ГіТМО Современные архитектуры нейронных сетей Введение и автокодировщики

Контакты

LITMO

Прокопов Егор Максимович

Усачева Дарья Михайловна

Беседа

План курса

• 8 лекций, 8 практик, занятия раз в две недели;

- 6 лабораторных работ по 10 баллов каждая;
- 2 разбора статей по теме лекции по 10 баллов;
- 20 баллов экзамен;

Что такое глубокое обучение?

Глубокое обучение - раздел машинного обучения, в котором нейронные сети имеют многослойную структуру. Благодаря "глубокой" структуре сети способны выучивать из данных более абстрактную информацию и решать

более сложные задачи.

Полносвязные нейронные сети

Полносвязная нейронная сеть (FCNN) — это базовая архитектура, где каждый нейрон одного слоя соединен с каждым нейроном следующего слоя.

Один слой нейронной сети описывается функцией

$$f(x) = Ax + b$$

Между слоями нейронных сетей используют нелинейные функции активации.

Обучение нейронной сети

Для обучения нейронной сети используется функция потерь L, которая оценивает "ошибку" модели.

$$L(y, \hat{y}) = L(y, F_{\theta}(x))$$

Цель обучения заключается в минимизации ошибки – функции потерь.

$$\min_{\theta} L(y, F_{\theta}(x))$$

В этом помогает алгоритм градиентного спуска

$$\theta_t = \theta_{t-1} - \lambda \nabla_{\theta_{t-1}} L(y_j, F_{\theta t-1}(x_j))$$

Глубина или ширина?

Каждый слой нейронной сети "упрощает" задачу для следующего слоя. Поэтому чем сложнее задача, тем "глубже" необходима модель.

При этом, чем меньше нейронов в слое, тем сильнее модель сжимает входные данные. Поэтому чем более разнородны данные, тем модель должна быть "шире".

Playground Tensorflow

Сверточные нейронные сети

Сеть сама учится искать важные признаки, собирая их из простых палочек

Свёрточная Нейросеть (CNN)

важные конкретно

для котика признаки

Операция свертки

30	3,	22	1	0
02	02	10	3	1
30	1,	22	2	3
2	0	0	2	2
2	0	0	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

Операции свертки

Архитектура автокодировщика

 $f:\mathbb{R}^n o\mathbb{R}^m$

 $f(x_0) = z_0$

 $g:\mathbb{R}^m o\mathbb{R}^n$

$$g(z_0) = \hat{x}_0$$

Внутреннее пространство АЕ

Восстановление данных

Снижение размерности

UNet

Декодировщик

Немного o skip connections

VİTMO

Inpainting

VİTMO

