DOI: 10.1007/s00208-003-0452-7

The arithmetic of Borcherds' exponents

Jan H. Bruinier · Ken Ono

Received: 15 October 2001 / Revised version: 28 May 2002 / Published online: 13 August 2003 – © Springer-Verlag 2003

1. Introduction and statement of results

Recently, Borcherds [B] provided a striking description for the exponents in the naive infinite product expansion of many modular forms. For example, if $E_k(z)$ denotes the usual normalized weight k Eisenstein series, let c(n) denote the integer exponents one obtains by expressing $E_4(z)$ as an infinite product:

$$E_4(z) = 1 + 240 \sum_{n=1}^{\infty} \sum_{d|n} d^3 q^n$$

= $(1 - q)^{-240} (1 - q^2)^{26760} \dots = \prod_{n=1}^{\infty} (1 - q^n)^{c(n)}$ (1.1)

 $(q:=e^{2\pi iz})$ throughout). Although one might not suspect that there is a precise description or formula for the exponents c(n), Borcherds provided one. He proved that there is a weight 1/2 meromorphic modular form

$$G(z) = \sum_{n \ge -3} b(n)q^n = q^{-3} + 4 - 240q + 26760q^4 + \dots - 4096240q^9 + \dots$$

with the property that $c(n) = b(n^2)$ for every positive integer n.

It is natural to examine other methods for studying such exponents. Here we point out a p-adic method which is based on the fact that the logarithmic derivative of a meromorphic modular form is often a weight two p-adic modular form.

J.H. BRUINIER · K. ONO

Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706, USA (e-mail: bruinier@math.wisc.edu/ono@math.wisc.edu)

Both authors thank the Number Theory Foundation and the National Science Foundation for their generous support. The first author acknowledges the support of a Heisenberg Fellowship. The second author acknowledges the support of an Alfred P. Sloan Foundation Fellowship, a David and Lucile Packard Foundation Fellowship, and a H. I. Romnes Fellowship, and a John S. Guggenheim Fellowship.

To illustrate our result, use (1.1) to define the series C(q)

$$C(q) = 6 \sum_{n=1}^{\infty} \sum_{d|n} c(d)dq^{n}$$

= -1440q + 319680q² - 73733760q³ + ··· (1.2)

If $\eta(z) = q^{1/24} \prod_{n=1}^{\infty} (1 - q^n)$ denotes Dedekind's eta-function, then it turns out that

$$C(q) \equiv q + 9q^2 + 10q^3 + 2q^4 + q^5 + \dots \equiv \eta^2(z)\eta^2(11z) \pmod{11}$$

Therefore, if $p \neq 11$ is prime, then $a_E(p) \equiv 1 + 6c(p)p \pmod{11}$, where $a_E(p)$ is the trace of the pth Frobenius endomorphism on $X_0(11)$. This example illustrates our general result.

Let K be a number field and let O_v be the completion of its ring of integers at a finite place v with residue characteristic p. Moreover, let λ be a uniformizer for O_v . Following Serre [S2], we say that a formal power series

$$f = \sum_{n=0}^{\infty} a(n)q^n \in O_v[[q]]$$

is a *p*-adic modular form of weight k if there is a sequence $f_i \in O_v[[q]]$ of holomorphic modular forms on $SL_2(\mathbb{Z})$, with weights k_i , for which $\operatorname{ord}_{\lambda}(f_i - f) \to +\infty$ and $\operatorname{ord}_{\lambda}(k - k_i) \to +\infty$.

Theorem 1. Let $F(z) = q^h \left(1 + \sum_{n=1}^{\infty} a(n)q^n\right) \in O_K[[q]]$ be a meromorphic modular form on $SL_2(\mathbb{Z})$, where O_K is the ring of integers in a number field K. Moreover, let c(n) denote the numbers defined by the formal infinite product

$$F(z) = q^{h} \prod_{n=1}^{\infty} (1 - q^{n})^{c(n)}.$$

If p is prime and F(z) is good at p (see §3 for the definition), then the formal power series

$$B = h - \sum_{n=1}^{\infty} \sum_{d|n} c(d)dq^{n}$$

is a weight two p-adic modular form.

