http与https

ht	tp与h	ttps.		1	
1.	sslt	加密.		4	
2.	htt	p报文	T使用明文,导致数据不安全	4	
3.	htt	p明文	て协议的问题	4	
	3.1.	流量	量劫持	4	
	3.1	.1.	客户端访问地址,时被恶意劫持,中途跳转到其他网站	4	
	3.2.	数扩	呂篡改	4	
	3.2	.1.			
	3.2	.2.	无法证明报文的完整性	4	
	3.2	.3.	https 通过数据签名进行弥补	4	
	3.3.	钓鱼	鱼攻击	4	
	3.3	.1.		- `	
			http不需要验证通信双方的身份,任何人都可以通过伪造服务器欺疑	編	
	客		4		
		.2.	7,5 7, 10,9 (=		
	3.4.		居泄露		
4.			로 사 최고화 사		
	4.1.		居的私密性		
	4.1.1.		7 1 7 / M. H.		
	4.1.2.		11 · · · · · · · · · · · · · · · · · ·		
		.3.	, , , , , , , , , , , , , , , , , , , ,		
	4.2.		居的完整型		
5.	4.3.		分验证		
5. 6.	_		据被窃听		
-	_{元子} 。 6.1.		过公有密钥和私有密钥进行		
	6.2.	ALL X	- A I II MARA II II M及 II		
		发羽	密文的使用对方的密钥进行加密,对方收到加密的信息后,在使用私	有	
	密钥进行解密				
	6.3.		寸称性加密		
	6.3	.1.	1对多,服务器只需要1个私钥就可以和多个客户端进行加密通信	5	
	6.4.	缺点	<u> </u>	5	
	6.4	.1.	公钥公开	5	
	6.4	.2.	服务器身份的合法性不确定	6	
	6.4	.3.	降低数据传输效率	6	

	6.5. 最终方式	6
	6.5.1. 二合一对称加密与非对称加密两者并用的混合加密机制	6
	6.5.2. 具体	
	在交换密钥的环节,发密方将自己的公钥通过对方的公钥进行加密,对方收	[到
	加密的密钥后,用自己的私钥进行解密,获取对方的公钥	
7.	解决数据完整性的问题	6
	7.1. 数字签名	6
	7.1.1. 确定发送方的身份	6
	7.1.2. 证明数据是否被篡改	6
	7.2. 流程	6
	7.2.1.	
	首先,发送方先将一段原文用hash函数生成一段消息摘要,然后用自	•
	己的私钥对消息摘要进行加密,生成数字签名,然后与原文一起发送给接收 6	.万
	7.2.2.	
	接受方通过发送方的公钥对数字签名进行解密,让再将原文用hashi	函
	数生成消息摘要,让后进行对比	6
	7.3. 问题	6
	7.3.1. 不能保证公钥的安全传输,	6
8.	解决通信双方可能被伪装的问题	7
	8.1. 数字证书认证机构	7
	8.2. 服务器向第三方CA提交公钥,组织信息,申请认证	7
	8.3.	
	认证通过后,CA签发证书:包含申请者的公钥,组织信息,有效时间,	
	书序列号明文,还有签名,用散列表将明文计算,生成消息摘要,再用CA的密	
	钥进行加密,密文就是签名	
	8.4. 客户端向服务端发出请求,服务端会返回文件	7
	8.5. 秦克地战烈工共兵,此四点势八阳地东烟南,再四地和区牧江麓城市四	.,, ,
	客户端收到证书后,先用CA的公钥进行解密,再用散列函数计算消息明显。	
	生成消息摘要,进行对比	
	5户端	
	7户端	
	7夕器 	
	2务器	
	7用会话密钥进行解密	
	7户端	
	·	

