

Analog Electronics lab session

Alican, Gaurav, Lucas, Sriram, Thomas

In this exercise you will learn ...

- Fundamentals about differential pairs
- How to "design on paper"
 - Differential pair with resistive load
 - OTA
- Learn to value $\frac{g_m}{I_D}$ and $\frac{g_m}{g_{ds}}$ -plots!
 - with those plots one can identify design trade-offs!
- How to code in MATLAB the OTA-design

- Solve exercise I a-d
 - ETA: 20 min

Exercise I

a) Give the equation of the small signal voltage gain $\frac{v_{out,-}}{v_D}$, $\frac{v_{out,+}}{v_D}$ and the differential voltage gain, when $V_D = 0$?

a) Remark: MI = M2

$$A_{V,-} = \frac{v_{out,-}}{v_D} = -\frac{g_m}{2} \cdot R$$

$$A_{V,+} = \frac{v_{out,+}}{v_D} = \frac{g_m}{2} \cdot R$$

$$A_{V,diff} = g_m \cdot R$$

Exercise I

- b) Draw on Fig. 2 the voltages $V_{out,+}$, $V_{out,-}$ and V_0 and on Fig. 3 ($V_{out,+} V_{out,-}$) qualitatively. Moreover, indicate on both figures:
 - (i) V_{OV} and $\sqrt{2}V_{OV}$,
 - (ii) A_V ,
 - (iii) range, where M_1 and M_2 are in strong inversion,
 - (iv) range, where M_1 is in weak inversion, but M_2 in strong inversion,
 - (v) range, where M_1 is in strong inversion, but M_2 in weak inversion.

 V_0 (\bigoplus

 $V_{cm,in}$

Exercise I

- b) Draw on Fig. 2 the voltages $V_{out,+}$, $V_{out,-}$ and V_0 and on Fig. 3 ($V_{out,+} V_{out,-}$) qualitatively. Moreover, indicate on both figures:
 - (i) V_{OV} and $\sqrt{2}V_{OV}$,
 - (ii) A_V ,
 - (iii) range, where M_1 and M_2 are in strong inversion,
 - (iv) range, where M_1 is in weak inversion, but M_2 in strong inversion,
 - (v) range, where M_1 is in strong inversion, but M_2 in weak inversion.

Exercise I

- c) Give the amount of current, which is flowing through M_1 and M_2 , when
 - (i) $V_D = 0$,
 - (ii) $V_D < -\sqrt{2} \cdot V_{OV}$,
 - (iii) $V_D > \sqrt{2} \cdot V_{OV}$.

c) $I_{D,M1}$ and $I_{D,M2}$ given as follows

i. $V_D = 0V$: $I_{D,M1} = I_{D,M2} = 0.5 \cdot I_0$

ii. $V_D > \sqrt{2} \cdot V_{OV}$: $I_{D,M1} = I_0$ and $I_{D,M2} = 0$

iii. $V_D < -\sqrt{2} \cdot V_{OV}$: $I_{D,M1} = 0$ and $I_{D,M2} = I_0$

Exercise I

d) Based on Fig. 3, derive an equation describing the relationship between $V_{swing},\,V_{OV}$ and $A_V.$

Remark: $V_{swing} = max(V_{out,+} - V_{out,-}) - min(V_{out,+} - V_{out,-})$

d) option I: graphically $\Rightarrow A_{V,diff} = \frac{V_{swing}}{2 \cdot V_{OV}}$

Exercise I

d) Based on Fig. 3, derive an equation describing the relationship between V_{swing}, V_{OV} and A_V .

Remark: $V_{swing} = max(V_{out,+} - V_{out,-}) - min(V_{out,+} - V_{out,-})$

d) option 2: analytically

$$\frac{g_{m_{1,2}}}{I_{D_{1,2}}} = \frac{g_{m_{1,2} \cdot R}}{(I_0/2) \cdot R} = \frac{2}{V_{OV}}$$

$$\Leftrightarrow 2 \cdot A_{V,diff} = \frac{I_0}{V_{OV}} \cdot 2 \cdot R = \frac{V_{swing}}{V_{OV}}$$

$$\Leftrightarrow A_{V,diff} = \frac{V_{swing}}{2 \cdot V_{OV}}$$

- Waveforms of an ideal differential amplifier has been presented
- (in this exercise) Trade-off triangle of differential amplifiers has been identified
 - ... in reality, one has even an octagon (see literature [1-3])

Now, the differential amplifier is going to be designed

- Solve exercise I e-j
 - ETA: 30 min

Exercise I

e) Give V_{swing} as a function of I_{bias} .

$$V_{ES3} = V_{GSY}$$

$$= V_{GSY$$

e) $V_{swing} = 2 \cdot R \cdot I_0$ current mirror equation (neglecting CLM):

$$\frac{\underline{I_0}}{I_{bias}} = \frac{W_4}{W_3}$$

$$\Rightarrow V_{swing} = 2 \cdot R \cdot I_{bias} \cdot \left(\frac{W_4}{W_3}\right)$$

MI w.i.

