모달 로직의 소개

LiComR Summer Workshop 2003

신승철@동양대

월드컵 4강, 그 다음 해 여름

Modal logic

얘기할 순서

- 모달 로직이란?
- 간단한 모달 언어와 그 시멘틱스
- 일반 모달 언어와 그 시멘틱스
- 공리계와 그 확장
- 그리고 아무도 ...

모달 로직에 대한 말 말 말?

양상 논리(樣相 論理) - 양상, 양식, modality 를 다루는 논리 체계

Propositional logic + modal operators

C.I. Lewis

A Description Language for Relational structures

진리값이 변한다?

'....이 필연적이다', '...이 가능하다'와 같은 표현에 대한 연역 활동을 공부하는 분야

믿음(belief), 시간(tense), deontic(윤리) 등에 관한 논리로서 철학적인 논의의 형식적인 분석 뿐 아니라 컴퓨터 과학 등에 적용된 다.

3 신승철@니커말여름웍샵2003

Modal logic

"다양한 모달 로직"

Alethic	\square : it is necessary that		
	\lozenge : it is possible that		
Deontic	O : it is obligatory that		
	P : it is permitted that		
	F: it is forbidden that		
Temporal	G : it will be always true in the future that		
	F: it will be true at some point in the future that		
	H : it was always true in the past that		
	P : it was true at some point in the past that		
Doxastic	B_x : x believes that		
Epistemic	$K_x:x$ knows that		
Provability	P : it is provable that		

Basic modal logic

Alphabet:

- A set of propositional letters p, q, \dots
- ullet Propositional connectives \neg and \wedge and constant true \top (\vee , \rightarrow , \leftrightarrow , \perp are definable)
- modality □ (◊ is definable)

Well-formed formula ϕ , ψ :

$$p \mid \top \mid \neg \phi \mid \phi \land \psi \mid \Box \phi$$

Modal logic

5

신승철@니커말여름웍샵2003

Definable forms:

$$\phi \lor \psi = \neg(\neg \phi \land \neg \psi)$$
$$\phi \to \psi = \neg(\phi \land \neg \psi)$$

$$\phi \leftrightarrow \psi = (\phi \to \psi) \land (\psi \to \phi)$$

$$\bot = \neg \top$$

$$\Diamond \phi = \neg \Box \neg \phi$$

$$\Diamond \phi = \neg \Box \neg \phi$$

"Relational structures"

A *frame* for the basic modal language $\mathfrak{F}=(W,R)$ where W is a non-empty set of possible worlds and R is a binary relation on W.

A *model* for the basic modal language $\mathfrak{M}=(\mathfrak{F},V)$ where \mathfrak{F} is a frame and V is a valuation function $\Phi \to \mathcal{P}(W)$.

7

신승철@니커말여름웍샵2003

Modal logic

"Satisfaction"

$$\begin{split} \mathfrak{M},w &\vDash p & \text{ if } \quad w \in V(p), \text{ where } p \in \Phi \\ \mathfrak{M},w &\vDash \top & \text{ if } \quad \text{always} \\ \mathfrak{M},w &\vDash \neg \phi & \text{ if } \quad \mathfrak{M},w \nvDash \phi \\ \mathfrak{M},w &\vDash \phi \wedge \psi & \text{ if } \quad \mathfrak{M},w \vDash \phi \quad \text{and } \quad \mathfrak{M},w \vDash \psi \\ \mathfrak{M},w &\vDash \Box \phi & \text{ if } \quad \text{for every } v \in W \text{ such that } Rwv, \text{ we have } \mathfrak{M},v \vDash \phi \end{split}$$

For a set Σ of formulas

 $\mathfrak{M}, w \models \Sigma$ if all members of Σ are true at w

For the valuation of arbitrary formulas

$$V(\phi) = \{ w \mid \mathfrak{M}, w \vDash \phi \}$$

"Global truth and satisfiability"

A formula ϕ is *globally* or *universally true* in a model $\mathfrak M$

$$\mathfrak{M} \vDash \phi$$
 if $\mathfrak{M}, w \vDash \phi$ for all $w \in W$

A formula ϕ is *satisfiable* in a model \mathfrak{M}

$$\exists w. \ \mathfrak{M}, w \vDash \phi$$

A set Σ of formulas is globally true in a model $\mathfrak M$

$$\mathfrak{M} \vDash \Sigma$$
 if $\mathfrak{M}, w \vDash \Sigma$ for all $w \in W$

