SATELLITE DYNAMICS AND ATTITUDE CONTROL

Kusal Uprety, Harry Zhao 8 May 2024

REVISION HISTORY

VERSION	REVISION NOTES					
PS1	- Created document					
	- Added PS1 material					
PS2	- Added PS2 material					
	- Updated title page					
	- Updated moment of inertia for center of mass					
PS3	- Added PS3 material					
	- Updated title page					
PS4	- Added PS4 material					
	- Updated title page					
	- Switched to 312 Euler angles					
PS5	- Added PS5 material					
	- Updated title page					
	- Fix PS2 figure caption typos					
	- Fix PS4 figure numbering					

Table 1: Summary of project revisions.

TABLE OF CONTENTS

1	PR	DBLEM SET 1	5
	1.1	PROBLEM 1	5
	1.2	PROBLEM 2	5
	1.3	PROBLEM 3	6
	1.4	PROBLEM 4	6
	1.5	PROBLEM 5	7
	1.6	PROBLEM 6	13
	1.7	PROBLEM 7	14
2	PR	DBLEM SET 2	16
4	2.1	PROBLEM 1	16
	2.2	PROBLEM 2	17
	2.3	PROBLEM 3	18
	2.4	PROBLEM 4	18
	2.5	PROBLEM 5	19
	2.6	PROBLEM 6	19
	2.7	PROBLEM 7	21
	2.8	PROBLEM 8	22
	2.9	PROBLEM 9	22
	2.7	ROBELITY	
3	PR	OBLEM SET 3	28
	3.1	PROBLEM 1	28
	3.2	PROBLEM 2	28
	3.3	PROBLEM 3	29
	3.4	PROBLEM 4	30
	3.5	PROBLEM 5	32
	3.6	PROBLEM 6	33
	3.7	PROBLEM 7	34
4	рр	DBLEM SET 4	39
4	4.1	PROBLEM 1	39
	4.1		41
	4.3	PROBLEM 3	
	4.4	PROBLEM 4	
			77
5	PR	DBLEM SET 5	54
	5.1	PROBLEM 1	54
	5.2	PROBLEM 2	58
	5.3	PROBLEM 3	62
6	RE	FERENCES	65
A		ndix A	66
		Problem Set 1	66
		Problem Set 2	67 73
	ΑÍ	TODIEM SELS	13

A.4	Problem Set 4	79
A.5	Problem Set 5	36

1 PROBLEM SET 1

1.1 PROBLEM 1

Select some key ADCS characteristics of your mission, including orbit (e.g., LEO, MEO, GEO, HEO, Interplanetary), target attitude (e.g., Sun pointing, Inertial pointing, Earth pointing, Resident Space Object pointing), attitude state representation (e.g., Euler angles, Gibbs vector, Quaternions Direction Cosine Matrix, Euler Axis/Angle), sensors suite (Gyros, Magnetometers, Star Trackers, Earth Sensor, Sun Sensor), actuator suite (Thrusters, Magnetorquers, Reaction Wheels, Momentum Wheel, Gravity Gradient).

Our mission will utilize a satellite with synthetic aperture radar (SAR), designed to gather key remote sensing and environmental data for the Earth. The satellite will be in low Earth orbit (LEO) and use quaternions to describe its orientation, avoiding gimbal lock effects of other conventions. For state estimation, the spacecraft will require gyroscopes, star trackers, and a potentially a sun sensor. For actuation, the spacecraft will likely utilize thrusters, reaction wheels, and magnetorquers.

1.2 PROBLEM 2

Conduct survey of satellites which have characteristics similar to selected project. Use internet, publications, and books as resources.

Space agencies such as NASA have been constructing SAR satellites to gather satellite images and data of Earth for over a decade. Additionally, there exist commercial entities also utilizing SAR in their spacecraft.

For example, Soil Moisture Active Passive (SMAP) is a NASA satellite launched in 2015 that utilizes L-band synthetic aperture radar (SAR) technology to measure soil moisture from LEO. This data has applications in climate change research climate change research applications (such as updating climate models) and some day-to-day activities (such as improving weather forecasts). SMAP is unique in that it had a large deployable reflector, held above the spacecraft body by a deployable boom [1].

Companies EOS and Capella Space are also developing satellites that use SAR technology in the X-band and S-band frequencies for commercial applications ranging from agriculture to mining [2], [3]. The commercial applicability of SAR is substantial, especially as SAR can penetrate cloud cover while generating high-resolution data, making it superior to many other forms of remote sensing technology. EOS claims to obtain resolution of up to 0.25 m, while Capella Space claims a capability of up to 0.5 m. These satellites all operate in LEO, which enables high-frequency monitoring of the Earth's surface.

NASA and ISRO have partnered to create a SAR satellite as well. The joint project between NASA JPL and ISRO has resulted in the NASA-ISRO Synthetic Aperture Radar (NISAR), a satellite that captures data in the L-band and S-band SAR frequencies [4]. NISAR's high resolution will permit the detailed measurement of the Earth's surface, enabling better observation of changes in Earth's crust for disaster prevention and mitigation. NISAR will also support science goals such as monitoring ice sheets and the oceans, and its orbit is designed to cover the entire Earth every 12 days.

1.3 PROBLEM 3

Select preferred existing satellite and payload for project. Similarity is helpful, but not strictly required.

We select the NASA JPL and ISRO NISAR mission as the mission on which to base our satellite. In the following section, we describe mission details and basic specifications. We simplify the satellite geometry and compute the center of mass and inertia tensor of the satellite. We will also analyze the satellite's external surfaces, which are relevant to disturbances such as atmospheric drag and solar radiation pressure.

1.4 PROBLEM 4

Collect basic information on mission, requirements, ADCS sensors and actuators, mechanical layout, mass, mass distribution, and inertia properties.

NISAR is a joint Earth-observation satellite mission between NASA and ISRO. It is the first satellite to operate in two different Synthetic Aperture Radar (SAR) bands, incorportating both L- and S-band SAR instruments. Both frequencies can penetrate clouds for reliable data collection, but the L-band can also penetrate thicker vegetation that the S-band cannot. Uniquely, NISAR is intended to be used for a wide range of science objectives, including disaster response and agriculture [5].

NISAR ADCS requirements are <273 arcseconds for pointing and <500 m for orbit control [6]. The satellite duty cycle is specified as >30%. NISAR will operate in LEO with nominal altitude of 747 km and 6 AM/6 PM orbit. NISAR's L- and S-band instruments operate at 24 cm and 12 cm wavelengths, respectively. NISAR collects terrestial SAR imagery with an image swatch of 240 km using a sweep approach. The science payload can also perform polarimetry, with the SAR incorporating multiple polarization modes.

Figure 1: The basic components of the NISAR satellite

As shown in Figure 1, NISAR's satellite consists of a 1.2 m x 1.8 m x 1.9 m spacecraft bus cuboid with a 1.2 m wide octagonal Radar Instrument Structure (RIS). The spacecraft bus includes ADCS hardware, power subsystem, and engineering payload, while the RIS houses hardware for the L- and S-band SAR. The satellite is powered by 23 m² of solar panels, consisting of an array of two panels, one on each side of the satellite. Additionally, a 12 m diameter radar antenna is positioned above the body of the spacecraft, attached by a 9 m long boom. This boom consists of beams with 7 in x 7 in cross-section area [4].

Table 2 contains mass properties of the satellite. Unfortunately, detailed mass distribution and inertia properties of NISAR are not openly available, so we provide estimates of mass distribution based on known overall component-level masses. We are given total masses for the bus structure and RIS, and we also know the masses of the payloads located within, allowing us to compute an accurate mass for these components [4]. We estimate that solar panels have a mass of 23 kg each based on knowledge that NISAR's solar panels are 23 m² and a typical solar panel mass per area is 2.06 kg/m² [7]. We know that the entire radar antenna assembly has a mass of 292 kg, and we estimate that the reflector has a mass of approximately 100 kg based on a similar deployable SAR S- and L-band mesh antenna reflector [8]. We will use these masses to compute center of mass and moments of inertia in the following section. For our model, we neglect the effects of the truss structure supporting the antenna reflector, instead modeling the entire RAR as just the disk-shaped reflector mesh.

Table 2: Mass of NISAR components

Components	Mass [kg]
Bus	964.1
Radar Instrument Structure (RIS)	1375.9
Solar Panel +y	23
Solar Panel -y	23
Radar Antenna Boom (RAB)	192
Radar Antenna Reflector (RAR)	100

Since NISAR is a remote sensing satellite requiring high attitude control performance, it has an ADCS system with an array of sensors and actuators. Sensors include star sensors, sun sensors, GPS, and a 3-axis gyroscope for roll, pitch, and yaw. For actuators, NISAR has four 50 N·m reaction wheels mounted in tetrahedral configuration, three 565 and 350 A·m² magnetorquers, and fourteen thrusters (ten canted 11 N thrusters, one central 11 N thruster, and four 1 N thrusters for roll) [4].

1.5 PROBLEM 5

Simplify spacecraft geometry, make assumptions on mass distribution, e.g. splitting it in its core parts, define body axes (typically related to geometry and payload), compute moments of inertia and full inertia tensor w.r.t. body axes. Show your calculations.

We simplify the spacecraft geometry into six components, each individually assumed to have uniform mass distribution. These components of the simplified geometry are: bus structure (including ADCS hardware and engineering payload), RIS (Radar Instrument Structure), RAB (radar antenna boom), RAR (radar antenna reflector), and two solar panels (identified as the +y solar panel and -y solar panel). The bus structure is modeled as a rectangular prism, while the RIS is modeled as an octagonal prism. The RAB is also modeled as a rectangular prism,

while the RAR is modeled as a thin disk and the solar panels are modeled as thin rectangular plates. Within each geometry, our model assumes mass is distributed uniformly. From analyzing diagrams found in technical reports, we estimate that the RAR is tilted -3.87° about the y-axis (relative to the x-axis), while the RAB is modeled as a single beam with an angle approximately -18° from vertical (from the z-axis, about the y-axis in the x-z plane). Note that we have simplified the shape of the RAB from a beam of two angled segments to a single, straight beam.

We choose the body axes to have an origin at the center of the rectangular bus. This configuration is chosen because the bus houses the ADCS hardware, including actuators and sensors. The x-axis points in the direction of the RIS, and the z-axis points up vertically, normal to the upper surface of the bus. See Figure 4 for a visual depiction of the body axes relative to the spacecraft.

We compute the center of mass after extracting the centroid of each component. The mass of each component is previously found in Table 2. The centroid of each component is listed in Table 3.

Part	x	y	Z
Bus	0	0	0
RIS	1.85	0	0
Panel +y	0	3.9	0
Panel -y	0	-3.9	0
RAB	-0.899	0	5.194
RAR	4.283	0	8.308

Table 3: Component centroids [m]

The center of mass can be found by taking the weighted average of each component centroid, weighted by the mass of each component. The center of mass formula is:

$$\vec{r}_{cm} = \frac{\sum m_i \vec{r}_i}{\sum m_i}$$

This yields a result for center of mass at $[1.046, 0, 0.683] \,\mathrm{m}$ relative to the origin we defined. We created the following MATLAB script to compute the center of mass from a CSV file containing centroid and mass data.

```
function cm = computeCM(filename)
data = readmatrix(filename);
x = data(:,1);
y = data(:,2);
z = data(:,3);
m = data(:,4);
cm = [dot(x,m); ...
dot(y,m); ...
dot(y,m); ...
end
```

We compute the moment of inertia of the satellite, finding an inertia tensor in our body axes. To do this, we break the satellite into individual components, first finding the moment of inertia about the center of mass of each component. We then compute the moment of inertia of the entire satellite about the body axes by using parallel axis theorem and combining all the components.

To compute the moment of inertia, we need the following geometric properties of each component:

Part	L (x-dim)	W (y-dim)	H (z-dim)	S (oct. side length)	R (radius)
Bus		1.8	1.9	-	-
RIS	2.5	-	-	0.459	-
Panel +y	-	6	1.9	-	-
Panel -y	_	6	1.9	-	-
RAB	0.1778	0.1778	9	-	-
RAR	_	_	_	-	6

Table 4: Dimensions of modeled components [m]

For the bus, we choose to model the geometry as a rectangular prism. Since the bus is aligned with the body axes, we obtain a diagonal inertia tensor:

$$I_{bus} = \begin{bmatrix} I_{xx} & 0 & 0 \\ 0 & I_{yy} & 0 \\ 0 & 0 & I_{zz} \end{bmatrix}$$

$$= \begin{bmatrix} m\frac{W^2 + H^2}{12} & 0 & 0 \\ 0 & m\frac{L^2 + H^2}{12} & 0 \\ 0 & 0 & m\frac{L^2 + W^2}{12} \end{bmatrix}$$

$$= \begin{bmatrix} 550.340 & 0 & 0 \\ 0 & 405.725 & 0 \\ 0 & 0 & 375.9993 \end{bmatrix} \text{ kg m}^2$$

For the solar panels, we approximate their geometry as a flat plate. These axes are also aligned, so the tensor can be diagonal.

$$\begin{split} I_{panel} &= \begin{bmatrix} I_{xx} & 0 & 0 \\ 0 & I_{yy} & 0 \\ 0 & 0 & I_{zz} \end{bmatrix} \\ &= \begin{bmatrix} m\frac{W^2 + H^2}{12} & 0 & 0 \\ 0 & m\frac{H^2}{12} & 0 \\ 0 & 0 & m\frac{W^2}{12} \end{bmatrix} \\ &= \begin{bmatrix} 75.919 & 0 & 0 \\ 0 & 6.919 & 0 \\ 0 & 0 & 69 \end{bmatrix} \text{kg m}^2 \end{split}$$

For the RIS, we model the geometry as an octagonal prism. For the moment of inertia about the axisymmetric axis of the octagon, we use the formula $m\left(\frac{S^2}{24}+\frac{a^2}{2}\right)$, where S is the side length and a is the apothem length, where the apothem is the perpendicular length from a side of the octagon to the center [9]. When calculating the moment of inertia about the non-axisymmetric axes, we approximate the geometry as a cylinder with radius equal to the average of the octagonal radius (distance from center to vertex) and the apothem. As will be shown later, this approximation yields a very close result to the inertia tensor generated from the CAD model.

$$\begin{split} I_{RIS} &= \begin{bmatrix} I_{xx} & 0 & 0 \\ 0 & I_{yy} & 0 \\ 0 & 0 & I_{zz} \end{bmatrix} \\ &= \begin{bmatrix} m\left(\frac{S^2}{24} + \frac{a^2}{2}\right) & 0 & 0 \\ 0 & m\left(\frac{L^2}{12} + \frac{R_{avg}^2}{4}\right) & 0 \\ 0 & 0 & m\left(\frac{L^2}{12} + \frac{R_{avg}^2}{4}\right) \end{bmatrix} \\ &= \begin{bmatrix} 223.268 & 0 & 0 \\ 0 & 831.089 & 0 \\ 0 & 0 & 831.089 \end{bmatrix} \text{ kg m}^2 \end{split}$$

For the RAB, we first model the geometry as a rectangular prism. We also must rotate the inertia tensor to match the orientation of the body axes, as the RAB itself is rotated relative to the bus about the y-axis by -18° from vertical (z-axis).

$$\begin{split} I_{RAB} &= \begin{bmatrix} I_{xx} & 0 & 0 \\ 0 & I_{yy} & 0 \\ 0 & 0 & I_{zz} \end{bmatrix} \\ &= \begin{bmatrix} m\frac{W^2 + H^2}{12} & 0 & 0 \\ 0 & m\frac{L^2 + H^2}{12} & 0 \\ 0 & 0 & m\frac{L^2 + W^2}{12} \end{bmatrix} \\ &= \begin{bmatrix} 1296.506 & 0 & 0 \\ 0 & 1296.506 & 0 \\ 0 & 0 & 1.012 \end{bmatrix} \text{ kg m}^2 \end{split}$$

We apply the rotation to the inertia tensor using a rotation matrix about the y-axis. Note that doing so results in non-zero products of inertia, meaning our principal axes will not be aligned with our body axes.

$$I_{RAB,rotated} = R_y(-18^\circ)I_{RAB}R_y^{\dagger}(-18^\circ)$$

$$= \begin{bmatrix} 1172.797 & 0 & 380.736 \\ 0 & 1296.506 & 0 \\ 380.736 & 0 & 124.720 \end{bmatrix} \text{ kg m}^2$$

Finally, we model the RAR as a flat disk. Similar to the RAB, we must rotate the inertia tensor to match the orientation of the body axes.

$$I_{RAR} = \begin{bmatrix} I_{xx} & 0 & 0\\ 0 & I_{yy} & 0\\ 0 & 0 & I_{zz} \end{bmatrix}$$

$$= \begin{bmatrix} m\frac{R^2}{4} & 0 & 0\\ 0 & m\frac{R^2}{4} & 0\\ 0 & 0 & m\frac{R^2}{2} \end{bmatrix}$$

$$= \begin{bmatrix} 900 & 0 & 0\\ 0 & 900 & 0\\ 0 & 0 & 1800 \end{bmatrix} \text{ kg m}^2$$

Applying a rotation:

$$I_{RAR,rotated} = R_y(-3.87^{\circ})I_{RAR}R_y^{\mathsf{T}}(-3.87^{\circ})$$

$$= \begin{bmatrix} 904.100 & 0 & -60.605 \\ 0 & 900 & 0 \\ -60.605 & 0 & 1795.900 \end{bmatrix} \text{ kg m}^2$$

