More Photon Cases:

H+0+ =
$$\frac{\omega_{0}\sigma_{z}^{A}}{2}$$
 + $g(a^{\dagger}\sigma_{z}^{A} + \sigma_{t}^{A}a)$ + $\omega a^{\dagger}a$ + $\frac{\omega_{0}}{2}\sigma_{z}^{A}$ + $g(s^{\dagger}\sigma_{z}^{B} + \sigma_{t}^{A}b)$ + $\omega b^{\dagger}b$ where K=1

$$\lambda_n^{\pm} = n\omega + \frac{1}{2} \left(\Delta \pm \sqrt{\Delta^2 + G_n^2} \right)$$

$$|\Psi_n^-\rangle = -S_n |e_n-1\rangle + C_n |g_n\rangle$$
 Sin(δ_n)= $\frac{G_n}{\sqrt{\Lambda^2 4 G_n^2}}$

$$C_n = \cos\left(\frac{\Theta_n}{2}\right)$$
, $S_n = \sin\left(\frac{\Theta_n}{2}\right)$, $\cos(\Theta_n) = \frac{\Delta}{\Delta^2 + C_n^2}$

Dressed eigenstates:

$$|e_{A}, (n_{a}-1)\rangle = c|\Psi_{n_{a}}^{+}\rangle - s|\Psi_{n_{a}}^{-}\rangle$$

$$|g_{A}, n_{a}\rangle = s|\Psi_{n_{a}}^{+}\rangle + c|\Psi_{n_{a}}^{-}\rangle$$

$$|g_{A}, (n_{a}-1)\rangle = |\Psi_{n_{a}}\rangle$$

$$|\Psi^{\pm}(e)\rangle = e \qquad |\Psi^{\pm}(o)\rangle$$

$$|\Phi(e)\rangle = \cos \alpha \left(\frac{1}{2} |\Psi_{n_{a}}|_{A} - se |\Psi_{n_{a}}|_{A} \right) \otimes \left(\frac{1}{2} |\Psi_{n_{b}}|_{B} \right$$

$$X_{1} = \left(\frac{1}{c_{n}^{2}}e^{-i\lambda^{2}t} + \frac{1}{2}e^{-i\lambda^{2}t}\right)^{2}$$

$$X_{2} = \left(\frac{1}{c_{n}^{2}}e^{-i\lambda^{2}t} - \frac{1}{c_{n}^{2}}e^{-i\lambda^{2}t}\right)^{2}$$

$$X_{3} = \left(\frac{1}{c_{n}^{2}}e^{-i\lambda^{2}t} + \frac{1}{2}e^{-i\lambda^{2}t}\right)\left(\frac{1}{c_{n}^{2}}e^{-i\lambda^{2}t} - \frac{1}{2}e^{-i\lambda^{2}t}\right)$$

$$X_{4} = \left(\frac{1}{c_{n}^{2}}e^{-i\lambda^{2}t} + \frac{1}{2}e^{-i\lambda^{2}t}\right)\left(\frac{1}{c_{n}^{2}}e^{-i\lambda^{2}t} + \frac{1}{2}e^{-i\lambda^{2}t}\right)$$

$$X_{5} = S_{1}^{2} \cap A$$

A.1 CAR(4)

Similar to one photon case
$$C^{AB}(t) = 2|x_1||x_2| - 2|x_3||x_4|$$

$$|x_4| = \left| \left(L e^{-i\lambda_1 t} + M e^{-i\lambda_2 t} \right)^2 \cos \alpha \right| |x_5| = |\sin \alpha|$$

$$|x_3| = \left| \left(L e^{-i\lambda_1 t} + M e^{-i\lambda_2 t} \right) \left(e^{-i\lambda_1 t} + M e^{-i\lambda_2 t} \right) \cos \alpha \right|$$

$$|x_3| = |x_4|$$

$$L = M = N = \frac{1}{2}$$

$$\lambda^{\frac{1}{2}} = 4 + \frac{\Lambda}{2} / \frac{1}{2} \sqrt{\frac{1}{2} \sqrt{\frac{1}{2} + \frac{1}{2}}} = 4 \pm \frac{1}{2} = \frac{1}{2}$$

$$1 + \frac{1}{2} \sqrt{\frac{1}{2} + \frac{1}{2}} = \frac{1}{2}$$

=
$$\left| \frac{1}{4} \left(e^{-i\lambda^{\frac{1}{4}}} + e^{-i\lambda^{\frac{1}{4}}} \right)^{2} \cos \alpha \right| = \frac{1}{4} \left| \cos \alpha \right| \left| \left(e^{-i\lambda^{\frac{1}{4}}} + e^{-i\lambda^{\frac{1}{4}}} \right)^{2} \right|$$

