

UNIVERSIDADE TÉCNICA DO ATLÂNTICO ENGENHARIA INFORMÁTICA E TELECOMUNICAÇÕES SISTEMAS DE TELECOMUNICAÇÕES

Modulações Digitais Binárias

Walter dos Santos

27 Junho 2022

Ferramentas usadas para realização do trabalho:

Conteúdo:

- 1. Objectivos
- 2. Experiências
 - 2.1. Formas de onda e densidades espectrais de potência de ASK e PSK
 - 2.2. Formatação de impulsos usando filtros do tipo cosseno elevado
 - 2.3. Detecção coerente das modulações digitais ASK e BPSK
 - 2.4. Efeitos do erro de sincronização na detecção de BPSK
 - 2.5. Detecção não-coerente de ASK

Objetivos

Neste trabalho serão estudadas algumas das modulações digitais binárias utilizadas nas comunicações digitais em banda de canal.

Sobre:

Este trabalho foi proposto pelo professor Emanuel Ribeiro, na disciplina de Sistemas de Telecomunicações, em que este foi utilizado o Matlab e sua ferramenta Simulink.

Neste documento é apresentado o enunciado() e embaixo a sua resolução(), abordando tópicos relacionados com as modulações digitais ASK e PSK utilizados nas comunicações digitais em banda de canal.

Formas de onda e densidades espectrais de potência de ASK e PSK

- Enunciado:
- Construa um diagrama de blocos capaz de gerar um sinal ASK modulado por um código Unipolar NRZ, correspondentes à sequência de dados aleatória. Uma diagrama de blocos possível está representado na figura seguinte.
- Resolução:
- 1. Construindo o diagrama de blocos

- 2 Visualize o sinal à entrada (sinal x) e à saída do misturador (sinal s_ask) para os primeiros dez bits da sequência de dados.
 - Comente os gráficos que obteve.
- Resolução:

Sinal de entrada X,

Sinal à saída do misturador (Sinal S_ask):

Na imagem acima, observa-se que, ao longo dos dez primeiros bits que para a entrada a 1 e a saída do sinal aks também está a um, sendo a mesma situação para casos de zeros.

Enunciado:

- 3 Obtenha agora as densidades espectrais de potência de x e s_ask e explique o efeito da modulação. Os comandos Matlab para se obter a densidade espectral de potência podem ser, por exemplo:
 - >> fs = 1e5;
 - >> subplot(211), psd(x, 4096, fs), title x
 - >> subplot(212), psd(s_ask, 4096, fs), title s_ask

Resolução:

Acontece o efeito da modulação no sinal s_ask já que essa modulação consiste na modificação do nível de amplitude da onda portadora em função do sinal digital de entrada a ser transmitido.

- Enunciado:
- 4 Neste ponto serão obtidas a forma de onda e a densidade espectral de potência de um sinal BPSK. Para tal modifique o diagrama de blocos anterior de modo a que o sinal obtido seja modulado em BPSK. Repare que agora o código utilizado é o Polar NRZ.
- Resolução:

O diagrama de blocos anterior foi modificado, para que o sinal obtido seja modulado em BPSK

- Enunciado:
- 5 Visualize agora, durante os dez primeiros *bits*, os sinais x e s_psk, comentando as respectivas formas de onda.
- Resolução:

Sinal X:

Enunciado:

6 Obtenha as densidades espectrais de potência de x e s_psk, explicando novamente o efeito da modulação.

Resolução:

Formatação de impulsos usando filtros do tipo cosseno elevado

Enunciado:

Resolução:

Adicionado um filtro RC no modulador BPSK.

Observando o diagrama de olho para as 3 situações:

Fator Roll-Off 0

Fator Roll-Off 0.5

Fator Roll-Off 1:

Enunciado:

 $\boxed{2}$ Meça as larguras de banda para os três casos de α e compare com os valores teóricos.

Factor de roll-off (α)	Largura de Banda teórica	Largura de banda medida
0		
1/2		
1		

Pela comparação das densidades espectrais de potência com e sem o filtro RC, o que concluí acerca da utilidade deste filtro?

Resolução:

Medindo as larguras de bandas para os 3 casos de alfa.

Factor de Roll-off(α)	Largura de Banda Teórica	Largura de Banda Medida
0	5db	10db
$\frac{1}{2}$	20db	20db
1	20db	10db

Detecção coerente das modulações digitais ASK e BPSK

Nesta parte proceder-se-á à detecção coerente dos sinais ASK e BPSK, conforme se mostra no diagrama de blocos da figura seguinte:

Note que o conjunto formado pelo multiplicador e integrador formam o detector designado por correlacionador, no qual o sinal de referência é a forma de onda da portadora, $\sin(\omega_c t)$.

Para a detecção do sinal ASK use o seguinte diagrama de blocos.

Enunciado:

2 Explique as formas de onda, relativas aos dez bits iniciais, obtidas para y_ask e z_ask. Note que y_ask apresenta uma componente contínua. Diga porquê.

Resolução:

Forma de onda de z_ask:

Forma de onda de y_ask:

Enunciado:

4 Considere agora a detecção do sinal BPSK. Para tal use o diagrama apresentado a seguir.

Repare que a única diferença que este detector apresenta em relação ao anterior é o limiar de decisão.

Repita os dois pontos anteriores, agora para os sinais y_psk e z_psk.

Resolução:

Na forma y_psk:

Na forma z_psk:

Efeitos do erro de sincronização na detecção de BPSK

Enunciado:

1 Proceda à detecção do sinal BPSK modificando a fase do sinal de referência do detector (oscilador local) para os valores de $\pi/4$ rad, $8\pi/18$ rad, $\pi/2$ rad e π rad e visualize os sinais y_psk, z_psk e a sequência de bits enviada e estimada.

Explique os resultados obtidos.

Resolução:

y_psk tendo a fase do sinal de referência do detetor para $\pi/4$ rad:

z psk tendo a fase do sinal de referência do detetor para $\pi/4$ rad:

y_psk tendo a fase do sinal de referência do detetor para $8\pi/18$ rad:

z_psk tendo a fase do sinal de referência do detetor para $8\pi/18$ rad:

y_psk tendo a fase do sinal de referência do detetor para $\pi/2$ rad:

z_psk tendo a fase do sinal de referência do detetor para $\pi/2$ rad:

Detecção não-coerente de ASK

Enunciado:

Resolução:

Observando o comportamento do detetor pela observação dos sinais s_ask2 e y_ask2:

Observando o comportamento do detetor pela observação do sinal z ask2:

Enunciado:

Para este detector diga quais são os valores que deve escolher para o limiar do decisor e para os instantes de amostragem.

Resolução:

Para este detetor deve-se escolher os parâmetros [0.003 : 0.007] como limiar do decisor

FIM