Handling Missing Covariates in Mixed-Effects Meta-Analysis with Full-Information Maximum Likelihood

Mike W.-L. Cheung Department of Psychology National University of Singapore

22 July 2019

Introduction

- Meta-regression (or mixed-effects meta-analysis) is a popular tool to explore the heterogeneity of effect sizes.
- A standard model for the ith study is:
 - y_i: an observed effect size
 - β_0 : the intercept
 - β_1 : the regression coefficient
 - x_i : a study characteristic (covariate)
 - $\tau^2 = Var(u_i)$: the residual variance after controlling for the covariate
 - $v_i = Var(e_i)$: the known sampling variance.

$$y_i = \beta_0 + \beta_1 x_i + u_i + e_i,$$
 (1)

Potential issues with mixed-effects meta-analysis

• Tipton, Pustejovsky, and Ahmadi (2019a; 2019b)¹, ² recently provided comprehensive reviews on issues related to applying meta-regression.

¹Tipton, E., Pustejovsky, J. E., & Ahmadi, H. (2019a). A history of meta-regression: Technical, conceptual, and practical developments between 1974 and 2018. *Research Synthesis Methods*, *10*(2), 161–179.

²Tipton, E., Pustejovsky, J. E., & Ahmadi, H. (2019b). Current practices in meta-regression in psychology, education, and medicine. *Research Synthesis Methods*, *10*(2), 180–194.

Three key findings relevant to this presentation

- There are missing covariates in almost half (45%) of meta-analyses published in the selected journals.
- 2 Ad hoc procedures, e.g., listwise deletion, are usually used to handle missing covariates (86%).

188 WILEY-Research	TIPTON ET AL.
WILE Y Synthesis Methods	

TABLE 4 Practical characteristics of systematic reviews published in 2016

Analysis		Psychological Bulletin (k = 24)	Review of Educational Research ($k = 13$)	Journal of Applied Psychology $(k = 4)$		Total $(k = 64)$
Missing covariates	No Yes	15 (62%) 9 (38%)	4 (31%) 9 (69%)	1 (25%) 3 (75%)	15 (65%) 8 (35%)	35 (55%) 29 (45%)
Missing data method ^a	Ad hoc Multiple imputation Other principled methods	6 (67%) 1 (11%) 1 (11%)	9 (100%) 0 (0%) 0 (0%)	3 (100%) 0 (0%) 0 (0%)	7 (88%) 0 (0%) 1 (12%)	25 (86%) 1 (3%) 2 (7%)
	Not reported	1 (11%)	0 (0%)	0 (0%)	0 (0%)	1 (3%)

Figure 1: Partial Table 4 in Tipton, Pustejovsky, and Ahmadi (2019b)

Three key findings relevant to this presentation

3 Each covariate is usually individually entered into the meta-regression.

TABLE 2 Technical characteristics of systematic reviews published in 2016

Analysis		Psychological Bulletin (k = 24)	Review of Educational Research $(k = 13)$	Journal of Applied Psychology $(k = 4)$		Total $(k = 64)$
Any moderator analysis		24 (100%)	11 (85%)	4 (100%)	20 (87%)	59 (92%)
Subgrouping ^a	One-way	4 (17%)	1 (8%)	0 (0%)	12 (52%)	17 (27%)
	Multi-way	2 (8%)	0 (0%)	0 (0%)	0 (0%)	2 (3%)
ANOVA ^a	One-way	17 (71%)	9 (69%)	4 (100%)	9 (39%)	39 (61%)
	Multi-way	2 (8%)	0 (0%)	0 (0%)	0 (0%)	2 (3%)
Meta-regression ^a	Simple	17 (71%)	4 (31%)	0 (0%)	7 (30%)	28 (44%)
	Multiple	8 (33%)	3 (23%)	0 (0%)	0 (0%)	11 (17%)

Figure 2: Partial Table 2 in Tipton, Pustejovsky, and Ahmadi (2019b)

Missing data mechanisms I

- Rubin (1987)³ provided a general framework to classify missing data mechanisms.
- Pigott (2019)⁴ applied Rubin's definitions to meta-analysis and discussed common methods to handle missing data in meta-analysis.

