Why GPUs for Machine Learning?

Julien Nyambal

Entelect

March 11, 2021

The CPU is the heart of the computer, and the GPU his soul ...

What will be covered ...

- What is Machine Leaning?
- Tensors: A naive description
 - Addition
 - Matrix Multiplication
- Tensor Operations on Hardware
 - Matrix Computation on GPU vs CPU
- 4 RAM, CPU, GPU, TPU
 - TPU: Tensor Processing Unit
- 5 Hardware Comparison CPU vs GPU
 - Hardware Comparison CPU vs GPU
- 6 How does GPU works "faster" than the CPU?
- Very short demo

What is Machine Leaning?

A general definition of a ML

What is Machine Leaning?: Conceptual Overview

ML - Conceptual

What is Machine Leaning?: Deep Learning

Tensors: A naive description

A general definition of a Tensor

Tensors: Operations - Addition

Tensors: Operations - Matrix Multiplication

- The most used operation in Machine Learning/Deep Learning
- There are many types of Matrix Multiplication of *MatMul*. There 3 are the most common matrix multiplication:
 - Brute Force Multiplication
 - Column-Wise Multiplication
 - Block Multiplication

Tensors: Operations - Matrix Multiplication

Brute Force Matrix Multiplication

Column-Wise Matrix Multiplication

Block Matrix Multiplication

Tensors: Operations - Matrix Multiplication

Matrix Computation on GPU vs CPU

RAM, GPU, CPU, TPU

Hardware Comparison CPU vs GPU

Hardware Comparison CPU vs GPU

Processor Type	CPU	GPU
Processor Model	i9-10900K	Tesla V100
Manufacturer	Intel	Nvidia
Processor Speed (Max)	5.30 GHz	1.380 GHz
Memory (up to)	128 GB (RAM)	32 GB (GRAM)
Number of Cores	10	5120 (CUDA cores)
Memory Bandwidth	45.8 GB/s	900 GB/s
Price	~R 16 000	~R 200 000

How does GPU works "faster" than the CPU?

- Larger memory bandwidth: More data can get in and out the component at a time,
- Parallelization: Those many CUDA cores work well in parallel for one given task
- Fast Memory access: Multiple L1 and L2 Cache memory,
- CUDA API allows you not to worry about memory allocation or deallocation, type of Matrix Multplication to use or how to orchestrate the parallelism of the cores. Some popular frameworks using CUDA:

Demo

We will run short 2 experiments on both the CPU and the GPU:

• Multiplication of 2 scalar: 8.8 x 8.9

Multiplication of 2 relatively big matrices

Demo Link: Colab Experiment.

