Taller de destilación - Punto 3.3

Rafael Montagut, Cristian Pineda, Deyver Rivera

Universidad Nacional de Colombia, Sede Bogotá, Calle 44 # 45-67. Bogotá D.C., Colombia. Facultad de Ingeniería, Departamento de Ingeniería Química y Ambiental, Modelación y simulación.

Enunciado:

Realizar los diagramas de curvas de destilación para los equilibrios ciclohexano-benceno-acetona y ciclohexano-agua-acetona y analizar el comportamiento de los azeótropos producto de los perfiles de las 2 columnas y el extractor, empleando el modelo UNIQUAC de Aspen Properties.

Equilibrio ciclohexano-benceno-acetona

El diagrama de curvas residuales para el sistema es:

Figura 1. Diagrama de curvas residuales para ciclohexano-benceno-acetona

Se puede notar que se tiene la presencia de dos azeótropos, ambos binarios. Los detalles se presentan a continuación.

01	Number Of Components: 2		Temperature 77,54 C	
	Homogeneous		Classification: Saddle	
		MOLE BASIS		MASS BASIS
	CYCLO-01	0,4501		0,4686
	BENZE-01	0,5499		0,5314

02	Number Of Components: 2		Temperature 53,59 C	
	Homogeneous		Classification: Unstable node	
		MOLE BASIS		MASS BASIS
	CYCLO-01	0,2390		0,3127
	ACETO-01	0,7610		0,6873

Figura 2. Azeótropos del sistema ciclohexano-benceno-acetona

Como se puede observar en la figura 3, el alimento al sistema estaba por encima de la frontera de separación creada por el azeótropo, por lo que en una destilación normal no se podría obtener benceno puro. Esto se soluciona con la adición de acetona como solvente, la cual, tal como se observa

en la línea de balance, mueve la operación a la parte inferior del diagrama, rompiendo el azeótropo binario de ciclohexano con benceno. De esta manera, la separación que se efectúa consiste en la destilación con un alimento hipotético ubicado en el corte de las dos líneas azules, desde donde se puede seguir una curva residual que permite obtener en fondos (nodo estable) al benceno casi puro, y por cima (nodo inestable) una mezcla con una composición similar al azeótropo binario entre acetona y ciclohexano.

Figura 3. Corrientes en la primera columna de destilación

Equilibrio ciclohexano-agua-acetona

El diagrama de curvas residuales y de equilibrio L-L para el sistema se encuentra a continuación.

Figura 4. Diagrama de curvas residuales para ciclohexano-benceno-acetona

Se evidencia la presencia de tres azeótropos. Uno binario entre ciclohexano y agua, otro también binario entre ciclohexano y acetona (visible también en la figura 1) y uno ternario. Los detalles se presentan a continuación.

01	Number Of Components: 2		Temperature	69,41 C				
	Heterogeneous		Classification: Saddle					
		MOLE		MASS BASIS				
	CYCLO-01	0,7000		0,9160				
	WATER	0,3000		0,0840				
02	Number Of Components: 3		Temperature	emperature 52,58 C				
	Heterogeneous	terogeneous		Classification: Unstable node				
		MOLE BASIS		MASS BASIS				
UZ	CYCLO-01	0,3059		0,4211				
	WATER	0,1231		0,0363				
	ACETO-01	0,5710		0,5426				
	Number Of Components: 2		Temperature 53,59 C					
03	Homogeneous		Classification: Saddle					
		MOLE BASIS		MASS BASIS				
	CYCLO-01	0,2390		0,3127				
	ACETO-01	0,7610		0,6873				

Figura 5. Azeótropos del sistema ciclohexano-agua-acetona

En la columna de extracción L-L, tal como se puede observar en la figura 6, el alimento al sistema estaba por encima del azeótropo entre ciclohexano y acetona, por lo que con una destilación normal no se podría obtener ciclohexano puro. Incluso con la adición de agua, en una destilación no se podría tener ciclohexano puro por la frontera de destilación que forman los azeótropos.

Sin embargo, debido a la inmiscibilidad que se forma en la región azul, es posible emplear extracción para la separación, ya que, con la adición de agua, el alimento global se ubica en un punto en donde se separa por inmiscibilidad (corte entre las líneas rojas).

Figura 6. Corrientes en la columna de extracción