

Exercices de colles - Mathématiques Supérieures MPSI

ALEXANDRE LUTT

Lycée Henri IV

TABLE DES MATIÈRES Alexandre Lutt

Table des matières

I	Theorie des ensembles	2
2	Calcul algébrique	4
3	Nombres complexes et trigonométrie	7
4	Propriétés usuelles des fonctions	9
5	Suites numériques	10
6	Limites, continuité, dérivabilité	13
7	Analyse asymptotiques et développements limités	15
8	Arithmétique	18
9	Structures algébriques usuelles	20
10	Polynômes et fractions rationnelles	22
11	Intégration sur un segment	25
12	Equations différentielles	28
13	Espaces vectoriels et applications linéaires	31
14	Matrices, systèmes linéaires et déterminant	33
15	Groupes	36
16	Espaces préhilbertiens	38
17	Séries numériques	41
18	Dénombrement	44
10	Drahabilitás	47

Théorie des ensembles

(*) Exercice 1: Une histoire de bijection

- 1. Exhiber une bijection de \mathbb{N} dans \mathbb{N}^2 .
- 2. Exhiber une bijection de \mathbb{N} dans \mathbb{Z} .

(*) Exercice 2: A propos du disque unité

Soit $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$. Montrer que D n'est pas le produit cartésien de deux parties de \mathbb{R} .

(**) Exercice 1 : Composition itérée

Soit $f: \mathbb{R} \setminus \{-1\} \mapsto \mathbb{R}_+^*$ la fonction définie par $f(x) = \frac{x}{x+1}$. Déterminer, pour $n \in \mathbb{N}^*$, le domaine de définition et une expression simple de $f^n := f \circ f \circ \cdots \circ f$ (où le symbole f apparaît n fois).

(**) Exercice 2 : Le théorème de Cantor

- 1. Soit *E* un ensemble fini. Montrer qu'il n'existe pas de bijection de *E* dans $\mathcal{P}(E)$.
- 2. On suppose maintenant que E est un ensemble quelconque. Montrer que le résultat précédent persiste. On pourra étudier $A = \left\{ x \in E \mid x \notin f(x) \right\}$.

(**) Exercice 3 : Les fonctions caractéristiques

Soit A une partie d'un ensemble E. On appelle fonction caractéristique de A l'application de E dans $\{0,1\}$, notée \mathbb{I}_A , telle que :

Soit *A* et *B* deux parties d'un ensemble *E*. Montrer que les fonctions suivantes sont les fonctions caractéristiques d'ensembles à déterminer :

- 1. $1 \mathbb{I}_A$
- 2. $1_{A}1_{B}$

3.
$$\mathbb{1}_A + \mathbb{1}_B - \mathbb{1}_A \mathbb{1}_B$$

4.
$$\mathbb{1}_A + \mathbb{1}_B - 2\mathbb{1}_A\mathbb{1}_B$$

(**) Exercice 4: Un calcul de réciproque dans $\mathbb R$

Montrer que la fonction $f: \mathbb{R} \mapsto \mathbb{R}_+^*$ définie par $f(x) = \frac{e^x + 2}{e^{-x}}$ est bijective, et expliciter sa bijection réciproque.

(**) Exercice 5 : Un calcul de réciproque dans $\mathbb C$

Montrer que la fonction $f: \mathbb{C}\setminus\{-3\} \mapsto \mathbb{C}\setminus\{i\}$ définie par $f(z)=\frac{iz-i}{z+3}$ est bijective, et expliciter sa bijection réciproque.

(**) Exercice 6: Deux ensembles qui se ressemblent

Soit
$$A = \{(x, y) \in \mathbb{R}^2 \mid 4x - y = 1\}$$
 et $B = \{(t+1, 4t+3) \mid t \in \mathbb{R}\}$. Comparer A et B .

(**) Exercice 7: Une équation ensembliste

Soit *E* un ensemble, et $(A, B) \in \mathcal{P}(E)^2$. Résoudre l'équation, d'inconnue $X \in \mathcal{P}(E)$, $A \cup X = B$.

(***) Exercice 1 : Une bijection de $\mathbb N$ dans $\mathbb N^{\mathbb N}$

Existe-t-il une bijection de \mathbb{N} dans $\mathbb{N}^{\mathbb{N}}$?

Calcul algébrique

(*) Exercice 3: Quelques petits calculs avec les coefficients binomiaux

Soit $n \in \mathbb{N}^*$. Calculer:

$$\sum_{k=1}^{n} k \binom{n}{k}$$

$$\sum_{k=1}^{n} k^2 \binom{n}{k}$$

$$\sum_{k=1}^{n} (-1)^{k+1} k \binom{n}{k}$$

$$\sum_{k=0}^{n} \frac{1}{k+1} \binom{n}{k}$$

(*) Exercice 4: Encore des coefficients binomiaux

Soit $n \in \mathbb{N}^*$. On pose $S = \sum_{k=1}^n k \binom{n}{k}^2$ et $S' = \sum_{k=0}^{n-1} (n-k) \binom{n}{k}^2$.

- 1. Montrer que S = S'.
- 2. Calculer S + S' et en déduire la valeur de S.

(*) Exercice 5: Changement d'indice

Soit $n \in \mathbb{N}^*$. Calculer

$$\sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{n+1-k} \right)$$

(**) Exercice 8 : Somme et somme de carrés

Soit $n \in \mathbb{N}^*$, $(x_1, x_2, ..., x_n)$ des réels tels que :

$$\sum_{k=1}^{n} x_i = n = \sum_{k=1}^{n} x_i^2$$

Montrer que pour tout $k \in [1, n]$, $x_i = 1$.

(**) Exercice 9: Un produit

Pour $n \in \mathbb{N}^*$, $x \in \mathbb{R}$, on note $P_n(x) = \prod_{k=1}^n \left(1 + \frac{x}{k}\right)$.

- 1. Calculer $P_n(0)$, $P_n(1)$, $P_n(-n)$.
- 2. Montrer que pour tout $x \neq 0$, $P_n(x) = \frac{x+n}{x} P_n(x-1)$
- 3. Pour $p \in \mathbb{N}^*$, expliciter $P_n(p)$.

(**) Exercice 10: Un grand classique

Pour $n \in \mathbb{N}^*$, $x \in \mathbb{R}$, on note $S_n(x) = \sum_{k=0}^n x^k$.

- 1. Calculer $S_n(x)$.
- 2. En déduire la valeur de $\sum_{k=0}^{n} kx^k$

(**) Exercice 11: Minimum et maximum

Soit $n \in \mathbb{N}$. Calculer:

$$\sum_{i=0}^{n} \sum_{j=0}^{n} \min(i, j)$$

$$\sum_{i=0}^{n} \sum_{j=0}^{n} \max(i, j)$$

(***) Exercice 2: Transformation d'Abel

Soit $(a_n)_{n\in\mathbb{N}}$ et $(B_n)_{n\in\mathbb{N}}$ deux suites complexes. On définit, pour $n\in\mathbb{N}$, $A_n=\sum_{k=0}^n a_k$ et $b_n=B_{n+1}-B_n$.

- 1. Montrer que, pour tout $n \in \mathbb{N}$, $\sum_{k=0}^{n} a_k B_k = A_n B_n \sum_{k=0}^{n-1} A_k b_k$
- 2. En déduire la valeur de $\sum_{k=0}^{n} 2^{k} k$

(***) Exercice 3: Formule du trinôme

Déterminer le coefficient devant $x^a y^b z^c$ dans le développement de $(x + y + z)^n$.

(***) Exercice 4: Une formule surprenante

1. Soit $x \neq 0$. Montrer que

$$\frac{1 - (1 - x)^n}{x} = \sum_{k=0}^{n-1} (1 - x)^k$$

2. On pose, pour $x \in \mathbb{R}$, $f(x) = \sum_{k=1}^{n} \binom{n}{k} \frac{(-1)^k}{k} x^k$. Montrer que

$$f'(x) = -\sum_{k=0}^{n-1} (1-x)^k$$

3. En déduire que

$$\sum_{k=1}^{n} \frac{1}{k} = \sum_{k=1}^{n} \binom{n}{k} \frac{(-1)^{k+1}}{k}$$

(On pourra penser à intégrer l'égalité précédente)

Nombres complexes et trigonométrie

(*) Exercice 6 : Des équations dans $\mathbb C$

Résoudre dans \mathbb{C} :

$$(z+i)^n = (z-i)^n$$
 (on supposera $n \in \mathbb{N}$, $n \ge 2$)

$$z^3 - i = 6(z+i)$$

$$z^2 = \frac{1+i}{\sqrt{2}}$$
 et en déduire les valeurs de $\cos \frac{\pi}{8}$ et $\sin \frac{\pi}{8}$.

(*) Exercice 7 : Des racines dans $\mathbb C$

- 1. Déterminer les racines carrées complexes de i, 3 + 4i, 8 6i.
- 2. Déterminer les racines cubiques complexes de i, 2-2i, 11+2i.

(*) Exercice 8 : Un peu de géométrie

Montrer (et interpréter géométriquement) que pour tout $(u, v) \in \mathbb{C}^2$, on a

$$|u + v|^2 + |u - v|^2 = 2(|u|^2 + |v|^2)$$

(*) Exercice 9 : Un produit de conjugués

Soit $z = \rho e^{i\theta}$ un nombre complexe. Calculer $(z + \bar{z})(z^2 + \bar{z}^2)...(z^n + \bar{z}^n)$ en fonction de ρ et θ .

(**) Exercice 12: Une histoire de module

Déterminer tous les nombres complexes z tels que z, $\frac{1}{z}$ et z-1 aient le même module.

(**) Exercice 13: Regarder le nom du chapitre

Soit $n \in \mathbb{N}$, $(a, b) \in \mathbb{R}^2$. Calculer:

$$\sum_{k=0}^{n} \cos(a + kb)$$

$$\sum_{k=0}^{n} \sin(a+kb)$$

(**) Exercice 14: Une racine 7-ième ?

