Calculus I Limits

Todor Milev

2019

Todor Milev Limits 2019

Outline

- The Limit of a Function
 - One-sided Limits

Calculating Limits Using Limit Laws

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work.

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein

The Limit of a Function

Definition (The Limit of a Function)

We write

$$\lim_{x\to a}f(x)=L$$

and say "the limit of f(x), as x approaches a, equals L," if we can make the values of f(x) arbitrarily close to L by taking x to be sufficiently close to a (on either side of a) but not equal to a.

Equivalent formulation. $\lim_{x \to a} f(x) = L$ if for every $\varepsilon > 0$, there exists $\delta > 0$ such that $|f(x) - L| < \varepsilon$ for all x with $0 < |x - a| < \delta$.

Todor Miley Limits 2019

- Guess the value of $\lim_{x\to 1} \frac{x-1}{x^2-1}$.
- Notice that $\frac{x-1}{x^2-1}$ is not defined at 1.
- It is defined for values of x near 1.
- We guess that the limit is 0.5.
- In this case, our guess is correct.

X	f(x)	X	f(x)
0.5	0.666667	1.5	0.400000
0.9	0.526316	1.1	0.476190
0.99	0.502513	1.01	0.497512
0.999	0.500250	1.001	0.499750
0.9999	0.500025	1.0001	0.499975

Todor Milev Limits 2019

- Guess the value of $\lim_{x\to 0} \frac{\sin x}{x}$.
- Notice that $\frac{\sin x}{x}$ is not defined at 0.
- It is defined for all other values of x near 0.
- We guess that the limit is 1.
- In this case, our guess is correct.

X	f(x)	X	f(x)
±1.0	0.841471	±0.1	0.998334
±0.5	0.958851	±0.05	0.999583
±0.4	0.973546	±0.01	0.999983
±0.3	0.985067	± 0.005	0.999995
±0.2	0.993347	±0.001	0.999999

- Guess the value of $\lim_{x\to 0} \sin\left(\frac{\pi}{x}\right)$.
- Notice that $\sin\left(\frac{\pi}{x}\right)$ is not defined at 0.
- It is defined for values of x near 0.
- We may guess that the limit is 0.
- Such a guess would be wrong.

X	f(x)	Χ	f(x)
1	$\sin\pi=0$	1/2	$\sin(2\pi)=0$
$\frac{1}{3}$	$sin(3\pi)=0$	$\frac{1}{4}$	$\sin(4\pi)=0$
0.1	$\sin(10\pi) = 0$	0.01	$\sin(100\pi)=0$

Todor Milev Limits 2019

One-sided Limits

Example

The Heaviside function *H* is defined by

$$H(x) = \left\{ \begin{array}{ll} 0 & \text{if } x < 0 \\ 1 & \text{if } x \geq 0 \end{array} \right..$$

- As x approaches 0 from the left, H(x) approaches 0.
- As x approaches 0 from the right, H(x) approaches 1.
- There is no single number that H(x) approaches as x approaches 0.
- Therefore $\lim_{x\to 0} H(x)$ doesn't exist.

Todor Milev Limits 2019

Definition (Left-hand Limit)

We write

$$\lim_{x \to a^{-}} f(x) = L \qquad \text{or} \qquad \lim_{\substack{x \to a \\ x < a}} f(x) = L$$

and say the left-hand limit of f(x) as x approaches a is equal to L if we can make the values of f(x) arbitrarily close to L by taking x to be sufficiently close to and less than a.

Todor Miley Limits 2019

Definition (Right-hand Limit)

We write

$$\lim_{x \to a^{+}} f(x) = L \qquad \text{or} \qquad \lim_{\substack{x \to a \\ x > a}} f(x) = L$$

and say the right-hand limit of f(x) as x approaches a is equal to L if we can make the values of f(x) arbitrarily close to L by taking x to be sufficiently close to and greater than a.

We can define a right-hand limit similarly.

By comparing definitions, we can see that

$$\lim_{x\to a} f(x) = L \text{ if and only if } \lim_{x\to a^-} f(x) = L \text{ and } \lim_{x\to a^+} f(x) = L.$$

Example

The graph of a function g is shown to the right. Use it to state the values (if they exist) of the following:

$$\lim_{\substack{x \to 1^{-} \\ \lim_{x \to 1^{+}} g(x) = 3 \\ \lim_{x \to 1} g(x) = 3} \left| \lim_{\substack{x \to 3^{-} \\ \lim_{x \to 3^{+}} g(x) = 2} g(x) = 1 \right|$$

Todor Milev Limits 2019

Calculating Limits Using Limit Laws

Theorem (Limit Laws)

Suppose that c is a constant and that the limits $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exist $(\pm\infty$ **not allowed**). Then

- $\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x).$
- $\lim_{x \to a} [f(x) g(x)] = \lim_{x \to a} f(x) \lim_{x \to a} g(x).$
- $\lim_{x\to a}[cf(x)]=c\lim_{x\to a}f(x).$
- $\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x).$

