

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Γραφοθεωρία Ομάδα Ασκήσεων Νο. 1

Ομάδα 7 Αξιώτης Κυριάχος Αρσένης Γεράσιμος

1 Βαθμοί, κύκλοι, μονοπάτια

 $1.7 \ (\star) \ \Delta$ είξτε ότι αν για κάποιο γράφημα G ισχύει ότι διάμετρος $(G) \ge 2$, τότε το ίδιο θα ισχύει και για το απόκεντρο του G.

Aπόδειξη. Έστω αποκ(G) το σύνολο των κορυφών του G που ανήκουν στο απόκεντρο και $H=G_{αποκ(G)}$ το εναγόμενο από το απόκεντρο υπογράφημα.

Έστω ότι ήταν διάμετρος $(H) \le 1$. Επειδή το απόχεντρο πρέπει να περιέχει τουλάχιστον 2 χορυφές, η διάμετρος δεν μπορεί να είναι 0 άρα έχουμε ότι διάμετρος(H) = 1, δηλαδή το H είναι πλήρες γράφημα.

Τότε όμως η διάμετρος του G δεν μπορεί να είναι μεγαλύτερη ή ίση του 2 γιατί όλες οι αντιδιαμετρικές κορυφές βρίσκονται στο απόκεντρο και το απόκεντρο είναι πλήρες.

Συνεπώς αν διάμετρος $(G) \ge 2$ τότε και διάμετρος $(H) \ge 2$.

1.8 (*) Προσδιορίστε τη μέση απόσταση δύο χορυφών του γραφήματος Q_r (δηλ. το μέσο όρο των αποστάσεων για όλα τα δυνατά ζεύγη διαχεχριμένων χορυφών).

Απόδειξη. Ως γνωστόν οι κορυφές του υπερκύβου μπορούν να αριθμηθούν με δυαδικές συμβολοσειρές μήκους r. Δύο κορυφές συνδέονται με ακμή ανν οι συμβολοσειρές τους διαφέρουν μόνο σε μία θέση.

Έστω μία κορυφή x. Το πλήθος των κορυφών που βρίσκονται σε απόσταση d είναι ίσο με το πλήθος των κορυφών που οι συμβολοσειρές τους διαφέρουν σε d ακριβώς θέσεις σε σχέση με την x. Δηλαδή υπάρχουν $\binom{d}{d}$ κορυφές σε απόσταση d.

Συνεπώς έχουμε:

$$\begin{split} E[d] &= \frac{1}{\binom{n(G)}{2}} \sum_{u,v \in V(G): u \neq v} d(u,v) \\ &= \frac{1}{\binom{2^r}{2}} \sum_{u \in V(G)} \sum_{v \in V(G): v \neq u} d(u,v) \\ &= \frac{1}{\frac{2^r \cdot (2^r - 1)}{2}} \sum_{u \in V(G)} \sum_{k=1}^r k \cdot \binom{r}{k} \\ &= \frac{2}{2^r (2^r - 1)} n(G) \sum_{k=1}^r r \binom{r-1}{k-1} \\ &= \frac{2 \cdot 2^r \cdot r}{2^r (2^r - 1)} \sum_{k=0}^{r-1} \binom{r-1}{k} \\ &= \frac{2 \cdot r \cdot 2^{r-1}}{2^r - 1} \\ &= \frac{r \cdot 2^r}{2^r - 1} \end{split}$$

1.9 (*) Για κάθε θετικό ακέραιο α και για κάθε γράφημα G, το V(G) περιέχει περισσότερες από $\left(1-\frac{1}{\alpha}\right)\cdot n(G)$ κορυφές βαθμού αυστηρά μικρότερου του $2\alpha\delta^*(G)$.

Aπόδειξη. Σύμφωνα με τον ορισμό έχουμε ότι $\delta^*(G) = \max\{k \mid \exists H \subseteq G$ με $\delta(H) \geq k\}$.

Θέλουμε να δείξουμε ότι:

$$|\{u \mid u \in V(G) \land d(u) < 2\alpha \delta^*(G)\}| > \left(1 - \frac{1}{\alpha}\right)n(G)$$

Έστω λοιπόν, προς απαγωγή σε άτοπο ότι:

$$\begin{aligned} |\{u \mid u \in V(G) \land d(u) < 2\alpha \delta^*(G)\}| &\leq \left(1 - \frac{1}{\alpha}\right) n(G) \\ \Leftrightarrow n(G) - |\{u \mid u \in V(G) \land d(u) \geq 2\alpha \delta^*(G)\}| &\leq \left(1 - \frac{1}{\alpha}\right) n(G) \\ \Leftrightarrow |\{u \mid u \in V(G) \land d(u) \geq 2\alpha \delta^*(G)\}| &\geq \frac{1}{\alpha} n(G) \end{aligned}$$

Ισχύει όμως:

$$2m(G) = \sum_{u \in V(G)} d(u) \ge \sum_{u \in V(G): d(u) \ge 2\alpha\delta*(G)} d(u) \ge \frac{1}{\alpha} n(G) \cdot 2\alpha\delta*(G) = 2n(G)\delta^*(G)$$

$$m(G) \ge n(G) \cdot \delta^*(G) \Leftrightarrow \epsilon(G) \ge \delta^*(G)$$

Από το Πόρισμα 3.1 των σημειώσεων του μαθήματος γνωρίζουμε ότι $\delta^*(G) \geq \epsilon(G)$, συνεπώς θα έχουμε:

$$\epsilon(G) = \delta^*(G)$$

ΤΟΣΟ: Εδώ καταλήγουμε σε άτοπο γιατί αν ισχύει ισότητα τότε οι παραπάνω ανισότητες είναι αυστηρές και αυτό δεν μπορεί να ισχύει [...]

1.10 (**) Κάθε γράφημα G με τουλάχιστον 2 κορυφές και $\epsilon(G) \geq 2$, έχει περιφέρεια το πολύ $2 \cdot \log_2(n)$.

Απόδειξη. Έστω το μικρότερο σε πλήθος κορυφών γράφημα, το οποίο έχει τουλάχιστον 2 κορυφές και $\epsilon(G) \geq 2$ και ο ελάχιστός του κύκλος είναι τουλάχιστον $2 \cdot \log_2(n)$. Αν αυτό το γράφημα περιέχει μια κορυφή βαθμού 1, τότε αφαιρώντας την οι αχμές μειώνονται κατά 1 και οι κορυφές μειώνονται κατά 1, άρα $\epsilon(G')=\frac{m'}{n'}=\frac{m-1}{n-1}\geq \frac{2n-1}{n-1}\geq 2$. Επίσης το υπόλοιπο γράφημα έχει τουλάχιστον μια αχμή, αφού αν πριν τη διαγραφή είχε μόνο μία, θα είχαμε πυχνότητα το πολύ 1/2. Αυτό όμως είναι άτοπο λόγω της υπόθεσης ελαχιστότητας. Αντίστοιχα, αν περιέχεται μια κορυφή βαθμού 2, τότε αφαιρώντας την έχουμε m' = m - 2 και n' = n - 1, άρα $\epsilon(G')=\frac{m'}{n'}=\frac{m-2}{n-1}\geq \frac{2n-2}{n-1}=2$, το οποίο είναι και πάλι άτοπο για τον ίδιό λόγο με παραπάνω. Άρα όλες οι κορυφές του γραφήματος έχουν βαθμό τουλάχιστον 3. Έστω τυχαία κορυφή v και η αποσύνθεση απόστασης από την v είναι τα σύνολα $V_0, V_1, V_2, ..., V_k$, όπου V_i το σύνολο χορυφών που βρίσχονται σε απόσταση i από την v. Γνωρίζουμε ότι υπάρχουν αχμές μόνο μεταξύ ενός συνόλου ή διαδοχικών συνόλων της αποσύνθεσης. Αν μια κορυφή στο επίπεδο i έχει δύο ακμές προς το επίπεδο i-1, τότε σχηματίζεται κύκλος με μήκος το πολύ $2 \cdot i$. Για να μην ισχύει το ζητούμενο, θα πρέπει $i > \log_2(n)$. Επίσης, αν μια κορυφή στο επίπεδο i έχει αχμή προς κάποια άλλη κορυφή στο ίδιο επίπεδο, τότε σχηματίζεται κύκλος με μήκος το πολύ $2 \cdot i + 1$. Για να μην ισχύει το ζητούμενο, θα πρέπει $i>\log_2(n)-\frac{1}{2}$. Από αυτά συμπεραίνουμε ότι οι χορυφές στα επίπεδα $1,..,\log_2(n)-1$ δεν έχουν αχμές προς το ίδιο επίπεδο, και έχουν το πολύ μία ακμή προς το πάνω επίπεδο. Άρα έχουν (η κάθε μία) τουλάχιστον 2 ακμές προς το κάτω επίπεδο. Μάλιστα, αυτές

