Esquema de compartición de secretos de Shamir

Integrantes: Daniel Valencia Cordero Jorge M. Benavides Castro

Biografía de Shamir

- Adi Shamir
- Nació en 1952 en Tel Aviv, Israel
- Estudios en licenciatura en matemáticas, con máster y doctorado en Ciencias de la computación
- Gran Medalla de la Academia de Ciencias de Francia en 2012, por sus trabajos en criptografía.
- En 2017, Premio Fundación BBVA Fronteras del Conocimiento, en la categoría de Tecnologías de la Información y la Comunicación.

A. S. A. Shamir, 2009 Nombre Adi Shamir Nacimiento 1952 Israel, T. A. N. israelí O. matemático, criptógrafo, y informática P. P. T. en 2002, « Adi Shamir», Los diccionarios y las enciclopedias sobre el Académico. [En línea]. Disponible en: https://esacademic.com/dic.nsf/eswiki/37779. [Accedido: 20-oct-2019].

¿En qué consiste un esquema de compartición de secretos?

Problema: Que una persona no posea todo el secreto.

Solución: Dividir el mensaje entre varias personas para que así solo una no posea todo el mensaje y que se necesite un número mínimo de estas para poder recuperar el mensaje.

Criptografía con umbral

Tiene como objetivo distribuir alguna funcionalidad criptográfica entre muchos usuarios de tal forma que

- Cualquier conjunto con t usuarios pueda colectivamente calcular la funcionalidad
- Ningún conjunto con solo t-1 usuarios pueda realizar la funcionalidad.

Secreto de Shamir

- Es un algoritmo criptográfico de umbral.
- Consiste en dividir un secreto en N
 partes un mensaje y se da a cada
 participante una parte de este.
- Todas o parte de ellas son necesarias para reconstruir el secreto.

M. A. Acedo Arias, M. A. Molina Vilchis, R. Silva Otigoza, M. Marciano Melchor, y E. A. Portilla Flores, «Análisis de los secretos compartidos para la autenticación de nodos en las Wireless Sensor Networks mediante el algoritmo de Shamir», Cienc. E Ing. Neogranadina, vol. 18, n. o 2, pp. 101-116, dic. 2008.

Secreto de Shamir

Ej: Supongamos que nos interesa hacer un esquema (6,3). Eso quiere decir que hay 6 participantes y que solo al juntar al menos a 3 de ellos es posible recuperar el secreto. La clave es S=1234.

Se arma un polinomio de grado 3 - 1: $P(x) = s + a_1 x + a_2 x^2$

Se le pide al usuario que de los valores de las constantes \mathbf{a}_1 y \mathbf{a}_2 : $\mathbf{a}_1 = 166$ $\mathbf{a}_2 = 94$

Se arma el polinomio con las constantes dadas:

$$P(X) = S + a_1 X + a_2 X^2 = 1234 + 166 X + 94 X^2$$

Secreto de Shamir

Se calculan 6 puntos distintos del polinomio: (1, 1494), (3, 2578), (4, 3402), (6, 5614), (8, 8578), (11, 14434), y se les reparte en cualquier orden a cada integrante.

Para decodificar, se resuelve el siguiente sistemas de ecuaciones, suponiendo que se hayan reunido los siguientes puntos (3, 2578) (8, 8578), (11, 14434).

$$S + 3a_1 + 9a_2 = 2578$$

 $S + 8a_1 + 64a_2 = 8578$
 $S + 11a_1 + 121a_2 = 14434$

Esquema de Shamir modificado

Alfabeto de 31 caracteres

Α	В	С	D	Е	F	G	Н	Ι	J	K	L	М	N	Ñ	0	Р
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

Q	R	S	Т	U	٧	W	Χ	Υ	Z		خ	?	*
17	18	19	20	21	22	23	24	25	26	27	28	29	30

Muchas gracias

