ASSIGNMENT 3: GATE 2015 MN:MINING ENGINEERING

AI25BTECH11010 - Dhanush Kumar

1)	Choose the appropriate word/phrase, out of the four options given below, to complet the following sentence:		
	Apparent lifelessness do	rmanı ije.	(GATE MN 2015)
	a) harbours b) leads to	c) supports	d) affects
2)	Fill in the blank with the correct idion	n/phrase.	
	That boy from the town was a	in the sleepy vi	llage.
			(GATE MN 2015)
	a) dog out of herd	c) fish out of water	
1	b) sheep from the heap	d) bird from the flo	ock
3)	Choose the statement where underlined	d word is used correctl	ly.
			(GATE MN 2015)
1	a) When the teacher eludes to different b) When the thief keeps eluding the poet. Matters that are difficult to understated Mirages can be allusive, but a better	olice, he is being <u>elusive</u> nd, identify or rememb	ve. oer are <u>allusive</u> .
4)	Tanya is older than Eric. Cliff is older than Tanya. Eric is older than Cliff.		
	If the first two statements are true, the	n the third statement is	s: (GATE MN 2015)
	a) True		(61112 1111 (2010)
	b) False		
	c) Uncertain		
	d) Data insufficient		
	Five teams have to compete in a leagu	ie, with every team pla	aying every other team

exactly once, before going to the next round. How many matches will have to be

(GATE MN 2015)

held to complete the league round of matches?

- a) 20 b) 10 c) 8 d) 5
- 6) Select the appropriate option in place of underlined part of the sentence.

 Increased productivity necessary reflects greater efforts made by the employees.

 (GATE MN 2015)
 - a) Increase in productivity necessary
 - b) Increase productivity is necessary
 - c) Increase in productivity necessarily
 - d) No improvement required
- 7) Given below are two statements followed by two conclusions. Assuming these statements to be true, decide which one logically follows.

Statements: I. No manager is a leader. II. All leaders are executives.

Conclusions: I. No manager is an executive. II. No executive is a manager.

(GATE MN 2015)

- a) Only conclusion I follows.
- b) Only conclusion II follows.
- c) Neither conclusion I nor II follows.
- d) Both conclusions I and II follow.
- 8) In the given figure angle Q is a right angle, PS : QS = 3 : 1, RT : QT = 5 : 2 and PU : UR = 1 : 1. If area of triangle QTS is $20 \,\mathrm{cm}^2$, then the area of triangle PQR in cm² is ______.

Fig. 8

(GATE MN 2015)

9) Right triangle PQR is to be constructed in the xy-plane so that the right angle is at P and line PR is parallel to the x-axis. The x and y coordinates of P, Q, and R are to be integers that satisfy the inequalities: $-4 \le x \le 5$ and $6 \le y \le 16$.

			(GATE MN 201	
a) 110	b) 1,100	c) 9,900	d) 10,000	
tosses. Let Y			curs in each of the first twoss. Let Z be the event the	
		ich one of the follow	wing statements is TRUE (GATE MN 201	
a) X and Y independer		e de-c) Y and Z are pendent	e inde-d) X and Z are ind pendent	
11) Out of the supsupport'.	oport categories given for	or an underground co	oal mine, identify the 'activ	
o-FF			(GATE MN 201	
a) wire meshb) shotcrete		c) fully groutd) hydraulic p		
	stone in immediate roo ondition, crushing of the		all in goaf of a coal min de is called (GATE MN 201	
a) coal bumpb) overriding	of pillars	c) stiffening ofd) spalling of		
13) A back sight on a bench mark of RL 100.00 m on the floor of a tunnel is 3.25 m. The inverse staff reading on a roof station of the tunnel is 1.25 m. The RL of the roof station in m is				
14) The angle in	degrees at which a ridg	ge line intersects coi	(GATE MN 201	
a) 0	b) 30	c) 45	d) 90	
15) In a drum hoisting system through a vertical shaft, overwinding is prevented by (GATE MN 2015)				
a) Lilly contrb) detaching lc) caliper brad) safety cate	nook ke			
	ure of a parcel of air de 20 m to 120 m. The la		C to 28.9°C as it rises fro nosphere is	

