四川大学计算机学院、软件学院

实 验 报 告

学号: 2022141460176 姓名: 杨一舟 专业: 计算机科学与技术 第 10 周

课程 名称	计算机网络课程设计	实验课时	2 课时
实验项目	DHCP 配置与协议分析	实验时间	2024年11月7日
实验目的	在 Windows Server 下安装和配置 DHCP 服务,并分析 DHCP 协议的四次握手过程与地址 续借过程,观察 DHCP 协议如何利用特殊 IP 地址进行握手。		
实验环境	Windows Server, wire shark		
	一、DCHP 服务器配置		

、DUIII 服务希能直

实验背景

DHCP(动态主机配置协议)主要用于大型局域网环境中,通过集中管理和动态分 配 IP 地址、网关地址、DNS 服务器地址等网络配置信息,简化网络管理并提高地址利 用率。DHCP采用客户端/服务器模型,当网络设备首次连接时,会广播请求寻找 DHCP 服务器。服务器响应并提供一个临时的 IP 地址及其他配置信息。设备选择一个提供的 地址并通过请求确认,服务器最终确认分配的地址及其有效期限。这种方式不仅减少 了手动配置的工作量和出错概率,还提高了网络的安全性和灵活性,使设备能快速加 入网络。

实验 内容 (算 法、 程 序、 步骤 和方 法)

DHCP 服务器配置

1、在 Windows Server 中打开服务器管理器

2、在此窗口中点击"添加角色",添加 DHCP 服务器并配置

3、进行指定 DNS 服务器的配置, 配置域名及 IP

4、配置 DHCP 的作用域

5、禁用 DHCPv6 无状态模式,确认配置信息,完成安装

DHCP 客户端配置

在"网络连接"中选择 IPv4 选项, 配置为"自动获得 IP 地址"

DCHP 获取新 IP 地址

1、通过 ipconfig/release 来释放主机原有 IP

- 2、打开 wire shark, 启动分组捕获
- 3、通过 ipconfig/renew 重新获取 IP,

4、停止分组捕获,获得了主机重新获取 IP 过程中的数据包

1352 27.480579	0.0.0.0	255.255.255.255	DHCP	342 DHCP Discover - Transaction ID 0x8a3	040ed
1353 27.480853	192.168.10.54	255.255.255.255	DHCP	345 DHCP Offer - Transaction ID 0x8a3	040ed
1354 27.481163	0.0.0.0	255.255.255.255	DHCP	352 DHCP Request - Transaction ID 0x8a3	040ed
1355 27.481164	192.168.10.54	255.255.255.255	DHCP	350 DHCP ACK - Transaction ID 0x8a3	040ed
1441 28.752321	0.0.0.0	255.255.255.255	DHCP	342 DHCP Discover - Transaction ID 0x16d	9154a
1442 28.752627	192.168.10.54	255.255.255.255	DHCP	345 DHCP Offer - Transaction ID 0x16d	9154a
1443 28.753077	0.0.0.0	255.255.255.255	DHCP	352 DHCP Request - Transaction ID 0x16d	9154a
1444 28.753667	192.168.10.54	255.255.255.255	DHCP	350 DHCP ACK - Transaction ID 0x16d	9154a
1669 32.622958	192.168.10.33	255.255.255.255	DHCP	342 DHCP Inform - Transaction ID 0xda2	4af76
1702 33.043690	192.168.10.34	255.255.255.255	DHCP	342 DHCP Inform - Transaction ID 0xa29	9b9a8
1752 33.884639	0.0.0.0	255.255.255.255	DHCP	342 DHCP Discover - Transaction ID 0x28c	bdb57
1753 33.891864	192.168.10.54	255.255.255.255	DHCP	345 DHCP Offer - Transaction ID 0x28c	bdb57
1754 33.892150	0.0.0.0	255.255.255.255	DHCP	352 DHCP Request - Transaction ID 0x28c	bdb57
1755 33.892864	192.168.10.54	255.255.255.255	DHCP	350 DHCP ACK - Transaction ID 0x28c	bdb57

DCHP 的 IP 地址续借

- 1、 打开 Wireshark, 启动 Wireshark 分组俘获器;
- 2、禁用网卡,断开当前连接;
- 3、重新启用网卡接入网络, 让主机自动获取 IP 地址;
- 4、停止分组俘获,获得了主机续借 IP 地址过程中的数据包:

二、DCHP 协议分析

- 1、DCHP 获取新 IP 配置过程分析
 - (1) 客户端主机在获取一个新的 IP 配置信息时需要通过几次握手来完成?

