Отбор признаков

Виктор Китов

v.v.kitov@yandex.ru

Задача отбора признаков

- Отбор признаков (feature selection) выделение подмножества исходных признаков.
- Снижение размерности (dimensionality reduction) преобразование исходных признаков в пространство меньшей размерности.

Применения отбора признаков

- Применения отбора признаков:
 - ↑ точности прогнозов (убираем шумовые)
 - ↑ стабильности оценок параметров (например для лин. регрессии)
 - ↑ вычислительной эффективности
 - ↑ интерпретируемости моделей
 - ↓ стоимости сбора данных
- Некоторые методы умеют самостоятельно отбирать признаки:

Применения отбора признаков

- Применения отбора признаков:
 - ↑ точности прогнозов (убираем шумовые)
 - ↑ стабильности оценок параметров (например для лин. регрессии)
 - ↑ вычислительной эффективности
 - ↑ интерпретируемости моделей
 - ↓ стоимости сбора данных
- Некоторые методы умеют самостоятельно отбирать признаки:
 - решающие деревья и их ансамбли (бэггинг, RF, ERT, бустинг)
 - линейная/нелинейная регрессия/классификация с L_1 регуляризацией
 - orthogonal matching pursuit регрессия

Типы признаков¹

f-признак, $G = \{f_1, f_2, ... f_D\}$ -полный набор, $\tilde{G} = G \setminus \{f\}$.

• Сильно релевантный признак:

$$p(y|f,\tilde{G})\neq p(y|\tilde{G})$$

• Слабо релевантный признак:

$$p(y|f, ilde{G})=p(y| ilde{G}),$$
 но $\exists S\subset ilde{G}: p(y|f,S)
eq p(y|S)$

• Нерелевантный признак:

$$\forall S \subset \tilde{G} : p(y|f,S) = p(y|S)$$

¹Приведите примеры признаков каждого типа.

Типы признаков¹

f-признак, $G = \{f_1, f_2, ... f_D\}$ -полный набор, $\tilde{G} = G \setminus \{f\}$.

• Сильно релевантный признак:

$$p(y|f,\tilde{G})\neq p(y|\tilde{G})$$

• Слабо релевантный признак:

$$p(y|f, \tilde{G}) = p(y|\tilde{G}), \,\,$$
но $\exists S \subset \tilde{G}: \, p(y|f,S)
eq p(y|S)$

• Нерелевантный признак:

$$\forall S \subset \tilde{G} : p(y|f,S) = p(y|S)$$

Цель отбора признаков

Найти минимальный $G'\subset G$ такой, что $P(y|G')\approx P(y|G)$, т.е. оставить только сильно релевантные и минимальный набор слабо релевантных признаков.

 $^{^{1}}$ Приведите примеры признаков каждого типа.

Категоризация методов отбора признаков

Полнота перебора вариантов:

- Полный перебор: сложность $O(2^D)^2$
- Субоптимальный перебор: нет гарантии на глобальный оптимум
 - детерминированные
 - случайные (детерминированные со случайностью / полностью случайные)

Взаимосвязь с методом прогнозирования:

- независимые (filter methods)
- ullet использующие метод прогнозирования и ${\mathcal L}$ (wrapper methods)
- интегрированные в метод прогнозирования (embedded methods)

 $^{^2}$ метод ветвей и границ не перебирает все варианты (при некоторых предположениях на J(S)), но сложность все равно $O(2^D)$

Содержание

- Расчет важности признаков
 - Внешние оценки значимости признаков
 - Оценки значимости признаков по модели
- Методы поиска набора признаков

Расчет важности признаков

- Оценим значимости каждого признака $I(f_1), I(f_2), ... I(f_D)$.
- Далее можем:
 - отбирать признаки по значимости
 - учитывать все признаки, но в разной степени, в зависимости от $I(\cdot)^3$.

³ Как контролировать вклад признаков в прогноз для K-NN, линейных моделей, случайного леса?

