Artificial Intelligence and Machine Learning Barbara Caputo

Outline

- Perceptron
 - Hebbian learning & biology
 - Algorithm
 - Convergence analysis
- Features and preprocessing
 - Nonlinear separation
 - Perceptron in feature space
- Kernels
 - Kernel trick
 - Properties
 - Examples

early theories of the brain

Biology and Learning

- Basic Idea
 - Good behavior should be rewarded, bad behavior punished (or not rewarded). This improves system fitness.
 - Killing a sabertooth tiger should be rewarded ...
 - Correlated events should be combined.
 - Pavlov's salivating dog.

Biology and Learning

- Basic Idea
 - Good behavior should be rewarded, bad behavior punished (or not rewarded). This improves system fitness.
 - Killing a sabertooth tiger should be rewarded ...
 - Correlated events should be combined.
 - Pavlov's salivating dog.
- Training mechanisms
 - Behavioral modification of individuals (learning)
 Successful behavior is rewarded (e.g. food).
 - Hard-coded behavior in the genes (instinct)
 The wrongly coded animal does not reproduce.

Soma (CPU)
 Cell body - combines signals

- Soma (CPU)
 Cell body combines signals
- Dendrite (input bus)
 Combines the inputs from several other nerve cells

- Soma (CPU)
 Cell body combines signals
- Dendrite (input bus)
 Combines the inputs from several other nerve cells
- Synapse (interface)
 Interface and parameter store between neurons

- Soma (CPU)
 Cell body combines signals
- Dendrite (input bus)
 Combines the inputs from several other nerve cells
- Synapse (interface)
 Interface and parameter store between neurons
- Axon (cable)
 May be up to 1m long and will transport the activation signal to neurons at different locations

Nerve cell

$$f(x) = \sum_{i} w_{i} x_{i} = \langle w, x \rangle$$

Weighted linear combination

- Weighted linear combination
- Nonlinear decision function

- Weighted linear combination
- Nonlinear decision function
- Linear offset (bias)

 Linear separating hyperplanes (spam/ham, novel/typical, click/no click)

- Weighted linear combination
- Nonlinear decision function
- Linear offset (bias)

- Linear separating hyperplanes (spam/ham, novel/typical, click/no click)
- Learning
 Estimating the parameters w and b

initialize w = 0 and b = 0

```
initialize w = 0 and b = 0
repeat
if y_i [\langle w, x_i \rangle + b] \le 0 then
```

```
initialize w = 0 and b = 0
repeat
if y_i [\langle w, x_i \rangle + b] \le 0 then
w \leftarrow w + y_i x_i and b \leftarrow b + y_i
end if
```

```
initialize w = 0 and b = 0

repeat

if y_i [\langle w, x_i \rangle + b] \leq 0 then

w \leftarrow w + y_i x_i and b \leftarrow b + y_i

end if

until all classified correctly
```

```
initialize w = 0 and b = 0

repeat

if y_i [\langle w, x_i \rangle + b] \leq 0 then

w \leftarrow w + y_i x_i and b \leftarrow b + y_i

end if

until all classified correctly
```

Nothing happens if classified correctly

```
initialize w = 0 and b = 0

repeat

if y_i [\langle w, x_i \rangle + b] \leq 0 then

w \leftarrow w + y_i x_i and b \leftarrow b + y_i

end if

until all classified correctly
```

- Nothing happens if classified correctly
- Weight vector is linear combination $w = \sum_{i \in I} y_i x_i$

```
initialize w = 0 and b = 0

repeat

if y_i [\langle w, x_i \rangle + b] \leq 0 then

w \leftarrow w + y_i x_i and b \leftarrow b + y_i

end if

until all classified correctly
```

- Nothing happens if classified correctly
- Weight vector is linear combination $w = \sum_{i \in I} y_i x_i$
- Classifier is linear combination of inner products $f(x) = \sum_{i \in I} y_i \langle x_i, x \rangle + b$

