

CMT311 Principles of Machine Learning

Generative Models

Angelika Kimmig KimmigA@cardiff.ac.uk

08.11.2019

ERM Learning

with randomly labeled examples

data-generation model

a probability distribution D over $X \times Y$

the learner does not know D

i.i.d. assumption, $S \sim D^m$: S contains m examples that are independently and identically distributed according to D

The Bayes optimal predictor

- For any D over $X \times \{0,1\}$, the best labeling function is $f_D(x) = \begin{cases} 1 & \text{if } P_D(y=1 \mid x) \geq 0.5 \\ 0 & \text{otherwise} \end{cases}$
- best = no other $g: X \to \{0,1\}$ has lower true error
- but we do not know D ...
- instead, we'll aim to learn a predictor whose error is not much larger than the best error in a given class of predictors

A different view

- So far: focus on labelling
 - assume the labelling function takes a specific form, and
 - learn a discriminative model, i.e., a labelling function of that form that performs well across all examples
- Alternative: focus on data generation
 - assume the unknown distribution takes a specific form, and
 - learn a generative model, i.e., a distribution of that form that is close to the true distribution

Generative Models

- Generative models are useful beyond Boolean concept learning
 - general way to capture uncertainty
 - not tied to a single task
- e.g., diagnosis: rules (or logic) fail for several reasons
 - laziness
 - theoretical ignorance
 - practical ignorance

Probability Theory

- Probability theory
 - provides a tool for dealing with degrees of belief
 - lets us summarise the uncertainty coming from laziness and ignorance
 - makes statements about knowledge states rather than "the world as it really is"
- · We will mostly focus on the discrete (countable) case here

Describing possible situations

- Random variables X_i with associated domains dom(X_i)
- A **basic event** sets a random variable (RV) to an element of its domain, i.e., for some i, $X_i = e_i$ where $e_i \in dom(X_i)$
- A **possible world** ω contains a basic event for each RV, i.e., $\omega = (X_1 = e_1, ..., X_n = e_n)$ with $e_i \in dom(X_i)$ for all i, sometimes also written $\omega = (e_1, ..., e_n)$
- Sample space Ω = set of all possible worlds = $dom(X_1) \times \cdots \times dom(X_n)$
- Event = basic event or a (nested) propositional formula over basic events (using ¬, ∨ , ∧) = a set of possible worlds

Probability Distributions

- A probability distribution is a function $P:\Omega \to \mathbb{R}$ such that
 - $0 \le P(\omega) \le 1$ for every $\omega \in \Omega$

$$\sum_{\omega \in \Omega} P(\omega) = 1$$

- also called **joint distribution** and written $P(X_1, \ldots, X_n)$
- sufficient to obtain the probability of any event E:

$$P(E) = \sum_{\omega \in E} P(\omega)$$

Example

- Three countries (England, Scotland, Wales) and three (first) languages (English, Scottish, Welsh)
- dom(C) = {E,S,W}, dom(L) = {Eng,Scot,Wel}
- (made up) joint distribution P(C,L):

P(C,L)	C=E	C=S	C=W
L=Eng	0.836	0.056	0.024
L=Scot	0.0352	0.024	0
L=WeI	0.0088	0	0.016

Marginalisation

• Given joint distribution P(X,Y), the marginal distribution of X is defined by $P(X) = \sum_{y \in dom(Y)} P(X,y)$

• More generally: $P(X_1, ..., X_{i-1}, X_{i+1}, ..., X_n) = \sum_{x_i \in dom(X_i)} P(X_1, ..., X_{i-1}, x_i, X_{i+1}, ..., X_n)$

also called summing out

Example

P(C,L)	C=E	C=S	C=W
L=Eng	0.836	0.056	0.024
L=Scot	0.0352	0.024	0
L=Wel	0.0088	0	0.016

summing out C gives marginal P(L):

summing out L gives marginal P(C):

