

Ciência de Dados I

Aula 03 – Leitura e Manipulação de Dados

Profa. Dra. Flávia Cristina M. Queiroz Mariano ICT – Unifesp, Campus São José dos Campos flavia.queiroz@unifesp.br

Profa. Dra. Camila Bertini Martins EPM – Unifesp, Campus São Paulo <u>cb.martins@unifesp.br</u>

OBJETIVOS DA AULA

- Ler um conjunto de dados (tabulados ou direto do Excel)
- Manipular um conjunto de dados para as análises
- Criar indicadores diretamente na base de dados.

PROBLEMA

Quais as 6 (seis) cidades brasileiras com maior taxa de mortalidade por Covid-19?

 $Taxa \ de \ Mortalidade = \frac{n^{o} \ de \ óbitos}{n^{o} \ de \ habitantes} * 100.000$

PARA RESOLVER:

- 1. Juntar os bancos de dados disponíveis, IBGE_pop com CovidBR;
- Selecionar as variáveis Data, ibgeID, Cidade, Estado, Mortes,
 Casos, POP_ESTIMADA;
- 3. Criar indicador de Mortalidade por cidade brasileira;
- Ordenar (decrescentemente) o banco de dados pela taxa de mortalidade;
- 5. Filtrar o conjunto de dados pelas 6 primeiras observações.

SOBRE O TIDYVERSE...

O pacote Tidyverse, na realidade, contém uma coleção de pacotes do R.

O intuito é proporcionar ao programador uma maior agilidade e produtividade.

Fonte: https://www.tidyverse.org/

Instalação e Ativação do pacote

Instalando o pacote install.packages("tidyverse")

Carregando/Ativando o pacote library(tidyverse) #require(tidyverse)

#Verificando os pacotes contidos no tidyverse tidyverse_packages()

[1]	"broom"	"cli"	"crayon"	"dbplyr"
[6]	"forcats"	"ggplot2"	"haven"	"hms"
[11]	"jsonlite"	"lubridate"	"magrittr"	"modelr"
[16]	"purrr"	"readr"	"readxl"	"reprex"
[21]	"rstudioapi"	"rvest"	"stringr"	"tibble"
[26]	"xml2"	"tidvverse"		

Ativando diretamente o dplyr

library(dplyr)

"pillar"

"rlang"

"tidyr"

Manipulação do conjunto de dados

O que é o dplyr?

Documentação: https://dplyr.tidyverse.org/.

- É um poderoso pacote R para transformar e resumir dados tabulares com linhas e colunas. É considerado o pacote mais importante do tidyverse.

Qual sua utilidade?

 Contém funções que permite a execução de operações comuns de manipulação de dados, como filtrar linhas, selecionar colunas específicas, reordenar linhas, adicionar novas colunas e resumir dados. Além de, dispor de uma função útil para concatenar mais de um tibble/data.frame.

Qual vantagem em seu uso?

- Comparadas às funções básicas em R como split(), subset(), apply(), sapply(), lapply(), tapply() and aggregate(), as funções no dplyr são mais fáceis de trabalhar, mais consistentes na sintaxe e melhor direcionadas para análise de dados em cima de um data.frame, ao invés de trabalhar apenas com vetores.

Manipulação do conjunto de dados

Tabela. Principais funcionalidades do pacote aplyr.

Principais funções	Operação na manipulação de dados
glimpse()	Inspecionar o data.frame/tibble
select()	Selecionar colunas/variáveis
filter()	Filtrar linhas/observações
arrange()	Reordenar ou ordenar linhas da base
mutate()	Criar/modificar colunas
group_by()	Agrupar
summarise()	Sumarizar/Resumir (por um grupo específico)
left_join(),right_join() e full_join()	União de tibbles por coluna em comum

Importando os dados

Importação/leitura de dados tabulares (.csv, .tsv, .fwf)

Documentação: https://readr.tidyverse.org/.

