SEQ

SCT A TAT A THE ATTA A SCT A A TATA A SCT A A TATA OF THE PARTY OF TH A SCT OF A STATE OF A STATE OF A STATE OF A SCT O TO SAGE HAS SAGE A SA SAC BAN TON SAC DAS OF TON SAC DAS O ID 2 ID 1

FIG.

Fig. 28 PIG. 2B PIG. 2

g 2 Ę g GIT 133 CIC CIC Sign Sign 38 TTA CIC 5 ACA GAC ACA GAG E GIC 3AC 3AC 7 4 4 5 SEQ ID 4 SEQ ID 3

F & 0 1 1 1 0 0 X 五8 T S GAC CTA CTA ACT × 5 AAA ص <u>کا</u> **3** < GAA FE FE FE FI GIC AAT N N AAT OG OG N N TCA ာက္ခ် လေသည့် လလည်း လေသည့် လေသည့် လေသည့် Sa co ca R R R N N Sico 7 8 0 0 pg a a g 4 4 g 21⁴ 18⁴ 18⁴ 41⁴ 41⁴ 18¹ 38⁴ 61⁴ 241

2/19

P GRC P GTG F L Sig F S > 🖔 S P GAG ු වූ ත දු 78 ے اور ATC E P ATG A CEC م کی ပ ဗ္ဗ P. AAG <u>م</u> 8 CAAA 81**▶** 301

표원 CAT O > 8 > STG E Sign CAG > Sig > STG က ည် ပ ဗွ D T GAC ACC > 5i > > 0g E TAC **X**₩ Р ДСС N AAC R TTC F SS SAAG ₹ 88 86 -Gr **>** ш ™ SAG **–** § <u>م</u> 8 T GAC D AMG O & шβ ⊼ S H AAG P 25 တ္ထ AAT ₹ £ 121**4** 101**▶** 361

> \$2 တ္ထည္ > धु AAG සි සි AAG > TAC -SGAG N AAG > 8 AAT. CIG ш ш R 58 م 2 ¥ 8 **-** Cig 주 닭 A S Z 141**▶** 481

2A FIG.

GAA Z Sep > 8 도 원 8 ပ ဗွိ X X > g E AAA 조합 S S z g L GAG ≥ ATC P တ ႘ ± 8 **⊸** & > ² **⊢** ႘ၟ AAA 161**♭** ∟ 541 m E ۳ ک<u>چ</u> P Sic တ ဗွ S S X X A A ⊼ Si SGAG - GAT <u>الم</u> 노 일 шβ -8 PCTG A S P ر ع **₹** ¥ 8 181**▶** 601

ے چ AAT တ AGC > 0 88 0 88 z g ⊼ & & T E AIC <u>م</u> ک ₩ ₩ တ ည P TAT P TTC <u> ၂</u> ဗွ T ₹ GiC > 55 တ ဋ္ဌ P 200 201**▶** 661

a Ti TIC z သည္သ ш ⁸ **% %** E E GAC < A TTG -GTG <u>م</u> 8 S م کی کی **≻** & F G TAC Z X × < L GAG ပ ဗွ F 55 221****721 F T S S SIC ග PAC PAC S S 0 89 ار م > 22 P 2005 م کوچ T TGAC 7 Sig S C C N AAG E SS P တ ည 241**b** 781

ပ ႘ S F **>** 22 Z C AGC ග MAG Ø CAG Ø AGG ≯ TAC Œ CAC လ AAC ¥ <u>ි</u> > 25 ٦ چې L GAG CAT メ SATG GIG > ير يرد 261₺ 841