Here we present cases where F(z) is good at p. As usual, let j(z) be the modular function

$$j(z) = q^{-1} + 744 + 196884q + 21493760q^2 + \cdots$$

Let $\mathbb H$ be the upper half of the complex plane. We shall refer to any complex number $\tau \in \mathbb H$ of the form $\tau = \frac{-b+\sqrt{b^2-4ac}}{2a}$ with $a,b,c \in \mathbb Z$, $\gcd(a,b,c)=1$

and $b^2 - 4ac < 0$ as a *Heegner point*. Moreover, we let $d_\tau := b^2 - 4ac$ be its discriminant. The values of j at such points are known as *singular moduli*, and it is well known that these values are algebraic integers. A meromorphic modular form F(z) on $SL_2(\mathbb{Z})$ has a *Heegner divisor* if its zeros and poles are supported at the cusp at infinity and Heegner points.

Although we shall emphasize those forms F(z) which have Heegner divisors, we stress that Theorem 1 holds for many forms which do not have a Borcherds product. For example, $E_{p-1}(z)$ is good at p for every prime $p \ge 5$. The next result describes some forms with Heegner divisors which are good at a prime p.

Theorem 2. Let $F(z) = q^h \left(1 + \sum_{n=1}^{\infty} a(n)q^n\right) \in \mathbb{Z}[[q]]$ be a meromorphic modular form on $SL_2(\mathbb{Z})$ with a Heegner divisor whose Heegner points $\tau_1, \tau_2, \ldots, \tau_s \in \mathbb{H}/SL_2(\mathbb{Z})$ have fixed discriminant d. The following are true.

(1) If $p \ge 5$ is a prime for which $\left(\frac{d}{p}\right) \in \{0, -1\}$ and

$$\prod_{i=1}^{s} j(\tau_i)(j(\tau_i) - 1728) \not\equiv 0 \pmod{p},$$

then F(z) is good at p.

- (2) If s = 1 and $\tau_1 = (-1 + \sqrt{-3})/2$ (resp. $\tau_1 = i$), then F(z) is good at every prime $p \equiv 2, 3, 5, 11 \pmod{12}$ (resp. $p \equiv 2, 3, 7, 11 \pmod{12}$).
- (3) If p = 2 (resp. p = 3) and $|d| \equiv 3 \pmod{8}$ (resp. $|d| \equiv 1 \pmod{3}$), then F(z) is good at p.
- (4) Suppose that $p \ge 5$ is a prime for which $\left(\frac{d}{p}\right) \in \{0, -1\}$ and

$$\prod_{i=1}^{s} j(\tau_i) \equiv 0 \pmod{p}.$$

If $\mathbb{Q}(\sqrt{d}) \neq \mathbb{Q}(\sqrt{-3})$ or $\left(\frac{d}{p}\right) = -1$, then F(z) is good at p.

(5) Suppose that $p \ge 5$ is a prime for which $\left(\frac{d}{p}\right) \in \{0, -1\}$ and

$$\prod_{i=1}^{s} (j(\tau_i) - 1728) \equiv 0 \pmod{p}.$$

If
$$\mathbb{Q}(\sqrt{d}) \neq \mathbb{Q}(i)$$
 or $\left(\frac{d}{p}\right) = -1$, then $F(z)$ is good at p .

Remarks. (1) Since j(i) = 1728 (resp. $j((-1 + \sqrt{-3})/2) = 0$), Theorem 2 (2) applies to the modular form j(z) - 1728 (resp. j(z)), as well as the Eisenstein series $E_6(z)$ (resp. $E_4(z)$).

(2) By the theory of complex multiplication, the singular moduli $j(\tau_1), \ldots, j(\tau_s)$, associated to the points in Theorem 2, form a complete set of Galois conjugates over \mathbb{Q} , and the multiplicities of each τ_i is fixed in the divisor of F(z).

- (3) For fundamental discriminants d, the work of Gross and Zagier [G-Z] provides a simple description of those primes p which do not satisfy the condition in Theorem 2 (1).
- (4) Theorem 2 admits a generalization to those forms with algebraic integer coefficients and Heegner divisors. In particular, it can be modified to cover such forms where the multiplicities of the τ_i in the divisor of F(z) are not all equal.