& M2 s.i.

 $-\sqrt{2}V_{OV}$ $-V_{OV}$

MI s.i.

& M2 w.i.

 $V_{OV} \sqrt{2}V_{OV}$

Exercise I

f) Calculate, what $\frac{g_m}{I_D}$ is required to have exactly A_V and V_{swing} .

f)
$$\frac{g_{m_{1,2}}}{I_{D_{1,2}}} = \frac{g_{m_{1,2}}}{(I_0/2)} = \frac{g_{m_{1,2}} \cdot R}{(I_0 \cdot R/2)} = \frac{A_V}{\left(\frac{V_{swing}}{2}\right)/2} = \frac{A_V}{V_{swing}/4} = 4 \cdot \frac{A_V}{V_{swing}} = 5$$

Exercise I

g) Calculate R and g_m such that this circuit passes exactly the V_{swing} -, P_{diss} and A_V -specification.

g) First, calculate the max. allowed current

$$P_{diss} = V_{DD} \cdot (I_0 + I_{bias})$$

$$\Leftrightarrow I_0 = \frac{P_{diss} - V_{DD} \cdot I_{bias}}{V_{DD}} \approx 1mA$$

Then, calculate $g_{m_{1,2}}$

$$g_{m_{1,2}} = \left(\frac{l_0}{2}\right) \cdot 5 = 2.5mS$$

Now, calculate R

$$A_{V,diff} = g_{m_{1,2}} \cdot R$$

$$\Leftrightarrow R = \frac{A_{V,diff}}{g_{m_{1,2}}} = 400 \Omega$$

Exercise I

h) Calculate the required width W_1 and W_2 as well as L_1 and L_2 with aid of Fig. 5 and Fig. 6.

h) Reminder: $\frac{g_{m_{1,2}}}{I_{D_{1,2}}} = 5$

Set length to minimum, i.e. $L_{1,2}=65nm~\left(f_T\sim\frac{1}{L^2}\right)$

Determine $V_{OV} \rightarrow 0.2V$

Exercise I

h) Now determine the width $W_{1,2}$ at $V_{OV} = 0.2V$

from g): $g_m = 2.5mS = 2.5 \cdot \underline{1mS}$ $\Rightarrow 0.9 \mu m \cdot \underline{2.5} = 2.25 \mu m$

Exercise I

 $\int_{0.50}^{0.50} \sqrt{2} \sqrt{2} \sqrt{2}$ (very pessimistic assumption)

i) Decide what length L_1 , L_2 and V_{OV} you would choose for M_3 and M_4 . Explain why? Then, calculate the width W_3 and W_4 with aid of Fig. 6.

i) $L_{3,4}=1\mu m$ to have negligible CLM (good current source) Then, decide for a suitable value for $V_{OV_{3,4}} \to 0.3~V$ to ensure saturation for all M_x :

$$V_{OV,3,4} + V_{OV,1,2} + \frac{V_{swing}}{2} \le V_{DD}$$

Exercise I

i) Calculate the width $W_{3,4}$

from g):

$$I_{DS,4} = I_0$$

 $= 1mA = 10 \cdot 0.1mA$

$$\Rightarrow 8 \mu m \cdot 10 = 80 \mu m$$

Then, with current mirror equation determine W_3

$$\frac{I_0}{I_{bias}} = \frac{W_4}{W_3} \iff W_3 = \frac{W_4}{(I_0/I_{bias})} = \frac{W_4}{10} = 8\mu m$$

Exercise I

j) Calculate the minimum allowed input common mode voltage $V_{cm,min,in}$. What happens, if one sets $V_{cm,in} < V_{cm,min,in}$?

j) $V_{cm,in,min}$ calculated as follows

$$V_{cm,in,min} = V_{Dsat4} + V_{GS_{1,2}}$$

$$= V_{Dsat4} + V_{OV_{1,2}} + V_{th,n}$$

$$= 0.3V + 0.2V + 0.4V = 0.9V$$

Exercise I

- j) What happens, if $V_{cm} < V_{cm,in,min}$?
 - → drives M4 into triode

Summary

denote: In = 1,5

- Value the $\frac{g_m}{I_D}$ -plot!
 - With $\frac{g_m}{I_D}$ one can identify the entire trade-off in one plot!

