Les structures de données

Variables & Constantes

Activité 1

Ecrire un programme qui permet de calculer la quantité de peinture nécessaire pour peindre des portes de la forme suivante, sachant qu'un Kg de peinture permet de peindre une surface moyenne de 6 m².

Solution Pascal

```
Pascal
program prog01;
{ Déclarations }
  PI = 3.14159265;
  QPM2 = 6; \{ 6 \text{ m}^2/\text{Kg} \}
var
  n : integer;
  1, h : real;
  sp, qp : real;
begin
  { Entrée des données }
  Write('Largeur de la porte : ');
  Readln(1);
  Write('Hauteur de la porte : ');
  Readln(h);
  Write('Donner le nbre de portes : ');
  Readln(n);
  { Traitements }
  sp := (1 * (h - 1/2)) + PI * L * L / 8;
  qp := (n * 2 * sp) / QPM2;
  { Affichage }
  Writeln('Quantité de peinture requise : ', qp:5:1, 'Kg');
  Readln;
end.
```

Solution Python

```
Python

PI = 3.14159265

QPM2 = 6 # 6 m²/Kg

# Entrée des données

1 = float(input('Largeur de la porte : '))

h = float(input('Hauteur de la porte : '))

n = int(input('Donner le nbre de portes : '))

# Traitements

sp = (1 * (h - 1/2)) + PI * 1 * 1 / 8

qp = (n * 2 * sp) / QPM2

# Affichage

print('Quantité de peinture requise :', qp, 'Kg')
```

Activité 2

- 1. Relever à partir du programme précédent la structure générale d'un programme.
- 2. Quelle est la différence entre les objets PI, QPM2 et 1, h et n?

Activité 3

Un projectile est laissé en chute libre sans vitesse initiale à partir d'un point M haut du sol. On souhaite écrire un programme qui permet de calculer le temps de chute.

A Retenir

Une **constante** est un objet ayant une valeur fixe tout le long de l'exécution d'un algorithme ou d'un programme. Une **constante** est caractérisée par son **nom** et sa **valeur**.

Une **variable** est un objet pouvant prendre différentes valeurs tout le long de l'exécution d'un algorithme ou d'un programme.

Une variable est caractérisée par son **nom**, son **type** et son **contenu**.

Types de données

Activité 4

Relever les types de données utilisés dans le programme suivant :

```
Pascal
program prog02.pas;
{Décalarations}
var
{P.P}
begin
  nom := 'Sahar';
  age := 18;
  genre := 'F';
  p := 60.0;
  h := 1.60;
  imc := p / (h * h);
  ok := (imc >= 18) and (imc <= 23);
  if genre in ['G', 'g'] then sal := 'Mr'
  else if genre in ['F', 'f'] then sal := 'Mlle/Mme
  else sal := '';
end.
```

```
Python

nom = 'Sahar'
age = 18
genre = 'F'
p = 60.0
h = 1.60

imc = p / (h * h)
ok = (imc >= 18) and (imc <= 23)

if genre in ['G', 'g']:
    sal = 'Mr'
elif genre in ['F', 'f']:
    sal = 'Mlle/Mme'
else:
    sal = ''
...</pre>
```

A retenir

Le **type d'une variable** permet de déterminer le **domaine de valeurs possible** que peut prendre cette variable. La connaissance du type permet également de :

- Déduire les opérateurs applicables sur les variables de ce type
- Déduire l'espace mémoire (en octets) qui sera réservé à ces variables
- Déterminer l'ensemble de fonctions prédéfinies compatible avec ce type de variables

Le type Entier

En algorithme, le type entier représente un sous ensemble du corps des entiers relatifs \mathbb{Z} .

En Pasca

Le langage Pascal définit cinq types entiers. Chaque type a un domaine de définition spécifique qui dépend de sa taille.

Туре	Domaine de définition	Taille (bits)		
SHORTINT	-128127	8 bits		
INTEGER	-3276832767	16 bits		
LONGINT	-21474836482147483647	32 bits		
ВҮТЕ	0255	8 bits		
WORD	065535	16 bits		

En Python

Python définit un seul type entier int et sa taille est illimitée.

Opérations sur les entiers

Le tableau suivant définit les opérations sur les entiers.

