

MARKED UP VERSION SHOWING CHANGES

A system for controlling the key-lock switch

Description

5

20

25

30

35

BACKGROUND

[0001] 1. Field of the Invention

10 [0002] The invention relates to a *method and system* for controlling [[the]]<u>a</u> key-lock switch system. Especially for [[the]]<u>a</u> system that controls the on/off/switch action of <u>a</u> key-lock device by exchanging the information data <u>to</u> be received and transmitted via spread spectrum digital modulation/demodulation.

15 [0003] 2. Description of the Prior Art

[[at]]in_the passage to control the entrance of persons-people with different levels of authority. Among [[those]]the various methods, there-are-the main_defects[[s]] [[of being]]are [[easily]]easy_duplicated_duplication_found_on_theof metal keys for mechanical door key-locks [[&]]and [[the]]stripe cards of magnetic key-lock devices; being easily and it is easy to damaged found on the stripe card of a magnetic key-lock device the stripe card of magnetic key-lock devices; and the numbers are easily to be read by others when the users is pressing the numbers of the digital key-lock entrance code being easily peeped on the digital key-lock when the user is pressing the numbers.

[0005] Besides, there are Wireless control key lock systems by wireless control which uses non-touch IC cards to control the key lock system do exist. Like the key locks used in the passage of parking lots, it is not easily to duplicate these systems [[d]] but the available distance-range of the sensors is very limited

[0006] [[The k]]Key-locks for most vehicles use wireless radio frequency signals to transfer[[ring,]] signals such as AM (Amplitude Modulation) by amplified size and FM (Frequency Modulation) by frequency speed. Both AM & FM wireless signals need large wave bandwidths that limits the number of changeable codes and the length of signal data. Also there are unsolved defects of noise interference.

MARKED UP VERSION SHOWING CHANGES

[0007] The key-locks use infrared technology [[is]]with <u>defects limitations</u> [[of]]<u>in the</u> directional requirement [[which]]because the light resource and light reception area must [[be]]directly [[faced]]<u>face each other [[for]]to smoothly transfer[[ring]] signals</u>, and the infrared beam <u>of beingis</u> easily stopped by obstacles.

SUMMARY

5

10

15

20

25

30

[0008] The invention relates to a *method and system* for controlling the key-lock switch system by using spread spectrum digital modulation and demodulation technology to handle receiving and transmitting of the data to be exchanged. The technology is-with features [[of]]high confidentiality and [[small]]low_interference. And the received/transmitted information data [[the]]confidentiality and privacy is even re-enforced through encryption and decryption processes when a __[[to]]further protection of the data is in need.

[0009] To reach the above-mentioned target, the system will include: at least an electronic key which is operable to transmit information data to control the open, switch or close actions of the corresponding key-lock system [[and]]which comprises an RF transivertransceiver and an antenna that are located in the transmitting end through which, when operated, the information data of the electronic key is transmitted after being generated by the encryption program and coded by a spread spectrum modulation as a radio frequency signal;

[0010] And at least a key-lock control module comprising an RF transceiver and an antenna that are located in the receiving end through which the radio frequency signals are received, and re-edited-converted into information data by spread spectrum digital demodulation, and [[then]]the information data is generated by a decryption program as certified data which will be checked and compared one by one by an identifying program with [[the]]a certified data of the certified table contained in the memory. If it is identified as the same certified data, the key-lock control module will output or cut-off the electronic control signals to switch the key-lock device. And will save the executed control contents and time as recorded data to show the entering, outing, usage situation and etc.

35

MARKED UP VERSION SHOWING CHANGES BRIEF DESCRIPTION OF THE DRAWINGS

[0011] FIG. 1 shows the first example of the invented key-lock switch system.

- 5 [0012] FIG. 2 is a combination drawing for the invented electronic key and the key-lock control module.
 - [0013] FIG. 3 is [[a]]one [[by]]of multiple combinations drawing for the invented electronic key and the key-lock control module.

10

15

- [0014] FIG. 4 shows the second example of the invented key-lock switch system.
- [0015] FIG. 5 is the third example for the invention of key-lock switch system and explains how to renew the data content of the operator's table or of the shared encryption data of the electronic key [[by]]through information data generated from the data which is inputted through the external devices or explains how to transfer the information data.
- [0016] FIG. 6 is the forth example of the invention and explains the management and maintenance of the invented key-lock switch system.
 - [0017] FIG. 7 explains is an example of how the invention applied in a building
 - [0018] FIG. 8 explains is an example of the invention used in motorcycles.

