CSC3005 Laboratory/Tutorial 4 Solution: Classification Analysis II

6. Navies Bayes Theorem

a) Let the

$$P\left(\frac{Female}{Undergradaute}\right) = P\left(\frac{F}{UG}\right) = 0.15$$

$$P\left(\frac{Female}{Gradaute}\right) = P\left(\frac{F}{G}\right) = 0.23$$

$$P(Graduate) = P(G) = 0.2$$

$$P(Undergraduate) = P(UG) = 0.8$$

Find
$$P\left(\frac{Graduate}{Female}\right) = P\left(\frac{G}{F}\right)$$
?

Using Bayes Theorem,

$$P\left(\frac{G}{F}\right) = \frac{P\left(\frac{F}{G}\right) \times P(G)}{P\left(\frac{F}{UG}\right) \times P(UG) + P\left(\frac{F}{G}\right) \times P(G)} = \frac{0.23 \times 0.2}{0.15 \times 0.8 + 0.23 \times 0.2} = 0.277$$

- b) As P(UG) = 0.8 > P(G) = 0.2, the randomly chosen university student is more likely to an undergraduate student for part (a)
- c) An undergraduate student is most likely to be chosen as

$$P\left(\frac{G}{F}\right) + P\left(\frac{UG}{F}\right) = 1$$

$$\to P\left(\frac{UG}{F}\right) = 1 - P\left(\frac{G}{F}\right) = 1 - 0.277 = 0.723$$

d) Find
$$P\left(\frac{Graduate}{Female, Hostel}\right) = P\left(\frac{G}{F, H}\right)$$
 and $P\left(\frac{undergraduate}{Female, Hostel}\right) = P\left(\frac{UG}{F, H}\right)$?

To find
$$P\left(\frac{G}{F.H}\right)$$
,

Using Baye theorem and assuming independent conditional probability

$$P\left(\frac{G}{F,H}\right) = \frac{P\left(\frac{F,H}{G}\right)P(G)}{P(FH)}$$
$$= \frac{P\left(\frac{F}{G}\right)P\left(\frac{H}{G}\right)P(G)}{P(FH)} = \frac{P\left(\frac{F}{G}\right)P\left(\frac{H}{G}\right)P(G)}{P(F)P(H)}$$

Similarly to find $P\left(\frac{UG}{F.H}\right)$

$$P\left(\frac{UG}{F,H}\right) = \frac{P\left(\frac{F,H}{UG}\right)P(UG)}{P(FH)}$$
$$= \frac{P\left(\frac{F}{UG}\right)P\left(\frac{H}{UG}\right)P(UG)}{P(FH)} = \frac{P\left(\frac{F}{UG}\right)P\left(\frac{H}{UG}\right)P(UG)}{P(F)P(H)}$$

Given that

$$P\left(\frac{H}{G}\right) = 0.3, P\left(\frac{H}{UG}\right) = 0.1$$

$$P(H) = P(H, UG, G) = P(H, UG) + P(H, G)$$

$$= P\left(\frac{H}{UG}\right)P(UG) + P\left(\frac{H}{G}\right)P(G)$$

$$= 0.1 \times 0.8 + 0.3 \times 0.2 = 0.14$$

$$P(F) = P(F, UG, G) = P(F, UG) + P(F, G)$$

$$= P\left(\frac{F}{UG}\right)P(UG) + P\left(\frac{F}{G}\right)P(G)$$

$$= 0.15 \times 0.8 + 0.23 \times 0.2 = 0.166$$

Therefore,

$$P\left(\frac{G}{F,H}\right) = \frac{P\left(\frac{F}{G}\right)P\left(\frac{H}{G}\right)P(G)}{P(F)P(H)} = \frac{0.23 \times 0.3 \times 0.2}{0.166 \times 0.14} = 0.59$$

$$P\left(\frac{UG}{F,H}\right) = \frac{P\left(\frac{F}{UG}\right)P\left(\frac{H}{UG}\right)P(UG)}{P(F)P(H)} = \frac{0.15 \times 0.1 \times 0.8}{0.166 \times 0.14} = 0.516$$

Since $P\left(\frac{G}{F,H}\right) > P\left(\frac{UG}{F,H}\right)$, the female student who stay in hostel is more likely a graduate student

7. K Nearest Neighbor Theory

	categorical	categorical	continuous	class
ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125k	No
2	No	Married	100k	No
3	No	Single	70k	No
4	Yes	Married	120k	No
5	No	Divorced	95k	Yes
6	No	Married	60k	No
7	Yes	Divorced	220k	No
8	No	Single	85k	Yes
9	No	Married	75k	No
10	No	Single	90k	Yes

The above training set can be firstly summarized for the Home owner and Marital Status

Home Owner		Class
Yes	No	
0	3	Yes
3	4	No

	Class		
Single	Married	Divorced	
2	0	1	Yes
2	4	1	No

$$d(Home\ Owner = Yes\ , Home\ Owner = No) = \left|\frac{0}{3} - \frac{3}{7}\right| + \left|\frac{3}{3} - \frac{4}{7}\right| = \frac{3}{7} + \frac{3}{7} = \frac{6}{7}$$

$$d(Single, Married) = \left|\frac{2}{4} - \frac{0}{4}\right| + \left|\frac{2}{4} - \frac{4}{4}\right| = \frac{2}{4} + \frac{2}{4} = 1$$

$$d(Single, Divorced) = \left|\frac{2}{4} - \frac{1}{2}\right| + \left|\frac{2}{4} - \frac{1}{2}\right| = \frac{0}{4} + \frac{0}{4} = 0$$

$$d(Married, Divorced) = \left|\frac{0}{4} - \frac{1}{2}\right| + \left|\frac{4}{4} - \frac{1}{2}\right| = \frac{1}{2} + \frac{1}{2} = 1$$

8. Artificial Neural Network

And Operation

x_1	x_2	у
0	0	0
0	1	0
1	0	0
1	1	1

Find the equation for the predicted y, \hat{y}

where

$$\hat{y} = w_1 x_1 + w_2 x_2 + w_0$$

From the above

the line $x_2 = -x_1 + 1.5$ can be transformed into

$$\widehat{y} = w_1 x_1 + w_2 x_2 + w_0 = -x_1 - x_2 + 1.5$$

where $w_1 = -1$, $w_2 = -1$ and $w_0 = 1.5$. But to match the truth table, so that any value of $\hat{y} > 0$ will be class 1 and $\hat{y} < 0$ will be class 0 with any combination of x_1 and x_2 , change the sign to

$$\widehat{y} = w_1 x_1 + w_2 x_2 + w_0 = x_1 + x_2 - 1.5$$

OR Operation

x_1	x_2	у
0	0	0
0	1	1
1	0	1
1	1	1

From the above

the line $x_2 = -x_1 + 0.5$ can be transformed into

$$\hat{y} = w_1 x_1 + w_2 x_2 + w_0 = -x_1 - x_2 + 0.5$$

where $w_1 = -1$, $w_2 = -1$ and $w_0 = 0.5$. But to match the truth table, so that any value of $\hat{y} > 0$ will be class 1 and $\hat{y} < 0$ will be class 0 with any combination of x_1 and x_2 , change the sign to

$$\hat{y} = w_1 x_1 + w_2 x_2 + w_0 = x_1 + x_2 - 0.5$$