Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики Кафедра «Прикладная математика»

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №8 ПО ДИСЦИПЛИНЕ «МАТЕМАТИЧЕСКАЯ СТАТИСТИКА»

Выполнил студент группы 3630102/70401

Кнодель Юлия Максимовна

Проверил к. ф.-м. н., доцент

Баженов Александр Николаевич

Санкт-Петербург 2020

Содержание

1	Постановка задачи						
	1.1	Задан	ше	2			
2	Теория						
	2.1	Довер	оительные интервалы для параметров нормального распределения	2			
		2.1.1	Доверительный интервал для математического ожидания m нор-				
			мального распределения	2			
		2.1.2	Доверительный интервал для среднего квадратического откло-				
			нения σ нормального распределения	3			
	2.2		рительные интервалы для математического ожидания m и сред-				
			квадратического отклонения σ произвольного распределения при	0			
			пом объёме выборки. Асимптотический подход	3			
		2.2.1	Доверительный интервал для математического ожидания m про-				
			извольной генеральной совокупности при большом объёме вы-	4			
		0.0.0	борки	4			
		2.2.2	Доверительный интервал для среднего квадратического откло-				
			нения σ произвольной генеральной совокупности при большом	4			
			объёме выборки	4			
3	Pea	лизац	ия	5			
	ъ						
4		ультат		6			
	4.1						
	4.2		рительные интервалы для параметров произвольного распределе-	c			
		ния. А	Асимптотический подход	6			
5	Обсуждение						
	5.1	-	оительные интервалы для параметров распределения	6			
		, , ,					
6	Прі	Приложения					
$\overline{}$	пис	OK I	иллюстраций				
$\overline{}$	1111						
_							
C	ПИС	сок т	саблиц				
	1	Ловет	рительные интервалы для параметров нормального распределения	6			
	2		рительные интервалы для параметров произвольного распределе-	0			
	_		Асимптотический подход	6			

1 Постановка задачи

1.1 Задание

Для двух выборок размерами 20 и 100 элементов, сгенерированных согласно нормальному закону N(x,0,1), для параметров положения и масштаба построить асимптотически нормальные интервальные оценки на основе точечных оценок метода максимального правдоподобия и классические интервальные оценки на основе статистик χ^2 и Стьюдента. В качестве параметра надёжности взять $\gamma=0.95$.

2 Теория

2.1 Доверительные интервалы для параметров нормального распределения

2.1.1 Доверительный интервал для математического ожидания m нормального распределения

Дана выборка $(x_1, x_2, ..., x_n)$ объёма п из нормальной генеральной совокупности. На её основе строим выборочное среднее \bar{x} и выборочное среднее квадратическое отклонение s. Параметры m и σ нормального распределения неизвестны. Доказано, что случайная величина

$$T = \sqrt{n-1} \cdot \frac{\bar{x} - m}{s}$$

называемая статистикой Стьюдента, распределена по закону Стьюдента с n-1 степенями свободы. Пусть $f_T(x)$ — плотность вероятности этого распределения. Тогда

$$P\left(-x < \sqrt{n-1}\frac{\bar{x} - m}{s} < x\right) = P\left(-x < \sqrt{n-1}\frac{m - \bar{x}}{s} < x\right) =$$

$$= \int_{-x}^{x} f_T(t)dt = 2\int_{0}^{x} f_T(t)dt = 2\left(\int_{-\infty}^{x} f_T(t)dt - \frac{1}{2}\right) = 2F_T(x) - 1$$

Здесь $F_T(x)$ — функция распределения Стьюдента с n-1 степенями свободы. Полагаем $2F_T(x)-1=1-\alpha$, где α — выбранный уровень значимости. Тогда $F_T(x)=1-\alpha/2$. Пусть $t_{1-\alpha/2}(n-1)$ — квантиль распределения Стьюдента с n-1 степенями свободы и порядка $1-\alpha/2$. Из предыдущих равенств мы получаем

$$P\left(\bar{x} - \frac{sx}{\sqrt{n-1}} < m < \bar{x} + \frac{sx}{\sqrt{n-1}}\right) = 2F_T(x) - 1 = 1 - \alpha,$$

$$P(\bar{x} - \frac{st_{1-\alpha/2}(n-1)}{\sqrt{n-1}} < m < \bar{x} \frac{st_{1-\alpha/2}(n-1)}{\sqrt{n-1}}) = 1 - \alpha$$

что и даёт доверительный интервал для m с доверительной вероятностью $\gamma=1-\alpha$ [1, с. 457-458].

2.1.2 Доверительный интервал для среднего квадратического отклонения σ нормального распределения

Дана выборка $(x_1, x_2, ..., x_n)$ объёма п из нормальной генеральной совокупности. На её основе строим выборочную дисперсию s^2 . Параметры m и σ нормального распределения неизвестны. Доказано, что случайная величина ns^2/σ^2 распределена по закону χ^2 с n-1 степенями свободы.

