第二章 命题逻辑: 形式推演

- 计算机科学中的逻辑
- 命题
- 命题逻辑的语言, 语法: 表达式, 公式, 辖域
- 命题逻辑的语义: 模型, 可满足公式

命题逻辑的被形式化对象

- 命题
- 复合命题的真假值 命题逻辑的形式对象:
- ◇命题逻辑的语言
- ◇ 命题逻辑的表达式
- ◇ 命题逻辑的公式

表达式是否是公式的判定方法

命题逻辑的(形式)语义

赋值 $v: P \rightarrow \{0,1\}$

公式在一个赋值下的真假值

永真公式/永假公式

逻辑推论: $\Sigma \models A$ (读作 Σ 满足A)

永真公式与逻辑推论之间的关系:

⊨ A当且仅当Ø ⊨ A

系统之外:被形式化的对象

系统之内:逻辑语言,合适公式

逻辑的语法: 公式, 公理, 推理规则

逻辑的语义:解释,可满足性,模型

今天内容

- 推理的必要性
- 形式推演规则
- 形式证明

逻辑推论判定的复杂性

$$\emptyset \models [A \to (B \to C)] \to [(A \to B) \to (A \to C)].$$

逻辑推论判定的复杂性

$$\emptyset \models [A \to (B \to C)] \to [(A \to B) \to (A \to C)].$$

	A^{v}	B^{v}	C^{ν}	$(B \rightarrow C)^{v}$	$(A \rightarrow (B \rightarrow C))^{v}$	$((A \rightarrow B) \rightarrow (A \rightarrow C))^{V}$
	0	0	0	1	1	1
	0	0	1	1	1	1
	0	1	0	0	1	1
	0	1	1	1	1	1
	1	0	0	1	1	1
	1	0	1	1	1	1
	1	1	0	0	0	0
	1	1	1	1	1	1
其中 $\varphi = [A \to (B \to C)] \to [(A \to B) \to (A \to C)].$						

其中 $\varphi = [A \to (B \to C)] \to [(A \to B) \to (A \to C)]$

如果天下雨则地是湿的 天下雨 所以地是湿的.

如果天下雨则地是湿的 天下雨 所以地是湿的.

$$\begin{array}{c}
A \to B \\
A \\
\hline
B
\end{array}$$

$$\begin{array}{c}
A \to B \\
A \\
\hline
B
\end{array}$$

$$A \to B, A \models B$$

$$\begin{array}{c}
A \to B \\
\underline{A} \\
B
\end{array}$$

$$\models A \to B \\
\models A \\
\models B$$

$$\begin{array}{c|c}
\Sigma \models A \to B \\
\Sigma \models A \\
\hline
\Sigma \models B
\end{array}$$

如果 $\Sigma \models A \rightarrow B$, 并且 $\Sigma \models A$, 则 $\Sigma \models B$.

```
如果\Sigma \models A \rightarrow B,
并且\Sigma \models A,
则\Sigma \models B.
```

如果 $\Sigma \vdash A \rightarrow B$, 并且 $\Sigma \vdash A$, 则 $\Sigma \vdash B$.

形式推理

希望找到一个形式推理的方法使得 $\Sigma \vdash A$ 表示(前提) Σ 可以推理出(结论)A,满足下列条件:该方法

- (1) 不是基于赋值的, 即不是语义的, 而是语法的;
- (2) 保真的(truth-preserving), 即在任何赋值v下, 当前提在赋值v下为真. 那么结论在赋值v下也为真:
- (3) 完备的(complete), 每个逻辑推论在这个形式推理下可以推导出.

形式推理

给定公式集合Σ和公式A, 如果A可以由Σ形式推理得出, 记为Σ $\vdash A$.

形式推理

形式推理是由一些推演规则定义的.

形式推演规则: 自反

(*Ref*) 自反 A ⊢ A.

形式推演规则: 单调性

其中Σ′是任何公式集合.

形式推演规则: ¬

$$(\neg^-)$$
 如果 $\Sigma, \neg A \vdash B,$ $\Sigma, \neg A \vdash \neg B,$ 则 $\Sigma \vdash A.$

这是反证法的形式推演形式; 可以验证相应的逻辑推理形式是正确的. 即如果 Σ , $\neg A \models B$ 并且 Σ , $\neg A \models \neg B$ 则 $\Sigma \models A$.

形式推演规则: ¬

$$(\neg^-)$$
 如果 $\Sigma, \neg A \vdash B,$ $\Sigma, \neg A \vdash \neg B,$ 则 $\Sigma \vdash A.$

这个形式推演规则是保真的, 即如果 Σ , ¬ $A \models B$ 为真并且 Σ , ¬ $A \models \neg B$ 为真则 $\Sigma \models A$ 为真.

形式推演规则: →

$$(\rightarrow^{-})$$
 如果 $\Sigma \vdash A \rightarrow B$, $\Sigma \vdash A$, 则 $\Sigma \vdash B$.
$$(\rightarrow^{+})$$
 如果 $\Sigma, A \vdash B$, 则 $\Sigma \vdash A \rightarrow B$.

形式推演规则: →

 (\rightarrow^-) 如果 $\Sigma \vdash A \rightarrow B$, $\Sigma \vdash A$, 则 $\Sigma \vdash B$.