L=Eng	0.916
L=Scot	0.0592
L=Wel	0.0248

C=E	C=S	C=W
0.88	0.08	0.04

Probabilities of Events

$$\Omega$$

$$P(\emptyset) = 0$$

$$P(\Omega) = 1$$

$$P(A \land B) = P(A, B) = P(A \cap B)$$

$$P(\neg A) = 1 - P(A)$$

$$P(A \lor B) = P(A) + P(B) - P(A \land B) = P(A \cup B)$$

Conditional Probability

- The **conditional probability** of event A **given** knowledge of event B is defined as $P(A \mid B) = \frac{P(A \land B)}{P(B)}$ if P(B) > 0 (and undefined otherwise)
- B is also called evidence
- product rule: $P(A \land B) = P(A \mid B) \cdot P(B)$

• Bayes' rule:
$$P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B)}$$

Example

P(C,L)	C=E	C=S	C=W
L=Eng	0.836	0.056	0.024
L=Scot	0.0352	0.024	0
L=Wel	0.0088	0	0.016

$$P(C = W | L = Wel) = \frac{P(C = W \land L = Wel)}{P(L = Wel)} = \frac{0.016}{0.0088 + 0 + 0.016} = 0.645$$

$$P(L = Eng \mid C = S \lor C = W) = \frac{P(L = Eng \land (C = S \lor C = W))}{P(C = S \lor C = W)}$$
$$= \frac{0.056 + 0.024}{0.056 + 0.024 + 0.024 + 0 + 0 + 0.016} = 0.667$$

Example

Prior probability P(C) based on population per country:

C=E	C=S	C=W
0.88	0.08	0.04

Conditional probability P(L|C) based on research:

P(L C)	C=E	C=S	C=W
L=Eng	0.95	0.7	0.6
L=Scot	0.04	0.3	0
L=Wel	0.01	0	0.4

Product rule gives joint distribution:

P(C,L)	C=E	C=S	C=W
L=Eng	0.95x0.88	0.7x0.08	0.6x0.04
L=Scot	0.04x0.88	0.3x0.08	0x0.04
L=Wel	0.01x0.88	0x0.08	0.4x0.04

	C=E	C=S	C=W
P(C)	0.88	0.08	0.04

P(L C)	C=E	C=S	C=W
L=Eng	0.95	0.7	0.6
L=Scot	0.04	0.3	0
L=Wel	0.01	0	0.4

What is P(C | L=Eng)?

Bayes' rule:

$$P(C | L = Eng) = \frac{P(L = Eng | C) \cdot P(C)}{P(L = Eng)}$$

P(C L=Eng)	C=E	C=S	C=W
L=Eng	(0.95*0.88)/	(0.7*0.08)/	(0.6*0.04)/
	P(L=Eng) =	P(L=Eng) =	P(L=Eng) =
	0.836/P(L=Eng)	0.056/P(L=Eng)	0.024/P(L=Eng)

$$1 = \frac{0.836}{P(L = Eng)} + \frac{0.056}{P(L = Eng)} + \frac{0.024}{P(L = Eng)} = \frac{1}{P(L = Eng)} (0.836 + 0.056 + 0.024)$$

P(C L=Eng)	C=E	C=S	C=W
L=Eng	0.9127	0.0611	0.0262

Independence

Random variables X and Y are independent, written X⊥Y,
if knowing the state of one variable gives no extra
information about the other variable:

$$P(X, Y) = P(X) \cdot P(Y)$$

• alternatively: P(X|Y) = P(X) (and P(Y) = P(Y|X))

Joint distribution of the weather (W) and winning a bet (B) Example P(W,B) W=rain W=sun B=win 0.0175 0.0325 B=loss 0.3325 0.6175 marginals P(B) P(W) W=rain W=sun **B**=win 0.05 0.35 0.65 **B**=loss 0.95 P(W)*P(B) W=rain W=sun B=win 0.35*0.05=0.0175 0.65*0.05=0.0325 W and B are independent **B**=loss 0.35*0.95=0.3325 0.65*0.95=0.6175

Homework: compute P(B|W) and P(W|B) and verify that the alternative characterisations on the previous slide indeed hold.

