Трансформер

(в схемах и мемах)

Мотивация

- Обучение RNN трудоёмкая задача
- Хотим избавиться от RNN, не теряя возможность учитывать дальнодействующие зависимости между словами
- Оказывается, что можно обойтись механизмом Внимания

The FBI is chasing a criminal on the run. The FBI is chasing a criminal on the run. FBI is chasing a criminal on the run. The

FBI is chasing a criminal on the run.

FBI is chasing a criminal on the run. The

FBI is chasing a criminal on the run. The

FBI is chasing a criminal on the run.

criminal on the run. chasing a The

criminal on the run. FBI is chasing a

chasing a criminal The on the

Alignment score function	Citation
$ ext{score}(oldsymbol{s}_t,oldsymbol{h}_i) = ext{cosine}[oldsymbol{s}_t,oldsymbol{h}_i]$	Graves2014
$\operatorname{score}(oldsymbol{s}_t,oldsymbol{h}_i) = oldsymbol{v}_a^ op \operatorname{tanh}(oldsymbol{W}_a[oldsymbol{s}_t;oldsymbol{h}_i])$	Bahdanau2015
$lpha_{t,i} = \mathrm{softmax}(\mathbf{W}_a \mathbf{s}_t)$ Note: This simplifies the softmax alignment to only depend on the target position.	Luong2015
$ ext{score}(m{s}_t, m{h}_i) = m{s}_t^ op \mathbf{W}_a m{h}_i$ where \mathbf{W}_a is a trainable weight matrix in the attention layer.	Luong2015
$ ext{score}(oldsymbol{s}_t,oldsymbol{h}_i) = oldsymbol{s}_t^ op oldsymbol{h}_i$	Luong2015
$ ext{score}(m{s}_t,m{h}_i)=rac{m{s}_t^{\scriptscriptstyle op}m{h}_i}{\sqrt{n}}$ Note: very similar to the dot-product attention except for a scaling	Vaswani2017
	$\operatorname{score}(oldsymbol{s}_t, oldsymbol{h}_i) = oldsymbol{v}_a^ op \operatorname{tanh}(oldsymbol{W}_a[oldsymbol{s}_t; oldsymbol{h}_i])$ $lpha_{t,i} = \operatorname{softmax}(oldsymbol{W}_a oldsymbol{s}_t)$ Note: This simplifies the softmax alignment to only depend on the target position. $\operatorname{score}(oldsymbol{s}_t, oldsymbol{h}_i) = oldsymbol{s}_t^ op oldsymbol{W}_a oldsymbol{h}_i$ where $oldsymbol{W}_a$ is a trainable weight matrix in the attention layer. $\operatorname{score}(oldsymbol{s}_t, oldsymbol{h}_i) = oldsymbol{s}_t^ op oldsymbol{h}_i$ $\operatorname{score}(oldsymbol{s}_t, oldsymbol{h}_i) = oldsymbol{s}_t^ op oldsymbol{h}_i$

factor; where n is the dimension of the source hidden state.

 $\operatorname{Attention}(\mathbf{Q},\mathbf{K},\mathbf{V}) = \operatorname{softmax}(\frac{\mathbf{Q}\mathbf{K}^\top}{\sqrt{n}})\mathbf{V}$

 $\text{where } \text{head}_i = \text{Attention}(\mathbf{Q}\mathbf{W}_i^Q, \mathbf{K}\mathbf{W}_i^K, \mathbf{V}\mathbf{W}_i^V)$ where \mathbf{W}_i^Q , \mathbf{W}_i^K , \mathbf{W}_i^V , and \mathbf{W}^O are parameter matrices to be learned.

Ну всё, можно уже стакать слои?

Ну всё, можно уже стакать слои?

WORD	a	am	1	thanks	student	<eos></eos>
INDEX	0	1	2	3	4	5
	One-hot encodi	ng of the word "a	ım"			
		100	0.0	0.0	0.0	0.0

Positional Encoding

- Смотрим на весь ввод сразу теряем информацию о порядке слов
- Нужна функция, сопоставляющая слову его относительную позицию во входной последовательности
- Наивные варианты имеют ряд недостатков

Positional Encoding

Что требуется от функции?

- Должна сопоставлять уникальную кодировку для каждого временного шага (позиции слова в предложении).
- Расстояние между любыми двумя временными шагами должно быть одинаковым в предложениях разной длины.
- Наша модель должна без каких-либо усилий обобщаться на более длинные предложения. Значения функции должны быть ограниченными.
- Отображение должно быть детерминированным.

Желаемая функция

$$\overrightarrow{p_t}^{(i)}=f(t)^{(i)}:=egin{cases} \sin(\omega_k.t),& ext{if }i=2k\ \cos(\omega_k.t),& ext{if }i=2k+1 \end{cases}$$
 $\omega_k=rac{1}{10000^{2k/d}}$

...И её визуализация

...И её визуализация

Label Smoothing + Residual Dropout

Formula of Label Smoothing

Label smoothing replaces one-hot encoded label vector y_hot with a mixture of y_hot and the uniform distribution:

$$y_ls = (1 - a) * y_hot + a / K$$

where *K* is the number of label classes, and α is a hyperparameter that determines the amount of smoothing. If $\alpha = 0$, we obtain the original one-hot encoded y_hot . If $\alpha = 1$, we get the uniform distribution.

Заключение

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations for different layer types. n is the sequence length, d is the representation dimension, k is the kernel size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

Заключение

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

M. J.1	BLEU		Training Cost (FLOPs)	
Model	EN-DE	EN-FR	EN-DE	EN-FR
ByteNet [15]	23.75			
Deep-Att + PosUnk [32]		39.2		$1.0 \cdot 10^{20}$
GNMT + RL [31]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$
ConvS2S 8	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5 \cdot 10^{20}$
MoE [26]	26.03	40.56	$2.0 \cdot 10^{19}$	$1.2 \cdot 10^{20}$
Deep-Att + PosUnk Ensemble [32]		40.4		$8.0 \cdot 10^{20}$
GNMT + RL Ensemble 31	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1 \cdot 10^{21}$
ConvS2S Ensemble [8]	26.36	41.29	$7.7 \cdot 10^{19}$	$1.2 \cdot 10^{21}$
Transformer (base model)	27.3	38.1	$3.3\cdot 10^{18}$	
Transformer (big)	28.4	41.0	$2.3 \cdot 10^{19}$	

Ссылки на материалы

Вот они, слева направо!

https://arxiv.org/abs/1706.03762

https://www.youtube.com/watch?v=dQw4w9WgXcQ

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html#whats-wrong-with-seq2seq-model

http://jalammar.github.io/illustrated-transformer/

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/#what-is-positional-encoding-and-why-do-we-need-it-in-the-first-place

Thank you for your Attention;)