第四章动力学实验

1. 实验环境及说明

本章的动力学仿真实验采用 AUBO i5 机器人模型。

本章**逆动力学实验**代码使用 python 实现, 版本为 Python3. 10. 4, 64 位。逆动力学分别使用 3D 向量和 6D 向量实现递归牛顿-欧拉算法。

其中, 3D 向量递归牛顿-欧拉算法使用了 sympy 符号计算工具, 可执行文件名: *AUBO_i5_RNE(3D). ipynb。*需要用到的 Python 库包括 numpy、sympy, 以及 Jupyter Notebook 工具。

6D 向量递归牛顿-欧拉算法在 MATLAB 中实现, 可执行文件为 Spatial Vector Inv Dyna. m。

本章正动力学实验使用 MATLAB 实现, 版本为 MATLAB2022b (低版本 MATLAB 也可以). 实现了 ABA 算法。

除了 3D 向量递归牛顿-欧拉算法之外,本章其他的动力学实验代码位于文件夹 spatial_v2 目录下,如图 1 所示。文件中包含了基于 6D 空间向量表示法的逆动力学算法,以及正动力学 ABA 算法。

图 1. MATLAB 工程文件组成

MATLAB 环境配置方式:主页->设置路径->添加并包含子文件夹。

本实验代码部分参考了 featherstone 的文档及代码: http://royfeatherstone.org/spatial/v2/,以及开源代码网站: https://github.com/bhtxy0525/Inverse_Dynamics_with_Recursive_Newton_Euler_Algorithm 的内容。

2. 机器人模型-DH 参数

本次实验根据 DH 参数计算齐次变换矩阵。本次实验使用的是 AUBO-i5 六轴机械臂的 MDH 参数,如表 1。齐次变换矩阵计算方式如公式(1)。需要注意在使用 DH 参数构建动力学模型时,offset 角度需要人为补偿。

表 1 AUBO-i5 MDH 参数表

连杆坐标系	α_{n-1}	a_{n-1}	d_n	$ heta_n$ 限制	offset
-------	----------------	-----------	-------	--------------	--------

0	-	-	-	-	-
1	0	0	0.122	θ ₁ : -175°至 175°	0
2	π /2	0	0.1405	θ 2: -175°至 175°	90°
3	π	0.408	0	θ 3: -175°至 175°	0
4	π	0.376	-0.019	θ 4: -175°至 175°	90°
5	π /2	0	0.1025	θ 5: -175°至 175°	180°
6	π /2	0	0.094	θ 6: -175°至 175°	0

3. 动力学算法验证实验

在教材第四章介绍了多种正逆动力学算法,并在教材中给出了相应的伪代码,请在阅读、运行本实验代码时参考教材中的说明。

本章实验包括 3D 向量递归牛顿-欧拉逆动力学、6D 向量递归牛顿-欧拉逆动力学以及 ABA 正向动力学算法。实验测试包括固定角度测试、动态轨迹测试两种设定。

3.1 固定关节角度测试实验

设定不同的关节角度值,为了简单起见,将关节速度假设为 0,加速度设定为固定值,计算逆动力学方程的关节扭矩输出,然后再采用 ABA 算法计算正动力学进行验证,计算结果如表 2 所示。

逆动力学实验: (A) 3D 向量递归牛顿-欧拉逆动力学运行文件为: *AUBO_i5_RNE(3D).ipynb*, (B) 6D 向量递归牛顿-欧拉逆动力学运行文件为: *SpatialvectorInvDyna.m*。

