Facultad de Ciencias Exactas, Ingeniería y Agrimensura

Departamento de Matemática - Escuela de Ciencias Exactas y Naturales

ÁLGEBRA y GEOMETRÍA ANALÍTICA I - 2016

Licenciatura en Ciencias de la Computación

Primer examen parcial - 15 de abril de 2016

Nombre y Apellido: Legajo: Legajo:

1. Sean los subconjuntos de \mathbb{N} : $A = \{1, 2, 3, 4, 5, 6, 7, 8\}, B = \{x \in \mathbb{N} : (x - 2)^2(x - 3) = 0\}$ y $C = \{x \in \mathbb{N} : (x - 2)^2(x - 3) = 0\}$
--

- x es impar.

 a) Hallar $A \triangle C$, $\overline{A \cap B}$, B C y A C.
 - b) Representar los conjuntos $A \times B$ y $B \times C$.
 - c) Si $D = \{A, B, C\}$. Decir cuáles de las siguientes afirmaciones son verdaderas y cuáles son falsas, justificando adecuadamente.
 - 1) $A \in D$

4) $5 \in B$

7) $A \cup B \in D$

 $2) \ 3 \in A$

5) $D \subseteq \mathcal{P}(\mathbb{N})$

8) $A \cup B \in \mathcal{P}(\mathbb{N})$

3) $5 \in D$

6) $C \subseteq D$

9) $(B \cup C \cup \{4\}) \cap A \in D$

2. Sean $A = \{1, 2, 3, 4, 5\}$ y $B = \{0, 2, 4, 6, 8\}$. Se definen las relaciones $R = \{(1, 0), (1, 2), (2, 4), (3, 6), (3, 8), (4, 4), (4, 8)\}$ de A en B y $S = \{(0, 1), (0, 2), (2, 2), (2, 4), (4, 4), (4, 5), (6, 5)\}$ de B en A. Determinar:

a) Dom(R)

 $d) R^{-1}(\{0,4,6\})$

 $q) S \circ R$

b) Im(S)

 $e) S(\{4,6,,8\})$

h) $(S \circ R)^{-1}$

c) $R(\{1,2\})$

 $f) S^{-1}(\{1,3\})$

 $i) R \circ (S \circ R)$

3. Sean A, B, C y D conjuntos de un universo \mathcal{U} . Demostrar que las siguientes conjeturas son verdaderas o dar un ejemplo que muestre que son falsas.

- a) $A \times (B \cup C) = (A \times B) \cup (A \times C)$.
- $b)\ A\cup (B\times C)=(A\cup B)\times (A\cup C).$
- c) Si $A \times B \subseteq C \times D$ entonces $A \subseteq C$ y $B \subseteq D$.
- $d) \ \mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$
- $e) \mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$
- $f) \mathcal{P}(A \cap B) \subseteq \mathcal{P}(A) \cap \mathcal{P}(B)$
- $g) \mathcal{P}(A \cup B) \subseteq \mathcal{P}(A) \cup \mathcal{P}(B)$
- 4. Sean A y B conjuntos de un universo $\mathcal U.$ Probar que $A\subseteq B$ si y solo si $A\cap B=A.$