Can you Classify what STD a person has

Introduction

This is the final project for CMSC320 for Sreedatta Kaligotla that aims to analysise STD rates in America and to also then make a classifier that would predict what STD a person has given the input from the Dataset.

Background

Sexually transmitted diseases (STDs) are a significant public health problem in the United States. According to the Centers for Disease Control and Prevention (CDC), there are approximately 20 million new cases of STDs each year, costing the U.S. healthcare system billions of dollars in treatment and prevention efforts.

STDs can have serious health consequences if left untreated, including infertility, cancer, and organ damage. STDs are also associated with an increased risk of HIV transmission. In addition to the health consequences, STDs can also have significant social and economic impacts, as they may lead to stigma, discrimination, and lost productivity.

Analysis of STD data can help to prevent the spread of STDs by pinpointing locations with high rates of infection and targeting prevention efforts to these areas. Data analysis can also help to identify trends in STD rates over time and among different populations, which can inform the development of targeted prevention strategies.

Machine learning and data science can play a role in the prevention of STDs by helping to analyze large and complex data sets, identify patterns and trends, and predict future outcomes. For example, machine learning algorithms could be used to analyze data and identify individuals at high risk of contracting STDs, enabling targeted prevention efforts. Data science techniques could also be used to develop and evaluate the effectiveness of interventions aimed at reducing STD rates.

Overall, the analysis of STD data and the use of machine learning and data science techniques have the potential to play a significant role in the prevention of STDs in the United States and elsewhere. By identifying patterns and trends in STD rates and targeting prevention efforts accordingly, it is possible to reduce the burden of STDs on public health and improve the overall well-being of affected populations.

Data

The dataset used for this project contains data on sexually transmitted disease (STD) infection rates in the United States from 1996 to 2008. The data was collected by the Centers for Disease Control and Prevention (CDC) and includes information on the number of cases of each STD, the rate of infection per 100,000 population, and demographic characteristics of the affected individuals such as age, gender, and race.

The dataset includes data on four different STDs: chlamydia, gonorrhea, primary and secondary syphilis, and HIV/AIDS. It is organized by year, state, and disease, with separate records for each combination of year, state, and disease.

The data is presented in a tabular format, with each row representing a unique combination of year, state, and disease and each column representing a different variable such as the number of cases, the rate of infection per 100,000 population, and demographic characteristics.

Overall, this dataset provides valuable insights into the prevalence and distribution of STDs in the United States over a 13-year period, and could be used to inform public health efforts to prevent the spread of STDs and provide care to those affected. It may be of particular interest to researchers and public health professionals working on issues related to sexual health and disease prevention.

Lets start by importing the necessary libaries for this project. Some of the important libraries used for this project are seaborn, sklearn and pandas.

These three libraries are commonly used together in data science workflows in Python. Seaborn is used for data visualization, sklearn for machine learning, and pandas for data manipulation and preparation. They are all open-source and have strong communities of users and developers, which makes them well-supported and constantly improving. They will help us visualize the data and draw conclusions and make further predictions.

Here is the link to the repo, use this to pull the dataset. The index.html and the std_cases.csv is in there: https://github.com/DattaKaligotlaBackup/DattaKaligotlaBackup.github.io

```
In [ ]: #import necessary packages
        import re
        import time
        import json
        import requests
        import zlib
        from bs4 import BeautifulSoup
        import pandas as pd
        import urllib.parse as urllib
        import statsmodels.formula.api as smf
        from sklearn.linear_model import LinearRegression
        import matplotlib.pyplot as plt
        import matplotlib
        import seaborn as sns
        import scipy
        import os
```

```
In [ ]: #import the dataset via CSV format
std = pd.read_csv("std_cases.csv", index_col= 0)
std.head()
```

Out[]:

•		Disease	Disease Code	State	Year	Gender	Age	Age Code	STD Cases	Population	Rate per 100K
	index										
	0	Chlamydia	274.0	Alabama	1996.0	Male	0-14 years	0-14	25.0	468394.0	5.34
	1	Chlamydia	274.0	Alabama	1996.0	Male	15-19 years	15-19	164.0	165920.0	98.84
	2	Chlamydia	274.0	Alabama	1996.0	Male	20-24 years	20-24	193.0	152848.0	126.27
	3	Chlamydia	274.0	Alabama	1996.0	Male	25-29 years	25-29	88.0	152778.0	57.60
	4	Chlamydia	274.0	Alabama	1996.0	Male	30-34 years	30-34	55.0	155850.0	35.29

Datapreprocessing/Cleaning

Data preprocessing and cleaning are essential steps in the data science process because they allow you to prepare your data for analysis and modeling. Raw data is often messy and incomplete, and may contain errors, inconsistencies, and outliers that can compromise the accuracy and reliability of your results. Therefore, it is important to clean and process your data to make it suitable for analysis. In out dataset there are a lot of NaN values or values that ae empty. They could have been empty for a plethora of reasons, whether or not they were recorded is one of them. It is important to get rid of rows with NaN values as it could mess up our stastical results and cause errors

```
In [ ]: print(std.info)
```

