《VLSI数字通信原理与设计》课程

主讲人 贺光辉

第十一讲:调制解调硬件设计

1. 基带收发器系统架构(1)

S. J. Hwang, Y. Han, S. W. Kim, J. Park and B. G. Min, "Resource Efficient Implementation of Low Power MB-OFDM PHY Baseband Modem With Highly Parallel Architecture," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 20, no. 7, pp. 1248-1261, July 2012.

1. 基带收发器系统架构 (3)

Chang C C, Su C H, Wu J M. A low power baseband OFDM receiver IC for fixed WiMAX communication[C]// Asian Solid-state Circuits Conference. IEEE, 2007.

1. 基带收发器系统架构 (4)

DDC block diagram

DUC block diagram

2.调制解调中的硬件设计 ——广播电台中的调制与解调

语音信号频率为 300~3400Hz

为什么需要调制技术?

- > 天线长度限制
- > 频段限制

FM收音机频段 87.5~108MHz

2.调制解调中的硬件设计 ——调制的原理

坐标旋转数字计算机 (Coordinate Rotation Digital Computer, CORDIC)

02 调制解调器

- 2.1 CORDIC基本原理
- 2.2 CORDIC硬件结构
- 2.3 CORDIC应用实例

2.1 CORDIC基本原理 —— 三角函数计算

- 查表法: 需要大量储存空间
- 级数展开法

有没有更有效的方法?

角度	正弦值	余弦值
0°	0.0000	1.0000
0.1°	0.0017	1.0000
0.2°	0.0035	1.0000
•••	•••	•••
29.9°	0.4985	0.8669
30.0°	0.5000	0.8660
30.1°	0.5015	0.8652
•••	•••	•••
89.9°	1.0000	0.0017
90.0°	1.0000	0.0000

2.1 CORDIC基本原理 —— 简介

- 坐标旋转数字计算机(Coordinate Rotation Digital Computer, CORDIC)
 - 通过移位和加减运算, 递归计算函数值的算法
- 两种模式

旋转化:将向量(x, y)旋转特定角度 ϕ 到(x', y')

如:旋转(1,0)角度 ϕ ,得到 $(cos\phi, sin\phi)$

向量化: 旋转向量(x, y), 使其落在x轴上

如:旋转(1, y)到x轴, 旋转角度为arctan(y)

J. E. Volder 1959年提出

2.1 CORDIC基本原理 —— 向量旋转原理

向量旋转公式:将向量(x,y)逆时针旋转 ϕ 角度得到新向量(x',y')

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$
 旋转: 保持向 量长度不变

提出公因子 $cos\phi$ 有

对向量长度的缩放

变向量长度 (x,y)

为减少计算量,引入伪旋转

$$\begin{bmatrix} x'' \\ y'' \end{bmatrix} = \begin{bmatrix} \mathbf{1} & -tan\phi \\ tan\phi & \mathbf{1} \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$

如何用有限次旋转 逼近任意角度?

2.1 CORDIC基本原理 —— 旋转方法

例:如何最快用有限已知角旋转出30°?

• 初始:
$$\phi = 0^{\circ}$$

$$(< 30^{\circ}, +)$$

• 步骤1:
$$\phi = 0^{\circ} + 45^{\circ} = 45^{\circ}$$

$$(>30^{\circ}, -)$$

• 步骤2:
$$\phi = 45^{\circ} - 22.5^{\circ} = 22.5^{\circ}$$

$$(< 30^{\circ}, +)$$

• 步骤3:
$$\phi = 22.5^{\circ} + 12.25^{\circ} = 33.75^{\circ}$$
 (> 30°, -)

$$(>30^{\circ}, -)$$

• 步骤4:
$$\phi = 33.75^{\circ} - 5.625^{\circ} = 28.125^{\circ}$$
 (< 30°, +)

$$(< 30^{\circ}, +)$$

多次旋转后 $\phi = 0^{\circ} + 45^{\circ} - 22.5^{\circ} + 11.25^{\circ} - 5.625^{\circ} + \cdots \approx 30^{\circ}$

步骤	$\Delta \phi$
1	45°
2	22 . 5°
3	11.25°
4	5.625°
5	2.8125°
6	• • •

2.1 CORDIC基本原理 —— 旋转方法

例:如何最快用有限已知角旋转出30°?

