## 2023 SAJC H2 Math Promo Solutions

| Q    | Solution                                                                                                                                        |  |  |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1    | Let $S_n = an^3 + bn^2 + cn + d$ , $a \ne 1$                                                                                                    |  |  |  |
|      | When $n = 1$ , $a+b+c+d = 5(1)$                                                                                                                 |  |  |  |
|      | When $n = 2$ , $8a + 4b + 2c + d = 20 (2)$                                                                                                      |  |  |  |
|      | When $n = 3$ , $27a + 9b + 3c + d = 57 (3)$                                                                                                     |  |  |  |
|      | When $n = 4$ , $64a + 16b + 4c + d = 128 (4)$                                                                                                   |  |  |  |
|      | Using GC to solve (1), (2), (3) and (4), $a = 2, b = -1, c = 4, d = 0$ .                                                                        |  |  |  |
|      | $\therefore S_n = 2n^3 - n^2 + 4n$                                                                                                              |  |  |  |
| 2(a) | $\frac{\mathrm{d}}{\mathrm{d}x} \left[ \frac{\sin^{-1}(2x)}{1 - 4x^2} \right]$                                                                  |  |  |  |
|      | $= \frac{\left(1 - 4x^2\right) \left[\frac{2}{\sqrt{1 - \left(2x\right)^2}}\right] - \left[\sin^{-1}(2x)\right](-8x)}{\left(1 - 4x^2\right)^2}$ |  |  |  |
|      | $(1-4x^2)$                                                                                                                                      |  |  |  |
|      | $2\sqrt{1-4x^2}+8x\sin^{-1}(2x)$                                                                                                                |  |  |  |
|      | $=\frac{2\sqrt{1-4x^2}+8x\sin^{-1}(2x)}{\left(1-4x^2\right)^2}$                                                                                 |  |  |  |
| 2(b) | $y^2 = 3e^{4x} + 4(1)$                                                                                                                          |  |  |  |
|      | Differentiate with respect to x:                                                                                                                |  |  |  |
|      | $2y\frac{\mathrm{d}y}{\mathrm{d}x} = 12\mathrm{e}^{4x}$                                                                                         |  |  |  |
|      | $y\frac{\mathrm{d}y}{\mathrm{d}x} = 6\mathrm{e}^{4x}(1)$                                                                                        |  |  |  |
|      | Differentiate (1) with respect to $x$ :                                                                                                         |  |  |  |
|      | $y\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = 24\mathrm{e}^{4x}$                                    |  |  |  |
|      | $=8(3e^{4x})$                                                                                                                                   |  |  |  |
|      | $=8(y^2-4)$ , from (1)                                                                                                                          |  |  |  |
|      | $=8y^2-32$                                                                                                                                      |  |  |  |
|      | $y\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 - 8y^2 = -32 \text{ (Shown)}$                           |  |  |  |
|      | where $k = -32$                                                                                                                                 |  |  |  |

| Q          | Solution                                                                   |  |  |  |
|------------|----------------------------------------------------------------------------|--|--|--|
| 3(a)       | $u_n = \sum_{r=1}^n 6r(r+1)$                                               |  |  |  |
|            | $=\sum_{r=1}^{n}6r^{2}+\sum_{r=1}^{n}6r$                                   |  |  |  |
|            | $= 6\left[\frac{1}{6}n(n+1)(2n+1)\right] + 6\left[\frac{n}{2}(n+1)\right]$ |  |  |  |
|            | = n(n+1)(2n+1+3)                                                           |  |  |  |
|            | =2n(n+1)(n+2)                                                              |  |  |  |
| (b)<br>(i) | Let $\frac{1}{r(r+1)(r+2)} = \frac{A}{r} + \frac{B}{r+1} + \frac{C}{r+2}$  |  |  |  |
|            | By cover-rule,                                                             |  |  |  |
|            | $A = \frac{1}{(0+1)(0+2)} = \frac{1}{2}$                                   |  |  |  |
|            | $B = \frac{1}{(-1)(-1+2)} = -1$                                            |  |  |  |
|            | $C = \frac{1}{(-2)(-2+1)} = \frac{1}{2}$                                   |  |  |  |
|            | $\frac{1}{r(r+1)(r+2)} = \frac{1}{2r} - \frac{1}{r+1} + \frac{1}{2(r+2)}$  |  |  |  |
|            |                                                                            |  |  |  |

