Предсказание температуры во времени и пространстве

Дробин М.Е. (МФТИ ГУ)

<2019-04-08 Π H>

Contents

1	Вве	едение	2		
2	Постановка задачи				
3	Обз	вор литературы	3		
4	Пол	пучение данных	3		
5	ED.	\mathbf{A}	5		
6	Эксперименты				
	6.1	Схема валидации	6		
	6.2	Baseline	6		
		6.2.1 TODO написать в математической формулировке			
		с формула как я предсказываю в baseline	6		
	6.3	MLP	6		
	6.4	LSTM	8		
	6.5	SARIMA(facebook prophet)	9		
	6.6	XGBoost	11		
	6.7	Результаты экспериментов	15		
7	Ссь	ылки	15		
8	Спі	исок литературы	15		

9	Приложение				
	9.1	Алгоритм закачки данных с darksky	16		
	9.2	Код самого первого решения (baseline)	17		
	9.3	MLP	17		

Abstract

В этой работе исследуется качество прогнозирования температуры для одной из метерологической станций, обучая нейросетевые алгоритмы (RBF, MLP) и классические (KNN, spatial averaging, inverse distance methods) по данных от других станций в пределах Англии.

1 Введение

Температура воздуха - временные ряды с высоким временным разрешением - измеряют только в немногочисленных, далеко разнесенных друг от друга метерологических станциях. Поэтому появляется необходимость в пространственной интерполяции этих значений на области, где температура. Кроме пространственной интерполяции появляется необходимость в прогнозировании будущей темпертуры воздуха, т.е. временной интерполяции. Такие задачи появляются в сельском хозяйстве, прогнозировании погоды в городских условиях и т.д.

В качестве данных используется почасовая информация (влажность, . . .) с 30 метерологических станций Англии (каждая в отдельном городе) за 2 года. И для некоторых из них предсказывается температура. Данные взяты из сервиса darksky.

2 Постановка задачи

Даны временные ряды $temp_L(t)$ - температура воздуха, замеренная на одной из погодных станций в Лондоне, и $\vec{x_j}(t), j \in \{1, 2, ...\}$ - климатические данные городов в окрестности Лондона (температура, давление, ...). Необходимо предсказать $temp_L(t+1)$

Обобщенная модель для решения этой задачи выглядит следующим образом: $temp_L(t+1) = f(temp_L(t), \vec{x_1}(t), \vec{x_2}(t), ...)$. Исследуется зависимость f от близости городов в окрестности Лондона к самому Лондону. Также исследуется качество известных моделей машинного обучениня примененых к этим данным. Приводится обоснование выбора функции потерь для этой задачи, а потому, выводы, построенные по качеству и некоторым характеристикам примененных моделей зависят не от моделей, а от самих данных.

3 Обзор литературы

В статье [1] авторы сравнили качество MLP и spatial average, knn, inverse distance methods для задачи интерполяции температуры на 11 NOAA станций, на которых измеряют температуру. Эти станции расположены примерно в одном штате. Температура с этих станций - это множество ответов алгоритма, а данные с GCM(general circulation model) - численное модели - это мн-возможным объектов. Такая задача называется down-scaling GCM. Трудность заключается в том, что пространственное разрешение выходных данных GCM - от $2.5^{\circ} \times 2.5^{\circ}$ до $8^{\circ} \times 10^{\circ}$ в долготу и ширину - это слишком грубо для предсказания - поэтому обучают по такой сетке нейросеть и предсказывают температуру для точек между сетки - выхода GCM. Авторы предсказывали максимальную температуру за день $T_{\rm max}$ и посчитали качество нейросети(архите- ктура нейросети: 4-30-11 и 16-54-11 с сигмоидной функцией активацией). Для сетки с 4мя входами R^2 и гmse были в среднем по 11 станциям 5.69 и 0.93; для сетки с 16ю входами - 5.12 и 0.94.

