08 RelationsCS201 Discrete Mathematics

Instructor: Shan Chen

Relations and Their Properties

Binary Relations

- Definition: Let A, B be two sets. A binary relation R from A to B is a subset of the Cartesian product A × B.
 - By definition, a binary relation $R \subseteq A \times B$ is a set of ordered pairs of the form (a, b) with $a \in A$ and $b \in B$.
 - We use a R b to denote $(a, b) \in R$, and a R b to denote $(a, b) \notin R$.
- Example: Let $A = \{a, b, c\}$ and $B = \{1, 2, 3\}$
 - Is R = {(a, 1), (b, 2), (c, 2)} a relation from A to B?
 Yes
 - Is Q = {(1, a), (2, b)} a relation from A to B?
 No, it's a relation from B to A
 - Is P = {(a, a), (b, c), (b, a)} a relation from A to A?
 Yes

Visualizing Binary Relations

- We can visually represent a binary relation R:
 - as a graph: if a R b, then draw an arrow from a to b: $a \rightarrow b$
 - as a table: if a R b, then mark the table cell at (a, b)
- Example: $A = \{0, 1, 2\}, B = \{a, b\}, R = \{(0, a), (0, b), (1, a), (2, b)\}$

R	а	b
0	×	×
1	×	
2		×

Relations vs Functions

- Functions can also be visualized as graphs, but they map each element in the domain to exactly one element in the codomain.
- Relations are able to represent one-to-many relationships between elements in A and B.
- Relations are a generalization of graphs of functions.

Relations between Finite Sets

Theorem: There are 2^{nm} binary relations from an n-element set A to an m-element set B.

Proof:

- The cardinality of the Cartesian product $|A \times B| = nm$.
- R is a binary relation from A to B if and only if $R \subseteq A \times B$.
- The number of subsets of a set with nm elements is 2nm.
- Matrix representation: A relation R between finite sets can be represented using a zero—one matrix M_R.

$$\mathbf{M}_R = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

Relations on a Set

- Definition: A relation on a set A is a relation from A to A.
- o Example: Let $A = \{1, 2, 3, 4\}$ and $R_{div} = \{(a, b) : a \mid b\}$
 - What does R_{div} consist of?

$$R_{div} = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)\}$$

R	1	2	3	4
1	×	×	×	×
2		×		×
3			×	
4				×

- Reflexive relation: A relation R on a set A is called reflexive if
 (a, a) ∈ R for every element a ∈ A.
- \circ Example: consider relations on $A = \{1, 2, 3, 4\}$
 - Is R_{div} = {(a, b) : a | b} reflexive?
 Yes, because (1, 1), (2, 2), (3, 3), (4, 4) ∈ R_{div}
 - Is R = {(1, 2), (2, 2), (3, 3)} reflexive?
 No, because (1, 1), (4, 4) ∉ R
- A relation R is reflexive if and only if M_R has 1 in every position on its main diagonal.

- Irreflexive relation: A relation R on a set A is called irreflexive if
 (a, a) ∉ R for every element a ∈ A.
- \circ Example: consider relations on $A = \{1, 2, 3, 4\}$
 - Is R_≠ = {(a, b) : a ≠ b} irreflexive?
 Yes, because (1, 1), (2, 2), (3, 3), (4, 4) ∉ R_≠
 - Is R = {(1, 2), (2, 2), (3, 3)} irreflexive?
 No, because (2, 2), (3, 3) ∈ R * actually R is not reflexive either
- A relation R is irreflexive if and only if M_R has 0 in every position on its main diagonal.

- Symmetric Relation: A relation R on a set A is called symmetric if $(b, a) \in R$ whenever $(a, b) \in R$ for all $a, b \in A$.
- \circ Example: consider relations on $A = \{1, 2, 3, 4\}$
 - Is R_{div} = {(a, b) : a | b} symmetric?
 No, because (1, 2) ∈ R_{div} but (2, 1) ∉ R_{div}
 - Is R_≠ = {(a, b) : a ≠ b} symmetric?
 Yes, because if (a, b) ∈ R_≠ then (b, a) ∈ R_≠
- \circ A relation R is symmetric if and only if M_R is symmetric.

- Antisymmetric Relation: A relation R on a set A is called antisymmetric if $(b, a) \in R$, $(a, b) \in R$ implies a = b for all $a, b \in A$.
- \circ Example: consider relations on $A = \{1, 2, 3, 4\}$
 - Is R = {(1, 2), (2, 2), (2, 1), (3, 3)} antisymmetric?
 No, because both (1, 2) ∈ R and (2, 1) ∈ R but 1 ≠ 2
 - Is R = {(2, 2), (3, 3)} antisymmetric?
 Yes * actually R is also symmetric
- A relation R is antisymmetric if and only if $m_{ij} = 1$ implies $m_{ji} = 0$ for $i \neq j$, where m_{ij} is the (i, j)-th element of M_R .

