

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICA

Segundo Semestre de 2018

Tarea 6

Teoría de Números - MAT 2225

Fecha de Entrega: 2018/10/11

Integrantes del grupo: Nicholas Mc-Donnell, Camilo Sánchez Felipe Guzmán, Fernanda Cares

Problema 1 (5 pts.). Considere el número real $\alpha = [0, 1, \overline{4, 8}]$. Muestre que es algebraico y calcule su polinomio minimal.

Solución problema 1: Sea $\alpha = [0, 1, \overline{4, 8}]$. Veamos que $\alpha = [0, 1, \alpha_3]$ con

$$\alpha_3 = [4, \overline{8, 4}] = [4, 8, \alpha_5]$$

y $\alpha_5 = [4, \overline{8, 4}]$. Es decir, $\alpha_3 = \alpha_5$ Luego,

$$\alpha_3 = 4 + \frac{1}{8 + \frac{1}{\alpha_3}},$$

lo que resulta en la ecuación

$$2\alpha_3^2 - 8\alpha_3 - 1 = 0$$

Por otro lado,

$$\alpha = \frac{1}{1 + \frac{1}{\alpha_3}},$$

donde al desarrollar queda

$$\alpha = \frac{\alpha_3}{\alpha_3 + 1}.$$

Pero $\alpha_3 = \frac{4\pm 3\sqrt{2}}{2}$, por lo que

$$\alpha = \frac{4 \pm 3\sqrt{2}}{6 \pm 3\sqrt{2}}.$$

Como $\alpha_3 > 4$, tenemos que

$$\alpha = \frac{4 + 3\sqrt{2}}{6 + 3\sqrt{2}}.$$

Desarrollando esta expresión, llegamos a la ecuación

$$9\alpha^2 - 6\alpha - 1 = 0.$$

Esta claro que α es algebráico (por contradicción). Basta verificar que $P(\alpha) = \alpha^2 - \frac{2\alpha}{3} - \frac{1}{9}$ sea su polinomio minimal. Pero sabemos que sus raíces son

$$\frac{2/3 \pm \sqrt{89}}{2}$$
,

que no son racionales. Por lo tanto, el polinomio es minimal.

Problema 2 (5 pts.). Sea $b_1, b_2, ...$ una secuencia (infinita) de enteros $b_j \ge 1$ para cada $j \ge 2$. Considere el número real $\alpha = [b_1, b_2, ...]$. Muestre que $DFC(\alpha) = (b_1, b_2, ...)$.

Solución problema 2: Sea $DFC(\alpha)=(a_1,a_2,...)$. Lo que queremos demostrar es $a_n=b_n \forall n \in \mathbb{N}$.

Por inducción:

n = 1

$$\alpha = b_1 + \frac{1}{[b_2, \dots]}$$

Como $[b_2, ...] > 1$, entonces $\frac{1}{[b_2, ...]} < 1$

$$a_1 = \lfloor \alpha \rfloor = \left\lfloor b_1 + \frac{1}{\lfloor b_2, \ldots \rfloor} \right\rfloor = b_1$$

Supongamos que $a_k = b_k \forall k \leq n$, tenemos que demostrar que $b_{n+1} = a_{n+1}$. Sabemos que $DFC(\alpha) = (b_1, b_2, ..., b_n, a_{n+1}, ...)$. Como $\alpha = [DFC(\alpha)_n, \alpha_{n+1}] = [b_1, b_2, ..., b_n, \alpha_{n+1}]$

$$\implies \alpha_{n+1} = [b_{n+1}, b_{n+2}, \dots]$$
$$= b_{n+1} + \frac{1}{[b_{n+2}, \dots]}$$

Como $[b_{n+2},\ldots]>1$ entonces $\frac{1}{[b_{n+2}]}<1$

$$a_{n+1} = \lfloor \alpha_{n+1} \rfloor = b_{n+1}$$

Problema 3 (5 pts.). Sea $\alpha \in \mathbb{R}$ irracional. Muestre que para todo $s \geq 2$, los convergentes γ_s cumplen

$$|\alpha - \gamma_s| < \frac{1}{a_{s+1} \cdot Q_s^2}$$

Solución problema 3: Se sabe que $\forall s \geq 2$

$$\gamma_{s+1} - \gamma_s = \frac{(-1)^s}{Q_{s+1}Q_s}$$
$$|\gamma_{s+1} - \gamma_s| = \frac{1}{Q_{s+1}Q_s}$$

