

Energy. Don't loose it...REUSE it!

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008.

July 2nd, 2000 Freescale Webing

For Today's Webinar...

- Introduction to 4-Quadrant Systems
- Motor Regeneration
- Single-Phase Line Regeneration

Three-Phase Line Regeneration

Quadrants of Operation

NAP

Example 4-Quadrant System

Conditions for DC Motor Regeneration

Bus regen. can only occur when applied voltage is smaller in magnitude than the motor back-EMF, and of the same polarity.

AC Motor Regeneration

SPICE SIMULATION

Where Does the Energy Go?

Rectifiers block current flow back on to AC line from the dc bus, thus preventing line regeneration.

All motor energy gets dumped in the bus capacitor.

NP

Regeneration to a Single Phase AC Line

NP

Single Phase AC Line Regeneration

NO

Simulation Results of Single-Phase Regenerative System

Regeneration to a 3-Phase AC Line

Freescale offers several controller solutions with the required MIPS and peripherals for this application.

D and Q Axes Representation

Field Oriented Techniques applied to three-phase system

Put current vector on this axis for unity PF.

Step 1: Voltage Measurement

Step 2: 3-phase to 2-phase transformation

$$V_{\alpha} = \frac{3}{2}V_{a}$$

$$V_{\beta} = \frac{\sqrt{3}}{2}V_{b} - \frac{\sqrt{3}}{2}V_{c}$$

This is sometimes referred to as the FORWARD CLARK transformation

Step 3: Angle Demodulation

iracking Filter Used for Angle Demodulation

Step 4: Bus Voltage Regulator

Step 5. Establish i_d and i_q

$$i_d = sqrt(2/3) * (cos(\theta)*i_a + cos(\theta - 2*\pi/3)*i_b + cos(\theta - 4*\pi/3)*i_c)$$

 $i_d = sqrt(2/3) * (-sin(\theta)*i_a - sin(\theta - 2*\pi/3)*i_b - sin(\theta - 4*\pi/3)*i_c)$

Forward Clark-Park Transformation

Step 6. Synchronous Frame Current Regulation

P or PI regulators work well.

Lep 7: Synchronous to Stationary Frame Transformation

Reverse Clark-Park Transformation

Step 8. Output Voltage Modulation

Three-Phase System Overview

Janual ation Results of 3-Phase Regenerative System

Standby Power Supplies

Applications

Connecting asynchronous power sources

Hybrid vehicles

Combined starter/alternator

Elevator Drives

Driving high inertial loads

System Benefits

Bidirectional control of power

Sinusoidal Currents

Unity Power Factor (or ANY Power Factor for that matter)

Since Vbus is regulated, and currents are sinusoidal, the semiconductor volt-amp ratings are reduced

Vbus is less sensitive to AC line fluctuations

For three-phase AC systems, FOC algorithms can be used for both converter and inverter control

