3-CYANO-QUINOLINE DERIVATIVES WITH ANTIPROLIFERATIVE ACTIVITY

This invention relates to quinoline derived macrocycles that have been found to possess anti-proliferative activity, such as anti-cancer activity and are accordingly useful in methods of treatment of the human or animal body, for example in the manufacture of medicaments for use in hyper proliferative disorders such as atherosclerosis, restenosis and cancer. The invention also relates to processes for the manufacture of said quinoline derivatives, to pharmaceutical compositions containing them and to their use in the manufacture of medicaments of use in the production of anti-proliferative effect .

5

10

15

20

25

30

35

In particular, the compounds of the present invention were found to inhibit tyrosine kinase enzymes, also called tyrosine kinases. Tyrosine kinases are a class of enzymes, which catalyse the transfer of the terminal phosphate of adenosine triphosphate to the phenolic hydroxyl group of a tyrosine residue present in the target protein. It is known, that several oncogenes, involved in the transformation of a cell into a malignant tumour cell, encode tyrosine kinase enzymes including certain growth factor receptors such as EGF, FGF, IGF-1R, IR, PDGF and VEGF. This family of receptor tyrosine kinases and in particular the EGF family of receptor tyrosine kinases, hereinafter also referred to as EGFR receptor or EGF type receptor tyrosine kinases, are frequently present in common human cancers such as breast cancer, non-small cell lung cancers including adenocarcinomas and squamous cell cancer of the lung, bladder cancer, oesophageal cancer, gastrointestinal cancer such as colon, rectal or stomach cancer, cancer of the prostate, leukaemia and ovarian, bronchial or pancreatic cancer, which are examples of cell proliferation related disorders.

Accordingly, it has been recognised that the selective inhibition of tyrosine kinases will be of value in the treatment of cell proliferation related disorders. Support for this view is provided by the development of Herceptin® (Trastuzumab) and GleevecTM (imatinib mesylate) the first examples of target based cancer drugs. Herceptin® (Trastuzumab) is targeted against Her2/*neu*, a receptor tyrosine kinase found to be amplified up to 100-fold in about 30% of patients with invasive breast cancer. In clinical trials Herceptin® (Trastuzumab) proved to have anti-tumour activity against breast cancer (Review by L.K. Shawer *et al*, "Smart Drugs: Tyrosine kinase inhibitors in cancer therapy", 2002, Cancer Cell Vol.1, 117), and accordingly provided the proof of principle for therapy targeted to receptor tyrosine kinases. The second example, GleevecTM (imatinib mesylate), is targeted against the abelson tyrosine kinase

(BcR-Abl), a constitutively active cytoplasmic tyrosine kinase present in virtually all patients with chronic myelogenous leukaemia (CML) and 15% to 30% of adult patients with acute lymphoblastic leukaemia. In clinical trials Gleevec[™] (imatinib mesylate) showed a spectacular efficacy with minimal side effects that led to an approval within 3 months of submission. The speed of passage of this agent through clinical trials and regulatory review has become a case study in rapid drug development (Drucker B.J. & Lydon N., "Lessons learned from the development of an Abl tyrosine kinase inhibitor for chronic myelogenous leukaemia.", 2000, J.Clin.Invest. 105, 3).

5

10

15

20

25

30

35

Further support is given by the demonstration that EGF receptor tyrosine kinase inhibitors, specifically attenuates the growth in athymic nude mice of transplanted carcinomas such as human mammary carcinoma or human squamous cell carcinoma (Review by T.R. Burke Jr., Drugs of the Future, 1992, 17, 119). As a consequence, there has been considerable interest in the development of drugs to treat different cancers that target the EGFR receptor. For example, several antibodies that bind to the extra-cellular domain of EGFR are undergoing clinical trials, including ErbituxTM (also called C225, Cetuximab), which was developed by Imclone Systems and is in Phase III clinical trials for the treatment of several cancers. Also, several promising orally active drugs that are potent and relatively specific inhibitors of the EGFR tyrosine kinase are now well advanced in clinical trials. The AstraZeneca compound ZD1839, which is now called IRESSA® and approved for the treatment of advanced non-small-cell lung cancer, and the OSI/Genentech/Roche compound OSI-774, which is now called TarcevaTM (erlotinib), have shown marked efficacy against several cancers in human clinical trials (Morin M.J., "From oncogene to drug: development of small molecule tyrosine kinase inhibitors as anti-tumour and anti-angiogenic agents, 2000, Oncogene 19, 6574).

In addition to the above, EGF receptor tyrosine kinases has been shown to be implicated in non-malignant proliferative disorders such as psoriasis (elder *et al.*, Science, 1989, 243; 811). It is therefore expected that inhibitors of EGF type receptor tyrosine kinases will be useful in the treatment of non-malignant diseases of excessive cellular proliferation such as psoriasis, benign prostatic hypertrophy, atherosclerosis and restenosis.

It is disclosed in US patents US 6,288,082 and US 6,002008, in the International Patent Applications WO 98/43960 and WO 00/018761 and in J. Med. Chem, 2000, 43(17), 3244 that certain 4-anilino-3-cyanoquinolines may be useful as inhibitors of tyrosine kinase and in particular of the EGF type receptor tyrosine kinases. Unexpectedly it was

found that 3-cyanoquinoline derivatives of the present formula (I) that are different in structure show to have tyrosine kinase inhibitory activity.

It is accordingly an object of the present invention to provide further tyrosine kinase inhibitors useful in the manufacture of medicaments in the treatment of cell proliferative related disorders.

This invention concerns compounds of formula (I)

the *N*-oxide forms, the pharmaceutically acceptable addition salts and the stereochemically isomeric forms thereof, wherein

Z represents O, NH or S;

5

10

15

20

30

Y represents -C₃₋₉alkyl-, -C₃₋₉alkenyl-, -C₁₋₅alkyl-oxy-C₁₋₅alkyl-,

 $-C_{1-5}$ alkyl- NR^{12} - C_{1-5} alkyl-, $-C_{1-5}$ alkyl- NR^{13} -CO- C_{1-5} alkyl-,

-C₁₋₅alkyl-CO-NR¹⁴-C₁₋₅alkyl-, -C₁₋₆alkyl-CO-NH-, -C₁₋₆alkyl-NH-CO-,

-CO-NH-C₁₋₆alkyl-, -NH-CO-C₁₋₆alkyl-, -CO-C₁₋₇alkyl-, -C₁₋₇alkyl-CO-,

 C_{1-6} alkyl- $CO-C_{1-6}$ alkyl, $-C_{1-2}$ alkyl- $NH-CO-CH_2R^{15}$ -NH-;

X¹ represents a direct bond, O, -O-C₁₋₂alkyl-, CO, -CO- C₁₋₂alkyl-, NR¹⁰,

-NR¹⁰-C₁₋₂alkyl-, NR¹⁶-CO-, NR¹⁶-CO-C₁₋₂alkyl, -O-N=CH- or C₁₋₂alkyl;

X² represents a direct bond, O, -O-C₁₋₂alkyl-, CO, -CO- C₁₋₂alkyl-, NR¹¹,

NR¹¹-C₁₋₂alkyl-, NR¹⁷-CO-, NR¹⁷-CO-C₁₋₂alkyl, Het²⁰-C₁₋₂alkyl, -O-N=CH- or C₁₋₂alkyl;

 R^1 represents hydrogen, cyano, halo, hydroxy, formyl, $C_{1\text{-}6}$ alkoxy-, $C_{1\text{-}6}$ alkyl-,

C₁₋₆alkoxy- substituted with halo,

C₁₋₄alkyl substituted with one or where possible two or more substituents selected from hydroxy or halo;

- R^2 represents hydrogen, cyano, halo, hydroxy, hydroxycarbonyl-, Het 16 -carbonyl-, $C_{1\text{-}4}$ alkyloxycarbonyl-, $C_{1\text{-}4}$ alkylcarbonyl-, aminocarbonyl-, mono-or di($C_{1\text{-}4}$ alkyl)aminocarbonyl-, Het 1 , formyl, $C_{1\text{-}4}$ alkyl-, $C_{2\text{-}6}$ alkynyl-, $C_{3\text{-}6}$ cycloalkyl-, $C_{3\text{-}6}$ cycloalkyloxy-, $C_{1\text{-}6}$ alkoxy-, Ar 5 , Ar 1 -oxy-, dihydroxyborane , $C_{1\text{-}6}$ alkoxy- substituted with halo,
 - C₁₋₄alkyl substituted with one or where possible two or more substituents selected from halo, hydroxy or NR⁴R⁵,
 - C_{1-4} alkylcarbonyl- wherein said C_{1-4} alkyl is optionally substituted with one or where possible two or more substituents selected from hydroxy or C_{1-4} alkyl-oxy-;
- R^3 represents hydrogen, hydroxy, Ar^3 -oxy, Ar^4 - C_{1-4} alkyloxy-, C_{1-4} alkyloxy-, C_{2-4} alkenyloxy- optionally substituted with Het¹² or R^3 represents C_{1-4} alkyloxy substituted with one or where possible two or more substituents selected from C_{1-4} alkyloxy-, hydroxy, halo, Het²-, -NR⁶R⁷, -carbonyl- NR⁸R⁹ or Het³-carbonyl-;
- R⁴ and R⁵ are each independently selected from hydrogen or C₁₋₄alkyl;

5

10

15

20

25

- R^6 and R^7 are each independently selected from hydrogen, $C_{1\text{-}4}$ alkyl, Het⁸, aminosulfonyl-, mono- or di ($C_{1\text{-}4}$ alkyl)-aminosulfonyl, hydroxy- $C_{1\text{-}4}$ alkyl-, $C_{1\text{-}4}$ alkyl-oxy- $C_{1\text{-}4}$ alkyl-, hydroxycarbonyl- $C_{1\text{-}4}$ alkyl-, $C_{3\text{-}6}$ cycloalkyl, Het⁹-carbonyl- $C_{1\text{-}4}$ alkyl-, Het¹⁰-carbonyl-, polyhydroxy- $C_{1\text{-}4}$ alkyl-, Het¹¹- $C_{1\text{-}4}$ alkyl- or Ar^2 - $C_{1\text{-}4}$ alkyl-;
- R^8 and R^9 are each independently selected from hydrogen, $C_{1\text{-}4}$ alkyl, $C_{3\text{-}6}$ cycloalkyl, Het 4 , hydroxy- $C_{1\text{-}4}$ alkyl-, $C_{1\text{-}4}$ alkyloxy $C_{1\text{-}4}$ alkyl- or polyhydroxy- $C_{1\text{-}4}$ alkyl-;
- R^{10} represents hydrogen, C_{1-4} alkyl, Het^5 , Het^6 - C_{1-4} alkyl-, C_{2-4} alkenylcarbonyl- optionally substituted with Het^7 - C_{1-4} alkylaminocarbonyl-, C_{2-4} alkenylsulfonyl-, C_{1-4} alkyloxy C_{1-4} alkyl- or phenyl optionally substituted with one or where possible two or more substituents selected from hydrogen, hydroxy, amino or C_{1-4} alkyloxy-;
- R^{11} represents hydrogen, C_{1-4} alkyl, C_{1-4} alkyl-oxy-carbonyl-, Het^{17} , Het^{18} - C_{1-4} alkyl-, C_{2-4} alkenylcarbonyl- optionally substituted with Het^{19} - C_{1-4} alkylaminocarbonyl-, C_{2-4} alkenylsulfonyl-, C_{1-4} alkyloxy C_{1-4} alkyl- or phenyl optionally substituted with one or where possible two or more substituents selected from hydrogen, hydroxy, amino or C_{1-4} alkyloxy-;
- R¹² represents hydrogen, C₁₋₄alkyl, Het¹³, Het¹⁴-C₁₋₄alkyl- or phenyl optionally substituted with one or where possible two or more substituents selected from hydrogen, hydroxy, amino or C₁₋₄alkyloxy-;
- R¹³ and R¹⁴ are each independently selected from hydrogen, C_{1-4} alkyl, Het¹⁵- C_{1-4} alkyl-; or C_{1-4} alkyloxy C_{1-4} alkyl-;

- R¹⁵ represents hydrogen or C₁₋₄alkyl optionally substituted with phenyl, indolyl, methylsulfide, hydroxy, thiol, hydroxyphenyl, aminocarbonyl, hydroxycarbonyl, amine, imidazoyl or guanidino;
- R^{16} and R^{17} are each independently selected from hydrogen, C_{1-4} alkyl, Het²¹- C_{1-4} alkyl or C_{1-4} alkyl;

5

10

15

20

30

- Het¹ represents a heterocycle selected from piperidinyl, morpholinyl, piperazinyl, furanyl, pyrazolyl, dioxolanyl, thiazolyl, oxazolyl, imidazolyl, isoxazolyl, oxadiazolyl, pyridinyl or pyrrolidinyl wherein said Het^1 is optionally substituted amino, $C_{1\text{-}4}$ alkyl, hydroxy- $C_{1\text{-}4}$ alkyl-, phenyl, phenyl- $C_{1\text{-}4}$ alkyl-,
 - C_{1-4} alkyl-oxy- C_{1-4} alkyl- mono- or di(C_{1-4} alkyl)amino- or amino-carbonyl-;
- Het² represents a heterocycle selected from morpholinyl, piperazinyl, piperidinyl, pyrrolidinyl, thiomorpholinyl or dithianyl wherein said Het² is optionally substituted with one or where possible two or more substituents selected from hydroxy, halo, amino, C₁₋₄alkyl-, hydroxy-C₁₋₄alkyl-, C₁₋₄alkyl-oxy-C₁₋₄alkyl-, hydroxy-C₁₋₄alkyl-, mono- or di(C₁₋₄alkyl)amino-, mono- or di(C₁₋₄alkyl)amino-C₁₋₄alkyl-, aminoC₁₋₄alkyl-, mono- or di(C₁₋₄alkyl)amino-sulfonyl-, aminosulfonyl-;
- Het³, Het⁴ and Het⁸ each independently represent a heterocycle selected from morpholinyl, piperazinyl, piperidinyl, furanyl, pyrazolyl, dioxolanyl, thiazolyl, oxazolyl, imidazolyl, isoxazolyl, oxadiazolyl, pyridinyl or pyrrolidinyl wherein said Het³, Het⁴ or Het⁸ is optionally substituted with one or where possible two or more substituents selected from hydroxy-, amino-, C₁₋₄alkyl-, C₃₋₆cycloalkyl-C₁₋₄alkyl-, aminosulfonyl-, mono- or di(C₁₋₄alkyl)aminosulfonyl or amino-C₁₋₄alkyl-;
- Het⁵ represent a heterocycle selected from pyrrolidinyl or piperidinyl wherein said heterocycle is optionally substituted with one or where possible two or more substituents selected from C₁₋₄alkyl, C₃₋₆cycloalkyl, hydroxy-C₁₋₄alkyl-, C₁₋₄alkyloxyC₁₋₄alkyl or polyhydroxy-C₁₋₄alkyl-;
 - Het⁶ and Het⁷ each independently represent a heterocycle selected from morpholinyl, pyrrolidinyl, piperazinyl or piperidinyl wherein said heterocycle is optionally substituted with one or where possible two or more substituents selected from C₁₋₄alkyl, C₃₋₆cycloalkyl, hydroxy-C₁₋₄alkyl-, C₁₋₄alkyloxyC₁₋₄alkyl or polyhydroxy-C₁₋₄alkyl-;
 - Het⁹ and Het¹⁰ each independently represent a heterocycle selected from furanyl, piperidinyl, morpholinyl, piperazinyl, pyrazolyl, dioxolanyl, thiazolyl, oxazolyl, imidazolyl, isoxazolyl, oxadiazolyl, pyridinyl or pyrrolidinyl wherein said Het⁹ or

