A Bayes-Sard Cubature Method

arXiv:1804.03016

Toni Karvonen¹, Chris Oates² and Simo Särkkä¹

SAMSI-Lloyds-Turing Workshop on Probabilistic Numerical Methods Alan Turing Institute, London

April 12, 2018

¹Aalto University, Finland

²Newcastle University and Alan Turing Institute, UK

Motivation

Cubature: Compute approximations to the integral of a deterministic function $f^{\dagger} \colon D \to \mathbb{R}$, $D \subset \mathbb{R}^d$ by the means of a cubature rule:

$$\sum_{i=1}^{n} w_i f^{\dagger}(x_i) \approx I(f^{\dagger}) := \int_D f^{\dagger} d\nu.$$

Bayesian cubature: Model f^{\dagger} with a stochastic process consistent with the obtained evaluations $f^{\dagger}(x_i)$ at x_i and integrate this stochastic process.

Gaussian processes: The "standard" approach is to use a Gaussian process $f \sim \mathcal{GP}(0,k)$ with a covariance kernel k and condition on the data $\mathcal{D}_X \coloneqq \{(x_i,f^\dagger(x_i)\}_{i=1}^n \colon$

"
$$I(f) \mid \mathcal{D}_X \approx I(f^{\dagger})$$
".

Origins

Oates (2017). Posterior Integration on an Embedded Riemannian Manifold. arXiv:1712.01793v1:

Bayesian cubature using the sum kernel

$$k_{\sigma}(x, x') = k(x, x') + \sigma^2$$

yields, at the "weakly informative prior limit" $\sigma \to \infty$, a valid Bayesian cubature rule whose weights sum to one.

What about using
$$k_{\sigma}(x, x') = k(x, x') + \sigma^2 \sum_{i=1}^{Q} p_i(x) p_i(x')$$
?

Contributions

We develop the *Bayes–Sard cubature*, a generalisation of the conventional Bayesian cubature, by augmenting the GP with a parametric prior mean whose features span a finite-dimensional function space π and taking an improper limit.

If $\dim(\pi) < n$, the BSC is exact for every function in π . This makes it more stable than BC and less sensitive to, e.g., misspecification of the kernel length-scale.

If $\dim(\pi) = n$, a judicious choice of the space π allows for endowing any cubature rule with a meaningful probabilistic output. The variance coincides with the worst-case error in the RKHS of k.

Table of contents

A Gaussian process regression model

Bayes-Sard cubature

Three examples

Gaussian process prior

Prior

We assign f a Gaussian process prior with a parametric mean:

$$f(x) \mid \gamma \sim \mathcal{GP}(s(x), k(x, x')),$$

$$s(x) \mid \gamma = \sum_{j=1}^{Q} \gamma_j p_j(x),$$

$$\gamma \sim \mathcal{N}(0, \Sigma),$$

where the functions p_1, \ldots, p_Q form a basis of a Q-dimensional $(Q \le n)$ function space π .

We are going to do regression at the flat prior limit $\Sigma^{-1} \to 0$; see O'Hagan (1978) and Rasmussen & Williams (2006), Section 2.7.

Flat prior limit

Given the data $\mathcal{D}_X=(X,f_X^\dagger)$, the flat prior $\Sigma^{-1} \to 0$ GP posterior is

$$f(x) \mid \mathcal{D}_X \sim \mathcal{GP}(s_X(f^{\dagger})(x), k_X(x, x'))$$

with the mean and covariance functions

$$s_X(f^{\dagger})(x) = \alpha^{\top} k_X(x) + \beta^{\top} p_X(x),$$

$$k_X(x, x') = k(x, x') - k_X(x)^{\top} K_X^{-1} k_X(x') + C_{k,\pi}(x, x').$$

The coefficient vectors $\alpha \in \mathbb{R}^n$ and $\beta \in \mathbb{R}^Q$ solve

$$\left[\begin{array}{cc} K_X & P_X \\ P_X^\top & 0 \end{array}\right] \left[\begin{array}{c} \alpha \\ \beta \end{array}\right] = \left[\begin{array}{c} f_X^\dagger \\ 0 \end{array}\right],$$

where $[P_X]_{ij} = p_j(x_i)$ is the $n \times Q$ Vandermonde matrix.

