SEMILATTICE STRUCTURES OF SPREADING MODELS

DENNY H. LEUNG AND WEE-KEE TANG

ABSTRACT. Given a Banach space X, denote by $SP_w(X)$ the set of equivalence classes of spreading models of X generated by normalized weakly null sequences in X. It is known that $SP_w(X)$ is a semilattice, i.e., it is a partially ordered set in which every pair of elements has a least upper bound. We show that every countable semilattice that does not contain an infinite increasing sequence is order isomorphic to $SP_w(X)$ for some separable Banach space X.

Given a normalized basic sequence (y_i) in a Banach space and $\varepsilon_n \setminus 0$, using Ramsey's Theorem, one can find a subsequence (x_i) and a normalized basic sequence (\tilde{x}_i) such that for all $n \in \mathbb{N}$ and $(a_i)_{i=1}^n \subseteq [-1,1]$,

$$\|\sum a_i x_{k_i}\| - \|\sum a_i \tilde{x}_i\|\| < \varepsilon_n$$

for all $n \leq k_1 < \cdots < k_n$. The sequence (\tilde{x}_i) is called a spreading model of (x_i) . It is well-known that if (x_i) is in addition weakly null, then (\tilde{x}_i) is 1-spreading and suppression 1-unconditional. See [3, 5] for more about spreading models. A spreading model (\tilde{x}_i) is said to (C-) dominate another spreading model (\tilde{y}_i) if there is a $C < \infty$ such that for all $(a_i) \subseteq \mathbb{R}$,

$$\|\sum a_i \tilde{y}_i\| \le C \|\sum a_i \tilde{x}_i\|.$$

The spreading models (\tilde{x}_i) and (\tilde{y}_i) are said to be equivalent if they dominate each other. Let $[(\tilde{x}_i)]$ denote the class of all spreading models which are equivalent to (\tilde{x}_i) . Let $SP_w(X)$ denote the set of all $[(\tilde{x}_i)]$ generated by normalized weakly null sequences in X. If $[(\tilde{x}_i)]$, $[(\tilde{y}_i)]$ $\in SP_w(X)$, we write $[(\tilde{x}_i)] \leq [(\tilde{y}_i)]$ if (\tilde{y}_i) dominates (\tilde{x}_i) . $(SP_w(X), \leq)$ is a partially ordered set. The paper [2] initiated the study of the order structures of $SP_w(X)$. It was established that every countable subset of $(SP_w(X), \leq)$ admits an upper bound ([2, Proposition 3.2]). Moreover, from the proof of this result, it follows that every pair of elements in $(SP_w(X), \leq)$ has a least upper bound. In other words, $(SP_w(X), \leq)$ is a semilattice. In [6], it was shown that if $SP_w(X)$ is countable, then it cannot admit a strictly increasing infinite sequence $(\tilde{x}_i^1) < (\tilde{x}_i^2) < \cdots$. In [4], two methods of construction, utilizing Lorentz sequence spaces and Orlicz sequence spaces respectively, were used to produce Banach spaces X so that $SP_w(X)$ has certain prescribed order

²⁰⁰⁰ Mathematics Subject Classification. 46B20, 46B15.

Key words and phrases. Spreading Models, Lorentz Sequence Spaces.

Research of the first author was partially supported AcRF project no. R-146-000-086-112.

structures. In the present paper, building on the techniques employed in [4, $\S 2$], we show that every countable semilattice that has no infinite increasing sequence is order isomorphic to $SP_w(X)$ for some Banach space X. This gives an affirmative answer to Problem 1.15 in [4]. (See, however, the remark at the end of the paper.)

1. A Representation Theorem for Semilattices

Any collection of subsets of a set V that is closed under the taking of finite unions is a semilattice under the order of set inclusion. In this section, we show that any countable semilattice that does not admit an infinite increasing sequence may be represented in such a way using a countable set V. The result may be of independent interest.

Theorem 1. Let L be a countable semilattice with no infinite increasing sequences. Then there exist a countable set V and an injective map $T: L \to 2^V \setminus \{\emptyset\}$ that preserves the semilattice structure of L, i.e., $T(x \vee y) = T(x) \cup T(y)$ for all $x, y \in L$.

Suppose that L is a semilattice that satisfies the hypothesis of Theorem 1. Note that every nonempty subset of L has at least one maximal element; for otherwise, it will admit an infinite increasing sequence. Set $L_0 = L$. If L_{α} is defined for some countable ordinal α and $L_{\alpha} \neq \emptyset$, let $L_{\alpha+1} = L_{\alpha} \setminus \{\text{maximal elements in } L_{\alpha}\}$. If α is a countable limit ordinal such that $L_{\alpha'} \neq \emptyset$ for all $\alpha' < \alpha$, let $L_{\alpha} = \bigcap_{\alpha' < \alpha} L_{\alpha'}$. Since (L_{α}) is a strictly decreasing transfinite sequence of subsets of the countable set L, $L_{\alpha} = \emptyset$ for some countable ordinal α . Let α_0 be the smallest ordinal such that $L_{\alpha_0} = \emptyset$. Enumerate L as a transfinite sequence $(e_{\beta})_{\beta < \beta_0}$ so that if $e_{\beta_1} \in L_{\alpha_1} \setminus L_{\alpha_1+1}$ and $e_{\beta_2} \in L_{\alpha_2} \setminus L_{\alpha_2+1}$ for some $\alpha_1 < \alpha_2 < \alpha_0$, then $\beta_1 < \beta_2$. If $1 \leq \beta \leq \beta_0$, let $U_{\beta} = \{e_{\beta'} : \beta' < \beta\}$. Note that $L = U_{\beta_0}$.

