05.12.03

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年,月日 Date of Application:

2002年12月 5日

出願番号 Application Number:

特願2002-354342

[ST. 10/C]:

[JP2002-354342]

出 願 人 Applicant(s):

株式会社カルディオ

RECEIVED 0 3 FEB 2004

WIPO PCT

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2004年 1月15日

特許庁長官 Commissioner, Japan Patent Office 今井康

BEST AVAILABLE COPY

【書類名】 特許願

【提出日】 平成14年12月 5日

【あて先】 特許庁長官 殿

【国際特許分類】 A61P

【発明者】

【住所又は居所】 大阪府吹田市山田丘2-2 大阪大学大学院医学系研究

科E1内

【氏名】 松田 暉

【発明者】

【住所又は居所】 大阪府吹田市山田丘2-2 大阪大学大学院医学系研究

科E1内

【氏名】 澤 芳樹

【発明者】

【住所又は居所】 大阪府大阪市淀川区西宮原1-8-41-911 株式

会社カルディオ内

【氏名】 竹谷 哲

【発明者】

【住所又は居所】 大阪府吹田市山田丘2-2 大阪大学大学院医学系研究

科E1内

【氏名】 盤井 成光

【特許出願人】

【識別番号】 502100138

【氏名又は名称】 株式会社カルディオ

【代理人】

【識別番号】 100078282

【弁理士】

【氏名又は名称】 山本 秀策

【選任した代理人】

【識別番号】 100062409

【弁理士】

【氏名又は名称】 安村 高明

【選任した代理人】

【識別番号】 100113413

【弁理士】

【氏名又は名称】 森下 夏樹

【手数料の表示】

【予納台帳番号】 001878

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 0210100

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 生体適合性組織片およびその利用

【特許請求の範囲】

【請求項1】 生体適合性組織片であって、

- A) 生体分子;および
- B)支持体、

を含む、生体適合性組織片(explant)。

【請求項2】 前記生体分子は、タンパク質を含む、請求項1に記載の生体 適合性組織片。

【請求項3】 前記生体分子は、細胞生理活性物質を含む、請求項1に記載の生体適合性組織片。

【請求項4】 前記生体分子は、細胞接着分子を含む、請求項1に記載の生体適合性組織片。

【請求項5】 前記生体分子は、細胞外マトリクスを含む、請求項1に記載の生体適合性組織片。

【請求項6】 前記生体分子は、細胞接着性タンパク質を含む、請求項1に 記載の生体適合性組織片。

【請求項7】 前記生体分子は、インテグリンを含む、請求項1に記載の生体適合性組織片。

【請求項8】 前記生体分子は、コラーゲンを含む、請求項1に記載の生体 適合性組織片。

【請求項9】 前記生体分子は、繊維形成コラーゲンまたは基底膜コラーゲンを含む、請求項1に記載の生体適合性組織片。

【請求項10】 前記生体分子は、繊維形成コラーゲンおよび基底膜コラーゲンを含む、請求項1に記載の生体適合性組織片。

【請求項11】 前記生体分子は、コラーゲンI型またはIV型を含む、請求項1に記載の生体適合性組織片。

【請求項12】 前記生体分子は、コラーゲンI型およびIV型を含む、請求項1に記載の生体適合性組織片。

【請求項13】 前記支持体は、膜状である、請求項1に記載の生体適合性 組織片。

【請求項14】 前記支持体は、管状である、請求項1に記載の生体適合性 組織片。

【請求項15】 前記支持体は、弁状である、請求項1に記載の生体適合性 組織片。

【請求項16】 前記支持体は、生分解性ポリマーを含む、請求項1に記載の生体適合性組織片。

【請求項17】 前記支持体は、ポリグリコール酸(PGA)、ポリ乳酸(PLA)およびポリカプロラクタム(PCLA)ならびにそれらの共重合体からなる群より選択される少なくとも1成分を含む、請求項1に記載の生体適合性組織片。

【請求項18】 前記支持体は、グリコール酸と乳酸との比率が約90:約10~約80:約20であるPLGAを含む、請求項1に記載の生体適合性組織片。

【請求項19】 前記支持体は、細胞接着分子を含む、請求項1に記載の生体適合性組織片。

【請求項20】 前記支持体は、タンパク質を含む、請求項1に記載の生体 適合性組織片。

【請求項21】 前記支持体は、メッシュ状およびスポンジ状である、請求項1に記載の生体適合性組織片。

【請求項22】 前記支持体は、少なくとも約0.2 mm~約1.0 mm厚である、請求項1に記載の生体適合性組織片。

【請求項23】 前記支持体は、少なくとも約20N以上の強度を有する、 請求項1に記載の生体適合性組織片。

【請求項24】 前記支持体は、少なくとも約50N以上の強度を有する、 請求項1に記載の生体適合性組織片。

【請求項25】 前記支持体は、前記生体分子でコーティングされている、 請求項1に記載の生体適合性組織片。

【請求項26】 前記支持体は、隙間が前記生体分子で埋められている、請求項1に記載の生体適合性組織片。

【請求項27】 前記生体分子および前記支持体は、架橋可能な分子を含み、該架橋可能な分子は、該支持体と該生体分子との間で架橋処理されている、請求項1に記載の生体適合性組織片。

【請求項28】 前記支持体は、前記生体分子と同じ物質を含む、請求項1 に記載の生体適合性組織片。

【請求項29】 さらに、細胞が付着した、請求項1に記載の生体適合性組織片。

【請求項30】 体内への移植用である、請求項1に記載の生体適合性組織 片。

【請求項31】 前記体内における移植されるべき部位は、心臓弁、血管、心膜、心臓隔壁、心内導管、心外導管、硬膜、皮膚、骨、軟部組織および気管からなる群より選択される、請求項26に記載の生体適合性組織片。

【請求項32】 滅菌されている、請求項1に記載の生体適合性組織片。

【請求項33】 免疫抑制剤をさらに含む、請求項1に記載の生体適合性組織片。

【請求項34】 さらなる医薬成分をさらに含む、請求項1に記載の生体適合性組織片。

【請求項35】 前記生体分子は、前記移植を目的とする生体に由来する、 請求項30に記載の生体適合性組織片。

【請求項36】 請求項1に記載の生体適合性組織片を含む、医薬。

【請求項37】 請求項1に記載の生体適合性組織片および該組織片の使用 法を示した指示書を含む、医薬キットであって、該指示書には、所定の部位に該 組織片を投与することが記載される、医薬キット。

【請求項38】 前記所定の部位は、血管内皮、血管平滑筋、弾性線維、骨格筋、心筋、骨芽細胞、神経細胞および膠原線維からなる群より選択される、請求項37に記載の医薬キット。

【請求項39】 前記指示書には、前記生体適合性組織片を、移植を目的と

する臓器または組織の少なくとも一部が残存するように移植することが記載される、請求項37に記載の医薬キット。

【請求項40】 体内における損傷部位を処置する方法であって、

- A) 該損傷部位の一部または全部に、
 - A-1) 生体分子; および
 - A-2) 支持体、

を含む、生体適合性組織片を移植する工程、

を包含する、方法。

【請求項41】 前記移植工程において、前記生体適合性組織片は、前記損傷部位が属する臓器または組織の少なくとも一部が残存するように移植される、請求項40に記載の方法。

【請求項42】 細胞生理活性物質を投与する工程をさらに包含する、請求項40に記載の方法。

【請求項43】 前記細胞生理活性物質は、顆粒球マクロファージコロニー刺激因子(GM-CSF)、マクロファージコロニー刺激因子(M-CSF)、顆粒球コロニー刺激因子(G-CSF)、multi-CSF(IL-3)、白血病抑制因子(LIF)、c-kityがド(SCF)、免疫グロブリンファミリーのメンバー、CD2、CD4、CD8、CD44、コラーゲン、エラスチン、プロテオグリカン、グリコサミノグリカン、フィブロネクチン、ラミニン、シンデカン、アグリカン、インテグリンファミリーのメンバー、インテグリンα鎖、インテグリンβ鎖、フィブロネクチン、ラミニン、ビトロネクチン、セレクチン、カドヘリン、ICM1、ICAM2、VCAM1、血小板由来増殖因子(PDGF)、表皮増殖因子(EGF)、線維芽細胞増殖因子(FGF)、肝細胞増殖因子(HGF)および血管内皮増殖因子(VEGF)からなる群より選択される、請求項42に記載の方法。

【請求項44】 免疫反応を抑制する処置を行う工程をさらに包含する、請求項40に記載の方法。

【請求項45】 体内における臓器または組織を強化する方法であって、

A) 該臓器または組織の一部または全部に、

- A-1) 生体分子; および
- A-2) 支持体、

を含む、生体適合性組織片を移植する工程、

を包含する、方法。

【請求項46】 臓器または組織を生産または再生する方法であって、

- A) 目的とする臓器または組織の少なくとも一部を含む生体において、該臓器 または組織に、
 - A-1) 生体分子; および
 - A-2) 支持体、

を含む、生体適合性組織片を移植する工程;ならびに

B) 該臓器または組織を該生体内で培養する工程、

を包含する、方法。

【請求項47】 請求項1に記載の生体適合性組織片の、体内における損傷 部位を処置するための使用。

【請求項48】 請求項1に記載の生体適合性組織片の、体内における臓器 または組織を強化するための使用。

【請求項49】 請求項1に記載の生体適合性組織片の、体内における損傷 部位を処置するための医薬を製造するための使用。

【請求項50】 請求項1に記載の生体適合性組織片の、体内における臓器 または組織を強化するための医薬を製造するための使用。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、生体適合性組織片、そのような組織片の製造および利用のための方法、ならびに関連する医薬および治療方法に関する。

[0002]

【従来の技術】

臓器(例えば、心臓、血管など)の移植に外来性組織を使用する際の主な障害は免疫拒絶反応である。同種異系移植片(または同種移植片、allograf

t)および異種移植片(xenograft)で起こる変化が最初に記述されたのは90年以上前のことである(非特許文献 $1\sim2$ および $4\sim5$)。動脈移植片の拒絶反応は、病理学的には移植片の拡張(破裂に至る)または閉塞のいずれかを招く。前者の場合、細胞外マトリクスの分解により生じ、他方で、後者は血管内細胞の増殖により起こるといわれている(非特許文献 6)。

[0003]

従来、これらの物質の拒絶反応の軽減を目指して2つの戦略が採用されてきた。ひとつは、宿主の免疫反応を低下させた(非特許文献7;および非特許文献8)。もうひとつは主に架橋結合により同種移植片または異種移植片の抗原性の低下を図った(非特許文献9;および非特許文献10)。細胞外マトリクスの架橋結合は移植片の抗原性を低下させるが、生体工学的機能(非特許文献11;および非特許文献12)が変化し、無機質化に感受性を示すようになる(非特許文献13)。

[0004]

心血管修復用パッチとしては従来からグルタールアルデヒド処理した異種心膜や自己心膜を用いているが、石灰化・血栓形成・易感染性・耐久性等解決されなければならない問題がある。これらの問題を解決するために組織工学を応用して、より生体適合性の高い心血管修復用人工パッチ(Tissue Engineered Bioprosthetic Patch)が開発されつつある。

[0005]

移植片に細胞をコーティングしたものを移植する試みも行われている(非特許 文献 3 および 1 4)。しかし、細胞がうまくコーティングされないという問題、 細胞を使うことによる免疫学的な問題などがあることから、作製および取扱いが 容易で、免疫学的な問題のない人工パッチの開発が急がれている。細胞がうまく コーティングされないという問題、細胞を使うことによる細胞の採取方法、細胞 の採取部位の問題、免疫学的な問題、生体外で培養するため感染症の問題、施設 環境の問題などがあることから、作製および取扱いが容易である人工パッチの開 発が急がれている。

[0006]

また、臓器または組織の損傷を処置する場合、移植により修復された組織また は臓器が自己化(移植後に成長する性質など、本来の組織または臓器のように振 舞うこと)が望ましいとされているが、そのような自己化を実現するような技術 はいまだ実現されていない。

[0007]

【非特許文献1】

Carrel A., 1907, J Exp Med 9:226-8 【非特許文献2】

Carrel A., 1912., J Exp Med 9:389-92 【非特許文献3】

新岡俊治、今井康晴、瀬尾和宏ほか;テッシュエンジニアリングによる心血管 材料の開発、応用。日心臓血管外会誌2000;29:38

【非特許文献4】

Calne RY., 1970, Transplant Proc 2:55

【非特許文献5】

Auchincloss 1988, Transplantation 46:1

【非特許文献6】

Uretsky BF, Mulari S, Reddy S, et al., 1987, Circulation 76:827-34

【非特許文献7】

Schmitz-Rixen T, Megerman J, Colvin R B, Williams AM, Abbot W., 1988, J Vasc S urg 7:82-92

【非特許文献8】

Plissonnier D, et al., 1993, Arteriosc lerosis Thromb 13:112-9

【非特許文献9】

Rosenberg N, et al., 1956, Surg Forum 6:242-6

【非特許文献10】

Dumont C, Pissonnier D, Michel JB., 19 93, J Surg Res 54:61-69

【非特許文献11】

Cosgrove DM, Lytle BW, Golding CC, et al., 1983, J Thorac Cardiovasc Surgery 64:172-176

【非特許文献12】

Broom N, Christie GW., 1982, In:Cohn L H, Gallucci V, editors. Cardiac bioprostheses:Proceedings of the Second International Symposium. New York:York Medical Books Pages 476-491

【非特許文献13】

Schoen FJ, Levy RJ, Piehler HR., Cardiovasc Pathology 1992;1:29-52

【非特許文献14】

J Thorac Cardiovasc Surg 1998;115;5

[0008]

【発明が解決しようとする課題】

従って、本発明は、生体の臓器または組織の損傷などの処置において、自己化 するような組織片を提供することを課題とする。

[0009]

【課題を解決するための手段】

本発明は、本発明者らが鋭意検討を重ねた結果、従来は細胞を含ませることが必要であると考えられていた移植のための組織片の代わりに、生体分子と支持体

とを含む生体適合性組織片を用いると、上述のような自己化する性質を具備する ことを予想外に発見したことにより上記課題を解決した。

[0010]

従って、本発明は、以下を提供する。

[0011]

- (1) 生体適合性組織片であって、
- A) 生体分子;および
- B) 支持体、

を含む、生体適合性組織片(explant)。

[0012]

(2) 上記生体分子は、タンパク質を含む、項目1に記載の生体適合性組織 片。

[0013]

(3) 上記生体分子は、細胞生理活性物質を含む、項目1に記載の生体適合性組織片。

[0014]

(4) 上記生体分子は、細胞接着分子を含む、項目1に記載の生体適合性組織片。

[0015]

(5) 上記生体分子は、細胞外マトリクスを含む、項目1に記載の生体適合 性組織片。

[0016]

(6) 上記生体分子は、細胞接着性タンパク質を含む、項目1に記載の生体 適合性組織片。

[0017]

(7) 上記生体分子は、インテグリンを含む、項目1に記載の生体適合性組織片。

[0018]

(8) 上記生体分子は、コラーゲンを含む、項目1に記載の生体適合性組織

片。

[0019]

(9) 上記生体分子は、繊維形成コラーゲンまたは基底膜コラーゲンを含む 、項目1に記載の生体適合性組織片。

[0020]

(10) 上記生体分子は、繊維形成コラーゲンおよび基底膜コラーゲンを含む、項目1に記載の生体適合性組織片。

[0021]

(11) 上記生体分子は、コラーゲンI型またはIV型を含む、項目1に記載の生体適合性組織片。

[0022]

(12) 上記生体分子は、コラーゲンI型およびIV型を含む、項目1に記載の生体適合性組織片。

[0023]

(13) 上記支持体は、膜状である、項目1に記載の生体適合性組織片。

[0024]

(14) 上記支持体は、管状である、項目1に記載の生体適合性組織片。

[0025]

(15) 上記支持体は、弁状である、項目1に記載の生体適合性組織片。

[0026]

(16) 上記支持体は、生分解性ポリマーを含む、項目1に記載の生体適合性組織片。

[0027]

(17) 上記支持体は、ポリグリコール酸(PGA)、ポリ乳酸(PLA) およびポリカプロラクタム(PCLA)からなる群より選択される少なくとも1成分を含む、項目1に記載の生体適合性組織片。

[0028]

(18) 上記支持体は、グリコール酸と乳酸との比率が約90:約10~約80:約20であるPGLAを含む、項目1に記載の生体適合性組織片。

[0029]

(19) 上記支持体は、細胞接着分子を含む、項目1に記載の生体適合性組織片。

[0030]

(20) 上記支持体は、タンパク質を含む、項目1に記載の生体適合性組織 片。

[0031]

(21) 上記支持体は、メッシュ状およびスポンジ状である、項目1に記載の生体適合性組織片。

[0032]

(22) 上記支持体は、少なくとも約0.2mm~約1.0mm厚である、項目1に記載の生体適合性組織片。

[0033]

(23) 上記支持体は、少なくとも約20N以上の強度を有する、項目1に 記載の生体適合性組織片。

[0034]

(24) 上記支持体は、少なくとも約50N以上の強度を有する、項目1に 記載の生体適合性組織片。

[0035]

(25) 上記支持体は、上記生体分子でコーティングされている、項目1に 記載の生体適合性組織片。

[0036]

(26) 上記支持体は、隙間が上記生体分子で埋められている、項目1に記載の生体適合性組織片。

[0037]

(27) 上記生体分子および上記支持体は、架橋可能な分子を含み、上記架 橋可能な分子は、上記支持体と上記生体分子との間で架橋処理されている、項目 1に記載の生体適合性組織片。

[0038]

(28) 上記支持体は、上記生体分子と同じ物質を含む、項目1に記載の生体適合性組織片。

[0039]

(29) さらに、細胞が付着した、項目1に記載の生体適合性組織片。

[0040]

(30) 体内への移植用である、項目1に記載の生体適合性組織片。

[0041]

(31) 上記体内における移植されるべき部位は、心臓弁、血管、心膜、心臓隔壁、心内導管、心外導管、硬膜、皮膚、骨、軟部組織および気管からなる群より選択される、項目26に記載の生体適合性組織片。

[0042]

(32) 滅菌されている、項目1に記載の生体適合性組織片。

[0043]

(33) 免疫抑制剤をさらに含む、項目1に記載の生体適合性組織片。

[0044]

(34) さらなる医薬成分をさらに含む、項目1に記載の生体適合性組織片

[0045]

(35) 上記生体分子は、上記移植を目的とする生体に由来する、項目30 に記載の生体適合性組織片。

[0046]

(36) 項目1に記載の生体適合性組織片を含む、医薬。

[0047]