<bound< th=""><th>method Dat</th><th>aFrame.info o</th><th>f</th><th>Disease</th><th>Disea</th><th>se Code</th><th>State</th><th>Year</th><th>Gende</th></bound<>	method Dat	aFrame.info o	f	Disease	Disea	se Code	State	Year	Gende
r	Age Ag	e Code \							
index									
0	Chlamydia	274.0	Alabama	1996.0	Male	0-14 yea	ars 0	-14	
1	Chlamydia	274.0	Alabama	1996.0	Male	15-19 yea	ars 15	-19	
2	Chlamydia	274.0	Alabama	1996.0	Male	20-24 yea	ars 20	-24	
3	Chlamydia	274.0	Alabama	1996.0	Male	25-29 yea	ars 25	-29	
4	Chlamydia	274.0	Alabama	1996.0	Male	30-34 yea	ars 30	-34	
• • •	• • •			• • •			• • •	• • •	
42675	NaN	NaN	NaN	NaN	NaN	1	NaN I	NaN	
42676	NaN	NaN	NaN	NaN	NaN	1	NaN I	NaN	
42677	NaN	NaN	NaN	NaN	NaN	1	NaN I	NaN	
42678	NaN	NaN	NaN	NaN	NaN	1	NaN I	NaN	
42679	NaN	NaN	NaN	NaN	NaN	1	NaN I	NaN	
	CTD C	Daniel attack	D-+ 1	001/					
	STD Cases	Population	kate per 1	.00K					
index	25.0	460204.0	_	. 24					
0	25.0	468394.0		5.34					
1	164.0	165920.0		3.84					
2	193.0	152848.0		5.27					
3	88.0	152778.0		.60					
4	55.0	155850.0	35	5.29					
• • •	• • •	• • •		• • •					
42675	NaN	NaN		NaN					
42676	NaN	NaN		NaN					
42677	NaN	NaN		NaN					
42678	NaN	NaN		NaN					
42679	NaN	NaN		NaN					
F 40 400									

[42680 rows x 10 columns]>

Here we can see the rows where some columns have NaN values

In []: std.isna

Out[]:	<box< th=""><th>method Dat</th><th>aFrame.isna of</th><th>:</th><th>Disease</th><th>Disea</th><th>se Code</th><th>e Sta</th><th>ate Year</th><th>Gende</th></box<>	method Dat	aFrame.isna of	:	Disease	Disea	se Code	e Sta	ate Year	Gende
	r	Age Ag	e Code \							
	index									
	0	Chlamydia	274.0	Alabama	1996.0	Male	0-14	years	0-14	
	1	Chlamydia	274.0	Alabama	1996.0	Male	15-19	years	15-19	
	2	Chlamydia	274.0	Alabama	1996.0	Male	20-24	years	20-24	
	3	Chlamydia	274.0	Alabama	1996.0	Male	25-29	years	25-29	
	4	Chlamydia	274.0	Alabama	1996.0	Male	30-34	years	30-34	
	• • •	• • •	• • •	• • •	• • •	• • •		• • •	• • •	
	42675	NaN	NaN	NaN	NaN	NaN		NaN	NaN	
	42676	NaN	NaN	NaN	NaN	NaN		NaN	NaN	
	42677	NaN	NaN	NaN	NaN	NaN		NaN	NaN	
	42678	NaN	NaN	NaN	NaN	NaN		NaN	NaN	
	42679	NaN	NaN	NaN	NaN	NaN		NaN	NaN	
		CTD C			2014					
		STD Cases	Population R	ate per 10	00K					
	index	25.0	460204.0	_	2.4					
	0	25.0	468394.0		.34					
	1	164.0	165920.0		.84					
	2	193.0	152848.0	126						
	3	88.0	152778.0		.60					
	4	55.0	155850.0	35	. 29					
	• • •	• • •	• • •		• • •					
	42675	NaN	NaN	1	NaN					
	42676	NaN	NaN	ı	NaN					
	42677	NaN	NaN	1	NaN					
	42678	NaN	NaN	1	NaN					
	42679	NaN	NaN	1	NaN					

[42680 rows x 10 columns]>

Let's drop the rows with NaN values

```
In [ ]: std.dropna(inplace = True)
    print(std.info)
```

State	method DataF Year Gend	rame.info Her \	of			Disease	Disease	Code
index 0		,	Chlamydia	274 0	Alabama	1996.0	Male	
1			-				Male	
			Chlamydia	274.0		1996.0		
2			Chlamydia	274.0		1996.0	Male	
3			Chlamydia		Alabama			
4		(Chlamydia	2/4.0	Alabama	1996.0	Male	
				• • •				
42625	Primary and	-		310.0	, ,	2004.0	Female	
42626	Primary and	-		310.0	, ,		Female	
42627	Primary and	-		310.0	, ,			
42628	Primary and	-		310.0	, ,		Female	
42629	Primary and	Secondary	Syphilis	310.0	Wyoming	2009.0	Female	
	Age	Age Code	STD Cases	Population	Rate per	100K		
index								
0	0-14 years	0-14	25.0	468394.0		5.34		
1	15-19 years	15-19	164.0	165920.0	9	8.84		
2	20-24 years	20-24	193.0	152848.0	12	6.27		
3	25-29 years	25-29	88.0	152778.0	5	7.60		
4	30-34 years	30-34	55.0	155850.0	3	5.29		
42625	30-34 years	30-34	1.0	14577.0		6.86		
42626	40+ years	40+	1.0	123292.0		0.81		
42627	20-24 years	20-24	1.0	18026.0		5.55		
42628	30-34 years	30-34	1.0	15691.0		6.37		
42629	25-29 years	25-29	1.0	19668.0		5.08		
[2E402	, nous y 10 se	lumnel.						

