Week-1

1.a. Python Program to find factorial of a Number

Source Code:

```
def factorial(n):
    if (n==1 or n==0):
        return 1
    else:
        return n * factorial(n - 1)
```

```
num = int(input('Enter the Number : '))
```

Enter the Number: 6

fact = factorial(num)

```
print("Factorial of { } is { } ".format(num,fact))
```

Factorial of 6 is 720

1.b. Python Program to find Second Largest Element in an Array

Source Code:

```
def findseclargest(arr):
    largest = arr[0]
    sec_largest = arr[0]
    for i in range(len(arr)):
        if( arr[i] > largest ):
            largest = arr[i]
        for i in range(len(arr)):
        if(arr[i] > sec_largest and arr[i]!=largest):
            sec_largest = arr[i]
    return sec_largest
```

```
x = int(input("How many elements you want to enter into the list:"))
How many elements you want to enter into the list: 6
```

```
l=list()
for i in range(1,x+1):
    y = int(input("Enter the Element{} :".format(i)))
    l.append(y)
```

Enter the Element1 :8
Enter the Element2 :9
Enter the Element3 :7
Enter the Element4 :5
Enter the Element5 :8
Enter the Element6 :6

```
second_largest = findseclargest(l)
print("The Second Largest Element in Array {} is {}".format(l,second_largest))
```

The Second Largest Element in Array [8, 9, 7, 5, 8, 6] is 8

1.c. Python Program for Multiplication of Two Matrices

Source Code:

```
A=[]
B=[ ]
m = int(input("Enter the No of Rows of Matrix A:"))
n = int(input("Enter the No of Columns of Matrix A:"))
print("Enter the Matrix A Elements : \n")
for i in range(m):
  row = []
  for j in range(n):
    row.append(int(input()))
  A.append(row)
Enter the No of Rows of Matrix A: 2
Enter the No of Columns of Matrix A : 2
Enter the Matrix A Elements :
5
6
p = int(input("Enter the No of Rows of Matrix B : "))
q = int(input("Enter the No of Columns of Matrix B : "))
print("Enter the Matrix A Elements : \n")
for i in range(p):
  row=[]
  for j in range(q):
    row.append(int(input()))
  B.append(row)
Enter the No of Rows of Matrix B: 2
Enter the No of Columns of Matrix B: 4
Enter the Matrix A Elements :
9
8
7
5
2
4
6
```

```
print("Matrix - A :")
for row in A:
  print(row)
print("\nMatrix - B :")
for row in B:
  print(row)
Matrix - A :
[4, 5]
[6, 8]
Matrix - B :
[9, 8, 7, 5]
[2, 4, 6, 3]
if(n==p):
  C=[]
  for i in range(m):
    row=[]
    for j in range(q):
       row.append(0)
    C.append(row)
  for i in range(m):
    for j in range(q):
       for k in range(p):
         C[i][j] += A[i][k] * B[k][j]
  print("The Matrix Muliplication of Two Matrices is \n")
  for row in C:
    print(row)
else:
  print("Matrix Multiplication Not Possible")
The Matrix Muliplication of Two Matrices is
[46, 52, 58, 35]
[70, 80, 90, 54]
```

1.d. Python Program to print reverse of a number

Source Code:

```
x = int(input("Enter a Number : "))
rev = 0
num=x
```

Enter a Number : 1245

```
while num != 0:

rem = num % 10

rev = rev * 10 + rem

num //= 10
```

print("Reverse of Number { } is { } ".format(x,rev))

Reverse of Number 1245 is 5421

1.e.Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data samples. Read the training data from a .CSV file.

