
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Durreshwar Anjum

Timestamp: [year=2008; month=3; day=25; hr=13; min=1; sec=30; ms=157;]

Validated By CRFValidator v 1.0.3

Application No: 10568356 Version No: 2.0

Input Set:

Output Set:

Started: 2008-03-12 16:09:07.028

Finished: 2008-03-12 16:09:07.105

Elapsed: 0 hr(s) 0 min(s) 0 sec(s) 77 ms

Total Warnings: 0

Total Errors: 0

No. of SeqIDs Defined: 4

Actual SeqID Count: 4

							SEQUI	ENCE	LIS	TING				
<110>	CZIEP ROMME WINNE	LAERI	E, JI	EAN										
<120>	METHO POPUL			IBIT	THE	PROI	PAGA'	TION	OF	AN U	NDES	IRED	CEL	_
<130>	08544	9-01	86											
<140>	1056	8356												
<141>	2008	-03-1	12											
<150> PCT/EP04/09170 <151> 2004-08-16														
<150>	ED U3	N184'	51 9											
<150> EP 03018451.9 <151> 2003-08-14														
<160>	4													
<170>	Paten	tIn ^v	Ver.	3.3										
<210>	1													
<211>														
<212> <213>	Homo	sapie	ens											
< 40.0>	1													
<400> Met A:	ı sp Asn	Lys	Lys	Arg	Leu	Ala	Tyr	Ala	Ile	Ile	Gln	Phe	Leu	His
1			5					10					15	
Asp G	ln Leu	Arg 20	His	Gly	Gly	Leu	Ser 25		Asp	Ala	Gln	Glu 30	Ser	Leu
Glu V	al Ala	Ile	Gln	Cys	Leu		Thr	Ala	Phe	Gly		Thr	Val	Glu
	35					40					45			
=	er Asp 50	Leu	Ala	Leu	Pro 55	Gln	Thr	Leu	Pro	Glu 60	Ile	Phe	Glu	Ala
Ala A	la Thr	Gly	Lys	Glu 70	Met	Pro	Gln	Asp	Leu 75	_	Ser	Pro	Ala	Arg 80
Thr P	ro Pro	Ser	Glu 85	Glu	Asp	Ser	Ala	Glu 90	Ala	Glu	Arg	Leu	Lys 95	Thr
Glu G	ly Asn	Glu 100	Gln	Met	Lys	Val	Glu 105	Asn	Phe	Glu	Ala	Ala 110	Val	His
Phe T	yr Gly 115	_	Ala	Ile	Glu	Leu 120	Asn	Pro	Ala	Asn	Ala 125	Val	Tyr	Phe