- read_csv("file.csv") colunas delimitadas por vírgulas

a,b,c

1,2,3

4,5,NA

- read_csv2("file2.csv") colunas delimitadas por ponto e vírgula

- Importação/leitura de dados de arquivos do Excel Documentação: https://readr.tidyverse.org/.
 - read_excel("file3.xls")

Mesma função para arquivos .xls ou .xlsx

read_excel("file4.xlsx")

Importando os bancos de dados

```
# Arquivo .csv:
library(readr)
covid <- read_csv ("cases-brazil-cities-time.csv", na = c("", "-", "NA"))
#ou do pacote base do R
covid2 <- read.csv ("cases-brazil-cities-time.csv", stringsAsFactors = F, sep=",")
# Arquivo .xls ou .xlsx:
library(readxl)
pop.est<-read_excel("estimativa_TCU_2019_cidades.xlsx", sheet = 2)
```

Características das variáveis

glimpse(covid)

```
Rows: 719,209
Columns: 12
                                  <chr> "25/02/2020", "25/02/2020", "2...
$ date
                                  <chr>> "Brazil", "Brazil", "Brazil", ...
$ country
                                  <chr> "SP", "TOTAL", "SP", "TOTAL", ...
$ state
$ city
                                  <chr> "São Paulo/SP", "TOTAL", "São ...
                                  <db7> 3550308, 0, 3550308, 0, 355030...
$ ibgeID
$ newDeaths
                                  <db7> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
$ deaths
                                  <db7> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
$ newCases
                                  <db7> 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, ...
                                  <db7> 1, 1, 1, 1, 1, 2, 2, 2, 2, ...
$ totalcases
$ deaths_per_100k_inhabitants
                                <db7> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
$ totalcases_per_100k_inhabitants <db7> 0.00816, 0.00048, 0.00816, 0.00...
                                  <db7> 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
$ deaths_by_totalCases
```

glimpse (pop.est)

Variáveis dos dois bancos de dados

Covid -19

- 1. Data
- 2. País
- 3. Estado
- 4. Cidade
- 5. ID-IBGE
- 6. Novas mortes
- 7. Mortes
- 8. Novos casos
- 9. Total de Casos
- 10. Mortes por 100k habitantes
- 11. Total de Casos por 100k habitantes
- 12. Mortes por total de casos

Pop. Estimada

- 1. UF
- 2. COD UF
- 3. COD_MUNIC
- 4. MUNICIPIO
- 5. POP_ESTIMADA

União de duas colunas em uma só

library(tidyr)

pop.est2<-unite(pop.est,ibgeID,COD_UF,COD_MUNIC, sep="")
glimpse(pop.est2)

sem underscore(_), que é o default, entre os valores de colunas diferentes → Sem especificar esse argumento, teríamos, por exemplo, 35 50308

```
Rows: 5,570 Columns: 4
```

COD_UF COD_MUNIC MUNICIPIO São Paulo 35 50308 Rio de Janeiro 33 4557 53 Brasília 108 Salvador 29 27408 Fortaleza 23 4400 **Belo Horizonte** 31 6200

MUNICIPIO	ibgelD
São Paulo	3550308
Rio de Janeiro	334557
Brasília	53108
Salvador	2927408
Fortaleza	234400
Belo Horizonte	316200
•	

Modificando/Criando uma variável

c2<-mutate(covid, ibgeID=factor(ibgeID))


```
mutate()
```

```
$ city

$ ibqeID

$ newDeaths

$ chr> "são Paulo/sp", "TOTAL", "são ...

$ dbD 3550308, 0, 3550308...

$ o, 0, 0, 0, 0, 0, 0, 0, 0, ...

$ glimpse(c2)
```

```
$ city
$ ibgeID
$ newDeaths
```

```
<chr> "São Paulo/SP", "TOTAL"
<fct> 3550308, 0, 3550308, 0,
<int> 0, 0, 0, 0, 0, 0, 0, 0,
```

