

18 April 2024

Materi Hari Ini

Kita akan mempelajari antara lain:

- Pengantar SVM (Support Vector Machine)
- 2. Multiclass Classifier

Pengantar SVM (Support Vector Machine)

Apa dan Bagaimana

Permasalahan

Permasalahan

Garis Separasi mana yang terbaik?

Support Vector

Pendekatan Geometris

SVM Sebagai Convex Optimization Problem

Convex

Optimization

Problem

$$\max_{w,b} ||w||^{-2}$$

$$w^T x + b \ge 1 \quad \forall x \in C_1$$

$$w^T x + b \le -1 \quad \forall x \in C_2$$

Kasus Lain

Kasus Lain

Fungsi-Fungsi Kernel Pada SVM

Kernel Polynomial

Kernel Radial Basis Function (RBF) (Gaussian Kernel)

$$K(\vec{x}, \vec{l}^i) = e^{-\frac{\|\vec{x} - \vec{l}^i\|^2}{2\sigma^2}}$$

Kernel Sigmoid

variable 1

$$k_S\left(\frac{\mathbf{x}}{\sqrt{p}}, \frac{\mathbf{z}}{\sqrt{p}}\right) = \tanh\left(\frac{a}{p} \cdot \mathbf{x}^T \mathbf{z} + r\right)$$

Fungsi Kernel: Data Augmentation

Fungsi Kernel: Untuk Data NOT Linearly Separable

Fungsi Kernel: Untuk Data NOT Linearly Separable

SVM Untuk Regresi: SVR

Multiclass Classifier

Apa dan Bagaimana

Multiclass Classifier

Konsep multiclass classifier bisa dilakukan pendekatan seperti binary classifier dengan metode:

- 1. One vs Rest (OvR)
- 2. One vs One (OvO)

One vs. Rest (OvR)

One vs. One (OvO)

Memilih Antara OvR dan OvO

- <u>Ukuran Dataset:</u> Untuk dataset berukuran kecil hingga menengah, kedua strategi dapat dipertimbangkan. Untuk dataset berukuran besar, OvR sering lebih praktis karena efisiensinya dalam komputasi.
- Jumlah Kelas: OvO mungkin lebih baik ketika jumlah kelas sedikit, dan sumber daya komputasi bukanlah batasan. OvR umumnya lebih dapat diukur untuk jumlah kelas yang besar.
- 3. <u>Kelas yang Tidak Seimbang:</u> Jika kelas-kelas tidak seimbang, OvO mungkin lebih baik karena setiap klasifikasi biner dilatih pada subset yang seimbang. Namun, OvR dapat lebih efisien secara komputasi.
- 4. <u>Sumber Daya Komputasi:</u> Pertimbangkan sumber daya komputasi yang tersedia. OvO menjadi tidak praktikal untuk jumlah kelas yang besar, sedangkan OvR lebih scalable.

SIB Cycle 6 | 2024

Multiclass Confusion Matrix

Evaluation Metric

A agrima gri —	TP+TN
Accuracy =	$\overline{TP + TN + FP + FN}$

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$F1\text{-}score = \frac{2 \times \operatorname{Precision} \times \operatorname{Recall}}{\operatorname{Precision} + \operatorname{Recall}}$$

	precision	recall	f1-score	support
Cat	0.308	0.667	0.421	6
Fish	0.667	0.200	0.308	10
Hen	0.667	0.667	0.667	9
accuracy			0.480	25
macro avg	0.547	0.511	0.465	25
weighted avg	0.581	0.480	0.464	25

Evaluation Metric

į	Label	True Positive (TP)	False Positive (FP)	False Negative (FN)	Precision	Recall	F1 Score
F	Airplane	2	1	1	0.67	0.67	2 * (0.67 * 0.67) / (0.67 + 0.67) = 0.67
4	Boat	1	3	0	0.25	1.00	2*(0.25 * 1.00) / (0.25 + 1.00) = 0.40
6	Car	3	0	3	1.00	0.50	2 * (1.00 * 0.50) / (1.00 + 0.50) = 0.67

Label	Per-Class F1 Score	Macro-Averaged F1 Score
Airplane	0.67	0.67 + 0.40 + 0.67
≜ Boat	0.40	3
Car	0.67	= 0.58

Label	Per-Class F1 Score	Support	Support Proportion	Weighted Average F1 Score	
Airplane	0.67	3	0.3	(0.67 * 0.3) + $(0.40 * 0.1) +$ $(0.67 * 0.6)$ = 0.64	
≜ Boat	0.40	1	0.1		
⇔ Car	0.67	6	0.6		
Total	-	10	1.0	- 0.64	

Materi Tambahan

Implementasi

- SVM for Classification & Regression
- Hands-on Coding in Google Colab

Thank You