Tenemos además que

$$\alpha - \gamma_s = \begin{cases} \le 0 & \text{si } s \text{ es impar} \\ \ge 0 & \text{si } s \text{ es par} \end{cases}$$

Con lo que podemos ver que

$$|\alpha - \gamma_s| \le |\gamma_{s+1} - \gamma_s|$$

$$\le \frac{1}{Q_{s+1}Q_s}$$

$$\le \frac{1}{(a_{s+1}Q_s + Q_{s-1})Q_s}$$

$$< \frac{1}{a_{s+1}Q_s^2}$$

Que es lo que queríamos.

Problema 4 (5 pts.). Sea $\alpha \in \mathbb{R}$. Suponga que α no es de la forma $x + \sqrt{5}y$ con $x, y \in \mathbb{Q}$. Muestre que existen infinitos racionales $p/q \in \mathbb{Q}$ con $\gcd(p,q) = 1$ y $q \ge 1$ que cumplen

$$\left|\alpha - \frac{p}{q}\right| < \frac{1}{2q^2}$$

Solución problema 4: Para este problema se usará el siguiente lema

Lema 1. Sea $\frac{a+b\sqrt{5}}{c+d\sqrt{5}}$ con $a,b,c,d\in\mathbb{Q}$ y $c+d\sqrt{5}\neq 0$. Luego,

$$\frac{a+b\sqrt{5}}{c+d\sqrt{5}} = \frac{ac-5bd}{c^2-5d^2} + \frac{bc-ad}{c^2-5d^2}\sqrt{5}$$

, donde $\frac{ac-5bd}{c^2-5d^2}$ y $\frac{bc-ad}{c^2-5d^2}$ son racionales. Es decir, $\frac{a+b\sqrt{5}}{c+d\sqrt{5}}$ es de la forma $x+y\sqrt{5}$.

Notar que todo elemento de \mathbb{Q} se puede escribir de la forma $x+y\sqrt{5}$ con $x,y\in\mathbb{Q}$. Sea $\alpha\in\mathbb{R}-\mathbb{Q}$, con $\alpha\neq x+y\sqrt{5}, x,y\in\mathbb{Q}$. Por el ejercicio 3 se tiene que $\forall s\geq 2$,

$$\left|\alpha - \frac{p_s}{q_s}\right| = \left|\alpha - \gamma_s\right| < \frac{1}{a_{s+1} \cdot q_s^2}$$

Notar que si $a_{s+1} \geq 2$, entonces

$$\frac{1}{a_{s+1} \cdot q_s^2} \ge \frac{1}{2 \cdot q_s^2}$$

Como $\alpha \notin \mathbb{Q}$, el largo de $DFC(\alpha) = \infty$, por lo que existen infinitos a_i , con $a_i \neq 0$ para $i \geq 2$. Notar que $\forall s \geq 2, q_s \geq 1$ y $(p_s, q_s) = 1$

Luego, si α en su desarrollo de fracción continua tiene infinitos $a_i \geq 2$, tenemos infinitos p_{i-1}, q_{i-1} que cumplen lo pedido.

Ahora, si α solo tiene finitos $a_i \geq 2$ en su desarrollo de fracción continua, entonces $\exists k_0 \in \mathbb{N}$ tal que $\forall k \geq k_0, \ a_k = 1$. Es decir, $\alpha = [a_1, a_2, a_3, \cdots, a_{k_0-1}, a_{k_0}]$ con $a_{k_0} = [1, \overline{1}]$.

Pero ya sabemos que $aa_{k_0} = \phi = \frac{1+\sqrt{5}}{2}$ (visto en clases).

Luego,

$$\alpha = a_1 + \frac{1}{a_2 + \frac{1}{\ddots + \frac{1}{a_{kn} + \frac{1}{6}}}}$$

Y usando el Lema 1, y repitiendo el proceso, se concluye lo pedido.