a
$$x \lor x = (x \lor x) \land 1$$
 (Axiom 4)
 $= (x \lor x) \land (x \lor x')$ (Axiom 5)
 $= x \lor (x \land x')$ (Axiom 3)
 $= x \land 1$ (Axiom 5)
 $= x$ (Axiom 4)

b
$$x \wedge x = (x \wedge x) \vee 0$$
 (Axiom 4)
 $= (x \wedge x) \vee (x \wedge x')$ (Axiom 5)
 $= x \wedge (x \vee x')$ (Axiom 3)
 $= x \wedge 1$ (Axiom 5)
 $= x$ (Axiom 4)

c
$$(x')' = (x')' \lor 0$$
 (Axiom 4)
 $= (x')' \lor (x \land x')$ (Axiom 5)
 $= ((x')' \lor x) \land ((x')' \lor x')$ (Axiom 3)
 $= ((x')' \lor x) \land 1$ (Axiom 5)
 $= ((x')' \lor x) \land (x' \lor x)$ (Axiom 5)
 $= ((x')' \land x') \lor x$ (Axiom 3)
 $= 0 \lor x$
 $= x$

d proof

e proof

2
$$a \lor [(b \land c') \land (d \land b')] = a \lor [b \land b' \land c' \land d]$$
 (Axioms 1 & 2)
= $a \lor [0 \land c \land d]$
= $a \lor 0$
= a

3 a

\boldsymbol{x}	\boldsymbol{y}	y'	$x \wedge y'$	f(x,y)
0	0	1	0	0
0	1	0	0	0
1	0	1	1	1
1	1	0	0	0

b

\boldsymbol{x}	\boldsymbol{y}	z	$x \lor y$	$y \lor z$	$z \lor x$	f(x,y,z)
0	0	0	0	0	0	0
0	0	1	0	1	1	0
0	1	0	1	1	0	0
0	1	1	1	1	1	1
1	0	0	1	0	1	0
1	0	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	1	1	1

4 a
$$(x \wedge y') \lor (x' \wedge y') = y' \land (x \lor x')$$

= $y' \land 1$
= y'

The circuit can be simplified to a y^\prime switch

$$\begin{array}{ll} \mathbf{b} & (x\wedge y)\vee(x\wedge y')\vee(x'\wedge y)\vee(x'\wedge y')=(x\wedge(y\vee y'))\vee(x'\wedge(y\vee y'))\\ &=(x\wedge 1)\vee(x'\wedge 1)\\ &=x\vee x'\\ &=1 \end{array}$$

The globe is always on; the circuit can be a single wire with no switches

5 a
$$(x' \wedge y') \vee (x' \wedge y) \vee (x \wedge y)$$

$$\mathbf{b} \quad (x' \wedge y' \wedge z') \vee (x' \wedge y' \wedge z) \vee (x' \wedge y \wedge z) \vee (x \wedge y' \wedge z')$$