Boolean Algebra. Logic design

Computer Fundamentals Escuela Politécnica Superior. UAM

Unit 1 Index

U1. Boolean Algebra and Logic Design

- U1.1. Analog vs. Digital
- **U1.2.** Binary numerical system. Conversion.
- **U1.3.** Basic boolean algebra properties and theorems.
 - U1.3.1. Boolean expression and operations.
 - U1.3.2. Boolean algebra rules and laws. De Morgan Law.
- **U1.4.** Logic functions
 - U1.4.1. Boolean expression and truth table.
 - U1.4.2. Extension to multiple entries.
 - U1.4.3. Functional habilitation.
 - U1.4.4. SOP and POS gates implementation.
- **U1.5.** Karnaugh diagrams.
 - U1.5.1. Sum of products minimization through K map.
 - U1.5.2. Product of sums minimization through K map.

U1.1. Analog vs. Digital

Analog vs Digital

Analog Systems:

- Work with analog signals.
- Physical signals to represent them: Analog signals
- Analog signal: Infinite posible real values. Vary continuously.

Señal Analógica

Example: Mercury thermometer

U1.1. Analog vs. Digital

Analog vs Digital

<u>Digital systems:</u>

- Work with digital signals.
 - 2 posible values.
 - Values are expressed through declarative sentences.
 - Both values are exclusive
- Physical values to represent them: Digital signals.
- Digital signal: Takes discrete values.
- Example: Light switch

Positional numerical system

Digit values depends on its position in the number.

Decimal system:

10^3=1000'	10^2=100's	10^1=10's	10^0=1's	System	Numerical equivalent in decimal system
s column	column	column	column	base	
5	3	7	4	10	

Binary system:

2^3=8's	2^2=4's	2^1=2's	2^0=1's	System	Numerical equivalent in decimal system
column	column	column	column	base	
1	1	0	1	2	

Conversion between systems:

> Convert to decimal the number: 10101₂

> Convert to binary the number: 47₁₀

It is recommended to memorize:

$$\checkmark 2^0 = 1$$

$$\checkmark 2^5 = 32$$

$$\checkmark 2^5 = 32$$
 $\checkmark 2^{10} = 1024 = 1 \text{ k}$

$$\checkmark 2^1 = 2$$

$$\checkmark 2^2 = 4$$

$$\checkmark 2^7 = 128$$

$$\checkmark 2^2 = 4$$
 $\checkmark 2^7 = 128$ $\checkmark 2^{20} = 1.048.576 = 1 M$

$$\checkmark 2^3 = 8$$

$$\checkmark 2^8 = 256$$

$$\checkmark 2^3 = 8$$
 $\checkmark 2^8 = 256$ $\checkmark 2^{30} = 1.073.741.824 = 1 G$

$$\checkmark 2^4 = 16$$

$$\checkmark 2^9 = 512$$

$$\checkmark 2^4 = 16$$
 $\checkmark 2^9 = 512$ $\checkmark 2^{32} = 2^2 * 2^{30} = 4 G$

Example:

$$2^{13} =$$

$$2^{24} = \frac{1}{3}$$

$$2^{15} =$$

Binary system representation range:

- ➤ A number with n decimal digits (0 9) can represent **10**ⁿ different numbers in the range **[0, 10**ⁿ-1].
 - Example: when n = 3: $10^3 = 1000$ different numbers. in the range [0, 999].
- ➤ A number with n binary digits (0 and 1) can represent 2ⁿ different numbers in the range [0, 2ⁿ-1].
 - Example: when n = 3: $2^3 = 8$ different number in the range [0, 7].

Hexadecimal system:

The hexadecimal system is a positional numerical system with **base 16**, commonly used to abbreviate binary numbers.

