

54F/74F161A ● 54F/74F163A Synchronous Presettable Binary Counter

General Description

The 'F161A and 'F163A are high-speed synchronous modulo-16 binary counters. They are synchronously presettable for application in programmable dividers and have two types of Count Enable inputs plus a Terminal Count output for versatility in forming synchronous multi-stage counters. The 'F161A has an asynchronous Master-Reset input that overrides all other inputs and forces the outputs LOW. The 'F163A has a Synchronous Reset input that overrides counting and parallel loading and allows the outputs to be simultaneously reset on the rising edge of the clock. The 'F161A and 'F163A are high-speed versions of the 'F161 and 'F163.

Features

- Synchronous counting and loading
- High-speed synchronous expansion
- Typical count frequency of 120 MHz
- Guaranteed 4000V minimum ESD protection

Commercial	Military	Package Number	Package Description
74F161APC		N16E	16-Lead (0.300" Wide) Molded Dual-In-Line
	54F161ADM (Note 2)	J16A	16-Lead Ceramic Dual-In-Line
74F161ASC (Note 1)		M16A	16-Lead (0.150" Wide) Molded Small Outline, JEDEC
74F161ASJ (Note 1)		M16D	16-Lead (0.300" Wide) Molded Small Outline, EIAJ
	54F161AFM (Note 2)	W16A	16-Lead Cerpack
	54F161ALM (Note 2)	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C
74F163APC		N16E	16-Lead (0.300" Wide) Molded Dual-In-Line
	54F163ADM (Note 2)	J16A	16-Lead Ceramic Dual-In-Line
74F163ASC (Note 1)		M16A	16-Lead (0.150" Wide) Molded Small Outline, JEDEC
74F163ASJ (Note 1)		M16D	16-Lead (0.300" Wide) Molded Small Outline, EIAJ
	54F163AFM (Note 2)	W16A	16-Lead Cerpack
	54F163ALM (Note 2)	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C

Note 1: Devices also available in 13" reel. Use suffix = SCX and SJX.

Note 2: Military grade device with environmental and burn-in processing. Use suffix = DMQB, FMQB and LMQB.

Connection Diagrams

Logic Symbols

TL/F/9486-3

TL/F/9486-9

Unit Loading/Fan Out

		54F/74F			
Pin Names	Description	U.L. HIGH/LOW	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}		
CEP	Count Enable Parallel Input	1.0/1.0	20 μA/-0.6 mA		
CET	Count Enable Trickle Input	1.0/2.0	20 μA/ – 1.2 mA		
CP	Clock Pulse Input (Active Rising Edge)	1.0/1.0	20 μA/-0.6 mA		
MR ('F161A)	Asynchronous Master Reset Input (Active LOW)	1.0/1.0	20 μA/-0.6 mA		
SR ('F163A)	Synchronous Reset Input (Active LOW)	1.0/2.0	20 μA/-1.2 mA		
$P_0 - P_3$	Parallel Data Inputs	1.0/1.0	20 μA/-0.6 mA		
PE	Parallel Enable Input (Active LOW)	1.0/2.0	20 μA/-1.2 mA		
$Q_0 - Q_3$	Flip-Flop Outputs	50/33.3	-1 mA/20 mA		
TC	Terminal Count Output	50/33.3	-1 mA/20 mA		

Functional Description

The 'F161A and 'F163A count in modulo-16 binary sequence. From state 15 (HHHH) they increment to state 0 (LLLL). The clock inputs of all flip-flops are driven in parallel through a clock buffer. Thus all changes of the Q outputs (except due to Master Reset of the 'F161A) occur as a result of, and synchronous with, the LOW-to-HIGH transition of the CP input signal. The circuits have four fundamental modes of operation, in order of precedence: asynchronous reset ('F161A), synchronous reset ('F163A), parallel load, count-up and hold. Five control inputs—Master Reset (MR, 'F161A), Synchronous Reset (SR, 'F163A), Parallel Enable (PE), Count Enable Parallel (CEP) and Count Enable Trickle (CET)-determine the mode of operation, as shown in the Mode Select Table. A LOW signal on MR overrides all other inputs and asynchronously forces all outputs LOW. A LOW signal on SR overrides counting and parallel loading and allows all outputs to go LOW on the next rising edge of CP. A LOW signal on PE overrides counting and allows information on the Parallel Data (Pn) inputs to be loaded into the flip-flops on the next rising edge of CP. With \overline{PE} and \overline{MR} ('F161A) or \overline{SR} ('F163A) HIGH, CEP and CET permit counting when both are HIGH. Conversely, a LOW signal on either CEP or CET inhibits counting.

The 'F161A and 'F163A use D-type edge triggered flip-flops and changing the \overline{SR} , \overline{PE} , CEP and CET inputs when the CP is in either state does not cause errors, provided that the recommended setup and hold times, with respect to the rising edge of CP, are observed.

