Complex differentiation and Cauchy-Riemann equations

Md. Abul Kalam Azad Assistant Professor, Mathematics MPE, IUT

Derivatives

If f(z) is single-valued in some region \mathcal{R} of the z plane, the *derivative* of f(z) is defined as

$$f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$$
(3.1)

provided that the limit exists independent of the manner in which $\Delta z \to 0$. In such a case, we say that f(z) is differentiable at z. In the definition (3.1), we sometimes use h instead of Δz . Although differentiability implies continuity, the reverse is not true

Analytic Functions

If the derivative f'(z) exists at all points z of a region \mathcal{R} , then f(z) is said to be *analytic in* \mathcal{R} and is referred to as an *analytic function in* \mathcal{R} or a function *analytic in* \mathcal{R} . The terms *regular* and *holomorphic* are sometimes used as synonyms for analytic.

A function f(z) is said to be analytic at a point z_0 if there exists a neighborhood $|z - z_0| < \delta$ at all points of which f'(z) exists.

Cauchy-Riemann Equations

A necessary condition that w = f(z) = u(x, y) + iv(x, y) be analytic in a region \mathcal{R} is that, in \mathcal{R} , u and v satisfy the *Cauchy–Riemann equations*

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$
 (3.2)

If the partial derivatives in (3.2) are continuous in \mathcal{R} , then the Cauchy–Riemann equations are sufficient conditions that f(z) be analytic in \mathcal{R} .

The functions u(x, y) and v(x, y) are sometimes called *conjugate functions*. Given u having continuous first partials on a simply connected region \mathcal{R} , we can find v (within an arbitrary additive constant) so that u + iv = f(z) is analytic

Harmonic Functions

If the second partial derivatives of u and v with respect to x and y exist and are continuous in a region \mathcal{R} , then we find from (3.2) that $\partial^2 u \quad \partial^2 u \quad \partial^2 v \quad \partial^2 v$

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \qquad \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0 \tag{3.3}$$

It follows that under these conditions, the real and imaginary parts of an analytic function satisfy Laplace's equation denoted by

$$\frac{\partial^2 \Psi}{\partial^2 x} + \frac{\partial^2 \Psi}{\partial^2 y} = 0 \quad \text{or} \quad \nabla^2 \Psi = 0 \quad \text{where } \nabla^2 \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$
 (3.4)

The operator ∇^2 is often called the *Laplacian*.

Functions such as u(x, y) and v(x, y) which satisfy Laplace's equation in a region \mathcal{R} are called *harmonic functions* and are said to be *harmonic in* \mathcal{R} .

Rules for Differentiation

Suppose f(z), g(z), and h(z) are analytic functions of z. Then the following differentiation rules (identical with those of elementary calculus) are valid.

1.
$$\frac{d}{dz}\{f(z) + g(z)\} = \frac{d}{dz}f(z) + \frac{d}{dz}g(z) = f'(z) + g'(z)$$

2.
$$\frac{d}{dz}\{f(z) - g(z)\} = \frac{d}{dz}f(z) - \frac{d}{dz}g(z) = f'(z) - g'(z)$$

3.
$$\frac{d}{dz}\{cf(z)\} = c\frac{d}{dz}f(z) = cf'(z)$$
 where c is any constant

4.
$$\frac{d}{dz} \{f(z)g(z)\} = f(z)\frac{d}{dz}g(z) + g(z)\frac{d}{dz}f(z) = f(z)g'(z) + g(z)f'(z)$$

$$5. \quad \frac{d}{dz} \left\{ \frac{f(z)}{g(z)} \right\} = \frac{g(z)(d/dz)f(z) - f(z)(d/dz)g(z)}{\left[g(z)\right]^2} = \frac{g(z)f'(z) - f(z)g'(z)}{\left[g(z)\right]^2} \quad \text{if } g(z) \neq 0$$

6. If $w = f(\zeta)$ where $\zeta = g(z)$ then

$$\frac{dw}{dz} = \frac{dw}{d\zeta} \cdot \frac{d\zeta}{dz} = f'(\zeta) \frac{d\zeta}{dz} = f'\{g(z)\}g'(z)$$
(3.10)

Similarly, if $w = f(\zeta)$ where $\zeta = g(\eta)$ and $\eta = h(z)$, then

$$\frac{dw}{dz} = \frac{dw}{d\zeta} \cdot \frac{d\zeta}{d\eta} \cdot \frac{d\eta}{dz}$$
 (3.11)

The results (3.10) and (3.11) are often called *chain rules* for differentiation of composite functions.

