Feedback in Text Retrieval

- Relevance Feedback
 - Users make explicit relevance judgments on the initial results
 - judgments are reliable, but users don't want to make extra effort
 - Query -> retrieval engine -> results -> user -> judgements -> feedback
 - document collection -> retrieval engine
 - document collection -> feedback
 - feedback -> updated query -> retrieval engine
- Pseudo/Blind/Automatic Feedback
 - Top-k initial results are simply assumed to be relevant
 - judgements aren't reliable, but no user activity is required
- Implicit Feedback
 - User-clicked docs are assumed to be relevant; skipped ones non-relevant
 - judgements aren't completely reliable, but no extra effort from users

Feedback in Vector Space Model - Rocchio

- Feedback in vector space model
 - How can a TR system learn from examples to improve retrieval accuracy?
 - Positive examples: docs known to be relevant
 - Negative examples: doc known to be non-relevant
 - General methods; query modification
 - adding new (weighted) terms (query expansion)
 - adjusting weights of old terms
- Rocchio Feedback: Formula
 - Move query vector to the centroid of the relevant documents
 - want to move away from the negative documents
 - new query =
 - original query
 - average relevant documents (centroid)
 - average non-relevant documents (centroid)
 - alpha beta gamma control the amount of movement in the centroids
- Example of Rocchio Feedback
 - vector = {}
 - query = ()
 - centroid vector = () (average of each word in the vector using the weights)
 - centroid of the relevant or positive documents and the centroids of negative documents
 - new query for each term compute (alpha * 1 + Beta * positive centroid vector term gamma * negative centroid term) repeat this for all the terms to obtain the new query vector
- Rocchio in Practice
 - Negative (non-relevant) examples are not very important
 - often truncate the vector (i.e., consider only a small number of words that have highest weights in the centroid vector) (efficiency concern)
 - avoid "over-fitting" (keep relatively high weight on the original query weights)
 - can be used for relevance feedback and pseudo feedback (beta should be set to a larger value for relevance feedback than for pseudo feedback)
 - usually robust and effective

Feedback in Text Retrieval - Feedback in LM

- Feedback in language models
 - Query likelihood method can't naturally support relevance feedback
 - Solution:

- KL divergence retrieval model as a generalization of query likelihood
- Feedback is achieved through query model estimation/updating
- KL Divergence Retrieval Model
 - basically generalize the frequency into a LM
 - basically the difference given by the probabilistic model given by what the user is looking for
 - Query Likelihood f(q,d) = summation c(w,q) * [log O_seen(wld) / alpha_d (p(wlC)] + n log alpha_d
 - KL-divergence f(q,d) = summation [p(wltheta_q)log(p_seen(wld) / alpha_d p(wlC)] + log alpha_d
 - p(w) = c(w,Q) / |Q|
- Feedback as Model Interpolation
 - document D -> theta_d (estimate a document language model)
 - query q -> theta_q (estimate a query language model)
 - compute the KL-divergence D(query g II query d) -> results -> feedback documents
 - feedback documents -> theta_f (estimate a feedback language model)
 - theta q' = (1-alpha)theta q + alpha(theta f) -> theta q
 - linear interpolation update model
 - alpha controls the amount of feedback
 - set 1 full feedback
 - set 0 no feedback
- Generative Mixture Model
 - P(source) ->_lambda (background words) P(wIC) -> w F = {d1 dn}
 - P(source) ->_1-lambda (topic words) P(wltheta) -> w F = {d1 dn}
 - log p(Fltheta) = summation_i summation_w c(w;d_i)log[(1-lambda)p(wltheta) + lambdap(wl C)]
 - Maximum Likelihood theta_f = argmax_theta log p(Fltheta)
 - lambda = noise in feedback documents
- Example of Pseudo-Feedback Query Model
 - Query: "airport security"
 - lambda = .9
 - lambda = .7
 - mixture model approach
- Summary
 - Feedback = learn from examples
 - Three major feedback scenarios
 - relevance, pseudo, implicit feedback
 - Rocchio for VSM
 - Query model estimation for LM
 - Mixture Model

Web Search Introduction and Web Crawler

- Web Search: Challenges and Opportunities
 - Challenges
 - Scalability Parallel indexing and searching (mapreduce)
 - How to handle the size of the Web and ensure completeness of coverage?
 - How to serve many user queries quickly?
 - Low Quality information and spams Spam detection and robust ranking
 - Dynamics of the Web
 - New pages are constantly created and some pages may be updated very quickly

- Opportunities Link analysis and multi-feature ranking
 - many additional heuristics (e.g., Links) can be leveraged to improve search accuracy
- Basic Search Engine Technologies
 - Web -> crawler -> cached pages -> indexer -> (inverted) index <-> retriever -> results browser (user) -> query host info -> retriever
- Component 1: Crawler/Spider/Robot
 - Building a "toy crawler" is easy
 - start with a set of "seed pages" in a priority queue
 - fetch pages from the web
 - parse fetched pages for hyperlinks; add them to the queue
 - Follow the hyperlinks in the queue
 - A real crawler is much more complicated...
 - Robustness (server failure, trap, etc...)
 - Crawling courtesy (server load balance, robot exclusion, etc.)
 - Handling file types (images, PDF files, etc.)
 - URL extensions (cgi script, internal references, etc.)
 - Recognize redundant pages (identical and duplicates)
 - Discover "hidden" URLs (e.g., truncating a long url)
- Major Crawling Strategies
 - Breadth-First is common (balance server load)
 - Parallel crawling is nature
 - variation: focused crawling
 - targeting at a subset of pages
 - typically given a query
 - How to find new pages (they may not linked to an old page)
 - Incremental/repeated crawling
 - need to minimize resource overhead
 - can learn from the past experience (updated daily vs. monthly)
 - target at:
 - frequently updated pages
 - frequently accessed pages
- Summary
 - web search is one of the most important applications of text retrieval
 - new challenges: scalability, efficiency, quality of information
 - new opportunities: rich link information, layout, etc
 - crawler is an essential component of web search applications
 - initial crawling: complete vs. focused
 - incremental crawling: resource optimization