Junção de conjuntos de dados

Junção de Tibbles dados<- inner_join(c2, pop.est2, by="ibgeID")

inner_join()

state	city	ibgelD
SP	Sao Paulo/SP	3550308
RJ	Barra Mansa/RJ	3300407
ВА	Feira de Santana/BA	2910800
RJ	Rio de Janeiro/RJ	3304557
SP	Sao Paulo/SP	3550308
DF	Brasilia/DF	5300108

ibgelD	MUNICIPIO	POP_ESTIMADA
3550308	São Paulo	12.252.023
3304557	Rio de Janeiro	6.718.903
5300108	Brasília	3.015.268
3106200	Belo Horizonte	2.512.070
2910800	Feira de Santana	614.872

ibgelD foi a "chave" da junção

state	city	ibgelD	MUNICIPIO	POP_ESTIMADA
SP	Sao Paulo/SP	3550308	São Paulo	12.252.023
ВА	Feira de Santana/BA	2910800	Feira de Santana	614.872
RJ	Rio de Janeiro/RJ	3304557	Rio de Janeiro	6.718.903
SP	Sao Paulo/SP	3550308	São Paulo	12.252.023
DF	Brasilia/DF	5300108	Brasília	3.015.268

Outros tipos de joins:

Inner join: GREEN

Left join: YELLOW + GREEN

Right join: BLUE + GREEN

Full join: YELLOW + GREEN + BLUE

Semi join: GREEN - BLUE

Anti join: YELLOW - GREEN

PIPE: operador %>%

<u>Sem pipe</u>:

verb(subject, complement)

Com pipe:

subject %>% verb(complement)

As funções disponíveis do tidyverse foram desenvolvidas para trabalhar com %>%, em que o conjunto de dados (neste caso, o subject) é o primeiro argumento dentro do comando após o %>%. Este comando pode ser usado para linkar uma sequência de funções.

dados<- inner_join(c2, pop.est2, by="ibgeID")

#library(magrittr)
dados<- c2 %>%

inner_join(pop.est2, by="ibgeID")

Selecionando variáveis

dados2<-dados%>%

select(date, ibgeID, MUNICIPIO, UF, newDeaths, newCases, 16)

select()

17

Renomeando colunas

dados3<-dados2%>%

select (Data=date, ibgeID, MUNICIPIO, UF, Mortes=newDeaths, Casos=newCases, Pop=POP_ESTIMADA) #ou


```
select()
                                   Columns: 7
      Columns: 7
        date
                                    Data
        ibgeID
                                     ibgeID
        MUNICIPIO
                                     MUNICIPIO
        UF
                                     UF
        newDeaths
                                     Mortes
        newCases
                                     Casos
        POP_ESTIMADA
                                     Pop
```

#ou

colnames(dados2)<-c("Data","ibgeID", "MUNICIPIO", "UF", "Mortes", "Casos", "Pop")

Sumarizando resultados por classe de uma variável

Total_city<-dados3 %>%
group_by(UF,MUNICIPIO)%>%
summarise(Mortes2=sum(Mortes),Pop=min(Pop))

group_by()

summarise()

UF	MUNICIPIO	Mortes	Pop
RJ	Rio de Janeiro	1	6718903
SP	São Paulo	2	12252023
ВА	Feira de Santana	1	614872
RJ	Rio de Janeiro	2	6718903
SP	São Paulo	5	12252023
DF	Brasília	0	3015268

UF	MUNICIPIO	Mortes	Pop
ВА	Feira de Santana	1	614872
DF	Brasília	0	3015268
RJ	Rio de Janeiro	1	6718903
RJ	Rio de Janeiro	2	6718903
SP	São Paulo	5	12252023
SP	São Paulo	2	12252023

UF	MUNICIPIO	Mortes2	Рор	
ВА	Feira de Santana	1	614872	
DF	Brasília	0	3015268	
RJ	Rio de Janeiro	3	6718903	
SP	São Paulo	7	12252023	
Mortes2 Pop				

Modificando/Criando uma variável

TxMort<-Total_city %>%

mutate(txMort=round((Mortes2*100000)/Pop,4))

mutate()

UF	MUNICIPIO	Mortes2	Рор
ВА	Feira de Santana	1	614872
DF	Brasília	1	3015268
RJ	Rio de Janeiro	3	6718903
SP	São Paulo	7	12252023

