Big Data Storm Applications

- ❖ Apache Storm
 - Storm Use Cases
 - Stream Processing
 - Direct stream processing without any intermediate queues
 - DRPC (Distributed Remote Procedure Call)
 - Computation load is efficiently distributed over parallel processing CPUs for real-time reliable results

❖ Apache Storm

- Storm Use Cases
 - Continuous Computation
 - Continuous real-time updates to (complex) computations as the input data streams are continuously analyzed

Storm Applications

- Real-time analytics
- Online ML (Machine Learning)
- Continuous computation
- DRPC (Distributed Remote Procedure Call)
- ETL (Extract, Transform, Load)
- etc.

- ❖ Example of Monitoring Accessed Web URLs in Twitter Retweets
 - DRPC (Distributed Remote Procedure Call)
 - RPC (Remote Procedure Call) is a program that can execute its process on a remote computer with a different IP address
 - Distributed RPC is a RPC executed in a distributed parallel form over a cluster of nodes

- ❖ Example of Monitoring Accessed Web URLs in Twitter Retweets
 - ETL (Extract, Transform, Load)
 - Three essential database functions Extract + Transform + Load combined into one function
 - ETL function extracts data from a database and transforms it and loads it into a data warehouse

Storm Applications

- Financial Services
 - Security fraud detection
 - · Policy violation detection
 - Stock Monitoring & Alert Notification
 - Pricing control & adaptation

Storm Applications

- Retail Services
 - Logistic scheduling
 - · Sales monitoring
 - Discount rate control
 - Coupon distribution
 - Shrinkage & Stock outs
 - Pricing & Offers

Storm Applications

- Web Services
 - Web server & system support
 - · Security breach monitoring
 - Application failure recovery
 - User problem solving
 - · Personalized content protection

Storm Applications

- ICT & Telecom Services
 - SNS (Social Network Services) services
 - Mobile Apps & Cloud services
 - Customer services
 - · Security breach monitoring
 - Network (gateways/routers, switches) outage
 - Bandwidth allocation
 - Mobility support
 - RAN (Radio Access Network) connectivity

- Understanding Storm: Storm vs. Hadoop
 - Cluster & Operation
 - Hadoop Cluster
 - Hadoop runs MapReduce jobs on HDFS
 - Storm Cluster
 - Storm runs Topology processes on the DAG

- Understanding Storm: Storm vs. Hadoop
 - Process Ending
 - Hadoop
 - MapReduce jobs end when the assigned dataset is completely processed
 - Storm
 - Topology processes streaming messages continuously until the stream is intentionally terminated by the user

- Understanding Storm: Storm vs. Hadoop
 - Node Types
 - Hadoop
 - NameNode (Master) and DataNode (Worker)
 - · NameNode runs the JobTracker daemon
 - · DataNode runs the TaskTracker daemon
 - Storm
 - Master node and Worker node
 - · Master node runs the Nimbus daemon
 - · Worker node runs the Supervisor daemon

Storm Applications

- **❖** Example of Monitoring Accessed Web URLs in Twitter Retweets
 - Hadoop URL Retweet Counting Example

Twitter Firehose provides streams of Twitter messages to Queueing (intermediate Message Broker) nodes that serve as intermediate queues

- Workers collect and store data in HDFS
- MapReduce reads from HDFS to find web URLs

- **❖** Example of Monitoring Accessed Web URLs in Twitter Retweets
 - Hadoop URL Retweet Counting Example
 - Mod Hashing operation is used to send same URL MapReduce processed <Key, Value> results to the same Worker node (for counting & queueing)
 - Updated URL counts and statistics are collected and sent to Cassandra

Storm Applications ❖ Example of Monitoring Accessed Web URLs in Twitter Retweets Hadoop Mod Queueing Hashing **Nodes** MapReduce **Worker Nodes** Message Broker Twitter firehose Cassandra

