Topics covered

Book: chapters 1, 2, and 4 (mostly 1 and 4).

Not every topic here is covered in the practice midterm, though most are. Also check the written homeworks for more problems.

- Security
 - o Meltdown and Spectre
 - Security as a design constraint
- History of computing
 - o Moore's law
 - Dennard scaling
- CMOS devices
 - Energy
 - o Power
- Trends in computing
- Instruction set architectures (ISAs)
 - o RISC versus CISC
- RISC-V
 - Instruction types
 - Extensions
- From code to execution
 - Going from higher-level languages to machine code
 - o Executing an instruction
- Single-cycle CPU
 - o Datapath
 - Adding new instructions
- Performance
 - Measuring performance
 - o Iron law
 - o Amdahl's law
 - Latency and throughput
- Introduction to pipelining

ECS 154B WQ 2019

Practice Midterm 1

1.	claims that the number of transistors per chip will double every 18-24 mor			
2.	Increasing the frequency of a processor leads to increased performance and increased			
3.	What are three ways to compare two systems to determine which is the "better" system?			
4.	A predicts the performance of a real-world application, but often has a shorter runtime and is standardized to allow comparisons across systems.			
5. There is a processor with three stages: (fetch & decode), (execute), and (memory & writeback). The stage 350 ps, 250 ps, and 400 ps, respectively.				
	a. What is the cycle time if you implemented this as a single cycle processor (not pipelined)?			
	b. What is the CPI of this processor?			
	c. Say we decided to implement this as a pipelined processor instead. How many instructions can this pipeline potentially execute at once?			
ь.	The ISA defines the interface between and			
7.	Processor A can run 1 billion instructions in 0.5 seconds at a frequency of 500 MHz. You are proposing a pipelined			

design for a new processor, design B. Your processor has a CPI of 4. The company you work for will not release a

new design unless it has at least a 1.5x speedup compared to processor A. What is your target frequency?

For the rest of the problems on this page, use the single cycle DINO CPU diagram from Lab 2 below.

8. What does the ControlUnit block do?

9. Explain the *funct7* and *funct3* wires going into the ALU control unit, and what they do.

10. Shade the wires and structures used for a jump instruction on the diagram above.

Practice Midterm 1

- 11. What are the five canonical stages to executing an instruction, and what occurs in each stage?
- 12. Which instructions cause the PC to be written to?
- 13. A processor that executes more than one instruction per cycle is leveraging ______ for increased performance.
- 14. Amdahl's law is a mathematical representation of what common computer design principle?
- 15. Given the following systems, which will have a higher performance for a constant number of instructions? Why? Show your work.

	System A	System B
Pipeline Depth (stages)	5	10
Cycle time	2 GHz	2.5 GHz
Average CPI	3	5

16. Why should security be considered as a first-order design constraint when designing a new chip or architecture?

17. We are designing a processor for use in an embedded environment, where we will only ever be running one single-threaded application at a time. Would adding additional cores to this processor improve latency, throughput, neither, or both? Explain your answer.

Practice Midterm 1

18.	8 power in a CMOS device increases as the size of the transistors decrease, while			
	power increases as the number of transistors in the de			
19.	Name two ways that we can decrease the amount of provided write out the CMOS device power equation to help you		OS device. You may want to	
20.	According to Dennard's law, power density of a transithe transistor.	istor	as we decrease the size of	
21.	The reliability of a transistor	as we decrease the size of the	transistor.	
22.	Examine the following seven-stage pipeline. Is it balance a. Fetch: 170 ps b. Decode: 180 ps c. Read Register: 160 ps d. Execute 1: 175 ps e. Execute 2: 175 ps f. Memory: 165 ps g. Writeback: 155 ps	ed? If not, suggest a change to	balance the pipeline.	
23.	What value does register 0 take in RISC-V? Can we cha	nge that value by writing to it?		
24.	Why have we been unable to significantly increase the the past 10 years? What is the limiting factor?	average frequency that cores o	n our processors run at over	
25.	RISC instructions tend to be less "powerful" than CISC program compared to the same program written for a CISC architectures despite this problem?			