포스핀촉매를 리용한 α -아미노니트릴과 알렌의 [4+2] 고리화반응으로부터 레트라히드로피리딘유도체의 합성

장호철, 백학룡

위대한 령도자 김정일동지께서는 다음과 같이 교시하시였다.

《세계최신과학기술의 성과를 널리 받아들이지 않고서는 나라의 과학기술을 최단기간에 전반적으로 세계적수준에 올려세울수 없습니다.》(《김정일선집》 중보판 제15권 500폐지)

아자헤테로고리화합물들은 생물활성물질들을 합성할 때 모체구조로 많이 쓰이고있는데 그가운데는 테트라히드로피리딘이나 피페리딘과 같은 6원헤테로고리화합물들도 있다.[1] [4+2]고리화반응은 이러한 6원헤테로고리화합물들을 제조하는 가장 일반적인 방법들중의 하나이다.[2] 그러나 포스핀촉매를 쓸 때 α-아미노니트릴을 C,N-디친핵반응물질로, 알렌을 C4공액디엔물질로 리용하여 기능화된 테트라히드로피리딘[3-5]을 합성하는 방법은 아직 연구되지 않았다.

론문에서는 이에 대한 기초연구를 진행하여 합리적인 합성조건을 찾고 분리분석을 진행하였다.

실 험 방 법

반응에 리용된 모든 시약들은 분석순이며 반응은 불활성분위기에서 진행하였다. 잘말리운 반응관에 2-((4-클로로페닐)아미노)-2-페닐아세토니트릴(1, 0.2mmol), 해당한염기(0.26mmol)와 촉매(20% 몰분률)를 용매 2mL와 함께 넣고 다음 반응용매 2mL에 푼 벤질-2-(아세톡시메틸)부타디엔-2,3(2, 0.24mmol)을 질소분위기에서 <math>40min동안 적하하였다. 반응생성물은 얇은층크로마토그라프(TCL)로 분리하였다. 반응이 끝난 다음 감압증류하여 조품혼합물을 얻고 이 혼합물을 탑크로마토그라프(고정상으로 실리카겔을, 이동상으로는 초산에릴:석유에테르=1:5~1:10을 리용한다.)로 정제하여 생성물(3)을 얻는다.

반응식은 다음과 같다.

$$H$$
 OAc
 Ph
 CN
 CO_2Bn
 OAc
 OAC

실험결과 및 고찰

염기의 영향 염기의 역할은 [4+2]고리화반응을 진행하는데서 매우 중요하다.(표 1)

No.	촉매	염기	용매	거 둠 률/%		
1	PPh ₃	Na ₂ CO ₃	톨루올	52		
2	PPh_3	K_2CO_3	톨루올	56		
3	PPh_3	_	톨루올	7		
4	PPh_3	DABCO	톨루올	흔적		
5	PPh_3	Cs_2CO_3	톨루올	66		

표 1. 포스핀촉매존재하에서 [4+2]고리화반응에 미치는 염기의 영향

표 1에서 보는바와 같이 촉매의 존재하에서 [4+2]고리화반응을 톨루올용매속에서 진행시켰으며 목적하는 생성물(3)은 PPh₃(20%)과 Na₂CO₃(130%)일 때 52~56%의 거둠률로얻어졌다. K₂CO₃을 리용하는 경우 Na₂CO₃을 리용한 경우와 비슷한 결과가 얻어지고 Cs₂CO₃을 리용할 때에는 목적하는 생성물의 거둠률이 66%로 증가하였다. 염기가 없을 때에도 화합물 3은 7%정도 생기였다.

DABCO(1,4-디아자비시클로[2.2.2]옥탄)를 쓸 때에는 미량의 생성물만이 얻어지고 대부분의 반응물 1은 이민으로 산화되였다. 이로부터 적합한 염기로 Cs₂CO₃을 선정하였다.

용매의 영향 PPh3촉매를 리용할 때 용매의 효과를 검토하였다.(표 2)

No.	촉매	염기	용매	거둠률/%
1	PPh_3	Cs_2CO_3	벤졸	66
2	PPh_3	Cs_2CO_3	톨루올	66
3	PPh_3	Cs_2CO_3	PhCF ₃	38
4	PPh_3	Cs_2CO_3	$\mathrm{Et_2O}$	36
5	PPh_3	Cs_2CO_3	DCM	17
6	PPh_3	Cs_2CO_3	THF	8
7	PPh_3	Cs_2CO_3	CH ₃ CN	흔적
8	PPh_3	Cs ₂ CO ₃	<i>n</i> −헥산	흔적

표 2. 포스핀촉매하에서 [4+2]고리화반응에 미치는 용매의 영향

표 2에서 보는바와 같이 [4+2]고리화반응은 상대적으로 극성이 작은 용매인 톨루올이나 벤졸에서 잘 진행되였다. PhCF3, Et_2O , DCM, THF를 리용하는 경우에는 거둠률이 낮아졌다. 반응은 n- 핵산이나 CH_3CN 에서도 진행되였는데 흔적량의 생성물이 검출되였다. 이로부터 적합한 용매로 톨루올을 선정하였다.

