

TECHNISCHE UNIVERSITÄT MÜNCHEN

Secure Coding Phase 2

Team 3: Patrick Sattler, Aurel Roci, Stefan Kohler

Executive Summary

Secode21

We found several vulnerabilities, which could cause severe damage to the *Secode21*. It is possible to get access to the admin page via stealing the session. Thus an attacker can register an arbitrary employee or customer and unlock the registered user. An attacker can also execute a brute force attack on known user ids as there is no lock mechanism to prevent this. Besides the security issues there is also a severe problem with regard to the business logic. In the current state this web application should not be used productively!

Team3 Online Banking

We found some issues, which potentially could cause damage to the *Team3 Online Banking*. However the detected issues are quite easy to fix. If an experienced attacker performs a man in the middle attack he'll be able to track session ids. The implications are severe, as the attacker can take over the role of the customer, but this attack requires advanced knowledge. With regard to the business logic there was only one issue with low risk detected.

Comparison

In summary we were able to clearly state out that the *Team3 Online Banking* web application has less and also less severe vulnerabilites then the *Secode21* web application. Furthermore it has to be said that the detected issues of the *Team3 Online Banking* are easier to fix and will cost less money to implement.

Contents

Ex	cecuti	ive Sun	nmary	i
1	Tim	e Track	king Table	1
2	Vul	nerabil	ities Overview	2
	2.1	Secod	e21	2
		2.1.1	Static Session ID	2
		2.1.2	Stored XSS in Registration	2
		2.1.3	Brute Force Password	3
		2.1.4	Directory Traversal	3
	2.2	Team3	3 Online Banking	3
		2.2.1	Static Session ID	3
		2.2.2	Stored XSS in Registration	4
		2.2.3	Brute Force Password	4
	2.3	Vulne	rability Overview	4
3	Det	ailed R	eport	5
	3.1	Config	guration and Deploy Management Testing	6
		3.1.1	Test File Extensions Handling for Sensitive Information (OTG-	
			CONFIG-003)	6
		3.1.2	Test HTTP Methods (OTG-CONFIG-006)	8
		3.1.3	Test HTTP Strict Transport Security (OTG-CONFIG-007)	9
		3.1.4	Test RIA cross domain policy (OTG-CONFIG-008)	10
	3.2	Identi	ty Management Testing	11
		3.2.1	Test Role Definitions (OTG-IDENT-001)	11
		3.2.2	Test User Registration Process (OTG-IDENT-002)	12
		3.2.3	Test Account Provisioning Process (OTG-IDENT-003)	13
		3.2.4	Testing for Account Enumeration and Guessable User Account	
			(OTG-IDENT-004)	14
		3.2.5	Testing for Weak or unenforced username policy (OTG-IDENT-005)	15
	3.3	Authe	entication Testing	16
		3.3.1	Testing for Credentials Transported over an Encrypted Channel (OTG-	
			AUTHN-001)	16

Contents

	3.3.2	Testing for default credentials(OTG-AUTHN-002)	17
	3.3.3	Testing for bypassing authentication schema (OTG-AUTHN-004)	18
	3.3.4	Testing for Browser cache weakness (OTG-AUTHN-006)	19
	3.3.5	Testing for Weak password policy (OTG-AUTHN-007)	20
3.4	Autho	rization Testing	21
	3.4.1	Testing Directory traversal/file include (OTG-AUTHZ-001)	21
	3.4.2	Testing for Privilege Escalation (OTG-AUTHZ-003)	23
3.5	Sessio	n Management Testing	24
	3.5.1	Testing for Bypassing Session Management Schema(OTG-SESS-001)	24
	3.5.2	Testing for Cookies attributes(OTG-SESS-002)	25
	3.5.3	Testing for Session Fixation(OTG-SESS-003)	26
	3.5.4	Testing for Exposed Session Variables (OTG-SESS-004)	27
	3.5.5	Testing for logout functionality(OTG-SESS-006)	28
	3.5.6	Test Session Timeout(OTG-SESS-007)	29
	3.5.7	Testing for Session puzzling(OTG-SESS-008)	30
3.6	Data V	Validation Testing	31
	3.6.1	Testing for Reflected Cross Site Scripting(OTG-INPVAL-001)	31
	3.6.2	Testing for Stored Cross Site Scripting(OTG-INPVAL-002)	32
	3.6.3	Testing for HTTP Verb Tampering(OTG-INPVAL-003)	34
	3.6.4	Testing for SQL Injection (OTG-INPVAL-005) and Mysql testing	
		(OTG-INPVAL-005)	36
	3.6.5	Testing for XML Injection(OTG-INPVAL-008)	37
	3.6.6	Testing for SSI Injection(OTG-INPVAL-009)	38
	3.6.7	Testing for XPATH Injection(OTG-INPVAL-010)	39
	3.6.8	Testing for Code Injection, Testing for Local File Inclusion, Testing	
		for Remote File Inclusion(OTG-INPVAL-012)	40
	3.6.9	Testing for Command Injection(OTG-INPVAL-013)	41
	3.6.10	Testing for Buffer overflow, Testing for Heap overflow, Testing for	
		Stack overflow, Testing for Format string (OTG-INPVAL-014)	42
	3.6.11	Testing for incubated vulnerabilities(OTG-INPVAL-015)	43
3.7		Handling	43
3.8	Crypte	ography	44
3.9		ess Logic Testing	45
	3.9.1	Test Business Logic Data Validation(OTG-BUSLOGIC-001)	45
	3.9.2	Test Ability to Forge Requests(OTG-BUSLOGIC-002)	46
	3.9.3	Test Integrity Checks(OTG-BUSLOGIC-003)	47
	3.9.4	Test for Process Timing(OTG-BUSLOGIC-004)	48
	3.9.5	Test Number of Times a Function Can be Used Limits(OTG-	
		BUSLOCIC-005)	49

