Prednášky z Matematiky (4) – Logiky pre informatikov

Ján Kľuka, Jozef Šiška

Katedra aplikovanej informatiky FMFI UK Bratislava

Letný semester 2016/2017

6. prednáška

Korektnosť a úplnosť tablového kalkulu

27. marca 2017

Obsah 6. prednášky

1 Výroková logika
Tablový kalkul
Opakovanie
Korektnosť
Tablový dôkaz splniteľnosti
Hintikkova lema
Úplnosť

Označené formuly a ich sémantika

Definícia 3.77

Nech X je formula výrokovej logiky.

Postupnosti symbolov $\mathsf{T} X$ a $\mathsf{F} X$ nazývame označenými formulami.

Definícia 3.78

Nech v je ohodnotenie výrokových premenných a X je formula. Potom

- v spĺňa TX vtt v spĺňa X;
- v spĺňa FX vtt v nespĺňa Y.

Dohoda

Pre označené formuly budeme používať veľké písmená zo začiatku a konca abecedy s horným indexom + a prípadne s dolnými indexmi, napr. A^+ , X_7^+ . Pre množiny označených formúl budeme používať písmená S, T s horným indexom + a prípadne s dolnými indexmi, napr. S^+ , T_3^+ .

Jednotný zápis označených formúl — α

Definícia 3.79 (Jednotný zápis označených formúl typu α)

Označená formula A^+ je typu α , ak má jeden z tvarov v ľavom stĺpci tabuľky pre nejaké formuly X a Y.

Takéto formuly budeme označovať písmenom α ;

 α_1 bude označovať príslušnú označenú formulu zo stredného stĺpca a α_2 príslušnú formulu z pravého stĺpca.

α	α_1	α_2
$T(X \wedge Y)$	ΤX	T Y
$\mathbf{F}(X \vee Y)$	$\mathbf{F}X$	$\mathbf{F}Y$
$\mathbf{F}(X \to Y)$	TX	$\mathbf{F}Y$
$T \neg X$	FX	FX
$\mathbf{F} \neg X$	TX	TX

Pozorovanie 3.80 (Stručne vďaka jednotnému zápisu)

Nech v je ľubovoľné ohodnotenie výrokových premenných. Ak v spĺňa α , tak v spĺňa α_1 a v spĺňa α_2 .

Jednotný zápis označených formúl — β

Definícia 3.81 (Jednotný zápis označených formúl typu β)

Označená formula B^+ je typu β , ak má jeden z tvarov v ľavom stĺpci tabuľky pre nejaké formuly X a Y.
Takéto formuly budeme označovať

Takéto formuly budeme označovať písmenom β ;

 β_1 bude označovať príslušnú označenú formulu zo stredného stĺpca a β_2 príslušnú formulu z pravého stĺpca.

β	eta_{1}	β_2
$\mathbf{F}(X \wedge Y)$	FΧ	$\mathbf{F}Y$
$T(X \vee Y)$	TX	T Y
$T(X \to Y)$	FX	T Y

Pozorovanie 3.82 (Stručne vďaka jednotnému zápisu)

Nech v je ľubovoľné ohodnotenie výrokových premenných. Ak v spĺňa β , tak v spĺňa β_1 alebo v spĺňa β_2 .

Tablo pre množinu označených formúl

Definícia 3.83

Analytické tablo pre množinu označených formúl S^+ (skrátene tablo pre S^+) je binárny strom, ktorého vrcholy obsahujú označené formuly a ktorý je skonštruovaný podľa nasledovných rekurzívnych pravidiel:

- Strom s jediným vrcholom (koreňom) obsahujúcim niektorú označenú formulu A^+ z S^+ je tablom pre S^+ .
- Nech \mathcal{T} je tablo pre S^+ a y je nejaký jeho list. Potom tablom pre S^+ je aj každé priame rozšírenie \mathcal{T} ktoroukoľvek z operácií:
 - A: Ak sa na vetve π_v (ceste z koreňa do y) vyskytuje nejaká označená formula α , tak ako jediné dieťa y pripojíme nový vrchol obsahujúci α_1 alebo α_2 .
 - B: Ak sa na vetve π_v vyskytuje nejaká označená formula β , tak ako deti y pripojíme dva nové vrcholy, pričom ľavé dieťa bude obsahovať β_1 a pravé β_2 .
 - Ax: Ako jediné dieťa y pripojíme nový vrchol obsahujúci ľubovoľnú označenú formulu $A^+ \in S^+$.

Nič iné nie je tablom pre S^+ .