Het¹⁰ is optionally substituted C_{1-4} alkyl, C_{3-6} cycloalkyl- C_{1-4} alkyl- or amino- C_{1-4} alkyl-;

Het¹¹ represents a heterocycle selected from indolyl or

5

15

20

25

- Het¹² represents a heterocycle selected from morpholinyl, piperazinyl, piperidinyl, pyrrolidinyl, thiomorpholinyl or dithianyl wherein said Het¹² is optionally substituted with one or where possible two or more substituents selected from hydroxy, halo, amino, C₁₋₄alkyl-, hydroxy-C₁₋₄alkyl-, C₁₋₄alkyl-oxy-C₁₋₄alkyl-, hydroxy-C₁₋₄alkyl-, mono- or di(C₁₋₄alkyl)amino- or mono- or di(C₁₋₄alkyl)amino-C₁₋₄alkyl-;
- Het¹³ represent a heterocycle selected from pyrrolidinyl or piperidinyl wherein said heterocycle is optionally substituted with one or where possible two or more substituents selected from C₁₋₄alkyl, C₃₋₆cycloalkyl, hydroxy-C₁₋₄alkyl-, C₁₋₄alkyloxyC₁₋₄alkyl or polyhydroxy-C₁₋₄alkyl-;
 - Het¹⁴ represent a heterocycle selected from morpholinyl, pyrrolidinyl, piperazinyl or piperidinyl wherein said heterocycle is optionally substituted with one or where possible two or more substituents selected from C₁₋₄alkyl, C₃₋₆cycloalkyl, hydroxy-C₁₋₄alkyl-, C₁₋₄alkyloxyC₁₋₄alkyl or polyhydroxy-C₁₋₄alkyl-;
 - Het¹⁵ and Het²¹ each independently represent a heterocycle selected from morpholinyl, pyrrolidinyl, piperazinyl or piperidinyl wherein said heterocycles are optionally substituted with one or where possible two or more substituents selected from C_{1-4} 4alkyl, C_{3-6} cycloalkyl, hydroxy- C_{1-4} alkyl-,

 $C_{1\text{--}4}$ alkyloxy $C_{1\text{--}4}$ alkyl or polyhydroxy- $C_{1\text{--}4}$ alkyl-;

- Het¹⁶ represent a heterocycle selected from morpholinyl, pyrrolidinyl, piperazinyl, 1,3,2-dioxaborolane or piperidinyl wherein said heterocycle is optionally substituted with one or more substituents selected from C_{1-4} alkyl; and
- Het¹⁷ represent a heterocycle selected from pyrrolidinyl or piperidinyl wherein said heterocycle is optionally substituted with one or where possible two or more substituents selected from C_{1-4} alkyl, C_{3-6} cycloalkyl, hydroxy- C_{1-4} alkyl-, C_{1-4} alkyloxy C_{1-4} alkyl or polyhydroxy- C_{1-4} alkyl-;
- Het¹⁸ and Het¹⁹ each independently represent a heterocycle selected from morpholinyl, pyrrolidinyl, piperazinyl or piperidinyl wherein said heterocycles are optionally substituted with one or where possible two or more substituents selected from C₁₋₄alkyl, C₃₋₆cycloalkyl, hydroxy-C₁₋₄alkyl-, C₁₋₄alkyloxyC₁₋₄alkyl or polyhydroxy-C₁₋₄alkyl-;
- Het²⁰ represents a heterocycle selected from pyrrolidinyl, 2-pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, imidazolyl or pyrazolidinyl wherein said heterocycle is

-7-

optionally substituted with one or where possible two or more substituents selected from C_{1-4} alkyl, C_{3-6} cycloalkyl, hydroxy- C_{1-4} alkyl-, C_{1-4} alkyloxy C_{1-4} alkyl or polyhydroxy- C_{1-4} alkyl-; in particular Het²⁰ represents a heterocycle selected from pyrrolidinyl, 2-pyrrolidinyl, piperidinyl, piperazinyl or pyrazolidinyl wherein said heterocycle is optionally substituted with one or where possible two or more substituents selected from C_{1-4} alkyl, C_{3-6} cycloalkyl, hydroxy- C_{1-4} alkyl-, C_{1-4} alkyloxy C_{1-4} alkyl or polyhydroxy- C_{1-4} alkyl-; and

Ar¹, Ar², Ar³, Ar⁴ and Ar⁵ each independently represent phenyl optionally substituted with cyano, C₁₋₄alkylsulfonyl-, C₁₋₄alkylsulfonylamino-, aminosulfonylamino-, hydroxy-C₁₋₄alkyl, aminosulfonyl-, hydroxy-, C₁₋₄alkyloxy- or C₁₋₄alkyl.

As used in the foregoing definitions and hereinafter,

- halo is generic to fluoro, chloro, bromo and iodo;
- C_{1-2} alkyl defines methyl or ethyl;

5

10

25

- C₁₋₃alkyl defines straight and branched chain saturated hydrocarbon radicals having from 1 to 3 carbon atoms such as, for example, methyl, ethyl, propyl and the like;
 C₁₋₄alkyl defines straight and branched chain saturated hydrocarbon radicals having from 1 to 4 carbon atoms such as, for example, methyl, ethyl, propyl, butyl, 1-methylethyl, 2-methylpropyl, 2,2-dimethylethyl and the like;
- C₁₋₅alkyl defines straight and branched chain saturated hydrocarbon radicals having from 1 to 5 carbon atoms such as, for example, methyl, ethyl, propyl, butyl, pentyl, 1-methylbutyl, 2,2-dimethylpropyl, 2,2-dimethylethyl and the like;
 - C_{1-6} alkyl is meant to include C_{1-5} alkyl and the higher homologues thereof having 6 carbon atoms such as, for example hexyl, 1,2-dimethylbutyl, 2-methylpentyl and the like;
 - C_{1-7} alkyl is meant to include C_{1-6} alkyl and the higher homologues thereof having 7 carbon atoms such as, for example 1,2,3-dimethylbutyl, 1,2-methylpentyl and the like;
 - C₃₋₉alkyl defines straight and branched chain saturated hydrocarbon radicals having from 3 to 9 carbon atoms such as propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl and the like;
 - C_{2-4} alkenyl defines straight and branched chain hydrocarbon radicals containing one double bond and having from 2 to 4 carbon atoms such as, for example vinyl, 2-propenyl, 3-butenyl, 2-butenyl and the like;
- C₃₋₉alkenyl defines straight and branched chain hydrocarbon radicals containing one double bond and having from 3 to 9 carbon atoms such as, for example 2-propenyl, 3-butenyl, 2-butenyl, 2-pentenyl, 3-methyl-2-butenyl, 3-hexenyl and the like;

- C₂₋₆alkynyl defines straight and branched chain hydrocarbon radicals containing one triple bond and having from 2 to 6 carbon atoms such as, for example, 2-propynyl, 3-butynyl, 2-butynyl, 2-pentynyl, 3-methyl-2-butynyl, 3-hexynyl and the like;
- C₃₋₆cycloalkyl is generic to cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl;
- C₁₋₄alkyloxy defines straight or branched saturated hydrocarbon radicals such as methoxy, ethoxy, propyloxy, butyloxy, 1-methylethyloxy, 2-methylpropyloxy and the like;

10

20

25

30

35

- C_{1-6} alkyloxy is meant to include C_{1-4} alkyloxy and the higher homologues such as methoxy, ethoxy, propyloxy, butyloxy, 1-methylethyloxy, 2-methylpropyloxy and the like;
- polyhydroxy- C_{1-4} alkyl is generic to a C_{1-4} alkyl as defined hereinbefore, having two, three or were possible more hydroxy substituents, such as for example trifluoromethyl.

As used in the foregoing definitions and hereinafter, the term formyl refers to a radical of formula –CH(=O).

The heterocycles as mentioned in the above definitions and hereinafter, are meant to include all possible isomeric forms thereof, for instance pyrrolyl also includes 2*H*-pyrrolyl; triazolyl includes 1,2,4-triazolyl and 1,3,4-triazolyl; oxadiazolyl includes 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl and 1,3,4-oxadiazolyl; thiadiazolyl includes 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,2,5-thiadiazolyl and 1,3,4-thiadiazolyl; pyranyl includes 2*H*-pyranyl and 4*H*-pyranyl.

Further, the heterocycles as mentioned in the above definitions and hereinafter may be attached to the remainder of the molecule of formula (I) through any ring carbon or heteroatom as appropriate. Thus, for example, when the heterocycle is imidazolyl, it may be a 1-imidazolyl, 2-imidazolyl, 3-imidazolyl, 4-imidazolyl and 5-imidazolyl; when it is thiazolyl, it may be 2-thiazolyl, 4-thiazolyl and 5-thiazolyl; when it is triazolyl, it may be 1,2,4-triazol-1-yl, 1,2,4-triazol-3-yl, 1,2,4-triazol-5-yl, 1,3,4-triazol-1-yl and 1,3,4-triazol-2-yl; when it is benzothiazolyl, it may be 2-benzothiazolyl, 4-benzothiazolyl, 5-benzothiazolyl, 6-benzothiazolyl and 7-benzothiazolyl.

The pharmaceutically acceptable addition salts as mentioned hereinabove are meant to comprise the therapeutically active non-toxic acid addition salt forms which the compounds of formula (I) are able to form. The latter can conveniently be obtained by treating the base form with such appropriate acid. Appropriate acids comprise, for example, inorganic acids such as hydrohalic acids, e.g. hydrochloric or hydrobromic

-9-

acid; sulfuric; nitric; phosphoric and the like acids; or organic acids such as, for example, acetic, propanoic, hydroxyacetic, lactic, pyruvic, oxalic, malonic, succinic (i.e. butane-dioic acid), maleic, fumaric, malic, tartaric, citric, methanesulfonic, ethanesulfonic, benzenesulfonic, *p*-toluenesulfonic, cyclamic, salicylic,

5 p-aminosalicylic, pamoic and the like acids.

10

15

35

The pharmaceutically acceptable addition salts as mentioned hereinabove are meant to comprise the therapeutically active non-toxic base addition salt forms which the compounds of formula (I) are able to form. Examples of such base addition salt forms are, for example, the sodium, potassium, calcium salts, and also the salts with pharmaceutically acceptable amines such as, for example, ammonia, alkylamines, benzathine, *N*-methyl-D-glucamine, hydrabamine, amino acids, e.g. arginine, lysine.

Conversely said salt forms can be converted by treatment with an appropriate base or acid into the free acid or base form.

The term addition salt as used hereinabove also comprises the solvates which the compounds of formula (I) as well as the salts thereof, are able to form. Such solvates are for example hydrates, alcoholates and the like.

The term stereochemically isomeric forms as used hereinbefore defines the possible different isomeric as well as conformational forms which the compounds of formula (I) may possess. Unless otherwise mentioned or indicated, the chemical designation of compounds denotes the mixture of all possible stereochemically and conformationally isomeric forms, said mixtures containing all diastereomers, enantiomers and/or conformers of the basic molecular structure. All stereochemically isomeric forms of the compounds of formula (I) both in pure form or in admixture with each other are intended to be embraced within the scope of the present invention.

Some of the compounds of formula (I) may also exist in their tautomeric forms. Such forms although not explicitly indicated in the above formula are intended to be included within the scope of the present invention.

The *N*-oxide forms of the compounds of formula (I) are meant to comprise those compounds of formula (I) wherein one or several nitrogen atoms are oxidized to the so-called *N*-oxide.

A preferred group of compounds consists of those compounds of formula (I) wherein one or more of the following restrictions apply:

Z represents NH;

5

10

15

20

25

30

Y represents - C_{3-9} alkyl-, - C_{2-9} alkenyl-, - C_{1-5} alkyl-oxy- C_{1-5} alkyl-, - C_{1-5} alkyl-NR 12 - C_{1-5} alkyl-, - C_{1-6} alkyl-NH-CO-, -CO- C_{1-7} alkyl-, - C_{1-7} alkyl-CO- or C_{1-6} alkyl-;

X¹ represents O, -O-C₁₋₂alkyl-, -O-N=CH-, NR¹⁰ or -NR¹⁰-C₁₋₂alkyl-; in a particular embodiment X¹ represents –O- or –O-CH₂-;

X² represents a direct bond, O, -O-C₁₋₂alkyl-, -O-N=CH-, C₁₋₂alkyl, NR¹¹ or NR¹¹-C₁₋₂alkyl-; in a particular embodiment X² represents a direct bond, -O-N=CH-, -NR¹¹-C₁₋₂alkyl-, -NR¹¹-CH₂-, -C₁₋₂alkyl-, -O-C₁₋₂alkyl, -O-or -O-CH₂-;

R¹ represents hydrogen, cyano, halo or hydroxy, preferably halo;

R² represents hydrogen, cyano, halo, hydroxy, hydroxycarbonyl-, C₁₋₄ alkyloxycarbonyl-, Het¹⁶-carbonyl-, C₂₋₆alkynyl-, Ar⁵ or Het¹; In a further embodiment R² represents hydrogen, cyano, halo, hydroxy, C₂₋₆alkynyl- or Het¹;

 R^3 represents hydrogen, hydroxy, C_{1-4} alkyloxy-, Ar^4 - C_{1-4} alkyloxy or R^3 represents C_{1-4} alkyloxy substituted with one or where possible two or more substituents selected from C_{1-4} alkyloxy- or Het^2 -;

 R^{10} represents hydrogen, C_{1-4} alkyl- or C_{1-4} alkyl-oxy-carbonyl-;

R¹¹ represents hydrogen, C₁₋₄alkyl- or C₁₋₄alkyl-oxy-carbonyl-;

 R^{12} represents Het^{14} - C_{1-4} alkyl, in particular morpholinyl- C_{1-4} alkyl;

Het¹ represents thiazolyl optionally substituted amino, C_{1-4} alkyl, hydroxy- C_{1-4} alkyl-, phenyl, phenyl- C_{1-4} alkyl-, C_{1-4} alkyl-oxy- C_{1-4} alkyl- mono- or di(C_{1-4} alkyl)amino- or amino-carbonyl-;

Het² represents a heterocycle selected from morpholinyl, piperazinyl, piperidinyl or pyrrolidinyl wherein said Het^2 is optionally substituted with one or where possible two or more substituents selected from hydroxy, amino or $C_{1\text{-}4}$ alkyl-;

In a further embodiment Het^2 represents a heterocycle selected from morpholinyl or piperidinyl optionally substituted with C_{1-4} alkyl-, preferably methyl;

Het¹⁴ represents a heterocycle selected from morpholinyl, piperazinyl, piperidinyl or pyrrolidinyl wherein said Het^{14} is optionally substituted with one or where possible two or more substituents selected from hydroxy, amino or C_{1-4} alkyl-;

Het¹⁶ represents a heterocycle selected from piperidinyl, morpholinyl or pyrrolidinyl; Ar⁴ represents phenyl optionally substituted with cyano, hydroxy-, C₁₋₄alkyloxy or C₁₋₄alkyl;

 Ar^5 represents phenyl optionally substituted with cyano, hydroxy, C_{1-4} alkyloxy or C_{1-4} alkyl.

