FICHE 0 : DÉNOMBRABILITÉ

Exercice 1

Soit une suite géométrique $(a_n)_{n\in\mathbb{N}}$ de raison q.

a) Rappeler et démontrer la formule qui permet de calculer la somme partielle d'une série géométrique

$$S_n = a_0 + a_1 + a_2 + \dots + a_n.$$

- b) Pour quelles valeurs des paramètres a_0 et q la série géométrique $S = \sum_{i=0}^{\infty} a_i$ converge? Justifier votre réponse.
- c) Donner la formule du reste $R_n = \sum_{i=n+1}^{\infty} a_i$ d'une série géométrique convergente. Sous quelle condition $|R_n| \leq |a_n|$?

Exercice 2

Trouvez une suite $(x_i)_{i\in\mathbb{N}^*}$ d'entiers appartenant chacun à [0,9] et telle que

$$\frac{19}{44} = \sum_{i=1}^{+\infty} \frac{x_i}{10^i}.$$

Justifiez votre réponse par un calcul de somme de série.

Exercice 3

En probabilités, on énumère assez souvent les issues élémentaires possibles d'une expérience, mais on dresse rarement la liste de tous les événements observables. Le but de cet exercice est de comprendre pourquoi.

- a) Etant donnée un ensemble Ω soit $\mathcal{P}(\Omega)$ l'ensemble des parties de Ω . Si l'ensemble Ω a n éléments, combien l'ensemble $\mathcal{P}(\Omega)$ a-t-il d'éléments?
- b) On réalise une expérience simple : un tirage dans une urne contenant 3 jetons numérotés 1,2 et 3. Donner l'ensemble Ω des issues possibles de cette expérience et l'ensemble $\mathcal{P}(\Omega)$ correspondant, qui représente la famille des événements observables.
- c) On réalise une expérience un peu moins simple : le lancer de deux dés de couleurs différentes. Quel est le cardinal de Ω ? Si on utilise un ordinateur pour décrire tous les événements observables et si chacun occupe 6 bits (pourquoi?), quel espace mémoire

l'ensemble des observables occupera-t-il en tout? Calculer la hauteur de la pile de CD-ROMs nécessaire (épaisseur : 1,2 mm, contenance : 800 mégaoctets ¹).

Exercice 4

- a) Montrer que l'ensemble des nombres irrationnels n'est pas dénombrable.
- b) Montrer que l'ensemble \mathbb{D} des nombres décimaux (c'est-à-dire de la forme $k \times 10^{-n}$, $k \in \mathbb{Z}$, $n \in \mathbb{N}$) est dénombrable.
- c) Les ensembles suivants sont-ils dénombrables?
 - (i) l'ensemble des polynômes à coefficients entiers;
 - (ii) l'ensemble des nombres algébriques (un nombre réel ou complexe est dit *algébrique* s'il est racine d'un polynôme non nul à coefficients entiers).

Exercice 5

- a) Montrez que toute famille d'intervalles ouverts de \mathbb{R} non vides et deux à deux disjoints est au plus dénombrable.
- b) Montrer que l'ensemble des points de discontinuité d'une fonction monotone est au plus dénombrable.

Exercice 6

Existe-t-il des droites du plan \mathbb{R}^2 qui ne contiennent pas au moins deux points à coordonnées rationnelles?

^{1.} Rappelons que un mégaoctet vaut $10^6 \approx 2^{20}$ octets.