Metodologias Experimentais em Informática Meta 3 - Teste de Hipóteses

Joana Brás - 2021179983 Leandro Pais - 2017251509 Renato Ferreira - 2015228102

Dezembro 2021

1 Introdução

Nesta terceira e última fase do projeto procura-se testar as hipóteses que foram criadas anteriormente. Para contextualizar, importa fazer um apanhado do trabalho realizado até agora.

Inicialmente, numa primeira fase, foi analisado o problema em questão, desenhou-se o método experimental e foram criados os scripts necessários para o efeito. Definiram-se intervalos para as várias variáveis independentes identificadas e partiu-se para a testagem. Com os testes feitos, elaborou-se a análise exploratória de dados com regressão para encontrar o modelo que melhor se adequa aos dados obtidos. Daí concluiu-se que ambos os programas seguem uma complexidade temporal exponencial.

Num segunda fase, com base nos resultados obtidos na primeira meta foram criadas algumas hipóteses para serem testadas numa terceira fase.

2 Método Experimental

A experimentação nesta fase foi em tudo semelhante aquilo que foi feito na fase inicial. Foram utilizados os mesmos scripts, para os mesmos valores de variáveis independentes a correr na mesma máquina.

Assim, geraram-se novos casos de testes todos com seeds diferentes dos casos utilizados anteriormente e procedeu-se à testagem utilizando sempre seeds diferentes para garantir independência entre testes. No entanto, devido ao facto de usarmos os mesmos testes para o código 1 e para o código 2 criou-se emparelhamento dos resultados que foi tido em conta na fase de teste hipóteses.

3 Teste de Hipóteses

Com os resultados obtidos passou-se então à fase de teste das hipóteses estipuladas na meta 2. No entanto, como algumas não se adequavam e seriam complexas de testar com precisão optou-se por testar apenas as seguintes.

3.1 Hipótese 1

Ambos os códigos tem um desempenho semelhante, ou seja, um programa não é mais rápido que o outro.

3.1.1 Formalização da hipótese

 $H_0: \chi TempoProcessamentoCodigo1 - \chi TempoProcessamentoCodigo2 = 0$

 $H_1: \chi TempoProcessamentoCodigo1 - \chi TempoProcessamentoCodigo2 \neq 0$

3.1.2 Three way anova

Para testar esta hipótese como estavam três variáveis em questão (número de exames, probabilidade de colisão e código 1 ou 2) inicialmente optou-se por utilizar um three way anova implementado da seguinte forma:

```
aov.out = aov(Time~factor(Exams)*factor(Prob)*factor(Program),
data = times_dframe)

summary(aov.out)

plot(aov.out)
```

3.1.2.1 Resultados

Do teste anterior interessa apenas o valor de p-value para o Time em função do Program. Este valor é $1.3*e^{-13}$ o que nos leva a **rejeitar a hipótese nula**. Concluindo assim, que existem diferenças significativas entre os programas.

3.1.2.2 Verificação dos pressupostos

Resta agora, fazer a verificação dos pressupostos. Analisando, o qqplot abaixo, resultante do anova anterior facilmente se conclui que os dados não seguem uma distribuição normal e como tal, a conclusão anterior é invalidada. Isto acontece, pois como foi mencionado anteriormente no design do método experimental foi criado um emparelhamento entre os dados.

