

TEST REPORT FROM RFI GLOBAL SERVICES LTD

Test of: R&S TechMedic BV Dyna-Vision DVM-012SG

To: OET Bulletin 65 Supplement C: (2001-01)

Test Report Serial No: RFI/SAR2/RP77230JD05A

Supersedes Test Report Serial No: RFI/SAR1/RP77230JD05A

This Test Report Is Issued Under The Authority Of Scott D'Adamo, Operations Manager Global Approvals	pp pp
Checked By: Richelieu Quoi	Report Copy No: PDF01
Issue Date: 13 May 2010	Test Dates: 29 March to 11 May 2010

"The *Bluetooth*® word mark and logos are owned by the Bluetooth SIG, Inc. and any use of such marks by RFI Global Services Ltd. is under license. Other trademarks and trade names are those of their respective owners."

This report is issued in Adobe Acrobat portable document format (PDF). It is only a valid copy of the report if it is being viewed in PDF format with the following security options not allowed: Changing the document, Selecting text and graphics, Adding or changing notes and form fields.

This report may be copied in full. The results in this report apply only to the sample(s) tested.

RFI Global Services Ltd

Pavilion A, Ashwood Park, Ashwood Way, Basingstoke, Hampshire RG23 8BG Telephone: +44 (0)1256 312000 Facsimile: +44 (0)1256 312001 Email: info@rfi-global.com Website: www.rfi-global.com

Test Report

Serial No: RFI/SAR2/RP77230JD05A

Page: 2 of 47

Issue Date: 13 May 2010

Test of: R&S TechMedic BV Dyna-Vision DVM-012SG

To: OET Bulletin 65 Supplement C: (2001-01)

This page has been left intentionally blank.

Test Report

Serial No: RFI/SAR2/RP77230JD05A

Page: 3 of 47

Issue Date: 13 May 2010

Test of: R&S TechMedic BV Dyna-Vision DVM-012SG

To: OET Bulletin 65 Supplement C: (2001-01)

Table of Contents

1. Customer Information	4
2. Equipment Under Test (EUT)	
3. Test Specification, Methods and Procedures	
4. Deviations from the Test Specification	
5. Operation and Configuration of the EUT during Testing	10
6. Summary of Test Results	11
7. Measurements, Examinations and Derived Results	12
8. Measurement Uncertainty	16
Appendix 1. Test Equipment Used	19
Appendix 2. Measurement Methods	22
Appendix 3. SAR Distribution Scans	24
Appendix 4. Photographs	
Appendix 5. Validation of System	
Appendix 6. Simulated Tissues	
Appendix 7. DASY4 System Details	

Test Report

Serial No: RFI/SAR2/RP77230JD05A

Page: 4 of 47

Issue Date: 13 May 2010

Test of: R&S TechMedic BV Dyna-Vision DVM-012SG

To: OET Bulletin 65 Supplement C: (2001-01)

1. Customer Information

Company Name:	R&S TechMedic BV
Address:	Broeker Werf 6
	1721 PC Broek op Langedijk
	Langedijk
	The Netherlands

Test Report

Serial No: RFI/SAR2/RP77230JD05A

Page: 5 of 47

Issue Date: 13 May 2010

Test of: R&S TechMedic BV Dyna-Vision DVM-012SG

To: OET Bulletin 65 Supplement C: (2001-01)

2. Equipment Under Test (EUT)

2.1. Identification of Equipment Under Test (EUT)

Description:	Remote Patient Monitor
Brand Name:	Dyna-Vision
Model Name or Number:	DVM-012SG
Serial Number:	DV08Y01B0082
IMEI Number:	359983000890016
Hardware Version Number:	3808
Software Version Number:	3.00
Hardware Revision of GSM Module:	None Stated
Software Revision of GSM Module:	None Stated
FCC ID Number:	GC145698
Country of Manufacture:	The Netherlands
Date of Receipt:	11 March 2010

2.2. Description of EUT

The equipment under test was a Class IIb medical device, to be used for recording and/or (simultaneous) transmission of Electrocardiography (ECG) and SpO2 signals. The EUT has *Bluetooth* and GSM/GPRS 850/900/1800/1900 capabilities, with an integral antenna.

2.3. Modifications Incorporated in the EUT

There were no modifications incorporated in the EUT.

Test Report

Serial No: RFI/SAR2/RP77230JD05A

Page: 6 of 47

Issue Date: 13 May 2010

Test of: R&S TechMedic BV Dyna-Vision DVM-012SG

To: OET Bulletin 65 Supplement C: (2001-01)

2.4. Accessories

The following accessories were supplied with the EUT during testing:

Description:	3 Lead Wire ECG Cable
Brand Name:	Dyna-Vision
Model Name or Number:	None Stated
Serial Number:	080912-061/ 4680609
Cable Length and Type:	~ 0.5 m
Country of Manufacture:	None Stated
Connected to Port	Unique to Manufacturer

Description:	Carry Case with belt loop
Brand Name:	Dyna-Vision
Model Name or Number:	None Stated
Serial Number:	None Stated
Cable Length and Type:	Not Applicable
Country of Manufacture:	None Stated
Connected to Port	Not Applicable

2.5. Support Equipment

The following support equipment was used to exercise the EUT during testing:

Description:	Communication Test Set
Brand Name:	Rohde & Schwarz
Model Name or Number:	CMU200
Serial Number:	116284
Cable Length and Type:	~2.0 m Utiflex RF cable
Connected to Port:	RF (Input/Output) Air Link

Test Report

Serial No: RFI/SAR2/RP77230JD05A

Page: 7 of 47

Issue Date: 13 May 2010

Test of: R&S TechMedic BV Dyna-Vision DVM-012SG

To: OET Bulletin 65 Supplement C: (2001-01)

2.6. Additional Information Related to Testing

Equipment Category	GPRS850 / GPRS19	00	
Type of Unit	Short Range Device		
Intended Operating Environment:	Within GSM coverage frequency range		
Transmitter Maximum Output Power Characteristics:	GPRS850	GSM Wireless Communication Test Set was configured to allow the EUT to transmit at a maximum power of up to 33dBm.	
	GPRS1900	GSM Wireless Communication Test Set was configured to allow the EUT to transmit at a maximum power of up to 30dBm.	
Transmitter Maximum Output	GPRS850	32.2 dBm (Measured)
Power Measured:	GPRS1900	28.5 dBm (Measured)
Transmitter Frequency Range:	GPRS850	(824 to 850) MHz	
	GPRS1900	(1850 to 1910) MHz	
Transmitter Frequency Allocation of EUT When Under Test:	Channel Number	Channel Description	Frequency (MHz)
	128	Low	824.2
	189	Middle	836.4
	251	High	848.8
	512	Low	1850.2
	660	Middle	1879.8
	810	High	1909.8
Modulation(s):	GMSK: 217 Hz		
Modulation Scheme (Crest Factor):	GPRS: 4		
Antenna Type:	Internal		
Antenna Length:	Unknown		
Number of Antenna Positions:	1 Fixed		
Power Supply Requirement:	3.7 V		
Battery Type(s):	Li-ion		

Test Report

Serial No: RFI/SAR2/RP77230JD05A

Page: 8 of 47

Issue Date: 13 May 2010

Test of: R&S TechMedic BV Dyna-Vision DVM-012SG

To: OET Bulletin 65 Supplement C: (2001-01)

3. Test Specification, Methods and Procedures

3.1. Test Specification

Reference:	OET Bulletin 65 Supplement C: (2001-01)
Title:	Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields.
Purpose of Test:	To determine whether the equipment met the basic restrictions as defined in OET Bulletin 65 Supplement C: (2001-01) using the SAR averaging method as described in the test specification above.

