Вариант №5

Исходные данные:

- число скоростей привода: Z = 10;
- структурная формула привода: Z = 2(2+3);
- вид структуры: БШ;
- знаменатель ряда геометрической прогрессии: $\phi = 1,58;$
- тип станка: токарно-многорезцовый. Принимаем станок модели 1730.

Порядок выполнения работы

1. Полностью раскрыть структурную формулу с указанием характеристик передач, проверить условие о возможности применения данной формулы в приводе главного движения с определением диапазона регулирования последней переборной группы передач и рассчитать

возможное количество вариантов привода.

Структурная формула привода представляет собой сложенную структуру вида БІІІ, которую в общем виде записывается: $Z = Z^{O}(Z' + Z'')$,

где: Z^{O} – основная структура привода;

Z', Z'') — первая и вторая дополнительные структуры привода.

Все структуры (основная, первая и вторая дополнительная) состоят из одной группы передач каждая: $\mathbf{Z}^{\mathrm{O}} = \mathbf{P}^{\mathrm{O}}_{1}, \mathbf{Z}' = \mathbf{P}'_{1}, \mathbf{Z}'' = \mathbf{P}'_{1}$.

Тогда с учетом групп передач формулу можно записать:

$$Z = Z^{O}(Z' + Z'') = P_{1}^{O}(P_{1} + P_{1}'') = 2(2+3),$$

где: $P^{O}_{1} = 2$ – основная группа передач;

 $P_1 = 2$, $P_1 = 3$ — первая переборная группа первой и второй дополнительных структур соответственно.

Цифры 2 и 3 определяют количество передач в группе.

С учетом характеристик передач в группе структурная формула представляется как:

$$Z = P^{O}_{1X_0} (P^{\prime}_{1X1} + P^{\prime\prime}_{1X1}) = 2_{X_0} (2_{X1} + 3_{X1}),$$

где: $x_0 = 1 - x$ арактеристика основной группы передач;

 $x_1 = x_0$ · $P_1^0 = 1$ · 2 = 2 - xарактеристика первой переборной группы передач.

Таким образом с учетом групп и характеристик передач структурная формула имеет вид:

$$Z = P^{O}_{1X_0} (P^{\prime}_{1X_1} + P^{\prime\prime}_{1X_1}) = 2_{X_0} (2_{X_1} + 3_{X_1}) = 2_1 (2_2 + 3_2)$$

Проверяем условие применяемости структурной формулы в приводе главного движения, которое записывается как: $R_{\Pi i} = \phi^{Kmax} \leq 8$, где для $P^{''}{}_1 = 3_2$ $K_{max} = 2 \ x_1 = 2 \cdot 2 = 4$

Диапазон регулирования последней переборной группы передач ($P^{''}_{1}=3_{2}$) Равен $R_{\Pi i}=\phi^{Kmax}=1,58^{4}=6,2$ (Условие выполнено).

Определяем возможное количество вариантов привода:

$$B = B_{\text{кон.}} \cdot B_{\text{кин.}};$$

где: $B_{\text{кон}} = K! -$ количество конструктивных вариантов привода;

$$B_{\mbox{\tiny KИH}} = \frac{K!}{m!}$$
 - количество кинематических вариантов привода.

Таким образом, общее количество вариантов привода рассчитывается по формуле:

$$B = \frac{(K!)^2}{m!}$$

Для структурной формулы $Z = 2_1(2_2+3_2)$ и структуры вида БІІІ общее количество вариантов привода определяется по формуле:

$$B = 4 \frac{(K^0!)^2}{m^0!} \frac{(K'!)^2}{m'!} \frac{(K''!)^2}{m''!};$$

где: к – число групп передач;

т – количество групп с одинаковым числом передач.

В нашем случае $K^0 = K' = K'' = 1$, $m^0 = m' = m'' = 1$;

Таким образом:
$$B = 4 \frac{(1!)^2}{1!} \frac{(1!)^2}{1!} \frac{(1!)^2}{1!} = 4$$

2. С учетом заданной формулы нарисовать вид структуры и построить структурную сетку.

Структура вида БІІІ представляет собой сложенную структуру с двумя дополнительными структурами, соединенными параллельно. Соединение основной структуры Z^{O} с шпинделем (выходным валов коробки скоростей) не происходит, а только через дополнительные структуры Z_{1} и Z_{2} (рис.1).

Рис. 1. Общий вид сложенной структуры вида БШ.

Структура привода вида БІІІ, разработанная с учетом структурной формулы $Z = 2_1(2_2+3_2)$ и однонаправленности вращения шпинделя при передаче движения по различным кинематическим цепям, представлена на рис.2.

Для обеспечения z=10 скоростей привода в соответствии со структурной формулой в приводе необходимо иметь 5 валов, один трехвенцовый и три двухвенцовых блоков зубчатых колес, при этом один из двухвенцовых блоков за счет постоянных зубчатых передач $\mathbf{i}_{\Pi}^{\parallel}$ и $\mathbf{i}_{\Pi}^{\parallel}$ обеспечивает распределение направлений движения по различным кинематическим цепям.