A further group of compounds consists of those compounds of formula (I) wherein one or more of the following restrictions apply:

Z represents NH;

5

25

30

Y represents $-C_{3-9}$ alkyl-, $-C_{1-5}$ alkyl-NR¹²- $-C_{1-5}$ alkyl-, $-C_{1-6}$ alkyl-NH-CO- or -CO-NH $-C_{1-6}$ alkyl-;

X¹ represents -O-;

10 X² represents a direct bond, -NR¹¹-C₁₋₂alkyl-, -NR¹¹-CH₂-, -C₁₋₂alkyl-, -O-C₁₋₂alkyl, -O- or -O-CH₂-;

R¹ represents hydrogen or halo;

R² represents hydrogen, cyano, halo, hydroxycarbonyl-, C₁₋₄alkyloxycarbonyl-, Het¹⁶-carbonyl- or Ar⁵;

R³ represents hydrogen, hydroxy, C_{1-4} alkyloxy-, Ar^4 - C_{1-4} alkyloxy or R^3 represents C_{1-4} alkyloxy substituted with one or where possible two or more substituents selected from C_{1-4} alkyloxy- or Het^2 -;

R¹⁰ represents hydrogen;

 R^{11} represents hydrogen, C_{1-4} alkyl- or C_{1-4} alkyl-oxy-carbonyl-;

20 R¹² represents Het¹⁴-C₁₋₄alkyl, in particular morpholinyl-C₁₋₄alkyl;

Het² represents a heterocycle selected from morpholinyl, piperazinyl, piperidinyl or pyrrolidinyl wherein said Het^2 is optionally substituted with one or where possible two or more substituents selected from hydroxy, amino or C_{1-4} alkyl-;

In a further embodiment Het^2 represents a heterocycle selected from morpholinyl or piperidinyl optionally substituted with C_{1-4} alkyl-, preferably methyl;

Het¹⁴ represents morpholinyl;

Het¹⁶ represents a heterocycle selected from morpholinyl or pyrrolidinyl;

Ar⁴ represents phenyl;

Ar⁵ represents phenyl optionally substituted with cyano.

Another group of compounds consists of those compounds of formula (I) wherein one or more of the following restrictions apply:

Z represents NH;

Y represents -C₃₋₉alkyl-, -C₂₋₉alkenyl-, -C₁₋₅alkyl-oxy-C₁₋₅alkyl-,

-C₁₋₅alkyl-NR¹²-C₁₋₅alkyl-, -C₁₋₅alkyl-NR¹³-CO-C₁₋₅alkyl-, -C₁₋₆alkyl-NH-CO-, -CO-C₁₋₇alkyl-, -C₁₋₇alkyl-CO- or C₁₋₆alkyl-CO-C₁₋₆alkyl;

- X^1 represents O, -O-C₁₋₂alkyl-, -O-N=CH-, NR^{16} -CO, - NR^{16} -CO-C₁₋₂alkyl-, NR^{10} or - NR^{10} -C₁₋₂alkyl-; in a particular embodiment X^1 represents -O-, -O-CH₂-, NR^{10} or - NR^{10} -C₁₋₂alkyl-;
- X² represents a direct bond, O, -O-C₁₋₂alkyl-, -O-N=CH-, Het²⁰-C₁₋₂alkyl, C₁₋₂alkyl, NR¹⁷-CO, -NR¹⁷-CO-C₁₋₂alkyl-, NR¹¹ or NR¹¹-C₁₋₂alkyl-; in a particular embodiment X² represents a direct bond, -O-N=CH-, -NR¹¹-C₁₋₂alkyl-, -NR¹¹-CH₂-, Het²⁰-C₁₋₂alkyl, NR¹⁷-CO, -NR¹⁷-CO-C₁₋₂alkyl-, -C₁₋₂alkyl-, -O-C₁₋₂alkyl, -O- or -O-CH₂-;
- R¹ represents hydrogen, cyano, halo or hydroxy, preferably halo;

5

15

- R² represents hydrogen, cyano, halo, hydroxy, hydroxycarbonyl-, C₁₋₄ alkyloxycarbonyl-, Het¹⁶-carbonyl-, C₂₋₆alkynyl-, Ar⁵ or Het¹; In a further embodiment R² represents hydrogen, cyano, halo, hydroxy, C₂₋₆alkynyl- or Het¹;
 - R^3 represents hydrogen, hydroxy, C_{1-4} alkyloxy-, Ar^4 - C_{1-4} alkyloxy or R^3 represents C_{1-4} alkyloxy substituted with one or where possible two or more substituents selected from C_{1-4} alkyloxy- or Het^2 -;
 - R¹⁰ represents hydrogen, C₁₋₄alkyl- or C₁₋₄alkyl-oxy-carbonyl-;
 - R^{11} represents hydrogen, C_{1-4} alkyl- or C_{1-4} alkyl-oxy-carbonyl-;
 - R¹² represents Het¹⁴-C₁₋₄alkyl, in particular morpholinyl-C₁₋₄alkyl;
- R¹⁶ represents hydrogen, C₁₋₄alkyl-, Het²¹-C₁₋₄alkyl or C₁₋₄alkyl-oxy-C₁₋₄alkyl; in particular R¹⁶ represents hydrogen or C₁₋₄alkyl;
 - R^{17} represents hydrogen, C_{1-4} alkyl-, Het^{21} - C_{1-4} alkyl or C_{1-4} alkyl-oxy- C_{1-4} alkyl; in particular R^{16} represents hydrogen or C_{1-4} alkyl;
 - Het¹ represents thiazolyl optionally substituted amino, C₁₋₄alkyl, hydroxy-C₁₋₄alkyl-, phenyl, phenyl-C₁₋₄alkyl-, C₁₋₄alkyl-oxy-C₁₋₄alkyl- mono- or di(C₁₋₄alkyl)amino- or amino-carbonyl-;
 - Het² represents a heterocycle selected from morpholinyl, piperazinyl, piperidinyl or pyrrolidinyl wherein said Het^2 is optionally substituted with one or where possible two or more substituents selected from hydroxy, amino or $C_{1\text{-}4}$ alkyl-;
- In a further embodiment Het^2 represents a heterocycle selected from morpholinyl or piperidinyl optionally substituted with $C_{1\text{-4}}$ alkyl-, preferably methyl;
 - Het¹⁴ represents a heterocycle selected from morpholinyl, piperazinyl, piperidinyl or pyrrolidinyl wherein said Het¹⁴ is optionally substituted with one or where possible two or more substituents selected from hydroxy, amino or C₁₋₄alkyl-;
- Het¹⁶ represents a heterocycle selected from piperidinyl, morpholinyl or pyrrolidinyl; Het²⁰ represents a heterocycle selected from pyrrolidinyl, 2-pyrrolidinyl or piperidinyl;

- Het²¹ represents a heterocycle selected from morpholinyl, piperazinyl, piperidinyl or pyrrolidinyl wherein said Het²¹ is optionally substituted with one or where possible two or more substituents selected from hydroxy, amino or C₁₋₄alkyl-;
- Ar^4 represents phenyl optionally substituted with cyano, hydroxy-, C_{1-4} alkyloxy or C_{1-4} alkyl;
- Ar^5 represents phenyl optionally substituted with cyano, hydroxy, C_{1-4} alkyloxy or C_{1-4} alkyl.

A further group of compounds consists of those compounds of formula (I) wherein one or more of the following restrictions apply:

Z represents NH;

5

10

15

Y represents -C₃₋₉alkyl-, -C₁₋₅alkyl-NR¹²-C₁₋₅alkyl-, -C₁₋₅alkyl-NR¹³-CO-C₁₋₅alkyl-, -C₁₋₅alkyl-NH-CO- or -CO-NH -C₁₋₆alkyl-; in particular Y represents -C₃₋₉alkyl-, -C₁₋₅alkyl-NR¹²-C₁₋₅alkyl-,

- C_{1-5} alkyl-NR¹³-CO- C_{1-5} alkyl-, - C_{1-6} alkyl-NH-CO- or -CO-NH - C_{1-6} alkyl-;

 X^1 represents a direct bond, NR^{10} , $-NR^{10}$ - C_{1-2} alkyl-, $-NR^{10}$ - CH_2 -, $-C_{1-2}$ alkyl, -O- or -O- CH_2 -;

X² represents a-O-, NR¹¹, NR¹⁷-CO, NR¹⁷-CO-C₁₋₂alkyl or Het²⁰-C₁₋₂alkyl;

R¹ represents hydrogen or halo;

- R² represents hydrogen, cyano, halo, hydroxycarbonyl-, C₁₋₄alkyloxycarbonyl-, Het¹⁶-carbonyl- or Ar⁵;
 - R^3 represents hydrogen, hydroxy, $C_{1\text{-}4}$ alkyloxy-, Ar^4 - $C_{1\text{-}4}$ alkyloxy or R^3 represents $C_{1\text{-}4}$ alkyloxy substituted with one or where possible two or more substituents selected from $C_{1\text{-}4}$ alkyloxy- or Het^2 -;
- 25 R¹⁰ represents hydrogen;
 - R^{11} represents hydrogen, $C_{1\text{--}4}$ alkyl- or $C_{1\text{--}4}$ alkyl-oxy-carbonyl-;
 - R¹² represents Het¹⁴-C₁₋₄alkyl, in particular morpholinyl-C₁₋₄alkyl;
 - R¹³ represents hydrogen;
 - R¹⁷ represents hydrogen;
- Het² represents a heterocycle selected from morpholinyl, piperazinyl, piperidinyl or pyrrolidinyl wherein said Het² is optionally substituted with one or where possible two or more substituents selected from hydroxy, amino or C₁₋₄alkyl-;

 In a further embodiment Het² represents a heterocycle selected from morpholinyl or piperidinyl optionally substituted with C₁₋₄alkyl-, preferably methyl;
- 35 Het¹⁴ represents morpholinyl;
 - Het¹⁶ represents a heterocycle selected from morpholinyl or pyrrolidinyl; Het²⁰ represents pyrrolidinyl or piperidinyl;

Ar⁴ represents phenyl;

10

35

Ar⁵ represents phenyl optionally substituted with cyano.

Other special group of compounds are:

- those compounds of formula (I) wherein -X¹- represents -O-;
 - those compounds of formula (I) wherein $-X^1$ represents $-NR^{10}$ -, in particular -NH-;
 - those compounds of formula (I) wherein $-X^2$ represents $-NR^{17}$ -CO-C₁₋₂alkyl-, in particular -NH-CO-C₁₋₂alkyl-;
 - those compounds of formula (I) wherein $-X^2$ represents represents $-NR^{11}$ - C_{1-2} alkyl, in particular -NH- C_{1-2} alkyl-;
 - those compounds of formula (I) wherein -Y- represents $-C_{1-5}$ alkyl- NR^{13} -CO- C_{1-5} alkyl- or $-C_{1-5}$ alkyl-CO- NR^{14} - C_{1-5} alkyl-NH-CO- C_{1-5} alkyl-;
 - those compounds of formula (I) wherein R¹ is fluoro, chloro or bromo;
- those compounds of formula (I) wherein R² is fluoro, chloro or bromo;
 - those compounds of formula (I) wherein R¹ and R² represent halo, in particular those compounds of formula (I) wherein R¹ represents fluoro and R² represents chloro;
 - those compounds of formula (I) wherein R² is Het¹, in particular thiazolyl optionally substituted with methyl;
- those compounds of formula (I) wherein R^2 is $C_{2\text{-}6}$ alkynyl-, in particular ethylyn;
 - those compounds of formula (I) wherein R² is Ar⁵, in particular phenyl optionally substituted with cyano;
 - those compounds of formula (I) wherein R³ represents methoxy and wherein said methoxy is at position 7 of the structure of formula (I).
- those compounds of formula (I) wherein R^3 represents C_{1-4} alkyloxy substituted with one substituted from C_{1-4} alkyloxy- or Het^2 -, in particular propyloxy substituted with morpholinyl;
 - those compounds of formula (I) wherein R^{11} is hydrogen or C_{1-4} alkyl-, in particular methyl or wherein R^{11} is C_{1-4} alkyl-oxy-carbonyl-, in particular t-butyl-oxy-carbonyl-
- those compounds of formula (I) wherein Het^2 represent morpholinyl optionally substituted with C_{1-4} alkyl, preferably morpholinyl attached through the nitrogen atom to the remainder of the compounds of formula (I);
 - those compounds of formula (I) with Het^3 represent morpholinyl optionally substituted with $\text{C}_{1\text{-}4}$ alkyl, preferably morpholinyl attached through the nitrogen atom to the remainder of the compounds of formula (I);

- those compounds of formula (I) wherein Het^{12} represent morpholinyl optionally substituted with C_{1-4} alkyl, preferably morpholinyl attached through the nitrogen atom to the remainder of the compounds of formula (I).
- In a further embodiment of the present invention the R¹ substituent is at position 4', the R² substituent is at position 5' and the R³ substituent at position 7 of the structure of formula (I).

The compounds of this invention can be prepared by any of several standard synthetic processes commonly used by those skilled in the art of organic chemistry and described for instance in the following references; "Heterocyclic Compounds" – Vol.24 (part4) p 261-304 Fused pyrimidines, Wiley – Interscience; Chem. Pharm. Bull., Vol 41(2) 362-368 (1993); J.Chem.Soc., Perkin Trans. 1, 2001, 130-137.

$$X_3-Y_1$$
 X_4
 Y_2-X_2
 R_2
 X_3-Y_1
 X_4
 X_4
 X_4
 X_4
 X_2-X_2
 X_3
 X_4
 X_4

 Y_1 and Y_2 represent a C_{1-5} alkyl or CO- C_{1-5} alkyl

10

 X_3 and X_4 represent optionally protected functional groups, such as for example a primair, secundair or tertiair amine, hydroxy or halo (Cl, Br or I), which upon reaction produce together with the Y_1 respectively Y_2 substituent to which they are attached, the divalent Y radical as defined for formula (I)

- As further exemplified in the experimental part of the description, the compounds of formula (I) wherein X¹ represents -O- were generally prepared starting from 6-acetoxy-4-chloro-3-cyanoquinolines of formula (II), which can be prepared from the known 5-acetoxy-4-alkoxy-2-nitrobenzoic acid (Scheme 2).
- Coupling of this quinoline of formula (II) with suitable substituted anilines (III), which in their turn can be prepared according to reaction schemes 3-7, furnish the intermediate compounds (IV).

Deprotection of the intermediates of formula (IV) as described in *Protective Groups in Organic Synthesis by T.W. Greene and P.G.M. Wuts, 3rd edition, 1998* followed by ring closure under Mitsunobu conditions give the target compounds (I) (Scheme 1).

Scheme 1

V = protective group such as for example methylcarbonyl, t-butyl, methyl, ethyl, benzyl or trialkylsilyl groups

R¹⁸ represents Ar³, Ar⁴-C₁₋₄alkyl, C₁₋₄alkyl, C₂₋₆alkenyl optionally substituted with Het¹² or R¹⁸ represents C₁₋₄alkyl substituted with one or where possible two or more substituents selected from C₁₋₄alkyloxy, hydroxy, halo, Het², NR⁶R⁷, NR⁸R⁹-carbonyl or Het³-carbonyl, wherein Ar³, Ar⁴, Het¹², Het², R⁶, R⁷, R⁸, R⁹and Het³ are defined as for the compounds of formula (I)

5

10

The 6-acetoxy-4-chloro-3-cyano-quinoline (II) may be produced according to scheme 2. In this synthesis scheme the 2-amino-benzoic ester derivative (VII) may be produced by esterifying the 5-acetoxy-4-methoxy-2-nitrobenzoic acid (V), for example with dimethylsulfuric acid in the presence of a base, for example potassium carbonate and then reducing the nitro group for example with iron/acetic acid.

