Causal Diagrams in R Malcolm Barrett

2021-09-01

Draw your causal assumptions with causal directed acyclic graphs (DAGs)

The basic idea

- Specify your causal question
- Use domain knowledge
- Write variables as nodes
- Write causal pathways as arrows (edges)

ggdag

dagitty

ggplot2 ggraph

dagitty

ggplot2 ggraph

powerful, robust algorithms

dagitty

powerful, robust algorithms

ggplot2 ggraph

unlimited flexibility

beautiful plots

```
dagitty
           ggplot2
            ggraph
       Data
    -structure:-
     tidy DAGs
```

```
1 dagify(
2 cancer ~ smoking,
3 coffee ~ smoking
4 )
```

```
1 dagify(
2 cancer ~ smoking,
3 coffee ~ smoking
4 ) |> ggdag()
```



```
1 dagify(
2 cancer ~ smoking + coffee,
3 coffee ~ smoking
4 ) |> ggdag()
```


Your Turn 1 (04-dags-exercises.qmd)

Specify a DAG with dagify(). Write your assumption that smoking causes cancer as a formula.

We're going to assume that coffee does not cause cancer, so there's no formula for that. But we still need to declare our causal question. Specify "coffee" as the exposure and "cancer" as the outcome (both in quotations marks).

Plot the DAG using ggdag()

Your Turn 1 (02-dagsexercises.qmd)

```
1 coffee cancer dag <- dagify(</pre>
    cancer ~ smoking,
  smoking ~ addictive,
  coffee ~ addictive,
   exposure = "coffee",
   outcome = "cancer",
7 	 labels = c(
     "coffee" = "Coffee",
       "cancer" = "Lung Cancer",
10
  "smoking" = "Smoking",
"addictive" = "Addictive \nBehavior"
12
13)
```

1 ggdag(coffee_cancer_dag)

Causal effects and backdoor paths

Ok, correlation!= causation. But why not?

We want to know if x -> y...

But other paths also cause associations

ggdag_paths()

Identify "backdoor" paths

```
1 ggdag_paths(smk_wt_dag)
```


Call tidy_dagitty() on coffee_cancer_dag to create a tidy DAG, then pass the results to dag_paths(). What's different about these data?

Plot the open paths with ggdag_paths(). (Just give it coffee_cancer_dag rather than using dag_paths(); the quick plot function will do that for you.) Remember, since we assume there is no causal path from coffee to lung cancer, any open paths must be confounding pathways.

05:00

```
1 coffee cancer dag |>
   tidy dagitty() >
   dag paths()
 A DAG with 4 nodes and 3 edges
#
# Exposure: coffee
 Outcome: cancer
#
# A tibble: 5 \times 11
                        y direction to xend yend
 set name
            X
 <chr> <chr> <dbl> <dbl> <fct> <chr> <dbl> <dbl> <</pre>
      addictive 0.494 2.00 -> coff... -0.423 2.81
1 1
      addictive 0.494 2.00 -> smok... 1.50 1.11
2 1
3 1
      cancer 2.41 0.310 <NA> <NA> NA
                                             NA
4 1 coffee -0.423 \ 2.81 \ < NA> \ NA> \ NA
                                             NA
5 1 smoking 1.50 1.11 -> canc... 2.41 0.310
```

```
1 coffee_cancer_dag |>
```

2 ggdag_paths()

Closing backdoor paths

We need to account for these open, non-causal paths

Randomization

Stratification, adjustment, weighting, matching, etc.

Identifying adjustment sets

```
1 ggdag_adjustment_set(smk_wt_dag)
```

Identifying adjustment sets

Identifying adjustment sets

```
1 library(dagitty)
2 adjustmentSets(smk_wt_dag)

{ active, age, education, exercise, race, sex, smokeintensity, smokeyrs, wt71 }
```

Now that we know the open, confounding pathways (sometimes called "backdoor paths"), we need to know how to close them! First, we'll ask {ggdag} for adjustment sets, then we would need to do something in our analysis to account for at least one adjustment set (e.g. multivariable regression, weighting, or matching for the adjustment sets).

Use ggdag_adjustment_set() to visualize the adjustment sets.

Add the arguments use_labels = "label" and text = FALSE.

Write an R formula for each adjustment set, as you might if you were fitting a model in lm() or glm()

```
1 ggdag_adjustment_set(
2   coffee_cancer_dag,
3   use_labels = "label",
4   text = FALSE
5 )
```



```
1 cancer ~ coffee + addictive
2 cancer ~ coffee + smoking
```

Let's prove it!

```
1 set.seed(1234)
2 dag_data <- coffee_cancer_dag |>
3 simulate_data(-.6)
```

Let's prove it!

1 dag data

```
# A tibble: 500 \times 4
   addictive cancer coffee smoking
       <dbl> <dbl> <dbl>
                              <dbl>
      0.569 3.11 -0.326
                            -1.29
 1
              1.52 0.330
      0.411
                             -1.57
 3
      1.20 \quad 1.06 \quad -0.557
                            -2.40
     -0.782 \quad -0.504 \quad -0.148
                            0.376
 5
    0.0357 - 0.709 - 0.342
                             -1.53
     1.96
              1.05 - 1.90
                             -0.823
      1.13 \quad 0.211 \quad -0.581
                             -0.534
 8
              0.892 - 1.36
    0.697
                             -0.267
 9
     -0.779
              0.748 0.455
                            0.302
10
     -1.13
              0.930 0.568
                            0.742
```

Let's prove it!

correct effect size: 0

Choosing what variables to include

Adjustment sets and domain knowledge Conduct sensitivity analysis if you don't have something important

Common trip ups

Using prediction metrics

The 10% rule

Predictors of the outcome, predictors of the exposure

Selection bias and colliders (more later!)

Resources: ggdag vignettes

An Introduction to ggdag

An Introduction to Directed Acyclic Graphs

Common Structures of Bias