Recuperação da Informação

Esdras Lins Bispo Jr. bispojr@ufg.br

Inteligência Artificial Bacharelado em Ciência da Computação

26 de outubro de 2016

Plano de Aula

- Revisão
 - Matriz de incidência termo-documento

- Matriz de incidência termo-documento
 - Índice Invertido
 - Processamento de consultas em RI

Sumário

- Revisão
 - Matriz de incidência termo-documento

- Matriz de incidência termo-documento
 - Índice Invertido
 - Processamento de consultas em RI.

Introdução à RI e Busca Web

O que é RI

Recuperação da Informação (Information Retrieval) é a atividade de encontrar material (normalmente documentos) de natureza não-estruturada (normalmente textos) que satisfaz uma necessidade de informação a partir de grandes coleções (normalmente armazenadas em computadores).

Aplicações

Associamos RI diretamente à busca web, mas existem outras aplicações:

- Busca por emails;
- Busca por arquivos no seu PC;
- Recuperação de informações legais.

RI versus Banco de Dados

Dados estruturados

Tendem a referir informações através de tabelas:

Empregado	Gerente	Salário			
Smith	Jones	R\$ 50.000,00			
Chang	Smith	R\$ 60.000,00			
lvy	Smith	R\$ 50.000,00			

Características...

Normalmente é permitido realizar consultas exatas (através de texto)

Exemplo: Salário < 60000 AND Gerente = Smith

RI versus Banco de Dados

Dados não-estruturados

- Normalmente refere-se a textos livres;
- Permite consultas por palavras-chave (incluindo operadores);
- Modelo clássico de busca por documentos de texto.

Pressupostos básicos em RI

Coleção

Um conjunto de documentos (assumimos ser estático, neste momento).

Objetivo

Recuperar documentos com informação que é relevante para as necessidades de informação do usuário e ajudá-lo a completar uma tarefa.

Teste

Capturar um rato de forma correta (politicamente)

Info sobre como capturar ratos

como capturar rato vivo

Teste

Dados não-estruturados em 1620

Obras de Shakespeare

 Quais peças de Shakespeare contêm as palavras 'Brutus' e 'Caesar', mas não 'Capurnia'?

Dados não-estruturados em 1620

Obras de Shakespeare

- Quais peças de Shakespeare contêm as palavras 'Brutus' e 'Caesar', mas não 'Capurnia'?
- Poderíamos fazer um grep all das peças de Shakespeare para 'Brutus' e 'Caesar', e daí retirar as linhas que contêm 'Calpurnia'?
- Por que não deveríamos fazer isto?
 - Lento (para coleções grandes);
 - NOT 'Calpurnia' não é trivial;
 - Outras operações não são viáveis
 (e.g. encontrar a palavra 'Romans' próximo de 'countrymen').

Matriz incidência termo-documento

	Antony and	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	
	Cleopatra		-				
Antony	Ĩ	1	0	0	0	1	
Brutus	1	1	0	1	0	0	
Caesar	1	1	0	1	1	1	
Calpurnia	0	1	0	0	0	0	
Cleopatra	1	0	0	0	0	0	
mercy	1	0	1	1	1	1	
worser	1	0	1	1	1	0	

▶ Figure 1.1 A term-document incidence matrix. Matrix element (t, d) is 1 if the play in column d contains the word in row t, and is 0 otherwise.

Pergunta...

Como fazer a consulta: Brutus AND Caesar BUT NOT Calpurnia?

Sumário

- Revisão
 - Matriz de incidência termo-documento

- Matriz de incidência termo-documento
 - Índice Invertido
 - Processamento de consultas em RI

Uma solução...

Temos vetores 0/1 para cada termo;

Uma solução...

- Temos vetores 0/1 para cada termo;
- Obtenha os vetores
 Brutus, Caesar e Calpurnia (seu complemento):

Uma solução...

- Temos vetores 0/1 para cada termo;
- Obtenha os vetores
 Brutus, Caesar e Calpurnia (seu complemento):
 - Realize a operação binária AND entre os vetores:

Uma solução...

- Temos vetores 0/1 para cada termo;
- Obtenha os vetores
 Brutus, Caesar e Calpurnia (seu complemento):
 - Realize a operação binária AND entre os vetores: 110100 AND 110111 AND 101111 = 100100.

Respostas à consulta

Antony and Cleopatra, Act III, Scene ii

Agrippa [Aside to Domitius Enobarbus]: Why, Enobarbus,

When Antony found Julius Caesar dead, He cried almost to roaring; and he wept When at Philippi he found Brutus slain.

Hamlet, Act III, Scene ii Lord Polonius:

I did enact Julius Caesar: I was killed i' the Capitol; Brutus killed me.

