3 - M - MD - Besprechung am:

Übungsserie - Taylorentwicklung

- 1. Bestimme für die folgenden Funktionen jeweils das Taylor-Polynom vom Grad 3 zum angegebenen Entwicklungspunkt x_0 :
 - a) $f(x) = x^3 + x^2 + x + 1$, $x_0 = 1$
 - b) $f(x) = \ln(\cos(\sin x)), x_0 = 0$
- 2. Gib die unendliche TaylorReihe von f(x) bzgl. der Entwicklungs-Stelle x_0 für

$$f(x) = \frac{1}{1+x}, \ x_0 = 1$$

- 3. $f(x) = xe^{-x}$ soll in der Umgebung von Null durch ein Polynom 3° Grades angenähert werden. Bestimme das Polynom und skizziere den Verlauf in der Umgebung von 0.
- 4. Bestimme den Grenzwert mit Hilfe der Taylorentwicklung:
 - a) $\lim_{x\to 0} \frac{\sin ax}{\sin bx}$

b) $\lim_{x\to 0} \frac{e^x - e^{-x}}{x}$

- c) $\lim_{x \to 0} \frac{x \sin x}{x^3}$
- 5. Stelle e^2 als Zahlenreihe dar.
- 6. Berechne den Funktionswert von $f(x) = \sqrt{1-x}$ an der Stelle x = 0.05 mit der Taylorreihe an der Stelle $x_0 = 0$ auf 6 Stellen genau! (0.974679)
- 7. Gib die Taylorentwicklung von $f(x) = \frac{1}{1-x}$ an der Stelle $x_0 = 2$ an.

3 - M - MD - Besprechung am:

Übungsserie - Taylorentwicklung

1. Bestimme für die folgenden Funktionen jeweils das Taylor-Polynom vom Grad 3 zum angegebenen Entwicklungspunkt x_0 :

a)
$$f(x) = x^3 + x^2 + x + 1$$
, $x_0 = 1$

b)
$$f(x) = \ln(\cos(\sin x)), x_0 = 0$$

2. Gib die unendliche TaylorReihe von f(x) bzgl. der Entwicklungs-Stelle x_0 für

$$f(x) = \frac{1}{1+x}, \ x_0 = 1$$

- 3. $f(x) = xe^{-x}$ soll in der Umgebung von Null durch ein Polynom 3° Grades angenähert werden. Bestimme das Polynom und skizziere den Verlauf in der Umgebung von 0.
- 4. Bestimme den Grenzwert mit Hilfe der Taylorentwicklung:
 - a) $\lim_{x \to 0} \frac{\sin ax}{\sin bx}$

b) $\lim_{x\to 0} \frac{e^x - e^{-x}}{x}$

- c) $\lim_{x\to 0} \frac{x-\sin x}{x^3}$
- 5. Stelle e^2 als Zahlenreihe dar.
- 6. Berechne den Funktionswert von $f(x) = \sqrt{1-x}$ an der Stelle x = 0.05 mit der Taylorreihe an der Stelle $x_0 = 0$ auf 6 Stellen genau! (0.974679)
- 7. Gib die Taylorentwicklung von $f(x) = \frac{1}{1-x}$ an der Stelle $x_0 = 2$ an.