Đại học Bách khoa Hà Nội Trường Công nghệ thông tin và truyền thông --000--

BÁO CÁO BÀI TẬP CUỐI KÌ

Giảng viên hướng dẫn: Lê Xuân Thành

Nhóm sinh viên thực hiện:

+ Phan Thế Anh MSSV: 20204941

+ Phạm Bá Đồng MSSV: 20200156

Mã lớp: 126912

Học phần: IT2140

BÀI 1: LẮP MẠCH CỘNG TRỪ 4 BIT

Link mach: https://www.tinkercad.com/things/fVkF3RtvZAJ-exquisite-kup-uusam/editel?sharecode=u-J-Y8tH3UpukaQpBMIVOwwBfkJl4UyohkSA9LN9T-4

1. Các linh kiện sử dụng

- IC 74HC283: Bộ cộng 4 bit
- IC 74HC86: Cổng XOR
- IC CD4511: Bộ giải mã 7 thanh
- IC 74HC08: Cổng bốn AND
- IC 74HC32: Cổng bốn OR
- IC 74HC04: Cổng sáu NOT
- Điện trở $1k\Omega$, 330Ω
- LED 7 đoạn: Hiển thị kết quả dưới dạng số thập phân
- Công tắc
- Đầu vào 5V

2. Nguyên lý hoạt động

a) Bộ cộng trừ 4 bit

Thực hiện phép cộng/trừ 2 số A và B

- Phép trừ là phép cộng với số bù 2
- SUB = $0 \rightarrow A+B$
- SUB = 1, $C_{in} = 1 \rightarrow A-B$

b) Bộ giải mã để hiển thị giá trị của toán hạng

- Giá trị của toán hạng nguồn từ 0 → 9 được hiển thị trên 1 LED 7 đoạn
 - Nối lần lượt các bit đầu vào tương ứng với các cổng vào của IC CD4511.
 - Nối lần lượt các cổng ra của IC CD4511 với các chân của LED 7 thanh

- Giá trị của toán hạng đích từ 0 → 15 được hiển thị trên 2 LED 7 đoạn
 - LED 7 đoạn hàng chực được biểu diễn bằng 1 bit: 0 khi đầu vào có giá trị thập phân nhỏ hơn 10, 1 khi đầu vào có giá tri thập phân lớn hơn hoặc bằng 10.

Input: chuỗi 4 bit ABCD

Output: bit F

 \Rightarrow F = AB + AC = A(B+C)

Bảng thật:

A	В	С	D	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

o LED 7 đoạn hàng đơn vị được biểu diễn bằng 4 bit:

- Khi đầu vào có giá trị thập phân nhỏ hơn 10 thì LED 7 đoạn hiển thị giá trị đúng với đầu vào.
- Khi đầu vào có giá trị thập phân lớn hơn hoặc bằng 10, gán lại giá trị đầu ra là giá trị hàng đơn vị của đầu vào.

Input: chuỗi 4 bit ABCD

Output: chuỗi 4 bit F3F2F1F0

Bảng thật:

A	В	С	D	F3	F2	F 1	F0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	1
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	1
0	1	1	0	0	1	1	0
0	1	1	1	0	1	1	1
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	1
1	0	1	0	0	0	0	0
1	0	1	1	0	0	0	1
1	1	0	0	0	0	1	0
1	1	0	1	0	0	1	1
1	1	1	0	0	1	0	0
1	1	1	1	0	1	0	1

c) Thực hiện lắp mạch trên tinkercad

d) Một vài kết quả

Thực hiện 9 + 2

Thực hiện 9-2

Bài 2: Lắp mạch đếm từ giá trị 00 đến XY theo hệ 10. Giá trị XY được chọn ngẫu nhiên trong khoảng $16 \le XY \le 31$.

Link mach: https://www.tinkercad.com/things/7h4vuypEsuQ-copy-of-bai-2-ck/editel?sharecode=knfvJru-BO6ydPUWQ0trftVHVIbz1tPbFF33uQrZhdg

1) Các linh kiện sử dụng

- IC 74HC74: D flip flop
- IC 74HC86: Cổng XOR
- IC 74HC04: Cổng NOT
- IC 74HC32: Cổng OR
- IC 74HC08: Cổng AND
- IC 74HC20: Cổng NAND 4 đầu vào
- IC 74HC00: Cổng NAND
- IC CD4511: Bộ giải LED 7 đoạn
- Điện trợ: 330Ω , $1k\Omega$
- LED 7 đoạn
- Nút bấm
- Bộ nguồn 5V
- Công tắc

2) Nguyên lý hoạt động

Bộ đếm:

Chia mạch thành 3 phần nhỏ

- + Phần 1: Sử dụng 5 D flip flop để kiểm tra bộ đếm đến XY
- + Phần 2: Sử dụng 4 D flip flop để kiểm tra bộ đếm hàng đơn vị
- + Phần 3: Sử dụng 2 D flip flop để kiểm tra bộ đếm hàng chục

Quy ước:

- Đầu vào 4 bit từ công tắc: A3A2A1A0

- Q: trạng thái đầu vào từ công tắc, có 2 trạng thái: 1 khi
 A3A2A1A0 = 0000, 0 với các trường hợp còn lại
- P: clear, 1 hoặc 0
- XY: B4B3B2B1B0

a) Phần 1

- Thực hiện việc kiểm tra A3A2A1A0 có là 0000 hay không.
- Thực hiện XOR giữa A3A2A1A0 và B3B2B1B0
- Kết quả XOR đem qua cổng NOT
- Thực hiện việc kiểm tra kết quả trên với B4, Q (Sử dụng cổng NAND) → P

- Thực hiện reset khi P=0
- Trường hợp công tắc tắt hết: Q=1
 - \circ Thực hiện bộ đếm từ 00 31 và quay lại

b) Phần 2

Quy ước: Đầu ra từ bộ đếm 4 D flip flop: Q3Q2Q1Q0

- LED 7 thanh reset khi:
 - + Q3Q2Q1Q0 = 1010
 - + Q3Q2Q1Q0 = giá trị thập phân Y

Bảng thật:

Trường hợp 0-9:

	ong nọp o						
A	В	C	D	Q3	Q2	Q1	Q0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	1
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	1
0	1	1	0	0	1	1	0
0	1	1	1	0	1	1	1
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	1
1	0	1	0	1	0	1	0
1	0	1	1	-	ı	-	-
1	1	0	0	-	-	ı	-
1	1	0	1	-	-	-	-
1	1	1	0	-	-	-	_
1	1	1	1	-	-	-	-

c) Phần 3

Quy ước: Đầu ra từ bộ đếm 2 D flip flop: T1T0

- Mỗi lần Q3Q2Q1Q0 = 1010 thì xung clock sẽ nhảy lên 1 xung, bộ đếm tăng thêm 1 lần đếm.
- LED 7 thanh clear khi:
 - + Q3Q2Q1Q0 = 0010 và T1T0 = 11
 - + Q3Q2Q1Q0 = giá trị thập phân Y

3) Thực hành lắp mạch trên tinkercad

4) Một vài kết quả

Thực hiện đếm đến 00-...-31-00...

Thực hiện đếm 00-...16-00-...

