

RAG

(Retrieval Augmented Generation)

Information Retrieval (IR)

Es el proceso de acceder a recursos no estructurados, generalmente documentos, con el propósito de recuperar información de forma eficiente entre grandes repositorios.

- Los sistemas IR comienzan con la indexación de un gran conjunto de documentos que permite buscar rápidamente a través de ellos y almacenarlos de forma eficiente.
- Todo parte de una query (por ejemplo, una pregunta o una serie de palabras clave), el sistema busca en su índice para encontrar documentos que sean relevantes para esa consulta.
- La relevancia se determina utilizando varios algoritmos y métricas.
- Los sistemas más avanzados pueden incluso considerar el contexto de la consulta o la intención del usuario para mejorar la precisión de los resultados recuperados.
- La búsqueda semántica (semantic search) interpreta el significado semántico detrás de las palabras en una consulta de búsqueda.
- Actualmente, no solo sirve para textos. Sirve para imágenes, audios, video, etc.

Retrieval Augmented Generation (RAG)

RAG es una **estrategia** que sirve para mejorar la capacidad de los **LLM** para generar respuestas precisas en base a un repositorio de información, generalmente, documentos.

El proceso RAG se basa en 3 partes:

- Retrieval: En función de la query, se recuperan datos de un repositorio de documentos usando técnicas IR.
- Augmentation: Combina la información recuperada junto con un prompt.
- Generation: Esta información aumentada con el prompt es enviada a un LLM para generar texto de salida.

Word Embeddings

Text Embeddings

Document Embeddings

Vector Store

Un VS es una estructura de almacenamiento diseñada. para guardar y gestionar vectores de embeddings.

Características:

- Inserta y actualiza de forma rápida embeddings.
- Búsqueda y recuperación eficiente (indexado).
- Escalable a grandes volumetrías.

Similarity Search

What is similarity search?

Given a set of vectors x_i in dimension d, Faiss builds a data structure in RAM from it. After the structure is constructed, when given a new vector x in dimension d it performs efficiently the operation:

$$j = argmin_i ||x - x_i||$$

where $\|\cdot\|$ is the Euclidean distance (L^2).

Algoritmos de búsqueda semántica

- **Índice de búsqueda exhaustiva (Flat)**: Es el método más simple y directo. Utiliza la búsqueda lineal para encontrar los vecinos más cercanos y, aunque no es el más rápido para grandes conjuntos de datos, es muy utilizado por su simplicidad y precisión completa.
- **Índice IVF (Inverted File Index)**: Este método divide el espacio de los vectores en regiones mediante un cuantificador de vectores. Los vectores se almacenan en listas invertidas asociadas a cada región, lo que permite una búsqueda más rápida al limitar la búsqueda a las regiones más prometedoras.
- **Índice LSH (Locality-Sensitive Hashing)**: Utiliza funciones hash que agrupan vectores similares en el mismo "bucket", reduciendo el espacio de búsqueda. Es particularmente útil para aplicaciones donde las aproximaciones son aceptables.
- Índice Scalar Quantizer, Índice IVFPQ, Índice PQ (Product Quantization)...

Marketplace de VS

Vector Stores

Embeddings Models

1. GTE-Base (Graft Default)

2. GTE-Large

3. GTE-Small

4. E5-Small

5. MultiLingual

6. RoBERTa (2022)

7. MPNet V2

8. Scibert Science-Vocabulary Uncased

9. Longformer Base 4096

10. Distilbert Base Uncased

11. Bert Base Uncased

12. MultiLingual BERT

LLM

Models

Overview

MODEL

The OpenAI API is powered by a diverse set of models with different capabilities and price points. You can also make customizations to our models for your specific use case with fine-tuning.

MODEL	DESCRIPTION				
GPT-4 Turbo and GPT-4	\boldsymbol{A} set of models that improve on GPT-3.5 and can understand as well as generate natural language or code				
GPT-3.5 Turbo	A set of models that improve on GPT-3.5 and can understand as well as generate natural language or code $$				
DALL-E	A model that can generate and edit images given a natural language prompt				
TTS	A set of models that can convert text into natural sounding spoken audio				
Whisper	A model that can convert audio into text				
Embeddings	A set of models that can convert text into a numerical form				
Moderation	A fine-tuned model that can detect whether text may be sensitive or unsafe				
GPT base	A set of models without instruction following that can understand as well as				

https://platform.openai.com/docs/models/overview

DESCRIPTION

Creación de cuenta

Crédito

Overvi	Payment method	ds Billing history	Preferences		
Pay a	s you go				
Credit I	palance ①				
\$6.	79				
•	Auto recharge is off				
	When your credit balance reaches \$0, your API requests will credit balance topped up.				
	or care balance toppe				

