## FLOATING-POINT ARITHMETIC

- Floating-point representation and dynamic range
- Normalized/unnormalized formats
- Values represented and their distribution
- Choice of base
- Representation of significand and of exponent
- Rounding modes and error analysis
- IEEE Standard 754
- Algorithms and implementations: addition/subtraction, multiplication and division



Figure 8.1: a) Regions in floating-point representation. b) Example for m=f=3, r=2, and  $-2 \le E \le 1$  (only positive region).

|   | Floating-point system        |                           |  |
|---|------------------------------|---------------------------|--|
|   | Normalized                   | Unnormalized              |  |
| A | $-(r^{m-f}-r^{-1})$          | $^f) \times b^{Emax}$     |  |
| B | $-r^{m-f-1} \times b^{Emin}$ | $-r^{-f} \times b^{Emin}$ |  |
| C | 0                            |                           |  |
| D | $r^{m-f-1} \times b^{Emin}$  | $r^{-f} \times b^{Emin}$  |  |
| E | $r^{m-f} - r^{-f}$           | $) \times b^{Emax}$       |  |

| Significand | $2^E$ |      |      |      |
|-------------|-------|------|------|------|
|             | 1     | 2    | 4    | 8    |
| 0.1000      | 1/2   | 1    | 2    | 4    |
| 0.1001      | 9/16  | 9/8  | 9/4  | 9/2  |
| 0.1010      | 10/16 | 10/8 | 10/4 | 5    |
| 0.1011      | 11/16 | 11/8 | 11/4 | 11/2 |
| 0.1100      | 12/16 | 12/8 | 3    | 6    |
| 0.1101      | 13/16 | 13/8 | 13/4 | 13/2 |
| 0.1110      | 14/16 | 14/8 | 14/4 | 7    |
| 0.1111      | 15/16 | 15/8 | 15/4 | 15/2 |

| Significand | $2^E$ |     |     |   |    |    |    |     |
|-------------|-------|-----|-----|---|----|----|----|-----|
|             | 1     | 2   | 4   | 8 | 16 | 32 | 64 | 128 |
| 0.100       | 1/2   | 1   | 2   | 4 | 8  | 16 | 32 | 64  |
| 0.101       | 5/8   | 5/4 | 5/2 | 5 | 10 | 20 | 40 | 80  |
| 0.110       | 6/8   | 3/2 | 3   | 6 | 12 | 24 | 48 | 96  |
| 0.111       | 7/8   | 7/4 | 7/2 | 7 | 14 | 28 | 56 | 112 |

| Significand | $4^E$ |      |    |    |
|-------------|-------|------|----|----|
|             | 1     | 4    | 16 | 64 |
| 0.0100      | 1/4   | 1    | 4  | 16 |
| 0.0101      | 5/16  | 5/4  | 5  | 20 |
| 0.0110      | 6/16  | 6/4  | 6  | 24 |
| 0.0111      | 7/16  | 7/4  | 7  | 28 |
| 0.1000      | 1/2   | 2    | 8  | 32 |
| 0.1001      | 9/16  | 9/4  | 9  | 36 |
| 0.1010      | 10/16 | 10/4 | 10 | 40 |
| 0.1011      | 11/16 | 11/4 | 11 | 44 |
| 0.1100      | 12/16 | 3    | 12 | 48 |
| 0.1101      | 13/16 | 13/4 | 13 | 52 |
| 0.1110      | 14/16 | 14/4 | 14 | 56 |
| 0.1111      | 15/16 | 15/4 | 15 | 60 |



Figure 8.2: EXAMPLES OF DISTRIBUTIONS OF FLOATING-POINT NUMBERS.

- SIGNIFICAND: SM with HIDDEN BIT
- EXPONENT: BIASED  $E_R = E + B$ ,  $\min E_R = 0 \implies B = -E_{min}$
- Symmetric range  $-B \le E \le B \implies 0 \le E_R \le 2B \le 2^e 1$
- for 8-bit exponent: B = 127,  $-127 \le E \le 128$ ,  $0 \le E_R \le 255$
- $E_R = 255$  not used
- SIMPLIFIES COMPARISON OF FLOATING-POINT NUMBERS (same as in fixed-point)
- MINIMUM EXPONENT REPRESENTED BY 0 SO THAT FLOATING-POINT VALUE 0: ALL ZEROS (0 sign, 0 exponent, 0 significand)

- Special values not representable in the FLPT system
  - NAN (Not A Number)
  - Infinity (pos, neg)
  - allow computation in presence of special values
- Exceptions: result produced not representable set a flag
  - Exponent overflow
  - Underflow

## ROUNDOFF MODES AND ERROR ANALYSIS

- Exact results (inf. precision): x, y, etc.
- ullet FLPT number representing x is  $R_{mode}(x)$  with rounding mode mode
- Basic relations:
  - 1. If  $x \leq y$  then  $R_{mode}(x) \leq R_{mode}(y)$
  - 2. If x is a FLPT number then  $R_{mode}(x) = x$
  - 3. If F1 and F2 are two consecutive FLPT numbers then for  $F1 \le x \le F2$  x is either F1 or F2



Figure 8.3: Relation between x, Rmode(x), and floating-point numbers F1 and F2.

• Round to nearest (tie to even). Rnear(x) is the floating-point number that is closest to x.

$$Rnear(x) = \begin{cases} F1 & \text{if } |x - F1| < |x - F2| \\ F2 & \text{if } |x - F1| > |x - F2| \\ even(F1, F2) & \text{if } |x - F1| = |x - F2| \end{cases}$$

• Round toward zero (truncate). Rtrunc(x) is the closest to 0 among F1 and F2.

$$Rtrunc(x) = \begin{cases} F1 & \text{if } x \ge 0 \\ F2 & \text{if } x < 0 \end{cases}$$

ullet Round toward plus infinity. Rpinf(x) is the largest among F1 and F2

$$Rpinf(x) = F2$$

ullet Round toward minus infinity. Rninf(x) is the smallest among F1 and F2

$$Rninf(x) = F1$$

1. The (maximum) absolute representation error ABRE (MABRE))

$$ABRE = Rmode(x) - x$$

so that

$$MABRE = max_x(|ABRE|)$$

2. The average bias (RB)

$$RB = \lim_{t \to \infty} \frac{\sum_{M \in \{M_{m+t}\}} (Rmode(M) - M)}{\#M}$$

where  $\{M_{m+t}\}$  is the set of all significands with m+t bits, and #M is the number of significands in the set.

3. The relative representation error (RRE)

$$RRE = \frac{Rmode(x) - x}{x}$$

- x described exactly by the triple  $(S_x, E_x, M_x)$
- ullet  $M_x$  normalized but having infinite precision
- $M_x$  decomposed into two components  $M_f$  and  $M_d$ :

$$M_x = M_f + M_d \times r^{-f}$$

- $\bullet$   $M_f$  has precision of significand in the FLPT system
- $M_d$  represents the rest,  $0 \le M_d < 1$

## ROUNDING TO NEAREST - UNBIASED, TIE TO EVEN

- Value represented closest possible to the exact value
- The smallest absolute error the default mode of the IEEE Standard
- Round to nearest specification:

$$Rnear(x) = \begin{cases} M_f + r^{-f} & \text{if } M_d \ge 1/2\\ M_f & \text{if } M_d < 1/2 \end{cases}$$

- The addition of  $r^{-f}$  can produce significand overflow
- Equivalently

$$Rnear(x) = (\lfloor (M_x + \frac{r^{-f}}{2})r^f \rfloor)r^{-f}$$

• Example: The exact value 1.100100011101 is rounded to nearest with 8-bit precision

• The absolute error is

$$ABRE[Rnear] = \begin{cases} -M_d r^{-f} \times b^E & \text{if } M_d < 1/2\\ (1 - M_d) r^{-f} \times b^E & \text{if } M_d \ge 1/2 \end{cases}$$

ullet The maximum absolute error occurs when  $M_d=1/2$ 

$$MABRE[Rnear] = \frac{r^{-f}}{2} \times b^{Emax}$$

• unbiased round to nearest

$$Rnear(x) = \begin{cases} M_f & \text{if } M_d < 1/2 \\ M_f + r^{-f} & \text{if } M_d > 1/2 \\ M_f & \text{if } M_d = 1/2 \text{ and } M_f = \text{even} \\ M_f + r^{-f} & \text{if } M_d = 1/2 \text{ and } M_f = \text{odd} \end{cases}$$

For this mode

$$RB[Rnear] = 0$$

# ROUND TOWARD ZERO (TRUNCATION)

ullet rounded significand is obtained by discarding  $M_d$ .

$$Rzero(x) = (\lfloor M \times r^f \rfloor)r^{-f} = M_f$$

The absolute error

$$ABRE[Rzero] = -M_d r^{-f} \times b^E$$

and

$$MABRE[Rzero] \approx r^{-f} \times b^{Emax}$$

Absolute error always negative, the average bias is significant

$$AB[Rzero] \approx -\frac{1}{2}r^{-f}$$

# ROUND TOWARD PLUS/MINUS INFINITY

- These two directed modes useful for interval arithmetic (operands and the result of an operation are intervals)
- This permits the monitoring of the accuracy of the result
- Specs:

$$Rpinf(x) = \begin{cases} M_f + r^{-f} & \text{if } M_d > 0 \text{ and } S = 0 \\ M_f & \text{if } M_d = 0 \text{ or } S = 1 \end{cases}$$

$$Rninf(x) = \begin{cases} M_f + r^{-f} & \text{if } M_d > 0 \text{ and } S = 1 \\ M_f & \text{if } M_d = 0 \text{ or } S = 0 \end{cases}$$

ullet The addition of  $r^{-f}$  can produce a significand overflow



Figure 8.4: ROUNDING TO (a) NEAREST, TIE TO EVEN. (b) ZERO. (c) PLUS INFINITY. (d) MINUS INFINITY.

- Minimizes anomalies
- Enhances portability
- Enhances numerical quality
- Allows different implementations

- 1. The significand in SM representation:
  - $Sign\ S$ . One bit. S=1 if negative.
  - Magnitude (also called the significand). Represented in radix 2 with one integer bit. That is, the normalized significand is represented by

where F of f bits (depending on the format) is called the **fraction** and the most-significant 1 is the **hidden** bit.

The range of the (normalized) significand

$$1 \le 1.F \le 2 - 2^{-f}$$

2. Exponent. Base 2 and biased representation; the exponent field e, depending of the format; biased with bias  $B=2^{e-1}-1$ .

- ullet The representation of floating-point zero: E=0 and F=0. The sign S differentiates between positive and negative zero.
- ullet The representation E=0 and F 
  eq 0 used for denormals; in this case the floating-point value represented is

$$v = (-1)^S 2^{-(B-1)} (0.F)$$

• The maximum exponent representation  $(E = 2^e - 1)$  represents not-a-number (NAN) for  $F \neq 0$  and plus and minus infinity for F = 0.

#### BASIC AND EXTENDED FORMATS

- The basic format allows representation in single and double precision
- 1. Basic: single (32 bits) and double (64 bits)
  - single: S(1),E(8),F(23)
  - (a) If  $1 \le E \le 254$ , then  $v = (-1)^S 2^{E-127} (1.F)$  (normalized fp number)
  - (b) If E=255 and  $F\neq 0$ , then v=NAN (not a number)
  - (c) If E=255 and F=0, then  $v=(-1)^S\infty$  (plus and minus infinity)
  - (d) If E=0 and  $F\neq 0$ , then  $v=(-1)^S2^{-126}(0.F)$  (denormal, gradual underflow)
  - (e) If E=0 and F=0, then  $v=(-1)^S0$  (positive and negative zero)
  - double: S(1) E(11) F(52)
    - Similar representation to single, replacing 255 by 2047, etc.
- 2. Extended: single (at least 43=1+11+31) and double (at least 79=1+15+63)

# Rounding Default Mode: round to nearest, to even when tie Directed modes: round toward plus infinity round toward minus infinity

round toward 0 (truncate)

## Operations

## Numerical:

Add, Sub, Mult, Div, Square root, Rem

## Conversions

Floating to integer

Binary to decimal (integer)

Binary to decimal (floating)

## Miscellaneous

Change formats

Compare and set condition code

Exceptions: By default set a flag and the computation continues

Overflow (when rounded value too large to be represented). Result is set to  $\pm$  infinity.

Underflow (when rounded value too small to be represented)

Division by zero

Inexact result (result is not an exact floating-point number). Infinite precision result different than floating-point number.

Invalid. This flag is set when a NAN result is produced.

# FLOATING-POINT ADDITION/SUBTRACTION

- ullet x and y normalized operands represented by  $(S_x,M_x,E_x)$  and  $(S_y,M_y,E_y)$
- 1. Add/subtract significand and set exponent

$$M_z^* = \begin{cases} (M_x^* \pm (M_y^*) \times (b^{E_y - E_x})) \times b^{E_x} & \text{if } E_x \ge E_y \\ ((M_x^*) \times (b^{E_x - E_y}) \pm M_y^*) \times b^{E_y} & \text{if } E_x < E_y \end{cases}$$

$$E_z = max(E_x, E_y)$$

$$Ex - Ey = 4$$

- 2. Normalize significand and update exponent.
- 3. Round, normalize and adjust exponent.
- 4. Set flags for special cases.

- 1. Subtract exponents  $(d = E_x E_y)$ .
- 2. Align significands
  - ullet Shift right d positions the significand of the operand with the smallest exponent.
  - Select as exponent of the result the largest exponent.
- 3. Add (Subtract) significands and produce sign of result. The effective operation (add or subtract):

| Floating-point op. | Signs of operands | Effective operation (EOP) |
|--------------------|-------------------|---------------------------|
| ADD                | equal             | add                       |
| ADD                | different         | subtract                  |
| SUB                | equal             | subtract                  |
| SUB                | different         | add                       |

cont.

- 4. Normalization of result. Three situations can occur:
  - (a) The result already normalized: no action is needed

- (b) Effective operation addition: there might be an overflow of the significand.

  The normalization consists in
  - Shift right the significand one position
  - Increment by one the exponent

- (c) Effective operation subtraction: the result might have leading zeros. Normalize:
  - Shift left the significand by a number of positions corresponding to the number of leading zeros.
  - Decrement the exponent by the number of leading zeros.

|      | 1.1001111 |
|------|-----------|
|      | 1.1001010 |
| SUB  |           |
|      | 0.0000101 |
| NORM | 1.0100000 |

- 5. Round. According to the specified mode. Might require an addition. If overflow occurs, normalize by a right shift and increment the exponent.
- 6. Determine exception flags and special values: exponent overflow (special value  $\pm$  infinity), exponent underflow (special value gradual underflow), inexact, and the special value zero.



EOP: effective operation

R-SHIFTER: variable right shifter

L/R1-SHIFTER: variable left/one pos. right shifter

LOD: Leading One Detector

Figure 8.5: BASIC IMPLEMENTATION OF FLOATING-POINT ADDITION.

- Significand normalized and in SM
- Base of exponent is 2
- 1. One alignment shifter: swap the significands according to the sign of the exponent difference.
- 2. The adder: SM adder. Complicated several options can be used:
  - (a) Use a two's complement adder
  - (b) Use a ones' complement adder
  - (c) Use a two's complement adder; complement the smallest operand so that the result is positive and no complementation is required.

To determine the smallest operand, two cases:

- The exponents are different: the operand with smallest exponent shifted right and complemented
- The exponents are the same: compare the significands in parallel with the alignment

- 3. The normalization step requires:
  - The detection of the position of the leading 1 uses LOD (Leading-One-Detector)
  - A shift performed by the shifter:
    - no shift
    - right shift of one position, or
    - left shift of up to m positions
- 4. The rounding step uses several guard bits

- ullet Keep all 2m bits? No, a few additional bits sufficient:  ${f guard\ bits}$
- How many?
- $\bullet$  For rounding toward zero (truncation): f fractional bits
- For rounding to nearest: one additional bit is required (f+1) fractional bits). For unbiased rounding to even: necessary to know when the rest of the bits are all zero
- For rounding toward infinity: necessary to know when all the bits to be discarded are zero

## 1. Effective addition:

- Result either normalized or produces an overflow
- Normalization: a 1-bit right shift (if overflow); no left shift required
- $\bullet \Rightarrow f+1$  fractional bits of the result required (R)
- ullet Determine whether all the discarded bits are zero:  $sticky\ bit\ T$ , corresponds to the OR of the discarded bits

```
1.0101110
0.00010101010
ADD ------
1.01110001 T=OR(010)=1
```

- 2. Effective subtraction. Two sub-cases:
  - (a) The difference of exponents d is larger than 1.
    - the smallest operand is aligned so that there are more than one leading zeros
    - the result is either normalized or, if not normalized, has only one leading zero
    - the normalization is performed by a left shift of one position, in addition to the bit for rounding to nearest, another bit is required in the result of the addition.
    - $\Rightarrow f + 2$  fractional bits of result required
    - ullet During the subtraction, a borrow produced when sticky =1
    - $\Rightarrow f + 3$  bits required in subtraction (GRT)

```
Example: After alignment
```

1.0000011

0.000011011001

SUB -----

During alignment compute T=OR(001)=1 resulting in

1.0000011

0.0000110111

SUB -----

0.1111100001

NORM 1.1111000010

- (b) The difference of exponents is either 0 or 1.
  - Result might have more than one leading zeros
  - Left shift of up to m positions required
  - Since alignment shift only of zero or one position, at most one non-zero bit is shifted in during the normalization
  - ⇒ only one additional bit required

```
1.0000011
0.11111001
SUB -----
0.00001101
NORM 1.10100000
```

- in all cases three additional bits sufficient: guard (G), round(R), and sticky (T)
- After normalization guard bits labeled as follows:

 During normalization sticky bit recomputed (OR of the previous T and the previous R)

- Round up (add rnd to position L)
  - If G=1 and R and T are not both zero, rnd=G(R+T)
  - If G=1 and R=T=0 then  $rnd=G(R+T)^{\prime}L$  tie case

Combining both cases,

$$rnd = G(R + T) + G(R + T)'L = G(L + R + T)$$

L 1 1 0 1 1 1 
$$G=1$$
,  $R=1$ ,  $T=1 \rightarrow rnd = 1$ 

L 1 0 0 0 0 0 
$$G=1$$
,  $R=0$ ,  $T=1 \rightarrow rnd = 1$  (tie case)

$$L \ 0 \ x \ x \ x \ x \ G=0 \ rnd = 0$$

### **DIRECTED ROUNDINGS**

- Round toward zero: after normalization, truncate at bit L
- Round toward infinity:

Positive infinity

$$rnd = sgn'(G + R + T)$$

Negative infinity

$$rnd = sgn(G + R + T)$$

#### • Overflow:

- detected by an exponent  $E \ge 255$
- set overflow flag, set result to  $\pm$  infinity

#### Underflow:

- detected when during the left shift the exponent  ${\cal E}=1$  and the significand not normalized
- set underflow flag, set result exponent to E=0
- fraction left unnormalized (denormal, gradual underflow)
- Zero: the significand of the result of addition is 0 The result is E=0 and F=0

#### • Inexact:

- detected before rounding: the result is inexact if G + R + T = 1
- set inexact flag
- NAN: if one (or both) operand is a NAN, the result set to NAN.

- Operand(s):
  - Operand a denormal number (E=0 and  $F\neq 0$ ): no hidden 1
  - Set operand of addition to E=1 and 0.F
- Zero operand (E=0 and F=0): treated as a denormal number
- Result:
  - detected during left shift: partially updated exponent E=1 and significand not normalized
  - If resulting significand is not 0 then it is a denormal, if it is 0 then the result is zero exponent set to E=0



Figure 8.6: FLPT ADDITION: Critical Path.



EOP: effective operation

R-SHIFTER: variable right shifter L-SHIFTER: variable left shifter

L1/R1-SHIFTER: one position left/right shifter

Figure 8.7: IMPROVED SINGLE-PATH FLOATING-POINT ADDITION.



Figure 8.8: DOUBLE-PATH IMPLEMENTATION OF FLOATING-POINT ADDITION.



 $Figure \ 8.9: \ \mbox{Dependence graph for double-path scheme}.$ 



Figure 8.10: PIPELINED IMPLEMENTATIONS: (a) SINGLE-PATH SCHEME. (b) DOUBLE-PATH SCHEME.

### FLPT MULTIPLICATION

- ullet x and y normalized operands represented by  $(S_x,M_x,E_x)$  and  $(S_y,M_y,E_y)$ 
  - 1. Multiply significands, add exponents, and determine sign

$$M_z^* = M_x^* \times M_y^*$$
  
$$E_z = E_x + E_y$$

- 2. Normalize  ${\cal M}_z^*$  and update exponent
- 3. Round
- 4. Determine exception flags and special values



Figure 8.11: BASIC IMPLEMENTATION OF FLOATING-POINT MULTIPLICATION.

### 1. Multiplication of magnitudes

 $\bullet$  produces magnitude P of 2m bits - only m bits in result: one guard bit and the sticky bit

```
Output of multiplier module P: Bit position: (-1)0.123...(m-2)(m-1) m (m+1)...(2m-2)
```

2. Exponent of result

$$E_z = E_x + E_y - B$$

3. Sign of result

$$S_z = S_x \oplus S_y$$

cont.

4. Normalization:  $1 \le M_x, M_y < 2$ , the result in range [1,4)

Output of multiplier module P:

Bit position: 
$$(-1)0.123...(m-2)(m-1)$$
 m  $(m+1)...(2m-2)$ 

If P[-1]=0, P is normalized:

$$L = P[m-1], G = P[m], T = OR(P[m+1], ..., P[2m-2])$$

If P[-1] = 1, normalize P by shifting right one position

$$L = P[m-2], G = P[m-1], T = OR(P[m], ..., P[2m-2])$$

- 5. Rounding: four rounding modes with guard bit (G) and sticky bit (T)
  - Round to nearest

$$rnd = G(T) + G(T)'L = G(T + L)$$

with G and T the two bits following L AFTER the normalization.

- ullet Round toward zero Result after normalization truncated at bit L
- Round toward infinity positive infinity add

$$rnd = sgn'(G + T)$$

negative infinity

$$rnd = sgn(G + T)$$

- Overflow: exponent too large; detected after exponent update; overflow flag set; result value is ±infinity
- ullet Underflow: resulting exponent too small; underflow flag set; exponent set to E=0 significand shifted right to represent a denormal
- ullet Zero: when one of the operands has value 0 and the other is not  $\pm$  infinity;
  - zero result set

## EXCEPTIONS, SPECIAL VALUES, ETC. (cont.)

- Inexact: result inexact if, after normalization, G + T = 1
- ullet NAN: result NAN if one (or both) of the operands is a NAN or if one of the operands is a 0 and the other  $\pm$  infinity
- Denormals: result denormal if one or both operands are denormal; left shift necessary;
   if exponent underflow, right shift (gradual underflow); set E=0



Figure 8.12: ALTERNATIVE IMPLEMENTATION.

- ullet Compute MS half (+ guard bit) in conventional form using  $c_m$ ;  $c_m$  in the critical path
- Determine sticky from the operands; needs detector of trailing zeros, adder, and comparator

• Determine sticky from CS form of the LS half

$$z_i = (s_i \oplus c_i)'$$

$$t_i = s_{i+1} + c_{i+1}$$
(8.3)

Compute

$$w_i = z_i \oplus t_i \tag{8.4}$$

Sticky bit is

$$T = NAND(w_i) (8.5)$$

c\_m is the carry produced by
the least-significant m-2 bits of product P
and added in position m.

Figure 8.13: ADDING CARRY FROM THE LEAST SIGNIFICANT HALF.

Figure 8.14: ROUNDING POSITION: (a) NORMALIZED PRODUCT. (b) UNNORMALIZED PRODUCT.

#### ADDING CARRY AND ROUNDING

- Product in CS form normalized?
- Combine final addition and rounding. Select the correct result.
- PM = PS + PC the MS of the product up to position m
- Compute

$$P0 = PM + (c_m + 1) \times 2^{-m}$$

and

$$P1 = PM + (c_m + 2) \times 2^{-m}$$

and then select

$$P = \begin{cases} P0 & \text{if } P0[-1] = 0\\ 2^{-1}P1 & \text{if } P0[-1] = 1 \end{cases}$$

```
(-1) 0. 1 2 3 ... (m-2)(m-1)(m)
PS
       X
             X
                 X \quad X \quad X
                                X
                                       X
                                            X
PC
       X
             X
                X \quad X \quad X
                                X
                                       X
                                            X
                                       c_m c'_m <=> (c_m+1)2^(-m)
PS*
       X
                 X X X
                                X
                                       X
                                            X
PC*
       X
             X
                 X \quad X \quad X
                                X
                                       X
Get P0 and P1 = P0 + 2^{-m}:
PS*
       X
             X
                 X X X
                                       X
                                X
                                            X
PC*
                                            0
       X
                X X X
                                       X
             X
                                X
PO
      ovf
                X X X
             X
                                X
                                       X
                                            X
P1
       X
             X
                 X \quad X \quad X
                                X
                                       X
                                            X
After selection:
             1. x x x . . .
                                X
```

Figure 8.15: ADDING CARRY  $c_m$  AND ROUNDING.



Figure 8.16: ADDING CARRY, NORMALIZATION, AND ROUNDING IMPLEMENTATION

# IMPLEMENTATION (cont.)

- 1. A row of HAs and FAs to add  $(c_m + 1)2^{-m}$  to PS[-1, m] and PC[-1, m].
- 2. A compound adder that produces the sum P0 and the sum plus 1 (P1).
- 3. A multiplexer which selects P0 or the normalized (shifted) P1 depending whether P0 does not overflow or overflows
- 4. A module LADJ which determines the least-significant bit of the significand. sticky bit update:

$$T^* = T + P1[m] \cdot P0[-1]$$
 update sticky bit

adjustment of the least-significant bit

$$L = P[m-1](P[m] + T^*)$$

# REMOVING $c_m$ FROM CRITICAL PATH

| carry+sum   | range of $\Sigma$ | range        | pre-add | range of $\Sigma$ | range        |
|-------------|-------------------|--------------|---------|-------------------|--------------|
| in pos. $m$ | before pre-add    | of $c_{m-1}$ | 1?      | after pre-add     | of $c_{m-1}$ |
| 0           | [1,3]             | [0,1]        | NO      | [1,3]             | [0,1]        |
| 1           | [2,4]             | [1,2]        | YES     | [0,2]             | [0,1]        |
| 2           | [3,5]             | [1,2]        | YES     | [1,3]             | [0,1]        |



Figure 8.17: Adding carry, normalization, and rounding implementation with carry out of critical path.



Figure 8.18: BASIC IMPLEMENTATION OF MAF OPERATION.

```
----- m ----- 2m -----
Product x*y:
                         OOxx.xxxxx...xxxxxxxxx
Addend:
             |--- m-1+4 -----|
                     (a)
                           ----- 2m -----
Product x*y:
                           XX.XXXXX...XXXXXXXX
Addend:
                                            01xxxxxxxxxxxx
                             |--- 2m-2+1 -----|
Shift distance:
                      (b)
```

Figure 8.19: Position of addends using bidirectional shift: (a) Maximum left shift. (b) Maximum right shift.

- Position addend  $M_w$  m+3 bits to the left of the product
- shift right by the distance

$$d = E_x + E_y - E_w + m + 3 (8.6)$$

for biased exponent performed as

$$d = E_x^B + E_y^B - E_w^B - B + m + 3 (8.7)$$

ullet No shift performed for  $d \leq 0$  and the maximum shift is 3m+1

```
Initial position:
Product x*y:
                        00xxxxxxxx...xxxxxxxxxx
Addend:
            |--- m-1+4 -----|
                          |--- sticky -----|
                              region
                     (a)
Alignment when Exy = Ew:
            ----- m ----- 2m ------
                        OOxx.xxxxx....xxxxxxxxxxxx
Product x*y:
Addend:
                           |-sticky|
Shift distance: |--- m-1+4 -----|
                     (b)
```

```
Alignment when Exy - Ew = k:
             ----- m ----- 2m -----
                          00xx.xxxxx....xxxxxxx
Product x*y:
Addend:
                                         1xxxxxxxxxxxxx
Shift distance: |---- m+3 ----- k ----|
                      (c)
Alignment when Exy - Ew \geq 2m-1:
             ----- m ----- 2m -----
                           00xx.xxxxx....xxxxxxx
Product x*y:
Addend:
                                              01xxxxxxxxxxxxx
Shift distance: |---- m+3 -----| 2m-1 -----|
                      (d)
```

Figure 8.20: Alignment with right shifter.



Figure 8.21: Implementation of MAF adder.

| Adder output | m+2  2m                            |
|--------------|------------------------------------|
| Before shift | 00000000000000001.xxxxxxxxxxxxxxxx |
| After shift  | 1.xxxxxxxxxxLGRT                   |

Figure 8.22: Left shifting of the adder output.

- MAF unit usually pipelined.
- Three-stage pipeline:
  - Stage 1 implements the multiplication, alignment and 3-2 carry-save addition;
  - Stage 2 performs 2-1 addition and predicts the leading one in the sum;
  - Stage 3 performs normalization and rounding

ullet Operands: x and d represented by  $(M_x^*,\ E_x)$  and  $(M_d^*,\ E_d)$ , with  $M_x^*$  and  $M_d^*$  signed and normalized. The result

$$q = x/d (8.8)$$

represented by  $(M_q^*, E_q)$ , with  $M_q$  also signed and normalized.

- The high-level description of the floating-point division algorithm
  - 1. Divide significands and subtract exponents

$$M_q^* = M_x^* / M_d^*$$
 $E_q = E_x - E_d$  (8.9)

- 2. Normalize  ${\cal M}_q^*$  and update exponent
- 3. Round
- 4. Determine exception flags and special values



Figure 8.23: Basic implementation of floating-point division.