

Packaged Food Mass Reduction Technology Development

Ryan Dowdy

University of California, Davis

Food Science & Technology

Dr. Grace Douglas

NASA Advanced Food Technology

SPACE LIFE SCIENCES
SUMMER INSTITUTE

B.A.R.S. Breakfast Augmentation Rationing System

Work Continued From Mass Reduction Study

NASA Advanced Food Technology

Leong. 2013. Mass Reduction Develop.

SPACE LIFE SCIENCES
SUMMER INSTITUTE

Introduction

- Grew up in Auburn, Alabama
- Studied Food Science at North Carolina State University
- Starting Ph.D. at University of California, Davis
- Long Term Goal: Help NASA develop a Mars-ready Food System
- Short Term Goal: Return as Co-Op and Reformulate Other Bars

Houston, We Have A Problem

- Problem: Food is Heavy!
- Solution: 1. Increase Caloric Density & 2. Improve Protein Texture
- Approach: Optimize Recipe by Maximizing Caloric Density (kcal/g)
- Constraints:

Daily Nutritional Targets (NASA-STD-3001, Vol. 2)	
% kcal from Protein	$\leq 35\%$
% kcal from Carbs	50-55%
% kcal from Fat	25-35%
% kcal from Sat. Fat	<7%
Fiber (g/1000kcal)	10 to 14

What Affects Caloric Density?

Materials

Optimization Approach

Fat Optimization - Methods

<u>Recipe</u>	<u>% kcal from Fat</u>	<u>% kcal from Sat. Fat</u>	<u>Caloric Density</u>
Original Bar	26%	9%	4.0
+ Coconut Oil	35%	19%	4.27
+ Cocoa Butter	35%	16%	4.27
+ Palm Oil	35%	13%	4.32
+ Canola Oil	35%	9%	4.27
+ Palm/Canola Combo	35%	10%	4.31

Fat Optimization - Results

- High amount remained bound in food without oil loss
- Caloric Density increased to 4.3 kcal/g

Protein Optimization - Methods

Protein Optimization - Results

L to R: Isolate, 50/50 Blend, Hydrolysate

- 100% Isolate chosen as best formulation
- Caloric Density increased to 4.4 kcal/g

Vacuum Sealing

Breakfast Bar

Han Solo

Texture Analysis

Water Activity Analysis

Moisture Sorption Analysis

Key Outcomes

Nutrition Facts	
Serving Size 1 Bar (163g)	
Amount Per Serving	
Calories	720
	Calories from Fat 250
Total Fat	28g
Saturated Fat	8g
Trans Fat	0g
Cholesterol	0mg
Sodium	115mg
Total Carbohydrate	96g
Dietary Fiber	8g
Sugars	43g
Protein	26g

- 8% Increase in Caloric Density
- 7% Increase in Mass Savings
- Well-liked in sensory (Score of 6.76, n=38)
- Fits NASA Nutritional Profile
- No Trans Fat
- Higher Protein
- Lower Simple Sugars
- Water Activity is Below Glass Transition Point
- Next: Examine Shelf-Life Limitations

NASA Cost Savings

- 2021 EM-2 Mission will carry meal-replacement bars
- Given that launching 1 kg costs ~\$65k...
- And given two weeks of breakfast meals...
- And given two crew members...
- And given a bar is eaten for every breakfast...
- NASA has potential to save ~\$727,000

Photo Credit: NASA

#FoodScience

Mass Savings Calculation w/o Pkg

$$\%MS = 1 - \frac{735.96 * m_{bar}}{304.13 * kcal_{bar}}$$

Where

m_{bar} = mass of bar in grams

$kcal_{bar}$ = bar kilocalorie content

%MS = mass savings (off original)

Mass Savings Calculation w/ Pkg

$$\%MS = 1 - \frac{\frac{735.96 * m_{bar}}{kcal_{bar}} + 16.5}{379.11}$$

Where

m_{bar} = mass of bar in grams

$kcal_{bar}$ = bar kilocalorie content

%MS = mass savings (off original)

735.96 = kcals per average breakfast

16.5 = weight of bar packaging

379.11 = weight of average breakfast
(including packaging)

NASA Cost Savings

Launch Cost per kg (USD)	\$ 65,000.00
Weight of 1 breakfast meal (kg)	0.37911
Length of flight (days)	14
Number of crew members	4
Weight of regular breakfasts (kg)	21.23016
Cost of flight breakfasts (USD)	\$ 1,379,960.40
Mass of Breakfast Bar (kg)	0.1795
Weight of bar replaced breakfasts (kg)	10.052
Cost of bar replaced breakfasts (USD)	\$ 653,380.00
TOTAL SAVINGS TO NASA (USD)	\$ 726,580.40