INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO

PROF. DANIEL S. FREITAS

UFSC - CTC - INE

7 - ESTRUTURAS ALGÉBRICAS

- 7.1) Operações Binárias
- 7.2) Semigrupos
- 7.3) Produtos e Quocientes de Semigrupos
- 7.4) Grupos
- 7.5) Produtos e Quocientes de Grupos

- Recursos que permitem obter novos grupos a partir de outros já conhecidos.
- Nota: Um grupo tem mais estrutura do que um semigrupo:
 - resultados mais profundos do que os análogos para semigrupos

- Recursos que permitem obter novos grupos a partir de outros já conhecidos.
- Nota: Um grupo tem mais estrutura do que um semigrupo:
 - resultados mais profundos do que os análogos para semigrupos

■ Teorema 1: Se G_1 e G_2 são grupos, então $G = G_1 \times G_2$ é um grupo com uma operação definida por:

$$(a_1,b_1)(a_2,b_2) = (a_1a_2,b_1b_2)$$

- **Exemplo:** Sejam G_1 e G_2 o grupo \mathbb{Z}_2 .
 - Nota: $\overline{0}$ e $\overline{1}$ em vez de [0] e [1]
 - Tabela de multiplicação de $G = G_1 \times G_2$:

	$(\overline{0},\overline{0})$			
$\overline{(\overline{0},\overline{0})}$	$(\overline{0},\overline{0})$ $(\overline{1},\overline{0})$ $(\overline{0},\overline{1})$ $(\overline{1},\overline{1})$	$(\overline{1},\overline{0})$	$(\overline{0},\overline{1})$	$\overline{(\overline{1},\overline{1})}$
$(\overline{1},\overline{0})$	$(\overline{1},\overline{0})$	$(\overline{0},\overline{0})$	$(\overline{1},\overline{1})$	$(\overline{0},\overline{1})$
$(\overline{0},\overline{1})$	$(\overline{0},\overline{1})$	$(\overline{1},\overline{1})$	$(\overline{0},\overline{0})$	$(\overline{1},\overline{0})$
$(\overline{1},\overline{1})$	$(\overline{1},\overline{1})$	$(\overline{0},\overline{1})$	$(\overline{1},\overline{0})$	$(\overline{0},\overline{0})$

- **Exemplo:** Sejam G_1 e G_2 o grupo \mathbb{Z}_2 .
 - Nota: $\overline{0}$ e $\overline{1}$ em vez de [0] e [1]
 - Tabela de multiplicação de $G = G_1 \times G_2$:

 $m{ ilde{S}}$ G é um grupo de ordem 4 \Rightarrow deve ser isomórfico a V ou a \mathbb{Z}_4

- **Exemplo:** Sejam G_1 e G_2 o grupo \mathbb{Z}_2 .
 - Nota: $\overline{0}$ e $\overline{1}$ em vez de [0] e [1]
 - Tabela de multiplicação de $G = G_1 \times G_2$:

- $m{ ilde{I}}$ G é um grupo de ordem 4 \Rightarrow deve ser isomórfico a V ou a \mathbb{Z}_4
- ▶ Vemos (⇒) que o isomorfismo é a $f: V \to \mathbb{Z}_2 \times \mathbb{Z}_2$ dada por:

$$f(e)=(\overline{0},\overline{0}) \qquad f(a)=(\overline{1},\overline{0}) \qquad f(b)=(\overline{0},\overline{1}) \qquad f(c)=(1,1)$$

П

(GRUPOS DE ORDEM 4)

Tabelas de multiplicação para grupo de ordem 4:

	е	а	b	С	е	а	b	С	е	а	b	С	е	а	b	С
е	е	а	b	С	е	а	b	С	е	а	b	С	е	а	b	С
а	а	е	С	b	а	е	С	b	а	b	С	е	а	С	е	b
b	b	С	е	а	b	С	а	е	b	С	е	а	b	е	С	а
С	b c	b	а	е	С	b	е	а	С	е	а	b	С	b	а	е
	(1)						(3)									

- Grupos das tabelas (2), (3) e (4) são isomórficos.
- De fato, existem exatamente 2 grupos não-isomórificos de ordem 4:
 - ullet o grupo da tab. (1) é chamado de "grupo Klein 4" (denotado por V)
 - o grupo da tab. (2) é denotado por Z₄
 - ullet (re-rotulando os elementos de \mathbb{Z}_4 resulta nesta tabela.)

