Meu Cálculo Numérico Um livro colaborativo

Arquimedes Macedo

REAMAT

28/12/2024

Índice

В	${ m em} extsf{-} { m V}$	$^{\prime}$ indo		1			
	Lice	nça .		1			
Pı	refáci	io		3			
	Ling	guagens	Computacionais	3			
		0.0.1	Python	3			
		0.0.2	Octave	3			
		0.0.3	Scilab	3			
In	trod	ução		5			
I m	Ca áqu		o 1: Representação de números e aritmética de	7			
1	Sist	ema d	le numeração e mudança de base	11			
		1.0.1	Sistema de numeração de base b	11			
		1.0.2	Python	12			
		1.0.3	Scilab	12			
		1.0.4	Octave	12			
	1.1	Exercí	ícios	12			
		1.1.1	Exercício	12			
		1.1.2	Exercício	12			
\mathbf{A}	pêne	dices		15			
Α	Rápida introdução ao Python						
	_		a linguagem Python	15			
			Instalação e execução	15			
			Usando Python	15			
			Exercício	16			

iv $\acute{I}NDICE$

Bem-Vindo

REAMAT é um projeto de escrita colaborativa de recursos educacionais abertos (REA) sobre tópicos de matemática e suas aplicações.

Nosso objetivo é de fomentar o desenvolvimento de materiais didáticos pela colaboração entre professores e alunos de universidades, institutos de educação e demais interessados no estudo e na aplicação da matemática nos mais diversos ramos da ciência e da tecnologia.

O sucesso do projeto depende da colaboração! Participe diretamente da escrita dos recursos educacionais, dê sugestões ou avise-nos de erros e imprecisões. Toda a colaboração é bem-vinda. Veja como participar aqui.

Nós preparamos uma série de ações para ajudá-lo a participar. Em primeiro lugar, o acesso irrestrito aos materias pode se dar através deste site.

Os códigos fontes e a documentação dos recursos estão disponíveis em repositórios GitHub públicos.

Licença

Nada disso estaria completo sem uma licença apropriada à colaboração. Por isso, escolhemos disponibilizar os materiais sob licença Creative Commons Atribuição-CompartilhaIgual 3.0 Não Adaptada (CC-BY-SA 3.0) . Ou seja, você pode copiar, redistribuir, alterar e construir um novo material para qualquer uso, inclusive comercial. Leia a licença para mais informações.

2 Bem-Vindo

Prefácio

Este livro busca abordar os tópicos de um curso de introdução ao cálculo numérico moderno oferecido a estudantes de matemática, física, engenharias e outros. A ênfase é colocada na formulação de problemas, implementação em computador da resolução e interpretação de resultados. Pressupõe-se que o estudante domine conhecimentos e habilidades típicas desenvolvidas em cursos de graduação de cálculo, álgebra linear e equações diferenciais. Conhecimento prévio em linguagem de computadores é fortemente recomendável, embora apenas técnicas elementares de programação sejam realmente necessárias.

Os códigos computacionais dos métodos numéricos apresentados no livro são implementados em uma abordagem didática. Isto é, temos o objetivo de que a implementação em linguagem computacional auxilie o leitor no aprendizado das técnicas numéricas apresentadas no livro. Implementações computacionais eficientes de técnicas de cálculo numérico podem ser obtidas na série de livros ''Numerical Recipes'', veja (Press 2007).

Linguagens Computacionais

0.0.1 Python

A utilização da linguagem computacional Python.

0.0.2 Octave

A utilização da linguagem computacional GNU Octave.

0.0.3 Scilab

A utilização do software livre Scilab.

4 Prefácio

Introdução

Cálculo numérico é a disciplina que estuda as técnicas para a solução aproximada de problemas matemáticos. Estas técnicas são de natureza analítica e computacional. As principais preocupações normalmente envolvem exatidão e desempenho.

Aliado ao aumento contínuo da capacidade de computação disponível, o desenvolvimento de métodos numéricos tornou a simulação computacional de problemas matemáticos uma prática usual nas mais diversas áreas científicas e tecnológicas. As então chamadas simulações numéricas são constituídas de um arranjo de vários esquemas numéricos dedicados a resolver problemas específicos como, por exemplo: resolver equações algébricas, resolver sistemas de equações lineares, interpolar e ajustar pontos, calcular derivadas e integrais, resolver equações diferenciais ordinárias, etc. Neste livro, abordamos o desenvolvimento, a implementação, a utilização e os aspectos teóricos de métodos numéricos para a resolução desses problemas.

Trabalharemos com problemas que abordam aspectos teóricos e de utilização dos métodos estudados, bem como com problemas de interesse na engenharia, na física e na matemática aplicada.