[35483 rows x 10 columns]>

In []: std.head(500)

Out[]:

	Disease	Disease Code	State	Year	Gender	Age	Age Code	STD Cases	Population	Rate per 100K
index										
0	Chlamydia	274.0	Alabama	1996.0	Male	0-14 years	0-14	25.0	468394.0	5.34
1	Chlamydia	274.0	Alabama	1996.0	Male	15-19 years	15-19	164.0	165920.0	98.84
2	Chlamydia	274.0	Alabama	1996.0	Male	20-24 years	20-24	193.0	152848.0	126.27
3	Chlamydia	274.0	Alabama	1996.0	Male	25-29 years	25-29	88.0	152778.0	57.60
4	Chlamydia	274.0	Alabama	1996.0	Male	30-34 years	30-34	55.0	155850.0	35.29
•••										
529	Chlamydia	274.0	Arkansas	2009.0	Male	35-39 years	35-39	117.0	91511.0	127.85
530	Chlamydia	274.0	Arkansas	2009.0	Male	40+ years	40+	116.0	625422.0	18.55
532	Chlamydia	274.0	Arkansas	2010.0	Male	0-14 years	0-14	18.0	302717.0	5.95
533	Chlamydia	274.0	Arkansas	2010.0	Male	15-19 years	15-19	1055.0	104178.0	1012.69
534	Chlamydia	274.0	Arkansas	2010.0	Male	20-24 years	20-24	1746.0	100801.0	1732.13

500 rows × 10 columns

Now we got rid of the Rows with the NaN values

Now lets get array Dataframe values of the columns, so we can manipulate the data further

```
In []: #Setting the Variables
    States = std["State"]
    Diseases = std["Disease"]
    Disease_Code = std["Disease Code"]
    Year = std["Year"]
    Gender = std["Gender"]
    Age = std["Age"]
    Age_Code = std["Age Code"]
    Std_Cases = std["STD Cases"]
    Population = std["Population"]
    Rate_100k = std["Rate per 100K"]
```

Lets see if the relationship between STD Cases and State matters. Based on this graph, we can see that there is a correlation between STD cases and the State. Keep in mind however, some States, like Texas and California have a lot more people than states like Vermont and Kansas

```
In [ ]: plt.figure(figsize = (100, 20))
    sns.barplot(y = Std_Cases, x = States, data = std)
    plt.title("STD Cases vs State")
```

Out[]: Text(0.5, 1.0, 'STD Cases vs State')

This Gives us just the total amount of people diagnosed with STD, but not the rate. The rate would be more of an indication between STD and State as population would be thrown out as secondary vector. Lets run with the Rate per 100k variable and see the relationship.

Lets first Start by manipulating some data. We need to easily graph the Data in a way that we can easily see it and not in a graph with 50 other states. Let us order and sort the States together to make this process easier, save time and make more presentable data. The code below accomplishes that.

```
In [ ]: StateListUnique = list(States)
    StateListUnique = sorted([*set(StateListUnique)])
    print(StateListUnique)
```

['Alabama', 'Alaska', 'Arizona', 'Arkansas', 'California', 'Colorado', 'Connecticut', 'Delaware', 'District of Columbia', 'Florida', 'Georgia', 'Hawaii', 'Idaho', 'Illinoi s', 'Indiana', 'Iowa', 'Kansas', 'Kentucky', 'Louisiana', 'Maine', 'Maryland', 'Massa chusetts', 'Michigan', 'Minnesota', 'Mississippi', 'Missouri', 'Montana', 'Nebraska', 'Nevada', 'New Hampshire', 'New Jersey', 'New Mexico', 'New York', 'North Carolina', 'North Dakota', 'Ohio', 'Oklahoma', 'Oregon', 'Pennsylvania', 'Rhode Island', 'South Carolina', 'South Dakota', 'Tennessee', 'Texas', 'Utah', 'Vermont', 'Virginia', 'Wash ington', 'West Virginia', 'Wisconsin', 'Wyoming']

```
In [ ]: std = std.sort_values(by=['State'])
```

```
In [ ]: std.head(500)
```

Out[]:

	Disease	Disease Code	State	Year	Gender	Age	Age Code	STD Cases	Population	Rate per 100K
index										
0	Chlamydia	274.0	Alabama	1996.0	Male	0-14 years	0-14	25.0	468394.0	5.34
23950	Chlamydia	274.0	Alabama	1998.0	Female	35-39 years	35-39	109.0	175869.0	61.98
23951	Chlamydia	274.0	Alabama	1998.0	Female	40+ years	40+	232.0	1025742.0	22.62
23952	Chlamydia	274.0	Alabama	1999.0	Female	0-14 years	0-14	326.0	452586.0	72.03
23953	Chlamydia	274.0	Alabama	1999.0	Female	15-19 years	15-19	4972.0	161690.0	3075.02
•••										
31567	Gonorrhea	280.0	Alabama	2011.0	Female	35-39 years	35-39	86.0	151554.0	56.75
31568	Gonorrhea	280.0	Alabama	2011.0	Female	40+ years	40+	91.0	1216531.0	7.48
31570	Gonorrhea	280.0	Alabama	2012.0	Female	0-14 years	0-14	91.0	457018.0	19.91
31571	Gonorrhea	280.0	Alabama	2012.0	Female	15-19 years	15-19	1838.0	158223.0	1161.65
31572	Gonorrhea	280.0	Alabama	2012.0	Female	20-24 years	20-24	1976.0	176721.0	1118.15

500 rows × 10 columns

This allows us to get the index of states easily to better represent the graphs and make it more presentable

```
In [ ]: States = std["State"]
        Diseases = std["Disease"]
        Disease_Code = std["Disease Code"]
        Year = std["Year"]
        Gender = std["Gender"]
        Age = std["Age"]
        Age_Code = std["Age Code"]
        Std_Cases = std["STD Cases"]
        Population = std["Population"]
        Rate_100k = std["Rate per 100K"]
        StateList = list(States)
        print(str(StateList.index("Georgia")) + "Florida")
        print(str(StateList.index("Maryland")) + "Maine")
        print(str(StateList.index("New Jersey")) + "New Hampshire")
        print(str(StateList.index("South Carolina")) + "Rhode Island")
        print(len(StateList))
```

7183Florida 14125Maine 21044New Hampshire 28174Rhode Island 35483

Now lets seperate the States and graph the STD rates vs the States to see the relationship that States provide in STD rates

```
In [ ]: plt.figure(figsize = (30, 20))
  one = sns.barplot(y = Rate_100k, x = States[0:7183], data = std)
  plt.title("STD Cases vs States(Alabama - Florida")
```

Out[]: Text(0.5, 1.0, 'STD Cases vs States(Alabama - Florida')


```
In [ ]: plt.figure(figsize = (30, 20))
    sns.barplot(y = Rate_100k, x = States[7183:14125], data = std)
    plt.title("STD Cases vs States(Georgia - Maine")
```

Out[]: Text(0.5, 1.0, 'STD Cases vs States(Georgia - Maine')


```
In [ ]: plt.figure(figsize = (30, 20))
    sns.barplot(y = Rate_100k, x = States[14125:21044], data = std)
    plt.title("STD Cases vs States(Maryland - New Hampshire")
```

Out[]: Text(0.5, 1.0, 'STD Cases vs States(Maryland - New Hampshire')


```
In [ ]: plt.figure(figsize = (30, 20))
    sns.barplot(y = Rate_100k, x = States[21044:28174], data = std)
    plt.title("STD Cases vs States(New Jersey - Rhode Island")
```

Out[]: Text(0.5, 1.0, 'STD Cases vs States(New Jersey - Rhode Island')


```
In [ ]: plt.figure(figsize = (30, 20))
    sns.barplot(y = Rate_100k, x = States[28174:], data = std)
    plt.title("STD Cases vs States(South Carolina - Wyoming")
    plt.bar_label
```


Looking at these graphs, it is fairly obvious that State has atleast some impact on STD Rates. Somr states have rates past 800 per 100k while others are very low in the 100. This indicates that there is a significance in how states affect STD rates. Let us do the same thing with Gender and lets do some hypothesis testing with other variables later on to see if we should use certain variables in our future KNN model.

```
In [ ]: plt.figure(figsize = (30, 20))
    sns.barplot(y = Rate_100k, x = Gender, data = std)
    plt.title("STD Cases vs Gender")
    plt.bar_label
Out[ ]: <function matplotlib.pyplot.bar label(container, labels=None, *, fmt='%g', label type</pre>
```


Looking at the data here, it is fairly obvious that there is relationship between these two variables(gender and state) on respective STD rates. Females are significantly more likely to have an STD than males based on our analysis. Let us look at other factors too and see how much of an impact certain variables have on each other in our dataset.

Hypothesis Testing

A heatmap is a graphical representation of data where the values are represented as colors. It is a useful visualization tool for displaying the distribution and patterns of data across multiple variables. Heatmaps are often used to visualize the relationships between variables in a data set, and can be particularly useful for identifying correlations between variables.

In hypothesis testing, a heatmap can be used to visualize the relationship between two variables and help determine whether there is a significant association between them. If the variables are strongly correlated, the heatmap will show a strong pattern of colors, with similar colors appearing together in clusters. If the variables are not correlated, the heatmap will show a more random pattern of colors.

