Logical Agents

- When we use search to solve a problem we must
 - Capture the knowledge needed to formalize the problem
 - Apply a search technique to solve problem
 - Execute the problem solution

Knowledge Representation

- Knowledge-based agents
- Wumpus world
- Logic
 - Sentence, syntax, semantics, validity, satisfiability
 - Proof by Enumeration and Inference
- Proposition Logic
 - Inference Rules, Normal Forms
- Automating theorem proving
 - Forward chaining
 - Backward chaining
 - Resolution

A Brief History of Reasoning

450 B.C	Stoics	Propositional logic, inference (maybe)
322 B.C.	Aristotle	"syllogisms" (inference rules), quantifiers
1565	Cardano	Probability theory (propositional logic + uncertainty)
1847	Boole	Propositional logic (again)
1879	Frege	First-order logic
1922	Wittgenstein	Proof by truth tables
1930	Godel	∃ Complete algorithm for FOL
1930	Herbrand	Complete algorithm for FOL (reduce to propositional)
1931	Godel	$\neg\exists$ complete algorithm for arithmetic
1960	Davis/Putnam	"practical" algorithm for propositional logic
1965	Robinson	"practical" algorithm for FOL - resolution

Role of Knowledge Representation

- We previously talked about applications of search but not about methods of formalizing the problem.
- Now we look at extended capabilities to general logical reasoning.
- The first step is the role of "knowledge representation" in Al.
- Formally:
 - The intended role of knowledge representation in artificial intelligence is to reduce problems of intelligent action to search problems.
 - "A good description, developed within the conventions of a good KR, is an open door to problem solving; a bad description, using a bad representation, is a brick wall preventing problem solving."

Knowledge Bases

- Knowledge base (KB) is a set of sentences in a formal language
- Declarative approach to building an agent Tell it what it needs to know
- Then it can Ask itself what to do
 - Answers follow from KB entailment
- Agents can be viewed at the knowledge level
 - What they know, regardless of implementation
- Or at the implementation level
 - Data structures in KB and algorithms that manipulate them

A Knowledge-Based Agent

- A knowledge-based agent must be able to
 - Represent states, actions, etc.
 - Incorporate new percepts
 - Update internal representations of the world
 - Deduce hidden properties about the world
 - Deduce appropriate actions
- We will
 - Describe properties of languages to use for logical reasoning
 - Describe techniques for deducing new information from current information
 - Apply search to deduce (or learn) specifically needed information

The Wumpus World Environment

Percepts

- Percept = [Stench, Breeze, Glitter, Bump, Scream]
 - Stench in Wumpus square and adjacent (L, R, U, D) squares
 - Breeze in squares adjacent to pit
 - Glitter in gold square
 - Bump when walk into wall or obstacle
 - Everyone hears scream when Wumpus is defeated
 - Agent cannot perceive its own location

Goals

- Actions = [goforward, turnleft, turnright, grab, shoot, climb]
- Agent is defeated upon entering room with pit or live Wumpus
- Agent's goal is to find gold, return to [1,1], and climb out of cave
- Score (-1) for each action attempted, (-1000) for being defeated, (+1000) for leaving cave with gold

Wumpus World Properties

- Is the world deterministic?
 - Yes
- Is the world fully accessible?
 - No, only local perception
- Is the world static?
 - Yes (for now), Wumpus and pits do not move
- Is the world discrete?
 - Yes
- Single-agent?
 - Yes, Wumpus is a domain feature

Sample Run

- Now we look at
- How to represent facts / beliefs "There is a pit in (2,2) or (3,1)"
- How to make inferences
 "No Breeze in (1,2), so pit in (3,1)"

