

Advanced ML Workshop

Day 2

Scan the QR code to mark your attendance

Attendance

Carning Objectives

Train, Test and Validate

Cross Validation

Understanding Bias & Variance in ML models

Interpreting Model Complexity using learning curve

Predict if customers will switch to your telco based on certain features

We learnt previously...

Improving Model

Improving Model

Why can't we use the testing set to evaluate the model?

The testing set allows us to get a realistic representation of the performance of the model

Recall

Why can't we use the testing set

Testing set allows us to test the model in an unbiased way

However, we are improving our model based on the results of our testing set

This can result in biases in our model, trying to "suit" our testing set

Train, Validate and Test

Using the same ideology of training and testing, we now further split our data into 3 sets

What is it?

What is Train Test Validate?

Dataset

Usually takes up **60**% of the dataset

Dataset only used to train the model

NEVER use model score from this dataset to judge the performance of the model

Usually takes up to **20**% of the dataset

Dataset only used to evaluate model performance

NEVER use this dataset as a conclusion of the model performance

Usually takes up **20**% of the dataset

Dataset only used to evaluate final model performance

NEVER make changes on the model based of the performance from this dataset

We learnt previously...

Actual Diagram

Problem

Cross Validation (CV)

Ex Why Cross Validate

Helps us make full use of our dataset

Training model is a random process

Types of CV

Leave one out CV

Validation (1)

Training (n - 1)

Training & Validation Set

Where n is the number of rows of data

Leave one out CV

Best use of data as guarantees 100% use of it

Very time consuming and resource intensive

Not used often

K-Fold CV

Training Validation

Training & Validation Set

K-Fold CV

K-Fold CV

Good use of data as guarantees 100% use of it

Very efficient and fast process

Most used method of cross validation

Stratified CV

Training Validation

Training & Validation Set

Stratified CV

Where ratio of classes is 5:2 and there are only 2 classes

Good use of data as guarantees 100% use of it Slightly slower than K-fold but still highly efficient Useful for imbalanced classes

- Knowledge Check

```
scores = cross_validate(LogisticRegression(), x_train, y_train, cv=3)

> How many groups will the dataset be split into?

A. 1
B. 2
C. 3
D. 4
```


- ()- Knowledge Check

```
cross_validate(DecisionTreeClassifier(), x_train, y_train)

> What is the default value of cv?

A. 3
B. 5
C. 8
D. 10
```


Practice Time!

10 Minutes

Please attempt exercise 1
We will go through the exercises later

imes up

We will now go through the exercises

Break & QnA

10 Minutes

Bias and Variance X

Amount of assumptions made by a model to make the target function easier to learn

What is Bias

What is Bias?

What is Bias?

Other stuff

Assumptions

Why model make assumptions?

Makes it easier to learn and predict

Results in faster learning speed

Low Bias: Less assumptions made

High Bias: More assumptions made

Amount changes to the estimate of the target function if different training data was used

What is Variance

What is Variance?

What is Variance?

What is Variance?

Variance

Low Variance: Small changes to training dataset results in small changes to prediction

High Variance: Small Changes to training dataset results in large changes to prediction

Bias & Variance together

Under/Over fitting

Underfitting

- High Bias
- Low Variance

Overfitting

- Low Bias
- High Variance

Underfitting & Overfitting

- Knowledge Check

- > Which of the following statements are True
- A. A model with low bias and high variance is an underfitted model
- A. When a model changes drastically with small changes on its training set, it is said to have high bias
- A. When a model changes drastically with small changes on its training set, it is said to have high variance
- A. It is best when model have high bias and high variance

- Knowledge Check

Training Accuracy	Testing Accuracy	Training F1_Score	Testing F1_Score	
0 0.998225	0.78967	0.996643	0.552586	
 > This model has A. High Bias, High Variance B. High Bias, Low Variance C. Low Bias, High Variance D. Low Bias, Low Variance 				

-()- Knowledge Check

	Training Accuracy	Testing Accuracy	Training F1_Score	Testing F1_Score			
0	0.503239	0.485269	0.34748	0.337036			
> This model is Overfitting							
A. B.	A. True B. False						

Purpose: Allows us to understand why a model performs a certain way

Model Learning Curves

A learning curve is the correlation between a model's score against the amount of data it is given

What is a Learning Curve?

Why plot learning curves?

Allows us to see if a model is over/underfitting

From there, we can make useful decisions on how we can improve our model

Good Fit Characteristics

Lines moves towards each other

Lines maintain small space between each other

Score for BOTH are generally high

Good Fit Characteristics

Overfit Characteristics

Lines are very far apart from one another

Lines would sometimes cross each other

Scores for training set would be significantly higher than training set

Overfit Characteristics

Underfit Characteristics

Lines are relatively close to each other

Scores for validation training set are both low

- ()- Knowledge Check

- > This model has...
- A. High Bias, High Variance
- B. High Bias, Low Variance
- C. Low Bias, High Variance
- D. Low Bias, Low Variance

Practice Time!

5 Minutes

Please attempt exercise 2
We will go through the exercise later

imes up

We will now go through the exercises

Actual Diagram

Thank You

Scan the QR code to mark your attendance

Attendance

