

MICPOCOPY RESOLUTION TEST CHART
OS-1963-A

AD-A188 818

COMPRESSIBLE FRICTION COEFFICIENTS

IN A SIMULATED HEAT PIPE

THESIS

Constance A. Holladay Second Lieutenant, USAF

AFIT/GAE/AA/87D-6

DTIC ELECTE FEB 0 8 1988

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited 38 2 01 061

AFIT/GAE/AA/87D-6

COMPRESSIBLE PRICTION COSFFICIENTS

IN A SIMULATED HEAT PIPE

THESIS

Constance A. Holladay Second Lieutenant, USAF

AFIT/GAE/AA/87D-6

Approved for public release; distribution unlimited

COMPRESSIBLE PRICTION COEFFICIENTS IN A

THESIS

SIMULATED HEAT PIPE

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University

In Partial Fulfillment of the Requirements for the Degree of Master of Science in Aeronautical Engineering

Constance A. Holladay, B.S. Second Lieutenant, USAF

December 1987

Approved for public release; distribution unlimited.

Acknowledgements

Throughout the work on this thesis I have received a great deal of help and support from several people. I am deeply indebted to my faculty advisor, Dr. James Hitchcock, for the invaluable guidance and assistance he provided throughout my research. Without his help, this thesis might not have been completed. In any experimental research, problems with the equipment will inevitably arise. I would like to thank all of the technicians in the Aeronautics/Astronautics laboratories at AFIT, especially Leroy Cannon, for their help on the numerous occasions when problems with my equipment came up. Finally, I wish to thank my fiance Mike for his continual support and encouragement during my entire thesis work.

Constance A. Holladay

Table of Contents

Acknowledgemen	its		•			•			•			•	Page i i
List of Figure	s		•			•			•		•	•	v
List of Symbol	.s		•			•			•		•	•	vi
Abstract			•			•			•		•	•	viii
I. Introduc	tion .		•			•			•		•	•	1
	elopme												
Неа	t Pipe	• •	• •	• •	• •	•	•	•	•		•	•	1
Bac	kgroun	d Li	tera	atur	e.	•	•	•	•		•	•	4
Obj	ective	and	8c	ope	• •	•	•	•	•	• •	•	•	7
II. Experime	ntal M	odel	•			•		•	•		•	•	8
Hea	t Pipe	Sim	ulat	tion	١.								8
Ext	erimen	tal	Appa	arat	us	•							Š
	e Cali												12
Dat	a Meas	urem	ent	and	Ac	an i	811	101	`	•	•	•	13
Rxr	erimen	tal	Resi	ilts	1	4			•	• •		•	18
20,5	/CLIMC!	CG 1		4100	•	•	•	•	•	•	•	•	
III. Numerica	1 Mode	1.	•		• •	•	•	•	•		•	•	21
Gov	erning	Bqu	atio	ons		•	•	•	•		•	•	21
	Incom	bres	s i b	le M	lođe	ı.	_			_		_	21
	Compr												25
Solu	tion M	etho	đ.										27
Nume	rical	Resu	lts	•	•		•	•	•	•	•	•	28
IV. Discussio	n of R	esul	ts		•		•		•	•	•	•	31
	riment												31
Nume	rical	Resu	lts	Dis	cus	5 10	n	•	•	•	•	•	34
V. Conclusio	ns and	Rec		enda	tio	ns	•			•	•	•	38
Conc	lusion	•											36
	mmenda									•	•	•	39
Appendix A: Ra	w Expe	rime	nta:	l Pr	ess	ure	De	ıta	•	•	•	•	41
Appendix B: Sa	mple C	alcu	lat	ions			•	•		•		•	47

		Simulation Code		
	Results .	• • • • • • •	• • • • • • •	53
Bibliography		• • • • • • •		66
Vita				67

List fo Figures

Figure		Page
1.1	Diagram of the Thermal Syphon	3
1.2	Components and Operation of a Conventional Heat Pipe (3:2)	3
1.3	Development of Capillary Pressure at the Liquid Vapor Interface (3:2)	4
2.1	Experimental Test Configuration	11
2.2	Porous Pipe Calibration Hamifold (Bowman 2:29).	12
2.3	Porous Pipe Calibration Data Showing Offset From Origin	14
2.4	Porous Pipe Calibration Results	15
2.5	Enlargement of (Δp^2) Range of 0 - 500,000 lbf ² /ft ⁴ in Calibration Results	16
2.6	Axial Pressure Distributions	20
3.1	Blement of Fluid for Equation of Motion	21
3.2	Blement of Fluid Used for Mass Balance	23
3.3	Pressure Interpolation	24
3.4	Force Balance on Entire Heat Pipe	28
3.5	Effect of Compressibility in Evaporator	29
3.6	Effect of Compressibility in Condenser	30
B.1	Calibration Manifold	47

List of Symbols

- a speed of sound in air (ft/sec)
 A_m porous pipe cross-sectional area (ft²)
 A_m porous pipe surface area (ft²)
- A constant used in equation 2.1 (ft^2/sec^2)
- B constant used in equation 2.1 (lbf/ft-sec)
- C discharge coefficient
- D porous pipe inside diameter (ft)
- d orifice plate bore (ft)
- f friction coefficient
- F. thermal expansion factor
- g. constant in Newton's second law
 - k ratio of specific heats
 - L length (ft)
 - m mass (1bm)
 - m mass flow rate (lbm/sec)
 - M rate of flow momentum (lbm-ft/sec2)
- Ma Mach number
- p pressure (lbf/ft*)
- PL total length of simulated heat pipe (ft)
 - R ideal gas constant for air (lbf-ft/lbm/°R)
- Rem axial Reynolds number
- Rew radial Reynolds number
 - T temperature (°R)
 - u axial velocity (ft/sec)
 - v radial velocity (ft/sec)

- x axial location along porous pipe (ft)
- Y compressibility expansion factor
- β_{d} ratio of diameters (d/D)
 - ρ density (lbm/ft²)
- Tw wall shear stress (lbf/ft2)
- μ viscosity (lbf-sec/ft²)

Subscripts

- 1 upstream end of ax increment
- 2 downstream end of ax increment

Abstract

Research was performed to verify previously obtained friction coefficients for compressible, laminar and turbulent flow in a simulated heat pipe for intermediate mass injection and suction rates. The research was divided into two main parts: an experimental study and a numerical study.

In the experimental study, a simulated heat pipe consisting of a long porous tube with air injected into one end to simulate the evaporator and extracted from the other end to simulate the condenser was investigated. Axial static pressure variations for various air supply mass flow rates were measured. It was found that the friction in the pipe decreased the amount of pressure recovery at the end of the pipe and that this decrease became even greater with increased supply mass flow rate.

The pressure distributions obtained in the experimental study were used as input for a numerical simulation in the numerical portion of this research. A steady, one-dimensional computer code was developed to simulate the porous pipe system used in the experimental study in order to calculate Mach numbers, axial Reynolds numbers, and friction coefficients along the pipe. Newton's second law, continuity, and Shapiro's method of influence coefficients were used in the computer simulation to calculate the flow properties. The results

obtained for the friction coefficients in the porous pipe system studied did not correlate with the values predicted by Bowman's expressions. They did, however, exhibit the general trend expected for the friction coefficient - axial Reynolds number product with Mach number.

COMPRESSIBLE FRICTION COEFFICIENTS IN A SIMULATED HEAT PIPE

I. Introduction

The purpose of this introductory chapter is to acquaint the reader with the history and operation of the heat pipe and the goals of this research. The chapter is divided into three sections. The first section provides a brief discussion of the development and operation of the heat pipe, while in the second section the pertinent literature is reviewed. In the last section, the objectives of this study are outlined.

Development and Operation of the Heat Pipe

The concept of the heat pipe was first conceived by

R.S. Gaugler in 1942 (4:1). The first serious development work

took place many years later by G.M. Grover and his associates

at the Los Alamos Scientific Research Laboratory in 1964 (4:1).

Grover showed that the heat pipe is an effective high-perform
ance heat transmitter, developed some applications for it, and

gave it its present name. Following Grover's work, interest

in the heat pipe quickly grew for both terrestrial and space

applications, resulting in numerous papers and several books

being written on the subject. Today heat pipes have numerous

applications. Some of these applications include cooling

nuclear reactors, infrared sensors, laser systems, generators,

electronic and electrical equipment, and turbine blades. Heat pipes have also been used for cyrogenic eye surgery, in spacecraft for temperature control of spacesuits and vehicles, and for heat collection from solar energy, geothermal energy, and exhaust gases.

The operation of the heat pipe is similar to that of the thermal syphon, shown in Figure 1.1. The thermal syphon consists of a sealed tube, from which the air has been evacuated, with a small quantity of liquid placed inside. When the end of the tube is heated, it causes the water to vaporize and move to the cooler end of the tube where it condenses on the walls. The condensate then returns to the other end of the tube by means of gravity. The thermal syphon is limited in its orientation since the evaporator region must be at the lowest end. The heat pipe, however, consists of a closed tube with a porous capillary wick fixed to the inside surface, in its conventional form (Figure 1.2). The wick contains the liquid phase of the working fluid while the remaining volume of the tube, known as the vapor region, contains the vapor phase of the working fluid. When heat is applied to evaporator end, the fluid in that section of the pipe is vaporized. This creates a pressure difference down the pipe and causes the vapor to flow from the evaporator end to the condenser end where the vapor condenses and releases its latent heat of vaporization to a heat sink. The evaporation process depletes the liquid in the evaporator section and causes the liquid-vapor interface to move into the wick

Figure 1.1 Diagram of the Thermal Syphon

Figure 1.2 Components and Operation of a Conventional Heat Pipe (3:2)

surface, see Figure 1.3. A capillary pressure then develops which pumps the condensate back to the evaporator section. The quantity of heat capable of being transported as latent heat of vaporization is normally several orders of magnitude greater than the quantity that can be transported as sensible heat in a conventional convective system (3:1,2). This efficiency allows the heat pipe to transport large amounts of heat with a small size and a very small temperature difference between the two ends.

Figure 1.3 Development of Capillary Pressure at the Liquid-Vapor Interface (3:2)

Background Literature

As was stated in the previous section, numerous papers have been written on heat pipe theory and operation. This study is concerned primarily with the effect of mass injection and extraction on the friction coefficient at the tube wall.

Several articles have been written on this subject, but only a few of these will be discussed in this section.

Kinney (5) studied the effect of wall mass transfer on the frictional and heat transfer characteristics of fully developed laminar flow in circular porous tubes. His results are based on the assumptions of a constant-property fluid and uniform wall mass transfer and are presented for radial Reynolds numbers (Reynolds numbers based on the velocity of the flow through the tube wall and the tube diameter) ranging from -4.618 to 20. Using numerical solutions to the tube flow and energy equations, he found that the friction coefficient, f, was a function of both the radial and axial Reynolds numbers, Rew and Rem, respectively. For large values of Rew, the values of the product f*Re asymptotically approached the value 19.739. He also found that the wall friction decreased with increased extraction radial Reynolds number and that for a given axial Reynolds number fluid injection caused an increase in the wall friction.

