REPORT No. 217

PRELIMINARY WING MODEL TESTS IN THE VARIABLE DENSITY WIND TUNNEL OF THE NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

By MAX M. MUNK
National Advisory Committee
for Aeronautics

·	·	
	•	
ı		

REPORT No. 217

PRELIMINARY WING MODEL TESTS IN THE VARIABLE DENSITY WIND TUNNEL OF THE NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

By Max M. Munk

SUMMARY

The following report contains the results of a series of tests with three wing models. By changing the section of one of the models and painting the surface of another, the number of models tested was increased to five. The tests were made in order to obtain some general information on the air forces on wing sections at a high Reynolds Number and in particular to make sure that the Reynolds Number is really the important factor, and not other things like the roughness of the surface and the sharpness of the trailing edge.

The few tests described below seem to indicate that the air forces at a high Reynolds Number are not equivalent to respective air forces at a low Reynolds Number (as in an ordinary atmospheric wind tunnel). The drag appears smaller at a high Reynolds Number and the maximum lift is increased in some cases. The roughness of the surface and the sharpness of the trailing edge do not materially change the results, so that we feel confident that tests with systematic series of different wing sections will bring consistent results, important and highly useful for the designer.

ARRANGEMENT OF TESTS

The models used in the tests described in this report were made of aluminum and were smoothly cut to shape, without any polishing.

The chord was 5 in., the span 30 in., which latter is half the throat diameter of the wind tunnel. This ratio is so large that the influence of the tunnel walls begins to be perceptible. The actual aspect ratio of the wing models, which were square and not warped, was 6; but the influence of the walls theoretically changes the air forces as if the aspect ratio had been 6.85.

This report contains all forces and angles of attack as actually observed, making no allowance for the influence of the tunnel walls. We have inserted in the diagrams the parabola of the induced drag for an aspect ratio of 6.85. (References 1 and 2.)

Figure 1 shows diagrammatically how the models were attached to the balance ring. It is a combination of wire attachment and rigid

connection. A pair of vertical wires A are stretched from top to bottom of the balance ring. These wires are connected to the wing at one quarter of the chord behind the leading edge. Furthermore, one skid B, screwed to the wing, is hinged to a vertical bar C, which runs across the air stream and can be moved up and down. The bar is well shielded from the air stream by a tube in which it slides and its motion is used to change the angle of attack.

RESULTS

The results are given in the figures and tables, both of which contain the conditions of each test. There is also a table of ordinates of the three wing sections Nos. 97, 98, and 99. Moreover, the cambered section 98 with round rear edge was milled off to obtain a square end, and the cambered section No. 97 (with a sharp trailing edge), Figure 2, was covered with oil paint after the test had been finished, to study the influence of the surface roughness.

We have, therefore, 5 different models, each of which could be measured at-different density of the air. All in all, we have made 18 different runs, each time varying the angle of attack within a large range and determining the lift and drag. In some of the tests we have also determined the pitching moment with respect to a point on the chord and at one quarter of the chord behind the leading edge. The moment is considered positive if it makes the leading edge rise. This reference point is of special importance; the theory of thin wing section gives a pitching moment with respect to this point independent of the angle of attack. This makes it more convenient for practical use. (Reference 2.)

The coefficient of the component of the air force at right angles to the chord is

$$C_{\rm N} = C_{\rm L} \cos \alpha + C_{\rm D} \sin \alpha$$
.

Hence the center of pressure can be computed from the moment coefficient, the lift coefficient and the drag coefficient by means of the formula

$$C. P. = 25\% - \frac{C_{\text{M}}}{C_{\text{L}} \cos \alpha + C_{\text{D}} \sin \alpha} \cdot 100\%.$$

C. P. denotes here the distance in per cent of the chord from the leading edge. The moment coefficient is derived from the moment itself by dividing it by the dynamical pressure $V^{2}\frac{\rho}{2}$ and by the product of the wing area and the mean chord of the wing.

In the figures the lift coefficient $\frac{L}{Sq}$ is plotted upward. The induced drag coefficient for an aspect ratio of 6.85, the observed drag coefficient, and the moment coefficient $\frac{M}{cSq}$ are plotted against the lift coefficient to the right. The value of the angle of attack is inserted along the lift-drag curve.

Figures 3 to 8 refer to the strut section. The moment is expected to be zero and is nearly so in the figures. The small difference can be explained by taking into account the effect of the finite curvature at the leading edge. The reader will observe that at high pressure the wing shows a marked improvement; the minimum and the mean drag coefficient decreases, while the lift coefficient increases from 0.79 to 1.1. Figures 9 to 14 are corresponding tests with a cambered section of the same thickness. Here we observe the same decrease of the drag coefficient when the Reynolds Number increases, but the maximum lift keeps about constant. It just happens to be slightly larger at 16 atmospheres but resumes its old value at 20.9 atmospheres. The moment curve in Figure 12 coincides with the theoretical vertical straight line quite closely. Figure 14 gives the results for the same model not painted. The increase of roughness was easily felt by touching the model. The difference in the result is, however, of no important magnitude.