Hexadecimal digit	Decimal equivalent	Binary Equivalent	Hexadecimal digit	Decimal equivalent	Binary equivalent
0	0	0000	8	8	1000
1	1	0001	9	9	1001
2	2	0010	Α	10	1010
3	3	0011	В	11	1011
4	4	0100	С	12	1100
5	5	0101	D	13	1101
6	6	0110	Е	14	1110
7	7	0111	F	15	1111

Conversion between systems. Examples:

> Convert **to binary** from hexadecimal: 4AF₁₆ (also 0x4AF)

> Convert to decimal from hexadecimal: 0x4AF

• Bits

Bytes & Nibbles

Bytes

Boolean Algebra: matehmatical tool used for analysis and synthesis of binary digital

George BooleBritish Mathematician
(1815-1864)

Boolean variable: digital signal which only has 1 out of 2 posible values in an instant. Both values are mutually exclusive.

Represented as: 0 and 1; OFF and ON;

Ercuela

HIGH and **LOW**; etc...

U1.3.1. Boolean expression and operations:

Logic variables and electric circuits:

- •Switch A state:
 - Open (0)
 - Closed (1)
- •Light bulb F state:
 - OFF (0)
 - ON (1)

State of logic variable "light bulb" is a function of logic variable "switch".

Function: "Light bulb is ON if switch is closed"

U1.3.1. Boolean expression and operations:

- Logic function: Circuit accepting input logical values and outputs a logical value.
- Truth table: describes logic function working principle
 - Specifies all posible outputs for all posible input logic values.
 - Grapgical representationg of all cases that can happen in an algebraic relation and its respective results.

A	В	F
0	0	0
0	1	1
1	0	1
1	1	0

Logic gates: Implementation of most basic logic
 functions.

U1.3.1. Boolean expression and operations:

- Amplifier (BUFFER)
 - Simplest logic gate
 - One input(A) and one output (Z)
 - Truth table:

Α	Z
1	1
0	0

Logic equation: Z = A

Graphical representation:

U1.3.1. Boolean expression and operations:

- NOT gate (or INVERTER)
 - One input(A) and one output (Z)
 - Truth table:

Ercuela

Α	Z
1	0
0	1

• Logic equation: $Z = \overline{A}$

U1.3.1. Boolean expression and operations:

- NOT gate (or INVERSOR)
 - Internal logic of NOT gate:

Inverter circuit using IGFETs

U1.3.1. Boolean expression and operations:

U1.3.1. Boolean expression and operations:

- AND gate:
 - AND gate illustrated as switches:

Function: Light bulb F is ON if:

"switch A AND switch B are both closed".

U1.3.1. Boolean expression and operations:

- AND gate (2 inputs {A,B} and 1 output {Z})
 - Z=1 if both inputs A and B are simultaneously at 1
 - Truth table:

Α	В	Z
0	0	0
0	1	0
1	0	0
1	1	1

Logic equation: Z = A•B

• Graphical representation:

U1.3.1. Boolean expression and operations:

- AND gate:
 - Internal logic

U1.3.1. Boolean expression and operations:

- OR gate
 - OR gate illustrated as switches:

Function: Light bulb f is ON if:

U1.3.1. Boolean expression and operations:

- OR gate: (2 inputs {A,B} and 1 output {Z})
 - Z = 1 if at least one of the inputs is 1
 - Truth table:

A	В	Z
0	0	0
0	1	1
1	0	1
1	1	1

• Logic equation: Z = A + B

• Graphical representation:

U1.3.1. Boolean expression and operations:

- NAND gate: (2 inputs {A,B} and 1 output {Z})
 - Z=1 if at least one of the inputs is at 0
 - Truth table:

Α	В	Z
0	0	1
0	1	1
1	0	1
1	1	0

• Logic equation: $Z = \overline{A \cdot B}$

• Graphical representation:

U1.3.1. Boolean expression and operations:

- NOR gate: (2 inputs {A,B} and 1 output {Z})
 - Z=0 if at least one of the inputs is 1
 - Z=1 if both inputs are 0
 - Truth table:

Ercuela

Α	В	Z
0	0	1
0	1	0
1	0	0
1	1	0

• Logic equation: $Z = \overline{A + B}$

Graphical representation:

U1.3.1. Boolean expression and operations:

- XOR gate (OR-exclusive):
 (2 inputs {A,B} and 1 output {Z})
 - Z=1 if and only if one input is 1
 - Truth table:

Α	В	Z
0	0	0
0	1	1
1	0	1
1	1	0

■ Logic equation: $Z = A \oplus B$

• Graphical representation:

U1.3.2. Boolean algebra rules and laws:

Name		Theorem		Dual
Identity	T1	B • 1 = B	T1'	B + 0 = B
Annulment	T2	B • 0 = 0	T2'	B + 1 = 1
Idempotent	Т3	B • B = B	T3'	B + B = B
Double negation	T4	//B	= B	
Complement	T5	B ● /B = 0	T5'	B + /B = 1
Commutative	T6	$B \bullet C = C \bullet B$	T6'	B + C = C + B
Associative	T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	T7'	(B + C) + D = B + (C + D)
Distributive	T8	$(B \bullet C) + (B \bullet D) = B \bullet (C + D)$	T8'	$(B + C) \bullet (B + D) = B + (C \bullet D)$
De Morgan Law	T12	$/(B_0 \bullet B_1 \bullet \bullet B_{n-2} \bullet B_{n-1}) =$ = $(/B_0 + /B_1 + + /B_{n-2} + /B_{n-1})$	T12'	$/(B_0 + B_1 + + B_{n-2} + B_{n-1}) =$ = $(/B_0 \bullet /B_1 \bullet \bullet /B_{n-2} \bullet /B_{n-1})$

LOGIC CIRCUITS

The combination of different logic values at the input causes different logic values at the output

=> LOGIC CIRCUIT

A logic circuit is composed of:

- Inputs
- Outputs
- Functional specification
- Temporal specification

Any logic function can be expressed using AND, OR and NOT gates.

LOGIC CIRCUITS

Logic circuit example:

- inputs: A, B, C y D
- Outputs: Z₁ y Z₂
- Functional specification
 - $S = f_1(A, B)$
 - $Z_1 = f_2(C, D)$
 - $Z_2 = f_3 (S, Z_1) = (A, B, C, D)$
- Temporal specification: $(\Delta t_{72} = MAX\{\Delta t_{f1}, \Delta t_{f2}\} + \Delta t_{f3})$

Combinational logic: output state depends exclusively of inputs states. Circuit without memory.

Sequential logic: output state also depends on previous state of the system. Circuit with memory.

• Logic function: Boolean expression that relates logic variables directly or complemented by the use of AND and OR operations.

- Logic functions are represented as logic circuits with 2 levels whose canonical form can be:
 - Sum Of Products of all variables or their conjugates:
 Sum of Minterms // SOP Circuits (Sum Of Products)
 - Product Of Sums of all variables or their conjugates :
 Product of Maxterms // POS Circuits (Product Of Sums)

- All Boolean equations can be represented as a sum of minterms (SOP).
- Each row of a truth table is a minterm.
- A minterm is a product (AND) of variables and their complement.
- Each minterm is TRUE ('1') for that row (and only for that row)
- Function is constructed as the sum (OR) of minterms whose output is TRUE.
- It is then a sum (OR) of products (AND)

A	В	Y	minterm
0	0	0	$\overline{A} \overline{B}$
0	1	1	A B
1	0	0	$\overline{A} \ \overline{B}$
$\overline{1}$	1	1	АВ

$$Y = \mathbf{F}(A, B) = \overline{A}B + AB$$

- All Boolean equations can be represented as a product of maxterms (POS).
- Each row of a truth table is a maxterm.
- A maxterm is a sum (OR) of variables and their complement.
- Each maxterm is FALSE ('0') for that row (and only for that row)
- Function is constructed as the product (AND) of maxterms whose output is FALSE.
- It is then a product (AND) of sums (OR)

Α	В	Y	maxterm			
0	0	0	A + B)			
0	1	1	$A + \overline{B}$			
1	0	0	$\overline{A} + B$			
1	1	1	$\overline{A} + \overline{B}$			

$$Y = \mathbf{F}(A, B) = (A + B) (\overline{A} + B)$$

• Example: Cannonical development of a function from its truth table.

#	A	В	С	F(A,B,C)		Minterms		Maxterms
0	0	0	0	1	\rightarrow	$(\overline{A}\cdot\overline{B}\cdot\overline{C})$		
1	0	0	1	0			\rightarrow	$(A+B+\overline{C})$
2	0	1	0	1	\rightarrow	$(\overline{A}\cdotB\cdot\overline{C})$		
3	0	1	1	1	\rightarrow	$(\overline{A}\cdotB\cdot\mathcal{C})$		
4	1	0	0	O			\rightarrow	$(\overline{A} + B + C)$
5	1	0	1	O			\rightarrow	$(\overline{A} + B + \overline{C})$
6	1	1	0	1	\rightarrow	$(A \cdot B \cdot \overline{C})$		
7	1	1	1	1	\rightarrow	$(A \cdot B \cdot C)$		

• Using Minterms:

$$F = (\overline{A} \cdot \overline{B} \cdot \overline{C}) + (\overline{A} \cdot B \cdot \overline{C}) + (\overline{A} \cdot B \cdot C) + (A \cdot B \cdot \overline{C}) + (A \cdot B \cdot \overline{C}) + (A \cdot B \cdot C) =$$

$$= m_0 + m_2 + m_3 + m_6 + m_7 = \sum m(0, 2, 3, 6, 7)$$

• Using Maxterms:

Ercuela

$$F = (A + B + \overline{C}) \cdot (\overline{A} + B + C) \cdot (\overline{A} + B + \overline{C}) = M_1 \cdot M_4 \cdot M_5 = \prod M (1,4,5)$$

 Logic function implementation through minterms and maxterms requires a higher amount of resources. It is convenient then (if possible) to obtain simplified expressions.

U1.5. Karnaugh diagrams

- Karnaugh diagrams (k maps)
 - Make easier the planning of logic designs with simpler gate structure More economic design.
 - Sequence of cells where each one represents a binary value of an input. Each cell contains the corresponding value for said combination.
 - Cells are arranged so that the simplification of an expression consists on grouping adecuately the cells.
 - Can be used for expression of 2, 3, 4, 5 (or 6 variables.)
 - For n variables 2ⁿ cells are needed.
 - For a higher number of variables, other methods are used:
 - (e.g. Quine-McClusky method or CAD methods.)

U1.5. Karnaugh diagrams

- Karnaugh mapping. Adjacent cells
 - Cells on a Karnaugh map are disposed so that only one variable changes in between adjacent cells.
 - Adjacent cells: values differ in one variable
 - Non-adjacent cells: values differ in more than one variable
 - Physically, each cell is adjacent to every inmediate next cell (4 sides)
 - Adjacent cells have a Hamming distance of 1.
 - Cells cannot be adjacent diagonally.
 - Upper cells are adjacent to its inmmediate lower cells and left cells are adjacent to its inmediate right Cyclical adjacency

- Karnaugh maps of 3 variables
 - A, B, C: Variables. Matrix of 8 cells
 - Binary values of A and B are located left and C ones on the top (this can be done inversely also)

Example: Function has value '1' in the top left corner cell, which corresponds to a value of 000 of variables A, B and C (/A./B./C). On bottom right cell has a variable value of 101 (A./B.C)

- Karnaugh map of an standard sum of products
 - For every term of the sum of products expression a '1' is added in the Karnaugh map cell correspondent to the product value.

- Karnaugh map of a non-standard sum of products
 - A non-standard term lacks one or more variables to its expression, which must be completed.

$$\overline{A} + A\overline{B} + AB\overline{C}$$
000 100 110
001 101
010
011

Karnaugh maps of 4 variables

Ercuela

- A, B, C, D: Variables. Matrix of 16 cells
- Binary values of A and B are located left, C and D ones on the top (this can be done inversely also)

