Instituto Mauá de Tecnologia Núcleo de Sistemas Eletrônicos Embarcados - NSEE

MEB - SIMUCAM X Hardware FTDI - USB 3.0 V. 1.0.0

Rodrigo França rodrigo.franca@maua.com

23 de Junho de 2017

Conteúdo

Re	Revisões		
1	Introdução 1.1 Objetivo	4	
	1.2 Escopo	4	
2	Hardware	5	
	2.1 Introdução	5	
	2.2 Implementação	5	
3		11	
	3.1 Introdução	11	
	3.2 Implementação		
4	Outros Sistemas	12	
5	5 Programação		
6	Referências	14	

Revisões

Revisão	Data	$\operatorname{Autor}(\operatorname{es})$	Descrição
1.0.0	23/06/2017	Rodrigo França	Criação do documento.

1 Introdução

1.1 Objetivo

O objetivo deste documento é descrever o hardware implementado para a utilização do módulo FTDI UMFT601A, assim como o firmware necessário para utilizá-lo. A utilização do módulo UMFT601A, por sua vez, tem o objetivo de permitir a comunicação entre a MEB (FPGA) e o PC embarcado (NUC), através de uma interface USB 3.0.

1.2 Escopo

O escopo deste documento é:

- 1. Descrição do hardware implementado para comunicação entre módulo UMFT601A e o microprocessador NIOS II;
- 2. Descrição do firmware utilizado para comunicação com o Hardware descrito no item 1;
- 3. Apresentação de outros sistemas presentes na MEB que podem interagir com o Hardware descrito no item 1 (memórias DDR2, DMA, etc.);
- 4. Apresentar o ambiente de programação e debug do microcontrolador presente na MEB;
- 5. Apresentar uma lista de documentos e links interessantes para desenvolvimento com o módulo UMFT601A.

2 Hardware

2.1 Introdução

Para a utilização do módulo UMFT601A, foi desenvolvido um componente de hardware responsável pelo acesso físico aos pinos do módulo. Esse componente foi denominado "FTDI" e foi integrado ao sistema da MEB através do ambiente Qsys. Um diagrama de blocos geral é apresentado na figura 2.1.

2.2 Implementação

O componente "FTDI" serve apenas como uma conexão física entre os pinos do módulo UMFT601A e o microprocessador NIOS II, não realizando nenhuma lógica especifica. O objetivo é, inicialmente, que essa lógica seja implementada em firmware para depois ser recriada em hardware. O módulo possui:

- Interface com o barramento Avalon (utilizado pelo NIOS II), para escrita e leitura de seus registradores;
- Registradores para acessar e controlar os pinos do módulo UMFT601A (registradores descritos na tabela 2.1). Maiores informações podem ser encontradas no arquivo "FTDI_Registers.ods", dentro da pasta "Referências", dentro de "Implementation";
- Interface externa com os pinos do módulo UMFT601A (interface descrita na tabela 2.2). O desenho do módulo "FTDI" pode ser visto na figura 2.2. Maiores informações podem ser encontradas no arquivo "Pin_Mapping.ods", dentro da pasta "Referências", dentro de "Implementation"

Tabela 2.1: Registradores do Componente "FTDI"

${f Endere}$ ço	Descrição
0x00000000	Registro com o valor de entrada do
(Leitura)	barramento DATA (caso
	$DATA_OE = '0'$
0x00000000	Registro com o valor de saída do
(Escrita)	barramento DATA (caso
	$DATA_OE = '1')$
	0x00000000 (Leitura) 0x00000000

