An Introduction to Probability

With Applications to Computational Finance using R

Martin Summer

9 January, 2025

The Motto of this Course

The Motto of this Course

"What I hear, I forget; What I see, I remember; What I do, I understand"
Confucius, 551-479 BC

What is this lecture about?

Probability, R, Finance

- These lecture notes support the course An Introduction to Probability - with Applications to Computational Finance using R.
- The course introduces essential probability concepts that every finance practitioner must understand using R within the context of computational finance.

Why Probability?

- Because Finance is about making decisions under uncertainty.
- Probability is the most powerful conceptual tool we have at hand to think about uncertainty and decision making under uncertainty in a systematic an rational way.

Why R ?

- Because it is a language which is well adapted to probability and hands on coding of applied probability problems.
 - The computer can make abstract problems tangible.

Course Objectives

- Understand the fundamentals of probability: concepts, rules, and theorems.
- Learn R programming for probability simulations:
 - Generating random variables.
 - Visualizing probabilities.
 - Solving real-world problems computationally.
- Apply probability concepts to finance: Use cases in risk management, pricing, and investment decisions.

Building Abstract Concepts

Conceptual Experiments

- How can we build abstract concepts like probability, random phenomena, and chance by our own hands?
- Probability gains practical value through real or conceptual experiments, such as:
 - Future changes in a stock price index.
 - The future value of a **portfolio of securities**.
 - The chance that a creditor cannot repay a loan.

Simulations with Computers

- Computers allow us to simulate a wide variety of random phenomena:
 - Models of random fluctuations in asset prices.
 - Models of financial risks.
 - Exploring **future scenarios** through simulation.
- The arrival of computers has been a revolution in the mathematics of probability:
 - Enables both theoretical reflections and practical simulations.
 - Abstract concepts can be built hands-on using computational tools.

R Example for Simulation

Simulating a Stock Price in R

```
# Simulate daily returns for a stock
# Ensure reproducibility
set.seed(123)
# Number of days
n < -100
# Normal distribution
daily returns \leftarrow rnorm(n, mean = 0.001, sd = 0.02)
# Compute cumulative returns, starting price = 100
price <- cumprod(1 + daily_returns) * 100</pre>
price[1:10]
```

```
[1] 98.97905 98.62237 101.79547 102.04081 102.40670 106 [8] 104.50237 103.17132 102.35490
```

Visualize the distribution of daily returns:

```
hist(daily_returns,
    main = "Distribution of daily stock returns",
    xlab = "Returns",
    ylab = "Number of Days")
```

Distribution of daily stock returns

Visualize the Price Dynamics

```
# Visualize the stock price
plot(price, type = "l", col = "blue", lwd = 2,
    main = "Simulated Stock Price",
    xlab = "Days", ylab = "Price")
```

Simulated Stock Price

Insights from the Example

Key Takeaways

Highlights:

- How randomness influences stock price movements.
- The usefulness of R for simulations and visualization.

Critical Reflection:

- The real world is different from theoretical and simulated worlds
- The real world is richer and more complex than both theory and simulation.
- Features in the real world may be absent in theory or simulations but are crucial for explanations.

The Interdependence of Theory, Simulation, and Reality

- Theoretical concepts, simulations, and applications are interdependent.
- Developing a sense of their differences and connections is a core goal of this course.

Building Virtual Objects and

Simulations in R

The Power of Simulations

- Simulations allow us to:
 - Construct and manipulate virtual objects.
 - Explore and analyze random phenomena.
 - Understand complex systems through hands-on experimentation.

Why R and RStudio?

R Programming Language:

- Well-suited for probability and hands-on coding of applied problems.
- Widely used in data analysis, statistics, and data science.

RStudio IDE:

- Provides an integrated environment for coding, visualization, and simulation.
- A popular tool in both industry and academia.

Leveraging AI Tools in Learning

The Role of Large Language Models (LLMs)

- Since this course was first taught in 2021, Al tools such as large language models (LLMs) have emerged.
- Examples include ChatGPT, Claude, and Gemini.
- These tools create new opportunities for learning and reinforcing concepts:
 - Generate examples.
 - Explain difficult topics.
 - Debug R code.
 - Translate code into familiar languages.

Integrating AI into This Course

- Throughout the course, I will show you how to:
 - Use ChatGPT to enhance your learning experience.
 - Leverage AI for interactive and engaging studies. # Using ChatGPT for Learning

Benefits of ChatGPT in This Course

- ChatGPT offers capabilities to support learning, such as:
 - Clarifying concepts.
 - Generating examples.
 - Debugging R code.
 - Practicing exercises.
 - Simulating discussions.
 - Learning best practices in R programming.

Example Use Cases:

- Clarify Concepts:
 - > "Explain the concept of a probability distribution with an example."
- Generate Examples:
 - > "Can you give me an example of a random variable and how it applies in finance?"

Using ChatGPT for Learning

Benefits of ChatGPT in This Course

- ChatGPT offers capabilities to support learning, such as:
 - Clarifying concepts.
 - Generating examples.
 - Debugging R code.
 - Practicing exercises.
 - Simulating discussions.
 - Learning best practices in R programming.

Example Use Cases:

- Clarify Concepts:
 - > "Explain the concept of a probability distribution with an example."
- Generate Examples:
 - > "Can you give me an example of a random variable and how it applies in finance?"

Practical Examples of ChatGPT Use

More Use Cases

Debug R Code:

Paste your code and ask for help: > "Why does this R code not run, and how can I fix it?"

Practice Exercises:

Generate exercises to reinforce learning: > "Create three exercises to practice calculating probabilities for dice rolls."

