Терверессы: Лиза, Олеся, Даша, Марина, Яна

БЭК 171

- 1948 год Клод Шеннон создал первую, истинно математическую, теорию энтропии
- Его идеи послужили основой разработки двух основных направлений: теории информации и теории кодирования

Для дискретных случайных величин

• Энтропия – наименьшее среднее число бит, необходимое для кодирования некоторой информации.

$$H = -\sum_{i=1}^{n} p_i \log p_i,$$

где p_i — вероятность i-го исхода

ullet Условная энтропия — количество бит, необходимое для того, чтобы узнать значение случайной величины Y при условии, что случайная величина X известна.

$$H(Y|X) = -\sum_{x,y} p(x,y) \log \frac{p(x,y)}{p(x)}$$

• Совместная энтропия — степень неопределенности, связанная со множеством случайных величин.

$$H(X,Y) = -\sum_{x} \sum_{y} p(x,y) \log p(x,y)$$

ullet Взаимная информация I(X;Y) — мера взаимной зависимости двух случайных величин.

$$I(X;Y) = \sum_{x} \sum_{y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$

Люблю решать задачки!

- ■Красная Шапочка встретила соседа-лесоруба Николая
 Петровича по дороге к бабушке Елене, которая
 равновероятно может жить в одной из трех деревень.
 Шапка точно помнит, в какой именно. Поскольку
 девочка маленькая, а неподалеку обитает волк, лесоруб
 решил узнать, в какой деревне живет бабушка, только
 не спросив напрямую, а задавая наводящие вопросы.
 Найдите энтропию местонахождения Елены.
- ② Оказалось, на дороге в одну из трёх деревень, в каждой из которых равновероятно может находиться бабуля Елена, ошивается злой волк Матвей, а в одну деревню ведет только одна дорога. Вероятности того, что Матвей находится в деревне i-той (X местонахождение волка по вертикали), и того, что Елена в деревне j-той (Y местонахождение бабули по горизонтали):

Найдите совместную энтропию местонахождения Елены и Матвея: H(X,Y). • Кросс энтропия — минимальное среднее количество бит, необходимое для того, чтобы закодировать информацию, если схема кодирования базируется на некотором распределении q, а не истинном, p.

$$CE(P||Q) = -\sum_{i=1}^{n} p_i \log q_i$$

• Дивергенция Кульбака – Лейблера — степень отдаленности одного вероятностного распределения от другого.

$$D_{KL}(P || Q) = -\sum_{i=1}^{n} p_i \log q_i - (-\sum_{i=1}^{n} p_i \log p_i)$$

Ещё задача :)

Красная Шапочка, убегая от злого лесоруба Николая Петровича, в панике перепутала вероятности, с которыми охотник Борис находится в одной из деревень (X - ме-стонахождение охотника):

$$(1/6 \ 2/3 \ 1/6),$$

и с которыми волк Матвей ошивается на одной из дорог в деревни (Y — местонахождение волка):

$$(3/8 \ 3/8 \ 1/4)$$
.

(a) Найдите кросс-энтропию из истинного распределения местонахождения Матвея в распределение местонахождения Бориса;

(б) Вычислите дивергенцию Кульбака-Лейблера.

Для непрерывных случайных величин

• Самая главная и простая энтропийка:

$$H(X) = -\int_{-\infty}^{+\infty} f(x) \log f(x) dx$$

• Условная энтропия:

$$H(Y|X) = -\int_{-\infty}^{+\infty} f(x,y) \log f_{Y|X}(y) dy$$

• Совместная энтропия:

$$H(X,Y) = -\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) \log f(x,y) dxdy$$

• Взаимная информация:

$$I(X;Y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) \log \frac{f(x,y)}{f(x)f(y)} dxdy$$

• Кросс-энтропия:

$$CH(p,q) = -\int_{-\infty}^{+\infty} p(x) \log q(x) dx$$

• Дивергенция Кульбака – Лейблера:

$$D_{KL}(P || Q) = \int_{-\infty}^{+\infty} p(x) \log p(x) dx - \int_{-\infty}^{+\infty} p(x) \log q(x) dx$$

Задача с абсолютно непрерывными случайными величинами

Злой лесоруб Николай Петрович решил, что он должен завладеть сердцем Красной Шапки и устранить со своего пути её бабушку Елену, которая против их отношений. Лесоруб не знает, где именно находится бабушка.

