UNIVERSITATEA DE STAT DIN MOLDOVA FACULTATEA DE MATEMATICĂ ȘI INFORMATICĂ SPECIALITATEA INFORMATICA

Pavlovschi Cătălin

RAPORT FINAL

Lucrare de laborator nr.4: "IP-adresarea și divizarea rețelelor în subrețele"

REȚELE DE CALCULATOARE

Profesor		Capcelea Maria
	(semnătura)	-
Student		Pavlovschi Cătălin
	(semnătura)	-

Cuprins

I	Lucrare delaborator 2	. 3
	CONDIȚII ȘI SARCINI	:
	REZOLVAREA PE PAȘI A SARCINILOR	
	BIBLIOGRAFIE	
	DIDLIQUIXI IL	. J

Lucrare delaborator 2

CONDIȚII ȘI SARCINI

Rețeaua unei companii poate fi descrisă prin topologia din Figura 6, care include două routere Cisco 2911, 4 switch-uri Cisco 2960, un anumit număr de PC-uri (precizat în varianta studentului) și cabluri Ethernet. Compania are la dispoziție adresa de rețea *Net* (definită în varianta studentului) și intenționează să creeze subrețele cu un anumit număr de host-uri în fiecare subrețea (acestea sunt indicate în varianta studentului).

Figura 6

- a) Folosind modelul propus în Exemplul 3, elaborați o schemă de subnetare IPv4 astfel încât subrețelele să aibă aceeași mască de subrețea.
- b) Atribuiți dispozitivelor de rețea IP adresele stabilite la punctul a) și verificați conexiunea dintre dispozitive. Salvați configurația realizată în fișierul **Nume_Prenume_Grupa_Retea4a.pkt**
- c) Folosind modelul propus în Exemplul 4, elaborați o schemă VLSM de subnetare IPv4.
- d) Atribuiți dispozitivelor de rețea IP adresele stabilite la punctul c) și verificați conexiunea dintre dispozitive. Salvați configurația realizată în fișierul **Nume_Prenume_Grupa_Retea4b.pkt**

Cerințele de la punctele a), b), c), d) pentru trei adrese de rețea diferite se vor rezolva pentru k = 11:

- I. 192.168.5+k.14+k/24 => 192.168.16.25/24
- II. 172.16.4+k.254-k/20 => 172.16.15.243/20
- III. $10.10.16+k.0/18 \Rightarrow 10.10.27.0/18$

Numărul de host-uri conectate la switch-urile Sw1, Sw2, Sw3 și Sw4 sunt date în Tabelul 6 pentru punctele a) și b) și, respectiv, în Tabelul 7 – pentru punctele c) și d)

	Numărul de host-uri						
Numărul de host-uri conectate la switch-ul	Varianta $k \in \{1,,10\}$	Varianta $k \in \{11,, 20\}$					
Sw1	10+k	26-k					
Sw2	13+k	32-k					
Sw3	16+k	36-k					
Sw4	20+k	41-k					

Tabelul 6

	Numărul de host-uri						
Numărul de host-uri conectate la switch-ul	Varianta $k \in \{1,,10\}$	Varianta $k \in \{11,, 20\}$					
Sw1	5+k	24-k					
Sw2	13+k	33-k					
Sw3	25+k	48-k					
Sw4	57+k	78-k					

Tabelul 7

- e) Atât pentru schema de subnetare de la punctul a)/c) precizați valorile ce caracterizează spațiul de adrese nealocat (rezervă):
- > IP adresele care nu au fost atribuite.
- > Raportul (în procente) dintre numărul de IP adrese care nu au fost atribuite dispozitivelor din rețea la numărul total de adrese disponibile inițial.

REZOLVAREA PE PAȘI A SARCINILOR

Rețeaua unei companii poate fi descrisă prin topologia din Figura 6, care include *două routere Cisco 2911*, *4 switch-uri Cisco 2960*, un anumit număr de PC-uri (precizat în varianta studentului) și cabluri Ethernet. Compania are la dispoziție adresa de rețea *Net* (definită în varianta studentului) și intenționează să creeze subrețele cu un anumit număr de host-uri în fiecare subrețea (acestea sunt indicate în varianta studentului).

^Pentru cele 3 adrese creăm câte o tipologie

Reieșind din configurația prezentată mai sus, câte subrețele sunt necesare de realizat?

5 – 4 pentru LAN-uri + 1 pentru link-ul dintre routere

Câți biți urmează a fi împrumutați pentru a suporta numărul de subrețele preconizat?