Таким образом, для получения 10 различных частот вращения в структуре привода необходимо реализовать 2 кинематические цепи: $Z=Z_1+Z_2$,

где:
$$Z_1 = P_1^O \cdot i_n^I \cdot P_1 = 2_1 \cdot i_n^I \cdot 2_2 = 4$$
 $Z_2 = P_1^O \cdot i_n^I \cdot P_{11}^I = 2_1 \cdot i_n^I \cdot 3_2 = 6$
Или $Z = Z_1 + Z_2 = 4 + 6 = 10$

Рис. 2. Структура привода вида БІІІ с учетом формулы $Z = 2_1(2_2+3_2)$ и групп передач.

Структурная сетка для $Z = 2_1(2_2+3_2) = 10$ представлена на рис.3

Рис.3. Структурная сетка привода.

3. Самостоятельно задавшись по ГОСТ параметрами электродвигателя, а также Π_{min} частоты вращения выходного вала коробки скоростей, определить с учетом ϕ и Z промежуточные частоты вращения и Π_{max} . Построить график частот вращения с учетом кинематики заданного станка и определить передаточные отношения передач.

С учетом базового станка по ГОСТ 18399-81 задаемся параметрами электродвигателя привода главного движения:

- тип электродвигателя 4A200S4У3;
- мощность N = 10 кBt;
- частота вращения при номинальной мощности $n_{\scriptscriptstyle H} = 1450$ об/мин.

Принимая во внимание частоты вращения базового станка, а также ϕ =1,58 и Z=10 задаемся n_1 = n_{min} =25 об/мин. По Нормали станкостроения H11-1 получаем промежуточные и n_{max} частоты вращения шпинделя:

Анализ кинематической схемы привода главного движения копировально-фрезерного станка модели 1730 (рис.4).

Шпиндель III станка приводится в движение от электродвигателя N=10кВт через клиноременную передачу 120/274, вал I , сменные шестерни

А/В, вал II и конические шестерни 18/80. Комплект сменных зубчатых колес, прилагаемый к станку, позволяет сообщать шпинделю 12 различных чисел оборотов в минуту. Пределы частот вращения шпинделя: 40...500об/мин.

Передний суппорт получает продольную подачу от шестерни 76, закрепленной на левом конце шпинделя.

Рис. 4— Кинематическая схема токарного многорезнового подучаетом и 1730. 1730

При построении графика частот вращения (рис.5) и разработке кинематической схемы (рис.6) учтены особенности кинематики базового станка и разрабатываемой структуры. Введены дополнительно:

- вал \mathbf{I}' с клиноременной передачей, обеспечивающие передачу движения от вала электродвигателя на \mathbf{I} входной вал коробки скоростей;

При построении графика частот вращения шпинделя необходимо принять во внимание, что для $\phi = 1,58$ число допустимых интервалов может быть:

Рис. 5 – График частот вращения

По рис. 5 определяем передаточные отношения:

- ременной передачи i_p =1000/1450=0,69. Учитывая, что i_p = D_1/D_2 =0,68 и принимая по базовому станку D_1 =120мм, получаем D_2 = D_1/i_p =120/0,69=171мм;
 - зубчатых передач по формуле $\mathbf{i} = \varphi^{\pm m}$,

где: m — число повышений (+) или понижений (-) луча на графика частот вращения.

$$\begin{aligned} &\mathbf{i}_{1} = \varphi^{-1} = 1/1,58; & \mathbf{i}_{2} = \varphi^{-2} = 1/1,58^{2}; & \mathbf{i}_{3} = \varphi^{1} = 1,58; & \mathbf{i}_{4} = \varphi = 1,58; & \mathbf{i}_{5} = \varphi^{-1} = 1/1,58; \\ &\mathbf{i}_{6} = \varphi^{-3} = \frac{1}{1,58^{3}}; & \mathbf{i}_{7} = \varphi^{1} = 1,58; & \mathbf{i}_{8} = \varphi^{-1} = \frac{1}{1,58}; & \mathbf{i}_{9} = \varphi^{-3} = 1/1,58^{3}; \end{aligned}$$

4. Разработать кинематическую схему привода главного движения (рисунок кинематической схемы базового станка приложить в контрольной работе).

При разработке кинематической схемы привода главного движения (рис.6) применены:

- электродвигатель с аналогичными базовому станку техническими характеристиками и валом I^\prime , соединенным с входным валом коробки скоростей клиноременной ременной передачей D_1 - D_2 ;
- коробка скоростей представлена в соответствии с разработанной структурой привода;
- на выходном валу V коробки скоростей применена зубчатая передача с шестерней z_{26} =76 (m=3мм аналогично базовому станку), передающая движение на VI (входной) вал коробки подач (вал VI и указанная передача представлены на рис. 7 и 8).

Рис. 6. Кинематическая схема привода главного движения

5. Расчет чисел зубьев зубчатых передач и определение кинематической точности (погрешности) частот вращения цепи, в которую входит наиболее нагруженная группа передач.

Наиболее нагруженной группой передач является группа $P_{1}=3_{2}$ (блок Б₄) с передаточными отношениями:

$$i_7 = \frac{Z_{16}}{Z_{17}} = 1,58$$
 $i_8 = \frac{Z_{18}}{Z_{19}} = \frac{1}{1,58}$ $i_9 = \frac{Z_{20}}{Z_{21}} = \frac{1}{1,58^3}$

Для данной группы передач расчет чисел зубьев колес производим при прямозубых цилиндрических зубчатых зацепления колес одинаковым модулем в группе передач.