• If there exists some (w^*, b^*) with unit length and $y_i [\langle x_i, w^* \rangle + b^*] \ge \rho$ for all i

• If there exists some (w^*, b^*) with unit length and $y_i [\langle x_i, w^* \rangle + b^*] \ge \rho$ for all i

then the perceptron converges to a linear separator after a number of steps bounded by

$$(b^{*2} + 1) (r^2 + 1) \rho^{-2}$$
 where $||x_i|| \le r$

• If there exists some (w^*, b^*) with unit length and $y_i [\langle x_i, w^* \rangle + b^*] \ge \rho$ for all i

then the perceptron converges to a linear separator after a number of steps bounded by

$$(b^{*2} + 1) (r^2 + 1) \rho^{-2}$$
 where $||x_i|| \le r$

Dimensionality independent

• If there exists some (w^*, b^*) with unit length and

$$y_i \left[\langle x_i, w^* \rangle + b^* \right] \ge \rho \text{ for all } i$$

then the perceptron converges to a linear separator after a number of steps bounded by

$$(b^{*2} + 1) (r^2 + 1) \rho^{-2}$$
 where $||x_i|| \le r$

- Dimensionality independent
- Order independent (i.e. also worst case)
- Scales with 'difficulty' of problem

Proof

Starting Point

We start from $w_1 = 0$ and $b_1 = 0$.

Step 1: Bound on the increase of alignment

Denote by w_i the value of w at step i (analogously b_i).

Alignment:
$$\langle (w_i, b_i), (w^*, b^*) \rangle$$

For error in observation (x_i, y_i) we get

$$\langle (w_{j+1}, b_{j+1}) \cdot (w^*, b^*) \rangle$$
= $\langle [(w_j, b_j) + y_i(x_i, 1)], (w^*, b^*) \rangle$
= $\langle (w_j, b_j), (w^*, b^*) \rangle + y_i \langle (x_i, 1) \cdot (w^*, b^*) \rangle$
 $\geq \langle (w_j, b_j), (w^*, b^*) \rangle + \rho$
 $\geq j\rho$.

Alignment increases with number of errors.

Proof

Step 2: Cauchy-Schwartz for the Dot Product

$$\langle (w_{j+1}, b_{j+1}) \cdot (w^*, b^*) \rangle \le \|(w_{j+1}, b_{j+1})\| \|(w^*, b^*)\|$$

= $\sqrt{1 + (b^*)^2} \|(w_{j+1}, b_{j+1})\|$

Step 3: Upper Bound on $||(w_i, b_i)||$

If we make a mistake we have

$$||(w_{j+1}, b_{j+1})||^{2} = ||(w_{j}, b_{j}) + y_{i}(x_{i}, 1)||^{2}$$

$$= ||(w_{j}, b_{j})||^{2} + 2y_{i}\langle(x_{i}, 1), (w_{j}, b_{j})\rangle + ||(x_{i}, 1)||^{2}$$

$$\leq ||(w_{j}, b_{j})||^{2} + ||(x_{i}, 1)||^{2}$$

$$\leq j(R^{2} + 1).$$

Step 4: Combination of first three steps

$$j\rho \le \sqrt{1+(b^*)^2} \|(w_{j+1}, b_{j+1})\| \le \sqrt{j(R^2+1)((b^*)^2+1)}$$

Solving for *j* proves the theorem.

Consequences

Only need to store errors.
 This gives a compression bound for perceptron.

Consequences

Only need to store errors.
 This gives a compression bound for perceptron.

