(19) World Intellectual Property Organization International Bureau

. <u>| 1981 | 1981 | 1984 | 1984 | 1984 | 1984 | 1984 | 1984 | 1984 | 1984 | 1984 | 1984 | 1984 | 1984 | 1984 | 198</u>

(43) International Publication Date 15 November 2001 (15.11.2001)

PCT

(10) International Publication Number WO 01/85912 A2

(51) International Patent Classification7:

C12N

(21) International Application Number: PCT/US01/14648

(22) International Filing Date:

3 May 2001 (03.05.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 09/568,942

5 May 2000 (05.05.2000) US

(71) Applicant (for all designated States except US): EX-ELIXIS, INC. [US/US]; 170 Harbor Way, P.O. Box 511, South San Francisco, CA 94083-0511 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): CURTIS, Daniel, Tim [US/US]; Exelixis, Inc., 170 Harbor Way, P.O. Box 511, South San Francisco, CA 94083-0511 (US). FRANCIS, George, Ross [US/US]; Exelixis, Inc., 170 Harbor Way, P.O. Box 511, South San Francisco, CA 94083-0511 (US). ELLIS, Michael, Christopher [US/US]; Exelixis, Inc., 170 Harbor Way, P.O. Box 511, South San Francisco, CA 94083-0511 (US). RUDDY, David, Andrew [US/US]; Exelixis, Inc., 170 Harbor Way, P.O. Box 511, South San Francisco, CA 94083-0511 (US). NICOLL, Sharmon, Monique [US/US]; Exelixis, Inc., 170 Harbor Way, P.O. Box 511, South San Francisco, CA 94083-0511 (US).

MCGRATH, Garth, Joseph [US/US]; Exelixis, Inc., 170 Harbor Way, P.O. Box 511, South San Francisco, CA 94083-0511 (US).

- (74) Agent: OSMAN, Richard, Aron; Science & Technology Law Group, 75 Denise Drive, Hillborough, CA 94010 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

A2

(54) Title: PRESENILIN ENHANCERS

(57) Abstract: The invention provides methods and compositions relating to pen polypeptides having pen-specific structure and activity, related polynucleotides and modulators of pen function. The invention provides isolated pen hybridization probes and primers capable of specifically hybridizing with natural pen genes, pen-specific binding agents such as specific antibodies, and methods of making and using the subject compositions in diagnosis (e.g. genetic hybridization screens for pen transcripts), therapy (e.g. pen inhibitors to modulate APP processing) and in the biopharmaceutical industry (e.g. as immunogens, reagents for screening chemical libraries for lead pharmacological agents, etc.).

Presenilin Enhancers

Inventors:

Daniel Tim Curtis, George Ross Francis, Garth Joseph McGrath, Sharmon

Monique Nicoll, David Andrew Ruddy & Michael Christopher Ellis

5 Assignee:

Exelixis Pharmaceuticals

INTRODUCTION

Field of the Invention

The field of this invention is proteins which modulate presenilin function.

10

15

20

25

30

Background

Azheimer's disease is a degenerative disorder of the central nervous system which causes memory impairment and cognitive loss during mid to late life. The disease is characterized by two primary pathological features, extracellular amyloid plaques in the brain, and intra-neuronal neurofibrillary tangles. These lesions inhibit neuronal and glial cell function, and lead to synaptic loss and dementia. Both early and late onset forms of the disease have been shown to have genetic components, and four genes have been definitively associated with increased risk for AD: APP, PS1, PS2 and ApoE. These genes are functionally linked by their roles in the production, transport, and/or elimination of, amyloid- β (A β), the primary constituent of Alzheimer's amyloid plaques (reviewed in Selkoe, D. 1999, Nature 399 supp: A23).

Alzheimer's amyloid plaques are comprised largely of the 40-42 amino acid peptide A β (Glenner, G. G., and Wong, C. W., 1984 Biochem. Biophys. Res. Commun.122:1131). A β is derived by proteolytic cleavage from the b-Amyloid Precursor Protein, or β APP (Kang J. et al. 1987, Nature 325:733). Three secretase activities cleave APP to generate the A β peptide or a shorter, alternative cleavage product called p3. β -secretase generates the N-terminus of A β , while α -secretase cleaves internal to A β sequences to generate the N-terminus of p3. γ -secretase cleaves the C-terminal β and α secretase products of APP to generate the heterogeneous C-terminal ends of A β and p3. APP mutations found in familial Alzheimer's disease (FAD) pedigrees are clustered around the three secretase cleavage sites

(Goate, A., et al. 1991, Nature 349:704; Murrell, J., et al. 1991, Science 254: 97; Chartier-Harlin et al. 1991, Nature 353: 844; Mullan, M. et al. 1992, Nature Genet. 1: 345; Levy, E. et al., 1990, Science 248: 1124; Hendriks, L. et al. 1992, Nature Genet. 1:218) and they each increases total $A\beta$ ($A\beta42 + A\beta40$) or increases the $A\beta$ 42/40 ratio. Since $A\beta42$ precipitates more readily in vitro and is the primary component of early forms of amyloid deposits called diffuse plaques, it has been postulated that increased systemic $A\beta42$ could lead to earlier formation of plaque, and earlier onset of AD.

5

10

15

20

25

30.

Family studies identified two other genes, presenilin-1 (PS1) and presenilin-2 (PS2), associated with dominantly inherited, early onset AD, (Sherrington, R. et al. 1995, Nature 375: 754; Levy-Lahad, E. et al. 1995, Science 269: 973; Rogaev., E. I. et al. 1995, Nature 376: 775). These proteins are similar to each other in sequence and encode polytopic membrane proteins with 8 transmembrane segments. Studies in FAD human cell lines, in transfected cells, and in transgenic mice have demonstrated that the PS FAD mutations cause a change in the processing pattern of APP, resulting in an increased ratio of Aβ 42/40 (Scheuner, D. et al. 1996, Nat. Med. 2: 864; Citron, M. et al. 1997, Nat. Med. 3:67; Borchelt, D. et al. 1996, Neuron 17: 1005; Duff, K. et al. 1996, Nature 383: 710; Tomita, T. et al. 1997, PNAS 94:2025). Studies on PS1 knockout mice demonstrated that loss of PS1 function leads to reduction in Aβ production due to a reduction of γ-secretase activity (De Strooper, B. et al. 1998, Nature 391: 387). Presenilin function is thus implicated in the activity of γ-secretase in two ways: missense mutations alter γ-secretase cleavage specificity, while loss of presenilin activity leads to loss of γ-secretase activity.

Inhibition of presentilin activity decreases Aβ production and is thus a potentially useful therapeutic approach to Alzheimer's disease. However, despite the functional link to γ-secretase activity and the generation of Aβ, the biochemical nature of PS activity is poorly understood. Various functions have been proposed, including action in the ER and/or Golgi complex as a chaperone for APP, Notch, and/or γ-secretase (Thinakaran, G. et al. 1998, Neurobiol. Dis. 4: 438), activity as a novel aspartyl protease, i.e. as γ-secretase itself (Wolfe, M. S. et al. 1999, Nature 398: 513), and potential roles in the response to oxidative stress and apoptosis (Wolozin, B. et al. 1996, Science 274:1710; vito, P. et al. 1997, J. Biol. Chem 272: 28315; Guo, Q., et al. 1997, J. Neurosci. 17: 4212). The absence of a clear functional assay increases the difficulty of designing useful small molecule therapeutics targeted at presentlin.

An alternative strategy to targeting presentlin is to discover additional proteins which act together with presentlins in the pathway of γ -secretase and A β production and which might be more amenable to drug development. One useful method for the discovery of such novel targets is to perform genetic screens in model organisms such as Drosophila and C. elegans for genes that interact with presentlins.

Invertebrate orthologues of the PS genes have been identified by both sequence searches and genetic screens. The C. elegans genome contains three presenilin genes, sel-12 (suppressor and/or enhancer of lin-12; Levitan, D. et al. 1995, Nature 377:351), hop-1 (homolog of presenilin; Li, X. et al, 1997, PNAS 94:12204) and spe-4 (spermatogenesis defective; L'Hernault et al., 1992, J. Cell Biol. 119:55). sel-12, hop-1 and spe-4 have 48, 35 and 23% sequence similarity, respectively, to PS1 and 2. sel-12 and hop-1 have overlapping functions in several tissues (see below), while spe-4 appears to perform an independent function in the male germ line. Rescue experiments using transgenes have shown that human PS1 and PS2 can rescue phenotypes caused by loss of sel-12, demonstrating that presenilin function has been conserved from nematodes to mammals (Levitan, D. et al. 1996, Nature 377:351; Baumeister, R. et al. 1997, Genes Function 1: 149).

Sel-12 was identified genetically as a suppressor of an activated allele of the Notch gene lin-12. This discovery established a functional link between presentilin activity and activity of the Notch signaling pathway. In vivo experiments in mice (Herreman, A. et al. 1999, PNAS 96:11872), Drosophila (Struhl, G. et al. 1999, Nature 398: 522; Ye, Y. et al. 1999 Nature 398:525) and C. elegans (Li, X. et al, 1997, PNAS 94:12204; Westlund, B. et al. 1999, PNAS 96:2497) have demonstrated that the phenotype of complete loss of presentilin activity corresponds very well with the complete elimination of Notch signaling in the organism, suggesting that presentilins are absolutely required for Notch signaling activity. Notch receptors are single pass transmembrane proteins present at the cell surface that mediate cell-cell signaling events critical to the differentiation of many embryonic and adult tissues in invertebrates and vertebrates. Signaling involves ligand-dependent cleavage of Notch at the inner face of the transmembrane segment, and subsequent nuclear translocation of the C-terminal domain. Analysis of Notch processing in cell culture and in vivo has further demonstrated that presentlins are required for the ligand dependent cleavage event that releases the Notch intracellular domain from the transmembrane domain (Struhl, G. et al.

1999, Nature 398: 522; De Strooper, B. et al. 1999 Nature 398: 518). The parallel requirement for presentiin in both the Notch and APP cleavages suggests that the Notch signaling pathway could be a useful surrogate assay in place of Ab production in screens for presentiin pathway genes.

Mutations in the C. elegans presentlins sel-12 and hop-1 result in phenotypes associated with defective signaling by the C. elegans Notch receptors lin-12 and glp-1. Loss of hop-1 alone results in no obvious phenotypes. Loss of sel-12 results in a strong egg-laying defective phenotype and vulval defects reminiscent of lin-12 mutations. Loss of both sel-12 and hop-1 produces more severe Notch phenotypes that seen in sel-12 alone. The specific phenotypes observed in the sel-12; hop-1 double mutants depends on whether these worms inherit maternal wild type presentlin activity. When maternally provided sel-12+ activity is present, the double mutant displays a novel egg-laying defective phenotype and all progeny arrest during embryogenesis with glp-1-like developmental defects. In the absence of maternal sel-12+ activity the double mutant exhibits a stonger phenotype of sterility with germline proliferation defects characteristic of glp-1 mutants. Together, this set of properties indicates that sel-12 and hop-1 are partially redundant and act coordinately to promote signaling by the two C. elegans Notch receptors.

The partial redundancy between sel-12 and hop-1 activities made it possible to look for enhancers of sel-12 loss of function alleles that would produce a phenotype equivalent to the sel-12;hop-1 double mutant. This enhancer screen identified two new genes which were named pen-1 and 2 (pen = presenilin enhancer) and which are required for presenilin function. Based on the phenotypes of the pen genes, we have identified a third presenilin enhancer gene, aph-2. The pen-1, pen-2 and aph-2 gene sequences identify orthologous genes in humans and other animals, including pen-1B. These genes and the processes they regulate are targets for the development of therapeutics for the treatment of Alzheimer's disease.

25

30

20

5

10

15

Relevant Art

Sequences related to a human pen-1 are found, inter alia, in WO9855508, WO9855508, WO9906554 and in Unigene CGI-78 (GI#6911522 and GI#4929623)

Sequences related to a human pen-2 are found, inter alia, in AD000671 (genomic) and GI#3601371 (cDNA).

Sequences related to a human Aph-2 are found inter alia, in WO 9845435, WO 9845436, WO 9300353 and (KIAA0253, DNA GI1665772, protein GI 1665773).

5

10

15

20

25

30

Numerous ESTs were found in public databases containing pieces of the natural human pen-1B sequence disclosed herein, including ns43g08.s1 (GI# 2874520, not annotated) and ESTs of Unigen contig Hs.42954 (53% similar to pen-1 (CGI-78)), including: AI538204 (IMAGE:2189986); AA808355 (IMAGE:1334417); N21153 (IMAGE:264868); AI204164 (IMAGE:1734840); AI001990 (IMAGE:1619191); AA578718 (IMAGE:953241); AA887975 (IMAGE:1160119); AI004282 (IMAGE:1626004); AI188040 (IMAGE:1738954); AI192033 (IMAGE:1738659); AI005113 (IMAGE:1626277); AW118908 (IMAGE:2605631); AI760754 (IMAGE:2398349); AA805770 (IMAGE:1186430); AA805757 (IMAGE:1186406); AW182071 (IMAGE:2662428); AA805773 (IMAGE:1186436); AI301191 (IMAGE:1897253); AA976455 (IMAGE:1589895); and N31710 (IMAGE:271292).

SUMMARY OF THE INVENTION

The invention provides methods, compositions and systems relating to presentlin enhancer proteins (pens), including methods for modulating (e.g. enhancing or inhibiting) and detecting presentlin-pen interactions. In a particular embodiment, the method provides for specifically detecting a stress that alters a functional interaction of a presentlin enhancer (pen) with upstream or downstream Notch or APP processing by: (i) introducing a predetermined stress into a system which provides a functional interaction of a pen with Notch or APP processing, whereby the system provides a stress-biased interaction of the pen with Notch or APP processing, wherein the absence of the stress, the system provides unbiased interaction of the pen with Notch or APP processing; and (ii) detecting the stress-biased interaction of the pen with Notch or APP processing, wherein a difference between the stress-biased and unbiased interactions indicates that the stress alters the interaction of the pen with Notch or APP processing.

The system may be a viable cell expressing the pen wherein the pen expression is determined to be non-natural or pathogenic, or an in vitro, cell-free mixture comprising a determined amount of the pen. A wide variety of embodiments are encompassed; for example, wherein the system is the viable cell, in situ or in vitro, and the stress is a

pharmacologically active agent or a deficiency in functional expression of the pen, such as by virtue of genomic disruption of otherwise endogenous alleles encoding the pen or coexpression of a polynucleotide comprising a sequence antisense of an endogenous allele encoding the pen. Alternatively, the system may be the in vitro, cell-free mixture and the stress is a pharmacologically active agent. The stress-biased interaction of the pen with Notch or APP processing may be detected by any convenient means or marker, such as detecting an indication of Alzheimer's disease, a transcriptional reporter of notch, generation of a downstream product such as $A\beta$ or a structural alteration in the pen, such as with a specific antibody.

5

10

15

20

25

30

The invention provides a variety of other methods and compositions relating to pen polypeptides having pen-specific structure and activity, related polynucleotides and modulators of pen function. The pen polypeptides may be recombinantly produced from transformed host cells from the subject pen polypeptide encoding nucleic acids or purified from natural sources such as mammalian cells. The invention provides isolated pen hybridization probes and primers capable of specifically hybridizing with natural pen genes, pen-specific binding agents such as specific antibodies, agonists and antagonists, and methods of making and using the subject compositions in diagnosis (e.g. genetic hybridization screens for pen transcripts), therapy (e.g. pen inhibitors to modulate $A\beta$ production) and in the biopharmaceutical industry (e.g. as immunogens, reagents for isolating natural pen genes and transcripts, reagents for screening chemical libraries for lead pharmacological agents, etc.). In a particular aspect, the pen methods and compositions relate to pen-1B polypeptides.

DETAILED DESCRIPTION OF THE INVENTION

The invention provides methods, compositions and systems relating to present enhancer proteins (pens), including methods for modulating (e.g. enhancing or inhibiting) and/or detecting an interaction between a pen and Notch or APP processing. In a particular embodiment, the method provides for specifically detecting a stress that alters a functional interaction of a presentilin enhancer (pen) with Notch or APP processing.

The pen is independently selected from a pen-1, pen-1B, pen-2 and Aph-2 polypeptide. These names are used generically to refer to polypeptides which comprise a

disclosed parental sequence, comprise specified fragments thereof, or have sequence similarity to a disclosed parental sequence, wherein the sequence similarity is at least 40%, preferably at least 60%, more preferably at least 80%, more preferably at least 90%, more preferably at least 95%, most preferably 100%, and specifically bind a specifically disclosed presentil or corresponding parental sequence pen-specific antibody, as measured in one or more of the disclosed interaction assays. The polypeptides comprise, and the similarity or identity extends over at least 10, preferably at least 15, more preferably at least 25, more preferably at least 35, more preferably at least 50 contiguous residues and most preferably over the entire polypeptide and/or parental pen sequence.

Table 1. Parental pen Polypeptides

Parental pen	Natural Source	SEQ ID NO	% identity to human
	·	,	parental pen by BLAST
pen-1	C. elegans	(SEQ ID NO:1)	28.7
	D. melanogaster	(SEQ ID NO:2)	45.4
	H. Virescens	(SEQ ID NO:3)	50
	mouse	(SEQ ID NO:4)	92.8
	human	(SEQ ID NO:5)	100
pen-1B	human	(SEQ ID NO:6)	51(identity to human
			parental pen-1)
pen-2	C. elegans	(SEQ ID NO:7)	42.6
	D. melanogaster	(SEQ ID NO:8)	60.4
	rat	(SEQ ID NO:9)	96
	mouse	(SEQ ID NO:10)	96
	cow	(SEQ ID NO:11)	95
	human	(SEQ ID NO:12)	100
Aph-2	C. elegans	(SEQ ID NO:13)	18.9
	D. melanogaster	(SEQ ID NO:14)	29.9
	human	(SEQ ID NO:15)	100

15

5

10

5

10

.15

20

25.

30

35

For disclosed polymeric genuses, "percent (%) sequence identity over a specified window size W" with respect to parental sequences is defined as the percentage of residues in any window of W residues in the candidate sequence that are identical with the residues in the parent sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity. The % identity values are generated by WU-BLAST-2.0 a19 obtained from Altschul et al., J. Mol. Biol., 215: 403-410(1990); http://blast.wustl.edu/blast/README.html. WU-BLAST-2.0a19 which uses several search parameters, all of which are set to the default values. The HSP S and HSP S2 parameters are dynamic values and are established by the program itself depending upon the composition of the particular sequence and composition of the particular database against which the sequence of interest is being searched; however, the values may be adjusted to increase sensitivity. Hence, a % sequence identity value is determined by the number of matching identical residues divided by the window size W for which the percent identity is reported. Exemplary species are readily generated by mutating the corresponding parental sequences and confirming presentlin or antibody binding. For example, pen-1B polypeptides defined by SEQ ID NOS:16-25 exemplify an active (demonstrating presenilin binding) 90% genus around parental sequence SEQ ID NO:6. In particular embodiments, the pen is a natural pen, such as human, mouse, D. melanogaster, H. virescens or C. elegans pen-1; human, rat, mouse, cow, D. melanogaster or C. elegans pen-2; human pen-1B, and human, D. melanogaster or C. elegans Aph-2. In a particular aspect, the pen is a naturally-occurring pen identifiable in a sel- 12Δ (Δ means deletion allele) homozygous C. elegans genetic mutation enhancer screen.

The interaction between the pen and Notch or APP processing may be detected in any convenient manner that specifically assays the pen influence on the processing pathway. The assay may be constructed to monitor a downstream perturbation in product generation (e.g. A β or Notch intracellular domain production), an intermediate pathway step (a number of intermediate Notch and APP processing pathway steps and intermediate component interactions are well documented in the art), or initiating pen - presentin or pen - γ -secretase binding.

A wide variety of systems may be used in the methods. Detailed below are animal systems stressed with mutant pen genes to provide sensitized Notch and/or APP processing pathways, which systems are used to characterize additional interacting proteins. In particular embodiments, the system comprises a cell or animal expressing both the pen and a binding target such as a presentilin or γ-secretase, an in vitro, cell-free mixture comprising a determined amount of the pen and a binding target; applications of such cells and mixtures include two-hybrid, biochemical pull-down, immunoprecipitation, fluorescent polarization and solid phase binding assays. In accordance with the diversity of applicable systems, a

wide variety of stresses may be assayed or evaluated, including chemical agents, such as candidate drugs, toxins, contaminants, etc.; radiation such as ultraviolet rays and x-rays; infection such as viral or bacterial infection including cellular transformation; genetic mutations, etc.

5

10

15

20

25

30

The particular method used to detect the interaction of the pen polypeptide and the presenilin will depend on the nature of the assay, so long as the interaction is specifically detected. For example, as detailed below, modulation of pen mutant specific phenotypes provide readouts for genetic interaction assays. For in vitro assays, depending on if and how the pen polypeptide and/or target are labeled, the interaction readout may be measured by changes in fluorescence, optical density, gel shifts, radiation, etc. In a particular embodiment, the system provides a downstream APP processing readout.

In a particular embodiment, the methods involve specifically detecting a stress that alters a physical interaction of a subject pen polypeptide with APP and/or Notch processing. In one aspect, this embodiment comprises the steps of (a) introducing a predetermined stress into a system which provides a physical interaction of a pen with a binding target, whereby the system provides a stress-biased interaction of the pen and the target, wherein the absence of the stress, the system provides an unbiased interaction of the pen polypeptide and the target; and (b) detecting the stress-biased interaction of the pen polypeptide and the target, wherein a difference between the stress-biased and unbiased interactions indicates that the stress alters the interaction of the pen polypeptide and the target, wherein preferred targets include γ -secretases, presenilins, notch and/or APP substrates, and/or combinations and complexes thereof.

In the latter embodiment, the presentilin is selected from a presentilin-1 (PS-1) and presentilin-2 (PS-2). These names are used generically to refer to polypeptides which comprise a disclosed parental sequence, comprises specified fragments thereof, or have sequence similarity to the disclosed parental presentilin sequences, wherein the sequence similarity is at least 50%, more preferably at least 70%, more preferably at least 80%, more preferably at least 90%, more preferably at least 95% and most preferably 100%, wherein the presentilin is sufficient to provide a presentilin-specific, detectable functional interaction comparable to that provided by the corresponding parental sequence presentilin, as measured in one or more of the disclosed genetic or biochemical interaction assays. The presentilins comprise, and the similarity or identity extends over at least 10, preferably at least 15, more preferably at least 25, more preferably at least 35, more preferably at least 50 contiguous residues and most preferably over the entire presentilin or parental sequence. The parental presentilin is selected from a natural sequence presentilin 1 (such as human, mouse, chicken

and xenopus sequences) and presenilin 2 (such as human, mouse and xenopus sequences), which are known in the art and accessible from public genetic depositories such as Genbank.

The compositions of the invention, useful in the subject methods, include the subject pen polypeptides and mixtures comprising predetermined amounts of a disclosed pen and presentilin polypeptides, particularly wherein one, preferably both of these components are isolated and mixtures consisting essentially of both components, i.e. wherein other components of the mixture (except for an assayed stress) do not significantly influence the interaction of these two components. Other aspects of the invention include nucleic acids encoding the disclosed pen polypeptides, antibodies which specifically bind them, and methods of use.

5

10

15

20 -

25

30

35

Subject polypeptides consisting of the disclosed parental sequences or fragments thereof are isolated, i.e. encompass pen polypeptides covalently joined to a non-natural or heterologous component, such as a non-natural amino acid or amino acid sequence or a natural amino acid or sequence other than that which the polypeptide is joined to in a natural protein, are preferably in solution, and preferably constitute at least about 0.5%, and more preferably at least about 5% by weight of the total polypeptide in a given sample and pure polypeptides constitute at least about 90%, and preferably at least about 99% by weight of the total polypeptide in a given sample, as are preferred subject polypeptides comprising other than parental sequence. The polypeptides may be covalently or noncovalently part of a larger complex, such as larger polypeptides and/or various conjugates, etc. The polypeptides may be synthesized, produced by recombinant technology, or purified from mammalian, preferably human cells. A wide variety of molecular and biochemical methods are available for biochemical synthesis, molecular expression and purification of the subject compositions, see e.g. Molecular Cloning, A Laboratory Manual (Sambrook, et al. Cold Spring Harbor Laboratory), Current Protocols in Molecular Biology (Eds. Ausubel, et al., Greene Publ. Assoc., Wiley-Interscience, NY) or that are otherwise known in the art.

The pen encompassing fragments comprise at least 10, preferably at least 15, more preferably at least 25, more preferably at least 35, most preferably at least 50 consecutive residues of a corresponding disclosed parental pen sequence. Pen polypeptides provide corresponding pen specific function, such as interacting with a component of a natural notch or APP processing pathway, especially presentlin binding or binding inhibitory activity as shown in one or more binding assays as described herein, and/or pen specific antibody binding or binding inhibitory activity, particularly as measured in a disclosed binding assay.

Pen-specific function may be determined by convenient in vitro, cell-based, or in vivo assays, e.g. binding assays. The term binding assay is used generically to encompass any assay, including in vitro, cell-cuture or animal-based assays (e.g. using gene therapy

techniques or with transgenics), etc. where the molecular interaction of a pen polypeptide with a specific binding target is evaluated. The binding target may be a natural intracellular binding target such as a presenilin, a pen regulating protein or other regulator that directly modulates pen activity or its localization; or non-natural binding target such as a specific immune protein such as an antibody, or a pen specific agent such as those identified in screening assays such as described below. Pen-binding specificity may be assayed by APP processing (e.g. ability of the subject polypeptides to function as negative effectors in penexpressing cells), by binding equilibrium constants (usually at least about $10^7 \, \mathrm{M}^{-1}$, preferably at least about $10^8 \, \mathrm{M}^{-1}$, more preferably at least about $10^9 \, \mathrm{M}^{-1}$), by immunogenicity (e.g. ability to elicit pen specific antibody in a heterologous host such as a mouse, rat, goat or rabbit), etc.

10

5

In a particular embodiment, the subject polypeptides provide pen-specific antigens and/or immunogens, especially when coupled to carrier proteins. For example, the subject polypeptides are covalently coupled to keyhole limpet antigen (KLH) and the conjugate is emulsified in Freunds complete adjuvant. Laboratory rabbits are immunized according to conventional protocol and bled. The presence of pen-specific antibodies is assayed by solid phase immunosorbant assays using immobilized corresponding pen polypeptides, see, e.g. Table 2.

15

Table 2. Immunogenic pen-1B polypeptides eliciting pen-1B-specific rabbit polyclonal antibody: pen-1B polypeptide-KLH conjugates immunized per protocol described above.

20

pen-1B	<u>Immuno-</u>	pen-1B	<u>Immuno-</u>
Polypeptide Sequence	genicity	Polypeptide Sequence	genicity
SEQ ID NO:6, res 1-14	+++	SEQ ID NO:6, res 115-126	+++
SEQ ID NO:6, res 6-15	+++	SEQ ID NO:6, res 130-140	+++
SEQ ID NO:6, res 10-20	+++	SEQ ID NO:6, res 139-151	4++
SEQ ID NO:6, res 25-46	1-+-	SEQ ID NO:6, res 166-182	1++
SEQ ID NO:6, res 62-71	}-}-	SEQ ID NO:6, res 184-198	1++
SEQ ID NO:6, res 67-76	+++	SEQ ID NO:6, res 214-232	+++
SEQ ID NO:6, res 72-95	+++	SEQ ID NO:6, res 246-257	111

30

25

The subject pen polypeptides also encompass minor deletion mutants, including N-, and/or C-terminal truncations, of the parental pen polypeptides. Such deletion mutants are readily screened for pen competitive or dominant negative activity. Exemplary active

deletion mutants for pen-1B include polypeptides comprising an amino acid sequence selected from the group consisting of: SEQ ID NO:6, residues 1-254; SEQ ID NO:6, residues 4-255; SEQ ID NO:6, residues 9-257; and SEQ ID NO:6, residues 2-255.

The invention provides binding agents specific to the claimed pen-1B polypeptides, including natural intracellular binding targets, etc., methods of identifying and making such agents, and their use in diagnosis, therapy and pharmaceutical development. For example, specific binding agents are useful in a variety of diagnostic and therapeutic applications, especially where disease or disease prognosis is associated with unoptimized utilization of a pathway involving pen, e.g. APP processing. Novel pen-specific binding agents include penspecific receptors, such as somatically recombined polypeptide receptors like specific antibodies or T-cell antigen receptors (see, e.g Harlow and Lane (1988) Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory) and other natural intracellular binding agents identified with assays such as one-, two- and three-hybrid screens, non-natural intracellular binding agents identified in screens of chemical libraries such as in vitro, cellbased and animal-based binding assays described herein, or otherwise known to those of skill in the art, etc. Agents of particular interest modulate pen function, e.g. pen-dependent Notch or APP processing, and include dominant negative deletion mutants, etc. Accordingly, the invention also provides methods for modulating APP processing in a cell comprising the step of modulating pen activity, e.g. by contacting the cell with a modulator of a resident pen, a dominant negative pen deletion mutant, or pen polynucleotide (below).

10

15

20

25

30

35

In addition to direct synthesis, the subject polypeptides can also be expressed in cell and cell-free systems (e.g. Jermutus L, et al., Curr Opin Biotechnol. 1998 Oct;9(5):534-48) from encoding polynucleotides, such as the corresponding parent polynucleotides or naturally-encoding polynucleotides isolated with degenerate oligonucleotide primers and probes generated from the subject polypeptide sequences ("GCG" software, Genetics Computer Group, Inc, Madison WI) or polynucleotides optimized for selected expression systems made by back-translating the subject polypeptides according to computer algorithms (e.g. Holler et al. (1993) Gene 136, 323-328; Martin et al. (1995) Gene 154, 150-166). Hence, the polypeptides may be synthesized, produced by recombinant technology, or purified from cells. A wide variety of molecular and biochemical methods are available for biochemical synthesis, molecular expression and purification of the subject compositions, see e.g. Molecular Cloning, A Laboratory Manual (Sambrook, et al. Cold Spring Harbor Laboratory), Current Protocols in Molecular Biology (Eds. Ausubel, et al., Greene Publ. Assoc., Wiley-Interscience, NY) or that are otherwise known in the art.

The invention provides polynucleotides encoding the disclosed polypeptides, and pengene specific polynucleotides, which polynucleotides may be joined to other components

such as labels or other polynucleotide sequences (i.e. they may be part of larger sequences) and are of synthetic/non-natural sequences and/or are isolated, i.e. unaccompanied by at least some of the material with which it is associated in its natural state, preferably constituting at least about 0.5%, preferably at least about 5% by weight of total nucleic acid present in a given fraction, and usually recombinant, meaning they comprise a non-natural sequence or a natural sequence joined to nucleotide(s) other than that which it is joined to on a natural chromosome. Recombinant polynucleotides comprising natural sequence contain such sequence at a terminus, immediately flanked by (i.e. contiguous with) a sequence other than that which it is joined to on a natural chromosome, or flanked by a native flanking region fewer than 10 kb, preferably fewer than 2 kb, more preferably fewer than 500 bases, most preferably fewer than 100 bases, which is at a terminus or is immediately flanked by a sequence other than that which it is joined to on a natural chromosome. While the polynucleotides are usually RNA or DNA, it is often advantageous to use polynucleotides comprising other bases or nucleotide analogs to provide modified stability, etc. Futhermore, the terms polynucleotide and nucleic acid are used interchangeably to refer to any polymer of nucleotides, without restriction by length.

5

10

15

20

25

30

35

The invention also encompasses pen, particularly pen-1B gene specific polynucleotides. For example, the nucleotide sequence of a natural human transcript encoding a natural human pen-1B polypeptide is shown as SEQ ID NO:26. The term pen-1B gene specific polynucleotides is used generically to refer to polynucleotides comprising SEQ ID NO:26, comprising specified fragments of SEQ ID NO:26, or having sequence similarity to SEQ ID NO:26. Subject fragments of SEQ ID NO:26, which are useful, e.g. as. hybridization probes and replication / amplification primers, comprise at least 12, preferably at least 24, more preferably at least 48, more preferably at least 96 and most preferably at least 182 contiguous nucleotides of SEQ ID NO:26.

Pen gene specific polynucleotides effect specific hybridization to the corresponding parental sequence or complement thereof; for example, all pen-1B gene specific polynucleotides effect specific hybridization to SEQ ID NO:26 or its complement. Demonstrating specific hybridization generally requires stringent conditions, for example, hybridizing in a buffer comprising 30% formamide in 5 x SSPE (0.18 M NaCl, 0.01 M NaPO₄, pH 7.7, 0.001 M EDTA) buffer at a temperature of 42°C and remaining bound when subject to washing at 42°C with 0.2 x SSPE; preferably hybridizing in a buffer comprising 50% formamide in 5 x SSPE buffer at a temperature of 42°C and remaining bound when subject to washing at 42°C with 0.2 x SSPE buffer at 42°C. Specifically hybridizing polynucleotides are readily identified in convenient gel-based assays; for example, polynucleotides comprising SEQ ID NOS:27-38 are shown to specifically hybridize with SEQ ID NO:26 under the foregoing preferred hybridization conditions.

Table 3. Exemplary pen-1B gene specific polynucleotides which hybridize with a strand of SEQ ID NO:26 under Conditions I and II.

	pen-1B gene specific	Specific	pen-1B gene specific	Specific	
1	polynucleotides	<u>Hybrids</u>	polynucleotides	<u>Hybrids</u>	
	SEQ ID NO:26, nucl 1-36	+	SEQ ID NO:27	+	
5	SEQ ID NO:26, nucl 32-68	+	SEQ ID NO:28	+	
٠	SEQ ID NO:26, nucl 65-97	+	SEQ ID NO:28	+	
	SEQ ID NO:26, nucl 103-140	+	SEQ ID NO:30	+	l I
	SEQ ID NO:26, nucl 131-154	+	SEQ ID NO:31	+	į
	SEQ ID NO:26, nucl 148-182	+	SEQ ID NO:32	+	
10.	SEQ ID NO:26, nucl 222-256	+	SEQ ID NO:33	+.	
	SEQ ID NO:26, nucl 258-286	 +	SEQ ID NO:34	+	
• ,	SEQ ID NO:26, nucl 273-305	+	SEQ ID NO:35	+	
	SEQ ID NO:26, nucl 318-352	+	SEQ ID NO:36	+	
:	SEQ ID NO:26, nucl 344-376	+	SEQ ID NO:37	+	
15	SEQ ID NO:26, nucl 352-386	+	SEQ ID NO:38	+	
	SEQ ID NO:26, nucl 388-424	+			
	SEQ ID NO:26, nucl 406-431	+			
•	SEQ ID NO:26, nucl 420-446	+			

20

25.

30

The subject nucleic acids find a wide variety of applications including use as translatable transcripts, hybridization probes, PCR primers, diagnostic nucleic acids, etc.; use in detecting the presence of other pen gene specific polynucleotides and gene transcripts and in detecting or amplifying nucleic acids encoding additional pen homologs and structural analogs. For example, pen-encoding polynucleotides may be used in pen-expression vectors, generally operably linked to a heterologous promoter, and/or incorporated into recombinant host cells, e.g. for expression and screening, transgenic animals, e.g. for functional studies such as the efficacy of candidate drugs for disease associated with pen-modulated cell function, etc. In diagnosis, pen hybridization probes find use in identifying wild-type and mutant pen alleles in clinical and laboratory samples. Mutant alleles are used to generate allele-specific probes for high-throughput clinical diagnoses, e.g. for pen mutations associated

14

•

with Alzheimer's disease. In therapy, therapeutic pen polynucleotides are used to modulate cellular expression or intracellular concentration or availability of active pen.

For example, pen polynucleotides are used to modulate cellular expression or intracellular concentration or availability of active pen protein. Pen inhibitory nucleic acids are typically antisense: single-stranded sequences comprising complements of the disclosed natural pen transcript sequence. Antisense modulation of the expression of a given pen polypeptide may employ antisense nucleic acids operably linked to gene regulatory sequences. Cells are transfected with a vector comprising a pen gene specific polynucleotide sequence with a promoter sequence oriented such that transcription of the gene yields an antisense transcript capable of binding to endogenous pen encoding mRNA. Alternatively, single-stranded antisense polynucleotides that bind to genomic DNA or mRNA encoding pen polypeptide may be administered to the target cell, in or temporarily isolated from a host, at a concentration that results in a substantial reduction in expression of the targeted protein. An enhancement in pen expression is effected by introducing into the targeted cell type pen polynucleotides that increase the functional expression of the corresponding gene products. Such polynucleotides may be pen expression vectors, vectors that upregulate the functional expression of an endogenous allele, or replacement vectors for targeted modification of endogenous mutant or wild type alleles. Techniques for introducing the nucleic acids into viable cells are known in the art and include retroviral-based transfection, viral coat protein-liposome mediated transfection, etc.

20

. 25

5

10

15

The invention provides efficient methods of identifying agents, compounds or lead compounds for agents active at the level of a pen modulatable cellular function and/or pen gene expression, including transcription. A wide variety of assays for transcriptional modulators or binding agents is provided including labeled *in vitro* ligand binding assays, immunoassays, etc. The methods are amenable to automated, cost-effective high throughput screening of chemical libraries for lead compounds. Identified reagents find use in the pharmaceutical industries for animal and human trials; for example, the reagents may be derivatized and rescreened in *in vitro* and *in vivo* assays to optimize activity and minimize toxicity for pharmaceutical development.

30

35

A wide variety of assays for binding agents, i.e. screens for compounds that modulate pen interaction with a natural pen binding target are also provided. These assays employ a mixture of components including a pen polypeptide, which may be part of a fusion product with another polypeptide, e.g. a peptide tag for detection or anchoring, etc. The assay mixtures comprise a natural intracellular pen binding target. In a particular embodiment, the binding target is presenilin, or portion thereof which provides binding affinity and avidity to the subject pen polypeptide conveniently measurable in the assay and preferably comparable

to the intact presenilin. The assay mixture also comprises a candidate pharmacological agent. Candidate agents encompass numerous chemical classes, though typically they are organic compounds; preferably small organic compounds and are obtained from a wide variety of sources including libraries of synthetic or natural compounds. A variety of other reagents may also be included in the mixture. These include reagents like salts, buffers, neutral proteins, e.g. albumin, detergents, protease inhibitors, nuclease inhibitors, antimicrobial agents, etc.

The resultant mixture is incubated under conditions whereby, but for the presence of the candidate pharmacological agent, the pen polypeptide specifically binds the cellular binding target, portion or analog with a reference binding affinity. The mixture components can be added in any order that provides for the requisite bindings, and incubations may be performed at any temperature which facilitates optimal binding. Incubation periods are likewise selected for optimal binding but also minimized to facilitate rapid, high-throughput screening.

After incubation, the agent-biased binding between the pen polypeptide and one or more binding targets is detected by any convenient way. A variety of methods may be used to detect the change depending on the nature of the product and other assay components, e.g. through optical or electron density, radiative emissions, nonradiative energy transfers, etc. or indirect detection with antibody conjugates, etc. A difference in the binding affinity of the pen-1B to the target in the absence of the agent as compared with the binding affinity in the presence of the agent indicates that the agent modulates the binding of the pen to the pen binding target. A difference, as used herein, is statistically significant and preferably represents at least a 50%, more preferably at least a 90% difference.

The following experimental section and examples are offered by way of illustration and not by way of limitation.

EXAMPLES, PROTOCOLS AND EXPERIMENTAL PROCEDURES

I. High-Throughput In Vitro Fluorescence Polarization Assay

Reagents:

10

15

20

25

30

pen peptide (size minimized, rhodamine-labeled; final conc. = 1 - 5 nM)

PS polypeptide (final conc. = 100 - 200 nM)

Buffer: 10 mM HEPES, 10 mM NaCl, 6 mM magnesium chloride, pH 7.6 Protocol:

1. Add 90 microliters of pen peptide/PS polypeptide mixture to each well of a 96-well microtiter plate.

- 2. Add 10 microliters of test compound per well.
- 3. Shake 5 min and within 5 minutes determine amount of fluorescence polarization by using a Fluorolite FPM-2 Fluorescence Polarization Microtiter System (Dynatech Laboratories, Inc).

II. Conformational Sensor - ELISA Format Assay

Buffer and Solution Preparation:

5

10

15

20

25

30

1. 10X Assay Buffer:

100mL of 1M Hepes

300mL of 5M NaCl

20mL of 1M MgCl

Add MQ H2O to 1L

2. Master Mix of peptide / protein

Protein: Glutathione-S-transferase/ γ-secretase polypeptide fusion protein:

final conc = 100 nM

pen peptide (size minimized, biotinylated; final conc. = 1 uM)

Add Assay Buffer and H2O to bring to final volume: final buffer conc = 1X

3. Antibody Mix:

anti-GST, rabbit (final conc. = 1:10,000)

anti-rabbit-HRP (final conc. = 1:10,000)

Add T-TBS to bring to final volume: final buffer conc = 1X

Procedure:

- 1. Make 50 mL of Master Mix (see 2 above) of appropriate peptide / protein combinations (use 50 mL polypropylene tubes). Incubate for 1 hr at RT
- 2. Add 95 uL of Master Mix to each well of a 96-well plate**
 - ** Reacti-Bind Streptavidin-Coated, White Polystyrene Plates (#15118B), which have been blocked by Super-Blocking Reagent from Pierce.
- 3. Transfer 5 uL of each test compound (stock = 60 uM) to each well of the plate
- 4. Incubate plate for 1hr at RT

- 5. While incubating, make rabbit anti-GST antibody and anti-rabbit-HRP Antibody Mix (see 3 above). Incubate on ice for 1 hr.
- 6. Wash plates 3X with H2O thoroughly
- 7. Add 100 uL of Antibody Mix into each well of the plate
- 8. Incubate for 1 hr at RT
- 9. Wash 3X with H2O
 - Dilute Supersignal substrate (mixed Luminol and peroxide) in 1:2 H2O and then add 100 uL into each well
 - 11. Shake 3-5 min. Read chemiluminescence.

10 III. <u>High-Throughput In Vitro Binding Assay.</u>

A. Reagents:

- Neutralite Avidin: 20 μg/ml in PBS.
- Blocking buffer: 5% BSA, 0.5% Tween 20 in PBS; 1 hour at room temperature.
- Assay Buffer: 100 mM KCl, 20 mM HEPES pH 7.6, 1 mM MgCl₂, 1% glycerol, 0.5% NP-40, 50 mM b-mercaptoethanol, 1 mg/ml BSA, cocktail of protease inhibitors.
 - ³³P pen peptide 10x stock: 10⁻⁸ 10⁻⁶M "cold" pen peptide supplemented with 200,000-250,000 cpm of labeled pen peptide (Beckman counter). Place in the 4°C microfridge during screening.
 - Protease inhibitor cocktail (1000X): 10 mg Trypsin Inhibitor (BMB # 109894), 10 mg Aprotinin (BMB # 236624), 25 mg Benzamidine (Sigma # B-6506), 25 mg Leupeptin (BMB # 1017128), 10 mg APMSF (BMB # 917575), and 2mM NaVO₃ (Sigma # S-6508) in 10 ml of PBS.
 - -Binding Polypeptide: 10^{-7} 10^{-5} M biotinylated PS polypeptide in PBS.
 - B. Preparation of assay plates:
 - Coat with 120 µl of stock N-Avidin per well overnight at 4°C.
 - Wash 2 times with 200 µl PBS.
 - Block with 150 µl of blocking buffer.
 - Wash 2 times with 200 µl PBS.
 - C. Assay:

20 -

25

30 - Add 40 μl assay buffer/well.

PCT/US01/14648

5

15

20

25

30

- Add 10 µl compound or extract.
- Add 10 μ l 33 P-pen peptide (20-25,000 cpm/0.1-10 pmoles/well =10-9- 10-7 M final conc).
 - Shake at 25°C for 15 minutes.
 - Incubate additional 45 minutes at 25°C.
 - Add 40 µM biotinylated PS polypeptide (0.1-10 pmoles/40 ul in assay buffer)
 - Incubate 1 hour at room temperature.
 - Stop the reaction by washing 4 times with 200 µM PBS.
 - Add 150 µM scintillation cocktail.
 - Count in Topcount.
- 10 D. Controls for all assays (located on each plate):
 - a. Non-specific binding
 - b. Soluble (non-biotinylated PS polypeptide) at 80% inhibition.

IV. Identification of presenilin enhancer genes: natural pen-1 and pen-2.

The partial redundancy of sel-12 and hop-1 means that, for most tissues, a deletion of one or the other gene will result in only a partial loss of presenilin function. Hence, a knock-out mutation in one or the other gene provides a sensitized background for genetic screens designed to identify presenilin interacting genes. Using this reasoning, we designed several variations of genetic screens aimed at identifying genes that act in concert with presenilins. One variation (Screen A) is to mutagenize worms homozygous for a sel-12 deletion mutation (hereinafter referred to as sel-12 Δ) and screen for enhancer mutations that, in combination with sel-12 Δ , produce phenotypes equivalent to those of the sel-12 Δ ; hop-1 Δ double mutant. Such enhancer mutations identify both 1) components that interact uniquely with hop-1 presenilin and 2) components that interact with both hop-1 and sel-12 presenilins. As an internal control, Screen A is expected to yield loss-of-function hop-1 alleles since the screen targets the phenotypes seen in the sel-12 Δ ; hop-1 Δ double mutant. Another variation is to mutagenize a hop-1 single mutant and again screen for enhancement to the phenotypes associated with a complete presenilin.

In addition to the desired mutations that enhance presentlin defects, these screens identify mutations in known components of the glp-1 signaling pathway (e.g., glp-1/Notch receptor, lag-2/DSL ligand, lag-2/Su(H) family effector) since loss of these gene products results in glp-1 like sterility. An important distinction between presentlin enhancers and

mutations in known glp-1 pathway genes is that former result in glp-1-like sterility only in a sel- 12Δ background whereas the latter result in glp-1 sterility in both a wild-type genetic background (Austin, J. and Kimble, J., Cell (1987) 51:589-599; Lambie, E. and Kimble, J., Development 1991) 112:231-240) and a sel-12Δ background.

We performed Screen A on a large scale, screening approximately 128,000 haploid genomes after mutagenesis of a sel- 12Δ homozygous strain with ethyl methane sulfonate. The screen resulted in the isolation of the expected types of mutants, including 27 putative glp-1 alleles, 3 mutations identified as likely lag-1 or lag-2 alleles based on map position, and 8 hop-1 mutations. As expected, the putative glp-1, lag-1, and lag-2 mutations result in glp-1-like sterility in both a wild type and a sel- 12Δ genetic background; these mutations therefore cause sterility independently of the presence or absence sel-12+ function. By contrast, the 8 hop-1 mutations result in a penetrant glp-1-like sterile phenotype in the absence, but not the presence, of sel-12+ activity.

In addition to the preceding, we isolated 7 mutants that, based on mapping and complementation tests, identify two new presenilin-interacting genes. Four of these mutants identify the gene pen-1 located on chromosome I and other three identify the gene pen-2 located on chromosome III. Our subsequent work with these genes indicated: 1) that the pen-1 and pen-2 enhancers alleles are loss-of-function mutations; 2) that loss of pen-1+ or pen-2+ function, in combination with a loss of sel-12+ function, has the same phenotypic consequences as a complete loss of presenilin function; 3) that loss of pen-1+ and pen-2+ function in a sel-12+ background results in phenotypes indicative of a partial loss of presenilin/Notch pathway function; 4) that pen-1 and pen-2 interact genetically with both sel-12 and hop-1; 5) that the open reading frames for pen-1 and pen-2 encode unrelated integral membrane proteins; 6) that pen-1 and pen-2 related genes are conserved across phyla.

Pen-1 and pen-2 mutations enhance sel-12Δ to the lin-12/glp-1-like phenotypes associated with total presentilin loss. As double mutants with a sel-12Δ mutation, pen-1 alleles and pen-2 alleles each result in a set of phenotypes identical with those seen in sel-12Δ; hop-1Δ worms that receive no maternal sel-12+ activity. Specifically, each of these double mutants with sel-12Δ share 3 common abnormalities that are not seen in sel-12Δ or hop-1Δ single mutants, or in pen-1 or pen-2 single mutants. First, all three sets of double mutants display indistinguishable glp-1-like sterile phenotypes characterized by germ cell proliferation defect similar to that described for glp-1 loss-of-function mutants (Austin and Kimble, 1987). Second, all three double mutants show a common cell fate specification defect(s) that indicates a loss of lin-12/Notch signaling. lin-12+ activity is required for the ventral uterine precursor versus anchor cell fate decision: lin-12(lf) mutants have 2 anchor cells rather than the normal complement of one because the cell that normally adopts the

ventral uterine precursor fate instead becomes an anchor cell (Greenwald, I. et al., Cell (1983) 34:435-444). The sel-12 Δ ; pen-1 and sel-12 Δ ; pen-2 double mutants display this "2 anchor cell" phenotype just as does the sel-1 Δ 2; hop-1 Δ double mutant (Westlund, B et al., Proc. Natl. Acad. Sci. (1999) 96: 2497-2502). Third, sel-12 Δ ; pen-1 and sel-12 Δ ; pen-2 double mutants, like sel-12 Δ ; hop-1 Δ , display an everted vulva phenotype that is reminiscent of vulva defects seen in lin-12(lf) mutants.

5

10

15

20

25

30

The above phenotypic comparisons demonstrate that a reduction in pen-1+ or pen-2+ activity, in combination with a loss of sel-12+ activity, results in a loss of presentiin pathway function comparable to the effects of eliminating the two redundant presentiins encoded by sel-12 and hop-1.

Single pen-1 and pen-2 mutations confer phenotypes associated with partial loss of presentiin function. As single mutants, pen-1 and pen-2 worms display two visible abnormalities. First, pen-1 and pen-2 homozygotes (produced from a pen-1/+ or pen-2/+ mother) both produce normal numbers of self-progeny embryos but these embryos are retained in the animal's uterus and never laid. pen-1 and pen-2 hermaphrodites are thus egg-laying defective (or Egl), a phenotype shared by the sel-12Δ single mutant.

Second, the embryos produced by homozygous pen-1 or pen-2 hermaphrodites never hatch but instead arrest in development with multiple abnormalities. The arrested embryos produced by pen-1 and pen-2 hermaphrodites show very similar abnormalities. Most strikingly, many of the arrested embryos make only a partial pharynx: the posterior pharnygeal lobe is present, but the anterior lobe is absent. Absence of anterior pharynx, called an Aph phenotype (for no anterior pharynx), was first described for certain weak alleles of glp-1. The GLP-1 receptor is required for a specific embryonic signaling event that induces formation of anterior pharynx (Mello, C. et al., Cell (1994) 77: 95-106; Moscovitz, I et al., Development (1994) 120:3325-3338; Hutter, H. and Schnabel, R., Development (1994) 120:2051-2064); absence of maternally provided glp-1+ activity can thus result in the Aph phenotype as well as other defects (Priess, J. et al., Cell (1987) 5:601-611). A connection of the Aph phenotype with reduced presenilin function comes from analysis of sel-12Δ; hop-1Δ hermaphrodites which receive maternal sel-12+ (which rescues the sterility seen in the absence of maternal sel-12+ function). In this situation, sel-12 Δ ; hop-1 Δ hermaphrodites produce arrested embryos which display the Aph phenotype, as well addition to other glp-1like embryonic defects (Westlund, B., supra). These properties of pen-1 and pen-2 indicate both genes act in concert with both sel-12 and hop-1 presenilins, since the loss of pen-1 or pen-2 causes phenotypes more severe than those cause by the sel-12 or hop-1 single mutant.

In addition to the Aph phenotype, embryos produced by homozygous pen-1 or pen-2 hermaphrodites display other abnormalities. The embryos usually arrest with little evidence of elongation and the embryonic hypodermis (layer of epidermal cells that lies under and secrets the cuticle) often fails to fully enclose other cell types. Similar phenotypes have been described for embryos produced by glp-1(ts) mutants.

