

PUB-NO: DE019810211A1
DOCUMENT-IDENTIFIER: DE 19810211 A1
TITLE: Linear electric motor
PUBN-DATE: September 16, 1999

INVENTOR-INFORMATION:

NAME
COUNTRY
BENSEN, HARTMUT DE

ASSIGNEE-INFORMATION:

NAME
COUNTRY
BENSEN HARTMUT DE

APPL-NO: DE19810211
APPL-DATE: March 10, 1998

PRIORITY-DATA: DE19810211A (March 10, 1998)

INT-CL (IPC): H02K041/02

EUR-CL (EPC): H02K033/16

ABSTRACT:

CHG DATE=20010202 STATUS=N> There exists a patent claim regarding the

arrangement of a linear electric motor. The piston to be found in a hollow cylinder consists of a coupling of two permanent magnets that are strung together with their poles opposing according to the guideline N-S-S-N, so that in the wider field of these magnets, N is effective at the top and bottom or S at the top and bottom. Around the hollow cylinder for the whole length, a coil is located that is fed with DC. At the top as well as the bottom dead point, the current supply is reversed in polarity by the voltage changeover switch

⑯ BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

⑯ Offenlegungsschrift
⑯ DE 198 10 211 A 1

⑯ Int. Cl. 6:
H 02 K 41/02

⑯ Anmelder:
Bensen, Hartmut, Dipl.-Ing., 13156 Berlin, DE

⑯ Erfinder:
gleich Anmelder

DE 198 10 211 A 1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

⑯ Linarer Elektromotor

⑯ Vorgestellt wird ein linearer Elektromotor. Auf einen Hohlzylinder Z ist eine Spule angebracht. Im Inneren des Zylinders sind zwei leistungsfähige Permanenten PM1 und PM2 erfindungsgemäß gegenpolig angeordnet, nach dem Prinzip Nord-Süd und Süd-Nord, so daß nach außen hin Nord-Nord oder Süd-Süd wirksam werden. Die Spule Sp erzeugt bei Stromdurchfluß ein Magnetfeld, welches die beiden Permanenten bis zum unteren oder oberen Totpunkt treibt. Hier wird die Spule Sp durch den Umschalter US umgepolt und das Magnetfeld der Spule Sp treibt die Permanenten PM1 und PM2 in die entgegengesetzte Richtung. Über ein Gestänge GS wird die Hubbewegung abgenommen.

Beschreibung

Es wurde ein linearer Elektromotor entwickelt, der mit Hilfe zweier gegenpolig angeordneten Permanentmagnete und eines ständig umpolenden Elektromagneten funktioniert.

Weltstandsvergleich

Es sind Lösungen für einen Linearmotor bekannt, bei denen im inneren des Hubmotors ein Elektromagnet angeordnet ist als auch außen ein Elektromagnet vorhanden ist. Dies hat den Nachteil, daß zur Stromspeisung des internen Elektromagneten schleifende Stromschienen vorhanden sein müssen. Im Gegensatz zur vorliegenden Erfindung ist dabei der Stromverbrauch mindestens doppelt so hoch, was bei einem Bauernbetrieb des Linearmotor empfindlich stört.

Der beiden Permanentmagneten in der neuen Erfindung sind dagegen große Energiespeicher und belasten somit bei reinem Batteriebetrieb diese Stromquelle viel weniger. Damit ist der neu vorgestellte Linearmotor wesentlich sicherer und langlebiger als auch leistungsfähiger.

Darlegung des Wesens der Erfindung

Die technische Aufgabe, die durch die Erfindung gelöst werden soll.

Der Erfindung liegt die Aufgabe zugrunde einen Linear-motor zu entwickeln, bei dem im Inneren des Hohlzylinders kein Elektromagnet mit der das zu notwendigen Stromein-speisung über Stromschienen erforderlich ist. Dies wird mit einer Verkopplung von zwei Permanentmagneten erreicht, wobei nur die äußere Spule um den Hohlzylinder unter Spannung steht, welche jeweils am oberen und unteren Tot-punkt umgepolt wird.

