

Lecture 8 Introduction to Neural Networks

李杰恩 Chieh-En Lee celee@nycu.edu.tw

國立陽明交通大學光電工程學系

Department of Photonics

National Yang Ming Chiao Tung University, 30010 Hsinchu, Taiwan

Last Time

- It's Peter's show!
- Numerical linear algebra
- Eigenvalues and eigenvectors
- Least squares regression problems

Today

- Curve fitting problem
- Overfitting phenomenon
- Regularization
- Probabilistic perspective on curve fitting problem
- Regression and classification
- Neural networks
- Feed-forward and backward propagation
- Optimization
- Summary

Curve Fitting Problem

— objective curve, y = f(x)

• data, $t_n = f(x_n) + \text{noise}$

How to find a function or a model y = f(x) based on these data (observations)?

General model

$$y(x, \mathbf{\beta}) = \alpha_0 f_0(x) + \alpha_1 f_1(x) + \alpha_2 f_2(x) + \dots + \alpha_{M-1} f_{M-1}(x) = \sum_{j=0}^{M-1} \alpha_j f_j(x)$$

For example, a polynomial model

$$y(x, \mathbf{\beta}) = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \dots + \alpha_{M-1} x^{M-1} = \sum_{j=0}^{M-1} \alpha_j x^j$$

Curve Fitting with Different Models

Error function

$$E(\mathbf{\beta}) = \frac{1}{2} \sum_{n=1}^{N} \{y_n(x_n, \mathbf{\beta}) - t_n\}^2$$

Least squares regression

Overfitting Phenomenon

 $N \gg 20$

	M = 0	M=1	M=3	M = 20
α_1	1.45	7.11	0.31	3.35
α_2		-3.02	7.99	251.87
α_3			-25.43	-1450.38
α_4			17.37	9964.87
α_5				-23163.90
:				:
α_{M}				-557682.99

This phenomenon will be suppressed with sufficient data.

Regularization

Error function

$$E(\mathbf{\beta}) = \frac{1}{2} \sum_{n=1}^{N} \{ y_n(x_n, \mathbf{\beta}) - t_n \}^2 + \frac{\lambda}{2} ||\mathbf{\beta}||^2$$

Regularization term

 χ

Probabilistic Perspective on Curve Fitting

• Given the value of x_n , we assume the corresponding value of $y(x_n, \beta)$ has a Gaussian distribution with a mean equal to t_n .

$$p(t_n|x_n, \boldsymbol{\beta}, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{[t_n - y(x_n, \boldsymbol{\beta})]^2}{2\sigma^2}\right\}$$

• The <u>likelihood function</u> of N data

 t_1 t_n x_1 x_n x_n x_n x_n

What is the likelihood function?

Likelihood Function

Bayes' theorem

$$P(A|B) = \frac{P(B|A) \cdot P(B)}{P(A)} \qquad \Rightarrow \qquad \underline{P(\mathbf{x}, \boldsymbol{\beta}, \sigma^2 | \mathbf{t})} = \frac{P(\mathbf{t}|\mathbf{x}, \boldsymbol{\beta}, \sigma^2) \cdot P(\mathbf{x}, \boldsymbol{\beta}, \sigma^2)}{P(\mathbf{t})}$$

The probability of the model $(\mathbf{x}, \boldsymbol{\beta}, \sigma^2)$ under the condition of observation \mathbf{t} .

• We use a likelihood function $\mathcal{L}(\mathbf{x}, \mathbf{\beta}, \sigma^2 | \mathbf{t})$ to estimate $P(\mathbf{x}, \mathbf{\beta}, \sigma^2 | \mathbf{t})$ because we do not know the probability of $P(\mathbf{x}, \mathbf{\beta}, \sigma^2)$

$$P(\mathbf{x}, \boldsymbol{\beta}, \sigma^2 | \mathbf{t}) \to \mathcal{L}(\mathbf{x}, \boldsymbol{\beta}, \sigma^2 | \mathbf{t}) \to \underline{\mathcal{L}}(\mathbf{t} | \mathbf{x}, \boldsymbol{\beta}, \sigma^2)$$

Maximizing $\mathcal{L}(\mathbf{t}|\mathbf{x}, \boldsymbol{\beta}, \sigma^2)$ is equivalent to maximizing $\mathcal{L}(\mathbf{x}, \boldsymbol{\beta}, \sigma^2|\mathbf{t})$. Therefore, we can find the most reasonable $P(\mathbf{x}, \boldsymbol{\beta}, \sigma^2)$.

