

Programação Avançada e Estrutura de Dados Unidade 5 - Arrays

Prof. Aparecido V. de Freitas Doutor em Engenharia da Computação pela EPUSP aparecido.freitas@online.uscs.edu.br aparecidovfreitas@qmail.com

Bibliografia

- \checkmark Data Structures using C Oxford University Press 2014
- ✓ Data Structures Using C A. Tenenbaum, M. Augensem, Y. Langsam, Pearson 1995
- ✓ C By Dissection Kelley, Pohh Third Edition Addison Wesley

Introdução

Um programador recebeu uma incumbência de escrever um programa na linguagem C que irá manipular 1000 números...

O que fazer?

- Com os tipos básicos vistos nas unidades anteriores, cada identificador corresponde à uma única variável.
- Mas, como proceder para manusearmos um conjunto de valores do mesmo tipo ?
- Por exemplo: os primeiros 1000 números primos.

Uma alternativa...

Criar 1000 variáveis, cada uma com um determinado nome...

Alternativa inviável ...

- O programa teria 1000 variáveis ...
- A tabela de símbolos certamente seria difícil de ser manipulada...

Outra alternativa...

Empregar arrays ...

- Trata-se de automatizar a declaração de um grande número de dados de um mesmo tipo simples.
- As variáveis assim declaradas são acessadas por meio de um índice de tipo de dados, por exemplo: int.

Declaração:

- ✓int **a**[4];
- √Índice da primeira posição = 0;
- √Índice da última posição = 3;

- Declaração:
 - ✓ int **a**[4];
 - √Índice da primeira posição = 0;
 - √Índice da última posição = 3;
- Atribuição:

$$\sqrt{a}$$
 [1] = 3;

Acesso a um valor do array:

$$\sqrt{\text{var}} = \text{a[0]};$$

• Podem ter mais de 1 dimensão;

 Arrays com uma dimensão correspondem à arranjos lineares de dados (Listas);

 Arrays com duas dimensões correspondem à tabelas (aplicações em matrizes de dados).

NOME	SEXO	IDADE	ALTURA	PESO
João Miguel	Masculino	25	1,90	78
Susana Nogueira	Feminino	23	1,81	104
Rita Susana	Feminino	22	1,72	62
Carlos Piedade	Masculino	29	1,83	92

Matrizes

$$A = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 2 & 1 & 1 & 1 \\ 2 & 3 & 0 & 1 \\ -1 & 1 & 2 & 2 \end{bmatrix}$$

Matriz m por n


```
//Programa 01 - Unidade 7
#include <stdio.h>
int main() {
    printf("\Inicio do Programa 01");
    int vetor[10];
    vetor[0]= 76;
    vetor[1] = 22;
    vetor[2] = 10;
    vetor[3]= 5;
    vetor[4]= 36;
    vetor[5]= 67;
    vetor[6]= 89;
    vetor[7] = 92;
    vetor[8]= 15;
    vetor[9] = 28;
    printf("\nFim do Programa 01");
```



```
//Programa 01 - Unidade 7
#include <stdio.h>
int main() {
    printf("\Inicio do Programa 01");
    int vetor[10];
    vetor[0]= 76;
    vetor[1]= 22;
    vetor[2]= 10;
    vetor[3] = 5;
    vetor[4]= 36;
    vetor[5]= 67;
    vetor[6]= 89;
    vetor[7]= 92;
    vetor[8]= 15;
    vetor[9]= 28;
    printf("\nFim do Programa 01");
```

9	8	7	6	5	4	3	2	1	0


```
//Programa 01 - Unidade 7
#include <stdio.h>
int main() {
    printf("\Inicio do Programa 01");
    int vetor[10];
    vetor[0]= 76;
    vetor[1]= 22;
    vetor[2]= 10;
    vetor[3]= 5;
    vetor[4]= 36;
    vetor[5]= 67;
    vetor[6]= 89;
    vetor[7]= 92;
    vetor[8]= 15;
    vetor[9]= 28:
    printf("\nFim do Programa 01");
```

