Misura diretta di frequenza Incertezze di misura Cenni agli oscillatori al quarzo Misura indiretta di frequenza Incertezze di misura

- La frequenza è la grandezza fisica che si misura
 - con minore incertezza
 - a parità di incertezza si opera con costi minori

Perché:

- I campioni secondari di frequenza sono disponibili con incertezze molto piccole (da 10⁻⁷ a 10⁻¹³) ed impensabili per le altre unità di misura
- gli strumenti ed i metodi di confronto permettono di aver una risoluzione elevata nel misurare gli scarti rispetto al campione

Metodo di misurazione "standard"

Metodo di misurazione di frequenza "standard"

- Occorre dunque disporre di
 - Uno strumento per individuare gli istanti di periodicità
 - Un intervallo di tempo campione
 - Uno strumento per misurare il rapporto fra il numero di cicli e l'intervallo campione

Misura diretta di frequenza

Principio di misurazione

- T_g è il tempo di gate e corrisponde alla durata del conteggio
- Esempio:

$$T_{g} = 0.1 s$$

Se, per esempio, $f_x \approx 5 \text{ MHz}$ allora $n \approx 5 * 10^5 \text{ impulsi}$

Incertezza di quantizzazione

- Si ha un termine di incertezza assoluta pari a ± 1 conteggio. Questa incertezza è chiamata incertezza di quantizzazione e_{q}
- In termini relativi : $\varepsilon_q = \frac{\delta f_x}{f_x} = \frac{1}{n}$
- Inoltre $\delta f_{\chi} = \frac{f_{\chi}}{n} = \frac{n/T_g}{n} = \frac{1}{T_g}$
- Per ridurre questa incertezza occorre fare in modo che n sia il più grande possibile oppure che il tempo di misura sia il più ampio possibile

Incertezza

• Esempio –

f_x	T_{g}	n	Incertezza di quantizzazione
1 kHz	1 ms	1	± 100%
1 kHz	10 ms	10	± 10%
1 kHz	1 s	1,000	$\pm0.1\%$
1 kHz	10 s	10,000	$\pm 0.01\%$
100 kHz 100 kHz	1 ms 1 s 10 s	100 100,000 1,000,000	± 1 % ± 1 10-5 ± 1 10-6
1 MHz	1 a	1 000 000	. 1 10-6
1 MHz	1 s	1,000,000	± 1 10 ⁻⁶

Incertezza

• Esempio –

f_x	T_{g}	n	Incertezza di quantizzazione
1 kHz	1 ms	1	± 100%
1 kHz	10 ms	10	± 10%
1 kHz	$\left(\begin{array}{c}1\ \mathrm{s}\end{array}\right)$	1,000	±(0.1%)
1 kHz	10 s	10,000	± 0.01%
100 kHz	1 ms	100	± 1%
100 kHz	1 s	100,000	±(1 10 ⁻⁵)
100 kHz	10 s	1,000,000	$\pm \ 1\ 10^{-6}$
••••			
1 MHz	1 s	1,000,000	±(1 10 ⁻⁶)

Misura diretta di frequenza: schema di massima

Incertezza su T_g

- T_g = k t_c dove k è il fattore di divisione della freq. f_c
- $\delta T_g/T_g = \delta f_c/f_c$
- Incertezza: $\frac{\delta f_x}{f_x} = \epsilon_c + \epsilon_q = \frac{\delta f_c}{f_c} + \frac{1}{n}$
- Quarzo non termostatato $\frac{\delta f_c}{f_c} \approx 10^{-5} \div 10^{-6}$
- Quarzo termostatato $\frac{\delta f_c}{f_c} \approx 10^{-8} \div 10^{-9}$

Oscillatore al quarzo

From: Introduction to Quartz Frequency Standards – Oscillator Basics – J. Vig IEEE UFFC

Oscillatore al quarzo: circuito equivalente

From: Introduction to Quartz Frequency Standards – Oscillator Basics – J. Vig IEEE UFFC

Oscillatore al quarzo

Parametri che influenzano un oscillatore al quarzo:

- Qualità e modi di oscillazione
- Tipo di taglio del cristallo
- Temperatura
- Circuiti elettronici
- Elettrodi di collegamento

From: Introduction to Quartz Frequency Standards – Oscillator Basics – J. Vig IEEE UFFC Frequency-Temperature vs. Angle-of-Cut, AT-cut

Oscillatore al quarzo

Technology	Units per year	Unit price, typical	Worldwide market, \$/year
Quartz Crystal Resonators & Oscillators	~ 3 x 10 ⁹	~\$1 (\$0.1 to 3,000)	~\$4B

Atomic Frequency Standards (Commercial units)		Za \$20 P 000 \$4M \$50,000 \$25M		
Hydrogen maser	equenz	a\$20,000	\$4M	
I I I I I I I I I I I I I I I I I I I	~ 500	\$50,000	\$25M	
Rubidium cell frequency standard	~ 100,000	\$2,000	\$200M	

From: Introduction to Quartz Frequency Standards – Oscillator Basics – J. Vig IEEE UFFC

Grafico delle incertezze

Misura diretta di frequenza 10-2 $T_{a}=1s$ 10-3 10-4 $T_g=10s$ 10^{-5} $T_g = 10^2 s$ $\mathcal{E}_{\mathcal{C}}$ 10^{-6} $Tg=10^{3}s$ 10^{-7} 10^{5} f_v/Hz 10^3 10^{4} 10^{6} 10^{7}

• $\varepsilon_q = \frac{1}{r}$

•
$$\frac{\delta f_c}{f_c} = 10^{-6}$$
 (per esempio)

Grafico delle incertezze

Misura diretta di frequenza

- Per frequenze basse l'incertezza di quantizzazione diventa intollerabile anche con T_α elevati
- L'incertezza del campione costituisce una soglia di incertezza minima ottenibile

Misura indiretta di frequenza: schema di massima

Misura diretta e indiretta di frequenza: differenze di massima

Frequenzimetro numerico: misura indiretta di frequenza (periodo singolo)

 Si esegue una misura di periodo che permette di determinare indirettamente la frequenza tramite f_x=1/T_x

Grafico delle Incertezze

Misura indiretta di frequenza (periodo singolo)

$$T_x = nT_C$$

•
$$\varepsilon_q = \frac{1}{n} = \frac{T_c}{T_x} = \frac{f_x}{f_c}$$

• $\varepsilon_c = \frac{\delta f_c}{f_c} = 10^{-6}$ (per esempio)

Frequenzimetro numerico: misura indiretta di frequenza (periodo multiplo)

- Esempio: clock ad 1MHz e f_x=10Hz: ottengo n=10⁵ conteggi
- Se riuscissi a svincolare il tempo di misura dal singolo periodo del segnale potrei migliorare l'incertezza del conteggio
- Per esempio: se, al posto di un singolo periodo di f_x potessi utilizzare 100 periodi del segnale di ingresso otterrei una incertezza di quantizzazione 100 volte più piccola

Frequenzimetro numerico: misura indiretta di frequenza (periodo multiplo)

- Misura di periodo singolo T_x (M=1) o multiplo (M=10, 100, ...)
- La frequenza f_x viene divisa per M in modo da espandere per M il tempo di misura

Frequenzimetro numerico: misura indiretta di frequenza (periodo multiplo)

- $MT_x = nT_c$
- $T_x = n T_c / M$
- Si esegue una misura di periodo ma la durata del tempo di misura è più ampio di un fattore M

Limitazioni alle basse frequenze

Esempio:

$$f_x = 1 \text{ kHz}$$
 $M = 1000$ $M T_x = 1 \text{ s}$
 $T_c = 1 \text{ } \mu \text{s} \text{ } \text{(quarzo ad 1 MHz) ottengo } \textbf{n= 1 000 000}$

- Con una durata di misurazione di 1s si ha incertezza di quantizzazione di 10⁻⁶. Nel caso di misura diretta di frequenza, a parità di inc. di quantizzazione, avrebbe richiesto 1000 s
- Occorre tener conto però anche del rumore presente sul segnale: se al segnale è sovrapposto del rumore gli istanti di apertura e chiusura del gate possono risultare falsati