Dataset:

	A1 ▼ (<i>f</i> _x Sky							
	А	В	С	D	Е	F	G	Н	I
1	Sky	Temp	Humidity	Wind	Water	Forecast	Enjoy		
2	Sunny	Warm	Normal	Strong	Warm	Same	Yes		
3	Sunny	Warm	High	Strong	Warm	Same	Yes		
4	Rainy	Cold	High	Strong	Warm	Change	No		
5	Sunny	Warm	High	Strong	Cool	Same	Yes		
6									
7									
8									
9									
10									
11									

Source Code:

import pandas as pd

```
import numpy as np
data = pd.read_csv('dataset.csv')
print(data)
Sky
     Temp Humidity
                      Wind Water Forecast Enjoy
                 Normal
0 Sunny Warm
                         Strong Warm
                                           Same
                                                  Yes
                 High Strong Warm
1 Sunny Warm
                                           Same
                                                  Yes
2 Rainy Cold
                  High Strong Warm
                                         Change
                                                   No
3 Sunny Warm
                   High
                         Strong Cool
                                           Same
                                                  Yes
concepts = np.array(data)[:,:-1]
print(concepts)
[['Sunny' 'Warm' 'Normal' 'Strong' 'Warm' 'Same']
```

```
targets=np.array(data)[:,-1:]
print(targets)
```

['Sunny' 'Warm' 'High' 'Strong' 'Warm' 'Same']
['Rainy' 'Cold' 'High' 'Strong' 'Warm' 'Change']
['Sunny' 'Warm' 'High' 'Strong' 'Cool' 'Same']]

```
[['Yes']
['Yes']
['No']
['Yes']]
```

```
def train(c,t):
  for i,val in enumerate(t):
     if(val=="Yes"):
       sp = c[i].copy()
       break
     else:
       return "There are No positives"
  for i,val in enumerate(c):
     if(t[i]=="Yes"):
       for x in range(len(sp)):
          if(val[x]!=sp[x]):
                 sp[x]="?"
  return sp;
```

```
print("The Most Specific Hypothesis : ",train(concepts,targets))
The Most Specific Hypothesis : ['Sunny' 'Warm' '?' 'Strong' '?' 'Same']
```

Week-2

2a. Implement Simple linear Regression algorithm in order to fit data poin ts. Select appropriate data set for your experiment and draw graphs

Dataset:

	Спроовга	131	FOI	L G	Alignment	Tal.	мишрег	Tal.		Styles	
	A1	→ (e)	f _x	YearsExperience							
		А			В		С	D	Е	F	G
1	YearsExp	erience		Salary							
2			1.1			39343					
3			1.3			46205					
4			1.5			37731					
5			2			43525					
6			2.2			39891					
7			2.9			56642					
8			3			60150					
9			3.2			54445					
10			3.2			64445					
11			3.7			57189					
12			3.9			63218					
13			4			55794					
14			4			56957					
15			4.1			57081					
16			4.5			61111					
17			4.9			67938					
18			5.1			66029					
19			5.3			83088					
20			5.9			81363					
21			6			93940					
22			6.8			91738					

Source Code:

import numpy as np import matplotlib.pyplot as plt import pandas as pd

dataset=pd.read_csv('Salary_Data.csv')

X=dataset.iloc[:,:-1].values
y=dataset.iloc[:, -1].values
print(X)

