OPTIMIZATION METHODS AND ALGORITHMS

PROBLEM FORMALIZATION

NOTATION:	Domain:		
1 s	$\epsilon\{1, S \}$	Student index	
2 <i>e</i>	$\epsilon\{1, E \}$	Exam index	
3 t	$\epsilon\{1, t_{max}\}$	Timeslot index	
t_1	$\epsilon\{1, t_{max}\}$	Auxiliary timeslot index	
5 <i>i</i>	$\epsilon\{1, t_{max} - 1\}$	Difference between timeslots index	
D.100			
DATA:	m . 1 1		
		Total number of student enrolled in at least 1 exam Total number of exams	
E			
$a_{s,e} \in \{0,1\}$		1 if student <i>s</i> is enrolled in exam <i>e</i> , 0 o/w Number of available timeslots	
$t_{max} \in \mathbb{N}$	Number of available timeslots		
VARIABLES:			
1 $x_{e,t} \in \{0,1\}$	∀ <i>e</i> , <i>t</i>	1 if exam e is scheduled on timeslot t , 0 o/w	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\forall s, t$	1 if student <i>s</i> is occupied during timeslot <i>t</i> , 0 o/w	
3 $u_{s,t,t_1} \in \{0,1\}$	$\forall s, t$	1 if student s is occupied in both timeslots t and t_1 , 0	
$u_{S,t,t_1} \in \{0,1\}$	v 5, c, c ₁	0/W	
		<i>5</i> /	
CONSTRAINTS:			
$1 t_{max}$	$\forall e$	Each exam will have one and only one time slot	
$\sum x_{e,t} = 1$			
1 $\sum_{t=1}^{t_{max}} x_{e,t} = 1$ 2 $z_{s,t} = \sum_{e=1}^{ E } a_{s,e} x_{e,t}$ 3 $z_{s,t} \le 1$			
$2 \qquad \sum_{i=1}^{ E }$	$\forall s, t$	$z_{s,t}$ is 1 if student s is occupied in timeslot t , 0 o/w.	
$z_{s,t} = \sum_{i} a_{s,e} x_{e,t}$			
e=1			
$3 z_{s,t} \leq 1$	$\forall s, t$	Student <i>s</i> cannot be enrolled in more exams which	
		are in the same timeslot, hence the sum of all exams	
		in which student s is enrolled and which takes	
1 2	Watt	place in timeslot t is 1 or 0. $u_{s,t,t1}$ is 1 if student s is occupied in both timeslots t	
$4 u_{s,t,t_1} \ge z_{s,t} + z_{s,t_1} - 1$	$\forall s, t, t_1$	and t_1 , 0 o/w.	
		and t ₁ , 0 0/ w.	
COST FUNCTION:			
c(i,t)	(0, i > 5	
	c(i,t) =	$0, i > 5$ $ \frac{\sum_{s=1}^{ S } u_{s,t,t+i}}{ S }, i \le 5$	
	$(2^{5-i} *$	$t \stackrel{\omega_{S=1}}{=} \frac{\omega_{S,\iota,\iota+\iota}}{ S }, i \leq 5$	
		ادا	

OBJECTIVE FUNCTION:
$$\sum_{i=1}^{5} \sum_{t=1}^{t_{max}-i} c(i,t)$$

$$= \sum_{i=1}^{5} \sum_{t=1}^{t_{max}-i} 2^{5-i} * \frac{\sum_{s=1}^{|S|} u_{s,t,t+i}}{|S|}$$

For each distance *i* between timeslots that generates a penalty (1,2,3,4,5) we sum the cost function generated by each timeslot configuration.

$$= \sum_{i=1}^{5} \sum_{t=1}^{t_{max}-i} \sum_{s=1}^{|S|} 2^{5-i} * \frac{u_{s,t,t+i}}{|S|}$$

i.e. for each distance between timeslots that generates a penalty, we multiply the corrispective $\cos{(2^{5-i})}$ by the number of students which are occupied both in timeslot t and t+i. This number of students is calculated summing over all students the boolean variable $u_{s,t,t+i}$ which is 1 if student s is occupied in timeslots t and t+i and t+i and t+i