WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C12P 17/04, 7/60	A1	 (11) International Publication Number: WO 97/43433 (43) International Publication Date: 20 November 1997 (20.11.97)
(21) International Application Number: PCT/US9 (22) International Filing Date: 16 May 1997 (1		KR, MX, NO, NZ, PL, RU, SG, SK, TR, UA, European
(30) Priority Data: 60/017,879 08/845,295 17 May 1996 (17.05.96) 08/845,295 25 April 1997 (25.04.97) (71) Applicant: EASTMAN CHEMICAL COMPANY [100 North Eastman Road, Kingsport, TN 37660 (U (72) Inventor: HUBBS, John, Clark; 507 Bell Hollov Kingsport, TN 37664 (US). (74) Agent: TUBACH, Cheryl, J.; P.O. Box 511, Kingsport, 37662-5075 (US).	JS). w Road	With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(57) Abstract

The present invention is directed toward efficient, high-yield processes for making ascorbic acid, 2-keto-L-gulonic acid, and esters of 2-keto-L-gulonic acid. The processes comprise reacting the appropriate starting materials with a hydrolase enzyme catalyst such as a protease, an esterase, a lipase or an amidase.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	11.	Israci	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Мехісо	UZ.	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	z.w	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugat		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

25

- 1 -

ENZYMATIC PROCESS FOR THE MANUFACTURE OF ASCORBIC ACID, 2-KETO-L-GULONIC ACID AND ESTERS OF 2-KETO-L-GULONIC ACID

5 <u>FIELD</u> OF THE INVENTION

This invention relates to processes for the manufacture of ascorbic acid, 2-keto-L-gulonic acid (KLG), and esters of KLG. More particularly, the present invention relates to the use of enzyme catalysts in the manufacture of ascorbic acid, KLG or esters of KLG.

BACKGROUND OF THE INVENTION

Ascorbic acid, also known as vitamin C, is a dietary factor which must be present in the human diet to prevent scurvy and which has been identified as an agent that increases resistance to infection. Ascorbic acid is used commercially, for example, as a nutrition supplement, color fixing agent, flavoring and preservative in meats and other foods, oxidant in bread doughs, abscission of citrus fruit in harvesting and reducing agent in analytical chemistry.

One current method for the manufacture of ascorbic acid utilizes a modification of the original Reichstein-Grossner synthesis (Reichstein et al., Helv. Chim. Acta, 17:311 (1934); U.S. Pat. No. 2,301,811 to Reichstein; all references cited herein are specifically incorporated by reference). In this process a glucose source is converted to ascorbic acid. During conversion an intermediate of a diacetonide of KLG is produced.

- 2 -

Several two stage methods exist for the manufacture of ascorbic acid. In the first stage, glucose is converted via fermentation processes to either an isolated intermediate of KLG (Sonoyama et al., Applied and Envtl. Microbiology, 43:1064-1069 (1982); Anderson et al., Science, 230:144-149 (1985); Shinjoh et al., Applied and Envtl. Microbiology, 61:413-420 (1995)) or the intermediate of the Reichstein-Grossner synthesis, the diacetonide of KLG.

5

10

15

20

25

The second stage, which converts either of the intermediates to ascorbic acid, proceeds by one of two reported routes. The first route, a modification of the latter steps of the Reichstein-Grossner synthesis, requires a multitude of steps whereby the intermediate is esterified with methanol under strongly acidic conditions to produce methyl-2-keto-L-gulonate (MeKLG). The MeKLG is then reacted with base to produce a metal ascorbate salt. Finally, the metal ascorbate salt is treated with an acidulant to obtain ascorbic acid. The second route is a one-step method comprising acid-catalyzed cyclization of KLG, as originally disclosed in GB Patent No. 466548 to Reichstein) and later modified by Yamazaki (Yamazaki, J. Agri. Chem. Soc. Japan, 28:890-894 (1954), and Chem. Abs., 50:5992d) and again by Yodice (WO 87/00839). The Yodice method is commercially undesirable because it uses large amounts of gaseous hydrogen chloride, requires very expensive process equipment and produces an ascorbic acid product requiring extensive purification.

Lipases, a group of hydrolase enzymes, have been used with some success in the synthesis of esters of organic In particular, lipases have been utilized in the transesterification of alcohols in which the esterifying agent is irreversible, such as when vinyl acetate is used as 5 the esterifying agent (Thiel, Catalysis Today, 517-536 (1994)). Gutman et. al., Tetrahedron Lett., 28:3861-3864 (1987), describes a process for preparing simple 5-membered ring lactones from gamma-hydroxy methyl esters using porcine pancreatic lipase as the catalyst. However, Gutman et al., 10 Tetrahedron Lett., 28:5367-5368 (1987), later reported that substituting delta-hydroxy methyl esters for gamma-hydroxy methyl esters and using the same catalyst produced only polymers. In EP 0 515 694 Al to Sakashita et. al., a synthesis of esters of ascorbic acid, which are acylated on 15 the primary hydroxyl group, comprises reacting ascorbic acid with a variety of fatty acid active esters (i.e., fatty acid vinyl esters) in a polar organic solvent in the presence of a lipase.

Thus, there exists a need in the art for methods of producing (a) ascorbic acid or metal salts thereof from KLG or esters of KLG, (b) KLG from esters of KLG and (c) esters of KLG from KLG, which have high yield and high purity with little or no by-product formation and are conducted under mild conditions. Accordingly, it is to the provision of such that the present invention is primarily directed.

- 4 -

SUMMARY OF THE INVENTION

The present invention discloses an advancement in the chemical and biological arts in which a process for preparing ascorbic acid comprises contacting KLG or an ester of KLG with a hydrolase enzyme catalyst.

In another embodiment of the present invention, a process for producing KLG comprises contacting an ester of KLG in an aqueous solution with a hydrolase enzyme catalyst.

In still another embodiment of the present invention, a process for producing esters of KLG from KLG comprises contacting an alcoholic solution of KLG with a hydrolase enzyme catalyst. The alcoholic solution contains an alcohol corresponding to an alkyl moiety of the ester of KLG to be prepared.

10

25

In still another embodiment of the present invention, a process for producing esters of KLG from esters of KLG comprises contacting an alcoholic solution of a first ester of KLG with a hydrolase enzyme catalyst. The alcoholic solution contains an alcohol corresponding to an alkyl moiety of a second ester of KLG which is to be prepared.

DETAILED DESCRIPTION OF THE INVENTION

The present invention is directed to the unexpected discovery that ascorbic acid can be formed from KLG or, more preferably, esters of KLG by inducing ring closure of KLG or esters of KLG using a hydrolase enzyme as a catalyst. The process for producing the ascorbic acid may be performed in the melt or in solution. The process may also be performed

in vivo or in vitro. For in vivo processes, the hydrolase enzyme catalyst may be naturally occurring within a host cell or may be introduced into a host cell or organism by recombinant DNA methods.

The present invention is also directed to the unexpected discovery that KLG can be prepared in a reversible reaction by reacting an ester of KLG in an aqueous solution using a hydrolase enzyme as a catalyst. Moreover, the present invention is directed to the unexpected discovery that an ester of KLG can be prepared by reacting KLG or another ester of KLG in an alcoholic solution using a hydrolase enzyme as a catalyst. The alcohol used to prepare the solution corresponds to the alkyl moiety of the ester of KLG being prepared.

The hydrolase enzymes for use as catalysts in the processes of the present invention may be derived from or isolated from any appropriate source organisms. Examples of which include, but are not limited to, plants, microorganisms, and animals, such as yeast, bacteria, mold, fungus, birds, reptiles, fish, and mammals. Hydrolase enzymes for the purposes of this invention are defined generally by the enzyme class E.C.3.-.-., as defined in Enzyme Nomenclature (Academic Press, 1992), and are commercially available.

Preferred hydrolase enzymes are those capable of effecting hydrolysis of molecules containing carbonyl or phosphate groups. More specifically, the preferred hydrolases are capable of effecting hydrolysis at a carbonyl

15

carbon bearing a heteroatom single bond. Examples of such carbonyl carbons bearing a heteroatom single bond include, but are not limited to, esters, thioesters, amides, acids, acid halides, and the like. The preferred hydrolases include the enzyme class E.C.3.1.-.-, which includes hydrolases acting on ester bonds, such as esterases and lipases; the enzyme class E.C.3.2-.-, which includes glycosidases; the enzyme class E.C.3.4-.-, which includes peptide hydrolases, such as proteases; and the enzyme class E.C.3.5.-.-, which includes amidases acting on bonds other than peptide bonds. Most preferred hydrolases include proteases, amidases, lipases, and esterases.

More preferred hydrolases contain an active site serine residue which is capable of undergoing esterification or transesterification with KLG or esters of KLG. Even more preferred are those hydrolases which contain the catalytic triad of serine, histidine and apartic acid.

Preferred proteases include those derived from bacteria of the genera Bacillus or Aspergillus. Particularly

20 preferred proteases are those obtained from the bacteria Bacillus licheniformis. Preferred proteases are those containing at least 70% sequence homology with Subtilisin. Proteases having sequence homology with Subtilisin are used in the detergent industry and, therefore, are readily

25 available. More preferred are proteases having at least 80% sequence homology with Subtilisin, even more preferred are proteases having at least 90% sequence homology with Subtilisin and, in particular, proteases having at least 95%

sequence homology to *Subtilisin*. A highly preferred protease is *Subtilisin* itself having an amino acid sequence (SEQ ID NO: 1) described by Smith et al., *J. Biol. Chem.*, 243:2184-2191 (1968), and given below:

5	MMRKKSFWLG	MLTAFMLVFT	MAFSDSASAA	QPAKNVEKDY
	IVGFKSGVKT	ASVKKDIIKE	SGGKVDKQFR	IINAAKAKLD
	KEALKEVKND	PDVAYVEEDH	VAHALAQTVP	YGIPLIKADK
	VQAQGFKGAN	VKVAVLDTGI	QASHPDLNVV	GGASFVAGEA
	YNTDGNGHGT	HVAGTVAALD	NTTGVLGVAP	SVSLYAVKVL
10	NSSGSGTYSG	IVSGIEWATT	NGMDVINMSL	GGPSGSTAMK
	QAVDNAYARG	VVVVAAAGNS	GSSGNTNTIG	YPAKYDSVIA
	VGAVDSNSNR	ASFSSVGAEL	EVMAPGAGVY	STYPTSTYAT
	LNGTSMASPH	VAGAAALILS	KHPNLSASQV	RNRLSSTATY
	LGSSFYYGKG	LINVEAAAQ.		

