

Home Chemistry Foundations Gas Laws Essential Pre-Uni Chemistry C1.2

Essential Pre-Uni Chemistry C1.2

Use the ideal gas equation of state to answer the following questions. In SI units, the equation is pV = nRT, where $R = 8.31 \, \mathrm{J \, K^{-1} \, mol^{-1}}$.

Part A Pressure of the gas at $85 \, \mathrm{cm}^3$

 $50\,\mathrm{cm^3}$ of gas at a pressure of $2.5\,\mathrm{atm}$ is allowed to expand slowly at constant temperature until it fills a volume of $85\,\mathrm{cm^3}$. Calculate the new pressure of the gas.

Part B Volume of gas.

 $20\,\mathrm{dm^3}$ of gas at a pressure of $750\,\mathrm{torr}$ is compressed slowly at constant temperature until the pressure reaches $3.0\times10^5\,\mathrm{torr}$. Calculate the volume now occupied by the gas.

Part C New pressure inside.

A sealed, rigid container of air at $1.0\,\mathrm{atm}$ pressure falls in temperature from $296\,\mathrm{K}$ to $270\,\mathrm{K}$. Find the new pressure inside the container.

Part D New temperature in $^{\circ}$ C.

If the temperature of a gas measured in kelvin is doubled and the gas is initially at $17^{\circ}C$, give its new temperature in $^{\circ}C$.

Part E Temperature to explode.

A canister of gas will explode once the pressure exceeds $40\,\mathrm{atm}$. If the pressure inside is $8.0\,\mathrm{atm}$ at $20\,^{\circ}\mathrm{C}$, find the temperature at which the canister will explode.

Part F Find the new volume.

A sac of gas freely changes its volume to keep its internal pressure equal to atmospheric pressure. If the sac has a volume of $1.2\,\mathrm{m}^3$ at $-10\,^\circ\mathrm{C}$ and then warms up to $17\,^\circ\mathrm{C}$ with no change in pressure, find its new volume.

Home Chemistry Foundations Gas Laws Essential Pre-Uni Chemistry C1.4

Essential Pre-Uni Chemistry C1.4

Use the ideal gas equation of state to answer the following questions. In SI units, the equation is pV = nRT, where $R = 8.31 \, \mathrm{J \, K^{-1} \, mol^{-1}}$.

A gas cylinder is being filled with argon gas. The gas cylinder has a volume of $24\,\mathrm{dm^3}$ and holds $1\,\mathrm{mol}$ of gas at room temperature and pressure.

Part A Amount of gas

Calculate the amount of gas (in moles) which must be added to raise the pressure in the cylinder from $1\,\mathrm{atm}$ to $250\,\mathrm{atm}$. Assume that the volume is constant. Give your answer to 3 significant figures.

Part B New pressure

If the gas cylinder in Part A contains a pressure of $250\,\mathrm{atm}$ at $20\,^\circ\mathrm{C}$, and is caught in a fire, so that its temperature is raised to $350\,^\circ\mathrm{C}$, calculate the new pressure inside the cylinder. Give your answer to 3 significant figures.

Home Chemistry

Foundations

Gas Laws

Essential Pre-Uni Chemistry C1.7

Essential Pre-Uni Chemistry C1.7

Use the ideal gas equation of state to answer this question. In SI units, the equation is pV=nRT, where $R=8.31\,\mathrm{J\,K^{-1}\,mol^{-1}}$.

When $2.0\,\mathrm{moles}$ of a gas mixture at $1\,\mathrm{atm}$ and $296\,\mathrm{K}$ is compressed to half its original volume, the temperature rises to $312\,\mathrm{K}$ and the pressure rises to $1.7\,\mathrm{atm}$. Some of the gas slowly leaks out during compression.

Calculate the amount of gas present in the smaller volume.

<u>Home</u> Chemistry Foundations Gas Laws Essential Pre-Uni Chemistry C1.8

Essential Pre-Uni Chemistry C1.8

Use the ideal gas equation of state to answer this question. In SI units, the equation is pV=nRT, where $R=8.31\,\mathrm{J\,K^{-1}\;mol^{-1}}$.

A vacuum line is lowered to a pressure of $1.3\,\mathrm{kPa}$ at $77\,\mathrm{K}$.

