- 11. (1) $\exists x P(x) \lor \exists x Q(x) \to \exists x (P(x) \lor Q(x))$ 是永真式。若解释 I 使得 $I(\exists x P(x) \lor \exists x Q(x)) = 1$,则 $I(\exists x P(x)) = 1$ 或 $I(\exists x Q(x)) = 1$ 。
- ① 若 $I(\exists x P(x)) = 1$,则存在 $d \in D_I$ 使得 $P^I(d) = 1$, $P^I(d) \vee Q^I(d) = 1$ 。
- ② 若 $I(\exists x Q(x)) = 1$,则存在 $d \in D_I$ 使得 $Q^I(d) = 1$, $P^I(d) \vee Q^I(d) = 1$ 。 因此, $I(\exists x (P(x) \vee Q(x))) = 1$ 。
- (2) $\exists x P(x) \land \exists x Q(x) \rightarrow \exists x (P(x) \land Q(x))$ 是非永真的可满足式。给定解释 I如下。

$$D_I = \{d\}, \quad P^I(d) = 1, \quad Q^I(d) = 1$$

 $\iint I(\exists x P(x) \land \exists x Q(x) \to \exists x (P(x) \land Q(x))) = 1 .$

给定解释 I'如下。

$$D_{I'} = \{a, b\}, \quad P^{I'}(a) = 1, \quad P^{I'}(b) = 0, \quad Q^{I'}(a) = 0, \quad Q^{I'}(b) = 1$$

$$\iiint I'(\exists x P(x) \land \exists x Q(x) \to \exists x (P(x) \land Q(x))) = 0.$$

(3) $\forall x(P(x) \lor Q(x)) \rightarrow \forall xP(x) \lor \forall xQ(x)$ 是非永真的可满足式。给定解释 *I* 如下。

$$D_I = \{d\}, \quad P^I(d) = 1, \quad Q^I(d) = 1$$

给定解释 I'如下。

$$D_{I'} = \{a, b\}, \quad P^{I'}(a) = 1, \quad P^{I'}(b) = 0, \quad Q^{I'}(a) = 0, \quad Q^{I'}(b) = 1$$

$$\text{If } I'(\forall x (P(x) \lor Q(x)) \to \forall x P(x) \lor \forall x Q(x)) = 0 \ .$$

(4) $\forall x P(x,x) \rightarrow \forall x \forall y P(x,y)$ 是非永真的可满足式。给定解释 I 如下。

$$D_I = \{d\}, \quad P^I(d,d) = 1$$

则 $I(\forall x P(x,x) \rightarrow \forall x \forall y P(x,y)) = 1$ 。

给定解释 I'如下。

$$D_{I'} = \{a, b\}, \quad P^{I'}(a, a) = P^{I'}(b, b) = 1, \quad P^{I'}(a, b) = P^{I'}(b, a) = 0$$

$$\iiint I'(\forall x P(x, x) \to \forall x \forall y P(x, y)) = 0.$$

(5) $(\forall x P(x) \rightarrow \forall x Q(x)) \rightarrow \forall x (P(x) \rightarrow Q(x))$ 是非永真的可满足式。给定解释 I 如下。

$$D_I = \{d\}, \quad P^I(d) = 1, \quad Q^I(d) = 1$$

则 $I((\forall x P(x) \rightarrow \forall x Q(x)) \rightarrow \forall x (P(x) \rightarrow Q(x))) = 1$ 。 给定解释 I'如下。

$$D_{I'} = \{a, b\}, P^{I'}(a) = 1, P^{I'}(b) = 0, Q^{I'}(a) = 0, Q^{I'}(b) = 1$$

 $\bigvee I'((\forall x P(x) \to \forall x Q(x)) \to \forall x (P(x) \to Q(x))) = 0$

(6) $(\exists x P(x) \to \forall x Q(x)) \to \forall x (P(x) \to Q(x))$ 是 永 真 式 。 若 解 释 I 使 得 $I(\forall x (P(x) \to Q(x))) = 0$,则存在 $d \in D_I$ 使 得 $P^I(d) \to Q^I(d) = 0$,因此 $P^I(d) = 1$ 且

 $Q^{I}(d) = 0$, $I(\exists x P(x)) = 1 \perp I(\forall x Q(x)) = 0$, $I((\exists x P(x) \rightarrow \forall x Q(x))) = 0$.