Estimations

Log likelihood function

$$E(\boldsymbol{\beta}) = \ln p(\mathbf{t}|\mathbf{x}, \boldsymbol{\beta}, \sigma^2) = -N \ln \sigma - \frac{N}{2} \ln 2\pi - \frac{1}{2\sigma^2} \sum_{i=1}^{N} [t_i - y(x_i, \boldsymbol{\beta})]^2$$

Maximum likelihood (ML) estimation

$$\frac{\partial}{\partial \boldsymbol{\beta}} E(\boldsymbol{\beta}) = 0 \to \boldsymbol{\beta}_{ML}$$

Maximum a posterior (MAP) estimation

$$E(\boldsymbol{\beta}) = \ln p(\mathbf{t}|\mathbf{x}, \boldsymbol{\beta}, \sigma^2) = -N \ln \sigma - \frac{N}{2} \ln 2\pi - \frac{1}{2\sigma^2} \sum_{i=1}^{N} [t_i - y(x_i, \boldsymbol{\beta})]^2 - \frac{\lambda}{2} \boldsymbol{\beta}^T \boldsymbol{\beta} \to \boldsymbol{\beta}_{MAP}$$

constraints on $\boldsymbol{\beta}$

Physical Meaning of ML & MAP

Find an optimal subspace $S \in \mathbb{R}^M$ expanded by the basis vectors $\{\varphi_1, \varphi_2, ..., \varphi_M \in \mathbb{R}^M\}$ so that the difference between the projection $\mathbf{y} \in \mathbb{R}^M$ and the observation $\mathbf{t} \in \mathbb{R}^N$ is minimized.

Regression and Classification

It depends on the characteristic of training target.

continuous training target

discrete training target

Brief Summary

- A curve fitting problem can be regarded as how to find a function (or a model) based on your data.
- Overfitting phenomenon and regularization
- The probabilistic perspective on curve fitting problem, likelihood function, and estimations
- The difference between regression and classification

Linear and Non-linear Models

• The linear combination of L_1 and L_2

$$y_{new} = w_1L_1 + w_2L_2 = (w_1m_1 + w_2m_2)x + (w_1c_1 + w_2c_2)$$

is still linear (a straight line)

However, if we change to a non-linear model

$$y_{new} = f(w_1L_1) + f(w_2L_2)$$
, and $f(x) = x^2$, e^x , $\frac{1}{1+e^{-x}}$, ...

$$y_{new} = \begin{cases} [w_1(m_1x + c_1)]^2 + [w_2(m_2x + c_2)]^2 \\ e^{w_1(m_1x + c_1)} + e^{w_2(m_2x + c_2)} \\ \frac{1}{1 + e^{-w_1(m_1x + c_1)}} + \frac{1}{1 + e^{-w_2(m_2x + c_2)}} \end{cases}$$

will be different

Neural Network Algorithm

input data

Feed-forward Propagation (1/2)

$$a_j = \sum_{i=1}^M w_{ji} x_i + x_0$$

linear combination of previous layer

$$z_j = h(a_j)$$

"activate" by a non-linear function

Activation functions (there are more)

$$h(x) = \frac{1}{1 + e^{-x}}$$

$$h(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

$$h(x) = \log(1 + e^x)$$

$$h(x) = \max(0, x)$$

Feed-forward Propagation (2/2)

Regression model

Classification model

Activation functions (there are more)

Sigmoid
$$h(x) = \frac{1}{1 + e^{-x}}$$
 Tangent hyperbolic
$$h(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$
 Softplus
$$h(x) = \log(1 + e^x)$$
 Rectified linear unit (ReLU)
$$h(x) = \max(0, x)$$

Loss Calculation (1/2)

Regression model

Hidden layers of your network

Calculate the l_k -norm

$$\mathbf{y}$$
output
$$E(\mathbf{w}) = \sum_{n=1}^{N} ||\mathbf{y} - \mathbf{t}||^{k}$$

k	Loss type
1	Mean absolute error (MAE)
2	Mean squared error (MSE)
3	Mean cubic error (MCE)

