

Open Source Modelling and Optimisation of Energy Infrastructure at Urban Scale Final presentation

Johannes Dorfner

Chair of Renewable and Sustainable Energy Systems Department of Electrical and Computer Engineering Technical University of Munich

06 December 2016

Outline

1 Energy, Infrastructure, City

2 Mathematical modelling, optimisation, case study

3 Sustainable model use

Section 1

Energy, Infrastructure, City

Motivation

Questions about Germany's Climate Action Plan 2050

(BMUB 2015/16)

1. How can the almost complete transition from fossil fuels to renewable energy sources for electricity generation be accomplished by 2050?

Motivation

Questions about Germany's Climate Action Plan 2050

(BMUB 2015/16)

- 1. How can the almost complete transition from fossil fuels to renewable energy sources for electricity generation be accomplished by 2050?
- 2. How can we build acceptance for a timely grid expansion?

Questions about Germany's Climate Action Plan 2050

(BMUB 2015/16)

- 1. How can the almost complete transition from fossil fuels to renewable energy sources for electricity generation be accomplished by 2050?
- 2. How can we build acceptance for a timely grid expansion?
- 3. What proportion of fossil fuel burning power stations do we need for a transitional period, and for how long?

Questions about Germany's Climate Action Plan 2050

(BMUB 2015/16)

- 1. How can the almost complete transition from fossil fuels to renewable energy sources for electricity generation be accomplished by 2050?
- 2. How can we build acceptance for a timely grid expansion?
- 3. What proportion of fossil fuel burning power stations do we need for a transitional period, and for how long?
- 4. Which role do decentralised energy supply concepts play?

Questions about Germany's Climate Action Plan 2050

(BMUB 2015/16)

- 1. How can the almost complete transition from fossil fuels to renewable energy sources for electricity generation be accomplished by 2050?
- 2. How can we build acceptance for a timely grid expansion?
- 3. What proportion of fossil fuel burning power stations do we need for a transitional period, and for how long?
- 4. Which role do decentralised energy supply concepts play?
- 5. How can the electricity and heating/cooling markets be more closely integrated […]?

Perspective

Physics

Theoretical feasibility (Natural laws)

Engineering

Technical feasibility (Technologies)

Economy

Economic feasibility (Funding)

Society

Social feasibility (Decision space)

Perspective

Physics

Theoretical feasibility (Natural laws)

Engineering

Technical feasibility (Technologies)

Economy

Economic feasibility (Funding)

Society

Social feasibility (Decision space)

Techno-economic modelling

How much energy? For how much?

Section 2

Mathematical modelling, optimisation, case study

Model overview

https://github.com/tum-ens/urbs

https://github.com/tum-ens/rivus

 $\label{eq:sets} \begin{array}{ll} \text{Sets} & t \in T, \ p \in P, \ s \in S, \ \dots \\ \\ \text{Parameters} & d_t \end{array}$

 $\begin{array}{ll} \text{Sets} & t \in T, \ p \in P, \ s \in S, \ \dots \\ \\ \text{Parameters} & d_t, \ k_p^{\text{fix}}, \ k_s^{\text{fix,c}}, \ k_s^{\text{fix,p}} \end{array}$

```
\begin{array}{ll} \text{Sets} & t \in T, \ p \in P, \ s \in S, \ \dots \\ \\ \text{Parameters} & d_t, \ k_p^{\text{fix}}, \ k_s^{\text{fix,c}}, \ k_s^{\text{fix,p}}, \ k_p^{\text{var}}, \ k_s^{\text{var}}, \ \dots \end{array}
```

```
\begin{array}{ll} \text{Sets} & t \in \mathsf{T}, \ p \in \mathsf{P}, \ s \in S, \ \dots \\ \\ \text{Parameters} & d_t, \ k_p^{\mathsf{fix}}, \ k_s^{\mathsf{fix},c}, \ k_s^{\mathsf{fix},p}, \ k_p^{\mathsf{var}}, \ k_s^{\mathsf{var}}, \ \dots \\ \\ \text{Variables} & \kappa_p, \ \kappa_s^c, \ \kappa_s^p \end{array}
```

```
\label{eq:sets} \begin{array}{ll} \text{Sets} & t \in \mathsf{T}, \ p \in \mathsf{P}, \ s \in \mathsf{S}, \ \dots \\ \\ \text{Parameters} & d_t, \ k_p^{\mathsf{fix}}, \ k_s^{\mathsf{fix},\mathsf{c}}, \ k_s^{\mathsf{fix},\mathsf{p}}, \ k_p^{\mathsf{var}}, \ k_s^{\mathsf{var}}, \ \dots \\ \\ \text{Variables} & \kappa_p, \ \kappa_s^{\mathsf{c}}, \ \kappa_s^{\mathsf{p}}, \ \varepsilon_{\mathsf{pt}}, \ \varepsilon_{\mathsf{st}}^{\mathsf{in}}, \ \varepsilon_{\mathsf{st}}^{\mathsf{out}}, \ \varepsilon_{\mathsf{st}}^{\mathsf{con}}, \ \dots \end{array}
```