Heatmaps are particularly useful for hypothesis testing because they allow you to quickly and easily visualize the strength and direction of the relationship between two variables. This can help you determine whether the relationship between the variables is significant and whether it supports or refutes your hypothesis.

```
In [ ]: sns.heatmap(std.corr())
```

Out[]: <AxesSubplot: >

What's interesting here is the Disease Code, which is numerical correspondence to the type of STD(Chlamydia, Gonorrhea, Syphilis), which corresponds with the codes(274,280,310). What is interesting is that looking at the Heatmap, certain variables, such as year and population seem to have a correlation with the Disease Codes. The Heatmap here, is a good look at effect of quantitative variables on other quantitative variables, but let look at if State has an effect on STD type(both of these are categorical variables), like it did for STD rates. Using the heatmap above, we can clearly see that for Disease Code, there is a correlation with the other variables

Let use a chi-squared test for this approach. The chi-squared test is a statistical test used to determine whether there is a significant association between two categorical variables. It is commonly used in hypothesis testing to assess whether two variables are independent or dependent.

The chi-squared test works by comparing the observed frequency of each category with the expected frequency, based on the assumption that the two variables are independent. If the observed and expected frequencies are similar, the test will conclude that there is no significant association between the variables. If the observed frequencies are significantly different from the expected frequencies, the test will conclude that there is a significant association between the variables.

The chi-squared test is useful in the relationship between two categorical variables because it allows you to determine whether there is a statistically significant association between the two variables. This is important because it allows you to determine whether the relationship between the variables is likely to be due to chance or whether it is a genuine and meaningful relationship.

The Null Hypothesis in this case is that STD type and State are independent

```
In [ ]: con = pd.crosstab(States, Diseases)
    con
```

Out[]:

Disease	Chlamydia	Gonorrhea	Primary and Secondary Syphilis
State			
Alabama	266	266	240
Alaska	266	257	49
Arizona	266	266	228
Arkansas	266	266	232
California	266	266	244
Colorado	266	265	158
Connecticut	266	265	161
Delaware	238	265	143
District of Columbia	266	266	201
Florida	266	266	247
Georgia	266	266	237
Hawaii	266	254	96
Idaho	266	240	81
Illinois	266	266	239
Indiana	266	266	223
lowa	266	266	136
Kansas	266	266	161
Kentucky	266	266	214
Louisiana	266	266	252
Maine	264	233	56
Maryland	266	266	239
Massachusetts	266	266	201
Michigan	266	266	230
Minnesota	266	266	168
Mississippi	266	266	239
Missouri	266	266	219
Montana	266	233	42
Nebraska	266	265	92
Nevada	266	266	166
New Hampshire	261	235	73
New Jersey	266	266	231
New Mexico	266	262	184
ivem iviexico	200	202	104

Disease	Chlamydia	Gonorrhea	Primary and Secondary Syphilis
State			
New York	266	266	236
North Carolina	266	266	242
North Dakota	263	234	31
Ohio	266	266	242
Oklahoma	266	266	213
Oregon	266	257	137
Pennsylvania	266	266	235
Rhode Island	266	254	119
South Carolina	266	266	227
South Dakota	266	255	48
Tennessee	266	266	244
Texas	266	266	251
Utah	266	255	102
Vermont	255	216	38
Virginia	266	266	219
Washington	266	265	179
West Virginia	265	261	78
Wisconsin	266	266	190
Wyoming	262	216	25
	- (12 0))		

```
In [ ]: plt.figure(figsize=(12,8))
    sns.heatmap(con, annot=True, cmap="YlGnBu")
```

Out[]: <AxesSubplot: xlabel='Disease', ylabel='State'>

That heatmap above provides further analysis in the role each state plays in its significance to the designated STD

```
In [ ]: import scipy.stats as stats
    c, p, dof, expected = stats.chi2_contingency(con)
    p
```

Out[]: 1.0708167765231239e-190

Since the p is so low(less than 0.05), we can reject the null and say that there is a relationship between State and STD type. Let us do the same type of testing for Year too.

```
In [ ]: con= pd.crosstab(Year, Diseases)
    con
```

Disease Chlamydia Gonorrhea Primary and Secondary Syphilis

Out[]:

Year 1996.0 1997.0 1998.0 1999.0 2000.0 2001.0 2002.0 2003.0 2004.0 2005.0 2006.0 2007.0 2008.0 2009.0 2010.0 2011.0 2012.0 2013.0 2014.0 In []: plt.figure(figsize=(12,8))

```
sns.heatmap(con, annot=True, cmap="YlGnBu")
```

Out[]: <AxesSubplot: xlabel='Disease', ylabel='Year'>

1996.0 -	7e+02	7e+02	4.6e+02	700
1997.0 -	7e+02	7e+02	4.4e+02	- 700
1998.0 -	7.1e+02	6.9e+02	4.4e+02	
1999.0 -	7.1e+02	6.9e+02	4.3e+02	
2000.0 -	7.1e+02	6.9e+02	4.2e+02	- 650
2001.0 -	7.1e+02	6.9e+02	4.3e+02	
2002.0 -	7.1e+02	7e+02	4.3e+02	
2003.0 -	7.1e+02	7e+02	4.4e+02	- 600
2004.0 -	7.1e+02	7e+02	4.5e+02	
je 2005.0 -	7.1e+02	7e+02	4.5e+02	
2006.0 -	7.1e+02	7e+02	4.6e+02	- 550
2007.0 -	7.1e+02	6.9e+02	4.6e+02	
2008.0 -	7.1e+02	7e+02	4.9e+02	
2009.0 -	7.1e+02	7e+02	4.6e+02	- 500
2010.0 -	7.1e+02	7e+02	4.7e+02	
2011.0 -	7.1e+02	6.9e+02	4.7e+02	
2012.0 -	7.1e+02	7e+02	4.8e+02	450
2013.0 -	7.1e+02	7e+02	5.2e+02	- 450
2014.0 -	7.1e+02	7e+02	5.3e+02	
	Chlamydia	Gonorrhea Disease	Primary and Secondary Syphilis	

```
In [ ]: c, p, dof, expected = stats.chi2_contingency(con)
p
```

