0/13 Questions Answered

Final, Part 2

Q1 True or False

6 Points

The 2010 General Social Survey asked the question: "After an average workday, about how many hours do you have to relax or pursue activities that you enjoy?" to a random sample of 1155 Americans. A 95\% confidence interval for the mean number of hours spent relaxing or pursuing activities they enjoy was 1.38 to 1.92 hours.

Q1.1

1 Point

TRUE or FALSE: We are 95% confident that Americans spent on average 1.38 to 1.92 hours relaxing or pursuing activities they enjoy after an average workday.

O TRUE

O FALSE

Save Answer

Q1.2

1 Point

TRUE or FALSE: If a 99% confidence interval is constructed, it would be wider than this 95\% confidence interval.

O TRUE

O FALSE

Save Answer

Q1.3

1 Point

TRUE or FALSE: 95% of the Americans spent 1.38 to 1.92 hours relaxing or pursuing activities they enjoy after an average workday.

O TRUE

O FALSE

Save Answer

Q1.4

1 Point

TRUE or FALSE: In repeated samples of the same size, 95% of the samples would have a sample mean that falls between 1.38 to 1.92 hours.

O TRUE

O FALSE

Save Answer

Q1.5

1 Point

TRUE or FALSE: In order to reduce the margin of error of the 95% confidence interval to half of what it is now, we would need to get a sample 4 times as large in size.

O TRUE

O FALSE

Save Answer

Q1.6

1 Point

TRUE or FALSE: If one were to test whether Americans spent 1.5 hours on average relaxing or pursuing activities they enjoy after work, the two-sided P-value would be greater than 5%.

O TRUE

O FALSE

Save Answer

Q2

2 Points

In order to investigate a claim that the average time required for the county fire department to respond to a reported fire μ is greater than 5 minutes, county staff determined the response times for 40 randomly selected fire reports. The data was used to test H_0 : $\mu=5$ versus H_a : $\mu>5$ and the computed P-value was 0.22. If a 0.05 level of significance is used, what conclusions can be drawn?

- O There is strong evidence that the mean response time is 5 minutes (or less).
- O There is strong evidence that the mean response time is greater than 5 minutes.
- O There is no strong evidence that the mean response time is greater than 5 minutes.
- O There is no strong evidence that the mean response time is 5 minutes (or less).

Save Answer

Q3

2 Points

New York is known as "the city that never sleeps." Twenty-five (n=25) New Yorkers were randomly sampled and asked how much sleep they get per night and the sample mean was 7.3 hours. To test if New Yorkers sleep less than 8 hours a night on average (H_0 : $\mu=8$ v.s. H_a : $\mu<8$, where μ is the mean number of hours New Yorkers sleep a night), the P-value is

- O the probability of getting a random sample of 25 New Yorkers that on average slept 7.3 hours a night, when New Yorkers actually slept less than 8 hours per night on average.
- O the probability of getting a random sample of 25 New Yorkers that on average slept 7.3 hours or less a night, when New Yorkers actually slept 8 hours per night on average.
- O the probability that New Yorkers on average slept 8 hours per night, given that the 25 randomly sampled New Yorkers on average slept 7.3 hours a night
- O the probability that New Yorkers on average slept less than 8 hours per night, given that the 25 randomly sampled New Yorkers on average slept 7.3 hours a night.

Save Answer

Q4

2 Points

The United States has about 330 million residents. Suppose that you want to estimate the proportion of Americans who have a tattoo with a margin-of-error of 3.0 percentage points (3%) with 95% confidence. About how many people would you need to randomly sample? Select the best answer from the following choices.

O 100
O 1,000
O 10,000
O 100,000
O 1,000,000
O 10,000,000
Save Answer
Q5
2 Points
Consider a hypothesis test about two proportions, H_0 : $p_1=p_2$ versus H_a : $p_1\neq p_2$. If the alternative hypothesis H_a is true and everything else are unchanged, increasing the size of the two samples would tend to the absolute value of the test statistic and the P-value. The two blanks should be
Consider a hypothesis test about two proportions, H_0 : $p_1=p_2$ versus H_a : $p_1 \neq p_2$. If the alternative hypothesis H_a is true and everything else are unchanged, increasing the size of the two samples would tend to the absolute value of the test statistic and
Consider a hypothesis test about two proportions, H_0 : $p_1=p_2$ versus H_a : $p_1\neq p_2$. If the alternative hypothesis H_a is true and everything else are unchanged, increasing the size of the two samples would tend to the absolute value of the test statistic and the P-value. The two blanks should be
Consider a hypothesis test about two proportions, H_0 : $p_1=p_2$ versus H_a : $p_1\neq p_2$. If the alternative hypothesis H_a is true and everything else are unchanged, increasing the size of the two samples would tend to the absolute value of the test statistic and the P-value. The two blanks should be O increase; increase
Consider a hypothesis test about two proportions, H_0 : $p_1=p_2$ versus H_a : $p_1\neq p_2$. If the alternative hypothesis H_a is true and everything else are unchanged, increasing the size of the two samples would tend to the absolute value of the test statistic and the P-value. The two blanks should be O increase; increase

Save Answer

Q6

2 Points

Consider the data set below. Which pair of (x,y) values should be removed to make the correlation between x and y for the remaining four pairs equals -1?

\boldsymbol{x}	y
1	17
3	11
5	10
6	2
9	-7

- O(1,17)
- O(3,11)
- O(5,10)
- O(6,2)
- O(9,-7)

Save Answer

Q7

2 Points

Opening weekend box office revenue is an important source of income to the movie industry and a crucial preliminary indicator of the long-run profitability of a motion picture. Here are a scatter plot and the residual plot for predicting the World Gross Revenue from the Opening-Weekend Revenues for 136 Hollywood movies in 2011 using simple linear regression.

From the two plots above, which assumption of a simple linear model is most clearly violated?

O linearity		
O constant varia	bility	
O normal residu	als	
O independence	Э	
Save Answer		
Q8 2 Points		
Continue the pre	vious problem. Which state	ement is TRUE for the two
O The average	of the residuals is exactly 0).
Revenue beca	•	vith the Opening Weekend duals tends to increase as es.
·	n an arrow pointed to on th a low leverage point.	e top right corner of the
·	an arrow pointed to on the a point with the greatest re	
Save Answer		