WHAT IS CLAIMED IS:

1	1. An acoustic monitoring method in laser-induced optical
2	breakdown (LIOB), the method comprising the steps of:
3	causing at least one acoustic wave associated with a microbubble to
4	propagate in a volume of material;
5	detecting the at least one acoustic wave to obtain at least one signal;
6	and
7	processing the at least one signal to obtain information which
8	characterizes the material, the microbubble in the material or a microenvironment
9	of the microbubble.
1	2. The method as claimed in claim 1, the information
2	characterizes the mechanical microenvironment of the microbubble.
1	3. The method as claimed in claim 2, wherein the information
2	characterizes the viscoelasticity of the microenvironment.
1	4. The method as claimed in claim 1, wherein the information
2	characterizes microbubble size.
1	5. The method as claimed in claim 1, wherein the at least one
2	acoustic wave includes at least one acoustic wave reflected from the microbubble
1	6. The method as claimed in claim 5, wherein the at least one
2	reflected acoustic wave includes an ultrasound wave.
1	7. The method as claimed in claim 1, wherein the at least one
2	acoustic wave includes an acoustic shock wave which propagates outwardly from
3	an LIBO site and defines an acoustic point source.

1	8.	The method as claimed in claim 7, wherein the microbubble
2	is LIOB-induced and	wherein the acoustic shock wave defines position of the LIOB-
3	induced microbubble	which acts as an acoustic reflector.
1	9.	The method as claimed in claim 7, wherein the point source
2	is determined by loca	ation of an additive in the material and wherein the additive
3	enhances an electric f	field in the vicinity of the additive.
1	10.	The method as claimed in claim 9, wherein the information
2	characterizes a photoe	disruption threshold of the material with the additive which is
3	substantially lower th	han a photodisruption threshold of the material without the
4	additive.	
1	11.	The method as claimed in claim 10, wherein the information
2	quantifies concentrati	on of the additive.
1	12.	The method as claimed in claim 11, wherein a single molecule
2	of the additive is dete	ected.
1	13.	The method as claimed in claim 9, wherein the material
2	includes at least one	nanodevice having the additive and a linked therapeutic agent
3	and wherein at least o	one laser pulse causes the at least one nanodevice to release the
4	linked therapeutic ago	ent into the microenvironment.
1	14.	The method as claimed in claim 13, wherein the information
2	characterizes therape	atic efficacy of the therapeutic agent in the microenvironment.
i	15.	The method as claimed in claim 7, wherein the material has
2	an additive incorpora	ated therein and wherein the point source is a desired point
3	•	smaller than a point source defined by a microbubble created
4	within the material w	miout the additive.

1		16.	The method as claimed in claim 15, wherein the additive
2	includes metal	nano p	particles or domains.
1		17.	The method as claimed in claim 1, wherein the microbubble
2	is produced by	at leas	st one laser pulse.
1		18.	The method as claimed in claim 17, wherein the at least one
2	laser pulse inc	ludes a	focused laser pulse.
1		19.	The method as claimed in claim 1, wherein the microbubble
2	is produced by	at leas	st one ultrafast laser pulse.
1		20.	The method as claimed in claim 19, wherein the information
2	characterizes a	a photo	disruption threshold of the material.
1		21.	The method as claimed in claim 1, wherein the information
2	characterizes !	location	of the microbubble within the material.
1		22.	The method as claimed in claim 1, wherein the information
2	characterizes	microbi	ubble behavior in the material.
1		23.	The method as claimed in claim 4, wherein microbubble size
2	is determined	using n	ion-linear acoustic scattering from the microbubble.
1 .		24.	The method as claimed in claim 1, wherein the material
2	includes a liqu	iid or s	emi-liquid material, such as biological tissue.
1		25.	An acoustic monitoring system in laser-induced optical
2	breakdown (L	IOB), t	he system comprising:
3			for causing at least one acoustic wave associated with a
4	microbubble t		gate in a volume of material;
5			ustic wave detector for detecting the at least one acoustic wave
6	to obtain at le	ast one	signal; and

