

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS14090077403

FCC REPORT (BLE)

Applicant: SHENZHEN CHUANGXINQI COMMUNICATION CO., LTD

Rm 501B, Block A1, kexing Science Park, Keyuan North Rd.,

Address of Applicant: Science and Technology Park, Nanshan, Shenzhen,

Guangdong, China

Equipment Under Test (EUT)

Product Name: Smart Phone

Model No.: U1,U1A,U1B,G401,G401A,G401B,G401C,G401Y,G401W

Trade mark: iNew

FCC ID: 2ACI4-U1

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 19 Sep., 2014

Date of Test: 20 Sep., to 27 Oct., 2014

Date of report issued: 29 Oct., 2014

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	29 Oct., 2014	Original

Prepared by:

Report Clerk

Date: 29 Oct., 2014

Reviewed by: Date: 29 Oct., 2014

Project Engineer

3 Contents

			Page
1	CO	VER PAGE	1
2	VEF	RSION	2
3	COI	NTENTS	3
4		ST SUMMARY	
5	GEN	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	7
	5.5	LABORATORY FACILITY	
	5.6	LABORATORY LOCATION	
	5.7	TEST INSTRUMENTS LIST	8
6	TES	ST RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED EMISSION	
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.		
	6.6.2		
	6.7 6.7.1	SPURIOUS EMISSION 1 Conducted Emission Method	
	6.7.2		
_	• • • • • • • • • • • • • • • • • • • •		
7	TES	ST SETUP PHOTO	35
8	EUT	CONSTRUCTIONAL DETAILS	36

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	SHENZHEN CHUANGXINQI COMMUNICATION CO., LTD		
Address of Applicant:	Rm 501B, Block A1, kexing Science Park, Keyuan North Rd., Science and Technology Park, Nanshan, Shenzhen, Guangdong, China		
Manufacturer:	SHENZHEN CHUANGXINQI COMMUNICATION CO., LTD		
Address of Manufacturer:	Rm 501B, Block A1, kexing Science Park, Keyuan North Rd., Science and Technology Park, Nanshan, Shenzhen, Guangdong, China		
Factory:	Hongjiada Electronics Co., Limited		
Address of Factory:	4 th Floor, C16 Building, Jiuwei Fuyuan Industrial Zone, Xi Xiang, Bao'an District, Shenzhen China 518000		

5.2 General Description of E.U.T.

Product Name:	Smart Phone
Model No.:	U1,U1A,U1B,G401,G401A,G401B,G401C,G401Y,G401W
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Monopoles Antenna
Antenna gain:	2 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V-1800mAh
AC adapter:	Model:ASUN30a-050100 Input:100-240V AC,50/60Hz 0.3A Output: DC 5.0V, 1000mA
Remark:	item No.: U1, U1A, U1B, G401, G401A, G401B, G401C, G401Y,G401W were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being the appearance of different colors, the battery cover different mark.

Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz	
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz	
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz	
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz	
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz	
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz	
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz	
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz	
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz	
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode	Keep the EUT in continuous transmitting with modulation			

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

N/A

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

■ IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Test Instruments list

Rad	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	Aug. 23 2014	Aug. 22 2017	
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	Apr. 19 2014	Apr. 19 2015	
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	Apr. 19 2014	Apr. 19 2015	
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
5	Coaxial Cable	CCIS	N/A	CCIS0016	Apr. 01 2014	Mar. 31 2015	
6	Coaxial Cable	CCIS	N/A	CCIS0017	Apr. 01 2014	Mar. 31 2015	
7	Coaxial cable	CCIS	N/A	CCIS0018	Apr. 01 2014	Mar. 31 2015	
8	Coaxial Cable	CCIS	N/A	CCIS0019	Apr. 01 2014	Mar. 31 2015	
9	Coaxial Cable	CCIS	N/A	CCIS0087	Apr. 01 2014	Mar. 31 2015	
10	Amplifier(10kHz- 1.3GHz)	HP	8447D	CCIS0003	Apr. 01 2014	Mar. 31 2015	
11	Amplifier(1GHz- 18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	June 09 2014	June 08 2015	
12	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	Apr. 01 2014	Mar. 31 2015	
13	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 30 2014	Mar. 29 2015	
14	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A	
15	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A	
16	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	Apr. 19 2014	Apr. 19 2015	
17	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	Apr. 01 2014	Mar. 31 2015	
18	Loop antenna	Laplace instrument	RF300	EMC0701	Apr. 01 2014	Mar. 31 2015	
19	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	May. 29 2014	May. 28 2015	
20	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	Apr. 19 2014	Apr. 19 2015	

Con	Conducted Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	Oct. 10 2012	Oct. 09 2015			
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	Apr. 10 2014	Apr. 09 2015			
3	LISN	CHASE	MN2050D	CCIS0074	Apr. 10 2014	Apr. 10 2015			
4	Coaxial Cable	CCIS	N/A	CCIS0086	Apr. 01 2014	Mar. 31 2015			
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement:

FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is a monopoles antenna which cannot replace by end-user, the best case gain of the antenna is 2 dBi.

