The Inflation Attention Threshold and Inflation Surges

Oliver Pfäuti

Spring 2024 Midwest Macro

May 2024

Inflation is back...

- ▶ Inflation surged in many advanced economies during recovery phase of the pandemic
- ▶ Inflation higher and more persistent than many expected (e.g., Powell (2021))

Inflation is back... on people's minds

- Inflation surged in many advanced economies during recovery phase of the pandemic
- ▶ Inflation higher and more persistent than many expected (e.g., Powell (2021))
- With inflation rising, the public's attention to inflation increased as well

Inflation is back... on people's minds

- Inflation surged in many advanced economies during recovery phase of the pandemic
- ▶ Inflation higher and more persistent than many expected (e.g., Powell (2021))
- With inflation rising, the public's attention to inflation increased as well

Q: Is higher attention just a side product or a driver of high and persistent inflation?

► Estimate attention to inflation and threshold when attention changes:

- ► Estimate attention to inflation and threshold when attention changes:
 - ▶ attention captures sensitivity of inflation expectations to forecast errors

- ► Estimate attention to inflation and threshold when attention changes:
 - attention captures sensitivity of inflation expectations to forecast errors
 - ⇒ attention threshold at inflation rate of about 4%

- Estimate attention to inflation and threshold when attention changes:
 - attention captures sensitivity of inflation expectations to forecast errors
- ⇒ attention threshold at inflation rate of about 4%
- ⇒ attention twice as high when inflation is above threshold

- Estimate attention to inflation and threshold when attention changes:
 - attention captures sensitivity of inflation expectations to forecast errors
- ⇒ attention threshold at inflation rate of about 4%
- ⇒ attention twice as high when inflation is above threshold
- Quantify role of attention and attention threshold for inflation dynamics:

- Estimate attention to inflation and threshold when attention changes:
 - attention captures sensitivity of inflation expectations to forecast errors
- ⇒ attention threshold at inflation rate of about 4%
- ⇒ attention twice as high when inflation is above threshold
- Quantify role of attention and attention threshold for inflation dynamics:
 - ► Supply shocks: 2-3 times as inflationary in high-attention regime

- Estimate attention to inflation and threshold when attention changes:
 - attention captures sensitivity of inflation expectations to forecast errors
- ⇒ attention threshold at inflation rate of about 4%
- ⇒ attention twice as high when inflation is above threshold
- Quantify role of attention and attention threshold for inflation dynamics:
 - Supply shocks: 2-3 times as inflationary in high-attention regime
 - ▶ higher attention doubled inflationary effects of supply shocks during recent inflation surge

- Estimate attention to inflation and threshold when attention changes:
 - attention captures sensitivity of inflation expectations to forecast errors
 - ⇒ attention threshold at inflation rate of about 4%
- ⇒ attention twice as high when inflation is above threshold
- Quantify role of attention and attention threshold for inflation dynamics:
 - Supply shocks: 2-3 times as inflationary in high-attention regime
 - higher attention doubled inflationary effects of supply shocks during recent inflation surge
- ▶ Develop New Keynesian Model with limited attention and attention threshold:

- Estimate attention to inflation and threshold when attention changes:
 - attention captures sensitivity of inflation expectations to forecast errors
- ⇒ attention threshold at inflation rate of about 4%
- ⇒ attention twice as high when inflation is above threshold
- Quantify role of attention and attention threshold for inflation dynamics:
 - Supply shocks: 2-3 times as inflationary in high-attention regime
 - higher attention doubled inflationary effects of supply shocks during recent inflation surge
- ▶ Develop New Keynesian Model with limited attention and attention threshold:
 - ► AS and AD curves steeper in high-attention regime

- Estimate attention to inflation and threshold when attention changes:
 - attention captures sensitivity of inflation expectations to forecast errors
- ⇒ attention threshold at inflation rate of about 4%
- ⇒ attention twice as high when inflation is above threshold
- Quantify role of attention and attention threshold for inflation dynamics:
 - Supply shocks: 2-3 times as inflationary in high-attention regime
 - higher attention doubled inflationary effects of supply shocks during recent inflation surge
- ▶ Develop New Keynesian Model with limited attention and attention threshold:
 - AS and AD curves steeper in high-attention regime
 - exceeding threshold affects inflation dynamics (resembling recent inflation surge)

- Estimate attention to inflation and threshold when attention changes:
 - attention captures sensitivity of inflation expectations to forecast errors
- ⇒ attention threshold at inflation rate of about 4%
- ⇒ attention twice as high when inflation is above threshold
- Quantify role of attention and attention threshold for inflation dynamics:
 - Supply shocks: 2-3 times as inflationary in high-attention regime
 - higher attention doubled inflationary effects of supply shocks during recent inflation surge
- ▶ Develop New Keynesian Model with limited attention and attention threshold:
 - ▶ AS and AD curves steeper in high-attention regime
 - exceeding threshold affects inflation dynamics (resembling recent inflation surge)
 - threshold leads to inflation asymmetry and can induce large welfare losses

Contribution to the literature

- ▶ Drivers of recent inflation surge: Shapiro (2023), Gagliardone/Gertler (2023), Bernanke/Blanchard (2023), Benigno/Eggertsson (2023), Amiti et al. (2023), Bianchi/Melosi (2022) & Bianchi et al. (2023), Reis (2022)...
 - ⇒ Contribution: attention increase played an important role in inflation surge
- ► Measuring attention to inflation: Cavallo et al. (2017), Pfäuti (2021), Korenok et al. (2022), Bracha/Tang (2023), Weber et al. (2023), Kroner (2023)
 - ⇒ Contribution: estimate attention threshold and attention levels in a way that directly maps into otherwise standard macro models
- ► State dependency of shocks: Auerbach/Gorodnichenko (2012a,b), Caggiano et al. (2014), Ramey/Zubairy (2018), Jo/Zubairy (2023), Tenreyro/Thwaites (2016), Ascari/Haber (2022) Joussier et al. (2023)
 - ⇒ Contribution: role of attention regime for inflation response
- ► Theory: Mackowiak/Wiederholt (2009), Paciello/Wiederholt (2014), Reis (2006a,b) Pfäuti (2021), Carvalho et al. (2022), Afrouzi/Yang (2022), Gati (2022)
 - ⇒ Contribution: general equilibrium model with attention threshold, role for inflation surges

