vitamin C	Ascorbic Acid

Vitamin A

- Vitamin A
 - Several forms:
 - Alcohol- Retinol
 - Aldehyde- Retinal
 - Carboxylic Acid- Retinoic Acid
 - Fatty Acids- Retinyl esters
- Carotene (Vitamin A Precursor)
 - Looks like two Vit. A molecules hooked together
 - More stable than Vit. A
- Found in salmon, liver, green leafy vegetables, broccoli, carrots, squash, apricots, mangos, dairy, and fortified cereals.
- Absorbed as a lipid, transported attached to Retinol Binding Protein (RBP) and prealbumin, stored in the Liver.
 - RBP regulates Vitamin A absorption and metabolism

Vitamin A Pathology

- Functions:
 - Vision and maintenance of the surface lining of the eyes
 - Growth, Reproduction
 - Epithelial maintenance (Respiratory, urinary, and intestinal tracts)
 - Immune Response
- Deficiency
 - Nyctalolpia (night blindness)
 - Dry corneal epithelium (xeropthalmia)

- Dry skin, hair
- Hyperkeratosis (thickening of skin, bumps)
- Excess
 - Loss of hair, dry skin, joint pain
 - Drowsiness, headaches
 - Increased Cranial Pressure
 - Lack of appetite, vomiting
 - Death

Vitamin A Testing

- Patient Preparation: Should fast for 12 hours.
 - With fat soluble vitamins, recent intake from diet will be measured during the absorption process.
- Sample Requirements:
 - Should be protected from light and analyzed soon after draw.
 - After centrifugation, samples should be frozen if testing not performed within 24 hours.
- Method Principle:
 - Solvent is used to extract lipids from the serum. HPLC used to measure Vitamin A or Vitamin A esters.
- Reference Range: 20 120 μg/dL

Carotene Testing

- Patient Preparation: Should fast for 12 hours.
 - With fat soluble vitamins, recent intake from diet will be measured during the absorption process.
- Sample Requirements:
 - Should be protected from light and analyzed soon after draw.
 - After centrifugation, samples should be frozen if testing not performed within 24 hours.
- Method Principle:
 - Spectrophotometric carotene method used measure all Cartenoids. Serum proteins are denatured in ethanol, then carotene is extracted into petroleum ether.

 Absorbance of extract measured at 440-450 nm and concentration determined from a standard curve.
 - Specific, individual carotenes (such as β-carotene), can be measured by HPLC after extraction from serum using solvents.
- Reference Range: 50 250 µg/dL

Why Test Vitamin A?

- Vitamin A is tested to:
 - Determine deficiencies and toxicities
 - Monitor patients on Vitamin A therapies
 - As a measure of fat absorption
- β-Carotene is usually tested as a measure of fat absorption
- BOTH are absorbed in GI tract and are used to monitor patients with GI disorders
 - Cystic Fibrosis, Sprue, Pancreatic Insufficiency, IBD, Cholestasis, Small-Bowel bypass surgery, Small Bowel transplants

Vitamin E

- Active form is a-tocopherol
 - Found in vegetable oils, nuts (peanuts, hazelnuts, and almonds), sunflower seeds, green leafy vegetables, spinach, and broccoli.
- Lipid soluble, absorption tied to dietary fats
- Transported on lipoproteins, stored in adipose
- Functions as antioxidant
 - Unsaturated lipids need to be protected from oxidative damage
 - RBC membrane subject to damage from oxidative stress

Vitamin E Pathology

- Toxicity:
 - Least toxic fat-soluble vitamins
 - Can cause malaise, easy fatigability
 - Most toxicity due to self-medication for poor reasons
- Deficiency:
 - Rare
 - Characterized by neurological problems, esp. nerve degeneration in hands and feet

Hemolytic anemia

possible

- Occurs in:
 - Premature, formula fed infants
 - Adults with fat malabsorption/on artificial diets
 - People with rare genetic abnormalities in the alpha-tocopherol transport protein

Vitamin E Testing

- Measured similarly to Vitamin A:
 - Serum proteins are precipitated, lipid extraction is performed. Analysis performed by HPLC
- Reference Range: 0.5 2.0 mg/dL

Vitamin D

- Fat-soluble vitamin found in foods and made by body through UV exposure
 - Found in: salmon, tuna, dairy, egg (yolk), mushrooms, supplemented in cereals, juices and other beverages
- Different isoforms
 - D₂ Ergocalciferol from plants
 - D₃ Cholecalciferol from animals
- Cholesterol in skin changed to Vit D₃
- Liver changes to 25-OH-D3
- Kidney activates to 1,25-[OH]₂-D₃
 - Active, signals absorption of calcium and phos in kidney and intestines

Vitamin D Pathology

- Toxicity:
 - nausea/vomitting, poor appetite, constipation, weakness, and weight loss
 - Can raise blood levels of calcium:
 - Mental health status changes
 - Confusion
 - Heart rhythm abnormalities
 - deposition of calcium and phosphate in soft tissues like the kidneys
 - Sun exposure and diet are unlikely to cause toxicity
 - Usually from high intake of supplements

- Deficiency:
 - Causes rickets in children, and osteomalacia in adults.
 - Both are characterized by weakened, thin, brittle, and misshapen bones.
 - Mho³
 - Infants who are exclusively breast fed for extended periods.
 - Children with constant use of sunscreen and very limited access to sunlight.
 - Cereals and dairy products are fortified with Vitamin D.
 - Adults with fat malabsorption or on artificial diets.

Vitamin D Testing

- The 25,OH Vitamin D is the most commonly measured form.
 - 25,OH Vitamin D by chemiluminescent immunoassay.
 - Both 25,OH and 1,25,OH Vitamin D can also be measured by LC/MS/MS methods.
- Reference Range:
 - ► Sufficiency: 31 80 ng/mL
 - Insufficiency: 15 30 ng/mL
 - Deficiency: <15 ng/mL</p>
- Ryan's diatribe

Vitamin K

- Fat soluble vitamin, from the German word koagulation due to its role in coagulation
- Obtained through diet in form of Phylloquinone (K₁)
 - synthesized by intestinal bacteria in form of Menaquinone (K₂)
- K₁ is in herbs, green leafy vegetables, asparagus, chili powder, curry, paprika, cayenne pepper, cabbage, cucumber, and prunes.
- A cofactor for a carboxylase that catalyzes glutamic acid residues
 on Vitamin K dependent proteins, including:

on Vitamin K-dependent proteins, including:

Factors II (prothrombin), VII, IX, X, Proteins C, S, and Z

Vitamin K Pathologies

- Toxicity:
 - Rare, since it is not stored in the liver
 - Menadione (synthetic Vitamin K) has double potency and can be toxic
 - Banned as a supplement in the U.S.
 - Symptoms: Thrombosis, vomiting, kidney tubule degeneration
 - Also—Jaundice and hemolytic anemia in newborns
- Deficiency:
 - Malabsorption, prolonged antibiotic use, ingestion of rat poison
 - Symptoms: Hemorrhagic disorders, easy bruising, bleeding in various areas, (internally, gum)

Vitamin K Testing

- Not routinely performed (or even rarely, it's super-rare)
- Prothrombin Time (PT) and International Normalized Ratio (INR)
 - Vitamin K deficiency and therapeutic anticoagulation
 - Usually elevated in both cases
- Vitamin K levels can be can be measured by HPLC.
 - First, Vitamin K is extracted into a solvent,
 - Separated by preparatory HPLC
 - Then measured by analytical HPLC with electrochemical or fluorometric detection
- Reference Range:
 - Prothrombin Time: 9.7-13 secs
 - INR: 0.9-1.3
 - Vitamin K: 0.1-2.2 ng/mL

Vitamin B1

- Thiamin- A coenzyme in the metabolism of fats, carbs, and alcohols
 - Small amounts in most plant, animal tissue
 - trout, pork, nuts, sunflower seeds, peas, squash, asparagus, soy beans, and navy beans
 - Supplemented into flour and cereals
- Absorbed in small intestine
 - Able to freely circulate
 - Some albumin
 - Phosphorylated to active thiamine pyrophosphate
- Excess may be excreted by the kidney

Vitamin B1 Pathology

- Toxicity
 - Not documented
 - IV Thiamine can cause itching, tingling, pain, anaphylaxis
- Deficiency
 - Beriberi
 - Dry: peripheral neuropathy
 - Wet: short breath, tachycardia, lower leg edema
 - Chronic alcoholism
 - Wernicke-Korsakoff syndrome
 - Memory loss, confabulation
 - Mild deficiency common (tea and toasters)
 - Cognitive impairments

Vitamin B1 Testing

- Measure transketolase activity
 - Thiamine pyrophosphate is catalyst
 - Hemolysate
- Direct Measurement
 - Plasma/red cells/whole blood
 - Plasma is influenced by recent eating
 - HPLC