如果天下雨则地是湿的 天下雨

所以地是湿的.

形式推演规则: →

$$(\rightarrow^{-})$$
 如果 $\Sigma \models A \rightarrow B$, $\Sigma \models A$, 则 $\Sigma \models B$.

形式推演规则: ^

$$(\wedge^{-})$$
 如果 $\Sigma \vdash A \land B$,
则 $\Sigma \vdash A$,
 $\Sigma \vdash B$.
 (\wedge^{+}) 如果 $\Sigma \vdash A$,
 $\Sigma \vdash B$,
则 $\Sigma \vdash A \land B$.

形式推演规则: >

$$(\lor^{-})$$
 如果 $\Sigma, A \vdash C,$
 $\Sigma, B \vdash C,$
则 $\Sigma, A \lor B \vdash C.$
 (\lor^{+}) 如果 $\Sigma \vdash A,$
则 $\Sigma \vdash A \lor B,$
 $\Sigma \vdash B \lor A.$

形式推演规则: ↔

$$(\leftrightarrow^{-})$$
 如果 $\Sigma \vdash A \leftrightarrow B$,
 $\Sigma \vdash A$,
则 $\Sigma \vdash B$;
如果 $\Sigma \vdash A \leftrightarrow B$,
 $\Sigma \vdash B$,
则 $\Sigma \vdash A$;
 (\leftrightarrow^{+}) 如果 $\Sigma, A \vdash B$,
 $\Sigma, B \vdash A$,
则 $\Sigma \vdash A \leftrightarrow B$.

证明: (\in) 如果 $A \in \Sigma$ 则 $\Sigma \vdash A$.

(1)

$$A \vdash A$$
 (Ref)

 (2)
 $A, \Sigma' \vdash A$
 (+,(1))

 (3)
 $\Sigma \vdash A$
 (约定)

其中 $\Sigma = \{A\} \cup \Sigma' = A, \Sigma'.$

注意: 作为集合 $A, \Sigma' \neq \Sigma$. 我们约定 $A, \Sigma' \vdash A$ 就是 $\{A\} \cup \Sigma' \vdash A$.

证明:
$$\neg A \rightarrow B \vdash \neg B \rightarrow A$$
.

问题?

证明:
$$\neg A \rightarrow B \vdash \neg B \rightarrow A$$
.
(1) $\neg A \rightarrow B, \neg B, \neg A$ (\in)

证明:
$$\neg A \to B \vdash \neg B \to A$$
.
(1) $\neg A \to B, \neg B, \neg A \vdash \neg A \to B$ (\in)

证明:
$$\neg A \to B \vdash \neg B \to A$$
.

(1) $\neg A \to B, \neg B, \neg A \vdash \neg A \to B$ (\in)

(2) $\neg A \to B, \neg B, \neg A \vdash \neg A$ (\in)

证明:
$$\neg A \rightarrow B \vdash \neg B \rightarrow A$$
.

(1) $\neg A \rightarrow B, \neg B, \neg A \vdash \neg A \rightarrow B$ (\in)

(2) $\neg A \rightarrow B, \neg B, \neg A \vdash \neg A$ (\in)

(3) $\neg A \rightarrow B, \neg B, \neg A \vdash B$ ($\rightarrow^-, (1), (2)$)

证明:
$$\neg A \rightarrow B \vdash \neg B \rightarrow A$$
.

(1) $\neg A \rightarrow B, \neg B, \neg A \vdash \neg A \rightarrow B$ (\in)

(2) $\neg A \rightarrow B, \neg B, \neg A \vdash \neg A$ (\in)

(3) $\neg A \rightarrow B, \neg B, \neg A \vdash B$ (\rightarrow ⁻, (1), (2))

(4) $\neg A \rightarrow B, \neg B, \neg A \vdash \neg B$ (\in)

证明:
$$\neg A \rightarrow B \vdash \neg B \rightarrow A$$
.

(1) $\neg A \rightarrow B, \neg B, \neg A \vdash \neg A \rightarrow B$ (\in)

(2) $\neg A \rightarrow B, \neg B, \neg A \vdash \neg A$ (\in)

(3) $\neg A \rightarrow B, \neg B, \neg A \vdash B$ (\rightarrow ⁻,(1),(2))

(4) $\neg A \rightarrow B, \neg B, \neg A \vdash \neg B$ (\in)

(5) $\neg A \rightarrow B, \neg B \vdash A$ (\neg ⁻,(3),(4))

证明:
$$\neg A \to B \vdash \neg B \to A$$
.

(1) $\neg A \to B, \neg B, \neg A \vdash \neg A \to B$ (\in)

(2) $\neg A \to B, \neg B, \neg A \vdash \neg A$ (\in)

(3) $\neg A \to B, \neg B, \neg A \vdash B$ (\to $(\to$ $(,1), (2))$

(4) $\neg A \to B, \neg B, \neg A \vdash \neg B$ (\in)

(5) $\neg A \to B, \neg B \vdash A$ (\to $(,1), (2)$)

(6) $\neg A \to B, \neg B \vdash A$ (\to $(,1), (2)$)

证明:
$$\neg A \rightarrow B \vdash \neg B \rightarrow A$$
.
(6) $\neg A \rightarrow B \vdash \neg B \rightarrow A$

证明:
$$\neg A \to B \vdash \neg B \to A$$
.
(5) $\neg A \to B, \neg B \vdash A$
(6) $\neg A \to B \vdash \neg B \to A \quad (\to^+, (5))$

证明:
$$\neg A \rightarrow B \vdash \neg B \rightarrow A$$
.

(4) $\neg A \rightarrow B, \neg B, \neg A \vdash \neg B$

(5) $\neg A \rightarrow B, \neg B \vdash A$ $(\neg^-, (3), (4))$

(6) $\neg A \rightarrow B \vdash \neg B \rightarrow A$ $(\rightarrow^+, (5))$

证明:
$$\neg A \rightarrow B \vdash \neg B \rightarrow A$$
.

(3) $\neg A \rightarrow B, \neg B, \neg A \vdash B$

(4) $\neg A \rightarrow B, \neg B, \neg A \vdash \neg B$

(5) $\neg A \rightarrow B, \neg B \vdash A$

(6) $\neg A \rightarrow B \vdash \neg B \rightarrow A$

(7-, (3), (4))

证明:
$$\neg A \rightarrow B \vdash \neg B \rightarrow A$$
.

(2) $\neg A \rightarrow B, \neg B, \neg A \vdash \neg A$

(3) $\neg A \rightarrow B, \neg B, \neg A \vdash B$ ($\rightarrow^-, (1), (2)$)

(4) $\neg A \rightarrow B, \neg B, \neg A \vdash \neg B$ (\in)

(5) $\neg A \rightarrow B, \neg B \vdash A$ ($\neg^-, (3), (4)$)

(6) $\neg A \rightarrow B \vdash \neg B \rightarrow A$ ($\rightarrow^+, (5)$)

证明:
$$\neg A \rightarrow B \vdash \neg B \rightarrow A$$
.

(1) $\neg A \rightarrow B, \neg B, \neg A \vdash \neg A \rightarrow B$ (\in)

(2) $\neg A \rightarrow B, \neg B, \neg A \vdash \neg A$ (\in)

(3) $\neg A \rightarrow B, \neg B, \neg A \vdash B$ (\rightarrow ⁻,(1),(2))

(4) $\neg A \rightarrow B, \neg B, \neg A \vdash \neg B$ (\in)

(5) $\neg A \rightarrow B, \neg B \vdash A$ (\neg ⁻,(3),(4))

(6) $\neg A \rightarrow B \vdash \neg B \rightarrow A$ (\rightarrow ⁺,(5))

形式证明的定义

定义. A是在命题逻辑中由 Σ 形式可推演(或形式可证明)的, 记为 $\Sigma \vdash A$, 如果存在一个形式可推演性模式序列

$$\Sigma_1 \vdash A_1, ..., \Sigma_n \vdash A_n$$

使得

- (1) $\Sigma_n \vdash A_n = \Sigma \vdash A$;
- (2) 对每个 $k \le n$, $\Sigma_k \vdash A_k$ 可由前面的形式可推演性模式和形式推演规则得到.

证明:
$$\neg A \to B \vdash \neg B \to A$$
.

 $\Sigma_1 \mid (1) \quad \neg A \to B, \neg B, \neg A \quad \vdash \neg A \to B$
 $\Sigma_2 \mid (2) \quad \neg A \to B, \neg B, \neg A \quad \vdash \neg A$
 $\Sigma_3 \mid (3) \quad \neg A \to B, \neg B, \neg A \quad \vdash B$
 $\Sigma_4 \mid (4) \quad \neg A \to B, \neg B, \neg A \quad \vdash \neg B$
 $\Sigma_5 \mid (5) \quad \neg A \to B, \neg B \quad \vdash A$
 $\Sigma_6 \mid (6) \quad \neg A \to B \quad \vdash \neg B \to A$
 $A_1 \mid (\in)$
 $A_2 \mid (\in)$
 $A_2 \mid (\in)$
 $A_3 \mid (\to^-, (1), (2))$
 $A_4 \mid (\in)$
 $A_5 \mid (\neg^-, (3), (4))$
 $A_6 \mid (\to^+, (5))$

形式证明的定义

$$\Sigma_1 \vdash A_1, ..., \Sigma_n \vdash A_n$$

(2) 对每个 $k \le n$, $\Sigma_k \vdash A_k$ 可由前面的形式可推演性模式和形式推演规则得到. 比如, 如果 $\Sigma_k \vdash A_k$ 是由(\neg)得到的,则存在i,j < k使得

$$\Sigma_{i} \vdash A_{i} = \Sigma_{k}, \neg A_{k} \vdash B; \Sigma_{j} \vdash A_{j} = \Sigma_{k}, \neg A_{k} \vdash \neg B.$$

其中=是符号串的相等.

