Southern Ontario Wastewater Analysis Report Art Poon, Devan Becker, Gopi Gugan and Erin Brintnell 2021-11-30

Background

- On November 23, 2021, a request for a new lineage designation was submitted to the CoV-lineages PANGO designation GitHub site, describing a new sub-lineage of B.1.1 sampled in Botswana, Hong Kong and South Africa with an excessive number of mutations.
- The request was reviewed and accepted on November 24, designating the new lineage as B.1.1.529.
- On November 27, the CoV-lineages team uploaded a 'constellation' file, describing a set of mutations for classifying genomes into the newly defined lineage.

Analysis of Omicron mutations

We had the following objectives:

- 1. identify common mutations in lineage B.1.1.529 (Omicron) relative to the SARS-CoV-2 reference genome sequence (WH1);
- 2. determine which of these common mutations are unique to B.1.1.529, in comparison to all other defined lineages;
- 3. retrospectively screen all available wastewater sample data sets for the presence of these mutations.

Prevalence of Omicron Mutations

Figure 1 Illustration of 111 mutations found throughout 77 Omnicron genomes. Mutations used in downstream analysis were present in ${>}95\%$ of Omicron genomes and ${<}5\%$ of all other Pango lineages.

From the 111 mutations, we selected mutations present in >95%of Omicron genomes and <5% of all other Pango lineages for further downstream analysis (n=29) on existing data files. These mutations are shown in Table 1.

Table 1 Mutations selected from Omicron mutations for downstream analysis of fastq files.

Mutation	Frequency in Omicron	Frequency in Pango Lineages
~8392A	1.000000	0.0000000
~18162G	1.000000	0.0000045
~2831G	1.000000	0.0000136
$^{\sim}10448\mathrm{A}$	1.000000	0.0000136
$^{\sim}13194\mathrm{C}$	1.000000	0.0001044
$^{\sim}11536\mathrm{G}$	1.000000	0.0002270
$^{\sim}15239\mathrm{T}$	1.000000	0.0023066
$^{\sim}5385\mathrm{G}$	0.987013	0.0000000
$^{\sim}23201\mathrm{A}$	0.987013	0.0000681
$^{\sim}23598\mathrm{G}$	0.987013	0.0001635
$^{\sim}23524\mathrm{T}$	0.987013	0.0145930
$^{\sim}26576\mathrm{G}$	0.974026	0.0000000
$^{\sim}22673\mathrm{T}$	0.974026	0.0000045
$^{\sim}24468\mathrm{A}$	0.974026	0.0000045
$^{\sim}27258\mathrm{C}$	0.974026	0.0000091
$^{\sim}22672\mathrm{C}$	0.974026	0.0000182
$^{\sim}22678\mathrm{C}$	0.974026	0.0000227
$^{\sim}22897\mathrm{A}$	0.974026	0.0000545
$^{\sim}26708\mathrm{A}$	0.974026	0.0000908
$^{\sim}22577\mathrm{A}$	0.974026	0.0001226
$^{\sim}27806\mathrm{T}$	0.974026	0.0002316
$^{\sim}22881\mathrm{G}$	0.974026	0.0002679
$^{\sim}26529\mathrm{G}$	0.974026	0.0009535
$^{\sim}24999\mathrm{T}$	0.974026	0.0017254
$^{\sim}24129\mathrm{A}$	0.961039	0.0000000
$^{\sim}23853\mathrm{A}$	0.961039	0.0000409
$^{\sim}23947\mathrm{T}$	0.961039	0.0002951
$^{\sim}26269\mathrm{T}$	0.961039	0.0014075
~22812T	0.961039	0.0018798

Omicron Mutation Coverage in Wastewater Samples Omicron Mutations Discovered in Wastewater Samples

Figure 3 Illustration of the frequency of selected Omicron mutations in wastewater samples.