

TL 1 - Regresión Lineal.

- Docente: Ing. D´Angiolo Federico
 - Cabot Lucas
 - Calonge Federico
 - Lew Imanol

1a) y 1b) Dataset utilizado

Objetivos:

- 1a) Analizar la media y el desvío standard
- 1b) Realizar modelo matemático basado en la Regresión Lineal

1a) Media y Desvío Estándar

Para obtener la media y desvío standard de los valores de nuestro dataset, primero corroboramos que este pueda ser obtenido y leído, por lo que printeamos las primeras 10 filas del dataset.

```
In [2]: my csv = "Datos Presión.csv"
         names = ['presionA', 'presionB']
         dataset presion = pd.read csv(my csv, names=names)
In [4]: dataset presion.head(10)
Out[4]:
             presionA presionB
             1000.83
                      1000.33
              1000.64
                       1000.24
              1000.81
                       1000.48
              1000.80
                       1000.56
              1001.28
                       1001.01
              1001.69
                       1001.47
              1002.02
                       1001.77
              1001.64
                       1001.44
              1001.17
                      1001.06
              1001.52
                      1001.31
```

1a) Media y Desvío Estándar

Luego, gracias a la libreria "Pandas" podemos simplemente pedirle que nos muestre varios datos estadisticos de nuestro conjunto:

print(dataset_presion.describe())

Lo que nos devuelve:

	presionA	presionB
count	999.000000	999.000000
mean	1016.580450	1016.841832
std	6.962852	7.058162
min	1000.560000	1000.240000
25%	1015.375000	1015.685000
50%	1017.940000	1018.280000
75%	1019.190000	1019.485000
max	1025.880000	1026.150000

La media de la presionA es 1016,58. El desvio standar es 6,96, lo que significa que la mayoria de las mediciones de la presionA se encuentran entre 1009,62 y 1023,54.

#La media de la presionB es 1016,84.El desvio standar es 7,05, lo que significa que la mayoria de las mediciones #de la presionB se encuentran entre 1009.79 y 1023.89

1b) Modelo Matemático basado en Regresión Lineal

Primero, para realizar la regresión lineal debemos verificar que el modelo tenga una relación lineal (puede ser positiva o negativa).

Esto lo verificamos por medio de la libreria "seaborn", que nos permite graficar y observar la relación entre variables.

```
In [5]: sns.pairplot(dataset_presion)
#Como el output resulta ser una Relación lineal positiva , podemos hacer uso del algoritmo Regresion Lineal.
```

Out[5]: <seaborn.axisgrid.PairGrid at 0x7f30c0414dd0>

1b) Modelo Matemático basado en Regresión Lineal (Cont)

$$f(x_i) = \alpha_0 + \sum_{i=1}^{m} \alpha_i x_i \text{ donde } A = \{\alpha_0, \alpha_1, ..., \alpha_m\}$$

2a) y 2b) Dataset utilizado

Para esta sección se utilizan 3 datasets, que si bien contienen valores distintos, la estructura es la misma. Se cuenta con datasets para casos confirmados, muertes, y casos de recuperaciones.

Province/State	Country/Region	Lat	Long	1/22/20	1/23/20	1/24/20	1/25/20	1/26/20	1/27/2
	Afghanistan	33.0	65.0	0	0	0	0	0	0
	Albania	41.1533	20.1683	0	0	0	0	0	0
	Algeria	28.0339	1.6596	0	0	0	0	0	0
	Andorra	42.5063	1.5218	0	0	0	0	0	0
	Angola	-11.2027	17.8739	0	0	0	0	0	0
	Antigua and Barbuda	17.0608	-61.7964	0	0	0	0	0	0
	Argentina	-38.4161	-63.6167	0	0	0	0	0	0
	Armenia	40.0691	45.0382	0	0	0	0	0	0
Australian Capital Territory	Australia	-35.4735	149.0124	0	0	0	0	0	0
New South Wales	Australia	-33.8688	151.2093	0	0	0	0	3	4
Northern Territory	Australia	-12.4634	130.8456	0	0	0	0	0	0
Queensland	Australia	-28.0167	153.4	0	0	0	0	0	0

2a) Casos de infecciones, muertes y recuperaciones - Argentina

Codigo:

```
#asignamos la URL que contiene el CSV a una variable
 url recovered = "https://raw.githubusercontent.com/CS
#creamos nuestro dataframe a partir de la URL
dataset recovered = pd.read csv(url recovered)
#filtramos en nuestro dataframe segun un pais deseado, que estara contenido en la variable "pais"
df_recovered = dataset_recovered[dataset_recovered['Country/Region']==pais]
#filtramos en nuestro dataframe unicamente las columnas en el slot 4 en adelante
df recovered=df recovered[df recovered.columns[4:]]
dic recovered=df recovered.to dict(orient='records')[0]
plt.figure(figsize=(20,5))
plt.plot(*zip(*(dic recovered.items())).label='recovered'.color='a')
plt.legend(loc='upper left')
plt.xticks(rotation=90)
plt.show()
```

2a) Casos de infecciones, muertes y recuperaciones - Argentina (Cont)

Salida:

2b) Top 3 países con casos confirmados

