2021年11月19日

离散数学

吴天阳 2204210460

47. 证明: $\langle H_1H_2, * \rangle$ 是 $\langle G, * \rangle$ 的子群 $\iff H_1H_2 = H_2H_1$ 。

证明. \Rightarrow : 由于 H_1H_2 为 G 的子群。

 $\forall h_1*h_2 \in H_1H_2$,有 $(h_1*h_2)^{-1} \in H_1H_2$,则 $\exists a_1*a_2 \in H_1H_2$,使得 $a_1*a_2 = (h_1h_2)^{-1}$,故

$$h_1 * h_2 = (a_1 * a_2)^{-1} = a_2^{-1} * a_1^{-1} \in H_2 H_1$$

 $\Rightarrow H_1 H_2 \subset H_2 H_1$

 $\forall h_2 * h_1 \in H_2H_1$, $\Rightarrow H_1 \cap H_2 \cap H_1 \cap H_2 \cap H_1 \cap H_2 \cap H_1 \cap H_2 \cap H_$

$$(h_1^{-1} * h_2^{-1})^{-1} \in H_1 H_2$$

 $\Rightarrow h_2 * h_1 \in H_1 H_2$
 $\Rightarrow H_2 H_1 \subset H_1 H_2$

综上, $H_1H_2 = H_2H_1$ 。

$$a_1 * a_2 * (b_1 * b_2)^{-1} = a_1 * c_1 * c_2 \in H_1 H_2$$

所以 $\langle H_1H_2, * \rangle$ 是 $\langle G, * \rangle$ 的子群。

55.

证明. 单射:

$$f(x) = f(y)$$

$$\Rightarrow a * x * a^{-1} = a * y * a^{-1}$$

$$\Rightarrow a^{-1} * a * x * a^{-1} * a = a^{-1} * a * y * a^{-1} * a$$

$$\Rightarrow x = y$$

满射: $\forall x \in G$, 有

$$f(a^{-1} * x * a) = a * (a^{-1} * x * a) * a^{-1} = x$$

保运算: $\forall x, y \in G$, 有

$$f(xy) = a * x * y * a^{-1}$$

$$= a * x * a^{-1} * a * y * a^{-1}$$

$$= f(x) * f(y)$$

综上, $f \in \langle G, * \rangle$ 上的自同构函数。

57.

证明. 自反性: $\forall a \in G$, 有

$$e * a * e^{-1} = a \Rightarrow (a, a) \in R$$

对称性: $\forall a,b \in G$, 若 $(a,b) \in R$, 则 $\exists x \in G$, 使得 $b=x*a*x^{-1}$, 则 $a=x^{-1}*b*x$, 故 $(b,a) \in R$ 。

传递性: $\forall a,b,c \in G$, 若 $(a,b),(b,c) \in R$, 则 $\exists x,y \in G$, 使得 $b=x*a*x^{-1},c=y*b*y^{-1}$, 则

$$c = y * (x * a * x^{-1}) * y^{-1} = (y * x) * a * (y * x)^{-1}$$

故 $(a,c) \in R$ 。

综上, $R \in G$ 上的等价关系。

59.

证明. 先证明 ⟨ℤ,⊕⟩ 是交换群:

- 1. $a \oplus b = a + b 1 \in \mathbb{Z}$, 则 \oplus 是 \mathbb{Z} 上的二元运算。
- 2. 结合律:

$$a \oplus b \oplus c = (a+b-1) \oplus c$$

$$= a+b-1+c-1$$

$$= a+(b+c-1)-1$$

$$= a+(b\oplus c)-1$$

$$= a\oplus (b\oplus c)$$

3. 左幺元: $\forall a \in \mathbb{Z}$, 则 $1 \oplus a = 1 + a - 1 = a$, 所以 1 为 $\langle \mathbb{Z}, \oplus \rangle$ 的左幺元。

4. 左逆元: $\forall a \in \mathbb{Z}$, 则 $(-a+2) \oplus a = -a+2+a-1=1$, 所以 a 的左逆元为 -a+2。

5. 交換律: $a \oplus b = a + b - 1 = b + a - 1 = b \oplus a$ 。

再证明〈ℤ,⊗〉是含幺半群:

- 1. $a \otimes b = a + b ab \in \mathbb{Z}$, 则 \otimes 是 \mathbb{Z} 上的二元运算。
- 2. 结合律:

$$a \otimes b \otimes c = (a+b-ab) \otimes c$$

$$= (a+b-ab) + c - (a+b-ab)c$$

$$= a+b-ab+c-ac-bc+abc$$

$$= a+(b+c-bc) - a(b+c-bc)$$

$$= a \otimes (b+c-bc)$$

$$= a \otimes (b \otimes c)$$

3. 幺元:

$$0 \otimes b = 0 + b - 0 \cdot b = b$$
$$b \otimes 0 = b + 0 - b \cdot 0 = b$$

所以, 0 是 $\langle \mathbb{Z}, \otimes \rangle$ 上的幺元。

4. 交換律: $a \otimes b = a + b - ab = b + a - ba = b \otimes a$ 。

最后证明 \otimes 对 \oplus 满足分配律, $\forall a,b,c \in \mathbb{Z}$, 有

$$a \otimes (b \oplus c) = a \otimes (b+c-1)$$

$$= a+b+c-1-a(b+c-1)$$

$$= (a+b-ab)+(a+c-ac)-1$$

$$= (a+b-ab) \oplus (a+c-ac)$$

$$= (a \otimes b) \oplus (a \otimes c)$$

$$(b \oplus c) \otimes a = (b+c-1) \otimes a$$

$$= (b+c-1) + a - (b+c-1)a$$

$$= (b+a-ba) + (c+a-ca) - 1$$

$$= (b+a-ba) \oplus (c+a-ca)$$

$$= (b \otimes a) \oplus (c \otimes a)$$

综上 $,\langle \mathbb{Z}, \oplus, \otimes \rangle$ 是有幺元的交换环。

60. 解答.

- (1). 不是,因为 1 \notin X,所以 × 运算没有幺元,故 $\langle X, +, \times \rangle$ 不是整环。
- (2). 不是,因为 $0 \notin X$,所以 + 运算没有幺元(也就是环没有零元),故 $\langle X, +, \times \rangle$ 不是整环。

- (3). 不是, 因为 $1 \in X$, 但是 $-1 \notin X$, 所以 1 在 + 的运算中没有负元, 故 $\langle X, +, \times \rangle$ 不是整环。
- (4). 不是,因为 $\sqrt[4]{5} \in X$,但是 $\sqrt[4]{5} \times \sqrt[4]{5} = \sqrt{5} \notin X$,所以 × 不是 X 上的二元运算,故 $\langle X, +, \times \rangle$ 不是整环。
- (5). 是, 容易验证 +, × 满足结合律、交换律, 0 是环的零元, 1 是环的幺元, $a+b\sqrt{3} \in X$,则 $-a-b\sqrt{3}$ 是其负元, $\frac{1}{a^2-3b^2}(a-b\sqrt{3})$ 是其逆元。

下面证明 +, × 满足封闭性, 结合律:

$$a + b\sqrt{3} + c + d\sqrt{3} = (a+c) + (b+d)\sqrt{3}$$

$$(a+b\sqrt{3})(c+d\sqrt{3}) = (ac+3bd) + (ad+bc)\sqrt{3}$$

$$(a+b\sqrt{3})(c+d\sqrt{3}+u+v\sqrt{3}) = ac + au + 3(bd+bv) + (ad+av+bc+bu)\sqrt{3}$$

$$= (ac+3bd+(ad+bc)\sqrt{3}) + (au+3bv+(av+bu)\sqrt{3})$$

$$= (a+b\sqrt{3})(c+d\sqrt{3}) + (a+b\sqrt{3})(u+v\sqrt{3})$$

假设 $a+b\sqrt{3}$ 没有关于 × 运算的逆元,也就是 $a^2-3b^2=0\Rightarrow \frac{a}{b}=\sqrt{3}$,由于 $\sqrt{3}$ 是无理数,不能表示为既约分数的形式,矛盾,则 X 中每个元素都有逆元,所以满足消去律,故 × 运算无零因子。

综上, $\langle X, +, \times \rangle$ 是整环。

61.

