Разбор задачи «Жирным шрифтом»

Создадим новую таблицу и для каждой закрашенной клетки в старой таблице будем закрашивать соответствующую ей клетку, а также клетку снизу, справа и справа снизу. Выведем новую таблицу.

Разбор задачи «NP-полная задача»

Заметим, что по ограничениям входных данных m < n, то есть рёбер меньше, чем вершин. Из условия граф связный, но такое может быть, только если в нём n-1 ребро, то есть граф является деревом. Дерево всегда можно правильно раскрасить в два цвета, а из условия $n \ge 2$ нам нужно будет всегда два цвета. Таким образом, хроматическое число данного графа всегда равно 2.

Разбор задачи «Взлом пароля»

Переберём все пары индексов $1 \le i, j \le n$, в том числе i = j, и проверим, что i-ый пароль равен перевёрнутому j-му. Если это так, то выведем букву посередине одного из слов.

Разбор задачи «New New York»

В задаче требуется посчитать количество точек с целочисленными координатами, расстояние до которых от нуля не больше N. Для этого, например, можно пройтись по всем целочисленным координатам x_i ($-N \leqslant x_i \leqslant N$) и для каждой посчитать количество подходящих точек на вертикальной прямой $x=x_i$. Это количество будет равно $2 \cdot \lfloor \sqrt{N^2-x^2} \rfloor + 1$. Сумма по всем x_i и будет ответом.

Разбор задачи «Красивые простые числа»

Заметим, что красивое простое число p должно раскладываться в сумму простых числел 2 и p-2, ведь если оно раскладывается на какие-либо два других простых числа, оба из которых отличны от 2, то их сумма будет чётна, но она является простым числом, большим 2. Тогда, простое число p красивое, только если p-2 простое. Количество таких чисел до какого-либо N можно посчитать решетом Эратосфена.

Разбор задачи «Пин-код»

Сначала переберём сумму цифр в загаданном числе, после переберём все числа с найденной суммой цифр.

Разбор задачи «Расстановка слонов»

Задача решается перебором с оптимизациями. Авторское решение использует метод ветвей и границ, а также битсеты.

Разбор задачи «Голосовой ассистент Олег»

В задаче следовало буквально реализовать то, что просили.

Разбор задачи «Анаграммы»

Будем идти по строке s скользящим окном размера |t|. Для скользящего окна будем поддерживать массив подсчёта букв в подстроке s и будем сравнивать его с аналогичным массивом подсчёта для всей строки t. Если эти массивы равны, то и рассматриваемые строки являются анаграммами.

Разбор задачи «Робот-художник»

Для каждой точки запишем направления, по которым из этой точки или в неё проходит траектория. Если в какой-то точке этих направлений 3 или 4, то подсчитаем её в ответе.

Разбор задачи «Силён?»

Для всех пунктов, кроме 4 и 5, будем решать задачу с помощью динамического программирования по подотрезкам. Также будем считать разность между максимальным и минимальным элементами на отрезке через максимум и минимум на отрезке. Для подотрезка массива длины 1:

- 1. Сумма, максимум и минимум, НОД на отрезке равны единственному элементу на отрезке
- 2. Длина НВП равна 1
- 3. Максимальная сумма элементов на подотрезке равна единственному элементу на отрезке, если он больше 0, а иначе 0
- 4. Количество инверсий равно 0

Теперь, когда мы к отрезку $a_l, a_{l+1}, \dots, a_{r-1}, a_r$ добавляем элемент a_{r+1} , то:

- 1. Сумма, максимум и минимум пересчитываются очевидно
- 2. НОД всего отрезка равен НОД предыдущего отрезка (a_l, \cdots, a_r) и нового элемента a_{r+1} .
- 3. Длина НВП равна

$$\max_{l \leqslant i \leqslant r: a_i < a_r} dp_i + 1$$

где dp_i - длина НВП для подотрезка $a_l, a_{l+1}, \cdots, a_{i-1}, a_i$

- 4. Максимальная сумма на отрезке равна максимуму из максимальной суммы на предыдущем отрезке и максимуму из сумм всех суффиксов нового отрезка.
- 5. Количество инверсий на отрезке равно количеству инверсий на предыдущем отрезке + количеству инверсий, где правый элемент r+1.

Для пунктов 4 и 5 будем перебирать все подотрезки массива, поддерживая два множества: первое, состоящее из элементов на подотрезке, и второе, состоящее неотрицательных целых чисел, которые не встречаются на подотрезке. Так, ответ на пункт 4 — минимум из элементов второго множество, а на пункт 5 — размер первого множества.

Разбор задачи «Графомания»

https://oeis.org/A001349