Theorem 2 has interesting consequences regarding class numbers of imaginary quadratic fields. If $0 < D \equiv 0$, 3 (mod 4), then let H(-D) be the Hurwitz class number for the discriminant -D. For each such D there is a unique meromorphic modular form of weight 1/2 on $\Gamma_0(4)$, which is holomorphic on the upper half complex plane, whose Fourier expansion has the form [B, Lemma 14.2]

$$f(D;z) = q^{-D} + \sum_{1 \le n \equiv 0,1 \pmod{4}} c_D(n)q^n \in \mathbb{Z}[[q]]. \tag{1.3}$$

Borcherds' theory implies that

$$F(D;z) = q^{-H(-D)} \prod_{n=1}^{\infty} (1 - q^n)^{c_D(n^2)}$$
(1.4)

is a weight zero modular function on $SL_2(\mathbb{Z})$ whose divisor is a Heegner divisor consisting of a pole of order H(-D) at $z=\infty$ and a simple zero at each Heegner point with discriminant -D. At face value, to compute this correspondence one needs the coefficients of f(D;z) and the class number H(-D). Here we obtain, in many cases, a p-adic class number formula for H(-D) in terms of the coefficients of f(D;z). Therefore, in these cases the correspondence is uniquely determined by the coefficients of f(D;z).

Corollary 3. If $0 < D \equiv 0, 3 \pmod{4}$ and -D is fundamental, then the following are true.

(1) If $D \equiv 3 \pmod{8}$, then as 2-adic numbers we have

$$H(-D) = \frac{1}{24} \sum_{n=0}^{\infty} c_D(4^n) 2^n.$$

(2) If $D \equiv 1 \pmod{3}$, then as 3-adic numbers we have

$$H(-D) = \frac{1}{12} \sum_{n=0}^{\infty} c_D(9^n) 3^n.$$

(3) If $D \equiv 0, 2, 3 \pmod{5}$, then as 5-adic numbers we have

$$H(-D) = \frac{1}{6} \sum_{n=0}^{\infty} c_D(25^n) 5^n.$$

(4) If $D \equiv 0, 1, 2, 4 \pmod{7}$, then as 7-adic numbers we have

$$H(-D) = \frac{1}{4} \sum_{n=0}^{\infty} c_D(49^n) 7^n.$$

2. Preliminaries

We recall essential facts regarding meromorphic modular forms on $SL_2(\mathbb{Z})$ and the arithmetic of infinite products. If $F(q) = \sum_{n \geq n_0} a(n)q^n$, then let Θ be the standard differential operator on formal q-series defined by

$$\Theta(F(q)) = \sum_{n > n_0} na(n)q^n. \tag{2.1}$$

Throughout, let F(q) be a formal power series of the form

$$F(q) = q^h \left(1 + \sum_{n=1}^{\infty} a(n)q^n \right),$$
 (2.2)

and let the c(n) be the numbers for which

$$F(q) = q^h \prod_{n=1}^{\infty} (1 - q^n)^{c(n)}.$$
 (2.3)

Proposition 2.1. If F(q) and the numbers c(n) are as in (2.2) and (2.3), then

$$\frac{\Theta(F(q))}{F(q)} = h - \sum_{n=1}^{\infty} \sum_{d \mid n} c(d) dq^{n}.$$

Proof. For convenience, let H(q) be the series defined by

$$H(q) = -\sum_{n=1}^{\infty} c(n)q^n.$$
 (2.4)

As formal power series, we have

$$\log(F(q)) = \log(q^h) + \sum_{n=1}^{\infty} c(n) \log(1 - q^n) = \log(q^h) - \sum_{n=1}^{\infty} c(n) \sum_{m=1}^{\infty} \frac{q^{mn}}{m}$$
$$= \log(q^h) - \sum_{m=1}^{\infty} \frac{H(q^m)}{m}.$$