- Transitive Relation: A relation R on a set A is called transitive if $(a, b) \in R$, $(b, c) \in R$ implies $(a, c) \in R$ for all $a, b, c \in A$.
- \circ Example: consider relations on $A = \{1, 2, 3, 4\}$
 - Is R_{div} = {(a, b) : a | b} transitive?
 Yes, because if a | b and b | c then a | c
 - Is R_≠ = {(a, b) : a ≠ b} transitive?
 No, because (1, 2), (2, 1) ∈ R_≠ but (1, 1) ∉ R_≠
 - Is R = {(1, 2), (2, 2), (3, 3)} transitive?
 Yes

Representing Relations

Recall that a relation can be represented as a directed graph:

Exercise (5 mins)

- Consider binary relations on a finite set A with |A| = n: Hint: think of a binary relation as a zero-one matrix
 - How many reflexive relations?
 - How many irreflexive relations?
 - How many symmetric relations?
 - How many antisymmetric relations?
 - Theorem: There are 2^{nm} binary relations from an n-element set A to an m-element set B.
 - Proof:
 - The cardinality of the Cartesian product $|A \times B| = nm$.
 - R is a binary relation from A to B if and only if $R \subseteq A \times B$.
 - The number of subsets of a set with nm elements is 2^{nm}.

Exercise (5 mins)

- Consider binary relations on a finite set A with |A| = n: Hint: think of a binary relation as a zero-one matrix
 - How many reflexive relations?
 2n(n 1)
 - How many irreflexive relations?
 2ⁿ⁽ⁿ⁻¹⁾
 - How many symmetric relations?
 2^{n(n + 1)/2}
 - How many antisymmetric relations?
 2n3n(n 1)/2
 - * First, values on the main diagonal m_{ij} can be chosen arbitrarily. Then, for each pair of matrix elements (m_{ij}, m_{ji}) with $i \neq j$ (there are n(n-1)/2 such pairs), it has 3 possible choices: (0, 0), (0, 1), (1, 0).

Combining Relations

- Since relations are sets, we can combine relations via set operations: union, intersection, complement, difference, etc.
- Example: consider relations from $A = \{1, 2, 3\}$ to $B = \{u, v\}$
 - $R_1 = \{(1, u), (2, u), (2, v), (3, u)\}, R_2 = \{(1, v), (3, u), (3, v)\}$
 - What is $R_1 \cup R_2$, $R_1 \cap R_2$, $R_1 R_2$, $R_2 R_1$?
- We may also combine relations by matrix operations.
 - E.g., can get R₁ ∩ R₂ from **element-wise and**: M_{R1} ∧ M_{R2} * what about other set operations?

Composite of Relations

- **Definition:** Let R be a relation from a set A to a set B and S be a relation from B to C. The composite of R and S is the relation consisting of the ordered pairs (a, c) where $a \in A$ and $c \in C$ and for which there exists a $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$.
 - We denote the composite of R and S by S R.

Composite of Relations

- **Definition:** Let R be a relation from a set A to a set B and S be a relation from B to C. The composite of R and S is the relation consisting of the ordered pairs (a, c) where $a \in A$ and $c \in C$ and for which there exists a $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$.
 - We denote the composite of R and S by $S \circ R$.
- Example: $A = \{1, 2\}, B = \{1, 2, 3\}, C = \{a, b\}$
 - $R = \{(1, 2), (1, 3), (2, 1)\} \subseteq A \times B, S = \{(1, a), (3, a), (3, b)\} \subseteq B \times C$
 - $S \circ R = \{(1, a), (1, b), (2, a)\}$

$$M_R = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & M_S & = & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \end{pmatrix}$$

Boolean product of matrices : replace + with v and replace x with A

Composite of Relations

- O **Definition:** Let R be a relation on the set A. The powers R^n for n = 1, 2, 3, ... is defined inductively by $R^1 = R$ and $R^{n+1} = R^n \circ R$.
- Example: Let $A = \{1, 2, 3, 4\}$ and $R = \{(1, 2), (2, 3), (2, 4), (3, 3)\}$
 - $R^1 = R$
 - $R^2 = R \circ R = \{(1, 3), (1, 4), (2, 3), (3, 3)\}$
 - $R^3 = R^2 \circ R = \{(1, 3), (2, 3), (3, 3)\}$
 - $R^4 = R^3 \circ R = \{(1, 3), (2, 3), (3, 3)\}$
 - $R^{k} = ? (k > 4)$

Transitive Relation and Rⁿ

○ **Theorem:** The relation R on a set A is transitive if and only if $R^n \subseteq R$ for n = 1, 2, 3, ...

