Chemistry

Formula and data book

Formulas

Processing of data

Absolute uncertainty of the mean $\Delta \bar{x} = \pm \frac{(x_{\text{max}} - x_{\text{min}})}{2}$

Percentage uncertainty (%) = $\frac{\text{absolute uncertainty}}{\text{measurement}} \times \frac{100}{1}$

Percentage error (%) = $\left| \frac{\text{measured value} - \text{true value}}{\text{true value}} \right| \times 100$

Chemical reactions — reactants, products and energy change

 $\triangle H = H_{\text{(products)}} - H_{\text{(reactants)}}$

 $\triangle H = \Sigma(\text{bonds broken}) - \Sigma(\text{bonds formed})$

 $Q = mc\Delta T$

Percentage yield (%) = $\frac{\text{experimental yield}}{\text{theoretical yield}} \times \frac{100}{1}$

Aqueous solutions and acidity

Molarity = $\frac{\text{moles of solute } (n)}{\text{volume of solution } (V)}$

Chemical equilibrium systems

 $K_c = \frac{[C]^c}{[A]^a} \frac{[D]^d}{[B]^b}$ for the reaction: $aA + bB \rightleftharpoons cC + dD$

 $K_{\rm w} = [{\rm H^+}][{\rm OH^-}]$

 $pH = -\log_{10}[H^+]$

 $pOH = -\log_{10}[OH^-]$

 $K_{\rm w} = K_{\rm a} \times K_{\rm b}$

 $K_{\rm a} = \frac{[{\rm H}_3{\rm O}^+][{\rm A}^-]}{[{\rm HA}]}$

 $K_{\rm b} = \frac{[\rm BH^+][\rm OH^-]}{[\rm B]}$

Physical constants and unit conversions

Physical constants and unit conversions							
Absolute zero	0 K = -273 °C						
Atomic mass unit	$1 \text{ amu} = 1.66 \times 10^{-27} \text{ kg}$						
Avogadro's constant	$N_{\rm A} = 6.02 \times 10^{23} \rm mol^{-1}$						
Ideal gas constant	$R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$						
Ionic product constant for water (at 298 K)	$K_{\rm w} = 1.00 \times 10^{-14} \rm mol^2 dm^{-6}$						
Molar volume of an ideal gas (at STP)	$2.27 \times 10^{-2} \text{ m}^3 \text{ mol}^{-1} = 22.7 \text{ dm}^3 \text{ mol}^{-1}$						
Specific heat capacity of water (at 298 K)	$c_{\rm w} = 4.18 \text{ J g}^{-1} \text{ K}^{-1}$						
Standard temperature and pressure (STP)	273 K and 100 kPa						
Volume and capacity conversions	$1 \text{ dm}^3 = 1 \times 10^{-3} \text{ m}^3 = 1 \times 10^3 \text{ cm}^3 = 1 \text{ L}$						

List of elements

Name	Atomic no.	Symbol		
Hydrogen	1	Н		
Helium	2	Не		
Lithium	3	Li		
Beryllium	4	Be		
Boron	5	В		
Carbon	6	C		
Nitrogen	7	N		
Oxygen	8	О		
Fluorine	9	F		
Neon	10	Ne		
Sodium	11	Na		
Magnesium	12	Mg		
Aluminium	13	Al		
Silicon	14	Si		
Phosphorus	15	P		
Sulfur	16	S		
Chlorine	17	C1		
Argon	18	Ar		
Potassium	19	K		
Calcium	20	Ca		
Scandium	21	Sc		
Titanium	22	Ti		
Vanadium	23	V		
Chromium	24	Cr		
Manganese	25	Mn		
Iron	26	Fe		
Cobalt	27	Co		
Nickel	28	Ni		
Copper	29	Cu		
Zinc	30	Zn		