By logarithmic differentiation, with respect to q, we obtain

$$\frac{qF'(q)}{F(q)} = \frac{\Theta(F(q))}{F(q)} = h - \sum_{m=1}^{\infty} H'(q^m)q^m = h - \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} c(n)nq^{mn}.$$

Following Ramanujan, let P(z) denote the nearly modular Eisenstein series

$$P(z) = 1 - 24 \sum_{n=1}^{\infty} \sum_{d|n} dq^{n}.$$
 (2.5)

Lemma 2.2. Let F(z) = F(q) be a weight k meromorphic modular form on $SL_2(\mathbb{Z})$ satisfying (2.2). If the numbers c(n) are as in (2.3), then there is a weight k+2 meromorphic modular form $\tilde{F}(z)$ on $SL_2(\mathbb{Z})$ for which

$$\frac{1}{12} \left(\frac{\tilde{F}(z)}{F(z)} + kP(z) \right) = h - \sum_{n=1}^{\infty} \sum_{d|n} c(d)dq^n.$$

If F(z) is a holomorphic modular (resp. cusp) form, then $\tilde{F}(z)$ is a holomorphic modular (resp. cusp) form. Moreover, the poles of $\tilde{F}(z)$ are supported at the poles of F(z).

Proof. It is well known [O, p. 17] that the function $\tilde{F}(z)$ defined by

$$\tilde{F}(z) := 12\Theta(F(z)) - kP(z)F(z)$$

is a meromorphic modular form of weight k+2 on $SL_2(\mathbb{Z})$. Moreover, if F(z) is a holomorphic modular (resp. cusp) form, then $\tilde{F}(z)$ is a holomorphic modular (resp. cusp) form. The result now follows immediately from Proposition 2.1. \square

The remaining results in this section are useful for computing explicit examples of Theorem 1, and for proving Theorems 2 and 3. As usual, if $k \ge 4$ is an even integer, then let $E_k(z)$ denote the Eisenstein series

$$E_k(z) := 1 - \frac{2k}{B_k} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^n.$$
 (2.6)

Throughout, let ω be the cube root of unity

$$\omega := \frac{-1 + \sqrt{-3}}{2}.\tag{2.7}$$

Lemma 2.3. Suppose that k > 4 is even.

- (1) We have $E_k(z) \equiv 1 \pmod{24}$.
- (2) If $p \ge 5$ is prime and $(p-1) \mid k$, then $E_k(z) \equiv 1 \pmod{p}$.

- (3) If $k \not\equiv 0 \pmod{3}$, then $E_k(\omega) = 0$.
- (4) *If* $k \equiv 2 \pmod{4}$, then $E_k(i) = 0$.

Proof. Since z = i (resp. $z = \omega$) is fixed by the modular transformation Sz = -1/z (resp. Az = -(z + 1)/z), the definition of a modular form implies that $E_k(i) = 0$ whenever $k \equiv 2 \pmod{4}$, and $E_k(\omega) = 0$ whenever $k \not\equiv 0 \pmod{3}$. The claimed congruences follows immediately from (2.6) and the von Staudt-Clausen theorem on the divisibility of denominators of Bernoulli numbers [I-R, p. 233].

3. Proofs of the main results

We begin by defining what it means for a modular form to be "good at p".

Definition 3.1. Let $F(z) = q^h \left(1 + \sum_{n=1}^{\infty} a(n)q^n\right) \in O_K[[q]]$ be a meromorphic modular form on $SL_2(\mathbb{Z})$ whose zeros and poles, away from $z = \infty$, are at the points $z_1, z_2, \ldots z_s$. We say that F(z) is good at p if there is a holomorphic modular form $\mathcal{E}(z)$ with p-integral algebraic coefficients for which the following are true:

- (1) We have the congruence $\mathcal{E}(z) \equiv 1 \pmod{p}$.
- (2) For each $1 \le i \le s$ we have $\mathcal{E}(z_i) = 0$.

