Homework 2

Mar 22, 2019

2-2 Ex.1

Show that the cylinder $\{(x,y,z)\in\mathbb{R}^3:x^2+y^2=1\}$ is a regular surface, and find parametrizations whose coordinate neighborhoods cover it.

Solution.

For each point $p=(x_0,y_0,z_0)\in S=\{(x,y,z)\in\mathbb{R}^3:x^2+y^2=1\}$, without loss of generality we can assume that $y_0>0$, then let $q=(x_0,0,z_0)$ and U a sufficiently small neighborhood of q in xOz plane. Define $\mathcal{X}:U\to S$ by $\mathcal{X}(x,z)=(x,\sqrt{1-x^2},z)$, it's clearly that \mathcal{X} is differentiable, one-to-one, and its inverse is also continuous. Moreover,

$$d\mathcal{X} = \left(\begin{array}{cc} 1 & 0\\ \frac{x}{\sqrt{1-x^2}} & 0\\ 0 & 1 \end{array}\right)$$

has rank 2 at any point (x_0, z_0) . Thus \mathcal{X} is a parametrization in U. \square

2-2 Ex.9

Let V be an open set in the xy plane. Show that the set

$$\{(x, y, z) \in \mathbb{R}^3 : z = 0, (x, y) \in V\}$$

is a regular surface.

Solution.

Let S denote the set above and define $\mathcal{X}: V \to S$ by

$$\mathcal{X}(x,y) = (x,y,0)$$

Then it's easy to verify that \mathcal{X} satisfies condition 1, 2 and 3. So \mathcal{X} is a parametrization and S is a regular surface. \square

2-2 Ex.12

Show that $\mathcal{X}: U \subset \mathbb{R}^2 \to \mathbb{R}^3$ given by

$$\mathcal{X}(u,v) = (a\sin u\cos v, b\sin u\sin v, c\cos u), a, b, c \neq 0,$$

where $0 < u < \pi$, $0 < v < 2\pi$ is a parametrization for the ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

1

Describe geometrically the curves u = const. on the ellipsoid.

Solution.

It's easy to see that \mathcal{X} is a diffeomorphism, also note that

$$d\mathcal{X} = \begin{pmatrix} a\cos u\cos v & -a\sin u\sin v \\ b\cos u\sin v & b\sin u\cos v \\ -c\sin u & 0 \end{pmatrix}$$

always has rank 2 for all $u \in (0, \pi), v \in (0, 2\pi)$. Therefore \mathcal{X} is a parametrization. The curves u = const. is a set of ellipses with axes $2a \sin u$ and $2b \sin u$. \square

2-2 Ex.16

One way to define a system of coordinates for the sphere S^2 , given by $x^2 + y^2 + (z-1)^2 = 1$, is to consider the so-called stereographic projection $\pi: S^2 - \{N\} \to \mathbb{R}^2$ which carries a point p = (x, y, z) of the sphere S^2 minus the north pole N = (0,0,2) onto the intersection of the xy plane with the straight line which connects N to p. Let $(u,v) = \pi(x,y,z)$, where $(x,y,z) \in S^2 - \{N\}$ and $(u,v) \in xy$ plane.

a. Show that $\pi^{-1}: \mathbb{R}^2 \to S^2$ is given by

$$\pi^{-1} = \begin{cases} x = \frac{4u}{u^2 + v^2 + 4} \\ y = \frac{4v}{u^2 + v^2 + 4} \\ z = \frac{2u^2 + 2v^2}{u^2 + v^2 + 4} \end{cases}$$

b. Show that it is possible, using stereographic projection, to cover the sphere with two coordinate neighborhoods.

Solution.

a. By definition of π , (0,0,2), (x,y,z) and (u,v,0) are in the same line. Hence

$$(x, y, z - 2) = \lambda(u, v, -2), \lambda \in \mathbb{R}$$

Also we know that $x^2 + y^2 + (z - 1)^2 = 1$, it follows that

$$\lambda^2 u^2 + \lambda^2 v^2 + (2\lambda - 1)^2 = 1$$

$$\lambda^2 u^2 + \lambda^2 v^2 + 4\lambda^2 - 4\lambda = 0$$

Note that $\lambda \neq 0$ because $(x, y, z) \neq N$, so we have

$$\lambda = \frac{4}{u^2 + v^2 + 4}$$

Therefore,

$$x = \lambda u = \frac{4u}{u^2 + v^2 + 4}, \quad y = \lambda v = \frac{4v}{u^2 + v^2 + 4}, \quad z = 2 - 2\lambda = \frac{2u^2 + 2v^2}{u^2 + v^2 + 4} \quad \Box$$

b. The conclusion above shows that for each point p in $S^2 - \{N\}$, we can find a corresponding parametrization. Particularly, for p = N, consider map $\mathcal{X} : B(0,1) \to S^2$ defined by

$$\mathcal{X}(x,y) = (x,y,1+\sqrt{1-x^2-y^2}), (x,y) \in B(0,1)$$

where B(0,1) is the unit ball in \mathbb{R}^2 . It's easy to verify that \mathcal{X} is a parametrization. Hence we can cover S^2 using two coordinate neighborhoods. \square

2-3 Ex.3

Show that the paraboloid $z = x^2 + y^2$ is diffeomorphic to a plane.

