Problem Solving Paradigms

Divide & Conquer; Greedy

André, Salles

Departamento de Informática Universidade Federal de Viçosa

INF 333 - 2022/2

Problem Solving Paradigms

- Complete Search
- Divide & Conquer
- Greedy
- Dynamic Programming

Complete Search

- Busca Exaustiva
- Força Bruta
- Backtracking

Obs.: já visto na semana anterior

Divide & Conquer

- Tenta simplificar a solução de um problema dividindo-o em partes menores e conquistando-as
- Passos
 - Dividir (+/- no meio) o problema original em *sub*-problemas
 - Encontrar sub-soluções para cada sub-problema (agora +fáceis)
 - Se necessário, combinar as sub-soluções para produzir uma solução completa para o problema principal
- Exemplos
 - Ordenação: quicksort, mergesort, heapsort
 - Estruturas: árvore binária de pesquisa, heap, segment tree
 - Pesquisa Binária

Divide & Conquer - Mergesort

Divide & Conquer - Quicksort

0	1	2	3	4	5	6	7
5	1 i 3	1	9	8	2	4	7 7
5	3	1	9 ; 9 ; 4	8	2	4 <i>j</i> 4 <i>j</i> 9	7
5	3	1	4	8	2	<i>j</i> 9	7
5	3	1	4	<i>i</i>	<i>j</i> 2	9	7
5	3	1	4	8 ; 8 ; 2 ; 2	2 ; 2 ; 8 ; 8	9	7
5	3	1	4	<i>j</i> 2	<i>i</i> 8	9	7 7
2	3	1	4	5	8	9	7
2	3	1	4 <i>j</i> 4				
2	3 ; 3 ; 3 ; 1 ; 1	1 ; 1 ; 3 ; 3 ; 3 3	4				
2	1	j 3	4				
2	j 1	<i>i</i> 3	4				
	2	3	4				
1 1							
		3	i j 4 i 4				
		j 3	i				
		3					
			4				
					8	9	7
					8	i	j
						i 9 i 7 j 7	j 7 j 9 i 9
					8		9
					7 7	8	9
					/		۵

Divide & Conquer - Binary Search Tree

Divide & Conquer - Pesquisa Binária

Uso comum: buscar item em array ordenado

- Verificar se o elemento do meio é o que estamos buscando
- Se for, ou se não há mais dados, fim
- Senão, buscar na parte esquerda ou direita, conforme o caso

Complexidade

 O(log n): pois o tamanho do espaço de busca é dividido ao meio a cada verificação

Funções prontas

• C++: binary_search <algorithm>

• C: bsearch <cstdlib>

Divide & Conquer - Pesquisa Binária

Outras funções úteis

- C++: lower_bound <algorithm>
 Retorna iterador para o primeiro elemento de [first,last) que é pelo menos x
- C++: upper_bound <algorithm> Retorna iterador para o primeiro elemento de [first,last] que é maior que x
- C++: equal_range <algorithm>
 Retorna uma pair com os dois acima (intervalo com iguais a x)

Divide & Conquer - Bisseção

Outro uso do mesmo princípio: método da bisseção

- Buscar raiz de uma função
- Interessante quando é difícil calculá-la analiticamente
- Condição: raiz em [a, b] onde f(a) e f(b) tem sinais opostos

Busca binária (bisseção)

Você quer fazer um empréstimo para comprar um carro e quer pagar prestações fixas de d dólares durante m meses. O valor original do carro é v dólares e o banco cobra i% do valor devido ao final de cada mês. Qual o valor de d? (ou seja, quanto deverá pagar por mês?*)

Exemplo

Seja d = 576, m = 2, v = 1000, e i = 10%

- Dívida após o 1º mês: $1000 \times 1.1 576 = 524$
- Dívida após o 2º mês: $524 \times 1.1 576 \approx 0$

^{*} arredondado para 2 casas decimais

Exemplo

Mas e se fossem dados apenas m = 2, v = 1000, e i = 10%.

- Como determinar que d = 576?
- Em outras palavras, buscar a raiz d tal que $f(d, 2, 1000, 10) \approx 0$

Resolvendo por busca binária (bisseção)

- Primeiramente, devemos encontrar um intervalo razoável [a...b]
- a = 1 já que temos que pagar alguma coisa (U\$1 pelo menos)
- b = 1100, no caso de pagar o empréstimo depois de um 1 mês
- E então encontrar d neste intervalo por bisseção

Resolvendo por busca binária (bisseção)

• Pagando d = (a+b)/2 = (1+1100)/2 = 550.5 dólares por mês faltarão 53.95 depois de 2 meses.

