

Ejercicio 2.7

[71.14] Modelos y Optimización I Curso 4 $2 \hbox{C 2021}$

Alumno:	Grassano, Bruno
Número de padrón:	103855
Email:	bgrassano@fi.uba.ar

$\mathbf{\acute{I}ndice}$

1.	Enunciado	2
2.	Análisis de la situación problemática	2
3.	Objetivo	2
4.	Hipótesis y supuestos	2
5 .	Definición de variables	3
6.	Modelo de programación lineal	3
7.	Resolución por software	4
Q	Informe de la solución óntima	5

1. Enunciado

"Tasmania", una empresa de muñecos de peluche, quiere planificar la producción de sus famosos muñecos de para los próximos dos meses. Fabricar un muñequito les insume 2 horas máquina y 1,5 kg. de materia prima. Por mes se puede disponer de 150 kilos de materia prima y de M horas máquina. El primer mes se comprometió a entregar 70 muñequitos y el segundo mes el compromiso asciende a 110 muñequitos. Puede vender más de lo comprometido, pero no menos. Cada muñequito vendido le reporta una ganancia de \$P.

¿Qué es lo mejor que puede hacer "Tasmania" con la información disponible?

2. Análisis de la situación problemática

- Es un problema de producción donde nos están preguntando como tienen que planificarla para los siguientes dos meses.
- Notar que no nos dan los valores de M, ni de P. Estos se utilizaran como constantes que se conocen.
- Se ve también que el periodo de tiempo en este problema esta en dos meses, donde cada mes tiene una restricción de cantidad mínima que se puede entregar.
- Se puede observar que se va a tener que producir en exceso el primer mes para poder cubrir el pedido del segundo mes.

3. Objetivo

Determinar las cantidades de muñequitos a producir en cada mes para maximizar la ganancia durante los dos meses.

4. Hipótesis y supuestos

- Todo lo producido se vende.
- No hay costos respecto de la producción de los muñecos.
- Las máquinas no se averían.
- Los muñequitos salen sin fallas de las máquinas.
- Es despreciable el traslado de material a las maquinas.
- No hay demoras en la entrega de los materiales para cada mes.
- Se tiene espacio suficiente en caso de requerir almacenar muñecos como stock.
- M es un valor suficiente para cumplir con lo analizado.

5. Definición de variables

*Con tipos y unidades

- A1: Cantidad de muñequitos fabricados en el primer mes. (unidad/mes) (entera)
- A2: Cantidad de muñequitos fabricados en el segundo mes. (unidad/mes) (entera)
- V1: Cantidad de muñequitos vendidos en el primer mes. (unidad/mes) (entera)
- V2: Cantidad de muñequitos vendidos en el segundo mes. (unidad/mes) (entera)
- A1M2: Cantidad de muñequitos fabricados en el primer mes que se guardan para el segundo mes. (unidad/mes) (entera)

Las variables V1 y V2 no son realmente necesarias para el modelo ya que se pueden conseguir a partir de las otras tres, las dejo definidas para dar claridad al momento de la lectura.

6. Modelo de programación lineal

*Indicando en cada restricción o grupo de restricciones la función que cumplen. Buscamos maximizar las ganancias obtenidas en los dos meses.

$$max(P \frac{\$}{unidad} \cdot (V1 + V2))$$

Como restricciones tenemos las siguientes respecto de la producción debido a las horas máquina y material.

