Fast Inner Product Search on Graph

Zhixin Zhou

Joint work with Shulong Tan, Zhaozhuo Xu and Ping Li

Cognitive Computing Lab, Baidu USA

Feb 22, 2019

Outline

- General setting.
- Search on graph.
- Voronoi Cell and Delaunay graph.
- Search on Delaunay graph.
- ullet ℓ^2 -Delaunay graph and IP-Delaunay graph.
- Möbius transformation and graph isomorphism.
- Proposed algorithm.
- Experimental results.

- $X, Y \subset \mathbb{R}^d$.
- Dataset $S = \{x_1, \dots, x_n\} \subset X$.
- Real valued function $f: X \times Y \to \mathbb{R}$.
- Aim to solve the optimization problem:

$$rg \max_{x_i \in S} f(x_i, q)$$
 for $q \in Y$.

- Allow prepossessing on dataset *S*.
- Most interesting examples:

$$f(x,y) = -\|x - y\|$$
 and $f(x,y) = x^{\top}y$.

- $X, Y \subset \mathbb{R}^d$.
- Dataset $S = \{x_1, \dots, x_n\} \subset X$.
- Real valued function $f: X \times Y \to \mathbb{R}$.
- Aim to solve the optimization problem:

$$\operatorname{arg} \max_{x_i \in S} f(x_i, q) \quad \text{for} \quad q \in Y.$$

- Allow prepossessing on dataset *S*.
- Most interesting examples:

$$f(x,y) = -\|x - y\|$$
 and $f(x,y) = x^{\top}y$

- $X, Y \subset \mathbb{R}^d$.
- Dataset $S = \{x_1, \dots, x_n\} \subset X$.
- Real valued function $f: X \times Y \to \mathbb{R}$.
- Aim to solve the optimization problem:

$$\operatorname{arg} \max_{x_i \in S} f(x_i, q) \quad \text{for} \quad q \in Y.$$

- Allow prepossessing on dataset *S*.
- Most interesting examples:

$$f(x,y) = -\|x - y\|$$
 and $f(x,y) = x^{\top}y$

- $X, Y \subset \mathbb{R}^d$.
- Dataset $S = \{x_1, \dots, x_n\} \subset X$.
- Real valued function $f: X \times Y \to \mathbb{R}$.
- Aim to solve the optimization problem:

$$\operatorname{arg\,max}_{x_i \in S} f(x_i, q) \quad \text{for} \quad q \in Y.$$

- Allow prepossessing on dataset *S*.
- Most interesting examples:

$$f(x,y) = -\|x - y\|$$
 and $f(x,y) = x^{\top}y$

- $X, Y \subset \mathbb{R}^d$.
- Dataset $S = \{x_1, \dots, x_n\} \subset X$.
- Real valued function $f: X \times Y \to \mathbb{R}$.
- Aim to solve the optimization problem:

$$\operatorname{arg} \max_{x_i \in S} f(x_i, q) \quad \text{for} \quad q \in Y.$$

- Allow prepossessing on dataset S.
- Most interesting examples:

$$f(x,y) = -\|x - y\|$$
 and $f(x,y) = x^{\top}y$

- $X, Y \subset \mathbb{R}^d$.
- Dataset $S = \{x_1, \dots, x_n\} \subset X$.
- Real valued function $f: X \times Y \to \mathbb{R}$.
- Aim to solve the optimization problem:

$$\operatorname{arg} \max_{x_i \in S} f(x_i, q) \quad \text{for} \quad q \in Y.$$

- Allow prepossessing on dataset S.
- Most interesting examples:

$$f(x,y) = -\|x - y\|$$
 and $f(x,y) = x^{\top}y$.

Search on Graph for Nearest Neighbor Search

- Let $f(x,y) = -\|x y\|$.
- arg $\max_{x_i \in S} f(x_i, q)$ aims to find the nearest point of q in S.
- Search on graph strategy
 - 1. Build a proximity graph *G* on *S* by connecting certain points, e.g., *k*-NN graph.
 - 2. Randomly select a vertex x from the graph.
 - 3. Evaluate the ℓ^2 -distance ||x-q|| and ||y-q||, where y's are neighbors of x on the graph G.
 - 4. If x' is closer to q than x, then replace x by y and repeat step 3.
 - 5. Stop if x is closer to q than x's neighbors on graph
- This procedure finds the exact solution if and only if G contains
 Delaunay graph as a subgraph.