On suppose dans les exemples suivants que a = 5, b = 3.

Opérateurs

07/10/2021 10:04

Algorithme	Signification	Exemple Pascal	Exemple Python
+	Addition	c := a + b; // c = 8	c = a + b # c = 8
-	Soustraction	d := a - b; // d = 2	d = a - b # d = 2
*	Multiplication	e := a * b; // e = 15	e = a * b # e = 15
/	Division réelle	f := a / b; // f = 1.666666	f = a / b # f = 1.666666
div	Quotient de la division entière	g := a div b; // g = 1	g = a // b # g = 1
mod	Reste de la division entière	h := a mod b; // h = 2	h = a % b # h = 2
	Exponentiation	<pre>// Pas d'opérateur d'exponentiation i := a * a * a; // i = 125</pre>	i = a ** b # i = 125

Activité 5

Evaluer les expressions arithmétiques, algorithmiques, suivantes :

- a. 17 DIV 5
- b. 17 MOD 5
- c. ((58 DIV 7) MOD 2) + 5
- d. (49 MOD 17) DIV (4 * 3)

Le type réel

Le type réel représente les valeurs à virgule flottantes, exemple : 1.5, 170.5, etc.

En Pascal

Le langage Pascal définit plusieurs types pour les réels le plus utilisé est : real.

En Python

Le langage Python définit le type float pour représenter les nombres décimaux.

Fonctions pour les types numériques

Nom Fonction	Pascal	Python	Rôle	Test
abs(x)	abs(x)	abs(x)	Valeur Absolue de x	abs(58) = 58
racine(x)	sqrt(x)	x ** 0.5	La racine carré de x	racine(72) = 8.48528137423857
carré(x)	sqr(x)	x ** 2	Le carré de x	carré(67) = 4489
tronc(x)	trunc(x)	trunc(x)	Supprime la partie tronc(63.900000000 = 63 un entier	
arrondi(x)	round(x)	round(x)	Retourne l'entier le plus proche de x	arrondi(74.5) = 75

Nom Fonction	Pascal	Python	Rôle	Test
alea	random	from random import random random()	Retourne un réel aléatoire dans l'intervalle [0, 1[alea = 0.8336996864350688
alea(x)	random(x)	from random import randint randint(0, x-1)	Spécifique Pascal Retourne un entier aléatoire dans l'intervalle [0, x[alea(100) = 89
alea(a, b)	a + random(b - a + 1)	from random import randint randint(a, b)	Spécifique Python Retourne un entier aléatoire dans l'intervalle [a, b]	alea(10, 30) = 21
impair(x)	odd(x)	(x % 2 == 1)	Spécifique Pascal Retourne si un entier x est impair	odd(-86) = Vrai

Activité 6

Ecrire un programme qui permet d'afficher les valeurs suivantes :

```
0.0 -55.36 3.14 60 10<sup>-9</sup> 1.23 -38.0 5.6 10<sup>6</sup>
```

Solution

```
program prog03;
begin
    Writeln(0.0);    Writeln(-55.36);
    Writeln(3.14);    Writeln(60E-9);
    Writeln(1.23);    Writeln(-38.0);
    Writeln(5.6E6);
    Readln;
end.
```

```
# program prog03
print(0.0)
print(-55.36)
print(3.14)
print(60E-9)
print(1.23)
print(-38.0)
print(5.6E6)
```

Activité 7 - Pascal

Le programme précédent permet d'obtenir le résultat suivant :

```
C:\Users\manianis\Documents\4TECH\20
0.000000000E+00
-5.5360000000000000000006E+0001
3.14000000000000000017E-0008
6.00000000000000000002E+0000
-3.800000000E+01
5.600000000E+06
```

Rectifier votre programme pour obtenir l'affichage suivant :

```
C:\Users\maniani
0.0
-55.36
3.14
6.0E-0008
1.23
-38.0
5.60E+06
```

```
program prog04;
begin
    Writeln(0.0:3:1);    Writeln(-55.36:6:2);
    Writeln(3.14:4:2);    Writeln(60E-9:10);
    Writeln(1.23:4:2);    Writeln(-38.0:5:1);
    Writeln(5.6E6:9);
    Readln;
end.
```

A retenir - Pascal

La mise en forme des réels est effectuée de la façon suivante :

Une variable de type booléen prend uniquement deux valeurs différentes **vrai** ou **faux**.

