

Ethics Pledge

Consistent with the above statements, all homework exercises, tests and exams that are designated as individual assignments MUST contain the following signed statement before they can be accepted for grading.

I pledge on my honor that I have not given or received any unauthorized assistance on this assignment/examination. I further pledge that I have not copied any material from a book, article, the Internet or any other source except where I have expressly cited the source.

Signature: <u>Haodong Zhao</u> Date: <u>Feb 19th 2019</u>

Please note that assignments in this class may be submitted to www.turnitin.com, a web- based anti-plagiarism system, for an evaluation of their originality.

1. Plot x1 vs y:

Following is the figure of x1 vs y

Following is the scatter plot of x1 vs y

2. Present correlation matrix of Xs:

Following is the figure of correlation matrix by using 'Pearson' method

```
652hw1
/Users/haodong/.conda/envs/12323/bin/python /Users/haodong/PycharmProjects/12323/652hw1.py
                                             x2
                                                                    х3
        1.000000e+00 -1.623229e-15 3.666186e-17 -1.961584e-17 -5.038912e-16
      -1.623229e-15 1.000000e+00 3.652531e-01 3.599645e-01 4.636655e-01 3.666186e-17 3.652531e-01 1.000000e+00 9.986341e-01 -8.755140e-02
хЗ
     3.566186e-17 3.552531e-01 1.000000e+00 5.360541e-01 0.7531+0e 02 -1.961584e-17 3.599645e-01 9.986341e-01 1.000000e+00 -9.331124e-02 -5.038912e-16 4.636655e-01 -8.755140e-02 -9.331124e-02 1.000000e+00 -2.418214e-16 -1.827360e-01 -6.7553020e-02 -6.563087e-02 -2.151333e-01 2.261507e-01
х5
x6
       7.156820e-16 -7.055702e-01 -3.057538e-01 -3.189848e-01 -2.261597e-01
       4.596412e-16 -1.586428e-01 1.928118e-01 2.139482e-01 -6.306235e-01 8.311665e-18 -2.238357e-02 -1.280881e-01 -1.276077e-01 7.630415e-02
x9
x10 5.130862e-17 -1.345948e-02 4.087820e-02 3.785171e-02 -1.048725e-01
     -2.418214e-16 7.156820e-16 4.596412e-16 8.311665e-18 5.130862e-17 -1.827360e-01 -7.055702e-01 -1.586428e-01 -2.238357e-02 -1.345948e-02
x1
x2
     -6.786021e-02 -3.057538e-01 1.928118e-01 -1.280881e-01 4.087820e-02 -6.563087e-02 -3.189848e-01 2.139482e-01 -1.276077e-01 3.785171e-02 -2.151333e-01 -2.261597e-01 -6.306235e-01 7.630415e-02 -1.048725e-01
     1.000000e+00 -1.077142e-02 4.616433e-02 1.033501e-01 2.250564e-06 -1.077142e-02 1.000000e+00 -2.711668e-01 2.756159e-02 2.349715e-02
Process finished with exit code 0
```

Following is the figure of correlation matrix by using 'Kendall' method

```
print(df.corr(method='kendall'))
 652hw1 >
 /Users/haodong/.conda/envs/12323/bin/python /Users/haodong/PycharmProjects/12323/652hw1.py
     0.0 1.000000 0.266365 0.261912 0.414857 -0.149780 -0.610691
 x2
 хЗ
     0.0 0.266365
                    1.000000 0.958638
                                       0.030328 -0.050719 -0.251128
     0.0 0.261912 0.958638 1.000000
 x4
                                       0.019681 -0.047802 -0.263039
     0.0 0.414857 0.030328 0.019681 1.000000 -0.215133 -0.069049 0.0 -0.149780 -0.050719 -0.047802 -0.215133 1.000000 -0.029200
 x5
     0.0 -0.610691 -0.251128 -0.263039 -0.069049 -0.029200 1.000000
 x7
     0.0 -0.186015 0.018973 0.047642 -0.525196 0.082074 -0.091962 0.0 -0.016501 -0.081521 -0.082652 0.069710 0.070950 0.057591
 x8
     0.000000 0.000000 0.000000
 x1
    -0.186015 -0.016501 -0.016537
 x2
     0.018973 -0.081521 0.014418
 х3
 x4
     0.047642 -0.082652 0.009189
 x5
    -0.525196 0.069710 -0.118279
 x6
     0.082074
              0.070950 0.003071
 x7
    -0.091962 0.057591 -0.064678
     1.000000 -0.034290 -0.050094
 x8
    -0.034290 1.000000 -0.164700
 x9
 x10 -0.050094 -0.164700 1.000000
 Process finished with exit code 0
```

