BLM 4088

Hafta4

- İkili bir sınıflandırma durumunda, modelin performansını değerlendirmek için gerekli olan ana metrikler aşağıda verilmiştir.
- Karışıklık matrisi Karışıklık matrisi, bir modelin performansını değerlendirirken daha eksiksiz bir sonuca sahip olmak için kullanılır. Aşağıdaki şekilde tanımlanmıştır:

- TP: Lastikçinin patlak olan lastiğime "abi bu patlak" demesi (Malumun ilamı, bravo!)
- TN: Doktorun hasta olan birine "bişeyin yok turp gibisin" demesi
- FP: Üstünüzde t-shirt ve kot ile AVM güvenliğinden geçerken cebinizdeki anahtarın ötmesi ve güvenlikçinin size kötü adam muamelesi çekmesi, "kenara geçip ceplerinizi boşaltın" demesi (cebinizde tehlikeli bir şey var!!!)
- FN: Komşunun camını kırdıktan sonra annenizin "benim oğlum yapmaz öyle bişey o kırmadı" diye komşuya kızması

- TP (True positive Doğru Pozitif): Hastaya hasta demek.
- FP (False positive Yanlış Pozitif): Hasta olmayana hasta demek.
- TN (True negative Doğru Negatif): Hasta olmayana hasta değil demek.
- FN (False negative Yanlış Negatif): Hasta olana hasta değil demek.

- True Positive (TP): Modelimiz (Çoban) "Kurt var!" der ve gerçekte de kurt vardır. Modelimizin *doğru* tahmin ettiği ihtimallerden biridir.
- True Negative (TN): Modelimiz (Çoban) "Kurt yok" der ve kurt yoktur. Modelimizin *doğru* tahmin ettiği ihtimallerden biridir.
- False Positive (FP): Modelimiz (Çoban) "Kurt var!" der ama kurt yoktur. Modelimizin *yanlış* tahmin ettiği ihtimallerden biridir.
- False Negative (FN): Modelimiz (Çoban) "Kurt yok" der ama kurt vardır. Modelimizin *yanlış* tahmin ettiği ihtimallerden biridir.

Gerçek

YES NO

True Positive

- Kurt vardır.
- Çoban "Kurt geldi!" der.
- Çoban kahraman ilan edilir.

TP sayısı: 1

False Negative

- Kurt vardır.
- Çoban "Kurt yok" der.
 - Kurt kuzuları yer.

FN sayısı: 8

False Positive

- Kurt yoktur.
- Çoban "Kurt geldi!" der.
- Köylüler çobana kızar.

FP sayısı: 1

True Negative

- Kurt yoktur.
- Çoban "Kurt yok" der.
 - · Herkes iyi.

TN sayısı: 90

Tahmin

9

YES

 Ana metrikler — Sınıflandırma modellerinin performansını değerlendirmek için aşağıda verilen metrikler yaygın olarak kullanılmaktadır:

Metrik	Formül	Açıklama
Doğruluk	$\frac{\mathrm{TP} + \mathrm{TN}}{\mathrm{TP} + \mathrm{TN} + \mathrm{FP} + \mathrm{FN}}$	Modelin genel performansı
Kesinlik	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FP}}$	Doğru tahminlerin ne kadar kesin olduğu
Geri çağırma	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}}$	Gerçek pozitif örneklerin oranı
Specificity	$\frac{\mathrm{TN}}{\mathrm{TN}+\mathrm{FP}}$	Gerçek negatif örneklerin oranı
F1 skoru	$\frac{2\mathrm{TP}}{2\mathrm{TP}+\mathrm{FP}+\mathrm{FN}}$	Dengesiz sınıflar için yararlı hibrit metrik

- Accuracy = Doğru Tahminlerin Sayısı / Tüm Tahminlerin Sayısı
- Accuracy değerini dikkate almak her sınıfta eşit sayıda gözlem varsa mantıklı olabilir. Bunun dışında oldukça yanıltıcıdır. Örneğin yukarıdaki modelin accuracy değerini hesaplayalım.
- Accuracy= (1+90) / (1+90+1+8) = 0.91
- Bu değer gayet güzel gibi görünebilir ama sayılara tekrar bakıldığında kurdun 9 kez geldiğini ve sadece 1 kez doğru tahmin ediliyor. Bu çok kötü bir sonuç. Halbuki Accuracy skorumuz %91'di.

- Precision = Pozitif olarak tahmin edilenlerin gerçekte kaçta kaçı doğru.
- Precision = TP /(TP+FP)
- Precision = 1 / (1+1) = 0.5
- Recall = Model, pozitif classların kaçta kaçını yakalayabiliyor.
- Recall = TP / (TP+FN)
- Recall = 1 / (1 + 8) = 0.11

• Bu metriklerin önemi, modeli hangi amaçla geliştirdiğinize göre değişim göstermektedir. Örneğin evinizi korumak için, hırsızları yakalamak üzere eğittiğiniz modelde *Recall* değeri çok önemlidir. *Recall* değeri oldukça yüksek olmalıdır. Tam tersine, diğer hayvan fotoğrafları arasından kedi fotoğraflarını ayırabilen modelde, daha fazla kedi fotoğrafını yakalamak için *Recall* değeri esnetilebilir.

- F1 Score
- F1 Score, Precision ve Recall değerlerinin ağırlıklı (harmonik) ortalamasıdır.
- F1 Score = 2 * (Recall * Precision) / (Recall+ Precision)
- F1 Score, özellikle eşit olmayan bir sınıf dağılımınız varsa, Accuracy değerinden daha kullanışlı olabilir.
- F1 Score = 2 * (0.11 * 0.5) / (0.11 + 0.5) = 0,18

- ROC ve AUC
- Sınıflandırma problemlerinde olasılık değerini sınıflandırmak için eşik değere (threshold) ihtiyaç duyulur. Örneğin 0.5 gibi; Sonuçları, 0.5'in altı ve 0.5'in üstü olacak şekilde böler. *ROC Curve*, eşik değerinin performansını gösteren eğridir. Tablonun x ekseninde FP Rate, y ekseninde ise TP Rate (Recall) vardır.
- TPR = TP / (TP + FN) (Sensitivity olarak da biliniyor.)
- FPR = FP / (FP + TN) (1-Specificity olarak da biliniyor.)

ROC ve AUC

ROC ve AUC

 ROC eğrisinin altında kalan yere AUC (Area Under the ROC Curve) denir. Positive Class'ı Negative Class'tan ne kadar ayırabildiğini verir. Alan arttıkça ayrım yeteneği artar.

Kaynak

- https://developers.google.com/machine-learning/crashcourse/classification/accuracy
- https://towardsdatascience.com/metrics-to-evaluate-your-machine-learning-algorithm-f10ba6e38234
- https://blog.exsilio.com/all/accuracy-precision-recall-f1-score-interpretation-of-performance-measures/