Causal Inference

MIXTAPE SESSION

Roadmap

Counterfactuals and causality
Causality and models
Potential outcomes
Randomization and selection bias
Randomization inference

Directed Acyclic Graphs
Graph notation
Backdoor criterion
Collider bias
Front door criterion
Concluding remarks

Potential outcomes notation

Let the treatment be a binary variable:

$$D_{i,t} = \begin{cases} 1 \text{ if hospitalized at time } t \\ 0 \text{ if not hospitalized at time } t \end{cases}$$

where i indexes an individual observation, such as a person

Potential outcomes:

$$Y_{i,t}^j = \begin{cases} 1 \text{ health if hospitalized at time } t \\ 0 \text{ health if not hospitalized at time } t \end{cases}$$

where j indexes a counterfactual state of the world

Moving between worlds

- I'll drop t subscript, but note these are potential outcomes for the same person at the exact same moment in time
- A potential outcome Y^1 is not the historical outcome Y either conceptually or notationally
- Potential outcomes are hypothetical states of the world but historical outcomes are ex post realizations
- Major philosophical move here: go from the potential worlds to the actual (historical) world based on your treatment assignment

Important definitions

Definition 1: Individual treatment effect

The individual treatment effect, δ_i , equals $Y_i^1 - Y_i^0$

Definition 3: Switching equation

An individual's observed health outcomes, Y, is determined by treatment assignment, D_i , and corresponding potential outcomes:

$$Y_{i} = D_{i}Y_{i}^{1} + (1 - D_{i})Y_{i}^{0}$$

$$Y_{i} = \begin{cases} Y_{i}^{1} & \text{if } D_{i} = 1\\ Y_{i}^{0} & \text{if } D_{i} = 0 \end{cases}$$

Definition 2: Average treatment effect (ATE)

The average treatment effect is the population average of all i individual treatment effects

$$E[\delta_i] = E[Y_i^1 - Y_i^0]$$
$$= E[Y_i^1] - E[Y_i^0]$$

So what's the problem?

Definition 4: Fundamental problem of causal inference

If you need both potential outcomes to know causality with certainty, then since it is impossible to observe both Y_i^1 and Y_i^0 for the same individual, δ_i , is *unknowable*.

Conditional Average Treatment Effects

Definition 5: Average Treatment Effect on the Treated (ATT)

The average treatment effect on the treatment group is equal to the average treatment effect conditional on being a treatment group member:

$$E[\delta|D=1] = E[Y^1 - Y^0|D=1]$$
$$= E[Y^1|D=1] - E[Y^0|D=1]$$

Definition 6: Average Treatment Effect on the Untreated (ATU)

The average treatment effect on the untreated group is equal to the average treatment effect conditional on being untreated:

$$E[\delta|D=0] = E[Y^1 - Y^0|D=0]$$

= $E[Y^1|D=0] - E[Y^0|D=0]$

Causality and comparisons

- Does the ventilator make someone have severe COVID symptoms?
 Or are they sick with COVID symptoms, and that's why they are on a ventilator?
- Why can't I just compare symptoms for those on vents versus those who aren't? After all, there's a control group
- What are we actually measuring if we compare average health outcomes for those on vents versus those who aren't?
- Let's look at our first estimator and see if we can't better understand what comparisons are and are not saying.