

材料、器件和芯片电磁兼容测量系统和服务

商业计划书

成都讯昂信息技术

联系方式: 15828218483 联系人: 程坤

CONTENTS

目录

大于我们 我们是谁 2 项目介绍 _{我们要做什么} 3 市场分析 行业现状与前景

市场策略 我们怎么做

发展规划 分步走

6 投资计划 _{投资安排}

→ 关于我们——企业介绍

成都讯昂信息技术有限公司 专注于材料、器件和芯片的电磁兼容测量系统和服务

芯片和器件电磁测量系统

成都讯昂的电磁测量系统覆盖时域测量 (国内唯一)、 频域测量、天线测量和紧缩场散射测量技术, 旨在解决 芯片的电磁兼容、通讯和军事领域的主被动电磁通讯和 探测可靠性难题。

材料电磁测量系统

成都讯昂的材料电磁测量系统可测试从常温到1400℃ 的宽温域(1000℃以上的测量仅成都讯昂),可为高校、航天、航发、电子和航空的材料研发提供技术支撑。

电磁设计和测量服务

成都讯昂搭建有全套电磁测量系统,为客户提供芯片 和器件电磁兼容设计、电磁兼容解决方案和材料测试 服务。材料测试业务拟申请CMA资质。

● 关于我们——核心团队

创始人 宋留伟

曾任美国NSI公司技术总监,现任 西安讯昂信息技术有限公司总经 理: 频域测量系统国产化和商业 化缔造者, 15年以上军工行业电 磁场测量系统从业经验, 首席设 计师, 精通各种电磁场测量系统 与产品设计。

联合创始人 李钧颖

1992年出生,重庆大学工学博士学位,现任 国科大杭州高等研究院副研究员, 麻省理工 学院访问学者。主要研究领域为微波/光学材 料与器件方向,包括硫系材料、低维碳材料 及其与硅的异质集成微纳器件, 主持自然基 金青年项目、上海市青年科技英才扬帆计划 等项目, 作为研究骨干参与国家重点研发计 划、青年科学家项目等, 在Nature Communications Advanced Photonics Carbon 等国际学术期刊上共发表论文 30 余 篇, 共计被引 1800 余次(Google Scholar)

联合创始人 王昕

电子科技大学副教授, 电子科技大 学工学博士学位,十余年微波材料 和测试系统的研发和工程化经验. 哈佛大学访问学者,至今发表SCI论 文60余篇,授权发明专利7项,获 2017年四川省科技进步奖一等奖. 2018年教育部科技进步奖二等奖, 主持国家重点研发项目2项, 所研制 的材料和测试系统在成飞、中国航 天和中国航空均有成熟的应用。

▶ 关于我们—— -战略合作

西安电子科技大学

魏兵: 西安电子科技大 学教授, 时域测量顶级 专家, 西电物光院副院 长、西电协调创新目标 与环境特性研究部副部 长、陕西超大规模电磁 计算重点实验室副主任。 教育部教材《电磁波理 《时域计算方法 概论》。成都讯昂时域 测量算法技术来源。

陕西航天技术应用研 究院有限公司

陕西航天技术应用研究院有 限公司成立于1994年,隶属 于中国航天科技集团第五研 究院西安分院 (五〇四所) 是航天五O四所发展航天技 术应用产业的平台, 是实现 航天技术成果转化和产业化 的平台。成都讯昂军品销售 的合作渠道方。

成都锐芯盛通电子 科技有限公司

成都锐芯盛通电子科技 有限公司成立于2014年 10月,公司研发的高端 毫米波有源相控阵微系 统将功能SOC芯片、集 成化SIP、标准化TR组 件、电源管理系统和波 束控制软件等集成一体。 成都讯昂电磁兼容战略 合作方。

上海磐维通信科技有限 公司

磐维科技公司成立于2005年, 是一家面向于通信、导航、雷 达、电子对抗、遥感遥测、数 据传输、仪器仪表、天线测量 系统和太赫兹应用等领域的高 科技型企业。成都讯昂测试系 统进口设备/配件稳定供应方。

