Package 'deBInfer'

November 17, 2022

Type Package

Title Bayesian Inference for Differential Equations

Version 0.4.4 **Date** 2022-11-14

BugReports https://github.com/pboesu/debinfer/issues

URL https://github.com/pboesu/debinfer

Description A Bayesian framework for parameter inference in differential equations. This approach offers a rigorous methodology for parameter inference as well as modeling the link between unobservable model states and parameters, and observable quantities. Provides templates for the DE model, the observation model and data likelihood, and the model parameters and their prior distributions. A Markov chain Monte Carlo (MCMC) procedure processes these inputs to estimate the posterior distributions of the parameters and any derived quantities, including the model trajectories. Further functionality is provided to facilitate MCMC diagnostics and the visualisation of the posterior distributions of model parameters and trajectories.

License GPL-3 LazyData TRUE RoxygenNote 7.1.2 Depends R (>= 3.5.0), deSolve

Imports truncdist, coda, RColorBrewer, MASS, stats, mytnorm, graphics,

grDevices, plyr, PBSddesolve, methods

Suggests testthat, knitr, rmarkdown, devtools, R.rsp, beanplot

VignetteBuilder knitr, R.rsp

NeedsCompilation no

Author Philipp H Boersch-Supan [aut, cre]

(<https://orcid.org/0000-0001-6723-6833>),

Leah R Johnson [aut] (https://orcid.org/0000-0002-9922-579X), Sadie J Ryan [aut] (https://orcid.org/0000-0002-4308-6321)

Maintainer Philipp H Boersch-Supan <pboesu@gmail.com>

Repository CRAN

Date/Publication 2022-11-17 12:00:24 UTC

2 chytrid

R topics documented:

dex		19
	update_sample_rev	17
	summary.debinfer_result	
	solve_de	
	setup_debinfer	
	reshape_post_sim	
	propose_single_rev	
	propose_joint_rev	
	prior_draw_rev	
	post_sim	12
	post_prior_densplot	
	plot.post_sim_list	
	plot.debinfer_result	
	pairs.debinfer_result	
	log_prior_params	
	log_post_params	
	logistic	
	logd_prior	8
	is.debinfer_result	
	is.debinfer_parlist	
	de_mcmc	ϵ
	depars	5
	deinits	5
	debinfer_par	3
	debinfer_cov	3
	cnytrid	4

Voyles et al. (2012).

chytrid

DescriptionReplicated spore counts of an experimental culture of the chytrid fungus *Batrachochytrium dendrobatidis*. This dataset is a subset of the observations from the experimental study conducted by

Chytrid fungus data set

Format

A data.frame with 76 rows and two columns

time days since the start of the experiment **count** count of zoospores (x 1e4)

References

Voyles et al. 2012, Ecol Evol 9:2241-2249 doi:10.1002/ece3.334

debinfer_cov 3

debinfer_cov

debinfer_cov

Description

```
debinfer_cov
```

Usage

```
debinfer_cov(var.names, sigma = diag(length(names)), name, samp.type = "rw")
```

Arguments

var.names names of the parameters that are to be proposed together

sigma covariance matrix
name name of the joint block

samp. type character; type of sampler. currently only "rw" = Normal random walk is imple-

mented for multivariate proposals

Value

```
a debinfer_cov object
```

debinfer_par

debinfer_par

Description

Creates an object containing all the necessary bits for a parameter i.e. initial values, prior distributions, hyper-parameters, tuning parameters, etc. to set up a debinfer analysis

Usage

```
debinfer_par(
  name,
  var.type,
  fixed,
  value,
  joint = NULL,
  prior = NULL,
  hypers = NULL,
  prop.var = NULL,
  samp.type = NULL)
```