Yuan and Finkelstein (11) studied the effects of uniform wall injection and extraction on two-dimensional laminar incompressible flow in a tube with porous walls. They used a perturbation method to solve the Navier-Stokes equations in cylindrical coordinates, and they observed that fluid injection at the wall accelerated the main stream velocity and thus increased the velocity gradient at the wall. The wall frictional coefficient was therefore found to increase with injection and decrease with suction.

Kinney and Sparrow (6) used an analytical model to investigate the effects of surface suction on friction, heat transfer, and mass transfer for turbulent flow inside a tube. They found that the shear force was greater when suction was present than when it was absent and that high Reynolds number flows are more sensitive to suction than low Reynolds number flows. They also observed that in the presence of suction the momentum change of the flow tended to increase the pressure in the flow direction, while the wall shear stress tended to decrease the pressure.

For his doctoral dissertation at the Air Force Institute of Technology in 1986, Bowman numerically and experimentally investigated the effects of mass injection and extraction on the wall frictional coefficients (2). Bowman developed functional relationships for friction coefficients to be used in one-dimensional heat pipe vapor models to design heat pipes for compressible-flow situations with large mass injection and extraction rates. Bowman used a simulated heat pipe with air as the working fluid and found that the friction coefficient in general is a function of Rew, Rew, Mach number and the ratio of pipe length to diameter. For laminar flow, he found the relationship to be

 $f*Re_{x} = 16(1.2337 - 0.2337 \exp(0.0363Re_{x}))$ $\times \exp(6Ha^{2}/5)$ (1.1)

and for turbulent flow

 $f = f^*[1 + 55 Re^{\alpha \cdot 1}(v/u)^{\alpha \cdot 9}(2L_{\alpha}/D)^{\alpha \cdot 1}exp(6Ma^2/5)]$ (1.2)

where

$$f^* = 0.046/Re^{1/8}$$
 (1.3)

where v is the radial velocity, u is the average axial velocity, D is the pipe inside diameter, and L. is the length of the condenser.

Objective and Scope

The main objective of this research is to verify Bowman's friction coefficient expressions for intermediate radial Reynolds number compressible flow. To accomplish this, a simulated heat pipe and a numerical simulation were used. The axial pressure variation was experimentally measured along the simulated heat pipe. This pressure distribution was used as input to a numerical model designed to model one-dimensional compressible and incompressible flow in a tube with mass injection and extraction. The numerical model utilized the pressure distribution to solve for the friction coefficient distribution along the pipe. For axial flow Mach numbers less than 0.01, Newton's second law and incompressible flow equations were used to solve for the flow properties; while for Mach numbers greater than 0.01, compressible flow, the continuity equation and Shapiro's method of influence coefficients (9) were employed. The numerical results were then compared to the values predicted by Bowman's expressions.

II. Experimental Model

The purpose of the experimental portion of this study was to obtain data on the pressure distribution for flow inside a simulated heat pipe at intermediate radial Reynolds numbers. This was accomplished by means of a simulated heat pipe modeled after the one used by Bowman (2) in his research. The sample pressure distributions were then used as input to a numerical model, to be discussed in Chapter III, in order to calculate the friction coefficient distribution. This chapter discusses how the heat pipe vapor flow was simulated and the experimental configuration used to model the flow.

Heat Pipe Simulation

A simulated heat pipe was used because of its advantages over an actual heat pipe in experimental studies. The design consisted of two porous pipes of equal length placed end to end with air injected through the walls of one pipe to model the evaporator and extracted through the walls of the other pipe to model the condenser. Wageman and Guevara (10) and Quale and Levy (8) showed that this system simulates the vapor dynamics in a heat pipe quite well. One advantage of the simulated heat pipe is that it is much simpler to build and test. Heat pipes typically operate at low pressures with very small axial pressure gradients, making it difficult to measure pressures. The porous pipe system eliminates this problem since it operates at higher pressures with larger pressure gradients,

yet still accurately simulates flow in an actual heat pipe. In addition, this system does not require complicated heating and cooling equipment nor does it require a liquid return mechanism (similar to a wick in a heat pipe).

Experimental Apparatus

As was mentioned earlier, the experimental set up used in this investigation was modeled after that used by Bowman. Much of the same equipment he used was used for this experiment as well; for this reason, only a brief discription of the set up will be given. The reader is referred to Bowman's dissertation for additional details.

In order to obtain intermediate radial Reynolds numbers a longer porous pipe with a smaller diameter than that used by Bowman was required. A polyethylene porous pipe produced by Porex Technologies with a nominal pore size of 35 microns, a 5/8 inch inside diameter and 3/4 inch outside diameter was the smallest diameter pipe found. Since this pipe was only slightly smaller in diameter than Bowman's, the length of the test section was increased to approximately seven feet. The pipe selected was only available in four foot lengths; therefore, two four foot pipes were chosen. One three inch section was cut from both ends of each pipe for calibration tests leaving two 3-1/2 foot pipes. One pipe was used to model the evaporator and was enclosed in a manifold designed and built to supply the air for injection. The injected air was passed through a filter just prior to entering the test configura-

tion. The other pipe, used to model the condenser, was left open to the atmosphere. A diagram of the set up is shown in Figure 2.1. The two pipes were placed end to end so that the air injected into the first porous pipe would flow into the second pipe where it would be extracted through the walls of the pipe into the atmosphere.

In the original test configuration, twelve pressure taps were installed, six evenly spaced in each pipe. When pressure measurements were made, it was found that the pressure varied along the tube more than expected in the condenser section; so 15 additional pressure taps were added to that section. The final configuration is shown in Figure 2.1. Twenty-seven pressure taps were used in the porous pipes, six in the evaporator section spaced six inches apart and twenty-one in the condenser section spaced every two inches. In addition, five other pressure taps were used in the system. Two were used to measure the pressure around the orifice plate, one above the plate and one below the plate. One tap was used to measure the pressure at the upstream end of the air supply manifold and two taps were used to measure the pressure at the downstream end of the manifold. Stainless steel 0.060 inch outside diameter tubes were used as pressure taps. The tubes were inserted and cemented into 0.058 inch diameter holes in the porous pipe to produce a tight fit. The stainless steel tubes were installed such that their ends were flush with the inside wall of the porous pipe.

Figure 2.1 Experimental Test Configuration

Pipe Calibration

The calibration of the porous pipe was made using a relationship developed by M. Muskat (7:66). Muskat found that the mass flux through a porous medium is related to the pressure difference across the porous medium by the following expression:

$$(\Delta p^2) = \lambda(\rho v)^2 + B(\rho v) \qquad (2.1)$$

Bach of the four porous pipe samples taken from the pipe used in the test configuration were installed into the test manifold designed by Bowman (Figure 2.2). For each sample, Δp^2 and ρv were measured at various mass flow rates. The

Figure 2.2 Porous Pipe Calibration Manifold (Bowman 2:29)

curve was expected to be very close to linear at very low mass flow rates, with the contribution of the A(pv)2 term being quite small compared to the $B(\rho v)$ term. This linear behavior was observed in that region, however the curve was offset from the origin by the amount $\Delta p^2 = 126,921.84 \text{ lbf}^2/\text{ft}^4$. These results are shown in Figure 2.3. This offset in the curve was probably due to the tendency of the pressure transducer in the Scanivalve to read the pressures higher than what they actually were. The atmospheric pressure readings made by the Scanivalve were consistently higher than those taken from the barometer in the laboratory. To correct for this effect, the offset value was subtracted from each ΔP^2 reading. The values for the constants A and B in Equation (2.1) were calculated using a least squares technique to curve fit the corrected calibration data and were found to be $4.679 \times 10^9 \text{ ft}^2/\text{sec}^2$ and $4.2843 \times 10^7 \text{ lbf/ft-sec, respectively.}$ The final calibration results are shown in Figures 2.4 and 2.5. Pigure 2.5 is an enlargement of the region of the graph in Figure 2.4 for the low mass flow rates. Equation (2.1) was needed for the numerical model to determine the mass flux for a given pressure differential across the pipe walls.

Data Measurement and Acquisition

A Zenith Z-100 computer was used for the data acquisition. Pressure measurements were made using a T-type Scanivalve, from Scanivalve Corporation, with a model PDCR42 differential pressure transducer having a pressure range of -100 to 100

Figure 2.3 Porous Pipe Calibration Data Showing Offset From Origin

Figure 2.4 Porous Pipe Calibration Results

Enlargement of $\Delta(P^2)$ Range 0 - 500,000 lbf $^2/\mathrm{ft}^4$ in Calibration Results Figure 2.5

psig. A Dual Systems Control model AIM12 analog-to-digital card in the computer was used to digitize the pressure transducer input into the computer. The offset option on the card and amplification were set to read signals from -100 to +100 mV with a resolution of 0.048 mV. Pifty data samples were averaged for each point to reduce noise. For mass fluxes above 0.035 lbf-sec/ft³, a square-edged orifice plate was used to measure the total mass flow rate entering the test configuration. The pressure differential across the orifice plate was measured using both the Scanivalve and a water manometer. The mass flow rate was calculated using the following expression (1):

$$m = 0.52502(CYd^2F_o)(\rho_1(p_1 - p_2)^{1/2}/(1 - \beta_0)$$
 (2.2)

where

$$C = K/E = K(1 - \beta_m)^{1/2}$$
 (2.3)

$$K = K_{\bullet}(1 + A/Re_{\bullet}) \tag{2.4}$$

$$K_{-} = K_{L}[10^{4}d/(10^{4}d + 15A)]$$
 (2.5)

$$K_L = .5993 + .007/D + (.364 + .076/D^{2/2})\beta_a$$

+ .4(1.63 - 1/D)[(.07 + .5/D) -
$$\beta_a$$
]*/2

$$-(.009 + .034/D)(.5 - \beta_a)^{3/2}$$

+
$$(65/D^2 + 3)(\beta_m - .7)^{m/2}$$
 (2.6)

$$A = d(830 - 5000\beta + 9000\beta^2 - 4200\beta^3 + 530/D^{2/2}) \quad (2.7)$$

$$Y = 1 - (.41 + .35\beta_a^4)(X/k)$$
 (2.8)

$$X = P/P_1 \tag{2.9}$$

$$Re_a = 48m/\pi\mu d \tag{2.10}$$

Very low mass flow rates, such as those measured in the calibration tests, were measured using a flowmeter with a range of 0 to 0.44 cfm. The pressure was measured at a point just upstream of the flowmeter in order to calculate the density of the air. In addition, a valve was installed just downstream of the flowmeter to vary the upstream pressure in order to read higher mass flow rates with the meter. It was important to get accurate readings in the low mass flow rate region because there were several sections of the simulated heat pipe where the injection/suction rates were quite small. Equation (2.1) with the constants A and B calculated from data for mass fluxes only above 0.04 lbf-sec/ft² underpredicted the mass fluxes at low Δp^2 .