Name	Atomic no.	Symbol
Gallium	31	Ga
Germanium	32	Ge
Arsenic	33	As
Selenium	34	Se
Bromine	35	Br
Krypton	36	Kr
Rubidium	37	Rb
Strontium	38	Sr
Yttrium	39	Y
Zirconium	40	Zr
Niobium	41	Nb
Molybdenum	42	Mo
Technetium	43	Tc
Ruthenium	44	Ru
Rhodium	45	Rh
Palladium	46	Pd
Silver	47	Ag
Cadmium	48	Cd
Indium	49	In
Tin	50	Sn
Antimony	51	Sb
Tellurium	52	Te
Iodine	53	I
Xenon	54	Xe
Cesium	55	Cs
Barium	56	Ba
Lanthanum	57	La
Cerium	58	Ce
Praseodymium	59	Pr
Neodymium	60	Nd

Name	Atomic no.	Symbol		
Promethium	61	Pm		
Samarium	62	Sm		
Europium	63	Eu		
Gadolinium	64	Gd		
Terbium	65	Tb		
Dysprosium	66	Dy		
Holmium	67	Но		
Erbium	68	Er		
Thulium	69	Tm		
Ytterbium	70	Yb		
Lutetium	71	Lu		
Hafnium	72	Hf		
Tantalum	73	Ta		
Tungsten	74	W		
Rhenium	75	Re		
Osmium	76	Os		
Iridium	77	Ir		
Platinum	78	Pt		
Gold	79	Au		
Mercury	80	Hg		
Thallium	81	T1		
Lead	82	Pb		
Bismuth	83	Bi		
Polonium	84	Po		
Astatine	85	At		
Radon	86	Rn		
Francium	87	Fr		
Radium	88	Ra		
Actinium	89	Ac		
Thorium	90	Th		

Name	Atomic no.	Symbol		
Protactinium	91	Pa		
Uranium	92	U		
Neptunium	93	Np		
Plutonium	94	Pu		
Americium	95	Am		
Curium	96	Cm		
Berkelium	97	Bk		
Californium	98	Cf		
Einsteinium	99	Es		
Fermium	100	Fm		
Mendelevium	101	Md		
Nobelium	102	No		
Lawrencium	103	Lr		
Rutherfordium	104	Rf		
Dubnium	105	Db		
Seaborgium	106	Sg		
Bohrium	107	Bh		
Hassium	108	Hs		
Meitnerium	109	Mt		
Darmstadtium	110	Ds		
Roentgenium	111	Rg		
Copernicium	112	Cn		
Nihonium	113	Nh		
Flerovium	114	Fl		
Moscovium	115	Мс		
Livermorium	116	Lv		
Tennessine	117	Ts		
Oganesson	118	Og		

Periodic table of the elements

1	7					_										,	18
\mathbf{H}^{1}			1← Atomic number								He ²						
1.01	2				H←	Syn	nbol					13	14	15	16	17	4.00
3					1.01←	Rel	ative atom	ic mass*				5	6	7	8	9	10
Li 6.94	Be 9.01					_						B	C 12.01	N 14.01	O 16.00	F 19.00	Ne 20.18
11	12										,	13	14	15	16	17	18
Na	Mg											Al	Si	P	\mathbf{S}	Cl	Ar
22.99	24.31	3	4	5	6	7	8	9	10	11	12	26.98	28.09	30.97	32.06	35.45	39.95
K 19	Ca 20	Sc 21	Ti 22	\mathbf{V}^{23}	Cr ²⁴	25 Mn	Fe 26	\mathbf{Co}^{27}	Ni 28	Cu ²⁹	Zn 30	Ga 31	Ge ³²	$\mathbf{A}\mathbf{s}^{33}$	Se 34	Br 35	Kr 36
39.10	40.08	44.96	47.87	V 50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.63	74.92	78.97	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.47	87.62	88.91	91.22	92.91	95.95	(98.91)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55		57–71	72	73	74	75	76	77	78	79	80	81	82	83	B 84	85	B 86
Cs	Ba	Lanthanoids	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.91	137.33		178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(210.0)	(210.0)	(222.0)
Fr 87	Ra 88	89–103	104 Rf	Db	106 Sa	107 Bh	108 Hs	109 Mt	$\mathbf{D_s}^{110}$	111 D a	Cn 112	113 Nh	114 Fl	115 Mc	116 Lv	$\mathbf{T_{S}}^{117}$	118
(223.0)	(226.1)	Actinoids	(261.1)	(262.1)	Sg (263.1)	(264.1)	(265.1)	(268)	(281)	Rg	(285)	(284)	(289)	(288)	(293)	(294)	Og (294)
(223.0)	(220.1)	 	(201.1)	(202.1)	(203.1)	(204.1)	(203.1)	(200)	(201)	(272)	(203)	(204)	(20)	(200)	(273)	(254)	(2)4)
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gď	Tb	Dy	Ho	Er	Tm	Yb	Lu
			138.91	140.12	140.91	144.24	(146.9)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.05	174.97
			89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
		\longrightarrow	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
			(227.0)	232.0	231.0	238.0	(237.0)	(239.1)	(241.1)	(244.1)	(249.1)	(252.1)	(252.1)	(252.1)	(258.1)	(259.1)	(262.1)