Tablá, tablové pravidlá, operácie rozšírenia

y je list v table \mathcal{T} , π_y je cesta od koreňa k y

Uzavretosť a otvorenosť vetvy a tabla

Definícia 3.84

Vetvou tabla $\mathcal T$ je každá cesta od koreňa $\mathcal T$ k niektorému listu $\mathcal T$. Označená formula X^+ sa vyskytuje na vetve π v $\mathcal T$ vtt sa nachádza v niektorom vrchole na π . Skrátene to budeme zapisovať $X^+ \in \mathsf{formulas}(\pi)$.

Definícia 3.85

Vetva π tabla \mathcal{T} je *uzavretá* vtt sa na nej vyskytujú označené formuly $\mathbf{F}X$ a $\mathbf{T}X$ pre nejakú formulu X. Inak je π otvorená.

Tablo \mathcal{T} je *uzavreté* vtt každá jeho vetva je uzavretá. Naopak, \mathcal{T} je *otvorené* vtt aspoň jedna jeho vetva je otvorená.

Korektnosť

Korektnosť (angl. soundness) kalkulu neformálne znamená, že vždy, keď sa nám podarí v kalkule niečo dokázať, tak to aj skutočne platí.

Veta 3.86 (Korektnosť tablového kalkulu)

Nech S^+ je množina označených formúl a \mathcal{T} je uzavreté tablo pre S^+ . Potom je množina S^+ nesplniteľná.

Dôsledok 3.87

Nech S je množina formúl a X je formula. Ak existuje uzavreté tablo pre $\{TA \mid A \in S\} \cup \{FX\}$ (skr. $S \vdash X$), tak X vyplýva z S ($S \models X$).

Dôsledok 3.89

Nech X je formula a existuje uzavreté tablo pre $\{FX\}$ (skr. $\vdash X$). Potom X je tautológia ($\models X$).

Korektnosť – dôkaz

Spĺňanie a priame rozšírenie

Definícia 3.90

Nech S^+ je množina označených formúl, nech $\mathcal T$ je tablo pre S^+ a v je ohodnotenie množiny výrokových premenných. Hovoríme, že v spĺňa vetvu π v table $\mathcal T$ vtt v spĺňa všetky označené formuly obsiahnuté vo vrcholoch na vetve π .

Hovoríme, že v spĺňa tablo \mathcal{T} , ak spĺňa niektorú jeho vetvu.

Lema 3.91 (K1)

Nech S^+ je množina označených formúl, nech \mathcal{T} je tablo pre S^+ a v je ohodnotenie množiny výrokových premenných. Ak v spĺňa S^+ a v spĺňa \mathcal{T} , tak v spĺňa aj každé priame rozšírenie \mathcal{T} .

Dôkaz lemy K1.

Nech $v \models S^+$. Nech v spĺňa \mathcal{T} a v ňom vetvu π . Nech \mathcal{T}_1 je rozšírenie \mathcal{T} . Nastáva jeden z prípadov:

- T₁ vzniklo z T operáciou A, pridaním nového dieťaťa z nejakému listu y v T, pričom z obsahuje α₁ alebo α₂ pre nejakú formulu α na vetve π_y. Ak π ≠ π_y, tak T₁ obsahuje π a teda je splnené. Ak π = π_y, tak v spĺňa aj α, pretože spĺňa π. Potom v musí spĺňať aj α₁ a α₂. Spĺňa teda vetvu π_z v table T₁, ktorá rozširuje splnenú vetvu π o vrchol z obsahujúci splnenú ozn. formulu α₁ alebo α₂. Preto v spĺňa tablo T₁.
- \mathcal{T}_1 vzniklo z \mathcal{T} operáciou B, pridaním detí z_1 a z_2 nejakému listu y v \mathcal{T} , pričom z_1 obsahuje β_1 a z_2 obsahuje β_2 pre nejakú formulu β na vetve π_y . Ak $\pi \neq \pi_y$, tak \mathcal{T}_1 obsahuje π a teda je splnené. Ak $\pi = \pi_y$, tak v spĺňa aj β , pretože spĺňa π . Potom ale v musí spĺňať aj β_1 alebo β_2 . Ak v spĺňa β_1 , tak spĺňa aj vetvu π_{z_1} v table \mathcal{T}_1 , a preto v spĺňa tablo \mathcal{T}_1 . Ak v spĺňa β_2 , spĺňa aj π_{z_2} , a teda aj \mathcal{T}_1 .
- \mathcal{T}_1 vzniklo z \mathcal{T} operáciou Ax, pridaním nového dieťaťa z nejakému listu y v \mathcal{T} , pričom z obsahuje formulu $X^+ \in S^+$. Ak $\pi \neq \pi_y$, tak \mathcal{T}_1 obsahuje π a teda je splnené.