0	1	2	3	4	5	6	7	8	9
76									


```
//Programa 01 - Unidade 7
#include <stdio.h>
int main() {
    printf("\Inicio do Programa 01");
    int vetor[10];
    vetor[0]= 76;
    vetor[1]= 22;
    vetor[2]= 10;
    vetor[3]= 5;
    vetor[4]= 36;
    vetor[5]= 67;
    vetor[6]= 89;
    vetor[7]= 92;
    vetor[8]= 15;
    vetor[9]= 28;
    printf("\nFim do Programa 01");
```

0	1	2	3	4	5	6	7	8	9
76	22								


```
//Programa 01 - Unidade 7
#include <stdio.h>
int main() {
    printf("\Inicio do Programa 01");
    int vetor[10];
    vetor[0]= 76;
    vetor[1]= 22;
    vetor[2]= 10;
    vetor[3]= 5;
    vetor[4]= 36;
    vetor[5]= 67;
    vetor[6]= 89;
   vetor[7]= 92;
   vetor[8]= 15;
   vetor[9]= 28;
    printf("\nFim do Programa 01");
```

0	1	2	3	4	5	6	7	8	9
76	22	10							


```
//Programa 01 - Unidade 7
#include <stdio.h>
int main() {
    printf("\Inicio do Programa 01");
    int vetor[10];
    vetor[0]= 76;
    vetor[1]= 22;
    vetor[2]= 10;
    vetor[3]= 5;
    vetor[4]= 36;
    vetor[5]= 67;
   vetor[6]= 89;
   vetor[7]= 92;
   vetor[8]= 15;
   vetor[9]= 28;
    printf("\nFim do Programa 01");
```

0	1	2	3	4	5	6	7	8	9
76	22	10	5						


```
//Programa 01 - Unidade 7
#include <stdio.h>
int main() {
    printf("\Inicio do Programa 01");
    int vetor[10];
    vetor[0]= 76;
    vetor[1]= 22;
    vetor[2]= 10;
    vetor[3] = 5;
    vetor[4]= 36;
    vetor[5]= 67;
    vetor[6]= 89;
    vetor[7]= 92;
    vetor[8]= 15;
    vetor[9]= 28;
    printf("\nFim do Programa 01");
```

0	1	2	3	4	5	6	7	8	9
76	22	10	5	36					


```
//Programa 01 - Unidade 7
#include <stdio.h>
int main() {
    printf("\Inicio do Programa 01");
    int vetor[10];
    vetor[0]= 76;
    vetor[1]= 22;
    vetor[2]= 10;
    vetor[3] = 5;
    vetor[4]= 36;
    vetor[5]= 67;
    vetor[6]= 89;
    vetor[7]= 92;
    vetor[8]= 15;
    vetor[9]= 28;
    printf("\nFim do Programa 01");
```

0	1	2	3	4	5	6	7	8	9
76	22	10	5	36	67				


```
//Programa 01 - Unidade 7
#include <stdio.h>
int main() {
    printf("\Inicio do Programa 01");
    int vetor[10];
    vetor[0]= 76;
    vetor[1]= 22;
    vetor[2]= 10;
    vetor[3]= 5;
    vetor[4]= 36;
    vetor[5]= 67;
    vetor[6]= 89;
    vetor[7]= 92;
    vetor[8]= 15;
    vetor[9]= 28;
    printf("\nFim do Programa 01");
```

0	1	2	3	4	5	6	7	8	9
76	22	10	5	36	67	89			


```
//Programa 01 - Unidade 7
#include <stdio.h>
int main() {
    printf("\Inicio do Programa 01");
    int vetor[10];
    vetor[0]= 76;
    vetor[1]= 22;
    vetor[2]= 10;
    vetor[3]= 5;
    vetor[4]= 36;
    vetor[5]= 67;
    vetor[6]= 89;
    vetor[7]= 92;
    vetor[8]= 15;
    vetor[9]= 28;
    printf("\nFim do Programa 01");
```