The Terminal Count (TC) output is HIGH when CET is HIGH and the counter is in state 15. To implement synchronous multi-stage counters, the TC outputs can be used with the CEP and CET inputs in two different ways. Please refer to the 'F568 data sheet. The TC output is subject to decoding spikes due to internal race conditions and is therefore not recommended for use as a clock or asynchronous reset for flip-flops, counters or registers.

 $\mbox{Logic Equations: Count Enable} = \mbox{CEP} \bullet \mbox{CET} \bullet \overline{\mbox{PE}}$

$$\mathsf{TC} = \mathsf{Q}_0 \bullet \mathsf{Q}_1 \bullet \mathsf{Q}_2 \bullet \mathsf{Q}_3 \bullet \mathsf{CET}$$

Mode Select Table

*SR	PE	CET	CEP	Action on the Rising Clock Edge (_/_)
L	Χ	Х	Х	Reset (Clear)
Н	L	X	X	Load ($P_n \rightarrow Q_n$)
Н	Н	Н	Н	Count (Increment)
Н	Н	L	X	No Change (Hold)
Н	Н	X	L	No Change (Hold)

*For 'F163A only

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

State Diagram

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

 $\begin{array}{lll} \text{Storage Temperature} & -65^{\circ}\text{C to} + 150^{\circ}\text{C} \\ \text{Ambient Temperature under Bias} & -55^{\circ}\text{C to} + 125^{\circ}\text{C} \\ \text{Junction Temperature under Bias} & -55^{\circ}\text{C to} + 175^{\circ}\text{C} \\ \text{Plastic} & -55^{\circ}\text{C to} + 150^{\circ}\text{C} \\ \end{array}$

V_{CC} Pin Potential to

Ground Pin -0.5V to +7.0V
Input Voltage (Note 2) -0.5V to +7.0V
Input Current (Note 2) -30 mA to +5.0 mA

Voltage Applied to Output in HIGH State (with $V_{CC} = 0V$)

 $\begin{array}{lll} \text{Standard Output} & -0.5 \text{V to V}_{\text{CC}} \\ \text{TRI-STATE} \tiny{\textcircled{\$}} \text{ Output} & -0.5 \text{V to } +5.5 \text{V} \end{array}$

Current Applied to Output in LOW State (Max)

twice the rated I_{OL} (mA)

ESD Last Passing Voltage (Min) 4000V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature

Military $-55^{\circ}\text{C to} + 125^{\circ}\text{C}$ Commercial $0^{\circ}\text{C to} + 70^{\circ}\text{C}$

Supply Voltage

Military + 4.5V to + 5.5V Commercial + 4.5V to + 5.5V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	V	Conditions	
Symbol			Min	Тур	Max	Units	V _{CC}	Conditions	
V _{IH}	Input HIGH Voltage		2.0			٧		Recognized as a HIGH Signal	
V_{IL}	Input LOW Voltage				0.8	٧		Recognized as a LOW Signal	
V_{CD}	Input Clamp Diode Vo	oltage			-1.2	V	Min	$I_{IN} = -18 \text{ mA}$	
V _{OH}	Output HIGH Voltage	54F 10% V _{CC} 74F 10% V _{CC} 74F 5% V _{CC}	2.5 2.5 2.7			V	Min	$I_{OH} = -1 \text{ mA}$	
V _{OL}	Output LOW Voltage	54F 10% V _{CC} 74F 10% V _{CC}			0.5 0.5	٧	Min	$I_{OL} = 20 \text{ mA}$	
I _{IH}	Input HIGH Current	54F 74F			20.0 5.0	μΑ	Max	$V_{IN} = 2.7V$	
I _{BVI}	Input HIGH Current Breakdown Test	54F 74F			100 7.0	μΑ	Max	V _{IN} = 7.0V	
I _{CEX}	Output HIGH Leakage Current	54F 74F			250 50	μΑ	Max	$V_{OUT} = V_{CC}$	
V _{ID}	Input Leakage Test	74F	4.75			٧	0.0	$I_{ m ID}=$ 1.9 $\mu{ m A}$ All Other Pins Grounded	
I _{OD}	Output Leakage Circuit Current	74F			3.75	μΑ	0.0	V _{IOD} = 150 mV All Other Pins Grounded	
I _{IL}	Input LOW Current				−0.6 −1.2	mA mA	Max Max	$\begin{aligned} &V_{IN} = 0.5 \text{V (CEP, CP, } \overline{\text{MR}}, P_0 - P_3) \\ &V_{IN} = 0.5 \text{V (CET, } \overline{\text{PE, SR}}) \end{aligned}$	
I _{OS}	Output Short-Circuit (Current	-60		-150	mA	Max	V _{OUT} = 0V	
Icc	Power Supply Curren	t		37	55	mA	Max		