Contents

	3.9.6	Testing for the Circumvention of Work Flows(OTG-BUSLOGIC-006)	50
	3.9.7	Test Defenses Against Application Misuse(OTG-BUSLOGIC-007)	51
	3.9.8	Test Upload of Unexpected File Types(OTG-BUSLOGIC-008)	52
	3.9.9	Test Upload of Malicious Files(OTG-BUSLOGIC-009)	53
3.10	Client	Side Testing	54
	3.10.1	Testing for DOM based Cross Site Scripting (OTG-CLIENT-001)	54
	3.10.2	Testing for JavaScript Execution (OTG-CLIENT-002)	55
	3.10.3	Testing for HTML Injection (OTG-CLIENT-003)	56
	3.10.4	Testing for Client Side URL Redirect (OTG-CLIENT-004)	57
	3.10.5	Testing for CSS Injection (OTG-CLIENT-005)	58
	3.10.6	Testing for Client Side Resource Manipulation (OTG-CLIENT-006)	59
	3.10.7	Test Cross Origin Resource Sharing (OTG-CLIENT-007)	60
	3.10.8	Testing for Cross Site Flashing (OTG-CLIENT-008)	61
	3.10.9	Testing for Clickjacking (OTG-CLIENT-009)	62
	3.10.10	Testing WebSockets (OTG-CLIENT-010)	63
	3.10.11	Test Web Messaging (OTG-CLIENT-011)	64
	3.10.12	2 Test Local Storage (OTG-CLIENT-012)	65
Glossar	y		67
Acrony	ms		68

1 Time Tracking Table

Name	Task	Time
Aurel Roci	Test HTTP Methods	0.25
	Error Handling	1
	Testing for default credentials	0.25
	Testing for Reflected Cross Site Scripting	0.5
	Testing for Stored Cross Site Scripting	2
	Testing for HTTP Verb Tampering	0.5
	Testing for SQL Injection	2
	Test Number of Times a Function Can be Used Limits	0.75
	Test Business Logic Data Validation	1.5
	Executive Summary	0.5
	Testing Report	2
	Testing for Cross Site Request Forgery	0.5
	Testing for Privilege Escalation	1.5
	Presentation	0.25
Stefan Ch. Kofler	Test File Extensions Handling for Sensitive Information	2.0
	Test HTTP Strict Transport Security	0.5
	Test RIA cross domain policy	0.5
	Test Role Definitions	1.25
	Test User Registration Process	0.75
	Test Account Provisioning Process	0.5
	Testing for Account Enumeration and Guessable User Account	0.5
	Testing for Weak or unenforced username policy	0.5
	Testing Directory traversal/file include	1.5
	Testing for DOM based Cross Site Scripting	0.75
	Testing for JavaScript Execution	2.0
	Testing for HTML Injection	0.5
	Testing for Client Side URL Redirect	0.75
	Testing for CSS Injection	0.5
	Testing for Client Side Resource Manipulation	0.5
	Test Cross Origin Resource Sharing	1.25
	Testing for Cross Site Flashing	0.5
	Testing for Clickjacking	1.0
	Testing WebSockets	0.75
	Test Web Messaging	0.5
	m . r . 10:	0 =

2 Vulnerabilities Overview

Based on our testing, we identified the following vulnerabilities for the Secode21 Bank and the OnlineBanking Bank:

2.1 Secode21

2.1.1 Static Session ID

• Likelihood: high

• Implication: high

• Risk: *high*

• Reference: OWASP OTG-SESS-003

The session id is saved in form of the (static) user id in a cookie. This cookie can be used on any machine to take over the account of a user. The lifetime of this cookie is only limited by the cookie lifetime field.

2.1.2 Stored XSS in Registration

• Likelihood: medium

• Implication: high

• Risk: high

• Reference: OWASP OTG-INPVAL-002

Using stored cross-site-scripting attacks, one can inject JavaScript code, that is run, when the Administrator/Employee logs in. Arbitrary code can be loaded from a third party page.

2.1.3 Brute Force Password

• Likelihood: high

• Implication: medium

• Risk: medium

• Reference: OWASP OTG-AUTHN-003

The application has no lock out mechanism, which allows brute force attacks on known usernames and testing for a valid password

2.1.4 Directory Traversal

• Likelihood: high

• Implication: medium

• Risk: medium

• Reference: OWASP OTG-AUTHN-001

It is possible to access *SQL* directory through the *url*.

2.2 Team3 Online Banking

2.2.1 Static Session ID

• Likelihood: *high*

• Implication: *high*

• Risk: high

• Reference: OWASP OTG-SESS-003

The session id is saved in form of the (static) user id in a cookie. This cookie can be used on any machine to take over the account of a user. The lifetime of this cookie is only limited by the cookie lifetime field.

2.2.2 Stored XSS in Registration

• Likelihood: medium

• Implication: high

• Risk: high

• Reference: OWASP OTG-INPVAL-002

Using stored cross-site-scripting attacks, one can inject JavaScript code, that is run, when the Administrator/Employee logs in. Arbitrary code can be loaded from a third party page.

2.2.3 Brute Force Password

• Likelihood: high

• Implication: medium

• Risk: medium

• Reference: OWASP OTG-AUTHN-003

The application has no lock out mechanism, which allows brute force attacks on known usernames and testing for a valid password

2.3 Vulnerability Overview

3 Detailed Report

The following pages describe for each test how both applications Secode21 and Online Banking Bank performed. The test is divided in different sections following the OWASP Testing Guide v4.

3.1 Configuration and Deploy Management Testing

3.1.1 Test File Extensions Handling for Sensitive Information (OTG-CONFIG-003)

Secode21	Likelihood: 8
	Impact: 5

Risk: 5 Secode21 Observation File extensions are handled correctly but while testing we found a folder called SQL with sql files and pdf files describing the database structure and the sql commands used by the web application. **TODO** Discovery Likelihood The likelihood is quite high that someone tries a tool to find these kind of vulnerabilities. There is no need for special knowledge because the tools work quite automatically without much configuration. **Implication** These vulnerabilities could help attackers to perform sql injection attacks because you know the database structure and the sql commands used in the implementation of the web application. Recommendations Block the access to sql files and to those folders that describe the web applications architecture. Comparison Our web application handles file extensions correctly, but it is possible to access the compiled c program that handles the batch files. This is a problem because you can reverse engineer the code and use the vulnerabilities found. This scenario is possible but is very complex.

