Introduction

Generative Adversial Network

Rafael BENATTI, Yassine KALAA

nGANnou

Data Science Lab

Université Paris Dauphine - PSL

Novembre 15, 2023

Introduction •000

2 f-GAN

3 Latent Space Re-weighting

Introduction

- We want to generate handwritten digits thanks to a GAN (Generative Adversarial Network).
- A GAN consists on training a Generator and a Discriminator, that compete with each other to generate new instances of data that are indistinguishable from real data.

Figure 1: GAN Architecture

Results

Min Max Problem

Introduction

G and D are trained simultaneously to solve the following min-max problem:

$$\min_{G} \max_{D} \mathbb{E}_{x_r \sim P}[\log D(x)] + \mathbb{E}_{x_g \sim \hat{P}_G}[\log 1 - D(x)]$$

Dataset

- Use of 10.000 images of the MNIST Database
- Represent handwritten digits in grayscale
- Each image is 28x28 pixels

Figure 2: Example of MNIST images

Results

Metrics Used

Introduction

Fréchet Inception Distance (FID) measures similarity between real and generated images by comparing statistics of feature representations obtained from a pre-trained deep neural network.

- Correlates well with human judgment
- Computationally intensive

f-GAN

The f-GAN idea is to lower bound the distance between the true and generated distribution by using:

Latent Space Re-weighting

$$D_f(P||Q) \ge \sup_{T \in \mathcal{T}} \left(\mathbb{E}_{x \sim P}[T(x)] - \mathbb{E}_{x \sim Q}[f^*(T(x))] \right)$$

Which yields the objective function:

$$F(\theta,\omega) = \mathbb{E}_{x \sim P}[g_f(V_\omega(x))] + \mathbb{E}_{x \sim Q_\theta}[-f^*(g_f(V_\omega(x)))]$$

FID for different f-Divergences

Figure 3: $g_f(x)$

Divergence	FID Score
GAN	49
KL	441
Reverse KL	230
Pearson X^2	196
Squared Hellinger	319
Jensen-Shannon	79

Table 1: FID Scores for Different Divergences

Principle of Latent Space Re-weighting

- ◀ It consists on managing the latent space after training, to do so :
 - We associate to each variable a weight that indicates its importance, those weights are learned during training
 - With the latent rejection sampling policy, we generate higher-quality samples by rejecting those that do not meet certain criteria defined in the latent space

Figure 4: Acceptance probabilities with the latentRS algorithm

Algorithm 2: LatentRS

Requires: Prior Z, Gen. G_{θ} , Importance weight network w^{φ} , maximum importance weight m;

while True do

```
hile True do

Sample z \sim Z;

Sample \alpha \sim \text{Uniform}[0,1];

if \frac{w^{\varphi}(z)}{m} \geq \alpha then

| break;

end
```

en

 $x \leftarrow G_{\theta}(z);$

Result: Selected point x

Model	FID	Precision
Vanilla-GAN	49	0.23
Vanilla-GAN+LatentRS	46	0.38

Table 2: FID and Precision comparison

Results

Model	FID Score
f-divergence GAN	49
f-divergence KL	441
f-divergence Reverse KL	230
f -divergence Pearson X^2	196
f-divergence Squared Hellinger	319
f-divergence Jensen-Shannon	79

Table 3: FID Scores for Different Divergences

Model	FID Score	Precision
Vanilla-GAN	49	0.23
Vanilla-GAN + LatentRS	46	0.38

Table 4: FID and Precision with and without latent reweighting

Results o

•

Bibliography

https://openaccess.thecvf.com/content/WACV2022/supplements/ //arxiv.org/pdf/1606.00709.pdf