Simulate Discussions:

Test your understanding with interactive discussions: > "I think the variance of a constant is zero. Am I correct? Explain why or why not."

Learn R Best Practices:

Ask for coding tips: > "What are the best practices for writing clean and efficient R code?"

Important Considerations

Verifying AI Outputs

- While ChatGPT is powerful, always verify outputs, especially for:
 - Complex calculations.
 - Detailed explanations.
 - Programming suggestions.
- Use additional tools for cross-checking:
 - Wolfram Alpha:

A computational engine available for free:

https://www.wolframalpha.com/

Downloading and Installing R

Steps to Get R

- R is an open-source project maintained by an international team of developers.
- The software is available at:
 - Comprehensive R Archive Network (CRAN)

Download Instructions

- 1. Visit the "Download and install R" section at CRAN.
- Select the link corresponding to your operating system (Windows, Mac, or Linux).
- 3. Choose **precompiled binaries** for an easier installation.
 - Optionally, build R from source if you have the tools and expertise.
- 4. Install either the 32-bit or 64-bit version:
 - 64-bit versions handle larger files and datasets more efficiently.

Downloading and Installing RStudio

Why Use RStudio?

- RStudio: A user-friendly application that simplifies R coding.
- Provides a consistent interface across all operating systems.

Steps to Install RStudio

- 1. Visit: https://www.rstudio.com/products/rstudio/
- Select RStudio Desktop and follow the download instructions.
 - RStudio Desktop is free to use.
- 3. Ensure you have a version of R installed before using RStudio.

Ready to Start

- If R and RStudio are successfully installed, you're ready to begin.
- Throughout this course:
 - I will demonstrate code using RStudio.
 - Other options (e.g., Jupyter Notebooks) are available for advanced setups.

Using R with Jupyter Notebooks

Advanced Setup

- R can also be used in **Jupyter Notebooks**.
- For those interested:
 - Ask ChatGPT for step-by-step instructions: > "Please give me a step-by-step instruction on how to set up R in Jupyter Notebooks."
- Note: This setup will not be covered in this course, but you're welcome to explore it further.

Signing Up for ChatGPT

Steps to Create a Free Account

- 1. Visit: https://chat.openai.com
- 2. Click "Create a free account."
 - Sign up using an email address, Google, or Microsoft account.
- 3. Verify your email and complete the registration process.
- 4. Log in to start using ChatGPT for learning and exploration.

Free vs. Paid Versions

- The **free version** (GPT-3.5) is sufficient for most learning needs.
- Paid versions (e.g., GPT-4.0) offer enhanced capabilities but require a subscription.
- Explore the free version to understand its potential.

Prerequisites

An Intuitive Introduction

- This course is an elementary introduction to probability and R.
- No prior knowledge of probability or R is required.
- You can rely on these lecture notes and slides without needing additional textbooks.

Designed for All Levels

- For newcomers:
 - Learn essential concepts from scratch.
 - Develop curiosity and excitement about the field.
- For experienced learners:
 - Gain new perspectives and deepen understanding of familiar concepts.

Course Structure

Parallel Development of Concepts

- Probability and R concepts are developed together.
- Build knowledge by constructing and experimenting with concepts on the computer.
- Reinforces:
 - Probability understanding.
 - R programming skills.

Main Chapters and Projects

- The course is divided into five chapters:
 - Each corresponds to one double lecture.
- After each lecture:
 - Work on a **project** to practice and deepen understanding.
 - Projects include discussions and worked solutions.

Lecture Highlights

Lecture 1: Foundations

- Explore the historical context of probability.
- Learn basic concepts using a coin-toss game:
 - Application: Modelling security prices.
- Address a real-world problem:
 - Understand coincidences and cryptographic safety (e.g., hash functions in Bitcoin).
- Project 1: Design secure transaction identifiers for a digital payment system.

Lecture 2: Frequencies and Data Manipulation

- Discuss probability and frequency relationships.
- Explore Benford's Law for detecting anomalies in data.
- Enhance R skills with data manipulation and structures.
- Project 2: Analyze and manipulate data for probabilistic insights.

Lecture Highlights (Continued)

Lecture 3: Conditional Probability

- Understand dependence and its role in finance.
- Learn probability updates with new data.
- Applications:
 - Risk management.
 - Investment decisions.
- Project 3: Apply conditional probability to real-world financial scenarios.

Lecture 4: Random Variables and Asset Dynamics

- Explore:
 - Expected value.
 - Variance.
 - Covariance and correlation.
- Understand binomial lattice models for asset price dynamics.
- Develop R skills for programming control structures.
- Project 4: Simulate asset dynamics using probabilistic models.

Lecture 5: Continuous Random Variables

- Study the **normal distribution**:
 - Its power and limitations in finance.
- Optimize R code for performance and efficiency.
- Project 5: Analyze continuous random phenomena and risks in finance.

Acknowledgements

Special Thanks

Branko Urošević:

 For entrusting me to develop this course and supporting the project.

Past Students:

 For their feedback and enthusiasm, which improved these notes.

References

Key Resources

1. Probability:

- William Feller: An Introduction to Probability Theory and Its Applications.
- Karl Schmedder: An Intuitive Introduction to Probability (Coursera).

2. R Programming:

Garrett Grolemund: Hands-On Programming with R.

3. Finance:

David Luenberger: Investment Science.

4. History and Philosophy:

- Persi Diaconis and Brian Skyrms: 10 Great Ideas About Chance.
- These notes combine well-known ideas with new approaches to teaching probability and R.