Fails with noisy data

do NOT train your avatar with perceptrons

Hardness margin vs. size

Concepts & version space

- Realizable concepts
 - Some function exists that can separate data and is included in the concept space
 - For perceptron data is linearly separable

Concepts & version space

- Realizable concepts
 - Some function exists that can separate data and is included in the concept space
 - For perceptron data is linearly separable
- Unrealizable concept
 - Data not separable
 - We don't have a suitable function class (often hard to distinguish)

Concepts & version space

- Realizable concepts
 - Some function exists that can separate data and is included in the concept space
 - For perceptron data is linearly separable
- Unrealizable concept
 - Data not separable
 - We don't have a suitable function class (often hard to distinguish)

Minimum error separation

Minimum error separation

- XOR not linearly separable
- Nonlinear separation is trivial

Minimum error separation

- XOR not linearly separable
- Nonlinear separation is trivial
- Caveat (Minsky & Papert)
 Finding the minimum error linear separator
 is NP hard (this killed Neural Networks in the 70s).

Carnegie Mellon Universit

Non-linearity and preprocessing

Perceptron

- Perceptron
 - Map data into feature space $x \to \phi(x)$

- Perceptron
 - Map data into feature space $x \to \phi(x)$
 - Solve problem in this space

- Perceptron
 - Map data into feature space $x \to \phi(x)$
 - Solve problem in this space
 - Query replace $\langle x, x' \rangle$ by $\langle \phi(x), \phi(x') \rangle$ for code

- Perceptron
 - Map data into feature space $x \to \phi(x)$
 - Solve problem in this space
 - Query replace $\langle x, x' \rangle$ by $\langle \phi(x), \phi(x') \rangle$ for code
- Feature Perceptron
 - Solution in span of $\phi(x_i)$

 Separating surfaces are Circles, hyperbolae, parabolae

Constructing Features (very naive OCR system)