- Proof:
 - "if" part: In particular, $R^2 \subseteq R$. If $(a, b) \in R$ and $(b, c) \in R$, then by the definition of composition, we have $(a, c) \in R^2 \subseteq R$.
 - "only if" part: Proof by induction. * the proof is left as an exercise
- O Note that Rⁿ can be computed by Boolean product of matrices:

$$M_{R^n} = M_R \odot M_R \odot \cdots \odot M_R$$

n-ary Relations

n-ary Relations

- **Definition:** An *n*-ary relation *R* on sets $A_1, A_2, ..., A_n$, written as $R: A_1, ..., A_n$, is a subset of $A_1 \times \cdots \times A_n$.
 - The sets A_i s are called the domains of R.
 - The degree of *R* is *n*.
 - R is functional in domain A_i if for any a_i ∈ A_i the relation R contains at most one n-tuple of the form (···, a_i, ···).
- Some ways to represent n-ary relations:
 - as an explicit list or table of its tuples
 - as a function from the domains to {T, F}

Relational Databases

- A relational database is essentially an n-ary relation R.
- A domain A_i is a primary key for the database if the relation R is functional in A_i .
 - Recall that R is functional in domain A_i if for any a_i ∈ A_i the relation
 R contains at most one n-tuple of the form (···, a_i, ···).
- o A composite key for the database is a set of domains $\{\cdots, A_i, \cdots, A_j, \cdots\}$ such that R contains at most one n-tuple $(\cdots, a_i, \cdots, a_j, \cdots)$ for each composite value $(\cdots, a_i, \cdots a_j, \cdots) \in \cdots A_i \times \cdots \times A_j \times \cdots$.

Entity-Relationship (ER) Diagrams

Selection Operators

- Let A be an n-ary domain $A = A_1 \times \cdots \times A_n$, and let $C : A \to \{T, F\}$ be any condition (predicate) on elements (n-tuples) of A.
- The selection operator s_C is the operator that maps any n-ary relation R on A to the n-ary relation consisting of all n-tuples from R that satisfy C.
 - $\forall R \subseteq A$, $s_C(R) = R \cap \{a \in A \mid C(a) = T\} = \{a \in R \mid C(a) = T\}$
- Example: consider A = StudentName × Standing × SocSecNos
 - Condition UpperLevel(name, standing, ssn) is defined as (standing = junior) \(\text{(standing = senior)} \)
 - Then, supperLevel is the selection operator that takes any relation R on A (database of students) and produces a relation consisting of just the upper-level students (juniors or seniors).

Projection Operators

- Let A be an n-ary domain $A = A_1 \times \cdots \times A_n$, and let $\{i_1, \ldots, i_m\}$ be a sequence of indices such that $1 \le i_1 < \cdots < i_m \le n$ and m < n.
- o The projection operator $P_{\{i_1, \dots, i_m\}}: A \to A_{i_1} \times \dots \times A_{i_m}$ is defined by

$$P_{\{i_1, ..., i_m\}}(a_1, ..., a_n) = (a_{i_1}, ..., a_{i_m})$$

- Example: consider a ternary domain Cars = Model × Year × Color
 - Index sequence is {1, 3}.
 - The projection operator $P_{\{1, 3\}}$ simply maps each 3-tuple, e.g., $(a_1, a_2, a_3) = (Tesla, 2020, black)$ to $(a_1, a_3) = (Tesla, black)$.
 - This operator can be applied to any relation $R \subseteq Cars$ to obtain a list of model-color combinations available.

Join Operators

- The join operator puts two relations together to form a sort of combined relation.
- o If the tuple (a, b) appears in R_1 , and the tuple (b, c) appears in R_2 , then the tuple (a, b, c) appears in their join $J(R_1, R_2)$.
- Note that a, b, c each can also be a sequence of elements rather than a single element.
- Example:
 - Let R₁ be a teaching assignment table, relating Professors to Courses.
 - Let R₂ be a room assignment table, relating Courses to Rooms and Times.
 - Then, $J(R_1, R_2)$ is like your class schedule, listing tuples of the form (professor, course, room, time).