A necessidade de aplicar aproximações numéricas decorre do fato de que esses problemas podem se mostrar intratáveis se dispomos apenas de meios puramente analíticos, como aqueles estudados nos cursos de cálculo e álgebra linear. Por exemplo, o teorema de Abel-Ruffini nos garante que não existe uma fórmula algébrica, isto é, envolvendo apenas operações aritméticas e radicais, para calcular as raízes de uma equação polinomial de qualquer grau, mas apenas casos particulares:

- Simplesmente isolar a incógnita para encontrar a raiz de uma equação do primeiro grau;
- Fórmula de Bhaskara para encontrar raízes de uma equação do segundo grau;
- Fórmula de Cardano para encontrar raízes de uma equação do terceiro grau;
- Existe expressão para equações de quarto grau;
- Casos simplificados de equações de grau maior que 4 onde alguns coeficientes são nulos também podem ser resolvidos.

Equações não polinomiais podem ser ainda mais complicadas de resolver exatamente, por exemplo:

$$\cos(x) = x \quad \text{ou} \quad xe^x = 10 \tag{1}$$

Para resolver o problema de valor inicial:

6 Introdução

$$y' + xy = x,$$

$$y(0) = 2,$$
(2)

podemos usar o método de fator integrante e obtemos $y=1+e^{-x^2/2}$. No entanto, não parece possível encontrar uma expressão fechada em termos de funções elementares para a solução exata do problema de valor inicial dado por:

$$y' + xy = e^{-y},$$

 $y(0) = 2.$ (3)

Da mesma forma, resolvemos a integral:

$$\int_{1}^{2} x e^{-x^2} dx \tag{4}$$

pelo método da substituição e obtemos $\frac{1}{2}(e^{-1}-e^{-4})$. Porém a integral:

$$\int_{1}^{2} e^{-x^2} dx \tag{5}$$

não pode ser expressa analiticamente em termos de funções elementares, como uma consequência do teorema de Liouville.

A maioria dos problemas envolvendo fenômenos reais produzem modelos matemáticos cuja solução analítica é difícil (ou impossível) de obter, mesmo quando provamos que a solução existe. Nesse curso propomos calcular aproximações numéricas para esses problemas, que apesar de, em geral, serem diferentes da solução exata, mostraremos que elas podem ser bem próximas.

Para entender a construção de aproximações é necessário estudar como funciona a aritmética implementada nos computadores e erros de arredondamento. Como computadores, em geral, usam uma base binária para representar números, começaremos falando em mudança de base.

Part I

Capítulo 1: Representação de números e aritmética de máquina

Neste capítulo, abordaremos formas de representar números reais em computadores. Iniciamos com uma discussão sobre representação posicional e mudança de base. Então, enfatizaremos a representação de números com quantidade finita de dígitos, mais especificamente, as representações de números inteiros, ponto fixo e ponto flutuante em computadores.

A representação de números e a aritmética em computadores levam aos chamados erros de arredondamento e de truncamento. Ao final deste capítulo, abordaremos os efeitos do erro de arredondamento na computação científica.

Chapter 1

Sistema de numeração e mudança de base

Usualmente, utilizamos o sistema de numeração decimal, isto é, base 10, para representar números. Esse é um sistema de numeração em que a posição do algarismo indica a potência de 10 pela qual seu valor é multiplicado.

i Exemplo

O número 293 é decomposto como:

$$293 = 2 \text{ centenas} + 9 \text{ dezenas} + 3 \text{ unidades}$$

= $2 \cdot 10^2 + 9 \cdot 10^1 + 3 \cdot 10^0$. (1.1)

O sistema de numeração posicional também pode ser usado com outras bases. Vejamos a seguinte definição.

1.0.1 Sistema de numeração de base b

Dado um número natural b>1 e o conjunto de símbolos $\pm, \mathbf{0}, \mathbf{1}, \mathbf{2}, \dots, b-\mathbf{1}^{-1},$ a sequência de símbolos

$$\left(d_nd_{n-1}\cdots d_1d_0,d_{-1}d_{-2}\cdots\right)_b$$

representa o número positivo

$$d_n \cdot b^n + d_{n-1} \cdot b^{n-1} + \dots + d_0 \cdot b^0 + d_{-1} \cdot b^{-1} + d_{-2} \cdot b^{-2} + \dots$$

Para representar números negativos usamos o símbolo — à esquerda do numeral 2 .

¹Para b > 10, veja Tip 1.

²O uso do símbolo + é opcional na representação de números positivos.

Nota 1: Observação

Para sistemas de numeração com base $b \ge 10$ é usual utilizar as seguintes notações:

• No sistema de numeração decimal (b = 10), costumamos representar o número sem os parênteses e o subíndice, ou seja,

$$\pm d_n d_{n-1} \dots d_1 d_0, d_{-1} d_{-2} \dots := \pm (d_n d_{n-1} \dots d_1 d_0, d_{-1} d_{-2} \dots)_{10}.$$

• Se b > 10, usamos as letras A, B, C, \cdots para denotar os algarismos: A = 10, B = 11, C = 12, D = 13, E = 14, F = 15.