³Rubin, D. B. (1987). *Multiple imputation for nonresponse in surveys*. John Wiley and Sons

⁴Pigott, T. D. (2019). Missing data in meta-analysis. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), *The handbook of research synthesis and meta-analysis* (3nd ed., pp. 367–381). New York: Russell Sage Foundation.

Missing data mechanisms II

- Missing completely at random (MCAR): the missingness is not related to the missing values or other observed variables in the analysis;
- Missing at random (MAR): the missingness can be fully accounted for by the other variables in the analysis;
- Missing not at random (MNAR): the missingness is related to the values of the missing values even after controlling for other variables in the analysis.

Methods to handle missing data I

Both multiple imputation (MI) and (full-information) maximum likelihood (FIML) are the preferred methods to handle missing data with either MCAR or MAR (e.g., Enders, 2010;⁵ Graham, 2009;⁶ Newman, 2014;⁷ Schafer & Graham, 2002).⁸

⁵Enders, C. K. (2010). Applied missing data analysis. New York: Guilford Press.

⁶Graham, J. W. (2009). Missing Data Analysis: Making it work in the real world. *Annual Review of Psychology*, *60*(1), 549–576.

⁷Newman, D. A. (2014). Missing data five practical guidelines. *Organizational Research Methods*, 17(4), 372–411.

⁸Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. *Psychological Methods*, 7(2), 147–177.

Methods to handle missing data II

Table 2. Missing Data Bias and Error Problems of Common Missing Data Techniques.

	Missingness Mechanism						
Missing Data Technique	MCAR	MAR	MNAR				
Listwise Deletion	Unbiased; Large Std. Errors (Low Power)	Biased; Large Std. Errors (Low Power)	Biased; Large Std. Errors (Low Power)				
Pairwise Deletion	Unbiased; Inaccurate Std. Errors	Biased; Inaccurate Std. Errors	Biased; Inaccurate Std. Errors				
Single Imputation	Often Biased; Inaccurate Std. Errors	Often Biased; Inaccurate Std. Errors	Biased; Inaccurate Std. Errors				
Maximum Likelihood (ML)	Unbiased; Accurate Std. Errors	Unbiased; Accurate Std. Errors	Biased; Accurate Std. Errors				
Multiple Imputation (MI)	Unbiased; Accurate Std. Errors	Unbiased; Accurate Std. Errors	Biased; Accurate Std. Errors				

Note. Recommended techniques are in boldface. Adapted from Newman (2009).

Figure 3: Table 2 in Newman (2014)

Similarities and differences between FIML and MI

- Unlike MI, FIML analyzes all available data without imputing any data.
- FIML and MI are asymptotically equivalent when the number of imputations in MI tends to infinity.
- FIML is only implemented in SEM packages such as Mplus, AMOS, lavaan (in R), and OpenMx (in R).

A random-effects model

- We introduce the SEM-based meta-analytic models with a mean structure $\mu_i(\theta_i)$ and covariance structure $\Sigma_i(\theta_i)$ (Cheung, 2015):⁹
 - Observed or measured variables: Squares or rectangles
 - Latent or unmeasured variables: Circles or ellipses
 - Means or intercepts: Triangles of one
 - Directional paths or regression coefficients: one-headed arrow
 - Variances and covariances: two-headed arrows

$$y_i = \beta_0 + u_i + e_i,$$

$$\mu_i(\theta_i) = \beta_0,$$

$$\Sigma_i(\theta_i) = \tau^2 + v_i.$$
(2)

⁹Cheung, M. W.-L. (2015). *Meta-analysis: A structural equation modeling approach*. Chichester, West Sussex: John Wiley & Sons, Inc.

A meta-regression

- We may extend the random-effects meta-analysis to a meta-regression.
- Left: studies with missing data in x_i are dropped.
- Right: studies with missing data in x_i are handled with FIML.

