PALESTRA

Comunicações por Fibra Óptica

Francisco Pereira

fdp@isep.ipp.pt

INTRODUÇÃO

- Com 1,5 milhões de utilizadores de fibra óptica, o protocolo das Redes de Nova Geração (RNG) deverá gerar 25 mil postos de trabalho.
- A estimativa foi revelada pelo Ministério das Obras Públicas Transportes e Comunicações (MOPTC).
- A estimativa tem por base o estipulado pelo protocolo das RNG assinado entre o MOPTC e a PT, a Sonaecom, a Zon e a DST (e mais tarde a Oni e Cored), que fixa como objectivo disponibilizar acessos de fibra óptica para 1,5 milhões de portugueses até ao final de 2009.
- Que Mestrado seguir?

- Em Portugal são duas as famílias de redes de BUL:
 - uma constituída exclusivamente por fibra óptica (Clix e PT);
 - e uma segunda que combina fibra óptica e cabo coaxial (Zon –
 Fibra óptica + Eurodocsis 3.0).
- Na primeira optou-se pela arquitectura de *Fiber To The Home* (FTTH).
 - ⇒ investimento em infra-estruturas no ambiente doméstico dos clientes.

Ao contrário do que tem sido feito em países onde se enveredou pelas arquitecturas que levam a fibra apenas até às imediações da casa – *Fiber To The Node* (FTTN).

O serviço tem um limite máximo de 1 Gb/s no download.

• A segunda tem um limite máximo futuro de 400 Mb/s, que só pode ser superado com o investimento necessário para instalar a fibra óptica no remanso caseiro.

CLIX FIBRA (50 Mb/s e 100 Mb/s)

- 1 milhão de casas até 2011;
- 240 milhões de euros de investimento;
- Presente em 35 freguesias das áreas metropolitanas de Lisboa e do Porto.

ZON WIDEBAND (50 Mb/s e 100 Mb/s)

- 3 milhões de casas
- 180 milhões de euros de investimento;
- Presença nas áreas metropolitanas de Lisboa e do Porto;
- Testes de 200 Mb/s.

MEO FIBRA (20 Mb/s e 100 Mb/s)

- 50 mil km de fibra para 1 milhão de casas num ano;
- 550 milhões de euros de investimento;
- Não são reveladas prioridades geográficas.

- Grande largura de banda:
 - Gama de frequências da portadora óptica de 10¹³ a 10¹⁶ Hz (largura de banda teórica da ordem de 50 THz).
- Baixa atenuação ⇒ menores perdas de transmissão ⇒ maior espaçamento entre repetidores.
- Imunidade a interferências electromagnéticas e *crosstalk*:
 - Não sofre de EMI nem de RFI;
 - O cabo de fibra óptica não está sujeito a descargas atmosféricas quando usado em instalações aéreas;
 - Ausência de interferência óptica entre fibras do mesmo cabo.
- Peso reduzido:
 - Cabos de fibras ópticas mais leves que os cabos de cobre;
 - Uso promissor em aviões, satélites, navios, etc.
- Tamanho reduzido:
 - Facilidade de manuseamento;
 - Instalação preferencial em ambientes onde o espaço é limitado (ductos, condutas, etc).

- Segurança e Privacidade:
 - Não permite derivações indetectáveis.
- Tecnologia segura:
 - Não necessita de transportar corrente eléctrica;
 - Se a fibra partir, não apresenta problemas de "massas" ou curtocircuitos e não gera faíscas.
- Sistemas mais fiáveis e mais fáceis de manter:
 - Menos repetidores (ou amplificadores) ⇒ menos componentes ⇒ maior fiabilidade;
 - Tempo de vida médio dos dispositivos ópticos é maior.
- Matéria prima abundante e potencial baixo custo:
 - O vidro é feito de silica (extraída da areia!).
- Possibilidade de evolução (*upgrade*):
 - Depois da fibra instalada basta apenas mudar o equipamento terminal.

- Necessidade de formação especializada:
 - Custo adicional.
- Custo de equipamento de transmissão:
 - Num mundo essencialmente electrónico, o custo de conversões electroópticas e optoelectrónicas é necessariamente penalizador.
- Custo de instalação e equipamento de teste:
 - Equipamentos de teste comparativamente mais caros.
- As fibras ópticas de comunicações não transportam energia eléctrica:
 - Não são auto-suficientes, ao contrário dos sistemas de cabo de cobre.
- **■** Vulnerabilidade:
 - Devido à enorme quantidade de informação que pode transportar, uma falha num cabo de fibras ópticas pode resultar numa perda enorme.

