Principal Component Analysis

CSC 461: Machine Learning

Fall 2022

Prof. Marco Alvarez University of Rhode Island

$$\begin{bmatrix} -\cdots & \mathbf{x_1}^T & -\cdots \\ & \vdots & \\ -\cdots & \mathbf{x_n}^T & -\cdots \end{bmatrix}_{n \times d} \Rightarrow \begin{bmatrix} \mathbf{z_n}^T \\ \vdots \\ \mathbf{z_n}^T \end{bmatrix}_{n \times d'}$$

Dimensionality reduction

- ▶ Basically ...
 - √ mapping high-dimensional data into low dimensional data
 - ✓ can be as simple as dropping some dimensions or using a combination of all dimensions
- Given $\mathcal{D} = \{\mathbf{x_1}, ..., \mathbf{x_n}\}$ with $\mathbf{x_i} \in \mathbb{R}^d$, find a representation $\mathcal{Z} = \{\mathbf{z_1}, ..., \mathbf{z_n}\}$ with $\mathbf{z_i} \in \mathbb{R}^{d'}$ and $d' \ll d$
 - ✓ properties should be preserved (e.g., variance, distances, neighborhood)

Why dimensionality reduction?

- ▶ Data visualization (2-d or 3-d)
- Preprocess data before machine learning
 - ✓ algorithms can focus on important features/patterns
 - ✓ training can be more efficient
- Removing noise and redundant information
- Data compression

Principal component analysis

(eigendecomposition formulation)

Principal component analysis

- Find projections of the data onto directions that maximize variance
 - ✓ directions are orthogonal to each other

https://www.dataschool.io/15-hours-of-expert-machine-learning-videos/

Preliminaries

The **vector projection** of vector **a** onto a nonzero vector **b** is the orthogonal projection of **a** onto a straight line parallel to **b**.

$$\mathbf{a_1} = a_1 \hat{\mathbf{b}}$$

where a_1 is a scalar, called the **scalar projection** of **a** onto **b**, and $\hat{\mathbf{b}}$ is the unit vector in the direction of **b**. The scalar projection is defined as:

$$a_1 = \mathbf{a} \cdot \hat{\mathbf{b}}$$

 $\underline{https://en.wikipedia.org/wiki/Vector_projection}$

Data projection on a line

Idea: finding a line (subspace) that maintains as much variance (spread) as possible when the data is projected onto this subspace.

Mathematics for Machine Learning

The mean 1 2 3 4 5 6

Disclaimer

- ► The following slides contain figures adapted from:
 - ✓ Unsupervised Learning SERRANO.AC DEMY

 the art of understanding

 ✓ https://serrano.academy/unsupervised-learning/
- Video:
 - ✓ https://www.youtube.com/watch?v=g-Hb26agBFg

The variance

Variance =
$$\frac{1^2 + 0^2 + 1^2}{3} = 2/3$$

Variance =
$$\frac{5^2+0^2+5^2}{3} = 10/3$$

Doesn't always help

x-variance =
$$\frac{2^2+0^2+2^2}{3}$$
 = 8/3

y-variance =
$$\frac{1^2+0^2+1^2}{3}$$
 = 2/3

Covariance

covariance =
$$\frac{(-2) + 0 + (-2)}{3} = -4/3$$
 covariance = $\frac{2 + 0 + 2}{3} = 4/3$

covariance =
$$\frac{2+0+2}{3}$$
 = 4/3

Eigenvectors and eigenvalues

Principal component analysis (PCA)

Principal component analysis (PCA)

Principal component analysis (PCA)

Principal component analysis (PCA)

More formally

- Given $\mathcal{D} = \{\mathbf{x_1}, ..., \mathbf{x_n}\}$ with $\mathbf{x_i} \in \mathbb{R}^d$
- Find $\mathcal{Z} = \{\mathbf{z_1}, ..., \mathbf{z_n}\}$ with $\mathbf{z_i} \in \mathbb{R}^{d'}$ and $d' \ll d$
- Example from 3-d to 2-d

$$\mathbf{u_1} \in \mathbb{R}^3, \mathbf{u_2} \in \mathbb{R}^3$$

$$\mathbf{z_i} = [\mathbf{u_1}^T \mathbf{x_i}, \mathbf{u_2}^T \mathbf{x_i}], \mathbf{z_i} \in \mathbb{R}^2$$

PCA

- Input
 - ✓ data must be centered

$$X = \begin{bmatrix} \cdots & \mathbf{x_1}^T & \cdots \\ & \vdots & \\ \cdots & \mathbf{x_n}^T & \cdots \end{bmatrix}_{n \times d}$$

 $\frac{1}{n}\sum_{i=1}^{n}c_{i} = 0, \quad \text{for all columns } c \text{ in } X$

- Output
 - \checkmark orthonormal principal components $\mathbf{u_1}, \dots \mathbf{u_k}$

Eigendecomposition of symmetric matrices

As a special case, for every $n \times n$ real symmetric matrix, the eigenvalues are real and the eigenvectors can be chosen real and orthonormal. Thus a real symmetric matrix A can be decomposed as:

$$A = Q\Lambda Q^T$$

where Q is a matrix whose columns are eigenvectors of A, and Λ is a diagonal matrix whose entries are the eigenvalues of A.

https://en.wikipedia.org/wiki/Eigendecomposition of a matrix

First principal component

$$\|\mathbf{u_1}\|_2 = 1$$

$$\underset{\mathbf{u}_1}{\text{arg max}} \quad \sum_{i=1}^{n} (\mathbf{x_i}^T \mathbf{u_1})^2$$

$$\underset{\mathbf{u}_{1}}{\operatorname{arg \, max}} \quad \mathbf{u}_{1}^{T} \left[\sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T} \right] \mathbf{u}_{1}$$

$$XX^{T}$$

solution $\mathbf{u_1}$ is the first eigenvector of XX^T

PCA algorithm

- ▶ Assuming X and K as inputs
 - ✓ Center the data in X
 - ✓ Compute eigendecomposition $(U\Lambda U^T)$ of XX^T
 - ✓ Return the top K eigenvectors from U
- Eigenvectors can be use for projecting the data in lower dimensions

Second principal component

$$\|\mathbf{u_2}\|_2 = 1, \quad \mathbf{u_2}^T \mathbf{u_1} = 0$$

$$\underset{\mathbf{u}_2}{\text{arg max}} \quad \sum_{i=1}^{n} (\mathbf{x_i}^T \mathbf{u_2})^2$$

$$\underset{\mathbf{u}_2}{\operatorname{arg max}} \quad \mathbf{u_2}^T \left(XX^T \right) \mathbf{u_2}$$

solution $\mathbf{u_2}$ is the second eigenvector of XX^T