

DEC 1951

Approved For Release 2005/07/13 : CIA-RDP80-00809A000500590369-6

SECRET

CENTRAL INTELLIGENCE AGENCY
INFORMATION REPORT

25X1

COUNTRY USSR

SUBJECT Soviet Research on
Organophosphorous Compounds/I V Stalin Metallurgical Institute at Dnepropetrovsk

25X1

DATE DISTR. 30 July 1954

NO. OF PAGES 3

NO. OF ENCLRS.

THIS IS UNEVALUATED INFORMATION

25X1

25X1

1. [redacted] a new reaction in organophosphorous compounds developed from previous work of V S Abramov of the S M Kirov Chemical Technological Institute at Kazan. The article is titled "Reaction of Aldehydes with Phosphites", appearing in Doklady Akad Nauk SSSR 95, 991-2 (1954).

2. [redacted] this article [redacted] significant for the reason that four new organophosphorous compounds are listed, although it is difficult to determine whether any of them are of special interest with regard to biological activity. However, of the four listed, [redacted] the first two substances are more apt to be toxic than the other two.

3. [redacted] additional Soviet work on organophosphorous compounds in an article titled "Esters of Arylsulfonimidophosphoric Acids" by A V Kirsanov and V I Shevchenko of the I V Stalin Metallurgical Institute at Dnepropetrovsk, appearing in Zhur Obshchei Khim 24, 474-84 (1954). While this work appears to be a routine continuation of Kirsanov's studies of organophosphorous compounds, and [redacted] doubt that any of the numerous new compounds listed in the article are of any special interest from the standpoint of biological activity, nevertheless [redacted] puzzled as to why the Stalin Metallurgical Institute is interested in this type of work, and why time and effort are being devoted there to research of this nature, as [redacted] no apparent connection that these particular substances might bear toward metallurgy.

25X1

SECRET

SAD/SI X

DISTRIBUTION	STATE	ARMY	NAVY	AIR	FBI	CISI	EV	BISI	X
--------------	-------	------	------	-----	-----	------	----	------	---

This report is for the use within the USA of the Intelligence components of the Departments or Agencies indicated above. It is not to be transmitted overseas without the concurrence of the originating office through the Assistant Director of the Office of Collection and Dissemination, CIA.

SECRET

25X1

25X1

- 2 -

4. Because of the possible significance of these two articles, the one by Abramov and the other by Kirsanov and Shevchenko, [redacted] translated [redacted]
as follows:

25X1

25X1

25X1

$(RO)_3P$ react with aldehydes according to the following scheme: $(RO)_3P + R'CHO \rightarrow (RO)_3PCHR' \bar{O} \rightarrow (RO)_2P(O)CHR'OR$. The reaction is run in sealed tube with heating several hours at 100-70°, the end of the reaction being detd by disappearance of the phosphite odor. The following were prep'd: 22.5% $(EtO)_2P(O)CH_2COEt$, b_2 115-16°, n_D^{20} 1.4340, d_{20} 1.036; 23.8% $(EtO)_2P(O)CH_2PrOEt$, b_1 119-20°, n_D^{20} 1.4420, d_{20} 1.054; 16.7% $(EtO)_2P(O)CH(OEt)C_6H_4OH-o$, b_2 174-8°, n_D^{20} 1.5075, d_{20} 1.180; 15.5% $(EtO)_2P(O)CH(OEt)C_6H_4Me-p$, b_1 179-82°, n_D^{20} 1.4847, d_{20} 1.075. The reaction is a new example of reaction of $(RO)_3P$ with a polar reagent.