0	1	2	3	4	5	6	7	8	9
76	22	10	5	36	67	89	92		


```
//Programa 01 - Unidade 7
#include <stdio.h>
int main() {
    printf("\Inicio do Programa 01");
    int vetor[10];
    vetor[0]= 76;
    vetor[1]= 22;
    vetor[2]= 10;
    vetor[3]= 5;
    vetor[4]= 36;
    vetor[5]= 67;
    vetor[6]= 89;
    vetor[7]= 92;
    vetor[8]= 15;
    vetor[9]= 28;
    printf("\nFim do Programa 01");
```

0	1	2	3	4	5	6	7	8	9
76	22	10	5	36	67	89	92	15	


```
//Programa 01 - Unidade 7
#include <stdio.h>
int main() {
    printf("\Inicio do Programa 01");
    int vetor[10];
    vetor[0]= 76;
    vetor[1]= 22;
    vetor[2]= 10;
   vetor[3]= 5;
    vetor[4]= 36;
   vetor[5]= 67;
   vetor[6]= 89;
    vetor[7]= 92;
    vetor[8]= 15;
    vetor[9]= 28;
    printf("\nFim do Programa 01");
```

						6			
76	22	10	5	36	67	89	92	15	28


```
//Programa 02 - Unidade 7
#include <stdio.h>
int main() {
    printf("\n****************************);
    printf("\nInicio do Programa 02");
    int vetor[10],i;
    vetor[0]= 76;
    vetor[1] = 22;
    vetor[2] = 10;
    vetor[3] = 5;
    vetor[4]= 36;
    vetor[5]= 67;
    vetor[6]= 89;
    vetor[7] = 92;
    vetor[8] = 15;
    vetor[9] = 28;
    for(i=0; i < 10; i++)
        printf("\n %d", vetor[i]);
    printf("\nFim do Programa 02");
    printf("\n*************):
```



```
**************
Inicio do Programa 02
76
22
10
5
36
89
92
15
28
Fim do Programa 02
******
```



```
//Programa 03 - Unidade 7
#include <stdio.h>
int main() {
    printf("\n*****************);
    printf("\nInicio do Programa 03");
    int vetor[5]= { 2,4,6,8,10},i;
   for(i=0; i < 5; i++)
       printf("\n %d", vetor[i]);
    printf("\nFim do Programa 03");
    printf("\n**************);
```


Inicializando arrays


```
***************
Inicio do Programa 03
468
10
Fim do Programa 03
*************
Process exited after 0.01946 se
Press any key to continue.
```


Inicializando arrays

Process exited after 0.01946 se Press any key to continue . . .

- Escrever um programa na Linguagem C no qual o usuário digita 5 valores numéricos inteiros. O programa deverá exibir os números na ordem inversa.
- Entrada e saída conforme Figura abaixo:


```
//Programa 04 - Unidade 7
#include <stdio.h>
|#include <locale.h>
|int main() {
    setlocale(LC ALL, "Portuguese");
    printf("\n****************);
    printf("\nInicio do Programa 04");
    int vetor[5],i, trab;
    for(i=0; i < 5; i++) {
        printf("\nEntre com um valor numérico inteiro: ");
        scanf("%d", &trab);
       vetor[i] = trab;
    for(i=4; i >= 0; i--)
        printf("\n%d", vetor[i]);
    printf("\nFim do Programa 04");
    printf("\n**************);
```


************** Inicio do Programa 04 Entre com um valor numérico inteiro: 4 Entre com um valor numérico inteiro: 12 Entre com um valor numérico inteiro: 25 Entre com um valor numérico inteiro: 33

Entre com um valor numérico inteiro: 57

57 33 25 12 Fim do Programa 04 *******

 Escrever um programa na Linguagem C no qual o usuário digita 5 valores numéricos inteiros. O programa deverá exibir o total de valores entrados que estão acima da média.

