Optimal Algorithms for Decentralized Stochastic Variational Inequalities

Dmitry Kovaley KAUST

Aleksandr Beznosikov MIPT, HSE and Yandex

Abdurakhmon Sadiev MIPT

Michael Persijanov **MIPT**

Peter Richtarik **KAUST**

Alexander Gasnikov MIPT, HSE and IITP

Variational Inequality Problem

Find $z^* \in \mathbb{R}^d$ such that $\langle F(z^*), z - z^* \rangle + g(z) - g(z^*) \ge 0$, $\forall z \in \mathbb{R}^d$

Variational Inequality Problem

Find
$$z^* \in \mathbb{R}^d$$
 such that $\langle F(z^*), z - z^* \rangle + g(z) - g(z^*) \ge 0$, $\forall z \in \mathbb{R}^d$

•
$$\min_{z \in \mathbb{R}^d} f(z) + g(z) \longrightarrow F(z) := \nabla f(z)$$

Variational Inequality Problem

Find $z^* \in \mathbb{R}^d$ such that $\langle F(z^*), z - z^* \rangle + g(z) - g(z^*) \ge 0$, $\forall z \in \mathbb{R}^d$

- $\bullet \quad \min_{z \in \mathbb{R}^d} f(z) + g(z) \longrightarrow F(z) := \nabla f(z)$
- $\bullet \min_{x \in \mathbb{R}^{d_x}} \max_{y \in \mathbb{R}^{d_y}} f(x, y) + g_1(x) g_2(y) \longrightarrow F(z) := \left[\nabla_x g(x, y), -\nabla_y g(x, y) \right]$

$$F(z) := \frac{1}{M} \sum_{m=1}^{M} F_m(z)$$

Lower bounds

Theorem. For any $L \ge \mu > 0$ and $\chi \ge 1$, $n \in \mathbb{N}$, there exist a decentralized variational inequality (satisfying assumptions from previous slides over a fixed network with characteristic number χ , such that the number of communication rounds and local computations required to obtain an ε -solution is lower bounded by

$$\Omega\left(\sqrt{\chi}\left(1+\frac{L}{\mu}\right)\cdot\log\left(\frac{R_0^2}{\varepsilon}\right)\right) \text{ and } \Omega\left(\left(n+\sqrt{n}\cdot\frac{L}{\mu}\right)\cdot\log\left(\frac{R_0^2}{\varepsilon}\right)\right), \text{ respectively.}$$

Theorem. For any $L \ge \mu > 0$ and $\chi \ge 3$, $n \in \mathbb{N}$, there exist a decentralized variational inequality (satisfying assumptions from previous slides) over a time-varying network with characteristic number χ , such that the number of communication rounds and local computations required to obtain an ε -solution is lower bounded by

$$\Omega\left(\chi\left(1+\frac{L}{\mu}\right)\cdot\log\left(\frac{R_0^2}{\varepsilon}\right)\right) \ \ \text{and} \ \ \Omega\left(\left(n+\sqrt{n}\cdot\frac{L}{\mu}\right)\cdot\log\left(\frac{R_0^2}{\varepsilon}\right)\right), \ \ \text{respectively}.$$

Upper bounds

fixed network

Algorithm 1

- 1: **Parameters:** Stepsizes $\eta, \theta > 0$, momentums α, β, γ , batchsize $b \in \{1, \dots, n\}$, probability $p \in (0, 1)$
- 2: Initialization: Choose $\mathbf{z}^0 = \mathbf{w}^0 \in (\operatorname{dom} g)^M, \mathbf{y}^0 \in$ \mathcal{L}^{\perp} . Put $\mathbf{z}^{-1} = \mathbf{z}^{0}$, $\mathbf{w}^{-1} = \mathbf{w}^{0}$, $\mathbf{v}^{-1} = \mathbf{v}^{0}$
- 3: **for** $k = 0, 1, 2 \dots$ **do**
- 4: Sample $j_{m,1}^k, \ldots, j_{m,h}^k$ independently from [n]
- 5: $S^k = \{j_{m,1}^k, \dots, j_{m,b}^k\}$ 6: Sample $j_{m,1}^{k+1/2}, \dots, j_{m,b}^{k+1/2}$ independently from [n]
- $S^{k+1/2} = \{j_{m,1}^{k+1/2}, \dots, j_{m,b}^{k+1/2}\}$
- 8: $\delta^k = \frac{1}{h} \sum_{j \in S^k} \left(\mathbf{F}_j(\mathbf{z}^k) \mathbf{F}_j(\mathbf{w}^{k-1}) \right)$

$$+\alpha[\mathbf{F}_j(\mathbf{z}^k) - \mathbf{F}_j(\mathbf{z}^{k-1})] + \mathbf{F}(\mathbf{w}^{k-1})$$