Experimental Results

The pressure variation obtained along the pipe was a result of two effects: the friction encountered along the pipe walls and the rate of change in momentum along the pipe. The total effect of the friction force was manifested in the pressure drop between the two ends, or the lack of complete pressure recovery. The pressure drop due to friction was found to increase with increased mass flow rate. Figure 2.6 shows the pressure distribution for five different mass flow rates. Additional data for other mass flow rates can be found in Appendix A. As mass was added in the evaporator region, 0 < X/L < 0.5, the fluid accelerated with increasing X/L with a corresponding drop in pressure. The mass removal

in the condenser section caused the flow to decelerate and the pressure to rise.

Figure 2.6 Axial Pressure Distributions

III. Numerical Model

This chapter describes the numerical model used to simulate the flow generated by the experimental model. The governing equations used to solve for the flow properties will be discussed first, followed by a discription of the solution technique used. Finally, the results obtained will be presented.

Governing Equations

All of the flowfields generated with the experimental configuration contained sizable regions of very low Mach number (Ma < 0.1). Therefore, two models were used in the numerical simulation: an incompressible model for Mach numbers less than 0.01, and a compressible model for Mach numbers greater than 0.01. One-dimensional, steady, adiabatic flow was assumed for both models.

Incompressible Model. The incompressible model consisted primarily of Newton's second law and incompressible flow relations. To approximate the shear stress at the pipe wall, Newton's second law was applied to an element of fluid in the pipe (Figure 3.1).

Figure 3.1 Element of Fluid for Equation of Motion

Applying Newton's second law for steady flow to the fluid element gives

$$m_2u_2/g_e - m_1u_1/g_e = (p_1\lambda_1 - p_2\lambda_2) - T_w\lambda_p$$
 (3.1)

where A_p is the wall surface area for the increment Δx . Equation (3.2) can be solved for T_w giving

$$T_w = [m_2 u_2/g_e - m_2 u_2/g_e + (p_1 - p_2)A_e]/A_e$$
 (3.2)

where A_m is the cross-sectional area equal to A_1 and A_2 . The expression for the friction coefficient is given by

$$f = 2 T_{\varphi} g_{\varphi} / \rho u^2$$
 (3.3)

where

$$\overline{u} = (u_1 + u_2)/2$$
 (3.4)

Substituting the expression for T_{ω} given by Equation (3.2) in Equation (3.3) gives an expression for the friction coefficient in terms of quantities which can be calculated from the input pressure distribution

$$f = 2[\Delta M + (p_2 - p_2)\lambda_0]g_0/\rho \bar{u}^2\lambda_0$$
 (3.5)

where

$$\Delta H = m_2 u_2/g_{\omega} - m_2 u_2/g_{\omega} \qquad (3.6)$$

The axial velocities along the pipe were calculated from a mass balance on an element of fluid in the pipe (Figure 3.2).

Figure 3.2 Element of Fluid Used For Mass Balance
Performing the mass balance on the fluid element in Figure 3.2

$$\rho_{2}u_{2}\lambda_{\sigma} = \rho_{1}u_{1}\lambda_{\sigma} - (\rho v)_{\alpha v \sigma}\lambda_{\rho} \qquad (3.7)$$

where $(\rho v)_{a \vee e}$ is the average mass flux through the pipe walls over the increment Δx found by applying Equation (2.1) at stations 1 and 2 (shown in Figure 3.2) and taking the average of the two. The negative sign on the quantity $(\rho v)_{a \vee e}$ is a result of the sign convention on the mass flux. For injection, (ρv) is considered negative and considered positive for suction. Equation 3.7 can be solved for u_2 giving

$$u_2 = \rho_1 u_1/\rho_2 - (\rho v)_{\alpha \vee \alpha} h_{\beta}/\rho_2 h_{\alpha} \qquad (3.8)$$

The velocity \mathbf{u}_{λ} is taken from the previous step and its initial value is zero.

The pressure at each step was found by interpolating from the input pressure distribution using a second degree interpolation formula. Figure 3.3 illustrates this interpolation procedure.

Figure 3.3 Pressure Interpolation

Referring to Figure 3.3 for $x_1 < x < x_2$, p(x) is given by

$$p(x) = p_2K_2 + p_2K_2 + p_3K_3$$
 (3.9)

where

$$K_{2} = \{(x - x_{2})(x - x_{3})\}/\{(x_{2} - x_{2})(x_{2} - x_{3})\}$$

$$K_{3} = \{(x - x_{1})(x - x_{3})\}/\{(x_{3} - x_{1})(x_{3} - x_{3})\}$$

$$(3.10)$$

The temperature (T), viscosity (μ), axial Reynolds number (Re $_{\rm w}$), and radial Reynolds number (Re $_{\rm w}$) were calculated from the following expressions:

$$T = T_{o}/[1 + (k - 1)Ma^{2}/2]$$
 (3.11)

$$\mu = 2.27E-08 (T)^{3/2}/(T + 198.6)$$
 (3.12)

$$Re_{m} = 4 m_{mvw} / (\Pi D \mu g_{m})$$
 (3.13)

$$Re_{\omega} = (pv)_{ave} D / (\mu g_a) \qquad (3.14)$$

where T in Equation (3.11) is in degrees Fahrenheit, and m_{ave}

is the average of m_1 and m_2 . Equations (3.5), (3.8) - (3.14), and (2.1) thus comprise the equations for the incompressible model.

Compressible Model. The compressible model consisted of Equations (3.9) - (3.14) along with the differential form of the continuity equation and Shapiro's method of influence coefficients for Mach number variation with friction and wall mass transfer to solve for the velocity and friction coefficient, respectively. The differential form of the continuity equation in terms of pressure, temperature and Mach number is given by

$$\frac{d\mathbf{n}}{\dot{\mathbf{n}}} = \frac{d\rho}{\rho} + \frac{d\mathbf{H}\mathbf{a}}{\mathbf{H}\mathbf{a}} + \frac{1}{2} \frac{d\mathbf{T}}{\mathbf{T}} \tag{3.15}$$

Using the equation of state for an ideal gas, $\rho = p/RT$, and Equation (3.11) in equation 3.15 gives the differential form of the continuity equation in terms of pressure and Hach number.

$$\frac{dn}{n} = \frac{dp}{p} + \frac{1}{2} \left[\frac{1 + (k - 1)Ha^2}{1 + (k - 1)Ha^2/2} \right] \frac{d(Ha)^2}{Ha^2}$$
 (3.16)

Equation (3.16) can then be integrated to solve for Ma_2 , which is given by the following expression

$$\text{Ma}_2^2 = \{-1 + \{1 + 2(k - 1)C\}\}/(k - 1)$$
 (3.17)

where

$$C = Ha_1^2 \left(1 + (k - 1)Ha_2^2/2\right) \left(\frac{m_2}{m_1}\right)^2/(p_2/p_1)^2 \qquad (3.18)$$

The equation for Mach number variation with friction and wall mass transfer utilizing Shapiro's method of influence coefficients is given by

$$d(Ma^2)/Ma^2 = F_g 4f dx/D + F_w dm/m$$
 (3.19)

where Fr and Fw are the influence coefficients defined by

$$F_z = Ha^2(1 + (k - 1)Ha^2/2)/(1 - Ha^2)$$
 (3.20)

$$F_w = 2(1 + kMa^2)[1 + (k - 1)Ma^2/2]/(1 - Ma^2)$$
 (3.21)

where x is the axial coordinate. Equation (3.19) can be rearranged into the following form

$$\frac{(1 - \text{Ma}^2) \text{ dMa}^2}{\text{kMa}^2 [1 + (k - 1)\text{Ma}^2/2]} = \frac{4 \text{fdx}}{\text{D}} + \frac{2(1 + \text{kMa}^2) \text{ dm}}{\text{kMa}^2}$$
(3.22)

Equation (3.22) is in a form which can be integrated to yield an expression for the friction coefficient. After performing the integration and rearranging, the following expression results

$$f = D[\ln(Ma_{2}^{2}/Ma_{2}^{2}) - C_{m}\ln(p_{2}/p_{1})]/(2\Delta x)$$
 (3.23)

where

$$C_m = (1 + kHa^2)/(kHa^2)$$
 (3.24)

$$Ha^2 = (Ha_1^2 + Ha_2^2)/2$$
 (3.25)

and where Ma_2^2 is found from Equation (3.17) and Ma_2^2 is taken from the previous step. Equations (3.9) - (3.15), (3.17), (3.23) and (2.1) form the set of equations used in the compressible model.

Solution Method

A marching technique was used to solve for flow properties along the simulated heat pipe. The pressure information obtained from the experimental work was first read in to the program; then the various constants for the pipe geometry and the air properties and the variables at the upstream end of the pipe were set. The set of equations for the incompressible model were then solved to find the Mach number, axial Reynolds number, and friction coefficient for each ax increment along the pipe until a Mach number of 0.01 was reached. After that, the compressible model equations were used to determine the properties. Sample calculations for the first iteration made by the program are given in Appendix B and a copy of the code used is included as Appendix C.

To verify the accuracy of the numerical simulation, three checks were made in the program. The first check was a comparison of the mass flow rate entering the condenser with the mass flow rate entering the air supply manifold for the evaporator to see if the two were equal. The second check was a force balance over the entire pipe. When considering the pipe as a whole, the only forces acting on the fluid are the pressures at the two ends and the total wall shear force (see Figure 3.4).

Figure 3.4 Force Balance on Entire Heat Pipe

A summation of these forces gives

$$\sum P = (p_w - p_w) A_w - T_w A_w \qquad (3.26)$$

where Ap is the surface area of an increment ax of pipe.

Ideally, this summation should be zero, since the drop in pressure between the two ends of the pipe is a result of the wall shear stress. The last check made was a mass balance over the entire pipe to see if the total mass injected into the pipe equaled the total mass removed from the pipe.

Numerical Results

All of the numerical simulations made using the code in Appendix C modeled the porous pipe system used in the experimental study for various supply mass flow rates. The results are plotted as the friction coefficient - axial Reynolds number product (f*Re) versus Mach number for the evaporator in Figure 3.5 and for the condenser in Figure 3.6.

Figure 3.5 Effect of Compressibility in Evaporator

Figure 3.6 Effect of Compressibility in Condenser

IV. Discussion of Results

This chapter discusses the results obtained in both the experimental and numerical portions of this research. The reader is referred to Figure 2.6 for the discussion of the experimental results and to Figures 3.5 and 3.6 for the discussion of the numerical results.

Experimental Results Discussion

An important part of the experimental study was the calibration of the porous pipe. It was particularly important to obtain accurate data for the very low mass flux range, 0.0 - 0.005 lbf-sec/ft3, since the simulated heat pipe operated with several regions of very low mass flux. The four pipe samples taken from the porous pipe used in the test configuration were originally calibrated using the orifice platewater manometer system (described in Chapter II) to measure the mass flow rate entering the test sample. This system only allowed measurements of mass flow above approximately 0.03 lbf-sec/ft, since the ratio of the orifice plate bore to the air supply pipe diameter was 0.327 and values of the discharge coefficient are not available for ratios below 0.3. Curvefitting the data from these first calibration tests produced values for the constants A and B in Equation (2.1) which underpredicted the mass flux for small values of Δp^2 . Further calibration tests were then made on two of the four samples, one sample from the pipe used in the evaporator section and one

from the pipe used in the condenser section, using a flowmeter with a range of 0 - 0.44 cfm. Only two of the samples were calibrated because the other two were too dirty and clogged from the first set of calibration tests to yield accurate results. The data obtained from the second set of calibration tests exhibited the linear behavior expected in the low mass flux region, but the curve showed an offset from the origin, where it should have passed through. This offset probably resulted from a combination of two things. One is that the pressure transducer tended to give pressure readings that were too high. This was observed when the transducer readings for the atmospheric pressure were compared to the readings taken from the barometer in the laboratory, which is considered the more accurate of the two. The transducer consistently gave higher readings than the barometer, by approximately 1%. The other possible reason for the offset in the curve is the fact that the atmospheric pressure used to calculate the Δp^2 values was taken from the barometer, not from the pressure transducer. Therefore in each of the Δp^2 terms, the pressure value for the inside of the pipe was too high and the external pressure value was fairly accurate thus making the Δp^2 values higher than they actually were. As was stated in Chapter II, the offset was corrected for by subtracting the amount of the offset from each of the Δp^2 readings. The constants obtained using the additional calibration data yielded values for the constants A and B that improved the results in the low mass flux region. Upon examining the range of mass fluxes in the

values were below 0.05 lbf-sec/ft². Another curve-fit was then made of only the calibration data up to 0.05 lbf-sec/ft², which produced values for A and B that further improved the results in the low mass flux region. Since the walls of the pipe used in these experiments were approximately half as thick as those used in Bowman's experiments, the value of B was expected to be less than the value that Bowman calculated. As it turned out, this value was about one fourth that of Bowman's.

The pressure distributions obtained from the tests with the simulated heat pipe showed a fluctuation in the pressure distribution in the condenser section rather than a smooth increase of pressure from the beginning to the end of the condenser. Kinney and Sparrow (6) noted that in the presence of wall suction, the change in momentum of the flow tended to increase the pressure in the flow direction, while the wall shear stress tended to decrease the pressure. In the first half of the condenser, the change in momentum was very small due to the small amount of suction through the walls and was approximately the same order of magnitude as the wall shear stress. Therefore the momentum change was not the dominant effect in this region and consequently the pressure did not exhibit a smooth increase.

Due to the compressible nature of the flow and the low design pressure drop across the pipe walls, the mass injection and removal along the pipe studied was non-uniform. As

was discussed previously, the mass flux through the pipe wall is dependent on the pressure difference across the pipe wall. Since the external pressure was relatively constant and the internal pressure varied axially along the pipe, the mass injection and removal also varied. The thinness of the pipe walls made the pressure drop across the pipe low, thus presenting less resistance to the mass flux. The pipe's internal pressure consequently remained quite close to the external pressure for a large portion of both the condenser and the evaporator sections. The pressure dropped off sharply in the last six inches of the evaporator, where most of the mass addition occurred, and rose sharply in the last half of the condenser, where most of the mass was removed. This suggests that there may be an optimum length or L/D for the pipe.

Numerical Results Discussion

In all of the numerical simulations, the flow in the evaporator section was assumed to be laminar throughout. This was a reasonable assumption since Bowman showed that the flow remains laminar, when injection is present, up to very large axial Reynolds numbers (on the order of 10°). The values of the friction coefficients obtained from the numerical simulations were somewhat higher than the values predicted by Bowman's expression. In the evaporator section, where mass injection was present, Kinney's (5) results indicate that for laminar, incompressible flow with large injection wall Reynolds numbers, the product f*Rem should approach approximately 20.

For the incompressible region of the evaporator used in this study, the calculated friction coefficients are approximately one order of magnitude greater than Kinney's results. laminar flow friction coefficient expression included the effect of the compressibility of the flow and thus extended Kinney's results for higher Mach numbers. Again the calculated friction coefficients are approximately one order of magnitude greater than the values predicted by Bowman's expression. Kinney's and Bowman's results indicate that the product f*Re remains essentially constant (approximately 20) for low Mach numbers and Bowman's expressions predict an increase as the Mach number increases toward 1 and greater. The results from this research were found to exhibit this trend for the f*Rem product versus Mach number, which can be seen in Figure 3.5, only the increase with Mach number begins at lower Mach numbers than Bowman's results.

The flow in the condenser section was assumed to be turbulent throughout in all of the numerical simulations. Bowman showed that once the flow entered the condenser, where an adverse pressure gradient was present, it transitioned to turbulent. He also found that the transition always started at the beginning of the condenser near the pipe wall, when the flow was subsonic, and then spread toward the center of the pipe as the flow progressed through the condenser. The location in the condenser where the turbulence reached the pipe center moved downstream as the axial velocity increased.

Since the transition regions for the axial velocities attained

at the entrance to the condenser in this research were quite small relative to the overall condenser length, neglecting the transition region and assuming turbulent flow throughout was a reasonable assumption. The values computed for the friction coefficients in the condenser section were lower, by approximately one order of magnitude, than the values predicted by Bowman's turbulent flow friction coefficient expression. Bowman's expression indicated an increase in the f*Rew product with increased Mach number. When the results from the numerical simulation of the condenser were plotted as f*Rew versus Ma, the trend predicted by Bowman's expression was not seen as prominently as the trend shown in the evaporator, but it was present (see Figure 3.6).

There were several sources of error in the experimental study which could account for the difference between the calculated and expected results. As was mentioned earlier, there was a problem with the pressure transducer in the Scanivalve tending to read the pressures higher than what they actually were. This problem primarily affected the calibration results by giving a higher pressure differential for a given mass flux, which thus introduced error into the computed values of the constants A and B in Equation (2.1). Also there were no pressure taps in the last six inches of the evaporator section, preceding the condenser, where the pressure showed a sharper drop. Therefore, the accuracy of the interpolated pressures in that region is questionable. In all the numerical simulations, the friction coefficients near the end

of the evaporator were negative indicating that the change in momentum across the increment was greater than the change in pressure. This meant that the calibration equation (Equation (2.1)) was giving mass flux values that were too high for the given pressure difference, thus indicating that the calibration constants, A and B, were inaccurate.

The checks made in the numerical simulation code to verify the accuracy of the calculations all indicated that the simulations were giving accurate results. The force balance check yielded quite small positive values in all of the simulations and the mass balance check yielded small negative values for the low supply mass flow rates and small positive values for the higher supply mass flow rates. In all of the simulations, the mass flow rate entering the condenser was found to be too high. To correct this, the equation used to calculate the mass flux through the wall (Equation (2.1)) was multiplied by a correction factor. This correction factor increased with higher supply mass flow rates and ranged from approximately 0.70 to 0.85. The addition of the correction factor also improved the force and mass balances.

Y. Conclusions and Recommendations

This chapter discusses the conclusions made from the findings of this research. In addition, a brief list of recommendations for further research is presented.

Conclusions

The data obtained from this research exhibited the same basic trends predicted by previous research, however differing by approximately one order of magnitude. The change in momentum of the flow has much more influence on the pressure change along the pipe than the friction force. Therefore, even though the values of the friction coefficients calculated in this work were much greater than those predicted by Bowman's expressions, the actual difference in the pressure distributions resulting from Bowman's friction values and those measured in the experimental portion of this research may not be as significant. Another numerical simulation utilizing Bowman's friction coefficient expressions to solve for the axial pressure distribution would be needed in order to make the comparison. The friction coefficient calculations were also found to be quite sensitive to the values computed for the calibration constants, A and B. The difference in the friction coefficients calculated from this research and that of Bowman's dropped from two orders of magnitude to one order of magnitude between the second and final curve-fits of the calibration data. The analysis of the results from the numerical simulations seems to indicate that the either the data obtained in the calibration tests is inaccurate or the equation used to curve-fit the data (Equation (2.1)) does not give an accurate enough representation of the calibration results. Whichever is the case, the inaccuracy of the calibration equation seems to be the primary source of the discrepency with the results from previous research.

Recommendations

Upon examining the procedures used in this study, several recommendations can be made for improvements to this experiment and possibilities for future research. One recommendation which would improve the readings obtained from the pressure transducer is to subtract the transducer's atmospheric pressure reading from each reading made by the transducer to get a gauge pressure. The atmospheric pressure taken from a barometer can then be added to these gauge pressures to get the absolute pressure. This would help eliminate the offset in the calibration curve, which was observed in this study. Some of the recommendations for future research include:

- 1) Perform experiments to measure the velocity gradients along the wall as well as the pressure distribution along
 the pipe. This would provide more accurate information for
 computing the shear stress at the wall and should give more
 accurate results for the friction coefficients.
- 2) Perform a one-dimensional numerical simulation which utilizes Bowman's friction coefficient expressions to solve

for the pressure distribution along a heat pipe. Then perform experiments to measure the pressure distribution in a simulated heat pipe operating under the same conditions to check the computed results.

Appendix A: Raw Experimental Data

This appendix contains the raw data obtained in the experimental portion if this research. Each file gives the mass flow rate entering the test section and 34 pressure measurements. Figure 2.1 shows the location of the pressure taps in the test section. In general, pressure measurements 1 and 2 were for the pressure above and below the orifice plate respectively, 3 for the pressure at the upstream end of the evaporator manifold, 4 and 5 for the downstream end of the evaporator manifold, 6 and 7 for the atmospheric pressure, 8 - 13 for inside the evaporator section of the porous pipe, and 14 - 34 for inside the condenser end of the porous pipe. Pressure taps 8 - 13 were approximately six inches apart, 13 and 14 eight inches apart, 14 - 34 two inches apart. Pressure tap 34 was located at the end of the condenser section of the porous pipe. The total length of the test section was 6.976 feet. The air supply temperature for all runs was 72 $^{\circ}$ F \pm 5 °F.