٠5

In summary, pen-1 and pen-2 mutants share multiple phenotypes (Egl, Aph and defective embryonic elongation) that are indicative of cell signaling defects involving the Notch family receptors glp-1 and lin-12. In addition, in combination with sel-12Δ, pen-1 and pen-2 result in additional, stronger Notch pathway-related defects (glp-1-like sterility, 2 anchor cell phenotype; vulva eversion). The combined genetic and phenotypic evidence indicates that pen-1 and pen-2 are novel components that may assist presenilins in Notch receptor maturation and/or processing.

10

15

20

25

Pen-1 corresponds to the predicted C. elegans gene VF36H2L.1. To clone pen-1, we genetically mapped pen-1(ep140) to increasingly smaller intervals, first using visible genetic markers and then using molecular markers [Tc1 transposon insertions and single nucleotide polymorphisms (SNPs)]. The final stage of SNP mapping of pen-1 narrowed its position to a 52 KB interval on chromosome I. This interval, as documented in the C. elegans database ACEDB (Eeckman, F. and Durbin, R. C. elegans: Modern Biological Analysis of an Organism (1995) pp. 583-599), contains a total of 7 predicted genes. One of these, VF36H2L.1, was identified as pen-1 on the basis of RNA-mediated interference (RNAi) data and mutation detection. For many C. elegans genes, RNAi disrupts both maternal and zygotic gene activity (Tabara, H. et al. Science (1998) 282:430-431). In case of pen-1, disruption of maternal activity after injection of dsRNA into adult hermaphrodites was evidenced by the production of developmentally arrested embryos with an Aph phenotype. As expected, this phenotype was observed after RNAi of both wild-type and sel- 12A hermaphrodites. RNAi in either background also gave many viable escaper progeny that grew to adulthood. In the case of RNAi in a sel-12Δ background, a high proportion of these escapers displayed glp-1-like sterility, consistent with inhibition of zygotic pen-1 activity. Unexpectedly, RNAi of VF36H2L.1 in wild type also resulted in Glp sterile progeny, although at a much lower frequency than in with pen-1 RNAi in a sel-12Δ homozygotes. By contrast, glp-1-like sterility is never observed in pen-1 single mutants. This difference is most likely attributable to the property that RNAi typically disrupts both maternal and zygotic gene function, and can therefore result in more severe phenotypes than seen in zygotically lethal mutations.

30

By sequence analysis, we determined that the four pen-1 alleles isolated as sel-12 enhancers each contain single-nucleotide substitutions in the VF36H2L.1 open reading frame.

35

Remarkably, these 4 independently-derived lesions are each nonsense mutations in the same codon, Trp191. Three alleles (ep140, ep168, and ep170) are third base UGG to UGA alterations, while the fourth (ep216) is a second base UAG to UGG change. That these lesions result in Aph and glp-1 like sterility phenotypes similar to RNAi of VF36H2L.1, indicates that they are reduction-of- function mutations.

5

Pen-1 encodes an evolutionarily conserved protein with multiple transmembrane domains. The pen-1 (VF36H2L.1, GI#2815036) open reading frame is split among 4 exons that, when spliced, encode a 308 amino-acid protein. We confirmed the predicted splice junctions of exons 2 and 3 by sequence analysis of partial cDNA product. Pen-1 shows homology with the predicted structures of various human, mouse, and Drosophila proteins, as described in detail below. Pen-1 is a predicted integral membrane protein that, as determined by the structure predicting programs PSORT2 and TopPred2, may contain up to 7 membrane-spanning domains.

. '

15

20

25

10

Pen-2 corresponds to predicted C. elegans gene T28D6.9. We genetically mapped pen-2 to chromosome III between the cloned genes pha-1 and dpy-18. This interval spans approximately 240 KB of DNA and contains 31 predicted genes as documented in ACEDB ver. 9 (Eeckman, F. and Durbin, R., C. elegans: Modern Biological Analysis of an Organism (1995) pp. 583-599). pen-2 was identified as the predicted gene T28D6.9 on the basis of RNAi data and mutation detection. RNAi of most of the genes in the interval led to the identification of, T28D6.9, as the only candidate gene for which RNAi gave the expected maternal and zygotic pen-2 phenotypes. Wild type and sel- 12\Delta hermaphrodites injected with T28D6.9 produced a high proportion of developmentally-arrested embryos, many of which were Aph. In addition, RNAi of sel-12Δ (but not wild type) worms resulted in viable "escaper" progeny that displayed glp-1 like sterility. Mutation detection for the three pen-2 alleles isolated as sel-12 enhancers revealed that each contains a nonsense mutation in the T28D6.9 predicted open reading frame. Two lesions (ep219 and ep220) alter the Trp74 codon, changing it from UGG to UGA (ep219) or UAG (ep220), while the third lesion (ep221) changes Trp36 to a UGA stop codon. These nonsense alleles should strongly reduce or abolish gene function, indicating that enhancement of sel-12\Delta results from a loss of wild-type pen-2+ activity.

30

35

Pen-2 encodes a predicted multi-pass membrane protein. The pen-2 (T28D6.9, GI#3873415) open reading frame encodes a 101 amino acid protein. The predicted exon/intron structure of pen-2 has been confirmed by the sequence of an unpublished full-length cDNA (yk569h5 GI# 5572325 and 5558557) present in Genbank. Pen-2 shows a high level of homology with the predicted structures of various human, mouse, rat, and Drosophila proteins, as described in detail below. Pen-2 is a predicted integral membrane

protein that, as determined by the structure predicting programs PSORT2 and TopPred2, contains 2 likely transmembrane domains.

Based on several properties, including their own specific phenotypes and their interactions with sel-12, pen-1 and pen-2 likely encode products that interact with presenilins. By extension, other genes with properties in common with pen-1, pen-2, sel-12, or hop-1 can be considered as potential presenilin interacting genes. We have identified the aph-2 gene as a presenilin interacting gene based on 1) the specific phenotypes associated with a loss of aph-2+ function and 2) our identification of novel genetic interactions of aph-2 and with sel-12 and hop-1, and with pen-1 and pen-2.

5

10

15

20

25

30

The aph-2 gene was identified by C. Goutte et al. (1995 International Worm Meeting, abstract 39; 1998 East Coast Worm Meeting, abstract 151; Worm Breeder's Gazette 12(5):27 (1993); Worm Breeder Gazette 13(d):83 (1994)) as a possible component of glp-1 mediated signaling in C. elegans embryos. The aph-2 mutants characterized by these investigators have no reported zygotic phenotypes, but do have maternal embryonic defects, including an Aph phenotype, strikingly similar to glp-1(ts) embryonic defects. aph-2 reportedly corresponds to the predicted gene ZC434.6. The predicted aph-2 protein is a 721 amino acids in length and is characterized by a signal sequence and 1 to 3 transmembrane domains as predicted by PSORT2 (Nakai K., and Horton P., Trends Biochem Sci, 1999, 24:34-6) and TopPred2 (Claros MG, and von Heijne G. Comput Appl Biosci 1994 Dec;10(6):685-6).

The screen that identified pen-1 and pen-2 did not yield mutations in aph-2. In order to identify potential presenilin/ aph-2 interactions that may have been missed due to the high stringency of this screen, we investigated a variety of genetic backgrounds that are more highly sensitized for presenilin loss. For these experiments, due to the lack of an available aph-2 mutations, we used RNAi to reduce aph-2+ function in selected backgrounds. Injection of aph-2 dsRNA into the germ line of wild type hermaphrodites results in highly penetrant embryonic lethality among the progeny, with many of the arrested embryos displaying an Aph phenotype. However, injected hermaphrodites still produce a substantial fraction of viable progeny that grow to adulthood with no phenotypic abnormalities in somatic tissues. These worms can be considered "transient escapers" because many of them produce developmentally-arrested Aph embryos. We were thus able to inject adult hermaphrodites with aph-2 RNA and examine their transient escaper progeny for presenilin-dependent phenotypes. Table 4 summarizes the results of these experiments.

Table 4 Enhancement of presentilin and pen gene phenotypes by aph-2 RNAi (transgene escaper progeny phenotypes).

5

10

15

20

25

Genotypel	Zygotic Phenotypes	Zygotic phenotypes after
	(no aph-2 RNAi)	aph-2 RNAi 2
wild type	wild-type	wild-type
sel-12∆	Egg-laying defective	Egg-laying defective
sel-12Δ; hop-1(ep168)/+	Egg-laying defective	glp-1 like sterility (12%)
hop-1(ep171)3	Low penetrance glp-1 like sterility (<1%)	glp-1 like sterility (>50%)
pen-1(ep140)	Egg-laying defective	glp-1 like sterility (>50%)
pen-2(ep220)	Egg-laying defective	glp-1 like sterility (>50%

1 Complete genotypes of XX hermaphrodites were as follows: Row 1: N2 (wild-type). Row 2:

sel-12(ep6). Row 3: sel-12(ep6); hop-1(ep168) unc-74(x19)/ hT2 [hop-1+ unc-74+]. Row 4: hop-1(ep171) unc-74(x19). Row 5: unc-29(e1072) pen-1(ep140) Row 6: pen-2(ep220) dpy-18(e364).

2 Hermaphrodites from homozygous or heterozygous stocks were injected with aph-2 dsRNA.

All genotypes segregated developmentally-arrested Aph-2 embryos, as well as some viable escaper progeny. For genotypes where aph-2(RNAi) resulted in a zygotic Glp-1-like sterility among the escaper progeny, the approximate fraction of Glp sterile worms is indicated.

Aph-2 RNAi in a homozygous sel-12 Δ background does not obviously enhance sel-12 to more severe presentlin phenotypes. However, significant enhancement is detected in homozygous sel-12 Δ worms that are also heterozygous for a hop-1 nonsense mutant (hop-1(ep168)/+). With aph-2 RNAi, about 12% of sel-12 Δ ; hop-1(ep168)/+ animals display glp-1-like sterility, something never seen for this genotype in the absence of aph-2 RNAi. Further, the aph-2 RNAi enhancement is dependent on combined reduction in both presentlins as no interaction is seen with the sel-12 Δ .

An additional interaction with aph-2 is observed with an unusual hop-1 allele, ep171. This allele carries a D to N missense alteration in an conserved aspartate residue that

corresponds to the Asp385 residue (located in TM domain 8) of human PS1. A PS1 Asp285Ala mutation results in loss of PS1 function, and also has dominant negative effects on PS1+ expression (Wolfe, M. Nature (1999) 398: 513-517) Like the PS1 D385A alteration, hop-1(ep171) has no wild type presenilin activity: the sel-12Δ; hop-1(ep171) double mutant has a glp-1-like sterility defect similar to sel-12Δ; hop-1Δ. In a sel-12+ background, hop-1(ep171) results in a very low penetrance (<1%) glp-1-like sterility phenotype, which suggests it must have dominant negative effects on sel-12 presentilin function or expression. We found that RNAi of aph-2 in homozygous hop-1(ep171) hermaphrodites results in highly penetrant glp-1-like sterility (>50% of viable progeny), indicating a strong additive interaction between reduced aph-2+ function and the hop-1(ep171) dominant effects.

Finally, we also observed that aph-2 RNAi strongly enhances pen-1 and pen-2 mutant phenotypes. Homozygous adult pen-1 and pen-2 hermaphrodites segregating from heterozygous stocks have a normal-appearing germline and never exhibit glp-1-like sterility. In contrast, the corresponding pen-1; aph-2(RNAi) and pen-2; aph-2(RNAi) hermaphrodites display glp-1-like sterility at high penetrance (>50% of viable pen-1 or pen-2 homozygous progeny). These observations demonstrate that a variety genetic backgrounds with partially reduce presentilin pathway activity can be enhanced to stronger phenotypes by an RNAi-mediated reduction in aph-2 activity. The data demonstrate a functional interaction of aph-2 with presentilins and pen-1 and pen-2.

Structure of APH-2 and APH-2 related human and fly proteins. APH-2 contains a PSORT2 predicted cleavable signal sequence and 1 to 3 transmembrane domains predicted by PSORT2 and TopPred2. APH-2 is 18% identical in amino acid sequence to the predicted human protein encoded by the nearly full-length cDNA KIAA0253 (Nagase, T. et al. DNA research (1996) 3: 321-329). In addition, APH-2 shows a similar level of identity to a Drosophila protein predicted from contigged ESTs generated at Exelixis, Inc. The human and Drosophila APH-2 related proteins are 30% identical and Clustal alignments of the 3 proteins show conservation over entire length of each protein.

Methods: RNA mediated interference (RNAi). RNAi of specific genes was generally done using dsRNA prepared from templates of PCR-amplified genomic DNA fragments. The 5' end of the PCR primers contained the promoter sequences for T7 RNA polymerease and the 3' regions were designed such that they amplified one or more exons of the targeted gene. PCR reactions, employing 5mmole of each primer, and 0.5 mg of wild-type genomic in a 50ml reaction, were done using the Expand kit (Roche Biochemicals, Summerville, NJ), according to the manufacture's protocols. The PCR conditions were as follows: an initial denaturation at 95 C for 30sec, followed by 35 cycles of 94 C for 30sec, 55 C for 15 sec, 72 C for 1min, and a final extension at 72 C for 3min. Amplified DNA was ethanol precipitated

and resuspended in 20ml of RNAse-free water. A portion of the PCR product was used as template for a T7 polymerase-directed in vitro transcription reaction according to the manufacturer's instructions (Promega, Inc). Reactions were precipitated with ethanol and RNA was resuspended in 20 ml of RNAse-free water and 10 ml 3X IM buffer (20mM KPO4 pH7.5, 3mM K+Citrate pH 7.5, 2% PEG 6000). The complementary sense- and anti- sense RNAs were annealed by incubation at 68 C for 10 minutes, followed by incubation 37 C for 30 minutes, and then centrifuged through a 0.45 um cellulose acetate filter. Microinjection of RNA was done as described (Fire et al., Development (1991) 113:503-514) using hermaphrodites at the L4 or young adult stage. Injected worms were recovered in M9 buffer (per liter: 30g Na2HPO4, 15g KH2PO4, 2.5g NaCl, 5g NH4Cl) for 10-30 minutes, transferred to individual plates, and then transferred to new plates daily. The first generation self-progeny of injected hermaphrodites were inspected for RNAi induced phenotypes by observation in the dissecting microscope or in the compound microscope equipped with Nomarski differential interference optics.

C. elegans strains used. Methods for handling and culturing C. elegans have been described (Brenner, S. Genetics (1974) 77: 71-94). C. elegans variation. Bristol strain N2 represents wild type and is largely isogenic with most of the mutant strains used here. Specific mutations used for genetic mapping and characterization included: LG I - unc-74(x19), dpy-5(e61), unc-29(e1072), fog-3(q443), dpy-24(s71). LG III - dpy-19(e1259ts), unc-119(e2498), pha-1(e2123), dpy-18(n499 or e364). LG IV - him-8(e1489). LG X lon-2(e678). Rearrangements: mnDp66 (X; I). All are described in C. elegans II. Deletion mutations that remove most or part of the of sel-12 or hop-1 coding region are described below. Because the sel-12 gene is sex-linked and sel-12 mutants are mating defective, the transfer of sel-12Δ between strains was usually accomplished using males that carry the chromosomal duplication mnDp66 (X; I) which carries a complementing sel-12+ allele.

SNP Screening by DHPLC: Candidate SNPs were amplified separately from CB4856 and N2 genomic DNA. The PCR products were mixed, denatured and reannealed to create heterozygote molecules for screening by Denaturing HPLC (DHPLC). Each SNP was screened at 5 different temperatures using the same separation gradient. A SNP was deemed authentic when a heteroduplex was detected in the heterozygous state but not in the homozygous starting strains. The appropriate temperature for each SNP was noted and used for screening that SNP on recombinant worms.

SNP Scoring on recombinant worms: Lysates from appropriate recombinants were used as genomic DNA templates for amplifying the SNPs by PCR. These crude PCR products were then run on DHPLC using the appropriate temperatures for each SNP identified above.

For each recombinant, each SNP was typed and the data input into a spreadsheet at random. The physical order of the SNPs was then determined from AceDB. This generated a haplotype for each recombinant, and the locations at which recombination events occurred was noted.

Isolation and characterization of sel-12 and hop-1 deletion mutant strains. Deletion alleles of sel-12 and hop-1 were obtained by the two-step method of Plasterk (Plasterk, R. C. elegans: Modern Biological Analysis of an Organism (1995) pp. 59-80) using mut-2 as a source of Tc1 transposon mutator activity. sel-12(ep6) (hereinafter referred to as sel-12Δ) is a deletion mutation that removes amino acids 34 to 441 of the sel-12 open reading frame. hop-1(ep90) (hereinafter referred to as hop-1) is a 722 bp deletion that starts at amino acid 216 in the hop-1 open reading frame and terminates within the gene's 3' untranslated region. The sel-12Δ and hop-1Δ single mutants were backcrossed at least 10 times to wild-type (C. elegans variation. bristol strain N2, supra) before phenotypic characterization and construction of double mutants. The sel-12Δ single mutant has an egg-laying defective phenotype similar to that of previously-described sel-12(lf) mutants (Levitan, D. and Greenwald, I. Nature (1995) 377:351-354). The hop-1Δ mutant has no gross phenotypic abnormalities, similarly to hop-1 deletion alleles described by others (Westlund, B. et al. Proc. Natl. Acad. Sci (1999) 96: 2497-2502).

10)

.15

20

25

30

35

To provide a source of sel-12 Δ ; hop-1 Δ double mutants that lack maternal sel-12+ activity, we constructed a balanced sel-12 Δ /sel-12 Δ ; hop-1 Δ +/+ unc-74 strain. This strain segregates doubly mutant sel-12 Δ ; hop-1 Δ hermaphrodites that exhibit a completely penetrant sterile phenotype with germline proliferation defects characteristic of glp-1(lf) mutants (Austin, J. and Kimble, J., Cell (1987) 51:589-599). In addition, these worms have a fully penetrant 2 anchor cell phenotype and an everted vulva phenotype that is reminiscent of vulval defects caused by lin-12(lf) mutations.

Isolation of enhancers of sel-12Δ. Enhancer alleles of pen-1 and pen-2 were obtained after mutagenesis of a homozygous sel-12Δ strain or, in later experiments, a sel-12Δ; unc-74(x19) strain (the unc-74 mutation lies near hop-1 on chromosome I and was included to provide a built-in mapping resource). XX hermaphrodites of either genotype were mutagenized with ethyl methane sulfonate as described (Brenner, S. Genetics (1974) 77: 71-94). In the F1 generation, one (or sometimes two) hermaphrodites were picked onto individual growth plates (approximately 55,000 plates total). Three to five days later, the plates were screened for the appearance of sterile F2 progeny with a "dark" appearance indicative of a defect in germline proliferation. Candidate sterile mutants were then screened by Nomarski difference interference microscopy to identify those which exhibit glp-1 like sterility similar to sel-12Δ; hop-1Δ worms.

A set of 44 candidates identified in this way were subjected to a cross scheme designed to determine whether or not the sterile phenotype in these mutants was dependent on the worm's sel-12 genotype as would be expected for a sel-12 enhancer. For this test, each candidate was crossed to dpy-19 III; him-8; lon-2 males and the resulting cross-progeny were picked onto individual plates. In the following generation, the presence of sterile lon-2/lon-2 progeny (which are sel-12+/sel-12+ in the absence of recombination) indicate that sterile phenotype was not dependent on a loss of sel- 12+ activity and was possibly due to a mutation in one of the known glp-1 pathway genes (glp-1, lag-1, lag-2). 29 candidates analyzed in this way were sel-12 independent and thus were rejected as possible presenilin enhancers. For 26 of the 29 rejected candidates, the mutation causing sterility segregated in trans to dpy-19, which is the expected behavior for a glp-1 allele. 9 of these LG III mutations failed to complement the sterile phenotype of known glp-1 alleles; the other 17 LG III mutations were not tested.

For the remaining 15 candidates, the Glp sterile phenotype did not reappear in the F2 generation, a result consistent with the presence of an enhancer mutation whose interaction with sel- 12 is rescued by maternal sel-12+ activity. This explanation was tested by picking sel-12/sel-12 worms in the F2 generation onto individual plates and examining their progeny for reappearance of glp-1-like sterility in the next generation. This was the result observed for each of the remaining 15 candidates. A combination of complementation tests, meiotic mapping, and sequence analysis of mutant alleles demonstrated that the each candidates carried a mutation in either hop-1 (8 candidates) or in either of two newly-identified genes, pen-1 (4 candidates) or pen-2 (3 candidates).

Pen-1 mapping, characterization, cloning, and computational analysis: Genetic mapping of pen-1 was done in sel-12Δ backgrounds and was based on the glp-1-like sterility phenotype of doubly mutant pen-1; sel-12Δ worms. We initially mapped pen-1(ep140) to chromosome I between unc-29 and dpy-24. Further mapping with visible markers narrowed the position to between unc-29 and fog-3, a 1.1 MB interval. From heterozygotes of the genotype pen-1/ unc-29 fog-3 trans-heterozygotes, 16/20 Unc-29 non-Fog-3 recombinants and 1/4 Fog-3 non-Unc-29 recombinants segregated pen-1.

Finer mapping was done using SNP markers that are polymorphic between the N2 Bristol strain from which pen-1 mutants were derived and strain CB4856 Hawaiian strain of C.elegans. The Genome Sequencing Center (St. Louis, MO) has identified an large number of potential SNPs in CB4856 (http://genome.wustl.edu/gsc/CEpolymorph/snp.shtml). Four of these potential SNPs in the unc- 29 to fog-3 interval were confirmed by testing with an SNP genotyping assay that is based on separation of heteroduplex PCR products by denaturing HPLC (Underhill PA, et al., Genome Res. 1997 Oct;7(10):996-1005). Initial

mapping against these SNPs was done by constructing heterozygotes of the genotypes unc-29 pen-1/ CB4856 or pen-1 dpy-24/CB4956 and picking Unc-29 non-Pen-1 or Dpy-24 non-Pen-1 recombinants. Additional non-Pen-1 recombinants were isolated from unc-29 pen-1 fog-3/ CB4856 heterozygotes. Among 50 Unc-29 non-Pen-1 recombinants, 9 had cross-overs occurring to the right of the C31H5 SNP, placing pen-1 to the right of this marker. Among a combined set of 45 Dpy-24 non-Pen-1 or Fog-3 non-Pen-1 recombinants, 4 had cross-overs to the left of the F14B4 SNP, placing pen-1 left of this marker. The combined data positioned pen-1 to the ~240 KB interval between the C31H5 and F14B4 SNPs.

5

10

15

20

25

30 -

35

For mapping pen-1 to smaller intervals, additional SNPs lying in the C45G3 to F14B4 interval were identified by DNA sequencing. Six approximately 2 KB segments of DNA in the interval were amplified by PCR of N2 and CB4856 genomic DNA and end sequenced. In some cases, additional sequencing primers were used to generate internal sequence. SNPs between N2 and CB4856 were identified by sequence alignment and ~200 bp PCR products were designed around each high quality candidate. These 200 bp products were screened and scored by DHPLC as described above. This analysis positioned pen-1 between 2 SNPs, one on cosmid C45G3 and the other on cosmid F36H2, that lie approximately 52 KB from one another.

Mutation detection. Two single nucleotide polymorphisms (SNPs), labeled C45G3A and F36H2A, defined a 52kb genomic interval, pen-1, within which seven predicted candidate genes resided. A 30kb gene-rich section of this 52kb interval was resequenced in 3 worms whose mutation had been mapped genetically to this region, ep140, ep169, and ep170. All DNA sequencing reactions were performed using standard protocols for the BigDye sequencing reagents (Applied Biosystems, Inc. Foster City, CA) and products were analyzed using ABI 377 DNA sequencers.

Trace data obtained from the ABI 377 DNA sequencers was analyzed and assembled into contigs using the Phred-Phrap programs (Gordon, Genome Res. (1998) 8:195-202). The resequence data was then compared to the wildtype strain, N2, for polymorphism. This analysis identified a third position base change, G to an A, at 191AA in the VF36H2L.1 gene (GI# 2815036) in three pen-1 alleles, ep140, ep169 and ep170, resulting in an amino acid change from a tryptophan (W) to stop (*). Further sequencing analysis of unmapped mutants revealed another mutation in worm ep216 within the same codon, but in the second position, also a G to an A, resulting in the same amino acid change. Analysis of human pen-1 led us to identify the novel pen-1B protein.

Pen-2 mapping, characterization, cloning, and computational analysis. We initially positioned pen-2(ep220) to the left of unc-25 on chromosome III. From hermaphrodites of

the genotype pen-2/ dpy-18 unc-25, 4/4 non-Dpy-18 Unc-25 recombinants segregated pen-2 and 0/21 Dpy-18 non-Unc-25 recombinants segregated pen-2. Of 70 dpy-18 unc- 25 homozygotes picked from the same heterozygous hermaphrodites, only 2 segregated pen-2, indicating that pen-2 lies relatively close to dpy-18 and probably to the left of this gene. Further mapping positioned pen-1 between pha-1 and dpy-18: from pen-1/ pha-1 dpy-19; sel-12\Delta hermaphrodites, 1/14 non-Pha-1 Dpy-1 recombinants picked up pen-2. These data positioned pen-2 between pha-1 and dpy-18 interval, an approximately 240 KB interval, and suggested pen-2 lies close to dpy-18.