▶ 项目介绍——产品介绍

紧缩场时域体制P波段测量系统

主要解决低频的电磁兼容测试难题,可测量汽车、电子、航空和航天的整机和组件的低频电 磁散射和电磁兼容特性。

系统构成:

- 1. 300ps直接时域脉冲源
- 2. 精密脉冲同步控制器
- 3. 时域采样接收机
- 4. 转台和控制器系统
- 5. 低散射支架
- 6. 时域RCS测量处理软件
- 7. ISAR测量处理软件

紧缩场时域体制P波段测量系统

主要解决低频的电磁兼容测试难题,可测量汽车、电子、航空和航天的整机和组件的低频电 磁散射和电磁兼容特性。

型号	GZ1118GN-03GV
波形	Approximately Delta- function
输出入阻抗	50 Ohm
HF连接头	SMA
振幅	≥70 V
极性	Negative
最大脉冲重复频率	1MHz
脉冲频宽(T0.5)	<300 ps
主脉冲的波形振铃	≤±7%,0.2ns前/后
触发	+(3~5) V/50 Ohm, rise time 2ns max from GZ1106DL2 Mainframe
工作温度	(+5 - +45)°C
电源供应	12.5V±1.5V
工作电流,+12V电 源	100mA @ ±15V

天线方向测量

RCS/ISAR测量

天线增益测量

自定义测量

弓形法材料特性测量系统

主要测试材料在不同温度和不同频率下的电磁衰减特性,为芯片的电磁兼容提供材料解决方案

系统主要参数

测量温度范围: 室温-1400°C;

测试频段: 1-40GHz;

测试角度范围: 0-60°。

- 1) 测试动态范围: 反射率Γ: 0~-30dB
- 2) 反射率测试误差:

 $|\Delta\Gamma| < 0.5 \text{ dB}$ $\Gamma > -20 \text{dB}$

 $|\Delta\Gamma| < 1.2 \text{ dB} \qquad \Gamma < -20 \text{dB}$

- 3) 反射变温测试重复性: ≤±1dB (Γ>-20dB)
- 4) 背景反射率: 1~18GHz <-40dB, 面积 不小于15m²。

● 项目介绍——产品介绍

高温材料自由空间法测量系统

测试材料在不同温度和不同频率下的透波率、介电和磁导率特性。

实现功能:

- 1) 1200℃自由空间法
- 2) 左右炉门可自动打开、下降
- 3) 计算机程序控制, 一键开门测试
- 4) 测试透波率、反射率和S参数
- 1) 测试频率: 2.0~18.0GHz;
- 2) 测试动态范围: 透波率: 0~-30dB;
- 3) 测试误差:

常温测试精度: ≤0.2dB (T≥-5dB);

变温透射测试重复性: ≤±0.6dB (T≥-5dB)

4) 测试天线: 2.0~18.0GHz宽频双脊喇叭

天线: 1对, 驻波<2, 天线极化可调

→ 项目介绍——产品介绍

高温材料波导法测量系统

测试材料在不同温度和不同频率下的电磁损耗和传输特性。

实现功能:

- 1) 1200°C矩形波导法
- 2) 温度可精确控制
- 3) 测试准确率和重复性高
- 4) 介电常数、电损耗角正切、磁导率、 磁损耗角正切

测试范围:

介电常数: 2.0~100

电损耗角正切: 0.1~2.0

磁导率: 0.5~10

磁损耗角正切: 0.1~2.0

● 项目介绍——产品介绍

微波同轴法测量系统

该系统可测试材料在宽频下的电磁兼容特性

测试范围:

动态范围: ≥105(1GHz~43.5GHz)

频率准确度: ±1×10-7

最大输出功率: ≥+10dB

端口谐波抑制(dBc): ≤-60(13.5GHz~43.5GHz)

测试频率: 0.5~18GHz

介电常数: 2.0~100

电损耗角正切: 0.1~2.0

磁导率: 0.5~10

磁损耗角正切: 0.1~2.0

● 项目介绍——产品介绍

电磁/高温测试服务

提高宽温谱/频谱的电磁兼容和散射测量服务

利用自建测试平台:

- ✓ 紧缩场时域体制P波段测量系统
- ✓ 高温材料自由空间法测量系统
- ✓ 高温材料波导法测量系统
- ✓ 微波同轴法测量系统

执行标准: GJB 2038A-2011、SJ20512、GB/T 42741-2023、GB/T 35680-2017

搭建测试平台:

- 热流法导热系数测试仪
- 芯片老化试验平台(加速式温湿度及偏压测试、高低温冲击试验)

开展集成电路可靠性试验项目。

执行标准: JESD22-A101-D、EIAJED-4701-D122、JESD22-A104-A

▶ 项目介绍——核心技术

芯片组件电磁兼容特性的时域测量技术

公司团队所持的时域测量技术为国内唯一成熟应用。我们的时域测量系统引入时 域系统的仪器仪表及软件,将其搭载于现有的紧缩场系统中,利用直接时域法的 时窗滤波与平均采样原理(软著),滤除来自反射面边缘以及微波暗室在低频时 的反射、散射以及绕射的影响, 达到紧缩场静区在低频波段的扩展, 采用较低的 代价满足迫切的通讯芯片和微波/光学器件的低频波段高精度电磁测量问题。

超宽温微波/光学材料综合测量系统

公司团队经过三年的前期研发,研制出可测量从室温到1400℃,且为国内首次 且唯一实现1000℃以上高温测量的技术, 弓形法、传输线法和自由空间法的微 波/光学材料的电磁特性测试系统, 其测量频率范围覆盖2-40GHz, 可测试通讯 芯片和微波/光学器件中材料在不同温度下的反射率、透波率、介电常数、电 损耗角正切、磁导率和磁损耗角正切等特性。

宽温谱/频谱的电磁兼容和散射测量服务

公司团队整合电子科技大学、国科大杭州高等研究院和安徽大川电子科技有限 公司在微观表征和高温老化失效分析等方面的技术,开展芯片和器件的老化试 验和失效分析业务,并结合公司自持的时域电磁特性测量技术和超宽温微波/ 光学材料综合测量系统, 为客户提供时频域电磁材料、电磁参数材料和老化/ 失效特性分析。

● 项目介绍——产品优势

国内唯一时域测量系统

团队P波段/大尺寸目标特性测量系 统的研制成功,突破了低频段隐身 目标RCS测试精度不高的限制,在 有源相控阵、数字波束赋形、大型 毫米波天线以及芯片电磁兼容的大 数据量测量与处理方面有着独一无 二的作用。

填补了国内测试在1000℃以 上的空白,填补了国内低频P 波段测试的空白。

电磁兼容设计能力

电子科技大学的团队,在电磁设 计领域具有国内一流的技术储备, 为国内高校、航空 (成飞、中航 凯天电子)、航天 (703所、航 天五院) 提供结构的电磁兼容设 计和解决方案。

● 市场分析——行业分析

- · 高校: 材料实验室、天线实验室和电磁兼容 实验室
- 中航工业:成飞、西飞、凯天电子
- 中国航天: 五院、一院、七院等
- · 中国电科:29所、10所、38所、13所、14所 等。
- · 中国航发: 航发410 (黎明)、420 (成发) 430 (航发动力)、460 (黎阳)
- 企业: 华为、中兴、富士康

- 1. 全定制和半定制化电磁测量系统的成交价格和毛利率均较高;
- 2. 以提供电磁兼容设计和解决方案为主的科研合作, 风险较低;
- 3. 利用自行设计和搭建的测量系统不仅可作为用户展示,作为公司持续研发的平台,还可开展测试服务,培养用户习惯;
- 4. 半导体产业中从生产工艺、系统设计、PCB板级设计、封装技术和芯片级设计等方面都需要考虑电磁兼容性问题。电磁兼容领域市场较大,具有较多的可拓展性。

市场策略——推广计划

参加会议和交流

积极拜访推广

跟进市场需求