Supply Mass Flow Rate (1bm/sec) = 0.043651

PORT	PRESSURE(psia)	PORT	PRESSURE(psia)
1	114.4222	18	14.4009
2	114.3897	19	14.4229
3	15.9113	20	14.4306
4	15.8919	21	14.5212
5	15.8867	22	14.5186
6	14.2250	23	14.5302
7	14.2186	24	14.5341
8	15.7949	25	14.2302
ğ	15.7664	26	14.7397
10	15.7238	27	14.7526
11	15.6423	28	14.8147
12	15.4638	29	14.8406
13	15.1871	30	14.8949
14	14.4009	31	14.9220
15	14.3091	32	14.9388
16	14.3298	33	14.9647
17	14.3337	34	14.9634

Supply Mass Flow Rate (1bm/sec) = 0.058069

PORT	PRESSURE (psia)	PORT	PRESSURE(psia)
1	114.3252	18	14.3970
2	114.2675	19	14.4229
3	16.9626	20	14.4113
4	16.9264	21	14.5431
5	16.9173	22	14.5108
6	14.2121	23	14.5509
7	14.2250	24	14.5121
8	16.8527	25	14.2289
9	16.8152	26	14.9117
10	16.7583	27	14.9634
11	16.6535	28	15.0824
12	16.4195	29	15.1302
13	15.9669	30	15.2492
14	14.4203	31	15.3048
15	14.3052	32	15.3643
16	14.2929	33	15.3733
17	14.2949	34	15.3772

Data File: D2209D

Supply Mass Flow Rate (1bm/sec) = 0.070994

PORT	PRESSURE (psia)	PORT	PRESSURE(psia)
1	114.1545	18	14.3983
2	114.0680	19	14.4113
3	18.1315	20	14.3673
4	18.0876	21	14.5522
5	18.0501	22	14.4746
6	14.2186	23	14.5108
7	14.2069	24	14.4164
8	18.0229	25	14.2250
9	17.9699	26	15.0203
10	17.9065	27	15.1082
11	17.7876	28	15.3061
12	17.5018	29	15.3798
13	16.8785	30	15.5854
14	14.4526	31	15.6785
15	14.2845	32	15.7742
16	14.2470	33	15.8130
17	14.2716	34	15.8130

Data File: D2209E

Supply Hass Flow Rate (lbm/sec) = 0.083142

PORT	PRESSURE(psia)	PORT	PRESSURE(psia)
1	114.0550	18	14.4190
2	114.9359	19	14.4074
3	19.3833	20	14.3492
4	19.3096	21	14.5936
5	19.2721	22	14.4345
6	14.2186	23	14.4669
7	14.2147	24	14.2949
8	19.2773	25	14.2263
9	19.2216	26	15.0707
10	19.1466	27	15.2182
11	19.0186	28	15.4910
12	18.6915	29	15.6164
13	17.9324	30	15.8906
14	14.4875	31	16.0302
15	14.2936	32	16.1970
16	14.2225	33	16.2436
17	14.2612	34	16.2578

Supply Mass Flow Rate (lbm/sec) = 0.108925

PORT	PRESSURE(psia)	PORT	PRESSURE(psia)
1	113.5972	18	14.4656
2	113.3916	19	14.4436
3	22.6264	20	14.3156
4	22.5579	21	14.6789
5	22.5605	22	14.3854
6	14.2225	23	14.3789
7	14.2108	24	13.9716
8	22.5346	25	14.2186
ğ	22.4777	26	15.1044
10	22.3950	27	15.3358
11	22.2462	28	15.8001
12	21.8583	29	16.1091
13	20.8510	30	16.6121
14	14.6169	31	16.9509
15	14.2897	32	17.3117
16	14.1487	33	17.4643
17	14.2095	34	17.5160

Supply Mass Flow Rate (1bm/sec) = 0.12559

PORT	PRESSURE(psia) POR	PORT PRESSURE (psia		
1	113.4084	18	14.4979	
2	113.1343	19	14.4591	
3	24.8079	20	14.3039	
4	24.8661	21	14.7591	
5	24.8726	22	14.3725	
6	14.2056	23	14.3363	
7	14.1992	24	13.8009	
8	24.7187	25	14.2212	
Š	24.6424	26	15.0578	
10	24.5558	27	15.3229	
îi	24.4161	28	15.9268	
12	24.0359	29	16.4001	
13	22.9484	30	17.0932	
14	14.7268	31	17.5677	
		32	18.0604	
15	14.2781			
16	14.0893	33	18.2543	
17	14.1888	34	18.2751	

Supply Mass Flow Rate (1bm/sec) = 0.13969

PORT	PRESSURE(psia)	PORT	PRESSURE(psia)
1	113.5312	18	14.5431
2	113.1923	19	14.4707
3	27.2235	20	14.2987
4	27.2597	21	14.8638
5	27.2700	22	14.3556
6	14.2082	23	14.3143
7	14.1992	24	13.6199
8	27.1446	25	14.2045
9	27.0683	26	14.9944
10	26.9726	27	15.2582
11	26.8135	28	15.9863
12	26.4256	29	16.5953
13	25.2256	30	17.5199
14	14.8716	31	18.1574
15	14.2677	32	18.8027
16	14.0169	33	19.0613
17	14.1733	34	19.1001

Data File: D2209J

Supply Mass Plow Rate (lbm/sec) = 0.15997

PORT	PRESSURE (psia)	PORT	PRESSURB(psia)
1	113.9075	18	14.5962
2	113.4640	19	14.4966
3	30.5765	20	14.2587
4	30.4433	21	14.9893
5	30.4562	22	14.3738
6	14.2056	23	14.2923
7	14.1953	24	13.4156
8	30.5274	25	14.2108
9	30.4343	26	14.9104
10	30.3140	27	15.0927
11	30.1343	28	15.9410
12	29.6778	29	16.7725
13	28.3161	30	18.0514
14	15.1613	31	18.9436
15	14.2755	32	19.8462
16	13.9315	33	20.1967
17	14.1552	34	20.2561

Supply Mass Plow Rate (1bm/sec) = 0.19033

PORT	PRESSURE(psia)	PORT	PRESSURE(psia)
1	114.8473	18	14.9023
2	114.2306	19	14.7652
3	35.9310	20	14.4859
4	35.5198	21	15.4467
5	35.5172	22	14.5002
6	14.4174	23	14.4717
7	14.4161	24	13.3545
8	35.8961	25	14.4161
9	35.7939	26	15.0717
10	35.6491	27	14.9838
11	35.4564	28	15.8605
12	34.9469	29	17.0062
13	33.3719	30	18.8877
14	15.9291	31	20.2571
15	14.5118	32	21.6433
16	13.9752	33	22.2304
17	14.3527	34	22.4102

Data File: 90810B

Supply Mass Flow Rate (1bm/sec) = 0.238907

PORT	PRESSURE(psia)	PORT	PRESSURE (psia)
1	114.4594	18	15.3601
2	113.4785	19	15.0859
3	45.1444	20	14.9398
4	44.6841	21	15.9252
5	44.7410	22	14.7226
6	14.4122	23	14.5726
7	14.4135	24	13.0014
8	45.1302	25	14.3941
ğ	45.0035	26	15.2269
10	44.8289	27	14.7368
11	44.6026	28	14.9489
12	44.0492	29	16.3299
13	42.2272	30	19.9067
14	17.4950	31	22.4270
15		-	
	14.7769	32	24.8878
16	13.8859	33	25.8886
17	14.6902	34	26.1330

Appendix B: Sample Calculations

This appendix includes samples calculations for the pipe calibration and for the first step of the numerical simulation code.

Pipe Calibration Calculations

Figure B.1 Calibration Manifold

Pressure Tap 1 - Pressure upstream of the orifice plate, or pressure upstream of flowmeter, pa

Pressure Tap 2 - Pressure downstream of orifice plate, p.

- Q = Mass flow rate
- q = Flowmeter mass flow rate reading
- A = surface area of the porous pipe
- D = porous pipe diameter = 0.625 inches
- D₁ = Air Supply Pipe Diameter = 3.062 inches
- D₂ = orifice plate bore = 1.0 inch

L = length of porous pipe sample

k = 1.4

C = discharge coefficient = 0.61

 $\beta = D_2/D_1 = 0.326584$

R = ideal gas constant for air = 53.26 lbf-ft/lbm- $^{\circ}R$

 $X = (p_1 - p_2)/p_1$

 $Y = 1 - (0.41 + 0.35 \beta^4)X/k$

Sample Readings from Orifice Plate Measurement of Mass Flow Rate:

 $p_1 = 114.7224 psia$

 $p_{*} = 114.7007 psia$

 $p_{2} = 25.19472 psia$

 $p_4 = 25.16627 psia$

 $p_{mem} = 14.3558$ psia

T = 538 °R

L = 1.953 inches

X = 0.000189

Y = 0.99994

 $\rho = p_1/(RT) = 0.5765 \text{ lbm/ft}^2$

 $Q = D_{R} C Y [2 (p_{A} - p_{R})/((1 - 4))^{2/2}/4$

Q = 0.03604 lbm/sec

 $A = \Pi D L = 0.02663 \text{ ft}^2$

 $pv = Q/(Ag_{-}) = 0.04206 \text{ lbf-sec/ft}^{3}$

 $\Delta p^2 = \{(p_2 + p_4)/2\}^2 - p_{nem^2}$

 $\Delta p^2 = 8,874,344.45 lbf^2/ft^4$

Sample Readings from Flowmeter Hass Flow Rate Measurement:

 $p_{2} = 15.00665 psia$

 $p_{2} = 14.68725 psia$

 $p_4 = 14.68466 psia$

 $p_{max} = 14.37227 psia$

q = 0.3975 cfm

T = 534 °R

L = 1.875 inches

 $p = p_1/(RT) = 0.07598 \text{ lbm/ft}^2$

 $Q = q_0 = 0.0005034 \text{ lbm/sec}$

 $A = \Pi D L = 0.025566 \text{ ft}^2$

 $\rho v = Q/(Ag_{-}) = 0.000612 lbf-sec/ft^{3}$

 $\Delta p^2 = \{(p_3 + p_4)/2\}^2 - p_{mem}^2 = 189,011.3 \text{ lbf}^2/\text{ft}^4$

Sample Calculations for First Increment of Numerical Simulation Code (x = 0.0 to x = 0.005 ft):

(The data for these sample calculations is taken from the raw pressure data file D2209E)

pu = pressure at the upstream end of the evaporator air supply manifold

pu = 2791.20 lbf/ft2

p= pressure at the downstream end of the evaporator air supply manifold

Pm = 2777.88 lbf/ft=

p₂ = internal pressure at the upstream end of the evaporator

p₁ = 2781.648 lbf/ft²

 $p_2 = 2775.931 lbf/ft^2$

 $p_{2} = 2767.910 \, lbf/ft^{2}$

k = 1.4

D = 0.625 in = 0.0521 ft

PL = total pipe length = 6.976 ft

 $A = constant from equation 2.1 = 4.679 \times 10^9 ft^2/sec^2$

B = constant from equation $2.1 = 4.2843 \times 10^7$ lbf/ft-sec

T = 533.1 °R

x = 0.005 ft

 $x_1 = 0.00 \text{ ft}$

 x_2 = axial location of first pressure tap in the evaporator

 $x_2 = 0.50 \text{ ft}$

x₂ = axial location of second pressure tap in the evaporator

 $x_{2} = 0.99 \text{ ft}$

Assuming the pressure in the evaporator changes linearly from upstream value to its downstream value, calculate the slope of the line.