Cys Asn Arg Ala Ala Ala Tyr Ser Lys Leu Gly Asn Tyr Ala Gly Ala

Ala Tyr Gly Arg Met Gly Leu Ala Leu Ser Ser Leu Asn Lys His Val 165 170 175

Glu Ala Val Ala Tyr Tyr Lys Lys Ala Leu Glu Leu Asp Pro Asp Asn 180 185 190

Glu Thr Tyr Lys Ser Asn Leu Lys Ile Ala Glu Leu Lys Leu Arg Glu 195 200 205

Ala Pro Ser Pro Thr Gly Gly Val Gly Ser Phe Asp Ile Ala Gly Leu 210 215 220

Leu Asn Asn Pro Gly Phe Met Ser Met Ala Ser Asn Leu Met Asn Asn 225 230 235 240

Pro Gln Ile Gln Gln Leu Met Ser Gly Met Ile Ser Gly Gly Asn Asn 245 250 255

Pro Leu Gly Thr Pro Gly Thr Ser Pro Ser Gln Asn Asp Leu Ala Ser 260 265 270

Leu Ile Gln Ala Gly Gln Gln Phe Ala Gln Gln Met Gln Gln Gln Asn 275 280 285

Pro Glu Leu Ile Glu Gln Leu Arg Ser Gln Ile Arg Ser Arg Thr Pro 290 295 300

Ser Ala Ser Asn Asp Asp Gln Glu 305 310

<210> 2

<211> 2218

<212> DNA

<213> Homo sapiens

<400> 2

tcgacggtcg cctgagaggt atcacctctt ctgggctcaa gatggacaac aagaagcgcc 60 tggcctacgc catcatccag ttcctgcatg accagctccg gcacgggggc ctctcgtccg 120 atgctcagga gagcttggaa gtcgccatcc agtgcctgga gactgcgttt ggggtgacgg 180 tagaagacag tgaccttgcg ctccctcaga ctctgccgga gatatttgaa gcggctgcca 240 cgggcaagga gatgccgcag gacctgagga gccccgcgcg aaccccgcct tccgaggagg 300 actcagcaga ggcagagcgc ctcaaaaccg aaggaaacga gcagatgaaa gtggaaaact 360 ttgaagctgc cgtgcatttc tacggaaaag ccatcgagct caacccagcc aacgccgtct 420 atttctgcaa cagagccgca gcctacagca aactcggcaa ctacgcaggc gcggtgcagg 480 actgtgagcg ggccatctgc attgacccgg cctacagcaa ggcctacggc aggatgggcc 540 tggcgctctc cagcctcaac aagcacgtgg aggccgtggc ttactacaag aaggctctgg 600 agctggaccc cgacaacgag acatacaagt ccaacctcaa gatagcggag ctgaagctgc 660 gggaggecec cagececaeg ggaggegtgg geagettega categeegge etgetgaaca 720 accetggett catgageatg gettegaace taatgaacaa teeccagatt cageagetea 780 tgtccggcat gatttcgggt ggcaacaacc ccttgggaac tcccggcacc agcccctcgc 840 agaacgacct ggccagcctc atccaggcgg gccagcagtt tgcccagcag atgcagcagc 900 agaacccaga gttgatagag cagctcagga gccagatccg gagtcggacg cccagcgcca 960

gcaacgacga	ccagcaggag	tgacgctgcc	tgctcccggt	gtgaccgcgt	ccttccctgg	1020
ccgacccgaa	ggaagccttc	tggttgtctg	ccacttcctc	ctgttggact	gcctgagaga	1080
ggggaagaga	gagacctcgg	acctgcatgt	caagatggat	tttccccttt	tatctctgcc	1140
ctcctccact	ccctttttgt	aactccctta	cagcccccag	acccttcttg	aaacgagagc	1200
cagcaagctg	agcacagacc	agcagcgacc	tcccttccag	ccccagaaa	gctcggtcac	1260
ttgagtgttt	tctagaatcc	tggggtgctc	ccgggccgct	ctcagagaag	tggcaggttt	1320
cacgttcagc	cgtgtggcgg	atcgtgtggc	ttccaaagcc	ttttacagcc	cccgccccc	1380
atcccgtggt	ctgtctgcag	gaactctccc	gtctgtgaga	agcctctttc	cgagtcgacc	1440
tcccggccac	cccggccctg	tgcctgctcg	gaagagctca	ctgccagctg	cggcctgggc	1500
accgcgggcc	atgtgtgttt	gcatgaggaa	ctctttagtg	gcagacacct	aagagacggc	1560
tgcggtcacc	ccacgcctcc	gcggctcagg	agccgtcctg	ggtgcatagg	accagtttct	1620
gtgacttttc	tccagttggg	catgttgaca	gacatgtttc	ccctcctccc	accctcattt	1680
tctggtcctc	gcgactgaga	gccaggggcg	acatcatgac	cttctgtccc	ggccgcctta	1740
gccccgggca	cagggaaggc	agctgggccg	tttctgtctg	tgtcccatcc	tgctgtcctt	1800
ctgtcctgga	tgtttcatgc	ccggggcccc	ccagggaagc	ttacccctcc	tgtgctgggt	1860
ggaggccacg	ggacacctca	ggtgccaccc	accttggccc	taaaacagcc	accaggaaag	1920
cagccagaga	gccggacagc	aggcagcctg	tctgggttcc	tgaggcctgg	gggtggcaga	1980
cgagcccacg	gcgccgtggt	cccagcagca	gggttgtcag	tcggagcatc	ctggggctcc	2040
ctggctcctg	gccgtctgtg	aggtaggcgc	agtaccgtgt	atcgtaggta	gcagtaggaa	2100
cgggggccgc	cgcggccctg	cagccgctca	tggcggtgag	gtgtgtgcca	agcccacccg	2160
gggtgcaggg	cgtgacgtgt	ggggaataaa	taggcgttgt	gacctcaaaa	aaaaaaaa	2218
<210> 3						
<211> 21						
<212> DNA						
<213> Homo	sapiens					
<400> 3						
aacttgaagc	tgccgtggat	t				21
<210> 4						

<212> DNA <213> Homo sapiens

<211> 23

<400> 4 aagcacgtgg aggccgtggc tta

23