Am29116A/Am29L116A/Am29116

High-Performance 16-Bit Bipolar Microprocessors

DISTINCTIVE CHARACTERISTICS

- Optimized for High-Performance Controllers
 Excellent solution for applications requiring speed and bit-manipulation power.
- Fast
 The Am29116 supports 100-ns microcycle time/10-MHz data rate for all instructions.
- Speed-Enhanced Version
 The Am29116A is 25% faster than the Am29116.
- Low-Power Version The Am29L116A is the same speed as the Am29116 and dissipates 25% less power.
- Powerful Field Insertion/Extraction and Bit-Manipulation Instructions
 Rotate and Merge, Rotate and Compare and bit-manipulation instructions provided for complex bit
- Immediate Instruction Capability
 May be used for storing constants in microcode or for configuring a second data port.
- 16-Bit Barrel Shifter
- 32-Working Registers

GENERAL DESCRIPTION

The Am29116 is a microprogrammable 16-bit bipolar microprocessor whose architecture and instruction set is optimized for high-performance peripheral controllers, like graphics controllers, disk controllers, communications controllers, front-end concentrators and modems. The device also performs well in microprogrammed processor applications, especially when combined with the Am29517, 16 x 16 Multiplier (65-ns worst-case 16 x 16 multiply). In addition to its complete arithmetic and logic instruction set, the Am29116 instruction set contains functions particularly useful in controller applications; bit set, bit reset, bit test, rotate and merge, rotate and compare, and cyclic-redundancy-check (CRC) generation.

2439

AMD

RELATED PRODUCTS

Part No.	Description						
Am29112	High-Performance 8-Bit Slice Microprogram Sequencer						
Am29C116	CMOS Version of the Am29116						
Am29117	Two-Port Version of the Am29116						
Am29C117	CMOS Version of the Am29117						
Am29118	Eight-Bit Am29116 I/O Support						

CONNECTION DIAGRAMS Top View

Note: Pin 1 is marked for orientation.

*On the current bipolar devices, pin 12 is not connected (NC) internally. Historically, this pin was connected. CMOS options of the Am29116 currently use this pin for an internal V_{CC} connection.

LOGIC SYMBOL

GND = Ground

VCC AND GROUND PIN CONNECTIONS TOP VIEW 2 50 ● ē Isolation Cut • 49 in V_{CC} Plane 46 ● 45 • 44 . 43 • 42 • 41 0 40 O • 13 39 • • 14 • 15 • 16 38 ● 37 • 17 36 ● • 18 • 19 • 20 35 ● 34 • • 21 32 • • 22 • 23 31 • 30 • 29 • ● 24

28

27 •

● 25

= Through Hole

O = VCC Plane Connection

 $C_1 = C_3 = 0.1 \mu F$

 $C_2 = C_4 = 10 \mu F$

CD010201

The Am29116 Family of microprocessors consists of high-performance devices that operate in an environment of fast signal rise times and substantial switching currents. Attention must be paid to layout and decoupling to avoid undesired effects from this environment. The following suggestions may be of benefit in developing the layout scheme:

1. A multi-layer PC board with separate power, ground, and signal planes required for Schottky performance-level systems.

2. Tie the four ground pins immediately to the ground plane.

3. A U-shaped isolation cut should be made in the V_{CC} plane between pins 12 and 13 and pins 40 and 41. This isolation cut establishes a low-pass network that will provide sufficient inductive isolation between pin 40 (which supplies the TTL output drivers) and pin 41 (which supplies the internal ECL) so that transient currents will have no effect on the internal operation.

4. Pin 40 must be tied directly to the V_{CC} plane and decoupled with a bulk capacitor (10 μF) and a high-frequency capacitor (0.1 µF ceramic).

5. Pin 41 must be tied directly to the V_{CC} plane and decoupled with 0.1 μF and 10 μF capacitors.

6. The decoupling capacitors must be placed physically as close as possible to pin 40 and pin 41 respectively.

METALLIZATION AND PAD LAYOUTS

Am29116

Die Size: 0.251" x 0.311" Gate Count: 2500 Equivalent Gates

Am29116A/Am29L116A

Die Size: 0,205" x 0.250" Gate Count: 2500 Equivalent Gates

ORDERING INFORMATION

Standard Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of: **A. Device Number**

- B. Speed Option (if applicable)
- C. Package Type
- D. Temperature Range
- E. Optional Processing

Am29116A High-Speed, High-Performance 16-Bit MPU Am29L116A Low-Power, High-Performance 16-Bit MPU

High-Performance 16-Bit MPU

Notes: 1. 52-pin DIP without heat sink (TDX052) is available only for the Am29L116A Low-Power, High-Performance MPU.

Am29116

Valid Combinations								
AM29116, AM29116A	DC, DCB,							
AM29L116A (Note 1)	LC, XC							

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations, to check on newly released valid combinations, and to obtain additional data on AMD's standard military grade products.

ORDERING INFORMATION

APL and CPL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883C requirements. CPL (Controlled Products List) products are processed in accordance with MIL-STD-883C, but are inherently non-compliant because of package, solderability, or surface treatment exceptions to those specifications. The order number (Valid Combination) is formed by a combination of:

- B. Speed Option (if applicable)
- C. Device Class
- D. Package Type
- E. Lead Finish

CPL Products: A. Device Number

- B. Speed Option (if applicable)
- C. Package Type
- D. Temparature Range
- E. CPL Status

APL Products

CPL Products

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check for newly released valid combinations.

Group A Tests

Group A Tests consists of Subgroups: 1, 2, 3, 7, 8, 9, 10, 11

PIN DESCRIPTION

Y₀ - Y₁₅ Data I/O Lines — 16 (Input/Output)

When $\overline{\text{OE}}_{Y}$ is HIGH, Y₀-Y₁₅ are used as external data inputs which allow data to be directly loaded into the 16-bit data latch. Having $\overline{\text{OE}}_{Y}$ LOW allows the ALU data to be output on Y₀-Y₁₅.

DLE Data Latch Enable (Input)

When DLE is HIGH, the 16-bit data latch is transparent and is latched when DLE is LOW.

OEv Output Enable (Input)

When \overline{OE}_Y is HIGH, the 16-bit Y outputs are disabled (high-impedance); when \overline{OE}_Y is LOW, the 16-bit Y outputs are enabled (HIGH or LOW).

l₀-l₁₅ Instruction Inputs — 16 (Input)

Used to select the operations to be performed in the Am29116. Also used as data inputs while performing immediate instructions.

IEN Instruction Enable (Input)

With IEN LOW, data can be written into the RAM when the clock is LOW. The Accumulator can accept data during the LOW-HIGH transition of the clock. Having IEN LOW, the Status Register can be updated when SRE is LOW. With IEN HIGH, the conditional test output, CT, is disabled as a function of the instruction inputs. IEN should be LOW for the first half of the first cycle of an immediate instruction.

SRE Status Register Enable (Input)

When $\overline{\rm SRE}$ and $\overline{\rm IEN}$ are both LOW, the Status Register is updated at the end of all instructions with the exception of

NO-OP, Save Status, and Test Status. Having either SRE or IEN HIGH will inhibit the Status Register from changing.

P Clock Pulse (Input)

The clock input to the Am29116. The RAM latch is transparent when the clock is HIGH. When the clock goes LOW, the RAM output is latched. Data is written into the RAM during the low period of the clock provided $\overline{\text{IEN}}$ is LOW and if the instruction being executed designates the RAM as the destination of operation. The Accumulator and Status Register will accept data on the LOW-HIGH transition of the clock if $\overline{\text{IEN}}$ is also LOW. The instruction latch becomes transparent when it exits an immediate instruction mode during a LOW-HIGH transition of the clock.

T₁-T₄ Input/Output Pins — 4 (Input/Output)

Under the control of OE_T , the four lower status bits Z, C, N, OVR become outputs on T_1 - T_4 , respectively when OE_T goes HIGH. When OE_T is LOW, T_1 - T_4 are used as inputs to generate the CT output.

OE_T Output Enable (Input)

When OE_T is LOW, the 4-bit T outputs are disabled (high-impedance); when OE_T is HIGH, the 4-bit T outputs are enabled (HIGH or LOW).

CT Conditional Test (Output)

The condition code multiplexer selects one of the twelve condition code signals and places them on the CT output. A HIGH on the CT output indicates a passed condition and a LOW indicates a failed condition.

FUNCTIONAL DESCRIPTION

The following diagram (Figure 1) is a summary of devices within the Am29116 Family showing performance versus power.

Figure 1. Am29116 Family (Performance Versus Power)

Figure 2. Detailed Am29116 Block Diagram

ARCHITECTURE OF THE Am29116

The Am29116 is a high-performance, microprogrammable 16-bit bipolar microprocessor.

As shown in the Block Diagram, the device consists of the following elements interconnected with 16-bit data paths.

- 32-Word by 16-Bit RAM
- Accumulator
- Data Latch
- Barrel Shifter
- ALU
- Priority Encoder
- Status Register
- Condition-Code Generator/Multiplexer
- Three-State Output Buffers
- Instruction Latch and Decoder

32-Word by 16-Bit RAM

The 32-Word by 16-Bit RAM is a single-port RAM with a 16-bit latch at its output. The latches are transparent when the clock input (CP) is HIGH and latched when the clock input is LOW. Data is written into the RAM while the clock is LOW if the IEN input is also LOW and if the instruction being executed defines the RAM as the destination of the operation. For byte instructions, only the lower eight RAM bits are written into; for word instructions, all 16 bits are written into. With the use of an external multiplexer on five of the instruction inputs, it is possible to select separate read and write addresses for the same instruction. This two-address operation is not allowed for immediate instructions.

Accumulator

The 16-bit Accumulator is an edge-triggered register. The Accumulator accepts data on the LOW-to-HIGH transition of the clock input if the IEN input is LOW and if the instruction being executed defines the Accumulator as the destination of the operation. For byte instructions, only the lower eight bits of the Accumulator are written into; for word instructions, all 16 bits are written into.

Data Latch

The 16-bit Data Latch holds the data input to the Am29116 on the bi-directional Y bus. The latch is transparent when the DLE input is HIGH and latched when the DLE input is LOW.

Barrel Shifter

A 16-bit Barrel Shifter is used as one of the ALU inputs. This permits rotating data from either the RAM, the Accumulator or the Data Latch up to 15 positions. In the word mode, the Barrel Shifter rotates a 16-bit word; in the byte mode, it rotates only the lower eight bits.

Arithmetic Logic Unit

The Am29116 contains a 16-bit ALU with full carry lookahead across all 16 bits in the arithmetic mode. The ALU is capable of operating on either one, two or three operands, depending upon the instruction being executed. It has the ability to execute all conventional one and two operand operations, such as pass, complement, two's complement, add, subtract, AND, NAND, OR, NOR, EXOR, and EX-NOR. In addition, the ALU can also execute three-operand instructions such as rotate and merge, and rotate and compare with mask. All ALU operations can be performed on either a word or byte basis, byte operations being performed on the lower eight bits only.

The ALU produces three status outputs, C (carry), N (negative) and OVR (overflow). The appropriate flags are generated at the byte or word level, depending upon whether the device is

executing in the byte or word mode. The Z (zero) flag, although not generated by the ALU, detects zero at both the byte and word level.

The carry input to the ALU is generated by the Carry Multiplexer which can select an input of zero, one, or the stored carry bit from the Status Register, QC. Using QC as the carry input allows execution of multiprecision addition and subtractions.

Priority Encoder

The Priority Encoder produces a binary-weighted code to indicate the locations of the highest order ONE at its input. The input to the Priority Encoder is generated by the ALU which performs an AND operation on the operand to be prioritized and a mask. The mask determines which bit locations to eliminate from prioritization. In the word mode, if no bit is HIGH, the output is a binary zero. If bit 15 is HIGH, the output is a binary one. Bit 14 produces a binary two, etc. Finally, if only bit 0 is HIGH, a binary 16 is produced.

In the byte mode, bits 8 thru 15 do not participate. If none of bits 7 thru 0 are HIGH, the output is a binary zero. If bit 7 is HIGH a binary one is produced. Bit 6 produces a binary two, etc. Finally, if only bit 0 is HIGH, a binary 8 is produced.

Status Register

The Status Register holds the 8-bit status word. With the Status-Register Enable, (SRE) input LOW and the IEN input LOW, the Status Register is updated at the end of all instructions except NO-OP, Save-Status and Test-Status instructions. SRE going HIGH or IEN going HIGH inhibits the Status Register from changing.

The lower four bits of the Status Register contain the ALU status bits of Zero (Z), Carry, (C) Negative (N), and Overflow (OVR). The upper four bits contain a Link bit and three user-definable status bits (Flag 1, Flag 2, Flag 3).

With SRE LOW and IEN LOW, the lower four status bits are updated after each instruction except those mentioned above, NO-OP, Save Status, Status Test and the Status Set/Reset instruction for the upper four bits. Under the same conditions, the upper four status bits are changed only during their respective Status Set/Reset instructions and during Status Load instructions in the word mode. The Link-Status bit is also updated after each shift instruction.

The Status Register can be loaded from the internal Y-bus, and can also be selected as a source for the internal Y-bus. When the Status Register is loaded in the word mode, all 8-bits are updated; in the byte mode, only the lower 4 bits (Z, C, N, OVR) are updated.

Condition-Code Generator/Multiplexer

The Condition-Code Generator/Multiplexer contains the logic necessary to develop the 12 condition-code test signals. The multiplexer portion can select one of these test signals and place it on the CT output for use by the microprogram sequence. The multiplexer may be addressed in two different ways. One way is through the Test Instruction. This instruction specifies the test condition to be placed in the CT output, but does not allow an ALU operation at the same time. The second method uses the bidirectional T bus as an input. This requires extra bits in the microword, but provides the ability to simultaneously test and execute. The test instruction lines, l_{0-4} , have priority over T_{1-4} , for testing status.

Three-State Output Buffers

There are two sets of Three-State Output Buffers in the Am29116. One set controls the bidirectional, 16-bit Y bus. These outputs are enabled by placing a LOW on the $\overline{\text{OE}}$ input. A HIGH puts the Y outputs in the high-impedance state, allowing data to be input to the Data latch from an external source.

The second set of Three-State Output Buffers controls the bidirectional 4-bit T bus and is enabled by placing a HIGH on the OE_T input. This allows storing the four internal ALU status

bits (Z, C, N, OVR) externally. A LOW OE_T input forces the T outputs into the high-impedance state. External devices can then drive the T bus to select a test condition for the CT output.

Instruction Latch and Decoder

The 16-bit Instruction Latch is normally transparent to allow decoding of the Instruction Inputs by the Instruction Decoder into the internal control signals for the Am29116. All instructions except Immediate Instructions are executed in a single clock cycle.

Immediate instructions require two clock cycles for execution. During the first clock cycle, the Instruction Decoder recognizes that an Immediate Instruction is being specified and captures the data on the Instruction Inputs in the Instruction Latch. During the second clock cycle, the data on the Instruction Inputs is used as one of the operands for the function specified during the first clock cycle. At the end of the second clock cycle, the Instruction Latch is returned to its transparent state.

INSTRUCTION SET

The instruction set of the Am29116 is very powerful. In addition to the single and two operand logical and arithmetic instructions, the Am29116 instruction set contains functions particularly useful in controller applications: bit set, bit reset, bit test, rotate and merge, rotate and compare, and cyclic-redundancy-check (CRC) generation. Complex instructions like rotate and merge, rotate and compare, and prioritize are executed in a single microcycle.

Three data types are supported by the Am29116.

- Bit
- Byte
- Word (16-bit)

In the byte mode data is written into the lower half of the word and the upper half is unchanged. The special case is when the status register is specified as the destination. In the byte mode the LSH (OVR, N, C, Z) of the status register is updated and in the word mode all eight bits of the status register are updated. The status register does not change for save status and test status instructions. In the test status instructions the CT output has the result and the Y-bus is undefined.

- Single Operand
- Two Operand
- Single Bit Shift
 Rotate and Merge
- Bit Oriented
- Rotate by n Bits
- Rotate and Compare
- Prioritize
- Cyclic-Redundancy-Check
- Status
- No-Op

Each instruction type is arbitrarily divided into quadrants. Two of the sixteen instruction lines decode to four quadrants labelled from 0 to 3. The quadrants were defined mainly for convenience in classification of the instruction set and addressing modes and can be used together with the OP CODES to distinguish the instructions.

The following pages describe each of the instruction types in detail. Throughout the description $\overline{\text{OEy}}$ is assumed to be LOW allowing ALU outputs on the Y-bus.

Table 1 illustrates operand source-destination combinations for each instruction type.

TABLE 1. OPERAND SOURCE DESTINATION COMBINATIONS

Instruction Type	Operand	Combination	ons (Note 1)
,,,	Source	(R/S)	Destination
Single Operand	RAM (N AC D D(0 D(S	C I IE) SE)	RAM ACC Y Bus Status ACC and Status
	Source (R)	Source (S)	Destination
Two Operand	RAM RAM D D ACC D	ACC I RAM ACC I	RAM ACC Y Bus Status ACC and Status
	Sourc	e (U)	Destination
Single Bit Shift	RA AC AC C	CC C C	RAM ACC Y Bus RAM ACC Y Bus
~	Source	e (U)	Destination
Rotate n Bits	AC	AM CC C	RAM ACC Y Bus
	Source	(R/S)	Destination
Bit Oriented	AC	AM CC C	RAM ACC Y Bus
	Rotated Source (U)	Mask (S)	Non-Rotated Source/ Destination (R)
Rotate and Merge	D D D D ACC RAM	RAM ACC 	ACC ACC RAM RAM RAM ACC

Instruction Type	Operand	Combination	ons (Note 1)					
	Rotated Source (U)	Mask (S)	Non-Rotated Source/ Destination (R)					
Rotate and Compare	D D D RAM	ACC	RAM RAM ACC					
	Source (R)	Mask (S)	Destination					
Prioritize (Note 3)	RAM ACC D	RAM ACC I 0	RAM ACC Y Bus					
Cyclic	Data In	Destination	Polynomial					
Redundancy Check	QLINK	RAM	ACC					
No Operation		-						
		Bits Affec	ted					
Set Reset Status	OVR, N, C, Z LINK Flag1 Flag2 Flag3							
	Sou	urce	Destination					
Store Status	Sta	itus	RAM ACC Y Bus					
	Source (R)	Source (S)	Destination					
Status Load	D ACC	ACC I	Status Status and ACC					
	D							
	Т.	est Condition (N⊕OVR) N⊕OV Z	+ Z					
Test Status		OVR Low C Z+ O N LINK Flag 1						
		Flag 3	2					

Notes: 1. When there is no dividing line between the R&S OPERAND or SOURCE and DESTINATION, the two must be used as a given pair. But where there exists such a separation, any combination of them is possible.

2. In the SINGLE OPERAND INSTRUCTION, RAM cannot be used when both ACC and STATUS are designated as a DESTINATION.

3. In the PRIORITIZE INSTRUCTION, OPERAND and MASK must be different sources.

SINGLE OPERAND INSTRUCTIONS

The Single Operand Instructions contain four indicators: byte or word mode, opcode, source and destination. They are further subdivided into two types. The first type uses RAM as a source or destination or both, and the second type does not use RAM as a source or destination. Both types have different instruction formats as shown below. Under the control of instruction inputs, the desired function is performed on the source and the result is either stored in the specified destination or placed on the Y-bus or both. For a special case where 8-bit to 16-bit conversion is needed, the Am29116 is capable of extending sign bit (D(SE)) or binary zero (D(0E)) over 16-bits in the word mode. The least significant four bits of the Status Register (OVR, N, C, Z) are affected by the function performed in this category. The most significant bits of status register (FLAG1, FLAG2, FLAG3, LINK) are not affected. The only limitation in this type is that the RAM cannot be used as a source when both ACC and the Status Register are specified as a destination.

SINGLE OPERAND FIELD DEFINITIONS

SINGLE OPERAND INSTRUCTION

Instruction B/W Quad Opcode						R/S ⁴ Dest ⁴				RAM Address			
SOR	0 = B 1 = W	10	1100 1101 1110 1111	MOVE COMP INC NEG	SRC → Dest SRC → Dest SRC + 1 → Dest SRC + 1 → Dest	0000 0010 0011 0100 0110 0111 1000 1001 1010 1011	SORA SORY SORS SOAR SODR SOIR SOZR SOZER SOSER SORR		ACC Y Bus Status RAM	11111	R00 R31	RAM Reg 00 RAM Reg 31	
Instruction	B/W	Quad	,	Орс	ode			R/S ⁴			Desi	ination	
SONR	0 = B 1 = W	11	1100 1101 1110 1111	MOVE COMP INC NEG	SRC Dest SRC Dest SRC + 1 Dest SRC + 1 Dest	0100 0110 0111 1000 1001 1010	SOA SOD SOI SOZ SOZE SOSE	ACC D I 0 D(0E) D(SE)		00000 00001 00100 00101	NRY NRA NRS NRAS	Y Bus ACC Status ⁵ ACC, Status ⁵	

The instruction mnemonic designates different instruction formats used in the Am29116. They are useful in assembly microcode with the System 29 AMDASM M meta assembler.
 B = Byte Mode, W = Word Mode.

3. See Instruction Set description. 4. R = Source; S = Source; Dest = Destination.

5. When status is destination,

Status i - Yi i = 0 to 3 (Byte mode) i = 0 to 7 (Word mode)

Y BUS AND STATUS - SINGLE OPERAND INSTRUCTIONS

Instruction	Opcode	Description	B/W	Y Bus	Flag3	Flag2	Flag1	LINK	OVR	N	С	Z
SOR	MOVE	SRC → Dest	0 = B	Y ← SRC	NC	NC	NC	NC	0	U	0	U
SONR	COMP	SRC → Dest	1 = W	Y ← SRC	NC	NC	NC	NC	0	U	0	U
	INC	SRC +1 → Dest	1	Y - SRC +1	NC	NC	NC	NC	U	U	υ	U
	NEG	SRC +1 → Dest		Y ← SRC +1	NC	NC	NC	NC	U	U	U	U

SRC = Source U = Update NC = No Change ∩ = Reset 1 = Set i = 0 to 15 when not specified

TWO OPERAND INSTRUCTIONS

The Two Operand Instructions contain five indicators: byte or word mode, opcode, R source, S source, and destination. They are further subdivided into two types. The first type uses RAM as the source and/or destination and the second type does not use RAM as source or destination. The first type has two formats; the only difference is in the quadrant. Under the control of instruction inputs, the desired function is performed on the specified sources and the result is stored in the

specified destination or placed on the Y-bus or both. The least significant four bits of the status register (OVR, N, C, Z) are affected by the arithmetic functions performed and only the N and Z bits are affected by the logical functions performed. The OVR and C bits of the status register are forced to ZERO for logical functions. Add with carry and Subtract with carry instructions are useful for Multiprecision Add or Subtract.

TWO OPERAND FIELD DEFINITIONS

TWO OPERAND INSTRUCTIONS

Instruction	B/W	Quad		R	1	s ¹	Dest ¹		Opcode	RAI	M Address
TOR1	0 = B 1 = W	00	0010 TO 0011 TO 1000 TO 1010 TO 1011 TO 1100 TO 1110 TO	DRIA RADDRAY RADDRY DORAY RADDRY DORAR RADDRY	AM AM AM AM	ACC I RAM ACC I RAM ACC I RAM	ACC ACC ACC Y Bus Y Bus Y Bus RAM RAM	0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010	SUBR SUBRC S minus R SUBRC S minus R with carry SUBS R minus S SUBSC R minus S ADD R plus S ADD R plus S NAND R S SUBSC R MINUS S WITH Carry AND R SUBSC R R SUBBC R SUBBC R SUBBC R R R R R R R R R R R R R R R R R R	00000 R00	
Instruction	B/W	Quad		R	1	s ¹	Dest ¹		Opcode		M Address
TOR2	0 = B 1 = W	10	0010 TC	DDAR D DAIR A DDIR D	CC	ACC I	RAM RAM RAM	0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010	SUBR S minus R with carry SUBS SUBSC ² R minus S with carry ADD R plus S with carry AND R • S EXOR R + S EXNOR R minus R	00000 R0C	

Note 1: R = Source S = Source

Dest = Destination

Note 2: During subtraction the carry is interpreted as borrow.

TWO OPERAND INSTRUCTIONS

Instruction	B/W	Quad			R ¹	S ¹		Or	code		Des	tination
	0 = B 1 = W	11	0001 0010 0101	TODA TOAI TODI	ACC	ACC	0000 0001	SUBR SUBRC	S minus R S minus R with carry	00000 00001 00100	NRY NRA NRS	Y Bus ACC Status ²
			0101	TODI	_	•	0010	SUBS	R minus S	00101	NRAS	ACC, Status ²
TONR							0011	SUBSC	R minus S with carry			
	1	Į					0100	ADD	R plus S			
							0101	ADDC	R plus S with carry	Ì		
							0110	AND	R•S R•S			
	1						0111	NAND				
							1000	EXOR	R⊕S	- 1		
							1001	NOR	R+S	- 1		
	1						1010	OR	<u>R + S</u> R⊕S			
							1011	EXNOR	R⊕S			

Notes 1: R = Source
S = Source
2: When status is destination,
Status i... Y_i i = 0 to 3 (Byte mode)
i = 0 to 7 (Word mode)
3: During subtraction the carry is interpreted as borrow.
4: OVR = C₈ ⊕ C₇ (Byte mode)
OVR = C₁₆ ⊕ C₁₅ (Word mode)

Y BUS AND STATUS CONTENTS - TWO OPERAND INSTRUCTIONS

Instruction	Opcode	Description	B/W	Y - Bus	Flag3	Flag2	Flag 1	LINK	OVR	N	С	z
	SUBR	S minus R	0 = B	Y ← S + R + 1	NC	NC	NC	NC	U	U	J	U
	SUBRC	S minus R with carry	1 = w	Y ← S + R + QC	NC	NC	NC	NC	U	U	U	U
	SUBS	R minus S		Y←R+S+1	NC	NC	NC	NC	U	U	U	U
TOR1 TOR2	SUBSC	R minus S with carry		Y - R + S + QC	NC	NC	NC	NC	U	U	U	U
TONR	ADD	R plus S	1	Y←R+S	NC	NC	NC	NC	U	Ų	U	U
	ADDC	R plus S with carry		Y←R+S+QC	NC	NC	NC	NC	U	U	U	U
	AND	R·S	1	Y ← Ri AND Si	NC	NC	NC	NC	0	U	0	U
	NAND	R·S	1	Yi←Ri NAND Si	NC	NC	NC	NC	0	U	0	U
	EXOR	R⊕S	1	Yi←Ri EXOR Si	NC	NC	NC	NC	0	U	0	U
	NOR	R+S	1	Yi←Ri NOR Si	NC	NC	NC	NC	0	U	0	U
	OR	R+S	1	Yi⊷Ri OR Si	NC	NC	NC	NC	0	U	0	U
	EXNOR	R⊕S		Yi←Ri EXNOR Si	NC	NC	NC	NC	0	0	0	U

U = Update

NC = No Change

0 = Reset

1 = Set

i = 0 to 15 when not specified

SINGLE BIT SHIFT INSTRUCTIONS

The Single Bit Shift Instructions contain four indicators: byte or word mode, direction and shift linkage, source and destination. They are further subdivided into two types. The first type uses RAM as the source and/or destination and the second type does not use RAM as source or destination. Under the control of the instruction inputs, the desired shift function is performed on the specified source and the result is stored in the specified destination or placed on the Y-bus or both. The direction and shift linkage indicator defines the direction of the shift (up or down) as well as what will be shifted into the vacant bit. On a shift-up instruction, the LSB may be loaded with ZERO, ONE,

or the Link-Status bit (QLINK). The MSB is loaded into the Link-Status bit as shown in Figure 3. On a shift-down instruction, the MSB may be loaded with ZERO, ONE, the contents of the Status Carry flip-flop, (QC), the Exclusive-OR of the Negative-Status bit and the Overflow-Status bit QN @ QOVR) or the Link-Status bit. The LSB is loaded into the Link-Status bit as shown in Figure 4. The N and Z bits of the Status register are affected but the OVR and C bits are forced to ZERO. The Shift-Down with QN @ QOVR is useful for Two's Complement multiplication.

SINGLE BIT SHIFT FIELD DEFINITIONS:

Figure 3. Shift Up Function.

Figure 4. Shift Down Function.

SINGLE BIT SHIFT INSTRUCTIONS

SINGLE BIT SHIFT

Instruction	B/W	Quad	, i		U ¹	Dest ¹		Орс	code			RAM	Address	_
SHFTR	0 = B 1 = W	10	0110 0111	SHRR SHDR	RAM D	RAM RAM	0000 0001 0010 0100 0101 0110 0111 1000	SHUPZ SHUP1 SHUPL SHDNZ SHDN1 SHDNL SHDNC SHDNOV	Up Up Up Down Down Down Down	0 1 QLINK 0 1 QLINK QC QN⊕QOVR	00000	R00 R31	RAM Reg 0	
Instruction	B/W	Quad			U ¹			Оре	code			Des	tination	
SHFTNR	0=B 1=W	11	0110 0111	SHA SHD	ACC D		0000 0001 0010 0100 0101 0110 0111 1000	SHUPZ SHUP1 SHUPL SHDNZ SHDN1 SHDNL SHDNC SHDNOV	Up Up Up Down Down Down Down	1 QLINK QC	00000	NRY NRA	Y Bus ACC	

U = Source Dest = Destination Note 1.

Y BUS AND STATUS - SINGLE BIT SHIFT INSTRUCTIONS

Instruction	Opcode	Description	B/W	Y - Bus	Flag3	Flag2	Flag1	LINK	OVR	N	С	z
	SHUPZ SHUP1	Up 0 Up 1	1 = W	$Y_i \leftarrow SRC_{i-1}$, $i = 1$ to 15; $Y_0 \leftarrow Shift$ Input	NC	NC	NC	SRC _{15*}	0	SRC ₁₄	0	U
SHR SHNR	SHUPL	Up QLINK	0 = B	$Y_i \leftarrow SRC_{i-1}$, $i=1$ to 7; $Y_0 \leftarrow Shift$ Input; $Y_8 \leftarrow SRC_7$, $Y_i \leftarrow SRC_{i-9}$ for $i=9$ to 15	NC	NC	NC	SRC7*	0	SRC ₆	0	U
	SHDNZ SHDN1	Down 0 Down 1	1 = W	Y _i - SRC _{i + 1} , i = 0 to 14; Y ₁₅ - Shift Input	NC	NC	NC	SRC ₀ •	0	Shift Input	0	U
SHDNL SHDNC SHCNOV Down QC Down QN⊕QO		Down QC	0 = B	Y ₁ ← SRC _{i + 1} , i = 0 to 6; Y ₁ ← SRC _{i - 7} , i = 8 to 14; Y _{7,15} ← Shift Input	NC	NC	NC	SRC ₀ *	0	Shift Input	0	U
SRC = Source							*Shifted	Output is	loaded	into the	QL	JINI

SRC = Source SHC = Source
U = Update
NC = No Change
0 = Reset
1 = Set
i = 0 to 15 when not specified

BIT ORIENTED INSTRUCTIONS

The Bit Oriented Instructions contain four indicators: byte or word mode, operation, source/destination, and the bit position of the bit to be operated on (Bit 0 is the least significant bit). They are further subdivided into two types. The first type uses the RAM as both source and destination and has two kinds of formats which differ only by quadrant. The second type does not use the RAM as a source or a destination. Under the control of the instruction inputs, the desired function is performed on the specified source and the result is stored in the specified destination or placed on the Y-bus or both. The operations which can be performed are: Set Bit n which forces the nth bit to a ONE leaving other bits unchanged; Reset Bit n

which forces the nth bit to ZERO leaving the other bits unchanged; Test Bit n, which sets the ZERO Status Bit depending on the state of bit n leaving all the bits unchanged; Load 2ⁿ, which loads ONE in Bit position n and ZERO in all other bit positions; Load 2ⁿ which loads ZERO in bit position n and ONE in all other bit positions; increment by 2ⁿ, which adds 2ⁿ to the operand; and decrement by 2ⁿ which subtracts 2ⁿ from the operand. For all the Load, Set, Reset and Test instructions, the N and Z bits are affected and OVR and C bit of the Status register are forced to ZERO. For all arithmetic instructions the LSH (OVR, C, N, Z bits) of the Status register is affected.

