MATH H113: Honors Introduction to Abstract Algebra

2016-03-30

- Maximal & prime ideals
- Zorn's lemma

Homework due 2016-04-15:

Sect. 7.4: 14, 27, 36

Sect. 7.5: 2, 3, 4

Homework due 2016-04-18:

Extra assignment (see sheet).

Example: Ideals in \mathbb{Z} .

Let I be an ideal in \mathbb{Z} . Then it's an additive subgroup:

 $I = m\mathbb{Z} = \langle m \rangle = \{mn : n \in \mathbb{Z}\} = (m) \text{ (this is an ideal (principal ideal))}.$

So {ideals of ideals of \mathbb{Z} } = { $(m) : m \in \mathbb{N}$ }. Also: every ideal of \mathbb{Z} is principal.

What about the ideal (a, b) in \mathbb{Z} ?

Note: $(d) \le (a) \iff d \in (a) \iff a \mid d$

So, $(a, b) \le (d) \iff a \in (d) \text{ and } b \in (d)$

 $\iff d \mid a \text{ and } d \mid b$

 \iff d is a common divisor of a and b.

Now (a,b)=(m) where m is the largest number that $(a,b) \leq m$ so m is the largest common divisor of a and b, $m=\gcd(a,b)$.

So (a, b) (ideal generated by a and b) = ((a, b)) (principal ideal generated by gcd(a, b) = (a, b)).

Recall: An ideal of M in a ring R is said to be maximal if:

- i. $M \neq R$, and
- ii. there are no ideals M' strictly between M and R: $M \subseteq M' \subseteq R$.

Proposition: Let R be a commutative ring with 1, and let M be an ideal in R. Then M is maximal $\iff R/M$ is a field.

Recall: R/M is a field \iff R/M is commutative (always true (because R is commutative)), R/M has $1 \neq 0$ (R/M always has 1 (since R has 1)) and all nonzero elements of R/M are units (proved last time: If R/M has $1 \neq 0$, then it's a field \iff it's commutative its only ideals are (0) and (1) \iff only ideals are (0) and (1) (assuming the other conditions are true)).

So this is true

 $\iff R/M \neq 0$

 $\iff M \neq R \iff$ the only ideals of M' with $M \subseteq M' \subseteq R$ are M and R.

Definition: Let R be a commutative ring with 1. An ideal P of R is *prime* if

- i. $P \neq R$ and
- ii. for all $x, y \in R$, $xy \in P \implies x \in P$ or $y \in P$

Proposition: Let R be as above. Then an ideal P of R is prime $\iff R/P$ is an integral domain.

Proof: R/P is an integral domain if and only if:

- i. R/P is commutative,
- ii. R/P has $1 \neq 0$, and
- iii. R/P has no zero divisors Again, (i) is automative, and (ii) $\iff \P \neq R$

(iii)
$$\iff \bar{x}\bar{y} = \bar{0} \implies \bar{x} = \bar{0} \text{ or } \bar{y} = \bar{0} \ \forall \bar{x}, \bar{y} \in R/P \ (\bar{x} \text{ means } x \in R \text{ and } \bar{x} = x + P) \iff xy \in P \implies x \in P \text{ or } y \in P \ \forall x, y \in R.$$

Corollary: Let R be a commutative ring with 1. Then all maximal ideals of R are prime.

Proof: Let M be an ideal of R. Then M is maximal $\iff R/M$ is a field $\implies R/M$ is entire (= integral domain) $\iff M$ is prime.

Example: Maximal and prime ideals in \mathbb{Z} . Let I be an ideal in \mathbb{Z} . Then I=(m) for some $m\in\mathbb{N}$.

m=0: Then $\mathbb{Z}/I=\mathbb{Z}/(0)\cong\mathbb{Z}$, which is an integral domain but not a field. So (0) is prime but not maximal $((0)\subsetneq(2)\subsetneq(1))$.

 $m \neq 0$: If m is prime then $(\mathbb{Z}/(m))^{\times} = \mathbb{Z}/m\mathbb{Z} \setminus \{\overline{0}\}$ so $\mathbb{Z}/m\mathbb{Z}$ is maximal, and prime. (or: $(m) \subsetneq (n) \subsetneq 1 \iff 1 < n < m$ and $n \mid m$ so this shows that if m is composite then (m) is not maximal. If m is not prime then either m = 1 $(\implies (m) = \mathbb{Z}$, so (m) is not prime) or m = ab with a, b > 1, so $a, b \notin (m)$ but $ab \in (m)$, so (m) is not prime.

- \therefore (m) is prime \iff m is prime or m=0
- (m) is maximal $\iff m$ is prime

Zorn's Lemma

Definition: Let A be a set. Then a partitial ordering on A is a relation \leq on A that is:

- 1. reflexive $(x \leq x \ \forall x \in A)$,
- 2. antisymmetric $(x \leq y \text{ and } y \leq x, \text{ then } x = y, \forall x, y \in A), \text{ and }$
- 3. transitive (if $x \leq y$ and $y \leq z$ then $x \leq z$, $\forall x, y, z \in A$).

A total ordering on A is a partial ordering \leq on A such that, $x \leq y$ or $y \leq x$ $\forall x, y \in A$. A partially ordered set is a set with a partial ordering on it (this is also called a *poset*). Totally ordered set is defined similarly.

Examples: - \mathbb{R} is totally ordered under the usual \leq . - The set of subgroups of a group is partially ordered under \leq (but not under \leq (not transitive)). - Any collection of sets is partially ordered under \subseteq

Definition: Let A be a partially ordered set. Then:

- 1. a *chain* in A is a totally ordered subset of A (same ordering as on A)
- 2. an upper bound for any subset $B\subseteq A$ is an element $m\in A$ such that $x\leq m\ \forall x\in B$
- 3. A maximal element of A is an element $m \in A$ such that $m \le x \implies x = m \ \forall x \in A$.

Examples: A maximal ideal in a ring R is a maximal element in the set of all proper $(\neq R)$ ideals of R. There may be many of these. If $A = \emptyset$ then there is exactly one relation on A, and it is a total ordering on A. $\therefore \emptyset$ is a poset, and for any poset A, $\emptyset \subseteq A$ is a chain in A.

Incidentally: if A is a poset, then a largest element of A is an element $M \in A$ such that $x \leq M \ \forall x \in A$. There is at most one of these. largest \implies maximal.

Zorn's Lemma: Let A be a nonempty partially ordered set, in which every nonempty chain has an upper bound. Then A has a maximal element.