Here are some other useful limit laws:

- $\lim_{x \to a} [f(x)]^n = [\lim_{x \to a} f(x)]^n$
- $\lim_{x\to a} c = c.$
- $\lim_{x\to a} x = a.$
- $\lim_{x\to a} x^n = a^n.$
- $\lim_{x\to a} \sqrt[n]{x} = \sqrt[n]{a}, \text{ if } a>0.$
- $\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}, \text{ if } \lim_{x \to a} f(x) > 0.$

Evaluate the limit and justify each step:

$$\lim_{x \to 5} (2x^2 - 3x + 4)$$

$$= \lim_{x \to 5} (2x^2 - 3x) + \lim_{x \to 5} 4$$

$$= \lim_{x \to 5} (2x^2) - \lim_{x \to 5} (3x) + \lim_{x \to 5} 4$$
Law
$$= 2 \lim_{x \to 5} x^2 - 3 \lim_{x \to 5} x + \lim_{x \to 5} 4$$
Law
$$= 2 \cdot 5^2 - 3 \cdot 5 + 4$$
Laws
$$= 39.$$

Example (Limit Laws)

Evaluate the limit and justify each step:

$$\lim_{x \to 3} \frac{x+2}{\sqrt{x-1}(x+1)^2}$$

$$= \frac{\lim_{x \to 3} (x+2)}{\lim_{x \to 3} (\sqrt{x-1}(x+1)^2)}$$

$$= \frac{\lim_{x \to 3} (x+2)}{\lim_{x \to 3} (\sqrt{x-1} \cdot \lim_{x \to 3} ((x+1)^2)}$$
Law
$$= \frac{\lim_{x \to 3} (x+2)}{\sqrt{\lim_{x \to 3} (x-1)} (\lim_{x \to 3} (x+1))^2}$$
Laws
$$= \frac{\lim_{x \to 3} (x+1)}{\sqrt{\lim_{x \to 3} (x-1)} (\lim_{x \to 3} (x+1))^2}$$
Laws
$$= \frac{1 + 2}{\sqrt{\lim_{x \to 3} (x-1)} (3+1)^2} = \frac{5}{16\sqrt{2}}.$$
Laws

Recall that every function which can be using the four arithmetic operations (+,-,*,/) and radicals $\sqrt[n]{}$ is an algebraic function.

Theorem (Direct Substitution)

Let f be an algebraic function. Let the point a be in its domain (i.e., f(a) is defined). Then $\lim_{x\to a} f(x) = f(a)$.

This theorem is a partial case of the following theorem.

Theorem (Can be taken as definition)

Let f be a continuous function. Let the point a be in its domain (i.e., f(a) is defined). Then $\lim_{x\to a} f(x) = f(a)$.

Continuous functions will be defined later in this lecture.

Example (Limit with Direct Substitution)

Find
$$\lim_{x \to 3} \frac{x+2}{\sqrt{x-1}(x+1)^2}$$
Plug in 3: $\frac{(3)+2}{\sqrt{(3)-1}((3)+1)^2} = \frac{5}{16\sqrt{2}}$
Therefore $\lim_{x \to 3} \frac{x+2}{\sqrt{x-1}(x+1)^2} = \frac{5}{16\sqrt{2}}$.

Example (Limit in Which Direct Substitution Doesn't Work)

Find
$$\lim_{x\to 3} \frac{x^3 - 3x^2 + x - 3}{x^2 - 7x + 12}$$

Plug in 3: $\frac{(3)^3 - 3(3)^2 + (3) - 3}{(3)^2 - 7(3) + 12} = \frac{0}{0}$

Zero over zero is undefined, so we can't use direct substitution.

When computing a limit as x approaches a, we don't care what happens when x = a. This gives the following useful fact:

If
$$f(x) = g(x)$$

when $x \neq a$,

then
$$\lim_{x\to a} f(x) = \lim_{x\to a} g(x)$$
,

provided the limit exists.

We can use this fact to find $\lim_{x\to a} f(x)$ when f(a) has the form $\frac{0}{0}$. In such a case, we use algebra to find a function g(x) that agrees with f(x) at all points except x=a. Here are some common techniques.

- Factoring.
- Using a conjugate radical.
- Finding a common denominator.
- Using Taylor/Maclaurin series expansion. Studied in Calc II.

Example (Limit with Factoring)

Find
$$\lim_{x \to 3} \frac{x^3 - 3x^2 + x - 3}{x^2 - 7x + 12}$$

Plug in 3: $\frac{(3)^3 - 3(3)^2 + (3) - 3}{(3)^2 - 7(3) + 12} = -$

Zero over zero is undefined, so we can't use direct substitution.

