ფიზიკის პედაგოგთა საგამოცდო ტესტის შეფასების სქემა

დავალებები 1-30-ის პასუხები:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
5			X								X	X					X	X
δ								X	X					X				
გ						X	X			X						X		
Q	X	X		X	X										X			
O O													X					

	19	20	21	22	23	24	25	26	27	28	29	30
٥								X				
δ		X		X		X						
გ							X					X
Q			X									
O O	X				X				X	X	X	

ყოველი დავალების სწორი პასუხი ფასდება 1 ქულით, ხოლო მცდარი პასუხი - 0 ქულით.

დავალება 31 (5 ქულა).

შეუსაბამეთ ციფრებით დანომრილ ფიზიკურ სიდიდეებს ასოებით დანომრილი განზომილებები, რომლებიც გამოსახულია SI სისტემის ძირითადი ერთეულებით. პასუხების ფურცელზე ცხრილის სათანადო უჯრებში დასვით ნიშანი X.

1. ენერგია	ა. კგ/(მ • წმ²)
2. კულონის ${f k}$ მუდმივა	ბ. კგ.მ/წმ²
3. წნევა	გ. კგ/(ა • წმ²)
4. ძაბვა	დ. კგ.მ²/წმ²
5.	ე. კგ·მ³/(ა²·წმ⁴)
6. მაგნიტური ველის ინდუქცია	ვ. კგ•მ²/(ა•წმ³)

	1	2	3	4	5	6
১			X			
ა გ					X	
						X
გ დ ე ვ	X					
Ŋ		X				
3				X		

მიღებული ქულა უდრის სწორი სვეტების რიცხვს მინუს ერთი. სწორი სვეტები ისეთია, როგორიც მოყვანილ ცხრილშია. განსხვავებული სვეტები მცდარია.

დავალება 32 (5 ქულა).

დახრილ სიზრტყეზე ძირიდან ზიძგით აასრიალეს ძელაკი, რომელიც შემდეგ კვლავ ჩამოსრიალდა ძირამდე. გაითვალისწინეთ ხახუნი და შეუსაზამეთ ძელაკის მახასიათებელ ციფრებით დანომრილ ფიზიკურ სიდიდეებს ამ სიდიდეების t დროზე დამოკიდებულების თვისებრივი გრაფიკები. ჩათვალეთ, რომ ღერძი მიმართულია დახრილი სიზრტყის გასწვრივ ზევით. პასუხების ფურცელზე ცხრილის სათანადო უჯრებში დასვით ნიშანი X.

- 1. სიჩქარის გეგმილი;
- 2. აჩქარების გეგმილი;
- 3. პოტენციალური ენერგია;
- 4. კინეტიკური ენერგია;
- 5. გავლილი მანძილი;
- 6. ხახუნის ძალის გეგმილი.

	1	2	3	4	5	6
ა						X
δ		X				
გ	X					
გ დ			X			
ე					X	
3				X		

მიღებული ქულა უდრის სწორი სვეტების რიცხვს მინუს ერთი. სწორი სვეტები ისეთია, როგორიც მოყვანილ ცხრილშია. განსხვავებული სვეტები მცდარია.

დავალება 33 (2 ქულა).

ნახატზე გამოსახულია ორი, A და B სხეულის დნობის გრაფიკები. t° ტემპერატურაა, Q - მიღებული სითბოს რაოდენობა. სხეულების ნივთიერებების **კუთრი** სითბოტევადობები ტოლია მყარ მდგომარეობებში. განსაზღვრეთ:

- 1) B სხეულის მასის შეფარდება A სხეულის მასასთან;
- 2) B სხეულის ნივთიერების св კუთრი სითბოტევადობა თხევად მდგომარეობაში, თუ თხევად მდგომარეობაში A სხეულის ნივთიერების კუთრი სითბოტევადობაა сл. ამოხსნა:
- 1) დავწეროთ მყარ მდგომარეობაში სხეულების გათბობისას მიღებული სითბოს რაოდენობის ფორმულები:

$$Q_{A\partial y} = m_A c \Delta t_{A\partial y}, \qquad Q_{B\partial y} = m_B c \Delta t_{B\partial y} \quad \Rightarrow \quad \frac{Q_{A\partial y}}{Q_{B\partial y}} = \frac{m_A \Delta t_{A\partial y}}{m_B \Delta t_{B\partial y}}$$

ორივე ღერმზე თითო უჯრა მივიჩნიოთ სათანადო სიდიდის პირობით ერთეულად, მაშინ გვაქვს: $Q_{A\partial g}=Q_{B\partial g}=3$, $\Delta t_{A\partial g}=1$, $\Delta t_{B\partial g}=3$. ფორმულაში ამ მონაცემების შეტანით მიიღება, რომ $m_A=3m_B$. (1 ქულა)

