INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT107Dual JK flip-flop with reset; negative-edge trigger

Product specification
File under Integrated Circuits, IC06

December 1990

Dual JK flip-flop with reset; negative-edge trigger

74HC/HCT107

FEATURES

· Output capability: standard

I_{CC} category: flip-flops

GENERAL DESCRIPTION

The 74HC/HCT107 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT107 are dual negative-edge triggered JK-type flip-flops featuring individual J, K, clock (\overline{nCP}) and reset (\overline{nR}) inputs; also complementary Q and \overline{Q} outputs.

The J and K inputs must be stable one set-up time prior to the HIGH-to-LOW clock transition for predictable operation.

The reset $(n\overline{R})$ is an asynchronous active LOW input. When LOW, it overrides the clock and data inputs, forcing the Q output LOW and the \overline{Q} output HIGH.

Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times.

QUICK REFERENCE DATA

 $GND = 0 \text{ V}; T_{amb} = 25 \, ^{\circ}\text{C}; t_r = t_f = 6 \text{ ns}$

SYMBOL	PARAMETER	CONDITIONS	TYP	LINUT	
	PARAMETER	CONDITIONS	НС	нст	UNIT
t _{PHL} / t _{PLH}	propagation delay				
	nCP to nQ		16	16	ns
	nCP to nQ	$C_L = 15 \text{ pF};$ $V_{CC} = 5 \text{ V}$	16	18	ns
	$n\overline{R}$ to nQ , $n\overline{Q}$	ACC = 2 A	16	17	ns
f _{max}	maximum clock frequency		78	73	MHz
Cı	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per flip-flop	notes 1 and 2	30	30	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$
 where:

f_i = input frequency in MHz

fo = output frequency in MHz

 $\sum (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs}$

C_L = output load capacitance in pF

V_{CC} = supply voltage in V

2. For HC the condition is V_I = GND to V_{CC} For HCT the condition is V_I = GND to V_{CC} – 1.5 V.

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

Dual JK flip-flop with reset; negative-edge trigger

74HC/HCT107

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1, 8, 4, 11	1J, 2J, 1K, 2K	synchronous inputs; flip-flops 1 and 2
2, 6	1\overline{Q}, 2\overline{Q}	complement flip-flop outputs
3, 5	1Q, 2Q	true flip-flop outputs
7	GND	ground (0 V)
12, 9	1 CP , 2 CP	clock input (HIGH-to-LOW, edge-triggered)
13, 10	1R, 2R	asynchronous reset inputs (active LOW)
14	V _{CC}	positive supply voltage

Dual JK flip-flop with reset; negative-edge trigger

74HC/HCT107

FUNCTION TABLE

OPERATING MODE		IN	OUTPUTS			
		nCP	J	K	Q	Q
asynchronous reset	L	Х	Х	Х	L	Н
toggle	H	↓	h	h	q	q
load "0" (reset)	Н	\downarrow	1	h	L	Н
load "1" (set)	Н	\downarrow	h	1	Н	L
hold "no change"	Н	\downarrow	I	1	q	-

Note

- 1. H = HIGH voltage level
 - h = HIGH voltage level one set-up time prior to the HIGH-to-LOW CP transition
 - L = LOW voltage level
 - I = LOW voltage level one set-up time prior to the HIGH-to-LOW CP transition
 - q = lower case letters indicate the state of the referenced output one set-up time prior to the HIGH-to-LOW CP transition
 - X = don't care
 - \downarrow = HIGH-to-LOW CP transition

Dual JK flip-flop with reset; negative-edge trigger

74HC/HCT107

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard I_{CC} category: flip-flops

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

			7	Γ _{amb} (°		TEST CONDITIONS					
SYMBOL	PARAMETER		74HC								WAVEFORMS
		+25			-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(*)	
t _{PHL} / t _{PLH}	propagation delay nCP to nQ		52 19 15	160 32 27		200 40 34		240 48 41	ns	2.0 4.5 6.0	Fig.6
t _{PHL} / t _{PLH}	propagation delay nCP to nQ		52 19 15	160 32 27		200 40 34		240 48 41	ns	2.0 4.5 6.0	Fig.6
t _{PHL} / t _{PLH}	propagation delay nR to nQ, nQ		52 19 15	155 31 26		195 39 33		235 47 40	ns	2.0 4.5 6.0	Fig.7
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Fig.6
t _W	clock pulse width HIGH or LOW	80 16 14	22 8 6		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.6
t _W	reset pulse width LOW	80 16 14	22 8 6		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.7
t _{rem}	removal time nR to nCP	60 12 10	19 7 6		75 15 13		90 18 15		ns	2.0 4.5 6.0	Fig.7
t _{su}	set-up time nJ, nK to nCP	100 20 17	22 8 6		125 25 21		150 30 26		ns	2.0 4.5 6.0	Fig.6
t _h	hold time nJ, nK to nCP	3 3 3	-6 -2 -2		3 3 3		3 3 3		ns	2.0 4.5 6.0	Fig.6
f _{max}	maximum clock pulse frequency	6.0 30 35	23 70 85		4.8 24 28		4.0 20 24		MHz	2.0 4.5 6.0	Fig.6

Dual JK flip-flop with reset; negative-edge trigger

74HC/HCT107

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard I_{CC} category: flip-flops

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
nK	0.60
nR	0.65
n CP , nJ	1.00

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_f = t_f = 6 ns; C_L = 50 pF$

SYMBOL	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
		74HCT									
		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(-,	
t _{PHL} / t _{PLH}	propagation delay nCP to nQ		19	36		45		54	ns	4.5	Fig.6
t _{PHL} / t _{PLH}	propagation delay nCP to nQ		21	36		45		54	ns	4.5	Fig.6
t _{PHL} / t _{PLH}	propagation delay nR to nQ, nQ		20	38		48		57	ns	4.5	Fig.7
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.6
t _W	clock pulse width HIGH or LOW	16	9		20		24		ns	4.5	Fig.6
t _W	reset pulse width LOW	20	11		25		30		ns	4.5	Fig.7
t _{rem}	removal time nR to nCP	14	8		18		21		ns	4.5	Fig.7
t _{su}	set-up time nJ, nK to nCP	20	7		25		30		ns	4.5	Fig.6
t _h	hold time nJ, nK to nCP	5	-2		5		5		ns	4.5	Fig.6
f _{max}	maximum clock pulse frequency	30	66		24		20		MHz	4.5	Fig.6

Dual JK flip-flop with reset; negative-edge trigger

74HC/HCT107

AC WAVEFORMS

Fig.6 Waveforms showing the clock (\overline{nCP}) to output (\overline{nQ} , \overline{nQ}) propagation delays, the clock pulse width, the J and K to \overline{nCP} set-up and hold times, the output transition times and the maximum clock pulse frequency.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.