Transformer: Part II (Encoder, Decoder)

CS7150, Spring 2025

Prof. Huaizu Jiang

Northeastern University

Reminder: In-class midterm

- On Friday, February 28
- Cover all topics by Friday, February 21
- Work on paper with pens, no coding! Similar to the in-class quizzes.
- A practice exam will be released
- Everyone is expected to show up in the classroom
 - Unless you have valid reasons
 - Contact the instructor if you do by Tuesday, February 21
- If you need accommodation, send your request to DRC@northeastern.edu
 - Someone will work the instructor together to figure out a solution

Recap

Overview of the Transformer Encoder (Cell)

Key components:

- Multi-head (self-)attention
- Positional encoding
- Feedforward network
- Residual connections
- Regularization tricks
 - Dropout
 - LayerNorm

[Vaswani et al., Attention is all you need. NeurIPS 2017]

Different Attention Mechanisms

Self-attention

• Used to capture context within the sequence

As we are encoding "it", we should focus on "the animal"

As we are encoding "it", we should focus on "the street"

Self-attention layer

- Query vectors: $Q = XW_Q$
- Key vectors: $K = XW_K$
- Value vectors: $V = XW_V$
- Similarities: scaled dot-product attention

•
$$E_{i,j} = \frac{(Q_i \cdot K_j)}{\sqrt{D}}$$
 or $E = QK^T / \sqrt{D}$

- (D is the dimensionality of the keys)
- Attn. weights: $A = \operatorname{softmax}(E, \dim = 1)$
- Output vectors:

•
$$Y_i = \sum_j A_{i,j} V_j$$
 or $Y = AV$

Matrix Calculation of Self-Attention

$$X \in R^{L \times C}, W^Q \in R^{C \times D}, Q \in R^{L \times D}$$

In the implementation, we need to process batched data, where $X \in R^{B \times L \times C}$, check torch.matmul for batched matrix multiplication.

Multi-Head Self-Attention

Can we finish the entire operation without any for loops?

Finish Multi-head Attention without For Loops

- Linear transformations of Query, Key, and Value
 - Use a big (concatenated) transformation matrix for each of them, respectively
- How about the attention?
 - What are the shapes of Q, K, and V?
 - With and without the multi-head attention
 - The matrix multiplication is defined over a single attention
 - Solution:
 - Reshape the tensors so that the channel dimension is only about a single head
 - Merge the number of heads to the batch dimension

Multi-Head Self-Attention Summary

Scaled Dot-Product Attention

Will be clear when we talk about the decoder

 d_{model} : dimension of input embeddings h: number of attention heads

[Vaswani et al., <u>Attention is all you need</u>. NeurIPS 2017]

Residual Connections, Dropout, and Normalization

$$X_{att} = MHA(X)$$

 $X_{att} = Dropout(X_{att}, p = 0.1)$
 $X = LayerNorm(X + X_{att})$

Recall: Layer Normalization

- 1. Variable lengths in the input.
- 2. The recurrent nature of RNN.

Computing of μ , σ is independent of the batch and length dimension.

But the learnable parameters γ , β are still for each channel.

Largely adopted in Transformer.

Layer Normalization for **recurrent** networks

$$x: N \times L \times C$$

$$\mu, \sigma: N \times L \times 1$$

$$\gamma, \beta: 1 \times 1 \times C$$

$$y = \frac{(x - \mu)}{\sigma} \gamma + \beta$$

On the LayerNorm in Transformer

https://arxiv.org/pdf/2002.04745

Implement Post-Norm in PA3

 x_{l+1}

addition

addition

FFN

Layer Norm

Multi-Head Attention

Laver Norm

Layer Norm

addition

Layer Norm

FFN

Multi-Head Attention

On the LayerNorm in Transformer

https://arxiv.org/pdf/2002.04745

Today's Class

- Transformer Encoder
- Transformer Decoder

Regularization: **Dropout**

"randomly set some neurons to zero in the forward pass"

(a) Standard Neural Net

Randomly set the output value of some neurons to be 0

Waaaait a second... How could this possibly be a good idea?

Waaaait a second... How could this possibly be a good idea?

Forces the network to have a redundant representation.

Waaaait a second... How could this possibly be a good idea?

Another interpretation:

Dropout is training a large ensemble of models (that share parameters).

Each binary mask is one model, gets trained on only ~one datapoint.

Dropout: Test Time

Can in fact do this with a single forward pass! (approximately)

Leave all input neurons turned on (no dropout).

Q: Suppose that with all inputs present at test time the output of this neuron is *a*.

What would its output be during training time, in expectation? (e.g. if p = 0.5)

Dropout: Test Time

Can in fact do this with a single forward pass! (approximately)

Leave all input neurons turned on (no dropout).

At test time....

Can in fact do this with a single forward pass! (approximately)

Leave all input neurons turned on (no dropout).

during test: $a = w_0^*x + w_1^*y$ during train:

$$E[a] = \frac{1}{4} * (w_0^*0 + w_1^*0 + w_0^*0 + w_1^*y + w_0^*x + w_1^*0 + w_0^*x + w_1^*y)$$

$$= \frac{1}{4} * (2 w_0^*x + 2 w_1^*y)$$

$$= \frac{1}{4} * (w_0^*x + w_1^*y)$$

With p=0.5, using all inputs in the forward pass would inflate the activations by 2x from what the network was "used to" during training! => Have to compensate by scaling the activations back down by ½

Residual Connections, Dropout, and Normalization

$$X_{att} = MHA(X)$$

 $X_{att} = Dropout(X_{att}, p = 0.1)$
 $X = LayerNorm(X + X_{att})$

Capturing the Order of the Input

 Do the embeddings of each token/input change if we randomly permute the input?

