Topic 6M. Standard Potentials

- 6M.I The Definition of Standard Potential
- 6M.2 The Electrochemical Series

Standard potential

- Each half-cell's characteristic contribution to the cell potential under standard conditions (all solutes present at I mol·L⁻¹; all gases at I bar)
- A measure of the electron-pulling power of the reaction occurring at the electrode.
- In a galvanic cell, the reactions at each electrode pull in opposite directions.

■ The cell's standard potential, E_{cell}° , is the difference between the standard potentials of the two electrodes.

$$E_{\text{cell}}^{\circ} = E^{\circ}(\text{electrode on right of cell diagram}) - E^{\circ}(\text{electrode on left})$$

= $E_{R}^{\circ} - E_{L}^{\circ}$

• Fe(s)|Fe²⁺(aq)||Ag⁺(aq)|Ag(s) 2 Ag^+ (aq) + Fe (s) $\rightarrow 2 \text{ Ag}$ (s) + Fe²⁺ (aq)

$$E_{cell}^{\circ} = E^{\circ}(Ag^{+}/Ag) - E^{\circ}(Fe^{2+}/Fe) = 1.24 \text{ V}$$

- For a combination of an anode and a cathode, how much voltage difference (E) is generated? ($E = E_R^\circ E_L^\circ$)
- Then, how can we determine E_R° and E_L° separately?
- Need a reference electrode!

Standard hydrogen electrode

2 H⁺ (aq) + 2 e⁻
$$\rightarrow$$
 H₂ (g)
 $E^{\circ}(H^{+}/H_{2}) = 0$ at all temperatures, where
 $[H^{+}] = I \text{ mol} \cdot L^{-1}$ and $pH_{2} = I$ atm

- Pt(s)|H₂(g)|H⁺(aq)||Cu²⁺(aq)|Cu(s) Cu²⁺ (aq) + H₂ (g) \rightarrow Cu (s) + 2 H⁺ (aq) E°(Cu²⁺/Cu) = + 0.34 V
- The more positive the standard potential, the more strongly oxidizing is the oxidizing member of the redox couple and the more likely that member will be to undergo reduction itself.

- Pt(s)|H₂(g)|H⁺(aq)||Zn²⁺(aq)|Zn(s) Zn²⁺ (aq) + H₂ (g) \rightarrow Zn (s) + 2 H₂ (aq) E°(Zn²⁺/Zn) = -0.76 V
- The more negative the potential, the more strongly reducing is the redox couple.