Conditional Independence

- Random variables X and Y are **conditionally independent** of each other **given** the state of random variable Z, written $X \perp Y \mid Z$, if $P(X, Y \mid Z) = P(X \mid Z) \cdot P(Y \mid Z)$
- Given the state of Z, knowing the state of X does not provide extra information about the state of Y (and vice versa)
- Also applies to **sets** of random variables: $\mathcal{X} \perp \mathcal{Y} \mid \mathcal{Z}$ if $P(\mathcal{X}, \mathcal{Y} \mid \mathcal{Z}) = P(\mathcal{X} \mid \mathcal{Z}) \cdot P(\mathcal{Y} \mid \mathcal{Z})$ for all states of the variables in $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$; we write $\mathcal{X} \perp \mathcal{Y}$ for $\mathcal{X} \perp \mathcal{Y} \mid \emptyset$

Example

Boolean variables Cloudy, Sprinkler and Rain

R=yes				
P(S,R,C)	S=yes	S=no	S=yes	S=no
C=yes	0.04	0.36	0.01	0.09
C=no	0.05	0.05	0.20	0.20

Claim: S⊥R C	$=\frac{P(S,C)}{}$
need to show:	P(C)
$P(S, R \mid C) = P(S \mid C)$	$(C) \cdot P(R \mid C)$
D(S, B, C)	ightharpoonup P(R,C)
$=\frac{P(S,R,C)}{P(C)}$	$= \overline{P(C)}$
P(C) P(C)	

P(S,C)	S=yes	S=no
C=yes	0.05	0.45
C=no	0.25	0.25

C=yes	0.04+0.36+0.01+0.09=0.5
C=no	0.05+0.05+0.2+0.2=0.5

P(S C)	S=yes	S=no
C=yes	0.1	0.9
C=no	0.5	0.5

P(R C)	R=yes	R=no
C=yes	8.0	0.2
C=no	0.2	0.8

	R=yes		R=no	
P(S,R C)	S=yes	S=no	S=yes	S=no
C=yes	0.08	0.72	0.02	0.18
C=no	0.1	0.1	0.4	0.4

	R=yes		R=no	
P(S C)*P(R C)	S=yes	S=no	S=yes	S=no
C=yes	0.1*0.8	0.9*0.8	0.1*0.2	0.9*0.2
C=no	0.5*0.2	0.5*0.2	0.5*0.8	0.5*0.8

Example

Boolean variables Cloudy, Sprinkler and Rain

R=yes			R=no	
P(S,R,C)	S=yes	S=no	S=yes	S=no
C=yes	0.04	0.36	0.01	0.09
C=no	0.05	0.05	0.20	0.20

Note: S⊥R does not hold, i.e., $P(S) \cdot P(R) \neq P(S, R)$

P(S)	
S=ves	S=no

S=yes	S=no
0.3	0.7

R=yes	R=no
0.5	0.5

P(S,R)

R=yes		R=no	
S=yes	S=no	S=yes	S=no
0.09	0.41	0.21	0.29

P(S)*P(R)

R=yes		R=no	
S=yes	S=no	S=yes	S=no
0.5*0.3=0.15	0.5*0.7=0.35	0.5*0.3=0.15	0.5*0.7=0.35

ERM Learning

with randomly labeled examples

data-generation model

a probability distribution D over $X \times Y$

the learner does not know D

i.i.d. assumption, $S \sim D^m$: S contains m examples that are independently and identically distributed according to D

 $\Omega = \{Sunny,Cloudy,Rainy\}x\{Warm,Cold\}x\{Normal,High\}x\{Strong,Weak\}x\{Warm,Cool\}x\{Same,Change\}x\{0,1\}$