| Q           | Solution                                                                                                                                                                                                                                                                                                    |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (b)<br>(ii) | $S_N = \sum_{r=1}^{N} \left( \frac{1}{r(r+1)(r+2)} \right)$                                                                                                                                                                                                                                                 |
|             | $=\sum_{r=1}^{N}\left(\frac{1}{r(r+1)(r+2)}\right)$                                                                                                                                                                                                                                                         |
|             | $= \sum_{r=1}^{N} \left( \frac{1}{2r} - \frac{1}{r+1} + \frac{1}{2(r+2)} \right)$                                                                                                                                                                                                                           |
|             |                                                                                                                                                                                                                                                                                                             |
|             | $\begin{vmatrix} +\frac{1}{4} - \frac{1}{3} + \frac{1}{2(4)} \\ 1 & 1 & 1 \end{vmatrix}$                                                                                                                                                                                                                    |
|             | $\begin{vmatrix} \frac{1}{4} - \frac{1}{4} + \frac{1}{2} \\ + \frac{1}{4} - \frac{1}{3} + \frac{1}{2} \\ + \frac{1}{6} - \frac{1}{4} + \frac{1}{2} \\ + \frac{1}{8} - \frac{1}{5} + \frac{1}{2} \\ = \begin{vmatrix} \frac{1}{8} - \frac{1}{5} + \frac{1}{2} \\ \frac{1}{2} + \frac{1}{2} \\ \end{vmatrix}$ |
|             | $=\begin{vmatrix} +\sqrt{8} - \sqrt{5} + \sqrt{2(6)} \end{vmatrix}$                                                                                                                                                                                                                                         |
|             | $+\frac{1}{2(N-2)} - \frac{1}{N-1} + \frac{1}{2(N)}$                                                                                                                                                                                                                                                        |
|             | $+\frac{1}{2(N-1)} - \frac{1}{N} + \frac{1}{2(N+1)}$                                                                                                                                                                                                                                                        |
|             | $\left[ +\frac{1}{2N} - \frac{1}{N+1} + \frac{1}{2(N+2)} \right]$                                                                                                                                                                                                                                           |
|             | $= \frac{1}{4} + \frac{1}{2(N+1)} - \frac{1}{N+1} + \frac{1}{2(N+2)}$                                                                                                                                                                                                                                       |
|             | $= \frac{1}{4} - \frac{1}{2(N+1)} + \frac{1}{2(N+2)}$                                                                                                                                                                                                                                                       |
|             | $= \frac{1}{4} + \frac{1}{2} \left( -\frac{1}{(N+1)(N+2)} \right)$                                                                                                                                                                                                                                          |
|             | $= \frac{1}{4} - \frac{1}{2} \left[ \frac{1}{(N+1)(N+2)} \right]$                                                                                                                                                                                                                                           |
|             | Since $\frac{1}{(N+1)(N+2)} > 0$ , for $N \in \mathbb{Z}^+$ , $S_N < \frac{1}{4}$ .                                                                                                                                                                                                                         |