Metric	Value
Access Vector	N
Attack Complexity	L
Privileges Required	N
User Interaction	N
Scope	U
Confidentiality Impact	L
Integrity Impact	N
Availability Impact	N

3.1.2 Test HTTP Methods (OTG-CONFIG-006)

Likelihood: 0 Secode21

Impact: 0 Risk: 0

MSK. U			
Secode21			
Observation	he application is not accessable over HTTP. HTTPS is enforced.		
Discovery	We also tried to connect via <i>netcat</i> using the following command:		
	nc IP_ADDRESS 80, which did not work.		
Likelihood	N/A		
Implication	N/A		
Recommendations	N/A		
Comparison	The same applies for our web application.		

3.1.3 Test HTTP Strict Transport Security (OTG-CONFIG-007)

Secode21 Likelihood: 0
Impact: 0

Secode21		
Observation	The HTTP Strict Transport Security protocol is never used.	
Discovery	We used Charles Web Proxy to check the HTTP response headers	
	and the Strict-Transport-Security header was not found.	
Likelihood	N/A	
Implication	N/A	
Recommendations	It would be better so transport some data via https and use the	
	HSTS protocol.	
Comparison	The same results apply for our web application.	

Metric	Value
Access Vector	N
Attack Complexity	L
Privileges Required	N
User Interaction	N
Scope	U
Confidentiality Impact	L
Integrity Impact	N
Availability Impact	N

3.1.4 Test RIA cross domain policy (OTG-CONFIG-008)

Secode21 Likelihood: 0
Impact: 0

Secode21		
Observation	There are no RIA applications on the system and therefore is no	
	crossdomain.xml file provided.	
Discovery	Using wget we tried to find a crossdomain.xml or clientaccesspol-	
	icy.xml file and couldn't find it.	
Likelihood	N/A	
Implication	N/A	
Recommendations	N/A	
Comparison	The same results applies for our web application.	

Metric	Value
Access Vector	N/A
Attack Complexity	N/A
Privileges Required	N/A
User Interaction	N/A
Scope	N/A
Confidentiality Impact	N/A
Integrity Impact	N/A
Availability Impact	N/A

3.2 Identity Management Testing

Observation

3.2.1 Test Role Definitions (OTG-IDENT-001)

Secode21 Likelihood: 10
Impact: 4
Risk: 4

Secode21
We found out that there exist two different roles in the system. There is the role of a normal customer and the role of an employee. Employees have the additional functionality to view account and transaction details of all the customers. Transactions over 10000 euro and new user registrations can be accepted by the employee.

Discovery

No special tools except a browser were needed because all the roles and their available functions are described.

Likelihood

It is very likely that people find this information.

There is no direct implication, but knowing the roles and their functionality helps with other attacks.

Recommendations
Comparison

Don't describe the roles on the web page.

Our web application provides the same roles, but the roles are not described on the web page.

Metric	Value
Access Vector	N
Attack Complexity	L
Privileges Required	L
User Interaction	N
Scope	U
Confidentiality Impact	L
Integrity Impact	L
Availability Impact	N

3.2.2 Test User Registration Process (OTG-IDENT-002)

Secode21 Likelihood: 5
Impact: 5

s registration
-
can register
no proof of
equirements
address and
n. A browser
ry results.
d by any user
wrong infor-
rmissions or
nould be val-
mber can be
by hand if a
would than
er for the reg-
e registration
because the

Metric	Value
Access Vector	N
Attack Complexity	L
Privileges Required	N
User Interaction	N
Scope	U
Confidentiality Impact	N
Integrity Impact	N
Availability Impact	N

3.2.3 Test Account Provisioning Process (OTG-IDENT-003)

Secode21 Likelihood: N/A
Impact: N/A
Risk: N/A

Secode21		
Observation	Our observation showed us that employees can accept customer	
	registrations and can make customer accounts to employee ac-	
	counts.	
Discovery	All the observations were made with the <i>Chrome</i> web browser.	
Implication	If an employee account gets hacked you can make even other	
	accounts to employees and accept new registrations.	
Recommendations	N/A	
Comparison	In our web application the employee doesn't make customer ac-	
	counts to employee accounts but rather accepts special employee	
	registrations. It makes no difference in the security.	

Metric	Value
Access Vector	N
Attack Complexity	N/A
Privileges Required	N/A
User Interaction	N/A
Scope	N/A
Confidentiality Impact	N/A
Integrity Impact	N/A
Availability Impact	N/A

3.2.4 Testing for Account Enumeration and Guessable User Account (OTG-IDENT-004)

Secode21 Likelihood: 0

Impact: 0 Risk: 0

	Secode21	
Observation	We found out that the web application makes no difference be-	
	tween existing usernames and non existing usernames when	
	trying to login with wrong credentials. The same html response	
	and the same response headers are provided by the system.	
Discovery	We used the Charles Web Proxy to analyze the web application	
	responses.	
Implication	N/A	
Recommendations	N/A	
Comparison	Our web application makes no difference between login tries with	
	existing usernames and non existing ones. Both web applications	
	aren't vulnerable here.	

Metric	Value
Access Vector	N/A
Attack Complexity	N/A
Privileges Required	N/A
User Interaction	N/A
Scope	N/A
Confidentiality Impact	N/A
Integrity Impact	N/A
Availability Impact	N/A

3.2.5 Testing for Weak or unenforced username policy (OTG-IDENT-005)

Secode21 Likelihood: 0
Impact: 0

Secode21		
Observation	The usernames are not auto-generated and therefore there is no	
	special structure in the usernames.	
Discovery	No tool is used here. The username field in the registration form	
	gives us all the information we need.	
Implication	N/A	
Recommendations	N/A	
Comparison	The same applies for our web application.	

