Bài giảng 12: So sánh nhiều nhóm bằng kiểm định Ki bình phương

Nguyễn Văn Tuấn

Garvan Institute of Medical Research, Australia Đại học Tôn Đức Thắng, Việt Nam

Nội dung

- Vấn đề thực tế so sánh nhiều nhóm
- Khái niệm "độc lập"
- Giới thiệu kiểm định Ki bình phương
- Thao tác R

So sánh nhiều nhóm

Trường hợp 1: Bệnh nhân nhập viện

Số bệnh nhân ung thư nhập viện mỗi tháng

	1	2	3	4	5	6	7	8	9	10	11	12
Số ca bệnh	40	34	30	44	39	58	51	55	36	48	33	38

Câu hỏi: phân bố ngẫu nhiên, không có khác biệt giữa các tháng?

Trường hợp 2: tình trạng kinh tế

- Bill Clinton đắc cử tổng thống 1996
- Lí do đắc cử: do kinh tế khá
- Nghiên cứu trên 800 người

Trình độ học vấn	Tệ hơn	Không khác	Tốt hơn
Trung học (n=430)	91	104	235
Cao đẳng (n=160)	39	73	48
Đại học (n=210)	18	31	161

Tử vong trong tai nạn tàu Titanic

Hạng	Chết	Sống	Tổng số
I	123	200 (62%)	323
II	158	119 (43%)	277
III	528	181 (26%)	709
Total	809	500 (38%)	1309

http://lib.stat.cmu.edu/S/Harrell/data/descriptions/titanic3info.txt

Có mối liên quan giữa hạng hành khách và nguy cơ tử vong?

Khái niệm độc lập

Independence – độc lập

- Hai biến độc lập khi hoàn toàn không có liên quan với nhau
- Hệ số tương quan (coefficient of correlation)
 = 0
- Nếu A và B độc lập thì:

$$P(A \& B) = P(A) \times P(B)$$

Triết lí và mục đích của Chi square

- Khai thác khái niệm độc lập
- Kiểm định sự độc lập giữa hai biến
- Nếu hai biến không độc lập => có liên quan (association)

Kiểm định ý nghĩa thống kê (test of significance)

- Triết lí phản nghiệm (falsificationism) của Popper
- Bước 1: phát biểu giả thuyết vô hiệu (null hypothesis)
- Bước 2: thu thập dữ liệu (D)
- Bước 3: tính xác suất D xảy ra nếu giả thuyết vô hiệu đúng

Kiểm định ý nghĩa thống kê (test of significance)

- Bước 1: biến A và B độc lập (không có mối liên quan giữa trình độ học vấn và kinh tế)
- Bước 2: thu thập dữ liệu (D) liên quan đến A và B
- Bước 3: tính xác suất D xảy ra nếu A và B độc lập

Karl Pearson

- Học trò của Francis Galton
- Một trong những "cha đẻ" của mathematical statistics
- Sáng lập bộ môn thống kê học ở University College London (1911)
- Tác giả cuốn The Grammar of Science
- Cha đẻ của "Chi square test" (và nhiều phương pháp khác)

Logic của Chi square test

- Nếu hai biến độc lập: ước tính giá trị kì vọng (expected values - E)
- So sánh giá trị kì vọng với giá trị quan sát (observed data – O)

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

• Nếu X² lớn, bác bỏ giả thuyết vô hiệu

Kiểm định Ki bình phương

Nghiên cứu về nhập viện

- Chúng ta có 506 bệnh nhân
- Nếu không có khác biệt giữa các tháng, chúng ta kì vọng mỗi tháng có 506 / 12 = 42 ca

	1	2	3	4	5	6	7	8	9	10	11	12
0	40	34	30	44	39	58	51	55	36	48	33	38
E	42	42	42	42	42	42	42	42	42	42	42	42

Giá trị kì vọng và quan sát (1)

	1	2	3	4	5	6	7	8	9	10	11	12
0	40	34	30	44	39	58	51	55	36	48	33	38
Е	42	42	42	42	42	42	42	42	42	42	42	42
D=O-E	-2	-8	-12	2	-3	16	9	13	-6	6	-9	-4

