CS2040S Data Structures and Algorithms

Puzzle of the Week: Squares

(Courtesy: Riddler)

Start with five shaded squares, infinite grid.

At every iteration, color a square if at least three neighboring were colored in the previous iteration.

As N gets large, how many squares will be shaded in generation N (as a function of N)?

Plan of the Week

QuickSort & QuickSelect

- (Paranoid) QuickSort Analysis
- QuickSelect

Trees

- Terminology
- Traversals
- Operations

Balanced Trees

- Height-balanced binary search trees
- AVL trees
- Rotations

Announcements

Midterm: Monday March 6, 4pm (class time)

Location: MPSH 2A & 2B

Note: In person, pen and paper

Nota Bene: Please mark your calendar now.

Plan of the Week

QuickSort & QuickSelect

- (Paranoid) QuickSort Analysis
- QuickSelect

Trees

- Terminology
- Traversals
- Operations

Balanced Trees

- Height-balanced binary search trees
- AVL trees
- Rotations

QuickSort

```
QuickSort(A[1..n], n)

if (n==1) then return;

else
```



```
p = partition(A[1..n], n)
x = QuickSort(A[1..p-1], p-1)
y = QuickSort(A[p+1..n], n-p)
```


QuickSort

How to partition efficiently?

Duplicates

If you ignore duplicates, partitioning can be very slow!

In-place partitioning

One pass, use invariants to ensure correctness.

Stability

In-place partitioning isn't stable.

Choosing a pivot (randomization)

Deterministic pivots are generally bad.

Randomization is an easy way to find a good pivot!

Choice of Pivot

Options:

- -first element: A[1]
- -last element: A[n]
- -middle element: A[n/2]
- -median of (A[1], A[n/2], A[n])

In the worst case, it does not matter!

All options are equally bad.

QuickSort Summary

- If we choose the pivot as A[1]:
 - Bad performance: $\Omega(n^2)$

- If we could choose the median element:
 - Good performance: $O(n \log n)$

- If we could split the array (1/10): (9/10)
 - Good performance: $O(n \log n)$

QuickSort

Key Idea:

- Choose the pivot at random.
- Most of the time: split will be at least $\frac{9}{10}$: $\frac{1}{10}$

Randomized Algorithms:

- Algorithm makes decision based on random coin flips.
- Can "fool" the adversary (who provides bad input)
- Running time is a random variable.

```
QuickSort(A[1..n], n)
    if (n == 1) then return;
    else
     pIndex = random(1, n)
     p = 3WayPartition(A[1..n], n, pindex)
     x = QuickSort(A[1..p-1], p-1)
     y = QuickSort(A[p+1..n], n-p)
```



```
ParanoidQuickSort(A[1..n], n)
    if (n == 1) then return;
    else
         repeat
               pIndex = random(1, n)
               p = partition(A[1..n], n, pIndex)
         until p > (1/10)n and p < (9/10)n
         x = QuickSort(A[1..p-1], p-1)
         y = QuickSort(A[p+1..n], n-p)
```


Key claim:

 We only execute the repeat loop O(1) times (in expectation).

Then we know:

```
T(n) \le T(n/10) + T(9n/10) + n(\# iterations of repeat)= O(n \log n)
```

Probability Theory

Flipping an (unfair) coin:

- Pr(heads) = p
- Pr(tails) = (1 p)

How many flips to get at least one head?

If $p = \frac{1}{2}$, the expected number of flips to get one head equals:

$$E[X] = 1/p = 1/\frac{1}{2} = 2$$

```
ParanoidQuickSort(A[1..n], n)
     if (n == 1) then return;
     else
          repeat
          pIndex = random(1, n)
How many
repetitions? p = partition(A[1..n], n, pIndex)
          until p > (1/10)n and p < (9/10)
          x = QuickSort(A[1..p-1], p-1)
          y = QuickSort(A[p+1..n], n-p)
```

If we choose a pivot at random, what is the probability that it is good?

- 1. 1/10
- $2. \ 2/10$
- 3. 8/10
- 4. $1/\log(n)$
- 5. 1/n
- 6. I have no idea.

Imagine the array divided into 10 pieces:

Choose a random point at which to partition.

Imagine the array divided into 10 pieces:

Choose a random point at which to partition.

- 10 possible events
- each occurs with probability 1/10

Imagine the array divided into 10 pieces:

Choose a random point at which to partition.