οι ακμές είναι προς διαφορετικούς κόμβους, αφού όπως είπαμε παραπάνω αν μια κορυφή έχει δύο ακμές προς τα πάνω θα πρέπει να είναι στο επίπεδο $i>\log_2(n)$. Στο επίπεδο i, με $i<=\log_2(n)$ έχουμε λοιπόν τουλάχιστον $3\cdot 2^{i-1}$ κορυφές. επειδή συνολικά έχουμε n κορυφές, θα πρέπει $3\cdot 2^{i-1}\le n$, δηλαδή $i\le\log_2(\frac{n}{3})+1=\log_2(n)-\log_2(3)+1\le\log_2(n)-\frac{1}{2}$. Συνεπώς το τελευταίο επίπεδο δεν μπορεί να απέχει περισσότερο από $\log_2(n)-\frac{1}{2}$. Οι κορυφές αυτού του επιπέδου, όμως, όπως είπαμε παραπάνω, δεν μπορούν να έχουν ακμές προς το ίδιο επίπεδο, και το πολύ μία ακμή προς το παραπάνω επίπεδο. Αυτό είναι άτοπο γιατί έχουν βαθμό τουλάχιστον 3. Άρα η περιφέρεια κάθε γραφήματος με τουλάχιστον 2 κορυφές και πυκνότητα τουλάχιστον 2 είναι το πολύ $\log_2(n)$.

2 Άχυκλα γραφήματα

 $2.10 \ (\star)$ Σε κάθε δέντρο με n κορυφές και διάμετρο τουλάχιστον 2k-3 υπάρχουν τουλάχιστον n-k διαφορετικά μονοπάτια μήκους k.

Απόδειξη. *** Χρειάζεται Σχήμα (και ίσως αναδιατύπωση..) ***

Έστω u,v δύο αντιδιαμετρικοί κόμβοι με $d(u,v)=\mathrm{diam}(u,v)$ και έστω P το μονοπάτι που τους ενώνει. Ονομάζουμε w την κορυφή πάνω στο P που απέχει d(u,w)=k-1 από την u. Τέτοια κορυφή υπάρχει αφού $|P|=d(u,v)\geq 2k-3>k-1$.

Στο μονοπάτι P' από u στον w υπάρχουν αχριβώς k χορυφές. Θα δείξουμε ότι με αφετηρία χάθε μία από τις υπόλοιπες n-k χορυφές μπορούμε να δημιουργήσουμε διαφορετιχά μονοπάτια μήχους k.

Έστω μια κορυφή x που δεν ανήκει στο P'. Θα δημιουργήσουμε ένα μονοπάτι T_x μήκους k διακρίνοντας δύο περιπτώσεις:

- (α΄) Αν $w \in P(x,u)$ όπου P(x,u) το μονοπάτι από x σε w στο δέντρο τότε θέτουμε T_x το πρόθεμα μήκους k του μονπατιού (δηλαδή το T_x περιλαμβάνει την αφετηρία x και τους επόμενους k-1 κόμβους). Τέτοιο πρόθεμα υπάρχει πάντα γιατί το $P(x,u) \geq P(x,w) + 1 = k$.
- (β΄) Αν $w \notin P(x,u)$ τότε θεωρούμε το μονοπάτι P(x,v) για το οποίο ισχύει $w \in P(x,v)$ και θέτουμε T_x το πρόθεμα μήκους k αυτού του μονοπατιού.

Όπως πριν, εξασφαλίζουμε την ύπαρξη τέτοιου προθέματος από το γεγονός ότι $P(x,v) \geq P(w,v) + 2 \geq (2k-3) - (k-1) + 2 = k$

Τα παρακάτω λήμματα μας εξασφαλίζουν ότι τα μονοπάτια που προκύπτουν από την παραπάνω διαδικασία είναι όλα διαφορετικά μεταξύ τους.

Λήμμα 1. Έστω δύο μονοπάτια P_1, P_2 σε ένα δέντρο που έχουν προκύψει ώς πρόθεμα (προσανατολισμένων) μονοπατιών από την κορυφή x_1 στην u

και από την x_2 στην u αντίστοιχα όπου οι x_1, x_2, u διαφορετικές μεταξύ τους κορυφές. Τότε $P_1 \neq P_2^{-1}$

Απόδειξη. Από τον ορισμό των P_1, P_2 βλέπουμε ότι ο μόνος τρόπος να είναι το ίδιο μονοπάτι είναι αν έχουν ώς άχρα τις χορυφές x_1, x_2 .

Αυτό σημαίνει ότι $x_2 \in P(x_1,u), x_1 \in P(x_2,u)$ το οποίο είναι άτοπο άρα $P_1 \neq P_2$.

Λήμμα 2. Έστω δύο μονοπάτια T_{x_1}, T_{x_2} για $x_1 \neq x_2$ που έχουν προκύψει από τις περιπτώσεις (a'), (β') αντίστοιχα. Τότε $T_{x_1} \neq T_{x_2}$.

Aπόδειξη. Έχουμε ότι $x_2 \notin P(x_1,u)$ γιατί διαφορετικά είτε θα είχαμε $x_2 \in P(x_1,w)$ και τότε η x_2 θα ήταν στην περίπτωση (α') είτε $x_2 \in P(w,u) = P'$ το οποίο δεν μπορεί να συμβαίνει αφού οι κορυφές του P' δεν είναι αφετηρίες μονοπατιών.

Συνεπώς, το T_{x_1} που είναι υποσύνολο του $P(x_1,u)$ δεν μπορεί να περιέχει την x_2 , άρα τα T_{x_1},T_{x_2} έχουν τουλάχιστον μία κορυφή διαφορετική και έτσι είναι διαφορετικά.

Σε κάθε περίπτωση λοιπόν τα n-k μονοπάτια που δημιουργήσαμε είναι όλα διαφορετικά μεταξύ τους. \Box

3 Συνεκτικότητα

- 3.9 (*) Ένα γράφημα είναι δισυνεκτικό αν και μόνο αν μπορεί να κατασκευαστεί αρχίζοντας από το K_3 και εφαρμόζοντας μία ακολουθία μετασχηματισμών που μπορεί να είναι,
 - Υποδιαίρεση αχμής.
 - Πρόσθεση αχμής.

Απόδειξη. Θα δούμε τις δύο κατευθύσεις του θεωρήματος ξεχωριστά.

- \Leftarrow Το K_3 είναι δισυνεκτικό άρα θα πρέπει να δείξουμε ότι οι παραπάνω μετασχηματισμοί διατηρούν αναλλοίωτη τη συνεκτικότητα. Πράγματι:
 - Με την προσθήκη ακμής όλα τα μονοπάτια που υπάρχαν στο αρχικό γράφημα διατηρούνται. Έτσι, όσα εσωτερικώς διακεκριμένα μονοπάτια υπήρχαν μεταξύ ζευγών κορυφών συνεχίζουν να υπάρχουν και έτσι από το Θεώρημα Menger έχουμε ότι το γράφημα θα συνεχίσει να είναι δισυνεκτικό.

 $^{^1}$ Ορίσαμε τα P_1,P_2 ώς πρόθεμα προσανατολισμένων μονοπατιών, δηλαδή μονοπατιών με συγχεχριμένη αφετηρία και πέρας όμως από τη στιγμή που τα ορίζουμε τα θεωρούμε πλέον μη-προσανατολισμένα και έτσι έχει νόημα η σύγχριση $P_1 \neq P_2$.

 Για την υποδιαίρεση αχμής, θα πρέπει να βεβαιωθούμε ότι δεν μπορούμε να αποσυνδέσουμε το γράφημα με την αφαίρεση μία κορυφής και συγκεκριμένα της κορυφής που βάλαμε με την υποδιαίρεση.

Η αφαίρεση της νέας χορυφής ισοδυναμεί με αφαίρεση της υποδιαιρούμενης αχμής στο αρχικό γράφημα. Έστω $\{u,v\}$ αυτή η αχμή. Επειδή το γράφημα αρχικά ήταν δισυνεκτικό, θα υπάρχει τουλάχιστον άλλο ένα μονοπάτι από την u προς την v άρα το γράφημα παραμένει συνεκτικό και μετά την αφαίρεση της $\{u,v\}$.