Metric	Value
Access Vector	N/A
Attack Complexity	N/A
Privileges Required	N/A
User Interaction	N/A
Scope	N/A
Confidentiality Impact	N/A
Integrity Impact	N/A
Availability Impact	N/A

3.3 Authentication Testing

3.3.1 Testing for Credentials Transported over an Encrypted Channel(OTG-AUTHN-001)

Secode21 Likelihood: 8
Impact: 8

	KISK: 8
Secode21	
Observation	This ensures that our credentials are sent using an encrypted
	channel and that the credentials are not readable by a malicious
	user using a sniffer. The credetials are sent unencrypted over
	HTTP to the server and everyone in the network can read them.
Discovery	We used Zed Attack Proxy (ZED) in order to capture packet head-
	ers and to inspect them. We saw that the request addressed to
	the web application is using the HTTP protocol and that the
	credentials were simple POST parameters
Likelihood	Everyone in the adjacent network or who can read the packages
	could also get the credentials
Implication	Authentication as user
Recommendations	Use https to encrypt this information
Comparison	The same applies for our web application.

Value
A
L
N
R
U
L
L
N

3.3.2 Testing for default credentials(OTG-AUTHN-002)

Secode21 Likelihood: 10
Impact: 4

Secode21	
Observation	We found out that there exists the default credentials admin:admin
Discovery	We were already given these credentials and additionally we
	tested the webapp with w3af where this credentials were discov-
	ered.
Likelihood	It is very likely that people find this information.
Implication	The attacker gain employee access in the web application.
Recommendations	Use other credentials for testing, or delete the default ones after
	you launch the application.
Comparison	Our web application has a different combination of user:password.

Metric	Value
Access Vector	N
Attack Complexity	L
Privileges Required	N
User Interaction	N
Scope	U
Confidentiality Impact	L
Integrity Impact	L
Availability Impact	N

3.3.3 Testing for bypassing authentication schema (OTG-AUTHN-004)

Secode21 Likelihood: NA Impact: NA

Risk: NA

	100.141	
Secode21		
Observation	We did not find any possibility to bypass the authentication	
	schema.	
Discovery	N/A	
Likelihood	N/A	
Implication	N/A	
Recommendations	N/A	
Comparison	Neither we found a possibility in our web app	

Metric	Value
Access Vector	NA
Attack Complexity	NA
Privileges Required	NA
User Interaction	NA
Scope	NA
Confidentiality Impact	NA
Integrity Impact	NA
Availability Impact	NA

3.3.4 Testing for Browser cache weakness (OTG-AUTHN-006)

Secode21 Likelihood: 0
Impact: NA

Risk: NA

	1112111 1 111	
Secode21		
Observation	The web app set the cache-control to no-cache an no-store and	
	Pragma to no-cache	
Discovery	By reviewing the response header with the chrome developer	
	tools we could analyze the parameters	
Likelihood	For every registration process	
Implication	Brute Force is to easy for simple passwords	
Recommendations	Introduce password restrictions	
Comparison	The same problem we encountered in our webapp	

Metric	Value
Access Vector	NA
Attack Complexity	NA
Privileges Required	NA
User Interaction	NA
Scope	NA
Confidentiality Impact	NA
Integrity Impact	NA
Availability Impact	NA

3.3.5 Testing for Weak password policy (OTG-AUTHN-007)

Secode21 Likelihood: 6

Impact: 5 Risk: 5

Secode21 Observation The registration process does not have a restriction for weak passwords and the user can't change the password. Furthermore the password can contain the username Discovery Tested manually the registration process with a one character password and the username as password Likelihood For every registration process the user has the possibility to choose a weak password Implication Brute Force is to easy for simple passwords Recommendations Introduce password restrictions Comparison The same problem we encountered in our webapp

Metric	Value
Access Vector	N
Attack Complexity	L
Privileges Required	N
User Interaction	N
Scope	U
Confidentiality Impact	L
Integrity Impact	L
Availability Impact	N

3.4 Authorization Testing

3.4.1 Testing Directory traversal/file include (OTG-AUTHZ-001)

Secode21	Likelihood: 4	
	Impact: 5	
	Risk: 5	
	Secode21	
Observation	We could not find any path traversals with dotdotpwn but w3af	
	found some. The phpinfo.php can be accessed and it contains	
	the paths for several config files. So an attacker directly knows	
	where to search for this files. Also since the attacker can see the	
	phpinfo.php and see the installed software and its versions he	
	can easily search for vulnerabilities for that version	
Discovery	We used the dotdotpwn tool to find such traversals with the	
	following command:	
	sudo ./dotdotpwn.pl -0 -m http -h 192.168.21.39	
	-f /etc/hosts -k "localhost" -d 10 -s -E	
	-O is to get the operating system; -d 10 dotdotpwn will search	
	until a deepness of 10; -m is to indicate that the protocol is http	
	and -h for the server ip; -f /etc/hosts searches after the hosts file	
	-k defines that a file without "localhost" in it is a false positive.	
	Afterwards we tried w3af and it found the phpinfo.php file	
Likelihood	This is more an additional information for other attacks but it is	
	a good help for attackers to find vulnerabilities faster	
Implication	The attacker knows the position of the config files, how php is	
	configured and what version are used	
Recommendations	make the phpinfo page not accessible or delete it	
Comparison	Our webapp does not have a phpinfo page.	

Figure 3.1: dotdotpwn screenshot

Metric	Value
Access Vector	N
Attack Complexity	L
Privileges Required	N
User Interaction	N
Scope	U
Confidentiality Impact	L
Integrity Impact	N
Availability Impact	N

3.4.2 Testing for Privilege Escalation (OTG-AUTHZ-003)

Secode21 Likelihood: 0

Impact: 0

	MSK. 0	
Secode21		
Observation	It is not possible to escalate privileges of the user.	
Discovery	We tried to change the user privilege by changing the user id	
	after we saw that they are generated by incrementing from the	
	first user ID, using Burp.	
Likelihood	N/A	
Implication	N/A	
Recommendations	N/A	
Comparison	The same results apply for our web application.	