В статье [2] авторы использовали почасовые данные с шести метерологических станций за 2 года с равнины, расположенной в Китае и ограниченной горами. 5 из них входят в мн-во объектов алгоритмов, для шестой предсказывается температу. 60% данных использовалось для обучения, остальное для теста. Сравнили MLP 5-17-1 с tanh активацией и RBF с скрытым слоем из 7450 нейронов и гауссовой функцией активацией. Качество на тестовой выборке: R^2 и rmse(°C) для MLP равны 0.96 и 1.067, а для RBF - 0.95 и 1.12 соответственно.

Данные по нескольким городам - погодные данные, взятые из измерителей в аэропортах этих городов. Задача - предсказать температуру (или прочие погодные показатели, напр., влажность...) для города, не использованного в обучении, используя нейросетевые алгоритмы.

4 Получение данных

Данные были получены через API сервиса darksky и библиотеки для Python darkskylib. Для каждого города были скачаны почасовые данные (иногда с пропусками) с с 1 января 2009 по 1 января 2018 года. Следующие фичи были скачаны:

- температура воздуха(temperature)
- скорость ветра (windspeed)

- процент(от 0 до 1) покрытости неба облаками(cloudCover)
- относительная влажность, от 0 до 1 (humidity)
- видимость(visibility) категориальная переменная, принимает только
- точка росы в градусах цельсия(dewPoint)
- краткое описание погоды категориальная переменная (summary)
 - clear-day
 - clear-night
 - rain
 - snow
 - sleet
 - wind
 - \log
 - cloudy
 - partly-cloudy-day
 - partly-cloudy-night
- температура "по ощущениям" в градусах цельсия (apparentTemperature)

Алгоритм закачки данных: for каждый город в списке городов: for каждая дата в списке дат с 2009 по 2018 год с периодом в 1 час: скачать исторические данные за эту дату для этого города добавить данные за этот город в общий датафрейм

5 EDA

- Есть ненулевой тренд
- четко выраженная дневная сезонность
- годовая сезонность

6 Эксперименты

6.1 Схема валидации

Модели обучались на первых 80% данных - до 2016-03-15. Валидировались модели на оставшихся 20% данных - около 2х лет. Причина выбора такой схемы валидации проста - у нас имеется относительно большое кол-во данных (в сравнии с чем?) и более сложные схемы валидации, например, cross-validation on a rolling basis, оказываются не нужны для построения устойчивой оценки алгоритма. Более сложные схемы валидации часто применяют, когда данных мало и делить исходную выборку на 2 невыгодно.

6.2 Baseline

В качестве алгоритма для сравнения было взято простое предсказание температуры, равное предыдущему значению:

6.2.1 TODO написать в математической формулировке с формула как я предсказываю в baseline

Этот алгоритм предсказывает на валидационной выборке с точностью до +/- 2.2 градуса Цельсия

6.3 MLP

Модель обучались на первых 80% данных - до 2016-03-15. Валидировалась - на оставшихся 20% данных - около 2х лет.

Данные были нормированы на среднее и дисперсию: $x_i = \frac{x_i - \overline{x}}{\sigma}$, где х - это отдельная фича или таргет (колонка в массиве объекты х фичи) и берется дисперсия и среднее этой фичи и она нормирутеся на свое среднее и свою дисперсию

фичи: только температуры 3 городов Оксфорд, Кембридж, Брайтон энд Хов, таргет - это Лондон.

MLP обучался следующим образом: брали данные за 5 дней и температуру Лондона на следующие 24 часа. Оптимизировали mae. Архитектура нейросети: полносвязный слой с 32 нейронами и relu активацией и полносвязный слой с одним нейроном без функции активации на выходе. Оптимизатор - RMSprop. Для более быстрой и лучшей сходимости, скорость обучения делилась на 10, когда функция потерь на валидации увеличивалась или не изменялась:

Генератор данных на керасе для обучения нейросети был заимствован из книги "Deep learning with Python". См. код здесь

Отсюда видно, что нейросеть выучила всю информацию из данных и строить модель сильнее нет смысла. Например, если попробовать обучить LSTM на тех же данных, то можно увидеть, что сеть не сможет превзойти результат MLP:

6.4 LSTM

LSTM обучается абсолютно так же, как и MLP

6.5 SARIMA(facebook prophet)

Так как наши данные периодичны с периодом в год, то вместо ARIMA, нужно использовать ARIMA с поддержкой сезонности - SARMIMA. SARIMA - это модель, которая обобщает линейную регрессию, всзвешенное усреднение, диференцирование временного ряда, экспоненциальное сглаживание. Это все простые модели, которые можно проверить на наших данных, использовав только 1 модель - SARIMA.