CD					CD				
AB	00	01	11	10	AB	00	01	11	10
00	0	0	0	1	00	$(\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D})$	$(\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot D)$	$(\overline{A} \cdot \overline{B} \cdot C \cdot D)$	$(\overline{A} \cdot \overline{B} \cdot C \cdot \overline{D})$
01	1	0	0	0	01	$(\overline{A} \cdot B \cdot \overline{C} \cdot \overline{D})$	$(\overline{A} \cdot B \cdot \overline{C} \cdot D)$	$(\overline{A} \cdot B \cdot C \cdot D)$	$(\overline{A} \cdot B \cdot C \cdot \overline{D})$
11	0	0	0	0	11	$(A \cdot B \cdot \overline{C} \cdot \overline{D})$	$(A \cdot B \cdot \overline{C} \cdot D)$	$(A \cdot B \cdot C \cdot D)$	$(A \cdot B \cdot C \cdot \overline{D})$
10	0	1	0	0	10	$(A \cdot \overline{B} \cdot \overline{C} \cdot \overline{D})$	$(A \cdot \overline{B} \cdot \overline{C} \cdot D)$	$(A \cdot \overline{B} \cdot C \cdot D)$	$(A \cdot \overline{B} \cdot C \cdot \overline{D})$
-				•					

Example: Function has a value of `1': on the top right cell where variables A, B, C and D are 0010 (/A./B.C./D), on the second row cell where they are 0100 (/A.B./C./D) and on the bottom row corresponding with a value of 1001 (/A./B./C.D).

- Karnaugh maps of 5 variables
 - A, B, C, D, E: Variables. Matrix of 32 cells
 - Take 2 maps of 4 variables where they correspond to a value of variable E equal to 0 and 1, respectively.
 - Binary values of B and C are located left, D and E ones on top.

BC DE	00	01	11	01	00	01	11	10		
00										
01										
11										
10										
•	A =0						A =1			

- Karnaugh diagrams: Sum of products simplification
 - Minimization: Process that generates an expression cointaining the lowest possible number of terms with the minimum possible number variables.
 - After obtaining Karnaugh diagram, 3 steps should be followed to obtain the minimal expression of products:
 - One's grouping
 - Determination of each term for the SOP (one per Group).
 - Obtain the final equation (adding the terms).

- Karnaugh diagrams: Sum of products simplification
 - One's grouping
 - A group has to contain 1, 2, 4, 8 or 16 cells (power of 2). Diagram of 3 variables: máximum group of 8 cells.
 - Each cell of a group has to be adjacent to one or more cells of the same group, but not all cells of the group must be adjacent to each other.
 - Maximize number of 1s in each group
 - Each '1' of the diagram has to be included in, at least, 1 group. '1's already in a group can be included into other groups given that the overlaping groups contains non common '1's.

- Karnaugh diagrams: Sum of products simplification
 - One's grouping

- Karnaugh diagrams: Sum of products simplification
 - Determination of each term of the SOP.
 - Each group of cells containing '1's gives one product term composed of all variables appering in the group in only one form (complemented or non complemented).
 - Variables complemented and non complemented inside the same group are deleted.
 - Sum of product terms obtained.
 - Once obtained all minimum terms from the Karnaugh diagram, they are added up to obtainthe minimal product expression.

- Karnaugh diagrams: Sum of products simplification
 - Sum of products expression determination from the diagram. Sum of product terms obtained.

11

- Karnaugh diagrams: Product of sums simplification
 - Product of sums expression determination from the diagram.
 Product of sum terms obtained.

Karnaugh maps of 5 variables.

Simplify $F(A,B,C,D,E) = \Sigma(2,3,5,6,7,8,9,10,12,13,14,16,18,20,21,22,23,25,26,30)$

- Two maps of 4 variables, 5th variable allows selection between maps
- Adjacency: Imagine that map A=0 is on top of map A=1; each cell of map A=0 is adjacent with the cell inmediately below of map A=1.

$$\overline{A}B\overline{D} + \overline{A}\overline{B}D + \overline{A}\overline{B}\overline{E} + D\overline{E} + \overline{B}CE + B\overline{C}DE$$

Karnaugh maps of 5 variables.

