

UNIDAD 2

OLAP - PROCESAMIENTO ANALÍTICO EN LÍNEA

Contenido de la Unidad

- 1. Introducción.
- 2. Bases de Datos Multidimensionales. Cubos e Hipercubos.
- 3. Análisis Multidimensional. MOLAP, ROLAP, HOLAP.
- 4. Ejemplos prácticos.
- 5. Diferencias OLAP y Data Warehouse.
- 6. Resumen.

Bases de datos multidimensionales

- Son un tipo de base de datos optimizada para Data Warehouse.
- Se utilizan principalmente para aplicaciones OLAP.
- Facilitan un tipo de análisis muy útil para el negocio.
- Generalmente se crean a partir de bases de datos relacionales.
- Tienen la capacidad de procesar y generar respuestas rápidamente.
- Utiliza la idea de un cubo de datos para representar las dimensiones de los datos disponibles.

Bases de datos multidimensionales - Ventajas

- Gran rendimiento.
- Acceso a grandes cantidades de información.
- Establecimiento de relaciones complejas.
- Involucran datos agregados.
- Involucran cálculos complejos.
- Versatilidad.

Bases de datos multidimensionales - Desventajas

- Imposibilidad de realizar cambios.
- Baja flexibilidad debido a su estructura.
- Baja escalabilidad.
- Limitado alcance del diseño.

Sistemas OLAP - Definición

Procesamiento analítico en línea (On-Line Analytical processing)

- Facilitan las consultas de inteligencia empresarial.
- Se dividen en uno o varios cubos para analizar y recuperar la información según las necesidades.
- Tecnología sofisticada que utiliza estructuras multidimensionales que proporcionan acceso rápido a los datos.

Operaciones OLAP

- **Consolidación**: Comprende el conjunto de datos con acumulaciones o agrupaciones simples o complejas (datos interrelacionados).
- Drill-Down: OLAP permite seleccionar un valor acumulado y desglosarlo, visualizando el mismo a un nivel mayor de detalle. Esta acción se puede repetir partiendo de un nivel de agrupamiento elevado hasta llegar a los detalles.
- **Slicing and Dicing**: Capacidad de visualizar los datos desde diferentes puntos de vista, rotando o cambiando los niveles de agrupación en forma rápida y sencilla.

Principios

Lenguaje y visión de Negocio: se espera que el modelo de datos + tecnología de visualización responda preguntas y facilite el análisis de la manera en que el usuario final reconoce a su estructura.

Jerarquías: se espera que algunas aristas de análisis están asociadas jerárquicamente con otras.

Escasez: se debe entender que dentro de los modelos de datos OLAP es normal y frecuente encontrar combinaciones vacías (Sparcity).

Mediciones

Definir y Medir:

Lo que no se define, no se puede medir. Lo que no se mide, no se puede mejorar. Lo que no se mejora, se degrada siempre.

William Thomson, físico y matemático británico (1824-1907)

Mediciones

- Identifican a una serie de valores de datos en particular que nos permiten evaluar / medir / comparar (venta, margen, costo, etc.) dentro de un Modelo de Datos.
- Todos los posibles valores de datos están determinados por las Dimensiones que contextualizan (cruzan) a una Medida, además de su periodicidad.
- Cada Métrica está dimensionada en forma independiente.
- Medidas Complejas: Resultan de cálculos (en el modelo o durante la visualización).
- **Ejemplos**: cantidades, tamaños, montos, duraciones, índices, etc.

Mediciones - Medidas Aditivas

- Son medidas que se pueden agregar (Sumar). Los valores que asume una medida en un nivel de agregación de una Dimensión resultan de las agregaciones de los niveles inferiores.
- Son Uniformes: Las agregaciones se aplican de la misma forma a todas las Dimensiones:
 - Unidades Vendidas.
 - Monto Facturado.
 - Transacciones realizadas.
 - Productos Fabricados.

