Accurate variational Quantum Eigensolvers

Malay Singh

Supervisors : Msc Ramiro Sagastizabal and Dr. Leonardo Di Carlo Department of Applied Physics

Delft University of technology

Three Month Report

Abstract

Put your abstract or summary here, if your university requires it.

Contents

Lı	List of Figures				
\mathbf{Li}	st of	Tables	v		
1 Project Proposal					
2	Sup	perconducting Qubits	3		
	2.1	Quantum Information	3		
	2.2	Superconducting Qubits	3		
		2.2.1 Circuit Quantum Electrodynamics	3		
		2.2.2 Single and Two qubit gates	3		
		2.2.3 Readout	3		
		2.2.4 Noise	3		
3	Quantum Simulations with Superconducting Qubits				
	3.1	Introduction	5		
	3.2	P. Hydrogen Hamiltonian			
	3.3	Variational Quantum Eigensolvers	5		
4	State preparation Ansatze				
	4.1	Hardware oriented Ansatz	7		
	4.2	Six parameter circuit	7		
	4.3	Six parameter circuit	7		
	4.4	Particle number conserving circuit	7		
5	Err	or Signalling Circuit	9		

CONTENTS

6	Active Error minimization				
	6.1	Limita	ations of Simulations	11	
7	Outlook				
	7.1	Exper	ience Gained	13	
		7.1.1	Oscilloscope Driver	13	
		7.1.2	Quantum State Tomography	13	
		7.1.3	Miscellaneous	13	
	7.2	Exper	ience Necessary	13	
8	Mat	terials	& methods	15	

List of Figures

2.1	Bloch Sphere visualisation of a single qubit state					
2.2	Effective Circuit for the transmon qubit	3				
2.3	Energy levels for the transmon qubit for	or				
	$\frac{E_J}{E_C} = ?$					
	E_C					
	found by simulation	3				
2.4	The transmission profile of the resonator is shifted to one of two peaks					
	conditioned on the states of the qubit	4				
3.1	A Flowchart depicting the steps used in mapping Real Space Molecular					
	Hamiltonian on to Qubit Hilbert space	5				
3.2	The dissociation curve for Hydrogen molecule	5				
3.3	Hardware and software schematic of the variational quantum eigensolver.	5				
4.1	a. Quantum circuit for the six-parameter Ansatz b. Plot of Converged					
	Energies(Hartree) across interatomic distances	7				
4.2	a. Converged Parameters across interatomic distances b. Plot of Con-					
	currence of the converged state across interatomic distances	7				
4.3	a. Quantum circuit for the particle number conserving Ansatz b. Plot					
	of Converged Energies(Hartree) across interatomic distances	7				
4.4	a. Converged Parameters across interatomic distances b. Plot of Con-					
	currence of the converged state across interatomic distances	8				
4.5	a. Landscape accesible to the optimizer, Energy as a function of θ_1 and					
	θ_2 . b. Zoom in of the landscape showing converged ground state energy.	8				

LIST OF FIGURES

List of Tables

LIST OF TABLES

Project Proposal

One of the proposed powerful applications for near-term quantum computers is to address problems in quantum simulation of molecular structures and condensed matter physics problems, which currently stretch the limits of existing high-performance computing infrastructure[1].

1. PROJECT PROPOSAL

Superconducting Qubits

2.1 Quantum Information

Figure 2.1: Bloch Sphere visualisation of a single qubit state.

2.2 Superconducting Qubits

0.5

Figure 2.2: Effective Circuit for the transmon qubit

0.5

Figure 2.3: Energy levels for the transmon qubit for

$$\frac{E_J}{E_C} = ?$$

found by simulation.

- 2.2.1 Circuit Quantum Electrodynamics
- 2.2.2 Single and Two qubit gates
- 2.2.3 Readout
- 2.2.4 Noise

2. SUPERCONDUCTING QUBITS Figure 2.4: The transmission profile of the resonator is shifted to one of two peaks conditioned on the states of the qubit.

Quantum Simulations with Superconducting Qubits

3.1 Introduction

3.2 Hydrogen Hamiltonian

Figure 3.1: A Flowchart depicting the steps used in mapping Real Space Molecular Hamiltonian on to Qubit Hilbert space.

Figure 3.2: The dissociation curve for Hydrogen molecule.

3.3 Variational Quantum Eigensolvers

Figure 3.3: Hardware and software schematic of the variational quantum eigensolver.

3. (QUANTUM	SIMULATIONS	WITH	SUPERCONDUCTING	QUBITS
------	---------	--------------------	------	-----------------	---------------

State preparation Ansatze

4.1 Hardware oriented Ansatz

4.2 Six parameter circuit

Figure 4.1: a. Quantum circuit for the six-parameter Ansatz b. Plot of Converged Energies(Hartree) across interatomic distances.

4.3 Six parameter circuit

Figure 4.2: a. Converged Parameters across interatomic distances b. Plot of Concurrence of the converged state across interatomic distances.

4.4 Particle number conserving circuit

Figure 4.3: a. Quantum circuit for the particle number conserving Ansatz b. Plot of Converged Energies(Hartree) across interatomic distances.

4. STATE PREPARATION ANSATZE Figure 4.4: a. Converged Parameters across interatomic distances b. Plot of Concurrence of the converged state across interatomic distances. **Figure 4.5:** a. Landscape accesible to the optimizer, Energy as a function of θ_1 and θ_2 . b. Zoom in of the landscape showing converged ground state energy.

Error Signalling Circuit

5. ERROR SIGNALLING CIRCUIT

Active Error minimization

6.1 Limitations of Simulations

6. ACTIVE ERROR MINIMIZATION

Outlook

- 7.1 Experience Gained
- $7.1.1 \quad {\bf Oscilloscope\ Driver}$
- 7.1.2 Quantum State Tomography
- 7.1.3 Miscellaneous
- 7.2 Experience Necessary

7. OUTLOOK

Materials & methods