Problem Set 10

8 November 2022

Peter Cullen Burbery

Exercise 4

Let Λ be a nonempty indexing set, let $\mathcal{A} = \{A_{\alpha} \mid \alpha \in \Lambda\}$ be an indexed family of sets, and let B be a set. Use the results of Theorem 5.30 and Theorem 5.31 to prove each of the following:

$$(\bigcap_{\alpha \in \Lambda} A_{\alpha}) - B = \bigcap_{\alpha \in \Lambda} (A_{\alpha} - B)$$

Proof

We will prove the equality by proving $(\bigcap_{\alpha \in \Lambda} A_{\alpha}) - B \subseteq \bigcap_{\alpha \in \Lambda} (A_{\alpha} - B)$ and $(\bigcap_{\alpha \in \Lambda} A_{\alpha}) - B \supseteq \bigcap_{\alpha \in \Lambda} (A_{\alpha} - B)$.

Let $b \in (\bigcap_{\alpha \in \Lambda} A_{\alpha}) - B$. Then $b \in (\bigcap_{\alpha \in \Lambda} A_{\alpha})$. Then by the definition of the intersection over an indexed family of sets, $\forall_{\alpha,\alpha \in \Lambda} b \in A_{\alpha}$. We also know $b \notin B$. Then $b \in A_{\alpha} - B \forall_{\alpha,\alpha \in \Lambda}$. Then since $b \in A_{\alpha} - B \forall_{\alpha,\alpha \in \Lambda}$, $b \in \bigcap_{\alpha \in \Lambda} (A_{\alpha} - B)$. This proves $(\bigcap_{\alpha \in \Lambda} A_{\alpha}) - B \subseteq \bigcap_{\alpha \in \Lambda} (A_{\alpha} - B)$.

We will prove $(\bigcap_{\alpha \in \Lambda} A_{\alpha}) - B \supseteq \bigcap_{\alpha \in \Lambda} (A_{\alpha} - B)$. Let $b \in \bigcap_{\alpha \in \Lambda} (A_{\alpha} - B)$. Then $b \in A_{\alpha}$ and $b \notin B \ \forall_{\alpha,\alpha \in \Lambda}$. Then $b \in (\bigcap_{\alpha \in \Lambda} A_{\alpha})$ and $b \notin B$. Then $b \in (\bigcap_{\alpha \in \Lambda} A_{\alpha}) - B$. This proves $(\bigcap_{\alpha \in \Lambda} A_{\alpha}) - B \supseteq \bigcap_{\alpha \in \Lambda} (A_{\alpha} - B)$.

Since $(\bigcap_{\alpha \in \Lambda} A_{\alpha}) - B \subseteq \bigcap_{\alpha \in \Lambda} (A_{\alpha} - B)$ and $(\bigcap_{\alpha \in \Lambda} A_{\alpha}) - B \supseteq \bigcap_{\alpha \in \Lambda} (A_{\alpha} - B)$, $(\bigcap_{\alpha \in \Lambda} A_{\alpha}) - B = \bigcap_{\alpha \in \Lambda} (A_{\alpha} - B)$.

Exercise 5

Statement

Prove Theorem 5.31. Let Λ be a nonempty indexing set, let $\mathcal{A} = \{A_{\alpha} \mid \alpha \in \Lambda\}$ be an indexed family of sets, and let B be a set. Then

$$B \cup \left(\bigcap_{\alpha \in \Lambda} A_{\alpha}\right) = \bigcap_{\alpha \in \Lambda} (B \cup A_{\alpha})$$

Proof

Let $b \in B \cup (\bigcap_{\alpha \in \Lambda} A_{\alpha})$.

Then beB or be $(\cap_{\alpha \in \Lambda} A_{\alpha})$. Then beB or for all α that are elements of Λ , $b \in A_{\alpha}(\nabla_{\alpha,\alpha \in \Lambda} b \in A_{\alpha})$.

We assumed that $b \in B$ or $\forall_{\alpha,\alpha \in \Lambda} b \in A_{\alpha}$, so we can conclude that $\forall_{\alpha,\alpha \in \Lambda} b \in (B \cup A_{\alpha})$. Then $b \in \cap B \cup A_{\alpha}$. We have know proven that $B \cup (\bigcap_{\alpha \in \Lambda} A_{\alpha}) \subseteq \bigcap_{\alpha \in \Lambda} (B \cup A_{\alpha})$. We will now prove $B \cup (\bigcap_{\alpha \in \Lambda} A_{\alpha}) \supseteq \bigcap_{\alpha \in \Lambda} (B \cup A_{\alpha})$. Let $b \in \cap (B \cup A_{\alpha})$. Then $\forall_{\alpha,\alpha \in \Lambda} b \in (B \cup A_{\alpha})$. Then $\forall_{\alpha,\alpha \in \Lambda} b \in B \text{ or } b \in A_{\alpha}$. Then $b \in B \text{ or } b \in A_{\alpha}$. Then $b \in A_{\alpha}$. Then $b \in A_{\alpha}$.

 $b \in B \cup (\bigcap_{\alpha \in \Lambda} A_{\alpha})$. Therefore $B \cup (\bigcap_{\alpha \in \Lambda} A_{\alpha}) \supseteq \bigcap_{\alpha \in \Lambda} (B \cup A_{\alpha})$. We have proved that $B \cup (\bigcap_{\alpha \in \Lambda} A_{\alpha}) = \bigcap_{\alpha \in \Lambda} (B \cup A_{\alpha})$.