Assignment #2

Elements of Machine Learning

Saarland University - Winter Semester 2024/25

Rabin Adhikari 7072310 raad00002@stud.uni-saarland.de

Dhimitrios Duka 7059153

dhdu00001@stud.uni-saarland.de

- 1 Problem 2 (Logistic Regression)
- 2 **a**)
- 3 In order to derive the optimal coefficients, we will have to take the derivative of the loss function
- 4 l(x) w.r.t each β_i . First, we will derive a generic expression for camputing the gradient w.r.t β_i .

$$\frac{\partial}{\partial \beta_{j}} \ell(\beta) = \frac{\partial}{\partial \beta_{j}} \sum_{i=1}^{n} \left[y_{i} \log p(x_{i}; \beta) + (1 - y_{i}) \log (1 - p(x_{i}; \beta)) \right]
= \sum_{i=1}^{n} \left[y_{i} \frac{\partial}{\partial \beta_{j}} \log p(x_{i}; \beta) + (1 - y_{i}) \frac{\partial}{\partial \beta_{j}} \log (1 - p(x_{i}; \beta)) \right]
= \sum_{i=1}^{n} \left[y_{i} \frac{\frac{\partial}{\partial \beta_{j}} p(x_{i}; \beta)}{p(x_{i}; \beta)} + (1 - y_{i}) \frac{\frac{\partial}{\partial \beta_{j}} (1 - p(x_{i}; \beta))}{(1 - p(x_{i}; \beta))} \right]
= \sum_{i=1}^{n} \left[y_{i} \frac{\frac{\partial}{\partial \beta_{j}} p(x_{i}; \beta)}{p(x_{i}; \beta)} - (1 - y_{i}) \frac{\frac{\partial}{\partial \beta_{j}} p(x_{i}; \beta)}{(1 - p(x_{i}; \beta))} \right]
= 0$$
(1)

- 5 **b**)
- 6 c) i)
- 7 Applying the formula for a multivariate logistic regression, we get the following outputs:

Table 1: Data for x1, x2, and predicted values.

x1	x2	$p(x_i, \beta)$	class	correct
1.0	2.0	0.182	0	0
2.0	3.0	0.378	0	0
3.0	4.0	0.622	1	0
4.0	5.0	0.818	1	1
5.0	6.0	0.924	1	1
6.0	7.0	0.971	1	1
7.0	8.0	0.989	1	1
8.0	9.0	0.996	1	1

- **c**) i)
- Based on the given the shold, we can construct the following table. we see that the model missclassified only one point.