

Figure 2.12. Application of the Fourier transform to identify the underlying frequencies in time series data.

Many other sorts of transformations are also possible. Besides the Fourier transform, the **wavelet transform** has also proven very useful for time series and other types of data.

2.3.6 Discretization and Binarization

Some data mining algorithms, especially certain classification algorithms, require that the data be in the form of categorical attributes. Algorithms that find association patterns require that the data be in the form of binary attributes. Thus, it is often necessary to transform a continuous attribute into a categorical attribute (**discretization**), and both continuous and discrete attributes may need to be transformed into one or more binary attributes (**binarization**). Additionally, if a categorical attribute has a large number of values (categories), or some values occur infrequently, then it can be beneficial for certain data mining tasks to reduce the number of categories by combining some of the values.

As with feature selection, the best discretization or binarization approach is the one that "produces the best result for the data mining algorithm that will be used to analyze the data." It is typically not practical to apply such a criterion directly. Consequently, discretization or binarization is performed in a way that satisfies a criterion that is thought to have a relationship to good performance for the data mining task being considered. In general, the best discretization depends on the algorithm being used, as well as the other

Categorical Value	Integer Value	x_1	x_2	x_3
awful	0	0	0	0
poor	1	0	0	1
OK	2	0	1	0
good	3	0	1	1
$good \ great$	$\overline{4}$	1	0	0

Table 2.5. Conversion of a categorical attribute to three binary attributes.

Table 2.6. Conversion of a categorical attribute to five asymmetric binary attributes.

Categorical Value	Integer Value	x_1	x_2	x_3	x_4	x_5
awful	0	1	0	0	0	0
poor	1	0	1	0	0	0
OK	2	0	0	1	0	0
good	3	0	0	0	1	0
$good \\ great$	4	0	0	0	0	1

attributes being considered. Typically, however, the discretization of each attribute is considered in isolation.

Binarization

A simple technique to binarize a categorical attribute is the following: If there are m categorical values, then uniquely assign each original value to an integer in the interval [0, m-1]. If the attribute is ordinal, then order must be maintained by the assignment. (Note that even if the attribute is originally represented using integers, this process is necessary if the integers are not in the interval [0, m-1].) Next, convert each of these m integers to a binary number. Since $n = \lceil \log_2(m) \rceil$ binary digits are required to represent these integers, represent these binary numbers using n binary attributes. To illustrate, a categorical variable with 5 values $\{awful, poor, OK, good, great\}$ would require three binary variables $x_1, x_2,$ and x_3 . The conversion is shown in Table 2.5.

Such a transformation can cause complications, such as creating unintended relationships among the transformed attributes. For example, in Table 2.5, attributes x_2 and x_3 are correlated because information about the good value is encoded using both attributes. Furthermore, association analysis requires asymmetric binary attributes, where only the presence of the attribute (value = 1) is important. For association problems, it is therefore necessary to introduce one asymmetric binary attribute for each categorical value, as

shown in Table 2.6. If the number of resulting attributes is too large, then the techniques described in the following sections can be used to reduce the number of categorical values before binarization.

Likewise, for association problems, it can be necessary to replace a single binary attribute with two asymmetric binary attributes. Consider a binary attribute that records a person's gender, male or female. For traditional association rule algorithms, this information needs to be transformed into two asymmetric binary attributes, one that is a 1 only when the person is male and one that is a 1 only when the person is female. (For asymmetric binary attributes, the information representation is somewhat inefficient in that two bits of storage are required to represent each bit of information.)

Discretization of Continuous Attributes

Discretization is typically applied to attributes that are used in classification or association analysis. Transformation of a continuous attribute to a categorical attribute involves two subtasks: deciding how many categories, n, to have and determining how to map the values of the continuous attribute to these categories. In the first step, after the values of the continuous attribute are sorted, they are then divided into n intervals by specifying n-1 split points. In the second, rather trivial step, all the values in one interval are mapped to the same categorical value. Therefore, the problem of discretization is one of deciding how many split points to choose and where to place them. The result can be represented either as a set of intervals $\{(x_0, x_1], (x_1, x_2], \ldots, (x_{n-1}, x_n)\}$, where x_0 and x_n can be $+\infty$ or $-\infty$, respectively, or equivalently, as a series of inequalities $x_0 < x \le x_1, \ldots, x_{n-1} < x < x_n$.

