# PLSC 502 – Fall 2024 Estimation and Estimators

October 21, 2024

### Remember This?



## Random Variables, Take Two

For a random variable X:

$$X_i = \mu + u_i$$
 "systematic part" "stochastic part"

where  $\mu$  is the population mean (expected value) of X and  $Cov(\mu, u) = 0$ .

That implies that:

$$u_i = X_i - \mu$$
"error" "observed" "expected"

## Random Variables, Take Two

What's our expectation for u?

$$E(u) = E(X - \mu)$$

$$= E(X) - E(\mu)$$

$$= E(X) - \mu$$

$$= \mu - \mu$$

$$= 0$$

and so:

$$Var(X) = E[(X - \mu)^2]$$
$$= E(u^2)$$

and

$$Var(u) = E[(u - E(u))^2]$$
  
=  $E[(u - 0)^2]$   
=  $E(u^2)$ .

## Estimation Example: $\bar{X}$

Challenge: Estimate  $\mu = E(X)$  from a sample of N observations.

$$\bar{X} = \frac{1}{N} \sum_{i=1}^{N} X_{i}$$

$$= \frac{1}{N} \sum_{i=1}^{N} (\mu + u_{i})$$

$$= \frac{1}{N} \sum_{i=1}^{N} (\mu) + \frac{1}{N} \sum_{i=1}^{N} (u_{i})$$

$$= \frac{1}{N} (N\mu) + \frac{1}{N} \sum_{i=1}^{N} (u_{i})$$

$$= \mu + \bar{u}$$

The point:  $\bar{X}$  is a random variable.

## Properties of Estimators

### **Small-Sample Properties**

- Hold irrespective of N
- "Small sample estimators"

## Large-Sample (Asymptotic) Properties

- Hold as  $N \to \infty$
- "More is better"

### Unbiasedness

Start with a generic population parameter  $\theta$ , and an estimator of it  $\hat{\theta}$  based on a sample of N observations...

#### Unbiasedness means:

$$\mathsf{E}(\hat{\theta}) = \theta$$

"Bias" is:

$$B(\hat{\theta}) = \mathsf{E}(\hat{\theta}) - \theta$$

Example: For  $\bar{X}$ , we know that:

$$E(\bar{X}) = E(\mu + \bar{u})$$

$$= E(\mu) + E(\bar{u})$$

$$= \mu + 0$$

$$= \mu$$

and so:

$$B(\bar{X})=0.$$

## Multiple Unbiased Estimators

For N=2:

$$Z = \lambda_1 X_1 + \lambda_2 X_2.$$

note that

$$\begin{split} \mathsf{E}(Z) &=& \mathsf{E}(\lambda_1 X_1 + \lambda_2 X_2) \\ &=& \mathsf{E}(\lambda_1 X_1) + \mathsf{E}(\lambda_2 X_2) \\ &=& \lambda_1 \mathsf{E}(X_1) + \lambda_2 \mathsf{E}(X_2) \\ &=& \lambda_1 \mu + \lambda_2 \mu \\ &=& (\lambda_1 + \lambda_2) \mu \end{split}$$

Means

$$E(Z) = \mu \iff (\lambda_1 + \lambda_2) = 1.0$$

and in fact:

$$E(Z) = \mu \iff \sum_{i=1}^{N} \lambda_i = 1.0.$$

Q: Why do we use  $\lambda_i = \frac{1}{N} \ \forall i$ ?

## Efficiency

#### Efficiency:

- is relative variability how much difference we would expect in our  $\hat{\theta}$ s from one sample to the next...
- ...so a more efficient estimator has higher "reliability."
- ...is related to **information** (specifically, the *Fisher information* in the sample).

#### Note that:

- To be fully efficient<sup>1</sup>, an estimator <u>must</u> be unbiased.
   BUT...
- ...the least-variance estimator need not be an unbiased one.

<sup>&</sup>lt;sup>1</sup>That is, to achieve the *Cramer-Rao lower bound*, something we'll discuss in detail a bit later.