On pose $\omega_7 = e^{\frac{2i\pi}{7}}$. Calculer $\omega_7 + \omega_7^2 + \omega_7^4$ et $\omega_7^3 + \omega_7^5 + \omega_7^6$.

(**) Exercice 15: Un peu de trigonométrie

Montrer que:

$$\forall x > 0$$
, Arctan (x) + Arctan $\left(\frac{1}{x}\right) = \frac{\pi}{2}$

$$\frac{\pi}{4} = 4 \operatorname{Arctan}\left(\frac{1}{5}\right) - \operatorname{Arctan}\left(\frac{1}{239}\right)$$
 (formule de Machin)

(**) Exercice 16: Des réels positifs

Déterminer l'ensemble des entiers $n \in \mathbb{N}$ tels que $(1 + i\sqrt{3})^n$ soit un réel positif.

(***) Exercice 5 : Les morphismes de $\mathbb C$

Déterminer l'ensemble des fonctions $f:\mathbb{C}\mapsto\mathbb{C}$ vérifiant :

- $\forall z \in \mathbb{R}, f(z) = z$
- $\forall (z, z') \in \mathbb{C}^2$, f(z + z') = f(z) + f(z')
- $\forall (z, z') \in \mathbb{C}^2$, $f(z \times z') = f(z) \times f(z')$

Propriétés usuelles des fonctions

(*) Exercice 10 : Des inégalités utiles

1. Montrer que, pour tout $(x, y) \in \mathbb{R}^2$:

$$xy \le \frac{x^2}{2} + \frac{y^2}{2}$$

2. Montrer que, pour tout $x \ge 0$ et $n \in \mathbb{N}$:

$$(1+x)^n \ge 1 + nx$$

3. Montrer que, pour tout $x \in [0, \pi/2]$:

$$\frac{2x}{\pi} \le \sin x \le x$$

4. Montrer que, pour tout $x \in \mathbb{R}_+^*$:

$$x + \frac{1}{x} \ge 2$$

(On pourra penser à faire des dessins...)

(***) Exercice 6: L'inégalité arithmético-géométrique

Soit $n \in \mathbb{N}^*$, $(x_1, x_2, ..., x_n) \in \mathbb{R}^n_+$. Montrer l'inégalité arithmético-géométrique :

$$\sqrt[n]{x_1 x_2 ... x_n} \le \frac{x_1 + x_2 + ... + x_n}{n}$$

Suites numériques

(*) Exercice 11 : Un peu de calcul...

Les suites suivantes, définies par leur terme général, sont-elles convergentes? Si oui, calculer leurs limites.

$$u_n = \frac{n - (-1)^n}{n + (-1)^n}$$

$$u_n = \frac{\sin n}{n}$$

$$u_n = \sqrt[n]{n!}$$

$$u_n = \sum_{k=0}^n \frac{1}{\binom{n}{k}}$$

$$u_n = n \ln\left(\sqrt{\frac{n+1}{n-1}}\right)$$

(*) Exercice 12 : Les extractions de $\mathbb N$

Soit φ une extraction de \mathbb{N} . Montrer que $\varphi(n) \underset{n \to +\infty}{\longrightarrow} +\infty$.

(*) Exercice 13: Une suite définie par récurrence

Soit $u_0 \in \mathbb{R}$. On définit la suite $u = (u_n)_{n \in \mathbb{N}}$ par la relation suivante :

$$\forall n \in \mathbb{N}, \ u_{n+1} = u_n + \frac{1}{(n+1)^2}$$

Etudier la suite *u*.

(*) Exercice 14: Une condition suffisante de convergence

Soit $u=(u_n)_{n\in\mathbb{N}}$ une suite réelle. On suppose que $v:=(v_n)_{n\in\mathbb{N}}=(u_n^2)_{n\in\mathbb{N}}$ et $w:=(w_n)_{n\in\mathbb{N}}=(u_n^3)_{n\in\mathbb{N}}$ convergent. Montrer que u converge.

(**) Exercice 17: La série harmonique

1. Montrer que pour tout $n \in \mathbb{N}^*$:

$$\frac{1}{n+1} \leq \ln(n+1) - \ln(n) \leq \frac{1}{n}$$

2. On pose, pour $n \in \mathbb{N}^*$:

$$u_n = \sum_{k=1}^n \frac{1}{k} - \ln(n) := H_n - \ln(n)$$

Montrer que $(u_n)_{n\in\mathbb{N}^*}$ est convergente.

3. En déduire un équivalent simple de H_n .

(**) Exercice 18: Le nombre d'Euler

Pour $n \in \mathbb{N}^*$, on pose $u_n = \left(1 + \frac{1}{n}\right)^n$.

1. Montrer:

$$\forall \alpha \in]0,1[], \forall n \in \mathbb{N}, n \ge 2 \Longrightarrow (1-\alpha)^n > 1-na$$

- 2. En prenant $\alpha = \frac{1}{n^2}$, montrer que $(u_n)_{n \in \mathbb{N}^*}$ est croissante.
- 3. En prenant $\alpha = \frac{1}{6n+1}$, montrer que $(u_n)_{n \in \mathbb{N}^*}$ est majorée.
- 4. Conclure.

(**) Exercice 19: Le lemme de l'escalier

- 1. Soit $u := (u_n)_{n \in \mathbb{N}}$ une suite réelle. On suppose que $u_{n+1} u_n \underset{n \to +\infty}{\longrightarrow} l$. Montrer que $\frac{u_n}{n} \underset{n \to +\infty}{\longrightarrow} l$.
- 2. Soit $u_1 > 0$. On pose, pour $n \ge 2$, $u_{n+1} = \sqrt{\sum_{k=1}^n u_k}$. Montrer que $\frac{u_n}{n} \xrightarrow[n \to +\infty]{} 2$.

(**) Exercice 20: Une recherche d'équivalent

Soit $u := (u_n)_{n \in \mathbb{N}}$ la suite réelle définie par $u_0 > 0$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n + \frac{1}{u_n}$. Déterminer un équivalent de u_n quand $n \longrightarrow +\infty$.

(***) Exercice 7 : La moyenne de Césaro

Soit $u := (u_n)_{n \in \mathbb{N}^*}$ une suite réelle convergente de limite l. On pose, pour $n \in \mathbb{N}^*$:

$$v_n = \frac{u_1 + u_2 + \dots + u_n}{n}$$

Montrer que $v := (v_n)_{n \in \mathbb{N}^*}$ est convergente de limite l.

(***) Exercice 8: \mathbb{R} est complet!

Une suite réelle $u:=(u_n)_{n\in\mathbb{N}}$ est dite de Cauchy si :

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \geq N, \forall p \in \mathbb{N}, |u_{n+p} - u_n| \leq \varepsilon$$

Pour toute la suite, on considère $u:=(u_n)_{n\in\mathbb{N}}$ une suite de Cauchy.

- 1. Soit $v:=(v_n)_{n\in\mathbb{N}}$ une suite réelle convergente. Montrer que v est de Cauchy.
- 2. Montrer que u est bornée.
- 3. En déduire que \boldsymbol{u} admet une valeur d'adhérence.
- 4. Montrer que u est convergente.

Limites, continuité, dérivabilité

(*) Exercice 15: Une recherche de fonction

Soit $f \in C^0(\mathbb{R})$. On suppose que pour tout $x \in \mathbb{R}$, f(2x) = f(x). Montrer que f est constante.

(*) Exercice 16: Une fonction périodique

Soit $f \in C^0(\mathbb{R})$ une fonction périodique. Montrer que f est bornée.

(*) Exercice 17: Un maximum?

Soit $f \in C^0(\mathbb{R})$. On suppose que $f(x) \underset{x \to -\infty}{\longrightarrow} l_1$ et que $f(x) \underset{x \to +\infty}{\longrightarrow} l_2$, avec $(l_1, l_2) \in \mathbb{R}^2$. Montrer que f est bornée.

(**) Exercice 21: Un théorème de point fixe

Soit $f \in C^0([0,1],\mathbb{R})$. On suppose que $\int_0^1 f(t) dt = \frac{1}{2}$. Montrer que f admet un point fixe.

(**) Exercice 22: Un autre théorème de point fixe

Soit $f \in C^0([0,1])$. Montrer que f admet un point fixe.

(**) Exercice 23: Une première formule de la moyenne

Soient $(f,g) \in \left(C^0([a,b],\mathbb{R})\right)^2$. On suppose que g est positive. Montrer que :

$$\exists c \in [a,b], \int_a^b f(t)g(t) dt = f(c) \int_a^b g(t) dt$$

(**) Exercice 24: Encore un point fixe

Soit $f \in C^0(\mathbb{R}_+)$ et $\alpha \le 1$. On suppose que $\frac{f(x)}{x} \xrightarrow[x \to +\infty]{} \alpha$. Montrer que f admet un point fixe.

(***) Exercice 9: Une seconde formule de la moyenne

Soient $(f,g) \in (C^0([a,b],\mathbb{R})^2$. On suppose que g est positive et décroissante. Montrer que :

$$\exists c \in [a,b], \int_a^b f(t)g(t) \, \mathrm{d}t = f(a) \int_a^c g(t) \, \mathrm{d}t$$

(***) Exercice 10: Le lemme de Riemann-Lebesgue

Soit $f \in C^0([0,1],\mathbb{R})$. Montrer que :

$$\int_0^1 f(t)e^{int}\,\mathrm{d}t \underset{n \to +\infty}{\longrightarrow} 0$$

(***) Exercice 11: Applications propres

Soit $f \in C^0(\mathbb{R})$. Montrer qu'il y a équivalence entre les propositions suivantes.

- 1. $|f(x)| \underset{x \to \pm \infty}{\longrightarrow} +\infty$.
- 2. pour tout compact $K \subset \mathbb{R}$, $f^{-1}(K)$ est compact.

