WENXUAN ZHANG'S PORTFOLIO

HOME

SYLLABUS

PRACTICE PROBLEMS AND EXERCISES

THE MINI-DESIGN PROJECT

THE FINAL DESIGN PROJECT

MORE...

EDSGN 468 Engineering Design and Analysis with Advanced CAD Section: 5

Wenxuan Zhang's Portfolio wjz5054@psu.edu

Submitted to Xinli Wu Xinli@psu.edu

Date of Submission: 12/6/2018

ABOUT N

CATIA Designer

My name is Wenxuan Zhang. I am a student from Penn State majoring in Mechanical Engineering. This website is my portfolio about EDSGN 468 course. This course is Engineering Design and Analysis with Advanced CAD. We used CATIA to build model and to run stress analysis. I hope you can enjoy my portfolio. Thanks for watching!

The Mini-Design Project

Design Task:

Design and produce a prototype via 3D printing of an innovative perfume bottle.

Design Specifications:

- \bullet The bottle is used for a volume of 100 mL (or $^{\sim}$ 3.4 FL OZ).
- Note: 1.0 FL OZ = 29.5735 mL, and 1000 mm3 = 1.0 mL;
- \bullet The maximum size of the bottle should not be greater than 80 x 80 x 80 mm3;
- The minimum thickness of the perfume bottle should not be less than 2 mm to ensure a successful rapid prototyping.

3-D Printing of Perfume Bottle

For this perfume bottle design, I 3-D printed it out. When I was trying to print the perfume bottle, I had some problems to save this product file as stl file. So I print out three parts of the perfume bottle Separately. It couldn't assemble together at the beginning because of the 3-D printer's tolerance. After I milled the parts, they could assemble.

The Final Design Project

Design Task:

Design a chair capable of holding a person of 300 lbs and then conduct a finite element analysis to verify/prove that the chair is safe under such a load.

Design Specifications:

The chair must be able to withhold up to 300 lbs;

The chair should be ergonomically sound;

The chair should be durable;

The chair should be comfortable;

The chair should cost no more than \$100;

The chair should be safe.

Major Deliverables:

A complete design report (part of the design portfolio for the course) including the following items:

A solid model generated by CATIA;

A complete set of working drawings including an assembly drawing and detail drawings for non-standard parts;

A complete FE analysis report.

Chair Product Drawing

Part 2 Drawing

Part 4 Drawing

Analysis Report for Chair

MESH:

Entity	Size
Nodes	3990
Elements	12499

ELEMENT TYPE:

Connectivity	Statistics
SPIDER	173 (1.38%)
TE4	12320 (98.57%)
NSBAR	6 (0.05%)

ELEMENT QUALITY:

Criterion	Good	Poor	Bad	Worst	Average
Stretch	12203 (99.05%)	117 (0.95%)	0 (0.00%)	0.245	0.605
Aspect Ratio	10681 (86.70%)	1565 (12.70%)	74 (0.60%)	7.340	2.020

Materials.1

Materials.1

Material	Pine
Young's modulus	2.466e+006psi
Poisson's ratio	0.45
Density	500kg_m3
Coefficient of thermal expansion	3.75e-006_Kdeg
Yield strength	0psi

Material	Iron
Young's modulus	3.06e+007psi
Poisson's ratio	0.291
Density	7870kg_m3
Coefficient of thermal expansion	1.21e-005_Kdeg
Yield strength	44961.699psi

Static Case

Boundary Conditions

4164

STRUCTURE Computation

Number of nodes : 3990
Number of elements : 12499
Number of D.O.F. : 12006
Number of Contact relations : 161
Number of coefficients : 848
Number of Kinematic relations : 1059

DASSAULT SYSTEMES

Number of coefficients

Linear tetrahedron : 12320
Translation rigid spider : 12
Rigid spider : 6
Contact join : 161

LOAD Computation

Name: Loads.1

Applied load resultant:

DASSAULT SYSTEMES

> DASSAULT SYSTEMES

Fx	=	7	273e-014	NISSAUL
Fy	=	-9	686e-014	N
Fz	=	-1	334e+003	N
Mx	=	3	790e+002	Nxm
My_	=	-1	088e+003	Nxm
Mz	=	9	810e-014	Nxm

Mb

STIFFNESS Computation

Number of lines : 12006
Number of coefficients : 203814
Number of blocks : 1
Maximum number of coefficients per bloc : 203814
Total matrix size : 2

DASSAULT DASSAULT Restraint: Restraints.1

Restraint: Restraints.1

SINGULARITY Computation

Number of local singularities : 0
Number of singularities in translation : 0
Number of singularities in rotation : 0
Generated constraint type : MPC

CONSTRAINT Computation

CONSTRAINT Compu

Number of constraints : 2072
Number of coefficients : 0
Number of factorized constraints : 2014
Number of coefficients : 2326
Number of deferred constraints : 0

