CLAIMS

What is claimed is:

1	1. An catheter system, comprising:		
2	a catheter body having an exterior surface and including		
3	an ultrasound transducer having an external side between a		
4	first end and a second end,		
5	a first medium adjacent to the first end of the ultrasound		
6	transducer, and		
7	a second medium adjacent to the external side of the		
8	ultrasound transducer, the second medium being harder than the first		
9	medium.		
1	2. The system of claim 1, wherein the first medium is more flexible		
2	than the second medium.		
1	3. The system of claim 1 wherein a transducer sheath is positioned over		
2	the ultrasound transducer and the second medium occupies a volume		
3	between the transducer sheath and the external surface of the catheter body.		
1	4. The catheter of claim 1 wherein an assembly sheath is positioned		
2	over the ultrasound transducer and the second medium occupies a volume		
3	between the ultrasound transducer and the assembly sheath.		
1	5. The system of claim 1 wherein the catheter body includes a		
2	transducer sheath positioned over the ultrasound transducer and an assembly		
3	sheath positioned over the transducer sheath.		
	27		

2		between the transducer sheath and the assembly sheath.
1		7. The system of claim 6, wherein the first medium occupies a volume
2		between the assembly sheath and the external surface of the catheter.
1		8. The system of claim 7, wherein a catheter sheath defines at least a
2		portion of the external surface of the catheter body and the first medium
3	·	occupies a volume between the assembly sheath and the catheter sheath.
1		9. The system of claim 1 wherein a catheter sheath defines at least a
2		portion of the external surface of the catheter body and the second medium
3		occupies a volume between the catheter sheath and the ultrasound
4		transducer.
1		10. The system of claim 1, wherein:
2		the first medium is positioned between the second medium and the
3		external surface of the catheter body.
1		11. The system of claim 1, wherein the catheter body includes a second
2		ultrasound transducer having a side between a first end and a second end.
1		12. The system of claim 1, wherein the second medium is harder than
2		the first medium.
1		13. The system of claim 12, wherein the second medium is at least 3
2		times harder than the first medium.

6. The system of claim 5 wherein the second medium occupies a volume

1		14. The system of claim 12, wherein the second medium is about 4 to 5
2		times harder than the first medium.
1 .		15. The system of claim 1, wherein the first medium has a hardness of at
2		least about 10 Shore D.
1		16. The system of claim 1, wherein the first medium has a hardness from
2		about 20 to about 40 Shore D.
1	<i>:</i>	17. The system of claim 1, wherein the second medium has a hardness
2		of at least 60 Shore D.
1		18. The system of claim 1, wherein the second medium has a hardness
2		from about 80 to about 100 Shore D.
1		19. The system of claim 1, wherein the first medium has a hardness of at
2		least 10 and the second medium has a hardness of at least 60 Shore D.
i		20. The system of claim 1, wherein the first medium has a hardness from
2		about 20 to about 40 Shore D and the second medium has a hardness from
3		about 80 to about 100 Shore D.
1 -		21. The system of claim 1, wherein the catheter body includes a second
2		ultrasound transducer having a side between a first end and a second end.
1		22. The system of claim 21, wherein the first medium occupies a volume
2		between the ultrasound transducer and the second ultrasound transducer.

1	23. The system of claim 22, wherein the second medium is positioned
2	between the side of the second ultrasound transducer and the external
3	surface of the catheter body.
1	24. The system of claim 1, wherein the ultrasound transducer is
2	positioned over an elongated body.
1	25. The system of claim 24, wherein the catheter body includes a second
2	elongated body coupled with the elongated body and the first medium
3	occupies a volume between the ultrasound transducer and the second
4	elongated body.
1	26. The system of claim 24, wherein the catheter body includes a
2	terminal body coupled with the elongated body and the first medium
3	occupies a volume between the ultrasound transducer and the terminal body
1	27. The system of claim 1, a lumen sized to receive a guidewire extends
2	longitudinally through the catheter body.
1	28. A method of fabricating a catheter body, comprising:
2	providing an ultrasound transducer having a side between a first end
3	and a second end;
4	positioning the ultrasound transducer over an elongated body having
5	an external surface;
6	forming a first medium adjacent the first end of the ultrasound
7	transducer; and

0	forming a second medium adjacent to the side of the ultrasound
9	transducer, the second medium being more transmissive of ultrasound
10	energy than the first medium.
1	29. The method of claim 28, wherein the first medium is more flexible
2	than the second medium.
1	30. The method of claim 28, wherein delivering the second medium
2	includes
3	positioning an assembly sheath over the ultrasound transducer, and
4	delivering the second medium into a volume between the ultrasound
5	transducer and the assembly sheath.
1	31. The method of claim 30, wherein delivering the first medium
2	includes
3 .	positioning a catheter sheath over the assembly sheath and delivering
4	the first medium into a volume between the assembly sheath and the
5	catheter sheath.
1	32. The method of claim 28, wherein delivering the second medium
2	includes
3	positioning a transducer sheath over the ultrasound transducer,
4	positioning an assembly sheath over the transducer sheath, and
5	delivering the second medium into a volume between the transducer
6	sheath and the external surface of the catheter body.
1	33. The method of claim 28, wherein delivering the second medium
2	includes

3	positioning a catheter sheath over the ultrasound transducer, and
4	delivering the second medium into a volume between the ultrasound
5	transducer and the catheter sheath.
1	34. The method of claim 28, wherein delivering the first medium
2	includes
3	delivering the first medium into a volume between the external
4	surface of the elongated body and the catheter sheath.
1	35. The method of claim 28, wherein the second medium is harder than
2	the first medium.
1	36. The method of claim 28, wherein the second medium is at least 3
2	times harder than the first medium.
1	37. The method of claim 28, wherein the second medium is about 3 to 5
2	times harder than the first medium.
1	38. The method of claim 28, wherein the first medium has a hardness of
2	at least about 10 Shore D.
1	39. The method of claim 28, wherein the first medium has a hardness of
2	about 20 to 40 Shore D.
1 .	40. The method of claim 28, wherein the second medium has a hardness
2	of at least 65 shore D.

1		41. The method of claim 28, wherein the second medium has a hardness
2	ì	from about 65 to about 120 Shore D.
1		42. The method of claim 28, wherein the first medium has a hardness of
2		at least 10 and the second medium has a hardness of at least 65 Shore D.
1 -		43. The method of claim 28, wherein the first medium has a hardness
2		from about 20 to about 40 Shore D and the second medium has a hardness
3.	from about 80 to about 100 Shore D.	
1		44. The method of claim 28, further comprising:
2		positioning a second ultrasound transducer over the elongated body,
3		the second ultrasound transducer having a side between a first end and a
4		second end.
1		45. The method of claim 44 wherein forming the first medium includes
2		delivering the first medium into a volume between the ultrasound transducer
3		and the second ultrasound transducer.
1		46. The method of claim 39, further comprising:
2		forming the second medium adjacent to the side of the second
3		ultrasound transducer.
1		47. The method of claim 28, further comprising:
2		coupling the elongated body with a second elongated body.

ı	48. The method of claim 47, wherein coupling the elongat	ed body with a		
2	second elongated body includes aligning a lumen within the e	longated body		
3	with a lumen within the second elongate body.			
1	49. The method of claim 47, wherein forming the first med	dium includes		
2	delivering the first medium into a volume between the ultraso	delivering the first medium into a volume between the ultrasound transducer		
3	and the second elongated body.			
1	50. The method of claim 28, further comprising:			
2	coupling the elongated body with a terminal body.			
1	51. The method of claim 50, wherein forming the first med	dium includes		
2	delivering the first medium into a volume between the ultrason	und transducer		
3	and the terminal body.			
1	52. The method of claim 50, wherein coupling the elongate	ed body with a		
2	terminal body includes aligning a lumen within the elongated	body with a		
3	lumen within the terminal body.	·		
	·	-		

 \bigcirc