Now, we use parallel axis theorem to compute the moment of inertia of each component about the body axes at the specified origin. We can use the following displacement tensor,

$$D = \begin{bmatrix} y^2 + z^2 & -xy & -xz \\ -yx & x^2 + z^2 & -yz \\ -zx & -yz & x^2 + y^2 \end{bmatrix},$$

where x, y, z are the coordinates of the center of mass of the component, giving the moment of inertia about a new point:

$$I' = I_c + mD$$

Performing the parallel axis theorem on each component and summing the inertia tensors, we obtain the following inertia tensor for the entire spacecraft:

$$I_{NISAR,body} = \begin{bmatrix} 15783.996 & 0 & -2341.659 \\ 0 & 22227.752 & 0 \\ -2341.659 & 0 & 10663.970 \end{bmatrix} \text{ kg m}^2$$

Compare this with the inertia tensor computed by SolidWorks CAD software:

$$I_{NISAR,body} = \begin{bmatrix} 15780.361 & 0 & -2336.285 \\ 0 & 22225.721 & 0 \\ -2336.285 & 0 & 10665.796 \end{bmatrix} \text{ kg m}^2$$

The errors are 0.0230%, 0.00914%, 0.0171%, and 0.230% for I_{xx} , I_{yy} , I_{zz} , and I_{xz} , respectively. We created the following MATLAB script to compute the inertia tensor.

```
function I = computeMOI(filename, reference)
      data = readmatrix(filename);
      x = data(:,1) - reference(1);
      y = data(:,2) - reference(2);
       z = data(:,3) - reference(3);
      m = data(:,4);
      m_bus = m(1);
      m_RIS = m(2);
      m_panel = m(3);
      m_RAB = m(5);
      m_RAR = m(6);
11
12
      L_bus = 1.2;
13
      W_bus = 1.8;
       H_bus = 1.9;
15
       I_bus = m_bus * [(W_bus^2 + H_bus^2) / 12, 0, 0; ...
16
           0, (L_bus^2 + H_bus^2) / 12, 0; ...
17
           0, 0, (L_bus^2 + W_bus^2) / 12];
18
19
       L_RIS = 2.5;
20
       S_RIS = 0.459;
21
       a_RIS = S_RIS / (2 * tan(deg2rad(22.5)));
23
       R_avg = mean([a_RIS \ sqrt(a_RIS^2 + (S_RIS / 2)^2)]);
       I_RIS = m_RIS * [S_RIS^2 / 24 + a_RIS^2 / 2, 0, 0; ...
           0, L_RIS^2 / 12 + R_avg^2 / 4, 0; ...
           0, 0, L_RIS^2 / 12 + R_avg^2 / 4;
26
27
       W_panel = 6;
28
       H_{panel} = 1.9;
       I_panel = m_panel * [(W_panel^2 + H_panel^2) / 12, 0, 0; ...
30
           0, H_panel^2 / 12, 0; ...
31
           0, 0, W_panel^2 / 12];
32
       L_RAB = 0.1778;
34
      W_{RAB} = 0.1778;
35
       H_RAB = 9;
       deq_RAB = -18;
       rot_RAB = [cosd(deg_RAB), 0, sind(deg_RAB); ...
38
           0, 1, 0; ...
           -sind(deg_RAB), 0, cosd(deg_RAB)];
       I_RAB = m_RAB * [(W_RAB^2 + H_RAB^2) / 12, 0, 0; ...
           0, (L_RAB^2 + H_RAB^2) / 12, 0; ...
42
           0, 0, (L_RAB^2 + W_RAB^2) / 12];
43
       I_RAB_rot = rot_RAB * I_RAB * rot_RAB';
       R_RAR = 6;
46
       deg_RAR = -3.87;
47
       rot_RAR = [cosd(deg_RAR), 0, sind(deg_RAR); ...
           0, 1, 0; ...
49
           -sind(deg_RAR), 0, cosd(deg_RAR)];
50
       I_RAR = m_RAR * [R_RAR^2 / 4, 0, 0; ...
51
           0, R_RAR^2 / 4, 0; ...
           0, 0, R_RAR^2 / 2];
53
       I_RAR_rot = rot_RAR * I_RAR * rot_RAR';
```

```
55
       I_c = {I_bus, I_RIS, I_panel, I_panel, I_RAB_rot, I_RAR_rot};
56
       I = zeros([3 3]);
57
       for i = 1:length(I_c)
           D = [y(i)^2 + z(i)^2, -x(i) * y(i), -x(i) * z(i); ...
59
               -y(i) * x(i), x(i)^2 + z(i)^2, -y(i) * z(i); ...
60
               -z(i) * x(i), -y(i) * z(i), x(i)^2 + y(i)^2];
61
62
           I = I + I_{c}\{i\} + m(i) * D;
       end
63
  end
```

1.6 PROBLEM 6

Discretize your spacecraft through its outer surfaces (geometry). Develop a Matlab/Simulink function to handle barycenter (geometry, no mass distribution) coordinates, size, and unit vectors normal to each outer surface of the spacecraft in body frame. You can list all this information in a Matrix. This will be essential later on to compute environmental torques acting on the spacecraft from forces, surface orientation, and the vectors connecting the satellite's center of mass to each surface's center of mass.

For the purpose of discretizing the spacecraft into surfaces, we consider the outer faces of the bus, RIS, and RAB. We also consider the faces of the solar panels and RAR, which are modeled as thin plates. The centroid (barycenter) coordinates and area for each surface are obtained using the surface properties tool in SolidWorks, and a unit normal vector is manually computed based on the orientation of the surface. We then enter this data into a CSV file, which can be read into MATLAB using the following function:

```
function [barycenter, normal, area] = surfaces(filename, rotm)
data = readmatrix(filename);
barycenter = rotm * data(:,1:3)';
normal = rotm * data(:,4:6)';
area = data(:,7)';
end
```

This function stores the data into arrays of barycenter coordinates, unit normal vector components, and area. Each row of an array corresponds to a particular surface. The data is shown in Table 5, annotated with the identity of each surface.

Table 5: Surface parameters

	Barycenter [m]				Normal		
Surface	X	\mathbf{y}	Z	X	\mathbf{y}	Z	Area [m²]
Bus front, minus RIS (+x)	0.6	0	0	1	0	0	2.4
Bus rear (-x)	-0.6	0	0	-1	0	0	3.42
Bus side (+y)	0	0.9	0	0	1	0	2.28
Bus side (-y)	0	-0.9	0	0	-1	0	2.28
Bus top $(+z)$	0	0	0.95	0	0	1	2.16
Bus bottom (-z)	0	0	-0.95	0	0	-1	2.16
RIS front (+x)	3.1	0	0	1	0	0	1.02
RIS top $(+z)$	1.85	0	0.55	0	0	1	1.15
RIS bottom (-z)	1.85	0	-0.55	0	0	-1	1.15

RIS side (+y)	1.85	0.55	0	0	1	0	1.15
RIS side (-y)	1.85	-0.55	0	0	-1	0	1.15
RIS angle face (y-z I)	1.85	0.39	0.39	0	0.707	0.707	1.15
RIS angle face (y-z II)	1.85	-0.39	0.39	0	-0.707	0.707	1.15
RIS angle face (y-z III)	1.85	-0.39	-0.39	0	-0.707	-0.707	1.15
RIS angle face (y-z IV)	1.85	0.39	-0.39	0	0.707	-0.707	1.15
Panel +y front $(+x)$	0	3.9	0	1	0	0	11.4
Panel +y rear (-x)	0	3.9	0	-1	0	0	11.4
Panel -y front (+x)	0	-3.9	0	1	0	0	11.4
Panel -y rear (-x)	0	-3.9	0	-1	0	0	11.4
RAB front $(x-z, +x)$	-0.81	0	5.21	0.951	0	0.309	1.6
RAB rear $(x-z, -x)$	-0.99	0	5.18	-0.951	0	-0.309	1.6
RAB side (+y)	-0.9	-0.09	5.19	0	1	0	1.6
RAB side (-y)	-0.9	0.09	5.19	0	-1	0	1.6
RAB top $(+z)$	-2.31	0	9.47	0	0	1	0.03
RAR top $(+z)$	4.28	0	8.31	-0.067	0	0.998	113.1
RAR bottom (-z)	4.28	0	8.31	0.067	0	-0.998	113.1

1.7 PROBLEM 7

At this stage you should have a simple 3D model of your spacecraft including geometry and mass properties of each element. Plot body axes (triad) in 3D superimposed to spacecraft 3D model.

A 3D model of the spacecraft is shown in Figure 2. The model shown is a screen capture from the SolidWorks CAD software.

Figure 2: A 3D model of the satellite

We also show a simplified model of the spacecraft in Figure 3. This is the model we use to compute our mass and surface properties.

Figure 3: A 3D model of the simplified satellite geometry

We also plot the model in MATLAB by importing an STL version of the CAD model. We show the body axes in Figure 4, with the origin chosen as the center of the spacecraft bus.

Figure 4: Satellite model in MATLAB with body axes shown

2 PROBLEM SET 2

2.1 PROBLEM 1

Define orbit initial conditions and make sure you can propagate the orbit of the satellite over multiple orbits using either a Keplerian propagator or a numerical integration scheme (see AA279A material). Best would be to use a numerical integrator, so that you can later try to feed the same environmental forces for orbit propagation which are applied for attitude propagation (very cool!).

From the science users' handbook, we obtain the following orbital elements [10].

We convert these using a MATLAB function into ECI coordinates that can be fed into a numerical orbital propagator. Notice that we first convert the orbital elements a, e, and ν into perifocal (PQW) coordinates, using a and e to find the semi-latus rectum and a, e, and ν to find the distance to the central body (Earth). Then, we perform a series of rotations on these coordinates parameterized by ω , i, and Ω to obtain new coordinates in the ECI frame.

```
function yECI = oe2eci(a,e,i,0,w,nu)
       i = deg2rad(i);
       0 = deg2rad(0);
3
       w = deg2rad(w);
       nu = deg2rad(nu);
5
       p = a * (1 - e^2);
7
       r = p / (1 + e * cos(nu));
       rPQW = [r * cos(nu); r * sin(nu); 0];
8
       vPQW = sqrt(3.986 * 10^5 / p) * [-sin(nu); e + cos(nu); 0];
9
       Rzw = [cos(-w), sin(-w), 0; ...
10
           -\sin(-w), \cos(-w), 0;...
11
           0, 0, 1];
12
13
       Rxi = [1, 0, 0; ...
           0, \cos(-i), \sin(-i);...
14
           0, -\sin(-i), \cos(-i);
15
       RzO = [cos(-0), sin(-0), 0; ...
16
17
           -\sin(-0), \cos(-0), 0;...
           0, 0, 1];
18
       rECI = RzO * Rxi * Rzw * rPQW;
19
       vECI = RzO * Rxi * Rzw * vPQW;
20
       yECI = [rECI; vECI];
21
22 end
```

Then, we can numerically propagate in MATLAB using ode113 using a function that computes the time derivative of the ECI state. This is accomplished simply by setting the time derivative of position equal to the velocity portion of the state and setting the time derivative of velocity equal to an acceleration computed using the law of universal gravitation. Note that while our propagator does not include disturbance forces, it will be easy to incorporate these later. See the appendix corresponding to Problem Set 2 for application of ode113.

```
function [stateDot] = propagator(t, state)
    r = state(1:3);
    v = state(4:6);
    stateDot = zeros(6,1);
    stateDot(1:3) = v; % km/s
    stateDot(4:6) = (-3.986 * 10^5 / norm(r)^2) * r / norm(r); % km/s^2
    end
```

Now, we plot the trajectory for one orbit in Figure 5. Plotting multiple orbits (for example, over 12 days) yields the same plot, as ode113 is very stable for this application.

Figure 5: A single orbit for NISAR in ECI coordinates (no perturbations)

2.2 PROBLEM 2

In general the body axes are not the principal axes. Identify principal axes through the eigenvector/eigenvalue problem discussed in class and compute the rotation matrix from body to principal axes.

The unit vectors of the principal axes with respect to the body axes $(\vec{e_i})$ and the inertia tensor in the principal axes (I_i) can be found by taking the eigenvalue decomposition of the inertia tensor in the body axis. This can be seen in the two equations below.

$$I_i \cdot \vec{e_i} = I_i \cdot \vec{I}_{body}$$
 $i = x, y, z$

$$\vec{I}_{principal} = \begin{bmatrix} I_x & 0 & 0 \\ 0 & I_y & 0 \\ 0 & 0 & I_z \end{bmatrix} = \begin{bmatrix} 7707.07 & 0 & 0 \\ 0 & 14563.2 & 0 \\ 0 & 0 & 18050.4 \end{bmatrix} \text{ kg m}^2$$

We follow convention $I_z > I_y > I_x$ for defining principal axes.

The unit vectors of the principal axes $(\vec{e_i})$ can then be used to find the rotation matrix (\vec{R}) , as shown below.

$$\vec{R} = \begin{bmatrix} \vec{e}_x & \vec{e}_y & \vec{e}_z \end{bmatrix} = \begin{bmatrix} -0.06278 & -0.99803 & 0 \\ 0 & 0 & 1 \\ -0.99803 & 0.06278 & 0 \end{bmatrix}$$

$$\vec{I}_{body} = \vec{R} \vec{I}_{principal} \vec{R}^{\mathsf{T}}$$

2.3 PROBLEM 3

At this stage you should have a simple 3D model of your spacecraft including geometry and mass properties of each element. This includes at least two coordinate systems, body and principal axes respectively, and the direction cosine matrix between them. Plot axes of triads in 3D superimposed to spacecraft 3D model.

Figure 6: Principal axes at center of mass (green) and body axes at origin (red)

2.4 PROBLEM 4

Program Euler equations in principal axes (e.g. in Matlab/Simulink). No external torques. We use the following equations with zero external moments $(M_x, M_y, M_z = 0)$.

$$I_x \dot{\omega}_x + (I_z - I_y)\omega_y \omega_z = M_x$$

$$I_y \dot{\omega}_y + (I_x - I_z)\omega_z \omega_x = M_y$$

$$I_z \dot{\omega}_z + (I_y - I_x)\omega_x \omega_y = M_z$$

```
function [wDot] = eulerEquation(t,w,Ix,Iy,Iz)
wx = w(1);
wy = w(2);
wz = w(3);
wDot = zeros(3,1);
wDot(1) = (Iy - Iz) / Ix * wy * wz;
wDot(2) = (Iz - Ix) / Iy * wz * wx;
wDot(3) = (Ix - Iy) / Iz * wx * wy;
end
```

2.5 PROBLEM 5

Numerically integrate Euler equations from arbitrary initial conditions ($\omega < 10^{\circ}/s$, $\omega_i \neq 0$). Multiple attitude revolutions.

We choose arbitrary initial conditions $\omega_x = 8 \,^{\circ} \, \mathrm{s}^{-1}$, $\omega_y = 4 \,^{\circ} \, \mathrm{s}^{-1}$, and $\omega_z = 6 \,^{\circ} \, \mathrm{s}^{-1}$. The results of numerical integration using ode113 are shown in Figure 7.

Figure 7: Results from numerical integration of Euler equations

2.6 PROBLEM 6

Plot rotational kinetic energy and momentum ellipsoids in 3D (axis equal) corresponding to chosen initial conditions. Verify that semi-axis of ellipsoids corresponds to theoretical values.

For the energy ellipsoid, we compute our surface using rotational kinetic energy based on initial conditions and principal axes inertia tensor.

$$2T = \omega_x^2 I_x + \omega_y^2 I_y + \omega_z^2 I_z$$
$$\frac{\omega_x^2}{2T/I_x} + \frac{\omega_y^2}{2T/I_y} + \frac{\omega_z^2}{2T/I_z} = 1$$

For the given initial conditions, we get semi-major axes of the following lengths: $\omega_x = 0.2332\,\mathrm{rad\,s^{-1}},\ \omega_y = 0.1697\,\mathrm{rad\,s^{-1}},\ \mathrm{and}\ \omega_z = 0.1524\,\mathrm{rad\,s^{-1}}.$ These values make sense given the equation for the energy ellipsoid.

Similarly, we compute our surface for the momentum ellipsoid with angular momentum based on our initial conditions and the principal axes inertia tensor.

$$L = \omega_x^2 I_x^2 + \omega_y^2 I_y^2 + \omega_z^2 I_z^2$$
$$\frac{\omega_x^2}{(L/I_x)^2} + \frac{\omega_y^2}{(L/I_y)^2} + \frac{\omega_z^2}{(L/I_z)^2} = 1$$

For the given initial conditions, we get semi-major axes of the following lengths: $\omega_x = 0.3115 \,\mathrm{rad}\,\mathrm{s}^{-1}$, $\omega_y = 0.1649 \,\mathrm{rad}\,\mathrm{s}^{-1}$, and $\omega_z = 0.1330 \,\mathrm{rad}\,\mathrm{s}^{-1}$. These values make sense given the equation for the momentum ellipsoid and are shown in the plots below.

We plot the energy ellipsoid in Figure 8 and the momentum ellipsoid in Figure 9.

Figure 8: Energy ellipsoid with axes in red

Figure 9: Momentum ellipsoid with axes in red

2.7 PROBLEM 7

Plot polhode in same 3D plot. Verify that it is the intersection between the ellipsoids.

For a polhode plot to be real, the condition below must be verified.

$$I_x < \frac{L^2}{2T} < I_z$$

Based on previously calculated values ($I_x=7707.1, \frac{L^2}{2T}=13752.1, I_z=18050.4$) we can verify that the polhode here will be real.

Figure 11 shows that the polhode is indeed the intersection between the ellipsoids.

Figure 10: Energy and momentum ellipsoids with polhode

2.8 PROBLEM 8

Plot polhode in three 2D planes identified by principal axes (axis equal). Verify that shapes of resulting conic sections correspond to theory.

The polhode conic sections in Figure 11 match expected theory. The polhode as seen along the x-axis is an ellipse, while the polhode along the y-axis is a hyperbola. We also see that when seen along the z-axis, the polhode also forms an ellipse, shown as a half-ellipse in our plot.