Figure 1: Barplot - Número de Casos Resolvidos: Programa 1 vs Programa 2

3.1.3 Teste de aleatoriedade

Não conseguindo verificar os pressupostos, optou-se então por utilizar testes não paramétricos. Assim a alternativa direta ao three way anova foi o **teste de aleatoriedade**. Este teste não é tão poderoso quanto o anova mas tem a vantagem que não tem grandes pressupostos e que estes estão assegurados pela independência que garantimos através do design experimental. No que toca à implementação, foi a seguinte:

```
#Randomization test

#Get three way anova to adjust p-values

aov.out = aov(Time~factor(Exams)*factor(Prob)*factor(Program),

data = times_dframe)

summary(aov.out)

#F-values
```

```
FExams = summary(aov.out)[[1]]\$F[1]
8
     FProb = summary(aov.out)[[1]]\$F[2]
     FProgram = summary(aov.out)[[1]]\$F[3]
10
     FEPP = summary(aov.out)[[1]]\$F[7]
11
12
     #Initialize p-values
13
     pvalueExams=0
14
     pvalueProb=0
15
     pvalueProgram=0
16
     pvalueFEPP=0
17
18
     for(i in 1:5000){
19
       #Randomized sample
20
21
       times_dframe\$Time = sample(times_dframe\$Time)
22
       #Three way anova for randomized sample
23
       aov.out = aov(Time~factor(Exams)*factor(Prob)*factor(Program),
24
       data = times_dframe)
25
       summary(aov.out)
26
27
       #Get F-values for aov randomized sample
28
       pFExams = summary(aov.out)[[1]]\$F[1]
29
       pFProb = summary(aov.out)[[1]]\$F[2]
30
       pFProgram = summary(aov.out)[[1]]\$F[3]
31
       pFEPP = summary(aov.out)[[1]]\$F[7]
32
       if(pFExams>=FExams){
34
         {\tt pvalueExams=pvalueExams+1}
35
36
37
38
       if(pFProb>=FProb){
         {\tt pvalueProb=pvalueProb+1}
39
40
41
       if(pFProgram>=FProgram){
42
43
         {\tt pvalueProgram=pvalueProgram+1}
44
45
       if(pFEPP>=FEPP){
46
47
         pvalueFEPP=pvalueFEPP+1
48
49
50
     print(pvalueExams/5000)
51
     print(pvalueProb/5000)
52
     print(pvalueProgram/5000)
53
     print(pvalueFEPP/5000)
54
```

3.1.3.1 Resultados

Do teste anterior, interessa novamente apenas o p-value para a variável *Program* pois é este que está a ser alvo de estudo. Este valor é **0** isto acontece porque os valores são de facto muito diferentes o que nos leva a **rejeitar a hipótese nula**. Concluindo assim, que os códigos produzem, efetivamente, resultados

significativamente diferentes.

3.2 Hipótese 2

Para um número de exames igual a 25, probabilidade de colisão entre 40% e 55% e tempo máximo de execução de 50 segundos, a proporção de instâncias com tempo de execução abaixo de 0.6 segundos é menor ou igual a 50%.

3.2.1 Formalização da hipótese

 H_0 : Para 25 exames e probabilidade de colisão entre 40% e 55%, a proporção de dados com tempo de execução abaixo de 0.6 segundos é **menor ou igual** a 50%.

 H_1 : Para 25 exames e probabilidade de colisão entre 40% e 55%, a proporção de dados com tempo de execução abaixo de 0.6 segundos é **superior** a 50%.

3.2.2 Teste de proporções

Para testar esta hipótese, foram geradas 100 instâncias para cada combinação de probabilidades e de número de exames (as probabilidades tomaram os valores de 0.4, 0.45, 0.5, 0.55 e foi fixado o número de exames igual a 25) para o código 1. Esta hipótese foi testada com recurso a um teste de proporções da seguinte forma:

```
#Parametros para alterar:
     t_exec=0.6 #tempo de execução até o qual queremos que se encontrem os dados
3
     propor=0.5 #proporção que pretendemos atingir
     results_to_use=results_c2 #results_to_use é o código que pretendemos correr
     #(codigo 1: results_to_use=results_c1; codigo 2: results_to_use=results_c2)
     probs <- c(0.4,0.45,0.5,0.55)
     proporcao=c(propor,propor,propor,propor)
     for (i in 1:length(probs)) {
10
       below=0
11
       for (j in 1:length(results_to_use[,1])) {
12
         if (results_to_use[j,2]==probs[i] & results_to_use[j,5]<=t_exec) {</pre>
13
           below=below+1
14
           if (i == 1)
             all_below <- below
16
17
       }
18
19
       if (i>1)
20
21
         all_below <- c(all_below, below)
22
23
```

```
prop.test(x = all_below,n = c(100,100,100,100),p = proporcao,
alternative = "greater")
```

