Quantifying nitrogen oxides and ammonia via frequency modulation in gas sensors

Master Thesis - Mid term seminar

Marcos F Mourão

March 25, 2021

Outline

Problem recap

What has been done so far

Caveats

(Dummy) data

Methods

(Preliminary) Results

Real data

What is next

Motivation

 NO_x^1 :

¹Image source: ENVIS Centre on Plants and Pollution (♂) (≧) (≧) (≧) (?)

Motivation

 NO_x^1 :

NOx are detrimental to the environment and humans.

Motivation

 NO_{x}^{1} :

- NOx are detrimental to the environment and humans.
- NOx are naturally ocurring in man-made processes. E.g. Combustion.

¹Image source: ENVIS Centre on Plants and Pollution (2) (2) (2) (2) (3)

Motivation

 NO_{x}^{1} :

- NOx are detrimental to the environment and humans.
- NOx are naturally ocurring in man-made processes. E.g. Combustion.
- Ammonia can "neutralize" NOx, producing water (H₂O) and nitrogen gas (N₂). Both harmless! - Selective catalytic reduction (SCR).

Motivation

 NO_{\times}^{1} :

- NOx are detrimental to the environment and humans.
- NOx are naturally ocurring in man-made processes. E.g. Combustion.
- Ammonia can "neutralize" NOx, producing water (H₂O) and nitrogen gas (N₂). Both harmless! - Selective catalytic reduction (SCR).
- But ammonia is also hazardous to the environment/humans.

Motivation

▶ The dosing of ammonia in the catalyst is key:

- ▶ The dosing of ammonia in the catalyst is key:
 - ▶ Too much ammonia: NOx reduction will occur \rightarrow Unnecessary ammonia emissions.

- ▶ The dosing of ammonia in the catalyst is key:
 - ► Too much ammonia: NOx reduction will occur → Unnecessary ammonia emissions.
 - ▶ Too little ammonia: NOx reduction will occur partially/will not occur \rightarrow NOx emissions.

- ▶ The dosing of ammonia in the catalyst is key:
 - ► Too much ammonia: NOx reduction will occur → Unnecessary ammonia emissions.
 - Too little ammonia: NOx reduction will occur partially/will not occur → NOx emissions.
- Gas sensors can be used to measure the concentrations of NOx to aid on ammonia dosing.

- ▶ The dosing of ammonia in the catalyst is key:
 - ▶ Too much ammonia: NOx reduction will occur \rightarrow Unnecessary ammonia emissions.
 - Too little ammonia: NOx reduction will occur partially/will not occur → NOx emissions.
- Gas sensors can be used to measure the concentrations of NOx to aid on ammonia dosing.
- ▶ However, the sensor also responds to ammonia.

- The dosing of ammonia in the catalyst is key:
 - ► Too much ammonia: NOx reduction will occur → Unnecessary ammonia emissions.
 - Too little ammonia: NOx reduction will occur partially/will not occur → NOx emissions.
- Gas sensors can be used to measure the concentrations of NOx to aid on ammonia dosing.
- However, the sensor also responds to ammonia.
- Operating the sensor in a cyclic operation (e.g. temperature) can enhance selectivity.

- The dosing of ammonia in the catalyst is key:
 - ▶ Too much ammonia: NOx reduction will occur \rightarrow Unnecessary ammonia emissions.
 - Too little ammonia: NOx reduction will occur partially/will not occur → NOx emissions.
- Gas sensors can be used to measure the concentrations of NOx to aid on ammonia dosing.
- However, the sensor also responds to ammonia.
- Operating the sensor in a cyclic operation (e.g. temperature) can enhance selectivity.
 - Different gasses react differently in different stages of the cycle.

- ▶ The dosing of ammonia in the catalyst is key:
 - ▶ Too much ammonia: NOx reduction will occur \rightarrow Unnecessary ammonia emissions.
 - Too little ammonia: NOx reduction will occur partially/will not occur → NOx emissions.
- Gas sensors can be used to measure the concentrations of NOx to aid on ammonia dosing.
- However, the sensor also responds to ammonia.
- Operating the sensor in a cyclic operation (e.g. temperature) can enhance selectivity.
 - Different gasses react differently in different stages of the cycle.
- Temperature cycling.

- ▶ The dosing of ammonia in the catalyst is key:
 - ▶ Too much ammonia: NOx reduction will occur \rightarrow Unnecessary ammonia emissions.
 - Too little ammonia: NOx reduction will occur partially/will not occur → NOx emissions.
- Gas sensors can be used to measure the concentrations of NOx to aid on ammonia dosing.
- However, the sensor also responds to ammonia.
- Operating the sensor in a cyclic operation (e.g. temperature) can enhance selectivity.
 - Different gasses react differently in different stages of the cycle.
- Temperature cycling.
- Frequency cycling.

Research questions

Research questions

Can frequency cycling be used to simultaneously quantify NOx and ammonia concentrations?

Research questions

- ► Can frequency cycling be used to simultaneously quantify NOx and ammonia concentrations?
- ▶ Which method yield best prediction of gas concentrations?