Outline

- 1. Quantify Attention and Attention Threshold
- 2. Role of Attention for Inflation
- 3. Model + Model Results

Perceived law of motion:

$$\pi_t = (1 -
ho_\pi)\underline{\pi} +
ho_\pi\pi_{t-1} +
u_t$$
, with $u_t \sim N(0, \sigma_
u^2)$

- current inflation is unobservable
- ▶ noisy signal: $s_t = \pi_t + \varepsilon_t$, with $\varepsilon_t \sim N(0, \sigma_{\varepsilon}^2)$, where precision $\frac{1}{\sigma_{\varepsilon}^2}$ reflects attention

Perceived law of motion:

$$\pi_t = (1 - \rho_\pi)\underline{\pi} + \rho_\pi \pi_{t-1} + \nu_t$$
, with $\nu_t \sim N(0, \sigma_\nu^2)$

- current inflation is unobservable
- ▶ noisy signal: $s_t = \pi_t + \varepsilon_t$, with $\varepsilon_t \sim N(0, \sigma_{\varepsilon}^2)$, where precision $\frac{1}{\sigma_{\varepsilon}^2}$ reflects attention
- Bayesian updating:

$$\tilde{\mathcal{E}}_t \pi_{t+1} = (1 - \rho_{\pi}) \underline{\pi} + \rho_{\pi} \tilde{\mathcal{E}}_{t-1} \pi_t + \rho_{\pi} \gamma_{\pi} \left(\pi_t - \tilde{\mathcal{E}}_{t-1} \pi_t \right) + u_t$$

Perceived law of motion:

$$\pi_t = (1 - \rho_\pi)\underline{\pi} + \rho_\pi \pi_{t-1} + \nu_t$$
, with $\nu_t \sim N(0, \sigma_\nu^2)$

- current inflation is unobservable
- ▶ noisy signal: $s_t = \pi_t + \varepsilon_t$, with $\varepsilon_t \sim N(0, \sigma_\varepsilon^2)$, where precision $\frac{1}{\sigma_\varepsilon^2}$ reflects attention
- Bayesian updating:

$$\tilde{\mathcal{E}}_t \pi_{t+1} = (1 - \rho_\pi) \underline{\pi} + \rho_\pi \tilde{\mathcal{E}}_{t-1} \pi_t + \rho_\pi \gamma_\pi \left(\pi_t - \tilde{\mathcal{E}}_{t-1} \pi_t \right) + u_t$$

 $\Rightarrow \gamma_{\pi}$ captures attention

Perceived law of motion:

$$\pi_t = (1 -
ho_\pi)\underline{\pi} +
ho_\pi\pi_{t-1} +
u_t$$
, with $u_t \sim N(0, \sigma_
u^2)$

- current inflation is unobservable
- ▶ noisy signal: $s_t = \pi_t + \varepsilon_t$, with $\varepsilon_t \sim N(0, \sigma_{\varepsilon}^2)$, where precision $\frac{1}{\sigma_{\varepsilon}^2}$ reflects attention
- Bayesian updating:

$$\tilde{\mathcal{E}}_t \pi_{t+1} = (1 - \rho_\pi) \underline{\pi} + \rho_\pi \tilde{\mathcal{E}}_{t-1} \pi_t + \rho_\pi \gamma_\pi \left(\pi_t - \tilde{\mathcal{E}}_{t-1} \pi_t \right) + u_t$$

 $\Rightarrow \gamma_{\pi}$ captures attention and can be estimated from:

(Vellekoop/Wiederholt 2019, Pfäuti 2021)

$$\tilde{\mathcal{E}}_t \pi_{t+1} = \beta_0 + \beta_1 \tilde{\mathcal{E}}_{t-1} \pi_t + \beta_2 \left(\pi_t - \tilde{\mathcal{E}}_{t-1} \pi_t \right) + \epsilon_t,$$

$$\gamma_{\pi} = \frac{\beta_2}{\beta_1}$$

Perceived law of motion:

$$\pi_t = (1 - \rho_\pi)\underline{\pi} + \rho_\pi \pi_{t-1} + \nu_t$$
, with $\nu_t \sim N(0, \sigma_\nu^2)$

- current inflation is unobservable
- ▶ noisy signal: $s_t = \pi_t + \varepsilon_t$, with $\varepsilon_t \sim N(0, \sigma_\varepsilon^2)$, where precision $\frac{1}{\sigma_\varepsilon^2}$ reflects attention
- Bayesian updating:

$$\tilde{\mathcal{E}}_t \pi_{t+1} = (1 - \rho_{\pi}) \underline{\pi} + \rho_{\pi} \tilde{\mathcal{E}}_{t-1} \pi_t + \rho_{\pi} \gamma_{\pi} \left(\pi_t - \tilde{\mathcal{E}}_{t-1} \pi_t \right) + u_t$$

 $\Rightarrow \gamma_{\pi}$ captures attention and can be estimated from:

(Vellekoop/Wiederholt 2019, Pfäuti 2021)

$$\tilde{\mathcal{E}}_t \pi_{t+1} = \beta_0 + \beta_1 \tilde{\mathcal{E}}_{t-1} \pi_t + \beta_2 \left(\pi_t - \tilde{\mathcal{E}}_{t-1} \pi_t \right) + \epsilon_t,$$

$$\gamma_{\pi} = \frac{\beta_2}{\beta_1}$$

Rational inattention microfoundation: γ_{π} depends negatively on information cost ightharpoonup Details

Attention threshold

▶ Test for different attention levels and attention threshold $\bar{\pi}$:

$$\begin{split} \tilde{\mathcal{E}}_{t}\pi_{t+1} &= \mathbb{1}_{\pi_{t-1} \leqslant \bar{\pi}} \left(\beta_{0,L} + \beta_{1,L} \tilde{\mathcal{E}}_{t-1} \pi_{t} + \beta_{2,L} \left(\pi_{t} - \tilde{\mathcal{E}}_{t-1} \pi_{t} \right) \right) \\ &+ (1 - \mathbb{1}_{\pi_{t-1} \leqslant \bar{\pi}}) \left(\beta_{0,H} + \beta_{1,H} \tilde{\mathcal{E}}_{t-1} \pi_{t} + \beta_{2,H} \left(\pi_{t} - \tilde{\mathcal{E}}_{t-1} \pi_{t} \right) \right) + \tilde{\epsilon}_{t} \end{split}$$

