Домашна работа № 2

по "Диференциални уравнения и приложения"

Специалност "Софтуерно инженерство", летен семестър на 2019/2020 уч. година

Име: Калоян Николов

Група: 3 Дата: 02.05.2020 г.

Условие:

Домашна работа No. 2 по ДУПрил спец. СИ, 2 курс, летен семесътр, уч. год. 2019/20

Задача СИ20-ДР2-12.

а) Намерете фундаментална система от решения (ФСР) на уравнението

$$4y''' - 4y'' + y' = 0.$$

б) Пресметнете детерминантата на Вронски за функциите от ФСР и напишете общото решение на уравнението. в) в) Напишете МАТLAB код, който решава символно задачата на Коши за това уравнение с начални условия $y(1)=1,\,y'(1)=0,\,y''(1)=0$ и начертайте графиката на полученото решение в подходящ интервал.

Срок за предаване 03.05.2020 г.

Разработка:

а) Аналитично решение:

0)	Намерете фундаментакка система от решения
	Намерете фундаментанка система от решения (фСР) ка уравнението:
	44" -44" + 4' =0
	Това е хомочения линейно уравнение с
	постоянни коефониченти.
	Съпоставаме сперния характеристичен помином:
	423-422+2=00
	$\lambda (4\lambda^2 - 4\lambda + 1) = 0$
	$(2\lambda - 1)^2 = 0$
	$\frac{\lambda_{1}}{\lambda_{1}} = 0 \qquad (2\lambda - 1)^{2} = 0$
	21-1=0
	$\lambda_{23} = \frac{1}{2}$
	Корените на характеристичния помном са:
	21=0 -> egrorpatett (npoG) Kopen
	21=0 -> equorpaten (npos) Kopen 213=1-> gbyrpaten Kopen
	OT de = 0 cheque le bel JCP yractba:
	or 2=== cneyba, re bob dCP y racoba T:
	e u x.e z.x
	e u x.e
	The second will the second of commentary
	Taka 30 popularentanta cuerens or pemetrus
	mongane. 21, ez x.e. s

В портогна аз не доказахме, те сме помучим фСР, а сомо приехме, те това е така. За да доказахме, те каистина сме камерим доукуомен такка система от решекия е необходим ра пресметнем ретерминантата на вронени за доуккимите от фСР и ра покамем, те та е размитна от О. Flexa oznarum: $y_1 = 1$ $y_2 = e^{\frac{x}{2}}$ $y_3 = x \cdot e^{\frac{x}{2}}$ детерринантата на Вронени има 1 1 12 13 1 = 14 42 43 $W(x) = \begin{cases} y_1 & y_2 & y_3 \\ y_1 & y_2 & y_3 \\ y_1 & y_2 & y_3 \end{cases}$ y1=1=2 y1=0, y1=0 $y_{3}'' = (e^{\frac{x}{2}} + x \cdot e^{\frac{x}{2}}) = \frac{1}{2} \cdot e^{\frac{x}{2}} + \frac{1}{2} \cdot e^{\frac{x}{2}} + \frac{x}{2} \cdot \frac{1}{2} \cdot e^{\frac{x}{2}} =$ $= e^{\frac{x}{2}} + x \cdot e^{\frac{x}{2}} = (1 + \frac{x}{4}) \cdot e^{\frac{x}{2}}$

Cregobaterro: W(x) = $= 1. \frac{1}{2} e^{\frac{x}{2}} \cdot (1 + \frac{x}{4}) e^{\frac{x}{2}} + 0. \frac{1}{4} \cdot e^{\frac{x}{2}} \cdot x. e^{\frac{x}{2}}$ $+0.e^{\frac{x}{2}}.(1+\frac{x}{2})e^{\frac{x}{2}}-0.\frac{1}{2}.e^{\frac{x}{2}}.x.e^{\frac{x}{2}}$ $-1.\frac{1}{4}.e^{\frac{x}{2}}.(1+\frac{x}{2})e^{\frac{x}{2}}-0.e^{\frac{x}{2}}.(1+\frac{x}{4}).e^{\frac{x}{2}}=$ = 1. e2. (1+x)e2 - 4.e2. (1+x). e2 = $=\frac{1}{2}.(1+\frac{x}{4})e^{x}-\frac{1}{4}.(1+\frac{x}{2})e^{x}=$ = 1 e + xe - 1 e - 2 e = 4 e => W(x) = 1 e +0 +x => Haucturn {1, e2, x.e2 } e objequentement Общото решение на уравнението е: $y(x) = C_1 + C_2 \cdot e^{\frac{x}{2}} + C_3 \cdot x \cdot e^{\frac{x}{2}}$, Kegeto C1, C2, C3 ca Apouzborku whitaktu

б) Matlab код:

```
function Homework_2
clc
clf

x=-20:2:20;
Y=dsolve('4*D3y-4*D2y+Dy=0', 'y(1)=1', 'Dy(1)=0', 'D2y(1)=0', 'x')
y=ones(1, length(x));
hold on
grid on
axis([-20 20 0 2])
plot(x,y,'b')
xlabel('x')
ylabel('y(x)')
end
```

в) Резултат от изпълнението на кода:

Резултат от командния ред:

Y =

1

Графика на решението:

