



# H-DES: a Hybrid **Differential Equation Solver**

11 November 2024 - QCRG Seminar

Dr. Hamza JAFFALI













# The bottleneck in AI & High Performance Computing





Computing challenges in aerospace...

1 week to 6 months per intensive simulation for new aircraft designs





... with limited current approaches
Classical methods & AI dependence on HPC
will slow innovation and impact the environment

... and in many other industries ...

Risk wasting resources on inefficient computations

## **Quantum Computing is promising but...**



Insufficient quantum computing knowledge among engineers addressing complex problems



Which quantum computer?

Which algorithms?

Which software, platform, tool, SDK?

How to mitigate errors?

For which use cases?

At which cost?

## **QUICK: Bringing Quantum Computing to All**



#### **Our solution**

A bridge between industries quantum computing

#### **Our Customers**













#### **Our Hardware Targets & Partners**























#### Multi hardware

Whatever hardware wins, Our algorithms will be compatible



No quantum skills needed to use its advantage Integrated in favorite simulation software

**User friendly** 

## Integrated directly in simulation softwares





## What is happening behind

**Existing assets** 





# **MPQP: Multi Platform Quantum Programming**



# A UNIFIED AND INTUITIVE PROGRAMMING LIBRARY

- 1. One language, running on all platforms: easy benchmark
- Changes on provider-side do not affect your code
- 3. High-level programming framework for education, research and industrial development
- 4. Combined with QUICK modules



## How to start using it



Checkout our GitHub repo!

\$ pip install mpqp

On GitHub, you can find links to

- Our documentation
- Our Discord server

New release coming soon!



## **Our Team**





CEO

Hacène *MBA* 



СТО

Laurent

Ph.D.



Frédéric R&D

Associate <u>Profess</u>or

HDR



Youcef

R&D

Ph.D.



R&D

Karla

Ph.D.



R&D

Hugo

Ph.D.



R&D

Roland

Ph.D.



Aoife

R&D

Ph.D.



MPQP

Hamza

Ph.D



**MPQP** 

Henri

Ph.D.

IT



MPQP

Muhammad

Msc.



Julien

**MPQP** 

Msc.



Ahmed

Business Roman

Msc.













**TECHNOLOGIES** 















## Our obsession: solving real-world problems

We focus on solving the underlying mathematical problems behind industrial use cases

**Quantum advantage** 

**Energy consumption** 

Time / Resources

**Precision** 



## **Focus on Aerospace and Defense**



Complex phenomena described by systems of nonlinear partial differential equations

## **Spectral methods**



# Idea: Approximate the solution of a PDE by a finite linear combination of a chosen set of orthogonal functions $\{P_k\}_k$

$$f(x) = \sum_{k=0}^{C-1} c_k P_k(x)$$

## An example of widely used basis: Chebyshev polynomials

$$Cheb(k,x) = \begin{cases} cos(k \arccos x) & if |x| \le 1\\ cosh(k \arccos x) & if x \ge 1\\ (-1)^k \cosh(k \arccos h(-x)) & if x \le -1 \end{cases}$$

## **Variational Quantum Algorithms**





#### **Three main ingredients**

- Cost function to encode the problem
- Structure of the parametrized circuit, called Ansatz
- Classical optimizer

- Low depth circuit, better for NISQ
- Uses the best of CPUs/QPUs
- Possibly noise-resilient
- Equivalent of Artificial Neural Networks in ML

## The three main components of a VQA







## **Encoding of the function**





$$|\psi_{\theta}\rangle=U_{\theta}|0
angle^{\otimes n}=\sum_{i=0}^{2^n-1}a_i|i
angle,\quad ext{with}\quad \sum_{i=0}^{2^n-1}|a_i|^2=1$$

### **Example of spectral encoding for 2-qubit state:**

$$(|a_{0}|^{2}) \cdot Cheb(0,x) + |a_{1}|^{2} \cdot Cheb(1,x) + (|a_{2}|^{2}) \cdot Cheb(0,x) - |a_{3}|^{2} \cdot Cheb(1,x)$$

$$f(x) = \lambda \sum_{i=0}^{2^{n-1}-1} (p_{i} - p_{i+2^{n-1}}) \cdot Cheb(i,x)$$

## **Evaluating the function and its derivatives**



$$f(x) = \lambda \sum_{i=0}^{2^{n-1}-1} (p_i - p_{i+2^{n-1}}) \cdot Cheb(i, x) = \lambda \langle \psi_{\theta} | O_c(x) | \psi_{\theta} \rangle$$

#### **Example of observable for 2-qubit state:**

$$O_c(x) = \begin{pmatrix} Cheb(0,x) & 0 & 0 & 0 \\ 0 & Cheb(1,x) & 0 & 0 \\ 0 & 0 & -Cheb(0,x) & 0 \\ 0 & 0 & 0 & -Cheb(1,x) \end{pmatrix}$$

$$O_{c}(x) = Z \otimes \left(\sum_{i=0}^{2^{n-1}-1} Cheb(i,x)|i\rangle\langle i|\right)$$
 For the derivatives, we just change the diagonal coefficients

