AMENDMENTS TO THE CLAIMS

This listing of the claims will replace all prior versions, and listings, of claims in the application:

LISTING OF THE CLAIMS

- 1. (currently amended) A compound having the structural formula $L^1[MQ^1Q^2]L^2$ in which M is a mid-transition metal selected from the group consisting of Nb, Ta, Mo, W, Mn and Re, Q^1 and Q^2 are each a univalent radical substituent, and L^1 and L^2 are ligands coordinated to M, wherein each of L^1 and L^2 contains a first coordinating atom that is a nitrogen atom contained within a C=N group, and a second coordinating atom-that is either a second nitrogen-atom, optionally present-in a-second-C=N-group, or an oxygen, sulfur or phosphorus atom.
- 2. (original) The compound of claim 1, wherein, in each of L^1 and L^2 , the second coordinating atom is a second nitrogen atom.
- 3. (original) The compound of claim 2, wherein, in each of L^1 and L^2 , the second nitrogen atom is present in a second C=N group.
 - 4. (original) The compound of claim 3, wherein L^1 and L^2 are identical.
- 5. (original) The compound of claim 4, wherein the first nitrogen atom in each of L^1 and L^2 is bound to a first substituent R_S , and the second nitrogen atom in each of L^1 and L^2 is bound to a second substituent R_L , wherein the difference in steric bulk between R_S and R_L is sufficient to result in isospecificity when the compound is used as a polymerization catalyst.
 - 6. (original) The compound of claim 3, wherein L^1 and L^2 are different.
- 7. (original) The compound of claim 6, wherein the first and second nitrogen atoms in the ligand L^1 are bound to a first substituent R_S , and the first and second nitrogen atoms in the ligand L^2 are bound to a second substituent R_L , wherein the difference in steric bulk between R_S and R_L is sufficient to result in syndiospecificity when the compound is used as a polymerization catalyst.

- **8.** (original) The compound of claim 1, wherein the compound has a positive charge +y and is associated with y/z anions each bearing a negative charge -z.
- 9. (original) The compound of claim 8, wherein y and z are independently integers in the range of 1 to 4 inclusive.
 - 10. (original) The compound of claim 9, wherein y and z are independently 1 or 2.
- 11. (original) The compound of claim 8, wherein the anions are selected from the group consisting of halide and pseudohalide.
 - 12. (currently amended) A compound having the structure of formula (I)

(I)
$$\begin{bmatrix}
R^1 \\
R^2 \\
(CR^3R^4)_m
\end{bmatrix}$$

$$\begin{bmatrix}
Q^1 \\
Q^1
\end{bmatrix}$$

$$\begin{bmatrix}
Q^1 \\
Q^2
\end{bmatrix}$$

$$\begin{bmatrix}
L^1 \\
\end{bmatrix}$$

wherein:

M is a mid-transition metal selected from Groups VA, VIA and VIIA of the periodic table of the elements;

 Q^1 and Q^2 are independently selected from the group consisting of hydrido, halide, alkoxy, amido, unsubstituted C_1 - C_{30} hydrocarbyl, C_1 - C_{30} hydrocarbyl substituted with one or more substituents such as electron withdrawing groups, and C_1 - C_{30} hydrocarbyl-substituted Group IVB elements, or Q^1 and Q^2 may together form an alkylidene olefin, acetylene, or a five- or six-membered cyclic hydrocarbyl group;

m and n are independently zero or 1; q is an optional double bond; X is N, O, S or P, with the provisos that (a) when X is N or P, then either n is 1 or q is present as a double bond, but not both, and (b) when X is O or S, then n is zero and q is absent;

R¹, R⁶, and R⁷ are independently hydrido, hydrocarbyl or substituted hydrocarbyl, and R² and R⁵ are independently hydrido, halo, hydrocarbyl or substituted hydrocarbyl, or R¹ and R² and/or R⁵ and R⁶ may be taken together to form a linkage -Q-, resulting in a five- or six-membered ring, wherein Q is -[(CR)_a(Z)_b]- in which a is 2, 3 or 4, Z is N, O or S, b is zero or 1, the sum of a and b is 3 or 4, and R is selected from the group consisting of hydrido, halo, hydrocarbyl, hydrocarbyloxy, trialkylsilyl, NR⁸₂, OR⁹, and NO₂, wherein R⁸ and R⁹ are each independently hydrocarbyl, or wherein R moieties on adjacent carbon atoms may be linked to form an additional five- or six-membered ring, or R² and R⁵ may together form a-linkage -Q--as-just defined;

 R^3 and R^4 are independently selected from the group consisting of hydrido and hydrocarbyl, or at least one of R^3 and R^4 may be bound through a lower alkylene linkage to an atom contained within L^A or L^B ;

 L^A and L^B are ligands which may be the same or different and are independently selected from the group consisting of nitrogen-containing, sulfur-containing and oxygen-containing heterocycles, tertiary amines and phosphines, or L^A and L^B may together form a single bidentate ligand that may or may not be the same as L^1 ,

with the proviso that when (a) L^A and L^B form a single bidentate ligand that is identical to L^1 and M is V or Cr, then either (b) R^1 and R^2 or R^5 and R^6 are taken together to form a linkage -Q- as defined above, or (c) X is other than N, or both (b) and (c).

- 13. (original) The compound of claim 12, wherein the compound has a positive charge +y and is associated with y/z anions each bearing a negative charge -z.
- 14. (original) The compound of claim 13, wherein y and z are independently integers in the range of 1 to 4 inclusive.
 - 15. (original) The compound of claim 14, wherein y and z are independently 1 or 2.
- 16. (currently amended) The compound of claim 12-13, wherein the anions are selected from the group consisting of halide and pseudohalide.

17. (currently amended) The compound of claim 12, having the structure of formula (II)

wherein, q^a , ma, na, and R^{1a} through R^{7a} are defined as for q, m, n and R^1 through R^7 , respectively.

18. (original) The compound of claim 17, wherein the compound has a positive charge +y and is associated with y/z anions each bearing a negative charge -z.

- 19. (original) The compound of claim 18, wherein y and z are independently integers in the range of 1 to 4 inclusive.
 - 20. (original) The compound of claim 19, wherein y and z are independently 1 or 2.
- 21. (currently amended) The compound of claim 17-18, wherein the anions are selected from the group consisting of halide and pseudohalide.
 - 22. (original) The compound of claim 17, having the structure of formula (V)

$$(V) \qquad \begin{array}{c} R^{21} \\ R^{20} \\ R^{20a} \\ R^{20a} \\ R^{21a} \\ R^{21a} \\ R^{22a} \\ R^{23a} \\ R^{5a} \\ R^{5a} \end{array}$$

wherein:

 R^{20} , R^{20a} , R^{21} , R^{21a} , R^{22} , R^{22a} , R^{23} and R^{23a} are hydrido or hydrocarbyl of 1 to 10 carbon atoms, or any two adjacent R^{20} , R^{20a} , R^{21} , R^{21a} , R^{22} , R^{22a} , R^{23} and R^{23a} groups may be linked to form a five- or six-membered aromatic ring.

- 23. (original) The compound of claim 22, wherein R^{20} , R^{20a} , R^{21} , R^{21a} , R^{22} , R^{22a} , R^{23} and R^{23a} are hydrido.
- **24.** (original) The compound of claim 22, wherein R^{20} and R^{20a} are methyl, and R^{21} , R^{21a} , R^{22} , R^{22a} , R^{23} and R^{23a} are hydrido.
- **25.** (original) The compound of any one of claims 21, 22 or 23, wherein the compound has a positive charge +y and is associated with y/z anions each bearing a negative charge -z.

- 26. (original) The compound of claim 25, wherein y and z are independently integers in the range of 1 to 4 inclusive.
 - 27. (original) The compound of claim 26, wherein y and z are independently 1 or 2.
- 28. (original) The compound of claim 25, wherein the anions are selected from the group consisting of halide and pseudohalide.
 - 29. (currently amended) A compound having the structure of formula (III)

(III)
$$\begin{bmatrix} R^{12} \\ R^{13} \end{bmatrix}_{j} = \begin{bmatrix} R^{10} \\ R^{11} \end{bmatrix}$$

wherein:

M is a mid-transition metal selected from Groups VA, VIA and VIIA of the periodic table of the elements;

 Q^1 and Q^2 are independently selected from the group consisting of hydrido, halide, alkoxy, amido, unsubstituted C_1 - C_{30} hydrocarbyl, C_1 - C_{30} hydrocarbyl substituted with one or more substituents such as electron-withdrawing groups, and C_1 - C_{30} hydrocarbyl-substituted Group IVB elements, or Q^1 and Q^2 may together form an alkylidene olefin, acetylene, or a five- or six-membered cyclic hydrocarbyl group;

L^A and L^B are ligands which may be the same or different and are independently selected from the group consisting of nitrogen-containing, sulfur-containing and oxygen-containing heterocycles, tertiary amines and phosphines, or L^A and L^B may together form a single bidentate ligand that may or may not be the same as L³;

i and j are independently zero, 1, 2 or 3; and

- R¹⁰, R¹¹, R¹² and R¹³ are independently hydrido, hydrocarbyl or substituted hydrocarbyl.
- **30.** (withdrawn) A catalyst system comprising the compound of any one of claims 1, 5, 7, 12, 17 or 22 and a catalyst activator effective to produce a catalytically active ionic species when combined with said compound.
- 31. (withdrawn) The catalyst system of claim 30, wherein the catalyst activator is aluminum-containing or boron-containing.
- 32. (withdrawn) The catalyst-system of claim 31, wherein the catalyst activator is aluminum containing.
- **33.** (withdrawn) The catalyst system of claim 32, wherein the catalyst activator is an organoaluminum compound.
- 34. (withdrawn) The catalyst system of claim 33, wherein the catalyst activator is an alkyl aluminoxane.
- **35.** (withdrawn) The catalyst system of claim 34, wherein the catalyst activator is methyl aluminoxane.
- **36.** (withdrawn) The catalyst system of claim 31, wherein the catalyst activator is boron-containing.
- 37. (withdrawn) The catalyst system of claim 36, wherein the catalyst activator is a fluorohydrocarbylboron compound.
- **38.** (withdrawn) The catalyst system of claim 37, wherein the catalyst activator is a fluorinated phenylborate.
- **39.** (withdrawn) The catalyst system of claim 30, further including an inert polymerization diluent.

40. (withdrawn) The catalyst system of claim 39, wherein the diluent is a volatile hydrocarbon solvent.

Claims 41-51 (canceled).

- **52.** (new) The compound of claim 12, wherein Q^1 and Q^2 are independently selected from the group consisting of hydrido, halide, alkoxy, amido, unsubstituted C_1 - C_{30} hydrocarbyl, C_1 - C_{30} hydrocarbyl substituted with one or more electron-withdrawing groups, and C_1 - C_{30} hydrocarbyl-substituted Group IVB elements, or Q^1 and Q^2 may together form an alkylidene olefin, acetylene, or a five- or six-membered cyclic hydrocarbyl group.
- **53.** (new) The compound of claim 29, wherein Q^1 and Q^2 are independently selected from the group consisting of hydrido, halide, alkoxy, amido, unsubstituted C_1 - C_{30} hydrocarbyl, C_1 - C_{30} hydrocarbyl substituted with one or more electron-withdrawing groups, and C_1 - C_{30} hydrocarbyl-substituted Group IVB elements, or Q^1 and Q^2 may together form an alkylidene olefin, acetylene, or a five- or six-membered cyclic hydrocarbyl group.
- 54. (new) The compound of claim 1, wherein one of L^1 and L^2 contains a second coordinating atom that is either a second nitrogen atom, optionally present in a second C=N group, or an oxygen, sulfur or phosphorus atom, and the other of L^1 and L^2 contains a second coordinating atom that is either a second nitrogen atom, optionally present in a second C=N group, or a sulfur or phosphorus atom.