2) დავწეროთ თხევად მდგომარეობაში სხეულების გათბობისას მიღებული სითბოს რაოდენობის ფორმულები:

$$Q_{Aoob} = m_A c_A \Delta t_{Aoob}, \qquad Q_{Boob} = m_B c_B \Delta t_{Boob} \quad \Rightarrow \quad \frac{Q_{Aoob}}{Q_{Boob}} = \frac{m_A c_A \Delta t_{Aoob}}{m_B c_B \Delta t_{Boob}}$$

გვაქვს: $Q_{Aთb}=Q_{Bთb}=3$, $\Delta t_{Aთb}=2$, $\Delta t_{Bთb}=3$. ფორმულაში ამ მონაცემების და წინა დავალებაში მიღებული შედეგის შეტანით მიიღება, რომ $c_B=2c_A$

(1 ქულა მიუხედავად იმისა, გამოყენებულია თუ არა $m_A = 3m_B$)

დავალება 34 (3 ქულა).

ყუმბარა გაისროლეს ჰორიზონტისადმი კუთხით. ფრენის მაქსიმალურ სიმაღლეზე ასვლის მომენტში იგი გასკდა ორ ტოლ ნაწილად, რომელთაგან ერთ-ერთმა დაიწყო უსაწყისო სიჩქარით თავისუფალი ვარდნა. გასროლის წერტილიდან რა მანძილზე დაეცემა მეორე ნატეხი, თუ პირველი დაეცა გასროლის წერტილიდან L მანძილზე? L 3აერის წინააღმდეგობა უგულებელყავით.

ამოხსნა:

მაქსიმალურ სიმაღლეზე ყუმბარის სიჩქარე მიმართულია ჰორიზონტალურად. მისი მოდული იყოს \mathbf{v} . პირველი ნამსხვრევის საწყისი სიჩქარე ნულის ტოლია. იმპულსის მუდმივობის კანონის თანახმად, მეორე ნამსხვრევის საწყისი სიჩქარე მიმართული იქნება ჰორიზონტალურად. მისი მოდული აღვნიშნოთ \mathbf{v}_2 -ით.

$$mv = \frac{m}{2}v_2 \implies v_2 = 2v$$
 (1 ქულა)

მაქსიმალურ სიმაღლემდე ყუმბარის ასვლის დრო და ნამსხვრევების ვარდნის დროები ერთმანეთის ტოლია (1 ქულა). აღვნიშნოთ ისინი t ასოთი.

ჰორიზონტალური ფრენის სიშორეებისათვის გვექნება ფორმულები:

$$L = vt$$
, $L_2 = L + v_2t = L + 2vt$

აქედან მიიღება $L_2=3L$ (1 ქულა იმ შემთხვევაშიც, თუ ჰორიზონტალური ფრენის სიშორის ფორმულები სწორია, მაგრამ არაა ჩასმული $v_2=2v$)

დავალება 35 (5 ქულა).

v მოლი ერთატომიანი იდეალური აირის მდგომარეობა იცვლება კანონით $T=\alpha p^2$, სადაც p აირის წნევაა, T აბსოლუტური ტემპერატურაა, ხოლო α მოცემული მუდმივაა. აირის საწყისი აბსოლუტური ტემპერატურაა T_0 , ხოლო საბოლოო - $3T_0$. იდეალური აირის უნივერსალური მუდმივაა R. განსაზღვრეთ:

- 1) α კოეფიციენტის ერთეული საერთაშორისო სისტემაში;
- 2) რამდენჯერ შეიცვალა აირის მოცულობა;
- 3) აირის წნევის მოცულობაზე დამოკიდებულების p(V) კანონი;
- 4) აირის შესრულებული მუშაობა;
- 5) აირის მიღებული სითბოს რაოდენობა.

