PA #2

Mass-Spring based Cloth simulation programming

2019. 10. 2

Computer Graphics @ Korea University

과제 목표

Mass Spring System 기반 옷감 시뮬레이션 프로그램 개발

- 1) Mass를 갖는 Node를 Spring으로 연결하여 옷감 모델 제작.
- 2) 수치 적분 알고리즘을 이용하여 옷감의 움직임 구현.
- 3) 3차원 렌더링을 적용하여 옷감의 입체감 표현.

"Smoothed Aggregation Multigrid for Cloth Simulation" [R Tamstorf (Walt Disney Animation Studios) *et al.* / SIGGRAPH Asia 2015]

Mass Spring Damper Cloth Simulation 2 https://youtu.be/qOvb3WLAX0E

과제 목표

기본 구현 사항 *(60점/100점)*

1. Initialization

Node 배치 및 Structural & Shear 스프링 연결 (10점)

2. Simulation

▪ Spring Force 계산 및 Integration *(10점)*

3. Rendering

- 옷감에 Lighting을 적용하여 입체감 표현 (10점)
 - Vertex Normal 계산 필요

4. Collision

옷감과 바닥의 충돌처리 (15점)

5. User Interaction

- 마우스 드래그 방향에 따른 외력 적용 *(15점*)
 - 마우스 드래그 방향과 정도에 따라 전체 노드에 외력 적용

Initialization

■ 시뮬레이션 되어질 Cloth의 노드에 스프링 연결

기본 구현 사항 Simulation

- Cloth에 작용하는 모든 힘을 계산하여 적용
 - Internal, External Force

Collision

- 바닥면과 옷감의 충돌을 Detection하고 Response를 모델링하여 적용
 - Caution:

옷감 노드 및 스프링간의 충돌(Self-Collision)은 고려치 않아도 됨

Rendering

- 각각 노드(Vertex)에서의 Normal값을 계산하여 라이팅 적용
 - Caution:

Vertex Normal 값을 구하기위해서는 Face정보 구성이 반드시 필요로 함

User Interface

Mouse Callback을 추가하여 옷감에 외력을 적용

과제 목표

추가 구현 사항 (최대 40점/100점)

- 1. Structural + Shear + Bend (10점)
- 2. Sphere or Cylinder와의 충돌처리 구현 (10점)
- 3. Mesh Object와의 충돌 처리 구현 *(10점)*
- 4. 옷감에 Texture Mapping 적용 (10점)
- 5. 수치해석 기법을 통한 시뮬레이션 안정화 (20점)

Structural + Shear + Bending

• Bending Spring을 추가하여 Bending 효과 적용

Sphere or Cylinder와의 충돌처리 구현

• 구형, 원기둥 등의 3차원 모델과 옷감의 충돌 처리

3D Sphere와 옷감의 충돌 처리

Mesh Object와의 충돌처리 구현

• 3차원 Mesh 모델과 옷감의 충돌 처리

옷감에 Texture Mapping 적용

• 원하는 Image나 Texture를 사용하여, 옷감에 Texture Mapping 적용

추가적인 해석 기법을 통한 시뮬레이션 안정화

 RK Method, Euler Implicit Method 등의 해석 기법을 활용하여 시뮬레이션 안정화.

RK4 Method

Euler Method

과제 제출

- 제출 기한
 - 11/1 (금요일) 23:59 PM
- 채점 기준
 - 기본 구현 사항을 충실히 구현하였는가? (총 <u>60pts</u>)
 - 추가 구현에 대하여 보너스 점수 있음 (최대 <u>40pts</u>)
- 제출 자료
 - Power Point 발표 자료 11월 4일 발표할 자료
 - 프로젝트 폴더 전체를 압축한 zip 파일
 - cpp 파일만 제출시 감점
 - 구현 사항에 대한 Report
 - 영상 데모 파일(PA#1, PA#2)
- 제출 양식
 - 학번_이름_PA2 **위의 제출 자료 모두를 압축하여 zip 파일을** @조교메일: twoo0220@korea.ac.kr로 제출
- Skeleton Code는 Blackboard에 업로드할 예정