Exercice 1 (Question de cours)

- 1. Un fonction $f: X \to Y$ entre deux espaces topologiques (X, \mathcal{T}_X) et (Y, \mathcal{T}_Y) est continue si et seulement si pour tout $O \in \mathcal{T}_Y$, $f^{-1}(O) \in \mathcal{T}_X$.
- 2. Supposons f continue et soit $(x_n)_{n\in\mathbb{N}}\in X^\mathbb{N}$ un suite convergeant vers $x\in X$. Soit V un ouvert de X' contenant f(x). Comme f est continue, $f^{-1}(V)$ est un ouvert de X contenant x. Comme $(x_n)_{n\in\mathbb{N}}$ converge vers x, il existe N>0 tel que pour tout $n\geq N$, $x_n\in V$. ainsi pour tout $n\geq N$, $f(x_n)\in f(f^{-1}(V))=V$. Ce qui prouve que $(f(x_n))_{n\in\mathbb{N}}$ converge vers f(x). Reciproquement, soit V un ouvert de X' et soit $U=f^{-1}(V)$. Si U n'est pas un ouvert, il existe $x\in U$ tel que tout voisinage de x rencontre $X\setminus U$. En particulier, pour tout n>0, $B(x,1/n)\cap (X\setminus U)\neq\emptyset$. On peut alors construire une suite $(x_n)_{n\in\mathbb{N}}\in (X\setminus U)^\mathbb{N}$ convergeant vers x. Par hypothèse, on a alors $(f(x_n))_{n\in\mathbb{N}}\in (X'\setminus V)^\mathbb{N}$ convergeant vers f(x). Comme $X'\setminus V$ est fermé, $f(x)\in X'\setminus V$, ce qui est absurde vu que $x\in f^{-1}(V)$.

Exercice 2 (Sur la continuité)

- 1. Soit $f: X \to Y$. Comme X est muni de la topologie discrète, toute partie de X est un ouvert de X. En particulier, pour tout ouvert V de Y, $f^{-1}(V)$ est ouvert dans X et f est continue.
- 2. Soit $f: X \to Y$. comme $\mathcal{T}_Y = \{\emptyset, Y\}$, f est continue si et seulement si $f^{-1}(\emptyset) = \emptyset$ et $f^{-1}(Y) = X$ sont des ouverts de X. Ces derniers sont bien des ouverts par définition d'un topologie.
- 3. Soit $f: X \to Y$ une application continue. Comme Y est muni de la topologie discrète et X de la topologie grossière, on a en particulier que pour tout $y \in Y$, $f^{-1}(\{y\}) = \emptyset$ ou $f^{-1}(\{y\}) = X$. Ainsi, en fixant $x_0 \in X$, on a $f^{-1}(\{f(x_0)\}) = X$ et f et pour tout $x \in X$, $f(x) = f(x_0)$. Réciproquement, si f est constant, pour tout ouvert O de Y, on a $f^{-1}(O) \in \{\emptyset, X\}$ et est donc un ouvert de X. Ainsi f est continue.
- 4. Soient $(x_n)_{n\in\mathbb{N}}\in X^{\mathbb{N}}$ et soit $x\in X$. Le seul voisinage de x est X et il contient tout les terme de la suite $(x_n)_{n\in\mathbb{N}}$. Ainsi, $(x_n)_{n\in\mathbb{N}}$ converge vers x.
- 5. Soit $(x_n)_{n\in\mathbb{N}}\in X^{\mathbb{N}}$ une suite convergeant et soit l sa limite. $\{l\}$ est un voisinage de l, donc il existe $N\geq 0$ tel que pour tout $n\geq N,$ $x_n\in\{y\}$. Donc $(x_n)_{n\in\mathbb{N}}$ est stationnaire. Reciproquement, si $(x_n)_{n\in\mathbb{N}}$ est stationnaire à partir d'un rang p, alors pour tout voisinage V de x_p et tout $n\geq p,$ $x_n=x_p\in V$. Ainsi $(x_n)_{n\in\mathbb{N}}$ est convergeante.

Exercice 3 (Axiomes de fermeture de Kuratowski)

