USING LOG LAWS

SOLUTIONS

TASK 1

Evaluating using laws

1
$$\log_5 12.5 + \log_5 2 = \log_5 (12.5 \times 2)$$

= $\log_5 25$
= 2
3 $\log_{12} 4 + \log_{12} 3 = \log_{12} 12$

5
$$\log 25 + \log 8 + \log 5 = \log (25 \times 8 \times 5)$$

= $\log 1000$
= 3

= 1

6
$$\log_2 10 + \log_2 \frac{1}{40} = \log_2 \frac{1}{4}$$

= $\log_2 2^{-2}$
= -2

=0

4 $\log_7 8 + \log_7 \frac{1}{8} = \log_8 1$

7
$$\log_4 20 - \log_4 5 = \log_4 (20 \div 5)$$

= $\log_4 4$
=1

8
$$\log_3 45 - \log_3 5 = \log_3 9$$

= 2

$$9 \log_2 96 - \log_2 3 = \log_2 32$$
$$= 5$$

10
$$\log_6 108 - \log_6 \frac{1}{2} = \log_6 (108 \div \frac{1}{2})$$

= $\log_6 (108 \times 2)$
= $\log_6 216$
= 3

11
$$\log_5 8 - \log_5 40 = \log_5 \frac{1}{5}$$

= -1

12
$$\log_4 20 - \log_4 10 = \log_4 2$$

= $\log_4 \sqrt{4}$
= $\frac{1}{2}$

13
$$\log_5 75 + \log_5 10 - \log_5 6 = \log_5 (750 \div 6)$$

= $\log_5 125$
= 3

14
$$\log_3 648 - \log_3 4 - \log_3 2 = \log_3 648 \div 4 \div 2$$

= $\log_3 81$
= 4

TASK 2

One logarithm

1
$$\log 3x + \log 4y = \log (12xy)$$

2 $\log 15 - \log 5y = \log \frac{15}{5y}$
 $= \log \frac{3}{y}$
3 $\log (x^4) - \log x = 4\log x - \log x$
4 $\log 7 + \log x - \log y = \log \frac{7x}{y}$

TASK 3

Given some values

 $= 3\log x \text{ or } \log (x^3)$

1 **a** $\log(x^2) = 2\log x$ = 2 × 2.4

b $\log \sqrt{x} = \log (x^{\frac{1}{2}})$

$$= \frac{1}{2} \log x$$

$$= \frac{1}{2} \times 2.4$$

$$= 1.2$$

c $\log \sqrt[3]{y} = \log y^{\frac{1}{3}}$

$$=\frac{1}{3}\log y$$

$$=\frac{1}{3}\times 3$$

$$= 1$$

 $\mathbf{d} \quad \log (xy) = \log x + \log y$

$$= 2.4 + 3$$

$$= 5.4$$

 $e \quad \log \frac{x}{y} = \log x - \log y$

$$= 2.4 - 3$$

$$=-0.6$$

 $\mathbf{f} \quad \log \, \frac{y}{x} = \log y - \log x$

$$= 3 - 2.4$$

$$= 0.6$$

g $\log \frac{x^3}{v^2} = \log x^3 - \log y^2$

$$= 3\log x - 2\log y$$
$$= 3 \times 2.4 - 2 \times 3$$

h $\log \sqrt{\frac{x}{y}} = \log \left(\frac{x}{y}\right)^{\frac{1}{2}}$

$$= \frac{1}{2} \log \frac{x}{v}$$

$$= \frac{1}{2} (\log x - \log y)$$

$$= \frac{1}{2} \times -0.6$$

$$=-0.3$$

TASK 3

Given some values (cont'd)

2 **a** $\log_a 6 = \log_a (2 \times 3)$ **b** $\log_a 30 = \log_a (2 \times 3 \times 5)$ $= \log_a 2 + \log_a 3$ $= \log_a 2 + \log_a 3 + \log_a 5$ = 0.8= 1.5**d** $\log_a 2.5 = \log_a (5 \div 2)$ **c** $\log_a 1.5 = \log_a (3 \div 2)$ $= \log_a 3 - \log_a 2$ $= \log_a 5 - \log_a 2$ = 0.2= 0.4**e** $\log_a 9 = \log_a (3^2)$ **f** $\log_a 16 = \log_a (2^4)$ $= 2\log_a 3$ $=4\log_a 2$ = 1= 1.2**g** $\log_a 0.6 = \log_a (3 \div 5)$ **h** $\log_a 1.2 = \log_a (2 \times 3 \div 5)$ $= \log_a 3 - \log_a 5$ $= \log_a 2 + \log_a 3 - \log_a 5$ =-0.2= 0.1i $\log_a 50 = \log_a (2 \times 5^2)$ $\log_a 3\sqrt{2} = \log_a 3 + \log_a \sqrt{2}$ $= \log_a 2 + \log_a (5^2)$ $= \log_a 3 + \log_a (2^{\frac{1}{2}})$ $= \log_a 2 + 2\log_a 5$ $= \log_a 3 + \frac{1}{2} \log_a 2$ = 1.7= 0.65