Análise Matemática para Engenharia

______ folha de exercícios 4 _______ 2021/2022 ______

• Diferenciabilidade

1. Diga, justificando, se as seguintes funções são de classe \mathcal{C}^1 , nos pontos indicados:

(a)
$$f(x,y) = e^{x^2+y^2}$$
, $P_1 = (2,1)$;

(b)
$$f(x,y) = \text{sen}\left(\frac{xy}{x^2+y^2}\right)$$
, $P_2 = (2,1)$.

(c)
$$f(x,y) = \frac{x^2 + y^2}{xy}$$
, $P_3 = (1,2)$.

(d)
$$f(x,y) = \begin{cases} \frac{x^2y^4}{x^4 + 6y^8}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$
, $P_4 = (0,0)$;

2. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ tal que

$$f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}.$$

Mostre que f não é diferenciável em (0,0).

3. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ tal que

$$f(x,y) = \begin{cases} \frac{2x^2y}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}.$$

Diga, justificando a sua resposta, se f é diferenciável em (0,0).

4. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ tal que $f(x,y) = \sqrt{|xy|}$

- (a) Mostre que $\frac{\partial f}{\partial x}(0,0)=0$ e $\frac{\partial f}{\partial y}(0,0)=0$
- (b) Mostre que f é contínua em (0,0).
- (c) Mostre que f não é diferenciável em (0,0).

5. Para cada uma das funções $f:D\subset\mathbb{R}^2\longrightarrow\mathbb{R}$ apresentadas, determine uma equação do plano tangente ao gráfico de f, no ponto indicado.

(a)
$$f(x,y) = \text{sen}(x+y)$$
 $(1,-1,0)$.

(b)
$$f(x,y) = \frac{x^2 + y^2}{xy}$$
, $(1,2,\frac{5}{2})$.

6. Seja $z = f(x, y) = e^{2x+3y}$,

- (a) Determine o plano tangente a f no ponto (0,0,1).
- (b) Use esta aproximação para calcular f(0.1,0) e f(0,0.1).
- (c) Calcule, usando a calculadora, o valor exato de f(0.1,0) e f(0,0.1).

7. Sendo $z = f(x, y) = x^2 + 3xy - y^2$,

- (a) determine o diferencial dz;
- (b) compare os valores de Δz e dz se x varia de 2 para 2.05 e y de 3 para 2.96.
- 8. Utilize diferenciais para calcular um valor aproximado de

(a)
$$\sqrt{9(1.95)^2 + (8.1)^2}$$
.

(b)
$$(0.98)^2 - 1.01 \ln \frac{1.01}{0.98}$$

- **9.** Use diferenciais para determinar o erro máximo cometido no cálculo da área de um rectângulo de 10cm de comprimento e 5cm de largura, sabendo que o erro cometido em cada uma das medições não ultrapassa 0.1cm.
- **10.** Calcule a derivada direcional de f, $D_{\vec{v}}(a,b)$, das seguintes funções:

(a)
$$f(x,y) = e^x \tan y + 2x^2 y$$
, $(a,b) = (0,\pi/4)$, $\vec{v} = \left(-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)$

(b)
$$f(x,y)=x^2-xy-2y^2$$
, $(a,b)=(1,2)$, \vec{v} é um vetor que faz um ângulo de 60° com OX.

- 11. Determine um vetor segundo o qual a derivada da função $f(x,y)=x^2+y^3+1$ no ponto (1,1) é nula.
- 12. Considere a função

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2+y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}.$$

- (a) Calcule as derivadas parciais de f no ponto (1,0).
- (b) Calcule a derivada de f no ponto (1,0) segundo o vetor (1,2).
- (c) Calcule a derivada de f no ponto (0,0) segundo o vetor (1,1).
- 13. Considere $f(x,y) = 100 x^2 y^2$. Em que direcção nos devemos afastar de P para que os valores de f aumentem o mais rapidamente possível? Esboce o gráfico de f e interprete o resultado.
- **14.** A temperatura T num dado ponto (x, y) do plano é dada por $T(x, y) = x^2 e^{-y}$. Em que direcção a partir do ponto (2,1) a temperatura aumenta mais rapidamente? Qual a taxa de crescimento nessa direcção?
- **15.** Determine a equação do plano tangente à superfície $x^2 + y^2 xyz = 7$ no ponto (2,3,1) por dois processos diferentes:
 - (a) considerando a superfície como a superfície de nível de uma função de 3 variáveis f(x, y, z);
 - (b) considerando a superfície como o gráfico de uma função de 2 variáveis g(x,y).