

Model Mavericks

Introduction

- Project Goal: Compare advantages of pretrained neural networks versus randomly initialized ones for image classification.
- Key Focus: Highlight differences between pretrained and randomly initialized models
 - Convergence speed
 - Accuracy
 - Overall effectiveness

Previous Solutions

- CIFAR10 is widely used as a benchmark
- Many new papers, models try to use it to demonstrate capabilities (if applicable)
- Current SOTA uses Vision
 Transformer technology (600M+ params)

System Design

Containerization

- Yupiter Notebook
- Docker Compose

Data Processing

- Pytorch Tensor
- Augmentation

CNN from scratch

- 1.2 million parameters
- MaxPooling

ResNet18

- 11 million parameters
- Timm

About the Data - The CIFAR-10 Database

- 60,000 32x32 color images, 10 classes 6,000 images per class
- Split into 50,000 training images and 10,000 test images
- Augmentations:
 - Random crop with padding
 - Random horizontal flip
 - Conversion to PyTorch tensor
 - Normalization

Training

- Manual hyperparameter-optimization
 - o mainly LR, by factors of 10
- CrossEntropyLoss (for classification)
- Adam optimizer
- Utilized cuda

Results

ResNet18

- Fine-tuning
- Pre-existing Knowledge
- Faster accuracy convergence

ResNet18 Test Accuracy

Our Model

- Smaller size
- Randomly initiated weights
- Slower convergence
- Lower overall accuracy

Our Model

Summary

- Results
 - Models performed as expected
 - Hands-on Experience with ML Tools
 - Insights regarding ML DevOps
- Challenges
 - Containerisation
 - Version Control

```
inputs.to('cuda' i

ero_grad()
    net(inputs)
    criterion(outputs, labels)

s.backward()
optimizer.step()

running loss += loss.ite
```

ainloader, @