BIT ORIENTED FIELD DEFINITIONS

	15	14 13	12 9	8 5	4 0
BOR1	B/W	Quad	n	Opcode	RAM Address
BOR2	B/W	Quad	n	Opcode	RAM Address
BONR	B/W	Quad	n	1100	Opcode

BIT ORIENTED INSTRUCTIONS

Instruction	B/W	Quad	n	Opcode	RAM Address			
BOR1	0 = B 1 = W	11	0 to 15	1101 SETNR Set RAM, bit n 1110 RSTNR Reset RAM, bit n 1111 TSTNR Test RAM, bit n	00000 R00 RAM Reg 00 111111 R31 RAM Reg 31			
instruction	B/W	Quad	n	Opcode	RAM Address			
BOR2	0 = B 1 = W	10	0 to 15	1100 LD2NR 2 ⁿ →RAM 1101 LDC2NR 2 ⁿ →RAM 1110 A2NR RAM plus 2 ⁿ →RAM 1111 S2NR RAM minus 2 ⁿ →RAM	00000 R00 RAM Reg 00 RAM Reg 31			
Instruction	B/W	Quad	n		Opcode			
BONR	0 = B 1 = W	11	0 to 15	1100	00000			

BIT ORIENTED INSTRUCTIONS

Y BUS AND STATUS - BIT ORIENTED INSTRUCTIONS

Instruction	Opcode	Description	B/W	Y - Bus	Flag3	Flag2	Flag1	LINK	OVR	N	С	Z
BOR1	SETNR RSTNR	Set RAM Bit n Reset RAM, Bit n		Y _i ←RAM _i for i≠n; Y _n ←1 Y _i ←RAM _i for i≠n; Y _n ←0	NC NC	NC NC	NC NC	NC NC	0	U	0	U
ВОКТ	TSTNR	Test Ram, Bit n		Y _i ←0 for i≠n; Y _n ←SRC _n	NC	NC	NC	NC	0	υ	0	U
	LD2NR	2 ⁿ → RAM		Y _i ←0 for i≠n; Y _n ←1	NC	NC	NC	NC	0	υ	0	0
	LDC2NR	2 ⁿ → RAM	1	Y _i ←1 for i≠n; Y _n ←0	NC	NC	NC	NC	0	υ	0	0
BOR2	A2NR	RAM + 2 ⁿ → RAM	1	Yi-RAM + 2 ⁿ	NC	NC	NC	NC	U	Ü	U	U
	S2NR	RAM - 2 ⁿ → RAM	1	Yi ← RAM – 2 ⁿ	NC	NC	NC	NC	U	U	U	U
	TSTNA	Test ACC, Bit n	1	Y _i ←0 for i≠n; Y _n ←ACC _n	NC	NC	NC	NC	0	U	0	U
	RSTNA	Reset ACC, Bit n	1	Y _i ←ACC _i for i≠n; Y _n ←0	NC	NC	NC	NC	0	U	0	U
	SETNA	Set ACC, Bit n	1	Y _i ←ACC _i for i≠n; Y _n ←1	NC	NC	NC	NC	0	υ	0	0
	A2NA	ACC + 2 ⁿ → ACC		Y _i ← ACC + 2 ⁿ	NC	NC	NC	NC	U	U	U	U
	S2NA	ACC - 2 ⁿ - ACC	1	Yi-ACC-2 ⁿ	NC	NC	NC	NC	U	U	U	U
	LD2NA	2 ⁿ →ACC	-	$Y_i \leftarrow 0$ for $i \neq n$; $Y_n \leftarrow 1$	NC	NC	NC	NC	0	U	0	0
	LDC2NA	2 ⁿ → ACC	1	$Y_i \leftarrow 1$ for $i \neq n$; $Y_n \leftarrow 0$	NC	NC	NC	NC	0	U	0	0
BONR	TSTND	Test D, Bit n	-	$Y_i \leftarrow 0$ for $i \neq n$; $Y_n \leftarrow D_n$	NC	NC	NC	NC	0	U	0	U
	RSTND	Reset D, Bit n*	1	$Y_i \leftarrow D_i$ for $i \neq n$; $Y_n \leftarrow 0$	NC	NC	NC	NC	0	U	0	U
	SETND	Set D, Bit n°	-	$Y_i \leftarrow D_i$ for $i \neq n$; $Y_n \leftarrow 1$	NC	NC	NC	NC	0	U	0	0
		D+2 ⁿ →Y Bus	1	Y ← D + 2 ⁿ	NC	NC	NC	NC	U	U	U	U
	A2NDY	D-2 ⁿ -Y Bus	-	Y - D - 2 ⁿ	NC	NC	NC	NC	U	U	U	U
<u> </u>	S2NDY	2 ⁿ → Y Bus	1	$Y_i \leftarrow 0$ for $i \neq n$; $Y_n \leftarrow 1$	NC	NC	NC	NC	0	U	0	0
	LD2NY		-	$Y_i \leftarrow 1$ for $i \neq n$; $Y_n \leftarrow 0$	NC NC	NC	NC	NC	0	U	0	0
	LDC2NY	2 ⁷¹ → Y Bus		111: 1 101 17 11, 111 0						_		

SRC = Source U = Update NC = No Change 0 = Reset i = 0 to 15 when not specified

^{*}Destination is not D Latch but Y Bus.

ROTATE BY n BITS INSTRUCTIONS

The Rotate by n Bits Instructions contain four indicators: byte or word mode, source, destination and the number of places the source is to be rotated. They are further subdivided into two types. The first type uses RAM as a source and/or a destination and the second type does not use RAM as a source or destination. The first type has two different formats and the only difference is in the quadrant. The second type has only one format as shown in the table. Under the control of instruction inputs, the n indicator specifies the number of bit positions the source is to be rotated up (0 to 15), and the result

is either stored in the specified destination or placed on the Y-bus or both. An example of this instruction is given in Figure 5. In the Word mode, all 16-bits are rotated up while in the Byte mode, only the lower 8-bits (0-7) are rotated up; In the Word mode, a rotate up by n bits is equivalent to a rotate down by (16-n) bits. Similarly, in the Byte mode a rotate up by n bits is equivalent to a rotate down by (8-n) bits. The N and Z bits of the Status Register are affected and OVR and C bits are forced to ZERO.

EXAMPLE:	n = 4, Wor	d Mode			ROTATE BY n BITS FIELD DEFINITIONS
Source Destination EXAMPLE:	0001 0011 n = 4, Byte	0011 0111 • Mode	0111 1111	1111 0001	15 14 13 12 9 8 5 4 0 ROTR1 B/W Quad n SRC-Dest RAM Address
Source Destination	0001 0001	0011 0011	0111 1111	1111 0111	ROTR2 B/W Quad n SRC-Dest RAM Address
Fig	jure 5. Ro	tate by n	Example		ROTNR B/W Quad n 1100 SRC-Dest

ROTATE BY n BITS INSTRUCTIONS

Instruction	B/W	Quad	п			U ¹	Dest ¹		RAM	Address	
ROTR1	0 = B 1 = W	00	0 to 15	1100 1110 1111	RTRA RTRY RTRA	RAM RAM RAM	ACC Y Bus RAM	00000	R00 R31	RAM Reg	
Instruction	B/W	Quad	n			U ¹	Dest ¹		RAM	Address	
ROTR2	0 = B 1 = W	01	0 to 15	0000 0001	RTAR	ACC D	RAM RAM	00000	R00 R31	RAM Reg	
Instruction	B/W	Quad	n							U ¹	Dest ¹
ROTNR	0 = B 1 = W	11	0 to 15	1100				11000 11001 11100 11101	RTDY RTDA RTAY RTAA	D D ACC ACC	Y Bus ACC Y Bus ACC

Note 1: U = Source Dest = Destination

Y BUS AND STATUS - ROTATE BY n BITS INSTRUCTIONS

Instruction	Op- code	B/W	Y - Bus	Flag3	Flag2	Flag1	LINK	OVR	N	С	z
ROTR1		1 = W	Y _i ← SRC _{(i-n)mod16}	NC	NC	NC	NC	0	SRC 15-n	0	U
ROTR2 ROTNR		0 = B	$Y_{i} \leftarrow SRC_{i+8} = SRC_{(i-n)mod8}$ for $i = 0$ to 7	NC	NC	NC	NC	0	SRC _{8-n}	0	U

SRC = Source U = No Change 0 = Reset

1 = Set

i = 0 to 15 when not specified

ROTATE AND MERGE INSTRUCTION

The Rotate and Merge Instructions contain five indicators: byte or word mode, rotated source, non-rotated source/ destination, mask and the number of bit positions a source is to be rotated. The function performed by the Rotate and Merge instruction is illustrated in Figure 6. The rotated source, U, is rotated up by the Barrel Shifter n places. The mask input then selects, on a bit by bit basis, the rotated U input or R

input. A ZERO in bit i of the mask will select the ith bit of the R input as the ith output bit, while ONE in bit i will select the ith rotated U input as the output bit. The output word is stored in the non-rotated operand location. The N and Z bits are affected. The OVR and C bits of the Status register are forced to ZERO. An example of this instruction is given in Figure 7.

ROTATE AND MERGE FIELD DEFINITIONS:

	15	14 13	129	8 5	4 0
ROTM	B/W	Quad	n	ROT SRC- Non ROT SRC- Mask	RAM Address

EXAMPLE: n = 4, Word Mode

U	0011	0001	0101	0110
Rotated U	0001	0101	0110	0011
R	1010	1010	1010	1010
Mask (S)	0000	1111	0000	1111
Destination	1010	0101	1010	0011

Figure 7. Rotate and Merge Example.

PF000630

Figure 6. Rotate and Merge Function.

ROTATE AND MERGE INSTRUCTION

Instruction	B/W	Quad	n			U ¹	R/Des	t ¹ S ¹		ddress	
ROTM	0 = B 1 = W	01	0 to 15	0111 1000 1001 1010 1100 1110	MDAI MDAR MDRI MDRA MARI MRAI	D D D D ACC BAM	ACC ACC RAM RAM RAM ACC	RAM I ACC	00000	R00 R31	RAM Reg 00 RAM Reg 31

Note 1. U = Rotated Source

R/Dest = Non-Rotated Source and Destination

S = Mask

Y BUS AND STATUS - ROTATED MERGE

instruction	Opcode	B/W	Y - Bus	Flag3	Flag2	Flag1	LINK	OVR	N	С	Z
ROTM	1=W	Y _i ← (Non Rot Op) _i · (mask) _i + (Rot Op) _{(i - n)mod 16} · (mask) _i	NC	NC	NC	NC	0	U	0	U	
		0-8	Y _i ← (Non Rot Op) _i · (mask) _i + (Rot Op) _{(i − n)mod} 8 · (mask) _i	NC	NC	NC	NC	0	U	0	U

U = Update

NC = No Change 0 = Reset

1 = Set i = 0 to 15 when not specified

ROTATE AND COMPARE INSTRUCTIONS

The Rotate and Compare Instructions contain five indicators: byte or word mode, rotated source, non-rotated source, mask, and the number of bit positions the rotated source is to be rotated up. Under the control of instruction inputs, the function performed by the Rotate and Compare instruction is illustrated in Figure 8. The rotated operand is rotated by the Barrel Shifter n places. The mask is inverted and ANDed on a bit-by-bit basis

with the output of the Barrel Shifter and R input. Thus, a ONE in the mask input eliminates that bit from the comparison. A ZERO allows the comparison. If the comparison passes, the Zero flag is set. If it fails, the Zero flag is reset. The N and Z bit are affected. The OVR and C bits of the Status register are forced to ZERO. An example of this instruction is given in Figure 9.

BOTATE AND COMPARE FIELD DEFINITIONS

EXAMPLE: n = 4, Word Mode

U	0011	0001	0101	0110
U Rotated	0001	0101	0110	0011
R	0001	0101	1111	0000
Mask (S)	0000	0000	1111	1111
Z (status) = 1				

Figure 9. Rotate and Compare Examples.

PF000650

Figure 8. Rotate and Compare Function.

ROTATE AND COMPARE INSTRUCTIONS

Instruction	B/W	Quad	n			U ¹	R ¹	S ¹		RAM Address			
ROTC	0=B 1 = W	01	0 to 15	0010 0011 0100 0101	CDAI CDRI CDRA CRAI	D D D RAM	ACC RAM RAM ACC	ACC	00000 11111	R00 R31	RAM Reg 00 RAM Reg 31		

Note 1. U = Rotated Source

R = Non-Rotated Source

S = Mask

Y BUS AND STATUS - ROTATE AND COMPARE

Instruction	Opcode	B/W	Y - Bus	Flag3	Flag2	Flag1	LINK	OVR	N	С	Z
ROTC		1 = W	Y _i ← (Non Rot Op) _i · (mask) _i ⊕ (Rot Op) _{(i − n)mod 16} · (mask) _i	NC	NC	NC	NC	0	U	0	U
NOIC		0 = B	Y; ← (Non Rot Op); · (mask); ⊕ (Rot Op)(i – n)mod 8 · (mask);	NC	NC	NC	NC	0	υ	0	U

U = Update NC = No Change

0 = Reset

1 = Set

i = 0 to 15 when not specified

PRIORITIZE INSTRUCTION

The Prioritize Instructions contain four indicators: byte or word mode, operand source (R), mask source (S) and destination. They are further subdivided into two types. The function performed by the Prioritize instruction is shown in Figure 10. The R operand is ANDed with the complement of the Mask operand. A ZERO in the Mask operand allows the corresponding bit in the R operand to participate in the priority encoding function. A ONE in the Mask operand forces the corresponding bit in the R operand to a ZERO, eliminating it from participation in the priority encoding function.

The priority encoder accepts a 16-bit input and produces a 5-bit binary-weighted code indicating the bit position of the highest priority active bit. If none of the inputs are active, the output is ZERO. In the Word mode, if input bit 15 is active, the output is 1, etc. Figure 11 lists the output as a function of the highest-priority active-bit position in both the Word and Byte mode. The N and Z bits are affected and the OVR and C bits of the status register are forced to ZERO. The only limitation in this instruction is that the operand and the mask must be different sources.

Figure 10. Prioritize Function.

PRIORITIZE INSTRUCTION FIELD DEFINITIONS

15	14 13	12 9	8 5	4 0
B/W	Quad	Destination	Source (R)	RAM Address/ Mask (S)
B/W	Quad	Mask (S)	Destination	RAM Address/ Source (R)
B/W	Quad	Mask (S)	Source (R)	RAM Address/ Destination
		·		
B/W	Quad	Mask (S)	Source (R)	Destination

WORD	MODE	BYTE MODE*				
Highest Priority Active Bit	Encoder Output	Highest Priority Active Bit	Encoder Output			
None	0	None	0			
15	1	7	1			
14	2	6	2			
4	•		•			
	•		•			
1	15	1	7			
Ó	16	0	8			

^{*}Bits 8 through 15 do not participate.

Figure 11.

PRIORITIZE INSTRUCTION

Instruction	B/W	Quad		Destination	on		Source (F	R)	RAI	M Addre	ss/Mask (S)
PRT1	0 = B 1 = W	10	1000 1010 1011	PRIA PR1Y PR1R	ACC Y Bus RAM	0111 1001	RPT1A PR1D	ACC D	00000	R00 R31	RAM Reg 00 RAM Reg 31
Instruction	B/W	Quad		Mask (S	5)		Destination	n	RAM	Addres	s/Source (R)
PRT2	0 = B 1 = W	10	1000 1010 1011	PRA PRZ PRI	Acc 0 I	0000 0010	PR2A PR2Y	ACC Y Bus	00000	R00 R31	RAM Reg 00 RAM Reg 31
Instruction	B/W	Quad		Mask (S	5)		Source (F	?)	R	AM Add	Iress/Dest
PRT3	0 = B 1 = W	10	1000 1010 1011	PRA PRZ PRI	ACC 0 I	0011 0100 0110	PR3R PR3A PR3D	RAM ACC D	00000	R00 R31	RAM Reg 00 RAM Reg 31
Instruction	B/W	Quad		Mask (S	5)		Source (F	7)		Desti	nation
PRTNR	0 = B 1 = W	11	1000 1010 1011	PRA PRZ PRI	ACC 0	0100 0110	PRTA PRTD	ACC D	00000 00001	NRY NRA	Y Bus ACC

		ΥB	US AND STATUS - PRIORIT	IZE INS	TRUCTI	ON					
Instruction	Opcode	B/W	Y - Bus	Flag3	Flag2	Flag 1	LINK	OVR	N	С	Z
PRT1 PRT2	-	1 = W	Y _i ←CODE (SCR _n ·mask _n); Y _m ←0; i=0 to 4 and n=0 to 15 m=5 to 15	NC	NC	NC	NC	0	U	0	U
PRT3 PRTNR		0 = B	Y _i CODE (SCR _n ·mask _n); Y _m ←0; i = 0 to 3 and n = 0 to 7 m = 4 to 15	NC	NC	NC	NC	0	υ	0	υ
SRC = Source	NC = 0 = B	No Change	1 = Set i = 0 to 15 when no	nt specified							

CRC INSTRUCTION

The CRC (Cyclic-Redundancy-Check) Instructions contain one indicator: address of a RAM register to use as the check sum register. The CRC instruction provides a method for generation of the check bits in a CRC calculation. Two CRC instructions are provided – CRC Forward and CRC Reverse. The reason for providing two instructions is that CRC standards do not specify which data bit is to be transmitted first, the LSB or the MSB, but they do specify which check bit must be transmitted first. Figure 12 illustrates the method used to generate these check bits for the CRC Forward function and

Figure 13 illustrates method used for the 2CRC Reverse function. The ACC serves as a polynominal mask to define the generating polynomial while the RAM register holds the partial result and eventually the calculated check sum. The LINK-bit is used as the serial input. The serial input combines with the MSB of the check-sum register, according to the polynomial defined by the polynomial mask register. When the last input bit has been processed, the check-sum register contains the CRC check bits. The LINK, N and Z bits are affected and the OVR and C bits of the Status register are forced to ZERO.

CYCLIC-REDUNDANCY-CHECK DEFINITIONS:

	15	14 13	12 9	8 5	4 0
CRCF	1	Quad	0110	0011	RAM Address
CRCR	1	Quad	0110	1001	RAM Address

Figure 12. CRC Forward Function.

CRC INSTRUCTION

PF000320

Figure 13. CRC Reverse Function.

CYCLIC REDUNDANCY CHECK

nstruction	B/W	Quad				RA	M Address
CRCF	1	10	0110	0011	00000 11111	R00 R31	RAM Reg 00 RAM Reg 31
instruction	B/W	Quad				RAI	M Address
CRCR	1	10	0110	1001	00000 11111	R00 R31	RAM Reg 00 RAM Reg 31

Y BUS AND STATUS - CYCLIC REDUNDANCY CHECK

Instruction	Opcode	B/W	Y - Bus	Flag3	Flag2	Flag1	LINK	OVR	N	С	Z
CRCF		1 = W	Y _i ~ [(QLINK ⊕ RAM ₁₅)·ACC _i] ⊕ RAM _{i-1} for i = 15 to 1 Y ₀ ~ [(QLINK ⊕ RAM ₁₅)·ACC ₀] ⊕ 0	NC	NC	NC	RAM ₁₅ *	0	υ	0	U
CRCR		1 = W	Y _i ~ [(QLINK ⊕ RAM ₀)·ACC _i] ⊕ RAM _{i+1} for i = 14 to 0 Y ₁₅ ~ [(QLINK ⊕ RAM ₀)·ACC ₁₅] ⊕ 0	NC	NC	NC	RAM ₀ *	0	U	0	U

*QLINK is loaded with the shifted out bit from the checksum register.

U = Update
NC = No Change
0 = Reset
1 = Set
i = 0 to 15 when not specified

STATUS INSTRUCTIONS

Status Instructions - The Set Status Instruction contains a single indicator. This indicator specifies which bit or group of bits, contained in the status register (Figure 14), are to be set (forced to a ONE).

	7	6	5	4	3	2	1	0	
	Flag3	Flag2	Flag1	LINK	OVR	N	С	Z	
•							MPF	3-775	

Figure 14. Status Byte.

The Reset Status Instruction contains a single indicator. This indicator specifies which bit or group of bits, contained in the status register, are to be reset (forced to ZERO).

The Store Status Instruction contains two indicators; byte/word and a second indicator that specifies the destination of the status register. The Store Status Instruction allows the status of the processor to be saved and restored later, which is an especially useful function for interrupt handling.

The status register is always stored in the lower byte of the RAM or the ACC register. Depending upon byte or word mode the upper byte is unchanged or loaded with all ZEROs respectively.

The Load Status instructions are included in the single operand and two operand instruction types.

The Test Status Instructions contain a single indicator which specifies which one of the 12 possible test conditions are to be placed on the Conditional-Test output. Besides the eight bits in the Status register (QZ, QC, QN, QOVR, QLINK, QFlag1, QFlag 2, and QFlag3), four logical functions (QN \oplus QOVR)+ QZ, QZ + $\overline{\rm QC}$ and LOW may also be selected. These functions are useful in testing results of Two's Complement and unsigned number arithmetic operations. The status register may also be tested via the bidirectional T bus. The code to test the status register via T bus is similar to the code used by instruction lines l_1 to l_4 as shown below. Instruction lines l_0 $_4$ have priority over T bus for testing the

status register on CT output. See the discussion on the status register for a full description.

T ₄	T ₃	T ₂	T ₁	ст
0	0	0	0	(N ⊕ OVR) + Z
0	0	0	1	N ⊕ OVR
0	0	1	0	Z
0	0	1	1	OVR
0	1	0	0	LOW*
0	1	0	1	С
0	1	1	0	z + C
0	1	1	1	N
1	0	0	0	LINK
1	0	0	1	Flag1
1	0	1	0	Flag2
1	0	1	1	Flag3

^{*}LOW means CT is forced LOW

STATUS

	15	14 13	12 9	8 5	4 0
SETST	0	Quad	1011	1010	Opcode
RSTST	0	Quad	1010	1010	Opcode
SVSTR	B/W	Quad	0111	1010	RAM Address/Dest
			_		
SVSTNR	B/W	Quad	0111	1010	Destination

STATUS INSTRUCTIONS

Instruction	B/W	Quad					pcode
SETST	0	11	1011	1010	00011 00101 00110 01001 01010	SONCZ SL SF1 SF2 SF3	Set OVR, N, C, Z Set LINK Set Flag1 Set Flag2 Set Flag3
Instruction	B/W	Quad				(Opcode
RSTST	0	11	1010	1010	00011 00101 00110 01001 01010	RONCZ RL RF1 RF2 RF3	Reset OVR, N, C, Z Reset LINK Reset Flag1 Reset Flag2 Reset Flag3
Instruction	B/W	Quad				RAM A	Address/Dest
SVSTR	0 = B 1 = W	10	0111	1010	00000	R00 R31	RAM Reg 00 RAM Reg 31
						De	estination
SVSTNR	0 = B 1 = W	11	0111	1010	00000 00001	NRY NRA	Y Bus ACC

STATUS INSTRUCTIONS

Instruction	B/W	Quad				Opcode	e (CT)
Test	0	11	1001	1010	00000 00010 00100 00110 01100 01010 01110 01110 10000 10010 10100	TNOZ TNO TZ TOVR TLOW TC TC TZC TN TL TF1 TF2 TF3	Test (N⊕OVR) + Z Test N⊕OVR Test Z Test OVR Test LOW Test C Test C Test N Test LINK Test Flag1 Test Flag2 Test Flag3

IEN · test status instruction has priority over T1-4 instruction. Note:

Y BUS AND STATUS - FOR STATUS INSTRUCTIONS

Instruction	Opcode	Description	B/W	Y - Bus	Flag3	Flag2	Flag1	LINK	OVR	N	С	Z
	SONCZ	Set OVR, N, C, Z	0 = B	$Y_i \leftarrow 1$ for $i = 0$ to 15	NC	NC	NC	NC	1	1	1	1
	SL	Set LINK	1		NC	NC	NC	1	NC	NC	NC	NC
SETST	SF1	Set Flag1			NC	NC	1	NC	NC	NC	NC	NC
02.0.	SF2	Set Flag2	1		NC	1	NC	NC	NC	NC	-	NC
	SF3	Set Flag3	1		1	NC	NC	NC	NC	NC	NC	NC
	RONCZ	Reset OVR, N, C, Z	0 = B	Y _i ← 0 for i = 0 to 15	NC	NC	NC	NC	0	0	0	0
	RL	Reset LINK	1		NC	NC	NC	0	NC	NC	NC	NC
RSTST	RF1	Reset Flag1	1		NC	NC	0	NC	NC	NC	NC	NC
1.0101	RF2	Reset Flag2	1		NC	0	NC	NC	NC	NC	NC	NC
	RF3	Reset Flag3	1		0	NC	NC	NC	NC	NC	NC	NC
SVSTR SVSTNR		Save Status*	0 = B 1 = W	Y _i -Status for i-0 to 7; Y _i -0 for i = 8 to 15	NC	NC	NC	NC	NC	NC	NC	NC
0.07.11.	TNOZ	Test (N⊕OVR) + Z	0 = B	**	NC	NC	NC	NC	NC	NC	NC	NC
	TNO	Test N⊕OVR	1		NC	NC	NC	NC	NC	NC	NC	NC
	TZ	Test Z	1		NC	NC	NC	NC	NC	NC	NC	NC
	TOVB	Test OVR	1		NC	NC	NC	NC	NC	NC	NC	NC
	TLOW	Test LOW	1		NC	NC	NC	NC	NC	NC	NC	NC
Test	TC	Test C	1		NC	NC	NC	NC	NC	NC	NC	NC
100.	TZC	Test Z + C	1		NC	NC	NC	NC	NC	NC	NC	NC
	TN	Test N	1	1	NC	NC	NC	NC	NC	NC	NC	NC
	TL	Test LINK	1		NC	NC	NC	NC	NC	NC	NC	NC
1//	TF1	Test Flag1	1		NC	NC	NC	NC	NC	NC	NC	NC
	TF2	Test Flag2	1		NC	NC	NC	NC	NC	NC	NC	NC
	TF3	Test Flag3	1	1	NC	NC	NC	NC	NC	NC	NC	NC

U = Update
NC = No Change
0 = Reset
1 = Set
i = 0 to 15 when not specified

*In byte mode only the lower byte from the Y bus is loaded into the RAM or ACC and in word mode all 16-bits from the Y bus are loaded into the RAM or ACC.

**Y-Bus is Undefined.

NO-OP INSTRUCTION

The NO-OP Instruction has a fixed 16-bit code. This instruction does not change any internal registers in the Am29116. It preserves the status register, RAM register and the ACC register.

NO OPERATION FIELD DEFINITION

15	14 13	12	9	8	5	4	0
0	11	1000		1	010	00000	

NO-OP INSTRUCTION

NOOP

Instruction	B/W	Quad			
NOOP	0	11	1000	1010	00000

Y BUS AND STATUS - NO-OP INSTRUCTION

Instruction	Opcode	B/W	Y - Bus	Flag3	Flag2	Flag1	LINK	OVR	N	С	Z
NOOP		0 = B	•	NC	NÇ	NC	NC	NC	NC	NC	NC

SRC = Source

U = Update

NC = No Change

0 = Reset

1 = Set

1 - 301

i = 0 to 15 when not specified

*Y-Bus is undefined.

SUMMARY OF MNEMONICS

Instruction Type

Single Operand RAM SOR Single Operand Non-RAM SONR Two Operand RAM (Quad 0) TOR1 Two Operand RAM (Quad 2) TOR₂ Two Operand Non-RAM TONR Single Bit Shift RAM SHFTR Single Bit Shift Non-RAM SHETNE Rotate n Bits RAM (Quad 0) ROTR1 ROTR2 Rotate n Bits RAM (Quad 1) ROTNR Rotate n Bits Non-RAM Bit Oriented RAM (Quad 3) BOR1 Bit Oriented RAM (Quad 2) BOR₂

BOR2 Bit Oriented RAM (Quad BONR Bit Oriented Non-RAM ROTM Rotate and Merge ROTC Rotate and Compare PRT1 Prioritize RAM; Type 1 PRT2 Prioritize RAM; Type 2

PRT3 Prioritize RAM; Type 3
PRTNR Prioritize Non-RAM

CRCF Cyclic Redundancy Check Forward
CRCR Cyclic Redundancy Check Reverse

NOOP No Operation
SETST Set Status
RSTST Reset Status
SVSTR Save Status RAM
SVSTNR Save Status Non-RAM

TEST Test Status

SOURCE AND DESTINATION

Single Operand

Single Operand RAM to ACC SORA Single Operand RAM to Y Bus SORY Single Operand RAM to Status SORS SOAR Single Operand ACC to RAM SODR Single Operand D to RAM SOIR Single Operand I to RAM Single Operand 0 to RAM SOZR Single Operand D(0E) to RAM SOZER Single Operand D(SE) to RAM SOSER Single Operand RAM to RAM SORR SOA Single Operand ACC SOD Single Operand D SOI Single Operand I SOZ Single Operand 0 SOZE Single Operand D(0E) SOSE Single Operand D(SE) NRY Non-RAM Y Bus Non-RAM ACC NRA NRS Non-RAM Status Non-RAM ACC, Status **NRAS**

Two Operand

Two Operand RAM, ACC to ACC TORAA Two Operand RAM, I to ACC TORIA Two Operand D. RAM to ACC **TODRA** Two Operand RAM, ACC to Y Bus TORAY Two Operand RAM, I to Y Bus TORIY Two Operand D, RAM to Y Bus TODRY Two Operand RAM, ACC to RAM TORAR Two Operand RAM, I to RAM TORIR Two Operand D, RAM to RAM TODRR Two Operand D, ACC to RAM **TODAR** Two Operand ACC, I to RAM TOAIR Two Operand D, I to RAM TODIR Two Operand D, ACC **TODA** Two Operand ACC, I TOAL TODI Two Operand D, I

Single Bit Shift

SHRR Shift RAM, Store in RAM
SHDR Shift D, Store in RAM
SHA Shift ACC

SHD Shift D

Rotate n Bits

Rotate RAM. Store in ACC RTRA Rotate RAM, Place on Y Bus RTRY Rotate RAM, Store in RAM RTRR Rotate ACC, Store in RAM RTAR Rotate D. Store in RAM RTDR Rotate D. Place on Y Bus RTDY Rotate D. Store in ACC RTDA Rotate ACC. Place on Y Bus RTAY Rotate ACC, Store in ACC RTAA

Rotate and Merge

MDAI

I as Mask and Store in ACC

MDAR Merge Disjoint Bits of D and ACC Using

Merge Disjoint Bits of D and ACC Using

RAM as Mask and Store in ACC

MDRI Merge Disjoint Bits of D and RAM Using
I as Mask and Store in RAM

MDRA Merge Disjoint Bits of D and RAM Using ACC as Mask and Store in RAM

MARI Merge Disjoint Bits of ACC and RAM Using I as Mask and Store in RAM

MRAI Merge Disjoint Bits of RAM and ACC Using I as Mask and Store in ACC

Rotate and Compare

CDAI Compare Unmasked Bits of D and ACC Using 1 as Mask

Mnemonics copyright @ 1980 Advanced Micro Devices, Inc.

Using I as Mask CDRA Compare Unmasked Bits of D and RAM Using ACC as Mask CRAI Compare Unmasked Bits of D and RAM Using ACC as Mask CRAI Compare Unmasked Bits of RAM and ACC Using I as Mask for Prioritize Type 1 PRIO D as Source for Prioritize Type 1 PRIO D as Source for Prioritize Type 3 PRIO D a	th LINK Insert th Carry Insert th Sign EXOR
Using ACC as Mask CRAI Compare Unmasked Bits of RAM and ACC Using I as Mask Prioritize PR1A ACC as Destination for Prioritize Type 1 PR1Y Y Bus as Destination for Prioritize Type 1 PR1A ACC as Source for Prioritize Type 1 PR1D D as Source for Prioritize Type 1 PR2A ACC as Destination for Prioritize Type 1 PR1D D as Source for Prioritize Type 2 PR3R RAM as Destination for Prioritize Type 2 PR3R RAM as Source for Prioritize Type 3 PR3D D as Source for Prioritize Type 2, 3, and Non-RAM PR1D D as Source for Prioritize Type 2, 3, and Non-RAM PR1D D as Source for Prioritize Type 2, 3, and Non-RAM PR1 I as Mask for Prioritize Type 2, 3, and Non-RAM PR1 I as Mask for Prioritize Type 2, 3, and Non-RAM PR1 I as Mask for Prioritize Type 2, 3, and Non-RAM PR1 I as Mask for Prioritize Type 2, 3, and Non-RAM PR1 I as Mask for Prioritize Type 2, 3, and Non-RAM PR1 I as Mask for Prioritize Type 2, 3, and Non-RAM PR1 I as Mask for Prioritize Type 2, 3, and Non-RAM PR1 I as Mask for Prioritize Type 2, 3, and Non-RAM PR1 I as Mask for Prioritize Type 2, 3, and Non-RAM PR1 I as Mask for Prioritize Type 2, 3, and Non-RAM PR1 I as Mask for Prioritize Type 2, 3, and Non-RAM PR2 Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM PR1 I as Mask for Prioritize Type 2, 3, and Non-RAM PR1 I as Mask for Prioritize Type 2, 3, and Non-RAM PR1 I as Mask for Prioritize Type 2, 3, and Non-RAM PR1 I as Mask for Prioritize Type 2, 3, and Non-RAM PR1 I as Mask for Prioritize Type 2, 3, and Non-RAM PR1 I as Mask for Prioritize Type 3 PR2 Reset RaM, Bit n RSTND Reset RaM, Bit n RSTND Reset RaM, Bit n RSTND Reset Flag3 Bit in Status Regist Reset Flag3 Bit in St	th Carry Insert th Sign EXOR
Prioritize PR1A ACC as Destination for Prioritize Type 1 PR1P Y Bus as Destination for Prioritize Type 1 PR1R RAM as Destination for Prioritize Type 1 PR1R RAM as Destination for Prioritize Type 1 PR1A ACC as Source for Prioritize Type 1 PR1A ACC as Source for Prioritize Type 1 PR1A ACC as Destination for Prioritize Type 1 PR1A ACC as Destination for Prioritize Type 2 PR2P Y Bus as Destination for Prioritize Type 2 PR3A ACC as Destination for Prioritize Type 2 PR3P RAM as Source for Prioritize Type 3 PR3A ACC as Source for Prioritize Type 3 PR3A ACC as Source for Prioritize Type 3 PR3D D as Source for Prioritize Type 3 PR3D D as Source for Prioritize Type 3 PR3D D as Source for Prioritize Type 3 PR3D ACC as Source for Prioritize Type 3 PR3D D as Source for Prioritize Type 8 PR3D D as Source for Prioritize Type 9 Non-RAM PRAD ACC as Mask for Prioritize Type 9 Non-RAM PRAD ACC as Mask for Prioritize Type 2, 3, and Non-RAM PRAD ACC as Mask for Prioritize Type 2, 3, and Non-RAM PRAD ACC as Mask for Prioritize Type 2, 3, and Non-RAM PRAD ACC as Mask for Prioritize Type 2, 3, and Non-RAM PRAD ACC as Mask for Prioritize Type 2, 3, and Non-RAM PRAD ACC as Mask for Prioritize Type 2, 3, and Non-RAM PRAD ACC as Mask for Prioritize Type 2, 3, and Non-RAM PRAD ACC as Mask for Prioritize Type 2, 3, and Non-RAM PRAD ACC as Mask for Prioritize Type 2, 3, and Non-RAM PRAD Race Equal to Zero for Prioritize Type 2, 3, and Non-RAM PRAD Race Equal to Zero for Prioritize Type 2, 3, and Non-RAM PRAD Race Equal to Zero for Prioritize Type 2, 3, and Non-RAM PRAD Race Equal to Zero for Prioritize Type 2, 3, and Non-RAM PRAD Race Equal to Zero for Prioritize Type 2, 3, and Non-RAM PRAD Race Equal to Zero for Prioritize Type 2, 3, and Non-RAM PRAD Race Equal to Zero for Prioritize Type 2, 3, and Non-RAM PRAD Race Equal to Zero for Prioritize Type 2, 3, and Non-RAM PRAD Race Equal to Zero for Prioritize Type 2, 3, and Non-Ram PRAD Race Equal to Zero for Prioritize Type 2, 3, and Non-Ram PRAD Race Equal to Zero for Prioritize Type 2, 3, a	th Sign EXOR
Prioritize PR11A ACC as Destination for Prioritize Type 1 PR1R RAM as Destination for Prioritize Type 1 PR1R RAM as Destination for Prioritize Type 1 PR1D D as Source for Prioritize Type 1 PR2A ACC as Destination for Prioritize Type 2 PR3P RAM as Destination for Prioritize Type 2 PR3P RAM as Source for Prioritize Type 3 PR3D D as Source for Prioritize Type 2, 3, and Non-RAM PRA ACC as bask for Prioritize Type 2, 3, and Non-RAM PR3D Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM PR1 I as Mask for Prioritize Type 2, 3, and Non-RAM PR1 I as Mask for Prioritize Type 2, 3, and Non-RAM PR1 I as Mask for Prioritize Type 2, 3, and Non-RAM PR1 I as Mask for Prioritize Type 2, 3, and Non-RAM PR2 Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM PR3 Reset RAM, Bit in Status Regist SF2 Set Flag3 Bit in Status Regist SF3 Set Flag3 Bit in Status Regist SF3 Reset Flag3 Bit in Status Regist RAM, Bit in RSTNA Reset OVR, N. C, Z, in Status Regist RAM, Bit in RSTNA Reset OVR, N. C, Z, in Status Regist RAM, Bit in RSTNA Reset COR, Bit in RSTNA Reset Flag3 Bit in Status Regist RAM, Bit in TSTNA Reset Flag3 Bit in Status Regist RAM, Bit in TSTNA Reset Flag3 Bit in Status Regist RAM, Bit in TSTNA Reset Flag3 Bit in Status Regist RAM, Bit in TSTNA Reset Flag3 Bit in Status Regist RAM, Bit in TSTNA Reset Flag3 Bit in Status Regist RAM, Bit in TSTNA Reset Flag3 Bit in Status Regist RAM, Bit in TSTNA Reset Flag3 Bit in Status Regist RAM, Bit in TSTNA Reset Flag3 Bit in Status Regist RAM, Bit in TSTNA Reset Flag3 Bit in Status Regist RAM, Bit in TSTNA Reset Flag3 Bit in Status Regist RAM, Bit in TSTN	s Register
PRIA ACC as Destination for Prioritize Type 1 PRIY Y Bus as Destination for Prioritize Type 1 PRIA ACC as Source for Prioritize Type 1 PRID D as Source for Prioritize Type 1 PRID D as Source for Prioritize Type 2 PRID D as Source for Prioritize Type 2 PRID D as Source for Prioritize Type 3 PRID D as Source for Prioritize Type 2, 3, and Non-RAM PRID D as Source for Prioritize Type 2, 3, and Non-RAM PRID D as Source for Prioritize Type 2, 3, and Non-RAM PRID I as Mask for Prioritize Type 3 PRID I as Mask for Prioritize Type 3 PRID I as	•
PRIA ACC as Destination for Prioritize Type 1 PRIY Y Bus as Destination for Prioritize Type 1 PRIA ACC as Source for Prioritize Type 1 PRID D as Source for Prioritize Type 1 PRID D as Source for Prioritize Type 2 PRISH RAM as Destination for Prioritize Type 2 PRISH RAM as Destination for Prioritize Type 2 PRID D as Source for Prioritize Type 3 PRISH RAM as Source for Prioritize Type 3 PRISH ACC as Destination for Prioritize Type 3 PRISH ACC as Source for Prioritize Type 2, 3, and Non-RAM PRID D as Source for Prioritize Type 2, 3, and Non-RAM PRID D as Source for Prioritize Type 2, 3, and Non-RAM PRID I as Mask for Prioritize Type 2, 3, and Non-RAM PRID I as Mask for Prioritize Type 2, 3, and Non-RAM PRID I as Mask for Prioritize Type 2, 3, and Non-RAM PRID I as Mask for Prioritize Type 2, 3, and Non-RAM PRID I as Mask for Prioritize Type 2, 3, and Non-RAM PRID I as Mask for Prioritize Type 2, 3, and Non-RAM PRID I as Mask for Prioritize Type 2, 3, and Non-RAM PRID I as Mask for Prioritize Type 2, 3, and Non-RAM PRID I as Mask for Prioritize Type 2, 3, and Non-RAM PRID I as Mask for Prioritize Type 2, 3, and Non-RAM PRID I as Mask for Prioritize Type 2, 3, and Non-RAM PRID I as Mask for Prioritize Type 2, 3, and Non-RAM PRID I as Mask for Prioritize Type 2, 3, and Non-RAM PRID I as Mask for Prioritize Type 2, 3, and Non-RAM PRID I as Mask for Prioritize Type 2, 3, and Non-RAM PRID I as Mask for Prioritize Type 2, 3, and Non-RAM PRID I as Mask for Prioritize Type 3 PRISH Reset	•
PR1Y Y Bus as Destination for Prioritize Type 1 PR1R RAM as Destination for Prioritize Type 1 PR1D D as Source for Prioritize Type 1 PR2A ACC as Source for Prioritize Type 1 PR2A ACC as Destination for Prioritize Type 2 PR3Y Y Bus as Destination for Prioritize Type 2 PR3R RAM as Source for Prioritize Type 3 PR3A ACC as Source for Prioritize Type 3 PR3D D as Source for Prioritize Type 8 PR3D D as Source for Prioritize Type 8 PR1D D as Source for Prioritize Type Non-RAM PR1D D as Source for Prioritize Type Non-RAM PR2 Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM PR2 Mask for Prioritize Type 2, 3, and Non-RAM PR3D ACC as Mask for Prioritize Type 2, 3, and Non-RAM PR4D I as Mask for Prioritize Type 2, 3, and Non-RAM PR5D Bolean AND OPCODE Addition ADD Add without Carry ADDC Add with Carry ADDC Add with Carry ADDC Add with Carry ADDC Add with Carry SUBS Subtract 1 from S without Carry SUBS Subtract 1 from S without Carry SUBSC Subtract 2 from R without Carry SUBSC Subtract 2 from R with Carry SUBSC Subtract 2 from RAM S2NA Subtract 2 from D, Place on Y Bus Logical Operations AND Boolean AND LDC2NR Load 2 into ACC LDC2NN Place 2 into ACC LDC2NN LDC2NN Place 2 into ACC LDC2NN Place 2 into ACC LDC2NN Place	•
PRIT A ACC as Source for Prioritize Type 1 PRID D as Source for Prioritize Type 2 PRID D as Source for Prioritize Type 2 PRID PRID D as Source for Prioritize Type 2 PRID PRID D as Source for Prioritize Type 2 PRID PRID D ACC as Destination for Prioritize Type 2 PRID PRID D ACC as Source for Prioritize Type 3 PRID D ACC as Source for Prioritize Type 3 PRID D ACC as Source for Prioritize Type 3 PRID D ACC as Source for Prioritize Type 3 PRID D ACC as Source for Prioritize Type 3 PRID D ACC as Source for Prioritize Type Non-RAM PRID D ACC as Mask for Prioritize Type 2, 3, and Non-RAM PRID D ACC as Mask for Prioritize Type 2, 3, and Non-RAM PRID D ACC as Mask for Prioritize Type 2, 3, and Non-RAM PRID D ACC ACC ACC ACC ACC ACC ACC ACC ACC	•
PRT1A ACC as Source for Prioritize Type 1 PR1D D as Source for Prioritize Type 1 PR2A ACC as Destination for Prioritize Type 2 PR3A ACC as Destination for Prioritize Type 2 PR3R RAM as Source for Prioritize Type 3 PR3A ACC as Source for Prioritize Type 3 PR3D D as Source for Prioritize Type 3 PR1A ACC as Source for Prioritize Type 8 PR1A ACC as Source for Prioritize Type 9 PR1A ACC as Mask for Prioritize Type 9, and Non-RAM PR2 Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM PR2 Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM PR1 I as Mask for Prioritize Type 2, 3, and Non-RAM PR1 I as Mask for Prioritize Type 2, 3, and Non-RAM PR1 I as Mask for Prioritize Type 2, 3, and Non-RAM PR2 Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM PR3 Mon-RAM PR4 ACC as Mask for Prioritize Type 2, 3, and Non-RAM PR5 Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM PR6 Non-RAM PR7 Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM PR8 Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM PR9 Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM PR6 Non-RAM PR7 Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM PR8 Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM PR8 Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM PR8 Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM PR8 Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM PR7 Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM PR8 Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM PR8 Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM PR8 Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM PR8 Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM PR8 Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM PR8 Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM PR9 Mask Equal to Zero for Prioritize Type 3, and Non-RAM PR8 Mask Equal to Zero for Prio	•
PR1D D as Source for Prioritize Type 1 PR2A ACC as Destination for Prioritize Type 2 PR2Y Y Bus as Destination for Prioritize Type 2 PR3R RAM as Source for Prioritize Type 3 PR3A ACC as Source for Prioritize Type 3 PR3D D as Source for Prioritize Type 2, 3, and Non-RAM PR3D D as Source for Prioritize Type 2, 3, and Non-RAM PR4D D AS Source for Prioritize Type 2, 3, and Non-RAM PR5D D as Source for Prioritize Type 2, 3, and Non-RAM PR6D D AS Source for Prioritize Type 2, 3, and Non-RAM PR7D D as Source for Prioritize Type 2, 3, and Non-RAM PR7D D as Source for Prioritize Type 2, 3, and Non-RAM PR7D D as Source for Prioritize Type 2, 3, and Non-RAM PR7D D As Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM PR7D R2 Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM PR7D R2 Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM PR7D R2 Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM PR7D R2 Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM PR7D R2 Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM PR7D R2 Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM PR7D R2 Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM PR7D R2 Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM PR7D R2 Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM PR7D R2 Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM PR7D R2 Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM PR7D R2 Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM PR7D R2 Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM PR7D R2 Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM PR7D R2 Mask Equal to Z	•
PR2A ACC as Destination for Prioritize Type 2 PR2Y Y Bus as Destination for Prioritize Type 2 PR3R RAM as Source for Prioritize Type 3 PR3D D as Source for Prioritize Type 3 PR1A ACC as source for Prioritize Type 3 PR1D D as Source for Prioritize Type Non-RAM PR1D D as Source for Prioritize Type Non-RAM PR2 ACC as Mask for Prioritize Type 2, 3, and Non-RAM PR3 ACC as Mask for Prioritize Type 2, 3, and Non-RAM PR4 ACC as Mask for Prioritize Type 2, 3, and Non-RAM PR5 ACC as Mask for Prioritize Type 2, 3, and Non-RAM PR6 ACC as Mask for Prioritize Type 2, 3, and Non-RAM PR7 Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM PR7 Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM PR8 Add with Carry Acc Add with Carry ADD Add without Carry ADD Add without Carry ADD Add with Carry ADD Add with Carry ADD Add with Carry ADD Add 2 ⁿ to ACC A2NR Add 2 ⁿ to ACC A2NR Add 2 ⁿ to D, Place on Y Bus Subtraction SUBR Subtract R from S without Carry SUBSC Subtract S from R with Carry SUBSC Subtract S from R with Carry SUBSC Subtract S from R with Carry SUBSC Subtract 2 ⁿ from ACC S2NDY Subtract 2 ⁿ from ACC S2NDY Subtract 2 ⁿ from D, Place on Y Bus Logical Operations AND Boolean AND Bit Oriented Bit Oriented SETNR Set RAM, Bit n SETND Set D, Bit n SETND SETND, Set D, Bit n SETND SETND, Set D, Bit n SETND SETND, Set D, Bit n SETND Set D, Bit n Status Regis SF1 set Flag1 Bit in Sta	•