Identification of pen-2 as predicted gene T28D6.9: We determined that pen-2 is the predicted gene T28D6.9 (GI#3873415) based on 1) RNAi of predicted genes in the pha-1 to dpy- 18 interval and 2) mutation detection. For 28 of the 31 genes in the interval, primers tailed with T7 promoter sequence were used to amplify selected coding region using either a first-strand cDNA pool or genomic DNA as template as described above. Double-stranded RNA was synthesized from each PCR product and injected into sel-12 Δ homozygotes. RNAi of T28D6.9 produced the expected pen-2 phenotypes among the progeny of injected worms, including glp-1- like sterility in sel-12Δ worms and an Aph embryonic arrest phenotype after injection into N2 and sel-12 worms. Mutation detection of the T28D6.9 open reading frame identified nonsense mutations in each of three pen-2 alleles (ep219, ep220, ep221). Briefly, The single mutant in this group, ep220, was tested by sequencing a PCR product amplified in an ep220 lysate and wild-type strain. This analysis identified a G to A mutation at 74AA that resulted in a tryptophan (W) to stop (*). Additional sequencing analysis of unmapped mutants revealed that there were 2 more mutants in this group. The ep219 worm had a G to A change in the third position of 74AA that produced a W to a *. The ep221 worm had a G to A change in another W that also resulted in a stop codon at 36AA. These three changes all effect highly conserved trytophans that could significantly alter or ablate the function of the T28D6.9 gene.

25

30

35

5

10

15

20

V. Cell-based reporter assays.

We developed a cell culture gamma secretase assay based on a reporter construct carrying the C-terminal 99 amino acids of APP fused to a Gal4VP16 transcriptional activator protein. The Gal4 moiety is retained at the cell surface by the APP transmembrane domain until presentilin-dependent cleavage releases it to translocate to the nucleus and activate transcription of a UAS-luciferase reporter transgene. In assay validation experiments, a known gamma secretase inhibitor completely blocked reporter gene activity, and known dominant negative presentilin mutations also inhibited the reporter activity. A conceptually similar assay has been shown previously to work in Drosophila in vivo using a UAS-beta-galactosidase transgene reporter. Beta-galactosidase reporter gene activity, and hence

gamma-secretase-like protease activity have been shown to be absolutely dependent on the presence of presenilin in this in vivo assay.

5

10

15

20

25

Our data show that inhibition of pen-1, pen-2, aph-2 or presenilin results in a strong reduction of steady state presenilin protein levels, and a correlated reduction of gammasecretase activity. The effects of pen-1 or aph-2 inhibition is equally strong, and pen-2 nearly as strong, with respect to both reduction of gamma secretase activity and presenilin protein reduction as is presentilin inhibition itself. Presentlin reduction is verified in multiple cellbased systems, including Drosophila and human cell systems, using several inhibitors, including RNAi, heterocyclic compounds identified in the disclosed screens, and intrabodies. These data provide assays for a functional interaction of the pen genes and presenilin. Hence, the invention provides a method for specifically detecting a stress that alters a functional interaction of a presentlin enhancer (pen) polypeptide with a presentlin by introducing a predetermined stress into a system which provides a functional interaction of a pen polypeptide with a presenilin, whereby the system provides a stress-biased interaction of the pen polypeptide with the presenilin, wherein the absence of the stress, the system provides an unbiased interaction of the pen polypeptide with the presenilin; and detecting the stressbiased interaction of the pen polypeptide with the presenilin as a change in an amount of presenilin in the system, wherein the amount may be expressed as an amount of presenilin N or C-terminal fragments (NTFs), presenilin holoprotein, or a ratio thereof, wherein a difference between the stress-biased and unbiased interactions indicates that the stress alters the interaction of the pen polypeptide with the presenilin.

All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference. Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.

WHAT IS CLAIMED IS:

10

15

20

25

30 -

1. A method for specifically detecting a stress that alters a functional interaction of a presentilin enhancer (pen) polypeptide with Notch or APP processing, the method comprising steps:

introducing a predetermined stress into a system which provides a functional interaction of a pen polypeptide with Notch or APP processing, whereby the system provides a stress-biased interaction of the pen polypeptide with Notch or APP processing, wherein the absence of the stress, the system provides unbiased interaction of the pen polypeptide with Notch or APP processing; and

detecting the stress-biased interaction of the pen polypeptide with Notch or APP processing, wherein a difference between the stress-biased and unbiased interactions indicates that the stress alters the interaction of the pen polypeptide with Notch or APP processing;

wherein the system is selected from the group consisting of: (i) a viable cell expressing the pen polypeptide wherein the pen polypeptide expression is determined to be non-natural or pathogenic, and (ii) an in vitro, cell-free mixture comprising a determined amount of the pen polypeptide,

wherein the pen polypeptide has sequence similarity to a pen polypeptide selected from the group consisting of: human, rat, mouse, D. melanogaster and C. elegans pen-2; human, mouse, D. melanogaster and C. elegans pen-1; and human pen-1B, wherein the similarity is at least 20% identity.

2. A method for specifically detecting a stress that alters a functional interaction of an enhancer of presentiin (pen) polypeptide with APP processing, the method comprising steps:

introducing a predetermined stress into a system which provides a functional interaction of a pen polypeptide with APP processing, whereby the system provides a stress-biased interaction of the pen polypeptide with APP processing, wherein the absence of the stress, the system provides unbiased interaction of the pen polypeptide with APP processing; and

detecting the stress-biased interaction of the pen polypeptide with APP processing, wherein a difference between the stress-biased and unbiased interactions indicates that the stress alters the interaction of the pen polypeptide with APP processing;

wherein the system is selected from the group consisting of: (i) a viable cell expressing the pen polypeptide wherein the pen polypeptide expression is determined to be

non-natural or pathogenic, and (ii) an in vitro, cell-free mixture comprising a determined amount of the pen polypeptide,

wherein the pen polypeptide has sequence similarity to a pen polypeptide selected from the group consisting of: human, rat, mouse, D. melanogaster or C. elegans pen-2; human, mouse, D. melanogaster or C. elegans pen-1; human pen-1B; and human, D. melanogaster or C. elegans Aph-2, wherein the similarity is at least 20% identity.

3. A method for specifically detecting a stress that alters a functional interaction of a presentilin enhancer (pen) polypeptide with a presentilin, the method comprising steps:

5

10

15

20

25

30

introducing a predetermined stress into a system which provides a functional interaction of a pen polypeptide with a presenilin, whereby the system provides a stress-biased interaction of the pen polypeptide with the presenilin, wherein the absence of the stress, the system provides an unbiased interaction of the pen polypeptide with the presenilin; and

detecting the stress-biased interaction of the pen polypeptide with the presenilin as a change in an amount of presenilin in the system, wherein the amount may be expressed as an amount of presenilin N or C-terminal fragments (NTFs), presenilin holoprotein, or a ratio thereof, wherein a difference between the stress-biased and unbiased interactions indicates that the stress alters the interaction of the pen polypeptide with the presenilin;

wherein the system is selected from the group consisting of: (i) a viable cell expressing the pen polypeptide wherein the pen polypeptide expression is determined to be non-natural or pathogenic, and (ii) an in vitro, cell-free mixture comprising a determined amount of the pen polypeptide,

wherein the pen polypeptide has sequence similarity to a pen polypeptide selected from the group consisting of: human, rat, mouse, D. melanogaster and C. elegans pen-2; human, mouse, D. melanogaster and C. elegans pen-1; and human pen-1B, wherein the similarity is at least 20% identity.

- 4. A method according to claim 1, 2 or 3, wherein the pen polypeptide is selected from the group consisting of: human, rat, mouse, D. melanogaster and C. elegans pen-2.
- 5. A method according to claim 1, 2 or 3, wherein the pen polypeptide is selected from the group consisting of: human, mouse, D. melanogaster and C. elegans pen-1.

6. A method according to claim 1, 2 or 3, wherein the pen polypeptide is human pen-1B.

7. A method according to claim 1, 2 or 3, wherein said the pen polypeptide is a naturally-occurring pen polypeptide identifiable in a sel- 12Δ (delta) homozygous C. elegans genetic mutation enhancer screen.

8. A method according to claim 1, 2, 3, 4, 5, 6 or 7, wherein the identity is at least 50%.

9. A method according to claim 1, 2, 3, 4, 5, 6 or 7, wherein the identity is 100%.

5

15

25

30

- 10. A method according to claim 1, 4, 5, 6, 7, 8 or 9, wherein the functional interaction comprises binding of the pen polypeptide with a component of Notch or APP processing.
 - 11. A method according to claim 1, 4, 5, 6, 7, 8 or 9, wherein the functional interaction comprises binding of the pen polypeptide with a component of Notch or APP processing and the component is a presentilin or γ-secretase.
 - 12. A method according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or 11 wherein the system is the viable cell and the stress is a pharmacologically active agent.
- 20 13. A method according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or 11 wherein the system is the viable cell and the stress is a deficiency in functional expression of the pen polypeptide.
 - 14. A method according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or 11 wherein the system is the viable cell and the stress is a deficiency in functional expression of the pen polypeptide by virtue of genomic disruption of otherwise endogenous alleles encoding the pen polypeptide.
 - 15. A method according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or 11 wherein the system is the viable cell and the stress is a deficiency in functional expression of the pen polypeptide by virtue of coexpression of a polynucleotide comprising a sequence antisense of an endogenous allele encoding the pen polypeptide.

16. A method according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or 11, wherein the system is the viable cell and the cell is in situ (resident in an animal host).

- 17. A method according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or 11, wherein the system is the viable cell and the cell is in vitro (isolated from an animal host).
- 18. A method according to claim 1, 2, 4, 5, 6, 7, 8, 9, 10, or 11, wherein the system is the in vitro, cell-free mixture and the stress is a pharmacologically active agent.
- 19. A method according to claim 1, 2, 4, 5, 6, 7, 8, 9, 10, or 11, wherein the detecting step detects an indication of Alzheimer's disease.
 - 20. A method according to claim 1, 2, 4, 5, 6, 7, 8, 9, 10, or 11, wherein the detecting step detects a transcriptional reporter of notch.
- 21. A method according to claim 1, 2, 4, 5, 6, 7, 8, 9, 10, or 11, wherein the detecting step detects the generation of Aβ(beta).
 - 22. A method according to claim 1, 2, 4, 5, 6, 7, 8, 9, 10, or 11, wherein the detecting step detects the generation of $A\beta$ (beta) using an $A\beta$ -specific antibody.
 - 23. A method according to claim 1, 2, 4, 5, 6, 7, 8, 9, 10, or 11, wherein the detecting step detects a structural alteration in the pen polypeptide.
- 24. A method according to claim 1, 2, 4, 5, 6, 7, 8, 9, 10, or 11, wherein the detecting step detects a structural alteration in the pen polypeptide using a pen polypeptide-specific antibody.
 - 25. A method according to claim 3, wherein the change in amount of detectable presentilin is detected by presentilin-specific antibodies.

20

5

5

15

- 26. A method according to claim 1, 2, 4, 5, 6, 7, 8, 9, 10, or 11,, wherein the system is the viable cell and comprises a gamma secretase reporter.
- 27. A method according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or 11, wherein the system is the viable cell and comprises a gamma secretase reporter comprising a C-terminal APP Gal4 fusion protein and a UAS-reporter transgene, whereby cleavage of the fusion protein by gamma secretase releases Gal4, which in turn activates transcription of the transgene to express the reporter.
- 28. A method according to claim 2, 3, 4, 5, 6, 7, 8, 9, 10, or 11, wherein the pen polypeptide is selected from the group consisting of: human, D. melanogaster or C. elegans Aph -2.
 - 29. An isolated polypeptide comprising a sequence having at least 50% sequence similarity to SEQ ID NO:1; wherein the polypeptide or fragment cross-reacts with a human pen-1B specific antibody.
 - 30. A polypeptide according to claim 28 wherein the polypeptide binds a human presentilin or γ -secretase.
- 31. A polypeptide according to claim 29 or 30 comprising an amino acid sequence selected from the group consisting of:

SEQ ID NO:6, res 1-14;	SEQ ID NO:6, res 115-126;
SEQ ID NO:6, res 6-15;	SEQ ID NO:6, res 130-140;
SEQ ID NO:6, res 10-20;	SEQ ID NO:6, res 139-151;
SEQ ID NO:6, res 25-46;	SEQ ID NO:6, res 166-182;
SEQ ID NO:6, res 62-71;	SEQ ID NO:6, res 184-198;
SEQ ID NO:6, res 67-76;	SEQ ID NO:6, res 214-232; and
SEQ ID NO:6, res 72-95;	SEQ ID NO:6, res 246-257.
	SEQ ID NO:6, res 6-15; SEQ ID NO:6, res 10-20; SEQ ID NO:6, res 25-46; SEQ ID NO:6, res 62-71; SEQ ID NO:6, res 67-76;

32. A polypeptide according to claim 29 comprising an amino acid sequence selected from the group consisting of: SEQ ID NOS:2-10.

PCT/US01/14648

33. A polypeptide according to claim 29 comprising an amino acid sequence selected from the group consisting of: SEQ ID NO:6, residues 1-254; SEQ ID NO:6, residues 4-255; SEQ ID NO:6, residues 9-257; and SEQ ID NO:6, residues 2-255.

34. A polypeptide according to claim 29 comprising SEQ ID NO:2.

WO 01/85912

5

10

15

20

- 35. A recombinant polynucleotide encoding a polypeptide according to claim 29, 30, 31, 32, 33 or 34..
- 36. A recombinant polynucleotide encoding a polypeptide according to claim 29, 30, 31, 32, 33 or 34 contained in a vector or a cell.
 - 37. A method of making a polypeptide, said method comprising steps: introducing a polynucleotide according to claim 29, 30, 31, 32, 33 or 34 into a host cell or cellular extract, incubating said host cell or extract under conditions whereby said polynucleotide is expressed as a transcript and said transcript is expressed as a translation product comprising said polypeptide.
 - 38. A method of screening for an agent that modulates the interaction of a pen-1B polypeptide to a binding target, said method comprising the steps of:
 - incubating a mixture comprising:

an isolated polypeptide according to claim 29, 30, 31, 32, 33 or 34, a binding target of said polypeptide, and a candidate agent;

under conditions whereby, but for the presence of said agent, said polypeptide specifically binds said binding target at a reference affinity;

detecting the binding affinity of said polypeptide to said binding target to determine an agent-biased affinity,

wherein a difference between the agent-biased affinity and the reference affinity indicates that said agent modulates the binding of said polypeptide to said binding target.

30

25

39. A method according to claim 38, wherein said binding target comprises a human presentlin or γ -secretase.

- 40. A method of screening for an agent that modulates the interaction of a pen-1B polypeptide to a binding target, said method comprising the steps of:
- incubating a polynucleotide according to claim 29, 30, 31, 32, 33 or 34 under conditions whereby the polypeptide is expressed;

5

10

incubating a mixture comprising said polypeptide, a binding target of said polypeptide, and a candidate agent under conditions whereby, but for the presence of said agent, said polypeptide specifically binds said binding target at a reference affinity;

detecting the binding affinity of said polypeptide to said binding target to determine an agent-biased affinity,

wherein a difference between the agent-biased affinity and the reference affinity indicates that said agent modulates the binding of said polypeptide to said binding target.

- 15 41. A method according to claim 40, wherein said polynucleotide is in a cell.
 - 42. A method according to claim 40, wherein said binding target comprises a presentilin or γ-secretase.

SEQUENCE LISTING

	<110>	Curtis	s, Da	ın		٠,									
		Franci	s, R	loss	•			•							
5		McGrat	h, G	arth	Jos	seph									
	•	Nicoll	., sh	armo	n Mo	oniqu	ıe		•						
	-	Ruddy,	Dav	rid A	andre	e₩		*							
		Ellis,	Mic	hael	Chi	cisto	pher	:							
	<120>	Presen	ilin	Enl	ance	ers									
10	<130>	EX.00-0	33		·							,			
• '	<140>					•									
	<141>						:								
	<160>	38													
	<170>	Patent	:In V	er.	2.1										
15															
	<210>	1							•						• ,
	<211>	308									,				•
	<212>	PRT													
	<213>	Caenor	habd	litis	ele	egani	3 .								
20	<400>	1	•												
	Met G	ly Tyr	Leu	Leu	Thr	Ile	Ala	Cys	Tyr	Ile	Ala	Ser	Phe	Ser	Pro
	1			5			• •		10					15	
٠.	Ser I	le Ala	Leu	Phe	Cys	Ser	Phe	Ile	Ala	His	Asp	Pro	Val	Arg	Ile
•			20					25				•	30		,
25	Ile L	eu Phe	Phe	Leu	Gly	Ser	Phe	Phe	Trp	Leu	Val	Ser	Leu	Leu	Phe
		35					. 40					45			
	Ser S	er Leu	Ala	Ţŗp	Leu	Gly	Leu	Ser	Thr	Val	Leu	Pro	Asp	Thr	Phe
	•	50			1	55					··60				
	Leu L	eu Ser	Leu	Thr	Val	Сув	Ile	Ile	Ala	Gln	Glu	Leu	Ser	Arg	Val
30	6 5			•	70					75				٠.	80
	Ala T	yr Phe	Met	Leu	Leu	Lys	Lys	Ala	Gln	Arg	Gly	Leu	Asn	Lys	Ile
		:		85					90					95	
	Thr A	rg Gln	Gly	Gln	Ile	Ser	Val	Ala	Pro	Gly	Val	Ser	Asp	Leu	His
			100			. '		105					110		
35	Asn A	la Arg	His	Met	Leu	Ala	Leu	Val	Cys	Gly	Leu	GJA	Met	Gly	Val
		115		,		•	120					125			
-	Ile S	er Ala	Leu	Phe	Tyr	Thr	Met	Asn	Ala	Phe	Ala	Ile	Phe	Ser	Gly
	1	30				135					140				. '
	Pro G	ly Thr	Ile	Gly	Leu	Pro	Asn	Ala	Leu	Lys	Thr	Gly	Glu	Ile	Asp

	145					150					155					160
	Thr	Àsn	Arg	Ala	Gly	Lys	Tyr	Leu	Pro	Leu	Cys	Tyr	Thr	Leu	ser	Ala
					165					170		•			175	
	Ile	Leu	Leu	Thr	Leu	Phe	His	Val	Thr	Trp	Thr	Ile	Met	Val	Trp	Asp
				180			•		185					190		
5	Ser	Сув	His	Lys	Ile	Gly	Arg	Ile	Pro	Ser	Ala	Phe	Val	Pro	Gly	Ala
•			195					200					205			
	Ala	Ala	Val	Val	Ser	His	Leu	Leu	Val	Thr	Phe	Leu	Ser	Ser	Leu	Asn
		210					215					220				
	Ser	Arg	Gly	Phe	His	Val	Leu	Val	Phe	Ala	Val	Gln	Phe	Leu	Ile	Leu
10	225				. ,	230					235					240
	Leu	Ile	Cys	Ile	Ala	Tyr	Cys	naA	Val	Ile	Met	Gly	Gly	Thr	Ile	Ser
					245				ŕ	250	*		·		255	
	Ser	Phe	Val	Asn	Gly	Ile	Gly	Gln	Ser	Ile	Thr	Asp	Ala	Val	Thr	Leu
				260					265					270		
15	Lys	Gln	Val	Arg	Thr	Leu	Ile	Glu	Glu	Arg	Lys	Leu	Arg	Thr	Gln	Arg
		•	275					280					285			
*	Gln	Ser	Val	Pro	Asp	Glu	Pro	Met	Thr	Glu	Arg	Ala	Gly	Thr	Ser	Asn
		290					295	. ,				300				,
				*								•				
20	Thr	Val	Asn	Ala								,				
	305															
	<21	0 > 2						•				•	٠.			
	<21	1 > 2	38						;							
25	<21	2 > P	RT													
	<21	3 > D:	roso	phil	a me	lano	gast	er								,
		0> 2			ť											
	Met	Thr	Leu	Pro	Glu	Phe	Phe	Gly	Cys	Thr	Phe	Ile	Ala	Phe		Pro
	1				5				•	10					15	
30	Pro	Phe	Ala	Leu	Phe	Val	Phe	Thr	Ile	Ala	Asn	Asp	Pro		Arg	Ile
				20					25					30		_,
	Ile	Ile	Leu	Ile	Ala	Ala	Ala				Leu	Leu	•	Leu	Leu	Ile
			35					40					45			
	Ser	Ser	Leu	Trp	Tyr	Ala	Leu	Ile	Pro	Leu	Ĺys		Phė	Leu	Ala	Phe
35	•	50					55					60	_	_		
		Val	Val	Phe	Ser	Val	Cys	Phe	Gln	Glu		Phe	Arg	Tyr	IIe	
	65					70					75					80
	Tyr	Arg	Ile	Leu	Arg	Ser	Thr	Glu	Gln	Gly	Leu	His	Ala	Val	Ala	Glu

				٠.	٥.					90					95	
					85	<u>.</u>		T	77 i a		T.Á11	בות	Lesse.	Va l		Glv
	Asp	Thr	Arg		ınr	Asp	Asn	гуз.		116	DÇU		-1-	110	001	Gly
				100			_	~ 1	105	Db.a	21-	T.Áu			77a l	Len
	Leu	Gly	Phe	Gly	Ile	Ile			Met	Pne	AId	пеп		ASII	vai	БСС
,			115	-				120					125	~ 1	m\	a 1
5	Ala	Asp	Met	Ser	Gly	Pro	Gly	Thr	Met	GTA	Leu		GIĀ	GIY	III	GIU
		130					135		_			140	_,		.	T
	Leu	Phe	Phe	Val	Thr	Ser	Ala	Ala	Gln	Ala		Ser	TTE	IIe	Leu	
	145	•				150					155					160
÷	His	Thr	Phe	Trp	Ser	Val	Ile	Phe	Phe			Phe	Asp			Asn
10	•		٠.		165					170					175	
	Tyr	Ile	His	Ile	Gly	Tyr	Val	Val	Phe	Ser	His	Leu	Phe	Val	Ser	Leu
				180	·				185					190		
	Ile	Thr	Leu	Leu	Asn	Ala	Asn	Glu	Leu	Tyr	Thr	Thr	Thr	Leu	Leu	Ile
		*	195					200					205			
15	Asn	Tyr	Leu	Val	Thr	Ile	Leu	Thr	Gly	Val	Leu	Ala	Phe	Arg	Val	Ala
		210		•			215					220		+ 1		
	Gly	Gly	Thr	Ser	Arg	Ser	Phe	Arg	Lys	Phe	Ile	Thr	CAa	Gln		
	225					230					235				.:	, ,
				•				*						, .		
20	<21	0> 3														
	<21	1> 1	26													•
	<21	2> P	RT		•							*				
	<21	3 > H	elio	this	vir	esce:	ns									
	<40	0 > 3	•						٠					٠.		
25	Met	Thr	Leu	Ala	Glu	Phe	Phe	Ser	Cys	Ser	Leu	Leu	Ala	Phe	Gly	Ala
	1	,		-	5					. 10					15	
	Pro	Leu	Val	Met	Phe	Ala	Leu	Thr	Val	Ala	Asn	Asp	Pro	Val	Arg	Ile
				- 20					25				•	30		
	Ile	Ile	Met	Ile	Ala	Ala	Ala	Phe	Gly	Trp	Leu	Leu	Ser	Phe	Leu	Val
30		•	35					40	٠				45			
	Ser	Ser	Val	Val	Trp	Tyr	Ala	Val	Val	Pro	Leu	Arg	Ser	Tyr	Leu	Ala
		50					55					60				
	Phe	Gly	Met	Val	Phe	Ala	Ile	Ile	Phe	Gln	Glu	Val	Phe	Arg	Tyr	Gly
	65					70					75					80
35																
	Met	Tyr	Val	Leu	Leu	Arg	Lys	Thr	Glu	Ala	Gly	Leu	Lys	Glu	Ile	Ser
					85					90					95	
	Glu	Asn	His	Asn			Ser	Asn	Lys	Leu	Glu	Met	Ala	Tyr	Val	Ser
						_										

WO 01/85912

				100					105					TTO		
	Gly	Leu	Gly	Phe	Gly	Thr	Met	Ser	Gly	Ala	Phe	Ala	Leu	Ile		
	•		115					120		,			125	·	•	
														•		
	<210	> 4	•						,							
5	<211	.> 24	14				. `									
	<212	> PF	۲T			:		*.								
	<213	> mc	ouse													
	<400	> 4	-			•										
,*	Met	Gly	Ala	Ala	Val	Phe	Phe	Gly	Сув	Thr	Phe	Val	Ala	Phe	Gly	Pro
10	. 1				5					10					15	
	Ala	Phe	Ser	Leu	Phe	Leu	Ile	Thr	Val	Ala	Gly	Asp	Pro	Leu	Arg	Val
				20		•			25					30		
	Ile	Ile	Leu	Val	Ala	Gly	Ala	Phe	Phe	Trp	Leu	Val	Ser	Leu	Leu	Leu
			.35				•	4.0					45			
15	Ala	Ser	Val	Val	Trp	Phe	Ile	Leu	Val	His	Val	Thr	Asp	Arg	Ser	Asp
		50		,	•		.55					60	•			
	Ala	Arg	Leu	Gln	Tyr	Gly	Leu	Leu	Ile	Phe	Ğly	Ala	Ala	Val	Ser	Val
٠.	65		-	•		70					75					80
	Leu	Leu	Gln	Glu	Val	Phe	Arg	Phe	Ala	Tyr	Tyr	Lys	Leu	Leu	Lys	ГЛЗ
20		٠,	•		85			·		90		٠.			95	
	Ala	Asp	Glu	Gly	Leu	Ala	Ser	Leu	Ser	Glu	Asp	Gly	Arg	Ser	Pro	Ile
* /				100	•				105					110		
	Ser	Ile	Arg	Gln	Met	Ala	Tyr	Val	Ser	Gly	Leu	Ser	Phe	Gly	Ile	Ile
			115		•			120	•				125			
25	Ser	Gly	Val	Phe	Ser	Val	Ile	Asn	Ile	Leu	Ala	Asp	Ala	Leu	Gly	Pro
		130					135					140				
•	Gly	Val	Val	Gly	Ile	His	Gly	Ąsp	Ser,	Pro	Týr	Tyr	Phe	Leu	Thr	Ser
	145					150					155					160
	Ala	Phe	Leu	Thr	Ala	Ala	Ile	Ile	Leu	Leu	His	Thr	Phe	Trp	Gly	Val
30		·			165					170					175	
•	Val	Phe	Phe	Asp	Ala	Cys	Glu	Arg	Arg	Arg	Tyr	Trp	Ala	Leu	Gly	Leu
				180					185					190	,	
	Val	Val	Gly	Ser	His	Leu	Leu	Thr	Ser	Gly	Leu	Thr	Phe	Leu	Asn	Pro
			195			ē		200					205			
35·	Trp	Tyr	Glu	Ala	Ser	Leu	Leu	Pro	Ile	Tyr	Ala	Val	Thr	Val	Ser	Met
t		210					215					220			* .	
	Gly	Leu	Trp	Ala	Phe	Ile	Thr	Ala	Gly	Val	Pro	Ser	Glu	Val	Ser	Ser
	225					230					235		٠,			240

	Ala	Ala	Phe	Val		:			• .							
						, c										
	<210	0 > 5				•										
	<21:	l> 29	51		•	•					•					
	<212	2> PI	RT					•								
5	<213	3> hu	ıman							• -		٠				
	<400	0> 5				,										
	Met	Gly	Ala	Ala	Val	Phe	Phe	Gly	Cys	Thr	Phe	Val	Ala	Phe	Gly	Pro
	1	•			5					10					15	
	Ala	Phe	Ala	Leu	Phe	Leu	Ile	Thr	Val	Ala	Ģly	Asp	Pro	Leu	Arg	Val
10		4		20					25		•			30		
	Ile	Ile	Leu	Val	Ala	Gly	Ala	Phe	Phe	Trp	Leu	Val	Ser	Leu	Leu	Leu
			35					40					45			
	Ala	Ser	Val	Val	Trp	Phe	Ile	Leu	Val	His	Val	Thr	Asp	Arg	Ser	Asp
		50					55					60				
15	Ala	Arg	Leu	Gln	Tyr	Gly	Leu	Leu	Ile	Phe	Gly	Ala	Ala	Val	Ser	Val
	65	. *	•			70					75			•	•	80
	Leu	Leu	Gln	Glu	Val	Phe	Arg	Phe	Ala	Tyr	Tyr	Lys	Leu	Leu	Lys	Lys
		,			85					90					95	
	Ala	qaA	Glu	Gly	Leu	Ala	Ser	Leu	Ser	Glu	Asp	Gly	Arg	Ser	Pro	Ile
20				100					105					110		
	Ser	Ile	Arg	Gln	Met	Ala	Tyr	Val	Ser	Gly	Leu	Ser	Phe	Gly	Ile	Ile
			115			٠		120					125			
	Ser	Gly	Val	Phe	Ser	Val	Ile	Asn	Ile	Leu	Ala	Asp	Ala	Leu	Gly	Pro
		130					135			•		140				
25	Gly	Val	Val	Gly	Ile	His	Gly	Asp	Ser	Pro	Tyr	Tyr	Phe	Leu	Thr	Ser
	145					150			* .		155					160
	Ala	Phe	Leu	Thr	Ala	Ala	Ile	Ile	Leu	Leu	His	Thr	Phe	Trp	Gly	Val
					165	٠.				170					175	
	Val	Phe	Phe	Asp	Ala	Cya	Glu	Arg	Arg	Arg	Tyr	Trp	Ala		Gly	Leu
30				180					185			-		190		•
	Val	Val	Gly	Ser	His	Leu	Leu		Ser	Gly	Leu	Thr		Leu	Asn	Pro
			195					200	2		*		205	· _		
	Trp	Tyr	Glu	Ala	Ser	Leu	Leu	Pro	Ile	Tyr	Ala		Thr	Val	Ser	Met
		210	-				215				•	220				
35	Gly	Leu	Trp	Ala	Phe		Thr	Ala	Gly	Gly		Leu	: Arg	Ser	Ile ,	
	225				•	230			•		235				,	240
	Arg	Ser	Ser	Cys	Val	Arg	Thr	Asp	Tyr		Asp					
					245					250	٠.					