| Q           | Solution                                                                                                                                                                  |  |  |  |  |  |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| <b>4(i)</b> | $W_n = e^{-u_n}$                                                                                                                                                          |  |  |  |  |  |
|             | $\frac{w_n}{w_{n-1}} = \frac{e^{-u_n}}{e^{-u_{n-1}}}$                                                                                                                     |  |  |  |  |  |
|             | $=e^{-u_n+u_{n-1}}$                                                                                                                                                       |  |  |  |  |  |
|             | $=e^{-(u_n-u_{n-1})}$                                                                                                                                                     |  |  |  |  |  |
|             | $=e^{-\ln 3}$                                                                                                                                                             |  |  |  |  |  |
|             | $=\frac{1}{3}$ , since $\{u_n\}$ is an arithmetic progression                                                                                                             |  |  |  |  |  |
|             | Since $\frac{w_n}{w_{n-1}} = \frac{1}{3}$ is a constant (independent of <i>n</i> ), the sequence of terms given                                                           |  |  |  |  |  |
|             | by $w_n$ , $n \in \mathbb{Z}^+$ is a geometric progression with a common ratio of $\frac{1}{3}$ .                                                                         |  |  |  |  |  |
| (ii)        | $\frac{w_n}{w_{n-1}} = \frac{1}{3}$ is the common ratio of the geometric progression (given).                                                                             |  |  |  |  |  |
|             | $ r =\frac{1}{3}$                                                                                                                                                         |  |  |  |  |  |
|             | $\therefore  r  < 1(*)$                                                                                                                                                   |  |  |  |  |  |
|             | Hence, $\sum_{r=1}^{\infty} w_r$ converges.                                                                                                                               |  |  |  |  |  |
| (iii)       | $w_1 = e^{-\ln 3} = \frac{1}{3}$                                                                                                                                          |  |  |  |  |  |
|             | $\left  \frac{w_1 \left[ 1 - \left( e^{-\ln 3} \right)^n \right]}{1 - e^{-\ln 3}} - \frac{w_1}{1 - e^{-\ln 3}} \right  < 0.005 \left[ \frac{w_1}{1 - e^{-\ln 3}} \right]$ |  |  |  |  |  |
|             | $\left  \frac{w_1}{1 - e^{-\ln 3}} \right  \left  1 - \left( e^{-\ln 3} \right)^n - 1 \right  < 0.005 \left( \frac{w_1}{1 - e^{-\ln 3}} \right)$                          |  |  |  |  |  |
|             | $\left  \left( e^{\ln \left( \frac{1}{3} \right)} \right)^n \right  < 0.005$                                                                                              |  |  |  |  |  |
|             | $\left(\frac{1}{3}\right)^n < 0.005$                                                                                                                                      |  |  |  |  |  |
|             | $\left[ \frac{1}{3} \right]^n$                                                                                                                                            |  |  |  |  |  |
|             | · · ·                                                                                                                                                                     |  |  |  |  |  |
|             | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                   |  |  |  |  |  |
|             | 5 0.0041 < 0.005<br>6 0.0014 < 0.005                                                                                                                                      |  |  |  |  |  |
|             | Smallest possible value of $n = 5$                                                                                                                                        |  |  |  |  |  |