Give the number of molecules of gas per mm^3 .

Home Chemistry Foundations Gas Laws Essential Pre-Uni Chemistry C1.9

Essential Pre-Uni Chemistry C1.9

Use the ideal gas equation of state to answer the following questions. In SI units, the equation is pV = nRT, where $R = 8.31 \, \mathrm{J \, K^{-1} \, mol^{-1}}$.

The endothermic reaction between sodium hydrogencarbonate and ethanoic acid is used to inflate a plastic bag.

Part A Find the volume at $101 \, \mathrm{kPa}$

If the gas produced is at a temperature of $13\,^{\circ}\mathrm{C}$, and $4.0\,\mathrm{g}$ of sodium hydrogenearbonate reacts with excess acid, find the volume of gas produced at a pressure of $101\,\mathrm{kPa}$.

Part B New volume

If the gas then warms up to a room temperature of $32\,^\circ\mathrm{C}$ with no change in pressure, find the new volume of gas.

<u>Home</u> Chemistry

 $\frac{p\left(\mathrm{CO}\right)^2p(\mathrm{H}_2)^2}{p\left(\mathrm{CH}_4\right)p(\mathrm{CO}_2)}$

Physical Equilibrium Essential Pre-Uni Chemistry I1.2

Essential Pre-Uni Chemistry I1.2

<u>Home</u>

Chemistry

Physical

Equilibrium

Essential Pre-Uni Chemistry I1.3

Essential Pre-Uni Chemistry I1.3

Complete the following table:

TOTAL PRESSURE	MOLE FRACTION	PARTIAL PRESSURE
$1.0\mathrm{atm}$	0.075	(a)
125 MPa	$4.00 imes10^{-7}$	(b)
$4.0\mathrm{lb}\mathrm{ft}^{-2}$	0.30	(c)
50 bar	(d)	$200\mathrm{mbar}$
$2.0\mathrm{GPa}$	(e)	$40\mathrm{kPa}$
(f)	$2.5 imes10^{-3}$	$1.4 imes 10^4 \mathrm{Pa}$
(g)	80 %	$120\mathrm{mmHg}$

Where only one of total and partial pressure is given, use the same units for the other.

Part A (a)

Partial pressure (a)

Part B (b)

Partial Pressure (b)

Part C (c)

Partial Pressure (c)

Part D (d)
Mole Fraction (d)
Part E (e)
Mole fraction (e)
Part F (f)
Total pressure (f)
Part G (g)
Total pressure (g)

Home Chemistry

/ P

Physical Equilibrium

Essential Pre-Uni Chemistry I1.5

Essential Pre-Uni Chemistry I1.5

The reaction

$$A + B \Longrightarrow 2C$$

occurs in the gas phase. Its value of K_p at a temperature of $600\,\mathrm{K}$ is 2500. Each row in the table below shows possible partial pressures at equilibrium at $600\,\mathrm{K}$. Find the missing value in each row.

$p(\mathrm{A})$	$p(\mathrm{B})$	$p(\mathrm{C})$
$20\mathrm{kPa}$	$20\mathrm{kPa}$	(a)
$1.00\mathrm{MPa}$	(b)	$100\mathrm{MPa}$
$12.5\mathrm{cm}\mathrm{H}_2\mathrm{O}$	$3.75\mathrm{cm}\mathrm{H}_2\mathrm{O}$	(c)
(d)	$4.0 imes10^6~{ m torr}$	$1.60 imes 10^8 \mathrm{torr}$
$8.0 imes 10^{-4} \mathrm{atm}$	$5.0 imes 10^{-4} \mathrm{atm}$	(e)

Use the same units for your answers as those used in that row of the table.

Part A (a)

Partial pressure (a)

Part B (b)

Partial pressure (b)

Part C (c)

Partial pressure (c)

Part D	(d)			
Pa	rtial pressure (d)			
Dout C	(-)			
Part E	(e)			
Pa	artial pressure (e)			

All materials on this site are licensed under the $\underline{\textbf{Creative Commons license}}, \text{unless stated otherwise}.$

<u>Home</u> Chemistry

Physical Equilibrium Essential Pre-Uni Chemistry I1.6

Essential Pre-Uni Chemistry I1.6

The reaction

$$A + B \rightleftharpoons 2 C$$

occurs in the gas phase. Its value of K_p at a temperature of $600\,\mathrm{K}$ is 2500.

