



Seat Number

## King Mongkut's University of Technology Thonburi Final Examination

Semester 1 -- Academic Year 2014

Subject: EIE 325 Electromagnetic fields and waves

For: Electronic and Telecommunication Engineering, 3<sup>rd</sup> Yr (Inter. Program)

Exam Date: Friday November 28, 2014 Time: 9.00am-12.00 pm.

## Instructions:-

- 1. This exam consists of 5 problems with a total of 11 pages, including the cover.
- 2. This exam is closed books.
- 3. Answer each problem on the exam itself.
- 4. A calculator compiling with the university rule is allowed.
- 5. A dictionary is not allowed.
- 6. Do not bring any exam papers and answer sheets outside the exam room.
- 7. Open Minds ... No Cheating! GOOD LUCK!!!

## Remarks:-

- Raise your hand when you finish the exam to ask for a permission to leave the exam
  room.
- Students who fail to follow the exam instruction might eventually result in a failure of the class or may receive the highest punishment with university rules.
- Carefully read the entire exam before you start to solve problems. Before jumping
  into the mathematics, think about what the question is asking. Investing a few
  minutes of thought may allow you to avoid twenty minutes of needless calculation!

| Exam   | 1  | 2  | 3  | 4  | 5    | TOTAL |
|--------|----|----|----|----|------|-------|
| No.    |    |    |    |    |      |       |
| Full   | 20 | 20 | 20 | 20 | 20   | 100   |
| Score  |    |    |    | _  |      |       |
| Graded |    |    |    |    | - '- |       |
| Score  |    |    |    |    |      |       |

| Name | Student ID |
|------|------------|
|      |            |

This examination is designed by Dr. Rardchawadee Silapunt; Tel: 9062.

This examination has been approved by the committees of the ENE department.

(Asst. Prof. Suwat Pattaramalai, Ph.D.)

Acting Head of Electronic and Telecommunication Engineering Department

## Formula sheet

All vector quantities are represented in bold such that  $m{E}=ec{E}$ 

- 1. Boundary conditions:
  - 1.1 Tangential field

$$E_{t1} = E_{t2}$$

1.2 Normal field

$$\boldsymbol{D}_{n1} - \boldsymbol{D}_{n2} = \rho_s$$

where  $\mathbf{D}$  = electric flux density =  $\mathbf{\mathcal{E}}\mathbf{E}$  (C/m<sup>2</sup>)

 $\rho_s$  = surface charge density (C/m<sup>2</sup>)

1.3 Electric flux density relation  $~m{D}=arepsilon_0m{E}+m{P}$ 

where  $\mathbf{P}$  = electric polarization vector (C/m<sup>2</sup>)

- 2. Ampère's law
  - 2.1 Integral form  $\oint m{H} \cdot dm{L} = I_{en}$
  - 2.2 Point form  $\nabla \times H = J$

where  $I = \text{surface current density } (A/m^2)$ 

2.3 Curl in cylindrical coordinates

$$\nabla \times \boldsymbol{u} = \hat{\boldsymbol{r}} \left( \frac{1}{r} \frac{\partial u_z}{\partial \phi} - \frac{\partial u_\phi}{\partial z} \right) + \hat{\boldsymbol{\phi}} \left( \frac{\partial u_r}{\partial z} - \frac{\partial u_z}{\partial r} \right) + \hat{\boldsymbol{z}} \frac{1}{r} \left[ \frac{\partial (ru_\phi)}{\partial r} - \frac{\partial u_r}{\partial \phi} \right].$$

3. Current and current density

$$\int \boldsymbol{J} \cdot d\boldsymbol{S} = I$$

- 4. Magnetic flux density  $m{B} = \mu m{H}$  Tesla
- 5. Magnetic field intensity of the surface current sheet  $H = \frac{1}{2}K \times \hat{a}_n$

where K = current per cross-sectional width (A/m)

 $\widehat{a}_n$  = a unit vector from the current sheet to the observation point

6. Magnetic force from the uniform current sheet  ${m F} = K{m S} \times {m B}$ 

where  $\boldsymbol{S}$  = surface area vector (m<sup>2</sup>)

- 7. Motional electromotive force (EMF)  $emf = -N \frac{d\phi}{dt} = \phi(m{v} imes m{B}) \cdot dl$  Volt
- 8. Uniform plane wave
  - 8.1 The uniform plane wave propagates in z direction and the magnetic field has 2 components, the instantaneous magnetic field can be shown as

$$H(x, y, z, t) = (H_{x0}\hat{a}_x + H_{y0}\hat{a}_y)\cos(\omega t - \beta z)$$
 A/m