ع

တ

တ

ب

တ

¥ Ø ٢ >-I Z I ب ⋖ ш I Z E AAA > 8 တ 281▶ 901

301 € K

FIG. 2B

				BsaAl	Bbsl
1 AAGACTCAAA	CTTAGAAACT TG	AATTAGAT (GTGGTATTCA	AATCCTTACG	TGCCGCGAAG
61 ACACAGACAG	CCCCCGTAAG AA	CCCACGAA (GCAGGCGAAG	TTCATTGTTC	TCAACATTCT
		EcoRI			
121 AGCTGCTCTT	GCTGCATTIG CT	CTGGAATT (TATTACTIGT	CCTTCCAGGC
Sfc			Boll	0mm0010101m0	COMCOCO NOM
181 TGTTCTTTCT	GTAGCTCCCT TG	TTTTCTTT '		L Q M	A G Q
			1 M	L Q M Hin	
241 GCTCCCAAAA	Sspl	a common i	Sphl macamacanna		
	E Y F D		L H A C	I P C	Q L R
8▶C S Q N	E 1 F D	Pcil		, , ,	Q L
Afilli					
301 GTTCTTCTAA	TACTCCTCCT CT		AGCGTTATTG	TAATGCAAGT	GTGACCAATT
28 C S S N	TPPL	TC	QRYC	N A S	V T N
			Bsmf	=1	
361 CAGTGAAAGG	AACGAATGCG AT	PTCTCTGGA	CCTGTTTGGG	ACTGAGCTTA	ATAATTTCTT
48▶S V K G	TNA	L W	TCLG	L S L	I I S
421 TGGCAGTTTT	CGTGCTAATG TI	PTTTGCTAA	GGAAGATAAG	CTCTGAACCA	TTAAAGGACG
68▶L A V F	V L M F	E L L	RKIS	S E P	LKD
Drai	AlwI Bs				a
481 AGTITAAAAA	= '				GAAAAGAGCA
88▶E F K N			G M A N	I D L	E K S
Xmnl Stul Xhol 541 GGACTGGTGA TGAAATTATT CTTCCGAGAG GCCTCGAGTA CACGGTGGAA GAATGCACCT					
541 GGACTGGTGA	TGAAATTATT CT		GCCTCGAGTA	T V E	E C T
108▶R T G D		L r n Sa		1 4 6	
Hinell					
Bbsl		Ac			
	CATCAAGAGC AA			CCATTGCTTT	CCACTCCCAG
128 C E D C			V D S D		PLP
661 CTATGGAGGA	AGGCGCAACC AT	TTCTTGTCA	CCACGAAAAC	GAATGACTAT	TGCAAGAGCC
148▶A M E E	GATI	I L V	TTKT	N D Y	CKS
Pvull					
721 TGCCAGCTGC					TAATTAACCA
168▶L P A A		. – .	E K S I	S A R	D 10
Xhol	_	Dral	000000000000000000000000000000000000000	3.303.03.003.00	Bglll
781 TTTCGACTCG					
841 TCTTTAGGAT	GACTGTATTT T	TCAGTTGCC	GATACAGCTT	TTTGTCCTCT	Styl
901 ACTCTTTATG	<i>ጥ</i> ጣአረን መአመአመ መባ	ጥርንሪያ փርትርት	ጥልረጥረጥጥርርር	ልርርጥጥ ል ልጥርር	•
961 CTTGGTTTCA				HOCTIANTOG	711014H10110
JUL CITOGILICA	IGNIIAAAGI C.	********	CCLORE		

SRUCTURE COMPARISON BETWEEN TNF-R55 AND BAFF-R

FIG. 5A

FIG. 5B

FIG. 7

FIG. 8

BCMA-Ig Treatment Reduces Total CD1^{hi}/IgM^{hi} B Cell Populations in Spleens of Baff Tg Mice

CD21

FIG. 10B

BCMA-Ig Treatment Reduces Total Mature B and T2 B Cell Populations in Spleens of Baff Tg Mice

BCMA-Ig Treatment Reduces Total Marginal Zone and T1 B Cell Populations in Spleens of Baff Tg Mice

- BCMA BAFF Tg 1 - BCMA BAFF Tg 2 - hiG BAFF Tg 3 - hiG BAFF Tg 4

PBS BAFF Tg 6 PBS BAFF Tg 7

PBS WT 1 PBS WT 2

hiG BAFF Tg 5

BCMA-Ig Treatment Reduces Proteinurea in BAFF Tg Mice to Levels Comparable to Wildtype Mice Injection Number 9 0 300 -250 -200 -150 -50 350 100 0 Proteinurea (mg/dl)

FIG. 12

Average Mean Arterial Pressure in BAFF transgenic (BAFF +) and wild-type controls (BAFF -)

FIG. 13

Individual Mean Arterial Pressure in BAFF transgenic (BAFF +) and wild-type controls (BAFF -)

FIG. 14

19/19

BCMA-lg Treatment of Moderately Nephritic SNF1 Mice Slows Progression to Severe Nephritis

