FCC Test Report

Report No.: AGC01211011SZ08F2

FCC ID : YHGV-ME900

PRODUCT DESIGNATION: Mini PCI Express EVDO Rev.A Card

BRAND NAME : Olive

TEST MODEL : V-ME900

CLIENT : OLIVE TELECOM(HK)LIMITED

DATE OF ISSUE : Nov.29, 2010

STANDARD(S) : FCC Part2, 22(H),24(E)

Attestation of Global Compliance Co., Ltd.

CAUTION: This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Page 1 of 33

VERIFICATION OF COMPLIANCE

	OLIVE TELECOM(HK)LIMITED		
Applicant	UNIT 3201 A 32/F CITY CORP CENTER 18 WHITFIELD ROAD		
	Q-Innovations Private Limited		
Manufacturer	862,Udyog Vihar,Phase V,Gurgaon,India-122016		
Product Designation	Mini PCI Express EVDO Rev. A Card		
Brand Name	Olive		
Model Name	V-ME900		
FCC ID	YHGV-ME900		
Report Number	AGC01211011SZ08F2		
Date of Test	Nov.23, 2010 to Nov.29, 2010		

WE HEREBY CERTIFY THAT:

The above equipment was tested by Attestation of Global Compliance Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI /TIA/EIA-603 C2004 and the energy emitted by the sample EUT tested as described in this report is in compliance with radiated emission limits of FCC Rules Part 22(H) and 24(E).

Checked By:

Forrest Lei

Nov.29, 2010

Authorized By

King Zhang

Nov.29, 2010

TABLE OF CONTENTS

1.GENERAL INFORMATION	4
1.1 PRODUCT DESCRIPTION	
1.3 TEST METHODOLOGY	∠
1.4 TEST FACILITY	
1.5 SPECIAL ACCESSORIES	
2.SYSTEM TEST CONFIGURATION	
2.1 CONFIGURATION OF TESTED SYSTEM	
2.2 EQUIPMENT USED IN TESTED SYSTEM	
3.SUMMARY OF TEST RESULTS	
4.DESCRIPTION OF TEST MODES	6
5 MAXIMUM OUTPUT POWER	
5.1 MEASUREMENT PROCEDURE	
5.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) 5.3 LIMITS AND MEASUREMENT RESULT	
6 EFFECTIVE RADIATED POWER AND EFFECTIVE ISOTROPIC RADIATED	9
POWER MEASUREMENT	9
6.1 MEASUREMENT PROCEDURE 6.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
6.3 LIMITS AND MEASUREMENT RESULTS	
7. OCCUPIED BANDWIDTH AND BAND EDGE MEASUREMENT	
7.1 DESCRIPTION OF OCCUPIED BANDWIDTH AND BAND EDGE MEASUREMENT	
7.3 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
7.4 MEASUREMENT RESULT	11
8. CONDUCTED EMISSION MEASUREMENT	10
8.1 DESCRIPTION OF CONDUCTED EMISSION MEASUREMENT	
8.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
8.3 MEASUREMENT EQUIPMENT USED	
9. SPURIOUS EMISSION MEASUREMENT	22
9.1 DESCRIPTION OF SPURIOUS EMISSION MEASUREMENT	
9.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) 9.3 MEASUREMENT PROCEDURE	22
9.3 MEASUREMENT PROCEDURE 9.4 MEASUREMENT RESULT	22
10.FREQUENCY STABILITY/VARIATION OF AMBIENT TEMPERATURE	25
11.UNCERTAINTY OF EVALUATION	28
12.EQUIPMENT OF LIST	
APPENDIX I	31
PHOTOGRAPHS OF THE EUT	
PPENDIX II	33

Report No.: AGC01211011SZ08F2 Page 3 of 33

PHOTOGRAPHS OF THE TEST SETUP......33

Page 4 of 33

1. GENERAL INFORMATION

1.1 PRODUCT DESCRIPTION

The EUT is a Mini PCI Express EVDO Rev. A Card designed as an "Communication Device". It is designed by way of utilizing the BPSK/QPSK/8PSK technology to achieve the system operation.

A major technical description of EUT is described as following

Operation Frequency	824~894MHZ,1850~1990MHZ		
Rated Output Power	24.85dBm		
Modulation	BPSK/QPSK/8PSK		
Type of Emission	1M28F9W		
Antenna Designation	Integrated Antenna		
Power Supply	DC5V by USB		
Hardware Version	ME900.SP.01		
Software Version	OLME900DT01		

1.2 RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for **FCC ID: YHGV-ME900** filing to comply with FCC Part 22(H) and Section 24(E).

1.3 TEST METHODOLOGY

Both conducted and radiated testing were performed according to the procedures in ANSI /TIA/EIA-603 C2004 Radiated testing was performed at an antenna to EUT distance 3 meters.

1.4 TEST FACILITY

All measurement facilities used to collect the measurement data are located at Attestation of Global Compliance Co., Ltd.

1F., No.2 Building, Huafeng No.1 Technical Industrial Park, Sanwei, Xixiang, Baoan District, Shenzhen The test site is constructed and calibrated to meet the FCC requirements in documents ANSI C63.4: 2003. FCC register No.: 259865

1.5 SPECIAL ACCESSORIES

Not available for this EUT intended for grant.

1.6 EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

Page 5 of 33

2. SYSTEM TEST CONFIGURATION

2.1 CONFIGURATION OF TESTED SYSTEM

2.2 EQUIPMENT USED IN TESTED SYSTEM

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID
1	Mini PCI Express EVDO Rev. A Card	OLIVE	V-ME900	YHGV-ME900
2	PC	LENOVO	E113	N/A

Page 6 of 33

3. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
§2.1046	Conducted Output Power	Compliant
§22.913(a)(2)	Effective Radiated Power	Compliant
§24.232(c)	Equivalent Isotropic Radiated Power	Compliant
§2.1049 §22.917(a) §24.238(a)	Occupied Bandwidth	Compliant
§2.1051 §22.917(a) §24.238(a)	Band Edge Measurement	Compliant
§2.1051 §22.917(a) §24.238(a)	Conducted Emission	Compliant
§2.1051 §22.917(a) §24.238(a)	Field Strength of Spurious Radiation	Compliant
§2.1055 §22.355 §24.235	Frequency Stability for Temperature&Voltage	Compliant

4. DESCRIPTION OF TEST MODES

- 1. The EUT has been set to operate continuously on the lowest, middle and highest operation frequency individually.
- 2. The EUT stays in continuous transmitting mode on the operation frequency being set.

Page 7 of 33

5 MAXIMUM OUTPUT POWER

5.1 MEASUREMENT PROCEDURE

CONDUCTED METHOD

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Connect EUT RF output port to the base station
- 3. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 4. Set EUT at maximum power through base station

5.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

Report No.: AGC01211011SZ08F2 Page 8 of 33

5.3 MEASUREMENT RESULT

Cellular Band					
Modes	Status	Channel	Frequency (MHZ)	Conducted Power(dBm)	Conducted Power(Watts)
CDMA 2000 1X	153.6KHZBPS	1013	824.7	24.41	0.3
		334	835.02	24.36	0.29
		771	848.31	24.45	0.28
EVDO REV.0	153.6KHZBPS	1013	824.7	24.84	0.3
		334	835.02	24.56	0.2
		771	848.31	24.53	0.28
EVDO REV.A	1.8MHZBPS	1013	824.7	23.74	0.3
		334	835.02	23.61	0.29
		771	848.31	24.85	0.3

	PCS Band					
Modes	Status	Channel	Frequency (MHZ)	Conducted Power(dBm)	Conducted Power(Watts)	
CDMA 2000 1X	153.6KHZBPS	25	1851.25	23.78	0.23	
		600	1880	23.78	0.23	
		1177	1908.75	23.74	0.23	
EVDO REV.0	153.6KHZBPS	25	1851.25	23.68	0.23	
		600	1880	23.72	0.23	
		1177	1908.75	23.82	0.24	
EVDO REV.A	1.8MHZBPS	25	1851.25	23.98	0.25	
		600	1880	23.74	0.23	
		1177	1908.75	23.95	0.24	

Page 9 of 33

6 EFFECTIVE RADIATED POWER AND EFFECTIVE ISOTROPIC RADIATED POWER MEASUREMENT

6.1 MEASUREMENT PROCEDURE

- 1 The EUT was placed on a turntable with 0.8 meter height in a fully anechoic chamber.
- 2 The EUT was set at 3 meters from the receiving antenna, which was mounted on the antenna tower.
- 3 The table was rotated 360 degrees to determine the position of the highest radiated power
- 4 The height of the receiving antenna is adjusted to look for the maximum ERP/EIRP
- 5 Taking the record of maximum ERP/EIRP
- 6 A dipole antenna was substituted in place of the EUT and was driven by a signal generator
- 7 The conducted power at the terminal of the dipole antenna is measured.
- 8 Repeat step 3 to step 5 to get the maximum ERP/EIRP of the substitution antenna.

6.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

6.3 LIMITS AND MEASUREMENT RESULTS

CDMA MODE

Mode	Mode Ch./Freq.			Substitude LEVEL	Correct Factor	Pol.	ERP (dBm)	Limits (dBm)
	channel	Freq. (MHZ)	(dBm)	(dBm)				
CDMA	1013	824.7	-17.31	34.6	-11.16	Н	23.44	38
	334	836.52	-15.67	34.62	-11.23	Н	23.39	38
	771	848.31	-16.68	34.52	-11.36	Н	23.16	38
EVDO	1013	824.7	-16.34	34.57	-11.16	Н	23.41	38
	334	836.52	-15.35	34.94	-11.23	Н	23.71	38
	771	848.31	-16.4	34.8	-11.36	Н	23.44	38

Page 10 of 33

NOTES:

Effective Radiated Power Output Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminals of the dipole is measured. The ERP is recorded. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna. The worst case of the EUT is in x plane in CDMA mode. Also worst case of detecting Antenna is in horizontal polarization in CDMA mode.

The EVDO mode testing were performed using RETAP on Rev.A because RETAP on Rev.A is highest power in EVDO mode.

PCS MODE

Mode Ch./Freq.			Measured Level	Substitude LEVEL	Correct Factor	Pol.	EIRP (dBm)	Limits (dBm)
	channel	Freq. (MHZ)	(dBm)	(dBm)				,
CDMA	25	1851.25	-18.54	14.45	9.11	V	23.56	33
	600	1880	-17.55	14.74	9.14	V	23.88	33
	1177	1908.75	-19.31	14.03	9.17	V	23.2	33
EVDO	25	1851.25	-18.08	13.91	9.11	V	23.02	33
	600	1880	-16.92	15.37	9.14	V	24.51	33
	1177	1908.75	-18.29	14.05	9.17	V	23.22	33

NOTES:

Equivalent Isotropic Radiated Power Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. A Horn antenna was substituted in place of the EUT. This Horn antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminals of the Horn antenna is measured. The difference between the gain of the horn and an isotropic antenna is taken into consideration and the EIRP is recorded. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna. The worst case of the EUT is in y plane and worst case of detecting Antenna is in vertical polarization. The EVDO mode testing were performed using RTAP on Rev.A because RTAP on Rev.A is highest power in EVDO mode.

Page 11 of 33

7. OCCUPIED BANDWIDTH AND BAND EDGE MEASUREMENT

7.1 DESCRIPTION OF OCCUPIED BANDWIDTH AND BAND EDGE MEASUREMENT

The power of any emission outside of the authorized operating frequency ranges must be lower than The transmitter power(P) by a factor of at least 43+10log(P)Db.

The emission bandwidth is defined as the width of the signal between two points, located at the 2 sides Of the carrier frequency, outside of which all emissions are attenuated at least 26Db below the transmitter Power.

7.2 TEST PROCEDURES

- 1 The EUT was connected to Spectrum Analyzer and Base Station via power divider.
- 2 The 99% and 26Db occupied bandwidth (BW) of the low,middle and high channels for the highest RF Powers were measured.

7.3 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

7.4 MEASUREMENT RESULT

Pass.

for more details, please see the next page.

Page 12 of 33

Band	CDMA2000 Cellular	Power Stage	High
Test mode	1*EV-DO REV.A	Channel	334

99% occupied bandwidth test plot

26dB occupied bandwidth test plot

Page 13 of 33

Band	CDMA2000 PCS	Power Stage	High
Test mode	1*EV-DO REV.A	Channel	600

99% occupied bandwidth test plot

26dB occupied bandwidth test plot

Page 14 of 33

Band	CDMA2000 Cellur	Power Stage	High
Test mode	1*EV-DO REV.A		

Lower Bandedge on channel 1013

Higher Bandedge on channel 771

Page 15 of 33

Band	CDMA2000 PCS	Power Stage	High
Test mode	1*EV-DO REV.A		

Lower Bandedge on channel 25

Higher Bandedge on channel 1177

Page 16 of 33

8. CONDUCTED EMISSION MEASUREMENT

8.1 DESCRIPTION OF CONDUCTED EMISSION MEASUREMENT

The power of any emission outside of the authorized operating frequency ranges must be lower than The transmitter power(P) by a factor of at least 43+10log(P)dB.

The emission bandwidth is defined as the width of the signal between two points, located at the 2 sides Of the carrier frequency, outside of which all emissions are attenuated at least 26Db below the transmitter Power.

8.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

8.3 MEASUREMENT EQUIPMENT USED

- 1 The EUT was connected to Spectrum Analyzer and Base Station via power divider
- 2 The middle channel of highest RF Power within the transmitter frequency was measured.
- 3 The whole conducted spurious emission for the whole frequency range was taken.

8.4 MEASUREMENT RESULT

pass

For more details, please see the next page.

Page 17 of 33

Band	CDMA2000 Cellular	Power Stage	High
Test mode	1*EV-DO REV.A		

30MHZ~1GHZ TEST PLOT

1GHZ~3GHZ TEST PLOT

Page 18 of 33

3GHZ~7GHZ TEST PLOT

7GHZ~9GHZ TEST PLOT

Page 19 of 33

Band	CDMA2000 PCS	Power Stage	High
Test mode	1*EV-DO REV.A		

30MHZ~1GHZ TEST PLOT

1GHZ~3GHZ TEST PLOT

Page 20 of 33

3GHZ~7GHZ TEST PLOT

7GHZ~13.6GHZ TEST PLOT

Page 21 of 33

13.6GHZ~19.1GHZ TEST PLOT

Page 22 of 33

9. SPURIOUS EMISSION MEASUREMENT

9.1 DESCRIPTION OF SPURIOUS EMISSION MEASUREMENT

The Radiated spurious emission was measured by substitution method according to ANSI/TIA/EIA-603-C-2004. The power of any emission outside of the authorized operating frequency ranges Must be attenuated below the transmitter power(P) by a factor of at least 43+10log(P)dB. The spectrum is scanned from 30MHZ up to a frequency including its 10th harmonic.

9.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

9.3 MEASUREMENT PROCEDURE

The equipment under test is placed on a wooden turntable 3-meters from the receive antenna.

A wooden turntable was rotated 360° and the receiving antenna scanned from 1-4m in order to capture the maximum emission. A half wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the previously recorded signal was duplicated.

The maximum EIRP was calculated by adding the forward power to the calibrated source plus its appropriate gain value. These steps were carried out with the receiving antenna in both vertical and horizontal polarization. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic antenna are taken into consideration.

9.4 MEASUREMENT RESULT

pass

For more details, please see the next page.

Page 23 of 33

Band	CDMA2000 Cellular	Power Stage	High
Test mode	1*EV-DO REV.A		

CHANNEL	Freq. (MHZ)	Measured Level (dBm)	Substitute Level (dBm)	Correct Factor	Pol.	ERP (dBm)	Limit (dBm)
1013	1649.4	-55.85	-65.62	8.43	Н	-57.19	-13
	2474.10	-56.46	-63.11	9.28	Н	-53.83	-13
	3298.8		1				
334	1673.04	-52.81	-62.58	8.54	Н	-54.04	-13
	2509.56	-60.22	-66.64	9.3	Н	-57.35	-13
	3346.08	-61.99	-68.99	10.12	V	-58.87	-13
771	1696.62	-52.91	-62.83	8.71	Н	-54.12	-13
	2544.93	-52.91	-59.61	9.29	Н	-50.32	-13
	3393.24	-63.48	-70.65	10.2	V	-60.45	-13

NOTES:

- 1. The amplitude of spurious emissions attenuated more than 20dB below the limit above 5th Harmonic for all channel.
- 2. we have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna
- 3. The testing were performed using RETAP on Rev.1 because RETAP on Rev.A is highest power in CDMA EVDO and CDMA mode.

Page 24 of 33

Band	CDMA2000 PCS	Power Stage	High
Test mode	1*EV-DO REV.A		

CHANNEL	Freq. (MHZ)	Measured Level (dBm)	Substitute Level (dBm)	Correct Factor	Pol.	ERP (dBm)	Limit (dBm)
25	3702.5	-51.10	-57.15	10.51	H	-46.64	-13
	5553.75	-60.98	-64.33	10.28	V	-54.05	-13
	7405		1		I	I	-13
600	3760	-44.38	-50.14	10.58	V	-39.56	-13
	5640						-13
	7520						-13
1177	3817.5	-32.34	-37.66	10.63	V	-27.03	-13
	5726.25	-61.36	-64.41	10.28	Н	-54.13	-13
	7635						-13

NOTES:

- 1. The amplitude of spurious emissions attenuated more than 20dB below the limit above 5th Harmonic for all channel.
- 2. we have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 3. The testing were performed using RTAP on Rev.0 because RTAP on Rev.A is highest power in PCS EVDO and PCS mode.

Page 25 of 33

10. FREQUENCY STABILITY/VARIATION OF AMBIENT TEMPERATURE 10.1FREQUENCY STABILITY

Band	CDMA2000 Cellur	Channel	334
Test mode	1*EV-DO REV.A	Limit(ppm)	2.5

Temperature	Freq.Dev. (HZ)	Deviation (ppm)	Result
-30	-13	-0.02	
-20	52	0.06	
-10	37	0.04	
0	46	0.05	PASS
10	44	0.05	
20	12	0.01	
30	-14	-0.02	
40	-22	-0.03	
50	38	0.04	

Report No.: AGC01211011SZ08F2 Page 26 of 33

Band	CDMA2000 PCS	Channel	600
Test mode	1*EV-DO REV.A	Limit(ppm)	2.5

Temperature	Freq.Dev. (HZ)	Deviation (ppm)	Result
-30	38	0.02	
-20	13	0.01	
-10	-16	-0.01	
0	-14	-0.01	PASS
10	22	0.01	
20	17	0.01	
30	15	0.01	
40	32	0.02	
50	18	0.01	

Report No.: AGC01211011SZ08F2 Page 27 of 33

Band&Channel	Mode	Voltage	Freq.Dev. (Hz)	Deviation (ppm)	Limit (ppm)	Result
CDMA 2000 Cellular CH334	1*EVDO Rev.A	5	31	0.04	2.5	PASS
011001	1107.71	BEP	24	0.03		
		5.2	-17	-0.02		
CDMA 2000 PCS CH600	1*EVDO Rev.A	5	-12	-0.01		
		BEP	-11	-0.01		
		5.2	10	0.01		

Remark:
1 Normal Voltage=5V.
2 Battery End Point(BEP)=4.8V

Page 28 of 33

11. UNCERTAINTY OF EVALUATION

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

	Uncertainty of x_i		$u(x_i)$
Contribution	dB	Probability Distribution	$u(x_i)$
Receiver reading	0.10	Normal(k=2)	0.05
Cable loss	0.10	Normal(k=2)	0.05
AMN insertion loss	2.50	Rectangular	0.63
Receiver Spec	1.50	Rectangular	0.43
Site imperfection	1.39	Rectangular	0.80
Mismatch	+0.34/-0.35	U-shape	0.24
Combined standard uncertainty Uc(y)	1.13		
Measuring uncertainty for a level of confidence of 95% U=2Uc(y)	2.26		

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

	Uncertainty of X_i		
Contribution	dB	Probability	$u(x_i)$
		Distribution	
Receiver reading	0.41	Normal(k=2)	0.21
Antenna factor calibration	0.83	Normal(k=2)	0.42
Cable loss calibration	0.25	Normal(k=2)	0.13
Pre Amplifier Gain calibration	0.27	Normal(k=2)	0.14
RCV/SPA specification	2.50	Rectangular	0.72
Antenna Factor Interpolation for Frequency	1.00	Rectangular	0.29
Site imperfection	1.43	Rectangular	0.83
Mismatch	+0.39/-0.41	U-shaped	0.28
Combined standard uncertainty Uc(y)	1.27		
Measuring uncertainty for a level of confidence of 95% U=2Uc(y)	dence 2.54		

Page 29 of 33

Uncertainty of Radiated Emission Measurement (1 GHz ~ 40 GHz)

	Uncertainty of X_i				
Contribution	dB	Probability Distribution	$u(x_i)$	Ci	$Ci*u(x_i)$
Receiver reading	• 0.10	Normal(k=1)	0.10	1	0.10
Antenna factor calibration	•4.70	Normal(k=2)	0.85	1	0.85
Cable loss calibration	• 0.50	Normal(k=2)	0.25	1	0.25
Receiver Correction	•2.00	Rectangular	1.15	1	1.15
Antenna Factor Directional	•4.50	Rectangular	0.87	1	0.87
Site imperfection	•2.80	Triangular	1.14	1	1.14
Mismatch Receiver VSWR Γ1= 0.197 Antenna VSWR Γ2= 0.194 Uncertainty=20log(1-Γ1*Γ2)	+0.34/-0.35	U-shaped	0.244	1	0.244
Combined standard uncertainty Uc(y)	2.36				
Measuring uncertainty for a level of confidence of 95% U=2Uc(y)	4.72				

Report No.: AGC01211011SZ08F2 Page 30 of 33

12.EQUIPMENT OF LIST

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Due Date
Spectrum Analyzer	R&S	FSP40	100319	9K~40GHZ	06/29/2010	06/28/2011
PSA SERIES SPECTRUM ANALYZER	AGILENT	E4440A	N/A	9K~26.5GHZ	06/29/2010	06/28/2011
ANTENNA	A.H.	SAS-521-4	N/A	30M~4GHZ	06/29/2010	06/28/2011
AMPLIFIER	EM	EM30180	0607030	1G~26.5GHZ	06/29/2010	06/28/2011
POSITIONING CONTROLLER	MF	MF-7802	N/A	N/A	06/29/2010	06/28/2011
HORN ANTENNA	EM	EM-AH-10180	N/A	30~18GHZ	06/29/2010	06/28/2011
WIRELESS COMMUNICATION TEST SET	AGILENT	E5515C	N/A	GSM/CDMA	06/29/2010	06/28/2011
RF COMMUNICATION TEST SET	HP	8920B	N/A	N/A	06/29/2010	06/28/2011
UNIVERSAL RADIO COMMUNICATION TESTER	R&S	CMU200	N/A	GSM/CDMA	06/29/2010	06/28/2011
High Pass filter	N/A	WHKX1.5/1	23	N/A	N/A	N/A
High Pass filter	N/A	WHKX2.2-1	8	N/A	N/A	N/A
Band Reject Filter	WI	WRCG2400/ 2483-2390/2	14	N/A	N/A	N/A
Band Reject Filter	WI	WRCG	15	N/A	N/A	N/A
Band Reject Filter	WI	WRCG	34	N/A	N/A	N/A
Power Sensor	Agilent	E9327A	MY451015	N/A	06/29/2010	06/28/2011
POWER DIVIDER	ARRA	A3200-2	N/A	DC~18GHZ	06/29/2010	06/28/2011
Thermal Chamber	Rten Billion	TTC-B3S	TBN-960502	-40~150	06/29/2010	06/28/2011
Terminator	Mini-Circuits	ANNE-50+	N/A	DC~18000MHZ	N/A	N/A

Page 31 of 33

APPENDIX I PHOTOGRAPHS OF THE EUT

BOTTOM VIEW OF EUT

Page 32 of 33

Page 33 of 33

APPENDIX II PHOTOGRAPHS OF THE TEST SETUP

SPURIOUS EMISSION TEST SETUP

SPURIOUS EMISSION TEST SETUP (Product details)

----END OF REPORT----