- $2\frac{hs}{unidad}A_1 \leq M\frac{hs}{mes}$
- $2\frac{hs}{unidad}A_2 \leq M\frac{hs}{mes}$
- $1,5 \frac{kg}{unidad} A_1 \le 150 \frac{kg}{mes}$
- $1, 5 \frac{kg}{unidad} A_2 \le 150 \frac{kg}{mes}$

Después, nos piden que cumplamos con una cantidad de ventas

- $V_1 \ge 70 \frac{unidad}{mes}$
- $V_2 \ge 110 \frac{unidad}{mes}$

Ahora, como no va a alcanzar el segundo mes para cumplir con la cantidad que se comprometieron (viendo solo por el lado de los materiales que se disponen en cada mes, $\frac{150\frac{kg}{mes}}{1,5\frac{kg}{unidad}} = 100\frac{unidad}{mes}$ cantidad tope de muñecos que se pueden realizar), se van a tener que guardar en stock muñecos fabricados en el primer mes para cumplir el compromiso del segundo mes. Por lo que, como mínimo debemos de guardar 10 unidades, y como máximo 30 para poder cumplir con el primer mes todavía.

- $A1M2 \ge 0, 1 \cdot A_1$
- $A1M2 < 0, 3 \cdot A_1$

Quedando las relaciones con las cantidades vendidas de la siguiente forma:

- $V_1 = A_1 A1M2$
- $V_2 = A_2 + A1M2$

Notar que de esta forma se cumple lo siguiente, es decir, todo lo producido se vendería.

$$\max(P\frac{\$}{unidad}\cdot(A_1+A_2))$$

Y para las restricciones a las que estaban sujetas:

- $A_1 A1M2 \ge 70 \frac{unidad}{mes}$
- $A_2 + A1M2 \ge 110 \frac{unidad}{mes}$

7. Resolución por software

El modelo usado es el siguiente, notar que para P se le establecio como valor 10\$/unidad, y que a M se le asignaron 300hs/mes.

```
MAX 10 A_1 + 10 A_2 !P = 10

SUBJECT TO

PM1) 2A_1 < 300 ! M = 300

PM2) 2A_2 < 300

KM1) 1.5A_1 < 150

KM2) 1.5A_2 < 150

MINM1M2) A_1M_2 - 0.1 A_1 > 0

MAXM1M2) A_1M_2 - 0.3 A_1 < 0

C1) A_1 - A_1M_2 > 70

C2) A_2 + A_1M_2 > 110

END
```

Los resultados:

LP OPTIMUM FOUND AT STEP

1)

OBJECTIVE FUNCTION VALUE

2000.000

VARIABLE	VALUE	REDUCED COST
A_1	100.000000	0.000000
A_2	100.000000	0.000000
A_1M_2	30.000000	0.000000
ROW	SLACK OR SURPLUS	DUAL PRICES
PM1)	100.000000	0.000000
PM2)	100.000000	0.000000
KM1)	0.000000	6.666667
KM2)	0.000000	6.666667
MINM1M2)	20.000000	0.000000
MAXM1M2)	0.000000	0.000000
C1)	0.000000	0.000000

C2) 20.000000 0.000000 NO. ITERATIONS= 0

RANGES IN WHICH THE BASIS IS UNCHANGED:

		OBJ COEFFICIENT	RANGES	
VARIABLE	CURRENT	ALLOWABLE	ALLOWABLE	
	COEF	INCREASE	DECREASE	
A_1	10.000000	INFINITY	9.999999	
A_2	10.000000	INFINITY	9.999999	
A_1M_2	0.000000	INFINITY	0.000000	
		RIGHTHAND SIDE RANGES		
ROW	CURRENT	ALLOWABLE	ALLOWABLE	
	RHS	INCREASE	DECREASE	
PM1	300.000000	INFINITY	100.000000	
PM2	300.000000	INFINITY	100.000000	
KM1	150.000000	0.000000	30.000000	
KM2	150.000000	75.000000	30.000000	
MINM1M2	0.000000	20.000000	INFINITY	
MAXM1M2	0.000000	INFINITY	0.000000	
C1	70.000000	20.000000	0.000000	
C2	110.000000	20.000000	INFINITY	

8. Informe de la solución óptima

La mejor solución que se tiene dados los valores que se establecieron para el precio de los muñecos y la cantidad de horas disponibles de la maquina, es la de producir 100 muñequitos en ambos meses, y guardarse 30 del primer mes para vender en el segundo.