Next the compound (VII) thus obtained is converted into the quinoline ring of formula (IX) according to a method described, for example with 1,1-dimethoxytrimethylamine (DMFDMA) in dimethylformamide (DMF), followed by an electrophilic substitution reaction to introduce the 3-cyano substituent.

Next the 3-cyano-quinoline derivative thus obtained is chlorinated by action of a chlorinating agent for example SOCl₂ in DMF to yield the quinoline derivative of formula (II).

-17-

Scheme 2

 R^{18} represents Ar^3 , Ar^4 - C_{1-4} alkyl, C_{1-4} alkyl, C_{2-6} alkenyl optionally substituted with Het 12 or R^{18} represents C_{1-4} alkyl substituted with one or where possible two or more substituents selected from C_{1-4} alkyloxy, hydroxy, halo, Het 2 , NR^6R^7 , NR^8R^9 -carbonyl or Het 3 -carbonyl, wherein Ar^3 , Ar^4 , Het 12 , Het 2 , R^6 , R^7 , R^8 , R^9 and Het 3 are defined as for the compounds of formula (I)

For those compounds where X^2 represents -O-, the suitable substituted anilines of formula (III^a) are generally prepared from the commercially available nitro-phenols (X) and the α , ω -protected halogenated alcohols (XI) under alkaline conditions in a reaction inert solvent, for example, using dimethylacetamide (DMA) in the presence of K_2CO_3 . The resulting nitro-phenyl derivative (XII) is subsequently reduced according to standard conditions, for example, using iron/acetic acid, to yield the substituted anilines of formula (III^a) (Scheme 3).

10

5

Scheme 3

X represents a halogen such as for example, Cl, Br, I and F V represents a protective group such as for example methylcarbonyl For those compounds where X² represents –NR¹¹-or –NR¹¹-C₁₋₂alkyl-, the suitable substituted anilines of formula (III^b) are generally prepared from the commercially available 2-nitro-benzaldehydes (XIII) and the amine substituted alcohols (XIV) by reductive amination under standard conditions, for example using NaBH₄ and titanium(iv)isopropoxide as reducing agents in ethanol as solvent, yielding in a first step the nitro-benzylamines of formula (XV).

Next the primary free alcohol is protected using art known procedures, for example, using an esterification reaction with acetic anhydride in the presence of pyridine.

The thus obtained intermediate of formula (XVI) is subsequently reduced according to standard conditions, for example, using iron/acetic acid to yield the substituted anilines of formula (III^b) (Scheme 4).

5

10

Scheme 4

Reductive
$$R^{1}$$
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{2}
 R^{1}
 R^{1}
 R^{1}
 R^{2}
 R^{1}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{2}
 R^{1}
 R^{2}
 R^{2}

V represents a protective group such as for example methylcarbonyl

For those compounds where X² represents –O-N=CH-, the suitable substituted anilines of formula (III^c) are generally prepared according to reaction scheme 5.

In a first step the known 2-nitro-benzaldehydes (XIII) are converted into the corresponding oxime (XVII) using, for example, the art known condensation reaction with hydroxylamine.

Next said oxime of formula XVII is allowed to react with an halogenated alkylacetate under alkaline conditions, for example using K₂CO₃ in DMSO, followed by reducing the nitro group, for example, with iron/acetic acid, to provide the suitable substituted aniline of formula (III^c).

X represents a halogen such as for example Cl, Br, I or F

For those compounds where X^2 represents a direct bond and Y represents C_{1-6} alkyl-NH-CO-, the suitable substituted anilines of formula (III^d) are generally prepared according to reaction scheme 6.

- In a first step the known 2-nitro-benzoic acids (XX) are amidated to the intermediates of formula (XXII) under art known conditions, for example, using a hydroxylated amine of formula (XXI) that is added dropwise to a mixture of (XX) in CH₂Cl₂ in the presence of 1,1'carbonylbis-1H-imidazole.
- Next the primary free alcohol is protected using art known procedures, for example, using an esterification reaction with acetic anhydride in the presence of pyridine. The thus obtained intermediate of formula (XXIII) is subsequently reduced according to standard conditions, for example, using iron/acetic acid to yield the substituted anilines of formula (III^d).

15

5

V represents a protective group such as for example methylcarbonyl

For those compounds where X² represents a direct bond the suitable substituted anilines of formula (III^e) are generally prepared according to reaction scheme 7. In a first step the known 2-nitro-benzaldehydes (XIII) are alkenated to the intermediates of formula (XXV) under art known conditions, for example, using the Wittig Reaction with the appropriate phosphonium salt of formula (XXIV). Following esterification of the free carboxylic acid under standard conditions for example, using ethanol under acidic conditions, the intermediate of formula (XXVI) are reduced to yield the desired substituted anilines of formula (III^e).

Scheme 7 $R^{2} \longrightarrow H \longrightarrow R^{2} \longrightarrow R^{2}$

Y₃ represents a C₁₋₇alkyl

Alternatively, those compounds of formula (I'b) wherein Y represents -C₁₋₅alkyl-NR¹²-C₁₋₅alkyl-, -C₁₋₅alkyl-NR¹³-CO-C₁₋₅alkyl-, -C₁₋₅alkyl-NH-CO-CH₂R¹⁵-NH- or -C₁₋₅alkyl-CO-NR¹⁴-C₁₋₅alkyl-are prepared using the following synthesis scheme. The intermediates of formula (IVb) are obtained as described hereinbefore. Deprotection and subsequent formation of the corresponding ether using the appropriate aminated alcohol under standard conditions provides the intermediates of formula (XXVIII). Deprotection followed by ring closure provides the target compounds of formula (I'b).

10

15

V = protective group such as for example, methylcarbonyl, t-butyl, methyl, ethyl, benzyloxycarbonyl or trialkylsilyl groups, or in case of solid phase chemistry the resin to which the remainder of the molecule is attached

R¹⁸ represents Ar³, Ar⁴-C₁₋₄alkyl, C₁₋₄alkyl, C₂₋₆alkenyl optionally substituted with Het¹² or R¹⁸ represents C_{1-4} alkyl substituted with one or where possible two or more substituents selected from C₁₋₄alkyloxy, hydroxy, halo, Het², NR⁶R⁷, NR⁸R⁹-carbonyl or Het³-carbonyl, wherein Ar³, Ar⁴, and Het³ are defined as for the compounds of formula (I) Y₁ and Y₂ each independently represent a C₁₋₅alkyl, CO-C₁₋₅alkyl or CO-CH₂R¹⁵-NH-

Where necessary or desired, any one or more of the following further steps in any order may be performed:

(i) removing any remaining protecting group(s); 5

- (ii) converting a compound of formula (I) or a protected form thereof into a further compound of formula (I) or a protected form thereof;
- (iii) converting a compound of formula (I) or a protected form thereof into a N-oxide, a salt, a quaternary amine or a solvate of a compound of formula (I) or a protected form thereof;
- (iv) converting a N-oxide, a salt, a quaternary amine or a solvate of a compound of formula (I) or a protected form thereof into a compound of formula (I) or a protected form thereof;

(v) converting a *N*-oxide, a salt, a quaternary amine or a solvate of a compound of formula (I) or a protected form thereof into another *N*-oxide, a pharmaceutically acceptable addition salt a quaternary amine or a solvate of a compound of formula (I) or a protected form thereof;

(vi) where the compound of formula (I) is obtained as a mixture of (R) and (S) enantiomers resolving the mixture to obtain the desired enantiomer.

5

10

15

20

25

Compounds of formula (I), *N*-oxides, addition salts, quaternary amines and stereochemical isomeric forms thereof can be converted into further compounds according to the invention using procedures known in the art.

It will be appreciated by those skilled in the art that in the processes described above the functional groups of intermediate compounds may need to be blocked by protecting groups.

Functional groups, which it is desirable to protect, include hydroxy, amino and carboxylic acid. Suitable protecting groups for hydroxy include trialkylsilyl groups (e.g. <u>tert</u>-butyldimethylsilyl, <u>tert</u>-butyldiphenylsilyl or trimethylsilyl), benzyl and tetrahydropyranyl. Suitable protecting groups for amino include <u>tert</u>-butyloxycarbonyl or benzyloxycarbonyl. Suitable protecting groups for carboxylic acid include $C_{(1-6)}$ alkyl or benzyl esters.

The protection and deprotection of functional groups may take place before or after a reaction step.

Additionally, the N-atoms in compounds of formula (I) can be methylated by art-known methods using CH₃-I in a suitable solvent such as, for example 2-propanone, tetrahydrofuran or dimethylformamide.

The compounds of formula (I) can also be converted into each other following artknown procedures of functional group transformation of which some examples are mentioned hereinafter.

The compounds of formula (I) may also be converted to the corresponding *N*-oxide forms following art-known procedures for converting a trivalent nitrogen into its *N*-oxide form. Said *N*-oxidation reaction may generally be carried out by reacting the starting material of formula (I) with 3-phenyl-2-(phenylsulfonyl)oxaziridine or with an

appropriate organic or inorganic peroxide. Appropriate inorganic peroxides comprise, for example, hydrogen peroxide, alkali metal or earth alkaline metal peroxides, e.g. sodium peroxide, potassium peroxide; appropriate organic peroxides may comprise peroxy acids such as, for example, benzenecarboperoxoic acid or halo substituted benzenecarboperoxoic acid, e.g. 3-chlorobenzenecarboperoxoic acid, peroxoalkanoic acids, e.g. peroxoacetic acid, alkylhydroperoxides, e.g. t-butyl hydroperoxide. Suitable solvents are, for example, water, lower alkanols, e.g. ethanol and the like, hydrocarbons, e.g. toluene, ketones, e.g. 2-butanone, halogenated hydrocarbons, e.g. dichloromethane, and mixtures of such solvents.

10

5

Pure stereochemically isomeric forms of the compounds of formula (I) may be obtained by the application of art-known procedures. Diastereomers may be separated by physical methods such as selective crystallization and chromatographic techniques, e.g. counter-current distribution, liquid chromatography and the like.

15

20

25

30

Some of the compounds of formula (I) and some of the intermediates in the present invention may contain an asymmetric carbon atom. Pure stereochemically isomeric forms of said compounds and said intermediates can be obtained by the application of art-known procedures. For example, diastereoisomers can be separated by physical methods such as selective crystallization or chromatographic techniques, e.g. counter current distribution, liquid chromatography and the like methods. Enantiomers can be obtained from racemic mixtures by first converting said racemic mixtures with suitable resolving agents such as, for example, chiral acids, to mixtures of diastereomeric salts or compounds; then physically separating said mixtures of diastereomeric salts or compounds by, for example, selective crystallization or chromatographic techniques, e.g. liquid chromatography and the like methods; and finally converting said separated diastereomeric salts or compounds into the corresponding enantiomers. Pure stereochemically isomeric forms may also be obtained from the pure stereochemically isomeric forms of the appropriate intermediates and starting materials, provided that the intervening reactions occur stereospecifically.

An alternative manner of separating the enantiomeric forms of the compounds of formula (I) and intermediates involves liquid chromatography, in particular liquid

chromatography using a chiral stationary phase.

35

Some of the intermediates and starting materials as used in the reaction procedures mentioned hereinabove are known compounds and may be commercially available or

may be prepared according to art-known procedures. However, in the synthesis of macrocyclic kinase inhibitors, such as for example the compounds of formula (I), the present invention further provides;

a) the intermediates of formula (III)

5

10

20

25

30

$$V \longrightarrow X^{2} \longrightarrow \mathbb{R}^{2}$$

$$H_{2}N \longrightarrow \mathbb{R}^{1}$$
(III)

the pharmaceutically acceptable addition salts and the stereochemically isomeric forms thereof, wherein

Y represents -C₃₋₉alkyl-, -C₃₋₉alkenyl-, -C₁₋₅alkyl-oxy-C₁₋₅alkyl-,

 $-C_{1-5}$ alkyl- NR^{12} - C_{1-5} alkyl-, $-C_{1-5}$ alkyl- NR^{13} -CO- C_{1-5} alkyl-,

 $-C_{1-5}$ alkyl-CO-NR¹⁴- C_{1-5} alkyl-, $-C_{1-6}$ alkyl-CO-NH-, $-C_{1-6}$ alkyl-NH-CO-,

-C₁₋₇alkyl-CO-, C₁₋₆alkyl-CO-C₁₋₆alkyl;

X² represents a direct bond, O, -O-C₁₋₂alkyl-, CO, -CO- C₁₋₂alkyl-, NR¹¹,

 $-NR^{11}$ - C_{1-2} alkyl-, $-CH_2$ -, -O-N=CH- or C_{1-2} alkyl;

15 R¹ represents hydrogen, cyano, halo, hydroxy, formyl, C₁₋₆alkoxy-, C₁₋₆alkyl-,

 C_{1-6} alkoxy- substituted with halo,

C₁₋₄alkyl substituted with one or where possible two or more substituents selected from hydroxy or halo; and

R² represents hydrogen, cyano, halo, hydroxy, hydroxycarbonyl-, Het¹⁶-carbonyl-,

C₁₋₄alkyloxycarbonyl-, C₁₋₄alkylcarbonyl-, aminocarbonyl-, mono-or

di(C₁₋₄alkyl)aminocarbonyl-, Het¹, formyl, C₁₋₄alkyl-, C₂₋₆alkynyl-, C₃₋₆cycloalkyl-,

 $C_{3\text{-}6}$ cycloalkyloxy-, $C_{1\text{-}6}$ alkoxy-, Ar^5 , Ar^1 -oxy-, dihydroxyborane ,

 C_{1-6} alkoxy- substituted with halo,

C₁₋₄alkyl substituted with one or where possible two or more substituents selected from halo, hydroxy or NR⁴R⁵,

 C_{1-4} alkylcarbonyl- wherein said C_{1-4} alkyl is optionally substituted with one or where possible two or more substituents selected from hydroxy or C_{1-4} alkyl-oxy-;

 R^4 and R^5 are each independently selected from hydrogen or C_{1-4} alkyl;

 R^{11} represents hydrogen, C_{1-4} alkyl, C_{1-4} alkyl-oxy-carbonyl-, Het^{17} , Het^{18} - C_{1-4} alkyl-, C_{2-4} alkenylcarbonyl- optionally substituted with Het^{19} - C_{1-4} alkylaminocarbonyl-, C_{2-4} alkenylsulfonyl-, C_{1-4} alkyloxy C_{1-4} alkyl- or phenyl optionally substituted with one or where possible two or more substituents selected from hydrogen, hydroxy, amino or C_{1-4} alkyloxy-;

R¹² represents hydrogen, C₁₋₄alkyl, Het¹³, Het¹⁴-C₁₋₄alkyl- or phenyl optionally substituted with one or where possible two or more substituents selected from hydrogen, hydroxy, amino or C₁₋₄alkyloxy-;

5

10

20

- R^{13} and R^{14} are each independently selected from hydrogen, C_{1-4} alkyl, Het¹⁵- C_{1-4} alkyl-; or C_{1-4} alkyloxy C_{1-4} alkyl-;
- Het¹ represents a heterocycle selected from piperidinyl, morpholinyl, piperazinyl, furanyl, pyrazolyl, dioxolanyl, thiazolyl, oxazolyl, imidazolyl, isoxazolyl, oxadiazolyl, pyridinyl or pyrrolidinyl wherein said Het¹ is optionally substituted amino, C₁₋₄alkyl, hydroxy-C₁₋₄alkyl-, phenyl, phenyl-C₁₋₄alkyl-,
 - C_{1-4} alkyl-oxy- C_{1-4} alkyl- mono- or di(C_{1-4} alkyl)amino- or amino-carbonyl-;
- Het¹³ represent a heterocycle selected from pyrrolidinyl or piperidinyl wherein said heterocycle is optionally substituted with one or where possible two or more substituents selected from C₁₋₄alkyl, C₃₋₆cycloalkyl, hydroxy-C₁₋₄allkyl-, C₁₋₄alkyloxyC₁₋₄alkyl or polyhydroxy-C₁₋₄alkyl-;
- Het¹⁴ represent a heterocycle selected from morpholinyl, pyrrolidinyl, piperazinyl or piperidinyl wherein said Het¹⁴ is optionally substituted with one or where possible two or more substituents selected from C₁₋₄alkyl, C₃₋₆cycloalkyl, hydroxy-C₁₋₄alkyl-, C₁₋₄alkyloxyC₁₋₄alkyl or polyhydroxy-C₁₋₄alkyl-;
 - Het¹⁵ represent a heterocycle selected from morpholinyl, pyrrolidinyl, piperazinyl or piperidinyl wherein said Het¹⁵ is optionally substituted with one or where possible two or more substituents selected from C₁₋₄alkyl, C₃₋₆cycloalkyl, hydroxy-C₁₋₄alkyl-, C₁₋₄alkyloxyC₁₋₄alkyl or polyhydroxy-C₁₋₄alkyl-;
 - Het¹⁶ represent a heterocycle selected from morpholinyl, pyrrolidinyl, piperazinyl, 1,3,2-dioxaborolane or piperidinyl wherein said heterocycle is optionally substituted with one or more substituents selected from C_{1-4} alkyl; and
 - Het¹⁷ represent a heterocycle selected from pyrrolidinyl or piperidinyl wherein said heterocycle is optionally substituted with one or where possible two or more substituents selected from C_{1-4} alkyl, C_{3-6} cycloalkyl, hydroxy- C_{1-4} alkyl-, C_{1-4} alkyloxy C_{1-4} alkyl or polyhydroxy- C_{1-4} alkyl-;
- Het¹⁸ and Het¹⁹ each independently represent a heterocycle selected from morpholinyl, pyrrolidinyl, piperazinyl or piperidinyl wherein said Het¹⁸ and Het¹⁹ are optionally substituted with one or where possible two or more substituents selected from C₁₋₄alkyl, C₃₋₆cycloalkyl, hydroxy-C₁₋₄alkyl-, C₁₋₄alkyloxyC₁₋₄alkyl or polyhydroxy-C₁₋₄alkyl-;
- Ar¹, Ar², Ar³, Ar⁴ and Ar⁵ each independently represent phenyl optionally substituted with cyano, C₁₋₄alkylsulfonyl-, C₁₋₄alkylsulfonylamino-, aminosulfonylamino-, hydroxy-C₁₋₄alkyl, aminosulfonyl-, hydroxy-, C₁₋₄alkyloxy- or C₁₋₄alkyl.

In particular the intermediates of formula (III) wherein one or more of the following restrictions apply;

- i) Y represents $-C_{3-9}$ alkyl-, $-C_{1-5}$ alkyl-oxy- C_{1-5} alkyl-, $-C_{1-5}$ alkyl-NR¹²- C_{1-5} alkyl-NH-CO-;
- ii) X^2 represents a direct bond, O, -O-C₁₋₂alkyl-, NR^{11} , - NR^{11} -C₁₋₂alkyl-, -CH₂-, -O-N=CH- or C₁₋₂alkyl;
- iii) R¹ represents hydrogen, cyano, halo or hydroxy, preferably halo;
- iv) R² represents hydrogen, cyano, halo, hydroxy, hydroxycarbonyl-,

 C₁₋₄alkyloxycarbonyl-, Het¹⁶-carbonyl-, C₁₋₄alkyl-, C₂₋₆alkynyl-, Ar⁵ or Het¹;

 In a further embodiment R² represents hydrogen, cyano, halo, hydroxy,

 C₂₋₆alkynyl- or Het¹; in particular R² represents hydrogen, cyano, halo, hydroxy, or

 Ar⁵;
 - v) R^{11} represents hydrogen, C_{1-4} alkyl, or C_{1-4} alkyloxycarbonyl;
- vi) R¹² represents Het¹⁴-C₁₋₄alkyl, in particular morpholinyl-C₁₋₄alkyl;
 - vii) Het¹ represents thiazolyl optionally substituted with amino, C₁₋₄alkyl, hydroxy-C₁₋₄alkyl-, phenyl, phenyl-C₁₋₄alkyl-, C₁₋₄alkyl-oxy-C₁₋₄alkyl- mono- or di(C₁₋₄alkyl)amino- or amino-carbonyl-;
 - viii) Het¹⁶ represents a heterocycle selected from piperidinyl or pyrrolidinyl.

b) the intermediates of formula (XXX)

5

HO
$$Y_2 - X_2$$
 R_2 R_2 R_3 R_4 R_5 R_4 R_5 R

- the pharmaceutically acceptable addition salts and the stereochemically isomeric forms thereof, wherein
 - Y₁ and Y₂ each independently represent C₁₋₅alkyl, CO-C₁₋₅alkyl or CO-CH₂R¹⁵-NH-;
 - X^1 represents a direct bond, O, -O-C₁₋₂alkyl-, CO, -CO- C₁₋₂alkyl-, NR¹⁰, -NR¹⁰-C₁₋₂alkyl-, -CH₂-, -O-N=CH- or -C₁₋₂alkyl-;
- 30 X^2 represents a direct bond, O, -O-C₁₋₂alkyl-, CO, -CO- C₁₋₂alkyl-, NR¹¹, -NR¹¹-C₁₋₂alkyl-, -CH₂-, -O-N=CH- or C₁₋₂alkyl;
 - R¹ represents hydrogen, cyano, halo, hydroxy, formyl, C₁₋₆alkoxy-, C₁₋₆alkyl-,

C₁₋₆alkoxy- substituted with halo,

5

10

- C₁₋₄alkyl substituted with one or where possible two or more substituents selected from hydroxy or halo; and
- R² represents hydrogen, cyano, halo, hydroxy, hydroxycarbonyl-, Het¹⁶-carbonyl-, C₁₋₄alkyloxycarbonyl-, C₁₋₄alkylcarbonyl-, aminocarbonyl-, mono-or di(C₁₋₄alkyl)aminocarbonyl-, Het¹, formyl, C₁₋₄alkyl-, C₂₋₆alkynyl-, C₃₋₆cycloalkyl-, C₃₋₆cycloalkyloxy-, C₁₋₆alkoxy-, Ar⁵, Ar¹-oxy-, dihydroxyborane, C₁₋₆alkoxy- substituted with halo,
 - C_{1-4} alkyl substituted with one or where possible two or more substituents selected from halo, hydroxy or NR^4R^5 ,
 - $C_{1\text{--}4}$ alkylcarbonyl- wherein said $C_{1\text{--}4}$ alkyl is optionally substituted with one or where possible two or more substituents selected from hydroxy or $C_{1\text{--}4}$ alkyl-oxy-;
 - R^4 and R^5 are each independently selected from hydrogen or C_{1-4} alkyl;
- R⁶ and R⁷ are each independently selected from hydrogen, C₁₋₄alkyl, Het⁸, aminosulfonyl-, mono- or di (C₁₋₄alkyl)-aminosulfonyl, hydroxy-C₁₋₄alkyl-, C₁₋₄alkyl-, C₁₋₄alkyl-, C₃₋₆cycloalkyl, Het⁹-carbonyl-C₁₋₄alkyl-, Het¹⁰-carbonyl-, polyhydroxy-C₁₋₄alkyl-, Het¹¹-C₁₋₄alkyl- or Ar²-C₁₋₄alkyl-;
- R⁸ and R⁹ are each independently selected from hydrogen, C_{1-4} alkyl, C_{3-6} cycloalkyl, Het⁴, hydroxy- C_{1-4} alkyl-, C_{1-4} alkyloxy C_{1-4} alkyl- or polyhydroxy- C_{1-4} alkyl-;
 - R^{10} represents hydrogen, C_{1-4} alkyl, C_{1-4} alkyl-oxy-carbonyl-, Het^{17} , Het^{18} - C_{1-4} alkyl-, C_{2-4} alkenylcarbonyl- optionally substituted with Het^{19} - C_{1-4} alkylaminocarbonyl-, C_{2-4} alkenylsulfonyl-, C_{1-4} alkyloxy C_{1-4} alkyl- or phenyl optionally substituted with one or where possible two or more substituents selected from hydrogen, hydroxy, amino or C_{1-4} alkyloxy-;
 - R¹¹ represents hydrogen, C₁₋₄alkyl, Het¹³, Het¹⁴-C₁₋₄alkyl- or phenyl optionally substituted with one or where possible two or more substituents selected from hydrogen, hydroxy, amino or C₁₋₄alkyloxy-;
- R¹⁸ represents Ar³, Ar⁴-C₁₋₄alkyl, C₁₋₄alkyl, C₂₋₆alkenyl optionally substituted with Het¹² or R¹⁸ represents C₁₋₄alkyl substituted with one or where possible two or more substituents selected from C₁₋₄alkyloxy, hydroxy, halo, Het², NR⁶R⁷, NR⁸R⁹-carbonyl or Het³-carbonyl;
- R¹⁵ represents hydrogen or C₁₋₄alkyl optionally substituted with phenyl, indolyl, methylsulfide, hydroxy, thiol, hydroxyphenyl, aminocarbonyl, hydroxycarbonyl, amine, imidazoyl or guanidino;

Het¹ represents a heterocycle selected from piperidinyl, morpholinyl, piperazinyl, furanyl, pyrazolyl, dioxolanyl, thiazolyl, oxazolyl, imidazolyl, isoxazolyl, oxadiazolyl, pyridinyl or pyrrolidinyl wherein said Het¹ is optionally substituted amino, C₁₋₄alkyl, hydroxy-C₁₋₄alkyl-, phenyl, phenyl-C₁₋₄alkyl-,

 $C_{1\text{-4}}$ alkyl-oxy- $C_{1\text{-4}}$ alkyl- mono- or di($C_{1\text{-4}}$ alkyl)amino- or amino-carbonyl-; Het² represents a heterocycle selected from morpholinyl, piperazinyl, piperidinyl, pyrrolidinyl, thiomorpholinyl or dithianyl wherein said Het² is optionally substituted with one or where possible two or more substituents selected from hydroxy, halo, amino, $C_{1\text{-4}}$ alkyl-, hydroxy- $C_{1\text{-4}}$ alkyl-, $C_{1\text{-4}}$ alkyl-oxy- $C_{1\text{-4}}$ alkyl-, mono- or di($C_{1\text{-4}}$ alkyl)amino-, mono- or di($C_{1\text{-4}}$ alkyl)amino- $C_{1\text{-4}}$ alkyl-, amino $C_{1\text{-4}}$ alkyl-, mono- or di($C_{1\text{-4}}$ alkyl)amino-sulfonyl-, aminosulfonyl-;

5

10

15

30

35

Het³, Het⁴ and Het⁸ each independently represent a heterocycle selected from morpholinyl, piperazinyl, piperidinyl, furanyl, pyrazolyl, dioxolanyl, thiazolyl, oxazolyl, imidazolyl, isoxazolyl, oxadiazolyl, pyridinyl or pyrrolidinyl wherein said Het³, Het⁴ or Het⁸ is optionally substituted with one or where possible two or more substituents selected from hydroxy-, amino-, C₁₋₄alkyl-, C₃₋₆cycloalkyl-C₁₋₄alkyl-, aminosulfonyl-, mono- or di(C₁₋₄alkyl)aminosulfonyl or amino-C₁₋₄alkyl-;

Het⁹ and Het¹⁰ each independently represent a heterocycle selected from furanyl, piperidinyl, morpholinyl, piperazinyl, pyrazolyl, dioxolanyl, thiazolyl, oxazolyl, imidazolyl, isoxazolyl, oxadiazolyl, pyridinyl or pyrrolidinyl wherein said Het⁹ or Het¹⁰ is optionally substituted C_{1-4} alkyl, C_{3-6} cycloalkyl- C_{1-4} alkyl- or amino- C_{1-4} alkyl-;

Het¹¹ represents a heterocycle selected from indolyl or ;

Het¹² represents a heterocycle selected from morpholinyl, piperazinyl, piperidinyl, pyrrolidinyl, thiomorpholinyl or dithianyl wherein said Het¹² is optionally substituted with one or where possible two or more substituents selected from hydroxy, halo, amino, C₁₋₄alkyl-, hydroxy-C₁₋₄alkyl-, C₁₋₄alkyl-oxy-C₁₋₄alkyl-, hydroxy-C₁₋₄alkyl-, mono- or di(C₁₋₄alkyl)amino- or mono- or di(C₁₋₄alkyl)amino-C₁₋₄alkyl-;

Het¹³ represent a heterocycle selected from pyrrolidinyl or piperidinyl wherein said Het¹³ is optionally substituted with one or where possible two or more substituents selected from C_{1-4} alkyl, C_{3-6} cycloalkyl, hydroxy- C_{1-4} alkyl-, C_{1-4} alkyloxy C_{1-4} alkyl-;

- Het¹⁴ represent a heterocycle selected from morpholinyl, pyrrolidinyl, piperazinyl or piperidinyl wherein said heterocycle is optionally substituted with one or where possible two or more substituents selected from C_{1-4} alkyl, C_{3-6} cycloalkyl, hydroxy- C_{1-4} alkyl-, C_{1-4} alkyloxy C_{1-4} alkyl or polyhydroxy- C_{1-4} alkyl-;
- Het¹⁶ represent a heterocycle selected from morpholinyl, pyrrolidinyl, piperazinyl, 1,3,2-dioxaborolane or piperidinyl wherein said heterocycle is optionally substituted with one or more substituents selected from C_{1-4} alkyl; and
 - Het¹⁷ represent a heterocycle selected from pyrrolidinyl or piperidinyl wherein said heterocycle is optionally substituted with one or where possible two or more substituents selected from C₁₋₄alkyl, C₃₋₆cycloalkyl, hydroxy-C₁₋₄alkyl-, C₁₋₄alkyloxyC₁₋₄alkyl or polyhydroxy-C₁₋₄alkyl-;
 - Het¹⁸ and Het¹⁹ each independently represent a heterocycle selected from morpholinyl, pyrrolidinyl, piperazinyl or piperidinyl wherein said Het¹⁸ and Het¹⁹ are optionally substituted with one or where possible two or more substituents selected from C₁₋₄alkyl, C₃₋₆cycloalkyl, hydroxy-C₁₋₄alkyl-, C₁₋₄alkyloxyC₁₋₄alkyl or polyhydroxy-C₁₋₄alkyl-;
 - Ar¹, Ar³, Ar⁴ and Ar⁵ each independently represent phenyl optionally substituted with cyano, C_{1-4} alkylsulfonyl-, C_{1-4} alkylsulfonylamino-, aminosulfonylamino-, hydroxy- C_{1-4} alkyl, aminosulfonyl-, hydroxy-, C_{1-4} alkyloxy- or C_{1-4} alkyl.