Out[]: 0.9247563369550977

We accept the null in this case as the p is pretty high

LETS MAKE A CLASSIFIER:)

Lets use the previous heatmap and this information from our hypothesis testing to create a classifer to predict what type of STD someone could have. Let do this with a KNN. We have established that the columns(variables) through graphical and statistical analysis have a correlation with each other, with STD rates and STD type.

K-Nearest Neighbors (KNN) is a supervised learning algorithm used for classification and regression. It works by finding the K nearest data points to a given query point and using the class labels or output values of those data points to make a prediction for the query point.

KNN is often used to classify categorical variables because it does not make any assumptions about the underlying distribution of the data or the relationships between the features. Instead, it relies on the similarity between data points to make predictions. This makes it well-suited for handling categorical variables, which do not have a numerical meaning and cannot be compared using standard mathematical operations.

We can implement this through the use of the sklearn library fairly easily

In []: std.head(50)
#Here we can see that a lot of our Data is Quantatative

Out[]:

	Disease	Disease Code	State	Year	Gender	Age	Age Code	STD Cases	Population	Rate per 100K
index										
0	Chlamydia	274.0	Alabama	1996.0	Male	0-14 years	0-14	25.0	468394.0	5.34
23950	Chlamydia	274.0	Alabama	1998.0	Female	35- 39 years	35- 39	109.0	175869.0	61.98
23951	Chlamydia	274.0	Alabama	1998.0	Female	40+ years	40+	232.0	1025742.0	22.62
23952	Chlamydia	274.0	Alabama	1999.0	Female	0-14 years	0-14	326.0	452586.0	72.03
23953	Chlamydia	274.0	Alabama	1999.0	Female	15- 19 years	15- 19	4972.0	161690.0	3075.02
23954	Chlamydia	274.0	Alabama	1999.0	Female	20- 24 years	20- 24	4317.0	154634.0	2791.75
23955	Chlamydia	274.0	Alabama	1999.0	Female	25- 29 years	25- 29	1151.0	155151.0	741.86
23956	Chlamydia	274.0	Alabama	1999.0	Female	30- 34 years	30- 34	377.0	153099.0	246.25
23957	Chlamydia	274.0	Alabama	1999.0	Female	35- 39 years	35- 39	130.0	175011.0	74.28
23958	Chlamydia	274.0	Alabama	1999.0	Female	40+ years	40+	157.0	1041088.0	15.08
23960	Chlamydia	274.0	Alabama	2000.0	Female	0-14 years	0-14	376.0	448616.0	83.81
23961	Chlamydia	274.0	Alabama	2000.0	Female	15- 19 years	15- 19	5683.0	159102.0	3571.92
23962	Chlamydia	274.0	Alabama	2000.0	Female	20- 24 years	20- 24	5253.0	157040.0	3345.01
23963	Chlamydia	274.0	Alabama	2000.0	Female	25- 29 years	25- 29	1463.0	151271.0	967.14
23964	Chlamydia	274.0	Alabama	2000.0	Female	30- 34 years	30- 34	489.0	154221.0	317.08
23965	Chlamydia	274.0	Alabama	2000.0	Female	35- 39 years	35- 39	189.0	173382.0	109.01

	Disease	Disease Code	State	Year	Gender	Age	Age Code	STD Cases	Population	Rate per 100K
index										
23966	Chlamydia	274.0	Alabama	2000.0	Female	40+ years	40+	151.0	1059451.0	14.25
23968	Chlamydia	274.0	Alabama	2001.0	Female	0-14 years	0-14	341.0	449742.0	75.82
23969	Chlamydia	274.0	Alabama	2001.0	Female	15- 19 years	15- 19	5456.0	156153.0	3494.01
23970	Chlamydia	274.0	Alabama	2001.0	Female	20- 24 years	20- 24	5187.0	160821.0	3225.33
23971	Chlamydia	274.0	Alabama	2001.0	Female	25- 29 years	25- 29	1425.0	147850.0	963.82
23972	Chlamydia	274.0	Alabama	2001.0	Female	30- 34 years	30- 34	510.0	154662.0	329.75
23973	Chlamydia	274.0	Alabama	2001.0	Female	35- 39 years	35- 39	187.0	169253.0	110.48
23974	Chlamydia	274.0	Alabama	2001.0	Female	40+ years	40+	190.0	1071378.0	17.73
23976	Chlamydia	274.0	Alabama	2002.0	Female	0-14 years	0-14	382.0	447752.0	85.32
23977	Chlamydia	274.0	Alabama	2002.0	Female	15- 19 years	15- 19	5781.0	154592.0	3739.52
23978	Chlamydia	274.0	Alabama	2002.0	Female	20- 24 years	20- 24	5308.0	163924.0	3238.09
23979	Chlamydia	274.0	Alabama	2002.0	Female	25- 29 years	25- 29	1563.0	147338.0	1060.83
23980	Chlamydia	274.0	Alabama	2002.0	Female	30- 34 years	30- 34	495.0	156261.0	316.78
23981	Chlamydia	274.0	Alabama	2002.0	Female	35- 39 years	35- 39	199.0	164738.0	120.80
23949	Chlamydia	274.0	Alabama	1998.0	Female	30- 34 years	30- 34	258.0	155065.0	166.38
23948	Chlamydia	274.0	Alabama	1998.0	Female	25- 29	25- 29	913.0	158147.0	577.31

