

Probability and Stochastic Processes

Lecture 03: Properties of Probability Measures, Borel σ -Algebra, Caratheodory's Extension Theorem, Lebesgue Measure

Karthik P. N.

Assistant Professor, Department of Al

Email: pnkarthik@ai.iith.ac.in

08/12 August 2024

Recall

Fix a measurable space (Ω, \mathscr{F}) .

Definition (Probability Measure)

A function $\mathbb{P}:\mathscr{F}\to[0,1]$ is called a probability measure if the following properties are satisfied:

- 1. $\mathbb{P}(\emptyset) = 0$.
- 2. $\mathbb{P}(\Omega) = 1$.
- 3. If A_1, A_2, \ldots is a countable collection of disjoint sets, with $A_i \in \mathscr{F}$ for each $i \in \mathbb{N}$, then

$$\mathbb{P}\left(igcup_{i\in\mathbb{N}}A_i
ight)=\sum_{i\in\mathbb{N}}\mathbb{P}(A_i).$$

Note: $\bigcup_{i\in\mathbb{N}} A_i$ is sometimes written as $\bigcup_{i=1}^{\infty} A_i$. Same holds for intersections.

Properties of Probability Measures

Exercise

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

• (Finite additivity)

For any $n \in \mathbb{N}$ and disjoint collection of events $A_1, \ldots, A_n \in \mathscr{F}$,

$$\mathbb{P}\left(igcup_{i=1}^n A_i
ight) = \sum_{i=1}^n \mathbb{P}(A_i).$$

• For any $A \in \mathscr{F}$,

$$\mathbb{P}(A^c) = 1 - \mathbb{P}(A).$$

• (Monotonicity) If $A \subseteq B$, $A \in \mathscr{F}$, $B \in \mathscr{F}$, then

$$\mathbb{P}(A) \leq \mathbb{P}(B)$$
.

Properties of Probability Measures

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

• For any two sets $A, B \in \mathscr{F}$,

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B).$$

• (Inclusion-Exclusion principle)

For any $A_1, \ldots, A_n \in \mathscr{F}$,

$$\mathbb{P}\left(igcup_{i=1}^n A_i
ight) = \sum_{i=1}^n \mathbb{P}(A_i) - \sum_{i < j} \mathbb{P}(A_i \cap A_j) + \sum_{i < j < k} \mathbb{P}(A_i \cap A_j \cap A_k) - \ \cdots + (-1)^{n+1} \, \mathbb{P}\left(igcap_{i=1}^n A_i
ight).$$

The Liminf Event

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

• If $A_1, A_2, A_3, \ldots, \in \mathscr{F}$, we define the liminf event as

$$\liminf_{n\to\infty}A_n:=\bigcup_{n=1}^\infty\bigcap_{k=n}^\infty A_k.$$

• $\omega \in \liminf_{n \to \infty} A_n \implies \omega \in \text{ all but finitely many } A_n$

The Limsup Event

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

• If $A_1, A_2, A_3, \ldots, \in \mathscr{F}$, we define the limsup event as

$$\limsup_{n\to\infty}A_n\coloneqq\bigcap_{n=1}^\infty\bigcup_{k=n}^\infty A_k.$$

• $\omega \in \limsup_{n \to \infty} A_n \implies \omega \in \text{ infinitely many } A_n$

Note

In general, we have

$$\lim_{n\to\infty}\inf A_n\subseteq \limsup_{n\to\infty}A_n.$$

Limit Set

If $\limsup_{n\to\infty}A_n=\liminf_{n\to\infty}A_n$, we call this common set $\lim_{n\to\infty}A_n$. Examples:

• $A_1 \subseteq A_2 \subseteq A_3 \subseteq \cdots$, where $A_i \in \mathscr{F}$ for each $i \in \mathbb{N}$

$$\limsup_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} A_n = \liminf_{n \to \infty} A_n = \lim_{n \to \infty} A_n$$

• Similarly, for $A_1 \supseteq A_2 \supseteq A_3 \supseteq \cdots$, where $A_i \in \mathscr{F}$ for each $i \in \mathbb{N}$, we have

$$\lim_{n\to\infty}A_n=\bigcap_{n=1}^\infty A_n$$

(verify this!)