Simplify $F(A,B,C,D,E) = \Sigma(2,3,5,6,7,8,9,10,12,13,14,16,18,20,21,22,23,25,26,30)$

- Two maps of 4 variables, one for the fifth variable equal to 0 and for it equal to 1.
- Adjacency: Imagine that map A=0 is on top of map A=1; each cell of map A=0 is adjacent with the cell inmediately below of map A=1.

- Karnaugh diagrams: Product of sums simplification
 - The minimization process of a product of sums is basically the same as that for a sum of products although now the '0's are to be grouped to créate the minimum mumber of sum terms.
 - Rules applied to group '0's are the same as those to group '1's.

- Obtaining a Karnaugh diagram from its truth table
 - Example:

N°	A	В	C	D	F	Minterms	Maxterms
0	0	0	0	0	1	$\rightarrow (\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D})$	
1	0	0	0	1	1	$\rightarrow (\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot D)$	
2	0	0	1	0	0		\rightarrow $(A+B+\overline{C}+D)$
3	0	0	1	1	1	$\rightarrow (\overline{A} \cdot \overline{B} \cdot C \cdot D)$	
4	0	1	0	0	0		\rightarrow $(A + \overline{B} + C + D)$
5	0	1	0	1	1	$\rightarrow (\overline{A} \cdot B \cdot \overline{C} \cdot D)$	
6	0	1	1	0	1	$\rightarrow (\overline{A} \cdot B \cdot C \cdot \overline{D})$	
7	0	1	1	1	0		\rightarrow $(A + \overline{B} + \overline{C} + \overline{D})$
8	1	0	0	0	0		\rightarrow $(\overline{A} + B + C + D)$
9	1	0	0	1	1	\rightarrow $(A \cdot \overline{B} \cdot \overline{C} \cdot D)$	
10	1	0	1	0	0		\rightarrow $(\overline{A} + B + \overline{C} + D)$
11	1	0	1	1	1	\rightarrow $(A \cdot \overline{B} \cdot C \cdot D)$	
12	1	1	0	0	1	\rightarrow $(A \cdot B \cdot \overline{C} \cdot \overline{D})$	
13	1	1	0	1	1	\rightarrow $(A \cdot B \cdot \overline{C} \cdot D)$	
14	1	1	1	0	0		\rightarrow $(\overline{A} + \overline{B} + \overline{C} + D)$
15	1	1	1	1	1	\rightarrow $(A \cdot B \cdot C \cdot D)$	

- Obtaining a Karnaugh diagram from its truth table
 - Example: Development by minterms

$$F = \overline{A}BC\overline{D} + \overline{A}\overline{B}\overline{C} + AB\overline{C} + \overline{C}D + AD + \overline{B}D$$

AND2

- Obtaining a Karnaugh diagram from its truth table
 - Example: Development by maxterms

$$F = (\underline{A} + \overline{B} + \underline{C} + \underline{D}) \cdot (\underline{A} + \overline{B} + \overline{C} + \overline{D}) \cdot (\overline{A} + \underline{B} + \underline{D}) \cdot (\underline{B} + \overline{C} + \underline{D}) \cdot (\overline{A} + \overline{C} + \underline{D})$$

- Element and logical functions seen are available as integrated circuits (ICs).
- A monolitic IC is an electronic circuit all built onto a small silicon chip.
- All circuit components (transistors, diodes, resistors and capacitors) are inside of the chip.

- IC encapsulation
 - They are classified as the way in which they have been mounted on the PCB (Printed Circuit –Through hole or SMD)
 - Insertion capsules / Through-hole components:
 - The IC pins are inserted in the holes of the PCB and the solder tracks are soldered from the other face of the PCB.
 - Most typical: DIP (Dual In-line Package)

- IC encapsulation
 - SMC : Surface Mount Component
 - Most modern method, less space
 - No need of holes on the PCBs, pins are directly soldered to the pads available on one side of the PCB, leaving the other side for additional circuitry.
 - Smaller than DIP, pins are closer to each other.
 - Most typical: SOIC (Small-Outline IC)

- IC encapsulation
 - Typical DIP and SOIC encapsulation: typical dimensions and pin breakout.

Pinout configuration diagrams for most common logic gates