For the convenience of the reader, Table 1 provides a summary of amino acid shorthand used above and in the remainder of the specification.

- 8 -

Table 1

	Amino Acid Symbol	Three-Letter Abbreviation	One-Letter
5	Alanine	Ala	А
	Arginine	Arg	R
	Asparagine	Asn	N
	Aspartic Acid	Asp	D
	Cysteine	Cys	С
10	Glutamine	Gln	Q
	Glutamic Acid	Glu	E
	Glycine	Gly	G
	Histidine	His	н
	Isoleucine	Ile	I
15	Leucine	Leu	L
	Lysine	Lys	K
	Methionine	Met	M
	Phenylalanine	Phe	F
	Proline	Pro	P
20	Serin∈	Ser	S
	Threonine	Thr	T .
	Tryptophan	Trp	W
	Tyrosine	Tyr	Y
	Valine	Val	v
25			

Also encompassed by the scope of the present invention are proteases corresponding to one to six site-specific mutants, sequence additions, and sequence deletions of the sequence given above. Even more preferred are proteases corresponding to zero to two site-specific mutants of the Subtilisin sequence given above.

Esterases suitable for the present invention include those obtained from pig liver extract. Preferred esterases

are those having at least 70% sequence homology with pig liver esterase having an amino acid sequence (SEQ ID NO: 2) described in Matsushima et al., FEBS Lett., 293:37 (1991), and given below:

5	MWLLPLVLTS	LASSATWAGQ	PASPPVVDTA	QGRVLGKYVS
	LEGLAFTQPV	AVFLGVPFAK	PPLGSLRFAP	PQPAEPWSFV
	KNTTSYPPMC	CQDPVVEQMT	SDLFTNFTGK	ERLTLEFSED
	CLYLNIYTPA	DLTKRGRLPV	MVWIHGGGLV	LGGAPMYDGV
	VLAAHENFTV	VVVAIQYRLG	IWGFFSTGDE	HSRGNWGHLD
10	QVAALHWVQE	NIANFGGDPG	SVTIFGESFT	AGGESVSVLV
	LSPLAKNLFH	RAISESGVAL	TVALVRKDMK	AAAKQIAVLA
	GCKTTTSAVF	TFVHCLRQKS	EDELLDLTLK	MKFLTLDFHG
	DQRESHPFLP	TVVDGVLLPK	MPEEILAEKD	FTFNTVPYIV
	GINKQEFGWL	LPTMMGFPLS	EGKLDQKTAT	SLLWKSYPIA
15	NIPEELTPVA	TFTDKYLGGT	DDPVKKKDLF	LDLMGDVVFG
	VPSVTVARQH	RDAGAPTYMY	EFQYRPSFSS	DKFTKPKTVI
	GDHGDEIFSV	FGFPLLKGDA	PEEEVSLSKT	VMKFWANFAR
	SGNPNGEGLP	HWPFTMYDQE	EGYLQIGVNT	QAAKRLKGEE
	VAFWNDLLSK	EAAKKPPKIK	HAEL.	

Esterases more preferably have at least 80% sequence homology with the sequence of the pig liver esterase given above, even more preferably at least 90% sequence homology, especially preferred at least 95% sequence homology. Highly preferred is the pig liver esterase having the sequence given above.

Also encompassed by the scope of the present invention are esterases corresponding to one to six site-specific mutants, sequence additions, and sequence deletions of the

sequence given above. Even more preferred are esterases corresponding to zero to two site-specific mutants of the pig liver esterase sequence given above.

Preferred lipases include those isolated from pigs and 5 other mammals, microorganisms, and plants. This includes, but is not limited to, lipases obtained from the genera Aspergillus, Mucor, Candida, Pseudomonas, Humicola, Rhizopus, Chromobacterium, Alcaligenes, Geotricum, and Penicillium. Preferred lipases also include extracellular lipases, such as cutinases. More preferred lipases have at least 70% sequence 10 homology with Candida Antartica type B lipase, even more preferred have at least 80% sequence homology, still more preferred have at least 90% sequence homology, and even more preferred have at least 95% sequence homology. A highly preferred lipase is the Candida Antartica type B lipase 15 itself which has an amino acid sequence (SEQ ID NO: 3) described by Uppenberg et al., Structure, 2:293, 453 (1994), and given below:

	MKLLSLTGVA	GVLATCVAAT	PLVKRLPSGS	DPAFSQPKSV
20	LDAGLTCQGA	SPSSVSKPIL	LVPGTGTTGP	QSFDSNWIPL
	STQLGYTPCW	ISPPPFMLND	TQVNTEYMVN	AITALYAGSG
	NNKLPVLTWS	QGGLVAQWGL	TFFPSIRSKV	DRLMAFAPDY
	KGTVLAGPLD	ALAVSAPSVW	QQTTGSALTT	ALRNAGGLTQ
	IVPTTNLYSA	TDEIVQPQVS	NSPLDSSYLF	NGKNVQAQAV
25	CGPLFVIDHA	GSLTSQFSYV	VGRSALRSTT	GQARSADYGI
	TDCNPLPAND	LTPEQKVAAA	ALLAPAAAAI	VAGPKQNCEP
	DLMPYARPFA	VGKRTCSGIV	TP.	

10

15

20

25

Also encompassed by the scope of the present invention are lipases corresponding to one to six site-specific mutants, sequence additions, and sequence deletions of the sequence given above. Even more preferred are lipases corresponding to zero to two site-specific mutants of the Candida Antartica type B sequence given above.

Preferred amidases include those isolated from bacteria of the genus *Penicillium*. A more preferred amidase has at least 80% sequence homology with *Penicillin acylase*. A particularly preferred amidase is *Penicillin acylase*, which is also referred to as *Penicillin amidohydrolase*, E.C. 3.5.1.11 (Duggleby et al., *Nature*, 373:264-268 (1995)).

For hydrolases containing serine at their active site, the first step in the reaction of either KLG or esters of KLG is believed to involve formation of a KLG-enzyme ester via acylation by KLG of the active site serine. Intra-molecular ring closure is believed to yield ascorbic acid (or its salts), whereas alcoholysis yields an ester of KLG and hydrolysis yields KLG.

The process of the present invention comprises contacting either KLG or an ester of KLG with a hydrolase enzyme to form ascorbic acid. Preferably, this reaction is performed in the presence of an organic solvent system, an aqueous solvent system or a mixture thereof. The organic solvent is preferably a C₁-C₆ alcohol. The aqueous solvent system or mixed aqueous and organic solvent systems are more preferable because ascorbic acid, KLG, and esters of KLG are generally more soluble in aqueous solvent systems. For the

in vitro production of ascorbic acid from esters of KLG, the mixed aqueous and organic solvent systems or organic solvent systems are preferable to minimize competing hydrolysis reactions which can produce KLG as a byproduct. Aqueous solvent systems are especially preferable when utilizing whole cell systems for the production of ascorbic acid in vivo.

In one aspect of the present invention, the ascorbic acid is produced from KLG or esters of KLG in in vivo, whole cell, and whole organism production systems in the presence 10 of the hydrolase enzyme catalyst. In one embodiment, the hydrolase enzyme is naturally produced by the host organism. In another embodiment, the hydrolase enzyme is produced by the host organism through recombinant DNA technology. example, a gene sequence encoding a hydrolase enzyme is 15 inserted in a host organism wherein the host organism may be a microorganism, plant, or animal which is capable of expressing the hydrolase enzyme. The host organism producing the hydrolase enzyme is cultured, i.e. provided with nutrients and a suitable environment for growth, in the 20 presence of KLG or esters of KLG to produce the asccrbic acid. Preferably, the host organism is Pantoea citrea, previously referred to as Erwinia herbicola as disclosed in U.S. Patent No. 5,008,193 to Anderson et al.

Also preferably, the host organism is one that produces KLG in addition to producing the hydrolase enzyme.

Representative organisms are from the genera Pantoea or Gluconobacter, such as disclosed in Shinjoh et al., Applied

25

and Envtl. Microbiology, 61:413-420 (1995), and the genus Corynebacterium as disclosed in Sonoyama et al., Applied and Envtl. Microbiology, 43:1064-1069 (1982).

As used herein, recombinant DNA technology includes in

vitro recombinant DNA techniques, synthetic techniques and in

vivo recombinant/ genetic recombination and is well known in

the art. See, for example, the techniques described in

Maniatis et al., Molecular Cloning A Laboratory Manual, Cold

Spring Harbor Laboratory, N.Y. (1989); Ausubel et al.,

Current Protocols in Molecular Biology, Greene Publishing

Assoc. and Wiley Interscience, N.Y. (1989); Anderson et al.,

Science, 230:144-149 (1985); and U.S. Patent No. 5,441,882 to

Estell et. al.

For preparations of KLG from esters of KLG, an aqueous solution of the ester of KLG is reacted with the hydrolase enzyme. A co-solvent may be used in the preparation of KLG and is preferably a C_1 - C_6 alcohol.

For preparations of the esters of KLG from KLG or from other esters of KLG, the starting material is in an alcoholic solution wherein the alcohol corresponds to the alkyl moiety of the ester of KLG to be prepared. The alkyl moiety R of the alcohol ROH from which the preferred ester of KLG is derived may be chosen from branched or straight chain, saturated or unsaturated, alkyl, arylalkyls, aryls, and substituted aryls. Preferred R groups include C₁ to C₆ straight or branched chain, saturated or unsaturated alkyls. Even more preferred esters of KLG that are derived for alkyl moieties include MeKLG, ethyl-KLG, n-propyl-KLG, isopropyl-

15

25

KLG, n-butyl-KLG, isobutyl-KLG, t-butyl-KLG, and n-pentyl-The most preferred esters of KLG produced are MeKLG due to its ease of manufacture and butyl-KLG due to the advantageous use of the butanol water azeotroph in water removal. A co-solvent may be used in the preparation of the esters of KLG and is preferably water, a C_1 - C_6 alcohol or a mixture thereof.

Preferred temperatures for conducting the reactions of the present invention are from 5°C to 120°C. Even more preferred temperatures are from 25°C to 100°C, and especially preferred temperatures are from 38°C to 80°C.

The preferred pH for the process of the present invention is between 1.5 and 10, and a more preferred pH is between 3 and 10. For the preparation of ascorbic acid salts from esters of KLG, a particularly preferred pH range is between 6 and 10. For the preparation of ascorbic acid as the free acid, a preferred pH is that under the pKa of ascorbic acid and, more preferred, is that under 4.2. the preparation of KLG from esters of KLG, a particularly 20 preferred pH range is between 5 and 10 due to the generally enhanced rates of enzyme assisted hydrolysis in this pH range. Alternatively, a pH of between 1.5 and 2.5 is particularly desirable for the generation of KLG in protonated form. Finally, for the preparation of esters of KLG from KLG, a particularly preferred pH range is between 3 and 6.

Each hydrolase has a temperature optimum, a pH optimum, and a pH and temperature range associated with activity.

Thus, the appropriate pH and temperature range for a given hydrolase is that which allows for activity of the hydrolase and avoids conditions which are denaturing or inactivating to the hydrolase. For conditions which may be denaturing, such as high temperature or the use of denaturing solvents such as methanol or the like, a minimal amount of testing may be required to define those hydrolases which remain active under a given set of conditions.

The following examples are offered by way of illustration and are not intended to limit the scope of the claimed invention.

EXAMPLES

Proton and carbon nuclear magnetic resonance (NMR)

spectra were recorded on a Varian Gemini 300 NMR instrument operating at 300 MHZ in proton mode and 75 MHZ in carbon mode. All NMR spectra were referenced to tetramethylsilane (TMS) at 0 parts per million (ppm) and peak frequencies were recorded in ppm unless otherwise specified. HPLC (high-performance liquid chromatography) analysis was carried out using ultraviolet (UV) detection. Mass spectra (MS) were obtained using a Fisons VG Analytical Ltd. Autospec Mass Spectrometer in FD (field desorption) mode.

The KLG used in the experiments was obtained by

fermentation according to the method of Lazarus et. al.,

Anderson et al., Science, 230:144-149 (1985), and was

purified by concentration and crystallization. KLG may

alternatively be prepared by chemical conversion from

L-sorbose according to methods well known in the art (see e.g., U.S. Pat. No. 2,301,811 to Reichstein). A standard of methyl-2-keto-L-gulonate was purchased from Aldrich Chemical Company (Rare and Specialty Chemicals Catalog), in addition to being prepared by esterification of KLG by methods similar to the procedure used for the preparation of butyl-KLG, described below.

Enzyme hydrolase samples were obtained from commercial sources, including Sigma Chemical Company, Altus Biologics, Recombinant Biocatalysis, Boehringer Mannheim, Novo Nordisk, Genencor International, Thermogen, and Fluka.

Example 1

10

20

25

This example describes the preparation and purification of butyl 2-ketc-L-gulonate.

KLG hydrate (51.62 g) was charged in a 500 ml reaction vessel under argon. The reactor was equipped with a 30.48 cm (12") vigreux column attached to a Dean Stark trap. The reactor was then charged with n-butanol (310 g) and p-toluene sulfonic acid (2.3 g). The reaction mixture was brought to reflux (81-82°C) under mild vacuum [(approximately 19.95 kPa (150 mm Hg)] with stirring. Reflux was maintained for a total of two hours and 40 minutes. Heating was discontinued. The reaction was allowed to cool and remain at room temperature for approximately 3 days. The resulting crystals were filtered through a coarse fritted glass filter and washed with two portions of n-butyl alcohol (139 g followed by 37 g). The resulting solids (24.4 g) were dissolved in

hot ethyl acetate (250 ml) and recrystallized by standing overnight at room temperature. The recrystallized butyl-KLG was isolated by filtration and dried under vacuum [0.1995 kPa (1.5 mm Hg)] until constant weight (15.97 g) was achieved.

The butyl-KLG thus prepared was found to have a solubility of at least 50 weight percent in water as it was soluble at all concentrations under 50 weight percent in water. The recrystallized butyl-KLG of this example had satisfactory proton and carbon NMR spectra and gave the predicted molecular weight by field desorption mass spectrometry.

¹H NMR (DMSO, digital resolution = 0.11 Hz, TMS at half height = 0.5 Hz): 6.49 (OH, d, J = 1.4 Hz), 4.96 (OH, d, J = 5.0 Hz), 4.84 (OH, d, J = 4.8 Hz), 4.78 (OH, d, J = 7.4 Hz), 4.17-4.0 (m, 2 H), 3.5-3.2 (m, approximately 5 H), 1.64-1.5 (m, 2 H), 1.4-1.35 (m, 2 H), 0.89 (CH₃, t, J = 7.3).

¹³C NMR (DMSO, decoupled): 169.4, 96.3, 73.8, 72.8, 69.8, 64.5, 62.8, 30.0, 18.4, 13.5.

FDMS: M = 250

20

15

5

10

Example 2

The following procedure was used to demonstrate enzymes for activity under specific pH and aqueous solvent composition conditions.

Initial enzyme screens were carried out as follows.

Enzyme (typically 10 mg), aqueous buffer (typically 860 microliters (ul) or 550 ul), aqueous 0.2 M CaCl₂ (10 ul), methanol (typically 90 ul or 400 ul), and an aqueous solution

of substrate (typically 90 ul of butyl-KLG at a typical concentration of 110,000 ppm) were added to a 2 ml polypropylene centrifuge tube. The resulting solution was vortexed briefly and placed on a shaker bath at 300 rpm at 38°C (typically for 18 hours or more). After incubation, samples were centrifuged at 14,000 G's (14,000 times gravity) for 20 minutes to remove enzyme, sampled (300 ul), and diluted to one milliliter with distilled water. If not analyzed by HPLC within the day, samples were frozen prior to analysis.

Summarized below in Table 2 is the HPLC data of the products (and remaining substrate) upon reaction of butyl-KLG (BuKLG) with a variety of enzyme hydrolases in water/methanol solution. The data were reported in terms of parts per million of KLG, MeKLG, ascorbic acid (ASA) and butyl-KLG. The reporting of a 0 (zero) indicated that the amount of material present was below the detection threshold of the instrument. Samples labeled as "no enzyme" were controls within a given run. The controls contained substrate but no enzyme and thus represented experimental and HPLC background data.

- 19 -

Table 2

Enzyme Screen for
Hydrolysis/Methanolysis of Butyl-KLG

(38°C for 41 Hours/38% MethanolWater/0.1 MES Buffer)

	Enzyme	Measured, pH	KLG	MeKLG	ASA	BuKLG (ppm)
	ESL-001-01	5.8	1180	2352	766	4603
	ESL-001-02	5.6	704	1084	302	7736
10	ESL-001-03	5.7	386	527	257	8931
	ESL-001-04	5.8	550	752	833	6229
	ESL-001-05	5.9	456	684	469	7942
	ESL-001-06	5.6	547	661	129	8896
	ESL-001-07	5.7	311	755	489	6540
15	No Enzyme		108	325	33	10177
	No Enzyme (repeat)		107	303	0	9459
	No Enzyme		117	327	42	9878
	No Enzyme (repeat)		103	269	2 .	8593
	No Enzyme		116	322	0	9473

Table 2 illustrates that the hydrolases provided by Recombinant Biocatalysis (ESL-001-01 through ESL-001-07) showed appreciable conversion of butyl-KLG to ascorbic acid, MeKLG, and KLG in a 38% methanol-water solution buffered with morpholinoethane sulfonic acid (MES) hemisodium salt at a pH controlled between 5.5 and 6. These hydrolase enzymes are sold commercially by Recombinant Biocatalysis as recombinant esterases and lipases from thermophilic organisms under the tradename CloneZyme (trademark).

- 20 -

Example 3

Table 3 below illustrates that a variety of acylases, esterases, lipases, and proteases showed appreciable conversion of butyl-KLG to ascorbic acid, MeKLG, and KLG in a 38% methanol-water solution buffered at pH 4.8 to 5.8 with MES buffer. The enzymes labeled as ChiroClec (trademark) are crystalline crosslinked enzymes sold commercially by Altus Biologics. ChiroClec -CR is a lipase from Candida rugosa, ChiroClec -BL is a crystalline form of Subtilisin (a protease), and ChiroClec -PC is a lipase from Pseudomonas cepacia. Candida Antartica B (a lipase), pig liver esterase (a hydrolase), and Bacillus Species protease showed particularly high levels of activity.

Table 3
Enzyme Screen for Hydrolysis/Methanolysis of Butyl-KLG
(38°C for 16 Hours/38% Methanol-Water/0.1 M MES Buffer)

5	Enzyme	Measured pH	KLG	MeKLG	ASA	BuKLG (ppm)
	Pig Liver Esterase	5.3	446	4377	294	5711
	Pseudomonas cepacia Lipase	5.3	98	295	65	11355
	Porcine Pancreatic Lipase	5.4	81	316	49	10709
	Candida Rugosa Lipase	5.7	122	197	180	10689
10	Alpha-Chymotrypsin	4.9	57	152	20	11174
	Penicillin Acylase	5.6	83	1307	15	12007
	Aspergillus niger Lipase	5.7	302	541	55	12290
	no enzyme	5.1	88	210	5	10393
	no enzyme	5.1	87	199	1	11553
15	Candida Antartica 'A' Lipase	5.4	88	242	37	10670
	Candida lipolytica Lipase	5.3	91	92	5	11604
	Candida antartica 'B' Lipase	4.8	2915	6807	0	0
	Humicola lanuginosa Lipase	5	63	90	6	10191
	Bacillus Species Protease	4.8	2587	5386	9	1251
20	no enzyme	5.2	94	194	1	11552
	ChiroCLEC-CR (Dry)	5.1	113	222	2	10988
	ChiroCLEC-BL (Dry)	5.4	194	642	3	5123
	ChiroCLEC-PC (Pseudomonas	5.7	147	566	1	10471
2.5	cepacia)					
25	Rhizoipus Delmar Lipase	5.5	51	99	1	7392
	Rhizopus Niveus Lipase	5.1	80	252	17	10453
	Rhizopus Oryzae Lipase	5.5	58	172	5	10873
	Chromobacterium Viscosum Lipase	5.5	433	187	1	10843
30	Geotricum Candidum Lipase	5	33	407	7	10000
	Mucor Javanicus Lipase	5.5	33	167	97	9950
	Aspergillus Oryzae Protease	5.8	289	781	96	7429
	Amano-Lipase	5.3	56	300	49	9143
	PS30 (Pseudomonas)		_			
35	Amano-Lipase AK (Pseudomonas)	5.6	74	167	93	11372

- 22 -

Example 4

Table 4 below illustrates that a variety of acylases, esterases, lipases, and proteases showed appreciable

5 conversion of butyl-KLG to ascorbic acid, MeKLG, and KLG in a 38% methanol-water solution buffered at pH 5 to 5.8 with MES buffer. Pig liver esterase, Subtilisin Carlsberg (a protease), Bacillus species protease, ChiroClec -BL, and Candida Antartica B lipase all show particularly high levels of activity.

- 23 -

Table 4

Enzyme Screen for Hydrolysis/Methanolysis of Butyl-KLG
(38°C for 47.5 Hours/38% Methanol-Water/0.1 M

MES Buffer)

5	Enzyme	Measured pH	KLG	MeKLG	ASA	BuKLG (ppm)
	Pig Liver Esterase	5.3	705	2720	246	1368
	Pseudomonas cepacia Lipase	5.5	77	288	46	6222
	Porcine Pancreatic Lipase	5.4	229	613	222	10899
10	Candida rugosa Lipase	5.8	104	205	155	5417
	Alpha-Chymotrypsin	5.1	82	248	54	6092
	Penicillin Acylase	5.8	100	1607	30	6192
	Aspergillus niger Lipase	5.3	214	391	29	6470
	Mucor meihei Lipase	5.6	54	189	108	7041
15	ChiroCLEC-CR	5.5	115	218	99	3769
	Subtilisin Carlsberg	5.1	3072	47	0	0
	Candida antarctica A	5.4	166	316	35	5943
	Candida lipolytica Lipase	5.7	150	166	0	6445
	Candida antartica B	5.3	2210	3520	60	0
20	Humicola lanuginosa Lipase	5.2	129	241	42	8017
	Bacillus Sp Protease	5.3	3722	1940	29	38
	ChiroCLEC-BL protease	5	3744	1724	54	634
	ChiroCLEC PC lipase	5.7	108	196	5	4148
	Candida kugosa esterase	5.6	70	309	61	6734
25	L-1 (Pseudomonas sp))	5.4	90	336	11	7066
	L-2 (Candida antartica B)	5.5	2622	3764	14	913
	L-3 (Candida cylindracea)	5.7	88	158	37	10343
	L-5 (Candida antartica A)	5.5	153	665	42	4626
	L-6 (Pseudomonas sp)	5.7	0	379	13	6183
30	L-7 (Porcine pancreas)	5.8	94	884	120	5488
	L-8 (Humicola sp)	5.5	98	219	7	7299
	no enzyme	5.6	75	234	5	5508
	no enzyme	5.5	68	209	6	4968
	no enzyme	5.6	65	277	16	5320

- 24 -

Example 5

5

Table 5 below illustrates that a variety of lipases and proteases showed appreciable conversion of butyl-KLG to ascorbic acid, MeKLG, and KLG in a 38% methanol-water solution buffered at pH 5.7 to 6.1 with MES buffer. On comparison with the other enzymes in this table, Prozyme 6 (a protease from Aspergillus oryzae), Protease 2A (from Aspergillus oryzae), and GC899 (a commercial detergent protease from Genencor International) showed higher levels of 10 activity.

Table 5

Enzyme Screen for Hydrolysis/Methanolysis of Butyl-KLG (38°C for 19 Hours/38% Methanol-Water/0.1 M MES Buffer)

yme 0 (Pseudomonas) (Geotricum candidum)						
(Pseudomonas) (Geotricum candidum)	Comment	Measured pH	KLG	MeKLG	ASA	BuKLG (ppm)
(Geotricum candidum)	Lipase	5.9	83	213	32	10424
	Lipase	5.7	0	166	0	7475
AK (Pseudomonas)	Lipase	9	27	205	26	9815
G (Penicillium)	Lipase	5.8	0	0	0	9441
Newlase A (Aspergillus) F	Protease	5.9	83	299	9	10368
S)	Protease	9	498	1054	281	0669
spergillus)	Protease	9	1489	2259	0	4965
MAP10 (Mucor)	Lipase	6.1	21	148	145	8968
No enzyme		5.9	71	169	22	9463
No enzyme		5.9	75	. 191	9	9391
No enzyme		5.9	79	196	7	9539
	Lipase	5.7	44	156	n	8562
Newlase II (Rhizopus) P	rotease	5.9	36	164	12	9286
	Lipase	9	0	192	33	8725
	Lipase	5.7	0	0	0	8096
S (Pseudomonas)	Lipase	5.8	52	962	42	9491
	Lipase	5.8	78	404	27	9834
Aspergillus)	Protease	6.1	937	1158	215	.8951
	Fluka	9	58	529	130	11114
(Sigma-1754)	Lipase	5.8	57	98	47	9845
(Sigma-1754)	Lipase	5.8	46	88	82	9428
(Sigma-8525)	Lipase	5.9	178	222	9	9041
(Sigma-1754)	Lipase	5.7	97	145	89	14257
(Sigma-3126)	Lipase	5.9	90	415	130	12756
	Lipase	5.8	52	165	14	10262
o-Liquid)	Lipase	, 9	82	122	160	9100
rotease)	Protease	5.8	791	2735	312	11607

- 25 -

WO 97/43433 PCT/US97/08668

- 26 -

Example 6

Table 6 below illustrates that a variety of lipases and proteases showed appreciable conversion of butyl-KLG to ascorbic acid, MeKLG, and KLG in a 8.6% methanol-water

5 solution buffered at a pH of 5.3 to 6 with MES buffer.

Protease M (Aspergillus oryzae), Prozyme 6 (a protease from Aspergillus oryzae), Protease N (Subtilisin), and Protease 2A (Aspergillus oryzae) all showed particularly high levels of activity.

- 27 -

Enzyme Screen for Hydrolysis/Methanolysis of Butyl-KLG
(38° for 19 Hours/8.6% Methanol-Water/0.1 M MES)

Table 6

Епгуте	Comment	Measured	KLG	MeKLG	ASA	BuKLG
, d. 0030		hd				(mdd)
rssu (rseudomonas)	Lipase	5.9	341	163	157	8363
GC4 (Geotricum candidum)	Lipase	5.9	424	0	œ	4192
AK (Pseudomonas)	Lipase	9	295	432	125	8255
G (Penicillium)	Lipase	5.8	253	323	0	7678
Newlase A (Aspergillus)	Protease	5.7	692	302	126	13408
	Lipase	9	527	208	583	5570
Protease M (Aspergillus)	Protease	9	3650	2262	328	1696
Prozyme 6 (Aspergillus)	Protease	5.3	7207	694	0	0
MAP10 (Mucor)	Lipase	9	369	0	231	8334
No enzyme		5.8	378	239	132	8272
No enzyme		5.8	380	205	19	8582
No enzyme		5.8	382	295	43	8785
D(Rhizopus)	Lipase	5.9	595	326	16	11656
Newlase II (Rhizopus)	Protease	5.9	323	212	28	8535
AY30 (Candida)	Lipase	5.9	330	249	254	10195
L-10 (Candida)	Lipase	5.8	302	69	55	11057
AP12 (Aspergillus)	Lipase	9	1448	738	129	7730
CES (Pseudomonas)	Lipase	5.9	197	252	0	8092
	Lipase	9	582	348	61	9238
N (Protease, Bacillus)	Protease	5.7	1572	1289	56	1822
2A (Protease, Aspergillus)	Protease	5.7	5891	616	160	764

Hog Pancreatic Lipase	Fluka	5.8	890	791	158	5284
Lipase (Sigma-1754)	Lipase	5.9	283	116	148	6196
Lipase (Sigma-1754)	Lipase	9	348	189	415	8008
Lipase (Sigma-8525)	Lipase	9	326	93	15	4112
Lipase (Sigma-1754)	Lipase	9	300	150	154	8057
Lipase (Sigma-3126)	Lipase	5.8	787	488	66	8829
F-15(Rhizopus)	Lipase	5.9	218	124	0	8682
Lipozyme (Novo-Liquid)	Lipase	5.8	380	95	101	7251
GC899 (protease)	Protease	5.6	3354	1765	201	6991

- 29 -

Example 7

Table 7 below illustrates that a variety of acylases, esterases, lipases, and proteases showed appreciable conversion of butyl-KLG to ascorbic acid, MeKLG, and KLG in a 8.6% methanol-water solution buffered at a pH of approximately 5 to 6 with MES buffer. Candida Antartica B lipase, pig liver esterase, and Bacillus species protease showed particularly high levels of activity.

