Tema 1 Introducción a los computadores

Grupo ARCOS

Estructura de Computadores Grado en Ingeniería Informática Universidad Carlos III de Madrid

Contenidos

- Introducción
 - Motivación
 - 2. Definiciones
- 2. Computador Von Neuman
 - 1. Componentes y esquemas básicos
 - 2. Fases de ejecución de una instrucción
- 3. Parámetros característicos de un computador

¡ATENCIÓN!

- Estas transparencias son un guión para la clase
- Los libros dados en la bibliografía junto con lo explicado en clase representa el material de estudio para el temario de la asignatura

Contenidos

I. Introducción

- I. Motivación
- Definiciones
- 2. Computador Von Neuman
 - 1. Componentes y esquemas básicos
 - 2. Fases de ejecución de una instrucción
- 3. Parámetros característicos de un computador

Motivación para conocer cómo es un computador

¿Podemos distinguir los componentes internos al abrir un ordenador personal?

Motivación para conocer cómo es un computador

¿Es más rápido un procesador con dos núcleos o con cuatro núcleos?

Contenidos

I. Introducción

- Motivación
- 2. Definiciones
- 2. Computador Von Neuman
 - 1. Componentes y esquemas básicos
 - 2. Fases de ejecución de una instrucción
- 3. Parámetros característicos de un computador

Introducción a un computador

Computador: máquina destinada a procesar información, datos.

Introducción a un computador

- Computador: máquina destinada a procesar información, datos.
 - Sobre ellos se aplican unas instrucciones obteniendo después unos resultados

Aspectos a conocer en un computador

- Procesar información: fases de transformación y/o manipulación que sufre la información para resolver un problema determinado
- Estructura: componentes de un ordenador
- ▶ Arquitectura: atributos visibles para un programador
 - Juego de instrucciones que ofrece la máquina
 - Tipo y formato de datos que es capaz de utilizar el computador
 - Técnicas/mecanismos de E/S

Contenidos

- Introducción
 - I. Motivación
 - 2. Definiciones
- 2. Computador Von Neuman
 - Componentes y esquemas básicos
 - 2. Fases de ejecución de una instrucción
- 3. Parámetros característicos de un computador

Estudio de los componentes

Memoria principal (MP)

Memoria principal (MP)

- Formada por una serie de celdas todas de igual tamaño donde almacenamos datos y/o instrucciones en formato binario.
- Cada instrucción/dato lleva asociado una dirección (posición donde está almacenado en memoria principal)

Elementos de MP

- Registro de direcciones
- Registro de datos
- Señales de control
 - CM- acceso a memoria
 - L- Lectura
 - E- Escritura

Datos Instrucciones

Ejemplo de MP

Existencia de estándares:

DDR

SDRAM

Unidad Central de Procesamiento

- Unidad Central de Procesamiento (UCP/CPU)
 - Responsable de lectura y ejecución de las instrucciones almacenadas en memoria principal.
 - Genera señales de control para la ejecución de las instrucciones.
 - Contiene un registro contador de programa con la dirección de la instrucción a ejecutar.

Elementos de la UCP (CPU)

- Banco de registros
- Unidad Aritmético-Lógica
- Unidad de Control
 - Contador de Programa
 - Registro de Instrucciones
 - Registro de Estado

Ejemplo de UCP

Diversos fabricantes:

- Intel
- AMD
- ARM

Periférico

- Compuesto de
 - dispositivo (ratón, disco, etc.) y
 - módulo de Entrada/Salida
- El módulo de Entrada/Salida permite trasmitir información entre la memoria, procesador y los dispositivos (discos, ratón, teclado)
 - Se encarga de dar a la UCP una interfaz uniforme a los distintos dispositivos (que permita intercambiar datos entre dispositivo y UCP).

Elementos de un periférico

- Dispositivo
- Unidad de E/S
 - Registro de control
 - Registro de estado
 - Registro de datos

Ejemplo periférico

- Disco duro:
- SDD
- Teclado

...

26

Buses

- Un bus es un camino de comunicación entre dos o más elementos (UCP, memoria, ...) para la transmisión de información entre ellos.
- Un bus suele formarse por varias líneas de comunicación, cada una transmite un bit.
 - El ancho del bus representa el tamaño con el que trabaja el computador (ejemplo: bus de 32 bits)
- ▶ Tres tipos principales: datos, direcciones y control.

Esquema de interconexión de bus

- Bus de control: señales de control y temporización
- Bus de direcciones: designa la fuente o destino de un dato
 - Su anchura determina la máxima capacidad de memoria del sistema
- Bus de datos: movimiento de datos entre componentes

Ejemplo de buses

- Existencia de estándares:
 - unibus (DEC-PDP)
 - PCI
 - ...

Contenidos

- Introducción
 - I. Motivación
 - 2. Definiciones
- 2. Computador Von Neuman
 - 1. Componentes y esquemas básicos
 - 2. Fases de ejecución de una instrucción
- 3. Parámetros característicos de un computador

Fases de ejecución de una instrucción

Cuatro fases:

- Captación
- Preparación de la siguiente instrucción
- Decodificación
- Ejecución

State State of the State of the

Ciclo de captación (fetch)

- ► El contador de programa (PC) contiene la dirección de la instrucción que se debe captar a continuación.
- El procesador capta la instrucción que indica el PC desde la memoria.
- ▶ El registro PC se incrementa,
 - a no ser que se indique lo contrario.
- Esta instrucción se carga en el registro de instrucción (IR).
- El procesador interpreta la instrucción y lleva a cabo la acción requerida.

Ciclo de ejecución

Procesador-memoria

Transferencia de datos desde la CPU a la memoria.

Procesador-E/S

Transferencias de datos entre la CPU y un módulo de E/S.

Procesamiento de datos

Realización de alguna operación aritmética o lógica con los datos.

Control

- Alteración de la secuencia de ejecución.
- Ejemplo: la instrucción de salto
- Combinación de estas acciones

Fases de ejecución (1)

- Leer de memoria
 principal la instrucción
 apuntada por el PC
- Incrementar PC
- Decodificar instrucción
- Hacer que se ejecute la instrucción

Fases de ejecución (2)

- Leer de memoria principal la instrucción apuntada por el PC
- Incrementar PC
- Decodificar instrucción
- Hacer que se ejecute la instrucción

Fases de ejecución (3)

- Leer de memoria
 principal la instrucción
 apuntada por el PC
- Incrementar PC
- Decodificar instrucción
- Hacer que se ejecute la instrucción

Fases de ejecución (4)

- Leer de memoria
 principal la instrucción
 apuntada por el PC
- Incrementar PC
- Decodificar instrucción
- Hacer que se ejecute la instrucción

Fases de ejecución (5)

- Leer de memoria
 principal la instrucción
 apuntada por el PC
- Incrementar PC
- Decodificar instrucción
- Hacer que se ejecute la instrucción

Ruptura de secuencia ejecución

Instrucciones de bifurcación

- Modifican el contenido del PC (Contador de Programa)
- Permiten no ejecutar determinadas instrucciones
 - Similar al if() de alto nivel
- Permiten volver a ejecuciones anteriores
 - Similar al while() de alto nivel

Interrupciones

- Mecanismo mediante el cuál otros módulos (Ejemplo: E/S) pueden interrumpir el procesamiento normal de la CPU
- Permiten atender situaciones especiales:
 - Excepciones (división 0/0), fallos de hardware, temporización, etc.

Contenidos

- Introducción
 - Motivación
 - Definiciones
- Computador Von Neuman
 - Componentes y esquemas básicos
 - Fases de ejecución de una instrucción
- 3. Parámetros característicos de un computador

Parámetros característicos de un computador

- Respecto a su arquitectura
 - ▶ Ancho de palabra
- Tamaño de almacenamiento
 - Memoria Principal o Memoria RAM
 - Memoria Auxiliar
- Comunicaciones
 - Ancho de banda
- Potencia del computador
 - MIPS
 - MFLOPS
 - Vectores por segundo
 - Test sintéticos

Ancho de Palabra

- Número de bits manejados en paralelo en el interior del computador.
 - Influye en el tamaño de los registros (BR)
 - Por tanto, también en la ALU
 - No es lo mismo dos sumas de 32 bits que una sola de 64
 - Por tanto, también en el ancho de los buses
 - ▶ Un bus de direcciones de 32 bits 'solo' direcciona 4 GB
- ▶ Tamaño más típico → 32 bits.
- Comienza a ser normal 64 bits.