Solution.

Let S denote the paraboloid. Consider map $\mathcal{X}: \mathbb{R}^2 \to S$:

$$\mathcal{X}(x,y) = (x, y, x^2 + y^2)$$

whose inverse is $\pi|_S: S \to \mathbb{R}^2$ and it's easy to verify that both of them are differentiable. \square

2-3 Ex.6

Prove that the definition of a differentiable map between surfaces does not depend on the parametrizations chosen.

Solution.

We know that if \mathcal{X} and \mathcal{Y} are both parametrizations of a regular surface, then

$$\mathcal{X}^{-1} \circ \mathcal{Y}$$

is a diffeomorphism.

If ϕ is a differentiable map between two regular surface S_1 and S_2 , then there exists two parametrizations $\mathcal{X}_1, \mathcal{X}_2$ of two regular surfaces respectively and

$$\mathcal{X}_2^{-1} \circ \phi \circ \mathcal{X}_1$$

is a differentiable. Suppose that $\mathcal{Y}_1, \mathcal{Y}_2$ are another two parametrizations of S_1, S_2 respectively, then both $\mathcal{Y}_2^{-1} \circ \mathcal{X}_2$ and $\mathcal{X}_1^{-1} \circ \mathcal{Y}_1$ are diffeomorphism so that

$$\mathcal{Y}_2^{-1} \circ \phi \circ \mathcal{Y}_1 = \mathcal{Y}_2^{-1} \circ \mathcal{X}_2 \circ \mathcal{X}_2^{-1} \circ \phi \circ \mathcal{X}_1 \circ \mathcal{X}_1^{-1}$$

is also a diffeomorphism, which shows that the differentiable map between surfaces is well-defined. \Box

2-3 Ex.10

Let C be a plane regular curve which lies in one side of a straight line r of the plane and meets r at the points p, q. What conditions should C satisfy to ensure that the rotation of C about r generates an extended (regular) surface of revolution.

Solution.

C should be smooth and the tangent vector at p,q should be perpendicular to the straight line r.

2-3 Ex.14

Let $A \subset S$ be a subset of a regular surface S. Prove that A is itself a regular surface if and only if A is open in S, that is, $A = U \cap S$, where U is an open set in \mathbb{R}^3 .

Solution.

"
$$\Rightarrow$$
":

Given that A is a regular surface, then for each $p \in A$, we can find a neighborhood $V \subset S$ of p thus A is open. " \Leftarrow ":

Assume that A is open. Since we know that S is a regular surface, for each point $p \in A \subset S$, we can find a neighborhood V of p in S and we can always assume that V is sufficiently small such that it is contained in A. Also there exists $U \subset \mathbb{R}^2$ and an onto map $\mathcal{X}: U \to V$ satisfying 3 conditions therefore A is also a regular surface. \square

2-3 Ex.16

Let $\mathbb{R}^2 = \{(x, y, z) \in \mathbb{R}^3 : z = -1\}$ be identified with the complex plane \mathbb{C} by setting $(x, y, -1) = x + iy = \zeta \in \mathbb{C}$. Let $P : \mathbb{C} \to \mathbb{C}$ be the complex polynomial

$$P(\zeta) = a_0 \zeta^n + a_1 \zeta^{n-1} + ... + a_n, a_0 \neq 0, a_i \in \mathbb{C}, i = 0, ..., n$$

Denote by π_N the stereographic projection on $S^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$ from the north pole N = (0, 0, 1) onto \mathbb{R}^2 . Prove that the map $F : S^2 \to S^2$ given by

$$F(p) = \pi_N^{-1} \circ P \circ \pi_N(p), \text{ if } p \in S^2 - \{N\}$$

$$F(N) = N$$

is differentiable.

Solution.

By the conclusion of **2-2 Ex.16** we know that π_N is a parametrization of $S^2 - \{N\}$ and π_N^{-1} is also differentiable, so it suffices to verify that F is differentiable at N.