STATISTICA INFEDENZIALE Scopo Ottenere info sulla distribuzione di una populazione studiondo dotti rileventi su un compione. La populazione non è nota, prendo un campione e tramite l'analisi dico Statistica inferenziale OVITTUDINI CHOM NI SNOISABCACA DULLE OSCIDENTIVO. a) ogui mous estrazione è indipendente dalle precedenti - 1 indipendenza lootesi chiave b) l'extrazione di agni individuo che andrà a contraire il compione è fatte in mode identico al precedente -> equi distribuzione (1,P) spozio di probabilità su cui sono definite tutte le v.a. che Situazione considereremo. ·11 carattere che vogliamo studiare è rappresentato da una v.a. X: 12-> R con distribuzione & sconosciuta (in parte o totalmente); · per determinare Px, suppongo di avere da X,..., Xn v.a. i.i.d. che rappresentano il compione estratto. Si intende di toglia n per X il doto di X,..., Xn con Xi v.a. i.i.d. Campione con legge Px stetistico es. alterzo ~N(m, o) mi aspetto che sia distribuita così ma mon sous conosciuti i parametri. Cerco delle stime sui parametri tromite la STATISTICA PARAMETRICA. Statistica Scopo: · stime perametrica parametrica ·intervalli di fiducia · test statistici Notazione: · B: indica un parametro non noto della popolazione; · Be H: H indica l'insieme dei valori ammissibili; · Px: la B indica che la prob. dipendente da un parametro. Funzione $g(X_1,...,X_n)$ del compione $(X_1,...,X_n)$ Statistica compioneria Una statistica compionaria P(x, ..., x,) atte a stimare B Stimoton di un parametro B es. Per stimere l'altezze di tutti gli iscritti alle triennelle di information

Stimatore	g (x1,,xn) stimatore del parametro B si dice corretto se E[g(x1,,xn)]=B
(non distorta)	
Proposizione	X ₁ ,,X _n compiane statisfico con momento secondo, allora:
	① \overline{X}_n is the stimatore correction per $E[X_i] = \overline{E}[X]$;
	@Sh z uno stimatore corretto per Var(X;)=Var(X)
	Dimostrazione:
	① X, stimature corretto per E[X;] <=> E[X,]=E[X]
	$E[\frac{X_1++X_m}{2}] = \frac{1}{N} \sum_{i=1}^{N} X_i = \frac{1}{N} \cdot N \cdot E[X] = E[X]$
	1/12
	@S" stimatore corretto per Var(x) <=> F[S",] = Var(x)
	DA FARZ DIY.
Stimatore	Parametro B della distribuzione, XI,, Xn nE/N campione di oo v.a. i.i.d. di X
Consistente	a(X1,,Xn) è una stimatore consistente di B se per n→ o vale q n(X1,,Xn) → B
	in probabilità
	·
	es. X1,, Xn campione di v.a. i.i.d. con momento secondo
	Allora Xn è una stimatore consistente per ELXi] (-ELX] = /4)
	e Sn è uno stimatore consistente per var(x:)
	Dim. si dimostra con LGN
Efficienta di	Presi g(X1,,Xn) e h(X1,,Xn) stimatori corretti del parametro B dico che g è
uno stimatore	più efficiente di h se $Var(g(x_1,,x_n)) \leq Var(h(x_1,,x_n))$
	es. X1,,Xn v.a. i.i.d. => \(\text{X} n \) \(\text{e} \) tanto più efficiente quanto più n aumenta
	0 1/ (-) (X1+ ··· +X1) - 1 ./ (> (X1)
	$D_{im} \cdot V_{ar}(\overline{\chi_n}) = V_{ar}(\frac{\chi_1 + \dots + \chi_n}{n}) = \frac{1}{n^2} \cdot (V_{ar}(\chi_1) + \dots + V_{ar}(\chi_n)) = \frac{1}{n^2} \cdot n V_{ar}(\chi_1) = \frac{V_{ar}(\chi_1)}{n}$
	quindi più cresce n e prù divento piccolo il risultoto, si disperde meno
1/ 1 - 1 - 1 - 1	Mal da su suchaca has la al 11 (V)
Hetodo della	Hetodo per scegliere un buon stimatore. Ho (X1,,Xn) campione i.i.d di X,
	X con distribuzione Pa con B parametro.
ver osimi grianta	Le v.a. possona essere:
	. discrete con funtione di massa PB(x)
	. con densitor fr(x)
Funziono di	LB:R"→IR definita come:
vacusimia lianza	. caso discreto: Po(X1,,Xn)=P{X1=x13P{Xn=xn}=P{X1=x1,,Xn=xn}
Ver usimigationes	
	. caso con densito: fr(X1)fr(Xn)
Stima marrier	Si chiama HLE se \exists una statistica campionaria $\hat{B} = \hat{B}(X_1,,X_n)$ tale che
vocasimialiana	valas l'unuadianes / (Xx Xx)= max / (Xx xx) = 1/2 (Xx xx) = Rh
(HLE)	volgo l'uguaglianza Là (X1,,Xn)= max Lp(X1,,Xn) \(\frac{1}{2}(\text{X1,,Xn}) \in \mathbb{R}^n
	Il massimo si trava tramite la derivata della funzione
	Ho $y=L(\beta)$ e cerco $dL=(\hat{\beta})$
	dB
	Alle volle non basta una stima ma servono degli intervalli di fiducia

Intervalli di fiducia	(X1,,Xn) compione statistico di legge Po, DEHEIR oe (0,1) e 2,6: Rn-iR fuzion: t.c. a(X1,,Xn), b(X1,,Xn) siano v.a.
	Allora un intervallo aleatorio $I[a(x_1,,x_n),b(x_1,,x_n)]$ si dice
	intervallo di fiducio per 0 di livello 1-8 se
	ING DONG AT (TODGE DET O AT TIVETA TER SE
	HOEH PO (OEI) = P(a(x1,, xn) ≤ θ, b(x1,, xn) ≥ θ) ≥ 1-2
	b($x_1,,x_n$) b($x_1,,x_n$) intervallo $\hat{c} \ge 1-3$
	$b(x_1,,x_n)$ b(x ₁ ,,x _n) intervallo $e \ge 1-3$