Отбор признаков по значимости

• Упорядочим признаки по значимости I(f):

$$I(f_1) \ge I(f_2) \ge ... \ge I(f_D)$$

• выбрать топ т

$$\hat{F} = \{f_1, f_2, ... f_m\}$$

- выбрать по порогу: f_i : $I(f_i) \geq threshold$
- выбрать лучший набор из:

$$S = \{\{f_1\}, \{f_1, f_2\}, ...\{f_1, f_2, ...f_D\}\}$$

$$\hat{F} = \arg\max_{F \in S} J(F)$$

- Комментарии:
 - легко реализовать, вычислительно простые методы
 - будет включено много слабо релевантных зависимых признаков

Внешние оценки значимости признаков

- 1 Расчет важности признаков
 - Внешние оценки значимости признаков
 - Оценки значимости признаков по модели

Корреляция

• Регрессия или бинарная классификация:

$$I(f) = \frac{\sum_{i} (f_{i} - \bar{f})(y_{i} - \bar{y})}{\left[\sum_{i} (f_{i} - \bar{f})^{2} \sum_{i} (y_{i} - \bar{y})^{2}\right]^{1/2}} = \frac{a}{b}$$

• Многоклассовая классификация:

$$I(f) = \frac{1}{C} \sum_{c=1}^{C} \frac{a_c}{b_c} \quad I(f) = \frac{\frac{1}{C} \sum_{c=1}^{C} a_c}{\frac{1}{C} \sum_{c=1}^{C} b_c} \quad I(f) = \max_{c} \left\{ \frac{a_c}{b_c} \right\}$$

- Корреляция:
 - легко вычисляется
 - выделяет только линейную зависимость

Корреляция выделяет только линейную зависимость

• Корреляция выделяет только линейную зависимость.

- Рассмотрим любую случайную величину X с симметричной (четной) плотностью распределения.
 - тогда $\mathbb{E} X = 0$, $\mathbb{E} X^3 = 0$
 - X и $Z=X^2$ зависимы, но $\operatorname{corr}(X,Z)=0$

Выделение монотонных зависимостей

- Рассмотрим $X = (X_1, X_2, ... X_N), Y = (Y_1, Y_2, ... Y_N).$
- ullet Применим ранговое кодирование: $X o R(X), \ Y o R(Y)$

IQ, X_i	Hours of TV per week, $Y_i ullet$	$\operatorname{rank} x_i \bullet$	rank $y_i ullet$
86	2	1	1
97	20	2	6
99	28	3	8
100	27	4	7
101	50	5	10
103	29	6	9
106	7	7	3
110	17	8	5
112	6	9	2
113	12	10	4

Ранговая корреляция Спирмена

• Ранговая корреляция Спирмена:

$$\operatorname{corr}_{Spearman}(X,Y) = \operatorname{corr}(R(X),R(Y))$$

- Рассмотрим $X = [0, 0.01, 0.02, ...1], Z = X^{\alpha}$.
- Существует монотонная зависимость между X и Z, но корреляция \downarrow при $\alpha \uparrow$:

• При этом

$$corr_{Spearman}(X, Y) = corr([1, 2, ...], [1, 2, ...]) = 1$$

Ранговая корреляция Кендалла

- Ранговая корреляция Кендалла:
 - согласующиеся пары (concordant pairs) $C = \{[(X_i, Y_i), (X_j, Y_j)] : (X_j X_i) (Y_j Y_i) > 0\}$
 - несогласующиеся пары (discordant pairs) $D = \{[(X_i, Y_i), (X_j, Y_j)] : (X_j X_i) (Y_j Y_i) < 0\}$

$$corr_{Kendall}(X, Y) = \frac{|C| - |D|}{\binom{N}{2}}$$

- Вместо самой корреляции можно судить о значимости признака по p(corr(X,Y)=0).
 - это уровень значимости теста с H_0 : corr(X,Y)=0

