Computation of eAt

Definition: For square matrix A,
$$e^{At} = I + \frac{1}{1!} At + \frac{1}{2!} A^2 t^2 + ... = \sum_{n=0}^{\infty} \frac{1}{n!} A^n t^n$$

Theoren: eAt =
$$\alpha_{n-1} \underline{A}^{n-1} \underline{E}^{n-1} + \alpha_{n-2} \underline{A}^{n-2} \underline{E}^{n-2} + ... + \alpha_1 \underline{A} \underline{E} + \alpha_0 \underline{I}$$

Example: If A has 2 rows and 2 columns.
$$e^{At} = \alpha_1 At + \alpha_0 I$$
.

If A has 3 rows and 3 columns $e^{At} = \alpha_2 A^2 t^2 + \alpha_1 At + \alpha_0 I$

Theorem:
$$r(\lambda) = \alpha_{n-1} \lambda^{n-1} + \alpha_{n-2} \lambda^{n-2} + ... + \alpha_{2} \lambda^{2} + ... + \alpha_{1} \lambda + \alpha_{0}.$$

Then λ_{i} is an eigenvalue of Δt , $e^{\lambda_{i}} = r(\lambda_{i})$

$$e^{\lambda i} = \frac{d}{d\lambda} r(\lambda) \Big|_{\lambda = \lambda_i}, \quad e^{\lambda i} = \frac{d^{k-1}}{dk^{k-1}} r(\lambda) \Big|_{\lambda = \lambda_i}.$$

Example: Let A be 4×4 and let $\lambda = 5t$ and $\lambda = 2t$ be eigenvalues of At of multiplicities 3 and 1. Then = 4 and:

$$r(\lambda) = \alpha_3 \lambda^3 + \alpha_2 \lambda^2 + \alpha_1 \lambda + \alpha_0$$

$$r'(\lambda) = 3\alpha_3 \lambda^2 + 2\alpha_2 \lambda + \alpha_1$$

$$r''(\lambda) = 6\alpha_3 \lambda + 2\alpha_2.$$

Since $\lambda = 5t$ is an eigenvalue of multiplicity 3, it follows:

$$e^{5t} = r(5t)$$
, $e^{5t} = r'(5t)$ and $e^{5t} = r''(5t)$

Thus,

$$e^{5t} = \alpha_3(5t)^3 + \alpha_2(5t)^2 + \alpha_1(5t) + \alpha_0$$

 $e^{5t} = 3\alpha_3(5t)^2 + 2\alpha_2(5t)^2 + \alpha_1$
 $e^{5t} = 6\alpha_3(5t) + 2\alpha_2$

Also, since $\lambda = 2t$ is an eigenvalue of multiplicity 1, it follows that $e^{2t} = r(2t)$. $e^{2t} = \alpha_3(2t)^3 + \alpha_2(2t)^2 + \alpha_1(2t) + \alpha_0$.

1-

Example: Find
$$e^{At}$$
 for $A = \begin{bmatrix} 1 & 1 \\ 9 & 1 \end{bmatrix}$

$$e^{At} = \alpha_1 At + \alpha_0 I = \begin{bmatrix} \alpha_1 t + \alpha_0 & \alpha_1 t \\ q \alpha_1 t & \alpha_1 t + \alpha_0 \end{bmatrix}$$

$$r(\alpha) = \alpha_1 \lambda + \alpha_0$$

Eigenvalues of At are $\lambda_1 = 4t$, $\lambda_2 = -2t$, which are both of multiplicity 1.

$$e^{4t} = 4t\alpha_1 + \alpha_0$$

$$e^{-2t} = -2t\alpha_1 + \alpha_0.$$
 $x_1 = \frac{1}{6t}(e^{4t} - e^{-2t}), \quad \alpha_2 = \frac{1}{3}(e^{4t} + 2e^{-2t}).$