Continua na proxima página

Tabela 2.1 – Continuação da página anterior

Tabela 2.1	Tabela 2.1 – Continuação da página anterior			
Registrador	Endereço	Descrição		
BE_REG_IN	0x00000001	Registro com o valor de entrada do		
	(Leitura)	barramento BE (caso BE_OE = '0')		
BE_REG_OUT	0x00000001	Registro com o valor de saída do		
	(Escrita)	barramento BE (caso BE_OE = $^{\circ}1'$)		
TXE_N_REG	0×000000002	Registro com o valor de entrada do pino TXE_N		
RXF_N_REG	0x00000003	Registro com o valor de entrada do pino RXF_N		
SIWU_N_REG	0x00000004	Registro com o valor de saída do pino SIWU_N		
WR_N_REG	0x00000005	Registro com o valor de saída do pino WR_N		
RD_N_REG	0x00000006	Registro com o valor de saída do pino RD_N		
OE_N_REG	0x00000007	Registro com o valor de saída do pino OE_N		
RESET_N_REG	0x00000008	Registro com o valor de saída do pino RESET_N		
WAKEUP_N_REG_IN	0x00000009 (Leitura)	Registro com o valor de entrada do pino WAKEUP_N (caso WAKEUP_OE = '0')		
WAKEUP_N_REG_OUT	0x00000009 (Escrita)	Registro com o valor de saída do pino WAKEUP_N (caso WAKEUP_OE = '1')		
GPIO_REG_IN	0x0000000A (Leitura)	Registro com o valor de entrada do barramento GPIO (caso GPIO_OE = '0')		
GPIO_REG_OUT	0x0000000A (Escrita)	Registro com o valor de saída do barramento GPIO (caso GPIO_OE = '1')		
OE_REG	0x0000000B	Registro para controle dos OE (Output Enable) para os pinos bidirecionais (DATA, BE, WAKEUP, GPIO)		
DATA_OE_MASK_REG	0x0000000C (Escrita)	Registro fantasma para mascarar o sinal DATA_OE		
BE_OE_MASK_REG	0x0000000D (Escrita)	Registro fantasma para mascarar o sinal BE_OE		
	, ,	<u> </u>		

Continua na proxima página

Tabela 2.1 – $Continuação\ da\ página\ anterior$

Registrador	Endereço	Descrição
WAKEUP_OE_MASK_REG	0x00000000E	Registro fantasma para mascarar o
	(Escrita)	\sin al WAKEUP $_$ OE
GPIO_OE_MASK_REG	0x00000000F	Registro fantasma para mascarar o
	(Escrita)	sinal GPIO_OE

Tabela 2.2: Interface externa do Componente "FTDI"

Pino UMFT601A	Pino HSMC	Pino FPGA
60 / D_CLK	40 / CLKIN0	PIN_AC34
9 / RXF_N	104 / D43	PIN_AR32
8 / TXE_N	102 / D41	PIN_AP32
18 / GPIO_1	113 / D48	PIN_AD30
17 / GPIO_0	115 / D50	PIN_AD31
11 / WR_N	110 / D47	PIN_AT30
12 / RD_N	114 / D49	PIN_AT33
13 / OE_N	116 / D51	PIN_AU33
$10 / SIWU_N$	108 / D45	PIN_AR31
8 / BE_N_3	109 / D46	PIN_AK29
$7 / BE_N_2$	107 / D44	PIN_AJ29
5 / BE_N_1	103 / D42	PIN_AC29
4 / BE_N_0	101 / D40	PIN_AC28
76 / DATA31	86 / D31	PIN_AN31
75 / DATA30	84 / D29	PIN_AM31
74 / DATA29	80 / D27	PIN_AM35
73 / DATA28	78 / D25	PIN_AM34
72 / DATA27	74 / D23	PIN_AP30
71 / DATA26	72 / D21	PIN_AN30
70 / DATA25	68 / D19	PIN_AK35
69 / DATA24	66 / D17	PIN_AK34
67 / DATA23	62 / D15	PIN_AJ35
66 / DATA22	60 / D13	PIN_AJ34
65 / DATA21	56 / D11	PIN_AH35
64 / DATA20	54 / D9	PIN_AH34
63 / DATA19	50 / D7	PIN_AK33
62 / DATA18	48 / D5	PIN_AJ32
61 / DATA17	44 / D3	PIN_AC32
60 / DATA16	42 / D1	PIN_AC31
57 / DATA15	85 / D30	PIN_AG32
56 / DATA14	83 / D28	PIN_AG31
55 / DATA13	79 / D26	PIN_AF26
54 / DATA12	77 / D24	PIN_AE26

Continua na proxima página

Tabela 2.2 – $Continuação\ da\ página\ anterior$

Pino UMFT601A	Pino HSMC	Pino FPGA
53 / DATA11	73 / D22	PIN_AE29
52 / DATA10	71 / D20	PIN_AE28
51 / DATA9	67 / D18	PIN_AD29
50 / DATA8	65 / D16	PIN_AD28
47 / DATA7	61 / D14	PIN_AE27
46 / DATA6	59 / D12	PIN_AD27
45 / DATA5	55 / D10	PIN_AB31
44 / DATA4	53 / D8	PIN_AB30
43 / DATA3	49 / D6	PIN_AB28
42 / DATA2	47 / D4	PIN_AB27
41 / DATA1	43 / D2	PIN_AD26
40 / DATA0	41 / D0	PIN_AC26
$15 / RESET_N$	119 / D52	PIN_AK32
16 / WAKE_UP_N	121 / D54	PIN_AL32

Figura 2.1: Diagrama de Blocos geral da MEB

Figura 2.2: Desenho do Componente "FTDI"

3 Firmware

3.1 Introdução

Para acesso aos registradores do módulo "FTDI", foi desenvolvida uma biblioteca (arquivos "ftdi.h" e "ftdi.c", presentes na pasta "usb3" dentro da pasta "logic") . Essa biblioteca possui funções básicas para acesso aos registradores do componente "FTDI" e aos pinos do módulo UMFT601A.

