Московский Государственный Технический унивеститет им. Н.Э.Баумана.

Билет для вступительных испытаний в магистратуру. 2022 г.

Кафедра "Программное обеспечение ЭВМ и информационные технологии" (ИУ-07), направление подготовки 09.04.04 программная инженерия

Билет №ИМ 07.08

Задание 1 (8 баллов) Вычислите значение указанной суммы в системе счисления с основанием 17 и запишите ответ в системе счисления с основанием 17

$$BBBBBB + BBBEAC + \cdots + BCC029$$

Задание 2 (8 баллов) Найдите минимальную СДНФ и минимальную СКНФ для функции f(A,B,C,D), заданной таблично:

A	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
В	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
С	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
D	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
f	1	0	1	1	1	0	0	0	0	1	0	1	1	0	0	1

Задание 3 (8 баллов) Сколько раз при вызове g(6) в стеке вызовов встретится f до появления exit procedure f(x: integer);

```
begin
if(x<0)then exit();
if (x mod 2 = 1) then f(x-1)
else g(x);
end;
procedure g(x: integer);
begin
f(x-1)
f(x-3);
end;</pre>
```

Задание 4 (8 баллов) Дана схема отношения R(A,B,C,D), для которой выполняется множество функциональных зависимостей

$$G = \{ \{B, D\} \to \{A\}, \{C\} \to \{B\}, \{C, D\} \to \{B\}, \{D\} \to \{C\}, \{D\} \to \{B, C\} \}.$$

Найдите неприводимое множество функциональных зависимостей, эквивалентное данному множеству.

Задание 5 (8 баллов)

В системе есть три процесса P_1 , P_2 , P_3 и два вида ресурсов: R_1 в количестве 4-х единиц и R_2 в количестве 4-х единиц. Определите, является ли состояние системы безопасным относительно тупика, если матрица текущего распределения ресурсов имеет вид

	R_1	R_2
P_1	2	0
P_2	1	2
P_3	1	1

а для завершения работы процессы запросили ресурсы в следующем порядке:

- 1) P_2 запросил одну единицу ресурса R_1 ;
- 2) P_1 запросил одну единицу ресурса R_2 ;
- 3) P_3 запросил три единицы ресурса R_1 .

Задание 6 (8 баллов)

Определите количество применений операций, влияющих на сложность алгоритма обмена позициями элементов матрицы 4х4, расположенных над главной и над побочной диагоналями, с элементами, расположенными под главной и над побочной диагоналями, симметрично по отношению к главной диагонали, использующего только одну дополнительную переменную, при условии представления матрицы списком списков.

Задание 7 (12 баллов)

Одноканальная СМО обслуживает пуассоновский поток заявок, интенсивность которого составляет $\lambda=1$. Время обслуживания одной заявки распределено по закону Эрланга третьего порядка $f(t)=\frac{\mu(\mu t)^2}{2}\exp^{-\mu t},\ \mu=6$. Если заявка приходит в момент времени, когда

канал занят, то она получает отказ в обслуживании. Найдите вероятность отказа в обслуживании заявки (в стационарном режиме).

Задание 8 (12 баллов) Дана DDL-структура таблицы и ее наполнение:

```
Что будет выведено в результате следующего запроса. Ответ сформулировать в виде таблицы с данными, указать поэтапное формирование результирующего набора данных. with test_proj as ( select id, project_name, date_from, date_to, 0 as 1, id as h from projects
```

union all
 create table projects(
 id integer,
 project_name text,
 originator text,
 budget numeric(15,2),
 team_cnt int,
 date_from timestamp(6),
 date to timestamp(6),

);

prev project id integer

where prev_project_id is null

id 🖫	project_name	and originator	123 budget 📆	123 team_cnt T	1	date_from	T:	1 date_to	T:	123 prev_project_id \(\forall^2\):
- 1	«Студенческий стартап» 2022	Минобрнауки России	1,000,000	10	0	2022-01-01 00:00:	00	2022-12-31 00:0	00:00	[NULL]
2	Премия #МЫВМЕСТЕ	Ассоциация волонтерских центров	1,570,000	1	1	2020-01-01 00:00:	00	2020-12-31 00:0	00:00	[NULL]
3	Конкурсы РАН 2023	Российская академия наук	3,000,000	5	5	2022-02-11 00:00:	00	2022-10-27 00:0	00:00	[NULL]
4	Стипендии имени Ж.И. Алферова	Министерство науки	1,280,000	7	7	2021-04-15 00:00:	00	2999-12-31 00:0	00:00	[NULL]
5	III Международный конкурс	РГАИС совместно с Роспатент	1,982,000	3	3	2022-05-05 00:00:	00	2999-12-31 00:0	00:00	[NULL]
6	VII Всероссийский конкурс	РНФ	5,500,000	5	5	2021-10-11 00:00:	00	2021-12-31 00:0	00:00	[NULL]
7	«Студенческий стартап» 2023	Минобрнауки России	2,000,000	15	5	2023-01-01 00:00:	00	2023-12-31 00:0	00:00	1
8	«Студенческий стартап» 2024	Минобрнауки России	5,000,000	20	0	2024-01-01 00:00:	00	2024-12-31 00:0	00:00	7
9	«Студенческий стартап» 2025	Минобрнауки России	4,000,000	15	5	2025-01-01 00:00:	00	2025-12-31 00:0	00:00	8
10	Премия #МЫВМЕСТЕ 1.0	Ассоциация волонтерских центров	5,320,000	2	2	2023-01-01 00:00:	00	2023-12-31 00:0	00:00	2
11	Премия #МЫВМЕСТЕ 1.1	Ассоциация волонтерских центров	2,200,000	3	3	2024-01-01 00:00:	00	2024-12-31 00:0	00:00	10
12	VIII Всероссийский конкурс	РНФ	4,500,000	7	7	2022-01-01 00:00:	00	2022-05-01 00:0	00:00	6
13	IX Всероссийский конкурс	РНФ	4,500,000	5	5	2022-10-01 00:00:	00	2022-12-31 00:0	00:00	12

```
select p.id, p.project_name, p.date_from, p.date_to, t.l + 1 as l, t.h as h
from projects p inner join test_proj t on p.prev_project_id = t.id
)
select project_name as "My StR" from projects
where id in (
select h
from (
select id, project_name, date_from, date_to, l, h,
coalesce(extract(day from lead(date_from) over (partition by h order by l) - date_to)
from test_proj
) t1
group by h
having sum(summ) >= 730
```

Задание 9 (12 баллов)

В программе реализовано В-дерево с параметром 3. Во время работы программы в изначально пустое дерево были поочередно добавлены элементы в следующей последовательности: 17, 30, 48, 140, 10, 01, 126, 138, 140, 3, 501, 2, 15, 42, 42, 15, 37, 08, 5, 20, 20, 10 Продемонстрируйте пошагово процесс изменения расположения узлов в дереве.

Задание 10 (16 баллов) Методом коллокаций получите приближенное решение вида

$$y(x) = C_1\phi_1(x) + C_2\phi_2(x) + C_3\phi_3(x) \ \ \text{краевой задачи}$$

$$u''(x) + (1+x^2)*u(x) + 1 = 0, -1 < x < 1, \ u(-1) = 0, u(1) = 0$$