Ant Colony Optimization

El comportamiento de busqueda de alimento de las colonias de hormigas se ha estudiado exahustivamente, y la biónica correspondiente a este comportamiento tiene diversas aplicaciones

La comunicación indirecta entre hormigas se realiza mediante feromonas.

Ant Colony Optimization

http://en.wikipedia.org/wiki/Ant_colony_optimization

El **algoritmo de optimización por colonia de hormigas** (ACO) es una metaheurísrica inspirada en el comportamiento de las hormigas cuando buscan en camino más corto entre su nido y una fuente de alimento.

El fenómeno de las feromónas:

- Las hormigas, al moverse, liberan una sustancia química llamada feromona.
- Este rastro funciona como una señal para otras hormigas.
- En un camino más corto, las hormigas van y vienen más rapido, lo que provoca que la concentración de feromónas aumente en esa ruta.
- Las hormigas siguientes tienen mayor probabilidad de elegir el camino con más feromona.
- Las feromonas se evaporan con el tiempo, esto hace que los caminos más largos pierdan su rastro gradualmente.
- Eventualmente, el rastro más fuerte y atractivo será el camino óptimo (el más corto.)

Componentes clave del algoritmo

El algoritmo simula este comportamiento en un entorno computacional (generalmente un grafo, donde los nodos son **estados** y las aristas son **transiciones**).

Componente	Descripción	Función en el algoritmo
Hormigas artificiales	Agentes de software que construyen soluciones al problema recorriendo el grafo.	Constructoras de soluciones. Cada hormiga representa una posible solución o un camino en el grafo.
Rastro de feromona $\left(au_{ij} ight)$	Un valor numérico asociado a cada arista (i,j) del grafo, que representa la "calidad" de esa parte del camino.	Guía de búsqueda. Cuanto mayor es $ au_{ij}$, mayor es la probabilidad de que la hormiga elija esa arista.
Visibilidad $\left(\eta_{ij}\right)$	Información local específica del problema (ej. La distancia o costo de ir del nodo i al j).	Incentivo local. Aumenta el atractivo de un movimiento en función de su convenoiencia imediata (ej, distancia corta).
Probabilidad de transición	La fórmula que usa la hormiga para decidir a que nodo moverse. Combina la influencia de la feromona y la heurística.	Toma de decisión probabilística. Equilibra la exploración (búsqueda de caminos nuevos) y la explotación (seguir caminos conocidos).
Evaporación (ho)	Un factor que reduce el rastro de feromonas en todas las aristas en cada iteración.	Mecanismos de olvido. Evita el estancamiento en soluciones subóptimas y facilita la exploración de nuevas rutas.
Depósito de feromona	La cantidad de feromona que una hormiga añade al camino que acaba de recorrer. Se deposita más feromona en las rutas que resultaron en mejores soluciones.	Refuerzo. Fortalece los rastros de las buenas soluciones encontradas.

Procedimiento general

El algoritmo es iterativo y sigue los siguientes pasos:

1. Inicializacion.

- Se definen los parámetros del algrotimo.
- Se inicializa los rastros de feromonas au_{ij} a un valor pequeñoy uniforme en todas las aristas.

2. Ciclo de construccion de soluciones.

- Todas las hormigas artificiales se colocan en nodos artificiales.
- Cada hormiga, de forma independiente, construye una solución completa (un camino) recorriendo el grafo paso a paso. En cada paso, utiliza la probabilidad de transición (basada en τ_{ij} y η_{ij}) para elegir el siguiente movimiento.

$$P_{ij} = \frac{\tau_{ij}^{\alpha} \eta_{ij}^{\beta}}{\sum_{k \in No \ visitados} \tau_{ik}^{\alpha} \eta_{ik}^{\beta}}$$

3. Evaluación de soluciones.

 Una vez que todas las hormigas han completado su camino, se evalúa la calidad de la solución encontrada por cada hormiga (ej. Longitud total del camino).

