Distributed Gaussian Process Temporal Differences for Actor-critic Learning

John Martin, Zheng Xing, Zhiyuan Yao, Ionut Florescu, Brendan Englot Stevens Institute of Technology, Hoboken NJ

Summary

We consider Reinforcement Learning with Gaussian Process (GP) temporal differences [2]. Our work studies the extent to which distributed computing can improve the amount of data GP-based value models can handle. By invoking episodic independence, we derive two different distributive models. One model represents the predictive value posterior as a sum of K experts, and the other, as a product. As such, predictions can be distributed to Kindependent processors. We propose actor-critic methods that exploit these models for efficient policy evaluation and action selection – balancing exploration and exploitation by maximizing the GP-UCB criterion [3]. Our experiments compare the resulting methods to an actor-critic based on the standard GP Temporal Difference value model. We show our methods are able to process more data, and therefore, can solve complex problems which are too data-intensive for the standard model.

Application: Cloud Robotics

Distributed methods can reduce the complexity of robot learning. *Individual robots* can scale their learning effort on-demand by delegating intensive computations to expandable off-board resources. *Collaborative robot groups* stand to benefit from a principled information sharing framework.

References

- [1] M. Deisenroth and J. Ng. Distributed gaussian processes. In *ICML 32*, 2015.
- [2] Y. Engel, S. Mannor, and R. Meir. Reinforcement learning with gaussian processes. In *ICML 22*, 2005.
- [3] N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Gaussian process optimization in the bandit setting: No regret and experimental design. In *ICML 27*, 2010.

Distributed Actor-critic Procedures

Actor: Our methods consider a distribution over value functions and select actions to maximize the GP Upper Confidence Bound (GP-UCB) [3]

$$\alpha(\mathbf{x}) = v(\mathbf{x}) + \kappa \sqrt{p(\mathbf{x})}.$$

The resulting policy exploits the available data conservatively - acting greedy when uncertainty is low and exploring when it is high.

Critic: The predictive posterior, $p(V|\mathbf{x}_*, \mathcal{D})$, measures longterm utility of a state-action pair, \mathbf{x} , along with variance and the associated gradients for action selection. The models we consider allow these predictions to distribute to independent processors.

Complexity: Predictions must invert $\mathbf{K}_{rr} + \Sigma$. GP-SARSA predictions scale with $\mathcal{O}(N^3)$, where N is the total number of observed transitions. Our distributed methods split this cost among K experts, with n observations each, to achieve $\mathcal{O}(Kn^3)$. Provided $K < N^3/n^3$, we can improve efficiency.

Background

Reinforcement Learning: Agents select actions according to the discounted return $D(\mathbf{x}) = \sum_{n=0}^{N} \gamma^n R(\mathbf{x}_n)$. Greedy approaches typically strive to maximize its expected value $V(\mathbf{x}_n) = \mathbf{E}[D(\mathbf{x}_n)|R(\mathbf{x}_n),\mathbf{x}_n]$. However, $V(\mathbf{x})$ is inherently latent and must be estimated from sequential observations: states \mathbf{s} , actions \mathbf{a} , and rewards $R(\mathbf{x})$, where $\mathbf{x} = (\mathbf{s}, \mathbf{a})^{\top}$.

GP-SARSA: Treat $D(\mathbf{x}) = V(\mathbf{x}) + \xi$ as a random function drawn from a Gaussian Process prior. Apply GP-regression to predict latent values $V(\mathbf{x})$ from observed rewards. The model is $R(\mathbf{x}) = V(\mathbf{x}_n) - \gamma V(\mathbf{x}_{n+1}) + \varepsilon_n$, where $\varepsilon_n = \xi_n - \gamma \xi_{n+1}$, $\xi \sim \mathcal{N}(0, \sigma^2)$. Stack values and rewards into vectors, \mathbf{r} , \mathbf{v} , assuming $\mathbf{v} \sim \mathcal{N}(\mathbf{0}, \mathbf{K}_{vv})$. All variables are jointly Gaussian with $\mathbf{r} = \mathbf{H}\mathbf{v} + \varepsilon$,

$$egin{pmatrix} \mathbf{v} \\ \mathbf{r} \end{pmatrix} \sim \mathcal{N} \left(egin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix}, egin{pmatrix} \mathbf{K}_{vv} & \mathbf{K}_{vv} \mathbf{H}^{ op} \\ \mathbf{H} \mathbf{K}_{vv} & \mathbf{H} (\mathbf{K}_{vv} + \sigma^2 \mathbf{I}) \mathbf{H}^{ op} \end{pmatrix}
ight).$$

The upper diagonal matrix \mathbf{H} encodes correlation with elelemts $1, -\gamma$. Condition predictions of V on \mathbf{r} to obtain the posterior moments $\mathcal{N}(V(\mathbf{x})|v(\mathbf{x}), p(\mathbf{x}))$

$$v(\mathbf{x}) = \mathbf{k}_{r*}^{\top} (\mathbf{K}_{rr} + \mathbf{\Sigma})^{-1} \mathbf{r},$$

$$p(\mathbf{x}) = k(\mathbf{x}_{*}, \mathbf{x}_{*}) - \mathbf{k}_{r*}^{\top} (\mathbf{K}_{rr} + \mathbf{\Sigma})^{-1} \mathbf{k}_{r*}.$$

Mixture of Experts (DGP+SARSA)

$$P(V|\mathbf{x}_*, \mathcal{D}) = \sum_{k=1}^K P_k(V|\mathbf{x}_*, \mathcal{D}_k).$$

Product of Experts (DGPxSARSA)

$$P(V|\mathbf{x}_*, \mathcal{D}) = \prod_{k=1}^K P_k(V|\mathbf{x}_*, \mathcal{D}_k).$$