CSM CS70 Fall 2018 Mock Midterm 2

Computer Science Mentors

October 28 2018

1. ′	True/	False	(2	points	each)
------	-------	-------	----	--------	-------

- (a) X is picked randomly variable over the set $\{0, 1, 2, 3, 4, 5, 6\}$, and A is a uniform random variable over the set $\{1, 2, 3, 4, 5, 6\}$. Define $Y = AX \pmod{7}$. Then X and Y are identically distributed.
- (b) In GF(p), any polynomial of degree greater than p has an equal polynomial representation with degree less than p.
- (c) $(x_1 + x_2 + ... + x_n)^p \equiv x_1^p + x_2^p + ... + x_n^p \pmod{p}$ for a prime p
- (d) The set of all finite length strings consisting of characters from the English alphabet is uncountably infinite.
- (e) Say that you are working in GF(p) have a channel that will corrupt k packets, where $k > \frac{p}{2}$. It is still possible to communicate some length message over this channel.
- (f) We can construct a program \mathcal{P} that, given another program \mathcal{Q} and x as input, can determine if $\mathcal{Q}(x)$ halts in $3^{|x|}$ steps.

- (g) The number of ways to rearrange n distinct letters is greater than the number of ways to choose $\frac{n}{2}$ letters from the first half with replacement.
- (h) $\sum_{i=1}^{\frac{n}{2}} \binom{n}{i} = \sum_{i=\frac{n}{2}+1}^{n} \binom{n}{i}$, where $n \geq 2$ is even.
- (i) $\sum_{i=0}^{n} \binom{n}{i} = n^2$
- (j) Given a sample space Ω and event A, A and Ω are always independent.
- (k) Take a deck of n cards where each card has a unique number in 1, ..., n. You draw cards one by one without replacement. Let X_i be the number on the ith card you pick up. Then X_1 and X_2 are identically distributed.
- (1) For disjoint events A and B, the $Pr(A \cap B) = Pr(A) \cdot Pr(B)$
- (m) If Pr(A) > 0 and Pr(B) > 0, and A and B are disjoint then A and B are not independent.
- (n) Given two events A and B with Pr(A) > 0 and Pr(B) > 0, if Pr(A|B) > Pr(A), then Pr(B|A) < Pr(B).

	(o) If two events A and B are independent, then A^c and B^c are dependent.
2.	Short Answer: RSA (10 points) LeBron wants to send a RSA-encrypted message M to his friends Kevin and Chris. Kevin and Chris use public keys (N, e_1) and (N, e_2) . Notice they use the same modulus, but different exponents. LeBron sends $C_1 = M^{e_1} \mod N$ to Kevin and $C_2 = M^{e_2} \mod N$ to Chris. You eavesdrop on LeBrons transmissions and learn C_1 and C_2 . Show how you can recover M. You may assume that you know e_1 , e_2 and N and that e_1 and e_2 are relatively prime.
3.	Short Answer: Polynomials and Error Correction (3 points each) (a) A polynomial has 4 roots. What is the minimum degree?
	(b) Suppose $P(x)$ and $Q(x)$ are two distinct polynomials (of degree d_1 and d_2 respectively) which intersect in exactly 5 points. If the lowest degree polynomial that contains those five points has degree 3, what is the minimum value of $d_1 + d_2$?
	 (c) Prove or disprove: i. The set of all polynomials of degree 3 that interpolate (1,1), (2,4) and (3,10) is countably infinite.
	ii. Now, re-answer the problem above, but suppose we are working in $GF(p)$ for some prime $p \ge 11$.