Ak $\pi=\pi_y$, tak v spĺňa vetvu π_z v table \mathcal{T}_1 , pretože je rozšírením splnenej vetvy π o vrchol z obsahujúci splnenú formulu X (pretože $v \models S^+$). Preto v spĺňa tablo \mathcal{T}_1 .

Korektnosť – dôkaz

Spĺňanie množiny označených formúl a tabiel

Lema 3.92 (K2)

Nech S^+ je množina označených formúl, nech \mathcal{T} je tablo pre S^+ a v je ohodnotenie. Ak v spĺňa S^+ , tak v spĺňa \mathcal{T} .

Dôkaz lemy K2.

Nech S^+ je množina označených formúl, nech v je ohodnotenie a nech $v \models S^+$. Úplnou indukciou na počet vrcholov tabla $\mathcal T$ dokážeme, že v spĺňa každé tablo $\mathcal T$ pre S^+ .

Ak má $\mathcal T$ jediný vrchol, tento vrchol obsahuje formulu $X^+ \in S^+$, ktorá je splnená pri v. Preto je splnená jediná vetva v $\mathcal T$, teda aj $\mathcal T$.

Ak \mathcal{T} má viac ako jeden vrchol, je priamym rozšírením nejakého tabla \mathcal{T}_0 , ktoré má o 1 alebo o 2 vrcholy menej ako \mathcal{T} . Podľa indukčného predpokladu teda v spĺňa \mathcal{T}_0 . Podľa predchádzajúcej lemy potom v spĺňa aj \mathcal{T} .

Korektnosť — dôkaz

Dôkaz vety o korektnosti.

Sporom: Nech S^+ je množina označených formúl a $\mathcal T$ je uzavreté tablo pre S^+ . Nech v je ohodnotenie, ktoré spĺňa S^+ . Potom podľa lemy K2 v spĺňa tablo $\mathcal T$, teda v spĺňa niektorú vetvu π v $\mathcal T$. Pretože $\mathcal T$ je uzavreté, aj vetva π je uzavretá, teda π obsahuje označené formuly $\mathbf T X$ a $\mathbf F X$ pre nejakú formulu X. Ale $v \models \mathbf T X$ vtt $v \models X$ a $v \models \mathbf F X$ vtt $v \not\models X$, čo je spor.

Otvorené tablo a splniteľnosť

Čo ak nevieme nájsť uzavreté tablo pre nejakú množinu ozn. formúl?

Definícia 3.93 (Úplná vetva a úplné tablo)

Nech S^+ je množina označených formúl a $\mathcal T$ je tablo pre $S^+.$

Vetva π v table $\mathcal T$ je *úplná* vtt má všetky nasledujúce vlastnosti:

- pre každú ozn. formulu α, ktorá sa vyskytuje na π, sa aj obidve
 α₁ a α₂ vyskytujú na π,
- pre každú ozn. formulu β , ktorá sa vyskytuje na π , sa aspoň jedna z ozn. formúl β_1 alebo β_2 vyskytuje na π .
- každá $X^+ \in S^+$ sa vyskytuje na π .

Tablo $\mathcal T$ je *úplné* vtt každá vetva je buď úplná alebo uzavretá.

Príklad 3.94

Vybudujme úplné tablo pre $\mathbf{F}X$, kde

$$X = (((p \lor q) \land (r \lor p)) \rightarrow (p \land (q \lor r))).$$

Lema 3.95 (o existencii úplného tabla)

Nech S^+ je konečná množina označených formúl. Potom existuje úplné tablo pre S^+ .

Dôkaz.

Vybudujme tablo \mathcal{T}_0 pre S^+ tak, že do koreňa vložíme niektorú formulu z S^+ a opakovaním operácie Ax postupne doplníme ostatné.

Potom tablo postupne rozširujeme tak, že vyberieme ľubovoľný list y tabla \mathcal{T}_i , ktorého vetva π_y je otvorená a nie je úplná. Potom nastane aspoň jedna z možností:

- Na π_y sa nachádza nejaká formula α , ale nenachádza sa niektorá z formúl α_1 a α_2 .
- Na π_y sa nachádza nejaká formula β, ale nenachádza sa ani jedna z formúl β₁ a β₂.

