Messilres 17. Find the standard deviation of the following data: 48, 43, 65, 57, 31, 60, 37, 48, 59, 78.

solution. Let us prepare the following table in order to calculate the value of S.D. by assuming

A= 50

Value (x)	d = x - A = (x - 50)	12
48	- 2	d^2
43	- 7	4
65	15	49
57	7	225
31	- 19	49
60	10	361
37	-13	100
48	-2	169
59	9	4
78	28	81 784
n = 10	$\Sigma d = 26$	
71-10	20 - 20	$\Sigma d^2 = 1826$

$$\bar{x} = A + \frac{\sum d}{n} = 50 + \frac{26}{10} = 52.6,$$

which is a fraction. Let us apply the short-cut formula in order to calculate S.D.

$$\therefore \text{ S.D.} = \sigma = \sqrt{\frac{\Sigma d^2}{n} - \left(\frac{\Sigma d}{n}\right)^2} = \sqrt{\frac{1826}{10} - \left(\frac{26}{10}\right)^2} = \sqrt{182.60 - 6.76} = \sqrt{175.84} = 13.26.$$

5.7 CALCULATION OF STANDARD DEVIATION – DISCRETE SERIES OR GROUPED DATA

The standard deviation of a discrete series or grouped data can be calculated by any one of the following three methods.

- (a) Actual Mean Method or Direct Method
- (b) Assumed Mean Method or Short-cut Method
- (c) Step Deviation Method

5.7.1 Actual Mean Method or Direct Method

The standard deviation for the discrete series is given by the formula:

$$\sigma = \sqrt{\frac{\sum f(x-\overline{x})^2}{n}},$$

where \bar{x} is the arithmetic mean, x is the size of item, f is the corresponding frequency and $n = \sum f$.

However, in practice, this method is rarely used because if the arithmetic mean is a **fraction**, the calculations take a lot of time and are cumbersome.

5.7.2 Assumed Mean Method or Short-cut Method

In this method we use the following formula to calculate the standard deviation σ :

$$\sigma = \sqrt{\frac{\sum f d^2}{n}} - \left(\frac{\sum f d}{n}\right)^2,$$

where A =is the assumed mean, d = x - A, and $n = \sum f$.

WORKING RULE

Take any item of the given series as assumed mean A. **STEP I**

Take any item of the given series as assumed mean A and denote it by the state of the items from the assumed mean A and denote it by the state of th STEPII

Take the deviations of the items from the analysis and denote it by fd. Oh, STEP III

Calculate d^2 , where d's are obtained in step II. **STEP IV**

Multiply the squared deviations by respective frequencies to get $\sum fd^2$ STEP V

Find the value of $\sigma^2 = \frac{\sum f d^2}{n} - \left(\frac{\sum f d}{n}\right)^2$ **STEP VI**

STEP VII Take the square root of σ^2 obtained in step VI to get the value of standard deviation σ .

The above method is illustrated by the following example.

Example 19. Find the standard deviation from the following data:

Size of the item:	10	11	12	13	14	15 16
Frequency:	2	7	11	15	10	4 1

Also find the coefficient of variation.

Solution.

Table: Computation of Standard Deviation

Size of the item: (x)	Frequency: (f)	d = x - A, $A = 13$	fd	d^2	fd²
			- 6	9	10
10	2	- 3	- 14	1 1	18
. 11	7	- 2		(· · · · · · · · · · · · · · · · · · ·	28
12	11	- 1	- 11	1 0	11
13	15	0	0	0	0
14	10	1	10	1 1	10
15	4 '	2	8	, 4	16
16	1	3	3	9	9
Total	$n=\Sigma f=50$		$\Sigma fd = -10$		$\sum f d^2 = \mathfrak{N}$

Now

Mean:
$$\bar{x} = A + \frac{\sum fd}{n} = 13 + \frac{(-10)}{50} = 12.8.$$

Here

$$\bar{x} = 12.8$$
, is a fraction.

$$\therefore \quad \mathbf{S.D.} = \sigma = \sqrt{\frac{\sum fd^2}{n} - \left(\frac{\sum fd}{n}\right)^2} = \sqrt{\frac{92}{50} - \left(\frac{-10}{50}\right)^2} = \sqrt{1.84 - 0.04} = \sqrt{1.80} = \mathbf{1.342}.$$

$$\therefore \text{ Now the coefficient of variation} = \frac{\sigma}{\overline{x}} \times 100 = \frac{1.342}{12.8} \times 100 = 10.4.$$

Step Deviation Method 5.7.3

In this method we divide the deviations by a common class interval and use the following formula for computing standard deviation:

$$\sigma = \sqrt{\frac{\sum fd^2}{n} - \left(\frac{\sum fd}{n}\right)^2} \times i,$$

where $i = \text{common class interval}, d = \frac{x - A}{i}$, A is assumed mean, f is the respective frequency

WORKING RULE

Find the mid-values or mid-points of the various classes and denote it by m STEPI

Find the mid-values of mis as the assumed mean A (Generally, the $middl_e$ STEPII value is taken as A).

value is taken as A).

Take the deviations of the mid-points from the assumed mean A and divide it by d (or d). STEP III class interval or common factor i. Denote it by d (or d).

class interval of common services f with the corresponding deviation d and STEP IV obtain Σfd .

Square the deviations d and multiply it with their respective frequencies. Obtain STEP V Σfd^2 .

Substitute the values of Σfd , Σfd^2 , i in the formula: STEP VI

$$\sigma = \sqrt{\frac{\sum fd^2}{n} - \left(\frac{\sum fd}{n}\right)^2} \times i$$
, where $n = \sum f$

to get the desired standard deviation σ .

Example 21. Find the standard deviation for the following distribution:

Marks	10 – 20	20 – 30	30 – 40	40 – 50	50 – 60	60 – 70	70 - 80
No. of Students	5	12	15	20	10	4	2

Solution. Let us prepare the following table in order to calculate the standard deviation, by assuming A = 45.

Table: Computation of Standard Deviation

70 – 80		1 1	i 2		1 10
60 – 70	4 2	65 75	2 3	8	16 18
50 - 60	10	55	1	10	10
40 - 50	20	45	0	, 0	0
30 - 40	15	35	- 1	- 15	15
20 – 30	12	25	- 2	- 24	48
10 – 20	5	15	- 3	- 15	45
Marks (Class interval)	No. of Students (f)	Mid-value (m)	$d = \frac{m-45}{10}$	fd	fd ²

$$\therefore \ \sigma = i \times \sqrt{\frac{\sum fd^2}{n} - \left(\frac{\sum fd}{n}\right)^2} = 10 \times \sqrt{\frac{152}{68} - \left(\frac{-30}{68}\right)^2} = 10 \times \sqrt{(2.2352 - 0.1946)}$$
$$= 10 \times \sqrt{2.0406} = 14.3 \text{ Approx.}$$

Example 22. Find the standard deviation by the step deviation method for the following data:

Class-Interval:	0 - 10	10 - 20	20 – 30	30 – 40	40 - 50	50 - 60	60 - 70
Frequency:	6	14	10	8	1	3	8

Solution. Let the assumed mean be
$$A = 35$$
, $d = \frac{x - A}{c} = \frac{x - 35}{10}$, where $i = 10$