촉매종류의 영향 촉매가 반응에 영향을 미치는 중요한 인자라는 사실에 기초하여 반응에 대한 여러가지 포스핀촉매들의 영향을 고찰하였다.(표 3)

No.	촉매	염기	용매	거둠률/%		
1	PPh_3	Cs_2CO_3	톨루올	66		
2	$P(p-FC_6H_4)_3$	Cs_2CO_3	톨루올	55		
3	PBu_3	Cs_2CO_3	톨루올	흔적		
4	DABCO	Cs_2CO_3	톨루올	흔적		
5	DMAP	Cs_2CO_3	톨루올	흔적		
6	DBU	Cs_2CO_3	톨루올	흔적		
7	PPh ₃	Cs ₂ CO ₃	톨루올	37		

표 3. [4+2]고리화반응에 미치는 촉매종류의 영향

표 3에서 보는바와 같이 방향족포스핀화합물들인 PPh₃이나 P($p-FC_6H_4$)₃은 모두 목적하는 고리화반응을 잘 진행시키는 촉매들이며 PPh₃은 P($p-FC_6H_4$)₃보다 거둠률이 더 높았다.

그러나 PBu_3 은 목적하는 생성물을 주지 않았는데 그것은 이 화합물들이 친핵성의 크기에 관계없이 모두가 고리화반응에 불리하기때문이다. 이로부터 적합한 촉매로 PPh_3 을 선정하였다.

생성물의 구조분석 합성한 물질의 구조분석을 위하여 수소핵자기공명스펙트르분석(¹H -NMR)과 탄소핵자기공명스펙트르분석(¹3C-NMR), 고분해질량스펙트르분석을 진행하였다. 수소핵자기공명스펙트르(¹H-NMR)들은 300 혹은 500MHz로, 탄소핵자기공명스펙트르(¹3C-NMR)는 125MHz로, CDCl₃용매에서 핵자기공명스펙트르분석기(《AVANCE Ⅲ 500》)로 측정하였으며 고분해질량스펙트르는 질량스펙트르분석기(《MicroTOF Q Ⅱ》)로 측정하였다.

생성물의 ¹H-NMR스펙트르는 그림 1과 같다.

그림 1. 생성물의 ¹H-NMR스펙트르

헤테로고리에 있는 2개의 $-\text{CH}_2$ 에 해당한 봉우리가 δ 2.82-3.05와 δ 3.99-4.26에서 나타났으나 α -아미노니트릴의 C-H, N-H에 해당한 봉우리들은 나타나지 않았다. 방향족고리들에 해당한 봉우리는 δ 7.07-7.48사이에서 모두 나타났다. 벤질기의 $-\text{CH}_2$ 에 해당한 봉우리는 δ 5.23에서 뚜렷하게 나타났다.

생성물의 ¹³C-NMR스펙트르는 그림 2와 같다.

그림 2. 생성물의 ¹³C-NMR스펙트르

4개의 sp^3 결합탄소의 봉우리는 δ 43.43-66.84사이에서 나타났고 카르복실기에 해당한 봉우리는 δ 164.46에서만 나타났다.

생성물의 고분해질량스펙트르분석결과 생성물의 질량값([M+H]⁺= 429.136 4)은 측정값 (429.136 3)과 근사하였다. 이로부터 목적하는 생성물이 정확히 합성되였다는것을 알수 있다.

맺 는 말

포스핀촉매를 리용한 2-((4-클로로페닐)아미노)-2-페닐아세토니트릴과 벤질-2-(아세톡시메틸)부타디엔-2,3의 [4+2]고리화반응을 연구하고 키랄탄소와 여러개의 치환기를 가진 테트라히드로피리딘을 합성하는 간단한 방법을 확립하였다. 그것은 PPh₃을 촉매로 리용할 때 비교적 높은 거둠률로 얻어졌다.

참 고 문 헌

- [1] A. M. Seayad et al.; Org. Lett., 12, 264, 2010.
- [2] Y. Hamachi et al.; Org. Lett., 18, 1634, 2016.
- [3] P. F. Hu et al.; Angew. Chem. Int. Ed., 52, 5319, 2013.
- [4] X. Y. Chen et al.; Org. Lett., 13, 1138. 2011.
- [5] X. J. Wang et al.; Angew. Chem. Int. Ed., 50, 5361, 2011.

주체107(2018)년 4월 5일 원고접수

Synthesis of Tetrahydropyridine Derivative through [4+2] Annulation Reaction of α —Aminonitrile and Allene Using Phosphine Catalyst

Jang Ho Chol, Paek Hak Ryong

We studied [4+2] annulation reaction of α -aminonitrile and 2-(acetoxymethyl)butadiene-2,3 using phosphine catalyst and synthesized functionalized tetrahydropyridine of bearing chiral carbon.

Key words: α -aminonitrile, [4+2] annulation, tetrahydropyridine