

Configuración y Optimización de Sistemas de Cómputo Virtualización

Master Universitario en Ingeniería Informática

Depto. de Informática de Sistemas y Computadores (DISCA)

Universidad Politécnica de Valencia

- Modo protegido
- Virtualización
 - Tipos de Virtualización
 - Paravirtualización
 - Contenedores vs Maquinas Virtuales
- Soporte Hardware para Virtualización
 - MMU, IOMMU
 - Aceleradores
 - Interrupciones

- El objetivo es poder compartir de manera segura y eficiente los recursos de un computador
- Los primeros virtualizadores utilizaban virtualización por software
 - Lenta
 - Tiene limitaciones a la hora de virtualizar todos los recursos
- Procesadores modernos incluyen soporte en el ISA para facilitar la virtualización

- En un sistema virtualizado nuestras aplicaciones no se comunican directamente con el hardware
- Una capa SW hace de intermediario para nuestra aplicación

Sistema Físico

Sistema Virtualizado

- Bare-metal (modo maquina)
 - Modo de ejecución de software sobre la maquina física
 - El software puede acceder a todo el hardware sin restricciones
 - Modo de ejecución "peligroso"
 - No hay protección de memoria
 - Cualquier dispositivo puede modificar datos en el sistema

- Una Maquina Virtual ofrece al usuario un conjunto de recursos hardware virtualizados :
 - Procesador/es
 - Memoria
 - Periféricos (dispositivos de entrada/salida)
- Un monitor de la maquina virtual (VMM o también hypervisor) es la pieza software que proporciona la abstracción de una maquina virtual
- Gerald J. Popek and Robert P. Goldberg definen de forma formal en 1974 los requisitos que tiene que cumplir un sistema para ser virtualizado
 - "Formal Requirements for Virtualizable Third Generation Architectures

- Propiedades que tiene que cumplir una maquina virtual
 - Equivalencia / Fidelidad
 - Un programa que se ejecuta sobre un hypervisor debe exhibir un comportamiento esencialmente idéntico al de la maquina física
 - Control de Recursos/ Seguridad
 - El hypervisor tiene que tener complete control sobre los recursos virtualizados
 - Eficiéncia / Rendimiento
 - Un porcentaje significativo de las instrucciones maquina deben ejecutarse sin la intervención del hypervisor

- Conjuntos de instrucciones relevantes
 - Instrucciones Privilegiadas
 - Aquellas que resultan en un trap si se ejecutan en modo usuario y no hacen trap cuando están en modo supervisor
 - Instrucciones Sensibles de Control
 - Aquellas que tartan de modificar la configuración de los recursos del sistema
 - Behavior sensitive instructions
 - Aquellas cuyo comportamiento o resultado depende de la configuración/estado de los recursos (p.ej de los contenidos del relocation register of del modo de ejecución del procesador)

- **Teorema 1**. Un hypervisor efectivo puede construirse si el conjunto de instrucciones sensibles de la CPU es un subconjunto del conjunto de instrucciones privilegiadas
 - Para crear un hypervisor es suficiente que todas las instrucciones que pueden afectar al correcto funcionamiento del hypervisor (instrucciones sensibles) siempre realicen un trap y pasen el control al hypervisor. "Trap and Emulate" virtualization.
 - Las instrucciones no privilegiadas se ejecutan de forma nativa
- **Teorema 2**. Un computador es recursivamente virtualizable si:
 - Es virtualizable y un hypervisor sin dependencias temporales puede ser construido para ello
 - Algunas arquitecturas como x86 (antes de soporte hardware de virtualización) no cumplen esta condición. En este caso técnicas diferentes como "binary translation" remplazando aquellas instrucciones sensibles que no generan traps
- Teorema 3. Una maquina virtual hibrida puede ser construida para un computador en el cual es conjuto de instrucciones de usuario sensibles son un subconjunto del conjunto de privilegiadas

Modo Protegido (x86)

