



UNA METODOLOGÍA CON EL SOPORTE DE UNA HERRAMIENTA PARA

# Definir, Analizar, Diseñar y Validar Arquitecturas de Sistema, Software y Hardware

### Permitiendo la Colaboración Eficiente en los Procesos de Ingeniería

# Validando/Justificando la solución con respecto a las Necesidades Operacionales Facilitando el Análisis de Impacto





### Facilitando el Análisis de Impacto

Arriba-Abajo, Abajo-Arriba, iterativo, basado en herencia, mixto,...



# Análisis de las Necesidades Operacionales del Cliente

Lo que los usuarios del sistema necesitan conseguir

- ✓ Definir capacidades operacionales
- ✓ Análisis de las necesidades del Sistema/SW/HW



# Análisis de las necesidades del Sistema/ SW/HW

Lo que el sistema debe hacer para los usuarios

- ✓ Realizar un análisis de capacidades
- ✓ Realizar un análisis funcional y no funcional
- ✓ Formalizar y consolidar requisitos



# Diseño de la Arquitectura Lógica

Cómo funcionará el sistema para cumplir con las expectativas

- ✓ Tomar decisiones arquitecturales y definir puntos de vista
- ✓ Construir la descomposición arquitectural en componentes
- ✓ Seleccionar la mejor arquitectura



# Diseño de la arquitectura Física

Cómo se desarrollará y construirá el sistema

- Definir patrones arquitecturales
- ✓ Considerar la reutilización de elementos existentes
- ✓ Diseñar una arquitectura física de referencia
- ✓ Diseñar una arquitectura física de referencia



# Contratos de desarrollo

Lo que se espera de cada diseñador / subcontratista

- ✓ Definir una estrategia IVVQ de componentes
- ✓ Definir y hacer cumplir un PBS y un contracto de integración de componentes



- Capacidades operacionales
- Actores, entidades operacionales
- Actividades de los actores
- Interacciones entre actividades y actores
- Información utilizada en actividades e interacciones
- Actividades de la cadena de procesos operacionales
- Escenarios para el comportamiento dinámico
- Actores y sistema, capacidades
- Funciones del sistema y de los actores
- Flujo de datos entre funciones
- Flujo de datos de las cadenas funcionales
- Información utilizada en funciones e intercambios, modelo de datos
- Escenarios para el comportamiento dinámico
- Modos y estados

### MISMOS CONCEPTOS QUE EN LOS OTROS PASOS Y ADEMÁS:

- Componentes
- Puerto de componentes e interfaces
- Intercambios entre componentes
- Asignación de funciones a los componentes
- Asignaciones de intercambios funcionales para justificar las interfaces entre componentes

### MISMOS CONCEPTOS QUE EN LOS OTROS PASOS Y ADEMÁS:

- Componentes de comportamiento que refinan los componentes lógicos e implementan el comportamiento funcional
- Componentes de implementación que proporcionan recursos a los componentes de comportamiento
- Enlaces físicos entre componentes de implementaciónd'implémentation
- Árbol de elementos de configuración
- Código de piezas, cantidades
- Contrato de desarrollo (comportamiento esperado, interfaces, escenarios, utilización de recursos, propiedades no funcionales...)



### Flujo de datos:

funciones, relaciones e intercambios entre actividades operacionales

#### **Escenarios:**

Actores, sistema, interacciones e intercambios entre componentes





Cadenas funcionales, procesos operacionales a través de funciones y actividades operacionales





Modos y estados de actores, sistema, componentes

Desglose de funciones y componentes

### Modelo de datos:

Contenido del flujo de datos y de los escenarios, definición y justificación de las interfaces





Conexión de componentes: Todo tipo de componentes

### Asignación:

de actividades operacionales a actores, de funciones a componentes, de componentes de comportamiento a componentes de implementación, de flujo de datos a interfaces, de elementos a elementos de configuración





## Verificando y comprobando la solución con respecto a intereses no funcionales e industriales

| Niveles del Método                                      | Ejemplos de comportamiento                                                                    | Ejemplos de seguridad                                 |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------|
| ANÁLISIS DE NECESIDADES OPERACIONALES                   | Máximo tiempo de reacción a la amenaza                                                        | Eventos no deseados                                   |
| ANÁLISIS DE NECESIDADES FUNCIONALES Y NO<br>FUNCIONALES | Cadena funcional (CF) para reaccionar ante una amenaza<br>Latencia máxima permitida en una CF | Cadenas funcionales críticas asociadas a eventos      |
| DISEÑO DE LA ARQUITECTURA LÓGICA                        | Complejidad del procesamiento y de los intercambios<br>Asignación de cadenas funcionales      | Caminos redundantes que aseguran cadenas funcionales  |
| DISEÑO DE LA ARQUITECTURA FÍSICA                        | Utilización de recursos de una CF<br>Cálculo de latencias                                     | Modos de fallo comunes<br>Propagación de fallos en CF |
| CONTRATOS DE DESARROLLO & IVVQ                          | Recursos asignados para cumplir con la latencia                                               | Nivel de fiabilidad necesario                         |

- ✓ Coste y calendario
- ✓ Interfaces
- ✓ Comportamiento

- ✓ Mantenibilidad
- ✓ Seguridad
- ✓ ... (etc)

- ✓ IVVQ
- ✔ Política de productos

