Tutorat mathématiques : TD2

Université François Rabelais

Département informatique de Blois

Algèbre

Problème 1

On dit qu'un anneau A est un $anneau\ de\ Boole$ si :

$$\forall x \in A, x^2 = x$$

- 1. Démontrer que pour tout $x \in A, x = -x$.
- 2. Montrer que A est commutatif.
- 3. On note $\mathbb{B} = \mathbb{Z}/2\mathbb{Z}$.
 - (a) Dresser la table de Cayley de $\mathbb B$ pour + et \times et montrer que $(\mathbb B,+,\times)$ est un anneau de Boole. Est-ce un corps ?
 - (b) Soient les opérations "ou exclusif" notée \oplus et "conjonction" notée \wedge du calcul propositionnel. Montrer que $(\mathbb{B}, \oplus, \wedge)$ est un corps.

Problème 2

On appelle caract'eristique d'un anneau fini le plus petit entier n tel que :

$$n \times 1_A = 0_A$$

où 1_A est l'élément neutre de la multiplication sur A et 0_A l'élément neutre pour l'addition sur A.

- 1. Montrer que pour tout $x \in A$, $nx = 0_A$.
- 2. Montrer que si A est intègre, alors n est un nombre premier.

Problème 3

Soit $\mathbb{Z}/5\mathbb{Z} = {\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}}.$

- 1. On rappelle que $(\mathbb{Z}/5\mathbb{Z}, +, \times)$ est un anneau. Que peut-on en déduire pour $(\mathbb{Z}/5\mathbb{Z}, +)$?
- 2. Définir $\overline{2}$.
- 3. Dresser la table de Cayley de $(\mathbb{Z}/5\mathbb{Z}, \times)$.
- 4. En justifiant, préciser si $(\mathbb{Z}/5\mathbb{Z}, \times)$ est :
 - (a) Un anneau commutatif.
 - (b) Un anneau intègre.
 - (c) Un corps.
- 5. En détaillant les calculs. Développer puis simplifier $(x \overline{2018})^3$ pour tout $x \in \mathbb{Z}/5\mathbb{Z}$.

Problème 4

Soit \mathbb{F} , un corps commutatif fini. Calculer le produit de tous les éléments de \mathbb{F}^* .

$$\prod_{x\in \mathbb{F}^*} x$$

Problème 5

Résoudre les équations suivantes :

1.
$$x^2 + x + \overline{7} = \overline{0}$$
 pour $x \in \mathbb{Z}/13\mathbb{Z}$.

2.
$$x^2 - \overline{4}x + \overline{3} = \overline{0}$$
 pour $x \in \mathbb{Z}/12\mathbb{Z}$.

Problème 6

Soit $(A, +, \times)$ un anneau intègre.

Démontrer les propriétés (i) et (ii).

$$\forall a \in A^*, \forall (x, y) \in A^2, \begin{cases} ax = ay \Rightarrow x = y & (i) \\ xa = ya \Rightarrow x = y & (ii) \end{cases}$$

Autrement dit, tout élément non nul d'un anneau intègre est simplifiable à gauche (i) et à droite (ii) pour la multiplication.