Life (in hrs) data for the battery design experiment:

material	temperature (°F)							
type	15		70		125			
1	130	155	34	40	20	70		
	74	180	80	75	82	58		
2	150	188	126	122	25	70		
	159	126	106	115	58	45		
3	138	110	174	120	96	104		
	168	160	150	139	82	60		

Let y_{ijk} be the observed response when factor A is at the ith level (i = $1, 2, \ldots, I$) and factor B is at the jth level $(j = 1, 2, \ldots, J)$ for the kth replicate $(k = 1, 2, \ldots, K)$.

$$y_{ijk} = \mu_{ij} + \epsilon_{ijk}, i = 1, 2, \dots, I; j = 1, 2, \dots, J; k = 1, 2, \dots, K.$$

Now, $\hat{\mu}_{ij} = \bar{y}_{ij}$ under no constraints, and hence

RSS = $\sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} (y_{ijk} - \bar{y}_{ij.})^2$ has IJ(K-1) d.f. Reparametrization: $\mu_{ij} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij}$, where $\sum_{i=1}^{I} \alpha_i = 0$, $\sum_{j=1}^{J} \beta_j = 0$, $\sum_{i=1}^{I} (\alpha\beta)_{ij} = 0$ for all j and $\sum_{j=1}^{J} (\alpha\beta)_{ij} = 0$ for all i are the identifiability conditions.

To investigate the existence of interaction, we should test,

 $H_{AB}: (\alpha\beta)_{ij} = 0 (i = 1, 2, \dots, I; j = 1, 2, \dots, J)$ as the restricted model without interaction. Estimation of $(\alpha\beta)_{ij}$ can also be considered. consider the main effects of factors A and B.

To test for lack of difference in levels of factor A, use, $H_A: \alpha_i = 0$ for all i. To test for lack of difference in levels of factor B, use, $H_B: \beta_j = 0$ for all j. If $H_{AB}: (\alpha\beta)_{ij} = 0$ has been rejected, there is evidence for significant interaction, so main effects cannot be non-existent.

To find estimates, confidence intervals and to conduct tests, we proceed as follows. Since

 $\mu_{ij} = \bar{\mu}_{..} + (\bar{\mu}_{i.} - \bar{\mu}_{..}) + (\bar{\mu}_{.j} - \bar{\mu}_{..}) + (\mu_{ij} - \bar{\mu}_{i.} - \bar{\mu}_{.j} + \bar{\mu}_{..}) = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij},$ we use a similar representation for ϵ_{ijk} :

$$\epsilon_{ijk} = \bar{\epsilon}_{...} + (\bar{\epsilon}_{i..} - \bar{\epsilon}_{...}) + (\bar{\epsilon}_{.j.} - \bar{\epsilon}_{...}) + (\bar{\epsilon}_{ij.} - \bar{\epsilon}_{i..} - \bar{\epsilon}_{.j.} + \bar{\epsilon}_{...}) + (\epsilon_{ijk} - \bar{\epsilon}_{ij.}).$$

Therefore, as in one-way classification,

$$\sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} \epsilon_{ijk}^{2} = IJK\bar{\epsilon}_{...}^{2} + JK \sum_{i=1}^{I} (\bar{\epsilon}_{i.} - \bar{\epsilon}_{..})^{2} + IK \sum_{j=1}^{J} (\bar{\epsilon}_{.j} - \bar{\epsilon}_{..})^{2} + K \sum_{i=1}^{I} \sum_{j=1}^{J} (\bar{\epsilon}_{ij.} - \bar{\epsilon}_{i..} - \bar{\epsilon}_{.j.} + \bar{\epsilon}_{...})^{2} + \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} (\epsilon_{ijk} - \bar{\epsilon}_{ij.})^{2},$$