• 初始:
$$\phi = 0^{\circ}$$

$$(< 30^{\circ}, +)$$

• 步骤1:
$$\phi = 0^{\circ} + 45^{\circ} = 45^{\circ}$$

$$(>30^{\circ}, -)$$

• 步骤2:
$$\phi = 45^{\circ} - 22.5^{\circ} = 22.5^{\circ}$$

$$(< 30^{\circ}, +)$$

• 步骤3:
$$\phi = 22.5^{\circ} + 12.25^{\circ} = 33.75^{\circ}$$
 (> 30°, -)

$$(>30^{\circ}, -)$$

• 步骤4:
$$\phi = 33.75^{\circ} - 5.625^{\circ} = 28.125^{\circ}$$
 (< 30°, +)

$$(< 30^{\circ}, +)$$

多次旋转后 $\phi = 0^{\circ} + 45^{\circ} - 22.5^{\circ} + 11.25^{\circ} - 5.625^{\circ} + \cdots \approx 30^{\circ}$

n次旋转,需计算2n次乘法

$$x'' = x - y \cdot tan\Delta\phi$$

$$y'' = y + x \cdot tan\Delta\phi$$

2.1 CORDIC基本原理—— CORDIC旋转角度改进

$CORDIC将 tan \Delta \phi$ 设计为 2^{-i} 形式,把乘法转化为移位操作

步骤	$\Delta oldsymbol{\phi}$	tan Δφ
1	45°	1
2	22.5°	0.41421
3	11.25°	0.19891
4	5.625°	0.09849
5	2.8125°	0.04913
• • •		

步骤	$\Delta oldsymbol{\phi}$	tan Δφ
1	45°	1
2	26.565°	0.5
3	14.036°	0.25
4	7.1250°	0.125
5	3.5763°	0.0625
•••		

每次旋转正切值减半

当
$$tan\Delta\phi = 2^{-i}$$
时

$$x^{\prime\prime} = x - y \cdot tan\Delta\phi$$

$$y'' = y + x \cdot tan\Delta\phi$$

乘法避免 收敛速度降低

2.1 CORDIC基本原理 —— 系数补偿

n次旋转,经过2n次移位和加法操作,将 (1,0)旋转 ϕ 角度到(x'',y'')

$$x'' = cos\phi, y'' = sin\phi$$
是否成立

n 次旋转后补偿系数为

$$k = \cos 45^{\circ} \cdot \cos 26.565^{\circ} \cdot \cos 14.036^{\circ} \cdot \cdots$$

$$\approx 0.60725 \ (n \rightarrow \infty)$$

伪旋转: 改变向量长度

$$x'' = x - y \cdot tan\Delta\phi$$
$$y'' = y + x \cdot tan\Delta\phi$$

旋转:不改变向量长度

$$x' = \cos \Delta \phi \cdot (x - y \cdot \tan \Delta \phi)$$

$$y' = \cos \Delta \phi \cdot (y + x \cdot \tan \Delta \phi)$$

2.1 CORDIC基本原理 —— CORDIC旋转示例 (1)

工作过程

φ	$\Delta\phi$	X	у
0°	+45°	1	0
45°	-26.565°	1	1
18.435°	+14.036°	1.5	0.5
32.471°	-7.1250°	1.375	0.875
25.346°	+3.5763°	1.4844	0.7031
28.923°	+1.7899°	1.4404	0.7959
30.712°	-0.8952°	1.4156	0.8409

