

Санкт-Петербургский государственный университет Кафедра системного программирования

Регрессионный анализ и корреляция (живая демонстрация в Python)

Альшаеб Басель, группа 24.М71-мм

Курс «Методы статистической обработки информации»

Преподаватель: д.ф.-м.н. профессор Н.К. Кривулин

Санкт-Петербург 2025

План выступления

- Постановка задачи и данные.
- ② Краткое введение в Python-инструментарий.
- Теория: корреляция и линейная регрессия.
- Демонстрация:
 - описательная статистика и корреляции;
 - ▶ модель OLS, сводка, проверка гипотез;
 - диагностика остатков, доверительные и предсказательные интервалы;
 - ▶ краткая связь с ANOVA (F-тест).
- Выводы и ограничения.

Постановка задачи

Задача: изучить линейную связь между признаками и целевой переменной и построить модель для предсказания.

Пример: прогноз цены по площади и числу комнат (синтетический набор данных, размер n=200).

Почему линейная регрессия и корреляция?

- простые модели;
- тесная связь с проверкой гипотез и доверительными интервалами;
- соответствуют темам курса (оценивание, гипотезы, корреляция, регрессия, ANOVA).

Инструмент: Python для прикладной статистики

Язык: Python 3.x Библиотеки: pandas, numpy, scipy, matplotlib.

Почему Python:

- Широкая экосистема статистики и визуализации.
- Лёгкая репродукция: Jupyter/Colab/VS Code.
- ullet Быстрый путь: данные o анализ o графики.

Где запускать: Jupyter Notebook/Colab/VS Code.

Установка и запуск окружения

Установка пакетов:

pip install pandas numpy scipy matplotlib scikit—learn

Запуск Jupyter:

jupyter notebook # или jupyter lab

Структура демо:

- Импорт и загрузка данных (sklearn.datasets.load_diabetes()).
- Описательная статистика, матрица корреляций.
- Pearson/Spearman: *r*, p-value, доверительные интервалы (Fisher z).
- Визуализация: scatter, тепловая карта.

Виды зависимости (смысл корреляции)

- Функциональная (детерминированная): Y = f(X).
- Стохастическая: изменение X влечёт изменение Y по вероятностному закону.
- Независимость: $P\{X \in A, Y \in B\} = P\{X \in A\}P\{Y \in B\}.$

Корреляционный анализ изучает меры связи (ковариация, корреляция) и позволяет проверять гипотезы о наличии/отсутствии связи.

Ковариация и корреляция (Пирсон)

Ковариация:

$$\mathrm{Cov}(X,Y) = \mathbb{E}[XY] - \mathbb{E}X\mathbb{E}Y = \mathbb{E}[(X - \mathbb{E}X)(Y - \mathbb{E}Y)].$$

Коэффициент корреляции Пирсона:

$$\rho_{XY} = \frac{\operatorname{Cov}(X, Y)}{\sigma_X \sigma_Y} \in [-1, 1].$$

Свойства: инвариантность к сдвигу/масштабу; $\rho=\pm 1 \Leftrightarrow$ линейная зависимость $Y=\beta_0+\beta_1 X$.

Важно: корреляция — это сила линейной связи (не причинность).

Проверка гипотезы $H_0: \rho = 0$ и доверительный интервал

Пусть r — выборочная корреляция, n — размер выборки.

t-статистика:

$$t=rac{r\sqrt{n-2}}{\sqrt{1-r^2}}~\sim~t_{n-2}$$
 при $H_0.$

Критерий: отвергаем H_0 при $|t|>t_{1-lpha/2,n-2}$ или по p-value <lpha.

Fisher z-преобразование для CI
$$\rho$$
: $z = \frac{1}{2} \ln \frac{1+r}{1-r}$, $z \pm z_{1-\alpha/2}/\sqrt{n-3} \Rightarrow \rho = \frac{e^{2z}-1}{e^{2z}\pm 1}$.

Pearson vs. Spearman (когда какой)

	Pearson r	Spearman ρ_s
Связь	Линейная	Монотонная (п
		рангам)
Выбросы	Чувствителен	Робастнее
Данные	Интервальные/отноше Нюр ядковые/монотог	

Данные для демонстрации

Набор: sklearn.datasets.load_diabetes() (медицина, 442 наблюдения).