Groups are numbered according to IUPAC convention 1–18.

^{*}Values in brackets are for the isotope with the longest half-life.

Atomic and ionic radii of selected elements

1 H 32				Γ	Li←	Syn											18 He 37
208 (1-)	2				130 ←		mic radius	(10^{-12}m)				13	14	15	16	17	
3	4				76 (1+) ₹		rge of ion					5	6	7	8	9	10
Li	Be				L	— Ioni	ic radius (1	0^{-12} m)				В	C	N	О	F	Ne
130 76 (1+)	99 45 (2+)											84 27 (3+)	75 16 (4+)	71 146 (3–)	64 140 (2-)	60 133 (1–)	62
Na 11	\mathbf{Mg}^{12}											Al 13	Si 14	P 15	S 16	Cl ¹⁷	Ar 18
160	140											124	114	109	104	100	101
102 (1+)	72 (2+)	3	4	5	6	7	8	9	10	11	12	53 (3+)	40 (4+)	38 (5+)	184 (2-)	181 (1-)	
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
200 138 (1+)	174 100 (2+)	159 75 (3+)	148 86 (2+) 61 (4+)	144 79 (2+) 54 (5+)	130 62 (3+) 44 (6+)	129 83 (2+) 64 (3+)	124 78 (2+) 64 (3+)	118 74 (2+) 61 (3+)	117 69 (2+) 60 (3+)	122 77 (1+) 73 (2+)	120 74 (2+)	123 62 (3+)	120 53 (4+) 272 (4-)	120 58 (3+) 46 (5+)	118 198 (2–)	117 196 (1–)	116
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
215	190	176	164	156	148	138	136	134	130	136	140	142	140	140	137	136	136
152 (1+)	118 (2+)	90 (3+)	72 (4+)	64 (5+)	65 (4+)	65 (4+)	62 (4+)	67 (3+)	86 (2+)	115 (1+)	95 (2+)	80 (3+)	69 (4+)	76 (3+)	221 (2-)	220 (1-)	
Cs 55	Ba 56		l														

Groups are numbered according to IUPAC convention 1–18.

238

167 (1+)

206

135 (2+)

Electronegativities and first ionisation energies of selected elements

1																	18
1			1 Atomic number										He 2				
H 2.2					H←	- Syn	nbol										пе
1318	2				2.2 ←	H Elec	ctronegativ	rity				13	14	15	16	17	2379
J . 3	D 4				1310 ←			n enthalpies	5			D 5	\mathbf{c}^{6}	7	8	F 9	10
Li	Be					— (kJ	mol ⁻¹)					B 2.0	2.6	N 3.0	O 3.4	F 4.0	Ne
526	906											807	1093	1407	1320	1687	2087
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
0.9 502	1.3 744	3	4	5	6	7	8	9	10	11	12	1.6 584	1.9 793	2.2 1018	2.6 1006	3.2 1257	1527
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
0.8	1.0	1.4	1.5	1.6	1.7	1.6	1.8	1.9	1.9	1.9	1.7	1.8	2.0	2.2	2.6	3.0	2.9
425	596	637	664	656	659	724	766	765	743	752	913	585	768	953	947	1146	1357
Rb 37	Sr 38	V 39	Z r ⁴⁰	Nb 41	\mathbf{Mo}^{42}	Tc 43	Ru ⁴⁴	Rh 45	Pd ⁴⁶	47	Cd ⁴⁸	49 In	Sn 50	\mathbf{Sb}^{51}	Te 52	53 T	Xe 54
0.8	1.0	1.2	1.3	1.6	2.2	1.9	Nu 2.2	2.3	2.2	Ag	1.7	In 1.8	2.0	2.1	2.1	2.7	2.6
409	556	606	666	670	691	708	717	726	811	737	874	565	715	840	876	1015	1177
55	56					1							ı.		L	1	
Cs	Ba																