7		means	for processing the at least one signal to obtain information
8	which charac	terizes	the material, the microbubble in the material or a
9	microenvironn	nent of	the microbubble.
			•
1		26.	The system as claimed in claim 25, the information
2	characterizes t	he mec	hanical microenvironment of the microbubble.
1		27.	The system as claimed in claim 26, wherein the information
2	characterizes t	he visc	oelasticity of the microenvironment.
1		28.	The system as claimed in claim 25, wherein the information
2	characterizes i	nicrobi	ubble size.
1		29.	The system as claimed in claim 25, wherein the at least one
2			es at least one acoustic wave reflected from the microbubble
3	and wherein th	e mean	s for causing includes an acoustic source for directing acoustic
4	energy to the	materia	al so that at least one acoustic wave propagates through the
5	material to the	micro	bubble to obtain the at least one reflected acoustic wave.
,		20	The contain as alsimod in claim 20, wherein the at least area
1	~	30.	The system as claimed in claim 29, wherein the at least one
2	reflected acous	stic wa	ve includes an ultrasound wave.
1		31.	The system as claimed in claim 25, wherein the at least one
2	acoustic wave		es an acoustic shock wave which propagates outwardly from
3			ich defines an acoustic point source.
5	an Liob sic t	and win	ien dernies an acoustic point source.
1		32.	The system as claimed in claim 31, wherein the microbubble
2	is LIOB-induce	ed and	wherein the acoustic shock wave defines position of the LIOB-
3	induced micro	bubble	which acts as an acoustic reflector.
1		33.	The system as claimed in claim 31, wherein the point source
2		-	ation of an additive in the material and wherein the additive
3	enhances an el	ectric f	field in the vicinity of the additive.

1	34. The system as claimed in claim 33, wherein the information
2	characterizes a photodisruption threshold of the material with the additive which i
3	substantially lower than a photodisruption threshold of the material without th
4	additive.
1	35. The system as claimed in claim 34, wherein the information
2	quantifies concentration of the additive.
1	36. The system as claimed in claim 35, wherein a single molecul
2	of the additive is detected.
1	37. The system as claimed in claim 33, wherein the materia
2	includes at least one nanodevice having the additive and a linked therapeutic ager
3	and wherein at least one laser pulse causes the at least one nanodevice to release th
4	linked therapeutic agent into the microenvironment.
1	38. The system as claimed in claim 37, wherein the informatio
2	characterizes therapeutic efficacy of the therapeutic agent in the microenvironment
1	39. The system as claimed in claim 31, wherein the material ha
2	an additive incorporated therein and wherein the point source is a desired point
3	source substantially smaller than a point source defined by a microbubble create
4	within the material without the additive.
1	40. The system as claimed in claim 39, wherein the additiv
2	includes metal nano particles or domains.
1	41. The system as claimed in claim 25, wherein the microbubbl
2	is produced by at least one laser pulse.
1	42. The system as claimed in claim 41, wherein the at least on
2	laser pulse includes a focused laser pulse.

1

43.

2	is produced by at least one ultrafast laser pulse.
1 2	44. The system as claimed in claim 43, wherein the information characterizes a photodisruption threshold of the material.
1 2	45. The system as claimed in claim 25, wherein the information characterizes location of the microbubble within the material.
1 2	46. The system as claimed in claim 25, wherein the information characterizes microbubble behavior in the material.
1 2	47. The system as claimed in claim 28, wherein the microbubble size is determined using non-linear scattering from the microbubble.
1 2	48. The system as claimed in claim 25, wherein the material includes a liquid or semi-liquid material, such as biological tissue.
1 2	49. The method as claimed in claim 1, wherein the information includes an acoustic image of the material.
1 2	50. The method as claimed in claim 7, further comprising time reversing the acoustic shock wave to form an acoustic image of the material.
1 2	51. The system as claimed in claim 25, wherein the information includes an acoustic image of the material.
1 2 3	52. The system as claimed in claim 31, further comprising means for time reversing the acoustic shock wave to form an acoustic image of the material.

The system as claimed in claim 25, wherein the microbubble