- 1841 Daniel Colladon demonstrou o princípio da reflexão interna total (princípio de funcionamento das fibras ópticas) a luz podia ser direccionada ao longo de um jacto de água;
- 1854 John Tyndall demonstrou que a luz podia viajar através de um feixe de água curvo.
- 1880 William Wheeler patenteou um método de conduzir a luz "piping light" para as divisões de um edifício. Utilizava um arco eléctrico e canos com espelhos;

1950 Holger Moller Hansen obteve reflexão interna total no interior de uma fibra de vidro com um revestimento de margarina;

1956 Larry Curtiss fabricou a primeira fibra de vidro com bainha com boa qualidade, ao derreter um tubo de vidro de menor índice de refracção num tubo de vidro de maior índice de refracção;

- 1960 Theodore Maiman construiu o primeiro laser de impulsos de luz (laser de Rubi) o que renovou o interesse nas comunicações ópticas;
- 1966 Charles Kao e George Hockham demonstraram teoricamente que a perda de luz nas fibras de vidro podiam ser dramaticamente reduzidas através da remoção das impurezas do vidro;
- 1970 Kapron, Keck e Maurer, da Corning Glass Works, conseguiram fabricar fibras com atenuação inferior a 20 dB/Km;
 Morton Panish, Izuo Hayashi e Alferov demonstraram um díodo laser semicondutor capaz de emitir no modo contínuo e à temperatura ambiente;
- 1988 Graças à optimização da tecnologia de amplificação laser, entrou em funcionamento o primeiro cabo de telefone transatlântico em fibra óptica (TAT8). Ligava os Estados Unidos a Inglaterra e a França e esteve em funcionamento entre 1988 e 2002;

2001 Entrou em funcionamento a ligação transatlântica TAT-14, a qual utiliza repetidores EDFA, WDM e ainda está operacional (capacidade 640 Gb/s).

Hoje em dia existem dezenas de ligações transatlânticas e a fibra está a chegar a casa, FTTH;

Função de cada Bloco:

- Transmissor eléctrico: converter a informação num sinal eléctrico;
- Fonte óptica: produz o sinal óptico;
- Cabo de fibra óptica: meio de transporte do sinal óptico;
- Detector óptico: detectar e converter o sinal óptico em sinal eléctrico;
- Receptor eléctrico: converter o sinal eléctrico em informação.

- A luz pode ser caracterizada em termos do seu comprimento de onda, λ
- Informação transportada numa portadora. Frequência da portadora elevada implica maior capacidade de transmitir informação
- Os sistemas de comunicações em fibra óptica operam em três zonas do infravermelho:
 ~850 nm, ~1310 nm e ~1550 nm
 Estas zonas designam-se por janelas

PROPAGAÇÃO DA LUZ NAS FIBRAS ÓPTICAS

• Índice de refracção

$$n = \frac{c}{v} = \sqrt{\frac{\varepsilon \mu}{\varepsilon_0 \mu_0}} = \sqrt{\varepsilon_r \mu_r}$$

$$c$$
 – velocidade da luz no vácuo
≈ 3×10^8 m/s

v – velocidade da luz no meio

permeabilidade do vácuo $= 4\pi \times 10^{-7} \text{ Ns}^2/\text{C}^2$

permissividade (ou constante dieléctrica) do vácuo $= 8.854 \times 10^{-12} \text{ C}^2/\text{Nm}^2$

Para a maioria dos materiais na região óptica:

$$\mu_r \approx 1 \Longrightarrow n \approx \sqrt{e_r}$$

• Lei de Snell

$$n_1 sen \phi_1 = n_2 sen \phi_2$$

• Reflexão interna total

lei de Snell

$$n_1 sen \phi_1 = n_2 sen \phi_2$$

ângulo crítico

Aumentando
$$\phi_1$$
 progressivamente até $\phi_2 = \pi/2$

$$sen\phi_c = \frac{n_2}{n_1}$$

Ângulo crítico é o menor ângulo necessário para obter a reflexão interna total $\Rightarrow \phi > \phi_c$ para haver propagação no interior da fibra

• Reflexão Interna Total

• Ângulo de Aceitação e Abertura Numérica

■ Silica SiO₂

de índice em degrau
(step-index)

Tipos de fibras:

de índice gradual
(graded-index)

Monomodo
Multimodo

Multimodo

Fibras de índice em degrau monomodo

• Núcleo com diâmetro 8-12 μ m, bainha 125 μ m, não apresenta dispersão intermodal, maior dificuldade na injecção de luz (são utilizados lasers)

Fibras de índice em degrau multimodo

• Núcleo com diâmetro 50-200 μm, bainha 125-400 μm, apresenta dispersão intermodal (reduz a largura de banda da fibra), menor dificuldade de injecção de luz (podem ser utilizados LEDs)

