MAXIMUM & MINIMUM VALUES:

Look at the hills and valleys in the graph of f shown in Figure 1. There are two points (a, b) where f has a *local maximum*, that is, where f(a, b) is larger than nearby values of f(x, y). The larger of these two values is the *absolute maximum*. Likewise, f has two *local minima*, where f(a, b) is smaller than nearby values. The smaller of these two values is the *absolute minimum*.

FIGURE 1

1 Definition A function of two variables has a **local maximum** at (a, b) if $f(x, y) \le f(a, b)$ when (x, y) is near (a, b). [This means that $f(x, y) \le f(a, b)$ for all points (x, y) in some disk with center (a, b).] The number f(a, b) is called a **local maximum value**. If $f(x, y) \ge f(a, b)$ when (x, y) is near (a, b), then f has a **local minimum** at (a, b) and f(a, b) is a **local minimum value**.

If the inequalities in Definition 1 hold for *all* points (x, y) in the domain of f, then f has an **absolute maximum** (or **absolute minimum**) at (a, b).

Theorem If f has a local maximum or minimum at (a, b) and the first-order partial derivatives of f exist there, then $f_x(a, b) = 0$ and $f_y(a, b) = 0$.

Critical points:

If we put $f_x(a, b) = 0$ and $f_y(a, b) = 0$ in the equation of a tangent plane (Equation 14.4.2), we get $z = z_0$. Thus the geometric interpretation of Theorem 2 is that if the graph of f has a tangent plane at a local maximum or minimum, then the tangent plane must be horizontal.

A point (a, b) is called a **critical point** (or *stationary point*) of f if $f_x(a, b) = 0$ and $f_y(a, b) = 0$, or if one of these partial derivatives does not exist. Theorem 2 says that if f has a local maximum or minimum at (a, b), then (a, b) is a critical point of f. However, as in single-variable calculus, not all critical points give rise to maxima or minima. At a critical point, a function could have a local maximum or a local minimum or neither.

EXAMPLE 1 Let
$$f(x, y) = x^2 + y^2 - 2x - 6y + 14$$
. Then
$$f_x(x, y) = 2x - 2 \qquad f_y(x, y) = 2y - 6$$

These partial derivatives are equal to 0 when x = 1 and y = 3, so the only critical point is (1, 3). By completing the square, we find that

$$f(x, y) = 4 + (x - 1)^2 + (y - 3)^2$$

Since $(x-1)^2 \ge 0$ and $(y-3)^2 \ge 0$, we have $f(x,y) \ge 4$ for all values of x and y. Therefore f(1,3) = 4 is a local minimum, and in fact it is the absolute minimum of f.

EXAMPLE 2 Find the extreme values of $f(x, y) = y^2 - x^2$.

SOLUTION Since $f_x = -2x$ and $f_y = 2y$, the only critical point is (0, 0). Notice that for points on the *x*-axis we have y = 0, so $f(x, y) = -x^2 < 0$ (if $x \ne 0$). However, for points on the *y*-axis we have x = 0, so $f(x, y) = y^2 > 0$ (if $y \ne 0$). Thus every disk with center (0, 0) contains points where f takes positive values as well as points where f takes negative values. Therefore f(0, 0) = 0 can't be an extreme value for f, so f has no extreme value.

REMARK:

Example 2 illustrates the fact that a function need not have a maximum or minimum value at a critical point. Figure 3 shows how this is possible. The graph of f is the hyperbolic paraboloid $z = y^2 - x^2$, which has a horizontal tangent plane (z = 0) at the origin. You can see that f(0, 0) = 0 is a maximum in the direction of the x-axis but a minimum in the direction of the y-axis. Near the origin the graph has the shape of a saddle and so (0, 0) is called a *saddle point* of f.

We need to be able to determine whether or not a function has an extreme value at a critical point. The following test, which is proved at the end of this section, is analogous to the Second Derivative Test for functions of one variable.

Second Derivatives Test Suppose the second partial derivatives of f are continuous on a disk with center (a, b), and suppose that $f_x(a, b) = 0$ and $f_y(a, b) = 0$ [that is, (a, b) is a critical point of f]. Let

$$D = D(a, b) = f_{xx}(a, b) f_{yy}(a, b) - [f_{xy}(a, b)]^{2}$$

- (a) If D > 0 and $f_{xx}(a, b) > 0$, then f(a, b) is a local minimum.
- (b) If D > 0 and $f_{xx}(a, b) < 0$, then f(a, b) is a local maximum.
- (c) If D < 0, then f(a, b) is not a local maximum or minimum.