7. If w = f(z) has a single-valued inverse f^{-1} , then $z = f^{-1}(w)$, and dw/dz and dz/dw are related by

$$\frac{dw}{dz} = \frac{1}{dz/dw} \tag{3.12}$$

8. If z = f(t) and w = g(t) where t is a parameter, then

$$\frac{dw}{dz} = \frac{dw/dt}{dz/dt} = \frac{g'(t)}{f'(t)}$$
(3.13)

Similar rules can be formulated for differentials. For example,

$$d\{f(z) + g(z)\} = df(z) + dg(z) = f'(z) dz + g'(z) dz = \{f'(z) + g'(z)\} dz$$
$$d\{f(z)g(z)\} = f(z) dg(z) + g(z) df(z) = \{f(z)g'(z) + g(z) f'(z)\} dz$$

L'Hospital's Rule

Let f(z) and g(z) be analytic in a region containing the point z_0 and suppose that $f(z_0) = g(z_0) = 0$ but $g'(z_0) \neq 0$. Then, L'Hospital's rule states that

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{f'(z_0)}{g'(z_0)} \tag{3.14}$$

In the case of $f'(z_0) = g'(z_0) = 0$, the rule may be extended. See Problems 3.21–3.24.

We sometimes say that the left side of (3.14) has the "indeterminate form" 0/0, although such terminology is somewhat misleading since there is usually nothing indeterminate involved. Limits represented by so-called indeterminate forms ∞/∞ , $0 \cdot \infty$, ∞° , 0° , 1^{∞} , and $\infty - \infty$ can often be evaluated by appropriate modifications of L'Hospital's rule.

Ex-1: Using the definition, find the derivative of $w = f(z) = z^3 - 2z$ at the point where (a) $z = z_0$, (b) z = -1.

Solution

(a) By definition, the derivative at $z = z_0$ is

$$f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta_z) - f(z_0)}{\Delta z} = \lim_{\Delta z \to 0} \frac{(z_0 + \Delta z)^3 - 2(z_0 + \Delta z) - \{z_0^3 - 2z_0\}}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \frac{z_0^3 + 3z_0^2 \Delta z + 3z_0 (\Delta z)^2 + (\Delta z)^3 - 2z_0 - 2\Delta z - z_0^3 + 2z_0}{\Delta z}$$

$$= \lim_{\Delta z \to 0} 3z_0^2 + 3z_0 \Delta z + (\Delta z)^2 - 2 = 3z_0^2 - 2$$

In general, $f'(z) = 3z^2 - 2$ for all z.

(b) From (a), or directly, we find that if $z_0 = -1$, then $f'(-1) = 3(-1)^2 - 2 = 1$.

Ex-2: Show that $(d/dz)\bar{z}$ does not exist anywhere, i.e., $f(z) = \bar{z}$ is non-analytic anywhere.

Solution

By definition,
$$\frac{d}{dz}f(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$$

if this limit exists independent of the manner in which $\Delta z = \Delta x + i\Delta y$ approaches zero. Then

$$\frac{d}{dz}\bar{z} = \lim_{\Delta z \to 0} \frac{\overline{z + \Delta z} - \overline{z}}{\Delta z} = \lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} \frac{\overline{x + iy + \Delta x + i\Delta y} - \overline{x + iy}}{\Delta x + i\Delta y}$$
$$= \lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} \frac{x - iy + \Delta x - i\Delta y - (x - iy)}{\Delta x + i\Delta y} = \lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} \frac{\Delta x - i\Delta y}{\Delta x + i\Delta y}$$

If
$$\Delta y = 0$$
, the required limit is $\lim_{\Delta x \to 0} \frac{\Delta x}{\Delta x} = 1$

If
$$\Delta x = 0$$
, the required limit is $\lim_{\Delta y \to 0} \frac{-i\Delta y}{i\Delta y} = -1$

Then, since the limit depends on the manner in which $\Delta z \to 0$, the derivative does not exist, i.e., $f(z) = \overline{z}$ is non-analytic anywhere.