(37) 項目1に記載の生体適合性組織片および上記組織片の使用法を示した指示書を含む、医薬キットであって、上記指示書には、所定の部位に上記組織片を投与することが記載される、医薬キット。

[0048]

(38) 上記所定の部位は、血管内皮、血管平滑筋、弾性線維、骨格筋、心筋、骨芽細胞、神経細胞および膠原線維からなる群より選択される、項目37に

記載の医薬キット。

[0049]

(39) 上記指示書には、上記生体適合性組織片を、移植を目的とする臓器 または組織の少なくとも一部が残存するように移植することが記載される、項目 37に記載の医薬キット。

[0050]

- (40) 体内における損傷部位を処置する方法であって、
- A)上記損傷部位の一部または全部に、
 - A-1) 生体分子; および
 - A-2) 支持体、

を含む、生体適合性組織片を移植する工程、

を包含する、方法。

[0051]

(41) 上記移植工程において、上記生体適合性組織片は、上記損傷部位が 属する臓器または組織の少なくとも一部が残存するように移植される、項目 40 に記載の方法。

[0052]

(42) 細胞生理活性物質を投与する工程をさらに包含する、項目40に記載の方法。

[0053]

(43) 上記細胞生理活性物質は、顆粒球マクロファージコロニー刺激因子 (GM-CSF)、マクロファージコロニー刺激因子 (M-CSF)、顆粒球コロニー刺激因子 (G-CSF)、multi-CSF (IL-3)、白血病抑制因子 (LIF)、c-kityがド (SCF)、免疫グロブリンファミリーのメンバー、CD2、CD4、CD8、CD44、コラーゲン、エラスチン、プロテオグリカン、グリコサミノグリカン、フィブロネクチン、ラミニン、シンデカン、アグリカン、インテグリンファミリーのメンバー、インテグリン α 鎖、インテグリン β 鎖、フィブロネクチン、ラミニン、ビトロネクチン、カドヘリン、ICM1、ICAM2、VCAM1、血小板由来増殖因子(PDGF

)、表皮増殖因子(EGF)、線維芽細胞増殖因子(FGF)、肝細胞増殖因子(HGF)および血管内皮増殖因子(VEGF)からなる群より選択される、項目42に記載の方法。

[0054]

(44) 免疫反応を抑制する処置を行う工程をさらに包含する、項目40に 記載の方法。

[0055]

- (45) 体内における臓器または組織を強化する方法であって、
- A)上記臓器または組織の一部または全部に、
 - A-1) 生体分子;および
 - A-2) 支持体、

を含む、生体適合性組織片を移植する工程、

を包含する、方法。

[0056]

- (46) 臓器または組織を生産または再生する方法であって、
- A)目的とする臓器または組織の少なくとも一部を含む生体において、上記臓器または組織に、
 - A-1) 生体分子;および
 - A-2) 支持体、

を含む、生体適合性組織片を移植する工程;ならびに

B)上記臓器または組織を上記生体内で培養する工程、

を包含する、方法。

[0057]

(47) 項目1に記載の生体適合性組織片の、体内における損傷部位を処置 するための使用。

[0058]

(48) 項目1に記載の生体適合性組織片の、体内における臓器または組織 を強化するための使用。

[0059]

(49) 項目1に記載の生体適合性組織片の、体内における損傷部位を処置 するための医薬を製造するための使用。

[0060]

(50) 項目1に記載の生体適合性組織片の、体内における臓器または組織 を強化するための医薬を製造するための使用。

[0061]

【発明の実施の形態】

以下、本発明を説明する。本明細書の全体にわたり、単数形の表現は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。また、本明細書において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味で用いられることが理解されるべきである。

[0062]

以下に本明細書において特に使用される用語の定義を列挙する。

[0063]

本明細書において使用される「再生」(regeneration)とは,個体の組織の一部が失われたあるいは先天的に欠損している際に残った組織が自発的にまたは他からの助けを借りて増殖して復元される現象をいう。本明細書では、再生は、例えば、損傷した組織または臓器に生体内の細胞などが集合しその細胞などが増殖もしくは増幅することによっても生じ得る現象も指す。従って、再生という概念は、広く、動物種間または同一個体における組織種に応じて、再生のその程度および様式は変動する。ヒト組織の多くはその再生能が限られており、大きく失われると完全再生は望めない。大きな傷害では、失われた組織とは異なる増殖力の強い組織が増殖し、不完全に組織が再生され機能が回復できない状態で終わる不完全再生が起こり得る。この場合には,生体内吸収性材料からなる構造物を用いて、組織欠損部への増殖力の強い組織の侵入を阻止することで本来の組織が増殖できる空間を確保し,さらに細胞増殖因子を補充することで本来の組織の再生能力を高める再生医療が行われている。この例として、軟骨、骨および末梢神経の再生医療がある。神経細胞および心筋は再生能力がないかまたは著しく低いとこれまでは考えられてきた。近年、これらの組織へ分化し得る能力お

よび自己増殖能を併せ持った組織幹細胞(体性幹細胞)の存在が報告され、組織 幹細胞を用いる再生医療への期待が高まっている。胚性幹細胞(ES細胞)はす べての組織に分化する能力をもった細胞であり、それを用いた腎臓、肝臓などの 複雑な臓器の再生が試みられている。このように、幹細胞自体を注入した組織な どの再生方法は魅力的な方法である。従って、本発明の組織片には、このような 幹細胞が含まれていてもよい。

[0064]

本明細書において「自己化」とは、移植において用いられる場合、移植された 組織片が、宿主の臓器または組織の一部として機能するようになることをいう。 従って、自己化とは、例えば、ある組織片が自己増殖する能力を獲得すること、 材料やデバイスをつくり上げる際に、人が手を加えなくても、材料やデバイスの 構成要素が自ら集まってある構造をとったり、エネルギーや物質が拡散していく 動的過程の中で構成要素が自ら進んであるパターンを形成したりすること (周囲組織との生態適合性を有すること、異物反応を最小限に抑える (炎症反応、内膜増殖、硬化、石灰化) こと成長の可能性を有すること) などという現象を含むがそれに限定されない。本明細書において移植片または組織片が自己化したかどうかは、例えば、フォンビルブランド因子、αーSMA、弾性組織についてのエラスチカ・ファン・ギーソンなどのように、自己細胞の増殖を確認するマーカーを用いて判定することができる。

[0065]

具体的には、移植片が自己化したかどうかを判定する方法としては、例えば、細胞のパターン形成および自己配置の状況として組織学的検索、免疫反応の有無、細胞の集合体の精密合成として電気的結合性の測定、超音波検査による機能測定、ヒドロプロリンアッセイ、エラスチンアッセイ、DNAアッセイ、細胞数定量化、蛋白質定量化、グリコサミノグリンカンアッセイ、ミオシン重鎖アッセイという方法を用いることができるが、それらに限定されない。例えば、血管の場合、血管新生が起こっているかどうかで自己化したかどうかを判定することができる。そのような血管新生は、例えば、第VIII因子関連抗原等で免疫組織化学染色した後に血管数を計数することによって判定される。この計数方法では、

検体を10%の緩衝化ホルマリンで固定し、パラフィン包埋し、各々の検体から 数個の連続切片を調製し、凍結する。次いで、凍結切片をPBS中の2%パラホ ルムアルデヒド溶液で5分間、室温にて固定し、3%過酸化水素を含むメタノー ル中に15分間浸漬し、次いでPBSで洗浄する。このサンプルをウシ血清アル ブミン溶液で約10分間覆って、非特異的反応をブロックする。検体を、HRP と結合する、第VIII因子関連抗原に対するEPOS結合体化抗体と共に一晩 インキュベートする。サンプルをPBSで洗浄した後、これらを、ジアミノベン ジジン溶液 (例えば、PBS中、0.3mg/mlジアミノベンジジン) 中に浸 漬して、陽性染色を得る。染色された血管内皮細胞を、例えば、200倍の倍率 の光学顕微鏡下で計数し、例えば、計数結果を、1平方ミリメートルあたりの血 管の数としてあらわす。特定のサイトカインおよび増殖因子の処置後、血管数が 統計学的に有意に増加しているか否かを判定することにより、血管新生活性を判 定することができる。望ましくは、パッチクランプ法などによる細胞の集合体の 精密合成として電位の測定、電気密度解析のような電気生理的な測定により宿主 細胞と同じ電気生理的活性を有することによって、組織片が自己化しているかど うかを確認する。具体的には、本発明の組織片が自己化したかは、ディッシュな どを用いてインビトロで、または生体内で直接(インビボ)で、例えば、アルフ ァメッドサイエンス(日本、東京)から販売されるMED Systems TMを用いたマルチサイト細胞外電気生理学的試験を行うことによって確かめること ができる。このような手法は、移植の部位(例えば、脳、心臓など)に依存せず 用いることができる。このような場合、移植した組織片が周囲の細胞と同調して いる電位が確認されれば、そのような組織片は自己化したということができる。 そのような電気的結合性を有している場合、本明細書において、そのような状態 を「電気的自己化」ともいう。

[0066]

本明細書において使用される用語「生体分子」とは、生体に関連する分子およびその集合体をいう。本明細書において「生体」とは、生物学的な有機体をいい、動物、植物、菌類、ウイルスなどを含むがそれらに限定されない。生体分子は、生体から抽出される分子およびその集合体を包含するが、それに限定されず、

生体に影響を与え得る分子およびその集合体であれば生体分子の定義に入る。したがって、医薬品として利用され得る低分子(たとえば、低分子リガンドなど)もまた生体への効果が意図され得るかぎり、生体分子の定義に入る。そのような生体分子には、タンパク質、ポリペプチド、オリゴペプチド、ペプチド、ポリヌクレオチド、オリゴヌクレオチド、ヌクレオチド、核酸(例えば、cDNA、ゲノムDNAのようなDNA、mRNAのようなRNAを含む)、ポリサッカリド、オリゴサッカリド、脂質、低分子(例えば、ホルモン、リガンド、情報伝達物質、有機低分子など)、これらの複合分子、およびその集合体(例えば、細胞外マトリクス、線維など)などが包含されるがそれらに限定されない。本発明では、生体分子は、移植を目的とする宿主に適合性があるか、または適合するように処置され得ることが好ましい。ある生体分子をその宿主に移植して、必要に応じて免疫拒絶反応などの副反応を抑制することによりその宿主に定着するかどうかを観察することによって、判定することができる。

[0067]

本明細書において使用される用語「タンパク質」、「ポリペプチド」、「オリゴペプチド」および「ペプチド」は、本明細書において同じ意味で使用され、任意の長さのアミノ酸のポリマーおよびその改変体をいう。このポリマーは、直鎖であっても分岐していてもよく、環状であってもよい。アミノ酸は、天然のものであっても非天然のものであってもよく、改変されたアミノ酸であってもよい。この用語はまた、複数のポリペプチド鎖の複合体へとアセンブルされ得るものを包含する。この用語はまた、天然または人工的に改変されたアミノ酸ポリマーも包含する。そのような改変としては、例えば、ジスルフィド結合形成、グリコシル化、脂質化、アセチル化、リン酸化または任意の他の操作もしくは改変(例えば、標識成分との結合体化)。この定義にはまた、例えば、アミノ酸の1または2以上のアナログを含むポリペプチド(例えば、非天然のアミノ酸などを含む)、ペプチド様化合物(例えば、ペプトイド)および当該分野において公知の他の改変が包含される。本発明の組織片において使用される場合は、「タンパク質」は、その組織片が使用されるべき宿主において適合性のあるタンパク質であるこ

とが好ましいが、その宿主において適合するように処置され得る限り、どのようなタンパク質を用いてもよい。あるタンパク質が宿主に適合性があるかどうか、または宿主において適合するように処置され得るかどうかは、そのタンパク質をその宿主に移植して、必要に応じて免疫拒絶反応などの副反応を抑制することによりその宿主に定着するかどうかを観察することによって、判定することができる。代表的には、上述の適合性があるようなタンパク質としては、その宿主に由来するタンパク質を挙げることができるがそれに限定されない。

[0068]

本明細書において「細胞生理活性物質」または「生理活性物質」(physiologically active substance)とは、細胞または組織に作用する物質をいう。そのような作用としては、例えば、その細胞または組織の制御、変化などが挙げられるがそれに限定されない。生理活性物質には、サイトカインおよび増殖因子が含まれる。生理活性物質は、天然に存在するものであっても、合成されたものでもよい。好ましくは、生理活性物質は、細胞が産生するものまたはそれと同様の作用を有するものであるが改変された作用を持つものであってもよい。本明細書では、生理活性物質はタンパク質形態または核酸形態あるいは他の形態であり得るが、実際に作用する時点においては、サイトカインは通常はタンパク質形態を意味する。

[0069]

本明細書において使用される「サイトカイン」は、当該分野において用いられる最も広義の意味と同様に定義され、細胞から産生され同じまたは異なる細胞に作用する生理活性物質をいう。サイトカインは、一般にタンパク質またはポリペプチドであり、免疫応答の制禦作用、内分泌系の調節、神経系の調節、抗腫瘍作用、抗ウイルス作用、細胞増殖の調節作用、細胞分化の調節作用などを有する。本明細書では、サイトカインはタンパク質形態または核酸形態あるいは他の形態であり得るが、実際に作用する時点においては、サイトカインは通常はタンパク質形態を意味する。

[0070]

本明細書において用いられる「増殖因子」または「細胞増殖因子」とは、本明

細書では互換的に用いられ、細胞の増殖を促進または制御する物質をいう。増殖 因子は、成長因子または発育因子ともいわれる。増殖因子は、細胞培養または組 織培養において、培地に添加されて血清高分子物質の作用を代替し得る。多くの 増殖因子は、細胞の増殖以外に、分化状態の制御因子としても機能することが判 明している。

[0071]

サイトカインには、代表的には、インターロイキン類、ケモカイン類、コロニー刺激因子のような造血因子、腫瘍壊死因子、インターフェロン類が含まれる。 増殖因子としては、代表的には、血小板由来増殖因子(PDGF)、上皮増殖因子(EGF)、線維芽細胞増殖因子(FGF)、肝実質細胞増殖因子(HGF)、血管内皮増殖因子(VEGF)のような増殖活性を有するものが挙げられる。

[0072]

サイトカインおよび増殖因子などの生理活性物質は一般に、機能重複現象(redundancy)があることから、他の名称および機能(例えば、細胞接着活性または細胞-基質間の接着活性など)で知られるサイトカインまたは増殖因子であっても、本発明に使用される生理活性物質の活性を有する限り、本発明において使用され得る。また、サイトカインまたは増殖因子は、本明細書における好ましい活性(例えば、宿主の細胞を呼び寄せる活性)を有してさえいれば、本発明の組織片または医薬の好ましい実施形態において使用することができる。

[0073]

本明細書において「細胞外マトリクス」(ECM)とは「細胞外基質」とも呼ばれ、上皮細胞、非上皮細胞を問わず体細胞(somatic cell)の間に存在する物質をいう。細胞外マトリクスは、組織の支持だけでなく、すべての体細胞の生存に必要な内部環境の構成に関与する。細胞外マトリクスは一般に、結合組織細胞から産生されるが、一部は上皮細胞や内皮細胞のような基底膜を保有する細胞自身からも分泌される。線維成分とその間を満たす基質とに大別され、線維成分としては膠原線維および弾性線維がある。基質の基本構成成分はグリコサミノグリカン(酸性ムコ多糖)であり、その大部分は非コラーゲン性タンパクと結合してプロテオグリカン(酸性ムコ多糖ータンパク複合体)の高分子を形

成する。このほかに、基底膜のラミニン、弾性線維周囲のミクロフィブリル(microfibril)、線維、細胞表面のフィブロネクチンなどの糖タンパクも基質に含まれる。特殊に分化した組織でも基本構造は同一で、例えば硝子軟骨では軟骨芽細胞によって特徴的に大量のプロテオグリカンを含む軟骨基質が産生され、骨では骨芽細胞によって石灰沈着が起こる骨基質が産生される。本発明において用いられる細胞外マトリクスとしては、例えば、コラーゲン、エラスチン、プロテオグリカン、グリコサミノグリカン、フィブロネクチン、ラミニン、弾性繊維、膠原繊維などが挙げられるがそれに限定されない。本発明において用いられる場合、細胞外マトリクスは、好ましくは、宿主の自己細胞を呼び寄せる活性を持っていることが有利である。

[0074]

本明細書において「細胞接着分子」(Cell adhesion mole cule)または「接着分子」とは、互換可能に使用され、2つ以上の細胞の互いの接近(細胞接着)または基質と細胞との間の接着を媒介する分子をいう。一般には、細胞と細胞の接着(細胞間接着)に関する分子(cell-cell adhesion molecule)と、細胞と細胞外マトリックスとの接着(細胞一基質接着)に関与する分子(cell-substrate adhesion molecule)に分けられる。本発明の組織片では、いずれの分子も有用であり、有効に使用することができる。従って、本明細書において細胞接着分子は、細胞一基質接着の際の基質側のタンパク質を包含するが、本明細書では、細胞側のタンパク質(例えば、インテグリンなど)も包含され、タンパク質以外の分子であっても、細胞接着を媒介する限り、本明細書における細胞接着分子の概念に入る。

[0075]

細胞間接着に関しては、カドヘリン、免疫グロブリンスーパーファミリーに属する多くの分子(NCAM、L1、ICAM、ファシクリンII、IIIなど)、セレクチンなどが知られており、それぞれ独特な分子反応により細胞膜を結合させることも知られている。

[0076]

他方、細胞-基質接着のために働く主要な細胞接着分子はインテグリンで、細胞外マトリックスに含まれる種々の蛋白質を認識し結合する。これらの細胞接着分子はすべて細胞膜表面にあり、一種のレセプター(細胞接着受容体)とみなすこともできる。従って、細胞膜にあるこのようなレセプターもまた本発明の組織片において使用することができる。そのようなレセプターとしては、例えば、 α インテグリン、 β インテグリン、 β 0、 β 1、 β 1、 β 2、 β 3、 β 3、 β 4、 β 4、 β 5 できる。そのようなレセプターとしては、例えば、 β 6 がそれに限定されない。

[0077]

なお、本明細書では、インテグリンなどの結合の相手となる細胞外マトリックス分子(フィブロネクチン,ラミニンなどの細胞接着性蛋白質)も細胞接着分子の範疇に入る。それぞれの接着受容体の,細胞間接着,細胞一基質接着における機能分担は厳密なものではなく,相手となる分子(リガンド)の分布によって変動する。例えば、インテグリンのあるものは血球間の接着など細胞間接着にも関与する。また、増殖因子、サイトカインなどが細胞膜タンパク質として存在する場合、他の細胞に分布するそれらのレセプターとの反応が、結果として細胞を接着させることが知られていることから、そのような増殖因子、サイトカインもまた、本発明の組織片に含まれる生体分子として使用することができる。

