# Sistemas Operacionais

Prof. Marcio Nunes de Miranda

marcionmiranda@ufrrj.br

Sala até 3/3/2022:

https://conferenciaweb.rnp.br/webconf/marcio-nunes-de-miranda

#### Salas a partir de 7/3/2022:

Terças: PAT 211

Quintas: PAT lab 122

# Avaliações

#### 2 Provas

- ▶ 1ª prova (P1): 22 de março terça-feira
- > 2<sup>a</sup> prova (P2): 26 de abril terça-feira

Optativa: 03/maio – terça-feira

1 Seminário (S) - até 3 alunos: a marcar

# Composição da Média Final

Média Final = 
$$((2*P1) + (2*P2) + S) / 5$$
;

$$P1 = P1$$
 ou  $OPT$ 

$$P2 = P2$$
 ou  $OPT$ 

Segunda chamada: conforme as normas da UFRRJ

# Bibliografia

#### **Livro texto:**

Sistemas Operacionais Modernos, A. Tanenbaum, Herbert Bos, 4<sup>a</sup> edição, Pearson Education.

#### **Livro Complementar**:

Fundamentos de Sistemas Operacionais, <u>Abraham</u> Silberschatz, <u>Peter B. Galvin</u>, <u>Greg Gagne</u>, LTC.

# O que é um Sistema Operacional

Camada de software para gerenciar os principais componentes de um computador e fornecer aos programas do usuário um modelo de computador mais simples

#### Principais componentes de um computador:

- Um ou mais processadores.
- Discos.
- Diversos dispositivos de entrada e saída.

- Memória principal.
- Impressoras.
- Interfaces de rede.

#### Um computador pode operar:

- Modo usuário
- Modo núcleo
- O SO opera em modo núcleo (ou modo supervisor).
  - ⇒ acesso completo a todo o hardware e pode executar qualquer instrução que a máquina for capaz de executar.

- O resto do software opera em *modo usuário* 
  - ⇒ apenas um subconjunto das instruções da máquina está disponível

# Visão geral simplificada dos principais componentes



# Visão mais detalhada dos principais componentes:

| Sistema<br>bancário  | Reserva de<br>passagens<br>aéreas | Visualizador<br>Web          | Programas de aplicação  |
|----------------------|-----------------------------------|------------------------------|-------------------------|
| Compiladores         | Editores                          | Interpretador<br>de comandos | Programas<br>do sistema |
| Sistema operacional  |                                   |                              | do sistema              |
| Linguagem de máquina |                                   |                              |                         |
| Microarquitetura     |                                   |                              | Hardware                |
| Dispositivos físicos |                                   |                              |                         |

#### Características

- Enorme, complexo e tem vida longa. O código-fonte de um sistema operacional como Linux ou Windows tem cerca de cinco milhões (ou mais) de linhas.
- Realizam, essencialmente, duas funções: fornecer a programas do usuário e aplicativos um conjunto de recursos "abstratos".

Usuário não se preocupa:

- ⇒ com os recursos de hardware
- ⇒ em como gerenciar esses recursos de hardware.

# Sistema operacional como uma máquina virtual

- Oculta os detalhes complicados que têm que ser
   executados
- Apresenta ao
  usuário uma
  máquina virtual,
  mais fácil de usar



# Visões possíveis

#### Visão Top-down:

SO fornecendo abstrações para programas aplicativos é uma visão top-down (abstração de cima para baixo).

#### Visão Bottom-up:

SO está ali para gerenciar todas as partes de um sistema complexo.

## Sistema operacional como gerenciador de recursos

- Permite que múltiplos programas sejam executados "ao mesmo tempo"
- Gerencia e proteje a memória, os dispositivos de entrada e saída e outros recursos
- O gerenciamento de recursos inclui a multiplexação (compartilhamento) de recursos de duas maneiras diferentes: no tempo e no espaço
- Quando um recurso é multiplexado no tempo, diferentes programas ou usuários se revezam, usando-o em instantes diferentes.
- Quando é multiplexado no espaço, em vez dos clientes se revezarem, cada um tem direito a uma parte do recurso (parte da memória ou do disco, por exemplo)

# História dos sistemas operacionais

- A primeira geração (1945-1955): válvulas
- A segunda geração (1955-1965): transistores e sistemas em lote (batch)
- A terceira geração (1965-1980): Cls e multiprogramação
- A quarta geração (1980-presente): computadores pessoais
- A quinta geração (1990-presente): computadores móveis

#### Sistemas em Lote (batch)



Figura 1.4 Estrutura de uma tarefa típica FMS.

## Terceira geração (CIs)

- Popularizou o uso da Multiprogramação
- Memória particionada em tarefas
  - *⇒ melhor aproveitamento da CPU*
- Surgimento do *Timesharing* (compartilhamento de tempo)
  - Uso de terminais online
  - CPU é alocada ciclicamente às tarefas

## Quarta geração (PCs)

- Anos 70: Intel 8080, Zilog Z80
- Anos 80 IBM PC
   ⇒ 286, 386, 486, DOS, MS-DOS
- A partir dos anos 90: Windows (95, 98, NT, Me, XP) Pentium 1, 2, 3, 4, Core 2 Duo, I3, I5, I7 e outros (AMD, por ex.)

Linux - FreeBSD, Gnome, KDE

Anos 2000:

Sistemas Operacionais de redes e sistemas distribuídos

# Quarta geração (PCs)

#### Sistemas Operacionais de redes:

- Controlador de rede
- Sw para sessões remotas e acesso remoto a arquivos

#### Sistemas Operacionais distribuídos:

- Parece um sistema monoprocessador aos olhos do usuário
- Composto de múltiplos processadores
- Usuário não sabe onde programas são executados nem onde arquivos são localizados (SO trata automaticamente)

# Quinta geração

- Primeiro SO para smartphones: Symbian
- 2007 iOS (Apple)
- 2008 Android (Google) baseado no Linux Vantagem de ser aberto
- 2011 Windows Phone (usado pela Nokia)

# Um sistema operacional está intimamente ligado ao hardware do computador no qual ele é executado



Alguns dos componentes de um computador pessoal simples.

- Componente mais importante: CPU.
- Ciclo básico de uma CPU: busca instrução da memória, decodifica (tipo e operandos), executa, .... busca, decodifica, executa



Um pipeline com três estágios

Uma CPU superescalar

#### Chips multitarefa (multithread) e multinúcleo

#### Chips multithread e multinúcleo:

- propriedade multithreading ou hyperthreading introduzida pela Intel ⇒ permite à CPU chavear entre duas threads em poucos ns (p/ o SO é como se fossem duas CPUs)
- -- multinúcleo



**Figura 1.8** (a) Chip quad-core com uma cache L2 compartilhada. (b) Um chip quad-core com caches L2 separadas.

#### Questões ao lidar com cache

- Quando colocar um novo item em uma cache.
- Em qual linha de cache colocar um novo item.
- Que item remover do cache quando for preciso espaço.
- Em que lugar da memória principal colocar um item desalojado recentemente da cache.

#### Memória:

- segundo principal componente
- deve ser rápida ao extremo (mais rápida do que executar uma instrução) ⇒ CPU não pode ser atrasada pela memória



#### Discos:

um disco consiste em um ou mais pratos metálicos que rodam a 5.400, 7.200, 10.800 RPM, ou mais. Um braço mecânico move-se sobre esses pratos a partir da lateral, como o braço de tocadiscos de um velho fonógrafo de 33 RPM para tocar discos de vinil.



Estrutura de uma unidade de disco.

**Barramentos:** processadores e memórias cada vez mais rápidos

- ⇒ incapacidade de um único barramento tratar todo o tráfego
- ⇒ Barramentos adicionais(específicos) acrescentados:
- tanto para dispositivos de E/S mais rápidos
- quanto para o tráfego da CPU para memória.



A estrutura de um sistema x86 grande.

- ✓ Sistemas operacionais de computadores de grande porte
- ✓ Sistemas operacionais de servidores
- ✓ Sistemas operacionais de multiprocessadores
- ✓ Sistemas operacionais de computadores pessoais
- ✓ Sistemas operacionais de computadores portáteis
- ✓ Sistemas operacionais embarcados
- ✓ Sistemas operacionais de nós sensores
- ✓ Sistemas operacionais de tempo real
- ✓ Sistemas operacionais de cartões inteligentes (smartcard)

• Sistemas operacionais de computadores de grande porte.

Orientados para processamento simultâneo de muitas tarefas com muitos acessos de E/S

Sistemas operacionais de servidores.

Servem muitos usuários em uma rede e permite o compartilhamento de recursos de HW e SW (Linux, Windows Server)

Sistemas operacionais de multiprocessadores.

Conecta múltiplas CPUs num único sistema. Possuem aspectos especiais de comunicação, conectividade e compatibilidade (PCs c/ chips multinúcleo, Linux, Windows)

#### • Sistemas operacionais de computadores pessoais.

Suporte a Multiprogramação, oferece boa interface para um único usuário (proc. Texto, planilhas, Navegadores). Linux, Windows, MacOS

#### • Sistemas operacionais de computadores portáteis.

Smartphones: manipulam telefonia, fotografia digital, etc.

Ex: iOS, Android, WindowsPhone

#### Sistemas operacionais embarcados.

- Controlam dispositivos como microondas, TVs, carros, MP3, etc
- Nenhum SW não confiável jamais será executado nele
- Todo SW está na ROM ⇒ não precisa proteção
   Ex: Embedded Linux, QNX, VxWorks

#### Sistemas operacionais de nós sensores

- Sistema operacional dirigido por eventos, reagindo a eventos externos ou obtendo medidas periodicamente
- Energia limitada
- Ao ar livre por longo tempo
- Robustez, tolerância a falhas Ex: TinyOS

#### Sistemas operacionais de tempo real

- Prazos rígidos de execução. Ex: controle de processos, aviônica, áudio/video digital
- Usuários não podem acrescentar SWs, apenas os projetistas

- Sistemas operacionais de cartões inteligentes (smart cards).
  - ✓ Restrições de energia e memória
  - ✓ Sistemas proprietários
  - ✓ Orientados a Java (ROM contém um interpretador para JVM)

# Conceitos de sistemas operacionais

- > Processos
- > Espaços de endereçamento
- > Arquivos
- > Entrada/Saída
- > Proteção
- > O interpretador de comandos (shell: sh, csh, ksh, bash)

#### Chamadas de sistema

Interface entre os comandos do usuário e o sistema operacional Exemplos que usaremos: chamadas do UNIX

- Chamadas de sistema para gerenciamento de processos
- Chamadas de sistema para gerenciamento de arquivos
- Chamadas de sistema para gerenciamento de diretórios
- Chamadas de sistema diversas
- A API Win32 do Windows

# Estrutura de sistemas operacionais

#### Projetos desenvolvidos e suas características:

- ✓ Sistemas monolíticos
- ✓ Sistemas de camadas
- ✓ Micronúcleos
- ✓ O modelo cliente-servidor
- ✓ Máquinas virtuais
- ✓ Exonúcleos