	Poisson	distribution:	λ	KEN	PCATE)(k)=	Xi e-x	Max Bordelong
2	x~PCX	EC-3	$= \sum_{x \in W} x = \frac{\lambda}{x}$	i e	= Σ;	< (x-1) (x x x x x x x x x x x x x x x x x x	e- ^{\(\lambda\)}	
					- λ Σ ¿	x-1); e - \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	=	<u>></u>
							tion of a	
		Var (x)	= E[v2]-(E	(×])² =	$\left(\sum_{x}^{2} \frac{\lambda}{x!}\right)$			
								$\frac{\lambda^{(n)}}{(n-1)!} = \lambda - \lambda^2$
						•	· λ (Σ(κ-1) (κ	$\frac{1}{ 1 } = \lambda + \sum_{n=1}^{\infty} \frac{1}{(n-1)!} = \lambda - \lambda^{2}$ (See above)
		k					= λ ² + λ − λ	2 = <u>\lambda</u> =
3) P(k= x+	$(\gamma) = \sum_{i=0}^{K} i$						
				$=\sum_{i}\frac{d_{i}}{y_{i}}$				
				= e-(\(\)4#	· Σ λ	(k-0	bin	omial theorem
				= e (\(\lambda + \mu \)	\(\vec{ki}\) \(\zeta\)	(f) (f)	· μ ^{k-ί} (×+	y) $=\sum_{k=0}^{n} \binom{n}{k} \times y^{n-k}$
				=	Ki		0	

The second
$$\mathbb{R}(\lambda)$$
 is $\mathbb{R}(\lambda)$ and $\mathbb{R}(\lambda)$ is $\mathbb{R}(\lambda)$ i