Table 7

Enzyme Screen for Hydrolysis/Methanolysis of Butyl-KLG (38°C for 19 Hours/8.6% Methanol-Water/0.1 M MES)

Бпгуте	Comment	KLG	MeKLG	ASA	BuKLG
L-1 (Pseudomonas sp))	Lipase	137	116	47	7601
L-2 (Candida antartica B)	Lipase	5249	1921	0	768
L-3 (Candida cylindracea)	Lipase	183	64	101	6920
L-4 (Pseudomonas sp)	Lipase	239	163	88	9957
L-5 (Candida antartica A)	Lipase	278	344	0	6245
L-6 (Pseudomonas sp)	Lipase	06	219	15	6613
L-7 (Porcine pancreas)	Lipase	1007	575	106	5392
L-8 (Humicola sp)	Lipase	509	70	150	7957
no enzyme		168	152	9	8753
no enzyme		152	144	m	8233
no enzyme		170	137	18	8157
ESL-001-01	Recombinant	1271	906	375	4635
ESL-001-02	Biocatalysis	883	329	332	5949
ESL-001-03	Enzymes	290	123	447	7333
ESL-001-04		511	161	306	6207
ESL-001-05		364	124	299	6402
ESL-001-06		329	117	118	6934
ESL-001-07		0	122	430	15752
Pig Liver Esterase		2726	3731	423	10
Pseudomonas cepacia Lipase		241	109	224	9135
Porcine Pancreatic Lipase		333	291	314	7888
Candida rugosa Lipase		296	98	451	8697
no enzyme		153	116	&	8234

- 30 -

Alpha-Chymotrypsin	protease	330	1076	65	3855
Penicillin Acylase		187	1248	157	8110
no enzyme		100	73	က	5296
no enzyme		144	113	7	8106
Aspergillus niger Lipase		479	72	84	8455
Mucor meihei Lipase		229	278	156	8620
ChiroCLEC-CR	lipase	233	155	11	7569
Subtilisin Carlsberg		4463	93	0	4428
Candida antarctica A	lipase	215	0	175	7573
Candida lipolytica Lipase		198	62	92	8445
Bacillus Sp Protease		4920	642	13	72
ChiroCLEC-BL protease		2860	1233	135	4051
ChiroCLEC PC lipase		127	62	7	5653
Candida Rugosa esterase		178	120	225	9382

- 32 **-**

Example 8

Table 8 below illustrates that a variety of acylases, esterases, lipases, and proteases showed appreciable conversion of butyl-KLG to ascorbic acid, 5 MeKLG, and KLG in a 8.6% methanol-water solution buffered at a pH of approximately 5.8 to 6.2 with MES buffer. Pig liver esterase, Candida Antartica B lipase, Bacillus species protease, and lightly crosslinked crystalline Subtilisin (ChirClec-BL) showed particularly high levels of activity.

- 33 -

Enzyme Screen for Hydrolysis/Methanolysis of Butyl-KLG (38°C for 21 Hours/8.6% Methanol-Water/0.2M MES

Table 8

(38°C IOF 21	(38°C IOr 21 Hours/8.6% Methanol-Water/0.2M MES	thanol	-Water/(). 2M MES		
Enzyme	Comment	ЬH	KLG	MeKLG	ASA	BuKLG
						(mdd)
rig Liver Esterase		5.8	2373	4167	717	83
Pseudomonas cepacia Lipase		5.9	173	169	25	7384
Porcine Pancreatic Lipase		5.9	303	320	78	0989
Candida rugosa Lipase		5.9	260	112	271	7351
Alpha-Chymotrypsin	protease	5.9	506	1239	146	4707
Penicillin Acylase		9	176	1172	98	5392
Aspergillus niger Lipase		5.9	493	259	84	6364
Mucor meihei Lipase		5.9	243	283	54	7907
no enzyme		5.9	198	173	2	7137
no enzyme		5.9	216	153	0	7115
no enzyme		5.9	223	154	-	7319
Candida Antartica 'A' Lipase		5.9	222	142	148	6683
Candida lipolytica Lipase		9	721	123	25	6721
Candida antartica 'B' Lipase		5.9	2708	709	20	28
Humicola lanuginosa Lipase		5.9	176	129	10	7215
Bacillus Species Protease		5.8	5553	603	0	33
ChiroCLEC-CR (Dry)		6.1	229	170	2	7191
ChiroCLEC-BL (Dry)		5.9	4293	1282	9	1376
ChiroCLEC-PC (P. cepacia-Dry)		6.1	240	268	2	7539

	2	1.	
_	3	4	_

Rhizoipus Delmar Lipase	9	178	0	0	7097
Rhizopus Niveus Lipase	6.2	178	181	61	7102
Rhizopus Oryzae Lipase	6.1	159	119	26	7611
Chromobacterium Viscosum Lipase	9	415	181	2	7275
Geotricum Candidum Lipase	6.1	146	122	9	6140
Mucor Javanicus Lipase	6.2	167	95	141	7422
Aspergillus Oryzae Protease	6.1	2193	1462	39	2904
Candida Rugosa Esterase	5.8	129	132	17	7164

- 35 -

Example 9

Table 9 below demonstrates the statistical reproduction of the activity detected for highly active enzymes in the preceding examples. Eight of the enzymes from the previous examples, which were identified as showing particularly high levels of activity, were compared under tight pH control. All of the previously identified enzymes with high levels of activity maintained this high level of activity on reanalysis. The enzymes exhibited appreciable 10 conversion of butyl-KLG to ascorbic acid, MeKLG, and KLG in a 8.6% methanol-water solution buffered at a pH of approximately 5.6 to 6 with 0.2 M MES buffer. Candida Antartica B lipase, pig liver esterase, and 15 Bacillus species protease showed particularly high levels of activity within this comparative example. Pig liver esterase showed a selectivity toward transesterification as well as significant conversions to ascorbic acid.

Enzyme Screen for Hydrolysis/Methanolysis of Butyl-KLG

(38°C)	LOUSYMME SCIEEN TOI MYGIOLYSIS/MECHANOLYSIS OI BULYI-KLG (38°C for 19 Hours/8.6% Metanol-Water/0.2 M MES Buffer)	rarolysi .6% Meta	s/metnand nol-Wate	L/0.2 M ME	suryı-kud S Buffer)	
Епгуте	Comment	ЪН	KLG	MeKLG	ASA	BuKLG (ppm)
N Protease	Protease	9	700	1166	297	5435
Candida Antartica B	Lipase	5.8	4347	2207	283	0
Pig Liver Esterase	Esterase	5.9	1947	4258	650	0
Bacillus sp Protease	Protease	5.6	5137	745	55	0
ChiroClec-BL (Dry)	Subtilisin	5.8	3485	1235	215	3045
Prozyme-6	Protease	5.8	3405	1518	73	1624
Protease M	Protease	ဖ	554	899	271	6329
2A Protease	Protease	5.9	1585	1501	153	3954
no enzyme		9	135	149	14	8170
no enzyme		5.9	136	127	16	8418
no enzyme		9	142	133	13	8570

- 36 -

WO 97/43433 PCT/US97/08668

- 37 -

Example 10

10

Table 10 below compares the same enzymes as in Example 9 except at a higher concentration of organic solvent. Candida Antartica B and Bacillus species protease showed particularly high levels of activity in that they exhibited appreciable conversion of butyl-KLG to ascorbic acid, MeKLG, and KLG in a 38% methanol-water solution buffered at a pH of approximately 5.6 to 6.2 with 0.2 M MES buffer. Decreased, although still appreciable, activity is observed for pig liver esterase relative to that shown in Example 9.

Table 10

Enzyme so (38°C for	Enzyme screen for Hydrolysis/Methanolysis of Butyl-KLG (38°C for 19 Hours/38% Methanol-Water/0.2 M MES Buffer)	rolysis/M Methanol	ethanolys Water/0.	is of Buty 2 M MES B	/l-KLG uffer)	
Enzyme ≎	Comment	рН	KLG	MeKLG	ASA	BuKLG
						(mdd)
N Protease	Protease	5.9	176	1144	126	8153
Candida Antartica B	Lipase	5.8	1701	5710	213	199
Pig Liver Esterase	Esterase	9	203	1654	173	7030
Bacillus sp Protease	Protease	5.6	3104	4032	182	213
ChiroClec-BL (Dry)	Protease	5.8	1261	1693	102	5572
Prozyme-6	Protease	9	350	1268	47	7517
Protease M	Protease	6.2	141	408	199	9400
2A Protease	Protease	6.1	178	979	90	8666
no enzyme		9	69	221	80	9418
no enzyme		5.9	61	189	7	8790
no enzyme		9	63	203	6	9367

- 38 -

WO 97/43433 PCT/US97/08668

- 39 -

Example 11

Example 9 except at a pH buffered around 5.2. Candida Antartica B and pig liver esterase showed particularly high levels of activity in that they exhibited appreciable conversion of butyl-KLG to MeKLG and KLG in a 8.6% methanol-water solution buffered at a pH of approximately 4.9 to 5.3 with 0.2 M pyridine/pyridinium hydrochloride buffer. Decreased, although still appreciable, activity is observed for Bacillus species protease relative to Example 9.

