Turbidity Sensor Senior Design Project

Team: Corbin Buechler, Amanda Hayden, Aaron Nightingale, Sean Rogers, Erik Sundberg, Jacob Wolf

Advisor: Joey Talghader

Clients: Andy Wickert, Anthony Aufdenkampe, Diana Karwan

What is Turbidity?

- Cloudiness or haziness of a fluid caused by small particles
- Generally not visible to naked eye
- Key test for determining water quality
- Quantifies water pollution in Minnesota

What is Turbidity?

- Common drinking water standards:
 - WHO Rating: ≤ 5 NTU (ideally ≤ 1 NTU)
 - European Rating: ≤ 4 NTU
 - US Rating: ≤ 1 NTU (ideally ≤ 0.3 NTU)
- Existing Sensors:

- Hach 2100Q Portable Turbidimeter
- \$1215

- Davis Thermo Scientific AquaSensors DataStick AquaClear On-Line Turbidimeter
- \$1970

Project Proposal

- Develop a functional, low-cost turbidity meter
- Uses light scattering to determine the turbidity
- Specifications:
 - Communicates with an open-source data logger
 - Arduino-based code
 - Integrate software libraries
 - ALog
 - Mayfly
 - Low power for prolonged deployment, up to 3 months
 - Must be waterproof, submersible up to 3 meters
 - Cost less than \$100 to produce
- Field deployable by April

Team Organization

- Amanda Team Lead, Housing, Waterproofing
- Corbin Sensor Code, Circuit Design
- Aaron Communications, Data Logger Interfacing
- Erik Hardware Layout, Mounting, 3D modeling
- Sean Housing, Cabling, Waterproofing
- Jake Waterproofing, Optics/Hardware Integration

- Sensors measure light transmission and 90-degree side scatter through a liquid sample
- Infrared LEDs are illuminated at a HIGH and a LOW intensity
- Light Sensors output a square wave signal proportional to light intensity received

Ambient Light Measurements

- Both LEDs are turned OFF
- Each sensor collects the amount of ambient light present to control for environmental factors like sunlight
- Serves as a baseline to normalize the following measurements

LED 1 Transmission Measurement

• LED 1 illuminated at LOW intensity

• Sensor 1 collects transmitted light

LED 1 Side Scatter
Measurement

• LED 1 illuminated at HIGH intensity

Sensor 2 collects scattered light

LED 2 Transmission Measurement

• LED 2 illuminated at LOW intensity

Sensor 2 collects transmitted light

LED 2 Side Scatter
Measurement

• LED 2 illuminated at HIGH intensity

Sensor 1 collects scattered light

More on Measurement Process

- Measurement routine is repeated five times
- ATmega328P microcontroller collects frequency output by counting rising edges
- Microcontroller averages the five samples of the six measurements
- Measurements are held until the data logger requests them
- Conversion to NTU and long term storage is handled by the data logger

Communications

• **Goal:** A turbidity sensor that can communicate with the MayFly and ALog data loggers.

Communications Process

- Datalogger (master) requests data from sensor (slave) over
 12C interface
- Sensor sends previous readings
- Data logger sends "UPDATE" command
- Sensor takes new measurements (8 minute process)
- Data logger waits ~10 minutes for next measurement

• End Result?

Turbidity Sensor Library (ALog & Mayfly compatible)

MayFly Data Logger I2C 3.3v Interface Power

Turbidity Sensor

Hardware Integration / Layout

- Solidworks modeling software (right)
- Horizontal mounting of tube
 - Better waterflow
- Internal circuitry has exact dimensions for fitting
 - Enough for perfboard containing all necessary elements
- More space for mounting sensors around tube

Hardware Integration / Layout

Sensor & LED Mounting

- Small breakout board to solder IR sensor and LEDs
- 3D printed parts refined to mount on outside
- Two parts for easy assembly
- Angled sides for fitting in box
- Indents for wire ends and hole for sensors/LEDs
- Tolerancing

Housing, Cabling and Waterproofing

Ingress Protection (IP) Ratings

- Indicates level of dust and water intrusion protection
- International standard

First Digit: IP68

- Indicates Dust and Particle Size Protection
 - 0: not protected
 - 1: >50mm
 - o 2: >12.5mm
 - **3: >2.5mm**
 - **4: >1mm**
 - 5: Dust protected
 - 6: Dust tight

Second Digit: IP68

- Indicates Water Protection
 - 0: not protected
 - 1: Dripping water
 - 2: Dripping water when tilted at 15°
 - 3: Spraying water
 - 4: Splashing water
 - 5: Water jets
 - 6: Powerful water jets
 - 7: Immersion up to 1 meter
 - 8: Immersion beyond 1 meter

Housing, Cabling and Waterproofing

PolyCase AN-14P Enclosure

- Die cast aluminum box
- IP68 Rated
- Watertight gasket
- EMI/ RFI protection

Housing, Cabling and Waterproofing

Switchcraft Watertight Plugs

- Twisting Lock Mechanism
- Integrated rubber gaskets and strain relief

24 gauge 6-Strand

SRPVC Cable

Enclosure Construction

1. Completed tube and plug cutouts

2. Assembled enclosure interior

Calibration

Serial dilutions to different turbidity values

- 4000 NTU
- 400 NTU
- 40 NTU
- 4 NTU
- 0.4 NTU

Five (5) sets of measurements at each NTU value

Budget

- Given \$1000 for entire project
- Cost per sensor = \$88.96 each for 1 unit, \$53.78 each for 100 units

Subsystem	Amount Spent
Housing, Cabling, and Waterproofing	\$125
Test Equipment	\$300
Circuit Design Components	\$200
Integrated Circuits and Microprocessors	\$125
Total	\$750

Overall Timeline

	WeekStarting														-11		
Task/Milestone	1/14	1/21	1/28	2/4	2/11	2/18	2/25	3/4	3/11	3/18	3/25	4/1	4/8	4/15	4/22	4/29	5/6
Project Proposal, Requirements			e 83														
Initial Design Ideas																	
Initial Parts Order																	
Team Management Plan																	
Project FAQ's											ĺ			Ï			
Final Specifications Approval										5 6							
Budget Approval																	
Initial Component and Layouts																	
Circuit Finalization																	
Cabling and Plug Construction			2. 55			3				33							
Waterproof Testing																	
SensorCoding							9										
Enclosure Construction																	
3D Bracket Mount Designing																	
Final Construction and Setup										9							
Communications Code																	
Sensor Calibration							3										
Real-World Testing							2			6							
Final Tests and Verifications																	
Present Final Project																	

Questions?