3.2 Implementação

Foi implementado um total de duas funções, listadas na tabela 3.1. Maiores informaçõe podem ser enontradas nos arquivos "ftdi.h"e "ftdi.c".

Descrição
Realiza a escrita nos registradores do componente "FTDI"
(escrita nos pinos do módulo UMFT601A). Recebe o en-
dereço do registrador e o valor a ser escrito; Retorna se a
escrita foi bem sucedida ou não.
Realiza a leitura dos registradores do componente "FTDI"
(leitura dos pinos do módulo UMFT601A). Recebe o endereço do registrador; Retorna o valor do registrador.

Tabela 3.1: Lista de funções para utilizar o Componente "FTDI"

4 Outros Sistemas

A MEB possui, além do componente "FTDI" e do microprocessador NIOS II, outros componentes e sistemas que podem interagir com o módulo UMFT601A. Entre eles, os principais são:

- Controladores de memória DDR2, para duas memórias de 1GB (denominadas "M1" e "M2");
- Controladores de DMA entre as memórias DDR2 (um DMA para transferência de dados de M1 para M2 e outro DMA para transferência de dados de M2 para M1);
- Controlador para LEDs da placa DE4 e do painel frontal;
- Controlador para o display de sete segmentos da placa DE4;
- Comunicação UART com o computador através de cabo USB;
- Comunicação JTAG para gravação e debug do microcontrolador.

Não é do escopo deste documento fornecer descrição de como esses outros sistemas funcionam. Existem bibliotecas prontas para a utilização deles, e serão fornecidas.

5 Programação

A programação do microcontrolador é realizado através de um cabo USB, conectado a uma interface JTAG na placa DE4. O ambiente de programação é uma versão modificada do Eclipse, fornecido pela Altera junto com o software Quartus. Para realizar os testes é necessário gravar, pelo Quartus, o hardware de testes e então programar a MEB (microcontrolador) com o Eclipse. Embora exista um software para simulação de hardware (ModelSim, que é fornecido com o Quartus), não é possível simular o módulo FTDI ou uma interface USB 3.0. Dessa forma, se faz necessária a utilização física da MEB para qualquer teste de maior complexidade.

6 Referências

- Website do módulo UMFT601A (http://www.ftdichip.com/Products/Modules/SuperSpeedModules.htm)
- Datasheet do módulo UMFT601A (http://www.ftdichip.com/Support/Documents/DataSheets/Modules/DS_UMFT60xx%20module%20datasheet.pdf)
- Website do componente FT601Q (http://www.ftdichip.com/Products/ICs/FT600.html)
- Datasheet do componente FT601Q (http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS FT600Q-FT601Q%20IC%20Datasheet.pdf)
- Application Note AN370 FT60X Configuration Programmer User Guide (http://www.ftdichip.com/Support/Documents/AppNotes/AN_370%20FT600%20Configuration% 20Programmer%20User%20Guide.pdf)
- Application Note AN375 FT600 Data Loopback Application User Guide (http://www.ftdichip.com/Support/Documents/AppNotes/AN_375%20FT600%20Data%20Loopback% 20Application%20User%20Guide.pdf)
- Application Note AN377 Altera FPGA FIFO master Programming Guide (http://www.ftdichip.com/Support/Documents/AppNotes/AN_377%20Altera%20FPGA% 20FIF0%20master%20Programming%20Guide.pdf)
- Application Note AN379 D3XX Programmers Guide (http://www.ftdichip.com/Support/Documents/ProgramGuides/AN_379%20D3xx%20Programmers%20Guide.pdf)
- Application Note AN386 FT600 Maximize Performance (http://www.ftdichip.com/Support/Documents/AppNotes/AN_386%20FTDI%20FT600%20Maximize%20Performance.pdf)
- Application Note AN387 FT600 Data Streamer Application User Guide (http://www.ftdichip.com/Support/Documents/AppNotes/AN_387%20FT600%20Data%20Streamer% 20Application%20User%20Guide.pdf)
- Application Note AN421 FIFO Bus Master for FT60x (http://www.ftdichip.com/Support/Documents/AppNotes/AN 421 FIFO Bus Master For%20FT60x.pdf)