NOTE 1 In case (c) the point (a, b) is called a **saddle point** of f and the graph of f crosses its tangent plane at (a, b).

NOTE 2 If D = 0, the test gives no information: f could have a local maximum or local minimum at (a, b), or (a, b) could be a saddle point of f.

NOTE 3 To remember the formula for *D*, it's helpful to write it as a determinant:

$$D = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{vmatrix} = f_{xx} f_{yy} - (f_{xy})^2$$

EXAMPLE 3 Find the local maximum and minimum values and saddle points of $f(x, y) = x^4 + y^4 - 4xy + 1$.

SOLUTION We first locate the critical points:

$$f_x = 4x^3 - 4y$$
 $f_y = 4y^3 - 4x$

Setting these partial derivatives equal to 0, we obtain the equations

$$x^3 - y = 0 \qquad \text{and} \qquad y^3 - x = 0$$

To solve these equations we substitute $y = x^3$ from the first equation into the second one. This gives

$$0 = x^9 - x = x(x^8 - 1) = x(x^4 - 1)(x^4 + 1) = x(x^2 - 1)(x^2 + 1)(x^4 + 1)$$

so there are three real roots: x = 0, 1, -1. The three critical points are (0, 0), (1, 1), and (-1, -1).

Next we calculate the second partial derivatives and D(x, y):

$$f_{xx} = 12 x^2$$
 $f_{xy} = -4$ $f_{yy} = 12 y^2$

$$D(x, y) = f_{xx} f_{yy} - (f_{xy})^2 = 144x^2y^2 - 16$$

Since D(0, 0) = -16 < 0, it follows from case (c) of the Second Derivatives Test that the origin is a saddle point; that is, f has no local maximum or minimum at (0, 0). Since D(1, 1) = 128 > 0 and $f_{xx}(1, 1) = 12 > 0$, we see from case (a) of the test that f(1, 1) = -1 is a local minimum. Similarly, we have D(-1, -1) = 128 > 0 and $f_{xx}(-1, -1) = 12 > 0$, so f(-1, -1) = -1 is also a local minimum.

The graph of f is shown in Figure 4.

A contour map of the function f in Example 3 is shown in Figure 5. The level curves near (1, 1) and (-1, -1) are oval in shape and indicate that as we move away from (1, 1) or (-1, -1) in any direction the values of f are increasing. The level curves near (0, 0), on the other hand, resemble hyperbolas. They reveal that as we move away from the origin (where the value of f is f is f, the values of f decrease in some directions but increase in other directions. Thus the contour map suggests the presence of the minima and saddle point that we found in Example 3.

FIGURE 4 $z = x^4 + y^4 - 4xy + 1$

EXAMPLE 4 Find and classify the critical points of the function

$$f(x, y) = 10x^2y - 5x^2 - 4y^2 - x^4 - 2y^4$$

Also find the highest point on the graph of f.

SOLUTION The first-order partial derivatives are

$$f_x = 20xy - 10x - 4x^3$$
 $f_y = 10x^2 - 8y - 8y^3$

So to find the critical points we need to solve the equations

$$2x(10y - 5 - 2x^2) = 0$$

$$5x^2 - 4y - 4y^3 = 0$$

From Equation 4 we see that either

$$x = 0$$
 or $10y - 5 - 2x^2 = 0$

In the first case (x = 0), Equation 5 becomes $-4y(1 + y^2) = 0$, so y = 0 and we have the critical point (0, 0).

In the second case $(10y - 5 - 2x^2 = 0)$, we get

$$x^2 = 5y - 2.5$$

and, putting this in Equation 5, we have $25y - 12.5 - 4y - 4y^3 = 0$. So we have to solve the cubic equation

$$4y^3 - 21y + 12.5 = 0$$

Using a graphing calculator or computer to graph the function

$$g(y) = 4y^3 - 21y + 12.5$$

as in Figure 6, we see that Equation 7 has three real roots. By zooming in, we can find the roots to four decimal places:

$$y \approx -2.5452$$
 $y \approx 0.6468$ $y \approx 1.8984$

(Alternatively, we could have used Newton's method or a rootfinder to locate these roots.) From Equation 6, the corresponding *x*-values are given by

$$x = \pm \sqrt{5y - 2.5}$$

If $y \approx -2.5452$, then x has no corresponding real values. If $y \approx 0.6468$, then $x \approx \pm 0.8567$. If $y \approx 1.8984$, then $x \approx \pm 2.6442$. So we have a total of five critical points, which are analyzed in the following chart. All quantities are rounded to two decimal places.