	<210)> 6														
	<211	L> 25	57													
	<212	2> PF	TS													
	<213	3> hu	ıman				•									
	<400	0> 6			•											
5	Met	Thr	Ala	Ala	Val	Phe	Phe	Gly	Сув	Ala	Phe	Ile	Ala	Phe	Gly	Pro
	1				5	•				10	•				1,5	
	Ala	Leu	Ala	Leu	Tyr	Val	Phe	Thr	Ile	Ala	Thr	Glu	Pro	Leu	Arg	Ile
				20	•				25			•	٠,	. 30		
	Ile	Phe	Leu	Ile	Ala	Gly	Ala	Phe	Phe	Trp	Leu	Val	Ser	Leu	Leu	Ile
10			35					40					45	• •		
	Ser	Ser	Leu	Vál	Trp	Phe	Met	Ala	Arg	Val	Ile	Ile	Asp	Asn	Lys	Asp
		50					55	*		•		60				
	Gly	Pro	Thr	Gln	Lys	Tyr	Leu	Leu	Ile	Phe	Gly	Ala	Phe	Val	Ser	Val
• •	65		•			70					75					80
15	Tyr	Ile	Gln	Glu	Met	Phe	Arg	Phe	Ala	Tyr	Tyr	Lys	Leu	Leu	Lys	Lys
					85					90					95	
	Ala	Ser	Glu	Gly	Leu	Lys	Ser	Ile	Asn	Pro	Gly	Glu	Thr	Ala	Pro	Ser
				100	-				105	-				110		
*.	Met	Arg	Leu	Leu	Ala	тух	Val	Ser	Gly	Leu	Gly	Phe	Gly	Ile	Met	Ser
20			115					120					125			•
1	Gly	Val	Phe	Ser	Phe	Val	Asn	Thr	Leu	Ser	Asp	Ser	Leu	Gly	Pro	Gly
		130			•		135					140				
•	Thr	Val	Gly	Ile	His	Gly	Asp	Ser	Pro	Gln	Phe	Phe	Leu	Tyr	Ser	Ala
	145					150					155					160
25	Phe	Met	Thr	Leu	Val	Ile	Ile	Leu	Leu	His	Val	Phe	Trp	Gly	Ile	Val
		, ,	•		165					170				•	175	
	Phe	Phe	Asp	Gly	Cys	Glu	Lys	Lys	Lys	Trp	Gly	Ile	Leu	Leu	Ile	Val
				180					185					190	,	:
	Leu	Leu	Thr	His	Leu	Leu	Val	Ser	Ala	Gln	Thr	Phe	Ile	Ser	Ser	Tyr
30			195					200				•	205			
	Tyr	Gly	Ile	Àsn	Leu	Ala	ser	Ala	Phe	Ile	Ile	Leu	Val	Leu	Met	Gly
		210	•				215					220				
	Thr	Trp	Ala	Phe	Leu	Ala	Ala	Gly	Gly	Ser	Сув	Arg	Ser	Leu	Lys	Leu
	225					230					235					240
35	Cys	Leu	Leu	Сув	Gln	Asp	Lys	Asn	Phe	Leu	Leu	Tyr	Asn	Gln	Arg	Ser
					245					250					255	

	<210	> 7											•			•
	<211	> 10)1													
	<212	> PR	ET .													
	<213	> Ca	enor	habo	litis	ele	egans	3			٠.					
	<400	> 7									٠			٠.		
5	Met	Asp	Ile	Ser	Lys	Leu	Thr	Asp	Val	Lys	Lys	Val	Asp	Leu	Сув	Lys
	1				5					10					15	
	Lys	Tyr	Phe	Leu	Ile	Gly	Ala	Cys	Phe	Leu	Pro	Leu	Val	Trp	Ile	Val
				20		•			25					30	•	
	Asn	Thr	Phe	Trp	Phe	Phe	Ser	Asp	Ala	Phe	Cys	Lys	Pro	Ile	Asn	Ala
10			35				<i></i>	40			·		45	• .		•
	His.	Arg	Arg	Gln	Ile	Arg	Lys	Tyr	Val	Ile	Ala	Ser	Ile	Val	Gly	Ser
٠.		50	,				55					60				
	Ile	Phe	Trp	Ile	Ile	Val	Leu	Ser	Ala	Trp	Glu	Ile	Phe	Phe	Gln	His
	65	**.	5			70					75		:	•		80
15	Tyr	Arg	Ala	Gln	Gly	Leu	Val	Trp	Thr	Asp	Phe	Leu	Thr	Phe	Val	Phe
					85		-			90					95	•
2	Pro	Thr	Gly	Arg	Val										•	
				100			: :									
	•						,									•
20	<210	> 8											•			
	<211	> 10)1		•						,	٠.				•
	<212	> PF	ΥT	•					· . •							
•	<213	> Dr	rosor	hila	a me	lano	gaste	er			,		• •	• •		
	<400			-					*				•			
25	Met	Asn	Ile	Ser	Lys	Ala	Pro	Asn	Pro	Arg	Lys	Leu	Glu	Leu	Суз	Arg
	1				- 5					10			'		15	
	Lys	Tyr	Phe	Phe	Ala	Gly	Phe	Ala	Phe	Leu	Pro	Phe	Val	Trp	Ala	Ile
				20					25					3.0		, F
	Asn	Val	Cys	Trp	Phe	Phe	Thr	Glu	Ala	Phe	His	Lys		Pro	Phe	Ser
30			35				1.	40					45			
	Glu	His	Ser	Gln	Ile	ГÀЗ	Arg	Tyr	Val	Île	Tyr			Val	Gly	Thr
		50			_	_	55				_	60				_,
	Leu	Phe	Trp	Leu	Ile	Val	Leu	Thr	Ala	Trp		IIe	ire	Pne	Gin	
	. 65					70	_			•	75		_	_,		80
35	Asn	Arg	Thr	Ala		Gly	Ala	Thr	Ala		Tyr	Met	ser	rne		тте
		_			85			٠.,		90					95	•
٠.	Pro	Leu	Gly	Ser	Ta											
				100												

	<210> 9				-									
	<211> 101						•							
	<212> PRT													
	<213> rat													
	<400> 9													
5	Met Asn Le	u Glu	Arg	Val	Ser	Asn	Glu	Glu	Lys	Leu	Asn	Leu		Arg
	2 1 ·		5					10					15	
	Lys Tyr Ty	r Leu	Gly	Gly	Phe	Ala	Phe	Leu	Pro	Phe	Leu	Trp	Leu	Val
		20					25	٠.				30		
	Asn Ile Ph	ne Trp	Phe	Phe	ГÀЗ	Glu	Ala	Phe	Phe	Ala	Pro	Ala	Tyr	Ser
10	3	35				40		•			45			
	Glu Gln Se	er Gln	Ile	Lys	Gly	Tyr	Val	Trp	Arg	Ser	Ala	Val	Gly	Phe
	50				55				•	60				
	Leu Phe Ti	rp Val	Ile	Val	Leu	Thr	Thr	Trp	Ile	Thr	Ile	Phe	Gln	Ile
	. 65			70	•	٠			75					80
15	Tyr Arg Pi	co Arg	Trp	Gly	Ala	Leu	Gly	Asp	Tyr	Leu	Ser	Phe	Thr	Ile
			85					90			٠,		95	
	Pro Leu G	ly Thr	Pro											
		100					. ,							
	•													
20	<210> 10											•		٠.
	<211> 101		F											٠.
	<212> PRT													
	<213> mou	sė								•				
	<400> 10								•					
25	Met Asn L	eu Glu	Arg	Val	ser	Asn	Glu	Glu	Lys	Leu	Asn	Leu	Cys	Arg
•	1		5					10					15	
	Lys Tyr T	yr Leu	Gly	Gly	Phe	Ala	Phe	Leu	Pro	Phe	Leu	Trp	Leu	Val
	•.	20					25					30		
	Asn Ile P	he Trp	Phe	Phe	Arg	Glu	Ala	Phe	Leu	Ala	Pro	Ala	Tyr	Thr
30		35				. 40					45			
	Glu Gln S	er Glm	Ile	Lys	Gly	Tyr	Val	Trp	Arg	Ser	Ala	Val	Gly	Phe
	50				55					60				
	Leu Phe T	rp Val	Ile	Ile	Leu	Ala	Thr	Trp	Ile	Thr	Ile	Phe	Gln	Ile
	65			70					75					80
35	Tyr Arg P	ro Arg	Trp	Gly	Ala	Leu	Gly	Asp	Tyr	Leu	Ser	Phe	Thr	Ile
	-		85					90					95	
	Pro Leu G	ly Thi	Pro	ı					, .					•
		100												

	<210> 11													
	<211> 71				•									
•	<212> PRT	•			. •									•
	<213> Bos	taurus	3			٠.		:.	•					
	<400> 11		•		•						٠.			
5	Met Asn Le	u Glu	Arg	Val	Ser	Asn	Glu	Glu	Lys	Leu	Asn	Leu	Cys	Arg
	1		5					. 10			•		15	1 1
	Lys Tyr Ty	r Leu	Gly	Gly	Phe	Ala	Phe	Leu	Pro	Phe	Leu	Trp	Leu	Val
		20					25					30		
	Asn Ile Ph	e Trp	Phe	Phe	Arg	Glu	Ala	Phe	Ile	Val	Pro	Ala	Tyr	Thr
10	3	5				40					45			
	Glu Gln Se	r Gln	Ile	Lys	Gly	Tyr	Val	Trp	Arg	Ser	Ala	Val	Gly	Phe
	. 50				55			•		. 60			•	
Š.	Phe Leu Tr	p Val	Ile	Val	Leu									
•	65			. 70		•		•			1,1			
15														
	<210> 12				,									. '
	<211> 101					•			٠.					
	<212> PRT		•		. *									
	<213> huma	an ·						٠.						
20 -	<400> 12		,											
	Met Asn Le	eu Glu	Arg	Val	Ser	Asn	Glu	Glu	Lys	Leu	Asn	Leu	Сув	Arg
	1		5					10					15	
	Lys Tyr Ty	r Leu	Gly	Gly	Phe	Ala	Phe	Leu	Pro	Phe	Leu	Trp	Leu	Val
		20					25					30	•	
25	Asn Ile Ph	ne Trp	Phe	Phe	Arg	Glu	Ala	Phe	Leu	Val	Pro	Ala	Tyr	Thr
	. 3	35	•		•	40					45			
	Glu Gln Se	er Gln	Ile	Lys	Gly	Tyr	Val	Trp	Arg	Ser	Ala	Val	Gly	Phe
	50				5 5				•	60				:
	Leu Phe T	rp Val	Ile	Val	Leu	Thr	Ser	Trp	Ile	Thr	Ile	Phe	Gln	Ile
30	65	•		70					75					80
. •	Tyr Arg P	ro Arg	Trp	Gly	Ala	Leu	Gly	Asp	Tyr	Leu	Ser	Phe	Thr	Ile
	•		85					90					95	
	Pro Leu G	ly Thr	Pro		•									
		100	•						٠.			ı		
35							•							
	<210> 13		•		•						•			
	<211> 721												٠. ٠	
	<212> PRT									•		. 3		

	<213	}> Ca	enor	habo	litis	s ele	gans	3								
	<400)> 13	3													
	Met	Lys	Lys	Trp	Ĺeu	Val	Ile	Val	Leu	Ile	Ile	Ala	Gly	Ile	Arg	Сув
	1				5					10					15	
	Asp	Gly	Phe	Ser	Asp	Gln	Val	Phe	Arg	Thr	Leu	Phe	Ile	Gly	Glu	Gly
5				20					25					30		
	Asn	Ala	Cys	Tyr	Arg	Thr	Phe	Asn	Lys	Thr	His	Glu	Phe	Gly	Cys	Gln
		•	35					40					45			
	Ala	Asn	Arg	Glu	Asn	Glu	Asn	Gly	Leu	Île	Val	Arg	Ile	Asp	Lys	Gln
		50					55					60				
10	Glu	Asp	Phe	Lys	Asn	Leu	Asp	Ser	Сув	Trp	Asn	Ser	Phe	Tyr	Pro	Lys
	65					70					75					80
	Tyr	Ser	Gly	Lys	Tyr	Trp	Ala	Leu	Leu	Pro	Val	Asn	Leu	Ile	Arg	Arg
					.85					90					95	
	Asp	Thr	Ile	Ser	Gln	Leu	Lys	Ser	Ser	Lys	Cys	Leu	Ser	Gly	Ile	Val
15		•		100					105				,	110		
	Leu	Tyr	Asn	Ser	Gly	Glu	Ser	Ile	His	Pro	Gly	Asp	Glu	Ser	Thr	Ala
			115					120		•			125			
	Ala	Ser	His	Asp	Ala	Glu	Сув	Pro	Asn	Ala	Ala	Ser	Asp	Tyr	Tyr	Leu
		130					135					140				
20	Gln	Asp	Lys	Asn	Glu	Glu	Tyr	Cys	Glu	Arg	Lys	Ile	Asn	Ser	Arg	Gly
•.	145					150					155	,	•			160
	Ala	Ile	Thr	Arg	Asp	Gly	Leu	Met	Lys	Ile	Asp	Trp	Arg	Ile	Gln	Met
					165					170					175	
	Val	Phe	Ile	Asp	Asn	Ser	Thr	Asp	Leu	Glu	Ile	Ile	Glu	Lys	Cys	Tyr
25				180					185	•				190		
	Ser	Met	Phe	Asn	Lys	Pro	Lys	Glu	Asp	Gly	Ser	Ser	Gly	Tyr	Pro	Tyr
			195					200					205			
	Сув	Gly	Met	Ser	Phe	Arg	Leu	Ala	Asn	Met	Ala	Ala	Gly	Asn	Ser	Glu
*		210			•		215					220				
30	Ile	Суѕ	Tyr	Arg	Arg	Gly	Lys	Asn	Asp	Ala	Lys	Leu	Phe	Gln	Met	Asn
	225					230					235					240
·	Ile	Asp	Ser	Ġly	Asp	Ala	Pro	Gln	Leu	Сув	Gly	Ala	Met	His	Ser	Asp
					245				•	250					255	
	Asn	Ile	Phe	Ala	Phe	Pro	Thr	Pro	Ile	Pro	Thr	Ser	Pro	Thr	Asn	Glu
35				260					265					270		
	Thr	Ile	Ile	Thr	Ser	Lys	Tyr	Met	Met	Val	Thr	Ala	Arg	Met	Asp	Ser
			275		•			280					285			
	Dhe	Glv	Met	Ile	Pro	Glu	Ile	Ser	Val	Glv	Glu	Val	Ser	Val	Leu	Thr

		290					295					300				
	Ser	Ile	Ile	Ser	Val-	Leu	Ala	Ala	Ala	Arg	Ser	Met	Gly	Thr	Gln	Ile
•	305					310					315		*. *	•		320
	Glu	Lys	Trp	Gln	Lys	Ala	Ser	Asn	Thr	Ser	Asn	Arg	Asn	Val	Phe	Phe
					325					330					335	
5	Ala	Phe	Phe	Asn	Gly	Glu	Ser	Leu	Asp	Tyr	Ile	Gly	Ser	Gly	Ala	Ala
				340					345					350		
	Ala	Tyr	Gĺn	Met	Glu	Asn	Gly	Lys	Phe	Pro	Gln	Met	lle	Arg	Ser	Asp
•			355		,			360					365		•	
	Arg	Thr	His	Ile	His	Pro	Ile	Arg	Pro	Asn	Glu	Leu	Asp	Tyr	Ile	Leu
10		370	•				375	٠.		-	• .	380			ø' .	,
	Glu	Val	Gln	Gln	Ile	Gly	Val	Ala	Lys	Gly	Arg	Lys	Tyr	Tyr	Val	His
	385	•				390			•		395		٠		٠.	400
	Val	Asp	Gly	Glu	Arg	Tyr	Gln	Gln	Asn	Lys	Thr	Gln	Thr	Asp	Arg	Val
					405					410					415	
15	Ile	Asp	Arg	Ile	Glu	Arg	Gly	Leu	Arg	Ser	His	Ala	Phe	Asp	Leu	Glu
4	•			420					425					430		
	Lys	Pro	Ser	Gly	Ser	Gly	qaA	Arg	Val	Pro	Pro	Ala	Ser	Trp	His	Ser
			435					440					445			
	Phe	Ala	Lys	Ala	Asp	Ala	His	Val	Gln	Ser	Val	Leu	Leu	Ala	Pro	Tyr
20		450					455					460				
	Gly	ГÀв	Glụ	Tyr	Glu	Tyr	Gln	Arg	Val	Asn	Ser	Ile.	Leu	Asp	Lys	Asn
	465					470				,	475					480
	Glu	Trp	Thr	Glu	Asp	Glu	Arg	Glu	Lys	Ala	Ile	Gln	Glu	Ile	Glu	Ala
•					485					490	,				495	. •
25	Val	Ser	Thr	Ala	Ile	Leu	Ala	Ala	Ala	Ala	Asp	Tyr	Val		Val	Glu
	*			500					505					510		
	Thr	Asp	Glu	Val	Val	Ala	Lys		Asp	ГÀв	Lys	Leu		Thr	Thr	Ile
			515					520			_		525			
	Phe		Сув	Leu	Ile	Thr		Asn	Phe	Trp	Phe		Сув	Asp	Phe	Met
30		530				_	535				_	540		_		
	Gln	Lys	Leu	Asp	Gly		Arg	Tyr	His	Lys		Phe	Asn	Ser	Tyr	
,	545			_	_	550	_		_		555	_		~ 1		560
,	Phe	Asn	Gln	ГÀг		Thr	Tyr	Ile	Ser		GIU	Ser	His	Thr		Pne
25			-		565	_	_	-1	-1.	570			a 1	0	575	T
35	Pro	Thr	Val		His	Trp	Leu	Thr		rne	ита	ьeu	GTÅ		Asp	гÀв
		en '	▼ = ±2	580	vv 3	7	0		585	Ce~		0	77.º -	590	01.	~1 <u>~</u>
	Glu	Thr	Leu	Asn	vai	ràs	ser		ήλε	ser	cys	ser		ьeu	GIY	GIN
			595					600					605			

	Phe	Gln	Ala	Met	Tyr	Thr	Tyr	Thr	Trp	Gin	Pro		Pro	ıyr	Thr	GIŸ
		610					615					620				
	Asn	Phe	Ser	Cys	Leu	Lys	Ser	Ala	Ile	Val	Lys	Lys	Val	Met	Val	Ser
	625					630					635					640
	Pro	Ala	Val	Asp	Ser	Gln	Thr	Pro	Glu	Glu	Glu	Met	Asn	Thr	Arg	Tyr
5					645	•		•		650					655	
٠	Ser	Thr	Trp	Met	Glu	Ser	Val	Tyr	Ile	Ile	Glu	Ser	Val	Asn	Leu	Tyr
				660					665			ı		670		
	Leu	Met	Glu	Asp	Ala	Ser	Phe	Glu	Tyr	Thr	Met	Ile	Leu	Ile	Ala	Val
	٠.		675					680					685			
10	Ile	Ser	Ala	Leu	Leu	Ser	Ile	Phe	Ala	Val	Gly	Arg	Сув	Ser	Glu	Thr
		690					695					700				
	Thr	Phe	Ile	Val	Авр	Glu	Gly	Glu	Pro	Ala	Ala	Glu	Gly	Gly	Glu	Pro
	705					710					715					720
	Leu															
15																
	<210	0> 14	1											•		
	<213	1> 70	80													
	<212	2> PI	RT													
•	<21	3 > D	cosor	phila	a me	lanog	gaste	er .				•				
20	<400	0> 14	1 .													
	Ala	Thr	Ala	Gly	Gly	Gly	Ser	Gly	Ala	Asp	Pro	Gly	Ser	Arg	Gly	Leu
	1				5					10					15	
	Leu	Arg	Leu	Leu	Ser	Phe	Сув	Val	Leu	Leu	Ala	Gly	Leu	Cys	Arg	Gly
-				20				•	25					30		
25	Asn	Ser	Val	Glu	Arg	Lys	Ile	Tyr	Ile	Pro	Leu	Asn	Lys	Thr	Ala	Pro
		•	35	•				40					45			
	Сув	Val	Arg	Leu	Leu	Asn	Ala	Thr	His	Gln	Ile	Gly	Сув	Gln	Ser	Ser
		50					55					60				
	Ile	Ser	Gly	Asp	Thr	Gly	Val	Ile	His	Val	Val	Glu	Lys	Glu	Glu	Asp
30	65					70					75					80
•	Leu	Gln	Trp	Val	Leu	Thr	Asp	Gly	Pro	Asn	Pro	Pro	Tyr	Met	Val	Leu
					85					90					· 95	
	Leu	Glu	Ser	Lys	His	Phe	Thr	Arg	Asp	Leu	Met	Glu	Lys	Leu	Lys	Gly
			٠	100	•				105					110		
35 .	Arg	Thr	Ser	Arg	Ile	Ala	Gly	Leu	Ala	Val	Ser	Leu	Thr	Lys	Pro	Ser
			115					120					125			
:	Pro	Ala	Ser	Gly	Phe	Ser	Pro	Ser	Val	Gln	Сув	Pro	Asn	Asp	Gly	Phe
		130					135					140				