- Surge como mecanismo de protección para permitir la ejecución segura de diferentes tareas
 - Proporciona el soporte de memoria virtual

Soporte de ejecución multitarea segura

Paginación

En modo "real" accedemos

a memoria físia

Main memory

Anillos de Protección (x86)

Clasificación de los niveles de privilegio de

ejecución

0 el más privilegiado

- Kernel mode en Linux
- 3 el menos privilegiado
 - Espacio de usuario

https://en.wikipedia.org/wiki/Protection_ring

Virtualización Software (x86)

- La virtualización del modo protegido (x86) necesita las siguientes técnicas
 - Binary translation para modificar el comportamiento de ciertas instrucciones sensibles (que ahora se ejecutan en un modo de privilegio menor).
 - Creación de "Shadowed Structures" en software para ciertos componentes como por ejemplo la MMU (memory management unit). Creación de "shadowed page tables" para evitar que el SO pueda accede a la MMU directamente (sin control por parte del hypervisor)
 - Emulación de dispositivos de E/S: Dispositivos no soportados en el SO huesped (guest) tienen que ser emulados por software el SO anfitrión (host).

Virtualización Hardware

- Introducción de instrucciones y soporte especifico para mejorar la eficiencia de la virtualización
 - Diferentes modos de ejecución
 - Instrucciones para cambio de modos y replicación de estructuras hardware
- x86
 - Mejorar el problema de las instrucciones privilegiadas
 - EL SO huesped perceive su ejecución con todos los privilegios mientras que el SO hospedador sigue protegido
 - Soporte hardware virtualización de la MMU
 - Eliminación de las SW shadowed structures
 - Intel VT-x, AMD-V
 - El hypervisor se ejecuta en un nivel -1 → SO huésped en nivel 0

Hypervisor Tipo I

- Un hipervisor de tipo 1 se ejecuta directamente en el hardware físico
- Interacciona con la CPU, memoria y disco duro

• Ejemplos: Xen, KVM, Vware ESXi, Hyper-V,

Jauilhouse

Hypervisor Tipo I

- Ejecución independiente
 - Recursos prácticamente disjuntos
- Mejor rendimiento
 - No hay sobrecarga de un SO adicional
- Mejores garantías de rendimiento
 - La asignación de recursos permite que las interferencias entre diferentes maquina virtuales se minimice
- Difícil compartir recursos entre maquinas virtuales

Hypervisor tipo II

Se ejecuta sobre un SO como una aplicación más

No interactúa directamente con el SW

Ejemplos: VMWare Workstation, VirtualBox,

QEMU

Hypervisor tipo II

- Más fáciles de manejar/instalar
 - Su instalación se puede hacer sobre un SO existente
- Peor estabilidad y rendimiento
 - El aislamiento de recursos es menor
 - Mayor variabilidad de rendimiento
- Fácil compartición de datos entre maquinas virtuales
- Insuficientes para aportar una virtualización segura y fiable

Mecanismos de Virtualización

Virtualización Completa

- El hipervisor simula un hardware suficiente para permitir un sistema operativo no adaptado que es ejecutado de forma aislada.
 - Ejemplos: VirtualBox, HyperV, VMWare
- Virtualización Parcial (Paravirtualización)
 - El hipervisor ofrece una interfaz especial para acceder a los recursos. El sistema operativo de la máquina virtual tiene que ser adaptado usando llamadas especiales (hypercalls).
 - Ejemplos: Xen, L4

Emulación

- El hipervisor imita o suplanta vía software una arquitectura al completo
 - Ejemplos: QEMU, NAME, Wine

Soporte HW virtualización

- La CPU implementa ciertas instrucciones que facilitan la virtualización y extiende unidades HW
 - Intercepción de instrucciones
 - Virtualización MMU (memory management unit)
 - Virtualización Interrupciones
 - Inter-partition communications
- ¿Que pasa con otros recursos compartidos de un nodo ?
 - Periféricos, aceleradores, ...

