Exercice 4: Chromatic dispersion in a step index fiber

Let us remind that the group index at the wavelength λ_0 , in a medium having a refractive index n(λ), can be written: $N_g(\lambda_0) = n - \lambda_0 \frac{dn}{d\lambda}$ $_{\lambda=\lambda_0}$.

- 1) a- What is the relation between $N_g(\lambda_0)$ and $t_g(\lambda_0)$, where $t_g(\lambda_0)$ is the propagation duration, in this medium of thickness L, of the peak of a light pulse which spectrum is narrow (width $\Delta\lambda$) and is centered at λ_0 ?
- b- Using the schematics opposite, establish the expression of the time broadening
- $|\tau| = |t_{g1} t_{g2}|$ experienced by the pulse when crossing the medium, as a function of t_g , λ and $\Delta\lambda$.

2) The dispersion of the material D_m being given by $D_m = \frac{\tau}{\Delta \lambda L}$, show that $D_m = -\frac{\lambda}{c} \frac{d^2 n}{d\lambda^2}$

$$D_{m} = -\frac{\lambda}{c} \frac{d^{2}n}{d\lambda^{2}}$$

In a single mode optical fiber, the refractive index of the core around the operating wavelength $\lambda_T = 0.85 \mu \text{m}$ can be written $n_1(\lambda) = A_0 + A_1 \cdot e^{-\lambda K}$, with $A_0 = 1.45194$, $A_1 = 0.0402$ and $K = 1.63 \cdot 10^6 \text{ m}^{-1}$.

- 3) Calculate D_m , the dispersion of the material in the core of the fiber at λ_T , in ps/(nm.km) and show that its value is $D_m = -76 \text{ ps/(nm.km)}$.
- 4) What should be the value of the guide dispersion around λ_T in order to obtain a temporal broadening of a pulse having a spectral width of 0,01nm around this wavelength of 200ps at the end of a 100km propagation length in the fiber (2 two possible values)?