- ullet $\Rightarrow \Theta$ α δείξουμε ότι αν ένα γράφημα G είναι δισυνεκτικό τότε είτε:
 - (1) θα είναι το K_3 , είτε
 - (2) θα περιέχει μια χορυφή βαθμού 2 της οποίας οι γείτονες να μην είναι συνδεδεμένοι απευθείας (θα χαλούμε τέτοιες χορυφές μήαπλοϊδείς) και η διάλυσή της δημιουργεί δισυνεχτικό γράφημα, είτε
 - (3) θα περιέχει μία αχμή της οποίας η αφαίρεση οδηγεί σε δισυνεκτικό γράφημα.

Έτσι, για κάθε δισυνεκτικό γράφημα μπορούμε να εφαρμόσουμε μία ακολουθία από διαλύσεις κορυφών και αφαιρέσεις ακμών μέχρι να καταλήξουμε στο K_3 και η αντίστροφη διαδικασία είναι που μας παράγει το G από το K_3 όπως ζητάει η εκφώνηση.

Αν το γράφημα G περιέχει μια αχμή της οποίας η αφαίρεση διατηρεί το γράφημα δισυνεχτιχό τότε έχουμε τελειώσει γιατί ισχύει το (3). Επομένως αρχεί να εξετάσουμε την περίπτωση όπου για όλες τις αχμές $e \in E(G)$ ισχύει $\kappa(G \backslash e) < 2$.

Παρατηρούμε ότι $\kappa(G)=2$ γιατί διαφορετικά, έστω ότι $\kappa(G)\geq 3$ τότε με την αφαίρεση μιας ακμής η συνεκτικότητα δεν θα έπρεπε να πέφτει πάνω από μία μονάδα (Παρατήρηση 5.7 των σημειώσεων του μαθήματος), όμως υποθέσαμε ότι η αφαίρεση οποιαδήποτε ακμής οδηγεί σε συνεκτικότητα μικρότερη του 2, δηλαδή έχουμε μείωση της συνεκτικότητας κατά 2 που είναι άτοπο.

Σύμφωνα με το Θεώρημα Halin (συγκεκριμένα με το αντίθετο-αντίστροφό του) έχουμε ότι $\delta(G) \leq \kappa(G) = 2$. Ο ελάχιστος βαθμός ενός δισυνεκτικού γραφήματος δεν μπορεί να είναι μικρότερος του 2, άρα $\delta(G) = 2$. Έστω λοιπόν u μια κορυφή βαθμού 2 και έστω x,y οι γείτονές τις.

Έστω τώρα ότι $\{x,y\}\in E(G)$. Αν το γράφημα έχει μόνο 3 κορυφές τότε είναι το K_3 και έχουμε τελειώσει. Διαφορετικά έστω ότι έχει τουλάχιστον άλλη μία κορυφή w η οποία συνδέεται στην x. Επειδή το γράφημα είναι δισυνεκτικό θα πρέπει η αφαίρεση της x να μην το αποσυνδέει, συνεπώς θα πρέπει να υπάρχει μονοπάτι P από την w

στην y που να μην χρησιμοποιεί την κορυφή x. Τότε όμως μεταξύ της x και της y θα υπήραν 3 εσωτερικά διακεκριμένα μονοπάτια: 1) $(x,y),\ 2)$ $(x,u,y),\ 3)$ P. Άτοπο γιατί τώρα η αφαίρεση της $\{x,y\}$ διατηρεί το γράφημα δισυνεκτικό.

Άρα η u είναι μη απλοϊδής κορυφή βαθμού 2 και μένει να δείξουμε ότι η διάλυσή της διατηρεί τη συνεκτικότητα. Αυτό προκύπτει από το θεώρημα Menger αφού ό,τι μονοπάτια υπήρχαν πριν μεταξύ κορυφών συνεχίζουν να υπάρχουν.

3.10 (**) Για κάθε k κορυφές ενός k-συνεκτικού γραφήματος, υπάρχει κύκλος που να τις περιέχει όλες.

Απόδειξη. Έστω k κορυφές του γραφήματος G και C κύκλος που περιέχει όσο το δυνατόν περισσότερες από τις k χορυφές. Έστω S το σύνολο των k κορυφών. Αν |C|=k, τελειώσαμε. Δ ιαφορετικά, έστω |C|=lκαι u μία από τις k κορυφές, η οποία δεν βρίσκεται στον κύκλο. Από το Λήμμα 1, υπάρχουν min(|C|,k) εσωτερικώς διακεκριμένα μονοπάτια από το u προς τις κορυφές του κύκλου, και κανένα δεν τελειώνει στην ίδια κορυφή του κύκλου. Έστω v_i μία απαρίθμηση των κορυφών του κύκλου (με τη σειρά που εμφανίζονται πάνω στον κύκλο) οι οποίες αποτελούν άχρο κάποιου μονοπατιού από τα παραπάνω και P_i τα αντίστοιχα μονοπάτια. Επίσης έστω F_i το μονοπάτι από την v_i στην v_{i+1} το οποίο δεν περιέχει καμία άλλη από τις v_i . (Έχουμε θεωρήσει ότι $v_{min(|C|,k)+1} \equiv v_1$). Αν ο κύκλος έχει μήκος l, τότε περιέχει μόνο κορυφές από το S. Ο κύκλος $v_1, P_1, u, P_2, v_2, v_3, ..., v_l, v_1$ περιέχει l+1 στοιχεία του S, άτοπο. Αν έχει μήχος > l, τότε οι χορυφές v_i είναι τουλάχιστον l+1. Αυτό σημαίνει ότι υπάρχουν τουλάχιστον l+1 διαφορετικά μονοπάτια F_i . Άρα θα υπάρχει ένα F_i το οποίο δεν περιέχει στο εσωτερικό του καμία κορυφή του S. Τότε, ο κύκλος $v_1, F_1, v_2, ..., v_i, P_i, u, P_{i+1}, v_{i+1}, F_{i+1}, ..., v_1$ έχει l+1 στοιχεία του S, άτοπο. Άρα για κάθε σύνολο k κορυφών, υπάρχει κύκλος που τις περιέχει όλες.

Λήμμα 1: Έστω k-συνεχτικό γράφημα, χύχλος του με τουλάχιστον l χορυφές με l < k και τυχαία κορυφή u εκτός του κύχλου. Τότε υπάρχουν l κορυφές του χύχλου $v_1, v_2, ..., v_l$ και εσωτερικώς διαχεχριμένα μονοπάτια $P_i = u...v_i$ για χάθε $1 \le i \le l$.

Απόδειξη. Έστω μία νέα κορυφή v που συνδέεται με αχμή με όλες τις κορυφές του κύκλου. Δηλαδή θεωρούμε γράφημα G με $V(G') = V(G) \cup \{v\}$

 $^{^2\}Upsilon$ πάρχει περίπτωση το P να χρησιμοποιεί την u ώς ενδιάμεσο κόμβο. Σε αυτή την περίπτωση θεωρούμε το P' από το w στο u και δείχνουμε ότι υπάρχουν 3 εσωτερικά διακεκριμένα μονοπάτια από το x στο u.

και $E(G')=E(G)\cup\{(v,x)|x\in C\}$. Το G είναι l-συνεκτικό: Αν σβήσουμε l-1 κορυφές και σε αυτές περιέχεται η v, τότε οι κορυφές που απομένουν συνδέονται λόγω της k-συνεκτικότητας του αρχικού γραφήματος. Σε διαφορετική περίπτωση, θα σβηστούν το πολύ l-1 κορυφές του κύκλου και συνεπώς θα μείνει τουλάχιστον μία άκμή από την v προς μια κορυφή του κύκλου, άρα το γράφημα θα παράμείνει συνεκτικό. Αφού το γράφημα είναι l-συνεκτικό, θα υπάρχουν l εσωτερικώς διακεκριμένα μονοπάτια από την κορυφή u στην κορυφή v. Κάθε ένα από αυτά τα μονοπάτια περνάει από τουλάχιστον μία κορυφή του κύκλου. Για κάθε μονοπάτι P=u...v, θεωρούμε την πρώτη φορά που περνάει από μία κορυφή του κύκλου. Έστω ότι αυτή είναι η x_i . Το σύνολο των μονοπατιών $\{P_i=u...x_i\}$ είναι το ζητούμενο, αφού τα μονοπάτια είναι εσωτερικώς διακεκριμένα και καταλήγουν σε l διαφορετικές κορυφές του κύκλου.