Formal Representation Through Logic

- Logic: a formal language for representing information such that conclusions can be drawn
 - <u>Sentence</u>: individual piece of knowledge
 <u>English</u> sentence forms one piece of knowledge in English language
 A statement in Java forms one piece of knowledge in Java programming language
 - Syntax: form used to represent sentences
 Syntax of Java indicates legal combinations of symbols (a = 2+3;)
 Syntax alone does not indicate meaning
 - <u>Semantics</u>: mapping from sentences to facts in the world They define the truth of a sentence in a world. Add the values of 2 and 3, store the result in the memory location indicated by variable a
 - <u>Proof System:</u> a way of manipulating syntactic expressions (enumeration or inference) to get other syntactic expressions (which will tell us something new)

A few Formal Logics

Language	Ontological Commitment	Epistemological Commitment			
Propositional Logic	facts	true/false/unknown			
Predicate Logic	facts, objects, relations	true/false/unknown			
Temporal Logic	facts, objects, relations, time	true/false/unknown			
Probability Theory	facts	degree of belief in [0.0 1.0]			
Fuzzy Logic	degree of truth	degree of belief in [0.0 1.0]			

- Which Logic to use?
 - Ontological commitment: What exists? Facts? Objects? Time? Beliefs?
 - Epistemological commitment: What are the states of knowledge?

Definitions

- The meaning of a sentence is a mapping onto the "real world".
 - This mapping is an interpretation.
- A sentence is valid (necessarily true, tautology) iff true under all possible interpretations.

$$A \lor \neg A$$

- A could be:
 - Stench at [1,1]
 - **2+3=5**
- These statements are not valid.

$$\begin{array}{c} A \wedge \neg A \\ A \vee B \end{array}$$

 The last statement is satisfiable, meaning there exists at least one interpretation that makes the statement true. The previous statement is unsatisfiable.

Entailment

- The proof capability relies on relationships between items in the language:
 - Sentences "entail" sentences (representation level)
 - Facts "follow" from facts (real world)

- Entail/Follow means the new item is true if the old items are true
- A collection of sentences, or knowledge base (KB), entail a sentence α
 - $KB \models \alpha$
- KB entails the sentence α if and only if α is true in all worlds where the KB is true

Entailment Examples

- KB
 - The Giants won
 - The Reds won
- Entails
 - The Giants won and the Reds won
- KB
 - To get a perfect score your program must be turned in today
 - I always get perfect scores
- Entails
 - I turned in my program today
- Entailment is a relationship between sentences (syntax) that is based on semantics.

Entailment in the Wumpus World

- Situation after detecting nothing in (1,1) and moving right with a breeze in (2,1)
- Consider ALL possible models for ?s assuming only pits
 - 3 possibilites ⇒ 8 models

Proof Methods

- Proof methods divide into (roughly) two kinds:
 - Model checking
 - Truth table enumeration (sound and complete for propositional logic sentence) (exponential in *n*)
 - Improved backtracking
 - Heuristic search in model space
 - Show that all interpretations in which the left hand side of the rule is true, the right hand side is also true (sound but incomplete)
 - Application of inference rules
 - Sound generation of new sentences from old
 - Proof = a sequence of inference rule applications
 - Can use inference rules as operators in a standard search algorithm.
 - Typically requires translation of sentences into a normal form

Proof by Enumeration (Models)

- Logicians think in terms of models, which are formally structured worlds with respect to which truth can be evaluated
- We say m is a model of a sentence α if α is true in m
- M(α) is the set of all models which hold for α
- The set M(KB) is an enumeration of the entailment of a KB
- Then $KB \models \alpha$ if and only if $M(KB) \subseteq M(\alpha)$ KB = Giants won and Reds won $\alpha = Giants$ won

Proof by Inference

- $KB \vdash_i \alpha$: sentence α can be derived from KB by procedure i
- Inference can be used two different ways:
 - 1. Generate new sentences that are entailed by KB
 - 2. Determine whether or not sentence is entailed by KB
- A sound inference procedure generates only entailed sentences.
 - Whenever $KB \vdash_{i} \alpha$, then $KB \vDash \alpha$ is true
- A complete inference procedure can generate all sentences in the knowledge base.
 - Whenever $KB = \alpha$, then $KB \vdash_i \alpha$
- Modus ponens yes Abduction no $\frac{A, A \Rightarrow B}{B}$ $\frac{B, A \Rightarrow B}{A}$

