Examen del bloque 2 de SIN: Test (1,75 puntos)

ETSINF, Universitat Politècnica de València, 18 de enero de 2021

Grupo, apellidos y nombre: 3B, Arnal García, David

Marca cada recuadro con una única opción. Puntuación: máx(0, (aciertos – errores / 3) · 1,75 / 9).

1 Sea un problema de clasificación en tres clases para datos del tipo $\mathbf{x} = (x_1, x_2)^t \in \{0, 1\}^2$, con las distribuciones de probabilidad de la tabla. Indica en qué intervalo se halla el error de Bayes, ε^* :

X		$P(c \mid \mathbf{x})$			
x_1	x_2	c=1	c=2	c=3	$P(\mathbf{x})$
0	0	0.4	0.5	0.1	0.4
0	1	0.4	0.1	0.5	0.1
1	0	0.1	0.6	0.3	0.1
1	1	0.5	0.1	0.4	0.4

- A) $\varepsilon^* < 0.40$.
- B) $0.40 \le \varepsilon^* < 0.45$.
- C) $0.45 \le \varepsilon^* < 0.50$.
- D) $0.50 \le \varepsilon^*$.

Supóngase que estamos aplicando el algoritmo de aprendizaje de árboles de clasificación para un problema de cuatro clases, c=1,2,3,4. El algoritmo ha alcanzado un nodo t que incluye los siguientes datos: 2 de la clase 1, 4 de la 2, 32 de la 3 y 256 de la 4. La impureza de t, $\mathcal{I}(t)$, medida como la entropía de la distribución empírica de las probabilidades a posteriori de las clases en t, es:

- A) $0.00 \le \mathcal{I}(t) < 0.50$.
- B) $0.50 \le \mathcal{I}(t) < 1.00$.
- C) $1.00 \le \mathcal{I}(t) < 1.50$.
 - $1.00 \le \mathcal{I}(t) < 1.50.$
- D) $1.50 \le \mathcal{I}(t)$.

 $3 \ \boxed{}$ Sean M un modelo de Markov de representación gráfica:

2

 λ Cuántas cadenas distintas de longitud 3 puede generar M?

A) Ninguna. a-b-a

B) Al menos una, pero no más de 3. a-b-b

C) Más de 3, pero no más de 6. b-b-a

D) Más de 6. **b-b-b**

Dado el clasificador en dos clases definido por su frontera y regiones de decisión de la figura de la derecha, ¿cuál de los siguientes vectores de pesos (en notación homogénea) define un clasificador equivalente al dado?

- A) $\mathbf{w}_1 = (1, 0, 0)^t$ y $\mathbf{w}_2 = (0, 0, 2)^t$.
- B) $\mathbf{w}_1 = (-1, 0, 0)^t$ y $\mathbf{w}_2 = (0, 0, -2)^t$.
- C) $\mathbf{w}_1 = (0, 0, 2)^t$ $\mathbf{w}_2 = (1, 0, 0)^t$.
- D) Todos los vectores de pesos anteriores definen clasificadores equivalentes.
- $5 \square$ Sea **x** un objeto a clasificar en una clase de C posibles. Indica cuál de los siguientes clasificadores no es de error mínimo (o escoge la última opción si los tres son de error mínimo):

A)
$$c(\mathbf{x}) = \underset{c=1,...,C}{\operatorname{arg max}} p(c) p(\mathbf{x}|c)$$

B)
$$c(\mathbf{x}) = \underset{c=1,...,C}{\operatorname{arg max}} \log p(\mathbf{x}, c)$$

C)
$$c(\mathbf{x}) = \underset{c=1,...,C}{\operatorname{arg max}} p(\mathbf{x}|c)$$

- D) Los tres clasificadores anteriores son de error mínimo.
- 6 Supóngase que tenemos dos cajas con 50 manzanas cada una. La primera caja contiene 19 manzanas Gala y 31 Fuji. La segunda caja contiene 25 manzanas de cada tipo. Ahora supóngase que se escoge una caja al azar, y luego una manzana al azar de la caja escogida. Si la manzana escogida es Gala, la probabilidad P de que proceda de la primera caja es:
 - A) $0/4 \le P < 1/4$.
 - B) $1/4 \le P < 2/4$.
 - C) $2/4 \le P < 3/4$.
 - D) $3/4 \le P \le 4/4$.

- 7 La probabilidad de error de un clasificador se estima que es del 12 %. Determina cuál es el número mínimo de muestras de test necesario, M, para conseguir que el intervalo de confianza al 95 % de dicho error no supere el ± 1 %; esto es, I = [11 %, 13 %]:
 - A) M < 2000.
 - B) $2000 \le M < 3500$.
 - C) $3500 \le M < 5000$.
 - D) $M \ge 5000$.
- Bado el conjunto de muestras de 2 clases (o y •) de la figura de la derecha, ¿cuál de los siguientes árboles de clasificación es coherente con la partición representada?

9 La figura siguiente muestra una partición de 5 puntos bidimensionales de dos clústers, • y o:

La transferencia del punto $(4,1)^t$ del clúster \bullet al clúster \circ produce una variación de la suma de errores cuadráticos, ΔJ , tal que:

- A) $\Delta J < 0$, esto es, la transferencia es provechosa.
- B) $0 \le \Delta J < 1$.
- C) $1 \le \Delta J < 2$.
- D) $\Delta J \geq 2$.

Examen del bloque 2 de SIN: Problema (2 puntos)

ETSINF, Universitat Politècnica de València, 18 de enero de 2021

Grupo, apellidos y nombre: 3B, Arnal García, David

Problema sobre Perceptrón

En la tabla siguiente se proporciona un conjunto de 4 muestras bidimensionales de aprendizaje de 3 clases, c=1,2,3.

n	x_{n1}	x_{n2}	c_n
1	1	3	1
2	1	2	2
3	5	2	3
4	2	5	2

Se pide:

- 1. (1.5 puntos) Realiza una traza de ejecución del algoritmo Perceptrón, hasta 3 iteraciones, con factor de aprendizaje $\alpha=1$, margen $\gamma=0.1$ y pesos iniciales nulos.
- 2. (0.5 puntos) Clasifica la muestra de test $\mathbf{x} = (2,1)^t$ mediante un clasificador lineal con los vectores de pesos obtenidos tras la tercera iteración.