Classification model

Loss Calculation (2/2)

Classification model

Hidden layers of your network

$$E(\mathbf{w}) = -\sum_{n=1}^{N} [t_n \ln y_n + (1 - t_n) \ln(1 - y_n)]$$
 binary classification

Training target

k	Encoding vector
-1	[1,0,0,0,]
2	[0,1,0,0,]
3	[0,0,1,0,]
•••	•••

$$\begin{bmatrix} y_2 \\ y_3 \\ \vdots \\ y_K \end{bmatrix} = \begin{bmatrix} 0.01 \\ 0.97 \\ 0 \\ 0 \\ \vdots \\ 0.01 \\ 0 \end{bmatrix}$$

Back Propagation (1/4)

Gradient descent (GD) algorithm

$$a_{j} = \sum_{i=1}^{M} w_{ji} x_{i} + x_{0}$$

$$a_{k} = \sum_{j=1}^{D} w_{kj} z_{j}$$

$$z_j = h(a_j)$$

hidden layer

$$a_k = \sum_{j=1}^{D} w_{kj} z_j + z_0$$
$$y_k = h(a_k) = a_k$$

$$E_n(\mathbf{w}) = \frac{(\mathbf{y}_n - \mathbf{t}_n)^2}{2}$$
$$\frac{\partial E_n}{\partial a_k} = y_{nk} - t_{nk}$$

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E_n(\mathbf{w}^{(\tau)})$$

$$a_{j} = \sum_{i=1}^{M} w_{ji} x_{i} + x_{0}$$

$$a_{k} = \sum_{j=1}^{D} w_{kj} z_{j} + z_{0}$$

$$E_{n}(\mathbf{w}) = \frac{(\mathbf{y}_{n} - \mathbf{t}_{n})^{2}}{2}$$

$$\delta_{j} = \frac{\partial E_{n}}{\partial a_{j}} = \sum_{k} \frac{\partial E_{n}}{\partial a_{k}} \frac{\partial a_{k}}{\partial a_{j}} = h'(a_{j}) \cdot \sum_{k} w_{kj} \delta_{k}$$

$$\delta_{i} = \frac{\partial E_{n}}{\partial a_{i}} = \sum_{j} \sum_{k} \frac{\partial E_{n}}{\partial a_{k}} \frac{\partial a_{k}}{\partial a_{j}} \frac{\partial a_{j}}{\partial a_{i}} = h'(a_{i}) \cdot \sum_{j} w_{ji} \delta_{j}$$

Back Propagation (2/4)

$$a_j = \sum_{i=1}^{M} w_{ji} x_i + x_0$$
$$z_j = h(a_j)$$

hidden layer

$$x_0 \qquad a_k = \sum_{j=1}^D w_{kj} z_j + z_0 \qquad E_n(\mathbf{w}) = \frac{(\mathbf{y}_n - \mathbf{t}_n)^2}{2}$$
$$y_k = h(a_k) = a_k \qquad \frac{\partial E_n}{\partial a_k} = y_{nk} - t_{nk}$$

$$a_{j} = \sum_{i=1}^{M} w_{ji} x_{i} + x_{0}$$

$$a_{k} = \sum_{j=1}^{D} w_{kj} z_{j} + z_{0}$$

$$E_{n}(\mathbf{w}) = \frac{(\mathbf{y}_{n} - \mathbf{t}_{n})^{2}}{2}$$

$$y_{k} = h(a_{k}) = a_{k}$$

$$\frac{\partial E_{n}}{\partial a_{k}} = y_{nk} - t_{nk}$$

$$\mathbf{w}_{kj}^{(\tau+1)} = \mathbf{w}_{kj}^{(\tau)} - \eta \underline{\nabla} E_n(\mathbf{w}^{(\tau)})$$

$$\frac{\partial E_n}{\partial w_{kj}} = \frac{\partial E_n}{\partial a_k} \frac{\partial a_k}{\partial w_{kj}} = \delta_k \cdot z_j$$

