Úvod do organickej chémie

Organická chémia= chémia uhlíka, pretože uhlík je kostrou, základom všetkých organických zlúčenín.

Uhlík – je súčasťou:

- anorganických zlúčenín je ich málo CO, CO_2, H_2CO_3 , uhličitany, hydrouhličitany, HCN, kyanovodík, kyanidy (CN^- , sírouhlík CS_2 , karbidy (napr. karbid vápenatý (CaC_2) iný názov
- acetylid vápenatý)
- organických zlúčenín je omnoho >> viac ako 180 mil.

DELENIE ORGANICKÝCH ZLÚČENÍN:

- 1. uhľovodíky (iba C + H) alkány, alkény, alkíny, alkadiény, arény
- 2. odvodené deriváty uhľovodíkov (C + H + iné prvky ako O, N,S, halogény (Cl,F,Br,I) alkoholy, halogénderiváty, amíny, nitroderiváty, karboxylové kyseliny, aldehydy, ketóny.....)
- v roku 1828 sa nemeckému chemikovi F. Wöhlerovi podarilo pripraviť v laboratóriu **z anorganickej látky organickú látku**. (zahrievaním roztoku kyanatanu amónneho pripravil močovinu)

 * NH_AOCN \longrightarrow $H_2N-CO-NH_2$

 $W_1H_4OCN \longrightarrow H_2N -$

Zloženie organických látok

Organické zlúčeniny obsahujú $\mathbf{C} + \mathbf{H,O,N}$

Okrem nich môžu obsahovať: S, P, halogény (F, Cl, Br, I)

zriedka aj **kovy napr. Fe^{II}** (hemoglobín), **Mg^{II}** (chlorofyl)

Vlastnosti organických látok:

- 1./ Sú citlivé na svetlo a teplo
- 2./ Sú l'ahko prchavé, horl'avé, často karcinogénne látky
- 3./ Vo vode sú nerozpustné
- 4./ Ich roztoky nevedú elektrický prúd
- 5./ Reakcie prebiehajú **pomalšie** lebo reagujú celé molekuly (reakčný mechanizmus zložený zo sledu reakcií)

Fosílne palivá

Zdroje organických látok:

Vyrábajú sa z látok **organického pôvodu** ako je ropa, uhlie, zemný plyn, drevo, poľnohospodárske (BIO)produkty (zemiaky, kukurica, slnečnica, repka olejka, cukrová repa, ovocie).

Mnohé sa vyrábajú **synteticky z anorganických látok** lebo takáto výroba je lacnejšia a rýchlejšia.

Vlastnosti uhlíka:

Umiestnenie v PSP: protónové číslo 6 perióda 2 skupina 14

elektronegativita: X(C) = 2,55

elektrónová konfigurácia val.vrstvy: C 2s² 2p²

zápis pomocou rámčekového diagramu:

Mal by byť 2 väzbový, avšak nie je

4 väzbovosť uhlíka sa odvodzuje od excitovaného (=vzbudeného) stavu C*

Excitovaný stav uhlíka !!!!!!!

-uhlík podľa elektrónovej konfigurácie by mal byť je 2 väzbový, to je ale menej výhodné, dochádza k preskočeniu elektrónu z 2s <u>orbitálu</u> do 2 <u>pz</u>

a je tak 4-väzbový – tentostav sa označuje hviezdičkou – excitovaný stav=vzbudený

Základný stav: 2s² 2p²

Nižšia energia

Excitovaný stav: 2s12p3

Vyššia energia

Výhodné vlastnosti uhlíka – vhodnosť ako kostry v OCH:

- 1.uhlík vytvára pevné kovalentné väzby
- 2. uhlík <u>nemá voľné</u> elektrónové <u>páry ani orbitály</u>
- 3. má výhodnú hodnotu elektronegativity (X=2,55)

Väzbovosť prvkov=	počet kovalentných väzieb prvku
Uhlík	4-väzbový
Vodík	1-väzbový
Kyslík	2-väzbový
Dusík	3-väzbový
Halogény (F, Cl, Br, I)	1-väzbové

Kovalentná väzba môže byť:

• Jednoduchá –zložená z 1 sigma väzby - označenie: σ, počet e- 2

• **Dvojitá** – 1sigma + 1 pí -označenie: π , počet e- 4

• Trojitá – 1 sigma + 2 pí -označenie: ... počet e- 6

Atómy uhlíka sa môžu neobmedzene spájať a tvoriť stabilné reťazce ©

typy väzby	znázornenie väzby	dĺžka v nm	Pevnosť – energia
Jednoduchá (1sigma)	С — С	najdlhšia - 0,154 nm	najslabšia (348 kJ.mol-1)
Dvojitá (1sigma+1pí)	C ===== C	0,134 nm	(600 kJ.mol-1)
Trojitá(1 sigma + 2pí)	C ≡ C	najkratšia - 0,120 nm	najpevnejšia (820 kJ.mol-1)

ÚLOHY:

- 1. Naznačte spôsoby štvorväzbovosti uhlíka, trojväzbovosti dusíka a dvojväzbovosti kyslíka:
- 2.Doplňte správne väzbovosť: C C O H
- 3. Medzi organické zlúčeniny nepatrí:

H₂CO₃, C₆H₆, HCN, CH₃OH, CO, CS₂, C₄H₇N,

4. V uvedenom vzorci doplňte príslušný počet vodíkov:

$$C - C$$

$$C - C - C - C$$

5. Na základe rozdielu hodnôt elektronegativít medzi atómami vyznač šípkou polaritu väzieb medzi zvýraznenými atómami:

$$CH_3 - H_2C - O - H$$

Prvok <u>s vyššou</u> elektronegativitou priťahuje k sebe väzbové elektróny, vzniká na ňom <u>čiastkový záporný náboj – delta mínus</u> (δ⁻) a na prvku <u>z nižšou</u> elektronegativitou čiastkový kladný náboj –delta plus (δ⁺)
-JE TO KOVALENTNÁ VäZBA POLÁRNA

Základné uhľovodíky a ich pomenovanie podľa počtu uhlíkov:

Počet C	názov	Molekulový vzorec	Štruktúrny vzorec	Skrátený štruktúrny vzorec
1C	metán	CH ₄	H - ¿ - H	CH ₄
2C	etán	C ₂ H ₆	4 4 H-C-K-H	СН3-СН3
3C	propán	C ₃ H ₈	4 H H H - C - C - C - H	CH ₃ -CH ₂ -CH ₃
4C	bután	C ₄ H ₁₀	7	
5C	pentán	C ₅ H ₁₂		
6C	hexán	C ₆ H ₁₄		
7 C	heptán	C7H16		
8C	oktán	C ₈ H ₁₈		
9C	nonan	C9H20		

10 C	dekan	C ₁₀ H ₂₂	
11C	undekan	C11H24	
12C	dodekan	C ₁₂ H ₂₆	

Podľa uhľovod. reťazca delíme uhľovodíky na:

1.acyklické – uhľ.reťazec netvorí kruh – je otvorený

a)nerozvetvené -

CH₃-CH₂-CH₂-CH₂-CH₃

b)rozvetvené

$$H_3C$$
— CH_2 — CH_3
 H_3C — C — CH_3
 CH_3
 CH_3
 CH_3
 CH_3

izopentán neopentán

Primárny uhlík – je uhlík, ktorý vytvára chem. väzbu s 1 uhlíkom

Sekundárny uhlík – je uhlík, ktorý vytvára chem. väzby s 2 inými uhlíkmi

Terciárny uhlík – je uhlík, ktorý vytvára chem. väzby s 3 inými uhlíkmi

Kvartérny uhlík - je uhlík, ktorý vytvára chem. väzby so 4 inými uhlíkmi

2.cyklické –majú uzatvorený uhľovodíkový reťazec

!!!!majú predponu CYKLO !!!!!

Cyklohexán, Cyklobután,

Cyklopropán,

Cyklohexán, Cykloheptán