```
In [3]: # Building Regression Models
         # Anuar Konkashbaev
         # School of Technology & Engineering, National University
         # Course code: 3602869492
         # Professor: Dr. Mohamed Nabeel
         # March 20th, 2024
In [4]: import numpy as np
         import pandas as pd
         import matplotlib as plt
         import seaborn as sns
         import statsmodels.api as sm
         from statsmodels.formula.api import ols
In [5]: # Question 3
In [6]: income = 50+(20*4.0)+(0.07*110)+35*(1)+(0.01*4.0*110)-10*(4.0*1)
         print("Income is", income)
        Income is 137.1
         # Question #10: Applied part
In [8]: df = pd.read_csv('Carseats.csv')
In [9]: # Fitting a model as generalised linear regression.
         # Since both Urban and US are dichotomous variables, I decided to use same strategy
         # In this exercise I am using "formula = Sales ~ Price + Urban + US"
In [10]: formula="Sales ~ Price + Urban + US"
         mod=ols(formula,data=df)
         res=mod.fit()
         print(res.summary())
         mod2=ols(formula,data=df).fit()
         table=sm.stats.anova_lm(mod2)
         print(table)
         print("\n\nConfidence intervals")
         print(mod2.conf_int())
```

OLS Regression Results

Dep. Variable:	Sales	R-squared:	0.239		
Model:	OLS	Adj. R-squared:	0.234		
Method:	Least Squares	F-statistic:	41.52		
Date:	Mon, 31 Mar 2025	Prob (F-statistic):	2.39e-23		
Time:	12:20:08	Log-Likelihood:	-927.66		
No. Observations:	400	AIC:	1863.		
Df Residuals:	396	BIC:	1879.		
Df Model:	3				

coef std err t P>|t| [0.025 0.975]

-----13.0435 Intercept 0.651 20.036 0.000 11.764 14.323
 -0.0219
 0.272
 -0.081
 0.936

 1.2006
 0.259
 4.635
 0.000

 -0.0545
 0.005
 -10.389
 0.000
 Urban[T.Yes] -0.0219 -0.556 0.512 US[T.Yes] 1.710 0.691 Price -0.065 -0.044 ______ 0.676 Durbin-Watson: Prob(Omnibus): 0.713 Jarque-Bera (JB): 0.758

 Skew:
 0.093
 Prob(JB):
 0.684

 Kurtosis:
 2.897
 Cond. No.
 628.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

	df	sum_sq	mean_sq	F	PR(>F)
Urban	1.0	0.756615	0.756615	0.123767	7.251713e-01
US	1.0	100.846148	100.846148	16.496407	5.877444e-05
Price	1.0	659.837263	659.837263	107.936143	1.609917e-22
Residual	396.0	2420.834671	6.113219	NaN	NaN

Confidence intervals

0 1
Intercept 11.763597 14.323341
Urban[T.Yes] -0.555973 0.512141
US[T.Yes] 0.691304 1.709841
Price -0.064764 -0.044154

Covariance Type: nonrobust

In [11]: # Coefficient for the "Price" is -0.0545 and indicates that smaller price leads to # Coefficient for "US" is 1.2006 and indicates that it is main contributing factor # Coefficient for "Urban" is -0.0219, which indicates that Urban leads to lower sal # "Sales" and "Price" are numerical variables, whereas "Urban" and "US" are dichoto # Residuals degree of freedom is 396, model degree of freedom is 3, for a total of # R-squared is 0.239 and adjusted R-squared 0.234, which is low. F-statistic is 41. # Overall impression is that a better model is needed in this case. # If the beta for a variable is 0, variable is not contributing to the outcome. Nei # However, we cannot reject the null hypothesis for Urban, which has a non-signific

In [12]: # I will use "US" and "Price" in a smaller model with formula "Sales ~ Price + US"

```
In [13]: formula="Sales ~ Price + US"
    mod=ols(formula,data=df)
    res=mod.fit()
    print(res.summary())
    mod2=ols(formula,data=df).fit()
    table=sm.stats.anova_lm(mod2)
    print(table)
    print("\n\nConfidence intervals")
    print(mod2.conf_int())
```

OLS Regression Results

============	=======================================		
Dep. Variable:	Sales	R-squared:	0.239
Model:	0LS	Adj. R-squared:	0.235
Method:	Least Squares	F-statistic:	62.43
Date:	Mon, 31 Mar 2025	Prob (F-statistic):	2.66e-24
Time:	12:20:15	Log-Likelihood:	-927.66
No. Observations:	400	AIC:	1861.
Df Residuals:	397	BIC:	1873.
Df Model:	2		

Df Model: 2
Covariance Type: nonrobust

=========			========	========	========	========
	coef	std err	t	P> t	[0.025	0.975]
Intercept US[T.Yes] Price	13.0308 1.1996 -0.0545	0.631 0.258 0.005	20.652 4.641 -10.416	0.000 0.000 0.000	11.790 0.692 -0.065	14.271 1.708 -0.044
Omnibus: Prob(Omnibus Skew: Kurtosis:	5):	0	.717 Jarq	in-Watson: ue-Bera (JB (JB): . No.):	1.912 0.749 0.688 607.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spe cified.

```
df
                                             F
                                                      PR(>F)
                             mean_sq
                   sum_sq
US
          1.0
                 99.802580
                           99.802580 16.366658 6.273751e-05
Price
          1.0
                661.597655 661.597655 108.495617 1.272157e-22
Residual 397.0 2420.874462
                            6.097921
                                                        NaN
                                            NaN
```

Confidence intervals

0 1
Intercept 11.79032 14.271265
US[T.Yes] 0.69152 1.707766
Price -0.06476 -0.044195

In [14]: # Both full and smaller models are practically the same; note, for example, the adj # I excluded the "Urban" vavriable because it does not substantially comtribute add # I also calculated the confidence intervals for the coefficients (see above).

In [15]: # Both "Urban" and "US" are dichotomous, only "Price" variable is numerical
Visualizing prediction

plt.pyplot.scatter(df["Price"],df["Sales"], label='Original model')

Out[15]: <matplotlib.collections.PathCollection at 0x203d0099d90>

From the scatter plot, it does not appear that the dataset has any outliers. But we need to have a better meassurement.

```
In [19]: # Detecting outliers using boxplot:
    sns.boxplot(data=df)
```

Out[19]: <Axes: >

In []: # Now we can see that both Sales and Price do have outliers.