LAB SESSION 9 – MULTIPLE LINEAR REGRESSION

Analytics Primer

MULTIPLE LINEAR REGRESSION

Inference

- A real estate company is trying to model housing prices (in dollars) of their customers with the variables:
 - x_1 : Size of Home (square feet)
 - x₂: Age of Home (years)
 - x₃: Acreage of Land (acres)
 - x₄: Number of Bedrooms
- Using a sample of 105 houses they derive the following model:

$$\hat{y} = 24,312 + 86.5x_1 - 324x_2 + 9,610x_3 + 3,617x_4$$

$$SSE = 27695831$$
 $SSR = 45963293$ $TSS = 73659124$

$$\hat{y} = 24,312 + 86.5x_1 - 324x_2 + 9,610x_3 + 3,617x_4$$

$$SSE = 27695831$$
 $SSR = 45963293$ $TSS = 73659124$

1. Test the overall significance of the model.

$$H_0$$
: $\beta_1 = \beta_2 = \beta_3 = \dots = \beta_k = 0$

 H_a : At least one coefficient is nonzero

$$MSR = \frac{45963293}{4} = 11490823.25$$

$$MSE = \frac{27695831}{105 - 4 - 1} = 276958.31$$

$$F = \frac{MSR}{MSE} = 41.49$$
 P-value $< 0.05 \rightarrow \text{REJECT } H_0$

$$\hat{y} = 24,312 + 86.5x_1 - 324x_2 + 9,610x_3 + 3,617x_4$$

$$SSE = 27695831$$
 $SSR = 45963293$ $TSS = 73659124$

2. Test the individual significance of the variable x_3 .

$$s_{\widehat{\beta}_3} = 3313$$

$$H_0: \beta_3 = 0$$

$$H_a$$
: $\beta_3 \neq 0$

$$t = \frac{9610 - 0}{3313} = 2.9$$

P-value = $(0.002, 0.01) \rightarrow \text{REJECT } H_0$

$$\hat{y} = 24,312 + 86.5x_1 - 324x_2 + 9,610x_3 + 3,617x_4$$

$$SSE = 27695831$$
 $SSR = 45963293$ $TSS = 73659124$

3. Test the individual significance of the remaining variables. Should any be removed from the model?

$$s_{\widehat{\beta}_1} = 7109$$
 P-value ~ 1 \rightarrow DO NOT REJECT H_0

$$s_{\widehat{\beta}_2} = 15$$
 P-value $< 0.001 \rightarrow \text{REJECT } H_0$

$$s_{\widehat{\beta}_4} = 3480$$
 P-value = (0.3, 0.4) \rightarrow DO NOT REJECT H_0

MULTIPLE LINEAR REGRESSION

Categorical Predictors

 Develop both effects coding and dummy / reference coding for a categorical variable with 4 categories.

	x_1	x_2	x_3
А	1	0	0
В	0	1	0
С	0	0	1
D	-1	-1	-1

	x_1	x_2	x_3
А	1	0	0
В	0	1	0
С	0	0	1
D	0	0	0

- A real estate company is trying to model housing prices (in dollars) of their customers with the variables:
 - x_1 : Size of Home (square feet)
 - x₂: Age of Home (years)
 - x₃: Acreage of Land (acres)
 - x_4 : Number of Bedrooms
 - x₅: Located on golf course
- Using a sample of 105 houses they derive the following model:

$$\hat{y} = 24,312 + 86.5x_1 - 324x_2 + 9,610x_3 + 3,617x_4 + 12,550x_5$$

$$s_{\hat{\beta}_5} = 4532$$

$$\hat{y} = 24,312 + 86.5x_1 - 324x_2 + 9,610x_3 + 3,617x_4 + 12,550x_5$$

$$s_{\hat{\beta}_5} = 4532$$

1. How would you code the variable summarizing whether a house was on the golf course?

$$x_5 = \begin{cases} 1 & \text{if on golf course} \\ 0 & \text{if not on golf course} \end{cases}$$

$$\hat{y} = 24,312 + 86.5x_1 - 324x_2 + 9,610x_3 + 3,617x_4 + 12,550x_5$$

$$s_{\hat{\beta}_5} = 4532$$

- 2. What is the interpretation of the coefficient on the variable x_5 ?
 - The average increase in home price for home on a golf course compared to not is \$12,550, all else equal.

$$\hat{y} = 24,312 + 86.5x_1 - 324x_2 + 9,610x_3 + 3,617x_4 + 12,550x_5$$

$$s_{\hat{\beta}_5} = 4532$$

3. Calculate the test of significance for the variable x_5 .

$$H_0: \beta_5 = 0$$

$$H_a$$
: $\beta_5 \neq 0$

$$t = \frac{12550 - 0}{4532} = 2.77$$

P-value = $(0.002, 0.01) \rightarrow \text{REJECT } H_0$

MULTIPLE LINEAR REGRESSION

Polynomial Predictors

More Examples

• The plot is fitted with a quadratic model for x predicting y. From the above plot, what can you determine about the sign of the coefficient estimate for the quadratic term of x?

Χ