PRZY Y Bus as Destination for Prioritize Type 3 PR3A ACC as Source for Prioritize Type 3 PR3A ACC as Source for Prioritize Type 3 PR3A ACC as source for Prioritize Type 3 PRTA ACC as source for Prioritize Type 3 PRTA ACC as source for Prioritize Type Non-RAM PRTD D as Source for Prioritize Type Non-RAM PRA ACC as Mask for Prioritize Type 2, 3, and Non-RAM PRA ACC as Mask for Prioritize Type 2, 3, and Non-RAM PRZ Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM PRI I as Mask	•
PR3A ACC as Source for Prioritize Type 3 PR3D D as Source for Prioritize Type 3 PRTA ACC as source for Prioritize Type 3 PRTA ACC as source for Prioritize Type 5 Non-RAM PRTD D as Source for Prioritize Type 9 PRAM ACC as Mask for Prioritize 19 PRAM ACC as Mask for Prioritize 19 PRAM ACC as	•
PR3D D as Source for Prioritize Type 3 PRTA ACC as source for Prioritize Type Non-RAM PRTD D as Source for Prioritize Type SETND Set ACC, Bit n SONCZ Set OVR, N, C, Z, in Status Set LINK Bit in Status Regist Set Flag Bit in Status Regist Set Flag Bit in Status Regist Set Flag Bit in Status Regist PRA ACC as Mask for Prioritize Type 2, 3, and Non-RAM PRZ Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and RSTNR Reset RAM, Bit in Status Regist PRIORITIES PRIORITIE	•
PR3D D as Source for Prioritize Type 3 PRTA ACC as source for Prioritize Type Non-RAM PRTD D as Source for Prioritize Type Non-RAM PRA ACC as Mask for Prioritize Type 2, 3, and Non-RAM PRA ACC as Mask for Prioritize Type 2, 3, and Non-RAM PRZ Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize	•
PRTA ACC as source for Prioritize Type Non-RAM PRTD D as Source for Prioritize Type Non-RAM PRA ACC as Mask for Prioritize Type 2, 3, and Non-RAM PRZ Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and PRI I as Mask for Prioritize Type 2, 3, and PRI I as Mask for Prioritize Type 2, 3, and PRI I as Mask for Prioritize Type 2, 3, and PRI I as Mask for Prioritize Type 2, 3, and PRI I as Mask for Prioritize Type 2, 3, and PRI I as Mask for Prioritize Type 2, 3, and PRI I as Mask for Prioritize Type 2, 3, and PRI I as Mask for Prioritize Type 2, 3, and PRI I as Mask for Prioritize Type 2, 3, and PRI I as Mask for Prioritize Type 2, 3, and PRI I as Mask for Prioritize Type 2, 3, and PRI I as Mask for Prioritize Type 2, 3, and PRI I as Mask for Prioritize Type 2, 3, and PRI I as Mask for Prioritize Type 2, 3, and PRI I as Mask for Prioritize Type 2, 3, and PRI I as Mask for Prioritize Type 2, 3, and PRI I as Mask for Prioritize Type 2, 3, and PRI I as Hatus Regis PRI I as Mask for Prioritize Type 2, 3, and PRI I as Mask for Prioritize Type 2, 3, and PRI I as Mask for Prioritize Type 2, 3, and PRI I as Mask for Prioritize Type 2, 3, and PRI I as Mask for Prioritize Type 2, 3, and PRI I as Mask for Prioritize Type 2, 3, and PRI I as Mask for Prioritize Type 2, 3, and PRI I as Mask for Prioritize Type 2, 3, a	•
PRTD D as Source for Prioritize Type Non-RAM PRA ACC as Mask for Prioritize Type 2, 3, and Non-RAM PRA ACC as Mask for Prioritize Type 2, 3, and Non-RAM PRZ Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI Reset RAM, Bit in Status Regist Ram Reset Link Bit in Status Regist Ram Reset Ram Res	•
PRTD D as Source for Prioritize Type Non-HAM PRA ACC as Mask for Prioritize Type 2, 3, and Non-RAM PRZ Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and RSTNR Reset RAM, Bit n RSTND Reset D, Bit n RSTND Reset D, Bit n RSTND Reset LINK Bit in Status Regis RESTNR Reset RAM, Bit n RSTND Reset LINK Bit in Status Regis RESTNR Reset RAM, Bit n RSTND Reset Flag3 Bit in Status Regis RESTNR Reset RAM, Bit n RSTND Reset Flag3 Bit in Status Regis RESTNR Reset RAM, Bit n RSTNR Reset Flag3 Bit in Status Regis RESTNR Reset RAM, Bit n RSTNR Reset Flag3 Bit in Status Regis RESTNR Reset RAM, Bit n RSTNR Reset Flag3 Bit in Status Regis RESTNR Reset RAM, Bit n RSTNR Reset Flag3 Bit in Status Regis RESTNR Reset RAM, Bit n RSTNR Reset Flag3 Bit in Status Regis RESTNR Reset RAM, Bit n RSTNR Reset Flag3 Bit in Status Regis RESTNR Reset RAM, Bit n RSTNR Reset RAM, Bit n RSTNR Reset Flag3 Bit in Status Regis RESTNR Reset RAM, Bit n RSTNR Reset RAM, Bi	•
PRA ACC as Mask for Prioritize Type 2, 3, and Non-RAM PRZ Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and RIN Reset RAM, Bit n RSTNA Reset RAM, Bit n RSTNA Reset D, Bit n RONCZ Reset OVR, N, C, Z, in Status Regis RI Reset RAM, Bit n RONCZ Reset OVR, N, C, Z, in Status Regis RIN Reset RAM, Bit n RSTNA Reset RAM, Bit n RSTNA Reset RAM, Bit n RSTNA Reset RAM, Bit n RONCZ Reset OVR, N, C, Z, in Status Regis RIN Reset RAM, Bit n RSTNA RESET RAM, Bi	
PRZ Mask Equal to Zero for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI Reset RAM, Bit n RSTNA Reset ACC, Bit n RSTND Reset D, Bit n RONCZ Reset OVR, N, C, Z, in Status Regist RI Reset Flag1 Bit in Status Regist RI Reset Flag2 Bit in Status Regist RI Reset Flag2 Bit in Status Regist RI Reset Flag3 Bit in Status Regist RI Reset RAM, Bit n RSTNA Reset CVR, N, C, Z, in Status Regist RI Reset Flag3 Bit in Status Regist RI Reset RAM, Bit n RSTNA Reset Flag3 Bit in Status Regist RI Reset Ram, Bit n RSTNA Reset Flag3 Bit in Status Regist RI Reset Ram, Bit n RSTNA Reset Ram, Bit n RSTNA Reset Flag3 Bit in Status Regist RI Reset Ram, Bit n RSTNA Fest Ram, Bit n RSTNA Reset Ram, Bit n	
PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and Non-RAM PRI I as Mask for Prioritize Type 2, 3, and RSTNR Reset RAM, Bit n RSTNA Reset ACC, Bit n RSTNA Reset CVR, N, C, Z, in Status Register. RL Reset LINK Bit in Status Register. REF1 Reset Flag1 Bit in Status Register. REF2 Reset Flag2 Bit in Status Register. REF3 Reset RAM, Bit n RSTNA Reset ACC, Bit n RSTNA Reset ACC, Bit n RSTNA Reset ACC, Bit n RSTNA Reset RAM, Bit n RSTNA Reset Revet Refer. RE 1 Reset RAM, Bit n RSTNA Reset Refer. RE 2 Reset Ram, Bit n RSTNA Reset Refer. R	
PRI I as Mask for Prioritize Type 2, 3, and Non-RAM OPCODE Addition ADD Add without Carry ADD Add with Carry ADD Add with Carry AND Add 2 ⁿ to ACC A2NR Add 2 ⁿ to RAM A2NDY Add 2 ⁿ to D, Place on Y Bus Subtraction SUBR Subtract R from S without Carry SUBS Subtract S from R with Carry SUBS Subtract S from R with Carry SUBS Subtract 2 ⁿ from ACC S2NR Subtract 2 ⁿ from D, Place on Y Bus Logical Operations RSTNR Reset RAM, Bit n RSTND Reset D, Bit n RSTND Fest Flag1 Bit in Status Reset ACC, Bit n Status Reset ACC, Bit n Status Reset Plag2 Bit in Status Reset ACC, Bit n Status Reset Plag2 Bit in Status Reset ACC, Bit n Status Reset Plag2 Bit in Status Reset ACC, Bit n Status Reset Plag2 Bit in Status Reset Plag2 Bit in Status Reset ACC, Bit n Status Reset Plag2 Bit in Status Reset ACC, Bit n Status Reset Plag2 Bit in Status Rese	
PRI I as Mask for Prioritize Type 2, 3, and Non-RAM OPCODE Addition ADD Add without Carry ADD Add with Carry ADD Add with Carry AND Add 2 ⁿ to ACC A2NA Add 2 ⁿ to ACC A2NA Add 2 ⁿ to D, Place on Y Bus Subtraction SUBR Subtract R from S without Carry SUBS Subtract S from R without Carry SUBS Subtract S from R without Carry SUBS Subtract S from R with Carry SUBS Subtract 2 ⁿ from ACC S2ND Subtract 2 ⁿ from D, Place on Y Bus Logical Operations ARSTNA Reset ACC, Bit n RSTND Reset UNK Bit in Status Re RF1 Reset Flag1 Bit in Status Re RF2 Reset Flag2 Bit in Status Re RF3 Reset Flag3 Bit in Status Re RF3 Reset Flag3 Bit in Status Re RF3 Reset Flag3 Bit in Status Re RF4 Reset ACC, Bit n RSTNA Test ACC, Bit n TSTNR Test RAM, Bit n TSTND Test D, Bit n Arithmetic Operations MOVE Move and Update Status COMP Complement (1's Complement INC Increment NEG Two's Complement Test TNOZ Test (N © OVR) + Z TNOZ Test (N © OVR) TZ Test Zero Bit	Stel
OPCODE Addition ADD Add without Carry ADDC Add with Carry A2NA Add 2 ⁿ to ACC A2NR Add 2 ⁿ to D, Place on Y Bus Subtraction SUBR Subtract R from S without Carry SUBS Subtract S from R with Carry SUBS Subtract S from R with Carry SUBS Subtract S from R with Carry SUBS Subtract S from R without Carry SUBS Subtract S from R with Carry SUBS Subtract R from S without Carry SUBS Subtract R from S without Carry MOVE Move and Update Status COMP Complement (1's Complement TEXT TOT Test (N ® OVR) + Z TOZ Test (N ® OVR) + Z	
Addition Add without Carry ADD Add with Carry ADDC Add with Carry ANDC Add 2 ⁿ to ACC ANDC ARAM ANDC Add 2 ⁿ to RAM ANDC Add 2 ⁿ to D, Place on Y Bus ANDC Add 2 ⁿ to D, Place on Y Bus ANDC Add 2 ⁿ to D, Place on Y Bus ANDC Add 2 ⁿ to D, Place on Y Bus ANDC Add 2 ⁿ to ACC ANDC Add with Carry ANDC Add wit	
Addition ADD Add without Carry ADDC Add with Carry APPLATED ADDC Add with Carry ANA Add 2 ⁿ to ACC A2NA Add 2 ⁿ to ACC A2NA Add 2 ⁿ to D, Place on Y Bus A2NDY Add 2 ⁿ to D, Place on Y Bus A2NDY Add 2 ⁿ to D, Place on Y Bus A2NDY Add 2 ⁿ to D, Place on Y Bus A2NDY Add 2 ⁿ to D, Place on Y Bus A2NDY Add 2 ⁿ to D, Place on Y Bus A2NDY Add 2 ⁿ to D, Place on Y Bus A2NDY Add 2 ⁿ to D, Place on Y Bus A2NDY Add 2 ⁿ to D, Place on Y Bus A2NDY Add 2 ⁿ to D, Place on Y Bus A2NDY Add 2 ⁿ to D, Place on Y Bus A2NDY Add 2 ⁿ to D, Place on Y Bus A2NDY Add 2 ⁿ to D, Place on Y Bus A2NDY Add 2 ⁿ to D, Place on Y Bus A2NDY Add 2 ⁿ to ACC A2NDY Subtract R from S without Carry A2NDY Subtract R from S without Carry A2NDY Subtract R from S without Carry A2NDY Subtract R from RAM A2NDY Add 2 ⁿ to D, Place on Y Bus A2NDY Subtract R from S without Carry A2NDY Add 2 ⁿ from ACC A2NDY Subtract R from RAM A2NDY Add 2 ⁿ from ACC A2NDY Subtract R from RAM A2NDY Add 2 ⁿ from ACC A2NDY Subtract R from RAM A2NDY Add 2 ⁿ from ACC A2NDY Subtract R from RAM A2NDY Add 2 ⁿ from ACC A2NDY Subtract R from RAM A2NDY Add 2 ⁿ from ACC A2NDY Subtract R from RAM A2NDY Add 2 ⁿ from ACC A2NDY Subtract R from RAM A2NDY Add 2 ⁿ from ACC A2NDY Subtract R from RAM A2NDY Add 2 ⁿ from ACC A2NDY Subtract R from RAM A2NDY Add 2 ⁿ from ACC A2NDY Subtract R from RAM A2NDY Add 2 ⁿ from ACC A2NDY Subtract R from RAM A2NDY Add 2 ⁿ from ACC A2NDY Subtract R from RAM A2NDY Add 2 ⁿ to ACC A2NDY	
ADD Add without Carry ADDC Add with Carry ADDC Add with Carry ASPANA Add 2 ⁿ to ACC A2NA Add 2 ⁿ to RAM A2NDY Add 2 ⁿ to D, Place on Y Bus A2NDY Add 2 ⁿ to D, Place on Y Bus A2NDY Add 2 ⁿ to D, Place on Y Bus A3NDY Add 2 ⁿ to D, Place on Y Bus A3NDY Add 2 ⁿ to D, Place on Y Bus A3NDY Add 2 ⁿ to D, Place on Y Bus A3NDY Add 2 ⁿ to D, Place on Y Bus A3NDY Add 2 ⁿ to D, Place on Y Bus A3NDY Add 2 ⁿ to D, Place on Y Bus A3NDY Add 2 ⁿ to RAM A3NDY Add 2 ⁿ	_
ADDC Add with Carry AZNA Add 2 ⁿ to ACC AZNR Add 2 ⁿ to RAM AZNDY Add 2 ⁿ to D, Place on Y Bus Subtraction SUBR Subtract R from S without Carry SUBS Subtract R from S with Carry SUBS Subtract S from R without Carry SUBS Subtract S from R without Carry SUBS Subtract S from R with Carry SUBS Subtract S from R without Carry SUBS Subtract S from S without Carry SUBS Subtract R from S without Carr	
A2NA Add 2 ⁿ to ACC A2NR Add 2 ⁿ to RAM A2NDY Add 2 ⁿ to D, Place on Y Bus Subtraction SUBR Subtract R from S without Carry SUBRC Subtract R from S with Carry SUBS Subtract S from R without Carry SUBS Subtract S from R without Carry SUBS Subtract S from R with Carry SUBS Subtract S from RAM SUBS SUBTRACT S from S without Carry SUBS S SUBTRACT S from	-
A2NR Add 2 ⁿ to RAM A2NDY Add 2 ⁿ to D, Place on Y Bus Subtraction SUBR Subtract R from S without Carry SUBS Subtract S from R without Carry SUBSC Subtract S from R without Carry SUBSC Subtract S from R with Carry SUBSC Subtract S from RAM SUBSC	-
A2NDY Add 2 ⁿ to D, Place on Y Bus Subtraction SUBR Subtract R from S without Carry SUBRC Subtract R from S with Carry SUBS Subtract S from R without Carry SUBS Subtract S from R with Carry SUBSC Subtract S from R with Carry SUBSC Subtract S from R with Carry SUBSC Subtract 2 ⁿ from RAM S2NA Subtract 2 ⁿ from ACC S2NDY Subtract 2 ⁿ from D, Place on Y Bus Logical Operations AND Boolean AND Test ACC, Bit n TSTNA Test ACC, Bit n T	egister
Subtraction SUBR Subtract R from S without Carry SUBRC Subtract R from S with Carry SUBS Subtract S from R without Carry SUBSC Subtract S from R with Carry SUBSC Subtract S from R with Carry SUBSC Subtract 2 ⁿ from RAM S2NA Subtract 2 ⁿ from ACC S2NDY Subtract 2 ⁿ from D, Place on Y Bus TSTND Test D, Bit n Arithmetic Operations MOVE Move and Update Status COMP Complement (1's Complement Increment NEG Two's Complement TNO's Complement TNOZ Test (N ⊕ OVR) + Z TNOZ Test (N ⊕ OVR) + Z TNO Test N ⊕ OVR TZ Test Zero Bit	
Subtraction SUBR Subtract R from S without Carry SUBRC Subtract R from S with Carry SUBS Subtract S from R without Carry SUBSC Subtract S from R with Carry SUBSC Subtract S from R with Carry SUBSC Subtract 2 ⁿ from RAM S2NA Subtract 2 ⁿ from ACC S2NDY Subtract 2 ⁿ from D, Place on Y Bus AND Boolean AND Arithmetic Operations MOVE Move and Update Status COMP Complement (1's Complement INC Increment NEG Two's Complement Conditional Test TNOZ Test (N ⊕ OVR) + Z TNO Test N ⊕ OVR TZ Test Zero Bit	
SUBR Subtract R from S without Carry SUBRC Subtract R from S with Carry SUBS Subtract S from R without Carry SUBSC Subtract S from R with Carry SUBSC Subtract S from R with Carry SUBSC Subtract S from R with Carry SUBSC Subtract 2 ⁿ from RAM SUBSC Subtract 2 ⁿ from ACC SUBSC Subtract 2 ⁿ from RAM SUBSC Subtract S from RAM NEG Two's Complement Two's Complement Test TNOZ Test (N © OVR) + Z TNO Test N © OVR TZ Test Zero Bit	
SUBRC Subtract R from S with Carry SUBS Subtract S from R without Carry SUBSC Subtract S from R with Carry SUBSC Subtract S from R with Carry SUBSC Subtract 2 ⁿ from RAM SUBSC Subtract 2 ⁿ from ACC SUBSC Subtract S from R with Carry INC Increment NEG Two's Complement Test TNOZ Test (N ⊕ OVR) + Z TOZ Test Zero Bit	
SUBS Subtract S from R without Carry SUBSC Subtract S from R with Carry S2NR Subtract 2 ⁿ from RAM S2NA Subtract 2 ⁿ from ACC S2NDY Subtract 2 ⁿ from D, Place on Y Bus Logical Operations AND Boolean AND COMP Complement (1's Complement NEG Two's Complement	
SUBSC Subtract S from R with Carry S2NR Subtract 2 ⁿ from RAM S2NA Subtract 2 ⁿ from ACC S2NDY Subtract 2 ⁿ from D, Place on Y Bus Logical Operations AND Boolean AND INC Increment NEG Two's Complement Conditional Test TNOZ Test (N ⊕ OVR) + Z TNO Test N ⊕ OVR TZ Test Zero Bit	ent)
S2NR Subtract 2 ⁿ from RAM S2NA Subtract 2 ⁿ from ACC S2NDY Subtract 2 ⁿ from D, Place on Y Bus Logical Operations AND Boolean AND NEG Two's Complement Conditional Test TNOZ Test (N ⊕ OVR) + Z TNO Test N ⊕ OVR TZ Test Zero Bit	THY
S2NA Subtract 2 ⁿ from ACC S2NDY Subtract 2 ⁿ from D, Place on Y Bus TNOZ Test (N ⊕ OVR) + Z Logical Operations AND Boolean AND TZ Test Zero Bit	
S2NDY Subtract 2 ⁿ from D, Place on Y Bus TNOZ Test (N ⊕ OVR) + Z Logical Operations TNO Test N ⊕ OVR TZ Test Zero Bit	
Logical Operations TNOZ Test (N ⊕ OVR) + Z TNO Test N ⊕ OVR TZ Test Zero Bit	
Logical Operations TNO Test N ⊕ OVR AND Boolean AND TZ Test Zero Bit	
AND Boolean AND TZ Test Zero Bit	
EXOR Boolean EXOR TLOW Test for LOW	
ZANON DOGGEN ZANON	
TL Test LINK Bit SHIFTS TF1 Test Flag1 Bit	
IFI Test Flag Dit	
CONTRACTOR OF THE PROPERTY OF	
SHUP1 Shift Up Towards MSB with 1 Insert TF3 Test Flag3 Bit SHUPL Shift Up Towards MSB with LINK Insert Mnemonics copyright © 1980	
Advanced Micro Devices, Inc.	

ABSOLUTE MAXIMUM RATINGS

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices Temperature (T _A)	0 to +70°C . +4.75 V to +5.25 V
Military (M) Devices Temperature (T _C)	55 to +125°C +4.5 V to +5.5 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified; All APL and CPL products are included in Group A, Subgroup 1, 2, 3 tests unless otherwise noted.

arameters	Description	Test C	onditions (N	lote 2)	Min.	Typ. (Note 1)	Max.	Unite
Voн	Output HIGH Voltage	V _{CC} = Min. V _{IN} = V _{IH} or V _{IL}	Y ₀₋₁₅ T ₁₋₄ CT	I _{OH} = -1.6 mA/-1.2 mA (COM'L/MIL)	2.4			Volts
V _{OL}	Output LOW Voltage	V _{CC} = Min. V _{IN} = V _{IH} or V _{IL}	Y ₀₋₁₅ T ₁₋₄ CT	I _{OL} = 16 mA/12 mA (COM'L/MIL)			0.5	Volts
VIH	Guaranteed Input Logical HIGH Voltage (Note 6)		All Inputs		2.0			Volts
VIL	Guaranteed Input Logical LOW Voltage (Note 6)		All inputs				0.8	Volts
Vı	input Clamp Voltage	V _{CC} = Min.	Ail Inputs	I _{IN} = -18 mA			-1.5	Volts
liL.	Input LOW Current	V _{CC} = Max. V _{IN} = 0.5 Volts (Note 4)	IEN SRE DLE 10-4 15-15 OET OEY CP CP T1-4 Y0-15				-0.50 -0.50 -1.00 -1.00 -0.50 -0.50 -0.50 -1.50 -0.55 -0.55	mA
Ίн	Input HIGH Current	V _{CC} = Max. V _{IN} = 2.4 Volts (Note 4)	IEN SRE DLE Io-4 Is-15 OET OEY CP T1-4 Yo-15				50 50 100 100 50 50 50 150 100	μΑ
l _l	Input HIGH Current	V _{CC} = Max. V _{IN} = 5.5 Volts	All Inputs				1.0	mA
lozh	Off State (HIGH Impedance) Output Current	V _{CC} = Max. V _O = 2.4 Volts (Note 4)	T ₁₋₄ Y ₀₋₁₅				100	μΑ
lozL	Off State (HIGH Impedance) Output Current	V _{CC} = Max. V _O = 0.5 Volts (Note 4)	T ₁₋₄ Y ₀₋₁₅				-550	μΑ
los	Output Short Circuit Current	V _{CC} = Max. + 0.5 Volts V _O = 0.5 Volts (Note 3)			-30		-85	mA
			COM'L	T _A = 0 to 70°C (Note 7)			735 605	
			COM'L	T _A = 70°C T _A = 0 to 70°C (Note 7)			550)	1
			(Am29L116A only)	T _A = 70°C	+-		400	mA
Icc	Power Supply Current (Note 5)	V _{CC} = Max.	MIL (Am29116	T _C = -55 to 125°C (Note 7)			745] '''
			only)	T _C = 125°C		525		

Notes: 1. Typical limits are at V_{CC} = 5.0 V, 25°C ambient and maximum loading.

2. For conditions shown as Min. or Max., use the appropriate value specified under Operating Ranges for the applicable device type.

3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

4. Y_O = 15. T₁ = 4 are three-state outputs internally connected to TTL inputs. Input characteristics are measured under conditions such that the outputs are in the OFF state.

5. Worst case I_{CC} is at minimum temperature.

6. These input levels provide zero noise immunity and should be tested only in a static, noise-free environment.

7. Cold start.

Am29116 SWITCHING CHARACTERISTICS

GUARANTEED CHARACTERISTICS OVER COMMERCIAL OPERATING RANGE

 $(T_A = 0 \text{ to } +70^{\circ}\text{C}, \ V_{CC} = 4.75 \text{ to } 5.25 \text{ V}, \ C_L = 50 \text{ pF})$

A. Combinational Delays (nsec)

		Outputs						
		Y ₀₋₁₅	T ₁₋₄	СT				
	I ₀₋₄ (ADDR)	79	84					
	I ₀₋₁₅ (DATA)	79	84	_				
	I ₀₋₁₅ (INSTR)	79	84	48				
Input	DLE	58*	60	-				
	T1-4	-	- 1	39				
	CP	56	62	36				
	Y0 - 15	62*	64	-				
	IEN	-	-	43				

 Y_{0-15} must be stored in the Data Latch and is source disabled before the delay to Y_{0-15} as an output can be measured. *Guaranteed indirectly by other tests.

B. Enable/Disable Times (nsec) (C_L = 5 pF for disable only)

		Ent	ible	Dis	able
From Input	To Output	tpzH	tpzL	tpHZ	tpLZ
ŌĒY			20	20	20
OET	T1-4	25	25	25	25

C. Clock and Pulse Requirements (nsec)

Input	Min Low Time	Min High Time
CP	20	30
DLE	-	, 15
IEN	22	-

Input	With Respect to	High-to-Low Transition Set-up Hold		Low-to-High Transition Set-up Hold		ld	Cor	nment					
I ₀₋₄ (RAM ADDR)	CP	(t _i	₈₁) 24	(t _h	(t _{h1}) 0		-		-			Single AD (Source)	DR
I ₀₋₄ (RAM ADDR)	CP and IEN both LOW	(t _t	(t ₈₂) 10			(t _{h7}) 0		Two ADDR (Destination)					
lo-15 (DATA)	CP		-		-	(t _{s8})	65	(the)	0				
I _{0 - 15} (INSTR)	CP	(t _s	3) 38*	(th3	* 17	(t _{s9})	65	(t _{h9})	0				
IEN HIGH	CP	(t _t	₅₄) 10		_	-		(th10	0	Disable			
IEN LOW	СР	-	(t ₈₅) 20	-	(t _{h5})* 0	(t ₈₁₁) 22	_	(t _{h11})** 0	-	Enable	Immediate first cycle		
SRE	CP		-		_	(t _{s12})	17	(th12	0				
Υ	CP		-	-		(t _{s13})	44	(th13	0				
Υ	DLE	(t _t	s6) 10	(t _h	6) 6	-		-					
DLE	CP		- 1	-		(t _{s14}) 42		(th14	0	1			

^{*}Timing for immediate instruction for first cycle.

^{**}Status register and accumulator destination only.

Am29116 SWITCHING CHARACTERISTICS (Cont'd.)

(All APL and CPL products are included in Group A, Subgroup 9, 10, 11 tests unless otherwise noted)

GUARANTEED CHARACTERISTICS OVER MILITARY OPERATING RANGE

 $(T_C = -55 \text{ to } + 125^{\circ}\text{C}, \ V_{CC} = 4.5 \text{ to } 5.5 \text{ V}, \ C_L = 50 \text{ pF})$

A. Combinational Delays (nsec)

		Outputs						
		Y ₀₋₁₅	T1-4	СТ				
	I ₀₋₄ (ADDR)	100	103	_				
	10-15 (DATA)	100	103	-				
	I _{0 - 15} (INSTR)	100	103	50				
Input	DLE	68* †	70	_				
•	T ₁₋₄	-		46				
	CP	70	73	43				
	Yo - 15	70* †	72	_				
	ĪĒŇ	-	-	50				

 Y_{0-15} must be stored in the Data Latch and its source disabled before the delay to Y_{0-15} as an output can be measured. *Guaranteed indirectly by other tests.

B. Enable/Disable Times (nsec) (C_L = 5 pF for disable only)

		Enable		Dis	able
From Input	To Output	tpzH tpzL		tpHZ	tPLZ
ŌĒY	Y ₀₋₁₅	25	25	25	25
OET	T ₁₋₄	30	30	30	30

C. Clock and Pulse Requirements (nsec)

Input	Min Low Time	Min High Time
CP	33	50
DLE	-	20
IEN	33	-

Input	With Respect to		-to-Low nsition Hold		-to-High nsition Hold	Comment		
I ₀₋₄ (RAM ADDR) CP		(t ₈₁) 24	(t _{h1}) 0	-	-	Single ADDR (Source)		
I ₀₋₄ (RAM ADDR)	CP and IEN both LOW	(t _{s2}) 10	-	-,	(th7) 0	Two ADDR (Destination)		
I ₀₋₁₅ (DATA)	CP	-	-	(t _{s8}) 76	(t _{h8}) 3			
I ₀₋₁₅ (INSTR)	CP	(t _{s3})* 57	(th3)* 17	(t _{s9}) 76	(t _{h9}) 3			
IEN HIGH	CP	(t _{s4}) 10	_			Disable		
TEN LOW	CP	- (t _{s5}) 20	- (t _{h5})* 3	(t _{s11}) 28 -	(t _{h11})** 1 -	Enable Immediate first cycle		
SRE	CP			(t ₈₁₂) 19	(th12) 0			
V	CP			(t _{s13}) 50	(t _{h13}) 2			
<u>'</u>	DLE	(t _{s6}) 11	(th6) 7	-	-			
DLE	CP		-	4) 50				

^{*}Timing for immediate instruction for first cycle.

^{**}Status register and accumulator destination only.

^{+ =} Not included in Group A tests

Am29116A SWITCHING CHARACTERISTICS

GUARANTEED CHARACTERISTICS OVER COMMERCIAL OPERATING RANGE

 $(T_A = 0 \text{ to } +70^{\circ}\text{C}, \ V_{CC} = 4.75 \text{ to } 5.25 \text{ V}, \ C_L = 50 \text{ pF})$

A. Combinational Delays (nsec)

		Outputs					
		Y ₀₋₁₅	T ₁₋₄	СТ			
	I ₀₋₄ (ADDR)	53	60	-			
	I ₀₋₁₅ (DATA)	53	60	-			
	I ₀₋₁₅ (INSTR)	53	60	29			
Input	DLE	39*	39	-			
	T ₁₋₄	-	-	25			
	CP	39	41	26			
	Y0-15	39*	39	-			
	TEN	-	-	25			

 Y_{0-15} must be stored in the Data Latch and is source disabled before the delay to Y_{0-15} as an output can be measured. *Guaranteed indirectly by other tests.

B. Enable/Disable Times (nsec) (C_I = 5 pF for disable only)

		Ena	ble	Dis	able
From Input	To Output	tpzH	tpzL	t _{PHZ}	tpLZ
ŌĒY	Yo - 15	22	22	22	22
OET	T ₁₋₄	25	25	25	25

C. Clock and Pulse Requirements (nsec)

Input	Min Low Time	Min High Time
CP	20	30
DLE	-	15
IEN	20	-

Input	With Respect to	s			Tran	to-High Isition Hoi	d	Cor	mment		
I ₀₋₄ (RAM ADDR)	CP	(t			(t _{h1}) 0 -		-		Single ADDR (Source)		
I ₀₋₄ (RAM ADDR)	CP and IEN both LOW	(1	(t _{s2}) 7		-			(t _{h7}) 2		Two ADDR (Destination)	
I _{0 - 15} (DATA)	CP	-		- (t _{s8}) 45		(t _{h8}) 0					
I ₀₋₁₅ (INSTR)	CP	(t _s	3) 24*	(th3)* 5		(t _{s9}) 45		(th9) 0			
IEN HIGH	CP	(1	l _{\$4}) 5	-		_		(th10)) 1	Disable	
TEN LOW	CP	-	(t _{s5}) 7	-	(t _{h5})* 1	(t _{s11}) 20		(t _{h11})** 1	-	Enable	Immediate first cycle
SRE	CP		-		_	(t _{s12})	12	(th12)	2		
Υ	CP		-		_		32	(t _{h13})	0		
Υ	DLE	(1	(t _{s6}) 6		6) 6	-					
DLE	CP		_		_	(t _{s14})	30	(t _{h14})	0		

^{*}Timing for immediate instruction for first cycle.

