Topology Midterm

Benji Altman

April 7, 2017

17.5 In order to show that, for any order topology, $\overline{(a,b)} \subset [a,b]$ we first notice that $[a,b] \supset (a,b)$ and that [a,b] is closed. By definition we know $\overline{(a,b)} = \bigcap$ all closed supersets of (a,b). We now notice that [a,b] is one such closed superset of (a,b), thus $\overline{(a,b)} \subset [a,b]$.

We now will look to see when (a,b) = [a,b]. We already know that $(a,b) \subset [a,b]$, and to have equality we only need $[a,b] \subset \overline{(a,b)}$. Let us start by noticing that [a,b] is the union of disjoint sets $(\underline{a},\underline{b})$ and $\{a,b\}$. Now if [a,b] is to be a subset of $\overline{(a,b)}$ then that would be the same as saying $(a,b) \cup \{a,b\} \subset \overline{(a,b)}$ thus both (a,b) and $\{a,b\}$ must be subsets of (a,\overline{b}) . We know that $(a,b) \subset \overline{(a,b)}$ as $\overline{(a,b)} = (a,b) \cup (a,b)'$, and because we know that $\{a,b\}$ is disjoint from (a,b) we can then say $[a,b] \subset \overline{(a,b)} \implies \{a,b\} \subset (a,b)'$. We also can say

$$\{a,b\} \subset (a,b)' \implies \{a,b\} \subset \overline{(a,b)}$$
$$\implies \{a,b\} \cup (a,b) \subset \overline{(a,b)}$$
$$\implies [a,b] \subset \overline{(a,b)}$$

and thus, iff a and b are limit points for the interval (a,b), then our equality $([a,b] = \overline{(a,b)})$ holds.

17.17 Consider the lower limit topology on \mathbb{R} , and the topology given by the basis \mathbb{C} of Exercise 8 §13. Determine the closures of the intervals $A = (0, \sqrt{2})$ and $B = (\sqrt{2}, 3)$ in these two topologies.

Basis C of Exercise 8 §13:

$$\mathcal{C} = \{ [a, b) | a < b \text{ and } a, b \in \mathbb{Q} \}$$

First we will consider our topology to be \mathbb{R}_{ℓ} :

Let C be an interval in the form (a, b), where $a, b \in \mathbb{R}$. By definition we know that \overline{C} is the intersection of all closed sets that contain C. We know that $[a, b) \in \mathbb{R}_{\ell}$ and that $[a, b) \supset A$, thus $\overline{C} \subset [a, b)$.

Now if we can show that $[a,b] \subset \overline{C}$ then we will know that $[a,b] = \overline{C}$.

First we note that by theorem 17.6 $\overline{C} = C \cup C'$, now because we know $C \subset \overline{C}$ then we can say if $[a,b) \setminus C \subset \overline{C} \setminus C$ then $[a,b) = \overline{C}$. We also know that $\overline{C} \setminus C \subset C'$, thus we can say that if $[a,b) \setminus C \subset C'$ then $[a,b) = \overline{C}$. Next we find that $[a,b) \setminus C = \{a\}$ so if $a \in C'$ then $[a,b) = \overline{C}$. We will show $a \in C'$ by contradiction.

Let us assume $a \notin C'$ then there is an interval [x,y), where $x,y \in \mathbb{R}$, that contains a but no elements in C. By definition $[x,y) = \{k | x \le k < y\}$, so if $a \in [x,y)$ then $x \le a < y$. Now we can construct an interval $(a,y) \subset [x,y)$ which is not empty as y > a and thus it will contain some elements of C. We now have a contradiction, thus $a \in C'$, thus

$$[a,b) = \overline{C}$$

1

Now if we let a=0 and $b=\sqrt{2}$ then we know $\overline{\left(0,\sqrt{2}\right)}=\overline{A}=\left[0,\sqrt{2}\right)$.

Now if we let $a = \sqrt{2}$ and b = 3 then we know $(\sqrt{2}, 3) = \overline{B} = (\sqrt{2}, 3)$.

Now we will to continue on to the topology \mathscr{C} , which is given by basis \mathscr{C} .

