Introduction to Computer Science Homework#3

#1

What information must the CPU supply to the main memory circuitry to write a value into a memory cell?

#2

Mass storage, main memory and general-purpose registers are all storage systems. What is the difference in their use?

#3

1. Perfe	orm the indicate	ed operati	ions.	FT-GCGGGGGGG	MILES STATES
a.	01001011	b.	100000011	c.	11111111
AN	ID 10101011	AND	11101100	AND	00101101
d.	01001011	e.	10000011	f.	11111111
<u>OF</u>	R 10101011	OR	11101100	OR	00101101
log:no	01001011	l thedarit	100000011	have, alres	11111111
)X	OR 10101011	XOF	R 11101100	XOR	00101101

#4

Suppose three values x, y and z are stored in a machine's memory. Describe the sequence of events (loading registers from memory, saving values in memory and so on) that leads to the computation of x+y+z. How about (2x)+y?

#5

Suppose a machine language is designed with an op-code field of 4 bits. How many different instruction types can the language contain? What if the op-code field is increased to 6 bits?

#6

Perform the indicated operations:								
a.	111001	b.		000101				
AND	101001		AND	101010				
C	001110	d.		111011				
AND	010101		AND	110111				
e.	111001	f.		010100				
OR	101001		OR	101010				
8	00100	h.		101010				
OR	010101		OR	110101				
i.	111001	j.		000111				
XOR	101001		XOR	101010				
k.	010000	nomina L		111111				
XOR	010101		XOR	110101				

#7

Identify a logical operation (along with a corresponding mask) that, when applied to an input string of 8 bits, produces an output string of all 0s if and only if the input string is 10000001.

#8

Suppose a machine has 200 GB of storage space available on a hard disk and receives data over a broadband connection at the rate of 15 Mbps. At this rate, how long will it take to fill the available storage space?

#9

Summarize the difference between a CISC architecture and a RICS architecture.

#10

We assume that integers are in 2's complement format. Mathematically, we show the operation as:

$$C = A + B$$

Therefore, writing a simple program to do the simple addition needs 5 instructions.

#11

What is the purpose of cache memory?

#12

What are the components of a CPU?

#13

A computer has 32 MB of memory. How many bits are needed to address any single byte in memory?

#14

Assume the right shift operation is >> and the left operation is <<. So use the shift operation to divide an integer by 4 and to multiply an integer by 16.