Attention threshold

▶ Test for different attention levels and attention threshold $\bar{\pi}$:

$$\begin{split} \tilde{\mathcal{E}}_{t}\pi_{t+1} &= \mathbbm{1}_{\pi_{t-1}\leqslant\bar{\pi}}\left(\beta_{0,L} + \beta_{1,L}\tilde{\mathcal{E}}_{t-1}\pi_{t} + \beta_{2,L}\left(\pi_{t} - \tilde{\mathcal{E}}_{t-1}\pi_{t}\right)\right) \\ &+ \left(1 - \mathbbm{1}_{\pi_{t-1}\leqslant\bar{\pi}}\right)\left(\beta_{0,H} + \beta_{1,H}\tilde{\mathcal{E}}_{t-1}\pi_{t} + \beta_{2,H}\left(\pi_{t} - \tilde{\mathcal{E}}_{t-1}\pi_{t}\right)\right) + \tilde{\epsilon}_{t} \end{split}$$

Estimate threshold $\bar{\pi}$ and regression coefficients jointly by minimizing SSR

Attention threshold

▶ Test for different attention levels and attention threshold $\bar{\pi}$:

$$\begin{split} \tilde{\mathcal{E}}_t \pi_{t+1} &= \mathbbm{1}_{\pi_{t-1} \leqslant \overline{\pi}} \left(\beta_{0,L} + \beta_{1,L} \tilde{\mathcal{E}}_{t-1} \pi_t + \beta_{2,L} \left(\pi_t - \tilde{\mathcal{E}}_{t-1} \pi_t \right) \right) \\ &+ \left(1 - \mathbbm{1}_{\pi_{t-1} \leqslant \overline{\pi}} \right) \left(\beta_{0,H} + \beta_{1,H} \tilde{\mathcal{E}}_{t-1} \pi_t + \beta_{2,H} \left(\pi_t - \tilde{\mathcal{E}}_{t-1} \pi_t \right) \right) + \tilde{\epsilon}_t \end{split}$$

- Estimate threshold $\bar{\pi}$ and regression coefficients jointly by minimizing SSR
- Data:
 - monthly average expectations Michigan Survey of Consumers, 1978-2023
 - ▶ actual inflation: U.S. CPI inflation → Time series

	Threshold $\bar{\pi}$	Low Att. $\widehat{\gamma}_{\pi,L}$	High Att. $\widehat{\gamma}_{\pi,H}$	<i>p</i> -val. $\gamma_{\pi,L}=\gamma_{\pi,H}$
Baseline	3.98%	0.18	0.36	0.000
s.e.		(0.013)	(0.037)	

	Threshold $\bar{\pi}$	Low Att. $\widehat{\gamma}_{\pi,L}$	High Att. $\widehat{\gamma}_{\pi,H}$	<i>p</i> -val. $\gamma_{\pi,L}=\gamma_{\pi,H}$
Baseline	3.98%	0.18	0.36	0.000
s.e.		(0.013)	(0.037)	

▶ no evidence for changes within regime and data favors specification with one threshold

[▶] Details

	Threshold $\bar{\pi}$	Low Att. $\widehat{\gamma}_{\pi,L}$	High Att. $\widehat{\gamma}_{\pi,H}$	<i>p</i> -val. $\gamma_{\pi,L}=\gamma_{\pi,H}$
Baseline	3.98%	0.18	0.36	0.000
s.e.		(0.013)	(0.037)	

- no evidence for changes within regime and data favors specification with one threshold
 Details
- robustness: ▶ Details
 - ▶ similar results when using regional data → Details
 - median expectations, NY Fed SCE (HH panel), SPF
 - using current inflation or average of last three months as threshold-defining variable

	Threshold $\bar{\pi}$	Low Att. $\widehat{\gamma}_{\pi,L}$	High Att. $\widehat{\gamma}_{\pi,H}$	<i>p</i> -val. $\gamma_{\pi,L}=\gamma_{\pi,H}$
Baseline	3.98%	0.18	0.36	0.000
s.e.		(0.013)	(0.037)	

- no evidence for changes within regime and data favors specification with one threshold
 Details
- robustness: → Details
 - ▶ similar results when using regional data → Details
 - median expectations, NY Fed SCE (HH panel), SPF
 - using current inflation or average of last three months as threshold-defining variable
- ▶ potential driver: news coverage of inflation higher in high-attention regime → Details

	Threshold $\bar{\pi}$	Low Att. $\widehat{\gamma}_{\pi,L}$	High Att. $\widehat{\gamma}_{\pi,H}$	<i>p</i> -val. $\gamma_{\pi,L}=\gamma_{\pi,H}$
Baseline	3.98%	0.18	0.36	0.000
s.e.		(0.013)	(0.037)	

- no evidence for changes within regime and data favors specification with one threshold
 Details
- robustness: → Details
 - ▶ similar results when using regional data ▶ Details
 - median expectations, NY Fed SCE (HH panel), SPF
 - using current inflation or average of last three months as threshold-defining variable
- ▶ potential driver: news coverage of inflation higher in high-attention regime → Details
- results overall consistent with Weber et al. (2024), Korenok et al. (2022), Reis (2022)

Outline

- 1. Quantify Attention and Attention Threshold
- 2. Role of Attention for Inflation
- 3. Model + Model Results

Attention regimes and the propagation of supply shocks

Estimate local projection:

$$y_{t+j} - y_{t-1} = \mathbb{1}_{H} \left(\alpha_{j}^{H} + \beta_{j}^{H} \varepsilon_{t} \right) + \left(1 - \mathbb{1}_{H} \right) \left(\alpha_{j}^{L} + \beta_{j}^{L} \varepsilon_{t} \right) + \Gamma' X_{t} + u_{t+j}$$