[0078]

このように多種多様な分子が細胞接着に関与しており、それぞれの機能は異なっていることから、当業者は、目的に応じて、適宜本発明の組織片に含まれるべき分子を選択することができる。細胞接着に関する技術は、上述のもののほかの知見も周知であり、例えば、細胞外マトリックス - 臨床への応用― メディカルレビュー社に記載されている。

[0079]

ある分子が細胞接着分子であるかどうかは、生化学的定量(SDS-PAG法、標識コラーゲン法)、免疫学的定量(酵素抗体法、蛍光抗体法、免疫組織学的検討)PDR法、ハイブリダイゼイション法などのようなアッセイにおいて陽性となることを決定することにより判定することができる。このような細胞接着分子としては、コラーゲン、インテグリン、フィブロネクチン、ラミニン、ビトロ

ネクチン、フィブリノゲン、免疫グロブリンスーパーファミリー(例えば、CD2、CD4、CD8、ICM1、ICAM2、VCAM1)、セレクチン、カドへリンなどが挙げられるがそれに限定されない。このような細胞接着分子の多くは、細胞への接着と同時に細胞間相互作用による細胞活性化の補助シグナルを細胞内に伝達する。従って、本発明の組織片において用いられる接着因子としては、そのような細胞活性化の補助シグナルを細胞内に伝達するものが好ましい。細胞活性化により、組織片としてある組織または臓器における損傷部位に適用された後に、そこに集合した細胞および/または組織もしくは臓器にある細胞の増殖を促すことができるからである。そのような補助シグナルを細胞内に伝達することができるかどうかは、生化学的定量(SDSーPAG法、標識コラーゲン法)、免疫学的定量(酵素抗体法、蛍光抗体法、免疫組織学的検討)PDR法、ハイブリダイゼイション法というアッセイにおいて陽性となることを決定することにより判定することができる。

[0080]

細胞接着分子としては、例えば、組織固着性の細胞系に広く知られる細胞接着分子としてカドヘリンがあり、カドヘリンは、本発明の好ましい実施形態において使用することができる。一方,非固着性の血液・免疫系の細胞では、細胞接着分子としては、例えば、免疫グロブリンスーパーファミリー分子(CD 2、LFA-3、ICAM-1、CD2、CD4、CD8、ICM1、ICAM2、VCAM1など);インテグリンファミリー分子(LFA-1、Mac-1、gpIIbIIIa、p150、95、VLA1、VLA2、VLA3、VLA4、VLA5、VLA6など);セレクチンファミリー分子(Lーセレクチン,Eーセレクチン,Pーセレクチンなど)などが挙げられるがそれらに限定されない。従って、そのような分子は、血液・免疫系の組織または臓器を処置するための特に有用であり得る。

[0081]

細胞接着分子は、非固着性の細胞が特定の組織で働くためにはその組織への接着が必要となる。その場合、恒常的に発現するセレクチン分子などによる一次接着、それに続いて活性化されるインテグリン分子などの二次接着によって細胞間

の接着は段階的に強くなると考えられている。従って、本発明において用いられる細胞接着分子としては、そのような一次接着を媒介する因子、二次接着を媒介する因子、またはその両方が一緒に使用され得る。

[0082]

本明細書において「細胞接着性タンパク質」とは、上述のような細胞接着を媒 介する機能を有するタンパク質をいう。従って、本明細書において細胞接着性タ ンパク質は、細胞-基質接着の際の基質側のタンパク質を包含するが、本明細書 では、細胞側のタンパク質(例えば、インテグリンなど)をも包含する。例えば 、基質側のタンパク質を吸着した基質(ガラスやプラスチック)の上に無血清条 件下で培養細胞を播種すると、レセプターであるインテグリンが細胞接着性タン パク質を認識し、細胞はその基質に接着する。細胞接着性蛋白質の活性部位はア ミノ酸レベルで解明されており、RGD、YIGSRなどが知られている(これ . らを、総合してRGD配列とも呼ぶ)。従って、1つの好ましい実施形態におい て、本発明の組織片に含まれるタンパク質は、RGD、YIGSRなどのRGD 配列を含むことが有利であり得る。通常、細胞接着性タンパク質は、細胞外マト リックス、培養細胞表面、血漿・血清・各種体液に存在する。その生体内での機 能としては、細胞の細胞外マトリックスへの接着だけでなく、細胞の移動・増殖 ・形態調節・組織構築などが知られている。細胞作用とは別に,血液凝固・補体 作用の調節機能を示すタンパク質もあり、本発明では、そのような機能を有する タンパク質もまた有用であり得る。そのような細胞接着性タンパク質としては、 例えば、フィブロネクチン、コラーゲン、ビトロネクチン、ラミニンなどが挙げ られるがそれらに限定されない。

[0083]

本明細書において「RGD分子」とは、アミノ酸配列RGD(Arg-Gly-Asp)またはその機能的に同一な配列を含むタンパク質分子をいう。RGD分子は、細胞接着性蛋白質の細胞接着活性部位のアミノ酸配列として有用なアミノ酸配列であるRGDまたは機能的に等価な別のアミノ酸配列を含むことを特徴とする。RGD配列は、フィブロネクチンの細胞接着部位として発見され、その後、I型コラーゲン、ラミニン、ビトロネクチン、フィブリノゲン、フォンヴィ

ルブランド因子,エンタクチンなど多くの細胞接着性の活性を示す分子に見出された。化学合成したRGDペプチドを固相化すると細胞接着活性を示すことから、本発明における生体分子は、化学合成したRGD分子であってもよい。そのようなRGD分子としては、上述の天然に存在する分子のほかに、例えば、GRGDSPペプチドが挙げられるがそれに限定されない。RGD配列は細胞接着分子(かつ、レセプターでもある)であるインテグリン(例えば、フィブロネクチンのレセプター)によって認識されることから、RGDの機能的に等価な分子は、そのようなインテグリンを用いて相互作用を調べることによって同定することができる。

[0084]

本明細書において、「インテグリン」とは、細胞接着に関与するレセプターである膜貫通糖タンパク質をいう。インテグリンは、細胞表面に存在し、細胞が細胞外マトリックスに接着するときに機能する。血球系などでは細胞どうしの接着にも関与することが知られている。そのようなインテグリンとしては、例えば、フィブロネクチン、ビトロネクチン、コラーゲンなどのレセプター、血小板のIIb/IIIa,マクロファージのMac-1,リンパ球のLFA-1,VLA-1~6,ショウジョウバエのPSAなどが挙げられるがそれに限定されない。 通常、インテグリンは,分子量130kDa~210kDaの α 鎖と分子量95kDa~130kDaの β 鎖とが,非共有結合で1対1に会合したヘテロ二量体の構造をとる。 α 鎖としては、例えば、 α 1、 α 2、 α 3、 α 4、 α 5、 α 6、 α 6、 α 1、 α 1、 α 1、 α 2、 α 3、 α 4、 α 5、 α 6 、 α 1、 α 1、 α 2、 α 3、 α 4、 α 5、 α 6 、 α 1、 α 1、 α 2、 α 3、 α 4、 α 5、 α 6 、 α 1 α 8 α 9 、 α 9 質としては、例えば、 α 9 、 α 9 質としては、例えば α 9 、 α 9 でがあるがそれに限定されない。 α 9 鎖としては、例えば α 9 、 α 9 、 α 9 、 α 9 、 α 9 の α 9

[0085]

このようなヘテロ二量体としては、例えば、GpIIbIIIaのほかに、VLA-1、VLA-2、VLA-3、VLA-4、VLA-5、VLA-6、CD51/CD29、LFA-1、Mac-1、p150, 90、ビトロネクチンレセプター、 β 4サブファミリー、 β 5サブファミリー、 β 6サブファミリー、LPAM-1、LML-1などがあるがそれに限定されない。通常、 α 鎖の細胞

外ドメインに二価カチオン結合部位があり、β鎖の細胞外ドメインにシステイン リッチ領域があり、β鎖の細胞内ドメインにチロシンリン酸化部位があることが 多い。結合リガンド中の認識部位はRGD配列であることが多い。従って、イン テグリンは、RGD分子であり得る。

[0086]

本明細書において「コラーゲン」とは、タンパク質の一種で、線維形成コラー ゲンであり3本のポリペプチド鎖が3重螺旋を巻いた領域の総称であり、細胞生 着、増殖の足場であり、組織骨格を形成するものをいう。コラーゲンは、動物の 細胞外マトリクスの主成分である。コラーゲンもまた、RGD配列をもち、細胞 接着活性を示すことが知られている。コラーゲンは、動物の全タンパク質中の約 20~30%も含まれ、皮膚、腱、軟骨などに多量に含まれることが知られてい る。コラーゲン分子としては、I型~XIII型が知られている。通常、分子一 つが3本のポリペプチド鎖からなる三重らせん構造を採り、各鎖はα鎖と呼ばれ ることが多い。コラーゲン分子では、1分子は1種類のα鎖からなっていてもよ く、別々の遺伝子にコードされた複数種のα鎖からなっていてもよい。α鎖は、 通常、 α 1, α 2, α 3のように α の後に数字をつけてよび, さらにコラーゲン の型をつけて、 α 1 (I) などと称する。従って、本発明では、例えば、 $[\alpha$ 1 (I) 2 α 2 (I)] (I型コラーゲン) のような天然に存在するコラーゲン分 子のほか、天然に存在しないような組み合わせの三量体もまた私用され得る。コ ラーゲンの一次構造の大部分は、 [Gly-X-Pro(またはヒドロキシプロ リル)] n (Xは任意のアミノ酸残基)のアミノ酸配列からなる特徴をもつ。こ の構造は、3残基周期の左巻きらせん構造をとる。コラーゲンは通常、特殊なア ミノ酸としてヒドロキシリジンを含む。コラーゲンは、糖タンパク質であるが、 糖はヒドロキシリジンの水酸基に結合している。

[0087]

コラーゲンには、線維状で存在し集まって膠原線維をなす線維形成コラーゲンまたは間質型コラーゲンという種類がある。そのような線維形成コラーゲンには、I型、II型、III型、V型、XI型コラーゲンがあり、本発明の好ましい実施形態において使用される。コラーゲンとしては、このほかに、短鎖コラーゲ

ン(VIII型、X型など)、基底膜コラーゲン(IV型など)、FACITコラーゲン(IX型、XII型、XIV型、XVI型、XIX型など)、multiplexinsコラーゲン(XV型、XVIII型など)、ミクロフィブリルコラーゲン(VI型など)、長鎖コラーゲン(VII型など)、膜結合型コラーゲン(XIII型、XVII型など)などが挙げられ、これらはすべて本発明において使用され得る。本明細書において「基底膜コラーゲン」とは、基底膜を構成する主要なコラーゲンをいう。IV型コラーゲンとしては、例えば、

本明細書において「I型コラーゲン」とは、 $\begin{bmatrix} \alpha \ 1 \ \end{bmatrix}$ $\begin{bmatrix} \alpha \ 1 \ \end{bmatrix}$ $\begin{bmatrix} \alpha \ 2 \ \alpha \ 2 \ \end{bmatrix}$ $\begin{bmatrix} \alpha \ 1 \ \end{bmatrix}$

[0088]

本明細書において「IV型コラーゲン」とは、基底膜コラーゲンであり、その分子は、7S、NC2、TH2、NC1の4つのドメインからなっており、N末端の7Sで4分子が重合し、C末端のNC1で2分子が重合することにより、網目状のネットワークを形成しているコラーゲンまたはその機能的に等価な分子をいい、そのようなポリペプチドのアミノ酸配列としては、代表的には、Genbankのアクセッション番号p02462、p08572、U02520、D17391、P29400、U04845が挙げられるがそれに限定されない。本明細書において、IV型コラーゲンの機能的に等価な分子は、例えば、酵素抗体法、EIA法という方法により同定することができる。

[0089]

本明細書において「架橋可能な分子」とは、タンパク質とタンパク質との間、 タンパク質と核酸との間、またはDNAの二本鎖の間などで共有結合が起ること が可能な分子をいう。そのような架橋の形態としては、例えば、未熟架橋(シッ

フ塩基型架橋)、成熟架橋(ピリジノリン)、老化架橋(ヒスチジノアラニン)などが挙げられるがそれに限定されない。このような架橋は、歯などの強固な構造が望ましいときに好ましくあり得る。

[0090]

本明細書において「支持体」とは、本発明の組織片または生体適合性組織片が 構築される材料(好ましくは固体)をいう。支持体の材料としては、共有結合か または非共有結合のいずれかで、本発明において使用される生体分子に結合する 特性を有するかまたはそのような特性を有するように誘導体化され得る、任意の 固体材料が挙げられる。従って、そのような支持体の材料としては、例えば、そ のような材料としては、固体表面を形成し得る任意の材料が使用され得るが、例 えば、ガラス、シリカ、シリコーン、セラミック、二酸化珪素、プラスチック、 金属(合金も含まれる)、天然および合成のポリマー(例えば、生分解性ポリマ ー (例えば、PGA、PLGA、PLA、PCLA)、ポリスチレン、セルロー ス、キトサン、デキストラン、およびナイロン)、タンパク質などが挙げられる がそれらに限定されない。支持体は、複数の異なる材料から形成されていてもよ い。そのような材料は、本発明の組織片において用いられる場合、生体適合性で あることが好ましい。生体適合性であるかどうかは、例えば、生化学的定量(S DS-PAG法、標識コラーゲン法)、免疫学的定量(酵素抗体法、蛍光抗体法 、免疫組織学的検討)等の拒絶反応をみることにより確認することができる。よ り好ましくは、本発明において使用される支持体は、生分解性であることが有利 であり得る。本発明の組織片は、一定期間後はその中の成分が不要となることか ら、その一定期間後に分解して消えることが望ましいことがあるからである。そ のような生分解性の材料としては、例えば、生分解性ポリマー(例えば、PGA 、PLGA、PCLAなど)が挙げられるがそれらに限定されない。あるいは、 本発明において使用される支持体は、生体の一部となることができる成分であっ てもよい。そのような成分としては、例えば、シリコーン、セラミック、タンパ ク質、脂質、核酸、糖(炭水化物)およびそれらの複合体が挙げられるがそれに 限定されない。

[0091]

本明細書において「生体適合性」とは、毒性、免疫反応、損傷などを生じることなく生体組織または臓器と適合する性質をいう。本発明において生体適合性とは、ある物質について用いられる場合、その物質が、そのまま使用される場合に生体適合性を有する場合を当然に含むが、上述のような毒性、免疫反応または損傷を必要に応じて防御する手段(例えば、免疫抑制剤の投与など)を講じることができる(すなわち、その物質自体を使用する場合には毒性、免疫反応または損傷を生じるとしても、防御手段とともに用いる場合にそのような毒性、免疫反応、損傷などが顕著に減少または実質的に消失する)限り、そのような物質もまた、生体適合性であるといえる。単独で用いる場合にせいた器適合性とはいえない場合は、上述の防御手段を本発明の組織片に含むことが好ましい。本発明において使用され得る生体適合性材料としては、例えば、PGA、PLA、PCLA、PLGA、ポリ乳酸、ポリプチレート、シリコーン、生分解性リン酸カルシウム、多孔質4フッ化エチレン樹脂、ポリプロピレン、アミロース、セルロース、合成DNA、ポリエステル類等が挙げられるがそれらに限定されない。

[0092]

本明細書において「生分解性ポリマー」または「生分解性高分子」とは、互換可能に使用され、天然に分解するか、または生体内での代謝もしくは微生物の作用により分解される高分子をいう。このような生分解性ポリマーは、通常、加水分解により、水、二酸化炭素、メタンなどに分解される。このような生分解性ポリマーには、天然および合成高分子がある。天然高分子の例としては、例えば、コラーゲン、デンプンなどのタンパク質、多糖類が挙げられ、合成高分子の例としては、ポリグリコール酸、ポリ乳酸、ポリエチレンスクシナートなどの脂肪族ポリエステルが挙げられるがそれらに限定されない。このような生分解性ポリマーは、外科手術用の吸収性縫合糸、徐放性薬剤の基材、骨接合用材料として用いられており、そのような用途で使用されるようなものであれば、どのようなポリマーであっても本発明において使用することができる。生分解性ポリマーとしては、例えば、ポリペプチド、ポリサッカリド、核酸、PGA、PLGA、ポリ乳酸、ポリプチレート、リンゴ酸共重合体、ラクチドーカプロラクトン共重合体、ポリーεーカプロラクトン、ポリーβーヒドロキシカルボン酸、ポリジオキサノ

ーン、ポリー1, 4ージオキセパンー7ーオン、グリコリドートリメチレンカーボネート共重合体、ポリセバシン酸無水物、ポリーωー(カルボキシフェノキシ)アルキルカルボン酸無水物、ポリー1, 3ージオキサンー2ーオン、ポリデプシペプチド、ポリーαーシアノアクリル酸エチル、ポリホスファゼン、ヒドロキシアパタイトが挙げられるがそれらに限定されない。そのような生分解性ポリマーとしては、好ましくは、生体内で一定時間は定着し、その後分解または吸収される性質をもつことが有利であり得る。そのような分解は、代謝に用いられる酵素系の作用により進行する特異的分解機構によるものと、酵素などがなくても体液との接触により自然分解する非特異的分解機構とがあるが、本発明においては、いずれかまたは両方の機構により分解されるものであっても使用することができる。好ましくは、そのような生分解性ポリマーは、それ自体が無毒および/または免疫原性がないことが好ましい。

[0093]

本明細書において組織片の引っ張り強さは、引張試験機(TENSILLON ORIENTEC)で強度測定することができる。具体的には、幅5mm長さ30mmの短冊状素材を短軸方向に10mm/分の速度で荷重負荷し、破断点負荷及び弾性率を測定することができる。代表的には、移植可能な組織片は、少なくとも約10N以上であり得、通常約25N以上であり得、好ましくは約50N以上であり、より好ましくは約75N以上であり得る。通常の臓器移植に使用する場合には、約50N以上であることが好ましい。破壊されないからである。

[0094]

本明細書において「PGA」とは、ポリグリコール酸の略称であり、グリコール酸の重合体である。グリコール酸は、CH2(OH)COOHで表される。PGAはポリグリコリドとも呼ばれ得る。

[0095]

本明細書において「PLA」とは、ポリ乳酸の略称であり、乳酸の重合体である。グリコール酸は、 $CH_3CH(OH)COOH$ で表される。PLAはポリラクチドとも呼ばれ得る。

[0096]