3.2. Methods and Procedures Reference Documentation

The methods and procedures used were as detailed in:

Federal Communications Commission, "Evaluating compliance with FCC Guidelines for human exposure to radio frequency electromagnetic fields", OET Bulletin 65 Supplement C, FCC, Washington, D.C, 20554, 2001.

Thomas Schmid, Oliver Egger and Neils Kuster, "Automated E-field scanning system for dosimetric assessments", IEEE Transaction on microwave theory and techniques, Vol. 44, pp. 105-113, January 1996.

Neils Kuster, Ralph Kastle and Thomas Schmid, "Dosimetric evaluation of mobile communications equipment with know precision", IEICE Transactions of communications, Vol. E80-B, No.5, pp. 645-652, May 1997.

KDB447498 D01 Mobile Portable RF Exposure v04

3.3. Definition of Measurement Equipment

The measurement equipment used complied with the requirements of the standards referenced in the methods & procedures section above. Appendix 1 contains a list of the test equipment used.

Test Report

Serial No: RFI/SAR2/RP77230JD05A

Page: 9 of 47

Issue Date: 13 May 2010

Test of: R&S TechMedic BV Dyna-Vision DVM-012SG

To: OET Bulletin 65 Supplement C: (2001-01)

4. Deviations from the Test Specification

Test was performed according to the body-worn procedures in consideration with FCC OET Bulletin 65 Supplement C 01-01 test.

Prior to commencement of SAR test the FCC was contacted on the test configuration of the device. The proposed test configuration and power level was detailed in the KDB. The following KDB tracking number 971593 was assigned to the inquiry.

Test Report

Serial No: RFI/SAR2/RP77230JD05A

Page: 10 of 47

Issue Date: 13 May 2010

Test of: R&S TechMedic BV Dyna-Vision DVM-012SG

To: OET Bulletin 65 Supplement C: (2001-01)

5. Operation and Configuration of the EUT during Testing

5.1. Operating Modes

The EUT was tested in the following operating mode(s) unless otherwise stated:

- GPRS1900 data allocated mode with communication test set, set up to transmit at 30 dBm with 2 uplink channels.
- GPRS850 data allocated mode with communication test-set set up to transmit at 33 dBm with 2 uplink channels.

5.2. Configuration and Peripherals

The EUT was tested in the following configuration(s) unless otherwise stated:

- Standalone battery powered
- EUT was positioned with the front and rear in direct contact with the 'SAM' phantom. The EUT was tested while Placed in Dyna-Vision Carry case with belt loop and 3 Lead Wire ECG Cable attached.

Body Configuration

- a) The EUT was placed in a normal operating position where the centre of EUT was aligned with the centre reference point on the flat section of the 'SAM' phantom.
- b) With the EUT touching the phantom at an imaginary centre line. The EUT was aligned with a marked plane (X and Y axis) consisting of two lines.
- c) For the touch-safe position the EUT was gradually moved towards the flat section of the 'SAM' phantom until any point of the EUT touched the phantom.
- d) SAR measurements were evaluated at maximum power and the unit was operated for an appropriate period prior to the evaluation in order to minimise the drift.
- e) The device was keyed to operate continuously in the transmit mode for the duration of the test.
- f) The location of the maximum spatial SAR distribution (hot spot) was determined relative to the EUT and its antenna.
- g) The EUT was transmitting at full power throughout the duration of the test powered by a fully charged battery.

Test Report

Serial No: RFI/SAR2/RP77230JD05A

Page: 11 of 47

Issue Date: 13 May 2010

Test of: R&S TechMedic BV Dyna-Vision DVM-012SG

To: OET Bulletin 65 Supplement C: (2001-01)

6. Summary of Test Results

Test Name	Specification Reference	Results
Specific Absorption Rate-GPRS850 Body Configuration 1g	OET Bulletin 65 Supplement C: (2001-01)	Complied
Specific Absorption Rate-GPRS1900 Body Configuration 1g	OET Bulletin 65 Supplement C: (2001-01)	Complied

6.1. Location of Tests

All the measurements described in this report were performed at the premises of RFI Global Services Ltd, Pavilion A, Ashwood Park, Ashwood Way, Basingstoke, Hampshire, RG23 8BG United Kingdom

Test Report

Serial No: RFI/SAR2/RP77230JD05A

Page: 12 of 47

Issue Date: 13 May 2010

Test of: R&S TechMedic BV Dyna-Vision DVM-012SG

To: OET Bulletin 65 Supplement C: (2001-01)

7. Measurements, Examinations and Derived Results

7.1. General Comments

This section contains test results only.

Measurement uncertainties are evaluated in accordance with current best practice. Our reported expanded uncertainties are based on standard uncertainties, which are multiplied by an appropriate coverage factor to provide a statistical confidence level of approximately 95%. Please refer to section 8 for details of measurement uncertainties.

Test Report

Serial No: RFI/SAR2/RP77230JD05A

Page: 13 of 47

Issue Date: 13 May 2010

Test of: R&S TechMedic BV Dyna-Vision DVM-012SG

To: OET Bulletin 65 Supplement C: (2001-01)

7.2. Test Results

7.2.1.Specific Absorption Rate - GPRS850 Body Configuration 1g

Test Summary:

Tissue Volume:	1g
Maximum Level (W/kg):	0.119

Environmental Conditions:

Temperature Variation in Lab (°C):	24.0 to 24.0
Temperature Variation in Liquid (°C):	23.9 to 23.9

Results:

EUT Position	Phantom Configuration	Channel Number	Level (W/kg)	Limit (W/kg)	Margin (W/kg)	Note(s)	Result
Front of EUT Facing Phantom	Flat (SAM)	189	0.119	1.600	1.481	1, 2	Complied
Rear of EUT Facing Phantom	Flat (SAM)	189	0.029	1.600	1.571	1, 2	Complied

Note(s):

- 1. SAR measurements were performed with the EUT at a separation distance of 0mm from the 'SAM' phantom flat section.
- 2. SAR test was performed in the middle channel only as the measured levels were < 50% of the SAR limit as stated in the FCC Public Notice DA 02-1438 by the SCC-34/SC-2.

Test Report

Serial No: RFI/SAR2/RP77230JD05A

Page: 14 of 47

Issue Date: 13 May 2010

Test of: R&S TechMedic BV Dyna-Vision DVM-012SG

To: OET Bulletin 65 Supplement C: (2001-01)

7.2.2.Specific Absorption Rate - GPRS1900 Body Configuration 1g

Test Summary:

Tissue Volume:	1g
Maximum Level (W/kg):	0.223

Environmental Conditions:

Temperature Variation in Lab (°C):	24.0 to 24.0
Temperature Variation in Liquid (°C):	24.0 to 24.0

Results:

EUT Position	Phantom Configuration	Channel Number	Level (W/kg)	Limit (W/kg)	Margin (W/kg)	Note(s)	Result
Front of EUT Facing Phantom	Flat (SAM)	660	0.223	1.600	1.377	1, 2	Complied
Rear of EUT Facing Phantom	Flat (SAM)	660	0.049	1.600	1.551	1, 2	Complied

Note(s):

- 1. SAR measurements were performed with the EUT at a separation distance of 0mm from the 'SAM' phantom flat section.
- 2. SAR test was performed in the middle channel only as the measured levels were < 50% of the SAR limit as stated in the FCC Public Notice DA 02-1438 by the SCC-34/SC-2.