- \triangleright y_{t+i} : y-o-y CPI inflation in period t+j
- ▶ $\mathbb{1}_H = 1$ if in high-attention regime (inflation $\geq 4\%$ or based on Google Trends)
- ε_t : oil supply news shock, 1975M1-2022M12 (Känzig, AER 2021)
- ▶ β_i^r : effect of supply shock on inflation at horizon j in regime $r \in \{L, H\}$
- X_t : controls

Supply shocks

(a) High-Attention Regime

Supply shocks are more inflationary in high-attention regime

▶ inflation responds twice as much to supply shocks in high-attention regime

Supply shocks are more inflationary in high-attention regime

- ▶ inflation responds twice as much to supply shocks in high-attention regime
- ► Google Trends as regime-defining variable: effects even larger and more persistent

Supply shocks are more inflationary in high-attention regime

- ▶ inflation responds twice as much to supply shocks in high-attention regime
- Regional data yields similar conclusions

Supply shocks are more inflationary in high-attention regime

- ▶ inflation responds twice as much to supply shocks in high-attention regime
- ▶ Google Trends as regime-defining variable: effects even larger and more persistent
- ▶ forecast errors: delayed overshooting, especially persistent in high-attention regime

Supply shocks are more inflationary in high-attention regime

- ▶ inflation responds twice as much to supply shocks in high-attention regime
- ▶ Google Trends as regime-defining variable: effects even larger and more persistent
- forecast errors: delayed overshooting, especially persistent in high-attention regime
- results robust: other shocks, controls, Covid, price level, shock size across regimes, ...

The recent inflation surge

- ▶ U.S. entered high regime recently in April 2021
- ▶ What was the role of oil supply shocks for subsequent inflation dynamics?
 - ⇒ feed in oil supply shocks starting in April 2021

The recent inflation surge

- U.S. entered high regime recently in April 2021
- What was the role of oil supply shocks for subsequent inflation dynamics?
 - ⇒ feed in oil supply shocks starting in April 2021
- \Rightarrow oil supply shocks explain $\approx 60\%$ of inflation dynamics from early 2021 end of 2022
 - ⇒ role of attention?

The recent inflation surge

- U.S. entered high regime recently in April 2021
- What was the role of oil supply shocks for subsequent inflation dynamics?
 - ⇒ feed in oil supply shocks starting in April 2021 using IRF results
- \Rightarrow oil supply shocks explain $\approx 60\%$ of inflation dynamics from early 2021 end of 2022
 - ⇒ attention increase doubled inflationary effects of supply shocks

Outline

- 1. Quantify Attention and Attention Threshold
- 2. Role of Attention for Inflation
- 3. Model + Model Results

New Keynesian model with limited attention and attention threshold:

► Households: consume, work, subjective expectations + limited attention → Details

- ► Households: consume, work, subjective expectations + limited attention → Details
- Firm sector: held by risk-neutral managers

- Households: consume, work, subjective expectations + limited attention > Details
- Firm sector: held by risk-neutral managers
 - Final good producer aggregates intermediate goods to final consumption good
 Details

- Households: consume, work, subjective expectations + limited attention > Details
- Firm sector: held by risk-neutral managers
 - Final good producer aggregates intermediate goods to final consumption good
 - ► Intermediate producers: monopolistic competition, price adjustment cost, use labor to produce, tax/subsidy, subjective expectations + limited attention → Details

- ► Households: consume, work, subjective expectations + limited attention
- Firm sector: held by risk-neutral managers
 - Final good producer aggregates intermediate goods to final consumption good
 Detail
 - Intermediate producers: monopolistic competition, price adjustment cost, use labor to produce, tax/subsidy, subjective expectations + limited attention → Details
- ► Government:
 - ► Fiscal authority: subsidy to firms, lump-sum taxes, issues bonds (zero supply) → Details
 - Monetary authority: sets nominal interest rate, following Taylor rule (for now)

$$\tilde{i}_{t} = \rho_{i}\tilde{i}_{t-1} + (1 - \rho_{i})\left(\phi_{\pi}\pi_{t} + \phi_{x}\hat{x}_{t}\right)$$

▶ two managers: price setter and forecaster (Adam/Padula (2011))

- two managers: price setter and forecaster (Adam/Padula (2011))
- for a given expectation $\tilde{E}_t^j \pi_{t+1}^j$, the price is set to:

$$\widehat{p}_{t}(j) = \frac{1}{\psi + \epsilon} \left[\psi \widehat{p}_{t-1}(j) + \epsilon \left(\widehat{mc}_{t} - \widehat{T}_{t} + \widehat{p}_{t} \right) + \beta \psi \widetilde{E}_{t}^{j} \pi_{t+1}^{j} \right]$$

- two managers: price setter and forecaster (Adam/Padula (2011))
- for a given expectation $\tilde{E}_t^j \pi_{t+1}^j$, the price is set to:

$$\widehat{p}_{t}(j) = \frac{1}{\psi + \epsilon} \left[\psi \widehat{p}_{t-1}(j) + \epsilon \left(\widehat{mc}_{t} - \widehat{T}_{t} + \widehat{p}_{t} \right) + \beta \psi \widetilde{E}_{t}^{j} \pi_{t+1}^{j} \right]$$

- forecaster provides $\tilde{E}_t^j \pi_{t+1}^j$:
 - ▶ assumption: $\tilde{E}_t^j \pi_{t+1}^j = \tilde{E}_t^j \pi_{t+1}$ (no idiosyncratic shocks and confirmed in equilibrium)

- ▶ two managers: price setter and forecaster (Adam/Padula (2011))
- for a given expectation $\tilde{E}_t^j \pi_{t+1}^j$, the price is set to:

$$\widehat{p}_{t}(j) = \frac{1}{\psi + \epsilon} \left[\psi \widehat{p}_{t-1}(j) + \epsilon \left(\widehat{mc}_{t} - \widehat{T}_{t} + \widehat{p}_{t} \right) + \beta \psi \widetilde{\mathcal{E}}_{t}^{j} \pi_{t+1}^{j} \right]$$

