Partie cours

- 1. Donner la définition du complémentaire d'un ensemble A dans E.
- 2. Montrer que l'ensemble des majorants de]0;1[est $[1;+\infty[$

Partie exercices

- 1. Montrer que: $A \Rightarrow B$ si et seulement si $non(B) \Rightarrow non(A)$.
- 2. (a) Prouvez: $\forall (x,y) \in \mathbb{R}^2$, $(|x-y| \le 1)$ ET $|x+y| \le 1$ $\Leftrightarrow (|x|+|y| \le 1)$
 - (b) Prouvez: $\forall (x, y) \in \mathbb{R}^2, |x| + |y| \le |x + y| + |x y|$
- 3. Soit $f: \mathbb{R} \to \mathbb{R}$ et $g: \mathbb{R} \to \mathbb{R}$ telles que f(x) = 3x + 1 et $g(x) = x^2 1$.
 - (a) A t-on $f \circ g = g \circ f$?
 - (b) Soit $x \in \mathbb{R}$, que vaut $f \circ g(-x)$ et $g \circ f(-x)$?
 - (c) Une fonction $f: \mathbb{R} \to \mathbb{R}$ est paire si et seulement si $\forall x \in \mathbb{R}, \ f(-x) = f(x)$. Que peut-on dire des fonctions $f \circ g$ et $g \circ f$?
- 4. Montrer par contraposition les assertions suivantes:
 - (a) $\forall A, B \in \mathcal{P}(E) \ (A \cap B = A \cup B) \Rightarrow A = B$
 - (b) $\forall A, B, C \in \mathcal{P}(E) \ (A \cap B = A \cap C \ et \ A \cup B = A \cup C) \Rightarrow B = C$

 \mathcal{MR}

Partie cours

- 1. Donner la définition de la réunion de deux ensembles A et B.
- 2. Démontrer l'inégalité triangulaire suivante: $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, |x+y| \leq |x| + |y|$.

Partie exercices

- 1. Écrire la négation des assertions suivantes où P, Q, R, S sont des propositions:
 - (a) $P \Rightarrow Q$
 - (b) P ET NON Q
 - (c) P ET (Q ET R)
 - (d) P OU (Q ET R)
 - (e) (P ET Q) \Rightarrow ($R \Rightarrow S$)
- 2. Représenter les ensembles suivants:
 - (a) $A := \{(x, y) \in \mathbb{R}^2 \mid |x| + |y| \le 1\}$
 - (b) $B := \{(x, y) \in \mathbb{R}^2 \mid max\{|x|; |y|\} \le 1\}$
 - (c) $C := \{(x, y) \in \mathbb{R}^2 \mid 1 \le x^2 + y^2 < 2\}$
 - (d) $D := \{(x, y) \in \mathbb{R}^2 \mid |x y| \le 1\}$
- 3. Soit $f: \mathbb{R} \to \mathbb{R}$ telle que $f(x) = x^2$. Déterminer les ensembles suivants: $f([-3;-1]); f([-2;1]); f([-3;-1] \cup [-2;1]); f([-3;-1] \cap [-2;1]); f([-3;3] \cap [0;3]); f(0)$
- 4. Montrer que $A \cap B = A \cap C \Leftrightarrow A \cap \complement B = A \cap \complement C$

 \mathcal{MR}