Então devemos aumentar d

- Pagando d = (a+b)/2 = (550.5 + 1100)/2 = 825.25 por mês sobrarão 523.025 depois de 2 meses. Então devemos diminuir d
- Pagando d = (a+b)/2 = (550.5 + 825.25)/2 = 687.875 por mês sobrarão 234.5375 depois de 2 meses. Então devemos diminuir d
- ... poucas* iterações logarítmicas depois...
- Pagando d = 576.190476... por mês, terminamos de pagar o empréstimo em 2 meses

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

^{*} mais precisamente $O(\log_2((b-a)/\varepsilon))$ iterações, sendo ε a tolerância de erro

- No exemplo, $log_2 1099/\varepsilon$ iterações
- Para $\varepsilon = 1e$ -9 são ≈ 40
- E para $\varepsilon = 1e$ -15 são $\approx 60^*$
- muito mais eficiente que uma busca linear em todos os valores de $d=[1\dots1100]/\varepsilon$

* na verdade, alguns competidores usariam laço de 100 iterações, que garante terminação, em vez de testar erro menor que ε , que pode levar a loop infinito por erro de ponto flutuante

Exemplo: UVa 714 - Copying Books (link)

- São dados M livros numerados 1, 2, . . . , M
- Os livros possuem p_1, p_2, \dots, p_m páginas respectivamente
- Todos devem ser copiados; você os distribui entre K escribas ($K \leq M$)
- Cada livro é dado a apenas um escriba
- Cada escriba recebe uma sequência consecutiva de livros
- Ou seja, existe uma sucessão crescente de inteiros
 0 = b₀ < b₁ < b₂ ··· < b_{k-1} ≤ b_k = m
 tal que o *i*-ésimo escriba recebe os livros de b_{i-1} + 1 até b_i
- O tempo gasto para copiar todos os livros é determinado pelo escriba que recebeu mais trabalho
- Seu objetivo é minimizar o máximo número de páginas de um escriba

- Existe uma solução por Programação Dinâmica
- Mas é possível "chutar" a resposta no estilo busca binária!

Exemplo: UVa 714 - Copying Books (link)

- Suponha M = 9 e K = 3 e $p_1, p_2, ..., p_9 = 100, 200, 300, 400, 500, 600, 700, 800, 900 respectivamente$
- Se chutarmos uma resposta = 1000, o problema é bem mais fácil: se o escriba com mais trabalho pode copiar até 1000 páginas, é possível?
- A resposta é NÃO.
 - escriba 1: {100, 200, 300, 400}*
 - escriba 2: {500}
 - escriba 3: {600}
 - {700,800,900} para ninguém
- Então tem que ser mais que 1000

atribuindo de forma "gulosa", o máximo que for possível

Exemplo: UVa 714 - Copying Books

- Se chutarmos uma resposta = 2000: se o escriba com mais trabalho pode copiar até 2000 páginas, é possível?
- A resposta é SIM, e com sobra!
 - escriba 1: {100, 200, 300, 400, 500}
 - escriba 2: {600, 700}
 - escriba 3: {800, 900}
- Os escribas 1, 2, 3 têm sobra respectivamente de {500, 700, 300}
- Então pode ser menos que 2000

Fazer busca binária no intervalo $[1, \sum_{i=1}^{m} p_i]$

Divide & Conquer - generalização

Encontrar a posição onde o valor de uma função muda.

- Seja ok (x) uma função que returna true se x é uma solução válida, false senão;
- E que ok (x) é false quando x < k e true quando $x \ge k$.

Iniciar com um valor z alto o suficiente que se sabe ser true. A função ok(x) será chamada $O(\log z)$ vezes.

- Busca binária pronta do C++: pesquisar em array (precisamos de algo mais genérico).
- Para usar busca binária em funções/predicados: precisa ser monotonica (false, false, false, true, true true OU true true, false, false, false)
 - Tente se convencer/provar que seu problema é assim.
 - Tente pensar: em problemas de maximização/minimização ou similares, se eu tiver um valor K, consigo descobrir se esse valor "é ok"? (exemplo: 1000 páginas do livro por escriba é uma solução válida?)

- Tente modelar o problema como um de decisão
- TSP: encontrar o menor ciclo
- TSP de decisão: predicado Existe um ciclo com custo ≤ X ? (no caso do TSP esse predicado é difícil de criar, mas em muitos problemas é fácil)
- Busca de elemento em array: onde está o número X?
- Busca de elemento em array (decisão): considerando a posição i, temos A[i] ≤ X ?
 - A=[1,2,5,9,10]
 - Temos $A[i] \le 8$? [true,true,true,false,false]
 - Temos A[i] ≤ 9 ? [true,true,true,false,false]
 - Isso é justamente o que a função lower_bound do C++ verifica.

- Veja exemplos de código para busca binária em binaria.cpp
- Idealmente, não mude esse código. Tente adaptar apenas o predicado.
- Algoritmos implementados com base em: Tutorial de busca binária do TopCoder. Nesse link há um EXCELENTE tutorial de busca binária.
- Exercício: tente resolver alguns problemas com esse código.