UF	MUNICIPIO	Mortes2	Рор	txMort
ВА	Feira de Santana	1	614872	0,1626
DF	Brasília	1	3015268	0,0332
RJ	Rio de Janeiro	3	6718903	0,0447
SP	São Paulo	7	12252023	0,0571

Filtrando por Classe/Grupo de variável

Somente observações do estado de SP;

TxMort %>%

filter(UF=="SP")

Observações, <u>exceto da cidade de São Paulo</u>

TxMort %>%

filter (MUNICIPIO!="São Paulo")

filter()

UF	MUNICIPIO	Mortes2	Рор	txMort
ВА	Feira de Santana	1	614872	0,1626
DF	Brasília	1	3015268	0,0332
RJ	Rio de Janeiro	3	6718903	0,0447
SP	São Paulo	7	12252023	0,0571
SP	Campinas	3	1204073	0,2492

UF	MUNICIPIO	Mortes2	Pop	txMort
SP	São Paulo	7	12252023	0,0571
SP	Campinas	3	1204073	0,2492

UF	MUNICIPIO	Mortes2	Pop	txMort
BA	Feira de Santana	1	614872	0,1626
DF	Brasília	1	3015268	0,0332
RJ	Rio de Janeiro	3	6718903	0,0447
SP	Campinas	3	1204073	0,0025

(Re)ordenar linhas da base

#Ordem crescente
TxMort %>% arrange(UF, txMort)

#Ordem decrescente
TxMort %>% arrange(desc(txMort))

arrange()

UF	MUNICIPIO	Mortes2	Pop	txMort
ВА	Feira de Santana	1	614872	0,1626
SP	São Paulo	7	12252023	0,0571
RJ	Rio de Janeiro	3	6718903	0,0447
RJ	Barra Mansa	1	184412	0,5423
SP	Campinas	3	1204073	0,2492

UF	MUNICIPIO	Mortes2	Рор	txMort
ВА	Feira de Santana	1	614872	0,1626
RJ	Rio de Janeiro	3	6718903	0,0447
RJ	Barra Mansa	1	184412	0,5423
SP	São Paulo	7	12252023	0,0571
SP	Campinas	3	1204073	0,2492

UF	MUNICIPIO	Mortes2	Pop	txMort
RJ	Barra Mansa	1	184412	0,5423
SP	Campinas	3	1204073	0,2492
ВА	Feira de Santana	1	614872	0,1626
SP	São Paulo	7	12252023	0,0571
RJ	Rio de Janeiro	3	6718903	0,0447

PROBLEMA

Quais as 6 (seis) cidades brasileiras com maior taxa de

mortalidade por Covid-19?

```
SeisMais<- TxMort %>%
arrange(desc(txMort))
head(SeisMais)
```

OBS.: A Tabela aqui apresentada trouxe a taxa de Mortalidade por 1000 (mil) habitantes.

PROBLEMA

Quais as 6 (seis) cidades brasileiras com maior taxa de mortalidade por Covid-19? Atualização dia 05 de Maio de 2021.

SeisMais<- TxMort %>%
arrange(desc(txMort))
head(SeisMais)

OBS.: A Tabela aqui apresentada trouxe a taxa de Mortalidade por 1000 (mil) habitantes.

REFERÊNCIAS

- Principal referência utilizada neste arquivo:
 - Wickham, Hadley; Grolemund, Garrett. **R for Data Science**: Import, Tidy, Transform, Visualize, and Model Data. 1st ed. O'Reilly Media. 2017.
- Documentação sobre pacotes:
 - https://www.tidyverse.org/
 - https://readr.tidyverse.org/
 - https://readxl.tidyverse.org/
 - https://dplyr.tidyverse.org/

- https://github.com/wcota/covid19br
- https://www.ibge.gov.br/estatisticas/sociais/populacao/9103-estimativas-de-populacao.html?=&t=downloads

Material complementar:

http://leg.ufpr.br/~walmes/cursoR/data-vis/slides/01-tidyverse.pdf