- 9: $\Delta^k = \delta^k (\mathbf{v}^k + \alpha(\mathbf{v}^k \mathbf{v}^{k-1}))$
- 10: $\mathbf{z}^{k+1} = \operatorname{prox}_{n\sigma}(\mathbf{z}^k + \gamma(\mathbf{w}^k \mathbf{z}^k)) \eta \Delta^k)$
- $\Delta^{k+1/2} = \frac{1}{b} \sum_{j \in S^{k+1/2}} \left(\mathbf{F}_j(\mathbf{z}^{k+1}) \mathbf{F}_j(\mathbf{w}^k) \right)$
- $\mathbf{y}^{k+1} = \mathbf{y}^k \theta(\mathbf{W} \otimes \mathbf{I}_d)(\mathbf{z}^{k+1} \beta(\Delta^{k+1/2} \mathbf{y}^k))$
- $\mathbf{w}^{k+1} = \begin{cases} \mathbf{z}^k, & \text{with probability } p \\ \mathbf{w}^k, & \text{with probability } 1 p \end{cases}$
- 14: end for
- $^*\mathbf{F}_j(\mathbf{z}) = (F_{1,j_{1,l}}(z_1), \dots, F_{M,j_{M,l}}(z_M))^T, l \in \{1,\dots,b\}$

time-varying network

Algorithm 2

- 1: **Parameters:** Stepsizes $\eta_z, \eta_u, \eta_x, \theta > 0$, momentums $\alpha, \gamma, \omega, \tau$, parameters ν, β , batchsize $b \in \{1, \ldots, n\}$, probability $p \in (0,1)$
- 2: Initialization: Choose $\mathbf{z}^0 = \mathbf{w}^0 \in (\text{dom } q)^M, \mathbf{y}^0 \in$ $(\mathbb{R}^d)^M, \, \mathbf{x}^0 \in \mathcal{L}^{\perp}. \, \text{Put } \mathbf{z}^{-1} = \mathbf{z}^0, \mathbf{w}^{-1} = \mathbf{w}^0, \, \mathbf{y}_f =$ $\mathbf{v}^{-1} = \mathbf{v}^0, \mathbf{x}_f = \mathbf{x}^{-1} = \mathbf{x}^0, m_0 = \mathbf{0}^{dM}$
- 3: **for** $k = 0, 1, 2, \dots$ **do**
- 4: Sample $j_{m,1}^k, \ldots, j_{m,b}^k$ independently from [n]
- 5: $S^k = \{j_{m,1}^k, \dots, j_{m,h}^k\}$
- Sample $j_{m,1}^{k+1/2}, \dots, j_{m,b}^{k+1/2}$ independently from [n]
- 7: $S^{k+1/2} = \{j_{m,1}^{k+1/2}, \dots, j_{m,h}^{k+1/2}\}$
- 8: $\delta^k = \frac{1}{b} \sum_{j \in S^k} \left(\mathbf{F}_j(\mathbf{z}^k) \mathbf{F}_j(\mathbf{w}^{k-1}) \right)$

$$+ \alpha [\mathbf{F}_j(\mathbf{z}^k) - \mathbf{F}_j(\mathbf{z}^{k-1})] \Big) + \mathbf{F}(\mathbf{w}^{k-1})$$

- 9: $\Delta_z^k = \delta^k \nu \mathbf{z}^k \mathbf{y}^k \alpha(\mathbf{y}^k \mathbf{y}^{k-1})$ 10: $\mathbf{z}^{k+1} = \operatorname{prox}_{\eta_z \mathbf{g}} (\mathbf{z}^k + \omega(\mathbf{w}^k \mathbf{z}^k) \eta_z \Delta_z^k)$
- 11: $\mathbf{y}_c^k = \tau \mathbf{y}^k + (1 \tau) \mathbf{y}_f^k$
- 12: $\mathbf{x}_c^k = \tau \mathbf{x}^k + (1 \tau) \mathbf{x}_f^k$
- 13: $\Delta_{y}^{k} = \nu^{-1}(\mathbf{y}_{c}^{k} + \mathbf{x}_{c}^{k}) + \mathbf{z}^{k+1} + \gamma(\mathbf{y}^{k} + \mathbf{x}^{k} + \nu \mathbf{z}^{k})$
- 14: $\delta^{k+1/2} = \frac{1}{h} \sum_{j \in S^{k+1/2}} \left(\mathbf{F}_j(\mathbf{z}^{k+1}) \mathbf{F}_j(\mathbf{w}^k) \right)$
- 15: $\Delta_x^k = \nu^{-1} (\mathbf{y}_c^k + \mathbf{x}_c^k) + \beta (\mathbf{x}^k + \delta^{k+1/2})$
- 16: $\mathbf{v}^{k+1} = \mathbf{v}^k n_{\nu} \Delta^k$
- 17: $\mathbf{x}^{k+1} = \mathbf{x}^k (\mathbf{W}_T(Tk) \otimes \mathbf{I}_d)(\eta_x \Delta_x^k + m^k)$
- 18: $m^{k+1} = n_r \Delta^k + m^k$
 - $-(\mathbf{W}_T(Tk)\otimes \mathbf{I}_d)(\eta_x\Delta_x^k+m^k)$
- 19: $\mathbf{y}_{f}^{k+1} = \mathbf{y}_{c}^{k} + \tau(\mathbf{y}^{k+1} \mathbf{y}^{k})$
- 20: $\mathbf{x}_f^{k+1} = \mathbf{x}_c^k \theta(\mathbf{W}_T(Tk) \otimes \mathbf{I}_d)(\mathbf{y}_c^k + \mathbf{x}_c^k)$
- 21: $\mathbf{w}^{k+1} = \begin{cases} \mathbf{z}^k, & \text{with probability } p \\ \mathbf{w}^k, & \text{with probability } 1-p \end{cases}$
- 22: end for

Upper bounds

fixed network

Algorithm 1

- 1: **Parameters:** Stepsizes $\eta, \theta > 0$, momentums α, β, γ , batchsize $b \in \{1, \dots, n\}$, probability $p \in (0, 1)$
- 2: Initialization: Choose $\mathbf{z}^0 = \mathbf{w}^0 \in (\text{dom } q)^M, \mathbf{v}^0 \in$ \mathcal{L}^{\perp} . Put $\mathbf{z}^{-1} = \mathbf{z}^{0}$, $\mathbf{w}^{-1} = \mathbf{w}^{0}$, $\mathbf{v}^{-1} = \mathbf{v}^{0}$
- 3: **for** $k = 0, 1, 2 \dots$ **do**
- 4: Sample $j_{m,1}^k, \ldots, j_{m,h}^k$ independently from [n]
- 5: $S^k = \{j_{m,1}^k, \dots, j_{m,b}^k\}$ 6: Sample $j_{m,1}^{k+1/2}, \dots, j_{m,b}^{k+1/2}$ independently from [n]
- $S^{k+1/2} = \{j_{m,1}^{k+1/2}, \dots, j_{m,b}^{k+1/2}\}$
- 8: $\delta^k = \frac{1}{h} \sum_{j \in S^k} \left(\mathbf{F}_j(\mathbf{z}^k) \mathbf{F}_j(\mathbf{w}^{k-1}) \right)$

$$+\alpha [\mathbf{F}_j(\mathbf{z}^k) - \mathbf{F}_j(\mathbf{z}^{k-1})] + \mathbf{F}(\mathbf{w}^{k-1})$$