How many different triangles could be constructed with these properties?

d) transadiabatic

(GATE MN 2015)

(GATE MN 2015)

	strength of the wall at of bearing strength		
c) loss of shea	r resistance of fill		
d) prevention of	of progressive failure	e of crown pillar	
18) The primary p	urpose of cut holes	for blasting in an under	ground drivage is to (GATE MN 2015)
a) provide add	itional face area		
	n surface after blasti	ng	
c) prevent overd) reduce noise	_		
*		of the sides AB, BC, an	d CA are 60°, 130°, and
-	_	les A, B, and C in degr	
	,	, , . ,	(GATE MN 2015)
a) 110, 40, 30		c) 30, 40, 110	
b) 60, 110, 30		d) 30, 110, 40	
	-	•	→ 0 and number of trials rariance of the distribution
15			(GATE MN 2015)
a) $np\lambda$	b) <i>nλ</i>	c) pλ	d) λ
21) For a function $f(x)$, it is given that $f(0) = 2$ and $f''(0) = 4$. Ignoring all other higher order derivative terms, the value of $f(0.5)$ is			
order derivativ	c terms, the value of	1 J (0.3) 18	- (GATE MN 2015)
22) The two sides	of a parallelogram a	re given by the vectors A	$\mathbf{A} = 2\hat{i} - 3\hat{j} \text{ and } \mathbf{B} = 3\hat{i} + 2\hat{j}.$
	e parallelogram is	e given by the vectors in	$\mathbf{a} = 2i \text{3}j \text{ and } \mathbf{B} = 3i + 2j.$
The area of an	e paramerogram is		(GATE MN 2015)
a) 13	b) 12	c) 10	d) 5
		-	ater to fill a 300 ml BOD the mix are 9.0 mg/l and

7.0 mg/l respectively. The BOD of the wastewater, in mg/l, is

a) subadiabatic

b) adiabatic

17) The excess pore pressure in backfill material in a cut-and-fill stope leads to

c) superadiabatic

a) 2

b) 10

- c) 120
- d) 600
- 24) A force of 50 N is applied to a wrench as shown in the figure. The magnitude of the moment in N-mm of this force about the point P is _____.

Fig. 24

(GATE MN 2015)

25) Dilatancy of rock is associated with

(GATE MN 2015)

- a) increase in surface area after fragmentation
- b) decrease in volume due to compression of rock
- c) increase in shear strain due to cracking of rock
- d) increase in volume due to cracking of rock
- 26) A bord and pillar panel having square pillars is designed for 30% extraction during development. If the gallery width is 5 m, the side of the pillar in m is _____.

(GATE MN 2015)

- 27) Low shock and high gas pressure explosive is generally used for blasting of (GATE MN 2015)
 - a) hard and brittle rock mass
- c) hard and massive intact rock mass
- b) soft and jointed rock mass
- d) soft and massive intact rock mass
- 28) The covariance of copper grade for a certain lag distance in an ore body is $6.0 \, (\%)^2$. If the sill is $10 \, (\%)^2$, the semivariogram for the same lag distance in $(\%)^2$ is (GATE MN 2015)