	Disease	Disease Code	State	Year	Gender	Age	Age Code	STD Cases	Population	Rate per 100K
index										
						years				
23947	Chlamydia	274.0	Alabama	1998.0	Female	20- 24 years	20- 24	3294.0	154610.0	2130.52
23946	Chlamydia	274.0	Alabama	1998.0	Female	15- 19 years	15- 19	4093.0	162688.0	2515.86
14714	Primary and Secondary Syphilis	310.0	Alabama	2012.0	Male	40+ years	40+	39.0	1074782.0	3.63
14715	Primary and Secondary Syphilis	310.0	Alabama	2013.0	Male	15- 19 years	15- 19	13.0	163751.0	7.94
14716	Primary and Secondary Syphilis	310.0	Alabama	2013.0	Male	20- 24 years	20- 24	46.0	178447.0	25.78
14717	Primary and Secondary Syphilis	310.0	Alabama	2013.0	Male	25- 29 years	25- 29	38.0	153647.0	24.73
14718	Primary and Secondary Syphilis	310.0	Alabama	2013.0	Male	30- 34 years	30- 34	16.0	152362.0	10.50
14719	Primary and Secondary Syphilis	310.0	Alabama	2013.0	Male	35- 39 years	35- 39	14.0	142291.0	9.84
14720	Primary and Secondary Syphilis	310.0	Alabama	2013.0	Male	40+ years	40+	34.0	1085009.0	3.13
14721	Primary and Secondary Syphilis	310.0	Alabama	2014.0	Male	0-14 years	0-14	1.0	469840.0	0.21
14722	Primary and Secondary Syphilis	310.0	Alabama	2014.0	Male	15- 19 years	15- 19	13.0	163751.0	7.94
14723	Primary and	310.0	Alabama	2014.0	Male	20- 24 years	20- 24	42.0	178447.0	23.54

نساميد	Disease	Disease Code	State	Year	Gender	Age	Age Code	STD Cases	Population	Rate per 100K
index	Secondary									
	Syphilis									
14724	Primary and Secondary Syphilis	310.0	Alabama	2014.0	Male	25- 29 years	25- 29	38.0	153647.0	24.73
14725	Primary and Secondary Syphilis	310.0	Alabama	2014.0	Male	30- 34 years	30- 34	13.0	152362.0	8.53
14726	Primary and Secondary Syphilis	310.0	Alabama	2014.0	Male	35- 39 years	35- 39	13.0	142291.0	9.14
14727	Primary and Secondary Syphilis	310.0	Alabama	2014.0	Male	40+ years	40+	24.0	1085009.0	2.21
23982	Chlamydia	274.0	Alabama	2002.0	Female	40+ years	40+	157.0	1082768.0	14.50
38750	Primary and Secondary Syphilis	310.0	Alabama	2007.0	Female	40+ years	40+	45.0	1155094.0	3.90

Let us make certain features that we are using for input, quantitative. Lets assign code for State and Gender to make them numerical using our handy-dandy functions that I made.

```
In [ ]:
        stateToCodes = {
             "Alabama": 1,
             "Alaska": 2,
             "Arizona": 3,
             "Arkansas": 4,
             "California": 5,
             "Colorado": 6,
             "Connecticut": 7,
             "Delaware": 8,
             "Florida": 9,
             "Georgia": 10,
             "Hawaii": 11,
             "Idaho": 12,
             "Illinois": 13,
             "Indiana": 14,
             "Iowa": 15,
             "Kansas": 16,
             "Kentucky": 17,
             "Louisiana": 18,
             "Maine": 19,
```

```
"Maryland": 20,
             "Massachusetts": 21,
             "Michigan": 22,
             "Minnesota": 23,
             "Mississippi": 24,
             "Missouri": 25,
             "Montana": 26,
             "Nebraska": 27,
             "Nevada": 28,
             "New Hampshire": 29,
             "New Jersey": 30,
             "New Mexico": 31,
             "New York": 32,
             "North Carolina": 33,
             "North Dakota": 34,
             "Ohio": 35,
             "Oklahoma": 36,
             "Oregon": 37,
             "Pennsylvania": 38,
             "Rhode Island": 39,
             "South Carolina": 40,
             "South Dakota":41,
             "Tennessee": 42,
             "Texas": 43,
             "Utah": 44,
             "Vermont": 45,
             "Virginia": 46,
             "Washington": 47,
             "West Virginia": 48,
             "Wisconsin": 49,
             "Wyoming": 50,
             "District of Columbia": 51
        }
        genderTocodes = {
             "Male" : 1,
             "Female" : 2
        }
In [ ]:
        def stateToCode(df):
             df["State"] = df["State"].replace(stateToCodes.keys(),stateToCodes.values())
        def genderToCode(df):
             df["Gender"] = df["Gender"].replace(genderTocodes.keys(),genderTocodes.values())
        stateToCode(std)
        genderToCode(std)
        std.drop('Age Code', axis=1, inplace=True)
        std.drop('Age', axis=1, inplace=True)
        std.head()
```

