Partiel - Vendredi 22 octobre 2021.

durée: 2h00.

Les documents, calculatrices, téléphones et ordinateurs portables sont interdits. La qualité de la rédaction sera prise en compte dans la notation.

Questions de cours. On considère un ensemble Ω .

- 1. Donner la définition d'une tribu sur Ω .
- 2. Donner la définition d'une mesure de probabilité.
- 3. Donner la définition d'une variable aléatoire réelle.

Exercice 1. Soient (Ω, \mathcal{F}, P) un espace probabilisé et E et F deux événements.

- 1. Montrer que si P(E) = 1 alors $P(E \cup F) = P(E)$.
- 2. Montrer que si P(E) = 0 alors $P(E \cup F) = P(F)$.

On définit

$$\mathcal{G} = \{ A \in \mathcal{F} \text{ tel que } P(A) = 0 \text{ ou } P(A) = 1 \}.$$

3. Montrer que \mathcal{G} est une tribu.

Exercice 2.

- 1. Énoncer une condition nécessaire et suffisante pour qu'une fonction $F: \mathbb{R} \to \mathbb{R}$ soit fonction de répartition d'une variable aléatoire réelle.
- 2. En déduire les couples $(a,b) \in \mathbb{R}^2$ tels que la fonction F définie par

$$F(x) = \frac{a(x+4)}{b+|x|} 1_{]-4,+\infty[}(x), \quad x \in \mathbb{R},$$

soit une fonction de répartition.

Exercice 3. On considère un espace de probabilité (Ω, \mathcal{F}, P) et X une variable aléatoire réelle sur cet espace de loi uniforme sur [0, 1]. On fixe également un réel p dans]0, 1[.

- 1. Montrer que $Y = 1_{\{X \le p\}}$ est une variable aléatoire.
- 2. Est elle-discrète? À densité? Donner sa loi.
- 3. On considère trois réels a < b < c ainsi que trois réels p, q et r dans]0,1[tels que p+r+q=1. Construire une variable Z à l'aide de X tel que Z prenne la valeur a (resp. b, c) avec probabilité p (resp. q, r).
- 4. Donner et tracer la fonction de répartition de Z.

Exercice 4. Soit $p \in]0,1[$. On dit qu'une variable aléatoire à valeurs dans \mathbb{N}^* satisfait la propriété (\star) si

$$P(X = n) = p P(X \ge n)$$
 pour tout $n \ge 1$.

- 1. Que vaut P(X = 1)?
- 2. Montrer que si X suit une loi géométrique de paramètre p alors X satisfait (\star) .
- 3. Soit X une variable satisfaisant (\star) . On note $G: \mathbb{N}^* \to \mathbb{N}^*$ la fonction qui a tout $n \geq 1$ associe $G(n) = P(X \geq n)$. Calculer G.
- 4. En déduire la loi de X.