3.2.2.1 Análise Post-Hoc

Foi feita ainda uma análise post-hoc, que consistiu na verificação da hipótese nula para cada conjunto de número de exames e probabilidades.

```
for (i in 1:length(probs)) {
   below=0
   for (j in 1:length(results_to_use[,1])) {
      if (results_to_use[j,2]==probs[i] & results_to_use[j,5]<=t_exec) {
        below=below+1
      }
   }
   print(prop.test(x = below,n = 100,p = propor, alternative = "greater"))
}</pre>
```

3.2.2.2 Resultados

O alvo de estudo neste caso, à semelhança da hipótese anterior, é o valor p-value. Os resultados obtidos a partir da utilização do teste de proporções foram semelhantes para o código 1 e para o código 2. Em ambos os casos se **rejeita a hipótese nula**, ou seja, há mais casos em que o tempo de execução é superior a 0.6 segundos. Como tal, foi feita uma análise post-hoc. Os resultados obtidos de p-value foram os seguintes:

		Probabilidade				
		0.4	0.45	0.5	0.55	
Code	Código 1	8.54e-06	2.066e-05	0.9332	1	
	Código 2	1.818e-09	0.01786	0.9332	1	

Como podemos verificar a partir da tabela, é possível ver que o p-value é inferior ao nível de significância igual a 5% para os casos em que a probabilidade é 0.4 ou 0.45, sendo que se rejeita a hipótese nula para estes casos. No entanto o mesmo não acontece para uma probabilidade igual ou acima de 50%. Nestes dois casos, não se rejeita a hipótese nula.

3.3 Hipótese 3

A terceira e última hipótese consiste em avaliar se o número de casos resolvidos varia significativamente com o aumento do max runtime. Esta hipótese pode ser formalizada da seguinte forma:

3.3.1 Formalização da hipótese

 H_0 : A proporção de casos resolvidos é a mesma para todos os valores de max runtime.

 H_1 : As várias proporções são significativamente diferentes.

3.3.2 Teste Qui-Quadrado

Considerando a hipótese em questão optou-se por utilizar o teste do quiquadrado. Para tal foi construída a seguinte tabela de contingência que inclui o número de casos resolvidos e não resolvidos para os diferentes max runtimes. No total, para cada runtime foram executados 245 testes.

Tabela de Contingência									
	200	400	600	800	1000	Total			
Solved	165	169	173	174	175	856			
Unsolved	80	76	72	71	70	369			
Total	245	245	245	245	245	1225			

3.3.2.1 Resultados

Assim, como a tabela anterior é um data frame em R para executar o teste foi apenas chamada a função *chisq.test* com o data frame como input. O que gerou um **p-value** de aproximadamente 0.99 o que para um **nível de significância igual a 5% não nos permite rejeitar a hipótese nula**. Concluindo assim, que as proporções entre os vários max runtimes são, de facto, semelhantes.

4 Conclusão

Foram consideradas muito mais hipóteses do que as enunciadas neste relatório, nomeadamente as presentes no trabalho referente à meta 2. No entanto, por não conhecermos bem a complexidade das mesmas e das respetivas ferramentas de teste uma grande maioria não se adequavam ao contexto do trabalho, forçandonos a pensar noutras alternativas e hipóteses observáveis a partir dos dados. Um dos exemplos seria a hipótese onde seria fixada a probabilidade de colisão e o número de exames e verificar se a percentagem de casos resolvidos seria superior a 50%. Para estudar esta hipótese, seria aplicado um teste do quiquadrado, porém, quando foi construída a tabela de contingência, algumas das células tinham uma frequência menor que 5, e nesta situação (rule of thumb), não é aconselhado o uso deste teste.

Contudo, as hipóteses apresentadas neste relatório permitiram adquirir mais conhecimentos na área, trabalhar em primeira mão com a linguagem de programação R e perceber como podemos testar certos pressupostos nos dados, assim como que estatística se aplica melhor a cada caso, sendo por isso uma mais-valia para o futuro.

References

[1] Link para o repositório com scripts, testes e dados de input https://github.com/lbpaisDev/MEI_META_3