Machine Learning

Clustering

Fabio Vandin

December 16th, 2022

Unsupervised Learning

In unsupervised learning, the training dataset is $(x_1, x_2, ..., x_m)$ \Rightarrow no target values!

We are interested in finding some interesting *structure* in the data, or, equivalently, to organize it in some meaningful way.

We are going to see the most common unsupervised learning approaches: *clustering*

We are going to focus on the most commonly used techniques:

- k-means
- linkage-based clustering,

There are also other general techniques: dimensionality reduction, association analysis,...

Clustering

Informal definition: the task of identifying meaningful groups among data points.

Definition

Clustering is the task of grouping a set of objects such that similar objects end up in the same group and dissimilar objects are separated into different groups.

Clustering

Informal definition: the task of identifying meaningful groups among data points.

Definition

Clustering is the task of grouping a set of objects such that similar objects end up in the same group and dissimilar objects are separated into different groups.

Example

- Data: features (e.g. product bought, demographic info, etc.) for a large number of customers
- Goal: customers
 segmentation = identify
 subgroups of homogeneous
 customers
- useful for: advertizing, product development, ...

Example (2)

Data:

- rows = genes ($\approx 20 \times 10^3$)
- columns = samples, cancer patients ($\approx 10^3 10^4$)
- values = expression of a gene in a patient (∈ ℝ)

Goal: find similar cancer samples

 cluster colunms (samples) to find similar subgroups of patients (e.g., disease subtypes)

Goal: find genes with similar gene expression profiles

 cluster rows (genes) to deduce function of unknown genes from experimentally known genes with similar profiles

Other Applications

- Information Retrieval: clustering is used to find topics/categories of documents that are not explicitly given
- Image Processing: used for several tasks/applications, including: identification of different types of tissues in PET scans; identification of areas of similar land use in satellite pictures;...
- Analysis of Social Networks: detection of communities
- ...

Clustering Definition

Definition

Clustering is the task of grouping a set of objects such that similar objects end up in the same group and dissimilar objects are separated into different groups.

Note: the definition above is not rigorous and may be ambigouos

 \Rightarrow different definitions have been proposed that may lead to different types of clustering. We will see only few of them.

Note: there are some difficulties that are somehow inherent in clustering...

Clustering: Difficulties

Similarity is not transitive

transitive property.

$$a = b$$

 $a = b$
 $b = c$
 $a = c$

Clustering: Difficulties

Similarity is not transitive

 \Rightarrow "similar objects in same group" and "dissimilar objects into different groups" may contradict each other...

Example

Assume we have data points in \mathbb{R}^2 as in figure

Assume we want to cluster the data into k = 2 clusters. How should we cluster the data?

If we focus on "similar objects in same group":

If we focus on "similar objects in same group":

If we focus on "dissimilar objects into different groups":

In general we do not have a ground truth to evaluate our clustering (unsupervised learning)

Example

Assume we have data points in \mathbb{R}^2 as in figure

Assume we want to cluster the data into k = 2 clusters. What is a correct clustering?

The following clusterings are different but both justifiable

In practice: a given set of objects can be clustered in various different *meaningful* ways

A Model for Clustering

Let's formulate the clustering problem more formally:

- Input: set of elements X and distance function
 d: X × X → R+, that is a function that
 - is symmetric: $d(\mathbf{x}, \mathbf{x}') = d(\mathbf{x}', \mathbf{x})$ for all $\mathbf{x}, \mathbf{x}' \in \mathcal{X}$
 - $d(\mathbf{x}, \mathbf{x}) = 0$ for all $\mathbf{x} \in \mathcal{X}$
 - d satisfies the triangle inequality: $d(\mathbf{x}, \mathbf{x}') \leq d(\mathbf{x}, \mathbf{z}) + d(\mathbf{z}, \mathbf{x}')$
- **Output**: a partition of \mathcal{X} into *clusters*, that is $C = (C_1, C_2, \dots, C_k)$ with
 - $\bigcup_{i=1}^k C_i = \mathcal{X}$
 - for all $i \neq j$: $C_i \cap C_j = \emptyset$

Notes:

- sometimes the input also includes the number k of clusters to produce in output
- sometimes, the output is a dendrogram (from Greek dendron = tree, gramma = drawing), a tree diagram showing the arrangement of the clusters

A Model for Clustering (continue)

Sometimes instead of a distance function we have a similarity function $s: \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$, that is a function that:

- is symmetric: s(x, x') = s(x', x) for all $x, x' \in \mathcal{X}$
- $s(\mathbf{x}, \mathbf{x}) = 1$ for all $\mathbf{x} \in \mathcal{X}$

Choice of distances/similarity:

- depends on the type of data
- different distances may be used for the same dataset
 - ⇒ choice of distances may have an impact on the results

Classes of Algorithms for Clustering

- 1 Cost minimization algorithms
- 2 Linkage-based algorithms