Бабушка Елена ест ягодки. Местоположение кустика с ягодками X и местоположение ямы Y, которую выкопала Красная Шапочка Богданелла для деревца, отлично описываются многомерным нормальным распределением:

$$\begin{pmatrix} X \\ Y \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} \mu_x \\ \mu_y \end{pmatrix}, \begin{pmatrix} 4 & 1 \\ 1 & 1 \end{pmatrix} \right)$$

Какова совместная энтропия местоположения бабушки и местоположения ямы?

Энтропийное кодирование

Энтропия показывает наименьшее среднее число бит, необходимое для кодирования некоторой информации. С целью минимизации энтропии и оптимизации кода элементы с большой вероятностью появления кодируются меньшим числом символов. Это позволяет передавать большее количество информации, затрачивая меньший объем памяти.

Построение решающих деревьев

Каждое ветвление дерева представляет собой разделение выборки на две части по порогу некоторого признака. Расчет энтропии помогает определить оптимальный порог для каждого узла — при котором взвешенная сумма энтропий получившихся выборок минимальна среди возможных разбиений.

Например, у нас есть выборка объектов с одним признаком, длина: обыкновенный удав (22 попугая), анаконда (46 попугаев), анаконда (40 попугаев), обыкновенный удав (31 попугай). Попробуем разделить выборку по 38 попугаям (ОУ — обыкновенный удав, А — анаконда):

При расчете энтропии $0 \cdot \log_2 0$ считается равным 0, несмотря на $\log_2 0$. За вероятность принимается вероятность встретить данный класс в новой выборке.

Энтропия левой части: $-(1 \cdot \log_2 1 + 0 \cdot \log_2 0) = 0$. Энтропия правой части: $-(1 \cdot \log_2 1 + 0 \cdot \log_2 0) = 0$. Суммарная энтропия получилась: $\frac{1}{2} \cdot 0 + \frac{1}{2} \cdot 0 = 0, \frac{1}{2}$ доля каждой выборки в исходной.

Так как 0 — минимально возможное значение энтропии, критерий «длина < 38 попугаев» дает оптимальный результат.

Применение в алгоритме UMAP

В анализе данных алгоритмы снижения размерности используют кросс-энтропию как показатель эффективности перенесения свойств объектов. Чем меньше кросс-энтропия, тем ближе к истинному оказалось подобранное отображение.

Приведем пример работы алгоритма UMAP. Мы возьмем набор данных об одежде, который включает в себя 70000 чернобелых изображений различной одежды по 10 классам: футболки, брюки, свитеры, платья, кроссовки и т.д. Каждая картинка имеет размер 28х28 пикселей или 784 пикселя.

Результатом преобразования будет следующее отображение:

Рис. 1:Алгоритм UMAP

UMAP строит ориентированный взвешенный граф: ребрами соединяются каждый объект с наиболее похожими на него из выборки. Вес ребра можно интерпретировать как вероятность его существования. Тогда ребро e является случайной величиной: $e \sim B(w(e))$. Множество ребер построенного графа — множество E из случайных величин Бернулли.

Чтобы перенести граф в низкоразмерное пространство, UMAP подбирает для множества E_h похожее на него множество E_l с функцией $w_l(e)$, соответствующие низкоразмерному пространству

Для этого UMAP минимизирует сумму дивергенций Кульбака-Лейблера для каждой случайной величины из множеств:

$$S(E_h||E_l) = \sum_{e \in E} w_h(e) \log \frac{w_h(e)}{w_l(e)} + (1 - w_h(e)) \log \left(\frac{1 - w_h(e)}{1 - w_l(e)}\right) \to \min_{w_l}$$

Результатом является граф в низкоразмерном пространстве с подобранной функцией весов w_l .

Для тех, кто хочет больше!

Воспользуйтесь qr-кодом и посмотрите полный текст повести про энтропию:) Там вы сможете найти ответы на задачи, ещё задачи и более подробную информацию.