Ex-3: Given w = f(z) = (1+z)/(1-z), find (a) dw/dz and (b) determine where f(z) is non-analytic.

Solution

(a) Using the definition

$$\frac{dw}{dz} = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z} = \lim_{\Delta z \to 0} \frac{\frac{1 + (z + \Delta z)}{1 - (z + \Delta z)} - \frac{1 + z}{1 - z}}{\Delta z}$$
$$= \lim_{\Delta z \to 0} \frac{2}{(1 - z - \Delta z)(1 - z)} = \frac{2}{(1 - z)^2}$$

independent of the manner in which $\Delta z \rightarrow 0$, provided $z \neq 1$.

(b) The function f(z) is analytic for all finite values of z except z = 1 where the derivative does not exist and the function is non-analytic. The point z = 1 is a *singular point* of f(z).

Ex-4: Prove that a (a) necessary and (b) sufficient condition that w = f(z) = u(x, y) + iv(x, y) be analytic in a region \mathcal{R} is that the Cauchy-Riemann equations $\partial u/\partial x = \partial v/\partial y$, $\partial u/\partial y = -(\partial v/\partial x)$ are satisfied in \mathcal{R} where it is supposed that these partial derivatives are continuous in \mathcal{R} .

Solution

(a) Necessity. In order for f(z) to be analytic, the limit

$$\lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z} = f'(z)$$

$$= \lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} \frac{\{u(x + \Delta x, y + \Delta y) + iv(x + \Delta x, y + \Delta y)\} - \{u(x, y) + iv(x, y)\}}{\Delta x + i\Delta y}$$
(1)

must exist independent of the manner in which Δz (or Δx and Δy) approaches zero. We consider two possible approaches.

Case 1. $\Delta y = 0, \Delta x \rightarrow 0$. In this case, (1) becomes

$$\lim_{\Delta x \to 0} \left\{ \frac{u(x + \Delta x, y) - u(x, y)}{\Delta x} + i \left[\frac{v(x + \Delta x, y) - v(x, y)}{\Delta x} \right] \right\} = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$$

provided the partial derivatives exist.

Case 2. $\Delta x = 0$, $\Delta y \rightarrow 0$. In this case, (1) becomes

$$\lim_{\Delta y \to 0} \left\{ \frac{u(x,\,y + \Delta y) - u(x,\,y)}{i\Delta y} + \frac{v(x,\,y + \Delta y) - v(x,\,y)}{\Delta y} \right\} = \frac{1}{i} \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y} = -i \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y}$$

Now f(z) cannot possibly be analytic unless these two limits are identical. Thus, a necessary condition that f(z) be analytic is

$$\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = -i \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y}$$
 or $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$, $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$

(b) Sufficiency. Since $\partial u/\partial x$ and $\partial u/\partial y$ are supposed to be continuous, we have

$$\Delta u = u(x + \Delta x, y + \Delta y) - u(x, y)$$

$$= \{u(x + \Delta x, y + \Delta y) - u(x, y + \Delta y)\} + \{u(x, y + \Delta y) - u(x, y)\}$$

$$= \left(\frac{\partial u}{\partial x} + \epsilon_1\right) \Delta x + \left(\frac{\partial u}{\partial y} + \eta_1\right) \Delta y = \frac{\partial u}{\partial x} \Delta x + \frac{\partial u}{\partial y} \Delta y + \epsilon_1 \Delta x + \eta_1 \Delta y$$

where $\epsilon_1 \to 0$ and $\eta_1 \to 0$ as $\Delta x \to 0$ and $\Delta y \to 0$.