$$\begin{split} \text{Sets} \quad & t \in \mathsf{T}, \ p \in \mathsf{P}, \ s \in \mathsf{S}, \ \dots \\ \text{Parameters} \quad & d_t, \ k_p^{\mathsf{fix}}, \ k_s^{\mathsf{fix},c}, \ k_s^{\mathsf{fix},p}, \ k_p^{\mathsf{var}}, \ k_s^{\mathsf{var}}, \ \dots \\ \text{Variables} \quad & \kappa_p, \ \kappa_s^c, \ \kappa_s^p, \ \varepsilon_{pt}, \ \varepsilon_{st}^{\mathsf{in}}, \ \varepsilon_{st}^{\mathsf{out}}, \ \varepsilon_{st}^{\mathsf{con}}, \ \dots \\ \text{Objective} \quad & \min \sum_{p \in \mathsf{P}} \left(k_p^{\mathsf{fix}} \kappa_p + \sum_{t \in \mathsf{T}} k^{\mathsf{var}} \varepsilon_{pt} \right) + \\ & \qquad \qquad \sum_{s \in \mathsf{S}} \left(k_s^{\mathsf{fix},c} \kappa_s^c + k_s^{\mathsf{fix},p} \kappa_s^p + \sum_{t \in \mathsf{T}} k_s^{\mathsf{var}} \left(\varepsilon_{st}^{\mathsf{in}} + \varepsilon_{st}^{\mathsf{out}} \right) \right) \end{split}$$

$$\begin{array}{lll} \text{Sets} & t \in \mathsf{T}, \ p \in \mathsf{P}, \ s \in \mathsf{S}, \ \dots \\ \\ \text{Parameters} & d_t, \ k_p^{\mathsf{fix}}, \ k_s^{\mathsf{fix},c}, \ k_s^{\mathsf{fix},p}, \ k_p^{\mathsf{var}}, \ k_s^{\mathsf{var}}, \ \dots \\ \\ \text{Variables} & \kappa_p, \ \kappa_s^c, \ \kappa_s^p, \ \varepsilon_{pt}, \ \varepsilon_{st}^{\mathsf{in}}, \ \varepsilon_{st}^{\mathsf{out}}, \ \varepsilon_{st}^{\mathsf{con}}, \ \dots \\ \\ \text{Objective} & \min \sum_{p \in \mathsf{P}} \left(k_p^{\mathsf{fix}} \kappa_p + \sum_{t \in \mathsf{T}} k^{\mathsf{var}} \varepsilon_{pt} \right) + \\ & \sum_{s \in \mathsf{S}} \left(k_s^{\mathsf{fix},c} \kappa_s^c + k_s^{\mathsf{fix},p} \kappa_s^p + \sum_{t \in \mathsf{T}} k_s^{\mathsf{var}} \left(\varepsilon_{st}^{\mathsf{in}} + \varepsilon_{st}^{\mathsf{out}} \right) \right) \\ \\ \text{Constraints} & \mathsf{s.t.} \ \forall t \in \mathsf{T} \colon \sum_{p \in \mathsf{P}} \varepsilon_{pt} + \sum_{s \in \mathsf{S}} \left(\varepsilon_{st}^{\mathsf{out}} - \varepsilon_{st}^{\mathsf{in}} \right) = d_t \\ \\ \end{array}$$

J. Dorfner

Standard form of linear optimisation problems (LP)

Generic form

$$\min_{\mathbf{x}} \ z = \mathbf{c}^{\mathsf{T}} \mathbf{x}$$

s.t. $\mathbf{A}\mathbf{x} \le \mathbf{b}$

with $x \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$.

$$LP \quad z = k_i^{\text{var}} x_i$$
$$x_i \le M$$

$$LP \quad \frac{z}{x_i} = k_i^{\text{var}} \equiv const$$

$$LP \quad z = k_i^{\text{var}} x_i$$
$$x_i \leq M$$

$$LP \quad \frac{z}{x_i} = k_i^{\text{var}} \equiv const$$

I. Dorfner

TUM ELENS

$$\begin{aligned} x_i \\ \mathsf{LP} \quad z &= k_i^{\mathsf{var}} x_i \\ x_i &\leqslant M \\ \mathsf{MILP} \quad z &= k_i^{\mathsf{fix}} y_i + k_i^{\mathsf{var}} x_i \\ y_i &\in \{0,1\} \\ \mathsf{m} \, y_i &\leqslant x_i \leqslant M \, y_i \end{aligned}$$

LP
$$\frac{z}{x_i} = k_i^{\text{var}} \equiv \text{const}$$

MILP $\frac{z}{x_i} = k_i^{\text{var}} + \frac{k_i^{\text{fix}}}{x_i}$

rivus

rivus

Principle illustrated

Input data rivus

Light industry (Schletter) biggest single consumer

 $\verb|https://github.com/tum-ens/rivus/data/haag15||$

Result rivus -- Capacities in scenario base

Full networks for electricity and gas, several local heating networks

https://github.com/tum-ens/rivus/runhg15.py:scenario_no_electric_heating()

Result rivus -- Capacities in scenario future

Strong electricity grid, no gas network, only heat pumps

https://github.com/tum-ens/rivus/runhg15.py:scenario_renovation()

Result urbs -- 1 week electricity in scenarios base

https://github.com/ojdo/urbs/tree/haag15/rivhg15.py:scenario_base()

Result urbs -- 1 week electricity in scenario cheap battery

Section 3 Sustainable model use

Research question

J. Dorfner TUM EI ENS

Research question Modelling assumptions

J. Dorfner

TUM ELENS

Open Source Modelling of Energy Infrastructure

Conclusion

