Yuexuan Wu

850-405-2143 | wuyx5@uw.edu | wuyx5.github.io

EDUCATION

Ph.D. in Statistics July 2022 Florida State University Tallahassee, FL • Advisor: Prof. Anuj Srivastava Master of Science in Applied Statistics May 2019 Florida State University Tallahassee, FL • GPA: 3.96 Bachelor of Engineering in Packaging Engineering June 2017 Wuhan, China Wuhan University • GPA:3.6 • Double degree: Bachelor of Commerce in Economics Experience Postdoctoral Scholar Fellow Sept 2022 – Present University of Washington Seattle, WA • Postdoctoral Scholar-Fellow with the National Alzheimer's Coordinating Center, under the supervision of Dr. K.C. Gary Chan. Graduate Research Assistant May 2022 – July 2022 Florida State University Tallahassee, FL • Leading and participating in multiple projects of the Statistical Shape Analysis & Modeling Group. Jan 2022 – May 2022 Graduate Instructor Florida State University Tallahassee, FL • Introduction to Applied Statistics (STA 2122) Graduate Research Assistant May 2020 – Jan 2022 Florida State University Tallahassee, FL • Leading and participating in multiple projects of the Statistical Shape Analysis & Modeling Group. AWARDS 2022 Yongyuan and Anna Li Award Department of Statistics, Florida State University • For best graduate student presentations **Best Student Presentation Award** 2022 2022 Annual Florida ASA Chapter Meeting • Longitudinal Elastic Shape Analysis of Brain Subcortical Structures Best Student Poster Award (Top 1%) 2021 SIAM Conference on Computational Science and Engineering (CSE) 2021 • Elastic Shape Analysis of Post-Traumatic Stress Disorder on Subcortical Brain Structures 2nd Place in ACM Programming Contest 2018 Florida State University 1st Class Scholarship (Top 1%) 2016 Wuhan University

Elastic Shape Analysis of Brain Structures for Predictive Modeling of PTSD

Feb 2020 - Aug 2022

- In collaboration with Dr. Suprateek Kundu and Dr. Jennifer Stevens from Emory University.
- Developing a comprehensive shape analysis framework to quantify the brain substructures surfaces shape differences using an elastic shape metric.
- Training regression models with shape coefficients and predicting PTSD outcomes.
- Applying the method to data from the Grady Trauma Project and yielding superior predictive performance.

LESA: Longitudinal Elastic Shape Analysis of Brain Subcortical Structures

Sept 2020 - Present

- In collaboration with Dr. Zhengwu Zhang, Di Xiong, and Dr. Hongtu Zhu from UNC Chapel Hill.
- Integrating ideas from elastic shape analysis, PCA, and statistical modeling of sparse longitudinal data.
- Developing an efficient framework and a unique toolbox for systematically quantifying and visualizing the development and changes of longitudinal subcortical surface shapes.
- Applying LESA to analyze three longitudinal neuroimaging data sets with estimating continuous shape trajectories, building life-span growth patterns, and comparing shape differences among different groups.

Solving Optimal Surface Deformation Using Deep Residual Networks

Jan 2021 - Present

- In collaboration with Dr. Boulbaba Ben Amor from Inception Institute of Artificial Intelligence.
- Utilizing deep residual neural networks to solve the optimal shape deformation of surfaces under the square root normal field (SRNF) representation.

Analysis and Generation of Bacteria Cellular Shapes

Mar 2021 - Oct 2021

- In collaboration with Tanjin Taher Toma, Dr. Jie Wang, and Dr. Scott Acton from University of Virginia.
- Analyzing the shape summaries of segmented 3D bacteria cellular surfaces; generating synthetic bacteria cellular surfaces based on the distribution of true surface shapes.

Spatial-Temporal Analysis of 3D Human Body Movements Using Video Data

Nov 2021 - Present

- In collaboration with Dr. Hamid Laga from Murdoch University.
- Developing a framework for reproducing smooth 3D human movement videos based on sparse time samples of movement
- Analyzing movement differences by conducting spatial-temporal surface registration.

PUBLICATIONS

- Y. Wu, S. Kundu, J. S. Stevens, N. Fani, A. Srivastava. Elastic Shape Analysis of Brain Structures for Predictive Modeling of PTSD. Frontiers in Neuroscience, 2022
- Z. Zhang, Y. Wu, D. Xiong, A. Srivastava, H. Zhu. LESA: Longitudinal Elastic Shape Analysis of Brain Subcortical Structures. Published as a discussion paper in *Journal of the American Statistical Association*, 2022
- T. T. Toma, Y. Wu, J. Wang, A. Srivastava, A. Gahlmann, S. T. Acton. Realistic-Shape Bacterial Biofilm Simulator for Deep Learning-Based 3D Single-Cell Segmentation. 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), 2022
- Y. Wu, H. Laga, A. Srivastava. Spatial-Temporal Analysis of 3D Human Body Movements Using Video Data. In preparation, 2022+

Presentations

- (03/2021) Elastic Shape Analysis of Post-Traumatic Stress Disorder on Subcortical Brain Structures, SIAM Conference on Computational Science and Engineering (Poster), online
- (05/2021) Elastic Shape Analysis of Brain Structures for Predictive Modeling of PTSD, The Statistical Methods in Imaging Conference (Poster), online
- (04/2022) Longitudinal Elastic Shape Analysis of Brain Subcortical Structures, 2022 Annual Florida ASA Chapter Meeting, online
- (06/2022) Longitudinal Elastic Shape Analysis of Brain Subcortical Structures, 2022 Treatment and Analysis of the Information Methods and Applications (TAIMA), online

Professional Memberships

The American Statistical Association
The Institute of Electrical and Electronics Engineers
Society for Industrial and Applied Mathematics
International Chinese Statistical Association