Matrix Converter Topology

Inputs

Latrix Converter Output Waveform Example

ual Converter-Inverter DSC Solutions

	56F8335	56F8345	56F8346	56F8347	56F8355	56F8356	56F8357	56F8365	56F8366	56F8367
	00.000	001 00 10		001 00 11		001 0000	001 0001	001 0000	001 0000	
Voltage (Core / I/O)	2.5/3.3V	2.5/3.3V	2.5/3.3V	2.5/3.3V	2.5/3.3V	2.5/3.3V	2.5/3.3V	2.5/3.3V	2.5/3.3V	2.5/3.3V
On-Chip Flash	80KB	144KB	144KB	144KB	280KB	280KB	280KB	560KB	560KB	560KB
Program Flash	64KB	128KB	128KB	128KB	256KB	256KB	256KB	512KB	512KB	512KB
Data Flash	8KB	8KB	8KB	8KB	8KB	8KB	8KB	32KB	32KB	32KB
Boot Flash	8KB	8KB	8KB	8KB	16KB	16KB	16KB	32KB	32KB	32KB
On-Chip RAM	12KB	12KB	12KB	12KB	20KB	20KB	20KB	36KB	36KB	36KB
Program RAM	4KB	4KB	4KB	4KB	4KB	4KB	4KB	4KB	4KB	4KB
Data RAM	8KB	8KB	8KB	8KB	16KB	16KB	16KB	32KB	32KB	32KB
Flash security	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Ext. Memory Interface	-	_	Yes	Yes	-	Yes	Yes	-	Yes	Yes
On-Chip Relax. Osc.	Yes	No	No	No	No	No	No	No	No	No
16-bit Timers	16	16	16	16	16	16	16	16	16	16
Quadrature Decoder	2 x 4ch	2 x 4ch	2 x 4ch	2 x 4ch	2 x 4ch	2 x 4ch	2 x 4ch	2 x 4ch	2 x 4ch	2 x 4ch
PWM	2 x 6ch	2 x 6ch	2 x 6ch	2 x 6ch	2 x 6ch	2 x 6ch	2 x 6ch	2 x 6ch	2 x 6ch	2 x 6ch
PWM Fault Input	4 + 4	4 + 4	3 + 4	3 + 4	4 + 4	3 + 4	3 + 4	4 + 4	3 + 4	4 + 4
PWM Current Sense	3 + 3	3 + 3	3 + 3	3 + 3	3 + 3	3 + 3	3 + 3	3 + 3	3 + 3	3 + 3
12-bit ADC	4 x 4ch	4 x 4 ch	4 x 4 ch	4 x 4 ch	4 x 4ch	4 x 4ch	4 x 4ch	4 x 4 ch	4 x 4ch	4 x 4ch
Temperature Sensor	Optional	Optional	Optional	Optional	Optional	Optional	Optional	Optional	Optional	Optional
CAN	FlexCAN	FlexCAN	FlexCAN	FlexCAN	FlexCAN	FlexCAN	FlexCAN	FlexCAN (2)	FlexCAN (2)	FlexCAN (2)
SCI (UART)	2	2	2	2	2	2	2	2	2	2
SPI (Synchronous)	2	2	2	2	2	2	2	2	2	2
GPIO (Ded./Shrd/Tot)	21 / 28 / 49	21/ 28 / 49	0 / 62 / 62	0 / 76 / 76	21 / 28 / 49	0 / 62 / 62	0 / 76 / 76	21 / 28 / 49	0 / 62 / 62	0 / 76 / 76
JTAG/EOnCE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Package	128LQFP	128LQFP	144LQFP	160LQFP	128LQFP	144LQFP	160LQFP	128LQFP	144LQFP	160LQFP

All devices are 60 MHz, (-40, +125)°C

56F8300 Pin Compatibility

Cost Effective 56F8000 Solutions 56F8011/56F8013/56F8014

Key Control Peripherals

Packages:32LQFP

- 32 MIPS Performance
- 16 K Bytes Program FLASH
- 4 K Bytes Program/Data RAM
- Tunable Internal Relaxation Oscillator
- Software Programmable Phase Locked Loop
- Up to 96 MHz Peripherals Timers and PWMs
- Up to 6-Output PWM Module with up to 4 Programmable Fault Inputs
- Selectable PWM frequency for each complementary PWM signal pair
- Two 12-bit ADCs with up to 8 Inputs, 1.125us conversion rate
- Synchronization between PWM and ADC
- Four 16-bit General Purpose Programmable Timers
- Computer Operating Properly Timer
- Serial Ports: SCI, SPI, I2C
- Up to 26 GPIOs Versatile pin usage
- Low Power Consumption 59mA Max and .026mA Min
- JTAG/EOnCE™ Debug Port
- MSRP starting at \$2.92 for 1K units

56F8000 Family Expansion 56F8023/56F8025/56F8036/56F8037 Features

64KB Flash 8KB RAM 6 Output JTAG/EOnCE™ PWM Voltage 8 16bit Timers Regulators 56800E Interrupt Two 12bit ADCs Controller Up to 2x8 Input Core Power 2-QSCI **32 MIPS** Supervisor 2-QSPI 32 MHz COP I²C **MSCAN** 2-12bit DACs 3-PIT 2-Analog Comparators **System Clock Control** (PLL, SIM, Osc)