4 Εμβαπτίσεις

4.6 (*) Έστω ενεπίπεδο γράφημα Γ και έστω Γ^* το δυικό του. Δείξτε ότι τα Γ και Γ^* έχουν το ίδιο πλήθος δεντροπαραγόντων.

Απόδειξη. Θα δείξουμε ότι υπάρχει συνάρτηση f 1-1 και επί από το σύνολο των δεντροπαραγόντων του Γ στο σύνολο των δεντροπαραγόντων του Γ^* και συνεπώς τα δύο σύνολα θα έχουν το ίδιο πλήθος στοιχείων.

 Ω ς γνωστόν, το δυικό ενός γραφήματος έχει το ίδιο πλήθος ακμών με το αρχικό και μάλιστα κάθε ακμή e του αρχικού αντιστοιχεί σε εκείνη την ακμή e^* του δυικού η οποία συνδέει τις δύο όψεις τις οποίες "βλέπει" η e.

Έστω ένας δεντροπαράγοντας T του Γ . Δημιουργούμε ένα υπογράφημα T^* του Γ^* χρατώντας όλες τις αχμές e^* των οποίων οι αντίστοιχες e στο Γ δεν ανήχουν στο T, δηλαδή $E(T^*)=\{e^*\mid e\notin T\}.$

Θα δείξουμε ότι το T^* είναι δεντροπαράγοντας και η αντιστοιχία είναι όντως 1-1 και επί. Το δεύτερο φαίνεται εύκολα αφού ένας δεντροπαράγοντας χαρακτηρίζεται από το σύνολο των ακμών που περιέχει και έχουμε ήδη δείξει ότι υπάρχει 1-1 και επί αντιστοιχία των ακμών του Γ με τις ακμές του Γ^* .

Για το πρώτο, θα χρησιμοποιήσουμε ένα λήμμα που συνδέει τους κύκλους ενός επίπεδου γραφήματος με τις τομές (cuts) του δυϊκού και αντιστρόφως.

Ορισμός 3. Με τον όρο τομή (cut) μιας επίπεδης απεικόνισης ενός γραφήματος G εννούμε μια κλειστή καμπύλη γραμμή που δεν τέμνει τις κορυφές του G και περιέχει τουλάχιστον μία κορυφή στο εσωτερικό της και τουλάχιστον μία στο εξωτερικό της.

Λήμμα 4. Έστω επίπεδο γράφημα G, και έστω G^* το δυϊκό του για μία επίπεδη απεικόνιση του G. Κάθε κύκλος C^* (όχι απαραίτητα απλός) του δυϊκού γραφήματος αντιστοιχεί σε μια τομή C στο αρχικό γράφημα G και αντιστρόφως. Επιπλέον το πλήθος των ακμών του G που διαπερνούν την τομή C, είναι ίσο με το μήκος του κύκλου C^* .

Aπόδειξη. Με βάση μία επίπεδη απεικόνιση του G σχεδιάζουμε το δυϊκό γράφημα G^* ως εξής:

- Για κάθε όψη f_i του G επιλέγουμε ένα εσωτερικό της σημείο v_i^* το οποίο αναπαριστά την κορυφή του δυϊκού που αντιστοιχεί στην όψη αυτή.
- Για κάθε ακμή e_i του αρχικού γραφήματος, η οποία βρίσκεται στο περιθώριο δύο όψεων f_i, f_j (όχι απαραίτητα διαφορετικών μεταξύ τους) προσθέτουμε μια καμπύλη γραμμή μεταξύ των κορυφών v_i^*, v_j^* του δυϊκού που αναπαριστά την ακμή e_i^* του δυϊκου και η οποία τέμνει τη ακμή e_i .

Είναι τώρα φανερό ότι ένας χύχλος C^* στο δυϊχό γράφημα αποτελεί μια κλειστή καμπύλη η οποία έχει εσωτεριχό και εξωτεριχό μέρος άρα θα είναι μια τομή για το αρχιχό γράφημα. Επιπλέον κάθε αχμή του χύχλου C^* τέμνει αχριβώς μία αχμή του αρχιχού γραφήματος και έτσι υπάρχει 1-1 αντιστοιχία των αχμών του χύχλου και αυτών που διαπερνούν την τομή.

Αντίστοιχα, μια τομή του αρχικού γράφηματος θα είναι μια καμπύλη που θα διέρχεται από όψεις του γραφήματος διαπερνώντας ακμές, δηλαδή για το δυϊκό γράφημα θα είναι ένας κύκλος. \Box

Γυρνόντας τώρα πίσω στο υπογράφημα T^* , θα δείξουμε κατ' αρχάς ότι είναι δέντρο. Πράγματι, έστω ότι το T^* περιείχε κύκλο. Τότε αυτό σημαίνει ότι στο T θα υπήρχε μία τομή που διαχωρίζει τις κορυφές του και οι ακμές που διαπερνάνε την τομή δεν ανήκουν στο T. Αυτό όμως είναι άτοπο γιατί τότε το T δεν θα ήταν συνδεδεμένο.

Με εντελώς ανάλογο επιχείρημα μπορούμε να δείξουμε και ότι το T^* είναι συνδεδεμένο. Πράγματι, έστω ότι τουλάχιστον 2 συνεκτικές συνιστώσες στο T^* , τότε θα μπορούσαμε να τις διαχωρίσουμε με μία τομή την οποία θα διαπερνούσαν ακμές $e^* \notin T$, οι οποίες να δημιουργούσαν κύκλο στο T με ακμές $e \in T$ το οποίο είναι άτοπο γιατί το T είναι δέντρο και δεν μπορεί να περιέχει κύκλους.

4.9 (**) Ορίζουμε το τετράγωνο G^2 ενός γραφήματος ως εξής: $G^2 = (V(G), \{(x,y)| dist_G(x,y) \le 2\})$. Περιγράψτε πλήρως όλα τα γραφήματα G για τα οποία το G^2 είναι επίπεδο.

Aπόδειξη. Για να είναι το G^2 επίπεδο, θα πρέπει να μην περιέχει κανένα εκ των K_5 και $K_{3,3}$ ως ελάσσον. Αν υπάρχει στο G κορυφή με βαθμό τουλάχιστον 4, όλοι οι γείτονές της έχουν απόσταση 2, άρα συνδέονται με αχμή στο G^2 , δηλαδή το G^2 περιέχει σαν ελάσσον το K^5 , άτοπο. Άρα $\Delta(G) \leq 3$. Έστω μια κορυφή τομής του G. Όπως είπαμε ο βαθμός της θα είναι το πολύ 3, άρα δεν μπορεί να είναι κοινή κορυφή δύο δισυνεκτικών συνιστωσών. Συνεπώς αν μια κορυφή ανήκει σε μια δισυνεκτική συνιστώσα που δεν είναι το K_2 , έχει το πολύ μια επιπλέον αχμή, που είναι και γέφυρα στο G. Από το Λήμμα 1, μπορούμε να θεωρήσουμε ότι το γράφημά μας (έστω H) είναι ένα δισυνεχτικό γράφημα W στο οποίο έχουμε προσθέσει επιπλέον αχμές, τέτοιες ώστε το άχρο τους που δεν ανήχει στο W να έχει βαθμό 1. Στη συνέχεια θα αποδείξουμε ότι το Wαποτελεί έναν κύκλο. Ας υποθέσουμε διαφορετικά: Έστω <math>C ένας μέγιστος κύκλος και v μία κορυφή του W που δεν ανήκει σε αυτόν. Όπως έχουμε αποδείξει στο Λήμμα 1 της 3.10, υπάρχουν δύο εσωτερικώς διακεκριμένα μονοπάτια από την v προς δύο διαφορετικές κορυφές του C, έστω x και y. Τότε ορίζονται 3 εσωτερικώς διακεκριμένα μονοπάτια από την x στην y: Δ ύο πάνω στον κύκλο και ένα που περνάει από την v. Σ ύμφωνα με το Λήμμα 3, όμως, αυτό σημαίνει ότι το $C \cup \{v\}$ είναι το K_4 , το οποίο με τη σειρά του σημαίνει ότι ο C είναι τρίγωνο. Αυτό είναι άτοπο, διότι έτσι σχηματίζεται μεγαλύτερος χύχλος (μήχους τουλάχιστον 4) αν συμπεριλάβουμε την v και τα μονοπάτια της προς τις x, y. Άρα το Wαποτελεί κύκλο. Από το Λήμμα 2, αυτός ο κύκλος θα πρέπει επίσης να είναι άρτιος. Η τελευταία αναγκαία συνθήκη για να είναι το G^2 επίπεδο είναι να μην υπάρχει στον G τρίγωνο, και οι τρεις κορυφές του οποίου να είναι χορυφές τομής. Παρατηρούμε, όντως, ότι αν έχουμε ένα τρίγωνο, κάθε κορυφή του οποίου συνδέεται με μία ακμή με έναν κόμβο βαθμού 1, η απόσταση των κορυφών του τριγώνου από τις κορυφές βαθμού 1 είναι το πολύ 2, άρα το τετράγωνό του είναι το $K_{3,3}$. Συνεπώς το G^2 δεν είναι επίπεδο, άτοπο.