	Ι	2	3	4	5	6	7	8	9	0
Loops	0	0	0	_	0	_	0	2	_	_
3 Joints	0	0	0	0	0	I	0	0	I	0
4 Joints	0	0	0	ı	0	0	0	I	0	0
Angles	0	ı	ı	ı	ı	0	ı	0	0	0
Ink	ı	2	2	2	2	2	ı	3	2	2

```
Delivered-To: alex.smola@amail.com
Received: by 10.216.47.73 with SMTP id s51cs361171web;
        Tue, 3 Jan 2012 14:17:53 -0800 (PST)
Received: by 10.213.17.145 with SMTP id s17mr2519891eba.147.1325629071725;
        Tue, 03 Jan 2012 14:17:51 -0800 (PST)
Return-Path: <alex+caf_=alex.smola=amail.com@smola.org>
Received: from mail-ey0-f175.google.com (mail-ey0-f175.google.com [209.85.215.175])
        by mx.google.com with ESMTPS id n4si29264232eef.57.2012.01.03.14.17.51
        (version=TLSv1/SSLv3 cipher=OTHER);
        Tue. 03 Jan 2012 14:17:51 -0800 (PST)
Received-SPF: neutral (google.com: 209.85.215.175 is neither permitted nor denied by best
guess record for domain of alex+caf_-alex.smola-amail.com@smola.org) client-
Authentication-Results: mx.google.com; spf=neutral (google.com: 209.85.215.175 is neither
permitted nor denied by best guess record for domain of alex
+caf_-alex.smola-gmail.com@smola.org) smtp.mail-alex+caf_-alex.smola-gmail.com@smola.org;
dkim-pass (test mode) header.i-@googlemail.com
Received: by eaal1 with SMTP id l1so15092746eaa.6
        for <alex.smola@gmail.com>; Tue, 03 Jan 2012 14:17:51 -0800 (PST)
Received: by 10.205.135.18 with SMTP id ie18mr5325064bkc.72.1325629071362;
        Tue, 03 Jan 2012 14:17:51 -0800 (PST)
X-Forwarded-To: alex.smola@gmail.com
X-Forwarded-For: alex@smola.org alex.smola@gmail.com
Delivered-To: alex@smola.org
Received: by 10.204.65.198 with SMTP id k6cs206093bki;
        Tue, 3 Jan 2012 14:17:50 -0800 (PST)
Received: by 10.52.88.179 with SMTP id bh19mr10729402vdb.38.1325629068795;
        Tue, 03 Jan 2012 14:17:48 -0800 (PST)
Return-Path: <althoff.tim@aooalemail.com>
Received: from mail-vx0-f179.google.com (mail-vx0-f179.google.com [209.85.220.179])
        by mx.google.com with ESMTPS id dt4si11767074vdb.93.2012.01.03.14.17.48
        (version=TLSv1/SSLv3 cipher=OTHER);
        Tue, 03 Jan 2012 14:17:48 -0800 (PST)
Received-SPF: pass (google.com: domain of althoff.tim@googlemail.com designates
209.85.220.179 as permitted sender) client-ip=209.85.220.179;
Received: by vcbf13 with SMTP id f13so11295098vcb.10
        for <alex@smola.org>; Tue, 03 Jan 2012 14:17:48 -0800 (PST)
DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed;
        d-googlemail.com; s-gamma;
        h-mime-version:sender:date:x-google-sender-auth:message-id:subject
        :from:to:content-type;
        bh=WCbdZ5sXac25dpH02XcRyD0dts993hKwsAVXpGrFh0w=;
        b=WK2B2+ExWnf/gvTkw6uUvKuP4XeoKnlJq3USYTm0RARK8dSFjy0QsIHeAP9Yssxp60
        7ngGoTzYgd+ZsyJfvQcLAWp1PCJhG8AMcngWkx@NMeoFvIp2HQooZwxS0Cx5ZRgY+7gX
        uIbbdna41UDXj6UFe16SpLDCkptd80Z3gr7+o=
MIME-Version: 1.0
Received: by 10.220.108.81 with SMTP id e17mr24104004vcp.67.1325629067787;
Tue, 03 Jan 2012 14:17:47 -0800 (PST)
Sender: althoff.tim@googlemail.com
Received: by 10.220.17.129 with HTTP; Tue, 3 Jan 2012 14:17:47 -0800 (PST)
Date: Tue, 3 Jan 2012 14:17:47 -0800
X-Google-Sender-Auth: 6bwi6D17HjZIkx0Eol38NZzyeHs
Message-ID: <CAFJJHDGPBW+SdZq8MdAABiAKvdDk9tpeMoDiiYGioGO-WC7osq@mqil.com>
Subject: CS 281B. Advanced Topics in Learning and Decision Making
From: Tim Althoff <althoff@eecs.berkelev.edu>
Content-Type: multipart/alternative; boundary=f46d043c7af4b07e8d04b5a7113a
--f46d043c7af4b07e8d04b5a7113a
Content-Type: text/plain; charset=ISO-8859-1
```

Feature Engineering for Spam Filtering

- bag of words
- pairs of words
- date & time
- recipient path
- IP number
- sender
- encoding
- links
- ... secret sauce ...

More feature engineering

Two Interlocking Spirals
 Transform the data into a radial and angular part

$$(x_1, x_2) = (r \sin \phi, r \cos \phi)$$

- Handwritten Japanese Character Recognition
 - Break down the images into strokes and recognize it
 - Lookup based on stroke order
- Medical Diagnosis
 - Physician's comments
 - Blood status / ECG / height / weight / temperature ...
 - Medical knowledge

The Perceptron on features

The Perceptron on features

initialize w, b = 0 repeat

```
initialize w, b = 0
repeat
Pick (x_i, y_i) from data
```

```
initialize w,b=0 repeat  \begin{array}{c} \text{Pick } (x_i,y_i) \text{ from data} \\ \text{if } y_i(w\cdot \Phi(x_i)+b) \leq 0 \text{ then} \\ w'=w+y_i\Phi(x_i) \\ b'=b+y_i \\ \text{until } y_i(w\cdot \Phi(x_i)+b)>0 \text{ for all } i \end{array}
```

```
initialize w,b=0 repeat  \begin{array}{c} \text{Pick } (x_i,y_i) \text{ from data} \\ \text{if } y_i(w\cdot \Phi(x_i)+b) \leq 0 \text{ then} \\ w'=w+y_i\Phi(x_i) \\ b'=b+y_i \\ \text{until } y_i(w\cdot \Phi(x_i)+b)>0 \text{ for all } i \end{array}
```