Sky	AirTemp	Humidity	Wind	Water	Forecast	Enjoy	Ρ(ω)
Sunny	Warm	Normal	Strong	Warm	Same	0	p1
Sunny	Warm	Normal	Strong	Warm	Same	1	p2
Sunny	Warm	Normal	Strong	Warm	Change	0	р3
Sunny	Warm	Normal	Strong	Warm	Change	1	p4
Sunny	Warm	Normal	Strong	Cool	Same	0	p5
Sunny	Warm	Normal	Strong	Cool	Same	1	p6
Sunny	Warm	Normal	Strong	Cool	Change	0	p7
Sunny	Warm	Normal	Strong	Cool	Change	1	p8
Sunny	Warm	Normal	Weak	Warm	Same	0	p 9
Rainy	Cold	High	Weak	Cool	Change	1	p192

all in [0,1], sum = 1

Learning

- Choose:
 - a representation of a probability distribution over $X \times Y$ with parameters θ
 - a prior $P(\theta)$ over the values of the parameters
 - a generative model $P(S \mid \theta)$ for the data given the parameters
- Bayes' rule: $P(\theta \mid S) = \frac{P(S \mid \theta)P(\theta)}{P(S)}$
- The MAP (most probable a posteriori) parameter estimate is the one maximising the posterior, $\theta^{MAP} = \arg\max_{\theta} P(\theta \mid S) = \arg\max_{\theta} \frac{P(S \mid \theta)P(\theta)}{P(S)}$
- If $P(\theta)$ is equal for all values, the MAP estimate becomes the **ML** (maximum likelihood) estimate, $\theta^{ML} = \arg\max_{\theta} P(S \mid \theta)$

$$\theta^{ML} = \arg\max_{\theta} P(S \mid \theta)$$

remember $S \sim D^m$, i.e., each example in S is some row in the table, and $P(S \mid \theta)$ is the product of the corresponding parameters

let c_i be the number of times the i-th row appears in S

then,
$$\theta^{ML} = (\frac{c_1}{m}, ..., \frac{c_m}{m})$$

Learning the parameters for the full joint distribution is unrealistic...

Sky	AirTemp	Humidity	Wind	Water	Forecast	Enjoy	Ρ(ω)
Sunny	Warm	Normal	Strong	Warm	Same	0	p1
Sunny	Warm	Normal	Strong	Warm	Same	1	p2
Sunny	Warm	Normal	Strong	Warm	Change	0	p 3
Sunny	Warm	Normal	Strong	Warm	Change	1	p4
Sunny	Warm	Normal	Strong	Cool	Same	0	p 5
Sunny	Warm	Normal	Strong	Cool	Same	1	p6
Sunny	Warm	Normal	Strong	Cool	Change	0	p7
Sunny	Warm	Normal	Strong	Cool	Change	1	p8
Sunny	Warm	Normal	Weak	Warm	Same	0	p9
Rainy	Cold	High	Weak	Cool	Change	1	p192

all in [0,1],
$$\theta = (p_1,...,p_{192})$$

Learning

• Choose:

Impose some **structure** on the distribution using (conditional) independence

- a representation of a probability distribution over $X \times Y$ with parameters θ
- a prior $P(\theta)$ over the values of the parameters
- a generative model $P(S \mid \theta)$ for the data given the parameters
- Bayes' rule: $P(\theta \mid S) = \frac{P(S \mid \theta)P(\theta)}{P(S)}$
- The MAP (most probable a posteriori) parameter estimate is the one maximising the posterior, $\theta^{MAP} = \arg\max_{\theta} P(\theta \mid S) = \arg\max_{\theta} \frac{P(S \mid \theta)P(\theta)}{P(S)}$
- If $P(\theta)$ is equal for all values, the MAP estimate becomes the **ML** (maximum likelihood) estimate, $\theta^{ML} = \arg\max_{\rho} P(S \mid \theta)$

Let's assume the attributes are independent given the label:

P(S, A, H, Wi, Wa, F, E) = P(S | E)P(A | E)P(H | E)P(Wi | E)P(Wa | E)P(F | E)P(E)