Proof of Theorem 1. By Lemma 2.2, there is a weight k+2 meromorphic modular form $\tilde{F}(z)$ on $SL_2(\mathbb{Z})$, whose poles are supported at the poles of F(z), for which

$$\frac{1}{12} \left(\frac{\tilde{F}(z)}{F(z)} + kP(z) \right) = h - \sum_{n=1}^{\infty} \sum_{d|n} c(d) dq^n.$$

Since Serre [S2] proved that P(z) is a weight two p-adic modular form, it suffices to prove that $\tilde{F}(z)/F(z)$ is a weight 2 p-adic modular form. For every $j \geq 0$, we have

$$\mathcal{E}(z)^{p^j} \equiv 1 \pmod{p^{j+1}}. (3.1)$$

Since $\tilde{F}(z)/F(z)$ has weight two, it follows that $\mathcal{E}(z)^{p^j}\tilde{F}(z)/F(z)$, for sufficiently large j, is a holomorphic modular form of weight p^jb+2 , where b is the weight of $\mathcal{E}(z)$. If $\mathcal{E}(z)^{p^j}\tilde{F}(z)/F(z)$ does not have algebraic integer coefficients, then multiply it by a suitable integer $t_{j+1} \equiv 1 \pmod{p^{j+1}}$ so that the resulting series does. Therefore by (3.1), the sequence $\mathfrak{F}_{j+1}(z) := t_{j+1}\mathcal{E}(z)^{p^j}\tilde{F}(z)/F(z)$ defines a sequence of holomorphic modular forms which p-adically converges to $\tilde{F}(z)/F(z)$ with weights which converge p-adically to 2. In other words, $\tilde{F}(z)/F(z)$ is a p-adic modular form of weight 2.

Proof of Theorem 2. In view of Definition 3.1, it suffices to produce a holomorphic modular form $\mathcal{E}(z)$ on $SL_2(\mathbb{Z})$ with algebraic p-integral coefficients for which $\mathcal{E}(\tau_i) = 0$, for each $1 \le i \le s$, which satisfies the congruence

$$\mathcal{E}(z) \equiv 1 \pmod{p}$$
.

First we prove (1). For each $1 \le i \le s$, let A_i be the elliptic curve

$$A_i: y^2 = x^3 - 108j(\tau_i)(j(\tau_i) - 1728)x - 432j(\tau_i)(j(\tau_i) - 1728)^2.$$
 (3.2)

Each A_i is defined over the number field $\mathbb{Q}(j(\tau_i))$ with j-invariant $j(\tau_i)$. A simple calculation reveals that if \mathfrak{p} is a prime ideal above a prime $p \geq 5$ in the integer ring of $\mathbb{Q}(j(\tau_i))$ for which

$$j(\tau_i)(j(\tau_i) - 1728) \not\equiv 0 \pmod{\mathfrak{p}},\tag{3.3}$$

then A_i has good reduction at \mathfrak{p} . Suppose that $p \geq 5$ is a prime which is inert or ramified in $\mathbb{Q}(\sqrt{d})$ satisfying (3.3) for every prime ideal \mathfrak{p} above p. By the theory of complex multiplication [L, p. 182], it follows that $j(\tau_i)$ is a supersingular j-invariant in $\overline{\mathbb{F}}_p$.

A famous observation of Deligne (see, for example [S1], [K-Z, Th. 1]) implies that every supersingular j-invariant in characteristic p is the reduction of j(Q) modulo p for some point Q which is a zero of $E_{p-1}(z)$. Therefore, there are points Q_1, Q_2, \ldots, Q_s in the fundamental domain of the action of $SL_2(\mathbb{Z})$ (not necessarily distinct) for which $E_{p-1}(Q_i) = 0$, for all $1 \le i \le s$, with the additional property that

$$\prod_{i=1}^{s} (X - j(Q_i)) \equiv \prod_{i=1}^{s} (X - j(\tau_i)) \pmod{p}$$
 (3.4)

in $\mathbb{F}_p[X]$. Now define $\mathcal{E}(z)$ by

$$\mathcal{E}(z) := \prod_{i=1}^{s} \left(E_{p-1}(z) \cdot \frac{j(z) - j(\tau_i)}{j(z) - j(Q_i)} \right). \tag{3.5}$$

By Lemma 2.3 (2), (3.4) and (3.5), it follows that $\mathcal{E}(\tau_i) = 0$ for each $1 \le i \le s$, and also satisfies the congruence $\mathcal{E}(z) \equiv 1 \pmod{p}$. Moreover, $\mathcal{E}(z)$ is clearly a holomorphic modular form, and so F(z) is good at p. This proves (1).