- 10 possible events
- each occurs with probability 1/10

Imagine the array divided into 10 pieces:

Probability of a good pivot:

$$p = 8/10$$

 $(1 - p) = 2/10$

Probability of a good pivot:

$$p = 8/10$$

 $(1 - p) = 2/10$

Expected number of times to repeatedly choose a pivot to achieve a good pivot:

$$E[\# \text{ choices}] = 1/p = 10/8 < 2$$

```
QuickSort(A[1..n], n)
     if (n==1) then return;
     else
            repeat
                 pIndex = \mathbf{random}(1, n)
How many
repetitions?
                  p = partition(A[1..n], n, pIndex)
            until p > n/10 and p < n(9/10)
           x = \text{QuickSort}(A[1..p-1], p-1)
           v = \text{QuickSort}(A[p+1..n], n-p)
```

Key claim:

We only execute the **repeat** loop < 2 times (in expectation).

Then we know:

$$\mathbf{E}[\mathsf{T}(n)] = \mathbf{E}[\mathsf{T}(k)] + \mathbf{E}[\mathsf{T}(n-k)] + \mathbf{E}[\# \text{ pivot choices}](n)$$

$$<= \mathbf{E}[\mathsf{T}(k)] + \mathbf{E}[\mathsf{T}(n-k)] + 2n$$

$$= O(n \log n)$$

Regular QuickSort

Also true:

Expected running time is O(n log n).

With high probability, running time is O(n log n).

QuickSort

How to analyze?

- Divide-and-conquer recurrence
 - It is sufficient to do a 90:10 split to get O(n log n) performance!
- What is the probability that a random pivot yields a 90:10 split? Quite good!
- Simplification: Paranoid QuickSort
- How many repetitions to find a good pivot, in expectation? O(1)
- Solve using recurrence: Linearity of expectation FTW.

Base case?

1. Recurse all the way to single-element arrays.

Base case?

- 1. Recurse all the way to single-element arrays.
- 2. Switch to InsertionSort for small arrays.

Base case?

- 1. Recurse all the way to single-element arrays.
- 2. Switch to InsertionSort for small arrays.
- 3. Halt recursion early, leaving small arrays unsorted. Then perform InsertionSort on entire array.

If the base case is size O(1), then what is the running time of the (single) InsertionSort?

- 1. O(1)
- 2. O(n)
- 3. $O(n \log n)$
- 4. $O(n^{3/2})$
- 5. $O(n^2)$
- 6. I have no idea.

Base case?

- 1. Recurse all the way to single-element arrays.
- 2. Switch to InsertionSort for small arrays.
- 3. Halt recursion early, leaving small arrays unsorted. Then perform InsertionSort on entire array.

Relies on fact that InsertionSort is very fast on almost sorted arrays! **InsertionSort**

Each inserted item moves at most distance O(1).

QuickSort

```
QuickSort(A[1..n])
    almostQuickSort(A[1..n], n)
    InsertionSort(A[1..n], n)
almostQuickSort(A[1..n], n)
    if (n < 10) then return
    else
          p = partition(A[1..n], n)
          x = almostQuickSort(A[1..p-1], p-1)
          y = almostQuickSort(A[p+1..n], n-p)
```

Find kth smallest element in an unsorted array:

X ₁₀	X ₂	X ₄	\mathbf{x}_1	X ₅	\mathbf{X}_3	X ₇	X ₈	X 9	X ₆

E.g.: Find the median (k = n/2)

Find the 7th element (k = 7)

Find kth smallest element in an *unsorted* array:

X ₁₀	$\mathbf{X_2}$	X ₄	\mathbf{x}_1	X ₅	\mathbf{X}_3	X ₇	X ₈	X 9	\mathbf{x}_{6}

Option 1:

- Sort the array.
- Return element number k.

Find kth smallest element in an *unsorted* array:

\mathbf{x}_1	X ₂	\mathbf{x}_3	X ₄	X ₅	X ₆	X ₇	X ₈	X 9	X ₁₀

Option 1:

- Sort the array.
- Return element number k.

Running time?

Find kth smallest element in an *unsorted* array:

x ₁	$\mathbf{X_2}$	\mathbf{x}_3	X ₄	X ₅	X ₆	X ₇	X ₈	X 9	X ₁₀

Option 1:

- Sort the array.
- Return element number k.