Представим передаточные отношения в виде простой дроби $i_x = \frac{I_x}{I_x}$:

$$i_7 = \frac{f_7}{q_7} \approx \frac{11}{7}$$
 $i_8 = \frac{f_8}{q_8} \approx \frac{7}{11}$ $i_9 = \frac{f_9}{q_9} \approx \frac{1}{4}$

Определяем наименьшее кратное К для сумм (f_x+q_x):

$$f_7 + q_7 = 11 + 7 = 18$$

 $f_8 + q_8 = 7 + 11 = 18$

$$f_9 + q_9 = 1 + 4 = 5$$

Таким образом K = 90

Определим E_{min} для зубчатой передачи с і₉:

$$E_{min} = \frac{17(f_9 + q_9)}{K \cdot f_9} = \frac{17(1+4)}{90 \cdot 1} = 0,9$$
 Принимаем $E_{min} = 1$

Сумма чисел зубьев сопряженных колес: $2Z_0 = K \cdot E_{min} = 90 \cdot 1 = 90$

$$2Z_0 = K \cdot E_{min} = 90 \cdot 1 = 90$$

По Нормали Н21-5 задавшись модулем зубчатых колес т=5мм получаем $2Z_{o}$ =90, при этом межосевое расстояние между валами составляет A_{IV-V} =225мм.

Определяем числа зубьев сопряженных колес:

$$Z_{16} = 2Z_{0} \frac{f_{7}}{f_{7} + q_{7}} = 90 \frac{11}{11 + 7} = 55$$

$$Z_{17} = 2Z_{0} \frac{f_{7}}{f_{7} + q_{7}} = 90 \frac{7}{11 + 7} = 35$$

$$Z_{18} = 2Z_{0} \frac{f_{8}}{f_{8} + q_{8}} = 90 \frac{7}{7 + 11} = 35$$

$$Z_{19} = 2Z_{0} \frac{f_{8}}{f_{8} + q_{8}} = 90 \frac{11}{7 + 11} = 55$$

$$Z_{20} = 2Z_{0} \frac{f_{9}}{f_{9} + q_{9}} = 90 \frac{1}{1 + 4} = 18$$

$$Z_{21} = 2Z_{0} \frac{q_{9}}{f_{9} + q_{9}} = 90 \frac{4}{1 + 4} = 72$$

Проверка:
$$Z_{16}+Z_{17}=Z_{18}+Z_{19}=Z_{20}+Z_{21}=2Z_0$$

 $55+35=35+55=18+72=90$

Расчет чисел зубьев остальных зубчатых передач выполняется с учетом Нормали Н21-5 решая систему уравнений:

$$\left\{ \begin{aligned}
Z_{x} + Z'_{x} &= 2Z_{0} \\
Z_{x} \\
Z'_{y} &= i_{x}
\end{aligned} \right\}$$

Расчет чисел зубьев зубчатой передачи между II и IV валами:

Передача движения между валами обеспечивается постоянной зубчатой передачей $i_6=z_{14}/z_{15}=1/1,58^3$. Для обеспечения минимальных радиальных размеров коробки скоростей принимаем $z_{14}=18$.

Тогда $z_{15}=1.58^3$ $z_{14}=1,58^3\cdot 18=72$. Сумма зубьев сопряженных колес равна $2Z_0 = Z_{14} + Z_{15} = 18 + 72 = 90$. По H21-5 при m=4мм принимаем $2Z_0 = 90$ $(A_{II-IV}=180$ мм). Таким образом, имеем $z_{14}=18$; $z_{15}=72$.

Расчет чисел зубьев колес между III и V валами:

В передаче движения между валами участвуют блок зубчатых колес Б₃, имеющие : $i_4=z_{10}/z_{11}=1,58$ и $i_5=z_{12}/z_{13}=1/1,58$. Приняв во внимание, что для i_4 наименьшее зубчатое колесо z_{11} расположено на V валу, который может иметь значительные размеры, принимаем z_{11} =30. Тогда z_{10} =1.58· z_{11} =1,58·30=47. Сумма зубьев сопряженных колес равна $2Z_0=Z_{10}+Z_{11}=47+30=77$. По H21-5 при m=4мм принимаем $2Z_0 = 75$ ($A_{III-IV}=150$ мм).

Определяем числа зубьев сопряженных колес:

Проверка:
$$Z_{10}+Z_{11}=Z_{12}+Z_{13}=2Z_{O}$$

 $46+29=29+46=75$

Расчет чисел зубьев колес между II и III валами:

Передача движения между валами обеспечивается постоянной зубчатой передачей $i_3=z_8/z_9=1,58$. Приняв для i_3 , что $z_9=20$, как наименьшее из колес в данной передаче, получаем $z_8=1.58 \cdot z_9=1.58 \cdot 20=32$. Сумма зубьев сопряженных колес равна $2Z_0=Z_8+Z_9=32+20=52$. По H21-5 при m=4мм принимаем $2Z_0=60$ $(A_{II-III}=120_{MM}).$

Определяем числа зубьев сопряженных колес:

Расчет чисел зубьев колес между I и II валами:

В передаче движения между валами участвуют блок зубчатых колес $Б_1$, имеющие : $i_1=z_4/z_5=1/1,58$ и $i_2=z_6/z_7=1/1,58^2$. Приняв для i_2 , что $z_6=25$, получаем $z_7=1.58^2\cdot z_6=1,58^2\cdot 25=62$. Сумма зубьев сопряженных колес $2Z_0 = Z_6 + Z_7 = 25 + 62 = 87$. По H21-5 при m=3мм принимаем $2Z_0 = 80$ (A_{I-II}=120мм).