Since j(i) = 1728 (resp. $j(\omega) = 0$), Lemma 2.3 shows that F(z) is good at every prime $p \equiv 2, 3, 7, 11 \pmod{12}$ (resp. $p \equiv 2, 3, 5, 11 \pmod{12}$). This proves (2).

To prove (3), one argues as in the proof of (1) and (2) using Lemma 2.3 (1, 3, 4), and the Gross and Zagier congruences [G-Z, Cor. 2.5]

$$|d| \equiv 3 \pmod{8} \implies j(\tau_i) \equiv 0 \pmod{2^{15}},$$

 $|d| \equiv 1 \pmod{3} \implies j(\tau_i) \equiv 1728 \pmod{3^6}.$

In view of (2), to prove (4) and (5) we may assume that

$$\prod_{i=1}^{s} j(\tau_i)(j(\tau_i) - 1728) \neq 0.$$

We use a classical theorem of Deuring on the reduction of differences of singular moduli modulo prime ideals \mathfrak{p} . In particular, if $\mathbb{Q}(\sqrt{d}) \notin {\mathbb{Q}(i), \mathbb{Q}(\sqrt{-3})}$, then since $\{j(\tau_1), \ldots, j(\tau_s)\}$ forms a complete set of Galois conjugates over \mathbb{Q} , Deuring's result implies that (see [C, Th. 13.21], [D])

$$\prod_{i=1}^{s} j(\tau_i) \equiv 0 \pmod{p} \implies p \equiv 2 \pmod{3}, \tag{3.6}$$

$$\prod_{i=1}^{s} (j(\tau_i) - 1728) \equiv 0 \pmod{p} \implies p \equiv 3 \pmod{4}. \tag{3.7}$$

$$\prod_{i=1}^{s} (j(\tau_i) - 1728) \equiv 0 \pmod{p} \implies p \equiv 3 \pmod{4}. \tag{3.7}$$

The same conclusion in (3.6) (resp. (3.7)) holds if $\mathbb{Q}(\sqrt{d}) = \mathbb{Q}(\sqrt{-3})$ (resp. $\mathbb{Q}(\sqrt{d}) = \mathbb{Q}(i)$) provided that $p \nmid d$. A straightforward modification of the proof of (1), using Lemma 2.3 (2, 3, 4), now proves that F(z) is good at p.

Proof of Corollary 3. Since -D is fundamental, Theorem 2 shows that F(D; z)is good at the primes p as dicated by the statement of Corollary 3. Define integers $A_D(n)$ by

$$\sum_{n=1}^{\infty} A_D(n) q^n := \sum_{n=1}^{\infty} \sum_{d|n} c_D(d^2) dq^n.$$
 (3.8)

Therefore, by the conclusion of Theorem 1 it follows that

$$-H(-D) - \sum_{n=1}^{\infty} A_D(n) q^n$$
 (3.9)

is a weight two p-adic modular form for the relevant primes $p \le 7$.

Serre proved [S2, Th. 7], for certain p-adic modular forms, that the constant term of the Fourier expansion is essentially the p-adic limit of its Fourier coefficients at exponents which are p^{th} powers. In these cases we obtain

$$H(-D) = \begin{cases} \frac{1}{24} \lim_{n \to +\infty} A_D(2^n) & \text{if } D \equiv 3 \pmod{8}, \\ \frac{1}{12} \lim_{n \to +\infty} A_D(3^n) & \text{if } D \equiv 1 \pmod{3}, \\ \frac{1}{6} \lim_{n \to +\infty} A_D(5^n) & \text{if } D \equiv 0, 2, 3 \pmod{5}, \\ \frac{1}{4} \lim_{n \to +\infty} A_D(7^n) & \text{if } D \equiv 0, 1, 2, 4 \pmod{7}. \end{cases}$$