Задаёмся уровнем значимости α и находим квантили $\chi^2_{\alpha/2}(n-1)$ и $\chi^2_{1-\alpha/2}(n-1)$. Это значит, что

$$P\left(\chi^{2}(n-1) < \chi^{2}_{\alpha/2}(n-1)\right) = \alpha/2,$$

$$P\left(\chi^{2}(n-1) < \chi^{2}_{1-\alpha/2}(n-1)\right) = 1 - \alpha/2$$

Тогда

$$P\left(\chi_{\alpha/2}^{2}(n-1) < \chi^{2}(n-1) < \chi_{1-\alpha/2}^{2}(n-1)\right) = P\left(\chi^{2}(n-1) < \chi_{1-\alpha/2}^{2}(n-1)\right) - P\left(\chi^{2}(n-1) < \chi_{\alpha/2}^{2}(n-1)\right) = 1 - \alpha/2 - \alpha/2 = 1 - \alpha$$

Отсюда

$$\begin{split} P\left(\chi_{\alpha/2}^{2}(n-1) < \frac{ns^{2}}{\sigma^{2}} < \chi_{1-\alpha/2}^{2}(n-1)\right) &= P\left(\frac{1}{\chi_{1-\alpha/2}^{2}(n-1)} < \frac{\sigma^{2}}{ns^{2}} < \frac{1}{\chi_{\alpha/2}^{2}(n-1)}\right) = \\ &= P\left(\frac{s\sqrt{n}}{\sqrt{\chi_{1-\alpha/2}^{2}(n-1)}} < \sigma < \frac{s\sqrt{n}}{\sqrt{\chi_{\alpha/2}^{2}(n-1)}}\right) = 1 - \alpha \end{split}$$

Окончательно

$$P\left(\frac{s\sqrt{n}}{\sqrt{\chi_{1-\alpha/2}^2(n-1)}} < \sigma < \frac{s\sqrt{n}}{\sqrt{\chi_{\alpha/2}^2(n-1)}}\right) = 1 - \alpha,$$

что и даёт доверительный интервал для σ с доверительной вероятностью $\gamma=1-\alpha$ [1, с. 458-459].

2.2 Доверительные интервалы для математического ожидания m и среднего квадратического отклонения σ произвольного распределения при большом объёме выборки. Асимптотический подход

При большом объёме выборки для построения доверительных интервалов может быть использован асимптотический метод на основе центральной предельной теоремы.

2.2.1 Доверительный интервал для математического ожидания m произвольной генеральной совокупности при большом объёме выборки

Выборочное среднее $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ при большом объёме выборки является суммой большого числа взаимно независимых одинаково распределённых случайных величин. Предполагаем, что исследуемое генеральное распределение имеет конечные математическое ожидание m и дисперсию σ^2 . Тогда в силу центральной предельной теоремы центрированная и нормированная случайная величина $(\bar{x} - M\bar{x})/\sqrt{D\bar{x}} = \sqrt{n}(\bar{x} - m)/\sigma$ распределена приблизительно нормально с параметрами 0 и 1. Пусть

$$\Phi(x) = \frac{1}{2\pi} \int_{-\infty}^{x} e^{-t^2/2} dt \tag{1}$$

- функция Лапласа. Тогда

$$\begin{split} P\left(-x < \sqrt{n}\frac{\bar{x} - m}{\sigma} < x\right) &= P\left(-x < \sqrt{n}\frac{m - \bar{x}}{\sigma} < x\right) \approx \\ &\approx \Phi(x) - \Phi(-x) = \Phi(x) - [1 - \Phi(x)] = 2\Phi(x) - 1 \end{split}$$

Отсюда

$$P\left(\bar{x} - \frac{\sigma x}{\sqrt{n}} < m < \bar{x} - \frac{\sigma x}{\sqrt{n}}\right) \approx 2\Phi(x) - 1 \tag{2}$$

Полагаем $2\Phi(x)-1=\gamma=1-\alpha;$ тогда $\Phi(x)=1-\alpha/2.$ Пусть $u_{1-\alpha/2}$ — квантиль нормального распределения N(0,1) порядка $1-\alpha/2.$ Заменяя в равенстве (2) σ на s, запишем его в виде

$$P\left(\bar{x} - \frac{su_{1-\alpha/2}}{\sqrt{n}} < m < \bar{x} - \frac{su_{1-\alpha/2}}{\sqrt{n}}\right) \approx \gamma,$$

что и даёт доверительный интервал для m с доверительной вероятностью $\gamma=1-\alpha$ [1, c. 460].