6.2 Conducted Emission

U. _	Conducted Emissio	••
	Test Requirement:	FCC Part15 C Section 15.207
	Test Method:	ANSI C63.4: 2003
	Test Frequency Range:	150 kHz to 30 MHz
	Class / Severity:	Class B
	Receiver setup:	RBW=9kHz, VBW=30kHz
	Limit:	Limit (dBuV)
		Frequency range (MHz) Quasi-peak Average
		0.15-0.5 66 to 56* 56 to 46*
		0.5-5 56 46
		5-30 60 50 * Decreases with the logarithm of the frequency.
	Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be
	Test setup:	changed according to ANSI C63.4: 2003 on conducted measurement. Reference Plane LISN 40cm 80cm Filter AC power Equipment Test table/Insulation plane
	Test Instruments: Test mode:	Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m Refer to section 5.7 for details Refer to section 5.3 for details
	Test results:	Passed
		1 - 5555 5

Measurement Data

Neutral:

Trace: 13

Site

: CCIS Shielding Room : FCC CLASS-B QP LISN NEUTRAL : 774RF : Smart Phone Condition

Job. no EUT : U1 Model

Test Mode : BLE mode
Power Rating : AC120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Carey
Remark

Kemark	:								
		Read	LISN	Cable		Limit	Over		
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark	
-	MHz	dBu∀	dB	₫B	dBu₹	dBu∜	dB		-
1	0.150	39.74	0.25	10.78	50.77	66.00	-15.23	QP	
1 2 3	0.150	23.42	0.25	10.78	34.45	56.00	-21.55	Average	
3	0.180	35.51	0.25	10.77	46.53	64.50	-17.97	QP	
4	0.180	23.45	0.25	10.77	34.47	54.50	-20.03	Average	
4 5 6 7 8 9	0.325	31.94	0.26	10.73	42.93	59.57	-16.64	QP	
6	0.325	23.68	0.26	10.73	34.67	49.57	-14.90	Average	
7	0.400	36.41	0.25	10.72	47.38	57.86	-10.48	QP	
8	0.400	28.89	0.25	10.72	39.86	47.86	-8.00	Average	
9	0.505	29.23	0.29	10.76	40.28	56.00	-15.72	QP	
10	0.524	19.17	0.27	10.76	30.20	46.00	-15.80	Average	
11	0.601	18.84	0.23	10.77	29.84	46.00	-16.16	Average	
12	0.771	28.28	0.19	10.80	39.27	56.00	-16.73	QP	

Line:

Trace: 15

: CCIS Shielding Room : FCC CLASS-B QP LISN LINE : 774RF Site

Condition

Job. no

Smart Phone EUT Model U1 Test Mode : BLE mode

Power Rating: AC120V/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: Carey

lemark						1000 1000	2	
	7	Read		Cable	T	Limit	Over	D L
	Freq	rever	Factor	Loss	Level	Line	Limit	Remark
-	MHz	dBu∀	₫B	₫B	dBu₹	dBu₹	₫B	
1	0.150	38.30	0.27	10.78	49.35	66.00	-16.65	QP
2	0.185	34.87	0.28	10.77	45.92	64.24	-18.32	QP
3	0.185	19.36	0.28	10.77	30.41	54.24	-23.83	Average
4	0.220	30.20	0.28	10.76	41.24	62.83	-21.59	QP
4 5	0.325	19.48	0.27	10.73	30.48	49.57	-19.09	Average
6	0.330	29.18	0.27	10.73	40.18	59.44	-19.26	QP
7	0.400	33.75	0.28	10.72	44.75	57.86	-13.11	QP
8	0.400	25.43	0.28	10.72	36.43	47.86	-11.43	Average
9	0.510	26.38	0.28	10.76	37.42	56.00	-18.58	QP
10	0.614	14.91	0.25	10.77	25.93	46.00	-20.07	Average
11	1.367	15.43	0.25	10.91	26.59	46.00	-19.41	Average
12	2.567	15.44	0.27	10.94	26.65	46.00	-19.35	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)				
Test Method:	ANSI C63.4:2003 and KDB558074				
Limit:	30dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				
Remark:	Test method refer to KDB558074 v03r01 (DTS Measure Guidance) section 9.2.2.2				

Measurement Data

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	-5.66		
Middle	-5.03	30.00	Pass
Highest	-5.44		

