

Pay to Play

Predicting NBA player contract values using player statistics and team information

The Problem

NBA Teams

How do I know how much to pay a player?

How much value is this player bringing to the team?

NBA Players

How do I know how much I should be paid?

Do I deserve more or less based on how I am playing?

Problem statement

How can NBA organizations and player agents predict player value? What features drive value?

Per 36 Statistics

Stats adjusted for 36 min of game time
20 PTS, 36 mins... 20 PTS

5 PTS, 9 mins... 20 PTS

Player Contracts

- Contract types
- Contract values

NBA Team Value

- Team value in billions of dollars
- Market size based on value

Train/test split, standardize the data, create dummy features

Visualize data, understand what it represents, identify oddities Train models, compare performance

Data Wrangling

Merging data

Nulls

Repeated players

Inconsistent string values

Categorical data

Exploratory Data Analysis

Exploratory Data Analysis

Exploratory Data Analysis

No standout features

Importance of Age

GS and MP

Pre-processing

Train/test split

Scale numerical data

Create dummy features

Combine data

18.80	Age	G	GS	MP	FG	FGA	FG%
0	-1.470509	0.829981	1.345483	1.506218	2.123839	2.239854	0.113309
1	0.808674	0.002087	0.897741	0.336692	-0.058347	-0.308233	0.445095
2	1.061916	1.161138	-1.072323	-0.297877	-1.447012	-0.945255	-1.731420
3	0.048946	0.167666	0.987289	0.772036	1.875864	1.424466	0.883052
4	0.048946	-0.329070	-0.893226	-0.895552	-0.405513	0.252346	-1.227106

	Pos_C	Pos_PF	Pos_PG	Pos_SF	Pos_SG	Round	Signed Using_Bi- Annual Exception		Signed Using_Early Bird Rights
0	0	0	1	0	0	1	0	0	0

Modeling - Linear Regression

$$R^2 = 0.23$$

RMSE = \$7.70 million

MAE = \$6.41 million

Modeling - Ridge

Alpha = 42.1

 $R^2 = 0.52$

RMSE = \$6.06 million

MAE = \$4.72 million

Modeling - Lasso

Alpha = 0.22

 $R^2 = 0.48$

RMSE = \$6.31 million

MAE = \$5.12 million

Modeling - KNN

k_neighbors = 11

 $R^2 = 0.41$

RMSE = \$6.71 million

MAE = \$4.94 million

Modeling - Random Forest

Parameter optimization

3 folds, 100 candidates, totalling 300 fits

$$R^2 = 0.48$$

RMSE = \$6.34 million

MAE = \$4.76 million

Model Performance

	Linear Regression	Ridge	Lasso	KNN	Random Forest
r²	0.23	0.52	0.48	0.41	0.48
RMSE	7.70	6.06	6.31	6.71	6.34
MAE	6.41	4.72	5.12	4.94	4.76
Negative Values	Yes	Yes	Yes	No	No

Takeaways and Future Improvements

Importance of Age

Not all stats are created equal

More data

Raw data

Questions?