四次握手,分别是 discover、offer、request 和 ACK

1352 27.480579	0.0.0.0	255.255.255.255	DHCP	342 DHCP Discover	Transaction ID 0x8a3040ed
1353 27.480853	192.168.10.54	255.255.255.255	DHCP	345 DHCP Offer	Transaction ID 0x8a3040ed
1354 27.481163	0.0.0.0	255.255.255.255	DHCP	352 DHCP Request	Transaction ID 0x8a3040ed
1355 27.481164	192.168.10.54	255.255.255.255	DHCP	350 DHCP ACK	Transaction ID 0x8a3040ed
1441 28.752321	0.0.0.0	255.255.255.255	DHCP	342 DHCP Discover -	Transaction ID 0x16d9154a
1442 28.752627	192.168.10.54	255.255.255.255	DHCP	345 DHCP Offer -	- Transaction ID 0x16d9154a
1443 28.753077	0.0.0.0	255.255.255.255	DHCP	352 DHCP Request -	- Transaction ID 0x16d9154a
1444 28.753667	192.168.10.54	255.255.255.255	DHCP	350 DHCP ACK -	Transaction ID 0x16d9154a
1669 32.622958	192.168.10.33	255.255.255.255	DHCP	342 DHCP Inform -	- Transaction ID 0xda24af76
1702 33.043690	192.168.10.34	255.255.255.255	DHCP	342 DHCP Inform -	- Transaction ID 0xa299b9a8
1752 33.884639	0.0.0.0	255.255.255.255	DHCP	342 DHCP Discover -	- Transaction ID 0x28cbdb57
1753 33.891864	192.168.10.54	255.255.255.255	DHCP	345 DHCP Offer -	- Transaction ID 0x28cbdb57
1754 33.892150	0.0.0.0	255.255.255.255	DHCP	352 DHCP Request -	- Transaction ID 0x28cbdb57
1755 33.892864	192.168.10.54	255.255.255.255	DHCP	350 DHCP ACK -	- Transaction ID 0x28cbdb57

(上实内(法程序步和接)验容算、程、骤方

法)

(2) DHCP 服务器从地址池中选择哪个 IP 地址分配给客户端?

在示例会话中为客户端分配的 IP 地址是 192. 168. 10. 41

```
Transaction ID: 0x42b41572
  Seconds elapsed: 0
> Bootp flags: 0x0000 (Unicast)
  Client TP address: 0 0 0 0
  Your (client) IP address: 192.168.10.41
  Next server IP address: 192.168.10.55
  Relay agent IP address: 0.0.0.0
  Client MAC address: Dell 9f:aa:b7 (f8:bc:12:9f:aa:b7)
  Server host name not given
  Boot file name not given
  Magic cookie: DHCP
v Option: (53) DHCP Message Type (Offer)
    Length: 1
    DHCP: Offer (2)
v Option: (1) Subnet Mask (225.225.225.0)
    Length: 4
```

(3) DHCP 会话过程中的 transaction ID 是多少?

每个会话过程中 transaction ID 会有所不同,示例会话中的 transaction ID 是 0x42b41572

(4) DHCP 分配的子网掩码, DNS 域名服务器分别为什么?

