For a given function g(n), we denote by $\Theta(g(n))$ the set of functions

$$\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0\}$$
.

 Θ notation (asymptotically tight bound for f(n))

Example:

$$f(n) = \frac{1}{2}n^2 - 3n = \Theta(n^2)$$

To justify above statement, must determine positive constant c_1 , c_2 , and n_0 such that:

$$c_1 n^2 \le \frac{1}{2} n^2 - 3n \le c_2 n^2$$
 for all $n \ge n_0$

Dividing by n^2 yields:

$$c_1 \le \frac{1}{2} - \frac{3}{n} < c_2$$

rhs inequality holds for any value $n \ge 1$ by choosing $c_2 \ge \frac{1}{2}$ Likewise, lhs inequality holds for any value $n \ge 7$ by choosing $c_1 \le \frac{1}{14}$.

Thus, by choosing
$$c1=\frac{1}{14}$$
, $c_2=\frac{1}{2}$ and $n_0=7$, can verify that $\frac{1}{2}n^2-3n=\Theta(n^2)$

For a given function g(n), we denote by O(g(n)) (pronounced "big-oh of g of n" or sometimes just "oh of g of n") the set of functions

$$O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$$
.

O notation (asymptotic upper bound for f(n)).

Also, $\Theta(g(n)) \subseteq O(g(n))$

O notation

- O notation gives an asymptotic upper bound on a function, to within a constant factor
- When O notation used to bound worst-case running time of an algorithm, we have a bound on the running time of the algorithm for any input
- Any quadratic function is in $O(n^2)$
- Also, any *linear* function an + b is in $O(n^2)$
 - When we write f(n) = O(g(n)) we are merely claiming that some constant multiple of g(n) is an asymptotic upper bound on f(n) with no claims about how tight the bound may be
- Can often describe running time of algorithm using $\mathcal O$ notation by inspecting algorithm's overall structure (next slide)

Analyzing insertion sort at a glance

- Doubly nested loop structure
- Cost of each iteration of inner loop is O(1) (doesn't depend on size of A)
- Indices i and j are both at most n
- Inner loop is executed at most once for each of the n^2 pairs of values for i and j

```
INSERTION-SORT (A)

1 for j \leftarrow 2 to length[A]

2 do key \leftarrow A[j]

\Rightarrow Insert A[j] into the sorted sequence A[1...j-1].

4 i \leftarrow j-1

5 while i > 0 and A[i] > key

6 do A[i+1] \leftarrow A[i]

7 i \leftarrow i-1

8 A[i+1] \leftarrow key
```

For a given function g(n), we denote by $\Omega(g(n))$ (pronounced "big-omega of g of n" or sometimes just "omega of g of n") the set of functions

 $\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}$.

 Ω notation (asymptotic lower bound for f(n))

Function	Name
С	Constant
log N	Logarithmic
$\log^2 N$	Log-squared
N	Linear
$N \log N$	
N^2	Quadratic
N^3	Cubic
2^N	Exponential

Figure 2.1 Typical growth rates