PROBABILITY AND STATISTICS (UCS401)

Lecture-1-2 Contd...
(Prerequisite of Statistics (Mean, S.D., C.V.))
Introduction to Statistics and Data Analysis

Dr. Rajanish Rai
Assistant Professor
School of Mathematics
Thapar Institute of Engineering and Technology, Patiala

Variance and stantard deviation)

1) standard deviation for individual series -:

Standard deviation (6): (Root man square deviation)

where
$$\tau = \frac{\sum (z-\overline{z})^2}{n}$$
 (Actual mean method)

where $\tau = \frac{\sum z}{n}$

$$6 = \int \frac{\sum d^2}{n} - \left(\frac{\sum d}{n}\right)^2$$
 (Assumed mean method)

Here,
$$d = 2-A$$
 β $A = Appended mean$

and
$$\overline{x} = A + \frac{\sum d}{n}$$

(2) Coefficient of standard deviation =
$$\frac{6}{2}$$

* Nationce
$$(6^2) = \frac{\sum (x-\overline{x})^2}{n}$$

(coefficient of variation =
$$\frac{6}{2}$$
 X100

Example 1

Individual perfigs, 10, 12, 13, 15, 20

$$\overline{\chi} = \frac{5\chi}{n} = \frac{10 + 12 + 13 + 15 + 20}{5} = \frac{70}{5} = 14$$

7=14 and field : (2) religion freshold

We know that by Adual mean method (Direct method)

$$6 = \sqrt{\frac{\sum (\gamma - \overline{\chi})^2}{\eta}}$$

. Coefficient of standard deviation = $\frac{6}{7}$ $=\frac{3.4}{14}=0.2428$.

Variance
$$(6^2) = 11.6$$

and Coefficiental Variation = $\frac{6}{2}$ × 100

(b) Agreemed mean method (short-at method)

We know that

$$G = \int \frac{\sum d^2}{n} - \left(\frac{\sum d}{n}\right)^2 d = \chi - A$$

q= X-A L Apsumed mean.

		χ	$d = \chi - A$	$d^2 = (x-A)^2$
		10	-3	9
•		12	+	
A	(13)	$\frac{0}{2}$	4 1
		20	70-2101	49
				7
	1		∑d= 2	$\Sigma 4 = 63$

$$6 = \left[\frac{\sum d^{2}}{n} - \left(\frac{\sum d}{n}\right)^{2}\right] = \left[\frac{63}{5} - \left(\frac{5}{5}\right)^{2}\right]$$

$$= \left[12.6 - 1\right]$$

$$= \sqrt{11.6}$$

$$6 = 3.4 \rightarrow \text{pame}.$$

Example (3)

Find the standard deviation for individual periods 48, 43, 65, 57, 31, 60, 37, 18, 59, 78.

$$\overline{\chi} = \frac{5\chi}{n} = \frac{18+43+65+57+31+60+37+98+59+78}{10}$$

$$= \frac{5\chi}{10}$$
= 52.6 \Rightarrow proceed through grumod mean method.

We know that

$$\beta \cdot D \cdot (6) = \int \frac{\sum d^2}{n} - \left(\frac{\sum d}{n}\right)^2 \quad ; \quad d = n - A$$

appended mem.

			1		
	2	d= 2-	A	$d^2 = (2-A)^2$	y . (Y
$A \leftarrow$	31 37 43 48 98 57 59 60 65 78	-17 -11 -5 0 0 9 11 12 17 30		289 121 25 0 0 81 121 144 289 900	
	3	\\\ \Z9=	. 76	$\Sigma q^2 = 197$	-

$$6 = \sqrt{\frac{5d^2}{n} - \left(\frac{5d}{n}\right)^2} = \sqrt{\frac{1970}{10} - \left(\frac{46}{10}\right)^2}$$

$$6 = \sqrt{175.84} = 13.26$$
.

(oefficient of
$$\beta \cdot D = \frac{6}{\pi} = \frac{13.26}{52.6} = 0.2526$$

Coefficient of voilation =
$$\frac{6}{7} \times 100$$

- Standard deviation and variance for discussive
 - (a) Appermed mean method -:

$$6 = \int \frac{\sum f d^2}{\sum f} - \left(\frac{\sum f d}{\sum f}\right)^2.$$

Here,
$$d = \chi - A$$
 β $\chi = A + \underline{\Sigma} f d$

Appended mean

6) ptep-deviation method -:

$$6 = \left(\frac{\sum f d^2}{\sum f} - \left(\frac{\sum f d}{\sum f}\right)^2\right) \times \lambda$$

Here,
$$d = \frac{2-A}{h}$$
 $h \rightarrow Q_{AB}$ interval (diff some)
$$\overline{\chi} = A + \left(\frac{\sum f^{A}}{\sum f}\right) \chi h$$

$$\overline{\chi} = A + \left(\frac{\sum f}{\sum f}\right) \times k$$

Margal	2	f	d=2-A	#d2	f4	f42
	1 9 1	1	-9-	16	-4	16
42	5	3	-2	4	0	5 8
. 4	7	4 1	2	+	8	16
=1	8	5	3	3	15	15 $\Sigma H = 35$
		Σf=15			∑td=12	241=85
					\$	

We know that

$$8.0.(6) = \int \frac{\sum f^{2}}{\sum f} \left(\frac{\sum f^{2}}{\sum f}\right)^{2}$$

$$= \int \frac{85}{15} - \left(\frac{15}{15}\right) = \int 5.66 - 1 = \int 4.66$$

$$\overline{n} = A + \underline{\sum f} = 5 + \underline{15} = 6$$

$$\overline{2} = 6$$

(defficient of
$$\beta \cdot 0 \cdot = \frac{6}{2} = \frac{2 \cdot 16}{6} = 0.36$$
.

Coefficient of variation
$$(CV) = \frac{6}{\pi} \times 100 = 36\%$$
 Au

Duction. The annual salaviers of 9 proup of employer are given it the following Table. Find S.D. &CV.

Saleries (inthous)	No of persons	and the second
45 50 55 60 65 70 75 80	35879747	$\Rightarrow fi$

we know that by ptep-deviation method

$$6 = \int \frac{\Sigma f d^2}{\Sigma f} - \left(\frac{\Sigma f d}{\Sigma f}\right)^2 \times h$$

Hore $d = \frac{2-A}{h}$ $h \rightarrow Claps interpal.$

$$\overline{\chi} = A + \left(\frac{\sum fd}{\sum f}\right) \times K$$
Here $h = 5$

	1769	$e \eta = 0$	1	- Water	1 12 1	1 1 1 1
	x	f	d= 2-60 5	42	fd	fd ²
A·	45 50 55 60 65 70 75 80	3 5 8 7 9 7 4 7	-3 7 0 1 2 3 4	9 4 1 0 1 4 97 16	9 10 8 0 9 14 2 8	27 20 8 0 9 28 36 112
		\Sf = 50			∑f=36	$\sum_{1}^{1} = 240$

$$8.0.(6) = \int \frac{\sum f d^2}{\sum f} - \left(\frac{\sum f d}{\sum f}\right)^2 \times h$$

$$= \int \frac{240}{50} - \left(\frac{36}{50}\right)^2 \times 5$$

$$G = [0.35]$$

$$\pi = A + \left(\frac{\sum f d}{\sum f}\right) \times h = 60 + \left(\frac{36}{50}\right) \times 5 = 60 + 3.6$$

$$\overline{\pi} = 63.6$$

Now Coefficient of Variation (CV) =
$$\frac{6}{7}$$
 × 100
$$= \frac{10.35}{63.6} \times 100$$

$$CV = 16.27\%$$
Variance $(6^2) = (0.35)^2 = 107.12$ Amo

(iii) For Continuous parties -:

By step-deviation method,
$$6 = \left(\frac{\Sigma f d^2}{\Sigma f} - \left(\frac{\Sigma f d}{\Sigma f}\right)^2\right) \times h$$
Here, $d = \frac{\chi - A}{h}$, $h \to Class$ interval.
$$\bar{\chi} = A + \left(\frac{\Sigma f d}{\Sigma f}\right) \times h$$

Find S.D. and CV

Quettion-Class (2) 15 0-10 15 10-20 23 20-30 22 30-40 25 40-50 10 50 - 605 80-70 10 70-80

Clapp (a)	n(mid)	f	$d = \frac{1-35}{10}$	- d ²	fd	f42
0-10	5	15	-3	9	-45	135
10-20	15	15	-2	4	-30	60
20-30	25	23	-1	1	-23	23
30-40	[35) A	22	· Direct	- 0	· 0	0 25
9-0-50	45	25	1	1	25	40
50-60	55	10	2	4	20	45
60-70	65	5	3	9	15	160
70-80	75	10	4-	16	40	
70 00		5f=125	1110 1	11/2	5A=2	$\Sigma f = 488$
b , 2 4 1	i low	27-100		18		

We know that
$$6 = \int \frac{\sum f d^{2}}{\sum f} - \left(\frac{\sum f d}{\sum f}\right)^{2} \times h$$

$$6 = \int \frac{988}{125} - \left(\frac{2}{125}\right)^{2} \times 10$$

$$6 = \int 3.904 - 0.0003 \times 10$$

$$6 = \int 1.976 \times 10 = 19.76$$

$$6 = \int 19.76$$

$$7 = A + \left(\frac{\sum f d}{\sum f}\right) \times h = 35 + \frac{2}{125} \times 10$$

$$= 35 + 0.16 = 35.16$$

: Coefficient of
$$8.0. = \frac{6}{7} = \frac{19.76}{35.16}$$

Coefficient of 8.0 = 0.5620

Variance
$$(62) = (19.76)^2 = 390.15$$

Coefficient of variation $(CV) = \frac{6}{7} \times 100$
 $= 0.5620 \times 100$
Coefficient of variation $(CV) = 56.20\%$

Imp. Comparison related question -:

Question. The following data was necleved by testing two different companies:

length of life (in howys) 700-900 900-1100 1100-1300	Company A Jample 18 18 18 16	Company B Jample 6 42 12
Total	60	60

Calculate 8.0. and Obefficient of Variation and also state which Company's bulb are more uniform?

solution:

Coefficient of Variation -> for Comparison CV. 1 => Sources 1 (Seps ptable) Jepp 19table / Compissant / uniform. CVI > paries 1 (more Hable)

more copietant emitorm.

Company A -:

20.4	~ (~\.)	1	4= 1-1000	2	A	A2
Oath inferral	2(mid)	1	200	9		100
700-300	800	1 3	-1	1	—1 8 ,	18
900-1100	(1000) A	16	0	0	0	ව
1100-1300	1200	26	1	1	26	26
,	* * * 1		and the	in the fit	Sfd=8	5A=41
<u> </u>	1	∑f=60			ZT	
	3x		Y	Q.	ý.	

Coefficient of voingthon
$$=$$
 $\frac{6}{2}$ $\times 100$

$$\overline{\chi} = A + \left(\frac{\sum f d}{\sum f}\right) \times \lambda$$

$$6 = \int \frac{\sum f d^2}{\sum f} - \left(\frac{\sum f d}{\sum f}\right)^2 \times \lambda$$

$$6 = \int \frac{44}{60} - \left(\frac{8}{60}\right)^2 \times 200$$

$$6 = \int 0.73 - 0.02 \times 200$$

$$6 = \int 0.71 \times 200$$

$$6 = 0.8426 \times 200$$

$$6 = 168.52$$

$$\overline{\chi} = 1000 + \frac{8}{60} \times 200$$

7 = 1026.67

Now
$$CV = \frac{6}{7} \times 100$$

$$= \frac{168.52}{1026.67} \times 100$$

$$= 16.41 \%$$
Coefficient of Variation $(CV) = 16.41\%$ (More)
$$\log_{10} C = 16.41\%$$
Use coniform.

in = material property

Company B

				Marie Control		1 . 0
Mapp	n(mid)	fil	d= 2-1000 200	4 ² , 4.	x 44	44,-
700-900	800	6	- +		-6	6
900-1100	1000 A	42	0	103	0	0
1100-1300	1200	12			12	12
77.77-04		Zf=60			Σtd=6	ZHZ=18
			74		Ph	

We Know that

$$6 = \int \frac{\Sigma f d^{2}}{\Sigma f} - \left(\frac{\Sigma f d}{\Sigma f}\right)^{2} \times h \qquad d = \frac{\gamma - A}{h}$$

$$7 = A + \left(\frac{\Sigma f d}{\Sigma f}\right) \times h$$

$$Coefficient of Variation (CV) = \frac{6}{7} \times 100$$

$$6 = \int \frac{18}{60} - \left(\frac{6}{60}\right)^{2} \times 200$$

$$16 = 107.7$$

$$\overline{\pi} = 1000 + \left(\frac{6}{60}\right) \times 200$$

$$\overline{\pi} = 1020$$

Now Coefficient of violination
$$(CV) = \frac{6}{7} \times 100$$

$$= \frac{107.7}{1020} \times 100$$