- 9: $\Delta^k = \delta^k (\mathbf{v}^k + \alpha(\mathbf{v}^k \mathbf{v}^{k-1}))$
- 10: $\mathbf{z}^{k+1} = \operatorname{prox}_{n\mathbf{g}}(\mathbf{z}^k + \gamma(\mathbf{w}^k \mathbf{z}^k) \eta\Delta^k)$
- $\Delta^{k+1/2} = \frac{1}{b} \sum_{j \in S^{k+1/2}} \left(\mathbf{F}_j(\mathbf{z}^{k+1}) \mathbf{F}_j(\mathbf{w}^k) \right)$
- $\mathbf{y}^{k+1} = \mathbf{y}^k \theta(\mathbf{W} \otimes \mathbf{I}_d)(\mathbf{z}^{k+1} \beta(\Delta^{k+1/2} \mathbf{y}^k))$
- $\mathbf{w}^{k+1} = \begin{cases} \mathbf{z}^k, & \text{with probability } p \\ \mathbf{w}^k, & \text{with probability } 1 p \end{cases}$
- 14: end for
- $^*\mathbf{F}_j(\mathbf{z}) = (F_{1,j_{1,l}}(z_1), \dots, F_{M,j_{M,l}}(z_M))^T, l \in \{1,\dots,b\}$

time-varying network

Algorithm 2

- 1: **Parameters:** Stepsizes n_z , n_u , n_x , $\theta > 0$, momentums $\alpha, \gamma, \omega, \tau$, parameters ν, β , batchsize $b \in \{1, \dots, n\}$, probability $p \in (0,1)$
- 2: Initialization: Choose $\mathbf{z}^0 = \mathbf{w}^0 \in (\text{dom } q)^M, \mathbf{y}^0 \in$ $(\mathbb{R}^d)^M, \, \mathbf{x}^0 \in \mathcal{L}^{\perp}. \, \, \text{Put } \mathbf{z}^{-1} = \mathbf{z}^0, \mathbf{w}^{-1} = \mathbf{w}^0, \, \mathbf{y}_f =$ $\mathbf{v}^{-1} = \mathbf{v}^0, \mathbf{x}_f = \mathbf{x}^{-1} = \mathbf{x}^0, m_0 = \mathbf{0}^{dM}$
- 3: **for** $k = 0, 1, 2, \dots$ **do**
- 4: Sample $j_{m,1}^k, \ldots, j_{m,b}^k$ independently from [n]
- 5: $S^k = \{j_{m,1}^k, \dots, j_{m,h}^k\}$
- Sample $j_{m,1}^{k+1/2}, \dots, j_{m,b}^{k+1/2}$ independently from [n]
- 7: $S^{k+1/2} = \{j_{m,1}^{k+1/2}, \dots, j_{m,b}^{k+1/2}\}$
- 8: $\delta^k = \frac{1}{b} \sum_{j \in S^k} \left(\mathbf{F}_j(\mathbf{z}^k) \mathbf{F}_j(\mathbf{w}^{k-1}) \right)$

$$+\alpha[\mathbf{F}_{j}(\mathbf{z}^{k})-\mathbf{F}_{j}(\mathbf{z}^{k-1})]\Big)+\mathbf{F}(\mathbf{w}^{k-1})$$

- 9: $\Delta_z^k = \delta^k \nu \mathbf{z}^k \mathbf{y}^k \alpha (\mathbf{y}^k \mathbf{y}^{k-1})$ 10: $\mathbf{z}^{k+1} = \operatorname{prox}_{\eta_z \mathbf{z}} (\mathbf{z}^k + \omega (\mathbf{w}^k \mathbf{z}^k) \eta_z \Delta_z^k)$
- 11: $\mathbf{y}_c^k = \tau \mathbf{y}^k + (1 \tau) \mathbf{y}_f^k$
- - 13: $\Delta_{\nu}^{k} = \nu^{-1}(\mathbf{y}_{c}^{k} + \mathbf{x}_{c}^{k}) + \mathbf{z}^{k+1} + \gamma(\mathbf{y}^{k} + \mathbf{x}^{k} + \nu \mathbf{z}^{k})$
 - 14: $\delta^{k+1/2} = \frac{1}{h} \sum_{j \in S^{k+1/2}} \left(\mathbf{F}_j(\mathbf{z}^{k+1}) \mathbf{F}_j(\mathbf{w}^k) \right)$
 - 15: $\Delta_x^k = \nu^{-1}(\mathbf{y}_c^k + \mathbf{x}_c^k) + \beta(\mathbf{x}^k + \delta^{k+1/2})$ 16: $\mathbf{v}^{k+1} = \mathbf{v}^k - n_{\nu} \Delta^k$
 - 17: $\mathbf{x}^{k+1} = \mathbf{x}^k (\mathbf{W}_T(Tk) \otimes \mathbf{I}_d)(\eta_x \Delta_x^k + m^k)$
 - $m^{k+1} = n_r \Delta^k + m^k$
 - $-(\mathbf{W}_T(Tk)\otimes \mathbf{I}_d)(\eta_x\Delta_x^k+m^k)$
 - 19: $\mathbf{y}_{f}^{k+1} = \mathbf{y}_{c}^{k} + \tau(\mathbf{y}^{k+1} \mathbf{y}^{k})$
 - 20: $\mathbf{x}_f^{k+1} = \mathbf{x}_c^k \theta(\mathbf{W}_T(Tk) \otimes \mathbf{I}_d)(\mathbf{y}_c^k + \mathbf{x}_c^k)$
- 21: $\mathbf{w}^{k+1} = \begin{cases} \mathbf{z}^k, & \text{with probability } p \\ \mathbf{w}^k, & \text{with probability } 1-p \end{cases}$
- 22: end for