3 biţi

În acest caz, câte subrețele se vor crea?

2³=8 subrețele

Câte adrese IP pot fi atribuite host-urilor în fiecare subrețea?

30 (2^5-2=32-2)

a)

1. Determinăm reprezentările binare pentru primele cinci subrețele:

Subretea	Adresa de retea	Bitii ultimului octet							
0	192.168.16.0	0	0	0	0	0	0	0	0
1	192.168.16.32	0	0	1	0	0	0	0	0
2	192.168.16.64	0	1	0	0	0	0	0	0
3	192.168.16.96	0	1	1	0	0	0	0	0
4	192.168.16.128	1	0	0	0	0	0	0	0

2. Determinăm reprezentarea binară și zecimală cu punct pentru masca de subrețea extinsă:

Primul octet	Octetul doi	Octetul trei	C	Octetul patru al mastii extins			se			
11111111	11111111	11111111	1	1	1	0	0	0	0	0
Primul octet in	Octetul doi in	Octetul trei in		Octetul patru in zecimal						
zecimal	zecimal	zecimal								
255	255	255		224						

3. Completăm tabelul de subrețea cu valorile zecimale cu punct ale subrețelelor disponibile, prima și ultima adresă IP ce poate fi atribuită host-urilor și adresa de broacast în subrețea.

Numarul	Adresa subretelei	Prima adresa de	Ultima adresa de	Adresa de broadcast
subretelei		host utilizabila	host utilizabila	in subretea
0	192.168.16.0/27	192.168.16.1	192.168.16.30	192.168.16.31
1	192.168.16.32/27	192.168.16.33	192.168.16.62	192.168.16.63
2	192.168.16.64/27	192.168.16.65	192.168.16.94	192.168.16.95
3	192.168.16.96/27	192.168.16.97	192.168.16.126	192.168.16.127

4	192.168.16.128/27	192.168.16.129	192.168.16.158	192.168.16.159
5	192.168.16.160/27	192.168.16.161	192.168.16.190	192.168.16.191
6	192.168.16.192/27	192.168.16.193	192.168.16.222	192.168.16.223
7	192.168.16.224/27	192.168.16.225	192.168.16.254	192.168.16.255

4. Schema de adresare:

Dispozitiv	Interfata	IP adresa	Masca de subretea	Adresa implicita a routerului
	Gig 0/0	192.168.16.33	255.255.255.224	N/A
Router 0	Gig 0/1	192.168.16.1	255.255.255.224	N/A
	Gig 0/2	192.168.16.129	255.255.255.224	N/A
	Gig 0/0	192.168.16.65	255.255.255.224	N/A
Router 1	Gig 0/1	192.168.16.97	255.255.255.224	N/A
	Gig 0/2	192.168.16.158	255.255.255.224	N/A
PC0	Fa0	192.168.16.30	255.255.255.224	192.168.16.1
PC1	Fa0	192.168.16.62	255.255.255.224	192.168.16.33
PC2	Fa0	192.168.16.94	255.255.255.224	192.168.16.65
PC3	Fa0	192.168.16.126	255.255.255.224	192.168.16.97

b)

• Setăm PC-urile conform tabelului "Schema de adresare"

Ex.:

*Procedam respectiv cu celelalte PC-uri

• Setăm Router-ele conform tabelului "Schema de adresare"

Router(config) #IP route 0.0.0.0 0.0.0.0 192.168.16.158 Router(config) # Router(config-if) #exit
Router(config) #IP route 0.0.0.0 0.0.0.0 192.168.16.129

*O metodă alternativă mai rapidă decât aplicarea comenzii *ip route*:

• Parcurgerea pachetelor:

II. 172.16.15.243/20

a)

1. Determinăm reprezentările binare pentru primele cinci subrețele:

Subretea	Adresa de retea	Bitii din octetul 3							
0	172.16.0.0	0	0	0	0	0	0	0	0
1	172.16.2.0	0 0 0 0 0 1 0							
2	172.16.4.0	0	0	0	0	0	1	0	0

3	172.16.6.0	0	0	0	0	0	1	1	0
4	172.16.8.0	0	0	0	0	1	0	0	0

2. Determinăm reprezentarea binară și zecimală cu punct pentru masca de subrețea extinsă:

Primul octet	Octetul doi	О	Octetul trei al mastii extinse					Octetul patru		
11111111	11111111	1	1	1	1	1	1	1	0	00000000
Primul octet in	Octetul doi in	Octetul trei in zecimal				zecii	Octetul patru in zecimal			
zecimal	zecimal									
255	255	254					0			

3. Completăm tabelul de subrețea cu valorile zecimale cu punct ale subrețelelor disponibile, prima și ultima adresă IP ce poate fi atribuită host-urilor și adresa de broacast în subrețea.

Numarul	Adresa subretelei	Prima adresa de	Ultima adresa de	Adresa de broadcast
subretelei		host utilizabila	host utilizabila	in subretea
0	172.16.0.0/23	172.16.0.1	172.16.1.254	172.16.1.255
1	172.16.2.0/23	172.16.2.1	172.16.3.254	172.16.3.255
2	172.16.4.0/23	172.16.4.1	172.16.5.254	172.16.5.255
3	172.16.6.0/23	172.16.6.1	172.16.7.254	172.16.7.255
4	172.16.8.0/23	172.16.8.1	172.16.16.254	172.16.16.255
5	172.16.10.0/23	172.16.10.1	172.16.11.254	172.16.11.255
6	172.16.12.0/23	172.16.12.1	172.16.13.254	172.16.13.255
7	172.16.14.0/23	172.16.14.1	172.16.15.254	172.16.15.255

4. Schema de adresare:

Dispozitiv	Interfata	IP adresa	Masca de subretea	Adresa implicita a routerului
	Gig 0/0	172.16.2.1	255.255.254.0	N/A
Router 1	Gig 0/1	172.16.0.1	255.255.254.0	N/A
	Gig 0/2	172.16.8.1	255.255.254.0	N/A
	Gig 0/0	172.16.4.1	255.255.254.0	N/A
Router 0	Gig 0/1	172.16.6.1	255.255.254.0	N/A
	Gig 0/2	172.16.16.254	255.255.254.0	N/A
PC0	Fa0	172.16.1.254	255.255.254.0	172.16.0.1
PC1	Fa0	172.16.3.254	255.255.254.0	172.16.2.1
PC2	Fa0	172.16.5.254	255.255.254.0	172.16.6.1
PC3	Fa0	172.16.15.254	255.255.254.0	172.16.4.1

b)

Setăm PC-urile conform tabelului "Schema de adresare"

Ex.:

*Procedam respectiv cu celelalte PC-uri

• Setăm Router-ele conform tabelului "Schema de adresare"

• Parcurgerea pachetelor:

```
Pinging 172.16.5.254 with 32 bytes of data:

Request timed out.

Reply from 172.16.5.254: bytes=32 time<1ms TTL=126
Reply from 172.16.5.254: bytes=32 time<1ms TTL=126
Reply from 172.16.5.254: bytes=32 time=2ms TTL=126

Ping statistics for 172.16.5.254:

Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 2ms, Average = 0ms
```

III. 10.10.27.0/18

a)1. Determinăm reprezentările binare pentru primele cinci subrețele:

Subretea	Adresa de retea		Bitii din octetul 3							
0	10.10.0.0	0	0	0	0	0	0	0	0	
1	10.10.8.0	0	0	0	0	1	0	0	0	
2	10.10.16.0	0	0	0	1	0	0	0	0	
3	10.10.24.0	0	0	0	1	1	0	0	0	
4	10.10.32.0	0	0	1	0	0	0	0	0	

2. Determinăm reprezentarea binară și zecimală cu punct pentru masca de subrețea extinsă:

Primul octet	Octetul doi	O	Octetul trei al mastii extinse							Octetul patru
11111111	11111111	1	1 1 1 1 1 0 0 0						00000000	
Primul octet in	Octetul doi in		Octetul trei in zecimal						Octetul patru in zecimal	
zecimal	zecimal									
255	255		248						0	

3. Completăm tabelul de subrețea cu valorile zecimale cu punct ale subrețelelor disponibile, prima și ultima adresă IP ce poate fi atribuită host-urilor și adresa de broacast în subrețea.

