Curvas solucion sin la solución campos direccionales dy = f(x,y) - s dy = pendienk m

dx

en cada punto de la función

m = f(x,y) = f(x,y) = x tiene una pendiente ura Solución de una cuación deferencial es una funçan delivable luya grafica y = f(x) fiere so rendiente en cada emto (x, g(x)) a travee de la cual pasa y'(x) = fix.y) entonces es una curva solución. dy = f(x, y) = m1 2(x,y) = m = (-> + soclivas C = ctc, 0, +1, +2 en cada isocliva & Kozan Pequeños segrentos de vectos C = m = 0 que vieren dados por c. C=1 - /- 450 C=-1 -0 \ -45° Al vonjunto de l'sochurar sa comore como campo direccional. C=2 - / 63 C=-2 - \ -63 En frazar el camp dereccional de la Ec. dy - X-y y que nuectre ma corro solución. æy = x-y = c - x-y = c

æx

x-(= y 9 = X - C recta.

ma cuación diferencial de primer orden de la forma $\frac{dy}{dx} = g(x) h(y)$ se dice que es separable o que tierre voriables separable $\int \frac{dy}{N(y)} = \int g(x) dx$ · H(y) = 6(x) + C Eg. Posolver $e^{x}ydy = e^{y}te^{-2}x-y$ ey dy = ey + ezx - y = = e (1+ezx) etydy = e (1+e^{2x}) (1x t ex) $y dy = (1+e^{-2x}) dx$ $e^{-2x} e^{-2x}$ $e^{-2x} e^{-2x}$ $\int e^{y} dy = \int e^{x} + e^{3x} dx$ V=-x dv=-dx 0 = y do = dy - du = dx jar-jedy v=e - le de yez-Jezzy = 4ez-62 yey-ey=-ex-1e3x+c Eg. Resolvei (ey + 1) 2 - y dx + (ex + 1) e x dy = 0

$$(e^{x}+1)e^{-x}dy = -(e^{y}+1)e^{-y}dx$$

$$\int e^{y}dy = -\int e^{x}dx$$

$$\int (e^{y}+1)^{2}e^{-y}dy$$

$$\int (e^{y}+1)^{2}e^{-x}dy$$

$$\int e^{y}dy = -\int e^{x}dx$$

$$\int (e^{y}+1)^{2}e^{-x}dy$$

$$\int (e^{y}+1)^{2}e^{x}dy$$

$$\int (e^{y}+1)^{2}e^{-x}dy$$

$$\int (e$$

Procediniento								
λ.	Enco	nhai	m fa	chor do	integr	cuin		
		F. I.	- e	x) dx				
2.		hiplic	al el f	Pachol c	sinka	ración	(01 pc	a lo
			F. J. P.	(x) y =	F. I. Q	(×)		
3.	Peso	0/161	la Ecc	o con	1050	(tante		
	d	(F.I	. 4) =	F.I.	Q(x)			
	Joh	(F. J.)) = [F.T. 8	x(x) d>	<		
	Ţ	.T. y	= JF	Σ. Q.	rldx	+ (
		7 =	J F . C	0(x)d	X + C	-		
		0		+				