Test Report

Serial No: RFI/SAR2/RP77230JD05A

Page: 15 of 47

Issue Date: 13 May 2010

Test of: R&S TechMedic BV Dyna-Vision DVM-012SG

To: OET Bulletin 65 Supplement C: (2001-01)

7.2.3. Conducted Average Power Measurement

Channel Number	Frequency (MHZ)	TX Power Measured (dBm)	Note
128	824.2	32.2	Conducted
189	836.4	31.9	Conducted
251	848.8	31.0	Conducted
512	1850.2	28.5	Conducted
660	1879.8	28.2	Conducted
810	1909.8	28.5	Conducted

Test Report

Serial No: RFI/SAR2/RP77230JD05A

Page: 16 of 47

Issue Date: 13 May 2010

Test of: R&S TechMedic BV Dyna-Vision DVM-012SG

To: OET Bulletin 65 Supplement C: (2001-01)

8. Measurement Uncertainty

No measurement or test can ever be perfect and the imperfections give rise to error of measurement in the results. Consequently, the result of a measurement is only an approximation to the value of the measurand (the specific quantity subject to measurement) and is only complete when accompanied by a statement of the uncertainty of the approximation.

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

The uncertainty of the result may need to be taken into account when interpreting the measurement results.

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor, such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

Test Name	Confidence Level	Calculated Uncertainty
Specific Absorption Rate- GPRS850 Body Configuration 1g	95%	±18.03
Specific Absorption Rate- GPRS1900 Body Configuration 1g	95%	±18.30

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty, the published guidance of the appropriate accreditation body is followed.

Test Report

Serial No: RFI/SAR2/RP77230JD05A

Page: 17 of 47

Issue Date: 13 May 2010

Test of: R&S TechMedic BV Dyna-Vision DVM-012SG

To: OET Bulletin 65 Supplement C: (2001-01)

Measurement Uncertainty (Continued)

8.1. Specific Absorption Rate Uncertainty at 850 MHz Body 1g, GPRS Modulation Scheme calculated in accordance with IEC 62209-2 & IEEE 1528

Туре	Source of uncertainty	+	-	Probability		C _{i (10g)}		dard tainty	υ _i or
Турс	oburde of uncertainty	Value	Value	Distribution	DIVISOR	CI (10g)	+ u (%)	- u (%)	∪eff
В	Probe calibration	11.000	11.000	normal (k=2)	2.0000	1.0000	5.500	5.500	∞
В	Axial Isotropy	0.500	0.500	normal (k=2)	2.0000	1.0000	0.250	0.250	∞
В	Hemispherical Isotropy	2.600	2.600	normal (k=2)	2.0000	1.0000	1.300	1.300	∞
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	∞
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	∞
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	∞
В	Readout Electronics	0.560	0.560	normal (k=2)	2.0000	1.0000	0.280	0.280	∞
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	× ×
В	Integration Time	1.730	1.730	Rectangular	1.7321	1.0000	0.999	0.999	∞
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	∞
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	× ×
В	Extrapolation and integration/ Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞
Α	Test Sample Positioning	0.584	0.584	normal (k=1)	1.0000	1.0000	0.584	0.584	10
Α	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	∞
Α	Liquid Conductivity (measured value)	3.600	3.600	normal (k=1)	1.0000	0.6400	2.304	2.304	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	oc
Α	Liquid Permittivity (measured value)	4.000	4.000	normal (k=1)	1.0000	0.6000	2.400	2.400	5
	Combined standard uncertainty			t-distribution			9.20	9.20	>500
	Expanded uncertainty			k = 1.96			18.03	18.03	>500

Test Report

Serial No: RFI/SAR2/RP77230JD05A

Page: 18 of 47

Issue Date: 13 May 2010

Test of: R&S TechMedic BV Dyna-Vision DVM-012SG

To: OET Bulletin 65 Supplement C: (2001-01)

Measurement Uncertainty (continued)

8.2. Specific Absorption Rate Uncertainty at 1900 MHz Body 1g, GPRS Modulation Scheme calculated in accordance with IEC 62209-2 & IEEE 1528

		+	_	Probability				dard rtainty	ນ _i or
Туре	Source of uncertainty	Value	Value	Distribution	Divisor	Ci (10g)	+ u (%)	- u (%)	Veff
В	Probe calibration	11.000	11.000	normal (k=2)	2.0000	1.0000	5.500	5.500	∞
В	Axial Isotropy	0.500	0.500	normal (k=2)	2.0000	1.0000	0.250	0.250	∞
В	Hemispherical Isotropy	2.600	2.600	normal (k=2)	2.0000	1.0000	1.300	1.300	∞
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	8
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	8
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	8
В	Readout Electronics	0.560	0.560	normal (k=2)	2.0000	1.0000	0.280	0.280	8
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	8
В	Integration Time	1.730	1.730	Rectangular	1.7321	1.0000	0.999	0.999	8
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	8
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	8
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	8
В	Extrapolation and integration/ Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	8
Α	Test Sample Positioning	0.584	0.584	normal (k=1)	1.0000	1.0000	0.584	0.584	10
Α	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	8
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	8
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	8
Α	Liquid Conductivity (measured value)	4.170	4.170	normal (k=1)	1.0000	0.6400	2.669	2.669	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	8
Α	Liquid Permittivity (measured value)	4.230	4.230	normal (k=1)	1.0000	0.6000	2.538	2.538	5
	Combined standard uncertainty			t-distribution			9.34	9.34	>400
	Expanded uncertainty			k = 1.96			18.30	18.30	>400

Test Report

Serial No: RFI/SAR2/RP77230JD05A

Page: 19 of 47

Issue Date: 13 May 2010

Test of: R&S TechMedic BV Dyna-Vision DVM-012SG

To: OET Bulletin 65 Supplement C: (2001-01)

Appendix 1. Test Equipment Used

RFI No.	Instrument	Manufacturer	Type No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
A034	Narda 20W Termination	Narda	374BNM	8706	Calibrated as part of system	-
A1097	SMA Directional Coupler	MiDISCO	MDC6223- 30	None	Calibrated as part of system	-
A1137	3dB Attenuator	Narda	779	04690	Calibrated as part of system	-
A1174	Dielectric Probe Kit	Agilent Technologies	85070C	Us99360072	Calibrated before use	-
A1328	Handset Positioner	Schmid & Partner Engineering AG	Modification	SD 000 H01 DA	-	-
A1182	Handset Positioner	Schmid & Partner Engineering AG	V3.0	None	-	-
A1234	Data Acquisition Electronics	Schmid & Partner Engineering AG	DAE3	450	30 April 2009	12
A1238	SAM Phantom	Schmid & Partners	SAM b	001	Calibrated before use	-
A1237	1900 MHz Dipole Kit	Schmid & Partner Engineering AG	D1900V2	540	26 June 2009	24
A1329	900 MHz Dipole Kit	Schmid & Partner Engineering AG	D900V2	185	18 Aug 2009	24
A1378	Probe	Schmid & Partner Engineering AG	EX3 DV3	3508	26 June 2009	12
A1566	SAM Phantom	Schmid & Partner Engineering AG	SAM a	002	Calibrated before use	-
A1497	Amplifier	Mini-Circuits	zhl-42w (sma)	e020105	Calibrated as part of system	-
A1990	Digital Camera	Samsung	AS15	A23WC908A 05431K	-	-
A215	20 dB Attenuator	Narda	766-20	9402	Calibrated as part of system	-
C1144	Cable	Rosenberger MICRO-COAX	FA147AF00 1503030	41842-1	Calibrated as part of system	-
C1145	Cable	Rosenberger MICRO-COAX	FA147AF00 3003030	41843-1	Calibrated as part of system	-

