Mathematik für Informatik 2

Klausurvorbereitung Marvin Borner 0 1

Dies ist meine WIP Zusammenfassung, welche hauptsächlich mir dienen soll. Ich schreibe außerdem ein inoffizielles Skript, welches auf https://marvinborner.de/mathe2.pdf zu finden ist.

<u>0 Inhalt</u> <u>2</u>

Inhalt

1	Neg	ative Zahlen in $\mathbb{Z}/n\mathbb{Z}$	3
2	Red	uzibilität	3
3	Kon 3.1	nplexe Zahlen Gleichungen mit komplexen Zahlen lösen	4 4
4	Vek	torräume	4
	4.1	Prüfen auf Erzeugendensystem/Basis	4
	4.2	Basis ermitteln	4
	4.3	Prüfen auf lineare Unabhängigkeit	5
	4.4	Prüfen auf Untervektorraum	5
5	Prü	fen auf Linearität	5
	5.1	Homomorphismus	5
6	Mat	rizen	6
	6.1	Matrizen transponieren	6
	6.2	Rang bestimmen	6
	6.3	Bild bestimmen	6
	6.4	Kern bestimmen	6
	6.5	Determinante bestimmen	6
		6.5.1 Regel von Sarrus	6
		6.5.2 Gaußsches Eliminationsverfahren	6
		6.5.3 Laplacescher Entwicklungssatz	6
	6.6	Matrizen invertieren	7
		6.6.1 Adjunktenverfahren	7
	6.7	Cramersche Regel	7
		6.7.1 Gauß-Jordan-Algorithmus	7
	6.8	Charakteristisches Polynom bestimmen	8
	6.9	Eigenwerte bestimmen	8
	6.10	Eigenvektoren bestimmen	8
	6.11	Eigenraum bestimmen	9
	6.12	Diagonalmatrix und invertierbare Matrix bestimmen	10

0 Inhalt 3

1 Negative Zahlen in $\mathbb{Z}/n\mathbb{Z}$

Solange n addieren, bis die Zahl positiv ist.

Beispiel: Äquivalenzklassen in $\mathbb{Z}/6\mathbb{Z}$.

- 1. [-2] = [4]
- 2. [-7] = [5]

2 Reduzibilität

Generell: Bei Polynomen der Grade 2/3 prüfen auf Nullstellen, da f = (x - a)g reduzibel mit a NS. Bei Grad 4 Spezialfall der Zelegung in zwei irreduzible Polynome zweiten Grades beachten (siehe Beispiel).

Bei $\mathbb{Z}/n\mathbb{Z}[X]$ typischerweise jegliche Kombinationen ausprobieren und NS finden.

Beispiel: Reduzibilität von $f = x^4 + 2x^2 + 1$ in $\mathbb{R}[X]$:

Man erkennt schnell, dass f keine NS in \mathbb{R} besitzt, da die Exponenten jeweils positiv sind. **ALLERDINGS**: Polynome in Grad 4 sind durch Polynome folgender Grade reduzibel:

$$4 = 4 + 0 = 1 + 3 = 1 + 1 + 2 + 2 = 2 + 2 = 1 + 1 + 1 + 1$$

Eine Zerlegung in ein Polynom mit Graden 4+0 wäre der irreduzible Fall. Alle Zerlegungen mit 1 stellen den Fall einer Nullstelle dar, da dort ein Linearfaktor existiert. Dann bleibt hier der Fall 2+2.

Dann muss die Zerlegung existieren:

$$(x^{2} + ax + b)(x^{2} + cx + d) = x^{4} + (a + c)x^{3} + (b + ac + d)x^{2} + (ad + bc)x + bd$$

Durch die Koeffizienten von f entsteht ein LGS:

$$a + c = 0$$

$$b + ac + d = 2$$

$$ad + bc = 0$$

$$bd = 1$$

Mit der Lösung a = c = 0 und b = d = 1 lässt sich f in $(x^2 + 1)(x^2 + 1)$ zerlegen.

3 Komplexe Zahlen

3.1 Gleichungen mit komplexen Zahlen lösen

Beispiel: Bestimmen von z bei $z^3 = 2 + 2i$.