Critical point	Value of f	f_{xx}	D	Conclusion
(0, 0)	0.00	-10.00	80.00	local maximum
(±2.64, 1.90)	8.50	-55.93	2488.72	local maximum
$(\pm 0.86, 0.65)$	-1.48	-5.87	-187.64	saddle point

Figures 7 and 8 give two views of the graph of f and we see that the surface opens downward. [This can also be seen from the expression for f(x, y): The dominant terms are $-x^4 - 2y^4$ when |x| and |y| are large.] Comparing the values of f at its local maximum points, we see that the absolute maximum value of f is $f(\pm 2.64, 1.90) \approx 8.50$. In other words, the highest points on the graph of f are $(\pm 2.64, 1.90, 8.50)$.

SHORTEST DISTANCE BY USING EXTREME VALUE:

EXAMPLE 5 Find the shortest distance from the point (1, 0, -2) to the plane x + 2y + z = 4.

SOLUTION The distance from any point (x, y, z) to the point (1, 0, -2) is

$$d = \sqrt{(x-1)^2 + y^2 + (z+2)^2}$$

but if (x, y, z) lies on the plane x + 2y + z = 4, then z = 4 - x - 2y and so we have $d = \sqrt{(x-1)^2 + y^2 + (6-x-2y)^2}$. We can minimize d by minimizing the simpler expression

$$d^2 = f(x, y) = (x - 1)^2 + y^2 + (6 - x - 2y)^2$$

By solving the equations

$$f_x = 2(x-1) - 2(6-x-2y) = 4x + 4y - 14 = 0$$

$$f_y = 2y - 4(6 - x - 2y) = 4x + 10y - 24 = 0$$

we find that the only critical point is $(\frac{11}{6}, \frac{5}{3})$. Since $f_{xx} = 4$, $f_{xy} = 4$, and $f_{yy} = 10$, we have $D(x, y) = f_{xx} f_{yy} - (f_{xy})^2 = 24 > 0$ and $f_{xx} > 0$, so by the Second Derivatives Test f has a local minimum at $(\frac{11}{6}, \frac{5}{3})$. Intuitively, we can see that this local minimum is actually an absolute minimum because there must be a point on the given plane that is closest to (1, 0, -2). If $x = \frac{11}{6}$ and $y = \frac{5}{3}$, then

$$d = \sqrt{(x-1)^2 + y^2 + (6-x-2y)^2} = \sqrt{\left(\frac{5}{6}\right)^2 + \left(\frac{5}{3}\right)^2 + \left(\frac{5}{6}\right)^2} = \frac{5}{6}\sqrt{6}$$

The shortest distance from (1, 0, -2) to the plane x + 2y + z = 4 is $\frac{5}{6}\sqrt{6}$.

EXAMPLE 6 A rectangular box without a lid is to be made from 12 m² of cardboard. Find the maximum volume of such a box.

SOLUTION Let the length, width, and height of the box (in meters) be x, y, and z, as shown in Figure 10. Then the volume of the box is

$$V = xyz$$

We can express *V* as a function of just two variables *x* and *y* by using the fact that the area of the four sides and the bottom of the box is

$$2xz + 2yz + xy = 12$$

Solving this equation for z, we get z = (12 - xy)/[2(x + y)], so the expression for V becomes

$$V = xy \frac{12 - xy}{2(x + y)} = \frac{12xy - x^2y^2}{2(x + y)}$$

We compute the partial derivatives:

$$\frac{\partial V}{\partial x} = \frac{y^2 (12 - 2xy - x^2)}{2(x+y)^2} \qquad \frac{\partial V}{\partial y} = \frac{x^2 (12 - 2xy - y^2)}{2(x+y)^2}$$

If *V* is a maximum, then $\partial V/\partial x = \partial V/\partial y = 0$, but x = 0 or y = 0 gives V = 0, so we must solve the equations

$$12 - 2xy - x^2 = 0 12 - 2xy - y^2 = 0$$

These imply that $x^2 = y^2$ and so x = y. (Note that x and y must both be positive in this problem.) If we put x = y in either equation we get $12 - 3x^2 = 0$, which gives x = 2, y = 2, and $z = (12 - 2 \cdot 2)/[2(2 + 2)] = 1$.

We could use the Second Derivatives Test to show that this gives a local maximum of V, or we could simply argue from the physical nature of this problem that there must be an absolute maximum volume, which has to occur at a critical point of V, so it must occur when x = 2, y = 2, z = 1. Then $V = 2 \cdot 2 \cdot 1 = 4$, so the maximum volume of the box is 4 m^3 .