print(y)

```
[[ 1.1]
 [1.3]
 [1.5]
 [2.]
 [2.2]
 [ 2.9]
 [ 3. ]
 [ 3.2]
 [ 3.2]
 [ 3.7]
 [ 3.9]
 [4.]
 [4.]
 [ 4.1]
 [ 4.5]
 [4.9]
 [5.1]
 [5.3]
 [5.9]
 [ 6. ]
 [ 6.8]
 [7.1]
 [7.9]
 [8.2]
 [8.7]
 [ 9. ]
 [ 9.5]
 [ 9.6]
 [10.3]
 [10.5]]
[ 39343.
           46205.
                    37731.
                              43525.
                                      39891.
                                               56642.
                                                         60150.
                                                                  54445.
                                                                           64445.
  57189.
           63218.
                    55794.
                             56957.
                                      57081.
                                                61111.
                                                         67938.
                                                                  66029.
                                                                           83088.
                             98273. 101302. 113812. 109431. 105582. 116969.
  81363.
           93940.
                    91738.
 112635. 122391. 121872.]
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test=train_test_split(X, y, test_size=1/3, random_state=0)
print(X_train)
print(X_test)
print(y_train)
print(y_test)
[[ 2.9]
 [5.1]
 [ 3.2]
 [4.5]
 [ 8.2]
 [ 6.8]
 [ 1.3]
 [10.5]
 [ 3. ]
 [ 2.2]
 [5.9]
 [ 6. ]
 [ 3.7]
 [ 3.2]
 [ 9. ]
 [ 2. ]
```

```
[ 1.1]
  7.1]
  4.9]
[4.]]
[[ 1.5]
 [10.3]
  4.1]
[ 3.9]
  9.5]
  8.7]
  9.6]
  4.]
[5.3]
[ 7.9]]
                  64445.
                                           91738. 46205. 121872.
                                                                     60150.
[ 56642.
          66029.
                          61111. 113812.
 39891.
          81363.
                  93940.
                          57189.
                                   54445. 105582.
                                                    43525.
                                                            39343.
                                                                     98273.
 67938.
          56957.]
[ 37731. 122391.
                  57081.
                          63218. 116969. 109431. 112635.
                                                            55794.
                                                                     83088.
101302.]
```

```
from sklearn.linear_model import LinearRegression
regressor= LinearRegression()
regressor.fit(X_train, y_train)
```

LinearRegression()

```
#LinearRegression(copy_X=(True), fit_intercept=(True), n_jobs=None, normalize=(False))

y_pred=regressor.predict(X_test)

plt.scatter(X_train,y_train,color='red')

plt.plot(X_train, regressor.predict(X_train), color='blue')

plt.title('salary vs exp (training set')

plt.xlabel('years of exp')

plt.ylabel('salary')

plt.show()
```


2b. Implement Mulitple linear Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs

Dataset:

	A1 • (f₂ R&D Spend	-	1	<u> </u>	-		
	А	В	С	D	Е	F	G	Н
1	R&D Spend	Administration	Marketing Spend	State	Profit			
2	165349.2	136897.8	471784.1	New York	192261.83			
3	162597.7	151377.59	443898.53	California	191792.06			
4	153441.51	101145.55	407934.54	Florida	191050.39			
5	144372.41	118671.85	383199.62	New York	182901.99			
6	142107.34	91391.77	366168.42	Florida	166187.94			
7	131876.9	99814.71	362861.36	New York	156991.12			
8	134615.46	147198.87	127716.82	California	156122.51			
9	130298.13	145530.06	323876.68	Florida	155752.6			
10	120542.52	148718.95	311613.29	New York	152211.77			
11	123334.88	108679.17	304981.62	California	149759.96			
12	101913.08	110594.11	229160.95	Florida	146121.95			
13	100671.96	91790.61	249744.55	California	144259.4			
14	93863.75	127320.38	249839.44	Florida	141585.52			
15	91992.39	135495.07	252664.93	California	134307.35			
16	119943.24	156547.42	256512.92	Florida	132602.65			
17	114523.61	122616.84	261776.23	New York	129917.04			
18	78013.11	121597.55	264346.06	California	126992.93			
19	94657.16	145077.58	282574.31	New York	125370.37			
20	91749.16	114175.79	294919.57	Florida	124266.9			
21	86419.7	153514.11	0	New York	122776.86			
22	76253.86	113867.3	298664.47	California	118474.03			
23	78389.47	153773.43	299737.29	New York	111313.02			
24	73994.56	122782.75	303319.26	Florida	110352.25			
0.5		405754.00	20476272	-1 .1	100700.00			