En Pascal

Le type booléen correspond à boolean en Pascal.

En Python

Le type booléen correspond à bool en Python.

Les opérateurs

Opérateur	Signification	Pascal	Python
NON	Fonction inverse	not a	not a
ET	Fonction ET	a and b	a and b
OU	Fonction OU	a or b	a or b
OUEX	Fonction OU Exclusif	a xor b	a ^ b

Compléter les tableaux de vérités suivants :

Fonction NON

Figure 1, Schéma électrique

А	NON A
Faux	-
Vrai	-

Fonction OU

Figure 2, Schéma électrique

А	В	A OU B
F	V	-
F	V	-
V	F	-
V	V	-

Fonction XOR

Figure 4, Schéma électrique

А	В	A XOR B
F	V	
F	V	
V	F	
V	V	

Fonction ET

Figure 3, Schéma électrique

А	В	A ET B
F	V	-
F	V	-
V	F	-
V	V	-

Activité 9

Evaluer les expressions logiques suivantes :

- (x <= 4) ET (x >= 1) pour x = 3
- $(x \le 2)$ ET (x > = 0) pour x = -4
- NON ($x \le 55$) OU ($x \ge 0$) pour x = 21

Le type caractère

Il s'agit du domaine constitué des **caractères alphabétiques** et **numériques** . Une variable de ce type ne peut contenir qu'un seul et unique caractère.

Les caractères sont ordonnés selon leurs code ASCII. En ASCII, il est possible de représenter 256 caractères. La table suivante contient les 128 premiers caractères standard, code $0 \rightarrow 127$, les caractères de code 128 \rightarrow 255 ne sont pas standard.

		Regr	ılar ASCI	I Chart	(characte	r codes	0 - 127		
000	(nul)	016 🕨	(dle)	032 sp	048 0	064 0	080 P	096 `	112 p
001 @ ((soh)	017 -	(dcl)	033 !	049 1	065 A	081 Q	097 a	113 q
002 \varTheta 1	(stx)	018 1	(dc2)	034 "	050 2	066 B	082 R	098 b	114 r
003 ♥ ((etx)	019 !	(dc3)	035 #	051 3	067 C	083 ន	099 с	115 s
004 + ((eot)	020 9	(dc4)	036 \$	052 4	068 D	084 T	100 d	116 t
005 🏚 ((enq)	021 5	(nak)	037 %	053 5	069 E	085 U	101 e	117 u
006 + 1	(ack)	022 -	(syn)	038 &	054 6	070 F	086 V	102 f	118 v
007 • ((bel)	023 1	(etb)	039 '	055 7	071 G	087 ឃ	103 g	119 พ
008 🗖 1	(bs)	024 †	(can)	040 (056 8	072 H	088 X	104 h	120 x
009 ((tab)	025	(em)	041)	057 9	073 I	089 Y	105 i	121 y
010 ((lf)	026	(eof)	042 *	058 :	074 J	090 Z	106 ј	122 z
011 J ((vt)	027 +	(esc)	043 +	059 ;	075 K	091 [107 k	123 {
012 🕶 ((np)	028 L	. (fs)	044 ,	060 <	076 L	092 \	108 1	124
013	(cr)	029 +	(gs)	045 -	061 =	077 M	093]	109 m	125 }
014 ៛ ((30)	030 🛦	(rs)	046 .	062 >	078 N	094 ^	110 n	126 ~
015 🗘 ((si)	031 7	(us)	047 /	063 2	079 0	095	111 o	127 0

En Pascal

Pascal définit le type char pour stocker un caractère.

En Python

Python <u>ne possède pas un type caractère</u> un str de longueur 1 est considéré comme étant un caractère.

Fonctions prédéfinies sur les caractères

Le tableau suivant résume les principales fonctions prédéfinies sur les caractères :

Fonction	Pascal	Python	Exemples
Code ASCII d'un caractère	ORD(car)	ORD(car)	ORD("0") → 48 ORD("A") → 65 ORD("a") → 97
Caractère correpondant à un code ASCII	CHR(code)	CHR(code)	CHR(48) \rightarrow "0" CHR(65) \rightarrow "A" CHR(97) \rightarrow "a"
Successeur d'un caractère	SUCC(car)	Spécifique Pascal chr(ord(car) + 1)	SUCC("A") → "B"
Prédécesseur d'un caractère	PRED(car)	Spécifique Pascal chr(ord(car) - 1)	PRED("A") → "@"
Mettre un caractère en majuscules	UPCASE(car)	car.upper()	$\begin{array}{c} MAJUS("a") \to "A" \\ MAJUS("A") \to "A" \\ MAJUS("0") \to "0" \end{array}$

Activité 10

Ecrire un programme qui permet de saisir une lettre Majuscule puis l'affiche en miniscules.

Solution

TDO

Objet	Туре	
cmin, cmaj	caractère	

Le type chaîne de caractères

Une chaîne de caractères est une suite de caractères. Elle peut être définie comme suit :

Objet	Type/Nature	Rôle
Prénom	Chaîne [10]	Prénom d'un individu sur 10 caractères maximum
Nom	Chaîne	Chaîne pouvant contenir jusqu'à 255 caractères.

En Pascal

Le type string correspond en Pascal à une chaîne de caractères.

En Python

Le type str correspond en Paython à une chaîne de caractères. En Python, on ne peut pas limiter le nombre de caractères dans une chaîne.

Activité 11

Décalrer deux variables nom et prenom. Puis, les initialiser avec votre nom et prénom.

Solution

```
Pascal

var
    Prenom: string[20];
    Nom: string;
begin
    Nom := 'MANI';
    Prenom := 'Mohamed Anis';
end.
```

```
Python
nom = "MANI"
prenom = "Mohamed Anis"
```

Accès aux caractères - Pascal

En Pascal, les caractères d'une chaîne sont accessibles via leur indice qui commence de 1. La figure suivante explique comment accéder aux caractères d'une chaîne et les modifier.

Figure 5, Indices dans une chaîne

Accès aux caractères - Python

En Python, les caractères d'une chaîne sont accessibles via leur indice qui commence de 0. Python supporte deux types d'indexation :

- Positive : qui commence de 0 jusqu'à len(ch)-1
- Négative : qui comment de -1 jusqu'à -len(ch)

La fonction len(ch) indique le nombre de caractères dans la chaîne, en comptant aussi les espaces vides.

Figure 6, Indices dans une chaîne

Le caractère "t" dans la chaîne "Python" se trouve à la position :

- 2 en utilisant l'indexation positive
- -4 en utilisant l'indexation négative

Fonctions sur les chaînes - Pascal

Le tableau suivant résume l'ensemble des fonctions prédéfinies sur les chaînes en Pascal

Fonction	Algorithme	Pascal	Test	
Retourne la longueur d'une chaine de caractères	long(ch)	length(ch)	long("Bac 2022") → 8	
Retourne la première position de ch1 dans ch2	pos(ch1, ch2)	pos(ch1, ch2)	pos("02", "Bac 2022") → 6	
Retourne une sous chaîne de nbc caractères à partir de la position pos de ch	sous_chaine(ch, pos, nbc)	copy(ch, pos, nbc)	sous_chaine("Baccar", 4, 3) → "car"	
Supprime nbc caractères de ch à partir de la position pos.	efface(ch, pos, nbc)	delete(ch, pos, nbc)	ch ← "Baccar" efface(ch, 4, 3) ch contient "Bac"	
Insérer ch1 dans ch2 à la position pos.	Inserer(ch1, ch2, pos)	Insert(ch1, ch2, pos)	ch1 ← "Ka" ch2 ← "Libraiaie rim" Inserer(ch1, ch2, 11) ch contient "Libraiaie Karim"	
Convertit une chaine ch en une valeur numérique x, si la chaîne n'est pas une valeur numérique ou contient des erreurs renvoyer la position de l'erreur e.	Valeur(ch, x, e)	Val(ch, x, e)	val("18.5", x, e) x contient 18.5 e contient 0	
Convertit une valeur numérique en chaine.	ConvCh(x, ch)	Str(x, ch)	ConvCh(15, ch) ch contient "15"	