Some properties

Unisolvency: The point set $X \subset D$ needs to be π -unisolvent to guarantee that $P_X \in \mathbb{R}^{n \times Q}$ is of full rank. Not a problem usually.

Connection to interpolation: When π is a polynomial space, the posterior mean $s_X(f^\dagger)$ coincides with an interpolant for a conditionally positive-definite kernel defined in Wendland (2005), Section 8.5.

Reproduction of elements in π : If $f^{\dagger} \in \pi$, then $s_X(f^{\dagger}) = f^{\dagger}$. In particular, if $Q = \dim(\pi) = n$, the posterior mean $s_X(f^{\dagger})$ is the unique interpolant from π to the data \mathcal{D}_X :

$$s_X(f^{\dagger})(x) = p(x)^{\top} P_X^{-\top} f_X^{\dagger}.$$

Table of contents

A Gaussian process regression model

Bayes-Sard cubature

Three examples

Bayes-Sard cubature

At the limit $\Sigma^{-1}\to 0$, the integral $I(f)=\int_D f\mathrm{d}\nu$ has the Gaussian posterior distribution

$$I(f) \mid \mathcal{D}_X \sim \mathcal{N}\left(\mu_X(f^{\dagger}), \sigma_X^2\right)$$

with the mean and variance

$$\mu_X(f^{\dagger}) = \int_D s_X(f^{\dagger})(x) d\nu(x),$$

$$\sigma_X^2 = \int_D \int_D k_X(x, x') d\nu(x) d\nu(x').$$

The mean is used to approximate $I(f^{\dagger})$ and σ_X^2 for quantification of epistemic uncertainty. We call this approximation the **Bayes–Sard** cubature.

Bayes-Sard cubature: properties

Mean: The mean indeed takes the form of a cubature rule:

$$\mu_X(f^{\dagger}) = I(s_X(f^{\dagger})) = \sum_{i=1}^n w_{k,i} f^{\dagger}(x_i)$$

for weights $w_k \in \mathbb{R}^n$ obtained from the solution of

$$\left[\begin{array}{cc} K_X & P_X \\ P_X^\top & 0 \end{array}\right] \left[\begin{array}{c} w_k \\ w_\pi \end{array}\right] = \left[\begin{array}{c} k_{\nu,X} \\ p_\nu \end{array}\right].$$

Variance: The Bayes–Sard variance σ_X^2 is *non-zero*.

A kernel perspective: Bayesian cubature

By a standard equivalence, the BC weights $w^{\mathrm{BC}} \in \mathbb{R}^n$ for the kernel k (i.e., $f \sim \mathcal{GP}(0,k)$) are worst-case optimal in the RKHS H(k) of k:

$$w^{\mathsf{BC}} = \underset{w \in \mathbb{R}^n}{\operatorname{arg\,min}} \ e_{H(k)}(X, w)$$

for the WCE

$$e_{H(k)}(X, w) := \sup_{\|h\|_{H(k)} \le 1} \left| \int_D h \, d\nu - \sum_{i=1}^n w_i h(x_i) \right|.$$

The associated variance is precisely the squared WCE:

$$\operatorname{Var}\left[I(f)\mid \mathcal{D}_X\right] = e_{H(k)}(X, w^{\mathsf{BC}})^2.$$

A kernel perspective: Bayes-Sard cubature

Our prior model yields the marginal

$$f(x) \sim \mathcal{GP}(0, k(x, x') + p(x)^{\top} \Sigma p(x'))$$

that essentially corresponds to using the kernel

$$k_{\sigma}(x, x') \coloneqq k(x, x') + \sigma^2 k_{\pi}(x, x'),$$

with
$$k_{\pi}(x,x') = \sum_{i=1}^{Q} p_i(x)p_i(x')$$
 in BC.

Consequently,

$$w_{\sigma}^{\mathrm{BC}} o w_k \quad \text{as} \quad \sigma o \infty.$$

A kernel perspective: implications

The RKHS of k_{σ} is $H(k_{\sigma})=\left\{g+p:g\in H(k),\,p\in\pi\right\}$ equipped with the norm

$$\|h\|_{H(k_{\sigma})}^2 = \min_{g \in H(k), \, p \in \pi} \{ \|g\|_{H(k)}^2 + \sigma^2 \|p\|_{H(k_{\pi})}^2 : g + p = h \}.$$

The weights $w_{\sigma}^{\rm BC}$ are selected to minimise the WCE in $H(k_{\sigma})$ and $H(k_{\sigma})$ is dominated by the part from π . At the limit $\sigma \to \infty$:

- " $\dim(\pi)$ weights are spent to be exact on π and the rest for integrating functions from H(k) well".
- If $\dim(\pi) = n$, "all weights are spent on π and nothing is done to integrate functions from H(k) well".

If $\dim(\pi)=n$, the Bayes–Sard weights are independent of k and the BSC variance σ_X^2 coincides with the worst-case error $e_{H(k)}(X,w_k)^2$.

Why Sard?

The Bayes–Sard cubature is reminiscent of the method of Sard $(1949)^1$ finding out the "best" quadrature formula for given n nodes:

- 1. Select $m \le n$ and require that the rule is exact whenever the integrand is a polynomial of degree at most m-1.
- 2. Dispose of the remaining n-m degrees of freedom by minimising a suitable error functional.

Indeed, the Bayes–Sard weights w_k satisfy

$$w_k = \underset{w \in \mathbb{R}^n}{\operatorname{arg \, min}} \|k_{\nu} - w^{\top} k_X\|_{H(k)}$$
 subject to $P_X^{\top} w = p_{\nu}$.

¹Sard, A. (1949). Best approximate integration formulas; best approximation formulas. *American Journal of Mathematics*, 71(1):80–91.

All cubature rules have probabilistic counterparts

If $\dim(\pi) = n$, the BSC weights are the solution to

$$\begin{bmatrix} p_1(x_1) & \cdots & p_1(x_n) \\ \vdots & \ddots & \vdots \\ p_n(x_1) & \cdots & p_n(x_n) \end{bmatrix} \begin{bmatrix} w_{k,1} \\ \vdots \\ w_{k,n} \end{bmatrix} = \begin{bmatrix} I(p_1) \\ \vdots \\ I(p_n) \end{bmatrix}.$$

Selecting, for example, a partition $D = \bigcup_{i=1}^n D_i$ for disjoint D_i such that $x_i \in D_i$ and $\nu(D_i) = 1/n$ yields $w_{k,i} = 1/n$. We get (quasi) Monte Carlo.

Theorem

Consider a cubature rule with point set X of size n and non-zero weights $w \in \mathbb{R}^n$. Then there exists a function space π of dimension n, such that the Bayes–Sard method recovers $w_k = w$ with $\sigma_X^2 = e_k(X, w)^2$.

Why (maybe) use Bayes-Sard?

- The posterior mean $\mu_X(f^{\dagger})$, used to approximate $I(f^{\dagger})$, is less dependent on the kernel and its parameters.
- Potentially easier to select the kernel and its hyperparameters.
- Linear constraints, such as $\sum_{i=1}^{n} w_{k,i} = 1$, can be easily encoded.
- If you desire to use a cubature rule of your choice, this can be endowed with a meaningful probabilistic output.

Table of contents

A Gaussian process regression model

Bayes-Sard cubature

Three examples

Sensitivity to length-scale: d=1

Sensitivity to length-scale: d > 1

A zero coupon bond integrand arising from d+1 step Euler–Maruyama discretisation.

UQ for Clenshaw–Curtis might be meaningful

$$f^{\dagger}(x) = \exp\left(\sin(Cx)^2 - x^3\right)$$

Concluding remarks

- The integral approximations appear in a non-probabilistic context already in Bezhaev (1991).
- Convergence rates not affected if π is a polynomial space with fixed dimension.
- Use a fast approximate GP method to fit the kernel parameters.
 Little effect on the integral estimate, but is UQ going to be meaningful?
- Compare UQ for QMC to that obtained using Fred's method?