WE CLAIM:

A leadframe for use with integrated circuit chips comptising:

a plated layer of gold selectively covering areas of said leadframe intended for solder attachment; and said gold layer providing a visual distinction to said areas.

- A leadframe for use with integrated circuit chips, 2. having a chip mount pad and a plurality of lead 10 segments, comprising:
 - a\leadframe base made of copper or copper alloy;
 - a first layer of nickel deposited on said copper or copper alloy;
 - a layer of an alloy of nickel and palladium on said first nickel layer;
 - a decond layer of nickel on said alloy layer, said second nickel layer deposited to be suitable for bending of said lead segments, wire bonding, and solder attachment;
 - a layer of palladium, said palladium layer deposited to be suitable for protecting the nickel surface for wire konding and solderability, and for adhesion to molding compound; and
 - a layer \sqrt{f} gold/selectively covering areas of said lead segments intended for solder attachment, said layer of gold providing a visual distinction to said areas and having a thickness to optimize so'lder attachment.
- The leadframe according to Claim 2 wherein said gold 30 3. layer has a thickness in the range from 2 to 5 nm.
 - The leadframe according to Claim 2 wherein said first nickel layer has a thickness in the range from 50 to 150

15

20

25

nm.

- The leadframe according to Claim 2 wherein said alloy 5. layer has a thickness in the range from 50 to 150 nm.
- The leadframe according to Claim 2 wherein said second 6. nickel layer has a thickness in the range from 1000 to 5 3000 nm.
 - The leadframe according to Claim 2 wherein said palladium layer has a thickness in the range from 25 to 75 nm.
- The leadframe according to Claim 2 wherein said copper 10 or copper alloy base has a thickness between about 100 and 250 µm.
 - The leadframe according to Claim 2 wherein said solder attachment comprises solder materials selected from a group consisting of tin/lead, tin/indium, tin/silver, tin/bismuth and conductive adhesive compounds.
 - 10. The leadframe according to Claim 1 wherein said leadframe comprises an iron-nickel alloy or invar base, selectively plated with gold.
 - A semiconductor device comprising:
 - a leadframe comprising a chip mount pad for an integrated circuit chip and a plurality of lead segments having their first end near said mount pad and their second end remote from said mount pad;
 - said leadframe ha ψ ing a first surface layer of nickel, a layer of an alloy of nickel and palladium, a second layer of nickel, and a layer of palladium;
 - said leadframe Further having an outermost layer of gold select t vely covering said second ends of said lead segments in a thickness suitable to optimize solder attachment;

15

25

30

5

10

15

30

an integrated circuit chip attached to said mount pad;

bonding wires interconnecting said chip and said first ends of said lead segments;

encapsulation material surrounding said chip, bonding wires and said first ends of said lead segments, whereby the adhesion between said encapsulation material and said surrounded parts is maximized; and

said encapsulation material leaving said second ends of said lead segments exposed, whereby the solder attachment to said gold layer is maximized.

- 12. The device according to Claim 11 wherein said bonding wires are selected from a group consisting of gold, copper, aluminum and alloys thereof.
- 13. The device according to Claim 11 wherein the bonding wire contacts to said first ends of said lead segments comprise welds made by ball bonds, stitch bonds, or wedge bonds.
- 20 14. The device according to Claim 11 wherein said encapsulation material is selected from a group consisting of epoxy-based molding compounds suitable for adhesion to said leadframe.
- 15. The device according to Claim 11 further comprising lead 25 segments having said second ends bent, whereby said segments obtain a form suitable for solder attachment.
 - 16. A method for fabricating a leadframe comprising a chip mount pad and a plurality of lead segments having their first end near said mount pad and their second end remote from said mount pad, comprising the steps of:
 - selectively masking said chip pad and said first segment ends, thereby leaving said second segment ends exposed; and

	plating a layer of gold on said exposed segment ends
	in a thickness suitable to optimize solder
	attachment, thereby creating a visual distinction
	between the gold-plated and unplated leadframe
5	areas.
17.	A method for facting a leadframe comprising the
	steps of:
	providing a copper leadframe having a mount pad for
	an integrated circuit chip and a plurality of lead
10	segments having their first end near said mount
	pad and their second end remote from said mount
	pad;
	cleaning said leadframe in alkaline soak cleaning and
	alkaline electrocleaning;
15	activating said leadframe by immersing said leadframe
	into an acid solution, thereby dissolving any
	copper oxide;
	immersing said leadframe into an electrolytic nickel
	plating solution and depositing a first layer of
20	nickel onto said copper;
	electroplating a layer comprising an alloy of nickel
	and palladium;
	electroplating a second layer of nickel, thereby
	adapting said lead segments for mechanical
25	bending;
	electroplating a layer of palladium
	selectively masking said chip pad and said first
	segment ends, thereby leaving said\second segment
	ends exposed; and
30	plating a layer of gold on said exposed\segment ends
	in a thickness suitable to optimize s δ lder
	attachment, thereby creating a visual distinction
	between the gold-plated and unplated leadframe

15

20

25

30

5

- 18. The method according to Claim 17 wherein said gold plating is performed electrolytically or electrolessly.
- 19. The method according to Claim 17 wherein said masked parts of said leadframe comprise the leadframe areas to be encapsulated by molding compound.
 - 20. The method according to Claim 17 wherein the process steps are executed in sequence without time delays, yet including intermediate rinsing steps.
- 10 21. The method according to Claim 17 wherein said acid solution may be sulfuric acid, hydrochloric acid or any other acid.
 - 22. A method for fabricating a leadframe comprising the steps of:
 - providing a copper leadframe having a mount pad for an integrated circuit chip and a plurality if lead segments having their first end near said mount pad and their second end remote from said mount pad;
 - cleaning said leadframe in alkaline soak cleaning and alkaline electrocleaning;
 - activating said leadframe by immersing said leadframe into an acid solution, thereby dissolving any copper oxide;
 - sid lead segments for mechanical bending;
 electroplating a layer of palladium;
 - selectively masking said chip pad and said first segment ends, thereby leaving said second segment ends exposed; and
 - plating a layer of gold on said exposed segment ends in a thickness suitable to optimize solder attachment, thereby creating a visual distinction

between the gold-plated and unplated leadframe areas.

add c3