



## 杂谈: 多重时空下的算法竞赛

麻省理工学院 罗哲正 2022 年 1 月





### 什么是算法竞赛?

- 考察算法
- 规定时间内编程解决数学问题
- •测试数据
- 时间/空间限制





### 什么是OI

OI 即 Olympiad in Informatics,是高中阶段主要的算法竞赛,有较为明确考纲(如 NOI,IOI 大纲)

多为4~5小时解决3~4道难度不同的题 较为正式的比赛中为5小时三道题

每题都有明确标注的部分分

IOI 赛制有及时反馈 CNOI 赛制无及时反馈,赛后统一评测





### OI以外的算法竞赛

区域赛 CCPC

World Finals

ICPC系列

蓝桥杯

百度之星 美团杯

• • • • • •

线下比赛

多种赛制: ICPC, CF, 提交答案

Atcoder UOJ Codechef

Codeforces Topcoder

• • • • • •

短周期网络赛

Topcoder Open (TCO)
Google Code Jam (GCJ)
HashCode ......

长周期网络赛 (年度)





# 大洋彼岸的启示

从交换生经历谈中美信息学竞赛差异





## 选拔







## 赛制

| CNOI   | USACO  | IOI         |
|--------|--------|-------------|
| 按测试点给分 | 按测试点给分 | 按子任务给分      |
| 文件输入输出 | 标准输入输出 | 交互式输入输出     |
| 赛后统一评测 | 即时评测   | 即时评测        |
| 有详细部分分 | 有粗略部分分 | 严格按照子任务给部分分 |





### 命题特点与选手科技树

- · IOI 的命题精神是什么?
  - · 请认真听一听彭老师《IOI 题型与去向分析》
- 我们的命题科学吗?USACO 的命题怎么样?
  - 谈谈你印象中最"偏"的一道正式比赛题。
  - 谈谈你心中最优秀的一场比赛。
  - 你觉得近年的比赛难度在如何变化?应该如此吗?
- 我们的科技领先吗?领先在哪里?
  - 谈谈你认为最惊艳的中国 OI 科技。





### 训练模式

以学校为单位(有教练) 个人学习者 校内资源 在线资源 CNOI 模拟赛 网络赛 同僚交流 在线交流





## 总结与建议

对比国外选手的训练选拔方式,我们可以学到什么?





### 如何训练(面向 IOI)

#### 面向IOI的训练模式

- 可以继续通过模拟赛训练,但注 意不要过度拟合 CNOI 赛制
- 利用网络在线比赛适应即时反馈的赛制
- 提高整体的做题效率,IOI 赛制的 节奏远快于 CNOI 赛制

#### 资源的选择与利用

- 认真对待且珍惜 IOI 真题,尤其是交 互类型
- 刷题时侧重 IOI 考纲内的题目
- 其他国家的决赛,选拔赛真题(如 美国,日本,波兰)
- ICPC 训练赛可极大提升综合能力, 可以尝试





### 如何考试(面向 IOI)

#### 时间管理

减小方差

擅于挑战

- 利用即时反馈尽快拿到暴力/部分分,不要优化暴力
- 优先做得分率高的部分分,平时注意提升代码稳定性
- 提前 90 分钟做好全部收场规划
- 善于从 low-level 写码状态切换回 high-level 思考状态
- 谨慎但不要惧怕投入大量时间思考
- 训练对题目难度的感知





### 如何选拔

• 尽可能采用 IOI 赛制。

• 增多选拔赛的题目数量, 平均权值(需要更多成本投入)。

· 增加 CNOI 中缺乏的题型与知识点的考察,如交互。





# 着眼未来: OI 与大学

包含我对一些 OI 选手的采访





### 中学阶段: OI 的投入与回报

· OI 与文化课的冲突:大多数集训队员都不同程度的停了文化课。

• OI 对升学的价值:加分,保送,申请时作为重要的课外活动。





### OI的学习方式

- 自主学习能力
- 自主在网上找资源的能力(如 blog, google scholar)
- 快速阅读并筛选资源的能力
- 不要硬想问题, 学会从题解中学习
- 做题往往比看书有用





### OI的思维模式

- •逻辑思维能力
- 建立对题目难度的良好估计
- 模块化的拆分问题
- 先考虑问题的特殊情况,看看能不能把做法一般化
- 先暴力解决问题再思考优化
- 学会问"为什么想到这个",关注直觉(intuition)





### OI中的知识点

- 代码能力,调试技巧,常数优化
- 可以快速学会一门编程语言,并看懂他人的代码
- 算法思维: 把计算过程写成算法, 提升理解复杂算法的能力
- 分析算法的复杂度及正确性
- 概率,组合与线性代数
- 初级而广泛应用的思想: 贪心, 动态规划, 分治, 递归





### 如何避免 OI 模式的"副作用"

- 要学会"拉长战线", OI 题都可以在几个小时内解决, 而科研和工程上的问题并非如此。要学会做没有短期回报的事情。
- 要学会听课,读材料,而不是仅仅自己做题。避免纯粹的"面向作业学习"。
- 学会提问, 学会合作, 学会从别人的视角理解问题。
- 要跨越"AC思维",不要觉得只要做对了题,懂不懂并不重要,要从定义开始理解。透彻的理解对课程,考试,科研都很重要。
- 并不是每个问题都有简洁优美高效的解法,不要看不起暴力。





### 高中 OI 选手的生活与社交

• 事实: 很多集训队员的高中生活中几乎没有社交。

•集训队员的社交对象以机房同学/网友为主。

• 部分 OI 选手生活不规律, 经常熬夜







### 对 OI 选手大学生活的建议

- 要重视一起在 OI 中成长的同学, 你们会有很多共同语言。
- 不要只和 OI 选手打交道,走出舒适圈,多样化自己的社交圈。 与更多的人交流会帮助你认识到自己社交和心智上的局限,并扩 展自己的社交能力。
- 有能力可以主动参与学校活动,培养其他的爱好并结识同好。





### 杂谈:一些宽泛的建议

- 享受生活,这可能是前后三年内唯一有空玩一玩的时间。保持纯粹,到了大学之后人会变得复杂。珍惜现在只想快乐做点题目的时光。
- 早点思考自己要做什么,大一大二就可以去了解一下,可以试错, 多获取一些信息,多和前辈聊天。
- 尽可能想清楚自己要做什么。如果要做科研的话,不要只做TCS(尤其是组合算法),多看别的领域。
- 放平心态,享受过程,关注自己和周边人的心理健康,有困难及时求助。相信自己,大胆尝试。





### 致谢

· 感谢 CCF 提供交流与分享的平台。

• 感谢陈立杰, 罗浩宽, 王蕴韵, 吕凯风, 高继杨和一位匿名人士接受采访。

• 感谢在座各位的聆听。





### 谢谢大家!

2022年1月24日