25

[0019] FIG. 9 explaine is an example [[that]]of the invention used in a car.

DESCRIPTION OF THE PREFERRED EMBODIMENT

30

35

[0025] The spread spectrum digital modulation/demodulation mentioned in all paragraphs here means a coding technology which edits the radio frequency signals in digital form which includes quite a lot different methods of which those more typical types are: Direct Sequence Spread Spectrum (DSSS), Chirp Spread Spectrum (CSS), Frequency Hopping Spread Spectrum (FHSS), Time Hopping Spread Spectrum (THSS), Orthogonal Frequency Division Multiplexing (OFDM) and Packet Binary Convolution[[al]] Coding (PBCC).

MARKED UP VERSION SHOWING CHANGES

[0026] Regarding the invention of a key lock switch system, please refer to the FIG. 1 which shows the first example of the invention, which includes at least an electronic key 10 and at least a key-lock control module 30. In the electronic key 10, the power supply 19 providese electric circuits [[and]] with power needed by all components; the memory 45 stores shared data 23 and stores the necessary data and shared data 23 for the operator's table 22; the operating module 11 is for the operator via which to transfer control 21 the electronic signal enters-1 and monitor the operator's action. When the electronic signal enters-1 is generated, it will start the necessary transmitting action. First transfer control 21 will read the corresponding operator's_data [[of]]from_the operator's table 22 and the shared data 23 from the encryption program 24 to edit the information data 25 through the encryption program 24. The information data 25 will converted into radio frequency signals transferred modulation/demodulation 26's coding technology of spread spectrum digital modulation and DAC/ADC 27's digital to analog convert-conversion technology under the baseband 50. RF transceiver 28 will transmit the coded radio frequency signals into the air via the antenna 29.

5

10

15

20

25

30

[0027] [[Of t]] The key-lock control module 30 composition comprises, the power supply 44 provides electric circuits [[and]]with the necessary power for [[the]]all_components, RF transceiver 32 and antenna 31 receive the radio frequency signals 2 from the air and [[edit]] convert the frequency signals into information data 35 by the coding process of convert—conversion technology DAC/ADC 33[['s]] analog to digital modulation/demodulation 34's spread spectrum digital demodulation technology under the baseband 50. The memory 45 stored stores the certified table 39 data for to identifying and action control, shared data 36 and the control record for recording the time and control action. The decryption program 37 edits the received information data 35 and shared data 36 into certified data 38 for an identifying identification program 40 which identifies the certified data 38 with the data of the certified table 39 one by one. If there is a data [[be]] is identified as the same, according to the identification result, the on/off/switch -switch action control 41 will output or cutoff the control electronic signals 5 to the key-lock module 30 of the key-lock for on/off action control and save the time and action as a control record 42 for management purpose-s.

35 [0028] [[The]]FIG. 2 explains-shows how the saved certified data of the certified table 39 of the key-lock control module 30 is generated -produced. By an encryption program 24, _each saved certified data is edited from the same shared data 23 ([[]]]not a

MARKED UP VERSION SHOWING CHANGES

must, only used when to enforceenforcing and increase—increasing the privacy & security of data is in need [[]]) and an operator's data of the operator's table 22 of the electronic key 10 which is—correspondings to the key-lock control module 30. The edited information data 35 and the shared data 36 (—corresponding—to the shared encryption program not a must, only used when to enforceing and increase—increasing the privacy & security of data is in need [[]]) of the key-lock control module 30 is re-edited by the decryption program 37. The re-edited data is saved into the certified table 39 for the sake of being identified one by one with the information data 25 of the electronic key 10. Thus, the matching model of the electronic key 10 and the key-lock control module 30 is unique and will not be duplicated.

[0029] FIG. 3 explains the operator's table 22 and the certified table 39 stored in the memory. The operator's table example 22a of an electronic key 10 is stored with a data category and the operator's data contents. The data category specifies the type of data contents and the data content is used to control the key-lock. The certified table example 39a of the key-lock control module 30 is stored with the control action and certified data contents. Through identifying [[with]]the certified data content, the on/off switch control 41 will output or cutoff of control electronic eentrol signals 5 according to the instruction of the identified certified data content.

20

25

5

10

15

[0030] The operator's table 22 of an electronic key is able to be stored with [[dl]] lots of data to correspond with [[the]]many different key-lock control modules 30[[s]]. The certified table 39 of the key-lock control module 30 is also [[is]] able to be stored as many types of certified data by the way explained in FIG. 2 to correspond with the many different electronic keys 10[[s]]. Thus, the electronic key 10 and the key-lock control module 30 may be a combination of one electronic key 10 control ling [[s]] multiple key-lock control modules 30 or of one key-lock control module 30 eorresponds corresponding towith multiple electronic keys 10 besides the one by one combination.