PGAおよびPLAは、当該分野において周知の方法により合成することができる。そのような方法としては、例えば、グリコール酸または乳酸の加熱脱水重合、αーハロ酢酸、αーハロプロピオン酸の脱ハロゲン化水素などの縮重合などにより合成することができる。好ましくは、重合度を上昇させるために、得られたオリゴマーを、いったん減圧下に加熱分解して環状二量体であるグリコリドまたはラクチドを得、これらを開環重合することにより目的の重合度の高分子を合成することができる(例えば、H. R. Kricheldorf, et al. Makromol. Chem. Suppl. 12, 25 (1985) を参照のこと)。この場合、重合後に残る触媒が生体毒とならないことが好ましい。そのような触媒としては、例えば、オクチル酸スズなどが挙げられるがそれに限定されず、当該分野において用いられる生体毒を生じないか低生体毒性であるものであれば、どのようなものでも用いることができる。

[0097]

本明細書において「PLGA」とは、ポリ乳酸ポリグリコール酸共重合体の略称であり、グリコール酸と乳酸との共重合体である。乳酸は、 CH_3CH (OH) COOHで表される。PLGAは、ポリグラクチン(polyglactin)と呼ばれ得る(例えば、グリコリド/ラクチド= 9/1)。

[0098]

そのようなPLGAは、当該分野において周知の手法により合成することができる。PLGAは、含まれるグリコール酸および乳酸の割合によって、その性質を劇的に変動させることができる。例えば、生体内の吸収半減期は、R. A. Miller et al. J. Biomed. Res. 11,719 (1977)において記載されるような関係式を利用して、数日~数ヶ月の範囲内で変動させることができる。2~3週間以内の生体内半減期が望ましい場合は、通常、PLAとPGAとの割合を20:80~80:20に採ることが好ましい。これに対し、1ヶ月以上の生体内半減期が望ましい場合は、通常、PLAとPGAとの割合を20:80~0:100とするか、あるいは80:20~100:0とすることが好ましい。従って、長い吸収半減期(例えば、数ヶ月)が望ましい場合

は、PLAまたはPGAを使用することが好ましい。PLGAは、PLAとPGAとの割合を変化させることにより繊維強度の半減期も変動させることができる。繊維強度の半減期は、通常、PGAおよびPLAで2~3週間であり、PLAで3~6ヶ月であることから、繊維強度の半減期が長いものが望ましい場合は、PLGAにおいてPLAの割合を増加させるか、あるいはPLA自体を使用することが好ましい。

[0099]

PLGAの合成は、当該分野において周知であり、上述のPLAおよびPGAの合成において生成されるグリコリドおよびラクチドを混合物として用いて、開環共重合させることによって達成される。このようにして得られたPLGAは、通常グリコリド:ラクチドの割合が25:75~75:20までではガラス状の高分子であるが、グリコリド:ラクチドの割合が25:75~0:100では、ポリL-乳酸に類似する結晶性の高分子となり、グリコリド:ラクチドが75:25~100:0では、ポリグリコール酸に類似する結晶性高分子となる。従って、当業者は、これらの組成を変動させることによって、加水分解性、材料強度を変動させることができる。

[0100]

本明細書において「メッシュ状」とは、組織片などの形状についていう場合、網目状のものをいう。メッシュ状の組織片は、当該分野において周知の方法により生産することができる。そのようなメッシュ状の組織片のメッシュの細かい形状もまた、当該分野において周知の方法を用いて調製することができる。そのようなメッシュ状組織片としては、例えば、市販のもの(VICRYL KNITTED MESH(ETHICON製))を使用することができる。

[0101]

本明細書において「スポンジ状」とは、組織片などの形状についていう場合、 多孔質のものをいう。そのようなスポンジ状の組織片は、当該分野において周知 の方法を用いて調製することができる。そのようなスポンジ状組織片としては、 例えば、市販のもの(VICRYL WOVEN MESH(ETHICON製))を使用することができる。

本明細書において「コーティング」とは、支持体などにおいて使用される場合、その支持体がある別の物質によって覆われる状態をいう。従って、コーティングは、コーティングがされる支持体と相互作用をすることができる物質を用いて行うことができる。コーティングによって、支持体は、その支持体自体の物質が外界(例えば、空気)と触れなくなるように処理されていてもよいが、支持体とコーティング物質とがある程度相互作用する状態を保持するのであれば、外界と触れなくなるほどにコーティングされていなくてもよい。そのようなコーティングの程度は、任意であり、当業者は、当該分野において周知の技法を用いて調整することができる。そのようなコーティング技術は、例えば、高分子機能材料シリーズ医療機能材料 共立出版株式会社に記載されている。

[0103]

本明細書において「ポリサッカリド」、「多糖」、「オリゴサッカリド」、「糖」および「炭水化物」は、本明細書において互換可能に使用され、単糖がグリコシド結合によって脱水縮合した高分子化合物をいう。「単糖」または「モノサッカリド」とは、これより簡単な分子に加水分解されず、一般式 CnH2nOnで表されるものをいう。ここで、n=2、3、4、5、6、7、8、9および10であるものを、それぞれジオース、トリオース、テトロース、ペントース、ヘキソース、ヘプトース、オクトース、ノノースおよびデコースという。一般に鎖式多価アルコールのアルデヒドまたはケトンに相当するもので、前者をアルドース、後者をケトースという。このようなポリサッカリドは、単独でまたは複合体もしくは混合物として本発明において支持体として使用され得る。

[0104]

本明細書において「脂質」とは、生体を構成する物質のうち水に溶けにくく、 有機溶媒に溶けやすい物質群をいう。脂質には、多種類の有機化合物が含まれる 。通常、脂質には、長鎖脂肪酸とその誘導体または類似体が含まれるが、本明細 書においては、ステロイド、カロテノイド、テルペノイド、イソプレノイド、脂 溶性ビタミンなどの生体内にある水不溶で有機溶媒に易溶の有機化合物群もまた 包含される。脂質としては、例えば、1)単純脂質(脂肪酸と各種アルコールと のエステルで中性脂質ともいう。例えば、油脂(トリアシルグリセロール),蝋 (ワックス, 高級アルコールの脂肪酸エステル),ステロールエステル, ビタミンの脂肪酸エステルなど);2)複合脂質(脂肪酸とアルコールのほかにリン酸, 糖, 硫酸, アミンなど極性基をもつ化合物で, グリセロリン脂質, スフィンゴリン脂質, グリセロ糖脂質, スフィンゴ糖脂質, CーP結合をもつ脂質, 硫脂質などが含まれる);3)誘導脂質(単純脂質および複合脂質の加水分解によって生成する化合物のうち脂溶性のものをさし, 脂肪酸, 高級アルコール, 脂溶性ビタミン, ステロイド, 炭化水素などが含まれる)が挙げられるがそれに限定されない。本発明においては、細胞を集合させる機能を阻害しない限り、どのような脂質でも支持体として用いることができる。

[0105]

本明細書において「複合体」とは、物質について使用されるとき、複数の種類の物質を含む(好ましくはそれら複数の成分が相互作用している)分子をいう。 そのような複合体としては、例えば、糖タンパク質、糖脂質などが挙げられるが それに限定されない。

[0106]

本明細書において「単離された」生物学的因子(例えば、核酸またはタンパク質など)とは、その生物学的因子が天然に存在する生物体の細胞内の他の生物学的因子(例えば、核酸である場合、核酸以外の因子および目的とする核酸以外の核酸配列を含む核酸;タンパク質である場合、タンパク質以外の因子および目的とするタンパク質以外のアミノ酸配列を含むタンパク質など)から実質的に分離または精製されたものをいう。「単離された」核酸およびタンパク質には、標準的な精製方法によって精製された核酸およびタンパク質が含まれる。したがって、単離された核酸およびタンパク質は、化学的に合成した核酸およびタンパク質を包含する。

[0107]

本明細書において「精製された」生物学的因子(例えば、核酸またはタンパク質など)とは、その生物学的因子に天然に随伴する因子の少なくとも一部が除去されたものをいう。したがって、通常、精製された生物学的因子におけるその生

物学的因子の純度は、その生物学的因子が通常存在する状態よりも高い(すなわち濃縮されている)。

[0108]

本発明において使用される生体分子は、生体から採取され得るほか、当業者に 公知の方法によっ化学的に合成され得る。例えば、タンパク質であれば、自動固 相ペプチド合成機を用いた合成方法は、以下により記載される:Stewart , J. M. et al. (1984). Solid Phase Peptid e Synthesis, Pierce Chemical Co.; Gran t, G. A. (1992). Synthetic Peptides: A U ser's Guide, W. H. Freeman; Bodanszky, M. (1993). Principles of Peptide Synthes is, Springer-Verlag; Bodanszky, M. et al . (1994). The Practice of Peptide Synt hesis, Springer-Verlag; Fields, G. B. (19 97). Phase Peptide Synthesis, Academic Press; Pennington, M. W. et al. (1 Peptide Synthesis Protocols, Humana ress; Fields, G. B. (1997). Solid-Phase eptide Synthesis, Academic Press。その他の 分子もまた、当該分野において周知の技術を用いて合成することができる。

[0109]

本明細書において生体分子(例えば、核酸配列、アミノ酸配列など)の「相同性」とは、比較可能な配列を有する場合、2以上の配列の、互いに対する同一性の程度をいう。従って、ある2つの配列の相同性が高いほど、それらの配列の同一性または類似性は高い。2種類の配列が相同性を有するか否かは、配列の直接の比較、または核酸の場合ストリンジェントな条件下でのハイブリダイゼーション法によって調べられ得る。2つの配列を直接比較する場合、その配列間で配列が、代表的には少なくとも50%同一である場合、好ましくは少なくとも70%同一である場合、より好ましくは少なくとも80%、90%、95%、96%、

97%、98%または99%同一である場合、それらの遺伝子は相同性を有する。本明細書において、生体分子(例えば、核酸配列、アミノ酸配列など)の「類似性」とは、上記相同性において、保存的置換をポジティブ(同一)とみなした場合の、2以上の遺伝子配列の、互いに対する同一性の程度をいう。従って、保存的置換がある場合は、その保存的置換の存在に応じて同一性と類似性とは異なる。また、保存的置換がない場合は、同一性と類似性とは同じ数値を示す。本発明では、このように同一性が高いものまたは類似性が高いものもまた、有用であり得る。

[0110]

本明細書では、アミノ酸配列および塩基配列の類似性、同一性および相同性の 比較は、配列分析用ツールであるBLASTを用いてデフォルトパラメータを用 いて算出される。

[0111]

本明細書において、「アミノ酸」は、天然のものでも非天然のものでもよい。 「誘導体アミノ酸」または「アミノ酸アナログ」とは、天然に存在するアミノ酸 とは異なるがもとのアミノ酸と同様の機能を有するものをいう。そのような誘導 体アミノ酸およびアミノ酸アナログは、当該分野において周知である。用語 |天 然のアミノ酸」とは、天然のアミノ酸のL-異性体を意味する。天然のアミノ酸 は、グリシン、アラニン、バリン、ロイシン、イソロイシン、セリン、メチオニ ン、トレオニン、フェニルアラニン、チロシン、トリプトファン、システイン、 プロリン、ヒスチジン、アスパラギン酸、アスパラギン、グルタミン酸、グルタ ミン、γーカルボキシグルタミン酸、アルギニン、オルニチン、およびリジンで ある。特に示されない限り、本明細書でいう全てのアミノ酸はL体であるが、D 体のアミノ酸を用いた形態もまた本発明の範囲内にある。用語「非天然アミノ酸 」とは、タンパク質中で通常は天然に見出されないアミノ酸を意味する。非天然 アミノ酸の例として、ノルロイシン、パラーニトロフェニルアラニン、ホモフェ ニルアラニン、パラーフルオロフェニルアラニン、3-アミノー2-ベンジルプ ロピオン酸、ホモアルギニンのD体またはL体およびDーフェニルアラニンが挙 げられる。「アミノ酸アナログ」とは、アミノ酸ではないが、アミノ酸の物性お

よび/または機能に類似する分子をいう。アミノ酸アナログとしては、例えば、エチオニン、カナバニン、2ーメチルグルタミンなどが挙げられる。アミノ酸模倣物とは、アミノ酸の一般的な化学構造とは異なる構造を有するが、天然に存在するアミノ酸と同様な様式で機能する化合物をいう。

[0112]

アミノ酸は、その一般に公知の3文字記号か、またはIUPAC-IUB B iochemical Nomenclature Commissionにより推奨される1文字記号のいずれかにより、本明細書中で言及され得る。ヌクレオチドも同様に、一般に認知された1文字コードにより言及され得る。

[0113]

本明細書において、「対応する」アミノ酸とは、あるタンパク質分子またはポリペプチド分子において、比較の基準となるタンパク質またはポリペプチドにおける所定のアミノ酸と同様の作用を有するか、または有することが予測されるアミノ酸をいい、特に酵素分子にあっては、活性部位中の同様の位置に存在し触媒活性に同様の寄与をするアミノ酸をいう。例えば、アンチセンス分子であれば、そのアンチセンス分子の特定の部分に対応するオルソログにおける同様の部分であり得る。

[0114]

本明細書において、「対応する」遺伝子とは、ある種において、比較の基準となる種における所定の遺伝子と同様の作用を有するか、または有することが予測される遺伝子をいい、そのような作用を有する遺伝子が複数存在する場合、進化学的に同じ起源を有するものをいう。従って、ある遺伝子の対応する遺伝子は、その遺伝子のオルソログであり得る。

[0115]

本明細書において、「フラグメント」とは、全長のポリペプチドまたはポリヌクレオチド(長さがn)に対して、 $1\sim n-1$ までの配列長さを有するポリペプチドまたはポリヌクレオチドをいう。フラグメントの長さは、その目的に応じて、適宜変更することができ、例えば、その長さの下限としては、ポリペプチドの場合、3、4、5、6、7、8、9、10、15, 20、25、30、40、5

○およびそれ以上のアミノ酸が挙げられ、ここの具体的に列挙していない整数で表される長さ(例えば、11など)もまた、下限として適切であり得る。また、ポリヌクレオチドの場合、5、6、7、8、9、10、15,20、25、30、40、50、75、100およびそれ以上のヌクレオチドが挙げられ、ここの具体的に列挙していない整数で表される長さ(例えば、11など)もまた、下限として適切であり得る。本明細書において、ポリペプチドおよびポリヌクレオチドの長さは、上述のようにそれぞれアミノ酸または核酸の個数で表すことができるが、上述の個数は絶対的なものではなく、同じ機能を有する限り、上限または加減としての上述の個数は、その個数の上下数個(または例えば上下10%)のものも含むことが意図される。そのような意図を表現するために、本明細書では、個数の前に「約」を付けて表現することがある。しかし、本明細書では、「約」のあるなしはその数値の解釈に影響を与えないことが理解されるべきである。

[0116]

本明細書において「生物学的活性」とは、ある因子(例えば、ポリペプチドまたはタンパク質)が、生体内において有し得る活性のことをいい、種々の機能を発揮する活性が包含される。例えば、ある因子がアンチセンス分子である場合、その生物学的活性は、対象となる核酸分子への結合、それによる発現抑制などを包含する。例えば、ある因子が酵素である場合、その生物学的活性は、その酵素活性を包含する。別の例では、ある因子がリガンドである場合、そのリガンドが対応するレセプターへの結合を包含する。そのような生物学的活性は、当該分野において周知の技術によって測定することができる。

[0117]

本明細書において使用される用語「ポリヌクレオチド」、「オリゴヌクレオチド」および「核酸」は、本明細書において同じ意味で使用され、任意の長さのヌクレオチドのポリマーをいう。この用語はまた、「誘導体オリゴヌクレオチド」または「誘導体ポリヌクレオチド」を含む。「誘導体オリゴヌクレオチド」または「誘導体ポリヌクレオチド」とは、ヌクレオチドの誘導体を含むか、またはヌクレオチド間の結合が通常とは異なるオリゴヌクレオチドまたはポリヌクレオチドをいい、互換的に使用される。そのようなオリゴヌクレオチドとして具体的に

は、例えば、2'-〇-メチルーリボヌクレオチド、オリゴヌクレオチド中のリ ン酸ジエステル結合がホスホロチオエート結合に変換された誘導体オリゴヌクレ オチド、オリゴヌクレオチド中のリン酸ジエステル結合がN3′-P5′ホスホ ロアミデート結合に変換された誘導体オリゴヌクレオチド、オリゴヌクレオチド 中のリボースとリン酸ジエステル結合とがペプチド核酸結合に変換された誘導体 オリゴヌクレオチド、オリゴヌクレオチド中のウラシルがC-5プロピニルウラ シルで置換された誘導体オリゴヌクレオチド、オリゴヌクレオチド中のウラシル が C-5 チアゾールウラシルで置換された誘導体オリゴヌクレオチド、オリゴヌ クレオチド中のシトシンがC-5プロピニルシトシンで置換された誘導体オリゴ ヌクレオチド、オリゴヌクレオチド中のシトシンがフェノキサジン修飾シトシン (phenoxazine-modified cytosine) で置換され た誘導体オリゴヌクレオチド、DNA中のリボースが2′-0-プロピルリボー スで置換された誘導体オリゴヌクレオチドおよびオリゴヌクレオチド中のリボー スが2'ーメトキシエトキシリボースで置換された誘導体オリゴヌクレオチドな どが例示される。他にそうではないと示されなければ、特定の核酸配列はまた、 明示的に示された配列と同様に、その保存的に改変された改変体(例えば、縮重 コドン置換体)および相補配列を包含することが企図される。具体的には、縮重 コドン置換体は、1またはそれ以上の選択された(または、すべての)コドンの 3番目の位置が混合塩基および/またはデオキシイノシン残基で置換された配列 を作成することにより達成され得る(Batzerら、Nucleic Aci Res. 19:5081 (1991); Ohtsukab, J. Biol. Chem. 260:2605-2608 (1985); Rossolinib, Mol. Cell. Probes 8:91-98 (1994)).

[0118]

あるアミノ酸は、相互作用結合能力の明らかな低下または消失なしに、例えば、カチオン性領域または基質分子の結合部位のようなタンパク質構造において他のアミノ酸に置換され得る。あるタンパク質の生物学的機能を規定するのは、タンパク質の相互作用能力および性質である。従って、特定のアミノ酸の置換がアミノ酸配列において、またはそのDNAコード配列のレベルにおいて行われ得、

置換後もなお、もとの性質を維持するタンパク質が生じ得る。従って、生物学的 有用性の明らかな損失なしに、種々の改変が、本明細書において開示されたペプ チドまたはこのペプチドをコードする対応するDNAにおいて行われ得る。

[0119]

上記のような改変を設計する際に、アミノ酸の疎水性指数が考慮され得る。タンパク質における相互作用的な生物学的機能を与える際の疎水性アミノ酸指数の重要性は、一般に当該分野で認められている(Kyte. JおよびDoolittle, R. F. J. Mol. Biol. 157 (1):105-132, 1982)。アミノ酸の疎水的性質は、生成したタンパク質の二次構造に寄与し、次いでそのタンパク質と他の分子(例えば、酵素、基質、レセプター、DNA、抗体、抗原など)との相互作用を規定する。各アミノ酸は、それらの疎水性および電荷の性質に基づく疎水性指数を割り当てられる。それらは:イソロイシン(+4.5);バリン(+4.2);ロイシン(+3.8);フェニルアラニン(+2.8);システイン/シスチン(+2.5);メチオニン(+1.9);アラニン(+1.8);グリシン(-0.4);スレオニン(-0.7);セリン(-0.8);トリプトファン(-0.9);チロシン(-1.3);プロリン(-1.6);ヒスチジン(-3.2);グルタミン酸(-3.5);グルタミン(-3.5);アスパラギン酸(-3.5);リジン(-3.9);およびアルギニン(-4.5))である。

[0120]

あるアミノ酸を、同様の疎水性指数を有する他のアミノ酸により置換して、そして依然として同様の生物学的機能を有するタンパク質(例えば、酵素活性において等価なタンパク質)を生じさせ得ることが当該分野で周知である。このようなアミノ酸置換において、疎水性指数が±2以内であることが好ましく、±1以内であることがより好ましく、および±0.5以内であることがさらにより好ましい。疎水性に基づくこのようなアミノ酸の置換は効率的であることが当該分野において理解される。米国特許第4,554,101号に記載されるように、以下の親水性指数がアミノ酸残基に割り当てられている:アルギニン(+3.0);リジン(+3.0);アスパラギン酸(+3.0±1);グルタミン酸(+3

[0121]

本発明において、「保存的置換」とは、アミノ酸置換において、元のアミノ酸と置換されるアミノ酸との親水性指数または/および疎水性指数が上記のように類似している置換をいう。保存的置換の例としては、例えば、親水性指数または疎水性指数が、±2以内のもの同士、好ましくは±1以内のもの同士、より好ましくは±0.5以内のもの同士のものが挙げられるがそれらに限定されない。従って、保存的置換の例は、当業者に周知であり、例えば、次の各グループ内での置換:アルギニンおよびリジン;グルタミン酸およびアスパラギン酸;セリンおよびスレオニン;グルタミンおよびアスパラギン;ならびにバリン、ロイシン、およびイソロイシン、などが挙げられるがこれらに限定されない。

[0122]

本明細書において、「改変体」とは、もとのポリペプチドまたはポリヌクレオチドなどの物質に対して、一部が変更されているものをいう。そのような改変体としては、置換改変体、付加改変体、欠失改変体、短縮(truncated)改変体、対立遺伝子変異体などが挙げられる。対立遺伝子(allele)とは、同一遺伝子座に属し、互いに区別される遺伝的改変体のことをいう。従って、「対立遺伝子変異体」とは、ある遺伝子に対して、対立遺伝子の関係にある改変体をいう。そのような対立遺伝子変異体は、通常その対応する対立遺伝子と同しまたは非常に類似性の高い配列を有し、通常はほぼ同一の生物学的活性を有する

が、まれに異なる生物学的活性を有することもある。「種相同体またはホモログ $(h \ omo \ log)$ 」とは、ある種の中で、ある遺伝子とアミノ酸レベルまたは $\ some \ some$

[0123]

. 8

「保存的(に改変された)改変体」は、アミノ酸配列および核酸配列の両方に適用される。特定の核酸配列に関して、保存的に改変された改変体とは、同一のまたは本質的に同一のアミノ酸配列をコードする核酸をいい、核酸がアミノ酸配列をコードしない場合には、本質的に同一な配列をいう。遺伝コードの縮重のため、多数の機能的に同一な核酸が任意の所定のタンパク質をコードする。例えば、コドンGCA、GCC、GCG、およびGCUはすべて、アミノ酸アラニンをコードする。したがって、アラニンがコドンにより特定される全ての位置で、そのコドンは、コードされたポリペプチドを変更することなく、記載された対応するコドンの任意のものに変更され得る。

[0124]

本明細書において、ポリペプチドまたはポリヌクレオチドの「置換、付加または欠失」とは、もとのポリペプチドまたはポリヌクレオチドに対して、それぞれアミノ酸もしくはその代替物、またはヌクレオチドもしくはその代替物が、置き換わること、付け加わることまたは取り除かれることをいう。このような置換、

付加または欠失の技術は、当該分野において周知であり、そのような技術の例としては、部位特異的変異誘発技術などが挙げられる。置換、付加または欠失は、1つ以上であれば任意の数でよく、そのような数は、その置換、付加または欠失を有する改変体において目的とする機能(例えば、ホルモン、サイトカインの情報伝達機能など)が保持される限り、多くすることができる。例えば、そのような数は、1または数個であり得、そして好ましくは、全体の長さの20%以内、10%以内、または100個以下、50個以下、25個以下などであり得る。

[0125]

本明細書において使用される「細胞」は、当該分野において用いられる最も広義の意味と同様に定義され、多細胞生物の組織の構成単位であって、外界を隔離する膜構造に包まれ、内部に自己再生能を備え、遺伝情報およびその発現機構を有する生命体をいう。本発明の方法においては、どのような細胞でも対象とされ得る。本明細書において細胞数は、光学顕微鏡を通じて計数することができる。光学顕微鏡を通じて計数する場合は、核の数を数えることにより計数を行う。当該組織を組織切片スライスとし、ヘマトキシリンーエオシン(HE)染色を行うことにより細胞外マトリクスおよび細胞に由来する核を色素によって染め分ける。この組織切片を光学顕微鏡にて検鏡し、特定の面積(例えば、200mm×200mm)あたりの核の数を細胞数と見積って計数することができる。

[0126]

細胞は、石灰化および免疫反応惹起の原因となる。従って、組織または臓器への移植のためには、自己由来以外の細胞はできるだけ除去されるべきであり、本発明においては、含まないことが好ましくあり得る。本発明の組織片において細胞を含む場合は、自己由来の細胞のような免疫拒絶の問題が通常生じないと考えられる細胞を用いることが好ましい。

[0127]

本発明で細胞が用いられる場合、そのような細胞はどの生物(例えば、脊椎動物、無脊椎動物)由来の細胞でもよい。好ましくは、脊椎動物由来の細胞が用いられ、より好ましくは、哺乳動物(例えば、霊長類、齧歯類など)由来の細胞が用いられる。さらに好ましくは、霊長類由来の細胞が用いられる。ヒトへの移植

に用いられる場合、最も好ましくはヒト (特に、自己または遺伝子系の類似もしくは同一である個体) 由来の細胞が用いられる。

[0128]

本明細書において「細胞の置換」とは、組織内で、もとあった細胞または何もなかった場所に代わり、別の細胞が侵入し置き換わることをいい、細胞の浸潤ともいう。本発明の組織片を用いると、細胞の置換は、移植の宿主内の細胞によって行われる。本発明の組織片を用いると、自己由来の細胞などは全くないにもかかわらず、移植後に宿主由来の細胞が浸潤し置換することが認められた。このような事象はこれまで開発された移植片などのグラフトでは決して起こらなかったことであり、このこと自体、本発明の予想外の極めて優れた効果を示すものといえる。細胞の置換は、当該分野において公知の手法を用いて確認することができ、例えば、フォンビルブランド因子、αーSMA、弾性組織についてのファン・ギーソンなどのように、自己細胞の増殖を確認するマーカーを用いて判定することができる。そのような細胞の置換を確認する手法は、例えば、病理組織染色ハンドブック 医学書院に記載されている。

[0129]

本明細書において「組織」(tissue)とは、生物において、同一の機能・形態をもつ細胞集団をいう。多細胞生物では、通常それを構成する細胞が分化し、機能が専能化し、分業化がおこる。従って細胞の単なる集合体であり得ず、ある機能と構造を備えた有機的細胞集団,社会的細胞集団としての組織が構成されることになる。組織としては、外皮組織、結合組織、筋組織、神経組織などが挙げられるがそれらに限定されない。本発明が対象とする組織は、生物のどの臓器または器官由来の組織でもよい。本発明の好ましい実施形態では、本発明の組織片が移植される対象組織としては、血管、血管様組織、心臓弁、心膜、硬膜、心臓、心臓内、皮膚、骨、軟部組織、気管などの組織が挙げられるがそれらに限定されない。本発明で用いられる支持体に使用される分子は、好ましくは生体適合性であることから、原理的にはどの器官由来の組織でも本発明の移植対象とすることができる。従って、本発明が対象とする組織は、生物のどの臓器または器官由来でもよく、また、本発明が対象とする組織は、どのような種類の生物由来

であり得る。本発明が対象とする生物としては、脊椎動物または無脊椎動物が挙 げられる。好ましくは、本発明が対象とする生物は、哺乳動物(例えば、霊長類 、齧歯類など)である。より好ましくは、本発明が対象とする生物は、霊長類で ある。最も好ましくは、本発明はヒトを対象とする。

[0130]

本明細書において「組織片」(explant)とは、組織または臓器の一部(もしくは全部)または組織または臓器の一部(もしくは全部)となり得る物質をいう。組織片は、人工的に合成することもでき、または天然に存在する材料を使用してもよく、あるいは、両者を使用してもよい。組織片は、通常、その形状を維持するための支持体を含む。

[0131]

本明細書において「組織片」は、「移植片」、「グラフト」および「組織グラフト」と交換可能に用いられ得る。組織片は、通常、身体の特定部位に挿入されるべき同種または異種の組織または細胞群であって、身体への挿入後その一部となる。従来の移植片としては、例えば、臓器または臓器の一部、血管、血管様組織、皮片、心臓弁、心膜、硬膜、角膜骨片、歯などが使用されてきた。従って、移植片には、ある部分の欠損部に差し込んで欠損を補うために用いられるものすべてが包含される。移植片としては、そのドナー(donor)の種類によって、自己(自家)移植片(autograft)、同種移植片(同種異系移植片)(allograft)、異種移植片が挙げられるがそれらに限定されない。

[0132]

本明細書において「膜状組織」とは、「平面状組織」ともいい、膜状の組織をいう。膜状組織には、心膜、硬膜、角膜などの器官の組織が挙げられる。

[0133]

本明細書において「管状組織」とは、管状の組織をいう。管状組織には、血管などの器官の組織が挙げられる。

[0134]

本明細書において「臓器」または「器官」(organ)とは、互換的に用いられ、生物個体のある機能が個体内の特定の部分に局在して営まれ、かつその部

分が形態的に独立性をもっている構造体をいう。一般に多細胞生物(例えば、動物、植物)では器官は特定の空間的配置をもついくつかの組織からなり、組織は多数の細胞からなる。そのような臓器または器官としては、血管系に関連する臓器または器官が挙げられる。1つの実施形態では、本発明が対象とする器官は、虚血性の器官(心筋梗塞を起こした心臓、虚血を起こした骨格筋など)が挙げられる。1つの好ましい実施形態では、本発明が対象とする臓器は、心臓、肝臓、腎臓、胃、腸、脳、骨、気管、皮膚、血管、軟部組織である。より好ましい実施形態では、本発明が対象とする臓器は、心臓(心臓弁)、骨、皮膚、血管などである。

[0135]

本明細書において「免疫反応」とは、移植片と宿主との間の免疫寛容の失調による反応をいい、例えば、超急性拒絶反応(移植後数分以内)(β-Galなどの抗体による免疫反応)、急性拒絶反応(移植後約7~21日の細胞性免疫による反応)、慢性拒絶反応(3カ月以降の細胞性免疫による拒絶反応)などが挙げられる。

[0136]

本明細書において免疫反応を惹起するかどうかは、HE染色などを含む染色、 免疫染色、組織切片の検鏡によって、移植組織中への細胞(免疫系)浸潤につい て、その種、数などの病理組織学的検討を行うことにより判定することができる

[0137]

本明細書において「石灰化」とは、生物体で石灰質が沈着することをいう。生体内の組織または臓器が石灰化すると、通常その組織または臓器の正常な機能が損なわれることから、石灰化は起こらないほうが好ましい。従って、移植治療では、石灰化を回避する処置をとることが従来より望まれていた。本発明の組織片を用いると、石灰化の問題は回避される。

[0138]

本明細書において生体内で「石灰化する」かどうかは、カルシウム濃度を測定することによって判定することができ、移植組織を取り出し、酸処理などにより

[0139]

本明細書において「生体内」または「インビボ」(in vivo)とは、生体の内部をいう。特定の文脈において、「生体内」は、目的とする組織または器官が配置されるべき位置をいう。

[0140]

本明細書において「インビトロ」(in vitro)とは、種々の研究目的のために生体の一部分が「生体外に」(例えば、試験管内に)摘出または遊離されている状態をいう。インビボと対照をなす用語である。

[0141]

本明細書において「エキソビボ」(ex vivo)とは、遺伝子導入を行う ための標的細胞を被験体より抽出し、インビトロで治療遺伝子を導入した後に、 再び同一被験体に戻す場合、一連の動作をエキソビボという。

[0142]

本明細書において自己移植片または自家移植片とは、ある個体についていうとき、その個体に由来する移植片をいう。本明細書において自己移植片というときは、広義には遺伝的に同じ他個体(例えば一卵性双生児)からの移植片をも含み得る。

[0143]

本明細書において同種移植片(同種異系移植片)とは、同種であっても遺伝的には異なる他個体から移植される移植片をいう。遺伝的に異なることから、同種異系移植片は、移植された個体(レシピエント)において免疫反応を惹起し得る。そのような移植片の例としては、親由来の移植片などが挙げられるがそれらに限定されない。

[0144]

本明細書において異種移植片とは、異種個体から移植される移植片をいう。従って、例えば、ヒトがレシピエントである場合、ブタからの移植片は異種移植片という。

[0145]

本明細書において「レシピエント」(受容者)とは、移植片または移植体を受け取る個体といい、「宿主」とも呼ばれる。これに対し、移植片または移植体を提供する個体は、「ドナー」(供与者)という。

[0146]

本明細書において「被験体」とは、本発明の処置が適用される生物をいい、「 患者」ともいわれる。患者または被験体は好ましくは、ヒトであり得る。

[0147]

本明細書において「薬学的に受容可能なキャリア」は、医薬または動物薬を製造するときに使用される物質であり、有効成分に有害な影響を与えないものをいう。そのような薬学的に受容可能なキャリアとしては、例えば、以下が挙げられるがそれらに限定されない:抗酸化剤、保存剤、着色料、風味料、および希釈剤、乳化剤、懸濁化剤、溶媒、フィラー、増量剤、緩衝剤、送達ビヒクル、希釈剤、賦形剤および/または農学的もしくは薬学的アジュバント。

[0148]

(好ましい実施形態の説明)

1つの局面において、本発明は、生体適合性組織片を提供する。この生体適合性組織片は、A)生体分子;およびB)支持体を含む。この生体適合性組織片は、生体分子と支持体との構成のみで実際に移植治療に使用され得るだけでなく、移植後に、自己化を起こすことが予想外に発見された。従来は、移植片としては、生体由来の自己増殖性を有するもの(例えば、組織の一部、臓器そのもの)を利用するか、あるいは人工物を使用した場合であっても、その人工物に生体由来の自己増殖性を有するもの(例えば、細胞)を付着させる必要があると考えられていた。

[0149]

本発明では、実施例などでも示すように、自己増殖性を有するもの(例えば、 細胞)を全く含まない組織片を用いて移植処置をしても、その処置の部位におい て自己化(すなわち、自己またはそれと等価な細胞が集合し、増殖すること)が 起こることが明らかになった。従って、本発明の組織片は、従来不可能とされて いた組織または臓器を治療するのにも使用することができる。なぜなら、本発明 の組織片に含まれる支持体は、どのような形状にも変更することができるからで ある。

[0150]

理論に束縛されないが、本発明の組織片が宿主内の臓器または組織の一部(代表的には損傷部位あるいは強化が望まれる部位)に移植されると、組織片に含まれる生体分子(例えば、コラーゲンなど)の働きにより、宿主内の細胞(特に、その臓器または組織の一部となる(例えば、増殖または分化)ことができるもの)がその組織片の周辺に集合し、場合によって増殖することにより、その臓器または組織の損傷部位または強化部位が修復または強化される。

[0151]

従って、そのような生体分子としては、宿主内の細胞を直接または間接的に集合させる(例えば、接着あるいは、接着を媒介する分子の誘導など)ことができる分子であれば、どのような生体分子であっても使用することができる。従って、このような生体分子は、生体に由来するものであってもよいが、上述の機能を有する限り、合成により生産することもでき、天然に存在するものであっても天然に存在しないものであってもよい。好ましくは、天然に存在するものであって、その宿主に害を与えないことが判明している物質(例えば、厚生労働省から医薬品の成分として使用することが認められている物質、例えば、日本薬局方収載品など)を用いることが有利であり得る。あるいは、そのような生体分子は、その宿主に害を与えないことが別途確認されたものであってもよい。代表的には、そのような生体分子は、タンパク質を含む。

[0152]

1つの実施形態において、本発明において使用される生体分子は、細胞生理活性物質を含み得る。そのような細胞生理活性物質としては、例えば、HGF、血小板由来増殖因子(PDGF)、表皮増殖因子(EGF)、線維芽細胞増殖因子(FGF)、肝細胞増殖因子(HGF)、血管内皮増殖因子(VEGF)白血病抑制因子(LIF)、c-kitリガンド(SCF)などが挙げられるがそれに限定されない。

[0153]

好ましい実施形態では、本発明において用いられる生体分子は、細胞接着分子 を含み得る。細胞接着分子は、細胞と細胞または基質との接着を媒介することか ら、移植されたときに、その場所に宿主内の細胞を呼び寄せる機能を有すると考 えられることから、好ましい実施形態と考えられる。しかし、従来は、このよう な細胞接着分子が直接そのような移植片として使用されるかどうかは不明であり 、むしろ、細胞などの自己増殖性のものを含ませることが必須と考えられていた (Raf Sodian et al. Ann Throrac Surge ry 2000;70;140-44; Sodian R, Lemke T, F ritsche C, Hoerstrup SP, Fu P, Potapov EV, Hausmann H, Hetzer R. Tissue Eng 20 02 Oct; 8 (5): 863-70; Kadner A, Hoerstru p SP, Zund G, Eid K, Maurus C, Melnitcho uk S, Grunenfelder J, Turina MI., Eur J Cardiothorac Surg. 2002 Jun; 21 (6):10 55-60などを参照)ことから、本発明の移植片がもたらした効果は予想外と いえる。

[0154]

そのような細胞接着分子としては、例えば、コラーゲン、ICAM、NCAM 、フィブロネクチン、コラーゲン、ビトロネクチン、ラミニン、インテグリン、 ビトロネクチン、フィブリノゲン、免疫グロブリンスーパーファミリーなどが挙 げられるがそれに限定されない。

[0155]

別の好ましい実施形態において、本発明において用いられる生体分子は、細胞外マトリクスを含む。そのような細胞外マトリクスもまた、細胞を集合させる活性を有することが知られることから、本発明における好ましい実施形態と考えられる。しかし、従来は、このような細胞外マトリクスが直接そのような移植片として使用されるかどうかは不明であり、むしろ、細胞などの自己増殖性のものを含ませることが必須と考えられていたことに鑑みると、このような細胞外マトリ

クスを直接移植片の主要成分として用いることができるという知見は、予想外の 効果といえる。

[0156]

そのような細胞外マトリクスとしては、例えば、コラーゲン、エラスチン、プロテオグリカン、グリコサミノグリカン、フィブロネクチン、ラミニンなどが挙 げられるがそれに限定されない。

[0157]

別の好ましい実施形態において、本発明において用いられる生体分子は、細胞接着性タンパク質を含む。そのような細胞接着性タンパク質もまた、細胞を集合させる活性を有することが知られることから、本発明における好ましい実施形態と考えられる。しかし、従来は、このような細胞接着性タンパク質が直接そのような移植片として使用されるかどうかは不明であり、むしろ、細胞などの自己増殖性のものを含ませることが必須と考えられていたことに鑑みると、このような細胞接着性タンパク質を直接移植片の主要成分として用いることができるという知見は、予想外の効果といえる。

[0158]

そのような細胞接着性タンパク質としては、例えば、コラーゲン、ラミニン、フィブロネクチン、ICAM、NCAM、フィブロネクチン, コラーゲン, ビトロネクチン, ラミニン、インテグリン、ビトロネクチン, フィブリノゲン、免疫グロブリンスーパーファミリーなどが挙げられるがそれに限定されない。

[0159]

1つの好ましい実施形態において、本発明において用いられる生体分子は、RGD分子を含む。そのようなRGD分子もまた、細胞を接着させる活性を有することが知られることから、本発明における好ましい実施形態と考えられる。しかし、従来は、このようなRGD分子が直接そのような移植片の主要成分として使用されるかどうかは不明であり、むしろ、細胞などの自己増殖性のものを含ませることが必須と考えられていたことに鑑みると、このようなRGD分子を直接移植片の主要成分として用いることができるという知見は、予想外の効果といえる

[0160]

そのようなRGD分子としては、例えば、コラーゲン(I型など)、ラミニン 、フィブロネクチン、ICAM、NCAM、ビトロネクチン、フォンヴィルブラ ンド因子、エンタクチンなどが挙げられるがそれに限定されない。

[0161]

より好ましい実施形態では、本発明において用いられる生体分子は、コラーゲンを含む。コラーゲンもまた、細胞を接着させる活性を有することが知られることから、本発明における好ましい実施形態と考えられる。しかし、従来は、このようなコラーゲンは、補助成分として使用されており、直接そのような移植片の主要成分として使用されるかどうかは不明であり、むしろ、細胞などの自己増殖性のものを含ませることが必須と考えられていたことに鑑みると、このようなコラーゲンを直接移植片の主要成分として用いることができるという知見は、予想外の効果といえる。

[0162]

より好ましくは、このコラーゲンは、線維形成コラーゲンまたは基底膜コラーゲンであり得る。さらに好ましくは、本発明において用いられる生体分子は、この線維形成コラーゲンおよび基底膜コラーゲンを含む。線維形成コラーゲンおよび基底膜コラーゲンの両方を含むことにより、組織片の移植後の自己化が最もよく促進された。これは、理論に束縛されないが、細胞の集合および接着活性がこの組み合わせにより最も最適化されるからであると考えられる。

[0163]

さらに好ましくは、このコラーゲンは、I型またはIV型のコラーゲンであることが有利であり得る。I型およびIV型が有利であるのは、血管内皮、平滑筋細胞、心筋細胞、それらの前駆細胞(幹細胞)が生着、増殖の足場としてより有効であるという原因が挙げられるがそれに限定されない。

[0164]

もっとも好ましい実施形態において、本発明の生体分子は、コラーゲン I 型および I V型の両方を含む。コラーゲン I 型およびコラーゲン I V型の両方を一緒に含むことにより、組織片の移植後の自己化が最もよく促進された。これは、理

論に束縛されないが、細胞の集合および接着活性がこの組み合わせにより最も最 適化されるからであると考えられる。

[0165]

別の実施形態において、本発明に用いられる支持体は、膜状であり得る。膜状の支持体を用いた組織片は、膜状の組織または臓器への移植に適切であり得る。 そのような膜状の組織または臓器としては、例えば、皮膚、角膜、硬膜、大型の臓器(例えば、肝臓、心臓など)の一部などが挙げられるがそれらに限定されない。

[0166]

別の実施形態において、本発明に用いられる支持体は、管状であり得る。管状の支持体を用いた組織片は、管状の組織または臓器への移植に適切であり得る。 そのような管状の組織または臓器としては、例えば、血管、リンパ管などが挙げられるがそれらに限定されない。

[0167]

別の実施形態において、本発明に用いられる支持体は、弁状であり得る。管状の支持体を用いた組織片は、弁状の組織または臓器への移植に適切であり得る。 そのような弁状の組織または臓器としては、例えば、心臓弁などが挙げられるが それらに限定されない。

[0168]

好ましい実施形態において、本発明の支持体は、生分解性ポリマーを含むことが有利であり得る。より好ましくは、本発明の支持体は、生分解性ポリマーから構成されることがより有利であり得る。支持体が生分解性ポリマーを含むかまたは生分解性ポリマーから構成されることにより、一定期間の後には、本発明の組織片は自己の細胞のみから構成されるようになり、移植の対象となった臓器または組織が自己のものと区別がほとんどできなくなるからである。本発明において使用されることが好ましい生分解性ポリマーとしては、PLA、PGA、PLGA、ポリカプロラクタム(PCLA)などが挙げられるがそれに限定されない。

[0169]

好ましい実施形態では、本発明において使用される支持体は、PGAおよびP

LGAからなる群より選択される少なくとも1成分を含む。より好ましくは、本発明において使用される支持体は、グリコール酸と乳酸との比率が約90:約10~約80:約20であるPLGAを含む。このような比率のPLGAを用いることによって、適度な強度および半減期(およそ1ヶ月~数ヶ月)という性質を達成することができるからである。強度としては、例えば、少なくとも約10N以上であり得、通常約25N以上であり得、好ましくは約50N以上であり得る。より好ましくは約75N以上であり得る。

[0170]

本発明の別の好ましい実施形態において、本発明において使用される支持体にも細胞接着分子を用いることができる。そのような細胞接着分子は、上述したものであり得るが、好ましくは、支持体としての強度を有するものが有利であり得る。そのような強度としては、例えば、約10N以上の強度、約20N以上の強度、約25N以上の強度であり得、好ましくは約50N以上の強度、より好ましくは約75N以上の強度であり得る。そのような支持体としての強度を保持する細胞接着分子としては、例えば、フィブロネクチン, コラーゲン, ビトロネクチン, ラミニン、インテグリン、ビトロネクチン, フィブリノゲン、免疫グロブリンスーパーファミリーなどが挙げられるがそれに限定されない。通常の細胞接着分子の一部を改変(例えば、置換基の追加)することによって強度を上げることができる。そのような物質の強度に関する改変は、当該分野において公知の方法を用いて行うことができ、そのような方法は、例えば、高分子機能材料シリーズ医療機能材料 共立出版株式会社、Guoping Clen etal JBiomed mater Res,51,273-279,2000に記載されている。

[0171]

本発明のある実施形態において、本発明において使用される支持体は、タンパク質を含んでいてもよい。そのようなタンパク質は、上述したもの(例えば、細胞接着性タンパク質など)であり得るが、好ましくは、支持体としての強度を有するものが有利であり得る。そのような支持体としての強度を保持するタンパク質としては、例えば、フィブロネクチン、コラーゲン、ビトロネクチン、ラミニ

ン、インテグリン、ビトロネクチン,フィブリノゲン、免疫グロブリンスーパーファミリーなどが挙げられるがそれに限定されない。通常のタンパク質の一部を改変 (例えば、(糖または脂質などとの)複合体化、置換基の追加)することによって強度を上げることができる。そのような物質の強度に関する改変は、当該分野において公知の方法を用いて行うことができ、そのような方法は、例えば、高分子機能材料シリーズ医療機能材料 共立出版株式会社に記載されている。

[0172]

支持体において上述のタンパク質または細胞接着分子の改変体を用いる場合は 、そのような改変体は、生体適合性であることが好ましい。

[0173]

好ましい実施形態において、本発明において使用される支持体は、メッシュ状であり得る。別の実施形態において、そのような支持体は、例えば、膜状、織物様、管状、スポンジ状、ファイバー状のような形状をとっていてもよい。ある実施形態では、メッシュ状が好ましい。メッシュ状であると、生体分子が容易にコーティングされ得るからである。しかし、当業者は、目的によって、そのような形状は適宜選択することができ、当業者は選択した形状を当該分野における周知技術に基づき容易に作製することができる。

[0174]

本発明の支持体は、目的に応じてその厚みを変動することが必要であり得る。 そのような支持体は、通常、約0.2 mm~約1.0 mm厚であることが好ましい。血管などで用いる場合は、そのような支持体は、少なくとも約0.6 mm厚であることが好ましくあり得る。

[0175]

好ましくは、本発明の組織片において、支持体は、生体分子でコーティングされていることが有利であり得る。コーティングによって、ほぼ均等に生体分子がその組織片において分布させることができるからである。コーティングの方法は、当該分野において公知であり、例えば、再生医学と生命科学 共立出版;Guoping Clen et al J Biomed mater Res, 51,273-279,2000に記載される手法が考えられるがそれに限定され

ない。

[0176]

好ましい実施形態では、本発明の組織片において、支持体に隙間がある場合 (例えば、メッシュ状の場合)、その隙間は生体分子がふさいでいることが有利であり得る。隙間がふさがれているまたは埋められているとの用語は、その隙間を所望でない流体 (例えば、液体または気体)が通り抜けられない状態を意味する。隙間がふさがれていることにより、その組織片から液体または気体がもれ出ることを防止することができるからである。従って、そのような隙間がふさがれている形態は、例えば、血管、心臓など血液に関する臓器の破損の修復などにおいて有用であり得る。

[0177]

好ましくは、本発明において使用される生体分子は、架橋可能な分子を含む。 この架橋可能な分子は、支持体との間で架橋処理されている。本発明において使 用され得る架橋可能な分子には、例えば、未熟架橋(シッフ塩基型架橋)、成熟 架橋(ピリジノリン)、老化架橋(ヒスチジノアラニン)コラーゲンなどが挙げ られるがそれに限定されない。好ましくは、架橋可能な分子は成熟架橋(ピリジ ノリン)コラーゲンである。

[0178]

ある実施形態において、本発明で使用される支持体は、本発明に含まれる生体 分子と同じ物質を含んでいてもよい。そのような場合、本発明の組織片は、その 生体分子のみで形成されることがあり得る。したがって、例えば、本発明の組織 片は、HGFのみで形成されていてもよく、コラーゲンのみで形成されていても よい。ただし、そのような場合、ある程度の強度を保持する必要があり得る。そ のような強度を獲得するために、上記生体分子は、改変され得る。そのような改 変は、当該分野において周知の技法を用いて当業者が適宜行うことができる。

[0179]

別の実施形態において、本発明の組織片は、さらに細胞が付着したものであってもよい。本発明は、細胞なしでも自己化を達成することができることにひとつの特徴があるが、細胞がある場合でも、同様な効果(自己化、修復など)を達成

することが本明細書において示されていることから、そのように細胞を含む形態 も本発明の範囲内にあることが理解されるべきである。なぜなら、細胞ありの場 合でも、1ヶ月程度で細胞が消去し、自己由来の細胞が生着するからである。

[0180]

1つの実施形態において、本発明の移植片は、体内への移植用のものであり得る。移植用に用いられる場合、その標的となる部位は、例えば、心臓弁、血管、血管様組織、心臓弁、心臓、心膜、硬膜、皮膚、骨、軟部組織、気管などがあるがそれに限定されない。好ましくは、標的となる部位は、血管様組織、心臓弁、心臓、心膜、硬膜、皮膚、骨、軟部組織、気管などであり得る。

[0181]

ある実施形態において、本発明の組織片は、ある臓器または組織の損傷を修復するために用いられ得る。修復を標的とする臓器または組織もまた、上述に記載のものから選択され得る。好ましくは、標的となる損傷部位は、心臓、肝臓、腎臓、胃、腸、脳、骨、気管、皮膚、血管、軟部組織などであり得る。修復を目的とする場合、本発明の組織片は、その損傷部位と同じまたはそれより大きな面積、好ましくはすべてを覆う程度の広さを有することが好ましいが、それより小さな面積であっても所期の目的は達成可能である。そのように損傷部位を覆う程度の広さを有することによって、損傷により有害な影響を伴う事象(例えば、流血など)を抑えることができ、有利な治療効果を達成することができる。

[0182]

別の実施形態において、本発明の組織片は、臓器または組織の強化のために使用され得る。強化を目的とする場合、本発明の組織片は、その強化を目的とする部位と同じまたはそれより大きな面積、好ましくはすべてを覆う程度の広さを有することが好ましいが、それより小さな面積であっても所期の目的は達成可能である。そのように損傷部位を覆う程度の広さを有することによって、損傷により有害な影響を伴う事象 (例えば、流血など)を抑えることができ、有利な治療効果を達成することができる。

[0183]

別の実施形態において、本発明の組織片は、滅菌されていることが好ましい。

そのような滅菌をする方法としては例えば、オートクレーブ、乾熱滅菌、薬剤滅菌 (例えば、アルコール消毒、ホルマリンガス、オゾンガスなどによる滅菌)、放射線滅菌 (γ線照射など) などが挙げられ、そのような滅菌は、例えば、アルコール消毒、γ線照射、エチレンオキサイドガス滅菌などで行うことができる。 従って、本明細書においてある材料、支持体などが滅菌可能とは、少なくとも1つの滅菌方法に対して耐性である性質をいう。滅菌されることにより、感染などの二次的な有害事象を防ぐことができる。

[0184]

別の好ましい実施形態において、本発明の組織片は、その中にかまたはそれに 伴って、免疫抑制剤をさらに含んでいてもよい。そのような免疫抑制剤は、当該 分野において公知である。免疫抑制の目的では、免疫抑制剤のほか、免疫抑制を 達成する別の方法を用いてもよい。上述のような拒絶反応を起こさないようにす る免疫抑制法として、免疫抑制剤によるもの、外科的手術、放射線照射等が挙げ られる。まず、免疫抑制剤として主なものとして副腎皮質ステロイド薬、シクロ スポリン、FK506等がある。副腎皮質ステロイド薬は循環性T細胞の数を減 少させ、リンパ球の核酸代謝、サイトカイン産生を阳害してその機能を抑え、マ クロファージの遊走および代謝を抑制して免疫反応を抑える。一方、シクロスポ リンおよびFK506の作用は類似しており、ヘルパーT細胞の表面にある受容 体と結合して細胞内に入り込み、DNAに直接働いてインターロイキン2の生成 を阻害する。最終的には、キラーT細胞が機能できなくなり免疫抑制作用が起こ る。これらの免疫抑制剤の使用においては副作用が問題となる。ステロイドは特 に副作用が多く、また、シクロスポリンは肝臓・腎臓に対する毒性がある。また 、FK506は腎臓に対する毒性を有する。次に外科的手術としては、例えば、 リンパ節摘出、脾臓摘出、胸腺摘除が挙げられるが、これらについてはその効果 が十分に証明されてはいない。外科的手術の中でも胸菅ろうとは、循環している リンパ球を体外に導くものであり効果も確認されているが、大量の血清タンパク 質および脂肪の流出を引き起こし、栄養障害が起こりやすくなるという欠点があ る。放射線照射には全身照射と移植片照射があるが、効果が不確実な面もあり、 レシピエントに対する負担が大きいので、前述の免疫抑制剤との併用により利用

されている。上述のいずれの方法も拒絶反応の防止にはあまり好ましくない。

[0185]

本発明の組織片は、さらなる医薬成分を含んでいてもよい。そのような医薬成分は、好ましくは、細胞の集合および結合を妨害しないようなものが有利であり得る。あるいは、そのような医薬成分は、処置を目的とする損傷部位などの改善に有利な作用を有するものが選択され得る。そのような医薬成分としては、例えば、ヘパリン、抗生剤、血管拡張剤、降圧剤(ACE阻害剤、ARB(=ACEレセプターブロッカー))などが挙げられるがそれらに限定されない。

[0186]

好ましい実施形態において、本発明の組織片において用いられる生体分子は、 移植を目的とする生体自体に由来することが有利であり得る。ここで、その生体 に由来するとは、その生体から単離したもののほか、その単離体に基づいて合成 または複製などをしたものを包含する。このようなものを自己由来ともいう。自 己由来の生体分子を用いることによって、免疫拒絶をより効率的に防止すること ができる。

[0187]

別の実施形態において、本発明は、本発明の生体適合性組織片を含む医薬に関する。そのような医薬は、好ましくは、日本における薬事法などに基づく基準を満たしたものである。したがって、そのような場合、生体適合性組織片に含まれる成分は、そのような基準を満たしたものであり得る。そのような基準を満たしたものの例としては、例えば、I型コラーゲン、IV型コラーゲンがあるがそれに限定されない。当然、申請すれば基準を満たす状態にあるものは種々存在する。したがって、ここに挙げたものは、現時点ですでに基準を満たすことが当局によって認められているということのみを示し、本発明を限定的に解釈する根拠として用いるべきではないことに留意するべきである。

[0188]

別の局面において、本発明は、本発明の生体適合性組織片およびその組織片の 使用法を示した指示書を含む医薬キットまたはシステムに関する。この指示書に は、所定の部位に本発明の組織片を移植する方法が記載される。そのような移植 は、当該分野において周知の方法によって行うことができ、例えば、そのような方法は、新外科学体系、心臓移植・肺移植 技術的,倫理的整備から実施に向けて(改訂第3版)、標準外科学第9版医学書院、心臓の外科 新外科学大系,19A,19B,19C,(中山書店)に記載されている。本発明の組織片の移植に際しては、上述の一般的な方法において、過大な圧がかからないということに留意することが好ましくあり得る。

[0189]

本発明の組織片が移植される部位としては、例えば、血管内皮、血管平滑筋、 弾性線維、心臓、肝臓、腎臓、胃、腸、脳、骨、気管、皮膚、血管および軟部組 織からなる群より選択される部位があるがそれに限定されない。好ましくは、血 管内皮、血管平滑筋 弾性線維、膠原線維などが挙げられる。

