

[microreview]
Diamond Open Access

Peer Reviewed

Tangent Vectors on Tangent Euclidean Spaces

Open Mathematics Collaboration*†

May 28, 2021

Abstract

This is an article on differential geometry that connects tangent vectors and tangent Euclidean spaces [1].

keywords: differential geometry, Euclidean space, tangent vector, tangent space

The most updated version of this white paper is available at https://osf.io/vpz9x/download

The tangent space in each point of \mathbb{R}^3 is \mathbb{R}^3

1. In the following, for the sake of simplicity, sometimes we will omit the words "let", "consider", etc, in which is implicitly assumed hereafter.

Tangent vector

2. The set of all ordered triples of real numbers $\mathbf{p} = (p_1, p_2, p_3)$, called points, is a Euclidean 3-space \mathbb{R}^3 .

^{*}All authors with their affiliations appear at the end of this white paper.

[†]Corresponding author: mplobo@uft.edu.br | Open Mathematics Collaboration

- 3. **p** and **v** are points of \mathbb{R}^3 .
- 4. \mathbb{R}^3 is a vector space over the real numbers.
- 5. So, \mathbf{p} and \mathbf{v} are also vectors.
- 6. Let \mathbf{p} be the starting point and $\mathbf{p} + \mathbf{v}$ the end point.
- 7. \mathbf{v} is a *vector* called the *change* of \mathbf{p} .
- 8. Let's call \mathbf{p} its point of application and \mathbf{v} the vector part.
- 9. \mathbf{v}_p is a **tangent vector** to \mathbb{R}^3 if it consists of two points (vectors), \mathbf{p} and \mathbf{v} .
- 10. An example of (9) is: $\mathbf{p} = (0, 0, 1)$, $\mathbf{v} = (0, 1, 1)$ and $\mathbf{v}_{\mathbf{p}} = (0, 1, 2)$.
- 11. In (10), $\mathbf{v_p}$ consists of \mathbf{p} and \mathbf{v} because $\mathbf{v_p} = \mathbf{p} + \mathbf{v}$.

Tangent space

- 12. Consider T_p as the set of all tangent vectors having \mathbf{p} as a point of application.
- 13. Then T_p is the **tangent space** of \mathbb{R}^3 at \mathbf{p} .
- 14. The tangent space in each point of \mathbb{R}^3 is \mathbb{R}^3 .

Final Remarks

- 15. This article connected the concept of a **tangent vector** with the concept of a **tangent Euclidean space**.
- 16. It has a pure mathematical application here [2].

Open Invitation

Review, add content, and co-author this white paper [3,4]. Join the **Open Mathematics Collaboration**. Send your contribution to mplobo@uft.edu.br.

Open Science

The **latex file** for this *white paper* together with other *supplementary* files are available in [5].

How to cite this paper?

https://doi.org/10.31219/osf.io/vpz9x

Acknowledgements

+ Open Science Framework https://osf.io

Agreement

All authors agree with [4].

References

- [1] O'neill, Barrett. Elementary differential geometry. Elsevier, 2006.
- [2] Lobo, Matheus P. "The Metric Tensor Pullback." OSF Preprints, 14 May 2019. https://doi.org/10.31219/osf.io/puhzw
- [3] Lobo, Matheus P. "Microarticles." *OSF Preprints*, 28 Oct. 2019. https://doi.org/10.31219/osf.io/ejrct

- [4] Lobo, Matheus P. "Simple Guidelines for Authors: Open Journal of Mathematics and Physics." *OSF Preprints*, 15 Nov. 2019. https://doi.org/10.31219/osf.io/fk836
- [5] Lobo, Matheus P. "Open Journal of Mathematics and Physics (OJMP)." OSF, 21 Apr. 2020. https://osf.io/6hzyp/files

The Open Mathematics Collaboration

Matheus Pereira Lobo (lead author, mplobo@uft.edu.br)¹ https://orcid.org/0000-0003-4554-1372

Shirlei Nabarrete Dezidério¹

¹Federal University of Tocantins (Brazil)