EXERCISES 2.3 ■ PAGE 102

1. (a) -6 (b) -8 (c) 2 (d) -6

(e) Does not exist (f) 0

9. $-\frac{1}{27}$ 3. 75 **5.** 88 **7.** 5 **11.** -13

13. 6 **15.** Does not exist **17.** $\frac{5}{7}$ 19. $\frac{9}{2}$

23. $\frac{1}{6}$ **25.** $-\frac{1}{9}$ **27.** 1 **29.** $\frac{1}{128}$ **21.** -6

33. $3x^2$ **35.** (a), (b) $\frac{2}{3}$ **39.** 7 31. $-\frac{1}{2}$ **43.** 8

45. -4 47. Does not exist

49. (a)

51. (a) (i) 5 (ii) -5 (b) Does not exist

55. (a) (i) -2 (ii) Does not exist (iii) -3

(b) (i) n-1 (ii) n (c) a is not an integer.

67. 15; -1 61. 8

EXERCISES 2.4 PAGE 113

1. 0.1 (or any smaller positive number)

3. 1.44 (or any smaller positive number)

5. 0.4269 (or any smaller positive number)

7. 0.0219 (or any smaller positive number);

0.011 (or any smaller positive number)

9. (a) 0.01 (or any smaller positive number)

(b) $\lim_{x \to 2^+} \frac{1}{\ln(x-1)} = \infty$

11. (a) $\sqrt{1000/\pi}$ cm (b) Within approximately 0.0445 cm

(c) Radius; area; $\sqrt{1000/\pi}$; 1000; 5; ≈ 0.0445

13. (a) 0.025 (b) 0.0025

35. (a) 0.093 (b) $d = (B^{2/3} - 12)/(6B^{1/3}) - 1$, where

 $B = 216 + 108\varepsilon + 12\sqrt{336 + 324\varepsilon + 81\varepsilon^2}$

41. Within 0.1

EXERCISES 2.5 PAGE 124

1. $\lim_{x\to 4} f(x) = f(4)$

3. (a) -4, -2, 2, 4; f(-4) is not defined and $\lim_{x \to a} f(x)$ does not exist for a = -2, 2, and 4

(b) -4, neither; -2, left; 2, right; 4, right

5. (a) 1 (b) 1, 3 (c) 3

19. f(-2) is undefined.

21. $\lim_{x \to 0} f(x)$ does not exist. **23.** $\lim_{x \to 0} f(x) \neq f(0)$

25. (b) Define $f(3) = \frac{1}{6}$. **27.** $(-\infty, \infty)$ **29.** $(-\infty, 0) \cup (0, \infty)$

31. (-1,1) **33.** $(-\infty,-1] \cup (0,\infty)$ **35.** 8

39. $x = \frac{\pi}{2} + 2n\pi$, n any integer

47.
$$\frac{2}{3}$$
 49. 4

51. (a)
$$g(x) = x^3 + x^2 + x + 1$$
 (b) $g(x) = x^2 + x$

EXERCISES 2.6 ■ PAGE 137

- **1.** (a) As x becomes large, f(x) approaches 5.
- (b) As x becomes large negative, f(x) approaches 3.

3. (a)
$$-2$$
 (b) 2 (c) ∞ (d) $-\infty$

(e)
$$x = 1, x = 3, y = -2, y = 2$$

7.

9.

11. 0 **13.**
$$\frac{2}{5}$$
 15. $\frac{4}{5}$ **17.** 0 **19.** $-\frac{1}{3}$ **21.** -1

23.
$$\frac{\sqrt{3}}{}$$

25.
$$-2$$
 27. $-\infty$ **29.** 0 **31.** $\frac{1}{2}(a-b)$

33.
$$-\infty$$
 35. 0 **37.** $-\frac{1}{2}$ **39.** 0 **41.**

43. (a) (i) 0 (ii)
$$-\infty$$
 (iii) ∞ (b) ∞

45. (a), (b)
$$-\frac{1}{2}$$

45. (a), (b)
$$-\frac{1}{2}$$
 47. $y = 4, x = -3$

49.
$$y = 2$$
; $x = -2$, $x = 1$ **51.** $x = 5$

53.
$$y = 3$$

55. (a) 0 (b)
$$\pm \infty$$

57.
$$f(x) = \frac{2-x}{x^2(x-3)}$$
 59. (a) $\frac{5}{4}$ (b) 5

59. (a)
$$\frac{5}{4}$$
 (b)

61.
$$-\infty$$
, $-\infty$

65. (a) 0 (b) An infinite number of times

67. 5

71.
$$N \ge 15$$

73.
$$N \le -9, N \le -19$$

75. (a)
$$x > 100$$

EXERCISES 2.7 ■ PAGE 149

1. (a)
$$\frac{f(x) - f(3)}{f(x) - f(3)}$$

3. (a) 1 (b)
$$y = x - 1$$
 (c)

