Homework 6 Fall 2025

Xiaoyang Zheng

October 13, 2025

Problem 1: Phase Estimation

1.1: What is $U^k|+\rangle$ written in the computational basis?

$$U^k \left| + \right\rangle = U^k \left(\frac{1}{\sqrt{2}} (\left| 0 \right\rangle + \left| 1 \right\rangle) \right) = \frac{1}{\sqrt{2}} (U^k \left| 0 \right\rangle + U^k \left| 1 \right\rangle) = \frac{1}{\sqrt{2}} (\left| 0 \right\rangle + e^{ik\theta} \left| 1 \right\rangle)$$

1.2: Identify two projective measurements $\langle m_c |$ and $\langle m_s |$

State after the operation: $|\psi_k\rangle = U^k |+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + e^{ik\theta} |1\rangle)$

For the first measurement, expect: $|\langle m_c | \psi_k \rangle|^2 = \frac{1 + \cos(k\theta)}{2}$

Projecting onto $|+\rangle$ state:

$$\langle +|\psi_k\rangle = \frac{1}{\sqrt{2}}(\langle 0|+\langle 1|)\cdot \frac{1}{\sqrt{2}}(|0\rangle + e^{ik\theta}|1\rangle) = \frac{1}{2}(1+e^{ik\theta})$$

The probability is:

$$|\langle +|\psi_k\rangle|^2 = \left|\frac{1}{2}(1+\cos(k\theta)+i\sin(k\theta))\right|^2 = \frac{1}{4}(2+2\cos(k\theta)) = \frac{1+\cos(k\theta)}{2}$$

So:
$$\langle m_c | = \langle + | = \frac{1}{\sqrt{2}} (\langle 0 | + \langle 1 |).$$

For the second measurement, expect: $|\langle m_s | \psi_k \rangle|^2 = \frac{1+\sin(k\theta)}{2}$ Projecting onto $|+i\rangle = \frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle)$

The corresponding bra is $\langle +i| = \frac{1}{\sqrt{2}} (\langle 0| - i \langle 1|).$

$$\langle +i|\psi_k\rangle = \frac{1}{\sqrt{2}}(\langle 0|-i\,\langle 1|)\cdot\frac{1}{\sqrt{2}}(|0\rangle + e^{ik\theta}\,|1\rangle) = \frac{1}{2}(1-ie^{ik\theta})$$

The probability is the squared magnitude:

$$|\langle +i|\psi_k \rangle|^2 = \left| \frac{1}{2} (1 - i(\cos(k\theta) + i\sin(k\theta))) \right|^2 = \frac{1}{4} (1 + 2\sin(k\theta) + \sin^2(k\theta) + \cos^2(k\theta)) = \frac{1 + \sin(k\theta)}{2}$$

So,
$$\langle m_s | = \langle +i | = \frac{1}{\sqrt{2}} (\langle 0 | -i \langle 1 |).$$

$$\langle m_c | = \langle + |$$
 and $\langle m_s | = \langle +i |$

1.3: How can you estimate θ for k=1? Why can we not just use a single measurement?

For k=1,: Caculate probability $p_c=|\langle m_c|\psi_1\rangle|^2$ and $p_s=|\langle m_s|\psi_1\rangle|^2$

$$p_c = \frac{1 + \cos(\theta)}{2} \implies \cos(\theta) = 2p_c - 1$$

$$p_s = \frac{1 + \sin(\theta)}{2} \implies \sin(\theta) = 2p_s - 1$$

Estimated $\cos(\theta)$ and $\sin(\theta)$, the angle $\theta \in [0, 2\pi)$ is determined using : $\theta = \operatorname{atan2}(2p_s - 1, 2p_c - 1)$.

We cannot use a single measurement because:

- If we only measure $\cos(\theta)$, we cannot distinguish between θ and $2\pi \theta$, as $\cos(\theta) = \cos(2\pi \theta)$.
- If we only measure $\sin(\theta)$, we cannot distinguish between θ and $\pi \theta$, as $\sin(\theta) = \sin(\pi \theta)$.

1.4: What problems arise when trying to estimate θ for k > 1?

For k > 1, we measure $\cos(k\theta)$ and $\sin(k\theta)$, giving $k\theta \pmod{2\pi}$. Then:

$$k\theta = \phi + 2\pi m \implies \theta = \frac{\phi}{k} + \frac{2\pi m}{k}$$

There are k possible values (m = 0, ..., k - 1) that produce unique $\theta \in [0, 2\pi)$. We cannot determine m from measurement alone.

1.5: How can you use information you gain from taking measurements at k = 1 to solve this problem at k = 2?

- 1. For k = 1: Get estimate $\hat{\theta}_1$ (unambiguous).
- 2. For k=2: Get $\phi_2=2\theta\pmod{2\pi}$, giving two candidates: $\frac{\phi_2}{2}$ or $\frac{\phi_2}{2}+\pi$.
- 3. Choose the candidate closer to $\hat{\theta}_1$.

Problem 2: Grover's Algorithm on 2 qubits

2.1: Write out the 2-qubit Oracle unitary U_f as a 4×4 matrix.

Oracle: $U_f|x\rangle = (-1)^{f(x)}|x\rangle$, where f(11) = 1 and f(x) = 0 otherwise. Basis: $\{|00\rangle, |01\rangle, |10\rangle, |11\rangle\}$.

$$U_f = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

This is a Controlled-Z gate.

2.2: Write $|u\rangle$ and how to generate it.

Equal superposition for 2 qubits (N = 4):

$$|u\rangle = \frac{1}{2}(|00\rangle + |01\rangle + |10\rangle + |11\rangle)$$

Generated by: $(H \otimes H) |00\rangle$

2.3: Draw the equal weight superposition $|u\rangle$ on a diagram.

State space basis: marked state $|a\rangle=|11\rangle$ and unmarked superposition $|e\rangle=\frac{1}{\sqrt{3}}(|00\rangle+|01\rangle+|10\rangle).$

$$|u\rangle = \frac{\sqrt{3}}{2}|e\rangle + \frac{1}{2}|a\rangle$$

Angle with $|e\rangle$ axis: $\theta = \arcsin(1/2) = \pi/6$.

2.4: What is the angle θ between the vectors $|e\rangle$ and $|u\rangle$?

$$\cos(\theta) = \langle u|e \rangle = \left(\frac{\sqrt{3}}{2} \langle e| + \frac{1}{2} \langle a| \right) |e \rangle = \frac{\sqrt{3}}{2}$$
$$\theta = \arccos\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{6}$$

2.5: Action of the Oracle U_f on $|u\rangle$.

$$U_f |a\rangle = -|a\rangle, \quad U_f |e\rangle = |e\rangle$$

$$U_f |u\rangle = U_f \left(\frac{\sqrt{3}}{2} |e\rangle + \frac{1}{2} |a\rangle\right) = \frac{\sqrt{3}}{2} |e\rangle + \frac{1}{2} (-|a\rangle) = \frac{\sqrt{3}}{2} |e\rangle - \frac{1}{2} |a\rangle$$

Geometric: reflection about $|e\rangle$ axis.

2.6: Geometric interpretation of the action of U_u .

 $U_u = I - 2 |u\rangle \langle u|$ is a reflection operator.

$$U_u |u\rangle = |u\rangle - 2|u\rangle \langle u|u\rangle = -|u\rangle$$

$$U_{u}\left|u^{\perp}\right\rangle = \left|u^{\perp}\right\rangle - 2\left|u\right\rangle\left\langle u\left|u^{\perp}\right\rangle = \left|u^{\perp}\right\rangle$$

3

Geometric: reflection about the hyperplane perpendicular to $|u\rangle$.

2.7: Apply one iteration of Grover's algorithm.

1. Start:
$$|u\rangle = \frac{\sqrt{3}}{2} |e\rangle + \frac{1}{2} |a\rangle$$

2. Apply
$$U_f$$
: $|u'\rangle = \frac{\sqrt{3}}{2} |e\rangle - \frac{1}{2} |a\rangle$

3. Apply U_u : $|u''\rangle = |u'\rangle - 2|u\rangle\langle u|u'\rangle$

$$\left\langle u \middle| u' \right\rangle = \frac{3}{4} - \frac{1}{4} = \frac{1}{2}$$
$$\left| u'' \right\rangle = \left| u' \right\rangle - \left| u \right\rangle = \left(\frac{\sqrt{3}}{2} \left| e \right\rangle - \frac{1}{2} \left| a \right\rangle \right) - \left(\frac{\sqrt{3}}{2} \left| e \right\rangle + \frac{1}{2} \left| a \right\rangle \right) = - \left| a \right\rangle$$

Final state: $-|a\rangle$. Measurement yields '11' with 100% probability.

Note: All TikZ diagrams in this document were generated by Gemini 2.5 Pro from hand-drawn sketches.