Propositional Logic

- Propositional logic is the simplest logic illustrates basic ideas
- Proposition symbols P, Q, etc., are unit atoms and sentences
- If S_1 and S_2 are sentences then so are $\neg S_1$, $S_1 \land S_2$, $S_1 \lor S_2$, $S_1 \Rightarrow S_2$, $S_1 \Leftrightarrow S_2$ Negation, conjunction, disjunction, implication, and biconditional
- An interpretation i consists of an assignment of truth values to all proposition symbols i(s)
 An interpretation is a "possible world"
 Given 3 proposition symbols P, Q, and R, there are 8 interpretations
 Given n proposition symbols, there are 2n interpretations
- Models are worlds in which a particular sentence is true under at least one interpretation
- The true/false value of propositions and combinations of propositions can be calculated using a truth table

Propositional Logic

- For propositional logic, a row in the truth table is one interpretation
- A logic is "monotonic" as long as entailed sentences are preserved as more knowledge is added

Р	Q	¬P	P∧Q	P√Q	P⇒Q	P⇔Q
Т	Т	F	Т	Т	Т	Т
Т	F	F	F	Т	F	F
F	Т	Т	F	Т	Т	F
F	F	Т	F	F	Т	Т

Rules of Inference for Propositional Logic

Logical Identities and Equivalences								
Idempotency	$A \lor A \equiv A$	$A \wedge A \equiv A$						
Commutativity	$A \lor B \equiv B \lor A$	$A \wedge B \equiv B \wedge A$						
	$A \Leftrightarrow B \equiv B \Leftrightarrow A$							
Associativity	$(A \vee B) \vee C \equiv A \vee (B \vee C)$	$(A \wedge B) \wedge C \equiv A \wedge (B \wedge C)$						
Absorption	$A \vee (A \wedge B) \equiv A$	$A \wedge (A \vee B) \equiv A$						
Distributivity	$A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$	$A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$						
Tautology	$A \lor B \equiv A$ if A is a tautology	$A \wedge B \equiv B$ if A is a tautology						
Unsatisfiability	$A \lor B \equiv B$ if A is unsatisfiable	$A \wedge B \equiv A$ if A is unsatisfiable						
De Morgan's laws	$\neg (A \land B) \equiv \neg A \lor \neg B$	$\neg (A \lor B) \equiv \neg A \land \neg B$						
Contradiction	$\neg A \wedge A \equiv F$	$-A \lor A \equiv T$						
Identity	$A \vee F \equiv A$	$A \wedge T \equiv A$						
Domination	$A \lor T \equiv T$	$A \wedge F \equiv F$						
Double-Negation Elimination	A ≡ A							

Rules of Inference for Propositional Logic

Logical Identities and Equivalences								
Implication	$A \Rightarrow B \equiv \neg A \vee B$							
	$A \Leftrightarrow B \equiv (A \land B) \lor (\neg A \land \neg B)$							
	$A \Leftrightarrow B \equiv (\neg A \vee B) \wedge (A \vee \neg B)$							
Modus ponens	$A, A \Rightarrow B \models B$							
Modus tollens	$A \Rightarrow B, \neg B \models \neg A$							
And introduction	$A, B = A \wedge B$							
Or introduction	$A \vDash A \lor B \lor C \lor D \lor$							
And elimination	A^B^C^^Z ⊨ A							
Unit Resolution	A ∨ B, ¬B ⊨ A	$(A \lor B) \land \neg B \Rightarrow A$						
Resolution	$A \lor B$, $\neg B \lor C \vDash A \lor C$	$\neg A \Rightarrow B, B \Rightarrow C \models \neg A \Rightarrow C$						