Lemma 2. (a) e_{β} is a minimal element in $U_{\beta+1}$.

- (b) If $e_{\beta} = e_{\beta_1} \vee e_{\beta_2}$ (least upper bound taken in L), then $\beta \leq \min \{\beta_1, \beta_2\}$.
- (c) If $e_{\beta_1}, e_{\beta_2} \in U_{\beta}$, then $e_{\beta_1} \vee e_{\beta_2}$ belongs to U_{β} .

Proof. (a) Suppose on the contrary that e_{β} is not a minimal element in $U_{\beta+1}$. Then there exists $e_{\beta'} \in U_{\beta+1}$ with $e_{\beta'} < e_{\beta}$. It follows from the definition of $U_{\beta+1}$ that $\beta' < \beta$. If $e_{\beta} \in L_{\alpha} \setminus L_{\alpha+1}$ and $e_{\beta'} \in L_{\alpha'} \setminus L_{\alpha'+1}$, then $\alpha' \leq \alpha$ and hence $L_{\alpha} \subseteq L_{\alpha'}$. Since $e_{\beta}, e_{\beta'} \in L_{\alpha'}$ and $e_{\beta'} < e_{\beta}, e_{\beta'}$ is not maximal in $L_{\alpha'}$. Thus $e_{\beta'} \in L_{\alpha'+1}$, a contradiction.

(b) Suppose that $\beta_1 < \beta$. Then $e_{\beta_1} \in U_{\beta+1}$ and $e_{\beta_1} < e_{\beta}$, contrary to the minimality of e_{β} in $U_{\beta+1}$. Similarly, $\beta_2 \geq \beta$.

(c) Follows immediately from (b).

If $1 \leq \beta < \omega_1$, write $\beta = \gamma + n$, where γ is a limit ordinal, $n < \omega$, and let V_{β} denote the ordinal interval $[0, \gamma + 2n)$. We define a family of maps $T_{\beta}: U_{\beta} \to 2^{V_{\beta}} \setminus \{\emptyset\}$, $1 \leq \beta \leq \beta_0$, inductively so that $T = T_{\beta_0}$ is the map

sought for in Theorem 1. Let $T_1: U_1 = \{e_0\} \to 2^{V_1} \setminus \{\emptyset\}$ be defined by $T_1(e_0) = \{0, 1\}$. If T_β has been defined, $1 \le \beta < \beta_0$, let

$$T_{\beta+1}(x) = \begin{cases} T_{\beta}(x) \cup \{\gamma + 2n, \gamma + 2n + 1\} & \text{if } x \in U_{\beta+1} \setminus \{e_{\beta}\}, \\ \bigcap_{e_{\beta} < z \in U_{\beta}} T_{\beta}(z) \cup \{\gamma + 2n + 1\} & \text{if } x = e_{\beta}. \end{cases}$$

When $\beta \leq \beta_0$ is a limit ordinal and $e_{\beta'} \in U_{\beta}$, let $T_{\beta}(e_{\beta'}) = \bigcup_{\beta' < \xi < \beta} T_{\xi}(e_{\beta'})$. The next result, which shows the compatibility of the definitions of T_{β} for different β 's, is the key to the subsequent arguments.

Lemma 3. If
$$1 \le \beta_1 < \beta_2 \le \beta_0$$
 and $\beta_i = \gamma_i + n_i$, $i = 1, 2$, then $T_{\beta_2}(e_{\beta_1}) = T_{\beta_1+1}(e_{\beta_1}) \cup [\gamma_1 + 2n_1 + 2, \gamma_2 + 2n_2)$.

Proof. If $\beta_2 = \beta_1 + 1$, the assertion holds clearly. Suppose that the assertion holds for some $\beta_2 > \beta_1$. By the definition of T_{β_2+1} ,

$$\begin{split} T_{\beta_2+1}\left(e_{\beta_1}\right) &= T_{\beta_2}\left(e_{\beta_1}\right) \cup \left\{\gamma_2+2n_2,\gamma_2+2n_2+1\right\} \\ &= T_{\beta_1+1}\left(e_{\beta_1}\right) \cup \left[\gamma_1+2n_1+2,\gamma_2+2n_2\right) \\ &\quad \cup \left\{\gamma_2+2n_2,\gamma_2+2n_2+1\right\} \\ &= T_{\beta_1+1}\left(e_{\beta_1}\right) \cup \left[\gamma_1+2n_1+2,\gamma_2+2n_2+2\right). \end{split}$$

