Computational Linguistics

Language Modeling (with n-grams)

Chapter 4 J&M'09

Probabilistic language modeling

 GOAL : determine the probability P of a sequence of words

Applications:

- Part of speech (POS) tagging $P(\mathsf{she}_{PRN} \; \mathsf{bikes}_{V-3SG}) > P(\mathsf{she}_{PRN} \; \mathsf{bikes}_{CN-PL})$
- Spelling correction
 P(their cat is sick) > P(there cat is sick)
- Speech recognition P(I can for give you) > P(I can for give you)P(I can forget you) > P(I can for get you)
- Etc.: machine translation, language identification, authorship identification, word similarity, predictive text input, etc.

General goal:

- Compute the joint probability of a word sequence W $P(W) = P(w_1, w_2, ..., w_n)$ (note: sometimes w_1^n is used to abbreviate $w_1, w_2, ..., w_n$)
- Related task: probability of an upcoming word $P(w_n|w_1,w_2,...,w_{n-1})$

What is probability of 'the' following 'It is easy to see'? More formally, what is $P(\text{the} \mid \text{It is easy to see})$?

Approach #1: count ratio.

$$P(\text{it is easy to see the}) = \frac{C(\text{it is easy to see the})}{C(\text{it is easy to see})}$$

For example, using Google we get:

$$\frac{C(\textit{it is easy to see the})}{C(\textit{it is easy to see})} = \frac{54,100,000}{127,000,000} = 0.426$$

Where to get large collections of text (i.e. 'corpora'):

- Linguistic Data Consortium
- European Language Resources Association
- Academic Torrents
- Guttenberg Project
- University of Oxford Text Archive
- Stanford list
- ...

Problem: some perfectly normal strings don't occur very much: $C(it \ is \ easy \ to \ see \ the \ leaf) = 0$

Sparseness: most word sequences will never be observed simply because there are too many possibilities. Perfectly grammatical word sequences and their respective Google counts:

	•	•	0	
(1)	a. "going to Tonawanda	a"	(4	,370)
	b. "going to Dayton"		(2	221K)
	c. "going to NYC"		((1M)
	d. "John is not showeri	ng''		(2)
	e. "John is not singing"	,	(5	.010)

Zipf's long tail distribution:

(Data extracted from the Brown corpus)

Zipf's long tail distribution:

(Data extracted from the Brown corpus)

Zipf's long tail distribution:

- A small number of events have high frequency (easy to collect)
- A large number of events have low frequency (hard to collect)

Zipf's Law:

the probability of the n-th most frequent word \boldsymbol{w} is roughly

$$P(w) = \frac{0.1}{n}$$

In any book, about 50% of words are the same 50 to 100 words, while the other 50% of words appear only once (e.g. Alice in Wonderland 56% appear only once, Tom Sawyer 50.2%, etc.)

Incidentally, similar power laws appear in:

- Character frequency
- Week day mention frequency
- Protagonist mention frequency
- City populations
- Solar flare intensities
- Protein sequences
- Website traffic
- Earthquake magnitudes
- Citation frequency
- Last names
- Diameter of Moon craters
- Phone call frequency
- Opening chess move frequency
- Rate of memory decay

Related to the Pareto distribution

Pareto Principle: 20% of the causes are responsible for 80% of the outcome.

- 20% of humans have 82.7% of the world's income
- 20% of patients use 80% of healthcare resources
- 20% of the bugs detected cause 80% of crashes in Microsoft
- 20% of the carpet in an office receives 80% of the ware
- ...

E.g. there are a few things that matter a lot, and much that doesnt matter at all.

E.g. the more something happens, the more likely it is to happen in the future.

E.g. Matthew effect:

For to every one who has will more be given, and he will have abundance; but from him who has not, even what he has will be taken away. — Matthew 25:29.

Approach #2: estimate P(it is easy to see the) using n-grams

An n-gram is a sequence of wordforms (word types) and its probability.

- Unigram: a single wordform
- Bigram: a sequence of two wordforms
- Trigram: a sequence of three wordforms
- 4-gram: a sequence of four wordforms
- ... etc.

Online n-gram <u>calculator</u>.

Google's n-gram <u>viewer</u>.

Automatic random language generation

Chain Rule of Probability (general case)

$$P(w_1^n) = \prod_{k=1}^n P(w_k | w_1^{k-1}) = P(w_1) \times P(w_2 | w_1) \times P(w_3 | w_1^2) \times \dots \times P(w_n | w_1^{n-1})$$

It is usually impractical to compute all these probabilities...

 Markov (simplifying) assumption: the values of any state are only influenced by the values of the state that directly preceded it.

Markov estimation of the joint probability (bigram version)

$$P(w_1^n) \approx \prod_{k=1}^n P(w_k|w_{k-1})$$

Maximum likelihood estimation (using relative frequency)

In the bigram case:

$$P_{MLE}(w_n|w_{n-1}) = \frac{C(w_{n-1}w_n)}{\sum_w C(w_{n-1}w)}$$

The count $C(w_{n-1}w_n)$ is normalized by dividing by the sum of all the bigrams that start with the same word.

But since that is equivalent to a unigram count, we have:

$$P_{MLE}(w_n|w_{n-1}) = \frac{C(w_{n-1}w_n)}{C(w_{n-1})}$$

In general, for N-grams we have:

$$P_{MLE}(w_n|w_{n-N+1}^{n-1}) = \frac{C(w_{n-N+1}^{n-1}w_n)}{C(w_{n-N+1}^{n-1})}$$

EXAMPLE

Bigrams (0 cells do not need to be explicitly listed)

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Unigram counts:

i	i	want	to	eat	chinese	food	lunch	spend
	2533	927	2417	746	158	1093	341	278

Applying LME: divide each row by the unigram counts.

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

$$P(\text{want}|i) = \frac{C(i \text{ want})}{C(i)} = \frac{827}{2533} = 0.33$$

$$P(\cdot \text{ I want chinese food } \cdot) = P(\text{i}|\cdot) \times P(\text{want}|\text{i}) \times \\ P(\text{chinese}|\text{want}) \times P(\text{food}|\text{chinese}) \times P(\cdot|\text{food}) = \\ 0.25 \times 0.33 \times 0.0065 \times 0.52 \times 0.68 = 0.000189618$$

With a large corpus, the calculation of the probability of a large sentence can lead to **underflow**: a very small number, close to zero, too long for the computer to handle.

One common solution is to store probabilities in log space:

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	-	0.0036	-	_	_	0.00079

Log_{10} :

					chinese	food	lunch	spend
i	-2.65	-0.48	-	-2.44	-	-	-	-3.10

Exp:

	i	want	to	eat	chinese	food	lunch	spend
i	0.07	0.6	_	0.08	_	_	_	0.04

In which case the probabilities are added rather than multiplied:

$$P_1 \times ... \times P_n = exp(log P_1 + ... + log P_n)$$

Suppose a speech recognition system found two possible tokenizations for a sentence:

- (2) a. It's not ice cream b. It snot I scream
- Which sentence is more likely? Below are Log values.

	it	's	not	ice	cream	snot	I	scream
it	-2.34	-0.27	_	_	_	_	-3.23	_
's	-	_	-0.12	-0.89	-0.73	-0.68	_	-0.45
not	_	_	_	-0.56	-0.87	-0.12	-0.34	_
ice	-0.93	-0.45	-1.25	-4.06	-0.12	_	-0.72	_
cream	-0.69	-0.067	-1.3	-0.94	_	-1.9	-0.84	_
snot	-1.58	-0.89	-3.43	_	_	_	-1.34	_
1	-	_	_	-3.56	_	_	_	-0.02
scream	-0.05	-0.38	-2.04	-	_	-	-1.08	-

Assume that $log(P(\mathsf{it}|\cdot)) = log(P(\cdot|\mathsf{cream}) = log(P(\cdot|\mathsf{scream})) = -0.03$.

$$P(\cdot \text{ it's not ice cream} \cdot) = -0.03 - 0.27 - 0.12 - 0.56 - 0.12 - 0.03 = -1.13$$

 $P(\cdot \text{ it snot I scream} \cdot) = -0.03 + log(0) - 1.34 - 0.02 - 0.12 - 0.03 = \dots$

Creating a bigram model using basic Linux commands:

```
# find all single (space-separated) words, using '@'
2 # as a sentence boundary delimiter
grep -o '[a-z0]+' brown.txt > unig1.txt
4
5 # create a version of 'unig1.txt' offset by 1 word
6 tail -n+2 unig1.txt > unig2.txt
7
8 # join each of the lines of the two files
paste unig1.txt unig2.txt > pairs.txt
11 # obtain the count of word pair types, sorted by frequency
12 sort < pairs.txt | uniq -c | sort -n -r > bigrams.txt
```

```
1874 of the
  1138 in the
   730 to the
   432 from the
   369 of his
   361 and the
   339 the whale
   335 on the
   333 of a
   324 with the
10
   321 to be
   320 at the
12
   310 by the
   294 for the
   253 in his
   246 into the
16
17
   245 in a
   234 with a
18
19
   220 that the
   216 upon the
20
   213 the ship
21
   207 all the
   204 as the
   199 it is
```

It is not always practical to use N-grams for large N:

For example, assuming a set of 20,000 word types:

N-gram	Parameters
bigram	$20,000^2 = 400 \text{ million}$
trigram	$20,000^3 = 8 \times 10^{12}$
four-gram	$20,000^4 = 16 \times 10^{16}$
five-gram	$20,000^5 = 32 \times 10^{20}$

Stemming can reduce the parameter size significantly.

Let's use Shakespeare's work as a test corpus, for example. We get:

- N=884,647 (tokens)
- V=29,066 (types)
- 300,000 bigrams, out of V^2 = 844 million possible bigrams.
- 99.96% of the possible bigrams have zero frequency
- Some zeros are real zeros: things that can't happen
- Other zeros are just rare events
- Higher order n-grams are worse

Random language generation: a sampling approach.

For $0 \leqslant i \leqslant |V|$ (where V is the set of word types; the vocabulary)

$$\sum_{i=0}^{i=|V|} p_i = 1$$

- i = 0
- s = uniform random number between 0 and 1
- while $s \ge 0$ do:
 - i = i +1
 - \bullet s = s p_i
- return i

For n-grams:

Select word conditioned on the sentence delimiter symbol, then select second word conditioned on the previous one and so on until you select another sentence delimiter symbol.

There is a fundamental problem with the Markov assumption... ... it's false.

- (3) a. The car that John bought his wife exploded.
 - b. Whatever Robin builds Sam destroys.
- (4) a. Which target_i did you say that you tried to shoot $_i$?
 - b. This is [something] $_x$ that most cognitive scientists think about $_x$ but never consider the implications of $_x$.
- (5) a. Nobody said that Sam knows anything about Prolog.
 - b.*Somebody said that Sam knows anything about Prolog.
 - c. Someone should say if Sam knows anything about Prolog.

The fact that Markov's assumption is false creates actual errors.

See how Google handles the following.

- (6) a. This is the company that the bank bought.
 - b. This is the company that the bank you like bought.

N-grams are useful, but too shallow

- Some gibberish has high probability:
 - (7) We're there a dude! (supposed to be 'word error dude!')
- Sometimes a string is plausible in multiple ways: $P(I_{PRN} \text{ saw}_V \text{ with } \text{her}_{PRN} \text{ bikes}_{CN-PL})$ $P(I_{PRN} \text{ saw}_V \text{ with } \text{her}_{PRN} \text{ bikes}_{V-3SG})$
 - (8) a. The man that I saw with her bikes was a thief.
 - b. The man that I saw with her bikes to work every day.
- Sometimes word-knowledge information is needed:
 - (9) a. The farmer killed the cow with the axe.
 - b. The cow killed the farmer with the axe