Entraînement au calcul de dérivées : corrigé bloc 3.

1°) $f_1(x) = \exp(\cos x \ln(1 + \sin x)).$

Pour tout $x \in \mathbb{R}$, $1 + \sin x \ge 0$, et $1 + \sin x = 0 \iff \sin x = -1 \iff x = \frac{-\pi}{2}[2\pi]$.

Donc f_1 est définie sur $D = \mathbb{R} \setminus \left\{ -\frac{\pi}{2} + 2k\pi / k \in \mathbb{Z} \right\}$.

Par composition et somme de fonctions dérivables là où elles sont définies, f_1 est dérivable sur D, et pour tout $x \in D$,

$$f_1'(x) = \left(-\sin x \ln(1+\sin x) + \cos x \frac{\cos x}{1+\sin x}\right) \exp\left(\cos x \ln(1+\sin x)\right)$$

2°) f_2 est définie et dérivable sur $\mathbb{R}_+^* \setminus \{1\}$, et pour tout x dans cet ensemble,

$$f_2'(x) = \frac{\left(3x^2\sin(5x-1) + x^3.5\cos(5x-1)\right)\ln x - x^3\sin(5x-1)\frac{1}{x}}{(\ln x)^2}$$
$$= \left[\frac{x^2\sin(5x-1)\left(3\ln x - 1\right) + 5x^3\cos(5x-1)\ln(x)}{(\ln x)^2}\right]$$

3°) f_3 est définie et dérivable sur \mathbb{R} , et pour tout $x \in \mathbb{R}$,

$$f_3'(x) = \cos x \left[(-\sin)(\sin x) \right] - (-\sin x) \left[\cos(\cos x) \right] = \overline{\sin x \left(\cos(\cos x) \right) - \cos x \left(\sin(\sin x) \right)}$$

4°) Pour tout $x \in \mathbb{R}$, $1+x^2 \ge 1$ donc $\sqrt{1+x^2} \ge \sqrt{1} > 0$ donc $0 < \frac{1}{\sqrt{1+x^2}} \le 1$. Comme Arccos est

définie sur [-1,1], f_4 est bien définie sur \mathbb{R} $x\mapsto 1+x^2$ est dérivable sur \mathbb{R} et à valeurs dans \mathbb{R}_+^* , et $x\mapsto \sqrt{x}$ est dérivable sur \mathbb{R}_+^* , donc par composition, $x \mapsto \sqrt{1+x^2}$ est dérivable sur \mathbb{R} , ainsi que $x \mapsto \frac{1}{\sqrt{1+x^2}}$ par quotient.

Arccos est dérivable sur] -1,1[. Or, pour tout $x \in \mathbb{R}, \frac{1}{\sqrt{1+x^2}} \neq -1$, et $\frac{1}{\sqrt{1+x^2}} = 1 \iff 1+x^2 = 1 \iff x = 0$.

Par composition, f_4 est donc dérivable sur \mathbb{R}^* . Pour tout $x \in \mathbb{R}^*$,

$$f_4'(x) = \frac{-\frac{2x}{2\sqrt{1+x^2}}}{\left(\sqrt{1+x^2}\right)^2} \frac{-1}{\sqrt{1-\left(\frac{1}{\sqrt{1+x^2}}\right)^2}}$$

$$= \frac{x}{\sqrt{1+x^2}(1+x^2)} \frac{1}{\sqrt{1-\frac{1}{1+x^2}}}$$

$$= \frac{x}{\sqrt{1+x^2}(1+x^2)} \frac{1}{\sqrt{\frac{1+x^2-1}{1+x^2}}}$$

$$= \frac{x}{\sqrt{1+x^2}(1+x^2)} \frac{1}{\frac{\sqrt{x^2}}{\sqrt{1+x^2}}} = \boxed{\frac{x}{|x|(1+x^2)}}$$

Donc, pour tout $x \in \mathbb{R}_+^*$, $f_4'(x) = \frac{1}{1+x^2}$, et pour tout $x \in \mathbb{R}_-^*$, $f_4'(x) = \frac{-1}{1+x^2}$.

