

Dashboard > Courses > School Of Engineering & Applied Sciences > B.Tech. > B.Tech. Cohort 2021-2025 > Semester-I Cohort 2021-25 > EPHY105L-Odd Semester 2021 > General > Mid-term-EPHY105L

Started on Wednesday, 12 January 2022, 10:00 AM

State Finished

Completed on Wednesday, 12 January 2022, 11:17 AM

Time taken 1 hour 16 mins

Grade 8.00 out of 15.00 (**53**%)

Question 1

Incorrect

Mark 0.00 out of 1.00 If a point charge +q is located at the center of a sphere of radius 'r', what is the electric flux passing through a portion of the surface of the sphere defined by $0<\theta<\frac{\pi}{2}$ and $0<\phi<\frac{\pi}{2}$?

Select one:

- \bigcirc a. $\frac{q}{8\pi\epsilon_0}$
- O b. $\frac{q}{4\epsilon_0}$
- \bigcirc c. $\frac{q}{8\epsilon_0}$
- lacksquare d. $rac{q}{4\pi\epsilon_0}$

×

Your answer is incorrect.

The correct answer is: $\frac{q}{8\epsilon_0}$

Question $\bf 2$

Correct

1.00

Mark 1.00 out of

The amount of work done in moving 10 Coulomb from one point to another point on an equipotential surface is

Select one:

- a. Zero
- b. Infinity
- o. 10 eV
- d. 20 eV

Your answer is correct.

The correct answer is: Zero

Question 3

Correct

Mark 1.00 out of

1.00

For the field $\vec{F}=(Cxy+z)\,\hat{x}+3x^2\hat{y}+x\hat{z}$ to represent an electrostatic field the constant C equals

Select one:

- a. 0
- o b. 1
- o c. 6 √
- d. 3

Your answer is correct.

The correct answer is: 6

Incorrect

Mark 0.00 out of 1.00 Consider a uniformly charged sphere of radius R carrying a charge +Q. In such a case divergence of the electrostatic field produced by the sphere is

Select one:

- a. zero everywhere
- b. non zero everywhere
- oc. zero outside the sphere and non zero inside the sphere
- d. zero inside the sphere and non zero outside the sphere X

Your answer is incorrect.

The correct answer is: zero outside the sphere and non zero inside the sphere

Question **5**

Incorrect

1.00

Mark 0.00 out of

A circular disc of radius R is placed in the xy-plane and it carries a surface charge density $\rho=\frac{k}{r}$, where k is a constant. What is the total electric flux passing through a closed surface enclosing this disc?

Select one:

- \bigcirc a. $-rac{k\pi}{\epsilon_0 R^2}$
- igodots b. $rac{k}{\epsilon_0}$ πR

X

- \bigcirc c. $rac{k}{\epsilon_0} \ \pi R^2$
- \bigcirc d. $rac{k}{\epsilon_0} \ 2\pi R$

Your answer is incorrect.

The correct answer is: $\frac{k}{\epsilon_0} 2\pi R$

Question 6 Incorrect Mark 0.00 out of 1.00	Charge Q is uniformly distributed throughout the volume of a sphere of radius R. The ratio of the electrostatic field at a distance $\$ (\frac{R}{2}\) from the center to that at a distance R from the center will be
	Select one: a. 2 b. \(\frac{1}{4} \) c. 4 \times d. \(\frac{1}{2} \)
	Your answer is incorrect. The correct answer is: \(\frac{1}{2} \)
Question 7 Incorrect Mark 0.00 out of 1.00	Consider a pair of charges +Q and -Q placed at two points with Cartesian coordinates $(0,0,0)$ and $((d,0,0))$ respectively. The net electrostatic force on a charge Q placed at a point with coordinates $((\sqrt{a},0,0))$
	 a. Will have both x and y components b. Will be along the y-direction c. Will be along the x-direction d. Will be along -x direction

Your answer is incorrect.

