PHYSICAL ACTIVITY ENVIRONMENT AND PERFEC/TENACI

Ma. Fer. Serrano

Today's Date

INTRODUCTION.

Previous analyses showed that environmental variables, such as school, have significant effects on IQ and Perf. variables.

For this reason:

- we explore the effect of the environment variables that promote physiscal activity in schools on IQ and Perf variables.
- Variables related to how the evironment of schools devoted to physical activity were collected.
- They are named and defined in the following section.

DOCUMENTATION

VARIABLES DE AMBIENTE PARA ACTIVIDAD FISICA

El sufijo aaf_ en todas las variables abrevia: Ambiente (para) Actividad Fisica.

• aaf_

OBSERVED VARIABLES

Nombre d Variable	Definicion	Valores
aaf_t_pe_class	t Tiempo en clase de ed. fisica	Minutos por semana
aaf_t_recess	t Tiempo de recreo	Minutos por semana
aaf_population_size	Poblacion total de la escuela	1 - 4 = chica,
		mediana, grande,
		muy_gr
aaf_s_size	s Tamannho d Espacio para	$0 - 4 = no_hay,$
	actividad	chico, mediano,
		$grande, muy_gr$
aaf_s_avail	s Espacio esta disponible o no	0, 1
aaf_s_used	s Espacio se usa o no	0, 1
aaf_s_shape	s Forma del espacio	rectang, triang,
		irregular, other

COMPUTED VARIABLES

Computed Variable	Definition	Formula
aaf_t_sum_total	total aggregated class+recess time	t_sum = t_class + t_recess
aaf_ratio_s_pop	space-size population-size ratio	ratio_sp = s_size / pop_size
aaf_indica_rec_t_s_p	time_space/population Indicator: Product of recess-time times the space/population ratio	indica_tsp = t_recesss * ratio_sp
aaf_indica_sum_t_s_p	total time_space/population Indicator: Product of aggregated time (class+recess) times the space/population ratio	indica_sum_tsp = t_sum * ratio_sp

ANALYSES.

LINEAR REGRESSSION ASSOCIATION ANALYSES.

PHYSICAL ACTIVITY ENVIROMENT VS IQ/FROST/OROS VARIABLES.

Six significant associations were found.

- The strongest association (r>0.6) was found between IQ and physical activity aggregated time.
- Of particular interest:
- Association between Oros's PSP social dimension and aggregated time was found.

The following is the list of significant results, listing the name of variables, pvalue and Rsquared.

```
## ACTIVITY REGRESSION ANALYSES
```

```
res_activity_corr <- regression_significant_main(oactivity_df, joint_nums, varnames_activity, significant
## [1] "CI_._Factor.g.R aaf_t_recess"</pre>
```

```
## pv= 5e-13
## R2= 0.29
## [1] "CI_._Factor.g.R aaf_population_size"
## pv= 2e-16
## R2= 0.36
## [1] "CI_._Factor.g.R aaf_s_size"
## pv = 5e - 05
## R2= 0.1
## [1] "CI_._Factor.g.R aaf_indica_sum_t_s_p"
## pv= 8e-14
## R2= 0.31
## [1] "CI_._Factor.g.R aaf_indica_rec_t_s_p"
## pv= 1e-09
## R2= 0.22
## [1] "CI_._Factor.g.R aaf_ratio_s_pop"
## pv= 2e-16
## R2 = 0.36
## [1] "CI_._Factor.g.R aaf_t_sum_total"
## pv= 1e-17
## R2= 0.39
## [1] "CI_Total aaf_t_recess"
## pv = 0.003
## R2= 0.053
```

```
## [1] "PSP_Total aaf_indica_sum_t_s_p"
## pv = 0.003
## R2= 0.052
## [1] "PSP_Total aaf_ratio_s_pop"
## pv = 0.001
## R2= 0.063
## [1] "PSP_Total aaf_t_sum_total"
## pv = 5e - 04
## R2= 0.073
## [1] "NUMBER OF SIGNIFICANT ANALYSES:"
```


[1] "NUMBER OF GRAPHICS IN GRID:"

[1] 11

```
## SHOW THE CORRELATIONS GRID
res_activity_corr[['grid']]
```

```
## TableGrob (3 x 4) "arrange": 11 grobs
                                                 cells
                                                          name
## CI_._Factor.g.R_~_aaf_t_recess
                                           1 (1-1,1-1) arrange gtable[layout]
## CI_._Factor.g.R_~_aaf_population_size
                                           2 (1-1,2-2) arrange gtable[layout]
## CI_._Factor.g.R_~_aaf_s_size
                                           3 (1-1,3-3) arrange gtable[layout]
## CI_._Factor.g.R_~_aaf_indica_sum_t_s_p 4 (1-1,4-4) arrange gtable[layout]
## CI_._Factor.g.R_~_aaf_indica_rec_t_s_p 5 (2-2,1-1) arrange gtable[layout]
## CI_._Factor.g.R_~_aaf_ratio_s_pop
                                           6 (2-2,2-2) arrange gtable[layout]
## CI_._Factor.g.R_~_aaf_t_sum_total
                                          7 (2-2,3-3) arrange gtable[layout]
## CI_Total_~_aaf_t_recess
                                           8 (2-2,4-4) arrange gtable[layout]
## PSP_Total_~_aaf_indica_sum_t_s_p
                                         9 (3-3,1-1) arrange gtable[layout]
## PSP_Total_~_aaf_ratio_s_pop
                                          10 (3-3,2-2) arrange gtable[layout]
                                         11 (3-3,3-3) arrange gtable[layout]
## PSP_Total_~_aaf_t_sum_total
```

DIFFERENCES BETWEEN GROUPS ANALYSES.

The following is the list of significant results, listing the name of variables, pvalue and Rsquared.

ACTIVITY SAME ANALYSIS AS ABOVE BUT THE ACTIVITIES ARE TAKEN AS CATEFORIES FOR DIFFERENCE ANALYSES res_activity_diff <- regression_significant_main(oactivity_factored_df, joint_nums, varnames_activity,

```
## [1] "CI_._Factor.g.R aaf_t_recess"
## pv= 5e-13
## R2= 0.29
## [1] "CI_._Factor.g.R aaf_population_size"
## pv = 4e - 05
## R2 = 0.46
## [1] "CI_._Factor.g.R aaf_s_size"
## pv = 2e - 05
## R2 = 0.46
## [1] "CI_._Factor.g.R aaf_indica_sum_t_s_p"
## pv= 1e-10
## R2 = 0.46
## [1] "CI_._Factor.g.R aaf_indica_rec_t_s_p"
## pv= 1e-10
## R2 = 0.46
## [1] "CI_._Factor.g.R aaf_ratio_s_pop"
## pv= 1e-09
## R2= 0.39
## [1] "CI_._Factor.g.R aaf_t_sum_total"
## pv= 8e-21
## R2 = 0.46
## [1] "CI_Total aaf_t_pe_class"
## pv = 0.03
## R2= 0.022
## [1] "CI_Total aaf_t_recess"
## pv = 0.003
## R2= 0.053
## [1] "CI_Total aaf_indica_sum_t_s_p"
## pv = 0.004
## R2= 0.055
## [1] "CI_Total aaf_indica_rec_t_s_p"
```

```
## pv = 0.004
## R2= 0.055
## [1] "CI_Total aaf_ratio_s_pop"
## pv = 0.004
## R2= 0.061
## [1] "CI_Total aaf_t_sum_total"
## pv = 0.01
## R2= 0.055
## [1] "Grit.S aaf_t_pe_class"
## pv = 0.006
## R2= 0.04
## [1] "Grit.S aaf_t_recess"
## pv = 0.02
## R2= 0.028
## [1] "Grit.S aaf_indica_sum_t_s_p"
## pv = 0.002
## R2= 0.047
## [1] "Grit.S aaf_indica_rec_t_s_p"
## pv = 0.002
## R2= 0.047
## [1] "Grit.S aaf_ratio_s_pop"
## pv = 0.002
## R2= 0.053
## [1] "ESP_Total aaf_t_pe_class"
## pv = 0.02
## R2= 0.027
## [1] "ESP_Total aaf_population_size"
## pv= 0.01
## R2= 0.031
## [1] "ESP_Total aaf_s_size"
## pv = 0.01
## R2= 0.026
## [1] "ESP_Total aaf_indica_sum_t_s_p"
## pv = 0.03
## R2= 0.026
## [1] "ESP_Total aaf_indica_rec_t_s_p"
## pv = 0.03
## R2= 0.026
## [1] "ESP_Total aaf_t_sum_total"
## pv = 0.01
## R2= 0.026
## [1] "Preocupaci..n_perfeccionista aaf_t_sum_total"
## pv = 0.03
## R2= 0.016
## [1] "Esfuerzo_Perfeccionista aaf_population_size"
## pv = 0.02
## R2= 0.024
## [1] "Esfuerzo_Perfeccionista aaf_s_size"
## pv = 0.02
## R2= 0.02
## [1] "Esfuerzo_Perfeccionista aaf_t_sum_total"
## pv = 0.02
## R2= 0.02
## [1] "Perfeccionismo_de_.Frost aaf_t_sum_total"
```

```
## pv = 0.03
## R2= 0.023
## [1] "PSP_Total aaf_t_recess"
## pv = 0.004
## R2= 0.047
## [1] "PSP_Total aaf_t_sum_total"
## pv = 3e - 04
## R2= 0.067
## [1] "POO_Total aaf_t_pe_class"
## pv = 0.01
## R2= 0.051
## [1] "POO_Total aaf_population_size"
## pv = 0.004
## R2= 0.042
## [1] "POO_Total aaf_s_size"
## pv = 0.002
## R2= 0.046
## [1] "POO_Total aaf_indica_sum_t_s_p"
## pv = 0.002
## R2= 0.046
## [1] "POO_Total aaf_indica_rec_t_s_p"
## pv = 0.002
## R2= 0.046
## [1] "POO_Total aaf_t_sum_total"
## pv = 0.02
## R2= 0.046
## [1] "NUMBER OF SIGNIFICANT ANALYSES:"
## [1] 37
## [1] "NUMBER OF GRAPHICS IN GRID:"
## [1] 37
## RENAME THE CATEGORICAL ACTIVITY GRID OF PLOT FOR EASY REFERENCE LATER
actdiffgrid <- res_activity_diff[['grid']]</pre>
actdiffsiglength <- length(res_activity_diff[['plots']])</pre>
```

RESULTS FROM DIFFERENCE ANALYSES. By using the physical activity as groupping variables:

- 37 significant differences were found.
- Most of them with small effects.
- However, the associtiaion between IQ and Oros's PSP social dimension was replicated.

```
## SHOW THE GRID
actdiffgrid
```

page 1 of 3

VARIABLE OF INTERES, OROS'S PSP SOCIAL DIMENSION, GRAPHICS IN DETAIL.

PSP-TIME ASSOCIATION.

```
## SHOW THE PSP CORRELATION GRAPH
res_activity_corr[['plots']][['PSP_Total_~_aaf_t_sum_total']]
```


DIFFERENCES IN PSP SOCIAL DIMENSION.

SHOW THE PSP CORRELATION GRAPH
res_activity_diff[['plots']][['PSP_Total_~_aaf_t_sum_total']]

