Qu'est-ce qu'un automate Propriétés usuelles Opérations usuelles

# Langages et Automates Automates (et langages ?)

Engel Lefaucheux

Prépas des INP

### L'automate: une machine abstraite

- Inspiré des diagrammes de flux
- Accepte ou rejette des mots
- Utile pour représenter un grand nombre de systèmes



### Objectif de ce cours

- Découvrir la notion d'automate
- Apprendre et manipuler les types d'automates
  - Complet (ou non ?)
  - Déterministe (ou non ?)
  - Avec  $\varepsilon$ -transition (ou non ?)
- Opérations usuelles sur les automates
  - Complémentation
  - Union
  - Concaténation
  - Déterminisation

### Plan

Qu'est-ce qu'un automate

- 2 Propriétés usuelles
- Opérations usuelles

### Outline

Qu'est-ce qu'un automate

2 Propriétés usuelles

Opérations usuelles

## Représentation graphique



#### Représentation graphique d'un automate

- états : représentent l'état actuel du système / où en est l'analyse de l'entrée
- transition : action ou évolution du système / lecture du symbole suivant
- état initial / final : où démarrent et s'arrète la lecture

### Zoom sur les états

- ⇒ Indique où en est l'analyse d'un mot
  - ▶ États : nœuds
    - Cercle
    - Label :  $q_i$  avec i un entier

 $q_2$ 

- ▶ État initial
  - Ajout d'une **flèche** devant
  - Souvent  $q_0$  (mais pas obligatoire)



- ▶ État final
  - Double cercle



### Zoom sur les transitions

- ⇒ Indique quelles prochains symboles sont acceptés
  - ► Transitions : arcs
    - Arc orienté (flèche) qui relie deux états
    - Label : liste (ensemble) de symboles de  $\Sigma$

$$q_1$$
  $a, c$   $q_3$ 

- $\Rightarrow$ Reconnaît le langage  $\{a,c\}$  ou  $\{a\} \cup \{c\}$  (mais pas  $\{a.c\}\,!)$
- $\Rightarrow$  Si, en  $q_1,$ le prochain symbole est a ou c,aller en  $q_3$
- ► Transition d'un état vers lui-même



• Boucle au dessus d'un état

### Reconnaissance d'un mot

- ▶ Chemin suivi au travers d'un automate
  - L'automate **consomme** les symboles
  - Une liste d'état « visités » est établie
  - Arrivée en fin de mot dans l'état final
- ightharpoonup Exemple: mots ab ou ac



- Langage d'un automate l'ensemble des mots accepté
  - Langage reconnu par un automate = "langage reconnaissable"

### Possible non-déterminisme



Depuis  $q_0$  en lisant a, on peut aller soit dans  $q_0$  soit dans  $q_1$ Un mot est accepté s'il existe un chemin acceptant

### Possible non-déterminisme



Depuis  $q_0$  en lisant a, on peut aller soit dans  $q_0$  soit dans  $q_1$  Un mot est accepté s'il existe un chemin acceptant Le mot aaab est-il accepté ? Quel est le langage reconnu par cet automate ?

### **Exercices**

Quels sont les langages reconnus par les automates suivants :









Construire l'automate reconnaissant les mots qui contiennent le facteur abba.

### Définition formelle

Un automate est un quintuplet  $A = \{Q, \Sigma, T, I, F\}$ 

- États :  $Q = \{q_0, q_1, q_2, \dots\}$
- Alphabet :  $\Sigma = \{a, b, c, \dots\}$
- Transitions :  $T \subseteq Q \times \Sigma \times Q$
- États initiaux  $I \subseteq Q$
- États finaux  $F \subseteq Q$



$$Q = \{q_0, q_1, q_2\}, \Sigma = \{a\}, I = \{q_0\}, F = \{q_0\} \text{ et } T = \{(q_0, a, q_1), (q_1, a, q_2), (q_2, a, q_0)\}.$$

### Outline

1 Qu'est-ce qu'un automate

2 Propriétés usuelles

Opérations usuelles

# (co)-Accessibilité et émondage

- Un état est accessible s'il existe un chemin depuis un état initial vers cet état.
- Un état est co-accessible s'il existe un chemin depuis cet état vers un état final.
- Un automate est émondé si tous les états sont accessibles et co-accessibles

#### Émonder l'automate suivant :



### Automate complet

• Un automate est complet si pour tout  $a \in \Sigma$ , tout  $q \in Q$  il existe  $q' \in Q$  tel que  $(q, a, q') \in T$ .

L'automate suivant est-il complet ? Peut-on le transformer pour le compléter ?



### Automate complet

• Un automate est complet si pour tout  $a \in \Sigma$ , tout  $q \in Q$  il existe  $q' \in Q$  tel que  $(q, a, q') \in T$ .