Tamaño de la Memoria

- ▶ Tamaño de la memoria principal (RAM)
 - Capacidad habitual: 512MB 4 GB
 - Se expresa en octetos o bytes
- Tamaño de la memoria auxiliar (Capacidad de almacenamiento de dispositivo de memoria secundaria)
 - Papel: pocos bytes
 - Diskette: I,44 KB
 - CD-ROM: 600 MB
 - DVD: 4.7GB
 - ▶ Blu-ray: 50 GB
 - ▶ Disco Fijo: I0 GB 2 TB

Unidades para tamaño

Normalmente se expresa en octetos o bytes:

```
byte
              I byte = 8 bits
                                         2<sup>10</sup> bytes
  kilobyte I KB = 1.024 bytes
  megabyte I MB = 1.024 KB
                                         2<sup>20</sup> bytes
2<sup>30</sup> bytes
                                         2<sup>40</sup> bytes
terabyte | TB = 1.024 GB
  petabyte | I PB = I.024 TB
                                         2<sup>50</sup> bytes
                                         2<sup>60</sup> bytes
exabyte
             I EB = I.024 PB
                                         2<sup>70</sup> bytes
              I ZB = I.024 EB
zettabyte
yottabyte I YB = 1.024 ZB
                                         2<sup>80</sup> bytes
```

Unidades para tamaño (cuidado)

 En comunicación se suele usar el kilobit y no el kilobyte (I Kb <> I KB)

```
I Kb = 1.024 bits
```

- ▶ I KB = 1.024 bytes
- En almacenamiento algunos fabricantes no utilizan potencias de dos, sino potencias de 10:

```
kilobyte | KB = 1.000 bytes | 10^3 bytes
```

• gigabyte
$$I GB = I.000 MB$$
 $I O^9$ bytes

• terabyte
$$ITB = 1.000 GB$$
 $I0^{12}$ bytes

.

Ancho de banda

Varias interpretaciones:

- Caudal de información que transmite un bus.
- Caudal de información que transmite una unidad de E/S.
- Caudal de información que puede procesar una unidad.

Unidades:

- ▶ Kb/s (Kilobits por segundo, no confundir con KB/s)
- Mb/s (Megabits por segundo, no megabytes por segundo)

Potencia de cómputo

- Medición de la potencia de cómputo.
- ▶ Factores que intervienen:
 - Juego de instrucciones
 - Reloj de la CPU (I GHz vs 2 GHz vs 4 GHz...)
 - Número de 'cores' (quadcore vs dualcore vs...)
 - Ancho de palabra (32 bits vs 64 bits vs...)
- Formas típicas de expresar potencia de cómputo:
 - MIPS
 - MFLOPS
 - ...

MIPS

- Millones de Instrucciones Por Segundo.
- Rango típico: 10-100 MIPS
- No todas las instrucciones tardan lo mismo en ejecutar
 - → Depende de qué instrucciones se ejecutan.
- No es fiable 100% como medida de rendimiento.

MFLOPS

- Millones de Operaciones en coma Flotante por Segundo.
- Potencia de cálculo científico.
- MFLOPS < MIPS (operación flotante más compleja que operación normal).
- Computadores vectoriales: MFLOPS > MIPS
- ▶ Ejemplo: Itanium 2 → 3,5 GFLOPS

Vectores por segundo

- Potencia de cálculo en la generación de gráficos.
- Aplicable a procesadores gráficos.
- Se pueden medir en:
 - Vectores 2D.
 - Vectores 3D.
- ▶ Ejemplo: ATI Radeon 8500 → 3 Millones.

Tests Sintéticos

- MIPS y MFLOPS no válidos para comparar distintas máquinas.
- Tests basados en ejecutar un mismo programa en distintas máquinas para compararlas.
- Miden efectividad Compilador + UCP
- Los test sintéticos estandarizados ("oficiales") buscan comparar la potencia de dos computadores.
- Es posible usar test sintéticos "no oficiales" para hacerse a la idea de la mejora con la carga de trabajo diaria

Tests más usados:

- Linpack.
- > SPEC.

SPEC CPU2000 Performance - SPECint2000

Itanium[™] Processor delivers best of class floating point performance and competitive integer performance

CINEBENCH 10, Rendering

Task Manager CPU Graph		improvement 2 to 4 cores
	The Elder Scrolls IV: Oblivion	none
	Rainbow 6: Vegas	none
	Supreme Commander	none
	Valve Source engine particle simulation	1.8×
	Valve VRAD map compilation	1.9×
Many	3DMark06: Return to Proxycon	none

Tema 1 Introducción a los computadores

Grupo ARCOS

Estructura de Computadores Grado en Ingeniería Informática Universidad Carlos III de Madrid