| Q   | Solution                                                                                                                                                                |  |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 5i  | By Ratio Theorem, $\overrightarrow{OM} = \frac{2\mathbf{a} + \mathbf{b}}{3}$                                                                                            |  |  |  |
|     | 3                                                                                                                                                                       |  |  |  |
|     | Area of triangle $OBM = \frac{1}{2} \left  \overrightarrow{OM} \times \overrightarrow{OB} \right $                                                                      |  |  |  |
|     | Δ'                                                                                                                                                                      |  |  |  |
|     | $4 = \frac{1}{2} \left  \frac{1}{3} (2\mathbf{a} + \mathbf{b}) \times \mathbf{b} \right $                                                                               |  |  |  |
|     | $= \frac{1}{6}  2\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{b}  (*)$                                                                                      |  |  |  |
|     | $=\frac{1}{6} 2\mathbf{a}\times\mathbf{b}+0 $                                                                                                                           |  |  |  |
|     | $=\frac{1}{3} \mathbf{a}\times\mathbf{b} $                                                                                                                              |  |  |  |
|     | $ \mathbf{a} \times \mathbf{b}  = 12$                                                                                                                                   |  |  |  |
|     | Alternative solution:                                                                                                                                                   |  |  |  |
|     | Area of triangle $OBM = \frac{1}{2} \left  \overrightarrow{OB} \times \overrightarrow{OM} \right $                                                                      |  |  |  |
|     | $4 = \frac{1}{2}  \mathbf{b} \times \frac{1}{3} (2\mathbf{a} + \mathbf{b}) $                                                                                            |  |  |  |
|     | $= \frac{1}{6}   2\mathbf{b} \times \mathbf{a} + \mathbf{b} \times \mathbf{b}  $                                                                                        |  |  |  |
|     | $=\frac{1}{6} 2\mathbf{b}\times\mathbf{a}+0 $                                                                                                                           |  |  |  |
|     | $=\frac{1}{3} \mathbf{b}\times\mathbf{a} $                                                                                                                              |  |  |  |
|     | $= \frac{1}{3}  \mathbf{a} \times \mathbf{b}   \text{since }  \mathbf{b} \times \mathbf{a}  =  \mathbf{a} \times \mathbf{b} $                                           |  |  |  |
|     | $ \mathbf{a} \times \mathbf{b}  = 12$                                                                                                                                   |  |  |  |
|     |                                                                                                                                                                         |  |  |  |
| ii  | $(\mathbf{p}-\mathbf{a})\times(\mathbf{b}-\mathbf{a})=0$                                                                                                                |  |  |  |
|     | $\overrightarrow{AP} \times \overrightarrow{AB} = 0$                                                                                                                    |  |  |  |
|     | $\overrightarrow{AP}$ is parallel to vector $\overrightarrow{AB}$                                                                                                       |  |  |  |
|     | (Note: $\overrightarrow{AP} \neq 0$ and $\overrightarrow{AB} \neq 0$ )                                                                                                  |  |  |  |
|     | Since line <i>l</i> that passes through point <i>A</i> and is parallel to vector $\overrightarrow{AB}$ ,                                                                |  |  |  |
|     | Since the $t$ that passes through point $A$ and is parametro vector $AB$ , $l_{AP}: \mathbf{r} = \mathbf{a} + \lambda(\mathbf{b} - \mathbf{a}), \lambda \in \mathbb{R}$ |  |  |  |
| iii | $\mathbf{a} = (4\mathbf{a} \cdot \mathbf{b})\mathbf{b}$                                                                                                                 |  |  |  |
|     | Since $4\mathbf{a} \cdot \mathbf{b}$ is a scalar, $\mathbf{a}$ is a scalar multiple of $\mathbf{b}$ ,                                                                   |  |  |  |

| (a)<br>(ii) | y = f(x) | y = f'(x) |
|-------------|----------|-----------|
| (11)        | (-2,0)   | (-2,0)    |
|             | x = -3   | x = -3    |
|             | x = 0    | x = 0     |
|             | y=3      | y = 0     |



(b) 
$$y = \frac{1}{3}(x+1)^2$$

C': Scaling parallel to the x-axis by a scale factor  $\frac{1}{2}$ : Replace

 $x \text{ with } 2x$ 
 $y = \frac{1}{3}(2x+1)^2$ 

B': Translation of 4 units in the negative x-direction:

Replace  $x \text{ with } x + 4$ 
 $y = \frac{1}{3}(2(x+4)+1)^2$ 
 $y = \frac{1}{3}(2x+9)^2$ 

A': Reflection about the x-axis: Replace  $y \text{ with } -y$ 
 $y = -\frac{1}{3}(2x+9)^2$ 

7(i)  $y = \frac{2x-1}{x-3} = 2 + \frac{5}{x-3}$ 

Intersection with axes:

$$\left(0,\frac{1}{3}\right)$$
 and  $\left(\frac{1}{2},0\right)$ 

Asymptotes: x = 3, y = 2

For  $y = \ln(1-x)$ ,

Intersection with axes: When y = 0, x = 0. (0, 0)

Asymptote: x = 1



From the graph, the points of intersection are  $(-1.33\ ,\, 0.844)$  and  $(0.195\ ,\, 0.217)$ .