Numarul	Adresa subretelei	Prima adresa de	Ultima adresa de	Adresa de broadcast
subretelei		host utilizabila	host utilizabila	in subretea
0	10.10.0.0/21	10.10.0.1	10.10.7.254	10.10.7.255
1	10.10.8.0/21	10.10.8.1	10.10.15.254	10.10.15.255
2	10.10.16.0/21	10.10.16.1	10.10.23.254	10.10.23.255
3	10.10.24.0/21	10.10.24.1	10.10.31.254	10.10.31.255
4	10.10.32.0/21	10.10.32.1	10.10.39.254	10.10.39.255
5	10.10.40.0/21	10.10.40.1	10.10.47.254	10.10.47.255
6	10.10.48.0/21	10.10.48.1	10.10.53.254	10.10.53.255
7	10.10.56.0/21	10.10.56.1	10.10.53.254	10.10.53.255

4. Schema de adresare:

Dispozitiv	Interfata	IP adresa	Masca de subretea	Adresa implicita a routerului
	Gig 0/0	10.10.8.1	255.255.248.0	N/A
Router 1	Gig 0/1	10.10.0.1	255.255.248.0	N/A
	Gig 0/2	10.10.32.1	255.255.248.0	N/A
	Gig 0/0	10.10.24.1	255.255.248.0	N/A
Router 0	Gig 0/1	10.10.16.1	255.255.248.0	N/A
	Gig 0/2	10.10.39.254	255.255.248.0	N/A
PC0	Fa0	10.10.7.254	255.255.248.0	10.10.0.1
PC1	Fa0	10.10.15.254	255.255.248.0	10.10.8.1
PC2	Fa0	10.10.23.254	255.255.248.0	10.10.16.1
PC3	Fa0	10.10.31.254	255.255.248.0	10.10.24.1

Ex.:

*Procedam respectiv cu celelalte PC-uri

• Setăm Router-ele conform tabelului "Schema de adresare"

• Parcurgerea pachetelor:

c)

Se va subneta adresa de rețea corespunzatoare. Rețeaua impune următorele condiții:

Subrețeaua S1 - 9 IP adrese pentru host-uri

Subrețeaua S2 - 17 IP adrese pentru host-uri

Subrețeaua S3 - 29 IP adrese pentru host-uri

Subrețeaua S4 - 61 IP adrese pentru host-uri

I.

c)

Subrețeaua cu cele mai multe host-uri are nevoie de *61* de host-uri. Pentru a asigura atâtea adrese de host-uri este necesar ca identificatorul de host al IP adresei să fie pe 6 biți (2⁶-2=62), iar atunci masca de rețea extinsă va fi pe 26 de biți – *255.255.255.192*. Avem posibilitate de a genera 4 subrețele, variind cu biții 25 și 26 ai IP adresei de rețea (masca a fost extinsă de la 24 la 26):

Subrețeaua 1: 11000000.10101000.00001001.00000000=192.168.16.0/26

Subrețeaua 2: 11000000.10101000.00001001.01000000=192.168.16.64/26

Subrețeaua 3: 11000000.10101000.00001001.10000000=192.168.16.128/26

Subrețeaua 4: 11000000.10101000.00001001.11000000=192.168.16.192/26

Astfel, putem atribui primei subrețele din *61* de host-uri adresa de subrețea 192.168.16.0/26. Utilizăm a doua subrețea 192.168.16.64. Fiindcă în subrețeaua cu *29* de host-uri sunt necesari 6 biți (2⁶-2=62) pentru a asigura cu IP adrese aceste host-uri, vom aplica masca extinsă /27. Deci vom avea următoarele două subretele

Subrețeaua 1: 11000000.10101000.00001001.01000000=192.168.16.64/27

Subrețeaua 2: 11000000.10101000.00001001.01100000=192.168.16.96/27

dintre care prima 192.168.16.64/27 o asociem cu S3, iar a doua 192.168.16.96/27 o vom utiliza în continuare. Pentru a asigura numărul necesar de adrese în LAN-ul care se află pe locul trei după numărul de host-uri (17 host-uri în S2) avem nevoie de 5 biți (2⁵-2=30) ai identificatorului de rețea din adresa 192.168.16.96/27. Astfel, vom aplica o masca extinsa de 27 de biți. Deoarece avem deja stabilită o adresă de subrețea /27 - 192.168.16.96/27 - o vom atribui subrețelei S2. Deoarece a patra după numărul de host-uri subrețea, S1 include 9 host-uri, sunt necesari 4 biți (2⁴-2=14) pentru a asigura cu IP adrese aceste host-uri. Astfel, vom aplica o mască extinsă /28. Vom implica a treia subrețea de la prima subretea a lui S4. Vom obține 4 subrețele (se variază cu biții 27 și 28):