Suppose that $\beta_2 \leq \beta_0$ is a limit ordinal and the assertion holds for all $\beta_1 < \xi < \beta_2$. For such ξ , let $\xi = \gamma_{\xi} + n_{\xi}$. By the inductive hypothesis,

$$T_{\xi}(e_{\beta_1}) = T_{\beta_1+1}(e_{\beta_1}) \cup [\gamma_1 + 2n_1 + 2, \gamma_{\xi} + 2n_{\xi}).$$

Since β_2 is a limit ordinal, we have

$$T_{\beta_2}(e_{\beta_1}) = \bigcup_{\beta_1 < \xi < \beta_2} T_{\xi}(e_{\beta_1})$$

$$= T_{\beta_1 + 1}(e_{\beta_1}) \cup [\gamma_1 + 2n_1 + 2, \beta_2)$$

$$= T_{\beta_1 + 1}(e_{\beta_1}) \cup [\gamma_1 + 2n_1 + 2, \gamma_2 + 2n_2),$$

as required. (Note that $n_2 = 0$ since β_2 is a limit ordinal).

Lemma 4. The map $T_{\beta}: U_{\beta} \to 2^{V_{\beta}} \setminus \{\emptyset\}$ is injective if $1 \leq \beta \leq \beta_0$.

Proof. Suppose that e_{β_1} and e_{β_2} are distinct elements in U_{β} , with $\beta_1 < \beta_2 < \beta$. Write $\beta_2 = \gamma_2 + n_2$. It follows from Lemma 3 that $\gamma_2 + 2n_2 \in T_{\beta}(e_{\beta_1}) \setminus T_{\beta}(e_{\beta_2})$.

Proposition 5. If $1 \leq \beta \leq \beta_0$, then $T_{\beta}(x \vee y) = T_{\beta}(x) \cup T_{\beta}(y)$ for all $x, y \in U_{\beta}$. In particular, $T_{\beta}(x) \subseteq T_{\beta}(y)$ if $x \leq y$.

Proof. The second statement follows easily from the first. We prove the first statement by induction on β . The result is clear if $\beta = 1$. Suppose that the assertion is true for some β , $1 \leq \beta < \beta_0$. Let $x = e_{\beta_1}, y = e_{\beta_2} \in U_{\beta+1}$. We may assume that $\beta_1 < \beta_2 < \beta + 1$. Write $\beta = \gamma + n$, and $\beta_i = \gamma_i + n_i$, i = 1, 2, and consider two cases.

Case 1. $\beta_1 < \beta_2 < \beta$.

By Lemma 3 and the inductive hypothesis,

$$T_{\beta+1}(e_{\beta_1}) \cup T_{\beta+1}(e_{\beta_2})$$

$$= T_{\beta_1+1}(e_{\beta_1}) \cup [\gamma_1 + 2n_1 + 2, \gamma + 2n) \cup$$

$$\cup T_{\beta_2+1}(e_{\beta_2}) \cup [\gamma_2 + 2n_2 + 2, \gamma + 2n) \cup \{\gamma + 2n, \gamma + 2n + 1\}$$

$$= T_{\beta}(e_{\beta_1}) \cup T_{\beta}(e_{\beta_2}) \cup \{\gamma + 2n, \gamma + 2n + 1\}$$

$$= T_{\beta}(e_{\beta_1} \vee e_{\beta_2}) \cup \{\gamma + 2n, \gamma + 2n + 1\}$$

$$= T_{\beta+1}(e_{\beta_1} \vee e_{\beta_2}),$$

by definition of $T_{\beta+1}$, since $e_{\beta_1} \vee e_{\beta_2} \neq e_{\beta}$ by part (b) of Lemma 2.

Case 2. $\beta_1 < \beta_2 = \beta$. In this case,

$$T_{\beta+1}\left(x\right) \cup T_{\beta+1}\left(y\right) = \bigcap_{e_{\beta} < z \in U_{\beta}} \left[T_{\beta}\left(x\right) \cup T_{\beta}\left(z\right)\right] \cup \left\{\gamma+2n, \gamma+2n+1\right\}.$$

Note that by part (b) of Lemma 2, $x \vee e_{\beta} = e_{\xi}$ for some $\xi \leq \beta_1$. Hence, $x \vee e_{\beta} \in U_{\beta+1} \setminus \{e_{\beta}\} = U_{\beta}$. Thus, it suffices to show that

$$\bigcap_{e_{\beta} < z \in U_{\beta}} \left[T_{\beta} \left(x \right) \cup T_{\beta} \left(z \right) \right] = T_{\beta} \left(x \vee e_{\beta} \right) = T_{\beta} \left(x \vee y \right).$$

Since $e_{\beta} < x \lor e_{\beta} \in U_{\beta}$, $\bigcap_{e_{\beta} < z \in U_{\beta}} T_{\beta}(z) \subseteq T_{\beta}(x \lor e_{\beta})$. By the inductive hypothesis, $T_{\beta}(x) \subseteq T_{\beta}(x \lor e_{\beta})$. It follows that $\bigcap_{e_{\beta} < z \in U_{\beta}} [T_{\beta}(x) \cup T_{\beta}(z)] \subseteq$