Similarly, since $\partial v/\partial x$ and $\partial v/\partial y$ are supposed to be continuous, we have

$$\Delta v = \left(\frac{\partial v}{\partial x} + \epsilon_2\right) \Delta x + \left(\frac{\partial v}{\partial y} + \eta_2\right) \Delta y = \frac{\partial v}{\partial x} \Delta x + \frac{\partial v}{\partial y} \Delta y + \epsilon_2 \Delta x + \eta_2 \Delta y$$

where $\epsilon_2 \to 0$ and $\eta_2 \to 0$ as $\Delta x \to 0$ and $\Delta y \to 0$. Then

$$\Delta w = \Delta u + i \Delta v = \left(\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}\right) \Delta x + \left(\frac{\partial u}{\partial y} + i \frac{\partial v}{\partial y}\right) \Delta y + \epsilon \Delta x + \eta \Delta y \tag{2}$$

where $\epsilon = \epsilon_1 + i\epsilon_2 \to 0$ and $\eta = \eta_1 + i\eta_2 \to 0$ as $\Delta x \to 0$ and $\Delta y \to 0$. By the Cauchy–Riemann equations, (2) can be written

$$\Delta w = \left(\frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x}\right)\Delta x + \left(-\frac{\partial v}{\partial x} + i\frac{\partial u}{\partial x}\right)\Delta y + \epsilon \Delta x + \eta \Delta y$$
$$= \left(\frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x}\right)(\Delta x + i\Delta y) + \epsilon \Delta x + \eta \Delta y$$

Then, on dividing by $\Delta z = \Delta x + i \Delta y$ and taking the limit as $\Delta z \to 0$, we see that

$$\frac{dw}{dz} = f'(z) = \lim_{\Delta z \to 0} \frac{\Delta w}{\Delta z} = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$$

so that the derivative exists and is unique, i.e., f(z) is analytic in \mathcal{R} .

Harmonic Function: Any function which satisfies Laplace's equation $\nabla^2 \Psi = 0$ is called a **Harmonic Function (HF). For example if** $\nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$, then u is a HF.

Similarly if
$$\nabla^2 v = \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial v^2} = 0$$
 then v is another HF.

Theorem: If f(z) = u + iv is an analytic function, then u and v are both HF.

Proof: For any analytic function, f(z) = u + iv, we know that u and v must satisfy C-R Equations. That is

Differentiation eqn (1) with respect to x, we have

Similarly differentiation eqn (2) with respect to y, we have

Now adding eqn (3) and eqn (4), we have

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 v}{\partial x \partial y} - \frac{\partial^2 v}{\partial y \partial x}$$

$$\Rightarrow \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \qquad \left[\because \frac{\partial^2 v}{\partial x \partial y} = \frac{\partial^2 v}{\partial y \partial x} \right] \text{ for any analytic function}$$

Therefore, u satisfies Laplace's equation and thereby a HF. Similarly differentiating eqn (1) and (2) with respect to y and x respectively and carrying out logically similar steps one can show that

$$\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$$

Thus, u and v both satisfy Laplace's equation and thereby HF^s.

Conjugate Functions: Any function which satisfy C-R Equation is called a Conjugate function (CF).

Harmonic Conjugate Functions: Functions satisfying both C-R Equation and Laplace's equation is called a Harmonic Conjugate Function (HCF).

Example1: Show that the function u(x, y) = 4xy - 3x + 2 is HF. Construct the corresponding analytic function f(z) = u + iv

Solution: Given that

$$u(x, y) = 4xy - 3x + 2$$

$$\Rightarrow \frac{\partial u}{\partial x} = 4y - 3, \quad \frac{\partial u}{\partial y} = 4x,$$

$$\Rightarrow \frac{\partial^2 u}{\partial x^2} = 0, \qquad \frac{\partial^2 u}{\partial y^2} = 0$$

$$\therefore \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \Rightarrow \text{ u is a HF.}$$

From Total differentiation, we have

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy$$

$$= \left(-\frac{\partial u}{\partial y} \right) dx + \left(\frac{\partial u}{\partial x} \right) dy \quad \text{[By C-R Equations]}$$

$$\therefore dv = -4x dx + (4y - 3) dy$$

On integration, we have,

$$v = -2x^{2} + 2y^{2} - 3y + c$$

$$\therefore f(z) = u(x, y) + iv(x, y)$$

$$= (4xy - 3x + 2) + i(-2x^{2} + 2y^{2} - 3y + c)$$

$$= -i2x^{2} + 4xy + i2y^{2} - 3x - i3y + 2 + ic$$

$$= -2i(x^{2} + 2ixy - y^{2}) - 3(x + iy) + 2 + ic$$

$$= -2i(x + iy)^{2} - 3z + 2 + ic$$

$$\therefore f(z) = -2iz^{2} - 3z + 2 + ic$$

Ex-5: Given f(z) = u + iv is analytic in a region \mathcal{R} . Prove that u and v are harmonic in \mathcal{R} if they have continuous second partial derivatives in \mathcal{R} .

