Suites explicites et récurrentes

Exercice 1

On considère l'algorithme suivant :

Pour i allant de 0 à 5 $a \leftarrow i \times (i-1)$ Fin Pour

- 1. Lors de l'exécution pas à pas de cet algorithme, donner les valeurs prises par la variable a.
- Donner l'expression d'une suite (u_n) dont les six premiers termes sont les valeurs affichées par l'algorithme.

Exercice 2

On considère la fonction f définie sur \mathbb{R}_+ dont la courbe représentative \mathscr{C}_f est donnée dans le repère orthonormal (O; I; J)ci-dessous:

On définie la suite (u_n) par la relation : $u_n = f(n)$ pour tout entier $n \in \mathbb{N}$.

- Justifier que le terme u_4 a pour valeur $\frac{3}{2}$.
- Déterminer la valeur des termes :

 $; u_1 ; u_2 ; u_3 ; u_4 ; u_5$

Exercice 3

Déterminer les 5 premiers termes des suites suivantes :

- a. $u_n = 2 \cdot n^2 n + 1$ b. $v_n = \frac{2 \cdot n + 1}{2 3 \cdot n}$
- c. $w_n = \sqrt{3n+25}$ d. $x_n = 3 \cdot [1 + (-1)^n] + 2$

Exercice 4

1. On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par la formule ex-

 $u_n = 5 + 2 \times n$ pour tout entier naturel n.

- a. Exprimer la valeur u_{n-3} en fonction de n.
- b. Donner la forme simplifiée de $u_{n-3}+u_3$.
- c. Donner la forme simplifiée de $u_{n-5}+u_5$.
- d. Soit k et n deux entiers tels que $k \leq n$. Montrer que u_k+u_{n-k} a sa valeur indépendante de k.
- 2. On considère la suite $(v_n)_{n\in\mathbb{N}}$ définie par la formule ex-

 $v_n = 2n^2 - 3n + 2$ pour tout entier naturel n.

On souhaite étudier la différence entre deux termes consécutifs de la suite (v_n) :

a. Donner l'expression du terme v_{n+1} en fonction de n.

b. Etudier la valeur de $v_{n+1}-v_n$ en fonction de n.

Exercice 5

Dans le plan muni d'un repère orthonormé (O;I;J), on considère la représentation \mathscr{C}_f d'une fonction f définie sur l'intervalle [-4; 4]:

On considère les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ vérifiant les rela-

 $u_{n+1} = f(u_n)$; $v_{n+1} = f(v_n)$ pour tout $n \in \mathbb{N}$ vérifiant les conditions initiales suivantes :

$$u_0 = -1$$
 ; $v_0 = -4$

Déterminer les 100 premiers termes de chacune de ces deux suites.

Exercice 6

1. On définie la suite par récurrence $(u_n)_{n\in\mathbb{N}}$ par la rela-

 $u_0 = 5$; $u_{n+1} = 2 \cdot u_n - 1$ pour tout $n \in \mathbb{N}$

Déterminer les cinq premiers termes de la suite (u_n) .

2. On définie la suite par récurrence $(v_n)_{n\in\mathbb{N}^*}$ par la rela-

 $v_1 = -2$; $v_{n+1} = \frac{1 - v_n}{n}$ pour tout $n \in \mathbb{N}^*$

Déterminer les cinq premiers termes de la suite (v_n) .

Exercice 7

On considère la construction d'un château de cartes :

On considère la suite $(u_n)_{n\in\mathbb{N}}$ désignant le nombre de cartes utilisées dans la construction du château à l'étape n.

- 1. Déterminer les quatre premiers termes de la suite (u_n) .
- 2. Pour tout entier naturel n, déterminer une expression du terme u_{n+1} en fonction du terme précédent u_n et du rang
- 3. A quel étape de construction peut-on arriver avec deux jeux de 72 cartes?