Analyse asymptotiques et développements limités

(*) Exercice 18: Du calcul!

1. Déterminer un développement limité à l'ordre 7 en 0 de $x \mapsto \tan x$.

$$\rightarrow \tan x = x + \frac{x^3}{3} + \frac{2}{15}x^5 + \frac{13}{315}x^7 + o(x^7)$$

2. Déterminer un développement limité à l'ordre 5 en 0 de $x \mapsto \arccos(x)$. $\longrightarrow \arccos(x) = \frac{\pi}{2} - x - \frac{1}{6}x^3 - \frac{3}{40}x^5 + o(x^5)$

$$\longrightarrow \arccos(x) = \frac{\pi}{2} - x - \frac{1}{6}x^3 - \frac{3}{40}x^5 + o(x^5)$$

3. Déterminer un développement limité à l'ordre 5 en $+\infty$ de $x \mapsto \ln\left(x + \sqrt{1 + x^2}\right)$.

$$\longrightarrow \ln\left(x + \sqrt{1 + x^2}\right) = x - \frac{1}{6}x^3 + \frac{3}{40}x^5 + o(x^5)$$

4. Déterminer un développement limité à l'ordre 6 en 0 de $x \mapsto (\cos x)^{\sin x}$. $\longrightarrow \arccos(x) = 1 - \frac{1}{2}x^3 + \frac{1}{8}x^6 + o(x^6)$

$$\longrightarrow \arccos(x) = 1 - \frac{1}{2}x^3 + \frac{1}{8}x^6 + o(x^6)$$

$$\longrightarrow (1+x)^{\frac{1}{x}} = e - \frac{e}{2}x + \frac{11e}{24}x^2 - \frac{7e}{16}x^3 + o(x^3)$$

6. Déterminer un développement limité à l'ordre 4 en 0 de $x \mapsto \frac{\sinh x - x}{x^3}$.

$$\longrightarrow \frac{\sinh x - x}{x^3} = \frac{1}{6} + \frac{1}{120}x^2 + \frac{1}{5040}x^4 + o(x^4)$$

(*) Exercice 19: Un peu d'intégration

Déterminer le développement limité à l'ordre 5 en 0 de $x \mapsto \arcsin(x)$.

$$\rightarrow$$
 arcsin(x) = x + $\frac{1}{6}x^3 + \frac{3}{40}x^5 + o(x^5)$

(*) Exercice 20: Un ordre minimal maximal

Déterminer $(a, b) \in \mathbb{R}^2$ tel que $\cos x - \frac{1 + ax^2}{1 + bx^2}$ soit en $o(x^n)$ avec n le plus grand possible.

(**) Exercice 25 : Pas en 0 !

- 1. Déterminer un développement limité à l'ordre 4 en 1 de $x \mapsto \sqrt{x}$.
- 2. Déterminer un développement limité à l'ordre 3 en 1 de $x \mapsto e^{\sqrt{x}}$.
- 3. Déterminer un développement limité à l'ordre 3 en $\frac{\pi}{3}$ de $x\mapsto \ln(\sin x)$).

(**) Exercice 26: Un développement limité camouflé!

Soit
$$f: x \mapsto \frac{x^4}{1+x^6}$$
. Déterminer $f^{(n)}(0)$.
 $\longrightarrow f^{(n)}(0) = n!(-1)^{(n-4)/6}$ si $n = 4[6]$, $f^{(n)}(0) = 0$ sinon

(**) Exercice 27: Un peu de dénombrement?

Soit $f: x \mapsto \frac{1}{(1-x)(1-x^2)(1-x^5)}$. Déterminer le développement limité à l'ordre 10 de f en 0 et en déduire le nombre de solutions dans \mathbb{N}^3 de l'équation a+2b+5c=10. $\longrightarrow \left|\left\{(a,b,c)\in\mathbb{N}^3\mid a+2b+5c=10\right\}\right|=10$

Calculer
$$l = \lim_{x \to +\infty} \left(\frac{\ln(1+x)}{\ln x} \right)^x$$
.

Déterminer un équivalent quand x tend vers $+\infty$ de $\left(\frac{\ln 1 + x}{\ln x}\right)^x - l$.

(***) Exercice 12: Une suite définie implicitement

Soit $n \in \mathbb{N}^*$.

- 1. Montrer que l'équation $\tan x = x$ admet une unique solution x_n dans $\left[n\pi \frac{\pi}{2}, n\pi + \frac{\pi}{2} \right]$.
- 2. Montrer que $x_n = n\pi + \frac{\pi}{2} + o(1)$.
- 3. Montrer que $x_n = n\pi \frac{1}{n\pi} + \frac{\pi}{2} + \frac{1}{2n^2\pi} + o\left(\frac{1}{n^2}\right)$.

(***) Exercice 13: Un développement limité astucieux

Déterminer le développement limité à l'ordre 100 en 0 de $x \mapsto \ln \left(\sum_{k=0}^{99} \frac{x^k}{k!} \right)$.

(***) Exercice 14: Une fonction réciproque

On pose $f: x \in \mathbb{R} \mapsto xe^{x^2}$.

- 1. Montrer que f réalise une bijection de $\mathbb R$ dans $\mathbb R$.
- 2. Montrer que f^{-1} admet un développement limité à l'ordre 4 en 0.
- 3. Calculer ce développement limité. $f^{-1}(y) = y y^3 + o(y^4)$

$$f^{-1}(y) = y - y^3 + o(y^4)$$

Arithmétique

(*) Exercice 21: Le dernier chiffre

Trouver le dernier chiffre de 5467⁴²⁹¹⁵⁵²³.

(*) Exercice 22: Les nombres premiers sont rares

Trouver 1000 entiers naturels consécutifs non premiers.

(**) Exercice 29: Des factorielles!

Soit $n \in \mathbb{N}^*$. Montrer que n! + 1 et (n + 1)! + 1 sont premiers entre eux.

(**) Exercice 30 : Un reste

Quel est le reste dans la division euclidienne de $(2222)^{3333}$ par $(3333)^{2222}$?

(**) Exercice 31: Des combinaisons

Montrer que si $(k, n) \in \mathbb{N}^2$, alors :

$$k \wedge n = 1 \implies n \left| \binom{n}{k} \right|$$

(**) Exercice 32: Des divisions

Montrer que, pour tout $n \in \mathbb{N}$:

- 1. 9 divise $2^{2n} + 15n 1$
- 2. 17 divise $3 \times 5^{2n-1} + 2^{3n-2}$
- 3. 9 divise $n^3 + (n+1)^3 + (n+2)^3$
- 4. n^2 divise $(n+1)^n 1$

(**) Exercice 33: Une division par 30

Montrer que pour tout $(m, n) \in \mathbb{Z}^2$, 30 divise $mn(m^4 - n^4)$.

(**) Exercice 34 : Les nombres de Fermat

On pose, pour $n \in \mathbb{N}$, $F_n = 2^{2^n} + 1$. Montrer que si $n \neq p$, F_n et F_p sont premiers entre eux.

(***) Exercice 15: Le carré d'un entier

- 1. Soit $(a, b) \in (\mathbb{N}^*)^2$. On suppose que a et b sont premiers entre eux et que ab est le carré d'un entier. Montrer que a et b sont des carrés d'entiers.
- 2. Montrer que le produit de trois entiers naturels non nuls consécutifs n'est jamais le carré d'un entier.

(***) Exercice 16: Un peu de probabilités

- 1. Soit N un entier positif à 100 chiffres. Déterminer la probabilité que N^3 se termine par 11.
- 2. Déterminer tous les entiers positifs à 100 chiffres dont le cube se termine par 11.
- 3. Montrer que le résultat persiste pour un entier à p chiffres, où $p \ge 3$.

Structures algébriques usuelles

(*) Exercice 23 : Algèbre de matrices

Soit $A \in \mathcal{M}_n(\mathbb{R})$. On note $\mathcal{C}(A) = \left\{ B \in \mathcal{M}_n(\mathbb{R}) \mid AB = BA \right\}$. Montrer que $\mathcal{C}(A)$ est une algèbre.

(*) Exercice 24: Isomorphes ou non?

Les groupes $\mathbb{Z}/8\mathbb{Z}$, $(\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/4\mathbb{Z})$ et $(\mathbb{Z}/2\mathbb{Z})^3$ sont-ils isomorphes?

(**) Exercice 35 : Les carrés de $\mathbb{Z}/p\mathbb{Z}$

Soit *p* un nombre premier impair.

- 1. Montrer que k est un carré dans $\mathbb{Z}/p\mathbb{Z}$ si et seulement si $k^{\frac{p-1}{2}}=1$
- 2. Si $x \in \mathbb{Z}/p\mathbb{Z}$, que peut valoir $x^{\frac{p-1}{2}}$?

(**) Exercice 36: Anneau des rationnels à dénominateur impair

On note $\mathscr{A} = \left\{ \frac{p}{q} \mid p \in \mathbb{Z}, q \in 2\mathbb{N} + 1 \right\}$. Montrer que $(\mathscr{A}, +, \times)$ est un anneau, et déterminer ses éléments inversibles.

(**) Exercice 37 : Plus petit sous-corps de $\mathbb R$

Quel est le plus petit sous-corps (au sens de l'inclusion) de $(\mathbb{R}, +, \times)$?

(**) Exercice 38 : Une extension de $\mathbb Q$

On note $\mathbb{Q}[\sqrt{3}] = \left\{ a + b\sqrt{3} \mid (a, b) \in \mathbb{Q}^2 \right\}.$

- 1. Montrer que $\mathbb{Q}[\sqrt{3}]$ est un sous-corps de \mathbb{R} .
- 2. Est-il isomorphe à $\mathbb{Q}[\sqrt{2}] = \left\{ a + b\sqrt{2} \mid (a, b) \in \mathbb{Q}^2 \right\}$?

(**) Exercice 39: Un anneau d'entiers

On pose $\mathbb{Z}[\sqrt{2}] = \left\{ a + b\sqrt{2} \mid (a, b) \in \mathbb{Z}^2 \right\}.$

- 1. Montrer que $(\mathbb{Z}[\sqrt{2}], +, \times)$ est un anneau.
- 2. On note, pour $(a,b) \in \mathbb{Z}^2$, $N(a+b\sqrt{2})=a^2-2b^2$. Montrer que pour tout $(x,y) \in \mathbb{Z}[\sqrt{2}]^2$, N(xy)=N(x)N(y)
- 3. En déduire que les éléments inversibles de $\mathbb{Z}[\sqrt{2}]$ sont de la forme $a+b\sqrt{2}$, où $a^2-2b^2=\pm 1$

(**) Exercice 40: Produit dans un corps fini

Soit K un corps fini. Calculer $\prod_{x \in K^*} x$

(**) Exercice 41: Suite d'anneaux

Soit \mathcal{A} un anneau principal.

- 1. On suppose que toute suite décroissante (pour l'inclusion) d'idéaux de $\mathscr A$ est stationnaire. Montrer que $\mathscr A$ est un corps.
- 2. Montrer que toute suite croissante (pour l'inclusion) d'idéaux de $\mathcal A$ est stationnaire.

(***) Exercice 17: Racine d'un idéal

Soient $(\mathcal{A}, +, \times)$ un anneau commutatif et \mathcal{I} un idéal de \mathcal{A} . On appelle racine de \mathcal{I} l'ensemble :

$$\sqrt{\mathcal{I}} = \left\{ x \in \mathcal{A} \mid \exists n \in \mathbb{N}^*, x^n \in \mathcal{I} \right\}$$

- 1. Montrer que $\sqrt{\mathcal{I}}$ est un idéal de \mathcal{A} .
- 2. Montrer que $\sqrt{\sqrt{\mathscr{I}}} = \sqrt{\mathscr{I}}$.
- 3. Soient $\mathcal I$ et $\mathcal I$ deux idéaux de $\mathcal A$. Montrer que :

(a)
$$\sqrt{\mathcal{I}} \cap \sqrt{\mathcal{J}} = \sqrt{\mathcal{I} \cap \mathcal{J}}$$

(b)
$$\sqrt{\mathcal{I}} + \sqrt{\mathcal{J}} \subset \sqrt{\mathcal{I} + \mathcal{J}}$$

(c)
$$\sqrt{\mathscr{I} + \mathscr{J}} = \sqrt{\sqrt{\mathscr{J}} + \sqrt{\mathscr{J}}}$$

Polynômes et fractions rationnelles

(*) Exercice 25: Des racines inattendues

Soit $n \in \mathbb{N}$ et $L_n = (X^2 - 1)^n$. Montrer que $L_n^{(n)}$ est scindé à racines simples, et que toutes ses racines sont dans [-1,1[.

(*) Exercice 26: Un peu de division euclidienne

Quel est le reste de la division euclidienne de X^n par $(X-1)^3$?

(*) Exercice 27: Un produit (fini) de sinus

Calculer, pour $n \ge 2$, $a_n := \prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{n}\right)$.

(*) Exercice 28 : Un système non linéaire

Résoudre dans \mathbb{C}^3 le système $\begin{cases} x+y+z=1\\ \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\\ xyz=-4 \end{cases}$

(*) Exercice 29 : Décomposition en éléments simples

Décomposer en éléments simples les fractions rationnelles suivantes :

$$a) \; \frac{X^2 + 3X + 2}{X^2 - 3X + 5} \quad b) \; \frac{X^2 + 1}{(X - 1)(X - 2)(X - 3)} \quad c) \; \frac{1}{X(X - 1)^2} \quad d) \; \frac{X^2 + 1}{(X + 1)^2(X - 1)^2} \quad e) \; \frac{1}{(X - 2)^3(X + 2)^3}$$

$$f) \; \frac{X^3}{X^3-1} \quad g) \; \frac{X^6}{(X^3-1)^2} \quad h) \; \frac{1}{X^6+1} \quad i) \; \frac{X^2+3}{X^5-3X^4+5X^3-7X^2+6X-2} \quad j) \; \frac{X^6+1}{X^5-X^4+X^3-X^2+X-1}$$

(*) Exercice 30 : Un peu de dérivation

Calculer, pour $n \in \mathbb{N}$, la dérivée n-ième de $\frac{1}{X^2 + 1}$.

(**) Exercice 42: Factorisation

Factoriser, sur \mathbb{R} et sur \mathbb{C} , $P = X^4 + X^3 + X^2 + X + 1$, et en déduire les valeurs de $\cos \frac{2\pi}{5}$ et $\sin \frac{2\pi}{5}$.

(**) Exercice 43 : Polynômes stabilisateurs de $\mathbb Z$

On note *E* la partie de $\mathbb{C}[X]$ formée des polynômes *P* vérifiant $\forall \alpha \in \mathbb{Z}, P(\alpha) \subset \mathbb{Z}$.

- 1. On pose $P_0 = 1$ et, pour tout $n \in \mathbb{N}^*$, $P_n = \frac{1}{n!} \prod_{k=1}^n (X+k)$. Montrer que pour tout $n \in \mathbb{N}$, $P_n \in E$.
- 2. Montrer que $E = \text{Vect}(P_n)_{n \in \mathbb{N}}$.

(**) Exercice 44: Un produit infini pour la fonction sinus

On pose, pour $n \in \mathbb{N}$ et $z \in \mathbb{C}$:

$$P_n(z) = \frac{1}{2i} \left(\left(1 + \frac{iz}{2n+1} \right)^{2n+1} - \left(1 - \frac{iz}{2n+1} \right)^{2n+1} \right)$$

- 1. Déterminer les racines de P_n .
- 2. Soit $z \in \mathbb{C}$. Déterminer la limite de $P_n(z)$ quand n tend vers $+\infty$.
- 3. En admettant que l'on peut intervertir produit infini et limite, (attention, c'est loin d'être toujours vrai!) exprimer sin(*z*) comme un produit infini.
- 4. En déduire, par un calcul formel, la valeur de $\sum_{n=1}^{+\infty} \frac{1}{n^2}$.

(**) Exercice 45: Un polynôme générateur de nombre premiers?

Soit $n \in \mathbb{Z}$ et $P \in \mathbb{Z}[X]$. On pose P(n) = m.

- 1. Montrer que pour tout $k \in \mathbb{Z}$, P(n+mk) est divisible par m.
- 2. Existe-t-il un polynôme $P \in \mathbb{Z}[X]$, non constant, tel que, pour tout $n \in \mathbb{Z}$, |P(n)| soit premier?

(***) Exercice 18: Théorème de Gauss-Lucas

1. Soit $P \in \mathbb{C}[X]$. On suppose que $P = \lambda \prod_{i=1}^{r} (X - a_i)^{r_i}$. Montrer que pour tout $x \in \mathbb{C} \setminus \{a_1, ..., a_r\}$:

$$\frac{P'(x)}{P(x)} = \sum_{i=1}^{r} \frac{r_i}{x - a_i}$$

2. Soit $P \in \mathbb{C}[X]$. On suppose P non constant. Montrer que si x est racine de P', alors x s'écrit comme combinaison convexe des racines de P.

(***) Exercice 19: La fonction sinus n'est pas rationnelle

Montrer que la fonction sinus n'est pas la restriction à]a, b[d'une fonction rationnelle.

Intégration sur un segment

(*) Exercice 31 : Un peu de calcul...

Justifier l'existence puis calculer les intégrales suivantes :

$$\int_0^1 \frac{\mathrm{d}t}{t^4 + 1}$$

$$\int_0^1 \sqrt{\tan x} \, \mathrm{d}x$$

$$\int_0^{\pi/2} x \sin(x) \, \mathrm{d}x$$

$$\int_0^1 \frac{\mathrm{d}t}{(1 + t^2)^2}$$

(*) Exercice 32 : Les intégrales de Wallis

On pose, pour $n \in \mathbb{N}$:

$$W_n = \int_0^{\pi/2} \cos^n(t) \, \mathrm{d}t$$

- 1. Soit $n \in \mathbb{N}$. Exprimer W_{n+2} en fonction de W_n .
- 2. En déduire, pour $n \in \mathbb{N}$, W_{2n} et W_{2n+1} .
- 3. En calculant nW_nW_{n+1} , déterminer un équivalent de W_n quand n tend vers $+\infty$.

(*) Exercice 33 : Une suite d'intégrales

On pose, pour $n \in \mathbb{N}$:

$$I_n = \int_0^1 \frac{x^n}{1+x} \, \mathrm{d}x$$

- 1. Quelle est la limite de $(I_n)_{n\in\mathbb{N}}$?
- 2. Calculer, pour $n \in \mathbb{N}$, $I_n + I_{n+1}$.
- 3. Déterminer la limite quand n tend vers $+\infty$ de :

$$\sum_{k=1}^{n} \frac{(-1)^{k+1}}{k}$$

(**) Exercice 46: Un équivalent

Soit $f \in C^1([0,1],\mathbb{R})$ telle que $f(1) \neq 0$. Déterminer la limite, puis un équivalent quand n tend vers $+\infty$ de :

$$\int_0^1 t^n f(t) \, \mathrm{d}t$$

(Penser à faire un dessin!)

(**) Exercice 47: Justifier ce qui semble naturel

Soit $(f,g) \in \left(C_m^0([0,1],\mathbb{R})\right)^2$. On suppose que $fg \ge 1$. Montrer que :

$$\left(\int_0^1 f\right)\left(\int_0^1 g\right) \ge 1$$

(**) Exercice 48 : L'intégrale de la bijection réciproque

Soit $f \in C^1(\mathbb{R}_+, \mathbb{R}_+)$. On suppose que f(0) = 0, f' > 0 et $f(x) \underset{x \to +\infty}{\longrightarrow} +\infty$. Montrer que pour tout $a \ge 0$, on a :

$$af(a) = \int_0^a f(t) dt + \int_0^{f(a)} f^{-1}(t) dt$$

(**) Exercice 49: Un peu de recherche de fonction

1. En admettant le théorème de Weierstrass, qui dit que pour tout $(a,b) \in \mathbb{R}^2$, l'ensemble des fonctions polynômiales est dense dans $C^0([a,b],\mathbb{R})$, déterminer toutes les fonctions $f \in C^0([0,1],\mathbb{R})$ telles que :

$$\forall n \in \mathbb{N}, \int_0^1 t^n f(t) dt = 0$$

2. Soit $N \in \mathbb{N}$ et $f \in C^0([0,1])$. On suppose que :

$$\forall n \in [0, N], \int_{0}^{1} t^{n} f(t) dt = 0$$

Montrer que f admet N+1 zéros dans [0,1].

(***) Exercice 20: Une limite normale

Soit $f \in C^0([0,1],\mathbb{R})$. Justifier l'existence de $\sup_{t \in [0,1]} |f(t)|$ et montrer que :

$$\left(\int_0^1 |f(t)|^n dt\right)^{1/n} \underset{n \to +\infty}{\longrightarrow} \sup_{t \in [0,1]} |f(t)|$$

(***) Exercice 21: Une drôle d'inégalité

Soit $f \in C^1([0,1],\mathbb{R})$ telle que f(0) = 0. Montrer que :

$$2\int_0^1 f^2(t) \, \mathrm{d}t \le \int_0^1 f'^2(t) \, \mathrm{d}t$$

(***) Exercice 22 : L'inégalité de Hölder

Soit $(p,q) \in \mathbb{R}_+^*$ tels que $\frac{1}{p} + \frac{1}{q} = 1$. On note, pour tout $f \in C^0([0,1])$:

$$||f||_{L^p} = \left(\int_0^1 |f|^p\right)^{1/p}$$

$$||f||_{L^q} = \left(\int_0^1 |f|^q\right)^{1/q}$$

1. Montrer que pour tout $(x, y) \in \mathbb{R}_+$:

$$xy \le \frac{x^p}{p} + \frac{y^q}{q}$$

2. Soit $(u,v) \in \left(C^0([0,1]\right)^2$. On suppose que $||u||_{L^p} = ||v||_{L^q} = 1$. Montrer l'inégalité de Hölder :

$$\int_{0}^{1} |uv| \le ||u||_{L^{p}} ||v||_{L^{q}}$$

3. Conclure.

Equations différentielles

(*) Exercice 34: Toujours du calcul

Résoudre les équations différentielles suivantes :

1.
$$y' - (x+1)(y+1) = 0$$

2.
$$(1+x^2)y'-2xy=0$$

3.
$$2x(1+x^2)y' + 2x^2y = 0$$

4.
$$y' + \frac{y}{\sqrt{1+x^2}} = 1$$

5.
$$x^2y'' + 4xy' - (x^2 - 2)y = 0$$
 (on pourra utiliser le changement de fonction $z = x^2y$)

6.
$$y'' + \frac{2x}{1+x^2}y' + \frac{y}{(1+x^2)^2} = 0$$
 (on pourra faire le changement de variable $t = Arctan x$)

(*) Exercice 35: Avec la fonction tangente hyperbolique

Résoudre les équations différentielles suivantes :

1.
$$y' + y \operatorname{th}(x) = 0$$
, $y(0) = 1$

2.
$$y' + y \operatorname{th}(x) = x \operatorname{th}(x)$$
, $y(0) = 0$

(*) Exercice 36: Polynômes et exponentielles

Résoudre les équations différentielles suivantes :

$$\begin{cases} y' + 2y = (x^2 - 1)e^{3x} \\ y' - 7y = (x^2 - 5x + 6)e^{2x} \\ y' - 3y = (x^2 - 2x + 1)e^x \end{cases}$$

(*) Exercice 37: Une recherche de fonction

Trouver toutes les applications $f : \mathbb{R} \to \mathbb{R}$ dérivables telles que :

$$\begin{cases} \forall x \in \mathbb{R}, \ f'(x) = f(x) + \int_0^1 f(t) \, \mathrm{d}t \\ f(0) = 1 \end{cases}$$

(*) Exercice 38: Un exemple simple

Résoudre l'équation différentielle $y'\sin(x) - y\cos(x) + 1 = 0$. Déterminer la solution valant 1 en $\frac{\pi}{4}$.

(**) Exercice 50: Encore une recherche de fonction

Soit $f : \mathbb{R} \to \mathbb{R}$ une application deux fois dérivable sur \mathbb{R} telle que :

$$\forall x \in \mathbb{R}, \ f''(x) - 2f'(x) + f(x) = 2e^x$$

- 1. Montrer que si $f' \ge 0$, alors $f \ge 0$.
- 2. La réciproque est-elle vraie?

(**) Exercice 51: Une drôle d'équation différentielle

On considère l'équation différentielle $y' - e^x e^y = a$. Déterminer ses solutions, en précisant soigneusement leurs intervalles de définition, pour :

- 1. a = 0
- 2. a = -1 (penser au changement de fonction z(x) = x + y(x))

(**) Exercice 52: Un changement de fonction

On souhaite déterminer toutes les solutions strictement positives de l'équation différentielles $y' + 2y = (x + 1)\sqrt{y}$. (*E*)

- 1. Soit $y \in \mathcal{D}(J, \mathbb{R}_+^*)$. Montrer que y est solution de (E) sur J si et seulement si y est solution d'une équation différentielle linéaire d'ordre 1 que l'on déterminera.
- 2. Déterminer les solutions strictement positives de (*E*) en précisant soigneusement sur quel(s) intervalle(s) *J* maximal(aux) chacune est solution de l'équation.

(**) Exercice 53: Une application classique de la variation de la constante

Résoudre, en utilisant la méthode de la variation de la constante, l'équation différentielle suivante sur \mathbb{R}_{+}^{*} :

$$x(1 + \ln^2(x))y' + 2\ln(x)y = 1$$

(***) Exercice 23: Une solution de l'équation de diffusion

On cherche à déterminer une solution particulière \tilde{u} du problème dit "de diffusion" :

$$\begin{cases} \forall (x,t) \in \mathbb{R} \times \mathbb{R}_+, \ \frac{\partial}{\partial t} u(x,t) = v \frac{\partial^2}{\partial x^2} u(x,t) \\ \forall x \in \mathbb{R}, u(x,0) = 0 \\ \forall t > 0, u(0,t) = u_0 \\ \forall t > 0, u(x,t) \underset{x \to +\infty}{\longrightarrow} 0 \end{cases}$$

- 1. En posant $s = \frac{x}{\sqrt{4vt}}$, et $\tilde{u}(x,t) = u_0 \times f(s)$, déterminer une équation différentielle vérifiée par \tilde{u} .
- 2. En introduisant la fonction (que l'on admettra bien définie, de classe \mathscr{C}^1 sur \mathbb{R} et vérifiant $g(p) \underset{p \to \pm \infty}{\longrightarrow} \pm 1$) qui à tout réel s associe $g(s) := \frac{2}{\sqrt{\pi}} \int_0^s e^{-p^2} dp$, déterminer l'expression de $\tilde{u}(x,t)$.

Espaces vectoriels et applications linéaires

(*) Exercice 39: Une preuve simple de la formule de Grassman

Soit E un espace vectoriel de dimension finie n, F et G deux sous-espaces vectoriels de E. On définit

$$\Psi : F \times G \longrightarrow F + G
(a,b) \mapsto a+b$$

En étudiant Ψ , prouver la formule de Grassmann :

$$\dim(F+G) = \dim(F) + \dim(G) - \dim(F \cap G)$$

(*) Exercice 40 : Une base de E

Soit E un \mathbb{K} -espace vectoriel de dimension finie $n \in \mathbb{N}^*$. Soient $f \in \mathcal{L}(E)$ et $x_0 \in E$ tels que $(f(x_0), f^2(x_0), ..., f^n(x_0))$ est libre. Montrer que $(x_0, f(x_0), ..., f^{n-1}(x_0))$ est une base de E et que f est un automorphisme de E.

(*) Exercice 41 : Pour la physique

Vérifier que $\left\{ f \in \mathbb{R}^{\mathbb{R}} \mid \exists (a,\phi) \in \mathbb{R}^2, \forall x \in \mathbb{R}, f(x) = a\cos(x-\phi) \right\}$ est un espace vectoriel sur \mathbb{R} . Quelle est sa dimension?

(*) Exercice 42: Parce qu'il faut l'avoir fait une fois...

Déterminer un supplémentaire (dans \mathbb{R}^4) de $F:=\left\{(x,y,z,t)\in\mathbb{R}^4\mid \begin{array}{c} x-y+2z-t=0\\ 3x-y+z-2t=0 \end{array}\right\}$

(**) Exercice 54: Deux lemmes de factorisation

Soit E, F, G trois \mathbb{K} -espaces vectoriels. On suppose E de dimension finie.

- 1. Soit $u \in \mathcal{L}(E, F)$, $w \in \mathcal{L}(E, G)$. Montrer qu'il existe $v \in \mathcal{L}(F, G)$ tel que $w = v \circ u$ si et seulement si Ker(u) est inclus dans Ker(w).
- 2. Soit $v \in \mathcal{L}(F,G)$, $w \in \mathcal{L}(E,G)$. Montrer qu'il existe $v \in \mathcal{L}(F,G)$ tel que $w = v \circ u$ si et seulement si Im(w) est inclus dans Im(v).

(**) Exercice 55: Construire un endomorphisme qui fait ce qu'on veut

Soit E un \mathbb{K} -espace vectoriel.

- 1. Soit $f \in \mathcal{L}(E)$. Montrer qu'il existe un automorphisme g de E tel que $f \circ g$ est une projection.
- 2. Soit $f \in \mathcal{L}(E)$. On suppose f non injectif. Montrer qu'il existe un automorphisme g de E tel que $f \circ g$ est nilpotent.

(**) Exercice 56: Une application nilpotente

Soit E un \mathbb{K} -espace vectoriel de dimension finie $n \in \mathbb{N}$. Soit $f \in \mathcal{L}(E)$ tel que :

$$\forall x \in E, \exists p_x \in \mathbb{N}^*, f^{p_x}(x) = 0$$

Montrer que f est nilpotente.

(**) Exercice 57: Des applications qui commutent

Soit E un \mathbb{K} -espace vectoriel. Soit p un projecteur de E et f un endomorphisme de E. Montrer que $p \circ f = f \circ p$ si et seulement si $\operatorname{Ker}(p)$ et $\operatorname{Im}(p)$ sont stables par f.

(**) Exercice 58: Les endomorphismes qui commutent avec tous les autres

Soit E un \mathbb{K} -espace vectoriel non nul. Déterminer l'ensemble des endomorpismes de E qui commutent avec tous les autres.

(***) Exercice 24: La croissance locale du rang

Soit $n \in \mathbb{N}^*$. Montrer la propriété suivante :

$$\forall A \in \mathcal{M}_n(\mathbb{K}), \exists r > 0, \forall M \in \mathcal{M}_n(\mathbb{K}), \|M - A\| \le r \implies \operatorname{rg}(M) \ge \operatorname{rg}(A)$$

Matrices, systèmes linéaires et déterminant

(*) Exercice 43: Problème d'existence

Soit $n \in \mathbb{N}^*$. Existe-t-il deux matrices A et B dans $\mathcal{M}_n(\mathbb{K})$ telles que $AB - BA = I_n$?

(*) Exercice 44 : Systèmes linéaires

Résoudre les systèmes suivants :

a)
$$\begin{cases} 2x + y + z = 3 \\ x + 2y + z = 6 \\ x + y + 2z = 8 \end{cases} \begin{cases} 2x + y = 7 \\ 2y = 3 \\ 2x + z = 1 \end{cases} \begin{cases} x + y - z = 12 \\ 2x + z = 6 \\ 2x + y - z = 4 \end{cases}$$

$$d) \begin{cases} x + 2y - 3z + 4t = 2 \\ 2x + 5y - 2z + t = 1 \\ 5x + 12y - 7z + 6t = 7 \end{cases} \begin{cases} x + 2z = 1 \\ -y + z = 2 \\ x - 2y = 1 \end{cases}$$

(*) Exercice 45: Calcul de déterminants

Calculer les déterminants suivants, en présentant (si possible) le résultat sous forme factorisée.

1.
$$\Delta_{\mathbf{n}} = \begin{vmatrix} a & b & b & \cdots & b \\ b & a & b & \cdots & b \\ b & b & a & \cdots & b \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b & b & b & \cdots & a \end{vmatrix}$$

$$2. \ \, D_n = \begin{vmatrix} 1 & n & n & \cdots & n \\ n & 2 & n & \cdots & n \\ n & n & 3 & \cdots & n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ n & n & n & \cdots & n \end{vmatrix}$$

$$3. \ M_n = \begin{vmatrix} 2 & 1 & 1 & \cdots & 1 \\ 1 & 3 & 1 & \cdots & 1 \\ 1 & 1 & 4 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & n+1 \end{vmatrix}$$

4.

$$A = \begin{vmatrix} a & c & c & b \\ c & a & b & c \\ c & b & a & c \\ b & c & c & a \end{vmatrix}, \quad B = \begin{vmatrix} a & 0 & b & 0 \\ 0 & a & 0 & d \\ c & 0 & d & 0 \\ 0 & c & 0 & b \end{vmatrix}, \quad C = \begin{vmatrix} a^2 & ab & ab & b^2 \\ ab & a^2 & b^2 & ab \\ ab & b^2 & a^2 & ab \\ b^2 & ab & ab & a^2 \end{vmatrix}, \quad D = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & \cos\gamma & \cos\beta \\ 1 & \cos\gamma & 1 & \cos\alpha \\ 1 & \cos\beta & \cos\alpha & 1 \end{vmatrix},$$

(*) Exercice 46: Un peu de calcul d'inverse

Montrer l'existence, puis calculer l'inverse des matrices suivantes :

$$A = \begin{pmatrix} 1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8 \end{pmatrix} \quad B = \begin{pmatrix} 1 & -2 & 2 \\ 2 & -3 & 6 \\ 1 & 1 & 7 \end{pmatrix} \quad C = \begin{pmatrix} 1 & 3 & -4 \\ 1 & 5 & -1 \\ 3 & 13 & -5 \end{pmatrix}$$

(**) Exercice 59: Matrices semblables

Soit $n \in \mathbb{N}^*$. Montrer que deux matrices sont semblables dans $\mathcal{M}_n(\mathbb{R})$, si et seulement si elles sont semblables dans $\mathcal{M}_n(\mathbb{C})$.

(**) Exercice 60: Les matrices nilpotentes

Soit $n \in \mathbb{N}^*$. Une matrice B de $\mathcal{M}_n(\mathbb{K})$ est dite nilpotente s'il existe $k \in \mathbb{N}^*$ tel que $B^k = 0_n$.

- 1. Soit *B* une matrice nilpotente de $\mathcal{M}_n(\mathbb{K})$. Montrer que $I_n + B$ et $I_n B$ sont inversibles. (On pensera à regarder ce qu'il se passe si n = 1...)
- 2. Soit A et B deux matrices nilpotentes de $\mathcal{M}_n(\mathbb{K})$ qui commutent. Montrer que A+B et AB sont nilpotentes.
- 3. Soit *B* une matrice nilpotente de $\mathcal{M}_n(\mathbb{K})$ et *A* une matrice inversible de $\mathcal{M}_n(\mathbb{K})$) telles que AB = BA. Montrer que A + B est inversible.

(**) Exercice 61: Les matrices de rang 1

Montrer qu'une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est de rang 1 si et seulement si il existe deux matrices colonnes $(X, Y) \in \mathcal{M}_{n,1}(\mathbb{K})^2$ non nulles, telles que $A = X^t Y$.

(**) Exercice 62: La matrice de Pascal

Soit $n \in \mathbb{N}^*$ et *s* l'endomorphisme de $\mathbb{R}_n[X]$ qui à chaque polynôme $P \in \mathbb{R}_n[X]$ associe P(X+1).

- 1. Donner la matrice de *s* dans la base $(1, X, X^2, ..., X^n)$ de $\mathbb{R}_n[X]$.
- 2. Montrer que cette matrice est inversible et calculer son inverse sans faire de calcul.

(**) Exercice 63: Le pivot de Gauss

Etablir que la complexité de l'algorithme du pivot de Gauss (qui consiste à inverser une matrice de $\mathcal{M}_n(\mathbb{K})$ en supprimant la i-ème inconnue des équations i+1,...,n) est en $O(n^3)$.

(***) Exercice 25 : La densité de $GL_n(\mathbb{R})$ dans $\mathcal{M}_n(\mathbb{R})$

Soit $n \in \mathbb{N}^*$. Soit $A \in \mathcal{M}_n(\mathbb{R})$. Montrer qu'il existe une suite $(A_k)_{k \in \mathbb{N}} \in (GL_n(\mathbb{R}))^{\mathbb{N}}$ telle que $A_k \underset{k \to +\infty}{\longrightarrow} A$.

(***) Exercice 26 : Le déterminant de Vandermonde

Soit $n \in \mathbb{N}^*$ et $(\alpha_1, \alpha_2, ..., \alpha_n)$ n réels distincts. Calculer :

$$V_{n} = \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ \alpha_{1} & \alpha_{2} & \alpha_{3} & \cdots & \alpha_{n} \\ \alpha_{1}^{2} & \alpha_{2}^{2} & \alpha_{3}^{2} & \cdots & \alpha_{n}^{2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \alpha_{1}^{n-1} & \alpha_{2}^{n-1} & \alpha_{3}^{n-1} & \cdots & \alpha_{n}^{n-1} \end{vmatrix}$$

CHAPITRE 15. GROUPES Alexandre Lutt

Chapitre 15

Groupes

(*) Exercice 47: Des groupes divers

Montrer que les ensembles suivants (pour les opérations associées) sont des groupes.

- 1. $SL_2(\mathbb{R}) = \left\{ M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) \mid ad bc = 1 \right\}$, muni de la multiplication matricielle.
- 2. $(\mathcal{P}(E), \Delta)$ où E est un ensemble dont on note $\mathcal{P}(E)$ l'ensemble des parties, et où Δ désigne la différence symétrique.
- 3. On pose, pour tout couple $(x, y) \in]-1,1[^2, x \star y = \frac{xy}{1+xy}]$. Montrer que $(]-1,1[,\star)$ est un groupe.

(*) Exercice 48: Un groupe d'ordre pair

Soit G un groupe d'ordre pair dont on note l'élément neutre e. Montrer qu'il existe un nombre impair d'éléments $x_i \in G$ tels que $x_i \neq e$ et $x_i^2 = e$.

(**) Exercice 64: Le centre d'un groupe

Soit (G,.) un groupe. On définit $Z(G) = \{x \in G \mid \forall y \in G, xy = yx\}$ le centre de G. Montrer que Z(G) est un sous-groupe abélien de G. On suppose de plus que G admet un unique élément x_0 d'ordre 2. Montrer que $x_0 \in Z(G)$.

(**) Exercice 65 : Un peu de densité

Soit θ un réel tel que $\frac{\theta}{\pi}$ est irrationnel.

- 1. Montrer que $H := \left\{ e^{ik\theta} \mid k \in \mathbb{Z} \right\}$ est un sous-groupe de \mathbb{U} .
- 2. Montrer que $\{x \in \mathbb{R} \mid e^{ix} \in H\}$ est un sous-groupe de \mathbb{R} contenant 0 et 2π .
- 3. En déduire que $(\cos(n\theta))_{n\in\mathbb{N}}$ est dense dans [-1,1].

(**) Exercice 66: Une condition pour être un sous-groupe

A quelle condition la réunion de deux sous-groupes d'un groupe G est-elle un sous-groupe de G?

(**) Exercice 67: A un coup de peinture près

Les groupes $(\mathbb{Z}/8\mathbb{Z}, +)$, $(\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, +)$ et $((\mathbb{Z}/2\mathbb{Z})^3, +)$ sont-ils isomorphes?

(**) Exercice 68: Théorème de Wilson

Montrer qu'un entier p est premier si et seulement si $(p-1)! \equiv -1[p]$.

(***) Exercice 27 : Sous-groupes additifs de $\ensuremath{\mathbb{R}}$

Soit G un sous-groupe de $(\mathbb{R}, +)$. Montrer que G est de la forme $\alpha \mathbb{Z}$ ou dense. (On pourra considérer $\alpha = \inf G \cap \mathbb{R}_+^*$) En déduire une caractérisation des fonctions continues sur \mathbb{R} admettant 1 et $\sqrt{2}$ comme périodes.

(***) Exercice 28: Des sous-groupes distincts

Soit (G,.) un groupe fini d'ordre 2n $(n \in \mathbb{N}^*)$, d'élément neutre e. On suppose qu'il existe deux sous-groupes distincts H et H' de (G,.), d'ordre n, tels que $G \cap G' = \{e\}$. Montrer que n = 2 et dresser la table de (G,.).

(***) Exercice 29: L'indicatrice d'Euler

On définit l'indicatrice d'Euler sur \mathbb{N}^* , notée φ , de la façon suivante. Si $n \in \mathbb{N}^*$, $\varphi(n)$ est égal au nombre d'entiers de $[\![1,n]\!]$ premiers avec n. Soit $n \in \mathbb{N}^*$. Montrer que :

$$\varphi(n) = \sum_{d|n} \varphi(d)$$

Espaces préhilbertiens

(*) Exercice 49 : Théorème de représentation de Riesz

1. Soit $(E, \langle .,. \rangle)$ un espace euclidien. On note E^* le dual de E et on définit, pour $a \in E$:

$$\varphi_a : E \longrightarrow \mathbb{R} \\
x \mapsto \langle x, a \rangle$$

Montrer que l'application Ψ , définie ci-dessous, constitue un isomorphisme de E dans E^* .

$$\Psi : E \longrightarrow E^*$$

$$a \mapsto \varphi_0$$

2. On se place dans $E = \mathbb{R}_n[X]$. Montrer qu'il existe un unique polynôme $Q \in \mathbb{R}_n[X]$ tel que, pour tout $P \in \mathbb{R}_n[X]$:

$$\int_{-1}^{1} P(t)Q(t) dt = P(0)$$

(*) Exercice 50: Un unique produit scalaire

Déterminer une expression explicite de l'unique produit scalaire sur \mathbb{R}^2 pour lequel la famille $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$) est orthonormale.

(*) Exercice 51: Un exemple typique d'orthonormalisation

On se place dans \mathbb{R}^4 muni de son produit scalaire usuel. On pose $U = \begin{pmatrix} 1 \\ 2 \\ -1 \\ 1 \end{pmatrix}$, $V = \begin{pmatrix} 0 \\ 3 \\ 1 \\ -1 \end{pmatrix}$ et F = Vect(U, V).

Déterminer une base orthonormée de F et expliciter F^{\perp} .

(*) Exercice 52: Une projection

Montrer qu'il existe un unique couple $(a_0, b_0) \in \mathbb{R}^2$ (et le calculer) tel que :

$$\inf_{(a,b)\in\mathbb{R}^2} \int_0^1 (x^3 - ax - b)^2 \, \mathrm{d}x = \int_0^1 (x^3 - a_0x - b_0)^2 \, \mathrm{d}x$$

(**) Exercice 69 : Deux applications de l'inégalité de Cauchy-Schwarz

1. Montrer que:

$$\psi : \mathcal{M}_{n,1}(\mathbb{R}) \times \mathcal{M}_{n,1}(\mathbb{R}) \longrightarrow \mathbb{R}$$

$$(X,Y) \mapsto {}^{t}XY$$

définit un produit scalaire sur $\mathcal{M}_{n,1}(\mathbb{R})$.

2. Soit $A = (a_{ij})_{1 \le i, j \le n} \in \mathcal{O}_n(\mathbb{R})$. Montrer que :

$$|\sum_{1 \le i,j \le n} a_{ij}| \le n$$

- 3. Etudier les cas d'égalité.
- 4. En exhibant un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$, montrer :

$$\sum_{1 \leq i,j \leq n} |a_{ij}| \leq n \sqrt{n}$$

5. Etudier les cas d'égalité.

(**) Exercice 70: Une histoire de projection

Déterminer $(a,b) \in \mathbb{R}^2$ tels que $I_{a,b} := \int_0^1 (x^3 - ax - b)^2 dx$ soit minimale.

(**) Exercice 71: Somme de produits scalaires

Soit $(E,\langle.,.\rangle)$ un espace euclidien, $x_1,...,x_n$, n vecteurs normés de E tels que $\sum_{i=1}^n x_i = 0$. Montrer que :

$$\sum_{1 \leq i < j \leq n} \langle x_i, x_j \rangle = -\frac{n}{2}$$

(***) Exercice 30 : Une base orthonormée d'un espace des polynômes

Soit $E = \mathbb{R}_n[X]$. On définit, pour $(P, Q) \in E^2$, $\langle P, Q \rangle = \int_{-1}^1 P(t)Q(t) dt$.

- 1. Montrer que $(E, \langle .,. \rangle)$ est un espace euclidien.
- 2. On pose, pour $p \in [0, n]$, $L_p = \left((X^2 1)^p \right)^{(p)}$. Montrer que $\left(\frac{L_p}{\|L_p\|} \right)_{p \in [0, n]}$ est l'orthonormalisée de Schmidt de la base canonique de E, et déterminer $\|L_p\|$.

(***) Exercice 31 : L'identité du parallélogramme

1. Soit $(E, \langle .,. \rangle)$ un espace euclidien. Montrer que, pour tout $(x, y) \in E^2$:

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$$

2. Soit $(E, \|.\|)$ un espace vectoriel normé de dimension finie. On suppose que pour tout $(x, y) \in E^2$:

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$$

Montrer que $\|.\|$ est associée à un produit scalaire sur E.

(***) Exercice 32: Une CNS pour avoir un produit scalaire

Soit $(a, b, c, d) \in \mathbb{R}^4$. Pour $(u = (x_1, y_1), v = (x_2, y_2)) \in (\mathbb{R}^2)^2$, on pose :

$$\phi(u, v) = ax_1x_2 + bx_1y_2 + cx_2y_1 + dy_1y_2$$

Déterminer une condition nécessaire et suffisante pour que ϕ soit un produit scalaire sur \mathbb{R}^2 .

Séries numériques

(*) Exercice 53: Un exemple important

Soit $u:=(u_n)_{n\in\mathbb{N}}$ une suite décroissante de limite nulle. Montrer que la série $\sum (-1)^n u_n$ converge.

(*) Exercice 54: Un peu de calcul...

Déterminer la nature des séries suivantes :

$$\sum \frac{(-1)^n}{\cos(n) + n^{3/4}}$$

$$\sum \frac{(-1)^n}{(-1)^n + \sqrt{n}}$$

$$\sum \ln\left(1 + \frac{(-1)^n}{n}\right)$$

$$\sum \sin\left(\frac{\pi n^2}{n+1}\right)$$

$$\sum \frac{\sqrt{n+1} - \sqrt{n}}{n}$$

(*) Exercice 55: Encore un peu de calcul...

Justifier l'existence puis calculer les sommes suivantes :

$$\sum_{n=1}^{+\infty} nx^{n-1} \text{ (pour } x \in]-1,1[)$$

$$\sum_{n=k+1}^{+\infty} n(n-1)...(n-k)x^{n-k-1} \text{ (pour } x \in]-1,1[\text{ et } k \in \mathbb{N})$$

$$\sum_{n=0}^{+\infty} (n+1)3^{-n}$$

$$\sum_{n=3}^{+\infty} \frac{2n-1}{n^3-4n}$$

(*) Exercice 56: Attention à l'ordre!

Pour $(n, p) \in \mathbb{N}^2$ tel que $p \ge 2$, on pose :

$$u_{n,p} = \frac{1}{p} \left(\frac{p-1}{p} \right)^n - \frac{1}{p+1} \left(\frac{p}{p+1} \right)^n$$

Comparer

$$\sum_{n=0}^{\infty} \sum_{p=2}^{\infty} u_{n,p} \text{ et } \sum_{p=2}^{\infty} \sum_{n=0}^{\infty} u_{n,p}$$

.

(**) Exercice 72 : Des séries alternées

Caractériser les suites $u := (u_n)_{n \in \mathbb{N}}$ positives telles que $\sum u_n$ converge et qu'il existe $\alpha \ge 1$ tel que :

$$\sum_{n=0}^{+\infty} (-1)^n u_n = \alpha \sum_{n=0}^{+\infty} u_n$$

Que dire de plus si on suppose *u* décroissante?

(**) Exercice 73: Les séries de Bertrand

On pose, pour $n \in \mathbb{N}^*$, et $(\alpha, \beta) \in \mathbb{R}^2$:

$$u_n = \frac{1}{n^\alpha \ln^\beta(n)}$$

Discuter la nature de la série $\sum u_n$ en fonction des valeurs de α et β .