$$S = (p_m - p_u)/(PL/2) = -3.8188 lbf/ft^3$$

 $\rho_{\lambda} = p_{\lambda}/(RT) = 0.0978 \text{ lbm/ft}^2$

 $A_{-} = \Pi D^{2}/4 = 0.002132 \text{ ft}^{2}$

 $A_{-} = \Pi D \Delta x = 0.0008184 \text{ ft}^{-}$

 $(\Delta p^2)_1 = p_1^2 - p_2^2 = -53,251.844 \text{ lbf}^2/\text{ft}^4$ (negative sign

```
indicates mass flow into pipe)
```

 $\mu = 2.27(10^{-6}) T^{3/2}/(T + 198.6) = 3.82(10^{-7}) lbf-sec/ft^2$

M = momentum = m u

 $\Delta H = m_2 u_2/g_e - m_2 u_2/g_e = 1.2720 \times 10^{-7} \text{ lbf}$

 $T_{w} = \{(p_{1} - p_{m})A_{m} - \Delta M \}/A_{p} = 0.11238 \}bf/ft^{2}$

 $f = 2 T_w g_m/(\rho_{nvw}u_{nvw}^2) = 15,056.123$

 $Re_w = 4 m_{ww}/(n D \mu g_w) = 29.031$

 $Re_w = (v)_{ave} D / (\mu g_e) = -151.360$

Appendix C: Mumerical Simulation Code and Sample Results

The following pages are a listing of the computer code used for the numerical simulations. The code is written in FORTRAN 77 and some sample results are also included following the program listing.

This program uses one-dimensional incompressible and compressible flew models to solve for the flow properties and friction coefficients in a closed porous pipe with blowing and suction. An incompressible model consisting of Newton's second law and incompressible flow equations is used to calculate flow properties until the Mach number reaches 0.01. After that, the compressible model, consisting of the continuity equation and Shapiro's method of influence coefficients, is used to solve for the properties.

DEFINITION OF VARIABLES:

Constant used in wall boundary condition (ft2/sec2) AC Cross-sectional area of the pipe (ft2) AP Surface area of DX increment (ft2) Constant used in wall boundary condition (lbf/ft/sec) B C2 Speed of sound squared (ft2/sec2) D Pipe inside diameter (ft) DMOM Change in momentum across DX increment (lbf) DX Spacial step size (ft) DW Change in mass flow rate due to mass transfer at the wall (lbm/sec) Priction factor PR Shear force over the increment DX (1bf) Summation of all the incremental shear force values PSSUM over the entire pipe (1bf) **FUD** Constant to account for the statistical variation of the porous pipe properties GAM Ratio of specific heats GC Constant in Newton's second law (lbm-ft/lbf/sec2) Ml Mach number at upstream end of DX increment M2 Mach number at downstream end of DX increment M12 M1 squared **H22** M2 squared MSBAR Average of M12 and M22 PATH Atmospheric pressure (entered in psia then converted lbf/ft2) PCOND Condenser environment pressure (lbf/ft2) PEVAPD Downstream evaporator environment pressure (entered in psia then converted to lbf/ft2) PEVAPU Upstream evaporator environment pressure (entered in psia then converted to lbf/ft2) PEX Environment pressure (lbf/ft*) PL Pipe length (ft) PO Upstream end of porous pipe pressure (lbf/ft2) P1 Static pressure at upstream end of DX increment (lbf/ft*)

```
P2
       Static pressure at downstream end of DX increment
       (lbf/ft2)
R
       Ideal gas constant for air (lbf-ft/lbm/=R)
REV
       Radial Reynolds number
REX
       Axial Reynolds number
RHO
       Density (lbm/ft<sup>3</sup>)
RHOV1
       Mass flux through the wall at the upstream end of the
       DX increment (lbm/ft²/sec)
RHOV2
       Mass flux through the wall at the downstream end of the
       DX increment (lbm/ft2/sec)
RMU
       Viscosity (lbf-sec/ft2)
8
       Slope of the evaporator environment pressure line
       (lbf/ft2/ft)
TU
       Wall shear stress (lbf/ft2)
T0
       Total air temperature (=R)
W1
       Mass flow rate at the upstream end of the DX increment
       (lbm/sec)
W2
       Mass flow rate at the downstream end of the DX incre-
       ment (1bm/sec)
XL
       Local axial position (ft)
XND
       Nondimensional axial location (XL/PL)
X(1)-X(30) Axial location of pressure measurements (ft)
DIMENSION X(30), P(30)
RBAL K1, K2, K3, H1, H2, H12, H22, HSBAR
X(1) = 0.00
X(2) = 6.0/12.
X(3) = 11.9/12.
X(4) = 18./12.
X(5) = 23.9/12.
X(6) = 30./12.
X(7) = 35.9/12.
X(8) = 3.44633
X(9) = 3.52967
X(10) = 43.84/12.
X(11) = 45.78/12.
X(12) = 47.72/12.
X(13) = 49.72/12.
X(14) = 51.72/12.
X(15) = 53.66/12.
X(16) = 55.66/12.
X(17) = 57.72/12.
X(18) = 59.72/12.
X(19) = 61.69/12.
X(20) = 63.72/12.
X(21) = 65.69/12.
X(22) = 67.66/12.
X(23) = 69.66/12.
X(24) = 71.66/12.
X(25) = 73.66/12.
X(26) = 75.63/12.
X(27) = 77.66/12.
```

```
X(28) = 79.72/12.
    X(29) = 81.72/12.
    X(30) = 6.976
    OPRN(9,FILE='results')
    OPEN(10,FILE='data')
    OPEN(12, FILE='fdat')
    RBAD(10,20) PATH
 20 FORMAT(F7.4 )
    WRITE(9,30) PATH
 30 PORMAT(3X,'PATM = ',F7.4,1x,'psia')
    READ(10,40) TO
 40 FORMAT(F6.2)
    WRITE(9,50) TO
 50 FORMAT(3X,'T0 = ',F6.2,'=R')
    RBAD(10,60) PEVAPU
 60 FORMAT(F7.4)
    WRITE(9,70) PEVAPU
 70 FORMAT(3x, 'PBVAPU = ',F7.4,1x, 'psia')
    RBAD(10,80) PEVAPD
 80 PORMAT(F7.4)
    WRITE(9,90) PEVAPD
 90 FORMAT(3x, 'PEVAPD = ',F7.4,1x, 'psia,/)
    DO 110 I = 2,7
    RBAD(10,100) P(I)
100 FORMAT(F7.4)
    P(I) = P(I)*144.
110 CONTINUE
    DO 115 I = 10,30
    READ(10,112) P(I)
112 FORMAT(F7.4)
    P(I) = P(I)*144
115 CONTINUE
    WRITE(6,120)
120 FORMAT(3X, 'ENTER THE FUDGE FACTOR')
    READ(5,130) PUD
130 FORMAT(F5.3)
    WRITE(9,140) FUD
140 FORMAT(3x, 'FUD = ', F5.3, /)
    PATH = PATH*144.
    PEVAPU = PEVAPU*144.
    PEVAPD = PEVAPD*144.
    PCOND = PATH
    R = 53.335
    GAM = 1.4
    GAH1 = (GAH - 1)/2
    D = 0.625/12
    PL = 6.976
    PLH = PL/2
    DX = 0.005
    GC = 32.174
    PI = 3.1415927
    A = 4679000000.0
    B = 42843100.0
```

```
K = 1
    PSSUM = 0.0
    DWSUM = 0.0
    ASSUMING THE EVAPORATOR ENVIRONMENT PRESSURE CHANGES LINEARLY
    FROM ITS UPSTREAM VALUE TO ITS DOWNSTREAM VALUE, CALCULATE THE
    SLOPE OF THE LINE.
    S = (PEVAPD - PEVAPU)/PLH
    CALCULATE THE PRESSURE IN THE PIPE AT THE UPSTREAM END USING
    THE FIRST THREE MEASURED PRESSURE VALUES.
    X1 = X(2)
    X2 = X(3)
    X3 = X(4)
    XC1 = X2*X3/((X1 - X2)*(X1 - X3))
    XC2 = X1*X3/((X2 - X1)*(X2 - X3))
    XC3 = X1*X2/((X3 - X1)*(X3 - X2))
    P(1) = P(2)*XC1 + P(3)*XC2 + P(4)*XC3
    P0 = P(1)/144
    CALCULATE THE PRESSURE AROUND THE CONDENSER ENTRANCE.
    P(8) = P(X=(PLH-0.5/12)); P(9) = P(X=(PLH+0.5/12))
    X0 = X(9)
    X1 = X(10)
    X2 = X(11)
    X3 = X(12)
    XC1 = ((X0 - X2)^{\pm}(X0 - X3))/((X1 - X2)^{\pm}(X1 - X3))
    XC2 = ((X0 - X1)*(X0 - X3))/((X2 - X1)*(X2 - X3))
    XC3 = ((X0 - X1)*(X0 - X2))/((X3 - X1)*(X3 - X2))
    P(9) = P(10)*XC1 + P(11)*XC2 + P(12)*XC3
    P(8) = P(9)
    DO 160 J = 1,30
    PT = P(J)/144
    WRITE(9,150) J,PT
150 PORMAT(3X, 'P(', I2, ') = ', F7.4, 1X, 'psia')
160 CONTINUE
    WRITE(9,170)
170 FORMAT(//,45x,'RADIAL',9x,'AXIAL',/,4x,'X/L',7x,'FRICTION',10x,
   4'MACH', 8X, 'REYNOLDS', 6X, 'REYNOLDS', /, 15X, 'FACTOR', 10X, 'NUMBER',
   48X, 'NUMBER', 8X, 'NUMBER', 7X, 'BETA', /)
    WRITE(12,180)
180 FORMAT(12x, 'CALCULATED', 9x, 'BOWMANS', /, 4x, 'x/L', 7x, 'FRICTION',
   48X, 'PRICTION',/,15x, 'FACTOR',10X, 'FACTOR')
    INITIALIZE VARIABLES AT THE UPSTREAM PIPE END
    XL = 0.0
```

W2 = 0.0 M22 = 0.0P2 = P(1)

```
T = T0
   PBX = PBVAPU
   RHO2 = P(1)/(R*T0)
    AC = PI*D**2/4.
    AP = PI*D*DX
    I = 1
    C = ABS(P2**2 - PEX**2)
    RHOV2 = -FUD*GC*(-B + SQRT(B**2 + 4.*A*C))/(2.*A)
    C2 = GC*GAM*P2/RHO2
   XL = XL + DX
    BEGIN MARCHING DOWN PIPE
    INCOMPRESSIBLE MODEL (M < 0.01) CALCULATIONS
200 N = N + 1
    IP(XL.LE.X(3)) I = 1
    IF(XL.GT.X(3).AND.XL.LB.X(4)) I = 2
    IF(XL.GT.X(I+2)) I = I + 1
    IF(XL.GB.X(9).AND.XL.LB.X(11)) I = 9
    IP(XL.LT.X(8)) PEX = S*XL + PEVAPU
    IF(XL.GT.X(9)) PBX = PCOND
    W1 = W2
   M12 = M22
    H1 = SQRT(H12)
    U1 = M1*SQRT(C2)
   P1 = P2
   RHOV1 = RHOV2
   RHO1 = RHO2
    IF(XL.GT.X(8).AND.XL.LT.X(9)) GO TO 210
    INTERPOLATE TO FIND THE PRESSURE AT STATION 2
   X1 = X(I)
    X2 = X(I+1)
    X3 = X(I+2)
    CC1 = P(I)/((X1 - X2)*(X1 - X3))
    CC2 = P(I+1)/((X2 - X1)*(X2 - X3))
   CC3 = P(I+2)/((X3 - X1)*(X3 - X2))
   P2 = CC1*(XL-X2)*(XL-X3)+CC2*(XL-X1)*(XL-X3)+CC3*(XL-X1)*(XL-X2)
    XND = XL/PL
    GO TO 220
210 P2 = P(9)
   RHOV2 = 0.0
    XND = XL/PL
    GO TO 230
    CALCULATE THE PROPERTIES AT STATION 2
220 C = P2**2 - PEX**2
    ID = 1
    IF(C.LT.0.0) ID = -1
```

```
C = ABS(C)
    RHOV2 = ID*PUD*GC*(-B + SQRT(B**2 + 4*A*C))/(2*A)
230 RHOVAV = (RHOV1 + RHOV2)/2
    RNO2 = P2/(R*T)
    RHOBAR = (RHO1 + RHO2)/2
    U2 = RHO1*U1/RHO2 - RHOVAV*AP/(RHO2*AC)
    M22 = U2**2/C2
    M2 = SQRT(M22)
    UBAR = (U1 + U2)/2
    MSBAR = (M12 + M22)/2
    CON1 = 1 + GAM1*MSBAR
    T = T0/COM1
    DW = -RHOVAV*AP
    DWSUM = DWSUM + BW
    IF(XL.GT.3.489.AND.XL.LT.3.491) WCK = DWSUH
    W2 = W1 + DW
    \mathbf{WBAR} = (\mathbf{W1} + \mathbf{W2})/2
    RMU = 2.27B - 08 * SQRT(T**3)/(T + 198.6)
    REX = 4*WBAR/(PI*D*RMU*GC)
    REW = RHOVAV*D/(RMU*GC)
    BETA = ABS(REV/REX)
    DMOM = W2*U2/GC - W1*U1/GC
    TW = ((P1 - P2)*AC - DMOH)/AP
    PS - TWAP
    PSSUM - PSSUM + PS
    P = 2*GC*TW/(RHOBAR*UBAR**2)
    AREX = ABS(REX)
    FSTAR = 0.046/ARBX**0.2
    IF(XL.LE.3.488) THEN
       PB = 16/REX^{1.2337*EXP(1.2*MSBAR)}
    ELSE
       PB = FSTAR^*(1+55*ARBX**,1*BXP(1.2*M8BAR)*BBTA**.9*PL/D**.1)
    EMD IP
    CK = M/20 - K
    IF(N.LT.10) GO TO 260
    IF(CK.EQ.0.0) GO TO 260
250 XL = XL + DX
    IP(XL.GT.PL) GO TO 390
    CHECK TO SEE IF THE MACH NUMBER HAS REACHED 0.01. IF IT HAS,
    SWITCH TO COMPRESSIBLE FLOW CALCULATIONS.
    IF(M2.LE.0.01) GO TO 200
    GO TO 300
260 WRITE(9,270) XMD,F,M2,RBV,RBX,BETA
270 FORMAT(3X,F5.3,3X,F14.7,5X,F9.7,4X,F10.3,4X,F9.2,4X,F7.4)
    WRITE(12,282) XWD,F,FB
282 PORMAT(3X, F5.3, 3X, F14.7, 4X, F1:.8)
    IF(W.LT.10) GO TO 290
    K = K + 1
290 GO TO 250
```

COMPRESSIBLE PLOW CALCULATIONS

```
300 M = M + 1
    IF(XL.LE.X(3)) I = 1
    IF(XL.GT.X(3).AND.XL.LE.X(4)) I = 2
    IF(XL.QT.X(I+2)) I = I + 1
    IF(XL.GE.X(9).AND.XL.LE.X(11)) I = 9
    IF(XL.LT.X(8)) PEX = 8*XL + PEVAPU
    IF(XL.GT.X(9)) PBX = PCOND
    W1 = W2
    P1 = P2
    RHO1 = RHO2
    RHOV1 - RHOV2
    C2 = GC*GAM*P1/RHO1
    M12 = M22
    H1 = SQRT(H12)
    U1 + M1 *SQRT(C2)
    IF(XL.GT.X(8).AND.XL.LT.X(9)) GO TO 310
    INTERPOLATE TO FIND THE PRESSURE AT STATION 2
    X1 = X(I)
    X2 = X(I+1)
    X3 = X(I+2)
    PP1 = P(I)
    PP2 = P(I+1)
    PP3 = P(I+2)
    K1 = PP1/((X1 - X2)*(X1 - X3))
    K2 = PP2/((X2 - X1)*(X2 - X3))
    K3 = PP3/((X3 - X1)*(X3 - X2))
    P2 = K1*(XL-X2)*(XL-X3)+K2*(XL-X1)*(XL-X3)+K3*(XL-X1)*(XL-X2)
    XMD = XL/PL
    GO TO 320
310 P2 = P(9)
    RHOV2 = 0.0
    XND = XL/PL
    GO TO 338
    CALCULATE THE PROPERTIES AT STATION 2
320 C = P2**2 - PEX**2
    ID = 1
    IF(C.LT.0.0) ID = -1
    C = AB8(C)
    RHOV2 = ID*FUD*GC*(-B + SQRT(B**2 + 4*A*C))/(2*A)
320 \text{ RHOVAV} = (\text{RHOV1} + \text{RHOV2})/2
    RHO2 = P2/(R^+T)
    RMOBAR = (RHO1 + RHO2)/2
    DW = -RHOVAV*AP
    DWSUM - DWSUM + DW
    IF(XL.GT.3.489.AMD.XL.LT.3.491) WCK = DWSUM
    W2 = W1 + DW
    \mathbf{WBAR} = (\mathbf{W1} + \mathbf{W2})/2
```

```
CM = M12*(1 + GAM1*M12)*((W2/W1)**2)/((P2/P1)**2)
   M22 = (-1 + SQRT(1 + 4*GAM1*CM))/(2*GAM1)
   M2 = SQRT(M22)
   MSBAR = (M12 + M22)/2
    CON1 = 1 + GAM1*MSBAR
   T = T0/CON1
    C2 = GC*GAM*P2/RHO2
   U2 = M2*SQRT(C2)
   UBAR = (U1 + U2)/2
    CPP = (1 + GAM*MSBAR)/(GAM*MSBAR)
    F = 0.5*(D/DX)*(ALOG(H12/H22) - CFP*ALOG(P2/P1))
    TV = 0.5*F*RHOBAR*UBAR**2/GC
    FS - TWAP
    FSSUM = FSSUM + FS
    RMU = 2.27B-08*SQRT(T**3)/(T + 198.6)
    REX = 4*WBAR/(PI*D*RMU*GC)
    AREX = ABS(REX)
    RBW = RHOVAV*D/(RMU*GC)
   BETA = ABS(REW/REX)
    FSTAR = 0.046/AREX**0.2
    IF(XL.LE.3.488) THEN
       PB = 16/RBX*1.2337*EXP(1.2*MSBAR)
    ELSE
       PB = PSTAR*(1+55*ARBX**.1*EXP(1.2*MSBAR)*BETA**.9*PL/D**.1)
    END IF
    CK = N/29 - K
    IF(CK.EQ.0.0) GO TO 360
350 \text{ XL} = \text{XL} + D\text{X}
    CHECK TO SEE IF THE MACH NUMBER IS LESS THAM 0.01. IF IT IS,
    SWITCH BACK TO THE INCOMPRESSIBLE PLOW CALCULATIONS.
    IF(M2.LE.0.01) GO TO 200
    IF(XL.LE.PL) GO TO 300
    GO TO 390
360 WRITE(9,370) XND,F,M2,REV,REX,BETA
370 FORMAT(3X,F5.3,3X,F14.7,5X,F9.7,4X,F10.3,4X,F9.2,4X,F7.4)
    WRITE(12,382) XND, F, FB
382 FORMAT(3X,F5.3,3X,F14.7,4X,F10.8)
    K = K + 1
    GO TO 350
390 WRITE(9,400) XMD,F,M2,REW,REX,BETA
400 PORMAT(3X,F5.3,3X,F14.7,5X,F9.7,4X,F10.3,4X,F9.2,4X,F7.4)
    WRITE(12,402) XMD,F,FB
402 PORMAT(3x,F5.3,3x,F14.7,4x,F10.8)
    COMPUTE THE FORCE BALANCE FOR THE ENTIRE TUBE.
    TBST = (P(1) - P(30))*AC - PSSUM
    WRITE(9,410) TEST, DWSUN
410 FORMAT(///, 3X, 'FORCE BALANCE =', F10.6, 1X, 'lbf', /, 3X, 'MASS BAL
```

```
&ANCE =',F6.4,lx,'lbm/sec')
WRITE(9,430) WCK

430 FORMAT(3X,'Mass Flow Rate Entering Condenser = ',F9.6,2X,'lbm
&/sec')
CLOSE(9)
CLOSE(10)
CLOSE(10)
CLOSE(12)
STOP
END
```

paral deservité arterir deserve deserve appropri terrison deserve essessor asperir terrison

Ø.