Following is the figure of correlation matrix by using 'Spearman' method

```
print(df.corr(method='spearman'))
🛑 652hw1 ×
  /Users/haodong/.conda/envs/12323/bin/python /Users/haodong/PycharmProjects/12323/652hw1.py
        x1
                  x2
                            х3
                                                 x5
            0.000000
       1.0
                      0.000000
                                0.000000
                                           0.000000
                                                     0.000000
                                                               0.000000
       0.0
            1.000000
                      0.389659
                                0.381014
                                           0.480250 -0.173389 -0.744038
            0.389659
                                                              -0.342631
  х3
       0.0
                      1.000000
                                0.996366
                                           0.037127 -0.062090
  x4
       0.0
            0.381014
                      0.996366
                                1.000000
                                           0.024085 -0.058499
                                                              -0.354875
            0.480250
                      0.037127
                                0.024085
                                           1.000000
  х5
       0.0
                                                    -0.215133
                                                              -0.075815
       0.0
           -0.173389 -0.062090
                               -0.058499
                                         -0.215133
                                                     1.000000
                                                              -0.032061
       0.0 -0.744038 -0.342631 -0.354875 -0.075815
                                                    -0.032061
  x7
                                                               1.000000
       0.0 -0.301155
                      0.029906
                                0.068361
                                         -0.590695
                                                     0.092309
                                                              -0.068992
       0.0 -0.018102 -0.122256 -0.125329 0.084500
                                                     0.086003
                                                              0.076125
  x9
       0.0 -0.024866 0.016993 0.009365 -0.128533
                                                     0.003337 -0.059042
                       x9
             x8
                                x10
                 0.000000
       0.000000
  x1
                           0.000000
      -0.301155 -0.018102
                          -0.024866
  x2
                           0.016993
  х3
       0.029906 -0.122256
  x4
       0.068361 -0.125329
                           0.009365
  x5
      -0.590695
                 0.084500
                          -0.128533
       0.092309
                 0.086003
                           0.003337
  x6
  x7
      -0.068992
                0.076125 -0.059042
       1.000000 -0.043348 -0.061774
  8x
      -0.043348
                 1.000000 -0.215509
  x10 -0.061774 -0.215509
                          1.000000
  Process finished with exit code 0
```

Following is the correlation matrix in plot form with 'Pearson' method

3. Find outliers of Y First plot y:

Then print outlier for y in an array:

```
# q3
# sb.boxplot(x = data1['y'])
# plt.show()

data = pd.DataFrame(data1, columns=_['y'])
# print(data)

quartile_1, quartile_3 = np.percentile(data, [25, 75])
iqr = quartile_3 - quartile_1
lower_bound = quartile_1 - (iqr * 1.5)
upper_bound = quartile_3 + (iqr * 1.5)
outlier = np.where((data > upper_bound) | (data < lower_bound))
pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)
print(outlier)

652hw1 ×

/Users/haodong/.conda/envs/12323/bin/python /Users/haodong/PycharmProjects/12323/652hw1.py
(array([ 9859, 17507, 17849, ..., 25736, 25738, 25739]), array([0, 0, 0, ..., 0, 0, 0]))
Process finished with exit code 0</pre>
```

We can find the outlier for y from above output. For example, the 9859th, 17507th, 17849th y value are outliers, and some values after 17849th are also outliers.

4. Predict Y using Ln(x3) and show the ANOVA table In this model, Y is y and X is ln(x3), after fit the model, we can get following result.

From the model, we can fix a function for y and ln(x3):

$$y = 6.595198 - 0.641832 * ln (x3)$$

Above figure is the plot of the model.

After using ANOVA test, we can obtain following ANOVA table.

```
sum_sq df F PR(>F)

X 8465.092794 1.0 3649.534826 0.0

Residual 59713.185176 25744.0 NaN NaN

Process finished with exit code 0
```