Running time: O(n log n)

Find kth smallest element in an *unsorted* array:

X ₁₀	$\mathbf{X_2}$	X ₄	\mathbf{x}_1	X ₅	\mathbf{X}_3	X ₇	X ₈	X 9	\mathbf{x}_{6}

Option 2:

Only do the minimum amount of sorting necessary

Key Idea: partition the array

Now continue searching in the correct half.

E.g.: Partition around x_5 and recursively search for x_3 in left half.

Example: search for 5th element

9 2	22 13	17	5	3	100	6	19	8
-----	---------	----	---	---	-----	---	----	---

Example: search for 5th element

9	22	13	17	5	3	100	6	19	8	
---	----	----	----	---	---	-----	---	----	---	--

Partition around random pivot: 17

Example: search for 5th element

Search for 5th element in left half.

Example: search for 5th element

Partition around random pivot: 8

1 2 3 4 5 6

Example: search for 5th element

9	8 13	5	3	6				
---	------	---	---	---	--	--	--	--

Search for: 5 - 4 = 1 in right half

6 3 5 8 13	9	
------------	---	--

1 2 3 4 5 6

Search for: 5 - 4 = 1 in right half

	13 9		
--	------	--	--

Partition around random pivot: 13

Finding the kth smallest element

```
Select(A[1..n], n, k)
    if (n == 1) then return A[1];
    else Choose random pivot index pIndex.
         p = partition(A[1..n], n, pIndex)
         if (k == p) then return A[p];
         else if (k < p) then
               return Select(A[1..p-1], k)
         else if (k > p) then
               return Select(A[p+1], k-p)
```

Recursing right and left are not exactly the same.

Example: search for 5th element

9 22 13	17 5	3 100	6	19	8	
---------	-------------	-------	---	----	---	--

Partition around random pivot: 17

Search for 5th element on the left.

Recursing right and left are not exactly the same.

Example: search for 8th element

9 22 13 17 5 3 100 6 19 8

Partition around random pivot: 8

5	6	3	8	17	13	100	22	19	9
						7			

Search for 4th element on the right.

Recursing right and left are not exactly the same.

Example: search for 4th element

9	22	13	17	5	3	100	6	19	8	
---	----	----	----	---	---	-----	---	----	---	--

Partition around random pivot: 8

Return 8.

Finding the kth smallest element

```
Select(A[1..n], n, k)
    if (n == 1) then return A[1];
    else Choose random pivot index pIndex.
         p = partition(A[1..n], n, pIndex)
         if (k == p) then return A[p];
         else if (k < p) then
               return Select(A[1..p-1], k)
         else if (k > p) then
               return Select(A[p+1], k-p)
```

Finding the kth smallest element

Key point:

Only recurse once!

- Why not recurse twice?
 - Does not help---the correct element is only on one side.
 - You do not need to sort both sides!
 - Makes it run a lot faster.
 - If you recurse on both sides, you are sorting!

Paranoid-Select:

Repeatedly partition until at least n/10 in each half of the partition.

repeat

p = partition(A[1..n], n, pIndex)

until (p > n/10) and (p < 9n/10)

Paranoid-Select:

Repeatedly partition until at least n/10 in each half of the partition.

cost of partitioning

Recurrence:

$$\mathbf{E}[\mathbf{T}(\mathbf{n})] \le \mathbf{E}[\mathbf{T}(9\mathbf{n}/10)] + \mathbf{E}[\# \text{ partitions}](n)$$

Paranoid-Select:

Repeatedly partition until at least n/10 in each half of the partition.

Recurrence:

$$\mathbf{E}[\mathsf{T}(\mathsf{n})] \le \mathbf{E}[\mathsf{T}(9\mathsf{n}/10)] + \mathbf{E}[\# \text{ partitions}](n)$$
$$\le \mathbf{E}[\mathsf{T}(9\mathsf{n}/10)] + 2n$$

Recurrence

What is the solution to the following recurrence?

$$T(n) \leq T(9n/10) + 2n$$

Recurrence

What is the solution to the following recurrence?

$$T(n) \leq T(9n/10) + 2n$$

$$= O(n)$$

Paranoid-Select:

Repeatedly partition until at least n/10 in each half of the partition.

