Problem

Answer each part TRUE or FALSE.

a.
$$2n = O(n)$$
.

b.
$$n^2 = O(n)$$
.

Ac.
$$n^2 = O(n \log^2 n)$$
.

^A**d.**
$$n \log n = O(n^2)$$
.

e.
$$3^n = 2^{O(n)}$$
.

f.
$$2^{2^n} = O(2^{2^n})$$
.

Step-by-step solution

Step 1 of 7

TRUE (or) FALSE

Big - O Notation:

Let f and g be functions $f,g:N\to R^+$ say that f(n)=O(g(n)) if positive integers c and n_0 exist such that for every integer $n\ge n_0$ $f(n)\le c(g(n))$

When f(n) = O(g(n)) we say that g(n) is an upper bound for f(n).

Comment

Step 2 of 7

(a)

True

The statement 2n = O(n) is valid, because from the definition of Big-O notation it is clear that f(n) = c(g(n)).

Comment

Step 3 of 7

(b)

False

The statement $n^2 = O(n)$ is not valid, because $n^2 = n \cdot n$ which will grow faster than n.

That contradicts Big – O notation. Thus, $n^2 = O(n)$ is False.

Comment

Step 4 of 7

(c)

False

The statement $n^2 = O(n \log^2 n)$ is not valid, because factor n grows faster than the factor $\log^2 n$. That means f(n) > g(n), which contracts the Big -O notation.

Hence
$$n^2 = O(n \log^2 n)$$
 is false.

	Step 5 of 7	
(d)		
True.		
	$n\log n = O(n^2)$ $f(n) < \sigma(n)$	
The statement $n\log n - O(n^2)$	$n \log n = O(n^2)$ is valid, because the factor $\log n$ grows slower than the factor n . That means $f(n) < g(n)$. From Big- O notation is true.	
Comments (1)		
	Step 6 of 7	
(e)		
True.		
The statement	$3^n = 2^{O(n)}$ is valid, because $3^n = 2^{n\log 3}$ and $n\log 3 = O(n)$.	
	ation $3^n = 2^{O(n)}$ is true.	
Trom big-Onot	audii is iide.	
Comment		
	Step 7 of 7	
(f)		
True.		
	$2^{2^n} = O(2^{2^n})$ $f(n) = O(f(n))$ $f(n) = O(2^{2^n})$	
	$2^{2^n} = O(2^{2^n})$ is valid, because from Big- O notation $f(n) = O(f(n))$ for any function $f(n)$. Hence $2^{2^n} = O(2^{2^n})$ is true.	
The statement		
The statement Comment		