► Figure 1.2 Results from Shakespeare for the query Brutus AND Caesar AND NOT Calpurnia.

Problema...

 Considere N = 1 milhão de documentos, cada um com 1000 palavras em média;

- Considere N = 1 milhão de documentos, cada um com 1000 palavras em média;
- Considere que cada palavra tenha, em média, 6 bytes (incluindo espaços e pontuação);

- Considere N = 1 milhão de documentos, cada um com 1000 palavras em média;
- Considere que cada palavra tenha, em média, 6 bytes (incluindo espaços e pontuação);
- Temos 6GB de dados em documentos;

- Considere N = 1 milhão de documentos, cada um com 1000 palavras em média;
- Considere que cada palavra tenha, em média, 6 bytes (incluindo espaços e pontuação);
- Temos 6GB de dados em documentos;
- Suponha que haja 500K termos distintos entre si;

- Considere N = 1 milhão de documentos, cada um com 1000 palavras em média;
- Considere que cada palavra tenha, em média, 6 bytes (incluindo espaços e pontuação);
- Temos 6GB de dados em documentos;
- Suponha que haja 500K termos distintos entre si;
- 500K × 1M tem meio trilhão de 0's e 1's!!!

- Considere N = 1 milhão de documentos, cada um com 1000 palavras em média;
- Considere que cada palavra tenha, em média, 6 bytes (incluindo espaços e pontuação);
- Temos 6GB de dados em documentos;
- Suponha que haja 500K termos distintos entre si;
- 500K × 1M tem meio trilhão de 0's e 1's!!!
- Mas não mais que um bilhão de 1's (Por quê)?

- Considere N = 1 milhão de documentos, cada um com 1000 palavras em média;
- Considere que cada palavra tenha, em média, 6 bytes (incluindo espaços e pontuação);
- Temos 6GB de dados em documentos;
- Suponha que haja 500K termos distintos entre si;
- 500K × 1M tem meio trilhão de 0's e 1's!!!
- Mas não mais que um bilhão de 1's (Por quê)?
- Esta matriz é extremamente esparsa;

Problema...

- Considere N = 1 milhão de documentos, cada um com 1000 palavras em média;
- Considere que cada palavra tenha, em média, 6 bytes (incluindo espaços e pontuação);
- Temos 6GB de dados em documentos;
- Suponha que haja 500K termos distintos entre si;
- 500K × 1M tem meio trilhão de 0's e 1's!!!
- Mas não mais que um bilhão de 1's (Por quê)?
- Esta matriz é extremamente esparsa;

Qual a melhor representação?

Guardar apenas as células com 1's.

Brutus	$] \longrightarrow$	1	2	4	11	31	45	173	174	
Caesar	\longrightarrow	1	2	4	5	6	16	57	132	
Calpurnia	$] \longrightarrow$	2	31	54	101					

Como fazer...

 Para cada termo t, devemos armazenar uma lista de todos os documentos que contêm t;

Como fazer...

- Para cada termo t, devemos armazenar uma lista de todos os documentos que contêm t;
- Identifique cada documento por um docID (um identificador único do documento);

Como fazer...

- Para cada termo t, devemos armazenar uma lista de todos os documentos que contêm t;
- Identifique cada documento por um docID (um identificador único do documento);
- Poderíamos utilizar vetores de tamanho fixo neste caso?

Como fazer...

• Precisamos criar uma lista de postings;

Como fazer...

- Precisamos criar uma lista de postings;
 - Em disco, o armazenamento contíguo é melhor e mais comum;

Como fazer...

- Precisamos criar uma lista de postings;
 - Em disco, o armazenamento contíguo é melhor e mais comum;
 - Em memória, podemos utilizar listas ligadas ou vetores de tamanho variável!

Passo-a-passo..

• Colete os documentos a serem indexados:

Friends, Romans, countrymen. So let it be with Caesar ...

Passo-a-passo..

- Colete os documentos a serem indexados:
 - Friends, Romans, countrymen. So let it be with Caesar ...
- Quebre o texto, transformando cada documento em uma lista de tokens:

```
Friends Romans countrymen So ...
```


Passo-a-passo..

- Colete os documentos a serem indexados:
 Friends, Romans, countrymen. So let it be with Caesar ...
- Quebre o texto, transformando cada documento em uma lista de tokens:

Friends Romans countrymen So ...

§ Faça o pré-processamento linguístico, produzindo uma lista de tokens normalizados:

friend roman countryman so ...

Passo-a-passo..

- Oclete os documentos a serem indexados:

 Friends, Romans, countrymen. So let it be with Caesar ...
- Quebre o texto, transformando cada documento em uma lista de tokens:

Friends Romans countrymen So ...