2.2.2 Доверительный интервал для среднего квадратического отклонения σ произвольной генеральной совокупности при большом объёме выборки

Выборочная дисперсия $s^2 = \sum_{i=1}^n \frac{(x_i - \bar{x})^2}{n}$ при большом объёме выборки является суммой большого числа практически взаимно независимых случайных величин (имеется одна связь $\sum_{i=1}^n x_i = n\bar{x}$, которой при большом п можно пренебречь). Предполагаем, что исследуемая генеральная совокупность имеет конечные первые четыре момента. В силу центральной предельной теоремы центрированная и нормированная случайная величина $(s^2 - Ms^2)/\sqrt{Ds^2}$ при большом объёме выборки п распределена приблизительно нормально с параметрами 0 и 1. Пусть $\Phi(x)$ — функция Лапласа (1). Тогда

$$P\left(-x < \frac{s^2 - Ms^2}{\sqrt{Ds^2}} < x\right) \approx \Phi(x) - \Phi(-x) = \Phi(x) - [1 - \Phi(x)] = 2\Phi(x) - 1$$

Положим $2\Phi(x)-1=\gamma=1-\alpha$. Тогда $\Phi(x)=1-\alpha/2$. Пусть $u_{1-\alpha/2}-$ корень этого уравнения — квантиль нормального распределения N(0,1) порядка $1-\alpha/2$. Известно, что $Ms^2=\sigma^2-\frac{\sigma^2}{n}\approx\sigma^2$ и $Ds^2=\frac{\mu_4-\mu_2^2}{n}+o(\frac{1}{n})\approx\frac{\mu_4-\mu_2^2}{n}$. Здесь μ_k- центральный момент k-го порядка генерального распределения; $\mu_2=\sigma^2$; $\mu_4=M[(x-Mx)^4]$; $o(\frac{1}{n})-$ бесконечно малая высшего порядка, чем 1/n, при $n\to\infty$. Итак, $Ds^2\approx\frac{\mu_4-\mu_2^2}{n}$. Отсюда

$$Ds^2 \approx \frac{\sigma^4}{n} (\frac{\mu_4}{\sigma^4} - 1) = \frac{\sigma^4}{n} ((\frac{\mu_4}{\sigma^4} - 3) + 2) = \frac{\sigma^4}{n} (E + 2) \approx \frac{\sigma^4}{n} (e + 2),$$

где Е = $\frac{\mu_4}{\sigma^4}-3$ — эксцесс генерального распределения, е = $\frac{m_4}{s^4}-3$ — выборочный эксцесс; $m_4=\frac{1}{n}\sum_{i=1}^n{(x_i-\bar{x})^4}$ — четвёртый выборочный центральный момент. Далее,

$$\sqrt{Ds^2} \approx \frac{\sigma^2}{\sqrt{n}} \sqrt{e+2}$$

Преобразуем неравенства, стоящие под знаком вероятности в формуле $P\left(-x<\frac{s^2-Ms^2}{\sqrt{Ds^2}}< x\right)=\gamma$:

$$-\sigma^{2}U < s^{2} - \sigma^{2} < \sigma^{2}U;$$

$$\sigma^{2}(1 - U) < s^{2} < \sigma^{2}(1 + U);$$

$$1/[\sigma^{2}(1 + U)] < 1/s^{2} < 1/[\sigma^{2}(1 - U)];$$

$$s^{2}/(1 + U) < \sigma^{2} < s^{2}/(1 - U);$$

$$s(1 + U)^{-1/2} < \sigma < s(1 - U)^{-1/2},$$
(3)

где $U = u_{1-\alpha/2} \sqrt{(e+2)/n}$ или

$$s(1 + u_{1-\alpha/2}\sqrt{(e+2)/n})^{-1/2} < \sigma < s(1 - u_{1-\alpha/2}\sqrt{(e+2)/n})^{-1/2}.$$

Разлагая функции в биномиальный ряд и оставляя первые два члена, получим

$$s(1 - 0.5U) < \sigma < s(1 + 0.5U)$$

или

$$s(1 - 0.5u_{1-\alpha/2}\sqrt{(e+2)/n}) < \sigma < s(1 + 0.5u_{1-\alpha/2}\sqrt{(e+2)/n})$$
(4)

Формулы (3) или (4) дают доверительный интервал для σ с доверительной вероятностью $\gamma = 1 - \alpha$ [1, с. 461-462].

Замечание. Вычисления по формуле (3) дают более надёжный результат, так как в ней меньше грубых приближений.

3 Реализация

В приложении находится ссылка на репозиторий на GitHub, где находится исходный код лабораторной работы.

4 Результаты

4.1 Доверительные интервалы для параметров нормального распределения

n = 20	m	σ
	-0.69 < m < 0.19	$\boxed{0.71 < \sigma < 1.37}$
n = 100	m	σ
	-0.28 < m < 0.12	$\boxed{0.88 < \sigma < 1.16}$

Таблица 1: Доверительные интервалы для параметров нормального распределения

4.2 Доверительные интервалы для параметров произвольного распределения. Асимптотический подход

n = 20	m	σ
	-0.65 < m < 0.15	$0.8 < \sigma < 1.1$
n = 100	m	σ
	-0.28 < m < 0.11	$0.94 < \sigma < 1.07$

 Таблица 2: Доверительные интервалы для параметров произвольного распределения.

 Асимптотический подход

5 Обсуждение

5.1 Доверительные интервалы для параметров распределения

По полученным результатам видно, что параметры распределения m=0 и $\sigma=1$ лежат внутри доверительных интервалов. Также для выборки большего размера длина доверительных интервалов оказывается меньше, другими словами эти доверительные интервалы являются более точными.

6 Приложения

Код программы - GitHub URL: https://github.com/juliaknodel/math-statistics/blob/master/MS8.py