L'automate suivant est-il complet ? Peut-on le transformer pour le compléter ?



Est-ce que tous les automates sont complétables ?

### Automate déterministe

• Un automate est déterministe si pour tout  $a \in \Sigma$ , tout  $q \in Q$  il existe au plus un état  $q' \in Q$  tel que  $(q, a, q') \in T$ .

L'automate suivant est-il déterministe ? Peut-on le transformer pour le déterminiser ?



### Automate déterministe

• Un automate est déterministe si pour tout  $a \in \Sigma$ , tout  $q \in Q$  il existe au plus un état  $q' \in Q$  tel que  $(q, a, q') \in T$ .

L'automate suivant est-il déterministe ? Peut-on le transformer pour le déterminiser ?



Est-ce que tous les automates sont déterminisables ?

### Automate sans $\varepsilon$ -transition

En théorie, on peut étiquetter des transitions par  $\varepsilon$ Quel langage est reconnu par l'automate suivant ?



Peut-on retirer l' $\varepsilon$ ?

Si un automate a des  $\varepsilon$ -transitions, on le considère non-déterministe.

### Outline

1 Qu'est-ce qu'un automate

2 Propriétés usuelles

Opérations usuelles

Quels langages peut-on créer à partir d'automates existants ?

- $L_1 \cup L_2$  ?
- $\overline{L_1}$  ?
- $L_1 \cdot L_2$  ?
- $(L_1)^*$  ?
- $mirroir(L_1)$  ?
- $L_1 \cap L_2$  ?

$$A_1 = (Q_1, \Sigma, T_1, I_1, F_1)$$
 and  $A_2 = (Q_2, \Sigma, T_2, I_2, F_2)$   
On construit  $A_3 = (Q_3, \Sigma, T_3, I_3, F_3)$ 

- $Q_3 = Q_1 \cup Q_2$ ,  $I_3 = I_1 \cup I_2$  et  $F_3 = F_1 \cup F_2$
- $(q, a, q') \in T_3$  si et seulement si  $(q, a, q') \in T_1$  ou  $(q, a, q') \in T_2$





### $L_1 \cup L_2$ alternatif

$$A_1 = (Q_1, \Sigma, T_1, I_1, F_1)$$
 and  $A_2 = (Q_2, \Sigma, T_2, I_2, F_2)$   
On construit  $A_3 = (Q_3, \Sigma, T_3, I_3, F_3)$ 

- $Q_3 = Q_1 \cup Q_2 \cup \{start\}, I_3 = \{start\} \text{ et } F_3 = F_1 \cup F_2$
- $(start, \varepsilon, q') \in T_3$  si  $q' \in I_1 \cup I_2$  ou, pour  $q \neq start$   $(q, a, q') \in T_3$  si et seulement si  $(q, a, q') \in T_1$  ou  $(q, a, q') \in T_2$





### $L_1 \cup L_2$ alternatif

$$A_1 = (Q_1, \Sigma, T_1, I_1, F_1)$$
 and  $A_2 = (Q_2, \Sigma, T_2, I_2, F_2)$   
On construit  $A_3 = (Q_3, \Sigma, T_3, I_3, F_3)$ 

- $Q_3 = Q_1 \cup Q_2 \cup \{start\}, I_3 = \{start\} \text{ et } F_3 = F_1 \cup F_2$
- $(start, \varepsilon, q') \in T_3$  si  $q' \in I_1 \cup I_2$  ou, pour  $q \neq start$   $(q, a, q') \in T_3$  si et seulement si  $(q, a, q') \in T_1$  ou  $(q, a, q') \in T_2$



Quels langages peut-on créer à partir d'automates existants ?

- $L_1 \cup L_2$  ?  $\checkmark$
- $\overline{L_1}$  ?
- $L_1 \cdot L_2$  ?
- $(L_1)^*$  ?
- $mirroir(L_1)$  ?
- $L_1 \cap L_2$  ?

$$\mathcal{A}_1 = (Q_1, \Sigma, T_1, I_1, F_1)$$
  
On construit  $\mathcal{A}_3 = (Q_1, \Sigma, T_1, I_1, Q_1 \setminus F_3)$   
 $\mathcal{A}_1$  doit être complet et déterministe!



$$\mathcal{A}_1 = (Q_1, \Sigma, T_1, I_1, F_1)$$
  
On construit  $\mathcal{A}_3 = (Q_1, \Sigma, T_1, I_1, Q_1 \setminus F_3)$   
 $\mathcal{A}_1$  doit être complet et déterministe!



Quels langages peut-on créer à partir d'automates existants ?