Full-information maximum likelihood (FIML)

- The key idea of FIML is to allow each study having its own model by filtering out the missing data.¹⁰
- These models are combined in estimating the parameters.

$$-2\log L_i = c_i + \log |\Sigma_i(\theta_i)| + (\mathbf{y}_i - \mu_i(\theta_i))^{\mathsf{T}} \Sigma_i(\theta_i)^{-1} (\mathbf{y}_i - \mu_i(\theta_i)),$$

$$-2\log L = \sum_{i=1}^k -2\log L_i$$
(3)

• where c_i is the number of non-missing observed variables in the ith study.

Mike W.-L. Cheung Department of Psychold Handling Missing Covariates in Mixed-Effect 22 Jul

 $^{^{10}} https://vipbg.vcu.edu/vipbg/OpenMx2/docs//OpenMx/latest/FIML_RowFit.html$

A meta-regression with an auxiliary variable

- It is useful to include *auxiliary* variables (AV) in the analysis.
- An auxiliary variable is a variable not of substantive interests but is potentially correlate of the missingness or the missing variables. It may make the missing data more likely to be MAR.

An example: Tenenbaum and Leaper (2002)¹¹

- A total of 48 studies
- Effect size (r): correlation between parents' and children's gender schemas.
- Covariate: Mean age of children (months)
- Potential auxiliary variable: Year of publication

Table 1 Independent Samples Inci	luded in the Met	a=Analyse	·s						
Authors	N	Effect size (r)	Publication source ^a	Author gender ^b	Parent type ^c	Parent predictor ^d	Offspring age (months)	Offspring type ^e	Offspring outcome ^t
Atkinson (1983)	334	.12	3	М	MF	S	231	DS	S
Barak et al. (1991)	99	08	2	W	MF	A	72	DS	W
Barry (1980)	96	05	2	M	MF	A	48	DS	I
Bennett (1979)	105	08	3	M	MF	S	51	DS	S
Blee & Tickamyer (1986)	730	.15	2	W	M	A	330	D	A, W
Bliss (1988)	24	.12	2	W	MF	A	60	DS	A, S
Bollman et al. (1988)	181	.17	2	M	MF	A	156	DS	A
Dambrot et al. (1984)	43	.34	1	W	M	A	228	D	A
Eccles et al. (1993)	494	01	1	W	MF	A	96	DS	A
Ex & Janssens (1998)	165	.33	2	W	M	A	228	D	A

Figure 4: Partial Table 1 in Tenenbaum and Leaper (2002)

¹¹Tenenbaum, H. R., & Leaper, C. (2002). Are parents' gender schemas related to their children's gender-related cognitions? A meta-analysis. *Developmental Psychology*, *38*(4), 615–630.

An example

- As an illustration, I randomly introduced 40% of missing data in the covariate (Mean age of children).
 - MCAR: missing data were randomly introduced.
 - MAR: missing data were introduced for studies reported earlier.
- R code to run FIMI:

```
## Load the library
library(metaSEM)

## y: effect size
## v: sampling variance
## x: covariate
## av: auxiliary variable
fit <- metaFIML(y=r, v=v, x=Offspring_age, av=Year_pub, data=my.MCAR)
summary(fit)</pre>
```