E=0	E=1
p_0	p ₁

P(S E)	S=Sunny	S=Cloudy	S=Rainy
E=0	p ₂	p ₃	p ₄
E=1	p 5	p ₆	p ₇

P(A E)	A=Warm	A=Cold
E=0	p ₈	p 9
E=1	p ₁₀	p ₁₁

P(H E)	H=Normal	H=High
E=0	p ₁₂	p ₁₃
E=1	p 14	P 15

P(Wi E)	Wi=Strong	Wi=Weak
E=0	p ₁₆	p ₁₇
E=1	p ₁₈	p ₁₉

P(Wa E)	Wa=Warm	Wa=Cool
E=0	p ₂₀	p ₂₁
E=1	p ₂₂	p ₂₃

P(F E)	F=Same	F=Change
E=0	p ₂₄	p ₂₅
E=1	p ₂₆	p ₂₇

Use Bayes' rule to determine the most likely label of a new example $\langle v_1, \dots, v_6 \rangle$:

$$\arg\max_{e\in\{0,1\}} P(E=e \mid S=v_1, A=v_2, H=v_3, Wi=v_4, Wa=v_5, F=v_6)$$

$$= \arg\max_{e\in\{0,1\}} \frac{P(S=v_1, A=v_2, H=v_3, Wi=v_4, Wa=v_5, F=v_6 \mid E=e)P(E=e)}{P(S=v_1, A=v_2, H=v_3, Wi=v_4, Wa=v_5, F=v_6)}$$

$$= \arg\max_{e\in\{0,1\}} P(S=v_1, A=v_2, H=v_3, Wi=v_4, Wa=v_5, F=v_6 \mid E=e)P(E=e)$$

$$= \arg\max_{e\in\{0,1\}} P(S=v_1, A=v_2, H=v_3, Wi=v_4, Wa=v_5, F=v_6 \mid E=e)P(E=e)$$

$$= \arg\max_{e\in\{0,1\}} P(S=v_1 \mid E=e)P(A=v_2 \mid E=e)P(H=v_3 \mid E=e)P(Wi=v_4 \mid E=e)$$

$$P(Wa=v_5 \mid E=e)P(F=v_6 \mid E=e)P(E=e)$$

E=0	E=1
p ₀	p ₁

P(S E)	S=Sunny	S=Cloudy	S=Rainy
E=0	p ₂	p ₃	p ₄
E=1	p 5	P ₆	p ₇

P(A E)	A=Warm	A=Cold
E=0	p ₈	p 9
E=1	p ₁₀	P 11

P(H E)	H=Normal	H=High
E=0	p ₁₂	p ₁₃
E=1	p 14	p ₁₅

P(Wi E)	Wi=Strong	Wi=Weak
E=0	p ₁₆	p ₁₇
E=1	p ₁₈	P 19

P(Wa E)	Wa=Warm	Wa=Cool
E=0	p ₂₀	p ₂₁
E=1	p ₂₂	p ₂₃

P(F E)	F=Same	F=Change
E=0	p ₂₄	p 25
E=1	p ₂₆	p ₂₇

E.g., <Rainy,Cold,High,Weak,Warm,Same>

$$\arg\max_{e\in\{0,1\}}P(S=Rainy\,|\,E=e)P(A=Cold\,|\,E=e)P(H=High\,|\,E=e)P(Wi=Weak\,|\,E=e)$$

$$P(Wa=Warm\,|\,E=e)P(F=Same\,|\,E=e)P(E=e)$$

for e=0
$$p_4 \cdot p_9 \cdot p_{13} \cdot p_{17} \cdot p_{20} \cdot p_{24} \cdot p_0$$

return the label for which the product is larger

for e=1
$$p_7 \cdot p_{11} \cdot p_{15} \cdot p_{19} \cdot p_{22} \cdot p_{26} \cdot p_1$$

This is called the **Naive Bayes** (NB) classifier

E=0	E=1
p ₀	p ₁

P(S E)	S=Sunny	S=Cloudy	S=Rainy
E=0	p ₂	p ₃	p ₄
E=1	p ₅	p ₆	p ₇

P(A E)	A=Warm	A=Cold
E=0	p ₈	p 9
E=1	p ₁₀	p ₁₁

P(H E)	H=Normal	H=High
E=0	p ₁₂	p ₁₃
E=1	p ₁₄	p 15

P(Wi E)	Wi=Strong	Wi=Weak
E=0	p ₁₆	p ₁₇
E=1	p ₁₈	P 19

P(Wa E)	Wa=Warm	Wa=Cool
E=0	p ₂₀	p ₂₁
E=1	p ₂₂	p ₂₃

P(F E)	F=Same	F=Change
E=0	p ₂₄	p 25
E=1	p ₂₆	p ₂₇

Given a training sample S of size m, we can estimate the ML parameters by counting: let c(X=x) be the number of examples in S where X=x

Class prior = relative frequency of labels w.r.t. the full data, i.e.,

$$P(E=0) = \frac{c(E=0)}{m} \text{ and } P(E=1) = \frac{c(E=1)}{m}$$

Conditional probabilities = relative frequencies w.r.t. the examples of the given class, e.g.,

$$P(S = Sunny \mid E = 0) = \frac{c(S = Sunny \land E = 0)}{c(E = 0)}$$

E=0	E=1
p ₀	p ₁

P(S E)	S=Sunny	S=Cloudy	S=Rainy
E=0	p ₂	p ₃	p 4
E=1	p 5	p ₆	p ₇

P(A E)	A=Warm	A=Cold
E=0	p ₈	p 9
E=1	p ₁₀	p ₁₁

P(H E)	H=Normal	H=High
E=0	p ₁₂	p ₁₃
E=1	P 14	P 15

P(Wi E)	Wi=Strong	Wi=Weak
E=0	p ₁₆	p ₁₇
E=1	P 18	p 19

P(Wa E)	Wa=Warm	Wa=Cool
E=0	p ₂₀	p ₂₁
E=1	p ₂₂	p ₂₃

P(F E)	F=Same	F=Change
E=0	p ₂₄	p 25
E=1	p ₂₆	p ₂₇

Sky	AirTemp	Humidity	Wind	Water	Forecast	Enjoy
Sunny	Warm	Normal	Weak	Cool	Change	0
Sunny	Cold	High	Weak	Cool	Change	0
Rainy	Warm	Normal	Strong	Warm	Change	0
Cloudy	Warm	High	Strong	Warm	Same	1
Rainy	Warm	High	Weak	Cool	Same	1
Rainy	Warm	Normal	Weak	Warm	Change	0
Rainy	Cold	Normal	Weak	Cool	Change	1
Cloudy	Cold	High	Weak	Warm	Change	1
Sunny	Warm	High	Weak	Warm	Change	1
Sunny	Cold	Normal	Strong	Warm	Same	1
Cloudy	Warm	Normal	Strong	Cool	Change	0
Sunny	Cold	High	Strong	Cool	Same	0
Rainy	Warm	Normal	Weak	Cool	Change	1
Rainy	Warm	High	Strong	Cool	Change	0
Rainy	Cold	Normal	Strong	Warm	Change	0
Rainy	Warm	Normal	Weak	Warm	Same	1
Cloudy	Cold	Normal	Strong	Cool	Change	0
Cloudy	Cold	High	Strong	Cool	Change	0
Sunny	Cold	Normal	Strong	Warm	Same	1
Sunny	Warm	High	Weak	Cool	Change	1

E=0 E=1

P(S E)	S=Sunny	S=Cloudy	S=Rainy
E=0			
E=1			

P(A E)	A=Warm	A=Cold
E=0		
E=1		

Naive Bayes

- Robust to irrelevant attributes
- Robust to isolated noisy data points
- Fewer parameters than full joint distribution, requiring less training data
- Often good classification results in practice, even if conditional independence assumption not justified

Homework

- Revise and practice the material seen today; it is the foundation for the rest of the module.
- Read chapter 1 of Barber's book and work through the examples (for the discrete case) it provides.
- Further exercises to help with this will be available on Learning Central after the lecture.

Reading Material

Note: the books all use slightly different notation to talk about the same concepts

- Today:
 - Understanding Machine Learning: parts of chapter 24
 - Russell & Norvig: chapter 13; parts of chapter 20
 - Barber: chapter 1; parts of chapter 10
- Next week:
 - Russell & Norvig: 14.1 & 14.2
 - Barber: chapters 2 & 3