

Analyse des ventes du site marchand

Transactions

- Corriger le format date
- Vérifier la présence de sessions de test

```
# Afficher un résumé du DF
data transactions.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 679532 entries, 0 to 679531
Data columns (total 4 columns):
    Column
                Non-Null Count
                                Dtype
    id prod
                679532 non-null object
    date 679532 non-null object
    session id 679532 non-null
                                object
    client id
                                object
                679532 non-null
dtypes: object(4)
memory usage: 20.7+ MB
```

Calculer les statistiques descriptives pour toutes les colonnes
data_transactions.describe(include='all')

	id_prod	date	session_id	client_id
count	679532	679532	679532	679532
unique	3267	679371	342316	8602
top	1_369	test_2021-03-01 02:30:02.237413	s_0	c_1609
freq	2252	13	200	25488

Tout semble indiquer que des tests (200 itérations) ont été réalisés sur la base de données.

- ➤ la session 's_0' est une session de test ;
- ➤ le produit 'T_0' est un produit de test ;
- ➤ les clients 'ct_0' et 'ct_1' sont des clients de test.

Filtrer les transactions pour la session "s_0"
tests = data_transactions[data_transactions['session_id'] == 's_0']
Calculer les statistiques descriptives pour toutes les colonnes
tests.describe(include='all')

		id_prod	date	session_id	client_id
(count	200	200	200	200
u	nique	1	39	1	2
	top	T_0	test_2021-03-01 02:30:02.237413	s_0	ct_0
	freq	200	13	200	106

```
# Afficher les identifiants des clients pour la session "s_0"
print(tests['client_id'].unique())
['ct_0' 'ct_1']
```

DF final

- 679 332 transactions
- 3 266 produits vendus
- 8 600 clients actifs

```
# Supprimer les lignes correspondant à des tests
data_transactions = data_transactions[data_transactions['session_id'] != 's_0']

# Convertir la colonne 'date' en format datetime
data_transactions['date'] = pd.to_datetime(data_transactions['date'], format='%Y-%m-%d')

# Ajouter des colonnes liées au temps pour l'agrégation
data_transactions['year_month'] = data_transactions['date'].dt.to_period('M')
data_transactions['day'] = data_transactions['date'].dt.to_period('D')

# Trier le DF par date en ordre chronologique
data_transactions.sort_values('date', inplace=True)
```

Afficher des statistiques descriptives pour toutes les colonnes, y compris les colonnes datetime data_transactions.describe(include='all', datetime_is_numeric=True)

	id_prod	date	session_id	client_id	year_month	day
count	679332	679332	679332	679332	679332	679332
unique	3266	NaN	342315	8600	24	730
top	1_369	NaN	s_118668	c_1609	2021-09	2022-11-30
freq	2252	NaN	14	25488	33326	1311
mean	NaN	2022-03-03 15:13:19.307389696	NaN	NaN	NaN	NaN
min	NaN	2021-03-01 00:01:07.843138	NaN	NaN	NaN	NaN
25%	NaN	2021-09-08 09:14:25.055994368	NaN	NaN	NaN	NaN
50%	NaN	2022-03-03 07:50:20.817730560	NaN	NaN	NaN	NaN
75%	NaN	2022-08-30 23:57:08.555173888	NaN	NaN	NaN	NaN
max	NaN	2023-02-28 23:58:30.792755	NaN	NaN	NaN	NaN

Products

- Corriger le format de categ
- 3 286 références

```
# Convertir la colonne 'categ' en type str
data_products['categ'] = data_products['categ'].astype(str)

# Afficher des statistiques descriptives pour toutes les colonnes
data_products.describe(include='all')
```

	id_prod	price	categ
count	3286	3286.000000	3286
unique	3286	NaN	3
top	0_1421	NaN	0
freq	1	NaN	2308
mean	NaN	21.863597	NaN
std	NaN	29.849786	NaN
min	NaN	0.620000	NaN
25%	NaN	6.990000	NaN
50%	NaN	13.075000	NaN
75%	NaN	22.990000	NaN
max	NaN	300.000000	NaN

➤ 3286 produit, contre 3267 dans les transactions, ce qui signifie qu'il y a des produits non vendus.