# Efficiency: Unbiased $\hat{\theta}$ s



## Efficiency (continued)

Note that for our example with N = 2, where  $Var(X) = \sigma^2$ :

$$Var(Z) = Var(\lambda_1 X_1 + \lambda_2 X_2)$$
$$= (\lambda_1^2 + \lambda_2^2)\sigma^2$$

and:

$$\begin{array}{rcl} \lambda_1^2 + \lambda_2^2 & = & \lambda_1^2 + (1 - \lambda_1)^2 \\ & = & \lambda_1^2 + (1 - 2\lambda_1 + \lambda_1^2) \\ & = & 2\lambda_1^2 - 2\lambda_1 + 1. \end{array}$$

Minimize!

$$\begin{array}{ccc} \frac{\partial 2\lambda_1^2-2\lambda_1+1}{\partial \lambda_1} & = & 4\lambda_1-2 \\ \\ 4\lambda_1-2 & = & 0 \\ \lambda_1 & = & 0.5 \end{array}$$

## Mean Squared Error

The "mean squared error" ("MSE") of an estimator  $\hat{\theta}$  is:

$$\begin{aligned} \mathsf{MSE}(\hat{\theta}) &= & \mathsf{E}[(\hat{\theta} - \theta)^2] \\ &= & \mathsf{E}[B(\hat{\theta})^2] \\ &= & \mathsf{Var}(\hat{\theta}) + [B(\hat{\theta})^2] \end{aligned}$$

#### Note that:

- The MSE of an unbiased estimator is equal to its variance [that is,  $MSE = Var(\hat{\theta})$ ].
- Among unbiased estimators, the efficient estimator will always have the smallest MSE [because  $B(\hat{\theta}) = [B(\hat{\theta})]^2 = 0$ ].

### MSE Illustrated



Parameter Estimate

## Comparing Estimators via MSE

As an estimator of  $\mu$ ,  $\bar{X}$  has:

- $\cdot B(\bar{X}) = 0$
- ·  $Var(\bar{X}) = \sigma^2/N$ , so
- ·  $MSE(\bar{X}) = \sigma^2/N + (0)^2 = \sigma^2/N$ .

My alternative: the "Six Estimator"!

$$\zeta = 6$$

(That's a "zeta." Gotta learn your Greek letters.)

## Comparing Estimators via MSE

Properties of  $\zeta$  (for  $\zeta = 6$ ):

$$B(\zeta) = E(\zeta - \mu)$$

$$= E(6) - E(\mu)$$

$$= 6 - \mu,$$

$$Var(\zeta) = Var(6)$$
$$= 0$$

and so:

$$\begin{aligned} \mathsf{MSE}(\zeta) &= \mathsf{Var}(\zeta) + [B(\zeta)]^2 \\ &= 0 + (6 - \mu)^2 \\ &= 36 - 12\mu + \mu^2 \end{aligned}$$



The black line is the MSE of  $\zeta$ , expressed as a function of the "true" population mean  $\mu$ . The other colored lines are the MSEs for  $\bar{X}$ , under the assumption that  $\sigma^2 = 10$  and  $N = \{20, 100, 1000\}$ , respectively.

## Large-Sample Properties: Consistency

An estimator  $\hat{\theta}$  is consistent if:

$$\lim_{N o \infty} \Pr[|\hat{\theta} - \theta| < \epsilon] = 1.0$$

for an arbitrarily small  $\epsilon > 0$ 

Equivalently:

$$\mathsf{E}(\hat{\theta}_{\mathsf{N}}) \to \theta \text{ as } \mathsf{N} \to \infty$$

Intuition: "Asymptotic unbiasedness"...

# A Consistent Estimator $\hat{\theta}$



## Estimation, Generally

### Among estimators:

- Unbiased > Consistent > Biased
- Fully Efficient > Asymptotically Efficient > Inefficient
- MSE is one way to trade off bias vs. efficiency

## Estimation Example: The Poisson

Recall the *Poisson* distribution:

$$f(x) \equiv \Pr(X = x) = \frac{\lambda^x \exp(-\lambda)}{x!}.$$

for  $x \in \{0, 1, 2, ...\}$ .

