

Alternative 신용평가 모델 개발을 위한 대출 연체 예측 알고리즘 개발

2017. 8. 8

한화생명 빅데이터팀

Contents

- 1. 배경 및 취지
- 2. Data Description
- 3. 평가 방식
- 4. [설명] 개인정보 비식별화
- 5. Q&A

배경 및 취지

국내 대출시장은 중금리수요 대비 공급이 부족하고, 은행과 비은행권 간의 금리 양극화가 존재해 왔음. 최근 들어 중신용자를 대상으로 한 시장확대 노력이 진행되고 있으나 기존의 신용평가 방식 활용만으로는 고객의 정확한 상환능력/의지를 파악하기에 한계가 있음

업권별 신용대출 평균금리

34.67% ※ 보험사 12%이나. 25.85% 대부분 보험고객으로 한정 21.60% 15.49% 5.99% 6~15%

전통적인 신용평가 방식의 한계

중금리 대출 경험 Data 부족

신용정보사 Data 및 자사 Data 활용

Rule 기반의 보수적인 신용평가

금융거래 실적 부족

금융 이외 기관과의 다양한 거래

정교화 된 가치평가 (금리 인하)

Copyright @ Hanwha Life. all rights reserved.

배경 및 취지

빅콘테스트 2017에서는 기존 활용하던 금융거래관련 Data(SCI평가정보) 이외에 보험(한화생명) 및 통신(SKT) 데이터 등 다양한 산업의 Data를 활용하여 **대출의 연체여부를** 예측하는 알고리즘을 개발함으로써 Alternative 신용평가 모델 개발의 가능성을 검증하고자 함

Alternative 신용평가 모델 가능성 검증

Data Description

♥ Data 특성 개요 (세부사항은 '첨부' 참조)

1. 실제 Data를 기반으로 한 현실세계의 Data

- 실제 기업내부 Data 기반의 데이터 Sample
- 여러 회사(한화생명/SKT/SCI)의 Data를 실제로 접해볼 수 있는 기회
- 단, 파생변수등 고려시 다수 업종에 대한 종합적인 이해가 필요함

2. 비식별화 된 Data

- 일부 Data의 가공, 삭제, 마스킹 등을 통하여 주로 범주화 된 형태의 Data
- 실제 Data 대비 정보 손실로 인한 Data-quality는 상당히 낮아진 상태

3. Imbalanced Data

- Sampling을 통해 일부 비율의 조정을 했으나 Target의 반응비율(연체)가 매우 낮음(4%대)
- Imbalanced Data에 Handling이 관건이 될 수 있음

♥ Data별 산출 시점

평가 방식

구분		예측 (Predicted)	
		정상고객 (Predicted)	연체고객 (Predicted)
실제 (Actual)	정상고객 (Actual)	True/Negative	False/Positive
	연체고객 (Actual)	False/Negative	True/Positve

■ Precision : 예측한 실제 연체자 수 / 예측한 연체자 전체 수

 \Rightarrow TP/(FP+TP)

■ Recall : 예측한 실제 연체자 수 / 실제 연체자 전체 수

 \Rightarrow TP/(FN+TP)

■ F-measure: Precision 과 Recall의 조화 평균

⇒ 2 ×(Precision×Recall) (Precision+Recall)

개인정보 비식별화

♥ 개인정보 비식별화의 개념

기업이 보유한 고객 개인정보의 가공, 삭제, 마스킹 처리 등을 통해 특정 개인을 식별할 수 없도록 하는 기술적인 조치로써, 비식별화 이후 다른 정보와의 결합을 통해 재식별이 불가능한 상태를 비식별화로 정의함

〈비식별화 예시〉

처리기법	Raw 데이터	비식별 데이터	
가명처리	홍길동, 35세, 서울거주, 한화생명재직	임꺽정, 35세, 서울거주, 한화증권재직	
총계처리	홍길동 35세, 임꺽정 40세, 황진이 45세	한화생명 나이 합 : 120세, 평균 : 40세	
데이터삭제	주민등록번호 : 750101-1234567	75년생, 남자	
데이터범주화	홍길동 35세	홍씨, 30~40세	
데이터마스킹	홍길동, 35세, 서울거주, 한화생명재직	홍00, 35세, 서울 거주, 00생명재직	

개인정보 비식별화

♥ 개인정보 비식별화 활용 방법

각 사별 식별정보 제거 후 교환·활용하는 방법과 전문기관을 통해 각 사별 식별화된 데이터 결합 후 비식별화 처리된 데이터를 활용하는 방법이 있음

① 식별자 제거 後 기업간 교화

- 식별정보 제거 후 회사별로 교환 가능
- 성/연령/지역/직업별 통계 등 분석가능

② 식별 데이터 결합 後 비식별 데이터 교환

- 개인식별정보(임시대체키) 수준의 데이터 융합 가능
- 양사 間 매칭되는 고객에 한해 분석 가능
- 융합 이후 식별정보 삭제로 인한 속성별 통계값 분석

개인정보 비식별화

♥ 개인정보 비식별화 활용 예시

동종 및 이종 산업간의 데이터 융합 및 분석을 통한 새로운 인사이트 발굴 및 상품/서비스 개발

Copyright ©

Q&A