- •32 LQFP 44QFP
- •48LQFP 64LQFP

32 MHz/32 MIPS 56800E Core

- 3.0-3.6V Operation
- 32K-64K Bytes Program FLASH
- 4K-8K Bytes Program/Data RAM
- Flash security
- Tunable Internal Relaxation Oscillator
- Software Programmable Phase Locked Loop
- Up to 96 MHz Peripherals Timers and PWMs
- 6 Output PWM Module with 4 Programmable Fault Inputs
- 2-12-bit ADCs for 6-8 Inputs w/ Int. or External Vref
- Up to 2 12-bit Digital to Analog Converters
- 2 Analog Comparators
- Synchronization between PWM and ADC
- 4 or 8 16-bit General Purpose Programmable Timers
- 1 or 3 Programmable Interval Timers
- Computer Operating Properly Timer
- 2-Queued Serial Communications Interface
- 2-Queued Serial Peripheral Interface
- Optional MSCAN
- I²C Communications Interface
- Up to 53 GPIOs
- JTAG/EOnCE™ Debug Port
- 4 Lead Free Packages
- Up to -40 to 125C temperature range
- MSRP starting at \$3.30 for 1K units

New or Improved

Anguilla White: Ultra Low cost Product: 56F8002, 56F8006

12-16KB **Program**

Flash 2KB Program/ **Data RAM** 56F8002, 56F8006

System Integration Module (SIM)

Interrupt Controller

PII

Relaxation OSC

Crystal OSC

1 Period Int Timer

56800E Core 32MHz

JTAG/EOnCE

Voltage Regulator

COP

Power-On-Reset

Power Supervisor

Up to 40 GPIOs

1 SCI

1 SPI

1 IIC

2 x 16bit Timers

3 x Analog **Comparators**

2 x Programmable **Gain Amplifiers**

12ch 12bit ADC

12ch 12bit ADC

Synch **Programmable Delay Block**

6-ch PWM Output

•28SOIC, 32SDIP, 32LQFP, 48 LQFP

Sampling Now! MSRP is \$1.50 in 10K quantities!

- 32 MHz/32 MIPS 56800E Core
- 1.8-3.6V Operation
- 12K 16K Bytes Program FLASH with Flash security
- 2K Bytes Program/Data RAM
- Tunable Internal Relaxation Oscillator and 32KHz clock
- Phase Locked Loop (PLL)
- Up to 96 MHz Peripherals Timers, PWM & Hi-SCI
- 6 Output PWM Module with 4 Programmable Fault Inputs
 - Programmable Dead timer insertion
 - Programmable PWM generation for Power supply apps
 - Multiple PWM Frequency outputs
- Two Programmable Gain Amplifiers with x2, x4, x8, x16 gains (Clocked in order to cancel input offset)
- Two 12-bit ADCs with up to 24 Inputs, 2.5us Per conversion
- Programmable Delay Block provides precise control of ADC/PGA sample times relative to PWM reload cycles
- Three High Speed Analog Comparators
- 2 multiple function Programmable Timers
- Computer Operating Properly Timer
- One Periodic Interval Timer (PIT)
- 1 High Speed Serial Communication Interface (Hi-SCI)
- 1 Serial Peripheral Interface (SPI)
- I²C Communications Interface
- Up to 40 GPIOs Versatile pin usage
- JTAG/EOnCE™ Debug Port
- Lead Free "Green" Packages
- Industrial temp: -40C 105C

Pictus: MPC560xP

Core

 up to 60 MHz PowerPC ISA e200 zen0h core (64MHz at 105oC)

Memory

- 192k to 512k byte Program Flash with ECC
- 4x16k byte Data Flash with ECC
- 12k to 40k byte SRAM with ECC

<u>I/O</u>

- 1 x FlexCAN with 32MB
- 1 x Safety port (can be used as additional FlexCAN 32MB)
- 1 x FlexRay Dual Channel with 32MB
- 2 x LinFlex
- 4 x DSPI (4 independent chip selects each)
- 1 x FlexPWM (4x3 channels with 4 Fault Inputs)
- 1 x eTimer (6 channels incl. quad decode)
- 1 x eTimer (6 channels for general purpose)
- 2 x ADC
 - 2x13 Ch.(4 shared channels), 10bit, conversion time 760 nsec (2x6ch, 4shared on 100 pin package)
- 1 x ADC triggering unit: 8 events

System

- 2 x PLL (one FM-PLL, one for Flexray)
- 16Ch eDMA
- · Fault Collection Unit
- 16MHz internal RC OSC
- Junction Temperature Sensor
- JTAG (2 pin or 5 pin) / Nexus Class 2+
- 3.3V single supply (5V mask option) with external ballast transistor

100 and 144 pins TQFP package

145°C ambient temperature option with Slugdown package

dwilson@freescale.com

www.freescale.com/motorcontrol