Upper bounds matches lower bounds!

Upper bounds

fixed network

Algorithm 1

- 1: **Parameters:** Stepsizes $\eta, \theta > 0$, momentums α, β, γ , batchsize $b \in \{1, \dots, n\}$, probability $p \in (0, 1)$
- 2: Initialization: Choose $\mathbf{z}^0 = \mathbf{w}^0 \in (\operatorname{dom} g)^M, \mathbf{y}^0 \in$ \mathcal{L}^{\perp} . Put $\mathbf{z}^{-1} = \mathbf{z}^{0}$, $\mathbf{w}^{-1} = \mathbf{w}^{0}$, $\mathbf{v}^{-1} = \mathbf{v}^{0}$
- 3: **for** $k = 0, 1, 2 \dots$ **do**
- 4: Sample $j_{m,1}^k, \ldots, j_{m,h}^k$ independently from [n]
- $S^k = \{j_{m,1}^k, \dots, j_{m,b}^k\}$ Sample $j_{m,1}^{k+1/2}, \dots, j_{m,b}^{k+1/2}$ independently from [n] $S^{k+1/2} = \{j_{m,1}^{k+1/2}, \dots, j_{m,b}^{k+1/2}\}$
- 8: $\delta^k = \frac{1}{h} \sum_{j \in S^k} \left(\mathbf{F}_j(\mathbf{z}^k) \mathbf{F}_j(\mathbf{w}^{k-1}) \right)$

$$+\alpha [\mathbf{F}_j(\mathbf{z}^k) - \mathbf{F}_j(\mathbf{z}^{k-1})] + \mathbf{F}(\mathbf{w}^{k-1})$$

- 9: $\Delta^k = \delta^k (\mathbf{v}^k + \alpha(\mathbf{v}^k \mathbf{v}^{k-1}))$
- 10: $\mathbf{z}^{k+1} = \operatorname{prox}_{n\mathbf{g}}(\mathbf{z}^k + \gamma(\mathbf{w}^k \mathbf{z}^k) \eta\Delta^k)$
- $\Delta^{k+1/2} = \frac{1}{b} \sum_{j \in S^{k+1/2}} \left(\mathbf{F}_j(\mathbf{z}^{k+1}) \mathbf{F}_j(\mathbf{w}^k) \right)$
 - $\mathbf{y}^{k+1} = \mathbf{y}^k \theta(\mathbf{W} \otimes \mathbf{I}_d) (\mathbf{z}^{k+1} \beta(\Delta^{k+1/2} \mathbf{y}^k))$
- $\mathbf{w}^{k+1} = \begin{cases} \mathbf{z}^k, & \text{with probability } p \\ \mathbf{w}^k, & \text{with probability } 1 p \end{cases}$
- 14: end for
- $^*\mathbf{F}_j(\mathbf{z}) = (F_{1,j_{1,l}}(z_1), \dots, F_{M,j_{M,l}}(z_M))^T, l \in \{1,\dots,b\}$