4 debinfer_par

Arguments

name character vector; name of the variable var.type character vector; type of the variable "de" = parameter for the differential equation, "obs" = parameter of the observation model, "init" = initial condition for a state variable in the differential equation boolean; TRUE = parameter is taken to be fixed, FALSE = parameter is to be fixed estimated by MCMC value numeric; parameter value. For fixed parameters this is the value used in the analysis for free parameters this is the starting value used when setting up the MCMC chain joint integer; number of block for joint proposal; NULL means the parameter is not to be jointly proposed character; name of the probability distribution for the prior on the parameter. prior Must conform to standard R naming of d/r function pairs, e.g. beta (foo = beta), binomial binom, Cauchy cauchy, chi-squared chisq, exponential exp, Fisher F f, gamma gamma, geometric geom, hypergeometric hyper, logistic logis, lognormal lnorm, negative binomial nbinom, normal norm, Poisson pois, Student t t, uniform unif, Weibull weibull. Priors from the truncdist package are available by default. User priors can be provided but must be available in the environment from which de_mcmc is called. hypers list of numeric vectors, hyperparameters for the prior; mean only for mynorm. Can include trunc for truncated pdfs from package truncdist. prop.var numeric; tuning parameters. For Normal proposals ('samp.type="rw"' or 'samp.type="rwref"'), this must be a positive number representing the standard deviation of the proposal distribution for each parameter. For the asymmetric uniform proposal distribution ('samp.type="rw-unif"') two positive numeric values are required and the proposal will then have the bounds 'prop.var[1]/prop.var[2]*current proposal' and 'prop.var[2]/prop.var[1]*current_proposal'. See Boersch-Supan et al. (2016). character; type of sampler: "rw" = Normal random walk, "ind" = independence, samp.type "rw-unif" = asymmetric uniform distribution, "rw-ref" = reflecting random walk sampler on the bounds of the prior support (cf. Hoff 2009, Chapter 10.5.1; Yang and Rodriguez 2013)

Value

returns an object of class debinfer_par to be fed to the mcmc setup function

References

Boersch-Supan et al. 2016, MEE 8:511-518 doi:10.1111/2041210X.12679

Hoff 2009, A First Course in Bayesian Statistical Methods, Springer

Yang and Rodriguez 2013, PNAS 110:19307-19312 doi:10.1073/pnas.1311790110

deinits 5

deinits

Get starting/fixed values of DE initial values

Description

Accessor function for initial values

Usage

```
deinits(x)
```

Arguments

Х

a debinfer_result or debinfer_parlist object

Value

a named numeric vector

depars

Get starting/fixed values of DE parameters

Description

Accessor function for parameters

Usage

```
depars(x)
```

Arguments

Х

a debinfer_result or debinfer_parlist object

Value

a named numeric vector

de_mcmc

de_mcmc de_mcmc

Description

Bayesian inference for a deterministic DE model (with models solved via an DE solver) with an observation model.

Usage

```
de_mcmc(
 N,
  data,
  de.model,
  obs.model,
  all.params,
  ref.params = NULL,
  ref.inits = NULL,
  Tmax,
  data.times,
  cnt = 10,
  plot = TRUE,
  sizestep = 0.01,
  solver = "ode",
  verbose.mcmc = TRUE,
  verbose = FALSE,
)
```

Arguments

N	integer, number of MCMC iterations
data	data.frame of time course observations to fit the model to. The observations must be ordered ascending by time.
de.model	a function defining a DE model, compliant with the solvers in deSolve or PBS-ddesolve
obs.model	a function defining an observation model. Must be a function with arguments 'data', 'sim.data', 'samp'.
all.params	debinfer_parlist containing all model, MCMC, and observation
ref.params	an optional named vector containing a set of reference parameters, e.g. the true parameters underlying a simulated data set
ref.inits	an optional named vector containing a set of reference initial values, e.g. the true initial values underlying a simulated data set
Tmax	maximum timestep for solver
data.times	time points for which observations are available

is.debinfer_parlist 7

cnt integer interval at which to print and possibly plot information on the current

state of the MCMC chain

plot logical, plot traces for all parameters at the interval defined by cnt

sizestep timestep for solver to return values at, only used if data.times is missing

solver the solver to use. 1 or "ode" = deSolve::ode; 2 or "dde" = PBSddesolve::dde; 3

or "dede" = deSolve::dde

verbose .mcmc logical display MCMC progress messages verbose logical display verbose solver output

... further arguments to the solver

Value

a debinfer_result object containing input parameters, data and MCMC samples

is.debinfer_parlist is.debinfer_parlist

Description

Check debinfer_parlist class

Usage

is.debinfer_parlist(x)

Arguments

x an object

is.debinfer_result is.debinfer_result

Description

Check debinfer_result class

Usage

is.debinfer_result(x)

Arguments

x an object

8 logistic

Description

Evaluates the log probability density of value given a name of a prior pdf and the corresponding hyperparameters

Usage

```
logd_prior(x, pdf, hypers)
```

Arguments

x numeric; vector of values.

pdf character; name of a probability function. Must conform to base R nomencla-

ture of d/r function pairs. Can include trunc for truncated pdfs from package

truncdist.

hypers list; a list of parameters to be passed to the density function.