Closures of Relations

Closures of Relations

- Properties of Relations:
 - reflexive
 - irreflexive
 - symmetric
 - antisymmetric
 - transitive
- Closures of Relations:
 - reflexive closures
 - symmetric closures
 - transitive closures

Example: Reflexive Closures

- Consider $R = \{(1, 1), (1, 2), (2, 1), (3, 2)\}$ defined on $A = \{1, 2, 3\}$.
- **Q:** Is relation *R* reflexive?
 - No, (2, 2) and (3, 3) are not in R
- \circ What is the minimal relation $S \supseteq R$ that is reflexive?
 - How to make R reflexive by adding the minimum number of pairs?
 Add (2, 2) and (3, 3).

```
S = \{(1, 1), (1, 2), (2, 1), (3, 2), (2, 2), (3, 3)\} \supseteq R is reflexive.
```

 \circ The minimal set $S \supseteq R$ is called the reflexive closure of R.

^{*} what about the irreflexive closure? does it make sense?

Definition of Closures

- Definition: Let R be a relation on a set A. A relation S on A with property P is called the closure of R with respect to P if S is the minimal set containing R satisfying the property P.
 - For every relation Q that satisfies P and $R \subseteq Q$, we have $S \subseteq Q$.

• Examples:

- reflexive closure * see the example we just showed in previous slide
- symmetric closure: relation R = {(1, 2), (1, 3), (2, 2)} on A = {1, 2, 3}
 * how to make it symmetric?
 S = {(1, 2), (1, 3), (2, 2)} ∪ {(2, 1), (3, 1)}
- transitive closure: relation R = {(1, 2), (2, 2), (2, 3)} on A = {1, 2, 3}
 * how to make it transitive?
 S = {(1, 2), (2, 2), (2, 3)} ∪ {(1, 3)}

Transitive Closures and Paths

- **Definition:** A (directed) path from a to b in a directed graph G is a sequence of edges (x_0, x_1) , (x_1, x_2) , ..., (x_{n-1}, x_n) in graph G, where $n \ge 0$, $x_0 = a$ and $x_n = b$.
- Recall that we can represent a relation using a directed graph.
 Then, finding a transitive closure corresponds to finding all pairs of elements that are connected with a directed path.
- Example: relation $R = \{(1, 2), (2, 2), (2, 3)\}$ on $A = \{1, 2, 3\}$
 - transitive closure: $S = \{(1, 2), (2, 2), (2, 3), (1, 3)\}$

Relations and Paths

- **Theorem:** Let R be relation on a set A. There is a path of length n from a to b if and only if $(a, b) \in R^n$.
- $^{\circ}$ Proof by induction: (recall that R^{n+1} is defined as $R^{n} \circ R$)

Exercise (5 mins)

O Show that "If R is transitive, then R" is also transitive."

• **Theorem:** Let *R* be relation on a set *A*. There is a path of length *n* from a to b if and only if $(a, b) \in R^n$. Proof by induction: (recall that R^{n+1} is defined as $R^n \circ R$) Path of length 1 a Path of length n Path of length 1 Path of length n+1

Exercise (5 mins)

- O Show that "If R is transitive, then Rⁿ is also transitive."
- Proof by strong induction:
 - n = 1: The statement is trivially true.
 - n = k for k > 1: Consider any path p(a, b) of length k from a to b and any path p(b, c) of length k from b to c, our goal is to find a path p(a, c) from a to c of length k as follows:

If k is even, split p(a, b), p(b, c) each into 2 paths of length k/2. By the strong inductive hypothesis for n = k/2 < k, i.e., $R^{k/2}$ is transitive, we can find a path from a to b of length k/2 and a path from a to a to a of length a to a of length a.

If k is odd, find the vertex x on p(a, b) adjacent to b, i.e., p(a, x) has length k-1, then split p(a, x) into 2 paths of length (k-1)/2 and split p(x, c) into 2 paths of length (k+1)/2. Similarly, by the strong inductive hypothesis, one can find a path from a to c of length k.

The Connectivity Relation

O **Definition:** *R* is a relation on a set *A*. The connectivity relation *R** consists of all pairs (*a*, *b*) such that there is a path (of any length) from *a* to *b* in *R*.

$$R^* = \bigcup_{k=1}^{\infty} R^k$$

- Example: consider a relation R on $A = \{1, 2, 3, 4\}$
 - $R = \{(1, 2), (1, 4), (2, 3), (3, 4)\}$
 - $R^2 = \{(1, 3), (2, 4)\}$
 - $R^3 = \{(1, 4)\}$
 - $R^4 = \emptyset$

Transitive Closures

- Theorem: The transitive closure of a relation R equals the connectivity relation R*.
- Proof:
 - R^* is transitive * view (a, b) $\in R^*$ as pairs connected by a path in R
 - $R^* \subseteq S$ whenever S is a transitive relation containing RSince S is a transitive relation, we have $S^n \subseteq S$. * already proved Therefore, $S^* \subseteq S$. Since $R \subseteq S$, we have $R^* \subseteq S^* \subseteq S$.