4. Acutalización global del rastro de feromonas.

• **Evaporación:** se aplica la tasa de evaporación (ρ) a todas las aristas para disminuir los rastros existentes.

$$\tau_{ij} \leftarrow (1 - \rho) \cdot \tau_{ij}$$

Depósito: las hormigas que encontraron las mejores soluciones depositan feromona en las aristas de su camino. El depósito es inversamente proporcional al costo del camino (mejor camino = mas depóstio).

$$\tau_{ij} \leftarrow \tau_{ij} + \sum_{k=1}^{m} \Delta \tau_{ij}^{k}$$

Donde m es el número de hormigas y $\Delta \tau_{ij}^k$ es la cantidad de feromona depositada por la hormiga k.

5. Criterio de paro.

• Los pasos 2 a 4 se repiten hasta que se cumple un criterio de paro (se alcanza un número máximo de iteraciones o la mejor solución no mejora durante un tiempo).

El ACO es particularmente efectivo en problemas de optimización combinatoria donde se busca la mejor secuencia de pasos:

- Problema de viajante (TSP): el ejemplo clásico donde se busca la ruta más corta que visita un conjunto de ciudades exactamente una vez y regresa al punto de partida.
- Enrutamiento de vehículos: Planificación de rutas de entrega o recogida.
- Asignación de tareas y horarios: Generación de horarios óptimos para clases o proyectos.
- Optimización de redes: Encontrar rutas de menor costo o latencia en redes de comunicación.

Ejemplo. Determinar el camino mas corto entre los puntos 1 y 4.

Camino	Costo	Visibilidad $(oldsymbol{\eta})$	τ
1-2	5	1/5	0.1
1-3	3.1	1/3.1	0.1
1-6	5.2	1/5.2	0.1
2-7	5.2	1/5.2	0.1
2-3	4.9	1/4.9	0.1
6-3	3.2	1/3.2	0.1
6-5	4.7	1/4.7	0.1
3-7	3	1/3	0.1
3-5	6	1/6	0.1
5-4	5.5	1/5.5	0.1
7-4	4.8	1/4.8	0.1

Desde 1			
Caminos	$ au \cdot \eta$	P_{ij}	
1-2	0.0200	0.2801	
1-3	0.0322	0.4509	
1-6	0.0192	0.2689	
Σ	0.0714		

$$P_{ij} = \frac{\tau \cdot \eta}{\sum \tau \cdot \eta}$$

Camino	Costo	Visibilidad $(\pmb{\eta})$	τ
1-2	5	1/5	0.1
1-3	3.1	1/3.1	0.1
1-6	5.2	1/5.2	0.1
2-7	5.2	1/5.2	0.1
2-3	4.9	1/4.9	0.1
6-3	3.2	1/3.2	0.1
6-5	4.7	1/4.7	0.1
3-7	3	1/3	0.1
3-5	6	1/6	0.1
5-4	5.5	1/5.5	0.1
7-4	4.8	1/4.8	0.1

Desde 1			
Caminos	$ au \cdot \eta$	P_{ij}	
1-2	0.0200	0.2801	
1-3	0.0322	0.4509	
1-6	0.0192	0.2689	
Σ	0.0714		

$$P_{ij} = \frac{\tau \cdot \eta}{\sum \tau \cdot \eta}$$

Generemos un número aleatorio:

Camino	Costo	Visibilidad $(\pmb{\eta})$	τ
1-2	5	1/5	0.1
1-3	3.1	1/3.1	0.1
1-6	5.2	1/5.2	0.1
2-7	5.2	1/5.2	0.1
2-3	4.9	1/4.9	0.1
6-3	3.2	1/3.2	0.1
6-5	4.7	1/4.7	0.1
3-7	3	1/3	0.1
3-5	6	1/6	0.1
5-4	5.5	1/5.5	0.1
7-4	4.8	1/4.8	0.1