Is it good or bad?

One query per input vector

Augmenting the MHA with Positional Encoding

$$X = X + PE(X)$$

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\rm model}})$$

$$PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\rm model}})$$

- *PE* has the same dimension with the input embeddings of each token.
- pos: Position of each token in the input, [0, L-1]
- \emph{i} : index of the embeddings, [0, d_{model} -1]
- What does 10000 mean here?
 - The maximum input length
 - The PE will repeat after the 10000th token

What Does Positional Encoding Look Like?

Feedforward Network

Are there any non-linearities in the lower part?

A two-layer fully-connected network (one hidden layer).

Residual connections, dropout, and normalization work in a similar way to the multi-head self-attention module

Transformer Encoder for Text Classification

Transformer Encoder for Image Classification

How to represent each patch? Flattened RGB pixels

Extra credits in PA3:

- Use the special [CLASS] token to aggregate the image's information
- Alternatively, we can get embeddings of each patch and do average pooling as in the previous example
- Positional encoding: 1D is sufficient.
- Free of inductive bias
- Can be easily integrated with tokens from other modalities (e.g., text, audio)

Transformer Decoder: Autoregressive Target Sequence Generation

Add & Norm Output Feed Forward (encodings) Add & Norm from the Multi-Head Attention encoder N× Add & Norm Masked What is the Multi-Head Attention shape? Positional Encoding Output Embedding Outputs (shifted right)

Transformer Decoder: Autoregressive Target Sequence Generation

Add & Norm Output Feed Forward (encodings) Add & Norm from the Multi-Head Attention encoder N× Add & Norm What is this module doing? Masked What is the Multi-Head Attention shape? Self-attention: get embeddings of the output. Positional Encoding Output Embedding Outputs

(shifted right)

Transformer Decoder: Autoregressive Target Sequence Generation

Output (encodings) from the encoder

What is the shape?

What is this module doing?

Query: from the decoder

Key, Value: from the encoder

Attention:

Cross-attention: borrow the embeddings from the input.

- We usually put complete sentences in a batch to train the model
- The decoder should not "look ahead" in the output sequence during training
- Otherwise, the model can simply cheat

 Solution: Modify the attention weights to remove the contribution from the future tokens

Mask for self attention

Simply set the dot product scores to be 0 if the mask value is 0. Why?

Sequence length in the decoder

10

15

5

(yellow: 1, dark blue: 0)

- Mainly used in the decoder
 - The decoding process works in a sequential/autoregressive manner
- Do we need masked self-attention in the encoder?
 - In the training, we usually need to pad the input sequences
 - Shall we attend to the extra <PAD> tokens?
 - No. So the attention mask is about whether a token is <PAD> or not.

Decoder: Training vs Inference

• Training:

- Batched data that needs to be processed in parallel
- The goal is to predict the next token (that's why the masked self-attention is useful)

• Inference:

- Generating words one by one, so called autoregressive
- Inherently slow

Transformer Decoder

Output (encodings) from the encoder

What is the shape?

Multiple stacks of the decoder cell (hyper parameter)

Output **Probabilities** Transformer Softmax Linear Add & Norm Feed Forward Add & Norm Add & Norm Multi-Head Feed Attention Forward Nx Add & Norm $N \times$ Add & Norm Masked Multi-Head Multi-Head Attention Attention Positional 6 Positional Encoding Encoding Input Output Embedding Embedding Inputs Outputs (shifted right)

Key components:

- Multi-head (self-)attention
 - With a mask (optional)
- Positional encoding
- Feedforward network
- Residual connections
- Regularization tricks
 - Dropout
 - LayerNorm

RNN vs Transformer

Encoder:

RNN: sequential vs

Transformer: parallel

RNN: hard to be deep vs

Transformer: could be deep

Decoder:

- RNN & Transformer: sequential
- RNN: hard to be deep vs

Transformer: could be deep

Sparse Attention in Transformer

What is the main bottleneck of the Transformer?

[Beltagy et al., Longformer: The Long-Document Transformer. arXiv 2020]

Next Class

	Recurrent Neural	Networks and Transformer	
Week 6	02/12/2025	Recurrent Neural Networks	
	02/14/2025	Seq2seq with RNN, Attention	
Week 7	02/19/2025	Transformer 1	
	02/21/2025	Transformer 2	pa2 due, pa3 out
Week 8	02/26/2025	no class: self review, work on pa3	
	02/28/2025	In-class midterm	
	03/05/2025	Spring break, no classes	
	03/07/2025		
	Applications of D	Deep Neural Networks	
Week 9	03/12/2025	Visualization of neural networks	
	03/14/2025	Object Detection	
Week 10	03/19/2025	Image Segmentation	pa3 due, pa4 out
	Generative Models (GenAl)		
	03/21/2025	NeRF & 3D Gaussian Splatting	
Week 11	03/26/2025	GANs	
	03/28/2025	VAE	
Week 12	04/02/2025	Diffusion Models	
	04/04/2025	Building ChatGPT	pa4 due, pa5 out (optional)
	04/09/2025	From ChatGPT to GPT4: self-supervised learning in vision	