	a) 4.0	b) 16.0	c) 2.0	d) 64.0
29)	The matrix	$\mathbf{A} = \begin{pmatrix} -4/6 \\ 2/6 \\ 2/6 \end{pmatrix}$	2/6 4/6 -4/6 2/6 4/6 4/6)	
	is			(GATE MN 2015)
	a) orthogonal	b) diagonal	c) skew-symmetric	d) symmetric
30)	15% and 10% by v 5.0%, 3.3% and 4.2	ains CH_4 , C_2H_6 and lolume. The lower exp $\%$ respectively. The lo	plosibility limit of CH	H_4 , C_2H_6 and H_2 are
31)	emission rate of m	g 0.2% methane enter ethane is 0.05 m ³ /s, the minimum qu	Assuming that the t	hreshold limit value
32)		sed bord and pillar the face is commonly		
	b) continuous minerc) continuous minerd) continuous minerAn underground co serious injuries and	shuttle car, feeder br LHD, feeder breaker SDL, feeder breaker shuttle car, feeder br al mine employing 12 8 reportable injuries mployed for the year i	and chain conveyor and belt conveyor reaker and chain conve 200 persons experience during the year 2013.	eyor es 2 fatal injuries, 6
34)	In self-contained ch	emical-oxygen self-re	scuer, oxygen is produ	
	a) Hopcaliteb) potassium	peroxide c) sodium hydrox-	ide d) Protosorb	
35)		an equipment followes is 3000 hours, the		
36)	In a 4.2 m wide and per round. The hole	3.0 m high gallery in es are charged with 2 blast is 2.2 tonne/kg	explosive cartridges of	of 435 g each. If the

per round of blast in m is

d) 4.06

rate of production 30 tonne/h. Coal having specific gravity of 1.4 is transported by shuttle cars of capacity 0.9 m ³ each to a feeder breaker located at 60 m from the face. If the average speed of the LHD is 0.5 m/s, and total loading and unloading time of LHD is 40 s, the number of LHDs required to match the production of the continuous miner is				
continuous n	milet 15		(GATE MN 2015)	
a) 1	b) 2	c) 3	d) 4	
at a scale of the flying he	ographs of an area lying 500 1:20000 from an aircraft. If eight of the aircraft above the ollowing locations with suppo	the camera has a foca mean sea level in m	al length of 210 mm, is (GATE MN 2015)	
	Location P. Roadway junctions Q. Between adjacent panels R. Longwall face S. Goaf	Support type 1. Powered suppo 2. Chock and bolt 3. Back fill 4. Barrier pillar		
	TABLE	40		
			(GATE MN 2015)	
a) P-2, Q-3,b) P-4, Q-3,		c) P-2, Q-4, R-1, S-d) P-2, Q-3, R-4, S-		
41) The value of		$\sqrt{5-x^2}dx$		
is			(GATE MN 2015)	

c) 1.30

37) The stadia readings with horizontal sight on a vertical staff held at 50 m from a tacheometer are 1.285 m and 1.780 m. The focal length of the object glass is 25 cm, and the distance between the object glass and the vertical axis of the tacheometer is

38) In a shortwall panel, coal is extracted from the face by a continuous miner having

b) 1.70

15 cm. The stadia interval in mm is . .

a) 1.45

- a) 12.57
- b) 50.24
- c) 25.12
- d) 3.14
- 42) A rectangular field of area 20000 m^2 is to be divided into 6 different plots by fencing as shown in the figure. The value of L in m for which the total length of fencing becomes minimum is

Fig. 42

43) Match the following for a drilling system.

Component	Function
P. Drill	1. Utilization of energy in fragmenting rock
Q. Drill rod	2. Reduction of energy loss due to regrinding
R. Drill bit	3. Conversion of original form of energy into mechanical energy
S. Flushing medium	4. Transmission of energy from prime mover to applicator

TABLE 43

(GATE MN 2015)

a) P-3, Q-1, R-2, S-4

c) P-3, Q-4, R-1, S-2

b) P-4, Q-1, R-3, S-2

- d) P-2, Q-1, R-3, S-4
- 44) For the ventilation system shown, the combined resistance of the trunk airways and the shafts is 2.2 Ns²/m⁸. The resistances of splits A and B are 0.5 Ns²/m⁸ and 0.8 Ns²/m⁸ respectively. A regulator of size 2.0 m² is placed in split A. Considering the fan generates a pressure of 1000 Pa, the air flow in m³/s in split B is _____.