Factor:
$$\lim_{x \to 3} \frac{x^3 - 3x^2 + x - 3}{x^2 - 7x + 12} = \lim_{x \to 3} \frac{1}{x^2 - 1}$$

$$= \lim_{x \to 3} \frac{x^2 + 1}{x - 4}$$
Plug in 3:
$$\lim_{x \to 3} \frac{x^3 - 3x^2 + x - 3}{x^2 - 7x + 12} = \frac{(3)^2 + 1}{(3) - 4}$$

$$= \frac{10}{-1}$$

$$= -10.$$

Find
$$\lim_{t\to 0} \frac{\sqrt{t^2+9}-3}{t^2}$$
 Plug in 0:
$$\frac{\sqrt{(0)^2+9}-3}{(0)^2}=\frac{0}{0}$$

Zero over zero is undefined, so we can't use direct substitution. Multiply top & bottom by (minus) the conjugate radical:

$$\lim_{t \to 0} \frac{\sqrt{t^2 + 9} - 3}{t^2} = \lim_{t \to 0} \frac{\sqrt{t^2 + 9} - 3}{t^2} \cdot \frac{\sqrt{t^2 + 9} + 3}{\sqrt{t^2 + 9} + 3}$$

$$= \lim_{t \to 0} \frac{(t^2 + 9) - 9}{t^2 \left(\sqrt{t^2 + 9} + 3\right)} = \lim_{t \to 0} \frac{t^2}{t^2 \left(\sqrt{t^2 + 9} + 3\right)}$$

$$= \lim_{t \to 0} \frac{1}{\sqrt{t^2 + 9} + 3}$$

Plug in 0: =

Find $\lim_{x\to 1} g(x)$, where

$$g(x) = \begin{cases} x+1 & \text{if} \quad x \neq 1 \\ \pi & \text{if} \quad x = 1 \end{cases}$$

g agrees with the function f(x) = x + 1 at every point except for x = 1. $\lim_{x \to 1} g(x) = \lim_{x \to 1} (x + 1) = 2.$

Example (Limit with Factoring)

Find
$$\lim_{h\to 0} \frac{(3+h)^2 - 9}{h}$$
Plug in 0: $\frac{(3+(0))^2 - 9}{(0)} = \frac{0}{0}$

Zero over zero is undefined, so we can't use direct substitution.

$$\lim_{h \to 0} \frac{(3+h)^2 - 9}{h} = \lim_{h \to 0} \frac{9 + 6h + h^2 - 9}{h} = \lim_{h \to 0} \frac{6h + h^2}{h}$$
Factor:
$$= \lim_{h \to 0} \frac{h(6+h)}{h}$$

$$= \lim_{h \to 0} (6+h)$$
Plug in 0:
$$= (6+(0)) = 6.$$

Recall:

$$\lim_{x \to a} f(x) = L$$
 if and only if $\lim_{x \to a^{-}} f(x) = L = \lim_{x \to a^{+}} f(x)$.

We can use this to find the limit of a piecewise defined function, or show that it doesn't exist.

$$f(x) = \begin{cases} \sqrt{x-4} & \text{if} \quad x > 4\\ 8 - 2x & \text{if} \quad x < 4 \end{cases}$$

Determine whether $\lim_{x\to 4} f(x)$ exists.

$$\lim_{x \to 4^+} f(x) = \lim_{x \to 4^+} \sqrt{x - 4} = \sqrt{4 - 4} = 0$$

$$\lim_{x \to 4^{-}} f(x) = \lim_{x \to 4^{-}} (8 - 2x) = 8 - 2 \cdot 4 = 0$$

The left and right hand limits are equal. Therefore the limit exists and

$$\lim_{x\to 4} f(x) = 0.$$

Theorem

If $f(x) \le g(x)$ when x is near a (except possibly at a) and the limits of f and g both exist as x approaches a, then

$$\lim_{x\to a} f(x) \le \lim_{x\to a} g(x).$$

Theorem (The Squeeze Theorem)

Suppose $f(x) \le g(x) \le h(x)$ when x is near a (except possibly at a) and

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$$

Then

$$\lim_{x\to a}g(x)=L.$$

Show that $\lim_{x\to 0} x^2 \sin\left(\frac{8}{x}\right) = 0$.

$$\lim_{x \to 0} x^2 \sin\left(\frac{8}{x}\right) = \lim_{x \to 0} x^2 \cdot \lim_{x \to 0} \sin\left(\frac{8}{x}\right)$$

Doesn't work because $\lim_{x\to 0} \sin\left(\frac{8}{x}\right)$ doesn't exist.

$$\begin{array}{cccc} -1 & \leq & \sin\left(\frac{8}{x}\right) & \leq & 1. \\ -x^2 & \leq & x^2 \sin\left(\frac{8}{x}\right) & \leq & x^2. \end{array}$$

$$\lim_{x \to 0} x^2 = 0$$
 and $\lim_{x \to 0} (-x^2) = 0$.

Therefore by the Squeeze Theorem

$$\lim_{x\to 0} x^2 \sin\left(\frac{8}{x}\right) = 0.$$