Search on Graph for Nearest Neighbor Search

- Let $f(x,y) = -\|x y\|$.
- arg $\max_{x_i \in S} f(x_i, q)$ aims to find the nearest point of q in S.
- Search on graph strategy
 - 1. Build a proximity graph *G* on *S* by connecting certain points, e.g., *k*-NN graph.
 - 2. Randomly select a vertex x from the graph.
 - 3. Evaluate the ℓ^2 -distance ||x-q|| and ||y-q||, where y's are neighbors of x on the graph G.
 - 4. If x' is closer to q than x, then replace x by y and repeat step 3.
 - 5. Stop if x is closer to q than x's neighbors on graph.
- This procedure finds the exact solution if and only if *G* contains *Delaunay graph* as a subgraph.

Search on Graph for Nearest Neighbor Search

- Let $f(x, y) = -\|x y\|$.
- arg $\max_{x_i \in S} f(x_i, q)$ aims to find the nearest point of q in S.
- Search on graph strategy
 - 1. Build a proximity graph *G* on *S* by connecting certain points, e.g., *k*-NN graph.
 - 2. Randomly select a vertex x from the graph.
 - 3. Evaluate the ℓ^2 -distance ||x-q|| and ||y-q||, where y's are neighbors of x on the graph G.
 - 4. If x' is closer to q than x, then replace x by y and repeat step 3.
 - 5. Stop if x is closer to q than x's neighbors on graph.
- This procedure finds the exact solution if and only if G contains Delaunay graph as a subgraph.

Voronoi Cells and Delaunay Graph

- Goal: to find arg $\max_{x_i \in S} f(x_i, q)$.
- Voronoi cells: solution area of the problem.
- Delaunay graph: the dual graph of Voronoi diagram.

Voronoi Cells and Delaunay Graph

- Goal: to find arg $\max_{x_i \in S} f(x_i, q)$.
- Voronoi cells: solution area of the problem.
- Delaunay graph: the dual graph of Voronoi diagram.

• Every ℓ^2 -Voronoi cell is nonempty, but IP-Voronoi cell can be empty.

Voronoi Cells and Delaunay Graph

- Goal: to find arg $\max_{x_i \in S} f(x_i, q)$.
- Voronoi cells: solution area of the problem.
- Delaunay graph: the dual graph of Voronoi diagram.

• Every ℓ^2 -Voronoi cell is nonempty, but IP-Voronoi cell can be empty.

Sufficiency and Necessity Delaunay Graph

Theorem

For given f, suppose its Voronoi cells w.r.t. any dataset are connected, then

- for $q \in Y$, performing greedy search on Delaunay graph returns the solution of $\arg \max_{x_i \in S} f(x_i, q)$;
- conversely, for any G' does not contain Delaunay graph as a subgraph, there exists a query $q \in Y$ such that greedy search on G' does not always retrieve the exact solution.
- Any ℓ^p -norm and inner product satisfy the assumption on f.
- Delaunay graph is the smallest graph such that greedy search always return exact solution.

Empty Half Space Criterion

• The line AB in divides the plane into two open half-spaces. One of the half-space does not contain any data points, so A and B are connected in IP-Delaunay graph.

Empty Sphere Criterion

• The circumcircle of 0, A and B does not contain any data points inside, so there is a simplex with vertices 0, A' and B' in the ℓ^2 -Delaunay graph.

Möbius Transformation

- Möbius transformation $y = \frac{x}{\|x\|^2}$.
- Maps hyperplanes to spheres.
- Maps lines to circles in \mathbb{R}^2 .
- Let $y_i = x_i / ||x_i||^2$.

Graph Isomorphism

Theorem

The following two graphs are isomorphic:

- (a) IP-Delaunay graph before transformation (blue graph on the left);
- (b) The neighborhood of 0 (in the graph sense) of ℓ^2 -Delaunay graph after transformation (red graph on the right).

Proposed algorithm

- 1. Let $\tilde{S} := \{y_i = x_i/\|x_i\|^2 \mid x_i \in S\} \cup \{0\}$ be the transformed dataset.
- 2. Construct approximate ℓ^2 -Delaunay graph, e.g., HNSW, w.r.t. \tilde{S} .
- 3. Replace the vertices y_i by original data vectors x_i .
- 4. Start from 0, perform greedy inner product search on the graph.

Experiments

Experimental results for Recall vs. Queries Per Second on different datasets. We focus on top-1, top-10, and top-100 ground-truth labels. Here the best results are in the upper right corners.