

Deep Learning

Dr. Mehran Safayani safayani@iut.ac.ir

safayani.iut.ac.ir

https://www.aparat.com/mehran.safayani

https://github.com/safayani/deep_learning_course

Department of Electrical and computer engineering, Isfahan university of technology, Isfahan, Iran

Basics of Neural Network Programming

Vectorizing Logistic Regression's Gradient Computation

```
• Z=0;

For i in range(n_x)
z += w[i] * x[i]
z += b
```

•
$$Z=0$$
; $z=np.dot(w,x)+b$ SIMD GPU

•
$$Z = \underbrace{np \cdot dot(W \cdot T, X)}_{1, m} + \underbrace{b}_{(1,1)}$$
 "broadcasting" $[b, b \dots, b]_{1 \times m}$

•
$$A = [a^{(1)}, a^{(2)}, ..., a^{(m)}] = \sigma(\underbrace{Z})$$

• $dz^{(1)} = a^{(1)} - y^{(1)}$ $dz^{(2)} = a^{(2)} - y^{(2)}$

• $dz = [dz^{(1)} dz^{(2)} ... dz^{(m)}]_{1 \times m}$

• $A = [a^{(1)} a^{(2)} ... a^{(m)}]$ $Y = [y^{(1)} y^{(2)} ... y^{(m)}]$

• $dZ = A - Y = [a^{(1)} - y^{(1)} a^{(2)} - y^{(2)} ... a^{(m)} - y^{(m)}]$

• $dw = 0$ $db = 0$

• $dw = 0$ $du = 0$

• $dw = 0$ $du = 0$

• $dw = 0$

```
• w_1, w_2, b \leftarrow random

For iter in range(1000)
Z = W^T x + b = np \cdot dot(W.T, X) + b
A = \sigma(Z)
dZ = A - Y
dW = \frac{1}{m}X dZ^T
db = \frac{1}{m}np.sum(dZ)
w = w - \alpha dw
b = b - \alpha db
```

$$a = np \cdot random \cdot randn(5,1)$$
 $a. shape = (5,1)$

Logistic Regression Cost function

•
$$\hat{y} = \sigma(w^T x + b)$$
 $0 < \sigma(z) = \frac{1}{1 + e^{-z}} < 1$

•
$$\hat{y} = p(y = 1|x)$$

• if
$$y = 1$$
: $p(y|x) = \hat{y}$
• if $y = 0$: $p(y|x) = 1 - \hat{y}$

• if
$$y = 0 : p(y|x) = 1 - \hat{y}$$

•
$$p(y|x) = \hat{y}^y + (1 - \hat{y})^{1-y}$$
 distribution? Bernoulli

• if
$$y = 1$$
: $p(y|x) = \hat{y}$

• *if*
$$y = 0 : p(y|x) = 1 - \hat{y}$$

•
$$\log p(y|x) = \log[\hat{y}^y + (1-\hat{y})^{1-y}] = y \log \hat{y} + (1-y) \log(1-\hat{y})$$

= $-L(\hat{y}, y)$ Max Likelihood

Logistic Regression Cost function

- $\log P(labels in trainingset) = \log \prod_{i=1}^{m} P(y^i \mid x^i)$
- $\log P(\dots) = \sum_{i=1}^{m} \log P(y^{(i)} \mid x^{(i)}) = -\sum_{i=1}^{m} L(\hat{y}^{(i)}, y^{(i)})$

• Cost function
$$\underbrace{J(w,b)}_{minimize} = \frac{1}{m} \sum_{i=1}^{m} L(\hat{y}^{(i)}, y^{(i)})$$

Neural Networks

Neural Networks