Mediciones - Medidas Semi-aditivas

- Son Aditivas en general, pero no uniformes. Se suman (agregan) pero no para todas las dimensiones.
- Estas métricas representan a datos del tipo
 Saldos, Stock, Dotación, Cantidad de Inscriptos.
- En general, las métricas semiaditivas no se suman para las agregaciones de tiempo.

Mediciones - Medidas No Aditivas

- No se suman en los distintos niveles de las Dimensiones.
- Estas métricas representan a datos del tipo
 Indicadores, Índices, Tasas, Precios, Cotizaciones.
- También pueden ser Ratios, Porcentajes o cualquier tipo de relación (cociente) entre otras métricas.
- Son ejemplos de este tipo de métricas: Precios de productos, Porcentaje de cumplimiento de un objetivo, Pacientes atendidos por Hora.

Mediciones - Medidas y Dimensiones

- Las Medidas almacenan Valores / mediciones del Negocio.
- Por sí solas no puedo analizar porque no están determinadas (dimensionadas).
- Las Dimensiones identifican Estructuras de Negocio.
- Las Medidas están determinadas por Dimensiones.
- Los Datos están almacenados en una Matriz Multidimensional.
- El conjunto de Dimensiones y Medidas representan un Modelo de Negocio.

Mediciones - Medidas y el Tiempo

Periodicidad: Anual, Semestral, Trimestral, Mensual, Semanal, ..., Diaria, ...

Por periodo: Desde - Hasta

- Opening Period: Primer valor del periodo.
- Last Period: Último valor del periodo.
- Parallel Period: Mismo periodo de un intervalo de tiempo anterior (ejemplo: mismo mes del año anterior).
- Previous Period: periodo anterior al actual (ejemplo: mes anterior).
- YTD / MTD / WTD / ...: Año a la fecha / Mes a la fecha / Semana a la fecha.

Dimensiones - Estructuras Conocidas del Negocio

- Elementos del negocio que categorizan medidas.
- Pueden ser usados como filtros o bien atributos para agrupar totales. Determinan la forma natural de ver o analizar la información.
- También como elementos de Dominio (conjunto de valores válidos). Cada miembro de dominio corresponde a un elemento dentro del conjunto que se trate a partir del cual se pueden agrupar o consolidar valores, métricas, índices, etc.
- Identifican Estructuras del Negocio a ojos de los usuarios.

Dimensiones y Estructuras de Dimensión

- Una **estructura de Dimensión** está conformada por Dimensiones:
 - Dimensiones: Localidad, Ciudad, Provincia, Región, País.
 - o **Estructura de Dimensión**: Zona Geográfica.
- Dentro de una misma organización puede haber más de una Estructura de Dimensión conformada por las mismas Dimensiones.
- Un nivel sin descendientes se denomina base o bottom (también input member).

Dimensiones - Jerarquías de Nivel Simple

- Secuencia de conceptos no particulares enlazados por las relaciones.
- Varios miembros relacionados con un elemento de un nivel superior.

Dimensiones - Jerarquías de Nivel Alterno

- Un elemento de dimensión puede relacionarse de abajo hacia arriba con más de un elemento de dos dimensiones distintas, algunos miembros van a una dimensión, otros miembros van a otra.
- Ejemplo:
 - \circ Producto A \rightarrow Libro
 - \circ Producto B \rightarrow DVD

Dimensiones - Jerarquías de Nivel Múltiple

- Un mismo elemento de dimensión puede relacionarse con más de un concepto simultáneamente, de abajo hacia arriba (más de una visión de negocio sobre los mismos elementos).
- Ejemplo:
 - Producto A → Tipo de Artículo
 - Producto A → Tipo de Envase

Dimensiones - Jerarquías de Nivel Irregular (Ragged)

- Algún miembro de la jerarquía depende de un miembro en donde, para otros existe un nivel superior (estructuras no balanceadas).
- Ejemplo:
 - Producto A → Tipo de Artículo → Familia de Artículo.
 - o Producto A \rightarrow Tipo de Envase.

