Due 4/23:

All (turn in): page 187, 2, 6, 14

Present (me): 10

Page 187

Exercise 2

Prove that A_n is normal in S_n .

Exercise 6

Let
$$H = \{ \begin{bmatrix} a & b \\ 0 & d \end{bmatrix} : a, b, d \in \mathbb{R} \text{ and } ad \neq 0 \}.$$

Is H a normal subgroup of $GL(2, \mathbb{R})$?

Exercise 10

Let
$$H = \{(1), (12)(34)\}$$
 in A_4 .

a. Show that H is not normal in A_4 .

Well, recall that a subgroup H of G is normal iff $gH = Hg \forall g \in G$.

So all we need to do is find a $g \in A_4$ such that $gH \neq Hg$.

Notice: $(23) \in A_4$.

$$(23)H = \{(23)(1), (23)(12)(34)\} = \{(23), (1342)\}\$$

$$H(23) = \{(1)(23), (12)(34)(23)\} = \{(23), (1243)\}\$$

$$\{(23), (1342)\} \neq \{(23), (1243)\}$$

Thus, H is not normal in A_4

b. Referring to the multiplication table for A_4 in Table 5.1 on page 105, show that, although $\alpha_6 H = \alpha_7 H$ and $\alpha_9 H = \alpha_{11} H$, it is not true that $\alpha_6 \alpha_9 H = \alpha_7 \alpha_{11} H$.

$$\alpha_{6} = (243), \alpha_{7} = (142), \alpha_{9} = (132), \text{ and } \alpha_{11} = (234)$$

So, let's look at both:

$$\alpha_{6}\alpha_{9}H \leftarrow ? \longrightarrow \alpha_{7}\alpha_{11}H$$

$$(243)(132)H \leftarrow ? \longrightarrow (142)(234)H$$

$$\{(243)(132)(1), (243)(132)(12)(34)\} \leftarrow ? \rightarrow \{(142)(234)(1), (142)(234)(12)(34)\}$$

$$\{(12)(34), (1)\} \leftarrow ? \longrightarrow \{(14)(23), (13)(24)\}$$

Nope! Those sets are not equal, so it's not true that $\alpha_{6}\alpha_{9}H = \alpha_{7}\alpha_{11}H$.

c. Explain why this proves that the left cosets of H do not form a group under coset multiplication.

Because the order of the permutations results in different output permutation, which means that coset multiplication isn't associative. Therefore, it can't form a group.

Exercise 14

What is the order of the element $14 + \langle 8 \rangle$ in the factor group $\mathbb{Z}_{24}/\langle 8 \rangle$?