Gerrymandering and Geometry

Compactness Metrics

This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to Creative Commons. PO Box 1866. Mountain View. CA 94042. USA.

Skew

W / L, where W = shorter dimension, L = longer dimension

Isoperimetric

 $16A / P^2$, where A = area, P = perimeter

$$16A / P^2 \approx 0.49$$

Square Reock

A / S, where A = area, S = area of smallest square containing district

$$A = 10$$

 $S = 25$

$$A/S = 10/25 = 0.4$$

Convex Hull Ratio

A / H, where A = area, H = area of convex hull

$$A = 10$$

 $H = 13$

$$A/H = 10/13 \approx .77$$

Sum of perimeters

$$P_1 + P_2 + ... + P_n$$

Note: applies to a map, not to a single district!

Real-world versions

Some of these metrics have been simplified for Squaretopia. Here are the real metrics they correspond to.

Skew becomes Harris

W / L, where L = longest axis, W = greatest width perpendicular to that axis

Harris

Isoperimetric becomes Polsby-Popper

 $4\pi A / P^2$, where A = area, P = perimeter

Polsby-Popper

Square Reock becomes Reock

A / C, where A = area, C = area of smallest circle containing district

Reock

Convex Hull Ratio becomes... Convex Hull Ratio

A / H, where A = area, H = area of convex hull

Convex Hull

Sum of perimeters becomes... sum of perimeters

$$P_1 + P_2 + ... + P_n$$

Applies to an entire map.