Introduction to data analysis: Lecture 12 Ori Plonsky Spring 2023

Supervised vs. Unsupervised Learning

- Supervised Learning
 - Data is labeled. We have the ground truth.
 - We want to predict how to label a new data point based on the input data.
 - Used in the context of classification or regression.

Supervised vs. Unsupervised Learning

- Supervised Learning
 - Data is **labeled**. We have the ground truth.
 - We want to predict how to label a new data point based on the input data.
 - Used in the context of classification or regression.
- Unsupervised Learning
 - Data is unlabeled. There are only "predictors"
 - The algorithm's goal is to model the structure of the data.
 - Used is the context of clustering.

- Dividing data into groups of similar data points, when we do not have a prespecified set of groups
- Examples:

- Dividing data into groups of similar data points, when we do not have a prespecified set of groups
- Examples:
 - Customer segmentation: Group customers to "types"
 - Group similar photos (e.g. faces)
 - Group genes/species by their attributes
 - Detect anomalies (e.g. fraud detection)

- Dividing data into groups of similar data points, when we do not have a prespecified set of groups
- Examples:
 - Customer segmentation: Group customers to "types"
 - Group similar photos (e.g. faces)
 - Group genes/species by their attributes
 - Detect anomalies (e.g. fraud detection)

What is good clustering?

How should we cluster our data?

How should we cluster our data?

In general, we want:

- Data points in the same cluster should be close to each other
- Data points in different clusters should be far from each other

K-Means clustering

Main steps in the algorithm:

- 1. Pick K
- 2. Initialize K centroids (centers of clusters)
- 3. Assign each data point to its closest centroid
- 4. Update centroids to be at the center of the assigned points
- 5. Repeat 3, 4 until no more updates in assignment of data points to clusters

K-Means clustering

K-Means: 1st iteration

• Randomly choose K centroids μ^{\jmath} that will serve as initial cluster centers (not necessarily from your data points)

K-Means: 1st iteration

- Randomly choose K centroids μ^{\jmath} that will serve as initial cluster centers (not necessarily from your data points)
- Compute distances between data points and cluster centroids, $\left\|x_i \mu^j\right\|$ and assign each point to its closest centroid

K-Means: 1st iteration

- Randomly choose K centroids μ^{\jmath} that will serve as initial cluster centers (not necessarily from your data points)
- Compute distances between data points and cluster centroids, $\left\|x_i \mu^j\right\|$ and assign each point to its closest centroid
- Update the centroids to be at the center of the data points assigned to the cluster $\mu^j=\frac{1}{N}\sum_{x_i\in C_j}x_i$

K-Means: more iterations

• What will happen when K = N?

- What will happen when K = N?
 - (but no guarantee that any points are assigned to a cluster)

The elbow method - choosing K

- Run K Means with different values of K
- For each K, compute the sum of squared distances between each point and the centroid of its cluster
 - Distances for cluster j is: $I_{j} = \sum_{i=1}^{N_{j}} d\left(x_{ij}, \mu_{j}\right)^{2}$
 - Sum of distances: $S_K = \sum_{j=1}^{\infty} I_j$
- Plot the sum of distances as a function of K
- Pick *K* where there is an "elbow" in the plot: adding more clusters doesn't reduce distances by much

Effect of random initialization

K Means finds a *local* minimum

Different initializations →

Different final clusters

Effect of random initialization

K Means finds a *local* minimum

Different initializations →

Different final clusters

Should run the algorithm multiple times (with different initializations) and pick the best clustering

Algorithm converges to local solutions

- Algorithm converges to local solutions
- Everything that applies to kNN distance issues
 - Scaling
 - Categorical variables
 - High dimensional data

- Algorithm converges to local solutions
- Everything that applies to kNN distance issues
 - Scaling
 - Categorical variables
 - High dimensional data
- If the data has **no** clusters, K-Means still "finds" K clusters
 - (special case of wrong choice for K)

- Algorithm converges to local solutions
- Everything that applies to kNN distance issues
 - Scaling
 - Categorical variables
 - High dimensional data
- If the data has **no** clusters, K-Means still "finds" K clusters
 - (special case of wrong choice for K)
- K-Means learns linear separation between clusters, will not handle more complex geometry

- Algorithm converges to local solutions
- Everything that applies to kNN distance issues
 - Scaling
 - Categorical variables
 - High dimensional data
- If the data has **no** clusters, K-Means still "finds" K clusters
 - (special case of wrong choice for K)
- K-Means learns linear separation between clusters, will not handle more complex geometry
- K-Means assumes variance of the clusters is the same

K-Means visualizations

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

K-Means visualizations

• https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