Fig. 3.—Test No. 55-1. Tank pressure I atmosphere. Dynamic pressure, $q=27.5~{\rm kg/m^2}$. Reynolds Number 175,000

Fig. 5.—Test No. 56–5. Tank pressure 4.05 atmospheres. Dynamic pressure $q=120~{\rm kg/m^2}$. Reynolds Number 719,000

Fig. 7.—Test No. 56-9. Tank pressure 8.3 atmospheres. Dynamic pressure q=256 kg/m². Reynolds Number 1,440,000

Fig. 4.—Test No. 58-3. Tank pressure 2.03 atmospheres. Dynamic pressure q=57.3 kg/m². Reynolds Number 352,000

Fig. 6.—Test No. 56-7. Tank pressure 6.0 atmospheres. Dynamic pressure $q=183~{\rm kg/m^2}$. Reynolds Number 1,070,000

Fig. 8.—Test No. 56–11. Tank pressure 16.24 atmospheres. Dynamic pressure q=543 kg/m². Reynolds Number 2,950,000

The remaining tests, Figures 15 to 19, were made on the cambered section with different trailing edges. The thick rounding of the rear edge of course increases the drag but does not otherwise change the character of the result. The same holds true for Figure 20 with the square trailing edge.

DISCUSSION OF RESULTS

The tests suggest the general rule that at a full Reynolds Number the cambered wing has a smaller drag, the symmetrical section both a smaller drag and a larger maximum lift than in the old type wind tunnel. The roughness of the surface and the sharpness of the trailing edge, if reasonably chosen, have no influence on the results. The results, as those in any wind tunnel should not be scrutinized too closely and not too literally interpreted. The new tunnel will show the direction and the way to the improvement of aircraft, but the results with a square wing alone in an airflow without fuselage and propeller can not give absolute information regarding the air forces on the wings of a real airplane. However, the results obtained give us the right to expect confidently consistent and qualitative results from the investigation of a systematic series of wing models now to be taken up, as likewise from later studies of wings with ailerons and of combinations of several parts of the airplane at full-size Reynolds Number.

TABLE I

SECTION NO. N. A. C. A. 97. MODEL NO. 9. SPAN 30 IN., 76.2 cm CHORD 5 IN., 12.7 cm AREA, 0.0968 m² ASPECT RATIO, 6.

FICTITIOUS ASPECT RATIO, 6.85. AVERAGE TEMPERATURE, 27° C. PRESSURE, 1 ATMOSPHERE. REYNOLDS NUMBER, 175,000.

TABLE III

SECTION NO. N. A. C. A. 97. MODEL NO. 9. SPAN 30 IN., 76.2 cm CHORD 5 IN., 12.7 cm AREA, 0.0988 m⁹ ASPECT RATIO, 6.

FICTITIOUS ASPECT RATIO, 6.85. AVERAGE TEMPERATURE, 35°C. AVERAGE PRESSURE, 8 AT-MOSPHERES. REYNOLDS NUMBER, 1,450,000.

Angle of attack, degree	m _s	Lift L kg	Lift coef. Cz	Drag coef. Co	Moment coef. Cu
-11.6 -9.2 -6.7 -4.1 -2.8 -1.7 -2.8 -1.4 -2.1 -3.2 5.6 7.9 10.5 14.7 15.0 18.4	27. 4 27. 5 27. 5	-0. 18 -0. 04 -0. 595 -1. 247 -1. 776 -1. 918 -2. 40 -2. 81 -3. 60 -3. 6	-0.0680151862674625516917738209041.051.321.361.371.361.381.34	0. 0358 . 0795 . 0242 . 0227 . 0272 . 0329 . 0440 . 0859 . 0801 . 1242 . 1385 . 1781 . 1791 . 2160 . 2340	-0.063106202156197179180200159127133117050048024037037024

	Angle of attack, degree	kg m³	Lift L kg	Lift coef. CL	Drag coof.
	-11.6 -46.7 -46.7 -1.8 -1.4 -1.3 -1.4 -1.3 -1.4 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5	246 245 246 246 246 246 246 246 246 246 246 246	-5.03 -5.03 -5.09 3.61 7.59 12.44 12.48 16.77 18.50 20.53 24.33 27.22 29.98 31.97 32.21 32.31 32.33 31.04	-0. 211 033 151 818 429 511 608 705 778 864 1. 03 1. 14 1. 26 1. 36 1. 36 1. 35 35 35	0. 0182 - 0187 - 0139 - 0173 - 0214 - 0224 - 0323 - 0395 - 0463 - 0740 - 0756 - 1250 - 1638 - 1869 - 2023 - 2276 - 2514 - 2800
<u></u>	21. 1 -22. 3	244 243	81. 07 30. 62	1. 32 1. 31	3000

TABLE II

SECTION NO. N. A. C. A. 97. MODEL NO. 9. SPAN 30 IN., 76.2 cm CHORD 5 IN., 12.7 cm AREA, 0.993 m¹ ASPECT RATIO, 6. FICTITIOUS ASPECT RATIO, 6.85. AVERAGE TEMPERATURE, 30°C. PRESSURE, 4.1 ATMOS-PHERES. REYNOLDS NUMBER, 740,000.

TABLE IV

SECTION NO. N. A. C. A. 97. MODEL NO. 9. SPAN 30 IN., 76.2 cm CHORD 5 IN., 12.7 cm AREA, 0.0968 m² ASPECT RATIO, 6.

