Prova Cálculo I

1-

$$\frac{\partial}{\partial x} = 4x^2 - y^2, \quad \frac{\partial}{\partial y} = -dxy + y - dy^2$$

$$A(x,0) = \frac{4x^3}{3}, A(0,y) = \frac{y^2}{2} - \frac{2y^3}{3}$$

Jai:

$$\begin{cases} 4x^2 - y^2 = 0 \\ -2xy + y - 2y^2 = 0 \end{cases}$$

$$\begin{cases} 4x^2 - y^2 = 0 \\ y^2 = 4x^2 \implies y = -2x \text{ (ii)} \end{cases}$$

i)
$$-\lambda xy + y - \lambda y^2 = 0$$
 $\Rightarrow -\lambda x (\lambda x) + \lambda x - \lambda (\lambda x)^2 = 0$

$$\Rightarrow -\lambda x^2 + \lambda x - \lambda x^2 = 0$$

$$\Rightarrow -\lambda x^2 + \lambda x = \lambda x (-6x + 1) = 0$$

$$\Rightarrow x = 0 \quad \text{ou} \quad x = \frac{1}{6}$$

ii)
$$-2xy + y - 2y^{2} = 0 \implies -2x(-2x) + (-2x) - 2(-2x)^{2} = 0$$

$$\Rightarrow 4x^{2} - 2x - 8x^{2} = 0$$

$$\Rightarrow -4x^{2} - 2x = -2x(2x + 1) = 0$$

$$\Rightarrow x = 0 \text{ ou } x = -\frac{1}{2}$$

Logo, termos os segvintes pomtos críticos: (0,0), $(\frac{1}{6},\frac{1}{3})$, $(\frac{-1}{2},\frac{1}{3})$

Vamos amalisar com o determinante da matriz

Hessiama. Temos
$$\frac{\partial^2 I}{\partial x^2} = 8x$$
, $\frac{\partial^2 I}{\partial y^2} = 1 - 2x - 4y$, $\frac{\partial^2 I}{\partial x \partial y} = -2y$,

logo:

$$H(x^{1}\lambda) = \begin{vmatrix} \frac{9\times 9\lambda}{9\sqrt{3}} & \frac{9\lambda_{5}}{9\sqrt{3}} \\ \frac{9\times 9\lambda}{9\sqrt{3}} & \frac{9\times 9\lambda}{9\sqrt{3}} \end{vmatrix} = \begin{vmatrix} 1-5x-4\lambda & -5\lambda \\ 8x & 1-5x-4\lambda \end{vmatrix}$$

$$i = 1 - 4x^{2} - 16y^{2} - 32xy^{2} + 18y + 4x^{2} - 11$$

$$H(x,y) = -4x^2 - 16y^2 - 32xy + 8y + 4x - 1$$

*
$$\left(\frac{1}{6}, \frac{1}{3}\right)$$
: $H\left(\frac{1}{6}, \frac{1}{3}\right) = -\frac{4}{3} \Rightarrow Pomto de sela$

$$\pm \left(-\frac{1}{2}, 1\right) : H\left(-\frac{1}{2}, 1\right) = 4 \quad e \quad \frac{\partial^2 I}{\partial x^2} \left(-\frac{1}{2}, 1\right) = -4 \implies \text{Máximo Local}$$

 $\binom{h}{}$

*
$$\overline{AB}$$
: $y = 0 \implies y(x, 0) = \lambda + \lambda x - x^2$

$$\implies y'(x, 0) = -\lambda x + \lambda \implies y'(x, 0) = 0$$

$$\implies x = 1, x = 0, x = 3$$

*
$$\overline{BC}$$
: $x = 3 \rightarrow \sqrt{(3, y)} = 2y - y^2 - 1$

$$\Rightarrow y'(3,y) = -2y + 2 \Rightarrow y'(3,y) = 0$$

$$\Rightarrow y = 1, y = 0, y = 3$$

*
$$\overline{CD}: y=3 \Rightarrow f(x,3) = dx - x^2 - 1$$

$$\Rightarrow f'(x,3) = -dx + d \Rightarrow f'(x,3) = 0$$

$$\Rightarrow x = 1, x = 0, x = 3$$

 $\int (x_i y) = 2 + 2x + 2y - x^2 - y^2$

*
$$\overline{DA}$$
: $x = 0 \Rightarrow J(0, y) = J(0, y) = J(0, y) = 0$

$$\Rightarrow y = L, y = 0, y = 3$$

Pomtos :	Localização	Imogem
	Fronteira	
(3,0)	Fromteira	: : : : : -1 : : : : : : : : : : : : : :
0,30	Fromteira	
(3,3)	Fronteira	: : : : : : : : : : : : : : : : : : : :
; (I'T) ; ;	Imterior	· · · · · · · · · · · · · · · · · · ·
(0°T) ;	Fromteira	: : : : : : : : : : : : : : : : : : : :
[[(I,o)	Fromteira	· · · · · · · · 3 · · · · · · · · · · ·
[(T'3)	Interior	
(3,1)	Interior	

Logo, o valor máximo absoluto é 4 e o valor mímimo absoluto é - 4