Exercice 8

Justifier que, dans chaque question, les informations cidessous ne définissent pas de suites :

- a. $u_0 = 5$; $u_{n+1} = 2 \cdot u_n 3$ pour tout $n \in \mathbb{N}^*$
- b. $u_0 = 1$; $u_1 = 4$; $u_{n+1} = u_n 3$ pour tout $n \in \mathbb{N}$
- c. $u_0 = 3$; $u_n = 2 \cdot u_{n-1} 2$ pour tout $n \in \mathbb{N}$
- **d.** $u_0 = -1$; $u_n = \frac{u_{n-1} 2}{u_{n-1} + 1}$ pour tout $n \in \mathbb{N}^*$

Exercice 9

On considère l'algorithme suivant :

- 1. Lors de son exécution pas à pas, indiquer les différentes valeurs prises par la variable a
- Parmi les expressions choisies qu'elle(s) peuvent être l'expression d'une suite (u_n) afin que ses six premiers termes soient les valeurs prises par la variable a lors de l'exécution de l'algorithme précédent :
- a. $u_n = 2 \cdot n, \forall n \in \mathbb{N}$

- $\begin{array}{lll} \text{c.} & u_n=2^{n+1}, & \forall n \in \mathbb{N} \\ & \text{d.} & \left\{ \begin{array}{l} u_0=2 \\ u_{n+1}=2 \cdot u_n, \, \forall n \in \mathbb{N} \end{array} \right. \\ \text{e.} & \left\{ \begin{array}{l} u_0=2 \\ u_n=2 \cdot u_{n+1}, \, \forall n \in \mathbb{N} \end{array} \right. \end{array} \\ \text{f.} & \left\{ \begin{array}{l} u_0=2 \\ u_n=2 \cdot u_{n-1}, \, \forall n \in \mathbb{N}^* \end{array} \right. \end{array}$

Exercice 10

On considère l'algorithme suivant :

- 1. Donner les différentes valeurs prises par la variable a lors d'une exécution pas à pas de cet algorithme.
- Donner l'expression d'une suite dont les cinq premiers termes soient les différentes valeurs prises par la variable a prises lors de l'exécution de cet algorithme.

Exercice 11

Dans chaque cas, déterminer les quatre premiers termes de la suite $(u_n)_{n\in\mathbb{N}}$:

a.
$$u_n = \frac{2n^2 + n + 5}{n+1}$$
 pour tout $n \in \mathbb{N}$

b.
$$u_0 = 2$$
 ; $u_{n+1} = \frac{1}{2} \cdot u_n + 3$ pour tout $n \in \mathbb{N}$

c.
$$u_0 = -1$$
 ; $u_{n+1} = u_n + n - 2$ pour tout $n \in \mathbb{N}$

d.
$$u_0 = 2$$
; $u_1 = 3$; $u_{n+1} = u_n + 2 \cdot u_{n-1}$ pour tout $n \in \mathbb{N}^*$

Exercice 12

1. On considère la suite
$$(u_n)$$
 définie par :
$$\begin{cases} u_0 = 3 & ; \quad u_1 = 1 \\ u_{n+2} = 2 \cdot u_{n+1} + u_n \quad \text{pour tout } n \in \mathbb{N} \end{cases}$$

Donner les cinq premiers termes de la suite (u_n) .

2. On considère la suite
$$(v_n)$$
 définie par : $v_0 = -3$; $v_{n+1} = n - 2 \cdot v_n$ pour tout $n \in \mathbb{N}$

Donner les quatre premiers termes de la suite (v_n) .

Exercice 13

On construit successivement un objet comme le représente le schéma ci-dessous:

Pour tout entier naturel n non-nul, on note u_n le nombre de planches nécessaires pour construire la figure à l'étape n.

Donner une relation de récurrence caractérisant la suite (u_n) .

Exercice 14

On considère la suite (u_n) définie par :

$$u_0 = 1$$
 ; $u_{n+1} = 2 \cdot u_n + 3^n$ pour tout $n \in \mathbb{N}$.

- 1. a. Déterminer les cinq premiers termes de (u_n) .
 - b. Quelle conjecture peut-on faire sur la nature de (u_n)
- 2. Montrer que la suite géométrique (v_n) de premier terme v_0 et de raison 3 vérifie la relation : $v_{n+1} = 2 \cdot v_n + 3^n.$

Exercice 15

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par la relation de ré-

currence suivante :
$$u_0 = 3$$
 ; $u_{n+1} = \frac{1 - u_n}{1 + u_n}$ pour tout $n \in \mathbb{N}$

- 1. Déterminer les cinq premiers termes de la suite (u_n) .
- 2. Montrer qu'on a la relation suivante : $u_{n+2} = u_n$ pour tout $n \in \mathbb{N}$
- 3. Que peut-on dire des termes de cette suite?
- 4. Déterminer la valeur des réels a et b vérifiant la relation suivante:

$$u_n = a \cdot [1 - (-1)^n] + b$$
 pour tout $n \in \mathbb{N}$