jongminl-311-hw2

jongminl Lee

February 2024

1

(a) Since it asks to make table

0	14
1	
2	44
3	4, 15
4	19, 41
5	23
6	1
7	9, 42
8	24
9	17
9	17 10, 43
_	

$\mathbf{2}$

- (a) For $T(n)=7T(\frac{n}{2})+1$ a = 7, b = 2, f(n) = 1 Since $g(n)=n^{\log_2 7}$ which is bigger than f(n) that means g(n) becomes runtime. Which become $\theta(n^{\log_2 7})$
- (b) For induction to prove we first need base case. $T(1) = \frac{1}{6}(7(1^{log_27}) 1)$ Since 1^n is just 1. $\frac{1}{6}(7*1-1) = \frac{1}{6}(6) = 1$ so we know our base case is true. next we can prove next condition which is T(n+1). $T(n+1) = 7*T(\frac{n+1}{2}) + 1 = 7(\frac{1}{6}(7(\frac{n+1}{2}-1)) + 1 = 7*(\frac{1}{6}(7(\frac{n^{log_27}+1}{2}-1)) + 1 = 7(\frac{1}{6}(7(\frac{n^{log_27}+1}{7})) + 1 = 7(\frac{1}{6}(n^{log_27}+1-1) + 1 = 7(\frac{n^{log_27}}{6}) + 1 = \frac{7n^{log_27}}{6} + \frac{6}{6} = \frac{7n^{log_27}+6}{6}$

3

	0	$\frac{n}{2^0}$	2^0n
	1	$\frac{n}{2^1}$	2^1n
(a)	2	$\frac{n}{2^2}$	2^2n
	3	$ \begin{array}{c} \frac{n}{2^0} \\ \frac{n}{2^1} \\ \frac{n}{2^2} \\ \frac{n}{2^3} \\ \frac{n}{2^k} \end{array} $	2^3n
	k	$\frac{n}{2^k}$	$2^k n$

Since it increased by power of 2, and also T(n) = 1 when n

Figure 1: (a)

; 2 we can see that $\frac{n}{2^k}=1=n=2^k=k=\log_2 n$ $2^log_2n*n=2^log_2n=n=n*n=n^2$ For the conclusion, $O(n^2)$

(b)	0	$\frac{n}{2^0}$	nlogn	
	1	$\frac{n}{2^1}$	$\frac{n}{2}log\frac{n}{2}$	
	2	$\frac{n}{2^2}$	$\frac{n}{2^2}log\frac{n}{2^2}$	As you can see table, it's cost grows by $\frac{n}{2^k}$
	3	$\frac{n}{2^3}$	$\frac{n}{2^3}log\frac{n}{2^3}$	
	k	$\frac{n}{2^k}$	$\frac{n}{2^k}log\frac{n}{2^k}$	
- 1				

	1	$\frac{\pi}{3}$	$\frac{n}{3}$
(c)	2	$\frac{n}{3^2}$	$\frac{n}{3^2}$
	3	$\frac{n}{3^3}$	$\frac{\frac{n}{3^2}}{\frac{n}{3^3}}$
	k	$\frac{n}{3k}$	$\frac{n}{3k}$

As you can see the table and figure, $\frac{n}{3^k}=1=n=3^k$

 $=k=log_3n$ Then $\frac{n}{3^k}=\frac{n}{3^{log_3n}}$ Since $3^{log_3n}=n$ So that $\frac{n}{3^{log_3n}}=\frac{n}{n}=1$ For conclusion, O(1)(d)

(u)			
0	3^0n	$n^{2}.5$	
1	3^1n	$n^2.5^2$	
2	3^2n	$n^2.5^3$	
3	3^3n	$n^2.5^4$	

From the table and figure, $3^k n = 1 = 3^k = n = k = \log_3 n$

Figure 2: (b)

Figure 3: (c)

Figure 4: (d)

(e)	_	n-2		
		n - 2 * 2		
	2	n - 2 * 3	n^{2^3}	As from table and figure, $n - 2k = 1$ which is
	3	n - 2 * 4	n^{2^4}	
	k	n-2*k	n^{2^k}	
				1

n-1=2k then $k=\frac{n-1}{2}$. Thus, $n^{2\frac{n-1}{2}}$ which become $O(n^{2\frac{n-1}{2}})$

4

- (a) $T(n)=4T(\frac{n}{2})+n$ From this, a=4, b=2, f(n)=n since $g(n)=\theta(n^{log_ba})=\theta(n^{log_24})=\theta(n^2)$ Since f(n)=n, $g(n)=n^2$ which means g(n); f(n) When g(n) is bigger then f(n), g(n) becomes runtime. For the conclusion $O(n^2)$
- (b) $T(n) = 2T(\frac{n}{2}) + nlogn$ From this equation, a = 2, b = 2, f(n) = nlogn $g(n) = n^{log_ab} = n^{log_22} = n^1$ f(n); $g(n) = f(n) = \theta(fn) = a*f(n) \le c*f(n)$ only when $c : 1 = 2*f(\frac{n}{2}) \le c*f(n) = 2*\frac{n}{2}*log\frac{n}{2} \le c*nlogn = \frac{nlog\frac{n}{2}}{nlogn} \le C = \frac{logn-log2}{logn} \le C$ but since it can only applied to C : 1 it cannot be applied.
- (c) $T(n) = 3T(\frac{n}{3}) + n$ From this equation, a = 3, b = 3, $f(n) = n g(n) = n^{\log_b a} = n^{\log_3 3} = n^1$ Since f(n) = g(n), when g(n) is equal to f(n) then runtime become $g(n) * \log n$, which is nlogn So the runtime is $\theta(n \log n)$
- (d) T(n) = $2 * T(\frac{n}{4}) + \sqrt{n}$ From this equation, a = 2, b = 4, f(n) = \sqrt{n} g(n) = $n^{\log_b a} = n^{\log_4 2} = n^{\frac{1}{2}} = \sqrt{n}$ Since f(n) = g(n), runtime is $\theta(\sqrt{n})$

Figure 5: (e)

```
5
```

```
(a) Since the code is: if A.length == 1 then A[0] += 1; else int m = [A.length/2]; // \frac{n}{2} Wacky(A.sub(0,m)); //this makes T(\frac{n}{2}) Wacky(A.sub(m,m)); //this makes T(\frac{n}{2}) Wacky(A.sub(0,1)); //this is constant 2 Then we can conclude recurrence relation is: 2T(\frac{n}{2}) + 2 (b) Then from that relation a = 2, b = 2, f(n) = 2 g(n) = n^{log_ba} = n^{log_22} = n Since g(n) > f(n) which means g(n) become runtime O(n)
```