THE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH4402 Analysis II

Tutorial 7 (Apr 11)

Chapter 5 (Section 5.3 to 5.5)

- 1. Let S be a Jordan measurable set in \mathbb{R}^n and let $S \subset A$ for some closed rectangle A in \mathbb{R}^n .
 - (a) Prove that if S has measure zero, then v(S) = 0.
 - (b) Let $f:A\longrightarrow \mathbb{R}$ be a bounded function. Prove that if S has measure zero and f is integrable over S, then $\int_S f=0$.

2. (Partition of Unity (Optional))

Consider $S^1=\{(x,y)\in\mathbb{R}^2: x^2+y^2=1\}$. An open covering of S^1 is given by $\{U,V\}$ where

$$U = S^1 \setminus \{(0,1)\}$$
 and $V = S^1 \setminus \{(0,-1)\}.$

Consider the C^{∞} functions $g_U:U\longrightarrow \mathbb{R}$ and $g_V:V\longrightarrow \mathbb{R}$ defined respectively by

$$g_U(x,y) = \frac{x}{1-y}$$
 and $g_V(x,y) = \frac{x}{1+y}$.

- (a) Draw diagrams to illustrate how g_U and g_V maps the "punctured" unit circle onto the real line and show that $g_U(x,y) \cdot g_V(x,y) = 1$ for any $(x,y) \in U \cap V$.
- (b) It is known that we can always construct a C^∞ function $f:\mathbb{R} \longrightarrow [0,1]$ such that

$$\begin{cases} f(x) = 1 & \text{if } x \in [-1, 1] \\ 0 < f(x) < 1 & \text{if } x \in (-2, -1) \cup (1, 2) \\ f(x) = 0 & \text{if } |x| \ge 2 \end{cases}$$

(Such function is usually called a *bump function*. You may read Problem 2-26 of *Calculus on Manifolds* by Spivak for further details.)

Assuming the existence of such f and using the functions g_U and g_V , construct a partition of unity $\{\varphi_1, \varphi_2\}$ of S^1 subordinate to the open cover $\{U, V\}$.

3. (Change of Variables)

Let $\pi_k:\mathbb{R}^n\longrightarrow\mathbb{R}$ be the projection onto the k-th coordinate, that is,

$$\pi_k(x_1,\ldots,x_n)=x_k.$$

Let $S \subset \mathbb{R}^n$ be a Jordan measurable set with nonzero volume. Define the *centroid* c(S) of S to be the point in \mathbb{R}^n whose k-th coordinate is given by

$$c_k(S) = \frac{1}{v(S)} \int_S \pi_k.$$

1

(a) Suppose that S is also symmetric with respect to the subspace $x_k=0$, that is, $\varphi(S)=S$ where $\varphi:\mathbb{R}^n\longrightarrow\mathbb{R}^n$ is given by

$$\varphi(x_1,\ldots,x_k,\ldots,x_n)=(x_1,\ldots,-x_k,\ldots,x_n).$$

Prove that $c_k(S) = 0$.

(b) Let

$$S = \{(x, y) \in \mathbb{R}^2 : y > 0 \text{ and } x^2 + y^2 < 1\}.$$

Use the polar coordinates to compute c(S) in \mathbb{R}^2 .

Chapter 6 (Section 6.1)

4. Determine which of the following are 3-tensors on \mathbb{R}^4 :

$$T_1(x, y, z) = 3x_1y_2z_3 - x_3y_1z_4$$

$$T_2(x,y,z) = 2x_1x_2z_3 + x_3y_4z_2$$

$$T_3(x, y, z) = 2x_1y_2z_2 - x_2y_3z_1$$

where
$$x=\begin{pmatrix}x_1\\x_2\\x_3\\x_4\end{pmatrix}$$
, $y=\begin{pmatrix}y_1\\y_2\\y_3\\y_4\end{pmatrix}$ and $z=\begin{pmatrix}z_1\\z_2\\z_3\\z_4\end{pmatrix}\in\mathbb{R}^4$. Let $\{e_1,e_2,e_3,e_4\}$ be the standard

basis for \mathbb{R}^4 and $\{\varphi_1, \varphi_2, \varphi_3, \varphi_4\}$ its dual basis for \mathbb{R}^{4*} . Express those tensors T_i in terms of the basis for $\mathcal{T}^3(\mathbb{R}^{4*})$ given in *Theorem 6.3*.

5. Let $\{e_1,e_2,e_3\}$ be the standard basis for \mathbb{R}^3 and $\{\varphi_1,\varphi_2,\varphi_3\}$ its dual basis for \mathbb{R}^{3*} . Let

$$T \in \mathcal{T}^2(\mathbb{R}^{3*}) \text{ be defined by } T(x,y) = x_1y_1 + x_2y_3 \text{ for any } x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \ y = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \in \mathbb{R}^3.$$

Show that T is not a tensor product of two 1-tensors, that is, T is not of the form $f \otimes g$ for any $f, g \in \mathcal{T}^1(\mathbb{R}^{3*})$.