Groups are numbered according to IUPAC convention 1–18.

0.8

0.9 509

Solubility of selected compounds at 298 K

	bromide	carbonate	chloride	hydroxide	iodide	nitrate	oxide	phosphate	sulfate
aluminium	s	_	S	i	s	S	i	i	s
ammonium	S	S	S	S	s	S	_	S	s
barium	s	i	s	S	s	s	s	i	i
calcium	S	i	S	p	S	S	р	i	p
cobalt(II)	s	i	s	i	s	s	i	i	S
copper(II)	S	_	S	i	i	S	i	i	S
iron(II)	S	i	S	i	S	S	i	i	S
iron(III)	s	_	s	i	s	s	i	i	S
lead(II)	p	i	S	i	i	S	i	i	i
lithium	S	S	S	S	S	S	S	_	S
magnesium	s	i	s	i	s	S	i	p	S
manganese(II)	S	i	S	i	S	S	i	p	S
potassium	S	S	S	S	s	s	s	S	S
silver	i	i	i	i	i	S	i	i	p
sodium	S	S	S	S	S	S	S	S	S
zinc	S	i	s	i	s	s	i	i	S

Key:

Abbreviation	explanation
S	soluble in water (solubility greater than 10 g L ⁻¹)
p	partially soluble in water (solubility between 1 and 10 g L ⁻¹)
i	insoluble in water (solubility less than 1 g L ⁻¹)
_	no data

Average bond enthalpies at 298 K

Single bonds

		$\Delta H (\mathrm{kJ \; mol^{-1}})$										
	Н	C	N	0	F	S	Cl	Br	I			
Н	436											
C	414	346										
N	391	286	158									
О	463	358	214	144								
F	567	492	278	191	159							
S	364	289			327	266						
Cl	431	324	192	206	255	271	242					
Br	366	285		201	249	218	219	193				
I	298	228		201	280		211	178	151			

Multiple bonds

Bond	ΔH (kJ mol ⁻¹)
C=C	614
C≡C	839
C=N	615
C≡N	890
C=O	804
N=N	470
N≡N	945
0=0	498

Reactivity series of metals

Element	Reactivity
K	most reactive
Na	\uparrow
Li	
Ba	
Sr	
Ca	
Mg	
Al	
C*	
Mn	
Zn	
Cr	
Fe	
Cd	
Со	
Ni	
Sn	
Pb	
H ₂ *	
Sb	
Bi	
Cu	
Hg	
Ag	
Au	
Pt	least reactive