Afficher des statistiques descriptives pour toutes les colonnes
data_customers.describe(include='all')

Customers

- 8 621 clients inscrits
- Ajouter l'âge pour les analyses

```
# Afficher un résumé du DF
data customers.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 8621 entries, 0 to 8622
Data columns (total 3 columns):
               Non-Null Count Dtype
    Column
    client id 8621 non-null
                               object
               8621 non-null
                               object
    sex
    birth
                8621 non-null
                               int64
dtypes: int64(1), object(2)
memory usage: 269.4+ KB
```

```
client_id sex
                           birth
         8621 8621 8621.000000
count
unique
         8621
                           NaN
       c_4410
                           NaN
 freq
            1 4490
                           NaN
              NaN 1978.275606
mean
  std
          NaN
              NaN
                      16.917958
              NaN 1929.000000
  min
 25%
               NaN 1966.000000
 50%
          NaN NaN 1979.000000
 75%
              NaN 1992.000000
         NaN NaN 2004.000000
 max
```

```
# Calculer l'âge des clients en se basant sur l'année de naissance
data_customers['age'] = pd.to_datetime('today').year - data_customers['birth']

# Ajouter une catégorie par tranche d'âge de 5 ans avec une précision de 0
data_customers['age_categ'] = pd.cut(data_customers['age'], 15, precision=0)
```

Regroupement des données

```
# Regrouper toutes les tables
data = data_transactions.merge(data_products, on='id_prod', how='left').merge(data_customers, on='client_id', how='left')
```

Afficher des statistiques descriptives pour toutes les colonnes
data.describe(include='all', datetime_is_numeric=True)

	id_prod	date	session_id	client_id	year_month	day	price	categ	sex	birth	age	age_categ
count	679332	679332	679332	679332	679332	679332	679111.000000	679111	679332	679332.000000	679332.000000	679332
unique	3266	NaN	342315	8600	24	730	NaN	3	2	NaN	NaN	15
top	1_369	NaN	s_118668	c_1609	2021-09	2022-11-30	NaN	0	m	NaN	NaN	(39.0, 44.0]
freq	2252	NaN	14	25488	33326	1311	NaN	415459	340930	NaN	NaN	132679
mean	NaN	2022-03-03 15:13:19.307389696	NaN	NaN	NaN	NaN	17.454773	NaN	NaN	1977.811139	45.188861	NaN
min	NaN	2021-03-01 00:01:07.843138	NaN	NaN	NaN	NaN	0.620000	NaN	NaN	1929.000000	19.000000	NaN
25%	NaN	2021-09-08 09:14:25.055994368	NaN	NaN	NaN	NaN	8.870000	NaN	NaN	1970.000000	36.000000	NaN
50%	NaN	2022-03-03 07:50:20.817730560	NaN	NaN	NaN	NaN	13.990000	NaN	NaN	1980.000000	43.000000	NaN
75%	NaN	2022-08-30 23:57:08.555173888	NaN	NaN	NaN	NaN	18.990000	NaN	NaN	1987.000000	53.000000	NaN
max	NaN	2023-02-28 23:58:30.792755	NaN	NaN	NaN	NaN	300.000000	NaN	NaN	2004.000000	94.000000	NaN
std	NaN	NaN	NaN	NaN	NaN	NaN	18.328998	NaN	NaN	13.574553	13.574553	NaN

Valeur manquantes:

- Il y a 221 valeurs nulles pour les variables :
 - price
 - categ
- Un seul produit concerné '0_2245'
- Peu de ventes par rapport au volume de données

```
# Chercher les codes produits concernés
data.loc[data['price'].isnull(), 'id_prod'].unique()
array(['0_2245'], dtype=object)

# Vérifier la présence du produit dans la table products
```

data_products[data_products['id_prod'] == '0 2245']

id_prod price categ

```
# Impact des ventes sans prix
plt.figure(figsize=(9, 5))
sns.countplot(data=data[data['price'].isnull()], x='year_month', color='b')
plt.title("Répartition dans le temps des ventes sans prix")
plt.xlabel("Année - Mois")
plt.ylabel("Nombre de ventes")
plt.xticks(rotation=90)
plt.tight_layout()
plt.show()
```

