Feuille d'exerices 1

Variables aléatoires discrètes et Lois usuelles discrètes

Mohamad Ghassany

Variables Aléatoires

Exercice 1 Soit X une variable aléatoire qui prend ses valeurs dans l'ensemble $\{-4, 2, 3, 4, 6, 7, 10\}$ et dont la distribution est donnée par:

x_i	-4	2	3	4	6	7	10
$P(X=x_i)$	0.1	0.2	0.2	0.1	0.05	0.2	k

- 1. Calculer k.
- 2. Représenter graphiquement la loi de X.
- 3. Calculer les probabilités suivantes:

$$P(X > 3)$$
; $P(X > 3)$; $P(3 < X < 7)$; $P(3 < X < 9)$; $P(X + 2 > 3)$; $P(X^2 > 4)$

Exercice 2 On choisit deux boules au hasard dans une urne contenant 8 boules blanches, 4 boules noires et 2 boules oranges. Supposons que l'on reçoive 2 euros pour chaque boule noire tirée et que l'on perde 1 euro pour chaque boule blanche tirée. Désignons les gains nets par X.

- 1. Quelles sont les valeurs possibles pour X et les probabilités associées à ces valeurs ?
- 2. Quelle est l'espérance de X?

Exercice 3 Une urne contient une boule qui porte le numéro 0, deux qui portent le numéro 1 et quatre qui portent le numéro 3. On extrait simultanément deux boules dans cette urne.

- 1. Déterminer la loi de probabilité de la variable aléatoire X qui représente la somme des nombres obtenus.
- 2. Déterminer la fonction de répartition de X.
- 3. Calculer E(X), VX) et $\sigma(X)$.

Exercice 4 Soit X une v.a. qui suit la loi uniforme (e.g. équiprobabilité de valeurs de X) sur l'ensemble $X(\Omega) = \{-3, -2, 1, 4\}$.

- 1. Donner la loi de X.
- 2. Calculer E(X) et V(X).

On définit la variable aléatoire $Y = (X + 1)^2$.

- 3. Donner $Y(\Omega)$ et la loi de Y.
- 4. Calculer E(Y) de deux façons différents.

Exercice 5 Soit la fonction de répartition F de la variable aléatoire X définie par:

$$F(x) = \begin{cases} 0 & \text{si } x < 0\\ 1/4 & \text{si } 0 \le x < 1\\ 1/2 & \text{si } 1 \le x < 4\\ c & \text{si } x \ge 4 \end{cases}$$

- 1. Déterminer en justifiant la constante c.
- 2. Calculer $P(1 \le X < 5)$.
- 3. Calculer P(X = 1) + P(X = 2).
- 4. Déteminer la loi de probabilité de X.

Exercice 6 Soient X et Y des variables aléatoires discrètes dont la loi jointe est donnée par le tableau suivant:

$X \backslash Y$	-1	0	2	5
0	0.10	0.05	0.15	0.05
1	0.15	0.20	0.25	0.05

- 1. Quelle est la loi marginale de X?
- 2. Quelle est la loi marginale de Y?
- 3. Calculer $P(Y \ge 0/X = 1)$.
- 4. Calculer E(X), E(Y), etcov(X, Y)
- 5. Les variables X et Y sont elles indépendantes ?

Exercice 7 On a n boîtes numérotées de 1 à n. La boîte k contient k boules numérotées de 1 à k. On choisit au hasard une boîte, puis une boule dans la boîte. Soit X le numéro de la boîte, et Y le numéro de la boule.

- 1. Déterminer la loi du couple (X, Y).
- 2. Déterminer la loi de Y et son espérance.
- 3. Les variables aléatoires X et Y sont-elles indépendantes ?
- 4. Calculer P(X = Y).

Exercice 8 Soit α un réel positif et p un réel élement de]0,1[.

Soit X et Y deux variables aléatoires à valeurs dans \mathbb{N} . On suppose que leur loi conjointe est donnée par:

$$\forall (i,j) \in \mathbb{N}^2, \quad P(X=i,Y=j) = \alpha(i+j)p^i(1-p)^j$$

- 1. Déterminer α en fonction de p.
- 2. Donner les lois de X et Y.

3. X et Y sont elles indépendantes?

Exercice 9 Soit (X,Y) un couple de variables aléatoires à valeurs dans \mathbb{N}^2 tel que

$$\forall (p,q) \in \mathbb{N}^2, \quad P(X=p,Y=q) = \lambda \frac{p+q}{p!q!2^{p+q}}$$

- 1. Déterminer λ .
- 2. Calculer les lois marginales.
- 3. Les variables X et Y sont elles indépendantes ?

Exercice 10 Soient X et Y deux v.a.r. indépendantes vérifiant:

$$P(X = n) = P(Y = n) = \frac{1}{4} \left(\frac{1 + a^n}{n!}\right) \quad \forall n \in \mathbb{N}$$

- 1. Déterminer a.
- 2. Calculer E(X) et E(Y).
- 3. Déterminer la loi de X = X + Y.