§ Faça o pré-processamento linguístico, produzindo uma lista de <u>tokens</u> normalizados:

friend roman countryman so ...

Indexe os documentos a partir da ocorrência dos termos, criando um índice invertido, consistindo de um dicionário e postings.

Índice Invertido

Doc 1

I did enact Julius Caesar: I was killed i' the Capitol; Brutus killed me.

Doc 2

So let it be with Caesar. The noble Brutus hath told you Caesar was ambitious:

term	docID	term	docID
I	1	let	2
did	1	it	2
enact	1	be	2
julius	1	with	2
caesar	1	caesar	2
I	1	the	2
was	1	noble	2
killed	1	brutus	2
i'	1	hath	2
the	1	told	2
capitol	1	you	2
brutus	1	caesar	2
killed	1	was	2
me	1	ambitiou	
so	2	ambitiou	5 4

Índice Invertido

term	docID	term	docID	
I did enact julius caesar I was killed i' the capitol brutus killed me so	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	let it be with caesar the noble brutus hath told you caesar was ambitiou	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	=

term	docID	term	docID
ambitiou	ıs 2	julius	1
be	2	killed	1
brutus	1	killed	1
brutus	2	let	2
capitol	1	me	1
caesar	1	noble	2
caesar	2	so	2
caesar	2	the	1
did	1	the	2
enact	1	told	2
hath	1	you	2
I	1	was	1
I	1	was	2
i'	1	with	2
it	2		

Índice Invertido

Processamento de consultas em RI

Índice Invertido

term do	cID	term	docID			
ambitious	2	julius	1			
be	2	killed	1			
brutus	1	killed	1			
brutus	2	let	2			
capitol	1	me	1			
caesar	1	noble	2			
caesar	2	so	2			
caesar	2	the	1			
did	1	the	2			
enact	1	told	2			
hath	1	you	2			
I	1	was	1			
I	1	was	2			
i'	1	with	2			
it	2					

Construímos apenas o índice...

• O que fazemos para processar uma consulta?

Construímos apenas o índice...

- O que fazemos para processar uma consulta?
- Quais tipos de consultas nós podemos processar?

Brutus AND Caesar

Localize Brutus no dicionário → recupere os seus postings;

Brutus AND Caesar

- Localize Brutus no dicionário → recupere os seus postings;
- Localize Caesar no dicionário → recupere os seus postings;

Brutus AND Caesar

- Localize Brutus no dicionário → recupere os seus postings;
- Localize Caesar no dicionário → recupere os seus postings;
- "Funda" as duas listas de postings → faça a interseção dos conjuntos de documentos;

Brutus AND Caesar

- Localize Brutus no dicionário → recupere os seus postings;
- Localize Caesar no dicionário → recupere os seus postings;
- "Funda" as duas listas de postings → faça a interseção dos conjuntos de documentos;

A fusão (merge)

Caminhe através das duas listas em tempo linear em relação ao tamanho das listas.

Brutus	\longrightarrow	1	2	4	11	31	45	173	174	
Caesar	\longrightarrow	1	2	4	5	6	16	57	132	

A fusão (merge)

Caminhe através das duas listas em tempo linear em relação ao tamanho das listas.

Brutus	\longrightarrow	1	2	4	11	31	45	173	174]
Caesar	\longrightarrow	1	2	4	5	6	16	57	132	

Se os tamanhos das listas forem x e y, a fusão levará O(x+y) operações.

A fusão (merge)

Caminhe através das duas listas em tempo linear em relação ao tamanho das listas.

Se os tamanhos das listas forem $x \in y$, a fusão levará O(x + y) operações.

Importante!!!

As listas de *posting*s precisam estar ordenadas pelo docID.

Algoritmo de fusão

```
INTERSECT(p_1, p_2)
       answer \leftarrow \langle \rangle
       while p_1 \neq \text{NIL} and p_2 \neq \text{NIL}
       do if doclD(p_1) = doclD(p_2)
              then ADD(answer, doclD(p_1))
  4
  5
                      p_1 \leftarrow next(p_1)
  6
                      p_2 \leftarrow next(p_2)
              else if docID(p_1) < docID(p_2)
                         then p_1 \leftarrow next(p_1)
  9
                         else p_2 \leftarrow next(p_2)
 10
       return answer
```


Referência bibliográfica

Livro

Information Retrieval, Stanford University, Christopher Manning *et al*.

Link

Acesso em
http://nlp.stanford.edu/IR-book/

Recuperação da Informação

Esdras Lins Bispo Jr. bispojr@ufg.br

Inteligência Artificial Bacharelado em Ciência da Computação

26 de outubro de 2016

