## Problemas, selectivo 1.

Problema 1 Un contenedor cilíndrico de altura 2.24 m y área transversal 1 dm³ contiene helio en estado gaseoso a temperatura de 0 °C y presión  $10\,\mathrm{N/cm^2}$ . En la parte superior del cilindro se libera un pistón de masa 80 kg que se mueve sin fricción. Al liberar el pistón, este se acelera y alcanza una velocidad máxima después de lo cual el pistón comienza a desacelerar. Debido a que el proceso de caída del pistón es muy rápida no hay transferencia de calor entre el gas, el pistón y el contenedor . Usa que  $g=10\,\mathrm{m/s^2}$  y la presión atmosférica es  $P_{atm}=10^5\,\mathrm{N/m^2}$ , los calores específicos del helio es  $c_v=3150\,\mathrm{J/kg\cdot K}$ ,  $c_p=5250\,\mathrm{J/kg\cdot K}$ 

- a) Calcula la presión, el volumen y la temperatura del gas cuando el pistón alcanza su velocidad máxima.
- b) Calcula el trabajo hecho por la gravedad, el helio y la presión atmosférica desde que se libera el pistón hasta el momento en que alcanza la velocidad máxima.
- c) Calcula la velocidad máxima del pistón.

**Problema 2** Un recipiente de 15 m<sup>3</sup> contiene radiación electromagnética en equilibrio con sus paredes a la temperatura de 300 K. Dicha radiación se comporta como un sistema (gas de fotones) con ecuaciones térmica de estado y calórica dadas por:

$$p = \frac{aT^4}{3}, \qquad U = aVT^4 \tag{1}$$

donde  $a = 7.56 \times 10^{-16} \,\mathrm{J \cdot m^{-3} \cdot K^{-4}}$ 

- a) Calcúlese el calor absorbido por el sistema de radiación en un proceso isotermo reversible en el que su volumen se duplica.
- b) Obténgase, por otra parte, la ecuación que rige, en coordenadas (p, V), los procesos adiabáticos reversibles experimentados por dicho sistema.
- c) Representa el ciclo de Carnot, operando entre dos temperaturas  $T_H$  y  $T_C$   $(T_H > T_C)$ , en el espacio de variables p V, para el gas de fotones.
  - d) Calcula la eficiencia del ciclo de Carnot para el gas de fotones y demuestra que el resultado es:

$$\eta = 1 - \frac{T_C}{T_H} \tag{2}$$

Problema 3 Un mol de un gas ideal con capacidad calorífica a volumen constante  $C_V = 5R/2$ , se calienta isocóricamente desde 0 °C hasta 50 °C  $(a \to b)$ ; luego isobáricamente hasta 100 °C  $(b \to c)$ ; en una expansión reduce su temperatura hasta 75 °C  $(c \to d)$ ; finalmente se le enfría isobáricamente hasta su estado inicial  $(d \to a)$ . El ciclo completo significa una absorción de Q = 74.5 kcal (kilocalorías), por parte del sistema.

Determina Q, W,  $\Delta U$  en cada una de las etapas y en todo el ciclo, indica en cada proceso si entra o sale calor al sistema, así como si el sistema hace trabajo el sistema recibe trabajo (de acuerdo a la convención de los signos para el calor y el trabajo que establecimos en clase, dW = -pdV). Especifique que clase de proceso es la tercer etapa  $(c \to d)$ , finalmente calcula el valor de la eficiencia del ciclo.