Giá trị kì vọng và quan sát (2)

	1	2	3	4	5	6	7	8	9	10	11	12
0	40	34	30	44	39	58	51	55	36	48	33	38
E	42	42	42	42	42	42	42	42	42	42	42	42
D=O-E	-2	-8	-12	2	-3	16	9	13	-6	6	-9	-4
D^2	4	64	144	4	9	256	81	169	36	36	81	16
D ² /E	.11	1.58	3.51	.08	.24	5.95	1.85	3.91	.90	.81	2.99	.41

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

$$X^2 = 0.11 + 1.58 + 3.51 + ... + 0.41 = 21.3$$

Khái niệm degree of freedom (bậc tự do)

- Chính xác là "degree of freedom for error"
- Đo lượng huyết áp của 100 bệnh nhân
- Chúng ta có thể ước tính tham số của biến số (mean, median, v.v.)
- Mỗi thông số được ước tính phải "tốn" mất 1 bậc tự do; còn lại n – 1 tự do (degrees of freedom – df)

Bậc tự do (nghiên cứu nhập viện)

- Có 12 số liệu (cho 12 tháng)
- "Mất" 1 thông số để ước tính số trung bình
- Còn lại 11 bậc tự do

Bậc tự do (nghiên cứu nhập viện)

- Còn lại 11 bậc tự do
- X² = 21.3 phải so sánh với df = 11

Câu hỏi: xác suất mà X² = 21.3 (hay cao hơn)
 nếu giả thuyết độc lập đúng là bao nhiêu?

1-pchisq(21.3, 11)

Tóm lược

- Kiểm định Ki bình thương dựa vào khái niệm "độc lập"
- Tính giá trị kì vọng (E) từ giả thuyết độc lập
- So sánh E với giá trị thực tế: X² = (O − E)² / E
- Tính xác suất X² (theo bậc tự do) nếu giả thuyết độc lập là đúng

Khái niệm độc lập

Trường hợp 2: tình trạng kinh tế

- Bill Clinton đắc cử tổng thống 1996
- Lí do đắc cử: do kinh tế?
- Nghiên cứu trên 800 người

Trình độ học vấn	Tệ hơn	Không khác	Tốt hơn
Trung học (n=430)	91	104	235
Cao đẳng (n=160)	39	73	48
Đại học (n=210)	18	31	161
Tổng số	148	208	444

Tử vong trong tai nạn tàu Titanic

Hạng	Chết	Sống	Tổng số
I	123	200 (62%)	323
II	158	119 (43%)	277
III	528	181 (26%)	709
Total	809	500 (38%)	1309

http://lib.stat.cmu.edu/S/Harrell/data/descriptions/titanic3info.txt

Có mối liên quan giữa hạng hành khách và nguy cơ tử vong?

Independence – độc lập

- Hai biến độc lập khi hoàn toàn không có liên quan với nhau
- Hệ số tương quan (coefficient of correlation)
 = 0
- Nếu A và B độc lập thì:

$$P(A \& B) = P(A) \times P(B)$$

Giá trị kì vọng: xác suất trình độ học vấn

Trình độ học vấn	Tệ hơn	Không khác	Tốt hơn	Xác suất
Trung học (n=430)				0.537
Cao đẳng (n=160)				0.200
Đại học (n=210)				0.263

430 / 800 = 0.537

160 / 800 = 0.200

210 / 800 = 0.263

Giá trị kì vọng: xác suất tình trạng kinh tế

Trình độ học vấn	Tệ hơn	Không khác	Tốt hơn	Xác suất
Trung học (n=430)				0.537
Cao đẳng (n=160)				0.200
Đại học (n=210)				0.263
Tổng số	148	208	444	
Xác suất	0.185	0.260	0.555	1.000