A set Σ of formulas is satisfiable in a model $\mathfrak M$

$$\exists w. \mathfrak{M}, w \vDash \Sigma$$

Modal logic

"예제 1"

 $\mathfrak{F} = (\{w_1, w_2, w_3, w_4, w_5\}, R)$ where $Rw_i w_j$ iff j = i + 1:

$$V(p) = \{w_2, w_3\}$$

$$V(q) = \{w_1, w_2, w_3, w_4, w_5\}$$

$$V(r) = \emptyset$$

$$\mathfrak{M}, w_1 \vDash \Diamond \Box p$$

$$\mathfrak{M}, w_1 \nvDash \Diamond \Box p \to p$$

$$\mathfrak{M}, w_2 \vDash \Diamond (p \land \neg r)$$

$$\mathfrak{M}, w_1 \vDash q \land \Diamond (q \land \Diamond (q \land \Diamond q)))$$

9

10

신승철@니커말여름웍샵2003

"예제 2"

 $\mathfrak{F}=(\{1,2,3,4,6,8,12,24\},R)$ where Rxy iff $x\neq y$ and x divides y:

$$V(p) = \{4, 8, 12, 24\}, V(q) = \{6\}$$

$$\mathfrak{M}, 6 \vDash \Box p$$

$$\mathfrak{M}, 2 \nvDash \Box p$$

$$\mathfrak{M}, 2 \vDash \Diamond (q \land \Box p) \land \Diamond (\neg q \land \Box p)$$

11 신승철@니커말여름웍샵2003

Modal logic

"R-accessible Possible worlds"

$$\mathfrak{F} = (W, R)$$

$$\mathfrak{M} = (\mathfrak{F}, V)$$

When $R=W\times W$, $(W,R,V),w\vDash\Box\phi$ if $\forall v\in W.(W,R,V),v\vDash\phi$

:

.

When $R=\varnothing$, $(W,R,V),w \vDash \Box \phi$ if always

"Modal similarity type"

$$\tau = (O, \rho)$$

where O is a non-empty set of *modal operators* $\triangle, \triangle_0, \triangle_1, ...$ and ρ is an arity function $O \to \mathbb{N}$.

For multi-modality

$$\square_a$$
 or $[a]$

$$\Diamond_a$$
 or $\langle a \rangle$

where a is taken from some index set.

13 신승철@니커말여름웍샵2003

Modal logic

"Modal language"

$$ML(\tau, \Phi)$$

where $\tau = (O, \rho)$ is a modal similarity type

and $\boldsymbol{\Phi}$ is a set of propositional letters.

The set $Form(\tau,\Phi)$ of modal formulas over τ and Φ is given by the rule

$$\phi := p \mid \bot \mid \neg \phi \mid \phi_1 \wedge \phi_2 \mid \triangle(\phi_1, ..., \phi_{\rho(\triangle)}),$$

where \boldsymbol{p} ranges over elements of $\boldsymbol{\Phi}.$

For each $\triangle \in O$, the dual ∇ of \triangle is defined as $\nabla(\phi_1,...,\phi_n) = \neg\triangle(\neg\phi_1,...,\neg\phi_n)$

" τ -frame and τ -model"

$$\tau\text{-frame }\mathfrak{F}=(W,R_{\triangle})_{\triangle\in\tau} \ \text{ or } \ \mathfrak{F}=(W,\{R_{\triangle}\mid \triangle\in\tau\})$$

- (i) a non-empty set W of possible worlds
- (ii) for each $n \geq 0$, and each n-ary modal operator \triangle in the similarity type τ , an (n+1)-ary relation R_{\triangle}

 τ -model $\mathfrak{M} = (\mathfrak{F}, V)$

- (i) a au-frame $\mathfrak F$
- (ii) a valuation function $V:\Phi\to\mathcal{P}(W)$