Συνοψίζουμε τις τρεις συνθήχες που έχουμε: α) Ο βαθμός κάθε κορυφής είναι το πολύ 3. β) Κάθε δισυνεχτική συνιστώσα με τουλάχιστον 5 κορυφές είναι κύκλος άρτιου μήκους. γ) Δ εν υπάρχει τρίγωνο, του οποίου όλες οι κορυφές είναι κορυφές τομής.

Στη συνέχεια θα αποδείξουμε ότι αυτές οι συνθήκες είναι και ικανές: Έστω το γράφημα H, το οποίο είναι ένα δισυνεκτικό γράφημα W στο οποίο έχουμε προσθέσει επιπλέον ακμές, τέτοιες ώστε το άκρο που δεν ανήκει στο W να έχει βαθμό 1. Αν το H έχει το πολύ 4 κορυφές είναι προφανώς επίπεδο. Αν το W είναι τρίγωνο, τουλάχιστον μία από τις κορυφές έχει βαθμό 2. Άρα έχουμε 5 κορυφές, αλλά η απόσταση μεταξύ των δύο κορυφών που δεν ανήκουν στο τρίγωνο είναι >2, άρα το τετράγωνο αυτού του γραφήματος δεν είναι το K_5 , δηλαδή είναι επίπεδο. Αν το W έχει 4 κορυφές, τότε έχουμε 2 βασικές περιπτώσεις: Λαλαλαλ χρειάζεται

σχήμα.

Λήμμα 1: Έστω γράφημα δισυνεκτικά γραφήματα H_1 , H_2 χωρίς κοινές κορυφές μεταξύ τους και e μια γέφυρα που τα συνδέει. Τότε το τετράγωνο του γραφήματος που προκύπτει είναι επίπεδο αν και μόνο αν τα τετάγωνα των γραφημάτων $H_1 \cup e$ και $H_2 \cup e$ είναι επίπεδα.

Aπόδειξη. Η μία κατεύθυνση είναι προφανής: αν το τετράγωνο του $H_1 \cup H_2 \cup e$ είναι επίπεδο, τότε και τα τετράγωνα των $H_1 \cup e$ και $H_2 \cup e$ είναι επίπεδα, αφού δεν μπορούν παρά να έχουν λιγότερες ακμές. Ανίστροφα τώρα, έστω x το άκρο της e που ανήκει στο H_1 και y το άκρο της που ανήκει στο H_2 . Οι x, y έχουν βαθμό το πολύ 2 στα H_1 και H_2 και συνδέονται αντίστοιχα. Υπάρχει επίπεδη εμβάπτιση του τετραγώνου του $H_1 \cup e$, στην οποία η ακμή e βρίσκεται στην εξωτερική όψη. Ομοίως και για το $H_2 \cup e$, οπότε αν ενώσουμε τις δύο εμβαπτίσεις στην ακμή e, καταλήγουμε σε μία επίπεδη εμβάπτιση του τετραγώνου του $H_1 \cup H_2 \cup e$.

Λήμμα 2: Κάθε περιττός κύκλος μήκους τουλάχιστον 5 έχει μη επίπεδο τετράγωνο.

Απόδειξη. Αρχικά, στον κύκλο μήκους 5 όλες οι ανά δύο αποστάσεις των κορυφών είναι το πολύ δύο, άρα το τετράγωνό του είναι το K_5 , δηλαδή δεν είναι επίπεδο. Θεωρούμε τώρα κύκλο περιττού μήκους τουλάχιστον 7. Έστω $v_1, v_2, ..., v_{2k}, v_{2k+1}, v_1$ μία απαρίθμηση των κορυφών του κύκλου με τη σειρά. Θα δείξουμε ότι το τετράγωνο αυτού του κύκλου περιέχει το $K_{3,3}$ ως ελάσσον, άρα δεν είναι επίπεδο. Θεωρούμε τα δύο σύνολα $\{v_1, v_4, v_5\}$ και $\{v_2, v_3, v_6\}$. Στο τετράγωνο του γραφήματος, τα παρακάτω ζεύγη κορυφών συνδέονται με ακμή: (v_1, v_2) , (v_1, v_3) , (v_4, v_2) , (v_4, v_3) , (v_4, v_6) , (v_5, v_3) , (v_5, v_6) . Θεωρούμε τα μονοπάτια $P_1 = v_1 v_{2k} v_{2k-2} ... v_6$ και $P_2 = v_2 v_{2k+1} v_{2k-1} ... v_7 v_5$. Αυτά τα μονοπάτια είναι εσωτερικώς διακεκριμένα και συνδέουν τα ζευγάρια (v_1, v_6) και (v_5, v_2) . Η σύνθλιψη αυτών των μονοπατιών και η διαγραφή των περισσευούμενων ακμών έχει ως αποτέλεσμα το $K_{3,3}$, αφού υπάρχει ακμή ανάμεσα σε κάθε δύο κορυφές στα δύο άκρα της διαμέρισης $\{v_1, v_4, v_5\}$ και $\{v_2, v_3, v_6\}$. Συνεπώς το γράφημα δεν είναι επίπεδο.

Λήμμα 3: Έστω γράφημα G, το οποίο αποτελείται από 3 εσωτερικώς διαχεχριμένα μονοπάτια μεταξύ δύο χορυφών u χαι v. Αν το G^2 είναι επίπεδο, τότε το G είναι το K_4 χωρίς μία αχμή, δηλαδή τα δύο μονοπάτια έχουν μήχος 2 χαι το άλλο έχει μήχος 1.

Απόδειξη. Έστω P_1 , P_2 , P_3 τα τρία μονοπάτια, και $k_1 \le k_2 \le k_3$ αντίστοιχα τα μήχη τους. (Σημείωση: Δεν έχουμε πολυγράφημα). Έστω $k_1 = 1$. Τότε $k_2, k_3 \ge 2$ και, αν $k_2 = k_3 = 2$, τότε έχουμε το K_4 χωρίς μία αχμή. Έστω τώρα $k_3>2$. Θεωρούμε u και v τα κοινά άχρα των μονοπατιών. Επίσης έστω x η κοντινότερη στο u κορυφή του P_3 , y η κοντινότερη στο v κορυφή του P_3 $(x \neq y), z$ η κοντινότερη στο uκορυφή του P_2 και w η κοντινότερη στο v κορυφή του P_2 (Μπορεί και $z\equiv w.$ Θα δείξουμε ότι το τετράγωνο του εν λόγω γραφήματος έχει σαν ελάσσον το K_5 . Αφού $k_1=1$, στο τετράγωνο του γραφήματος υπάρχει αχμή μεταξύ των εξής ζευγαριών: (x, u), (x, z), (x, v), (u, z), (u, v),(u,y),(z,v),(v,y). Τώρα, τα x και y συνδέονται με το μονοπάτι P_3 , ενώ η y συνδέεται με την w και αυτή με την z μέσω του P_2 . Τα μονοπάτια που παραθέσαμε είναι ανά δύο εσωτερικώς διακεκριμένα και συνδέουν κάθε ζευγάρι από τις 5 χορυφές. Σ υνεπώς αν συνθλίψουμε αυτά τα μονοπάτια και διαγράψουμε τις περισσευούμενες ακμές, καταλήγουμε στο K_5 . Άρα αν $k_1 = 1$, θα πρέπει $k_2 = k_3 = 2$.

Έστω $k_1 \ge 2$. Αν $k_2 = 2$, έστω x η εσωτερική κορυφή του P_1 , y η εσωτερική κορυφή του P_2 και z η εσωτερική κορυφή του P_3 που βρίσκεται πιο κοντά στο u. Τα ζευγάρια (z, u), (z, x), (z, y), (u, x), (u, y), (u, v), (x,v), (y,v), (x,y) έχουν ακμή στο τετράγωνο του γραφήματος. Συνθλίβουμε το μονοπάτι μεταξύ των z και v (μέρος του P_3) και παίρνουμε το K_5 . Άρα $k_2 \geq 3$. Τα k_i πρέπει να έχουν και τα τρία το ίδιο υπόλοιπο mod 2, διότι σε διαφορετική περίπτωση θα σχηματιζόταν περιττός χύχλος, το οποίο, όπως δείξαμε στο Λήμμα 2, σημαίνει ότι το τετράγωνο του γραφήματος δεν είναι επίπεδο. Αν είναι και τα τρία άρτια, έστω $x\equiv x_1,...,x_{k_1-1}\equiv x'$ οι εσωτερικές κορυφές του $P_i,y\equiv y_1,...,y_{k_2-1}\equiv y'$ οι εσωτερικές κορυφές του P_2 και $z\equiv z_1,...,z_{k_3-1}\equiv z'$ οι εσωτερικές κορυφές του P_3 . (Όλα ξεκινώντας από την u προς την v). Θα δείξουμε ότι στο τετράγωνο αυτού του γραφήματος περιέχεται το $K_{3,3}$ ως ελάσσον. Θεωρούμε τις κορυφές u, v, x, z, x', z' και τη 2-διαμέρισή τους (u, x, z'), (v,x',z). Παρατηρούμε ότι υπάρχουν ακμές στο τετράγωνο του γραφήματος ανάμεσα στις εξής κορυφές: (u,z), (x,z), (v,z'), (x',z'). Τώρα θεωρούμε τα μονοπάτια: $xx_2x_4...x_{k_1-2}v$, $xx_1x_3...x_{k_1-1}\equiv x'$, $uy_2y_4...y_{k_2-2}v$, $uy_1y_3...y_{k_2-1}x_{k_1-1}\equiv x',\ z\equiv z_1z_2...z_{k_3-1}\equiv z'.$ Αυτά τα μονοπάτια είναι ανά δύο εσωτερικώς διακεκριμένα και η σύνθλιψή τους μας οδηγεί στο $K_{3,3}$. Η περίπτωση που τα k_i είναι και τα 3 περιττά είναι εντελώς παρόμοια.

Συμπεραίνουμε ότι, αφού κάθε άλλη περίπτωση κατέληξε στη μη επιπεδότητα του G^2 , ότι το G είναι το K_4 χωρίς μία ακμή.

 $4.10~(\star\star)~$ Καλούμε (x,y)-τοροειδές πλέγμα το γράφημα $H_{x,y},$ όπου $V(H_{x,y})=\{0,...,x-1\}\times\{0,...,y-1\}$ και $E(H_{x,y})=\{((a,b),(c,d))||a-c~mod~x|+|b-d~mod~y|=1\}.$ Δείξτε ότι δεν υπάρχει x τέτοιο ώστε το $2\cdot K_5$ να

είναι τοπολογικό ελάσσον του (x,y)-τοροειδούς πλέγματος.

Απόδειξη. Σύμφωνα με το Λήμμα 2, κάθε (x,y)-τοροειδές πλέγμα είναι εμβαπτίσιμο στον τόρο. Έστω ένα τέτοιο τοροειδές πλέγμα. Αν περιέχει το $2\cdot K_5$ ως ελάσσον, αυτό θα σημαίνει ότι και το $2\cdot K_5$ είναι εμβαπτίσιμο στον τόρο. Αρκεί λοιπόν να δείξουμε ότι το $2\cdot K_5$ δεν είναι εμβαπτίσιμο στον τόρο. Αυτό το γράφημα έχει δύο δισυνεκτικές συνιστώσες και είναι και οι δύο ισόμορφες με το K_5 . Γνωρίζουμε όμως ότι το γένος του K_5 είναι τουλάχιστον 1, αφού δεν είναι επίπεδο. Συνεπώς, από το Λήμμα 1, $\gamma(G)=2\cdot\gamma(K_5)\geq 2$. Συνεπώς το $2\cdot K_5$ δεν είναι εμβαπτίσιμο στον τόρο, ο οποίος είναι μια επιφάνεια με γένος 1. Συμπεραίνουμε, λοιπόν, ότι δεν υπάρχουν x,y, έτσι ώστε το $2\cdot K_5$ να είναι ελάσσον (άρα και τοπολογικό ελάσσον) του (x,y)-τοροειδούς πλέγματος.

Λήμμα 1: Έστω η αποσύνθεση ενός (συνεκτικού ή όχι) γράφήματος σε δισυνεκτικές συνιστώσες. Αν $\gamma(G)$ είναι το γένος ενός γραφήματος και G_i οι δισυνεκτικές συνιστώσες του, τότε ισχύει ότι $\gamma(G)=\sum \gamma(G_i)$.

Απόδειξη. Έχει αποδειχθεί από τους Battle, Harary, Kodama, Youngs στην εργασία Additivity of the genus of a graph. (https://projecteuclid.org/download/pdf_1/euclid.bams/1183524922).

Λήμμα 2: Το (x,y)-τοροειδές πλέγμα είναι εμβαπτίσιμο στον τόρο.

Απόδειξη. Το (x,y)-τοροειδές πλέγμα μπορεί εύχολα να εμβαπτιστεί στον τόρο, ο οποίος είναι μια επιφάνεια με γένος 1: Σχεδιάζουμε το (x,y)-πλέγμα, το οποίο είναι επίπεδο, σε χάποια περιοχή του τόρου ισόμορφη με τον ανοιχτό δίσχο. Στη συνέχεια, από τις υπόλοιπες αχμές σχεδιάζουμε αυτές που είναι στην y-διάσταση στην περιφέρεια της διατομής του τόρου, χαι αυτές που είναι στην x διάσταση χατά μήχος της περιμέτρου ολόχληρου του τόρου. Το ζητούμενο αποδείχθηχε.

5 Δομές σε γραφήματα

 $5.9~(\star)~{\rm K\'aθ}$ ε γράφημα περιέχει τουλάχιστον $\frac{m(G)(4m(G)-n^2(G))}{3n(G)}$ τρίγωνα.

Απόδειξη. Έστω μια αχμή $\{u,v\}$. Η ιδέα είναι να βρούμε το ελάχιστο πλήθος τριγώνων στα οποία μπορεί να ανήχει αυτή η αχμή και έτσι μετά αθροίζοντας κατάλληλα να μπορέσουμε να φράξουμε από κάτω το συνολικό πλήθος των τριγώνων του γραφήματος.

Ορίζουμε $U=N_G(u)\backslash v, V=N_G(v)\backslash u$. Ισχύει ότι |U|+|V|=d(u)+d(v)-2. Επίσης, $|U\cup V|\leq n(G)-2$ αφού δεν υπάρχουν πάνω από n(G)-2 κορυφές που να απομένουν στο γράφημα.

Άρα, έχουμε:

$$|U \cap V| = |U| + |V| - |U \cup V| \ge d(u) + d(v) - n(G)$$

Κάθε κορυφή που ανήκει στο $U\cap V$ δημιουργεί τρίγωνο με τις κορυφές u,v. Άρα το πλήθος των τριγώνων $|T_{\{u,v\}}|$ που μπορεί να ανήκει η ακμή $\{u,v\}$ είναι τουλάχιστον d(u)+d(v)-n(G).

Αν συμβολίσουμε με T το σύνολο των τριγώνων του G έχουμε:

$$3|T| = \sum_{\{u,v\} \in E(G)} T_{\{u,v\}}$$

επειδή κάθε τρίγωνο περιέχει 3 ακμές.