子网掩码是 255. 255. 255. 0,

DNS 服务器是 202. 115. 32. 36 和 61. 139. 2. 69

v Option: (1) Subnet Mask (255.255.255.0)

Length: 4

Subnet Mask: 255.255.255.0

∨ Option: (15) Domain Name

Length: 11

Domain Name: scu.edu.cn

∨ Option: (3) Router

Length: 4

Router: 192.168.10.254

∨ Option: (6) Domain Name Server

Length: 8

Domain Name Server: 202.115.32.36 Domain Name Server: 61.139.2.69

(5) 该客户端主机租借的 IP 地址租期为多久?

IP Address Lease Time 表示 IP 地址租期,为8天

∨ Option: (58) Renewal Time Value

Length: 4

Renewal Time Value: 4 days (345600)

∨ Option: (59) Rebinding Time Value

Length: 4

Rebinding Time Value: 7 days (604800)

v Option: (51) IP Address Lease Time

Length: 4

IP Address Lease Time: 8 days (691200)

(6) DHCP 采用什么传输层协议来传送 DHCP 的报文?

使用的是 UDP

```
> Frame 1355: 350 bytes on wire (2800 bits), 350 bytes captured (2800 bits) on interface
> Ethernet II, Src: Dell_58:f3:d9 (b0:83:fe:58:f3:d9), Dst: Broadcast (ff:ff:ff:ff:ff)
> Internet Protocol Version 4, Src: 192.168.10.54, Dst: 255.255.255.255

▼ User Datagram Protocol, Src Port: 67, Dst Port: 68

    Source Port: 67
    Destination Port: 68
    Length: 316
    Checksum: 0xdd05 [unverified]
    [Stream index: 101]
    [Stream packet Number: 8]
> [Timestamps]
    UDP payload (308 bytes)
> Dynamic Host Configuration Protocol (ACK)
```

(7) DHCP 的客户端在没有分配 IP 地址之前采用什么 IP 地址和服务器通信?服务器 采用什么 IP 来保证客户端收到服务器的配置信息?

在没有分配 IP 地址之前使用 0.0.0 与服务器通信,而服务器使用 255.255.255,即广播地址,保证客户端收到信息

```
46 1.076553
                                       255,255,255,255
                                                                      342 DHCP Discover - Transaction ID 0xee87e7f1
91 2.089619
                  0.0.0.0
                                       255.255.255.255
                                                            DHCP
                                                                      342 DHCP Discover - Transaction ID 0x11c2690d
                                                                      342 DHCP Discover - Transaction ID 0x5e7dcfed
190 4.127794
                  0.0.0.0
                                      255.255.255.255
                                                            DHCP
219 4.588728
                                                                      342 DHCP Discover - Transaction ID 0x16d9154a
                  0.0.0.0
                                      255.255.255.255
                                                            DHCP
                                                                      342 DHCP Discover - Transaction ID 0xc7118423
322 6.881133
                  0.0.0.0
                                      255.255.255.255
                                                            DHCP
362 7.862157
                  0.0.0.0
                                      255.255.255.255
                                                            DHCP
                                                                      342 DHCP Discover - Transaction ID 0x5e7dcfed
375 8.126523
                 0.0.0.0
                                      255.255.255.255
                                                            DHCP
                                                                      342 DHCP Discover - Transaction ID 0xee87e7f1
                                      255.255.255.255
                                                                      342 DHCP Discover - Transaction ID 0x11c2690d
462 10.467410
                 0.0.0.0
                                                            DHCP
491 11.218457
                  0.0.0.0
                                      255.255.255.255
                                                            DHCP
                                                                      342 DHCP Discover - Transaction ID 0xc7118423
                                       255.255.255.255
524 12.261813
                  0.0.0.0
                                                            DHCP
                                                                      342 DHCP Discover - Transaction ID 0x16d9154a
533 12.538996
                  0.0.0.0
                                       255.255.255.255
                                                           DHCP
                                                                      342 DHCP Discover - Transaction ID 0x42b41572
```

- 2、DCHP的 IP地址续借过程分析
 - (1) 主机重新接入网络的时候, 需要重新获取新的 IP 还是对原 IP 进行续租?