Определяем числа зубьев сопряженных колес:

$$\begin{cases} Z_6 + Z_7 = 80 \\ \frac{Z_6}{Z_7} = 1/1,58 \end{cases} \quad Z_7 = 1,58 \ Z_6; \quad Z_6 + 1,58 \ Z_6 = 80; \quad Z_6 = 31; \quad Z_7 = 80 - 31 = 49$$

$$\begin{cases} Z_8 + Z_9 = 80 \\ \frac{Z_8}{Z_9} = \frac{1}{1,58^2} \end{cases} \quad Z_9 = 1,58^2 \ Z_8; \quad Z_8 + 1,58^2 \ Z_8 = 80; \quad Z_8 = 23; \quad Z_9 = 80 - 23 = 57$$

Проверка:
$$Z_6+Z_7=Z_8+Z_9=2Z_0$$

 $31+49=23+57=80$

Для определения кинематической точности привода главного движения кинематических цепей, в состав которых входит наиболее нагруженная группа передач $P_1^{\ \prime\prime}=3_2$ (т.е. для кинематической цепи Z_2) необходимо составить уравнения кинематического баланса, определить действительные значения частот вращения шпинделя ($n_{1_{\rm I}}$... $n_{8_{\rm I}}$), вычислить величину погрешности по

формуле:
$$\Delta n_i = \frac{n_{_{i,I}} - n_{_{i,H}}}{n_{_{i,H}}} \cdot 100\%$$
 и сравнить ее с допустимой $[\Delta n] = \pm 10(\varphi - 1) = \pm 10(1,58 - 1) = \pm 5,8\%$.

В рассматриваемой кинематической цепи в передаче движения участвуют ременная и зубчатые передачи, имеющие следующие передаточные отношения:

$$\begin{split} &\mathbf{i}_{\mathrm{p}} = \frac{120}{171}; \ \ \mathbf{i}_{1} = \frac{31}{49}; \ \ \mathbf{i}_{2} = \frac{23}{57}; \ \ \mathbf{i}_{6} = \frac{18}{72}; \ \ \mathbf{i}_{7} = \frac{55}{35}; \ \ \mathbf{i}_{8} = \frac{35}{55}; \ \ \mathbf{i}_{9} = \frac{18}{72}; \\ &\mathbf{n}_{1} = 1450 \frac{120}{171} \, 0.95 \frac{23}{57} \frac{18}{72} \frac{18}{72} = 24,406/\text{мин} \qquad \Delta \mathbf{n}_{1} = \frac{24,4-25}{25} \, 100 = 2,4\% \\ &\mathbf{n}_{2} = 1450 \frac{120}{171} \, 0.95 \frac{31}{49} \frac{18}{72} \frac{18}{72} = 38,206/\text{мин} \qquad \Delta \mathbf{n}_{2} = \frac{38,2-40}{40} \, 100 = 4,5\% \\ &\mathbf{n}_{3} = 1450 \frac{120}{171} \, 0.95 \frac{23}{57} \frac{18}{72} \frac{35}{55} = 62,106/\text{мин} \qquad \Delta \mathbf{n}_{3} = \frac{61,1-63}{63} \, 100 = 1,4\% \\ &\mathbf{n}_{4} = 1450 \frac{120}{171} \, 0.95 \frac{31}{49} \frac{18}{72} \frac{35}{55} = 97,306/\text{мин} \qquad \Delta \mathbf{n}_{4} = \frac{97,3-100}{100} \, 100 = 2,7\% \\ &\mathbf{n}_{5} = 1450 \frac{120}{171} \, 0.95 \frac{23}{57} \frac{18}{72} \frac{55}{35} = 153,206/\text{мин} \qquad \Delta \mathbf{n}_{4} = \frac{153,2-160}{160} \, 100 = 4,3\% \\ &\mathbf{n}_{4} = 1450 \frac{120}{171} \, 0.95 \frac{31}{49} \frac{18}{72} \frac{55}{35} = 240,306/\text{мин} \qquad \Delta \mathbf{n}_{4} = \frac{240,3-250}{250} \, 100 = 3,7\% \end{split}$$

Величина погрешности находится в пределах допустимой, что указывает на то, что кинематическая точность цепей обеспечена.

6. Рассчитать мощность и крутящий момент на валах привода, предварительно рассчитать диаметры валов.

Расчет мощности на валах привода главного движения производится по формулам:

- на I валу коробки скоростей: $N_i = N_{\text{эл.дв.}} \cdot \eta_{_p}; [\kappa B_T]$

где: $\eta_p = 0.95 - K\PiД$ ременной передачи.

$$N_I = 10.0,9 = 9,5 \text{ kBT}$$

- на последующих валах привода: $N_i = N_{i-1} \cdot \eta_{_3} \cdot \eta^{_2}{_n}, [\kappa B_T]$

где: η_3 =0,97 – КПД зубчатой передачи;

 $\eta_{\rm n}$ =0,99 – КПД подшипников качения.