Límite de uso

Usage limits	
Manage your API spend by configuring monthly spend limits. Notifications role. Note that there may be a delay in enforcing limits, and you are st	ation emails will be sent to members of your organization with the "Owner" till responsible for any overage incurred.
Usage limit	
The maximum usage OpenAl allows for your organization each month. View curr	rent usage
\$120.00	
Set a monthly budget	Set an email notification threshold
If your organization exceeds this budget in a given calendar month (UTC), subsequent API requests will be rejected.	If your organization exceeds this threshold in a given calendar month (UTC), an email notification will be sent.
\$20,00	\$10,00

OpenAl query

```
user_query = tt + '\n\n' + texts[63][:500]
print(user_query)

¿hay algún canon de tratamiento de aguas nocivas?

v) Ampliación y mejora de tratamiento EDAR Sant Lluís (término municipal de Sant Lluís):
Descripción de la actuación:
Estación depuradora de aguas residuales (EDAR).
Tuberías generales de saneamiento de 250, 250, 250 y 350 mm de diámetro.
Emisario terrestre de 400/355 mm de diámetro.
Instalaciones y elementos complementarios asociados (arquetas o cámaras auxiliares, acometidas o instalaciones eléctricas consistentes en un prisma de 0,4x0,4 m con dos conductos de 160 mm de diámetro, etc.).
Polí
```

```
chat_completion = client.chat.completions.create(
    model="gpt-3.5-turbo",
    messages=[{
        "role": "user",
        "content": user_query
    }]
)
```

https://platform.openai.com/docs/libraries

api-key (*borrar después del curso)

nlp-course1 sk-...GiBr Enabled

+ Create new secret key

pricing

GPT-3.5 Turbo models are capable and cost-effective.

gpt-3.5-turbo-0125 is the flagship model of this family, supports a 16K context window and is optimized for dialog.

gpt-3.5-turbo-instruct is an Instruct model and only supports a 4K context window.

Learn about GPT-3.5 Turbo 7

Model	Input	Output	
gpt-3.5-turbo-0125	\$0.50 / 1M tokens	\$1.50 / 1M tokens	
gpt-3.5-turbo-instruct	\$1.50 / 1M tokens	\$2.00 / 1M tokens	

Prompting

Los sistemas de **GenIA** están diseñados para generar **salidas basadas en la calidad de los prompts** proporcionados.

La ingeniería de prompts ayuda a los modelos de IA generativa a comprender mejor y responder a una amplia gama de consultas, desde las más simples hasta las altamente técnicas.

Featured Topics Newsletters Events

ARTIFICIAL INTELLIGENCE

Job titles of the future: Al prompt engineer

A new-and increasingly common-role helps guide generative Al.

Tipos de Prompting

- **Zero-shot**: El modelo recibe una solicitud sin ningún ejemplo previo o contexto adicional. Basa su respuesta únicamente en la información contenida en el prompt.
- **Few-shot:** Se proporcionan uno o varios ejemplos al modelo antes de la pregunta o tarea actual. Esto ayuda al modelo a entender mejor el contexto o el estilo de respuesta deseado.
- Chain of thought: Este tipo de prompting implica guiar al modelo para que explique su proceso de pensamiento paso a paso antes de llegar a una conclusión. Es útil para tareas complejas de razonamiento.

Prompt engineering

La estructura eficaz de los mensajes es crucial para obtener respuestas óptimas de un LLM. El marco CO-STAR, creado por el equipo de Ciencia de Datos e IA de GovTech Singapore, es **una plantilla** útil para estructurar estos mensajes. Considera todos los aspectos clave que influyen en la efectividad y relevancia de la respuesta de un LLM, lo que conduce a respuestas más óptimas.