Let us first attempt to find $(0, \sqrt{2})$. We will consider the set $[0, \sqrt{2}]$, and attempt to show that it is closed by showing it's compliment is open.

$$\begin{split} \left[0,\sqrt{2}\right]^{\mathsf{c}} &= (-\infty,0) \cup \left(\sqrt{2},\infty\right) \\ &= \left(\bigcup_{a < b < 0 \ and \ a,b \in \mathbb{Q}} ([a,b)) \cup \bigcup_{\sqrt{2} < a < b \ and \ a,b \in \mathbb{Q}} ([a,b))\right) \in \mathscr{C} \end{split}$$

Thus $[0,\sqrt{2}]$ is closed, and thus $\overline{(0,\sqrt{2})} \subset [0,\sqrt{2}] = (0,\sqrt{2}) \cup \{0,\sqrt{2}\}$. Now to find $\overline{(0,\sqrt{2})}$ we simply must determine if 0 is a limit point of $(0,\sqrt{2})$ and if $\sqrt{2}$ is a limit point of $(0,\sqrt{2})$. If an open set contains 0 then it must contain an interval $[\alpha,\beta)$, where $\alpha \leq 0$ and is rational, and $\beta > 0$ and is rational. Because $\beta > 0$ then there must be some number between 0 and β that is in $(0,\sqrt{2})$, thus 0 is a limit point of $(0,\sqrt{2})$. If an open set contains $\sqrt{2}$ then it must contain an interval $[\alpha,\beta)$, where $\alpha \leq \sqrt{2}$ and is rational, and $\beta > \sqrt{2}$ and is rational. Because α is rational $\alpha \neq \sqrt{2}$, thus there must be a number between α and $\sqrt{2}$ that is in $(0,\sqrt{2})$, thus $\sqrt{2}$ is a limit point of $(0,\sqrt{2})$. Thus we may now say that $\overline{(0,\sqrt{2})} = [0,\sqrt{2}]$.

Now let us attempt to find $(\sqrt{2},3)$. We will consider the set $[\sqrt{2},3)$, and attempt to show that it is closed by showing it's compliment is open.

$$\begin{split} \left[\sqrt{2},3\right)^{\mathsf{c}} &= \left(-\infty,\sqrt{2}\right) \cup [3,\infty) \\ &= \left(\bigcup_{a < b < \sqrt{2} \ and \ a,b \in \mathbb{Q}} ([a,b)) \cup \bigcup_{3 \leq a < b \ and \ a,b \in \mathbb{Q}} ([a,b))\right) \in \mathscr{C} \end{split}$$

Thus $[\sqrt{2},3)$ is closed, and thust $\overline{(\sqrt{2},3)} \subset [\sqrt{2},3) = (\sqrt{2},3) \cup \{\sqrt{2}\}$. To to find $\overline{(\sqrt{2},3)}$ we must simply determine if $\sqrt{2}$ is a limit point of $(\sqrt{2},3)$. If an open set contains $\sqrt{2}$ then it must contain an interval $[\alpha,\beta)$, where $\alpha \leq \sqrt{2}$ and is rational, and $\beta > \sqrt{2}$ and is rational. Because $\beta > \sqrt{2}$ then there must be a number between $\sqrt{2}$ and β that is in $(\sqrt{2},3)$, thus $\sqrt{2}$ is a limit point of $(\sqrt{2},3)$. Thus we may now say that $\overline{(\sqrt{2},3)} = [\sqrt{2},3)$.

Consider the linear function $f: \mathbb{R} \to \mathbb{R}$ defined as $f(x) = \frac{x-a}{b-a}$. We know all linear functions are continious, we have the homeomorphisms

$$f((a,b)) = \left(\frac{a-a}{b-a}, \frac{b-a}{b-a}\right)$$
$$= (0,1)$$

$$\begin{split} f([a,b]) &= \left[\frac{a-a}{b-a}, \frac{b-a}{b-a}\right] \\ &= [0,1] \end{split}$$

thus we have shown homeomorphism between (a, b) and (0, 1), and between [a, b] and [0, 1].

18.8(a)

(b)

19.7

20.4