Continuity of Probability Measure

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

• If $A_1 \subseteq A_2 \subseteq A_3 \subseteq \cdots$, where $A_i \in \mathscr{F}$ for each $i \in \mathbb{N}$, then

$$\mathbb{P}\left(igcup_{i=1}^{\infty}A_i
ight)=\mathbb{P}\left(\lim_{n o\infty}A_n
ight)=\lim_{n o\infty}\mathbb{P}(A_n).$$

• If $A_1\supseteq A_2\supseteq A_3\supseteq \cdots$, where $A_i\in \mathscr{F}$ for each $i\in \mathbb{N}$, then

$$\mathbb{P}\left(\bigcap_{i=1}^{\infty}A_i
ight)=\mathbb{P}\left(\lim_{n o\infty}A_n
ight)=\lim_{n o\infty}\mathbb{P}(A_n).$$

Union Bound

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

• For any $A_1, A_2, \ldots \in \mathscr{F}$,

$$\mathbb{P}\left(igcup_{n=1}^{\infty}A_i
ight)\leq \sum_{n=1}^{\infty}\mathbb{P}(A_n)$$

Probability Measures on Discrete Spaces

Discrete Sample Spaces

Let Ω be a non-empty, discrete (countable) sample space.

Thus, Ω may be represented as one of the following:

- $\Omega = \{\omega_1, \dots, \omega_n\}$ for some $n \in \mathbb{N}$
- $\Omega = \{\omega_1, \omega_2, \ldots\}$

In this case, we simply take $\mathscr{F}=2^\Omega$

Probability Assignment

Given (Ω, \mathscr{F}) , we define $\mathbb{P}: \mathscr{F} \to [0, 1]$ as

$$\mathbb{P}(\mathbf{A}) = \sum_{\omega \in \mathbf{A}} \mathbb{P}(\{\omega\}), \quad \mathbf{A} \in \mathscr{F},$$

while making sure that the assignment \mathbb{P} satisfies $\sum_{\omega \in \Omega} \mathbb{P}(\{\omega\}) = 1$.

Examples

•
$$\Omega = \{H, T\}, \quad \mathscr{F} = \mathbf{2}^{\Omega} = \left\{\emptyset, \Omega, \{H\}, \{T\}\right\}$$

$$\mathbb{P}(\{H\}) = p = 1 - \mathbb{P}(\{T\}), \quad p \in [0, 1]$$

•
$$\Omega = \mathbb{N}$$
, $\mathscr{F} = 2^{\Omega}$

$$\mathbb{P}(\{k\}) = \dots$$
 such that $\sum_{k=1}^{\infty} \mathbb{P}(\{k\}) = 1$.

$$-\mathbb{P}(\{k\})=p(1-p)^{k-1}, \quad k\in\Omega \quad (p\in[0,1],$$
 Geometric measure)

•
$$\Omega = \mathbb{N} \cup \{0\}, \quad \mathscr{F} = 2^{\Omega}$$

$$-\mathbb{P}(\{k\})=e^{-\lambda}\frac{\lambda^k}{k!},\quad k\in\Omega\quad (\lambda>0, \text{Poisson measure})$$

Probability Measures on Uncountable Spaces

Smallest σ -Algebra

Simple example: $\Omega=\{1,2,3,4,5\}$ Consider the collection $\mathscr{C}=\left\{\{1\},\{2,3\}\right\}$. What is $\sigma(\mathscr{C})$?

To construct $\sigma(\mathscr{C})$, we can first construct all σ -algebras that contain \mathscr{C} , and then take their intersection.

$$\begin{split} \mathscr{F}_1 &= \sigma \left(\left\{ \{1\}, \{2,3\}, \{4,5\} \right\} \right) & \mathscr{F}_2 &= \sigma \left(\left\{ \{1\}, \{2,3\}, \{4\}, \{5\} \right\} \right) \\ \mathscr{F}_3 &= \sigma \left(\left\{ \{1\}, \{2\}, \{3\}, \{4,5\} \right\} \right) & \mathscr{F}_4 &= \sigma \left(\left\{ \{1\}, \{2\}, \{3\}, \{4\}, \{5\} \right\} \right) = 2^{\Omega} \end{split}$$

Then,
$$\sigma(\mathscr{C}) = \bigcap_{i=1}^4 \mathscr{F}_i$$
.

