I Langage premier

On admet que, si L est un langage rationnel alors il existe un unique (à isomorphisme près) automate fini déterministe complet qui le reconnait avec un nombre minimum $\operatorname{ind}(L)$ d'états.

- 1. Déterminer $\operatorname{ind}(L)$ où L est le langage sur $\Sigma = \{a,b\}$ des mots qui contiennent un nombre pair de a et de b.
- 2. Déterminer tous les langages rationnels sur $\Sigma = \{a\}$ tels que ind $(L) \leq 2$.

Un langage rationnel L est **composé** s'il existe des langages rationnels L_1, \ldots, L_n tels que, pour tout i, $\operatorname{ind}(L_i) < \operatorname{ind}(L)$ et $L = L_1 \cap \cdots \cap L_n$.

Sinon, L est dit **premier**.

- 3. Les langages suivants sont-ils premiers?
 - $L_1 = \Sigma^*$ avec $\Sigma = \{a, b\}$
 - $L_2 = \{a\}$ avec $\Sigma = \{a\}$
 - $L_3 = \{a, b\} \text{ avec } \Sigma = \{a, b\}$
- 4. Soit k > 0 un entier qui n'est pas la puissance d'un nombre premier. Montrer que le langage $(a^k)^*$ est composé.
- 5. Décrire un algorithme qui détermine si une expression rationnelle décrit un langage premier.