To a soln of 0.7 g Na in 15 ml dry MeOH was added with ice-cooling 0.01 mole $ArSO_2N:PCl_3$ in dry C_6H_6 at below 5°; after filtration and evapn of the filtrate there was obtained a viscous oil, which was shaken with 30 ml H_2O to dissolve the Na salt of partial esters and to ppt the crystalline $ArSO_2N=P(OMe)_3$; for purification these are taken up in C_6H_6 , washed with H_2O and evapd after careful drying. The aq exts on acidification with HCl yield 15-20% $ArSO_2NHPO(OMe)_2$, from the intermediate $ArSO_2NNaPO(OMe)_2$; the yields of the neutral esters are 70-80%. The trialkyl esters are insol in H_2O , sol in usual org solvents and can be distd under reduced pressure, but not at atm pressure; they are stable in H_2O even after heating and are stable to dil mineral acids in the cr'd, but are slowly hydrolyzed on heating (in one hour refluxing with 0.2N HCl only 5% of a typical ester was hydrolyzed). In aq EtOH the hydrolysis is much more rapid owing to better soly. The hydrolysis yields $ArSO_2NHPO(OR)_2$, followed by formation of $ArSO_2NH_2$ and the isolation of the mono-alkyl esters could not be achieved. The hydrolysis in alkaline media is slower than in acids and yields the Na salts of the di-alkyl esters shown above, and no further reaction takes place. The following $ArSO_2N=P(OMe)_3$ were obtained (Ar shown): Ph, 75.9%, m 38-40°; o-MeC₆H₄, 76%, m 74-5°; p-analog, 80.5%, m 44-5°; 1-C₁₀H₇, 71.7%, m 84-5°; 2-C₁₀H₇, 79.6%, m 93-4°; following $ArSO_2NHPO(OMe)_2$ were obtained: Ph, 15%, m 108-9°, o-MeC₆H₄, 20.4%, m 145-6°; p-analog, 8.95%, m 110-11°; 1-C₁₀H₇, 25%, m 164-5°; 2-C₁₀H₇, 12.3%, m 144-5°. Similarly were run the prep'n of the $ArSO_2N:P(OEt)_3$ but the isolation was changed since colloidal

25X1

SECRET

SECRET

25X1

25X1

- 3 -

NaCl could not be filtered off; the reaction mixtures were concd and treated with a little H₂O to dissolve the NaCl, after which the products were isolated as above; there were obtained with BuONa in BuOH a similar series of Bu esters. The compounds were: ArSO₂N:P(OR)₃ (Ar, R shown, resp): Ph, Et, liquid, 81.5%; o-MeC₆H₄, Et, m 35-7°, 82.1%; p-MeC₆H₄, Et, liquid, 78.7%; 1-C₁₀H₇, Et, m 94-5°, 86.4%; 2-C₁₀H₇, Et, m 51-2°, 75.4%; ArSO₂NHPO(OR)₂: Ph, Et, m 111-12°, 6.82%; o-MeC₆H₄, Et, m 97-8°, 9.76%; p-MeC₆H₄, Et, m 105-6°, 7.48%; 1-C₁₀H₇, Et, m 154-5°, 8.16%; 2-C₁₀H₇, Et, m 161-2°, 20.4%; ArSO₂N:P(OR)₃: Ph, Bu, liquid, 85.1%; o-MeC₆H₄, Bu, liquid, 88.7%; δ₂₀¹.111, n_D²⁰1.491; 1-C₁₀H₇, Bu, liquid, 86.9%, δ₂₀¹.141, n_D²⁰1.530; 2-C₁₀H₇, Bu, liquid, 90.9%, δ₂₀¹.135, n_D²⁰1.532. Hydrolysis ArSO₂N:P(OR)₃ in N a/c NaOH one hour at reflux gave the following ArSO₂NHPO(OR)₂: Ph, Me, 93%, m 108-9°; 1-C₁₀H₇, Me, 95%, m 164-5°; 2-C₁₀H₇, Me, 92%, m 144-5°; o-MeC₆H₄, Et, 96.7%, m 97-8°; 1-C₁₀H₇, Et, 96.1%, m 154-5°; 2-C₁₀H₇, Et, m 161-2°, 96.1%; 1-C₁₀H₇, Bu, 92.5%, m 75-7°. To 1.04 g Na dissolved in 30 ml dry ROH was added with stirring at 40-50° 0.01 mole ArSO₂N:PCl₃ in C₆H₆, after which the solvents were removed in vacuo, the residue taken up in 20 ml H₂O and acidified yielding 74-92% ArSO₂NHPO(OR)₂. Heating 31.03 g 1-C₁₀H₇SO₂NH₂ with 31.7 g pure PCl₃ in 35 ml CCl₄ on a steam bath one hour gave after diln with 45 ml hot CCl₄ and cooling, 93.5% 1-C₁₀H₇SO₂N:PCl₃, m 110-12° to a murky liquid, clear at 117°. In a 3-3.5 hour reaction was similarly prep'd 90.1% 2-C₁₀H₇SO₂N:PCl₃, m 130-2° (from CCl₄). Both react rather slowly with H₂O yielding the sulfonamides; the reaction is more rapid in alkali; the first step of hydrolysis yielding ArSO₂NHPOCl₂ is some seven times faster than the second step in which the amide is formed.

- end -

25X1

25X1

SECRET