形式证明的定义

$$\Sigma_1 \vdash A_1, ..., \Sigma_n \vdash A_n$$

(2) 对每个 $k \le n$, $\Sigma_k \vdash A_k$ 可由前面的形式可推演性模式和形式推演规则得到. 比如, 如果 $\Sigma_k \vdash A_k = \Sigma'$, $B \lor C \vdash A_k$ 是由(\lor ⁻)得到的,则存 在i,j < k使得

$$\begin{array}{rcl} \Sigma_i \vdash A_i &= \Sigma', B \vdash A_k; \\ \Sigma_j \vdash A_j &= \Sigma', C \vdash A_k; \\ \Sigma_k &= \Sigma' \cup \{B \lor C\}. \end{array}$$

定理2.6.4.

(i)
$$A \rightarrow B, A \vdash B$$
.

(ii)
$$A \vdash B \rightarrow A$$
.

(iii)
$$A \rightarrow B, B \rightarrow C \vdash A \rightarrow C$$
.

(iv)
$$A \rightarrow (B \rightarrow C), A \rightarrow B \vdash A \rightarrow C.$$

证明: $A \rightarrow B, B \rightarrow C \vdash A \rightarrow C$.

证明:
$$A \to B, B \to C \vdash A \to C$$
.
(1) $A \to B, B \to C, A \vdash A \to B$ (\in)

证明:
$$A \rightarrow B, B \rightarrow C \vdash A \rightarrow C$$
.
(1) $A \rightarrow B, B \rightarrow C, A \vdash A \rightarrow B$
(2) $A \rightarrow B, B \rightarrow C, A \vdash A$ (\in)

证明:
$$A \rightarrow B, B \rightarrow C \vdash A \rightarrow C$$
.
(1) $A \rightarrow B, B \rightarrow C, A \vdash A \rightarrow B$ (\in)
(2) $A \rightarrow B, B \rightarrow C, A \vdash A$ (\in)
(3) $A \rightarrow B, B \rightarrow C, A \vdash B$ ($\rightarrow^-, (1), (2)$)

证明:
$$A \rightarrow B, B \rightarrow C \vdash A \rightarrow C$$
.
(1) $A \rightarrow B, B \rightarrow C, A \vdash A \rightarrow B$ (\in)
(2) $A \rightarrow B, B \rightarrow C, A \vdash A$ (\in)
(3) $A \rightarrow B, B \rightarrow C, A \vdash B$ ($\rightarrow^-, (1), (2)$)
(4) $A \rightarrow B, B \rightarrow C, A \vdash B \rightarrow C$ (\in)

证明:
$$A \rightarrow B, B \rightarrow C \vdash A \rightarrow C$$
.

(1) $A \rightarrow B, B \rightarrow C, A \vdash A \rightarrow B$ (\in)

(2) $A \rightarrow B, B \rightarrow C, A \vdash A$ (\in)

(3) $A \rightarrow B, B \rightarrow C, A \vdash B$ ($\rightarrow^-, (1), (2)$)

(4) $A \rightarrow B, B \rightarrow C, A \vdash B \rightarrow C$ (\in)

(5) $A \rightarrow B, B \rightarrow C, A \vdash C$ ($\rightarrow^-, (3), (4)$)

证明:
$$A \to B, B \to C \vdash A \to C$$
.

(1) $A \to B, B \to C, A \vdash A \to B$ (\in)

(2) $A \to B, B \to C, A \vdash A$ (\in)

(3) $A \to B, B \to C, A \vdash B$ ($\to^-, (1), (2)$)

(4) $A \to B, B \to C, A \vdash B \to C$ (\in)

(5) $A \to B, B \to C, A \vdash C$ ($\to^-, (3), (4)$)

(6) $A \to B, B \to C \vdash A \to C$

证明:
$$A \rightarrow B, B \rightarrow C \vdash A \rightarrow C$$
.
(6) $A \rightarrow B, B \rightarrow C \vdash A \rightarrow C$

证明:
$$A \rightarrow B, B \rightarrow C \vdash A \rightarrow C$$
.
(5) $A \rightarrow B, B \rightarrow C, A \vdash C$
(6) $A \rightarrow B, B \rightarrow C \vdash A \rightarrow C (\rightarrow^+, (5))$

证明:
$$A \rightarrow B, B \rightarrow C \vdash A \rightarrow C$$
.
(4) $A \rightarrow B, B \rightarrow C, A \vdash B \rightarrow C$
(5) $A \rightarrow B, B \rightarrow C, A \vdash C$ $(\rightarrow^-, (3), (4))$
(6) $A \rightarrow B, B \rightarrow C \vdash A \rightarrow C$ $(\rightarrow^+, (5))$

证明:
$$A \rightarrow B, B \rightarrow C \vdash A \rightarrow C$$
.
(3) $A \rightarrow B, B \rightarrow C, A \vdash B$
(4) $A \rightarrow B, B \rightarrow C, A \vdash B \rightarrow C$
(5) $A \rightarrow B, B \rightarrow C, A \vdash C$ (\rightarrow ⁻, (3), (4))
(6) $A \rightarrow B, B \rightarrow C \vdash A \rightarrow C$ (\rightarrow ⁺, (5))

证明:
$$A \to B, B \to C \vdash A \to C$$
.

(2) $A \to B, B \to C, A \vdash A$

(3) $A \to B, B \to C, A \vdash B$ ($\to^-, (1), (2)$)

(4) $A \to B, B \to C, A \vdash B \to C$ (\in)

(5) $A \to B, B \to C, A \vdash C$ ($\to^-, (3), (4)$)

(6) $A \to B, B \to C \vdash A \to C$ ($\to^+, (5)$)

证明:
$$A \to B, B \to C \vdash A \to C$$
.

(1) $A \to B, B \to C, A \vdash A \to B$ (\in)

(2) $A \to B, B \to C, A \vdash A$ (\in)

(3) $A \to B, B \to C, A \vdash B$ ($\to^-, (1), (2)$)

(4) $A \to B, B \to C, A \vdash B \to C$ (\in)

(5) $A \to B, B \to C, A \vdash C$ ($\to^-, (3), (4)$)

(6) $A \to B, B \to C \vdash A \to C$

证明: ¬¬*A* ⊢ *A*.

$$(1) \qquad \neg \neg A, \neg A \quad \vdash \neg A$$

(2)
$$\neg \neg A, \neg A \vdash \neg \neg A$$

$$(3) \qquad \neg \neg A \vdash A$$

$$(\neg^-,(1),(2))$$

因为
$$\neg\neg A = \neg(\neg A)$$

证明:

如果
$$\Sigma, A \vdash B,$$
 $\Sigma, A \vdash \neg B,$ 则 $\Sigma \vdash \neg A.$

证明:

如果
$$\Sigma, A \vdash B,$$
 $\Sigma, A \vdash \neg B,$ 则 $\Sigma \vdash \neg A.$

$$(\neg^-)$$
 如果 $\Sigma, \neg A \vdash B,$ $\Sigma, \neg A \vdash \neg B,$ 则 $\Sigma \vdash A.$

如果
$$\Sigma$$
, $A \vdash B$ 并且 Σ , $A \vdash \neg B$, 则 $\Sigma \vdash \neg A$.
(1) Σ , $\neg \neg A \vdash \Sigma$ (ϵ)

如果
$$\Sigma$$
, $A \vdash B$ 并且 Σ , $A \vdash \neg B$, 则 $\Sigma \vdash \neg A$.
(1) Σ , $\neg \neg A \vdash \Sigma$ (\in)
(2) $\neg \neg A \vdash A$ ((i))

如果
$$\Sigma$$
, $A \vdash B$ 并且 Σ , $A \vdash \neg B$, 则 $\Sigma \vdash \neg A$.

(1) Σ , $\neg \neg A \vdash \Sigma$ (\in)

(2) $\neg \neg A \vdash A$ ((i))

(3) Σ , $\neg \neg A \vdash A$ (+,(2))

如果
$$\Sigma$$
, $A \vdash B$ 并且 Σ , $A \vdash \neg B$, 则 $\Sigma \vdash \neg A$.

(1) Σ , $\neg \neg A \vdash \Sigma$ (\in)

(2) $\neg \neg A \vdash A$ ((i))

(3) Σ , $\neg \neg A \vdash A$ (+, (2))

(4) Σ , $A \vdash B$ (assumption)

如果
$$\Sigma$$
, $A \vdash B$ 并且 Σ , $A \vdash \neg B$, 则 $\Sigma \vdash \neg A$.
(1) Σ , $\neg \neg A \vdash \Sigma$ (\in)
(2) $\neg \neg A \vdash A$ ((i))
(3) Σ , $\neg \neg A \vdash A$ (+, (2))
(4) Σ , $A \vdash B$ (assumption)
(5) Σ , $\neg \neg A \vdash B$ (Tr , (3), (4))

如果
$$\Sigma$$
, $A \vdash B$ 并且 Σ , $A \vdash \neg B$, 则 $\Sigma \vdash \neg A$.
(1) Σ , $\neg \neg A \vdash \Sigma$ (\in)
(2) $\neg \neg A \vdash A$ ((i))
(3) Σ , $\neg \neg A \vdash A$ (+,(2))
(4) Σ , $A \vdash B$ (assumption)
(5) Σ , $\neg \neg A \vdash B$ (Tr ,(3),(4))
(6) Σ , $\neg \neg A \vdash \neg B$ ($ibid$)

形式证明的例子5

```
如果\Sigma, A \vdash B并且\Sigma, A \vdash \neg B, 则\Sigma \vdash \neg A.
 (1)
          \Sigma, \neg \neg A \vdash \Sigma
                                                                                 (\in)
 (2)
                  \neg \neg A \vdash A
                                                                               ((i))
 (3)
       \Sigma, \neg \neg A \vdash A
                                                                          (+,(2))
 (4)
                 \Sigma, A \vdash B
                                                                  (assumption)
 (5)
       \Sigma, \neg \neg A \vdash B
                                                                   (Tr, (3), (4))
 (6)
        \Sigma, \neg \neg A \vdash \neg B
                                                                             (ibid)
 (7)
                      \Sigma \vdash \neg A
                                                                  (\neg^-, (5), (6))
```

定理. $A \rightarrow \neg B \vdash B \rightarrow \neg A$.

定理. $A \rightarrow \neg B \vdash B \rightarrow \neg A$. 证明.

(1)
$$A \to \neg B, B, A \vdash B$$
 (\in)
(2) $A \to \neg B, A \vdash \neg B$ (2.6.4(*i*))
(3) $A \to \neg B, B, A \vdash \neg B$ (+,(2))
(4) $A \to \neg B, B \vdash \neg A$ ($\neg^+, (1), (3)$)
(5) $A \to \neg B \vdash B \to \neg A$ ($\rightarrow^+, (4)$)

证明: 由(自反), (+), (\rightarrow^+) 以及下列规则:

- (1) 如果 $\Sigma \vdash \neg \neg A$,则 $\Sigma \vdash A$;
- (2) 如果 $\Sigma \vdash A \rightarrow \neg B, A \rightarrow B^{\hat{\Xi}\hat{\Xi}}$ 则 $\Sigma \vdash \neg A$,

推出(¬-).

注意: 书上表示为 $\Sigma \vdash A \to \neg B$, B, 意思为 $\Sigma \vdash A \to \neg B$ 并且 $\Sigma \vdash A \to B$.

我们这里: $\Sigma \vdash A$, B意思为 $\Sigma \vdash A$ 并且 $\Sigma \vdash B$.

证明: 由(自反), (+), (\rightarrow^+) 以及下列规则:

- (1) 如果 $\Sigma \vdash \neg \neg A$,则 $\Sigma \vdash A$;
- (2) 如果 $\Sigma \vdash A \rightarrow \neg B, A \rightarrow B$ 则 $\Sigma \vdash \neg A$, 推出(\neg ⁻).

$$(\neg^-)$$
 如果 $\Sigma, \neg A \vdash B,$ $\Sigma, \neg A \vdash \neg B,$ 则 $\Sigma \vdash A.$

证明: 由(自反), (+), (\rightarrow^+) 以及下列规则:

- (1) 如果 Σ ⊢ ¬¬A,则 Σ ⊢ A;
- (2) 如果 $\Sigma \vdash A \rightarrow \neg B, A \rightarrow B$ 则 $\Sigma \vdash \neg A,$ 推出(¬-).

推理规则是原子的, 结论 $\Sigma \vdash A$ 也是一个规则,

证明:由(自反), (+),(\rightarrow +)以及下列规则: (1) 如果 $\Sigma \vdash \neg \neg A$,则 $\Sigma \vdash A$; (2) 如果 $\Sigma \vdash A \rightarrow \neg B$, $A \rightarrow B$ 则 $\Sigma \vdash \neg A$, 推出(\neg -).

证明. 假设 Σ , $\neg A \vdash B$ 和 Σ , $\neg A \vdash \neg B$.

证明:
$$\neg A \lor \neg B \vdash \neg (A \land B)$$
.

$$\neg A, A \land B \vdash A \land B$$

$$\neg A, A \land B \vdash A \land B
A \land B \vdash A$$
(\in)

$$\neg A, A \land B \vdash A \land B \qquad (\in) \\
A \land B \vdash A \qquad (\land^{-}) \\
\neg A, A \land B \vdash A \qquad (trans)$$

$$\neg A, A \land B \vdash A \land B \qquad (\in)
A \land B \vdash A \qquad (\land^{-})
\neg A, A \land B \vdash A \qquad (trans)
\neg A, A \land B \vdash \neg A \qquad (\in)$$

$$\neg A, A \land B \vdash A \land B \qquad (\in) \\
A \land B \vdash A \qquad (\land^{-}) \\
\neg A, A \land B \vdash A \qquad (trans) \\
\neg A, A \land B \vdash \neg A \qquad (\in) \\
\neg A \vdash \neg (A \land B) \qquad (\neg^{-})$$

$$\neg A, A \land B \vdash A \land B \qquad (\in) \\
A \land B \vdash A \qquad (\land^{-}) \\
\neg A, A \land B \vdash A \qquad (trans) \\
\neg A, A \land B \vdash \neg A \qquad (\in) \\
\neg A \vdash \neg (A \land B) \qquad (\neg^{-}) \\
\neg B, A \land B \vdash A \land B \qquad (\in) \\
A \land B \vdash B \qquad (\land^{-}) \\
\neg B, A \land B \vdash B \qquad (trans) \\
\neg B, A \land B \vdash \neg B \qquad (\in) \\
\neg B \vdash \neg (A \land B) \qquad (\neg^{-})$$

$$\neg A, A \land B \vdash A \land B \qquad (\in) \\
A \land B \vdash A \qquad (\land^{-}) \\
\neg A, A \land B \vdash A \qquad (trans) \\
\neg A, A \land B \vdash \neg A \qquad (\in) \\
\neg A \vdash \neg (A \land B) \qquad (\neg^{-}) \\
\neg B, A \land B \vdash B \qquad (\land^{-}) \\
\neg B, A \land B \vdash B \qquad (trans) \\
\neg B, A \land B \vdash B \qquad (trans) \\
\neg B, A \land B \vdash \neg B \qquad (\in) \\
\neg B, A \land B \vdash \neg B \qquad (\in) \\
\neg B, A \land B \vdash \neg B \qquad (\in) \\
\neg B, A \land B \vdash \neg B \qquad ((\neg^{-}) \land A \land B) \qquad (\neg^{-}) \\
\neg A \lor \neg B \vdash \neg (A \land B) \qquad (\lor^{-}).$$

$$\neg A, A, \neg \neg B \vdash A$$

$$\neg A, A, \neg \neg B \vdash A \qquad (\in)$$

$$\neg A, A, \neg \neg B \vdash \neg A \qquad (\in)$$

$$\neg A, A, \neg \neg B \vdash A \qquad (\in)
\neg A, A, \neg \neg B \vdash \neg A \qquad (\in)
\neg A, A \vdash \neg B \qquad (\neg^{-})$$

$$\neg A, A, \neg \neg B \vdash A \qquad (\in)
\neg A, A, \neg \neg B \vdash \neg A \qquad (\in)
\neg A, A \vdash \neg B \qquad (\neg^{-})
\neg A \vdash A \rightarrow \neg B \qquad (\rightarrow^{+})$$

$$\neg A, A, \neg \neg B \vdash A \qquad (\in)
\neg A, A, \neg \neg B \vdash \neg A \qquad (\in)
\neg A, A \vdash \neg B \qquad (\neg^{-})
\neg A \vdash A \rightarrow \neg B \qquad (\rightarrow^{+})
\neg B, A \vdash \neg B \qquad (\in)$$

$$\neg A, A, \neg \neg B \vdash A \qquad (\in)
\neg A, A, \neg \neg B \vdash \neg A \qquad (\in)
\neg A, A \vdash \neg B \qquad (\neg^{-})
\neg A \vdash A \rightarrow \neg B \qquad (\rightarrow^{+})
\neg B, A \vdash \neg B \qquad (\in)
\neg B \vdash A \rightarrow \neg B \qquad (\rightarrow^{+})$$

$$\neg A, A, \neg \neg B \vdash A \qquad (\in)
\neg A, A, \neg \neg B \vdash \neg A \qquad (\in)
\neg A, A \vdash \neg B \qquad (\neg^{-})
\neg A \vdash A \rightarrow \neg B \qquad (\Rightarrow^{+})
\neg B, A \vdash \neg B \qquad (\in)
\neg B \vdash A \rightarrow \neg B \qquad (\Rightarrow^{+})
\neg A \lor \neg B \vdash A \rightarrow \neg B \qquad (\lor^{-})$$

$$\neg A, A, \neg \neg B \vdash A \qquad (\in)
\neg A, A, \neg \neg B \vdash \neg A \qquad (\in)
\neg A, A \vdash \neg B \qquad (\neg^{-})
\neg A \vdash A \rightarrow \neg B \qquad (\rightarrow^{+})
\neg B, A \vdash \neg B \qquad (\in)
\neg B \vdash A \rightarrow \neg B \qquad (\rightarrow^{+})
\neg A \lor \neg B \vdash A \rightarrow \neg B \qquad (\lor^{-})
\neg A \lor \neg B, A \land B \vdash A \rightarrow \neg B \qquad (+)$$

$$\neg A, A, \neg \neg B \vdash A \qquad (\in)$$

$$\neg A, A, \neg \neg B \vdash \neg A \qquad (\in)$$

$$\neg A, A \vdash \neg B \qquad (\neg \neg)$$

$$\neg A \vdash A \rightarrow \neg B \qquad (\rightarrow^+)$$

$$\neg B, A \vdash \neg B \qquad (\in)$$

$$\neg B \vdash A \rightarrow \neg B \qquad (\rightarrow^+)$$

$$\neg A \lor \neg B \vdash A \rightarrow \neg B \qquad (\lor^-)$$

$$\neg A \lor \neg B, A \land B \vdash A \rightarrow \neg B \qquad (+)$$

$$\neg A \lor \neg B, A \land B \vdash A \land B \qquad (\in)$$

$$\neg A, A, \neg \neg B \vdash A \qquad (\in)$$

$$\neg A, A, \neg \neg B \vdash \neg A \qquad (\in)$$

$$\neg A, A \vdash \neg B \qquad (\neg^{-})$$

$$\neg A \vdash A \rightarrow \neg B \qquad (\Rightarrow^{+})$$

$$\neg B, A \vdash \neg B \qquad (\in)$$

$$\neg B \vdash A \rightarrow \neg B \qquad (\Rightarrow^{+})$$

$$\neg A \lor \neg B \vdash A \rightarrow \neg B \qquad (\lor^{-})$$

$$\neg A \lor \neg B, A \land B \vdash A \rightarrow \neg B \qquad (+)$$

$$\neg A \lor \neg B, A \land B \vdash A \land B \qquad (\in)$$

$$\neg A \lor \neg B, A \land B \vdash A \land B \qquad (\in)$$

$$\neg A \lor \neg B, A \land B \vdash A \land B \qquad ((\in))$$

$$\neg A, A, \neg \neg B \vdash A \qquad (\in)
\neg A, A, \neg \neg B \vdash \neg A \qquad (\in)
\neg A, A \vdash \neg B \qquad (\neg^{-})
\neg A \vdash A \rightarrow \neg B \qquad (\rightarrow^{+})
\neg B, A \vdash \neg B \qquad (\in)
\neg B \vdash A \rightarrow \neg B \qquad (\rightarrow^{+})
\neg A \lor \neg B \vdash A \rightarrow \neg B \qquad (\lor^{-})
\neg A \lor \neg B, A \land B \vdash A \rightarrow \neg B \qquad (+)
\neg A \lor \neg B, A \land B \vdash A \land B \qquad (\in)
\neg A \lor \neg B, A \land B \vdash A \qquad (\land^{-})
\neg A \lor \neg B, A \land B \vdash B \qquad (\land^{-})$$