^{*} Carbon (C) and hydrogen gas (H₂) added for comparison

Standard electrode potentials at 298 K

Oxidised species Reduced species	E°
	(V)
$Li^+(aq) + e^- \rightleftharpoons Li(s)$	-3.04
$K^+(aq) + e^- \rightleftharpoons K(s)$	-2.94
$Ba^{2+}(aq) + 2e^{-} \rightleftharpoons Ba(s)$	-2.91
$Ca^{2+}(aq) + 2e^{-} \rightleftharpoons Ca(s)$	-2.87
$Na^+(aq) + e^- \rightleftharpoons Na(s)$	-2.71
$Mg^{2+}(aq) + 2e^- \rightleftharpoons Mg(s)$	-2.36
$Al^{3+}(aq) + 3e^{-} \rightleftharpoons Al(s)$	-1.68
$Mn^{2+}(aq) + 2e^- \rightleftharpoons Mn(s)$	-1.18
$2H_2O(l) + 2e^- \Rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$Zn^{2+}(aq) + 2e^- \rightleftharpoons Zn(s)$	-0.76
$Fe^{2+}(aq) + 2e^- \rightleftharpoons Fe(s)$	-0.44
$Ni^{2+}(aq) + 2e^- \rightleftharpoons Ni(s)$	-0.24
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2\operatorname{e}^- \rightleftharpoons \operatorname{Sn}(\operatorname{s})$	-0.14
$Pb^{2+}(aq) + 2e^- \rightleftharpoons Pb(s)$	-0.13
$2H^{+}(aq) + 2e^{-} \rightleftharpoons H_{2}(g)$	0.00
$Cu^{2+}(aq) + e^- \rightleftharpoons Cu^+(aq)$	+0.16
$SO_4^{2-}(aq) + 4H^+(aq) + 2e^- \Rightarrow SO_2(aq) + 2H_2O(l)$	+0.16
$Cu^{2+}(aq) + 2e^- \rightleftharpoons Cu(s)$	+0.34
$O_2(g) + 2H_2O(l) + 4e^- \rightleftharpoons 4OH^-(aq)$	+0.40
$Cu^+(aq) + e^- \rightleftharpoons Cu(s)$	+0.52
$I_2(s) + 2e^- \rightleftharpoons 2I^-(aq)$	+0.54
$Fe^{3+}(aq) + e^{-} \rightleftharpoons Fe^{2+}(aq)$	+0.77
$Ag^{+}(aq) + e^{-} \rightleftharpoons Ag(s)$	+0.80
$Br_2(l) + 2e^- \rightleftharpoons 2Br^-(aq)$	+1.08
$O_2(g) + 4H^+(aq) + 4e^- \rightleftharpoons 2H_2O(l)$	+1.23
$Cl_2(g) + 2e^- \rightleftharpoons 2Cl^-(aq)$	+1.36
$\text{Cr}_2\text{O}_7^{2-}(\text{aq}) + 14\text{H}^+(\text{aq}) + 6\text{e}^- \Rightarrow 2\text{Cr}^{3+}(\text{aq}) + 7\text{H}_2\text{O}(\text{l})$	+1.36
$MnO_4^-(aq) + 8H^+(aq) + 5e^- \rightleftharpoons Mn^{2+}(aq) + 4H_2O(l)$	+1.51
$F_2(g) + 2e^- \rightleftharpoons 2F^-(aq)$	+2.89

Glucose and fructose: straight chain and α -ring forms

$$\begin{array}{c} CHO \\ H-C-OH \\ HO-C-H \\ H-C-OH \\ H-C-OH \\ CH_2OH \end{array} = \begin{array}{c} CH_2OH \\ H \\ OH \\ H \end{array} = \begin{array}{c} CH_2OH \\ OH \\ H \end{array} = \begin{array}{c} CH_2OH \\ OH \\ H \end{array} = \begin{array}{c} CH_2OH \\ OH \\ OH \end{array}$$

Straight chain D-glucose

 α -D-glucose

Straight chain D-fructose

 α -D-fructose

Common amino acids

Common name (symbol)	Structural formula	pH of isoelectric point	Common name (symbol)	Structural formula	pH of isoelectric point
	H O I II H ₂ N - C - C - OH CH ₃	6.1	Arginine (Arg)	H O I II H ₂ N - C - C - OH CH ₂ CH ₂ CH ₂ CH ₂ NH C = NH NH ₂	10.7
Asparagine (Asn)	H O I II O O O O O O O O O O O O O O O O	5.4	Aspartic acid (Asp)	H O I II H ₂ N - C - C - OH CH ₂ C = O OH	3.0
Cysteine (Cys)	H O I II H ₂ N - C - C - OH I CH ₂ I SH	5.1	Glutamic acid (Glu)	OH	3.2
Glutamine (Gln)	H O I II H ₂ N-C-C-OH CH ₂ CH ₂ CCH ₂ C C=O I NH ₂	5.7	Glycine (Gly)	H O I II H ₂ N - C - C - OH H	6.1
Histidine (His)	H O I II CH ₂ N	7.6	Isoleucine (Ile)	H O I II H ₂ N - C - C - OH CHCH ₃ CH ₂ CH ₂ CH ₃	6.0

Continued on next page.

