Отчёт по лабораторной работе №8. Элементы криптографии. Шифрование (кодирование) различных исходных текстов одним ключом.

Предмет: информационная безопасность

Александр Сергеевич Баклашов

Содержание

1	Цель работы	4
2	Теоретическое введение	5
3	Выполнение лабораторной работы	6
4	Вывод	7
5	Контрольные вопросы	8
6	Библиография	9

List of Figures

3.1	Функция	•			•	•	•	•	•		•	•		•		•					6
3.2	Код																				6

1 Цель работы

Освоить на практике применение режима однократного гаммирования на примере кодирования различных исходных текстов одним ключом. [1]

2 Теоретическое введение

Информационная безопасность — это защищенность информации и поддерживающей инфраструктуры от случайных или преднамеренных воздействий естественного или искусственного характера, чреватых нанесением ущерба владельцам или пользователям информации и поддерживающей инфраструктуры.

3 Выполнение лабораторной работы

1. Создадим функцию для шифрования и дешифрования, а также импортируем необх. библиотеки. (рис. 3.1)

```
In [1]: import string

In [2]: def en_de (text1, text2):
    t1=[ord(i) for i in text1]
    t2=[ord(i) for i in text2]
    return ''.join (chr(a^b) for a,b in zip(t1,t2))
```

Figure 3.1: Функция

2. Создадим код для выполнения поставленной задачи. (рис. 3.2)

Figure 3.2: Код

4 Вывод

В результате выполнения работы я освоил на практике применение режима однократного гаммирования на примере кодирования различных исходных текстов одним ключом.

5 Контрольные вопросы

1. Как, зная один из текстов (P1 или P2), определить другой, не зная при этом ключа?

Воспользуемся формулой:

$$C1 (+) C2 (+) P1 = P1 (+) P2 (+) P1 = P2.$$

C1 и C2 - шифрованные тексты, P1 и P2 - исходные тексты. Ключа K в формуле нет.

- Что будет при повторном использовании ключа при шифровании текста?
 Мы получим исходное сообщение.
- 3. Как реализуется режим шифрования однократного гаммирования одним ключом двух открытых текстов?

Шифротексты обеих текстов можно получить по формулам режима однократного гаммирования: C1 = P1 (+) K, C2 = P2 (+) K.

4. Перечислите недостатки шифрования одним ключом двух открытых текстов.

Можно расшифровать одно из сообщений, зная другое сообщение в открытом виде.

5. Перечислите преимущества шифрования одним ключом двух открытых текстов.

Упрощает дешифровку. Удобен в локальных сетях.

6 Библиография

1. Лабораторная работа № 8. Элементы криптографии. Шифрование (кодирование) различных исходных текстов одним ключом. - 3 с. [Электронный ресурс]. М. URL: Лабораторная работа №8 (Дата обращения: 29.10.2022).