Conformal Counterfactual Inference under Hidden Confounding (KDD'24)

Zonghao Chen¹*, **Ruocheng Guo²***, Jean-Francois Ton², Yang Liu² 1 UCL

- 2 ByteDance Research
- * Equal contribution

Introduction

• Point estimate of outcome is often not enough for decision making in high-stake applications.

Example

A confidence interval, or at least a p-value, is required by the U.S. Food and Drug Administration to approve a drug, in order to guarantee sufficient evidence and confidence in favor of the drug [1].

[1] Lei, Lihua, and Emmanuel J. Candès. "Conformal inference of counterfactuals and individual treatment effects." Journal of the Royal Statistical Society Series B: Statistical Methodology 83.5 (2021): 911-938.

Conformal Prediction (CP)

- CP Predicts confidence interval that has guaranteed probability to cover the ground truth
 - Weak assumption: only need exchangeability between calibration and test data, no assumption on error distribution
 - Low cost: only need inference on calibration set
 - Model agnostic: works with any ML models

How does CP work?

Example: Split CP for Regression

- Given a regression model, a calibration dataset, and a predefined coverage rate $1-\alpha$
 - Assumptions: calibration set is exchangeable with test set and has ground truth
- Make predictions on a calibration dataset
- Obtain distribution \hat{F} of nonconformity scores $\mathbf{s_i} = |\hat{y_i} y_i|$
- Compute the $1-\alpha$ -th quantile of nonconformity scores $q_{\hat{F}}$
- Create confidence interval $C_{SCP}(x_i) = [\hat{y}_i q_{\hat{F}}, \hat{y}_i + q_{\hat{F}}]$
- With exchangeability, test data shares same distribution F as calibration data, $\mathcal{C}_{SCP}(x_i)$ has guaranteed marginal coverage rate $1-\alpha$

Motivating example

- What is the effect of the treatment T (pills or surgery) on the outcome Y (recovery rate), given both observed confounding X (severity of disease) and unobserved confounding U (patient adherence to treatment)?
- For an individual, what is the estimated treatment effect? What is the confidence interval with guaranteed coverage of the estimate?

Problem

- A merged dataset with n observational and m interventional data (n>>m)
 - $\mathcal{D} = \{(x_i, y_i)_{i=1}^n \sim P_{\{X,Y\}}\} \cup \{(x_i, y_i)_{i=n+1}^{n+m} \sim P'_{\{X,Y\}}\}.$
- Goal: construct confidence interval $C(x_i)$ with guaranteed coverage rate 1α for potential outcomes given an unseen test sample x_i , i > n + m.

Existing methods

Theoretical Results

- Our method has guaranteed coverage.
- Under additive Gaussian noise model, our method is highly likely to have narrower confidence intervals than the naïve method.

Our method (wSCP-DR-Inexact)

- ullet A merged dataset with n observational and m interventional data
 - $\mathcal{D} = \{(x_i, y_i)_{i=1}^n \sim P_{\{X,Y\}}\} \cup \{(x_i, y_i)_{i=n+1}^{n+m} \sim P'_{\{X,Y\}}\}.$
- First, we compute weights, which will be used to handle distribution shift between observational and interventional data.
- Weight functions

•
$$w(x,y) = 1$$
 if $(x,y) \sim P_{\{X,Y\}}$ and $w(x,y) = \frac{d P_{\{X,Y\}}}{d P'_{\{X,Y\}}}(x,y)$ if $(x,y) \sim P'_{\{X,Y\}}$

• Let $p_{i_{i=1}}^{|\mathcal{D}|}$ denote the "normalized" weight functions.

Our method (wSCP-DR-Inexact)

- Obtain distribution \widehat{F}' of nonconformity scores $s_i = |\widehat{y_i} y_i|$
- Reweight \widehat{F}' to estimate distribution of nonconformity scores on interventional data $\widehat{F} = \sum_{i \in \mathcal{D}_{cal}} p_i \delta_{s_i}$
- Compute the $1-\alpha$ -th quantile of nonconformity scores $q_{\widehat{F}}$
- Confidence interval for calibration $C_{SCP}(x_i) = [\hat{y}_i q_{\hat{F}}, \hat{y}_i + q_{\hat{F}}]$
- Fit ML models to predict lower/upper bounds using datasets $\{(x_i, \hat{y}_i q_{\hat{F}})\}_{i \in \mathcal{D}_{cal}}$ and $\{(x_i, \hat{y}_i + q_{\hat{F}})\}_{i \in \mathcal{D}_{cal}}$
- Use these models to predict lower/upper bounds for any test sample

Experiments

- Datasets
 - Synthetic data with controllable hidden confounding
 - Real-world recommendation datasets (rating prediction)
 - Yahoo!R3
 - Coat
- Evaluation metrics
 - Coverage rate
 - probability of true potential outcome / ITE in the predicted interval
 - Interval width

Results

Synthetic data with hidden confounding

Table 2: Results for counterfactual outcomes and ITEs on the synthetic data. We compare our methods wSCP-DR (Inexact), wSCP-DR (Inexact), and wTCP-DR with baselines. Results are shown for coverage and confidence interval width on the synthetic data with n = 10,000 and m = 250. Boldface and underlining are used to highlight the top and second-best interval width among the methods with coverage close to 0.9.

Method	Coverage $Y(0) \uparrow$	Interval Width $Y(0) \downarrow$	Coverage $Y(1) \uparrow$	Interval Width $Y(1) \downarrow$	Coverage ITE ↑	Interval Width ITE \downarrow
wSCP-DR(Inexact)	0.891 ± 0.026	0.414 ± 0.008	0.889 ± 0.019	0.421 ± 0.013	0.942 ± 0.017	0.835 ± 0.016
wSCP-DR(Exact)	0.934 ± 0.026	0.496 ± 0.010	0.935 ± 0.023	0.503 ± 0.010	0.957 ± 0.018	0.998 ± 0.015
wTCP-DR	0.899 ± 0.028	0.386 ± 0.013	0.923 ± 0.015	0.576 ± 0.066	0.953 ± 0.015	0.962 ± 0.074
WCP	0.572 ± 0.039	0.222 ± 0.007	0.608 ± 0.042	0.227 ± 0.009	0.710 ± 0.027	0.449 ± 0.012
Naive	0.932 ± 0.018	0.508 ± 0.042	0.930 ± 0.023	0.560 ± 0.049	0.952 ± 0.018	1.068 ± 0.098

Empirical Results

- Recommendation system data
 - Rating prediction with distribution shift

Table 3: Coverage and interval width results on Yahoo and Coat. Boldface and underlining are used to highlight the top and second-best interval width among the methods with coverage close to 0.9.

	Y	ahoo	Coat		
Method	Coverage ↑	Interval Width ↓	Coverage ↑	Interval Width↓	
wSCP-DR(Inexact)	0.892 ± 0.019	4.353 ± 0.019	0.919 ± 0.008	3.787 ± 0.045	
wSCP-DR(Exact)	0.952 ± 0.001	5.140 ± 0.001	0.959 ± 0.001	4.565 ± 0.228	
wSCP-DR*(Inexact)	0.892 ± 0.020	4.353 ± 0.020	0.919 ± 0.008	3.789 ± 0.046	
wSCP-DR*(Exact)	0.952 ± 0.001	5.140 ± 0.001	0.960 ± 0.001	4.571 ± 0.233	
WCP-NB	0.825 ± 0.002	4.036 ± 0.002	0.912 ± 0.005	3.635 ± 0.040	
Naive	0.899 ± 0.001	6.047 ± 0.001	0.896 ± 0.003	7.725 ± 0.018	

Take away

- We propose a simple yet effective method to handle hidden confounding for conformal counterfactual inference.
- Our method reweights nonconformity scores with density ratio of joint distributions instead of propensity scores (WCP).
- Theoretically, we prove the proposed method guarantees coverage as well as is more efficient than the naïve method.
- Empirically, experimental results support our claims.

Our paper and code can be found at

https://arxiv.org/abs/2405.12387

https://github.com/rguo12/KDD24-Conformal

Thanks for attending my talk!

Question time