Chapitre 27

Séries numériques

27	Séries numériques	1
	27.6 Série géométrique	2
	27.11Deux séries de termes généraux égaux presque partout	2
	27.12CN de convergence portant sur le terme général	2
	27.16Théorème de comparaison des séries à termes positifs	2
	27.20Convergence absolue entraı̂ne convergence	
	27.23Comparaison des séries par domination ou négligabilité	
	27.24Comparaison des séries à termes positifs par équivalence	•

27.6 Série géométrique

Théorème 27.6

Soit $a \in \mathbb{C}$. La série $\sum a^n$ converge si et seulement si |a| < 1. Dans ce cas :

$$\sum_{n=0}^{+\infty} a^n = \frac{1}{1-a}$$

Soit $n \in \mathbb{N}$.

$$S_n = \sum_{k=0}^n a^k = \frac{1 - a^{n+1}}{1 - a} \ (a \neq 1)$$

$$\underset{n \to +\infty}{\longrightarrow} \frac{1}{1 - a} \ (|a| < 1)$$

La série converge et $\sum_{n\geq 0} a^n = \frac{1}{1-a}$.

27.11 Deux séries de termes généraux égaux presque partout

Propostion 27.11

Si (u_n) et (v_n) ne diffèrent que d'un nombre fini de termes, alors $\sum u_n$ et $\sum v_n$ sont de même nature.

On note $A = \{n \in \mathbb{N}, u_n \neq v_n\}$. Supposons $A \neq \emptyset$.

D'après les hypothèses, A est majoré donc possède un maximum N d'après la propriété fondamentale de \mathbb{N} . On note (S_n) et (S'_n) les sommes partielles associée à $\sum u_n$ et $\sum v_n$. Pour $n \geq N$:

$$S_n = S'_n + K$$
 où $K = \sum_{k \in A} (u_k - v_k)$ (constant)

Ainsi (S_n) converge si et seulement si (S'_n) converge.

27.12 CN de convergence portant sur le terme général

${ m Th\'eor\`eme}~27.12$

Si $\sum u_n$ converge, alors (u_n) converge vers 0. De manière équivalente, si (u_n) ne tend pas vers 0, la série $\sum u_n$ diverge.

On suppose que $S_n \xrightarrow[n \to +\infty]{} \ell \in \mathbb{R}$ ou \mathbb{C} .

$$u_n = S_n - S_{n-1} = \ell - \ell = 0$$

27.16 Théorème de comparaison des séries à termes positifs

Théorème 27.16

Soit $\sum u_n$ et $\sum v_n$ deux séries à termes positifs telles qu'il existe $N \in \mathbb{N}$ tel que pour tout $n \geq N$:

$$0 \le u_n \le v_n$$

Alors:

— Si $\sum v_n$ converge, alors $\sum u_n$ converge aussi.

— Si $\sum u_n$ diverge (vers $+\infty$ donc), alors $\sum v_n$ diverge aussi (vers $+\infty$ donc).

De plus, si la divergence est grossière pour $\sum u_n$, elle l'est aussi pour $\sum v_n$.

En utilisant les notations du (27.11), on peut supposer que :

$$\forall n \geq 0, 0 \leq u_n \leq v_n$$

Puis:

$$\forall n \geq 0, 0 \leq S_n \leq S'_n$$

On utilise alors le théroème de comparaison sur les suites.

27.20 Convergence absolue entraîne convergence

Théorème 27.20

Toute série réelle ou complexe absolument convergente est convergente.

— On suppose que $(u_n) \in \mathbb{R}^{\mathbb{N}}$, avec $\sum |u_n|$ convergente.

On pose, pour tout $n \in \mathbb{N}$:

$$u_n^+ = \max(u_n, 0) \ge 0$$
 et $u_n^- = \max(-u_n, 0) \ge 0$

Ainsi, $u_n = u_n^+ - u_n^-$.

Or, pour tout n:

$$0 \le u_n^+ \le |u_n|$$

$$0 \le u_n^- \le |u_n|$$

Par comparaison des séries à termes positifs, $\sum u_n^+$ et $\sum u_n^-$ convergent et par linéarité (27.16) $\sum u_n$ converge.

— On suppose que $(u_n) \in \mathbb{C}^{\mathbb{N}}$, avec $\sum |u_n|$ convergente. Alors:

$$\forall n \in \mathbb{N}, |Re(u_n)| \le |u_n|$$

 $|Im(u_n)| \le |u_n|$

Donc, $\sum Re(u_n)$ et $\sum Im(u_n)$ sont absolument convergentes (27.15) donc convergent, puis par combinaison linéaire (27.16) $\sum u_n$ converge.

27.23 Comparaison des séries par domination ou négligabilité

${ m Th\'eor\`eme}~27.23$

Soit $\sum u_n$ une série à termes quelconques et $\sum v_n$ une série à termes positifs telles que $u_n = O(v_n)$ (ou $u_n = o(v_n)$). Alors :

— La convergence de $\sum v_n$ entraı̂ne la convergence absolue de $\sum u_n$.

— La divergence de $\sum u_n$ (celle de $\sum |u_n|$ suffit) entraı̂ne la divergence de $\sum v_n$.

On suppose $u_n = O(v_n)$ avec $v_n \ge 0$.

— On suppose que $\sum v_n$ converge. On a $|u_n| = O(v_n)$ donc à partir d'un certain rang :

$$0 \le |u_n| \le Mv_n$$

D'après le théorème de comparaison par majoration des séries à termes positifs, $\sum |u_n|$ converge donc $\sum u_n$ converge.

— Si $\sum |u_n|$ diverge, par comparaison par minoration des séries à termes positifs, $\sum v_n$ diverge.

27.24 Comparaison des séries à termes positifs par équivalence

${ m Th\'eor\`eme}$ 27.24

Soit $\sum u_n$ et $\sum v_n$ deux séries à termes positifs. Si $u_n \underset{n \to +\infty}{\sim} v_n$, alors les séries $\sum u_n$ et $\sum v_n$ sont de même nature.

Si $u_n \underset{n \to +\infty}{\sim} v_n$, alors $u_n \underset{n \to +\infty}{=} O(v_n)$ et $v_n \underset{n \to +\infty}{=} O(u_n)$.

On conclut avec (27.23).