since cross products vanish. Noting that $\epsilon_{ijk} = y_{ijk} - \mu - \alpha_i - \beta_j - (\alpha\beta)_{ij}$, with $\sum_{i=1}^{I} \alpha_i = 0$, $\sum_{j=1}^{J} \beta_j = 0$, $\sum_{i=1}^{I} (\alpha\beta)_{ij} = 0$ for all j and $\sum_{j=1}^{J} (\alpha\beta)_{ij} = 0$ for all i, we get $\bar{\epsilon}_{...} = \bar{y}_{...} - \mu$, $\bar{\epsilon}_{i..} = \bar{y}_{i..} - \mu - \alpha_i$, $\bar{\epsilon}_{.j.} = \bar{y}_{.j.} - \mu - \beta_j$, $\bar{\epsilon}_{ij.} = \bar{y}_{ij.} - \mu - \alpha_i - \beta_j - (\alpha\beta)_{ij}$. Hence,

$$\begin{split} &\sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} (y_{ijk} - \mu - \alpha_i - \beta_j - (\alpha \beta)_{ij})^2 \\ &= IJK(\bar{y}_{...} - \mu)^2 + JK \sum_{i=1}^{I} (\bar{y}_{i..} - \bar{y}_{...} - \alpha_i)^2 + IK \sum_{j=1}^{J} (\bar{y}_{.j.} - \bar{y}_{...} - \beta_j)^2 \\ &+ K \sum_{i=1}^{I} \sum_{j=1}^{J} (\bar{y}_{ij.} - \bar{y}_{i..} - \bar{y}_{.j.} + \bar{y}_{...} - (\alpha \beta)_{ij})^2 + \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} (y_{ijk} - \bar{y}_{ij.})^2. \end{split}$$

Subject to the identifiability conditions, we obtain the least squares estimates:

$$\hat{\mu} = \bar{y}_{...}, \ \hat{\alpha}_i = \bar{y}_{i..} - \bar{y}_{...}, \ \hat{\beta}_j = \bar{y}_{.j.} - \bar{y}_{...} \text{ and } (\hat{\alpha\beta})_{ij} = \bar{y}_{ij.} - \bar{y}_{i..} - \bar{y}_{.j.} + \bar{y}_{...}$$

Therefore, RSS = $\sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} (y_{ijk} - \bar{y}_{ij.})^2$, as seen earlier.

Consider $H_{AB}: (\alpha\beta)_{ij} = 0$ for all i, j. Due to the identiability constraints on these parameters, namely, $0 = \sum_{i=1}^{I} (\alpha\beta)_{ij} = \sum_{j=1}^{J} (\alpha\beta)_{ij} = \sum_{i=1}^{I} \sum_{j=1}^{J} (\alpha\beta)_{ij}$, there are IJ - I - J + 1 = (I - 1)(J - 1) linearly independent equations, so the A matrix used to express this as a linear hypothesis has rank IJ - I - J + 1 = (I - 1)(J - 1). Further, by inspection,

$$RSS_{H_{AB}} = \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} (y_{ijk} - \bar{y}_{ij.})^2 + K \sum_{i=1}^{I} \sum_{j=1}^{J} (\bar{y}_{ij.} - \bar{y}_{i..} - \bar{y}_{.j.} + \bar{y}_{...})^2,$$

since $\hat{\mu}, \hat{\alpha}_i$ and $\hat{\beta}_j$ remain as before. Hence

$$RSS_{H_{AB}} - RSS = K \sum_{i=1}^{I} \sum_{j=1}^{J} (\bar{y}_{ij.} - \bar{y}_{i..} - \bar{y}_{.j.} + \bar{y}_{...})^2 = K \sum_{i=1}^{I} \sum_{j=1}^{J} (\hat{\alpha \beta})_{ij}^2,$$

which has d.f. (I-1)(J-1). To test H_{AB} , use

$$F_{AB} = \frac{(\text{RSS}_{H_{AB}} - \text{RSS})/\{(I-1)(J-1)\}}{\text{RSS}/\{IJ(K-1)\}} \sim F_{(I-1)(J-1),IJ(K-1)}$$