15

신승철@니커말여름웍샵2003

Modal logic

"Satisfaction again"

$$\mathfrak{M}, w \models p$$
 if $w \in V(p)$, where $p \in \Phi$

$$\mathfrak{M}, w \vDash \top$$
 if always

$$\mathfrak{M}, w \vDash \neg \phi \quad \text{ if } \quad \mathfrak{M}, w \nvDash \phi$$

$$\mathfrak{M}, w \vDash \phi \land \psi$$
 if $\mathfrak{M}, w \vDash \phi$ and $\mathfrak{M}, w \vDash \psi$

$$\mathfrak{M}, w \vDash \triangle(\phi_1,...,\phi_n)$$
 if for every $v_1,...,v_n \in W$ such that $R_\triangle w v_1...v_n,$ we have, for each $i, \mathfrak{M}, v_i \vDash \phi_i$

Note: when $\rho(\triangle) = 0$

$$\mathfrak{M}, w \models \triangle \quad \text{if} \quad w \in R_{\triangle}$$

"예제 3"

similarity type
$$\tau = (\{\triangle, \odot\}, \{\triangle \mapsto 2, \odot \mapsto 3\})$$
 τ -frame $\mathfrak{F} = (\{u, v, w, s\}, R_{\triangle}, S_{\odot})$ $R_{\triangle} = \{(u, v, w)\}$ $S_{\odot} = \{(u, v, w, s)\}$ $V(p_0) = \{v\}$ $V(p_1) = \{w\}$ $V(p_2) = \{s\}$

$$\mathfrak{M}, u \vDash \triangle(p_0, p_1) \to \odot(p_0, p_1, p_2)$$

 $\mathfrak{M} \vDash \triangle(p_0, p_1) \to \odot(p_0, p_1, p_2)$

17 신승철@니커말여름웍샵2003

Modal logic

"Validity"

$$\mathfrak{F},w\vDash\phi\quad\text{iff}\quad\text{for every \mathfrak{M} such that $\mathfrak{M}=(\mathfrak{F},V)$}$$

$$\mathfrak{M},w\vDash\phi$$

$$\mathfrak{F}\vDash\phi\quad\text{iff}\quad\text{for every $w\in W$ $\mathfrak{F},w\vDash\phi$}$$

$$\mathsf{F}\vDash\phi\quad\text{iff}\quad\text{for every \mathfrak{F} in a class of frames F}$$

$$\mathfrak{F}\vDash\phi$$

$$\vDash\phi\quad\text{iff}\quad\text{for every \mathfrak{F} $\mathfrak{F}\vDash\phi$}$$

Note: validity vs. truth

 $\phi \lor \psi$ is true at w = either ϕ or ψ is true at $w = \phi \lor \psi$ is valid on $\mathfrak{F} \neq$ either ϕ or ψ is valid on $\mathfrak{F} \neq$

"예제 4: $\Diamond(p \lor q) \to (\Diamond p \lor \Diamond q)$ is valid on all frames?"

임의의 \mathfrak{F}, w, V 를 취하고 $(\mathfrak{F}, V), w \models \Diamond(p \lor q)$ 임을 가정하자. 그러면 정의에 의해서 Rwv 이고 $(\mathfrak{F}, V), v \models p \lor q$ 인 v 가 존재한다. 그런데 $(\mathfrak{F}, V), v \models p \lor q$ 이면 $(\mathfrak{F}, V), v \models p$ 이거나 $(\mathfrak{F}, V), v \models q$ 이다. 따라서 $(\mathfrak{F}, V), w \models \Diamond p$ 이거나 $(\mathfrak{F}, V), w \models \Diamond q$ 이고 어느 쪽이든 $(\mathfrak{F}, V), w \models \Diamond p \lor \Diamond q$ 이다.

"예제 5: $\square p \to \square \square p$ is not valid on all frames?"

 $\mathfrak{F}=(\{0,1,2\},\{(0,1),(1,2)\}\}$ 와 V(p)=1 을 취하면 counter-example을 만들수 있다. 즉, $(\mathfrak{F},V),0$ $\models \Box p$ 이지만 $(\mathfrak{F},V),0$ $\models \Box\Box p$ 는 아니다.

19

신승철@니커말여름웍샵2003

Modal logic

"예제 6: $\square p \to \square \square p$ is valid on transitive frames?"