- Recall that finding a transitive closure corresponds to finding the connectivity relation, which consists of all pairs of elements that are connected with a directed path.
- The following lemma shows that it is sufficient to examine paths containing no more than n edges, where n is the number of elements in the set.
- **Lemma:** Let A be a set with n elements and let R be a relation on A. If there is a path of length ≥ 1 in R from a to b, then there is such a path with length $\leq n$. Moreover, when $a \neq b$, if there is a path from a to b, then there is such a path with length $\leq n 1$. Therefore,

$$R^* = \bigcup_{k=1}^n R^k$$

○ **Lemma:** Let A be a set with n elements and let R be a relation on A. If there is a path of length ≥ 1 in R from a to b, then there is such a path with length $\leq n$. Moreover, when $a \neq b$, if there is a path from a to b, then there is such a path with length $\leq n - 1$.

Proof intuition:

• The longest path is of length n-1 if it does not have loops.

• Loops may increase the path length but the same node will be visited more than once, so we can remove all loops.

Recall that from the previous lemma we have

$$R^* = \bigcup_{k=1}^n R^k$$

• **Theorem:** Let M_R be the zero—one matrix of the relation R on a set with n elements. Then the zero—one matrix of the transitive closure R is

$$\mathbf{M}_{R^*} = \mathbf{M}_R \vee \mathbf{M}_R^{[2]} \vee \mathbf{M}_R^{[3]} \vee \cdots \mathbf{M}_R^{[n]}$$

- the matrix superscripts denote the power of Boolean product of matrices, i.e., $M_R^{[n]}=M_R\odot M_R\odot \cdots \odot M_R=M_{R^n}$
- the proof is easy by applying the previous lemma

 Theorem: Let M_R be the zero—one matrix of the relation R on a set with n elements. Then the zero—one matrix of the transitive closure R is

$$\mathbf{M}_{R^*} = \mathbf{M}_R \vee \mathbf{M}_R^{[2]} \vee \mathbf{M}_R^{[3]} \vee \cdots \mathbf{M}_R^{[n]}$$

 \circ Example: what is the transitive closure for M_R ?

$$\mathbf{M}_R = \left[egin{array}{cccc} 1 & 0 & 1 \ 0 & 1 & 0 \ 1 & 1 & 0 \end{array}
ight]$$

$$\mathbf{M}_{R^*} = \mathbf{M}_R \vee \mathbf{M}_R^{[2]} \vee \mathbf{M}_R^{[3]}$$

• **Theorem:** Let M_R be the zero—one matrix of the relation R on a set with n elements. Then the zero—one matrix of the transitive closure R is

$$\mathbf{M}_{R^*} = \mathbf{M}_R \vee \mathbf{M}_R^{[2]} \vee \mathbf{M}_R^{[3]} \vee \cdots \mathbf{M}_R^{[n]}$$

Finding transitive closures: a naive algorithm

```
procedure transClosure (\mathbf{M}_R: zero-one n \times n matrix)

// computes R^* with zero-one matrices

A := B := \mathbf{M}_R;

for i := 2 to n

A := A \odot \mathbf{M}_R

B := B \vee A

This algorithm takes \Theta(n^4) time.

return B

// B is the zero-one matrix for R^*
```


- Finding transitive closures: the Floyd-Warshall algorithm
 - recall that R* consists of all pairs (a, b) such that there is a path from a to b in the graph representation of R
 - compute M_{R^*} by iterating on k to find all paths connected by the first k nodes (instead of successively computing $M_R, M_R^{[2]}, \ldots, M_R^{[n]}$)

```
procedure Warshall (\mathbf{M}_R: zero-one n \times n matrix)

// computes R^* with zero-one matrices

W := \mathbf{M}_R;

for k := 1 to n

for i := 1 to n

for j := 1 to n

w_{ij} := w_{ij} \vee (w_{ik} \wedge w_{kj})

return W

// W is the zero-one matrix for R^*
```

Exercise (5 mins)

- For the relation R shown in the figure, find the Floyd-Warshall matrices W_1 , W_2 , W_3 , W_4 . (Here W_k is the matrix after the k-th iteration and W_4 is the transitive closure of R.)
- Let $v_1 = a$, $v_2 = b$, $v_3 = c$, $v_4 = d$.

