Abteilung Maschinelles Lernen Institut für Softwaretechnik und theoretische Informatik Fakultät IV, Technische Universität Berlin Prof. Dr. Klaus-Robert Müller Email: klaus-robert.mueller@tu-berlin.de

Exercise Sheet 2

Exercise 1: Maximum-Likelihood Estimation (7.5+7.5+7.5+7.5 P)

We consider the problem of estimating using the maximum-likelihood approach the parameters $\lambda, \eta > 0$ of the probability distribution:

$$p(x,y) = \lambda \eta e^{-\lambda x - \eta y}$$

supported on \mathbb{R}^2_+ . We consider a dataset $\mathcal{D} = ((x_1, y_1), \dots, (x_N, y_N))$ composed of N independent draws from this distribution.

- (a) Show that x and y are independent.
- (b) Derive a maximum likelihood estimator of the parameter λ based on \mathcal{D} .
- (c) Derive a maximum likelihood estimator of the parameter λ based on \mathcal{D} under the constraint $\eta = 1/\lambda$.
- (d) Derive a maximum likelihood estimator of the parameter λ based on \mathcal{D} under the constraint $\eta = 1 \lambda$.

Exercise 2: Linear Regression (15+5+5+5 P)

Consider the linear regression problem $y = \boldsymbol{x}^{\top}\boldsymbol{\beta} + \epsilon$, where $\boldsymbol{x} \in \mathbb{R}^d$ are the predictor variables, $y \in \mathbb{R}$ is the response variable, and $\boldsymbol{\beta} \in \mathbb{R}^d$ are the linear regression coefficients. We have again a dataset $\mathcal{D} = ((\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_N, y_N))$ of N independent draws of pairs (\boldsymbol{x}_i, y_i) . We summarize data into the vectors $\boldsymbol{y} = (y_1, \dots, y_N)^{\top} \in \mathbb{R}^N$ and the matrix $X = (\boldsymbol{x}_1, \dots, \boldsymbol{x}_N)^{\top} \in \mathbb{R}^{N \times d}$. The maximum-likelihood solution for $\boldsymbol{\beta}$ under the assumption of zero-mean Gaussian distributed noise (denoted by $\epsilon \sim \mathcal{N}(0, \sigma^2)$) is given by:

$$\hat{\boldsymbol{\beta}} = (X^{\top}X)^{-1}X^{\top}\boldsymbol{y} .$$

- (a) Show that $\hat{\boldsymbol{\beta}} \sim \mathcal{N}(\boldsymbol{\beta}, \sigma^2(X^\top X)^{-1})$; i.e., $\hat{\boldsymbol{\beta}}$ is Gaussian distributed with mean $\boldsymbol{\beta}$ and covariance matrix $\sigma^2(X^\top X)^{-1}$.
- (b) Discuss the benefit of knowing the full distribution of $\hat{\beta}$ rather than only the estimate itself. What additional statements about β can be made (hint: variable selection)? Assume that σ^2 is known and does not need to be estimated.
- (c) Assume we have measured a new datapoint, \boldsymbol{x}_* . We use our regression model to predict the response for \boldsymbol{x}_* : $\hat{y}_* = \boldsymbol{x}_*^{\top} \hat{\boldsymbol{\beta}}$. Derive the distribution of \hat{y}_* .
- (d) Discuss the benefit of also knowing that distribution in an application of your choice.

Exercise 3: Programming (40 P)

Download the programming files on ISIS and follow the instructions.