

Combining Knowledge- and Data-driven Methods for De-identification of Clinical Narratives

Azad Dehghan¹, A. Kovačević², G. Karystianis¹, J A. Keane^{1,4} and G Nenadic^{1,3,4}

¹School of Computer Science, University of Manchester, Manchester, UK

²Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia

³Health eResearch Centre, Manchester

⁴Manchester Institute of Biotechnoloy, University of Manchester

<u>Contact</u>: a.dehghan@manchester.ac.uk

Abstract

- The Problem
 - De-identification of clinical narratives
 - Personal health information: HIPAA
- Methods
 - Knowledge- and data-driven
- Results
 - F₁: (strict)90.65%;(lenient)94.80%;(HIPAA) 93.25%

Task I: De-identification

- 2014 i2b2/UTHealth, Task I
- 25 entity types, 7 categories
 - AGE; DATE; CONTACT; LOCATION; ID; NAME;
 PROFESSION
- ~Longitudinal clinical narratives
 - Training: 790 and Test: 514 narratives

Methodology

- Knowledge- and data-driven
 - Dictionary
 - Rule
 - machine learning
- Two-pass recognition
- Priority sorting

14/11/2014 4

The University

Methodology

ML predictor

- Initially, constructed models for all entity types
- Post validation: City, Date, Patient, Hospital,
 Organization and Profession
- Six separate CRFs
 - 280 features
 - Token-level CRF
 - Inside-Outside (I-O) schema

14/11/2014 6

Feature vector

- Lexical
 - Token, lemma, POS tag
 - Lemma and POS tags of surrounding tokens
 - Token location within the chunk (I-O)
- Orthographic
 - UpperInitial, allCaps, containNumber
 - Word pattern: BrightPoint -> "XxxxxxXxxxxx"

Feature vector

Semantic

- Dictionary and rules
 - US states and cities; calendar months; profession + cues:(e.g., "worked for"; "job as a"; "employed as")

Positional

- Absolute line position containing the current token
- Binary feature: presence of space character between current and next token

14/11/2014 8

Dictionary based predictor

- Lists or Gazetteers
- Longest match
- Post-processing rules (disambiguation)
- Sources: Internet, Wikipedia, deid tool
- Dictionary for: Hospital, City, Country, Profession and Organization

Rule based predictor

- CPSL and RegEx
- Largest number of predictors
- Small rule set; average: 5.6 rules / entity type
- Exploited features: orthographic, pattern, and contextual

Features

- Orthographic
 - upperInitial; allLowerCase; allCaps; Number;
 Punctuation
- Pattern
 - e.g., Date; Zip; Tel.
- Contextual cues
 - doctor and person titles (e.g., "Dr"; "Mr")
 - symbols (e.g., brackets [Username])
 - White space characters

Two-pass recognition

Capture repeated information that lack contextual cues

Two-pass recognition

- Input:
 - "Mr John complained of a recurring upper chest pain; I have referred John to ..."
- 1. First-pass recognition:
 - "Mr John complained of a recurring upper chest pain; I have referred John to"
- 2. Second-pass recognition:
 - Dictionary-propagation: "John"
 - Dictionary matching...
- Output:
 - "Mr John complained of a recurring upper chest pain; I have referred John to"

Two-pass recognition

- Rule and ML predictors
 - Rule: Patient, Doctor, Date, Zip, Medicalrecord, and Idnum
 - ML: City, Hospital and Patient
- Improvements (F₁):
 - e.g., Patient(~5%)
 - e.g., Date (~2%)
 - e.g., ZIP (~2%)

Integration

Predictor integration

- Dictionary, rules and ML
- Mention level union
- Improvements (F₁):
 - e.g., ML + Rules
 - Date (~3%), Patient (~3%)

Priority sorting

- Priority sorting: disambiguate overlapping predictors
- Priority sorting
 - Specific entity pairs, e.g.,
 - AGE over DATE;
 - DOCTOR over PATIENT;
 - ZIP over IDNUM
- Improvement: 1% (micro F₁)

14/11/2014 16

Results

Category	Entity type	Frequency	F-measure %
AGE	Age	764	94.47
DATE	Date	4980	95.55
CONTACT	Email	1	100.00
	Fax	2	40.00
	Phone	215	94.03
LOCATION	City	260	81.11
	Country	117	78.73
	Hospital	875	79.08
	Organization	82	27.42
	State	190	88.22
	Street	136	94.74
	Zip	140	97.06
ID	Idnum	195	84.07
	Medical record	422	93.82
NAME	Doctor	1912	89.72
	Patient	879	86.30
	Username	92	97.78
PROFESSION	Profession	179	57.47

Discussion and error analysis

- Well defined categories (F₁:88-98%):
 - Age, Date, Email, Idnum, Medicalrecord, Phone, Street and Zip
 - Ambiguous and contextually dependent entities (F₁:78-86%):
 - City, Country, Hospital and Patient
 - Lexically variable and infrequent entities
 - − 57% (F₁) Profession
 - 27% (F₁) Organization

Discussion and error analysis

- Organization was a relatively infrequent (124 mentions in the 790 gold standard narratives) and broadly defined type:
 - companies ("IBM", "General Dynamics");
 - universities ("Vassar", "Yale");
 - government organizations ("army", "marines"),
 - industry sectors ("publishing", "catering business")
 - general organization types ("factory", "library")
 - different communities ("quilting group", "the Masons", 'methodist church'), specific places ("weight room").

19

Summary

- ➤ De-identification of longitudinal clinical narratives
- Hybrid approach (mainly knowledge-based)
- Cheap in terms of labour
- Two-pass recognition for longitudinal data
- Priority sorting for overlapping predictors

Thanks!

Task II

- Creation of vocabularies:
 - Acronyms, abbreviations, and variations
 - E.g., hyperlipidemia (hld, hyperlipidemia, dyslipidemia)
- Generic lexical expressions on text suggesting risk factors:
 - "He underwent CABG".
- Expressions converted through MT markup language into rules.
- Rule combination with vocabularies to identify risk factors:
 - "He was diagnosed with @hypertension".
 - @hypertension contains all synonyms, acronyms, abbreviations recognised in the training/development set and any complementary nouns from ICD-9.
- Different risk factor indicators, different sets of rules:
 - Diabetes: hemoglobin levels, glucose levels, diabetes mentions.
 - Same rules with different dictionaries used for all disease mentions.
- Time attribute:
 - Default rules due to the longitudinal nature of the records.
 - Medication/disease mentions: three default values (before, during, after DCT).
 - Other indicators: different defaults e.g., high blood pressure: one default value (before DCT).