The correct answer is: Will be along the x-direction

Correct

Mark 1.00 out of 1.00

Select one:

- a. \(\frac{n-2}{r^{n+1}} \)
- b. \(\frac{2-n}{r^{n-1}}\)
- c. \(\frac{2-n}{r^{1-n}}\)
- d. \(\frac{2-n}{r^{n+1}} \)

4

Your answer is correct.

The correct answer is: \(\frac $\{2-n\}\{r^{n+1}\} \$ \)

Question 9

Correct

Mark 1.00 out of 1.00

The electrostatic potential in a region of space is given by (V(x,y,z)=10x+5). The magnitude of the electrostatic field at (x=2) is

Select one:

- a. -10
- b. +25
- c. 0
- d. +10

 ✓

Your answer is correct.

The correct answers are: +10, -10

Correct

Mark 1.00 out of 1.00 A ring of radius 'R' has a total charge +Q uniformly distributed on it. What are the electrostatic field (\(\vec{E}\)\) and potential (V) at the center of the ring?

Select one:

- a. \(\left|\vec{E}\right|=0,V=\frac{Q}{4\pi\epsilon OR} \)
 - **√**
- c. \(\left|\vec{E}\right|=0,V=0 \)

Your answer is correct.

The correct answer is: $\ (\left| vec{E}\right| = 0,V=\frac{Q}{4\pi}e^{0})$

Question 11

Incorrect

Mark 0.00 out of 1.00 Consider a uniformly charged sphere of radius R with volume charge density \(\rho \). The value of \(\vec{\nabla}.\vec{E} \) at a point with Cartesian coordinates \(\left(\frac{R}{2},\ R,\ 0\right) \) will be

Select one:

- a. Zero
- b. \(\frac{\rho}{\epsilon_0} \)

×

- c. \(\frac{\rho}{\epsilon_0}\hat{r}\)
- d. \(\frac{\rho}{{4\pi\epsilon}_0} \)

Your answer is incorrect.

The correct answer is: Zero

Correct

Mark 1.00 out of 1.00 Find the electric potential at the center of a circle of radius 2m when there are three charges 1C, - 2C and 3C in its circumference. (Coulomb's constant = \(9\times{10}^9\ N.m^2/C^2 \))

Select one:

- a. \(2.7\times{10}^{10} \) \/ \
- b. \(1.35\times{10}^{10} \) V
- c. \(4.5\times{10}^9 \) V
- d. \(9\times{10}^9 \)

Your answer is correct.

The correct answer is: \(9\times{10}^9 \)

Question 13

Correct

Mark 1.00 out of 1.00 Two points A and B are maintained at a potential of 7 V and -4 V respectively. The work done in moving 50 electrons from A to B is

Select one:

- a. \(8.80 \times 10^{-17} \) J
 - **√**
- b. \(5.80 \times 10^{-17} \) J
- c. \(8.80 \times 10^{-17} \) J
- d. \(4.40 \times 10^{-17} \) J

Your answer is correct.

The correct answer is: (8.80×10^{-17})

Question 14	The electrostatic field has magnitude 1000 N/C between two parallel conducting plates
Correct	separated by 5 mm. The potential difference between the plates is
Mark 1.00 out of	Select one:
1.00	a. 5000 V
	O b. 200 V
	○ c. 50 V
	d. 5 V ✓
	Vous anguar is correct
	Your answer is correct.
	The correct answer is: 5 V
Question 15	In equilibrium configuration a spherical conducting shell of inner radius 'a' and outer radius
Incorrect	'b' has a point charge 'q' fixed at the center and a charge density \(\\\\\) uniformly
Mark 0.00 out of	distributed on the outer surface. What is the electrostatic field at a distance 'r' from the
1.00	center for \(a\ <\ r\ <\ b \) ?
	Select one:
	\bigcirc a. \(\frac{4\pi a^2\sigma}{4\pi\epsilon_0r^2}\hat{r} \)
	b. \(\frac{4\pi b^2\sigma}{4\pi\epsilon_0r^2}\hat{r}\)
	c. \(\frac{q}{4\pi\epsilon_0r^2}\hat{r}\)
	o d. Zero

Your answer is incorrect.

The correct answer is: Zero