Table 11

Enzyme Screen for Hydrolysis/Methanolysis of BUKLG (38°C for ca. 19 Hours/8.6% Methanol-Water/0.2 M Pyridine/Pyridiniuym Hydrochloride)

	Pyridini	uym Hydr	Pyridiniuym Hydrochloride)			
Enzyme	Comment	Нd	KLG	MeKLG	ASA	BuKLG
						(mdd)
N Protease	Protease	5.2	87	237	47	8320
Candida Antartica B	Lipase	4.9	3460	3097	53	0
Pig Liver Esterase	Esterase	5.2	1613	5787	37	390
Bacillus sp Protease	Protease	5.1	1613	2473	70	3757
ChiroClec-BL (Dry)	Protease	5.1	287	1360	67	5603
Prozyme-6	Protease	5.2	700	840	7	6470
Protease M	Protease	5.3	187	357	0	8387
2A Protease	Protease	5.2	480	643	0	7523
no enzyme		5,3	16	0	153	9750
no enzyme		5.2	73	0	80	9547

- 40 -

WO 97/43433 PCT/US97/08668

- 41 -

Example 12

Table 12 below compares the same enzymes as in Example 11 except at a higher concentration of organic solvent. Candida Antartica B showed particularly high levels of activity in that it exhibited appreciable conversion of butyl-KLG to MeKLG and KLG in 38% methanol-water solution buffered at a pH of approximately 4.7 to 5.1 with 0.2 M pyridine/pyridinium hydrochloride buffer. All of the enzymes showed reduced activity relative to Examples 9 and 11.

Enzyme	Enzyme Screen for Hydrolysis/Methanolysis of BuKLG	Hydroly	sis/Meth	anolysis	of BuKLG	
38,6	(38°C for ca. 19 Hours/H 4.9/38% Methanol-Water)	Hours/H	4.9/388	Methanol-	-Water)	
Enzyme	Comment	PH	KLG	MeKLG	ASA	BuKL
N Protease	Protease	4.8	0	0	17	9093
Candida Antartica B	Lipase	4.7	1953	6470	0	5373
Pig Liver Esterase	Esterase	4.9	47	197	0	11750
Bacillus sp	Protease	4.9	333	2113	30	10043
Protease						
ChiroClec-BL (Dry)	Protease	4.9	16	447	7	10950
Prozyme-6	Protease	4.9	0	113	m	12730
Protease M	Protease	5.1	73	203	0	15887
2A Protease	Protease	2	19	150	0	13920
no enzyme		4.9	87	13	27	11753

- 42 -

Example 13

Table 13 below compares the same enzymes as in Examples 9 and 11 except at a pH buffered around 2.3. All enzymes tested showed reduced activity relative to Examples 9 and 11 for conversion of butyl-KLG to ascorbic acid, MeKLG, and KLG in a 8.6% methanol-water solution buffered at a pH of approximately 2.3-2.7 with 0.2 M phosphate buffer.

Table 13

Enzyme Screen for Hydrolysis/Methanolysis of BUKLG

(38 C 101 20 nouls/o.os Mechanol=warel/pn 2.3 0.2 M rhosphare bullel/	13/0.06 Meu	AIIOI - WAL	, ud/ja	0.2 F F10	ospiiare	(Taring
Enzyme	Comment	PH	KLG	MeKLG	ASA	BuKLG
N Protease	Protease	2.4	203	0	m	8980
Candida Antartica B	Lipase	2.4	397	323	0	8463
Pig Liver Esterase	Esterase	2.4	417	93	0	9500
Bacillus sp Protease	Protease	2.3	347	0	0	10987
ChiroClec-BL (Dry)	Protease	2.3	387	0	0	10580
Prozyme-6	Protease	2.4	440	0	0	12357
Protease M	Protease	5.6	137	333	0	12237
2A Protease	Protease	2.7	163	347	0	10600
No enzyme		2.3	487	0	0	10417
No enzyme		2.3	413	0	0	9897
No enzyme		2.3	407	0	0	9873

- 44 -

- 45 -

Example 14

Table 14 below compares the first 5 enzymes of Examples 9 and 11 at a buffered pH of about 6 in their ability to catalyze the esterification of KLG to methyl KLG (MeKLG) or their ability to catalyze ring closure of KLG to ascorbic acid. Low levels of activity are observed relative to examples 9 and 11.

Table 14

(38°C for	Enzyme Screen for Methanolysis of KLG (38°C for 19 Hours/8.6% Methanol-Water/0.2 M MES Buffer)	or Metha Tethanol	nolysis -Water/O	of KLG	3uffer)	
Enzyme	Comment	Нф	KLG	KLG MeKLG	ASA	BuKLG
N Protease	Protease	9	3791	0	0	0
Candida Antartica B	Lipase	9	4258	0	0	0
Pig Liver Esterase	Esterase	9	4393	0	0	0
Bacillus sp Protease	Protease	9	4099	0	0	0
ChiroClec-BL (Dry)	Subtilisin	6.1	3270	0	0	0
no enzyme		9	4340	0	0	0
no enzyme		9	3295	0	0	0
no enzyme		9	4029	0	0	0

- 46 -

- 47 -

Example 15

Table 15 below demonstrates the production of MeKLG from KLG using Candida Antartica B lipase as catalyst in 8.6% aqueous methanol at a pH of 3-3.2. 5 The buffer was chosen as a mixture of KLG and its sodium salt (approximately 1/9). The first three entries include enzyme catalyst and are the same conditions in triplicate. The second three entries also run in triplicate and are the same conditions as 10 the first three entries except that no enzyme was present. The first three entries show significant esterification of KLG to MeKLG in the presence of Candida Antartica B lipase. The second three entries demonstrate that the conversion does not proceed in the 15 absence of Candida Antartica B lipase.

- 48 -

Table 15

	Enzyme	Enzyme Screen for Esterification of KLG	Esteri	fication	n of KLG		
68 Hours at 38°C/8.6% Methanol in Aqueous Phase/Buffer = KLG + NaKLG	18°C/8.68	Methanol	in Aqued	ous Phas	e/Buffer	= KLG +	NaKLG
Enzyme	ນ	Comment	Hd	KLG	KLG MeKLG	ASA	BuKLG
Candida Antartica B		8.6% MeOH+KLG	3.1	9227	460	0	0
Candida Antartica B		8.6% MeOH+KLG	3.1	9303	530	0	0
Candida Antartica B		8.6% MeOH+KLG	3.2	9213	413	0	0
no enzyme	8.6%	8.6% MeOH+KLG	5.9	9530	0	0	0
no enzyme	8.68	8.6% MeOH+KLG	5.9	9477	0	0	0
no enzyme	8.6%	8.6% MeOH+KLG	5.9	0096	0	0	0

Example 16

This example demonstrates the slow decomposition of ascorbic acid under the conditions of HPLC analysis. HPLC sample standards were prepared by dissolving KLG, MeKLG, ascorbic acid (ASA), and butyl-KLG to the appropriate concentration in water. Samples of these standards were placed in filled and sealed vials, stored at room temperature, and analyzed periodically. HPLC was calibrated on the area response for standards that were injected onto the HPLC as soon as possible 10 after the preparation of the standards. Table 16 below shows the recorded responses for KLG, MeKLG, ascorbic acid, and butyl-KLG standards of 50, 100, and 500 ppm at time 0 (calibration time), at approximately 6.5 hours, and at approximately 12 hours after sample preparation. 15

Table 16
Amount Prepared Amount

				Found			
20	Time (minutes)			KLG	MeKLG	ASA	BuKLG
	0	50ppm	standard	51	51.4	53.4	50.6
	400			39.9	47.7	28.3	42.7
	715			52	43	0	38.2
	0	100 ppm	standard	102	103	107	101
25	400			94.3	106.8	96.6	100.1
	715			81.8	90.2	57.2	94.2
	0	500 ppm	standard	510	514	534	506
	400			479	496	487	512
	715			493	495	473	499

The ascorbic acid responses were non-linear over time with respect to the other standards and,

particularly, with respect to standards of 100 ppm or less. Given that the treatment for Examples 2-16 included approximately 16 hours or more at 38°C on a shaker bath prior to HPLC analysis, it follows that the actual level of ascorbic acid formed was greater than reported.

This invention has been described in detail with particular reference to preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.

- 51 -

SEQUENCE LISTING

- (1) GENERAL INFORMATION
 - (i) APPLICANT: Hubbs, John C.
 - (ii) TITLE OF INVENTION: Enzymatic Process for the Manufacture of Ascorbic Acid, 2-Keto-L-Gulonic Acid, and Esters of 2-Keto-L-Gulonic Acid
 - (iii) NUMBER OF SEQUENCES: 3
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Eastman Chemical Company
 - (B) STREET: P.O. Box 511
 - (C) CITY: Kingsport
 - (D) STATE: Tennessee
 - (E) COUNTRY: USA
 - (F) ZIP: 37662-5075
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: *
 - (B) COMPUTER: *
 - (C) OPERATING SYSTEM: *
 - (D) SOFTWARE: *
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: *
 - (B) FILING DATE: *
 - (C) CLASSIFICATION: *
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 60/017,879
 - (B) FILING DATE: 17-MAY-1996
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Cheryl J. Tubach
 - (B) REGISTRATION NUMBER: *
 - (C) REFERENCE/DOCKET NUMBER: 70432
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 423-229-6189
 - (B) TELEFAX: 423-229-1239

- 52 -

- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 379 amino acids
 - (B) TYPE: Amino Acid
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:
- Met Met Arg Lys Lys Ser Phe Trp Leu Gly Met Leu Thr Ala Phe Met

 1 5 10 15
- Leu Val Phe Thr Met Ala Phe Ser Asp Ser Ala Ser Ala Gln Pro 20 25 30
- Ala Lys Asn Val Glu Lys Asp Tyr Ile Val Gly Phe Lys Ser Gly Val 35 40 45
- Lys Thr Ala Ser Val Lys Lys Asp Ile Ile Lys Glu Ser Gly Gly Lys 50 55 60
- Val Asp Lys Gln Phe Arg Ile Ile Asn Ala Ala Lys Ala Lys Leu Asp 65 70 75 80
- Lys Glu Ala Leu Lys Glu Val Lys Asn Asp Pro Asp Val Ala Tyr Val 85 90 95
- Glu Glu Asp His Val Ala His Ala Leu Ala Gln Thr Val Pro Tyr Gly
 100 105 110
- Ile Pro Leu Ile Lys Ala Asp Lys Val Gln Ala Gln Gly Phe Lys Gly
 115 120 125
- Ala Asn Val Lys Val Ala Val Leu Asp Thr Gly Ile Gln Ala Ser His
 130
 135
 140
- Pro Asp Leu Asn Val Val Gly Gly Ala Ser Phe Val Ala Gly Glu Ala 145 150 155 160
- Tyr Asn Thr Asp Gly Asn Gly His Gly Thr His Val Ala Gly Thr Val 165 170 175

- 53 -

- Ala Ala Leu Asp Asn Thr Thr Gly Val Leu Gly Val Ala Pro Ser Val 180 185 190
- Ser Leu Tyr Ala Val Lys Val Leu Asn Ser Ser Gly Ser Gly Thr Tyr 195 200 205
- Ser Gly Ile Val Ser Gly Ile Glu Trp Ala Thr Thr Asn Gly Met Asp 210 215 220
- Val Ile Asn Met Ser Leu Gly Gly Pro Ser Gly Ser Thr Ala Met Lys 225 230 235 240
- Gln Ala Val Asp Asn Ala Tyr Ala Arg Gly Val Val Val Val Ala Ala 245 250 255
- Ala Gly Asn Ser Gly Ser Ser Gly Asn Thr Asn Thr Ile Gly Tyr Pro 260 265 270
- Ala Lys Tyr Asp Ser Val Ile Ala Val Gly Ala Val Asp Ser Asn Ser 275 280 285
- Asn Arg Ala Ser Phe Ser Ser Val Gly Ala Glu Leu Glu Val Met Ala 290 295 300
- Pro Gly Ala Gly Val Tyr Ser Thr Tyr Pro Thr Ser Thr Tyr Ala Thr 305 310 315 320
- Leu Asn Gly Thr Ser Met Ala Ser Pro His Val Ala Gly Ala Ala Ala 325 330 335
- Leu Ile Leu Ser Lys His Pro Asn Leu Ser Ala Ser Gln Val Arg Asn 340 345 350
- Arg Leu Ser Ser Thr Ala Thr Tyr Leu Gly Ser Ser Phe Tyr Tyr Gly 355 360 365
- Lys Gly Leu Ile Asn Val Glu Ala Ala Ala Gln 370 375

- 54 -

(2)	INFORMAT	ION FOR	SEQ ID	NO:2:
-----	----------	---------	--------	-------

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 584 amino acids
 - (B) TYPE: Amino Acid
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:
- Met Trp Leu Leu Pro Leu Val Leu Thr Ser Leu Ala Ser Ser Ala Thr
 1 5 10 15
- Trp Ala Gly Gln Pro Ala Ser Pro Pro Val Val Asp Thr Ala Gln Gly
 20 25 30
- Arg Val Leu Gly Lys Tyr Val Ser Leu Glu Gly Leu Ala Phe Thr Gln 35 40 45
- Pro Val Ala Val Phe Leu Gly Val Pro Phe Ala Lys Pro Pro Leu Gly 50 55 60
- Ser Leu Arg Phe Ala Pro Pro Gln Pro Ala Glu Pro Trp Ser Phe Val 65 70 75 80
- Lys Asn Thr Thr Ser Tyr Pro Pro Met Cys Cys Gln Asp Pro Val Val 85 90 95
- Glu Gln Met Thr Ser Asp Leu Phe Thr Asn Phe Thr Gly Lys Glu Arg 100 105 110
- Leu Thr Leu Glu Phe Ser Glu Asp Cys Leu Tyr Leu Asn Ile Tyr Thr 115 120 125
- Pro Ala Asp Leu Thr Lys Arg Gly Arg Leu Pro Val Met Val Trp Ile 130 135 140
- His Gly Gly Leu Val Leu Gly Gly Ala Pro Met Tyr Asp Gly Val 145 . 150 155 160
- Val Leu Ala Ala His Glu Asn Phe Thr Val Val Val Val Ala Ile Gln 165 170 175

			- 55 -	
Tyr Arg Leu	Gly Ile Trp (180	Gly Phe Phe	Ser Thr Gly Asp	Glu His Ser 190
Arg Gly Asr 19:	-	Leu Asp Glr 200	n Val Ala Ala Le 20	
Gln Glu Asr 210		Phe Gly Gly 215	Asp Pro Gly Ser 220	Val Thr Ile
Phe Gly Glu 225	Ser Phe Thr 230	Ala Gly Gly	Glu Ser Val Ser 235	Val Leu Val 240
Leu Ser Pro	Leu Ala Lys 245	Asn Leu Phe	His Arg Ala Ile 250	Ser Glu Ser 255
Gly Val Ala	Leu Thr Val 260	Ala Leu Val 265	Arg Lys Asp Mo	et Lys Ala Ala 270
Ala Lys Gin 275		eu Ala Gly (280	Cys Lys Thr Thr 285	
Val Phe Thr 290	Phe Val His	Cys Leu Arg 295	Gln Lys Ser Glu 300	ı Asp Glu Leu
Leu Asp Leu 305	a Thr Leu Lys 310		e Leu Thr Leu A 315	sp Phe His Gly 320
Asp Gln Arg	g Glu Ser His 325	Pro Phe Leu	Pro Thr Val Val 330	Asp Gly Val 335
Leu Leu Pro	Lys Met Pro 340	Glu Glu Ile 345	Leu Ala Glu Lys	Asp Phe Thr 350
Phe Asn Thi		lle Val Gly 1 360	le Asn Lys Gln (365	Glu Phe Gly
Trp Leu Leu 370	Pro Thr Met	Met Gly Pho 375	e Pro Leu Ser Gl 380	u Gly Lys Leu
Asp Gln Lys 385	s Thr Ala Thr 390		Trp Lys Ser Tyr 395	Pro lle Ala 400
Asn Ile Pro	Glu Glu Leu 405		Ala Thr Phe Thr 410	Asp Lys Tyr 415

Leu Gly Gly Thr Asp Asp Pro Val Lys Lys Lys Asp Leu Phe Leu Asp 420 425 430 425

- 56 -

Leu Met Gly Asp V	al Val Phe Gly	Val Pro Ser Val Thr	Val Ala Arg
435	440	445	

- Gln His Arg Asp Ala Gly Ala Pro Thr Tyr Met Tyr Glu Phe Gln Tyr 450 455 460
- Arg Pro Ser Phe Ser Ser Asp Lys Phe Thr Lys Pro Lys Thr Val Ile
 465 470 475 480
- Gly Asp His Gly Asp Glu Ile Phe Ser Val Phe Gly Phe Pro Leu Leu 485 490 495
- Lys Gly Asp Ala Pro Glu Glu Glu Val Ser Leu Ser Lys Thr Val Met 500 505 510
- Lys Phe Trp Ala Asn Phe Ala Arg Ser Gly Asn Pro Asn Gly Glu Gly 515 520 525
- Leu Pro His Trp Pro Phe Thr Met Tyr Asp Gln Glu Glu Gly Tyr Leu 530 535 540
- Gln Ile Gly Val Asn Thr Gln Ala Ala Lys Arg Leu Lys Gly Glu Glu 545 550 555 560
- Val Ala Phe Trp Asn Asp Leu Leu Ser Lys Glu Ala Ala Lys Lys Pro 565 570 575

Pro Lys Ile Lys His Ala Glu Leu 580

- 57 -

(2)	INFORMATION FOR SI	EQ ID	NO:3
-----	--------------------	-------	------

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 342 amino acids
 - (B) TYPE: Amino Acid
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:
- Met Lys Leu Leu Ser Leu Thr Gly Val Ala Gly Val Leu Ala Thr Cys

 1 5 10 15
- Val Ala Ala Thr Pro Leu Val Lys Arg Leu Pro Ser Gly Ser Asp Pro 20 25 30
- Ala Phe Ser Gln Pro Lys Ser Val Leu Asp Ala Gly Leu Thr Cys Gln
 35 40 45
- Gly Ala Ser Pro Ser Ser Val Ser Lys Pro Ile Leu Leu Val Pro Gly 50 55 60
- Thr Gly Thr Thr Gly Pro Gln Ser Phe Asp Ser Asn Trp Ile Pro Leu 65 70 75 80
- Ser Thr Gln Leu Gly Tyr Thr Pro Cys Trp Ile Ser Pro Pro Pro Phe 85 90 95
- Met Leu Asn Asp Thr Gln Val Asn Thr Glu Tyr Met Val Asn Ala Ile
 100 105 110
- Thr Ala Leu Tyr Ala Gly Ser Gly Asn Asn Lys Leu Pro Val Leu Thr
 115 120 125
- Trp Ser Gln Gly Gly Leu Val Ala Gln Trp Gly Leu Thr Phe Pro 130 135 140
- Ser Ile Arg Ser Lys Val Asp Arg Leu Met Ala Phe Ala Pro Asp Tyr 145 150 155 160
- Lys Gly Thr Val Leu Ala Gly Pro Leu Asp Ala Leu Ala Val Ser Ala 165 170 175

- 58 -

Pro Ser Val Trp Gln Gln T	hr Thr Gly Scr Ala I	Leu Thr Thr Ala Leu
180	185	190

- Arg Asn Ala Gly Gly Leu Thr Gln Ile Val Pro Thr Thr Asn Leu Tyr 195 200 205
- Ser Ala Thr Asp Glu Ile Val Gln Pro Gln Val Ser Asn Ser Pro Leu 210 215 220
- Asp Ser Ser Tyr Leu Phe Asn Gly Lys Asn Val Gln Ala Gln Ala Val 225 230 235 240
- Cys Gly Pro Leu Phe Val Ile Asp His Ala Gly Ser Leu Thr Ser Gln 245 250 255
- Phe Ser Tyr Val Val Gly Arg Ser Ala Leu Arg Ser Thr Thr Gly Gln 260 265 270
- Ala Arg Ser Ala Asp Tyr Gly Ile Thr Asp Cys Asn Pro Leu Pro Ala 275 280 285
- Asn Asp Leu Thr Pro Glu Gln Lys Val Ala Ala Ala Ala Leu Leu Ala 290 295 300
- Pro Ala Ala Ala Ala Ile Val Ala Gly Pro Lys Gln Asn Cys Glu Pro 305 310 315 320
- Asp Leu Met Pro Tyr Ala Arg Pro Phe Ala Val Gly Lys Arg Thr Cys 325 330 335