Учитывая, что $\eta_{_3} \cdot \eta_{_{\rm II}} = 0.97 \cdot 0.99^2 = 0.95$, получаем $N_{_{\rm I}} = 0.95 \cdot N_{_{\rm I-I}}$, [кВг]

$$N_{_{\rm II}} = 0.95 \cdot N_{_{\rm I}} = 0.95 \cdot 9.5 = 9.0 \, \text{kBt}$$

$$N_{III} = 0.95 \cdot N_{II} = 0.95 \cdot 9.5 = 8.57$$

$$N_{IV} = 0.95 \cdot N_{II} = 0.95 \cdot 9.0 = 8.57 \text{ kBT}$$

$$N_{_{\rm \, V}} = 0.95 \cdot N_{_{\rm \, IV}} = 0.95 \cdot 8.57 = 8.15 \, \text{kB}_{\rm T}$$

Максимальные крутящие моменты на валах привода определяются по формулам:

- на I валу коробки скоростей:
$$M_{_{\rm I}} = \frac{M_{_{_{\rm ДB.}}}}{i_{_{_{\rm D}}}} \eta_{_{\it p}},$$
нм ;

где:
$$M_{_{\mathrm{дB.}}} = \frac{N_{_{\mathrm{дB.}}} \cdot 10^3 \cdot 60}{2 \cdot \pi \cdot \mathrm{n}_{_{\mathrm{H}}}} = \frac{10 \cdot 10^3 \cdot 60}{2 \cdot 3,14 \cdot 1450} = 65,8 \,\mathrm{HM}$$
 — крутящий момент на валу электродвигателя.

$$M_{I} = \frac{65.8}{0.69} 0.95 = 90.5 \text{HM}$$

- на последующих валах:
$$M_{_{\rm I}}=\frac{M_{_{\rm i-1}}}{i_{_{\rm min}}}\eta_{_{3}}\cdot\eta^{_{_{\rm II}}}=\frac{M_{_{\rm i-1}}}{i_{_{\rm min}}}0,95$$
 нм
$$M_{_{\rm II}}=\frac{M_{_{\rm I}}}{i_{_{2}}}0,95=90,5\cdot 1,58^{_{2}}\cdot 0,95=214,6$$
нм
$$M_{_{\rm III}}=\frac{M_{_{\rm II}}}{i_{_{3}}}0,95=\frac{90,5}{1,58}\cdot 0,95=129$$
нм
$$M_{_{\rm IV}}=\frac{M_{_{\rm II}}}{i_{_{3}}}0,95=214,6\cdot 1,58^{_{3}}\cdot 0,95=804,1$$
нм
$$M_{_{\rm IV}}=\frac{M_{_{\rm IV}}}{i_{_{2}}}0,95=804,1\cdot 1,58^{_{3}}\cdot 0,95=3010$$
нм

Предварительное определение диаметров валов:

$$d_{i} = \sqrt[3]{\frac{M_{i} \cdot 10^{3}}{0.2 \cdot [\tau]}}, \text{ MM}$$

где: $[\tau]=18...23$ МПа — допускаемое напряжение материала вала на кручение. Принимаем $[\tau]=20$ МПа. Учитывая постоянную данной формулы

$$(\frac{10^3}{0,2\cdot[\tau]} = \frac{10^3}{0,2\cdot20} = 250)$$
, окончательно получаем: $d_i = \sqrt[3]{M_i\cdot250}$,

$$0,2 \cdot [7]$$
 $0,2 \cdot 20$ $0,2 \cdot [7]$ $0,2 \cdot$

Для V и IV валов наиболее нагруженной группы передач с учетом базового станка выбираем подшипники качения:

- для V вала –радиально-упорные роликоподшипники конические однорядные по ГОСТ 333-79 установленные враспор (для передней правой опоры) 7318: внутренний диаметр d=90мм, наружный диаметр D=190мм, ширина B=43мм;
- для IV вала шарикоподшипник радиальный однорядный 312 по ГОСТ 8338-75: внутренний диаметр d=60мм, наружный диаметр D=130мм, ширина B=31мм;
 - **7.** Рассчитать геометрические параметры зубчатых колес и межосевое расстояние между валами.

Геометрические параметры зубчатых колес определяются по формулам(мм): - делительный диаметр $d = m \cdot z$;

- диаметр вершин зубьев $d_a = d + 2m(1+x)$;
- диаметр впадин зубьев d_f =d-2m(1,25-x);
- ширина зубчатого колеса $B_1 = \psi_a \cdot A_{;} \psi_a = 0.12;$
- ширина шестерни $B_2 = 1,12 \cdot B_1$

Коэффициент смещения для прямозубых зубчатых колес х=0

Результаты расчета сведены в таблицы 1 и 2.

Таблица 1 Геометрические параметры зубчатых колес наиболее нагруженной группы передач

Колесо/		Расчетные параметры					
/Шестерня	m,	Z	d,	d _a ,	$d_{f,}$	В,	
	MM		MM	MM	MM	MM	
Z_{16}/Z_{17}	5	55/ 35	275/ /175	285/ 185	262/ /162	30/34	
Z_{18}/Z_{19}	5	35/ 55	175/ 275	185/285	162/262	30/34	
Z_{20}/Z_{21}	5	18/72	90/ /360	100/370	77/ 347	30/34	

Таблица 2 Делительные диаметры зубчатых колес привода

Парамет ры	$\mathbf{Z}_{4}/\mathbf{Z}_{5}$	$\mathbf{Z}_{6}/\mathbf{Z}_{7}$	Z ₈ / Z ₉	$\mathbf{z}_{10^{\text{l}}} \mathbf{z}_{11}$	$\mathbf{z}_{12}/\mathbf{z}_{13}$	Z ₁₄ / Z ₁₅	${ m Z}_{22}$ -принято по базовому станку
т, мм	3		4				3
Z	31/39	23/57	37/23	46/29	29/46	18/72	76
d, мм	$\frac{93}{117}$	69 171	148/92	184 116	116/ 184	72/288	228