FICTITIOUS ASPECT RATIO, 6.85. AVERAGE TEMPERATURE, 37° C. AVERAGE PRESSURE, 16 AT-MOSPHERES. REYNOLDS NUMBER, 2,810,000

·		·	i	THE PROPERTY OF			H-11-	للطفيات والمجاهدات	المنطا الدافق و		1101111111	-
Angle of attack, degree	kg m²	Lift L kg	Lift coef.	Drag coef.	+	Angle of attack, degree	m, g	Lift L kg	Lift coef. CL	Drag coef. CD	Moment about c/4 kg-cm	Moment coci. Cu
-11.6 -9.27 -4.28 -4.28 -1.3.6	122 122 122 122 122 122 122 122 122 122	-L 42 14 1.91 4.15 5.32 6.47 7.47 8.59 10.61 12.63 13.99 15.16 16.67 15.57 15.57 15.59 15.00 14.77	-0. 119 012 012 161 349 445 544 627 722 805 892 1. 06 1. 17 1. 27 1. 33 1. 33 1. 33 1. 31 29 1. 27 27	0. 0164 .0141 .0121 .0154 .0195 .0257 .0309 .0378 .0460 .0535 .0735 .0735 .1215 .1607 .1827 .2027 .2027 .2027 .2027 .2027 .2027 .2027 .2028 .2000		-1.02 -0.02 -0.02 -1.00	524 522 525 525 525 523 523 523 524 524 524 524 528 528 528 528 528 528 528 528 528 528	-11. 64 -2. 43 -6. 23 -16. 23 -10. 06 -24. 37 -33. 65 -33. 65 -34. 65 -35 -35 -35 -35 -35 -35 -35 -35 -35 -3	-0. 230 -0. 048 -123 -2415 -4515 -605 -7655 -1. 025 -1. 28 -1. 28 -1. 38 -1. 38	0. 0158 0. 0165 0102 0150 0186 0212 0239 0416 0525 0743 0966 1285 1428 1600 1908 1287 1428 1439	139. 0 -88. 9 -80. 9 -80. 6 -20. 8 -18. 6 -80. 6 -80. 6 -83. 7 -87. 8 -63. 8 -63. 8 -63. 8 -63. 8 -63. 6 -84. 6 -96. 4	0. 217 138 141 138 032 032 125 136 126 128 104 139 139 131 131 131 131 150

Fig. 9.—Test No. 58-1. Tank pressure 1.0 atmosphere. Dynamic pressure q≠27.5 kg/m². Reynolds Number 175,000

Fig. 10.—Test No. 58-2. Tank pressure 4.1 atmospheres. Dynamic pressure $q=122 \text{ kg/m}^2$. Reynolds Number 740,000

Fig. 11.—Test No. 58-3. Tank pressure 8 atmospheres. Dynamic pressure $q=246~{\rm kg/m^3}.~{\rm Reynolds~Number~1,430,000}$

Fig. 12.—Test No. 58-4. Tank pressure 16 atmospheres. Dynamic pressure $g=524~kg/m^2$. Reynolds Number 2,810,000

Fig. 13.—Test No. 58–5. Tank pressure 20.9 atmospheres. Dynamic pressure $q=705~{\rm kg/m^2}$. Reynolds Number 3,850,900

Fig. 14.—Test No. 61-8. Tank pressure 16.7 atmospheres. Dynamic pressure $q=567~{\rm kg/m^2}$. Reynolds Number 3,030,000. Airfoll painted

Fig. 15.—Test No. 57–1. Tank pressure 1.0 atmosphere. Dynamic pressure $q=27.8~{\rm kg/m^3}$. Reynolds Number 176,000

Fig. 16.—Test No. 57–2. Tank pressure 4.15 atmospheres. Dynamic pressure $q=123~{\rm kg/m^2}$. Reynolds Number 755,000

:Fro. 17.—Test No. 57-3. Tank pressure 8.2 atmospheres. Dynamic pressure $q=258 \text{ kg/m}^2$. Reynolds Number 1,490,000 Fro. 18.—Test No. 57-4. Tank pressure 16.44 atmospheres. Dynamic pressure $q=531 \text{ kg/m}^2$ Reynolds Number 2,880,000

. Fig. 19.—Test No 57-5. Tank pressure 20.4 atmospheres. Dynamic pressure $g=699~{\rm kg/m^3}$. Reynolds Number 3,780,000

Fig. 20.—Test No. 59–1. Tank pressure 16.2 atmospheres. Dynamic pressure $q=575~{\rm kg/m^2}$. Reynolds Number 2,470,000. Trailing edge milled off square

TABLE V

TABLE VIII

SECTION NO. N. A. C. A. 97. MODEL NO. 9. SPAN 30 IN., 76.2 cm CHORD 5 IN., 12.7 cm AREA, 0.0908 m ² ASPECT RATIO, 6.	FICTITIOUS ASPECT RATIO, 6.85. TEMPERATURE, 38° C. PRESSURE, 20.9 ATMOS- PHERES. REYNOLDS NUMBER, 985,000.

SECTION NO. N. A. C. A. 98.	٠
MODEL NO. 10.	
8PAN 30 IN., 76.2 cm	
CHORD 5 IN., 12.7 cm	•
AREA. 0.0908 m ³	
ASPECT RATIO, 6.	

