SIMULATION EXPERIMENTS USING LT_SPICE SOFTWARE (VERSION 17)

Exp.No: VERIFICATION OF THEOREMS

Date:

Aim:

To verify Kirchhoff's Voltage Law, Kirchhoff's current Law and superposition theorem using LT-SPICE simulation package.

Tools Used: PC/Laptop loaded with LT-SPICE.

Procedure:

- 1. Open LTSpice software.
- 2. Start a new schematic design by clicking File->New schematic.
- 3. Place the components as per the given circuit to the new schematic page.
- 4. Save the schematic design inside a user created folder using File-> Save As.
- 5. Rearrange the components and connect the wires to complete the circuit drawing.
- 6. Change the values of the components.
- 7. If necessary, Rename the parts, and add a net name for every node.
- 8. Setup the simulation command by using simulate-> Edit simulation Cmd.
- Select any one of the simulation types such as Transient, AC Analysis, DC Sweep or DC op pnt as per the circuit analysis needs.
- 10. Perform simulation by selecting Run option.
- 11. Observe the input and output results.

ILLUSTRATION:

- 1) The latest version of LTSpice Software must be opened.
- 2) To start a new schematic design, Click File->New schematic

3) To place the components, Use the Component toolbox.

4) Use the shortcut keys or the icons at the toolbar of the schematic.

Shortcut Keys:

Component selection :F2 ;Ground :G Connecting wires :F3 ;Inductor :L Diode :D ;Capacitor :C

Resistor :R or r ;Rotate :Ctrl+R

5) To save the schematic, Click File->Save As and save the schematic in a folder.Rearrange the components using Ctrl+R, and connect the wires as such in the given circuit.

6) Move the cursor to the component, Right click when you see a hand symbol, Enter the values for the respective component. If necessary, Right Click on the name of the component and rename the components, If necessary, Rename a node by Clicking on F4(shortcut for Label Naming).

7) To setup the simulation command, Click Simulate->Edit Simulation Cmd. Select any one of the simulation types such as Transient, AC Analysis, DC Sweep or DC op pnt as per the circuit analysis needs.

- 8) Perform simulation by clicking on Run option.
- 9) Observe the input and output results

Measure the voltage of the component in the graph by clicking on the end of the component while the knob - like icon is visible.

Measure the current of the component in the graph by clicking on the end of the component while the arrow – like icon is visible.

SCHEMATIC CIRCUIT DIAGRAMS

Kirchhoff Current Law:

1)

2)

Kirchhoff Voltage Law:

Superposition Theorem:

Total:

Keeping V1 and short circuiting V2:

Keeping V2 and short circuiting V1:

OUTPUT RESULTS:

1. KVL VERIFICATION:

The voltage supplied is, V1 = 10V ------1 Voltage across R1, V(R1) = V(vr1) – V(vr2) = 5.076V Voltage across R2, V(R2) = V(vr2) – V(vr3) = 3.374V Voltage across R3, V(R3) = V(vr3) = 1.550V
$$V(R1) + V(R2) + V(R3) = 10V ------2$$
 Voltage across R5, V(R4) = $10 - V(vr5) = 1.411V$ Voltage across R2, V(R5) = V(vr5) – V(vr6) = 6.459V Voltage across R3, V(R6) = V(vr6) = 2.130V
$$V(R4) + V(R5) + V(R6) = 10V ------3$$
 From 1, 2 and 3, KVL is verified

2. KCL VERIFICATION:

1ST CIRCUIT

Current flowing from V1, I(V1) = 229.19mA -----1

Current flowing through R1, I(R1) = 54.78mA

Current flowing through R2, I(R2) = 119.63mA

Current flowing through R3, I(R3) = 54.78mA

$$I(R1) + I(R2) + I(R3) + = 229.91 \text{mA} -----2$$

From 1 and 2, KCL is verified

2ND CIRCUIT

Current flowing from V1, I(V1) = 93.91mA -----1

Current flowing through R1, I(R1) = 7.08mA

Current flowing through R2, I(R2) = 14.78mA

Current flowing through R3, I(R3) = 68.20mA

Current flowing through R5, I(R5) = 3.85mA

$$I(R1) + I(R2) + I(R3) + I(R5) = 93.91$$
mA -----2

From 1 and 2, KCL is verified

3.SUPERPOSITION THEOREM VERIFICATION:

Current through R4, I(R4) = 2.033mA -----1

After removing the 2nd source(8V),

Current through R4, I(R4) = 0.485mA After removing 1st source(10V),

Current through R4, I(R4) = 1.548mA

Apply superposition theorem,

$$I(R4) = 1.548 + 0.485 = 2.033mA$$
 -----2

From 1 and 2, Superposition theorem is verified

RESULT:

Thus the verification Kirchhoff's Voltage Law, Kirchhoff's current Law and superposition theorem was done using LT

Exp. No: SERIES AND PARALLEL RESONANCE CIRCUITS

Date:

Aim:

To verify Frequency response of series and parallel resonance circuits using LT-SPICE simulation package.

