

Fig. 2.

Fig. 3

Fig 4

Fig. 6

Fig. 7

Fig. 10

Fig. //

Fig. 8

Fig. 12

Fig. 13

Fig. 2/

Fig. . 14

Fig. 19

Fig. 20

TABLE 1

Raman scattering weight cross-sections of different bands from proteins and lipids typically found in atherosclerotic aorta relative to that of 1 g BaSO,

Biological component	Vibrationa	Vibrational assignment								
	Ester, C=0	0	-ე -ე-		CH ₂ bend		C-C stretch	tch	Sterol ring stretch	g stretch
	Freq. (cm ⁻¹)	Cross- section	Freq. (cm ⁻¹)	Cross-section	Freq. (cm ⁻¹)	Cross-section	Freq. (cm ⁻¹)	Cross- section	Freq. (cm ⁻¹)	Cross- section
Collagen	Amide I	1.00	1	1	1450	0.72	1		1	
Elastin	Amide I	1.23	ï	i	1450	0.79	1	ı	1	1
Chondroitin sulfate A	Amide	0.18		ı	~ 1400	0.58	ı	ı	ı	1
Hyaluronic acid	Amide	0.58	1	1	~ 1400	0.79	i	ŧ	1	ı
Cholesterol	ı	ı	1671	0.77	. 1440	3.19	1	1	200	0.38
Cholesterol palmitate	1738	0.12	1667	0.36	1440	2.70	1130	0.35	002.	0.13
Cholesteryl oleate	1738	0.12	1665	1.14	1440	3.70	1140	0.17	700	0.12
Cholesteryl linoleate	1740	0.11	1665	1.40	1440	3.02	1146	0.17	200	0.12
Palmitic acid	1737	0.52	i	ı	1442	4.66	1130	0.76		
Tripalmitin	1745	0.41	ı	ı	1440	4.32	1130	99.0	ŧ	1

*Calculated for the entire band in the region 1300-1500 cm⁻¹ and probably contains contributions from other modes as well.

Estimated absolute Raman scattering molecular cross-sections of different bands from lipids typically found in atherosclerotic aorta. Units for the absolute cross-section values are 10-30 cm² (molecule sr)-1

TABLE 2

Ester, C=O -C=C- CH₂ bend Absolute Com- cross- parative section Absolute Com- cross- parative cross- parative cross- parative cross- parative section Absolute Com- cross- parative cross- parative cross- parative cross- parative section 1.37 Cholesteryl palmitate Com- cholesteryl oleate cross- parative cross- para	Com-	Com- parative	C-C stretch	_		
Absolute Com- Absolute Com- Absolute cross- parative cross- parative cross- section section con- con- con- con- con- con- con- co	Com- parative	Com- parative			Sterol ring stretch	stretch
ate 0.17 1 0.52 0.77 3.91 0.18 1.06 1.73 2.58 5.58 te 0.17 1.00 2.1 3.13 4.53	HOHOOS		Absolute cross- section	Com- parative ^b	Absolute cross- section	Com- parative
ate 0.17 1 0.52 0.77 3.91 0.18 1.06 1.73 2.58 5.58 te 0.17 1.00 2.1 3.13 4.53		1	-	1	0.34	1
0.18 1.06 1.73 2.58 5.58 te 0.17 1.00 2.1 3.13 4.53		1.37	0.50		0.19	0.55
te 0.17 1.00 2.1 3.13 4.53		1.96	0.26	0.52	0.18	0.53
		.1.59	0.26	0.52	0.18	0.53
2.77		.0.97	0.45	6.0	1	1
0.76 4.49 8.07	- 8.07	2.83	1.23	2.46	1	. 1

"The Raman cross-section value for SO₁" is 0.54×10⁻³⁰ cm² (molecule·sr)", corrected for the wavelength dependence [16]. ^bMolecular cross-sections compared with given band of cholesteryl palmitate. ^cMolecular cross-sections compared with given band of cholesterol.

TABLE 3

Weight percentages for human aorta calculated from the Raman spectra

		4	
Biological component	Normal	Atheromatous	Exposed calcification
Collagen	0.31	0.35	0.68
Elastin	0.61	0.18	-0.006
Total protein	0.93	0.53	0.67
Cholesterol .	0.003	0.14	0.088
Cholesteryl oleate	0.064	0.21	0.036
Cholesteryl linoleate	0.002	0.12	0.20
Total lipid*	0.068	0.47	0.33
Total cholesteryl ester	0.066	0.32	0.24

*Cholesterol + cholesteryl oleate + cholesteryl linoleate.

*Cholesteryl oleate + cholesteryl linoleate.