Определения

• Энтропия случайной величины Y:

$$H(Y) := -\sum_{y} p(y) \ln p(y)$$

• Условная энтропия Y при условии сл. вел. X:

$$H(Y|X) := -\sum_{x} p(x) \sum_{y} p(y|x) \ln p(y|x)$$

- Расстояние Кульбака-Лейблера между распределениями:
 - дискретные исходы, P(x), Q(x) вероятности исхода x:

$$KL(P||Q) := \sum_{x} P(x) \ln \frac{P(x)}{Q(x)}$$

• непрерывные исходы, p(x), q(x) - плотности вероятности:

$$KL(p||q) = \int p(x) \ln \frac{p(x)}{q(x)} dx$$

Взаимная информация

Взаимная информация измеряет насколько много общей информации между сл. вел. X и Y:

$$MI(X,Y) := \sum_{x,y} p(x,y) \ln \left[\frac{p(x,y)}{p(x)p(y)} \right] = KL(p(x,y)||p(x)p(y))$$

Свойства:

- MI(X,Y) = MI(Y,X)
- $MI(X, Y) = KL(p(x, y)||p(x)p(y)) \ge 0$
- X, Y- независимы <=> MI(X, Y) = 0
- MI(X, Y) = H(Y) H(Y|X)
- $MI(X, Y) \leq \min \{H(X), H(Y)\}$
- X однозначно определяет Y = > MI(X, Y) = H(Y) < H(X)

Нормированная взаимная информация

• Нормированная взаимная информация

$$NMI(X,Y) = \frac{MI(X,Y)}{H(Y)} \in [0,1]$$

- NMI(X, Y) = 0 при независимости X и Y.
- NMI(X,Y)=1, когда X однозначно определяет Y.
- Свойства МІ и NMI:
 - выделяют зависимости любого вида
 - требуют оценки p(X), p(Y) и p(X, Y).

Важность в задаче классификации

О взаимосвязи признака f и y можно судить по

$$ho\left(p(f|y=i),p(f|y=j)
ight)$$
пример: $\int |p(x|y=1)-p(x|y=0)|\ dx$

Метрическая оценка I(f): relief критерий для 1-NN

ВХОЛ:

Обучающая выборка $(x_1, y_1), (x_2, y_2), ...(x_N, y_N)$ Функция расстояния $\rho(x, x')$ # обычно Евклидова

для каждого объекта x_n, y_n :

найти ближайшего соседа $x_{s(n)}$ своего класса y_n найти ближайшего соседа $x_{d(n)}$ чужого класса $\neq y_n$

для каждого признака $f_i \in \{f_1, f_2, ... f_D\}$:

рассчитать значимость
$$I(f_i) = \frac{1}{N} \sum_{n=1}^{N} \frac{|x_n^i - x_{d(n)}^i|}{|x_n^i - x_{s(n)}^i|}$$

выхол:

значимости признаков $I(f_1),...I(f_D)$

Метрическая оценка I(f): relief критерий для K-NN

ВХОД:

Обучающая выборка $(x_1,y_1),(x_2,y_2),...(x_N,y_N)$ Функция расстояния $\rho(x,x')$ # обычно Евклидова Число соседей K

для каждого объекта x_n, y_n :

найти K ближайших соседей своего класса y_n :

$$X_{s(n,1)}, X_{s(n,2)}, ... X_{s(n,K)}$$

найти K ближайших соседей чужого класса $\neq y_n$:

$$X_{d(n,1)}, X_{d(n,2)}, ... X_{d(n,K)}$$

для каждого признака $f_i \in \{f_1, f_2, ... f_D\}$:

рассчитать значимость
$$I(f_i) = \frac{1}{N} \sum_{n=1}^{N} \sum_{k=1}^{K} \frac{|x_n' - x_{d(n,k)}'|}{|x_n' - x_{s(n,k)}'|}$$

выход:

значимости признаков $I(f_1),...I(f_D)$

- 1 Расчет важности признаков
 - Внешние оценки значимости признаков
 - Оценки значимости признаков по модели

Важность признаков по линейной модели

- В линейных моделях важность x^i можно считать по $|w_i|$.
 - при условии, что признаки приведены к единой шкале
 - clf.coef в scikit-learn
- Учитывает линейную зависимость, как корреляция.