- (7) $\forall x(P(x) \rightarrow Q(x)) \rightarrow (\exists xP(x) \rightarrow \exists xQ(x))$ 是 永 真 式 。 若 解 释 I 使 得 $I((\exists xP(x) \rightarrow \exists xQ(x))) = 0$,则 $I(\exists xP(x)) = 1$ 且 $I(\exists xQ(x)) = 0$ 。 存在 $d \in D_I$ 使得 $P^I(d) = 1$,又 因 为 $I(\exists xQ(x)) = 0$, 所 以 $Q^I(d) = 0$, $P^I(d) \rightarrow Q^I(d) = 0$ 。 因 此 , $I(\forall x(P(x) \rightarrow Q(x))) = 0$ 。
- 12. (1) 任取解释 I 和 I 中赋值 v,若 $I(A_t^x)(v) = 1$,则 $I(A_t^x)(v) = I(A)(v[x/I(t)(v)]) = 1$,所以 $I(\exists xA)(v) = 1$ 。这表明 $A_t^x \to \exists xA$ 是永真式。
- (2) 任取解释I和I中赋值v,

 $I(\neg \forall x A)(v) = 1$

当且仅当 $I(\forall xA)(v) = 0$

当且仅当 存在 $d \in D_I$ 使得 I(A)(v[x/d]) = 0

当且仅当 存在 $d \in D_I$ 使得 $I(\neg A)(v[x/d]) = 1$

当且仅当 $I(\exists x \neg A)(v) = 1$

这表明¬ $\forall xA \leftrightarrow \exists x \neg A$ 是永真式。

(3) 任取解释 I和 I中赋值 v,

 $I(\neg \exists x A)(v) = 0$

当且仅当 $I(\exists xA)(v) = 1$

当且仅当 存在 $d \in D_I$ 使得I(A)(v[x/d])=1

当且仅当 存在 $d \in D_I$ 使得 $I(\neg A)(v[x/d]) = 0$

当且仅当 $I(\forall x \neg A)(v) = 0$

这表明 $\neg ∃xA \leftrightarrow \forall x \neg A$ 是永真式。

- (4) 任取解释 I 和 I 中赋值 v,若 $I(\exists x(A \land B))(v) = 1$,则存在 $d \in D_I$ 使得 $I(A \land B)(v[x/d]) = 1$, I(A)(v[x/d]) = I(B)(v[x/d]) = 1, $I(\exists xA)(v) = 1$ 且 $I(\exists xB)(v) = 1$, $I(\exists xA \land \exists xB)(v) = 1$ 。这表明 $\exists x(A \land B) \to \exists xA \land \exists xB$ 是永真式。
- (5) 任取解释 I 和 I 中赋值 v, 若 $I(\forall x(A \lor B))(v) = 0$,则存在 $d \in D_I$ 使得 $I(A \lor B)(v[x/d]) = 0$,I(A)(v[x/d]) = I(B)(v[x/d]) = 0 , $I(\forall xA \lor \forall xB)(v) = 0$ 。这表明 $\forall xA \lor \forall xB \to \forall x(A \lor B)$ 是永真式。
- (6) 任取解释 I 和 I 中赋值 v,若 $I(\forall x(A \to B))(v) = I(A)(v) = 1$,则对于每个 $d \in D_I$, $I(A \to B)(v[x/d]) = 1$,因为 x 不是 A 的自由变元,所以 I(A)(v[x/d]) = I(A)(v) = 1,因此

I(B)(v[x/d])=1, $I(\forall xB)(v)=1$ 。 这表明 $\forall x(A \rightarrow B) \rightarrow (A \rightarrow \forall xB)$ 是永真式。

13. (1) 首先证明: 若 A 是永真式,则 $\forall xA$ 是永真式。设 A 是永真式。任取解释 I 和 I 中赋值 v,任取 $d \in D_I$,因为 v[x/d] 也是 I 中赋值,所以 I(A)(v[x/d])=1, $I(\forall xA)(v)=1$ 。 $\forall xA$ 是永真式。若 A 是永真式,则 $\forall x_nA$ 是永真式,… , $\forall x_1 \dots \forall x_nA$ 是永真式。

因为 $\forall x_1 \cdots \forall x_n A \rightarrow A$ 是永真式, 所以若 $\forall x_1 \cdots \forall x_n A$ 是永真式, 则 A 是永真式。

(2) 因为 $A \to \exists x_1 \cdots \exists x_n A$ 是永真式,所以若解释 I 和 I 中赋值 v 满足 A,则 I 和 v 满足 $\exists x_1 \cdots \exists x_n A$ 。

若解释 I和 I中赋值 v满足 $\exists x_1 \cdots \exists x_n A$,则有 $d_1, \cdots, d_n \in D_I$ 使得 $I(A)(v[x_1/d_1, \cdots, x_n/d_n]) = 1$, I和 I中赋值 $v[x_1/d_1, \cdots, x_n/d_n]$ 满足 A。