= $\frac{1}{4} \left| \cos \alpha \right| \left| \left(e^{-i\lambda^{\frac{1}{4}}} + e^{-i\lambda^{\frac{1}{4}}} + e^{-i\lambda^{\frac{1}{4}}} \right)^{2} \right|$

$$\rightarrow |x_3||x_4| = \cos^2\left(\frac{c_n t}{2}\right) \sin^2\left(\frac{c_n t}{2}\right) \cos^2\alpha$$

$$= \cos^2\left(\frac{6nt}{2}\right) \left[\left| \sin 2\alpha \right| - 2 \sin^2\left(\frac{6nt}{2}\right) \cos^2\alpha \right]$$

where Gn= 2g/n

As photon number increases, ESD time decreases

A.2 Cas (t)

Using the previous results belonging to 1 photon case. $\text{Cas(t)} = \sin^2\left(\frac{c_n t}{2}\right) \left[\left| \sin 2\alpha \right| - 2\cos^2\left(\frac{c_n t}{2}\right) \cos^2\alpha \right]$

A.3 C_{Ab} (t)

$$C_{A5}(\epsilon) = \frac{1}{4} \cos^2 \alpha \left| \sin(G_n t) \right| \left(2 \left| t \cos \alpha \right| - \left| \sin(G_n t) \right| \right)$$

A.4 Cas (t)

From the symmetry CAS(+) = CaB(t)

A.5 CAa (t)

CAa(t)= | sin (Gnt) cos2d

A.6 (4)

From the symmetry , CAa(t) = CBb(t)

B. Partially Enlargled Bell States 14AB>

$$|\Psi(0)\rangle = |\Psi_{AB}\rangle \otimes |\Pi_{a}, \Pi_{b}\rangle$$

 $|\Psi(0)\rangle = (\cos \alpha |e_{A},g_{B}\rangle + \sin \alpha |g_{A},e_{B}\rangle) \otimes |\Pi_{a},\Pi_{b}\rangle$

Using previous relations:

$$|\Psi(t)\rangle = x_1 | \uparrow \downarrow (n_{\alpha^{-1}}) (n_{\beta^{-1}}) \rangle + x_2 | \downarrow \uparrow (n_{\alpha^{-1}}) (n_{\beta^{-1}}) \rangle$$

$$+ x_3 | \downarrow \downarrow n_{\alpha} (n_{\beta^{-1}}) \rangle + x_4 | \downarrow \downarrow (n_{\alpha^{-1}}) n_{\beta} \rangle$$

$$X_{1} = \cos\alpha\left(Le^{-i\lambda^{2}t} + Me^{-i\lambda^{2}t}\right)$$

$$L = \frac{1}{2}\left(1 + \frac{\Lambda}{\sqrt{\Lambda^{2}+G^{2}}}\right) = \cos^{2}\left(\frac{\theta}{2}\right)$$

$$X_{2} = \sin\alpha\left(Le^{-i\lambda^{2}t} + Me^{-i\lambda^{2}t}\right)$$

$$X_{3} = \cos\alpha\left(Ne^{-i\lambda^{2}t} - Ne^{-i\lambda^{2}t}\right)$$

$$X_{4} = \sin\alpha\left(Ne^{-i\lambda^{2}t} - Ne^{-i\lambda^{2}t}\right)$$

$$N = \frac{G}{2\sqrt{\Lambda^{2}+G^{2}}} = \frac{1}{2}\sin(\theta)$$

$$X_{4} = \sin\alpha\left(Ne^{-i\lambda^{2}t} - Ne^{-i\lambda^{2}t}\right)$$

B1 CAB (+)

From the one photon case, one can number the concurrence: $C_{AB} = |\sin(2\alpha)| \cos^2(\frac{6nt}{2})$

B.2 Cas(+)

B.3 Cas(t)

$$C_{Ab}(t) = \frac{1}{2} |\sin(2\alpha)| |\sin(6\alpha t)|$$

CASIF) = CBa(t)

B.5 CAa(t)

86
$$C_{00}(t)$$
 = $Sin^{0} \times |Sin(G_{n}t)|$