Fig. 44

- 45) A mine fan running at 300 rpm delivers 150 m³/s of air at a pressure of 900 Pa. Fan and motor efficiencies are 75% and 90% respectively. If the fan speed is reduced to 250 rpm, the saving in electric power input to the motor in kW is ______.

 (GATE MN 2015)
- 46) Subsidence profile function, s(x), along the lateral cross-section over a flat longwall panel is given as

 $s(x) = 0.8 \left[0.996 - \tanh\left(\frac{8.3x}{D}\right) \right]$ m

where x = distance (m) from the inflection point and D = depth (m) of the seam. Considering that the inflection point lies vertically above the edge of the panel, the angle of draw in degrees for a depth of 250 m is _____.

(GATE MN 2015)

47) A goaf void of 250 m^3 is filled in 3 hours by hydraulic sand stowing method. Density of the sand is 2.6 tonne/m^3 . If the filling factor of goaf void is 0.9 and sand to water ratio in the stowing mixture is 1.0 tonne to 1.1 m^3 , the stowing rate in m^3/h is

(GATE MN 2015)

48) A single-acting reciprocating pump delivers 0.018 m³/s of water when running at 45 cycles per minute. The piston diameter is 300 mm and stroke length is 400 mm. The volumetric efficiency of the pump in % is ______.

(GATE MN 2015)

49) Match the method of mining with strength of orebody, type of support and orebody geometry.

Strength	Support	Geometry	Method
P. Strong	L. Unsupported	X. Tabular and steep	 Cut-and-fill
Q. Moderate	M. Artificially supported	Y. Tabular and flat	2. Block caving
R. Weak	N. Self-supporting	Z. Massive and steep	3. Room and Pillar

- a) P-N-X-3, Q-N-Z-2, R-L-Y-1
- b) P-L-X-1, Q-N-Z-3, R-M-Y-2
- c) P-N-Y-3, Q-M-X-1, R-L-Z-2
- d) P-L-Z-1, Q-N-Y-3, R-M-X-2
- 50) A mine air sample contains CH₄, CO, H₂, N₂ and O₂. The mine air analysis using Haldane apparatus gives the following results expressed in percentage of total sample volume.

Total contraction after combustion : 10.0 CO₂ formed after combustion : 6.0 Co₂ consumed in combustion : 9.5

TABLE 50

The percentage of CH_4 in the sample analysed is _____. (GATE MN 2015

51) The initial investment for a small scale mining project is Rs. 5.0 crore. Annual cash inflow for a life period of 4 years is given below.

Year	Cash inflow (Rs. crore)
1	1.5
2	2.0
3	2.0
4	1.5

TABLE 51

The net present value of the project at an annual discount rate of 10% in Rs. crore is ______.

(GATE MN 2015)

52) Given the following linear programming problem,

Maximise

$$z = 3x_1 + 4x_2$$

Subject to

$$2x_1 + x_2 \le 6$$

$$2x_1 + 3x_2 \le 9$$

$$x_1 \ge 0, \ x_2 \ge 0$$

The corner point feasible solution in terms of (x_1, x_2) is

(GATE MN 2015)

- a) (1.5, 0)
- b) (1.25, 1.5)
- c) (0.5, 1.0)
- d) (2.25, 1.5)
- 53) The 3-period torque-time diagram of a statically balanced hoist is shown in the figure.

Fig. 53

The rms torque for the motor in kN-m is _____.

(GATE MN 2015)

54) Airborne PM_{10} concentration in a residential area is monitored for 24 hours by a respirable dust sampler. Initial and final weights of the filter paper are 2.3125 g and 2.6996 g respectively. The average airflow rate during sampling is 1.2 m³/min. The PM_{10} concentration of the area in $\mu g/m^3$ is _____.

(GATE MN 2015)

55) The assignment problem given requires four different jobs to be done on four different machines.

Job		Machine		
300	M_1	M_2	M_3	M_4
J_1	27	35	36	30
J_2	33	37	36	35
J_3	30	26	28	24
J_4	38	29	35	33

TABLE 55

The minimum cost of assignment is _____.

