Practice Problems

Please use $\alpha = 0.05$ for all statistical tests.

Please keep at least four decimal digits in all your numerical calculations.

- 1. Use not more than 3 sentences to answer each of the following questions.
 - (a) "It is always preferable to include as many terms as possible in a regression model". Do you agree? Explain.
 - (b) "If $R^2 = 0$, then it means that there is no relation between X and Y". Please comment.
 - (c) "Since most statistical studies could only lead to association but not causation, there is no use in studying statistics". Please comment.
- 2. This question is concerned with the following data set:

i:	1	2	3	4	5	6	7	8	9	10	11	12
												40
Y_i :	199	196	200	218	220	223	237	234	235	250	248	253

- (a) Fit a simple linear regression to this data set.
- (b) Estimate the sub-population mean E(Y|X=x) when x=28.0. Attach a 95% confidence interval to your estimate.
- (c) Construct a prediction interval for a new observation if you know that its x-value is 42.0.
- (d) Construct the corresponding ANOVA table. Use the computed F-value to test if $\beta_1 = 0$.
- 3. The regression model $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4$ was fitted to a set of n data points. Part of the outputs from the R command anova are:

Response: Y

	${\tt Df}$	Sum Sq	Mean Sq	F value
X1	1	0.001	0.001	0.0644
X2	1	35.003	35.003	(**)
Х3	1	0.511	0.511	62.0219
X4	1	32.041	32.041	3892.4496
Residuals	31	0 255	(*)	

- (a) Find (*) and (**).
- (b) Test " $H_0: \beta_3 = \beta_4 = 0, \beta_0, \beta_1, \beta_2$ arbitrary" against " $H_1: \beta_j$ arbitrary for all i".
- (c) For " $H_0: Y = \beta_0$ ", with the above R outputs, which of the following alternative hypotheses can it be tested against with? " $H_1: Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2$ " or " $H_1: Y = \beta_0 + \beta_3 X_3 + \beta_4 X_4$ "? Perform the corresponding test.
- 4. As an alternative to the ordinary least squares (OLS) principle, one could use the least absolute error (LAE) method to estimate the parameters β_0 and β_1 in the simple linear regression model. LAE estimates these parameters by minimizing the following sum of absolute errors (SAE):

$$SAE(\beta_0, \beta_1) = \sum_{i=1}^{n} |y_i - \beta_0 - \beta_1 x_i|.$$
 (1)

(a) One attractive property of LAE over OLS is that it is less sensitive to outliers. Can you explain why?

- (b) Describe how you would modify (1) to perform weighted LAE regression.
- (c) LAE also has shortcomings. For example, unlike OLS, no closed-form expressions are available for $\hat{\beta}_0$, $\hat{\beta}_1$, $Var(\hat{\beta}_0)$ nor $Var(\hat{\beta}_1)$. To calculate $\hat{\beta}_0$ and $\hat{\beta}_1$, one has to use iterative numerical procedures.

Suppose now that you have written such a R routine for calculating $\hat{\beta}_0$ and $\hat{\beta}_1$. Describe how you would use this routine and the bootstrap method to construct 95% confidence intervals for these LAE estimates.

5. Consider the multiple linear regression model:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}, \quad E(\mathbf{e}) = \mathbf{0}, \quad Var(\mathbf{e}) = \sigma^2 \mathbf{I}.$$

Suppose we use $\hat{\boldsymbol{\beta}} = (0.5 + \alpha)(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$ to estimate $\boldsymbol{\beta}$, where α is a pre-specified constant between 0 and 1.

- (a) Calculate the bias and variance of $\hat{\beta}$.
- (b) How should we choose α if we want to minimize the variance of the estimator?