Solution

If f(z) is analytic in \mathcal{R} , then the Cauchy–Riemann equations

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \tag{1}$$

and

$$\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} \tag{2}$$

are satisfied in \mathcal{R} . Assuming u and v have continuous second partial derivatives, we can differentiate both sides of (1) with respect to x and (2) with respect to y to obtain

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 v}{\partial x \partial y} \tag{3}$$

and

$$\frac{\partial^2 v}{\partial x} = -\frac{\partial^2 u}{\partial y^2} \tag{4}$$

from which

$$\frac{\partial^2 u}{\partial x^2} = -\frac{\partial^2 u}{\partial y^2} \quad \text{or} \quad \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

i.e., u is harmonic.

Similarly, by differentiating both sides of (1) with respect to y and (2) with respect to x, we find

$$\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$$

and v is harmonic.

Ex-6: (a) Prove that $u = e^{-x}(x \sin y - y \cos y)$ is harmonic.

(b) Find v such that f(z) = u + iv is analytic.

Solution

(a)
$$\frac{\partial u}{\partial x} = (e^{-x})(\sin y) + (-e^{-x})(x\sin y - y\cos y) = e^{-x}\sin y - xe^{-x}\sin y + ye^{-x}\cos y$$
$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial}{\partial x}(e^{-x}\sin y - xe^{-x}\sin y + ye^{-x}\cos y) = -2e^{-x}\sin y + xe^{-x}\sin y - ye^{-x}\cos y$$
(1)
$$\frac{\partial u}{\partial y} = e^{-x}(x\cos y + y\sin y - \cos y) = xe^{-x}\cos y + ye^{-x}\sin y - e^{-x}\cos y$$
$$\frac{\partial^2 u}{\partial y^2} = \frac{\partial}{\partial y}(xe^{-x}\cos y + ye^{-x}\sin y - e^{-x}\cos y) = -xe^{-x}\sin y + 2e^{-x}\sin y + ye^{-x}\cos y$$
(2)

Adding (1) and (2) yields $(\partial^2 u/\partial x^2) + (\partial^2 u/\partial y^2) = 0$ and u is harmonic.

(b) From the Cauchy-Riemann equations,

$$\frac{\partial v}{\partial y} = \frac{\partial u}{\partial x} = e^{-x} \sin y - xe^{-x} \sin y + ye^{-x} \cos y \tag{3}$$

$$\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} = e^{-x}\cos y - xe^{-x}\cos y - ye^{-z}\sin y \tag{4}$$

Integrate (3) with respect to y, keeping x constant. Then

$$v = -e^{-x}\cos y + xe^{-x}\cos y + e^{-x}(y\sin y + \cos y) + F(x)$$

= $ye^{-x}\sin y + xe^{-x}\cos y + F(x)$ (5)

where F(x) is an arbitrary real function of x.

Substitute (5) into (4) and obtain

$$-ye^{-x}\sin y - xe^{-x}\cos y + e^{-x}\cos y + F'(x) = -ye^{-x}\sin y - xe^{-x}\cos y - ye^{-x}\sin y$$

or F'(x) = 0 and F(x) = c, a constant. Then, from (5),

$$v = e^{-x}(y\sin y + x\cos y) + c$$

Ex-7: Find f(z) in Problem 6

Solution

Apart from an arbitrary additive constant, we have from the results of Problem 6

$$f(z) = u + iv = e^{-x}(x\sin y - y\cos y) + ie^{-x}(y\sin y + x\cos y)$$

$$= e^{-x} \left\{ x \left(\frac{e^{iy} - e^{-iy}}{2i} \right) - y \left(\frac{e^{iy} + e^{-iy}}{2} \right) \right\} + ie^{-x} \left\{ y \left(\frac{e^{iy} - e^{-iy}}{2i} \right) + x \left(\frac{e^{iy} + e^{-iy}}{2} \right) \right\}$$

$$= i(x + iy)e^{-(x+iy)} = ize^{-z}$$

Ex-8: Prove that (a) $(d/dz)e^z = e^z$, (b) $(d/dz)e^{az} = ae^{az}$ where a is any constant.