Test Report

Serial No: RFI/SAR2/RP77230JD05A

Page: 20 of 47

Issue Date: 13 May 2010

Test of: R&S TechMedic BV Dyna-Vision DVM-012SG

To: OET Bulletin 65 Supplement C: (2001-01)

RFI No.	Instrument	Manufacturer	Type No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
C1146	Cable	Rosenberger MICRO-COAX	FA147AF03 0003030	41752-1	Calibrated as part of system	-
G0528	Robot Power Supply	Schmid & Partner Engineering AG	DASY	None	Calibrated before use	-
G087	PSU	Thurlby Thandar	CPX200	100701	Calibrated before use	-
M1015	Network Analyser	Agilent Technologies	8753ES	US39172406	15 Sept 2009	12
M1047	Robot Arm	Staubli	RX908 L	F00/SD89A1/ A/01	Calibrated before use	-
M1159	Signal Generator	Agilent Technologies	E8241A	US42110332	Internal Check 04 December 2009	4
M1071	Spectrum Analyzer	Agilent	HP8590E	3647U00514	(Monitoring use only)	-
M1044	Diode Power Sensor	Rohde & Schwarz	NRV-Z1	893350/019	19 May 2009	12
M265	Diode Power Sensor	Rohde & Schwarz	NRV-Z1	893350/017	19 May 2009	12
M263	Dual Channel Power Meter	Rohde & Schwarz	NRVD	826558/004	20 May 2009	12
S256	SAR Lab	RFI	Site 56	N/A	Calibrated before use	-

NB In accordance with UKAS requirements, all the measurement equipment is on a calibration schedule.

Test Report

Serial No: RFI/SAR2/RP77230JD05A

Page: 21 of 47

Issue Date: 13 May 2010

Test of: R&S TechMedic BV Dyna-Vision DVM-012SG

To: OET Bulletin 65 Supplement C: (2001-01)

A.1.1. Calibration Certificates

This section contains the calibration certificates and data for the Probe(s) and Dipole(s) used, which are not included in the total number of pages for this report.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

RF

Certificate No: D1900V2-540-Jun 09

CALIBRATION CERTIFICATE

Object D1900V2 - SN: 540

Calibration procedure(s) QA CAL-05.v7

Calibration procedure for dipole validation kits

Calibration date: June 26, 2009

Condition of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	08-Oct-08 (No. 217-00898)	Oct-09
Power sensor HP 8481A	US37292783	08-Oct-08 (No. 217-00898)	Oct-09
Reference 20 dB Attenuator	SN: 5086 (20g)	31-Mar-09 (No. 217-01025)	Mar-10
Type-N mismatch combination	SN: 5047.2 / 06327	31-Mar-09 (No. 217-01029)	Mar-10
Reference Probe ES3DV2	SN: 3025	30-Apr-09 (No. ES3-3025_Apr09)	Apr-10
DAE4	SN: 601	07-Mar-09 (No. DAE4-601_Mar09)	Mar-10
	2		
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-07)	In house check: Oct-09
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-08)	In house check: Oct-09
·			

Name Function Signature

Calibrated by: Jeton Kastrati Laboratory Technician

Approved by: Katja Pokovic Technical Manager

Issued: June 29, 2009

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-540_Jun09

Page 1 of 9

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz 3 GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1900V2-540 Jun09

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.0 ± 6 %	1.42 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	10.1 mW / g
SAR normalized	normalized to 1W	40.4 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	40.3 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.29 mW / g
SAR normalized	normalized to 1W	21.2 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	21.1 mW / g ± 16.5 % (k=2)

Certificate No: D1900V2-540_Jun09

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.9 ± 6 %	1.55 mho/m ± 6 %
Body TSL temperature during test	(21.2 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.3 mW/g
SAR normalized	normalized to 1W	41.2 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	40.9 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.40 mW / g
SAR normalized	normalized to 1W	21.6 mW/g
SAR for nominal Body TSL parameters ²	normalized to 1W	21.5 mW / g ± 16.5 % (k=2)

Certificate No: D1900V2-540_Jun09

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.5 Ω + 2.7 jΩ
Return Loss	- 30.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	44.9 Ω + 2.8 jΩ
Return Loss	- 24.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.198 ns	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	July 26, 2001	

Certificate No: D1900V2-540_Jun09

DASY5 Validation Report for Head TSL

Date/Time: 26.06.2009 12:43:03

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:540

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U11 BB

Medium parameters used: f = 1900 MHz; $\sigma = 1.42 \text{ mho/m}$; $\varepsilon_r = 41$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

Probe: ES3DV2 - SN3025; ConvF(4.88, 4.88, 4.88); Calibrated: 30.04.2009

• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 07.03.2009

• Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Pin = 250 mW; dip = 10 mm/Zoom Scan (dist=3.0 mm, probe 0deg) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.9 V/m; Power Drift = 0.037 dB

Peak SAR (extrapolated) = 18.4 W/kg

SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.29 mW/g

Maximum value of SAR (measured) = 12.5 mW/g

0 dB = 12.5 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date/Time: 26.06.2009 14:10:45

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:540

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL U10 BB

Medium parameters used: f = 1900 MHz; $\sigma = 1.55 \text{ mho/m}$; $\epsilon_r = 54$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

Probe: ES3DV2 - SN3025; ConvF(4.46, 4.46, 4.46); Calibrated: 30.04.2009

• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 07.03.2009

• Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Pin = 250 mW; dip = 10 mm/Zoom Scan (dist=3.0mm, probe 0deg) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.1 V/m; Power Drift = 0.011 dB

Peak SAR (extrapolated) = 18.1 W/kg

SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.4 mW/g

Maximum value of SAR (measured) = 12.9 mW/g

0 dB = 12.9 mW/g

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

S

C

Client

RF

Certificate No: D900V2-185_Aug09

CALIBRATION CERTIFICATE

Object

D900V2 - SN: 185

Calibration procedure(s)

QA CAL-05.v7

Calibration procedure for dipole validation kits

Calibration date:

August 18, 2009

Condition of the calibrated item

In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	08-Oct-08 (No. 217-00898)	Oct-09
Power sensor HP 8481A	US37292783	08-Oct-08 (No. 217-00898)	Oct-09
Reference 20 dB Attenuator	SN: 5086 (20g)	31-Mar-09 (No. 217-01025)	Mar-10
Type-N mismatch combination	SN: 5047.2 / 06327	31-Mar-09 (No. 217-01029)	Mar-10
Reference Probe ES3DV3	SN: 3205	26-Jun-09 (No. ES3-3205_Jun09)	Jun-10
DAE4	SN: 601	07-Mar-09 (No. DAE4-601_Mar09)	Mar-10
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-07)	In house check: Oct-09
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-08)	In house check: Oct-09
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	I-1/L
Approved by:	Katja Pokovic	Technical Manager	QC M
			Jan Sir May

Issued: August 18, 2009

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	, , , , , , , , , , , , , , , , , , , ,
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.97 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.4 ± 6 %	0.96 mho/m ± 6 %
Head TSL temperature during test	(22.4 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.75 mW / g
SAR normalized	normalized to 1W	11.0 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	11.0 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.76 mW / g
SAR normalized	normalized to 1W	7.04 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	7.06 mW /g ± 16.5 % (k=2)