▶ Se repetirmos o exemplo com \mathbb{Z}_2 e \mathbb{Z}_3 , concluiremos que:

$$\mathbb{Z}_2 \times \mathbb{Z}_3 \simeq \mathbb{Z}_6$$

Pode-se mostrar que, em geral:

$$\mathbb{Z}_m \times \mathbb{Z}_n \simeq \mathbb{Z}_{mn}$$
 se e somente se $\mathsf{GCD}(m,n) = 1$

- O Teorema 1 pode ser estendido para:
 - ullet Se G_1,G_2,\ldots,G_n são grupos, então

$$G = G_1 \times G_2 \times \cdots G_n$$
 também é um grupo.

Exemplo: Seja $B = \{0, 1\}$ o grupo com operação (já) definida por:

- ullet Então $B^n=B imes B imes \cdots imes B$ é um grupo.
- Com operação definida por:

$$(x_1, x_2, \dots, x_n) \oplus (y_1, y_2, \dots, y_n) = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$

Exemplo: Seja $B = \{0, 1\}$ o grupo com operação (já) definida por:

- ullet Então $B^n=B imes B imes \cdots imes B$ é um grupo.
- Com operação definida por:

$$(x_1, x_2, \dots, x_n) \oplus (y_1, y_2, \dots, y_n) = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$

- lacksquare A identidade de B^n é $(0,0,\ldots,0)$.
- Cada elemento é a sua própria inversa.
- ullet Este grupo é, essencialmente, o mesmo que a Álgebra Booleana B_n
 - só que a operação binária é bem diferente de ∧ e ∨.

- Sob uma relação de congruência, o grupo é visto como um semigrupo.
- A seguir, veremos estruturas quocientes determinadas por uma relação de congruência sobre um grupo.

Teorema 2:

- Seja R uma relação de congruência sobre o grupo (G, *).
- Então o semigrupo $(G/R, \circledast)$ é um grupo.
 - ullet onde: $[a] \circledast [b] = [a * b]$

Prova:

- G é um grupo $\Rightarrow G$ é um monóide $\Rightarrow G/R$ é um monóide
- Só falta provar que cada elemento de G/R tem uma inversa:

Teorema 2:

- Seja R uma relação de congruência sobre o grupo (G, *).
- Então o semigrupo $(G/R,\circledast)$ é um grupo.
 - ullet onde: $[a] \circledast [b] = [a * b]$

Prova:

- G é um grupo $\Rightarrow G$ é um monóide $\Rightarrow G/R$ é um monóide
- Só falta provar que cada elemento de G/R tem uma inversa:
 - ullet como $[a]\in G/R$, então $[a^{-1}]\in G/R$ (pois $a^{-1}\in G$)
 - ullet daí: $[a] \circledast [a^{-1}] = [a * a^{-1}] = [e]$

Teorema 2:

- Seja R uma relação de congruência sobre o grupo (G, *).
- Então o semigrupo $(G/R,\circledast)$ é um grupo.
 - ullet onde: $[a] \circledast [b] = [a * b]$

Prova:

- G é um grupo $\Rightarrow G$ é um monóide $\Rightarrow G/R$ é um monóide
- Só falta provar que cada elemento de G/R tem uma inversa:
 - ullet como $[a]\in G/R$, então $[a^{-1}]\in G/R$ (pois $a^{-1}\in G$)
 - ullet daí: $[a] \circledast [a^{-1}] = [a * a^{-1}] = [e]$
 - de modo que: $[a]^{-1} = [a^{-1}]$
 - ullet portanto: $(G/R, \circledast)$ é um grupo

HOMOMORFISMOS E ISOMORFISMOS

- Nota: As definições de homomorfismo, isomorfismo e congruência para grupos envolvem apenas as suas estruturas de semigrupos e monóides.
- A seguir, uma conseqüência imediata dos resultados para semigrupos...