Vitamin B2

- Riboflavin- water soluble, not metabolically active
 - Absorbed in intestines and converted
 - Riboflavin-5-phosphate (FAD)
 - Flavin mononucleotide (FMN)
 - Excess secreted by kidney
 - Used to obtain energy, build tissue
- Found in mushrooms, venison, beef, liver, spinach, milk, soybeans, nuts, legumes, eggs

Vitamin B2 Pathology

- Toxicity
 - No known cases
 - Large amounts cause bright yellow urine
- Deficiency
 - Poor diet leading to hypothyroidism, adrenal insufficiency
 - Alcohol interferes with digestion and absorption
 - Symptoms include, lesion on skin & GI tract, bloodshot itchy burning sensitive eyes, inflamed and burning mouth and tongue, cracks in lips and corner of mouth, dull/oily hair, split nails

Vitamin B2 Testing

- Specimen Consideration
 - Light sensitive, must be protected
- Testing
 - Riboflavin, FAD, FMN all measured with HPLC, fluorescent detection

Vitamin B3

- Niacin
 - CAN by synthesized by the body from tryptophan
 - More easily obtained through diet
 - Stored by liver until needed, excreted through kidney
- Used for energy
 - Regulates lipid levels
 - Promotes HCl creation in stomach

Vitamin B3 Pathology

- Toxicity
 - Can increase blood glucose
 - Liver damage (storage area)
 - Peptic ulcers
 - Skin rashes
- Deficiency
 - Pellagra
 - 3 Ds-dermatitis, dementia, diarrhea

Vitamin B3 Testing

- Specimen Considerations
 - Light sensitive, protect from light
- HPLC performed on plasma
- Reference Range:
 - Niacin: 0.50 8.91 μg/mL

Vitamin B9

- Folate or Folic Acid
 - Folic acid is changed to folate by body
 - Found in leafy greens, legumes, oranges, cauliflower, lentils, asparagus, liver, yeast, salmon, liver, avocados, and milk
- Absorbed in small intestine
 - Modified by enzymes
 - Circulates bound to protein
 - Excess excreted by kidney
- Regulates hematopoiesis along with B12
 - Vital for DNA synthesis and cell division
 - Cardiovascular healthy by lowering homocysteine
 - Fetal development

Vitamin B9 Pathology

- Toxicity
 - Rare, as it is excreted in urine
 - Extreme OD can cause digestive problems, insomnia, skin reaction, and seizure
- Deficiency
 - Pregnant women: needed to prevent neural tube defects
 - Spina bifida, anecephaly, encephalocele, hydranencephaly, or cleft palate
 - Megaloblastic anemia
 - Macrocytic, normochromic anemia, indistinguishable from B12 deficiency

Vitamin B9 Testing

- Immunoassay on serum
- Macrocytic anemia appearance
 - Low RBC
 - Low HGB
 - Hypersegmented neutrophils
 - High LDH (esp. LDH 2)

Vitamin B12

- Cobalamin
 - Not 1 compound, but group of related
 - Cobalt atom, nucleotide side chains, tetrapyrrole rings
- Found in clams, liver, many fish, shellfish, beef, eggs, and dairy
- Complex absorption
 - Absorbed in small intestine
 - Intrinsic factor
 - Stored in liver
 - Excess eliminated by kidney

Vitamin B12 Pathology

- Toxicity
 - None reported
- Deficiency
 - Megaloblastic anemia
 - Restrictive diets, gastric bypass, IBD, congenital malabsorption
 - Pernicious anemia
 - Diphyllobothrium latum

Vitamin B12 Testing

- Directly by immunoassay
 - Pretreatment to release from transport proteins
- Indirectly
 - Homocysteine- increased in b12 def.
 - Methylmalonic acid-increased in b12 def.

Vitamin C

- Ascorbic acid
 - Water soluble
 - Absorbed in small intestines
 - Stored mainly in adrenal glands
 - Excretes by kidney
 - Found in citrus, strawberries, broccoli, tomatoes, potatoes, and cantaloupe
 - Most plants, animals can synthesize
 - Many primates cannot
 - Parallels inability to break down uric acid
 - Also functions as reducing agent

Vitamin C Pathology

- Acts as reducing agent and in formation of collagen
 - Connective tissue
- Reduces iron and allows for absorption
- Toxicity
 - Rare, causes diarrhea, kidney stone, hemolysis, interfere with absorption of other nutrients
- Deficiency
 - Scurvy
 - Swollen & bleeding gums, tooth loss, poor wound healing, pain and weakness in lower extremities

Recap Solubility and Names

Recap-Deficiency

Recap-Deficiency

