

Midterm Review: Fall 2018

CS-6360 Database Design

Chris Irwin Davis, Ph.D.

Email: cid021000@utdallas.edu

Phone: (972) 883-3574 **Office:** FCSS 4.603

Midterm Parameters

- Closed Book, Closed Notes
 - Accessing eLearning course materials (lecture slides, notes, etc.) during an exam is absolutely prohibited
 - Location: Testing Center
 - Time: Reserve-A-Seat exact time per student
 - Arrive early
 - Duration: 90 minutes
 - Regardless of start time

Testing Logistics

- UTD Testing Center (not classroom)
 - MAP: http://www.utdallas.edu/studentsuccess/files/SPN2-Move-Final-2.pdf
- Reserve a seat in advance!
 - https://www.registerblast.com/utdallas/Exam/List

Testing Center

Testing Center

- Identification: Comet Card
- Bathroom breaks are prohibited (please plan ahead)
- No jackets or sweaters
- No backpacks
- No pencil boxes
- Non-approved calculators prohibited (calculator supplied, if needed)
- Scratch paper and whiteboard supplied, if needed.

Content Summary

- Review the textbook!!
 - These slides are an *outline*, not a comprehensive content
- Introduction (1,2)
- ER / EER model (3,4)
- Relational Model (5)
- SQL (6, 7)
- Relational Algebra (8)
- Relational Calculus (8)
- ER and EER Mapping (9)
- Normalization (14,15.1)
- Review homework
- Review end of chapter exercises and questions

Ch. 1: Databases and Database Users

- **Bold** concepts and definitions
 - §1.3 Characteristics of the Database Approach
 - §1.4 Actors on the Scene
 - §1.5 Workers behind the Scene
 - §1.6 Advantages of Using the DBMS Approach
- T/F, Multiple Choice, Multiple Answer, Matching
- No verbatim memorized definitions

Ch. 2: Database System Concepts and Architecture

- Bold concepts and definitions
 - §2.1 Data Models, Schemas, and Instances
 - §2.2 Three-Schema Architecture and Data Independence
 - §2.3 Database Languages and Interfaces
 - §2.4 The Database System Environment
 - §2.5 Centralized and Client/Server Architectures for DBMSs
 - §2.6 Classification of Database Management Systems
- T/F, Multiple Choice, Multiple Answer, Matching
- No verbatim memorized definitions

Ch. 3: ER Model

- Create ER diagrams from English descriptions
- Answer questions about existing ER diagrams
- Cardinality and Participation
 - Cardinality (1:1, 1:N, M:N) encodes only max
 - Participation (total, partial) encodes only min
- Be able to interpret ER diagrams using <u>either</u>
 (min, max) <u>or</u> Cardinality/Participation
- Know ER Notation (Textbook Figure 3.14)

Ch. 4: EER Model

- §4.1 Subclasses, Superclasses, and Inheritance
- §4.2 Specialization and Generalization
- §4.3 Constraints and Characteristics of Specialization and Generalization Hierarchies
- §4.4 Modeling of UNION Types Using Categories
- NO UML

Ch. 5: The Relational Data Model and SQL

- §5.1 Domains, Attributes, Tuples, and Relations
 - Bold concepts and definitions
- §5.2 Relational Model Constraints and Relational Database Schemas
 - Be able to interpret relational schemas
 - Schema diagrams
 - Text schemas
 - Be able to bidirectionally convert between
 English ⇔ Relational Schema

Ch. 5: The Relational Data Model and SQL

- §5.3 Update Operations, Transactions, and Dealing with Constraint Violations
 - Given a schema and an operation (insert, modify, delete), be
 able to identify constraint violations
 - Domain constraint
 - Key constraint
 - Constraint on NULL
 - Entity integrity constraint
 - Referential integrity constraint
 - Be able to suggest a resolution other than simply rejecting the operation

Ch. 6: Basic SQL

- Be able to write syntactically correct SQL Queries
- §6.1 Data Definitions and Data Types
 - CREATE TABLE syntax and options
 - Data types
- §6.2 Constraints (three categories)
 - Implicit inherent in the data model
 - Explicit directly expressed in the schema of the data model (foreign keys, assertions, triggers)
 - Semantic applications-based / business rules

Ch. 6: Basic SQL

- §6.3 Basic Retrieval Queries in SQL
 - The SELECT-FROM-WHERE Structure
 - Review textbook Query Examples
- §6.4 **INSERT**, **DELETE**, and **UPDATE** Statements in SQL
 - Review textbook Examples
 - Be able to predict <u>allowed</u> and <u>disallowed</u> operations
 (i.e. like Chapter 5: Relational Model)
 - Reason for disallowance (SQL constraint violations)