Ak platí prvá alebo obe možnosti, aplikujeme operáciu A. Ak platí druhá možnosť, aplikujeme operáciu B. Získame tablo \mathcal{T}_{i+1} , s ktorým proces opakujeme. Tento proces po konečnom počte krokov (prečo?) vytvorí nejaké tablo \mathcal{T}_n , v ktorom už neexistuje vetva, ktorá by bola otvorená a nebola úplná. Teda každá vetva v \mathcal{T}_n je buď uzavretá alebo úplná, čiže \mathcal{T}_n je úplné.

Nadol nasýtené množiny a Hintikkova lemma

Definícia 3.96

Množina označených formúl S^+ sa nazýva nadol nasýtená vtt platí:

- (H_0) v S^+ sa nevyskytujú naraz $\mathbf{T} p$ a $\mathbf{F} p$ pre žiadnu výrokovú premennú p;
- (H₁) ak $\alpha \in S^+$, tak $\alpha_1 \in S^+$ a $\alpha_2 \in S^+$;
- (H₂) ak $\beta \in S^+$, tak $\beta_1 \in S^+$ alebo $\beta_2 \in S^+$.

Pozorovanie 3.97

Nech π je úplná otvorená vetva nejakého tabla \mathcal{T} . Potom množina všetkých formúl na π je nadol nasýtená.

Lema 3.98 (Hintikkova)

Každá nadol nasýtená množina S⁺ je splniteľná.

Dôkaz Hintikkovej lemy.

Chceme vytvoriť ohodnotenie v, ktoré splní všetky formuly z S^+ . Definujme v pre každú výrokovú premennú p takto:

- ak $\mathbf{T}p \in S^+$: v(p) = t,
- ak $\mathbf{F}p \in S^+$: v(p) = f,
- ak ani $\mathbf{T}p$ ani $\mathbf{F}p$ nie sú v S^+ , tak v(p)=t.

 \emph{v} je korektne definované vďaka $\emph{H}_{0}.$

Indukciou na stupeň formuly dokážeme, že v spĺňa všetky formuly z S^+ :

- v očividne spĺňa všetky označené premenné z S⁺.
- $X^+ \in S^+$ je buď α alebo β :
 - Ak X^+ je α , potom obidve α_1 , $\alpha_2 \in S^+$ (H₁), sú nižšieho stupňa X^+ , a teda podľa indukčného predpokladu sú splnené pri v, preto v spĺňa aj α .
 - Ak X⁺ je β, potom aspoň jedna z β₁, β₂ je v S⁺ (H₂). Nech je to ktorákoľvek, je nižšieho stupňa ako X⁺, teda podľa IP ju v spĺňa, a preto v spĺňa β.

Úplnosť

Úplnosť kalkulu neformálne znamená, že je dostatočne silný, aby sa v ňom dali dokázať všetky dôsledky teórií.

Veta 3.99 (o úplnosti)

Nech S^+ je konečná nesplniteľná množina označených formúl. Potom existuje uzavreté tablo pre S^+ .

Dôsledok 3.100

Nech S je konečná teória a X je formula.

 $Ak S \models X$, $tak S \vdash X$.

Dôsledok 3.101

Nech X je formula. $Ak \models X$, $tak \vdash X$.

Úplnosť platí aj pre nekonečné množiny, ale dôkaz je ťažší.

Úplnosť — dôkaz

Dôkaz vety o úplnosti.

Podľa lemy o existencii úplného tabla vieme pre S^+ nájsť úplné tablo \mathcal{T} , teda také, že každá vetva je buď uzavretá alebo úplná. Ak by niektorá vetva bola otvorená, potom musí byť úplná, a teda nadol uzavretá. Podľa Hintikkovej lemy by bola splniteľná. Pretože obsahuje všetky formuly z S^+ , bola by aj S^+ splniteľná, čo je spor s nesplniteľnosťou S^+ .

Preto musia byť všetky vetvy tabla \mathcal{T} uzavreté.

Literatúra

- Christos H. Papadimitriou. *Computational complexity*. Addison-Wesley, 1994. ISBN 978-0-201-53082-7.
- Raymond M. Smullyan. *Logika prvého rádu*. Alfa, 1979. Z angl. orig. *First-Order Logic*, Berlin-Heidelberg: Springer-Verlag, 1968 preložil Svätoslav Mathé.
- Vítězslav Švejdar. *Logika: neúplnost, složitost, nutnost*. Academia, 2002. Prístupné aj na http://www1.cuni.cz/~svejdar/book/LogikaSve2002.pdf.