Tools Used: PC/Laptop loaded with LT-SPICE

Keyboard shortcuts:

1. Component selection: F2

2. Connecting wire: F3

3. Diode: D

4. Ground: G

5. Resistor: R

6. Inductor: L

7. Capacitor: C

.Procedure:

- 1. Open LTSpice software.
- 2. Start a new schematic design by clicking File->New schematic.
- 3. Place the components as per the given circuit to the new schematic page.
- 4. Save the schematic design inside a user created folder using File-> Save As.
- Rearrange the components and connect the wires to complete the circuit drawing.
- 6. Change the values of the components.

- 7. If necessary, Rename the parts, and add a net name for every node.
- 8. Setup the simulation command by using simulate-> Edit simulation Cmd.
- Select any one of the simulation types such as Transient, AC Analysis, DC Sweep or DC op pnt as per the circuit analysis needs.

- 10. Perform simulation by selecting Run option.
- 11. Observe the input and output results.

SCHEMATIC CIRCUIT DIAGRAMS:

Series resonance circuit:

Parallel resonance circuit:

OUTPUT RESULTS:

Series Resonance circuit:

Parallel resonance circuit:

RESULT:

Thus the output waveforms of series and parallel resonance circuits were verified using LT SPICE simulation package.

Exp.No: TRANSISTOR CHARACTERISTICS

DATE:
Aim:

To obtain the input and output characteristics of a bipolar junction transistor using LT-SPICE simulation package.

Tools Used: PC/Laptop loaded with LT-SPICE Version 17.

Keyboard shortcuts:

1. Component selection: F2

2. Connecting wire: F3

3. Diode: D

4. Ground: G

5. Resistor: R

6. Inductor: L

7. Capacitor: C

.Procedure:

- 1. Open LTSpice software.
- 2. Start a new schematic design by clicking File->New schematic.
- 3. Place the components as per the given circuit to the new schematic page.

- 4. Save the schematic design inside a user created folder using File-> Save As.
- 5. Rearrange the components and connect the wires to complete the circuit drawing.
- 6. Change the values of the components.
- 7. If necessary, Rename the parts, and add a net name for every node.
- 8. Setup the simulation command by using simulate-> Edit simulation Cmd.
- Select any one of the simulation types such as Transient, AC Analysis, DC Sweep or DC op pnt as per the circuit analysis needs.
 For input characteristics:

For output characteristics:

- 10. Perform simulation by selecting Run option.
- 11. Observe the input and output results.

Transistor 1(BC547B):

Schematic circuit diagrams:

Input characteristics:

Output Characteristics:

Output result:

Input Characteristics:

Output characteristics:

Transistor-2(2SC2411K):

Schematic Circuit Diagrams:

Input Characteristics:

Output Characteristics:

Output Result:

Input Characteristics:

Output Characteristics:

RESULT:

Thus the input and output characteristics of bipolar junction transistor is obtained using LT SPICE simulation package

EXP. NO: N-CHANNEL MOSFET OUTPUT AND TRANSFER DATE: CHARACTERISITCS

Aim:

To study the transfer and output characteristics of an n-channel Metal Oxide Semiconductor Field Effect Transistor(MOSFET) in Common – Source Configuration using LT-SPICE simulation package.

Tools Used: PC/Laptop loaded with LT-SPICE.

Procedure:

- 1. Open the Latest version of LTSpice software.
- 2. Start a new schematic design by clicking File->New schematic.
- 3. Place the components as per the given circuit to the new schematic page.

4. Save the schematic design inside a user created folder using File-> Save As.

- 5. Rearrange the components and connect the wires to complete the circuit drawing.
- 6. Change the values of the components.
- 7. If necessary, Rename the parts, and add a net name for every node.
- 8. Setup the simulation command by using simulate-> Edit simulation Cmd.
- 9. Select the simulation type DC Sweep.

- 10. Perform simulation by selecting Run option.
- 11. Observe the input and output results.

SCHEMATIC CIRCUIT DIAGRAMS

N-CHANNEL MOSFET

1. DRAIN CHARACTERISTICS

2. TRANSFER CHARACTERISTICS

SIMULATION COMMANDS FOR TRANSFER CHARACTERISTICS

OUTPUT RESULTS

1. DRAIN CHARACTERISTICS OF N-CHANNEL MOSFET

2. TRANSFER CHARACTERISTICS OF N-CHANNEL MOSFET

Result:

Thus the transfer and output characteristics of an n-channel Metal Oxide Semiconductor Field Effect Transistor (MOSFET) in Common – Source Configuration is studied using LT-SPICE simulation package.