(GATE MN 2015)

56) Acceleration of a particle moving in a straight line is expressed by

$$\frac{d^2s}{dt^2} = 2t$$

where s denotes distance (m) and t time (s). At time t = 0, the distance and velocity of the particle are 0 m and 3 m/s respectively.

The distance travelled by the particle in m after 3 s is ______.

(GATE MN 2015)

57) Rock bolts have length L = (150 + X) cm, where X is a random variable with probability density function

$$f(x) = \begin{cases} \frac{1}{4}(1 - 3x), & -2 \le x \le 2\\ 0, & \text{otherwise} \end{cases}$$

If 95% of the bolt lengths (L) lie in the interval 150 - c cm to 150 + c cm, the value of c is _____

(GATE MN 2015)

58) The properties for a bivariate distribution of two random variables *X* and *Y* are given below.

$$E(X) = 24$$
, $E(Y) = 36$, $E(X^2) = 702$, $E(Y^2) = 1524$, $E(XY) = 1004$

The correlation coefficient between *X* and *Y* is _____

(GATE MN 2015)

59) Biaxial stresses at a point inside a pillar are shown in the figure.

The magnitude of the maximum shear stress in MPa and its direction with the x-axis in degrees at the same point respectively are

(GATE MN 2015)

a) 8.25, 37.98

c) 8.25, 52.02

b) 7.49, 37.98

d) 7.49, 52.02

60) A circular tunnel is constructed in a biaxial far field stress (vertical stress p_0 and horizontal stress Kp_0) as shown in the figure.

Fig. 60

If the ratio of the tangential stress measured at the boundary points A and B is 3:1, the value of K is

(GATE MN 2015)

61) Peak particle velocity (PPV) at points A and B are measured for a blast pattern as shown in the figure.

Fig. 61

The relevant data are:

- Amount of explosives per hole in the 1st row: 500 kg
- Amount of explosives per hole in the 2nd row : 475 kg
- PPV at point A: 18 mm/s
- PPV at point B: 10 mm/s

Considering the following relationship:

$$PPV = K \left(\frac{D}{\sqrt{Q}}\right)^{-n}$$
, mm/s

where D (in m) denotes the distance from the blast row to the measuring point and

Q (in kg) the maximum charge per delay. The site constants K and n respectively are:

(GATE MN 2015)

a) 1002, 3.13

c) 823, 2.59

b) 622, 2.92

- d) 1245, 2.99
- 62) Copper ore of average grade 0.65% is mined, milled, smelted and then refined. The following information is available:

• Mill recovery rate: 85%

• Average grade in mill concentrate: 20%

• Loss in smelting process : 5 kg/tonne of concentrate

• Loss in refining process : 2 kg/tonne of blister copper

The amount of refined copper obtained per tonne of ore in kg is:

(GATE MN 2015)

a) 5.10

b) 5.37

c) 5.52

d) 6.50

63) The ratio of horizontal to vertical in-situ stresses, K, at a mine field varies with depth, D (in m) as

$$K = \frac{267}{D} + 1.25$$

If the unit weight of overburden rock is 25 kN/m^3 , the horizontal stress in MPa at a depth of 400 m is ______.

(GATE MN 2015)

64) A coal seam of 2 m thickness is extracted by a longwall retreating panel with face length of 120 m. Web depth of the shearer is 0.6 m. Average manpower in the longwall face in a shift is 20. The specific gravity of in-situ coal is 1.4. If the shearer makes 4 full-face cuts in 3 shifts, the face OMS in tonne is ______.

(GATE MN 2015)

65) A loaded dumper of total mass 75 tonne, having wheel diameter 1250 mm, runs on a haul road which offers an average specific rolling resistance of 260 N/tonne. The engine develops an axle torque of 15 kN-m. The starting acceleration of the dumper in m/s² is ______.

(GATE MN 2015)

END OF QUESTION PAPER