主机会优先请求续租原来的 IP 地址,如果服务器允许并且该 IP 地址仍然可用,服务器会同意续租请求,主机就可以对原 IP 进行续租。如果原有的 IP 地址不再可用,则会重新获取新的 IP。

本次实验中续租了旧 IP,因为第二次获取的 IP 地址与第一次相同。

```
Dynamic Host Configuration Protocol (ACK)
   Message type: Boot Reply (2)
   Hardware type: Ethernet (0x01)
   Hardware address length: 6
   Hops: 0
   Transaction ID: 0x42b41572
   Seconds elapsed: 0
 > Bootp flags: 0x0000 (Unicast)
   Client TD address a a a a
   Your (client) IP address: 192.168.10.41
   Next server IP address: 0.0.0.0
   Relay agent IP address: 0.0.0.0
   Client MAC address: Dell_9f:aa:b7 (f8:bc:12:9f:aa:b7)
   Transaction ID: 0x5e7dcfed
    Seconds elapsed: 0
  > Bootp flags: 0x0000 (Unicast)
    Client IP address: 0.0.0.0
    Your (client) IP address: 192.168.10.41
    Next server IP address: 192.168.10.64
    Relay agent IP address: 0.0.0.0
    Client MAC address: Dell_52:34:c2 (b0:83:fe:52:34:c2)
    Server host name not given
    Boot file name not given
    Magic cookie: DHCP
```

(2) 主机在续租时, 使用几次握手来完成续租的过程?

两次握手,仅有 request 与 ACK

					_
996 28.806836	0.0.0.0	255.255.255.255	DHCP	346 DHCP Request	- Transaction ID
997 28.807198	192.168.10.68	255.255.255.255	DHCP	350 DHCP ACK	- Transaction ID
998 28.807198	192.168.10.87	255.255.255.255	DHCP	350 DHCP ACK	- Transaction ID
999 28.807229	192.168.10.63	255.255.255.255	DHCP	350 DHCP ACK	- Transaction ID
1000 28.807273	192.168.10.55	255.255.255.255	DHCP	350 DHCP ACK	- Transaction ID
1001 28.807529	192,168,10,17	255, 255, 255, 255	DHCP	352 DHCP ACK	- Transaction ID

数据 记录 和计 算	实验过程及抓包截图如上述所示
结 论 (结 果)	在 Windows Server 下成功安装和配置 DHCP 服务后,通过实验观察到 DHCP 协议的四次握手过程(Discover、Offer、Request、Acknowledge)和地址续借过程。客户端在没有分配 IP 地址时使用 0.0.0.0 作为源地址,通过广播地址 255.255.255.255 与服务器通信。服务器则通过广播响应,确保客户端接收到配置信息。续借过程中,客户端使用两步握手(Request、Acknowledge)成功延长 IP 地址租约。实验验证了 DHCP协议在动态分配和管理 IP 地址方面的高效性和可靠性。
小结	在本次实验中,我成功地在 Windows Server 环境下安装和配置了 DHCP 服务,并详细分析了 DHCP 协议的四次握手过程和地址续借过程。通过实验,我深刻理解了 DHCP 协议的工作原理及其在网络管理中的重要性。在四次握手过程中,客户端在没有分配 IP 地址时使用 0.0.0.0 作为源地址,通过广播地址 255.255.255.255 发送 Discover 和 Request 消息,服务器则通过广播响应 Offer 和 Acknowledge 消息,确保客户端能够接收到配置信息。这一过程展示了 DHCP 协议在动态分配 IP 地址方面的高效性和灵活性。在地址续借过程中,客户端通过两步握手(Request、Acknowledge)成功延长 IP 地址租约,进一步验证了 DHCP 协议在管理 IP 地址租约方面的可靠性和便捷性。通过这次实验,我不仅掌握了 DHCP 服务的配置方法,还加深了对网络协议的理解,为今后的网络管理和维护工作打下了坚实的基础。
指导 老师 议	成绩评定: 指导教师签名: