THEORETICAL PART:

Definition:

A linear inequality in the two variables x and y is an inequality that can be written in the form:

$$ax + by < c$$
, $ax + by > c$, $ax + by \le c$, $ax + by \ge c$,

where a, b, c are constants and a and b are not both 0.

Procedure (Solving linear inequalities in two variables):

- Graph the line that results from replacing the inequality symbol with =.
- Make the line solid if the inequality sign is ≤ or ≥ and dashed if the symbol is < or >. A
 solid line indicates that points on the line are included in the solution set while a dashed line
 indicates that points on the line are excluded from the solution set.
- Determine which of the half-planes defined by the boundary line solves the inequality by substituting a **test point** from one of the two half-planes into the inequality. If the resulting numerical statement is true, all the points in the same half-plane as the test point solve the inequality. Otherwise, the points in the other half-plane solve the inequality. Shade in the half-plane that solves the inequality.

Definition: Absolute value inequality meaning:

$$|x| < a \equiv x < a$$
 and $x > -a$

$$|x| > a \equiv x > a$$
 or $x < -a$

PRACTICAL PART:

- 1. Solve the following linear inequalities by graphing their solution sets:
 - (a) 3x + 2y < 12
 - (b) $x y \le 0$

- 2. Graph the solution sets that satisfy the following inequalities:
 - 5x 2y < 10 and $y \le x$.
 - x + y < 4 or $x \ge 4$.

3. Graph the solution set in \mathbb{R}^2 that satisfies the joint conditions |x-3| > 1 and $|y-2| \le 3$.