- Solve exercise 2 a-e
 - ETA: 25 min

Exercise 2

- a) Give the small signal voltage gain equation of this circuit including the capacitances and indicate
 - (i) dominant pole,
 - (ii) non-dominant pole,
 - (iii) zero.
- b) Assume the pole-zero-doublet to be far away from the dominant pole. Draw the bode- and phase plot and indicate location of the dominant pole and GBW.

$$A_v(s) = \frac{v_{out(s)}}{v_{in(s)}} = \frac{g_{m,1,2}}{g_{02} + g_{06}} \cdot \frac{1 + s \frac{C_{d1,5}}{2gm_5}}{1 + s \frac{C_{d1,5}}{gm_5}} \cdot \frac{1}{1 + s \frac{C_{d2,6}}{g_{02} + g_{06}}}$$

b) see drawing

Exercise 2

c) What happens to the pole-zero-doublet, if one increases/decreases the V_{OV} of M_5 and M_6 assuming that the current flowing through M4 is fixed as well as the lengths are fixed?

c)
$$p_{non-dom} \sim \frac{g_{m5}}{c_{gs_{5,6}}}$$

Exercise 2

Exercise 2

d) Assume $V_{OV,3,4}=0.2V$, $V_{Dsat,5,6}=-0.25V$ and $V_{OV}<-0.1V$ for the remaining devices. With aid of Fig. 9, calculate the maximum/minimum possible output common mode voltage $V_{cm,max,out}$ and $V_{cm,min,out}$, where all transistors are still in saturation.

d) Calculate $V_{out,cm,min}$ (for $V_{OV,4}=0.2V$ and remaining $V_{OV}<0$ V)

$$V_{out,cm,min} = \underline{V_{Dsat,4}} + \underline{V_{Dsat,1,2}}$$
$$= \underline{0.1 \, V} + \underline{0.05 \, V} = 0.15 \, V$$

Exercise 2

d) Calculate $V_{out,cm,max}$ (for $V_{OV,4}=0.2V$ and $V_{Dsat,5,6}=-0.25V$)

$$V_{out,cm,max} = V_{DD} + V_{Dsat,5,6}$$

= 1.1 V - 0.25V = 0.85 V

Exercise 2

e) The designer decides to set the output common mode voltage for $v_D=0$ to the midpoint between $V_{cm,max,out}$ and $V_{cm,min,out}$. Explain how and calculate for that the required V_{OV} .

Hint: Examine the PMOS pair for $v_D = 0$.

e) $V_{out,cm}$ calculated as follows

$$V_{out,cm} = \frac{V_{out,cm,max} + V_{out,cm,min}}{2} = 0.5V$$

How to setup $V_{out,cm}$ in OTA's?

Exercise 2

e)
$$V_{out,cm} = \frac{V_{out,cm,max} + V_{out,cm,min}}{2} = 0.5V$$

How to setup $V_{out,cm}$ in OTA's?

Exercise 2

e) Consequently, $|V_{OV,5}| = V_{DD} - V_{out,cm} - |V_{th,p}| = 0.38V$

- Solve exercise 2 f-i
 - ETA: 20 min

Exercise 2

f) Find and explain a suitable simplification of the equation from "a)" such that Fig. 8 becomes useful for designing the OTA. Then, calculate the required V_{OV} and $V_{in,cm,min}$ for M_1 and M_2 to achieve $A_V > 8$.

f) How to simplify $A_V(\underline{s}=0)$?

$$A_v(s) = \frac{v_{out(s)}}{v_{in(s)}} = \frac{g_{m,1,2}}{g_{02} + g_{06}} \cdot \frac{1 + s \frac{C_{d1,5}}{2gm_5}}{1 + s \frac{C_{d1,5}}{gm_5}} \cdot \frac{1}{1 + s \frac{C_{d2,6}}{g_{02} + g_{06}}}$$

 \Rightarrow make $L_{5.6} = 1 \mu m$ for negligible CLM

$$\Rightarrow g_{02} \gg g_{06}$$

$$A_V(s=0) \approx \frac{g_{m,1,2}}{g_{02}}$$

Exercise 2

f) $V_{DS,2}$ calculated as follows

$$V_{DS,2} = V_{out,cm} - V_{Dsat,4} = 0.5 - 0.1V = 0.4V$$

Exercise 2

f) Search $V_{OV,1,2}$ for $A_V(s=0) > 8$

$$\rightarrow V_{GS,1,2} = 0.2V \rightarrow A_V \sim 9$$

$$\rightarrow V_{OV,1,2} = V_{GS,1,2} - V_{th,n} = -0.2V$$

$$\rightarrow V_{in,cm} = V_{GS,1,2} + V_{Dsat,4} = 0.3V$$

Exercise 2

g) Calculate $V_{in,cm,max}$.