$$\mathbf{w}_{kj}^{(\tau+1)} = \mathbf{w}_{kj}^{(\tau)} - \eta \cdot \delta_k \cdot z_j$$

$$\mathbf{w}_{ji}^{(\tau+1)} = \mathbf{w}_{ji}^{(\tau)} - \eta \nabla E_n(\mathbf{w}^{(\tau)})$$

$$\frac{\partial E_n}{\partial w_{ji}} = \frac{\partial E_n}{\partial a_j} \frac{\partial a_j}{\partial w_{ji}} = \delta_j \cdot z_i$$

$$\mathbf{w}_{ji}^{(\tau+1)} = \mathbf{w}_{ji}^{(\tau)} - \eta \cdot \delta_j \cdot z_i$$

Back Propagation (3/4)

Flowchart of GD algorithm

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E_n(\mathbf{w}^{(\tau)})$$

$$\delta_k = \frac{\partial E_n}{\partial y_k} \frac{\partial y_k}{\partial a_k} = y_{nk} - t_{nk}$$

$$\frac{\partial E_n}{\partial w_{kj}} = \frac{\partial E_n}{\partial a_k} \frac{\partial a_k}{\partial w_{kj}} = \delta_k \cdot z_j$$

$$\mathbf{w}_{kj}^{(\tau+1)} = \mathbf{w}_{kj}^{(\tau)} - \eta \cdot \delta_k \cdot z_j$$

$$a_j = \sum_{i=1}^M w_{ji} x_i + x_0$$

$$z_j = h(a_j)$$

hidden layer

$$a_k = \sum_{j=1}^D w_{kj} z_j + z_0$$

$$y_k = h(a_k) = a_k$$

output layer

$$a_{j} = \sum_{i=1}^{M} w_{ji} x_{i} + x_{0}$$

$$a_{k} = \sum_{j=1}^{D} w_{kj} z_{j} + z_{0}$$

$$E_{n}(\mathbf{w}) = \frac{(\mathbf{y}_{n} - \mathbf{t}_{n})^{2}}{2}$$

$$y_{k} = h(a_{k}) = a_{k}$$

$$\frac{\partial E_{n}}{\partial a_{k}} = y_{nk} - t_{nk}$$

error function

$$\Rightarrow$$

$$\delta_{j} = h'(a_{j}) \cdot \sum_{k} w_{kj} \delta_{k}$$

$$\frac{\partial E_{n}}{\partial w_{ji}} = \frac{\partial E_{n}}{\partial a_{j}} \frac{\partial a_{j}}{\partial w_{ji}} = \delta_{j} \cdot z_{i}$$

$$\mathbf{w}_{ji}^{(\tau+1)} = \mathbf{w}_{ji}^{(\tau)} - \eta \cdot \delta_{j} \cdot z_{i}$$

Back Propagation (4/4)

Different loss functions

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E_n(\mathbf{w}^{(\tau)})$$

$$\Rightarrow$$

$$\delta_k = \frac{\partial E_n}{\partial y_k} \frac{\partial y_k}{\partial a_k}$$

$$\frac{\partial E_n}{\partial w_{kj}} = \frac{\partial E_n}{\partial a_k} \frac{\partial a_k}{\partial w_{kj}} = \delta_k \cdot z_j$$
$$\mathbf{w}_{kj}^{(\tau+1)} = \mathbf{w}_{kj}^{(\tau)} - \eta \cdot \delta_k \cdot z_j$$

$$\frac{\partial E_n}{\partial w_{kj}} = \frac{\partial E_n}{\partial a_k} \frac{\partial a_k}{\partial w_{kj}} = \delta_k \cdot z_j$$

$$\mathbf{w}_{kj}^{(\tau+1)} = \mathbf{w}_{kj}^{(\tau)} - \eta \cdot \delta_k \cdot z_j$$

$$\mathbf{w}_{kj}^{(\tau+1)} = \mathbf{w}_{kj}^{(\tau)} - \eta \cdot \delta_k \cdot z_j$$

$$\mathbf{w}_{kj}^{(\tau+1)} = \mathbf{w}_{kj}^{(\tau)} - \eta \cdot \delta_j \cdot z_i$$

$$\mathbf{w}_{ii}^{(\tau+1)} = \mathbf{w}_{ii}^{(\tau)} - \eta \cdot \delta_j \cdot z_i$$

$$y_k = h(a_k) = \begin{cases} \frac{a_k}{1} \\ \frac{1}{1 + \exp(-a_k)} \\ \frac{\exp(a_k)}{\sum_{m=0}^{K} \exp(a_m)} \end{cases}$$