正向动力学实验: 将 3D 向量递归牛顿-欧拉逆动力学和 6D 向量递归牛顿-欧拉逆动力学估计得到的关节扭矩输入到 ABA 正向动力学算法中进行验证。

77 - F/C/ CT //1/2007 77/4 7/4 7/4 7/4 7/4 7/4 7/4 7/4 7/4 7					
	逆动力学输入	逆动力学输出	ABA 正动力学输入	ABA 正动力学输出	
	(角度,速度,加速度)	(关节扭矩,N.m)	(角度,速度,扭矩)	(关节加速度)	
6-D 向量递	角度: [0, pi/2, 0, pi/2, 0, 0]	[0.0197,	角度: [0, pi/2, 0, pi/2, 0, 0]	[0, 2, 0, 0, 0, 0]	
归牛顿-欧拉	速度: [0,0,0,0,0,0]	-26.5364,	速度: [0,0,0,0,0,0]		
逆动力学	加速度: [0, 2, 0, 0, 0, 0]	7.1862,	扭矩:		
		0.0155,	[0.0197,		
		-0.0030,	-26.5364,		
		0.0002]	7.1862,		

表 2. 固定关节角度的动力学关节扭矩计算实验

		I		
			0.0155,	
			-0.0030,	
			0.0002]	
	角度: [0, -pi/2, 0, -pi/2, 0, 0]	[0.0197,	角度: [0, pi/2, 0, pi/2, 0, 0]	[0, 2, 0, 0, 0, 0]
	速度: [0,0,0,0,0,0]	34.0747,	速度: [0,0,0,0,0,0]	
	加速度: [0,2,0,0,0,0]	-9.7784,	扭矩:	
		0.0155,	[0.0197,	
		-0.0030,	34.0747,	
		0.0002]	-9.7784,	
			0.0155,	
			-0.0030,	
			0.0002]	
3-D 向量递归	角度: [0, pi/2, 0, pi/2, 0, 0]	[0.0181,	角度: [0, pi/2, 0, pi/2, 0, 0]	[-0.007, 2, 0, 0.0014, -
牛顿-欧拉逆	速度: [0,0,0,0,0,0]	-26.5205,	速度: [0,0,0,0,0,0]	0.0009, -0.0014]
动力学	加速度: [0, 2, 0, 0, 0, 0]	7.1811,	扭矩:	
		0.01549,	[0.0122,	
		0.00296,	-26.5205,	
		-0.0002]	7.1811,	
			0.01549,	
			0.00296,	
			-0.0002]	
	角度: [0, -pi/2, 0, -pi/2, 0, 0]	[0.0181,	角度: [0, pi/2, 0, pi/2, 0, 0]	[0.007, 2, 0, 0.0015, -
	速度: [0,0,0,0,0,0]	34.0540,	速度: [0,0,0,0,0,0]	0.0009, -0.0015]
	加速度: [0, 2, 0, 0, 0, 0]	-9.7783,	扭矩:	
		0.01549,	[0.0122,	
		-0.00296,	34.0540,	
		0.0002]	-9.7783,	
			0.01549,	
			0.00296,	
			-0.0002]	

3.2 变化轨迹下的动力学测试

运行 *SpatialVectorInvDyna.m*,将轨迹曲线输入到逆动力学方程中进行计算,在 MATLAB 环境下采用 6D 向量递归牛顿-欧拉逆动力学算法计算扭矩,并和采用 ABA 正向动力学算法的输出进行对比。

在该实验示例中简单给定了关节 2 的轨迹为正弦曲线,使关节 2 跟踪该正弦轨迹,其他关节保持 0 弧度不变,其他关节速度和加速度也假设为 0。采用 6D 向量递归牛顿-欧拉逆动力学算法计算的关节 2 扭矩曲线如图 2 所示,近似为正弦曲线。

图 2. 关节 2 扭矩变化曲线

同样,将上一步得到的关节扭矩数据作为输入,输入到 ABA 正向动力学算法中,可以得到加速度曲线,如图 3 中所示,虚线为 ABA 正向动力学算法计算得到的加速度曲线,实线为输入期望加速度曲线。

图 3. ABA 算法计算关节 2 加速度和期望加速度对比

注:本章实验代码及说明由黄文晖博士撰写与整理