Merkmal der Erfindung

Erfindungsgemäß wird die Aufgabe dadurch gelöst, daß nur ein Hohlzylinder aus einen umschaltbaren Elektromagneten besteht und im Inneren des Hohlzylinders zwei leistungsfähige Permanentmagneten gegenpolig angeordnet sind, die in Verbindung mit einem Gestänge nach oben und unten bis hin zum Totpunkt gleiten. Am Totpunkt erfolgt je-wells die Spannungsumschaltung des äußeren Elektromagneten, nämlich der Spule, so daß dann der Hub wieder in die entgegengesetzte Richtung erfolgt. Damit ist im Gege-n-satz zur bekannten Lösung im inneren beweglichen Teil keine doch so nachteilige Stromschienen Einspeisung mit Gleitkontakten erforderlich.

Ausführungsbeispiel

Im Inneren des Motors sind erfundungsgemäß zwei Per-manentmagnete gegenpolig miteinander verkoppelt, so daß diese Magnete nach außen hin jeweils an beiden Enden zwei Nord- oder Südpole prägen. Im Beispiel sind dies zwei Nord-pole. Außen um den Hubraum herum ist eine Spule ange-ordnet, die mit Gleichstrom gespeist wird. Der Umschalter US schaltet die Polarität der Spannungszufuhr zur Spule Sp jeweils am oberen als auch am unteren Totpunkt des Kolbens PM um.

Das Magnetfeld der stromdurchflossenen Spule Sp wirkt auf die Kombination der beiden Permanentmagneten PM1 und PM2 ein, wobei dies Magnetenordnung jeweils zu ei-nem Totpunkt hin gesteuert werden. Die Spule Sp wird am Totpunkt durch den Spannungsumschalter umgepolt und nun treibt das Magnetfeld der Spule die Anordnung der bei-

den Permanentmagnete PM1, PM2 in die gegensätzliche Richtung bis hin zum unteren Totpunkt, wobei hier wieder die Umpolung der Spule Sp durch den Umschalter US er-folgt.

Mit der Stromsteuerung Ie kann die Geschwindigkeit dieser Auf- und Abbewegung gesteuert werden. Günstig ist die Anordnung eines Gestänges GS mit einer Schwungmasse SM, die für einen stabilen Lauf des Motors sorgt.

Es bleibt noch der Forschung überlassen einen Sup-Super Permanentmagneten zu entwickeln, da diese Magneten ei-nen Energiespeicher haben und je nach Größe ihrer Permeabilität die Leistungsfähigkeit des Motors entscheiden.

Bezugszeichenliste

15 Z Hohlzylinder
 Sp Spule
 PM1, PM2 Permanentmagnete
 N Nordpol
 20 S Südpol
 US Spannungsumschalter
 UB Batteriespannung
 IE Stromeinspeisung
 GS Gestänge

Patentansprüche

Es besteht Patentanspruch hinsichtlich der Anordnung eines linearen Elektromotors, **dadurch gekennzeichnet**, daß in einem Hohlzylinder Z der befindliche Kolben aus einer Verkopplung von zwei Permanentmagneten PM1 und PM2 besteht, die gegenpolig aneinander gereiht sind, nach der Richtlinie Nordpol-Südpol-Südpol-Nordpol, so daß im weiteren Umfeld dieser Ma-gneten Nordpol oben und unten oder Südpol oben und unten wirksam ist und um den Hohlzylinder Z in voller Länge eine Spule Sp angeordnet ist, die mit Gleich-strom gespeist wird und am oberen sowie auch am un-teren Totpunkt die Stromzufuhr durch den Spannungs-umschalter US umgepolt wird.

Hierzu 1 Seite(n) Zeichnungen

Bild 1

902 037/229

06/05/2003, EAST Version: 1.04.0000