- forecaster provides $\tilde{E}_t^j \pi_{t+1}^j$:
 - assumption: $\tilde{E}_t^j \pi_{t+1}^j = \tilde{E}_t^j \pi_{t+1}^j$ (no idiosyncratic shocks and confirmed in equilibrium)
 - assume same initial conditions and signals are public (e.g., coming from news media)
 - $\Rightarrow \tilde{E}_t^j \pi_{t+1}^j = \tilde{E}_t^j \pi_{t+1} = \tilde{E}_t \pi_{t+1}$, which leads to equilibrium with $\pi_t = \pi_t^j$ for all j

- two managers: price setter and forecaster (Adam/Padula (2011))
- for a given expectation $\tilde{E}_t^j \pi_{t+1}^j$, the price is set to:

$$\widehat{p}_{t}(j) = \frac{1}{\psi + \epsilon} \left[\psi \widehat{p}_{t-1}(j) + \epsilon \left(\widehat{mc}_{t} - \widehat{T}_{t} + \widehat{p}_{t} \right) + \beta \psi \widetilde{E}_{t}^{j} \pi_{t+1}^{j} \right]$$

- forecaster provides $\tilde{E}_t^j \pi_{t+1}^j$:
 - assumption: $\tilde{E}_t^j \pi_{t+1}^j = \tilde{E}_t^j \pi_{t+1}^j$ (no idiosyncratic shocks and confirmed in equilibrium)
 - assume same initial conditions and signals are public (e.g., coming from news media) $\Rightarrow \tilde{E}_t^j \pi_{t+1}^j = \tilde{E}_t^j \pi_{t+1} = \tilde{E}_t \pi_{t+1}$, which leads to equilibrium with $\pi_t = \pi_t^j$ for all j
- get New Keynesian Phillips Curve with subjective expectations:

$$\pi_t = \beta \tilde{E}_t \pi_{t+1} + \kappa \hat{x}_t + u_t$$

Subjective expectations of households

need to form expectations about future inflation and consumption

Subjective expectations of households

- need to form expectations about future inflation and consumption
- inflation expectation formation as estimated empirically (with $\rho_{\pi}=1$):

$$\tilde{\mathcal{E}}_{t}\pi_{t+1} = \begin{cases} \tilde{\mathcal{E}}_{t-1}\pi_{t} + \gamma_{\pi,L} \left(\pi_{t} - \tilde{\mathcal{E}}_{t-1}\pi_{t}\right), & \text{when } \pi_{t-1} < \bar{\pi} \\ \tilde{\mathcal{E}}_{t-1}\pi_{t} + \gamma_{\pi,H} \left(\pi_{t} - \tilde{\mathcal{E}}_{t-1}\pi_{t}\right), & \text{when } \pi_{t-1} > \bar{\pi} \end{cases}$$

signals are public, but here abstract from noise shocks

Subjective expectations of households

- need to form expectations about future inflation and consumption
- inflation expectation formation as estimated empirically (with $\rho_{\pi}=1$):

$$\tilde{\mathcal{E}}_{t}\pi_{t+1} = \begin{cases} \tilde{\mathcal{E}}_{t-1}\pi_{t} + \gamma_{\pi,L}\left(\pi_{t} - \tilde{\mathcal{E}}_{t-1}\pi_{t}\right), \text{ when } \pi_{t-1} < \bar{\pi} \\ \tilde{\mathcal{E}}_{t-1}\pi_{t} + \gamma_{\pi,H}\left(\pi_{t} - \tilde{\mathcal{E}}_{t-1}\pi_{t}\right), \text{ when } \pi_{t-1} > \bar{\pi} \end{cases}$$

- signals are public, but here abstract from noise shocks
- similar for consumption (and output gap) but constant attention: Different specification

$$\tilde{\mathcal{E}}_t \hat{c}_{t+1} = \tilde{\mathcal{E}}_{t-1} \hat{c}_t + \gamma_c \left(\hat{c}_t - \tilde{\mathcal{E}}_{t-1} \hat{c}_t \right)$$

• in equilibrium: $\hat{c}_t = \hat{x}_t$ and $\tilde{E}_t \hat{c}_{t+1} = \tilde{E}_t \hat{x}_{t+1}$ if we assume $\tilde{E}_{-1} \hat{c}_0 = \tilde{E}_{-1} \hat{x}_0$

Equilibrium

Aggregate supply:

$$\pi_t = \beta \tilde{\mathcal{E}}_t \pi_{t+1} + \kappa \hat{\mathcal{X}}_t + u_t$$

► Aggregate demand:

$$\widehat{x}_{t} = \widetilde{E}_{t}\widehat{x}_{t+1} - \varphi\left(\widetilde{i}_{t} - \widetilde{E}_{t}\pi_{t+1} - r_{t}^{*}\right)$$

$$\widetilde{i}_{t} = \rho_{i}\widetilde{i}_{t-1} + (1 - \rho_{i})\left(\phi_{\pi}\pi_{t} + \phi_{x}\widehat{x}_{t}\right)$$

+ shocks and expectation formation > Analytical Example

- ▶ What are the effects of cost-push shocks u_t on inflation? → Calibration → Analytical Example
- Consider two shocks:
 - 1. a large shock that pushes inflation above the threshold
 - 2. a small one that does not push inflation above the threshold

- ▶ What are the effects of cost-push shocks u_t on inflation? → Calibration → Analytical Example
- Consider two shocks:
 - 1. a large shock that pushes inflation above the threshold
 - 2. a small one that does not push inflation above the threshold

- ▶ What are the effects of cost-push shocks u_t on inflation? → Calibration → Analytical Example
- Consider two shocks:
 - 1. a large shock that pushes inflation above the threshold
 - 2. a small one that does not push inflation above the threshold

- ► Three phases:
 - 1. self-reinforcing inflation surge after shock due to attention increase

- ▶ What are the effects of cost-push shocks u_t on inflation? → Calibration → Analytical Example
- Consider two shocks:
 - 1. a large shock that pushes inflation above the threshold
 - 2. a small one that does not push inflation above the threshold

- ► Three phases:
 - 1. self-reinforcing inflation surge after shock due to attention increase
 - 2. followed by relatively fast disinflation initially due to shock dying out

- ▶ What are the effects of cost-push shocks u_t on inflation? → Calibration → Analytical Example
- Consider two shocks:
 - 1. a large shock that pushes inflation above the threshold
 - 2. a small one that does not push inflation above the threshold

- ► Three phases:
 - 1. self-reinforcing inflation surge after shock due to attention increase
 - 2. followed by relatively fast disinflation initially due to shock dying out
 - 3. disinflation slows down once inflation falls back below threshold

Inflation and inflation expectation dynamics: Model vs. Data

Model: inflation shows hump-shaped pattern and inflation expectations initially undershoot, followed by delayed overshooting

Inflation and inflation expectation dynamics: Model vs. Data

2023

Model: inflation shows hump-shaped pattern and inflation expectations initially undershoot, followed by delayed overshooting

Data: shows similar patterns

2022

2024

Additional Results

- ▶ Role of $\tilde{E}_t \hat{c}_{t+1}$ ▶ Details
- ► Similar results for demand shocks → IRFs
- ► Attention threshold induces asymmetry in inflation dynamics: thicker right tail

 Asymmetry
- ▶ Dovish monetary policy rules lead to welfare losses due to... ▶ Welfare analysis
 - ... higher inflation volatility
 - ... positive average inflation due to asymmetry

Conclusion

- ► Recent inflation surge brought inflation back on people's minds
- ▶ I find that...
 - ... attention doubles once inflation exceeds 4%
 - ... attention amplifies supply shocks and played important role in recent inflation surge
 - ... changes in attention affect inflation dynamics
 - ... dovish monetary policy may lead to substantial welfare losses

Thank you for your attention!

Appendix

Limited-Attention Model

Model of optimal attention choice:

- ▶ Agent (household or firm) needs to form an expectation about future inflation
- Acquiring information is costly (cognitive abilities, time, etc.)
- Making mistakes leads to utility losses
 - \Rightarrow optimal level of attention depends on how costly information acquisition is, how high your stakes are and the properties of inflation itself

Setup

Agent believes that inflation follows an AR(1) process:

$$\pi' = \rho_{\pi}\pi + \nu,$$

with $\rho_{\pi} \in [0,1]$ and $\nu \sim i.i.N(0,\sigma_{\nu}^2)$.

The full-information forecast is given by

$$\pi^{e*} = \rho_{\pi}\pi$$

Problem: current inflation is unobservable and acquiring information is costly.

Information Acquisition Problem

The agent's problem:

- Choose the form of the signal s
- to minimize the loss that arises from making mistakes, $U(s,\pi)$
- facing the cost of information $C(f) = \lambda I(\pi; s)$, with $I(\pi; s)$ being the expected reduction in entropy of π due to observing s

Information Acquisition Problem Continued

Quadratic loss function

$$U(\pi^e, \pi) = r\left(\underbrace{\rho_\pi \pi}_{\text{full-info}} - \pi^e\right)^2$$

r: stakes

Optimal signal has the form (Matejka/McKay (2015))

$$s = \pi + \varepsilon$$

where $\varepsilon \sim i.i.N(0,\sigma_\varepsilon^2)$ captures noise σ_ε^2 is chosen optimally

Optimal Level of Attention

The optimal forecast is given by

$$\pi^{e} = \rho_{\pi}\hat{\pi} + \rho_{\pi}\gamma \left(s - \hat{\pi}\right),\,$$

where $\hat{\pi}$ is the prior belief of the agent and γ is the optimal level of attention:

$$\gamma = extit{max}\left(0, 1 - rac{\lambda}{2r
ho_{\pi}\sigma_{\pi}^2}
ight)$$

Attention is higher when:

- the cost of information λ is low
- ▶ the stakes r are high
- inflation is very volatile (high σ_{π}^2) or persistent (high ρ_{π}) Back

Attention changes within regime

Rolling-window approach to estimate time series of $\hat{\gamma}_{\pi,t}$ and compute the window-specific average of the monthly q-o-q inflation rate, $\bar{\pi}_t$. Then:

$$\widehat{\gamma}_{\pi,t} = \delta_0 + \delta_1 \mathbf{1}_{\bar{\pi}_t \geqslant 4} + \delta_2 \bar{\pi}_t + \delta_3 \mathbf{1}_{\bar{\pi}_t \geqslant 4} \bar{\pi}_t + \varepsilon_t \tag{1}$$

Robustness:

$$\widehat{\gamma}_{\pi,t} = \delta_0 + \delta_1 \mathbf{1}_{\bar{\pi}_t \geqslant 4} + \delta_2 \pi_{t-1} + \delta_3 \mathbf{1}_{\pi_{t-1} \geqslant 4} \pi_{t-1} + \varepsilon_t, \tag{2}$$

	$\widehat{\delta}_1$	$\widehat{\delta}_2$	$\widehat{\delta}_3$
Regression (1)	0.393**	0.053	-0.079
s.e.	(0.192)	(0.047)	(0.051)
Regression (2)	0.119*	-0.010	0.010
s.e.	(0.0641)	(0.0141)	(0.0141)

Regional Data

Use FRED CPI data on four US regions and link to Michigan Survey. Use regional-specific inflation rate as threshold-defining variable and in LHS of regression

Region	Threshold $ar{\pi}$	Low Att. $\widehat{\gamma}_{\pi,L}$	High Att. $\widehat{\gamma}_{\pi,H}$
Northeast	5.30	0.17	0.27
Midwest	3.86	0.14	0.30
South	4.42	0.15	0.29
West	6.84	0.20	0.5

Enforcing threshold at 4% US CPI: $\widehat{\gamma}_{\pi,L}=0.22$ and $\widehat{\gamma}_{\pi,H}=0.42$ $\,\,{}^{_{_{_{}}}}$ back

Inflation and Inflation Expectations ... back

Robustness

	Threshold $ar{\pi}$	$\widehat{\gamma}_{\pi, L}$	$\widehat{\gamma}_{\pi,H}$	<i>p</i> -val. $\gamma_{\pi,L} = \gamma_{\pi,H}$
Baseline	3.98%	0.18	0.36	0.000
s.e.		(0.013)	(0.037)	
Median exp.	4.41%	0.16	0.23	0.000
s.e.		(0.013)	(0.028)	
Quarterly freq.	3.21%	0.14	0.38	0.000
s.e.		(0.033)	(0.076)	