Soporte HW virtualización

IOMMU

- Es un dispositivo que protege la memoria frente a accesos por parte de dispositivos externos
- Permite la virtualización eficiente de dispositivos
- Introduce un sobrecoste en el rendimiento

RISC-V Execution Modes H-extension

- La arquitectura RISC-V proporciona soporte hardware para virtualización
- El conjunto de instrucciones y cambios necesarios en el conjunto de instrucciones privilegiadas se define en la extensión (H)
 - Nuevos modos de ejecución
 - HS (hypervior)
 - VS (Virtual super user)
 - VU (virtual user)

RISC-V Virtualization Support

Pipeline Modifications

RISC-V Virtualization support

- Hardware Overheads
 - Cores and Interrupt Controlers

		Dual-Core	Quad-Core	Six-Core
Rocket	LUTs	50922/11%	101744/12%	152957/12%
Cores	Regs	25086/30%	50172/30%	75258/30%
CLINT	LUTs	68/375%	196/296%	269/373%
	Regs	194/297%	324/336%	454/277%
PLIC	LUTs	90/140%	144/236%	220/263%
	Regs	83/325%	116/412%	149/460%
Others	LUTs	11207/2%	13242/3%	91821/0,5%
	Regs	4257/0,1%	4628/0,2%	4728/2%
Total	LUTs	62287/11%	115356/11%	167753/11%
	Regs	29620/27%	55250/28%	80589/ 29 %

Ref [1]

RISC-V Virtualization support

 Rendimiento en cargas de trabajo "normales" es cercano al rendimiento nativo

RISC-V Virtualization support

 Rendimiento de las interrupciones con soporte hardware de virtualización es cercano al nativo

Maquinas Virtuales vs Contenedores

- Los contenedores contienen un microservicio o una aplicación y todo lo que necesita para ejecutarse
- Los contenedores se basan en el uso de imágenes
 - archivo basado en un código que incluye todas las bibliotecas y las dependencias que se desplega sobre una maquina o conjunto
- Maquinas virtuales (Hardware Virtualization)
 - Aislamiento de recursos
- Containers (OS level Virtualization)
 - Aislamiento de procesos

Maquinas Virtuales vs Contenedores

- ¿Cuándo utilizar una tecnología u otra?
 - Contenedores
 - Copias multiples de un aplicación especifica
 - Aplicaciones que no necesitan rendimientos estrictos
 - Maquinas Virtuales
 - Despliegue de multiples aplicaciones o sistemas con necesidades de diferentes SOs
 - Cuando la seguridad es una prioridad (mayor aislamiento)

Vulnerabilidades

- La virtualización (tipo I) en arquitecturas con soporte de virtualización proporcionan seguridad a nuestras aplicaciones
 - Particionan recursos
 - Imposibilitan la comunicación entre maquinas virtuales
- Limitaciones
 - Bugs: Pueden existir bugs que pueden ser explotados para romper la virtualización
 - Canales de ataque lateral
 - Muchos recursos siguen siendo compartidos
 - Caches, entradas TLBs, Interconexiones
 - Ataques de DoS
 - https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=hyper-V

Bibliografia

- [1] Bruno Sá, José Martins and Sandro Pinto. "A First Look at RISC-V Virtualization from an Embedded Systems Perspective". In IEEE Transactions on Computers, 2022
- [2] Popek, G. J.; Goldberg, R. P. (July 1974). "Formal requirements for virtualizable third generation architectures". Communications of the ACM. 17 (7): 412–421. doi:10.1145/361011.361073. S2CID 12680060
- [3] Selome Kostentinos Tesfatsion, Cristian Klein, and Johan Tordsson. 2018. Virtualization Techniques Compared: Performance, Resource, and Power Usage Overheads in Clouds ACM/SPEC International Conference on Performance Engineering (ICPE '18). https://doi.org/10.1145/3184407.3184414
- [4] https://www.redhat.com/es/topics/containers/containers-vs-vms