Hence, solving  $\frac{2x-1}{x-3} = |\ln x - 1|$ , from the graph, x = -1.33 (to 3 sf) or 0.195 (to 3 sf)

- Solving  $\frac{2x-1}{x-3} \le \left| \ln(1-x) \right|$ , from the graph in (i), we have  $x \le -1.33$  or  $0.195 \le x < 1$
- (iii)  $\begin{vmatrix} \frac{2x+1}{x-2} \le |\ln(-x)| \\ \text{Let } y = x+1 \end{vmatrix}$

|      | $\left  \frac{2(x+1)-1}{(x+1)-3} \le \left  \ln \left( 1 - (x+1) \right) \right  \right $ |  |  |  |  |  |
|------|-------------------------------------------------------------------------------------------|--|--|--|--|--|
|      | $(x+1)-3^{-3}$                                                                            |  |  |  |  |  |
|      | $\frac{2y-1}{y-3} \le \left  \ln \left( 1 - y \right) \right $                            |  |  |  |  |  |
|      | y-3<br>$y \le -1.33$ or $0.195 \le y < 1$                                                 |  |  |  |  |  |
|      | $x+1 \le -1.33$ or $0.195 \le x+1 < 1$                                                    |  |  |  |  |  |
|      | $x \le -2.33$ or $-0.805 \le x < 0$                                                       |  |  |  |  |  |
| 8(i) | k = -1                                                                                    |  |  |  |  |  |
|      | This is because there is no image for $u = 1$ and $u = 1$                                 |  |  |  |  |  |

- 8(i) k = -1This is because there is no image for x = -1 under f. (or, f(-1) is undefined)
- (ii) Let  $y = \frac{-x-3}{x+1}$ , for  $x \in \mathbb{R}$ ,  $x \neq -1$   $y = \frac{-x-3}{x+1}$  y(x+1) = -x-3 xy + y = -x-3 xy + x = -y-3 x(y+1) = -y-3  $x = \frac{-y-3}{y+1}$

Since  $x = f^{-1}(y) = \frac{-y-3}{y+1}$ ,

 $f^{-1}(x) = \frac{-x-3}{x+1}$ 

Since  $f(x) = f^{-1}(x)$ ,  $\forall x \in \mathbb{R}, x \neq -1$ ,  $f^{2}(x) = ff^{-1}(x) = x$ 





$$D_{g} = (-1, \infty) \xrightarrow{g} R_{g} = (0, \infty) \xrightarrow{f} R_{fg} = (-3, -1)$$

Alternative method: Using fg to find range.

9 
$$x = t^2, y = t^3 - - (1)$$

(i) 
$$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{1}{\left(\frac{dx}{dt}\right)} = \frac{3t^2}{2t} = \frac{3}{2}t$$

The equation of the tangent at the point with parameter t is

$$y-t^{3} = \frac{3}{2}t(x-t^{2})$$

$$\Rightarrow 2y-2t^{3} = 3t(x-t^{2})$$

$$\Rightarrow 2y-2t^{3} = 3tx-3t^{3}$$

$$\therefore 2y-3tx+t^{3} = 0 \text{ (Proved)}.$$

(ii) A cubic equation has at most 3 real roots.

Given that  $(\underline{a}, b)$  is a fixed point, the equation  $2b - 3at + t^3 = 0$  is a cubic equation in terms of t.

Hence there are at most 3 real values of t for a fixed value of x and y and therefore at most 3 tangents can pass through the fixed point (a, b).

(iii) When 
$$t = 2$$
,

$$2y - 3tx + t^3 = 0$$

$$\Rightarrow 2y - 6x + 8 = 0$$

$$\Rightarrow y-3x+4=0---(2)$$

Since the tangent at P meets the curve again at  $Q(k^2, k^3)$ , substituting equation (1) into (2):

| 1_3 | 21-2              | . 1 |            | Λ |
|-----|-------------------|-----|------------|---|
| K   | $- \gamma \kappa$ | +4  | $=$ $\cup$ | u |

Solving using GC, k = -1 or 2 (rejected since the t = k value at P is 2).