Giá trị kì vọng *nếu độc lập*

Trình độ học vấn	Tệ hơn	Không khác	Tốt hơn	Xác suất
Trung học	0.537*0.185	0.537*0.260	0.537*0.555	0.537
Cao đẳng	0.200*0.185	0.200*0.260	0.200*0.555	0.200
Đại học	0.263*0.185	0.263*0.260	0.263*0.555	0.263
Xác suất	0.185	0.260	0.555	1.000

x 800

Giá trị kì vọng

Trình độ học vấn	Tệ hơn	Không khác	Tốt hơn	Xác suất
Trung học (n=430)	79	112	238	0.537
Cao đẳng (n=160)	30	42	89	0.200
Đại học (n=210)	39	55	117	0.263
Xác suất	0.185	0.260	0.555	1.000

0.537*0.185*800 = 79

0.537*0.260*800 = 112

Giá trị kì vọng và quan sát

Trình độ học vấn	Tệ hơn	Không khác	Tốt hơn
Trung học (n=430)	79 (91)	112 (104)	238 (235)
Cao đẳng (n=160)	30 (<mark>39</mark>)	42 (73)	89 (48)
Đại học (n=210)	39 (18)	55 (<mark>31</mark>)	117 (161)

Kì vọng

Quan sát thực tế

So sánh giá trị kì vọng và quan sát

- E = giá trị kì vọng (expected value)
- O = giá trị quan sát (observed value)

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

Giá trị kì vọng và quan sát (2)

Trình độ học vấn	Tệ hơn	Không khác	Tốt hơn
Trung học (n=430)	79 (<mark>91</mark>)	112 (104)	238 (235)
Cao đẳng (n=160)	30 (<mark>39</mark>)	42 (73)	89 (<mark>48</mark>)
Đại học (n=210)	39 (18)	55 (<mark>31</mark>)	117 (161)

$$\chi^2 = \sum \frac{(O - E)^2}{E}$$

 $X^2 = (79-91)^2/91 + (112-104)^2/112 + ... + (117-161)^2/117 = 86.0$

Phân tích với R

Trình độ học vấn	Tệ hơn	Không khác	Tốt hơn
Trung học (n=430)	91	104	235
Cao đẳng (n=160)	39	73	48
Đại học (n=210)	18	31	161

```
# nhập dữ liệu
dat = matrix(c(91, 104, 235, 39, 73, 48, 18,
31, 161), nrow=3, byrow=T)
# dùng hàm chisq.test
chisq.test(dat)
```

Phân tích với R

> chisq.test(dat)

Pearson's Chi-squared test

data: dat

X-squared = 86.023, df = 4, p-value < 2.2e-16

Phân tích dữ liệu Titanic bằng epitools

Hạng	Chết	Sống	Tổng số
I	123	200 (62%)	323
II	158	119 (43%)	277
III	528	181 (26%)	709
Total	809	500 (38%)	1309

```
library(epitools)
data = matrix(c(123, 200, 158, 119, 528, 181), byrow=T,ncol=2)
riskratio(data)
```

> riskratio(data)

Outcome

Predictor	Disease1	Disease2	Total

Exposed1	123	200	323
Exposed2	158	119	277

_			
Exposed3	528	181	709

Hạng	Tỉ số nguy cơ	Trị số P
Phổ thông	1.00	
Thương gia	0.69 (0.59 – 0.81)	<0.001
Hạng nhất	0.41 (0.35 – 0.48)	<0.001

\$measure

risk ratio with 95% C.I.

Predictor estimate lower upper

Exposed1 1.0000000 NA NA

Exposed2 0.6938087 0.5909899 0.8145156

Exposed3 0.4122920 0.3541358 0.4799986

\$p.value

two-sided

Predictor midp.exact fisher.exact chi.square

Exposed1 NA NA NA

Exposed2 3.564252e-06 4.126370e-06 3.48938e-06

Exposed3 0.000000e+00 8.842906e-29 2.80403e-29

Tóm lược

- Tính giá trị kì vọng (E) từ giả thuyết độc lập
- So sánh E với giá trị thực tế: $X^2 = (O E)^2 / E$
- Hàm chisq. test (data)
- Có thể dùng epitools