Système de Cramer

Démonstration dans le cas particulier n=3

$$AX = C$$
 et $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$, $C = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$

On suppose $\operatorname{rg} A = 3$

La matrice A est donc inversible et $X = A^{-1}C$ est la solution unique.

$$X = A^{-1}C = \frac{1}{\det A} \tilde{A}^t C$$

03

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \frac{1}{\det A} \begin{pmatrix} \det A_{11} & -\det A_{12} & \det A_{13} \\ -\det A_{21} & \det A_{22} & -\det A_{23} \\ \det A_{31} & -\det A_{32} & \det A_{33} \end{pmatrix}^t \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$$

Rappels:

 \hat{A} est la matrice des cofacteurs de A. cofacteur de $a_{ij}=(-1)^{i+j}$ det A_{ij}

Par exemple: cofacteur de
$$a_{12} = (-1)^{1+2} \det A_{12} = - \det A_{12} = \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}$$
, etc

D'où

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \frac{1}{\det A} \begin{pmatrix} \det A_{11} & -\det A_{21} & \det A_{31} \\ -\det A_{12} & \det A_{22} & -\det A_{32} \\ \det A_{13} & -\det A_{23} & \det A_{33} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$$

On calcule par exemple x_1 :

$$x_{1} = \frac{1}{\det A} \left(\det A_{11}c_{1} - \det A_{21}c_{2} + \det A_{31}c_{3} \right) =$$

$$= \frac{1}{\det A} \left(\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} c_{1} - \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} c_{2} + \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix} c_{3} \right) =$$

$$= \frac{1}{\det A} \begin{vmatrix} c_1 & a_{12} & a_{13} \\ c_2 & a_{22} & a_{23} \\ c_3 & a_{32} & a_{33} \end{vmatrix}$$

De même on obtient

$$x_2 = \frac{1}{\det A} \begin{vmatrix} a_{11} & c_1 & a_{13} \\ a_{21} & c_2 & a_{23} \\ a_{31} & c_3 & a_{33} \end{vmatrix} \quad \text{et} \quad x_3 = \frac{1}{\det A} \begin{vmatrix} a_{11} & a_{12} & c_1 \\ a_{21} & a_{22} & c_2 \\ a_{31} & a_{32} & c_3 \end{vmatrix}$$