Page 519 · CHAPTER TEST

1.
$$V = (2k)^3 = 8k^3$$
; T.A. $= 6(2k)^2 = 24k^2$ 2. $135 = \frac{1}{3}Bh = \frac{1}{3} \cdot 9 \cdot h$; $h = 45$ cm

3.
$$V = \frac{1}{3}\pi \cdot 8^2 \cdot 6 = 128\pi$$

4.
$$l = \sqrt{6^2 + 8^2} = 10$$
; L.A. $= \pi \cdot 8 \cdot 10 = 80\pi$; T.A. $= 80\pi + \pi \cdot 8^2 = 144\pi$

5.
$$p = 5 + 12 + 13 = 30$$
; T.A. $= 30 \cdot 20 + 2\left(\frac{1}{2} \cdot 5 \cdot 12\right) = 660$

6.
$$\frac{1}{2} \cdot 5 \cdot 12 \cdot 20 = 600$$
 7. L.A. $= 2\pi \cdot 6 \cdot 4 = 48\pi$; $48\pi \text{ cm}^2$

8.
$$V = \pi \cdot 6^2 \cdot 4 = 144\pi$$
; $144\pi \text{ cm}^3$

9.
$$\frac{1}{2} \cdot 24l = 60$$
; $l = 5$; $h = \sqrt{5^2 - 3^2} = 4$; $V = \frac{1}{3} \cdot 6^2 \cdot 4 = 48$; 48 m^3

10.
$$A = 4\pi \cdot 6^2 = 144\pi$$
; $144\pi \text{ cm}^2$; $V = \frac{4}{3}\pi \cdot 6^3 = 288\pi$; $288\pi \text{ cm}^3$ 11. No; $\frac{12}{118}$

12. scale factor =
$$6:18=1:3$$
; ratio of areas = $1^2:3^2=1:9$; let $a=$ total area smaller pyramid; $\frac{a}{648}=\frac{1}{9}$; $9a=648$; $a=72$

13.
$$\frac{1000}{64} = \frac{125}{8} = \frac{5^3}{2^3}$$
, so scale factor = 5:2; ratio of lateral areas = 5^2 : $2^2 = 20$

14. ratio of volumes =
$$\frac{1}{3}\pi \cdot 3^2 \cdot 4 : \pi \cdot 3^2 \cdot 4 = \frac{1}{3} : 1 \text{ or } 1 : 3; l = \sqrt{3^2 + 4^2}$$
 lateral areas = $\pi \cdot 3 \cdot 5 : 2\pi \cdot 3 \cdot 4 = 15 : 24 \text{ or } 5 : 8$

15.
$$4\pi r^2 = 9\pi$$
; $r^2 = \frac{9}{4}$; $r = \frac{3}{2}$; $V = \frac{4}{3}\pi \left(\frac{3}{2}\right)^3 = \frac{9\pi}{2}$

16.
$$2\pi \cdot 7^2 + 2\pi \cdot 7h = 168\pi$$
; $98\pi + 14\pi \cdot h = 168\pi$; $14\pi \cdot h = 70\pi$; $h = b_1 h$

Page 520 • PREPARING FOR COLLEGE ENTRANCE EXAMS

1. A.
$$V = \frac{1}{3}\pi r^2 \cdot 15 = 320\pi$$
; $r^2 = 64$; $r = 8$; T.A. $= \pi \cdot 8 \cdot \sqrt{8^2 + 15^2} + \pi$
 $136\pi + 64\pi = 200\pi$

2. C.
$$6^2$$
: $(9\sqrt{3})^2 = 36:243 = 4:27$

3. E.
$$V = \frac{4}{3}\pi r^3 = 288\pi$$
; $r^3 = 216$; $r = 6$; $d = 2r = 12$

4. D.
$$A = \frac{1}{2} \cdot 2\sqrt{3} \cdot (2+4) = 6\sqrt{3}$$

5. B.
$$A = (y\sqrt{2})^2 + \frac{1}{2} \cdot y \cdot y = 2y^2 + \frac{1}{2}y^2 = \frac{5}{2}y^2$$