18.701 Practice Quiz 3

This is last year's quiz.

As usual, you are expected to justify your answers.

- 1. (15 points) Determine the class equation of the dihedral group D_5 of symmetries of a regular pentagon.
- 2. (15 points) Let G be a group of order 8 and let x be an element of G different from the identity. Let Z be the centralizer of x. What are the possible orders that Z could have?
- 3. (15 points) Let S denote the diagonal 4×4 matrix whose diagonal entries are, in order, 1, 1, 1, -1, and let $\langle X, Y \rangle = X^t SY$. (This is the form on "space-time".) We'll call a matrix A a Lorentz transformation if it preserves the form, i.e., $\langle AX, AY \rangle = \langle X, Y \rangle$. What are the conditions that the columns of a matrix A must satisfy in order for A to be a Lorentz transformation?
- 4. (15 points) Let

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

Determine the matrix entries of the one-parameter group e^{At} .

- 5. (10 points for each part) Let A be a real 3×3 skew-symmetric matrix $(A^t = -A)$.
- (a) What can be said about the (real and/or complex) eigenvalues of A?
- (b) Prove that multiplication by A defines a normal operator on the complex space \mathbb{C}^3 .
- (c) What does the Spectral Theorem say about this operator?
- (d) Show that e^{At} is a one-parameter group in the rotation group SO_3 .