	Gly	Val	Tyr	Ser	Asn	Ser	Tyr	Gly	Pro	Glu	Phe	Ala	His	Сув	Arg	GIu
	145					150					155					160
	Ile	Gln	Trp	Asn	Ser	Leu	Gly	Asn	Gly	Leu	Ala	Tyr	Glu	Asp	Phe	ser
			•		165		-			170				•	175	
	Phe	Pro	Ile	Phe	Leu	Leu	Glu	Asp	Glu	Asn	Glu	Thr	Lys	Val	Ile	Lys
5				180				٠٠,	185					190		
	Gln	Сув	Tyr	Gln	Asp	His	Asn	Leu	Ser	Gln	Asn	Gly	Ser	Ala	Pro	Thr
			195	:				200					205			
	Phe	Pro	Leu	Сув	Ala	Met	Gln	Leu	Phe	Ser	His	Met	His	Ala	Val	Ile
		210					215			•		220			7,	
10	Ser	Thr	Ala	Thr	Cys	Met	Arg	Arg	Ser	Ser	Ile	Glņ	Ser	Thr	Phe	Ser
•	225					230					235				٠,٠	240
	Ile	Asn	Pro	Glu	Ile	Val	Сув	Asp	Pro	Leu	Ser	qaA	Tyr	Asn	Val	Trp
		-			245		,			250	•			,	255	
•	Ser	Met	Leu	Lys	Pro	Ile	Asn	Thr	Thr	Gly	Thr	Leu	Lув	Pro	qaA	Asp
15				260	•				265					270	:	
*** .	Arg	Val	Val	Val	Ala	Ala	Thr	Arg	Leu	Asp	Ser	Arg	Ser	Phe	Phe	Trp
			275					280					285			
	Asn	Val	Ala	Pro	Gly	Ala	Glu	Ser	Ala	Val	Ala	Ser	Phe	Val	Thr	Gln
		290					295					300				
20	Leu	Ala	Ala	Ala	Glu	Ala	Leu	Gln	Lys	Ala	Pro	Asp	Val	Thr	Thr	Leu
	305			-		310					315					320
• •		•														
	Pro	Arg	Asn	Val	Met	Phe	Val	Phe	Phe	Gln	Gly	Glu	Thr	Phe	Asp	Tyr
-	•		٠	~.	325				•	330		`		•	335	,
25	Ile	Gly	Ser	Ser	Arg	Met	Val	Tyr	Asp	Met	Glu	Lys	Gly	Lys	Phe	Prò
			-	340					345				٠.	350		
	Val	Gln	Leu	Glu	Asn	Val	Asp	Ser	Phe	Val	Ġlu	Leu	Gly	Gln	Val	Ala
			355					360	×				365			
.*.	Leu	Arg	Thr	Ser	Leu	Glu	Leu	Trp	Met	His	Thr	Asp	Pro	Val	Ser	Gl'n
30		370					375	•				380				
	Lys	Asn	Glu	Ser	Val	Arg	Asn	Gln	Val	Glu	Asp	Leu	Leu	Ala	Thr	Leu
	385					390			•	•	395					400
	Glu	Lys	Ser	Gly	Ala	Gly	Val	Pro	Ala	Val	Ile	Leu	Arg	Arg	Pro	Asn
		•			405					410					415	
35 ·	Gln	Ser	Gln	Pro	Leu	Pro	Pro	Ser	Ser	Leu	Gln	Arg	Phe	Leu	Arg	Ala
			, ,	420					425	,				430		
	Arg	Asn	Ile	Ser	Gly	Val	Val	Leu	Ala	Asp	His	Ser	Gly	Ala	Phe	His
			435					440					445			

	Asn	Lys	Tyr	Tyr	Gln	ser	ITe	ıyr	Asp	TIII	Ala		WPII	116	VOII	
		450					455				*	460				
	Ser	Tyr	Pro	Glu	Trp	Leu	Ser	Pro	Glu	Glu	Asp	Leu	naA	Phe	Val	Thr
	465					470		*		٠,	475	÷				480
•	Asp	Thr	Ala	Lys	Ala	Leu	Ala	Asp	Val	Ala	Thr	Val	Leu	Gly	Arg	Ala
5					485					490			•		495	
	Leu	Tyr	Glu	Leu	Ala	Gly	Gly	Thr	Asn	Phe	Ser	Asp	Thr	Val	Gln	Ala
•				500	*				505					510		
	Asp	Pro	Gln	Thr	Val	Thr	Àrg	Leu	Leu	Tyr	Gly	Phe	Leu	Ile	Lys	Ala
	-		515				٠.	520					525			
10	Asn	Asn	Ser	Trp	Phe	Gln	Ser	Ile	Leu	Arg	Gln	Asp	Leu	Arg	Ser	Tyr
		530					535	-		٠.		540				•
	Leu	Gly	Asp	Gly	Pro	Leu	Gļņ	His	Tyr	Ile	Ala	Val	Ser	Ser	Pro	Thr
	545					550	-		-	1	555					560
	Asn	Thr	Thr	Tyr	Val	Val	Gln	Tyr	Ala	Leu	Ala	Asn	Leu	Thr	GJA	Thr
15		,		ŕ	565					570					575	
	Val	Val	Asn	Leu	Thr	Arg	Glu	Gln	Cys	Gln	Asp	Pro	Ser	ГЛS	Val	Pro
			•	580				÷.	585					590		•
	Ser	Glu	Asn	Lys	Asp	Leu	Tyr	Glu	Tyr	Ser	Trp	Val	Gln	Gly	Pro	Leu
	•.		595					600					605			
20	His	Ser	Asn	Glu	Thr	Asp	Arg	Leu	Pro	Arg	Сув	Val	Arg	Ser	Thr	Ala
		610					615				•	620				
	Arg	. Leu	Ala	Arg	Ala	Leu	Ser	Pro	Ala	Phe	Glu	Leu	Ser	Gln	Trp	Ser
	625					630					635				: .	640
	Ser	Thr	Glu	Tyr	Ser	Thr	Trp	Thr	Glu	Ser	Arg	Trp	Lys	Asp	Ile	Arg
25			* * .		645			•		650	*				655	٠.
	Ala	Arg	Ile	Phe	Leu	Ile	Ala	Ser	Lys	Glu	Leu	Glu	Leu	Ile	Thr	Leu
				660					665		•			670	5	
	Thr	val	Gly	Phe	Gly	Ile	Leu	Ile	Phe	Ser	Leu	Ile	Val	Thr	Tyr	Cys
	-		675					680		:			685			
30	Ile	Asn	Ala	Lys	Ala	Asp	Val	Leu	Phe	Ile	Ala	Pro	Arg	Glu	Pro	Gly
		690					695				, ,	700				
	Ala	Val	Ser	Tyr	•											
· '.	705	5.					•.				<i>:</i>		•			
	•															
35	<21	.0> 1	.5			· . ·										
•	<23	1> 7	16							•	•					•
	<21	L2> F	PRT .									•				
•	<21	3 > h	uman	1						*					,	

)> 15														
	His	Glu	Pro	Lys	Arg	Ser	His	Ala	Thr	Leu	Gln	Phe	Leu	Asp	Ala	Ile
	1				5					10	,				15	
	Ser	Trp	Glu	Ser	Ser	Met	Glu	Met	Arg	Leu	Asn	Ala	Ala	Ser	Ile	Trp
				20					25					30		
5	Leu	Leu	Ile	Leu	Ser	Tyr	Gly	Ala	Thr	Ile	Ala	Gln	Gly	Glu	Arg	Thr
	•		35					40					45			
	Arg	Asp	Lys	Met	Tyr	Glu	Pro	Ile	Gly	Gly	Ala	Ser	Сув	Phe	Arg	Arg
		50		•			55	• `				60				
•	Leu	Asn	Gly	Thr	His	Gln	Thr	Gly	Cys	Ser	Ser	Thr	Tyr	Ser	Gly	Ser
10	65					70					75					80
	Val	Gly	Val	Leu	His	Léu	Ile	Asn	Val	Glu	Ala	Asp	Leu	Glu	Phe	Leu
					85					90		•			95	
•	Leu	Ser	Ser	Pro	Pro	Ser	Pro	Pro	Tyr	Ala	Pro	Met	Ile	Pro	Pro	His
				100		•			105					110		
15	Leu	Phe	Thr	Arg	Asn	Asn	Leu	Met	Arg	Leu	Lys	Glu	Ala	Gly	Pro	Lys
			115					120					125			
	Asn	Ile	Ser	Val	Val	Leu	Leu	Ile	Asn	Arg	Thr	Asn	Gln	Met	Lys	Gln
		130				,	135					140				
	Phe	Ser	His	Glu	Leu	Asn	Cys	Pro	Asn	Gln	Tyr	Ser	Gly	Leu	Asn	Ser
20	145					150					,155					160
•	Thr	Ser	Glu	Thr	Cys	Asp	Ala	Ser	Asn	Pro	Ala	ГÀध	Asn	Trp	Asn	Pro
					165					170					175	
	Trp	Gly	Thr	Gly	Leụ	Leu	His	Glu	Asp	Phe	Pro	Phe	Pro	Ile	Tyr	Tyr
				180					185	•				190		
25	Ile	Ala	Asp	Leu	Asp	Gln	Val	Thr	Lys	Leu	Glu	Lys	Cys	Phe	Gln	Asp
			195		•			200			•		205			
	Phe	Asn	Asn	His	Asn	Tyr	Glu	Thr	His	Ala	Leu	Arg	Ser	Leu	Cys	Ala
		210					215					220			•	
	Val	Glu	Val	Lys	Ser	Phë	Met	Ser	Ala	Ala	Val	Asn	Thr	Glu	Val	Cys
30	225					230					235					240
	Met	Arg	Arg	Thr	Asn	Phe	Ile	Asn	Asn	Leu	Gly	Gly	Ser	Lys	Ťyr	Сув
					245					250					255	
	Asp	Pro	Leu	Glu	Gly	Arg	Asn	Val	Tyr	Ala	Thr	Leu	Tyr	Pro	Glu	Ser
				260					265	•				. 270		
35	Gln	Gln	Ser	Lys	Thr	Thr	Trp	Arg	Gln	Ser	Ile	Arg	Met	Lys	Ser	Ser
			275					280					285			
	Ile	Ser	Asn	Leu	Ser	Pro	Gly	His	His	His	His	Val	Arg	Trp	Arg	Arg
		290	•				295					300				

	Ser	Trp	Ser	His	Gly	Leu	Pro	Tyr	Gly	Ile	Cys	Trp	Phe	Gln	Leu	Ser
	305					310	•				315					320
-	Val	Gly	Tyr	Leu	Leu	Lys	Gln	Leи	Leu	Pro	Pro	Gln	Ser	Lys	qeA	Leu
		• • •			325					330					335.	•
	His	Asn	Val	Leu	Phe	Val	Thr	Phe	Asn	Gly	Glu	Ser	Tyr	Asp	Tyr	Ile
5				340					345					350		
,	Gly	Ser	Gln	Arg	Phe	Val	Tyr	Asp	Met	Glu	Lys	Leu	Gln	Phe	Pro	Thr
			35 5					360	-				365		* , *	
	Glu	Ser	Thr	Gly	Thr	Pro	Pro	Ile	Ala	Phe	Asp	Asn	Ile	Asp	Phe	Met
		370					375					380				
10	Leu	Asp	Ile	Gly	Thr	Leu	Asp	Asp	Ile	Ser	Asn	Ile	Lys	Leu	His	Ala
	385					390				•	395					400
	Lėu	Asn	Gly	Thr	Thr	Leu	Ala	Gln	Gln	Ile	Leu	Glu	Arg	Leu	Asn	Asn
					405					410					415	
•																
15	Tyr	Ala	Lys	Ser	Pro	Arg	Tyr	Gly	Phe	Asn	Leu	Asn	Ile	Gln	ser	Glu
				420					425					430		
	Met	Ser	Ala	His	Leu	Pro	Pro	Thr	Ser	Ala	Gln	Ser	Phe	Leu	Arg	Arg
	•		435			4	,	440					445			
	Asp	Pro	Asn	Phe	Asn	Ala	Leu	Ile	Leu	Asn	Ala	Arg	Pro	Thr	Asn	Lys
20		450			•		455					460				
	Tyr	Tyr	His	Ser	Ile	Tyr	Asp	Asp	Ala	Asp	Asn	Val	Asp	Phe	Thr	Tyr
	465					470					475					480
	Ala	Asn	Thr	Ser	Lys	Asp.	Phe	Thr	Gln	Leu	Thr	Glu	Val	Asn	Asp	Phe
					485					490					495	
25	Lys	Ser	Leu	Asn	Pro	Asp	Ser	Leu	Gln	Met	Lys	Val	Arg	Asn	Val	Ser
				500					505					510		
	Ser	Ile	Val	Ala	Met	Ala	Leu	Tyr	Gln	Thr	Ile	Thr	Gly	Lys	Glu	Tyr
			515		•			520					525			
	Thr	Gly	Thr	Lys	Val	Ala	Asn	Pro	Leu	Met	Ala	Asp	Gļu	Phe	Leu	Tyr
30		530					535				٠	540				
	Сув	Phe	Leu	Gln	Ser	Ala	Asp	Сув	Pro	Leu	Phe	Lys	Ala	Ala	Ser	Tyr
	545					550					555					560
	Pro	Gly	Ser	Gln	Leu	Thr	Asn	Leu	Pro	Pro	Met	Arğ	Tyr	Ile	Ser	Val
		•			565					570					575	
35	Leu	Gly	Gly	Ser	Gln	Glu	Ser	Ser	Gly	Tyr	Thr	Tyr	Arg	Leu	Leu	Gly
		٠.		580					585					590		
	Tyr	Leu	Leu	Ser	Gln	Leu	Gln	Pro	Asp	Ile	His	Arg	Asp	Asn	Cys	Thr
			595					600					605			

	Asp	Leu	Pro	Leu	His	Tyr	Pne	ALA	GIY	Pne	ASII	WDII	TIE	Gry	Gra	C
		610					615		. :			620				
	Arg	Leu	Thr	Thr	Gln	Asn	Tyr	Ser	His	Ala	Leu	Ser	Pro	Ala	Phe	Leu
	625		14.2.4			630		:			635			•••		640
	Ile	Asp	Gly	Tyr	Asp	Trp	Ser	Ser	Gly	Met	Tyr	Ser	Thr	Trp	Ala	Glu
5				, ,	645					650					655	•
*	Ser	Thr	Trp	Ser	Gln	Phe	Ser	Ala	Arg	Ile	Phe	Leu	Arg	Pro	Ser	Asn
				660					665					670		
	Val	His	Gln	Val	Thr	Thr	Leu	Ser	Val	Gly	Ile	Val	Val	Leu	Ile	Ile
•	. •		675					680					685	•		
10	Ser	Phe	Сув	Leu	Val	Tyr	Ile	Ile	Ser	Ser	Arg	Ser	Glu	Val	Leu	Phe
	•	690			•	•	695				•	700			•	
	Glu	qaA	Leu	Pro	Ala	Ser	Asn	Ala	Ala	Leu	Phe	Gly				
	705					710		·			715					
																•
15	<210	0> 10	6								•					
,	<21	1> 2	57											٠.		
	<212	2> Pl	RT													
	<21	3 > A	rtif:	icia	l Se	quen	ce									
	<22	0>							•			, ,				
20	<22	3 > D	escr:	ipti	on o	f Art	tifi	cial	Seq	uenc	e: S	ynthe	etic			
		S	eque	nce												
		0 > 1				-							_			_
•	Met	Ala	Ala	Ala	Val	Phe	Phe	Gly	, Cys			Asp	Ala	Phe		Pro
	1				5					10			_		15	
25	Ala	Leu	Ala		Tyr	Glu	Phe	Thr			Thr	Gļu	Pro		Arg	Pne
				20					25 		_	1	-	30	T	T 1 -
	Ile	Phe	Leu	Ile	Ala	Gly	Ala			GIY	Leu	vai		ьeu	ьeu	ire
.:			35			-1-	34-4	40		**- 7	*1 ~	Tla	45	Tla	Targ	y a.c.
20	Ser		Leu	His	Trp	Phe			Arg	vai	TTE		Asp	116	пув	Авр
30		50					55		÷1	Dh.	61. .	60	Dho		Ser.	₩-1
			Thr	Gin	гÃе		Leu	гув	116	Pne			Phe	Val	Ser	80
	. 65 –			-1	••	70		Dho	11 a		75		Low	T.011	Tare	
	Tyr	Leu	Gln	GIU			Arg	Pne	Ara	,	ıyı	Met	пеа	пец	95	nyo
25		0	Glu	a 1	85		Sa-	Tlo	A en	90	Gl v	Gi.,	Thr	۵la		Gln
35	ATS	ser	GIU			. weil	DET	TTG	105		GIY	Gru		110		-
		, n	Leu	100		η ν.∞ -	v∍i	Sa~			G14	Dhe	Glv		Met	Ser
	Met	Arg			WIG	. IYI	val	120		- AIY	GIŸ	F 116	125			
			115					120					+47			

								_	-	_	_	_		**- 7		a1	١.
	Gly	Val	Phe	Thr	Phe	Val	Asn	Thr	Leu	Ser	Asp		Leu	Val	Pro	Gly	•
		130					135					140					
•	Thr	Val	Gly	Ile	His	Gly	Asp	Trp	Pro	Gln	Phe	Phe	Leu	Tyr	Ser		
	145					150					155		•			160	
	Phe	Tyr	Thr	Leu	Val	Ile	Ile	Leu	Leu	His	Val	Ala	Trp	Gly		Val	
5			*		165					170					175		
	Phe	Phe	Asp	Gly	Сув	Asp	Lys	Lys	Lys	Trp	Gly	Ile	Leu	Leu	Ile	Glu	
				180					185					190			
	Leu	Leu	Thr	His	Leu	Leu	Val	Ser	Ala	Phe	Thr	Phe	Ile	Ser	Ser	Tyr	
			195					200					205				
10	Tyr	Gly	Ile	Gly	Leu	Ala	Ser	Ala	Phe	Ile	Ile	Leu	Val	His	Met	Gly	
		210					215					220					
	Thr	Trp	Ala	Phe	Leu	Ala	Ala	Ile	Gly	Ser	Cys	Arg	Ser	Leu	Lys		
	225					230					235					240	
	Сув	Lys	Leu	Cys	Gln	Asp	Lys	Asn	Phe	Leu	Leu	Leu	Asn	Gln	Arg	Ser	
15 .					245					250					255		
	Arg										-		+				
	<21	0> 1	7														
	<21	1> 2	57	•													•
20	<21	2> P	RT					•									
	<21	3 > A	rtif	icia	l Se	quen	ce				•						4
	<22																
	<22	3> D	escr	ipti	on o	f Ar	tifi	cial	Seq	uenc	e: S	ynth	etic				
		s	eque	nce													
25		0 > 1															
	Met	Thr	Asp	Ala	Val	Phe	Phe	Gly	Cys	Ala	Phe	Ile	Glu	Phe		Pro	
	1				5					10					15		
	Ala	Leu	Ala	Leu	Tyr	Val	Gly	Thr	Ile	Ala	Thr	Glu	Pro	Leu	Arg	Ile	
				20	-				25					30			
30	His	Phe	Leu	Ile	Ala	Gly	Ala	Phe	Phe	Trp	Ile	Val	Ser	Leu	Leu	Ile	
•			35				•	40					45				. `
	Ser	Ser	Leu	Val	Lys	Phe	Met	Ala	Arg	Val	Ile	Ile	Asp	Asn	Leu	Asp	
		50					55					60					
	Gly	r Pro	Thr	Gln	Lys	Tyr	Leu	Leu	Met	Phe	Gly	Ala	Phe	Val	Ser	Val	
35	65					70					75					80	
	Тут	: Ile	a Asn	Glu	Met	Phe	Arg	Phe	Ala	Tyr	Туг	Lys	Gln	Leu	Lys	Lys	
					85					90					95		
	Ala	a Sér	Glu	Glv	Leu	Lys	Arg	Ile	Asn	Pro	Gly	Glu	Thr	Ala	Pro	Ser	

			100			-		105					110		
	Ser Ar	g Leu	Leu	Ala	Tyr	Val	Ser	Gly	Leu	Thr	Phe	Gly	Ile	Met	Ser
		115					120					125			
	Gly Va			Val	Val	Asn	Thr	Leu	ser	Asp	Ser	Leu	Gly	Trp	Gly
	13			• ,		135					140				
5	Thr Va		Ile	His	Gly	Asp	Ser	Tyr	Gln	Phe	Phe	Leu	Tyr	Ser	Ala
	145				150	_				155					160
	Phe Me	t Ala	Leú	Val	Ile	Ile	Leu	Leu	His	Val	Phe	Asp	Gly	Ile	Val
				165		٠.			170			,		175	٠
· .	Phe Ph	e Asp	Gly	Cys	Glu	Glu	Lys	Lys	Trp	Gly	Ile	Leu	Leu	Ile	Val
10			180		*,		-	185					190		
	Phe Le	u Thr	His	Leu	Leu	val	Ser	Ala	Gln	Gly	Phe	Ile	Ser	Ser	Tyr
	•	. 195		•			200					205			
	Tyr Gl	y Ile	Asn	His	Ala	Ser	Ala	Phe	Ile	Ílė	Leu	Val	Leu	Ile	Gly
•	21		•			215	· · · · · ·				220				
. 15	Thr Tr	p Ala	Phe	Leu	Ala	Ala	Gly	Lys	Ser	Cys	Arg	Ser	Leu	Lys	Leu
	225	_			230					235			•		240
: =	Cys Le	u Met	Cys	Gln	Asp	Lys	Asn	Phe	Leu	Leu	Tyr	Gln	Gln	Arg	Ser
		-		245					250					255	
•	Arg			٠.	,	•	•							:	
20 ,		•						*							
4	<210>	18										٠			. •
	<211>	257									• • .	* .			
	<212>	PRT	•						·				*		
¥.	<213>	Artif	icia	l Se	quen	ce						·	, .		
25	<220>	٠٠.	*		•								٠,		-
*.	<223>	Descr	ripti	on o	f Ar	tifi	cial	Seq	uenc	e: S	ynth	etic			
		Seque	ence	,							•				
	<400>	*				e '		•					٠		
	Met Th	ır Ala	a Asp	Val	Phe	Phe	Gly	Cys	Ala	Phe	Ile	Ala	Glu		
30	.1			5					10					15	
	Ala Le	eu Ala	a Lev	Tyr	Val	Phe	Phe	Ile	Ala	Thr	Glu	Pro		Arg	Ile
			20					25				•	. 30		
•	Ile G	ly Le	ılle	Ala	Gly	Ala	Phe	Phe	Trp	Leu	His	Ser	Leu	Leu	Ile
		35					4.0				•	. 45			
35	Ser Se	er Let	ı Val	Trp	Ile			Arg	Val	Île			Asn	. Lys	Lys
•	-	50				55					60		:		
,	Gly P	ro Thi	r Glr	ı Lys	Тут	Leu	Leu	Ile	Leu	Gly	Ala	Phe	Val	Ser	
	65				70)				75			•		80

	Tyr Ile	Gln i	Met N	Met	Phe	Arg	Phe	Ala	Tyr	Tyr	Lys	Leu	Asn	Lys	Lys
				85					90		•			95	
	Ala Ser	Glu	Gly I	Leu	Lys	Ser	Gln	Asn	Pro	Gly	Glu	Thr	Ala	Pro	Ser
			100			*		105		•			110		
	Met Ser	Leu i	Leu A	Ala	Tyr	Val	Ser	Gly	Leu	Gly	Thr	Gly	Ile	Met	Ser
5		115					120					125			
	Gly Val	Phe s	Ser I	Phe	Trp	Asn	Thr	Leu	Ser	Asp	Ser	Leu	Gly	Pro	Tyr
	130					135					140				
	Thr Val	Gly :	Ile I	lis	Gly	Asp	Ser	Pro	Ala	Phe	Phe.	Leu	Tyr	Ser	Ala
	145			•	150				• .	155		1			160
10	Phe Met	Thr A	Asp V	Val	Ile	Ile	Leu	Leu	His	Val	Phe	Trp	Glu	Ile	Val
			. 3	165		•	-		170					175	
* *	Phe Phe	Asp (Gly (Cys	Glu	Lys	Phe	Lys	Trp	Gly	Ile	Leu	Leu	Ile	Val
	•		180					185					190		
	Leu Gly	Thr I	His I	Leu	Leu	Val	Ser	Ala	Gln	Thr	His	Ile	Ser	Ser	Tyr
15		195	-	•		•	200		•			205			* *
: .	Tyr Gly	Ile A	Asn I	ieu	Ile	Ser	Ala	Phe	Ile	Ile	Leu	Val	Leu	Met	Lys
	210		=			215		-		27	220				
	Thr Trp	Ala	Phe I	Leu	Ala	Ala	Ğly	Gly	Leu	Cys	Arg	Ser	Leu	Lys	Leu
:	225				230		•			235	٠		٠		240
20	Cys Leu	Leu l	Met C	Sln	qaA	Lys	Asn	Phe	Leu	Leu	Tyr	Asn	Asn	Arg	Ser
•			` 2	245					250			•		255	
	Arg		•		,										•,
								,		•					
	<210> 19	9			•										
25	<211> 25	57							٠.		· · · ·	:			
•	<212> PI	RT										٠.			
	<213> A	rtifi	cial	Seq	uenc	e .		٠.			•				•
	<220>			٠.	* *				,						
	<223> De	escri	ption	n of	Art	ific	cial	Seq	uence	e: Sy	ynthe	etic		.•	
30	Se	equen	ce												
	<400> 19												. •	*.	
	Met Thr	Ala	Ala A	Ala	Phe	Phe	Gly	Cys	Ala	Phe	Ile	Ala	Phe	Asp	Pro
	1			5				-	10					15	
1	Ala Leu	Ala	Leu :	Tyr	Val	Phe	Thr	Glu	Ala	Thr	Glu	Pro	Leu	Arg	Ile
35	•		20					25					. 30		
•.	Ile Phe	Phe :	Ile A	Ala	Gly	Ala	Phe	Phe	Trp	Leu	Val	Gly	Leu	Leu	Ile
		35					40					45		, ,	
	Ser Ser	Leu '	Val :	Trp	Phe	His	Ala	Arg	Val	Ile	Ile	qaA	Asn	Lys	Aëp

