Análisis de la asociación espacial

Regresión

Gerardo Martín

2022-06-29

Diferencias y similitudes con correlación

- · Correlación mide dependencia lineal entre dos fenómenos
- · No hay causa efecto:

$$\cdot \operatorname{cov}(X, Y) = \operatorname{cov}(Y, X)$$

- · No permite estimar cambio de una con respecto de la otra
- · Regresión, sí se asume causa y efecto:

$$\cdot y(x) = a + bx$$

Diferencias y similitudes con correlación

- \cdot Correlación, sólo conocemos r, ó ho (correlación de Spearman)
 - \cdot Signo de r indica si una disminuye ó aumenta en relación a la otra
 - $\cdot \,\, P$ indica probabilidad de que r=0
- · Regresión
 - \cdot Coeficientes a y b cuantifican relación entre x y y
 - · a, valor de y cuando x = 0
 - $\cdot \,\,$ b, aumento ó disminución de y cuando x aumenta en 1 unidad
 - $\cdot R^2$, cuadrado del coeficiete de correlación r

Significato de parámetros

Significado de parámetros

$$y(x) = a + bx$$

- · a = 2
- b = i/h = 0.5

$$y(x) = 2 + 0.5x$$

- · Función nativa para estimar a,b y \mathbb{R}^2 , lm
- \cdot Hipótesis que queremos rechazar, x no afecta a y

·
$$a \neq 0$$
, $b \neq 0$

· Uso:

 $lm(x \sim y, data = df.1) #df.1$ es tabla que contiene datos de

```
reg.lin <- lm(y \sim x, data = df.1)
summary(reg.lin)
##
## Call:
## lm(formula = y \sim x, data = df.1)
##
## Residuals:
##
      Min 1Q Median 3Q
                                     Max
## -2.6090 -0.8366 -0.0884 0.6772 3.4914
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -6.20626   0.58606   -10.59   <2e-16 ***
               1.10859 0.05621 19.72 <2e-16 ***
## x
```

Columnas

- Estimate contiene el valor estimado
- \cdot Pr(>|t|) es la probabilidad de que a=0 ó b=0

Filas

- $\cdot a = (Intercept)$
- $\cdot b = x$
- $\cdot R^2 = \text{Adjusted R} \text{squared}$

```
reg.lin1 <- lm(y \sim x1, data = df.1)
summary(reg.lin1)
##
## Call:
## lm(formula = y \sim x1, data = df.1)
##
## Residuals:
      Min 1Q Median 3Q
##
                                     Max
## -5.4589 -1.2876 -0.2732 1.3428 8.3563
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 5.13185 0.24895 20.614 <2e-16 ***
               0.09689 0.25581 0.379 0.706
## x1
## ---
```

Regresión lineal con datos espaciales

Al igual que en correlación, debemos:

- 1. Extraer
- 2. Añadir a base de coordenadas
- 3. Ajustar
- 4. Interpretar
- 5. Predecir

Regresión con datos espaciales

Retomaremos el ejemplo de la correlación espacial:

Table 1: Primeras seis filas de una base de datos de mediciones colectadas en campo.

mediciones	У	X
49.62024	29.57881	-102.7928
41.14992	27.38053	-103.6011
137.04156	25.53772	-104.5670
51.70786	29.87109	-101.8276
103.70981	27.40428	-100.5730
75.43274	29.20245	-101.0474

Gráfico de los valores colectados

Figure 1: Diámetro de burbujas indica magnitud

Extrayendo valores de capas raster

```
valores.capas <- extract(r, puntos[, c("x", "y")])
puntos <- data.frame(puntos, valores.capas)</pre>
```

Valores extraídos de capa raster

Х	У	mediciones	Var.1	Var.2	Var.3
-102.7928	29.57881	49.62024	199	106	161
-103.6011	27.38053	41.14992	179	105	143
-104.5670	25.53772	137.04156	187	126	193
-101.8276	29.87109	51.70786	203	105	149
-100.5730	27.40428	103.70981	224	135	143
-101.0474	29.20245	75.43274	213	121	131
-102.5358	28.58792	35.05952	174	101	132
-101.4132	28.86275	69.94669	209	125	134
-102.3974	26.52351	92.91473	211	134	153
-102.6020	25.42059	131.78474	218	147	148

Ajustando el modelo lineal

Con base en análisis de correlación sabemos que es más probable que Var.2 explique las mediciones:

```
m1 <- lm(mediciones ~ Var.2, puntos)</pre>
```

Ajustando el modelo lineal

```
summary(m1)
##
## Call:
## lm(formula = mediciones ~ Var.2, data = puntos)
##
## Residuals:
     Min
             1Q Median
                          3Q
##
                                Max
## -70.751 -13.179 -0.278 13.347 56.566
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
## Var.2
         2.0531 0.1505 13.641 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Predicción espacial

Necesitamos crear base con valores para predecir:

```
val.nuevos <- data.frame(rasterToPoints(r))
preds <- predict(m1, val.nuevos)
preds.r <- rasterFromXYZ(data.frame(val.nuevos[, c("x", "y")])</pre>
```

Gráfico de la predicción

Comparación con otros modelos

```
m2 <- lm(mediciones ~ Var.1, puntos)
m3 <- lm(mediciones ~ Var.3, puntos)</pre>
```

Comparación con otros modelos

```
##
## Call:
## lm(formula = mediciones ~ Var.1, data = puntos)
##
## Residuals:
     Min 1Q Median
                         3Q
##
                               Max
## -87.153 -17.571 -3.082 18.632 70.786
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
1.3950 0.1966 7.096 2.12e-10 ***
## Var.1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
                                              24
##
```

Comparación con otros modelos

```
##
## Call:
## lm(formula = mediciones ~ Var.3, data = puntos)
##
## Residuals:
      Min
               1Q Median 3Q
##
                                      Max
## -108.501 -31.980 2.111 24.895 85.851
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 59.1195 35.5229 1.664 0.0993 .
## Var.3 0.1614 0.2335 0.691 0.4913
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
```

25

Comparación con criterio de Akaike

```
AIC(m1)

## [1] 900.5037

AIC(m2)

## [1] 965.1384

AIC(m3)

## [1] 1006.045
```

Modelo con AIC menor, m1, por lo tanto, parece más adecuado que m2 y m3

Conclusión

- · Regresión lineal sirve para predecir
- · Correlación sirve para medir asociación