# Evaluating Statistical Tests for Within-Network Classifiers of Relational Data

Jennifer Neville, *Purdue University*Brian Gallagher and Tina Eliassi-Rad, *Lawrence Livermore National Laboratory* 

ICDM 2009

# Statistical questions in machine learning (Dietterich '98)



Given two learning algorithms A and B and a dataset of size S from a domain D...

which **algorithm** will produce more accurate classifiers when **trained** on other **datasets** of size S drawn from D?



# Comparison of algorithm performance

- Is observed performance difference significantly more than would be expected by random chance?
- Hypothesis testing
  - Use two-sample t-test
  - Null hypothesis (H<sub>0</sub>): Algorithm performance rates are drawn from the same distribution



- Types of errors:
  - Type I error: Reject the null hypothesis when it is true (false positive)
  - Type II error: Accept the null when it is false (false negative)

# Our findings

- We show that commonly used statistical tests can result in unacceptably high levels of Type I error for network classifiers
  - This means that many algorithm differences will be judged incorrectly as significant when in fact performance is equivalent
- Broad set of empirical experiments validate findings
  - Synthetic data, simulated classifiers
  - Synthetic data, real classifiers
  - Real data, real classifiers
- Proposed solution: Network cross-validation
  - Lowers probability of Type I error (but at expense of decreased power)

# **Our focus:** Comparing within-network relational-learning algorithms

Given two learning algorithms A and B and a partially-labeled network from a domain D with  $S_L$  labeled instances and  $S_U$  unlabeled instances ( $S = S_L + S_U$ )...

which algorithm will produce more accurate classifiers when trained on other partially-labeled networks of size S from D?

# Within-network learning/inference

- Algorithms learn models from a partially-labeled network
- Models are then applied to predict the class labels in the remainder of the network (i.e., the unlabeled nodes)

- Typical evaluation approach:
  - Vary proportion of labeled nodes
  - Randomly vary label set to estimate performance
  - Use paired t-test to assess significance



# Evaluation of paired t-test on network data



# Why are conventional statistical tests biased?

- T-test results are **biased** if performance is estimated from **overlapping** test sets (*Dietterich* '98)
  - Overlapping samples leads to underestimation of variance... which increases the probability of Type I error
  - Recommendation:

Use cross-validation to eliminate dependencies between test sets





# Network sampling



#### **Typical approach**

Use repeated random sampling to create multiple training/test (labeled/unlabeled) splits

#### Bias due to network characteristics

#### Training and test set sizes are dependent

- As the proportion of labeled data decreases, the size of the test set increases
- As the size of the test (unlabeled) set increases, the overlap between test sets increase, which leads to increased Type I error

#### Network instances are not independent

- Dependencies among instances \_\_\_\_\_\_
  leads to correlated errors
- Correlated error increases the variance of observed performance, which leads to increased Type I error





#### Network cross-validation

- Use k-fold cross-validation to select disjoint test sets of size N/k
- From remaining N(k-1)/k of data randomly select labeled training set of appropriate size (e.g., for p% labeled, select p⋅N instances to label as the training set)
- Add all unlabeled instances to the inference set
  (e.g., network = training set + inference set)
  - Run collective inference over entire inference set to make predictions
  - But only evaluate accuracy of predictions on test set



# NCV reduces Type I error (on real network data)



**Data**: AdHealth dataset, six middle- and high-school social networks

**Task**: Predict whether a student smokes or not

Models: Compare wvRN and nBC algorithms (Macskassy, Provost JMLR'07)

# NCV results in decreased statistical power



# Applicability of results

- High Type I error indicates that many algorithm differences will be judged incorrectly as significant when in fact performance is equivalent
  - These findings apply to much of the recent work in relational learning (see paper for detailed survey)
- The bias will also affect:
  - More complex relational models -- since any relational model that attempts to exploit relational autocorrelation is likely to produce correlated errors
  - Across-network tasks -- if evaluation is on partially-labeled networks
  - Other forms of hypothesis testing (standard error will be underestimated)
- The extent of the bias will depend on:
  - Level of error correlation in network
  - Amount of overlap between samples

See paper for simulation results

#### Conclusion

- Our analysis shows that a commonly-used form of evaluation in relational learning can result in unacceptably high levels of Type I error (e.g., 40-50%)
- Network cross-validation produces more acceptable levels of Type I error while still providing reasonable levels of statistical power
- Current work:
  - Theoretical proof of variance underestimation
  - Analytical adjustment for bias in t-test

## Questions?

neville@cs.purdue.edu bgallagher@llnl.gov eliassirad1@llnl.gov



## Autocorrelation and error correlation

| Data Set        | Task             | Error Corr. | Autocorr. |
|-----------------|------------------|-------------|-----------|
| Enron Email     | Executive?       | 0.18        | 0.17      |
| Citeseer        | Neural Nets?     | 0.23        | 0.59      |
| Political Books | Neutral?         | 0.25        | 0.22      |
| Cora            | Info. Retrieval? | 0.28        | 0.61      |
| Reality Mining  | In Study?        | 0.32        | 0.79      |
| Reality Mining  | Student?         | 0.52        | 0.91      |

**Table 1.** Error correlation and relational autocorrelation in real-world classification tasks.

# Methodology

- Synthetic data
  - Partition data instances into groups; errors within each group are correlated
  - Dataset size = 300
    Number of groups = 10
- Simulated classifiers
  - Create two classifiers with equal overall error rate
  - Associate algorithm errors with different groups in data

- Experiments
  - 1000 trials
  - 10 simulations of randomly choosing set of labeled "training" set and unlabeled "test" set
  - Report average Type I error
    Note: algorithms are equivalent
    so any assessment of
    significance is considered a
    Type I error
  - Vary error correlation and label proportion

# Type I error increases as test set size increases



# Type I error increases as error correlation increases



# Methodology

- Latent group model to generate multiple networks from the same domain D
  - Dataset size = 300
    Average group size = 10
  - Two types of groups A/B:
    A: higher intra-group linkage,
    positive class labels
    B: lower intra-group linkage,
    negative class labels
  - Goal: Classifiers will make different types of errors

- Real classifiers
  - wvRN: no learning, just assume autocorrelation exists and infer label as average of neighbor labels
  - nBC: learn CPD to predict class label based on neighbor labels, use collective inference to propagate inference
- Equalize classifiers
  - Perturb predictions of wvRN until performance is within 0.5% over 500 calibration sets

# Type I error is as high as 50% for standard RRS



# Measuring statistical power

- Statistical power:
  - Probability that the null hypothesis is rejected when the algorithms are not equal (i.e., test concludes that the performance difference is significant)
- To measure Type I error we need classifiers that are equivalent, to measure statistical power we need classifiers that perform **differently**
- Vary classifier difference
  - Perturb predictions of nBC and measure performance over 500 calibration sets
  - Perturbation rates = [0.025, 0.075, 0.15, 0.30] to increase difference between models

# Methodology

- Adolescent Health Data
  - Survey information from 144 middle and high-schools, collected in 1994-1995
  - We used the social networks from size schools with similar autocorrelation and link patterns
  - Classification task: Whether a student smokes or not
  - Network sizes: 300-700;
    Average degree: 7-8;
    Autocorrelation: [0.25,0.35]

- Real classifiers
  - wvRN: no learning, just assume autocorrelation exists and infer label as average of neighbor labels
  - nBC: learn CPD to predict class label based on neighbor labels, use collective inference to propagate inference
- Equalize classifiers
  - 500 calibration sets created from 5 held-out schools, for each of the six schools.



# Comparison of algorithm performance

- Typical approach: two sample t-test
- Assess whether observed difference in algorithm performance is significant
- Compare to differences that would be observed under the null hypothesis
   (H<sub>0</sub>: error rates are drawn from same distribution)
- T-test assumptions
  - Population is normally distributed
  - Variance of two populations are equal
  - Samples are independent, random draws from the population



$$t = \frac{\bar{X}_1 - \bar{X}_1}{S_{X_1 X_2} \cdot \sqrt{\frac{2}{n}}}$$

# Larger network size increases power



# Previous results (Dietterich '98)

- T-tests results are **biased** if performance is estimated from **overlapping** test sets
  - Overlapping samples leads to underestimation of variance, which increases the probability of Type I error

$$t = \frac{\bar{X}_1 - \bar{X}_2}{S_{X_1 X_2} \cdot \sqrt{\frac{2}{n}}}$$

• Type I error:

t-test concludes the algorithms are different when in fact they are not

Recommendation:

Use cross-validation to eliminate overlap in test sets

# Network sampling



#### **Typical approach**

Use repeated random sampling to create multiple training/test (labeled/unlabeled) splits