Results

```
##
## Call:
## metaFIML(v = r, v = v, x = Offspring age, av = Year pub, data = mv.MCAR)
##
## 95% confidence intervals: z statistic approximation (robust=FALSE)
## Coefficients:
##
                  Estimate
                               Std.Error
                                                Thound
                                                              ubound z value
                                                                                      Pr(>|z|)
## Tau2_1_1
               0.012136188
                             0.004531652
                                           0.003254314
                                                         0.021018062
                                                                       2.68
                                                                                        0.00740 **
## CovX1 X1
            4611.581284823 1207.242842911 2245.428792123 6977.733777523
                                                                       3.82
                                                                                        0.00013 ***
## CovX2 X1
                            93.708103796 -244.463087550 122.865929448
                                                                      -0.65
                                                                                        0.51646
           -60.798579051
## CovX2_X2
             57.118055708
                           11.659671739
                                          34.265519027
                                                        79.970592388
                                                                     4.90
                                                                                     0.00000096 ***
## CovX2_Y1
                                                                      -0.83
            -0.133004840
                           0.160179080
                                         -0.446950067
                                                       0.180940387
                                                                                        0.40634
## Slope1 1
             0.000683188
                           0.000359106
                                         -0.000020646
                                                         0.001387023
                                                                      1.90
                                                                                        0.05711 .
## Intercept1 0.184199248
                           0.021920854
                                         ## MeanX1
             0.077301969
                           13.244922411 -25.882268935
                                                        26.036872872 0.01
                                                                                        0.99534
## MeanX2
              0.000000142
                           1.090515354 -2.137370676
                                                        2 137370959
                                                                       0.00
                                                                                        1 00000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Q statistic on the homogeneity of effect sizes: 179.01
## Degrees of freedom of the Q statistic: 47
## P value of the Q statistic: 0
##
## Explained variances (R2):
##
                         y1
## Tau2 (no predictor)
                       0.01
## Tau2 (with predictors) 0.01
## R2
                        0.15
##
## Number of studies (or clusters): 48
## Number of observed statistics: 125
```

Multiple imputation

- I included MI here for comparisons.
- Wolfgang¹² also illustrates how to conduct MI with mice and the metafor package.

```
## Year_pub is not included in the imputation phase.
## m=200: 200 imputations in MI
## fit \leftarrow metaMI(y=r, v=v, x=0ffspring age, data=my.MCAR[, c("r", "v", "0ffspring age")], m=200)
## summaru(fit)
## Year_pub is treated as an auxiliary variable and included in the imputation phase.
fit <- metaMI(v=r, v=v, x=Offspring age, data=mv, MCAR[, c("r", "v", "Offspring age", "Year pub")], m=200)
summary(fit)
               estimate std.error statistic
                                                  df
                                                        p.value
## Intercept1 0.18470878 0.02175830 8.4891 66568.7 0.0000000
## Slope1_1 0.00067569 0.00038161 1.7706 1570.1 0.0768166
## Tau2 1 1 0.01220727 0.00447368
                                      2.7287 52489.9 0.0063609
##
## Explained variances (R2):
##
                            v1
## Tau2 (no predictor)
                          0.01
## Tau2 (with predictors) 0.01
## R2
                          0.14
```

¹²http://www.metafor-project.org/doku.php/tips: multiple_imputation_with_mice_and_metafor

Comparisons of methods in handling missing covariates

As the results are only based on one sample, they are not conclusive.

 Table 1: Estimated regression coefficients of missing covariates with MCAR

	Estimate	Std.Error	z/t value	df	P.Value
Full set (k=48)	0.000857	0.000301	2.8479	NA	0.004401
Listwise (k=21)	0.000676	0.000375	1.8021	NA	0.071524
FIML w/o AV	0.000684	0.000357	1.9151	NA	0.055474
FIML w AV	0.000683	0.000359	1.9025	NA	0.057110
MI w/o AV	0.000707	0.000392	1.8025	1202.9	0.071713
MI w AV	0.000649	0.000389	1.6667	1306.2	0.095817

Table 2: Estimated regression coefficients of missing covariates with MAR

	Estimate	Std.Error	z/t value	df	P.Value
Full set (k=48)	0.000857	0.000301	2.84789	NA	0.004401
Listwise (k=21)	0.000308	0.000264	1.16624	NA	0.243519
FIML w/o AV	0.000491	0.000490	1.00244	NA	0.316133
FIML w AV	0.000399	0.000540	0.73871	NA	0.460083
MI w/o AV	0.000338	0.000418	0.80806	802.29	0.419296
MI w AV	0.000276	0.000433	0.63752	884.83	0.523953

Future work

- Future simulation studies to explore:
 - Methods: listwise deletion, mean imputation, MI, and FIML
 - Types of missing data mechanisms: MCAR, MAR, and MNAR
 - Percentage of missing data
- An experimental version of metaFIML is available in Github.¹³ metaMI will be added soon.

¹³https://github.com/mikewlcheung/metasem

Thank you for your attention!

Questions and comments are welcome!