```
EMBR=03
                                             0 00 00 00 00 10 11 2 2
          mar:= sp; d:= 1 + sp; wr;
START:
             { D=nextader (SP+1) }
           f := 1+1; wr;
           [F=2; D= SP+1; M[SP] = Fib(0) }
          mbr := 1; mar := d; ur; b := 1;
            {F=2, D=SP+1, M(SP]=Fiblo), B=Fiblo)} 000100011011 bd'1"0
          e:= f+1; wr;
            [F=2, E=3, D=SP+1, M[SP] = A=Fib(0); M[SP+1] = B= Fib(1) }
          ¿ Invariant: A=Fib(n) B=Fib(n+1) } SP = SPo +n; }
  LOOP
           a 1= b + a;
           { A=Fib(n+2) B=Fib(n+1) }
           21= Sp+ f; -
           maried; imbrica; wri if n then goto DONE;
           { in leyde, M[SP+2] = Fib(n+2) }
           Spi= etsp; wr;
           { m[sp-1] = Fib(n+2) }
           b== a + b;
           { A = Fib (n+2) B = Fib (n+3) }
          mar:= sp; mbr:=b; wr; if n then go to DONE;
          wrigoto LOOP; spind;
          ur; rd;
 DONE:
                                                VLIW - Very Long Instruction Ward
```

fib.mc - microcode for Fibonacci (8 Scyrles)

-2/ Micro Program := NL mp	
I LABEL ":" NL MP	
1 Instruction NL MP	
Instruction :=	
1 Component ";" Instruction	on .
Component := "man :=" BExpr	- set MAR, set B
1 "mbr :=" Sh Expr	- set MBR, set SH, ALU, A, B, AM
1 Reg ":=" ShExpr	- set ENC, C,
1 "alu != " Alu Expr	set ALV, A, B, A MUX
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	- set wr
1 6,,	- set RD
1 "goto" LABEL	- set COND=21, ADDR=LABE
	IL - set cond = 1/z, ADDR = LABEI
Cond == N(a) = (10)	1
Sh Expr := Alu Expr	- set SH = 00, set ALV, A, B, An
1 "Ishift(" AluExpr ")"	SH=10
"rshift(" AluEapr ")"	- SH = 01
Alu Expr := Axpr "+" BExpr	- ALU=00, set A, AMUX, B
1 A Expr	- ALV=10, set A, AMUX
1 "inv (" Hexpr ")"	-ALV=11, set A, Am
) "band (" Dexpre ")" Bexpr)" -ALV=01, Set A, AMX, B
AExpr: := Register	- A = reg Amux = 0
1 "mbr"	- $AMUX = 1$
BExpr: = Register	- B=reg
illegal: mar = 1; ac := ac + ac;	= Mar=1 [N/-1 AMIN-12 A-A(R=A((
	B=1