$$W_0 = \left[egin{array}{cccc} 0 & 0 & 0 & 1 \ 1 & 0 & 1 & 0 \ 1 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \end{array}
ight]$$

```
W_0 = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}
procedure Warshall (M<sub>R</sub>: zero-one n \times n matrix)
// computes R^* with zero-one matrices
                                                 W:=\mathbf{M}_R;
                                                 for k := 1 to n
                                                   for i := 1 to n
                                                     for j := 1 to n
                                                          w_{ij} := w_{ij} \vee (w_{ik} \wedge w_{kj})
                                                 return W
                                                  ^{\prime}/~W is the zero-one matrix for R^{*}
```

Exercise (5 mins)

- For the relation R shown in the figure, find the Floyd-Warshall matrices W_1 , W_2 , W_3 , W_4 . (Here W_k is the matrix after the k-th iteration and W_4 is the transitive closure of R.)
- Let $v_1 = a$, $v_2 = b$, $v_3 = c$, $v_4 = d$.

$$W_0 = \left[egin{array}{cccc} 0 & 0 & 0 & 1 \ 1 & 0 & 1 & 0 \ 1 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \end{array}
ight] \hspace{5mm} W_2 = W_1 = \left[egin{array}{cccc} 0 & 0 & 0 & 1 \ 1 & 0 & 1 & 1 \ 1 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \end{array}
ight]$$

$$W_3 = \left[egin{array}{cccc} 0 & 0 & 0 & 1 \ 1 & 0 & 1 & 1 \ 1 & 0 & 0 & 1 \ 1 & 0 & 1 & 1 \end{array}
ight]$$

$$W_3 = \left[egin{array}{ccccc} 0 & 0 & 0 & 1 \ 1 & 0 & 1 & 1 \ 1 & 0 & 0 & 1 \ 1 & 0 & 1 & 1 \ \end{array}
ight] \qquad W_4 = \left[egin{array}{ccccc} 1 & 0 & 1 & 1 \ 1 & 0 & 1 & 1 \ 1 & 0 & 1 & 1 \ \end{array}
ight]$$

Equivalence Relations

Equivalence Relations

- Definition: A relation R on a set S is called an equivalence relation if it is reflexive, symmetric, and transitive.
- Example: $R = \{(a, b) : a = b \mod 3\}$ on $S = \{0, 1, 2, 3, 4, 5, 6\}$
 - R has the following pairs:

• Is R reflexive?

Yes

- Is R symmetric?Yes
- Is R transitive?Yes
- Therefore, R is an equivalence relation.

Equivalence Relations

- Definition: A relation R on a set S is called an equivalence relation if it is reflexive, symmetric, and transitive.
- Are the following relations equivalence relations?
 - "Strings a and b have the same length."
 Yes
 - "Integers a and b have the same absolute value."
 Yes
 - "The relation ≥ between real numbers."
 No, not symmetric
 - "Real numbers a and b have the same fractional part: a − b ∈ Z."
 Yes
 - "Natural numbers have a common factor > 1."
 No, not reflexive, e.g., (1, 1) ∉ R

Equivalence Classes

• Definition: Let R be an equivalence relation on a set S. The set of all elements that are related to an element a of S is called the equivalence class of a, denoted by [a]R. When only one relation is considered, we use the notation [a].

$$[a]_R = \{b \in S: (a, b) \in R\}$$

- Example: $R = \{(a, b) : a \equiv b \mod 3\}$ on $S = \{0, 1, 2, 3, 4, 5, 6\}$
 - $[0] = [3] = [6] = \{0, 3, 6\}$
 - $[1] = [4] = \{1, 4\}$
 - [2] = [5] = {2, 5}

Equivalence Classes

• Definition: Let R be an equivalence relation on a set S. The set of all elements that are related to an element a of S is called the equivalence class of a, denoted by [a]R. When only one relation is considered, we use the notation [a].

$$[a]_R = \{b \in S: (a, b) \in R\}$$

- Find [a] for the following relations:
 - "Strings a and b have the same length."
 [a] = the set of all strings of the same length as string a
 - "Integers a and b have the same absolute value."

$$[a] = \{a, -a\}$$

• "Real numbers a and b have the same fractional part: $a - b \in \mathbb{Z}$."

$$[a] = \{..., a - 2, a - 1, a, a + 1, a + 2, ...\}$$

Equivalence Classes

- Theorem: Let R be an equivalence relation on a set S. The following statements are equivalent:
 - (i) a R b
 - (ii) [a] = [b]
 - (iii) [a] ∩ [b] ≠ Ø

• Proof:

- (i) → (ii): prove [a] ⊆ [b] and [b] ⊆ [a]
- (ii) \rightarrow (iii): [a] is not empty (R is reflexive and hence $a \in [a]$)
- (iii) \rightarrow (i): there exists $c \in S$ such that $c \in [a]$ and $c \in [b]$

Partition of a Set S

• **Definition:** Let S be a set. A collection of nonempty subsets of S $A_1, A_2, ..., A_k$ is called a partition of S if:

$$A_i \cap A_j = \emptyset, \ i \neq j \text{ and } S = \bigcup_{i=1}^k A_i$$

Equivalence Classes and Partitions

 Theorem: Let R be an equivalence relation on a set S. Then the union of all the equivalence classes of R is S:

$$S = \bigcup_{a \in S} [a]_R$$

- Theorem: The equivalence classes form a partition of S.
- **Theorem:** Let $\{A_1, A_2, ..., A_i, ...\}$ be a partition of S. Then there is an equivalence relation R on S, which has the sets A_i as its equivalence classes.

^{*} the above proofs are left as exercises

Partial Orderings

Partial Ordering

- Definition: A relation R on a set S is called a partial ordering, or partial order, if it is reflexive, antisymmetric, and transitive.
 - A set S together with a partial ordering R is called a partially ordered set, or poset, denoted by (S, R) or simply (S, ≤) in general. Members of S are called elements of the poset.
- Example 1: $S = \{1, 2, 3, 4, 5\}$, R denotes the "\geq" relation
 - Is R reflexive?Yes
 - Is R antisymmetric?Yes
 - Is R transitive?Yes
 - Therefore, R is a partial ordering.

Partial Ordering

- Definition: A relation R on a set S is called a partial ordering, or partial order, if it is reflexive, antisymmetric, and transitive.
 - A set S together with a partial ordering R is called a partially ordered set, or poset, denoted by (S, R) or simply (S, ≤) in general. Members of S are called elements of the poset.
- Example 2: S = {1, 2, 3, 4, 5}, R denotes the " " relation
 - Is R a partial ordering?
 Yes, R is reflexive, antisymmetric, and transitive
- **Note:** The notation a < b denotes that $a \le b$ but $a \ne b$. Also, we say "a is less than b" or "b is greater than a" if a < b.

Comparability

- Definition: The elements a, b of a poset (S, ≤) are comparable if a ≤ b or b ≤ a. Otherwise, a and b are called incomparable.
- \circ Example: $S = \{1, 2, 3, 4, 5\}$, R denotes the " | " relation
 - Is 2, 4 comparable?Yes
 - Is 5, 5 comparable?Yes
 - Is 3, 5 comparable?
 No, because neither of 3 | 5 and 5 | 3 holds

Total Ordering

- Definition: If (S, ≤) is a poset and every two elements of S are comparable, then ≤ is called a total order or linear order.
 - S is called a totally ordered or linearly ordered set. A totally ordered set is also called a chain.
- Example: R denote the "≥" relation on S
 - Is S = {1, 2, 3, 4, 5} a totally (linearly) ordered set?
 Yes
 - Is S = Z+ a totally (linearly) ordered set?
 Yes

Well-Ordered Induction

- Definition: (S, ≤) is a well-ordered set if ≤ is a total order and every nonempty subset of S has a least element.
- The principle of well-ordered induction: Suppose that S is a well-ordered set. To prove that P(x) is true for all $x \in S$, we complete two steps:
 - Basis step: prove $P(x_0)$ is true for the least element x_0 of S
 - Inductive step: prove, for every $y \in S$, if P(x) is true for all $x \in S$ with x < y, then P(y) is true.
- Proof by contradiction: consider the set {x ∈ S : P(x) is false}.
 * the rest of the proof is left as an exercise

Lexicographic Ordering

- Definition: Given two posets (A₁, ≤₁) and (A₂, ≤₂), the lexicographic ordering ≤ on A₁ × A₂ is defined by specifying that (a₁, a₂) is less than (b₁, b₂), i.e., (a₁, a₂) < (b₁, b₂), either if a₁ <₁ b₁ or if both a₁ = b₁ and a₂ <₂ b₂.
 Then, we obtain a partial ordering ≤ by adding equality to the above ordering < on A₁ × A₂.
- Example: Consider strings of lowercase English letters.
 - A lexicographic ordering can be defined via the ordering of letters in the alphabet. This is the same ordering as used in dictionaries.
 - e.g., discreet < discrete, discreet < discreetness, etc.