Subrețeaua 1: 11000000.10101000.00001001.10000000=192.168.16.128/28

Subrețeaua 2: 11000000.10101000.00001001.10010000=192.168.16.144/28

Subrețeaua 3: 11000000.10101000.00001001.10100000=192.168.16.160/28

Subrețeaua 4: 11000000.10101000.00001001.10110000=192.168.16.176/28

dintre care prima 192.168.16.128/28 o asociem cu S1, iar a doua 192.168.16.144/28 o vom utiliza în continuare. Pentru a asigura numărul necesar de adrese în LAN-ul care asigură conexiunea dintre routerele R1 și R0 (2 IP

adrese la interfețele corespunzătoare ale routerelor) sunt necesari 2 biți (2²-2=2) pentru identificatorul de host. Astfel, vom avea masca extinsă /30. În baza IP adresei 192.168.16.144/28 obținem:

Subreteaua 1: 11000000.10101000.00001001.10010000=192.168.16.144/30

Subrețeaua 2: 11000000.10101000.00001001.10010100=192.168.16.148/30

Subrețeaua 3: 11000000.10101000.00001001.10011000=192.168.16.152/30

Subrețeaua 4: 11000000.10101000.00001001.10011100=192.168.16.156/30

Tipologia:

Prima IP adresă de subrețea 192.168.16.144/30 o atribuim LAN-ului dintre routere.

Descrierea	Num	arul necesar	Adres	sa retelei/CIDR	Pri	ma adresa de	Ultima	adresa de	Adresa de
Subretelei	d	le host-uri			host utilizabila		host utilizabila		broadcast
PC0		9	192.1	168.16.128/28	192	192.168.16.129		68.16.142	192.168.16.143
PC1		17	192.	168.16.96/27	192.168.16.97		192.168.16.126		192.168.16.127
PC2		29	192.	168.16.64/27	19	2.168.16.65	192.1	68.16.94	192.168.16.95
PC3		61	192	.168.16.0/26	19	2.168.16.1	192.1	68.16.62	192.168.16.63
Link WAN		2	192.1	168.16.144/30	192	2.168.16.145	192.168.16.146		192.168.16.147
Dispoziti	v	Interfat	а	IP adresa		Masca de su	bretea	Adresa routerului implicit	
		Gig 0/0)	192.168.16.97		255.255.255.240			N/A
Router 1		Gig 0/1	L	192.168.16.12		255.255.255.224		N/A	
		Gig 0/2	2	192.168.16.1	45	255.255.255.252		N/A	
		Gig 0/0		192.168.16.	65	255.255.255.224		N/A	
Router 0	Router 0 Gig 0/1			192.168.16	.1	255.255.25	5.192	N/A	
		Gig 0/2		192.168.16.1	146	255.255.25	5.252		N/A
PC0		Fa 0	Fa 0 192.16		142	255.255.25	5.240	192.	168.16.129

PC1	Fa 0	192.168.16.126	255.255.255.224	192.168.16.97
PC2	Fa 0	192.168.16.94	255.255.255.224	192.168.16.65
PC3	Fa 0	192.168.16.62	255.255.255.192	192.168.16.1

d)

c)

Subrețeaua cu cele mai multe host-uri necesită *61* de host-uri. Pentru a asigura atâtea adrese de host-uri este necesar ca identificatorul de host-uri al IP adresei să fie pe 6 biți (2⁶-2=62), iar atunci masca de rețea extinsă va fi pe 26 de biți – 255.255.255.192. Avem posibilitate de a genera 2⁶ =64 subrețele, variind cu biții de la 21 la 26 ai IP adresei de rețea (masca a fost extinsă de la 20 la 26):

Subrețeaua 2: 11000000.10101000.000000000.01000000=172.16.0.64/26

Subrețeaua 3: 11000000.10101000.00000000.10000000=172.16.8.128/26

.....

Subrețeaua 64: 11000000.10101000.00001111.11000000= 172.16.15.192/26

Astfel, putem atribui primei subrețele din *61* de host-uri adresa de subrețea 172.16.0.0/26 Folosim a doua subrețea 172.16.0.64 /26 de la punctul precedent. Deoarece în subrețeaua cu 29 de host- uri sunt necesari 5 biți (2⁵-2=30) pentru a asigura cu IP adrese aceste host-uri, vom aplica masca extinsă /27. Deci vom avea două subrețele