Fonctions sur les chaînes - Python

Le tableau suivant résume l'ensemble des fonctions prédéfinies sur les chaînes en Pascal

Fonction	Algorithme	Python	Test		
Retourne la longueur d'une chaine de caractères	long(ch)	length(ch)	long("Bac 2022") → 8		
Retourne la première position de ch1 dans ch2	pos(ch1, ch2)	ch2.find(ch1))	pos("02", "Bac 2022") → 5		
Retourne une sous chaîne de caractères de ch de la position pos1 jusqu'à pos2 non incluse.ch	sous_chaine(ch, pos1, pos2)	ch[pos1:pos2]	sous_chaine("Baccar", 3, 6) → "car"		
Supprime les caractères de ch à partir de la position pos1 à la position pos2.	efface(ch, pos1, pos2)	ch ← ch[:pos1] + ch[pos2:]	ch ← "Baccar" ch ← efface(ch, 3, 6) ch contient "Bac"		
Insérer ch1 dans ch2 à la position pos.	Inserer(ch1, ch2, pos)	ch2[:pos] + ch1 + ch2[pos:]	ch1 ← "Ka" ch2 ← "Libraiaie rim" Inserer(ch1, ch2, 10) ch contient "Libraiaie Karim"		
Convertit une chaine ch en une valeur numérique.	Valeur(ch)	x = int(ch) # pour les entiers x = float(ch) # pour les réels	x ← val("18.5") x contient 18.5		
Convertit une valeur numérique en chaine.	ch ← ConvCh(x)	ch = str(x) # pour x réel ou entier	ch ← ConvCh(15) ch contient "15"		

Le type tableau

Le type tableau permet de stocker un ensemble de valeurs de même type.

Les éléments du tableau sont accessibles via le nom du tableau suivi par l'indice de l'élément. Exemple : **t[3]** : Permet d'accéder à la case d'indice 3 dans le tableau t.

Un tableau est déclaré de la façon suivante :

nom_type = tableau de nbre_éléments type

Exemple

Pour déclarer un tableau qui peut contenir jusqu'à 20 entiers, on écrit :

tab = tableau de 15 entier

Déclaration en Pascal

Un tableau peut être déclaré de l'une des façons suivantes :

Méthode 1

```
Pascal

// Déclaration directe

var

t : array [1..15] of integer;
```

Méthode 2

```
Pascal

// Déclaration d'un nouveau type
type
  tab = array [1..15] of integer;
// Déclaration du tableau
var
  t : tab;
```

La **deuxième méthode est la méthode conseillée** en Pascal, car on en aura besoin lorsqu'on abordera les sous-programmes.

Indexation

Lors de sa déclaration on indique l'intervalle d'indexation du tableau. Ainsi, dans l'exemple précédent, le premier élément du tableau t possède l'indice 1 alors que le dernier possède l'indice 15.

Déclaration en Python

En Python, on écrit tout simplement :

```
Python
t = [int()] * 15
```

Le code précédent crée un tableau pour stocker 15 entiers.

Indexation

En Python, l'indexation se fait toujours à partir de l'indice **0**, qui est l'indice du premier élément. L'indice du dernier élément étant **14**.

En Python, on peut aussi utiliser l'indexation négative marquée en rouge.

Activité 12 - Pascal

Déclarer les tableaux suivants en Pascal :


```
type
  tab_e = array [1..10] of integer;
  tab_r = array [-3..3] of real;
  tab_b = array ['A'..'Z'] of boolean;
var
  te : tab_e;
  tr : tab_r;
  tb : tab_b;
```

Activité 12 - Python

Déclarer les tableaux suivants en Python :

Declarer les tableaux sulvarits erri ythori.										
te	80	65	38 1	16	19	36	79	27	77	76
	0	1	2	3	4	5	6	7	8	9
tr 2.7	9.7		0.9	3.4	0.7		9.1	1.3	5.2)
0		1	2	3		4	5	6	5	7
tb	False	True	True	False	e Tr	ue	True		True	True
	"0"	"1"	"2"	"3"	"2	1"	"5"	•••	24	25

```
Python
```

te = [int()] * 10 tr = [float()] * 7 tb = [bool()] * 26