FICTITIOU	S ABPECT RATIO
4.85. AVERAGE	TEMPERATURE
27° C.	PRESSURE, 4.15
ATMOSPI	IERES.
ATMOSPI	IERES. NUMBER, 155,000

Angle of attack, degree	kg m²	Lift L kg	Lift coef. CL	Drag coef.	
-11.6 -9.2 -6.7 -4.1 -2.8 -1.6 -1.4 -2.1 3.2 5.6 7.9 11.1 13.4 14.3 15.4 17.6	700 705 705 713 711 711 710 709 704 704 704 704 704 704 704 704	-14.1 -2.05 10.76 23.42 228.82 30.65 42.75 48.13 58.12 69.94 79.03 86.42 90.64 90.07 80.07 80.55 87.48	-0. 209 -0. 309 -158 -354 -419 -533 -623 -702 -784 -855 -1. 02 -1. 16 -1. 27 -1. 33 -1. 33 -1. 32 -1. 32 -1. 32 -1. 25	0. 0854 0134 0134 0188 0220 0275 0332 0386 0472 0556 0730 0971 1412 1672 1948 2107 2397	

Angle of attack, degree	kg m³	Lift L kg	Lift coef. CL	Drag coef. Cυ
10 2 1 4 4 5 1 5 6 6 6 7 1 6 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	122 124 125 125 122 122 122 124 124 125 125 125 125 125 124 125 125 125 124 125 125 124 125 125 125 124 125 125 125 126 127 128 129 129 129 129 129 129 129 129 129 129	-0.96 -0.23 1.49 3.77 4.75 6.02 7.06 8.21 10.09 12.29 15.29 16.10 16.09 16.09 16.99 18.79	-0.081 -019 -123 -813 -813 -896 -591 -690 -781 -837 -1.01 -1.51 -1.34 -1.33 -1.36 -1.36 -1.35 -1.35	0. 0212 0192 0185 0225 0225 0225 0235 0410 0464 0545 0747 0016 1188 1784 1781 1933 2126 2396 2019

TABLE VI

SECTION NO. N. A. C. A. 97 FICTITIOUS ASPECT RATIO, (PAINTED).

MODEL NO. 9.
SPAN 30 IN., 76.2 cm
CHORD 5 IN., 12.7 cm
AREA, 0.0008 m²
ASPECT RATIO, 6.

TABLE IX

SECTION NO. N. A. C. A. 98. FICTITIOUS ASPECT RATIO, MODEL NO. 10. 5 IN., 76.2 cm CHORD 5 IN., 12.7 cm AREA, 0.0068 m! ASPECT RATIO, 6. 32° C. AVERAGE PRESSURE, 8.2 ATMOSPHERES. REYNOLDS NUMBER, 1,490,000

Angle of	g	Lift	Lift	Drag	Moment	Moment	
attack,	Eg	L	coef.	coef.	about	coef.	
degree	m³	kg	CL	C _D	c/4	CM	
-11.0 -9.4 -7.2 -4.5 -1.9 -1.9 -1.80 5.4 10.3 13.2 14.4 16.6 10.8	565 568 568 568 568 568 568 569 569 569 565 57 564 564	-12. 36 -3. 25 6. 71 17. 98 22. 33 28. 71 32. 96 37. 77 41. 37 41. 57 51. 53 70. 51 72. 37 70. 23 66. 89 64. 52	-0. 226 059 . 1327 . 406 . 523 . 599 . 688 . 753 . 822 1. 01 1. 11 1. 29 1. 23 1. 18	0. 0181 0117 0117 0118 0196 0249 0367 0421 0518 0723 0723 1212 1599 1199 2186 2458	-96.8 -68.4 -94.5 -104.5 -92.4 -97.2 -84.1 -71.3 -76.7 -64.5 -70.7 -101.2	-0, 139 -098 -136 -144 -130 -134 -132 -139 -120 -124 -100 -109 -093 -025 -1146	

Angle of attack, degree	m, g	Lift <i>L</i> kg	Lift coef. CL	Drag coef. Co
-1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6	258 259 259 258 258 258 258 258 258 258 258 258 258	-0. 16 2. 91 7. 44 12. 63 16. 81 18. 78 20. 87 24. 85 24. 85 23. 41 33. 42 34. 47 34. 82 34. 64 34. 51	-0.063 -117 -297 -496 -586 -574 -752 -837 -995 -1.12 -1.25 -1.34 -1.37 -1.39 -1.40 -1.39	0. 0177 . 0168 . 0200 . 0285 . 0336 . 0401 . 0470 . 0552 . 0733 . 0930 . 1170 . 1831 . 1748 . 1038 . 2162 . 2440 . 2688 . 2041

TABLE VII

SECTION NO. N. A. C. A. 98
MODEL NO. 10.
SPAN 30 IN., 76.2 cm
CHORD 5 IN., 12.7 cm
AREA 0.0868 m³
ASPECT RATIO, 6.

FRESSURE, 1 ATMOS-PHERE.
PLAN OF THE CONTROL OF THE CON

FICTITIOUS AGE 25.6.25.
AVERAGE TEMPERATURE,
25.5° C.
PRESSURE, 1 ATMOSPHERE.
REYNOLDS NUMBER, 176,000.

REYNOLDS NUMBER, 176,000.