Recurrence:

$$\mathbf{E}[T(n)] \le \mathbf{E}[\# \text{ partitions}](n) + \mathbf{E}[T(9n/10)]$$

 $\le 2n + \mathbf{E}[T(9n/10)]$
 $\le 2n + 2n (9/10) + (9/10) \mathbf{E}[T(9n/10)]$
 $\le 2n + 2n (9/10) + 2n (9/10)^2 + \dots$

Paranoid-Select:

Repeatedly partition until at least n/10 in each half of the partition.

Recurrence:

$$\mathbf{E}[\mathsf{T}(\mathsf{n})] \le \mathbf{E}[\mathsf{T}(9\mathsf{n}/10)] + \mathbf{E}[\# \text{ partitions}](n)$$

$$\le \mathbf{E}[\mathsf{T}(9\mathsf{n}/10)] + 2n$$

$$\le \mathsf{O}(n)$$

Recurrence: T(n) = T(n/c) + O(n)

Summary

QuickSort: O(n log n)

- Partitioning an array
- Deterministic QuickSort
- Paranoid Quicksort

Order Statistics: O(n)

- Finding the kth smallest element in an array.
- Key idea: partition
- Paranoid Select

Plan of the Week

Trees

- Terminology
- Traversals
- Operations

Balanced Trees

- Height-balanced binary search trees
- AVL trees
- Rotations

Dictionary Interface

A collection of (key, value) pairs:

interface	IDictionary	
void	insert(Key k, Value v)	insert (k,v) into table
Value	search(Key k)	get value paired with k
Key	successor(Key k)	find next key > k
Key	predecessor(Key k)	find next key < k
void	delete(Key k)	remove key k (and value)
boolean	contains(Key k)	is there a value for k?
int	size()	number of (k,v) pairs

Dictionary

Implementation

Option 1: Sorted array

- insert : ?
- search : ?

Option 2: Unsorted array

- insert : ?
- search : ?

Option 3: Linked list

- insert : ?
- search:?

Dictionary

Implementation

Option 1: Sorted array

- insert : add to middle of array \rightarrow O(n)
- search : binary search → O(log n)

Option 2: Unsorted array

- insert : add to end of array \rightarrow O(1)
- search : unsorted \rightarrow O(n)

Option 3: Linked list

- insert : add to head of list \rightarrow O(1)
- search : list traversal → O(n)

Dictionary Implementation

Possible Choices:

- Implement using an array
- Implement using a Java library (see: java.util.Vector or java.util.ArrayList).
- Implement using a queue.
- Implement using a linked list

- ...

Dictionary

Implementation idea: Tree

Dictionary

Implementation idea: Tree

Critical Components:

- Nodes
- Edges directed from one node to another.
- Root (?)
- No cycles

Terminology

Terminology

Recursive Definition right sub-tree 23 left sub-tree

A binary tree is either:

- (a) empty
- (b) a node pointing to two binary trees

Java??

```
public class TreeNode {
      private TreeNode leftTree;
      private TreeNode rightTree;
      private KeyType key;
      private ValueType value;
      // Remainder of binary tree implementation
```

Binary Tree

Java??

```
public class TreeNode {
      private TreeNode leftTree;
      private TreeNode rightTree;
      private int key;
      private int value;
      // Remainder of binary tree implementation
```

Binary Search Trees (BST)

BST Property:

all in left sub-tree < key < all in right sub-right

- 1. Yes
- 2. No
- 3. I don't know.

- ✓ 1. Yes
 - 2. No
 - 3. I don't know.

- 1. Yes
- 2. No
- 3. I don't know.

- 1. Yes
- **✓**2. No
 - 3. I don't know.

- 1. Terminology and Definitions
- 2. Basic operations:
 - height
 - search, insert
 - searchMin, searchMax
- 3. Traversals
 - in-order, pre-order, post-order
- 4. Other operations

Height:

Number of edges on longest path from root to leaf.

Binary Tree

Calculating the heights

check for null

```
public int height() {
      int leftHeight = -1;
      int rightHeight = -1;
       if (leftTree != null)
             leftHeight = leftTree.height();
      if (rightTree != null)
             rightHeight = rightTree.height();
      return max(leftHeight, rightHeight) + 1;
```

max of subtrees

The height of this tree is?

- 1. 2
- 2. 4
- 3. 5
- 4. 6
- 5. 7
- 6. 42

The height of this tree is?

