d-SNE: Domain Adaptation using Stochastic Neighborhood Embedding

Xiang Xu*, Xiong Zhou*, Ragav Venkatesan, Gurumurthy Swaminathan, Orchid Majumder

Computational Biomedicine Lab, University of Houston Amazon AI, Seattle

Problem Statement

- Source domain $D^s = \{x^s, y^s\}_{i=1}^{N^s}$
- Target domain $D^t = \{x^t, y^t\}_{j=1}^{N^t}$, $N^t \ll N^s$ or $D^t = \{x^t\}_{j=1}^{N^t}$
- Goal: Improve the performance of an existing model M_{D^S} for D^t by adapting the knowledge of the model learned from D^S to D^t

Proposed Method: d-SNE

 Consider the distance between the features from the source and target domain

$$d(x^s, x^t) = \left| \left| \phi_{D^s}(x^s) - \phi_{D^t}(x^t) \right| \right|_2^2$$

• The probability that target samples $x_j^t \in D^t$ has the same label as the source samples $x_i^s \in D^s$

$$p_{ij} = \frac{e^{-d(x_i^S, x_j^t)}}{\sum_{x \in D^S} e^{-d(x, x_j^t)}} \qquad p_j = \frac{\sum_{x \in D^S_k} e^{-d(x, x_j^t)}}{\sum_{x \in D^S} e^{-d(x, x_j^t)}}, D_k^S = \{ \forall x_l^S | y_l^S = k \}$$

^[1] G. E. Hinton and S. T. Roweis. Stochastic neighbor embedding. NIPS, 2003

^[2] J. Goldberger, S. Roweis, G. Hinton, R. Salakhutdinov, Neighbourhood Components Analysis, NIPS, 2005

Proposed Method: d-SNE (2)

• Given p_j for one sample, the objective function for the domain adaptation problem can be derived as minimizing the ratio of intraclass distances to inter-class distance in the latent space.

$$L = \log \left(\frac{\sum_{x \in D_k^s} e^{-d(x, x_j)}}{\sum_{x \in D_k^s} e^{-d(x, x_j)}} \right), k = y_j$$

Relaxation

$$\tilde{L} = \sup_{x \in D_k^s} \{ a \mid a \in d(x, x_j) \} - \inf_{x \in D_{\overline{k}}^s} \{ a \mid a \in d(x, x_j) \}$$

d-SNE: End-to-end learning

• Siamese network

d-SNE: Semi-supervised Extension

Teacher-Student Network

Evaluation Datasets & Protocols

- Digits Datasets
 - MNIST, USPS, MNIST-M, SVHN
 - 1-10 samples/class labeled in the target domain
- Office31 Datasets
 - Small scale dataset with 31 classes
 - 3 samples in the target domain
- VisDA-C Datasets
 - Large scale synthetic-real dataset
 - 10 samples/class in the target domain

Results: Digits - Quantitative Results

Method	Setting	k	MNIST→ MNIST-M	MNIST→USPS	USPS→MNIST	MNIST→SVHN	svhn→mnist
DIRT-T ^[1]	U		98.90	-	-	54.50	99.40
SE ^[2]			-	98.23	99.54	71.40	92.00
SBADA- GAN ^[3]			99.40	95.04	97.60	61.08	76.14
G2A ^[4]			-	95.30	90.80	-	92.40
FADA ^[5]	S	7	-	94.40	91.50	47.00	87.20
CCSA ^[6]		10	78.29	97.22	95.71	37.63	94.57
d CNE	3	7	84.62	97.53	97.52	53.19	95.68
d-SNE		10	87.80	99.00	98.49	61.73	96.45
d-SNE	SS	10	94.12	-	-	77.63	97.60

^[1] R. Shu, H. H. Bui, H. Narui, and S. Ermon. A DIRT-T Approach to unsupervised Domain Adaption. In Proc. ICLR, 2018

^[2] G. French, M. Mackiewicz, and M. Fisher. Self-ensembling for Visual Domain Adaptation. In *Proc. ICLR*, 2018

^[3] P. Russo, F. M. Carlucci, T. Tommasi, and B. Caputo. From source to target and back: symmetric bi-directional adaptive GAN. In Proc. CVPR, 2018.

^[4] S. Sankaranarayanan, Y. Balaji, C. D. Castillo, and R. Chellappa. Generate To Adapt: Aligning Domains using Generative Adversarial Networks. In Proc. CVPR, 2018

^[5] S. Motiian, Q. Jones, S. M. Iranmanesh, and G. Doretto. Few-Shot Adversarial Domain Adaptation. In Proc. NIPS 2018

^[6] S.Motiian, M.Piccirilli, D.A. Adjeroh, and G.Doretto. Unified Deep Supervised Domain Adaptation and Generalization. In Proc. IEEE ICCV, 2017

Results: Digits - Qualitative Results

Conclusions

- Use of stochastic neighborhood embedding and large margin nearest neighbor to learn a domain agnostic latent-space for few-shot supervised learning
- Extension to semi-supervised settings pushing the states-of-the-art further.