AREA, 0.0988 mi

AREA, 0.0988 mi

AREA, 0.0988 mi

AREA, 0.0988 mi

REYNOLDS NUMBER, 2,880,000.

Angle of attack,	g Mg m²	Lift L	Lift coef.	Drag coef.	ASPECT	RATIO	, 0.	RÉ	ENOLDS	NUMBE	R, 2,880,000		
-8.1 -6.8 -5.7	27. 8 27. 8	0.01 38 60	0. 037 . 141	0. 0632 0282 0278	Angle of attack, degree	g kg m²	Lift L kg	Lift coef. CL	Drag coef. Co	Moment about c/4 kg-cm	Moment ecel. CM		
-4.4 -2.6 -1.4 2.1 2.1 2.1 2.1 2.5 5.6 6.7 8.1 10.5 11.8 11.5 11.5 11.5 11.5 11.5 11.5 11	27. 8 27. 8 27. 8 27. 8 27. 8 28. 0 28. 1 28. 1 27. 6 27. 6 27. 6 27. 6 27. 6 27. 6	80 1.16 1.38 1.189 2.35 2.58 2.20 2.35 3.55 3.58 3.68 3.72 3.74 3.71 3.66 3.66	223 336 429 515 621 .704 .792 .869 .961 1.12 1.20 1.25 1.34 1.39 1.40 1.40 1.38 1.38	0290 0314 0347 0418 0463 0567 0630 0708 0799 0920 0995 11238 11396 11536 1710 1895 2083 2258 2502	-9.84 -9.84 -9.64	526 527 527 529 534 534 534 531 533 532 533 532 531 531 531 531 531 530	-3 95 6.84 14.734 25.100 25.10	-0.078 -130 -280 -280 -285 -575 -655 -744 -825 -990 1.27 1.37 1.40 1.40 1.37	0. 0157 0.168 0.168 0.028 0.0271 0.0325 0.0353 0.455 0.6534 0.7718 0.907 1.1168 1.1640 1.1640 1.1640 2.240 2.2340 2.2340 2.2372	-90.6 -163.0 -77.5 -91.5 -81.5 -81.7 -83.2 -81.7 -65.4 -78.6 -78.9 -79.5 -79.5 -79.5	-0. 140 251 135 140 125 132 133 128 130 126 112 100 012 112 102 112 123 123 123 123 123 123 123		

TABLE XI

SECTION NO. N. A. C. A. 98. MODEL NO. 10. 6.85. TEMPERATURE, 35° C. PRESSURE, 20.4 ATMOSAREA, 0.0068 m³ PHERES. REYNOLDS NUMBER, 3,780,000.

Angle of	m ³	Lift	Lift	Drag
attack,		L	coef.	coef.
degree		kg	C _L	C _D
-9.2 -8.1 -5.7 -1.6 -1.6 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8	697 693 693 697 695 695 695 695 696 703 703 703 704 696 701 699	-5. 41 1. 33 12. 04 24. 24 30. 44 37. 93 48. 25 48. 26 54. 10 91. 92 91. 10 91. 92 91. 59 91. 59 85. 63	-0.080 -020 -178 -359 -451 -563 -718 -802 -970 -1.15 -1.34 -1.35 -1.38 -1.38 -1.38 -1.38 -1.38	0. 0152 - 0137 - 0150 - 0200 - 0241 - 0374 - 0436 - 0516 - 0701 - 0896 - 1146 - 1726 - 1914 - 2100 - 2366 - 2666 - 2924

TABLE XIV

SECTION NO. N. A. C. A. 99.
MODEL NO. 11.
EPAN 30 IN., 76.2 cm
CHORD 5 IN., 12.7 cm
AREA, 0.0008 m¹
ASPECT RATIO, 6.

FICTITIOUS ASPECT RATIO,
6.85.
AVERAGE TEMPERATURE,
2.7° C.
AVERAGE PRESSURE, 2.03
ATMOSPHERES. 0.85.
AVERAGE TEMPERATURE,
Z°C.
AVERAGE PRESSURE, 2.03
ATMOSPHERES.
REYNOLDS NUMBER, 352,000.

Angle of attack, degree	mi Mi	Lift L kg	Lift ccef. CL	Drag ocef. Co	Moment ccef. C#
-0.4 .7 2.0 4.2 5.5 6.6 7.7 11.5 13.2 16.9	56. 9 56. 9 57. 5 57. 3 57. 3 57. 3 57. 3 57. 3 57. 3 57. 2 57. 2	-0.16 -70 1.264 2.250 2.255 2.351 3.353 3.253 3.253 3.253	-0. 630 .050 .127 .217 .215 .575 .583 .583 .752 .695 .587 .589 .589	0.0117 .0130 .0137 .0149 .0139 .0221 .0264 .0333 .0439 .0604 .1572 .2000 .2278 .2430	0.0255 .0001 .0070 .0042 .0195 .0150 .0150 .0150 .0150 .0260 .0260 .0260 .0600

TABLE XII

SECTION NO. N. A. C. A. 98
(MILLED T. E.).
MODEL NO. 10.
SPAN 30 IN., 76.2 cm
CHORD 4.95 IN., 12.57 cm
AREA, 0.0953 m¹
ASPECT RATIO, 6.05.