Introducción

Dudas / Preguntas

Contenido de la Unidad

- 1. Introducción.
- 2. Bases de Datos Multidimensionales. Cubos e Hipercubos.
- 3. Análisis Multidimensional. MOLAP, ROLAP, HOLAP.
- 4. Ejemplos prácticos.
- 5. Diferencias OLAP y Data Warehouse.
- 6. Resumen.

Bases de Datos Multidimensionales. Cubos e Hipercubos.

Multidimensionalidad - Concepto

Es el proceso de diseño y construcción de un "Modelo Dimensional" a partir de una base de datos transaccionales / operativos / estructurados diferente.

Modelo Dimensional - Hechos - Conceptos

- Un hecho es una colección de medidas o métricas relacionadas con sus dimensiones y representadas por las llaves o claves de dimensión.
 Componentes cuantitativos categorizados.
- Un hecho puede representar un objeto de negocio, una transacción o un evento que es utilizado por el analista de información para gestionar o conocer.

Modelo Dimensional - Hechos - Conceptos

 Algo que ocurre en un proceso de negocio del cual tenemos registro digital, puede almacenarse, interpretarse, transformarse en elementos analíticos para algunos usuarios.

ID_Fecha	ID_Sucursal	ID_Cliente	ID_Artículo	Importe_Venta	Cant_Venta
26/02/2023	14	112920	14212	1300	2

El cliente 112920 compró 2 artículos 14212 por \$1300.- en la sucursal 14 el 26/02/2023

Modelo Dimensional - Dimensiones - Conceptos

- Son elementos que contienen atributos que se utilizan para categorizar / restringir / agrupar / contextualizar los hechos. Componentes cualitativos categorizados.
- Las Dimensiones corresponden generalmente a estructuras lógicas u organizativas del negocio, las cuales existen aunque no se produzcan Hechos.
- El Tiempo es una dimensión más.

Modelo Dimensional - Modelo Estrella

Modelo Dimensional - Modelo Estrella

Modelo Dimensional - Consideraciones Metodológicas

- Centrarse en el negocio: Concentrarse en la identificación de los requerimientos del negocio y su valor asociado.
- Construir una infraestructura de información adecuada: Diseñar una base de información única, integrada, fácil de usar.
- Realizar entregas en incrementos significativos: Crear modelos de datos que puedan escalar y ampliar el alcance / capacidad de responder consultas de negocio (focos analíticos, módulos, áreas o departamentos, ...)
- Ofrecer la solución completa: proporcionar una visión integral e integrada para todos los usuarios de negocio.

Modelo Dimensional - Consideraciones Metodológicas

- Elegir el proceso de negocio: el área a modelar. Análisis de Requerimientos.
- **Establecer la granularidad**: Nivel de detalle. Depende de requerimientos y sistemas fuente.
- Determinar las Dimensiones: Surgen de los requerimientos / consultas / informes / análisis / reportes solicitados. Se usan como Filtros o Totales.
- Determinar los Hechos y Medidas: Surgen de los procesos de negocio. Las Medidas están determinadas por las Dimensiones. Algunas medidas se crean o calculan de acuerdo a selecciones o conjuntos.
- Tip: se podría extraer de reportes existentes.

Modelo Dimensional Consideraciones Metodológicas

Ejemplo analisis de requerimientos y construcción de Modelo Dimensional

Modelo de Ventas simplificado:

- Relevamiento dimensiones.
- Relevamiento de medidas.
- Definición de niveles de dimensiones.

Relevamiento Modelo Dimensional

Relevamiento Modelo Dimensional

Relevamiento Modelo Dimensional

Relevamiento Modelo Dimensional

Modelo Dimensional

Modelo Dimensional

Modelo Dimensional

Modelo Dimensional

Modelos de Datos - Esquema Estrella (Star)

Modelos de Datos - Esquema Copo de Nieve (Snowflake)

Modelos de Datos - Esquema Constelación

Modelos de Datos - Tabla "Factless" (caso particular)

Modelado Dimensional - Dimensiones Conformadas

- Cuando los modelos (DM; Estrellas) se construyen separadamente, las dimensiones podrían ser independientes / no-integrables.
- A partir de dimensiones independientes, podrían existir diferencias o incompatibilidades.
- Es necesario que todo elemento de dimensión tenga una única interpretación.
- Sin dimensiones conformadas, la solución no podrá funcionar "como un todo" (no es integrable).