Normal Forms

- Other approaches to inference use syntactic operations on sentences, often expressed in standardized forms
- Conjunctive Normal Form (CNF) *conjunction* of disjunction of literals $(A \lor \neg B) \land (B \lor \neg C \lor \neg D)$
- Disjunctive Normal Form (DNF) disjunction of conjunction of literals
 (A ∧ B) ∨ (A ∧ ¬C) ∨ (A ∧ ¬D) ∨ (¬B ∧ ¬C) ∨ (¬B ∧ ¬D)
- Horn Form (restricted) conjunction of Horn clauses (clauses with only 1 positive literal)
 (A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬D)
- Often written as a set of implications or Implicative Normal Form (INF): $B \Rightarrow A$ $(C \land D) \Rightarrow B$

Propositional Conversion to CNF

 $B \Leftrightarrow A \lor C$

- 1. Eliminate \Leftrightarrow , replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$ $(B \Rightarrow A \lor C) \land (A \lor C \Rightarrow B)$
- 2. Eliminate \Rightarrow , replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$ $(\neg B \lor A \lor C) \land (\neg (A \lor C) \lor B)$
- 3. Move ¬ inwards using de Morgan's rules and double-negation

$$(\neg B \lor A \lor C) \land ((\neg A \land \neg C) \lor B)$$

4. Apply distributivity law (v over Λ) and flatten (¬BvAvC)Λ(¬AvB)Λ(¬CvB)

Proof Methods

- Proof methods divide into (roughly) two kinds:
 - Model checking
 - Truth table enumeration (sound and complete for propositional logic sentence) (exponential in n)
 - Improved backtracking
 - Heuristic search in model space
 - Show that all interpretations in which the left hand side of the rule is true, the right hand side is also true (sound but incomplete)
 - Application of inference rules
 - Sound generation of new sentences from old
 - Proof = a sequence of inference rule applications
 - Can use inference rules as operators in a standard search algorithm.
 - Typically requires translation of sentences into a normal form

Wumpus World Sentences

- Imagine we are at a stage in the game where we have had the following experiences. What is in our knowledge base?
- What can we deduce about the world?
- Given the initial world:

R1: ¬P_{1 1}

Also know:

 $\begin{array}{l} \mathsf{R2:} \ \mathsf{B_{1,1}} \Leftrightarrow (\mathsf{P_{1,2}} \vee \mathsf{P_{2,1}}) \\ \mathsf{R3:} \ \mathsf{B_{2,1}} \Leftrightarrow (\mathsf{P_{1,1}} \vee \mathsf{P_{2,2}} \vee \mathsf{P_{3,1}}) \end{array}$

And we found out:

R4: ¬B_{1,1} R5: B_{2,1}

Proof by Truth Table/Enumeration

B _{1,1}	B _{2,1}	P _{1,1}	P _{1,2}	P _{2,1}	P _{2,2}	P _{3,1}	R1	R2	R3	R4	R5	KB
F	F	F	F	F	F	F	Т	Т	Т	Т	F	F
F	F	F	F	F	F	Т	Т	Т	F	Т	F	F
:	:	:	:	:	:	:	:	:	:	:	:	:
F	Т	F	F	F	F	F	Т	Т	F	Т	Т	F
F	Т	F	F	F	F	Т	Т	Т	Т	Т	Т	Т
F	Т	F	F	F	Т	F	Т	Т	Т	Т	Т	Т
F	Т	F	F	F	Т	Т	Т	Т	Т	Т	Т	Т
F	Т	F	F	Т	F	F	Т	F	F	Т	Т	F
:	:	:	:	:	:	:	:	:	:	:	:	:
Т	Т	Т	Т	Т	Т	Т	F	Т	Т	F	Т	F

 $\mathsf{KB} \Leftrightarrow \mathsf{R1} \land \mathsf{R2} \land \mathsf{R3} \land \mathsf{R4} \land \mathsf{R5}$

