In the Name of God, the Merciful, the Compassionate

Introduction to Bioinformatics 07 - Profiles and Hidden Markov Models

Instructor: Hossein Zeinali Amirkabir University of Technology

Statistical Modeling

- Construction of statistical models using multiple sequence alignments (MSA):
 - Position-Specific Scoring Matrix (PSSM)
 - Profiles as a more general PSSM model
 - Hidden Markov Model (HMM)
- Statistical models reflect the frequency information of amino acid or nucleotide residues in an MSA.
 - They can be treated as a consensus for a given sequence family.
 - They can be used as a single sequence for database searching and alignment.
 - They can capture the observed frequencies and also predict frequencies of unobserved characters.

Position-Specific Scoring Matrix (PSSM)

- A PSSM is defined as a *table* that contains *probability information* of amino acids or nucleotides at each position of an *ungapped multiple sequence alignment*.
- In such a table:
 - The rows represent residue positions of a particular MSA
 - The columns represent the names of residues (or vice versa)
 - The values in the table represent log-odds scores of the residues calculated from the MSA.
 - A positive score represents identical residue or similar residue match; a negative score represents a non-conserved residue match.

Position-Specific Scoring Matrix (PSSM)

PSSM Entries = Log-Odds Scores

- 1. Estimate probability of observing each residue in a particular position (probability of A given M, where M is PSSM model)
- 2. Divide by background probability of observing each residue (probability of A given B, where B is background model.)
 - In a simple case, random chance can be considered as the background probability.
 - It can be estimated using sequences in the corresponding MSA.
 - In the best case, can be estimated using training data.
- 3. Take log so that can add (rather than multiply) scores

PSSM Example of Nucleotide Sequences

Position 123456

Sequence 1 ATGTCG

Sequence 2 **AAGACT**

Sequence 3 **TACTCA**

Sequence 4 **CGGAGG**

Sequence 5 AACCTG

We will see how should deal with not seen residues. Normalize the values by dividing them by overall freq.

Pos.	1	2	3	4	5	6	Overall freq.
A	2.0	2.0		1.33		0.67	0.30
14	1.0	1.0		2.0	1.0	1.0	0.20
G	1	0.74	2.22		0.74	2.22	0.27
С	0.87	_	1.74	0.87	2.61	_	0.23

Convert multiple alignment to a raw frequency table

Pos.	1	2	3	4	5	6	Overall freq.
A	0.6	0.6		0.4		0.2	0.30
T	0.2	0.2	_	0.4	0.2	0.2	0.20
G	_	0.2	0.6	_	0.2	0.6	0.27
С	0.2		0.4	0.2	0.6	_	0.23

University of tran Polytecl

Convert the values to log to base of 2

Pos.	1	2	3	4	5	6
A	1.0	1.0	1	0.41		-0.58
Т	0.0	0.0		1.0	0.0	0.0
G		-0.43	1.15	1	-0.43	1.15
С	-0.2		0.8	-0.2	1.38	_

Inference from PSSN

- How well does the new sequence AACTCG fit into the matrix?
- First, we should find nucleotides at respective positions of the matrix.

Pos.	1	2	3	4	5	6
A				0.41	1	-0.58
T	0.0	0.0		$\left(\begin{array}{c} 1.0 \end{array}\right)$	0.0	0.0
G		-0.43	1.15		-0.43	1.15
С	-0.2	_ (0.8	-0.2	1.38	-

• Then calculate the sum of log odds scores:

$$1.0 + 1.0 + 0.8 + 1.0 + 1.38 + 1.15 = 6.33$$

• The value can be interpreted as the probability of the sequence fitting the matrix as $2^{6.33}$, or 80 times more likely than by random chance.

Second Example

(A)	12345	
(A) _{S1}	GCTCC	
S2	AATCG	
S3	TACGC	
S4	GTGTT	<u>/</u>
S5	GTAAA	
S6	CGTCC	

	1	2	3	4	5	Overall
A	.17	.33	.17	.17	.17	6/30 = .20
C	.17	.17	.17	.50	.50	9/30 = .30
G	.50	.17	.17	.17	.17	7/30 = .23
T	.17	.33	.50	.17	.17	8/30 = .27

Normalize by dividing by frequencies

	1	2	3	4	5	Overall
A	.85	1.65	.85	.85	.85	6/30 = .20
C	.57	.57	.57	1.67	1.67	9/30 = .30
G	2.17	.74	.74	.74	.74	7/30 = .23
T	.63	1.22	1.85	.63	.63	8/30 = .27

base of 2

	1	2	3	4	5
A	-0.23	0.72	-0.23	-0.23	-0.23
C	-0.81	-0.81	-0.81	0.74	0.74
G	1.11	-0.43	-0.43	-0.43	-0.43
T	-0.66	0.29	0.89	-0.66	-0.66

(B) Match **GATCA** to PSSM

Find nucleotides at corresponding Tehran positions echnic

overall

	1	2	3	4	5
A	-0.23	0.72	-0.23	-0.23	-0.23
C	-0.81	-0.81	-0.81	0.74	0.74
G	1.11	-0.43	-0.43	-0.43	-0.43
T	-0.66	0.29	0.89	-0.66	-0.66

Sum corresponding log odds matrix scores

Score = 1.11 + 0.72 + 0.89 + 0.74 - 0.23 =**3.23**

PSSM Example of Amino Acid Sequences

NTEGEWI NITRGEW NIAGECC

Amino acid frequencies at every position of the alignment:

How we should deal with zeros?

Amino Acid	1	2	3	4	5	6	7
N	1	0	0	0	0	0	0
T	0	0.33	0.33	0	0	0	0
E	0	0	0.33	0	0.66	0.33	0
G	0	0	0	0.66	0.33	0	0
W	0	0	0	0	0	0.33	0.33
1	0	0.66	0	0	0	0	0.33
Н	0	0	0	0	0	0	0
R	0	0	0	0.33	0	0	0
Α	0	0	0.33	0	0	0	0
С	0	0	0	0	0	0.33	0.33
8877	***	1500	85-48	35	***	255	5088

PSSM Example (Cont.)

- In order to model every possible sequence:
 - Amino acids that *do not appear* at a specific position of a multiple alignment must also be considered. Log(0) = negative infinity which mean impossible sequence!
- Pseudo-counts procedure:
 - Assign minimal scores to residues that do not appear at a certain position

$$Score(x) = \frac{Frequency + Pseudocount}{N + B \times Pseudocount}$$

- Where:
 - Frequency is the frequency of residue i in column j (the count of occurrences).
 - Pseudocount is a number higher or equal to 1.
 - N is the number of sequences in the MSA.
 - B is the total number of allocated pseudocounts in each position (i.e. 20 for all amino acids)
 Tehran Polytechnic

PSSM Example (Cont.)

- In our example, N = 3 and let's use pseudocount = 1:
 - Score(N) at position 1 = 3/3 = 1.
 - Score(I) at position 1 = 0/3 = 0.
- Readjust by pseudocount:
 - Score(N) at position $1 \rightarrow (3+1)/(3+20) = 4/23 = 0.174$.
 - Score(I) at position $1 \rightarrow (0+1)/(3+20) = 1/23 = 0.044$.

The PSSM is obtained by taking the logarithm of (the values obtained above divided by the background frequency of the residues).

- To simplify for this example we'll assume that every amino acid appears equally in protein sequences, i.e. $f_i = 0.05$ for every i):
 - PSSM Score(N) at position $1 = \log(0.174 / 0.05) = 0.541$.
 - PSSM Score(I) at position $1 = \log(0.044 / 0.05) = -0.061$.

PSSM Example (Cont.)

Amino acid	1	2	3	4	5	6	7
N	0.541	-0.061	-0.061	-0.061	-0.061	-0.061	-0.061
T	-0.061	0.240	0.240	-0.061	-0.061	-0.061	-0.061 -0.061 -0.061 0.240 0.240 -0.061
Е	-0.061	-0.061	0.240	-0.061	0.416	0.240	
G	-0.061	-0.061	-0.061	0.416	0.240	-0.061	
W	-0.061 -0.061 -0.061 0.416	-0.061	-0.061	-0.061	-0.061	0.240	
1		0.416	-0.061	-0.061	-0.061	-0.061 -0.061	
Н	-0.061	061 -0.061	-0.061	-0.061	-0.061		
R	-0.061	-0.061	-0.061	0.240	-0.061	-0.061	-0.061
Α	-0.061	-0.061	0.240	-0.061	-0.061	-0.061	-0.061
С	-0.061	-0.061	-0.061	-0.061	-0.061	0.240	0.240
***	***	333	155	(4.44)		333	156

Profiles

- A profile is a PSSM with penalty information regarding insertions and deletions for a sequence family.
 - Can be considered as a generalized form of MSSM
 - profile is often used interchangeably with PSSM

	12345			1	2	3	4	5	Overall
S1	KLM-K	,	K	.75		.25		.50	6/20
S2	KLKLK		L		.75		.75		6/20
S3	KMML-	ν .	M	.25	.25	.50		.25	5/20
S 4	ML-LM	Amirk	_	ir U	nive	.25	.25	T.25	3/20
			(']	ehr	an P	olyt	ech	nic)	

PSI-BLAST

- Position Specific Iterated BLAST
- Intuition: substitution matrices should be specific to a particular position
- Basic idea:
 - Use BLAST with high stringency to get a set of closely related sequences
 - Align those sequences to create a new substitution matrix for each position
 Amirkabir University of Technology
 - Then use that matrix (iteratively) to find additional sequences

PSI-BLAST

Amirkabir University of Technology (Tehran Polytechnic)

PSI-BLAST pseudocode

```
Convert query to PSSM
do {
 BLAST database with PSSM
 Stop if no new homologs are found
  Add new homologs to PSSM
                                       This step requires a
                                      user-defined threshold
Print current set of homologs
                       (Tehran Polytechnic)
```

Creating a PSSM from 1 sequence

Another Schematic Diagram of PSI-BLAST

- The program employs a weighting scheme in the profile construction in each iteration to increase sensitivity.
- It uses pseudocounts to provide extra weight to unobserved residues to make the profile more inclusive.
- It can detect weak but biologically significant similarities between sequences.
- It is associated with low selectivity caused by the false-positives generated in the automated profile construction process. This problem is known as *profile drift*.

Why (not) PSI-BLAST

• Weights sequence according to observed diversity *specific* to family of interest

- Advantage: If sequences used to PSSMs are all homologous, sensitivity at a given specificity improves significantly
- **Disadvantage:** However, if any non-homologous sequences are included in PSSMs, they are "corrupted." Then they "pull in" addition non-homologous sequences, and become worse than generic. (Tehran Polytechnic)

How to use PSI BLAST

- Set initial thresholds high
- Inspect each iteration's result for suspicious sequences
- Do several iterations (~5), or until no new sequences are found
- Even if only looking for a small set of sequences, make initial search very broad
 - First, use NR (large, inclusive database) with up to 5 iterations to set PSSM
 - Then use that PSSM to search in restricted domain

PSI-BLAST example

First Iteration

Distribution of 2373 Blast Hits on the Query Sequence

Legend: - means that the alignment score was below the threshold on the previous iteration - means that the alignment was checked on the previous iteration Run PSI-Blast iteration 2 Hit list size 1000 Sequences with E-value BETTER than threshold Score gi|21759000|sp|Q12955|ANK3_HUMAN Ankyrin-3 (ANK-3) (Ankyrin G) 4e-160.0 gi|28558069|sp|Q99LW0|ANRX_MOUSE Ankyrin repeat domain protein 1 45.4 9e - 04gi|13626132|sp|Q9QZH2|BARD1_RAT BRCA1-associated RING domain pro 45.1 0.001 Run PSI-Blast iteration 2 Sequences with E-value WORSE than threshold

gi|20531989|sp|Q8WWX0|ASB5_HUMAN Ankyrin repeat and SOCS box pro 45.1

gi|2493567|sp|Q60773|CDN7_MOUSE Cyclin-dependent kinase 4 inhibi 45.1

0.001

0.001

Second iteration

Distribution of 4921 Blast Hits on the Query Sequence

```
gi|72077024|ref|XP_789126.1|
                                  PREDICTED: similar to Ankyrin-2 ... 315
                                                                               2e-84
     gi|72022177|ref|XP_789744.1| PREDICTED: similar to ankyrin 3,... 314
                                                                               3e-84
     gi|72020988|ref|XP_792296.1| PREDICTED: similar to Ankyrin-1 ... 314
                                                                               5e-84
     gi|71981411|ref|NP_001021268.1| UNCoordinated family member (unc 312
                                                                               2e-83
     gi|72165808|ref|XP_794269.1| PREDICTED: similar to ankyrin 1,... 312
                                                                               2e-83
☐ 1: XP_789744. Reports PREDICTED: simila...[gi:72022177]
LOCUS
           XP_789744
                                    488 aa
                                                      linear
                                                               INV 09-AUG-2005
           PREDICTED: similar to ankyrin 3, epithelial isoform b, partial
            [Strongylocentrotus purpuratus].
           XP_789744
ACCESSION
           XP_789744.1 GI:72022177
VERSION
DBSOURCE
           REFSEQ: accession XM_784651.1
KEYWORDS
SOURCE
           Strongylocentrotus purpuratus
  ORGANISM Strongylocentrotus purpuratus
```

Format

PSSM:2 Show ☐ Graphical Overview ☐ Linkout ☐ Sequence Retrieval ☑ NCX of PSSM ☑ in Text ☑ format

425A683131415926535949FA6E0200707C7E547DF8001000017FE03FEFFFA0D0007F80003060969BE00000000000001579E A5F5929E3B9D24A513E8D59B1112B6C84D6508A152910AA52AAB5912A9B312953595140EDB5A0AF7BD803C8001D074007

Representing a Profile as a Logo

- The score parameters of a PSSM are useful for obtaining alignments, but do not easily show the residue preferences or conservation at particular positions.
- This residue information is of interest because it is suggestive of the key functional sites of the protein family.
- A suitable graphical representation would make the identification of the se key residues easier.
- One solution to this problem uses information theory, and produces diagrams that are called logos.

Representing a Profile as a Logo (Cont.)

- In any PSSM (without pseudocount) column \underline{u} , residue type \underline{a} will occur with a frequency $f_{u,a}$.
- The entropy in that position is defined by:

$$H_u = -\sum_{a} f_{u,a} \log_2 f_{u,a}$$

• The maximum value of H_u occurs if all residues are present with equal frequency, in which case H_u takes the value $\log_2 20$ for proteins.

Amirkabir University of Technology

(Tehran Polytechnic)

25

Representing a Profile as a Logo (Cont.)

• The information present in the pattern at position \underline{u} is given by:

$$I_u = \log_2 20 - H_u$$

• If the contribution of a residue is defined as $f_{u,a}I_u$, then a logo can be produced where at every position the residues are represented by their one-letter code, with each letter having a height proportional to its contribution.

Representing a Profile as a Logo: Example

Discover Conserved Patterns by MSA

- Is there a *conserved cis-acting* regulatory sequence?
- *Rationale:* if sequences are homologous (derived from a common ancestor), they may be structurally/functionally equivalent.

A Full Example

TACGAT TATAAT **TATAAT GATACT TATGAT TATGTT TATAGT**

and take log2

Consensus sequence: **TATAAT**

Regular expression: [TG]A[TC][GA]XT

	1	2	3	4	5	6
A	0	7	0	4	4	0
С	0	0	1	0	1	0
G	1	0	0	3	1	0
T	6	0	6	0	1	19

Pseudocount = 1 Background Pro.=0.25

	1	2	3	4	5	6	
A	.09	.73	.09	.45	.45	.09	
C	.09	.09	.18	.09	.18	.09	
G	.18	.09	.09	.36	.18	.09	
T	.64	.09	.64	.09	.18	.73	

Pseudocount and Normalize by 7+4=11

lytechnic)

Apply

		1
_	A	-1.4
	C	-1.4
Normalize by	G	-0.4
Background	Т	1.3

				-	-			
ſ		1	2	3	4	5	6	
	A	-1.46	1.54	-1.46	0.86	0.86	-1.46	
	C	-1.46	-1.46	-0.46	-1.46	-0.46	-1.46	
	G	-0.46	-1.46	-1.46	0.54	-0.46	-1.46	
ſ	T	1.35	-1.46	1.35	-1.46	-0.46	1.54	

Hidden Markov Model in Bioinformatics

- A more efficient way of computing matching scores between a sequence and a sequence profile is through the use of HMMs.
 - It was originally developed for use in speech recognition.
- Each state composes of a number elements or symbols:
 - For nucleotide sequences, there are four possible symbols: A, T, G, and C.
 - For amino acid sequences, there twenty symbols.
- A partial HMM example:

• Probability of AG sequence: University of Technology $0.80 \times 0.40 \times 0.32 = 0.102$

Hidden Markov Model in Bioinformatics

- To use an HMM to describe *gapped multiple sequence alignment*, a character in the alignment can be in one of three states:
 - Match, Insertion, and Deletion
- To represent the three states in an HMM, a special graphical representation has been used:
 - Transitions from state to state proceed from left to right
 - There are various paths through the model representing all possible combinations of matches, mismatches, and gaps to generate an alignment.

Hidden Markov Model in Bioinformatics

- Squares indicate match states (M), diamonds insert states (I), and circles delete states (D)
- The beginning and end of the match states are indicated by B and E, respectively.

• The circles on top of the insert state indicate self-looping, which allows insertions of any number of residues to fit into the model.

From Alignment to Profile

• First, remove columns if the fraction of gap symbols ("-") exceeds θ , the maximum fraction of insertions threshold.

Amirkabir University of Technology (Tehran Polytechnic)

From Alignment to Profile (Cont.)

		1	2	3	4	5		6	7	8
		A	C	D	E	F	AC	A	D	F
		A	F	D	A	_		C	C	F
Alignment		A	-	_	E	F	D -	F	D	C
		A	C	A	E	F		A	_	C
		A	D	D	E	F	AA	A	D	F
		A	C	D	E	F		A	D	F
		A	F	D	A	_		C	C	F
Alignment*		A	-	-	E	F		F	D	C
		A	C	A	E	F		A	-	C
		A	D	D	E	F		A	D	F
	Α	1	0	0	1/5	0		3/5	0	0
	C	0	2/4	0	0	0		1/5	1/4	2/5
Profile(Alignment*)	D	0	1/4	3/4	0	0		0	3/4	0
-	E	0	0	0	4/5	0		0	0	0
	F	0	1/4	0	0	1		1/5	0	3/5

Toward a Profile HMM

AFDDAFFDF

How do we model insertions?

(Tenran Polytechnic)

Toward a Profile HMM: Insertions

How do we model deletions?

Toward a Profile HMM: Deletions

A

Α

F

7

 \mathcal{I}

7

Adding "Deletion States"

Are any edges still missing in this HMM diagram?

Adding Edges Between Deletion/Insertion States

Amirkabir University of Technology (Tehran Polytechnic)

The Profile HMM is Ready to Use!

- **Profile HMM Problem**: Construct a profile HMM from a multiple alignment.
 - Input: A multiple alignment *Alignment* and a threshold θ (maximum fraction of insertions per column).
 - **Output:** Transition and emission matrices of the profile HMM $HMM(Alignment, \theta)$.

Hidden Paths Through Profile HMM

Aligning a Protein Against a Profile HMM

Forbidden Transitions

Gray cells: edges in the HMM diagram.

Clear cells: forbidden transitions.

Don't forget pseudocounts:

HMM(*Alignment*,θ,σ)

HMM Topology Example

A. Sequence alignment

N • F L S N • F L S N K Y L T Q • W - T

RED POSITION REPRESENTS ALIGNMENT IN COLUMN GREEN POSITION REPRESENTS INSERT IN COLUMN PURPLE POSITION REPRESENTS DELETE IN COLUMN

B. Hidden Markov model for sequence alignment

Applications

- HMMs can be used for database searching to detect distant sequence homologs.
- HMMs are also used in protein family classification through motif and pattern identification.
- Advanced gene and promoter prediction also employ HMMs.
- HMMer (http://hmmer.wustl.edu/) is an HMM package for sequence analysis.
- The probability modeling in HMMs has more predictive power than profiles.

 (Tehran Polytechnic)

References

- Mostly used:
 - Essential bioinformatics, Chapter 6 (Profiles and Hidden Markov Models)
- Second reference:
 - Bioinformatics and functional genomics, Chapter 5 (Advanced Database Searching)
- IP notice: some slides were selected from Drena Dobbs' and Pevzner's slides. mirkabir University of Technology

 (Tehran Polytechnic)

Thanks for your attention