Value

the value of the log density function evaluated at x

|--|

Description

Simulated data from the logistic growth model with N_0=0.1, r=0.1 and K=10

Format

A data.frame with 36 rows and 3 columns

time time since start of the model

N_true Numerical solution of N_t

 N_{noisy} N_t with the addition of log-normal noise, where sdlog = 0.05

log_post_params 9

log_post_params	log_post_params	
-----------------	-----------------	--

Description

evaluate the likelihood given the data, the current deterministic model solution and the observation model

Usage

```
log_post_params(samp, w.p, data, pdfs, hyper, sim.data, obs.model)
```

Arguments

samp	named numeric; current sample
w.p	character; parameter names
data	data
pdfs	character, prior pdf names
hyper	list, hyper parameters for the priors
sim.data	solver output

obs.model function containing the observation model

```
log_prior_params log_prior_params
```

Description

evaluate prior density at current parameter values

Usage

```
log_prior_params(samp, pdfs, w.p, hyper)
```

Arguments

samp	named numeric; current sample
pdfs	character, prior pdf names
w.p	character; parameter names
hyper	list of named hyper parameters for the priors

10 plot.debinfer_result

```
pairs.debinfer_result Pairwise posterior marginals
```

Description

Plots pairwise correlations of posterior marginals

Usage

```
## S3 method for class 'debinfer_result'
pairs(x, trend = FALSE, scatter = FALSE, burnin = NULL, medians = TRUE, ...)
```

Arguments

X	a deBInfer_result object
trend	logical, add loess smooth

scatter logical, add scatterplot of posterior samples

burnin integer, number of samples to discard from start of chain before plotting

medians logical, plot marginal medians on contour plot

... further arguments to plot.default (the call that draws the scatter/contour plot)

Description

Plots the inference results from a debinfer_result object

Usage

```
## S3 method for class 'debinfer_result'
plot(x, plot.type = "coda", burnin = 1, ...)
```

Arguments

x a deBInfer_result object

plot.type character, which type of plot. Options are "coda" for coda::plot.mcmc, "post_prior"

for deBInfer::post_prior_densplot.

burnin numeric, number of samples to discard before plotting

... further arguments to methods

See Also

```
post_prior_densplot, plot.mcmc, pairs.debinfer_result
```

plot.post_sim_list 11

Description

Plots the inference results from a debinfer_result object

Usage

```
## S3 method for class 'post_sim_list'
plot(
    x,
    plot.type = "medianHDI",
    col = c("red", "darkgrey"),
    lty = c(1, 2),
    auto.layout = TRUE,
    panel.first = NULL,
    ...
)
```

Arguments

```
a post_sim or post_sim_list object
plot.type
                   character, which type of plot. Options are "ensemble" and "medianHDI".
col
                   color, for plot.type = "medianHDI" the first element is used for the median, the
                   second for the HDI
                   line type, for plot.type = "medianHDI" the first element is used for the median,
lty
                   the second for the HDI
auto.layout
                  logical, should the layout for plot.type = "medianHDI" be determined automat-
                   ically?
panel.first
                   an expression to be evaluated after the plot axes are set up but before any plotting
                   takes place. This can be useful for adding data points.
                   further arguments to methods
```

Description

Plots posterior densities and the densities of the corresponding priors. The prior density is automatically evaluated for the range given by the x-axis limits of the plot (which defaults to the posterior support).

post_sim

Usage

```
post_prior_densplot(
  result,
  param = "all",
  burnin = NULL,
  prior.col = "red",
  n = 1000,
  ...
)
```

Arguments

result a deBInfer_result object

param character, name of parameter to plot. "all" (default) plots all parameters

burnin numeric, number of samples to discard before plotting

prior.col character color for prior density

n, integer, number of points at which to evaluate the prior density.

... further arguments to coda::densplot

post_sim post_sim

Description

post_sim

Usage

```
post_sim(x, n = 100, times, output = "all", burnin = NULL, prob = 0.95, ...)
```

Arguments

debinfer_result object Х number of simulations n times numeric a vector of times at which the ODE is to be evaluated. Defaults to NULL. output character, "sims", "all", "HDI" integer, number of samples to discard from the start of the mcmc chain burnin A numeric scalar in the interval (0,1) giving the target probability content of prob the intervals. The nominal probability content of the intervals is the multiple of 1/nrow(obj) nearest to prob. additional arguments to solver . . .