Modelado Dimensional - Dimensiones Conformadas

Las dimensiones conformadas hacen posible que:

- Una única tabla de dimensión se pueda utilizar frente a varias tablas de hechos.
- El contenido de los datos sea coherente aún desde distintas perspectivas.
- Las interfaces de usuarios sean compatibles.
- Ahorra tiempo de diseño / desarrollo.
- Minimiza errores; optimiza la construcción.
- El equipo Diseñador / Arquitecto / Constructor / Negocio es responsable de establecer las D. C. al nivel más atómico posible (granularidad fina)

Modelado Dimensional - Matriz en Bus (Kimball)

- **Filas**: Procesos de negocio.
- Columnas: Dimensiones.
- Se puede utilizar para priorizar proyectos.
- Cada fila es una implementación o incremento.
- Se puede especificar la granularidad.
- Se distinguen las dimensiones conformadas.

Métrica o Hecho o Proceso / Dimensión	Artículo	Tiempo	Cliente	Sucursal
Ventas	Х	Х	Х	Х
Objetivo de Ventas	-	Mes	-	X
Cumplimiento Objetivo de Ventas	-	Mes	-	Х

Modelado Dimensional - Diseño Físico

Contestar Preguntas Como:

- ¿Cómo puede determinar cuán grande será el sistema de DW/BI? El contenido de los datos sea coherente aún desde distintas perspectivas.
- ¿Qué factores de uso llevarán a una configuración más grande y más compleja?
- ¿Cuánta memoria y servidores se necesitan? ¿Qué tipo de almacenamiento y procesadores se necesitan?
- ¿Qué necesitan instalar los diferentes miembros del equipo de DW/BI en sus estaciones de trabajo?
- ...Particiones ...Indexación ... Procesos de resguardo ...

Modelado Dimensional - Documentación

No Taxativo:

- Modelo de datos lógico de alto nivel.
- Lista de atributos.
- Diagrama de tablas de hechos detallada.
- Definición de campos de medida / métricas.
- Diagrama de tablas de dimensiones detalladas.
- Descripción de los atributos de las dimensiones.
- Matriz DW (o DW Bus Matrix) completa.

Modelado Dimensional - Escalabilidad e Incrementos Frecuentes

Nuevos atributos de dimensión:

- Dan lugar a nuevas columnas en la tabla de dimensión.
- Si los nuevos atributos solo están disponibles a partir de una fecha, en las anteriores deben figurar como no disponibles.

Nuevas dimensiones:

- Se debe agregar una nueva clave de referencia en las tablas de hecho.
- Se deben cargar nuevos valores en las tablas de hecho.

Modelado Dimensional - Escalabilidad e Incrementos Frecuentes

Nuevas medidas:

- Nuevos campos (columnas) en las tablas de hecho.
- Rellenar con valores las filas creadas antes de este cambio.

Dimensiones más granulares implica eliminar la tabla de hechos y reconstruirla!

Bases de Datos Multidimensionales. Cubos e Hipercubos

Dudas / Preguntas

Contenido de la Unidad

- 1. Introducción.
- 2. Bases de Datos Multidimensionales. Cubos e Hipercubos.
- 3. Análisis Multidimensional. MOLAP, ROLAP, HOLAP.
- 4. Ejemplos prácticos.
- 5. Diferencias OLAP y Data Warehouse.
- 6. Resumen.

Modelos OLAP: ROLAP

ROLAP: Los datos se encuentran normalizados y almacenados en una base de datos relacional.

Ventajas

- Uso total de la seguridad e integridad de la base de datos.
- Escalable para grandes volúmenes.
- Datos y estructuras más dinámicas.
- Los datos pueden ser compartidos con aplicaciones de Reporting (operativo).

Desventajas

- Consultas más lentas usando lenguaje SQL.
- Construcción cara.
- Los cálculos están limitados a las funciones de bases de datos (SUM, AVG, etc).