Непрерывные признаки (возраст, ИМТ, АД и др.), целевая target — прогресс заболевания.

Удобно для матрицы корреляций и парных анализов.

Импорт и подготовка

```
import numpy as np, pandas as pd, matplotlib.pyplot as
from scipy import stats
from sklearn.datasets import load diabetes
data = load diabetes()
X = pd.DataFrame(data.data, columns=data.feature names
y = pd. Series (data.target, name="target")
df = pd.concat([X, y], axis=1)
df.head() # первыестроки
df.describe() # описательнаястатистика
```

Матрица корреляций (Pearson)

```
corr pearson = df.corr(numeric only=True) # Pearson п
print(corr pearson.round(3))
plt.figure()
plt.imshow(corr pearson, vmin=-1, vmax=1)
plt.colorbar(); plt.title("Correlation matrix (Pearson
plt.xticks(range(len(corr pearson.columns)), corr pear
plt.yticks(range(len(corr pearson.index)), corr pearso
plt.tight layout(); plt.show()
Интерпретация: пары с |r| \gtrsim 0.3-0.4 — кандидаты на значимую
линейную связь.
```

Pearson: r и p-value для пары признаков

```
x = df["bmi"] # индексмассытела y = df["target"] # прогрессзаболевания r\_xy, p\_xy = stats.pearsonr(x, y) print (f"Pearson_{\square}r(bmi,_{\square}target)_{\square}=_{\square}\{r\_xy:.3f\},_{\square}p\_value_{\square}= Гипотеза H_0: \rho=0. Если p<0.05, связь статистически значима. Знак r укажет направление связи.
```

Spearman (ранговая корреляция)

```
corr_spearman = df.corr(numeric_only=True, method="spearman(corr_spearman.round(3))

r_s, p_s = stats.spearmanr(df["bmi"], df["target"])

print(f"Spearman_rho(bmi, __target)_=_{\_}{r_s:.3f},_{\_}p-value}

Когда лучше Spearman: выбросы, нелинейная монотонная связь, порядковые шкалы.
```

Доверительный интервал для ρ (Fisher z)

```
def fisher ci(r, n, alpha = 0.05):
                                    z = 0.5*np.log((1+r)/(1-r))
                                     z se = 1/np.sqrt(n-3)
                                     z crit = stats.norm.ppf(1-alpha/2)
                                    z \mid 0, z \mid hi = z - z \mid crit*z \mid se, z + z \mid crit*z \mid se
                                    to r = lambda z: (np.exp(2*z)-1)/(np.exp(2*z)+1)
                                     return to r(z lo), to r(z hi)
n = len(df)
 lo, hi = fisher ci(r xy, n)
print (f''95\% \Box Cl \Box for \Box rho \Box (bmi, target) : \Box [\{lo : .3 f\}, \Box \{hi : .3 f
```

Интерпретация: интервал не пересекает $0 \Rightarrow$ линейная связь статистически значима.

Визуализация: scatter-плоты

```
plt.figure()
plt.scatter(df["bmi"], df["target"])
plt.xlabel("bmi"); plt.ylabel("target")
plt.title("bmiuvsutargetu(scatter)")
plt.show()
```

Цель: оценить форму связи (линейная/нелинейная), наличие выбросов.

Применение и ограничения

Где полезно:

- Быстрый отбор признаков (feature screening) перед моделированием.
- Диагностика мультиколлинеарности (высокие межпризнаковые корреляции).

Предосторожности:

- Pearson отражает **линейную** связь; Spearman **монотонную**.
- Выбросы и неоднородная дисперсия искажают r (используйте визуализацию).
- Корреляция \neq причинность.
- Множественные проверки \Rightarrow корректировки (Bonferroni/FDR).

Итоги

- Корреляция простая и наглядная мера связи.
- Python (pandas, scipy) даёт мгновенный расчёт r, p-value и Cl.
- Визуализация обязательна для корректной интерпретации.

Нотбук с кодом включите в архив сдачи; слайды — PDF/PPTX.

Контакты и материалы

Код демо: ноутбук correlation_demo.ipynb.

 Π акеты: pandas, numpy, scipy, matplotlib, scikit-learn.

Курс: «Методы статистической обработки информации».