```
In [1]: import numpy as np
  import pandas as pd

import matplotlib.pyplot as plt
  import seaborn as sns
  from sklearn.preprocessing import StandardScaler
  from sklearn.cluster import KMeans
  import time
  import random
```

Out[2]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	9.8
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	9.8
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	9.8
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4
1594	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	10.5
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	11.2
1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	11.0
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	10.2
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	11.0

1599 rows × 12 columns

```
In [3]: ds.shape
Out[3]: (1599, 12)
In [4]: t_ds= ds.to_numpy().T

In [5]: t_ds.shape
Out[5]: (12, 1599)
In [6]: covariance_matrix = np.cov(t_ds)
eigen_value, eigen_vector = np.linalg.eig(covariance_matrix)
```

```
eigen_pairs = [(np.abs(eigen_value[i]), eigen_vector[:,i]) for i in range(1
          eigen pairs.sort(key=lambda x: x[0], reverse=True)
 In [8]: eigen_value_list = [j.reshape(len(ds.columns), 1) for _,j in eigen_pairs[:2
         matrix_w = np.hstack(eigen_value_list)
         print('Matrix W:\n', matrix_w)
         Matrix W:
           [[ 6.13296554e-03 -2.38646792e-02]
           [-3.84670318e-04 -2.02021707e-03]
           [-1.70762384e-04 -3.02675912e-03]
           [-8.64864277e-03 1.11453593e-02]
           [-6.37476516e-05 -2.37525597e-04]
           [-2.18852809e-01 9.75212313e-01]
           [-9.75669835e-01 -2.18850408e-01]
           [-3.72590009e-06 -2.50439091e-05]
           [ 2.67974074e-04
                             3.26939011e-03]
           [-2.23244233e-04 6.25945868e-04]
           [ 6.35985376e-03 1.46377527e-02]
           [ 4.31953676e-03 1.15350784e-02]]
 In [9]: transformed = matrix_w.T.dot(t_ds)
         transformed.shape
 Out[9]: (2, 1599)
In [10]: new ds = pd.DataFrame(transformed.T)
         new ds
Out[10]:
                      0
                               1
             0 -35.469286
                          3.336638
             1 -70.731567
                          9.770351
             2 -55.856674
                          2.860240
             3 -62.119682
                          3.422528
               -35.469286
                          3.336638
                      ...
          1594 -49.823118 21.673219
          1595 -58.179579 26.999311
          1596 -45.258381 19.642837
          1597 -49.826886 21.676253
          1598 -44.815392
                          8.498672
          1599 rows × 2 columns
```

```
In [11]: sns.scatterplot(new_ds)
plt.show()
```



```
In [14]: f3, ax = plt.subplots(figsize=(8, 6))
    plt.plot(range(1,11),wcss)
    plt.title('The Elbow Method')
    plt.xlabel('Number of clusters')
    plt.ylabel('WCSS')
    plt.show()
```



```
In [15]: #From above graph, we got to know number of clusters=3. Hence, applying kme
kmeans = KMeans(n_clusters = 3)
clusters = kmeans.fit_predict(X_scaled)
```



```
In [ ]:
```