Расчет межосевых расстояний:

$$A = \frac{\sum Z \cdot m}{2}, MM$$

 $A_{_{I^{l}-I}}$ - принимается конструктивно;

$$A_{\text{II-II}} = \frac{80 \cdot 3}{2} = 120 \text{ MM}$$

$$A_{\text{II-II}} = \frac{60 \cdot 4}{2} = 120 \text{ MM}$$

$$A_{\text{II-IV}} = \frac{75 \cdot 4}{2} = 150 \text{ MM}$$

$$A_{\text{II-IV}} = \frac{90 \cdot 4}{2} = 180 \text{ MM}$$

$$A_{\text{V-VI}} = \frac{152 \cdot 3}{2} = 228 \text{ MM (cm. puc.7)}$$

Расчет межосевого расстояния между IV-V валами наиболее нагруженной группы передач производится из условия контактной прочности зубчатых колес:

$$A_{\text{IV-V}} = \left(\frac{1}{i_9} + 1\right)_3^3 \sqrt{\left(\frac{340000}{\left[\sigma_K\right] \cdot 1/i_9}\right)^2 \cdot \frac{1}{\psi_a} \cdot \frac{\kappa \cdot N}{n}} \ cm,$$

где: $[\sigma_{\kappa}] = 5880 \text{ кгс/см}^2 - допускаемое напряжение контактной прочности$ зубчатого колеса;

 ψ_a =0,12...0,15 — коэффициент ширины венца колеса;

$$\kappa = 1,3...1,5$$
 — коэффициент шприны венца колееа, $\kappa = 1,3...1,5$ — коэффициент нагрузки.
$$A_{\text{IV-V}} = (4+1)\sqrt[3]{\left(\frac{340000}{5880 \cdot 4}\right)^2 \cdot \frac{1}{0,12} \cdot \frac{1,5 \cdot 8,15}{25}} = 47,4 \text{ cm} = 474 \text{mm}$$

Учитывая, что по условиям контактной прочности зубатого колеса межосевое расстояние между валами IV-V наиболее нагруженной группы передач допускается до 474 мм, принимаем ранее рассчитанное $A_{IV-V}=225$ мм.

8. Разработать эскизную компоновку коробки скоростей.

При разработке эскизной компоновки свертки коробки скоростей привода главного движения применены формулы и выполнены следующие расчеты:

- толщина корпуса: $\delta = 0.025 \cdot A + 3 = 0.025 \cdot 225 + 3 = 8.6 \,\mathrm{MM}$;
- расстояние от торца зубчатого колеса до внутренней стенки корпуса: $a = (1,0...1,2)\delta = 1,2 \cdot 8,6 = 10,3 \text{ mm}$
- расстояние от наибольшего диаметра колеса до смежного вала: $c \ge 0.4\delta = 0.4 \cdot 8.6 = 3.4 \text{ mm}$
- минимальное расстояние между торцами соседних зубчатых колес: $e = (0,4...0,6)\delta = 0,6 \cdot 8,6 = 5,2 \text{ MM}$
- расстояние от венца зубчатого колеса до днища корпуса:

$$b \ge 3\delta = 3.8, 6 = 25,8 \text{ MM}$$

- толщина крышки: $\delta_1 = (0,7...0,8)\delta = 0,8 \cdot 8,6 = 6,9$ мм

Рис. 7. Эскизная компоновка свертки коробки скоростей.

9. Уточненный расчет наиболее нагруженного вала.

Наиболее нагруженным валов в последней переборной группе передач (наиболее нагруженной группе передач) коробки скоростей является V вал, передающий крутящий момент $M_{\text{кp}} = 3010$ нм зубчатой передачей $z_{20}/z_{21} = 18/72$.

Далее этот момент распределяется на преодоление сил резания $(M_{\kappa p,p})$ и привод подач $(M_{\text{кр.п}})$ через зубчатое колесо z_{22} =76.. Принимаем $M_{\text{кр.п}}$ =0,3 · $M_{\text{кр}}$ = $=0,3\cdot3010=753$ нм. Тогда $M_{\text{кр.p}}=M_{\text{кр.}}-M_{\text{кр.n}}=3010-753=2257$ нм.

Схема нагружения V вала и эпюры моментов, действующие на него, представлены на рис.8. Компоновочные размеры, осевое и радиальное размещение зубчатых колес на валах наиболее нагруженной группы передач, а также расстояние между опорами определены из рис.9.