TEST RUN #1

Supply Mass Flow Rate = 0.043651 lbm/sec

X/L	PRICTION FACTOR	MACH NUMBER	radial Rbynolds Number	AXIAL RBYNOLDS NUMBER	BETA
0.100	0.099048	0.018950	-152.061	7338.27	0.0207
0.200	6.009700	0.043203	-200.811	16726.01	0.0120
0.286	0.014217	0.071810	-283.298	27673.49	0.0102
0.372	0.002657	0.116745	-454.632	44442.84	0.0102
0.458	0.002902	0.191619	-735.807	71123.53	0.0103
0.515	0.036181	0.238237	252.702	86213.31	0.0029
0.630	0.007313	0.214018	210.720	76998.80	0.0027
0.716	0.016780	0.180273	297.061	65117.74	0.0046
0.816	0.000037	0.137835	496.930	50632.88	0.0098
0.917	0.049359	0.061729	566.242	18444.70	0.0311

Force Balance = 0.000287 lbf
Hass Balance = -0.0017 lbm/sec
Hass Plow Rate Entering Condenser = 0.043609 lbm/sec

TEST RUN #2

Supply Mass Flow Rate = 0.05807 lbm/sec

X/L	FRICTION FACTOR	Mach Number	radial Reynolds Wumber	axial Rbynolds Number	BETA
0.100	0.141391	0.018950	-166.655	7813.22	0.0213
0.200	0.015890	0.045054	-238.355	18550.60	0.0128
0.286	0.012252	0.078081	-355.141	31957.85	0.0111
0.372	0.004333	0.132968	-602.620	53589.23	0.0112
0.458	0.009795	0.237445	-1116.898	91363.22	0.0122
0.515	0.024286	0.317003	304.803	115901.25	0.0026
0.630	0.006685	0.293726	236.765	106504.06	0.0022
0.716	0.012464	0.256543	322.585	93158.14	0.0035
0.816	0.007668	0.202693	680.665	75699.05	0.0090
0.917	0.052697	0.093339	847.757	35334.37	0.0240

Force Balance = 0.009401 lbf
Hass Balance = -0.0021 lbm/sec
Hass Flow Rate Entering Condenser = 0.058174 lbm/sec

TEST RUN #3

Supply Mass Flow Rate = 0.08314 lbm/sec

X/L	FRICTION FACTOR	Mach Number	Radial Reynolds Number	axial Reynolds Number	BETA
0.100	0.257199	0.017478	-191.912	8233.66	0.0233
0.200	0.018961	0.045229	-298.903	21284.82	0.0140
0.286	0.011061	0.082000	-456.309	38352.21	0.0119
0.372	0.007456	0.147045	-842.995	67432.07	0.0125
0.458	0.018558	0.295485	-1823.500	124460.97	8.9147
0.515	0.018951	0.444090	434.329	167551.89	0.0026
0.630	0.007233	0.425127	277.450	158030.16	0.0018
0.716	0.009127	0.389829	272.125	143841.27	0.0019
0.816	0.011444	0.331650	877.220	127711.84	0.0069
0.917	0.045913	0.172545	1303.856	68633.47	0.0190

Force Balance = 0.001650 lbf Mass Balance = 0.0031 lbm/sec Mass Flow Rate Entering Condenser = 0.082912 lbm/sec

TEST RUN #4

Supply Mass Flow Rate = 0.108925 1bm/sec

X/L	FRICTION FACTOR	MACH NUMBER	radial Rbynolds Number	axial Reynolds Number	BETA
0.100	0.277404	0.015766	-209.028	8673.28	0.0241
0.200	0.020153	0.042822	-353.672	23576.27	0.0150
0.286	0.009342	0.081075	-567.222	44358.61	9.0128
0.372	0.007461	0.151141	-1077.390	81942.14	0.0133
0.458	0.030118	0.331755	-2603.963	157456.94	0.0165
0.515	0.017825	0.565882	629.444	223004.86	0.0028
0.630	0.006598	0.554932	350.555	213668.03	0.0016
0.716	0.006495	0.521664	219.242	197495.28	0.0011
0.816	0.011422	0.471743	957.041	187507.56	0.0051
0.917	0.033950	0.265377	1754.761	112193.95	0.0156

Force Balance = 0.024062 lbf
Hass Balance = 0.0122 lbm/sec
Hass Flow Rate Entering Condenser = 0.108535 lbm/sec

TEST RUN #5

Supply Mass Flow Rate = 0.139692 lbm/sec

X/L	PRICTION FACTOR	Mach Number	radial Reynolds Number	axial Reynolds Numbe r	BETA	
0.100	0.480220	0.013170	-274.625	8659.52	0.0317	
0.200	0.000749	0.044702	-500.176	29494.15	0.0170	
0.372	0.000610	0.161377	-1314.178	104268.41	0.0126	
0.458	0.041324	0.362343	-3468.318	200480.73	0.0173	
0.515	0.017733	0.701334	942.027	294288.41	0.0032	
0.630	0.006167	0.706376	439.304	284733.22	0.0015	
0.716	0.004396	0.674508	185.863	264785.41	0.0007	
0.816	0.009445	0.635675	896.208	260769.89	0.0034	
0.917	0.027973	0.375817	2200.172	171322.94	0.0128	

Force Balance = 0.123370 lbf
Mass Balance = 0.0289 lbm/sec
Mass Flow Rate Entering Condenser = 0.140039 lbm/sec

BIBLIOGRAPHY

- 1. Bean, H. S. <u>Pluid Meters</u>. Their Theory and <u>Application</u> (Sixth Edition). New York: The American Society of Mechanical Engineers, 1971.
- Bowman, Capt William J. <u>Heat Pipe Vapor Dynamics</u>. PhD dissertation. School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, June 1987 (88182592).
- 3. Chi, S. W. <u>Heat Pipe Theory and Practice</u>. New York: McGraw-Hill Book Company, 1976.
- 4. Dunn, P. and D. A. Reay. <u>Heat Pipes</u> (Second Edition). London: Perganon Press, 1978.
- 5. Kinney, R. B. "Fully Developed Frictional and Heat Transfer Characteristics of Laminar Flow in Porous Tubes," International Journal of Heat and Mass Transfer. 11: 1393-1401 (April 1968).
- 6. Kinney, R. B. and B. M. Sparrow. "Turbulent Flow, Heat Transfer, and Mass Transfer in a Tube with Surface Suction," <u>Journal of Heat Transfer</u>, 117-125 (February 1970).
- 7. Muskat, M. The Flow of Homogeneous Fluids Through Porous Media. Ann Arbor: J. W. Edwards, Inc., 1946.
- 8. Quaile, J. P. and B. K. Levy. "Laminar Flow in a Porous Tube with Suction," <u>Journal of Heat Transfer. Transactions of the ASME</u>, 66-71 (Pebruary 1975).
- 9. Shapiro, A. H. <u>The Dynamics and Thermodynamics of Compressible Fluid Plow</u>, Vol. 1. New York: The Ronald Press Company, 1953.
- 10. Wageman, W.B. and F. A. Guevara. "Fluid Flow Through a Porous Channel," The Physics of Fluids. 3 (6): 878-881 (Nov-Dec 1960).
- 11. Yuan, S. W. and A. B. Pinkelstein. "Laminar Pipe Flow with Injection and Suction Through a Porous Wall,"

 Journal of Heat Transfer, Transactions of the ASME:
 719-724 (May 1956).

VITA

Second Lieutenant Constance A. Holladay was born on 23 March 1964 in Memphis, Tennessee. She attended Overton High School in Memphis, Tennessee and graduated in 1982. From September 1982 to May 1986, she attended Memphis State University where she studied Mechanical Engineering. Upon graduation, she received the degree of Bachelor of Science in Mechanical Engineering and a commission in the USAF through the ROTC program. Following graduation, she entered the School of Engineering, Air Force Institute of Technology, in May 1986.

Permanent address: 932 Inman Rd

Memphis, Tennessee 38111

REPORT DOCUMENTATION)N PAGE			Form Approved OMB No. 0704-0188	
1a. REPORT S	ECURITY CLASSIF	ICATION		1b. RESTRICTIVE	MARKINGS		
`	CLASSIFICATION	AUTHORITY		3. DISTRIBUTION	/AVAILABILITY C	F REPORT	<u> </u>
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE			Approved for public release; distribution unlimited.				
4. PERFORMI	NG ORGANIZATIO	N REPORT NUMBE	R(S)	5. MONITORING	ORGANIZATION F	REPORT NI	UMBER(S)
AFIT/GA	E/AA/87D-6						
6a. NAME OF PERFORMING ORGANIZATION		6b. OFFICE SYMBOL	7a. NAME OF M	ONITORING ORGA	NIZATION	1	
School	of Engineer	ing	(If applicable) AFIT/ENY				
Sc. ADDRESS	(City, State, and	ZIP Code)		7b. ADDRESS (Ci	ty, State, and ZIP	Code)	
		of Technolog FB, Ohio 454					
8a. NAME OF ORGANIZ	FUNDING / SPON ATION	SORING	8b. OFFICE SYMBOL (If applicable)	9. PROCURÉMEN	T INSTRUMENT ID	DENTIFICA	TION NUMBER
	echrology G		AFWAL/POOC-5				
	(City, State, and 2			PROGRAM	PROJECT	RS TASK	WORK UNIT
		up AFWAL/POO , Ohio 45433	C-5	ELEMENT NO.	NO.	NO `	ACCESSION NO.
	lude Security Clas	·		<u> </u>	<u> </u>	1	
COMPRES	SIBLE FRICT	ION COEFFICIE	ENTS IN A SIMUL	ATED HEAT PIE	PE		
	L AUTHOR(S)						
		day, 2d Lt, U		·			
MS Thes:		13b. TIME CO	OVERED TO	14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT 1987 December 79			5. PAGE COUNT 79
6. SUPPLEM	ENTARY NOTATIO	DN					
17.	COSATI CO	DDES	18. SUBJECT TERMS	(Continue on revers	e if necessary and	d identify	by block number)
FIELD	GROUP	SUB-GROUP	Heat Pipe, F	luid Dunamica	Moos Twee	-e ·	T- 4 1
20	04		Friction	lulu Dynamics	, mass Iran	sier,	Internal
		verse if necessary James E. Hit	and identify by block r	number)			
			Mechanical Eng	gineering	ENN E. WOLAVI	iR and Freder of Technolog	
	TION / AVAILABILI SIFIED/UNLIMITED	TY OF ABSTRACT SAME AS R	PT. DTIC USERS	21. ABSTRACT SE UNCLASSI		ATION	
	F RESPONSIBLE IN			22b. TELEPHONE (Include Area Code		FFICE SYMBOL
	. Hitchcock	Professor	A 3- A	(513) 2			FIT/ENY
U FUIM 14	73, JUN 86	•	Previous editions are	opsolete.		CLASSIFIC LASSIFI	ATION OF THIS PAGE
					UNC		Cit

UNCLASSIFIED

19. Research was performed to verify previously obtained friction coefficients for compressible, laminar and turbulent flow in a simulated heat pipe for intermediate mass injection and suction rates. The research was divided into two main parts: an experimental study and a numerical study. In the experimental study, the axial pressure distribution along the simulated heat pipe, consisting of a long porous tube with air as the working fluid, was measured for various mass flow rates. The experimentally measured axial pressure distributions were then used as input to a one-dimensional numerical simulation to determine the friction coefficients. Finally, the results were compared to the previous research.

iLMD