- Nothing happens if classified correctly
- Weight vector is linear combination $w = \sum y_i \phi(x_i)$

```
initialize w,b=0 repeat  \begin{array}{c} \text{Pick } (x_i,y_i) \text{ from data} \\ \text{if } y_i(w\cdot \Phi(x_i)+b) \leq 0 \text{ then} \\ w'=w+y_i\Phi(x_i) \\ b'=b+y_i \\ \text{until } y_i(w\cdot \Phi(x_i)+b)>0 \text{ for all } i \end{array}
```

- Nothing happens if classified correctly
- Weight vector is linear combination $w = \sum_{i \in I} y_i \phi(x_i)$
- Classifier is linear combination of inner products $f(x) = \sum_{i \in I} y_i \langle \phi(x_i), \phi(x) \rangle + b$

Problems

- Problems
 - Need domain expert (e.g. Chinese OCR)
 - Often expensive to compute
 - Difficult to transfer engineering knowledge
- Shotgun Solution
 - Compute many features
 - Hope that this contains good ones
 - Do this efficiently

Solving XOR

- XOR not linearly separable
- Mapping into 3 dimensions makes it easily solvable

Quadratic Features in \mathbb{R}^2

$$\Phi(x) := \left(x_1^2, \sqrt{2}x_1x_2, x_2^2\right)$$

Quadratic Features in \mathbb{R}^2

$$\Phi(x) := \left(x_1^2, \sqrt{2}x_1x_2, x_2^2\right)$$

Dot Product

$$\langle \Phi(x), \Phi(x') \rangle = \left\langle \left(x_1^2, \sqrt{2}x_1 x_2, x_2^2 \right), \left(x_1'^2, \sqrt{2}x_1' x_2', x_2'^2 \right) \right\rangle$$
$$= \langle x, x' \rangle^2.$$

Quadratic Features in \mathbb{R}^2

$$\Phi(x) := \left(x_1^2, \sqrt{2}x_1x_2, x_2^2\right)$$

Dot Product

$$\langle \Phi(x), \Phi(x') \rangle = \left\langle \left(x_1^2, \sqrt{2}x_1 x_2, x_2^2 \right), \left(x_1'^2, \sqrt{2}x_1' x_2', x_2'^2 \right) \right\rangle$$
$$= \langle x, x' \rangle^2.$$

Insight

Trick works for any polynomials of order d via $\langle x, x' \rangle^d$.

Computational Efficiency

Problem

- Extracting features can sometimes be very costly.
- Example: second order features in 1000 dimensions. This leads to 5 · 10⁵ numbers. For higher order polynomial features much worse.

Computational Efficiency

Problem

- Extracting features can sometimes be very costly.
- Example: second order features in 1000 dimensions. This leads to 5 · 10⁵ numbers. For higher order polynomial features much worse.

Solution

Don't compute the features, try to compute dot products implicitly. For some features this works . . .

Computational Efficiency

Problem

- Extracting features can sometimes be very costly.
- Example: second order features in 1000 dimensions. This leads to 5 · 10⁵ numbers. For higher order polynomial features much worse.

Solution

Don't compute the features, try to compute dot products implicitly. For some features this works . . .

Definition

A kernel function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a symmetric function in its arguments for which the following property holds

$$k(x, x') = \langle \Phi(x), \Phi(x') \rangle$$
 for some feature map Φ .