Условные обозначения, принятые в расчете и на рис.8:

- $R_{A}^{\ \Gamma}$, $F_{t}^{|}$, $F_{r} \ R_{B}^{\ \Gamma}$, P_{z} силы и реакции, действующие в горизонтальной
- плоскости; $R_A^{\ \ B}$, $F_r^{\ \ }$, F_t , $R_B^{\ \ B}$, P_y силы и реакции, действующие в вертикальной

Определяем силы, действующие в зубчатых зацеплениях:

- в передаче
$$\frac{z_{20}}{z_{21}}$$
: $F_t = \frac{2M_{_{\rm kp}}}{D_{21}} = \frac{2 \cdot 3010}{0.37} = 16270\,\mathrm{H}$

$$F_r = F_t \cdot tg \alpha = 16270 \cdot 0.364 = 5922 \text{ H}.$$

- в передаче с
$$z_{22}$$
: $F_t^l = \frac{2M_{\text{кр. $\Pi}}}{D_{23}} = \frac{2 \cdot 753}{0.228} = 6605 \text{ H}$$

$$F_r^l = F_t^l \cdot tg \alpha = 6605 \cdot 0,364 = 2404 \text{ H};$$

Принимаем силы резания: $P_z = 1000$ н, $P_y = 0,3 \cdot 1000 = 300$ н Определяем реакции в опорах:

- горизонтальная плоскость:

$$\begin{split} \sum M_{_{A}} &= 0 & -F_{_{}^{\dagger}} \cdot 0,1 - F_{_{r}} \cdot 0,46 - R_{_{B}}^{\Gamma} \cdot 0,54 + P_{_{y}} \cdot 0,74 = 0 \\ R_{_{B}}^{\Gamma} &= \frac{-F_{_{}^{\dagger}}^{\dagger} \cdot 0,1 + F_{_{r}} \cdot 0,46 + P_{_{y}} \cdot 0,74}{0,54} = \frac{-6605 \cdot 0,1 + 5922 \cdot 0,46 + 300 \cdot 0,74}{0,54} = 4233 \,\mathrm{H} \\ \sum M_{_{B}} &= 0 & R_{_{A}}^{\Gamma} \cdot 0,54 + F_{_{}^{\dagger}}^{\dagger} \cdot 0,44 - F_{_{r}} \cdot 0,08 + P_{_{y}} \cdot 0,2 = 0 \\ R_{_{A}}^{\Gamma} &= \frac{-F_{_{}^{\dagger}}^{\dagger} \cdot 0,44 + F_{_{r}} \cdot 0,08 - P_{_{y}} \cdot 0,2}{0,54} = \frac{-6605 \cdot 0,44 + 5922 \cdot 0.08 - 300 \cdot 0,2}{0.54} = -4616 \,\mathrm{H} \end{split}$$

- вертикальная плоскость:

$$\begin{split} \sum M_{_{\rm A}} &= 0 \qquad F^{_{\rm r}} \cdot 0.1 - F_{_{\rm t}} \cdot 0,46 - R_{_{\rm B}}{}^{_{\rm B}} \cdot 0,54 + P_{_{\rm z}} \cdot 0,74 = 0 \\ R_{_{\rm B}}{}^{_{B}} &= \frac{F^{_{\rm r}} \cdot 0,1 - F_{_{\rm t}} \cdot 0,46 + P_{_{\rm z}} \cdot 0,74}{0,54} = \frac{2404 \cdot 0,1 - 16270 \cdot 0,46 + 1000 \cdot 0,74}{0,54} = -12044 \, \mathrm{H} \\ \sum M_{_{\rm B}} &= 0 \qquad R_{_{\rm A}}{}^{_{B}} \cdot 0,54 - F^{_{\rm r}} \cdot 0,44 + F_{_{\rm t}} \cdot 0,08 + P_{_{\rm z}} \cdot 0,2 = 0 \\ R_{_{\rm A}}{}^{_{B}} &= \frac{F^{_{\rm r}} \cdot 0,44 - F_{_{\rm t}} \cdot 0,08 - P_{_{\rm z}} \cdot 0,2}{0,54} = -\frac{2404 \cdot 0,44 - 16270 \cdot 0,08 - 1000 \cdot 0,2}{0,54} = -12766 \, \mathrm{H} \end{split}$$

Полные реакции в опорах:

$$R_{A} = \sqrt{\left(R_{A}^{\Gamma}\right)^{2} + \left(R_{A}^{B}\right)^{2}} = \sqrt{4616^{2} + 820^{2}} = 4688 \,\mathrm{H}$$
 $R_{B} = \sqrt{\left(R_{B}^{\Gamma}\right)^{2} + \left(R_{B}^{B}\right)^{2}} = \sqrt{4233^{2} + 12044^{2}} = 12766 \,\mathrm{H}$

Изгибающие моменты:

- в горизонтальной плоскости:

- в вертикальной плоскости:

$$\begin{split} \mathbf{M_{M}}^{C} &= \mathbf{R_{A}}^{B} \cdot 0.1 = -820 \cdot 0.1 = -82 \text{ hm} \\ \mathbf{M_{M}}^{D} &= \mathbf{R_{A}}^{B} \cdot 0.46 + \mathbf{F_{r}}^{\dagger} \cdot 0.36 = -820 \cdot 0.46 - 2404 \cdot 0.36 = -1242 \text{ hm} \\ \mathbf{M_{M}}^{B} &= \mathbf{R_{A}}^{B} \cdot 0.54 - \mathbf{F_{r}}^{\dagger} \cdot 0.44 + \mathbf{F_{t}} \cdot 0.08 = -820 \cdot 0.54 - 2404 \cdot 0.44 + 16270 \cdot 0.08 = -198 \text{ hm} \\ \mathbf{M_{M}}^{E} &= \mathbf{R_{A}}^{B} \cdot 0.74 - \mathbf{F_{r}}^{\dagger} \cdot 0.64 + \mathbf{F_{t}} \cdot 0.28 + \mathbf{R_{B}}^{B} \cdot 0.2 = -820 \cdot 0.74 - 2404 \cdot 0.64 + 16270 \cdot 0.28 - -12044 \cdot 0.2 = 0 \text{ hm} \end{split}$$