Out[]:		Disease	Disease Code	State	Year	Gender	STD Cases	Population	Rate per 100K
	index								
	0	Chlamydia	274.0	1	1996.0	1	25.0	468394.0	5.34
	23950	Chlamydia	274.0	1	1998.0	2	109.0	175869.0	61.98
	23951	Chlamydia	274.0	1	1998.0	2	232.0	1025742.0	22.62
	23952	Chlamydia	274.0	1	1999.0	2	326.0	452586.0	72.03
	23953	Chlamydia	274.0	1	1999.0	2	4972.0	161690.0	3075.02

Let us construct our model with our Data by using the sklearn library. Lets use 80% of the data for classification purpose and 20% for testing. We can then make a confusion matrix to then assertain the accuracy of our model as well.

```
In [ ]: from sklearn.model_selection import train_test_split
        from sklearn.preprocessing import StandardScaler
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.metrics import classification report, confusion matrix
        #Seperate our training and testing variables
        X = std.iloc[:, 2:-1].values
        y = std.iloc[:, 1].values
        X train, X test, y train, y test = train test split(X, y, test size=0.20)
        #Make the Classifier
        classifier = KNeighborsClassifier(n_neighbors=5)
        classifier.fit(X_train, y_train)
        #get prediction
        y_predict = classifier.predict(X_test)
        # Print out results with a report and classification matrix
        print(confusion_matrix(y_test, y_predict))
        print(classification_report(y_test, y_predict))
        [[1346 1119 248]
         [1139 1130 346]
         [ 385 517 867]]
                      precision
                                   recall f1-score
                                                      support
               274.0
                           0.47
                                     0.50
                                               0.48
                                                         2713
               280.0
                           0.41
                                     0.43
                                               0.42
                                                         2615
               310.0
                           0.59
                                     0.49
                                               0.54
                                                         1769
            accuracy
                                               0.47
                                                         7097
           macro avg
                           0.49
                                     0.47
                                               0.48
                                                         7097
        weighted avg
                           0.48
                                     0.47
                                               0.47
                                                         7097
```

Precision, recall, and the F1 score are all evaluation metrics that are commonly used to assess the performance of a classification model, including a KNN model.

Precision is a measure of the number of true positive predictions made by the model compared to the total number of positive predictions. It is calculated as the number of true positives divided by the sum of the true positives and false positives. High precision indicates that the model is good at identifying positive cases, but it may also be prone to missing positive cases.

Recall is a measure of the number of true positive predictions made by the model compared to the total number of actual positive cases. It is calculated as the number of true positives divided by the sum of the true positives and false negatives. High recall indicates that the model is good at finding all of the positive cases, but it may also be prone to making false positive predictions.

The F1 score is a weighted average of precision and recall, and it is calculated as the harmonic mean of precision and recall. The F1 score is a useful metric when you want to balance precision and recall, and it is often used as a single measure of model performance. Here we can see that the Precision accuracy is 0.47, the Recall is 0.46 and f1 is 0.47 with a total esitmated accuracy around 46-47%.

Although this is not terribly accurate, this is a useful tool in the aid of in classification in the type of STD for STD oriented Data Scientists like ourselves. With further feature engineering and more data, a way that this project could be continued is increasing the classification accurary futher as well as with a more complicated and robust model as a KNN is quite simple. To be fair, this is a decent accurary, given the quality of data, features being used and the relative simplicity of the model.

Conclusion

In this project, machine learning and data science techniques were used to analyze the STD data in order to identify patterns and trends in STD rates over time and among different populations. This information was used to develop targeted prevention strategies and interventions aimed at reducing STD rates.

Some possible machine learning techniques that were used in this project included classification algorithms, which were used to predict the likelihood of an individual contracting an STD based on their demographic characteristics, or clustering algorithms, which were used to identify groups of individuals with similar characteristics and high risk of contracting an STD.

Data preprocessing and cleaning were important steps in this project because they ensured that the data was in a usable and consistent format for analysis and modeling. This may have involved handling missing values, dealing with inconsistencies in the data, and transforming the data into a format that was suitable for the machine learning algorithms being used.

Once the data had been cleaned and prepared, data visualization techniques were used to explore and understand the data, identify trends and patterns, and gain insights into the data. This may have involved creating plots and charts to visualize the data, or using statistical techniques to analyze the data.

Overall, the use of machine learning and data science techniques in this project helped to prevent the spread of STDs by identifying high-risk individuals and areas, and developing targeted prevention strategies based on the analysis of STD data and then the ML model made was used to indenitfy what STD a certain person has.