Ch. 7: Advanced SQL

- §7.1 More Complex SQL Retrieval Queries
 - §7.1.1 Comparisons Involving NULL and Three-Valued Logic
 - §7.1.2 Nested Queries, Tuples, and Set/Multiset
 Comparisons
 - EXISTS and UNIQUE
 - WHERE attribute IN set / result set
 - §7.1.6 Joined Tables in SQL (Inner and Outer Joins)

Ch. 7: Advanced SQL

- §7.1.7 Aggregate Functions
 - COUNT, SUM, MAX, MIN, AVG
 - Do not confuse COUNT with SUM (Caveat: beware of query descriptions that use the words "total" or "how many".
 - Cannot appear in WHERE clause
- §7.1.7 Ordering and Grouping
 - ORDER BY attributes
 - GROUP BY attributes HAVING condition
 - GROUP BY attributes *should* also appear in the SELECT clause
 - Attributes that are not in the GROUP BY clause and are non-unique *should not* appear in the SELECT clause.

Ch. 7: Advanced SQL

- §7.2 Specifying Constraints as Assertions and Actions as Triggers (NOT INCLUDED)
- §7.3 Views (Virtual Tables) in SQL
 - Know **CREATE** syntax
 - Know usage
- 7.4 Schema Change Statements in SQL for Schemas,
 Tables, Constraints
 - DROP
 - ALTER

Ch. 8: The Relational Algebra and Relational Calculus

- Relational Algebra
 - Unary: SELECT (σ), PROJECT (π), RENAME (ρ)
 - Binary:
 - UNION (∪), INTERSECTION (∩), MINUS (−,\)
 - CROSS PRODUCT (x)
 - JOIN $(\bowtie, \bowtie, \bowtie, \bowtie)$
 - DIVISION (÷)
 - "Complete Set" of Relations, i.e. the six primitives

Ch. 6: The Relational Algebra and Relational Calculus

- Review textbook example *Queries*
 - Relational Algebra
 - Tuple Relational Calculus
 - Domain Relational Calculus
- Relational Calculus Query Graphs

Query Equivalence

- Be able to convert between any combination of
 - English Description
 - Relational Model
 - SQL
 - Relational Algebra
 - Tuple Relational Calculus
 - Domain Relational Calculus

Chapter 9 ER/EER to Relational Mapping

- ER Mapping 7 steps
 - 1. Regular Entities
 - Weak Entities
 - 3. 1:1 Relationships
 - 4. 1:N Relationships
 - 5. M:N Relationships
 - 6 Multi-valued attributes
 - 7. *n*-ary Relationships

Foreign Key Mapping

- Foreign Key in S <u>may be</u> NULL if S participation is partial
- Foreign Key in S <u>must be</u> NOT NULL if S participation is total

Chapter 9 ER/EER to Relational Mapping

EER Mapping

- Supertype/Subtype
 - 8A Both Super-type & Subtype mapped to relation
 - Best with overlap + partial (all others possible but require triggers)
 - 8B Subtypes only mapped to relations
 - Best with overlap + total (disjoint requires triggers; <u>partial not possible</u>)
 - 8C Super-types only mapped: (one attribute) predicate-defined
 - Best with disjoint (<u>overlap not possible</u>; partial uses NULL as predicate value; total requires NOT NULL as predicate value)
 - 8D Super-types only mapped: (multi-attribute) attribute-defined
 - Best with overlap (disjoint requires assertion; partial uses NULL as predicate value; total requires NOT NULL as predicate value)
- Step 9: Union Type

Ch. 14: Functional Dependencies and Normalization

- 1NF The only attribute values permitted by 1NF are single atomic (or indivisible) values. That is, no attribute for a given tuple is multivalued, i.e. "nested relations"
- 1NF violations are based on violations of (Data)

Ch. 14: Functional Dependencies and Normalization

- Be able to normalize into 1NF
- Be able to normalize \rightarrow 2NF \rightarrow 3NF \rightarrow BCNF (incl. 15.1)
 - Schema diagram
 - Text schema

- Be able to normalize a relation and its data into either
 - 4NF (given ER/EER or data)
 - 5NF (given ER/EER)
- Both 4NF and 5NF violations may be detected using an accompanying ER diagram.
 - However, should also be able to detect 4NF violations based upon data analysis only.

Ch. 14: Functional Dependencies and Normalization

- 4NF and 5NF normal forms are based on violation of both (Data & Schema)
- Note that if proper Chapter 9 schema design principles are observed, 4NF and 5NF violations will not occur
 - In practice however, schemas evolve over time
 - Later DBAs may not have access to original design requirements
- 14.6 Multivalued Dependency and 4NF
 - Figure 14.15
- 14.7 Join Dependencies and 5NF
 - Figure 14.15