$$\neg A, A, \neg \neg B \vdash A \qquad (\in) \\
\neg A, A, \neg \neg B \vdash \neg A \qquad (\in) \\
\neg A, A \vdash \neg B \qquad (\neg \neg) \\
\neg A \vdash A \rightarrow \neg B \qquad (\rightarrow^+) \\
\neg B, A \vdash \neg B \qquad (\in) \\
\neg B \vdash A \rightarrow \neg B \qquad (\rightarrow^+) \\
\neg A \lor \neg B \vdash A \rightarrow \neg B \qquad (\lor^-) \\
\neg A \lor \neg B, A \land B \vdash A \rightarrow \neg B \qquad (\leftarrow) \\
\neg A \lor \neg B, A \land B \vdash A \land B \qquad (\in) \\
\neg A \lor \neg B, A \land B \vdash B \qquad (\land^-) \\
\neg A \lor \neg B, A \land B \vdash \neg B \qquad (\rightarrow^-) \\
\neg A \lor \neg B, A \land B \vdash \neg B \qquad (\rightarrow^-) \\
\neg A \lor \neg B, A \land B \vdash \neg B \qquad (\rightarrow^-) \\
\neg A \lor \neg B, A \land B \vdash \neg B \qquad (\rightarrow^-) \\
\neg A \lor \neg B, A \land B \vdash \neg B \qquad (\rightarrow^-) \\
\neg A \lor \neg B, A \land B \vdash \neg B \qquad (\rightarrow^-) \\
\neg A \lor \neg B, A \land B \vdash \neg (A \land B).$$

(6)

一个证明可以看作是一棵树.

例子: $A \rightarrow B$, $B \rightarrow C \vdash A \rightarrow C$.

 $A \rightarrow B, B \rightarrow C \vdash A \rightarrow C$

$$A \rightarrow B, B \rightarrow C, A \vdash A \rightarrow B$$

$$A \to B, B \to C, A \vdash A$$

$$(1) \qquad A \rightarrow B, B \rightarrow C, A \vdash A \rightarrow B$$

$$A \rightarrow B, B \rightarrow C, A \vdash B$$

$$A \rightarrow B, B \rightarrow C, A \vdash B$$

$$A \rightarrow B, B \rightarrow C + A \rightarrow C$$

$$(1) \qquad A \rightarrow B, B \rightarrow C, A \vdash A \rightarrow B$$

$$(2) \qquad A \rightarrow B, B \rightarrow C, A \vdash A$$

$$(3) \qquad A \rightarrow B, B \rightarrow C, A \vdash B$$

$$(4) \qquad A \rightarrow B, B \rightarrow C, A \vdash B \rightarrow C$$

$$(5) \qquad A \rightarrow B, B \rightarrow C, A \vdash C$$

$$(5) \qquad A \rightarrow B, B \rightarrow C, A \vdash C$$

$$(6) \qquad A \rightarrow B, B \rightarrow C \rightarrow C$$

$$(7) \rightarrow (1), (2)$$

$$(8) \qquad (6) \qquad (7) \rightarrow (3), (4)$$

$$(9) \rightarrow (7) \rightarrow (7) \rightarrow (7)$$

定义. A是在命题逻辑中由Σ形式可推演(或形式可证明)的, 记为Σ \vdash A, 如果存在一个形式可推演性模式序列

$$\Sigma_1 \vdash A_1, ..., \Sigma_n \vdash A_n$$

使得

- (1) $\Sigma_n \vdash A_n = \Sigma \vdash A$;
- (2) 对每个 $k \le n$, $\Sigma_k \vdash A_k$ 可由前面的形式可推演性模式和形式推演规则得到.

定义. A是在命题逻辑中由Σ形式可推演(或形式可证明)的, 记为Σ \vdash A, 如果存在一个形式可推演性模式序列

$$\Sigma_1 \vdash A_1, ..., \Sigma_n \vdash A_n$$

使得

- (1) $\Sigma_n \vdash A_n = \Sigma \vdash A$;
- (2) 对每个 $k \le n$, $\Sigma_k \vdash A_k$ 可由前面的形式可推演性模式和形式推演规则得到.
- (Ref) 自反 *A* ⊢ *A*.
- (∈) 如果A ∈ Σ则 Σ \vdash A.

结论

推理是简单的. 命题逻辑的推理是可以算法化的. 为什么?

结论

推理是简单的. 命题逻辑的推理是可以算法化的. 为什么? 我们将证明 $\Sigma \vdash A$ 当且仅当 $\Sigma \models A$.

结论

推理是简单的. 命题逻辑的推理是可以算法化的. 为什么? 我们将证明 $\Sigma \vdash A$ 当且仅当 $\Sigma \models A$. $\Sigma \models A$ 是算法可判定的. 作业2可以做了.