4. Some examples

Example 4.1. Let $f(7; z) = \sum_{n=-7}^{\infty} c_7(n)q^n$ be the weight 1/2 modular form on $\Gamma_0(4)$ defined in (1.3). Its *q*-expansion begins with the terms

$$f(z) = q^{-7} - 4119q + 8288256q^4 - 52756480q^5 + \cdots$$

By the Borcherds isomorphism [B, Th. 14.1], there is a modular form of weight 0 on $SL_2(\mathbb{Z})$ with a simple pole at ∞ and a simple zero at $z = (1 + \sqrt{-7})/2$ with the Fourier expansion

$$F(7; z) = q^{-1} \prod_{n=1}^{\infty} (1 - q^n)^{c_7(n^2)}$$

= $\frac{1}{q} + 4119 + 196884q + 21493760q^2 + 864299970q^3 + \cdots$

Since $j((1+\sqrt{-7})/2) = -15^3 \equiv 0 \pmod{5}$, by the proof of Theorem 2 (4), there is a weight 6 holomorphic modular form on $SL_2(\mathbb{Z})$ which is congruent to

$$-1 - \sum_{n=1}^{\infty} \sum_{d|n} c_7(d^2) dq^n \equiv 4 + 4q + 2q^2 + q^3 + \cdots \pmod{5}.$$

This is $4E_6(z) \pmod{5}$, and so $c_7(n^2) \equiv 1 \pmod{5}$ if $n \not\equiv 0 \pmod{5}$.

Example 4.2. Here we illustrate the class number formulas stated in Corollary 3. If D = 59, then we have that

$$f(59; z) = q^{-59} + \sum_{n=1}^{\infty} c_{59}(n)q^n$$

= $q^{-59} - 30197680312q + 455950044005404355712q^4 + \cdots$

By Corollary 3 (1), we have

$$H(-59) = 3 = \frac{1}{24} \sum_{n=0}^{\infty} c_D(4^n) 2^n.$$

One easily checks that the first two terms satisfy

$$H(-59) = 3 \equiv \frac{1}{24}(-30197680312 + 455950044005404355712 \cdot 2) \pmod{2^9}.$$

Acknowledgements. The authors thank Scott Ahlgren, Winfried Kohnen, Barry Mazur and Tonghai Yang for their helpful comments and suggestions.

References

- [B] Borcherds, R.E.: Automorphic forms on $O_{s+2,2}(\mathbb{R})$ and infinite products. Invent. Math. **120**, 161–213 (1995)
- [C] Cox, D.:Primes of the form $x^2 + ny^2$, Fermat, Class Field Theory, and Complex Multiplication. Wiley Publ., New York, 1989
- [D] Deuring, M.: Teilbarkeitseigenschaften der singulären moduln der elliptischen funktionen und die diskriminante der klassengleichung. Comm. Math. Helv. 19, 74–82 (1946)
- [G-Z] Gross, B., Zagier, D.: On singular moduli. J. reine angew. math. 355, 191–220 (1985)
- [I-R] Ireland, K., Rosen, M.: A classical introduction to modern number theory. Springer-Verlag, New York, 1990
- [K-Z] Kaneko, M., Zagier, D.: Supersingular j-invariants, hypergeometric series and Atkin's orthogonal polynomials Comp. perspectives on Number Theory (Chicago, Illinois 1995). AMS/IP Stud. Adv. Math. Amer. Math. Soc. 7, 97–126 (1998)
- [L] Lang, S.: Elliptic functions. 2nd edition Springer-Verlag, 1987
- [O] Ogg, A.: Survey of modular functions of one variable. Springer Lect. Notes in Math. **320**, 1–36 (1973)
- [S1] Serre, J.-P.: Congruences et formes modulaires (d'après H. P. F. Swinnerton-Dyer). Sem. Bourbaki 416(1971–1972), 74–88
- [S2] Serre, J.-P.: Formes modulaires et fonctions zêta *p*-adiques. Springer Lect. Notes in Math. **350**, 191–268 (1973)
- [Sh] Shimura, G.: Introduction to the arithmetic of automorphic forms. Iwanawi Shoten and Princeton Univ. Press, 1971