Modelos OLAP: ROLAP

Modelos OLAP: ROLAP - Ejemplos de Consultas

Consultas por UNA Dimensión

```
SELECT p.Producto, SUM(df.Cantidad) AS Cantidad,
    SUM(df.Cantidad * df.PrecioUnitario) AS Importe
FROM tFactura f
    JOIN tDetalleFactura df ON df.ID_Factura = f.ID_Factura
    JOIN tProducto p ON p.ID_Producto = df.ID_Producto
GROUP BY p.Producto;
```


Modelos OLAP: ROLAP - Ejemplos de Consultas

Consultas por DOS Dimensiones

```
SELECT p.Producto, c.Nombre Cliente, SUM (df.Cantidad) AS Cantidad,
   SUM(df.Cantidad * df.PrecioUnitario) AS Importe
FROM tFactura f
    JOIN tDetalleFactura df ON df.ID Factura = f.ID Factura
    JOIN tProducto p ON p.ID Producto = df.ID Producto
    JOIN tCliente c ON c.ID Cliente = f.ID Cliente
GROUP BY p. Producto, c. Nombre Cliente;
```


Modelos OLAP: ROLAP - Ejemplos de Consultas

- Si tenemos N dimensiones, tendremos que construir 2^N consultas para poder evaluar todas las combinaciones posibles:
 - \circ 2 Dimensiones A y B \rightarrow Consultar desglosado por A, desglosado por B, desglosado por A+B y por el Total.
 - 4 Dimensiones A, B, C y D \rightarrow Consultar desglosado por A, ... D, por A+B, A+C ..., por A+B+C, A+B+D, por A+B+C+D y por el Total (16 comb).
 - 8 Dimensiones \rightarrow 2^8 \rightarrow 256 Combinaciones !!!!!
- Cada una de estas consultas se ejecutan contra datos en un modelo Relacional, accediendo a TODOS los datos y utilizando **GROUP BY** para obtener los valores acumulados por cada combinación de dimensiones.

Modelos OLAP: MOLAP

MOLAP-OLAP Multidimensional: Datos almacenados en estructura multidimensional.

Ventajas

- Mayor desempeño en el procesamiento de consultas.
- Puede escribir sobre las bases de datos.
- Permite realizar cálculos más complicados.

Desventajas

- Tamaño limitado para la arquitectura del cubo.
- No se puede acceder a los datos que están en el cubo.
- No se puede explotar el paralelismo de las bases de datos.

Modelos OLAP: MOLAP

Al utilizar un modelo **MOLAP**, la herramienta que utilicemos se encarga automáticamente de:

- Identificar todas las opciones posibles (2^N) de combinaciones de dimensiones.
- Calcular y mantener actualizados los totales, contadores, acumuladores (medidas) para cada una de las combinaciones identificadas.

Modelos OLAP: MOLAP - Ejemplos de Consultas

Consultas por UNA Dimensión

Modelos OLAP: MOLAP - Ejemplos de Consultas

Consultas por DOS Dimensiones

Modelos OLAP: HOLAP

HOLAP - OLAP Híbrido.

Mantienen los registros detallados en la base de datos relacional, mientras que los datos resumidos o agregados se almacenan en una base de datos multidimensional separada.

HOLAP = ROLAP + MOLAP

Análisis Multidimensional. MOLAP, ROLAP, HOLAP

Dudas / Preguntas

Contenido de la Unidad

- 1. Introducción.
- 2. Bases de Datos Multidimensionales. Cubos e Hipercubos.
- 3. Análisis Multidimensional. MOLAP, ROLAP, HOLAP.
- 4. Ejemplos prácticos.
- 5. Diferencias OLAP y Data Warehouse.
- 6. Resumen.