- 1. 2
- 2. 4
- **√**3. 5
 - 4. 6
 - 5. 7
 - 6. 42

- 1. Terminology and Definitions
- 2. Basic operations:
 - height
 - searchMin, searchMax
 - search, insert
- 3. Traversals
 - in-order, pre-order, post-order
- 4. Other operations

Search for the maximum key:

Search for the maximum key:

Search for maximum key

Binary Tree

Searching for the maximum key

```
public TreeNode searchMax() {
    if (rightTree != null) {
        return rightTree.searchMax();
    }
    else return this; // Key is here!
}
```


Search for the minimum key:

Binary Tree

Searching for the minimum key

```
public TreeNode searchMin() {
    if (leftTree != null) {
        return leftTree.searchMin();
    }
    else return this; // Key is here!
}
```

searchMin()

searchMin()

searchMin()

- 1. Terminology and Definitions
- 2. Basic operations:
 - height
 - searchMin, searchMax
 - search, insert
- 3. Traversals
 - in-order, pre-order, post-order
- 4. Other operations

(Courtesy: Riddler)

Puzzle of the Week: Squares

Start with five shaded squares, infinite grid.

At every iteration, color a square if *at least* three neighboring were colored in the previous iteration.

As N gets large, how many squares will be shaded in generation N (as a function of N)?

- 1. Terminology and Definitions
- 2. Basic operations:
 - height
 - searchMin, searchMax
 - search, insert
- 3. Traversals
 - in-order, pre-order, post-order
- 4. Other operations

Search for a key:

Search for a key: 25 < 41

Search for a key:

Binary Tree

Inserting a new key

```
public TreeNode search(int queryKey) {
       if (queryKey < key) {
             if (leftTree != null)
                    return leftTree.search(key);
             else return null;
       else if (queryKey > key) {
             if (rightTree != null)
                    return rightTree.search(key);
             else return null;
       else return this; // Key is here!
```


- 1. Terminology and Definitions
- 2. Basic operations:
 - height
 - searchMin, searchMax
 - search, insert
- 3. Traversals
 - in-order, pre-order, post-order
- 4. Other operations

Inserting a new key:

25 < 41

Inserting a new key:

Inserting a new key:

Binary Tree

Inserting a new key

```
public void insert(int insKey, int intValue) {
       if (insKey < key) {
             if (leftTree != null)
                    leftTree.insert(insKey);
             else leftTree = new TreeNode(insKey,insValue);
       else if (insKey > key) {
             if (rightTree != null)
                    rightTree.insert(insKey);
             else rightTree = new TreeNode(insKey,insValue);
       else return; // Key is already in the tree!
```


What is the worst-case running time of search in a BST?

- 1. O(1)
- 2. O(log n)
- 3. O(n)
- 4. $O(n^2)$
- 5. $O(n^3)$
- 6. $O(2^n)$

What is the worst-case running time of search in a BST?

- 1. O(1)
- 2. O(log n)
- **✓**3. O(n)
 - 4. $O(n^2)$
 - 5. $O(n^3)$
 - 6. $O(2^n)$

search(72) : O(h)

search(72): O(height)

Trees come in many shapes

What determines shape?

What was the order of insertion?

- 3. 11, 20, 41, 29, 65
- 4. 65, 41, 29, 20, 11
- 5. Impossible to tell.

What was the order of insertion?

- **✓** 2. 20, 11, 41, 29, 65
 - 3. 11, 20, 41, 29, 65
 - 4. 65, 41, 29, 20, 11
 - 5. Impossible to tell.

What determines shape?

- Order of insertion
- Does each order yield a unique shape?

What determines shape?

- Order of insertion
- Does each order yield a unique shape? NO
 - # ways to order insertions: n!
 - − # shapes of a binary tree? ~4ⁿ

Catalan Numbers

Catalan Numbers

 $C_n = \#$ of trees with (n+1) nodes

C_n = # expressions with n pairs of matched parentheses

((())) ()(()) (()()) (()())

Puzzle: why are these the same?

Trees come in many shapes

Trees come in many shapes

- same keys ≠ same shape
- performance depends on shape
- insert keys in a *random* order ⇒ balanced

- 1. Terminology and Definitions
- 2. Basic operations:
 - height
 - searchMin, searchMax
 - search, insert
- 3. Traversals
 - in-order, pre-order, post-order
- 4. Other operations

11 20 29 32 41 50 65 72 91 99


```
public void in-order-traversal() {
       // Traverse left sub-tree
       if (leftTree != null)
               leftTree.in-order-traversal();
       visit(this);
       // Traverse right sub-tree
       if (rightTree != null)
              rightTree.in-order-traversal();
```

How long does an in-order-traversal take?

