

GEOMETRÍA Capítulo 3

1st

SECONDARY

Ángulos complementarios y suplementarios

ÁNGULOS COMPLEMENTARIOS Y SUPLEMENTARIOS

Ángulos complementarios
Son dos ángulos cuyas medidas suman 90°.

<u>Ángulos Suplementarios</u> Son dos ángulos cuyas medidas suman 180°.

Los ángulos AOB y CQD son complementarios.

Complemento de un ángulo

Es lo que le falta a la medida de un ángulo para que sea igual a 90°.

$$C_{\alpha} = 90^{\circ} - \alpha$$

 C_{α} : Se lee complemento de α

Ejemplos:

$$\sqrt{C_{34^{\circ}}} = 90^{\circ} - 34^{\circ} = 56^{\circ}$$

$$\sqrt{C_{72^{\circ}}} = 90^{\circ} - 72^{\circ} = 18^{\circ}$$

Suplemento de un ángulo

Es lo que le falta a la medida de un ángulo para que sea igual a 180°.

$$S_{\beta} = 180^{\circ} - \beta$$

 S_{β} : Se lee suplemento de β

Ejemplos:

$$\sqrt{S_{115^{\circ}}} = 180^{\circ} - 115^{\circ} = 65^{\circ}$$

$$\checkmark S_{57^{\circ}} = 180^{\circ} - 57^{\circ} = 123^{\circ}$$

Complemento del complemento de alfa.

Se representa por: CC_{α}

$$CC_{\alpha} = 90^{\circ} - (90^{\circ} - \alpha)$$

$$CC_{\alpha} = \alpha$$

Ejemplos:

$$\sqrt{CC_{52^{\circ}}} = 52^{\circ}$$

$$\checkmark$$
 CC_{21°} = 21°

Suplemento del suplemento de alfa.

Se representa por: SS_{α}

$$SS_{\alpha} = 180^{\circ} - (180^{\circ} - \alpha)$$

$$SS_{\alpha} = \alpha$$

Ejemplos:

Teorema.- Siempre que se presenten dos letras iguales y estén juntas, se simplifica y queda la medida del ángulo.

1. En la figura mostrada, los ángulos son complementarios. Halle el valor de x.

<u>Angulos complementarios</u> Son aquellos ángulos cuyas medidas suman 90°.

Resolución

Piden: x

$$2x + 60^{\circ} = 90^{\circ}$$

 $2x = 30^{\circ}$

$$x = 15^{\circ}$$

2. Calcule el valor de J.

$$J = CCC_{74^{\circ}} + CC_{82^{\circ}}$$

Resolución

$$CC_{\alpha} = \alpha$$

$$C_{\alpha} = 90^{\circ} - \alpha$$

$$J = CCC_{74}^{\circ} + CC_{82}^{\circ}$$

$$74^{\circ} \quad 82^{\circ}$$

$$J = C_{74}^{\circ} + 82^{\circ}$$

$$J = 16^{\circ} + 82^{\circ}$$

3. En la figura mostrada, los ángulos son suplementarios. Halle el valor de x.

<u>Ángulos Suplementarios</u> Son aquellos ángulos cuyas medidas suman 180°.

Resolución

• Piden: x

$$4x + 20^{\circ} = 180^{\circ}$$

 $4x = 160^{\circ}$

$$x = 40^{\circ}$$

4. Calcule el valor de A.

Resolución

$$CC_{\alpha} = \alpha$$

$$S_{\alpha} = 180^{\circ} - \alpha$$

$$C_{\alpha} = 90^{\circ} - \alpha$$

A =
$$SCC_{58^{\circ}} - CS_{156^{\circ}}$$

A = $SCC_{58^{\circ}} - CS_{156^{\circ}}$
 58°
 $180^{\circ} - 156^{\circ}$

$$A = S_{58^{\circ}}$$
 - $C_{24^{\circ}}$ 180° - 58° 90° - 24°

$$A = 122^{\circ} - 66^{\circ}$$

$$A = 56^{\circ}$$

5. Si el complemento del complemento del complemento de un ángulo es 72°. Halle la medida de dicho ángulo.

Resolución

- Medida del ángulo: α
- Piden: α

$$CC_{\alpha} = \alpha$$

$$C_{\alpha} = 90^{\circ} - \alpha$$

$$\begin{array}{ccc} \mathbf{CCC}_{\alpha} &=& 72^{\circ} \\ \mathbf{C}_{\alpha} &=& 72^{\circ} \\ \mathbf{90^{\circ} - \alpha} &=& 72^{\circ} \\ \mathbf{90^{\circ} - 72^{\circ}} &=& \alpha \\ \mathbf{18^{\circ} = \alpha} \end{array}$$

$$\alpha = 18^{\circ}$$

6. En el gráfico se muestra a dos jugadores rivales y sus respectivos ángulos de visión. Halle el valor de x.

Resolución

Por ángulos suplementarios

$$3x + 6x = 180^{\circ}$$

$$9x = 180^{\circ}$$

$$x = 20^{\circ}$$

7. Se muestra las avenidas AOC y OB. Si las avenidas OA y OB forman un ángulo que mide el triple del ángulo que forman las avenidas OB y OC halle m&BOC.

Resolución

- Piden: m∢BOC = x

$$3x + x = 180^{\circ}$$

 $4x = 180^{\circ}$
 $x = 45^{\circ}$

m∢**BOC** = **45**°