3.5 Session Management Testing

3.5.1 Testing for Bypassing Session Management Schema(OTG-SESS-001)

Secode21	Likelihood: 0
	Impact: 0
	Risk: 0
	Secode21
Observation	PHP session ids are used and such session ids normally can't be
	bypassed that means calculated easily
Discovery	We used the Chrome extension "Advanced Rest Client" to analyze
	the Request and the Cookies
Likelihood	NA
Implication	NA
Recommendations	NA
Comparison	Our web application also uses PHP session ids

Metric	Value
Access Vector	NA
Attack Complexity	NA
Privileges Required	NA
User Interaction	NA
Scope	NA
Confidentiality Impact	NA
Integrity Impact	NA
Availability Impact	NA

3.5.2 Testing for Cookies attributes(OTG-SESS-002)

Secode21 Likelihood: 10 Impact: 3

Secode21		
Observation	The cookie for the PHP session id has a to general path $("//")$.	
	So the application is vulnerable to other web application on the	
	same server. They will also get the cookie from the user.	
Discovery	We used the Chrome developer tools to analyze the cookies	
Likelihood	N/A	
Implication	The cookies can be read and used by other web applications that	
	match the path value.	
Recommendations	Set the path as thight as possible. For Team21 for example "//sec-	
	ode//"	
Comparison	Our web application has exact the same vulnerability.	

Metric	Value
Access Vector	L
Attack Complexity	L
Privileges Required	N
User Interaction	R
Scope	U
Confidentiality Impact	Н
Integrity Impact	L
Availability Impact	N

3.5.3 Testing for Session Fixation(OTG-SESS-003)

Secode21 Likelihood: 8
Impact: 5

	140111 0
Secode21	
Observation	The session id is not invalidated and therefore does not change
	after the user is authenticated. This means an attacker can force a
	known session id on a user. Once the user is authenticated the
	attacker can access also as authenticated user
Discovery	We used the Chrome extension "Advanced Rest Client" to analyze
	the Request and the Cookies
Likelihood	This attack is pretty easy and can also be performed by low
	skilled people
Implication	The attacker can do everything the user can
Recommendations	Change the session id after logging in
Comparison	Our web application has exact the same vulnerability

Metric	Value
Access Vector	N
Attack Complexity	L
Privileges Required	N
User Interaction	R
Scope	U
Confidentiality Impact	Н
Integrity Impact	Н
Availability Impact	N

3.5.4 Testing for Exposed Session Variables (OTG-SESS-004)

Secode21 Likelihood: 10
Impact: 7

Secode21	
The application from Team 21 does not use HTTPS and there-	
fore the session variables are accessible during transport. An	
attacker could hijack the session simply read the session id by	
eavesdropping and reusing it	
We used the Chrome developer tools to analyze the requests	
This attack is pretty easy and can also be performed by low	
skilled people	
The attacker can read the session variables and depending on the	
information in them	
Use HTTP with TLS encryption and avoid GET request including	
the session id	
Our web application has exact the same vulnerability	

Metric	Value
Access Vector	A
Attack Complexity	L
Privileges Required	N
User Interaction	R
Scope	U
Confidentiality Impact	Н
Integrity Impact	Н
Availability Impact	N

3.5.5 Testing for logout functionality(OTG-SESS-006)

Secode21 Likelihood: 5
Impact: 6

	Kisk. J
Secode21	
Observation	The logout functionallity has been tested an works without any
	problems. The user gets correctly logged out and pages where au-
	thentication is needed can't be accessed afterwards. Also reusing
	the session id does not work. But the application seems to have
	no automatic logout after a certain amount of time.
Discovery	We tested the functionallity manually and used the Chrome
	extension "Advanced Rest Client" to reuse the session cookie
Likelihood	The only problem is that user sometimes only close the browser
	tab and than the session continues to exist
Implication	An attacker would be logged in if he can access afterwards the
	computer. Possible scenario Internet cafe or something similar
Recommendations	implement an automatic server side logout
Comparison	Our web application works also as expected but also does not
	have an automatic logout on the server side

Metric	Value
Access Vector	P
Attack Complexity	L
Privileges Required	N
User Interaction	N
Scope	U
Confidentiality Impact	N
Integrity Impact	Н
Availability Impact	N

3.5.6 Test Session Timeout(OTG-SESS-007)

Secode21 Likelihood: 4
Impact: 6
Risk: 7

	Secode21	
Observation	The application has the timeout of the session set to the browsers	
	session lifetime.	
Discovery	We tested the functionallity manually and used the Chrome	
	developertools to check the cookies	
Likelihood	same as for OTG-SESS-006. Public computers are here the biggest	
	problem	
Implication	An attacker is directly authenticated if the session is not ended	
Recommendations	Implement a server side session invalidation and delete the stored	
	data on the client	
Comparison	Also our webapp has this vulnerability	

Metric	Value
Access Vector	P
Attack Complexity	L
Privileges Required	N
User Interaction	N
Scope	U
Confidentiality Impact	N
Integrity Impact	Н
Availability Impact	N

3.5.7 Testing for Session puzzling(OTG-SESS-008)

Secode21 Likelihood: 0

Impact: 0 Risk: 0

Secode21	
Observation	The application has only one authorization method so a session
	puzzling is not applicable.
Discovery	Manually searched
Likelihood	NA
Implication	NA
Recommendations	NA
Comparison	We provide also only one possibility to login so session puzzling
	is not possible

3.6 Data Validation Testing

3.6.1 Testing for Reflected Cross Site Scripting(OTG-INPVAL-001)

	Likelihood: 8
Secode21	Impact: 5
	Risk:5
Secode21	
Observation	We observed no reflected cross site scripting vulnerability.
Discovery	It seems that all parameters are stored in the database before
	inserting the values in the HTML.
Likelihood	N/A
Implication	N/A
Recommendations	N/A
Comparison	The same results apply for our web application.

Likelihood: 8

3.6.2 Testing for Stored Cross Site Scripting(OTG-INPVAL-002)

Secode21	Impact: 5 Risk:5
	Secode21
Observation	We observed several possibilities to execute a stored XSS attack. But not all of them could be exploited as the length of the corresponding database fields was often very restricted. We manually tried to inject JavaScript code in every input field. Therefore we used the following code, which just alerts a message.
	<pre><script type="javascript">alert("XSS");</script></pre>
Discovery	We inserted Javascript code in the name field on the register page. When we logged in as an employee the script was executed. There were cases when the script caused for new registered users after
Likelihood	the script was entered to not appear. This vulnerability can be easily detected, but require some JavaScript knowledge to exploit it. Therefore we estimated the likelihood to be medium.
Implication	The implications are severe as we proofed that it is possible to steal the session. As we injected the code on the admin landing-page, which implies that we were able to act as an admin and register an abitrary account.
Recommendations	Implement a input sanitation on all input fields on the backend side! Try to use whitelisting for the different datatypes and do not rely on the frontend input validation.
Comparison	

Metric	Value
Access Vector	N
Attack Complexity	M
Privileges Required	N
User Interaction	Y
Scope	U
Confidentiality Impact	M
Integrity Impact	M
Availability Impact	L

3.6.3 Testing for HTTP Verb Tampering(OTG-INPVAL-003)

Secode21 Likelihood: 0

Impact: 0 Risk: 0

Secode21

Observation Discovery

We did not observe any notable behavior.

