Matt's Linear Algebra Notes

December 12, 2015

Chapter 1

Material

1.1 Vector Spaces

Definition 1.1.1 (Vector Space). A vector space V over a field \mathbb{F} is a set with two binary operations, $+: V \times V \to V$ and $\cdot: V \times \mathbb{F} \to V$ such that all of the following hold.

- 1. For all $x, y \in V$, x + y = y + x. (Additive Commutativity)
- 2. For all $x, y, z \in V$, x + (y + z) = (x + y) + z. (Additive Associativity)
- 3. There exists an element, denoted 0, in V such that for all $x \in V$, x + 0 = x.
- 4. For each $x \in V$ there exists a $y \in V$, denoted -x, such that x + y = 0.
- 5. For all $x \in V$, 1x = x.
- 6. For all $a, b \in \mathbb{F}$ and $x \in V$, a(bx) = (ab)x.
- 7. For all $a \in \mathbb{F}$ and $x, y \in V$, a(x + y) = ax + ay.
- 8. For all $a, b \in \mathbb{F}$ and $x \in V$, (a + b)x = ax + bx.

Furthermore, x + y is called the *sum of* x *and* y while ax is called the *product of* x *and* a. Moreover, each $x \in V$ is called a *vector* and each $a \in \mathbb{F}$ is called a *scalar*.

Chapter 2

Definitions

2.1 Vector Spaces

Definition 2.1.1 (Vector Space). A vector space V over a field \mathbb{F} is a set with two binary operations, $+: V \times V \to V$ and $\cdot: V \times \mathbb{F} \to V$ such that all of the following hold.

- 1. For all $x, y \in V$, x + y = y + x. (Additive Commutativity)
- 2. For all $x, y, z \in V$, x + (y + z) = (x + y) + z. (Additive Associativity)
- 3. There exists an element, denoted 0, in V such that for all $x \in V$, x + 0 = x.
- 4. For each $x \in V$ there exists a $y \in V$, denoted -x, such that x + y = 0.
- 5. For all $x \in V$, 1x = x.
- 6. For all $a, b \in \mathbb{F}$ and $x \in V$, a(bx) = (ab)x.
- 7. For all $a \in \mathbb{F}$ and $x, y \in V$, a(x+y) = ax + ay.
- 8. For all $a, b \in \mathbb{F}$ and $x \in V$, (a + b)x = ax + bx.

Furthermore, x + y is called the *sum of* x *and* y while ax is called the *product of* x *and* a. Moreover, each $x \in V$ is called a *vector* and each $a \in \mathbb{F}$ is called a *scalar*.

Chapter 3

Theorems