Entonces se seguirá el camino de 1 a 3

Desde 3			
Caminos	$ au \cdot \eta$	P_{ij}	
2-3	0.0204	0.1990	
6-3	0.0312	0.3073	
3-7	0.0333	0.3280	
3-5	0.0166	0.1635	
Σ	0.1015		

$$P_{ij} = \frac{\tau \cdot \eta}{\sum \tau \cdot \eta}$$

Camino	Costo	Visibilidad $(\pmb{\eta})$	τ
1-2	5	1/5	0.1
1-3	3.1	1/3.1	0.1
1-6	5.2	1/5.2	0.1
2-7	5.2	1/5.2	0.1
2-3	4.9	1/4.9	0.1
6-3	3.2	1/3.2	0.1
6-5	4.7	1/4.7	0.1
3-7	3	1/3	0.1
3-5	6	1/6	0.1
5-4	5.5	1/5.5	0.1
7-4	4.8	1/4.8	0.1

Desde 3		
Caminos	$ au \cdot \eta$	P_{ij}
2-3	0.0204	0.1990
6-3	0.0312	0.3073
3-7	0.0333	0.3280
3-5	0.0166	0.1635
Σ	0.1015	

$$P_{ij} = \frac{\tau \cdot \eta}{\sum \tau \cdot \eta}$$

Generemos un número aleatorio:

Camino	Costo	Visibilidad $(\pmb{\eta})$	τ
1-2	5	1/5	0.1
1-3	3.1	1/3.1	0.1
1-6	5.2	1/5.2	0.1
2-7	5.2	1/5.2	0.1
2-3	4.9	1/4.9	0.1
6-3	3.2	1/3.2	0.1
6-5	4.7	1/4.7	0.1
3-7	3	1/3	0.1
3-5	6	1/6	0.1
5-4	5.5	1/5.5	0.1
7-4	4.8	1/4.8	0.1

Entonces se seguirá el camino de 3 a 6

Desde 6			
Caminos	$ au \cdot \eta$	P_{ij}	
1-6	0.0192	0.4752	
6-5	0.0212	0.5247	
Σ	0.0404		

$$P_{ij} = \frac{\tau \cdot \eta}{\sum \tau \cdot \eta}$$

Camino	Costo	Visibilidad $(oldsymbol{\eta})$	τ
1-2	5	1/5	0.1
1-3	3.1	1/3.1	0.1
1-6	5.2	1/5.2	0.1
2-7	5.2	1/5.2	0.1
2-3	4.9	1/4.9	0.1
6-3	3.2	1/3.2	0.1
6-5	4.7	1/4.7	0.1
3-7	3	1/3	0.1
3-5	6	1/6	0.1
5-4	5.5	1/5.5	0.1
7-4	4.8	1/4.8	0.1

Desde 6		
Caminos	$ au \cdot \eta$	P_{ij}
1-6	0.0192	0.4752
6-5	0.0212	0.5247
Σ	0.0404	

$$P_{ij} = \frac{\tau \cdot \eta}{\sum \tau \cdot \eta}$$

Generemos un número aleatorio:

Camino	Costo	Visibilidad $(\pmb{\eta})$	τ
1-2	5	1/5	0.1
1-3	3.1	1/3.1	0.1
1-6	5.2	1/5.2	0.1
2-7	5.2	1/5.2	0.1
2-3	4.9	1/4.9	0.1
6-3	3.2	1/3.2	0.1
6-5	4.7	1/4.7	0.1
3-7	3	1/3	0.1
3-5	6	1/6	0.1
5-4	5.5	1/5.5	0.1
7-4	4.8	1/4.8	0.1

Entonces se seguirá el camino de 6 a 5

Desde 5		
Caminos	$ au \cdot \eta$	P_{ij}
3-5	0.0166	0.4783
5-4	0.0181	0.5216
Σ	0.0347	

$$P_{ij} = \frac{\tau \cdot \eta}{\sum \tau \cdot \eta}$$

Camino	Costo	Visibilidad $(\pmb{\eta})$	τ
1-2	5	1/5	0.1
1-3	3.1	1/3.1	0.1
1-6	5.2	1/5.2	0.1
2-7	5.2	1/5.2	0.1
2-3	4.9	1/4.9	0.1
6-3	3.2	1/3.2	0.1
6-5	4.7	1/4.7	0.1
3-7	3	1/3	0.1
3-5	6	1/6	0.1
5-4	5.5	1/5.5	0.1
7-4	4.8	1/4.8	0.1