Common name (symbol)	Structural formula	pH of isoelectric point	Common name (symbol)	Structural formula	pH of isoelectric point
Leucine (Leu)	H O I II H ₂ N - C - C - OH CH ₂ CHCH ₃ CH ₃	6.0	Lysine (Lys)	H O I II H ₂ N - C - C - OH CH ₂ NH ₂	9.7
Methionine (Met)	H O I II H ₂ N - C - C - OH CH ₂ CH ₂ S I CH ₃	5.7	Phenylalanine (Phe)	H ₂ N - C - C - OH CH ₂	5.7
Proline (Pro)	O C-OH HN	6.3	Serine (Ser)	H O I II H ₂ N-C-C-OH CH ₂ OH	5.7
Threonine (Thr)	H O I II H ₂ N - C - C - OH CHOH CH ₃	5.6	Tryptophan (Trp)	H O H ₂ N-C-C-OH CH ₂	5.9
Tyrosine (Try)	H O I II H O I II H O I I I I I I I I I	5.7	Valine (Val)	H O I II H ₂ N-C-C-OH CHCH ₃ CH ₃	6.0

Acid-base indicators

Name	pKa	pH range of colour change	Colour change (acidic to basic)
Methyl orange	3.7	3.1–4.4	red to yellow
Bromophenol blue	4.2	3.0–4.6	yellow to blue
Bromocresol green	4.7	3.8–5.4	yellow to blue
Methyl red	5.1	4.4–6.2	pink to yellow
Bromothymol blue	7.0	6.0–7.6	yellow to blue
Phenol red	7.9	6.8–8.4	yellow to red
Phenolphthalein	9.6	8.3–10.0	colourless to pink

Infrared data

Characteristic range of infrared absorption due to stretching in organic molecules.

Bond	Organic molecules	Wavelength (cm ⁻¹)
C-I	iodoalkanes	490–620
C-Br	bromoalkanes	500–600
C-Cl	chloroalkanes	600–800
С-F	fluoroalkanes	1000–1400
С-О	alcohol, ester	1050–1410
C=C	alkenes	1620–1680
C=O	aldehydes, carboxylic acid, ester, ketones	1700–1750
C≡C	alkynes	2100–2260
О-Н	carboxylic acids (hydrogen-bonded)	2500–3000
С-Н	alkanes, alkenes, alkynes, aldehydes, amides	2720–3100
О-Н	alcohol (hydrogen-bonded)	3200–3600
N-H	amines	3300–3500

Formulas and charges for common polyatomic ions

	Anions	
acetate (ethanoate)	CH ₃ COO ⁻ or C ₂ H ₃ O ₂ ⁻	
carbonate	CO ₃ ²⁻	
chlorate	ClO ₃ ⁻	
chlorite	ClO ₂ -	
chromate	CrO ₄ ²⁻	
citrate	C ₆ H ₅ O ₇ ³⁻	
cyanide	CN-	
dichromate	Cr ₂ O ₇ ²⁻	
dihydrogen phosphate	H ₂ PO ₄ ⁻	
hypochlorite	C10-	
hydrogen carbonate	HCO ₃ -	
hydrogen sulfate	HSO ₄ ⁻	
hydrogen phosphate	HPO ₄ ²⁻	
hydroxide	OH-	
nitrate	NO ₃ -	
nitrite	NO ₂ -	
perchlorate	ClO ₄ ⁻	
permanganate	MnO ₄ ⁻	
peroxide	022-	
phosphate	PO ₄ ³⁻	
sulfate	SO ₄ ²⁻	
sulfite	SO ₃ ²⁻	
thiosulfate	S ₂ O ₃ ²⁻	

Cations		
ammonium	NH ₄ ⁺	
hydronium	H ₃ O ⁺	

References

Aylward, G and Findlay, T 2008, SI Chemical Data, 5th ed, John Wiley & Sons, Brisbane.

Haynes, WM (ed) 2016, CRC Handbook of Chemistry and Physics, 97th ed, CRC Press, Boca Raton, US.