01 - Introduction Numerical Methods for Deep Learning

January 7, 2018

Course Overview

- First block: Linear Models
 - 1. regression and least squares
 - 2. classification: logistic regression and softmax
 - 3. numerical optimization: steepest descent, conjugate gradients, Newton's method, SGD
 - 4. regularization
 - 5. cross validation
 - 6. First project: coding it all and working on a number of data sets

Course Overview

- Second block: Neural Networks
 - 1. introduction
 - 2. single layer and two layer NN and their power
 - 3. computing derivatives
 - 4. numerical optimization: steepest descent, Nonlinear CG, and Newton's method, Stochastic gradient descent
 - 5. Second project: Coding single and two layer NN
- Third block: Deep Neural Networks
 - 1. introduction
 - 2. Residual Neural Networks and time dependent processes
 - 3. Solving the DNN problem The adjoint and back propagation
 - 4. Third project: Coding deep ResNN

Course Outline

- ► Fourth block: Parametrized Deep Neural Networks
 - 1. Regularization and parameterization
 - 2. Convolution Neural Networks (CNNs) and PDE's
 - Computing derivatives
 - 4. Programming CNN
- If we have time block
 - 1. Recurrent Networks and nonlinear data assimilation
 - 2. Instantaneous control and 4D-Var

Neural Networks - A quick overview

- Neural Networks with a particular (deep) architecture
- Exist for a long time (70's and even earlier), (Lecun, Hinton)
- Recent revolution computational power and lots of data
- Can perform very well for large amounts of data
- Applications
 - Image classification
 - Face recognition
 - Segmentation
 - Driverless cars

Neural Networks - A quick overview

- Neural Networks with a particular (deep) architecture
- ► Exist for a long time (70's and even earlier), (Lecun, Hinton)
- Recent revolution computational power and lots of data
- Can perform very well for large amounts of data
- Applications
 - Image classification
 - Face recognition
 - Segmentation
 - Driverless cars
- A few recent news articles:
 - Apple Is Bringing the Al Revolution to Your iPhone, WIRFD 2016
 - Why Deep Learning Is Suddenly Changing Your Life, FORTUNE 2016
 - ► Data Scientist: Sexiest Job of the 21st Century, Harvard Business Rev 17

NN - A quick overview

Neural Networks is a data interpolator/classifier when the underline model is unknown.

A generic way to write it is

$$\mathbf{c} = f(\mathbf{y}, \boldsymbol{\theta}).$$

- ▶ The function *f* is the computational model.
- **y** is the input data (e.g., the example)
- **c** is the output (e.g. class of example)
- lacktriangleright $m{ heta}$ are parameters of the model f

In a learning process, we have a examples $\{\mathbf{y}_j,\mathbf{c}_j\}$ and the goal is to estimate or "learn" the parameters $\boldsymbol{\theta}$

Learning from data - the core of science

How to choose f?

Fundamental(?) understanding, example: Newton's formula

$$x(t) = \frac{1}{2}gt^2$$

g unknown parameter
To estimate g observe falling object

What is the optimal value for g?

Learning from data - the core of science

How to choose f?

Phenomenological models, example: Archie's law - what is the electrical resistivity of a rock and how it relates to its porosity, ϕ and saturation, S_w ?

$$\rho(\phi, S_w) = a\phi^{n/2} S_w^p$$

a, n, p unknown parameters

Obtaining parameters from observed data and lab experiments on rocks

Phenomenological vs. Fundamental

Fundamental laws come from understanding(?) the underlying process. They are **assumed invariant** and can therefore be predictive(?).

Phenomenological models are data driven. They "work" on some given data. Hard to know what are the limitations.

But ...

- ► Models based on understanding can do poorly weather, economics ...
- Models based on data can sometimes do better
- ▶ How do we quantify understanding?

Suppose that we have examples $\{\mathbf{y}_j, \mathbf{c}_j\}, \ j=1,\ldots,n$, a model $f(\mathbf{y}, \boldsymbol{\theta})$ and some optimal parameter $\boldsymbol{\theta}^*$. Let $\{\mathbf{y}_j^t, \mathbf{c}_j^t\}, \ j=1,\ldots,s$ be some test set, that was not used to compute $\boldsymbol{\theta}$.

Suppose that we have examples $\{\mathbf{y}_j, \mathbf{c}_j\}, \ j=1,\ldots,n$, a model $f(\mathbf{y}, \boldsymbol{\theta})$ and some optimal parameter $\boldsymbol{\theta}^*$. Let $\{\mathbf{y}_j^t, \mathbf{c}_j^t\}, \ j=1,\ldots,s$ be some test set, that was not used to compute $\boldsymbol{\theta}$.

Loosely speaking, if

$$\|f(\mathbf{y}_j^t, \boldsymbol{\theta}^*) - \mathbf{c}_j^t\|_p$$

is small then the model is predictive - it generalizes well

Suppose that we have examples $\{\mathbf{y}_j, \mathbf{c}_j\}, \ j=1,\ldots,n$, a model $f(\mathbf{y}, \boldsymbol{\theta})$ and some optimal parameter $\boldsymbol{\theta}^*$.

Let $\{\mathbf{y}_j^t, \mathbf{c}_j^t\}$, $j = 1, \dots, s$ be some test set, that was not used to compute $\boldsymbol{\theta}$.

Loosely speaking, if

$$||f(\mathbf{y}_j^t, \boldsymbol{\theta}^*) - \mathbf{c}_j^t||_p$$

is small then the model is predictive - it generalizes well

For Phenomenological models, there is no reason why the model should generalize, but in practice it often does.

Why would a model generalize poorly?

$$1 \ll \|f(\mathbf{y}_j^t, \boldsymbol{\theta}^*) - \mathbf{c}_j^t\|_p$$

- lackbox Our "optimal" $m{ heta}^*$ was optimal for the training but is less so for other data
- ▶ The chosen computational model *f* is poor (e.g. linear model for a nonlinear function).

Example 1 - Classification of hand writing

- ▶ Let $\mathbf{y}_i \in \mathbb{R}^n$ and let $\mathbf{c}_i \in \mathbb{R}^k$.
- ► The vector **c** is the probability if **y** belong to a certain class
- ▶ $0 \le \mathbf{c}_j \le 1$ and $\sum_j \mathbf{c}_j = 1$.

Examples (MNIST):

$$\mathbf{c}_1 = [0001000000] \quad \mathbf{c}_2 = [00.300000.7000]$$

Example 2 - Classification of natural images

Same problem but images are natural images

y, input image

c, segmentation (labeled image)

Goal: Find map $\mathbf{c} = f(\mathbf{y}, \boldsymbol{\theta})$

Problem: Given image \mathbf{y} and label \mathbf{c} find a map $f(\cdot, \boldsymbol{\theta})$ such that $\mathbf{c} \approx f(\mathbf{y}, \boldsymbol{\theta})$

Problem: Given image \mathbf{y} and label \mathbf{c} find a map $f(\cdot, \boldsymbol{\theta})$ such that $\mathbf{c} \approx f(\mathbf{y}, \boldsymbol{\theta})$

Make the problem simpler

- Extract features from the image
- Classify in the feature space

Reduces the problem of learning from the image to feature detection and classification

Possible features - color, neighbors, edges ...

Reduce the problem to low dimensional one

Simpler setup

- Data, y is the rgb value of the pixel (and its neighbors?)
- **c** is a labeled pixel
- ▶ The map $\mathbf{c} = f(\mathbf{y}, \boldsymbol{\theta})$

Data sets (to be downloaded and used for the course)

MNIST

CIFAR10

CamVid (can be downloaded from mathworks web page).