# Chapitre 8 - VAR : variable aléatoire réelle



définition simple d'1 VA - définition d'1 espace probabilisé et d'1 var (dur mais précis)

#### remarque

- les termes tribu ou  $\sigma$ -algèbre sont HP
- l'espace initial  $\Omega$  sera donc toujours probabilisé avec l'ensemble de ses parties  $\mathcal{P}(\Omega)$

### 1 VAR

### 1.1 rappel : espace probabilisé

#### définition précise

1 espace probabilisé est 1 triplet  $(\Omega, \mathcal{P}(\Omega), p)$  où :

- $\Omega$  est l'univers (l'ensemble des possibles)
- $\mathcal{P}(\Omega)$ , l'ensemble des parties  $\Omega$
- p est 1 fonction telle que :
  - 1.  $p: \mathcal{P}(\Omega) \mapsto [0,1]$
  - 2.  $p(\Omega) = 1$  et  $p(\emptyset) = 0$
  - 3.  $\forall I$  dénombrable,  $\forall A_i$  disjoints 2 à 2 :  $p(\bigcup_{i \in I} A_i) = \sum_{i \in I} p(A_i)$

### explication de la définition - vulgarisation

1 espace probabilisé est 1 triplet  $(\Omega, \mathcal{P}(\Omega), p)$  où :

- $\Omega$  est l'univers (ce qui peut arriver)
- $\mathcal{P}(\Omega)$  les parties de  $\Omega$ 
  - $\mathcal{P}(\Omega)$  est stable par passage au complémentaire, réunion et intersection
  - on peut maintenant créer la fonction p
- ullet p est la fonction de probabilité proprement dite :
  - 1. elle associe à chaque élément de  $\mathcal{P}(\Omega)$  sa probabilité d'arriver
  - 2. p prend donc des valeurs entre 0 et 1
  - 3. de plus,  $p(\Omega) = 1$  et  $p(\emptyset) = 0$

## 1.2 VAR

### définition d'1 VAR

- $(\Omega, \mathcal{P}(\Omega), p)$  1 espace probabilisé
- 1 VAR X sur  $\Omega$  est 1 fonction  $X : \mathcal{P}(\Omega) \mapsto \mathbb{R}$
- c'est donc 1 fonction qui a 1 élément de  $\Omega$  associe un réel

## loi de probabilité associé à 1 VAR

- $(\Omega, \mathcal{P}(\Omega), p)$ 1 espace probabilisé
- X 1 VAR sur  $\Omega$
- la loi de probabilité associée à X est la loi qui va découler du fait que l'espace  $\Omega$  est lui déjà probabilisé
- voyons 2 exemples pour comprendre ce qui se passe

ex1: résultat pair ou impair d'1d6

ex1 : somme de 2 dés

#### bilan:

- la VAR X donne naissance à 1 nouvel espace probabilisé ( $\mathbb{R}$  ,  $\mathcal{P}(\mathbb{R})$  ,  $p_X$ )
- voici maintenant le lien entre p et  $p_X$ :



- $X: \mathcal{P}(\Omega) \mapsto \mathbb{R}$
- $X^{-1}: \mathbb{R} \mapsto \mathcal{P}(\Omega)$
- $p: \mathcal{P}(\Omega) \mapsto [0, 1]$
- $p_X: \mathbb{R} \mapsto [0, 1]$

comme  $p = p_X \circ X$ , on a :  $p_X = p \circ X^{-1}$ 

## pour aller plus loin : la statistique expliquée à mon chat

- 1. VA
- 2. opération sur les VA
- 3. type de VA
- 4. TCL

# 1.3 espérance - variance - écart-type

- $(\Omega, \mathcal{P}(\Omega), \mathbb{P})$ , 1 espace probabilisé
- X 1 VAR qui opère sur  $\Omega$
- $\mathcal{E}$  l'ensemble de ses valeurs prises par X (ici dans  $\mathbb{R}$ )
- $n = |\mathcal{E}|$  le cardinal de  $\mathcal{E}$
- $p_X$  la loi de probabilité associée à X

#### définition

- espérance :  $\mathbb{E}(X) = \sum_{i=1}^{n} p_i \times x_i$  qui traduit la valeur "moyenne" des valeurs de X
- variance :  $\mathbb{V}(X) = \sum_{i=1}^{n} p_i \times (x_i \mathbb{E}(X))^2$
- écart type :  $\sigma(X) = \sqrt{\mathbb{V}(X)}$  qui traduit comment cela "bouge" autour de la moyenne

#### propriété

- $\mathbb{E}(a \times X + b)) = a \times \mathbb{E}(X) + b$
- $\mathbb{V}(a \times X + b) = a^2 \times \mathbb{V}(X)$
- $\sigma(a \times X + b) = |a| \times \sigma(X)$

## loi des grands nombres

- LGN : lorsqu'on crée 1 échantillon de taille suffisamment grand de valeurs prises par une VA, la moyenne de ses valeurs tend vers l'espérance de cette VA
- application : estimation de la probabilité associée à 1 VA suivant 1 loi de bernoulli

## 1.4 un peu de python

quelques exercices (corrigés) pour progresser en python

estimer 1 probabilité rapidement par grâce à 1 programme python