[0190]

好ましい実施形態において、本発明において添付される指示書には、本発明の 生体適合性組織片を、移植を目的とする臓器または組織の少なくとも一部が残存 するように移植することが記載され得る。

[0191]

本発明において添付される指示書は、本発明が実施される国の監督官庁(例えば、日本であれば厚生労働省、米国であれば食品医薬品局(FDA)など)が規定した様式に従って作成され、その監督官庁により承認を受けた旨が明記される。指示書は、いわゆる添付文書(package insert)であり、通常は紙媒体で提供されるが、それに限定されず、例えば、電子媒体(例えば、インターネットで提供されるホームページ、電子メール)のような形態でも提供され得る。

[0192]

本発明の組織片およびキットは、ヒトにおいて用いる場合、通常は医師の監督 のもとで実施されるが、その国の監督官庁および法律が許容する場合は、医師の 監督なしに実施することができる。

[0193]

別の局面において、本発明は、体内における損傷部位を処置する方法を提供す

る。このような方法は、A)損傷部位の一部または全部に、A-1)生体分子; およびA-2)支持体、を含む、生体適合性組織片を移植する工程、を包含する 。ここで、組織片は、損傷部位に直接接触されてもよく、間接的に接触されるよ うな処置を行ってもよい。好ましくは、本発明の方法における移植工程において 、本発明の生体適合性組織片は、損傷部位が属する臓器または組織の少なくとも 一部が残存するように移植されることが有利であり得る。一部が残存することに より、残存する組織内に存在する細胞が生体分子によって活性化され得、その結 果、自己化が促進され得るからである。

[0194]

好ましい実施形態において、本発明の処置方法では、細胞生理活性物質を投与する工程をさらに包含してもよい。そのような細胞生理活性物質としては、顆粒球マクロファージコロニー刺激因子(GM-CSF)、マクロファージコロニー刺激因子(M-CSF)、顆粒球コロニー刺激因子(G-CSF)、multi-CSF(IL-3)、白血病抑制因子(LIF)、c-kitリガンド(SCF)、免疫グロブリンファミリー(CD2, CD4, CD8)血小板由来増殖因子(PDGF)、表皮増殖因子(EGF)、線維芽細胞増殖因子(FGF)、肝細胞増殖因子(HGF)および血管内皮増殖因子(VEGF)からなる群より選択され得るがそれらに限定されない。

[0195]

好ましい実施形態において、本発明の方法では、免疫反応を抑制する処置を行う工程をさらに包含し得る。そのような免疫反応を抑制する処置は前述したとおりである。そのような場合、好ましくは、免疫抑制剤を用いることが有利であり得る。

[0196]

別の局面において、本発明は、体内における臓器または組織を強化する方法を 提供する。このような方法は、A) 該臓器または組織の一部または全部に、A-1) 生体分子;およびA-2) 支持体、を含む、生体適合性組織片を移植する工 程、を包含する。そのような移植の方法は当該分野において周知であり、新外科 学体系、心臓移植・肺移植 技術的, 倫理的整備から実施に向けて(改訂第3版

[0197]

別の局面において、本発明は、臓器または組織を生産または再生する方法を提供する。この方法は、A)目的とする臓器または組織の少なくとも一部を含む生体において、該臓器または組織に、A-1)生体分子;およびA-2)支持体、を含む、生体適合性組織片を移植する工程;ならびにB)該臓器または組織を該生体内で培養する工程、を包含する。

[0198]

このように臓器または組織を再生または生産する方法においても、移植工程は 上述のものと同じように行うことができる。培養工程は、生体を通常の条件下で 飼育することによって行うことができる。そのような飼育条件は、当該分野にお いて周知であり、当業者であれば、動物の種、サイズなどに鑑みて適宜行うこと ができる。

[0199]

別の局面において、本発明は、本発明の生体適合性移植片の、体内における損傷部位を処置するための使用に関する。

[0200]

さらに別の局面において、本発明は、本発明の生体適合性移植片の、体内における臓器または組織を強化するための使用に関する。

[0201]

さらに別の局面において、本発明は、本発明の生体適合性移植片の、体内における損傷部位を処置するための医薬を製造するための使用に関する。

[0202]

さらに別の局面において、本発明は、本発明の生体適合性移植片の、体内における臓器または組織を強化するための医薬を製造するための使用に関する。

[0203]

医薬を製造する方法は、当該分野において周知であり、本発明の医薬は、必要に応じて生理学的に受容可能なキャリア、賦型剤または安定化剤(日本薬局方第14版またはその最新版、Remington's Pharmaceutic

al Sciences, 18th Edition, A. R. Gennaro, ed., Mack Publishing Company, 1990などを参照)と、所望の程度の純度を有する細胞組成物とを混合することによって、凍結乾燥された状態で調製され保存され得るが、適切な保存液中に保存されることが好ましい。

[0204]

本発明の医薬に含まれる薬学的に受容可能なキャリアとしては、当該分野において公知の任意の物質が挙げられる。本発明において使用され得る薬学的に受容可能なキャリアとしては、抗酸化剤、保存剤、着色料、風味料、および希釈剤、乳化剤、懸濁化剤、溶媒、フィラー、増量剤、緩衝剤、送達ビヒクル、希釈剤、賦形剤および/または薬学的アジュバントが挙げられるがそれらに限定されない。代表的には、本発明の医薬は、支持体および生体分子を、1つ以上の生理的に受容可能なキャリア、賦形剤または希釈剤とともに含む組成物の形態で投与される。例えば、適切なビヒクルは、注射用水、生理的溶液、または人工脳脊髄液であり得、これらには、移植のための組成物に一般的な他の物質を補充することが可能である。

[0205]

例示の適切なキャリアとしては、中性緩衝化生理食塩水、または血清アルブミンと混合された生理食塩水が挙げられる。好ましくは、その生成物は、適切な賦形剤(例えば、スクロース)を用いて凍結乾燥剤として処方される。他の標準的なキャリア、希釈剤および賦形剤は所望に応じて含まれ得る。他の例示的な組成物は、pH7.0-8.5のTris緩衝剤またはpH4.0-5.5の酢酸緩衝剤を含み、これらは、さらに、ソルビトールまたはその適切な代替物を含み得る。

[0206]

本明細書で使用される受容可能なキャリア、賦形剤または安定化剤は、レシピエントに対して非毒性であり、そして好ましくは、使用される投薬量および濃度において不活性であり、そして以下が挙げられる:リン酸塩、クエン酸塩、または他の有機酸;抗酸化剤(例えば、アスコルビン酸);低分子量ポリペプチド;

タンパク質(例えば、血清アルブミン、ゼラチンまたは免疫グロブリン);親水性ポリマー(例えば、ポリビニルピロリドン);アミノ酸(例えば、グリシン、グルタミン、アスパラギン、アルギニンまたはリジン);モノサッカリド、ジサッカリドおよび他の炭水化物(グルコース、マンノース、またはデキストリンを含む);キレート剤(例えば、EDTA);糖アルコール(例えば、マンニトールまたはソルビトール);塩形成対イオン(例えば、ナトリウム);ならびに/あるいは非イオン性表面活性化剤(例えば、Tween、プルロニック(pluronic)またはポリエチレングリコール(PEG))。

[0207]

以下に、実施例に基づいて本発明を説明するが、以下の実施例は、例示の目的のみに提供される。従って、本発明の範囲は、上記発明の詳細な説明にも下記実施例にも限定されるものではなく、特許請求の範囲によってのみ限定される。

[0208]

【実施例】

(実施例1:PLGAを用いた実験)

本実施例では、PLGAを支持体として用い、コラーゲンI型およびIV型を 生体分子として用いて組織片を調製し、本発明の効果を実証した。

[0209]

(方法・結果)

エキソビボでの実験

<足場設計>

生体分解性合成高分子であるVycrylのポリラクチン910メッシュ(グリコール酸と乳酸の比率が90:10の共重合体、PLGA)を内腔側にニットメッシュ(nitted mesh)1枚、外側にウーブンメッシュ(woven mesh)2枚の計3枚重ね(各0.2mm,計0.6mm厚)とし、それにコラーゲンを架橋処理したPLGAーコラーゲン複合膜を足場とした。コラーゲンを架橋剤としてはコラーゲンⅠ型のみを架橋処理した群、コラーゲンⅠ型にさらにコラーゲンⅠV型を架橋した群を作製した(図1)。図2には、左第5肋間開胸した際の様子を示す。肺動脈主幹部に径20mmのパッチを縫着した。

[0210]

<機械強度>

PLGA-コラーゲン複合膜を引張試験機で強度測定した。幅5 mm長さ30 mmの短冊状素材を短軸方向に10 mm/分の速度で荷重負荷し、破断点負荷及び弾性率を測定した。(TENSILLON ORIENTEC)。コントロールとしてグルタールアルデヒド処理ウマ心膜を用いて比較検討した。引っ張り強度はPLGA-コラーゲン複合膜が 75 ± 5 N、グルタールアルデヒド処理ウマ心膜が 34 ± 11 Nであり、PLGA-コラーゲン複合膜のほうが引っ張り強度が高かった(図3)。

[0211]

<細胞接着の効率>

PLGA-コラーゲン複合膜における細胞生着性の確認のため、インビトロにおいて蛍光抗体(PKH-26(SIGMA))で標識した血管内皮細胞(VECs)および平滑筋細胞(VSMCs)をコラーゲンI型のみを架橋処理したPLGA-コラーゲン複合膜とコラーゲンI型にさらにIV型架橋処理したPLGA-コラーゲン複合膜で細胞接着効率の比較検討をおこなった。蛍光顕微鏡にて一視野あたりの蛍光色素の発色領域(%)を比較すると血管内皮細胞(VECs)および平滑筋細胞(VSMCs)のいずれの細胞においてもコラーゲンI型、IV型架橋処理したPLGA-コラーゲン複合膜が有意に蛍光色素の発色領域が多く、細胞生着が認められた(図4)。

[0212]

以上の結果よりコラーゲンI型およびIV型で架橋処理したPLGA-コラーゲン複合膜が強度も従来のグルタールアルデヒド処理ウマ心膜と同等以上であり、細胞性生着性も高いことから、このPLGA-コラーゲン複合膜を使用し、事前の細胞播種の効果をインビボにおける検討を行った。

[0213]

<移植>

コラーゲンI型およびIV型架橋処理したPLGA-コラーゲン複合膜(15 x 10 mm)と、この複合膜に自己の血管内皮細胞(VECs)および平滑筋細

胞(VSMCs)を播種した膜を作製し、ビーグル成犬(8~10kg)の肺動脈主幹部に部分遮断(partial clamp)下に移植した。

[0214]

細胞は同種のビーグル成犬の下肢表在静脈を摘出し、血管内皮細胞、および平滑筋細胞(VSMCs)を単離培養、 $PLGA-コラーゲン複合膜に血管内皮細胞、平滑筋細胞をそれぞれ1. <math>3\times10^6$ c e 11/c m 2 の密度で播種した。移植後、2 週、2 ヵ月、6 ヶ月後に摘出し組織学的に検討を行った。

[0215]

(インビボ:移植2週後)

PLGAーコラーゲン複合膜および自己細胞を播種したPLGAーコラーゲン複合膜の両群とも肉眼的に明らかな血栓形成は認めなかった。HE染色ではPLGAの残存を認め、その間は結合織が介在していた。自己の血管内皮細胞および平滑筋細胞を播種したPLGAーコラーゲン複合膜では蛍光抗体標識した播種した血管内皮細胞は内腔側に散在しているのみであり、多くの細胞はPLGAーコラーゲン複合膜より脱落していることが示唆された(図5)。

[0216]

(インビボ:移植2ヶ月後)

PLGA-コラーゲン複合膜および自己細胞を播種したPLGA-コラーゲン 複合膜の両群とも肉眼的に内腔側表面は平滑で、HE染色でPLGAは完全に吸 収されており正常の血管と比較しても遜色のない組織構造であった(図6)。

[0217]

血管内皮細胞を第VIII因子染色にて、平滑筋細胞α-SMA免疫染色にて検討した。両群とも第VIII因子免疫染色で単層の連続する血管内皮細胞を認め(図7)、α-SMA免疫染色で内腔側に配向性を有した平滑筋細胞を認めた(図8)。

さらにエラスチカ・ファン・ギーソン(elastica-van Gieson)染色にて血管の弾性繊維を検討した。両群とも血管内層に弾性繊維の発現が認められた(図9)。

[0218]

(インビボ:移植6ヶ月後)

. 両群とも移植後 2 ilder月目に見られたのと同様に第 V I I I I 因子免疫染色で単層 の連続する血管内皮細胞を認めた(図 1 0)。平滑筋細胞は移植後 2 ilder月目に見られたよりもさらにその形態を明らかにし、 α - S M A 免疫染色で内腔側に配向性を有し、正常血管とほぼ同等であった。エラスチカ・ファン・ギーソン染色にておける血管弾性繊維も移植後 2 ilder月目に見られたよりも血管内層に弾性繊維の発現が認められた(図 1 1)。

[0219]

さらに、血管の石灰化の有無はフォンコッサ(von Kossa)染色において移植した複合膜および周辺血管に陽性反応を認めず、石灰沈着は認められなかった(図 1 2) 。

[0220]

(考察)

現在開発中世界で開発中の組織工学を応用下した人工パッチ(Tissue Engineered Bioprosthetic Patch)の問題点としてより自己組織に近い細胞外環境を構築した構造物となりうるかとの課題がある。通常、血管修復用人工パッチは小児の心臓血管外科領域にて用いられ自己化(成長の可能性)が重要な要素である。このため、自己の細胞を生体内吸収性高い素材に培養して再生血管を作製することが考えられるが、自己の細胞を事前に採取する必要性があり、さらに、その細胞を単離分離、培養する技術と装置、構造物への播種しの方法等多くの問題がある。

[0221]

一方最近、インサイチュで前駆細胞(progenitor cell)の発現が報告されている。浅原らは成体の血管形成が血管新生(angiogenesis)と呼ばれる組織既存の血管からの血管造成だという概念を覆し、成体にも、胎児発生に見られるような、血管幹細胞・前駆細胞から新たな血管を創り出すメカニズムである血管発生(vasculogenesis)が存在することが明らかにした。(Asahara T, et al (2000) Stemcell therapy and gene transfer for

regeneration, Gene Therapy 7, 451-457
Takahashi T, et al (1999) Nat. Med. 4, 434
-438; Asahara T, et al (1999) EMBO J. 18
, 3964-3972; Isner J, et al (1999) J. Clin
. Invest. 103, 1231-1236; Asahara T, et al (1997), Science 275, 964-967).

[0222]

また、骨髄間質細胞には間葉系組織(血管、筋肉、脂肪、骨、軟骨など)に分化する間葉系幹細胞が含まれることが古くから知られており(Science 276,71-74,1997)この間葉系幹細胞は幹細胞としての性質である自己複製能と多分化能を備えている。Orlicらはこの骨髄由来の幹細胞を取り出し利用することにより心筋梗塞などにより損傷した心筋や血管網を再生し、心臓の機能を改善することが試みている。(Nature 410,701-705,2001; Proc Natl Acad Sci USA 98,10344-10349,2001; Ann N Y Acad Sci 938,221-229,2001)。

[0223]

一方、コラーゲンは、動物界に最も広く存在するタンパク質で、動物の体の全タンパク質の1/3以上を占め、動物の皮膚・腱・骨などの結合組織を構成している。動物の体は多数の細胞から構成されているが、コラーゲンは、これらの細胞と細胞との間のマトリクスとして、重要な役割を果たしている。コラーゲンの生体における役割は、動物の体の構造を支えることだけと考えられていた。しかし、最近になってコラーゲンは、細胞の発生、分化、形態形成等において、細胞間マトリックスとして、細胞に生物学的な影響を及ぼしていることが明らかになり(永井裕、藤本大三郎編、コラーゲン代謝と疾患、講談社(1982)、J・Yang & S. Nandi, Int. Rev. Cytol., 81, 249 -286 (1983))、コラーゲンを細胞培養に利用することは、有益であろうと考えられる。コラーゲン基質の利用は、ガラス、プラスチック基質よりも細胞の接着、増殖、分化などを促進するという実験が数多く報告されている(J・

Yang & S. Nandi, Int. Rev. Cytol., 81, 249 -286(1983))。コラーゲン上とガラス上での各種細胞の成長を比較し たのは、EhrmannおよびGeyが最初である(R.L.Ehrmann & G. O. Gey, Natl. Cancer Inst., 16 (6), 13 75-1400(1956))。1953年Grobsteinは、コラーゲン 基質が細胞増殖と形態形成に関して重要な役割を果たしていると報告した(C. Grobstein, Exp. Zool., 124, 383-388 (195 3))。また、角膜内皮細胞(D. Gospodarowicz, G. Gree nberg & C. R. Birdwell, Cancer Res., 38, 4155 (1978))、乳腺上皮細胞 (M. Wicha, L. A. Liott a, S. Garbisa & W. R. Kidwell, Exp. Cell. R es., 124, 181 (1979))、表皮細胞(J. C. Murray, G . Stingle, H. K. Kleinman, G. R. Martin & S . I. Katz, J. Cell Biol., 80, 197 (1978)、肝 実質細胞(C. A. Sottler, & G. Michalopoulos, C ancer Res., 38, 1539 (1978))、線維芽細胞(G.O . Gey, M. Suotelis, M. Foard & F. B. Bang, E xp. Cell Res., 84, 63 (1974))は、プラスチック、ま たは、ガラス製培養皿上よりも、コラーゲン基質上で長期間生存することも報告 されている。したがって、本発明では、コラーゲンは、上述の臓器または組織を 対象にした移植に有用であることは理解され得る。

[0224]

今回行った検討では、コラーゲンI型およびIV型架橋処理した場合、細胞播種した細胞は生着率が改善した。これはコラーゲンI型およびIV型が、細胞の発生、分化、形態形成等において、細胞間マトリックスとして、特に有用な役割を果たすことが示されるものである。

[0225]

今回行った検討では、コラーゲンI型およびIV型架橋処理した場合、細胞播種に関わらず自己組織化が認められた。この構造物内に生着した細胞は自己の細

胞に他ならず、生体内を浮遊する幹細胞が生着し、コラーゲンI型およびIV型 架橋処理したPLGA-コラーゲン複合膜を足場とし、同部位で分化、増殖した のではないかと推察される。

[0226]

(まとめ)

生体分解性高分子を足場としたPLGA-コラーゲン複合膜は,エキソビボでの細胞播種なしでも移植後2ヶ月で血管壁構造の再構築が見られ,6ヵ月後も石灰化を認めず、自己化をめざした心血管修復用人工パッチとして右心系での有用性が期待できた。したがって、このような組織片は、従来の技術では達成することができなかった格別の効果を示す。