Zuerst bestimmt man die Exponentialdarstellung mittels des Winkels. In diesem Fall ist $\varphi = \frac{\pi}{4}$. r lässt sich mit Pythagoras berechnen als $r^2 = 2^2 + 2^2 = 8 \implies r = \sqrt{8}$. Dann ist $z^3 = 2 + 2i = \sqrt{8}e^{i(\frac{\pi}{4} + k2\pi)}$. Es folgt mit k = 0, 1, 2:

$$z_k = (\sqrt{8})^{\frac{1}{3}} e^{i(\frac{\pi}{4} + k2\pi) \cdot \frac{1}{3}} = \sqrt{2} e^{i(\frac{\pi}{12} + k\frac{2}{3}\pi)}.$$

Alle Lösungen liegen dann auf dem imaginären Kreis.

4 Vektorräume

4.1 Prüfen auf Erzeugendensystem/Basis

Prüfen, ob $E = \{v_1, ..., v_n\}$ eine Basis bzw. ein Erzeugendensystem von Vektorraum V ist:

- 0. Für Basis ggf. zuerst auf lineare Unabhängigkeit prüfen zwecks Effizienz (wenn offensichtlich, sonst sowieso ZSF in nächsten Schritten)
- 1. Matrix A erstellen mit Vektoren $v_1, ..., v_n$ als Zeilen untereinander
- 2. Rang von A bestimmen
- 3. Dimension von V bestimmen
 - wenn rank(A) = dim(V), dann E Erzeugendensystem
 - wenn zusätzlich rank(A) = n, dann E Basis
- 4. Wenn keine Basis: Basis ermitteln/ergänzen:
 - wenn $\operatorname{rank}(A) < \dim(V)$, dann alle linear unabhängigen Vektoren (nicht-Nullzeilen der ZSF) zu einer Basis ergänzen (z.B. durch passende Einheitsvektoren)
 - wenn rank(A) = dim(V) < n, dann linear abhängige Vektoren streichen

ODER über Determinante $\neq 0$ (TUDU)

4.2 Basis ermitteln

• Spalten einer Matrix bilden dessen Basis

4 Vektorräume 5

4.3 Prüfen auf lineare Unabhängigkeit

Anwenden des Gauß-Algorithmus:

Beispiel mit
$$v_1 = \begin{pmatrix} 5 \\ 11 \\ -2 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 3 \\ 5 \\ -1 \end{pmatrix}$ und $v_3 = \begin{pmatrix} 4 \\ 3 \\ -1 \end{pmatrix}$:
$$\begin{pmatrix} 5 & 3 & 4 \\ 11 & 5 & 3 \\ -2 & -1 & -1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 0 & \frac{1}{2} & \frac{3}{2} \\ 0 & -\frac{1}{2} & -\frac{5}{2} \\ -2 & -1 & -1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 0 & 0 & -1 \\ 0 & -\frac{1}{2} & -\frac{5}{2} \\ -2 & -1 & -1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{2} \\ 0 & 1 & 5 \\ 0 & 0 & 1 \end{pmatrix}$$

Man erkennt die lineare Unabhängigkeit: Die Vektoren bilden eine Basis in \mathbb{R}^3 .

4.4 Prüfen auf Untervektorraum

Über Untervektorraumaxiome:

- 1. $0 \in U$
- $2. \ x, y \in U \implies x + y \in U$
- 3. $x \in U, \lambda \in K \implies \lambda x \in U$

Über Kern/Bild:

Wenn man zeigen soll, dass eine Menge einen Untervektorraum darstellt, ist es sinnvoll die Tatsache zu verwenden, dass sowohl Kern als auch Bild immer Untervektorräume darstellen.

Beispiele: Schreiben einer Menge als Kern zum Beweis des Untervektorraums.

- 1. Sei $U = \{x \in \mathbb{R}^3 : x_1 x_2 x_3 = 0\}$. Dies lässt sich schreiben als Matrixvektorprodukt mit $U = \{x \in \mathbb{R}^3 : (1, -1, -1)(x_1, x_2, x_3)^\top = 0\}$. Dann ist U wegen der Definition des Kerns mit $U = \{x \in V : Ax = 0\}$ ein Untervektorraum von \mathbb{R}^3 .
- 2. Sei $U = \{(u_1, u_2, u_3)^\top \in \mathbb{R}^3 : \begin{pmatrix} 2u_1 + 3u_2 u_3 \\ u_1 4u_2 + 3u_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \}$. Dies lässt sich schreiben als

Matrixvektorprodukt mit $U = \{(u_1, u_2, u_3)^{\top} \in \mathbb{R}^3 : \begin{pmatrix} 2 & 3 & -1 \\ 1 & -4 & 3 \end{pmatrix} (u_1, u_2, u_3)^{\top} = 0 \}$

 $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ }. Dann ist U wegen der Definition des Kerns mit $U = \{x \in V : Ax = 0\}$ ein Untervektorraum von \mathbb{R}^3 .

Beispiel: Schreiben einer Menge als Bild zum Beweis des Untervektorraums.

Sei $U = \{(2x, -3x)^\top : x \in \mathbb{R}\}$. Dies lässt sich schreiben als $U = \{\begin{pmatrix} 2 \\ -3 \end{pmatrix} x : x \in \mathbb{R}\}$. Dann ist U wegen der Definition des Bildes mit $U = \{Ax : x \in V\}$ ein Untervektorraum von \mathbb{R}^2 .

5 Prüfen auf Linearität

5.1 Homomorphismus

Beide Bedingungen lassen sich gemeinsam prüfen mit:

$$f(\lambda \vec{u} + \vec{v}) = \lambda f(\vec{u}) + f(\vec{v}).$$

6 Matrizen

6.1 Matrizen transponieren

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \implies A^{\top} = \begin{pmatrix} a_{11} & \dots & a_{m1} \\ \vdots & & \vdots \\ a_{1n} & \dots & a_{mn} \end{pmatrix}$$

6.2 Rang bestimmen

- 1. Matrix in Zeilenstufenform bringen
- 2. Die Anzahl aller Zeilen, die nicht vollständig aus Nullen bestehen, entspricht dem Rang

6.3 Bild bestimmen

- 1. Transponierte Matrix A^{\top} in Zeilenstufenform bringen
- 2. Umgeformte Matrix erneut transponieren
- 3. Die Menge aller Linearkombinationen der Spalten, die nicht vollständig aus Nullen bestehen, entspricht dem Bild

6.4 Kern bestimmen

- 1. Gleichungssystem $A \cdot v = 0$ aufstellen (mit $A \in K^{m \times n} \implies v \in K^{n \times 1}$)
 - A ist dann eine Abbildungsmatrix
- 2. Gleichungssystem in Zeilenstufenform bringen
- 3. Lösung (in Abhängigkeit von Parametern) als Menge schreiben

6.5 Determinante bestimmen

6.5.1 Regel von Sarrus

Gilt bei 3×3 -Matrizen:

$$A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$$

$$\implies \det(A) = aei + bfg + cdh - bdi - afh - ceg$$

6.5.2 Gaußsches Eliminationsverfahren

- 1. Gauß nutzen für Zeilenstufenform (rechte obere Dreiecksmatrix)
 - bei jeder Vertauschung der Zeilen muss die Determinante mit -1 multipliziert werden
- 2. Die Determinante ist das Produkt der Hauptdiagonalelemente:

$$\det(A) = (-1)^{\#\text{Vertauschungen}} \cdot a'_{11} \cdot \dots \cdot a'_{nn}$$

6.5.3 Laplacescher Entwicklungssatz

- 1. Wähle Zeile/Spalte aus, nach welcher entwickelt wird (optimalerweise möglichst viele Nullen)
- 2. Startpunkt als Faktor aufschreiben und mit der Determinanten der Matrix multiplizieren, die entsteht, wenn die gesamte derzeitige Zeile/Spalte gestrichen wird (abhängig von Schachbrettmuster ggf. mit -1 multiplizieren)

3. 2 wiederholen für alle Elemente der gewählten Spalte/Zeile und addieren

Beispiel: Entwicklung nach der ersten Zeile:

$$\det\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} = 1 \cdot \det\begin{pmatrix} 5 & 6 \\ 8 & 9 \end{pmatrix} + (-1) \cdot 2 \cdot \det\begin{pmatrix} 4 & 6 \\ 7 & 9 \end{pmatrix} + 3 \cdot \det\begin{pmatrix} 4 & 5 \\ 7 & 8 \end{pmatrix}$$
$$= 1 \cdot (-3) - 2 \cdot (-6) + 3 \cdot (-3)$$
$$= 0$$

6.6 Matrizen invertieren

Generell: Für 2×2 -Matrizen empfiehlt sich das **Adjunktenverfahren**. Für 3×3 -Matrizen empfiehlt sich das **Adjunktenverfahren** sowie die **Cramersche Regel**. Bei größeren Matrizen oder bei Matrizen mit vielen Nullen empfiehlt sich der **Gauß-Jordan-Algorithmus**.

Wichtig ist: Matrizen lassen sich nur invertieren, wenn $n \times n$ und

$$\operatorname{rank}(A) = n \iff \det(A) \neq 0 \iff A^{-1} \text{ existiert.}$$

6.6.1 Adjunktenverfahren

Für $n \times n$ -Matrizen: TUDU adj

$$A^{-1} = \frac{1}{\det(A)}\operatorname{adj}(A)$$

Für 2×2 -Matrizen:

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

6.7 Cramersche Regel

- 1. det(A) berechnen und $det(A) \neq 0$ prüfen
- 2. Einzelne Einträge der Lösung $x = (x_1, ..., x_n)^{\top}$ mit $x_i = \frac{\det(A_i)}{\det(A)}$ bestimmen $(A_i \text{ ergibt sich},$ wenn die *i*-te Spalte von A durch den Vektor b ersetzt wird)

6.7.1 Gauß-Jordan-Algorithmus

1. Erweiterte Koeffizientenmatrix $(A \mid E_n)$ bilden:

$$(A \mid E_n) = \begin{pmatrix} a_{11} & \dots & a_{1n} & 1 & \dots & 0 \\ \vdots & & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} & 0 & \dots & 1 \end{pmatrix}$$

2. Gaußsches Eliminationsverfahren anwenden, um die linke Seite auf die Einheitsmatrix zu bringen:

$$(E_n \mid A^{-1}) = \begin{pmatrix} 1 & \dots & 0 \mid b_{11} & \dots & b_{1n} \\ \vdots & \ddots & \vdots & \vdots & & \vdots \\ 0 & \dots & 1 \mid b_{m1} & \dots & b_{mn} \end{pmatrix}$$

3. Die Matrix auf der rechten Seite entspricht dem Inversen von A

6.8 Charakteristisches Polynom bestimmen

Determinante von $A - \lambda E_n$ abhängig von λ bestimmen:

$$P_A = \det(A - \lambda E_n)$$

Beispiel: Mit
$$A = \begin{pmatrix} 1 & 1 & -2 \\ 1 & 1 & -2 \\ -2 & -2 & 4 \end{pmatrix}$$
:

Lösen durch Laplaceschen Entwicklungssatz:

$$P_{A} = \det \begin{pmatrix} 1 - \lambda & 1 & -2 \\ 1 & 1 - \lambda & -2 \\ -2 & -2 & 4 - \lambda \end{pmatrix}$$

$$= (1 - \lambda) \det \begin{pmatrix} 1 - \lambda & -2 \\ -2 & 4 - \lambda \end{pmatrix} - 1 \det \begin{pmatrix} 1 & -2 \\ -2 & 4 - \lambda \end{pmatrix} - 2 \det \begin{pmatrix} 1 & 1 - \lambda \\ -2 & -2 \end{pmatrix}$$

$$= -\lambda^{2} (\lambda - 6)$$

6.9 Eigenwerte bestimmen

- 1. Charakteristisches Polynom P_A bestimmen
- 2. Nullstellen von P_A sind Eigenwerte

Beispiel: Mit $P_A = -\lambda^2(\lambda - 6)$:

$$-\lambda^{2}(\lambda - 6) = 0$$

$$\Longrightarrow \lambda_{1,2} = 0 \quad \land \quad \lambda_{3} = 6$$

6.10 Eigenvektoren bestimmen

- 1. Eigenwerte λ_i bestimmen
- 2. Für jedes λ_i lösen:

$$V_{\lambda_i} = \ker(A - \lambda_i E_n)$$

3. Die Lösungen werden jeweils abhängig von einer Variable sein \rightarrow linearen Spann aufstellen

Beispiel: Mit
$$\lambda_{1,2} = 0$$
, $\lambda_3 = 6$ und $A = \begin{pmatrix} 1 & 1 & -2 \\ 1 & 1 & -2 \\ -2 & -2 & 4 \end{pmatrix}$:

1. Eigenvektor für $\lambda_1=0$ berechnen:

 $A - \lambda_1$ umformen:

$$\begin{pmatrix} 1 & 1 & -2 \\ 1 & 1 & -2 \\ -2 & -2 & 4 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 1 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Gleichung $\ker(A - \lambda_1) \implies A - \lambda_1 = 0$ lösen:

$$x_1 + x_2 - 2x_3 = 0$$

$$\implies x_1 = -x_2 + 2x_3$$

$$\implies x_2 = \dots = x_2$$

$$\implies x_3 = \dots = x_3$$

Linearen Spann aufstellen:

$$V_0 = \operatorname{Lin}\left(\begin{pmatrix} -1\\1\\0 \end{pmatrix}, \begin{pmatrix} 2\\0\\1 \end{pmatrix}\right)$$

2. Eigenvektor für $\lambda_3 = 6$ berechnen:

 $A - \lambda_3$ umformen:

$$\begin{pmatrix} 1 - 6 & 1 & -2 \\ 1 & 1 - 6 & -2 \\ -2 & -2 & 4 - 6 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Gleichung $\ker(A - \lambda_3) \implies A - \lambda_3 = 0$ lösen durch LGS:

$$2x_1 + x_3 = 0 \quad \land \quad 2x_2 + x_3 = 0$$

$$\implies x_1 = -\frac{x_3}{2} \quad \land \quad x_2 = -\frac{x_3}{2} \quad \land \quad x_3 = x_3$$

Linearen Spann aufstellen:

$$V_6 = \operatorname{Lin} \begin{pmatrix} -\frac{1}{2} \\ -\frac{1}{2} \\ 1 \end{pmatrix} = \operatorname{Lin} \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix}$$

6.11 Eigenraum bestimmen

- 1. Eigenvektoren V_{λ_i} bestimmen
- 2. Linearen Spann aller Eigenvektoren aufstellen

Beispiel: Mit
$$V_0 = \operatorname{Lin}\left(\begin{pmatrix} -1\\1\\0 \end{pmatrix}, \begin{pmatrix} 2\\0\\1 \end{pmatrix}\right)$$
 und $V_6 = \operatorname{Lin}\begin{pmatrix} -1\\-1\\2 \end{pmatrix}$:
$$\mathbb{L} = \operatorname{Lin}\left(\begin{pmatrix} -1\\1\\0 \end{pmatrix}, \begin{pmatrix} 2\\0\\1 \end{pmatrix}, \begin{pmatrix} -1\\-1\\2 \end{pmatrix}\right)$$

6.12 Diagonalmatrix und invertierbare Matrix bestimmen

Gesucht werden Lösungen von $S^{-1}AS=D$ mit der invertierbaren Matrix S und der Diagonalmatrix D.

- 1. Eigenwerte und Eigenvektoren von A bestimmen
- 2. Die Spalten der invertierbaren Matrix S entsprechen den Eigenvektoren
- 3. Die Elemente der Diagonalen der Diagonalmatrix entsprechen den Eigenwerten

Beispiel: Mit
$$\lambda_{1,2} = 0$$
, $\lambda_3 = 6$ sowie $V_0 = \text{Lin}\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$ und $V_6 = \text{Lin}\begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix}$:
$$S = \begin{pmatrix} -1 & 2 & -1 \\ -1 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}$$
$$D = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 6 \end{pmatrix}$$