Value

a post_sim object containing a list of de solutions or summaries thereof

prior_draw_rev 13

Description

draw from prior

Usage

```
prior_draw_rev(b, hypers, prior.pdf)
```

Arguments

b current value of a parameter

hypers list of hyper parameters, named appropriately for the corresponding prior.pdf
prior.pdf string name of probability distribution following base R conventions, or those

of additionally loaded packages

Description

joint proposal function

Usage

```
propose_joint_rev(samps, s.ps, cov.mat)
```

Arguments

samps current sample of the MCMC chain

s.ps debinfer_parlist object representing the parameters that are to be proposed

cov.mat debinfer_cov object; covariance matrix for the proposal

Details

Function to jointly propose parameters using a multivariate normal proposal distribution

reshape_post_sim

```
propose_single_rev
```

propose_single_rev

Description

propose a parameter individually

Usage

```
propose_single_rev(samps, s.p)
```

Arguments

samps current sample of the MCMC chain

s.p debinfer_par object representing the parameter that is to be proposed

reshape_post_sim

Reshape posterior model solutions

Description

Take a list of DE model solutions and transform into a list of of matrices, one for each state variable, where each row is an iteration, and each column is a time point

Usage

```
reshape_post_sim(x)
```

Arguments

Χ

a post_sim object

setup_debinfer 15

setup_debinfer

setup_debinfer

Description

Creates an object of class debinfer_parlist containing initial values, parameters, prior distributions, hyperparameters tuning parameters etc. to set up a debinfer analysis

Usage

```
setup_debinfer(...)
```

Arguments

.. debinfer_par objects to be combined into a debinfer_parlist

Value

returns an S3 object of class debinfer_parlist to be fed to the mcmc function

solve_de

solve_de

Description

```
solve\_de
```

Usage

```
solve_de(
    sim,
    params,
    inits,
    Tmax,
    numsteps = 10000,
    solver = "ode",
    sizestep = NULL,
    verbose = FALSE,
    data.times = NULL,
    method = "lsoda",
    ...
)
```

Arguments

sim function; solver compatible specification of the DE

params numeric; named vector of parameter values

inits numeric; initial values. Must be in the same order as specified within sim!

Tmax numeric; maximum timestep

numsteps numeric

solver Choice of solver to use 1 or "ode" = deSolve::ode, 2 or "dde" = PBSddes-

olve::dde, 3 or "dede" = deSolve::dede

sizestep for solver

verbose passed to deSolve::ode

data.times numeric a vector of times at which the ODE is to be evaluated. Defaults to

NULL. If value is supplied it takes precedence over any value supplied to numsteps

or sizesteps.

method solver method

... additional arguments to solver

Value

integrated ode object. Data structure depends on the employed solver.

summary.debinfer_result

Summary of the inference results

Description

A wrapper for coda::summary.mcmc

Usage

```
## S3 method for class 'debinfer_result'
summary(object, ...)
```

Arguments

object a deBInfer_result object

... further arguments to summary.mcmc

See Also

summary.mcmc

update_sample_rev 17

update_sample_rev

Description

This is the workhorse of the MCMC algorithm

Usage

```
update_sample_rev(
  samps,
  samp.p,
 cov.mats,
  data,
  sim,
  out,
 Tmax,
  sizestep,
  data.times,
 1,
  solver,
  i,
  cnt,
 obs.model,
 pdfs,
 hyper,
 w.p,
 verbose.mcmc,
  verbose,
  is.de,
  is.single,
  joint.blocks,
)
```

Arguments

samps	row vector of samples from the previous mcmc iteration
samp.p	the parlist created by setup_debinfer
cov.mats	the covariance matrices
data	the observation
sim	the de.model
out	list containing the initial or previous update i.e. list(s=samps[i-1,], inits=inits, p=params, sim.old=sim.start)
Tmax	maximum timestep for solver

18 update_sample_rev

sizestep sizestep for solver when not using data.times

data.times times with observations

1 number of parameters to be proposed

solver solver choice

i current MCMC iteration

cnt interval for printing/plotting information on chains

obs.model function containing obs model

pdfs names of prior pdfs
hyper list of hyperparameters
w.p names of free parameters

verbose.mcmc logical print MCMC progress messages

verbose logical, print additional information from solver is.de logical, parameter is an input for the solver is.single parameter is to be proposed individually

joint.blocks names of joint blocks

... further arguments to solver

Index

```
* data
    chytrid, 2
    logistic, 8
chytrid, 2
de_mcmc, 6
debinfer_cov, 3
debinfer_par, 3
deinits, 5
depars, 5
is.debinfer_parlist, 7
is.debinfer_result,7
log_post_params, 9
log\_prior\_params, 9
logd_prior, 8
logistic, 8
pairs.debinfer_result, 10, 10
plot.debinfer\_result, 10
plot.mcmc, 10
plot.post_sim_list, 11
post_prior_densplot, 10, 11
post_sim, 12
prior_draw_rev, 13
propose_joint_rev, 13
propose_single_rev, 14
reshape_post_sim, 14
setup_debinfer, 15
solve_de, 15
\verb|summary.debinfer_result|, 16
summary.mcmc, 16
update_sample_rev, 17
```