LAST CLASS

Connected Components

Recursive algorithm

- Let is assume that region pixels have the value 0 (black) and that background pixels have the value 255 (white).
- (1) Scan the image to find an unlabeled 0 (pixel and assign it a new label L.
- (2) Recursively assign a label L to all of its 0 neighbors.
- (3) Stop if there are no more unlabeled 0 pixels.
- (4) Go to step 1.

Sequential algorithm

- The sequential algorithm usually requires two passes over the image.
- It works with only two rows of an image at a time.
- (1) Scan the image left to right, top to bottom.
- (2) If the pixel is 0, then:
 - (2.1) If only one of its upper and left neighbors has a label, then copy the label.
 - (2.2) If both have the same label, then copy the label.
- (2.3) If both have different labels, then copy the upper's label and enter the labels in the equivalence table as equivalent labels.
- (2.4) Otherwise assign a new label to this pixel and enter this label in the equivalence table.
- (3) If there are no more pixels to consider, then go to step 2.
- (4) Find the lowest label for each equivalent set in the equivalence table.
- (5) Scan the image. Replace each label by the lowest label in its equivalent set.

• Sequential algorithm

	1	1	1	1					
4	1	1	1						
		1			2	2	2		ŀ
					2	2			
3	3	3							
3	3	3	3			4	4	4	4
3 :	3	3	3		4	4	4	4	
					F	4	4	4	-4

Distance Measures

The following are the different Distance measures:

Euclidean Distance:

$$D_e(p,q) = [(x-s)^2 + (y-t)^2]^{1/2}$$

<u>Cityblock Distance</u>:

$$D_4(p,q) = |x-s| + |y-t|$$

Chess-board Distance:

$$D_8(p,q) = max(|x-s|,|y-t|)$$

Cityblock Distance

2	2	2	2	<mark>2</mark>
2		-	1	2
2	,	0		2
2	1		1.	2
2	2	2	2	2

Chess-board Distance

Arithmetic/Logic Operations:

- Addition : p + q
- − Subtraction : p −q
- Multiplication : p*q
- Division : p/q
- AND: pAND q
- -OR:pORq
- Complement: NOT(q)

Neighborhood based arithmetic/Logic:

Value assigned to a pixel at position 'e' is a function of its neighbors and a set of window functions.

W ₁	W ₂	W ₃
W ₄	W ₅	W 6
W ₇	w _s	W ₉

$$p = (w_1 a + w_2 b + w_3 c + w_4 d + w_5 e + w_6 f + w_7 g + w_8 h + w_9 i)$$

= $\sum w_i f_i$

Image Interpolation

Image interpolation occurs in all digital images at some stage

- Resizing (resampling)
- Remapping (geometrical tansformations- rotation, change of perspective,...)
- Inpainting (restauration of holes)
- Morphing, nonlinear transformations

Image interpolation occurs in all digital images at some stage

- Resizing (resampling)
- Remapping (geometrical tansformations- rotation, change of perspective,...)
- Inpainting (restauration of holes)
- Morphing, nonlinear transformations

Image interpolation occurs in all digital images at some stage

- Resizing (resampling)
- Remapping (geometrical tansformations- rotation, change of perspective,...)
- Inpainting (restauration of holes)
- Morphing, nonlinear transformations

- Most basic method
- Requires the least processing time
- Only considers one pixel: the closest one to the interpolated point
- Has the effect of simply making each pixel bigger

Nearest Neighbor: 1D Equivalence

- Most basic method
- Requires the least processing time
- Only considers one pixel: the closest one to the interpolated point
- Has the effect of simply making each pixel bigger

Suppose that we want to find the value of the unknown function f at the point (x, y).

Assume that we know the value of f at the four points $Q_{11} = (x_1, y_1)$, $Q_{12} = (x_1, y_2)$, $Q_{21} = (x_2, y_1)$, and $Q_{22} = (x_2, y_2)$.

We first do linear interpolation in the *x*-direction. This yields

$$f(x,y_1)pprox rac{x_2-x}{x_2-x_1}f(Q_{11})+rac{x-x_1}{x_2-x_1}f(Q_{21}), \ f(x,y_2)pprox rac{x_2-x}{x_2-x_1}f(Q_{12})+rac{x-x_1}{x_2-x_1}f(Q_{22}).$$

Suppose that we want to find the value of the unknown function f at the point (x, y).

Assume that we know the value of f at the four points $Q_{11} = (x_1, y_1)$, $Q_{12} = (x_1, y_2)$, $Q_{21} = (x_2, y_1)$, and $Q_{22} = (x_2, y_2)$.

We first do linear interpolation in the x-direction. This yields

$$f(x,y_1)pproxrac{x_2-x}{x_2-x_1}f(Q_{11})+rac{x-x_1}{x_2-x_1}f(Q_{21}), \ f(x,y_2)pproxrac{x_2-x}{x_2-x_1}f(Q_{12})+rac{x-x_1}{x_2-x_1}f(Q_{22}).$$

$$f(x,y_1)pprox rac{x_2-x}{x_2-x_1}f(Q_{11})+rac{x-x_1}{x_2-x_1}f(Q_{21}), \ f(x,y_2)pprox rac{x_2-x}{x_2-x_1}f(Q_{12})+rac{x-x_1}{x_2-x_1}f(Q_{22}).$$

We proceed by interpolating in the *y*-direction to obtain the desired estimate:

$$egin{split} f(x,y) &pprox rac{y_2-y}{y_2-y_1} f(x,y_1) + rac{y-y_1}{y_2-y_1} f(x,y_2) \ &= rac{y_2-y}{y_2-y_1} \left(rac{x_2-x}{x_2-x_1} f(Q_{11}) + rac{x-x_1}{x_2-x_1} f(Q_{21})
ight) + rac{y-y_1}{y_2-y_1} \left(rac{x_2-x}{x_2-x_1} f(Q_{12}) + rac{x-x_1}{x_2-x_1} f(Q_{22})
ight) \end{split}$$

Alternative Algorithm

An alternative way to write the solution to the interpolation problem is

$$f(x,y)pprox a_0+a_1x+a_2y+a_3xy,$$

where the coefficients are found by solving the linear system

$$egin{bmatrix} 1 & x_1 & y_1 & x_1y_1 \ 1 & x_1 & y_2 & x_1y_2 \ 1 & x_2 & y_1 & x_2y_1 \ 1 & x_2 & y_2 & x_2y_2 \end{bmatrix} egin{bmatrix} a_0 \ a_1 \ a_2 \ a_3 \end{bmatrix} = egin{bmatrix} f(Q_{11}) \ f(Q_{12}) \ f(Q_{21}) \ f(Q_{22}) \end{bmatrix},$$

Bicubic Interpolation

In Bilinear interpolation, we assume

$$f(x,y)pprox a_0+a_1x+a_2y+a_3xy ~~pprox \sum_{j=0}^1\sum_{i=0}^1a_{ij}x^iy^j$$

In **Bicubic** interpolation, we assume

$$f(x,y) \approx \sum_{j=0}^{3} \sum_{i=0}^{3} a_{ij} x^{i} y^{j}$$

what a beautiful underwater image what a

Figure 1: Propagation direction as the normal to the signed distance to the boundary of the region to be inpainted.

Figure 2: Unsuccessful choice of the information propagation direction. Left: detail of the original image, region to be inpainted is in white. Right: restoration.

Priority matters!

Region Filling and Object Removal by Exemplar-Based Image Inpainting, Criminisi, Perez and Toyama, IEEE TIP, 2004

Assignment 1

- Implement Criminisi et al. (2004) paper in group of four students.
- Implement using MATLAB
- Submit Report, working code(s) with images
- Do not use absolute file path in your code.
- DO NOT USE MEX FILES or .p FILES
- DO NOT COPY!!
- Add 'Read Me' file if required.
- Submission Deadline: 17th October 2020, 5 PM.
- Submission Portal: Will be communicated through mail

Report

- Introduction, a very brief literature survey about the problem, the algorithm that you are implementing, results and discussion
- Must be a PDF file
- Preferably in LATEX

https://www.overleaf.com/learn/latex/Learn LaTeX in 30 minutes http://www.docs.is.ed.ac.uk/skills/documents/3722/3722-2014.pdf