迭代6次时,补偿系数k = 0.60735

$$\cos 30^{\circ} = k \cdot x = 0.8598$$

 $\sin 30^{\circ} = k \cdot y = 0.5107$

2.1 CORDIC基本原理—— CORDIC旋转示例 (2)

- 随着迭代次数增加,计算精度提升
- CORDIC能表示的角度最大范围为

$$\phi = 45^{\circ} + 26.6^{\circ} + 14.0^{\circ} + 7.1^{\circ} + \dots = 99.7^{\circ}$$

如何计算360° 范围的角度?

$$cos(\phi + 90^{\circ}) = -sin\phi$$

 $sin(\phi + 90^{\circ}) = cos\phi$
 $cos(\phi + 180^{\circ}) = -cos\phi$
 $sin(\phi + 180^{\circ}) = -sin\phi$

可以将任意角度转换到0°~90°求解

迭代 次数	X	у
7	0.86762	0.49724
8	0.86370	0.50400
9	0.86567	0.50062
10	0.86664	0.49892
11	0.86616	0.49977
12	0.86591	0.50020
•••		
$cos 30^{\circ} = 0.86603$ $sin 30^{\circ} = 0.5$		

2.1 CORDIC基本原理 —— 向量方法

向量方法:

顺时针旋转向量(x,y)使其落在x轴上

向量旋转公式:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos\phi & \sin\phi \\ -\sin\phi & \cos\phi \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \cos\phi \cdot \begin{bmatrix} 1 & -\tan\phi \\ \tan\phi & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$

伪旋转:
$$\begin{bmatrix} x'' \\ y'' \end{bmatrix} = \begin{bmatrix} 1 & tan\phi \\ -tan\phi & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$

符号与旋转方法相反

口通过旋转使得纵坐标y值趋近于0,可用于计算arctan (y/x)

2.2 CORDIC硬件结构 —— 迭代结构

$x'' = x - y \cdot tan\Delta\phi$ $y'' = y + x \cdot tan\Delta\phi$

$$\phi_{i+1} = \phi_i + d_i \cdot \Delta \phi_i$$

$$x_{i+1} = x_i - y_i \cdot d_i \cdot 2^{-i}$$

$$y_{i+1} = y_i + x_i \cdot d_i \cdot 2^{-i}$$

其中 d_i 表示旋转方向,逆时针旋转为1,顺时针旋转为-1

迭代串行结构

迭代次数较多时。 计算速度慢

LUT储存的定点值

tanΔφ	Δ <i>φ</i> 浮点值	$\Delta\phi$ 定点值
2^{-0}	45°	16'h500
2^{-1}	26.565°	16'h3521
2^{-2}	14.036°	16'h1c12
2^{-3}	7.1250°	16'h0e40
2^{-4}	3.5763°	16'h0727
2^{-5}	1.7899°	16'h0394
•••		

注: 定点值用16位表示

2.2 CORDIC硬件结构 —— 流水线结构

n级流水线结构如下

2.3 CORDIC应用实例 —— 调制技术的硬件实现

例:语音信号f(t)频率为 $f_H = 1kHz$, 而广播电台频段为 $f_c = 97.9MHz$ 。 如何通过CORDIC实现调制?

步骤1: 以 $f_s = 2f_H$ 的频率对f(t)采样得到信号f(n), n = 0, 1, 2

步骤2: 确定角度值 $\phi_n = 2\pi f_c n/f_s$,并映射到 $-90^{\circ} \sim 90^{\circ}$

步骤3: 用12级流水线结构CORDIC 电路计算 $g(n) = f(n) \cdot cos(\phi_n)$ 输入 $x_0 = f(n), y_0 = 0, \phi_0 = \phi_n$

总结

- 调制解调中的硬件设计: CORDIC
 - ●使用CORDIC计算三角函数的步骤为:
 - ●设置迭代初值
 - ●确定旋转方向
 - ●更新旋转角度和坐标
 - ●补偿系数
 - CORDIC算法易于硬件实现,通过流水线能提升处理速度