In particular those intermediates of formula (XXX) wherein one or more of the following restrictions apply;

i) X^1 represents -O-;

5

10

15

20

25

30

- ii) X² represents a direct bond, -NR¹¹-C₁₋₂alkyl-, -NR¹¹-CH₂-, -C₁₋₂alkyl-, -O-C₁₋₂alkyl, -O- or -O-CH₂-;
- iii) R¹ represents hydrogen or halo;
- iv) R² represents hydrogen, cyano, halo, hydroxycarbonyl-, C₁₋₄alkyloxycarbonyl-, Het¹⁶-carbonyl- or Ar⁵;
- v) R^{18} represents hydrogen, C_{1-4} alkyl-, Ar^4 - C_{1-4} alkyl or R^{18} represents C_{1-4} alkyl substituted with one or where possible two or more substituents selected from C_{1-4} alkyloxy- or Het^2 -;
 - vi) R¹¹ represents hydrogen, C₁₋₄alkyl- or C₁₋₄alkyl-oxy-carbonyl-;
 - vii) R¹² represents Het¹⁴-C₁₋₄alkyl, in particular morpholinyl-C₁₋₄alkyl;
- viii) Het² represents a heterocycle selected from morpholinyl, piperazinyl, piperidinyl or pyrrolidinyl wherein said Het² is optionally substituted with one or where possible two or more substituents selected from hydroxy, amino or C_{1-4} alkyl-;

-30-

In a further embodiment Het^2 represents a heterocycle selected from morpholinyl or piperidinyl optionally substituted with C_{1-4} alkyl-, preferably methyl;

- ix) Het¹⁴ represents morpholinyl;
- x) Het¹⁶ represents a heterocycle selected from morpholinyl or pyrrolidinyl;
- 5 xi) Ar⁴ represents phenyl;

10

25

35

xii) Ar⁵ represents phenyl optionally substituted with cyano.

It is also an object of the present invention to provide the use of an intermediate of formula (III) or (XXX) in the synthesis of a compound of formula (I).

The compounds of the present invention are useful because they possess pharmacological properties. They can therefore be used as medicines.

As described in the experimental part hereinafter, the growth inhibitory effect and antitumour activity of the present compounds has been demonstrated <u>in vitro</u>, in enzymatic assays on the receptor tyrosine kinase EGFR. In an alternative assay, the growth inhibitory effect of the compounds was tested on the ovarian carcinoma cell line SKOV3 using art known cytotoxicity assays such as LIVE/DEAD (Molecular Probes) or MTT.

Accordingly, the present invention provides the compounds of formula (I) and their pharmaceutically acceptable *N*-oxides, addition salts, quaternary amines and stereochemically isomeric forms for use in therapy. More particular in the treatment or prevention of cell proliferation mediated diseases. The compounds of formula (I) and their pharmaceutically acceptable *N*-oxides, addition salts, quaternary amines and the stereochemically isomeric forms may hereinafter be referred to as compounds according to the invention.

Disorders for which the compounds according to the invention are particularly useful are atherosclerosis, restenosis, cancer and diabetic complications e.g. retinopathy.

In view of the utility of the compounds according to the invention, there is provided a method for the treatment of an animal, for example, a mammal including humans, suffering from a cell proliferative disorder such as atherosclerosis, restenosis and cancer, which comprises administering an effective amount of a compound according to the present invention.

-31-

Said method comprising the systemic or topical administration of an effective amount of a compound according to the invention, to animals, including humans.

5

10

15

20

25

30

35

Due to their high degree of selectivity as EGFR inhibitors, the compounds of formula (I) as defined above, are also useful to mark or identify the kinase domain within the receptor tyrosine kinase receptors. To this purpose, the compounds of the present invention can be labelled, in particular by replacing, partially or completely, one or more atoms in the molecule by their radioactive isotopes. Examples of interesting labelled compounds are those compounds having at least one halo which is a radioactive isotope of iodine, bromine or fluorine; or those compounds having at least one ¹¹C-atom or tritium atom.

One particular group consists of those compounds of formula (I) wherein R¹ is a radioactive halogen atom. In principle, any compound of formula (I) containing a halogen atom is prone for radiolabeling by replacing the halogen atom by a suitable isotope. Suitable halogen radioisotopes to this purpose are radioactive iodides, e.g. ¹²²I, ¹²³I, ¹²⁵I, ¹³¹I; radioactive bromides, e.g. ⁷⁵Br, ⁷⁶Br, ⁷⁶Br, and radioactive fluorides, e.g. ¹⁸F. The introduction of a radioactive halogen atom can be performed by a suitable exchange reaction or by using any one of the procedures as described hereinabove to prepare halogen derivatives of formula (I).

Another interesting form of radiolabeling is by substituting a carbon atom by a ¹¹C-atom or the substitution of a hydrogen atom by a tritium atom.

Hence, said radiolabelled compounds of formula (I) can be used in a process of specifically marking receptor sites in biological material. Said process comprises the steps of (a) radiolabeling a compound of formula (I), (b) administering this radiolabelled compound to biological material and subsequently (c) detecting the emissions from the radiolabelled compound.

The term biological material is meant to comprise every kind of material which has a biological origin. More in particular this term refers to tissue samples, plasma or body fluids but also to animals, specially warm-blooded animals, or parts of animals such as organs.

When used in *in vivo* assays, the radiolabelled compounds are administered in an appropriate composition to an animal and the location of said radiolabelled compounds is detected using imaging techniques, such as, for instance, Single Photon Emission Computerized Tomography (SPECT) or Positron Emission Tomography (PET) and the like. In this manner the distribution of the particular receptor sites throughout the body can be detected and organs containing said receptor sites can be visualized by the

imaging techniques mentioned hereinabove. This process of imaging an organ by administering a radiolabelled compound of formula (I) and detecting the emissions from the radioactive compound also constitutes a part of the present invention.

In yet a further aspect, the present invention provides the use of the compounds according to the invention in the manufacture of a medicament for treating any of the aforementioned cell proliferative disorders or indications.

10

15

20

The amount of a compound according to the present invention, also referred to here as the active ingredient, which is required to achieve a therapeutical effect will be, of course, vary with the particular compound, the route of administration, the age and condition of the recipient, and the particular disorder or disease being treated. A suitable daily dose would be from 0.01 mg/kg to 300 mg/kg body weight, in particular from 10 mg/kg to 100 mg/kg body weight. A method of treatment may also include administering the active ingredient on a regimen of between one and four intakes per day.

While it is possible for the active ingredient to be administered alone, it is preferable to present it as a pharmaceutical composition. Accordingly, the present invention further provides a pharmaceutical composition comprising a compound according to the present invention, together with a pharmaceutically acceptable carrier or diluent. The carrier or diluent must be "acceptable" in the sense of being compatible with the other ingredients of the composition and not deleterious to the recipients thereof.

The pharmaceutical compositions of this invention may be prepared by any methods 25 well known in the art of pharmacy, for example, using methods such as those described in Gennaro et al. Remington's Pharmaceutical Sciences (18th ed., Mack Publishing Company, 1990, see especially Part 8: Pharmaceutical preparations and their Manufacture). A therapeutically effective amount of the particular compound, in base form or addition salt form, as the active ingredient is combined in intimate admixture 30 with a pharmaceutically acceptable carrier, which may take a wide variety of forms depending on the form of preparation desired for administration. These pharmaceutical compositions are desirably in unitary dosage form suitable, preferably, for systemic administration such as oral, percutaneous or parenteral administration; or topical administration such as via inhalation, a nose spray, eye drops or via a cream, gel, 35 shampoo or the like. For example, in preparing the compositions in oral dosage form, any of the usual pharmaceutical media may be employed, such as, for example, water,

glycols, oils, alcohols and the like in the case of oral liquid preparations such as suspensions, syrups, elixirs and solutions: or solid carriers such as starches, sugars, kaolin, lubricants, binders, disintegrating agents and the like in the case of powders, pills, capsules and tablets. Because of their ease in administration, tablets and capsules represent the most advantageous oral dosage unit form, in which case solid pharmaceutical carriers are obviously employed. For parenteral compositions, the carrier will usually comprise sterile water, at least in large part, though other ingredients, for example, to aid solubility, may be included. Injectable solutions, for example, may be prepared in which the carrier comprises saline solution, glucose solution or a mixture of saline and glucose solution. Injectable suspensions may also be prepared in which case appropriate liquid carriers, suspending agents and the like may be employed. In the compositions suitable for percutaneous administration, the carrier optionally comprises a penetration enhancing agent and/or a suitable wettable agent, optionally combined with suitable additives of any nature in minor proportions, which additives do not cause any significant deleterious effects on the skin. Said additives may facilitate the administration to the skin and/or may be helpful for preparing the desired compositions. These compositions may be administered in various ways, e.g., as a transdermal patch, as a spot-on or as an ointment.

It is especially advantageous to formulate the aforementioned pharmaceutical compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used in the specification and claims herein refers to physically discrete units suitable as unitary dosages, each unit containing a predetermined quantity of active ingredient calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. Examples of such dosage unit forms are tablets (including scored or coated tablets), capsules, pills, powder packets, wafers, injectable solutions or suspensions, teaspoonfuls, tablespoonfuls and the like, and segregated multiples thereof.

30

35

5

10

15

20

25

Experimental part

Hereinafter, the term "ADDP" is defined as 1,1'-(azodicarbonyl)bis-piperidine, "BuLi" is defined as butyl-lithium, "DCM" is defined as dichloromethane, "DIPE" is defined as diisopropyl ether, "DMF" is defined as *N,N*-dimethylformamide, "MeOH" is defined as methanol, "THF" is defined as tetrahydrofuran, "iPrOH" is defined as 2-propanol, "t-BuOH" is defined as 2-methyl-2-butanol, "AcOEt" is defined as ethyl acetate, "TFA" is defined as trifluoroacetic acid, "DIPEA" is defined as diisopropylethylamine

-34-

"HBTU" is defined as 1-[bis(dimethylamino)methylene]-, hexafluorophosphate(1-), 1H-benzotriazolium, 3-oxide, "(n-Bu)₄NI" is defined as tetrabutylammonium iodide, "NMP" is defined as 1-methyl-2-pyrrolidinone and "Et₃N" is defined as N,N-diethylethanamine.

Example O1 – General description for the synthesis of compounds of formula 12

As used in scheme 9 hereinbefore; R^1 and R^2 each independently represent hydrogen or C_{1-4} alkyl or R^1 and R^2 taken together from a heterocycle selected from pyrrolidinyl,

-36-

imidazolinyl, piperidinyl, morpholinyl, pyrazolidinyl or piperazinyl; n represents 0, 1, 2 or 3.

Reductive Amination.

To a solution of 1 (1 equiv.) and 2 (1 equiv.) in 1,2-dichloroethane (3 mL/mmol), MgSO₄ is added (1.5 equiv.) and the mixture is stirred at room temperature. for 90 minutes. To the resulting mixture NaBH(OAc)₃ (1.1 equiv.) is added in three portions (one portion per hour), and the resulting mixture is stirred for additional 2 hours at room temperature. The reaction mixture is poured into a saturated solution of Na₂CO₃ and extracted with dichloromethane (3x). The combined organic layers is washed with brine, dried over MgSO₄, filtered and concentrated. The crude product is purified by flash chromatography (SiO₂, AcOEt/Hexanes mixture) to afford pure 3.

Reduction of the Nitro group.

To a solution of **3** (1 equiv.) in methanol (5mL/mmol), Pt/C is added (10% w/w) and the resulting mixture is placed under H₂ atmosphere (balloon) and stirred at room temperature overnight (14 hours). The mixture is filtered through a short pad of celite and concentrated to dryness. In certain cases purification through flash chromatography is required to afford pure anilines of type **4**.

5

10

15

20

25

30

Nucleophilic displacement.

To a stirred suspension of chlorocyano quinoline **5** (1.05 equiv) in iPrOH or t-BuOH (11 mL/mmol), **4** is added (1 equiv.). The mixture is allowed to react under reflux temperature under N₂ for 6-8 hours. The reaction mixture is evaporated to dryness and the resulting residue is purified by flash-chromatography (SiO₂, AcOEt/Hexanes mixture) to afford pure **6**.

Deacetylation.

Compound 6 is dissolved in MeOH/NH₃ 7N (8mL/mmol). To this solution, iPrOH (2 mL/mmol) is added and the reaction mixture stirred at room temperature for 30-120 minutes (TLC monitoring). The mixture is concentrated to dryness and the resulting product used in the next step without further purification.

-37-

Alkylation Reaction.

To a stirred solution of 7 in DMF (5 mL/mmol), Cs₂CO₃ (3 equiv.) is added followed by the alkylating reagent (2.5 equiv.). The reaction mixture is stirred at room temperature overnight. When neccessary, an additional 3 equiv. of Cs₂CO₃ and 2.5 equiv. of the alkylating reagent is added and the reaction mixture further stirred at room temperature until total completion of the reaction (TLC monitoring). The reaction mixture is partitioned between brine and AcOEt, and the layers separated. The organic layer is dried over MgSO₄, filtered and evaporated. The residue is purified by flash-chromatography (AcOEt/n-hexanes) to afford pure 9.

10

15

5

Cleavage of the Boc group.

To a cooled (0°C) solution of **9** in CH₂Cl₂ (3mL/mmol), TFA (2mL/mmol) is added dropwise. The resulting mixture is warmed to room temperature and stirred for 1-2 hours. A saturated solution of NaHCO₃ is added to the reaction mixture until basic pH is reached. The mixture is extracted with CH₂Cl₂ (2x). The combined organic layers are dried over MgSO₄, filtered and concentrated to dryness. The resulting free amine is obtained with enough purity to be used in the next step without further purification.

20

Saponification of the ester group.

To a solution of **10** in MeOH/H₂O (10:1) is added LiOH'H₂O (5 equiv.) and the reaction mixture is stirred at room temperature up to 2 hours. The solvent is evaporated under vaccuo and the residue is dissolved in DMF and filtered through a syntered glass funnel. The DMF is removed and the product used as such in the following reaction.

25

Cyclization reaction.

A solution of **11** (0.25 mmol, 1 equiv.) and DIPEA (6 equiv) in DMF (10mL) are added dropwise to a solution of HBTU (3 equiv) in DMF (100mL/mmol of **11**). The resulting mixture is stirred at room temperature for 1 hour. The solvent is evaporated and the product purified by reverse-phase HPLC.