8.2 Electric field intensity  $\pmb{E} = -\eta\, \hat{a}_{
ho} imes \pmb{H}$  A/m

where  $\, \widehat{a}_{oldsymbol{
ho}} \,$  = the direction of wave propagation

8.3 EM wave properties in lossless media

8.3.1 Phase constant 
$$oldsymbol{eta} = \omega \sqrt{\mu arepsilon}$$
 rad/m

8.3.2 Attenuation constant 
$$lpha=0$$
 Np/m

8.3.3 Wavelength 
$$\lambda=rac{2\pi}{eta}$$
 m

8.3.4 Wave impedance 
$$\eta = \sqrt{rac{\mu}{arepsilon}} \; \Omega$$

9. Free space permittivity  $\mathcal{E}_0 = 8.854 \text{x} 10^{-12} \text{ F/m}$ 

10.Free space permeability  $\mu_0 = 4\pi \times 10^{-7}$  H/m

| Name | Student ID | Desk no. |
|------|------------|----------|
|      |            |          |

- 1. Electric boundary conditions: The surface x=0 separates two perfect dielectrics. For x>0, let  $\mathcal{E}_r=\mathcal{E}_{r1}$  =2, while  $\mathcal{E}_{r2}$  =5 where x<0. If  $\pmb{E_1}=80\hat{a}_x-50\hat{a}_y-30\hat{a}_z$  V/m, find
- (a)  $E_{N1}$  and  $oldsymbol{E_{t1}}$  (5 pts)

(b) the angle  $heta_1$  between  $extbf{\emph{E}}_1$  and a normal to the surface (5 pts)

| Name | Student ID  | Desk no.  |
|------|-------------|-----------|
|      | <del></del> | DC3K FIO. |

(c) **D**<sub>2</sub> (5 pts)

(d) **P**<sub>2</sub> (5 pts)

- 2. Magnetic field intensity: Given the field  $\pmb{H} \approx 20 \pmb{\rho}^2 \pmb{\hat{a}}_{\phi}$  A/m (20 pts)
- (a) Determine the current density vector J. (7.5 pts)

(b) Integrate  ${m J}$  over the circular surface  ${m 
ho} \le 1$ ,  $0 < {m \phi} < 2\pi$ , z = 0, to determine the total current passing through that surface in the  $\hat{a}_z$  direction. (5 pts)

(c) Find the total current once more, this time by a line integral around the circular path  $\rho = 1, 0 < \phi < 2\pi, z = 0. (7.5 \text{ pts})$ 

| Name | Student ID | Desk no. |
|------|------------|----------|
|      |            |          |

3. Magnetic force: A current of  $-200\hat{a}_z$  A/m flows on the conducting cylinder  $\rho = 5$  mm, and  $+600\hat{a}_z$  A/m is present on the conducting cylinder  $\rho = 1$  mm. Find the magnitude of the total force per meter length that is acting to split the outer cylinder apart along its length. (20 pts)



4. Electromotive force: With reference to the sliding bar shown, let d=7 cm,  $\boldsymbol{B}=0.3\boldsymbol{\hat{a}_z}$ T, and  $\boldsymbol{v}$  = 0.1e<sup>20y</sup> $\boldsymbol{\hat{a}_y}$  m/s. Let y = 0 at t = 0. Find (20 pts)



(a) v at t = 0 (5 pts)

(b) y at t = 0.1 (5 pts)

| Name | Student ID      | Desk no. |
|------|-----------------|----------|
|      | _ 5144467.11.10 | ocan no. |

(c) v at t = 0.1 (5 pts)

(d) the emf  $V_{12}$  at t = 0.1 (5 pts)

| <b>k</b> 1 | Charles to ID | D I       |
|------------|---------------|-----------|
| Name       | Student ID    | Desk no.  |
| r tarric   | Stauciit ib   | DCJK 110. |
|            |               |           |

5. Uniform plane wave (UPW): The phasor magnetic field intensity for a 400 MHz uniform plane wave propagating in a certain lossless material is  $\pmb{H^s} = \Big(1 \hat{a}_y - 5 \hat{a}_z\Big) e^{-j20x}$  A/m. Knowing that the maximum amplitude of  $\pmb{E}$  is 1,000 V/m, find (a)  $\pmb{\beta}$  (4 pts)

(b)  $\eta$  (4 pts)

(c)  $\mathcal{E}_r$  (4 pts)

| Desk no |
|---------|
|         |

(d)  $\mu_r$  (4 pts)

(e) H(x, y, z, t) (4 pts)