# <u>计算机图形学</u>期末考试试卷(D卷)

| <b>—</b> , | 填空             | 题 (每空                | 1分, 共  | キ10分         | )                 |          |             |           |                                                   |
|------------|----------------|----------------------|--------|--------------|-------------------|----------|-------------|-----------|---------------------------------------------------|
| 1.         | . 图形           | 的表示方法                | 去有两种:  | ·            | 和                 |          | o           |           |                                                   |
| 2.         | . 目前           | 常用的两个                | 个事实图别  | 形软件标         | 准是 0 <sub>1</sub> | penGL 和_ |             |           | ·                                                 |
| 3.         | . 多边           | 形有两种                 | 表示方法:  |              |                   | 和点阵      | 表示          | 法。        |                                                   |
| 4.         | . 二维           | 图形基本儿                | 几何变换位  | 包括平移         | `                 |          |             | <u></u> 속 | 等变换。                                              |
| 5.         | . 投影           | 可以分为_                |        | 投影和_         |                   | _投影。     |             |           |                                                   |
| 6.         | . 描述           | 一个物体部                | 需要描述。  | 其几何信         | 息和                |          | _ °         |           |                                                   |
| 7.         | . 在 <b>Z</b> : | 缓冲器消                 | 隐算法中   | Z缓冲器         | 每个单               | 元存储的     | 的信息         | 是纪        | 每一个像素点的。                                          |
| 二、         | 判断是            | <b>题(每小</b>          | 题 1 分, | 共 10 :       | 分,对               | ∤的画 √    | ,错          | 的直        | 画×)                                               |
| 1.         | . 由三           | 个顶点可见                | 以决定一↓  | 没二次 B        | <b>洋条曲</b>        | 线,若三]    | 顶点扌         | 共线        | 时则所得到的曲线褪化为一条直线段。( )                              |
| 2.         | . DDA          | (微分方程                | 法) 是 B | resenhan     | 算法的               | 的改进。(    | ( )         |           |                                                   |
| 3.         | . 插值           | 得到的函数                | 数严格经过  | 过所给定         | 的数据               | 点,逼近     | 记是在         | 某種        | 中意义上的最佳近似。( )                                     |
| 4.         | . 齐次:          | 坐标提供                 | 了坐标系列  | 变换的有         | 效方法               | ,但仍然     | :无法         | 表示        | 示无穷远的点。( )                                        |
| 5.         | . 若相           | 对于某点词                | 进行比例.  | 、旋转变         | 换,首               | 先需要料     | <b>各坐</b> 标 | 原,        | 点平移至该点,在新的坐标系下做比例或                                |
|            | 者旋             | 转变换,氡                | 然后将原,  | 点平移回         | 去。(               | )        |             |           |                                                   |
| 6.         | . Phon         | g 算法的计               | 十算量要と  | L Gourau     | d 算法              | 小得多。     | (           | )         |                                                   |
| 7.         | . 将某           | 二维图形图                | 整体放大   | 2倍,其         | 变换矩               | 阵可写为     | 0           |           | $\begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$ . ( ) |
| 8.         | . 在种           | 子填充算》                | 去中所提到  | 到的八连         | 通区域               | 算法同时     | 可填          | 充四        | B连通区域。( )                                         |
| 9.         | . 边缘:          | 填充算法。                | 中是将扫挂  | 描线与多         | 边形交               | 点左方的     | 的所有         | 像素        | <b>素取补。</b> ( )                                   |
| 10         | 0. 计算          | 机图形技力                | 术是随着[  | 图形硬件         | 设备的               | 发展而发     | 展起          | 来的        | 勺。( )                                             |
|            |                | <b>题(每小</b><br>英中引入齐 |        | • • •        | -                 |          |             |           |                                                   |
|            |                |                      |        |              |                   |          | h甘未         | ग्रोट 🔣   | <b>英,便于计算</b>                                     |
|            |                |                      |        |              |                   |          |             |           |                                                   |
|            |                | 实现错切到                |        |              |                   | 沙木 日 的,  | - 且         | т¤Н       | # III                                             |
|            |                | 中主灭点员                |        |              |                   | - n) o   |             |           |                                                   |
|            |                | B)                   |        |              |                   |          | 5 Nz 70     | п¬        | ᄄᅛᅪᄤᄱᇽᆓᆠᆉᇽᇽ                                       |
| 3. 在       | 间甲光!           | <b>煦</b> 模型甲,        | 田物体    | <b>及</b> 囬上的 | 点反射               | 到观点的     | 力光强         | 走         | 下述哪几项之和?                                          |