Certificate No: D900V2-185_Aug09

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.0	1.05 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.7 ± 6 %	1.06 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.80 mW / g
SAR normalized	normalized to 1W	11.2 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	11.0 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.81 mW / g
SAR normalized	normalized to 1W	7.24 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	7.16 mW / g ± 16.5 % (k=2)

Certificate No: D900V2-185_Aug09

 $^{^{\}rm 2}$ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.5 Ω - 10.3 jΩ
Return Loss	- 19.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.5 Ω - 11.2 jΩ
Return Loss	- 18.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction) 1.403 ns	Electrical Delay (one direction)	1.403 ns
---	----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	May 27, 2003

Certificate No: D900V2-185_Aug09

DASY5 Validation Report for Head TSL

Date/Time: 18.08.2009 08:57:04

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:185

Communication System: CW-900; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: HSL 900 MHz

Medium parameters used: f = 900 MHz; $\sigma = 0.96$ mho/m; $\varepsilon_r = 40.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.88, 5.88, 5.88); Calibrated: 26.06.2009

• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 07.03.2009

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Pin=250mW; dip=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 59.7 V/m; Power Drift = 0.015 dB

Peak SAR (extrapolated) = 4.17 W/kg

SAR(1 g) = 2.75 mW/g; SAR(10 g) = 1.76 mW/g

Maximum value of SAR (measured) = 3.23 mW/g

0 dB = 3.23 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body

Date/Time: 17.08.2009 11:23:13

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:185

Communication System: CW-900; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: MSL900

Medium parameters used: f = 900 MHz; $\sigma = 1.06$ mho/m; $\varepsilon_r = 52.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(5.81, 5.81, 5.81); Calibrated: 26.06.2009

• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 07.03.2009

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Pin=250mW; dip=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.2 V/m; Power Drift = 0.00569 dB

Peak SAR (extrapolated) = 4.19 W/kg

SAR(1 g) = 2.8 mW/g; SAR(10 g) = 1.81 mW/g

Maximum value of SAR (measured) = 3.24 mW/g

0 dB = 3.24 mW/g

Certificate No: D900V2-185_Aug09

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Certificate No: EX3-3508 Jun09

Accreditation No.: SCS 108

C

CALIBRATION CERTIFICATE

EX3DV3 - SN:3508 Object

QA CAL-01.v6, QA CAL-12.v5 and QA CAL-23.v3 Calibration procedure(s)

Calibration procedure for dosimetric E-field probes

June 26, 2009 Calibration date:

Condition of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	1-Apr-09 (No. 217-01030)	Apr-10
Power sensor E4412A	MY41495277	1-Apr-09 (No. 217-01030)	Apr-10
Power sensor E4412A	MY41498087	1-Apr-09 (No. 217-01030)	Apr-10
Reference 3 dB Attenuator	SN: S5054 (3c)	31-Mar-09 (No. 217-01026)	Mar-10
Reference 20 dB Attenuator	SN: S5086 (20b)	31-Mar-09 (No. 217-01028)	Mar-10
Reference 30 dB Attenuator	SN: S5129 (30b)	31-Mar-09 (No. 217-01027)	Mar-10
Reference Probe ES3DV2	SN: 3013	2-Jan-09 (No. ES3-3013_Jan09)	Jan-10
DAE4	SN: 660	9-Sep-08 (No. DAE4-660_Sep08)	Sep-09
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-08)	In house check: Oct-09
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	J- Ke
Approved by:	Katja Pokovic	Technical Manager	20 lle

Issued: June 26, 2009

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3508_Jun09

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schwelzerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z

DCP diode compression point Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3508_Jun09 Page 2 of 9

Probe EX3DV3

SN:3508

Manufactured: December 19, 2003

Last calibrated: June 24, 2008 Recalibrated: June 26, 2009

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: EX3-3508_Jun09 Page 3 of 9

DASY - Parameters of Probe: EX3DV3 SN:3508

Sensitivity in Free Space ^A	Diode Compression ^B
ocholivity in Free opace	Diode Compression

NormX	0.76 ± 10.1%	μ V/(V/m) ²	DCP X	95 mV
NormY	0.63 ± 10.1%	μ V/(V/m) ²	DCP Y	97 mV
NormZ	0.66 ± 10.1%	μ V/(V/m) ²	DCP Z	94 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL 900 MHz Typical SAR gradient: 5 % per mm

Sensor Center to	Phantom Surface Distance	2.0 mm	3.0 mm
SAR _{be} [%]	Without Correction Algorithm	7.8	4.6
SAR _{be} [%]	With Correction Algorithm	0.5	0.3

TSL 1750 MHz Typical SAR gradient: 10 % per mm

Sensor Center to	o Phantom Surface Distance	2.0 mm	3.0 mm
SAR _{be} [%]	Without Correction Algorithm	5.8	2.7
SAR _{be} [%]	With Correction Algorithm	0.7	0.5

Sensor Offset

Probe Tip to Sensor Center 1.0 mm

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

⁸ Numerical linearization parameter: uncertainty not required.

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-3508_Jun09

Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
450	± 50 / ± 100	Head	43.5 ± 5%	0.87 ± 5%	0.23	1.00	10.49 ± 13.3% (k=2)
900	± 50 / ± 100	Head	41.5 ± 5%	$0.97 \pm 5\%$	0.48	0.72	9.76 ± 11.0% (k=2)
1750	± 50 / ± 100	Head	40.1 ± 5%	1.37 ± 5%	0.57	0.63	8.82 ± 11.0% (k=2)
1900	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.53	0.65	8.58 ± 11.0% (k=2)
2150	± 50 / ± 101	Head	39.7 ± 5%	1.53 ± 5%	0.36	0.69	8.33 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.36	0.75	7.77 ± 11.0% (k=2)
450	± 50 / ± 100	Body	56.7 ± 5%	$0.94 \pm 5\%$	0.30	0.51	11.32 ± 13.3% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.45	0.75	9.99 ± 11.0% (k=2)
1750	± 50 / ± 100	Body	53.4 ± 5%	1.49 ± 5%	0.55	0.63	8.59 ± 11.0% (k=2)
1900	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.48	0.68	8.23 ± 11.0% (k=2)
2150	± 50 / ± 100	Body	53.0 ± 5%	1.75 ± 5%	0.30	0.92	8.27 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.25	1.02	8.06 ± 11.0% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (φ, ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Test Report

Serial No: RFI/SAR2/RP77230JD05A

Page: 22 of 47

Issue Date: 13 May 2010

Test of: R&S TechMedic BV Dyna-Vision DVM-012SG

To: OET Bulletin 65 Supplement C: (2001-01)

Appendix 2. Measurement Methods

A.2.1. Evaluation Procedure

The Specific Absorption Rate (SAR) evaluation was performed in the following manner:

- a) (i) The evaluation was performed in an applicable area of the phantom depending on the type of device being tested. For devices worn about the ear during normal operation, both the left and right ear positions were evaluated at the centre frequency of the band at maximum power. The side, which produced the greatest SAR, determined which side of the phantom would be used for the entire evaluation. The positioning of the head worn device relative to the phantom was dictated by the test specification identified in section 3.1 of this report.
 - (ii) For body worn devices or devices which can be operated within 20 cm of the body, the flat section of the SAM phantom was used were the size of the device(s) is normal. For bigger devices and base station the 2mm Oval phantom is used for evaluation. The type of device being evaluated dictated the distance of the EUT to the outer surface of the phantom flat section.
- b) The SAR was determined by a pre-defined procedure within the DASY4 software. The exposed region of the phantom was scanned near the inner surface with a grid spacing of 20mm x 20mm or appropriate resolution.
- c) A 5x5x7 matrix was performed around the greatest spatial SAR distribution found during the area scan of the applicable exposed region. SAR values were then calculated using a 3-D spline interpolation algorithm and averaged over spatial volumes of 1 and 10 grams.
- d) If the EUT had any appreciable drift over the course of the evaluation, then the EUT was re-evaluated. Any unusual anomalies over the course of the test also warranted a re-evaluation.