- $L_1 \cup L_2$  ?  $\checkmark$
- $L_1 \cdot L_2$  ?
- $(L_1)^*$  ?
- $mirroir(L_1)$  ?
- $L_1 \cap L_2$  ?

$$\mathcal{A}_1 = (Q_1, \Sigma, T_1, I_1, F_1)$$
 and  $\mathcal{A}_2 = (Q_2, \Sigma, T_2, I_2, F_2)$   
On construit  $\mathcal{A}_3 = (Q_3, \Sigma, T_3, I_3, F_3)$ 

- $Q_3 = Q_1 \cup Q_2$ ,  $I_3 = I_1$  et  $F_3 = F_2$
- $(q, a, q') \in T_3$  si et seulement si soit  $(q, a, q') \in T_1$ ,  $(q, a, q') \in T_2$ , ou  $q \in F_1, q' \in I_2$  et  $a = \varepsilon$ .





$$\mathcal{A}_1 = (Q_1, \Sigma, T_1, I_1, F_1)$$
 and  $\mathcal{A}_2 = (Q_2, \Sigma, T_2, I_2, F_2)$   
On construit  $\mathcal{A}_3 = (Q_3, \Sigma, T_3, I_3, F_3)$ 

- $Q_3 = Q_1 \cup Q_2$ ,  $I_3 = I_1$  et  $F_3 = F_2$
- $(q, a, q') \in T_3$  si et seulement si soit  $(q, a, q') \in T_1$ ,  $(q, a, q') \in T_2$ , ou  $q \in F_1, q' \in I_2$  et  $a = \varepsilon$ .



Quels langages peut-on créer à partir d'automates existants ?

- $L_1 \cup L_2$  ?  $\checkmark$
- L<sub>1</sub> · L<sub>2</sub> ? ✓
- $(L_1)^*$  ?
- $mirroir(L_1)$  ?
- $L_1 \cap L_2$  ?

 $(L_1)^*$ 

$$A_1 = (Q_1, \Sigma, T_1, I_1, F_1)$$
  
On construit  $A_3 = (Q_3, \Sigma, T_3, I_3, F_3)$ 

- $\bullet \ \ \textit{Q}_{3} = \textit{Q}_{1} \cup \{\textit{start}\}, \ \textit{I}_{3} = \{\textit{start}\} \ \text{et} \ \textit{F}_{3} = \{\textit{start}\}$
- $(q, a, q') \in T_3$  si et seulement si soit  $(q, a, q') \in T_1$ ,  $q = start, q' \in I_1$  et  $a = \varepsilon$  ou  $q \in F_1, q' = start$  et  $a = \varepsilon$ .

 $(L_1)^*$ 

$$A_1 = (Q_1, \Sigma, T_1, I_1, F_1)$$
  
On construit  $A_3 = (Q_3, \Sigma, T_3, I_3, F_3)$ 

- $Q_3 = Q_1 \cup \{start\}, I_3 = \{start\} \text{ et } F_3 = \{start\}$
- $(q, a, q') \in T_3$  si et seulement si soit  $(q, a, q') \in T_1$ ,  $q = start, q' \in I_1$  et  $a = \varepsilon$  ou  $q \in F_1, q' = start$  et  $a = \varepsilon$ .



Quels langages peut-on créer à partir d'automates existants ?

- $L_1 \cup L_2$  ?  $\checkmark$
- L<sub>1</sub> · L<sub>2</sub> ? ✓
- (*L*<sub>1</sub>)\* ? ✓
- $mirroir(L_1)$  ?
- $L_1 \cap L_2$  ?

## $mirroir(L_1)$

$$A_1 = (Q_1, \Sigma, T_1, I_1, F_1)$$
  
On construit  $A_3 = (Q_3, \Sigma, T_3, I_3, F_3)$ 

- $Q_3 = Q_1$ ,  $I_3 = F_1$  et  $F_3 = I_1$
- $(q, a, q') \in T_3$  si et seulement si  $(q', a, q) \in T_1$ .



## $mirroir(L_1)$

$$A_1 = (Q_1, \Sigma, T_1, I_1, F_1)$$
  
On construit  $A_3 = (Q_3, \Sigma, T_3, I_3, F_3)$ 

- $Q_3 = Q_1$ ,  $I_3 = F_1$  et  $F_3 = I_1$
- $(q, a, q') \in T_3$  si et seulement si  $(q', a, q) \in T_1$ .



### Exercice

Construire un automate reconnaissant les langages

• 
$$L_1 = (\overline{abba})^*$$
,

• 
$$L_2 = mirroir((abb)^*)$$

• 
$$L_3 = L_1 \cup L_2 \cdot L_1$$

Quels langages peut-on créer à partir d'automates existants ?

