Statistical Foundations of Learning

Debarghya Ghoshdastidar

School of Computation, Information and Technology Technical University of Munich

Statistical Learning Problem

Outline

- How do we formally pose a ML problem?
 - Terminology
 - Assumptions + Probabilistic framework
 - Loss / risk and risk minimisation
 - Bayes risk (optimal solution for learning problem)

Formal setup of supervised learning

- Domain or feature space \mathcal{X}
 - Space containing features of data
 - \bullet Example: Car specification (max power, fuel type etc.); All 600×800 car images
- Label set \mathcal{Y}
 - Set containing all possible outcomes of our prediction task
 - Example: $\mathcal{Y} = \{0, 1\}$ for binary classification (city / sports car)
 - Example: $\mathcal{Y} = [0, \infty)$ for regression (CO₂ emission)
- Goal: Find a predictor $h: \mathcal{X} \to \mathcal{Y}$... will write as $h \in \mathcal{Y}^{\mathcal{X}}$

Learning algorithm

- Training sample $S = \{(x_1, y_1), \dots, (x_m, y_m)\}$
 - $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, and we write $S \in (\mathcal{X} \times \mathcal{Y})^m$
- Learner or learning algorithm $\mathcal{A}: \bigcup_{m=1}^{\infty} (\mathcal{X} \times \mathcal{Y})^m \to \mathcal{Y}^{\mathcal{X}}$
 - \mathcal{A} takes a training sample S of any size $m \geq 1$
 - $\mathcal{A}(S): \mathcal{X} \to \mathcal{Y}$ is a predictor

Probabilistic framework for data

- Learning is difficult if training and test data are not 'similar'
 - Every training car is sports car, but test car is city car
 - No training car has 6 doors, but we need to predict for a car with 6 doors
- Key assumptions in (most of) statistical learning:
 - There is a distribution \mathcal{D} on $\mathcal{X} \times \mathcal{Y}$
 - Every training / test data $(x, y) \sim \mathcal{D}$
 - Training data $S = \{(x_1, y_1), \dots, (x_m, y_m)\}$ are i.i.d. samples ... we write $S \sim \mathcal{D}^m$

Simple case: True predictor is deterministic function

- Let (x, y) such that $x \sim \mathcal{D}_{\mathcal{X}}$ and y = f(x)
- Example of car:
 - $x = (x^f, x^s)$ with $x^f \in \{\text{gas, diesel, electric}\}\$ and $x^h \in [0, \infty)$ is horsepower
 - $\mathcal{D}_{\mathcal{X}}$ such that $x^f \sim \text{Uniform}(\{\text{gas, diesel, electric}\})$, and $x^h \in \text{Exp}(500)$ independent
 - $y = f(x) \in \{\text{city, sports}\}\$ could be as follows:

	x^f		
x^h	gas	diesel	electric
< 500	city	sports	city
≥ 500	sports	sports	city

General case: True label is also random

- Assuming deterministic label is restrictive
 - Two cars with close specifications could have different purpose
 - We assume that true label of any x is random
- Write $\mathcal{D} = \mathcal{D}_{\mathcal{X}} \times \mathbb{P}_{\mathcal{Y}|\mathcal{X}}(y|x)$... joint distribution of (x, y)
 - $\mathcal{D}_{\mathcal{X}} = \text{marginal distribution over } \mathcal{X}$
 - $\mathbb{P}_{\mathcal{Y}|\mathcal{X}}(y|x)$ = probability that the label is y, given that x is observed

Loss function

- Loss $\ell: \mathcal{Y} \times \mathcal{Y} \to [0, \infty)$
 - Measures difference between predicted and true labels / values
- Example: 0-1 loss for binary classification
 - Let y = true label, and h(x) = prediction
 - $\ell(h(x), y) = \mathbf{1} \{h(x) \neq y\}$

... more losses to be discussed later

- Example: squared loss for regression
 - $\ell(h(x), y) = (h(x) y)^2$

Risk

• Risk / generalisation error of predictor h with respect to distribution \mathcal{D}

$$L_{\mathcal{D}}(h) = \mathbb{E}_{(x,y)\sim\mathcal{D}}[\ell(h(x),y)]$$

- We sample $(x, y) \sim \mathcal{D}$, and measure the expected error of h
- Verify: $L_{\mathcal{D}}(h) = \mathbb{P}_{(x,y) \sim \mathcal{D}}(h(x) \neq y)$ for 0-1 loss
- Generalisation error of learner \mathcal{A} w.r.t. \mathcal{D} given training sample S
 - Given S, the learned predictor is $\widehat{h}_S = \mathcal{A}(S)$

$$L_{\mathcal{D}}(\widehat{h}_S) = \mathbb{E}_{(x,y)\sim\mathcal{D}}\left[\ell(\widehat{h}_S(x),y)\right]$$

• Expected test error of the predictor learned by \mathcal{A}

Empirical risk

 \bullet Empirical risk of h on sample S

$$L_S(h) = \frac{1}{m} \sum_{i=1}^{m} \ell(h(x_i), y_i)$$

- $L_S(h)$ = training error of h w.r.t. sample S
- For $S \sim \mathcal{D}^m$, sample average is an estimate of $L_{\mathcal{D}}(h)$
- Verify: $\mathbb{E}_{S \sim \mathcal{D}^m}[L_S(h)] = L_{\mathcal{D}}(h)$ for any fixed h

Empirical risk minimisation

• Goal of supervised learning: Find predictor with low test error (risk)

$$\underset{h \in \mathcal{Y}^{\mathcal{X}}}{\text{minimise}} \ L_{\mathcal{D}}(h)$$

- We cannot compute $L_{\mathcal{D}}(h)$ without knowledge of \mathcal{D}
- Empirical risk minimisation (ERM)

$$\underset{h \in \mathcal{Y}^{\mathcal{X}}}{\text{minimise}} \ L_S(h)$$

- Replace $L_{\mathcal{D}}(h)$ by its estimate computed on training sample S
- \bullet Question: Why do we assume all of S is training data? Where is test data?

Example: Two equally likely Gaussian-distributed classes

How do we formally state the problem? What are $\mathcal{D}_{\mathcal{X}}$ and $\mathbb{P}_{\mathcal{Y}|\mathcal{X}}(y|x)$?

Example (continued)

Predictor $h(x) = 1 \{x > 0\}$ Class 0 Class 1

Predictor $h(x) = 1 \{x > 0\}$ $h(x) = 1 \{x > t\}$, makes less error on one class

ERM tries to find this optimal threshold based on samples S

Empirical risk minimisation

- Solving ERM directly can lead to poor solutions. Why?
- Example:
 - Let $x \sim \text{Uniform}([0,1])$ and $y = \mathbf{1}\{x > 0.1\}$
 - Given $S = \{(x_1, y_1), \dots, (x_m, y_m)\}$
 - Find \widehat{h} such that $L_S(\widehat{h}) = 0$, but $L_{\mathcal{D}}(\widehat{h}) = 0.9$
 - Solution:

$$\widehat{h}(x) = \begin{cases} 1 & \text{if } x = x_i \in \{x_1, \dots, x_m\} \text{ and } y_i = 1\\ 0 & \text{if } x = x_i \in \{x_1, \dots, x_m\} \text{ and } y_i = 0\\ 0 & \text{if } x \notin \{x_1, \dots, x_m\} \end{cases}$$

Risk minimisation

• Goal of supervised learning: Find predictor with low test error (risk)

$$\underset{h \in \mathcal{Y}^{\mathcal{X}}}{\text{minimise}} \ L_{\mathcal{D}}(h)$$

- We cannot compute $L_{\mathcal{D}}(h)$ without knowledge of \mathcal{D}
- Assume \mathcal{D} is known and $\mathcal{Y} = \{0, 1\}$
 - Recall $\mathcal{D} = \mathcal{D}_{\mathcal{X}} \times \mathbb{P}_{\mathcal{Y}|\mathcal{X}}(y|x)$
 - Define $\eta(x) = \mathbb{P}_{\mathcal{Y}|\mathcal{X}}(y=1|x)$... probability that x has label 1
 - $\bullet \ \mathbb{P}_{\mathcal{Y}|\mathcal{X}}(y=0|x) = 1 \eta(x)$

Computing $L_{\mathcal{D}}(h)$ for binary classification

Theorem Risk.1 (Risk of a binary classifier)

For any deterministic h, the risk with respect to 0-1 loss is

$$L_{\mathcal{D}}(h) = \mathbb{E}_{x \sim \mathcal{D}_{\mathcal{X}}} \left[\mathbb{P}_{\mathcal{Y}|\mathcal{X}}(h(x) \neq y \mid x) \right]$$
$$= \mathbb{E}_{x \sim \mathcal{D}_{\mathcal{X}}} \left[\eta(x) \cdot \mathbf{1} \left\{ h(x) = 0 \right\} + (1 - \eta(x)) \cdot \mathbf{1} \left\{ h(x) = 1 \right\} \right]$$

Computing $L_{\mathcal{D}}(h)$ for binary classification: Proof

Recall definition of 0-1 loss: $\ell(h(x), y) = \mathbf{1} \{h(x) \neq y\}$

$$L_{\mathcal{D}}(h) = \mathbb{E}_{(x,y)\sim\mathcal{D}} \left[\mathbf{1} \left\{ h(x) \neq y \right\} \right]$$

= $\mathbb{E}_{x\sim\mathcal{D}_{\mathcal{X}}} \left[\mathbb{E}_{\mathcal{Y}|\mathcal{X}} \left[\mathbf{1} \left\{ h(x) \neq y \right\} \mid x \right] \right] = \mathbb{E}_{x\sim\mathcal{D}_{\mathcal{X}}} \left[\mathbb{P}_{\mathcal{Y}|\mathcal{X}} (h(x) \neq y \mid x) \right]$

Can also write

$$L_{\mathcal{D}}(h) = \mathbb{E}_{x \sim \mathcal{D}_{\mathcal{X}}} \left[\mathbb{E}_{\mathcal{Y}|\mathcal{X}} \left[\mathbf{1} \left\{ h(x) = 0 \right\} \mathbf{1} \left\{ y = 1 \right\} + \mathbf{1} \left\{ h(x) = 1 \right\} \mathbf{1} \left\{ y = 0 \right\} \middle| x \right] \right]$$

Note h is deterministic. Given x, h(x) is independent of y

$$L_{\mathcal{D}}(h) = \mathbb{E}_{x \sim \mathcal{D}_{\mathcal{X}}} \left[\mathbf{1} \left\{ h(x) = 0 \right\} \mathbb{P}_{\mathcal{Y}|\mathcal{X}}(y = 1|x) + \mathbf{1} \left\{ h(x) = 1 \right\} \mathbb{P}_{\mathcal{Y}|\mathcal{X}}(y = 0|x) \right]$$

Lower bound on $L_{\mathcal{D}}(h)$

For any deterministic h

$$L_{\mathcal{D}}(h) = \mathbb{E}_{x \sim \mathcal{D}_{\mathcal{X}}} \left[\eta(x) \cdot \mathbf{1} \left\{ h(x) = 0 \right\} + (1 - \eta(x)) \cdot \mathbf{1} \left\{ h(x) = 1 \right\} \right]$$

$$\geq \mathbb{E}_{x \sim \mathcal{D}_{\mathcal{X}}} \left[\min \left\{ \eta(x), 1 - \eta(x) \right\} \right]$$

Reason: For every x, we incur cost of $\eta(x)$ or $(1-\eta(x))$ (so, at least minimum of both)

Bayes risk

Bayes classifier:

$$h^*(x) = \begin{cases} 1 & \text{if } \eta(x) \ge 0.5 \\ 0 & \text{if } \eta(x) < 0.5 \end{cases}$$
 that is, $1 - \eta(x)$ is smaller

Note: $\mathbf{1}\{h^*(x)=0\}$ when $\eta(x)$ is smaller, and $\mathbf{1}\{h^*(x)=1\}$ when $1-\eta(x)$ is smaller.

$$\eta(x) \cdot \mathbf{1} \{h^*(x) = 0\} + (1 - \eta(x)) \cdot \mathbf{1} \{h^*(x) = 1\} = \min \{\eta(x), 1 - \eta(x)\}$$

