- 1 Краткие теоретические вопросы по теме "Ряды Фурье"
- 1.1 Как найти коэффициенты равномерно сходящегося тригонометрического ряда по его сумме?

Для функции f с периодом 2π представимой в виде суммы тригонометрического ряда

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx$$

коэффициенты a_n и b_n находятся по формулам

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \ (n = 0, 1, 2...)$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \ (n = 1, 2...)$$

1.2 Что такое коэффициенты Фурье по ортонормированной системе в абстрактном векторном пространстве со скалярным произведением? Опишите проекционное свойство частичной суммы ряда Фурье.

Пусть $\vec{a} \in V$, где V унитарное пространство и $\{\vec{e}_n\}_{n=1}^{\infty}$ ортонормированная система.

Тогда коэффициентами Фурье по ортонормированной системе $\{\vec{e}_n\}$ называются числа

$$c_n(\vec{a}) = (\vec{a}, \vec{e_n})$$

Рассмотрим $b_n = \sum_{k=1}^n c_k(\vec{a}) \vec{e_k}$. Тогда $\vec{a} - \vec{b} \perp \vec{b}$. Это и есть про-екционное свойство.

1.3 Что такое равенство Парсеваля? Объясните, почему коэффициенты Фурье обязаны убывать.

Из неравенства Бернулли

$$\sum_{i=1}^{\infty} |c_i(\vec{a})|^2 \le ||\vec{a_n}||^2$$

по необходимому признаку сходимости ряда следует, что $c_i(\vec{a}) \to 0$ при $n \to 0$. Равенство

$$\sum_{i=1}^{\infty} |c_i(\vec{a})|^2 = ||\vec{a_n}||^2$$

называется уравнением замкнутости или равенством Парсеваля

1.4 В чем состоит минимизирующее свойство коэффициентов Фурье?

Пусть $a \in V$ и $\{\vec{e}_n\}_{n=1}^n$ — произвольная ортонормированная система. Тогда

$$\min_{\lambda_1,...,\lambda_n} \Delta(\lambda_1,...,\lambda_n) = \Delta(c_1,...,c_n),$$

где $\Delta(\lambda_1,...,\lambda_n) = ||\vec{a} - \sum_{k=1}^n \lambda_k \vec{e_k}||$ и $c_k = c_k(\vec{a})$ — коэффициенты Фурье относительно ортонормированной системы $\{\vec{e_n}\}_{n=1}^n$

1.5 Что такое ряд Фурье на пространстве 2l-периодических функций

Зададим в пространстве непрерывных 2l-периодических функций скалярное произведение

$$(f,g) = \frac{1}{2l} \int_0^{2l} f(x) \overline{g(x)} dx,$$

тем самым превратив его в унитарное. Обозначим его как C_{2l} .

 $e_n: x \mapsto e^{i\frac{\pi}{l}nx}, n \in \mathbb{Z}, \ e_n$ образуют ортонормированную систему Коэффициенты Фурье относительно этой ортонормированной системы

$$c_n(f) = \frac{1}{2l} \int_0^{2l} f(x)e^{-i\frac{\pi}{l}nx} dx$$

Ряд Фурье

$$f(x) = \sum_{n \in \mathbb{Z}} c_n(f) e^{i\frac{\pi}{l}nx}$$

В предыдущем выражении равенство в смысле среднеквадратичной нормы.

1.6 Как разложить функцию, заданную на интервале (0, l), в ряд по косинусам кратных дуг? по синусам?

Воспользуемся в этом вопросе вещественной формой ряда Фурье

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{\pi nx}{l} + b_n \sin \frac{\pi nx}{l}$$

и коэффициенты запишем в симметричной форме

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{\pi nx}{l} dx \ (n = 0, 1, 2...)$$

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{\pi nx}{l} dx \ (n = 1, 2...)$$

Далее для нахождения разложения на интервале (0,l) можно продолжить функцию периодически на всю ось с периодом T=l тогда получится ряд содержащий и синусы, и косинусы. Если же предварительно продолжить функцию чЁтно(нечЁтно) относительно нуля на интервал (-l,l) и затем периодически T=2l, то в ряду останутся слагаемые только с косинусами(синусами), так как при вычислении коэффициента b_n (a_n) будет интегрироваться нечЁтная функция по симметричному интервалу.

Аналогично для получения разложения косинусам (синусам) кратных дуг нужно перед чЁтным (нечЁтным) продолжением относительно 0 продолжить функцию чЁтно/нечЁтно (в зависимости от того какие кратности дуг нужны (см. таблицу ниже)) относительно l.

Продолж. относ. 0	Продолж. относ. l	Тип разложения
ЧЁтно	ЧЁтно	Косинусы чЁтных дуг
ЧЁтно	НечЁтно	Косинусы нечЁтных дуг
НечЁтно	ЧЁтно	Синусы чЁтных дуг
НечЁтно	НечЁтно	Синусы нечЁтных дуг

1.7 Дайте определение свертки периодических функций. Как найти коэффициенты Фурье свертки?