We used the Zed Attack Proxy (ZAP) to change the HTTP requests method to the ones listed below. The requests that were allowed responded with the index page or an empty body. The rejected requests responded with an error message in the body.

Methods that were allowed

- HEAD
- OPTIONS
- GET
- POST

Methods that were rejected

- TRACE
- PUT
- PROPFIND

Likelihood Implication Recommendations

N/A N/A N/A

Comparison Both webapps have the same allowed methods.

```
samurai@samurai-wtf:Desktop$ ./tamper 127.0.0.1
GET HTTP/1.1 200 OK
POST HTTP/1.1 200 OK
PUT HTTP/1.1 405 Method Not Allowed
TRACE HTTP/1.1 405 Method Not Allowed
CONNECT HTTP/1.1 400 Bad Request
OPTIONS HTTP/1.1 200 OK
PROPFIND HTTP/1.1 405 Method Not Allowed
samurai@samurai-wtf:Desktop$ ■
```

Figure 3.2: Results

```
#!/bin/bash
for webservmethod in GET POST PUT TRACE CONNECT OPTIONS PROPFIND;
do
printf "$webservmethod " ;
printf "$webservmethod / HTTP/1.1\nHost: $1\n\n" | nc -q 1 $1 80 | grep "HTTP/1.1"
done
```

Figure 3.3: Script used for testing

3.6.4 Testing for SQL Injection (OTG-INPVAL-005) and Mysql testing (OTG-INPVAL-005)

Secode21	Likelihood: 0
	Impact: 0
	Risk: 0

	NSK. 0
Secode21	
Observation	We observed that no SQL Injection was possible. Since we knew
	that the other team had to use Mysql we tested also specifically
	for Mysql
Discovery	We tried inserting various SQL statements in the fields of using
•	SQL Inject Me tool and failed. Also w3af was used and it could
	not find any vulnerabilities
Likelihood	N/A
Implication	N/A
Recommendations	N/A
Comparison	Our web application is also immune to SQL Injections

3.6.5 Testing for XML Injection(OTG-INPVAL-008)

Secode21 Likelihood: 0

Impact: 0

	Tubin 0
Secode21	
Observation	We did not find any vulnerability regarding XML Injection
Discovery	We used w3af to find XML injection vulerabilities and it could
	not find any.
Likelihood	N/A
Implication	N/A
Recommendations	N/A
Comparison	Our web application is also immune to XML Injections

3.6.6 Testing for SSI Injection(OTG-INPVAL-009)

Secode21 Likelihood: 0

Impact: 0

Secode21		
Observation	We did not find any vulnerability regarding SSI Injection	
Discovery	We used w3af to find SSI injection possibilities and it could not	
	find any vulnerabilities.	
Likelihood	N/A	
Implication	N/A	
Recommendations	N/A	
Comparison	Our web application is also immune to XML Injections	

3.6.7 Testing for XPATH Injection(OTG-INPVAL-010)

Secode21 Likelihood: 0

Impact: 0

	Tubic. 0
Secode21	
Observation	We did not find any vulnerability regarding XPATH Injection
Discovery	We used w3af to find XPATH injections and it could not find any
	vulnerabilities
Likelihood	N/A
Implication	N/A
Recommendations	N/A
Comparison	Our web application is also immune to XPATH Injections

3.6.8 Testing for Code Injection, Testing for Local File Inclusion, Testing for Remote File Inclusion(OTG-INPVAL-012)

Secode21	Likelihood: 0
	Impact: 0
	Risk: 0

Tubin 0		
Secode21		
We did not find any vulnerability regarding code injection and		
local or remote file inclusion in our web app. Team 21 did not		
implemented that feature		
Tryed to perform a command execution via the backticks (') and		
also the semicolon (;) in the filename but our webapp correctly		
handled the files without injections		
N/A		
N/A		
N/A		
NA		

3.6.9 Testing for Command Injection(OTG-INPVAL-013)

Comparison

Secode21 Likelihood: 0

Impact: 0 Risk: 0

Secode21ObservationCould not find any possibilities too for such a injectionDiscoverySearched manually and used the OWASPTOP10 profile for w3af
and did not found a possibilityLikelihoodN/AImplicationN/ARecommendationsN/A

Neither our app showed such a vulnerability

3.6.10 Testing for Buffer overflow, Testing for Heap overflow, Testing for Stack overflow, Testing for Format string (OTG-INPVAL-014)

Secode21	Likelihood: 0
	Impact: 0
	Risk: 0

Secode21		
Observation	We did not find any vulnerability regarding buffer overflow, heap	
	overflow, stack overflow or string formatting	
Discovery	We used w3af to locate such vilnerabilities.	
Likelihood	N/A	
Implication	N/A	
Recommendations	N/A	
Comparison	Our web application is also immune to buffer overflow, heap	
	overflow, stack overflow and string formatting	

3.6.11 Testing for incubated vulnerabilities(OTG-INPVAL-015)

Secode21	Likelihood: 7
	Impact: 7
	Risk: 5

Secode21					
Observation	A part of the XSS injection counts also to this vulnerability thats				
	possible on the web app of team 21. Code like the example on				
	the owasp page for OTG-INPVAL-015 could exploit the web app				
Discovery	We knew that stored XSS is possible so also this attack works and				
	someone could hijack an admins account simply by creating an				
	user				
Likelihood	The attack is pretty easy and the employee only has to view the				
	accounts page and if the attacker is a bit skilled the employee				
	does not even discover that something was wrong				
Implication	The attacker can hijack the session and do all the other things				
	possible with XSS				
Recommendations	Validate and escape the user input				
Comparison	Our web application has the same vulnerability but there it is a				
	lot more restricted. Only really short injection code can be used				
	so the possibilities are limited.				

