ANÁLISIS INTEGRATIVO DE DATOS ÓMICOS PARA EL DESARROLLO DE METABOTIPOS

CLAUDIA ARCE CUESTA

METABOTIPO:

"LA DESCRIPCIÓN PROBABILÍSTICA MULTIPARAMÉTRICA DE UN ORGANISMO DADO SU ESTADO FISIOLÓGICO BASADO EN EL ANÁLISIS DE SUS CÉLULAS, BIOFLUIDOS Y TEJIDOS" (GAVAGHAN ET AL., 2000)

OBJETIVOS

Idea general sobre qué son los metabotipos

En qué consisten, cómo se crean, usos.

Métodos que se utilizan habitualmente Método Similarity Network Fusion

Funcionamiento del algoritmo

Aplicación del algoritmo

MATERIALES Y MÉTODOS

REVISIÓN BIBLIOGRÁFICA DE PUBLICACIONES

Sobre los metabotipos y el método Similarity Network Fusion

ANÁLISIS DE DATOS MEDIANTE R

Mediante el paquete SNFtool.

OBTENCIÓN DE DATOS DE LA UB

485 pacientes anónimos,

14 variables relacionadas con

riesgo cardiovascular

484 metabolitos

Mas de 1000 variables

relacionadas con la microbiota

intestinal (OTUs bacterianos 16s)

¿Qué aplicaciones tienen?

Nutrición y medicina personalizadas

¿Para qué sirven?

Agrupar fenotipos para tratar y aconsejar mejor

METABOTIPOS

"Clasificación de individuos en grupos según su fenotipo metabólico"

¿Cómo se crean?

Métodos de agrupamiento informáticos

¿Qué métodos hay?

K-medias Hierarchical cluster Principal Component

MÉTODOS MAS UTILIZADOS PARA EL ESTUDIO DE METABOTIPOS

K-MEDIAS Y HIERARCHICAL CLUSTER ANALYSIS

M. Urpi-Sarda et al. en 2019 "Nontargeted metabolomic biomarkers and metabotypes of type 2 diabetes: A cross-sectional study of PREDIMED trial participants".

PRINCIPAL COMPONENT ANALYSIS

C.L. Gavaghan et al. en 2000 "An NMR-based metabonomic approach to investigate the biochemical consequences of genetic strain differences: application to the C57BL10J and Alpk: ApfCD mouse".

SIMILARITY NETWORK FUSION

SNFtool en R o SNFpy en python

Expresión de genes, la metilación de DNA y la expresión de miRNA

SIMILARITY NETWORK FUSION

FASE 1 - MATRICES DE SIMILITUD

Una por cada conjunto de datos que queremos introducir.

FASE 2 - FUSIÓN DE LAS MATRICES

Mediante Similarity Network Fusion se crea una sola matriz de similitud global.

FASE 3 - CLUSTERING

Se buscan los metabotipos mediante clustering.

RESULTADOS

HEATMAPS DE LAS MATRICES DE SIMILITUD DE LOS DATOS DE PARTIDA. HAY POSIBLES AGRUPACIONES.

METABOLITOS

RIESGO CARDIOVASCULAR

MICROBIOTA INTESTINAL

RESULTADOS

HEATMAPS DE LA MATRIZ DE SIMILITUD GLOBAL TRAS FUSIONAR LAS MATRICES INDIVIDUALES

*Existe una función para calcular el número óptimo de clústers, pero también debe comprobarse dicho valor visualmente.

RESULTADOS

MATRIZ DE CONCORDANCIA: ¿COINCIDEN LOS CLUSTERS FINALES CON LOS INICIALES?

	RED FINAL	METABOLITOS	RIESGO CARDIOVASCULAR	MICROBIOTA INTESTINAL
RED FINAL	1.00	0.05383	0.47202	0.00998
METABOLITOS	0.05383	1.00	0.02016	0.00195
RIESGO CARDIOVASCULAR	0.47202	0.02016	1.00	0.00228
MICROBIOTA INTESTINAL	0.00998	0.00195	0.00228	1.00

01

SNF es aplicable a la creacion de metabotipos con datos con muchas variables

CONCLUSIONES
FINALES

Rápido y poco costoso a nivel computacional

Puede haber inconventientes debido al alto numero de variables, a la naturaleza de estas...

Puede calcularse el numero de metabotipos pero debe comprobarse viendo el heatmap

No permite interpretar los clústers

REALIZAR PREDICCIONES CON GRUPOS DE ENTRENAMIENTO Y PRUEBA

Opción integrada dentro de SNFtool

INTERPRETACIÓN DE LOS METABOTIPOS

El método SNF no lo permite.

ENTEROTIPOS

Absorción de nutrientes, intolerancias, enfermedades gastrointestinales...

MUCHAS GRACIAS