2a) Sender 1:

1	-1	1	1	-1	-1	1	-1	1	-1	1	1	-1	-1	1	-1

- First 8 bits need to be multiplied by data bit $(d_1^1 = 1)$ as the first step of encoding:

1	-1	1	1	-1	-1	1	-1
1 -	_	_	_	_	-	-	-

- Second 8 bits also need to multiplied, but by different data bit $(d_0^1 = -1)$:

4	4	4	4	1	4	4	4
_ I	l I	l – I	_ I	l I	l I	_ I	
_	-	_	_	_	-	-	-

Sender 2:

1	_																
1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1
		1	1	-1	I	1	-1	1	1	1	1	-1	1	1	-1	1	1

- We do the same with sender 2 $(d_1^2 = -1, d_0^2 = -1)$:

											-				
1	1			1		1			1	1	1	1	1	1 1	1
1	- 1		- 1	- 1		- 1	- 1	- 1	- 1		- 1	- 1		- 1	- 1
_	-	-	-	-	-	-	-	_	_	-	_	_	-	_	_

Result:

1	-1	1	1	-1	-1	1	-1	-1	1	-1	-1	1	1	-1	1
-1	-1	1	-1	-1	1	-1	-1	-1	-1	1	-1	-1	1	-1	-1

- Now we need to summate sender 1 and sender 2 bits to get the encoded output of both senders:

Figure 1. Diagram of the encoded sequence