 $T_{\beta}(x \vee e_{\beta})$. On the other hand, if $e_{\beta} < z \in U_{\beta}$, then $x \vee e_{\beta} \leq x \vee z \in U_{\beta}$. By the inductive hypothesis, $T_{\beta}(x \vee e_{\beta}) \subseteq T_{\beta}(x \vee z) = T_{\beta}(x) \cup T_{\beta}(z)$. Therefore, $T_{\beta}(x \vee e_{\beta}) \subseteq \bigcap_{e_{\beta} < z \in U_{\beta}} [T_{\beta}(x) \cup T_{\beta}(z)].$

Suppose that β is a limit ordinal and the Proposition holds for all $\beta' < \beta$. Let $x, y \in U_{\beta}$. We may assume that $x = e_{\beta_1}$ and $y = e_{\beta_2}$ for some $\beta_1 < \beta_2 < \beta_2$ β . Let $\beta_i = \gamma_i + n_i$, i = 1, 2. Using Lemma 3 and the inductive hypothesis,

$$T_{\beta}(x) \cup T_{\beta}(y) = T_{\beta_1+1}(e_{\beta_1}) \cup T_{\beta_2+1}(e_{\beta_2}) \cup [\gamma_1 + 2n_1 + 2, \beta)$$

= $T_{\beta_2+1}(e_{\beta_1}) \cup T_{\beta_2+1}(e_{\beta_2}) \cup [\gamma_2 + 2n_2 + 2, \beta)$
= $T_{\beta_2+1}(e_{\beta_1} \vee e_{\beta_2}) \cup [\gamma_2 + 2n_2 + 2, \beta).$

By (b) of Lemma 2, $e_{\beta_1} \vee e_{\beta_2} = e_{\eta}$ for some $\eta \leq \beta_1$. By Lemma 3,

$$T_{\beta_2+1}(e_{\beta_1} \vee e_{\beta_2}) = T_{\eta+1}(e_{\eta}) \cup [\gamma_{\eta} + 2n_{\eta} + 2, \gamma_2 + 2n_2 + 2),$$

and $T_{\beta+1}(e_{\beta_1} \vee e_{\beta_2}) = T_{\eta+1}(e_{\eta}) \cup [\gamma_{\eta} + 2n_{\eta} + 2, \beta),$

where $\eta = \gamma_{\eta} + n_{\eta}$. Combining the three preceding equations gives $T_{\beta}(x) \cup$ $T_{\beta}(y) = T_{\beta}(x \vee y).$

Proof of Theorem 1. Since $L = U_{\beta_0}$, Theorem 1 follows immediately from Lemma 4 and Proposition 5 by taking $\beta = \beta_0$ in each instance.

2. Good Lorentz Functions

A Lorentz sequence is a non-increasing sequence $(w(n))_{n=1}^{\infty}$ of positive numbers such that w(1)=1, $\lim_n w(n)=0$ and $\sum_{n=1}^{\infty} w(n)=\infty$. A Lorentz sequence is C-submultiplicative if $S(mn) \leq CS(m)S(n)$ for all $m,n \in \mathbb{N}$, where $S(n)=\sum_{k=1}^n w(k)$. In [4, §2], an infinite sequence of 1-submultiplicative Lorentz sequences is constructed so that the maxima of any two incomparable finite subsets are incomparable (see [4, Proposition 2.6]). For our purpose, we require an infinite sequence of C-submultiplicative Lorentz sequences so that the supremum of any (finite or infinite) subset remains a C-submultiplicative Lorentz function, and that the suprema of any two incomparable (finite or infinite) subsets are incomparable (Proposition 10). This is done by tweaking the arguments in [4, §2]. Following [4], we will find it more convenient to work with functions defined on real intervals. If $2 \leq N < \infty$, a good Lorentz function (GLF) on (0,N] is a function $w:(0,N] \to (0,\infty)$ such that

- (1) $w(x) = 1, x \in (0, 2],$
- (2) w is nonincreasing, and
- (3) If $1 \le x, y \le xy \le N$, then $\int_0^{xy} w \le \int_0^x w \cdot \int_0^y w$.

A GLF on $(0, \infty)$ (or simply a GLF) is a function $w: (0, \infty) \to (0, \infty)$ such that $w_{[0,N]}$ is a GLF on (0,N] for any $N \geq 2$, $\lim_{x\to\infty} w(x) = 0$ and $\int_0^\infty w = \infty$. It is an easy exercise to verify that if w is a GLF, then $(w(n))_{n=1}^\infty$ is a 4-submultiplicative Lorentz sequence.

If (u_i) is a finite or infinite sequence of real-valued functions with pairwise disjoint domains, let $\bigoplus_i u_i$ denote the set theoretic union. The constant 1 function with domain I is denoted by 1_I . We now recall the relevant facts from [4]. Note that the quantity S(x) there corresponds to $\int_0^x w$ in our notation.