5°) Soit
$$D$$
 le domaine de définition de f_5 . Pour $x \in \mathbb{R}$, $x \in D \iff \begin{cases} x \neq -1 \\ \frac{x-1}{x+1} \geq 0 \end{cases}$ Le plus simple est de faire un tableau de signe :

x	$-\infty$		-1		1		$+\infty$
x-1		_		_	0	+	
x+1		_	0	+		+	
$\frac{x+1}{x-1}$		+		_	0	+	

Donc
$$D =]-\infty, -1[\cup [1, +\infty[]]$$

Par quotient, $x \mapsto \frac{x-1}{x+1}$ est dérivable sur $]-\infty,-1[\ \cup\]1,+\infty[$ et à valeurs dans \mathbb{R}_+^* sur cet ensemble, d'après le tableau de signe. Or $x\mapsto \sqrt{x}$ est dérivable sur \mathbb{R}_+^* . Donc, par composition, puis produit avec $x\mapsto x,$ f_5 est dérivable sur $]-\infty,-1[\ \cup\]1,+\infty[$.

$$\forall x \in]-\infty, -1[\cup]1, +\infty[, f_5'(x) = 1 \times \sqrt{\frac{x-1}{x+1}} + x \times \frac{\frac{1 \times (x+1) - (x-1) \times 1}{(1+x)^2}}{2\sqrt{\frac{x-1}{x+1}}}$$

$$= \sqrt{\frac{x-1}{x+1}} + \frac{2x}{(1+x)^2} \frac{1}{2} \sqrt{\frac{x+1}{x-1}}$$

$$= \sqrt{\frac{x-1}{x+1}} + \frac{x}{(1+x)^2} \sqrt{\frac{x+1}{x-1}}$$

Remarque: Attention pour les simplifications!

Si
$$x < -1$$
, $x + 1$ et $x - 1$ sont strictement négatifs, donc écrire $\sqrt{\frac{x+1}{x-1}} = \frac{\sqrt{x+1}}{\sqrt{x-1}}$ est faux.

Mieux vaut écrire, lorsque $\frac{a}{b}$ est positif, $\sqrt{\frac{a}{b}} = \sqrt{\left|\frac{a}{b}\right|} = \sqrt{\frac{|a|}{|b|}} = \frac{\sqrt{|a|}}{\sqrt{|b|}}$. Pour tout $x \in]-\infty, -1[\ \cup\]1, +\infty[,$

$$f_5'(x) = \frac{\sqrt{|x-1|}}{\sqrt{|x+1|}} + \frac{x}{|1+x|^2} \frac{\sqrt{|x+1|}}{\sqrt{|x-1|}}$$

$$= \frac{\sqrt{|x-1|}}{\sqrt{|x+1|}} + \frac{x}{|1+x|\sqrt{|x+1|}} \frac{1}{\sqrt{|x-1|}}$$

$$= \frac{\left(\sqrt{|x-1|}\right)^2 |1+x| + x}{|1+x|\sqrt{|x+1|}\sqrt{|x-1|}}$$

$$= \frac{|x-1| \cdot |x+1| + x}{|1+x|\sqrt{|x+1|} \cdot |x-1|}$$

$$= \frac{x^2 - 1 + x}{|1+x|\sqrt{x^2 - 1}} \operatorname{car} x^2 - 1 > 0 \operatorname{sur}] - \infty, -1[\cup]1, +\infty[$$

Étude en 1 : Pour tout $x \in]1, +\infty[$, $\frac{f_5(x) - f_5(1)}{x - 1} = \frac{\frac{\sqrt{x - 1}}{\sqrt{x + 1}} - 0}{x - 1} = \frac{1}{\sqrt{x + 1}\sqrt{x - 1}} \xrightarrow[x \to 1]{} +\infty$ Donc f_5 n'est pas dérivable en 1.