Web Indexing

- Overview of web indexing
 - standard IR techniques are the basis, but insufficient
 - scalability
 - efficiency
 - google's contributions
 - google file system: distributed file system
 - MapReduce: software framework for parallel computation
 - Hadoop: Open source implementation of MapReduce
- GFS Architecture
 - Simple centralized management system

maintains file name space and lookup table

- MapReduce: A Framework for Parallel Programming
 - Minimize effort of programmer for simple parallel processing tasks
 - Features
 - Hide many low-level details (network, storage)
 - built-in fault tolerance
 - automatic load balancing
- MapReduce: Computation Pipeline
 - Input -> key value pairs
 - sent to map function
 - generates new key value pairs
 - MapReduce internal collection/sorting
 - Same keys are grouped together
 - Reduce(K,V[]) handles different key
 - processes the input key and set of values to produce another key and set of values to form the final output
- Word Counting
 - input: text data
 - output: count of each word
 - how can we do this within the MapReduce framework
- Word Counting: Map Function
 - Map(K,V) { For each word w in V, Collect(w,1); }
- Word Counting: Reduce Function
 - After internal grouping
 - Reduce(K,V[]) { Int count = 0; For each v in V, count += v; Collect(K,count); }
 - output the totals for the words accumulate the counts
- Inverted Indexing with MapReduce
 - Map document 1 key value pairs, document 2 key value pairs
 - Built-In Shuffle and Sort: aggregate values by keys
 - Reduce the collection for each word. The counts from each document
- Inverted Indexing: Pseudo-Code

```
1: class MAPPER
2: procedure MAP(docid n, doc d)
3: H \leftarrow \text{new ASSOCIATIVEARRAY}
4: for all term t \in \text{doc } d do
5: H\{t\} \leftarrow H\{t\} + 1
6: for all term t \in H do
7: EMIT(term t, posting \langle n, H\{t\} \rangle)
1: class REDUCER
2: procedure REDUCE(term t, postings [\langle a_1, f_1 \rangle, \langle a_2, f_2 \rangle \dots])
3: P \leftarrow \text{new LIST}
4: for all posting \langle a, f \rangle \in \text{postings } [\langle a_1, f_1 \rangle, \langle a_2, f_2 \rangle \dots] do
5: APPEND(P, \langle a, f \rangle)
6: SORT(P)
7: EMIT(term t, postings P)
```

- Summary
 - Web scale indexing requires
 - storing the index on multiple machines (GFS)
 - creating the index in parallel (MapReduce)
- Both GFS and MapReduce are general infrastructures

Link Analysis - Part 1

- Ranking algorithms for Web Search
 - Standard IR models apply but aren't sufficient
 - Different information needs
 - Documents have additional information
 - Information quality varies a lot
 - Major extensions
 - exploiting links to improve scoring
 - exploiting clickthroughs for massive implicit feedback
 - in general, rely on machine learning to combine all kinds of features
- Exploiting Inter-Document Links
 - Hub page
 - Authority page
- PageRank: Capturing Page "Popularity"
 - Intuitions
 - Links are like citations in literature
 - A page that is cited often can be expected to be more useful in general
 - PageRank is essentially "citation counting", but improves over simple counting
 - Consider "indirect citations"
 - being cited by a highly cited paper counts a lot...
 - smoothing of citations (every page is assumed to have a non-zero pseudo citation count)
 - PageRank can also be interpreted as random surfing
 - thus capturing popularity

Link Analysis Part 2

- The PageRank Algorithm
 - Random surfing model: At any page,
 - with prob. alpha, randomly jumping to another page
 - with prob. (1-alpha), randomly picking a link to follow
 - p(di): PageRank score of di = average probability of visiting page di
 - transition matrix
 - values indicating the probability of going from one page to another page
 - each row indicates a page
 - each row summation is to 1

- The first part captures the probability by following the link
- The second part captures the probability be randomly jumping to another page
- dropping the time index
- $-p(d_i) = summation [1/n * alpha + (1-alpha) M_{ij}] p(d_i) -> p = ((al + (1-alpha)M)^t) * p$
- We can solve this equation using iterative algorithm
- PageRank example

- PageRank in practice
 - Computation can be guite efficient since m is usually sparse
 - Normalization doesn't affect ranking, leading to some variants of the formula
 - The zero outlink problem: p(di)'s don't sum to 1
 - One possible solution = page-specific damping factor (alpha = 1.0 for a page with no out link)
 - Many extensions
 - Many other applications

Link Analysis Part 3

- HITS: capturing authorities and hubs
 - Intuitions
 - Pages that are widely cited are good authorities
 - Pages that cite many other pages are good hubs
 - The key idea of HITS (Hypertext-Induced Topic Search)
 - good authorities are cited by good hubs
 - good hubs point to good authorities
 - iterative reinforcement...
 - Many applications in graph/network analysis
- The HITS Algorithm
 - Adjacency matrix
- Summary
 - Link information is very useful
 - anchor text
 - pagerank
 - hits
- both page rank and hits have many applications in analyzing other graphs or networks

- sdfsdf