Ser Gly Ile Val Thr Pro 340

- 59 -

CLAIMS

What is claimed is:

- 1. A process for preparing ascorbic acid comprising contacting a compound selected from the group consisting of 2-keto-L-gulonic acid and an ester of 2-keto-L-gulonic acid with a hydrolase enzyme catalyst to form ascorbic acid.
- The process of claim 1 wherein the hydrolase enzyme
 catalyst is selected from the group consisting of a protease, an esterase, a lipase and an amidase.
 - 3. The process of claim 2 wherein the protease is obtained from a genera selected from the group consisting of *Bacillus* or *Aspergillus*.
 - 4. The process of claim 3 wherein the protease is obtained from a *Bacillus licheniformis* bacteria.
- 5. The process of claim 4 wherein the protease has at least 70 percent sequence homology with a Subtilisin protease having a sequence as shown in SEQ ID NO: 1.
- 6. The process of claim 5 wherein the protease is the Subtilisin protease having the sequence as shown in SEQ ID NO: 1.
 - 7. The process of claim 2 wherein the esterase is obtained from pig liver extract.

- 8. The process of claim 7 wherein the esterase has at least 70 percent sequence homology with a pig liver esterase having a sequence as shown in SEQ ID NO: 2.
- 5 9. The process of claim 8 wherein the esterase is the pig liver esterase having the sequence as shown in SEQ ID NO: 2.
- 10. The process of claim 2 wherein the lipase is

 10 obtained from a genera selected from the group

 consisting of Aspergillus, Mucor, Candida, Pseudomonas,

 Humicola, Rhizopus, Chromobacterium, Alcaligenes,

 Geotricum and Penicillium.
- 15 11. The process of claim 10 wherein the lipase obtained from the genus Candida is a lipase having at least 70 percent sequence homology with a Candida Antartica B lipase having a sequence as shown in SEQ ID NO: 3.
- 20 12. The process of claim 11 wherein the lipase is the Candida Antartica B lipase having the sequence as shown in SEQ ID NO: 3.
- 13. The process of claim 2 wherein the amidase is25 obtained from a genus *Penicillium*.
 - 14. The process of claim 13 wherein the amidase has at least 80% sequence homology with a *Penicillin acylase*.
- 30 15. The process of claim 14 wherein the amidase is the Penicillin acylase.

- 16. The process of claim 1 wherein the hydrolase enzyme catalyst contains an active site serine residue.
- 17. The process of claim 16 wherein the hydrolase
 5 enzyme catalyst contains a catalytic triad of serine,
 histidine and aspartic acid.
- 18. The process of claim 1 wherein, prior to contacting the compound with the hydrolase enzyme catalyst, the 10 compound is formed into a solution with a solvent.
 - 19. The process of claim 18 wherein the solvent is selected from the group consisting of water, a C_1 to C_6 alcohol and a mixture thereof.
 - 20. The process of claim 1 wherein contacting the compound with the hydrolase enzyme catalyst occurs at a pH between 1.5 and 10.
- 20 21. The process of claim 1 wherein contacting the compound with the hydrolase enzyme catalyst occurs at a temperature from 5°C to 120°C.
- 22. The process of claim 1 wherein, prior to contacting
 the compound with the hydrolase enzyme catalyst, the
 hydrolase enzyme catalyst is naturally expressed from a
 host organism in vivo.

- 23. The process of claim 1 wherein, prior to contacting the compound with the hydrolase enzyme catalyst, a gene sequence encoding the hydrolase enzyme catalyst is inserted into a host organism and the host organism is cultured to express the hydrolase enzyme catalyst in vivo.
 - 24. The process of claim 23 wherein the host organism is *Pantoea citrea*.

- 25. The process of claim 22 or claim 23 wherein the host organism produces KLG.
- 26. A mixture containing ascorbic acid prepared15 according to the process of claim 1.
 - 27. A process for preparing 2-keto-L-gulonic acid comprising the steps of:
- (a) preparing an aqueous solution of an ester of20 2-keto-L-gulonic acid, and
 - (b) then contacting the ester of 2-keto-L-gulonic acid in solution with a hydrolase enzyme catalyst to form 2-keto-L-gulonic acid.
- 25 28. The process of claim 27 wherein the hydrolase enzyme catalyst is selected from the group consisting of a protease, an esterase, a lipase and an amidase.
- 29. The process of claim 27 wherein a co-solvent is30 used in preparing the aqueous solution.

- 30. The process of claim 29 wherein the co-solvent is a C_1 to C_6 alcohol.
- 31. A process for preparing an ester of 2-keto-L-gulonic acid comprising the steps of:
 - (a) preparing an alcoholic solution of 2-keto-L-gulonic acid and an alcohol corresponding to an alkyl moiety of an ester of 2-keto-L-gulonic acid to be formed; and
- (b) then contacting the 2-keto-L-gulonic acid in solution with a hydrolase enzyme catalyst to form the ester of 2-keto-L-gulonic acid.
- 32. The process of claim 31 wherein the hydrolase
 15 enzyme catalyst is selected from the group consisting of
 a protease, an esterase, a lipase and an amidase.
 - 33. The process of claim 31 wherein a co-solvent is used in preparing the alcoholic solution.

20

34. The process of claim 33 wherein the co-solvent is selected from the group consisting of water, a C_1 to C_6 alcohol and a mixture thereof.

10

- 35. A process for preparing an ester of 2-keto-L-gulonic acid comprising the steps of:
- (a) preparing an alcoholic solution of a first ester of 2-keto-L-gulonic acid and an alcohol corresponding to an alkyl moiety of a second ester of 2-keto-L-gulonic acid to be formed; and
- (b) then contacting the first ester of 2-keto-L-gulonic acid in solution with a hydrolase enzyme catalyst to form the second ester of 2-keto-L-gulonic acid.
- 36. The process of claim 35 wherein the hydrolase enzyme catalyst is selected from the group consisting of a protease, an esterase, a lipase and an amidase.
- 37. The process of claim 35 wherein a co-solvent is used in preparing the alcoholic solution.
- 38. The process of claim 37 wherein the co-solvent is selected from the group consisting of water, a C_1 to C_6 alcohol and a mixture thereof.

Inter. nal Application No PCT/US 97/08668

		PCT/US 97	//08668
A. CLASSI IPC 6	FICATION OF SUBJECT MATTER C12P17/04 C12P7/60		
According t	to International Patent Classification (IPC) or to both national classification and IPC		,
B. FIELDS	SEARCHED		
Minimum d IPC 6	ocumentation searched (classification system followed by classification symbols) C12P		
Documenta	tion searched other than minimum documentation to the extent that such documents are inc	luded in the fields i	searched
Electronic	lata base consulted during the international search (name of data base and, where practical,	search terms used)	
C DOCUM	MENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
A	EP 0 292 303 A (GENENTECH INC) 23 November 1988 see claims		1
A	EP 0 401 704 A (MITSUBISHI RAYON CO) 12 December 1990 see claims		1
A	EP 0 207 763 A (BIO TECH RESOURCES) 7 January 1987 see claims		1
A	WO 85 01745 A (KRAFT INC) 25 April 1985 see claims		1
	-/		
X Furt	her documents are listed in the continuation of box C. X Patent family	members are listed	in annex.

X Further documents are listed in the continuation of box C.	Patent (amily members are listed in annex.
* Special categories of cited documents: A* document defining the general state of the art which is not considered to be of particular relevance E* earlier document but published on or after the international filling date L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) O* document referring to an oral disclosure, use, exhibition or other means P* document published prior to the international filling date but later than the priority date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report
17 September 1997	3 0. 09. 97
Name and mailing address of the ISA	Authorized officer
European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+ 31-70) 340-3016	Delanghe, L

Form PCT/ISA/210 (second sheet) (July 1992)

Inte onal Application No PCT/US 97/08668

		PC1/US 9//08668		
C.(Continu	C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT			
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.		
A	HAYES D G: "THE CATALYTIC ACTIVITY OF LIPASES TOWARD HYDROXY FATTY ACIDS - A REVIEW" JOURNAL OF THE AMERICAN OIL CHEMISTS' SOCIETY, vol. 73, no. 5, 1 May 1996, pages 543-549, XP000588420 see the whole document	1		

INTERNATIONAL SEARCH REPORT

information on patent family members

Inte

nte onal Application No PCT/US 97/08668

Publication Patent family Publication Patent document date cited in search report member(s) 5008193 A EP 0292303 A 23-11-88 US 16-04-91 612672 B 18-07-91 ΑU 1939188 A 21-12-88 ΑU 01-12-88 8809377 A W0 DE 69016838 D 23-03-95 EP 0401704 A 12-12-90 DE 69016838 T 20-07-95 07-01-92 US 5079153 A 10-12-91 5071753 A US JP 3117495 A 20-05-91 US 5001059 A 19-03-91 EP 0207763 A 07-01-87 CA 1318870 A 08-06-93 CN 1029990 B 11-10-95 JP 14-05-96 8116964 A JP 23-05-96 2055811 C JP 7089946 B 04-10-95 07-02-87 JP 62029994 A US 5521090 A 28-05-96 25-04-85 US 4595659 A 17-06-86 WO 8501745 A 26-06-85 EP 0146239 A JP 61500201 T 06-02-86 10-04-90 US 4916068 A

THIS PAGE BLANK (USPTO)