- 1. ssl加密
- 2. http报文使用明文,导致数据不安全
- 3. http明文协议的问题
 - 3.1. 流量劫持
 - 3.1.1. 客户端访问地址,时被恶意劫持,中途跳转到其他网站
 - 3.2. 数据篡改
 - 3.2.1. 原数据被篡改
 - 3.2.2. 无法证明报文的完整性
 - 3.2.3. https 通过数据签名进行弥补
 - 3.3. 钓鱼攻击
 - 3.3.1. http不需要验证通信双方的身份,任何人都可以通过伪造服务器欺骗客户
 - 3.3.2. 缺少身份认证
 - 3.4. 数据泄露
- 4. https
 - 4.1. 数据的私密性
 - 4.1.1. 对称加密
 - 4.1.2. 非对称性加密
 - 4.1.3. 每一个连接生成唯一的加密密钥

- 4.2. 数据的完整型
- 4.3. 身份验证
- 5. tls/ssl

5.1.

6. 解决数据被窃听

- 6.1. 通过公有密钥和私有密钥进行
- **6.2.** 发密文的使用对方的密钥进行加密,对方收到加密的信息后,在使用私有密钥进行解密
- 6.3. 非对称性加密
 - 6.3.1.1对多,服务器只需要1个私钥就可以和多个客户端进行加密通信
- 6.4. 缺点
 - 6.4.1. 公钥公开

黑客如果截获依旧会获取

6.4.2. 服务器身份的合法性不确定

存在中间人去截获并篡改

6.4.3. 降低数据传输效率

数据加密解密过程中消耗一定的时间

- 6.5. 最终方式
 - 6.5.1. 二合一 对称加密与非对称加密两者并用的混合加密机制
 - 6.5.2. 具体

在交换密钥的环节,发密方将自己的公钥通过对方的公钥进行加密,对方收到加密的密钥后,用自己的私钥进行解密,获取对方的公钥

- 7. 解决数据完整性的问题
 - 7.1. 数字签名
 - 7.1.1. 确定发送方的身份
 - 7.1.2. 证明数据是否被篡改

7.2. 流程

- 7.2.1. 首先,发送方先将一段原文用hash函数生成一段消息摘要,然后用自己的私钥对消息摘要进行加密,生成数字签名,然后与原文一起发送给接收方
- 7.2.2. 接受方通过发送方的公钥对数字签名进行解密,让再将原文用hash函数 生成消息摘要,让后进行对比
- 7.3. 问题

7.3.1. 不能保证公钥的安全传输,

- 8. 解决通信双方可能被伪装的问题
 - 8.1. 数字证书认证机构
 - 8.2. 服务器向第三方CA提交公钥,组织信息,申请认证
 - 8.3. 认证通过后,CA签发证书:包含申请者的公钥,组织信息,有效时间,证书序列号明文,还有签名,用散列表将明文计算,生成消息摘要,再用CA的密钥进行加密,密文就是签名
 - 8.4. 客户端向服务端发出请求,服务端会返回文件
 - 8.5. 客户端收到证书后,先用CA的公钥进行解密,再用散列函数计算消息明文生成消息摘要,进行对比
- 9. https流程

客户端

参见: 服务器 (1发送请求), 服务器 (2将证书送过去), 客户端 (3用CA公钥解密证书, 并进行验证, 不通过警报, 通过获得服务器公钥)

服务器

参见: 客户端 (1发送请求), 客户端 (2将证书送过去)

客户端

参见: 客户端

(3用CA公钥解密证书,并进行验证,不通过警报,通过获得服务器公钥),服务器(4用获得的服务器公钥对会话密钥进行加密)

服务器

参见: <u>客户端 (4用获得的服务器公</u>钥对会话密钥进行加密), <u>服务器</u> (5用自己的私钥解密获得客户端的会话密钥)

服务器

参见: 服务器 (5用自己的私钥解密获得客户端的会话密钥), 客户端 (6用会话密钥进行加密进行加密)

7用会话密钥进行解密

客户端

参见: 明文A, 服务器 (6用会话密钥进行加密进行加密)

明文A

参见: 客户端