Συνεπώς:

$$|T| \ge \frac{1}{3} \sum_{\{u,v\} \in E(G)} (d(u) + d(v) - n(G))$$

$$= \frac{1}{3} \sum_{\{u,v\} \in E(G)} (d(u) + d(v)) - \frac{n(G)m(G)}{3}$$

$$= \frac{1}{3} \sum_{u \in V(G)} d^2(u) - \frac{n(G)m(G)}{3}$$

$$\ge \frac{1}{3n(G)} \left(\sum_{u \in V(G)} d(u) \right)^2 - \frac{n(G)m(G)}{3}$$

$$= \frac{4m^2(G)}{3n(G)} - \frac{n(G)m(G)}{3}$$

$$= \frac{m(G)(4m(G) - n^2(G))}{3n(G)}$$

Όπου το 4ο βήμα προχύπτει από την ανισότητα Cauchy-Schwarz:

$$d(u_1)\cdot 1 + d(u_2)\cdot 2 + \ldots + d(u_n)\cdot 1 \le (d^2(u_1) + \ldots + d^2(u_n))\cdot (1 + \ldots + 1) = (d^2(u_1) + \ldots + d^2(u_n))\cdot n$$

 $5.10 \ (\star\star)$ Δείξτε ότι ένα πολυγράφημα είναι σειριακό-παράλληλο αν είναι 2-συνεκτικό και δεν περιέχει καμία υποδιαίρεση του K_4 ως ελάσσον. Ένα γράφημα καλείται σειριακό-παράλληλο αν μπορεί να προκύψει από το K_2 μετά από σειρά υποδιαιρέσεων ακμών ή διπλασιασμών ακμών (δηλαδή αντικατάσταση μιας ακμής από μια διπλής πολλαπλότητας με τα ίδια άκρα).

Απόδειξη. Αρχικά, αν ένα γράφημα δεν περιέχει καμία υποδιαίρεση του K_4 ως ελάσσον, δεν περιέχει ούτε το K_4 ως ελάσσον. Θα δείξουμε ότι αν ένα πολυγράφημα είναι 2-συνεκτικό και δεν περιέχει το K_4 ως ελάσσον, τότε είναι σειριακό-παράλληλο. Για 2 κορυφές ισχύει, αφού έχουμε το K_2 που είναι σειριακό-παράλληλο. Για 3 κορυφές επίσης ισχύει, αφού έχουμε το K_3 , το οποίο μπορεί να προχύψει από την εξής ακολουθία κινήσεων: K_2 ->διπλασιασμός ακμής, υποδιαίρεση της μίας ακμής.

Θεωρούμε το γράφημα G με τον ελάχιστο αριθμό κορυφών, το οποίο είναι 2-συνεκτικό, δεν περιέχει το K_4 ως ελάσσον και δεν είναι σειριακόπαράλληλο. Από το Λήμμα 1, το γράφημα G δεν μπορεί να είναι 3-συνεκτικό.

Έστω ένας 2-διαχωριστής u, v και G' μία συνεκτική συνιστώσα που προκύπτει μετά τη διαγραφή των κορυφών u, v. Έστω γράφημα H με $V(H)=V(G')\cup\{u,v\}$ και $E(H)=\{(x,y)|x\in V(H),y\in V(H),(x,y)\in G,(x,y)\neq (u,v)\}.$ Το γράφημα H είναι συνεκτικό, διότι σε διαφορετική περίπτωση κάποια από τις κορυφές u,v θα αποτελούσε κορυφή τομής.

Αρχικά θα αποδείξουμε ότι το H δεν μπορεί να είναι 2-συνεκτικό, εκτός εάν είναι ισόμορφο με το K_2 . Έστω κύκλος C που περιέχει το u, αλλά όχι το v. Αυτός σίγουρα υπάρχει, διότι το G' είναι συνεκτικό, οπότε παίρνοντας δύο ακμές της u προς το G', μαζί με το μονοπάτι μεταξύ των δύο αντίστοιχων κορυφών στο G', ο κύκλος που σχηματίζεται δεν περνάει από το v. Όπως έχουμε αποδείξει στο Λήμμα 1 της άσκησης 3.10, υπάρχουν 2 εσωτερικώς διακεκριμένα μονοπάτια από το v σε δύο διαφορετικές κορυφές x και y του κύκλου C. Επίσης, επειδή ο u, v είναι διαχωριστής, υπάρχει μονοπάτι από την u στην v που δεν περνάει από καμία κορυφή του G'. Έχουμε λοιπόν τις κορυφές u, v, u, u και ένα σύνολο μονοπατιών που συνδέουν κάθε ζευγάρι αυτών (τα ζευγάρια (u, u), u) και u0 συνδέονται με μονοπάτια πάνω στον κύκλο), έτσι ώστε όλα τα μονοπάτια να είναι ανά δύο εσωτερικώς διακεκριμένα. Αν συνθλίψουμε τις ακμές σε αυτά τα μονοπάτια, αφού πρώτα σβήσουμε τις ακμές που δεν ανήκουν στο μονοπάτι, καταλήγουμε στο u0, άτοπο.

Τώρα έστω η αποσύνθεση του H σε δισυνεκτικές συνιστώσες. Αν κάποια δισυνεκτική συνιστώσα διαφορετική από αυτές που περιέχουν τα u και v μοιράζεται κοινή κορυφή μόνο με μία άλλη δισυνεκτική συνιστώσα, τότε σβήνοντας αυτή την κορυφή η δισυνεκτική συνιστώσα αποσυνδέται από το υπόλοιπο γράφημα. Όμως, το G γνωρίζουμε ότι είναι 2συνεκτικό, άρα αυτό είναι άτοπο. Συνεπώς κάθε δισυνεκτική συνιστώσα

έχει κοινή κορυφή με τουλάχιστον δύο άλλες δισυνεκτικές συνιστώσες. Αν θεωρήσουμε ότι κάθε δισυνεκτική συνιστώσα είναι μία κορυφή και οι κοινές κορυφές δύο συνιστωσών είναι ακμές, τότε ο μόνος τρόπος να μην δημιουργείται κύκλος είναι να έχουμε μονοπάτι από την κορυφή που αντιστοιχεί στο u σε αυτήν που αντιστοιχεί στο v. Συνεπώς έχουμε μια αλυσίδα δισυνεκτικών συνιστωσών από το u στο v, έστω $D_1, D_2, ..., D_k$, όπου $u \in D_1, v \in D_k$ και $V(D_i) \cup V(D_{i+1}) = v_i$. Κάθε ένα από τα D_i είναι ένα δισυνεκτικό γράφημα που δεν περιέχει το K_4 ως ελασσον, αφού ούτε το G το περιέχει. Συνεπώς όλα τα D_i είναι σειριακά-παράλληλα.

Η παραπάνω ανάλυση ισχύει για κάθε συνεκτική συνιστώσα που ορίζει ο διαχωριστής u, v. Ξεκινάμε από το K_2 , όπου οι κορυφές είναι οι u και v. Διπλασιάζουμε την ακμή τόσες φορές, όσες είναι και οι συνεκτικές συνιστώσες που ορίζει ο διαχωριστής. Τώρα, για κάθε συνεκτική συνιστώσα, υποδιαιρούμε την αντίστοιχη ακμή τόσες φορές, όσες είναι και οι αντίστοιχες δισυνεκτικές συνιστώσες (που όπως είπαμε παραπάνω, αποτελούν αλυσίδα). Τώρα, σε κάθε ακμή αντιστοιχεί ένα σειριακό-παράλληλο γράφημα. Εφαρμόζουμε το μετασχηματισμό της στο ανίστοιχο γράφημα και καταλήγουμε στο G, άρα το G είναι σειριακό-παράλληλο γράφημα, το οποίο είναι άτοπο. Άρα ισχύει το ζητούμενο.

Λήμμα 1: Για κάθε γράφημα G με $n(G) \geq 4$, ισχύει ότι $\kappa(G) \geq 3 \Rightarrow K_4 \subseteq_{\epsilon \lambda} G$.

Απόδειξη. Είναι το Πόρισμα 5.44 από τις σημειώσεις του μαθήματος. \Box

6 Χρωματισμοί και άλλα

6.7 (*) Έστω G τριμερές (n+1)-κανονικό γράφημα όπου κάθε μέρος του έχει n κορυφές. Δείξτε ότι $K_3 \leq_{\mbox{\tiny UR}} G$.

Απόδειξη. Έστω S_1 , S_2 , S_3 τα τρία σύνολα των κορυφών και έστω ότι δεν υπάρχει τρίγωνο. Θεωρούμε την κορυφή v με το μέγιστο αριθμό γειτόνων σε ακριβώς ένα σύνολο S_i και έστω k αυτός ο αριθμός γειτόνων. Επίσης, χωρίς βλάβη της γενικότητας $v \in S_1$ και οι m γείτονές της βρίσκονται στο S_2 . Τώρα, επειδή το γράφημα είναι (n+1)-κανονικό, η v συνδέεται με κάποια κορυφή u του S_3 . Επειδή έχουμε υποθέσει ότι δεν υπάρχει τρίγωνο, η u μπορεί να συνδέεται το πολύ με n-m κορυφές του S_2 , άρα με τουλάχιστον n+1-(n-m)=m+1 κορυφές του S_1 . Αυτό είναι άτοπο, αφού έχουμε υποθέσει ότι η v έχει το μέγιστο αριθμό ακμών προς κάποιο S_i . Άρα υπάρχει τρίγωνο, δηλαδή $K_3 \leq_{\rm υπ} G$.