(**) Exercice 74: L'inverses des nombres impairs

On donne $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$. Justifier l'existence et calculer $\sum_{n=1}^{+\infty} \frac{1}{(2n+1)^2}$.

(**) Exercice 75 : Des sommes partielles croisées

Soit $u:=(u_n)_{n\in\mathbb{N}}$ et $v:=(v_n)_{n\in\mathbb{N}}$. On note, pour $n\in\mathbb{N}$, $S_n=\sum_{k=0}^n u_k$ et $T_n=\sum_{k=0}^n v_k$. On suppose que pour tout $n\in\mathbb{N}$, $S_{n+1}+T_n=S_n+T_{n+1}$. Que dire de u et v?

(**) Exercice 76 : Irrationalité de e

- 1. Montrer que la série de terme général $\left(\frac{1}{n!}\right)_{n\in\mathbb{N}}$ est convergente. On admettra que sa limite vaut e.
- 2. On pose, pour $n \in \mathbb{N}$, $u_n = \sum_{k=0}^n \frac{1}{k!}$ et $v_n = u_n + \frac{1}{nn!}$. Montrer que $u := (u_n)_{n \in \mathbb{N}}$ et $v = (v_n)_{n \in \mathbb{N}}$ sont adjacentes.
- 3. En déduire que *e* est irrationnel.

(***) Exercice 33: La série des inverses des nombres premiers

Pour $n \in \mathbb{N}^*$, on note p_n le n-ième nombre premier. Montrons que $\sum_{n=1}^{+\infty} \frac{1}{p_n} = +\infty$.

- 1. Montrer que la série de terme général $\frac{1}{p_n}$ est de la même nature que la série de terme général $\ln\left(\left(1-\frac{1}{p_n}\right)^{-1}\right)$.
- 2. Montrer que pour tout $N \in \mathbb{N}^*$:

$$\sum_{k=1}^{n} \frac{1}{k} \le \sum_{n=1}^{+\infty} \ln\left(\left(1 - \frac{1}{p_n}\right)^{-1}\right)$$

(on pourra utiliser la décomposition en facteurs premiers des entiers de $[\![1,N]\!]$)

Dénombrement

(*) Exercice 57: Nombre de chemins

On se place dans le plan. On part du point de coordonnées (0,0) pour rejoindre le point de coordonnées (p,q) (où p et q sont des entiers naturels donnés) en se déplaçant à chaque étape d'une unité vers la droite ou vers le haut. Combien y a-t-il de chemins possibles?

(*) Exercice 58: Jouons au poker

Une main au poker est un ensemble de cinq cartes prises dans un jeu de 32 cartes. Combien y a-t-il de mains contenant :

- 1. une paire (exactement deux cartes de même hauteur)?
- 2. deux paires?
- 3. un brelan (exactement trois cartes de même hauteur)?
- 4. un carré (exactement quatre cartes de même hauteur)?
- 5. une couleur (cinq cartes de même couleur)?
- 6. un full (exactement trois cartes d'une même hauteur et deux cartes d'une même hauteur, différente de la première)?

(*) Exercice 59 : La formule de Pascal généralisée

Soit $(n, p) \in \mathbb{N}^2$. Montrer que :

$$\sum_{k=0}^{n} \binom{p+k}{p} = \binom{n+p+1}{p+1}$$

(**) Exercice 77: Une formule de Vandermonde

Soit $(n, m, p) \in (\mathbb{N})^3$. Montrer de deux façons l'égalité de Vandermonde :

$$\sum_{k=0}^{p} \binom{n}{k} \binom{m}{p-k} = \binom{n+m}{p}$$

(**) Exercice 78: Un peu de rangement

On range p boules dans n cases. Combien y a-t-il de rangements possibles si :

- 1. les boules et les cases sont discernables, chaque case ne pouvant recevoir qu'une seule boule au maximum?
- 2. les boules et les cases sont discernables, chaque case pouvant recevoir un nombre quelconque de boules?
- 3. les boules sont indiscernables et les cases sont discernables, chaque case ne pouvant recevoir qu'une seule boule au maximum?
- 4. les boules sont indiscernables et les cases sont discernables, chaque case pouvant recevoir un nombre quelconque de boules?

(**) Exercice 79: Une histoire de permutations

Combien y a-t-il de bijections f de [1,12] possédant :

- 1. la propriété : n est pair $\implies f(n)$ est pair?
- 2. la propriété : n est divisible par $3 \implies f(n)$ est divisible par 3?
- 3. ces deux propriétés à la fois?

(**) Exercice 80 : Un seul élément

Soit E un ensemble à n éléments, et $A \subset E$ une partie de E à p éléments. Combien y a-t-il de parties de E contenant exactement un seul élément de E?

(***) Exercice 34: Une somme de uns

Soit $(n, k) \in (\mathbb{N}^*)^2$, $k \le n$. Combien y a-t-il de façons d'écrire n comme somme de k entiers naturels non nuls?

(***) Exercice 35: Les applications croissantes

Soit $(n, p) \in (\mathbb{N}^*)^2$.

- 1. Dénombrer les applications croissantes de [1, n] dans [1, p].
- 2. Dénombrer les applications strictement croissantes de [1, n] dans [1, p].

(***) Exercice 36: Les parties d'un ensemble

Soit E un ensemble fini de cardinal n. Calculer :

$$\sum_{A \subseteq E} |A|$$

$$\sum_{A \subseteq E} (-1)^{|A|}$$

$$\sum_{A,B \subseteq E} |A \cap B|$$

$$\sum_{A,B \subseteq E} |A \cup B|$$

$$\left| \left\{ A, B \subset E \mid A \cap B = \emptyset \right\} \right|$$
$$\left| \left\{ A, B \subset E \mid A \subset B \right\} \right|$$

Probabilités

(*) Exercice 60 : Une variable aléatoire particulière

Soit X une variable aléatoire finie strictement positive. Montrer que $\mathbb{E}\left(X + \frac{1}{X}\right) \ge 2$.

(*) Exercice 61: Des boules

Une urne contient 4 boules blanches et 3 noires. On tire 3 boules une par une sans remise. Quelle est la probabilité que la première soit blanche, la seconde blanche et la troisième noire?

(**) Exercice 81 : Des cartes

Soit $n \in \mathbb{N}^*$. On dispose de 2n cartes numérotées de 1 à 2n. On les tire une par une au hasard sans remise. Quelle est la probabilité que les cartes avec un numéro impair soient toutes tirées avant les cartes avec un numéro pair?

(**) Exercice 82: Une histoire d'urnes

Une urne contient des boules blanches et des boules noires. Soit $n \in \mathbb{N}^*$. On effectue un tirage de n boules de l'urne. Pour $k \in [\![1,n]\!]$, on suppose que la probabilité que la k-ième boule tirée soit blanche, sachant que les k-1 premières l'étaient, est égale à $\frac{1}{k+1}$. Calculer la probabilité que les n boules tirées soient blanches.

(**) Exercice 83 : Une marche aléatoire sur $\mathbb Z$

Soient $n \in \mathbb{N}^*$ et $p \in]0,1[$. Un pion se déplace sur une droite à partir de l'origine. A chaque seconde, il se déplace d'une unité vers la droite avec la probabilité p ou vers la gauche avec une probabilité 1-p. Soit X son abcisse au bout de n secondes. Donner la loi et l'espérance de X.

(**) Exercice 84: Un déterminant aléatoire

Un déterminant d'ordre 3 est formé de 9 coefficients aléatoires indépendants prenant la valeur 1 avec la probabilité $\frac{1}{2}$ et la valeur -1 avec la probabilité $\frac{1}{2}$. Calculer l'espérance et la variance de ce déterminant.

(**) Exercice 85 : Des variables aléatoires indépendantes ?

Soit $p \in]0,1[$. Soient X et Y deux variables aléatoires indépendantes suivant la loi $\mathcal{B}(p)$. Calculer le coefficient de corrélation entre X+Y et X-Y. Ces nouvelles variables aléatoires sont-elles indépendantes?

(**) Exercice 86 : Une drôle de loi conjointe

Soient X et Y deux variables aléatoires à valeurs dans \mathbb{N} , telles que :

$$\forall (i,j) \in \mathbb{N}^2, \mathbb{P}(X=i,Y=j) = \frac{a}{b^{i+j}}$$

- 1. Pour quelles valeurs de *a* et *b* ceci a-t-il un sens?
- 2. On suppose que ces conditions sont vérifiées. *X* et *Y* sont-elles alors indépendantes?

(**) Exercice 87: Encore une loi conjointe

Soit (X, Y) un couple de variables aléatoires à valeurs dans \mathbb{N}^2 de loi conjointe :

$$\forall (i,j) \in \mathbb{N}^2, \mathbb{P}(X=i,Y=j) = \frac{(i+j)\lambda^{i+j}}{i!j!e}$$

- 1. Déterminer la valeur de λ pour que l'expression précédente soit bien une loi de probabilité.
- 2. Les variables aléatoires X et Y sont-elles indépendantes?
- 3. Calculer l'espérance de la variable aléatoire 2^{X+Y} .

(**) Exercice 88: Un tournoi

Une infinité de joueurs $(A_i)_{i \in \mathbb{N}^*}$ s'affrontent de la manière suivante : chaque manche oppose deux concurrents qui ont chacun la probabilité $\frac{1}{2}$ de gagner. La première manche oppose A_1 et A_2 et, à l'étape n (si elle a lieu), le gagnant de l'épreuve précédente affronte le joueur A_{n+1} . Le jeu s'arrête lorsque, pour la première fois, un joueur gagne deux manches consécutives.

- 1. Soit $n \in \mathbb{N}^*$. Quelle est la probabilité que l'étape n ait lieu?
- 2. En déduire que le jeu s'arrête presque sûrement.
- 3. Quelle est la probabilité que le joueur A_n gagne?