임의의 transitive \mathfrak{F}, w, V 를 취하고 $(\mathfrak{F}, V), w \models \Box p$ 임을 가정하자. 그러면 정의에 의해서 Rwu 인 모든 u 에 대하여 $(\mathfrak{F}, V), u \models p$ 이다. 그런데 R 이 transitive 이므로 Rwu 이고 Ruv 인 모든 v 에 대하여 Rwv 이고 $(\mathfrak{F}, V), v \models p$ 이다. 따라서 $(\mathfrak{F}, V), w \models \Box\Box p$ 임을 알수 있다.

"예제 7: $\langle a \rangle p \rightarrow \langle b \rangle p$?"

 $\langle a \rangle p \to \langle b \rangle p$ defines $R_a \subseteq R_b$

"General frames"

Frames vs. Models

Validity vs. Satisfaction

A general frame (\mathfrak{F}, A) is a frame \mathfrak{F} together with a restricted, but suitably well-behaved collection A of admissible valuations.

신승철@니커말여름웍샵2003

21

Modal logic

"Operations corresponding to modalities"

Given a frame =(W,R) and $X\subseteq W$,

$$m_R(X) = \{ w \in W \mid Rwx \text{ for all } x \in X \}$$

note:
$$V(\Box \phi) = m_R(V(\phi))$$

Given an (n+1)-ary relation R on a set W,

$$m_R(X_1,...,X_n) = \{w \in W \mid Rww_1...w_n \text{ for all } w_1 \in X_1,...,w_n \in X_n\}$$

"General frames" (formally)

general τ -frame (\mathfrak{F},A) where $\mathfrak{F}=(W,R_{\triangle})_{\triangle\in\tau}$ and A is a non-empty collection of admissible subsets of W closed under the following operations:

- (i) intersection: if $X, Y \in A$, then $X \cap Y \in A$
- (ii) relative complement: if $X \in A$, then $W \setminus X \in A$
- (iii) modal operations: if $X_1,...,X_n\in A$, then $m_{R_{\triangle}}(X_1,...,X_n)\in A$ for all $\triangle\in\tau$

A model based on a general frame is a triple (\mathfrak{F},A,V) where (\mathfrak{F},A) is a general frame and V is a valuation satisfying the constraint that for each proposition letter $p,\ V(p)$ is an element of A. Valuations satisfying this constraint are called admissible for (\mathfrak{F},A) .

23

신승철@니커말여름웍샵2003

Modal logic

"Local semantic consequense"

 ϕ is a *local semantic consequence* of Σ over $S: \Sigma \vDash_S \phi$

for all models \mathfrak{M} from S, and all points w in \mathfrak{M} , if $\mathfrak{M}, w \models \Sigma$ then $\mathfrak{M}, w \models \phi$

"Global semantic consequense"

 ϕ is a global semantic consequence of Σ over $S: \Sigma \vDash^g_S \phi$

for all structures $\mathfrak S$ in $\mathsf S$, if $\mathfrak S \vDash \Sigma$ then $\mathfrak S \vDash \phi$

"System K"

The axioms of **K**:

- propositional tautologies
- (K) $\Box(p \to q) \to (\Box p \to \Box q)$

The rules of proof of **K**:

- Modus ponens: given ϕ and $\phi \to \psi$, prove ψ
 - preserves validity, global truth and satisfaction
- Uniform substitution: given ϕ , prove θ , where θ is obtained from ϕ by uniformly replacing proposition letters in ϕ by arbitrary formulas.
 - preserves only validity
- Necessitation: given ϕ , prove $\Box \phi$
 - preserves validity and global truth

Modal logic

25

신승철@니커말여름웍샵2003

"K the minimal axiom system"

A **K**-*proof* is a finite sequence of formula, each of which is an axiom, or follows from one or more earlier items in the sequence by applying a rule of proof.(Hilbert style)

A formula ϕ is **K**-provable ($\vdash_{\mathbf{K}} \phi$) if it occurs as the last item of some **K**-proof.

K is *sound* with respect to the class of all frames

- : All **K**-provable formulas are valid
- its axioms are all valid and all 3 rules of proof preserve validity.

K is *complete* with respect to the class of all frames

: All valid formulas are **K**-provable.

"예제 8: $(\Box p \land \Box q) \rightarrow \Box (p \land q)$ is valid ?"