Lemma 6. [4, Lemma 2.2] Let w be a GLF on (0, N], $N \ge 2$. Then there exists $\varepsilon_0 > 0$ such that for all $\varepsilon < \varepsilon_0$, $w \oplus \varepsilon 1_{(N,N^2]}$ is a GLF on $(0, N^2]$.

Repeated applications of Lemma 6 yield

Lemma 7. Let G be a finite set of GLF's on (0,N], $N \geq 2$. For any N' > N and any $\varepsilon > 0$, there is a function $v : (N,N'] \to (0,\infty)$ such that $w \oplus v$ is a GLF on (0,N'] for all $w \in G$, $v(x) \leq \varepsilon$, $x \in (N,N']$, and $\int_{N}^{N'} v < \varepsilon$.

On the other hand, the proof of [4, Lemma 2.4] allows us to obtain GLF extensions with large total weight.

Lemma 8. Let G be a finite set of GLF's on (0, N], $N \ge 2$ and set $K = \min_{w \in G} \int_0^N w$. For any $\varepsilon > 0$, there is a function $v : (N, N'] \to (0, \infty)$, N' > N, such that

- (1) For all $w \in G$, $w \oplus v$ is a GLF on (0, N'],
- (2) $v(x) \le \varepsilon, x \in (N, N'],$
- (3) $\int_{N}^{N'} v \ge \frac{K}{2}$.

We may repeat the preceding lemma to obtain

Lemma 9. Let G be a finite set of GLF's on (0, N], $N \ge 2$. For any $K < \infty$ and any $\varepsilon > 0$, there is a function $v : (N, N'] \to (0, \infty)$, N' > N, such that

- (1) For all $w \in G$, $w \oplus v$ is a GLF on (0, N'],
- (2) $v(x) \le \varepsilon, x \in (N, N'],$
- (3) $\int_{N}^{N'} v \ge K$.

Proposition 10. There exists an infinite sequence $(w_p)_{p=1}^{\infty}$ of GLF's on $(0,\infty)$ such that for every nonempty $M \subseteq \mathbb{N}$ and every $p' \notin M$,

- (1) $w_M = \sup_{p \in M} w_p$ is a GLF on $(0, \infty)$,
- (2)

$$\sup_{n} \frac{\int_{0}^{n} w_{p'}}{\int_{0}^{n} w_{M}} = \infty.$$

Proof. The desired family of incomparable GLF's is constructed by defining its elements inductively on successive intervals. On each of the segments, each of the w_p 's is chosen to be either "high" or "low".

Let $((p_i,q_i))_{i=1}^{\infty}$ be an enumeration of $\{(p,q): p < q, p, q \in \mathbb{N}\}$ and fix a positive sequence (ε_i) decreasing to 0. For all $p \in \mathbb{N}$, define $w_p^0: (0,2] \to (0,\infty)$ by $w_p^0(x) = 1$. Set $G_0 = \{w_p^0: p \in \mathbb{N}\}$.

Assume that for some $i \in \mathbb{N}$, functions $w_p^j: (N_{j-1},N_j] \to (0,\infty), \ 0 \le j < i \ (N_{-1} = 0,\ N_0 = 2),\ p \in \mathbb{N}$, have been defined so that $G_{i-1} = \{w_{r_0}^0 \oplus \cdots \oplus w_{r_{i-1}}^{i-1}: r_0, \ldots, r_{i-1} \in \mathbb{N}\}$ is a finite set of GLF's on $(0,N_{i-1}]$ and that $\{w_p^j: p \in \mathbb{N}\}$ is a totally ordered set of functions (in the pointwise order) for each $j \in [0,i)$. Set $K_{i-1} = \int_0^{N_{i-1}} \max G_{i-1}$, where by $\max G_{i-1}$ we mean the pointwise maximum of the set of functions G_{i-1} . By Lemma 9, choose a function $w_{p_i}^i$ on $(N_{i-1},N_i]$, $N_i > N_{i-1}$, such that $w \oplus w_{p_i}^i$ is a GLF on $(0,N_i]$ for all $w \in G_{i-1}$, that $w_{p_i}^i(x) \le \varepsilon_i$ for all $x \in (N_{i-1},N_i]$ and that $\int_{N_{i-1}}^{N_i} w_{p_i}^i \ge q_i K_{i-1}$. On the other hand, by Lemma 7, there exists v on $(N_{i-1},N_i]$ such that $w \oplus v$ is a GLF on $(0,N_i]$ for all $w \in G_{i-1}$, that $v(x) \le w_{p_i}^i(N_i)$ for all $x \in (N_{i-1},N_i]$ and that $\int_{N_{i-1}}^{N_i} v \le 1$. Define $w_p^i = v$ for all $p \ne p_i$. Note that $G_i = \{w \oplus w_p^i: w \in G_{i-1}, p \in \mathbb{N}\}$ is a finite set of GLF's on $(0,N_i]$. Obviously, the set $\{w_p^i: p \in \mathbb{N}\} = \{w_{p_i}^i,v\}$ is totally ordered. This completes the inductive construction. Define $w_p = \oplus_i w_p^i, p \in \mathbb{N}$. Observe that $K_0 = 2$ and $K_i \ge K_{i-1} + q_i K_{i-1} \ge 3K_{i-1}$. Hence $K_i \to \infty$. Thus

$$N_i \ge N_i - N_{i-1} \ge \int_{N_{i-1}}^{N_i} w_{p_i}^i \ge q_i K_{i-1} \to \infty.$$