SARIMA делает следующие допущения насчет данных - временной ряд стационарен:

- нет тренда
- нет сезонности
- дисперсия всюду одинакова

Проверку всех этих предположений, исправляение нестационарного ряда в стационарный и примененине SARMIMA реализовано в пакете facebook prophet

Из графиков видно, что fb prophet настраивается на тренд, но на колебания возле тренда настроится не может

6.6 XGBoost

После добавления еще 3х городов между Брайтон энд Хов и Лондоном

6.7 Результаты экспериментов

baseline модель предсказывает температуру на следующий час по предыдущему значению, для нее нет смысла в разделении выборки на обучающую и тренировочную

модель	mae на валидационной выборке, градусы цельсия	mae на обучающей вь
baseline	2.20	-
MLP	2.00	
LSTM	1.99	
XGBoost, 6 городов	0.18	0.176
XGBoost, 3 города	0.46	0.427
SARIMA(fb prophet)	9.2	

7 Ссылки

Основные понятия и обозначения в машинном обучении. Воронцов К.В.

8 Список литературы

References

[1] Seth E. Snell, Sucharita Gopal, and Robert K. Kaufmann. Spatial interpolation of surface air temperatures using artificial neural net-

works: Evaluating their use for downscaling gcms. *Journal of Climate*, 13(5):886–895, 2000.

[2] Imran Tasadduq, Shafiqur Rehman, and Khaled Bubshait. Application of neural networks for the prediction of hourly mean surface temperatures in saudi arabia. *Renewable Energy*, 25(4):545 – 554, 2002.

9 Приложение

9.1 Алгоритм закачки данных с darksky

```
cities = get_cities(['Oxford', 'Cambridge', 'Brighton And Hove', 'London'])
for city, key in zip(cities[: len(keys)], keys.keys()):
    df = pd.DataFrame()
    date_start = get_last_downloaded_date(city[0])
    date_end = dt(2018, 1, 1, hour=0)
    try:
        date_list = get_list_of_days(date_start, date_end)
    except AssertionError:
        continue
    logger.info(f"Скачиваю данные с города {city[0]}")
    for date in tqdm(date_list):
        try:
            _city = forecast(key, city[1], city[2], time=date)
            error = False
        except requests.exceptions.HTTPError as e:
            error = True
            logger.error(str(e.request) + str(e.response) + str(e))
            break
        except Exception as e:
            error = True
            logger.error(str(e))
            break
        try:
            for i in range(len(_city.hourly)):
                values = [to_date_from_unix_time(_city.hourly[i]['time'])]
                for column in columns:
```

```
try:
                          values.append(_city.hourly[i][column])
                      except KeyError as e:
                          values.append(None)
                      t = pd.DataFrame(values).T
                      df = pd.concat((df ,t))
              except AttributeError as e:
                  logger.error(str(e))
                  error =True
          if df.shpape[0] > 0:
              df.columns = ["time"] + columns
              df = df.set_index("time")
              path = os.path.join(CURRENT_DIR, "diplom_data/" + str(city[0]) + ".csv")
              with open(path, 'a') as f:
                  df.to_csv(f, index=True, header=False)
                  keys[key] = True #key is used, dont use it again today
    Код самого первого решения (baseline)
def evaluate_naive_method():
    batch_maes = []
    for step in range(val_steps):
        samples, targets = next(val_gen)
        preds = samples[:, -1, 1]
        mae = np.mean(np.abs(preds - targets))
        batch_maes.append(mae)
    return np.mean(batch_maes)
9.3 MLP
model = Sequential()
model.add(layers.Flatten(input_shape=(lookback // step, data.shape[-1])))
model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dense(1))
model.compile(optimizer=RMSprop(), loss='mae')
```