1.0.2 Python

```
>>> 1*2**3 + 0*2**2 + 0*2**1 + 1*2**0 + 1*2**-1 + 0*2**-2 + 1*2**-3 9.625
```

1.0.3 Scilab

```
--> 1*2^3 + 0*2^2 + 0*2^1 + 1*2^0 + 1*2^{-1} + 0*2^{-2} + 1*2^{-3}
ans = 9.6250
```

1.0.4 Octave

```
>> 1*2^3 + 0*2^2 + 0*2^1 + 1*2^0 + 1*2^{-1} + 0*2^{-2} + 1*2^{-3}
ans = 9.6250
```

1.1 Exercícios

1.1.1 Exercício

Escreva cada número dado para a base b.

- a) $(45,1)_8$ para a base b=2
- b) $(21,2)_8$ para a base b=16
- c) $(1001, 101)_2$ para a base b = 8
- d) $(1001, 101)_2$ para a base b = 16

A Resposta

- a) $\sim (100101, 001)_2$
- b) $\sim (11, 4)_{16}$
- c) $\sim (11,5)_8$
- d) $\sim (9, A)_{16}$

1.1.2 Exercício

Quantos algarismos são necessários para representar o número 937163832173947 em base binária? E em base 7?

1.1. EXERCÍCIOS 13

Qual é o menor e o maior inteiro que pode ser escrito em dada base com ${\cal N}$ algarismos?

A Resposta

50; 18.

Appendix A

Rápida introdução ao Python

Neste apêndice, discutiremos os principais aspectos da linguagem computacional Python que são essenciais para uma boa leitura desta versão do livro. O material aqui apresentado, é uma adaptação livre do Apêndice A de (Todos os Colaboradores 2016).

A.1 Sobre a linguagem Python

Python é uma linguagem de programação de alto nível, interpretada e multi-paradigma. Lançada por Guido van Rossum¹ em 1991 é, atualmente, mantida de forma colaborativa e aberta.

Para mais informações, consulte:

- Página oficial da linguagem Python: https://www.python.org/
- Comunidade Python Brasil: http://wiki.python.org.br/

Para iniciantes, recomendamos o curso EAD gratuito no site Codecademy:

https://www.codecademy.com/learn/python

A.1.1 Instalação e execução

Para executar um código Python é necessário ter instalado um interpretador para a linguagem. No site oficial do Python estão disponíveis para download os interpretadores para vários sistemas operacionais, como Linux, Mac OS e Windows. Muitas distribuições de Linux (Linux Mint, Ubuntu, etc.) têm o Python no seu sistema de pacotes (incluindo documentação em várias línguas).

Ao longo do texto, assumiremos que o leitor esteja usando um computar rodando Linux. Para outros sistemas, pode ser necessário fazer algumas adaptações.

A.1.2 Usando Python

O uso do Python pode ser feito de três formas básicas:

¹Guido van Rossum, nascido em 1956, programador de computadores dos Países Baixos.

- usando um console Python de modo iterativo;
- executando um código codigo.py no console Python;
- executando um código Python codigo.py diretamente em terminal;

A.1.3 Exercício

Considere o seguinte pseudocódigo:

```
s = "Olá, mundo!". (Sem imprimir na tela o resultado.)
saída(s). (Imprime na tela.)
```

Implemente este pseudocódigo em Python:

- a) usando diretamente um console;
- b) digitando seu código em um arquivo separado e executando-o no console Python com a função execfile.
- c) digitando seu código em um arquivo separado e executando-o em terminal com o comando Python.

⚠ Resposta

Seguem as soluções de cada item:

a) No console temos:

```
>>> s = "Olá, mundo!"
>>> print(s)
Olá, mundo!
```

Para sair do console, digite:

```
>>> quit()
```

b) Abra o editor de texto de sua preferência e digite o código:

```
#!/usr/bin/env python
# -*- coding: utf-8 -*-
s = 'Olá'
print(s)
```

Salve o arquivo como, por exemplo, ola.py. No console Python, digite:

```
>>> execfile("ola.py")
```

c) Abra o editor de texto de sua preferência e digite o código:

```
#!/usr/bin/env python
# -*- coding: utf-8 -*-
s = 'Olá'
print(s)
```

Salve o arquivo como, por exemplo, ola.py. No terminal, digite:

```
$ python ola.py
```

Press, W. H. 2007. Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University Press. https://books.google.com.br/books?id=1aAOdzK3FegC.

Todos os Colaboradores. 2016. "Cálculo Numérico - Um Livro Colaborativo - Versão Com Scilab."