CARDIOVASCULAR LECTURE 1

Dr Lesley Ulman Room 204 Wallace Wurth West

References for these lectures

Principles of Human Physiology by Stanfield.

Global (6th) Edition.

Chapters 13 and 14

Objectives of this lecture

- Understand the functions of the CVS
- Describe the path of blood flow through the heart and vasculature
- Name the different valves in the heart and understand how they operate
- Understand the physiology of cardiac muscle
- Describe the nervous supply to the heart
- Define cardiac output
- Describe the distribution of systemic blood flow at rest and during exercise

WILLIAM HARVEY (1578-1657)

Harvey's classic work – "On the Movement of the Heart and Blood in Animals" became the foundation for all modern research on the heart and cardiovascular medicine.

ROLE OF THE CVS

- supply of O₂ and other nutrients and removal of CO₂ and other waste products
- heart performs sensory and endocrine functions that regulate blood pressure and blood volume
- blood vessels regulate blood pressure and the distribution of blood to various parts of the body.
- blood also carries hormones and other substances to the tissues

THE HEART

- hollow muscular organ
- middle of the chestbroad base at the top
- · pointed tip or apex at the bottom
- weighs 250-350 grams
- · heart is two separate pumps right and left
- right ⇒ lungs pulmonary circulation
- left ⇒ rest of body systemic circulation

SYSTEMIC CIRCULATION

Left atrium ⇒ bicuspid/mitral valve ⇒ left ventricle ⇒ aortic (semilunar) valve ⇒ aorta ⇒ systemic arteries ⇒ arterioles ⇒ capillaries ⇒ venules ⇒ veins ⇒ superior & inferior vena cavae ⇒ right atrium

mean aortic pressure = 90mmHg varies between 120 and 80mmHg highest value = systolic pressure lowest value = diastolic pressure written 120/80 (systolic/diastolic)

PULMONARY CIRCULATION

right atrium ⇒ tricuspid valve ⇒ right ventricle ⇒ pulmonary valve ⇒ pulmonary trunk ⇒ pulmonary arteries ⇒ lungs ⇒ pulmonary veins ⇒ left atrium

REMEMBER

arteries carry oxygenated blood veins carry deoxygenated blood except for pulmonary vessels where it is the reverse

pulmonary artery pressure is low - about 15mmHg

Mitral Valve

HEART VALVES

semilunar

- heart has 4 valves
- · all are one-way
- open & close passively due to pressure differences

atrioventricular valves

- between atria and ventricles
- flaps of endocardium with inner framework of fibrous connective tissue
- anchored to papillary muscles of ventricles by chordae tendineae
- between RA and RV = tricuspid
- between LA and LV = bicuspid/mitral

semilunar valves

- prevent blood returning to ventricles
- pulmonary valve in proximal end of pulmonary trunk
- aortic valve in proximal end of aorta
- both have 3 cusps

Pulmonary

CARDIAC MUSCLE

Heart wall has 3 layers - outer epicardium, middle myocardium and

inner endocardium

Types of cardiac muscle

- atrial
- ventricular
- specialised excitatory & conductive muscle fibres contract feebly, exhibit rhythmicity & varying rates of conduction

NERVOUS SUPPLY OF THE HEART

Autonomic Nervous System

- sympathetic nerves excite the heart causing
 - ↑ heart rate (from 70bpm up to 180 or 200bpm)
 - **♠** force of contraction
- → ↑volume of blood pumped (greater than
- parasympathetic nerves (vagus)
 - ♦ heart rate (down to about 40% of normal)
 - **♦** force of contraction by 20-30%
- → **\Psi**volume of blood pumped (down to about 50%)

Cardiac Muscle Fibres

- arranged in latticework
- muscle is striated
- muscle fibres made up of individual cardiac myocytes
- intercalated discs where cells meet end to end
- here cell membranes fuse to form permeable communicating junctions called gap junctions - low resistance bridges for spread of excitation
- functions as a syncytium
- atrial and ventricular syncytiums atria contract a short time ahead of the ventricles

CARDIAC OUTPUT

= quantity of blood pumped into aorta each minute

Cardiac output (CO) determined by 2 factors

- heart rate
- stroke volume vol of blood pumped from each ventricle with each beat = 70mls/beat

So,

cardiac output = heart rate x stroke vol

- = 70 beats/min x 70 mls/beat
- = approx 5L/min

There are 3 determinants of stroke volume

- preload degree of stretching of myocardium prior to contraction
- afterload the force opposing myocardial contraction
- contractility

CO varies with

- · level of body metabolism
- level of muscular activity
- age
- body size
- emotional state

5L/min at rest (up to 25L/min in exercise)

Distribution of systemic blood flow to the various organs and tissues at rest and during exercise.

Organ	At Rest (5l/min)	Exercise (25l/min)
Brain	13-15% (750ml)	3-4% (750ml)
Heart	4-5% (250ml)	4-5% (1250ml)
Liver & GIT	20-25% (1250ml)	3-5% (1250ml)
Kidneys	20% (1000ml)	2-4% (1000ml)
Muscle	15-20% (1000ml)	70-80% (18,000ml)
Skin	3-6% (300ml)	13-15% (3,500ml)
Skeleton,	10-15% (750ml)	1-2% (500ml)
marrow & fa	,	` '