Solution

(a) By definition, $w = e^z = e^{x+iy} = e^x(\cos y + i\sin y) = u + iv$ or $u = e^x\cos y$, $v = e^x\sin y$. Since $\partial u/\partial x = e^x\cos y = \partial v/\partial y$ and $\partial v/\partial x = e^x\sin y = -(\partial u/\partial y)$, the Cauchy-Riemann equations are satisfied. Then, by Problem 3.5, the required derivative exists and is equal to

$$\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = -i \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y} = e^x \cos y + i e^x \sin y = e^z$$

(b) Let $w = e^{\zeta}$ where $\zeta = az$. Then, by part (a)

$$\frac{d}{dz}e^{az} = \frac{d}{dz}e^{\zeta} = \frac{d}{d\zeta}e^{\zeta} \cdot \frac{d\zeta}{dz} = e^{\zeta} \cdot a = ae^{az}$$

We can also proceed as in part (a).

Ex-9: Prove that $\frac{d}{dz}z^{1/2} = \frac{1}{2z^{1/2}}$, realizing that $z^{1/2}$ is a multiple-valued function.

Solution

A function must be single-valued in order to have a derivative. Thus, since $z^{1/2}$ is multiple-valued (in this case two-valued), we must restrict ourselves to one branch of this function at a time.

Case 1

Let us first consider that branch of $w = z^{1/2}$ for which w = 1 where z = 1. In this case, $w^2 = z$ so that

$$\frac{dz}{dw} = 2w$$
 and so $\frac{dw}{dz} = \frac{1}{2w}$ or $\frac{d}{dz}z^{1/2} = \frac{1}{2z^{1/2}}$

Case 2

Next, we consider that branch of $w = z^{1/2}$ for which w = -1 where z = 1. In this case too, we have $w^2 = z$ so that

$$\frac{dz}{dw} = 2w$$
 and $\frac{dw}{dz} = \frac{1}{2w}$ or $\frac{d}{dz}z^{1/2} = \frac{1}{2z^{1/2}}$

In both cases, we have $(d/dz)z^{1/2} = 1/(2z^{1/2})$. Note that the derivative does not exist at the branch point z = 0. In general, a function does not have a derivative, i.e., is not analytic, at a branch point. Thus branch points are singular points.

Ex-10: Using rules of differentiation, find the derivatives of each of the following:

(a)
$$\cos^2(2z+3i)$$
, (b) $z \tan^{-1}(\ln z)$, (c) $\{\tanh^{-1}(iz+2)\}^{-1}$, (d) $(z-3i)^{4z+2}$.

Solution

(a)
$$\frac{d}{dz}\{\cos(2z+3i)\}^2 = 2\{\cos(2z+3i)\} \left\{ \frac{d}{dz}\cos(2z+3i) \right\}$$
$$= 2\{\cos(2z+3i)\} \{-\sin(2z+3i)\} \left\{ \frac{d}{dz}(2z+3i) \right\}$$
$$= -4\cos(2z+3i)\sin(2z+3i)$$

(b)
$$\frac{d}{dz}\{(z)[\tan^{-1}(\ln z)]\} = z\frac{d}{dz}[\tan^{-1}(\ln z)] + [\tan^{-1}(\ln z)]\frac{d}{dz}(z)$$
$$= z\left\{\frac{1}{1 + (\ln z)^2}\right\}\frac{d}{dz}(\ln z) + \tan^{-1}(\ln z) = \frac{1}{1 + (\ln z)^2} + \tan^{-1}(\ln z)$$

(c)
$$\frac{d}{dz} \{ \tanh^{-1}(iz+2) \}^{-1} = -1 \{ \tanh^{-1}(iz+2) \}^{-2} \frac{d}{dz} \{ \tanh^{-1}(iz+2) \}$$
$$= -\{ \tanh^{-1}(iz+2) \}^{-2} \left\{ \frac{1}{1 - (iz+2)^2} \right\} \frac{d}{dz} (iz+2)$$
$$= \frac{-i \{ \tanh^{-1}(iz+2) \}^{-2}}{1 - (iz+2)^2}$$