^{**}Status register and accumulator destination only.

Am29L116A SWITCHING CHARACTERISTICS

GUARANTEED CHARACTERISTICS OVER COMMERCIAL OPERATING RANGE

 $(T_A = 0 \text{ to } +70^{\circ}\text{C}, \ V_{CC} = 4.75 \text{ to } 5.25 \text{ V}, \ C_L = 50 \text{ pF})$

A. Combinational Delays (nsec)

		Outputs					
		Yo - 15	T ₁₋₄	СТ			
	I ₀₋₄ (ADDR)	79	84	-			
	I ₀₋₁₅ (DATA)	79	84	_			
	I _{0 - 15} (INSTR)	79	84	48			
Input	DLE	58°	60	-			
	T ₁₋₄	-	-	39			
	СР	56	62	36			
	Y0-15	62*	64	_			
	IEN	-	-	43			

 Y_{0-15} must be stored in the Data Latch and is source disabled before the delay to Y_{0-15} as an output can be measured. *Guaranteed indirectly by other tests.

B. Enable/Disable Times (nsec) (C_L = 5 pF for disable only)

		Ens	ble	Dis	able
From Input	To Output	tpzH	tpZL	tpHZ	tPLZ
ŌĒY	Y ₀₋₁₅	20	20	20	20
OET	T ₁₋₄	30	30	25	25

C. Clock and Pulse Requirements (nsec)

Input	Min Low Time	Min High Time
CP	20	30
DLE	-	15
IEN	20	_

Input	With Respect to	s	High-t Trans et-up	sition	old	Set-	Tra	to-High naition Hol	d	Cor	nment				
I ₀₋₄ (RAM ADDR)									1) 0	-		-		Single ADDR (Source)	
I ₀₋₄ (RAM ADDR)	CP and IEN both LOW	(t _{s2}) 10			-	-		(t _{h7}) 1		Two ADDR (Destination)					
10 - 15 (DATA)	CP	-		-		(t ₈₆) 65		(th8) 2							
I _{0 - 15} (INSTR)	CP	(t _e	3) 38*	(th3) 17*		(t _{s9}) 65		(the) 2							
IEN HIGH	CP	(t,	₅₄) 10	_		_		(th10) 1		Disable					
IEN LOW	СР	_	(t ₈₅) 20	-	(th5)* 0	(t ₈₁₁) 22	-	(t _{h11})** 2	-	Enable	Immediate first cycle				
SRE	CP		-		-	(t _{s12}) 17		(th12) 0							
Y	СР	_		-		(t _{s13})	44	(th13)	1						
Y	DLE	(t ₈₆) 12 (t _{h6})		6) 6	-		-								
DLE	CP				-	(t _{S14}) 42		(th14)	0						

^{*}Timing for immediate instruction for first cycle.

^{**}Status register and accumulator destination only.

Test Philosophy and Methods

The following points give the general philosophy that we apply to tests that must be properly engineered if they are to be implemented in an automatic testing environment. The specifics of what philosophies are applied to which test are shown in the data-sheet and the data-sheet reconciliation that follow.

Capacitive Loading for AC Testing

Automatic testers and their associated hardware have stray capacitance that varies from one type of tester to another, but is generally around 50 pF. This, of course, makes it impossible to make direct measurements of parameters that call for smaller capacitive load than the associated stray capacitance. Typical examples of this are the so-called "float delays" that measure the propagation delays in to and out of the high-impedance state and are usually specified at a load capacitance of 5.0 pF. In these cases, the test is performed at the higher load capacitance (typically 50 pF) and engineering correlations based on data taken with a bench setup are used to determine the result at the lower capacitance.

Similarly, a product may be specified at more than one capacitive load. Since the typical automatic tester is not capable of switching loads in mid-test, it is impractical to make measurements at both capacitances even though they may both be greater than the stray capacitance. In these cases, a measurement is made at one of the two capacitances. The result at the other capacitance is determined from engineering correlations based on data taken with a bench setup and the knowledge that certain DC tests are performed in order to facilitate this correlation.

AC loads specified in the data sheet are used for bench testing. Automatic tester loads, which simulate the data-sheet loads, may be used during production testing.

Threshold Testing

The noise associated with automatic testing, the long inductive cables, and the high gain of bipolar devices frequently give rise to oscillations when testing high-speed circuits. These oscillations are not indicative of a reject device, but instead, of an overtaxed system. To minimize this problem, thresholds are tested at least once for each input pin. Thereafter, "hard" high and low levels are used for other tests. Generally this means that function and AC testing are performed at "hard" input levels.

AC Testing

AC parameters are specified that cannot be measured accurately on automatic testers because of tester limitations. Datainput hold times fall into this category. In these cases, the parameter in question is tested by correlating the tester to bench data or oscilloscope measurements made on the tester by engineering (supporting data on file).

Certain AC tests are redundant since they can be shown to be predicted by other tests that have already been performed. In these cases, the redundant tests are not performed.

Output Short-Circuit Current Testing

When performing I_{OS} tests on devices containing RAM or registers, great care must be taken that undershoot caused by grounding the high-state output does not trigger parasitic elements which in turn cause the device to change state. In order to avoid this effect, it is common to make the measurement at a voltage (V_{Output}) that is slightly above ground. The V_{CC} is raised by the same amount so that the result (as confirmed by Ohm's law and precise bench testing) is identical to the $V_{OUT} = 0$, $V_{CC} = Max$. case.

SWITCHING WAVEFORMS

Immediate Instruction Cycle Timing

SWITCHING TEST CIRCUITS

A. THREE-STATE OUTPUTS

B. NORMAL OUTPUTS

Notes: 1. C_L = 50 pF includes scope probe, wiring and stray capacitances without device in test fixture.

- S₁, S₂, S₃ are closed during function tests and all AC tests except output enable tests.
- 3. S_1 and S_3 are closed while S_2 is open for t_{PZH} test. S_1 and S_2 are closed while S_3 is open for t_{PZL} test.
- 4. $C_L = 5.0$ pF for output disable tests.

SWITCHING TEST WAVEFORMS

SET-UP, HOLD, AND RELEASE TIMES

WFR02970

Notes: 1. Diagram shown for HIGH data only. Output transition may be opposite sense.

2. Cross hatched area is don't care condition.

PROPAGATION DELAY

PULSE WIDTH

ENABLE AND DISABLE TIMES

Notes: 1. Diagram shown for Input Control Enable-LOW and Input Control Disable-HIGH.

2. S₁, S₂ and S₃ of Load Circuit are closed except where shown.

Note: 1. Pulse Generator for All Pulses: Rate \leq 1.0 MHz; $Z_0 = 50 \ \Omega$; $t_f \leq 2.5 \ \text{ns}$; $t_f \leq 2.5 \ \text{ns}$.

KEY TO SWITCHING WAVEFORM

INPUT/OUTPUT CURRENT DIAGRAMS TTL

TC003062

 $C_l \approx 5.0$ pF, all inputs

ICR00521

 $C_O \approx 5.0$ pF, all outputs

Note: Actual current flow direction shown.

Am29116A System Cycle Times

CONTROL PATH TIMING ANALYSIS

				Am2910A	Am29112 (est.)	Am29331 (est.)	Туре
i.	Pipeline Register Mapping PROM	(29821) (27S190A)					Branch Map
	Register Sequencer	(29821)	CP-Q D-Y	12 ns 20	12 23*	12 19	
	Control Memory Pipeline Register	(29821)	t _{AA} Setup	40 4	40 4	40 4	
	•	Cycle Time:	•	76	79	75	
II.	Pipeline Register	(29821)	CP-Q OE-Y	12 20	12 20	12 NA	Branch
	Buffer Enable Sequencer	(2959)	UE-Y I, D-Y	20 20	23**	20	
	Control Memory		†AA	40	40	40	
	Pipeline Register	(29821) Cycle Time:	Setup	96	99	-4 -76	
III.	Pipeline Register	(29821)	CP-Q	12	12	12	Conditional
	RALU CC-MUX	(29116A) (2923)	I, T-CT D-W	29 7	29 7	29 NA	Branch
	Polarity	(74S86)	D-Y	11	NA	NA	
	Sequencer Control Memory		CC-Y taa	30 40	26 40	23 40	
	Pipeline Register	(29821)	Setup	4	4	4	
		Cycle Time:		133	118	108	
V.	Pipeline Register CC-MUX	(29821) (2923)	CP-Q Sel-W	12 15	12 15	12 NA	Conditional Branch Using
	Polarity	(2923) (74S86)	D-Y	11	NA NA	NA NA	External Status
	Sequencer	, ,	CC-Y	30 40	26 40	23 40	Register
	Control Memory Pipeline Register	(29821)	t _{AA} Setup	4	4	4	
		Cycle Time:	•	112	97	79	
٧.	Pipeline Register	(29821)	CP-Q	12	12	12	Instruction to
	Sequencer Control Memory		I-Y taa	35 40	35* 40	20 40	Output Path
	Pipeline Register	(29821) Cycle Time:	Setup	91	91	4 76	
		~y~~ i iiio.		••	V .		
VI.	Sequencer		CP-Y	40 40	31 40	24 40	Clock to Output Path
	Control Memory Pipeline Register	(29821)	t _{AA} Setup	40 4	40	4	Output Path
	. ,,	Cycle Time:		84	75	68	

^{*} For the Am29112 Instruction 18 (Test SP with D (TSTSP.P)) is not used. If Instruction 18 is used D-Y is 35 ns and I-Y is 47 ns. **For the Am29112 Relative Branch Instructions are not used. If the Relative Branch Instructions are used D-Y is 43 ns.

THE USE OF AN EXTERNAL STATUS REGISTER IN REDUCING MICROCYCLE LENGTH

The standard connection of the CT pin of the Am29116 and microcycle length calculation arising from that connection are shown below:

CRITICAL PATH TIMING (FIGURE A)

Part Number	Path	Maximum Commercial Delay (ns)
Pipeline Register	CP-Q	12
Am29116A	i, T-CT	29
Am2923 CC-MUX	D-W	7
74S86 Polarity	D-Y	11
Am2910A	CC-Y	30
Control Memory	tAA	40
Pipeline Register	Setup	4
		133

While 133 ns cycle time is quite fast, it can be improved by using an external register for status testing.

CRITICAL PATH TIMING (FIGURE B)

Part Number	Path	Maximum Commercial Delay (ns)
Am29821 Status Reg	CP-Y	12
Am2923 CC-MUX	Sel-W	15
74S86 Polarity	D-Y	11
Am2910A	CC-Y	30
Control Memory	TAA	40
Pipeline Register	t _{AA} Setup	4
		112

The cycle time has been reduced from 133 ns to 112 ns.

Figure A.

Figure B.

PHYSICAL DIMENSIONS (Cont'd.)

TD 052

TDX052

PHYSICAL DIMENSIONS CLT052

ADVANCED MICRO DEVICES **DOMESTIC SALES OFFICES**

ALABAMA	(205) 882-9122	MARYLAND	(301) 796-9310
ARIZONA,	(===, ===	MASSACHUSETTS	(617) 273-3970
Tempe	(602) 242-4400	MINNESOTA	(612) 938-0001
Tucson	(602) 792-1200	NEW JERSEY	(201) 299-0002
CALIFORNIA,	,, (012)	NEW YORK.	
El Segundo	(213) 640-3210	Liverpool	(315) 457-5400
El Segundo	(714) 752-6262	Poughkeepsie	(914) 471-8180
Newport Beach		Woodbury	(516) 364-8020
San Diego	(408) 720-8811	NORTH CAROLINA,	(919) 847-8471
Sunnyvale	(818) 992-4155	OREGON	(503) 245-0080
Woodland Hills		OHIO.	, ,
COLORADO	(303) 741-2900	Columbus	(614) 891-6455
CONNECTICUT,		PENNSYLVANIA,	(4.7)
	(203) 264-7800	Allentown	(215) 398-8006
LORIDA,	(005) 000 5000	Willow Grove	
Altamonte Springs	(305) 339-5022	PUERTO RICO	(809) 764-4524
Clearwater	(813) 530-9971		(000)
Ft. Lauderdale	(305) 484-8600	TEXAS, Austin	(512) 346-7830
Melbourne	(305) 729-0496	Austin	(214) 934-9099
GEORGIA	(404) 449-7920	Dallas	(713) 785-9001
LLINOIS	(312) 773-4422	Houston	(713) 785-9001
NDIANA	(317) 244-7207	WASHINGTON	(206) 455-3600
KANSAS	(913) 451-3115	WISCONSIN	(414) 782-7748
		SALES OFFICES	
	TENNATIONAL	HONG KONG,	
BELGIUM,	(00) 774 00 00	Kowloon	TEL: 3-69537
Bruxelles TEL:	(02) 771 99 93	KOWIOOII	FAX:123427
	(02) 762-3716	*	TLX:5042
TLX:	61028		TEL:(02) 339054
CANADA, Ontario,		ITALY, Milano	FAX:(02) 349800
Kanata TEL:	(613) 592-0090		• TLX:31528
Willowdale TEL:	(416) 224-5193		TC1. (02) 245 924
FAX:	(416) 224-0056		TEL: (03) 345-824
FRANCE,	· •		FAX:
Paris TEL:	(0:1), 45 60 00 55	*	TLX:J24064 AMDTRO
FAX:	(01) 46 86 21 85	LATIN AMERICA,	(00E) 404 960
TLX:	202053F		TEL: (305) 484-860
GERMANY,		•	FAX:(305) 485-973
Hannover area TEL:	(05143) 50 55		TLX:5109554261 AMDFT
FAX:	(05143) 55 53	SWEDEN, Stockholm	TEL: (08) 733 03 5
TLX:	925287		FAX:(08) 733 22 8
München TEL:	(089) 41 14-0		TLX:1160
FAX:	(089) 406490	UNITED KINGDOM,	
	523883	Manchester area	TEL: (0925) 82800
Stuttgart TEL:	(0711) 62 33 77		FAX: (0925) 82769
FAY	(0711) 625187		TLX:62852
	721882	London area	TEL:(04862) 2212
1LX			FAX: (04862) 2217
			TLX:85910
NOE	TH AMERICAN	REPRESENTATIVES	
	III AMERICAN		
CALIFORNIA	DELL (100) DOD 0100	NEW MEXICO	TES (505) 293-855
I ² INC	UEM (408) 988-3400		
	DISTI (408) 496-6868	NEW YORK	(315) 437-834
IDAHO			(0.0) 407-00
INTERMOUNTAIN TECH MKGT	(208) 888-6071	ОНЮ	
INDIANA		Dayton DOOT A CO	/E40\ 400 67
SAI MARKETING CORP	(317) 241-9276		(513) 433-67
IOWA		Strongsville	
LORENZ SALES	(319) 377-4666	DOLFUSS ROOT & CO.	(216) 238-03
MICHIGAN		PENNSYLVANIA	
SAI MARKETING CORP	(313) 227-1786	DOLFUSS ROOT & CO.	(412) 221-44
	(0.0) LE: 1.00	UTAH	
NEBRASKA LORENZ SALES	(402) 475-4660	R2 MARKETING	(801) 595-06
LUNENZ GALLO	(,	- · ·	

Advanced Micro Devices reserves the right to make changes in its product without notice in order to improve design or performance characteristics. The performance characteristics listed in this document are guaranteed by specific tests, correlated testing, guard banding, design and other practices common to the industry. For specific testing details, contact your local AMD sales representative. The company assumes no responsibility for the use of any circuits described herein.

ADVANCED MICRO DEVICES 901 Thompson Pl., P.O. Box 3453, Sunnyvale, CA 94088, USA

1 (408) 732-2400 ● TWX: 910-339-9280 ● TELEX: 34-6306 ● TOLL FREE: (800) 538-8450 Printed in U.S.A. AIS-WCP-15M-10/86-0