- C++ tem funções que permitem busca binária em intervalos de iteradores (binary_search, lower_bound, upper_bound, partition_point)
- Elas suportam predicados
- Desafio: precisamos de iteradores (normalmente são utilizados para estruturas de dados)
- C++20: agora temos iteradores de ranges (intervalos de inteiros igual range() de Python)
- Notícia ruim: nem g++9 suporta isso ainda... arriscado usar na maratona (calouros terão vida mais fácil...).
- Vejam: https://codeforces.com/blog/entry/97061

- Para funções "unimodais" (sobe de forma estrita, atinge um máximo e depois desce – ou vice-versa)
- Exemplo de utilidade: achar o máximo de uma função contínua (mas pode ser utilizado com valores discretos também).
- Para ilustrar, vamos tentar encontrar o máximo de uma função unimodal no intervalo [l,r]
- Exemplo de implementação aqui (link)
- Ideia resumida: intervalo dividido em 3 sub-intervalos de mesmo tamanho. Máximo nunca estará no subintervalo extremo ao lado do menor

- Para ilustrar, vamos tentar encontrar o máximo de uma função unimodal no intervalo [l,r]
 - Pegamos dividimos [l,r] em tres intervalos, com os pontos m₁ e m₂ definindo os subintervalos (de mesmo tamanho – na figura não são de mesmo tamanho).
 - Calculamos f(m₁) e f(m₂)
 - Se $f(m_1) > f(m_2)$

- Para ilustrar, vamos tentar encontrar o máximo de uma função unimodal no intervalo [l,r]
 - Pegamos dividimos [l,r] em tres intervalos, com os pontos m₁ e m₂ definindo os subintervalos (de mesmo tamanho – na figura não são de mesmo tamanho).
 - Calculamos f(m₁) e f(m₂)
 - Se $f(m_1) > f(m_2)$
 - \rightarrow Com certeza podemos descartar [m_2 ,r]

- Para ilustrar, vamos tentar encontrar o máximo de uma função unimodal no intervalo [l,r]
 - Pegamos dividimos [l,r] em tres intervalos, com os pontos m₁ e m₂ definindo os subintervalos (de mesmo tamanho – na figura não são de mesmo tamanho).
 - Calculamos f(m₁) e f(m₂)
 - Se $f(m_1) < f(m_2)$

- Para ilustrar, vamos tentar encontrar o máximo de uma função unimodal no intervalo [l,r]
 - Pegamos dividimos [l,r] em tres intervalos, com os pontos m₁ e m₂ definindo os subintervalos (de mesmo tamanho – na figura não são de mesmo tamanho).
 - Calculamos $f(m_1)$ e $f(m_2)$
 - Se $f(m_1) < f(m_2)$
 - \rightarrow Com certeza podemos descartar [I, m_1]

- Para ilustrar, vamos tentar encontrar o máximo de uma função unimodal no intervalo [l,r]
 - Pegamos dividimos [l,r] em tres intervalos, com os pontos m₁ e m₂ definindo os subintervalos (de mesmo tamanho – na figura não são de mesmo tamanho).
 - Calculamos f(m₁) e f(m₂)
 - Se $f(m_1) = f(m_2)$

- Para ilustrar, vamos tentar encontrar o máximo de uma função unimodal no intervalo [l,r]
 - Pegamos dividimos [I,r] em tres intervalos, com os pontos m_1 e m_2 definindo os subintervalos (de mesmo tamanho – na figura não são de mesmo tamanho).
 - Calculamos f(m₁) e f(m₂)
 - Se $f(m_1) = f(m_2)$
 - \rightarrow O máximo com certeza está em $[m_1, m_2]$
 - Podemos tratar isso separadamente (eliminando os dois intervalos extremos) ou junto com os dois casos acima (eliminando apenas um extremo)

 Dica: tenha código pronto para busca ternária em números reais e inteiros.

- Para inteiros, podemos utilizar simplesmente uma binária para encontrar máximo/mínimo: basta usar o predicado p(x) = f(x) < f(x+1)
- Dica: busca ternária em inteiros usando binária (link)

- Existem "poucos" algoritmos básicos usados em campeonatos de programação
- Problemas mais difíceis envolvem a combinação de 2 (ou mais) deles
- Tente decompor o problema em partes e resolvê-las de forma independente, cada uma com o método apropriado

Exemplo: ICPC 4445 - A Careful Approach (link)

São dados cenários de aterrissagem. Cada um tem N aviões $(2 \le N \le 8)$. Cada avião tem uma janela de tempo durante a qual é seguro aterrissar. Assim, o avião i deve aterrissar no intervalo $[a_i, b_i]$. $(0 \le a_i \le b_i \le 1440)$ Tarefa:

- Encontrar uma ordem de aterrissagem para todos os aviões que respeite as janelas de tempo
- Aterrissagens devem ser distantes tanto quanto possível de tal forma que o menor intervalo entre duas consecutivas seja o maior possível
- Imprimir a resposta em minutos e segundos, arredondada para o segundo mais próximo

Solução

- São 8 aviões. A melhor ordem pode ser achada por Força Bruta
- Para cada ordem, seja L o maior intervalo de tempo. Verificar se L é viável pode ser feito por Método Greedy:
 - O primeiro avião aterrissa o mais cedo possível: ai
 - Demais aviões: $max(a_i, horário do anterior + L)$
- Para intervalo L muito pequeno/grande
 - o último avião aterrissa antes/depois de b_i
 - então o valor de L deve ser aumentado/diminuído
 - encontrar o melhor valor por Divide & Conquer

Dynamic Programming

Obs.: será visto na próxima semana