AC Electrical Characteristics

			74F		5	4F	74F T _A , V _{CC} = Com C _L = 50 pF		Units
Symbol	Parameter	v	$\Gamma_{ extsf{A}} = +25^{\circ} ag{CC} = +5.0 ag{CL}$	V		_C = Mil 50 pF			
		Min	Тур	Max	Min	Max	Min	Max]
f _{max}	Maximum Count Frequency	100	120		75		90		MHz
t _{PLH}	Propagation Delay CP to Q _n (PE Input HIGH)	3.5 3.5	5.5 7.5	7.5 10.0	3.5 3.5	9.0 11.5	3.5 3.5	8.5 11.0	ns
t _{PLH}	Propagation Delay CP to Q _n (PE Input LOW)	4.0 4.0	6.0 6.0	8.5 8.5	4.0 4.0	10.0 10.0	4.0 4.0	9.5 9.5	1115
t _{PLH}	Propagation Delay CP to TC	5.0 5.0	10.0 10.0	14.0 14.0	5.0 5.0	16.5 15.5	5.0 5.0	15.0 15.0	ns
t _{PLH}	Propagation Delay CET to TC	2.5 2.5	4.5 4.5	7.5 7.5	2.5 2.5	9.0 9.0	2.5 2.5	8.5 8.5	ns
t _{PHL}	Propagation Delay MR to Q _n ('F161A)	5.5	9.0	12.0	5.5	14.0	5.5	13.0	ns
t _{PHL}	Propagation Delay MR to TC ('F161A)	4.5	8.0	10.5	4.5	12.5	4.5	11.5	ns

AC Operating Requirements

Symbol		$74F$ $T_A = +25^{\circ}C$ $V_{CC} = +5.0V$		54	F	74F T _A , V _{CC} = Com		Units
	Parameter			T _A , V _{CC}	; = Mil			
		Min	Max	Min	Max	Min	Max	
t _S (H) t _S (L)	Setup Time, HIGH or LOW P _n to CP	5.0 5.0		5.5 5.5		5.0 5.0		ns
t _h (H) t _h (L)	Hold Time, HIGH or LOW P _n to CP	2.0 2.0		2.5 2.5		2.0 2.0		
t _S (H) t _S (L)	Setup Time, HIGH or LOW PE or SR to CP	11.0 8.5		13.5 10.5		11.5 9.5		ns
t _h (H) t _h (L)	Hold Time, HIGH or LOW PE or SR to CP	2.0 0		3.6 0		2.0 0		
t _S (H) t _S (L)	Setup Time, HIGH or LOW CEP or CET to CP	11.0 5.0		13.0 6.0		11.5 5.0		- ns
t _h (H) t _h (L)	Hold Time, HIGH or LOW CEP or CET to CP	0 0		0		0		
t _w (H) t _w (L)	Clock Pulse Width (Load) HIGH or LOW	5.0 5.0		5.0 5.0		5.0 5.0		ns
t _w (H) t _w (L)	Clock Pulse Width (Count) HIGH or LOW	4.0 6.0		5.0 8.0		4.0 7.0		ns
t _w (L)	MR Pulse Width, LOW ('F161A)	5.0		5.0		5.0		ns
t _{rec}	Recovery Time MR to CP ('F161A)	6.0		6.0		6.0		ns

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

Physical Dimensions inches (millimeters)

20-Lead Ceramic Leadless Chip Carrier (L) NS Package Number E20A E20A (REV D)

Physical Dimensions inches (millimeters) (Continued)

16-Lead Ceramic Flatpak (F) NS Package Number W16A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 2900 Semiconductor Drive P.O. Box 58090 Santa Clara, CA 95052-8090 Tel: 1(800) 272-9959 TWX: (910) 339-9240 National Semiconductor GmbH Livry-Gargan-Str. 10 D-82256 Fürstenfeldbruck Germany Tel: (81-41) 35-0 Telex: 527649 Fax: (81-41) 35-1 National Semiconductor Japan Ltd. Sumitomo Chemical Engineering Center Bldg. 7F 1-7-1, Nakase, Mihama-Ku Chiba-City, Ciba Prefecture 261

National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductores Do Brazil Ltda. Rue Deputado Lacorda Franco 120-3A Sao Paulo-SP Brazil 05418-000 Tel: (55-11) 212-5066 Telex: 391-1131931 NSBR BR Fax: (55-11) 212-1181 National Semiconductor (Australia) Pty, Ltd. Building 16 Business Park Drive Monash Business Park Nottinghill, Melbourne Victoria 3168 Australia Tel: (3) 558-9999 Fax: (3) 558-9998 This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.