FACTORIZED Computation

Method			SPAR	SE
Number of factorized degrees	:	9992		
Number of supernodes	:	2126		
Number of overhead indices	:	74975		
Number of coefficients	:	868621		
Maximum front width	:	664		
Maximum front size	:	220780		
Size of the factorized matrix (Mb)	:	6		62705
Mountain a Chila also		1		

Number of Mflops for solve MES : 3 . 524e+000 Minimum relative pivot : 2 . 556e-009

Minimum and maximum pivot

DASSAULT_{SYSTEMES}

Value	Dof	Node	x (cm)	у (ст)	z (cm)
4.2625e+000	Ty	3922	-6.6324e+001	-3.9801e+001	/LT -7.7352e+000
3.2870e+010	Tz	1275	-6.8590e+001	-1.2000e+001	2.1814e+001
3.0052e+008	Rz	1571	-9.8241e+001	-8.0831e+000	6.7259e+001
3.9012e+009	Rz	1568	-8.0881e+001	-8.1208e+000	6.7267e+001
•			5Y:		

	Value	Dof	Node	x (cm)	y (cm)	z (cm)
	1.1796e+001	Tx	3922	-6.6324e+001	-3.9801e+001	-7.7352e+000
1	5.5880e+002	Ty	3921	-6.6166e+001	-3.6060e+001	2.2712e+000
	6.4373e+005	Tx	3047	-6.9451e+001	-3.7522e+001	0.0000e+000
	1.9795e+006	Tx	2823	-6.0590e+001	-3.0094e+001	-4.1500e+001
	2.3511e+006	Tz	2638	-1.0151e+002	-5.1157e+001	3.9819e+000
	3.3769e+006	Ty	3989	-6.6030e+001	-3.5957e+001	-3.1731e+001
	3.4382e+006	Ту	3990	-6.5222e+001	-3.8221e+001	-4.5632e+001
	3.4500e+006	Ту	3444	-6.4084e+001	-3.5552e+001	-1.8006e+001
	3.5586e+006	Tz	3990	-6.5222e+001	-3.8221e+001	-4.5632e+001

Value	Dof	Node	x (cm)	y (cm)	z (cm)
3.4286e+008	Rz	2644	-6.4522e+001	-7.5508e+000	2.9500e+000
3.5495e+008	Rx	2644	-6.4522e+001	-7.5508e+000	2.9500e+000
3.8797e+008	Rz	2648	-9.8463e+001	-7.5724e+000	2.9911e+000
4.1199e+008	Rx	2645	-8.0878e+001	-7.6602e+000	3.0244e+000
4.6086e+008	Rz	2645	-8.0878e+001	-7.6602e+000	3.0244e+000
4.8833e+008	Rz	1567	-6.4134e+001	-8.0847e+000	6.7250e+001
6.4027e+008	Ry	2644	-6.4522e+001	-7.5508e+000	2.9500e+000
8.1122e+008	Ry	2648	-9.8463e+001	-7.5724e+000	2.9911e+000
8.4902e+008	Rx	2648	-9.8463e+001	-7.5724e+000	2.9911e+000

Value	Percentage
10.E0> 10.E1	1.0020e-002
10.E1> 10.E2	1.0020e-002
10.E2> 10.E3	1.0020e-002
10.E3> 10.E4	0.0000e+000
10.E4> 10.E5	0.0000e+000
10.E5> 10.E6	1.0020e-002
10.E6> 10.E7	1.5030e-001
10.E7> 10.E8	2.3046e-001
10.E8> 10.E9	3.1824e+001
10.E9> 10.E10	5.5922e+001
10.E10> 10.E11	1.1834e+001

Rotational pivot distribution

DASSAULT SYSTEMES

Value	Percentage
10.E8> 10.E9	9.1667e+001
10.E9> 10.E10	8.3333e+000

DASSAULT SYSTEMES

Components	Applied Forces	Reactions	Residual	Relative Magnitude Error
Fx (N)	7.2734e-014	-9.9002e-012	-9.8275e-012	2.8801e-014
Fy (N)	-9.6863e-014	2.0544e-011	2.0447e-011	5.9925e-014
Fz (N)	-1.3345e+003	1.3345e+003	-6.3803e-008	1.8699e-010
Mx (Nxm)	3.7898e+002	-3.7898e+002	5.5869e-009	1.5361e-011
My (Nxm)	-1.0878e+003	1.0878e+003	-5.5750e-008	1.5329e-010
Mz (Nxm)	9.8101e-014	-1.6761e-011	-1.6663e-011	4.5815e-014

Static Case Solution.1 - Deformed mesh.2

7 k y

Global Sensors

Sensor Name	Sensor Value
Energy	5.211e-004J
Global Error Rate (%)	30.855491638