Corolário 1(a):

- ullet Se R é uma relação de congruência sobre G, então:
 - $m{m{\omega}}$ a função $f_R:G o G/R$, dada por: $f_R(a)=[a]$ é um homomorfismo de grupo.

Corolário 1(a):

- ullet Se $oldsymbol{R}$ é uma relação de congruência sobre $oldsymbol{G}$, então:
 - ullet a função $f_R:G o G/R$, dada por: $f_R(a)=[a]$ é um homomorfismo de grupo.

Corolário 1(b):

- Se $f: G \to G'$ é um homomorfismo e:
 - ullet se R é definida por: " $a \ R \ b$ sse f(a) = f(b)"
- então:
 - R é uma relação de congruência
 - ullet a função $\overline{f}:G/R o G'$, dada por: $\overline{f}([a])=f(a)$ é um isomorfismo do grupo $(G/R,\circledast)$ sobre o (G',st').

- Têm uma forma muito especial...
- ullet Seja H um subgrupo de um grupo G e seja $a \in G$:
 - o coset à esquerda de H em G, determinado por a, é o conj.:

$$\mathbf{a}H = \{\mathbf{a}h \mid h \in H\}$$

• o coset à direita de H em G, determinado por a, é o conjunto:

$$\mathbf{Ha} = \{\mathbf{ha} \mid h \in H\}$$

ullet dizemos que um subgrupo H de G é **normal** se:

$$aH = Ha$$
. $\forall a \in G$

- Têm uma forma muito especial...
- ullet Seja H um subgrupo de um grupo G e seja $a \in G$:
 - o coset à esquerda de H em G, determinado por a, é o conj.:

$$\mathbf{a}H = \{\mathbf{a}h \mid h \in H\}$$

• o coset à direita de H em G, determinado por a, é o conjunto:

$$\mathbf{Ha} = \{\mathbf{ha} \mid h \in H\}$$

ullet dizemos que um subgrupo H de G é **normal** se:

$$aH = Ha$$
, $\forall a \in G$

- ullet Nota: "Ha=aH" não é o mesmo que "ha=ah"
 - só se sabe que ha = ah' aonde h' é algum elemento em H

- ullet Computando todos os cosets à esquerda de um subgrupo H em G:
 - Suponha que $a \in H$:
 - ullet então $aH\subseteq H$, pois H é subgrupo (de G)
 - além disto:
 - \cdot se $h \in H$, então h = ah', aonde: $h' = a^{-1}h \in H$
 - · de modo que: $H \subseteq aH$.
 - $m{\square}$ logo: se $a \in H$, então aH = H.

- lacksquare Computando todos os cosets à esquerda de um subgrupo H em G:
 - Suponha que $a \in H$:
 - ullet então $aH \subseteq H$, pois H é subgrupo (de G)
 - além disto:
 - \cdot se $h \in H$, então h = ah', aonde: $h' = a^{-1}h \in H$
 - · de modo que: $H \subseteq aH$.
 - ullet logo: se $a \in H$, então aH = H.
 - Conclusão: quando computando todos os cosets de H, não é preciso computar aH para $a \in H$
 - (pois será sempre H)

Exemplo 1(/3): Seja G o grupo de simetrias S_3 já visto:

$$egin{aligned} S_3 &= \{f_1, f_2, f_3, g_1, g_2, g_3\} \ &= \{\{1, 2, 3\}, \{2, 3, 1\}, \{3, 1, 2\}, \{1, 3, 2\}, \{3, 2, 1\}, \{2, 1, 3\}\} \end{aligned}$$

ullet Com a operação de composição sobre S_3 :

0	f_1	f_2	f_3	$oldsymbol{g_1}$	g_2	g_3
f_1	f_1	$egin{array}{c} f_2 \ f_3 \ f_1 \ g_2 \ g_3 \ g_1 \ \end{array}$	f_3	$oldsymbol{g_1}$	$oldsymbol{g_2}$	g_3
f_2	f_2	f_3	f_1	g_3	$oldsymbol{g_1}$	g_2
f_3	f_3	$oldsymbol{f_1}$	f_2	$oldsymbol{g_2}$	g_3	$oldsymbol{g_1}$
g_1	$oldsymbol{g_1}$	g_2	g_3	f_1	f_2	f_3
g_2	g_2	g_3	$oldsymbol{g_1}$	f_3	f_1	f_2
g_3	g_3	$oldsymbol{g_1}$	g_2	f_2	f_3	f_1

- **Exemplo 1(/3):** Seja G o grupo de simetrias S_3 já visto (=>).
 - ullet O subconjunto $m{H}=\{f_1,g_2\}$ é um subgrupo de $m{G}$.

- **Exemplo 1(/3):** Seja G o grupo de simetrias S_3 já visto (=>).
 - O subconjunto $H = \{f_1, g_2\}$ é um subgrupo de G.
 - ullet Computando todos os cosets à esquerda de H em G:

$$f_1H = g_2H = H$$

$$f_2H=\{f_2,g_1\}$$
 $f_3H=\{f_3,g_3\}$ $g_1H=\{g_1,f_2\}=f_2H$ $g_3H=\{g_3,f_3\}=f_3H$

- **Exemplo 1(/3):** Seja G o grupo de simetrias S_3 já visto (=>).
 - ullet O subconjunto $oldsymbol{H}=\{f_1,g_2\}$ é um subgrupo de $oldsymbol{G}$.
 - Computando todos os cosets à esquerda de H em G:

$$f_1H = g_2H = H$$

$$f_2H=\{f_2,g_1\}$$
 $f_3H=\{f_3,g_3\}$ $g_1H=\{g_1,f_2\}=f_2H$ $g_3H=\{g_3,f_3\}=f_3H$

Logo, cosets à esquerda de H em G que são distintos:

$$H, f_2H e f_3H$$

П

Exemplo 2(/3): Sejam $H \in G$ como no exemplo anterior:

$$egin{aligned} H &= \{f_1, g_2\} \ \\ G &= S_3 = \{f_1, f_2, f_3, g_1, g_2, g_3\} \\ &= \{\{1, 2, 3\}, \{2, 3, 1\}, \{3, 1, 2\}, \{1, 3, 2\}, \{3, 2, 1\}, \{2, 1, 3\}\} \end{aligned}$$

Exemplo 2(/3): Sejam H e G como no exemplo anterior:

$$egin{aligned} H &= \{f_1, g_2\} \ \\ G &= S_3 = \{f_1, f_2, f_3, g_1, g_2, g_3\} \\ &= \{\{1, 2, 3\}, \{2, 3, 1\}, \{3, 1, 2\}, \{1, 3, 2\}, \{3, 2, 1\}, \{2, 1, 3\}\} \end{aligned}$$

Considere o seguinte coset à direita:

$$Hf_2 = \{f_2, g_3\}$$

- Mas vimos que: $f_2H = \{f_2, g_1\}.$
- **●** Logo: H não \acute{e} um subgrupo normal de G.

- **Exemplo 3(/3):** Mostre que se G é um grupo abeliano, todo subgrupo de G é um subgrupo normal.
 - Sejam:
 - $m{ ilde{m{9}}}$ H um subgrupo de G
 - $m{\omega}$ $a \in G$
 - $m{\iota} h \in H$

- **Exemplo 3(/3):** Mostre que se G é um grupo abeliano, todo subgrupo de G é um subgrupo normal.
 - Sejam:
 - $m{ ilde{y}}$ H um subgrupo de G
 - $m{\iota} a \in G$
 - $m{\iota} h \in H$
 - ullet Então, como G é abeliano: ha=ah
 - ullet de modo que: Ha = aH
 - ullet o que implica que H é um subgrupo normal de G.

Teorema 3:

- Sejam:
 - $oldsymbol{\mathscr{L}}$ uma relação de congruência sobre um grupo G
- Então:
 - H é um subgrupo normal de G:

$$\cdot \ \, orall \, a \in G, \quad [a] = aH = Ha$$

● Prova: (⇒)

- ullet Prova: Sejam a e b elementos quaisquer em G.
 - Já que R é de equivalência: $b \in [a] \Leftrightarrow [b] = [a]$

- **Prova:** Sejam a e b elementos quaisquer em G.
 - Já que R é de equivalência: b ∈ [a] ⇔ [b] = [a]
 - Também (pelo Teor 2), já que G/R é um grupo:

$$[b] = [a] \Leftrightarrow [a]^{-1}[b] = [a^{-1}b] = [e] = \mathbf{H}$$

- **Prova:** Sejam a e b elementos quaisquer em G.
 - Já que R é de equivalência: $b \in [a] \Leftrightarrow [b] = [a]$
 - Também (pelo Teor 2), já que G/R é um grupo:

$$[b] = [a] \Leftrightarrow [a]^{-1}[b] = [a^{-1}b] = [e] = \mathbf{H}$$

 $m{b}$ ou seja: $m{b} \in [m{a}] \Leftrightarrow a^{-1} b \in m{H}$ (ou: $m{b} \in m{a} m{H}$)

$$\Rightarrow$$
 $[a] = aH$, $\forall a \in G$

- ullet Prova: Sejam a e b elementos quaisquer em G.
 - Já que R é de equivalência: $b \in [a] \Leftrightarrow [b] = [a]$
 - Também (pelo Teor 2), já que G/R é um grupo:

$$[b] = [a] \Leftrightarrow [a]^{-1}[b] = [a^{-1}b] = [e] = H$$

- $m{m{b}}$ ou seja: $m{b} \in [m{a}] \iff a^{-1} m{b} \in m{H}$ (ou: $m{b} \in m{a} m{H}$) $\Rightarrow [m{a}] = m{a} m{H}, \ \ orall a \in m{G}$
- Pode-se mostrar, da mesma forma, que [a] = Ha:

$$b \in [a] \Leftrightarrow H = [e] = [b][a]^{-1} = [ba^{-1}]$$

• Portanto: [a] = aH = Ha e H é normal.

П

- ullet Combinando o Teor 3: "A classe [e] é sempre um subgrupo normal de G."
 - ullet ou: "Se $oldsymbol{R}$ é uma rel. de congruência sobre um $oldsymbol{G}$, então: $[oldsymbol{a}] = oldsymbol{a}[oldsymbol{e}] = [oldsymbol{e}] oldsymbol{a}$."
- com o Corolário 1(a):
 - ullet "Se $oldsymbol{R}$ é uma relação de congruência sobre $oldsymbol{G}$, então:
 - $f_R:G\to G/R$, dada por $f_R(a)=[a]$, é um homomorfismo de grupo."

- **Ombinando o Teor 3**: "A classe [e] é sempre um subgrupo normal de G."
 - ullet ou: "Se $oldsymbol{R}$ é uma rel. de congruência sobre um $oldsymbol{G}$, então: $[oldsymbol{a}] = oldsymbol{a}[oldsymbol{e}] = [oldsymbol{e}] oldsymbol{a}$."
- com o Corolário 1(a):
 - ullet "Se $oldsymbol{R}$ é uma relação de congruência sobre $oldsymbol{G}$, então:
 - $f_R:G\to G/R$, dada por $f_R(a)=[a]$, é um homomorfismo de grupo."
- notamos que, neste caso:
 - G/R consiste dos cosets à esquerda de N=[e]
 - ullet (ou seja: ao juntarmos todos os cosets à esquerda de [e], obteremos G/R)
 - ullet e a operação em G/R é dada (simplesmente) por:

$$(aN)(bN) = [a] \circledast [b] = [ab] = abN$$
 (pois: homomorfismo)

ullet e escrevemos G/R como G/[e] ou: G/N.

Teorema 4:

- Sejam:
 - $oldsymbol{ iny} N$ um subgrupo normal de um grupo G
 - R a seguinte relação sobre G:

```
a R b se e somente se a^{-1}b \in N
```

- Então:
 - (a) $oldsymbol{R}$ é uma relação de congruência sobre $oldsymbol{G}$
 - (b) N é a classe de equivalência [e] relativa a R
 - · ("e" é a identidade de G)
- "Todo subgrupo normal N de um grupo G é a classe de equivalência da identidade de G, para alguma rel. de congruência." Ou seja: " $\exists R$ tal que N = [e]"
- **●** Prova: (⇒)

- **Prova de (a) (1/2)**: (" $a R b ⇔ a^{-1}b ∈ N$ é de congruência")
 - R é uma relação de equivalência sobre G:
 - R é reflexiva: a R a, pois: $a^{-1}a = e \in N$
 - $m{\wp}$ R é simétrica: seja $a \ R \ b$:
 - \cdot então: $a^{-1}b \in N$
 - · mas: $(a^{-1}b)^{-1} = b^{-1}a \in \mathbb{N}$ (pois \mathbb{N} é subgrupo)
 - · de modo que: b R a
 - $m{\wp}$ R é transitiva: sejam $a\ R\ b$ e $b\ R\ c$:
 - \cdot então: $a^{-1}b\in N$ e $b^{-1}c\in N$ $\Rightarrow (a^{-1}b)(b^{-1}c)=a^{-1}c\in N$
 - \cdot de modo que: a~R~c
 - continuação da prova de (a): ⇒

- **Prova de (a) (2/2)**: (" $a R b \Leftrightarrow a^{-1}b \in N$ é de congruência")
 - R é de congruência sobre G:
 - ullet suponha que a R b e c R d:
 - \cdot então: $a^{-1}b\in N$ e $c^{-1}d\in N$

- **Prova de (a) (2/2)**: (" $a R b \Leftrightarrow a^{-1}b \in N$ é de congruência")
 - R é de congruência sobre G:
 - ullet suponha que a R b e c R d:
 - \cdot então: $a^{-1}b\in N$ e $c^{-1}d\in N$
 - ightharpoonup mas N é normal: Nd = dN
 - \cdot " $\forall n_1 \in N, \exists n_2 \in N \mid n_1 d = dn_2$ "
 - · em particular: $a^{-1}bd = dn_2$, para algum $n_2 \in N$

- **Prova de (a) (2/2)**: (" $a R b \Leftrightarrow a^{-1}b \in N$ é de congruência")
 - R é de congruência sobre G:
 - ullet suponha que a R b e c R d:
 - \cdot então: $a^{-1}b\in N$ e $c^{-1}d\in N$
 - ightharpoonup mas N é normal: Nd = dN
 - \cdot " $\forall n_1 \in N, \exists n_2 \in N \mid n_1 d = dn_2$ "
 - · em particular: $a^{-1}bd = dn_2$, para algum $n_2 \in N$
 - o que permite escrever:

$$(ac)^{-1}bd = (c^{-1}a^{-1})(bd) =$$

$$= c^{-1}(a^{-1}b)d = (c^{-1}d)n_2 \in N$$

- · de modo que: ac R bd.
- $lap{Prova de (b)} \Rightarrow$

- **Prova de (b)**: (" se: $a R b \Leftrightarrow a^{-1}b \in N$, então: N = [e]")
 - ullet Seja $x \in N$:
 - então $x^{-1}e = x^{-1} \in N$ (pois N é subgrupo)
 - ullet de modo que: $m{x} \; m{R} \; m{e}$ e, portanto: $m{x} \in [m{e}]$
 - ullet logo: $N\subseteq [e]$

- **Prova de (b)**: (" se: $a R b \Leftrightarrow a^{-1}b \in N$, então: N = [e]")
 - ullet Seja $x \in N$:
 - então $x^{-1}e = x^{-1} \in N$ (pois N é subgrupo)
 - $m{\omega}$ de modo que: $m{x} \ m{R} \ m{e}$ e, portanto: $m{x} \in [m{e}]$
 - ullet logo: $N\subseteq [e]$
 - Conversamente:
 - $ule{1}$ se $x \in [e]$, então x R e
 - ullet de modo que: $x^{-1}e=x^{-1}\in N$
 - $m{ ilde{\square}}$ então: $m{x} \in m{N}$ e $[m{e}] \subseteq m{N}$
 - Logo: N = [e]

- ullet Teor 3: "A classe [e], sob $oldsymbol{R}$ de congruência, é sempre um subgrupo normal de $oldsymbol{G}$."
 - Ou: "Se R é uma rel. de congruência sobre um G, então: [a] = a[e] = [e]a."
- **Teor 4**: "Todo subgrupo normal N de um grupo G é igual a [e], para alguma rel. de congruência."

- ullet Teor 3: "A classe [e], sob $oldsymbol{R}$ de congruência, é sempre um subgrupo normal de $oldsymbol{G}$."
 - Ou: "Se R é uma rel. de congruência sobre um G, então: [a] = a[e] = [e]a."
- Teor 4: "Todo subgrupo normal N de um grupo G é igual a [e], para alguma rel. de congruência."
- Logo, se G é um grupo qualquer:
 - as classes de equivalência relativas a uma rel. de congruência sobre G são sempre os cosets de algum subgrupo normal de G.
 - $oldsymbol{\wp}$ "Dada a $oldsymbol{R},\;\exists$ um subgrupo normal ($[oldsymbol{e}]$) cujos cosets são as suas classes."

- ullet Teor 3: "A classe [e], sob $oldsymbol{R}$ de congruência, é sempre um subgrupo normal de $oldsymbol{G}$."
 - Ou: "Se R é uma rel. de congruência sobre um G, então: [a] = a[e] = [e]a."
- Teor 4: "Todo subgrupo normal N de um grupo G é igual a [e], para alguma rel. de congruência."
- Logo, se G é um grupo qualquer:
 - as classes de equivalência relativas a uma rel. de congruência sobre G são sempre os cosets de algum subgrupo normal de G.
 - $oldsymbol{\wp}$ "Dada a $oldsymbol{R},\;\exists$ um subgrupo normal ($[oldsymbol{e}]$) cujos cosets são as suas classes."

Conversamente:

- os cosets de todo subgrupo normal de G são apenas classes de equivalência relativas a alguma relação de congruência sobre G.
 - $m{\wp}$ "Dado um subgrupo normal, $\exists \; m{R}$ de congr. cujas classes são os seus cosets."

PRODUTOS E QUOCIENTES DE GRUPOS (RELEMBR.)

- **Description** Corolário 1(b): (rel.) Se $f: G \rightarrow G'$ é um homomorfismo e:
 - se R é definida por: "a R b sse f(a) = f(b)"
- então:

 - ullet a função $\overline{f}:G/R o G'$, dada por: $\overline{f}([a])=f(a)$ é um isomorfismo do grupo $(G/R,\circledast)$ sobre o grupo (G',st').

 $oldsymbol{igspace}$ Teor 3: "Se $oldsymbol{R}$ é uma rel. de congruência sobre um $oldsymbol{G}$, então: $[oldsymbol{a}] = oldsymbol{a}[oldsymbol{e}] = [oldsymbol{e}]oldsymbol{a}$."

- O Corolário 1(b) pode agora ser escrito como:
 - Sejam:
 - f um homomorfismo de um grupo (G, *) sobre um (G', *').
 - o kernel de f dado por: $\ker(f) = \{a \in G \mid f(a) = e'\}$
 - Então:
 - (a) ker(f) é um subgrupo normal de G
 - (b) o grupo quociente $G/\ker(f)$ é isomórfico a G'.

- O Corolário 1(b) pode agora ser escrito como:
 - Sejam:
 - f um homomorfismo de um grupo (G, *) sobre um (G', *').
 - o kernel de f dado por: $\ker(f) = \{a \in G \mid f(a) = e'\}$
 - Então:
 - (a) ker(f) é um subgrupo normal de G
 - (b) o grupo quociente $G/\ker(f)$ é isomórfico a G'.
- Prova: segue de Corol. 1 + Teor. 3, pois:
 - ullet se R é a relação de congruência sobre G dada por:

$$a R b \Leftrightarrow f(a) = f(b)$$

• pode-se mostrar que: $\ker(f) = [e]$

- **Exemplo:** Seja o homomorfismo f de \mathbb{Z} sobre \mathbb{Z}_n : f(m) = [r]
 - O inteiro m em \mathbb{Z} pertence a $\ker(f)$ sse f(m) = [0]
 - ullet Ou seja, sse m é um múltiplo de n
 - Portanto: $\ker(f) = n\mathbb{Z}$

PRODUTOS E QUOCIENTES DE GRUPOS

Final deste item.

Dica: fazer exercícios sobre Produtos e Quocientes de Grupos...