Name: Elif Cemre Durgut

1D: 26493

Recitation Section - A18 Sign: Fligh

Math 201 - Lecture Participation Assignment 3

- 1) Definition 1: Let $A \in M_{n\times n}(\mathbb{R})$. Consider $T_A : \mathbb{R}^n \to \mathbb{R}^n$ given by $T_A(x) = Ax$.

 A nonzero vector $x \in \mathbb{R}^n$ is called an eigenvector of A (or T_A) if $Ax = \lambda x$.

 For some $\lambda \in \mathbb{R}$.

 The scalar λ is called the eigenvalue of A (or T_A) corresponding to the eigenvector x.
- 2) Definition 1: $P_A(\lambda) = \det(\lambda I_n A) = \lambda^n + C_{n-1} \cdot \lambda^{n-1} + \cdots + C_i \lambda + C_b \in \mathbb{R}[\lambda]$ is called the characteristic polynomial of A.

 The roots of $P_A(\lambda)$ are the eigenvalues of A.
- 3) <u>Definition 3</u>: The algebraic multiplicity of an eigenvalue λ , denoted by $AM(\lambda)$, is the multiplicity of λ as a root of the characteristic polynomial.
- 4) Definition 4: The geometric multiplicity of eigenvalue λ , denoted by GM(λ), is equal to the dimension of the eigenspace corresponding to λ , i.e. $GM(\lambda) = \dim (E_A(\lambda)) = \dim (\Lambda U | (\lambda I_n A)).$
- -> In the beginning, I could not understand the equation in the definition 1. However, when I saw the example in the lecture, it made sense to me.
- Definition 1 also makes sense but why do we call it "eigenvector"?

 OK, I learned from the lecture it means "special" in Dutch. But why do we use a Dutch term?