Machine Learning-Assignment 4

Nishant Gupta(2018siy7502)

Decison Tree:

part-A:

Data	Accuracy
Training data	94.72%
Test data	72.43%
Validation data	71.98%

Increasing the number of nodes inceases training accuracy but decreases test and validation accuracy. This shows that incresing number of nodes cause overfitting

Part-B:

Data	Accuracy
Training data	84%
Test data	85%
Validation data	81%

As the tree is pruned the number of nodes decrease and hence the training accuracy decrases while test and validation accuracy increases.

Part-C:

Data	Accuracy
Training data	99.7
Test data	71.23
Validation data	71
Number of nodes	1623
height	18

Part-D:

increasing the depth of tree means splitting the data and so it causes overfitting

increasing the minimum number of samples to split the attribute, the accuracy starts to increase

Data	Accuracy
Training data	84
Test data	80
Validation data	80

parameters	values
Min samples split	50
Min samples leaf	50
Max depth	4

Part-E:

Data	Accuracy
Training data	84
Test data	79
Validation data	77

Part-F:

Data	Accuracy
Training data	94
Test data	78
Validation data	79

parameters	values
N parameters	100
boottstrap	True
Max depth	10

Neural Networks:

part-c:

Stopping Criteria: 1000 epocs Total time taken: ~35 minutes.

Number of perceptrons 5, 10, 15, 20, 25

For training data- 59.45, 65.82, 69.24, 75.12, 74.18

For testing data- 56.62, 62.84, 66.48, 72.91, 70.78

increasing the number of layers and units per layer increase the accuracy

n=5									
[[9723	2770	0	0	0	0	0	0	0	0]
[5152	5447	0	0	0	0	0	0	0	0]
[460	746	0	0	0	0	0	0	0	0]
[147	366	0	0	0	0	0	0	0	0]
[46	47	0	0	0	0	0	0	0	0]
[43	11	0	0	0	0	0	0	0	0]
[8	28	0	0	0	0	0	0	0	0]
[0	6	0	0	0	0	0	0	0	0]
[5	0	0	0	0	0	0	0	0	0]
[3	2	0	0	0	0	0	0	0	0]]
n=10	2454	0	0	0	0	0	0	0	0]
[3818	6781	0	0	0	0	0	0	0	0]
[225	981	0	0	0	0	0	0	0	0]
[45	468	0	0	0	0	0	0	0	0]
[39	54	0	0	0	0	0	0	0	0]
[43	11	0	0	0	0	0	0	0	0]
[2	34	0	0	0	0	0	0	0	0]
[0	6	0	0	0	0	0	0	0	0]
[4	1	0	0	0	0	0	0	0	0]
[4	1	0	0	0	0	0	0	0	0]]
	_	_	_	_	_				

n=2	20									
[[1	0722	1771	0	0	0	0	0	0	0	0]
[2874	7725	0	0	0	0	0	0	0	0]
[121	1085	0	0	0	0	0	0	0	0]
[31	482	0	0	0	0	0	0	0	0]
[72	21	0	0	0	0	0	0	0	0]
[48	6	0	0	0	0	0	0	0	0]
[0	36	0	0	0	0	0	0	0	0]
[0	6	0	0	0	0	0	0	0	0]
[5	0	0	0	0	0	0	0	0	0]
]	5	0	0	0	0	0	0	0	0	0]]

n=25

[[11	642	851	0	0	0	0	0	0	0	0]
[21	62	8437	0	0	0	0	0	0	0	0]
[42	1164	0	0	0	0	0	0	0	0]
[28	485	0	0	0	0	0	0	0	0]
[81	12	0	0	0	0	0	0	0	0]
[50	4	0	0	0	0	0	0	0	0]
[0	36	0	0	0	0	0	0	0	0]
[0	6	0	0	0	0	0	0	0	0]
[4	1	0	0	0	0	0	0	0	0]
[5	0	0	0	0	0	0	0	0	0]]

part-d:

Stopping Criteria: 1000 epocs

Number of perceptrons: 5, 10, 15, 20, 25

For training data- 52.71, 79.93, 73.74, 87.16, 91.56 For testing data- 52.46, 77.81, 69.87, 85.21, 90.92

part-e:

Stopping Criteria: 1000 epocs

Number of perceptrons- 5, 10, 15, 20, 25

For training data- - 58.15, 65.91,68.68, 74.32, 73.06

For testing data- - 57.31, 61.19, 66.65, 72.54, 69.81

ReLU provides good non linearity and converges faster than sigmoid non linearity. The less number of epochos are required by ReLU for getting good accuracy.