- 1. O(1)
- 2. O(log n)
- 3. O(n)
- 4. O(n log n)
- 5. $O(n^2)$
- 6. $O(2^n)$

How long does an in-order-traversal take?

- 1. O(1)
- 2. O(log n)
- 3. O(n)
 - 4. O(n log n)
 - 5. $O(n^2)$
 - 6. $O(2^n)$

Note: searching for all the items is going to be slower!

in-order-traversal(v)

```
public void in-order-traversal() {
       // Traverse left sub-tree
       if (leftTree != null)
               leftTree.in-order-traversal();
       visit(this);
       // Traverse right sub-tree
       if (rightTree != null)
              rightTree.in-order-traversal();
```

Running time: O(n)

visits each node at most once

in-order-traversal(v)

- left-subtree
- SELF
- right-subtree

pre-order-traversal(v)

- SELF
- left-subtree
- right-subtree

post-order-traversal(v)

- left-subtree
- right-subtree
- SELF

pre-order-traversal(v)

```
public void pre-order-traversal() {
      visit(this);
       // Traverse left sub-tree
       if (leftTree != null)
              leftTree.in-order-traversal();
       // Traverse right sub-tree
       if (rightTree != null)
              rightTree.in-order-traversal();
```


41 20

41 20 11

41 20 11

41 20 11 29

post-order-traversal(v)

```
public void post-order-traversal() {
       // Traverse left sub-tree
       if (leftTree != null)
              leftTree.in-order-traversal();
       // Traverse right sub-tree
       if (rightTree != null)
              rightTree.in-order-traversal();
      visit(this);
```


11 32 29 20 50 72 99 91 65 41

41 20 65

41 20 65 11 29 50 91

Tree Traversals

Tree Traversals

Several varieties:

- pre-order
- in-order
- post-order
- level-order

- 1. Terminology and Definitions
- 2. Basic operations:
 - height
 - searchMin, searchMax
 - search, insert
- 3. Traversals
 - in-order, pre-order, post-order
- 4. Other operations

Airport Scheduling

Dictionary

How do we implement this?

Key 42 is not in the tree

Key 42 is not in the tree

Key 33 is not in the tree

If you search for a key not in the tree:

either find predecessor or successor.

Basic strategy: successor(key)

1. Search for key in the tree.

2. If (result > key), then return result.

3. If (result <= key), then search for successor of result.

successor(33) = successor(32)

Key 33 is not in the tree

Case 1: node has a right child.

Case 2: node has no right child.

Case 2: node has no right child.

Case 2: node has no right child.

Case 2: node has no right child.

Find the next TreeNode:

```
public TreeNode successor() {
       if (rightTree != null)
             return rightTree.searchMin();
      TreeNode parent = parentTree;
      TreeNode child = this;
      while ((parent != null) && (child == parent.rightTree))
             child = parent;
             parent = child.parentTree;
      return parent;
```

- 1. Terminology and Definitions
- 2. Basic operations:
 - height
 - searchMin, searchMax
 - search, insert
- 3. Traversals
 - in-order, pre-order, post-order
- 4. Other operations

delete(v)

delete(v)

delete(50)

delete(50)

delete(29)

delete(29)

delete(29)

delete(65)

Case 3: 2 children

41

Claim: successor of deleted node has at most 1 child!

Proof:

- Deleted node has two children.
- Deleted node has a right child.
- successor() = right.findMin()
- min element has no left child.

delete(v)

Running time: O(height)

Three cases:

- 1. No children:
 - remove v
- 2. 1 child:
 - remove v
 - connect child(v) to parent(v)
- 3. 2 children
 - x = successor(v)
 - delete(x)
 - remove v
 - connect x to left(v), right(v), parent(v)

Modifying Operations

- insert: O(h)
- delete: O(h)

Query Operations:

- search: O(h)
- predecessor, successor: O(h)
- findMax, findMin: O(h)
- in-order-traversal: O(n)

Plan of the Day

Trees

- Terminology
- Traversals
- Operations

Balanced Trees

- Height-balanced binary search trees
- AVL trees
- Rotations