Econ 103 - Quiz 2

Name:			
name.			

Instructions: This is closed-book, closed-notes quiz. Please write your answers in the blanks provided. Each question is worth one point but no partial credit will be awarded. Non-programmable calculators are permitted.

1. Let X be a discrete random variable denoting the number of days it will rain within a 2 day interval and Y denotes the number of days it will snow. The following table represents the joint PMF of X and Y denoted by P(X,Y).

			Y	
		0	1	2
	0	1/20	2/20	4/20
X	1	$\frac{1}{20}$ $\frac{5}{20}$	1/20	3/20
	2	1/20	$^{2}/_{20}$	1/20

Calculate (1 point each):

- 1. The probability that it will rain on one day only.
- 2. The probability that it will snow on one day only.
- 3. The probability that it will rain on one day only and it will snow on one day only.
- 4. The probability that it will rain on one day only, given that it will snow on one day only.
- 5. Are the random variables X and Y independent?

1.
$$9/20; 1/4; 1/20; 1/5$$
; **No**

2. Let X be a random variable with support set $\{2,3,-1\}$ where p(2)=p(3)=p(-1). Calculate $E[X^2]$

3. X and Y are random variables. Write Var(aX + bY) in terms of Var(X), Var(Y) and Cov(X,Y).

3.
$$a^2Var(X) + b^2Var(Y) + 2abCov(X,Y)$$

4. An employer uses a lie detector test to try and figure out which of her employees may be thieves. She knows that 1% of her workers steal from her supply closet. The lie detector test is 90% effective – if a thief takes it, 90% of the time they will fail the test, and if an honest employee takes it, they will pass 90% of the time. An employee failed the test. What is the probability that they are a thief?

4.
$$\frac{1}{12}$$

5. A six sided fair die is randomly rolled 3 times. What is the probability in fraction that you get at least one 6?

5.
$$3\frac{1}{6}\frac{5}{6}\frac{5}{6} + 3\frac{1}{6}\frac{1}{6}\frac{5}{6} + \frac{1}{6}^3 = \frac{75 + 15 + 1}{216} = \frac{91}{216}$$

6. A and A^C are mutually exclusive and collectively exhaustive. True or false?

6. _____True

7. $P(A \cap A^C) = 1$. True or false?

7. _____**False**