证明. (1). 由于 $\forall x \in R$, 有 $x \otimes x = x$, 所以

$$(x \oplus x) \otimes (x \oplus x) = x \oplus x$$

$$\Rightarrow (x \otimes x) \oplus (x \otimes x) \oplus (x \otimes x) \oplus (x \otimes x) = x \oplus x$$

$$\Rightarrow x \oplus x \oplus x \oplus x = x \oplus x$$

$$\Rightarrow x \oplus x = 0$$

(2). $\forall a,b \in R$,则

$$(a \oplus b) \otimes (a \oplus b) = a \oplus b$$
$$(a \otimes a) \oplus (a \otimes b) \oplus (b \otimes a) \oplus (b \otimes b) = a \oplus b$$
$$a \oplus (a \otimes b) \oplus (b \otimes a) \oplus b = a \oplus b$$
$$(a \otimes b) \oplus (b \otimes a) = 0$$

由于 $x \oplus x = 0$,所以 x 关于 \oplus 的逆元为 x,由于逆元的唯一性,所以 $a \otimes b = b \otimes a$,故 $\langle R, \oplus, \otimes \rangle$ 是交换环。

62. 解答. 不难验证 \oplus , \otimes 都具有封闭性。

关于 ⊕ 运算:

1. 结合律:

$$(x_1, y_1) \oplus (x_2, y_2) \oplus (x_3, y_3) = (x_1 + x_2, y_1 + y_2) \oplus (x_3, y_3)$$
$$= (x_1 + x_2 + x_3, y_1 + y_2 + y_3)$$
$$= (x_1, y_1) \oplus (x_2 + x_3, y_2 + y_3)$$
$$= (x_1, y_1) \oplus ((x_2, y_2) \oplus (x_3, y_3))$$

- 2. 左幺元: $(0,0) \oplus (x,y) = (0+x,0+y) = (x,y)$ 。
- 3. 左逆元: $(-x, -y) \oplus (x, y) = (-x + x, -y + y) = (0, 0)$.
- 4. 交換律: $(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2) = (x_2 + x_1, y_2 + y_1) = (x_2, y_2) \oplus (x_1, y_1)$ 。 综上, $\langle X, \oplus \rangle$ 构成交换群。

关于 ⊗ 运算:

1. 结合律:

$$(x_1, y_1) \otimes (x_2, y_2) \otimes (x_3, y_3) = (x_1 x_2, y_1 y_2) \otimes (x_3, y_3)$$

$$= (x_1 x_2 x_3, y_1 y_2 y_3)$$

$$= (x_1, y_1) \otimes (x_2 x_3, y_2 y_3)$$

$$= (x_1, y_1) \otimes ((x_2, y_2) \otimes (x_3, y_3))$$

2. 幺元:

$$(1,1) \otimes (x,y) = (1 \cdot x, 1 \cdot y) = (x,y)$$

 $(x,y) \otimes (1,1) = (x \cdot 1, y \cdot 1) = (x,y)$

所以(1,1)是 \otimes 运算的幺元。

3. 分配律:

$$(x_1, y_1) \otimes ((x_2, y_2) \oplus (x_3, y_3)) = (x_1, y_1) \otimes (x_2 + x_3, y_2 + y_3)$$

$$= (x_1(x_2 + x_3), y_1(y_2 + y_3))$$

$$= (x_1x_2 + x_1x_3, y_1y_2 + y_1y_3)$$

$$= (x_1x_2, y_1y_2) \oplus (x_1x_3, y_1y_3)$$

$$= ((x_1, y_1) \otimes (x_2, y_2)) \oplus ((x_1, y_1) \otimes (x_3, y_3))$$

所以, $\langle X, \oplus, \otimes \rangle$ 构成环, 且 \otimes 运算有幺元 (1,1)。

有零因子: $(1,0),(0,1) \in X$, 且 $(1,0) \neq (0,0),(0,1) \neq (0,0)$, 但

$$(1,0)\otimes(0,1)=(1\cdot 0,0\cdot 1)=(0,0)$$

则 ⊗ 运算有零因子。

逆元: $\forall (x,y) \in X, \ x \neq 0$ 且 $y \neq 0$ 时, (x,y) 有逆元, 只需证明左逆元, 因为 \otimes 运算具有幺元,

$$(\frac{1}{x}, \frac{1}{y}) \otimes (x, y) = (\frac{1}{x} \cdot x, \frac{1}{y} \cdot y) = (1, 1)$$

则 $(\frac{1}{x},\frac{1}{y})$ 为 (x,y) 的逆元,且当 x=0 或 y=0 时,(x,y) 不存在逆元。