- ❖ Example of Monitoring Accessed Web URLs in Twitter Retweets
 - Issues when using Hadoop
 - Intermediate message broker functioning Queueing nodes are needed
 - Write and Read with HDFS is slow so multiple HDFS Writes and Reads will slow down the analysis significantly
 - Needing to compute the Mod Hashing operation and send the same URL message to the same counting Worker node is inconvenient

- **❖** Example of Monitoring Accessed Web URLs in Twitter Retweets
- Issues when using Hadoop
 - Adding an additional URL search Worker node (DataNode) in parallel is complex and requires changes in all interacting Nodes and Worker programs (JVMs) in the cluster
 - Significant time is required to conduct program (JVM) replacements throughout the cluster
 - Hadoop program for this Job is complicated and difficult to program, and also difficult to debug and upgrade

- **❖** Example of Monitoring Accessed Web URLs in Twitter Retweets
 - Storm URL Retweet Counting Example
 - Spouts receive Tweeter messages in Tuple stream form
 - Multiple Bolts in parallel are assigned the task of finding URLs and make local counts
 - Following stages of Bolts aggregate the URL counts to find summed numbers
 - Final stage Bolts save the Twitter URL statistics to Cassandra

Storm Applications

❖ Example of Monitoring Accessed Web URLs in Twitter Retweets

- ❖ Example of Monitoring Accessed Web URLs in Twitter Retweets
 - Advantages when using Storm
 - Spout controls the message input stream from Twitter
 - Pull scheme
 - Guaranteed data processing of all Tweet messages
 - Reliable vs. Unreliable Spouts/Bolts

- **❖** Example of Monitoring Accessed Web URLs in Twitter Retweets
 - Advantages when using Storm
 - Built in self-healing fault tolerance capability
 - No intermediate Queueing nodes needed
 - · No Mod Hashing operations needed
 - Great horizontal scalability of Spouts and multistage Bolts

- ❖ Example of Monitoring Accessed Web URLs in Twitter Retweets
 - Advantages when using Storm
 - Fast RAM based in-memory Write and Read speeds in Bolts
 - Simple and easy to program, debug, and upgrade
 - Instantaneous processing topology updates
 - Rebalance feature

Big Data Reference

References

- · Apache Storm, http://storm.apache.org
- Nathan Marz, "ETE 2012 Nathan Marz on Storm," https://www.youtube.com/watch?v=bdps8tE0gYo&t=542s, Feb. 15, 2012.
- Wikipedia, https://en.wikipedia.org
- edureka!, "Understanding Spout In Apache Storm | Edureka,"
 https://www.youtube.com/watch?v=5kiZs1a8UPM, Oct. 10, 2014
- https://www.webopedia.com/TERM/E/ETL.html
- Sean T. Allen, Matthew Jankowski, "Storm Applied: Strategies for real-time event processing", Apr. 12, 2015.
- Jonathan Leibiusky, Gabriel Eisbruch, Dario Simonassi, "Getting Started with Storm: Continuous Streaming Computation with Twitter's Cluster Technology", Sep. 17, 2012.
- Flavio Junqueira, Benjamin Reed, "ZooKeeper: Distributed Process Coordinationt", Dec. 5, 2013.

References

- Image source
 - https://upload.wikimedia.org/wikipedia/commons/c/cc/Stock_Tips.jpg
 - https://upload.wikimedia.org/wikipedia/commons/8/80/New_York_Stock_Exchange_trading_floor_on_Wall_Street%2C_New_York%
 2C_New_York_LCCN2011634218.tif
 - https://upload.wikimedia.org/wikipedia/commons/b/bd/USB-thumb-drive-16-GB.jpg
 - By FreeStockTips (Own work) [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], via Wikimedia Commons
 - Carol M. Highsmith [Public domain], via Wikimedia Commons
 - Teravolt at English Wikipedia [CC BY 3.0 (http://creativecommons.org/licenses/by/3.0)], via Wikimedia Commons