Результирующие изгибающие моменты:

$$M_{_{
m H}}{^{^{
m C}}}=\sqrt{462^2+82^2}=469\,{
m \, HM} \qquad M_{_{
m H}}{^{
m B}}=\sqrt{59^2+198^2}=206\,{
m \, HM} \ M_{_{
m H}}{^{^{
m D}}}=\sqrt{255^2+1242^2}=1268\,{
m \, HM}$$

Эквивалентные моменты:

$$M_{
m 9KB}^{\ \ C} = \sqrt{\left(M_{
m M}^{\ \ C}\right)^2 + M_{
m kp.n}^{\ \ 2}} = \sqrt{469^2 + 753^2} = 887 \ {
m Hm}$$

$$\begin{split} M_{\rm 9KB}^{D} &= \sqrt{\left(\!M_{_{\rm H}}^{D}\!\right)^{\!2} + M_{_{\rm KP.}}^{2}} = \sqrt{1268^2 + 3010^2} = 3266\,\text{hm} \\ M_{\rm 9KB}^{B} &= \sqrt{\left(\!M_{_{\rm H}}^{B}\!\right)^{\!2} + M_{_{\rm KP.}}^{2}} = \sqrt{206^2 + 3010^2} = 3017\,\text{hm} \end{split}$$

Определяем диаметр V вала:

 $d_{_{\mathrm{V}}}=\sqrt[3]{rac{M_{_{\mathrm{ЭКВ}}}}{0,1\cdot\left[\sigma_{_{-1}}
ight]_{_{\mathrm{H}}}}},$ где: $\left[\sigma_{_{-1}}\right]_{_{\mathrm{H}}}=5\cdot10^{7}\,rac{\mathrm{H}}{\mathrm{M}^{^{2}}}$ - допускаемое напряжение материала вала на изгиб.

$$d_v = \sqrt[3]{\frac{3266}{0.1 \cdot 5 \cdot 10^7}} = 0.086 \text{m} = 86 \text{mm}$$

Принимаем диаметр V вала $d_V = 90$ мм

Рис. 8. Схема нагружения V вала и эпюры моментов

10. Разработать компоновочную схему наиболее нагруженной группы передач.

Рис. 9. Компоновочная схема развертки наиболее нагруженной группы передач

11. Разработать механизм управления перемещением блока зубчатых колес наиболее нагруженной группы передач и рассчитать угол поворота рукоятки управления

Тройной блок $Б_4$, находящийся на IV валу перемещается от поворота рукоятки 2 (рис.10). Этот поворот передается через зубчатый сектор 1, колеса 2 и 3 и далее на вилку 5, на которой жестко закреплена рейка 4, перемещающаяся вдоль оси Б.

Длина перемещения блока $Б_4$ составляет L=1+2·30+2·34, где 1=105мм — длина блока (см.рис.9)

Тогда L=105+2·30+2·34=233мм.

Определяем число оборотов вала A: $n_A = \frac{L}{\pi mz}$,

где m, z — модуль и число зубьев колес 2 и 3 . Принимаем m=2мм, z=20.

Тогда
$$n_A = \frac{233}{3,14 \cdot 2 \cdot 20} = 1,8506$$

Число оборотов рукоятки P составляет $n_{P} = \frac{n_{A}}{i_{3,C}}$,

где $i_{3.C.}$ – передаточное отношение зубчато-секторной передачи.

 $i_{_{3.C.}} = \frac{R_{_2}}{R_{_1}}$, где R_1 и R_2 — соответственно радиусы зубчатого колеса 2 и сектора 1.

 $R_1 = mz/2 = 2 \cdot 20/2 = 20$ мм. Принимаем $R_2 = 200$ мм.

Тогда $n_P = \frac{n_A}{R_2/R_1} = \frac{n_A \cdot R_1}{R_2} = \frac{1,85 \cdot 20}{200} 0,185 o \delta$, что соответствует углу поворота рукоятки α =0,185·360 0 =66,6 0 .

Рис.10 Схема механизма управления перемещением блока Б₄

12. Начертить сборочный чертеж развертки наиболее нагруженной группы передач.

Рис. 11 Сборочный чертеж наиболее нагруженной группы передач

ЛИТЕРАТУРА

- 1. Тарзиманов Г.А. Проектирование металлорежущих станков. 3-е изд. М.: Машиностроение, 1980. 288с.
- 2. Пуш В.Э. Конструирование металлорежущих станков. М.: Машиностроение, 1977.- 385c.
- 3. Проников А.С. Расчет и конструирование металлорежущих станков. М.: Высшая школа, 1967.- 450с.
- 4. Тепинкичиев В.К. Металлорежущие станки. М.: Машиностроение, 1972.- 464c.
- 5. Кочергин А.И. Конструирование и расчет металлорежущих станков и станочных комплексов, Курсовое проектирование: Учеб. Пособие для вузов. Мн.: Высш. Шк, 1991.-282с.
- 6. Свирщевский Ю.И. Расчет и конструирование коробок скоростей и подач. Мн. Высш. Шк., 1976.-590с.
- 7. Лепший А.П.. Михайлов М.И. Практическое пособие к лабораторным и практическим занятиям по теме: «Расчет кинематики и изучение конструкции привода главного движения универсальных станков» по курсу «Конструирование станков» для студентов спец. Т.03.01.00.-Гомель: ГГТУ, 1998.-37с. (№2322).