

Лекция №17 по дисциплине «ТЕОРИЯ АЛГОРИТМОВ»

ОЧЕРЕДЬ

Преподаватель: Золотоверх Д.О.

СТРУКТУРА ДАННЫХ

Способ организации информации: ее формат хранения, способы изменения и доступ.

Такой информацией может быть совокупность и однотипных, и многотипных данных.

Данные могут быть связаны.

Управление данными предоставлено определенным способом.

СТРУКТУРА ДАННЫХ

- имеет внутреннюю форму, данные могут быть связаны;
- может иметь несколько разных типов данных;
- хранит информацию об предмете;
- значение нельзя изменить прямым способом, только с помощью специальной операции;
- нужно учитывать проблему сложности вычислений.

ПРИМЕРЫ СТРУКТУР ДАННЫХ

Примеры структур данных:

- Стек (определенный порядок доступа и модификации);
- Очередь (схож в реализации со Стеком);
- Связанный список (массив, но элементы связаны опр. способом);
- <mark>Множество</mark> (может хранить только уникальные элементы);
- Хеш-таблица (пара ключ-значение);
- Дерево (древовидная структура связанных элементов);
- Граф (связанное множество).

АБСТРАКЦИЯ

Структуры данных являются более абстрактными сущностями, чем массивы и типы данных.

Они определяются, прежде всего, своим интерфейсом: набором разрешенных операций, которые могут выполняться с ними.

Интерфейс этих структур проектируется с расчетом на поддержку ограничений доступа.

Базовый механизм, используемый для их реализации, обычно остается невидимым для пользователя.

ОЧЕРЕДЬ

Структура данных, представляющая из себя упорядоченный набор элементов.

Добавление новых элементов производится с одного конца – хвоста очереди.

Удаление элементов производится с другого – головы очереди.

Устройство очереди похоже на стек, за исключением порядка извлечения элементов.

УСТРОЙСТВО

Принцип FIFO (first-in, first-out) — первым из очереди удаляется элемент, который был помещен туда первым.

По аналогии со стеком, структура реализована таким образом, что доступ к элементам, что находятся не на вершине либо скрыт, либо вообще не возможен.

Очередь также может быть реализована на основе массива или связанного списка, но на его работу это не влияет (абстракция).

СИНТАКСИС

Объявление стека состоит из трех частей:

- указание типа шаблона;
- указание типа данных;
- название переменной.

Стек можно импортировать с помощью директивы #include <queue>

Синтаксис:

```
очередь <тип_данных> названиеОчереди;
названиеОчереди.метод();
```

```
int main() {
    queue <int> testQueue;
    testQueue.push(2);
    testQueue.push(4);
    testQueue.push(8);
    testQueue.push(16);
    printf(
        "First elem: %d\n",
        testQueue.front());
    testQueue.pop();
    printf("Poped!\n");
    printf(
        "First elem: %d\n",
        testQueue.front());
```

МЕТОДЫ РАБОТЫ С ОЧЕРЕДЬЮ

Очередь имеет исчерпывающий список методов:

Название метода	Описание метода	Аргументы	Возврат
empty()	Проверка очереди на пустоту	Ничего	Является ли очередь пустой
back()	Смотрит последний элемент очереди	Ничего	Элемент очереди
front()	Смотрит первый элемент очереди	Ничего	Элемент очереди
pop()	Убирает первый элемент очереди	Ничего	Ничего
push()	Добавляет элемент в конец очереди	Новый элемент	Ничего
size()	Узнает размер очереди	Ничего	Размер очереди

СПАСИБО ЗА ВНИМАНИЕ!