Unsupervised Discretization A basic distinction between discretization methods for classification is whether class information is used (supervised) or not (unsupervised). If class information is not used, then relatively simple approaches are common. For instance, the equal width approach divides the range of the attribute into a user-specified number of intervals each having the same width. Such an approach can be badly affected by outliers, and for that reason, an equal frequency (equal depth) approach, which tries to put the same number of objects into each interval, is often preferred. As another example of unsupervised discretization, a clustering method, such as K-means (see Chapter 5), can also be used. Finally, visually inspecting the data can sometimes be an effective approach.

Example 2.12 (Discretization Techniques). This example demonstrates how these approaches work on an actual data set. Figure 2.13(a) shows data points belonging to four different groups, along with two outliers—the large dots on either end. The techniques of the previous paragraph were applied to discretize the x values of these data points into four categorical values. (Points in the data set have a random y component to make it easy to see how many points are in each group.) Visually inspecting the data works quite well, but is not automatic, and thus, we focus on the other three approaches. The split points produced by the techniques equal width, equal frequency, and K-means are shown in Figures 2.13(b), 2.13(c), and 2.13(d), respectively. The split points are represented as dashed lines.

In this particular example, if we measure the performance of a discretization technique by the extent to which different objects that clump together have the same categorical value, then K-means performs best, followed by equal frequency, and finally, equal width. More generally, the best discretization will depend on the application and often involves domain-specific discretization. For example, the discretization of people into low income, middle income, and high income is based on economic factors.

Supervised Discretization If classification is our application and class labels are known for some data objects, then discretization approaches that use class labels often produce better classification. This should not be surprising, since an interval constructed with no knowledge of class labels often contains a mixture of class labels. A conceptually simple approach is to place the splits in a way that maximizes the purity of the intervals, i.e., the extent to which an interval contains a single class label. In practice, however, such an approach requires potentially arbitrary decisions about the purity of an interval and the minimum size of an interval.

To overcome such concerns, some statistically based approaches start with each attribute value in a separate interval and create larger intervals by merging adjacent intervals that are similar according to a statistical test. An alternative to this bottom-up approach is a top-down approach that starts by bisecting the initial values so that the resulting two intervals give minimum entropy. This technique only needs to consider each value as a possible split point, because it is assumed that intervals contain ordered sets of values. The splitting process is then repeated with another interval, typically choosing the interval with the worst (highest) entropy, until a user-specified number of intervals is reached, or a stopping criterion is satisfied.

Figure 2.13. Different discretization techniques.

Entropy-based approaches are one of the most promising approaches to discretization, whether bottom-up or top-down. First, it is necessary to define **entropy**. Let k be the number of different class labels, m_i be the number of values in the i^{th} interval of a partition, and m_{ij} be the number of values of class j in interval i. Then the entropy e_i of the i^{th} interval is given by the equation

$$e_i = -\sum_{j=1}^k p_{ij} \log_2 p_{ij},$$

where $p_{ij} = m_{ij}/m_i$ is the probability (fraction of values) of class j in the ith interval. The total entropy, e, of the partition is the weighted average of the individual interval entropies, i.e.,

$$e = \sum_{i=1}^{n} w_i e_i,$$

where m is the number of values, $w_i = m_i/m$ is the fraction of values in the i^{th} interval, and n is the number of intervals. Intuitively, the entropy of an interval is a measure of the purity of an interval. If an interval contains only values of one class (is perfectly pure), then the entropy is 0 and it contributes nothing to the overall entropy. If the classes of values in an interval occur equally often (the interval is as impure as possible), then the entropy is a maximum.

Example 2.13 (Discretization of Two Attributes). The top-down method based on entropy was used to independently discretize both the x and y attributes of the two-dimensional data shown in Figure 2.14. In the first discretization, shown in Figure 2.14(a), the x and y attributes were both split into three intervals. (The dashed lines indicate the split points.) In the second discretization, shown in Figure 2.14(b), the x and y attributes were both split into five intervals.

This simple example illustrates two aspects of discretization. First, in two dimensions, the classes of points are well separated, but in one dimension, this is not so. In general, discretizing each attribute separately often guarantees suboptimal results. Second, five intervals work better than three, but six intervals do not improve the discretization much, at least in terms of entropy. (Entropy values and results for six intervals are not shown.) Consequently, it is desirable to have a stopping criterion that automatically finds the right number of partitions.

Categorical Attributes with Too Many Values

Categorical attributes can sometimes have too many values. If the categorical attribute is an ordinal attribute, then techniques similar to those for continuous attributes can be used to reduce the number of categories. If the categorical attribute is nominal, however, then other approaches are needed. Consider a university that has a large number of departments. Consequently,