under H_{AB} . Now consider H_A : $\alpha_i = 0$ for all i. There are I-1 linearly independent equations here, so the rank of A matrix is I-1. Again, by inspection, note that estimates of the remaining parameters, μ , β_j and $(\alpha\beta)_{ij}$ remain unchanged, so

$$RSS_{H_A} = \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} (y_{ijk} - \bar{y}_{ij.})^2 + JK \sum_{i=1}^{I} (\bar{y}_{i..} - \bar{y}_{...})^2, \text{ so}$$

$$RSS_{H_A} - RSS = JK \sum_{i=1}^{I} (\bar{y}_{i..} - \bar{y}_{...})^2 = JK \sum_{i=1}^{I} \hat{\alpha}_i^2$$

with d.f. I-1. Similarly,

$$RSS_{H_B} = \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} (y_{ijk} - \bar{y}_{ij.})^2 + IK \sum_{j=1}^{J} (\bar{y}_{.j.} - \bar{y}_{...})^2, \text{ so}$$

$$RSS_{H_B} - RSS = IK \sum_{j=1}^{J} (\bar{y}_{.j.} - \bar{y}_{...})^2 = IK \sum_{j=1}^{J} \hat{\beta}_j^2$$

with d.f. J-1. Therefore, for the respective tests use,

$$F_A = \frac{(\text{RSS}_{H_A} - \text{RSS})/(I-1)}{\text{RSS}/\{IJ(K-1)\}} \sim F_{I-1,IJ(K-1)}$$

under H_A and

$$F_B = \frac{(\text{RSS}_{H_B} - \text{RSS})/(J-1)}{\text{RSS}/\{IJ(K-1)\}} \sim F_{J-1,IJ(K-1)}$$

under H_B . The decomposition of the total sum of squares along with its d.f. is as follows.

$$\sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} y_{ijk}^{2} = IJK\bar{y}_{...}^{2} + JK \sum_{i=1}^{I} (\bar{y}_{i..} - \bar{y}_{...})^{2} + IK \sum_{j=1}^{J} (\bar{y}_{.j.} - \bar{y}_{...})^{2}$$

$$+K \sum_{i=1}^{I} \sum_{j=1}^{J} (\bar{y}_{ij.} - \bar{y}_{i..} - \bar{y}_{.j.} + \bar{y}_{...})^{2} + \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} (y_{ijk} - \bar{y}_{ij.})^{2}.$$

$$IJK = 1 + (I - 1) + (J - 1) + (IJ - I - J + 1) + (IJK - IJ).$$

ANOVA table for 2-factor analysis:

		V			
source	d.f	SS	MS	F	
A main	I-1	$SS_A =$	$MS_A =$	$F_A =$	
effects		$JK \sum_{i=1}^{I} \hat{\alpha}_i^2$ $SS_B =$		MS_A/MSE	
B main	J-1	_	$MS_B =$	$F_B =$	
effects		$IK\sum_{j=1}^{J} \hat{\beta}_j^2$		MS_B/MSE	
AB	(I-1)(J-1)	$SS_{AB} =$	$MS_{AB} =$	$F_{AB} =$	
interactions		$K \sum \sum (\hat{\alpha \beta})_{ij}^2$		MS_{AB}/MSE	
Error	IJ(K-1)	RSS =	MSE =		
		$\sum \sum \sum (y_{ijk} - \bar{y}_{ij.})^2$	$\frac{\text{RSS}}{IJ(K-1)}$		
Total (c)	IJK-1	$\sum \sum \sum (y_{ijk} - \bar{y}_{})^2$			
Mean	1	$IJK\bar{y}_{}^{2}$			
Total		$\sum \sum \sum y_{ijk}^2$			

ANOVA for the battery example:

source	d.f	SS	MS	F
plate	2	10684	5342	7.91 (2, 27)
temperature	2	39119	19559	28.97 (2, 27)
interactions	4	9614	2413	3.56(4, 27)
error	27	18231	675	
total (c)	35	77647		