Ejemplos Prácticos - Conexión a SQL Server

Ejemplos Prácticos - Consultas SQL relacional


```
MDXQuery3.mdx - I...\geronimoforconi)*
                                           SQLQuery3.sql - lo...ronimoforconi (68))*

□ SELECT sum(SalesAmount)

     FROM [AdventureWorksDW2019].[dbo].[FactInternetSales]
     where [OrderDate] between '20140101' and '20141231'
100 %
Results Messages
     (No column name)
     45694.72
```


Ejemplos Prácticos - Consultas a Cubo multidimensional

Ejemplos Prácticos - Consultas a Cubo multidimensional

Ejemplos Prácticos - Consultas a Cubo multidimensional

Ejemplos Prácticos - Consultas a Cubo multidimensional

Ejemplos Prácticos - Consultas a Cubo multidimensional

Ejemplos Prácticos.

Dudas / Preguntas

Contenido de la Unidad

- 1. Introducción.
- 2. Bases de Datos Multidimensionales. Cubos e Hipercubos.
- 3. Análisis Multidimensional. MOLAP, ROLAP, HOLAP.
- 4. Ejemplos prácticos.
- 5. Diferencias OLTP , OLAP y Data Warehouse.
- 6. Resumen.

Diferencia entre OLTP y DataWarehouse

Diferencias OLTP - DATA WAREHOUSE		
OLTP	DATA WAREHOUSE	
Ejecutan transacciones para la cual fueron hechas	Organizado en base a conceptos	
Gran numero de usuarios	Bajo numero de usuarios	
Realizan varias transacciones x segundo	Una consulta podria demorar varios minutos	
Menor tamaño	Mayor tamaño	
Normalizado	Desnormalizado	
Mayor numero de tablas con pocas columnas	Menor numero de tablas con mas columnas	
Continuamente actualizadas	Actualizacion en Batch	
Estructuras muy estables	Sufren cambios constantes derivados de su evolucion	

Diferencia entre OLTP y DataWarehouse

Diferencias OLTP-OLAP

Características	OLTP	OLAP
Tamaño de la base de datos	Guga Bytes	Giga Bytes a Tera Bytes
Origen de los datos	Interno	Interno y externo
Actualización	Actual	Histórica
Tipo de consultas	Predecibles	Ad Hoc
Actividad	Operacional	Analítica

Diferencias OLAP y Data Warehouse

Foco en el Análisis: el esquema y morfología de un modelo de datos OLAP está basado en las necesidades de análisis y la forma en que el analista realiza su proceso de toma de decisiones.

OLAP: no solamente está asociado a modelo de datos y herramientas de visualización sino a tipo de proceso que algunos usuarios necesitan para la toma de decisiones.

Métricas: se entiende que un factor irrenunciable de este análisis corresponde a la visualización de medidas / métricas e indicadores / índices y ratios.

Diferencias OLAP y Data Warehouse

Dudas / Preguntas

Contenido de la Unidad

- 1. Introducción.
- 2. Bases de Datos Multidimensionales. Cubos e Hipercubos.
- 3. Análisis Multidimensional. MOLAP, ROLAP, HOLAP.
- 4. Ejemplos prácticos.
- 5. Diferencias OLAP y Data Warehouse.
- 6. Resumen.

FICEIA FICEIAD DE CIENCIAS DUCIAS. BIGENERIA Y ADRIVENSURA

OLAP - Procesamiento Analítico en Línea

Resumen de la Unidad

Durante esta unidad hemos aprendido:

- El concepto de Procesamiento Analítico en Línea u OLAP.
- Modelos de dato Esquema Estrella, Copo de Nieve y Constelación.
- Principales componentes de un modelo de datos OLAP.
- Ejemplo en vivo del diseño de un modelo dimensional.
- Resumen consideraciones metodológicas.

Bibliografía Recomendada

- Kimball, Ralph, and Ross, Margy. The Data Warehouse
 Toolkit: The Definitive Guide to Dimensional Modeling. 3d ed.
 Wiley, 2013. Print.
- **Kimball, Ralph, and Ross, Margy**. The Data Warehouse Lifecycle Toolkit. 2nd ed. Wiley, 2008. Print.
- Imhoff & Galemmo. Mastering Data Warehouse Design: Relational and Dimensional Techniques, Wiley Publishing, 2003.