Species	Reduction half-reaction	E°/V
Oxidized form is strongly oxi	dizing	
F ₂ /F ⁻	$F_2(g) + 2 e^- \longrightarrow 2 F^-(aq)$	+2.87
Au ⁺ /Au	$Au^+(aq) + e^- \longrightarrow Au(s)$	+1.69
Ce^{4+}/Ce^{3+}	$Ce^{4+}(aq) + e^{-} \longrightarrow Ce^{3+}(aq)$	+1.61
$MnO_4^-, H^+/Mn^{2+}, H_2O$	$MnO_4^-(aq) + 8 H^+(aq) + 5 e^- \longrightarrow Mn^{2+}(aq) + 4 H_2O(l)$	+1.51
Cl ₂ /Cl ⁻	$Cl_2(g) + 2 e^- \longrightarrow 2 Cl^-(aq)$	+1.36
$Cr_2O_7^{2-},H^+/Cr^{3+},H_2O$	$Cr_2O_7^{2-}(aq) + 14 H^+(aq) + 6 e^- \longrightarrow 2 Cr^{3+}(aq) + 7 H_2O(l)$	+1.33
O ₂ ,H ⁺ /H ₂ O	$O_2(g) + 4 H^+(aq) + 4 e^- \longrightarrow 2 H_2O(l)$	+1.23; $+0.82$ at pH = 7
$\mathrm{Br}_2/\mathrm{Br}^-$	$Br_2(1) + 2 e^- \longrightarrow 2 Br^-(aq)$	+1.09
$NO_3^-, H^+/NO, H_2O$	$NO_3^-(aq) + 4 H^+(aq) + 3 e^- \longrightarrow NO(g) + 2 H_2O(l)$	+0.96
Ag ⁺ /Ag	$Ag^{+}(aq) + e^{-} \longrightarrow Ag(s)$	+0.80
Fe^{3+}/Fe^{2+}	$Fe^{3+}(aq) + e^{-} \longrightarrow Fe^{2+}(aq)$	+0.77
I_2/I^-	$I_2(s) + 2 e^- \longrightarrow 2 I^- (aq)$	+0.54
O ₂ ,H ₂ O/OH ⁻	$O_2(g) + 2 H_2O(1) + 4 e^- \longrightarrow 4 OH^- (aq)$	+0.40; $+0.82$ at pH = 7
Cu ²⁺ /Cu	$Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s)$	+0.34
AgCl/Ag,Cl ⁻	$AgCl(s) + e^{-} \longrightarrow Ag(s) + Cl^{-}(aq)$	+0.22
H^+/H_2	$2 H^{+}(aq) + 2 e^{-} \longrightarrow H_{2}(g)$	0, by definition
Fe ³⁺ /Fe	$Fe^{3+}(aq) + 3e^{-} \longrightarrow Fe(s)$	-0.04
O ₂ ,H ₂ O/HO ₂ ⁻ ,OH ⁻	$O_2(g) + H_2O(1) + 2e^- \longrightarrow HO_2^-(aq) + OH^-(aq)$	-0.08
Pb ²⁺ /Pb	Pb^{2+} (aq) + 2 e ⁻ \longrightarrow Pb(s)	-0.13
Sn ²⁺ /Sn	$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2 e^{-} \longrightarrow \operatorname{Sn}(s)$	-0.14
Fe ²⁺ /Fe	$Fe^{2+}(aq) + 2e^{-} \longrightarrow Fe(s)$	-0.44
Zn^{2+}/Zn	$Zn^{2+}(aq) + 2e^{-} \longrightarrow Zn(s)$	-0.76
H ₂ O/H ₂ ,OH ⁻	$2 H_2O(1) + 2 e^- \longrightarrow H_2(g) + 2 OH^-(aq)$	-0.83; -0.42 at pH = 7
Al ³⁺ /Al	$Al^{3+}(aq) + 3e^{-} \longrightarrow Al(s)$	-1.66
Mg ²⁺ /Mg	Mg^{2+} (aq) + 2 e ⁻ \longrightarrow $Mg(s)$	-2.36
Na ⁺ /Na	$Na^+(aq) + e^- \longrightarrow Na(s)$	-2.71
K ⁺ /K	$K^+(aq) + e^- \longrightarrow K(s)$	-2.93
Li ⁺ /Li	$Li^+(aq) + e^- \longrightarrow Li(s)$	-3.05

- $E^{\circ}(X^{+}/X) > 0$: favors reduction: $X^{+} + e^{-} \rightarrow X$
- $E^{\circ}(X^{+}/X) < 0$: favors oxidation: $X^{+} + e^{-} \leftarrow X$

• For a given Galvanic cell, $X|X^+||Y^+|Y$ Cell voltage = $E^{\circ}(Y^+/Y) - E^{\circ}(X^+/X)$

If
$$E^{\circ}(Y^{+}/Y) > E^{\circ}(X^{+}/X)$$
,

$$Y^+$$
 will be reduced $X + Y^+ \rightarrow X^+ + Y$

If
$$E^{\circ}(Y^{+}/Y) \leq E^{\circ}(X^{+}/X)$$
,

$$X^+$$
 will be reduced $Y + X^+ \rightarrow Y^+ + X$

• $Zn(s)|Zn^{2+}(aq)||Cu^{2+}(aq)|Cu(s)$

$$E^{\circ}(Zn^{2+}/Zn) = -0.76 \text{ V}$$

 $E^{\circ}(Cu^{2+}/Cu) = 0.34 \text{ V}$

$$E_{\text{cell}}^{\circ} = E^{\circ}(Cu^{2+}/Cu) - E^{\circ}(Zn^{2+}/Zn)$$

= 0.34 - (-0.76) = 1.11 volts

Cu²⁺ will be reduced and oxidize Zn Cu²⁺ + 2e⁻ \rightarrow Cu Zn \rightarrow Zn²⁺ + 2e⁻

- Can $E^{\circ}(Ce^{4+}/Ce)$ be calculated from $E^{\circ}(Ce^{3+}/Ce)$ and $E^{\circ}(Ce^{4+}/Ce^{3+})$?
 - Find E° values for the related half-reactions.
 - Convert E° values to ΔG° .
 - Combine the half-reactions and determine ΔG° for the desired reaction.
 - Convert ΔG° into E_{cell}° for the desired reaction.

Topic 6N. Applications of Standard Potentials

- 6N.I Standard Potentials and Equilibrium Constants
- 6N.2 The Nernst Equation
- 6N.3 Ion-Selective Electrodes
- 6N.4 Corrosion

Standard Potentials and Equilibrium Constants

Standard potentials and equilibrium constants

$$\Delta G_{r}^{\circ} = -RT \ln K$$

$$\Delta G_{r}^{\circ} = -n_{r} F E_{cell}^{\circ}$$

$$n_{r} F E_{cell}^{\circ} = RT \ln K$$

$$\rightarrow \ln K = n_{r} F E_{cell}^{\circ} / RT$$

- A large positive E_{cell}° has K >> 1
- A large negative E_{cell}° has K << 1

15

The Nernst Equation

Nernst equation

$$\Delta G_{\rm r} = \Delta G_{\rm r}^{\circ} + RT \ln Q$$
$$-n_{\rm r} F E_{\rm cell} = -n_{\rm r} F E_{\rm cell}^{\circ} + RT \ln Q$$

$$E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{RT}{n_{\text{r}}F} \ln Q$$

$$E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{0.025693 \text{ V}}{n_{\text{r}}} \ln Q$$

$$E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{RT \ln 10}{n_{\text{r}}F} \log Q = E_{\text{cell}}^{\circ} - \frac{0.059 \ 160 \ \text{V}}{n_{\text{r}}} \log Q$$

The Nernst Equation

- Concentration cell: a cell in which both compartments have the same components but at different concentrations.
 - Ag(s)|Ag⁺(aq,L)||Ag⁺(aq,R)|Ag(s) Ag⁺(aq,R) \rightarrow Ag⁺(aq,I) $E_{cell} = E_{cell}^{\circ} - (0.025 693 \text{ V/}n_R) \times \ln Q = -(0.025 693 \text{ V/}n_R) \times \ln Q$ $Q = [Ag^+]_L/[Ag^+]_R = [Ag^+]_L \text{ with } [Ag^+]_R = 1 \text{ mol} \cdot L^{-1}$

 $E_{\text{cell}} = - (0.025 693 \text{ V/}n_{\text{R}}) \times \ln[\text{Ag}^{+}]_{\text{L}}$

Ion-Selective Electrodes

- lon-selective electrode: an electrode sensitive to the concentration of a particular ion
- PH meter: one electrode is sensitive to the H₃O⁺ concentration and another electrode with a fixed potential serves as a reference.

Ion-Selective Electrodes

In case the calomel electrode is used as a reference for pH meter

$$\begin{aligned} &\text{Hg}_2\text{Cl}_2\left(\mathbf{s}\right) + 2~\text{e}^- \to 2~\text{Hg (I)} + 2~\text{Cl}^-\left(\mathrm{aq}\right) & E^\circ = 0.27\,\text{V} \\ &\text{Hg}_2\text{Cl}_2(\mathbf{s}) \ + \ \text{H}_2(\mathbf{g}) \ \longrightarrow \ 2~\text{H}^+(\mathrm{aq}) \ + \ 2~\text{Hg(I)} \ + \ 2~\text{Cl}^-(\mathrm{aq}) & Q = \frac{[\text{H}^+]^2[\text{Cl}^-]^2}{P_{\text{H}_2}} \\ &E_{\text{cell}} = E_{\text{cell}}^\circ - \frac{RT}{2F}\ln\left([\text{H}^+]^2[\text{Cl}^-]^2\right) \\ &E_{\text{cell}} = E_{\text{cell}}^\circ - \frac{RT}{F}\ln\left[\text{Cl}^-\right] - \frac{RT}{F}\ln\left[\text{H}^+\right] \\ &E_{\text{cell}} = E_{\text{cell}}^\circ - \frac{RT}{F}\ln 10 \times \frac{-\text{pH}}{\log\left[\text{H}^+\right]} \end{aligned}$$

 $= E_{cell}' + (0.0592 \text{ V}) \times \text{pH}$

Corrosion: unwanted oxidation of a metal

2 H₂O (I) + 2 e⁻
$$\rightarrow$$
 H₂ (g) + 2 OH⁻ (aq)
 $E^{\circ} = -0.83 \text{ V at pH} = 14 \rightarrow -0.42 \text{ V at pH} = 7$

 Any metal with a standard potential more negative than - 0.42 V can reduce water at pH = 7 while itself is oxidized.

Corrosion of iron

$$O_2$$
 (g) + 4 H⁺ (aq) + 4 e⁻ \rightarrow 2 H₂O (l)
 E° = + 1.23 V at pH = 0 \rightarrow + 0.81 V at pH = 7

$$\begin{array}{c} 2 \ Fe(s) \longrightarrow 2 \ Fe^{2^{+}}(aq) \ + \ 4 \ e^{-} \\ \hline O_{2}(g) \ + \ 4 \ H^{+}(aq) \ + \ 4 \ e^{-} \longrightarrow 2 \ H_{2}O(l) \\ \hline Overall: 2 \ Fe(s) \ + \ O_{2}(g) \ + \ 4 \ H^{+}(aq) \longrightarrow 2 \ Fe^{2^{+}}(aq) \ + \ 2 \ H_{2}O(l) \\ \hline 2 \ Fe^{2^{+}}(aq) \longrightarrow 2 \ Fe^{3^{+}}(aq) \ + \ 2 \ e^{-} \\ \hline \frac{1}{2} \ O_{2}(g) \ + \ 2 \ H^{+}(aq) \ + \ 2 \ e^{-} \longrightarrow 2 \ H_{2}O(l) \\ \hline Overall: 2 \ Fe^{2^{+}}(aq) \ + \frac{1}{2} \ O_{2}(g) \ + \ 2 \ H^{+}(aq) \longrightarrow 2 \ Fe^{3^{+}}(aq) \ + \ H_{2}O(l) \\ \hline 4 \ H_{2}O(l) \ + \ 2 \ Fe^{3^{+}}(aq) \longrightarrow 6 \ H^{+}(aq) \ + \ Fe_{2}O_{3} \cdot H_{2}O(s) \\ \hline 2 \ Fe(s) \ + \frac{3}{2} \ O_{2}(g) \ + \ H_{2}O(l) \longrightarrow Fe_{2}O_{3} \cdot H_{2}O(s) \\ \end{array}$$

- Preventing corrosion
 - Galvanization of metal with Zn $Zn^{2+} + 2 e^- \rightarrow Zn : E^\circ = -0.76 \text{ V}$ $Fe^{2+} + 2 e^- \rightarrow Fe : E^\circ = -0.44 \text{ V}$

Zinc corrodes sacrificially: Zinc oxidizes before iron can be oxidized, and hence protects the Iron.

Iron to protect

- Preventing corrosion
 - Cathodic protection: the electrochemical protection of a metal object by connecting it to a more strongly reducing metal

Topic 6O. Electrolysis

- 60.1 Electrolytic Cells
- 60.2 The Products of Electrolysis
- 60.3 Applications of Electrolysis

Electrolytic Cells

- Electrolytic cell: an electrochemical cell in which electrolysis takes place
 - Unlike a galvanic cell, in an electrolytic cell a current must be supplied by an external electrical power source for reaction to occur.
 - Mg production by the Dow process Anode reaction: 2 Cl $^-$ (melt) \rightarrow Cl $_2$ (g) + 2 e $^-$ Cathode reaction: Mg $^{2+}$ (melt) + 2 e $^ \rightarrow$ Mg(l)
 - A rechargeable battery
 Functions as a galvanic cell when it is doing work (discharge)
 and as an electrolytic cell when it is being charged.

Electrolytic Cells

- Water electrolysis $2 H_2O(I) \rightarrow 2 H_2(g) + O_2(g)$ $E^\circ = -1.23 \text{ V at pH} = 7$
- In practice, the applied potential difference must usually be substantially greater than the cell potential to achieve a significant rate of product formation.
- Overpotential: the additional potential difference

The Products of Electrolysis

 Faraday's law of electrolysis: the amount of product formed or reactant consumed by an electric current is stoichiometrically equivalent to the amount of electrons supplied.

Applications of Electrolysis

Electrolysis is used industrially to extract metals from their salts; to prepare chlorine, fluorine, and sodium hydroxide; to refine copper; and in electroplating.