Fibras de índice gradual multimodo

• Núcleo com diâmetro 50-100 μ m, bainha 125-140 μ m, dispersão intermodal reduzida permite maior largura de banda

Curvas de dispersão

Dispersão material e de guia de onda para diferentes fibras monomodo

Dispersão total

Perfis dos índices de refracção

(a) Dispersão optimizada para 1300 nm

(b) Fibra com dispersão deslocada (DSF)

(c) Fibra com dispersão aplanada (DFF)

(a)

Depressed-cladding

Triangular

Quadruple-clad

(c)

FONTES ÓPTICAS

Lasers 28

LASERs Semicondutores:

- A saída óptica é coerente;
 Uma fonte óptica coerente possui uma cavidade ressonante óptica que produz energia óptica com coerência espacial e temporal;
- Produz luz muito monocromática;
- Produz um feixe de luz muito direccional;

LEDs:

A saída óptica é incoerente;

A sua radiação de saída tem uma largura espectral larga porque a energia dos fotões emitidos está espalhada pela distribuição de energia dos electrões e lacunas de recombinação.

• A energia óptica incoerente é emitida para um hemisfério de acordo com uma distribuição Lambertiana o que implica uma grande divergência do feixe.

Absorção e emissão de radiação

$$E = E_2 - E_1 = hf$$

E – Energia; E_2 e E_1 – Estados de energia

absorção

emissão espontânea

emissão estimulada

Fotão com a mesma frequência, fase, polarização e direcção. Os dois fotões são coerentes.

- Para obtermos uma fonte óptica coerente e amplificação de um feixe de luz é necessário que a emissão estimulada domine sobre a absorção e a emissão espontânea.
- A densidade de radiação e a densidade de população do nível de energia superior, N_2 , têm de ser aumentados em relação à densidade de população do nível de energia inferior, N_1 , i.e. $N_2 > N_1$
- Esta condição é conhecida como Inversão de População.
- É necessário ainda criar condições para a amplificação de luz.
- Cavidade óptica para se obter realimentação óptica.

- Inversão de população
 - Pode ser obtida em sistemas de 3 ou 4 níveis.

Dois lasers não semicondutores

estado meta-estável (o tempo de vida do átomo neste estado antes de ocorrer a transição é muito mais longo)

Laser de He-Ne (4 níveis)

banda proibida directa

banda proibida indirecta

• Alguns dos materiais semicondutores utilizados no fabrico de fontes electroluminescentes para as comunicações por fibra óptica

Material systems active layer/confining layers	Useful wavelength range (μm)	Substrate
$GaAs/AI_xGa_{1-x}As$	0.8-0.9	GaAs
$GaAs/In_xGa_{1-x}P$	0.9	GaAs
$Al_yGa_{1-y}As/Al_xGa_{1-x}As$	0.65-0.9	GaAs
$In_yGa_{1-y}As/In_xGa_{1-x}P$	0.85-1.1	GaAs
$GaAs_{1-x}Sb_x/Ga_{1-y}Al_yAs_{1-x}Sb_x$	0.9-1.1	GaAs
$Ga_{1-y}Al_yAs_{1-x}Sb_x/GaSb$	1.0-1.7	GaSb
$In_{1-x}Ga_xAs_yP_{1-y}/InP$	0.92-1.7	InP

- Para o funcionamento entre 800 e 900 nm, o material mais utilizado é o composto ternário Al_xGa_{1-x}As.
- Para comprimentos de onda maiores o composto quaternário $In_{1-x}Ga_xAs_vP_{1-v}$ é um dos preferidos (1000 1700 nm).

• Junção *pn*

• A largura da região de depleção e consequentemente a grandeza da barreira de potencial, depende da concentração de portadores (dopagem) nas regiões *p* e *n* e da tensão externa aplicada.

• Junção *pn* inversamente polarizada

- A largura da região de depleção aumenta.
- Aumenta a barreira de potencial impedindo a passagem de portadores maioritários através da junção.
- Contudo, os portadores minoritários podem mover-se com o campo através da junção.
- O movimento dos portadores minoritários é pequeno para tensões e temperaturas normais mas, pode ser significativo quando são criados portadores em excesso (ex. num fotodíodo iluminado).

• Junção *pn* directamente polarizada

- A largura da região de depleção diminui.
- Diminui a barreira de potencial.
- Deste modo, os electrões da banda de condução do material do tipo n e as lacunas da banda de valência do material do tipo p, podem propagar-se através da junção.

• Dupla heterojunção

Consiste em três materiais semicondutores adjacentes com energias de bandas proibidas diferentes.