FIGURE 10

Absolute and Minimum Maximum Values:

- ♣ For a function of one variable, the Extreme Value Theorem says that if is continuous on a closed interval [a,b], then has an absolute minimum value and an absolute maximum value.
- According to the Closed Interval Method, we found these by evaluating not only at the critical numbers but also at the endpoints 'a' and 'b'.

There is a similar situation for functions of two variables. Just as a closed interval contains its endpoints, a **closed set** in \mathbb{R}^2 is one that contains all its boundary points. [A boundary point of D is a point (a, b) such that every disk with center (a, b) contains points in D and also points not in D.] For instance, the disk

$$D = \{(x, y) \mid x^2 + y^2 \le 1\}$$

which consists of all points on and inside the circle $x^2 + y^2 = 1$, is a closed set because it contains all of its boundary points (which are the points on the circle $x^2 + y^2 = 1$). But if even one point on the boundary curve were omitted, the set would not be closed. (See Figure 11.)

Bounded Set in R2:

A **bounded set** in \mathbb{R}^2 is one that is contained within some disk. In other words, it is finite in extent. Then, in terms of closed and bounded sets, we can state the following counterpart of the Extreme Value Theorem in two dimensions.

8 Extreme Value Theorem for Functions of Two Variables If f is continuous on a closed, bounded set D in \mathbb{R}^2 , then f attains an absolute maximum value $f(x_1, y_1)$ and an absolute minimum value $f(x_2, y_2)$ at some points (x_1, y_1) and (x_2, y_2) in D.

To find the extreme values guaranteed by Theorem 8, we note that, by Theorem 2, if f has an extreme value at (x_1, y_1) , then (x_1, y_1) is either a critical point of f or a boundary point of f. Thus we have the following extension of the Closed Interval Method.

- **9** To find the absolute maximum and minimum values of a continuous function *f* on a closed, bounded set *D*:
- **1**. Find the values of *f* at the critical points of *f* in *D*.
- **2.** Find the extreme values of f on the boundary of D.
- 3. The largest of the values from steps 1 and 2 is the absolute maximum value; the smallest of these values is the absolute minimum value.

EXAMPLE 7 Find the absolute maximum and minimum values of the function $f(x, y) = x^2 - 2xy + 2y$ on the rectangle $D = \{(x, y) \mid 0 \le x \le 3, 0 \le y \le 2\}$.

SOLUTION Since f is a polynomial, it is continuous on the closed, bounded rectangle D, so Theorem 8 tells us there is both an absolute maximum and an absolute minimum. According to step 1 in 9, we first find the critical points. These occur when

$$f_x = 2x - 2y = 0$$
 $f_y = -2x + 2 = 0$

so the only critical point is (1, 1), and the value of f there is f(1, 1) = 1.

In step 2 we look at the values of f on the boundary of D, which consists of the four line segments L_1 , L_2 , L_3 , L_4 shown in Figure 12. On L_1 we have y = 0 and

$$f(x,0) = x^2 \qquad 0 \le x \le 3$$

This is an increasing function of x, so its minimum value is f(0, 0) = 0 and its maximum value is f(3, 0) = 9. On L_2 we have x = 3 and

$$f(3, y) = 9 - 4y \qquad 0 \le y \le 2$$

This is a decreasing function of y, so its maximum value is f(3, 0) = 9 and its minimum value is f(3, 2) = 1. On L_3 we have y = 2 and

FIGURE 12

FIGURE 13 $f(x, y) = x^2 - 2xy + 2y$

$$f(x, 2) = x^2 - 4x + 4$$
 $0 \le x \le 3$

By the methods of Chapter 3, or simply by observing that $f(x, 2) = (x - 2)^2$, we see that the minimum value of this function is f(2, 2) = 0 and the maximum value is f(0, 2) = 4. Finally, on L_4 we have x = 0 and

$$f(0, y) = 2y \qquad 0 \le y \le 2$$

with maximum value f(0, 2) = 4 and minimum value f(0, 0) = 0. Thus, on the boundary, the minimum value of f is 0 and the maximum is 9.

In step 3 we compare these values with the value f(1, 1) = 1 at the critical point and conclude that the absolute maximum value of f on D is f(3, 0) = 9 and the absolute minimum value is f(0, 0) = f(2, 2) = 0. Figure 13 shows the graph of f.

Problems to be Practice:

EX # 14.7: Q5-Q20, Q29-Q36, Q39-Q50.