Test plot as follows:

6.4 Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)				
Test Method:	ANSI C63.4:2003 and KDB558074				
Limit:	>500kHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result
Lowest	0.77		
Middle	0.76	>500	Pass
Highest	0.75		

Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result
Lowest	1.04		
Middle	1.04	N/A	N/A
Highest	1.04		

Test plot as follows:

Highest channel

Date:

6.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	ANSI C63.4:2003 and KDB558074
Limit:	8 dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	-6.25		
Middle	-6.57	8.00	Pass
Highest	-7.36		

Test plots as follow:

Highest channel

Span 1 MHz

Center 2.48 GHz

Date:

27.0CT.2014 20:17:11

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.4:2003 and KDB558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
	Spectrum Analyzer					
	E.U.T					
	Non-Conducted Table					
	Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plots as follow:

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.4: 20	03					
Test Frequency Range:	2.3GHz to 2.5G	Hz					
Test site:	Measurement D	Distance: 3m					
Receiver setup:	Frequency Detector RBW VBW Rem Above 1GHz Peak 1MHz 3MHz Peak Peak 1MHz 10Hz Average						
Limit: Test Procedure:	Freque Above 1	ency GHz	Limit (dBuV, 54.0 74.0	/m @3m) 00	Remark Average Value Peak Value e 0.8 meters above		
rest i locedure.	the ground to determin 2. The EUT wantenna, wantenna, wantenna to ground Both horizon make the number of the find the number of the EUT have 10 determined.	at a 3 meter of the position was set 3 meter which was mountained to determine to the antennent and the rota table maximum reactiver system and width with sion level of the collection of the would be reposed to the position of the would be reposed to the position of the would be reposed to the testined to the position of the would be reposed to the testined to the position of the would be reposed to the position of the positio	camber. The sof the highest rs away from the new ried from one the maximum cal polarization was turned was turned was turned was set to P Maximum He EUT in peasesting could borted. Otherwall be re-tested.	table was rest radiation. the interfer op of a variation of the analysis of the analysis from 0 degreeak Detect old Mode. The was arranged to heights of the extended was a stopped and the extended one by one of the extended one of the extended one by one of the extended one of the e	rence-receiving able-height antenna our meters above he field strength. Intenna are set to haged to its worst from 1 meter to 4 rees to 360 degrees		
Test setup:	Antenna Tower Horn Antenna Spectrum Analyzer Turn Table Amplifier						
Test Instruments:	Refer to section	5.7 for details	}				
Test mode:	Refer to section	5.3 for details	i				
Test results:	Passed						

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 774RF

Condition Pro EUT Smart Phone Test mode : BLE-L mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Carey
REMARK :

	S (5)	ReadAntenna Level Factor				Limit Line	Over Limit	Remark	
,	MHz	dBu₹	<u>d</u> B/m	 <u>ab</u>	dBuV/m	dBuV/m			
1 2	2390.000 2390.000	7-30-30	27.58 27.58	0.00 0.00				Peak Average	

Test channel: Lowest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Pro 774RF

EUT Smart Phone

lest mode : BLE-L mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Carey
REMARK :

EMARK	:	ReadA	Intenna	Cable	Preamo		Limit	Over	
	Freq		Factor				Line	Limit	Remark
ō	MHz	dBu∀	dB/m		<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2390.000 2390.000	7. 27. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	75.00 5.00 5.00		0.00 0.00				Peak Average

Test channel: Highest

Horizontal:

Site Condition

Pro EUT : Smart Phone : U1 Model Model : 01
Test mode : BLE-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Carey
REMARK :

	Freq		Antenna Factor						
⊕	MHz	dBu∜	dB/m	<u>d</u> B	dB	dBuV/m	$\overline{dBuV/m}$	 	
	2483.500 2483.500							Peak Average	

Test channel: Highest

Vertical:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 774RF Site Condition

Pro : Sma Phone EUT Smart

Model

Test mode : BLE-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey REMARK :

	Freq		Antenna Factor					107 00 00 00 00	Remark	
	MHz	dBu∜	dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		
1 2	2483.500 2483.500									

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.4:2003 and KDB558074						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table						
	Ground Reference Plane						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

Test mode:

Lowest channel

Date: 27.0CT.2014 19:45:05

30MHz~25GHz

Middle channel

Date: 27.OCT.2014 19:44:33

30MHz~25GHz

Highest channel

Date: 27.0CT.2014 19:43:49

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205									
Test Method:	ANSI C63.4:2003									
Test Frequency Range:	9KHz to 25GHz									
Test site:	Measurement D	Measurement Distance: 3m								
Receiver setup:										
	Frequency Detector RBW VBW Remark									
	30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Valu									
	Peak 1MHz 3MHz Peak Val									
	Above 1GHz	Peak	1MHz	10Hz	Average Value					
Limit:										
	Frequency		Limit (dBuV/m	@3m)	Remark					
	30MHz-88MHz		40.0		Quasi-peak Value					
	88MHz-216MHz		43.5		Quasi-peak Value					
	216MHz-960MH		46.0		Quasi-peak Value					
	960MHz-1GHz		54.0		Quasi-peak Value					
	Above 1GHz		54.0		Average Value					
Test Procedure:	1. The EUT w		74.0	rotating tab	Peak Value le 0.8 meters above					
rest i rocedure.	the ground to determin 2. The EUT of antenna, we tower. 3. The antenry the ground Both horizon make the make the make the make the make to find the meters and to find the make the limit specified B for the EUT have 10 dB	at a 3 meter e the position was set 3 m hich was mount a height is voto determine ontal and vertical and vertical the rota table maximum reaction level of the cified, then to would be reparation would	camber. The of the highes eters away for the night of the maximular polarizate ission, the Ena was turned ling. In was set to maximum Higher EUT in peresting could be orted. Other to the total ported to the re-tested of the re	table was a set radiation. The meter to the	rotated 360 degrees					

Test setup:	Below 1GHz
	Antenna Tower Search Antenna RF T est Receiver Ground Plane Above 1GHz Antenna Tower Horn Antenna Spectrum Analyzer Analyzer Amplifier
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 9 kHz to 30MHz is too low, so only shows the data of above 30MHz in this report.

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL : 774RF Condition

Pro EUT : Smart Phone

Model : U1
Test mode : BLE mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Carey
REMARK :

PHETTAL		25 35	. 18		723		12/35/11/05	1938	
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
100	MHz	dBu∜	dB/m	₫B	dB	dBuV/m	dBuV/m	₫B	
1	88.652	43.48	11.47	0.90	29.58	26.27	43.50	-17.23	QP
2	126.329	39.06	9.51	1.17	29.35	20.39	43.50	-23.11	QP
2	187.096	41.64	10.32	1.37	28.92	24.41	43.50	-19.09	QP
4	205.675	41.88	10.74	1.41	28.79	25.24	43.50	-18.26	QP
4 5	247.682	43.23	12.07	1.61	28.55	28.36	46.00	-17.64	QP
6	361.714	35.63	14.43	1.98	28.61	23.43	46.00	-22.57	QP

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

Pro 774RF EUT : Smart Phone : U1
Test mode : BLE mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Carey
REMARK :

minnar.									
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
=	MHz	dBu∜	dB/m		<u>dB</u>	$\overline{dBuV/m}$	dBuV/m		
1	32.520	43.96	12.31	0.46	29.96	26.77	40.00	-13.23	QP
2	38.212	41.08	13.15	0.51	29.92	24.82	40.00	-15.18	QP
2	44.120	37.41	13.56	0.55	29.87	21.65	40.00	-18.35	QP
4	88.342	38.96	11.47	0.90	29.58	21.75	43.50	-21.75	QP
4 5	107.510	35.34	12.49	1.03	29.47	19.39	43.50	-24.11	QP
6	203.523	36.62	10.67	1.40	28.81	19.88	43.50	-23.62	QP

Above 1GHz

Test channel:			Highest		Level:		Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	46.24	31.53	8.90	40.24	46.43	74.00	-27.57	Vertical
4804.00	47.07	31.53	8.90	40.24	47.26	74.00	-26.74	Horizontal

Test channel:			lighest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	36.05	31.53	8.90	40.24	36.24	54.00	-17.76	Vertical
4804.00	37.39	31.53	8.90	40.24	37.58	54.00	-16.42	Horizontal

Test channel:			/liddle		Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4884.00	46.22	31.58	8.98	40.15	46.63	74.00	-27.37	Vertical	
4884.00	46.81	31.58	8.98	40.15	47.22	74.00	-26.78	Horizontal	

Test channel:			/liddle		Level:		Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4884.00	36.72	31.58	8.98	40.15	37.13	54.00	-16.87	Vertical	
4884.00	36.59	31.58	8.98	40.15	37.00	54.00	-17.00	Horizontal	

Test channel:			lighest		Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	45.48	31.69	9.08	40.03	46.22	74.00	-27.78	Vertical	
4960.00	45.71	31.69	9.08	40.03	46.45	74.00	-27.55	Horizontal	

Test channel:			Highest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	35.13	31.69	9.08	40.03	35.87	54.00	-18.13	Vertical
4960.00	35.89	31.69	9.08	40.03	36.63	54.00	-17.37	Horizontal

Remark

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366