Subrețeaua 1: 11000000.10101000.00000000.01000000=172.16.0.64/27

Subrețeaua 2: 11000000.10101000.00000000.01100000=172.16.0.96/27

dintre care prima 172.16.0.64 /27 o asociem cu S3, iar a doua 172.16.0.96/27 o vom utiliza în continuare. Pentru a asigura numărul necesar de adrese în LAN-ul care se află pe locul trei după numărul de host-uri (*17* host-uri în S2) avem nevoie de 5 biți (2⁵-2=30) ai identificatorului de rețea din adresa 172.16.0.96/27. Astfel, vom aplica o masca extinsa de 27 de biți. Deoarece avem deja stabilită o adresă de subrețea /27 - 172.16.0.96/27- o vom atribui subrețelei S2. Deoarece a patra după numărul de host-uri subrețea, S1 include *9* host-uri, sunt necesari 4 biți (2⁴-2=14) pentru a asigura cu IP adrese aceste host-uri. Astfel, vom aplica o mască extinsă /28. Vom implica a treia subrețea de la prima subretea a lui S4: 172.16.8.128/26. Vom obține 4 subrețele (se variază cu biții 27 și 28):

Subrețeaua 1: 11000000.10101000.00000000.10000000=172.16.8.128/28

Subrețeaua 2: 11000000.10101000.00000000.10010000=172.16.8.144/28

Subrețeaua 3: 11000000.10101000.00000000.10100000=172.16.8.160/28

Subrețeaua 4: 11000000.10101000.00000000.10110000=172.16.8.176/2

dintre care prima 172.16.8.128/28 o asociem cu S1, iar a doua 172.16.8.144/28 o vom utiliza în continuare. Pentru a asigura numărul necesar de adrese în LAN-ul care asigură conexiunea dintre routerele R1 și R0 (2 IP adrese la interfețele corespunzătoare ale routerelor) sunt necesari 2 biți (2²-2=2) pentru identificatorul de host. Astfel, vom avea masca extinsă /30. În baza IP adresei 172.16.8.144/28 obținem:

Subrețeaua 1: 11000000.10101000.00000000.10010000=172.16.8.144/30

Subrețeaua 2: 11000000.10101000.00000000.10010100=172.16.8.148/30

Subrețeaua 3: 11000000.10101000.00000000.10011000=172.16.8.152/30

Subrețeaua 4: 11000000.10101000.00000000.10011100=172.16.8.156/30

Prima IP adresă de subrețea 172.16.8.144/30 o atribuim LAN-ului dintre routere.

Tipologia:

Descrierea	Nui	marul necesar	Adresa		Pri	rima adresa de Ultin		a adresa de	Adresa de
Subretelei		de host-uri	retelei/CIDR		ho	host utilizabila		utilizabila	broadcast
PC0		9	172	2.16.8.128/28	1	72.16.8.129	172.16.8.142		172.16.8.143
PC1		17	17	2.16.0.96/27	1	72.16.0.97	172	2.16.0.126	172.16.0.127
PC2		29	17	2.16.0.64 /27	1	72.16.0.65	172	2.16.0.94	172.16.0.95
PC3		61	1′	72.16.0.0/26		172.16.0.1	172	2.16.0.62	172.16.0.63
Link WAN		2	172	2.16.8.144/28	1	72.16.8.145	172	2.16.8.146	172.16.8.147
Dispozitiv		Interfata		IP adresa		Masca de sul	pretea	Adresa routerului implicit	
		Gig 0/0		172.16.0.97	7	255.255.255.224		N/A	
Router1		Gig 0/1		172.16.8.129		255.255.255.240		N/A	
		Gig 0/2		172.16.8.145		255.255.255.252		N/A	
		Gig 0/0		172.16.0.65	5	255.255.255	255.255.255.224		N/A
Router0		Gig 0/1		172.16.0.1		255.255.255	5.192	I	N/A
		Gig 0/2		172.16.8.14	6	255.255.255	5.252	I	N/A
PC0		Fa 0		172.16.8.142		255.255.255	5.240	172.16.8.129	
PC1		Fa 0		172.16.0.12		255.255.255.224		172.16.0.97	
PC2		Fa 0		172.16.0.94		255.255.255	5.224	172.	16.0.65
PC3		Fa 0	172.16.0.62		2	255.255.255.192		172.16.0.1	

c)

Tipologia:

Subrețeaua cu cele mai multe host-uri necesită *61* de host-uri. Pentru a asigura atâtea adrese de host-uri este necesar ca identificatorul de host-uri al IP adresei să fie pe 6 biți (2⁶-2=62), iar atunci masca de rețea extinsă va fi pe 26 de biți – 255.255.255.192. Avem posibilitate de a genera 2⁸ =256 subrețele, variind cu biții de la 19 la 26 ai IP adresei de rețea (masca a fost extinsă de la 18 la 26):

Subrețeaua 2: 00001010.00001010.00000000.01000000=10.10.0.64/26

Subrețeaua 3: 00001010.00001010.00000000.10000000=10.10.0.128/26

.....