- 1. $\emptyset = X \setminus X$ est le plus petit fermé contenant X. Donc (a) est vérifiée.
 - Pour tout $A \in \mathcal{P}(X)$, $\alpha(A)$ est le plus petit fermé contenant A donc il contient A et (b) est vérifiée. Pour tout $A \in \mathcal{P}(X)$, $\alpha(A)$ est fermé donc $\alpha(\alpha(A)) = \alpha(A)$ et (c) est vérifiée.
 - Pour tout $A, B \in \mathcal{P}(X)$, $\alpha(A) \cup \alpha(A)$ est un fermé contenant $A \cup B$ donc $\alpha(A \cup B) \subseteq \alpha(A) \cup \alpha(B)$. De plus $\alpha(A \cup B)$ est un fermé qui contient A, respectivement B, il contient donc $\alpha(A)$, respectivement $\alpha(B)$. Ainsi $\alpha(A \cup B) \supseteq \alpha(A) \cup \alpha(B)$. Ainsi $\alpha(A \cup B) = \alpha(A) \cup \alpha(B)$ et (d) est verifiée.
- 2. Par (a), $X = X \setminus \emptyset \in \mathcal{T}$. Par (b), $X = \alpha(X)$ et $\emptyset = X \setminus X \in \mathcal{T}$.
 - Montrons que \mathcal{T} est stable par unions quelconques : Soit $(A_i)_{i\in I}$ une famille quelconque d'élément de \mathcal{T} et soit $A = \bigcup_{i\in I} A_i$. Par (b), on a $X\setminus A\subseteq \alpha(X\setminus A)$. Pour l'inclusion inverse, on remarque tout d'abord que pour tout $C\subset D\subseteq X$, $\alpha(C)\subseteq \alpha(C)\cup \alpha(D)=\alpha(C\cup D)=\alpha(D)$ (i.e. α est croissante). Ainsi, comme pour tout $j\in I$, $X\setminus A\subseteq X\setminus A_j$ et donc $\alpha(X\setminus A)\subseteq \alpha(X\setminus A_j)=X\setminus A_j$. donc $\alpha(X\setminus A)\subseteq \bigcap_{i\in I}(X\setminus A_i)$.

Montrons la stabilité par intersections finis : Soient $A_1, A_2 \in \mathcal{T}$. On a, en utilisant (d), $\alpha(X \setminus (A_1 \cap A_2)) = \alpha((X \setminus A_1) \cup (X \setminus A_2)) = \alpha(X \setminus A_1) \cup \alpha(X \setminus A_2) = (X \setminus A_1) \cup (X \setminus A_2)$.

Montrons que α est l'application d'adhérence pour la topologie \mathcal{T} : Pour cela on remarque tout d'abord que les fermés de X pour cette topologie sont exactement les $A \in \mathcal{P}(X)$ tels que $\alpha(A) = A$. Soit donc $A \in \mathcal{P}(X)$, comme, par (d), $\alpha(\alpha(A)) = \alpha(A)$, $\alpha(A)$ est fermé et donc $\overline{A} \subseteq \alpha(A)$. Enfin, si F est un fermé contenant A, comme α est croissante, $\alpha(A) \subseteq \alpha(F) = F$. Ainsi, $\alpha(A) \subseteq \overline{A}$.

Montrons que \mathcal{T} est l'unique topologie sur X dont α est l'application d'adhérence : Soit alors \mathcal{T}' un topologie sur X dont α est l'application d'adhérence. Pour $A \in \mathcal{P}(X)$, on a :

$$A \in \mathcal{T}' \Leftrightarrow X \setminus A \text{ ferm\'e dans } (X, \mathcal{T}') \Leftrightarrow \alpha(X \setminus A) = X \setminus A \Leftrightarrow A \in \mathcal{T}.$$

Exercice 4 (Un espace séparable sans bases dénombrables)

- 1. Soit \mathcal{T} l'ensemble des unions quelconques d'éléments de \mathcal{B} . $\emptyset \in \mathcal{T}$ comme union vide d'élément de \mathcal{B} . De plus, $H = \bigcup_{(x,y)\in H} B_0((x,y),y/2)\mathcal{T}$. \mathcal{T} est stable par union par construction et, pour la stabilité par intersections finies, il suffit de vérifier que toute intersection de deux éléments de \mathcal{B} est dans \mathcal{T} . Cependant, l'intersection de deux éléments distincts de \mathcal{B} est soit vide, soit l'intersection de deux boules pour la topologie usuelle, soit un élément de \mathcal{B} de la forme $B_0((x,y),y) \cup \{(x,0)\}$. Ce dernière cas est vérifié si les deux éléments de \mathcal{B} sont du type $B = B_0((x,y_1),y_1) \cup \{(x,0)\}$ et $B' = B_0((x,y_2),y_2) \cup \{(x,0)\}$, et alors l'intersection sera $B_0((x,y),y) \cup \{(x,0)\}$ avec $y = \min\{y_1,y_2\}$. C'est donc soit un ouvert pour la topologie usuelle soit un élément de \mathcal{B} du deuxième type et donc dans \mathcal{T} .
- 2. Soit $A = H \cap \mathbb{Q}^2$. A est dénombrable et, pour tout $(x, y) \in H$ avec y > 0 et tout $r \in]0, y]$, $B_0((x, y), r)$ contient un élément de A car A est dense dans H pour la topologie usuelle. Ainsi, A est dense dans H pour la topologie \mathcal{T} .
- 3. Soit $D = \{(x,0) : x \in \mathbb{R}\}$. Pour tout $x \in \mathbb{R}$, $\{(x,0)\} = (B_0((x,1),1) \cup \{(x,0\}) \cap D$ est l'intersection d'un ouvert de H avec D. Ainsi tout les singleton de D sont ouvert et la topologie induite sur D est la topologie discrète.
- 4. Soit \mathcal{B} un base dénombrable d'ouvert pour X. Alors $\{B \cap Y : B \in \mathcal{B}\}$ est une base dénombrable d'ouvert pour la topologie induite sur Y.
- 5. Comme la topologie induite sur D est la topologie discrète et que D n'est pas dénombrable, D n'admet pas de base dénombrable d'ouvert pour la topologie induite. Par la question précédente, on en déduite que H n'admet pas de base dénombrable d'ouvert.
- 6. Un espace métrique séparable admet forcément une base dénombrable d'ouvert donné par, si A est une partie dénombrable dense, $\{B(a,1/n)\colon n\in\mathbb{N}^*, a\in A\}$.

Exercice 5 (Topologie p-adique)

- 1. Par définition d'une ultramétrique, il ne reste qu'à vérifier l'inégalité triangulaire. Soit donc $x, y, z \in E$, on a bien $d(x, z) \le \max(d(x, y), d(y, z)) \le d(x, y) + d(y, z)$.
- 2. Soit $z \in B(x,r)$, on a $d(y,z) \le \max(d(y,x),d(x,z)) \le r$ et donc $z \in B(y,r)$. De même, si $z \in B(y,r)$, on a $z \in B(x,r)$.
- 3. Soit $(x_n)_{n\in\mathbb{N}}\in E^{\mathbb{N}}$. Supposons que $(x_n)_{n\in\mathbb{N}}$ est de Cauchy, alors

$$\forall \varepsilon > 0, \ \exists N \ge 0, \ \forall n \ge N, \ \forall p \ge 0, \quad d(x_n, x_{n+p}) < \varepsilon.$$

en particulier, pour p=1, on obtient que $d(x_n,x_{n+1})\to 0$ quand $N\to +\infty$. Réciproquement, supposons que $d(x_n,x_{n+1})\to 0$ quand $N\to +\infty$ et soit $\varepsilon>0$. Par hypothèse, il existe $N\geq 0$ tel que pour tout $n\geq N,\ d(x_n,x_{n+1})>\varepsilon$. On a alors, pour tout $n\geq N$ et tout $p\geq 0$, on a,en itérant l'inégalité ultramétrique(iii),

$$d(x_n, x_{n+p}) \le \max(d(x_n, x_{n+1}), d(x_{n+1}, x_{n+2}), \dots, d(x_{n+p-1}, x_{n+p})) < \varepsilon.$$

Ainsi la suite $(x_n)_{n\in\mathbb{N}}$ est de Cauchy.

- 4. d est positive par construction. De plus, si n, m sont deux entiers distincts, $\nu_p(n-m) = \nu_p(m-n)$ ce qui donne la symétrie. Aussi, comme pour tout entier $n \neq 0$, ||n|| > 0, on a bien que pour tout $n, m \in \mathbb{Z}$, d(n,m) = 0 si et seulement si n = m. Enfin, soit l, m, n trois entiers. Si deux d'entre eux sont égaux, l'inégalité ultramétrique est directe. Sinon, comme pour tout $k, r \geq 0$, si $p^k \mid m l$ et $p^r \mid n m$, alors $p^{\min(k,r)} \mid (m-l) + (n-m) = n-l$, on a bien l'inégalité ultramétrique.
- 5. on a $B_d(0,1) = \{n \in \mathbb{Z} : p \mid n\}, B_d(0,1/p) = \{n \in \mathbb{Z} : p^2 \mid n\} \text{ et} B_d(1,1/p) = \{n \in \mathbb{Z} : p^2 \mid n-1\}$.
- 6. Pour tout $n \ge 0$, $d(u_n, u_{n+1}) = ||p^{n+1}|| = p^{-n-1} \to 0$ quand $n \to +\infty$. Donc, par la question 3, $(u_n)_{n \in \mathbb{N}}$ est une suite de Cauchy.
- 7. (a) On a pour tout $n \ge 0$, $(1 + (p-1)u_n) (1 + (p-1)u) = (p-1)(u_n u)$ et comme $p \not| p 1$, on a $d(1 + (p-1)u_n, 1 + (p-1)u) = d(u_n, u)$. Ainsi, comme $(u_n)_{n \in \mathbb{N}}$ converge vers u, $(1 + (p-1)u_n)_{n \in \mathbb{N}}$ converge vers 1 + (p-1)u.
 - (b) On a pour tout $n \geq 0$, $1 + (p-1)u_n = p^{n+1}$ et donc $(1 + (p-1)u_n)_{n \in \mathbb{N}}$ converge vers 0. Ainsi 1 + (p-1)u = 0 c'est à dire $u = 1/(p-1) \notin \mathbb{Z}$ ce qui est absurde (sauf si p = 2 mais dans ce cas, la suite $(u_n)_{n \in \mathbb{N}}$ converge...).
- 8. La question précédente exhibe une suite de Cauchy de (\mathbb{Z}, d) non convergeante. Il n'est donc pas complet.