Theorem Risk.2 (Bayes risk = Generalisation error of Bayes classifier)

If $\ell = 0$ -1 loss, then

$$L_{\mathcal{D}}^* = \mathbb{E}_{x \sim \mathcal{D}_{\mathcal{X}}} \left[\min \left\{ \eta(x), 1 - \eta(x) \right\} \right] = L_{\mathcal{D}}(h^*) = \min_{h \in \{0,1\}^{\mathcal{X}}} L_{\mathcal{D}}(h)$$

Example of Bayes classifier

Predicting time of crash in a software installation

- $x \in [0,1]$: fraction of completion of the installation
- $\eta(x)$ = probability that system crashes after x-fraction completion
- Ground truth: $\eta(x) = |1 2x|$
- Exercise: Derive h^* and $L_{\mathcal{D}}^*$, assuming $x \sim \text{Uniform}[0,1]$
- $h^*(x) = \begin{cases} 1 \text{ for } x \in \left[0, \frac{1}{4}\right] \cup \left[\frac{3}{4}, 1\right], \\ 0 \text{ for } x \in \left(\frac{1}{4}, \frac{3}{4}\right) \end{cases}$ and $L_{\mathcal{D}}^* = L_{\mathcal{D}}(h^*) = \frac{1}{4}$
- Implement any learning algorithm and check if you can get better test error (computed over large sample)

Questions

- While computing $L_{\mathcal{D}}(h)$, we assume h is a deterministic function of x
 - Which step fails if this is not true?
- Derive the Bayes classifier and Bayes risk for k-class classification
 - You need to define $\eta_1(x), \ldots, \eta_k(x)$ where $\eta_i(x) = \mathbb{P}_{\mathcal{Y}|\mathcal{X}}(y=i|x)$
 - $\bullet \sum_{i=1}^k \eta_i(x) = 1$

Bayes risk for regression

- Assume $\mathcal{Y} = \mathbb{R}$ and squared loss $\ell(h(x), y) = (h(x) y)^2$
- For any distribution \mathcal{D} on $\mathcal{X} \times \mathbb{R}$ and regressor $h: \mathcal{X} \to \mathbb{R}$

Risk:
$$L_{\mathcal{D}}(h) = \mathbb{E}_{(x,y)\sim\mathcal{D}}\left[(h(x) - y)^2\right]$$

- ERM: minimise $L_S(h) = \frac{1}{m} \sum_{i=1}^{m} (h(x_i) y_i)^2$
 - ... least square regression (Ordinary least square if h is linear)
- Can we characterise the Bayes classifier: $h^*(x) = \underset{h \in \mathcal{V}^{\mathcal{X}}}{\operatorname{arg \ min}} \ L_{\mathcal{D}}(h)$?

Bayes risk for regression

Verify for any deterministic regressor $h: \mathcal{X} \to \mathbb{R}$

$$L_{\mathcal{D}}(h) = \mathbb{E}_{(x,y) \sim \mathcal{D}}\left[(h(x) - y)^2 \right] = \mathbb{E}_x \left[(h(x))^2 + \mathbb{E}[y^2 | x] - 2 \cdot h(x) \cdot \mathbb{E}[y | x] \right]$$

- The above cannot be simplified without further assumptions
- Assume $y = f(x) + \epsilon$, where f is "true" function and ϵ is "noise" Also assume ϵ is independent of x, and $\mathbb{E}[\epsilon] = 0$, $\mathbb{E}[\epsilon^2] = \sigma^2$
- Verify that $L_{\mathcal{D}}(h) = \mathbb{E}_x \left[(h(x) f(x))^2 \right] + \sigma^2$
- Hence, Bayes regressor $h^*(x) = f(x)$ and Bayes risk $L_D^* = \sigma^2$

Up next

- Can a learner achieve Bayes risk if it has unlimited training data?
- We will analyse k-nearest neighbour classifier
 - If k is large, then k-NN achieves Bayes risk asymptotically (as $m \to \infty$)
- Later, we will see this is difficult to achieve in general for $m < \infty$