Hence the tangent will meet the curve again at k = -1.

(iv) When 
$$t = 2$$
,  $x = 4$ ,  $y = 8$ .  $P(4, 8)$ ,  $\frac{dy}{dx} = 3$ 

Gradient of tangent is 3

Hence gradient of normal is  $-\frac{1}{3}$ 

Equation of normal is

$$\Rightarrow y - 8 = -\frac{1}{3}(x - 4)$$

$$\Rightarrow y = -\frac{1}{3}x + \frac{28}{3}$$

**(v)** 



(vi) From the graph,

$$\alpha + \beta = \frac{\pi}{2}$$

$$\alpha = \tan^{-1}(3)$$

 $\beta = \tan^{-1}(\frac{1}{3})$  since  $\beta$  is acute

$$\tan^{-1}(3) + \tan^{-1}(\frac{1}{3}) = \frac{\pi}{2}$$
 (Shown)

| 10 | Since A | (-5, -7, 7) | ) lies on plane | $\pi_{\scriptscriptstyle 1}$ , |
|----|---------|-------------|-----------------|--------------------------------|
|    | ,       |             | , .             | 1 ′                            |

$$\begin{pmatrix} -5 \\ -7 \\ 7 \end{pmatrix} \bullet \begin{pmatrix} 2 \\ -5 \\ p \end{pmatrix} = 4$$

$$-10 + 35 + 7p = 4$$

$$p = -3$$

p=-3Let the acute angle between line  $l_1$  and the plane  $\pi_1$  be  $\theta$ . (ii)

$$\sin \theta = \frac{\begin{vmatrix} 3 \\ 2 \\ -5 \\ -2 \end{vmatrix} \begin{vmatrix} 2 \\ -5 \\ -3 \end{vmatrix}}{\begin{vmatrix} 3 \\ 2 \\ -5 \\ -2 \end{vmatrix} \begin{vmatrix} 2 \\ -5 \\ -3 \end{vmatrix}} = \frac{2}{\sqrt{17}\sqrt{38}} = \frac{2}{\sqrt{646}}$$

 $\theta = 0.0788$  rad (to 3 sig fig) or  $4.5^{\circ}$  (to 1 dec pl)

Given that 
$$\lambda = 1$$
,  $\overrightarrow{OB} = \begin{pmatrix} 1+3 \\ -3+2 \\ 3-2 \end{pmatrix} = \begin{pmatrix} 4 \\ -1 \\ 1 \end{pmatrix}$ 

Hence, B(4,-1,1)

$$l_{BF}: \mathbf{r} = \begin{pmatrix} 4 \\ -1 \\ 1 \end{pmatrix} + \alpha \begin{pmatrix} 2 \\ -5 \\ -3 \end{pmatrix}, \alpha \in \mathbb{R}$$

Since F is on  $l_{BF}$ ,  $\overrightarrow{OF} = \begin{pmatrix} 4 \\ -1 \\ 1 \end{pmatrix} + \alpha \begin{pmatrix} 2 \\ -5 \\ -3 \end{pmatrix}$  for some  $\alpha \in \mathbb{R}$ 

Since 
$$F$$
 is on  $\pi_1$ , 
$$\begin{bmatrix} 4 \\ -1 \\ 1 \end{bmatrix} + \alpha \begin{pmatrix} 2 \\ -5 \\ -3 \end{bmatrix} = 4$$

$$8 + 4\alpha + 5 + 25\alpha - 3 + 9\alpha = 4$$

$$38\alpha = -6$$

$$\alpha = -\frac{3}{19}$$

| $\overrightarrow{OF} = \begin{pmatrix} 4 \\ -1 \\ 1 \end{pmatrix} - \frac{3}{19} \begin{pmatrix} 2 \\ -5 \\ -3 \end{pmatrix} = \frac{2}{19} \begin{pmatrix} 35 \\ -2 \\ 14 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ 14 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -2 \\ -2 \end{pmatrix} $ | $\frac{70}{19}$ $-\frac{4}{19}$ $\frac{28}{19}$ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|

(iv) Let B' be the point of reflection of B in the plane  $\pi_1$ .