• Permite confinamento óptico e eléctrico.

diagrama da banda de energia indicando uma hetrojunção *p-p* e *p-n*

diagrama do índice de refracção e da distribuição do campo eléctrico

• Para os sistemas de comunicação óptica que requerem taxas de transmissão de bit menores do que 200 Mb/s, que utilizam fibras multimodo e que necessitam de apenas algumas dezenas de μ W de potência acoplada, os LEDs são a melhor escolha.

• Vantagens:

- Fabrico mais simples;
- Mais barato;
- Maior fiabilidade;
- Menos dependentes da temperatura;
- Circuitos de modulação mais simples (não necessitam de circuitos de estabilização óptica ou térmica);
- Major linearidade.

• Desvantagens:

- Menor potência óptica;
- Menor largura de banda;
- Distorção harmónica.

Dupla heterojunção de GaAlAs

x > y para se alcançar o confinamento eléctrico e óptico

Metal Metal n-type n-type n-type p-type p-type $Ga_{1-\nu}Al_{\nu}As$ contact GaAs $Ga_{1-x}Al_xAs$ Ga1-, Al, As GaAs contact substrate Metal contact Light guiding Recombination Light guiding improvement and carrier region and carrier confinement confinement $\sim 1 \mu \text{m}$ $\sim 0.3 \ \mu \text{m}$ $\sim 1 \mu m$ $\sim 1 \,\mu\text{m}$

Diagrama da banda de energia

Diagrama do índice de refracção

• Duas das configurações mais utilizadas nas comunicações por fibra óptica são os *surface emitters* (SLEDs, também chamados de *Burrus* ou *front emitters*) ...

Plano da região emissora é perpendicular ao eixo da fibra;

Área activa circular tem 50 μ m de diâmetro e 2,5 μ m de espessura;

O padrão da emissão é isotrópico (padrão lambertiano) com a emissão de ½ da potência a uma largura do feixe de 120°;

• ... e os *edge emitters* (ELEDs).

O padrão de emissão é mais direccional do que o do SLED;

O comprimento da região activa varia tipicamente entre 100 e 150 μ m;

No plano paralelo à junção, onde não existe efeito de guia de onda, o feixe emitido é lambertiano (varia com $\cos \theta$) com ½ da potência a 120°;

No plano perpendicular à junção com um ângulo entre 25-35° já se pode obter ½ da potência, através da escolha apropriada da espessura da guia de onda;

Características

Potência de saída de luz do LED em função de uma corrente do

• Para os sistemas de comunicação óptica que requerem taxas de transmissão de bit maiores do que 200 Mb/s, os díodos laser semicondutores são os preferidos.

• Vantagens:

- Tempos de resposta inferiores a 1 ns (elevada largura de banda);
- Largura espectral inferior a 2 nm (minimiza efeitos da dispersão);
- Dezenas de mW de potência acoplada na fibra.

• Desvantagens:

- Construção mais complexa (maior custo);
- Maior dependência com a temperatura;
- Circuitos de *drive* mais complexos.

- Estruturas e padrões de radiação de díodos laser
 - Os três métodos básicos de confinamento óptico utilizados para delimitar a luz laser na direcção lateral são: o *gain-guided*, o *positive index-guided* e o *negative index-guided*.

• Heteroestrutura enterrada (BH)

- a) GaAlAs (800–900 nm)
- b) InGaAsP (1300–1600 nm)

 Métodos de confinamento de corrente

• Características

Potência de saída de luz do Laser a diferentes temperaturas

Espectro

FOTODETECTORES

- Características principais:
 - Eficiência quântica (electrões / fotões);
 - Corrente de escuridão;
 - Responsividade (corrente vs. potência óptica).
- PIN camada-P, camada Intrínseca e camada- N
 - Muito linear, baixa corrente de escuridão.
- APD Avalanche PhotoDiode
 - Elevado ganho;
 - Elevada Sensibilidade;
 - Elevada dependência com a temperatura;
 - Fabrico mais complexo e elevadas tensões de polarização.

• Operação de um fotodetector

Fotodetectores 52

- Detecção óptica
- O fotodíodo mais simples (pn) está inversamente polarizado.
- É criada uma região de depleção de cada lado da junção, que impede os portadores maioritários de atravessar a junção, mas fomenta a passagem de portadores minoritários.
- Um fotão incidente na região de depleção e que tenha uma energia adequada excita um electrão da banda de valência, criando uma lacuna na banda de valência e um electrão na banda de condução.
- Este processo chama-se FOTOGERAÇÃO de um par electrão-lacuna.

- Detecção óptica
 - A região de depleção deve ser o maior possível (PIN).

• Resposta de um Fotodetector

Fotodetectores

Fotodetector APD

