Linear Regression

Linear regression model

Cost function

$$f_{w,b}(x) = wx + b$$
 $J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})^2$

Gradient descent algorithm

repeat until convergence {

$$w = w - \alpha \frac{\partial}{\partial w} J(w, b) \longrightarrow \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)}) x^{(i)}$$

$$b = b - \alpha \frac{\partial}{\partial b} J(w, b) \longrightarrow \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})$$

 x^{i} = input variable / feature

 $y^i = output \ variable / target$

m = number of training examples

 $(x^{(i)},y^{(i)})$ = ith training example

Feature (x) \rightarrow Model \rightarrow Prediction (\hat{y} i.e. estimated y)

Regression model predicts Numbers. There can be infinitely many possible outputs. Classification model predicts categories. There are small number of possible outputs.

1. Simple Linear Regression

It is also called univariate linear regression. It means linear regression with one variable (single feature x)

Model: $f_{w,b}(x) = wx + b$

w,b: parameters to improve the model

b = y-intercept (Point where it crosses the y-axis)

w = slope of the line

If w = 0, then f(x) will be equal to b (y-intercept)

$$\begin{aligned} y^{(i)} &= f_{w,b} \left(x^{(i)} \right) \\ f_{w,b} \left(x^{(i)} \right) &= w x^{(i)} + b \end{aligned}$$

Find w,b such that $\hat{y}^{(i)}$ is close to $y^{(i)}$ for all $(x^{(i)}, y^{(i)})$

Cost Function

Error = Difference between prediction (\hat{y}) and target (y) i.e. ($\hat{y} - y$)

Formula for Cost Function / Squared Error Cost Function:

$$J(w,b) = (1 / 2m) *_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)})^{2}$$

Find values of w,b that make Cost Function small.

Gradient Descent – It is an algorithm that you can use to try to minimize any function

Goal: $min_{w1,...,wn,b}$ J $(w_1, w_2, ..., w_n, b)$

Outline:

Start with some w,b (set w = 0, b = 0) Keep changing w,b to reduce J(w,b)Until we settle at or near a minimum

Repeat until convergence:

$$\mathbf{w} = \mathbf{w} - \alpha (\partial / \partial \mathbf{w}) \mathbf{J}(\mathbf{w}, \mathbf{b})$$

$$\mathbf{b} = \mathbf{b} - \alpha \left(\frac{\partial}{\partial \mathbf{w}} \right) \mathbf{J}(\mathbf{w}, \mathbf{b})$$

Learning rate (α)

Range: 0 - 1

Near a local minimum,

- Derivative becomes smaller
- Update steps become smaller

Can reach minimum without decreasing learning rate

$$w = w - \bigcirc \frac{d}{dw} J(w)$$

If α is too small...

Gradient descent may be slow.

If α is too large...

Gradient descent may:

- Overshoot, never reach minimum
- Fail to converge, diverge

2. Multiple Linear Regression

It means linear regression with multiple features and one target variable.

Size in feet ²	Number of	Number of floors	Age of home in	Price in \$1000's
	bedrooms		years	
X_1	X_2	X_3	X_4	X_5
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178
•••	•••	•••	•••	•••

 $X_i = jth$ feature

n = number of features

 $\overline{x}^{(i)}$ = features of ith training example

 $x_i^{(i)}$ = value of feature j in ith training example

$$\begin{split} &f_{\underline{w},b}\left(x\right) = w_1x_1 + w_2x_2 + \ldots + w_nx_n + b \\ &w = \left[w_1 \ w_2 \ w_3 \ \ldots \ w_n\right] \\ &b \ \text{is a number} \\ &\overline{x} = \left[x_1 \ x_2 \ x_3 \ \ldots \ x_n\right] \text{ (Column Vector)} \\ &So, \ f_{\overline{w},b}\left(\overline{x}\right) = \overline{w}. \ \overline{x} + b \end{split}$$

Gradient Descent

repeat {
$$j=1 \atop w_1=w_1-\alpha} \underbrace{\frac{1}{m} \sum_{i=1}^m (f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)})-y^{(i)}) \underbrace{x_1^{(i)}}_{1}}_{i}}_{i}$$

$$\vdots \qquad \qquad \frac{\partial}{\partial w_1} J(\overrightarrow{w},b)$$

$$w_n=w_n-\alpha \frac{1}{m} \sum_{i=1}^m (f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)})-y^{(i)}) \underbrace{x_n^{(i)}}_{n}$$

$$b=b-\alpha \frac{1}{m} \sum_{i=1}^m (f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)})-y^{(i)})$$
simultaneously update
$$w_j \text{ (for } j=1,\cdots,n) \text{ and } b$$
}