Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

Кафедра автоматизированных систем управления (АСУ)

Отчет по практической работе №3 «Построение формальной модели системы» По дисциплине «Теория систем и системный анализ»

Выполнили	студент(ы) гр. 430-2
	Колпакова К.И
	Лузинсан А.А.
	Швоева Д.С.
«»	2022
Проверила	
	_Аверьянова А.М.
«»_	2022

Оглавление

введение	
1. Основная часть	4
1.1 Наименование системы	4
1.2 Формальная модель «черного ящика»	4
1.2.1 Множество входных и выходных переменных	4
1.2.2 Множество переменных состояний	4
1.2.3 Зависимости и закономерности системы	4
1.3 Формальная модель состава	5
1.3.1 Множество подсистем и элементов системы	5
1.3.2 Описание модели состава	6
1.4 Формальная модель структуры	6
1.4.1 Множество объектов окружающей среды	6
1.4.2 Взаимодействие подсистем (элементов) системы	6
Заключение	8

Введение

Цель: получить практические навыки в формировании базовых моделей («черного ящика», состава, структуры) системы и описании их на формальном языке.

Задачи:

- 1. Построить формальную модель «черного ящика».
- 2. Построить формальную модель состава.
- 3. Построить формальную модель структуры.

1. Основная часть

1.1 Наименование системы

Была выбрана система «Животная клетка», которая описана в первой лабораторной работе.

1.2 Формальная модель «черного ящика»

1.2.1 Множество входных и выходных переменных

Множество переменных $X = \{x_i\}$, описывающих входы системы, включает:

 x_1 – органические вещества (жиры, белки, углеводы),

 X_2 — ионы,

 X_3 — кислород,

 x_4 — вода.

Множество переменных $Y = \{y_i\}$, описывающих выходы системы, включает:

 y_1 —продукты распада,

 y_2 —продукты синтеза.

1.2.2 Множество переменных состояний

Множество переменных $Z = \{z_i\}$, описывающих состояние системы, включает:

 z_1 — размер клетки,

 z_2 — функции клетки,

 z_3 — метаболизм.

1.2.3 Зависимости и закономерности системы

Зависимости между входными, выходными переменными и переменными состояния, а также закономерности, присущие системе:

$$z_1 = f_2(x_4),$$

$$z_2 = f_2(x_1),$$

- $y_2 = f_2(z_2)$,
- $y_1=f_2(z_1),$
- $z_3=f_2(x_2),$
- $y_1 = f_2(z_3)$.

1.3 Формальная модель состава

1.3.1 Множество подсистем и элементов системы

Множество $S = \{s_i\}$ подсистем и элементов системы «Животная клетка», согласно иерархии состава, построенной при выполнении практической работы №1 и изображённой на рисунке 1.1:

- s_0 животная клетка в целом;
- s_1 подсистема мембраны;
- s_2 подсистема цитоплазмы;
- s_3 подсистема ядра;
- s₄ билипидный слой;
- $S_5 \Gamma$ ЛИКОКАЛИКС;
- s_6 белки;
- s_7 гиалоплазма;
- s_8 органеллы;
- S_9 включения;
- s_{10} ядерная оболочка;
- s_{11} ядерный сок.

Рисунок 1.1 – Иерархия состава системы «Животная клетка»

1.3.2 Описание модели состава

Используя отношение агрегации ($R^{ag} \in S \times S$), которое устанавливается между подсистемами, одна из которых включает в качестве составной части другую, опишем модель состава системы «Животная клетка»:

$$s_0R^{ag}s_1$$
, $s_0R^{ag}s_2$, $s_0R^{ag}s_3$;
 $s_1R^{ag}s_4$, $s_1R^{ag}s_5$, $s_1R^{ag}s_6$;
 $s_2R^{ag}s_7$, $s_2R^{ag}s_8$, $s_2R^{ag}s_9$;
 $s_3R^{ag}s_{10}$, $s_3R^{ag}s_{11}$.

Модель состава позволяет рассматривать систему на разных уровнях абстрагирования, а именно: на верхнем уровне система представляется как целое (каждая подсистема начинается с новой строки).

1.4 Формальная модель структуры

1.4.1 Множество объектов окружающей среды

Множество объектов окружающей среды $V = \{v_i\}$ системы «Животная клетка» включает:

 V_1 - межклеточное вещество;

 v_2 - другие клетки.

1.4.2 Взаимодействие подсистем (элементов) системы

Опишем взаимодействие подсистем (элементов) системы друг с другом и с объектами окружающей среды. Для этого введём множество R^v сигнальных веществ и множество R^s химических соединений, передаваемых по транспортным путям, описанные в схеме взаимодействия компонент системы друг с другом и с окружающей средой, построенной при выполнении практической работы №1 и представленной на рисунке 1.2. Тогда модель структуры можно описать следующим образом:

 $s_3 R^s s_7$ – ядро передаёт химические вещества (РНК) в гиалоплазму;

 $s_8R^ss_3$ — органеллы передают химические вещества в ядро $v_2R^vs_5$ — соседняя клетка передаёт сигнальные вещества на гликокаликс; $v_1R^vs_1$ — межклеточное вещество перемещает сигнальные вещества на мембрану.

Рисунок 1.2 – Схема взаимодействия компонент системы «Животная клетка» друг с другом и с окружающей средой

Заключение

В ходе выполнения практической работы были получены навыки в формировании базовых моделей («черного ящика», состава, структуры) системы «животная клетка» и описании их на формальном языке. В результате были построены формальные модели «черного ящика», состава и структуры.