30

35

[0031] Below [[the]]FIG. 4, FIG. 5 and FIG. 6 will skip the modulation/demodulation 26/34, information data 25/35 and editing of certified data 38, and identification of certified contents as they are the same as the description in previous paragraph.

[0032] The second example in FIG. 4 explains-shows another type of key-lock switch system. The key-lock control module 30 provides data line 7 to connect with external devices. The external data input system 51 inputs information data 35 through an

MARKED UP VERSION SHOWING CHANGES

in out controlling unit 43 to control the key-lock device which is connected with key-lock control module 30.

[0033] The third example in FIG. 5 is a function of expansion for the first example and explains how to renew the data content of the operator's table 22 or of the shared data 23 in the electronic key 10 by information data 25 generated from the data which is inputted through external devices or explains how to transfer the information data 25. The user renews the data content of the operator's table 22 or of the shared data 23 in the electronic key 10 through the data input system 51 which is an external devices and is connected with the electronic key 10 by data line 6. After the data is inputted, the transfer control 21 will determine to transfer the information data 25 generated from the inputted data or with which to renew the content data of operator's data 22 or of the shared data 23. When the operating module 11 is operated, the system will operate with the renewed data.

15

20

10

5

[0034] The [[forth]] <u>fourth</u> example in FIG. 6 is an addedadds a function to the first example and explains the management and maintenance of the invented key-lock switch system. The key-lock control module 30 provides a data line 7 to connect external devices. The remote management system 52 may connect with the key-lock control module 30 through the data line 7 or radio frequency signals 2. The remote management system 52 may read, update, edit and delete [[8]] the content of the shared data 36, control record 42 and of the data of the certified table 39 of the memory 45 in the key-lock control module 30.

25

30

35

[0035] The FIG. 7 explaine shows an example of how the invention is applied in a building and explains, through output or cutoff electronic signals 5 to control the key-lock device, a second security protection method to open the door besides using the metal key. A building 60 is equipped with a key-lock control module 30. A user presses the remote control key of the electronic key 10. Once data content of the operator's table 22 corresponding corresponds with the pressed key is transmitted through—as radio frequency signals 2 which [[is]] are edited by digital modulation process of the electronic key 10, and the key-lock control module 30 within [[the]] a valid distance re-edits the information data 35 by digital demodulation, and the identification of identifying programs the data passes mapping and identification, the on/off switch control 41 then outputs an electronic signal 5 of the key-lock device of the passage 61 and opens the door of the passage, same as the metal key does.

MARKED UP VERSION SHOWING CHANGES

[0036] FIG. 8 explains shows an example used in motorcycles. A motorcycle equipped with a key-lock control module 30 of key-lock device of starting engine 62. The user may turn on/off the power supply of the key-lock device of the starting engine 62 by using the remote control device which an electronic key 10 [[is]]equipped with and prevents the motorcycle from being stolen.

5

10

15

[0037] [[The]]FIG. 9 explains-shows an example [[that]]of the invention of key-lock switch system used in a vehicle. The user operates the remote control device which an electronic key 10 is equipped to open/shut [[up]]the door of a vehicle 63 and, at the same time, controls the power supply of the key-lock device of a vehicle's starting engine 64 by switching the control of the key-lock control module 30.

[0038] The above examples are for [[the]]to explanation explain the convenience and the range of rights and privileges claimed by the invention is described described in the patent claim section and is not limited by the above examples.

MARKED UP VERSION SHOWING CHANGES

Abstract

5

10

15

The invention is a system for controlling the key-lock switch by output or cutoff of the electronic control signals to switch the key-lock device through editing the data via digital received/transmitted information spread spectrum modulation/demodulation. The confidentiality and privacy is even re-enforced when the received/transmitted information data is further protected through encryption and decryption process. The system includes: a. at least an electronic key which is operable to transfer the information data, and the information data is transmitted in the form of radio frequency signal after being edited by baseband coding technology and digital-to-analog convert conversion technology; and b. at least a key-lock control module which receives the radio frequency signals, decoded by baseband analog-to-digital convert technology and coding technology, and reedits into information data, and then the information data is as certified data which will be checked and compared one by one by an identifying program with the certified data of the certified data table contained in the memory. If it is identified as the same certified data, the key-lock control module will output or cut-off the electronic control signals to open, to close or to switch the key-lock device from open to lock or from lock to open.