Programa 05 - Sem Arrays


```
#include <stdio.h>
int main()
   int contador=0;
   float media, valor1, valor2, valor3, valor4, valor5;
   //scanf ("%f %f %f %f %f",
                 &n1, &n2, &n3, &n4, &n5);
   printf ("\nEntre com o primeiro valor: ");
   scanf ("%f", &valor1);
    printf ("\nEntre com o segundo valor: ");
   scanf ("%f", &valor2);
    printf ("\nEntre com o terceiro valor: ");
   scanf ("%f", &valor3);
   printf ("\nEntre com o quarto valor: ");
    scanf ("%f", &valor4);
    printf ("\nEntre com o quinto valor: ");
    scanf ("%f", &valor5);
   media = (valor1+ valor2 + valor3 + valor4 + valor5)/5;
   if (valor1>media) contador++;
   if (valor2>media) contador++;
   if (valor3>media) contador++;
   if (valor4>media) contador++;
   if (valor5>media) contador++;
    printf ("\n\nMedia = %f Total de valores acima da media: %d", media, contador);
   return 0;
```


Programa 05 - Com Arrays


```
#include <stdio.h>
int main() {
  printf("\n\n===== Inicio do Programa ====\n\n");
  int i, contador=0;
  float soma=0, media;
  float v[5];
 for (i=0;i<5;i++) {
    printf("\nEntre com o valor: ");
    scanf ("%f", &v[i]);
    soma = soma + v[i];
 media = soma/i;
  for (i=0;i<5;i++) {
    if (v[i]>media) contador++;
  printf ("\n\nMedia: %f \n\nValores acima da media: %d\n", media, contador);
  printf("\n\n===== Fim de Programa ==== \n\n");
```


Arrays de 2 dimensões (Tabelas)

 Pode-se organizar os dados na forma de tabelas com matrizes de duas dimensões.

 Os elementos podem também são manipulados individualmente, com a referência feita sempre por meio de dois índices: o primeiro para controlarmos a linha; o segundo, para controlarmos a coluna.

```
Matriz m por n

n colunas j

n a_{1,1} \ a_{1,2} \ a_{1,3} \dots a_{1,n}

a a_{2,1} \ a_{2,2} \ a_{2,3} \dots a_{2,n}

\vdots \ \vdots \ \vdots \ \ddots \ \vdots

a a_{m,1} \ a_{m,2} \ a_{m,3} \dots a_{m,n}
```


Arrays de 2 dimensões (Tabelas)


```
//Programa 06 - Unidade 7
#include <stdio.h>
|#include <locale.h>
|int main() {
    setlocale(LC_ALL, "Portuguese");
    printf("\n****************);
    printf("\nInício do Programa 06\n");
    int tab[4][3], i,j;
    tab[0][0] = 35;
    tab[0][1] = 26;
    tab[0][2] = 12;
    tab[1][0] = 52;
    tab[1][1] = 74;
    tab[1][2] = 27;
    tab[2][0] = 93;
    tab[2][1] = 28;
    tab[2][2] = 49;
    tab[3][0] = 44;
    tab[3][1] = 60;
    tab[3][2] = 98;
```


Escreva um programa na Linguagem C que receba 16 números inteiros e os armazene em uma matriz 4x4. Em seguida o programa deverá exibir o conteúdo dessa matriz.

10	11	12	13
14	15	16	17
18	19	20	21
22	23	24	25


```
//Programa 07 - Unidade 7
#include <stdio.h>
#include <locale.h>
int main() {
    setlocale(LC ALL, "Portuguese");
    printf("\n****************);
    printf("\nInício do Programa 07\n");
    int tab[4][4], i,j, trab;
    for (i=0; i<4; i++) {
        for (j=0; j<4; j++) {
           printf("\nEntre com um valor numérico: ");
           scanf("%d", &trab);
           tab[i][j] = trab;
```

```
for (i=0; i<4; i++) {
    printf("\nLinha %d ---> ", i);
    for (j=0; j<4; j++)
        printf("%d ", tab[i][j]);
}

printf("\nFim do Programa 07");
printf("\n**************************);

return 0;</pre>
```