Subrețeaua 64: 00001010.00001010.00111111.11000000=10.10.63.192/26

Astfel, putem atribui primei subrețele din *61* de host-uri adresa de subrețea 10.10.0.0/26Folosim a doua subrețea 10.10.0.64/26 de la punctul precedent. Deoarece în subrețeaua cu *29* de host-uri sunt necesari 5 biți (2⁵-2=30) pentru a asigura cu IP adrese aceste host-uri, vom aplica masca extinsă /27. Deci vom avea două subrețele

Subrețeaua 1: 00001010.00001010.00000000.01000000=10.10.0.64/27

Subrețeaua 2: 00001010.00001010.00000000.01100000=10.10.0.96/27

dintre care prima 10.10.0.64/27 o asociem cu S3, iar a doua 10.10.0.96/27 o vom utiliza în continuare.Pentru a asigura numărul necesar de adrese în LAN-ul care se află pe locul trei după numărul de host-uri (17 host-uri în S2) avem nevoie de 5 biți (2⁵-2=30) ai identificatorului de rețea din adresa 10.10.0.96/27. Astfel, vom aplica o masca extinsa de 27 de biți. Deoarece avem deja stabilită o adresă de subrețea /27 - 10.10.0.96/27 o vom atribui

subrețelei S2. Deoarece a patra după numărul de host-uri subrețea, S1 include **9** host-uri, sunt necesari 4 biți (2⁴-2=14) pentru a asigura cu IP adrese aceste host-uri. Astfel, vom aplica o mască extinsă /28. Vom implica a treia subrețea de la prima subretea a lui S4: 10.10.0.128/26. Vom obține 4 subrețele (se variază cu biții 27 și 28):

Subreteaua 1: 00001010.00001010.00000000.10000000=10.10.0.128/28

Subrețeaua 2: 00001010.00001010.00000000.10010000=10.10.0.144/28

Subreteaua 3: 00001010.00001010.00000000.10100000=10.10.0.160/28

Subrețeaua 4: 00001010.00001010.000000000.10110000=10.10.0.176/28

dintre care prima 10.10.0.128/28 o asociem cu S1, iar a doua 10.10.0.144/28 o vom utiliza în continuare. Pentru a asigura numărul necesar de adrese în LAN-ul care asigură conexiunea dintre routerele R1 și R2 (2 IP adrese la interfețele corespunzătoare ale routerelor) sunt necesari 2 biți (2²-2=2) pentru identificatorul de host. Astfel, vom avea masca extinsă /30. În baza IP adresei 10.10.0.144/28 obtinem:

Subrețeaua 1: 00001010.00001010.00000000.10010000=10.10.0.144/30

Subrețeaua 2: 00001010.00001010.00000000.10010100=10.10.0.148/30

Subrețeaua 3: 00001010.00001010.00000000.10011000=10.10.0.152/30

Subrețeaua 4: 00001010.00001010.00000000.10011100=10.10.0.156/30

Prima IP adresă de subrețea 10.10.0.144/30 o atribuim LAN-ului dintre routere.

Descrierea	Nui	marul necesar	Adresa		Pr	Prima adresa de Ultim		ıa adresa de	Adresa de
Subretelei		de host-uri	retelei/CIDR		he	host utilizabila		t utilizabila	broadcast
PC0		9	10	0.10.0.128/28	1	0.10.0.129	10	.10.0.142	10.10.0.143
PC1		17	10	0.10.0.96/27		10.10.0.97	10	.10.0.126	10.10.0.127
PC2		29	10	0.10.0.64/27		10.10.0.65	10	0.10.0.94	10.10.0.95
PC3		61	1	0.10.0.0/26		10.10.0.1	10	0.10.0.62	10.10.0.63
Link WAN		2	10	0.10.0.144/30	1	0.10.0.145	10	.10.0.146	10.10.0.147
Dispozitiv		Interfata		IP adresa		Masca de sul	retea	Adresa routerului implicit	
		Gig 0/0		10.10.0.97		255.255.255.224		N/A	
Router1		Gig 0/1		10.10.0.129)	255.255.255.240		N/A	
		Gig 0/2		10.10.0.145	5	255.255.255	5.252	1	N/A
		Gig 0/0		10.10.0.65		255.255.255	5.224	1	N/A
Router0		Gig 0/1		10.10.0.1		255.255.255	5.192	1	N/A
		Gig 0/2		10.10.0.146	5	255.255.255	5.252	N/A	
PC0	PC0 Fa 0 10.10		10.10.0.142	2	255.255.255	5.240	10.10.0.129		
PC1	PC1 Fa 0		10.10.0.126	3	255.255.255	5.224	10.1	0.0.97	
PC2	PC2 Fa 0		10.10.0.94	255.255.255		5.224	10.1	0.0.65	
PC3		Fa 0		10.10.0.62		255.255.255	5.192	10.	10.0.1