Well-Ordered Induction Example

• Let $a_{m,n}$ be defined recursively for $(m, n) \in \mathbb{N} \times \mathbb{N}$ by $a_{0,0} = 0$ and

$$a_{m,n} = \begin{cases} a_{m-1,n} + 1, & \text{if } n = 0 \text{ and } m > 0 \\ a_{m,n-1} + n, & \text{if } n > 0 \end{cases}$$

Show that $a_{m,n} = m + n(n+1)/2$ for all $(m, n) \in \mathbb{N} \times \mathbb{N}$.

- Proof by well-ordered induction:
 - Let N × N with the lexicographic ordering ≤ be the well-ordered set.
 - Basis step: The equality holds for (0, 0), i.e., $a_{0,0} = 0 = 0 + 0 \cdot 1/2$.
 - **Inductive step:** By inductive hypothesis, the equality holds for all (m', n') < (m, n): it holds for (m 1, n) if n = 0 and (m, n 1) if n > 0. To prove the equality holds for (m, n), just plug the equality for the above two pairs into the two cases that recursively define $a_{m,n}$.

Hasse Diagram

- Definition: A Hasse diagram is a visual representation of a partial ordering that leaves out edges that must be present because of the reflexive and transitive properties.
- Example: Construct the Hasse diagram of ({1, 2, 3, 4}, ≤).
 - (a) Draw the directed graph for the partial ordering.
 - (b) Remove the loops due to the reflexive property.
 - (c) Remove the edges due to the transitive property; and remove all arrows and ensure that all edges point upwards toward their terminal vertex.

Exercise (3 mins)

Construct the Hasse diagram of ({1, 2, 3, 4, 6, 8, 12}, |).

- Example: Construct the Hasse diagram of ({1, 2, 3, 4}, ≤).
 - (a) Draw the directed graph for the partial ordering.
 - (b) Remove the loops due to the reflexive property.
 - (c) Remove the edges due to the transitive property; and remove all arrows and ensure that all edges point upwards toward their terminal vertex.

Exercise (3 mins)

- Construct the Hasse diagram of ({1, 2, 3, 4, 6, 8, 12}, |).
- The last figure (c) is the Hasse diagram:

Maximal and Minimal Elements

- **Definition:** a is a maximal (resp. minimal) element in poset (S, \leq) if there is no $b \in S$ such that a < b (resp. b < a).
- Example: consider the poset ({2, 4, 5, 10, 12, 20, 25},)
 - What are the maximal elements?
 12, 20, 25
 - What are the minimal elements?
 2, 5

Greatest and Least Elements

- Definition: a is the greatest (resp. least) element of poset (S, ≤) if $b \le a$ (resp. $a \le b$) for all $b \in S$.
- Example: Find the greatest and least elements, if any.
 - (a) least: a

- (b) none (c) greatest: d (d) least: a greatest: d

Upper and Lower Bounds

- \circ **Definition:** Let A be a subset of a poset (S, \leq) .
 - u ∈ S is called an upper bound (resp. lower bound) of A if a ≤ u (resp. u ≤ a) for all a ∈ A.
 - x ∈ S is called the least upper bound (resp. greatest lower bound) of
 A if x is an upper bound (resp. lower bound) that is less than any
 other upper bound (resp. lower bound) of A.
- Example: Find the greatest lower bound and the least upper bound of set {1, 2, 4, 5, 10}, if they exist, in the poset (Z⁺, |).
 - greatest lower bound: 1 least upper bound: 20

Lattices

- Definition: A partially ordered set in which every pair of elements has both a least upper bound and a greatest lower bound is called a lattice.
- Example: Are the following lattices?
 - (a) **Yes** (b) **No**, e.g., (d, e) has no greatest lower bound (c) **Yes**

Topological Sorting

- Motivation: A project is made up of 20 different tasks. Some tasks can be completed only after others have been finished. How can an order be found for these tasks?
- Given a partial ordering R, a total ordering ≤ is said to be compatible with R if a ≤ b whenever a R b.
- Topological sorting: construct a compatible total ordering from a partial ordering.

Topological Sorting for Finite Posets

- Theorem: Every finite nonempty poset (S, ≤) has at least one minimal element.
 - the proof is left as an exercise
- The topological sorting algorithm for finite posets:

```
procedure topological_sort (S: finite poset)
k := 1;
while S \neq \emptyset
a_k := a minimal element of S
S := S \setminus \{a_k\}
k := k + 1
end while
//\{a_1, a_2, \dots, a_n\} is a compatible total ordering of S
```


09 Graphs and Trees

To be continued...

Announcement

- Assignment 5 was already released and is due on Dec 25:
 - 100 points maximum but 110 in total
 - DO NOT CHEAT!

