Chapitre 7

Méthode de contrôle et d'estimation stochastique des arrondis de calcul

Sur un ordinateur les algorithmes numériques (fini ou itératif ou approché) donnent des résultats approximés dus aux erreurs de codage ou d'arrondi qui peuvent se propager ou à des tests d'arrêt non robustes (arrêts trop tôt ou trop tard (calculs supplémentaires) qui donnent de mauvais résultats par rapport à la solution mathématique) ou à l'erreur de méthode.

Par conséquent, il est important d'étudier et de contrôler ces erreurs lors d'un calcul sur ordinateur en arithmétique flottante.

1 Estimation stochastique de la précision sur des résultats de calcul :

Il s'agit d'une méthode mise au point par La Porte et Vignes (1974) pour l'analyse des erreurs informatiques, appelée CESTAC. principe :

```
Soit un algorithme numérique défini par : procedure p (\mathcal{D}, r, +, -, \times, /, \text{ fonct}) \mathcal{D} \subset \mathbb{R} ensemble des données r \in \mathbb{R} résultat mathématique +, -, \times, / opérations dans \mathbb{R}
```

fonct fonction réelle.

Sur ordinateur, cet algorithme a pour image : PROCEDURE P $(D,R,\oplus,\ominus,\otimes,\oslash)$, Fonct) $D\subset \mathbb{F}$, ensemble des nombres flottants $R\in \mathbb{F}$ résultat informatique $\oplus,\ominus,\otimes,\oslash$ opérations dans \mathbb{F} Fonct fonction flottante.

A une procédure informatique P comportant k opérations (par exemple arithmétiques) correspond au plus 2^k résultats informatiques éventuellement distincts.

Si Z=XopY avec $op\in\{\oplus,\ominus,\otimes,\oslash\}$ alors 2 résultats sont possibles Z^+ et Z^- en considérant le résultat exact réel z=XopY et $op\in\{+,-,\times,/\}$ avec $z\not\in\mathbb{F}$. Exemple :

```
y = \sqrt{a} + b
lire(A)
lire(B)
Z := sqrt(A)
```

$$Y := Z + B$$

lire(A) donne 2 résultats possibles A^+ et A^- . De A^+ pour lire(B) on obtient 2 résultats possibles B^+ et B^- . De même de A^- . De B^+ pour l'instruction Z := sqrt(A) on a 2 résultats possibles Z^+ et Z^- ... An final on obtient 2^4 résultats possibles Y_i , $i = 1, \dots, 16$.

principe:

Générer plusieurs résultats Y_i et en déduire leurs moyenne et variance d'où leur précision.

Donc à partir de la procédure P, générer tous les résultats R_i $i=1,\cdots,2^k=N$ représentant le même résultat mathématique r.

On considère l'ensemble de ces résultats comme une population $\mathcal{P}(r)$ de

moyenne
$$\overline{R} = \frac{1}{N} \sum_{i=1}^{N} R_i$$

et de variance
$$\delta^2 = \frac{1}{N} \sum_{i=1}^{N} (R_i - R)^2$$

avec les hypothèses suivantes :

$$r \in [R_{min}, R_{max}]$$

La population $\mathcal{P}(r)$ est gaussienne

Alors $r \in [\overline{R} - 2\delta, \overline{R} + 2\delta]$ avec une probabilité de 95%

Si on remplace r par \overline{R} on commet une erreur absolue maximum 2δ avec une probabilité de 95% et une erreur moyenne δ avec une probabilité de 95%, d'où une erreur relative moyenne $\epsilon = \left|\frac{\delta}{\overline{R}}\right|$

Le nombre de chiffres significatifs moyen sur \overline{R} , noté C est donné par $10^{-C}=\epsilon$, c'est-à-dire $C=log_{10}$ $\left|\frac{\overline{R}}{\delta}\right|$

Le nombre de chiffres significatifs minimum sur \overline{R} , noté C_{min} est donné par $10^{-C} = 2\epsilon$, c'est-à-dire $C_{min} = log_{10} \left| \frac{\overline{R}}{\delta} \right| - log_{10}$ 2

Remarque

 $N = 2^k$ peut être très grand.

Il s'agit de générer peu de résultats R_i $i=1,\cdots,\nu\ll N$

On peut approximer une loi de Gauss par une loi de Student pour des échantillons avec N grand.

On obtient les meilleurs estimateurs de \overline{R} : $m = \frac{1}{\nu} \sum_{i=1}^{\nu} R_i$

et de
$$\delta^2$$
 : $s^2 = \frac{1}{\nu - 1} \sum_{i=1}^{\nu} (R_i - m)^2$

Alors par la loi de Student on a :

$$\operatorname{Prob}\left\{\overline{R}\in\left[m-t_{\gamma}\frac{s}{\sqrt{\nu}},m+t_{\gamma}\frac{s}{\sqrt{\nu}}\right]\right\}=1-\gamma\%$$

où t_{γ} est la valeur dans la table de Student pour $\nu-1$ degrés de liberté avec le

seuil de $\gamma\%$ Si $\nu=3$ avec un seuil de 5% $~t_{\gamma}\approx 4,303$

Si on remplace \overline{R} par m on commet une erreur absolue $\xi=t_{\gamma}\frac{s}{\sqrt{\nu}}$ avec une probabilité de 95%, d'où une erreur relative $\left|\frac{\xi}{m}\right|$ Le nombre de chiffres significatifs sur \overline{R} , noté C_m est donné par $10^{-C}=\left|\frac{\xi}{m}\right|$, c'est-à-dire $C_m=log_{10}$ $\left|\frac{m}{s}\right|-log_{10}$ $\frac{t_{\gamma}}{\sqrt{\nu}}$ avec une probabilité de 95% Si $\nu=3$ log_{10} $\frac{t_{\gamma}}{\sqrt{3}}\approx 0,395$ alors $C_m\approx log_{10}$ $\left|\frac{m}{s}\right|-0,4$

$\underline{\text{Mise en œuvre}}$:

La méthode CESTAC consiste à faire exécuter la procédure trois fois en perturbant de façon aléatoire le résultat de chaque opération arithmétique élémentaire ou les données :

En arithmétique vers 0 (de troncature) on ajoute de façon aléatoire au dernier bit de la mantisse la valeur 0 ou 1 avec la probabilité p(0)=1/2 et p(1)=1/2. En arithmétique au plus près (d'arrondi) on ajoute de façon aléatoire au dernier bit de la mantisse la valeur -1, 0, 1 avec les probabilités p(-1)=p(1)=1/4 et p(0)=1/2.

Logiciel:

Le logiciel CADNA (Control of Accuracy and Debugging for Numerical Applications) implante cette méthode.