Batch Size

- The difference between gradient descent (GD) and stochastic gradient descent (SGD)
- Epoch a generation of training
- Batch a small batch of training data
- Iteration one iteration of training

Optimization (1/3)

Momentum

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E_n(\mathbf{w}^{(\tau)}) \qquad \Rightarrow \qquad \mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \mathbf{v}^{(t)}$$

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \mathbf{v}^{(t)}$$

$$\mathbf{v}^{(t)} = \begin{cases} \gamma \mathbf{g}_t, & t = 0 \\ \beta \mathbf{v}^{(t-1)} + \gamma \mathbf{g}_t, & t \geq 1 \end{cases} \qquad \begin{aligned} \mathbf{g}_t &= \nabla E \big(\mathbf{w}^{(t)} \big) \text{: the gradient of } \\ & \text{the } t^{th} \text{ iteration } \\ \beta &= 0.9 \text{: default parameter } \\ \gamma \text{: learning rate} \end{aligned}$$

Accelerate the learning speed if the gradient direction of the t^{th} and the $(t-1)^{th}$ iteration are in the same direction.

Optimization (2/3)

Adaptive momentum (ADAM)

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E_n(\mathbf{w}^{(\tau)})$$

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E_n(\mathbf{w}^{(\tau)}) \qquad \Rightarrow \qquad \mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \frac{\gamma}{\sqrt{\widehat{\mathbf{v}}_t - \epsilon}} \widehat{\mathbf{m}}_t$$

$$\begin{aligned} \mathbf{m}_t &= \beta_1 \cdot \mathbf{m}_{t-1} + (1-\beta_1) \cdot \mathbf{g}_t & \widehat{\mathbf{m}_t} &= \frac{\mathbf{m}_t}{1-\beta_1^t} & \text{Default parameters:} \\ \beta_1 &: & 0.9 \\ \beta_2 &: & 0.999 \end{aligned}$$

$$\mathbf{v}_t &= \beta_2 \cdot \mathbf{v}_{t-1} + (1-\beta_2) \cdot \mathbf{g}_t^2 & \widehat{\mathbf{v}}_t &= \frac{\mathbf{v}_t}{1-\beta_2^t} & \epsilon &: & 10^{-8} \\ \gamma &: & \text{learning rate} \end{aligned}$$

Adaptively change the momentum (direction of gradient) and the learning rate during training phase.

Optimization (3/3)

Comparison (different learning rates)

Gradient Explosion and Vanishing

Review the GD algorithm

$$\delta_{j} = h'(a_{j}) \cdot \sum_{k} w_{kj} \delta_{k}$$

$$\frac{\partial E_{n}}{\partial w_{ji}} = \frac{\partial E_{n}}{\partial a_{j}} \frac{\partial a_{j}}{\partial w_{ji}} = \delta_{j} \cdot z_{i}$$

$$\mathbf{w}_{ji}^{(\tau+1)} = \mathbf{w}_{ji}^{(\tau)} - \eta \cdot \delta_{j} \cdot z_{i}$$

$$\frac{\partial E_n}{\partial w_{kj}} = \frac{\partial E_n}{\partial a_k} \frac{\partial a_k}{\partial w_{kj}} = \begin{bmatrix} \delta_k \\ \delta_k \end{bmatrix} \cdot z_j$$
$$\mathbf{w}_{kj}^{(\tau+1)} = \mathbf{w}_{kj}^{(\tau)} - \eta \cdot \delta_k \cdot z_j$$

The main reason of gradient vanishing is the derivative of activation function.

Batch Normalization

The main reason of gradient vanishing is the derivative of activation function.

Normalize the data distribution to zero mean in the output of each layer.

Summary

- The difference between linear and non-linear models
- Feed-forward propagation, loss calculation, back propagation, and optimization of neural network
- Gradient explosion and vanishing, batch normalization
- Your final homework