The table below shows initial pressures before equilibration at $600\,\mathrm{K}$. Calculate the equilibrium pressures in each case. Assume that the total gas pressure is kept constant.

Initial $p(A)$	Initial $p(\mathrm{B})$	Initial $p(\mathrm{C})$	Equilibrium $p(\mathbf{A})$	Equilibrium $p(\mathrm{B})$	Equilibrium $p(\mathbf{C})$
$10.0\mathrm{atm}$	$10.0\mathrm{atm}$	$0.0\mathrm{atm}$	(a)	(b)	(c)
$0.0\mathrm{MPa}$	$0.0\mathrm{MPa}$	$12.0\mathrm{MPa}$	(d)	(e)	(f)
$250.0\mathrm{bar}$	$250.0\mathrm{bar}$	$0.0\mathrm{bar}$	(g)	(h)	(i)
$0.00\mathrm{psi}$	$0.00\mathrm{psi}$	$2400.00\mathrm{psi}$	(j)	(k)	(1)

Give your answers in the same units as those used in that row.

Part A (a)

Equilibrium pressure (a). Give your answer to 3 significant figures.

Part B (b)

Equilibrium pressure (b). Give your answer to 3 significant figures.

Part C (c)

Equilibrium pressure (c). Give your answer to 3 significant figures.

Part D	(d)
Eq	juilibrium pressure (d). Give your answer to 3 significant figures.
Part E	(e)
Eq	uilibrium pressure (e). Give your answer to 3 significant figures.
Part F	(f)
Eq	uilibrium pressure (f). Give your answer to 3 significant figures.
Part G	(g)
Eq	juilibrium pressure (g). Give your answer to 4 significant figures.
Part H	(h)
Eq	uilibrium pressure (h). Give your answer to 4 significant figures.
Part I	(i)
Eq	juilibrium pressure (i). Give your answer to 4 significant figures.
Part J	(j)
Eq	uilibrium pressure (j). Give your answer to 4 significant figures.

Eq	uilibrium pressure (k). Give your answer to 4 significant figures.
Part L	(1)
Eq	uilibrium pressure (I). Give your answer to 4 significant figures.

Part K (k)

All materials on this site are licensed under the $\underline{\textbf{Creative Commons license}}, \text{unless stated otherwise}.$

Home Chemistry Physical Equilibrium Essential Pre-Uni Chemistry I1.8

Essential Pre-Uni Chemistry I1.8

The reaction

$$CH_4 + H_2O \Longrightarrow CO + 3H_2$$

has an equilibrium constant, K_p , of $150.5\,\mathrm{Pa^2}$ at a temperature of $1073\,\mathrm{K}$. [1]

$$K_p = rac{p\left(\mathrm{CO}
ight)p\left(\mathrm{H_2}
ight)^3}{p\left(\mathrm{CH_4}
ight)p\left(\mathrm{H_2O}
ight)}$$

Part A (a)

If the partial pressures at equilibrium are $p(CH_4)=20.0\,\mathrm{kPa}$, $p(H_2O)=20.0\,\mathrm{kPa}$ and $p(CO)=50.0\,\mathrm{kPa}$, find the partial pressure of hydrogen at equilibrium.

Part B (b)

If equal amounts of methane and steam are mixed and allowed to reach equilibrium, and the partial pressures $p(CO) = 40.0 \, \mathrm{kPa}$ and $p(H_2) = 120 \, \mathrm{kPa}$, find the partial pressure of methane at equilibrium.

Part C (c)

following increase, decrease or stay the same as the system reaches a new equilibrium?
K_p
increase
stay the same
decrease
Mole fraction of CO
increase
stay the same
decrease
Mole fraction of CH_4
increase
stay the same
decrease
(Π, Ω)
$p(\mathrm{H_2O})$
increase
stay the same
decrease

Once the gases have reached equilibrium, the total pressure is suddenly doubled by the engineer. Will the

[1]

$$K_p = rac{p\left(\mathrm{CO}
ight)p\left(\mathrm{H_2}
ight)^3}{p\left(\mathrm{CH_4}
ight)p\left(\mathrm{H_2O}
ight)}$$