- Contexto (C): Se refiere a proporcionar información de fondo sobre la tarea. Esto ayuda al Modelo de Lenguaje de Gran Tamaño (LLM) a comprender el escenario específico que se está discutiendo, asegurando que su respuesta sea relevante.
- **Objetivo (O):** Define lo que se quiere que el LLM realice. Ser claro sobre el objetivo ayuda al LLM a enfocar su respuesta en cumplir ese objetivo específico.
- Estilo (S): Especifica el estilo de escritura que deseas que el LLM use. Podría ser el estilo
 de una persona famosa, o de un experto en una profesión, como un analista de negocios
 o un CEO. Esto guía al LLM para responder con la manera y elección de palabras
 alineadas con tus necesidades.
- Tono (T): Establece la actitud de la respuesta. Esto asegura que la respuesta del LLM resuene con el sentimiento o contexto emocional pretendido. Ejemplos son formal, humorístico, empático, entre otros.
- Audiencia (A): Identifica para quién está destinada la respuesta. Adaptar la respuesta del LLM a una audiencia, como expertos en un campo, principiantes, niños, etc., asegura que sea apropiada y comprensible en tu contexto requerido.
- Respuesta (R): Proporciona el formato de la respuesta. Esto asegura que el LLM entregue la salida en el formato exacto que necesitas para tareas posteriores. Ejemplos incluyen una lista, un JSON, un informe profesional, etc. Para la mayoría de las aplicaciones de LLM que trabajan programáticamente con las respuestas del LLM para manipulaciones posteriores, un formato de salida JSON sería ideal.

https://towardedatasciance.com/how.i.won.singapores.gnt.4.prompt.anginasring.compatition.34c195a93d4

Ejemplo

CONTEXT

I want to advertise my company's new product. My company's name is Alpha and the product is called Beta, which is a new ultra-fast hairdryer.

OBJECTIVE

Create a Facebook post for me, which aims to get people to click on the product link to purchase it.

STYLE

Follow the writing style of successful companies that advertise similar products, such as Dyson.

TONE

Persuasive

AUDIENCE

My company's audience profile on Facebook is typically the older generation. Tailor your post to target what this audience typically looks out for in hair products.

RESPONSE

The Facebook post, kept concise yet impactful.

Prompt delimiters

Los delimitadores son tokens especiales que ayudan al LLM a distinguir qué partes de tu mensaje debe considerar como una sola unidad de significado.

Esto es importante porque todo tu mensaje llega al LLM como una única secuencia larga de tokens. Los delimitadores proporcionan estructura a esta secuencia de tokens al delimitar partes específicas de tu mensaje para que sean tratadas de manera diferente.

LLM Guardrails

Los LLM poseen una función de Prompt llamada **System prompt**, que son mensajes adicionales en los que proporcionas instrucciones sobre cómo debe comportarse el chatbot a lo largo de toda la conversación.

Qué deberían incluir?

- Definición de la tarea, para que el LLM siempre recuerde lo que tiene que hacer a lo largo del chat.
- Formato de salida, para que el LLM siempre recuerde cómo debe responder.
- Guardrails, para que el LLM siempre recuerde cómo no debe responder. Este punto es especialmente importante para evitar comentarios ofensivos, data leaking, trolling, etc.

Usa los "**System Prompts**" para proporcionar instrucciones que quieres que el LLM recuerde al responder durante todo el chat.

Eres un chatbot que interactúa con clientes. Responder siempre de manera informativa y educativa, enfocándose en proporcionar datos verificados y evitando especulaciones o información no confirmada. Mantener un tono neutral y respetuoso en todas las respuestas, sin expresar opiniones personales o hacer juicios de valor. No proporcionar asesoramiento legal, médico ni financiero específico. Evitar responder a preguntas que involucren datos personales sensibles o confidenciales.

RAG workflow

retrival augmentation generation

Orquestadores de soluciones LLMs

Son bibliotecas de Python diseñada para facilitar la **construcción de aplicaciones avanzadas de lenguaje natural** mediante la integración de **LLMs** con lógicas programáticas y bases de datos.

Langchain

Nació para la construcción de Arquitecturas LLM basada principalmente en el uso de cadenas de lenguaje y agentes (tools).

Llama Index

Nación para optimizar el acceso a datos para la construcción de RAGs de forma eficiente.

No obstante, ambas librerías tienen soluciones muy similares

LlamaIndex

LlamaIndex es un marco para construir aplicaciones de LLM con contexto aumentado. La aumentación de contexto se refiere a cualquier caso de uso que aplique LLMs sobre tus datos privados o específicos de un dominio. Algunos casos de uso populares incluyen los siguientes:

- Chatbots de Preguntas y Respuestas (RAG)
- Entendimiento y Extracción de Documentos
- Agentes Autónomos que pueden realizar investigaciones y tomar acciones

Use Cases

Prompting

Question-Answering (RAG)

Chatbots

Structured Data Extraction

Agents

Multi-Modal Applications

Fine-Tuning

Nota: **LlamaIndex NO es Llama**, Llama2... Sin embargo, el nombre de LlamaIndex proviene de que, en sus comienzos, se desarrolló primero un motor optimizado para indexar datos y elaborar un motor de respuestas basadas en el LLM de Llama.

