Problem sheet 1

Issued 10 October 2022, due 31 October 2022.

Coursework forms 25% of the assessment for this unit and will be comprised of 2 problem sheets of which this is the first. In this sheet each of five problems carries the same weight.

- 1. For each pair of Boolean formulae P and Q state whether or not the formula $P \to Q$ is a tautology, or identically false, or neither. Prove your answer.
- (i) $P = X \vee Y$, $Q = \neg(X \wedge Y)$,
- (ii) $P = X \vee Y$, $Q = \neg X \wedge \neg Y$,
- (iii) $P = X \to Y$, $Q = (\neg X \lor Y) \land (\neg X \lor X)$,
- (iv) $P = X \rightarrow \neg Y$, $Q = Y \rightarrow \neg X$,
- (v) $P = X \land (Y \lor Z), Q = (X \lor Y) \land (X \lor Z),$
- (vi) $P = X \to Y$, $Q = \neg X \to \neg Y$,
- (vii) $P = X \rightarrow Y$, $Q = \neg (Y \rightarrow X)$,
- (viii) $P = (X \to Y) \land (Y \to Z), Q = X \to Z.$

2.

- (a) How many different binary logical connectives do there exist?
- (b) Express the "exclusive or" (XOR) via (i) \neg , \wedge , (ii) \neg , \vee , (iii) \neg , \rightarrow .
- (c) The "not or" (NOR) logical connective is defined as:

$$X \text{ NOR } Y \equiv \neg (X \vee Y).$$

Express each of connectives \land , \lor , \rightarrow , \neg via only NOR.

3.

- (a) For each of the following statements answer whether it is true or false.
- (i) $\forall x \in \mathbf{Z} \exists y \in \mathbf{Z} (x^2 < y + 1)$
- (ii) $\exists x \in \mathbf{Z} \forall y \in \mathbf{Z} (x^2 < y + 1)$
- (iii) $\exists y \in \mathbf{Z} \forall x \in \mathbf{Z} (x^2 < y + 1)$
- (iv) $\forall x \in \mathbf{Z} \exists y \in \mathbf{Z}((x < y) \to (x^2 < y^2))$

(b)

- (i) Prove that the statement $\forall x \in \mathbf{Z} \forall y \in \mathbf{Z} (x^2 < y + 1)$ is false by giving an example of integers x and y disproving it.
- (ii) Prove that the statement $\exists x \in \mathbf{Z} \exists y \in \mathbf{Z} (x^2 < y + 1)$ is true by giving an example of integers x and y proving it.

- (iii) Prove that the statement $\forall y \in \mathbf{Z} \exists x \in \mathbf{Z}(x^2 < y + 1)$ is false by giving an example of an integer y disproving it.
- (iv) Prove that the statement $\exists x \in \mathbf{Z} \forall y \in \mathbf{Z}((x < y) \to (x^2 < y^2))$ is true by giving an example of an integer x proving it.
- **4.** Let $A = \{a, b, c\}$, $B = \{a, b\}$, $C = \{a, c\}$, $D = \{b, c\}$, $E = \{a\}$, $F = \{b\}$, $G = \{c\}$, $H = \emptyset$. Simplify the following expressions; in each case answer should be one of these sets.
- (i) $B \cup C \cup D$
- (ii) $B \cup C$
- (iii) $B \cap C \cap D$
- (iv) $G \setminus B$
- (v) $D \setminus B$
- $(vi) B \setminus A$
- (vii) $(D \setminus G) \cup (G \setminus D)$
- (viii) $(B \setminus C) \setminus A$

5.

(a) Determine the cardinalities of the following sets:

$$2^{\emptyset}$$
, $2^{\{0\}}$, $2^{\{0\}\cup\{1\}}$, $2^{\{0\}\cap\{1\}}$, $2^{\{\emptyset,0,1\}}$, $2^{2^{2^{\{0,1\}}}}$.

- (b) Let $A = \{1, 2, ..., n\}$. Determine the cardinalities of the following sets:
 - (i) $\{(x,S)|x\in S, S\in 2^A\}$
 - (ii) $\{(S,T)|S\in 2^A, T\in 2^A, S\cap T=\emptyset\}.$

Hint: Calculate the number of triples of pair-wise disjoint sets $(S, T, A \setminus (S \cup T))$.