- •Depth-first enumeration of all models is sound and complete
- ${f O}(2^n)$ for n symbols; problem is co-NP-complete

Representing Horn Clauses as And-Or Graphs

- P ⇒ Q
- $L \wedge M \Rightarrow P$
- $B \wedge L \Rightarrow M$
- $A \land P \Rightarrow L$
- $A \wedge B \Rightarrow L$
- A
- B

Forward and Backward Chaining

- Modus Ponens: complete for Horn KBs $\frac{\alpha_1 \wedge \alpha_2 \wedge ... \wedge \alpha_n, \quad \alpha_1 \wedge \alpha_2 \wedge ... \wedge \alpha_n \Longrightarrow \beta}{\beta}$
- Can be used in a forward or backward chaining manner
- Are very natural and run in linear time

Forward Chaining (FC)

 Fire any rule whose premises are satisfied in the KB, add its conclusion to the KB until query is found

Proof of Completeness

- FC derives every atomic sentence that is entailed by KB
 - FC reaches a fixed point where no new atomic sentences are derived
 - 2. Consider this final state as a model *m*, assigning true/false to symbols
 - 3. Every clause in the original KB is true in m Proof: Suppose a clause $a_1 \land ... \land a_k \Rightarrow b$ is false in m. Then $a_1 \land ... \land a_k$ is true in m and b is false in m. Therefore the algorithm has not reached a fixed point
 - 4. Hence *m* is a model of *KB*
 - 5. If KB = q, q is true in every model of KB, including m

Backward Chaining (BC)

- Work backwards from the query q: to prove q by BC check if q is known already, or prove by BC all premises of some rule concluding q
- Avoid loops: check if new subgoal is already on the goal stack
- Avoid repeated work: check if new subgoal
 - Has already been proved true, or
 - Has already failed

Backward Chaining Example

Forward Chaining vs. Backward Chaining

- FC is data driven, automatic, unconscious processing
 - Object recognition, routing decisions
- May do lots of work that is irrelevant to the goal
- BC is goal-driven, appropriate for problem-solving
 - Where are my keys? How do I get into the PhD program?
- Complexity of BC can be much less than linear in size of KB

Resolution

 Resolution inference rule (for CNF) complete for propositional logic

$$\begin{array}{ll} \alpha_1 \mathsf{V} ... \mathsf{V} \alpha_n & \beta_1 \mathsf{V} ... \mathsf{V} \beta_m \\ \underline{\alpha_1 \mathsf{V} ... \mathsf{V} \alpha_{j+1} \mathsf{V} \alpha_{j+1} \mathsf{V} ... \mathsf{V} \alpha_n \mathsf{V} \beta_1 \mathsf{V} ... \mathsf{V} \beta_{j+1} \mathsf{V} ... \mathsf{V} \beta_m} \\ \text{where } \alpha_i \text{ and } \beta_j \text{ are complementary literals,} \\ -\alpha_i \equiv \beta_j \end{array}$$

- A∨B ¬B
- (We will talk about this in detail with FOPC)

Propositional Logic Summary

- Logical agents apply inference to a knowledge base to derive new information and make decisions
- Basic concepts of logic:
 - Syntax: formal structure of sentences
 - Semantics: truth of sentences with respect to models
 - Entailment: necessary truth of one sentence given another
 - Inference: deriving sentences from other sentences
 - Soundness: derivations produce only entailed sentences
 - Completeness: derivations can produce all entailed sentences
- Wumpus world requires the ability to represent partial and negated information, reason by cases, etc.
- Forward, backward chaining are linear-time, complete for Horn clauses
- Resolution is complete for propositional logic

Review

- Knowledge Representation
- Logic
- Propositional Logic
- Forward and Backward Chaining Proofs for Horn Clauses
- Next class
 - First-Order Predicate Calculus
 - Resolution by Refutation
 - Expert Systems