

Otimização Aplicada à Engenharia de Processos

O Método de Duas Fases

Felipe Campelo http://www.cpdee.ufmg.br/~fcampelo

Programa de Pós-Graduação em Engenharia Elétrica

Belo Horizonte Abril de 2013

Método de Duas Fases

Descrição

- Fase I: determinação de uma solução básica inicial através da utilização de um problema auxiliar, contendo as variáveis artificiais.
- Fase II: utilizando a solução básica viável resultante da fase I, resolve-se o problema original.

Nestes slides todos os passos do método são detalhados.

Lembrando que a primeira fase só é necessária quando não temos uma solução básica viável inicial.

Método de Duas Fases

O problema

Suponha o seguinte problema de otimização linear:

minimize:
$$4x_1 + x_2 + x_3$$

sujeito a: $2x_1 + x_2 + 2x_3 = 4$
 $3x_1 + 3x_2 + x_3 = 3$
 $\mathbf{x} \ge \mathbf{0}$

O quadro Simplex (sem a última linha) é dado por:

$$x_1$$
 x_2 x_3 **b** 2 1 2 4 3 3 1 3

Fase I

Como não há uma solução básica viável óbvia, utilizaremos o método das duas fases.

Adiciona-se uma variável artificial para cada restrição de igualdade, e monta-se o problema auxiliar de minimização da soma das variáveis artificiais:

minimize:
$$z = x_4 + x_5$$

sujeito a: $2x_1 + x_2 + 2x_3 + x_4 = 4$
 $3x_1 + 3x_2 + x_3 + x_5 = 3$
 $\mathbf{x} \ge \mathbf{0}$

Fase I

O quadro Simplex inicial para este problema auxiliar é dado por:

A última linha corresponde aos coeficientes de custo da função objetivo artificial. Com isto, temos uma solução básica viável inicial (base: x_4 , x_5).

Fase I

Para iniciar o Simplex precisamos ter a função-objetivo expressa apenas em termos das variáveis não-básicas.

Para isto, zeramos os coeficientes correspondentes a estas variáveis na última linha do quadro através da subtração das linhas relativas às variáveis básicas.

Fase I

Uma vez que temos o quadro Simplex em sua forma correta, basta pivotar sucessivamente até encontrar uma solução para o problema auxiliar.

- 1 Selecionar a variável não básica (x_q) cujo coeficiente r possui o *menor valor negativo*, para entrada na base;
- 2 Dividir a última coluna (y_{i0}) pela coluna relativa à variável selecionada acima (y_{iq}) , e selecionar a linha que retornar o *menor valor*:
 - Atenção: para este passo apenas os coficientes y_{ia} > 0 são considerados;
 - Se não houver $y_{iq} > 0$, o problema possui espaço viável ilimitado.
- Realizar o pivotamento utilizando como elemento-pivô aquele que for a interseção da linha selecionada com a coluna selecionada.

Fase I

Para o quadro do exemplo:

$$\begin{bmatrix} 0 & -0.75 & 1 & 0.75 & -0.5 & 1.5 \\ 1 & 1.25 & 0 & -0.25 & 0.5 & 0.5 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ \end{bmatrix}$$

Fase I

$$\begin{vmatrix} 0 & -0.75 & 1 & 0.75 & -0.5 & 1.5 \\ 1 & 1.25 & 0 & -0.25 & 0.5 & 0.5 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ \end{vmatrix}$$

Com isto o método converge para o problema auxiliar. O valor da função-objetivo do problema auxiliar torna-se zero (pois as variáveis artificiais foram todas removidas da base), e a solução básica viável é $[x_1, x_2, x_3] = [0.5; 0; 1.5]$.

Fase II

Iniciando a fase II, vemos que o quadro Simplex é dado por (substituindo a última linha pelos coeficientes de custo da função-objetivo original):

Como nossa base inicial é dada por x_1 , x_3 , devemos expressar a função objetivo em termos da variável não-básica x_2 .

Isto pode ser feito diretamente através do quadro Simplex, zerando os coeficientes de custo associados a x_1 , x_3 .

Fase II

Após a subtração das linhas associadas às variáveis básicas, temos o quadro Simplex com a última linha expressando os coeficientes de custo relativo:

Agora nos resta realizar o pivotamento.

Fase II

Como não há mais coeficientes de custo relativo negativos, o método convergiu para a solução:

$$\mathbf{x}^* = [0; 0.4; 1.8]$$
 $z^* = 2.2$

Solução computacional

Verificando nossa solução no Matlab:

```
minimize: 4x_1 + x_2 + x_3

sujeito a: 2x_1 + x_2 + 2x_3 = 4

3x_1 + 3x_2 + x_3 = 3

\mathbf{x} \ge \mathbf{0}
```