Serial No: RFI/SAR2/RP77230JD05A

Page: 23 of 47

Issue Date: 13 May 2010

Test of: R&S TechMedic BV Dyna-Vision DVM-012SG

To: OET Bulletin 65 Supplement C: (2001-01)

A.2.2. Specific Absorption Rate (SAR) Measurements to OET Bulletin 65 Supplement C: (2001-01)

Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields

SAR measurements were performed in accordance with Appendix D of the standard FCC OET Bulletin 65 Supplement C: 2001, against appropriate limits for each measurement position in accordance with the standard.

The test was performed in a shielded enclosure with the temperature controlled to remain between +18.0°C and +25.0°C. The tissue equivalent material fluid temperature was controlled to give a maximum variation of ± 2.0°C

Prior to any SAR measurements on the EUT, system validation and material dielectric property measurements were conducted. In the absence of a detailed procedure within the specification, system validation and material dielectric property measurements were performed in accordance with Appendix C and Appendix D of FCC OET Bulletin 65 Supplement C: 2001.

Following the successful system validation and material dielectric property measurements, a SAR versus time sweep shall be performed within 10 mm of the phantom inner surface. If the EUT power output is stable after three minutes then the measurement probe will perform a coarse surface level scan at each test position in order to ascertain the location of the maximum local SAR level. Once this area had been established, a 5x5x7 cube of 343 points (5 mm spacing in each axis $\approx 27g$) will be centred at the area of concern. Extrapolation and interpolation will then be carried out on the 27g of tissue and the highest averaged SAR over a 10g cube determined.

Once the maximum interpolated SAR measurement is complete; the coarse scan is visually assessed to check for secondary peaks within 50% of the maximum SAR level. If there are any further SAR measurements required, extra 5x5x7 cubes shall be centred on each of these extra local SAR maxima.

At the end of each position test case a second time sweep shall be performed to check whether the EUT has remained stable throughout the test.

Test Report

Serial No: RFI/SAR2/RP77230JD05A

Page: 24 of 47

Issue Date: 13 May 2010

Test of: R&S TechMedic BV Dyna-Vision DVM-012SG

To: OET Bulletin 65 Supplement C: (2001-01)

Appendix 3. SAR Distribution Scans

This appendix contains SAR distribution scans which are not included in the total number of pages for this report.

Scan Reference Number	Title
SCN/77230JD05/001	Front of EUT Facing Phantom GPRS CH189
SCN/77230JD05/002	Rear of EUT Facing Phantom GPRS CH189
SCN/77230JD05/003	Front of EUT Facing Phantom GPRS CH660
SCN/77230JD05/004	Rear of EUT Facing Phantom GPRS CH660
SCN/77230JD05/005	System Performance Check 900MHz Body 29 03 10
SCN/77230JD05/006	System Performance Check 900MHz Body 30 03 10
SCN/77230JD05/007	System Performance Check 1900MHz Body 29 03 10

Test Report

Serial No: RFI/SAR2/RP77230JD05A

Page: 25 of 47

Issue Date: 13 May 2010

Test of: R&S TechMedic BV Dyna-Vision DVM-012SG

To: OET Bulletin 65 Supplement C: (2001-01)

SCN/77230JD05/001: Front of EUT Facing Phantom GPRS CH189

Date 29/03/2010

DUT: R&S TechMedic B.V.; Type: Dyna-Vision Outdoor Patient Monitor+ Dyna-Vision 3-Lead ECG Cable; Serial:

0 dB = 0.128 mW/g

Communication System: GPRS 850 MHz; Frequency: 836.4 MHz; Duty Cycle: 1:4

Medium: 900 MHz MSL Medium parameters used (interpolated): \dot{f} = 836.4 MHz; σ = 0.959 mho/m; ϵ_r = 53.7; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

-14.8

- Probe: EX3DV3 SN3508; ConvF(9.99, 9.99, 9.99); Calibrated: 26/06/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 30/04/2009
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1207
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Front of EUT Facing Phantom - Middle/Area Scan (151x201x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.140 mW/g

Front of EUT Facing Phantom - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.96 V/m; Power Drift = -0.081 dB

Peak SAR (extrapolated) = 0.176 W/kg

SAR(1 g) = 0.119 mW/g; SAR(10 g) = 0.071 mW/g Maximum value of SAR (measured) = 0.128 mW/g

Test Report

Serial No: RFI/SAR2/RP77230JD05A

Page: 26 of 47

Issue Date: 13 May 2010

Test of: R&S TechMedic BV Dyna-Vision DVM-012SG

To: **OET Bulletin 65 Supplement C: (2001-01)**

SCN/77230JD05/002: Rear of EUT Facing Phantom GPRS CH189

Date 30/03/2010

DUT: R&S TechMedic B.V.; Type: Dyna-Vision Outdoor Patient Monitor+ Dyna-Vision 3-Lead ECG Cable; Serial:

DV08Y01B0082 (IMEI: 359983000890016) + 080912-061/4680609

0 dB = 0.030 mW/g

Communication System: GPRS 850 MHz; Frequency: 836.4 MHz; Duty Cycle: 1:4

Medium: 900 MHz MSL Medium parameters used (interpolated): f = 836.4 MHz; $\sigma = 0.959$ mho/m; $\varepsilon_r = 53.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV3 SN3508; ConvF(9.99, 9.99, 9.99); Calibrated: 26/06/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 30/04/2009
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1207
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Rear of EUT Facing Phantom - Middle/Area Scan (151x201x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.027 mW/g

Rear of EUT Facing Phantom - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = $\bar{1}.91$ V/m; Power Drift = 0.165 dB

Peak SAR (extrapolated) = 0.056 W/kg

SAR(1 g) = 0.029 mW/g; SAR(10 g) = 0.016 mW/gMaximum value of SAR (measured) = 0.030 mW/g

Serial No: RFI/SAR2/RP77230JD05A

Page: 27 of 47

Issue Date: 13 May 2010

Test of: R&S TechMedic BV Dyna-Vision DVM-012SG

To: OET Bulletin 65 Supplement C: (2001-01)

SCN/77230JD05/003: Front of EUT Facing Phantom GPRS CH660

Date 29/03/2010

DUT: R&S TechMedic B.V.; Type: Dyna-Vision Outdoor Patient Monitor+ Dyna-Vision 3-Lead ECG Cable; Serial: DV08Y01B0082 (IMEI: 359983000890016) + 080912-061/ 4680609

0 dB = 0.251 mW/g

Communication System: GPRS 1900; Frequency: 1879.8 MHz; Duty Cycle: 1:4

Medium: 1900 MHz MSL Medium parameters used (interpolated): f = 1879.8 MHz; σ = 1.56 mho/m; ϵ_r = 50.9; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV3 SN3508; ConvF(8.23, 8.23, 8.23); Calibrated: 26/06/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 30/04/2009
- Phantom: SAM 12a; Type: SAM 4.0; Serial: TP:1193
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Front of EUT Facing Phantom - Middle/Area Scan (151x201x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.250 mW/g

