Hugo Marquerie March 17, 2025

Continuidad

Definición 1 (Continuidad en un punto). Sean (X, \mathcal{T}_X) y (Y, \mathcal{T}_Y) espacios topológicos, una aplicación $f: X \longrightarrow Y$ es continua en $x_0 \in X$

$$\iff \forall V \in \mathcal{V}(f(x)) : \exists U \in \mathcal{V}(x) : f(U) \subset V.$$

Definición 2 (Continuidad). Sean (X, \mathcal{T}_X) y (Y, \mathcal{T}_Y) espacios topológicos, una aplicación $f: X \longrightarrow Y$ es continua $\iff \forall U \in \mathcal{V}(Y): f^{-1}(U) \in \mathcal{V}(X)$.

Referenciado en

- Apl-diferenciable
- Teo-universal-apl-cociente
- Homeomorfismo
- Prop-fn-continua-cociente-iff-composicion-continua
- Apl-propia
- Fn-clase-ck
- Teo-fundamental-calculo
- Teo-picard-lindelof
- Rama-log-complejo