3.7 Error Handling

Team21

Team21 does not provide a lot of error messages for incorrect inputs (e.g. incorrect TAN length, wrong TAN, TAN used).

Based on the client side input validation, there are also no messages for manipulated input via proxy or by removing the validation patterns, which can lead to problems. Examples would be a malformated email which results in a not working account or a longer input then expected, which cuts off the end of the input. There are some cases when the page returns the path of the file where the error occurred.

Team3

3.8 Cryptography

3.9 Business Logic Testing

3.9.1 Test Business Logic Data Validation(OTG-BUSLOGIC-001)

	Likelihood: 0
Secode21	Impact: 0
	Risk:0
	Secode21
Observation	Tests show that data validation is both: client side and server
	side.
Discovery	We intercepted the input before it gets send to the server us-
	ing Burp and manipulated the data, and we received an error
	message.
Likelihood	N/A
Implication	N/A
Recommendations	N/A
Comparison	We got the same result with our application.

3.9.2	Test	Ability	to Forge	Requests(OT	G-BUSL	OGIC-002)

3.9.3 Test Integrity Checks(OTG-bUSLOGIC-00	st Integrity Checks(OTG-BUSLO	GIC-003
---	-------------------------------	----------------

3.9.4	Test fo	r Process	Timing(OTG-BUSL	OGIC-004)
-------	---------	-----------	-----------------	-----------

3.9.5 Test Number of Times a Function Can be Used Limits(OTG-BUSLOGIC-005)

Secode21 Likelihood: 0
Impact: 0
Risk:0

Secode21					
Observation	We tried inserting the same tan multiple times.				
Discovery	The web application did not accept requests with a TAN that was				
	already used.				
Likelihood	N/A				
Implication	N/A				
Recommendations	N/A				
Comparison	We got the same result with our application.				

3.9.6	.6 Testing for the Circumvention of Work Flows(OTG-BUSLOG	GIC-006)

3.9.7 Test Defenses Against Application Misuse(OTG-BUSLOGIC-00	17)

3.9.8	Test U	pload o	of Unex	pected Fi	ile Types	(OTG	-BUSL	OGIC-008)

3.9.9	Test	Upload	of	Malicious	Files	(OT	G-B	USL	.OG	IC-009	9)
-------	------	--------	----	-----------	-------	-----	-----	-----	-----	--------	----

3.10 Client Side Testing

3.10.1 Testing for DOM based Cross Site Scripting (OTG-CLIENT-001)

Secode21 Likelihood: 0
Impact: 0
Risk: 0

	Tubia
	Secode21
Observation	Observing the HTML source code showed us that they don't use
	javascript and therefore there can't be any DOM XSS vulnerabili-
	ties.
Discovery	We used Chrome and its developer tools to take a look at the
	HTML source code.
Likelihood	N/A
Implication	N/A
Comparison	Our web application uses javascript in many different cases, but
_	we couldn't find any DOM XSS vulnerabilities.

Metric	Value
Access Vector	N/A
Attack Complexity	N/A
Privileges Required	N/A
User Interaction	N/A
Scope	N/A
Confidentiality Impact	N/A
Integrity Impact	N/A
Availability Impact	N/A

3.10.2 Testing for JavaScript Execution (OTG-CLIENT-002)

Secode21 Likelihood: 9
Impact: 10

Secode21		
Observation	We found several XSS vulnerabilities allowing the execution of	
	arbitrary javascript code in the clients browser.	
Discovery	We used the tools w3af and ZED Attack Proxy to find some XSS	
	vulnerabilities and found enough of them.	
Likelihood	It is very likely that these vulnerabilities are found and you don't	
	need much experience to use them.	
Implication	The vulnerabilities found can be used to hijack the session of an	
	user, accept user registrations or even making user accounts to	
	employee accounts.	
Comparison	Our app is also vulnerable against XSS attacks but the difficulty	
	is higher as in their web application. More experienced people	
	are necessary to exploit them.	

Metric	Value
Access Vector	N
Attack Complexity	L
Privileges Required	N
User Interaction	N
Scope	U
Confidentiality Impact	Н
Integrity Impact	Н
Availability Impact	L

3.10.3 Testing for HTML Injection (OTG-CLIENT-003)

Secode21 Likelihood: 8

Secode21		
Observation	The HTML injection vulnerability exists	
Discovery	The vulnerability was found by the tools w3af and ZED Attack	
	Proxy.	
Likelihood	It is quite likely that this vulnerability is found and can be used	
	very easily.	
Implication	vulnerability can have many consequences, like disclosure of	
	a user's session cookies that could be used to impersonate the	
	victim, or, more generally, it can allow the attacker to modify the	
	page content seen by the victims.	
Comparison	Our web application is vulnerable as well, but javascript valida-	
	tions and text length restrictions of the input fields make it more	
	difficult to exploit these vulnerabilities.	

Metric	Value
Access Vector	N
Attack Complexity	L
Privileges Required	N
User Interaction	N
Scope	U
Confidentiality Impact	L
Integrity Impact	L
Availability Impact	L

3.10.4 Testing for Client Side URL Redirect (OTG-CLIENT-004)

Secode21 Likelihood: 0

Secode21		
Observation	We couldn't find any client side redirections in the html source	
	code of the web application and therefore exists no client side url	
	redirect vulnerability.	
Discovery	We used <i>Chrome</i> and its web inspector to look at the html code.	
Likelihood	N/A	
Implication	N/A	
Comparison	The same results apply for our web application.	

Metric	Value
Access Vector	N/A
Attack Complexity	N/A
Privileges Required	N/A
User Interaction	N/A
Scope	N/A
Confidentiality Impact	N/A
Integrity Impact	N/A
Availability Impact	N/A

3.10.5 Testing for CSS Injection (OTG-CLIENT-005)

Secode21 Likelihood: 0

Secode21		
Observation	Our search didn't find any spots in the html source code where	
	there is user generated input used to change some css attributes.	
Discovery	Chrome and its web inspector were used to read the html code.	
Likelihood	N/A	
Implication	N/A	
Comparison	The same results apply for our web application.	

Metric	Value
Access Vector	N/A
Attack Complexity	N/A
Privileges Required	N/A
User Interaction	N/A
Scope	N/A
Confidentiality Impact	N/A
Integrity Impact	N/A
Availability Impact	N/A

3.10.6 Testing for Client Side Resource Manipulation (OTG-CLIENT-006)

Secode21 Likelihood: 0

Secode21		
Observation	We couldn't find any vulnerability here, but we could only check	
	if such a vulnerability exists in the javascript code and not in the	
	php code, because we had no access to the php source code.	
Discovery	We used <i>Chrome</i> and its developer tools to inspect the html/-	
	javascript code.	
Likelihood	N/A	
Implication	N/A	
Comparison	Our web application uses javascript more often, but user con-	
	trolled input which specifies the path of a resource was not found.	

Metric	Value
Access Vector	N/A
Attack Complexity	N/A
Privileges Required	N/A
User Interaction	N/A
Scope	N/A
Confidentiality Impact	N/A
Integrity Impact	N/A
Availability Impact	N/A

3.10.7 Test Cross Origin Resource Sharing (OTG-CLIENT-007)

Secode21 Likelihood: 0
Impact: 0

Secode21		
Observation	The inspected web application doesn't make use of XMLHttpRe-	
	quests and therefor no cross origin resource sharing vulnerabili-	
	ties exist.	
Discovery	We used <i>Chrome</i> and its developer tools to inspect the html/-	
	javascript code and Charles Web Proxy to make sure that no re-	
	quest is executed.	
Likelihood	N/A	
Implication	N/A	
Comparison	Our web application uses XMLHttpRequests but sends the re-	
-	quests to the same origin and therefor there exist no cross origin	
	resource sharing vulnerabilities.	

Metric	Value
Access Vector	N/A
Attack Complexity	N/A
Privileges Required	N/A
User Interaction	N/A
Scope	N/A
Confidentiality Impact	N/A
Integrity Impact	N/A
Availability Impact	N/A

3.10.8 Testing for Cross Site Flashing (OTG-CLIENT-008)

Secode21 Likelihood: 0

Secode21		
Observation	ActionScript and Flash are never used in this web application.	
Discovery	We tried to use the web application on a pc with no Adobe Flash	
	installed and got no request to install it. Additionally the html	
	code was inspected with <i>Chrome</i> and no reference to <i>Adobe Flash</i>	
	was found.	
Likelihood	N/A	
Implication	N/A	
Comparison	The same results apply for our web application.	

Metric	Value
Access Vector	N/A
Attack Complexity	N/A
Privileges Required	N/A
User Interaction	N/A
Scope	N/A
Confidentiality Impact	N/A
Integrity Impact	N/A
Availability Impact	N/A

3.10.9 Testing for Clickjacking (OTG-CLIENT-009)

Secode21 Likelihood: 8
Impact: 9

	NISK. 0
	Secode21
Observation	We found a vulnerability in the web application that allows
	attackers to make clickjacking attacks by bundling the website
	inside an iframe to give the user the feeling of interacting with the target website but being instead on a malicious web page.
Discovery	The tool $w3af$ found out that the web application does not make
,	use of protection techniques to prevent click jacking attacks. The
	use of <i>X-Frame-Options</i> header would help on the server side to
	prevent against this type of attacks, but is never used by this web
	application.
Likelihood	It is quite likely that someone would use this kind of exploits
	on an online banking website, because the people trust these
	websites. It is not very difficult to use this vulnerability to attack
	the users.
Implication	The user would think he would interact with the secure online
	banking system, but in reality he is on a malicious website that
	can record his interaction and filter out sensitive information.
Comparison	The same results apply for our web application.

Metric	Value
Access Vector	N
Attack Complexity	L
Privileges Required	N
User Interaction	R
Scope	U
Confidentiality Impact	Н
Integrity Impact	Н
Availability Impact	N

3.10.10 Testing WebSockets (OTG-CLIENT-010)

Secode21 Likelihood: 0
Impact: 0

Secode21	
Observation	We inspected the html/javascript source code to find an use of
	WebSockets but could't find any of them. That means also, that
	there are no WebSockets vulnerabilities applicable.
Discovery	Chrome and its developer tools can show the source code of the
	web page and can show you if WebSockets are used to communi-
	cate with other resources.
Likelihood	N/A
Implication	N/A
Comparison	The same results apply for our web application.

Metric	Value
Access Vector	N/A
Attack Complexity	N/A
Privileges Required	N/A
User Interaction	N/A
Scope	N/A
Confidentiality Impact	N/A
Integrity Impact	N/A
Availability Impact	N/A

3.10.11 Test Web Messaging (OTG-CLIENT-011)

Secode21 Likelihood: 0
Impact: 0

Tubin	
Secode21	
Observation	The web application makes doesn't use the Web Messaging tech-
	nology (aka Cross Document Messaging) and therefor we couldn't
	find any vulnerability.
Discovery	We used Charles Web Proxy and Chrome and its developer tools to
	see if any other requests are executed from the web application.
Likelihood	N/A
Implication	N/A
Comparison	The same results apply for our web application.

Metric	Value
Access Vector	N/A
Attack Complexity	N/A
Privileges Required	N/A
User Interaction	N/A
Scope	N/A
Confidentiality Impact	N/A
Integrity Impact	N/A
Availability Impact	N/A

3.10.12 Test Local Storage (OTG-CLIENT-012)

Secode21 Likelihood: 0
Impact: 0

Secode21		
Observation	The web application make no use of the local storage functionality	
	of the browsers.	
Discovery	We tested the web application with a browser and tested all the	
	functionality and Chromes web inspector didn't show any use of	
	the local storage functionality of the browser.	
Likelihood	N/A	
Implication	N/A	
Comparison	The same results apply for our web application.	

Metric	Value
Access Vector	N/A
Attack Complexity	N/A
Privileges Required	N/A
User Interaction	N/A
Scope	N/A
Confidentiality Impact	N/A
Integrity Impact	N/A
Availability Impact	N/A

Glossary

computer is a machine that....

Acronyms

TUM Technische Universität München.