Lecture 8 (Informed Search)

1 Greedy Best-First Search

Best-first search but f(n) = h(n)

2 A^* Search

Combines UCS and Greedy Best-First Search by using f(n) = g(n) + h(n), where g(n) is cost incurred until now. Surprisingly this algo is optimal for tree-search if heuristic is admissible.

2.1 Admissible Heuristic

Let $h^*(n)$ be actual shortest path. h is admissible if $h(n) \leq h^*(n) \ \forall n$. Only those heuristics are optimal (in A* search) which are admissible.

2.2 Consistent Heuristic

An admissible heuristic is consistent if for every state s and for every successor s', $h(s) \le c(s, s') + h(s')$ (inspired from triangle inequality). This implies that f(n) only increases along the path and the graph-search algo also gives optimal solution.

2.3 Properties

- 1. Optimal graph search too for consistent heuristics
- 2. Soultion will be found if:
 - i. b is finite
 - ii. $c(step) \geq \delta$
 - iii. only finite nodes have $cost \le C^*$ (least cost)
- 3. Complexity: $O(b^{ed})$ where b^e is effective branching factor, e is given as: $\frac{h^* h}{h^*}$
- 4. A^* search is optimally efficient, i.e., with a given heuristic, no other algorithm will be able to expand a fewer nodes.
- 5. Space is still exponential in length of the solution