30

By the above synthetic procedures, the following compounds are obtained:

7-chloro-8-fluoro-21-methoxy-13-oxo-10,11,12,13,14,15,16,17-octahydro-5H-1,19-(ethanediylidene)pyrido[4,3-b][6,1,10,13]benzoxatriazacyclohexadecine-4-carbonitrile (compound 1.1)

- 20-chloro-19-fluoro-23-methoxy-12-oxo-9,10,11,12,12a,13,14,15,17,22-decahydro-8*H*-4,6-(ethanediylidene)pyrido[4,3-*b*]pyrrolo[2,1-*l*][6,1,10,13]benzoxatriazacyclo-hexadecine-1-carbonitrile (compound 1.2)
- 7-chloro-8-fluoro-21-methoxy-11-methyl-13-oxo-10,11,12,13,14,15,16,17-octahydro-5*H*-1,19-(ethanediylidene)pyrido[4,3-*b*][6,1,10,13]benzoxatriazacyclohexadecine-4-carbonitrile (compound 1.3)
 - 17-chloro-16-fluoro-20-methoxy-13-methyl-11-oxo-8,9,10,11,12,13,14,19-octahydro-4,6-(ethanediylidene)pyrido[4,3-b][6,1,9,12]benzoxatriazacyclopentadecine-1-carbonitrile (compound 1.4)
 - 7-chloro-8-fluoro-12-isobutyl-21-methoxy-13-oxo-10,11,12,13,14,15,16,17-octahydro-5H-1,19-(ethanediylidene)pyrido[4,3-b][6,1,10,13]benzoxatriazacyclohexadecine-4-carbonitrile (compound 1.5)

15

Example O2 – General description for the synthesis of compounds of formula 13

-40-

As used in scheme 10 hereinbefore; X represents halo, in particular chloro, fluoro or bromo; n represents 0, 1, 2 or 3; m represents 0, 1, 2 or 3.

Amide formation.

5

10

15

20

25

30

To a stirred solution of 1 (1 equiv.) in CH₂Cl₂ (5 mL/mmol), diisopropyl carbodiimide (1.05 equiv.) is added. The reaction mixture is stirred for 30 minutes at room temperature, then the amine 2 (1.05 equiv.) is added and stirring continued for another 30 minutes. The reaction mixture is then partitioned between 1N citric acid and CH₂Cl₂. The layers are separated and the organic layer dried over MgSO₄, filtered and evaporated to afford 3 with enough purity to be used in the next step.

Reduction of the Nitro group.

To a solution of 3 (1 equiv.) in MeOH (5mL/mmol), Pt/C is added (10% w/w) and the resulting mixture is placed under H₂ atmosphere (balloon) and stirred at room temperature overnight (14 hours). The mixture is filtered through a short pad of celite and concentrated to dryness. In certain cases purification through flash chromatography is required to afford pure anilines of type 4.

Nucleophilic displacement.

To a stirred suspension of chlorocyano quinoline $\mathbf{5}$ (1.05 equiv.) in iPrOH (11 mL/mmol), $\mathbf{4}$ is added (1 equiv.) and a few drops of conc. HCl. The mixture is allowed to react under reflux temperature under N_2 for 6-8 hours. The reaction mixture is evaporated to dryness and the resulting residue purified by flash-chromatography (SiO₂, AcOEt/Hexanes mixture) to afford pure $\mathbf{6}$.

Cleavage of the Boc group.

To a cooled (0°C) solution of 6 in CH₂Cl₂ (3mL/mmol), TFA (2mL/mmol) is added dropwise. The resulting mixture is allowed to warm to room temperature and stirred for 1-2 hours. A saturated solution of NaHCO₃ is added to the reaction mixture until basic pH is reached. The mixture is extracted with CH₂Cl₂ (2x). The combined organic layers are dried over MgSO₄, filtered and concentrated to dryness. The resulting free amine is obtained with enough purity to be used in the next step without further purification.

-41-

Sulfonylation reaction.

To a cooled (0°C) solution of 7 (1 equiv.), in CH₂Cl₂ (2 mL/mmol), Et₃N (1.5 equiv.), and DMAP (10% mol) are added. A solution of ortho-nitrobenzosulfonyl chloride (1.1 equiv.) in CH₂Cl₂ (1 mL/mmol of 7) is added dropwise. The reaction mixture is stirred at 0°C and allowed to warm to room temperature overnight. 1N HCl is added until acidic pH is reached, and the layers separated. The organic layer is dried over MgSO₄, filtered and evaporated. The resulting residue is purified by flash-chromatography (AcOEt/hexanes) to afford pure 9.

10 Deacetylation.

5

15

20

25

30

Compound 9 is dissolved in MeOH/NH₃ 7N (8mL/mmol). To this solution, iPrOH (2 mL/mmol) is added and the reaction mixture stirred at room temperature for 30-120 minutes (TLC monitoring). The mixture is concentrated to dryness and the resulting product used in the next step without further purification.

Alkylation Reaction.

To a stirred solution of **10** in DMF (5 mL/mmol), Cs₂CO₃ (3 equiv.) are added followed by the alkylating reagent (2.5 equiv.). The reaction mixture is stirred at room temperature overnight. If neccessary, an additional 3 equiv. of Cs₂CO₃ and 2.5 equiv. of the alkylating reagent are added and the reaction mixture is stirred at room temperature until total completion of the reaction (TLC monitoring). The reaction mixture is partitioned between brine and AcOEt, and the layers are separated. The organic layer is dried over MgSO₄, filtered and evaporated. The residue is purified by flash-chromatography (AcOEt/n-hexanes) to afford pure **11**.

Cyclization reaction.

A solution of 11 (1 equiv.) in MeCN (60 mL/mmol) is added dropwise at room temperature over a mixture of Cs₂CO₃ (5 equiv.) and (n-Bu)₄NI (2 equiv.) in MeCN (30mL/mmol). The reaction mixture is stirred at 65°C overnight. Upon completion of the reaction (LC monitoring), H₂O is added. The resulting precipitate is collected by filtration and washed with H₂O. The product is dried under vacuum at 65°C. The solid material is boiled in iPrOH. The solid material is filtered and dried.

-42-

Desulfonylation reaction.

A mixture of **12** (1 equiv.), thiophenol (1.2 equiv) and Cs₂CO₃ (3 equiv.) in DMF (45 mL/mmol of **12**) is stirred at room temperature for 2 hours. The reaction mixture is quenched with ice-H₂O and extracted with CH₂Cl₂/MeOH (90:10). The separated organic layer is dried over MgSO₄, filtered and evaporated. The product is purified by reverse-phase HPLC.

By the the above synthetic procedures, the following compounds are obtained:

10

25

5

7-bromo-23-methoxy-12-oxo-10,11,12,13,14,15,16,17,18,19-decahydro-5H-1,21- (ethanediylidene)pyrido[4,3-b][6,1,10,13]benzoxatriazacyclooctadecine-4-carbonitrile (compound 1.6)

7-chloro-23-methoxy-11-oxo-10,11,12,13,14,15,16,17,18,19-decahydro-5*H*-1,21- (ethanediylidene)pyrido[4,3-*b*][6,1,10,14]benzoxatriazacyclooctadecine-4-carbonitrile (compound 2.1)

7-chloro-24-methoxy-12-oxo-5,10,11,12,13,14,15,16,17,18,19,20-dodecahydro-1,22-(ethanediylidene)pyrido[4,3-*b*][6,1,10,14]benzoxatriazacyclononadecine-4-carbonitrile (compound 2.2)

7-chloro-23-methoxy-12-oxo-10,11,12,13,14,15,16,17,18,19-decahydro-5H-1,21- (ethanediylidene)pyrido[4,3-b][6,1,10,13]benzoxatriazacyclooctadecine-4-carbonitrile (compound 2.4)

Example O3 – General description for the synthesis of compounds of formula 8

Scheme 11

22-methoxy-14-oxo-11,12,13,14,15,16,17,18-octahydro-5*H*-1,20-(ethanediylidene)pyrido[3,4-m][1,10,6,15]benzodioxadiazacycloheptadecine-4-carbonitrile (compound 2.3)

Nucleophilic displacement

5

10

To a stirred suspension of chlorocyano quinoline 2 (1.05 equiv.) in iPrOH (11 mL/mmol), is added 1 (1 equiv.) followed by Et₃N (1 equiv). The mixture is heated to reflux under N₂ atmosphere for 6 hours. The reaction mixture is evaporated to dryness and the resulting residue purified by flash-chromatography (SiO₂, AcOEt/Hexanes mixture) to afford pure 3.

-44-

Deacetylation.

Compound 3 is dissolved in MeOH/NH₃ 7N (8mL/mmol). To this solution, iPrOH (2 mL/mmol) is added and the reaction mixture stirred at room temperature for 30-120 minutes (TLC monitoring). The mixture is concentrated to dryness and the resulting product used in the next step without further purification.

Alkylation Reaction.

10

15

5

To a stirred solution of 4 in DMF (5 mL/mmol), Cs₂CO₃ (3 equiv.) is added followed by the alkylating reagent (2.5 equiv.). The reaction mixture is stirred at room temperature overnight. The reaction mixture is partitioned between brine and AcOEt, and the layers separated. The organic layer is dried over MgSO₄, filtered and evaporated. The residue is purified by flash-chromatography (AcOEt/n-hexanes) to afford pure 5.

Cleavage of the Boc group

20

To a cooled (0°C) solution of 5 in CH₂Cl₂ (3mL/mmol), TFA (2mL/mmol) is added dropwise. The resulting mixture is allowed to warm to room temperature and stirred for 1-2 hours. A saturated solution of NaHCO₃ is added to the reaction mixture until basic pH is reached. The mixture is extracted with CH₂Cl₂ (2x). The combined organic layers are dried over MgSO₄, filtered and concentrated to dryness. The resulting free amine is obtained with enough purity to be used in the next step without further purification.

Saponification of the ester group

30

35

25

To a solution of 6 in MeOH/H₂O (10:1), LiOH'H₂O (5 equiv) is added and the reaction mixture is stirred at room temperature up to 2 hours. The solvent is evaporated under vaccuo and the residue is dissolved in DMF and filtered through a syntered glass funnel. The DMF is removed and the product used as such in the following reaction.

Cyclization reaction

A solution of 7 (0.25 mmol, 1 equiv.) and DIPEA (6 equiv) in DMF (10mL) is added dropwise to a solution of HBTU (3 equiv.) in DMF (100mL/mmol of 7). The

resulting mixture is stirred at room temperature for 1 hour. The solvent is evaporated and the product purified by reverse-phase HPLC.

Example O4 – General description for the synthesis of compounds of formula 6

17-chloro-16-fluoro-20-methoxy-8,9,10,11,12,13,14,19-octahydro-4,6-(ethane-diylidene)pyrido[4,3-b][6,1,12]benzoxadiazacyclopentadecine-1-carbonitrile (compound 2.5)

15 Nucleophilic displacement

5

10

To a stirred solution of chlorocyano quinoline 2 (1.05 equiv.) in t-BuOH/DMF 12:1 (11 mL/mmol), 1 is added. The mixture is warmed to 80°C under N₂ for 6 hours.

-46-

The reaction mixture is evaporated to dryness and the resulting residue is stirred in MeCN for 1 hour. A solid precipitate is collected by filtration, washed with MeCN and dried to afford pure 3 in 63% yield.

5 Chlorination reaction

Methyl sulfonyl chloride (9.4 mL) is added to a solution of 3 (12.50 mmol) in 50 mL of NMP at room temperature. The reaction mixture is then stirred at 90°C for 1 hour. The reaction mixture is then poured out into 300 mL of H₂O, the aqueous layer extracted with AcOEt (3x100 mL). The combined organic layers are washed with H₂O (2x100 mL), and finally the organic layer is dried, filtered and concentrated under reduced pressure. The resulting residue is purified by column chormatography affording pure 4 in 90% yield.

15 Cyclization reaction

Compound 4 (5.0 mmol) and K₂CO₃ (5 equiv) are stirred in 83 mL of DMA/H₂O (1:1) at 150°C in a pre-heated sealed reactor for 30 minutes. The reaction mixture is concentrated under reduced pressure and the residue purified by reversephase HPLC to afford 5.

Removal of the CBz group

To a solution of **5** (1equiv) in MeOH (5mL/mmol), Pt/C is added (10% w/w) and the resulting mixture is placed under H₂ atmosphere (balloon) and stirred at room temperature overnight (14 hours). The mixture is filtered through a short pad of celite and concentrated to dryness. The residue is purified by reverse-phase HPLC to afford pure **6**.

Example O5 – General description for the synthesis of compounds of formula 10

Scheme 13

10

20

25

7-chloro-8-fluoro-21-methoxy-11-methyl-10,11,12,13,14,15,16,17-octahydro-5H-1,19-(ethanediylidene)pyrido[4,3-b][6,1,13]benzoxadiazacyclohexadecine-4-carbonitrile (compound 2.6)

Reductive Amination

5

10

15

To a solution of 1 (1 equiv.) and 2 (1 equiv.) in 1,2-dichloroethane (3 mL/mmol), MgSO₄ is added (1.5 equiv.) and the mixture stirred at room temperature for 90 minutes. To the resulting mixture NaBH(OAc)₃ (1.1 equiv.) is added in three portions (one portion per hour), and the resulting mixture stirred for additional 2 hours at room temperature. The reaction mixture is poured into a saturated solution of Na₂CO₃ and extracted with CH₂Cl₂ (3x). The combined organic layers are washed with brine, dried over MgSO₄, filtered and concentrated. The crude product is purified by flash chromatography (SiO₂, AcOEt/Hexanes mixture) to afford pure 3.

-48-

Reduction of the Nitro group

5 equiv. of a 0.5 M solution of NH₄Cl in H₂O are added to a 0.1M solution of the nitro derivative 3 (1 equiv.) in toluene at room temperature. Iron powder (5 equiv.) are added while stirring vigorously. The reaction mixture is stirred at reflux temperature for 1 hour and then cooled to room temperature, filtered through a celite pad and the organic layer separated, dried over MgSO₄ and evaporated under reduced pressure. The aniline 4 is obtained quantitatively and is pure enough to be used in the next step without further purification.

10

15

5

Nucleophilic displacement

To a stirred suspension of chlorocyano quinoline 5 (1.05 equiv.) in iPrOH (11 mL/mmol), 4 is added (1 equiv.). The mixture is allowed to react under reflux temperature under N₂ for 6-8 hours. The reaction mixture is evaporated to dryness and the resulting residue purified by flash-chromatography (SiO₂, AcOEt/Hexanes mixture) to afford pure 6.

20

Deacetylation

Compound 6 is dissolved in MeOH/NH₃ 7N (8mL/mmol). To this solution, iPrOH (2 mL/mmol) is added and the reaction mixture stirred at room temperature for 30-120 minutes (TLC monitoring). The mixture is concentrated to dryness and the resulting product used in the next step without further purification.

25

30

35

Alkylation Reaction

To a stirred solution of 7 in DMF (5 mL/mmol), Cs₂CO₃ (3 equiv.) is added followed by the alkylating reagent (2.5 equiv.). The reaction mixture is stirred at room temperature overnight.

Ring Closing Metathesis

To a solution of **8** (1 equiv.) in anh. CH₂Cl₂ (100 mL/mmol), Grubbs's Catalyst second generation is added (20% mol). The resulting mixture is refluxed with stirring under N₂ atmosphere for 4 hours. After that time, additional catalyst (20% mol,) is added and the mixture is stirred for an additional 2 hours, by which time the reaction is essentially complete. The solvent is removed under reduced pressure and the resulting

-49-

crude material is purified by flash-chromatography (AcOEt/hexanes) to yield pure product 9.

Hydrogenation of the double bond

5

10

To a solution of **9** (1 equiv.) in MeOH (5mL/mmol), Pt/C is added (10% w/w) and the resulting mixture is placed under H₂ atmosphere (balloon) and stirred at room temperature overnight (14 hours). The mixture is filtered through a short pad of celite and concentrated to dryness. The residue is purified by reverse-phase HPLC to afford pure **10**.

A. Preparation of the intermediates Example A1

- a) Preparation of 1-pentanol, 5-[[(4-bromo-2-nitrophenyl)methyl]amino]- (intermediate 1)
- A solution of 4-bromo-2-nitro- benzaldehyde, (0.013 mol), 5-amino-1-pentanol (0.013 15 mol) and titanium, tetrakis (2-propanolate) (0.014 mol) in ethanol (15 ml) was stirred at room temperature for 1 hour, then the reaction mixture was heated to 50 °C and stirred for 30 min. The mixture was cooled to room temperature and sodium hydroborate (0.013 mol) was added portionwise. The reaction mixture was stirred overnight and then poured out into ice water (50 ml). The resulting mixture was stirred for 20 min., 20 the formed precipitate was filtered off (giving Filtrate (I)), washed with water and stirred in DCM (to dissolve the product and to remove it from the Ti-salt). The mixture was filtered and then the filtrate was dried (MgSO₄) and filtered, finally the solvent was evaporated dry. Filtrate (I) was evaporated until ethanol was removed and the aqueous concentrate was extracted 2 times with DCM. The organic layer was separated, dried 25 (MgSO₄), filtered off and the solvent was evaporated dry, yielding 3.8g (93 %) of intermediate 1.
 - b) Preparation of carbamic acid, [(4-bromo-2-nitrophenyl)methyl](5-hydroxypentyl)-, 1,1-dimethylethyl ester (intermediate 2)
- A solution of intermediate 1 (0.0032 mol) in DCM (20 ml) was stirred at room temperature and a solution of dicarbonic acid, bis(1,1-dimethylethyl) ester (0.0032 mol) in DCM (5 ml) was added dropwise. The reaction mixture was stirred for 1 hour at room temperature and washed 2 times with water. The organic layer was separated, dried (MgSO₄), filtered off and the solvent was evaporated dry, yielding intermediate 2.

c) Preparation of carbamic acid, [5-(acetyloxy)pentyl][(4-bromo-2-nitrophenyl)methyl]-, 1,1-dimethylethyl ester (intermediate 3)

A solution of intermediate 2 (0.0032 mol) and pyridine (0.032 mol) in acetic acid anhydride (15 ml) was stirred at room temperature for 16 hours, then the solvent was evaporated under reduced pressure and co-evaporated with toluene. The residue was used as such in the next reaction step, yielding 1.47g (100 %) of intermediate 3.

d) Preparation of carbamic acid, [5-(acetyloxy)pentyl][(2-amino-4-bromo-phenyl)-methyl]-, 1,1-dimethylethyl ester (intermediate 4)

A mixture of intermediate 3 (0.0033 mol) in THF (50 ml) was hydrogenated with Pt/C 5% (0.5g) as a catalyst in the presence of thiophene solution (0.5ml) After uptake of H₂ (3 equiv.), the catalyst was filtered off and the filtrate was evaporated, yielding intermediate 4.

Example A2

5

25

- a) Preparation of benzoic acid, 2-amino-4-methoxy-5-(phenylmethoxy)-, methyl ester (intermediate 5)
- A mixture of 4-methoxy-2-nitro-5-(phenylmethoxy)- benzoic acid, methylester, (0.166 mol) and triethylamine (0.198 mol) in THF (400 ml) was hydrogenated with Pt/C (5 g) as a catalyst in the presence of thiophene in DIPE (4 ml). After uptake of hydrogen (3 equivalents), the catalyst was filtered off and the filtrate was evaporated. The residue was treated with DIPE (300 ml) and stirred for 3 hours, then the resulting precipitate was filtered off and dried in a vacuum oven, yielding 45.9g (96 %) of intermediate 5.
 - b) Preparation of 3-quinolinecarbonitrile, 4-hydroxy-7-methoxy-6-(phenyl-methoxy)- (intermediate 6)

A mixture of intermediate 5 (0.029 mol) and 1,1-dimethoxytrimethylamine, (0.058 mol) in DMF (30 ml) was stirred and refluxed for 2.5 hours, then the solvent was evaporated and co-evaporated with toluene (2 x), giving Residue (I). A solution of n-BuLi, 2.5 M in hexane (0.058 mol) in THF (40 ml) was stirred and cooled to -75 °C and acetonitrile (0.058 mol) was added dropwise in 30 min. After 15 min. a solution of Residue (I) in THF (40 ml) was added dropwise and the the reaction was quenched

-51-

with acetic acid (0.058 mol) at -75 °C, then the mixture was allowed to reach room temperature and was diluted with water (50 ml). The organic solvent (THF) was evaporated and the aqueous concentrate was diluted with 2-propanol (10 ml). This mixture was stirred for 1 hour and then the resulting precipitate was filtered and airdried, yielding 4.4g of intermediate 6. The filtrate was evaporated and then the residue was treated with water and DCM/MeOH (90/10). The resulting mixture was stirred for 15 minutes and the obtained solids were collected and air-dried, yielding 1.8g of intermediate 6. Overall Yield: 6.2g (70.4 %).

c) Preparation of 3-quinolinecarbonitrile, 4,6-dihydroxy-7-methoxy- (intermediate 7)

A mixture of intermediate 6 (0.016 mol) in triethylamine (3 ml) and THF was hydrogenated with Pd/C (1.0 g) as a catalyst. After uptake of H_2 (1 equivalent), the catalyst was filtered off and the filtrate was evaporated, yielding 2.8g of intermediate 7 (used as such in the next reaction step).

d) Preparation of 3-quinolinecarbonitrile, 6-(acetyloxy)-4-hydroxy-7-methoxy-(intermediate 8)

A mixture of intermediate 7 (0.011 mol) and pyridine (0.016 mol) in acetic anhydride (30 ml) was heated for 1 hour on an oil bath at 95°C, then the reaction mixture was allowed to reach room temperature and was stirred overnight. The solvent was evaporated and then the residue was treated with DIPE (30 ml) and the mixture was stirred for 2 hours. The resulting precipitate was collected and dried, yielding 2.58g (90.8 %) of intermediate 8.

e) Preparation of 3-quinolinecarbonitrile, 6-(acetyloxy)-4-chloro-7-methoxy-(intermediate 9)

A mixture of intermediate 8 (0.01 mol) and DMF (3 drops) in thionylchloride (25 ml) was heated for 2 hours on an oil bath at 80°C, then the solvent was evaporated. The residue was treated with DIPE and the mixture was stirred for 1 hour. The resulting solids were filtered off and air-dried. The residue (2.7g) was dissolved in DCM and washed with NaHCO₃ solution. The organic layer was separated, dried (MgSO₄), filtered off and the solvent was evaporated, yielding 2.5g of intermediate 9.

25

5

10

15

20

-52-

f) Preparation of carbamic acid, [[2-[[6-(acetyloxy)-3-cyano-7-methoxy-4-quinolinyl]amino]-4-bromophenyl]methyl][5-(acetyloxy)pentyl]-, 1,1-dimethylethyl ester (intermediate 10)

A mixture of intermediate 9 (0.0018 mol) and intermediate 4 (0.0018 mol) in 2-propanol (20 ml) was heated overnight on an oil bath at 65°C, then the solvent was evaporated. The residue was purified by column chromatography over silica gel (eluent: DCM/MeOH 99.7/0.3). One fraction was collected and the column was eluted again with DCM/MeOH/THF (90/5/5). Another fraction was collected and purified further by column chromatography over silica gel (eluent: DCM/MeOH gradient). The product fractions were collected and the solvent was evaporated, yielding 0.61g (50.6 %) of intermediate 10.

- g) Preparation of carbamic acid, [[4-bromo-2-[(3-cyano-6-hydroxy-7-methoxy-4-quinolinyl)amino]phenyl]methyl](5-hydroxypentyl)-, 1,1-dimethylethyl ester (intermediate 11)
- A stirring solution of intermediate 10 (0.000896 mol) in MeOH (20 ml) was treated with a solution of potassium carbonate (0.0018 mol) in water (5 ml). The reaction mixture was stirred overnight at room temperature and then neutralised with acetic acid until pH: 7. The solvent was evaporated. The residue was diluted with DCM and washed with water. The organic layer was separated, dried (MgSO₄), filtered off and the solvent was evaporate, yielding 0.38g (73.1 %) of intermediate 11, melting point 114.3-136.2 °C.

B. Preparation of the compounds

Example B1

20

25

5

a) Preparation of 4,6-ethanediylidenepyrido[4,3-b][6,1,12]benzoxadiazacyclopentadecine-13(8H)-carboxylic acid, 17-bromo-1-cyano-9,10,11,12,14,19-hexahydro-20-methoxy-, 1,1-dimethylethyl ester (compound 1)

A mixture of intermediate 11 (0.000649 mol) and ADDP (0.00094 mol) in THF p.a. (40 ml) was treated for 1 hour with tributylphosphine (0.00094 mol) and then extra ADDP (0.00094 mol) and tributylphosphine (0.00094 mol) were added. After 16 hours, the solvent was partially evaporated and the resulting concentrate was filtered and the

filtrate evaporated. The residue was dissolved in THF p.a. (40 ml) and then ADDP (2

-53-

equivalents) was added, followed by tributylphosphine (2 equivalents). The resulting mixture was purified by reversed phase high-performance liquid chromatography. The product fractions were collected and the solvent was evaporated, yielding 0.0955g (26.0 %) of compound 1.

5

b) Preparation of 4,6-ethanediylidenepyrido[4,3-*b*][6,1,12]benzoxadiazacyclopentadecine-1-carbonitrile, 17-bromo-8,9,10,11,12,13,14,19-octahydro-20-methoxy-, monohydrochloride (compound 2)

A solution of compound 1 (0.00012 mol)in MeOH (5 ml) was treated with HCl/2-propanol (6N) (1ml) and the reaction mixture was stirred over the weekend. The resulting precipitate was collected and dried an a vacuum oven, yielding 0.0197 g of compound 2, isolated as a monohydrochloric acid salt.

10 <u>C. Pharmacological examples</u>

Example C.1: in vitro inhibition of EGFR

The *in vitro* inhibition of EGFR was assessed using either the Flash Plate technology or the glass-fiber filter technology as described by Davies, S.P. et al., Biochem J. (2000), 351; p.95-105. The Flash Plate technology is generally described by B.A. Brown *et al.* in High Throughput Screening (1997), p.317-328. Editor(s): Devlin, John P. Publisher: Dekker, New York, N. Y.

In the Flash Plate EGFR kinase reaction assay, a kinase substrate consisting of biotinylated poly(L-glutamic acid-L-tyrosine) (poly(GT)biotin), is incubated with the aforementioned protein in the presence of (³³P) radiolabeled ATP. (³³P) phosporylation of the substrate is subsequently measured as light energy emitted using a streptavidin-coated Flash Plate (PerkinElmer Life Sciences) by trapping and quantifying the binding of the biotin tagged and radiolabeled substrate.

25

30

15

20

Detailed description

The EGFR kinase reaction is performed at 30°C for 60 minutes in a 96-well microtiter FlashPlate (PerkinElmer Life Sciences). For each of the tested compounds a full dose response $1.10^{-6} M$ to $1.10^{-10} M$ has been performed. IRESSA® and TarcevaTM (erlotinib) were used as reference compounds. The 100 μ l reaction volume contains 54.5 mM TrisHCl pH 8.0, 10 mM MgCl₂, 100 μ M Na₃VO₄ , 5.0 μ M unlabeled ATP, 1mM DTT,

0.009% BSA, 0.8 μCi AT³³P, 0.35 μg/well poly(GT)biotin and 0.5 μg EGFR-kinase domain/well.

The reaction is stopped by aspirating the reaction mixture and washing the plate 3x with 200 μ l wash/stop buffer (PBS + 100 mM EDTA). After the final wash step 200 μ l of wash/stop buffer was added to each well and the amount of phosphorylated (33 P) Poly(GT)biotin determined by counting (30 sec/well) in a microtiterplate scintillation counter.

In the glass-fiber filter technology EGFR kinase reaction assay, a kinase substrate consisting of poly(L-glutamic acid-L-tyrosine) (poly(GT)), is incubated with the aforementioned protein in the presence of (³³P) radiolabeled ATP. (³³P) Phosporylation of the substrate is subsequently measured as radioactivity bound on a glassfiber-filter.

Detailed description

domain/well.

5

10

25

30

The EGFR kinase reaction is performed at 25°C for 10 minutes in a 96-well microtiterplate. For each of the tested compounds a full dose response 1.10⁻⁶M to 1.10⁻¹⁰M has been performed. IRESSA® and TarcevaTM (erlotinib) were used as reference compounds. The 25 μl reaction volume contains 60 mM TrisHCl pH 7.5, 3 mM MgCl₂, 3 mM Mn Cl₂, 3 μM Na₃VO₄, 50 μg/ml PEG20000, 5.0 μM unlabeled ATP, 1mM DTT, 0.1 μCi AT³³P, 62.5 ng/well poly(GT) and 0.5 μg EGFR-kinase

The reaction is stopped by adding 5 µl of a 3% phosphoric acid solution. 10 µl of the reaction mixture is then spotted onto a Filtermat A filter (Wallac) and washed 3 times for 5 min. in 75 mM phosphoric acid and 1 time for 5 min. in methanol prior to drying and quantification on the Typhoon (Amersham) using a LE phosphorage storage screen.

Example C.2: Serum starved proliferation assay on the ovarian carcinoma SKOV3 cells The ovarian carcinoma cell line (SKOV3) was used in an epidermal growth factor stimulated cell proliferation assay, to assess the inhibitory effect of the compounds on EGF in whole cells.

In a first step the SKOV3 cells were incubated for 24 hours in the presence of 10% FCS serum. In the second step the cells were incubated with the compounds to be tested in a serum free condition (37 °C and 5% (v/v) CO₂) and subsequently stimulated for 72

hours with EGF at a final concentration of 100 ng/ml. The effect of the compounds on the EGF stimulation was finally assessed in a standard MTT cell viability assay.

The following table provides the pIC50 values of the compounds according to the invention, obtained using the above mentioned kinase assays.

Compound number	FlashPlate.(C2) : IC50 in nM	SKOV3 cell (C3) : IC50 in µM
2	8.3	6.8

5 D. Composition examples

10

15

20

25

The following formulations exemplify typical pharmaceutical compositions suitable for systemic administration to animal and human subjects in accordance with the present invention.

"Active ingredient" (A.I.) as used throughout these examples relates to a compound of formula (I) or a pharmaceutically acceptable addition salt thereof.

Example D.1: film-coated tablets

Preparation of tablet core

A mixture of A.I. (100 g), lactose (570 g) and starch (200 g) was mixed well and thereafter humidified with a solution of sodium dodecyl sulfate (5 g) and polyvinyl-pyrrolidone (10 g) in about 200 ml of water. The wet powder mixture was sieved, dried and sieved again. Then there was added microcrystalline cellulose (100 g) and hydrogenated vegetable oil (15 g). The whole was mixed well and compressed into tablets, giving 10.000 tablets, each comprising 10 mg of the active ingredient.

Coating

To a solution of methyl cellulose (10 g) in denaturated ethanol (75 ml) there was added a solution of ethyl cellulose (5 g) in CH₂Cl₂ (150 ml). Then there were added CH₂Cl₂ (75 ml) and 1,2,3-propanetriol (2.5 ml). Polyethylene glycol (10 g) was molten and dissolved in dichloromethane (75 ml). The latter solution was added to the former and then there were added magnesium octadecanoate (2.5 g), polyvinyl-pyrrolidone (5 g) and concentrated color suspension (30 ml) and the whole was homogenated. The tablet cores were coated with the thus obtained mixture in a coating apparatus.