- e) Atât pentru schema de subnetare de la punctul a) precizați valorile ce caracterizează spațiul de adrese nealocat (rezervă):
 - I. 192.168.5+k.14+k/24 => 192.168.16.25/24

> IP adresele care nu au fost atribuite.

Total: 254

Ocupate/Atribuite: 15+21+25+30=91

Libere: 254-91=163

Raportul (în procente) dintre numărul de IP adrese care nu au fost atribuite dispozitivelor din rețea la numărul total de adrese disponibile inițial.

 $(163/254)*100\% \sim \underline{64.1\%}$

II. 172.16.4+k.254-k/20 => 172.16.15.243/20

> IP adresele care nu au fost atribuite.

Total: 4094

Ocupate/Atribuite: 15+21+25+30=91

Libere: 4094-91=4003

Raportul (în procente) dintre numărul de IP adrese care nu au fost atribuite dispozitivelor din rețea la numărul total de adrese disponibile inițial.

 $(4003/4094)*100\% \sim 97.7\%$

III. 10.10.16+k.0/18 => 10.10.27.0/18

> IP adresele care nu au fost atribuite.

Total: 16382

Ocupate/Atribuite: 15+21+25+30=91

Libere: 16382-91=16291

Raportul (în procente) dintre numărul de IP adrese care nu au fost atribuite dispozitivelor din rețea la numărul total de adrese disponibile inițial.

 $(16291/16382)*100\% \sim 99.07\%$

e) Atât pentru schema de subnetare de la punctul c) precizați valorile ce caracterizează spațiul de adrese nealocat (rezervă):

Network Bits	Subnet Mask	Number of Subnets	Number of Hosts
/8	255.0.0.0	0	16777214
/9	255.128.0.0	2 (0)	8388606
/10	255.192.0.0	4 (2)	4194302
/11	255.224.0.0	8 (6)	2097150
/12	255.240.0.0	16 (14)	1048574
/13	255.248.0.0	32 (30)	524286
/14	255.252.0.0	64 (62)	262142
/15	255.254.0.0	128 (126)	131070
/16	255.255.0.0	256 (254)	65534
/17	255.255.128.0	512 (510)	32766
/18	255.255.192.0	1024 (1022)	16382
/19	255.255.224.0	2048 (2046)	8190
/20	255.255.240.0	4096 (4094)	4094
/21	255.255.248.0	8192 (8190)	2046
/22	255.255.252.0	16384 (16382)	1022
/23	255.255.254.0	32768 (32766)	510
/24	255.255.255.0	65536 (65534)	254
/25	255.255.255.128	131072 (131070)	126
/26	255.255.255.192	262144 (262142)	62
/27	255.255.255.224	524288 (524286)	30
/28	255.255.255.240	1048576 (1048574)	14
/29	255.255.255.248	2097152 (2097150)	6
/30	255.255.255.252	4194304 (4194302)	2

> IP adresele care nu au fost atribuite.

Total: 14+30*2+62 = 136

Total ocupate : 9+29+17+61 = 116

Libere: 136-116 = 20

Raportul (în procente) dintre numărul de IP adrese care nu au fost atribuite dispozitivelor din rețea la numărul total de adrese disponibile inițial.

$$(20/136)*100\% \sim \underline{14.7}$$

BIBLIOGRAFIE

- ► How to calculate a subnet mask from hosts and subnets (techtarget.com)
- ➤ IP Calculator / IP Subnetting (jodies.de)
- Online IP Subnet Calculator (subnet-calculator.com)
- Subnet Masks Reference Table (www.cloudaccess.net)
- ► Host and Subnet Quantities Cisco
- ➤ Subnetting Cisco CCNA -Part 1 The Magic Number YouTube