		50				55					60				
	Ile P	ro Thi	Gln	Lys	Tyr	Leu	Leu	Ile	Phe	Lys	Ala	Phe	Val	Ser	Val
	65				70	•				75		1.54			80
	Tyr I	le Glr	ı Glu	Leu	Phe	Arg	Phe	Ala	Tyr	Tyr	Lys	Leu	Leu	Met	Lys
				85					90	•				95	
5	Ala S	er Glu	ı Gly	Leu	Lys	Ser	Ile	Gln	Pro	Gly	Glu	Thr	Ala	Pro	Ser
			100					105					110		
	Met A	rg Arg	g Leu	Ala	Tyr	Val	Ser	Gly	Leu	Gly	Phe	Ser	Ile	Met	Ser
		119	5				120		*			125	•		
•	Gly V	al Phe	Ser	Phe	Val	Thr	Thr	Leu	Ser	Asp	Ser	Leu	Gly	Pro	Gly
10	1	30				135	٠,				140				•
•	Val V	al Gly	.Ile	His	Gly	Asp	Ser	Pro	Gln	Trp	Phe	Leu	Tyr	Ser	Ala
	145	-			150					155	• • •			٠	160
	Phe M	et Th	r Leu	Tyr	Ile	Ile	Leu	Leu	His	Val	Phe	Trp	Gly	Ala	Val
	-			165				•	170					175	
15	Phe P	he Asj	g Gly	Сув	Glu	Lys	Lys	Asp	Trp	Gly	Ile	Leu	Leu	Ile	Val
			180					185				•	190		
	Leu L	eu Gl	ı His	Leu	Leu	Val	Ser	Ala	Gln	Thr	Phe	Phe	Ser	Ser	Tyr
		19	•	,		• : :	200				٠.	205			
	Tyr G	ly Ile	e Asn	Leu	Ala	Gly	Ala	Phe	Ile	Ile	Leu	Val	Leu	Met	Gly
20		10				215					220				
	His T	rp Ala	a Phe	Leu	Ala	Ala	Gly	Gly	Ser		Arg	Ser	Leu	Lys	
-	225				230					235				_	240
•	Cys L	eu Le	т СЛе		Asp	Lys	Asn	Phe		Leu	Tyr	Asn	GIn		ser
		•		245	: *		,		250		-	٠.,		255	
25	Arg	•									•	:			
	.•								,				•		
	<210>													•	•
	<211>							- (_							
20		PRT	.	1 50		~~									
30		Arti	LICIA	1 56	quen	ce .									
	<220>	Desc	-inti	, OD 0	€ λ'~	⊢:f:	cial	Sem	nenc	e S	vnth	et ic			
	<223>			011 0	T 'YT		CIAI	,	uenc	C. O	,				
	-400-	Sequ	ence					ŕ				*			
35	<400>	hr Al	a Ala	Val	Ala	Phe	Glv	Cvs	Ala	Phe	Île	Ala	Phe	Glv	Asp
<i>JJ</i>	1			5			1	-10	10					15	•
		eu Al	a Leu			Phe	Thr	Ile			Glu	Pro	Leu		Ile
		·- -	20					25					30		

	Ile	Phe	Leu	Phe	Ala	Gly	Ala	Phe	Phe	Trp	Leu	Val	ser	GIA	Leu	IIe
			35					40					45			
	Ser	Ser	Leu	Val	Trp	Phe	Met	His	Arg	Val	Ile	Ile	Asp	Asn	Lys	qaA
	. •	50					55					60				
	Gly	Ile	Thr	Gln	Lys	Tyr	Leu	Leu	Ile	Phe	Gly	Lys	Phe	Val	Ser	Val
5	65					70					75		•			80
	Tyr	Ile	Gln	Glu	Met	Leu	Arg	Phe	Ala	Tyr	Tyr	Lys	Leu	Leu	Lys	Met
					85	*				90					95	
	Ala	Ser	Glu	Gly	Leu	Lys	Ser	Ile	Asn	Asn	Gly	Glu	Thr	Ala	Pro	Ser
				100					105					110		
10	Met	Arg	Leu	Gln	Ala	Tyr	Val	Ser	Gly	Leu	Gly	Phe	Gly	Arg	Met	Ser
•			115					120					125			
	Gly	Val	Phe	Ser	Phe	Val	Asn	Ser	Leu	Ser	Asp	Ser	Leu	Gly	Pro	Gly
		130					135					140				
	Thr	Thr	Gly	Ile	His	Gly	Asp	Ser	Pro	Gln	Phe	Val	Leu	Tyr	Ser	Ala
15	145		• -			150		-			155			,		160
	Phe	Met	Thr	Leu	Val	Trp	Ile	Leu	Leu	His	Val	Phe	Trp	Gly	Ile	Tyr
					165					170					175	
	Phe	Phe	Asp	Gly	Cys	Glu	Lys	Lys	Lys	Ala	Gly	Ile	Leu	Leu	Ile	Val
				180		•			185				• •	190		٠
20	Leu	Leu	Thr	Asp	Leu	Leu	Val	Ser	Ala	Gln	Thr	Phe	Ile	Glu	Ser	Tyr
•			195					200					205			
	Tyr	Gly	Ile	Asn	Leu	Ala	Ser	Phe	Phe	Ile	Ile	Leu	Val	Leu	Met	Gly
		210					215			•		220				
	Thr	Gly	Ala	Phe	Leu	Ala	Ala	Gly	Gly	Ser	Cys	His	Ser	Leu	Lys	Leu
25	225					230					235					240
	Cys	Leu	Leu	Cys	Gln	Ile	Lys	Asn	Phe	Leu	Leu	Tyr	Asn	Gln	Arg	Lys
					245					250					255	
•	Arg															
							•									•
30	<21	0> 2	1													
	<21	1> 2	57					*								
	<21	2> P	RT		•							•		.:		
	<21	3> A	rtif	icia	l Se	quen	ce					•				
	<22	0>							,							
35 .	<22	3> D	escr	ipti	on o	f Ar	tifi	çial	Seq	uenc	e: S	ynth	etic			
		S	eque	nce												
		0 > 2				·								*		
•	Met	Thr	Ala	Ala	Val	Phe	Ala	Gly	Cys	Ala	Phe	Ile	Ala	Phe	Gly	Pro

	1				5					10					15	
	Asp	Leu	Ala	Leu	Tyr	Val	Phe	Thr	Ile	Ala	Glu	Glu	Pro	Leu	Arg	Ile
•		÷		20					25					30		
	Ile	Phe	Leu	Ile	Phe	Gly.	Ala	Phe	Phe	Trp	Leu	Val	Ser	Leu	Gly	Ile
			35				•	40					45		•	
5	Ser	Ser		Val	Tro	Phe	Met	Ala	His	Val	Ile	Ile	Asp	Asn	Lys	Asp
	-,	50			•		55					60	,			
•	Glv		Ile	Gln	Lys	Tyr	Leu	Leu	Ile	Phe	Gly	Ala	Lys	Val	Ser	Val
•	6.5				<u>-</u>	70					75					80
		Ile	Gln	Glu	Met	Phe	Leu	Phe	Ala	Tyr	Tyr	Lys	Leu	Leu	Lys	Lys
10	•				85				•	90				i.	95	
-	Met	Ser	Glu	Gly	Leu	Lув	ser	Ile	Asn	Pro	Asn	Glu	Thr	Ala	Pro	Ser
				100		_			105					110		
•	Met	Arg	Leu	Leu	Gln	Tyr	Val	ser	Gly	Leu	Gly	Phe	Gly	Ile	Arg	Ser
			115					120	•				125			
15	Gly	Val	Phe	Ser	Phe	Val	Asn	Thr	Ser	Ser	Asp	Ser	Leu	Gly	Pro	Gly
		i30					135					140				
	Thr	Val	Thr	Ile	His	Gly	Asp	Ser	Pro	Gln	Phe	Phe	Val	Tyr	Ser	Ala
	145					150					155					160
*, · · · ·	Phe	Met	Thr	Leu	Val	Île	Trp	Leu	Leu	His	Val	Phe	Trp	Gly	Ile	Val
20					165	· .		•		170		٠.			175	-
	Tyr	Phe	Asp	Gly	Cys	Glu	Lys	Lys	Lys	Trp	Ala	Ile,	Leu	Leu	Île	Val
	•	,		180					185					190		
	Leu	Ļeu	Thr	His	Asp	Leu	Val	Ser	Ala	Gln	Thr	Phe	Ile	Ser	Glu	Tyr
			195					200					205			
25	. Tyr	Gly	Ile	Asn	Leu	Ala	Ser	Ala	Gly	.Ile	Ile	Leu	Val	Leu	Met	Gly
		210					215					220				
	Thr	Trp	His	Phe	Leu	Ala	Ala	Gly	Gly	Ser	Cys	Arg	Ile	Leu	ГÀв	Leu
	225					230	٠				235					240
	Cys	Leu	Leu	Сув	Gln	Asp	Leu	Asn	Phe	Leu	Leu	Tyr	Asn	Gln	Arg	Ser
30			• .		245				,	250				•	255	
	Met						Ų.									
							• •				•					
	<21	0>,2	2								•	•				1
	<21	1> 2	57								• •					
35	<21	2> P	RT													
	<21	3> A	rtif	icia	l Se	quen	ce				٠.					
	<22									1		÷,	•			
	<22	3 > D	escr	ipti	on o	f Ar	tifi	cial	Seq	uenc	e:S	ynth	etic			

		Se	quer	ıce		•									*	
	<400	> 22	?													
	Met	Thr	Ala	Ala	Val	Phe	Phe	Ala	Сув	Ala	Phe	Ile	Ala	Phe	Gly	Pro
	1				5	٠.				10					15	
	Ala	Asp	Ala	Leu	Tyr	Val	Phe	Thr	Ile	Ala	Thr	Phe	Pro	Leu	Arg	Ile
5				20					. 25			,		30		
	Ile	Phe	Leu	Ile	Ala	His	Ala	Phe	Phe	Trp	Leu	Val	Ser	Leu	Leu	Lys
			35	•			•	40					45			
	Ser	Ser	Leu	Val	Trp	Phe	Met	Ala	Arg	Leu	Ile	Ile	Asp	Asn	Lys	Asp
		50			. •		55					60				
10	Gly	Pro	Thr	Met	Lys	Tyr	Leu	Leu	Ile	Phe	Gly	Ala	Phe	Asn	Ser	Val
	65					70			7		75					80
	Tyr	Ile	Gln	Glu	Met	Phe	Arg	Gln	Ala	Tyr	Tyr	ГЛЯ	Leu	Leu	Ļys	Lys
					85					90					95	
	Ala	Arg	Glu	Gly	Leu	Lys	Ser	Ile	Asn	Pro	Gly	Ser	Thr	Ala	Pro	Ser
15				100					105			٠		110		•
	Met	Arg	Leu	Leu	Ala	Thr	Val	Ser	Gly	Leu	Gly	Phe	Gly	Ile	Met	Val
	·		115					120					125			
	Gly	Val	Phe	Ser	Phe	Val	Asn	Thr	Leu	Trp	Asp	Ser	Leu	Gly	Pro	Gly
		130					135		.*.			140				
20 .	Thr	Val	Gly	Tyr	His	Gly	qaA	Ser	Pro	Gln		Phe	Leu	Ala	Ser	
	145		•			150					155					160
	Phe	Met	Thr	Leu		Ile	Ile	Asp	Leu		Val	Phe	Trp	GIĀ		vai
		·		-	165					170		_1	•	T	175	17. T
	Phe	Glu	yab			Glu	Lys	Lys			GTA	Pne	ьeu	190		vaı
25				180		~ 3	••- 1		185		Ωh ∞	Dho	Tla			иic
	Leu	Leu			Leu	GIY	vaı	Ser	Ala	GIII	TILL	File	205		UÇI	,
	<u></u>		195				00-	200	Dho	Lva	Tla	T.e.11			Met	Glv
	Tyr			Asn	Leu	Ala	215	Ala	PHE	грув	116	220		ДСС		
20	m \	210		T 011	T 011	· 31 a		Gly	Glv	Ser	Cvs			Met	Lvs	Lei
30			Ala	. Leu	ьeu	230		Gry	Q.Ly	001	235	_	,		~-	240
	225		T.011	Cve	- Gln			Gln	Phe	Leu			Asn	Gln	Arg	Ser
		пец	, Den	. Cyb	245					250		-•			255	
	Arg	,			217											
35	- A															
	<21	0> 2	:3											•		
		1> 2							•							

<212> PRT

	<213	3> A1	rtifi	icia.	L Sec	quenc	ce :					•				
	<22	0>									7					
	<223	3 > De	escr	iptio	on of	E Art	Segr	Sequence: Synthetic								
	•	S	equer	nce												
	<400	0> 23	3		-	•			•							
5	Met	Thr	Ala	Ala	Val	Phe	Phe	Gly	Ala	Ala	Phe	Ile	Ala	Phe	Gly	Pro
	1				5			•		10	· ·		3		15	
	Ala	Leu	Asp	Leu	Tyr	Val	Phe	Thr	Ile	Ala	Thr	Glu	Glu	Leu	Arg	Ile
	•			20					25					30		
	Ile	Phe	Leu	Ile	Ala	Gly	Phe	Phe	Phe	Trp	Leu	Val	Ser	Leu	Leu	Ile
10			35					40					45			
	Gly	Ser	Leu	Val	Trp	Phe	Met	Ala	Arg	Val	His	Ile	Asp	Asn	Ĺys	Asp
	*	50	•			• • •	55					60				
	Gly	Pro	Thr	Gln	Ile	Tyr	Leu	Leu	Ile	Phe	Gly	Ala	Phe	Val	Lys	Val
	65					70					75					. 80
15	Tyr	Ile	Gln	Glu	Met	Phe	Arg	Phe	Leu	Tyr	Tyr	Lys	Leu	Leu	Lys	Lys
		·.			85					90					95	
	Ala	Ser	Met	Gly	Leu	Lys	Ser	Ile	Asn	Pro	Gly	Glu	Asn	Ala	Pro	Ser
				100		*-			105			• •	. ••	110		
	Met	Arg	Leu	Leu	Ala	Tyr	Gln	Ser	Gly	Leu	Gly	Phe	Gly	Ile	Met	Ser
20			115					120					125			
	Arg	Val	Phe	Ser	Phe	Val	Asn	Thr	Leu	Ser	Ser	Ser	Leu	Gly	Pro	Gly
		130		•			135	٠.				140				
	Thr	Val	Gly	Ile	Thr	Gly	Asp	Ser	Pro	Gln	Phe	Phe	Leu	Tyr	Val	Ala
	145					150	•				155					160
25	Phe	Met	Thr	Leu	Val	Ile	Ile	Leu	Trp	His	Val	Phe	Trp	Gly	Ile	Val
					165	٠				170			•		175	
	Phe	Phe	Tyr	Gly	Сув	Glu	Lys	Lys	Lys	Trp	Gly	Ile	Ala	Leu	Ile	Val
٠.				180					185					190		
÷	Leu	Leu	Thr	His	Leu	Leu	Asp	Ser	Ala	Gln	Thr	Phe	Ile	Ser	Ser	Tyr
30			195					200	•	·			205			
	Glu	Gly	Ile	Àsn	Leu	Ala	Ser	Ala	Phe	Ile	Phe	Leu	Val	Leu	Met	Gly
	•	210					215					220				
	Thr	Trp	Ala	Phe	Gly	Ala	Ala	Gly	Gly	Ser	Cys	Arg	Ser	Leu	His	Leu
	225					230					235					240
35 ·	Сув	Leu	Leu	Cys	Gln	Asp	Lys	Asn	Ile	Leu	Leu	Tyr	Asn	Gln	Arg	Ser
					245			•		250					255	
	Arq														•	

	<21	0> 2	4													
	<211> 257															
•	<21	2> P	RT													
i	<21	3 > A	rtif:	icia	l Sec	quen	ce									
	<22	0 > ``						•		•						
5	<223> Description of Artificial Sequence: Synthetic															
	Sequence															
	<40	0> 24	4													
	Met	Thr	Ala	Ala	Val	Phe	Phe	Gly	Cys	Asp	Phe	Ile	Ala	Phe	Gly	Pro
	1				5		•	•		10					15	
10	Ala	Leu	Ala	Glu	Tyr	Val	Phe	Thr	Ile	Ala	Thr	Glu	Pro	Phe	Arg	Ile
			٠.	20					25					30	,	
	Ile	Phe	Leu	lle	Ala	Gly	Ala	Gly	Phe	Trp	Leu	Val	Ser	Leu	Leu	Ile
			35					40					45			
	Ser	His	Leu	Val	Trp	Phe	Met	Ala	Arg	Val	Ile	Lys	Asp	Asn	Lys	qaA
15		50					55		•		15	60			•	
	Gly	Pro	Thr	Gln	Ļys	Leu	Leu	.Leu	Ile	Phe	Gly	Ala	Phe	Val	Ser	Met
•	65					70					. 75	•				80
	Tyr	Ile	Gln	Glu	Met	Phe	Arg	Phe	Ala	Asn	Tyr	Lys	Leu	Leu		Lys
					85					90					95	
20	Ala	Ser	Glu	Gļn	Leu	Lys	Ser	Ile	Asn	Pro	Gly	Glu	Thr		Pro	Ser
	•			100					105	,				110		
	Met	Arg		Leu	Ala	Tyr	Val		Gly	Leu	Gly	Phe		Ile	Met	Ser
•			115					120					125			
2.5	Gly		Phe	Ser	Phe	Val		Thr	Leu	Ser	Asp		Leu	GLY	Pro	Gly
25		130			•		135	_		· _•		140	_	_	_	_
		Val	Gly	Ile	His		Asp	Ser	Pro	Gln		Phe	Leu	Tyr	Ser	
	145					150		_			155	_,		-		160
	Pne	Met	Thr	Leu	Val	TIE	TTE	Leu	Leu		vaı	Pne	Trp	GIĀ		vaı
20		5 1-		DL.	165	~ 1		T	T	170	G]		*	C1	175	77-7
30	. Pne	Pne	Asp		Cys	GIU	гуs	губ	_	пр	GİĀ	116	Leu	190	Tie	vaı
	T	7	Œb.ss	180	Leu	T 034	77-7		185	C1 =	mb~	Dhe	Tla		Com	T
	Leu	Leu		HIB	rea	Leu	vai	200	Ala	GIN	THE	Pile	205	SEI	Ser	TYL
	There	710	195	A an	Leu	בומ	Cer		Dhe	Tle	Tla	T.va		T.e.i	Mot	Glv
35	ıyı		TIE	YBII	пеп	ALG	215	ALG	Pile	116	116	220	Val	Deu	MEL	GIY
	Thr	210 Tro	בו ע	Dhe	Leu	Len		Glv	Glv	Ser	Cvo		Ser	Len	Ive	Mét
	225	-	n.a	£ 11C		230	-,,,,,,,	Ory.	O1 y	501	235	3			-10	240
			Len	Cvs	Gln		Lvs	Asn	Phe	Agn		Tvr	Asn	Gln	Ara	
	-,-	~	~~~	-,-			-,-					- 1 -				

255 250 245 Arg <210> 25 <211> 925 5 <212> PRT <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic Sequence 10 <400> 25 Gly Ala Thr Gly Ala Cys Thr Gly Cys Gly Gly Cys Cys Gly Thr Gly 10 Thr Thr Cys Thr Thr Cys Gly Gly Cys Thr Gly Cys Gly Cys Thr 25 Thr Cys Ala Thr Thr Gly Cys Cys Thr Thr Cys Gly Gly Cys Cys 15 40 45 Thr Gly Cys Gly Cys Thr Cys Gly Cys Cys Cys Thr Thr Thr Ala Thr 60 55 Gly Thr Cys Thr Thr Cys Ala Cys Cys Ala Thr Cys Gly Cys Cys Ala 75 20 70 Cys Cys Gly Ala Gly Cys Cys Gly Thr Thr Gly Cys Gly Thr Ala Thr 90 Cys Ala Thr Cys Thr Thr Cys Cys Thr Cys Ala Thr Cys Gly Cys Cys 105 Gly Gly Ala Gly Cys Thr Thr Cys Thr Thr Cys Thr Gly Gly Thr 25 120 Thr Gly Gly Thr Gly Thr Cys Thr Cys Thr Ala Cys Thr Gly Ala Thr 135 Thr Thr Cys Gly Thr Cys Cys Cys Thr Thr Gly Thr Thr Thr Gly Gly 30 155 150 Thr Thr Cys Ala Thr Gly Gly Cys Ala Ala Gly Ala Gly Thr Cys Ala 170 Thr Thr Ala Thr Thr Gly Ala Cys Ala Ala Cys Ala Ala Ala Gly Ala 35 Thr Gly Gly Ala Cys Cys Ala Ala Cys Ala Cys Ala Gly Ala Ala Ala 200 Thr Ala Thr Cys Thr Gly Cys Thr Gly Ala Thr Cys Thr Thr Thr Gly

215

210

WO 01/85912

220

	Gly	Ala	Gly	Cys	Gly	Thr	Thr	Thr	Gly	Thr	CAa	Thr	Cys	Thr	Gly	Thr
	225					230					235					240
	Cys	Thr	Ala	Thr	Ala	Thr	Сув	Cys	Ala	Ala	Gly	Ala	Ala	Ala	Thr	Gly
			,		245					250		,			255	
	Thr	Thr	Cys	Cys	Gly	Ala	Thr	Thr	Thr	Gly	Сув	Ala	Thr	Ala	Thr	Thr
5		•	•	260					265					270		
	Ala	Thr	Ala	Ala	Ala	Сув	Thr	Cys	Thr	Thr	Ala	Ala	Ala	Ala	Ala	Ala
		•	275		,			280					285			
	Ala	Gly	Cys	Сув	Ala	Gly	Thr	Gly	Ala	Ala	Gly	Gly	Thr	Thr	Thr	Gly
		290	,	•			295					300		. •	•	
10	Ala	Ala	Gly	Ala	Gly	Thr	Ala	Thr	Ala	Ala	Ala	CAa	Cys	Cys	Ala	Gly
	305					310	-				315					320
	Gly	Thr	Gly	Ala	Gly	Ala	Cys	Ala	Gly	Cys	Ala	Cys	Cys	Cys	Thr	Cys
•					325					330				-	335	
	Thr	Ala	Thr	Gly	Cys	Gly	Ala	Cys	Thr	Gly	Cys	Thr	Gly	Gly	CAa	Cys
15				340					345	,			٠	350	٠.	
	Thr	Ala	Thr	Gly	Thr	Thr	Thr	Cys	Thr	Gly	Gly	Cys	Thr	Thr	Gly	Gly
			355			•		360					365			
	Gly	Cys	Thr	Thr	Thr	Gly	Gly	Ala	Ala	Thr	Cys	Ala	Thr	Gly	Ala	Gly
	P	370			:		375					380			,	
20	Thr	Gly	Gly	Ala	Gly	Thr	Ala	Thr	Thr	Thr	Thr	Cys	Сув	Thr	Thr	
	385					390					395		-			400
	Gly	Thr	Gly	Ala	Ala	Thr	Ala	Cys	Cys	Сув	Thr	Ala	Thr	Cys		Gly
•					405					410					415	
	Ala	Сув	Thr	Cys	Cys	Thr	Thr	Gly	Gly	Gly	Gly	Cys	Cys			GIA
25			*.	420					425		_			430		
	Сув	Ala	Cys	Ala	Gly	Thr	Gly		Gly	Cys	Ala	Thr	,		Ala	Thr
			435				,	440		_		m 1	445		• • •	шь
	Gly		Ala	Gly	Ala	Thr			Thr	Cys	Cys		СУБ	Ala	ALA	Thr
		450			_		455 			••-		460	2			~
30			Thr	Thr	Cys			Thr	Thr	Ala		1111	cys	Ala	GIY	480
	465		_,	.		470 			~		475		<i>C</i> 1		Thr	
	Thr	Thr	Thr	Cys			GIÀ	Ala	Cys	490		1111	GIY	GIY	495	Cys
			Thr	33-	485		mb	mi	C111			Ġlv	Cre	λla		Glv
25	Ala	Thr	THE			СУВ	ini	1111	505			Gry	Cys	510		Cly
35	m	77 -	Thr	500		ም ኤ~	- G1.	Glar			Cve	Ala	Thr		Glv	Thr
	ınr	WTG	515	`	cys	Titt	GIY	520		JLY	-73		525		~-J	
	- [ת	መ ኮታ	Thr		ጥ ከተ	Thr	Thr			Thr	Glv	Glv			Glv	Thr
	wra							7			2	- 1	- 4 -		2	

