13. Nevyvážený Wheatstoneův můstek - vyhodnocení změny odporu odporového snímače

Úkol měření

- 1. Zapojte převodník $R \to U$ s operačním zesilovačem podle schématu na obr. 1 ($U_r = 10 \text{ V}$, $R_{\text{NI}} = 10 \text{ k}\Omega$) a změřte závislost f_p odporu snímače na jeho úhlové výchylce α v rozsahu $\alpha = 0$ až 180° po 15° (klidové poloze snímače $\alpha = 90$ ° odpovídá hodnota odporu R_0 , tj. $\Delta R = 0$).
- 2. Odporový snímač zapojte do Wheatstoneova můstku napájeného ze zdroje napětí $U_{AC} = 5 \text{ V (obr. 2)}$. Můstek vyvažte odporovou dekádou R_D pro hodnotu $\alpha = 90^\circ$ a změřte závislost f_{MN} výstupního napětí U_{BD} na změně úhlu α , tj. na změně odporu ΔR (pro stejné hodnoty α jako v bodě 1). Odvoďte teoretický vztah pro toto napětí, tj.

$$U_{\rm BD} = f_{\rm MN}(\Delta R) = \frac{U_{\rm AC}}{4} \frac{\frac{\Delta R}{R_0}}{1 + \frac{\Delta R}{2R_0}}$$
(1)

3. Odporový snímač zapojte do Wheatstoneova můstku napájeného ze zdroje proudu I=2,5 mA. Zdroj proudu realizujte pomocí operačního zesilovače (obr. 3). Můstek opět vyvažte odporovou dekádou R_D pro hodnotu $\alpha=90^\circ$ a změřte závislost f_{MP} výstupního napětí U_{BD} na změně úhlu α , tj. na změně odporu ΔR (pro stejné hodnoty α jako v bodě 1). Odvoďte teoretický vztah pro toto napětí, tj.

$$U_{\rm BD} = f_{\rm MP}(\Delta R) = \frac{I}{4} \frac{\Delta R}{1 + \frac{\Delta R}{4R_0}}$$
 (2)

4. Podle schématu na obr. 4 zapojte tzv. "linearizovaný můstek" (velikost napájecího napětí volte U_Z = 2,5 V). Můstek vyvažte odporovou dekádou R_D pro hodnotu α = 90° a změřte závislost U_2 = f_{LM} výstupního napětí U_2 na změně úhlu α , tj. na změně odporu ΔR (pro stejné hodnoty úhlu α jako v předešlých bodech). Odvoďte teoretický vztah pro toto napětí, tj.

$$U_2 = f_{\rm LM}(\Delta R) = -\frac{\Delta R}{2R_0} U_Z \tag{3}$$

5. Do společného grafu vyneste odchylky hodnot naměřených dle bodů 2, 3 a 4 od lineárního průběhu. Směrnici přímky, od které budete určovat odchylky od linearity, stanovte z koncových bodů naměřené závislosti $f_{\rm LM}(\Delta R)$ (tedy pro $\alpha=0$ a $\alpha=180^\circ$). Pokud se absolutní hodnoty napětí v koncových bodech liší, nahraďte je aritmetickým průměrem těchto absolutních hodnot (spojnice $U_2'=f_{\rm LM}'(\Delta R)$ takto upravených koncových bodů

prochází počátkem souřadnic $[\Delta R, U_2]$). Odchylky závislostí $f_{\rm MN}(\Delta R), f_{\rm MP}(\Delta R)$ a $f_{\rm LM}(\Delta R)$ od linearity určete jako odchylky těchto závislostí od přímky $U_2^{'} = f_{\rm LM}^{'}(\Delta R)$. To lze udělat proto, že pro měření dle bodů 2, 3 a 4 jsou v zadáních zvoleny hodnoty napájecích napětí (resp. proudu) tak, aby směrnice všech závislostí v počátku byly zhruba stejné.

Schémata zapojení

Obr. 1 Schéma zapojení převodníku R → U

Obr. 2 Wheatstoneův můstek napájený ze zdroje napětí

Obr. 3 Wheatstoneův můstek napájený ze zdroje proudu

Obr. 4 Schéma "linearizovaného" můstku

Poznámky k měření:

- 1. Můstky vždy před vlastním měřením závislostí (2), (3) a (4) vyvážíte pomocí odporové dekády R_D pro úhel natočení snímače $\alpha = 90^\circ$. Vypočtete odchylky všech tří naměřených závislostí od lineárního průběhu (viz bod 5), tyto odchylky vynesete do grafu a porovnáte průběhy z hlediska linearity.
- 2. Aby odchylka od linearity způsobená nepřesným nastavováním úhlové hodnoty modelu odporového snímače nepřekryla nelinearitu můstků vyplývající z teoretických závislostí (1) a (2), nastavujte zvolené úhlové hodnoty s maximální pečlivostí.