The Role of Goals in Motivating Behavior: Evidence from a field experiment on resource conservation

Ximeng Fang (University of Bonn)

with Sumit Agarwal, Lorenz Goette, Tien Foo Sing, Samuel Schoeb, Thorsten Staake, Verena Tiefenbeck, and Davin Wang

Goal setting to foster resource conservation?

Goal setting can motivate individuals to exert higher effort

- many studies in psychology and (some) in economics
- digitization creates new opportunities

Goal setting to foster resource conservation?

Goal setting can motivate individuals to exert higher effort

- many studies in psychology and (some) in economics
- digitization creates new opportunities

Our field experiment: water conservation in an everyday activity

- goals and feedback through a smart meter display
- 525 households in Singapore
- 4 to 6 months study duration
- exogenous variation of goal difficulty

Water conservation in Singapore

Water conservation in Singapore

Targeted behavior: water use in the shower

Targeted behavior: water use in the shower

Showering is a water intensive activity.

Targeted behavior: water use in the shower

Showering is a water intensive activity.

Showering is prone to behavioral biases

- benefits are immediate and salient
- costs are abstract and vague

The field experiment

The field experiment

Seven experimental conditions

Households receive smart shower meters that measure water use

- Control group: display only shows water temperature.
- Real-time feedback: First 20 showers: water temperature.
 Then real-time feedback on water use (no goals).
- Real-time feedback + goals:
 First 20 showers: water temperature.
 Then real-time feedback *plus* goals (10, 15, 20, 25, or 35 liter).

Goal conditions range from hard to easy

Figure: Histogram of BL water use

Five goal conditions:

- 10 liter
- 15 liter
- 20 liter
- 25 liter
- 35 liter

shower level

The impact on water consumption

Difference-in-differences analysis of the treatments

The impact on water consumption

Difference-in-differences analysis of the treatments

The impact on water consumption

Difference-in-differences analysis of the treatments

Average treatment effects

	Volume	Duration	Flow rate	Temperature
	[liter]	[sec]	[liter/min]	[Celsius]
10l goal $ imes$ intervention	-2.876***	-34.249***	-0.056	0.057
	(0.563)	(7.081)	(0.071)	(0.248)
15l goal $ imes$ intervention	-3.815***	-36.540***	-0.215**	0.341
	(0.634)	(7.389)	(0.097)	(0.253)
20l goal \times intervention	-2.901***	-28.237***	-0.119	0.198
	(0.461)	(6.065)	(0.080)	(0.255)
25l goal \times intervention	-2.871***	-26.963***	-0.096	-0.011
	(0.530)	(6.783)	(0.069)	(0.316)
35l goal \times intervention	-1.290**	-12.369*	-0.010	0.002
	(0.542)	(6.399)	(0.072)	(0.319)
$RTF \times intervention$	-1.763***	-20.144***	0.010	0.050
	(0.483)	(5.630)	(0.069)	(0.287)
Intervention	1.091***	5.158	0.133**	-0.027
	(0.287)	(3.514)	(0.055)	(0.231)
Bathroom FEs	Yes	Yes	Yes	Yes
Observations R^2	314608	286732	286732	286732
	0.331	0.297	0.859	0.561

Standard errors clustered at household level. * p < 0.1, ** p < 0.05, *** p < 0.01

Stopping probabilities around the goal

Conclusion

- Goal setting (with real-time feedback) is effective in encouraging water conservation behavior
 - ▶ RTF saves 1.8 liters of water per shower (8-9%)
 - ▶ goals can more than double the effect (up to 20%)
 - effects remain stable over 4-6 months

Conclusion

- Goal setting (with real-time feedback) is effective in encouraging water conservation behavior
 - ▶ RTF saves 1.8 liters of water per shower (8-9%)
 - goals can more than double the effect (up to 20%)
 - effects remain stable over 4-6 months
- Inverse-U relation between goal difficulty and effort
 - ▶ 15 liter goal seems most effective

Conclusion

- Goal setting (with real-time feedback) is effective in encouraging water conservation behavior
 - ▶ RTF saves 1.8 liters of water per shower (8-9%)
 - goals can more than double the effect (up to 20%)
 - effects remain stable over 4-6 months
- Inverse-U relation between goal difficulty and effort
 - ▶ 15 liter goal seems most effective
- Strongest behavioral responses at the margin of goal attainment
 - asymmetry: larger sensitivity in gain domain
 - best explained by "warm glow" model

That was it.

Thanks for your attention!

Appendix

Goal conditions range from hard to easy

Figure: Histogram of shower volumes in baseline

Five goal conditions:

- 10 liter
- 15 liter
- 20 liter
- 25 liter
- 35 liter

▶ back

Empirical model for average treatment effects

Fixed-effects regression equation:

$$y_{is} = \alpha_i + \beta_1 T_{is}^{10I} + \ldots + \beta_5 T_{is}^{35I} + \beta_6 T_{is}^{Rtf} + \delta_t + \varepsilon_{is}$$

 T_{it}^{group} : treatment group \times intervention indicators

 α_i : bathroom fixed effects

 δ_t : time fixed effects

 $\varepsilon_{\it is}$: error term (cluster on household level)

No effects on the extensive margin

No effects on the extensive margin

Stability of treatment effects over time

Difference-in-differences, intervention split into early, mid-, and late period

Stability of treatment effects over time

Difference-in-differences, intervention split into early, mid-, and late period

Stability of treatment effects over time

Difference-in-differences, intervention split into early, mid-, and late period

Stability of treatment effects: study progress splines

			imes progress splines			
	initial effect	1st spline	2nd spline	3rd spline	4th spline	
10l goal \times intervention	-3.232*** (0.593)	0.009 (0.017)	0.004 (0.013)	0.003 (0.017)	0.006	
15l goal \times intervention	-3.974*** (0.662)	0.012 (0.016)	0.008 (0.013)	-0.013 (0.015)	0.020 (0.018)	
20l goal \times intervention	-2.956*** (0.560)	-0.003 (0.015)	0.016 (0.013)	-0.021 (0.016)	0.031 (0.024)	
25l goal \times intervention	-2.815*** (0.565)	-0.010 (0.015)	0.010 (0.012)	0.005 (0.016)	0.018	
35l goal \times intervention	-1.938*** (0.556)	0.025 (0.018)	0.003 (0.014)	-0.012 (0.017)	-0.006 (0.020)	
$RTF \times intervention$	-1.558*** (0.552)	-0.010 (0.017)	0.012 (0.014)	-0.014 (0.016)	0.005	
F-test: all splines = 0	p = 0.7268					
Observations R^2	313996 0.332					

Empirical model for heterogeneous treatment effects

Fixed-effects model with linear interactions:

$$y_{is} = \alpha_i + \gamma_0 z_{is} + (\beta_1 + \gamma_1 z_{is}) T_{is}^{10I} + \ldots + (\beta_6 + \gamma_6 z_{is}) T_{is}^{Rtf} + \delta_t + \varepsilon_{is}$$

 T_{it}^{group} : treatment group \times intervention indicators

 z_{is} : interaction variable \times interv. indicator

 α_i : bathroom fixed effects

 δ_t : time fixed effects

 ε_{is} : error term (cluster on household level)

Interactions with baseline water use

	(1) linear interaction		(2) above median	
	main effect	imes baseline	main effect	$\times \mathbb{I}_{median^+}$
10l goal \times intervention $\times \dots$	-2.884***	-0.179***	-1.854***	-3.852***
	(0.552)	(0.060)	(0.503)	(0.961)
15l goal \times intervention $\times \dots$	-3.827***	-0.405***	-1.562***	-6.192***
	(0.515)	(0.077)	(0.406)	(1.131)
20l goal \times intervention $\times \dots$	-2.937***	-0.296***	-1.297***	-4.276***
	(0.413)	(0.066)	(0.408)	(0.781)
25l goal \times intervention $\times \dots$	-2.946***	-0.286***	-1.293***	-4.783***
	(0.475)	(0.068)	(0.428)	(0.977)
35l goal \times intervention $\times \dots$	-1.172**	-0.171**	-0.352	-2.115**
	(0.489)	(0.071)	(0.450)	(0.912)
$RTF \times intervention \times \dots$	-1.699***	-0.265***	-0.093	-3.350***
	(0.441)	(0.053)	(0.508)	(0.843)
Intervention $\times \dots$	1.108***	0.048	0.967***	1.242**
	(0.278)	(0.035)	(0.278)	(0.540)
Observations between \mathbb{R}^2	_	.608 287	3146 0.1	

Margins of adjustment

	Duration [Sec]	Flow rate [I/min]	Temperature [Celsius]
10l goal \times intervention	-34.25***	-0.06	0.06
	(7.08)	(0.07)	(0.25)
15l goal $ imes$ intervention	-36.54***	-0.21**	0.34
	(7.39)	(0.10)	(0.25)
20l goal \times intervention	-28.24***	-0.12	0.20
	(6.07)	(0.08)	(0.25)
25l goal \times intervention	-26.96***	-0.10	-0.01
	(6.78)	(0.07)	(0.32)
35l goal \times intervention	-12.37*	-0.01	0.00
	(6.40)	(0.07)	(0.32)
Real-time feedback \times intervention	-20.14***	0.01	0.05
	(5.63)	(0.07)	(0.29)
Intervention	5.16	0.13**	-0.03
	(3.51)	(0.06)	(0.23)
F-test for joint sign.: p-value	0.000	0.096	0.373
Observations between R^2	286732	286732	286732
	0.003	0.000	0.000

Effects on household consumption level

Effects on household consumption level

Treatment effects on daily household water use per capita

1. Estimated vs. actual volume before the intervention

No relationship between actual and estimated water use

- Estimated average is quite close to true value (wisdomof-the-crowd effect)
- But individuals know virtually nothing about their own water use
- Quite typical, seen in many other studies.

No differences between control group and experimental conditions (all collapsed into one group).

2. Estimated vs. actual volume during the intervention

Strong improvement in awareness of resource use in the treatment conditions.

 Relationship between actual and estimated water use becomes much steeper. than it was before.

Control group shows no improvement in awareness of water use (not surprising).

3. Estimated vs. actual volume after the intervention

Awareness persists throughout the study.

 Treated groups continue to show the same, much tighter, relationship between actual and estimated water use.

Control group shows no improvement.