((Suppose each point represents one character of a message, and that the <i>i</i> th letter in the alphabet is represented by the number i (so $A = 1$, $B = 2$,). Suppose we want to send the message outlined in part a) (that is, ADJ), but we know that 1 character of our message is going to be corrupted. Determine the number of extra points we need to send, and find those points. Use $GF(13)$ and the correct degree polynomial.
(e) Consider an erasure channel through which you want to send a message of length n .
	i. If $\frac{1}{4}$ of your packets are going to be dropped, how many total packets must you send?
	ii. Now suppose $\frac{1}{4}$ of your packets are going to be corrupted instead of dropped. How many total packets must you send to combat this error?
	nort Answer: Countability a) Let A and B be two countable sets. Define $A \times B = \{(a,b) : a \in A, b \in B\}$. Show that $A \times B$ is countable.
(1	Show that the set $\mathbb{N}^k = \{(a_1, a_2,, a_k) : a_i \in \mathbb{N} \ \forall i = 1,, k\}$ is countable.
(c) Let P_d be the set of integer co-efficient polynomials of degree at most d . Show that P_d is countable for some fixed d .

	(d) Show that the set P of all integer coefficient polynomials of finite degree is countable. (Hint: C you write P in terms of the sets P_d ?)	an
	(e) An algebraic number is a real number that can be written as the root of an integer coefficient polynomial. Show that the set of algebraic numbers is countable.	nt
5.	Short Answer: Secret-Sharing (5 points)	
	(a) In a secret-sharing scheme in $GF(p)$ where k is the minimum number of people required to recover the secret, is successful secret recovery more probable when $k-1$ people collaborate compared random guessing? Explain your answer.	
6.	 Short Answer: Self-reference/Uncomputability (10 points) (a) Suppose you are given a program \$\mathcal{P}\$ which, if run forever, eventually prints every input to anoth program \$\mathcal{Q}\$ that halts in finite time. Does this exist? If so, describe the program. If not, expansion why. 	
_		
7.	Short Answer: Counting (3 points each) (a) Suppose we have a set of ordered items: $a_1 < a_2 < < a_n$.	
	i. How many sets have a contiguous set of items: a set where every element is either the minimulatem, the maximum item, or for a given a_i , both a_{i-1} and a_{i+1} are in the set?	ım

	ii. Now suppose that an item $a_i, i \in \{1,, n\}$ must be included in each set. How many sets are there?
	How many permutations exist of the word "BERKELEY" with "BRK" appearing together, but not necessarily in that order?
(c) :	Determine: i. The number of simple undirected (and possibly disconnected) graphs on n vertices, with the vertices labelled $1, 2, 3,n$. Justify your answer.
	ii. The number of simple directed (and possibly disconnected) graph on n vertices, with the vertices labelled as above. Justify your answer.
(a) ;	Ft Answer: Probability (3 points each) Suppose your local McChipotle's ice cream machine is broken on any given day with probability p , independent of other days. What is the probability that April 5th is the second day in April that the machine works?
` '	You have a coin that turns up heads with p probability and one that does so with q probability. You flip each one n times and you mark each pair of flips as a success if one of the two coins was heads. What is the expected number of successes?

- (c) Jane is flipping coins!
 - i. First, Jane flips 9 fair coins. What is the probability that she gets an even number of heads? Justify your answer. *Hint: use a counting argument*
 - ii. Now Jane flips 10 coins. What is the probability that she gets an even number of heads? What about if she flips n coins? Justify your answers.
 - iii. Suppose Jane flips n unfair coins (where $P(H) \neq 1/2$), along with a single fair coin. What is the probability that she gets an even number of heads after flipping these n+1 coins? Justify your answer.
- (d) Pick a random integer n in the range from 0 to 999,999 each with equal probability.
 - i. What is the probability that the decimal digits of n add up to 8?
 - ii. What is the probability that the decimal digits of n add up to 10?
- (e) A particle sits on the real number line, starting at the origin (0). At each timestep, we flip a fair coin and move the particle as follows:
 - If we see heads, we move the particle one unit to the left
 - If we see tails, we move the particle one unit to the right

Let X_n be the position of the particle at time-step n, and assume $X_0 = 0$.

i. Find $P(X_{1000} = 0)$.

- ii. What is the most likely position for the particle at time t=2k, where k is a non-negative integer? Hint: Think about the symmetry of Pascal's triangle.
- iii. In general, what is $P(X_n = 0|X_0 = 0)$ in terms of n?