Lois Usuelles

Exercice 11 Une urne contient 2 boules de numéro 20, 4 boules de numéro 10 et 4 boules de numéro 5.

- 1. Une épreuve consiste à tirer simultanément 3 boules de l'urne. Calculer la probabilité p que la somme des numéros tirés soit égale à 30.
- 2. On répéte cette épreuve 4 fois en remettant à chaque fois les trois boules tirés dans l'urne. Soit X la v.a. indiquant le nombre de tirages donnant une somme de numéros égale à 30.
 - (a) Quelle la loi de X. Donner son espérance et son écart-type.
 - (b) Déterminer la probabilité d'avoir au moins une fois la somme 30 dans les 4 tirages.

Exercice 12 Vous avez besoin d'une personne pour vous aider à déménager. Quand vous téléphonez à un ami, il y a une chance sur quatre qu'il accepte. Soit X la variable aléatoire qui représente le nombre d'amis que vous devrez contacter pour obtenir cette aide.

- 1. Déterminer la loi de probabilité de X.
- 2. Calculer $P(X \leq 3)$.
- 3. Calculer E(X).

Exercice 13 Pour être sélectionné aux jeux olympiques, un athlète doit réussir deux fois à dépasser les minima fixés par sa fédération. Il a une chance sur trois de réussir à chaque épreuve à laquelle il participe. On note X la variable aléatoire qui représente le nombre d'épreuves auxquelles il devra participer pour être sélectionné.

- 1. Déterminer la loi de probabilité de X.
- 2. Si cet athlète ne peut participer qu'à quatre épreuves maximum, quelle est la probabilité qu'il soit sélectionné ?

Exercice 14 Un sac contient cinq jetons : deux sont numérotés 1 et les trois autres sont numérotés 2. On effectue une série illimitée de tirages avec remise d'un jeton dans le sac S. On désigne par Y la variable aléatoire égale au nombre de tirages effectués avant le tirage amenant un jeton numéroté 1 pour la première fois.

- 1. (a) Justifier que la variable aléatoire Z = Y + 1 suit une loi usuelle que l'on précisera.
 - (b) En déduire la loi de probabilité de Y.
- 2. (a) Préciser l'espérance mathématique et la variance de \mathbb{Z} .
 - (b) En déduire l'espérance mathématique et la variance de Y.

Exercice 15 Un poste de radio a 2 types de pannes: transistor ou condensateur. Durant la première année d'utilisation, on désigne par:

X= nombre de pannes dues à une défaillance de transistor.

Y=nombre de pannes dues à une défaillance de condensateur.

On suppose que X et Y sont des v.a. indépendantes suivant des lois de Poisson de paramètres respectives $\lambda=2$ et $\mu=1$.

- 1. Calculer la probabilité qu'il y ait 2 pannes dues à une défaillance de transistor.
- 2. Calculer la probabilité qu'il y ait au moins une panne due à une défaillance de condensateur.
- 3. (a) Quelle est la loi du nombre Z = X + Y de pannes durant la première année ?
 - (b) Déterminer la probabilité qu'il y ait 2 pannes de type quelconque.
 - (c) Calculer P(Z=3). Que peut-on remarquer?
 - (d) Décrire les variations de P(Z = k) en fonction de k.
 - (e) Donner le nombre moyen de pannes et la probabilité qu'il y ait au plus une panne durant cette période.
 - (f) En utilisant l'inégalité de Bienaymé-Tchebycheff, montrer que:

$$P(Z \le 6) > \frac{13}{16}.$$

Exercice 16 Soit X une variable aléatoire à valeurs \mathbb{N}^* dans telle que $P(X > n+1) = \frac{1}{2}P(X > n)$ pour tout $n \in \mathbb{N}^*$. A partir de la fonction de répartition F_X de X, on définit la suite réelle $(u_n)_{n\geq 0}$ telle que $u_n = F_X(n)$.

- 1. (a) Trouver une relation liant u_{n+1} et u_n pour tout entier $n \in \mathbb{N}^*$.
 - (b) En déduire l'expression de u_n en fonction de n.
- 2. En déduire la loi de probabilité de X. Reconnaître une loi usuelle.

Exercice 17 Soit n un entier naturel et X une variable aléatoire suivant une loi géométrique $\mathcal{G}(1/n)$.

- 1. Montrer que $P(X \ge n^2) \le \frac{1}{n}$.
- 2. Montrer que $P(|X n| \ge n) \le 1 \frac{1}{n}$.
- 3. En déduire que $P(X \ge 2n) \le 1 \frac{1}{n}$.

Exercice 18 Le nombre de pannes d'électricité qui se produisent dans une certaine région au cours d'une période d'un an suit une loi de Poisson de paramètre $\lambda = 3$.

- 1. Calculer la probabilité qu'au cours d'une période d'un an il y a exactement une panne qui se produit.
- 2. En supposant l'indépendance des pannes d'une année à l'autre, calculer la probabilité qu'au cours des dix prochaines années il y ait au moins une année pendant laquelle il se produira exactement une panne.