Figure 11: 2D views of polhode

2.9 PROBLEM 9

Repeat above steps changing initial conditions, e.g. setting angular velocity vector parallel to principal axis. Is the behavior according to expectations?

We show the angular velocity evolution with the initial conditions shown in Table 2.9. Case 1 involves rotation about the principal x-axis, Case 2 involves rotation about the principal y-axis with a slight disturbance, and Case 3 involved rotation about the z-axis with a slight disturbance.

Case	ω_x (deg/s)	ω_y (deg/s)	ω_z (deg/s)
1	8	0	0
2	0.08	8	0.08
3	0.08	0	8

The specifics of Case 1 are shown in the angular velocity plot in Figure 12, the polhode and ellipsoids in Figure 15, and the 2D views of the polhode in Figure 18. The behavior shown is as expected—when the angular velocity is parallel to the principal axis, we do not have coupling with the other components of angular velocity, and the polhode views in 2D become points rather than conic sections.

For Case 2, Figure 13 shows that the satellite's rotational behavior will oscillate as expected, owing to the properties of the intermediate axis. Additionally, Figure 16, and the 2D views in Figure 19 show a larger polhode, with the slight disturbances leading to ellipsoids with a

substantial intersection. Interestingly, there seems to be a very sharp hyperbola in the xz-plane of the polhode.

Figure 14 illustrates a slight oscillation of angular velocities about the x- and y-axes in Case 3. Meanwhile, the actual region of intersection in the polhode as shown in Figures 17 and 20 is much smaller than in other cases, but not a single point like in the Case 1.

Figure 12: Angular velocity evolution for angular velocity vector for Case 1

Figure 13: Angular velocity evolution for angular velocity vector for Case 2

Figure 14: Angular velocity evolution for angular velocity vector for Case 3

Figure 15: Polhode and ellipsoids for angular velocity vector for Case 1

Figure 16: Polhode and ellipsoids for angular velocity vector for Case 2

Figure 17: Polhode and ellipsoids for angular velocity vector for Case 3

Figure 18: 2D views of polhode for angular velocity vector for Case 1

Figure 19: 2D views of polhode for angular velocity vector for Case 2

Figure 20: 2D views of polhode for angular velocity vector for Case 3

3 PROBLEM SET 3

3.1 PROBLEM 1

Impose that satellite is axial-symmetric ($Ix=Iy\ne Iz$). Repeat numerical simulation from previous pset using initial condition 4) from previous pset.

Problem 1 was solved by setting $I_x = I_y = 7707.07 \,\mathrm{kg \cdot m^2}$ and using the same Euler equation solver from Problem Set 2, Problem 5 with the same initial conditions ($\omega_x = 8^{\circ} \,\mathrm{s^{-1}}$, $\omega_y = 4^{\circ} \,\mathrm{s^{-1}}$).

Figure 21: Numerical solution results

3.2 PROBLEM 2

Program analytical solution for axial-symmetric satellite. Compute it at same time steps and from same initial conditions.

The analytical solution to the Euler equations for an axial-symmetric satellite is based on variables λ and ω_{xy} , as defined below.

$$\lambda = \frac{I_z - I_x}{I_x} \omega_{z_0}$$
$$\omega_{xy} = (\omega_{x_0} + i\omega_{y_0}) e^{i\lambda t}$$

We take the real and imaginary parts of this result to obtain an analytical solution.

$$\omega_x = \text{Re}(\omega_{xy})$$

$$\omega_y = \text{Im}(\omega_{xy})$$

$$\omega_z = \omega_{z_0}$$

Figure 22: Analytical solution results

3.3 PROBLEM 3

Compare numerical and analytical solutions. Plot differences (errors), do not only superimpose absolute values. Tune numerical integrator for large discrepancies. Are angular velocity vector and angular momentum vector changing according to theory in principal axes?

Figure 23 is the error between the numerical and analytical solutions. We observe that the error is very small, thus our numerical solution is a good candidate.

Figure 23: Error between numerical and analytical solutions

The angular velocity vector and angular momentum vectors rotate in a plane, offset at a constant angle from the z-axis, as observed in Figure 24. This matches the expected theoretical behavior.

Figure 24: Angular velocity (red) and angular momentum (blue) unit vectors over time.

3.4 PROBLEM 4

Program Kinematic equations of motion correspondent to a nominal attitude parameterization of your choice.

We choose a nominal attitude parameterization of quaternions, our choice being based on the absence of singularities. The following function computes the time derivative for a state consisting of quaternions (4 parameters) and angular velocity (3 parameters).

The equations below describe the propagation of kinematics using quaternions.

$$\vec{\Omega} = \begin{bmatrix} 0 & \omega_z & -\omega_y & \omega_x \\ -\omega_z & 0 & \omega_x & \omega_y \\ \omega_y & -\omega_x & 0 & \omega_z \\ -\omega_x & -\omega_y & -\omega_z & 0 \end{bmatrix}$$

$$\frac{d\vec{q}}{dt} = \frac{1}{2} \vec{\Omega} \vec{q}(t)$$

The following script shows the computation of the time derivative for quaternions

```
function stateDot = kinQuaternion(t, state, Ix, Iy, Iz)
      % Computes state derivatives for quaternions, angular velocity
      % Assign variables
3
      q = state(1:4);
      wx = state(5);
5
      wy = state(6);
      wz = state(7);
7
      stateDot = zeros(7,1);
      % Angular velocity time derivatives
10
      stateDot(5) = (Iy - Iz) / Ix * wy * wz;
11
      stateDot(6) = (Iz - Ix) / Iy * wz * wx;
12
      stateDot(7) = (Ix - Iy) / Iz * wx * wy;
13
      sigma = [0, wz, -wy, wx; ...]
14
          -wz, 0, wx, wy; ...
          wy, -wx, 0, wz; ...
16
          -wx, -wy, -wz, 0;
17
      % Quaternion time derivative
18
      qDot = 0.5 * sigma * q;
19
      stateDot(1:4) = qDot;
20
21 end
```

We can use the previous function to perform a forward Euler numerical integration. We call the previous function over a fixed time step to compute the evolution of the state.

```
function [q,w] = kinQuaternionForwardEuler(q0,w0,Ix,Iy,Iz,tFinal,tStep)
      % Forward Euler integration for quaternions, angular velocity
      nStep = ceil(tFinal/tStep);
3
      q = nan(nStep+1, 4);
4
      w = nan(nStep+1,3);
      q(1,:) = q0';
6
      w(1,:) = w0';
7
      for i = 1:nStep
          t = i * tStep;
          qi = q(i,:)';
10
          wi = w(i,:)';
11
           state = [qi;wi];
12
          stateDot = kinQuaternion(t, state, Ix, Iy, Iz);
13
          nextState = state + tStep * stateDot;
14
          q(i+1,:) = nextState(1:4) / norm(nextState(1:4));
15
          w(i+1,:) = nextState(5:7);
16
      end
18 end
```

For improved precision, we implement a 4th order Runge-Kutta method, which uses a weighted sum of slopes to obtain a better result. This also calls the time derivative function, but does so with different values of the state, which are weighted to obtain the next state for each step.

```
function [q,w] = kinQuaternionRK4(q0,w0,Ix,Iy,Iz,tFinal,tStep)
% 4th order Runge-Kutta integration for quaternions, angular ...
velocity
s nStep = ceil(tFinal/tStep);
q = nan(nStep+1,4);
w = nan(nStep+1,3);
```

```
q(1,:) = q0';
      w(1,:) = w0';
      for i = 1:nStep
           t = i * tStep;
           qi = q(i,:)';
10
           wi = w(i,:)';
11
           state = [qi;wi];
13
           k1 = kinQuaternion(t, state, Ix, Iy, Iz);
           k2 = kinQuaternion(t+tStep/2, state+(k1*tStep/2), Ix, Iy, Iz);
14
           k3 = kinQuaternion(t+tStep/2, state+(k2*tStep/2), Ix, Iy, Iz);
15
           k4 = kinQuaternion(t+tStep, state+(k3*tStep), Ix, Iy, Iz);
           nextState = state + tStep * (k1/6 + k2/3 + k3/3 + k4/6);
17
           q(i+1,:) = nextState(1:4) / norm(nextState(1:4));
18
           w(i+1,:) = nextState(5:7);
19
20
       end
21 end
```

3.5 PROBLEM 5

Program Kinematic equations of motion correspondent to a different attitude parameterization from the previous step. This is used for comparison, to get familiar with different approaches, and as fall back solution in the case of singularities.

Similarly, we create a function that computes the time derivative of a state consisting of Euler angles and angular velocity using the 3-1-3 symmetric Euler angle sequence.

The equations for the propagation of kinematics for Euler angles are below.

$$\frac{d\phi}{dt} = \frac{\omega_x \sin(\psi) + \omega_y \cos(\psi)}{\sin(\theta)}$$
$$\frac{d\theta}{dt} = \omega_x \cos(\psi) - \omega_y \sin(\psi)$$
$$\frac{d\psi}{dt} = \omega_z - (\omega_x \sin(\psi) + \omega_y \cos(\psi))\cot(\theta)$$

```
function stateDot = kinEulerAngle(t, state, Ix, Iy, Iz)
       % Computes state derivative for Euler angles, angular velocity
       % Assign variables
3
      phi = state(1);
      theta = state(2);
      w = state(4:6);
      stateDot = zeros(6,1);
8
      % Angular velocity time derivatives
      stateDot(4) = (Iy - Iz) / Ix * w(2) * w(3);
10
      stateDot(5) = (Iz - Ix) / Iy * w(3) * w(1);
11
      stateDot(6) = (Ix - Iy) / Iz * w(1) * w(2);
12
      % Euler angle time derivatives
      % 312
14
      EPrimeInv = [sin(phi)*sin(theta) cos(phi)*sin(theta) cos(theta); ...
15
           cos(theta) *cos(phi) -sin(phi) *cos(theta) 0; ...
16
           sin(phi) cos(phi) 0] * (1 / cos(theta));
17
      % 313
18
       % EPrimeInv = [-sin(phi)*cos(theta) -cos(phi)*cos(theta) ...
19
          sin(theta); ...
```

```
20 % cos(phi)*sin(theta) -sin(phi)*sin(theta) 0; ...
21 % sin(phi) cos(phi) 0] * (1 / sin(theta));
22 stateDot(1:3) = EPrimeInv * w;
23 end
```

We can propagate this with forward Euler, as in the previous section.

```
function [state] = ...
     kinEulerAngleForwardEuler(state0, Ix, Iy, Iz, tFinal, tStep)
      % Forward Euler integration for state Euler angles, angular velocity
      nStep = ceil(tFinal/tStep);
      state = nan(nStep+1,6);
      state(1,:) = state0;
      for i = 1:nStep
7
          t = i * tStep;
           statei = state(i,:)';
8
           stateDot = kinEulerAngle(t, statei, Ix, Iy, Iz);
           state(i+1,:) = statei + tStep * stateDot;
11
      end
12 end
```

For our actual implementation, we choose to use the time derivative function with ode113 for improved accuracy. Note that this cannot be done as simply for quaternions, as they require normalization at each step, hence our decision to implement RK4.

3.6 PROBLEM 6

Numerically integrate Euler AND Kinematic equations from arbitrary initial conditions (warning: stay far from singularity of adopted parameterization). Multiple revolutions. The output is the evolution of the attitude parameters over time. These attitude parameters describe orientation of principal axes relative to inertial axes.

We integrate our attitude parameterizations (including angular velocity using Euler equations).

Figure 25: Evolution of quaternions

Figure 26: Evolution of Euler angles

3.7 PROBLEM 7

a. Compute angular momentum vector in inertial coordinates and verify that it is constant (not only its magnitude as in PS2) by plotting its components.

Figure 27 shows the components of the angular momentum vector over time, as computed from our primary attitude representation of quaternions. The angular momentum vector (and its individual components) remains constant in the absence of external torques.

Figure 27: Angular momentum in inertial coordinates is constant

b. Compute angular velocity vector in inertial coordinates and plot the herpolhode in 3D (line drawn in inertial space by angular velocity). Is the herpolhode contained in a plane perpendicular to the angular momentum vector? Show it.

Figure 28 shows the angular momentum and angular velocity vectors overlaid with the herpolhode. The animation (see caption) shows the evolution of the herpolhode and provides a better visualization of the herpolhode's orientation in a plane perpendicular to the angular momentum vector.

Figure 28: Herpolhode (Animated: https://tinyurl.com/herpolhode)

c. Compute and plots unit vectors of orbital frame, body axes, and principal axes in 3D as a function of time in inertial coordinates. (Be creative on how to show moving vectors in 3D).

Figures 29, 30, and 31 include the plots of the orbital (RTN), body, and principal axes over the course of a single orbit. The RTN frame varies with rotation about the orbit, while rotation can be seen in the body and principal axis plots based on the rotation we chose in our initial condition.

Figure 29: Propagation of RTN frame

Figure 30: Propagation of body axes

Figure 31: Propagation of principal axes

4 PROBLEM SET 4

4.1 PROBLEM 1

Equilibrium tests

a. Assume that 2 components of the initial angular velocities are zero and that the principal axes are aligned with the inertial frame (e.g., zero Euler angles). Verify that during the simulation the 2 components of angular velocity remain zero and that the attitude represents a pure rotation about the rotation axis (e.g., linearly increasing Euler angle). Plot velocities and angles.

To test the equilibrium state, we choose the following initial angular velocity,

$$\vec{\omega} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \operatorname{rad} s^{-1},$$

and we set all Euler angles to zero. We use a 312 convention for Euler angles, which avoids singularities for this configuration.

Figure 32 shows results of the simulation, where ω_x and ω_y remain zero and ω_z maintains a constant value.

Figure 32: Evolution of angular velocity

Similarly, in Figure 33, ϕ and θ Euler angles remain at zero while the ψ Euler angle increases linearly.

Figure 33: Evolution of Euler angles

b. Repeat a. by setting the initial attitude to match the RTN frame. Set the initial angular velocity to be non-zero only about N. Show the evolution of attitude motion in the RTN frame and give an interpretation of the results (recall that you might have J2 effects in orbit propagation, consider removing them for verification).

We choose to align our principal axes with the RTN frame. For selected initial orbital conditions taken from the NISAR science users' handbook, we obtain the initial position and compute the RTN frame, which we then use to find initial aligned Euler angles.

Figure 34: Evolution of angular velocity

We set a nonzero ω_z angular velocity, which is aligned with the normal direction of the RTN frame, and we choose all other angular velocities to be zero. Propagating the orbit and attitude, we find that the angular velocity remains constant throughout the orbit, even relative to the RTN frame, as seen in Figure 34. From Figure 35, we see that the θ and ψ Euler angles related to the RTN frame are constant while ϕ varies.

Figure 35: Evolution of Euler angles

This result shows our satellite's maximum inertia principal axis remains aligned with the normal direction of the orbit such that the maximum inertia principal axis remains normal to the plane of the orbit, given the initial condition that axes are aligned with the RTN frame and angular velocity along other axes is nonzero.

4.2 PROBLEM 2

Stability tests

a. Pretend you have a single-spin satellite. Set initial conditions to correspond alternatively to the 3 possible equilibrium configurations (rotation about principal axes of inertia). Slightly perturb initial condition. Is the attitude stable or unstable? In angles and velocities? If stable, periodically or asymptotically? Show it.

For a single spin satellite, the three possible equilibrium configurations are rotation about the minimum inertia principal axis, rotation about the intermediate axis, and rotation about the maximum inertia principal axis. Figures 36, 37, 38 show that the Euler angles are stable about the minimum and maximum axes, but it is unstable about the intermediate axes. This is as expected for our system, with the minimum and maximum axes exhibiting periodic stability with small oscillations in angular velocity.

Figure 36: Simulation of satellite spinning on its minimum principal axis

Note that while in Figure 36 the angular velocities are periodically stable, the Euler angles oscillate. This is likely a consequence of the sequence of rotations used for our choice of Euler angle convention.

Figure 37: Simulation of satellite spinning on its intermediate principal axis

Figure 38: Simulation of satellite spinning on its maximum principal axis

4.3 PROBLEM 3

Adding a momentum wheel or rotor (dual-spin satellite)

a. Re-program Euler equations to include a generic momentum wheel or rotor with rotation axis aligned with one of the principal axes of inertia. Ideally the wheel or rotor has specs representative of commercial products (inertia, rotational speed).

