Assignment 1: Applications of Integration, Pappus Theorem

- 1. Compute area of the region bounded by the curves $y = x^3$ and y = 3x 2.
- 2. Sketch the graphs of $r = f(\theta) = \cos(2\theta)$ and $r = g(\theta) = \sin(2\theta)$. Find the values of $\theta \in [0, \pi]$ such that $f(\theta) = g(\theta)$.
- 3. Find the area of the region that lies inside both the curves r = 3, $r = 6\cos 2\theta$.
- 4. Let C denote the circular disc of radius b centered at (a, 0) where 0 < b < a. Find the volume of the torus that is generated by revolving C around the y-axis using
 - (a) the Washer Method
 - (b) the Shell Method.
- 5. Find the volume of the solid generated by revolving the region bounded by the lines y = 0, x = 4 and the curve $y = \sqrt{x}$ about the line x = 6.
- 6. Consider the curve C defined by $x(t) = \cos^3 t$, $y(t) = \sin^3 t$, $0 \le t \le \frac{\pi}{2}$.
 - (a) Find the length of the curve.
 - (b) Find the area of the surface generated by revolving C about the x-axis.
 - (c) If $(\overline{x}, \overline{y})$ is the centroid of C then find \overline{y} .
- 7. Find the centroid of the semicircular arc $(x-r)^2 + y^2 = r^2$, r > 0 described in the first quadrant. If this arc is rotated about the line y + mx = 0, m > 0, determine the generated surface area A and show that A is maximum when $m = \pi/2$.
- 8. Consider an equilateral triangle of each side 2 cm with its base on the x-axis and the triangle is on the positive side of the y-axis. Compute the volume of the solid generated by revolving the triangle about the line y = -2.

Assignment 2: Vectors, Curves, Surfaces, Vector Functions

- 1. Find a parametric equation of the line of intersection of the planes x 2z = 3 and y + 2z = 5.
- 2. Find an equation of the plane that passes through the point (6,0,0) and contains the line x = 4 2t, y = 2 + 3t, z = 3 + 5t.
- 3. Determine the equation of a cone with vertex (0, -a, 0) and base curve $x^2 = 2y$, z = h.
- 4. The velocity of a particle moving in space is $\frac{d}{dt}c(t) = (\cos t)\vec{i} (\sin t)\vec{j} + \vec{k}$. Find the particle's position as a function of t if $c(0) = 2\vec{i} + \vec{k}$. Also find the angle between its position vector and the velocity vector.
- 5. Show that $c(t) = \sin(t^2)\vec{i} + \cos(t^2)\vec{j} + 5\vec{k}$ has constant magnitude and is orthogonal to its derivative. Is the velocity vector of constant magnitude?
- 6. Find the point on the curve $c(t) = (5\sin t)\vec{i} + (5\cos t)\vec{j} + (12t)\vec{k}$ at a distance 26π units from (0,5,0) along the curve in the direction of increasing arc length.
- 7. Reparametrize the following curves in terms of arc length.

(a)
$$c(t) = \frac{t^2}{2}\vec{i} + \frac{t^3}{3}\vec{k}, \quad 0 \le t \le 2,$$

(b)
$$c(t) = 2\cos t \ \vec{i} + 2\sin t \ \vec{j}, \ 0 \le t \le 2\pi$$

8. Show that the parabola $y = ax^2$, $a \neq 0$ has its largest curvature at its vertex and has no minimum curvature.