		530					535					540				
	Gly	Ala	Gly	Ala	Ala	Gly	Ala	Ala	Ala	Ala	Ala	Gly	Thr	Gly	Gly	Gly
	545					550					555					560
	Gly	Cys	Ala	Thr	Суѕ	Cys	Thr	Cys	Cys	Thr	Thr	Ala	Thr	Сув	Gly	Thr
				٠	565			•		570					575	
5	Thr	Сув	Thr	Cys	Ċув	Thr	Gly	Ala	Cys	Cys	Cys	Ala	Cys	Cys	Thr	Gly
		•		580		* *			585		<i>:</i>			590		
	Сув	Thr	Gly	Gly	Thr	Gly	Thr	Cys	Ala	Gly	Сув	Cys	Cys	Ala	Gly	Ala
•		•	595					600				•`	605			
	Cys	Cys	Thr	Thr	cys	Ala	Thr	Ala	Ala	Gly	Thr	Thr	CAa	Thr	Thr	Ala
10		610	•				615	-				620	•	* .		
	Thr	Thr	Ala	Thr	Gly	Gly	Ala	Ala	Thr	Ala	Ala	Ala	Cys	Сув	Thr	Gly
	625					630		٠.			635			•		640
	Gly	Cys	Gly	Thr	Cys	Ala	Gly	Ċys	Ala	Thr	Thr	Thr	Ala	Thr	Ala	Ala
					645					650		•			655	
15	Thr	Cys	Cys	Thr	Gly	Gly	Thr	Gly	Cys	Thr	Сув	Ala	Thr		Gly	Gly
				660					665					670		_
	Cys	Ala	Cys	Суз	Thr	Gly	Gly		Cys	Ala	Thr	Thr		Thr	Thr	Ala
			675					680					685		_	_,
. •	Gly	CAè	Thr	Gly	Cys	Gly	Gly	Gly	Ala	Gly	Gly		Ala	Gly	Cys	Thr
20		690		• :			695					700				_
	Gly	Сув	Сув	Gly	Ala	Ala	Gly	Сув	Cys	Thr			Ala	Ala	Cys	
	705					710					715		_		-1-	720
	Cys	Thr	Gly	Cys		Thr	Gly	Cys	Thr		Thr	Gly	Cys	Cys		Ala
	•	٠.			725			_		730		_,			735	. :
25	Gly	Ala	Cys	Ala	Ala	Gly	Ala	Ala			Thr	Tnr	Cys		Thr	Cys
**				740					745				~ 1	750	Mb sa	·
•	Thr	Thr	Thr		Cys	Ala	Ala			Ala	GIY	Cys			Thr	сув
		•	755			_ ~		760		~ ~~~	•	7.7.	765		Cl.	. Al-
	Cys		Gly	Ala	Thr	Ala			Сув	Thr	Сув			GIA	GIĀ	Ala
30		770				_	775		FT130 000	. mb	~-~	780			ת וג	בות
			Сув	Ala	GIY			Cys	THE	IIII			СУБ	AIG	AIa	800
	785			_		790		a	mb.		795		The	Cvr	Thr	
	Cys	Cys	Gly	CAs			Ala	Cys	THE			Ara	1111	Сув		
25		·			805				~ 1	810		Cyrc	בות	. או	815	
35	Thr	Ala	Gly			. GTĀ	Ala	Ϋ́Τā	825 825		. wrg	. сув	AId	830		****
		- m ¹ -		820		m)-	. m	. ጥ ⊳⊶			٠ (٢٠/٠	ጥኮ~	ري . د ري .			Αla
	GLy	Thr	Gly		сув	ını	ınr			1111	сув	. 1111	845		, Ald	
			835)				840	,				073			

```
Ala Thr Cys Cys Cys Thr Thr Thr Thr Cys Thr Gly Gly Thr Gly
                                                 860
         850
                             855
      Gly Ala Ala Thr Thr Gly Ala Gly Ala Ala Gly Ala Ala Ala Thr
                                             875
                         870
      Ala Ala Ala Cys Thr Ala Thr Gly Cys Ala Gly Ala Thr Ala Thr
                                                            895
5
                     885
      Gly Cys Gly Thr Thr Cys Cys Ala Ala Ala Ala Ala Ala Ala Ala Ala
                                     905
                 900
      920
10
      <210> 26
      <211> 925
      <212> DNA
      <213> human
15
      <400> 26
      gatgactgeg geegtgttet teggetgege etteattgee ttegggeetg egetegeeet 60
      ttatgtcttc accatcgcca ccgagccgtt gcgtatcatc ttcctcatcg ccggagcttt 120
      cttctggttg gtgtctctac tgatttcgtc ccttgtttgg ttcatggcaa gagtcattat 180
      tgacaacaaa gatggaccaa cacagaaata tctgctgatc tttggagcgt ttgtctctgt 240
      ctatatccaa gaaatgttcc gatttgcata ttataaactc ttaaaaaaaag ccagtgaagg 300
20
      tttgaagagt ataaacccag gtgagacagc accctctatg cgactgctgg cctatgtttc 360
      tggcttgggc tttggaatca tgagtggagt attttccttt gtgaataccc tatctgactc 420
      cttggggcca ggcacagtgg gcattcatgg agattctcct caattcttcc tttattcagc 480
      tttcatgacg ctggtcatta tcttgctgca tgtattctgg ggcattgtat tttttgatgg 540
      ctgtgagaag aaaaagtggg gcatcctcct tatcgttctc ctgacccacc tgctggtgtc 600
25
      agcccagacc ttcataagtt cttattatgg aataaacctg gcgtcagcat ttataatcct 660
      ggtgctcatg ggcacctggg cattcttagc tgcgggaggc agctgccgaa gcctgaaact 720
      ctgcctgctc tgccaagaca agaactttct tctttacaac cagcgctcca gataacctca 780
      gggaaccage actteccaaa eegeagaeta catetttaga ggaagcacaa etgtgeettt 840
      ttctgaaaat ccctttttct ggtggaattg agaaagaaat aaaactatgc agatatgcgt 900
30
                                                                      925
      tccaaaaaaa aaaaaaaaaa aaaaa
      <210> 27
      <211> 925
35
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Description of Artificial Sequence: Synthetic
```

Sequence

```
<400> 27
      gatgacageg geegttttet teggetgege ettgattgee ttagggeetg etetegeeet 60
      ctatgtcttg accatcgcaa ccgagccttt gcgtatcatc ttcctgatcg ccggagcttt 120
      cttttggttg gtctctctac tgatttcgtc acttgtttgt ttcatggcca gagtcatgat 180
      tgacaaaaaa gatggtccaa cacacaaata tctgctgatc ttaggagcgt ttgtctctgt 240
5
      ctatatccag gaaatgttac gatttgctta ttataacctc ttaaagaaag ccagagaagg 300
      ttttaagagt atcaacccag gggagacagc accctctatt cgactgctcg cctatgtgtc 360
      tggcttaggc tttggtatca tgagcggagt attgtccttt gtaaataccc tgtctgactc 420
      cttggggccg ggcacagtag gcattcaggg agattcccct caattgttcc tttaatcagc 480
      ttttatgacg etegteatta tgttgetgea agtattetgt ggeattgtet tttttgaggg 540
10
      ctgtgaaaag aaaaattggg gcatcctcct tatggttctc ctaacccacc ttctggtgtc 600
      cgcccagacg ttcataagat cttattatgg aataaacctg gcgtcggcat ttataatcct 660
      ggttctcatg ggcacctggg cgttcttagc agcgggaggt agctgccgca gcctgaagct 720
      ctgcctactc tgccatgaca agaactttct tctgtacaac caacgctcca gttaacctca 780
      cggaaccagg acttcccaaa ccgcagatta catcttcaga ggaaggacaa ctgtaccttt 840
15
       ttctgaaaat ccctttttct ggtggaattg agaaagaaat aaaactatcc agatatgggt 900
                                                                         925
       tccaaaaaa aaaaataaaa aaaac
       <210> 28
20
       <211> 925
       <212> DNA
       <213> Artificial Sequence
       <220>
       <223> Description of Artificial Sequence: Synthetic
25
             Sequence
       <400> 28
       gatgactgcg gccgtcttct tcgggtgcgc cttaattgcc tttgggcctg ccctcgccct 60
       gtatgtetta accategeta eegageeett gegtatgate tteetaateg eeggtgettt 120
       cttctggttg gtgtctctac taatttcgtc tcttgtttgc ttcatggcga gagtcataat 180
       tgacaataaa gatggcccaa cacagaaata tctactgatc tttggagcgt tcgtctctgt 240
30
       gtatatccaa gaaatgtttc gatttgccta ttataagctc ttaaaaaaaag ccagtgaagg 300
       tttcaagagt atgaacccag gagagacage teeetetate egactgetgg eetatgtate 360
       tggctttggc tttggcatca tgaggggagt attatecttt gttaatacce tetetgaete 420
       gttggggcca ggcacagttg gcattcacgg agattcgcct caattattcc tttattcagc 480
       tttcatgacg ctggtcatta tattgctgca tgtattctgc ggcattgtgt tttttgaagg 540
35
       ctgtgataag aaaaactggg gcatgctcct tatagttctc cttacccacc tectggtgtc 600
       ggcccagaca ttcataagtt cttattacgg aataaagctg gcgtcagcat ttattatcct 660
       ggteeteatg gggacetggg cattettage tgegggagge agetgeegga geetgaaaet 720
```

```
ctgeettete tgecacgaca agaagtttet tetatacaac categeteca getaacetea 780
      gggaaccaga acttcccata ccgcagacta catcttgaga ggaagaacaa ctgttccttt 840
       ttccgaaaat ccgtttttct gatggaattg tgaaagaaac aaaactatgc agatatgagt 900
                                                                         925
       tccaaataaa aaaaacaaaa aaaag
5
       <210> 29
       <211> 925
       <212> DNA
       <213> Artificial Sequence
       <220>
       <223> Description of Artificial Sequence: Synthetic
10
             Sequence
       <400> 29
       gatgaccgcg gccgtgttct tcggatgcgc ctttattgcc ttcgggcctg cgctcgccct 60
       atatgtettt accategeea eegageegtt gegtataate tteettateg eeggegettt 120
       cttgtggttg gtatctctac ttatttcgtc ccttgtttgg ttcatggcaa gagtcattat 180
15
       tgacaacaaa gatgggccaa cacaaaaata tcttctgatc ttcggagcgt tggtctctgt 240
       atatatecat gaaatgttee gatttgegta ttataaaete ttaaataaag eeagegaagg 300
       tttgaagagt ataaacccag gtgagacagc cccctctatg cgactgctag cctatgtttc 360
       tggcttcggc tttgggatca tgagaggagt attttccttt gtcaataccc tgtctgactc 420
       attggggcct ggcacagtcg gcattcaggg agattcacct caatttttcc tttactcagc 480
20
       tttgatgacg ctagtcatta ttttgctgca cgtattctgg ggcattgtat tttttgatgg 540
       ctgtgacaag aaaaagtggg gcatactcct tattgttctc ctcacccacc tgctggtgtc 600
       agcccagact ttcataagct cttattaggg aataaaactg gcgtctgcat ttatcatcct 660
       ggtgctcatg ggaacctggg ctttcttagc cgcgggaggg agctgccgaa gcctgaatct 720
       ctgeeteete tgeeaggaca agaaatttet tetttacaae caeegeteea ggtaaeetea 780
25
       aggaaccagt acttcccaca ccgcagagta catcttaaga ggaagtacaa ctgtcccttt 840
       ttcggaaaat ccatttttct gttggaattg cgaaagaaag aaaactatac agatatgtgt 900
       tccaaacaaa aaaaagaaaa aaaaa
30
       <210> 30
       <211> 925
       <212> DNA
       <213> Artificial Sequence
       <220>
       <223> Description of Artificial Sequence: Synthetic
35
             Sequence
       <400> 30
       gatgacggeg geogtattet teggttgege etteattgee ttggggeetg cactegeeet 60
```

```
ttatgtcttc accatcgcga ccgagccatt gcgtattatc ttcctcatcg ccggggcttt 120
      cttatggttg gtttctctac tcatttcgtc gcttgtttga ttcatggcta gagtcatcat 180
      tgacaagaaa gatggaccaa cacataaata tctcctgatc ttgggagcgt tagtctctgt 240
      ttatatccac gaaatgttgc gatttgcata ttataatctc ttaaacaaag ccagggaagg 300
      tttaaagagt attaacccag gcgagacagc gccctctata cgactgcttg cctatgtctc 360
      tggcttgggc tttggaatca tgagtggagt attctccttt gtgaataccc tatctgactc 420
5
      tttggggccc ggcacagtgg gcattcaagg agattctcct caattcttcc tttagtcagc 480
      tttaatgacg cttgtcatta tcttgctgca ggtattctga ggcattgttt tttttgacgg 540
      ctgtgagaag aaaaaatggg gcattctcct tatcgttctc ctgacccacc tactggtgtc 600
      tgcccagacc ttcataaggt cttattaagg aataaatctg gcgtccgcat ttatgatcct 660
      ggtactcatg ggtacctggg cettettage ggegggagga agetgeegta geetgaacet 720
10
      ctgcctgctc tgccaagaca agaattttct tctctacaac cagcgctcca gataacctca 780
      tggaaccagc acttcccaga ccgcagaata catctttaga ggaagcacaa ctgtgccttt 840
      ttcagaaaat ccttttttct gctggaattg ggaaagaaaa aaaactattc agatatgcgt 900
                                                                         925
      tccaaagaaa aaaaaaaaaa aaaat
15
       <210> 31
       <211> 925
       <212> DNA
       <213> Artificial Sequence
20
       <220>
       <223> Description of Artificial Sequence: Synthetic
             Sequence
       <400> 31
      gatgactgca gccgtgtttt tcggctgcgc cttcatggcc ttcggacctg cgcttgccct 60
       ttacgtette acgategeca cagageegtt tegtateate tteeteatgg eeggageatt 120
25
       cttctgtttg gtgtccctac tgatgtcgtc cctagtttgg tttatggcaa gcgtcattat 180
       ggacaacaaa gatggaccta cacagaacta tetgetgate tttggagegt ttgtttetgt 240
       ctacatccaa gagatgttcc gatttgcata ttataaactc ttaaaaaaagg ccagtgaagg 300
       tttgaatagt ataaacccag gtgagacagc accatctatg cgtctgctgg cctatgtttc 360
       gggettggga tttggaatta tgagtggegt attttegttt gtgaaaacce tatetgaete 420
30
       cttcgggcca gggacagtgg gaattcatgg tgattctccc caattcttgc tttattcagc 480
       tttcattacg ctggtcatta tcttgctgca tgtattctgg ggtattgtat tctttgatgg 540
       gtgtgagaaa aaaaagtgtg gcatcctcct tatcgtgctc ctgacacacc tgcttgtgtc 600
       agoccagaco ttgataagtt catattatgg tataaacotc gogtcagogt ttataatact 660
       ggtgcttatg ggcacctggg cattgttagc tgcaggaggc agttgccgaa gcctgaaact 720
35
       gigeetgeta tgecaagata agaactieet tetttagaac cagegateea gatateetea 780
       gggcaccage acgtcccaaa cagcagacta tatetttage ggaagcacga etgtgccatt 840
       ttctgataat cccttcttct ggtggaattg agaaagaaat aatactatgc acatatgcgt 900
```

gccaaaaaa aaaaaaaata aaaaa

```
<210> 32
       <211> 925
       <212> DNA
       <213> Artificial Sequence
5
       <220>
       <223> Description of Artificial Sequence: Synthetic
            Sequence
       <400> 32
      gatgactgct geegtgttet teggetggge etteatagee tteggteetg egetegeeet 60
10
      ttaggtette acaategeea etgageegtt cegtateatg tteeteatag eeggagettt 120
       cttctgcttg gtgtcgctac tgatatcgtc ccttgtttgg ttcatggcaa gggtcattat 180
       agacaacaat gatggaccca cacagaagta tctgctaatc tttggtgcgt ttgtctctgt 240
       ctagatccaa gaaatgttcc gttttgcata ctataaactg ttaaaaaaag ccagtgatgg 300
       tttgaacagt ataaagccag gtgaaacagc accttctatg cgcctgctgg cgtatgtttc 360
15
       aggettgggt tttggaatea tgagtggggt atttteattt gtgaataeee tateegaete 420
       cttggggcca ggaacagtgg gtattcatgg cgattctccg caattcttac tttattctgc 480
       tttcatcacg ctggtgatta tcttactgca tgttttctgg ggcattgtat tgtttgatgg 540
       atgtgagaat aaaaagtgcg gcatcctgct tatcgtactc ctgactcacc tgctcgtgtc 600
       agegeagace ttaataagtt ettattatgg cataaacetg gegteageat ttataattet 660
20
       ggtgctcatg ggcacgtggg cattattagc tgctggaggc agctgccgaa ggctgaaact 720
       atgcctgctt tgccaagaca agaacttgct tctttaaaac cagcgttcca gataccctca 780
       ggggaccagc acateccaaa etgeagacta catetttagg ggaagcacaa etgtgeettt 840
       ttctgacaat cccttgttct ggtgaaattg agatagaaat aacactatgc agatatgcgt 900
                                                                         925
       accaaaaaat aaaaaaaaca aaaaa
25
       <210> 33
       <211> 925
       <212> DNA
       <213> Artificial Sequence
30
       <220>
       <223> Description of Artificial Sequence: Synthetic
             Sequence
       <400> 33
35
```

gatgactgcc gccgtgttgt tcggctgagc cttcattgcc ttcggccctg cgctggccct 60
ttaagtcttc actatcgcca ccgagccgtt gcgtatcata ttcctcattg ccggagcctt 120
cttctggttg gtgtcactac tgatttcgtc cctcgtttgg ttgatggcaa gagtcattat 180
tgacaacaac gatggaccga cacagaaata tctgcttatc tttggcgcgt ttgtgtctgt 240

```
ctaaatccaa gatatgttcc gctttgcata gtataaacta ttaaaaaatg ccagtgacgg 300
       tttgaagagt ataaaaccag gtgatacagc accetetatg eggetgetgg catatgttte 360
       tggcttgggc tttggaatga tgagtggagt attttctttt gtgaacaccc tatcggactc 420
       cttagggcca ggtacagtgg gcattcatgg ggattctcca caattctttc tttattccgc 480
       tttcatgacg ctggtaatta tctttctgca tgtcttctgg gggattgtat tatttgatgg 540
       ttgtgagaac aaaaagtggg gcatcctact tatcgttctc ctgacccacc tgctggtgtc 600
 5
       agcacagacc tttataagtt cctattatgg gataaaccta gcgtcagctt ttataatcct 660
       ggtgctgatg ggcacatggg catttttagc tgccggaggc aggtgccgaa gactgaaact 720
       ttgcctgctc tgccaagaga agaacttact tctttataac cagcgctcca gatagcctca 780
       gggaaccagc actteccaaa cegeagacta gatetttaga ggaagcacta etgtgeeett 840
       ttctgagaat cccttattct ggtgtaattg agacagaaat aagactatgc aaatatgcgt 900
10
                                                                         925
       tccaaaaaac aaaaaaaaga aaaaa
       <210> 34
       <211> 925
15
       <212> DNA
       <213> Artificial Sequence
       <220>
       <223> Description of Artificial Sequence: Synthetic
            Sequence:
20
       <400> 34
       gatgactgcg geogtgttat teggetgtge etteategee ttegggeetg egetageeet 60
       ttatgtotto accatogoca oggagoogtt acgtatoatt ttootcatog coggagogtt 120
       cttctgattg gtgtctctac tgatctcgtc cctggtttgg ttaatggcaa gtgtcattat 180
       cgacaacaag gatggaccaa cacagaatta tctgctcatc tttggggcgt ttgtatctgt 240
       ctatatccaa gacatgttcc ggtttgcata atataaactt ttaaaaaacg ccagtgaggg 300
25
       tttgaaaagt ataaatccag gtgacacagc accgtctatg cgactgctgg cttatgtttc 360
       cggcttgggg tttggaataa tgagtggtgt attttccttt gtgaagaccc tatcagactc 420
       ctttgggcca ggcacagtgg ggattcatgg agattctcct caattcttcc tttattcggc 480
       tttcataacg ctggttatta tcttcctgca tgtgttctgg ggaattgtat tttttgatgg 540
       ctgtgagaag aaaaagtgag gcatccttct tatcgtcctc ctgacgcacc tgctagtgtc 600
30
       ageteagace tteataagtt egtattatgg aataaacett gegteageet ttataatget 660
       ggtgctaatg ggcacttggg cattcttagc tgcgggaggc agatgccgaa gtctgaaact 720
       ctgcctgctg tgccaagaaa agaactttct tctttacaac cagcggtcca gataacctca 780
       gggtaccagc acctcccaaa cggcagacta aatctttagt ggaagcacca ctgtgccgtt 840
       ttctgaaaat ccctttttct ggtgcaattg agagagaaat aaaactatgc atatatgcgt 900
35
                                                                          925
       cccaaaaaag aaaaaaaaaa aaaaa
```

<210> 35

```
<211> 925
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Description of Artificial Sequence: Synthetic
5
            Sequence
      <400> 35
      gatgactgcg gcagtgttct ttggctgcgc cttcattgcg ttcgggccag cgctcgctct 60
      ttatgtette accatggeea eegaacegtt gegtateate tteeteateg egggagettt 120
      attetggttt gtgtetetee tgatttegte eettgtatgg tteattgeaa gagteattat 180
      tgagaacaaa gaaggaccaa ctcagaaata cctgctgatg tttggagcat ttgtctctgt 240
10
      ctatatccaa gaaatgttcc gattagcata ttataaactc ttcaaaaaag cgagtgaagg 300
      attgaagagt ataaaccccg gtgagacggc accctcaatg cgacttctgg cctacgtttc 360
       tgggttgggc ttaggaatca ttagtggagt cttttccttg gtgaatacac tatctgattc 420
      cttgggccca ggcacggtgg gcatacatgg agattctcct cacttcttcc tgtattcagc 480
      atteatgact etggteatea tettgetgea tgtattatgg ggeattgtat ttttegatgg 540
15
      ctgggagaag aaaaagtggg gtatcctcct catcgttctg ctgacccaac tgctggtttc 600
       agcccacacc ttcatgagtt cttaatatgg aattaacctg gcctcagcat tgataatcct 660
       agtgotcatt ggcacctgcg cattottggc tgcgggaggc agctgtcgaa gcctcaaact 720
      ctggctgctc tgacaagaca ataactttct cctttacaag cagcgctcaa gataacctca 780
      gggaaccagc acttcgcaaa ccgcagacta catttttaga ggcagcacaa cggtgccttt 840
20
       atctgaaaat ccctttttct ggtggaagtg agaaagaaat aaaactatgc agatctgcgt 900
                                                                         925
       tccgaaaaaa aaaaaaaaaa ataaa
       <210> 36
25
       <211> 925
       <212> DNA
       <213> Artificial Sequence
       <220>
       <223> Description of Artificial Sequence: Synthetic
30
            Sequence
       <400> 36
       gatgactgcg gctgtgttct tcggctgcgc gttcattgca ttcgggcctg cgctcgccct 60
       ttatgtgttc accatagcca ccgatccgtt gcgcatcatc ttgctcatcg caggagcttt 120
       tttctggttc gtgtctctgc tgatttcatc ccttgtttgg ttcatcgcaa gagtgattat 180
       tgaaaacaaa gatggaccaa cccagaaata gctgctgata tttggagctt ttgtctccgt 240
35
       ctatatgcaa gaaatattcc gatttgcata ttacaaactc ttgaaaaaaag caagtgaagg 300
       tttgaagage ataaaceegg gtgagacage accetetatg egacteetgg cetaggttte 360
       tggattgggc tttggaatca tcagtggagt gttttcctta gtgaatactc tatctgactc 420
```

```
cttggggcca ggcacagtgg gcattcatgg agactctcct cagttcttcc tatattcagc 480
      tttcatqacc ctggtcatga tcttgctaca tgtattttgg ggcatcgtat ttttggatgg 540
      ctgagagaag aataagtggg gcatcctcct gatcgttcta ctgacccatc tgctggtctc 600
      agcccagacc ttcataagtt cttattatgg aatcaacctg gcgtcagcat taataatcct 660
      tgtgctcatc ggcacctggg cattcttagc tgcgggtggc agetgccgaa gcctgaaact 720
      ctgactgctc tgtcaagaca acaactttct gctttacaaa cagcgctcta gataacccca 780
 5
      gggaacgagc acttcacaaa ccgctgacta catctttaga gggagcacaa cagtgccttt 840
      ttctgaaaac ccctttttgt ggtggaaatg agaaagtaat aaaaccatgc agatgtgcgt 900
      tccaaaaaaa aataaaaaaa acaaa
10
       <210> 37
      <211> 925
      <212> DNA
      <213> Artificial Sequence
       <220>
      <223> Description of Artificial Sequence: Synthetic
15
            Sequence
      <400> 37
      gatgactgcg gccgtgttct tgggctgcgc attcattgct ttcgggcccg cgctcgcgct 60
      ttatgtattc accattgcca ccgacccgtt gcggatcatc ttactcatcg ctggagcttt 120
      cttctggttg gtgtctctac tgatttcttc ccttgtctgg ttcatggcaa gagtaattat 180
20
      tgataacaaa qacqqaccaa cgcagaaata actgctgatt tttggagcct ttgtctcggt 240
       ctatatacaa gaaattttcc gattcgcata ttagaaactc ttaaaaaaag ctagtgaagg 300
       cttgaagagg ataaacccag gtgagactgc accctccatg cgactgctgg cctaagtttc 360
      tggtttgggc ttcggaatca tgagtggagt attttccttt gtgaataccc tatctgagtc 420
      cttgggacca ggcactgtgg gcatccatgg agagtctcct caattcttcc tttattcagc 480
25
      cttcatgacg ctggtcataa tcttgcttca tgtattctgg ggcatggtat ttttagatgg 540
      ctgtgagaag aacaagtggg ggatcctcct aatcgttctt ctgacccacc tgctggtgtc 600
       agcccaaacc ttcattagtt cttactatgg aatgaacctg gcatcagcat ttataatcct 660
       cgtgctcatg ggcacctgag cattctttgc tgcgggcggc agctggcgaa gcctaaaact 720
      ctgtctgctc tgccaagaca agaactttct actttacaat cagcgctcca gataaccgca 780
30
       gggaacaagc acttotoaaa cogoogacta catgtttaga ggaagcacaa ctgtgoottt 840
      ctctgaaaag ccctttttat ggtggaattg agaaagcaat aaaacgatgc agatatgcgt 900
                                                                         925
       tcctaaaaaa aacaaaaaaa agaaa
35
       <210> 38
       <211> 925
       <212> DNA
```

<213> Artificial Sequence

5

10

15

tcccaaaaaa aagaaaaaaa aaaaa

<400> 38 gatgactgcg gcggtgttct taggctgcgc tttcattgcc ttcgggccgg cgctcgcact 60 ttatgttttc accategeca eegageegtt gegaateate ttteteateg eeggagettt 120 gttctggtta gtgtctcttc tgatttcctc ccttgtgtgg ttcatagcaa gagttattat 180 tgacaacaaa gagggaccaa cacagaaata tctgctgatc tttggagcgt ttgtctcagt 240 ctatattcaa gaaatcttcc gattggcata ttaaaaaactc tttaaaaaaag ccagtgaagg 300 gttgaagaga ataaaccctg gtgagaccgc accctcgatg cgactactgg cctatgtttc 360 tggcttgggc ttgggaatca taagtggagt tttttccttc gtgaatacgc tatctgaatc 420 cttgggtcca ggcaccgtgg gcatgcatgg agaatctcct catttcttcc tctattcagc 480 gttcatgaca ctggtcatta tcttgctcca tgtattgtgg ggcatagtat tttttgatgg 540 ctgcgagaag aagaagtggg gaatcctcct tatcgttctc ctgacccagc tgctggtatc 600 agcccatacc ttcatcagtt cttagtatgg aataaacctg gcttcagcat tcataatcct 660 ggtgctcata ggcacctgtg cattcttcgc tgcggggggc agctgacgaa gccttaaact 720 ctgcctgctc tggcaagaca aaaactttct tctttacaac cagcgctcga gataaccaca 780 gggaactage actteceaaa eegeggaeta catatttaga ggtageacaa eegtgeettt 840 gtotgaaaaa coottttttt ggtggaactg agaaaggaat aaaacaatgo agatttgogt 900

925