If k(x, x') is much cheaper to compute than $\Phi(x)$...

```
\begin{aligned} &\text{repeat} \\ &\text{Pick } (x_i,y_i) \text{ from data} \\ &\text{if } y_i f(x_i) \leq 0 \text{ then} \\ &f(\cdot) \leftarrow f(\cdot) + y_i k(x_i,\cdot) + y_i \\ &\text{until } y_i f(x_i) > 0 \text{ for all } i \end{aligned}
```

```
initialize f=0 repeat  \begin{array}{c} \text{Pick } (x_i,y_i) \text{ from data} \\ \text{if } y_i f(x_i) \leq 0 \text{ then} \\ f(\cdot) \leftarrow f(\cdot) + y_i k(x_i,\cdot) + y_i \\ \text{until } y_i f(x_i) > 0 \text{ for all } i \end{array}
```

Nothing happens if classified correctly

```
initialize f=0 repeat  \begin{array}{c} \text{Pick } (x_i,y_i) \text{ from data} \\ \text{if } y_i f(x_i) \leq 0 \text{ then} \\ f(\cdot) \leftarrow f(\cdot) + y_i k(x_i,\cdot) + y_i \\ \text{until } y_i f(x_i) > 0 \text{ for all } i \end{array}
```

- Nothing happens if classified correctly
- Weight vector is linear combination $w = \sum_{i \in I} y_i \phi(x_i)$

```
initialize f=0 repeat  \begin{array}{c} \text{Pick } (x_i,y_i) \text{ from data} \\ \text{if } y_i f(x_i) \leq 0 \text{ then} \\ f(\cdot) \leftarrow f(\cdot) + y_i k(x_i,\cdot) + y_i \\ \text{until } y_i f(x_i) > 0 \text{ for all } i \end{array}
```

- Nothing happens if classified correctly
- Weight vector is linear combination $w = \sum_{i \in I} y_i \phi(x_i)$
- Classifier is linear combination of inner products

$$f(x) = \sum_{i \in I} y_i \langle \phi(x_i), \phi(x) \rangle + b = \sum_{i \in I} y_i k(x_i, x) + b$$

Polynomial Kernels

Idea

Polynomial Kernels

Idea

- We want to extend $k(x,x')=\langle x,x'\rangle^2$ to $k(x,x')=(\langle x,x'\rangle+c)^d$ where c>0 and $d\in\mathbb{N}$.
- Prove that such a kernel corresponds to a dot product.

Polynomial Kernels

Idea

Solution We want to extend $k(x, x') = \langle x, x' \rangle^2$ to

$$k(x, x') = (\langle x, x' \rangle + c)^d$$
 where $c > 0$ and $d \in \mathbb{N}$.

Prove that such a kernel corresponds to a dot product.

Proof strategy

Simple and straightforward: compute the explicit sum given by the kernel, i.e.

$$k(x, x') = (\langle x, x' \rangle + c)^d = \sum_{i=0}^m \binom{d}{i} (\langle x, x' \rangle)^i c^{d-i}$$

Individual terms $(\langle x, x' \rangle)^i$ are dot products for some $\Phi_i(x)$.

Computability

We have to be able to compute k(x, x') efficiently (much cheaper than dot products themselves).

Computability

We have to be able to compute k(x, x') efficiently (much cheaper than dot products themselves).

"Nice and Useful" Functions

The features themselves have to be useful for the learning problem at hand. Quite often this means smooth functions.

Computability

We have to be able to compute k(x, x') efficiently (much cheaper than dot products themselves).

"Nice and Useful" Functions

The features themselves have to be useful for the learning problem at hand. Quite often this means smooth functions.

Symmetry

Obviously k(x,x')=k(x',x) due to the symmetry of the dot product $\langle \Phi(x), \Phi(x') \rangle = \langle \Phi(x'), \Phi(x) \rangle$.

Computability

We have to be able to compute k(x, x') efficiently (much cheaper than dot products themselves).

"Nice and Useful" Functions

The features themselves have to be useful for the learning problem at hand. Quite often this means smooth functions.

Symmetry

Obviously k(x,x')=k(x',x) due to the symmetry of the dot product $\langle \Phi(x), \Phi(x') \rangle = \langle \Phi(x'), \Phi(x) \rangle$.

Dot Product in Feature Space

Is there always a Φ such that k really is a dot product?

Mercer's Theorem

Mercer's Theorem

The Theorem

For any symmetric function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ which is square integrable in $\mathcal{X} \times \mathcal{X}$ and which satisfies

$$\int_{\mathcal{X} \times \mathcal{X}} k(x, x') f(x) f(x') dx dx' \ge 0 \text{ for all } f \in L_2(\mathcal{X})$$

there exist $\phi_i: \mathfrak{X} \to \mathbb{R}$ and numbers $\lambda_i \geq 0$ where

$$k(x, x') = \sum_{i} \lambda_i \phi_i(x) \phi_i(x')$$
 for all $x, x' \in \mathcal{X}$.

Mercer's Theorem

The Theorem

For any symmetric function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ which is square integrable in $\mathcal{X} \times \mathcal{X}$ and which satisfies

$$\int_{\mathcal{X} \times \mathcal{X}} k(x, x') f(x) f(x') dx dx' \ge 0 \text{ for all } f \in L_2(\mathcal{X})$$

there exist $\phi_i: \mathfrak{X} \to \mathbb{R}$ and numbers $\lambda_i \geq 0$ where

$$k(x, x') = \sum_{i} \lambda_{i} \phi_{i}(x) \phi_{i}(x')$$
 for all $x, x' \in \mathfrak{X}$.

Interpretation

Double integral is the continuous version of a vectormatrix-vector multiplication. For positive semidefinite matrices we have

$$\sum \sum k(x_i, x_j)\alpha_i\alpha_j \ge 0$$

Distance in Feature Space

Distance between points in feature space via

$$d(x, x')^{2} := ||\Phi(x) - \Phi(x')||^{2}$$

$$= \langle \Phi(x), \Phi(x) \rangle - 2\langle \Phi(x), \Phi(x') \rangle + \langle \Phi(x'), \Phi(x') \rangle$$

$$= k(x, x) + k(x', x') - 2k(x, x)$$

Distance in Feature Space

Distance between points in feature space via

$$d(x, x')^{2} := ||\Phi(x) - \Phi(x')||^{2}$$

$$= \langle \Phi(x), \Phi(x) \rangle - 2\langle \Phi(x), \Phi(x') \rangle + \langle \Phi(x'), \Phi(x') \rangle$$

$$= k(x, x) + k(x', x') - 2k(x, x)$$

Kernel Matrix

To compare observations we compute dot products, so we study the matrix K given by

$$K_{ij} = \langle \Phi(x_i), \Phi(x_j) \rangle = k(x_i, x_j)$$

where x_i are the training patterns.

Distance in Feature Space

Distance between points in feature space via

$$d(x, x')^{2} := ||\Phi(x) - \Phi(x')||^{2}$$

$$= \langle \Phi(x), \Phi(x) \rangle - 2\langle \Phi(x), \Phi(x') \rangle + \langle \Phi(x'), \Phi(x') \rangle$$

$$= k(x, x) + k(x', x') - 2k(x, x)$$

Kernel Matrix

To compare observations we compute dot products, so we study the matrix K given by

$$K_{ij} = \langle \Phi(x_i), \Phi(x_j) \rangle = k(x_i, x_j)$$

where x_i are the training patterns.

Similarity Measure

The entries K_{ij} tell us the overlap between $\Phi(x_i)$ and $\Phi(x_j)$, so $k(x_i, x_j)$ is a similarity measure.

