COD HW5

蔡豪语

高能效智能计算实验室

8.23

在中断处理过程中, "保护现场"需要完成哪些任务? 如何实现?

答:保护现场应该包括保护程序断点和保护CPU内部各寄存器内容的现场两个方面。程序断点的现场由中断隐指令完成,各寄存器的内容可在中断服务程序中由用户(或系统)用机器指令编程实现。

保护程序断点:将当前程序计数器PC的内容(程序断点)保存到存储器中。它可以存在存储器的特定单元(如0号地址)内,也可以存入堆栈。

保护寄存器内容:具体而言,可在中断服务程序的起始部分安排若干条存数指令,将寄存器的内容存至存储器中保存,或用进栈指令(PUSH)将各寄存器的内容入堆栈保存,即将程序中断时的"现场"保存起来。

8.24

现有A、B、C、D 4个中断源,其优先级由高到低按A→B→C→D顺序排列。若中断服务程序的执行时间为20us,根据下图所示时间轴给出的中断源请求中断的时刻,画出CPU执行程序的轨迹。

4.25

```
LOOP: Id x10, 0(x13)

Id x11, 8(x13)

add x12, x10, x11

subi x13, x13, 16

bnez x12, LOOP
```

如果使用完美的分支预测(即没有控制冒险带来的流水线停顿),流水线中没有使用延迟槽,采用硬件前递解决数据冒险,分支指令在EX阶段判断是否跳转。

4.25.1

给出该循环中前两次循环的流水线执行图

_																
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
ld	IF	ID	EX	MEM	WB											
Id		IF	ID	EX	MEM	WB			! 	! 				! 		
add			IF	ID	stall	EX	i MEM	WB	 	 				 		
subi				IF	satll	ID	EX	MEM	WB	! 				! 		
bnez				 	stall	IF	ID	EX	MEM	i ! WB				 		
Id							IF	ID	EX	MEM	WB			 		
Id			 	 	 	 	 	IF	ID	EX	MEM	WB	 	 		
add				 			 		IF	ID	stall	EX	MEM	WB		
subi									I I	l IF	satll	ID	EX	MEM	WB	
bnez			 		 	 -		 	 - 	 	stall	IF	ID	EX	MEM	WB

4.25.2

标注出没有进行有用操作的流水级。当流水线全负荷工作时,所有五个流水段都在进行有用操作的情况多久会出现一次?(从subi指令进行IF阶段开始计算,到bnez指令进入IF阶段结束。)

用浅蓝色标注无用流水段。 由流水线执行图可观察到: 不存在所有五个流水段都 在进行有用操作的情况