Since *F* is midpoint of *B* and *B'*,  $\overrightarrow{OF} = \frac{1}{2} (\overrightarrow{OB} + \overrightarrow{OB'})$ 

$$\overrightarrow{OB'} = 2\overrightarrow{OF} - \overrightarrow{OB} = 2 \begin{pmatrix} \frac{70}{19} \\ -\frac{4}{19} \\ \frac{28}{19} \end{pmatrix} - \begin{pmatrix} 4 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{64}{19} \\ \frac{11}{19} \\ \frac{37}{19} \end{pmatrix}$$

$$\overrightarrow{AB'} = \overrightarrow{OB'} - \overrightarrow{OA} = \begin{pmatrix} \frac{64}{19} \\ \frac{11}{19} \\ \frac{37}{19} \end{pmatrix} - \begin{pmatrix} -5 \\ -7 \\ 7 \end{pmatrix} = \begin{pmatrix} \frac{159}{19} \\ \frac{144}{19} \\ -\frac{96}{19} \end{pmatrix} = \frac{1}{19} \begin{pmatrix} 159 \\ 144 \\ -96 \end{pmatrix}$$

Vector equation of line AB':

$$\mathbf{r} = \begin{pmatrix} -5 \\ -7 \\ 7 \end{pmatrix} + \mu \begin{pmatrix} 159 \\ 144 \\ -96 \end{pmatrix}, \ \mu \in \mathbb{R}.$$

(v) The line is parallel to the vector:

$$\begin{pmatrix} 3 \\ 2 \\ -2 \end{pmatrix} \times \begin{pmatrix} 2 \\ -5 \\ -3 \end{pmatrix} = \begin{pmatrix} -16 \\ 5 \\ -19 \end{pmatrix}$$

Vector equation of  $l_2$  is

$$\mathbf{r} = \begin{pmatrix} 4 \\ -1 \\ 1 \end{pmatrix} + s \begin{pmatrix} -16 \\ 5 \\ -19 \end{pmatrix}, s \in \mathbb{R}.$$

11(i) 
$$ZY = WX = 10 \sin \theta$$
,  
 $OY = 10 \cos \theta$ ,  
 $\tan \frac{\pi}{3} = \frac{WX}{OX} \Rightarrow OX = \frac{10\sqrt{3}}{3} \sin \theta$   
 $A = ZY \times XY$   
 $= 10 \sin \theta \times \left(10 \cos \theta - \frac{10\sqrt{3}}{3} \sin \theta\right)$ 

$$= 100 \sin \theta \cos \theta - \frac{100\sqrt{3}}{3} \sin^2 \theta$$
$$= 50 \sin 2\theta - \frac{100\sqrt{3}}{3} \sin^2 \theta$$

$$=50\left(\sin 2\theta - \frac{2\sqrt{3}}{3}\sin^2\theta\right)$$

(ii) 
$$A = 50 \left( \sin 2\theta - \frac{2\sqrt{3}}{3} \sin^2 \theta \right)$$

$$\frac{\mathrm{d}A}{\mathrm{d}\theta} = 50 \left( 2\cos 2\theta - \frac{2\sqrt{3}}{3} \left[ 2\sin\theta\cos\theta \right] \right) = 50 \left( 2\cos 2\theta - \frac{2\sqrt{3}}{3}\sin 2\theta \right) = 100 \left( \cos 2\theta - \frac{\sqrt{3}}{3}\sin 2\theta \right)$$

For stationary values of A, let  $\frac{dA}{d\theta} = 0$ 

$$\Rightarrow 100 \left(\cos 2\theta - \frac{\sqrt{3}}{3}\sin 2\theta\right) = 0$$

$$\cos 2\theta - \frac{\sqrt{3}}{3}\sin 2\theta = 0$$

$$\tan 2\theta = \frac{3}{\sqrt{3}} = \sqrt{3}$$
, since  $\cos 2\theta \neq 0$ 

Since 
$$\theta < \frac{\pi}{3}$$
,  $\therefore 0 < 2\theta < \frac{2\pi}{3} < \pi$ .