K is Positive Semidefinite

Claim: $\alpha^{\top}K\alpha \geq 0$ for all $\alpha \in \mathbb{R}^m$ and all kernel matrices $K \in \mathbb{R}^{m \times m}$. Proof:

Properties

K is Positive Semidefinite

Claim: $\alpha^{\top}K\alpha \geq 0$ for all $\alpha \in \mathbb{R}^m$ and all kernel matrices $K \in \mathbb{R}^{m \times m}$. Proof:

$$\sum_{i,j}^{m} \alpha_{i} \alpha_{j} K_{ij} = \sum_{i,j}^{m} \alpha_{i} \alpha_{j} \langle \Phi(x_{i}), \Phi(x_{j}) \rangle$$

$$= \left\langle \sum_{i}^{m} \alpha_{i} \Phi(x_{i}), \sum_{j}^{m} \alpha_{j} \Phi(x_{j}) \right\rangle = \left\| \sum_{i=1}^{m} \alpha_{i} \Phi(x_{i}) \right\|^{2}$$

Properties

K is Positive Semidefinite

Claim: $\alpha^{\top}K\alpha \geq 0$ for all $\alpha \in \mathbb{R}^m$ and all kernel matrices $K \in \mathbb{R}^{m \times m}$. Proof:

$$\sum_{i,j}^{m} \alpha_{i} \alpha_{j} K_{ij} = \sum_{i,j}^{m} \alpha_{i} \alpha_{j} \langle \Phi(x_{i}), \Phi(x_{j}) \rangle$$

$$= \left\langle \sum_{i}^{m} \alpha_{i} \Phi(x_{i}), \sum_{j}^{m} \alpha_{j} \Phi(x_{j}) \right\rangle = \left\| \sum_{i=1}^{m} \alpha_{i} \Phi(x_{i}) \right\|^{2}$$

Kernel Expansion

If w is given by a linear combination of $\Phi(x_i)$ we get

$$\langle w, \Phi(x) \rangle = \left\langle \sum_{i=1}^{m} \alpha_i \Phi(x_i), \Phi(x) \right\rangle = \sum_{i=1}^{m} \alpha_i k(x_i, x).$$

A Counterexample

A Counterexample

A Candidate for a Kernel

$$k(x, x') = \begin{cases} 1 & \text{if } ||x - x'|| \le 1 \\ 0 & \text{otherwise} \end{cases}$$

This is symmetric and gives us some information about the proximity of points, yet it is not a proper kernel . . .

A Counterexample

A Candidate for a Kernel

$$k(x, x') = \begin{cases} 1 & \text{if } ||x - x'|| \le 1 \\ 0 & \text{otherwise} \end{cases}$$

This is symmetric and gives us some information about the proximity of points, yet it is not a proper kernel . . .

Kernel Matrix

We use three points, $x_1 = 1, x_2 = 2, x_3 = 3$ and compute the resulting "kernelmatrix" K. This yields

$$K = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \text{ and eigenvalues } (\sqrt{2} - 1)^{-1}, 1 \text{ and } (1 - \sqrt{2}).$$

as eigensystem. Hence k is not a kernel.

Examples

Examples of kernels k(x, x')

	near
	HPAI
	ncai
_	

$$\langle x, x' \rangle$$

$$\exp\left(-\lambda \|x - x'\|\right)$$

$$\exp\left(-\lambda \|x - x'\|^2\right)$$

$$(\langle x, x' \rangle + c \rangle)^d, c \ge 0, d \in \mathbb{N}$$

$$B_{2n+1}(x-x')$$

$$\mathbf{E}_c[p(x|c)p(x'|c)]$$

Examples

Examples of kernels k(x, x')

Linear $\langle x, x' \rangle$

Laplacian RBF $\exp(-\lambda ||x - x'||)$

Gaussian RBF $\exp(-\lambda ||x - x'||^2)$

Polynomial $(\langle x, x' \rangle + c \rangle)^d, c \ge 0, d \in \mathbb{N}$

B-Spline $B_{2n+1}(x-x')$

Cond. Expectation $\mathbf{E}_c[p(x|c)p(x'|c)]$

Simple trick for checking Mercer's condition

Compute the Fourier transform of the kernel and check that it is nonnegative.

Linear Kernel

Laplacian Kernel

Gaussian Kernel

Polynomial of order 3

B₃ Spline Kernel

That's all!