- $L_1 \cup L_2$  ?  $\checkmark$
- L<sub>1</sub> · L<sub>2</sub> ? ✓
- $(L_1)^*$  ?  $\checkmark$
- mirroir(L<sub>1</sub>) ? ✓
- $L_1 \cap L_2$  ?

$$A_1 = (Q_1, \Sigma, T_1, I_1, F_1)$$
 and  $A_2 = (Q_2, \Sigma, T_2, I_2, F_2)$   
On construit  $A_3 = (Q_3, \Sigma, T_3, I_3, F_3)$ 

- $Q_3 = Q_1 \times Q_2$ ,  $I_3 = I_1 \times I_2$  et  $F_3 = F_1 \times F_2$
- $((q_1,q_2),a,(q_1',q_2')) \in T_3$  si et seulement si  $(q_1,a,q_1') \in T_1$  et  $(q_2,a,q_2') \in T_2$

 $A_1$  et  $A_2$  doivent être sans  $\varepsilon$ -transitions.



$$A_1 = (Q_1, \Sigma, T_1, I_1, F_1)$$
 and  $A_2 = (Q_2, \Sigma, T_2, I_2, F_2)$   
On construit  $A_3 = (Q_3, \Sigma, T_3, I_3, F_3)$ 

- $Q_3 = Q_1 \times Q_2$ ,  $I_3 = I_1 \times I_2$  et  $F_3 = F_1 \times F_2$
- $((q_1,q_2),a,(q_1',q_2'))\in T_3$  si et seulement si  $(q_1,a,q_1')\in T_1$  et  $(q_2,a,q_2')\in T_2$



$$A_1 = (Q_1, \Sigma, T_1, I_1, F_1)$$
 and  $A_2 = (Q_2, \Sigma, T_2, I_2, F_2)$   
On construit  $A_3 = (Q_3, \Sigma, T_3, I_3, F_3)$ 

- $Q_3 = Q_1 \times Q_2$ ,  $I_3 = I_1 \times I_2$  et  $F_3 = F_1 \times F_2$
- $((q_1,q_2),a,(q_1',q_2'))\in T_3$  si et seulement si  $(q_1,a,q_1')\in T_1$  et  $(q_2,a,q_2')\in T_2$



$$A_1 = (Q_1, \Sigma, T_1, I_1, F_1)$$
 and  $A_2 = (Q_2, \Sigma, T_2, I_2, F_2)$   
On construit  $A_3 = (Q_3, \Sigma, T_3, I_3, F_3)$ 

- $Q_3 = Q_1 \times Q_2$ ,  $I_3 = I_1 \times I_2$  et  $F_3 = F_1 \times F_2$
- $((q_1,q_2),a,(q_1',q_2')) \in T_3$  si et seulement si  $(q_1,a,q_1') \in T_1$  et  $(q_2,a,q_2') \in T_2$



$$A_1 = (Q_1, \Sigma, T_1, I_1, F_1)$$
 and  $A_2 = (Q_2, \Sigma, T_2, I_2, F_2)$   
On construit  $A_3 = (Q_3, \Sigma, T_3, I_3, F_3)$ 

- $Q_3 = Q_1 \times Q_2$ ,  $I_3 = I_1 \times I_2$  et  $F_3 = F_1 \times F_2$
- $((q_1, q_2), a, (q'_1, q'_2)) \in T_3$  si et seulement si  $(q_1, a, q'_1) \in T_1$  et  $(q_2, a, q'_2) \in T_2$



$$A_1 = (Q_1, \Sigma, T_1, I_1, F_1)$$
 and  $A_2 = (Q_2, \Sigma, T_2, I_2, F_2)$ 

On construit  $A_3 = (Q_3, \Sigma, T_3, I_3, F_3)$ 

- $Q_3 = Q_1 \times Q_2$ ,  $I_3 = I_1 \times I_2$  et  $F_3 = F_1 \times F_2$
- $((q_1,q_2),a,(q_1',q_2'))\in T_3$  si et seulement si  $(q_1,a,q_1')\in T_1$  et  $(q_2,a,q_2')\in T_2$



$$A_1 = (Q_1, \Sigma, T_1, I_1, F_1)$$
 and  $A_2 = (Q_2, \Sigma, T_2, I_2, F_2)$ 

On construit  $A_3 = (Q_3, \Sigma, T_3, I_3, F_3)$ 

- $Q_3 = Q_1 \times Q_2$ ,  $I_3 = I_1 \times I_2$  et  $F_3 = F_1 \times F_2$
- $((q_1,q_2),a,(q_1',q_2'))\in T_3$  si et seulement si  $(q_1,a,q_1')\in T_1$  et  $(q_2,a,q_2')\in T_2$



### **Exercices**

Construire les automates pour les langages suivants

- $L_1 = \{ w \mid |w| \text{ est pair} \}$
- L<sub>2</sub> : les mots ne contenant pas le facteur aab
- $L_2 \cap L_1$

Ces automates sont-ils émondés ? Complets ? Sans  $\varepsilon$ -transition ?