#### The Poisson:

- ...is a distribution for counts of independent events;
- ...is a one parameter distribution, where
- ...the parameter λ is both the mean and the variance of X.

### Poisson Densities



### Poisson Estimation

#### What is a "good" estimator for $\lambda$ ?

For a series of N i.i.d. values  $\{X_1, X_2, ... X_N\}$  drawn from a Poisson distribution, their *joint* probability is:

$$f(X_1, X_2, ... X_N | \lambda) \equiv f(\mathbf{X}) = \prod_{i=1}^N \frac{\lambda^{X_i} \exp(-\lambda)}{X_i!}.$$
 (1)

This is sometimes known as the *likelihood* (more on that later...), and it relies on the fact that the joint probability of two independent random variables equals the product of the two marginal probabilities:

$$Pr(A, B \mid A \perp B) = Pr(A) \times Pr(B)$$

## Poisson Estimation

We can simplify (1) by taking its log:

$$\ln[f(\mathbf{X})] = \ln\left[\prod_{i=1}^{N} \frac{\lambda^{X_i} \exp(-\lambda)}{X_i!}\right] \\
= \sum_{i=1}^{N} \ln\left[\frac{\lambda^{X_i} \exp(-\lambda)}{X_i!}\right] \\
= \sum_{i=1}^{N} \left[X_i \ln(\lambda) - \lambda - \ln(X_i!)\right] \\
= -N\lambda + \ln(\lambda) \sum_{i=1}^{N} X_i - \sum_{i=1}^{N} \ln(X_i!)$$

(This is the *log-likelihood*...)

### Poisson Estimation

If we want to know the value of  $\lambda$  that maximizes this joint (log-)probability, we can figure that out too:

$$\frac{\partial \ln f(\mathbf{X})}{\partial \lambda} = -N + \frac{1}{\lambda} \sum_{i=1}^{N} X_{i}$$

and then:

$$-N+\frac{1}{\lambda}\sum_{i=1}^{N}X_{i}=0$$

and so:

$$\hat{\lambda} = \frac{1}{N} \sum_{i=1}^{N} X_i$$

IOW, one version of a "good" estimator for  $\lambda$  (the "maximum likelihood estimator") is the empirical mean  $\bar{X}$ ...

### Poisson Mean Characteristics

What can we say about this  $\hat{\lambda}$ ?

$$E(\hat{\lambda}) = E\left[\frac{1}{N}\sum_{i=1}^{N}X_{i}\right]$$
$$= \frac{1}{N}\sum_{i=1}^{N}E(X_{i})$$
$$= \frac{1}{N}\sum_{i=1}^{N}\lambda$$
$$= \lambda$$

so:

$$B(\hat{\lambda}) = 0$$
 (unbiasedness)

Also: Because  ${\sf Var}(X)=\lambda,$  this also means that  $\hat{\lambda}$  is also an unbiased estimate of the variance.

### More Poisson Mean Characteristics

Variance / efficiency?

Because  $\hat{\lambda}$  is unbiased, we know that:

$$\mathsf{MSE}(\hat{\lambda}) = \mathsf{Var}(\hat{\lambda}).$$

Central limit theorem means that:

$$\hat{\lambda} \sim N\left(\lambda, \frac{\lambda}{N}\right)$$

so:

$$MSE(\hat{\lambda}) = \frac{\lambda}{N}$$
.