Smallest σ -Algebra

Definition (Smallest σ **-Algebra)**

Let Ω be a sample space, and let $\mathscr C$ be an arbitrary collection of subsets of Ω . For an arbitrary index set $\mathcal I$, let $\{\mathscr F_i:i\in\mathcal I\}$ be a collection of all σ -algebras containing the sets in $\mathscr C$. Then, the smallest σ -algebra generated from $\mathscr C$, denoted by $\sigma(\mathscr C)$, is defined as

$$\sigma(\mathscr{C}) = \bigcap_{\mathbf{i} \in \mathcal{I}} \mathscr{F}_{\mathbf{i}}.$$

Remark

If $\mathscr H$ is any σ -algebra containing the sets in $\mathscr C$, then $\mathscr H$ contains the sets in $\sigma(\mathscr C)$. Mathematically,

$$\mathscr{C} \subseteq \mathscr{H} \implies \sigma(\mathscr{C}) \subseteq \mathscr{H}.$$

Uncountable State Spaces

Suppose that $\Omega = [0, 1], \quad \mathscr{F} = 2^{\Omega}$

Suppose that we want to model the concept of a "uniform probability measure" on $\boldsymbol{\Omega}$

We want:
$$\mathbb{P}(\{\omega_1\}) = \mathbb{P}(\{\omega_2\})$$
 for all $\omega_1, \omega_2 \in \Omega$

Suppose that $\mathbb{P}(\{\omega\}) = p > 0$ for all $\omega \in [0, 1]$.

In particular, $\mathbb{P}(\{\omega\}) = p$ for all $\omega \in \mathbb{Q} \cap [0,1]$.

This implies that

$$\mathbb{P}([0,1]) \geq \mathbb{P}(\mathbb{Q} \cap [0,1]) = \sum_{\omega \in \mathbb{Q} \cap [0,1]} \mathbb{P}(\{\omega\}) = \sum_{\omega \in \mathbb{Q} \cap [0,1]} p = +\infty$$

Therefore, we must have $\mathbb{P}(\{\omega\})=0$ for all $\omega\in[0,1]$ However, this does not tell us the value of $\mathbb{P}([\frac{1}{2},1])$ (why?) Remedy: Give up on the requirement $\mathscr{F}=\mathbf{2}^{\Omega}$

Borel σ -Algebra

Consider $\Omega = [0, 1]$

Let
$$\mathcal{O} = \{(a,b): 0 \le a < b \le 1\} = \text{ collection of all open sub-intervals of } [0,1]$$

Definition (Borel σ **-Algebra)**

The smallest σ -algebra containing the sets in \mathcal{O} is called the Borel σ -algebra of subsets of [0,1], and denoted $\mathscr{B}([0,1])$. Sets in $\mathscr{B}([0,1])$ are called Borel sets.

Remarks:

- $(a, b) \in \mathcal{B}([0, 1])$ for all $0 \le a < b \le 1$
- $\{x\} \in \mathcal{B}([0,1])$ for all $x \in [0,1]$ Indeed, we may express $\{x\}$ as

$$\{x\} = \bigcap_{n \in \mathbb{N}} A_n, \quad ext{where} \quad A_n = \left(x - \frac{1}{n}, \ x + \frac{1}{n}\right) \cap [0, 1]$$

• $(a, b], [a, b), [a, b] \in \mathcal{B}([0, 1])$ for all $0 \le a < b \le 1$ (why?)

Uniform Probability Assignment to Sets in $\mathscr{B}([0,1])$

$$\Omega = [0,1], \quad \mathscr{F} = \mathscr{B}([0,1])$$

Aim: To build a "uniform" probability function $\mathbb{P}:\mathscr{F} o[0,1]$

- Step 1: Consider the collection $\mathcal{O} = \{(a,b) : 0 \le a < b \le 1\}$
- Step 2: Construct the smallest algebra containing all sets in \mathcal{O} . Call this algebra \mathscr{A} .
- Step 3: Construct a function $\mathbb{P}_0:\mathscr{A} \to [0,1]$ satisfying the following properties:
 - $\mathbb{P}_0(\Omega) = 1$
 - $\mathbb{P}_0((a,b)) = b a$ for all 0 ≤ $a < b \le 1$
 - For any disjoint $A_1, A_2, \ldots \in \mathscr{A}$ such that $\bigcup_{i=1}^{\infty} A_i \in \mathscr{A}$,

$$\mathbb{P}_0\left(igcup_{i=1}^\infty A_i
ight) = \sum_{i=1}^\infty \mathbb{P}_0(A_i).$$

