DCIT105 Mathematics for IT Professionals

Session 1 – Number Systems I: Radix

By
Solomon Mensah (PhD)
Dept. of Computer Science
smensah03@ug.edu.gh

UNIVERSITY OF GHANA

Session Outline

The topics to be treated in this lecture are:

- Radix
- Signals
- Forms of Number System
 - Decimal
 - Binary
 - Octal
 - Hexadecimal
 - BCD
- Number Conversions
- Application of Number Systems

Topic One

NUMBER SYSTEMS I: RADIX

Introduction

- Decimal or base (radix) ten is used by humans
- Binary or radix two is used by computers
 - Since it only comprehends two states
 - High voltage (+5V) denoted by 1
 - Low voltage (0V) denoted by 0
- Hence, there is the need to convert a number from decimal to binary and vice versa.

Radix in Number Systems

• Number System:

- naming, representing or expressing numbers in a particular format using digits or symbols.
- E.g.: Decimal Number System, Binary Number System, etc.

Radix or Base:

- number of digits or symbols in a given number system.
- E.g.: Radix 10, Radix 2, etc.

Why study Number Systems?

Understand how the computer represents data before processing

2

Understand the language of the Digital Computer System

3

Convert numbers from one form to another

Perform arithmic computation in any form

Analyze and design digital electronics

Application of Number Systems (NS)

Decimal NS:

- Counting, measuring and labeling items
- Performing arithmic calculations
- Used in communication systems such as phone numbers, zip codes, etc

Binary NS:

- Used to represent and process data in computers
- Performing binary arithmic computations
- Image manipulation and computer graphics
- Binary operations extract specific information from images

Application of Number Systems (NS)

Octal NS:

- Represent file permissions in UNIX OS (Linux and Mac OS)
- Used for error detection caused by noise or other transmission issues
- Used to distinguish different aircraft on a radar based on "squawk" codes

Hexadecimal NS:

- Large numbers can be represented using fewer digits
- MAC addresses are represented using Hex
- Colours are represented in Hex for graphic design

Application of Number Systems (NS)

- Binary Coded Decimal NS:
 - For encoding product codes using barcodes
 - Used in digital clocks and timekeeping systems
 - Employed in error detection and corrections techniques
 - E.g.: checksums and parity bits
 - For analog-to-digital conversions
 - Used in accounting systems for accurate manipulation of monetary values

Analog vs Digital Signals

- Signal refers to data values converted into electrical pulse readily available for transmission and processing.
 - Signals are used for
 - arithmetic computation
 - communication
 - networking
- Forms of numerical value representation
 - Analog signal
 - Digital signal

Analog vs Digital Signals

- Analog signal
 - represents numerical values or figures of a quantity between two expected extreme values.
 - provides an output which is continuous
 - E.g.: Temp from 0° C 100° C

- Digital signal
 - express numerical values or figures of a quantity into steps of values.
 - provides an output which is discrete
 - E.g.: Temp of 9°C as 00001001

Decimal Number System

Radix ten or Decimal System

$$- \{0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9\}$$

E.g.: 432,600

Powers of ten:

$$10^0 = 1$$
 $10^4 = 10000$ $10^1 = 10$ $10^3 = 1000$ $10^5 = 100000$

Binary Number System (Radix 2) {0, 1}

Binar	Decimal
0	0
1	1
10	2
11	3
100	4
101	5
110	6
111	7
1000	8
1001	9
1010	10

Example

Binary to Decimal

Convert 1101 1001 to decimal

$$1 \times 2^{7} = 128$$

$$+ 1 \times 2^{6} = 64$$

$$+ 1 \times 2^{4} = 16$$

$$+ 1 \times 2^{3} = 8$$

$$+ 1 \times 2^{0} = 1$$

$$217$$

Try this!

- 1. What is 10011010 in decimal?
- 2. What is 00101001 in decimal?

Solution:

- 1. 154
- 2. 41

Decimal to Binary

Steps:

- 1. Determine the greatest power of two that is less than the number
- 2. Deduct the number from that power of two.
- 3. Repeat steps 1 and 2 for the updated outcome until you get to zero.
- 4. Write the binary number

E.g.: Convert 574 to radix 2

•
$$2^9 = 512$$

•
$$574 - 512 = 62$$

•
$$2^5 = 32$$

•
$$2^5 = 32$$
 $62 - 32 = 30$

•
$$2^4 = 16$$

•
$$2^4 = 16$$
 $30 - 16 = 14$

•
$$2^3 = 8$$

•
$$2^3 = 8$$
 $14 - 8 = 6$

•
$$2^2 = 4$$
 $6 - 4 = 2$

$$6 - 4 = 2$$

•
$$2^1 = 2$$
 $2 - 2 = 0$

$$2 - 2 = 0$$

• 1000111110

Decimal to Binary Conversion

- Result: 10010000
- 53

=
$$32 + 16 + 4 + 1$$

= $2^5 + 2^4 + 2^2 + 2^0$
= 110101 in binary
= 0011 0101 as a full byte in binary

- Exx. Convert 211 to binary
 - 1101 0011

Fraction(Decimal) to Binary

- Use Radix to multiply the number
- Pick the 0 or 1 integer as a partial result
- Pick the fraction part and repeat the process

Example:
$$(0.625)_{10}$$

Integer Fraction Result

$$0.625 *2 = 1 .25 x_1 = 1$$
 $0.25 *2 = 0 .5 x_2 = 0$
 $0.5 *2 = 1 .0 x_3 = 1$

Result: $(0.x_{-1} x_{-2} x_{-3})_2 = (0.101)_2$

In-Class Exercise

- 1. For a given binary number system, list the first sixteen digits.
- 2. Let 0, 1 and X be the independent digits in any arbitrary number system.
- (a) What is this number system's radix?
- (b) In this number system, list the first ten numbers.

Please try it!

Solution:

- 1. 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110 and 1111
- 2(a). The radix of the proposed number system is 3
- 2(b). The first 10 numbers in this number system would be 0, 1, X, 10, 11, 1X, X0, X1, XX and 100

Octal (Radix 8)

- Has eight different digits because its radix is 8.
- The 8 digits are as follows:

$$\{0, 1, 2, 3, 4, 5, 6, 7\}$$

- The place values in this number system are
 - $-8^{0}, 8^{1}, \dots, 8^{7}$ (integer)
 - $-8^{-1}, 8^{-2}, \dots, 8^{-7}$ (fraction)
- Exercise:
 - Write the next 10 numbers that follow '7'

Solution: 10, 11, 12, 13, 14, 15, 16, 17, 20 and 21

Decimal to Octal

Convert 175.3125_{ten} to radix of 8

Converting the integer part: 175_{ten}

Converting the fraction part: 0.3125_{ten}

Partial Partial Result

0.3125
$$\times 8 = 2$$
 . 5 $\times 5 = 2$

0.5 $\times 8 = 4$. 0 $\times 5 = 2$

0.3125_{ten} = $(0.x_{-1}x_{-2})_8 = (0.24)_8$

Binary to Octal

- $8 = 2^3$
- An octal digit is represented by group of 3 bits

Octal	Binary
0	0 0 0
1	0 0 1
2	0 1 0
3	0 1 1
4	100
5	1 0 1
6	1 1 0
7	1 1 1

Works both ways (Binary to Octal & Octal to Binary)

Hexadecimal (Radix 16)

- ◆ A hex digit is represented by group 4 bits {0 1 2 3 4 5 6 7 8 9 A B C D E F}
- Decimal to Hexadecimal equivalents shown in Table

Dec	Hex	Dec	Hex
0	0	8	8
1	1	9	9
2	2	10	Α
3	3	11	В
4	4	12	С
5	5	13	D
6	6	14	Е
7	7	15	F

Example: Hexadecimal to Decimal

Hexadecimal to Binary

16 = 2⁴ Each hexadecimal digit will be represented by 4 bits (nibble)

Binary	Hex	Binary	Hex
0000	0	1001	9
0001	1	1010	Α
0010	2	1011	В
0011	3	1100	С
0100	4	1101	D
0101	5	1110	E
0110	6	1111	F
0111	7		
1000	8		

Binary to Hexadecimal

- Put binary numbers in groups of four (nibbles)
 - **1101 1001 0110**
- Translate each nibble's representation into hex
- 1101 1001 0110
 - D 9 6

Binary to Hexadecimal

Can be done in both ways

Hex	Binary
0	0000
1	0 0 0 1
2	0 0 1 0
3	0 0 1 1
4	0100
5	0 1 0 1
6	0110
7	0 1 1 1
8	1000
9	1 0 0 1
A	1010
В	1011
C	1 1 0 0
D	1 1 0 1
E	1110
F	1111

Octal to Hexadecimal

Convert to Binary as a baseline step Example:

Can be done in both ways

Decimal to Hexadecimal

• Eg. 284

$$-16^2 = 256$$
 $284 - 256 = 28$
 $-16^1 = 16$ $28 - 16 = 12$ (Hex C)

– Result: 11C

– Repeated Division Approach:

Quotient Remainder Coefficient
$$284/16 = 17$$
 12 $a_0 = C$ $17/16 = 1$ 1 $a_1 = 1$ $1/16 = 0$ 1 $a_2 = 1$

Answer:
$$(284)_{10} = (a_2 a_1 a_0)_{16} = (11C)_{16}$$

Exercise: Try 1054

- Result: 41E

Hexadecimal to Decimal

Convert 2DB in hex to radix of ten

Place Value
$$16^2$$
 16^1 16^0

Hexadecimal 2 D B $(16^2 \times 2) (16^1 \times 13)$ $(16^0 \times 11)$

Decimal $512 + 208 + 11 = 731$

Decimal, Binary, Octal and Hexadecimal

Decimal	Binary	Octal	Hex
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

Application Example

- **ASCII** (American Standard Code for Information Interchange)
 - assigns standard binary codes to letters, numerals, punctuation marks, and other characters used in computers.
 - is a 7-bit character set containing 128 characters
 - the 8th bit is often used for error detection (parity bit)
 - E.g.: Use the ASCII codes to represent Digital

Character	Binary Code	Hexadecimal Code
D	1000100	44
į	1101001	69
g	1100111	67
į	1101001	69
t	1110100	74
а	1100001	61
1	1101100	6C

BCD Number System

• The Binary Coded Decimal (BCD) replaces each decimal digit with a four-bit binary code.

- E.g.: Convert 469_{ten} to BCD
- Answer:

BCD Number System

• Ex.: Find the decimal equivalent of $0110\ 0100\ 1011_{\text{BCD}}$

Answer: (0110 0100 1011)_{BCD}

- not possible because 1011 is not a valid BCD

- Assignment:
 - Convert (9750)₁₀ to BCD
 - Answer: $(9750)_{10} = (1001011101010000)_{BCD}$

Summary

- Digital electronics use base-two (binary)
 - +5 voltage (1) and 0V voltage (0)
 - High and Low
- Analog electronics operate on continuously varying electrical/physical magnitudes – temperature, pressure, velocity, etc.
- Number conversions
 - Binary, Octal, Hexadecimal, BCD

Reference

Maini, A. K. (2007). "Digital Electronics: Principles, Devices and Applications". *John Wiley & Sons, Ltd*. ISBN: 978-0-470-03214-5 Chapter 1

Thank you