## Example One: Simulation

#### The Plan:

- 1. Draw N values of X from a Poisson distribution with a known value of  $\lambda$ ;
- 2. Calculate  $\hat{\lambda} = \bar{X}$ ;
- 3. Repeat steps (1) (2) many times;
- 4. Examine the distribution of the  $\hat{\lambda}$ s

#### **Details**

- Vary  $\lambda \in \{0.2, 1.0, 8.0\}$
- Vary  $N \in \{5, 50, 500\}$

#### A Little Code

```
> L<-c(0.2,1,8) # the lambdas:
> N<-c(5,50,500) # the Ns:
> sims<-4000
                # number of sims
> Out <-data.frame(matrix(nrow=sims,ncol=length(N)*length(L)))
>
> c <- 0
                             # column indicator for "Out"
> set.seed(7222009)
                             # Seed
> for(i in 1:length(N)) {
                          # Looping over sample sizes...
   for(j in 1:length(L)) { # Looping over lambdas
+
    c <- c+1
                             # increment column indicator
     for(k in 1:sims) {
                             # Looping over 4000 simulations each
        df<-rpois(N[i],L[j]) # Draw N values from Poisson(lambda)</pre>
        Out[k,c] <-mean(df) # Store the mean of the N draws
        rm(df)
```

### A Picture



## Example Two: "Real" Data

#### Back to the English Premier League!

> PL

|    | Rank | Team                    | GamesPlayed | Won | Drew | Lost | GoalsFor | GoalsAgainst | GoalDifference | Points |
|----|------|-------------------------|-------------|-----|------|------|----------|--------------|----------------|--------|
| 2  | 1    | Liverpool               | 7           | 6   | 0    | 1    | 13       | 3            | 10             | 18     |
| 3  | 2    | Manchester City         | 7           | 5   | 2    | 0    | 17       | 8            | 9              | 17     |
| 4  | 3    | Arsenal                 | 7           | 5   | 2    | 0    | 15       | 6            | 9              | 17     |
| 5  | 4    | Chelsea                 | 7           | 4   | 2    | 1    | 16       | 8            | 8              | 14     |
| 6  | 5    | Aston Villa             | 7           | 4   | 2    | 1    | 12       | 9            | 3              | 14     |
| 7  | 6    | Brighton & Hove Albion  | 7           | 3   | 3    | 1    | 13       | 10           | 3              | 12     |
| 8  | 7    | Newcastle United        | 7           | 3   | 3    | 1    | 8        | 7            | 1              | 12     |
| 9  | 8    | Fulham                  | 7           | 3   | 2    | 2    | 10       | 8            | 2              | 11     |
| 10 | 9    | Tottenham Hotspur       | 7           | 3   | 1    | 3    | 14       | 8            | 6              | 10     |
| 11 | 10   | Nottingham Forest       | 7           | 2   | 4    | 1    | 7        | 6            | 1              | 10     |
| 12 | 11   | Brentford               | 7           | 3   | 0    | 4    | 13       | 13           | 0              | 10     |
| 13 | 12   | West Ham United         | 7           | 2   | 2    | 3    | 10       | 11           | -3             | 8      |
| 14 | 13   | Bournemouth             | 7           | 2   | 2    | 3    | 8        | 10           | -2             | 8      |
| 15 | 14   | Manchester United       | 7           | 2   | 2    | 3    | 5        | 8            | -3             | 8      |
| 16 | 15   | Leicester City          | 7           | 1   | 3    | 3    | 9        | 12           | -3             | 6      |
| 17 | 16   | Everton                 | 7           | 1   | 2    | 4    | 7        | 15           | -8             | 5      |
| 18 | 17   | Ipswich Town            | 7           | 0   | 4    | 3    | 6        | 14           | -8             | 4      |
| 19 | 18   | Crystal Palace          | 7           | 0   | 3    | 4    | 5        | 10           | -5             | 3      |
| 20 | 19   | Southampton             | 7           | 0   | 1    | 6    | 4        | 15           | -11            | 1      |
| 21 | 20   | Wolverhampton Wanderers | 7           | 0   | 1    | 6    | 9        | 21           | -12            | 1      |

## Premier League: Summary

#### > psych::describe(PL)

|                | vars | n  | mean  | sd   | median | trimmed | mad  | min | max | range | skew  | kurtosis | se   |
|----------------|------|----|-------|------|--------|---------|------|-----|-----|-------|-------|----------|------|
| Rank*          | 1    | 20 | 10.50 | 5.92 | 10.5   | 10.50   | 7.41 | 1   | 20  | 19    | 0.00  | -1.38    | 1.32 |
| Team*          | 2    | 20 | 10.50 | 5.92 | 10.5   | 10.50   | 7.41 | 1   | 20  | 19    | 0.00  | -1.38    | 1.32 |
| GamesPlayed    | 3    | 20 | 7.00  | 0.00 | 7.0    | 7.00    | 0.00 | 7   | 7   | 0     | NaN   | NaN      | 0.00 |
| Won            | 4    | 20 | 2.45  | 1.79 | 2.5    | 2.38    | 2.22 | 0   | 6   | 6     | 0.18  | -1.02    | 0.40 |
| Drew           | 5    | 20 | 2.05  | 1.10 | 2.0    | 2.06    | 1.48 | 0   | 4   | 4     | -0.09 | -0.56    | 0.25 |
| Lost           | 6    | 20 | 2.50  | 1.76 | 3.0    | 2.38    | 2.22 | 0   | 6   | 6     | 0.41  | -0.80    | 0.39 |
| GoalsFor       | 7    | 20 | 10.05 | 3.89 | 9.5    | 9.94    | 5.19 | 4   | 17  | 13    | 0.16  | -1.29    | 0.87 |
| GoalsAgainst   | 8    | 20 | 10.10 | 4.05 | 9.5    | 9.81    | 2.97 | 3   | 21  | 18    | 0.79  | 0.51     | 0.91 |
| GoalDifference | 9    | 20 | -0.15 | 6.63 | 0.5    | 0.06    | 6.67 | -12 | 10  | 22    | -0.12 | -1.12    | 1.48 |
| Points         | 10   | 20 | 9.45  | 5.11 | 10.0   | 9.50    | 5.93 | 1   | 18  | 17    | -0.02 | -1.09    | 1.14 |

## Fitting Distributions To Data

#### Useful commands / packages:

- fitdistr (in MASS; fits beta, Cauchy, chi-squared, exponential, gamma, geometric, log-normal, logistic, negative binomial, normal, Poisson, t, and weibull)
- VGAM has a lot of functions for fitting (many dofferent) distributions as well
- The fitdistrplus package extends fitdistr in some useful ways, as does extraDistr
- Visualization via visualize, vistributions
- See in general the insanely comprehensive CRAN Task View for *Distributions*

## Fitting a Poisson Distribution

```
> library(MASS)
> PoisMean <- fitdistr(PL$Drew, "poisson")
> PoisMean
  lambda
  2.05
 (0.32)
> # Components:
> coef(PoisMean)
lambda
  2.05
> vcov(PoisMean)
       lambda
lambda 0.103
> # Note also:
> coef(PoisMean) / nrow(PL)
lambda
0.102
> # and:
> (PoisMean$sd)^2
lambda
0.103
```

## Actual vs. Theoretical Draws with $\lambda = 2.05$



## Fitting a Binomial Distribution

In this case, the better (read: more correct) distribution is the binomial with N = 7 (i.e., how many draws in seven matches):

```
> library(fitdistrplus)
> BinMean <- fitdist(PL$Drew,"binom",fix.arg=list(size=7))
> BinMean
Fitting of the distribution 'binom' by maximum likelihood
Parameters:
    estimate Std. Error
prob    0.293    0.0385
Fixed parameters:
    value
size    7
```

## Actual vs. Theoretical Draws with $\hat{\pi}=0.293$



### Which One Fits "Better"?

For two distributions, how can we know which one is a better "fit" to the data?

This is tricky, because we often don't know the true distribution of the data...

#### Consider:

- Some data on X, which...
- ...is drawn from a distribution f, and...
- ...two "candidate" distributions,  $g_1$  and  $g_2$ .

If we knew f, we could compare how different f wrong  $g_1$  is in characterizing f, compared to f.

Akaike (1974): Compare how different / wrong  $g_1$  is relative to  $g_2$ ...

For a given model / distribution g, the Akaike Information Criterion (AIC) is:

$$AIC = 2k - 2\ln(\widehat{L_g})$$

where k is the number of parameters estimated in the model and  $\widehat{L_g}$  is the estimated *likelihood* of the distribution / model g.

We'll talk more about likelihoods in the (near) future...

## AIC Explained

#### Key points:

- AIC is a measure of the <u>relative</u> information of the model vis-a-vis the data...
- ...specifically, the information loss due to the lack of model "fit" to the data.
- Because log-likelihoods are negative, AIC will (almost) always be positive
- Smaller values of AIC → better-fitting model / distribution
- More specifically, for two models / distributions g<sub>1</sub> and g<sub>2</sub>, the relative likelihood:

$$RL = \exp\left(\frac{AIC_{g_1} - AIC_{g_2}}{2}\right)$$

...is proportional to the probability that  $g_2$  is more likely to minimize the information loss than  $g_1$ 

### A Variant: BIC

An alternative to the AIC is the "Bayesian Information Criterion ("BIC") $^2$ 

$$BIC = k \ln(N) - 2 \ln(\widehat{L_g})$$

- BIC is also a measure of the <u>relative</u> information of the model vis-a-vis the data
- Once again, smaller values of BIC  $\rightarrow$  better-fitting model / distribution
- Both AIC and BIC are useful; a comparison + discussion is here

 $<sup>^2\</sup>mbox{Also}$  sometimes called the "Schwarz Information Criterion" ("SIC"), after Schwarz (1978).

## Simulation Example

#### To illustrate, we'll:

- 1. Draw a sample of size N from a standard Normal [N(0,1)] distribution
- 2. Fit three distributions to the resulting data:
  - · A normal distribution (estimating  $\hat{\mu}$  and  $\hat{\sigma}^2$ )
  - · A t distribution (estimating  $\hat{\nu}$ , the degrees of freedom parameter)
  - · A LaPlace distribution, which has density:

$$f(X) \equiv \Pr(X = x) = \frac{1}{2b} \exp\left(-\frac{|x - \mu|}{b}\right)$$

(estimating  $\hat{\mu}$  and  $\hat{b}$ )

3. Compare their AIC and BIC statistics...

### Simulation: AIC and BIC

```
> set.seed(7222009)
> X<-rnorm(200.0.1)
                                       # 200 observations from N(0.1)
>
> # Define the LaPlace density:
> dlaplace <- function(x, mu=0, b=1){</pre>
 if(b<=0) return(NA)
   exp(-abs(x-mu)/b) / (2*b)
> }
> # Fit using -fitdist-:
> NormFit<-fitdist(X,"norm")</pre>
                                        # Normal
> TFit<-fitdist(X,"t",start=list(df=3)) # t
> LaPlaceFit<-fitdist(X,dlaplace,
                                      # LaPlace
             start=list(b=1.mu=0))
> # Display differences:
> Dists<-list("Normal"=NormFit, "t"=TFit, "LaPlace"=LaPlaceFit)
> aictab(Dists)
Model selection based on ATCc:
       K AICc Delta AICc AICcWt Cum.Wt LL
       1 573
                    0.00 0.64 0.64 -286
Normal 2 574 1.18 0.36 1.00 -285
LaPlace 2 605
              31.46 0.00 1.00 -300
```

## **AIC Comparisons**

#### Comparing Normal to LaPlace:

$$RL = \exp\left(\frac{574 - 604}{2}\right)$$
$$= \exp(-15)$$
$$= 0.0000003$$

Implication: The LaPlace distribution is 0.0000003 times as probable as the Normal distribution to minimize the information loss.

#### Comparing t to Normal:

$$RL = \exp\left(\frac{573 - 574}{2}\right)$$
  
=  $\exp(-0.50)$   
= 0.607

Implication: The Normal distribution is 0.607 times as probable as the t distribution to minimize the information loss.

## Premier League Draws: AIC Comparison

#### Interpretation:

$$RL = \exp\left(\frac{62.4 - 64.9}{2}\right)$$
$$= \exp(-1.25)$$
$$= 0.287$$

Implication: The Poisson distribution is 0.287 times as probable as the binomial distribution to minimize the information loss.