Важность признаков: mean decrease in impurity

- Важность признаков по изменению критерия информативности (mean decrease in impurity, MDI).
 - рассмотрим признак f
 - пусть T(f)-множество всех вершин, использующих f в функции ветвления
 - эффективность разбиения в t:

$$\Delta \phi(t) = \phi(t) - \sum_{c \in childen(t)} \frac{N(c)}{N(t)} \phi(c)$$

 \bullet значимость f:

$$\sum_{t \in T(f)} N(t) \Delta \phi(t)$$

 Поощряет признаки с большим количеством уникальных значений.

Важность признаков: mean decrease in impurity

B sklearn:

- важность рассчитывается метом clf.feature_importances_
 - доступен для композиций деревьев: RF, ERT, boosting.
- недостатки:
 - вычисляется на обучающей выборке
 - если модель переобучается на признаке, важность высока, но вклад в точность прогнозов мал.

Оценки значимости признаков по модели

Важность признаков: permutation feature importance

- Важность признаков по изменению критерия качества (permutation feature importance)
- Важность признака=разнице качества прогнозов на:
 - \rm исходной выборке
 - 🛾 исходной выборке, где значения j-го признака перемешаны

Важность признаков: permutation feature importance

- Важность признаков по изменению критерия качества (permutation feature importance)
- Важность признака=разнице качества прогнозов на:
 - \rm исходной выборке
 - ② исходной выборке, где значения *j*-го признака перемешаны
- Значение рандомизированное, поэтому важно пересчитать несколько раз и усреднить.
- Показывает важность признака в разрезе
 - заданного критерия качества
 - заданной модели (не обязательно решающего дерева)
 - для плохой модели важный признак может оказаться неважным
 - поэтому нужно предварительно выбрать хорошую модель.

Важность признаков: permutation feature importance

- Можно считать по обучающей и валидационной выборке.
- Высокая важность на валидации=>признак усиливает обобщающую способность модели
- Высокая важность на обучении, но низкая на валидации=>на заданном признаке модель переобучается
- Если два признака скоррелированы, то при перемешивании одного признака модель имеет доступ к информации через другой
 - поэтому важность скоррелированных признаков занижена
 - важно исключать скоррелированные признаки.

Содержание

- Расчет важности признаков
- 2 Методы поиска набора признаков
 - Метод последовательной модификации набора признаков
 - Лучевой поиск (beam search)
 - Генетические алгоритмы

Поиск набора признаков

- Рассмотрим субоптимальные методы поиска подмножества признаков
 - вместо полного перебора со сложностью $O(2^D)$
- Пусть J(S) -критерий качества набора признаков S.
 - \bullet например, точность модели на S
 - либо взвешенное сумма качества работы модели на S и штрафа за сложность |S|.

Метод последовательной модификации набора признаков

- 2 Методы поиска набора признаков
 - Метод последовательной модификации набора признаков
 - Лучевой поиск (beam search)
 - Генетические алгоритмы

Метод последовательного включения признаков

- Метод последовательного включения признаков (sequential forward selection) реализует последовательное жадное добавление признаков один за другим, максимально увеличивающие J(S).
- BXOД:
 - максимальное #признаков К
 - ullet критерий качества J(S) для наборов признаков S
- ВЫХОД:
 - ullet локально оптимальный набор S, $|S| \leq K$.

Метод последовательного включения признаков

Алгоритм жадного добавления признаков:

- инициализируем: $S = \{\}$
- пока $|S| \le K 1$:
 - $f^* = \arg \max_{f \in F \setminus S} J(S \cup \{f\})$
 - ullet если $J(S \cup \{f^*\}) < J(S)$: выход
 - $S = S \cup \{f^*\}$
- вернуть S

Сложность O(D|S|) без учета сложности расчета J(S).

Модификации алгоритма

Модификации алгоритма:

- последовательное исключение признаков (sequential backward selection)4
- ullet последовательное включение лучшей группы из < pпризнаков
- ullet последовательное исключение худшей группы из < pпризнаков
- композиция подходов добавления/удаления:
 - на каждом шаге пробовать удалить или добавить, что лучше (аналог GD)
 - на каждом шаге добавить, потом циклически удалять, пока приводит к $\uparrow J(S)$

⁴Что вычислительно эффективнее? Последовательное включения или исключения, если только 50% признаков релевантны?

- 2 Методы поиска набора признаков
 - Метод последовательной модификации набора признаков
 - Лучевой поиск (beam search)
 - Генетические алгоритмы

Лучевой поиск

- Лучевой поиск (beam search): при последовательном добавлении будем сохранять не один, а *K* лучших вариантов.
 - реализует жадный поиск в ширину (breadth first)
- Аналогично возможны обобщения последовательного исключения.

Принцип неоконченных решений Габора

Принимая решение, следует оставлять свободу выбора последующих решений.

Комментарии

- Оптимизация: перебирать только признаки с максимальной информативностью.
- Для реализации нужна очередь с приоритетом (priority queue) с методами
 - push(elements, scores): загрузить варианты с их оценками качества
 - getKbest(K): выгрузить K лучших вариантов
- Сложность и полнота перебора:
 - Предположим, коэффициент ветвления B постоянный, а древо поиска сбалансированное глубины D.
 - Тогда сложность поиска O(KBD).
 - При достаточно большом K ($K \ge B^{D-1}$) превращается в полный перебор.

- Метод последовательной модификации набора признаков
- Лучевой поиск (beam search)
- Генетические алгоритмы

Генетические алгоритмы

- Каждый набор признаков $G = \{f_{i(1)}, f_{i(2)}, ... f_{i(K)}\}$ кодируется бинарным вектором $b = [b_1, b_2, ... b_D]$, где $b_i = \mathbb{I}[f_i \in G]$
- Жадное добавление/исключение работает быстро, но как аналог GD сходится к локальному оптимуму.
- Полный перебор сложность $O(2^D)$.
 - Как увеличить широту перебора, не скатываясь к полному перебору?

Генетические алгоритмы

- Каждый набор признаков $G = \{f_{i(1)}, f_{i(2)}, ... f_{i(K)}\}$ кодируется бинарным вектором $b = [b_1, b_2, ... b_D]$, где $b_i = \mathbb{I}[f_i \in G]$
- Жадное добавление/исключение работает быстро, но как аналог GD сходится к локальному оптимуму.
- Полный перебор сложность $O(2^D)$.
 - Как увеличить широту перебора, не скатываясь к полному перебору?

Гипотеза составного решения (building block hypothesis)

Хорошее решение состоит из комбинации других хороших решений.

• Генетические алгоритмы осуществляют поиск, комбинируя хорошие решения.

Операции скрещивания и мутации

Parent Strings		Offspring
10110010 1 001	Point Mutation	→ 10110010 0 001
101100101001	Single Point Crossover	1011111100101 000000101001
101100101001	Two Point Crossover	<pre>101011101001 000100100101</pre>
101100101001 000011100101	Uniform Crossover	<pre>100111100001 001000101101</pre>

Операции скрещивания и мутации⁵

- $mutation(b^1)=b$, where $b_i=egin{cases} b_i^1 & ext{c вероятностью } 1-lpha \\ \neg b_i^1 & ext{c вероятностью } lpha \end{cases}$ для некоторого lpha>0.
- ullet $crossover(b^1,b^2)=b$, где $b_i=egin{cases} b_i^1 & ext{с вероятностью} rac{1}{2} \ b_i^2 & ext{иначе} \end{cases}$
 - другие виды скрещивания: композиция с одним (single point) и двумя (2-point) разрывами.
- Биологическая аналогия: модификации генетических цепочек.

⁵Какая модификация этих операций приведет к аналогу градиентного подъема?

Генетический алгоритм

ВХОД:

размер популяции B и расширенной популяции B' параметры мутации и скрещивания макс. число итераций T, мин. изменение качества ΔJ

АЛГОРИТМ:

сгенерировать B наборов признаков $S_1,S_2,...S_B$ случайно. инициализировать t=0 , $P^0=\{S_1,S_2,...S_B\}$, $J^0=\max_{S\in P^0}J(S)$

пока
$$t <= T$$
 и $J^t - J^{t-1} > \Delta J$: $t = t+1$

мутировать и скрещивать наборы из P^{t-1} :

$$S'_1, S'_2, ... S'_{B'} = \text{modify}(P^{t-1}|\theta)$$

упорядочить наборы по убыванию качества:

$$J(S_{i(1)}^{\prime t}) \ge J(S_{i(2)}^{\prime t}) \ge ...J(S_{i(B')}^{\prime t})$$

загрузить в следующую популяцию B лучших наборов: $P^t = \{S'_{i(1)}, S'_{i(2)}, ... S'_{i(B)}\}$

$$J^t = (S_{i(1)}, S_{i(2)}, \dots S_{i(B)})$$
 оценить качество по лучшему набору $J^t = \max_{S \in P^t} J(S)$

ВЫХОД: лучший набор признаков $S = \operatorname{arg\ max}_{S \in P^t} J(S)$

Улучшения генетического алгоритма

- **Ускорение**: генерировать вначале и мутацией f с $p \propto I(f)$.
- Удлинить процесс оптимизации:
 - прерывать процесс только если нет улучшения несколько итераций подряд.
 - при стагнации увеличить вероятность мутации
- Бережнее модифицировать хорошие наборы и признаки:
 - ullet дополнять P^t лучшими наборами из P^{t-1} .
 - \downarrow вероятность мутации для хороших признаков (часто встречающиеся в наборах P^{t-1}).
 - \uparrow вероятность мутации для плохих признаков (редко встречающиеся в наборах P^{t-1}).
- Увеличить широту поиска:
 - скрещивание между > 2 наборами
 - вести несколько популяций из разных начальных условий, скрещивание лучших представителей между популяциями.

Важность признаков в контексте

Признаки могут влиять на y не по отдельности, а совместно:

$$p(y|x^1) = p(y), \quad p(y|x^2) = p(y)$$

$$p(y|x^1, x^2) \neq p(y)$$

Определение признаков, влияющих в контексте

Какие из методов могут определять признаки, влияющие в контексте?

- \circ corr (x^1, y) , corr (x^1, y)
- **2** $MI(x^1, y), MI(x^1, y)$
- **3** $MI([x^1, x^2], y)$
- критерий relief
- последовательное включение одного признака
- последовательное исключение одного признака
- важности признаков по дереву (дерево с ранней остановской)
- важности признаков по дереву (дерево с обрезкой [prunning])

Заключение

- Отбор признаков позволяет быстрее настраивать модели.
 - модели точнее, если много шумовых признаков
- Предпочтение методам со встроенным отбором признаков.
- Методы отбора признаков, упорядоченные по сложности:
 - отбирать признаки по значимости
 - последовательное включение/исключение 1 признака
 - последовательное включение/исключение группы признаков
 - лучевой поиск с поддержкой К лучших групп признаков
 - генетический алгоритм генерации наборов
 - полный перебор
- Последовательное включение/исключение, лучевой поиск, генетический алгоритм применимы и для др. задач дискретной оптимизации (например подброр архитектуры нейросети).