MATH 272, Worksheet 1

Curves, scalar fields, and partial derivatives.

Problem 1. Consider the curve

$$\vec{\gamma}(t) = \begin{pmatrix} (5+3\cos(8t))\cos(t) \\ (5+3\cos(8t))\sin(t) \\ 3\sin(8t) \end{pmatrix}.$$

- (a) Plot this curve from t = 0 to $t = 2\pi$.
- (b) Compute the tangent (velocity) vector $\dot{\vec{\gamma}}(t)$.
- (c) Compute the normal (acceleration) vector $\ddot{\vec{\gamma}}(t)$.
- (d) Compute the following

$$\int_{\vec{\gamma}} \left| \ddot{\vec{\gamma}}(t) \right| dt,$$

which is closely related to the total curvature of the curve. Indeed, this would be the total force applied to an object of mass m = 1.

Problem 2.

(a) Write an equation for a curve

$$\vec{\gamma} \colon \mathbb{R} \to \mathbb{R}^3$$
,

satisfying:

- Starts with $\vec{\gamma}(0) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$.
- \bullet Ignoring the z-component, makes a spiral emanating from the origin.
- \bullet Moves upward at a constant rate in the z-direction.

Plot this curve that you made to verify that it is correct.

- (b) Find the tangent vector $\dot{\vec{\gamma}}(t)$ to this curve.
- (c) Find the normal vector $\ddot{\vec{\gamma}}(t)$ to this curve.

Problem 3. Consider the two dimensional scalar function

$$f(x,y) = e^{\frac{xy}{x^2 + y^2 - 1}}.$$

1

- (a) Plot the graph of this function (x, y, f(x, y)) for $x^2 + y^2 < 1$.
- (b) Plot the graph for $x^2 + y^2 > 1$.

- (c) Compute $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.
- (d) Compute all second partial derivatives of f.

Problem 4. Write the equation for a scalar function

$$f \colon \mathbb{R}^2 \to \mathbb{R},$$

satisfying,

- Has positive $\frac{\partial f}{\partial x}$ everywhere.
- Has negative $\frac{\partial f}{\partial y}$ everywhere.

(Hint: it may help to try adding single variable functions together. That is, let f(x,y) =u(x) + v(y).)

Problem 5. For the following functions, plot the level sets for c = -1, c = 0, and c = 1.

(a) For just c = 1, plot the level set for (d) $h(x, y, z) = \sin(x) + \cos(y) - \tanh(z)$.

(d)
$$h(x, y, z) = \sin(x) + \cos(y) - \tanh(z)$$
.

 $E(x,y,z) = \frac{x^2}{25} + \frac{y^2}{16} + \frac{z^2}{9}.$

(e)
$$p(x, y, z) = \sin^2(x) + \sin^2(y) - \frac{1}{2}\sin(z)$$
.

(b) f(x, y, z) = xyz.

(f)
$$q(x, y, z) = x^2 + xy + y^2 + \sin(yz)$$
.

(c) $q(x, y, z) = e^x - y^2 - z^2$.

(g) One of your own choosing.