1. $\vdash p \rightarrow (q \rightarrow (p \land q))$

2. $\vdash \Box(p \rightarrow (q \rightarrow (p \land q)))$

3. $\vdash \Box(p \rightarrow q) \rightarrow (\Box p \rightarrow \Box q)$

4. $\vdash \Box(p \to (q \to (p \land q))) \to (\Box p \to \Box(q \to (p \land q)))$

5. $\vdash \Box p \rightarrow \Box (q \rightarrow (p \land q))$

6. $\vdash \Box(q \to (p \land q)) \to (\Box q \to \Box(p \land q))$

7. $\vdash \Box p \rightarrow (\Box q \rightarrow \Box (p \land q))$

8. $\vdash (\Box p \land \Box q) \rightarrow \Box (p \land q)$

Tautology

Necessitation: 1

K axiom

Uniform substitution: 3

Modus Ponens: 2,4

Uniform substitution: 3

Propositional logic: 5,6

propositional logic: 7

27 신승철@니커말여름웍샵2003

Modal logic

"System K4"

The axioms of **K4**:

- propositional tautologies
- (K) $\Box(p \to q) \to (\Box p \to \Box q)$
- (4) $\square p \rightarrow \square \square p$

The rules of proof of **K4**:

- Modus ponens
- Uniform substitution
- Necessitation

$$\Sigma \vdash_{\mathsf{K4}} \phi \quad \mathsf{iff} \quad \Sigma \vDash_{\mathsf{Tran}} \phi$$

"Axioms and frame conditions"

Name	Axiom	Condition on Frames	R is \dots
(D)	$\Box p \to \Diamond p$	$\exists u.wRu$	Serial
(M)	$\Box p o p$	wRw	Reflexive
(4)	$\Box p \to \Box \Box p$	if $(wRv \; {\sf and} \; vRu)$ then wRu	Transitive
(B)	$p \to \Box \Diamond p$	if wRv then vRw	Symmetric
(5)	$\lozenge p \to \Box \lozenge p$	if $(wRv \ {\rm and} \ wRu)$ then vRu	Euclidean
(CD)	$\lozenge p \to \Box p$	if $(wRv \text{ and } wRu)$ then $v=u$	Deterministic
$(\Box M)$	$\Box(\Box p \to p)$	if wRv then vRv	Shift Reflexive
(C4)	$\Box\Box p\to\Box p$	if wRv then $\exists u.(wRu \text{ and } uRv)$	Dense
(C)	$\Diamond \Box p \to \Box \Diamond p$	if $(wRv \text{ and } wRx)$ then $\exists u.(vRu \text{ and } xRu)$	Convergent

신승철@니커말여름웍샵2003

Modal logic

"Relationships among modal logics"

"Result by Scott and Lemmon"

(G)
$$\Diamond^h \Box^i p \to \Box^j \Diamond^k p$$

(4)
$$\Box p \rightarrow \Box \Box p = \Diamond^0 \Box^1 p \rightarrow \Box^2 \Diamond^0 p$$

(hijk-Convergence) if R^hwv and R^jwu then $\exists x.(R^ivx \text{ and } R^kux)$

(0120-Convergence) if R^0wv and R^2wu then $\exists x.(R^1vx)$ and R^0ux

(transitivity) if Rvx and Rxu then Rvu

Note: Sahlqvist(1975) has discovered important generalizations of the Scott-Lemmon result covering a much wider range of axiom types.

31

신승철@니커말여름웍샵2003

Modal logic

"모달 로직에 관심을 갖게 하는 것들"

- Temporal logics
- Dynamic logics
- Fixpoint logics
- Modal type system
- Model checking
- Semantics
- Bisimulation
- Analysis and Verification of modal properties
- ...

"모달 타입"

New typing ideas from (intuitionistic variants of) standard modal logics Potential applications include type systems for...

- run-time code generation
- meta-programming and higher-order syntax with free-variables
- memoization and incremental computation
- information flow and security
- distributed computation
- resource-bounded computation
- ...

taken from B. Pierce's slides

taken nom D. 1 leree 3 sinde

신승철@니커말여름웍샵2003

Modal logic

33

"더 이상 슬라이드가 없습니다."