最適速度交通流モデル

Optimal Velocity Traffic Flow Model

モデリングとシミュレーション特論

2019年度

只木進一

追従モデル Car-following model

- ■自動車は前の車両の挙動についていく
 - ▶先行車両と同じ速度
 - ▶先行車両との車頭距離を一定に
- ■課題
 - ■密度に対する速度の変化
 - ■追従遅れの記述

最適速度モデルの基本

Fundamentals of Optimal Velocity Model

- ■車頭距離Δxに対応した最適な速度がある
 - ■最適な速度はΔxのsigmoidalな関数
- ■最適速度からずれると、ずれの大きさに比例した加速度で調整する

最適速度モデル Optimal Velocity Model

- ■車両の位置χ
- ► 先行車両への車頭距離 Δx

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = \alpha \left[v_{\text{optimal}} \left(\Delta x \right) - \frac{\mathrm{d}x}{\mathrm{d}t} \right]$$

- ●位置の二階微分方程式
 - ▶挙動遅れが自然に入る

階段型の最適速度関数の場合 Step OV Function

$$v_{\text{optimal}} (\Delta x) = \begin{cases} v_{\text{max}} & \Delta x > d \\ 0 & \text{otherwise} \end{cases}$$

■長さLのサーキットにN台の車両

- $b = \frac{L}{N} > d$: 全車両が v_{max} で走行
- **▶** b < d:車両は加減速を繰り返す
 </p>

渋滞からの脱出 Escape from Jam

- ■2台が車頭距離 Δx_J で停止
- 時刻t = 0で先行車が $\Delta x > d$ となりスタート $x^{P}(t) = \Delta x_{J} + v_{max}t \frac{v_{max}}{\alpha} \left(1 e^{-\alpha t}\right)$
- ■時刻 $t = t_0$ で後続車が $\Delta x > d$ となりスタート

$$\Delta x_{\rm J} + v_{\rm max} t_0 - \frac{v_{\rm max}}{\alpha} \left(1 - e^{-\alpha t_0} \right) = d$$

渋滞からの脱出

●後続車の軌跡

$$x(t) = v_{\text{max}} \left(t - t_0 \right) - \frac{v_{\text{max}}}{\alpha} \left(1 - e^{-\alpha(t - t_0)} \right)$$

■車頭距離

$$\Delta x(t) = d + \frac{v_{\text{max}}}{\alpha} \left(1 - e^{-\alpha t_0} \right) \left(1 - e^{-\alpha (t - t_0)} \right) \underset{t \to \infty}{\longrightarrow} \Delta x_{\text{J}} + v_{\text{max}} t_0$$

渋滞への追着き Catch up to Jam

- ■車頭距離Δx_Fで走行している二台
- ■時刻t = 0で先行車が $\Delta x < d$ となり減速開始
- ■時刻t = t'で後続車が $\Delta x < d$ となり減速開始

$$\Delta x(t) = d - \frac{v_{\text{max}}}{\alpha} \left(1 - e^{-\alpha t'} \right) \left(1 - e^{-\alpha (t - t')} \right) \underset{t \to \infty}{\longrightarrow} \Delta x_{\text{F}} - v_{\text{max}} t'$$

現実的な最適速度関数 Realistic OV Function

$$v_{\text{optimal}}(\Delta x) = \frac{v_{\text{max}}}{2} \left[\tanh\left(\frac{\Delta x - d}{w}\right) + c \right]$$

パラメタ	値
$v_{ m max}$	33.6 m/s
d	25 m
W	23.3 m
С	0.913
α	2 s ⁻¹

サンプルプログラム

https://github.com/modeling-andsimulation-mc-saga/OV

クラス構成 Class Design

- abstractModelパッケージ
 - Car
 - ■一定の時間間隔で位置と速度を保持するクラス
 - ▶動作は記述しない
 - - ■○V関数を与えて、車両を動かすモデルの本体

- analysisパッケージ
 - Fundamental
 - ▶基本図のデータを生成
 - HV
 - ■密度と速度の相関を生成

- modelsパッケージ
 - ■Simulaionクラス
 - ■指定されたOV関数でシミュレーションを実行
 - ■Stepクラス
 - ■○V関数として階段関数を指定
 - ■Tanhクラス
 - ■OV関数としてtanhを指定