Advanced Particle Physics 2017 Q.4 The Dirac Equation

i In classical mechanics, the Handtonian, the conserved energy is

$$H = \frac{P^2}{2m} + V$$

$$K = \frac{P \cdot E}{r}$$

In quantum mechanics particles must obey

$$H \psi = i \partial \psi$$

Particle

Have function

of particle.

where H becomes an operate
$$\hat{H} = \frac{\hat{P}}{2m} + \hat{V}$$

$$\hat{P}^2 = -\hat{V}^2, \hat{P} = -i \hat{V}$$

Relativity (special) tells us that particles must obey the Klein-Gordon equation if they have mass.

Dirac wanted a Hamiltonian which is linear in energy 2 momentum and satisfied quantum mechanics (a) and special waterty (b)

Note, (b) comes from the relativistic energy relation
$$E^2 = p^2 + m^2$$

Assuming
$$\hat{H} = \alpha \cdot p + \beta m$$

$$\hat{H} \psi = i \frac{\partial \psi}{\partial t}$$

$$\hat{f}(\alpha \cdot \nabla + \beta m) \psi = i \frac{\partial \psi}{\partial t}$$

$$= i \frac{\partial^{2} \psi}{\partial t} = i \frac{\partial}{\partial t} (\alpha \cdot \nabla + \beta m) \psi$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla + \beta m) \frac{\partial \psi}{\partial t}$$

$$= i (\alpha \cdot \nabla$$

H2 4 = (x; p; +Bm)(x:p)+Bm)

= ~ cx; p;p; + (x;p;B+Ba;p;)m

4= 1= 28

iy Pour = ny = iBut + i But = mup Claim

= i8 r + i prop = mrp

\$\hat{S} = \frac{1}{2} \gamma^5 \gam A = iyMan SE- Component

My- = Out

At Ant-[AS] = AS -SH = (iy+0/2) = 1/50 - = 1/5 y of (iy Mon) y and constant & y commutes

= \frac{1}{2} iy x y 5 y 0 y 0 m - \frac{1}{2} iy 5 y 2 2 m By 5/1/37 = 0 Commutation relations

(1st tem) => ymy sy = - y symgo = + y 5 y 0 y M 三) [月了] = さらりまりのカメタルーをリタリクター

V	Measuring momenta of charged particles.
- He	of motion of the particles.
	Of violition of the paintines.
·	R = PT Transverse monuturs Box Magneticfield. Radius of Curreture
,	Radilion of Magnetic field.
	Currotrup
1000	warm of Estata bastima mitalitar to alpint.
	"To measure positions of faiticles along trajectory use one of the for several of the following
	() () () () () () () () () ()
	2> Seil Scintillation counter - high senstainty
	L> Bubble chambu - Resolution a Egum
	4> Silicon strip detector - Resolution ~ 50 pm
	() R High E field - Resolution aloopin
	Wive
	· Thereed (potons (p - c emerally) modern
- 18	electron spovers, hadrons produce hadron showers.
	Measure energy from the vadvation length xo
· .	et et

vì	· Can measur energy from radiation lengt 4 (see V)
During My	· Can measure velocity from Cherenkor vadiation
	t warryn i o oner annou
2 12 12	Cm / O
,	cmt, vadiation
4	to an about
	Particle
	Angle of radiation emitted relators to momentum
-	sin 0 = . cm & speed of light in medium volvaty of particle
	Les fish L. Lendou nothing the sell
Colon	Leve to Alexander
	Can determine miss of particle.
na ste in	ito composed of paticles wet same speed
7	. If beam is mono energetic can determine mass
might	From radious of aurature
311	tong (elicinated throng (etc. considerably) part
- sample	electron sponers, hadrons produce hadren
after Xo	"W English energy from the replication to