FIGTITIOUS ASPECT RATIO,
6.90.
MODEL NO. 11.
SPAN 30 IN., 76.2 cm
CHORD 5 IN., 12.7 cm
AREA, 0.0953 m¹
AREA, 0.0953 m¹
ASPECT RATIO, 6.05.

TABLE XV

Lift

TABLE XVI

g kg m³

Angle of attack, degree

-0.4

8.0 4.4 6.6 7.7 9.4 11.5 15.2 16.8 19.0

FICTITIOUS ASPECT RATIO, 6.85.
AVERAGE TEMPERATURE,
30.5° C.
AVERAGE PRESSURE, 4.05
ATMOSPHERES.
REYNOLDS NUMBER, 719,000

Drag coef. C_B

Angle of attack, degree	kg m'	Lift L kg	Lift coef. Cz	Drag coef. Co	Moment about c/4 kg-cm	Moment coef. Cx
-11.7 -9.0 -6.4 -3.0 -1.48 3.0 5.6 7.7 10.2 14.7 16.8 19.4 20.7	577 578 578 578 578 576 576 577 577 577 579 579 579 579 577 577 577	-14.39 -4.25 -6.04 -7.10	-0.260 -077 -107 -107 -108 -404 -501 -594 -632 -632 -103 -1.17 -1.42 -1.42 -1.42 -1.42 -1.42 -1.43 -1.36	0. 0211 0. 0184 0142 0180 0217 0227 0321 0331 0455 0543 0735 0931 1192 2203 2454 2203 2454 2203 2456 298	-101.0 -104.0 -102.0 -102.0 -99.1 -97.8 -99.6 -110.0 -90.5 -95.7 -95.7 -94.2 -84.2 -90.6 -82.1 -42.3 -90.6 -88.1 -95.2	-0. 146 149 147 148 143 144 159 130 138 131 119 119 110 130 121 119 118 062 130 130 130 130 130 130 130

TABLE XIII

SECTION NO. N. A. C. A. 99.
MODEL NO. 11.
SPAN 30 IN., 76,2 cm
CHORD 5 IN., 12.7 cm
AREA, 0.0568 m⁴
ASPECT RATIO, 6.

FICTITIOUS ASPECT RATIO,
6.85.
AVERAGE TEMPERATURE.
25° C
PRESSURE, I ATMOSPHERE.
REYNOLDS NUMBER, 175,000.

SECTION NO. N. A. C. A MODEL NO. 11. SPAN 30 IN., 76.2 cm CHORD 5 IN., 12.7 cm AREA, 0.0963 m ² ASPECT RATIO, 6.
ASPECT RATIO, 6.

-0.48	0.040	0.0134
.54	-046	.0132
1.58	-136	.0150
2.46	.211	.0171
3.46	.297	.0194
4.47	. 382	. 0232
5.38	. 460	.0277
6. 36	. 545	.0334
7. 78	. 666	.0437
9. 32	. 805	.0590
9. 52 9. 52 8. 24	.817 .702	.1125 .1986
7. 84	. 651	. 2374
7. 22	- 625	. 2645

Lift

coef.

FICTITIOUS ASPECT RATIO. 6.85.
AVERAGE TEMPERATURE,
31° C.
AVERAGE PRESSURE, 6
ATMOSPHERES.
REYNOLDS NUMBER, 1,070,-

Angle of	g	Lift	Lift	Drag
attack,	kg	L	coef.	coef.
degree	m²	kg	Cr	C _D
-0.4 1.9 3.0 4.2 5.4 6.6 7.7 9.4 11.5 13.6 15.2 16.8	27.6 27.6 27.5 27.5 27.6 27.6 27.6 27.6 27.4 27.4 27.4	-0.08 -24 -43 -56 -572 -92 -144 -1.62 -1.72 -1.57 -1.50 -1.48	-0. 032 -089 -161 -209 -273 -346 -427 -539 -612 -722 -645 -591 -585 -587	0. 0186 - 0173 - 0186 - 0297 - 0296 - 0290 - 0341 - 0403 -

Angle of attack, degree	kg mi	Lift L kg	Lift coef. CL	Drag coef. C _D
-0.4 .7 1.9 3.0 4.2 5.4 7.7 2.1 11.5 13.6 15.6 16.8	183 183 183 183 183 183 183 183 183 183	-0.66 .70 2.22 3.61 5.21 7.04 8.18 9.56 11.92 16.26 16.42 16.14	-0.037 -040 -126 -204 -295 -396 -462 -541 -672 -805 -928 1.03 -906	0. 0124 - 0129 - 0140 - 0156 - 0188 - 0226 - 0270 - 0413 - 0558 - 0705 - 0705 - 0705 - 0705 - 0705 - 0705 - 0705 - 0705 - 0705

TABLE XVII

TABLE XIX

SECTION NO. N. A. C. A. 99.

MODEL NO. 11.

SPAN 30 IN., 76.2 om
CHORD 5 IN., 12.7 om
AREA, 0.0968 m¹
ASPECT RATIO, 6.

FICTITIOUS ASPECT RATIO,
6.85.

AVERAGE TEMPERATURE,
88° C.

VERAGE PRESSURE, 8.3 ATMOSPHERES. 6.85.
AVERAGE TEMPERATURE,
88° C.
AVERAGE PRESSURE, 8.3 ATMOSPHERES.
REYNOLDS NUMBER, 1,440,000.