g) $V_{in,cm,max}$ calculated as follows:

$$V_{in,cm,max} = V_{DD} + V_{GS,5} - V_{DSat1,2} + V_{GS,1,2}$$

$$= V_{out,cm} - V_{Dsat,1,2} + V_{GS,1,2}$$

$$= 0.5V - 0.05V + 0.2V = 0.65V$$

Exercise 2

- h) Assume a current of I_0 is flowing through M4. Given that all transistors are in saturation, determine what current I_{CL} flows through C_L , if
 - (i) $V_D = 0$,
 - (ii) $V_D < -X$: M_1 is in weak inversion and M_2 in strong inversion,
 - (iii) $V_D > X$: M_1 is in strong inversion and M_2 in weak inversion.

Moreover, determine X.

h) Following current I_{CL} flows through C_L given that all transistors are in saturation

(i)
$$V_D = 0V : I_{CL} = 0A$$

(ii)
$$V_D < -X : I_{CL} = -I_0$$

(iii)
$$V_D > X : I_{CL} = I_0$$

What is X? $\sqrt{2} \cdot V_{OV}$?

$$\rightarrow$$
 X = $\sqrt{2} \cdot V_{Dsat,1,2} \sim 71 \ mV$ (for $V_{OV,1,2} = -0.2V$)

Exercise 2

- i) Calculate the SR, the required I_0 and $g_{m,1,2}$ necessary to pass exactly the f_{GBW} -requirement with aid of Fig. 5. After that, calculate $g_{m,5,6}$.
- i) Determine SR (Slew Rate) for given f_{GBW} -spec and $V_{OV,1,2}$

$$\frac{g_{m_{1,2}}}{I_{D_{1,2}}} = \frac{2\pi f_{GBW} \cdot C_L}{(I_0/2)} = 2 \cdot \frac{2\pi f_{GBW}}{SR}$$

$$SR = \frac{I_0}{C_L}$$

$$\rightarrow \frac{g_{m_{1,2}}}{I_{D_{1,2}}} = 22.5 \text{ for } V_{OV_{1,2}} = -0.2V$$

$$\rightarrow SR = 2 \cdot \frac{2\pi f_{GBW}}{22.5} = 400 mV/ns$$

Exercise 2

i) Calculate I_0 for M4

$$I_0 = SR \cdot C_L = 400 mV/ns \cdot 500 fF = 200 \mu A$$

Determine $g_{m,1,2}$

$$g_{m_{1,2}} = 22.5 \cdot \left(\frac{l_0}{2}\right) = 2.25 mS$$

Determine $g_{m,5,6}$

$$g_{m,5,6} = \frac{2 \cdot (I_0/2)}{V_{OV,5,6}} \approx 526 \mu S$$

Summary (I)

- I. Value the $\frac{g_m}{I_D}$ and $\frac{g_m}{g_{ds}}$ plots!
 - One can predict the feasibility of the given specifications for an OTA in one view

Summary (2)

- Design flow introduced
- 3. Learned how to "design on paper" with
 - W-plot for fixed g_m or i_{ds}
 - $\frac{g_m}{I_D}$ and $\frac{g_m}{g_{ds}}$ -plots
 - V_{dsat} -plot
 - Those plots will help you to save time when designing for the final lab session!

MATLAB session

- Exercise 3
 - Type in the code accordingly to this presented OTA exercise
 - 2. Solve following scientific questions?
 - I. How can one move the pole-zero-doublet?
 - 2 options
 - 2. How can I increase the f_{GBW} ?
 - ETA: 30 min

Hints:

- Use the following command to copy transistors e.g. M1 and M2
 M2 = cirElementCopy(M1, M2);
- 2. Before coding, draw all voltage condition on the OTA-circuit
 - i.e. vgs, vgd, vds, ids (or gm) of each transistor!
 - This will help you to speed-up your coding
- Code it smart!
 - 1. code it such that you can play around with the pole-zero doublet!

... some helpful references

- [1]: "Analog Design Essentials", Sansen, Willy M. C, 2006
- [2]: "Design of Analog CMOS Integrated Circuits", Razavi, Behzad, 2016
- [3]: "Analysis and Design of Analog Integrated Circuits", P. Gray, P. Hurst, S. Lewis and R.

Meyer, John Wiley and Sons, 2009

mec

embracing a better life

