CHAPITRE OS15 – DOCUMENTS Circuit fixe dans un champ magnétique variable

Réseau EDF haute tension (30 kV – 150 kV)

Réseau domestique (230 V)

FIGURE 1 : Comment transférer de l'énergie électrique sans contact ?

FIGURE 2: Flux propre d'une spire

FIGURE 5: Deux bobines en interaction

FIGURE 3 : Modèles électrocinétiques de l'auto-induction d'une bobine réelle (dans un circuit réel)

FIGURE 4 : Circuit étudié

Exercice d'application 1

Déterminer le coefficient d'auto-inductance d'un solénoïde de section S, de longueur l, possédant N spires.

Calculer la valeur numérique pour $N=1,0.10^3,\ S=1,0.10^{-3}\ \mathrm{m^2}$ et $l=0,10\ \mathrm{m}$.

Exercice d'application 2

1. Établir l'expression de l'inductance mutuelle M entre, d'une part, un solénoïde de longueur l_1 , constituée de N_1 spires, chacune parcourue par un courant d'intensité i_1 , de surface S_1 et d'autre part, une bobine constituée de N_2 spires, de surface S_2 , placée à l'intérieur du solénoïde, de même axe que celui-ci.

Sur la figure, on a « effacé » les spires centrales du solénoïde 1 pour pouvoir voir le solénoïde 2.

2. À quelle condition les deux solénoïdes sont-ils en influence totale?

FIGURE 6 : Circuit couplé étudié : deux représentations possibles

FIGURE 7: Transformateur de tension

FIGURE 8 : Schéma normalisé du transformateur de tension

FIGURE 9 : Boucles de détection de véhicules

FIGURE 10 : Carte RFID servant d'antivol sur un article de magasin

FIGURE 11 : Plaque de cuisson à induction

FIGURE 12 : Principe de l'alternateur

FIGURE 13 : Différents systèmes de production d'énergie électrique