(d)
$$\frac{d}{dz} \left\{ (z-3i)^{4z+2} \right\} = \frac{d}{dz} \left\{ e^{(4z+2)\ln(z-3i)} \right\} = e^{(4z+2)\ln(z-3i)} \frac{d}{dz} \left\{ (4z+2)\ln(z-3i) \right\}$$
$$= e^{(4z+2)\ln(z-3i)} \left\{ (4z+2) \frac{d}{dz} \left[\ln(z-3i) \right] + \ln(z-3i) \frac{d}{dz} (4z+2) \right\}$$
$$= e^{(4z+2)\ln(z-3i)} \left\{ \frac{4z+2}{z-3i} + 4\ln(z-3i) \right\}$$
$$= (z-3i)^{4z+1} (4z+2) + 4(z-3i)^{4z+2} \ln(z-3i)$$

Ex-11: Suppose $w^3 - 3z^2w + 4 \ln z = 0$. Find dw/dz.

Solution

Differentiating with respect to z, considering w as an implicit function of z, we have

$$\frac{d}{dz}(w^3) - 3\frac{d}{dz}(z^2w) + 4\frac{d}{dz}(\ln z) = 0 \quad \text{or} \quad 3w^2\frac{dw}{dz} - 3z^2\frac{dw}{dz} - 6zw + \frac{4}{z} = 0$$

Then, solving for dw/dz, we obtain $\frac{dw}{dz} = \frac{6zw - 4/z}{3w^2 - 3z^2}$.

Ex-12: Given $w = \sin^{-1}(t-3)$ and $z = \cos(\ln t)$. Find dw/dz.

Solution

$$\frac{dw}{dz} = \frac{dw/dt}{dz/dt} = \frac{1/\sqrt{1 - (t - 3)^2}}{-\sin(\ln t)(1/t)} = -\frac{t}{\sin(\ln t)\sqrt{1 - (t - 3)^2}}$$

Ex-13: In Problem 11, find d^2w/dz^2 .

Solution

$$\frac{d^2w}{dz^2} = \frac{d}{dz} \left(\frac{dw}{dz} \right) = \frac{d}{dz} \left(\frac{6zw - 4/z}{3w^2 - 3z^2} \right)$$

$$= \frac{(3w^2 - 3z^2)(6z \ dw/dz + 6w + 4/z^2) - (6zw - 4/z)(6w \ dw/dz - 6z)}{(3w^2 - 3z^2)^2}$$

The required result follows on substituting the value of dw/dz from Problem 11 and simplifying.

Ex-14: Evaluate (a)
$$\lim_{z \to i} \frac{z^{10} + 1}{z^6 + 1}$$
, (b) $\lim_{z \to 0} \frac{1 - \cos z}{z^2}$, (c) $\lim_{z \to 0} \frac{1 - \cos z}{\sin z^2}$.

Solution

(a) Let $f(z) = z^{10} + 1$ and $g(z) = z^6 + 1$. Then f(i) = g(i) = 0. Also, f(z) and g(z) are analytic at z = i. Hence, by L'Hospital's rule,

$$\lim_{z \to i} \frac{z^{10} + 1}{z^6 + 1} = \lim_{z \to i} \frac{10z^9}{6z^5} = \lim_{z \to i} \frac{5}{3}z^4 = \frac{5}{3}$$

(b) Let $f(z) = 1 - \cos z$ and $g(z) = z^2$. Then f(0) = g(0) = 0. Also, f(z) and g(z) are analytic at z = 0. Hence, by L'Hospital's rule,

$$\lim_{z \to 0} \frac{1 - \cos z}{z^2} = \lim_{z \to 0} \frac{\sin z}{2z}$$

Since $f_1(z) = \sin z$ and $g_1(z) = 2z$ are analytic and equal to zero when z = 0, we can apply L'Hospital's rule again to obtain the required limit,

$$\lim_{z \to 0} \frac{\sin z}{2z} = \lim_{z \to 0} \frac{\cos z}{2} = \frac{1}{2}$$

(c) By repeated application of L'Hospital's rule, we have

$$\lim_{z \to 0} \frac{1 - \cos z}{\sin z^2} = \lim_{z \to 0} \frac{\sin z}{2z \cos z^2} = \lim_{z \to 0} \frac{\cos z}{2 \cos z^2 - 4z^2 \sin z^2} = \frac{1}{2}$$

Ex-15: Evaluate $\lim_{z\to 0} (\cos z)^{1/z^2}$.