Therefore, 
$$2\theta = \frac{\pi}{3}$$

$$\Rightarrow \theta = \frac{\pi}{6}$$

## **Second Derivative Test**

$$\frac{\overline{d^2 A}}{d\theta^2} = 100 \left( -2\sin 2\theta - \frac{2\sqrt{3}}{3}\cos 2\theta \right) = -200 \left( \sin 2\theta + \frac{\sqrt{3}}{3}\cos 2\theta \right)$$

When 
$$\theta = \frac{\pi}{6} \Rightarrow 2\theta = \frac{\pi}{3}$$
 is acute

$$\Rightarrow \frac{d^2 A}{d\theta^2} = -200 \left( \sin \frac{\pi}{3} + \frac{\sqrt{3}}{3} \cos \frac{\pi}{3} \right) = -200 \left( \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{3} \left( \frac{1}{2} \right) \right) = -\frac{400}{3} \sqrt{3} < 0$$

 $\therefore$  A achieves maximum value when  $\theta = \frac{\pi}{6}$ 

Alternatively, First Derivative Test

$$\frac{dA}{d\theta} = 100 \left( \cos 2\theta - \frac{\sqrt{3}}{3} \sin 2\theta \right) = \frac{200}{\sqrt{3}} \cos \left( 2\theta + \frac{\pi}{6} \right), \text{ using } R\text{-formula}$$

| θ                                      | $\left(\frac{\pi}{6}\right)^{-}$ | $\frac{\pi}{6}$ | $\left(\frac{\pi}{6}\right)^{+}$ |
|----------------------------------------|----------------------------------|-----------------|----------------------------------|
| $\frac{\mathrm{d}A}{\mathrm{d}\theta}$ | positive                         | 0               | negative                         |

At 
$$\theta = \frac{\pi}{6}$$
,
$$A = 50 \left( \sin \frac{\pi}{3} - \frac{2\sqrt{3}}{3} \sin^2 \frac{\pi}{6} \right)$$

$$= 50 \left[ \frac{\sqrt{3}}{2} - \frac{2\sqrt{3}}{3} \left( \frac{1}{2} \right)^2 \right]$$

$$= 50 \left( \frac{2\sqrt{3}}{6} \right)$$

$$= \frac{50\sqrt{3}}{3} \text{ units}^2$$

The maximum value of A is  $\frac{50\sqrt{3}}{3}$  m<sup>2</sup>

(iii) 
$$A = 50 \left( \sin 2\theta - \frac{2\sqrt{3}}{3} \sin^2 \theta \right)$$

Remaining Areas, 
$$A_1 = \frac{1}{2} (10)^2 \left( \frac{\pi}{3} \right) - (A) = \frac{50}{3} \pi - 50 \left( \sin 2\theta - \frac{2\sqrt{3}}{3} \sin^2 \theta \right)$$

$$C = 5A + 4A_{1}$$

$$= 5\left[50\left(\sin 2\theta - \frac{2\sqrt{3}}{3}\sin^{2}\theta\right)\right] + 4\left[\frac{50}{3}\pi - 50\left(\sin 2\theta - \frac{2\sqrt{3}}{3}\sin^{2}\theta\right)\right]$$

$$= 50\left(\sin 2\theta - \frac{2\sqrt{3}}{3}\sin^{2}\theta\right) + \frac{200}{3}\pi$$



(iv) Using a graphical solution, by adding the line C = 220,



$$0 < \theta < 0.114$$
 or  $0.933 < \theta < \frac{\pi}{3}$