Front of EUT Facing Phantom - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.36 V/m; Power Drift = -0.156 dB

Peak SAR (extrapolated) = 0.396 W/kg

SAR(1 g) = 0.223 mW/g; SAR(10 g) = 0.115 mW/g Maximum value of SAR (measured) = 0.251 mW/g

Test Report

Serial No: RFI/SAR2/RP77230JD05A

Page: 28 of 47

Issue Date: 13 May 2010

Test of: R&S TechMedic BV Dyna-Vision DVM-012SG

To: **OET Bulletin 65 Supplement C: (2001-01)**

SCN/77230JD05/004: Rear of EUT Facing Phantom GPRS CH660

Date 29/03/2010

DUT: R&S TechMedic B.V.; Type: Dyna-Vision Outdoor Patient Monitor + Dyna-Vision 3-Lead ECG Cable; Serial: DV08Y01B0082 (IMEI: 359983000890016) + 080912-061/4680609

0 dB = 0.052 mW/g

Communication System: GPRS 1900; Frequency: 1879.8 MHz; Duty Cycle: 1:4

Medium: 1900 MHz MSL Medium parameters used (interpolated): f = 1879.8 MHz; $\sigma = 1.56$ mho/m; $\varepsilon_r = 50.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV3 SN3508; ConvF(8.23, 8.23, 8.23); Calibrated: 26/06/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 30/04/2009
- Phantom: SAM 12a; Type: SAM 4.0; Serial: TP:1193
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Rear of EUT Facing Phantom - Middle/Area Scan (151x201x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.054 mW/g

Rear of EUT Facing Phantom - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = $\bar{4}.82$ V/m; Power Drift = 0.018 dB

Peak SAR (extrapolated) = 0.078 W/kg

SAR(1 g) = 0.049 mW/g; SAR(10 g) = 0.030 mW/gMaximum value of SAR (measured) = 0.052 mW/g

Test Report

Serial No: RFI/SAR2/RP77230JD05A

Page: 29 of 47

Issue Date: 13 May 2010

Test of: R&S TechMedic BV Dyna-Vision DVM-012SG

To: OET Bulletin 65 Supplement C: (2001-01)

SCN/77230JD05/005: System Performance Check 900MHz Body 29 03 10

Date 29/03/2010

DUT: Dipole 900 MHz; Type: D900V2; Serial: SN185

0 dB = 2.90 mW/q

Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: 900 MHz MSL Medium parameters used: f = 900 MHz; $\sigma = 1.02$ mho/m; $\epsilon_r = 53$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV3 SN3508; ConvF(9.99, 9.99, 9.99); Calibrated: 26/06/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 30/04/2009
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1207
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

d=15mm, Pin=250mW/Area Scan (51x51x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 3.01 mW/g

d=15mm, Pin=250mW/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 51.4 V/m; Power Drift = 0.013 dB

Peak SAR (extrapolated) = 4.03 W/kg

SAR(1 g) = 2.69 mW/g; SAR(10 g) = 1.75 mW/g Maximum value of SAR (measured) = 2.90 mW/g

Test Report

Serial No: RFI/SAR2/RP77230JD05A

Page: 30 of 47

Issue Date: 13 May 2010

Test of: R&S TechMedic BV Dyna-Vision DVM-012SG

To: OET Bulletin 65 Supplement C: (2001-01)

SCN/77230JD05/006: System Performance Check 900MHz Body 30 03 10

Date 30/03/2010

DUT: Dipole 900 MHz; Type: D900V2; Serial: SN185

0 dB = 2.89 mW/q

Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: 900 MHz MSL Medium parameters used: f = 900 MHz; $\sigma = 1.02$ mho/m; $\epsilon_r = 53$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV3 SN3508; ConvF(9.99, 9.99, 9.99); Calibrated: 26/06/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 30/04/2009
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1207
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

d=15mm, Pin=250mW/Area Scan (51x51x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 2.99 mW/g

d=15mm, Pin=250mW/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 51.3 V/m; Power Drift = -0.038 dB

Peak SAR (extrapolated) = 4.01 W/kg

SAR(1 g) = 2.67 mW/g; SAR(10 g) = 1.73 mW/g Maximum value of SAR (measured) = 2.89 mW/g

Test Report

Serial No: RFI/SAR2/RP77230JD05A

Page: 31 of 47

Issue Date: 13 May 2010

Test of: R&S TechMedic BV Dyna-Vision DVM-012SG

To: OET Bulletin 65 Supplement C: (2001-01)

SCN/77230JD05/007: System Performance Check 1900MHz Body 29 03 10

Date 29/03/2010

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: SN540

0 dB = 12.0 mW/q

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: 1900 MHz MSL Medium parameters used: f = 1900 MHz; σ = 1.58 mho/m; ε_r = 50.8; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV3 SN3508; ConvF(8.23, 8.23, 8.23); Calibrated: 26/06/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 30/04/2009
- Phantom: SAM 12a; Type: SAM 4.0; Serial: TP:1193
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

d=10mm, Pin=250mW/Area Scan (51x51x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 15.8 mW/g

d=10mm, Pin=250mW/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 86.4 V/m; Power Drift = -0.002 dB

Peak SAR (extrapolated) = 20.0 W/kg

SAR(1 g) = 10.7 mW/g; SAR(10 g) = 5.47 mW/g Maximum value of SAR (measured) = 12.0 mW/g

Test Report

Serial No: RFI/SAR2/RP77230JD05A

Page: 32 of 47

Issue Date: 13 May 2010

Test of: R&S TechMedic BV Dyna-Vision DVM-012SG

To: OET Bulletin 65 Supplement C: (2001-01)

Appendix 4. Photographs

This appendix contains the following photographs:

Photo Reference Number	Title
PHT/77230JD05/001	Test configuration for the measurement of Specific Absorption Rate (SAR)
PHT/77230JD05/002	Front of EUT With Carry Case + 3 Lead Wire ECG Cable Facing Phantom
PHT/77230JD05/003	Rear of EUT With Carry Case + 3 Lead Wire ECG Cable Facing Phantom
PHT/77230JD05/004	Front of EUT
PHT/77230JD05/005	Rear of EUT
PHT/77230JD05/006	Front of EUT in Carrying Case
PHT/77230JD05/007	Rear of EUT in Carrying Case
PHT/77230JD05/008	3 Lead Wire ECG Cable
PHT/77230JD05/009	900 MHz Body Fluid Level
PHT/77230JD05/010	1900 MHz Body Fluid Level

Serial No: RFI/SAR2/RP77230JD05A

Page: 33 of 47

Issue Date: 13 May 2010

Test of: R&S TechMedic BV Dyna-Vision DVM-012SG

To: OET Bulletin 65 Supplement C: (2001-01)

PHT/77230JD05/01: Test configuration for the measurement of Specific Absorption Rate (SAR)

Serial No: RFI/SAR2/RP77230JD05A

Page: 34 of 47

Issue Date: 13 May 2010

Test of: R&S TechMedic BV Dyna-Vision DVM-012SG

To: OET Bulletin 65 Supplement C: (2001-01)

PHT/77230JD05/02: Front of EUT With Carry Case + 3 Lead Wire ECG Cable Facing Phantom

Test Report

Serial No: RFI/SAR2/RP77230JD05A

Page: 35 of 47

Issue Date: 13 May 2010

Test of: R&S TechMedic BV Dyna-Vision DVM-012SG

To: OET Bulletin 65 Supplement C: (2001-01)