Solution

Let $w = (\cos z)^{1/z^2}$. Then $\ln w = (\ln \cos z)/z^2$ where we consider the principal branch of the logarithm. By L'Hospital's rule,

$$\lim_{z \to 0} \ln w = \lim_{z \to 0} \frac{\ln \cos z}{z^2} = \lim_{z \to 0} \frac{(-\sin z)/\cos z}{2z}$$
$$= \lim_{z \to 0} \left(\frac{\sin z}{z}\right) \left(-\frac{1}{2\cos z}\right) = (1)\left(-\frac{1}{2}\right) = -\frac{1}{2}$$

But since the logarithm is a continuous function, we have

$$\lim_{z \to 0} \ln w = \ln \left(\lim_{z \to 0} w \right) = -\frac{1}{2}$$

or $\lim_{z\to 0} w = e^{-1/2}$, which is the required value.

Note that since $\lim_{z\to 0}\cos z=1$ and $\lim_{z\to 0}1/z^2=\infty$, the required limit has the "indeterminate form" 1^{∞} .

Ex-18: Let C be the curve in the xy plane defined by $3x^2y - 2y^3 = 5x^4y^2 - 6x^2$. Find a unit vector normal to C at (1, -1).

Solution

Let $F(x, y) = 3x^2y - 2y^3 - 5x^4y^2 + 6x^2 = 0$. By Problem 3.33, a vector normal to C at (1, -1) is

$$\nabla F = \frac{\partial F}{\partial x} + i \frac{\partial F}{\partial y} = (6xy - 20x^3y^2 + 12x) + i(3x^2 - 6y^2 - 10x^4y) = -14 + 7i$$

Then a unit vector normal to C at (1, -1) is $\frac{-14 + 7i}{|-14 + 7i|} = \frac{-2 + i}{\sqrt{5}}$. Another such unit vector is $\frac{2 - i}{\sqrt{5}}$.

Ex-19: Suppose $A(x, y) = 2xy - ix^2y^3$. Find (a) grad A, (b) div A, (c) |curl A|, (d) Laplacian of A.

Solution

(a) grad
$$A = \nabla A = \left(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}\right) (2xy - ix^2y^3) = \frac{\partial}{\partial x} (2xy - ix^2y^3) + i\frac{\partial}{\partial y} (2xy - ix^2y^3)$$

= $2y - 2ixy^3 + i(2x - 3ix^2y^3) = 2y + 3x^2y^2 + i(2x - 2xy^3)$

(b) div
$$A = \nabla \cdot A = \text{Re}\{\overline{\nabla}A\} = \text{Re}\left\{\left(\frac{\partial}{\partial x} - i\frac{\partial}{\partial y}\right)(2xy - ix^2y^3)\right\}$$
$$= \frac{\partial}{\partial x}(2xy) - \frac{\partial}{\partial y}(x^2y^3) = 2y - 3x^2y^2$$

(c)
$$|\operatorname{curl} A| = |\nabla \times A| = |\operatorname{Im}\{\overline{\nabla}A\}| = \left|\operatorname{Im}\left\{\left(\frac{\partial}{\partial x} - i\frac{\partial}{\partial y}\right)(2xy - ix^2y^3)\right\}\right|$$
$$= \left|\frac{\partial}{\partial x}(-x^2y^3) - \frac{\partial}{\partial y}(2xy)\right| = \left|-2xy^3 - 2x\right|$$

(d) Laplacian
$$A = \nabla^2 A = \text{Re}\{\overline{\nabla}\nabla A\} = \frac{\partial^2 A}{\partial x^2} + \frac{\partial^2 A}{\partial y^2} = \frac{\partial^2}{\partial x^2}(2xy - ix^2y^3) + \frac{\partial^2}{\partial y^2}(2xy - ix^2y^3)$$
$$= \frac{\partial}{\partial x}(2y - 2ixy^3) + \frac{\partial}{\partial y}(2x - 3ix^2y^2) = -2iy^3 - 6ix^2y$$

Thanks a lot ...