Rules of Probability Models for Socio-Environmental Data

Chris Che-Castaldo, Mary B. Collins, N. Thompson Hobbs

December 07, 2020

Road map for today

- Rules of probability
- Factoring joint probabilities
- Directed acyclic graphs (a.k.a. Bayesian networks)

All of Bayesian inference extends from three rules of probability

- Conditional probability (and independence)
- The law of total probability
- The chain rule of probability

Random variables

The world can be divided into things that are observed and things that are unobserved.

- Bayesians treat all unobserved quantities as random variables.
- The values of random variables are governed by chance.
- 3 Probability distributions describe "governed by chance."
- A specific value of a random variable is called an event or an outcome.

S=Sample Space

- The set of all possible values of a random variable.
- The sample space, S has a specific area.

Events in S

- Can define and event, A.
- The area of event A is less than or equal to S.

What is the probability of event A?

 $\Pr(A) = \frac{\text{Area of } A}{\text{Area of } S}$

Conditional Probability

Conditional probability: the probability of an event given that we know another event has occurred.

Conditional Probability

What is the probability of event B, given that event A has occurred?

Pr(B|A) = probability of B conditional on knowing A has occurred

$$Pr(B|A) = \frac{\text{Joint Probability}}{\text{Probability of A}} = \frac{Pr(A,B)}{Pr(A)}$$

Conditional Probability

What is the probability of event A, given that event B has occurred?

Independence

Event A and B are *independent* If the occurrence of event A does not tell us anything about event B.

Events are independent if and only if:

$$Pr(A|B) = Pr(A)$$

$$Pr(B|A) = Pr(B)$$

The Law of Total Probability

Pr(A) is unknown, but can be calculated using the known probabilities of several related events under various conditions.

We can define a set of events $\{B_n : n = 1, 2, 3, ...\}$, which taken together define the entire sample space, $\sum_n B_n = S$.

What is the probability of event A?

 $Pr(A) = \sum_{n} Pr(A|B_n) Pr(B_n)$ (discrete case) $Pr(A) = \int Pr(A|B) Pr(B) dB$ (continuous case) ##Intution about the chain rule of probability Move to course Jamboard

The Chain Rule of Probability

The chain rule of probability allows us to write joint distributions as a product of conditional distributions.

$$\Pr(z_1, z_2, ..., z_n) = \Pr(z_n | z_{n-1}, ..., z_1) ... \Pr(z_3 | z_2, z_1) \Pr(z_2 | z_1) \Pr(z_1)$$

Notice the pattern here.

- z's can be scalars or vectors.
- Sequence of conditioning does not matter.
- When we build models, we choose a sequence that makes sense.

Factoring joint probabilities

Why is factoring useful?

- Factoring joint distributions is how we build Bayesian models.
- The rules of probability allow us to simplify complicated joint. distributions, breaking them down into chunks.
- Chunks can be analyzed one at a time.

Consider a factored joint distribution represented by a directed acyclic graph (DAG)

- Directed acyclic graphs (aka Bayesian networks) specify how joint distributions are factored into conditional distributions using nodes to represent RV's and arrows to represent dependencies.
- Nodes at the heads of arrows must be on the left hand side of the conditioning symbols;
- Nodes at the tails of arrows are on the right hand side of the conditioning symbols.
- Any node at the tail of an arrow without an arrow leading into it must be expressed unconditionally.
- Nodes at heads of arrows are called "children"; at tails, "parents."

Factoring joint probabilities using DAGs

Move to course Jamboard

Work on lab

Complete Probability Lab #1