

Qiskit | Fall Fest

Quantum Computing Workshop

Research Talk:

Quantum simulation of jet quenching

Meijian Li

meijian.li@usc.es Instituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela (USC), Spain

Qiskit Fall Fest 2022 at USC, IGFAE, 2022.10.21

What is Quantum Simulation?

Time evolution in quantum dynamics is given by

Hamiltonian

$$|\psi(t_f)\rangle = \underbrace{\mathcal{T} e^{-i\int_{t_i}^{t_f} dt \, \mathbf{H}(t)}}_{U(t_f; t_i) \, evolution \, operator}$$

Why Quantum Simulation?

What is jet quenching?

"Jet"
A rapid stream

"Quenching"
A rapid cooling process

What is jet quenching?

In heavy ion collisions, a jet is a cone-shaped beam of energetic particles. When propagating through the hot medium, it loses energy due to jet-medium interaction, a phenomenon known as *jet quenching*.

Why jet quenching?

Medium Formation of Jet evolution properties matter Jet **Jet** medium

Outline

The theoretical setup

We consider the propagation of a highly energetic quark, the jet, in the presence of a dense medium, the field A.

$$|\psi(t_f)\rangle = \underbrace{\mathcal{T} e^{-i \int_{t_i}^{t_f} dt \, H(t)}}_{U(t_f; t_i)} |\psi(t_i)\rangle$$

Quantum simulation algorithm

Construction with five generic steps:

- 1) Input
 - √ The system Hamiltonian
- 2) Encoding
- 3) Initial state preparation
- 4) Time evolution
- 5) Measurement

Quantum simulation algorithm: (2) Encoding

A map between physical basis states and qubit states:

$$|\beta(\mathbf{p}_{\perp},c)\rangle \leftrightarrow |01...0\rangle$$

 N_d physical states (transverse momentum p_{\perp} and color c)

$$|\beta(\mathbf{p}_{\perp},c)\rangle = |\mathbf{p}_{\perp}\rangle \otimes |c\rangle$$

$$n_Q = \log_2 N_d$$
 qubit states

$$|01 \dots 0\rangle = |0\rangle \otimes |1\rangle \otimes \dots \otimes |0\rangle$$

e.g.,
$$|1,3\rangle \to |01,11\rangle \to |0\rangle \otimes |1\rangle \otimes |1\rangle \otimes |1\rangle$$

 $\to |\uparrow\rangle \otimes |\downarrow\rangle \otimes |\downarrow\rangle \otimes |\downarrow\rangle$,

Quantum simulation algorithm:

(3) Initial state preparation

Superposition state: $|\psi(t)\rangle = \sum_{\beta} c_{\beta}(t) |\beta\rangle$

We take $|\psi(0)\rangle$ as the zero transverse momentum and a fully balanced superposed color state,

$$|\psi(0)\rangle = |\boldsymbol{p}_{\perp} = \boldsymbol{0}_{\perp}\rangle \otimes \left[\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)\right]$$

$$|0\rangle$$
 — $\frac{|0\rangle+|1\rangle}{\sqrt{2}}$

Which gate could prepare such a state?

Quantum simulation algorithm: (4) Time evolution

The full evolution operator decomposed into a sequence of small steps

$$U(t_f; t_i) = \lim_{n \to \infty} \prod_{k=1}^{n} U(t_k; t_{k-1})$$

Quantum simulation algorithm: (4) Time evolution

The full evolution operator decomposed into a sequence of small steps

$$U(t_f; t_i) = \lim_{n \to \infty} \prod_{k=1}^{n} U(t_k; t_{k-1})$$

Each step-wise evolution decomposed into the kinetic energy and the medium interaction:

Quantum simulation algorithm:

(5) Measurement

When measured, the quantum state collapses to a momentum and color eigenstate:

$$|\psi(t)\rangle = \sum_{\beta} c_{\beta}(t)|\beta\rangle \quad \rightarrow |\beta\rangle$$

$$|q_{0}q_{1} \dots q_{n_{Q}-1}\rangle \quad \rightarrow |01 \dots 0\rangle$$

Quantum simulation algorithm: (5) Measurement

By performing multiple measurements (shots), we are able to reconstruct the distribution of the jet state in momentum space.

Statistical uncertainty decreases as the number of counts increases

Observations: Momentum broadening

Recall that the initial state is a zero momentum and a balanced superposed color state. The final state momentum distribution:

Simulations in a noisy quantum computer

Quenching parameter as a function of the field strength:

Summary

In this work:

We constructed a digital quantum circuit that tracks the evolution of a quark jet in the presence of a medium background and studied the quenching effects.

Find more in the article: J. Barata, X. Du, M. Li, W. Qian, C. A. Salgado, "Medium induced jet broadening in a quantum computer", Phys. Rev. D 106, 074013(2022), arXiv:2208.06750 [hep-ph]

Future work plans:

- □ Incorporating multiple particles into the jet, e.g., jet as a superposition state $|q\rangle + |qg\rangle$.
- Optimization of the quantum circuit, e.g., reducing the circuit depth.

