I rok, Fizyka Wtorek, 8:00-10:15

Prowadząca: dr Iwona Mróz

Ćwiczenie nr 12

Laboratoryjny eksperyment symulujący powstawanie kraterów na planetach i księżycach, wskutek uderzeń meteorytów

1 Wstęp teoretyczny

Celem eksperymentu jest laboratoryjne odwzorowanie procesów powstawania kraterów na powierzchniach ciał niebieskich oraz weryfikacja zależności między energią kinetyczną uderzającego obiektu a wielkością powstałego krateru.

Podstawy fizyczne

• Spadek swobodny – ruch ciała pod wpływem wyłącznie siły grawitacji, opisany równaniami:

$$h = \frac{1}{2}gt^2$$
$$v = gt$$

gdzie h – wysokość, v – prędkość, g – przyspieszenie ziemskie, t – czas.

• Zasada zachowania energii – energia całkowita układu izolowanego pozostaje stała:

$$E_p + E_k = \text{const}$$

Dla kulki spadającej z wysokości h zachodzi przemiana energii potencjalnej w kinetyczną:

$$E_p = mgh \to E_k = \frac{1}{2}mv^2$$

- **Zderzenie niesprężyste** uderzenie spadającej kulki w piasek powoduje, że część energii kinetycznej zostaje przekształcona w energię deformacji ośrodka.
- Modele tworzenia kraterów rozpatrujemy dwie hipotezy dotyczące zależności między energią kinetyczną uderzającego obiektu a średnicą powstałego krateru:

Model I: $E_k \propto D^3$ (energia przeznaczona głównie na deformację objętości)

Model II: $E_k \propto D^4$ (część energii zamieniana na potencjalną materiału wyrzuconego)

Metoda logarytmowania

Aby zlinearyzować zależność potęgową, stosujemy logarytmowanie stronami:

$$E_k \propto D^n$$

$$E_k = AD^n$$

$$\log(E_k) = \log(A) + n\log(D)$$

Wykreślając zależność $\log(D)$ od $\log(E_k)$ w układzie współrzędnych, otrzymujemy linię prostą o współczynniku kierunkowym 1/n, co pozwala określić, który z modeli (n=3 czy n=4) lepiej opisuje eksperyment.

2 Opracowanie wyników pomiarów

2.1 Tabele pomiarowe

Rodzaj kulki	Masa [g]	Średnica [cm]
Mała	4,1	1,000
Średnia	14,0	1,500
Duża	31,7	2,000

Tabela 1: Parametry kulek używanych w doświadczeniu

Wysokość [m]	0.25	0.5	1.0	1.5	2.0
Nr pomiaru	Średnica krateru [cm]				
1	3,170	3,760	4,310	4,625	4,760
2	2,880	3,845	3,910	4,510	4,875
3	2,870	3,810	4,220	4,430	4,365
4	3,635	3,580	4,350	4,615	4,575
5	2,965	3,665	4,060	4,550	4,880

Tabela 2: Pomiary średnicy kraterów dla małej kulki

Wysokość [m]	0.5	1.0	1.5	2.0
Nr pomiaru	Średnica krateru [cm]			em]
1	4,760	5,265	6,210	6,995
2	4,750	5,270	6,055	6,890
3	4,920	5,380	6,355	6,885
4	4,930	5,800	6,155	6,610
5	5,120	5,600	6,225	6,775

Tabela 3: Pomiary średnicy kraterów dla średniej kulki

Wysokość [m]	1.5	2.0
Nr pomiaru	Średni	ca krateru [cm]
1	7,310	7,980
2	7,440	7,525
3	7,460	8,035
4	7,375	8,040
5	7,175	7,700

Tabela 4: Pomiary średnicy kraterów dla dużej kulki

2.2 Średnia średnica krateru, energia potencjalna kulki i logarytmy obu wielkości

Dla każdej kombinacji wysokości i rozmiaru kulki wykonano po pięć pomiarów średnicy powstałego krateru. Średnia średnica krateru \overline{D} została obliczona jako średnia arytmetyczna z tych pomiarów według wzoru:

$$\overline{D} = \frac{1}{5} \sum_{i=1}^{5} D_i$$

Energia potencjalna kulki została obliczona ze wzoru $E_p = mgh$, gdzie:

- m masa kulki [kg]
- g przyspieszenie ziemskie $\left[\frac{m}{s^2}\right]$
- \bullet h wysokość z jakiej upuszczono kulkę [m]

Następnie, w celu zlinearyzowania zależności potęgowej między energią a średnicą krateru, obliczono logarytmy dziesiętne obu wielkości:

$$\log_{10}(\overline{D})$$
 oraz $\log_{10}(E_p)$

Wartości te zostały wykorzystane do sporządzenia wykresu w układzie podwójnie logarytmicznym, co pozwoli na określenie wykładnika potęgowego badanej zależności.

Wysokość [m]	0.2	0.5	1.0	1.5	2.0
\overline{D} [m]	0,03104	0,03732	0,04170	0,04546	0,04691
E_p [J]	0,0101	0,0201	0,0402	0,0603	0,0804
$\log_{10}(\overline{D})$	-1,5081	-1,4281	-1,3799	-1,3424	-1,3287
$\log_{10}(E_p)$	-1,9976	-1,6966	-1,3955	-1,2195	-1,0945

Tabela 5: Wyniki pomiarów dla małej kulki

Wysokość [m]	0.5	1.0	1.5	2.0
\overline{D} [m]	0,04896	0,05463	0,06200	0,06831
E_p [J]	0,0687	0,1373	0,2060	0,2747
$\log_{10}(\overline{D})$	-1,3102	-1,2626	-1,2076	-1,1655
$\log_{10}(E_p)$	-1,1632	-0,8622	-0,6861	-0,5612

Tabela 6: Wyniki pomiarów dla średniej kulki

Wysokość [m]	1.5	2.0
\overline{D} [m]	0,07352	0,07856
E_p [J]	0,4665	0,6220
$\log_{10}(\overline{D})$	-1,1336	-1,1048
$\log_{10}(E_p)$	-0,3312	-0,2062

Tabela 7: Wyniki pomiarów dla dużej kulki

2.3 Wykres zależności średnicy krateru od energii potencjalnej

Za pomocą języka Python i biblioteki matplotlib został wygenerowany wykres zależności energii potencjalnej od średnicy krateru. Wykres został sporządzony w układzie podwójnie logarytmicznym i zamieszczony na rysunku 1.

2.4 Regresja liniowa - wyznaczenie wykładnika potęgi

Do analizy zależności między energią potencjalną a średnicą krateru wykorzystano regresję liniową w skali logarytmicznej. Dane zostały przetworzone przy użyciu języka Python i biblioteki NumPy.

Regresja liniowa została wykonana na zlogarytmowanych wartościach energii potencjalnej $(\log_{10}(E_p))$ i średnicy krateru $(\log_{10}(D))$. Wykorzystano funkcję numpy.polyfit, która dopasowuje wielomian (w tym przypadku pierwszego stopnia) do danych metodą najmniejszych kwadratów.

Otrzymana prosta ma postać:

$$\log_{10}(E_p) = a \log_{10}(D) + b$$

gdzie:

- $\bullet \ a=4,37$ współczynnik kierunkowy prostej
- b = 4,61 wyraz wolny

Po przekształceniu wzoru na postać potęgową otrzymujemy:

$$E_p = 10^{4.61} \cdot D^{4.37} \approx 4,07 \cdot 10^4 \cdot D^{4.37}$$

3 Ocena niepewności pomiaru

4 Wnioski

Współczynnik kierunkowy $a \approx 4,37$ sugeruje, że zależność między energią potencjalną a średnicą krateru jest bliższa modelowi II $(E_k \propto D^4)$ niż modelowi I $(E_k \propto D^3)$.

5

Rysunek 1: Wykres zależności energii notencialnej od średnicy krateru