We choose to use specifications from the RSI 68 momentum wheel, for which datasheets are readily available online [11]. This particular momentum wheel is intended for spacecraft in the 1,500 to 5,000 kg range, which matches our mission. We use a diameter of 347 mm and mass of 8.9 kg and model our reaction wheel as a hoop with mass concentrated about the outer diameter. We also use 2,500 RPM, which yields approximately the nominal angular momentum from the datasheet—the maximum angular velocity is 6,000 RPM. The following Euler equations are used to model a momentum wheel as a rotor. For this problem, we set the torques on the right side of each equation to zero, as we are not considering external torques.

$$I_{x}\dot{\omega}_{x} + I_{r}\dot{\omega}_{r}r_{x} + (I_{z} - I_{y})\omega_{y}\omega_{z} + I_{r}\omega_{r}(\omega_{y}r_{z} - \omega_{z}r_{y}) = M_{x}$$

$$I_{y}\dot{\omega}_{y} + I_{r}\dot{\omega}_{r}r_{y} + (I_{x} - I_{z})\omega_{z}\omega_{x} + I_{r}\omega_{r}(\omega_{z}r_{x} - \omega_{x}r_{z}) = M_{y}$$

$$I_{z}\dot{\omega}_{z} + I_{r}\dot{\omega}_{r}r_{z} + (I_{y} - I_{x})\omega_{x}\omega_{y} + I_{r}\omega_{r}(\omega_{x}r_{y} - \omega_{y}r_{x}) = M_{z}$$

$$I_{r}\dot{\omega}_{r} = M_{r}$$

The function kinEulerAngleWheel, shown below, is used in addition to ode113 to simulate the angular velocities over time.

```
function stateDot = kinEulerAngleWheel(t,state,M,r,Ix,Iy,Iz,Ir)
% Computes state derivative for Euler angles, angular velocity
```

```
% Adds momentum wheel
       % Assign variables
       phi = state(1);
       theta = state(2);
7
       w = state(4:7);
8
       stateDot = zeros(7,1);
9
10
        Angular velocity time derivatives
       wDot = eulerEquationWheel(t,w,M,r,Ix,Iy,Iz,Ir);
11
       stateDot = zeros(7,1);
12
       stateDot(4) = wDot(1);
13
       stateDot(5) = wDot(2);
14
       stateDot(6) = wDot(3);
15
       stateDot(7) = wDot(4);
16
       % Euler angle time derivatives
17
       % 312
18
       EPrimeInv = [sin(phi)*sin(theta) cos(phi)*sin(theta) cos(theta); ...
19
           cos(theta)*cos(phi) -sin(phi)*cos(theta) 0; ...
20
21
           sin(phi) cos(phi) 0] * (1 / cos(theta));
       % 313
       % EPrimeInv = [-sin(phi)*cos(theta) -cos(phi)*cos(theta) ...
23
          sin(theta); ...
             cos(phi)*sin(theta) -sin(phi)*sin(theta) 0; ...
25
             sin(phi) cos(phi) 0] * (1 / sin(theta));
       stateDot(1:3) = EPrimeInv * w(1:3);
26
  end
27
```

b. Numerically integrate Euler AND Kinematic equations from equilibrium initial condition. Verify that integration is correct as from previous tests (conservation laws, rotations, etc.).

Simulating the Euler and kinematic equations, Figure 39 shows the angular momentum vector remain constant in the inertial frame, as expected.

Figure 39: Angular momentum conserved with angular momentum components constant

c. Verify equilibrium and its stability similar to previous pset.

By linearizing the Euler equations about equilibrium, the following result shows that periodic stability (in this case, about the z-axis) can be met with a reaction wheel if one of the following conditions are met:

1)
$$I_r \omega_r > (I_y - I_z)\omega_z$$
 AND $I_r \omega_r > (I_x - I_z)\omega_z$

2)
$$I_r \omega_r < (I_y - I_z)\omega_z$$
 AND $I_r \omega_r < (I_x - I_z)\omega_z$

We demonstrate equilibrium and stability for this new system with the reaction wheel. Figures 40, 41, 42 show the analysis for each of the principal axes. As before, the minimum and maximum inertia principal axes are periodically stable, but the intermediate axis is unstable.

This behavior resembles that found in Problem 2 above. In this case, we perturb each angular velocity as well as the rotor angular velocity. Our rotor velocity in this case is not enough to stabilize spin about the intermediate axis.

Figure 40: Stability analysis about minimum inertia principal axis

Figure 41: Stability analysis about intermediate axis

Figure 42: Stability analysis about maximum inertia principal axis

d. Use the stability condition to make attitude motion stable for rotation about intermediate moment of inertia by changing moment of inertia and/or angular velocity of the momentum wheel or rotor.

By increasing the angular velocity of the rotor by a factor of 10, we obtain a stable system for spin about the intermediate axes.

Figure 43:

e. Try to make rotation about another arbitrary axis (potentially relevant to your project) stable through a generic momentum wheel or rotor.

We choose to stabilize spin about the body x-axis, which is important for pointing our satellite and appropriately sweeping the target with our SAR. We use the rotation previously found between the principal and body axes to achieve this, applying the rotation to the angular velocity and the angular momentum vector direction of the momentum wheel.

Figure 44: Initially unstable attitude with low momentum wheel angular velocity

Figure 45: Periodically stable attitude after increasing momentum wheel angular velocity 10x

4.4 PROBLEM 4

Gravity gradient torque (modeling)

a. Remove rotor.

A new function was created without effect of the rotor.

b. Program gravity gradient torque. Feed torque to Euler equations. This is the first perturbation you model resulting from the interaction of the spacecraft with the environment. Hint: change your orbit to make gravity gradient significant if that's not the case.

The equations for the gravity gradient torque are below.

$$I_x \dot{\omega}_x + (I_z - I_y)\omega_y \omega_z = 3n^2 (I_z - I_y)c_y c_z$$

$$I_y \dot{\omega}_y + (I_x - I_z)\omega_z \omega_x = 3n^2 (I_x - I_z)c_z c_x$$

$$I_z \dot{\omega}_z + (I_y - I_x)\omega_x \omega_y = 3n^2 (I_y - I_x)c_x c_y$$

In the above equation, $\vec{c} = [c_x, c_y, c_z]^{\mathsf{T}}$ is the normalized direction of \vec{R} .

The function gravGrad was developed to be used with ode113 to propagate the Euler equations and kinematics with gravity gradient torques.

```
function [stateDot] = gravGrad(t, state, Ix, Iy, Iz, n)
      % Orbit position and velocity
      r = state(1:3);
      v = state(4:6);
      % Angular velocity
      w = state(7:9);
      % Euler angles
      phi = state(10);
10
      theta = state(11);
11
12
13
      stateDot = zeros(12,1);
      stateDot(1:3) = v;
14
      stateDot(4:6) = (-3.986 * 10^5 / norm(r)^2) * r / norm(r); % km/s^2
15
      radial = r / norm(r);
17
      A\_ECI2P = e2A(state(10:12));
18
      c = A\_ECI2P * radial;
19
      M = gravGradTorque(Ix, Iy, Iz, n, c);
      stateDot(7) = (M(1) - (Iz - Iy) * w(2) * w(3)) / Ix;
21
      stateDot(8) = (M(2) - (Ix - Iz) * w(3) * w(1)) / Iy;
22
      stateDot(9) = (M(3) - (Iy - Ix) * w(1) * w(2)) / Iz;
23
      % Euler angle time derivatives
25
      % 312
26
      EPrimeInv = [sin(phi)*sin(theta) cos(phi)*sin(theta) cos(theta); ...
27
           cos(theta)*cos(phi) -sin(phi)*cos(theta) 0; ...
28
29
           sin(phi) cos(phi) 0] * (1 / cos(theta));
```

c. Verify that the magnitude of the modeled torque is consistent with the orbit and inertia tensor of your satellite. Hint: use simplified formulas from class on modeling of gravity gradient torque.

We can estimate the order of magnitude for gravity gradient torques using the following equation.

$$\vec{M} = \frac{3\mu}{a^3} \begin{bmatrix} (I_z - I_y)c_yc_z\\ (I_x - I_z)c_zc_x\\ (I_y - I_x)c_xc_y \end{bmatrix}$$

The parameters used were the known moments of inertia ($I_x = 7707$, $I_y = 14563$, $I_z = 18050 \,\mathrm{kg \cdot m^2}$), known values for Earth ($a = 7125.49 \,\mathrm{km}$, $\mu = 398600 \,\mathrm{km^3/s^2}$), and an arbitrary $\vec{c} = [\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}]$. With these values, we arrive at:

$$\vec{M} = \begin{bmatrix} 0.384174\\ 1.13956\\ -0.755387 \end{bmatrix} \cdot 10^{-2} \,\mathrm{N}\,\mathrm{m}$$

These values are in line with what we see in Figure 50.

d. Numerically integrate Euler and Kinematic equations including gravity gradient from initial conditions corresponding to body axes aligned with the orbital frame (RTN). Verify that gravity gradient torque is zero, besides numerical errors. Hint: you may need to simplify the orbit to unperturbed circular to achieve this. Check that initial angular velocity matches mean motion.

Figures 46, 47 demonstrate zero torque when aligned with RTN frame and constant angular velocity. Simulating for longer periods reveals the torque error is periodically stable.

Figure 46: Zero gravity gradient torque for satellite aligned with RTN frame

Figure 47: Angular velocity parallel to RTN normal equal to mean motion, all others zero

e. Numerically integrate Euler and Kinematic equations including gravity gradient from arbitrary initial conditions (e.g., relevant to your project). Plot external torque (3 components w.r.t. time) and resulting attitude motion (depends on attitude parameterization, add Euler angles for better geometrical interpretation) over multiple orbits. Comment on results.

We choose initial conditions by aligning our body axes to RTN, which will more closely resemble the orientation of the satellite when collecting science data.

Figure 48: Euler angles with gravity gradient for satellite with arbitrary initial conditions

Figure 49: Angular velocity with gravity gradient for satellite with arbitrary initial conditions

The figures show that there is a noticeable effect of gravity gradient torque on the satellite, although the magnitude of the torque is low. This causes changes to our Euler angles throughout the orbit, meaning we will need a control system to stabilize and point our satellite in order to meet mission requirements.

Figure 50: Gravity gradient torques for satellite with arbitrary initial conditions

5 PROBLEM SET 5

5.1 PROBLEM 1

Gravity gradient torque (stability)

a. Calculate the coefficients Ki of the moments of inertia which drive stability under gravity gradient. Compute and plot regions of stable and unstable motion similar to the picture below:

The following equations show the relationships for gravity gradient stability in terms of moments of inertia. The first inequality hold for when the pitch is stable, and the last two inequalites hold for when the roll and yaw are stable.

$$k_N = \frac{I_T - I_R}{I_N}, \quad k_T = \frac{I_N - I_R}{I_T}, \quad k_R = \frac{I_N - I_T}{I_R}$$
 $k_T > k_R, \quad k_R k_T > 0, \quad 1 + 3k_T + k_R k_T > 4\sqrt{k_R k_T}$

We show the plot of stable and unstable motion under gravity gradient. When computing the coefficients using moments of inertia about the principal axes, we obtain the following plot. In this case, we investigate the stability for the satellite when it is rotated such that the spacecraft is oriented appropriately for SAR operations, that is, principal x-axis is anti-radial, principal y-axis is opposite of cross-track, and principal z-axis is opposite of along-track. However, this orientation is unstable, as shown below.

Figure 51: Stability for nominal axes

b. Considering the results from 1a, comments on the expected stability of the attitude motion of your satellite about equilibrium. Try to reproduce stable and unstable motion by setting proper initial conditions and perturbing those conditions slightly (e.g., by 1%). Plot attitude parameters (e.g., Euler angles) to show stability or instability.

First, without perturbations, the satellite can maintain steady attitude, demonstrating that this chosen orientation is indeed an equilibrium.

Figure 52: Attitude evolution for unstable orientation without perturbations

Figure 53: Angular velocity evolution for unstable orientation without perturbations

We expect unstable behavior for small perturbations. Previously, we have already shown that aligning principal axes with RTN produces stable behavior when there are no perturbations. Now, we will introduce small perturbations, causing the system to leave equilibrium and demonstrating that it is unstable.

Figure 54: Attitude evolution for unstable orientation with 1% perturbations

Figure 55: Angular velocity evolution for unstable orientation with 1% perturbations

c. How would you need to change the mass distribution and/or nominal attitude of your satellite to obtain stable motion from the gravity gradient torque? Would it make sense for your project? Show a couple of potential configurations in the Ki plane and resulting stability of attitude motion at the equilibrium. This is done by changing your inertia tensor and simulating numerically.

We will have to align the principal axes XYZ with RTN (respectively) to obtain a stable attitude motion.

Figure 56: Stability for aligned principal axes

We expect stable behavior for small perturbations. Previously, we have already shown that aligning principal axes with RTN produces stable behavior when there are no perturbations. Now, we will introduce small perturbations.

Figure 57: Attitude evolution for stable orientation with 1% perturbations

Figure 58: Angular velocity evolution for stable orientation with 1% perturbations

As expected, our attitude motion (angular velocities and Euler angles) are periodically stable with a small perturbation in initial condition.

We cannot maintain this orientation if we want to properly point the radar antenna located at the top of the spacecraft, so it does not make sense to orient the satellite along principal axes for gravity gradient stability. Instead, we will likely require magnetorquers to offset angular momentum changes from environmental torques, including gravity gradient torques due to our unstable equilibrium.

5.2 PROBLEM 2

In addition to gravity gradient, start programming perturbation torques due to magnetic field, solar radiation pressure, and atmospheric drag. Note 1: You should apply a very minimal/basic model for perturbations that are not relevant (negligible) to your project. It is expected that you do not ignore them. Note 2: All perturbations can be grouped into a single large subsystem called environment or similar whose output feed the Euler equations. Note 3: Re-use as many functions as possible for solar radiation pressure and atmospheric drag.

In addition to gravity gradient torques, we modeled torque from magnetic field interactions, solar radiation pressure, and atmospheric drag.

The equation for the torque from the magnetic field interactions is shown below.

$$\vec{M}_m = \vec{m}_{sat} \times \vec{B}_{Earth}$$

Since the satellite is operates in LEO, the spherical harmonic model up to n = 4 was used for maximum accuracy. This model is based on the geocentric distance (R), colatitude (θ) , and longitude (ϕ) . The model requires Gaussian coefficients $(g^{n,m}, h^{n,m})$ and Legendre functions $(P^{n,m})$ and their derivatives $(\frac{\delta P^{n,m}(\theta)}{\delta \theta})$, which are explained in more detail in Wertz [12].

$$B_{R} = \sum_{n=1}^{4} \left(\frac{R_{Earth}}{R}\right)^{n+2} (n+1) \sum_{m=0}^{n} \left(g^{n,m} \cos m\phi + h^{n,m} \sin m\phi\right) P^{n,m}(\theta)$$

$$B_{\theta} = -\sum_{n=1}^{4} \left(\frac{R_{Earth}}{R}\right)^{n+2} \sum_{m=0}^{n} \left(g^{n,m} \cos m\phi + h^{n,m} \sin m\phi\right) \frac{\delta P^{n,m}(\theta)}{\delta \theta}$$

$$B_{\phi} = -\frac{1}{\sin \theta} \sum_{n=1}^{4} \left(\frac{R_{Earth}}{R}\right)^{n+2} \sum_{m=0}^{n} m(-g^{n,m} \sin m\phi + h^{n,m} \cos m\phi) P^{n,m}(\theta)$$

The equations below define the solar radiation torque, where C_S is the specular reflection coefficient, C_d is the diffuse reflection coefficient, \vec{S} is the vector facing the Sun, and e_i is 1 if the surface is illuminated and 0 otherwise. In implementation, we represent e_i as a boolean tensor in tensor operations for fast computation.

$$\vec{M}_S = \sum_{i=1}^n \vec{r}_i \times e_i \int_{S_i} d\vec{f}_{total_i}$$
$$d\vec{f}_{total} = -P((1 - C_S)\hat{\vec{S}} + 2(C_S \cos \theta + \frac{1}{3}C_d)\cos \theta dA$$

Finally, the equation below define the aerodynamic torque. Velocity is relative velocity of the spacecraft to the atmosphere, and we can compute the atmosphere's relative motion using a cross product of the position vector and Earth's rotational rate in ECI.

$$d\vec{f}_{aero} = -\frac{1}{2}C_D \rho V^2 (\hat{\vec{V}} \cdot \hat{\vec{N}})\hat{\vec{V}} dA$$

The following function enables the propagation of the orbit with the specified perturbation torques.

```
prinction [stateDot] = orbitTorque(t,state,Ix,Iy,Iz, ...

CD,Cd,Cs,P,m,UT1, ...

barycenter,normal,area,cm,n)

warning('off','aero:atmosnrlmsise00:setf107af107aph')

% Orbit position and velocity

r = state(1:3);

v = state(4:6);

rearth = state(13:15);

vearth = state(16:18);

% Angular velocity

w = state(7:9);

% Euler angles

phi = state(10);
theta = state(11);
```

```
18
      % Gravity gradient torque
      radial = r / norm(r);
      A\_ECI2P = e2A(state(10:12));
      c = A_ECI2P * radial;
      Mgg = gravGradTorque(Ix, Iy, Iz, n, c);
      % Drag torque
       % Hard-coded with Earth radius for now
26
       [\sim, density] = atmosnrlmsise00(1000 * (norm(r) - ...
          6378.1),0,0,2000,1,0);
      rho = density(6);
      vPrincipal = A_ECI2P * (v + cross([0; 0; 7.2921159E-5],r));
       [~,Md] = drag(vPrincipal,rho,CD,barycenter,normal,area,cm);
      % Solar radiation pressure torque
      % Hard-coded with Earth axial tilt for now
33
      Rx = [1 \ 0 \ 0; \ 0 \ cosd(23.5) \ -sind(23.5); \ 0 \ sind(23.5) \ cosd(23.5)];
      s = A\_ECI2P * (-Rx * rEarth - r); % SCI -> ECI -> XYZ
      [~, Msrp] = srp(s,P,Cd,Cs,barycenter,normal,area,cm);
37
      % Magnetic field torque
       % Hard-coded with Earth radius for now
      Mm = magFieldTorque(m,r,state(10:12),t,6378.1,UT1);
40
41
      % Compute net moments
42
      Mx = Mgg(1) + Md(1) + Msrp(1) + Mm(1);
      My = Mgg(2) + Md(2) + Msrp(2) + Mm(2);
      Mz = Mgg(3) + Md(3) + Msrp(3) + Mm(3);
45
      % Time derivatives
      stateDot = zeros(12,1);
48
      stateDot(1:3) = v;
      stateDot(4:6) = (-3.986E5 / norm(r)^2) * r / norm(r); % km/s^2
      stateDot(7) = (Mx - (Iz - Iy) * w(2) * w(3)) / Ix;
      stateDot(8) = (My - (Ix - Iz) * w(3) * w(1)) / Iy;
52
      stateDot(9) = (Mz - (Iy - Ix) * w(1) * w(2)) / Iz;
53
55
      % 312 Euler angle time derivatives
      EPrimeInv = [sin(phi)*sin(theta) cos(phi)*sin(theta) cos(theta); ...
56
           cos(theta)*cos(phi) -sin(phi)*cos(theta) 0; ...
57
           sin(phi) cos(phi) 0] * (1 / cos(theta));
      stateDot(10:12) = EPrimeInv * w;
      % Sun position
      stateDot(13:15) = vEarth;
      stateDot(16:18) = (-1.327E11 / norm(rEarth)^2) * ...
63
           rEarth / norm(rEarth); % km/s^2
65 end
```

```
function [F,M] = drag(v,rho,CD,barycenter,normal,area,cm)
% Compute drag in principal axes
% RE = 6378.1 % km
u = v / norm(v);
N = normal;
Aeff = ((u' * N) > 0) .* area;
```

```
rC = barycenter - cm;
7
       D = -0.5 * CD * rho * norm(v)^2 * (u' * (N .* Aeff)) .* u;
8
       F = sum(D, 2);
      M = sum(cross(rC,D),2);
11
       % Slow loop function (obsolete)
12
       % u = v / norm(v);
13
14
       % F = zeros([3 1]);
       % M = zeros([3 1]);
15
       % for i = length(area)
16
         n = normal(:,i);
17
       응
       응
             if dot(u,n) < 0
18
       응
                 rC = (barycenter(:,i) - cm);
19
                 A = area(1,i);
20
                 D = -0.5 * CD * rho * norm(v)^2 * dot(u,n) * u * A;
21
                 M = M + cross(rC, D);
                 F = F + D;
23
24
       응
             end
       % end
26 end
```

```
function [F,M] = srp(s,P,Cd,Cs,barycenter,normal,area,cm)
      % Compute solar radiation pressure in principal axes
      u = s / norm(s);
3
      N = normal;
4
      Aeff = ((u' * N) > 0) .* area;
      rC = barycenter - cm;
6
      theta = acos((u' * N) ./ (norm(u) * vecnorm(N)));
7
      SRP = -P * cos(theta) .* Aeff .* ...
           ((1 - Cs) * u + 2 * (Cs * cos(theta) + Cd / 3) .* N);
10
      F = sum(SRP, 2);
      M = sum(cross(rC, SRP), 2);
11
12
      % Slow loop function (obsolete)
       % F = zeros([3 1]);
14
       % M = zeros([3 1]);
15
       % for i = length(area)
16
            n = normal(:,i);
             if dot(u,n) > 0
18
                 rC = barycenter(:,i) - cm;
       응
19
                 theta = acos(dot(u,n) / (norm(u) * norm(n)));
20
                 A = area(1,i);
21
22
       응
                 SRP = -P * cos(theta) * A * ...
                     ((1 - Cs) * u + 2 * (Cs * cos(theta) + Cd / 3) * n);
       응
23
                 M = M + cross(rC, SRP);
24
                 F = F + SRP;
       9
             end
26
       % end
27
28 end
```

```
function [M, B_ECEF] = magFieldTorque(m,R,eulerAngle,t,RE,UT1)

calculated the expected torque due to Earth's magnetic field

finputs:

n = magnetic moment of satellite [N * m / T]

n = R: position vector of satellite [km]
```

```
% - t: time of simulation [s]
       % - RE: radius of Earth [km] (6378 km)
       % - UT1: start time of simulation
       % Find lambda (longitude) and theta (colatitude)
10
       GMST = time2GMST(t, UT12MJD(UT1));
11
       [lat,lon,~] = ECEF2Geoc(ECI2ECEF(R,GMST),t);
12
13
       lambda = lat;
       phi = lon;
14
       theta = pi/2 - phi;
15
16
       [B_R, B_theta, B_phi] = magFieldEarth(R, lambda, theta, RE);
17
  9
         B_latlon = [B_R, B_theta, B_phi];
18
19
       timeVec = UT1;
20
       timeVec(2) = timeVec(2) + t/86400;
21
       [XYZ,H,D,I,F] = wrldmagm(norm(R)-RE,lat,lon,decyear(timeVec));
22
23
24
       delta = phi;
       alpha = lambda + GMST;
25
26
       B_x = (B_R * cos(delta) + B_theta * sin(delta)) * ...
27
           cos(alpha) - B_phi * sin(alpha);
       B_{y} = (B_{R} * cos(delta) + B_{theta} * sin(delta)) * ...
29
           sin(alpha) + B_phi * cos(alpha);
30
       B_z = (B_R * \sin(delta) - B_theta * \cos(delta));
31
33
       B\_ECI = [B_x; B_y; B_z];
       B_ECEF = ECI2ECEF (B_ECI, GMST);
34
       B = e2A(eulerAngle) * B_ECI;
35
36
      M = cross(m, B);
37
38 end
```

5.3 PROBLEM 3

Include all torques you have been able to model in numerical integration. Please show comparison of numerically computed disturbance torques with expected values and trend from theory (model) and tables (Wertz) referenced in class. Plot all torque components in principal axes over time. Plot the resultant (sum) of all torques in principal axes. Make sure that your model is not too ideal, i.e. make sure that center of pressure and center of mass do not coincide.

For most torques, the worst-case estimated magnitudes were found by using existing properties of the spacecraft model. We use simplified equations (compared to those in the previous section) to estimate these, making assumptions for worst-case torques. However, the magnetic torque calculation assumes a model of the spacecraft's magnetic field as a single coil wrapped around the surface of the RIS and satellite bus. The estimated maximum values of each torque are listed in the table below.

Magnetic Field	Estimated Maximum Value (N-m)
M_{gg}	1.7093e-02
$\overline{M_{srp}}$	1.8294e-02
M_{drag}	1.3682e-03
$\overline{M_{mag}}$	1.3751e-10

In Figures 59, 60, 61, 62, we show the numerical simulation results for each type of disturbance based on the equations and code in the previous section. The numerical simulations indicate that the simulated results and estimated values are roughly within an order of magnitude for each type of disturbance torque shown.

Figure 59: Numerical simulation of gravity gradient torques

Figure 60: Numerical simulation of drag torques

Figure 61: Numerical simulation of solar radiation pressure torques

Figure 62: Numerical simulation of magnetic field torques

6 REFERENCES

- [1] K. H. Kellogg, S. Thurman, W. Edelstein, *et al.*, "NASA's SMAP Observatory," in *2013 IEEE Aerospace Conference*, Jet Propulsion Laboratory, National Aeronautics and Space Administration, 2013. DOI: 2014/44370. [Online]. Available: https://hdl.handle.net/2014/44370.
- [2] EOS SAR Satellites, Sep. 2021. [Online]. Available: https://eossar.com/technology/.
- [3] Capella Space, Apr. 2024. [Online]. Available: https://www.capellaspace.com/.
- [4] K. H. Kellogg, P. Barela, R. Sagi, *et al.*, "NASA-ISRO Synthetic Aperture Radar (NISAR) Mission," in *2020 IEEE Aerospace Conference*, Jet Propulsion Laboratory, National Aeronautics and Space Administration, 2020. DOI: 2014/51150. [Online]. Available: https://hdl.handle.net/2014/51150.
- [5] N. N. Stavros, S. Owen, C. Jones, and B. Osmanoglu, NISAR Applications, version V2, 2018. DOI: 2014/49181. [Online]. Available: https://hdl.handle.net/2014/ 49181.
- [6] P. Siqueira, *The NISAR Mission*, 2018. [Online]. Available: https://climate.esa.int/sites/default/files/D1_S1_T7_Siqueira.pdf.
- [7] Spectrolab, *Space solar panels datasheet*. [Online]. Available: https://www.spectrolab.com/DataSheets/Panel/panels.pdf.
- [8] L3Harris, *Prebuilt 12-meter s- or l-band reflector*, Mar. 2021. [Online]. Available: https://www.13harris.com/sites/default/files/2021-03/13harris-prebuilt-12m-unfurlable-mesh-reflector-spec-sheet-sas.pdf.
- [9] S. G. McCarron, "The effect of a change in orientation of a rectangular four-paddle solar array on the spin rate of a satellite," Goddard Space Flight Center, National Aeronautics and Space Administration, Tech. Rep., Jan. 1966.
- [10] "NASA-ISRO SAR (NISAR) Mission Science Users' Handbook," Jet Propulsion Laboratory, National Aeronautics and Space Administration, Tech. Rep., 2019. [Online]. Available: https://nisar.jpl.nasa.gov/system/documents/files/26_NISAR_FINAL_9-6-19.pdf.
- [11] Rockwell Collins, *Ht-rsi high motor torque momentum and reaction wheels 14 68 nms with integrated wheel drive electronics*, 2007.
- [12] J. R. Wertz, *Spacecraft Attitude Determination and Control*. Springer Dordrecht, 1978. DOI: https://doi.org/10.1007/978-94-009-9907-7.

A Appendix A

The following MATLAB code are used in problem sets, in addition to functions already listed in the body of the document. The full code (including helper functions not shown here) and resource files can be found in the GitHub repository: https://github.com/zhao-harry/aa-279c-project

A.1 Problem Set 1

```
1 %% Center of mass
2 cm = computeCM('res/mass.csv');
4 %% Moment of inertia
5 \text{ origin} = [0;0;0];
6 I = computeMOI('res/mass.csv', origin);
8 %% Surface properties
  [barycenter, normal, area] = surfaces('res/area.csv');
11 %% Plot spacecraft with body axes
12 figure
13 gm = importGeometry('res/NISAR.stl');
14 pdegplot(gm);
15 quiver = findobj(gca, 'type', 'Quiver');
16 textx = findobj(gca,'type','Text','String','x');
17 texty = findobj(gca,'type','Text','String','y');
18 textz = findobj(gca, 'type', 'Text', 'String', 'z');
19 set(quiver, 'XData', [0;0;0])
20 set(quiver, 'YData', [0;0;0])
21 set(quiver, 'ZData', [0;0;0])
22 set(textx, 'Position', [4 0 0])
23 set(texty, 'Position', [0 4 0])
24 set(textz, 'Position', [0 0 4])
25 saveas(gcf,'Images/ps1_model.png');
```

A.2 Problem Set 2

```
1 %% Problem Set 2
2 clear; close all; clc;
4 %% Problem 1
a = 7125.48662; % km
6 e = 0.0011650;
7 i = 98.40508; % degree
8 O = -19.61601; % degree
9 W = 89.99764; % degree
nu = -89.99818; % degree
yECI = oe2eci(a,e,i,0,w,nu);
14 days = 0.5;
15 tspan = 0:days*86400;
options = odeset('RelTol', 1e-6, 'AbsTol', 1e-9);
17 [t,y] = ode113(@orbitSimple,tspan,yECI,options);
19 plot3(y(:,1),y(:,2),y(:,3),'LineWidth',2,'Color','green')
20 xlabel('x [km]')
21 ylabel('y [km]')
22 zlabel('z [km]')
23 axis equal
24 hold on
[xE, yE, zE] = ellipsoid(0, 0, 0, 6378.1, 6378.1, 6378.1, 20);
26 surface(xE,yE,zE,'FaceColor','blue','EdgeColor','black');
28 saveas(gcf,'Images/ps2_problem1.png');
30 %% Problem 2
31 cm = computeCM('res/mass.csv');
32 I = computeMOI('res/mass.csv',cm);
34 [rot, IPrincipal] = eig(I);
35 Ix = IPrincipal(1,1);
36 Iy = IPrincipal(2,2);
IZ = IPrincipal(3,3);
38 xPrincipal = rot(:,1);
39 yPrincipal = rot(:,2);
40 zPrincipal = rot(:,3);
42 %% Problem 3
43 figure
44 gm = importGeometry('res/NISAR.stl');
45 pdegplot(gm);
47 quiver = findobj(gca,'type','Quiver');
48 textx = findobj(gca, 'type', 'Text', 'String', 'x');
49 texty = findobj(gca,'type','Text','String','y');
50 textz = findobj(gca, 'type', 'Text', 'String', 'z');
set (quiver, "XData", [0;0;0])
52 set(quiver, "YData", [0;0;0])
53 set(quiver, "ZData", [0;0;0])
set (textx, "Position", [4 0 0])
ss set(texty, "Position", [0 4 0])
```

```
set (textz, "Position", [0 0 4])
57
58 quiverPrincipal = copyobj(quiver,gca);
59 textxPrincipal = copyobj(textx,gca);
60 textyPrincipal = copyobj(texty,qca);
61 textzPrincipal = copyobj(textz,gca);
62 set(quiver, "Color", [0 1 0])
63 set(quiver, "UData", 4.14 * rot(1,:)')
64 set(quiver, "VData", 4.14 * rot(2,:)')
65 set(quiver, "WData", 4.14 * rot(3,:)')
set(quiver, "XData", repmat(cm(1), 3, 1))
67 set(quiver, "YData", repmat(cm(2), 3, 1))
68 set(quiver, "ZData", repmat(cm(3), 3, 1))
69 set(textx, "String", 'x''')
70 set(texty, "String", 'y''')
71 set(textz, "String", 'z''')
72 set(textx, "Position", 4 * xPrincipal + cm)
73 set(texty, "Position", 4 * yPrincipal + cm)
74 set(textz, "Position", 4 * zPrincipal + cm)
75 saveas(gcf,'Images/ps2_model.png');
76
77 %% Problem 5
wodeq = [8; 4; 6];
w0 = deg2rad(w0Deg);
80 \text{ tspan} = 0:120;
81 w = eulerPropagator(w0,Ix,Iy,Iz,tspan,'Images/ps2_euler_equations.png');
84 [XE, YE, ZE] = ellipsoidEnergy(IPrincipal, ...
       w0, ...
85
       'Images/ps2_problem6_energy.png');
   [XM, YM, ZM] = ellipsoidMomentum(IPrincipal, ...
87
88
       'Images/ps2_problem6_momentum.png');
89
91 %% Problem 7
92 w = polhode(XE,YE,ZE,XM,YM,ZM,w,'Images/ps2_problem7.png');
94 %% Problem 8
95 w = polhode2D(w,'none','Images/ps2_problem8.png');
97 %% Problem 9, x-axis
98 axis = 'x';
99 w0Deq = 8*[1;0;0];
w0 = deg2rad(w0Deg);
101 tspan = 0:120;
102 marker = 'o';
103
104 %% Problem 9, y-axis
105 axis = 'y';
w0Deg = 8 * [0.01; 1; 0.01];
w0 = deg2rad(w0Deg);
108 \text{ tspan} = 0:1200;
109 marker = 'none';
111 %% Problem 9, z-axis
112 axis = 'z';
113 \text{ wODeg} = 8 \times [0.01; 0; 1];
```

```
w0 = deg2rad(w0Deg);
115 tspan = 0:120;
narker = 'none';
117
  %% Problem 9
118
  w = eulerPropagator(w0,Ix,Iy,Iz,tspan, ...
119
       ['Images/ps2_problem9_euler_equations_', axis, '.png']);
120
   [XE, YE, ZE] = ellipsoidEnergy(IPrincipal, w0, ...
122
       ['Images/ps2_problem9_energy_', axis, '.png']);
123
   [XM, YM, ZM] = ellipsoidMomentum(IPrincipal, w0, ...
124
       ['Images/ps2_problem9_momentum_', axis, '.png']);
125
126
  w = polhode(XE, YE, ZE, XM, YM, ZM, w, ...
127
       ['Images/ps2_problem9_p7_', axis, '.png']);
128
  w = polhode2D(w, marker, ...
130
131
       ['Images/ps2_problem9_p8_', axis, '.png']);
```

```
function [t,y] = plotECI(a,e,i,0,w,nu,tspan)
      yECI = oe2eci(a,e,i,0,w,nu);
2
      options = odeset('RelTol', 1e-6, 'AbsTol', 1e-9);
3
      [t,y] = ode113(@orbitSimple,tspan,yECI,options);
      plot3(y(:,1),y(:,2),y(:,3),'LineWidth',2,'Color','green')
5
      xlabel('x [km]')
6
      ylabel('y [km]')
7
      zlabel('z [km]')
8
      axis equal
9
      grid on
10
11
      hold on
12
      [xE, yE, zE] = ellipsoid(0,0,0,6378.1,6378.1,6378.1,20);
       surface(xE,yE,zE, ...
13
           'FaceColor', 'blue', ...
14
           'EdgeColor', 'black', ...
           'FaceAlpha', 0.1);
16
      hold off
17
18 end
```

```
function w = eulerPropagator(w0,Ix,Iy,Iz,tspan,filename)
2
      options = odeset('RelTol', 1e-6, 'AbsTol', 1e-9);
      [t,w] = ode113(@(t,w) eulerEquation(t,w,Ix,Iy,Iz),tspan,w0,options);
3
      wDeq = rad2deq(w);
4
5
      figure(1)
6
      plot(t,wDeg,'LineWidth',2)
7
      legend('\omega_{x}','\omega_{y}','\omega_{z}', ...
8
           'Location','southeast')
      xlabel('Time [s]')
10
      ylabel(['Angular velocity (\omega) [' char(176) '/s]'])
      saveas (1, filename)
12
13 end
```

```
1 function [XE, YE, ZE] = ellipsoidEnergy(IPrincipal, w0, filename)
```

```
Ix = IPrincipal(1,1);
       Iy = IPrincipal(2,2);
3
       Iz = IPrincipal(3,3);
       T = sum(IPrincipal * w0.^2, "all") / 2;
       L = sqrt(sum((w0.*IPrincipal).^2, "all"));
6
       [XE, YE, ZE] = \dots
           ellipsoid(0,0,0,sqrt(2*T/Ix),sqrt(2*T/Iy),sqrt(2*T/Iz),50);
       ellipsoidAxes = [sqrt(2*T/Ix), sqrt(2*T/Iy), sqrt(2*T/Iz)];
       % Plot energy ellipsoid
10
       figure(1)
11
       surf(XE, YE, ZE, ...
12
           'FaceAlpha', 0.5, ...
13
           'FaceColor', 'blue', ...
14
           'DisplayName', 'Energy Ellipsoid');
15
       axis equal
16
       hold on
17
       quiver3(0, 0, 0, ellipsoidAxes(1), 0, 0, 'Color', 'r', ...
18
           'LineWidth', 2)
       quiver3(0, 0, 0, 0, ellipsoidAxes(2), 0, 'Color', 'r', ...
19
           'LineWidth', 2)
       quiver3(0, 0, 0, 0, 0, ellipsoidAxes(3), 'Color', 'r', ...
20
           'LineWidth', 2)
       xlabel('\omega_{x} [rad/s]')
21
       ylabel('\setminus omega_{y} [rad/s]')
22
       zlabel('\omega_{z} [rad/s]')
23
       hold off
25
       saveas (1, filename)
       I = L^2/(2*T);
27
       if (Ix \le I \mid | ismembertol(Ix, I, 1e-7)) && I \le Iz
           fprintf("The polhode is real!\n")
29
       else
30
           error("The polhode is NOT real!\n")
31
       end
33 end
```

```
function [XM,YM,ZM] = ellipsoidMomentum(IPrincipal,w0,filename)
       Ix = IPrincipal(1,1);
2
       Iy = IPrincipal(2,2);
3
       Iz = IPrincipal(3,3);
       T = sum(IPrincipal * w0.^2, "all") / 2;
5
       L = sqrt(sum((w0.*IPrincipal).^2, "all"));
6
       [XM, YM, ZM] = ellipsoid(0,0,0,L/Ix,L/Iy,L/Iz,50);
7
8
       momentumAxes = [L/Ix, L/Iy, L/Iz];
       % Plot momentum ellipsoid
10
       figure(1)
11
       surf(XM,YM,ZM, ...
12
           'FaceAlpha', 0.5, ...
13
           'FaceColor', 'green', ...
14
           'DisplayName', 'Momentum Ellipsoid');
15
       axis equal
17
       hold on
       quiver3(0, 0, 0, momentumAxes(1), 0, 0, 'Color', 'r', ...
18
          'LineWidth', 2)
```

```
quiver3(0, 0, 0, 0, momentumAxes(2), 0, 'Color', 'r', ...
19
           'LineWidth', 2)
       quiver3(0, 0, 0, 0, momentumAxes(3), 'Color', 'r', ...
20
           'LineWidth', 2)
       xlabel('\omega_{x} [rad/s]')
21
       ylabel('\omega_{y} [rad/s]')
22
       zlabel('\omega_{z} [rad/s]')
23
       hold off
       saveas (1, filename)
25
26
       I = L^2/(2*T);
27
       if (Ix \le I \mid | ismembertol(Ix, I, 1e-7)) \&\& I \le Iz
           fprintf("The polhode is real!\n")
29
       else
30
           error("The polhode is NOT real!\n")
31
       end
33 end
```

```
function w = polhode(XE, YE, ZE, XM, YM, ZM, w, filename)
2
       figure (1)
       surf(XE,YE,ZE, ...
3
           'FaceAlpha', 0.5, ...
           'FaceColor', 'blue', ...
           'DisplayName', 'Energy Ellipsoid');
       xlabel('\omega_{x} [rad/s]')
       ylabel('\omega_{y} [rad/s]')
       zlabel('\omega_{z} [rad/s]')
       axis equal
10
       hold on
11
       surf(XM,YM,ZM, ...
12
13
           'FaceAlpha', 0.5, ...
           'FaceColor', 'green', ...
14
           'DisplayName', 'Momentum Ellipsoid');
15
       plot3(w(:,1),w(:,2),w(:,3), ...
            'LineWidth',2, ...
17
            'Color', 'red', ...
18
           'DisplayName', 'Polhode')
19
       legend('Location','northwest')
       hold off
21
       saveas (1, filename)
22
23 end
```

```
function w = polhode2D(w,marker,filename)
       subplot(1,3,1)
2
      plot(w(:,2),w(:,3),'Marker',marker)
      title('Polhode (along x-axis)')
4
      xlabel('\omega_{y} [rad/s]')
5
      ylabel('\omega_{z} [rad/s]')
6
      axis equal
7
      subplot(1,3,2)
      plot(w(:,1),w(:,3),'Marker',marker)
10
      title('Polhode (along y-axis)')
11
      xlabel(' omega_{x} [rad/s]')
12
      ylabel('\omega_{z} [rad/s]')
13
```

```
axis equal
14
15
        subplot (1, 3, 3)
16
        plot(w(:,1),w(:,2),'Marker',marker)
        title('Polhode (along z-axis)')
18
       xlabel('\omega_{x} [rad/s]')
ylabel('\omega_{y} [rad/s]')
19
20
        axis equal
21
22
        saveas(1, filename)
23
24 end
```

A.3 Problem Set 3

```
clear; close all; clc
3 %% Problem 1
4 IPrincipal = [7707.07451493673 0 0; ...
      0 7707.0745149367 0; ...
      0 0 18050.0227594212];
7 Ix = IPrincipal(1,1);
8 Iy = IPrincipal(2,2);
9 Iz = IPrincipal(3,3);
11 wODeq = [8;4;6];
w0 = deg2rad(w0Deg);
13 tspan = 0:0.1:120;
14 w = eulerPropagator(w0, Ix, Iy, Iz, tspan, 'Images/ps3_problem1.png');
15
16 %% Problem 2
17 lambda = w0(3) * (Iz - Iy) / Ix;
wxy = (w0(1) + w0(2) * 1j) * exp(1j * lambda * tspan);
19 wx = real(wxy);
20 wy = imag(wxy);
wz = w0(3) * ones(size(wxy));
22 wAnalytical = [wx',wy',wz'];
23 wDegAnalytical = rad2deg(wAnalytical);
24
25 figure (1)
26 plot(tspan,wDegAnalytical,'LineWidth',2)
n = 1  legend('\omega_{x}','\omega_{y}','\omega_{z}', ...
       'Location','southeast')
29 xlabel('Time [s]')
30 ylabel(['Angular velocity (\omega) [' char(176) '/s]'])
saveas(1, 'Images/ps3_problem2.png')
32
33 %% Problem 3
34 % Error plots
35 error = w - wAnalytical;
36 plot(tspan,error,'LineWidth',2)
  legend('\omega_{x}','\omega_{y}','\omega_{z}', ...
38
      'Location','southeast')
39 xlabel('Time [s]')
40 ylabel('Angular velocity (\omega) [rad/s]')
41 saveas(gcf,'Images/ps3_problem3.png')
42
43 % Verify L and omega
44 L_principal = [Ix Iy Iz] .* w;
  keyTimes = [1, 61, 121, 181, 241, 361];
  for n = keyTimes
       figure(1)
47
       L_unit = L_principal(n,:)/norm(L_principal(n,:));
      w_unit = w(n,:)/norm(w(n,:));
      quiver3(0,0,0,w_unit(1),w_unit(2),w_unit(3),1,'r')
      hold on
51
      quiver3(0,0,0,L_unit(1),L_unit(2),L_unit(3),1,'b')
      quiver3(0,0,0,0,0,1,'k')
53
      xlim([-1 1]); ylim([-1 1]); zlim([-1 1]);
54
      xlabel('x'); ylabel('y'); zlabel('z');
55
```

```
legend('\omega','L','z-axis','Location','northeast')
56
       title(sprintf('Unit vectors at t = %.2f s', tspan(n)))
57
       hold off
58
       saveas(1, sprintf('Images/ps3_problem3_vectors_%i.png', n))
60 end
61
62 %% Non-Axisymmetric Satellite
63 cm = computeCM('res/mass.csv');
64 I = computeMOI('res/mass.csv',cm);
66 [rot, IPrincipal] = eig(I);
in Ix = IPrincipal(1,1);
68 Iy = IPrincipal(2,2);
69 Iz = IPrincipal(3,3);
70 xPrincipal = rot(:,1);
71 yPrincipal = rot(:,2);
72 zPrincipal = rot(:,3);
74 %% Problem 6 (Quaternions)
75 \text{ axang0} = [\text{sqrt}(1/2) \text{ sqrt}(1/2) \text{ 0 pi}/4];
q0 = axang2quat(axang0).';
77 tFinal = 600;
78 tStep = 0.1;
79 t = 0:tStep:tFinal;
81 % Forward Euler
82 % [q,w] = kinQuaternionForwardEuler(q0,w0,Ix,Iy,Iz,tFinal,tStep);
85 [q,w] = kinQuaternionRK4(q0,w0,Ix,Iy,Iz,tFinal,tStep);
87 figure (2)
88 hold on
89 plot(t,q,'LineWidth',1)
90 legend('q_{1}','q_{2}','q_{3}','q_{4}', ...
        'Location', 'Southeast')
92 xlabel('Time [s]')
93 ylabel('Quaternion')
94 hold off
95 saveas(2,'Images/ps3_problem6_quaternions.png')
97 %% Problem 6 (Euler Angles)
98 eulerAngle0 = rotm2eul(axang2rotm(axang0))';
99 state0 = [eulerAngle0;w0];
100
101 tFinal = 600;
102 \text{ tStep} = 0.1;
103 t = 0:tStep:tFinal;
104
105 % Forward Euler
106 % state = kinEulerAngleForwardEuler(state0, Ix, Iy, Iz, tFinal, tStep);
107
108 % ode113
109 tspan = 0:tStep:tFinal;
options = odeset('RelTol', 1e-6, 'AbsTol', 1e-9);
iii [t,state] = ode113(@(t,state) kinEulerAngle(t,state,Ix,Iy,Iz), ...
       tspan, state0, options);
112
113
```

```
eulerAngle = wrapTo360(rad2deg(state(:,1:3)));
115
116 figure(3)
plot(t,eulerAngle,'LineWidth',1)
118 legend('\phi','\theta','\psi', ...
        'Location','southwest')
119
120 xlabel('Time [s]')
121 ylabel('Euler Angle [deg]')
122 saveas(3,'Images/ps3_problem6_euler.png')
123
124 %% Problem 7(a)
125 % Part a: Angular momentum
126 tLen = length(t);
127 L_principal = [Ix Iy Iz] .* w;
128 L_inertial = nan(size(L_principal));
L_{norm} = nan(1, tLen);
130
131 % Part b: Herpolhode
u-inertial = nan(size(w));
  for i = 1:tLen
134
       % Get rotation matrix
135
136
       qi = q(i,:);
137
       A = q2A(qi);
138
       % Angular momentum
139
       L_{inertial}(i,:) = A' * L_{principal}(i,:)';
140
       L_norm(i) = norm(L_inertial(i,:));
141
142
       % Angular velocity
143
       w_{inertial}(i,:) = A' * w(i,:)';
145 end
146
147 figure (4)
148 hold on
149 plot(t, L_inertial)
150 plot(t, L_norm, 'k--')
151 xlabel('Time [s]')
152 ylabel('Angular momentum [kg m^{2}/s]')
legend("L_{1}", "L_{2}", "L_{3}", "||L||")
154 hold off
155 saveas(4, 'Images/ps3_problem7a.png')
156
157 %% Problem 7(b)
158 figure (5)
159 plot3(w_inertial(:,1), w_inertial(:,2), w_inertial(:,3), 'r')
160 grid on
161 hold on
162 quiver3(0, 0, 0, ...
       L-inertial (1,1), L-inertial (1,2), L-inertial (1,3), ...
164
165 quiver3(0, 0, 0, ...
       w_{inertial}(1,1), w_{inertial}(1,2), w_{inertial}(1,3), ...
166
       1)
168 xlabel('\omega_{x} [rad/s]')
169 ylabel('\omega_{y} [rad/s]')
170 zlabel('\omega_{z}) [rad/s]')
171 legend ('Herpolhode', ...
```

```
'Angular momentum (L)', ...
        'Angular velocity (\omega)', ...
173
        'Location', 'northwest')
174
175 hold off
176 saveas(5, 'Images/ps3_problem7b.png')
177
178 %% For fun kinda thing
179 saveGif = true;
180 tGif = 240 / tStep;
181
182 L_unit = nan(size(L_inertial));
183 w_unit = nan(size(w_inertial));
  if saveGif == true
184
       gif = figure;
185
        for i = 1:tLen
186
            w_unit(i,:) = w_inertial(i,:)./norm(w_inertial(i,:));
            L_unit(i,:) = L_inertial(i,:)./norm(L_inertial(i,:));
188
189
        end
190
        for i = 1:20:tGif
191
            plot3(w_unit(1:i,1), w_unit(1:i,2), w_unit(1:i,3), 'r')
192
            grid on
193
            hold on
            quiver3(0, 0, 0, w_unit(i,1), w_unit(i,2), w_unit(i,3),1)
195
            quiver3(0, 0, 0, L_unit(i,1), L_unit(i,2), L_unit(i,3),1)
196
            hold off
197
            xlim([-1 1])
            ylim([-1 1])
199
200
            zlim([-1 1])
            xlabel('x')
201
            ylabel('y')
            zlabel('z')
203
            title('Note: all vectors are normalized')
204
            legend('Herpolhode','\omega','L','Location','northeast')
205
            exportgraphics(gif,'Images/ps3_problem7b.gif','Append',true);
206
207
        end
208 end
209
210 %% Problem 7(c)
211 % Generate orbit
a = 7125.48662; % km
213 e = 0.0011650;
214 i = 98.40508; % degree
O = -19.61601; % degree
w = 89.99764; % degree
217 \text{ nu} = -89.99818; % degree}
219 \text{ days} = 0.069;
220 tFinal = days * 86400;
221 	 tStep = 1;
222 tspan = 0:tStep:tFinal;
223
224 figure (6)
225 [t,y] = plotECI(a,e,i,0,w,nu,tspan);
226 hold on
227 figure (7)
228 plotECI(a,e,i,O,w,nu,tspan);
229 hold on
```

```
230 figure (8)
231 plotECI(a,e,i,O,w,nu,tspan);
232 hold on
233
234 [q,w] = kinQuaternionRK4(q0,w0,Ix,Iy,Iz,tFinal,tStep);
235
236 tLen = length(t);
  for i = 1:500:tLen
238
       % Get rotation matrix
239
       qi = q(i,:);
       A = q2A(qi);
240
       % Body axes
241
       B = rot * A * rot';
242
       % Position
243
       pos = y(i, 1:3);
244
       radial = pos / norm(pos);
246
       tangential = y(i,4:6) / norm(y(i,4:6));
247
       normal = cross(radial, tangential);
248
       RTN = [radial' tangential' normal'];
       figure(6);
249
250
       plotTriad(gca, pos, A, 1e3, 'r');
       figure(7);
251
       plotTriad(gca, pos, B, 1e3, 'm');
252
253
       figure(8);
       plotTriad(gca, pos, RTN, 1e3, 'b');
254
255 end
256 figure (6);
257 legend('Orbit', 'Earth', 'Principal (x-axis)', 'Location', 'northwest')
258 hold off
259 saveas(gcf,'Images/ps3_problem7c_principal.png');
260 figure (7);
261 legend('Orbit', 'Earth', 'Body (x-axis)', 'Location', 'northwest')
262 hold off
263 saveas(gcf,'Images/ps3_problem7c_body.png');
264 figure (8);
265 legend('Orbit', 'Earth', 'RTN (radial axis)', 'Location', 'northwest')
266 hold off
267 saveas(gcf,'Images/ps3_problem7c_rtn.png');
```

```
function M = plotTriad(ax,o,M,scale,colorString)
2
        quiver3(ax, ...
             \circ (1), \circ (2), \circ (3), ...
3
             M(1,1), M(2,1), M(3,1), \dots
             scale, ...
5
             'LineWidth',1, ...
             'Color', 'k')
        quiver3(ax, ...
8
             \circ (1), \circ (2), \circ (3), ...
             M(1,2), M(2,2), M(3,2), \dots
10
             scale, ...
11
             'LineWidth',1, ...
12
             'Color', colorString)
13
14
        quiver3(ax, ...
15
             \circ (1), \circ (2), \circ (3), ...
             M(1,3), M(2,3), M(3,3), \dots
16
             scale, ...
17
```

```
'LineWidth',1, ...
'Color',colorString)
o end
```