[0227]

(実施例2:PGAを用いた実験)

本実施例では、PGAを支持体として用い、コラーゲンI型およびIV型を生体分子として用いて組織片を調製し、本発明の効果を実証した。

(方法・結果)

エキソビボでの実験

<足場設計>

生体分解性合成高分子である PGAのメッシュを内腔側にニットメッシュ 1 枚、外側にウーブンメッシュ 2 枚の計 3 枚重ね(各 $0.2 \, \text{mm}$, 計 $0.6 \, \text{mm}$ 厚)とし、それにコラーゲンを架橋処理した PGA — コラーゲン複合膜を足場とした。コラーゲンを架橋剤としてはコラーゲン I 型のみを架橋処理した群、コラーゲン I 型にさらにコラーゲン I V 型を架橋した群を作製した。

[0228]

<機械強度>

PLGA-コラーゲン複合膜を引張試験機で強度測定した。幅5mm長さ30mmの短冊状素材を短軸方向に10mm/分の速度で荷重負荷し、破断点負荷及び弾性率を測定した。(TENSILLON ORIENTEC)

コントロールとして

グルタールアルデヒド処理ウマ心膜を用いて比較検討した。

<細胞接着の効率>

PGAーコラーゲン複合膜における細胞生着性の確認のため、インビトロにおいて蛍光抗体(PKH-26(SIGMA) で標識した血管内皮細胞(VECs)および平滑筋細胞(VSMCs)をコラーゲンI型のみを架橋処理したPGAーコラーゲン複合膜とコラーゲンI型にさらにIV型架橋処理したPGAーコラーゲン複合膜で細胞接着効率の比較検討をおこなった。蛍光顕微鏡にて一視野あたりの蛍光色素の発色領域(%)を比較すると血管内皮細胞(VECs)および平滑筋細胞(VSMCs)のいずれの細胞においてもコラーゲンI型、IV型架橋処理したPGAーコラーゲン複合膜が有意に蛍光色素の発色領域が多く、細胞生着が認められた。

[0230]

以上の結果よりコラーゲンI型およびIV型で架橋処理したPGA-コラーゲン複合膜が強度も従来のグルタールアルデヒド処理ウマ心膜と同等以上であり、細胞性生着性も高いことから、このPGA-コラーゲン複合膜を使用し、事前の細胞播種の効果をインビボにおける検討を行った。

[0231]

<移植>

コラーゲンI型およびIV型架橋処理したPGA-コラーゲン複合膜(15x10mm)と、この複合膜に自己の血管内皮細胞(VECs)および平滑筋細胞(VSMCs)を播種した膜を作製し、ビーグル成犬(8~10kg)の肺動脈主幹部に部分遮断下に移植した。

[0232]

細胞は同種のビーグル成犬の下肢表在静脈を摘出し、血管内皮細胞、および平滑筋細胞(VSMCs)を単離培養、PGA-コラーゲン複合膜に血管内皮細胞、平滑筋細胞をそれぞれ1.3×106cell/cm²の密度で播種した。移植後、2週、2ヵ月、6ヶ月後に摘出し組織学的に検討を行った。

[0233]

(インビボ:移植2週後)

PGAーコラーゲン複合膜および自己細胞を播種したPGAーコラーゲン複合膜の両群とも肉眼的に明らかな血栓形成は認めなかった。HE染色ではPGAの残存を認め、その間は結合織が介在していた。自己の血管内皮細胞および平滑筋細胞を播種したPGAーコラーゲン複合膜では蛍光抗体標識した播種した血管内皮細胞は内腔側に散在しているのみであり、多くの細胞はPGAーコラーゲン複合膜より脱落していることが示唆された。

[0234]

(インビボ:移植2ヶ月後)

PGAーコラーゲン複合膜および自己細胞を播種したPLGAーコラーゲン複合膜の両群とも肉眼的に内腔側表面は平滑で、HE染色でPLGAは完全に吸収されており正常の血管と比較しても遜色のない組織構造であった。

[0235]

血管内皮細胞を第VIII因子染色にて、平滑筋細胞 α — SMA免疫染色にて検討した。両群とも第VIII因子免疫染色で単層の連続する血管内皮細胞を認め、 α — SMA免疫染色で内腔側に配向性を有した平滑筋細胞を認めた。 さらにエラスチカ・ファン・ギーソン染色にて血管の弾性繊維を検討した。両群とも血管内層に弾性繊維の発現が認められた。

[0236]

(インビボ:移植6ヶ月後)

両群とも移植後 2 ヶ月目に見られたのと同様に第 V I I I I 因子免疫染色で単層 の連続する血管内皮細胞を認めた。平滑筋細胞は移植後 2 ヶ月目に見られたより もさらにその形態を明らかにし、 α - S M A 免疫染色で内腔側に配向性を有し、正常血管とほぼ同等であった。エラスチカ・ファン・ギーソン染色にておける血管弾性繊維も移植後 2 ヶ月目に見られたよりも血管内層に弾性繊維の発現が認められた。

[0237]

さらに、血管の石灰化の有無はフォンコッサ染色において移植した複合膜および周辺血管に陽性反応を認めず、石灰沈着は認められなかった。

[0238]

(実施例3:スポンジ状PGAを用いた実験)

本実施例では、スポンジ状PGAを支持体として用い、コラーゲンⅠ型およⅠ V型を生体分子として用いて組織片を調製し、本発明の効果を実証した。

(方法・結果)

エキソビボでの実験

<足場設計>

生体分解性合成高分子であるPGAのスポンジを内腔側にニットメッシュ 1枚、外側にウーブンメッシュ 2枚の計3枚重ね(各0.2mm, 計0.6mm厚)とし、それにコラーゲンを架橋処理したスポンジ状PGA-コラーゲン複合膜を足場とした。コラーゲンを架橋剤としてはコラーゲン I型のみを架橋処理した群、コラーゲン I型にさらにコラーゲン I V型を架橋した群を作製した。

[0239]

<機械強度>

スポンジ状PLGA-コラーゲン複合膜を引張試験機で強度測定した。幅5mm長さ30mmの短冊状素材を短軸方向に10mm/分の速度で荷重負荷し、破断点負荷及び弾性率を測定した。(TENSILLON ORIENTEC)

コントロ

ールとしてグルタールアルデヒド処理ウマ心膜を用いて比較検討した。

[0240]

<細胞接着の効率>

スポンジ状PGAーコラーゲン複合膜における細胞生着性の確認のため、インビトロにおいて蛍光抗体(PKH-26(SIGMA) で標識した血管内皮細胞(VECs)および平滑筋細胞(VSMCs)をコラーゲンI型のみを架橋処理したスポンジ状PGAーコラーゲン複合膜とコラーゲンI型にさらにIV型架橋処理したスポンジ状PGAーコラーゲン複合膜で細胞接着効率の比較検討をおこなった。蛍光顕微鏡にて一視野あたりの蛍光色素の発色領域(%)を比較すると血管内皮細胞(VECs)および平滑筋細胞(VSMCs)のいずれの細胞においてもコラーゲンI型、IV型架橋処理したPGAーコラーゲン複合膜が有意に蛍光色素の発色領域が多く、細胞生着が認められた。

[0241]

(実施例4:フィブロネクチンを用いた実験)

本実施例では、PLGAを支持体として用い、フィブロネクチンを生体分子として用いて組織片を調製し、本発明の効果を実証した。

[0242]

(方法・結果)

エキソビボでの実験

<足場設計>

生体分解性合成高分子であるVycryloポリラクチン910メッシュ(グリコール酸と乳酸の比率が90:10の共重合体,PLGA)を内腔側にニットメッシュ 1枚、外側にウーブンメッシュ 2枚の計3枚重ね(60.2mm,計0.6mm厚)とし、それにフィブロネクチンを架橋処理したPLGA-フィブロネクチン複合膜を足場とした。肺動脈主幹部に径20mmのパッチを縫着した。

[0243]

<機械強度>

PLGA-フィブロネクチン複合膜を引張試験機で強度測定した。幅5mm長さ30mmの短冊状素材を短軸方向に10mm/分の速度で荷重負荷し、破断点負荷及び弾性率を測定した。(TENSILLON ORIENTEC)

コントロール

としてグルタールアルデヒド処理ウマ心膜を用いて比較検討した。 <細胞接着の効率>

PLGA-フィブロネクチン複合膜における細胞生着性の確認のため、インビトロにおいて蛍光抗体(PKH-26(SIGMA)で標識した血管内皮細胞(VECs)および平滑筋細胞(VSMCs)をフィブロネクチン架橋処理したPLGA-コラーゲン複合膜で細胞接着効率の比較検討をおこなった。蛍光顕微鏡にて一視野あたりの蛍光色素の発色領域(%)を比較すると血管内皮細胞(VECs)および平滑筋細胞(VSMCs)のいずれの細胞においてもフィブロネクチン架橋処理したPLGA-フィブロネクチン複合膜が有意に蛍光色素の発色領

域が多く、細胞生着が認められた。

[0244]

(実施例5:フィブロネクチンのコラーゲン結合性ドメイン(FNCBD)とのHGF融合蛋白を用いた実験)

本実施例では、PLGAを支持体として用い、フィブロネクチンを生体分子として用いてさらにコラーゲン結合性ドメイン(FNCBD)にHGF融合蛋白を付けその組織片を調製し、本発明の効果を実証した。

[0245]

(方法・結果)

エキソビボでの実験

<足場設計>

生体分解性合成高分子であるVycrylonポリラクチン910メッシュ(グリコール酸と乳酸の比率が90:10の共重合体,PLGA)を内腔側にニットメッシュ 1枚、外側にウーブンメッシュ 2枚の計3枚重ね(80.2mm,計0.6mm厚)とし、それにフィブロネクチンを架橋しさらにコラーゲン結合性ドメイン(FNCBD)にHGF融合蛋白を付け処理したPLGA-フィブロネクチン-HGF複合膜を足場とした。肺動脈主幹部に径20mmのパッチを縫着した。

[0246]

<機械強度>

PLGA-フィブロネクチン-HGF複合膜を引張試験機で強度測定した。幅5mm長さ30mmの短冊状素材を短軸方向に10mm/分の速度で荷重負荷し、破断点負荷及び弾性率を測定した。(TENSILLON ORIENTEC)

トロールとしてグルタールアルデヒド処理ウマ心膜を用いて比較検討した。 <細胞接着の効率>

PLGA-フィブロネクチン-HGF複合膜における細胞生着性の確認のため、インビトロにおいて蛍光抗体(PKH-26(SIGMA)で標識した血管内皮細胞(VECs)および平滑筋細胞(VSMCs)をフィブロネクチン-HG

F架橋処理したPLGA-コラーゲン-HGF複合膜で細胞接着効率の比較検討をおこなった。蛍光顕微鏡にて一視野あたりの蛍光色素の発色領域(%)を比較すると血管内皮細胞(VECs)および平滑筋細胞(VSMCs)のいずれの細胞においてもフィブロネクチン架橋処理したPLGA-フィブロネクチン-HGF複合膜が有意に蛍光色素の発色領域が多く、細胞生着が認められた。

[0247]

(実施例6:PGAで血管形状にして用いた実験)

本実施例では、PGAを支持体として用い、コラーゲンI型およIV型を生体 分子として用いて血管を作製し、本発明の効果を実証した。

(方法・結果)

エキソビボでの実験

<足場設計>

生体分解性合成高分子であるPGAのメッシュを内腔側にニットメッシュ 1 枚、外側にウーブンメッシュ 2枚の計3枚重ね(各0.2 mm,計0.6 mm厚)とし、それにコラーゲンを架橋処理したPGAーコラーゲン複合膜を足場とし、人工血管を作製した。コラーゲンを架橋剤としてはコラーゲンI型のみを架橋処理した群、コラーゲンI型にさらにコラーゲンIV型を架橋した群を作製した。

[0248]

<機械強度>

PLGA-コラーゲン複合人工血管を引張試験機で強度測定した。幅5mm長さ30mmの短冊状素材を短軸方向に10mm/分の速度で荷重負荷し、破断点負荷及び弾性率を測定した。(TENSILLON ORIENTEC)

コントロール

としてウーブンダクロンの人工血管を用いて比較検討した。

[0249]

<細胞接着の効率>

PGA-コラーゲン複合人工血管における細胞生着性の確認のため、インビトロにおいて蛍光抗体(PKH-26(SIGMA) で標識した血管内皮細胞(

VECs)および平滑筋細胞(VSMCs)をコラーゲンI型のみを架橋処理したPGAーコラーゲン複合人工血管とコラーゲンI型にさらにIV型架橋処理したPGAーコラーゲン複合人工血管で細胞接着効率の比較検討をおこなった。蛍光顕微鏡にて一視野あたりの蛍光色素の発色領域(%)を比較すると血管内皮細胞(VECs)および平滑筋細胞(VSMCs)のいずれの細胞においてもコラーゲンI型、IV型架橋処理したPGAーコラーゲン複合膜が有意に蛍光色素の発色領域が多く、細胞生着が認められた。

[0250]

以上の結果よりコラーゲンI型およびIV型で架橋処理したPGA-コラーゲン複合人工血管が強度も従来の人工血管と同等以上であり、細胞性生着性も高いことから、このPGA-コラーゲン複合人工血管を使用し、事前の細胞播種の効果をインビボにおける検討を行った。

[0251]

(実施例7:フィブロネクチンのコラーゲン結合性ドメイン (FNCBD) とのHGF融合蛋白を心臓に用いた実験)

本実施例では、PLGAを支持体として用い、フィブロネクチンを生体分子として用いてさらにコラーゲン結合性ドメイン(FNCBD)にHGF融合蛋白を付けその組織片を調製し、本発明の効果を実証した。

[0252]

(方法・結果)

エキソビボでの実験

<足場設計>

生体分解性合成高分子であるVycrylonポリラクチン910メッシュ(グリコール酸と乳酸の比率が90:10の共重合体,PLGA)を内腔側にニットメッシュ 1枚、外側にウーブンメッシュ 2枚の計3枚重ね(80.2mm,計0.6mm厚)とし、それにフィブロネクチンを架橋しさらにコラーゲン結合性ドメイン(FNCBD)にHGF融合蛋白を付け処理したPLGA-フィブロネクチン-HGF複合膜を足場とした。ビーグル成犬($8\sim10$ kg)に心筋梗塞を作成し、心筋梗塞部に420mmのパッチを縫着した。

[0253]

<機械強度>

PLGA-フィブロネクチン-HGF複合膜を引張試験機で強度測定した。幅5mm長さ30mmの短冊状素材を短軸方向に10mm/分の速度で荷重負荷し、破断点負荷及び弾性率を測定した。(TENSILLON ORIENTEC)

トロールとしてグルタールアルデヒド処理ウマ心膜を用いて比較検討した。

[0254]

<細胞接着の効率>

PLGA-フィブロネクチン-HGF複合膜における細胞生着性の確認のため、インビトロにおいて蛍光抗体(PKH-26(SIGMA)で標識した血管内皮細胞(VECs)および心筋細胞をフィブロネクチン-HGF架橋処理したPLGA-コラーゲン-HGF複合膜で細胞接着効率の比較検討をおこなった。蛍光顕微鏡にて一視野あたりの蛍光色素の発色領域(%)を比較すると血管内皮細胞(VECs)および心筋細胞のいずれの細胞においてもフィブロネクチン架橋処理したPLGA-フィブロネクチン-HGF複合膜が有意に蛍光色素の発色領域が多く、細胞生着が認められた。

[0255]

さらに心筋梗塞巣にPLGA-フィブロネクチン-HGF複合膜を移植したところ心筋梗塞巣を再生した心筋が占め、さらに新たな血管が形成されていることが確認できた。これらの心筋細胞はLin-、c-kit+の骨髄間葉系細胞と同様の表現型を有し、自己組織内での臓器再生、組織化が認められた。

[0256]

以上のように、本発明の好ましい実施形態を用いて本発明を例示してきたが、 本発明は、特許請求の範囲によってのみその範囲が解釈されるべきであることが 理解される。本明細書において引用した特許、特許出願および文献は、その内容 自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対す る参考として援用されるべきであることが理解される。

[0257]

【発明の効果】

本発明により、細胞など生体に由来する自己増殖性のものを用いることなく、 自己化する組織片が提供された。そのような組織片を移植することで、臓器また は組織の再生がみられたことはかつてなく、予想外の効果が達成された。

【図面の簡単な説明】

【図1】

図1は、本発明の生体適合性組織片の一例である。

【図2】

図2は、移植の様子を示す写真である。

【図3】

図3は、機械的強度を示すグラフである。

【図4】

図4は、インビトロでの細胞接着効率を示す図である。

【図5】

図5は、インビボでの移植2週間後の様子を示す図である。

【図6】

図6は、インビボでの移植2ヶ月後の様子を示す図である。

【図7】

図7は、インビボでの移植2ヶ月後の血管内皮細胞様子を示す図である。

【図8】

図8は、インビボでの移植2ヶ月後の血管平滑筋細胞様子を示す図である。

【図9】

図9は、インビボでの移植2ヶ月後の弾性線維細胞様子を示す図である。

【図10】

図10は、インビボでの移植6ヶ月後の様子を示す図である。

【図11】

図11は、インビボでの移植6ヶ月後の様子を示す別の図である。

【図12】

図12は、インビボでの移植6ヶ月後の石灰化の様子を示す図である。

【書類名】 図面

【図1】

【図2】

出証特2003-3111902

【図5】

播種前 細胞 PLGA 残存 (HE x40)

(インビボ:移植 2週後)

【図6】

内腔面平滑

(インビボ:移植2ヶ月後)

【図7】

(インビボ:移植 2ヶ月後;血管内皮細胞)

【図9】

【図10】

(インビボ:移植 6ヶ月後)

細胞播種 (一)

内腔面平滑 血栓付着(一)

【図12】

(インビボ:移植 6ヶ月後;石灰化)

【書類名】 要約書

【要約】

【課題】

生体の臓器または組織の損傷などの処置において、自己化するような組織片を 提供すること。

【解決手段】

従来は細胞を含ませることが必要であると考えられていた移植のための組織片の代わりに、生体分子と支持体とを含む生体適合性組織片を用いると、上述のような自己化する性質を具備することを予想外に発見したことにより上記課題を解決した。したがって、本発明は、生体適合性組織片であって、A)生体分子;およびB)支持体、を含む、生体適合性組織片を提供する。

【選択図】 なし

特願2002-354342

出 願 人 履 歴 情 報 .

識別番号

[502100138]

1. 変更年月日

2002年10月23日

[変更理由]

住所変更

と史理田」 住 所

大阪府大阪市北区天満4-15-5-302

氏 名

株式会社カルディオ

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.