(试题共5页)

一、判断对错(每题 2 分,共 10 分)
1. 如果 z 不是实数,则 $\arg z = -\arg z$ 。()
2. 微积分中的求导公式、洛必达法则、积分中值定理等均可推广到复变函数。()
3. 设 $f(z)$ 和 $g(z)$ 均为整函数,则 $5f(z)+ig(z)$ 也是整函数。(
4. 存在在原点解析,在 $\frac{1}{n}$ 处取值为 $1,0,\frac{1}{3},0,\frac{1}{5},\cdots$ 的函数。()
5. 若 ∞ 是函数 $f(z)$ 的可去奇点,则 $f(z)$ 在 ∞ 处的留数为 0 。(
二、选择题(每题 3 分, 共 24 分)
1. 假设点 z_0 是函数 $f(z)$ 的奇点,则函数 $f(z)$ 在点 z_0 处(
(A) 不可导 (B) 不解析
(C) 不连续 (D) 以上答案都不对 2. 下列方程所表示的平面点集中,为有界区域的是 ()
(A) $\left \frac{z-1}{z+1} \right > 2$ (B) $ z+3 - z-3 > 4$
(C) $1 < \text{Re} z < 2$, $\text{Im } z = 0$ (D) $z\overline{z} + a\overline{z} + \overline{a}z + a\overline{a} - c > 0 \ (c > 0)$
3. 设 c 为正向圆周 $ z =1$,则 $\int_{c} \left \frac{dz}{z} \right = ($
(A) $2\pi i$ (B) 2π (C) $-2\pi i$ (D) -2π
4. 设 C 为椭圆 $x^2 + 4y^2 = 1$,则积分 $\int_C \frac{1}{z} dz = ($)
(A) $2\pi i$ (B) π (C) 0 (D) $-2\pi i$
5. Res $\left[\frac{1}{z\sin z}, z=0\right] = \left(\begin{array}{c} C \end{array}\right)$
(A) $2\pi i$ (B) 2π (C) 0 (D) $-2\pi i$ $\frac{\sum_{i=2}^{m} 2 - 2\cos^2 2}{\sin^2 2}$
6. 如果 z_0 为 $f(z)$ 的 n 级极点,则 z_0 为 $f'(z)$ 的())级极点 $= \frac{\cos z - \cos z + z + z}{2\sin z \cos z}$
(A) n (B) $-n$ (C) $n-1$ (D) $n+1 = \frac{2}{2(o52)} > 0$
7. 设 $f(t)$ 的傅立叶变换为 $F(\omega)$,则 $f(at+b)(a,b$ 为实数且 $a>0$) 的傅立叶变换为
$=\frac{1}{a}e^{\frac{b}{a}\omega i}F(\frac{\omega}{a})$

$$(A) \frac{1}{a} e^{i\frac{b}{a^{2}}\omega} F(\frac{\omega}{a})$$

(A)
$$\frac{1}{a}e^{i\frac{b}{a^2}\omega}F(\frac{\omega}{a})$$
 (B) $\frac{1}{a}e^{i\frac{b}{a}\omega}F(\frac{\omega}{a})$

(C)
$$\frac{1}{a}e^{-i\frac{b}{a^2}\omega}F(\frac{\omega}{a})$$

(c)
$$\frac{1}{a}e^{-i\frac{b}{a^2}\omega}F(\frac{\omega}{a})$$
 (d) $\frac{1}{a}e^{-i\frac{b}{a}\omega}F(\frac{\omega}{a})$

& 函数
$$\frac{s^2}{(s+1)^2+1}$$
 的拉普拉斯逆变换为 (人)

(A)
$$\delta(t) - 2e^{-t}\cos t$$

(B)
$$\delta(t) - 2\cos t - 2\sin t$$

(C)
$$\delta(t) - 2e^{-t} \sin t$$

(D)
$$\frac{i-1}{2}e^{it}$$

3. 设
$$f(z) = e^{x^2-y^2} [\cos(2xy) + i\sin(2xy)]$$
, 则 $f'(1) = \frac{2C}{2}$ $= e^{x^2-y^2+2xy} = e^{(x+y)^2} = e^{(x+y)^2} = e^{(x+y)^2} = e^{(x+y)^2}$ 4. 设 $u(x,y)$ 的共轭调和函数为 $v(x,y)$, 那么 $v(x,y)$ 的共轭调和函数为 $v(x,y)$ 的共轭调和函数为

5. 设 C 为过点 2+3i 的正向简单闭曲线,则当 Z 从曲线 C 内部趋向 2+3i 时,

$$\lim_{z\to 2+3i} \oint \frac{e^{\zeta}}{\xi-z} d\xi = \underbrace{\frac{2\pi i}{\xi-2\pi i}}_{z\to 2+3i} 2\pi i e^2(\omega_5 + i\sin^2) \pm z$$
从曲线 C 外部趋向 2+3i 时,

$$\lim_{\varepsilon \to 2+3i} \oint_{\varepsilon} \frac{e^{\zeta}}{\xi - z} d\xi = 0$$

6. 级数
$$\frac{1}{z^2} + \frac{1}{z} + 1 + z + z^2 + \cdots$$
 的收敛域是 $0 < |z| < |z|$

7. 函数
$$F(\omega) = \frac{1}{9+\omega^2}$$
 的傅立叶逆变换为_____

8. 函数
$$F(s) = \frac{1}{s_{-1}^2 + 1} e^{-2s}$$
的拉普拉斯逆变换为 $\frac{1}{s_{-1}^2 + 1}$ \Rightarrow Sint

四、(8分) 计算积分
$$\int_{C} \frac{1}{(z^{2} + a^{2})^{2}} dz$$
, 其中 C 为不经过 $z = \pm ai$ 的简单正向闭曲线

1. C 是 $Z = Civd$

$$= 2\pi i \cdot \left(\frac{1}{(z^{2} + ai)^{2}}\right) = 2\pi i \cdot \left(\frac{2(z + ai)^{2}}{(z + ai)^{2}}\right) = 2\pi i \cdot \left(\frac$$

五、(8分) 将
$$f(z) = \frac{1}{(z+i)(z-2)}$$
 在适当的圆环域内展成以 2 为心的幂级数。

(1) $O(|z-z| < \sqrt{5}) = \frac{1}{|z-z|} = \frac{1$

六、(10 分) 计算函数 $f(t) = \begin{cases} t, & |t| \le 1 \\ 0, & \text{其他} \end{cases}$ 的傅立叶变换,并求积分

$$\int_{0}^{\infty} \frac{(\sin \omega)}{\omega^{2}} \frac{\cos \omega}{\omega} \sin \omega t d\omega = \int_{-1}^{\infty} te^{-i\omega t} dt =$$