Assignment #4: Transformer Implementation

Paul Hongsuck Seo

Korea University

Implement Transformer Classifier

- Perform the text classification using "IMDb Movie Reviews" dataset with transformer
- The Ipython Notebook "Transformer_Implementation.ipynb" will walk you through the implementation of transformer classifier.

Instructions

- Follow the instructions in the **Transformer_Implementation.ipynb** notebook to complete the assignment.
 - Load the IMDb data (No need for any modifications)
 - Preprocessing the data (No need for any modifications)
 - Complete the transformer code and train the transformer model
 - Use the pre-trained BERT model weights and fine-tune them for the IMDb dataset.
 - Complete transformer_skeleton.py
 - → same as the cells in Transformer_Implementation.ipynb

IMDb movie review Dataset

- IMDb Movie Reviews dataset
 - Contains 50,000 movie reviews taken from IMDb (Internet Movie Database)
 - https://ai.stanford.edu/~amaas/data/sentiment/
- Dataset Composition
 - 25,000 reviews are used for training and 25,000 reviews are used for testing.
 - Reviews are labeled as either positive or negative

After seeing this film months ago, it keeps jumping back into my consciousness and I feel I must buy it or at least see it again, even though I watched it at least 3 times when I rented it at that point...

Label: 1 (Positive)

Transformer

Transformer

- Transformers are neural networks designed for sequential data processing.
- They process entire sequences simultaneously, using **self-attention** mechanisms to handle dependencies between tokens.
- Multi-head attention enables the model to focus on different parts of the sequence simultaneously.
- We will explore Transformer architecture.

Instructions

- You need to complete the Transformer Model code accurately based on the explanation of the transformer provided in the following slide.
- It includes **Positional Encoding**, **Multi-Head Attention**, and the internal operations of the transformer, among others.

```
class MultiHeadAttention(nn.Module):
    def __init__(self, d_model, nhead, dropout=0.1):
        super(MultiHeadAttention, self).__init__()
        assert d_model % nhead == 0, "d_model must be divisible by nhead"

    self.d_model = d_model
    self.nhead = nhead
    self.d_k = d_model // nhead
    self.d_c = nn.Dropout(dropout)

# Hint: Define the linear layers to project the input for query, key, and value
    self.w_q = nn.Linear(###blank###, ###blank###)
    self.w_c = nn.Linear(###blank###, ###blank###)
    self.w_v = nn.Linear(###blank###, ###blank###)

    self.w_o = nn.Linear(d_model, d_model)
```

Positional encoding

- Transformers do not have an inherent sense of word order, unlike RNNs.
- Positional encoding provide position information to the model using sine and cosine functions.
- Formula:
 - Even indices: $PE(pos, 2i) = \sin\left(\frac{pos}{10000^{\frac{2i}{d_{model}}}}\right)$
 - Odd indices: $PE(pos, 2i + 1) = \cos\left(\frac{pos}{10000^{\overline{d}_{model}}}\right)$

Multi-Head Attention

- Allows the model to attend to different positions within the sequence in parallel.
- Each "head" in the attention mechanism processes the input data in a different way, learning multiple relationships simultaneously.
- Instead of applying a single attention mechanism, we apply multiple ones (hence, "multi-head"), each learning a different representation of the input.
- Formula:
 - $scores = \frac{Q \cdot K^T}{\sqrt{d_k}}$
 - $Attention\ Weights = softmax(scores)$
 - Attention $Output = dropout(Attention Weights) \cdot V$
 - Multi head Attention output = $W_O \times$ Attention Output

Transformer Encoder Layer

- Consists of two main operations: Self-Attention and a Feed-Forward Neural Network
- After Self-Attention, a residual connection, Dropout, and Layer Normalization are applied to the attention output.
- The input is passed through the FFN, followed by a second residual connection,
 Dropout, and Layer Normalization applied to the FFN output.
- Formula:
 - Output1 = normalization(input + dropout(attention output))
 - Output2 = normalization(output1 + dropout(feedforward output))

Transformer

- The **Transformer** first applies **Positional Encoding (PE)** to the input to provide information about the order of tokens in the sequence.
- After positional encoding, the input passes through N Transformer layers, where each layer performs self-attention and feed-forward operations with residual connections and normalization.
- Finally, the output passes through a fully connected (FC) layer, producing the final output.

Train the transformer model

Train the Transformer model using the provided code.

Load pretrained BERT

- Load the pretrained BERT model using the provided code and train it.
- Analyze the results and write a report based on your findings.
 - Using pretrained weight for BERT

Let's load the pretrained weights from BERT and see how much the accuracy improves.

```
class TransformerModelWithSERT(nn.Module):
    def __init__(self, vocab_size, d_model, nhead, num_encoder_layers, num_classes, dim_feedforward=2048, dropout=0.1, max_len=512
    super(TransformerModelWithSERT, self), __init__()

    self.bert = BertModel.from_pretrained('bert-base-uncesed')

    self.embedding = nn.Enbedding(vocab_size, d_model)
    self.embedding.weight = nn.Parameter(self.bert.embeddings.word_embeddings.weight)

    self.pos_encoder = PositionalEncoding(d_model, max_len)
    self.pos_encoder.pe = nn.Parameter(self.bert.embeddings.position_embeddings.weight.unsqueeze(0), requires_grad=Faise)

    encoder_layers = TransformerEncoderLayer(d_model, nhead, dim_feedforward, dropout)
    self.transformer_encoder = TransformerEncoder(encoder_layers, num_encoder_layers)

    self.fc = nn.Linear(d_model, num_classes)
    pelf.d_model = d_model
```

- You must submit "transformer_skeleton.py" along with the report.
 (Do not modify the name of the Python file.)
- Include a 1 page report in CVPR format that describes your code, results, and discussions.
- The report should be written in English.

CVPR format: https://cvpr.thecvf.com/Conferences/2024/AuthorGuidelines

→ Download CVPR 2024 Author Kit

Please do NOT copy your friends' and internet sources.

Please start your assignment EARLY. "Late submissions will not be accepted"

