实验十四: 直流电桥测电阻

朱寅杰 1600017721

2017年11月10日

1 自组电桥测量未知电阻与电桥灵敏度

拧动电阻箱 R_0 某一档位的旋钮使其阻值变化 ΔR_0 ,观察检流计指针的偏转量,从而计算出灵敏度 $S=\frac{\Delta n}{\Delta R_x/R_x}=\frac{\Delta n}{\Delta R_0/R_0}$ 。

电源电压 $E=4.030\,\mathrm{V}$ 。电阻箱上标称对于 $10\,\Omega$ 以上各档有0.1%的允差,对 $1\,\Omega$ 档有0.5%的允差,对 $0.1\,\Omega$ 档有2%的允差。检流计的内阻为 $47\,\Omega$,盘面上一格为 $1.3\times10^{-6}\,\mathrm{A}$ 。

待测电阻	R_1/R_2	R_0/Ω	$\Delta R_0/\Omega$	Δn	R^x/Ω	灵敏度S
$R_1^x = 48.0\Omega$	$500.0\Omega/500.0\Omega$	48.3	0.1	4.4	48.3	2.1×10^{3}
$R_2^x = 365.3\Omega$	$50.0\Omega/500.0\Omega$	3661.5	30	4.9	366	6.0×10^{2}
	$500.0\Omega/500.0\Omega$	366.1	1	4.2	366.1	1.5×10^3
	(交換 R_1 与 R_2)	366.2	1	4.2	366.2	1.5×10^3
$R_3^x = 3978\Omega$	$500.0\Omega/500.0\Omega$	3988	100	7.7	3988	2.1×10^{3}

计算中间交换电阻的两次测得的 $R_x=\sqrt{R_{01}R_{02}}$ 。其不确定度由两部分合成,一部分是受电桥灵敏度所限的示零误差。这部分的相对不确定度为 $\frac{\delta R_x}{R_x}=\frac{0.2}{S}=1.3\times 10^{-4}$ 。另一部分是电阻箱读数的允差。366.1 Ω 和366.2 Ω 两个读数均伴有约0.39 Ω 的允差,折算成相对不确定度为6.2 \times 10^{-4} 。从而 R_x 的相对不确定度为二者的方和根,等于6.3 \times 10^{-4} 。故 $R_x=(366.1\pm0.2)\,\Omega$ 。

2 了解影响直流电桥灵敏度的因素

改变实验条件,归纳可能影响电桥的灵敏度的因素,如电源电压、检流计内阻(用限流电位器实现)以及 桥臂电阻等。

电源电压 E/V	R_1/R_2	R_h/Ω	R_0/Ω	$\Delta R_0/\Omega$	Δn	R_2^x/Ω	灵敏度S
4.030	$500\Omega/500\Omega$	0	366.2	1	4.1	366.2	1.5×10^3
4.030	$500\Omega/5000\Omega$	0	3663.0	100	8.0	3663	3.2×10^2
4.030	$500\Omega/500\Omega$	2993	366.2	10	5.2	366.2	1.9×10^2
2.003	$500\Omega/500\Omega$	0	366.2	3	6.2	366.2	7.6×10^2

从表中可以看出,桥臂上两个电阻较接近时,电桥灵敏度较高。电源电压较高,检流计内阻较小时,电桥灵敏度较高。

3 思考题

如果电源电压大幅下降,则会降低电桥的灵敏度,增大测量的误差。但如果只是电源电压稍有波动,则不会对测量造成什么影响。

如果测量的电阻小到了导线电阻不可忽略的地步,那么由于导线的电阻会被计入电桥臂上的电阻中,因此 会产生一定的误差。

检流计的灵敏度是直接决定电阻测量的精确度的,如果灵敏度不够高势必会对精确度造成影响。如果检流 计的零点没有调准,那实际测量时读的零点就并不是真正电桥平衡的零点。如果零点实在调不准,那就只能采 取交换检流计正负接线测两次取平均的做法,来消除电桥零点不准所造成的系统误差。