Current inflation rate rather than lagged inflation rate as the threshold-defining variable: $\hat{\gamma}_{\pi,L}=0.18$ and $\hat{\gamma}_{\pi,H}=0.36$ (p-val. 0.000)

Using individual consumer inflation expectations from the Survey of Consumer Expectations (NY Fed): $\hat{\gamma}_{\pi,L}=0.21$ and $\hat{\gamma}_{\pi,H}=0.40$ (p-val. 0.000)

SPF: threshold at 3.92%, $\hat{\gamma}_{\pi,L}=$ 0.07 and $\hat{\gamma}_{\pi,H}=$ 0.17 (p-val. 0.008)

[▶] back

Potential driver: news coverage of inflation higher when inflation is high

- frequency of word *inflation*: 2-3 times higher when inflation > 4%
- ▶ monthly frequency (NYT, 1990-2023): news coverage slightly lags inflation

Households

Representative household, lifetime utility:

$$\tilde{E}_0 \sum_{t=0}^{\infty} \beta^t Z_t \left[\frac{C_t^{1-\sigma}}{1-\sigma} - \Xi \frac{H_t^{1+\nu}}{1+\nu} \right]$$

Households maximize their lifetime utility subject to the flow budget constraints

$$C_t + B_t = w_t H_t + \frac{1 + i_{t-1}}{1 + \pi_t} B_{t-1} + \frac{T_t}{P_t},$$
 for all t

Yields Euler equation

$$Z_t C_t^{-\sigma} = \beta (1 + i_t) \tilde{E}_t \left[Z_{t+1} C_{t+1}^{-\sigma} \frac{1}{1 + \pi_{t+1}} \right]$$

and the labor-leisure condition

$$w_t C_t^{-\sigma} = \Xi H_t^{\nu}$$

Final goods producer

There is a representative final good producer that aggregates the intermediate goods $Y_t(j)$ to a final good Y_t , according to

$$Y_t = \left(\int_0^1 Y_t(j)^{\frac{\epsilon - 1}{\epsilon}} dj\right)^{\frac{\epsilon}{\epsilon - 1}},\tag{3}$$

with $\epsilon > 1$. Nominal profits are given by $P_t \left(\int_0^1 Y_t(j)^{\frac{\epsilon-1}{\epsilon}} dj \right)^{\frac{\epsilon}{\epsilon-1}} - \int_0^1 P_t(j) Y_t(j) dj$, and profit maximization gives rise to the demand for each variety j:

$$Y_t(j) = \left(\frac{P_t(j)}{P_t}\right)^{-\epsilon} Y_t. \tag{4}$$

Thus, demand for variety j is a function of its relative price, the price elasticity of demand ϵ and aggregate output Y_t . The aggregate price level is given by

$$P_t = \left(\int_0^1 P_t(j)^{1-\epsilon} dj \right)^{\frac{1}{1-\epsilon}}.$$
 (5)

Intermediate producers

Intermediate producer of variety j produces output $Y_t(j)$ using labor $H_t(j)$

$$Y_t(j) = H_t(j).$$

When adjusting the price, the firm is subject to a Rotemberg price-adjustment friction.

Per-period profits (in real terms) are given by

$$(1-\tau_t)P_t(j)\left(\frac{P_t(j)}{P_t}\right)^{-\epsilon}\frac{Y_t}{P_t}-w_tH_t(j)-\frac{\psi}{2}\left(\frac{P_t(j)}{P_{t-1}(j)}-1\right)^2Y_t+t_t^F(j)$$

Defining $T_t \equiv 1 - \tau_t$, it follows that after a linearization of the FOC around the zero-inflation steady state, firm j sets its price according to

$$\widehat{\rho}_{t}(j) = \frac{1}{\psi + \epsilon} \left[\psi \widehat{\rho}_{t-1} + \epsilon \left(\widehat{mc}_{t} - \widehat{T}_{t} + \widehat{\rho}_{t} \right) + \beta \psi \widetilde{E}_{t}^{j} \pi_{t+1}^{j} \right]$$

Fiscal policy

The government imposes a sales tax τ_t on sales of intermediate goods, issues nominal bonds, and pays lump-sum taxes and transfers T_t to households and $t_t^F(j)$ to firms. The real government budget constraint is given by

$$B_{t} = B_{t-1} \frac{1 + i_{t-1}}{\Pi_{t}} + \frac{T_{t}}{P_{t}} - \tau Y_{t} + t_{t}^{f}.$$

Lump-sum taxes and transfers are set such that they keep real government debt constant at the initial level B_{-1}/P_{-1} , which I set to zero. \rightarrow back

Illustrative example: Period 3

Numerical insights: calibration → back

Parameter	Description	Value
β	Discount factor	$\frac{1}{1+1/400}$
arphi	Interest rate elasticity	1
κ	Slope of NKPC	0.057
$ ho_i$	Interest rate smoothing	0.7
ϕ_π	Inflation response coefficient	2
ϕ_{x}	Output gap response coefficient	0.125
$ ho_u$	Shock persistence	0.8
σ_u	Shock volatility	0.3%
Attention parameters		
$ar{\pi}$	Attention threshold	4% (annualized)
$\gamma_{\pi,L}$	Low inflation attention	0.18
$\gamma_{\pi, H}$	High inflation attention	0.36
γ_{x}	Output gap attention	0.25

An (hopefully) illustrative example

Consider a stylized version of the model: set $\tilde{i}_t = \phi_\pi \pi_t$, $\gamma_x = 0$ and $\tilde{E}_{-1} \hat{x}_0 = 0$

An (hopefully) illustrative example

Consider a stylized version of the model: set $\tilde{i}_t = \phi_\pi \pi_t$, $\gamma_x = 0$ and $\tilde{E}_{-1} \hat{x}_0 = 0$

Focus on first three periods:

0: Steady State

1: Cost-push shock hits: $u_1 > 0$

2: Shock persists: $u_2 = u_1 > 0$

An (hopefully) illustrative example

Consider a stylized version of the model: set $\tilde{i}_t = \phi_\pi \pi_t$, $\gamma_x = 0$ and $\tilde{E}_{-1} \hat{x}_0 = 0$

Focus on first three periods:

0: Steady State

1: Cost-push shock hits: $u_1 > 0$

2: Shock persists: $u_2 = u_1 > 0$

Q: What happens to inflation?

