

Prédiction des prix immobiliers en utilisant les algorithmes d'apprentissage automatique

Réalisé par : TAOUCHIKHT SAAD Responsable : Pr. Sabiri Mohamed

PLAN

01	Introduction -	04	Machine Learning
02	Problématique	05	travaux pratiques
03	Présentation de dataset utilisé	06	Conclusion

Introduction

introduction générale

Dans le domaine de l'immobilier, la prédiction des prix joue un rôle crucial pour les acteurs du marché, qu'il s'agisse d'acheteurs, de vendeurs ou d'investisseurs. Avec l'avènement de technologies avancées, l'utilisation des algorithmes d'apprentissage automatique s'est révélée être une approche puissante pour anticiper et comprendre les tendances du marché immobilier. Cette méthodologie permet d'analyser de vastes ensembles de données, tenant compte de divers facteurs influents, afin de fournir des estimations précises des prix immobiliers. Dans cette étude, nous explorons l'application de ces algorithmes pour la prédiction des prix immobiliers, mettant en lumière leur efficacité et leur capacité à offrir des perspectives éclairantes dans un marché immobilier dynamique et en constante évolution.

Problématique

Problématique

Comment les algorithmes d'apprentissage automatique peuvent-ils être efficacement appliqués à la prédiction des prix immobiliers, et quel est leur impact sur la précision des estimations par rapport aux méthodes traditionnelles ?

les bénéfices de l'utilisation des les algorithmes d'apprentissage automatique pour Prédiction des prix immobiliers

Précision Améliorée : Les algorithmes d'apprentissage automatique, en exploitant la capacité à identifier des motifs complexes, améliorent considérablement la précision des prédictions des prix immobiliers par rapport aux méthodes traditionnelles.

Adaptabilité aux Changements du Marché: Grâce à leur capacité à s'ajuster dynamiquement, les algorithmes d'apprentissage automatique permettent une prédiction plus fiable des prix immobiliers dans un marché en évolution constante.

Traitement Efficace de Données Hétérogènes : Les données immobilières sont souvent diverses. Les algorithmes d'apprentissage automatique peuvent traiter efficacement cette variété, améliorant ainsi la robustesse des modèles.

Optimisation du Temps et des Ressources : Les algorithmes d'apprentissage automatique peuvent permettre une optimisation significative du temps et des ressources nécessaires pour la modélisation des prix immobiliers, en automatisant certaines étapes du processus.

Présentation de dataset utilisé

Dans notre projet, nous avons utilisé le jeu de données appelé kc_house_data.csv qui appartiennent les prix immobiliers, le nombre de salles de bains, le nombre de vues, et le nombre d'étagesetc

id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	 grade	sqft_above	sqft_basement	yr_built	yr_renovated	zipcode
0 7129300520	20141013T000000	221900.0	3	1.00	1180	5650	1.0	0	0	 7	1180	0	1955	0	98178 47
1 6414100192	20141209T000000	538000.0	3	2.25	2570	7242	2.0	0	0	 7	2170	400	1951	1991	98125 47
2 5631500400	20150225T000000	180000.0	2	1.00	770	10000	1.0	0	0	 6	770	0	1933	0	98028 47
3 2487200875	20141209T000000	604000.0	4	3.00	1960	5000	1.0	0	0	 7	1050	910	1965	0	98136 47
4 1954400510	20150218T000000	510000.0	3	2.00	1680	8080	1.0	0	0	 8	1680	0	1987	0	98074 47

5 rows × 21 columns

Abréviation

kc_house_data.csv

Feature Columns

- · id Unique ID for each home sold
- · date Date of the home sale
- · price Price of each home sold
- · bedrooms Number of bedrooms
- bathrooms Number of bathrooms, where .5 accounts for a room with a toilet but no shower
- sqft_living Square footage of the apartments interior living space
- sqft_lot Square footage of the land space
- floors Number of floors
- waterfront A dummy variable for whether the apartment was overlooking the waterfront or not
- view An index from 0 to 4 of how good the view of the property was
- condition An index from 1 to 5 on the condition of the apartment,

- grade An index from 1 to 13, where 1-3 falls short of building construction and design, 7 has an average level of construction and design, and 11-13 have a high quality level of construction and design.
- sqft_above The square footage of the interior housing space that is above ground level
- sqft_basement The square footage of the interior housing space that is below ground level
- yr_built The year the house was initially built
- yr_renovated The year of the house's last renovation
- · zipcode What zipcode area the house is in
- lat Lattitude
- long Longitude
- sqft_living15 The square footage of interior housing living space for the nearest 15 neighbors
- sqft_lot15 The square footage of the land lots of the nearest 15 neighbors

Les différents algorithmes de Machine Learning

Dans notre projet, nous avons utilisé plusieurs algorithmes de Machine learning comme LinearRegression, DecisionTreeRegressor, GradientBoostingRegressor, lesquels nous ont fourni les résultats suivants.

Output

LinearRegression Accuracy: 70%

Ridge Accuracy: 70%

RandomForestRegressor Accuracy: 88%

ElasticNet Accuracy: 62%

DecisionTreeRegressor Accuracy: 74%

KNeighborsRegressor Accuracy: 52%

GradientBoostingRegressor Accuracy: 86%

Voici un exemple de Visualisation des résultats d'entraînement et du test en utilisant l'algorithme de régression linéaire

Voici un exemple de Visualisation des résultats d'entraînement d'un algorithme de de Deep learning keras

Voici un exemple de prédiction de prix immobilier en fonction de la surface du bien en utilisant l'algorithme de régression linéaire

TP

Conclusion

En conclusion de cette présentation, nous avons exploré et présenté notre jeu de données. Nous avons également examiné les problématiques et les bénéfices de l'utilisation des algorithmes d'apprentissage automatique pour la prédiction des prix immobiliers. Dans notre projet, nous avons utilisé plusieurs algorithmes de Machine Learning tels que Linear Regression, Decision Tree Regressor, et Gradient Boosting Regressor. Enfin, nous avons illustré un exemple de prédiction de prix immobilier basé sur la surface en utilisant l'algorithme de régression linéaire. Cette approche démontre le potentiel des méthodes de machine learning pour comprendre et anticiper les tendances du marché immobilier de manière précise et efficace.

MERCI POUR VOTRE ATTENTION