Monte Carlo Methods Overview

- Learning from sample experience (simulation or sample models) requiring no prior knowledge of the environment's dynamics (as required for DP), yet can still attain optimal behaviour
- Based on averaging sample returns so only for episodic tasks (and not online step-by-step)
- Based on general policy iteration (GPI) to learn value functions from sample returns

Monte Carlo Prediction

- Prediction = learning state-value function $v_{\pi}(s)$ (expected return starting from state) for a given policy
- Estimate by averaging the returns observed after visits to that state: first visit and every-visit
- Converges as number of visits tends to infinity
- Estimates for each state are independent (do not bootstrap)
- Computational expense of estimating the value of a single state is independent of the number of states

Backup diagram →

First-visit MC prediction, for estimating $V \approx v_{\pi}$

Input: a policy π to be evaluated

Initialize:

 $V(s) \in \mathbb{R}$, arbitrarily, for all $s \in \mathbb{S}$ $Returns(s) \leftarrow$ an empty list, for all $s \in \mathbb{S}$

Loop forever (for each episode):

Generate an episode following π : $S_0, A_0, R_1, S_1, A_1, R_2, \ldots, S_{T-1}, A_{T-1}, R_T$

 $G \leftarrow 0$

Loop for each step of episode, $t = T - 1, T - 2, \dots, 0$:

 $G \leftarrow \gamma G + R_{t+1}$

Unless S_t appears in $S_0, S_1, \ldots, S_{t-1}$:

Append G to $Returns(S_t)$

 $V(S_t) \leftarrow \text{average}(Returns(S_t))$

Monte Carlo Estimation of Action Values

- Estimate action values $q_{\pi}(s,a)$: the expected return when starting in state s, taking action a, and thereafter following policy π .
- Exploring starts: to ensure convergence all state-action pairs must be evaluated so specifying that every pair has a nonzero probability of being selected as the start (works for simulation, not real experience)
- Not applicable for learning directly from interaction so must consider only policies that are stochastic with a nonzero probability of selecting all actions in each state

Monte Carlo Control

- GPI: value function is repeatedly altered to more closely approximate the value function for the current policy, and the policy is repeatedly improved with respect to the current value function
- Policy iteration: alternate between evaluation and improvement (acting greedy) on an episode-by-episode basis.
- First visit: averages the returns following the first time in each episode that the state was visited and the action was selected.

Monte Carlo ES (Exploring Starts), for estimating $\pi \approx \pi_*$

 $\pi(S_t) \leftarrow \operatorname{argmax}_a Q(S_t, a)$

```
Initialize:
     \pi(s) \in \mathcal{A}(s) (arbitrarily), for all s \in \mathcal{S}
     Q(s,a) \in \mathbb{R} (arbitrarily), for all s \in \mathcal{S}, a \in \mathcal{A}(s)
     Returns(s, a) \leftarrow \text{empty list, for all } s \in \mathcal{S}, \ a \in \mathcal{A}(s)
Loop forever (for each episode):
     Choose S_0 \in \mathcal{S}, A_0 \in \mathcal{A}(S_0) randomly such that all pairs have probability > 0
     Generate an episode from S_0, A_0, following \pi: S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T
     G \leftarrow 0
     Loop for each step of episode, t = T-1, T-2, \ldots, 0:
          G \leftarrow \gamma G + R_{t+1}
          Unless the pair S_t, A_t appears in S_0, A_0, S_1, A_1, ..., S_{t-1}, A_{t-1}:
                Append G to Returns(S_t, A_t)
               Q(S_t, A_t) \leftarrow \text{average}(Returns(S_t, A_t))
```

Blackjack example - Monte Carlo ES

 The dealer follows a fixed strategy without choice: he sticks on any sum of 17 or greater, and hits otherwise.

Monte Carlo Control without Exploring Starts

- Soft policy: $\pi(a|s) > 0$ for all states and action but gradually shifted closer to a deterministic optimal policy
 - ε -greedy
- Policy improvement is guaranteed with convergence to the optimal policy among ε -soft policies (near-optimal policy)

On-policy first-visit MC control (for ε -soft policies), estimates $\pi \approx \pi_*$

Algorithm parameter: small $\varepsilon > 0$ Initialize: $\pi \leftarrow$ an arbitrary ε -soft policy $Q(s, a) \in \mathbb{R}$ (arbitrarily), for all $s \in \mathcal{S}$, $a \in \mathcal{A}(s)$ $Returns(s, a) \leftarrow \text{empty list, for all } s \in \mathcal{S}, \ a \in \mathcal{A}(s)$ Repeat forever (for each episode): Generate an episode following π : $S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$ $G \leftarrow 0$ Loop for each step of episode, $t = T-1, T-2, \ldots, 0$: $G \leftarrow \gamma G + R_{t+1}$ Unless the pair S_t , A_t appears in S_0 , A_0 , S_1 , A_1 , ..., S_{t-1} , A_{t-1} : Append G to $Returns(S_t, A_t)$ $Q(S_t, A_t) \leftarrow \text{average}(Returns(S_t, A_t))$ $A^* \leftarrow \operatorname{arg\,max}_a Q(S_t, a)$ (with ties broken arbitrarily) For all $a \in \mathcal{A}(S_t)$: $\pi(a|S_t) \leftarrow \begin{cases} 1 - \varepsilon + \varepsilon/|\mathcal{A}(S_t)| & \text{if } a = A^* \\ \varepsilon/|\mathcal{A}(S_t)| & \text{if } a \neq A^* \end{cases}$

Off-policy Prediction via Importance Sampling

- Off-policy: learn the value function of a target policy π from data generated from a behaviour policy b.
- Often greater variance and are slower to converge but allow learning from alternative data sources (e.g. human experts)
- Coverage: $\pi(a|s) > 0$ implies b(a|s) > 0
 - b has nonzero probability of selecting all actions that might be selected by π
- Importance sampling ratio ρ to weight returns relative to probability of trajectories occurring under the target and behaviour policies

$$\rho_{t:T-1} = \prod_{k=t}^{T-1} \frac{\pi(A_k|S_k)}{b(A_k|S_k)}.$$

Off-policy Prediction via Importance Sampling

- $\mathbb{E}[\rho_{t:T-1}G_t \mid S_t = s] = v_{\pi}(s).$ Expected returns
 - Ordinary important sampling
 - Average of weighted returns
 - Unbounded variance

$$V(s) \doteq \frac{\sum_{t \in \mathfrak{T}(s)} \rho_{t:T(t)-1} G_t}{|\mathfrak{T}(s)|}.$$

- Weighted importance sample
 - Weighted average
 - Bias but lower variance so preferred

$$V(s) \doteq \frac{\sum_{t \in \mathfrak{I}(s)} \rho_{t:T(t)-1} G_t}{\sum_{t \in \mathfrak{I}(s)} \rho_{t:T(t)-1}},$$

Incremental implementation of weighted importance sampling

Weighted average of the returns update rule:

$$V_{n+1} \doteq V_n + \frac{W_n}{C_n} \left[G_n - V_n \right], \qquad n \ge 1,$$

where $C_{n+1} \doteq C_n + W_{n+1}$,

Off-policy MC prediction (policy evaluation) for estimating $Q \approx q_{\pi}$

```
Input: an arbitrary target policy \pi
Initialize, for all s \in \mathcal{S}, a \in \mathcal{A}(s):
     Q(s,a) \in \mathbb{R} (arbitrarily)
     C(s,a) \leftarrow 0
Loop forever (for each episode):
     b \leftarrow any policy with coverage of \pi
     Generate an episode following b: S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T
     G \leftarrow 0
     W \leftarrow 1
     Loop for each step of episode, t = T-1, T-2, \ldots, 0, while W \neq 0:
          G \leftarrow \gamma G + R_{t+1}
          C(S_t, A_t) \leftarrow C(S_t, A_t) + W
          Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{W}{C(S_t, A_t)} [G - Q(S_t, A_t)]
          W \leftarrow W \frac{\pi(A_t|S_t)}{h(A_t|S_t)}
```

Off-policy Monte Carlo Control

- Target policy may be deterministic (e.g. greedy), while the behaviour policy can continue to sample all possible actions (e.g. ε -soft).
- Only learns from the tails of episodes when all of the remaining actions in the episode are greedy.
- Slow learning which is addressed by temporal difference (TD) learning

Target / Exact Values

Updates using TD Learning

Updates using Monte Carlo

Off-policy MC control, for estimating $\pi \approx \pi_*$

```
Initialize, for all s \in \mathcal{S}, a \in \mathcal{A}(s):
     Q(s, a) \in \mathbb{R} (arbitrarily)
     C(s,a) \leftarrow 0
     \pi(s) \leftarrow \operatorname{argmax}_a Q(s, a) (with ties broken consistently)
Loop forever (for each episode):
     b \leftarrow \text{any soft policy}
     Generate an episode using b: S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T
     G \leftarrow 0
     W \leftarrow 1
     Loop for each step of episode, t = T-1, T-2, \ldots, 0:
          G \leftarrow \gamma G + R_{t+1}
          C(S_t, A_t) \leftarrow C(S_t, A_t) + W
          Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{W}{C(S_t, A_t)} [G - Q(S_t, A_t)]
          \pi(S_t) \leftarrow \operatorname{arg\,max}_a Q(S_t, a) (with ties broken consistently)
          If A_t \neq \pi(S_t) then exit inner Loop (proceed to next episode)
          W \leftarrow W \frac{1}{b(A_t|S_t)}
```

Importance sampling extensions

- Discounting-aware Importance Sampling
- Per-decision Importance Sampling