Source Code:

```
# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
```

```
# Importing the dataset
dataset = pd.read_csv('MLR_dataset.csv')

X = dataset.iloc[:, :-1].values

y = dataset.iloc[:, -1].values

print(X)
```

```
[[165349.2 136897.8 471784.1 'New York']
[162597.7 151377.59 443898.53 'California']
[153441.51 101145.55 407934.54 'Florida']
[144372.41 118671.85 383199.62 'New York']
[142107.34 91391.77 366168.42 'Florida']
[131876.9 99814.71 362861.36 'New York']
[134615.46 147198.87 127716.82 'California']
[130298.13 145530.06 323876.68 'Florida']
[120542.52 148718.95 311613.29 'New York']
```

```
[123334.88 108679.17 304981.62 'California']
 [101913.08 110594.11 229160.95 'Florida']
 [100671.96 91790.61 249744.55 'California']
 [93863.75 127320.38 249839.44 'Florida']
 [91992.39 135495.07 252664.93 'California']
 [119943.24 156547.42 256512.92 'Florida']
 [114523.61 122616.84 261776.23 'New York']
 [78013.11 121597.55 264346.06 'California']
 [94657.16 145077.58 282574.31 'New York']
 [91749.16 114175.79 294919.57 'Florida']
 [86419.7 153514.11 0.0 'New York']
 [76253.86 113867.3 298664.47 'California']
 [78389.47 153773.43 299737.29 'New York']
 [73994.56 122782.75 303319.26 'Florida']
 [67532.53 105751.03 304768.73 'Florida']
 [77044.01 99281.34 140574.81 'New York']
 [64664.71 139553.16 137962.62 'California']
 [75328.87 144135.98 134050.07 'Florida']
 [72107.6 127864.55 353183.81 'New York']
 [66051.52 182645.56 118148.2 'Florida']
 [65605.48 153032.06 107138.38 'New York']
 [61994.48 115641.28 91131.24 'Florida']
 [61136.38 152701.92 88218.23 'New York']
 [63408.86 129219.61 46085.25 'California']
 [55493.95 103057.49 214634.81 'Florida']
 [46426.07 157693.92 210797.67 'California']
 [46014.02 85047.44 205517.64 'New York']
 [28663.76 127056.21 201126.82 'Florida']
 [44069.95 51283.14 197029.42 'California']
 [20229.59 65947.93 185265.1 'New York']
 [38558.51 82982.09 174999.3 'California']
 [28754.33 118546.05 172795.67 'California']
 [27892.92 84710.77 164470.71 'Florida']
 [23640.93 96189.63 148001.11 'California']
 [15505.73 127382.3 35534.17 'New York']
 [22177.74 154806.14 28334.72 'California']
 [1000.23 124153.04 1903.93 'New York']
 [1315.46 115816.21 297114.46 'Florida']
 [0.0 135426.92 0.0 'California']
 [542.05 51743.15 0.0 'New York']
 [0.0 116983.8 45173.06 'California']]
# Encoding categorical data
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder
ct = ColumnTransformer(transformers=[('encoder', OneHotEncoder(), [3])],
remainder='passthrough')
X = np.array(ct.fit\_transform(X))
print(X)
[[0.0 0.0 1.0 165349.2 136897.8 471784.1]
 [1.0 0.0 0.0 162597.7 151377.59 443898.53]
 [0.0 1.0 0.0 153441.51 101145.55 407934.54]
```

```
[0.0 0.0 1.0 144372.41 118671.85 383199.62]
 [0.0 1.0 0.0 142107.34 91391.77 366168.42]
 [0.0 0.0 1.0 131876.9 99814.71 362861.36]
 [1.0 0.0 0.0 134615.46 147198.87 127716.82]
 [0.0 1.0 0.0 130298.13 145530.06 323876.68]
 [0.0 0.0 1.0 120542.52 148718.95 311613.29]
 [1.0 0.0 0.0 123334.88 108679.17 304981.62]
 [0.0 1.0 0.0 101913.08 110594.11 229160.95]
 [1.0 0.0 0.0 100671.96 91790.61 249744.55]
 [0.0 1.0 0.0 93863.75 127320.38 249839.44]
 [1.0 0.0 0.0 91992.39 135495.07 252664.93]
 [0.0 1.0 0.0 119943.24 156547.42 256512.92]
 [0.0 0.0 1.0 114523.61 122616.84 261776.23]
 [1.0 0.0 0.0 78013.11 121597.55 264346.06]
 [0.0 0.0 1.0 94657.16 145077.58 282574.31]
 [0.0 1.0 0.0 91749.16 114175.79 294919.57]
 [0.0 0.0 1.0 86419.7 153514.11 0.0]
 [1.0 0.0 0.0 76253.86 113867.3 298664.47]
 [0.0 0.0 1.0 78389.47 153773.43 299737.29]
 [0.0 1.0 0.0 73994.56 122782.75 303319.26]
 [0.0 1.0 0.0 67532.53 105751.03 304768.73]
 [0.0 0.0 1.0 77044.01 99281.34 140574.81]
 [1.0 0.0 0.0 64664.71 139553.16 137962.62]
 [0.0 1.0 0.0 75328.87 144135.98 134050.07]
 [0.0 0.0 1.0 72107.6 127864.55 353183.81]
 [0.0 1.0 0.0 66051.52 182645.56 118148.2]
 [0.0 0.0 1.0 65605.48 153032.06 107138.38]
 [0.0 1.0 0.0 61994.48 115641.28 91131.24]
 [0.0 0.0 1.0 61136.38 152701.92 88218.23]
 [1.0 0.0 0.0 63408.86 129219.61 46085.25]
 [0.0 1.0 0.0 55493.95 103057.49 214634.81]
 [1.0 0.0 0.0 46426.07 157693.92 210797.67]
 [0.0 0.0 1.0 46014.02 85047.44 205517.64]
 [0.0 1.0 0.0 28663.76 127056.21 201126.82]
 [1.0 0.0 0.0 44069.95 51283.14 197029.42]
 [0.0 0.0 1.0 20229.59 65947.93 185265.1]
 [1.0 0.0 0.0 38558.51 82982.09 174999.3]
 [1.0 0.0 0.0 28754.33 118546.05 172795.67]
 [0.0 1.0 0.0 27892.92 84710.77 164470.71]
 [1.0 0.0 0.0 23640.93 96189.63 148001.11]
 [0.0 0.0 1.0 15505.73 127382.3 35534.17]
 [1.0 0.0 0.0 22177.74 154806.14 28334.72]
 [0.0 0.0 1.0 1000.23 124153.04 1903.93]
 [0.0 1.0 0.0 1315.46 115816.21 297114.46]
 [1.0 0.0 0.0 0.0 135426.92 0.0]
 [0.0 0.0 1.0 542.05 51743.15 0.0]
 [1.0 0.0 0.0 0.0 116983.8 45173.06]]
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
```

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)

```
# Training the Multiple Linear Regression model on the Training set

from sklearn.linear_model import LinearRegression

regressor = LinearRegression()

regressor.fit(X_train, y_train)
```

LinearRegression()

```
# Predicting the Test set results
y_pred = regressor.predict(X_test)
np.set_printoptions(precision=2)
print(np.concatenate((y_pred.reshape(len(y_pred),1), y_test.reshape(len(y_test),1)),1))
```

```
[[103015.2 103282.38]

[132582.28 144259.4 ]

[132447.74 146121.95]

[ 71976.1 77798.83]

[178537.48 191050.39]

[116161.24 105008.31]

[ 67851.69 81229.06]

[ 98791.73 97483.56]

[113969.44 110352.25]

[167921.07 166187.94]]
```

Week-3

3. Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree a nd apply this knowledge to classify a new sample

Source Code:


```
#dataframe
# dataset file is comma-separated
# first row are the predictors + target, columns of dataframe

# making a dataframe
# dataframe = pd.DataFrame(dataset,columns = list(dataset))
dataset = {'outlook':outlook,'temp':temp,'humidity':humidity,'windy':windy,'play':play}

dataframe = pd.DataFrame(dataset,columns=['outlook','temp','humidity','windy','play'])
dataframe
```

```
temp humidity
                                windy
                                           play
outlook
                          hot
                                 high
                                       FALSE
                                                yes
         overcast
                               normal
      1
         overcast
                        cool
                                         TRUE yes
      2
         overcast
                        mild
                                 high
                                         TRUE yes
                               normal
                                       FALSE
      3
         overcast
                         hot
                                                 yes
      4
                        mild
                                 high
             rainy
                                       FALSE
                                                 yes
      5
                              normal FALSE yes
             rainy
                        cool
                               normal
                                         TRUE
      6
             rainy
                        cool
                                                  no
      7
                              normal FALSE yes
             rainy
                        mild
                        mild
                                 high
                                         TRUE
      8
             rainy
                                                  no
      9
                                 high
                                       FALSE
            sunny
                         hot
                                                  no
                                 high
     10
            sunny
                         hot
                                         TRUE
                                                  no
     11
            sunny
                        mild
                                 high FALSE
                                                  no
     12
                               normal FALSE
            sunny
                        cool
                                                yes
     13
                        mild
                               normal
                                         TRUE
            sunny
                                                yes
# Entropy of the target attribute values
def find_entropy(df):
  target = df.keys()[-1] # The last dataframe column is the target attribute (playGolf)
  entropy = 0
  values = df[target].unique()
  # for each value in the target playGolf attribute values
  for value in values:
    # ratio of values occurring and entropy
    fraction = df[target].value_counts()[value] / len(df[target])
    entropy += -fraction * np.log2(fraction)
  return entropy
# Entropy of attribute values
```

```
def find_entropy_attribute(df, attribute):
    target = df.keys()[-1]
    target_variables = df[target].unique() # unique values in target playGolf attribute (Yes, No)
```

```
# Variables=[sunny, sunny....5, overcast1.....overcast4, Rainy1...Ra5]
  # attribute entropy
  entropy2 = 0
  # for each attribute value in attribute values
  for variable in variables:
     # value entropy
     entropy = 0
     # for each target value in target values (yes/no)
     for target_variable in target_variables:
       # frequency of attribute and target values (boolean indexing, pandas dataframe filtering)
       num = len(df[attribute][df[attribute] == variable][df[target] == target_variable])
       den = len(df[attribute][df[attribute] == variable])
       fraction = num / (den + eps)
       entropy += -fraction * np.log2(fraction + eps)
     fraction 2 = den / len(df)
     entropy2 += -fraction2 * entropy
  return abs(entropy2)
def bestClassifier(df):
  # Entropy_att = []
  # information gain array for all attributes
  IG = []
  # for all attributes excluding target
  for key in df.keys()[:-1]:
     # Entropy_att.append(find_entropy_attribute(df,key))
     # calculate and record information gain value
     IG.append(find_entropy(df) - find_entropy_attribute(df, key)) #0.940 -0.693= 0.247
  return df.keys()[:-1][np.argmax(IG)] # IG[0.247, 0.029, 0.152, 0.048]
def get_subtable(df, node, value):
  return df[df[node] == value].reset_index(drop=True)
def ID3split(df, tree=None):
  target = df.keys()[-1]
  # Here we build our decision tree
```

variables = df[attribute].unique() # Identify Sunny, Overcast, Rainy

```
# Get attribute with maximum information gain
node = bestClassifier(df) # 0.247
# Get distinct value of that attribute e.g Salary is node and Low, Med and High are values
attributeValues = np.unique(df[node])
# Create an empty dictionary to create tree (recursive-friendly definition)
if tree is None:
                        # Outlook ->root node attribute
  tree = { }
  tree[node] = \{\}
# following loop recursively calls ID3split to create and add to the tree
# it runs till the tree is pure (leaf (result) node branches are added to the tree)
for value in attribute Values:
  # get the subtable from current node based on the value
  subtable = get_subtable(df, node, value)
  # get the most common target value in the subtable
  targetValues, counts = np.unique(subtable[target], return_counts=True)
  # if the subtable is empty, assign the leaf node to the most common target value
  if len(counts) == 1:
     tree[node][value] = targetValues[0]
  else:
     # recursively call ID3 to create subtrees
     tree[node][value] = ID3split(subtable) # Calling the function recursively
return tree
```

```
decisionTree = ID3split(dataframe)
print(decisionTree)
```

```
{'outlook': {'overcast': 'yes', 'rainy': {'windy': {'FALSE': 'yes', 'TRUE': 'no'}}, 'sunny': {'humidity': {'high': 'no', 'normal': 'yes'}}}
```