time-varying network

Algorithm 2

- 1: **Parameters:** Stepsizes n_z , n_u , n_x , $\theta > 0$, momentums $\alpha, \gamma, \omega, \tau$, parameters ν, β , batchsize $b \in \{1, \dots, n\}$, probability $p \in (0,1)$
- 2: Initialization: Choose $\mathbf{z}^0 = \mathbf{w}^0 \in (\text{dom } q)^M, \mathbf{y}^0 \in$ $(\mathbb{R}^d)^M, \, \mathbf{x}^0 \in \mathcal{L}^{\perp}. \, \, \text{Put } \mathbf{z}^{-1} = \mathbf{z}^0, \mathbf{w}^{-1} = \mathbf{w}^0, \, \mathbf{y}_f =$ $\mathbf{v}^{-1} = \mathbf{v}^0, \mathbf{x}_f = \mathbf{x}^{-1} = \mathbf{x}^0, m_0 = \mathbf{0}^{dM}$
- 3: **for** $k = 0, 1, 2, \dots$ **do**
- 4: Sample $j_{m,1}^k, \ldots, j_{m,b}^k$ independently from [n]
- 5: $S^k = \{j_{m,1}^k, \dots, j_{m,h}^k\}$
- Sample $j_{m,1}^{k+1/2},\dots,j_{m,b}^{k+1/2}$ independently from [n]
- $S^{k+1/2} = \{j_{m,1}^{k+1/2}, \dots, j_{m,b}^{k+1/2}\}\$
- 8: $\delta^k = \frac{1}{h} \sum_{j \in S^k} \left(\mathbf{F}_j(\mathbf{z}^k) \mathbf{F}_j(\mathbf{w}^{k-1}) \right)$

$$+lpha[\mathbf{F}_j(\mathbf{z}^k)-\mathbf{F}_j(\mathbf{z}^{k-1})]\Big)+\mathbf{F}(\mathbf{w}^{k-1})$$

- 9: $\Delta_z^k = \delta^k \nu \mathbf{z}^k \mathbf{y}^k \alpha (\mathbf{y}^k \mathbf{y}^{k-1})'$ 10: $\mathbf{z}^{k+1} = \operatorname{prox}_{\eta_z \mathbf{g}} (\mathbf{z}^k + \omega (\mathbf{w}^k \mathbf{z}^k) \eta_z \Delta_z^k)$
- 11: $\mathbf{y}_c^k = \tau \mathbf{y}^k + (1 \tau) \mathbf{y}_f^k$

 - 13: $\Delta_{\nu}^{k} = \nu^{-1}(\mathbf{y}_{c}^{k} + \mathbf{x}_{c}^{k}) + \mathbf{z}^{k+1} + \gamma(\mathbf{y}^{k} + \mathbf{x}^{k} + \nu\mathbf{z}^{k})$
 - 14: $\delta^{k+1/2} = \frac{1}{h} \sum_{j \in S^{k+1/2}} \left(\mathbf{F}_j(\mathbf{z}^{k+1}) \mathbf{F}_j(\mathbf{w}^k) \right)$
 - 15: $\Delta_x^k = \nu^{-1} (\mathbf{y}_c^k + \mathbf{x}_c^k) + \beta (\mathbf{x}^k + \delta^{k+1/2})$ 16: $\mathbf{v}^{k+1} = \mathbf{v}^k - n_{\nu} \Delta^k$
 - 17: $\mathbf{x}^{k+1} = \mathbf{x}^k (\mathbf{W}_T(Tk) \otimes \mathbf{I}_d)(\eta_x \Delta_x^k + m^k)$
 - $m^{k+1} = n_r \Delta^k + m^k$
 - $-(\mathbf{W}_T(Tk)\otimes \mathbf{I}_d)(\eta_x\Delta_x^k+m^k)$
 - 19: $\mathbf{y}_{f}^{k+1} = \mathbf{y}_{c}^{k} + \tau(\mathbf{y}^{k+1} \mathbf{y}^{k})$
 - 20: $\mathbf{x}_f^{k+1} = \mathbf{x}_c^k \theta(\mathbf{W}_T(Tk) \otimes \mathbf{I}_d)(\mathbf{y}_c^k + \mathbf{x}_c^k)$
 - 21: $\mathbf{w}^{k+1} = \begin{cases} \mathbf{z}^k, & \text{with probability } p \\ \mathbf{w}^k, & \text{with probability } 1 p \end{cases}$
 - 22: **end for**

Upper bounds matches lower bounds!

Algorithms in the nondistributed stochastic setting

Thank you!