①环境光的反射光强 ②理想漫反射光强 ③镜面反射光强 ④物体间的反射光强。

|     | A) ①和②                  | B) (1)                    | 和③                                        | C) ①②和③ | D) (1)(    | 23和4                                  |
|-----|-------------------------|---------------------------|-------------------------------------------|---------|------------|---------------------------------------|
| 4.  | 下面关于反为                  | <b></b><br><b>上样的论述哪个</b> | 是错误?                                      |         |            |                                       |
|     | A) 提高分                  | 辨率                        |                                           | B) 把像素  | 当作平面区域进行   | 采样                                    |
|     | C) 采用锥用                 | <b></b><br>杉滤波器加权区        | 域采样                                       | D)增强图值  | 象亮度        |                                       |
| 5.  | 多边形扫描车                  | 专换可以将                     | o                                         |         |            |                                       |
|     | A) 多边形由                 | 由顶点表示转换                   | 为点阵表示                                     | B) §    | 多边形由区域表示   | :转换为边界表示                              |
|     | C) 多边形车                 | 专换为显示器的                   | 扫描线                                       | D) §    | 多边形的填充属性   | :(如颜色)改变                              |
| 6.  | 以下关于图册                  | F变换的论述那                   | 些是错误的'                                    | ?       |            |                                       |
|     | A) 错切变热                 | <b></b><br>與虽然会引起图        | 形角度的改变                                    | 变,但不会发生 | 生图形畸变;     |                                       |
|     | B) 平移变扬                 | <b>英不改变图形大</b>            | 小和形状,                                     | 只改变图形位员 | 星;         |                                       |
|     | C) 拓扑关系                 | 系不变的几何变                   | 换不改变图                                     | 形的连接关系  | 和平行关系;     |                                       |
|     | D) 旋转变热                 | 换后各图形部分                   | 之间的线性                                     | 关系和角度关系 | 系不变,变换后直   | 线的长度不变;                               |
| 7.  | 哪一个不是国                  | 国际标准化组织                   | (ISO) 批准                                  | 的图形标准?  |            |                                       |
|     | A) GKS                  | B) PHIGS                  | C) CGM                                    | D) DXF  |            |                                       |
| 8.  | 计算机图形显                  | 显示器一般使用                   | 什么颜色模                                     | 型?      |            |                                       |
|     | A) HSV                  | B) RGB                    | C) CMY                                    | D) HLS  |            |                                       |
|     |                         | Γ                         | 2 0 0]                                    |         |            |                                       |
| 9.  | 使用二维图用                  | 影变换矩阵 T=                  | $\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$ | 将产生变换的  | 结果为。       |                                       |
|     |                         |                           | $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ |         |            |                                       |
|     | A) 图形放                  | 大2倍                       |                                           |         |            |                                       |
|     | B) 图形放                  | 大 2 倍,同时》                 | G X、Y 坐标结                                 | 油方向各移动  | 1 个绘图单位    |                                       |
|     | C) 沿 X 坐                | 标轴方向各移动                   | 力2 个绘图单                                   | L位      |            |                                       |
|     |                         |                           |                                           |         | 方向各平移 1 个绘 | 图单位                                   |
| 10. |                         | 制点上产生的                    |                                           |         | 2制点。       | · · · · · · · · · · · · · · · · · · · |
|     | <ul><li>A) 首尾</li></ul> |                           | ) 个 C) J                                  |         | κ↑         |                                       |
|     | ,,,,                    |                           | . = . /                                   |         | •          |                                       |

# 四、简答题(每小题5分,共25分)

1. 计算机图形学研究的主要内容是什么?图形主要分为哪两类?



3. 什么是直线的走样? 反走样技术有哪些途径。

4. 什么是齐次坐标? 齐次空间点 P(X、Y、W) 对应的笛卡尔坐标是什么?

5. Z缓冲器算法中有哪两个缓冲器?它们分别存放的是什么?

## 四、计算题 (每小题 15 分,共 45 分)

1) 图中 ABCD 为矩形窗口, P<sub>1</sub>P<sub>2</sub>为待裁剪线段。试用编码裁剪算法求出 P<sub>1</sub>P<sub>2</sub>在窗口中的直线段坐标。

已知:窗口及线段的坐标分别为 A(3,1)、B(8,1)、C(8,6)、D(3,6)、 $P_1(3,0)$ 、 $P_2(10,9)$ 





2) 如下图所示三角形 ABC,将其关于 A 点逆时针旋转  $90^{\circ}$ ,写出其变换矩阵和变换后图形各点的规范化 齐次坐标。



| 3)如下图所示多边形,<br>边表(AET 表)。 | 若采用 ET 边表算法进行填充, | 试写出该多边形的 ET 表和当扫抗 | 描线 Y=3 时的有效 |
|---------------------------|------------------|-------------------|-------------|
|                           |                  |                   |             |



# 四、 填空题

- 1. 参数法、点阵法
   2. DirectX。
   3. 顶点表示法

- 4. 比例、旋转
- 5. 平行、透视 6. 拓扑信息 7. 深度值

#### 五、 判断题

1.  $\checkmark$  2.  $\times$  3.  $\checkmark$  4.  $\times$  5.  $\checkmark$  6.  $\times$  7.  $\times$  8.  $\checkmark$  9.  $\times$  10.  $\checkmark$ 

#### 六、 选择题

2. D 6. A 7. D 8. B 9. D 1. B 3. C 4. D 5. A 10. B

#### 四、简答题(每小题5分,共25分)

1. 计算机图形学研究的主要内容是什么? 图形主要分为哪两类?

解答: 计算机图形学是研究如何在计算机中表示图形, 以及利用计算机进行图形的计算、处理和显示的相 关原理与算法。图形主要分为两类:一类是基于线条表示的几何图形,另一类是基于光照、材质和纹理映 射表示的真实感图形。

2. 帧缓冲器的容量与什么有关? 若要在 1024×1024 的分辨率下显示 16 种灰度级图像, 帧缓冲器的容量应 为多少 MB?

解答: 帧缓存的容量与分辨率和颜色的灰度级有关。

一个光栅扫描系统,分辨率 1024×1024,要求可显示颜色 16 种,

帧缓存的容量=1024×1024×4÷8÷1024÷1024=0.5 (MB)。

3. 什么是直线的走样? 反走样技术有哪些途径。

解答:由离散量表示连续量而引起的失真称为走样。

反走样技术主要分为两类:一类是硬件技术,通过提高显示器的分辨率来实现;另一类是软件技术, 通过改进软件算法来实现。

4. 什么是齐次坐标? 齐次空间点 P(X、Y、W) 对应的笛卡尔坐标是什么?

解答: 齐次坐标就是 n 维空间中的物体可用 n+1 维齐次坐标空间来表示。

齐次空间点 P(X, Y, W) 对应的笛卡尔坐标是 x=X/W 和 y=Y/W。

5. Z 缓冲器算法中有哪两个缓冲器? 它们分别存放的是什么?

解答: Z 缓冲器算法中有两个缓冲器: 深度缓冲器和帧缓冲器。

深度缓冲器里存放着图像空间每个可见像素的 z 坐标。

帧缓冲器里存放着图像空间每个可见像素的属性(光强或颜色)值。

#### 四、计算题 (每小题 15 分,共 45 分)

1) 图中 ABCD 为矩形窗口, P<sub>1</sub>P<sub>2</sub>为待裁剪线段。试用编码裁剪算法求出 P<sub>1</sub>P<sub>2</sub>在窗口中的直线段坐标。

已知:窗口及线段的坐标分别为 A(3,1)、B(8,1)、C(8,6)、D(3,6)、 $P_1(3,0)$ 、 $P_2(10,9)$ 



解答: P<sub>1</sub>、 P<sub>2</sub>的编码分别为 Code (P<sub>1</sub>)=0100 和 Code (P<sub>2</sub>)=1010

Code  $(P_1)$  | Code  $(P_2)$  不等于 0, 说明不能简取之;

Code  $(P_1)$  & Code  $(P_2)$  = 0, 说明不能简弃之。

所以需要求 $P_1P_2$ 与窗口边界的交点,按照左、右、下、上的顺序求交点。

根据  $P_1$ 、 $P_2$ 的编码特点, $P_1$ 与  $P_2$ 位于左边界的同侧,故与作边界没有实交点;

 $P_1P_2$ 与右边界的交点  $P_3$ , 其坐标为 (8, 45/7), 丢弃直线段  $P_2P_3$ , 对直线段  $P_1P_3$ 进行裁剪。

 $P_3$ 点的编码为 Code ( $P_3$ ) = 1000,同理  $P_1P_3$ 不能"简取之",也不能"简弃之",故求得  $P_1P_3$ 与窗口下边界的交点  $P_4$ ,其坐标为(34/9,1),丢弃直线段  $P_1P_4$ ,对直线段  $P_4P_3$ 进行裁剪。

 $P_4$ 点的编码为 Code  $(P_4)$  = 0000,同理 P3P4 不能"简取之",也不能"简弃之",故求得 P3P4 与 窗口上边界的交点为  $P_5$ , 其坐标为 (69/9,6),丢弃直线段  $P_3P_5$ , 对直线段  $P_4P_5$ 进行裁剪。

 $P_5$ 点的编码为 Code ( $P_5$ ) = 0000,此时 Code ( $P_4$ ) | Code ( $P_5$ ) = 0 ,所以直线段  $P_4P_5$ 可以"简取之", $P_4P_5$ 即为裁剪结果。

 $P_1P_2$ 在窗口 ABCD 裁剪后的直线段的坐标为 (34/9, 1)、(69/9, 6)。

2)如下图所示三角形 ABC,将其关于 A 点逆时针旋转 90°,写出其变换矩阵和变换后图形各点的规范化齐次坐标。



解答:将三角形 ABC 的 A 点平移至原点,其变换矩阵为  $T1=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & -5 & 1 \end{bmatrix}$ 

然后将三角形 ABC 绕原点即 A 点逆时针旋转 90°,其变换矩阵  $T2=\begin{bmatrix}0&1&0\\-1&0&0\\0&0&1\end{bmatrix}$ 

最后再将三角形 ABC 的 A 点平移至 (2, 5), 其变换矩阵  $T3=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 5 & 1 \end{bmatrix}$ 

总变换矩阵 T= T1 • T2 • T3 = 
$$\begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 7 & 3 & 1 \end{bmatrix}$$

三角形 ABC 各点变换后的齐次坐标:

$$\begin{bmatrix} 2 & 5 & 1 \\ 1 & 1 & 1 \\ 6 & 3 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 7 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 5 & 1 \\ 6 & 4 & 1 \\ 4 & 9 & 1 \end{bmatrix}$$

故变换后 A 点的齐次坐标为(2, 5, 1), B 点的齐次坐标为(6, 4, 1), C 的齐次坐标为(4, 9, 1)。

3) 如下图所示多边形,若采用 ET 边表算法进行填充,试写出该多边形的 ET 表和当扫描线 Y=3 时的有效 边表(AET 表)。



解答:边表的节点形式如下:

| X | Ymax | 1/k | next |
|---|------|-----|------|
|---|------|-----|------|

多边形的顶点采用下闭上开的原则处理。

## ET 表:



Y= 3 时的 AET:

