Operációs rendszerek BSc

6.gyak.

Készítette: Kovács Krisztián Programtervező informatikus WIQPM2

Az Excel táblázatban megtalálható minden adat és a kérdésekre a válasz.

1. Adott a következő terhelés esetén egy UNIX rendszer.

	P1	P2	Р3	P4
Érkezés	0	8	12	20
CPU idő	15	7	26	10
Indulás	0	15	22	48
Befejezés				
Várakozás				

A tanult ütemezési algoritmus (FCFS, SJF, RR: 10 ms) felhasználásával határozza meg.

a) Várakozási/átlagos várakozási időt, befejezési időt?

FCFS	P1	P2	P3		P4	SJF	P1	P2	P3	P4	RR: 10ms	P1	P2	P3	P4
Érkezés	0		8	12	20	Érkezés	C) 8	12	20	Érkezés	0	8	13	2 20
CPU idő	15		7	26	10	CPU idő	15	7	26	10	CPU idő	15, 5	7	26, 16	10
Indulás	0		15	22	48	Indulás	C	15	32	22	Indulás	0, 18	10	23, 43	33
Befejezés	15		22	48	58	Befejez	és 15	5 22	58	32	Befejezés	10, 22	17	32, 58	42
Várakozás	0		7	10	28	Várakoz	ás C	7	20	2	Várakozás	0, 7	2	11, 10	12
											Várakozás	7	2	2:	1 12
AVG idő	11,25					AVG vár	. 7,25	5			AVG vár.	10,5			

b) Ábrázolja Gantt diagrammal az aktív/várakozó folyamatok futásának sorrendjét (használjon Excel or Word etc.)!

2. Adott a következő terhelés esetén egy UNIX rendszer.

RR: 10ms	P1	P2	P3	P4
Érkezés	0	7	11	20
CPU idő	14	8	36	10
Befejezés				
Várakozás				

A tanult RR ütemezési algoritmus felhasználásával határozza meg a következőket (mértékegység: ms)!

RR: 10ms	P1	P2	P3	P4
Érkezés	0	7	11	20
CPU idő	14, 4	8	36, 26	10
Befejezés	10, 22	18	32	42
Várakozás	0, 8	3	11, 10	12
Várakozás	8	3	21	12

a) Ábrázolja Gantt diagrammal az aktív/várakozó folyamatok futásának sorrendjét (használjon Excel or Word etc.)!

- b) Számolja ki a következő teljesítmény értékeket (számolással):
- CPU kihasználtság

CPU kihas	ználtásg:	98,6765%	Magyarázat:

CPU időből kivonjuk a tétlenséget és a context switch időt, ezután elosztjuk a CPU idővel.

Körölfordulási idők átlaga

Átlag körf	28		Magyarázat:

Ha jól értem, akkor ez az az idő, amíg a feladat végrehajtódik, miután megérkezett. Szóval ez a CPU idő és a várakozás összege. Mivel átlag kell, ezért összeadjuk a négy értéket és elosztjuk.

Várakozási idők átlaga

Átlag vár.: 11

Megjegyzés: számoljon a context switch/ütemezési váltás idejével a CPU kihasználtság esetén: 0,1 ms.