ამოხსნა:

$$1) [\alpha] = \frac{K}{3s^2}$$
 (1 ქულა)

2) $T=\alpha p^2$ ფორმულის თანახმად, აბსოლუტური ტემპერატურის 3-ჯერ გაზრდისას წნევა გაიზრდებოდა $\sqrt{3}$ -ჯერ. კლაპეირონის კანონის თანახმად $\frac{pV}{T}=$ const. აქედან დავასკვნით, რომ მოცულობა გაზრდილა $\sqrt{3}$ -ჯერ. (1 ქულა)

$$3) \ pV = \nu RT$$
, $T = \alpha p^2 \Rightarrow p = \frac{V}{\alpha \nu R}$ (1 ქულა)

4) რადგანაც წნევა მოცულობის პირდაპირპროპორციულია, ამიტომ

$$A = \frac{p_1 + p_2}{2} (V_2 - V_1)$$

გამოვიყენოთ, რომ წინა დავალებაში მიღებული შედეგის თანახმად $V_1=\alpha \nu Rp_1$ და $V_2=\alpha \nu Rp_2$. მაშინ მივიღებთ, რომ

$$A=\alpha\nu R \frac{p_1+p_2}{2}(p_2-p_1)=\frac{\alpha\nu R(p_2^2-p_1^2)}{2}=\frac{\nu R(T_2-T_1)}{2}=\nu RT_0$$
 (1 ქულა) 5) $\Delta U=\frac{3}{2}\nu R(3T_0)-\frac{3}{2}\nu RT_0=3\nu RT_0$ $Q=A+\Delta U$ (1 ქულა) საბოლოლი, $Q=4\nu RT_0$.

დავალება 36 (5 ქულა).

ნახატზე გამოსახულ სქემაში დენის წყაროს შიგა წინაღობაა r=1 ომი, ხოლო მასში გამავალი დენის ძალაა I=3 ა. განსაზღვრეთ:

- 1) გარე წრედის წინაღობა;
- 2) № წინაღობის გამტარში გამოყოფილი სიმძლავრე;
- 3) დენის ძალა R_2 წინაღობის გამტარში;
- 4) დენის წყაროს ემ ძალა;
- 5) დენის წყაროს დახარჯული სიმძლავრე.

ამოხსნა:

$$1)\frac{1}{R'} = \frac{1}{R_1} + \frac{1}{R_2} \Rightarrow R' = 2 \text{ mdo}, \quad R'' = \frac{R_3}{2} = 1 \text{mdo}, \quad R = R' + R'' = 3 \text{ mdo}.$$
 (1 ქულა)

2)
$$P_3 = I_3^2 R_3 = \left(\frac{I}{2}\right)^2 R_3 = 4.5$$
 3. (1 ქულა)

3)
$$I_1 + I_2 = I$$
, $\frac{I_1}{I_2} = \frac{R_2}{R_1} = 2 \implies I_2 = 1$ ა. (1 ქულა)

ხუთი დავალებიდან თითოეული ფასდება 1 ქულით. ერთი რიცხვითი შეცდომა ითვლება საპატიოდ. თუ სხვა ყველაფერი სწორია, მაგრამ არის შეცდომები ერთეულში (ერთეულებში) ან ერთზე მეტი გამოტოვებული ერთეული, აკლდება 1 ქულა. თუ მომდევნო შეცდომა წინა შეცდომის შედეგია, იგი შეცდომად არ ითვლება.

დავალება 37 (2 ქულა).

X ღერძზე მოძრავი ნივთიერი წერტილის სიჩქარის გეგმილი კოორდინატზე დამოკიდებულია $v_x=A\sqrt{x}$ კანონით. განსაზღვრეთ, რა დროში იცვლება კოორდინატი ნულიდან x_0 -მდე.

ამოხსნა:

$$v_x=rac{dx}{dt} \Rightarrow dt=rac{dx}{v_x}, \;\; t=\int_0^{x_0}rac{dx}{A\sqrt{x}}$$
 (1 ქულა) $t=\int_0^{x_0}rac{dx}{A\sqrt{x}}=rac{2\sqrt{x_0}}{A}$ (1 ქულა)

დავალება 38 (3 ქულა).

L ინდუქციურობის კოჭაში დენის ძალა დროზე დამოკიდებულია $I=I_1{
m sin}\omega t+I_2{
m cos}\omega t$ კანონით. განსაზღვრეთ, რა კანონით იცვლება ემ ძალა კოჭაში დროის მიხედვით.

ამოხსნა:

 $\mathcal{E}=-Lrac{dI}{dt}$ (1 ქულა მიუხედავად იმისა წერია თუ არა მინუს ნიშანი)

 $\mathcal{E}=-L(\omega I_1 \cos \omega t - \omega I_2 \sin \omega t) = \omega L(I_2 \sin \omega t - I_1 \cos \omega t)$

თუ არ არის სწორად გამოყენებული ჯამის გაწარმოების წესი, მაშინ - 0 ქულა.

თუ სწორადაა გამოყენებული ჯამის გაწარმოების წესი, მაშინ: თუ სწორადაა გაწარმოებული სინუსი - 1 ქულა, თუ სწორადაა გაწარმოებული კოსინუსი - 1 ქულა.