Hence w_p is defined on $(0, \infty)$ for all $p \in \mathbb{N}$. If $\emptyset \neq M \subseteq \mathbb{N}$, let $w_M = \sup_{p \in M} w_p$. We claim that w_M is a GLF on $(0, \infty)$. By definition, $w_{M|(0,N_i]} \in G_i$ for all $i \in \mathbb{N}$. Thus w_M is a GLF on $(0, N_i]$ for all $i \in \mathbb{N}$. Also note that $w_M(x) \leq \varepsilon_i$ for all $x \in (N_{i-1}, N_i]$. Therefore, $\lim_{x \to \infty} w_M(x) = 0$. Furthermore, since $w_M = w_{p_i}^i$ on $(N_{i-1}, N_i]$ if $p_i \in M$,

$$\int_0^\infty w_M > \sup_{\{i: p_i \in M\}} \int_{N_{i-1}}^{N_i} w_{p_i}^i \ge \sup_{\{i: p_i \in M\}} q_i K_{i-1}.$$

Because of the enumeration, $p_i \in M$ holds for infinitely many i. It follows that $\int_0^\infty w_M = \infty$. This shows that w_M is a GLF on $(0, \infty)$.

Finally, note that for all i such that $p_i \notin M$, $\int_{N_{i-1}}^{N_i} w_M \leq 1$ by construction. In particular, if $p' \notin M$, then for all i such that $p_i = p'$,

$$\begin{split} \int_0^{N_i} w_M & \leq \int_0^{N_{i-1}} w_M + \int_{N_{i-1}}^{N_i} w_M \\ & \leq \int_0^{N_{i-1}} \max G_{i-1} + \max_{p \in M} \int_{N_{i-1}}^{N_i} w_p \leq K_{i-1} + 1. \end{split}$$

On the other hand, for all such i,

$$\int_0^{N_i} w_{p'} \ge \int_{N_{i-1}}^{N_i} w_{p'} = \int_{N_{i-1}}^{N_i} w_{p_i}^i \ge q_i K_{i-1}.$$

Hence

$$\sup_{n} \frac{\int_{0}^{n} w_{p'}}{\int_{0}^{n} w_{M}} = \infty.$$

Given a Lorentz sequence $(w(n))_{n=1}^{\infty}$ and $1 \leq p < \infty$, the Lorentz sequence space d(w,p) consists of all real sequences (a_n) such that $\sum a_n^* w_n < \infty$, where (a_n^*) denotes the non-increasing rearrangement of $(|a_n|)$.

Corollary 11. Let $(w_p)_{p=1}^{\infty}$ be as above. For every $M \subseteq \mathbb{N}$, and $p \notin M$, the unit vector basis of $d(w_M, 1)$ does not dominate that of $d(w_p, 1)$.

Proof. Let (v_i) and (u_i) denote the respective unit vector bases of $d(w_p, 1)$ and $d(w_M, 1)$. According to Proposition 10, for any $K < \infty$, there exists $N \in \mathbb{N}$ such that $\int_0^{N+1} w_p \geq K \int_0^{N+1} w_M$. Then

$$\begin{split} \left\| \sum_{i=1}^{N} v_{i} \right\| &= \sum_{i=1}^{N} w_{p}(i) \ge \int_{1}^{N+1} w_{p} = \int_{0}^{N+1} w_{p} - 1 \\ &\ge K \int_{0}^{N+1} w_{M} - 1 \ge K \sum_{i=1}^{N} w_{M}(i) - 1 = K \left\| \sum_{i=1}^{N} u_{i} \right\| - 1. \end{split}$$

The result follows since K is arbitrary.

3. Countable Semilattices of Spreading Models

In this section, we show that every countable semilattice without an infinite increasing sequence is order isomorphic to some $SP_w(X)$. If (x_i) and (y_i) are sequences in the Banach spaces X and Y respectively, let $(x_i) \oplus (y_i)$ denote the sequence $(z_i) = (x_i, y_i)$ in the direct sum $X \oplus Y$. The ℓ^p -sum of an infinite sequence (X_j) of Banach spaces is denoted by $(\sum_{j=1}^{\infty} \oplus X_j)_p$. We omit the easy proof of the next lemma.

Lemma 12. Let $w_1 = (w_1(n))$ and $w_2 = (w_2(n))$ be Lorentz sequences. Then $w = w_1 \vee w_2 = (w_1(n) \vee w_2(n))$ is a Lorentz sequence. Moreover, if (u_n^1) and (u_n^2) are the respective unit vector bases of $d(w_1, 1)$ and $d(w_2, 1)$, then $(u_n^1) \oplus (u_n^2)$ is equivalent to (u_n) , the unit vector basis of d(w, 1).