Répartition dans le temps des ventes sans prix

16
14
12
10
8052702
4
20
2052-03
2052-04
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-05
2052-

- Absence des ventes de la categorie 1 sur octobre 2021:
- > On exclu ce mois dans l'analyse

```
# Visualiser La distribution des ventes par catégorie sur le mois d'octobre 2021
plt.figure()
plt.title("Distribution des ventes par catégorie dans le temps")
sns.histplot(data=data[data['year_month'] == '2021-10'], x='date', hue='categ')
plt.xlabel("Date")
plt.xlicks(rotation=90)
plt.ylabel("Nombre de produits vendus")
plt.show()
```



```
# Retirer 1 pour ne garder que les sessions manquantes.

# Ne pas tenir compte des écarts à 0 car cela correspond à la présence de plusieurs ventes sur une même session.

data.loc[data['session_var'] != 0, 'session_var'] = data.loc[data['session_var'] != 0, 'session_var'] - 1

# Visualiser Le nombre de sessions manquantes cumulées par mois.

plt.figure()
plt.title("Nombre de sessions manquantes par mois")
sns.barplot(data=data[data['session_var'] > 0], x='year_month', y='session_var', estimator=sum, ci=False)
plt.xlabel("Année - Mois")
plt.ylabel("Total de sessions manquantes")
plt.show()
```


Chiffre d'affaires

- 11,5 millions € sur 24 mois
- 6 millions € sur les 12 derniers mois

Analyse des ventes par produit

Un large choix

• 3 286 références

Répartition du nombre de références par catégorie

Par catégorie

- la catégorie 1 sur-performe avec 34% des ventes réalisées alors qu'elle ne représente que 22% des références
- C'est la catégorie 0 qui en pâtit avec 'seulement' 60% des ventes réalisées pour 70% des références présentes sur le site.

Par produit

- 20 % des produits réalisent 80% du chiffre d'affaires
- Indice de Gini: 0,74

TOP 10 / FLOP 10

Il y a 21 produits invendus sur un total de 3286, soit 0.64%.

10 les articles les plus vendus par catégorie

Analyse des ventes par client

Une clientèle jeune

• 1 clients sur 2 a moins de 45 ans

Par genre

Alors que les femmes sont légèrement plus nombreuse elle représentent tout juste 50 % des ventes.

Répartition des ventes par genre

Par âge

- 85 % du C.A est réalisé auprès des clients de moins de 60 ans
- Les moins de 30 ans représentent à eux seuls 25 % du C.A.

Répartiotion du chiffre d'affaires

- Indice de Gini: 0,45
- 20 % des clients réalisent 50 % du C.A.
- Les 4 plus gros clients réalisent presque 10 % du C.A.:

Lien entre le genre et la catégorie

- 2 variables qualitatives
- Test du khi 2
- P-value = 0,0046
- Les deux variables ne sont pas indépendantes

Normalité de la variable âge

Âge

- Test de Kolmogorov-Smirnov
- P-value: 0

➤ La distribution n'est pas normale

Lien entre l'âge et le montant total

- 2 variables quantitatives
- Test de Spearman (non paramétrique)
- P-value = 0,0
- Coefficient de correlation = -0,18
- Les deux variables ne sont pas indépendantes

Lien entre l'âge et la fréquence d'achat

- 2 variables quantitatives
- Test de Spearman (non paramétrique)
- P-value = 0,0
- Coefficient de correlation = 0,21
- Les deux variables ne sont pas indépendantes

Lien entre l'âge et le panier moyen

- 2 variables quantitatives
- Test de Spearman (non paramétrique)
- P-value = 0,0
- Coefficient de correlation = -0,69
- Les deux variables ne sont pas indépendantes

Lien entre l'âge et la catégorie

- 1 variable qualitative, 1 variable quantitative
- Test de Kruskal-Wallis
- P-value = 0,0
- Les deux variables ne sont pas indépendantes