Conceptos básicos

- Un Documento es un contenedor genérico de cualquier fuente de datos, por ejemplo, un PDF, una salida de API o datos recuperados de una base de datos.
- Un Nodo representa un "fragmento" de un Documento fuente, ya sea un fragmento de texto, una imagen u
 otro. Al igual que los Documentos, contienen metadatos e información de relación con otros nodos.
- Un Index es una estructura de datos compuesta por objetos de tipo nodo, diseñada para permitir consultas por parte de un LLM.
- Un Retriever es una herramienta que define la estrategia de recuperación de manera eficiente el contexto relevante de un índice cuando se le realiza una consulta.
- Un Query Engine es una interfaz genérica que te permite hacer preguntas a tus datos. Un Query Engine toma una consulta en lenguaje natural y devuelve una respuesta alimentada por la información de los datos.

Tools

Las **Tools** son las interfaces para que un LLM pueda "interactuar con el mundo"

no

Lo siento como IA de lenguaje no

externa ni entender imágenes

Ejemplo:

¿me puedes describir esta imagen? https://icdn.football-espana.net/wp-content/upload s/2021/08/1002614356.jpg

¿tiene el LLM Tools? Tool 1 Tool 2 Se revisan una a una todas las descripciones de las Tools a ver si alguna puedo acceder a ninguna página web **Tool Image Caption** cuadra con la pregunta del usuario

class ImageCaptionTool(BaseTool): name = "Image captioner" description = "use this tool when given the URL of an image that you'd like to be " "described. It will return a simple caption describing the image." def _run(self, url: str): # download the image and convert to PIL object image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB') # preprocess the image inputs = processor(image, return_tensors="pt").to(device) # generate the caption out = model.generate(**inputs, max_new_tokens=20) # get the caption caption = processor.decode(out[0], skip_special_tokens=True) return caption

> ¿me puedes describir esta imagen? https://icdn.football-espana.net/wp-content/uploads/2 021/08/1002614356.jpg

"use this tool when given the URL of an image that you'd like to be " "described. It will return a simple caption describing the image."

(X)

 (\mathbf{X})

Si cuadran, el propio LLM extrae los argumentos que necesita la tool para ser eiecutada 🗌 url

Ejemplo

Y aquí un ejemplo de cómo ChatGPT4 acaba llamando a esas herramientas externas.

Hub de tools

https://llamahub.ai/

Agentes

Un **agente** es un motor de razonamiento y toma de decisiones automatizado basado en lenguaje natural.

• En realidad, el LLM no es la pieza que llama a las Tools. Son los "agentes" o "routers" o "semantic functions".

El agente utiliza un LLM como "cerebro" para exhibir capacidades más allá de la generación de texto, incluida la realización de conversaciones, la realización de tareas. Es decir, recibe una entrada o consulta del usuario y toma **decisiones internas** para ejecutar esa consulta con el fin de devolver el resultado correcto.

```
sys_msg = """Assistant is a large language model trained by OpenAI.

Assistant is designed to be able to assist with a wide range of tasks, from answering simple ques
Assistant is constantly learning and improving, and its capabilities are constantly evolving. It

Overall, Assistant is a powerful system that can help with a wide range of tasks and provide valu
"""

new_prompt = agent.agent.create_prompt(
    system_message=sys_msg,
    tools=tools
)
```

¿me puedes describir esta imagen?
https://icdn.football-espana.net/wpcontent/uploads/2021/08/1002614356.jpg

Lo siento como IA de lenguaje no puedo
acceder a ninguna página web externa
ni entender imágenes

Nota, la "jerga" de langchain puede variar con otros orquestadores y parece estar cambiando. Pero el potencial de lo que se puede llegar a hacer se mantiene.

Arquitectura de Agentes

La **arquitectura de agentes** puede ser mucho más compleja. Los agentes pueden "hablar" con otros agentes de tal manera que se crean "cadenas" de razonamiento basadas en LLM.

Nota, la "jerga" de langchain puede variar con otros orquestadores y parece estar cambiando. Pero el potencial de lo que se puede llegar a hacer se mantiene.