Desde 5		
Caminos	$ au \cdot \eta$	P_{ij}
3-5	0.0166	0.4783
5-4	0.0181	0.5216
Σ	0.0347	

$$P_{ij} = \frac{\tau \cdot \eta}{\sum \tau \cdot \eta}$$

Generemos un número aleatorio:

Camino	Costo	Visibilidad $(\pmb{\eta})$	τ
1-2	5	1/5	0.1
1-3	3.1	1/3.1	0.1
1-6	5.2	1/5.2	0.1
2-7	5.2	1/5.2	0.1
2-3	4.9	1/4.9	0.1
6-3	3.2	1/3.2	0.1
6-5	4.7	1/4.7	0.1
3-7	3	1/3	0.1
3-5	6	1/6	0.1
5-4	5.5	1/5.5	0.1
7-4	4.8	1/4.8	0.1

Entonces se seguirá el camino de 5 a 4

Desde 1Caminos $\tau \cdot \eta$ P_{ij} 1-20.02000.28011-30.03220.45091-60.01920.2689Σ**0.0714**

Desde 3		
Caminos	$ au \cdot \eta$	P_{ij}
2-3	0.0204	0.1990
6-3	0.0312	0.3073
3-7	0.0333	0.3280
3-5	0.0166	0.1635
Σ	0.1015	

Desde 5		
Caminos	$ au \cdot \eta$	P_{ij}
3-5	0.0166	0.4783
5-4	0.0181	0.5216
Σ	0.0347	

El cálculo de las dos primeras hormigas corresponde a la primer iteración

HORMIGA 1

HORMIGA 2

CAMINO HORMIGA 1: 1-3-6-5-4

CAMINO HORMIGA 2: 1 - 3 - 5 - 4

$$\tau_{ij} = (1 - \rho)\tau_{ij} + \sum \Delta \tau_{ij}^k$$

ho: tasa de evaporación

Aporte de feromonas de la hormiga k al camino ij

$$\Delta \tau_{ij}^{k} = \begin{cases} \frac{Q}{L_{k}} & \text{Si se transit\'o ij} \\ 0 & \text{Si no se transit\'o ij} \end{cases}$$

Q: aprendizaje

 L_k : Costo del camino por hormiga

Camino	$(1-\rho)\tau_{ij}$	Δau_{ij}^1	Δau_{ij}^2	τ
1-2				
1-3				
1-6				
2-7				
2-3				
6-3				
6-5				
3-7				
3-5				
5-4				
7-4				

$$\tau_{ij} = (1 - \rho)\tau_{ij} + \sum \Delta \tau_{ij}^k$$

 ρ : tasa de evaporación **0.01**

Aporte de feromonas de la hormiga k al camino ij

$$\Delta \tau_{ij}^{k} = \begin{cases} \frac{Q}{L_{k}} & \text{Si se transit\'o ij} \\ 0 & \text{Si no se transit\'o ij} \end{cases}$$

Q: aprendizaje

 L_k : Costo del camino por hormiga

Camino	$(1-\rho)\tau_{ij}$	Δau_{ij}^1	Δau_{ij}^2	τ
1-2	0.099	0	0	0.099
1-3	0.099	0.0606	0.0685	0.2281
1-6	0.099	0	0	0.099
2-7	0.099	0	0	0.099
2-3	0.099	0	0	0.099
6-3	0.099	0.0606	0	0.1596
6-5	0.099	0.0606	0	0.1596
3-7	0.099	0	0	0.099
3-5	0.099	0	0.0685	0.1675
5-4	0.099	0.0606	0.0685	0.2281
7-4	0.099	0	0	0.099