A.4 Problem Set 4

```
1 close all; clear; clc
2 savePlot = true;
4 %% Import mass properties
5 cm = computeCM('res/mass.csv');
6 I = computeMOI('res/mass.csv',cm);
8 [rot, IPrincipal] = eig(I);
9 Ix = IPrincipal(1,1);
10 Iy = IPrincipal(2,2);
II Iz = IPrincipal(3,3);
13 %% Problem 1(a)
14 tFinal = 60;
15 tStep = 0.01;
16 tspan = 0:tStep:tFinal;
18 eulerAngle0 = [0; 0; 0];
w0 = [0; 0; 1];
20 state0 = [eulerAngle0; w0];
22 options = odeset('RelTol', 1e-6, 'AbsTol', 1e-9);
23 [t,state] = ode113(@(t,state) kinEulerAngle(t,state,Ix,Iy,Iz), ...
      tspan, state0, options);
26 state = rad2deg(state);
27
28 % Plot
29 figure()
30 plot(t, state(:, 4:6), 'LineWidth', 1)
legend('\omega_{x}','\omega_{y}','\omega_{z}', ...
       'Location','southeast')
33 xlabel('Time [s]')
34 ylabel(['Angular Velocity (\omega) [' char(176) '/s]'])
35 if savePlot
       saveas(gcf,'Images/ps4_problem1a_angvel.png')
37 end
38
39 figure()
40 plot(t,wrapTo180(state(:,1:3)),'LineWidth',1)
41 legend('\phi','\theta','\psi', ...
       'Location', 'southwest')
42
43 xlabel('Time [s]')
44 ylabel(['Euler Angle [' char(176) ']'])
  if savePlot
       saveas(gcf,'Images/ps4_problem1a_angle.png')
46
47 end
49 %% Problem 1(b)
a = 7125.48662; % km
51 e = 0;
52 i = 98.40508; % degree
0 = -19.61601; % degree
s4 w_deg = 89.99764; % degree
55 \text{ nu} = -89.99818; % degree}
```

```
57 \text{ muE} = 3.986 * 10^5;
n = sqrt(muE / a^3);
61 \text{ tFinal} = 6000;
62 tStep = 0.1;
63 tspan = 0:tStep:tFinal;
64 tTrunc = 300;
65 nTrunc = find((tspan == tTrunc) == 1);
67 [\sim, y] = plotECI(a, e, i, 0, w_deg, nu, tspan);
68 close all
69 format long
71 % Initialize angular velocity aligned with normal
r0 = y(1,1:3);
v0 = y(1, 4:6);
h = cross(r0, v0);
radial = r0 / norm(r0);
normal = h / norm(h);
17 tangential = cross(normal, radial);
78 A_RTN = [radial' tangential' normal']';
w0_RTN = [0; 0; 0.1];
80 euler0_RTN = A2e(A_RTN);
81 state0 = [euler0_RTN; w0_RTN];
82 options = odeset('RelTol', 1e-6, 'AbsTol', 1e-9);
83 [t,state] = ode113(@(t,state) kinEulerAngle(t,state,Ix,Iy,Iz), ...
       tspan, state0, options);
w_RTN = nan(size(state(:,1:3)));
87 euler_RTN = nan(size(state(:,1:3)));
  for n = 1:length(t)
       pos = y(n, 1:3);
       vel = v(n, 4:6);
91
       h = cross(pos, vel);
92
       radial = pos / norm(pos);
       normal = h / norm(h);
       tangential = cross(normal, radial);
95
       tangential = tangential / norm(tangential);
       A_RTN = [radial' tangential' normal']';
       % Get rotation matrixes (to ECI)
       euler = state(n, 1:3);
100
101
       w_principal = state(n, 4:6)';
102
       A_{principal} = e2A(euler);
       A_P2R = A_RTN * A_principal';
103
104
       w_RTN(n,:) = A_P2R*w_principal;
       euler_RTN(n,:) = A2e(A_P2R');
106 end
107
108 figure()
plot(t, rad2deg(w_RTN))
110 xlabel('Time [s]')
m ylabel(['Angular Velocity, RTN Frame [' char(176) '/s]'])
legend('\omega_{R}','\omega_{T}','\omega_{N}')
if savePlot == true
```

```
saveas(gcf,'Images/ps4_problem1b_angvel.png')
115 end
116
117 figure()
plot(t(1:nTrunc), wrapTo180(rad2deg(euler_RTN(1:nTrunc,:))))
119 xlabel('Time [s]')
120 ylabel(['Euler Angle, RTN Frame [' char(176) ']'])
   legend('\phi','\theta','\psi')
122 if savePlot == true
       saveas(gcf,'Images/ps4_problem1b_euler.png')
123
124 end
126 %% Problem 2
127 % Initial conditions
perturbation = 0.001;
  w0x = [1; perturbation; perturbation];
130 w0y = [perturbation; 1; perturbation];
w0z = [perturbation; perturbation; 1];
132
133 w0Mat = \{w0x, w0y, w0z\};
134 eulerAngle0 = [0; 0; 0];
135 tStep = 0.01;
136 tFinal = 60;
137
   for n = 1:3
138
       w0 = w0Mat\{n\};
139
       state0 = [eulerAngle0;w0];
140
141
142
       tspan = 0:tStep:tFinal;
       options = odeset('RelTol', 1e-6, 'AbsTol', 1e-9);
143
        [t,state] = ode113(@(t,state) kinEulerAngle(t,state,Ix,Iy,Iz), ...
            tspan, state0, options);
145
146
       eulerAngle = wrapTo180(rad2deg(state(:,1:3)));
147
       w = rad2deg(state(:, 4:6));
148
149
       figure()
150
       subplot(2,1,1)
151
       plot(t,w)
153
       xlabel('Time [s]')
       ylabel(['Angular Velocity [' char(176) '/s]'])
154
       legend('\omega_{x}','\omega_{y}','\omega_{z}', ...
155
            'Location', 'Southeast')
156
157
       subplot(2,1,2)
158
       plot(t,eulerAngle)
159
       xlabel('Time [s]')
160
       ylabel(['Euler Angle [' char(176) ']'])
161
       legend('\phi','\theta','\psi', 'Location','Southeast')
162
       if savePlot
            saveas(gcf,['Images/ps4_problem2a_' sprintf('%i',n) '.png'])
164
       end
165
166 end
168 %% Momentum wheel setup
169 % Based on RSI 68
mr = 8.9; % kg
r = 0.347 / 2; % m
```

```
172 Ir = mr * r^2;
173 wrRPM = 2500; % RPM
wr = wrRPM * 0.1047198;
175
176 % Initial Euler angle
177 eulerAngle0 = [0; 0; 0];
178
  % No external torques
180 M = [0; 0; 0; 0];
181
182 % Time
183 tFinal = 300;
184 tStep = 0.1;
186 %% Problem 3(b)
   w0 = [0.01; 0.01; 0.01; wr];
  r = [0; 0; 1];
188
189
  namePlot = 'Images/ps4_problem3b.png';
plotPS4Problem3(eulerAngle0,w0,tStep,tFinal, ...
                    M, r, Ix, Iy, Iz, Ir, namePlot, savePlot);
192
194 %% Problem 3(c)
w0 = [0.1; 0.001; 0.001; wr + 0.001 * rand()];
196 r = [1; 0; 0];
197 namePlot = 'Images/ps4_problem3c_x.png';
   plotPS4Problem3(eulerAngle0,w0,tStep,tFinal, ...
199
                    M, r, Ix, Iy, Iz, Ir, namePlot, savePlot);
200
w0 = [0.001; 0.1; 0.001; wr + 0.001 * rand()];
   r = [0; 1; 0];
   namePlot = 'Images/ps4_problem3c_y.png';
203
  plotPS4Problem3(eulerAngle0,w0,tStep,tFinal, ...
204
205
                    M, r, Ix, Iy, Iz, Ir, namePlot, savePlot);
206
w0 = [0.001; 0.001; 0.1; wr + 0.001 * rand()];
208 r = [0; 0; 1];
209 namePlot = 'Images/ps4_problem3c_z.png';
210
   plotPS4Problem3(eulerAngle0,w0,tStep,tFinal,
211
                    M, r, Ix, Iy, Iz, Ir, namePlot, savePlot);
212
213 %% Problem 3(d)
w0 = [0.001; 0.1; 0.001; wr * 10];
215 r = [0; 1; 0];
216
   namePlot = 'Images/ps4_problem3d.png';
217
   plotPS4Problem3(eulerAngle0,w0,tStep,tFinal, ...
218
                    M, r, Ix, Iy, Iz, Ir, namePlot, savePlot);
219
220
221
  %% Problem 3(e)
w0 = [rot' * [0.1; 0.001; 0.001]; 0];
  r = rot' * [1; 0; 0];
223
224
225 namePlot = 'Images/ps4_problem3e_unstable.png';
   plotPS4Problem3(eulerAngle0,w0,tStep,tFinal,
226
227
                    M, r, Ix, Iy, Iz, Ir, namePlot, savePlot);
228
w0 = [rot' * [0.1; 0.001; 0.001]; wr * 10];
```

```
230
231 namePlot = 'Images/ps4_problem3e_stable.png';
232 plotPS4Problem3 (eulerAngle0, w0, tStep, tFinal, ...
                     M, r, Ix, Iy, Iz, Ir, namePlot, savePlot);
233
234
235 %% Problem 4(d)
236 % Should put this into a function and call it for (d-e)
237 tFinal = 6000;
238 \text{ tStep} = 1;
239 tspan = 0:tStep:tFinal;
240
a = 7125.48662; % km
242 e = 0;
243 i = 98.40508; % degree
0 = -19.61601; % degree
w = 89.99764; % degree
246 \text{ nu} = -89.99818; % degree}
247 \text{ muE} = 3.986 * 10^5;
248 n = sqrt(muE / a^3);
249
y = oe2eci(a,e,i,0,w,nu);
251 \text{ r0} = y(1:3);
v0 = y(4:6);
_{253} h = cross(r0,v0);
radial = r0 / norm(r0);
255  normal = h / norm(h);
256 tangential = cross(normal, radial);
257 A_RTN = [radial tangential normal]';
258
259 state0 = zeros(12,1);
260 \text{ state0}(1:6) = y;
261 state0(7:9) = [0; 0; n];
262 state0(10:12) = A2e(A_RTN);
263
264 options = odeset('RelTol', 1e-6, 'AbsTol', 1e-9);
  [t, state] = ode113(@(t, state) gravGrad(t, state, Ix, Iy, Iz, n), ...
265
            tspan, state0, options);
266
267
c = zeros(size(state(:, 1:3)));
269 M = zeros(size(state(:,1:3)));
270 for i = 1:length(t)
       r = state(i, 1:3);
271
        radial = r / norm(r);
272
       A\_ECI2P = e2A(state(i, 10:12));
273
        c(i,1:3) = A\_ECI2P * radial';
274
       M(i,1:3) = gravGradTorque(Ix,Iy,Iz,n,c(i,1:3));
275
276 end
277
278 figure()
279 plot (t, M)
280 xlabel('Time [s]')
281 ylabel('Torque in Principal Axes [Nm]')
282 legend('M_{x}','M_{y}','M_{z}')
283 ylim([-1e-5 1e-5])
284 if savePlot == true
        saveas(gcf,'Images/ps4_problem4d_torque.png')
285
286 end
287
```

```
288 figure()
289 plot(t, state(:, 7:9))
290 xlabel('Time [s]')
291 ylabel('Angular Velocity in Principal Axes [rad/s]')
legend('\omega=\{x\}','\omega=\{y\}','\omega=\{z\}')
293 if savePlot == true
       saveas(gcf,'Images/ps4_problem4d_angvel.png')
294
295 end
296
297 %% Problem 4(e)
298 \text{ tFinal} = 6000;
299 tStep = 1;
300 tspan = 0:tStep:tFinal;
301
a = 7125.48662; % km
303 e = 0;
304 i = 98.40508; % degree
305 O = -19.61601; % degree
w = 89.99764; % degree
307 \text{ nu} = -89.99818; % degree}
308 \text{ muE} = 3.986 * 10^5;
309 n = sqrt(muE / a^3);
y = oe2eci(a,e,i,0,w,nu);
312 \text{ r0} = y(1:3);
v0 = y(4:6);
h = cross(r0, v0);
radial = r0 / norm(r0);
normal = h / norm(h);
317 tangential = cross(normal, radial);
318 A_RTN = [radial tangential normal]';
319 A_Body = rot' * A_RTN;
320
321 \text{ state0} = zeros(12,1);
322 state0(1:6) = y;
323 state0(7:9) = [0; 0; n];
324 \text{ state0}(10:12) = A2e(A_Body);
options = odeset('RelTol', 1e-6, 'AbsTol', 1e-9);
327 [t,state] = ode113(@(t,state) gravGrad(t,state,Ix,Iy,Iz,n), ...
           tspan, state0, options);
328
329
330 c = zeros(size(state(:,1:3)));
331 M = zeros(size(state(:,1:3)));
332 for i = 1:length(t)
333
       r = state(i, 1:3);
       radial = r / norm(r);
334
       A\_ECI2P = e2A(state(i,10:12));
335
336
       c(i,1:3) = A\_ECI2P * radial';
       M(i,1:3) = gravGradTorque(Ix,Iy,Iz,n,c(i,1:3));
338 end
339
340 figure()
341 plot (t, M)
342 xlabel('Time [s]')
343 ylabel('Torque in Principal Axes [Nm]')
344 legend('M_{x}','M_{y}','M_{z}')
345 if savePlot == true
```

```
saveas(gcf,'Images/ps4_problem4e_torque.png')
346
347 end
348
349 figure()
350 plot(t, state(:, 7:9))
351 xlabel('Time [s]')
352 ylabel('Angular Velocity in Principal Axes [rad/s]')
\label{eq:constraint} $$ $ \operatorname{legend}(' \operatorname{lomega}_{x}', '\operatorname{lomega}_{y}', '\operatorname{lomega}_{z}') $$
354 if savePlot == true
        saveas(gcf,'Images/ps4_problem4e_angvel.png')
355
356 end
357
358 figure()
359 plot(t,wrapTo180(rad2deg(state(:,10:12))))
360 xlabel('Time [s]')
ylabel(['Euler Angles [' char(176) ']'])
362 legend('\phi','\theta','\psi')
363 if savePlot == true
        saveas(gcf,'Images/ps4_problem4e_angle.png')
364
365 end
```

A.5 Problem Set 5

```
1 close all; clear; clc
2 savePlot = true;
4 %% Import mass properties
5 cm = computeCM('res/mass.csv');
6 I = computeMOI('res/mass.csv',cm);
8 [rot, IPrincipal] = eig(I);
9 Ix = IPrincipal(1,1);
10 Iy = IPrincipal(2,2);
II Iz = IPrincipal(3,3);
13 %% Problem 1(a)
IA IR = IX;
15 IT = Iz;
16 IN = Iy;
18 \text{ kT} = (IN - IR) / IT;
19 kR = (IN - IT) / IR;
21 plotGravGradStability(kR,kT,'Nominal','Images/ps5_problem1a.png');
23 %% Problem 1(b) (Unstable, Unperturbed)
24 tFinal = 6000 * 5; % 5 orbits
25 tStep = 1;
26 tspan = 0:tStep:tFinal;
27
a = 7125.48662; % km
29 = 0;
30 i = 98.40508; % degree
0 = -19.61601; % degree
w = 89.99764; % degree
33 \text{ nu} = -89.99818; % degree}
34 \text{ muE} = 3.986 * 10^5;
n = sqrt(muE / a^3);
y = oe2eci(a,e,i,0,w,nu);
38 \text{ r0} = y(1:3);
v0 = y(4:6);
h = cross(r0, v0);
41 radial = r0 / norm(r0);
42 normal = h / norm(h);
43 tangential = cross(normal, radial);
44 A_Nominal = [-radial -normal -tangential]';
46 state0 = zeros(12,1);
47 state0(1:6) = y;
48 state0(7:9) = [0; -n; 0];
49 state0(10:12) = A2e(A_Nominal);
options = odeset('RelTol', 1e-6, 'AbsTol', 1e-9);
52 [t,state] = ode113(@(t,state) gravGrad(t,state,Ix,Iy,Iz,n), ...
           tspan, state0, options);
53
55 c = zeros(size(state(:,1:3)));
```

```
56 M = zeros(size(state(:,1:3)));
57 for i = 1:length(t)
       r = state(i, 1:3);
       radial = r / norm(r);
       A\_ECI2P = e2A(state(i,10:12));
       c(i,1:3) = A_ECI2P * radial';
       M(i,1:3) = gravGradTorque(Ix,Iy,Iz,n,c(i,1:3));
63 end
64
65 figure()
66 plot(t / 3600, state(:, 7:9))
67 xlabel('Time [h]')
68 ylabel('Angular Velocity in Principal Axes [rad/s]')
69 legend('\omega_{x}','\omega_{y}','\omega_{z}')
70 if savePlot == true
       saveas(gcf,'Images/ps5_problem1b_angvel_unperturbed.png')
72 end
73
74 figure()
75 plot(t / 3600, wrapToPi(state(:,10:12)))
76 xlabel('Time [h]')

    ylabel('Euler Angles in Principal Axes [rad]')

  legend('\phi','\theta','\psi')
79 if savePlot == true
       saveas(gcf,'Images/ps5_problem1b_angle_unperturbed.png')
81 end
83 %% Problem 1(b) (Unstable, Perturbed)
84 tFinal = 6000 * 3; % 2 \text{ orbits}
85 tStep = 1;
86 tspan = 0:tStep:tFinal;
a = 7125.48662; % km
89 = 0;
90 i = 98.40508; % degree
91 O = -19.61601; % degree
w = 89.99764; % degree
93 nu = -89.99818; % degree
94 muE = 3.986 * 10^5;
95 n = sqrt(muE / a^3);
y = oe2eci(a, e, i, 0, w, nu);
98 \text{ r0} = y(1:3);
99 \text{ v0} = \text{y(4:6)};
h = cross(r0, v0);
radial = r0 / norm(r0);
normal = h / norm(h);
103 tangential = cross(normal, radial);
104 A_Nominal = [-radial -normal -tangential]';
state0 = zeros(12,1);
107 state0(1:6) = y;
108 state0(7:9) = [0; -n; 0] * 1.01;
109 state0(10:12) = A2e(A_Nominal) + pi * [0.01; 0.01; 0.01];
options = odeset('RelTol', 1e-6, 'AbsTol', 1e-9);
[t, state] = odel13(@(t, state) gravGrad(t, state, Ix, Iy, Iz, n), ...
           tspan, state0, options);
```

```
115 c = zeros(size(state(:, 1:3)));
M = zeros(size(state(:, 1:3)));
117 for i = 1:length(t)
       r = state(i, 1:3);
118
       radial = r / norm(r);
119
       A_{ECI2P} = e2A(state(i, 10:12));
120
       c(i,1:3) = A\_ECI2P * radial';
       M(i,1:3) = gravGradTorque(Ix,Iy,Iz,n,c(i,1:3));
122
123 end
124
125 figure()
126 plot(t / 3600, state(:, 7:9))
127 xlabel('Time [h]')
128 ylabel('Angular Velocity in Principal Axes [rad/s]')
   legend('\omega_{x}','\omega_{y}','\omega_{z}')
  if savePlot == true
       saveas(gcf,'Images/ps5_problem1b_angvel.png')
131
132 end
133
134 figure()
135 plot(t / 3600, wrapToPi(state(:,10:12)))
136 xlabel('Time [h]')
137 ylabel('Euler Angles in Principal Axes [rad]')
138 legend('\phi','\theta','\psi')
if savePlot == true
       saveas(gcf,'Images/ps5_problem1b_angle.png')
141 end
142
143 %% Problem 1(c)
IAA IR = IX;
145 IT = Iy;
IM = IZ;
147 kT = (IN - IR) / IT;
  kR = (IN - IT) / IR;
149
plotGravGradStability(kR,kT, ...
       'Principal XYZ aligned with RTN', ...
151
152
       'Images/ps5_problem1c.png');
153
154 %% Problem 1(c) (Stable, Perturbed)
155 tFinal = 6000 * 10; % 10 orbits
156 tStep = 1;
157 tspan = 0:tStep:tFinal;
158
a = 7125.48662; % km
160 e = 0;
i = 98.40508; % degree
0 = -19.61601; % degree
w = 89.99764; % degree
nu = -89.99818; % degree
165 \text{ muE} = 3.986 * 10^5;
n = sqrt(muE / a^3);
y = oe2eci(a,e,i,0,w,nu);
169 \text{ r0} = y(1:3);
v0 = y(4:6);
_{171} h = cross(r0,v0);
```

```
radial = r0 / norm(r0);
normal = h / norm(h);
174 tangential = cross(normal, radial);
175 A_RTN = [radial tangential normal]';
176
177 state0 = zeros(12,1);
178 state0(1:6) = y;
179 \text{ state0}(7:9) = [0; 0; n] * 1.01;
state0(10:12) = A2e(A_RTN) + pi * [0.01; 0.01; 0.01];
181
options = odeset('RelTol', 1e-6, 'AbsTol', 1e-9);
  [t, state] = ode113(@(t, state) gravGrad(t, state, Ix, Iy, Iz, n), ...
184
            tspan, state0, options);
185
186 c = zeros(size(state(:, 1:3)));
M = zeros(size(state(:, 1:3)));
   for i = 1:length(t)
188
189
       r = state(i, 1:3);
       radial = r / norm(r);
190
       A\_ECI2P = e2A(state(i,10:12));
191
       c(i,1:3) = A\_ECI2P * radial';
192
       M(i,1:3) = gravGradTorque(Ix,Iy,Iz,n,c(i,1:3));
194 end
195
196 figure()
197 plot(t / 3600, state(:, 7:9))
198 xlabel('Time [h]')
199 ylabel('Angular Velocity in Principal Axes [rad/s]')
legend('\omega_{x}','\omega_{y}','\omega_{z}')
201 if savePlot == true
        saveas(gcf,'Images/ps5_problem1c_angvel.png')
203 end
204
205 figure()
206 plot(t / 3600, wrapToPi(state(:,10:12)))
207 xlabel('Time [h]')
208 ylabel('Euler Angles in Principal Axes [rad]')
209 legend('\phi','\theta','\psi')
210 if savePlot == true
211
       saveas(gcf,'Images/ps5_problem1c_angle.png')
212 end
213
214 %% Problem 3
215 \text{ tFinal} = 6000;
216 \text{ tStep} = 1;
217 tspan = 0:tStep:tFinal;
219 % Satellite orbit initial conditions
a = 7125.48662; % km
221 e = 0;
222 i = 98.40508; % degree
O = -19.61601; % degree
w = 89.99764; % degree
225 nu = -89.99818; % degree
226 \text{ muE} = 3.986 * 10^5; % km^3 / s^2
227 n = sqrt(muE / a^3);
228
229 % Compute initial position and attitude
```

```
y = oe2eci(a,e,i,0,w,nu);
231 \text{ r0} = y(1:3);
v0 = y(4:6);
233 h = cross(r0, v0);
radial = r0 / norm(r0);
235 normal = h / norm(h);
236 tangential = cross(normal, radial);
237 A_RTN = [radial tangential normal]';
238
239 % Earth orbit initial conditions
aE = 149.60E6; % km
_{241} eE = 0.0167086;
242 iE = 7.155; % degree
243 OE = 174.9; % degree
244 wE = 288.1; % degree
245 \text{ nuE} = 0;
246 muSun = 1.327E11; % km<sup>3</sup> / s<sup>2</sup>
_{247} nE = sqrt(muSun / aE^3);
ySun = oe2eci(aE,eE,iE,OE,wE,nuE);
250 % Initial conditions
251 \text{ state0} = zeros(12,1);
252 state0(1:6) = y;
253 state0(7:9) = [0; 0; n];
254 state0(10:12) = A2e(A_RTN);
255 state0(13:18) = ySun;
256
257 % Properties
258 [barycenter, normal, area] = surfaces('res/area.csv', rot');
259 cm = computeCM('res/mass.csv');
260 I = computeMOI('res/mass.csv',cm);
[rot,_{\sim}] = eig(I);
262 cmP = rot' * cm;
263
264 % Parameters
265 \text{ CD} = 2;
266 \text{ Cd} = 0; \text{ Cs} = 0.9;
_{267} P = 1358/3E8;
268 S_sat = 24.92;
269 \text{ m_max} = 4*pi*1e-7 * S_sat * 0.1;
270 m_direction_body = [1; 0; 0];
271 m_direction = rot * m_direction_body;
272 m = m_max*m_direction/norm(m_direction); % Arbitrarily defined ...
       satellite dipole for now
273 \text{ UT1} = [2024 \ 1 \ 1];
274
275 % Run numerical method
276 options = odeset('RelTol', 1e-6, 'AbsTol', 1e-9);
277
   [t,state] = ode113(@(t,state) orbitTorque(t,state,Ix,Iy,Iz, ...
278
        CD, Cd, Cs, P, m, UT1, ...
279
        barycenter, normal, area, cmP, n), ...
        tspan, state0, options);
280
281
282 % Compute torques (since ode113 does not allow returning these)
283 \text{ Rx} = [1 \ 0 \ 0; \ 0 \ \cos d(23.5) \ -\sin d(23.5); \ 0 \ \sin d(23.5) \ \cos d(23.5)];
c = zeros(size(state(:, 1:3)));
285 Mgg = zeros(size(state(:,1:3)));
286 Md = zeros(size(state(:,1:3)));
```

```
287 Msrp = zeros(size(state(:,1:3)));
  Mm = zeros(size(state(:, 1:3)));
288
289
   for i = 1: length(t)
290
291
       r = state(i, 1:3)';
       v = state(i, 1:3)';
292
       radial = r / norm(r);
293
       rEarth = state(i, 13:15)';
       A\_ECI2P = e2A(state(i, 10:12));
295
296
       c(i,1:3) = A\_ECI2P * radial;
297
       Mgg(i,1:3) = gravGradTorque(Ix,Iy,Iz,n,c(i,1:3));
298
299
       [\sim, density] = atmosnrlmsise00(1000 * (norm(r) - ...
300
           6378.1),0,0,2000,1,0);
       rho = density(6);
       vPrincipal = A\_ECI2P * (v + cross([0; 0; 7.2921159E-5],r));
302
303
       [~,M] = drag(vPrincipal,rho,CD,barycenter,normal,area,cmP);
304
       Md(i, 1:3) = M;
305
       s = A\_ECI2P * (-Rx * rEarth - r);
306
       [~,M] = srp(s,P,Cd,Cs,barycenter,normal,area,cmP);
307
       Msrp(i, 1:3) = M;
309
       M = magFieldTorque(m,r,state(i,10:12),t(i),6378.1,UT1);
310
       Mm(i, 1:3) = M;
311
312 end
313
314 figure()
315 plot(t / 3600, state(:, 7:9))
316 xlabel('Time [h]')
317 ylabel('Angular Velocity in Principal Axes [rad/s]')
legend('\omega_{x}','\omega_{y}','\omega_{z}')
319
  if savePlot == true
       saveas(gcf,'Images/ps5_problem3_angvel.png')
320
321 end
322
323 figure()
324 plot(t / 3600, Mgg)
325 xlabel('Time [h]')
326 ylabel('Gravity Gradient Torque in Principal Axes [Nm]')
legend (M_{x}', M_{y}', M_{z}')
  if savePlot == true
328
       saveas(gcf,'Images/ps5_problem3_grav.png')
329
330 end
332 figure()
333 plot(t / 3600, Md)
334 xlabel('Time [h]')
335 ylabel('Drag Torque in Principal Axes [Nm]')
336 legend('M_{x}', 'M_{y}', 'M_{z}')
337 if savePlot == true
       saveas(gcf,'Images/ps5_problem3_drag.png')
338
339 end
340
341 figure()
342 plot(t / 3600, Msrp)
343 xlabel('Time [h]')
```

```
344 ylabel('Solar Radiation Pressure Torque in Principal Axes [Nm]')
legend('M_{x}', 'M_{y}', 'M_{z}')
346 if savePlot == true
        saveas(gcf,'Images/ps5_problem3_srp.png')
347
348
  end
349
350 figure()
351 plot(t / 3600, Mm)
352 xlabel('Time [h]')
353 ylabel('Magnetic Field Torque in Principal Axes [Nm]')
154 legend('M_{x}', 'M_{y}', 'M_{z}')
355 if savePlot == true
356
        saveas(gcf,'Images/ps5_problem3_mag.png')
357 end
358
359 %% Problem 3 Maximum Torques
360 % Parameters
361 \text{ CD} = 2;
362 \text{ Cd} = 0; \text{ Cs} = 0.9;
q = Cd + Cs;
_{364} P = 1358/3E8;
365 S_sat = 24.92;
366 \text{ m_max} = 4 \cdot \text{pi} \cdot 1\text{e-}7 \cdot \text{S_sat} \cdot 0.1;
367 \text{ UT1} = [2024 \ 1 \ 1];
368 \text{ rE3\_B0} = 7.943e15; \%Wb*km
369
r_n = norm = norm(state(1, 1:3));
371 Mgg_max = 3/2 * muE/(r_norm^3) * abs(max([Ix Iy Iz]) - min([Ix Iy Iz]));
372 \text{ Mm\_max} = 2*m\_max*rE3\_B0/((r\_norm*1e3)^3);
373 \text{ Msrp_max} = 0;
  Md_max = 0;
375
376  vMax = max(vecnorm(state(:, 4:6)')) * 1e3;
377
  for n = 1:length(area)
378
        Msrp_max = Msrp_max + P*area(n)*(1+q) * norm(barycenter(:,n) - cmP);
379
        Md_max = Md_max + 0.5*rho*CD*vMax^2*area(n) * ...
380
            norm(barycenter(:,n) - cmP);
381
   end
382
  fprintf("Maximum expected values: \n" + ...
383
            "M_gg: %d Nm \n" + ...
384
             "M_m: %d Nm \n" + ...
385
             "M_srp: %d Nm \n" + ...
386
             "M_d: %d Nm\n", Mgg_max, Mm_max, Msrp_max, Md_max);
387
```

```
function [kR,kT] = plotGravGradStability(kR,kT,nameText,namePlot)
      % Gather points
2
      fimplicit(@(x,y) 1 + 3 * x + y * x + 4 * sqrt(y * x), [-1,1,-1,1])
3
      leftBranch = findobj(gcf,'Type','ImplicitFunctionLine');
      xLeft = leftBranch.XData;
5
      yLeft = leftBranch.YData;
6
7
      close()
      fimplicit(@(x,y) 1 + 3 * x + y * x - 4 * sqrt(y * x), [-1,1,-1,1])
      rightBranch = findobj(gcf,'Type','ImplicitFunctionLine');
      xRight = rightBranch.XData;
10
```

```
yRight = rightBranch.YData;
       close()
12
       hold on
13
       % Plot yaw, roll unstable
15
       plot(polyshape([0 0 1 1],[-1 0 0 -1]), ...
16
           'FaceAlpha',1, ...
17
18
           'FaceColor', 'b', ...
           'DisplayName', 'Unstable yaw, roll')
19
       plot(polyshape([xRight(27:end) -1],[yRight(27:end) -1]), ...
20
           'FaceAlpha',1, ...
21
           'FaceColor', 'b', ...
           'HandleVisibility','off')
23
24
       % Plot pitch unstable
25
       plot(polyshape([0 1 0],[0 1 1]), ...
           'FaceAlpha',1, ...
27
           'FaceColor','y', ...
28
           'DisplayName', 'Unstable pitch')
29
       plot(polyshape([xLeft -1],[yLeft 0]), ...
           'FaceAlpha',1, ...
31
           'FaceColor', 'y', ...
32
           'HandleVisibility','off')
33
       plot(polyshape([xRight(1:27) 0],[yRight(1:27) 0]), ...
34
            'FaceAlpha',1, ...
35
           'FaceColor', 'y', ...
36
           'HandleVisibility','off')
38
       % Plot yaw, roll, pitch unstable
39
       plot(polyshape([-1 -1 0 0],[0 1 1 0]), ...
           'FaceAlpha',1, ...
           'FaceColor', 'g', ...
42
           'DisplayName', ...
43
44
           'Unstable yaw, roll, pitch')
       plot(polyshape([flip(xRight(1:27)) xLeft -1], ...
           [flip(yRight(1:27)) yLeft -1]), ...
46
           'FaceAlpha',1, ...
47
           'FaceColor','g', ...
48
           'HandleVisibility','off')
50
       % Plot spacecraft location
51
       plot(kT,kR,'x','Color','k','LineWidth',2,'DisplayName',nameText)
       axis equal
54
       legend()
55
       xlabel('k_{T}')
       ylabel('k_{R}')
57
       xlim([-1 1])
58
       ylim([-1 1])
59
       hold off
       saveas(qcf,namePlot)
62 end
```

```
function [B_R,B_theta,B_phi] = magFieldEarth(R,phi,theta,RE)
% NOTE: slides calls phi lambda (not sure if it's the same thing ...
or not)
```

```
% Make sure that R is normalized
       if length(R) == 3
           R = norm(R);
7
       % For g \& h matrix (row = n, col = m + 1)
10
       g = [-30186 - 2036 \ 0 \ 0 \ 0; \dots]
           -1898 2997 1551 0 0; ...
11
           1299 -2144 1296 805 0; ...
12
           951 807 462 -393 235] * 1e-9; % T
13
       h = [0 5735 0 0 0; ...]
14
           0 -2124 -37 0 0; ...
15
           0 -361 249 -253 0; ...
16
           0 148 -264 37 -307] * 1e-9; % T
17
18
       B_R = 0;
19
       B_{theta} = 0;
20
21
       B_phi = 0;
       for n = 1:4
           BR_{temp} = 0;
23
           BTheta\_temp = 0;
           BPhi\_temp = 0;
26
           for mInd = 1:n
27
                m = mInd - 1;
28
                P_nm = getPnm(theta, n, m);
30
                dPnm_dtheta = getdPdTheta(theta,n,m);
31
32
                BR_{temp} = BR_{temp} + \dots
33
                     (g(n,mInd) * cos(m * phi) + h(n,mInd) * sin(m * ...
34
                        phi)) * ...
35
                    P_nm;
                BTheta_temp = BTheta_temp + ...
                     (g(n,mInd) * cos(m * phi) + h(n,mInd) * sin(m * phi)) ...
37
                        * ...
                    dPnm_dtheta;
                BPhi_temp = BPhi_temp + ...
40
                     (-g(n,mInd) * sin(m * phi) + h(n,mInd) * cos(m * ...
                        phi)) * ...
                    m * P_nm;
41
           end
43
           B_R = B_R + (RE / R)^(n + 2) * (n + 1) * BR_temp;
           B_{theta} = B_{theta} + (RE / R)^{n} (n + 2) * BTheta_temp;
           B_{phi} = B_{phi} + (RE / R)^(n + 2) * BPhi_temp;
46
       end
47
48
       B_{theta} = -B_{theta};
       B_{-}phi = -1 / sin(theta) * B_{-}phi;
51
52 end
```

```
1 function dPdTheta = getdPdTheta(theta,n,m)
2    if n < m</pre>
```

```
error("n >= m for Legendre functions")
       end
4
       if n == m \&\& m == 0
5
           dPdTheta = 0;
       elseif n == m
7
           dPdTheta = sin(theta) * getdPdTheta(theta, n-1, n-1) + ...
8
                cos(theta) * getPnm(theta,n-1,n-1);
10
       else
11
           K = getKnm(n,m);
           if K == 0
12
               dPdTheta = cos(theta) * getdPdTheta(theta, n-1, m) - ...
13
                    sin(theta) * getPnm(theta, n-1, m);
14
           else
15
                dPdTheta = cos(theta) * getdPdTheta(theta, n-1, m) - ...
16
                    sin(theta) * getPnm(theta,n-1,m) - ...
17
                    K * getdPdTheta(theta, n-2, m);
18
           end
19
       end
20
21 end
```

```
1 function K = getKnm(n,m)
2     if n == 1
3         K = 0;
4     else
5         K = ((n - 1)^2 - m^2)/((2 * n - 1)*(2 * n - 3));
6     end
7 end
```

```
1 function P = getPnm(theta,n,m)
       if n == 0 \&\& m == 0
2
           P = 1;
3
       elseif n == m
4
           P = sin(theta) * getPnm(theta, n-1, n-1);
       else
6
           K = getKnm(n,m);
7
           if K == 0
8
               P = cos(theta) * getPnm(theta,n-1,m);
9
10
                P = cos(theta) * getPnm(theta, n-1, m) - K * ...
11
                   getPnm(theta, n-2, m);
           end
       end
13
14 end
```