Hiding Leaders in Covert Networks: A Computational Complexity Perspective

Patrik Drbal

Supervisor: Ing. Šimon Schierreich

June 20, 2023

Introduction

Motivation

- Help to deepen the understanding of hiding in networks
- Help to make identifying key actors in criminal organizations easier

HIDING LEADERS (HL)

Instance: (G, L, b, c, d), where

- G = (V, E) is a network
- $L \subseteq V$ are leaders, $F = V \setminus L$ are followers
- b is a budget
- $c:G\times V\to\mathbb{R}$ is a centrality measure
- lack d is a safety margin

- |F'| > d
- $|W| \le \ell$
- $\forall_{f' \in F'} \forall_{\ell \in L} \colon c\big((V, E \cup W), f'\big) \geq c\big((V, E \cup W), \ell\big)$

HIDING LEADERS (HL)

Instance: (G, L, b, c, d), where

- G = (V, E) is a network
- $L \subseteq V$ are leaders, $F = V \setminus L$ are followers
- b is a budget
- $c:G\times V\to\mathbb{R}$ is a centrality measure
- d is a safety margin

- $|F'| \ge d$
- $|W| \le b$
- $\quad \qquad \forall_{f' \in F'} \forall_{\ell \in L} \colon c\big((V, E \cup W), f'\big) \geq c\big((V, E \cup W), \ell\big)$

HIDING LEADERS (HL)

Instance: (G, L, b, c, d), where

- G = (V, E) is a network
- $L \subseteq V$ are leaders, $F = V \setminus L$ are followers
- b is a budget
- $c: G \times V \to \mathbb{R}$ is a centrality measure
- lacktriangledown d is a safety margin

- $|F'| \ge d$
- $|W| \le b$
- $\quad \blacksquare \quad \forall_{f' \in F'} \forall_{\ell \in L} \colon c\big((V, E \cup W), f'\big) \geq c\big((V, E \cup W), \ell\big)$

HIDING LEADERS (HL_{deg})

Instance: (G, L, b, c, d), where

- G = (V, E) is a network
- $L \subseteq V$ are leaders, $F = V \setminus L$ are followers
- b is a budget
- $\bullet \quad c = c_{deg} \text{, } c_{deg}(G,v) = \deg(v)$
- lacktriangledown d is a safety margin

- |F'| > d
- $|W| \le b$
- $\quad \quad \forall_{f' \in F'} \colon \deg(f') \geq \max_{\forall_{\ell \in L}} \deg(\ell) \text{ in } (V, E \cup W)$

Sample Instance

Sample Instance

Goals

- Survey the computational complexity of the problem variants studied in the literature
- Derive new complexity and algorithmic results for various parameters with the use of the framework of parameterized complexity

Parameterized Complexity Classes

- $\quad \textbf{FPT}: f(k)\cdot |(x,k)|^c \text{, } c \in \mathbb{N}$
- $XP : f(k) \cdot |(x,k)|^{g(k)}$

- W[1]-hard \Rightarrow not in FPT
- para-NP-hard \Rightarrow not in XP

Contribution

Literature Review

- Literature results summarized and described in the language of parameterized complexity theory
- Pointed out that there are two definitions of the problem
 - Proof of NP-hardness of HL_{dea} reviewed for our definition

Theorem

 HIDING Leaders parameterized by b+d is $\operatorname{W[1]-hard}$ even if |L|=1

 HIDING Leaders parameterized by |L|+b+d is W[1]-hard

- lacktriangle Proved by showing a parameterized reduction from $k ext{-CLIQUE}$ on regular graphs
 - $k ext{-}\mathrm{CLIQUE}$ instance (G,k), where G is a $r ext{-}\mathrm{regular}$ graph
 - Hiding Leaders instance $(H,\{\ell\},\frac{k\cdot(k-1)}{2},c_{deg},k)$, where H is constructed from G
 - Solving HIDING Leaders in H corresponds to solving $k ext{-}\operatorname{CLIQUE}$ in G

Corollary

 $\operatorname{HIDING}\ \operatorname{LEADERS}$ is para-NP-hard with respect to |L|

- The parameterized reduction is also a polynomial reduction
- $k ext{-} ext{CLIQUE}$ on regular graphs is NP-hard $ext{ ext{reduction}}$ HL with |L|=1 is NP-hard

W[1]-hard

Theorem

 $\operatorname{HIDING}\ \operatorname{LEADERS}$ parameterized by b is in XP

- ullet Try to add every b-element subset of edges that can be added between followers
 - Check if it is a solution
- The algorithm runs in time $n^{\mathcal{O}(b)}$

Theorem

HIDING LEADERS parameterized by d is in XP

- Try every d-element subset of followers
- Add edges between followers from the subset
 - Check if it is a solution
 - If no, check if a solution can be found by connecting followers outside the subset
- The algorithm runs in time $\mathcal{O}(2^{d^2}) \cdot n^{\mathcal{O}(d)}$

Summary

Summary

- Problem reviewed with respect to the framework of parameterized complexity
- New complexity and algorithmic results obtained

Outlook

- Different centralities or parameters
 - vertex cover number
- W[1]-hardness for λ

Thank you for your attention!

Summary

- Problem reviewed with respect to the framework of parameterized complexity
- New complexity and algorithmic results obtained

Outlook

- Different centralities or parameters
 - vertex cover number
- W[1]-hardness for λ

Thank you for your attention!

Questions from the opponent

Question

V definici 2.11 definujete centralitu měřenou stupněm uzlu jako hodnotu danou stupněm daného vrcholu (1). Články, na které se odkazujete v konstrukcích a důkazech ovšem tuto míru definují jinak (2) (zdroje [2, 51]). Není tato odlišná definice problémem v důkazech, které v práci uvádíte? Prodiskutujte prosím odlišnosti a navrhněte řešení.

$$(1) c(G, v) = \deg v$$

(2)
$$c(G, v) = \deg \frac{v}{|V|-1}$$

Questions from the opponent

(1)
$$c(G, v) = \deg v$$
 (2) $c(G, v) = \deg \frac{v}{|V|-1}$

Answer

Odlišná definice není problémem v důkazech, které v práci uvádím.

Normalizační faktor $\frac{1}{|V|-1}$ ve vztahu (2) představuje pro daný graf konstantu a tedy nemění relativní pořadí vrcholů oproti pořadí určeného pomocí vztahu (1). Po přidání/odebrání vrcholů do/z grafu se sice tento faktor změní, zůstane však stejný pro všechny vrcholy v grafu a relativní pořadí oproti vzathu (1) se tak nezmění. Během zkoumání problému HIDING LEADERS jde právě o relativní pořadí vrcholů mezi sebou, čili vztah (1) nepředstavuje v tomto ohledu vůči vztahu (2) žádný rozdíl, avšak umožňuje jednodušší argumentaci díky možné záměně centrality vrcholu a stupně vrcholu.

Vztah (1) je také použitý v definici ve zdroji [3].

k = 3

$$b = \frac{k \cdot (k-1)}{2} = 3$$
$$d = k = 3$$

$$d = k = 3$$

k = 3 $b = \frac{k \cdot (k-1)}{2} = 3$ d = k = 3

$$k = 3$$

$$b = \frac{k \cdot (k-1)}{2} = 3$$

$$d = k = 3$$

$$\deg(\ell) = n - r + (k-1) = 4$$