 $6.9~(\star\star)$ Ένα γράφημα λέγεται άρτιο αν όλες οι κορυφές έχουν άρτιο βαθμό. Δ είξτε ότι αν το G είναι συνεκτικό γράφημα, τότε $|\{H\subseteq_{\pi\alpha}G|H$ είναι άρτιο}| = $2^{m(G)-n(G)+1}$. Απόδειξη. Θεωρούμε $S=\{H\subseteq_{\pi\alpha}G|H$ άρτιο\}. Θα ορίσουμε μία 1-1 και επί συνάρτηση f από το σύνολο $A=\{H|H\subseteq_{\pi\alpha}G\}$, δηλαδή το σύνολο των παραγόμενων γραφημάτων του G, στο $B=S\times\{X\subseteq V(G)||X|mod2=0\}$, δηλαδή το καρτεσιανό γινόμενο του συνόλου των άρτιων παραγόμενων γραφημάτων με την οικογένεια υποσυνόλων του V(G) με άρτιο πληθάριθμο. Το σύνολο των παραγόμενων γραφημάτων του G έχει πληθάριθμο $2^{m(G)}$, αφού κάθε ακμή μπορεί να υπάρχει ή να μην υπάρχει στο παραγόμενο υπογράφημα. Επίσης η οικογένεια υποσυνόλων του V(G) με άρτιο πληθάριθμο έχει πληθάριθμο $2^{n(G)-1}$, αφού έχουμε 2 επιλογές για κάθε κορυφή (θα μπει ή δεν θα μπει στο υποσύνολο), εκτός από την τελευταία, της οποίας η τοποθέτηση καθορίζεται μοναδικά από το αν το υποσύνολο έχει άρτιο ή περιττό αριθμό κορυφών. Λόγω του λήμματος 1, η f είναι 1-1 και επί, άρα έχουμε ότι $2^{m(G)}=|S|\cdot 2^{n(G)-1}$ \Rightarrow $|S|=2^{m(G)-n(G)+1}$, το οποίο είναι το ζητούμενο.

Λήμμα 1: Υπάρχει 1-1 και επί συνάρτηση από το σύνολο A στο σύνολο B.

Aπόδειξη. Για κάθε ζευγάρι κορυφών i, j με $i \neq j$, ορίζουμε P_{ij} ένα μονοπάτι μεταξύ τους στο G. Αυτό προφανώς υπάρχει, αφού το G είναι συνεκτικό. Ορισμός f: Έστω $Z \in A$ και T το σύνολο των κορυφών του Z με περιττό βαθμό. Είναι γνωστό ότι |Z| mod 2 = 0. Διαμερίζουμε τις κορυφές του Z σε ζευγάρια (a_i,b_i) (με κάποιο μονοσήμαντο τρόπο, πχ αριθμούμε τις κορυφές του Z $u_1, u_2, ..., u_k$ και βάζουμε τα ζευγάρια $(u_1, u_2), ..., (u_{k-1}, u_k)$) και για κάθε ζευγάρι θεωρούμε το μονοπάτι $P_{a_ib_i}$. Για κάθε ακμή πάν ω σε αυτό το μονοπάτι, αν υπάρχει στο Z τότε την αφαιρούμε, ενώ αν δεν υπάρχει την προσθέτουμε. Είναι εύχολο να δούμε ότι αυτός ο μετασχηματισμός διατηρεί την αρτιότητα των βαθμών των ενδιάμεσων κόμβων, και επίσης πλέον οι a_i , b_i έχουν άρτιο βαθμό. Κάνοντας αυτό το μετασχηματισμό για κάθε ζευγάρι, θα καταλήξουμε με ένα άρτιο γράφημα U. Ορίζουμε $f(Z)=U\times T$. Ουσιαστικά η f μετασχηματίζει ένα γράφημα σε άρτιο, αλλά επιστρέφει και την πληροφορία του ποιοι χόμβοι ήταν περιττοί. Αντίστροφα, αν έχουμε ένα άρτιο γράφημα U και ένα υποσύνολο T του V(G) με άρτιο πληθάριθμο, θεωρούμε τη διαμέριση του T σε ζευγάρια και για κάθε ζευγάρι εφαρμόζουμε τον ίδιο μετασχηματισμό που ορίσαμε παραπάνω. Έτσι θα πάρουμε ξανά το γράφημα Z με $f(Z) = U \times T$. Συνεπώς η f είναι 1-1 και επί.

 $6.10~(\star\star)$ Δείξτε ότι υπάρχει θετιχή σταθερά c, τέτοια ώστε αν για χάποιο γράφημα G ισχύει ότι $\delta(G)\geq k$, τότε το G περιέχει $c\cdot k^2$ αχμοδιαχεχριμένους χύχλους.

Aπόδειξη. Έστω $\delta(G) \ge k \ge 4$. Λόγω του λήμματος 2, έχουμε $\ge \lfloor \frac{k-1}{3} \rfloor$ εσωτερικώς διαχεχριμένους χύχλους. Διαγράφουμε τις αχμές όλων αυ-

τών των κύκλων. Στο γράφημα G' που θα προκύψει έχουμε $\delta(G) \geq k-2$. Εφαρμόζουμε επαναληπτικά την ίδια διαδικασία, έως ότου το γράφημα που απόμένει έχει $\delta(G') < 4$. Συνολικά αυτή η διαδικασία θα επαναληφθεί τουλάχιστον $\left\lfloor \frac{k}{2} \right\rfloor - 1$ φορές. Οι ακμοδιακεκριμένοι κύκλοι που θα έχουμε συνολικά λοιπόν θα είναι τουλάχιστον $\left\lfloor \frac{k-3}{3} \right\rfloor + \left\lfloor \frac{k-3}{3} \right\rfloor + \ldots + 1 + 0 = \Theta(k^2)$.

Λήμμα 1: Αν $\delta(G) \geq 4$, υπάρχει κύκλος με μήκος $\leq 2 \cdot log_2 n$.

Λήμμα 2: Σε κάθε γράφημα G με $\delta(G) \geq k \geq 4$ υπάρχουν τουλάχιστον $\lfloor \frac{k-1}{3} \rfloor$ εσωτερικώς διακεκριμένοι κύκλοι.

Απόδειξη. Έστω ένας ελάχιστος κύκλος C. Αυτος λόγω του λήμματος 1 θα έχει μήκος το πολύ $2 \cdot log_2 n$. Επίσης καμία κορυφή $u \in G - C$ δεν μπορεί να έχει πάνω από 3 αχμές προς χορυφές του G. Αν είχε, τότε έστω δύο από αυτές και οι αντίστοιχες κορυφές του κύκλου. Αυτές θα είχαν απόσταση $\leq \lfloor \frac{|C|}{2} \rfloor$ στον C, άρα χρησιμοποιώντας αυτές τις δύο αχμές, θα υπήρχε κύκλος με μέγεθος το πολύ $\lfloor \frac{|C|}{2} \rfloor + 2$, το οποίο για $|C| \geq 5$ είναι άτοπο αφού δημιουργεί κύκλο μικρότερο από τον ελάχιστο. Για |C|=3, είναι προφανές ότι δεν μπορούμε να έχουμε πάν ω από 3 αχμές από χάποια χορυφή προς τις χορυφές του C, ενώ για |C|=4 αν είχαμε 4 ακμές προς κορυφές το C, θα σχηματιζόταν κύκλος μήκους 3, άτοπο. Από το παραπάνω συμπεραίνουμε ότι το εναγόμενο γράφημα G'του G με σύνολο χορυφών το G-C θα έχει $\delta(G')\geq k-3$. Εφαρμόζοντας επαναληπτικά την ίδια διαδικασία στο εναγόμενο γράφημα, μέχρι ο ελάχιστος βαθμός του αντίστοιχου εναγόμενου γραφήματος να γίνει μικρότερος από 4, έχουμε συνολικά τουλάχιστον $\lfloor \frac{k-1}{3} \rfloor$ εσωτερικώς διακεκριμένους κύκλους.