Writing

- Writing
 - Introduction Done.

- Writing
 - Introduction Done.
 - Theory Partially done.

- Writing
 - Introduction Done.
 - Theory Partially done.
 - Data Partially done.

- Writing
 - Introduction Done.
 - ► Theory Partially done.
 - Data Partially done.
- Some preliminary implementation of the methods

- Writing
 - Introduction Done.
 - ► Theory Partially done.
 - Data Partially done.
- Some preliminary implementation of the methods
 - Linear Regression

- Writing
 - Introduction Done.
 - ► Theory Partially done.
 - Data Partially done.
- Some preliminary implementation of the methods
 - Linear Regression
 - Principal Component Regression

- Writing
 - Introduction Done.
 - ► Theory Partially done.
 - Data Partially done.
- Some preliminary implementation of the methods
 - Linear Regression
 - Principal Component Regression
 - Partial Least Squares Regression

- Writing
 - Introduction Done.
 - ► Theory Partially done.
 - Data Partially done.
- Some preliminary implementation of the methods
 - Linear Regression
 - Principal Component Regression
 - Partial Least Squares Regression
 - Ridge Regression

▶ Real data not yet available - lab problems

- ▶ Real data not yet available lab problems
- Methods used on "dummy" data

- ▶ Real data not yet available lab problems
- ▶ Methods used on "dummy" data
- Dummy data has problems:

- ► Real data not yet available lab problems
- Methods used on "dummy" data
- Dummy data has problems:
 - Small number of observations

- Real data not yet available lab problems
- Methods used on "dummy" data
- Dummy data has problems:
 - Small number of observations
 - Measurement of shape features

- Real data not yet available lab problems
- Methods used on "dummy" data
- Dummy data has problems:
 - Small number of observations
 - Measurement of shape features
 - Naïve window of measurements

- Real data not yet available lab problems
- Methods used on "dummy" data
- Dummy data has problems:
 - Small number of observations
 - Measurement of shape features
 - Naïve window of measurements
 - High frequencies problematic

Caveats

- Real data not yet available lab problems
- Methods used on "dummy" data
- Dummy data has problems:
 - Small number of observations
 - Measurement of shape features
 - Naïve window of measurements
 - High frequencies problematic

(Dummy) data

(Dummy) data

	NO2	NO	NH3	avg0	avg1	avg2	avg3	avg4	avg5	avg6	 slope15	slope16	slope17	slope18	slope19
0	50	100	25	-0.076323	0.915652	-0.970946	0.999202	-0.363800	-0.026400	0.603117	 -11.274687	-10.370948	3.966974	-0.479340	-0.897105
1	100	25	100	-0.352834	0.854548	-0.934629	0.984386	-0.188594	0.027784	0.792582	 -11.287665	-11.421536	1.860088	-2.393667	-3.398451
2	25	100	50	-0.141720	0.874015	-0.959047	0.999862	-0.352600	0.027594	0.561209	 -4.754586	-11.580877	-3.583086	-3.218467	-1.802992
3	50	25	100	-0.249815	0.890990	-0.850049	1.123559	-0.242452	0.254415	0.645449	 1.367344	-11.669267	-6.962770	2.391163	3.753269
4	100	100	25	-0.188844	0.765447	-1.026246	0.960545	-0.511767	0.027451	0.372231	 1.599057	-10.410155	-6.444129	3.060615	4.349158

_ __ .

1. Linear Regression

- 1. Linear Regression
- 2. Principal Component Regression

- 1. Linear Regression
- 2. Principal Component Regression
- 3. Partial Least Squares Regression

- 1. Linear Regression
- 2. Principal Component Regression
- 3. Partial Least Squares Regression
- 4. Ridge Regression

- 1. Linear Regression
- 2. Principal Component Regression
- 3. Partial Least Squares Regression
- 4. Ridge Regression
- 5. Some non-parametric regression tbd

More gas mixtures

- More gas mixtures
- More frequencies

- More gas mixtures
- More frequencies
- More cycles

- More gas mixtures
- More frequencies
- More cycles
- Shape features directly measured

Table: Data acquisition details

Parameter	Value				
Factors (gases)	3				
Levels (concentrations)	5				
Frequencies	16				
Features per frequency	4 (2 slopes and 2 averages)				
Features per cycle	64				
Number of cycles	5				
Data points per mixture	320				
Number of mixtures	125				
Datapoints per experiment	40.000				
Number of experiments	3				
Total data points	120.000				

1. Apply methods to real data

- 1. Apply methods to real data
- 2. Assess results

- 1. Apply methods to real data
- 2. Assess results
- 3. Define what is "good" in "good prediction levels"

- 1. Apply methods to real data
- 2. Assess results
- 3. Define what is "good" in "good prediction levels"
- 4. Look into non-parametric alternatives

- 1. Apply methods to real data
- 2. Assess results
- 3. Define what is "good" in "good prediction levels"
- 4. Look into non-parametric alternatives
- Keep writing!

Thank you!