Grundzüge der Theoretischen Informatik 5. November 2021

Markus Bläser Universität des Saarlandes

Kapitel B: Äquivalenzrelationen

Relationen

- Seien A und B Mengen.
- $ightharpoonup R \subseteq A \times B$ heißt (binäre) Relation.
- $ightharpoonup (a,b) \in R$: "a und b stehen in Relation bzgl. R"
- ▶ Eine Relation $R \subseteq A \times A$ heißt *reflexiv* falls $(a, a) \in R$ für alle $a \in A$.
- ▶ R heißt symmetrisch falls aus $(a,b) \in R$ auch $(b,a) \in R$ folgt für alle $(a,b) \in A \times A$.
- ▶ R heißt *transitiv* falls aus $(a,b) \in R$ und $(b,c) \in R$ auch $(a,c) \in R$ folgt für alle $a,b,c \in A$.

Definition

Eine Relation heißt Äquivalenzrelation, falls sie reflexiv, symmetrisch und transitiv ist.

Äquivalenzklassen

- Sei R eine Äquivalenzrelation. Die Äquivalenzklasse $[a]_R$ von a ist $\{b \in A \mid (a,b) \in R\}$.
- ▶ Jedes Element einer Äquivalenzklasse heißt Repräsentant.

Lemma

Sei R eine Äquivalenzrelation. Für alle $a,b\in A$ gilt: aRb genau dann wenn $[a]_R=[b]_R$.

Lemma

Die Äquivalenzklassen einer Äquivalenzrelation R auf A bilden eine Partition von A, d.h. jedes $\alpha \in A$ ist in genau einer Klasse.

- Der Index einer Äquivalenzrelation R ist die Anzahl der Äquivalenzklassen von R und wird mit index(R) bezeichnet.
- ► Falls die Anzahl der Klassen unendlich ist, dann ist index(R) unendlich.

Lemma

Seien U und V Mengen, R eine Äquivalenzrelation auf U und sei f eine totale Funktion $V \to U$. Dann ist die Relation

$$S = \{(x,y) \mid (f(x),f(y)) \in R\}$$

eine Äquivalenzrelation auf V.

Notation: $S = f^{-1}(R)$

Lemma

Seien R_1, R_2, R_3, \ldots Äquivalenzrelationen auf U. Dann ist $\bigcap_{i \in \mathbb{N}} R_i$ auch eine Äquivalenzrelation.

Bever	
S ist refl	Beein:
Sei xeV	lelielia. Parr ist (x,x) &S, da
(f(x), f	lelielrig. Davr ist (x,x) &S, da (x)) &R, well R reflesein ist
5 ist 10	yore hosd.
Seion X,	yeV mit (x,y) es Da (x,y) es
viun	(F(x), F(y)) & R ist. Da R ogniebnish
	gilt (P(y), P(x)) eR and darit gilt,
	(y,x) e5
المن الا	transitiv : geranso.

Bereis Sei S:= Q Ri S ist reflexiv: Sei x & U lelichig. Es gilt (x,x) & S, veil relloseiv gides Ri vist. Dan gilt (x,x) & Ri fur alle i e N and dorit gilt (x,x) e ? R: S ist syrrelinsid. Seier X, y e U beliebig nut (x, y) = S = \(\text{R} \). Da gides Ri syrrelnisor ist, ist auch (yix) = Ri fur alle iel und darit (yix) = Pin Ri

Kapitel 5: Das Myhill-Nerode-Theorem

Nur wenige Dinge sind geistig so brutal wie das Pumping-Lemma-Spiel.

Die Automatenrelation

- Äquivalenzrelationen R auf Σ*.
- **P** R heißt <u>rechtsinvariant</u> (bzgl. Konkatenation), falls für alle $x,y\in \Sigma^*$,

$$xRy \implies xzRyz$$
 für alle $z \in \Sigma^*$.

Definition (5.1, Automatenrelation)

Sei $M=(Q,\Sigma,\delta,q_0,Q_{\rm acc})$ ein DEA, so dass δ total ist. Die Relation \equiv_M ist definiert auf Σ^* durch

$$x \equiv_{\mathsf{M}} y : \iff \delta^*(q_0, x) = \delta^*(q_0, y).$$

Lemma (5.2)

Für jeden DEA M ist \equiv_{M} eine Äquivalenzrelation, die rechtsinvariant ist und endlichen Index hat.

Beneis 5.2

1) = n ist evie Agriralere-Relation

Partit gilt

$$S^{+}(q_{0} \times z) = S^{+}(q_{1}z)$$
 $S^{+}(q_{0} \times z) = S^{+}(q_{1}z)$
 $S^{+}(q_{0} \times z) = S^{+}(q_{0} \times z)$
 $S^{+}(q_{0} \times z) = S^{+}(q_{0} \times$

Die Myhill-Nerode-Relation

Definition (5.4, Myhill-Nerode-Relation)

Sei $L\subseteq \Sigma^*.$ Die Myhill-Nerode-Relation \sim_L ist auf Σ^* definiert durch

$$x \sim_L y : \iff [f \text{ \"ur alle } z \in \Sigma^* : xz \in L \iff yz \in L].$$

Lemma (5.6)

Für jedes $L \subseteq \Sigma^*$ ist \sim_L eine rechtsinvariante Äquivalenzrelation.

Beveis 5.6. ~ ist danelations Sei ZE EX fest gerrällt. Definare de Relation Re vie Polyt x Pzy : e> xzel (=> yzel) Rz ist evic Agrivalerr-Relation x Sý : X EL & ý EL 5 ist Aquivalerenelation F: Z* > Z* R = F= (S) => Ler B5 Rz ist Ag. relation.

Beispiel alle Vorte vit geran mei 100 L = L(0*10*10*)2 M = MEL =) E /L 1 111 = M &L haber gleide abrall von 1er ⇒ EZ=Z J reber andr vorar 02 dei gleide dorrall vor ler Ao = Exl x heal A = 5 ---1 .. 3 2 -- 3 Az = 6 --->3 1en3 A 73 = { ...

Das Myhill-Nerode-Theorem

Theorem (5.8, Myhill-Nerode)

Sei L $\subseteq \Sigma^*$. Die folgenden drei Aussagen sind äquivalent:

- L ist regulär.
 L ist die Vereinigung einiger Äquivalenzklassen einer
- rechtsinvarianten Äquivalenzrelation mit endlichem Index.
 - 3. \sim_I hat endlichen Index

2) => 3) Sei R erie restriramente dq. rel auf Z* rit endl. Indese, so dans L die Vereinigung evigy Klasser von Rist. Vir reiger, dass Reire Verleisonung von to ist, d.h. YxiyeZ*: xRy => xrzy Davit gilt videoe (~) & videoe (R) < 00. Seion x,y &Z* vit (xRy) Da R rects vivariant ist, gilt Yze Z*: xzRyz xz e L & yzel

Da L die Verevigung erige Klusser von R ist, gilt, dans R-aquivalente varler ortreder beide vi L suid oda beide nicht vi 2 suid 3)=71) ~ L not crollicter biclese Myrill- Nevode-Autorat (Minimal automat) Q = alle Aquivalerr Planser von r $S([x], \sigma) = [x\sigma]$ S ist worldefinish, dern $x^{2}y = x^{2}y^{2}$ 90 = [c] ~ Qace = { Ex3nc | x e L }

So theilt 22, dans
$$L(M) = L$$
.

Industrian \Rightarrow $S^*(CC)_{n,l}(X) = CX)_{n,l}$
 $EXR \in Q_{acc} \implies X \in L$

$$\Rightarrow (X \in L \iff S^*(CC)_{n,l}(X) \in Q_{acc})$$

$$\Rightarrow L = L(M).$$

I

Der Myhill-Nerode-Automat

- $ightharpoonup Q = ext{die Menge der Äquivalenzklassen von } \sim_{ ext{L}},$
- ▶ $\delta([x]_{\sim_L}, \sigma) = [x\sigma]_{\sim_L}$ für alle $\sigma \in \Sigma$,
- $Q_{\rm acc} = \{ [x]_{\sim_L} \mid x \in L \}.$