

第四章 触发器

宗 汝 西安电子科技大学电子工程学院

本章要点

- 触发器与时序逻辑电路
- 触发器的电路结构
- 触发器的功能及其描述方式
- 触发器应用电路

本章学习目标

- 掌握时序逻辑电路和组合逻辑电路的区别。
- 了解触发器的基本结构。
- 掌握触发器的基本功能和描述形式。
- 掌握应用触发器设计基本时序逻辑电路。

组合逻辑和时序逻辑

组合电路:输出只与当前的输入有关。

时序电路:输出不仅与当前的输入有关,而且与过去的状态

有关。

过去的状态是如何保存的? 触发器。

时序电路结构

触发器是时序电路的核心。

触发器的定义

● 触发器 (Flip-Flop): 具有记忆功能的双稳态电路。

- 触发器输入Y称为——激励
- 触发器输出Q称为——状态
- 现态(Qⁿ)——表示触发器现在的状态; (Qⁿ常略写为Q)
- 次态(Qⁿ⁺¹)──表示触发器的下一个状态;

触发器的基本形式

基本RS触发器: (NAND Gate Latch)

基本RS触发器

*状态分析:

 $R_DS_D=01$ 时: Q=0 Q=1

 $R_D S_D = 10$ 时: Q = 1 Q = 0

 $R_DS_D=11$ 时: 输出保持不变

 $R_D S_D = 00$ 时: Q = 1 Q = 1

状态功能表:

R_D	S_D	Q	$ar{\mathcal{Q}}$
1	1	保持	原状态
0	1	0	1
1	0	1	0
0	0		1 入同时变 出不确定

但当 R_DS_D =00同时变为11时,翻转快的门输出变为0,另一个不得翻转。

基本RS触发器: 小结

• 输入信号作用前的状态称现态,用 Q^n 或Q表示;输入作用后触发器的新状态称次态,用 Q^{n+1} 表示。

- 用 Q 的值表示触发器的状态。 Q = 0,称触发器处于 0 状态; Q = 1,为 1 状态。
- S_D 端加入负脉冲,使Q = 1,称为"置位"或"置 1"端; R_D 端加入负脉冲,使 Q = 0,称为"复位"或"清 0"端。
- $R_DS_D=00$ 时,两个输出均为稳定的1状态,但两个输出不是非的关系了;另外,如果出现输入从00同时变11,输出则不确定。

为了避免这个情况,要加 $R_D + S_D = 1$ 的输入约束条件。

触发器功能的描述方法

(以基本RS触发器为例)

描述方法1: 状态转移真值表(状态表)

用真值表的形式画出电路输入、现态与电路输出、次态之间的逻辑关系。

基本RS触发器的状态表是:

R_D	S_D	Q^n	Q^{n+1}	•
0	0	0	×	
0	0	1	×	
0	1	0	0	N N
0	1	1	0	
1	0	0	1	
1	0	1	1	
1	1	0	0	
1	1	1	1	_

R_D	S_D	$Q^{n^{+_1}}$
0	0	×
0	1	0
1	0	1
1	1	Q^{n}

描述方法2 & 3: 次态卡诺图与特征方程

也可根据状态表画出电路输出、次态之卡诺图;写出 函数表达式,就是特征方程(状态方程)。

基本RS触发器的卡诺图和特征方程是:

$$\begin{cases} Q^{n+1} = \overline{S_D} + R_D Q^n \\ S_D + R_D = 1 \end{cases}$$

描述方法4 & 5: 状态转移图(状态图)与激励表

也可用图表示状态转移规律;用激励表表示现态到次 态变化时对输入的要求。

基本RS触发器的状态图和激励表是:

$Q^n \rightarrow Q^{n+1}$	R_D S_D
0 0	× 1
0 1	1 0
1 0	0 1
1 1	1 ×

描述方法6:波形图

反映触发器状态在输入激励下随时间变化的规律。

基本RS触发器工作的波形图是:

NOR Gate Latch

问题1: 用或非门构成基本RS触发器?

问题2:两个基本RS触发器逻辑符号如图所示,它们的

区别?

*基本RS触发器-消抖应用

开关抖动问题:

问题:基本RS触发器如何构成的消抖开关电路?

时钟控制的触发器

- 实际应用中,必须协调各触发器状态改变的时刻,使其按一定的节拍动作。为此,加时钟脉冲控制信号CLK (CP),称钟控触发器。
- 钟控触发器的分类
 - 钟控RS触发器
 - 钟控 D 触发器
 - 钟控 T (T´) 触发器
 - 钟控JK触发器

1. 钟控RS触发器

基本RS触发器特征方程:

$$\begin{cases} Q^{n+1} = \overline{S}_1 + R_1 Q \\ S_1 + R_1 = 1 \end{cases}$$

钟控RS触发器

当CLK=0时, $R_1=1$ $S_1=1$,保持状态不变;

当CLK=1时,

$$R_1 = \overline{R}$$
 $S_1 = \overline{S}$

CLK - C1 $R - 1R - \overline{O}$

逻辑符号

(1) 特征方程:

$$\begin{cases} Q^{n+1} = S + \overline{R}Q \\ SR = 0 \end{cases}$$

其中RS=0表示R与S不能同时为1。

钟控RS触发器

*(3) 状态表

clk=1

R	S	Q^{n+1}
0	0	Q
0	1	1
1	0	0
1	1	X

*(4) 状态转移图

(2) 激励表

$Q^n \rightarrow Q^{n+1}$	R S
0 0	\times 0
0 1	0 1
1 0	1 0
1 1	0 ×

(5) 时序波形图
R
S
「不定」
「不定」

钟控D触发器

基本RS触发器特征方程

$$\begin{cases} Q^{n+1} = \overline{S}_1 + R_1 Q \\ S_1 + R_1 = 1 \end{cases}$$

钟控D触发器

当CLK=0时, $R_1=1$ $S_1=1$,保持状态不变

当CLK=1时, $R_1=D$ $S_1=\overline{D}$

(1) 特征方程:

$$Q^{n+1} = D$$

(2)激励表

Q^n —	Q^{n+1}	D
0	0	0
0	1	1
1	0	0
1	1	1

D触发器

*(3)状态表

Q^{n+1}
0
1

*(4)状态 (转移) 图:

D=1

(5) 时序波形:

钟控JK触发器

逻辑符号

CP = 1 时, $R_1 = \overline{KQ}$ $S_1 = J\overline{Q}$

(1) 特征方程:

$$Q^{n+1} = J\overline{Q}^n + \overline{K}Q^n$$

(2)激励表

$Q^n \rightarrow Q^{n+1}$	J K
0 0	0 ×
0 1	1 ×
1 0	× 1
1 1	\times 0

*(3)状态表

J	K	Q^{n+1}
0	0	Q^n
0	1	0
1	0	1
1	1	$\overline{Q^n}$

*(4)状态图

钟控T触发器和T'触发器

1. T触发器

(1)T触发器特征方程:

$$J = K = T$$

$$Q^{n+1} = T\overline{Q} + \overline{T}Q$$
$$= T \oplus Q$$

*(2) 状态表

	W • —	
T	Q^{n+1}	
0	Q^n	
1	$\overline{\mathcal{Q}}^{i}$	

*(3) 状态图

*内部电路原理仅需了解。

2. T'触发器

T'触发器特征方程:

$$T=1$$

$$Q^{n+1} = 1 \oplus Q = \overline{Q}$$

边沿触发器

边沿触发方式的特点是:

- 触发器状态只在时钟跳转时翻转;
- 在CLK=1或CLK=0期间,输入端的任何变化都不影响输出。

如果翻转只发生在上升沿时称"上升沿触发"的触发器;如果翻转只发生在下降沿称"下降沿触发"的触发器。

C1输入处的三角表明了边沿触发特性,称为动态输入标志。

C1输入端加有<mark>小</mark>圈时,表示下降沿有效, 否则表示上升沿有效。

边沿JK触发器特征方程:

$$Q^{n+1} = D = J\overline{Q} + \overline{K}Q$$

边沿JK触发器

- 1. 以后应用中如不指明,均是边沿触发器。
- 2. 边沿触发抗干扰能力强,且不存在空翻,应用广泛。

异步控制端

在实际应用中,有时需要在不受*CLK*控制的情况下把触发器置成指定的状态。

为此,触发器电路还设置有异步置1输入端 S_D 和异步清0(即复位)输入端 R_D ,如图所示。

问题:逻辑符号中的异步清0和置1输入端都用字符上加一横和外 加小圆圈标注,其表示高电平还是低电平有效?

触发器的逻辑符号

注意: 异步置1和清0端具有最高优先权, 触发器正常工作时, 其异步置1和清0端都应加无效电平。

集成边沿触发器逻辑符号

D触发器的时序波形图

DFF的时序波形:

触发器电路的时序图

时序图的画法一般按以下步骤进行:

- 1. 以CLK和触发器动作特点为基准,确定同步变化时刻(或时段);
- 按时间顺序,当触发器能够改变状态时,根据触发器的 状态方程或状态表确定其次态;
- 3. 如有异步清0、置1端,画波形时要注意其是否有效,一 旦有效,立刻改变触发器状态,直至异步控制端无效。

触发器电路示例

例:如图所示的电路中触发器都为边沿触发器,FF1为JK触发器,FF2为D触发器,初始状态均为0,试画出在*CLK*的作用下Q1、Q2的波形。

解: JK触发器改变在CLK下降沿,次态方程为

$$J = \overline{Q}_2$$
 $K = 1$ $Q_1^{n+1} = J\overline{Q}_1 + \overline{K}Q_1 = \overline{Q}_2\overline{Q}_1$

D触发器改变在CLK上升沿,次态方程为

$$D = Q_1$$
 $Q_2^{n+1} = D = Q_1$

*思考

Q:如何用边沿触发的DFF、TFF及JKFF实现2分频电路?

例:边沿JK触发器和D触发器分别如图 (a)、(b)所示,其输入波形见图(c),试分别画出 Q_1 、 Q_2 端的波形。

(设电路初态均为0)

 Q_1

 Q_2

(a)

分析:

$$Q_2^{n+1} = D = A$$
 (当 B =0时, $Q_2^{n+1} = 0$)

CP B Q_1

设电路初态均为0

作业

- 4-44-7
- *4-8

本章完,谢谢大家!

*触发器逻辑功能的替代

(1) JK转换成D触发器

由于
$$Q^{n+1} = J\overline{Q}^n + \overline{K}Q^n$$

而 $Q^{n+1} = D = D\overline{Q}^n + DQ^n$

令 $J = D$ $K = \overline{D}$

*触发器逻辑功能的替代

(2) JK转换成T触发器

由于
$$Q^{n+1} = J\overline{Q}^n + \overline{K}Q^n$$
 $\overline{\square}$ $Q^{n+1} = T\overline{Q}^n + \overline{T}Q^n$
 \Rightarrow $J = K = T$

*触发器逻辑功能的替代

(3) D转换成T′触发器

由于
$$Q^{n+1} = D$$

$$\overline{\square} \qquad Q^{n+1} = \overline{Q^n}$$

TTL边沿触发器组成的电路分别如图(a)、(b)所示,其输入波形见图(c),试分别画出 Q_1 、 Q_2 端的波形。(设电路初态均为0)

图5-27(a)是由两个JK触发器构成的单脉冲发生器,其输入u_i为时钟脉冲的连续序列,输出由人工按钮开关S₁控制,每按一次,输出一个脉冲。输出脉冲的宽度仅决定于输入时钟脉冲的周期。试画出输出端u_o的波形图。

将2个下降沿触发的DFF如图所示级联,试根据图中给定的 Clock信号和输入信号x, 画出q和r的时序波形。

Timing for two flip flops

Note: The output of flip flop r is a replica of that of q, delayed by one clock period. The name of the D flip flop comes from Delay.

例5-4 画出图中 Q_1 、 Q_2 的波形,两个触发器的初始状态均为0。

$$\downarrow Q_1^{n+1} = J\overline{Q_1} + \overline{K}Q_1 = \overline{Q_1} \cdot \overline{Q_2}$$

$$\uparrow \quad Q_2^{n+1} = D = Q_1$$