Lemma 13 ([4, Lemma 3.6]). Let $X = (\sum_{j=1}^{\infty} \oplus X_j)_p$, where $1 \leq p < \infty$ and each X_j is an infinite-dimensional Banach space, and let (\tilde{x}_i) be a spreading model generated by a normalized weakly null sequence in X. Then there exist non-negative $(c_j)_{j=0}^{\infty}$ with $\sum_{j=0}^{\infty} c_j^p = 1$ and normalized spreading models $(\tilde{x}_i^j)_i$ in X_j generated by weakly null sequences such that for all scalars (a_i) ,

(1)
$$\|\sum_{i} a_{i} \tilde{x}_{i}\| = \left[\sum_{j=1}^{\infty} c_{j}^{p} \|\sum_{i} a_{i} \tilde{x}_{i}^{j}\|^{p} + c_{0}^{p} \sum_{i} |a_{i}|^{p}\right]^{1/p}.$$

Remark. If p=1, the final term on the right of equation (1) may be omitted, i.e., $c_0=0$. In fact, according to the proof of Lemma 13 in [4, Lemma 3.6], the spreading model (\tilde{x}_i) is generated by a weakly null sequence (x_i) in X in such a way that $c_0=\lim \|x_i-P_i(x_i)\|$, where $P_i(x_i)=(x_i^1,x_i^2,\cdots,x_i^i,0,0,0,\cdots)$. However, since ℓ^1 has the Schur property (weakly null sequences are norm null), it is easy to see that $\lim \|x_i-P_i(x_i)\|=0$ for any weakly null sequence (x_i) in $(\sum_{j=1}^{\infty} \oplus X_j)_1$.

The following is the crucial property of Lorentz sequence spaces that we require. It can be deduced from the arguments in [1, §4]:

Theorem 14. [1] Let w = (w(n)) be a C-submultiplicative Lorentz sequence and let (u_n) be the unit vector basis of d(w,1). For any $\varepsilon > 0$, every normalized block basis in d(w,1) has a subsequence (x_n) such that either

- (a) (x_n) is equivalent to the unit vector basis of ℓ^1 , or
- (b) there exists c > 0 such that for all $(a_n) \in c_{00}$,

(2)
$$c\|\sum a_n u_n\| \le \|\sum a_n x_n\| \le (C+\varepsilon)\|\sum a_n u_n\|.$$

In particular, if (\tilde{x}_n) is a spreading model generated by a normalized weakly null sequence, then (\tilde{x}_n) satisfies (2) in place of (x_n) .

Theorem 15. Given a countable semilattice L with no infinite increasing sequence, there is a Banach space X_L such that $SP_w(X_L)$ is order isomorphic to L.

Proof. By Theorem 1, there exists a countable set V and an injective map $T:L\to 2^V\smallsetminus\{\emptyset\}$ such that $T(e\vee f)=T(e)\cup T(f)$ for all $e,f\in L$. Since V is countable, by Proposition 10 (and Corollary 11), there is a family $(w_v)_{v\in V}$ of 4-submultiplicative GLF's such that for each non-empty subset M of V, $w_M=\sup_{v\in M}w_v$ is again a (4-submultiplicative) GLF. Moreover, if $p\notin M$, the unit vector basis of $d(w_M,1)$ does not dominate that of $d(w_p,1)$. Set $X_L=\left(\bigoplus_{e\in L}d\left(w_{Te},1\right)\right)_1$. For any $e\in L$, let (u_i^e) be the unit vector basis of $d(w_{Te},1)$. (u_i^e) may be regarded in an obvious way as a normalized weakly null sequence in X_L which generates a spreading model equivalent to itself. Thus $[(u_i^e)]$, the equivalence class containing (u_i^e) , is an element of $SP_w(X_L)$. Define a map $\Theta:L\to SP_w(X_L)$ by $\Theta e=[(u_i^e)]$. We will show that Θ is a bijection such that $\Theta e_1\leq \Theta e_2$ if and only if $e_1\leq e_2$. Hence $SP_w(X_L)$ is order isomorphic to L.

We first show that Θ is onto. Let $[(\tilde{x}_i)]$ be an element in $SP_w(X_L)$. By Lemma 13 and the subsequent Remark, there exist a non-negative sequence $(c_e)_{e \in L}$ with $\sum c_e = 1$ and normalized spreading models (\tilde{x}_i^e) in $d(w_{Te}, 1)$ such that

(3)
$$\|\sum_{i} a_{i} \tilde{x}_{i}\| = \sum_{e \in L} c_{e} \|\sum_{i} a_{i} \tilde{x}_{i}^{e}\|.$$

Since each w_{Te} is 4-submuliplicative, according to Theorem 14, for each $e \in L$, there exists $b_e > 0$ such that

(4)
$$b_e \| \sum_i a_i u_i^e \| \le \| \sum_i a_i \tilde{x}_i^e \| \le 5 \| \sum_i a_i u_i^e \|.$$