TABLE OF ORDINATES OF AIRFOIL SECTIONS. NOS. 97, 98 AND 99

Angle of attack, degree	m, gg	Lift L kg	List coef. CL	Drag coef. Co
-0.4 1.9 3.0 4.2 5.4 6.6 7.7 9.4 11.5 15.8 16.8 19.0 20.7	257 256 256 257 258 257 257 255 255 257 258 257 258 257 258 257 258 257 258	-1. 18 8. 25 5. 20 7. 55 9. 59 11. 86 16. 35 20. 36 28. 50 28. 50 27. 28	0.047131209302385473547562822952 1.06 1.15 1.15 1.09	0. 0129 . 0135 . 0157 . 0193 . 0222 . 0266 . 0320 . 0409 . 0565 . 0723 . 0889 . 1078 . 1595 . 2310

Station	Airfoil No. 97		Airfoil No. 98		Airfoil No. 99	
Per cent of chord	Upper	Lower	Upper	Lower	Upper	Lower
0	% of 4 17 7, 93 9, 50 10, 80 11, 80 14, 82 15, 15 15, 15 15, 10 13, 94 13, 20 6, 87 3, 68 1, 87 3, 13	chord 4.17 73 33 .10 .03 .17 .47 .88 1.73 2.50 2.86 2.86 2.30 1.33 .67 .00		chord 4.00 730 10 00 00 126 1.07 2.06 1.07 2.07 2.287 3.12 2.47 1.33 2.47 1.35 90	0.00 8.430 8.330 8.656 8.363 8.333 8.556 8.363 8.333 8 8 8 8	chord -0.00 -3.50 -4.33 -4.90 -5.33 -6.03 -6.43 -6.65 -6.99 -6.363 -4.63 -1.50 -2.33 -1.2300

TABLE XVIII

SECTION NO. N. A. C. A. 99. MODEL NO. 11. SPAN 30 IN., 76,2 cm CHORD 5 IN., 12.7 cm AREA, 0.0968 m³ ASPECT RATIO, 6.

FIGTITIOUS ASPECT RATIO, 6.85.

AVERAGE TEMPERATURE, 40° C.

AVERAGE PRESSURE, 16.24

ATMOSPHERES, REYNOLDS NUMBER, 2,950,000.

	1 1					
!	Angle of attack degree	E R	Liit L kg	Lift coef. CL	Drag coef. CD	Moment coef, Cu
	-0.47 1.90 4.46 6.77 9.15 18.62 16.88 19.07	544 544 544 544 545 546 546 548 543 540 540 540 540 557	-2. 21 6. 77 11. 34 20. 482 28. 83 85. 619 49. 812 55. 83 45. 55 45. 68	-0.042 .041 .129 .218 .309 .359 .471 .555 .678 .950 1.06 1.02 .928 .868	0.0109 .0106 .0117 .0138 .0165 .0201 .0246 .0292 .0390 .0692 .0702 .9845 .148 .225 .230	0.00280034001200290030010000800100012001200990029007801150

REFERENCES

- 1. Max M. Munk: The Modification of Wind Tunnel Results by the Wind Tunnel Dimensions. Journal of Franklin Institute, August, 1923.
- 2. Max M. Munk: Elements of the Wing Section Theory and of the Wing Theory. N. A. C. A. Technical Report No. 191. 1924.
- 3. Max M. Munk: The Determination of the Angles of Attack of Zero Lift and Zero Moment, Based on Munk's Integrals. N. A. C. A. Technical Note No. 122. 1923.

APPENDIX

COMPARISON WITH THEORY

By George J. Higgins

In this appendix, the aerodynamic properties of the N. A. C. A. airfoil No. 97 are computed as far as the present theory allows. This comprises the computation of the lift and the moment characteristics at any angle of attack.

The lift characteristics.—The angle of attack, at which the lift force is zero, is first computed. The method employed is obtained from the N. A. C. A. Technical Note No. 122 (Reference 3). The five-point method is used because of its greater accuracy.

$$-\alpha_{L_0} = F_1 \frac{\xi_1}{c} + F_2 \frac{\xi_2}{c} + \cdots + F_n \frac{\xi_n}{c} + \cdots$$

in degrees where,

 α_{L_0} = angle of attack at which the lift is zero.

 ξ =ordinate of the mean camber line at a point (x) on the chord line, minus the ordinate of the trailing edge.

c = the chord of the airfoil.

$$\alpha_{L_0} = \Sigma \xi f = f_1 \xi_1 + f_2 \xi_2 + f_3 \xi_3 + f_4 \xi_4 + f_5 \xi_5 \quad \text{(Reference 3)}$$

$$x_1 = 99.458\%c$$
 $f_1 = 1252.24$
 $\xi_1 = 0.13\%c$
 $x_2 = 87.426\%c$
 $f_2 = 109.048$
 $\xi_2 = 2.91\%c$
 $x_8 = 50.000\%c$
 $f_8 = 32.596$
 $\xi_8 = 8.16\%c$
 $x_4 = 12.574\%c$
 $f_4 = 15.684$
 $\xi_4 = 6.31\%c$
 $x_5 = 0.542\%c$
 $f_5 = 5.978$
 $\xi_5 = 3.71\%c$

$$-\alpha_{L_0} = \sum f \xi = 1.63 + 3.17 + 2.66 + 0.989 + 0.222$$

 $\alpha_{L_0} = -8.671^{\circ} \sim 8^{\circ} 40'$

This value agrees well with the observed value. A graphical determination is also made by the two methods shown in the accompanying diagram (Fig. 21).

