Experimentell Metodik

Zacharias Brohn* Elis Bergdahl[†] Mikael Baer[‡]

Luleå tekniska universitet 971 87 Luleå, Sverige

10 december 2024

Sammanfattning

ΡН

1 Inledning

Detta projekt har som syfte att undersöka volymflödet av materia genom smala, horisontella rör. I dessa undersökningar används endast vatten (H_2O) men de matematiska beräkningar och metoder som har använts ska i teorin även vara korrekta för annan materia.

2 Teori

2.1 Dimensionsanalys

En dimensionsanalys är en metod som tillämpas för att kontrollera att framtagna formler inte innehåller felaktiga variabler. Genomförande av metoden innebär att studera variablernas dimensioner på de ingående kvantiteter i formeln.

^{*}email: zacbro-8@student.ltu.se †email: elieba-4@student.ltu.se

[‡]email: DinMejl

2.2 Linjäresering

För en potensfunktion:

$$Y = C \cdot x^a \tag{1}$$

Kan exponenten a bestämmas med hjälp av logaritmering i höger- respektive vänsterled,

$$lnY = lnC + a \cdot lnx \implies Y = m + k \cdot X \tag{2}$$

Där:

$$Y = lny, k = a, X = lnx \text{ och } m = lnC$$
(3)

Y plottas mot X, lutningen av grafen ges av exponenten k och m är linjens skärningspunkt i Y-axeln

3 Dimensionsanalys

Formeln på sambandet är

$$Q = C \cdot h^{\alpha} \cdot d^{\beta} \cdot l^{\gamma} \cdot \rho^{\delta} \cdot g^{\epsilon} \cdot \mu^{\epsilon} \tag{4}$$

där Q är volymflödet, C är konstanten, h är höjden, d är diametern, l är längden, ρ är densiteten, g är tyngdaccelerationen och μ är viskositeten. Vi vet att

$$Q = L^3 \cdot T^{-1} \cdot M^0 \tag{5}$$

$$[Q] = [C] \cdot [h^{\alpha}] \cdot [d^{\beta}] \cdot [l^{\gamma}] \cdot [\rho^{\delta}] \cdot [g^{\epsilon}] \cdot [\mu^{\epsilon}]$$

$$(6)$$

och enligt resultat från uträkningarna ovan blir exponenterna

$$\alpha = 4 \tag{7}$$

$$\beta = 1 \tag{8}$$

$$\gamma = -1 \tag{9}$$

Ekvations system

$$L^{3}T^{-1} = L^{\alpha} \cdot L^{\beta} \cdot L^{\gamma} \cdot (M \cdot L^{-3})^{\delta} \cdot (L \cdot T^{-2})^{\epsilon} \cdot (M \cdot L^{-1} \cdot T^{-1})^{\epsilon}$$

$$\tag{10}$$

$$L^{3}T^{-1} = M^{\delta + \epsilon} \cdot L^{\alpha + \beta + \gamma - 3\delta - \epsilon + \epsilon} \cdot T^{-\epsilon - 2\epsilon}$$

$$\tag{11}$$

så med hjälp av 5 får vi

$$M: \delta + \in = 0 \tag{12}$$

$$L: \alpha + \beta + \gamma - 3\delta - \epsilon + \epsilon = 3 \tag{13}$$

$$T: - \in -2\varepsilon = -1 \tag{14}$$

och av ekv. (12) till (14) kan vi lösa resterande exponenter

$$\delta + \in = 0 \implies \in = -\delta \tag{15}$$

och om vi substituerar detta i ekv. (13) får vi

$$L: \alpha + \beta + \gamma - 3\delta - (-\delta) + \varepsilon = 3 \tag{16}$$

 \downarrow

$$3 = 4 + 1 - 1 - 2\delta + \varepsilon \tag{17}$$

$$3 = 4 - 2\delta + \varepsilon \tag{18}$$

$$-1 = -2\delta + \varepsilon \tag{19}$$

$$\varepsilon = 2\delta - 1 \tag{20}$$

substituera i ekv. (14)

$$-1 = -(-\delta) - 2(2\delta - 1) \tag{21}$$

$$= \delta - 4\delta + 2 \tag{22}$$

$$= -3\delta + 2 \tag{23}$$

$$-3 = -3\delta \tag{24}$$

vilket ger

$$\frac{-3\delta}{-3} = \frac{-3}{-3} \implies \delta = 1 \implies \varepsilon = 2(1) - 1 = 1 \tag{25}$$

alltså får vi att ekponenterna är

$$\delta = 1 \tag{26}$$

$$\epsilon = -1 \tag{27}$$

$$\varepsilon = 1 \tag{28}$$