## From solving PDEs to numerical optimization



## We use the MSE of the DEs' residuals over a set of sample points $S = \{x_s\}_s$ to define the cost function

$$Cost(\theta) = \frac{1}{n_S} \sum_{e \in E} \sum_{x_S \in S} e(x_S, \theta)^2 + \frac{1}{n_{BC}} \sum_{f \in F} \sum_{f_{BC}, x_{BC} \in BC(f)} \left( f(x_{BC}, \theta) - f_{BC}(x_{BC}) \right)^2$$



## **Easily extendable to PDEs**



We consider PDEs made of functions of v variables  $X=(x_1,x_2,...,x_v)$ 

We split the basis vectors in small groups of qubits to encode each order or Chebychev polynomials associated with each variable

$$|i\rangle = |i_0\rangle|i_1i_2i_3\dots i_n\rangle = |i_0\rangle|L_1\rangle|L_2\rangle\dots|L_\nu\rangle$$

$$Cheb(i,X) = \prod_{j=1}^{v} Cheb(dec(L_j),x_j)$$

$$O_{\mathcal{C}}(X) = Z \otimes \left(\sum_{i=0}^{2^{n-1}-1} Cheb(i,X)|i\rangle\langle i|\right)$$
 For the derivatives, we can compute the partial derivatives in a clever way reusing the Cheb(L\_j,X)s

For the derivatives, the Cheb(L\_i,X)s

## **Example – Tensile test**

Used to characterize mechanical properties of a material

Determine the displacement and the stress-strain relation

Hypoelastic regime → complex and non-linear elastic responses



$$\begin{cases} \frac{du}{dx} = \epsilon_{xx}(\sigma_{xx}) \\ \frac{d\sigma_{xx}}{dx} + b_x = 0 \end{cases}$$

$$\epsilon_{xx} = \frac{\sigma_{xx}}{3K} + \frac{2\epsilon_0}{\sqrt{3}} \left( \frac{\sigma_{xx}}{\sqrt{3\sigma_0}} \right)$$





## Some differential equations solved with H-DES so far



|                       | Linear                                                                                                                                                                                                    | Non-linear                                                                                                                                                                                                                                                      |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1st order             | Continuous function approximation  Non-homogenous DE with variable coefficients  2 coupled homogenous DEs                                                                                                 | 2 coupled non-homogenous DEs (e.g. material deformation under stress)  2 coupled homogenous DEs (e.g. isothermal pressureless Euler equations with time-dependent damping)  3 coupled non-homogenous DEs (e.g. sub- and super-sonic fluid dynamics in a nozzle) |
| 2 <sup>nd</sup> order | Non-homogenous DEs with variable coefficients (e.g. forced harmonic oscillator with time-varying damping)  2 coupled homogenous DEs with constant coefficients (e.g. coupled damped harmonic oscillators) | Homogenous DE (e.g. viscid Burger equation)  2 coupled homogenous stiff DEs (e.g. simplified 1D combustion model)                                                                                                                                               |

## Advantages of our approach



Takes as input any linear and non-linear, coupled, system, of ODE/PDE, boundary conditions

Requires low number of qubits to reach a high precision on the solution

No approximation on all the derivatives of the solution functions

Only one circuit to represent the solution function and all its derivatives

Low depth circuits thanks to a VQA approach

Strategies to reduce measurements on the circuit, perfect for NISQ era

## **Scaling properties**



Number of qubits grows linearly with the number of equations and variables, for a given precision

Number of basis function in spectral decomposition grows exponentially with the number of qubits

Number of parameters to optimize grows linearly with the number of qubits

Increasing the number of sample points only affects the classical post-processing thanks to a clever expectation value evaluation

#### **Future directions**



Initialization strategy

Extension to stochastic or integro-differential equations Study the entanglement generated by the Ansatz

Noisy classical optimizers

Error mitigations techniques

Other approaches for solving PDEs (Monte Carlo, FTQC, ...)

Leverage symmetries of the PDEs

## Future 40 in Station F 5 Parv. Alan Turing. 75013 Paris



## Thank you for your attention



## **Open for collaboration**

Academic / Research
Hardware providers
Industrial partners
Investors

## hamza.jaffali@colibritd.com

✓ GitHub <a href="https://github.com/ColibrITD-SAS/mpqp">https://github.com/ColibrITD-SAS/mpqp</a>

LinkedIn <a href="https://www.linkedin.com/company/colibritd/">https://www.linkedin.com/company/colibritd/</a>

/ Discord <a href="https://discord.gg/c8dqkWBb">https://discord.gg/c8dqkWBb</a>

Youtube <a href="https://www.youtube.com/@ColibriTDQuantumInnovations">https://www.youtube.com/@ColibriTDQuantumInnovations</a>

Medium <a href="https://medium.com/@colibrITD">https://medium.com/@colibrITD</a>

ArXiv <a href="https://arxiv.org/abs/2410.01130">https://arxiv.org/abs/2410.01130</a>