1

(Jan 2020)

Assignment 1

EE24Btech11024 - G. Abhimanyu Koushik

1) If $\int \frac{\cos x}{\sin^3 x (1+\sin^6 x)}$	$\frac{1}{(x)^{\frac{2}{3}}}dx = f(x)\left(1 + \sin^6 x\right)^{\frac{1}{\lambda}} + c$, where c is a constan	t of integration, then	$\lambda f\left(\frac{\pi}{3}\right)$ is equal	
to:				(Jan 2020)	
a) $-\frac{9}{8}$	b) ⁹ / ₈	c) 2	d) -2		
2) Let $y = f(x)$ by	be a solution to the differentia	1 equation $\sqrt{1-x^2} \frac{dy}{dx}$	$+ \sqrt{1 - y^2} = 0, \ x <$	$1 \text{ If } y\left(\frac{1}{2}\right) = \frac{\sqrt{3}}{2},$	
then $y\left(-\frac{1}{\sqrt{2}}\right)$ is	is equal to			(Jan 2020)	
a) $-\frac{1}{\sqrt{2}}$	b) $-\frac{\sqrt{3}}{2}$	c) $\frac{1}{\sqrt{2}}$	d) $\frac{\sqrt{3}}{2}$		
3) $\lim_{x\to 0} \left(\frac{3x^2+2}{7x^2+2}\right)^{\frac{1}{2}}$	$\frac{1}{x^2}$ is equal to			(
				(Jan 2020)	
a) <i>e</i>	b) $\frac{1}{e^2}$	c) $\frac{1}{e}$	d) e^2		
_	e are 5 red balls, 3 white ball f ways in which at most 3 re		balls are drawn from	n the bag. Find	
				(Jan 2020)	
a) 450	b) 360	c) 490	d) 510		
5) Let $f(x) = \left(\sin\left(\tan^{-1}x\right) + \sin\left(\cot^{-1}x\right)\right)^2 - 1$ where $ x > 1$. If $\frac{dy}{dx} = \frac{1}{2}\frac{d}{dx}\left(\sin^{-1}f(x)\right)$ and $y(\sqrt{3}) = \frac{1}{2}\frac{dx}{dx}$					
then $y(-\sqrt{3})$	is equal to:			(1 2020)	
				(Jan 2020)	
a) $\frac{\pi}{3}$	b) $\frac{2\pi}{3}$	c) $-\frac{\pi}{6}$	d) $\frac{5\pi}{6}$		
6) Let $f: \mathbb{R} \to$ minimum valu	\mathbb{R} be such that for all $x \in \mathbb{R}$ up of $f(x)$ is:	$\mathbb{R}, (2^{1+x} + 2^{1-x}), f(x)$	and $(3^x + 3^{-x})$ are i	n A.P, then the	
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	20 of y (x) is.			(Jan 2020)	
a) 0	b) 4	c) 3	d) 2		
7) Which of the	following is a tautology?				
,	0 0,			(Jan 2020)	
a) $(P \land (P \rightarrow P))$	$Q)) \to Q$ b) $P \land (P \lor Q)$	c) $(Q \to (\land (P = Q)))$	$\rightarrow Q)))$ d) $P \lor (P$	$\land Q$)	
8) A is 3×3 ma	ntrix whose elements are from	m the set $\{-1, 0, 1\}$. F	ind the number of n	matrices A such	

that $tr(AA^{\top}) = 3$. Where tr(A) is sum of diagonal elements of matrix A.

a) 572	b) 612	c) 672	d) 682	
	d deviation of 10 observed ded by p and then reduced ome half of their original	d by q , where $p \neq 0$ and	$q \neq 0$. If the new	
standard deviation beet	one han of their original	varues, then q is equal	ιο.	(Jan 2020)
a) -20	b) -5	c) 10	d) -10	
10) If a , b and c are the gr	reatest values of ${}^{19}C_p$, ${}^{20}C_p$	C_q , $^{21}C_r$ respectively, then	1:	(Jan 2020)
a) $\left(\frac{a}{11}\right) = \left(\frac{b}{22}\right) = \left(\frac{c}{42}\right)$	b) $\left(\frac{a}{10}\right) = \left(\frac{b}{11}\right) = \left(\frac{c}{42}\right)$	c) $\left(\frac{a}{11}\right) = \left(\frac{b}{22}\right) = \left(\frac{c}{21}\right)$	d) $\left(\frac{a}{10}\right) = \left(\frac{b}{11}\right)$	$=\left(\frac{c}{21}\right)$
11) Let A and B be two i	ndependent events such	that $P(A) = \frac{1}{3}$ and $P(A)$	B) = $\frac{1}{6}$. Then w	which of the
following is TRUE ?				(Jan 2020)
a) $P\left(\frac{A}{A \cup B}\right) = \frac{1}{4}$	b) $P\left(\frac{A}{B'}\right) = \frac{1}{3}$	c) $P\left(\frac{A}{B}\right) = \frac{2}{3}$	d) $P\left(\frac{A'}{B'}\right) = \frac{1}{3}$	
12) The inverse of the fund	etion $f(x) = \frac{8^{2x} - 8^{-2x}}{8^{2x} + 8^{-2x}}$ is			(Jan 2020)
a) $\frac{1}{4} (\log_8 e) \log_e \left(\frac{1+x}{1-x}\right)$	b) $\frac{1}{4} (\log_8 e) \log_e \left(\frac{1-x}{1+x}\right)$	c) $\frac{1}{4}\log_e\left(\frac{1+x}{1-x}\right)$	d) $\frac{1}{4} \log_e \left(\frac{1-x}{1+x} \right)$	
13) If the equation, $x^2 + bx$ then:	$+45 = 0 (b \in \mathbb{R})$ has conj	ugate complex roots and	they satisfy $ z $ +	
				(Jan 2020)
a) $b^2 + b = 12$	b) $b^2 - b = 42$	c) $b^2 - b = 30$	d) $b^2 + b = 72$	2
14) For $f(x) = \ln\left(\frac{x^2 + \alpha}{7x}\right)$ Ro	olle's theorem is applicab	ole on [3,4], the value of	f f''(c) is equal	to (Jan 2020)
a) $\frac{1}{12}$	b) $-\frac{1}{12}$	c) $\frac{1}{6}$	d) $-\frac{1}{6}$	
15) Let $f(x) = x \cos^{-1}(\sin x)$	$(- x), x \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$. Then			(Ion 2020)
a) $f'(0) = -\frac{\pi}{2}$ b) $f'(x)$ is not defined c) $f'(x)$ is increasing in d) $f'(x)$ is decreasing i	at $x = 0$ $\ln\left(\frac{-\pi}{2}, 0\right)$ and $f'(x)$ is decompled in $\left(\frac{-\pi}{2}, 0\right)$ and $f'(x)$ is incomplete.	creasing in $\left(0, \frac{\pi}{2}\right)$ creasing in $\left(0, \frac{\pi}{2}\right)$		(Jan 2020)