Period 0: economy in steady state

$$AS_0: \quad \pi_0 = \frac{\kappa}{1 - \beta \gamma_{\pi,L}} \widehat{x}_0$$

$$AD_0: \quad \pi_0 = -rac{1}{\phi_\pi - \gamma_{\pi,L}} \widehat{x}_0$$

Period 1: Cost-push shock hits

$$AS_1: \quad \pi_1 = \frac{\kappa}{1 - \beta \gamma_{\pi, L}} \widehat{x}_1 + \frac{1}{1 - \beta \gamma_{\pi, L}} u_1$$

$$AD_1: \quad \pi_1 = -\frac{1}{\phi_\pi - \gamma_{\pi,L}} \widehat{x}_1$$

Period 2: AS further up due to ongoing shock & prior expectations

$$\widetilde{AS}_2: \quad \pi_2 = \frac{\kappa}{1 - \beta \gamma_{\pi,L}} \widehat{x}_2 \\ + \frac{1}{1 - \beta \gamma_{\pi,H}} u_2 \\ + \frac{\beta (1 - \gamma_{\pi,H}) \gamma_{\pi,L}}{1 - \beta \gamma_{\pi,H}} \pi_1$$

Period 2: AS becomes steeper due to higher attention

$$AS_2: \quad \pi_2 = \frac{\kappa}{1 - \beta \gamma_{\pi,H}} \hat{x}_2 + \frac{1}{1 - \beta \gamma_{\pi,H}} u_2 + \frac{\beta (1 - \gamma_{\pi,H}) \gamma_{\pi,L}}{1 - \beta \gamma_{\pi,H}} \pi_1$$

Period 2: What about aggregate demand?

Period 2: AD shifts out due to positive prior expectations

$$\widetilde{AD}_2$$
: $\pi_2 = -\frac{1}{\phi_{\pi} - \gamma_{\pi,L}} \widehat{x}_2$

$$+ \frac{(1 - \gamma_{\pi,H})\gamma_{\pi,L}}{\phi_{\pi} - \gamma_{\pi,H}} \pi_1$$

Period 2: AD becomes steeper due to higher attention

$$egin{aligned} \mathsf{A} D_2: & \pi_2 = & -rac{1}{\phi_\pi - \gamma_{\pi,H}} \widehat{\mathsf{x}}_2 \ & +rac{(1-\gamma_{\pi,H})\gamma_{\pi,L}}{\phi_\pi - \gamma_{\pi,H}} \pi_1 \end{aligned}$$

▶ Period 3 ▶ back

In model under FIRE, we have

$$\widehat{c}_t = \rho_u \widehat{c}_{t-1}.$$

With that perceived law of motion (i.e., ignoring that limited attention to inflation affects the equilibrium), and full attention to consumption, it follows:

$$\tilde{E}_t \hat{c}_{t+1} = \rho_u \hat{c}_t.$$

Inflation dynamics are similar:

Demand shocks

Asymmetry in Inflation Dynamics

▶ The attention threshold leads to an asymmetry in inflation dynamics

Asymmetry in Inflation Dynamics

- ▶ The attention threshold leads to an asymmetry in inflation dynamics
 - ⇒ heightened risk of high-inflation periods

- Frequency of inflation above 8%: 11% in the data 9% with 2 regimes vs. 3% with 1 regime
- Both models yield similar predictions for median inflation and deflation probabilities
- average inflation > 0 with 2 regimes
 = 0 with one regime
 Outlook
- absolute forecast errors in model similar to data: mean 2.1 vs. 1.84 and standard dev. 1.60 vs. 1.86

Welfare implications of different monetary policy rules

Welfare
$$\equiv -\frac{1}{2}E_0\sum_{t=0}^{\infty}\beta^t\left[\pi_t^2+\Lambda \hat{x}_t^2\right]$$
, with $\Lambda=0.007$

Welfare implications of different monetary policy rules

Welfare
$$\equiv -\frac{1}{2}E_0\sum_{t=0}^{\infty}\beta^t\left[\pi_t^2+\Lambda \hat{x}_t^2\right]$$
, with $\Lambda=0.007$

Compare welfare implications of different policy rules:

Nr.	Name	Equation
(1)	Taylor rule with smoothing	$\tilde{i}_t = \rho_i \tilde{i}_{t-1} + (1 - \rho_i) \left(\phi_\pi \pi_t + \phi_\chi \hat{x}_t\right)$
(2)	Taylor rule without smoothing	$\tilde{i}_t = \phi_\pi \pi_t$
(3)	Optimal RE commitment policy	$\pi_t + \frac{\Lambda}{\kappa} \left(\hat{x}_t - \hat{x}_{t-1} \right) = 0$
(4)	Optimal RE discretionary policy	$\pi_t + \frac{\Lambda}{\kappa} \hat{x}_t = 0$
(5)	Strict inflation targeting	$\pi_t = 0$

Welfare

- ▶ Taylor rules more welfare deteriorating than in other models
 - especially with interest-rate smoothing

Asymmetry of attention threshold increases average level of inflation

• Asymmetry \Rightarrow average level > 0

Asymmetry of attention threshold increases average level of inflation

▶ Asymmetry \Rightarrow average level $> 0 \Rightarrow$ welfare losses

Asymmetry in Inflation Dynamics

- The asymmetry also affects the inflation outlook
- ⇒ exercise: initialize economy at 2023Q3 inflation rate & feed in random supply shocks

Asymmetry in Inflation Dynamics

- The asymmetry also affects the inflation outlook
- ⇒ exercise: initialize economy at 2023Q3 inflation rate & feed in random supply shocks

- solid lines: median dynamics
- dotted lines: 5^{th} and 95^{th} percentiles back