Пусть f и g непрерывные 2l-периодические функции. Св Ёрткой f*g называется

$$f * g(x) = \frac{1}{2l} \int_0^{2l} f(t)g(x-t)dt$$

Свойства f * g

- ullet f*g непрерывная 2l-периодическая функция
- \bullet если g дополнительно k раз непрерывно дифференцируема, то $f\ast g$ тоже и

$$(f * g)^{(k)} = f * g^{(k)}$$

• f * g билинейна, комутативна, ассоциативна

Коэффициенты Фурье свертки находятся как произведение коэффициентов Фурье каждой из функций, то есть

$$c_n(f * g) = c_n(f)c_n(g)$$

1.8 Как найти производную свертки, если один из сверточных сомножителей дифференцируем? Как это свойство можно использовать для сглаживания функции?(Не полный)

Пусть f и g непрерывные 2l-периодические функции. Св Ёрткой f*g называется

$$f * g(x) = \frac{1}{2l} \int_0^{2l} f(t)g(x-t)dt$$

Если g дополнительно k раз непрерывно дифференцируема, то f * g — тоже и

$$(f * g)^{(k)} = f * g^{(k)}$$

1.9 Что такое фильтр и передаточная функция в теории обработки радиосигналов? Объясните, почему не существует идеального фильтра.

Отображение $f \to f * g$ описывает прохождение сигнала f через фильтр g. В результате амплитуда $c_n(f)$ n-ой гармоники f умножается на $c_n(g)$.

В силу леммы Римана-Лебега $c_n(g) \to 0, n \to \infty$, значит $\nexists g$: f * g = f (не существует фильтра не искажающего сигнал).

Передаточной называется функция отношения выходного сигнала к входному, то есть передаточная функция $W(x)=\frac{f*g(x)}{f(x)}$

1.10 Что утверждает лемма Римана-Лебега? Какова ее связь со стремлением коэффициентов Фурье к нулю?

Лемма Римана-Лебега состоит в том, что если $f(x) \in C[a,b]$, то

$$\int_{a}^{b} f(x)e^{ikx}dx \to 0, k \to 0$$

Заметим, что при $a=0,\,b=2l,\,k=-\frac{\pi}{l}n,n\in\mathbb{Z}$ и $f(x)\in C_{2l}$

$$\int_{a}^{b} f(x)e^{ikx}dx \to 0 = 2l\frac{1}{2l} \int_{0}^{2l} f(x)e^{-i\frac{\pi}{l}nx}dx = 2lc_{n}(f) \to 0, k \to 0$$

Значит $c_n(f)\to 0, k\to 0$, где c_n — коэффициенты Фурье относительно ортонормированной системы $e_n,\ e_n:x\mapsto e^{i\frac{\pi}{l}nx}, n\in\mathbb{Z}$

1.11 Сформулируйте теорему Дирихле для непрерывно дифференцируемых функций. Почему ряд Фурье сходится к такой функции равномерно?(Не полностью)

Теорема Дирихле состоит в том, что если функция $f \in C^1_{2l}$, то ряд Фурье сходится к f поточечно

$$f(x) = \sum_{n \in \mathbb{Z}} c_n e^{i\frac{\pi}{l}nx},$$

где $x \in \mathbb{R}$ и $c_n = \frac{1}{2l} \int_0^{2l} f(x) e^{-i\frac{\pi}{l}nx} dx$

1.12 Что такое сходимость рядов Фурье в среднеквадратичном? Какова связь такой сходимости с равенством Парсеваля?

Если функция f непрерывна и периодична c периодом 2l, то ряд Фурье сходится к функции f в среднеквадратичном

$$||f - \sum_{k=-n}^{n} c_k e_k|| \underset{n \to \infty}{\longrightarrow} 0,$$

где $c_n = \frac{1}{2l} \int_0^{2l} f(x) e^{-i\frac{\pi}{l}nx} dx$ и $e_n = e^{i\frac{\pi}{l}nx}$

Воспользуемся минимизирующим свойством коэффициентов Фурье

$$||f - \sum_{k=-n}^{n} c_k e_k|| = ||f|| - \sum_{k=-n}^{n} c_k \xrightarrow[n \to \infty]{} 0$$

откуда получим равенство Парсеваля

$$||f|| = \sum_{k \in \mathbb{Z}} c_k$$

1.13 Как найти коэффициенты Фурье первообразной функции с нулевым средним?

Пусть $f-2\pi$ переодическая функция и $c_0=0$ (среднее значение f равно нулю), тогда первообразная $F(x)=\int_0^x f(t)dt$ тоже 2π периодическая функция и

$$F(x) = \sum_{n \neq 0} c_n \int_0^x e^{int} dt$$

1.14 Что представляет собой ряд Фурье производной? Какова связь между гладкостью функции и скоростью убывания коэффициентов Фурье?

Для 2π периодической k раз непрерывно дифференцируемой функции $f \in C_{2\pi}^{(k)}$

$$c_n(f^k) = (in)^k c_n(f)$$

Чем глаже функция, тем быстрее убывают коэффициенты

$$c_n(f) = o\left(\frac{1}{n^k}\right)$$

Обратное тоже верно, но в другой формулировке:

Если

$$c_n = \frac{\sigma_n}{n^{k+1}},$$

где

$$\{\sigma_n\}: \sum |\sigma_n|^2 -$$
 сходится

то $f \in C^k_{2\pi}$