Joint Probability Distributions

Two discrete random variables

 $X: x_1, x_2, \ldots, x_m$

 $Y: y_1, y_2, ..., y_n$

Joint pmf

$$p(x_i, y_j) = P(X = x_i and Y = y_j)$$

Suppose m = 3 and n = 4

p	y_1	y_2	y_3	y_4	p_X
$\overline{x_1}$	$p(x_1,y_1)$	$p(x_1,y_2)$	$p(x_1,y_3)$	$p(x_1,y_4)$	$p_X(x_1)$
x_2	$p(x_2,y_1)$	$p(x_2,y_2)$	$p(x_2,y_3)$	$p(x_2,y_4)$	$p_X(x_2)$
x_3	$p(x_3,y_1)$	$p(x_3,y_2)$	$p(x_3, y_3)$	$p(x_3,y_4)$	$p_X(x_2)$
$\overline{p_Y}$	$p_Y(y_1)$	$\overline{p_Y(y_2)}$	$p_Y(y_3)$	$p_Y(y_4)$	

Marginal pmfs

Example Exe 5.3

Independence of two random variables

X and Y are said to be independent if for every pair of x and y,

$$p(x,y) = p_X(x)p_Y(x).$$

If X and Y are known to be independent and their pmfs are p_1 and p_2 , then the joint pmf for (X, Y) is $p_1(x)p_2(y)$.

In general, random variables X_1, X_2, \ldots, X_n are independent if and only if the joint pmf is the product of the pmfs of X_i 's, i.e.,

$$p(x_1, x_2, \dots, x_n) = p_1(x_1)p_2(x_2)\cdots p_n(x_n)$$

Example Exe, are X and Y independent?

Conditional pmf

$$P_{X|Y}(x_i \mid y_j) = P(X = x_i \mid Y = y_j)$$

$$= \frac{P(X = x_i, Y = y_j)}{P(Y = y_j)} = \frac{p(x_i, y_j)}{p_Y(y_j)}$$

Example Exe 5.3

Two continuous random variables

$$X, Y \Rightarrow (X, Y)$$

 $P(X = x, Y = y) = 0$

Joint pdf of X and Y: f(x,y)

For any 2-dimensional rectangle $A = \{(x,y) : a \le x \le b, c \le y \le d\}$

$$P((X,Y) \in A) = P(a \le X \le b, c \le Y \le d)$$
$$= \int_a^b \int_c^d f(x,y) dx dy$$

Density Surface

Probability=Volume

Example Suppose the joint pdf of X and Y is as follows

$$f(x,y) = \begin{cases} \frac{3}{28}(x+y^2) & 0 \le x \le 2, 0 \le y \le 2\\ 0 & \text{otherwise} \end{cases}$$

Marginal pdfs of X and Y

pdf of X without reference to Y

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$

pdf of Y without reference to X

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx$$

Example

Independence of two random variables

X and Y are said to be independent if

$$f(x,y) = f_X(x)f_Y(y)$$

If X and Y are known to be independent and their pdfs are $f_1(x)$ and $f_2(y)$, then the joint pdf for (X,Y) is

$$f(x,y) = f_1(x)f_2(y)$$

In general, random variables $X_1, X_2, ..., X_n$ are independent if and

only if the joint pdf is the product of the pdfs of X_i 's, i.e.,

$$f(x_1, x_2, \dots, x_n) = f_1(x_1) f_2(x_2) \cdots f_n(x_n)$$

Example Are X and Y independent?

Conditional pdf

Conditional pdf of X given Y = y

$$f_{X|Y}(x \mid y) = \frac{f(x,y)}{f_Y(y)}$$

Conditional pdf of Y given X = x

$$f_{Y|X}(y \mid x) = \frac{f(x,y)}{f_X(x)}$$

Example

Expected value

$$(X,Y) \sim \left\{ egin{array}{ll} p(x,y) & \mbox{if } X \mbox{ and } Y \mbox{ are discrete} \\ f(x,y) & \mbox{if } X \mbox{ and } Y \mbox{ are continuous} \end{array} \right.$$

$$E(h(X,Y)) = \begin{cases} \sum_{x} \sum_{y} h(x,y) p(x,y) & \text{discrete} \\ \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} h(x,y) f(x,y) dx dy & \text{continuous} \end{cases}$$

Covariance between X and Y

$$Cov(X, Y) = E((X - \mu_X)(Y - \mu_Y))$$

$$= \begin{cases} \sum_{x} \sum_{y} (x - \mu_X)(y - \mu_Y) p(x, y) & \text{discrete} \\ \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} (x - \mu_X)(y - \mu_Y) f(x, y) dx dy & \text{continuous} \end{cases}$$

$$Cov(X,Y) = E(X \cdot Y) - \mu_X \mu_Y$$

Correlation Coefficient

$$Corr(X, Y) = \rho_{X,Y} = \frac{Cov(X, Y)}{\sigma_X \cdot \sigma_Y}$$

Properties:

- 1. Corr(aX + b, cY + d) = Corr(X, Y), if ac > 0
- $2. -1 \leq Corr(X, Y) \leq 1$
- 3. if X and Y are independent, $\rho_{X,Y} = 0$.

But $\rho_{X,Y} = 0$ doesn't imply independence.

4.
$$\rho = 1 \text{ or } -1, \text{ iff } Y = aX + b \ (a \neq 0)$$

Random Samples

The rv's X_1, X_2, \ldots, X_n are said to form a (simple) random sample of size n if

1. The X_i 's are independent.

2. Every X_i has the same probability distribution.

Sample or an observed sample

Statistic

A statistic is any quantity whose value can be calculated from sample data.

A statistic is a random variable

Observed statistic

Sampling Distribution

The probability distribution of a statistic

Two ways to derive sampling distribution

- 1. Probability rules
- 2. Computer simulation

Example 5.20

Distribution of Sample Mean and Sum

From now on, random sample: X_1, X_2, \ldots, X_n

Two formulas

$$E(a_1X_1 + a_2X_2 + \dots + a_nX_n) = a_1E(X_1) + a_2E(X_2) + \dots + a_nE(X_n)$$
$$V(a_1X_1 + a_2X_2 + \dots + a_nX_n) = a_1^2V(X_1) + a_2^2V(X_2) + \dots + a_n^2V(X_n)$$

Two statistics

Sample Sum

$$T_0 = X_1 + X_2 + \cdots \times X_n$$

Sample Mean

$$\bar{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$$

Assume X_1, X_2, \ldots, X_n from a distribution with mean μ and variance σ^2

- 1. $E(T_0) = n\mu$
- 2. $V(T_0) = n\sigma^2$
- 3. $E(\bar{X}) = \mu$
- 4. $V(\bar{X}) = \sigma^2/n$

Normal population distribution, $N(\mu, \sigma)$ Sampling distributions for T_0 and \bar{X}

$$T_0 \sim N(n\mu, \sqrt{n}\sigma)$$

 $\bar{X} \sim N(\mu, \sigma/n)$

Example 5.25

Central Limit Theorem

 $X_1, X_2, ..., X_n \sim \textbf{Distribution with } \mu \text{ and } \sigma^2$

 T_0 approximately $N(n\mu, \sqrt{n}\sigma)$

 \bar{X} approximately $N(\mu, \sigma/n)$

When n > 30

Example 5.26