Let $I = \{e \in L : c_e > 0\}$. If I is infinite, write its elements in a sequence $(e_i)_{i=1}^{\infty}$. Since the sequence $(\vee_{i=1}^{n}e_i)_{n=1}^{\infty}$ has no strictly increasing infinite subsequence, there is a finite subset J of I such that $\vee_{e \in J} e \geq e'$ for all $e' \in I$. If I is finite, take J = I. Let $f = \vee_{e \in J} e$. We claim that (\tilde{x}_i) is equivalent to (u_i^f) . Observe that $e \leq f$ for all $e \in I$. Hence $Te \subseteq Tf$ and thus $w_{Te} \leq w_{Tf}$. Therefore, (u_i^e) is 1-dominated by (u_i^f) . By (3) and (4),

$$\|\sum_{i} a_{i} \tilde{x}_{i}\| = \sum_{e \in L} c_{e} \|\sum_{i} a_{i} \tilde{x}_{i}^{e}\| = \sum_{e \in I} c_{e} \|\sum_{i} a_{i} \tilde{x}_{i}^{e}\|$$

$$\leq 5 \sum_{e \in I} c_{e} \|\sum_{i} a_{i} u_{i}^{e}\| \leq 5 \sum_{e \in I} c_{e} \|\sum_{i} a_{i} u_{i}^{f}\| = 5 \|\sum_{i} a_{i} u_{i}^{f}\|.$$

On the other hand, by Lemma 12, $\bigoplus_{e \in J} (u_i^e)$ is equivalent to (u_i^f) . Using (3) and (4) again,

$$\| \sum a_i \tilde{x}_i \| = \sum_{e \in I} c_e \| \sum_i a_i \tilde{x}_i^e \| \ge \sum_{e \in I} c_e b_e \| \sum_i a_i u_i^e \|$$

$$\ge \sum_{e \in J} c_e b_e \| \sum_i a_i u_i^e \| \ge \min_{e \in J} \{ c_e b_e \} \sum_{e \in J} \| \sum_i a_i u_i^e \|$$

$$\ge K \| \sum_i a_i u_i^f \| \text{ for some } K > 0.$$

This shows that (\tilde{x}_i) is equivalent to (u_i^f) . Hence $\Theta f = [(u_i^f)] = [(\tilde{x}_i)]$. Next we show that

$$(5) e_1 \le e_2 \Leftrightarrow \Theta e_1 \le \Theta e_2.$$

If $e_1 \leq e_2$, then $Te_1 \subseteq Te_2$ and hence $w_{Te_1} \leq w_{Te_2}$. It follows that $[(u_i^{e_1})] \leq [(u_i^{e_2})]$. On the other hand, if $e_1 \nleq e_2$, then $T(e_1) \not\subseteq T(e_2)$. Choose $p \in T(e_1) \setminus T(e_2)$. By Corollary 11, $(u_i^{e_2})$ does not dominate (v_i) , the unit vector basis of $d(w_p, 1)$. But obviously $(u_i^{e_1})$ dominates (v_i) . Hence $[(u_i^{e_1})] \nleq [(u_i^{e_2})]$. Note that (5) also implies that Θ is injective. Hence $\Theta: L \to SP_w(X_L)$ is an order isomorphism.

Remark. The example given here is non-reflexive. Given a countable semilattice L without an infinite increasing sequence, the ℓ^p $(1 version of the space defined above, i.e., <math>X_p = \left(\bigoplus_{e \in L} d\left(w_{Te}, p\right)\right)_p$, which is a reflexive space, has the property that $SP_w\left(X_p\right)$ is order isomorphic to the semilattice $\hat{L} = \{a\} \cup L, \ a > e$ for all $e \in L$. We do not know how to obtain a reflexive example for general semilattices. In fact, according to the authors of [4], it is not known if there is a reflexive space X such that $SP_w\left(X\right)$ is order isomorphic to $(\{\{1,2\},\{1\},\{2\}\},\subseteq)$.

References

- Z. Altshuler, P. G. Casazza and B.-L. Lin, On symmetric basic sequences in Lorentz sequence spaces, Israel J. Math. 15 (1973), 144-155.
- [2] G. Androulakis, E. Odell, Th. Schlumprecht and N. Tomczak-Jaegermann, On the structure of the spreading models of a Banach space, Canadian J. Math., 57 (2005), 673-707.
- [3] A. Brunel, L. Sucheston, On B-convex Banach spaces, Math. Systems Theory 7 (1974), no. 4, 294–299.
- [4] S. J. Dilworth, E. Odell, B. Sari, *Lattice structures and spreading models*, Israel J. Math., To appear.
- [5] S. Guerre-Delabrière, Classical sequences in Banach spaces, Monographs and Textbooks in Pure and Applied Mathematics, 166. Marcel Dekker, Inc., New York, 1992.
- [6] B. Sari, On Banach spaces with few spreading models, Proc. Amer. Math. Soc., 134 (2006), no. 5, 1339–1345.

Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore 117543

E-mail address: matlhh@nus.edu.sg

MATHEMATICS AND MATHEMATICS EDUCATION, NATIONAL INSTITUTE OF EDUCATION, NANYANG TECHNOLOGICAL UNIVERSITY, 1 NANYANG WALK, SINGAPORE 637616

E-mail address: weekee.tang@nie.edu.sg