The angles determined there are:

One-point method, $\alpha_{L_0} = -9^{\circ} 15'$

Two-point method, $\alpha_{lo} = -8^{\circ} 50'$

The lift force and the lift coefficient for any other angle of attack are obtained from the following expressions (Reference 2):

Fig. 21.—Angles of zero lift and zero moment $\left(\text{around } \frac{\text{chord}}{2} \right)$. Airfoll N. A. C. A. No. 97. Found by computation

$$L = 2\pi\alpha \text{ (radians) } \frac{\rho}{2} V^2 S \frac{1}{1 + \frac{2S}{b^2}}$$

$$= \frac{2\pi\alpha \text{ (degrees) } qS}{57.3 \left[1 + \frac{2S}{b^2}\right]}.$$

$$C_L = \frac{L}{qS} = \frac{2\pi\alpha \text{ (degrees)}}{57.3 \left[1 + \frac{2S}{b^2}\right]}$$

where

L =lift force

= angle of attack

= density

V = velocity

S = surface area

⇒span

q = dynamic pressure

For the N. A. C. A. No. 97 airfoil,

 $S = 0.0968 \text{ m}^3$

b = 0.762 m

$$C_{L} = \frac{2\pi\alpha \text{ (degrees)}}{57.3 \left[1 + \frac{2 \times .0968}{(.762)^{2}}\right]}$$

 $=.0822 \alpha \text{ (degrees)}$

$$\frac{dC_L}{d\alpha \text{ (degrees)}} = .0822$$

The slope of the observed lift coefficient curve has a magnitude that is about 86 per cent of that computed.

$$\frac{dC_{L}}{d\alpha}$$
 (observed) = .0710

The moment characteristics.—The angle of attack, at which the moment about the 50 per cent point of the chord is zero, is computed first in determining the moment. The method is also obtained from the N. A. C. A. Technical Note No. 122 (Reference 3).

$$\alpha_{\mu_0} = 62.634 \left[\frac{\xi_1}{c} - \frac{\xi_2}{c} \right]$$

where,

 α_{M_0} = angle of attack, at which the moment about the 50 per cent point of the chord is zero.

 ξ = ordinate of the mean camber line at a point (x) on the chord, minus the ordinate of the trailing edge.

$$x_1 = 95.74\% c.$$
 $\xi_1 = 1.03\% c.$ $x_2 = 4.26\% c.$ $\xi_2 = 4.67\% c.$ $\alpha_{M_0} = 62.634 (1.03 - 4.67)$ $= -2.28^{\circ} \sim -2^{\circ} 17'$

(Fig. 21), gives:

$$\alpha_{\text{Mo}} = -2^{\circ} 20'$$

The graphical construc-

The effective angle, corresponding to the lift at the angle for zero moment, is next determined from the values of the angles for zero lift and zero moment (Fig. 22).

 α_{L_0} = angle of attack for zero lift = 8° 40' α_{M_0} = angle of attack for zero moment = 2° 17′ α_s = effective angle. .

$$\alpha_{x} = \alpha_{L_0} - \alpha_{M_0}$$

= 8° 40′ - 2° 17′
= 6° 13′ ~ 6.216°

When the airfoil is in the position such that the moment about the 50 per cent point of the chord is zero, the resultant force passes through this point. Neglecting the moment due to the drag force, which is very small, the moment about any other point on the chord can be computed by obtaining the product of the lift force and its lever arm about that point. By this method, the magnitude of the moment about a point at 25 per cent of the chord is determined. This moment is theoretically constant for all angles of attack and values of lift. When plotted against the lift, the curve will be a straight line parallel to the lift axis.

$$M = L \times l = \frac{2\pi\alpha_{s}qS}{57.3 l + \frac{2S}{b^{2}}} \times \frac{-c}{4}$$

where:

M=moment about 25 per cent of chord

L = lift

 $l = lever arm = -\frac{c}{4}$

c =chord = 12.7 cm

 $\alpha_z = \text{effective angle of attack} = 6.216^{\circ}$

q = dynamic pressure = 530 kg/m²

 \bar{S} = surface area = .0968 m²

b = span = .762 m

$$M = \frac{2\pi \times 6.216 \times 530 \times .0968 \times (-12.7) \times .994}{57.3 \left[1 + \frac{2 \times .0968}{(.762)^2}\right] \times 4} = -83.0 \text{ kg cm}$$

$$C_{\rm M} = \frac{M}{qSc} = \frac{-83.0}{530 \times .0968 \times 12.7} = -0.1275$$

Fig. 23.—Test 60-7. Tank pressure 15.9 atmospheres. Dynamic pressure $q=580~{\rm kg/m^2}$. Reynolds Number 2,920,000. Airfoil with two skids

The computed and the observed values of moment coefficient are shown in the chart of observed values for the N. A. C. A. No. 97 airfoil, Figure 23, for purposes of comparison.