• Step 4: Use Caratheodory's extension theorem to extend \mathbb{P}_0 to a measure \mathbb{P} on $\mathscr{F} = \sigma(\mathscr{A}) = \sigma(\mathcal{O})$

Caratheodory's Extension Theorem

Caratheodory's Extension Theorem

Fix a sample space Ω . Let \mathscr{A} be an algebra of subsets of Ω , and let $\mathscr{F} = \sigma(\mathscr{A})$. Suppose that $\mathbb{P}_0 : \mathscr{A} \to [0,1]$ satisfies

- 1. $\mathbb{P}_0(\Omega) = 1$, and
- 2. For all disjoint $A_1, A_2, \ldots \in \mathscr{A}$ such that $\bigcup_{i=1}^{\infty} A_i \in \mathscr{A}$,

$$\mathbb{P}_0\left(igcup_{i=1}^\infty A_i
ight) = \sum_{i=1}^\infty \mathbb{P}_0(A_i).$$

Then, \mathbb{P}_0 can be extended uniquely to a measure $\mathbb{P}: \mathscr{F} \to [0,1]$ such that

$$\mathbb{P}(A) = \mathbb{P}_0(A)$$
 for all $A \in \mathscr{A}$.

The extended measure \mathbb{P} is called the Lebesgue measure, and generally denoted by λ

Uniform Probability Assignment to Sets in $\mathcal{B}([0,1])$

$$\Omega = [0,1], \quad \mathscr{F} = \mathscr{B}([0,1]), \quad \lambda : \mathscr{F} \to [0,1]$$
 – Lebesgue measure

The below properties follow immediately.

- $\lambda(\{x\}) = 0$ for all $x \in [0, 1]$
- For all $0 \le a < b \le 1$, we have

$$\lambda((a,b)) = \lambda([a,b]) = \lambda((a,b]) = \lambda([a,b]) = b - a$$

• $\lambda(\mathbb{Q} \cap [0,1]) = 0$ (example of a countably infinite set having zero probability)

Lebesgue Measure on $\mathscr{B}(\mathbb{R})$

$$\Omega = \mathbb{R}$$

$$\mathsf{Consider}\,\mathscr{C} = \bigg\{(a,b): -\infty \leq a < b \leq +\infty\bigg\}, \qquad \sigma(\mathscr{C}) = \mathscr{B}(\mathbb{R})$$

$$\lambda:\mathscr{B}(\mathbb{R}) o [0,+\infty]$$
 – Lebesgue measure

- $\lambda(\mathbb{R}) = +\infty$
- $\lambda(\{x\}) = 0$ for all $x \in \mathbb{R}$
- For all $-\infty < a < b < +\infty$, we have

$$\lambda((a,b)) = \lambda([a,b]) = \lambda((a,b]) = \lambda([a,b]) = b - a$$

• $\lambda(\mathbb{Q}) = 0$

The Cantor Set

Consider the interval [0, 1]

•
$$C_0 = [0, 1]$$

•
$$C_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1]$$

•
$$C_2 = \left[0, \frac{1}{9}\right] \cup \left[\frac{2}{9}, \frac{1}{3}\right] \cup \left[\frac{2}{3}, \frac{7}{9}\right] \cup \left[\frac{8}{9}, 1\right]$$

:

Cantor set $K := \bigcap_{i=1}^{\infty} C_i$

Credits: Jim Belk, Cornell

Properties of Cantor Set

• K is uncountable

• $K \in \mathscr{B}([0,1])$

• $\lambda(K) = 0$, where λ is the Lebesgue measure

Remark

Cantor set is an example of an uncountable set with zero probability (as measured under the Lebesgue measure).

Reading

- For a proof of the Caratheodory's extension theorem, see [Williams, 1991, Appendix A]
- For interesting problems and exercises on algebra, σ -algebra, and probability measures, see the book by Grimmett and Stirzaker

References

Williams, D. (1991).

Probability with martingales.

Cambridge university press.