PHT/77230JD05/03: Rear of EUT With Carry Case + 3 Lead Wire ECG Cable Facing Phantom

Test Report

Serial No: RFI/SAR2/RP77230JD05A

Page: 36 of 47

Issue Date: 13 May 2010

Test of: R&S TechMedic BV Dyna-Vision DVM-012SG

Test Report

Serial No: RFI/SAR2/RP77230JD05A

Page: 37 of 47

Issue Date: 13 May 2010

Test of:

R&S TechMedic BV Dyna-Vision DVM-012SG

To:

Test Report

Serial No: RFI/SAR2/RP77230JD05A

Page: 38 of 47

Issue Date: 13 May 2010

Test of: R&S TechMedic BV Dyna-Vision DVM-012SG

Serial No: RFI/SAR2/RP77230JD05A

Page: 39 of 47

Issue Date: 13 May 2010

Test of: R&S TechMedic BV Dyna-Vision DVM-012SG

Test Report

Serial No: RFI/SAR2/RP77230JD05A

Page: 40 of 47

Issue Date: 13 May 2010

Test of: R&S TechMedic BV Dyna-Vision DVM-012SG

Test Report

Serial No: RFI/SAR2/RP77230JD05A

Page: 41 of 47

Issue Date: 13 May 2010

Test of: R&S TechMedic BV Dyna-Vision DVM-012SG

To: OET Bulletin 65 Supplement C: (2001-01)

PHT/77230JD05/09: 900 MHz Body Fluid Level

Test Report

Serial No: RFI/SAR2/RP77230JD05A

Page: 42 of 47

Issue Date: 13 May 2010

R&S TechMedic BV Dyna-Vision DVM-012SG Test of:

Test Report

Serial No: RFI/SAR2/RP77230JD05A

Page: 43 of 47

Issue Date: 13 May 2010

Test of: R&S TechMedic BV Dyna-Vision DVM-012SG

To: OET Bulletin 65 Supplement C: (2001-01)

Appendix 5. Validation of System

Prior to the assessment, the system was verified in the flat region of the phantom. 900 MHz and 1900 MHz dipoles were used. A forward power of 250 mW was applied to the dipole and the system was verified to a tolerance of $\pm 5\%$ for the 900 MHz and 1900 MHz dipoles. The applicable verification (normalised to 1 Watt).

Date: 29/03/2010

Validation Dipole and Serial Number: D900V2 SN:124

Simulant	Frequency (MHz)	Room Temperature	Liquid Temperature	Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)						
				ε _r	55.00	53.05	-3.55	5.00						
Body	900	24.0 °C	23.0 ℃	23.9 ℃	23.9 °C	23 9 °C	23 9 °C	23.9 °C	23.9 °C	σ	1.05	1.02	-3.04	5.00
Body	300	24.0 0	20.0	1g SAR	11.00	10.76	-2.18	5.00						
				10g SAR	7.16	7.00	-2.23	5.00						

Date: 30/03/2010

Validation Dipole and Serial Number: D900V2 SN:124

Simulant	Frequency (MHz)	Room Temperature	Liquid Temperature	Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)			
				ε _r	55.00	53.05	-3.55	5.00			
Body	900	24.0 °C	24.0 °C	24.0 °C	24.0 °C 23.9 °C	23.0 ℃	σ	1.05	1.02	-3.04	5.00
Body	300					1g SAR	11.00	10.68	-2.91	5.00	
				10g SAR	7.16	6.92	-3.35	5.00			

Date: 29/03/2010

Validation Dipole and Serial Number: D1900V2:SN:540

Simulant	Frequency (MHz)	Room Temperature	Liquid Temperature	Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)		
				ε _r	53.30	50.79	-4.72	5.00		
Body	1900	24.0 °C	24 ∩ ⁰C	24.0.℃	24.0 °C 24.0 °C	σ	1.52	1.58	3.74	5.00
Body	1300	24.0 0	24.0 0	1g SAR	40.90	42.80	4.65	5.00		
				10g SAR	21.50	21.88	1.77	5.00		

Serial No: RFI/SAR2/RP77230JD05A

Page: 44 of 47

Issue Date: 13 May 2010

Test of: R&S TechMedic BV Dyna-Vision DVM-012SG

To: OET Bulletin 65 Supplement C: (2001-01)

Appendix 6. Simulated Tissues

The body mixture consists of water and glycol. Visual inspection is made to ensure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the tissue.

	Frequency
Ingredient	835/850/900 MHz Body
De-Ionised Water	50.75%
Sugar	48.21%
Salt	0.94%
Kathon	0.10%

Ingredient	Frequency
	1800/1900 MHz Body
De-Ionised Water	69.79%
Diglycol Butyl Ether (DGBE)	30.00%
Salt	0.20%

Test Report

Serial No: RFI/SAR2/RP77230JD05A

Page: 45 of 47

Issue Date: 13 May 2010

Test of: R&S TechMedic BV Dyna-Vision DVM-012SG

To: OET Bulletin 65 Supplement C: (2001-01)

Appendix 7. DASY4 System Details

A.7.1. DASY4 SAR Measurement System

RFI Global Services Ltd, SAR measurement facility utilises the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 system is comprised of the robot controller, computer, near-field probe, probe alignment sensor, and the SAM phantom containing brain or muscle equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller; teach pendant (Joystick), and remote control. This is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. The data acquisition electronics (DAE) performs signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection etc. The DAE is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card. The DAE3 utilises a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching mulitplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

Serial No: RFI/SAR2/RP77230JD05A

Page: 46 of 47

Issue Date: 13 May 2010

Test of: R&S TechMedic BV Dyna-Vision DVM-012SG

To: OET Bulletin 65 Supplement C: (2001-01)

A.7.2. DASY4 SAR System Specifications

Robot System

Positioner:	Stäubli Unimation Corp. Robot Model: RX90L
Repeatability:	0.025 mm
No. of Axis:	6
Serial Number:	F00/SD89A1/A/01
Reach:	1185 mm
Payload:	3.5 kg
Control Unit:	CS7
Programming Language:	V+

Data Acquisition Electronic (DAE) System

Serial Number:	DAE3 SN:450
----------------	-------------

PC Controller

PC:	Dell Precision 340
Operating System:	Windows 2000
Data Card:	DASY4 Measurement Server
Serial Number:	1080

Data Converter

Features:	Signal Amplifier, multiplexer, A/D converted and control logic.
Software:	DASY4 Software
Connecting Lines:	Optical downlink for data and status info. Optical uplink for commands and clock.

PC Interface Card

24 bit (64 MHz) DSP for real time processing Link to DAE3 16 nit A/D converter for surface detection system serial link
to robot direct emergency stop output for robot.

Serial No: RFI/SAR2/RP77230JD05A

Page: 47 of 47

Issue Date: 13 May 2010

Test of: R&S TechMedic BV Dyna-Vision DVM-012SG

To: OET Bulletin 65 Supplement C: (2001-01)

DASY4 SAR System Specifications (Continued)

E-Field Probe

Model:	EX3DV3
Serial No:	3508
Construction:	Triangular core
Frequency:	10 MHz to >6 GHz
Linearity:	±0.2 dB (30 MHz to 6 GHz)
Probe Length (mm):	330
Probe Diameter (mm):	12
Tip Length (mm):	20
Tip Diameter (mm):	2.5
Sensor X Offset (mm):	1
Sensor Y Offset (mm):	1
Sensor Z Offset (mm):	1

Phantom

Phantom:	SAM Phantom
Shell Material:	Fibreglass
Thickness:	2.0 ±0.1 mm