Τεχνητή Νοημοσύνη 2

Εργασία 3

Δημητρακόπουλος Κωνσταντίνος ΑΜ: 1115201500034

Περιεχόμενα

Προεπεξεργασία των Δεδομένων	2
Δίκτυα LSTM Πολλαπλών Επιπέδων	4
Δίκτυα GRU Πολλαπλών Επιπέδων	8
Συνδυασμένα δίκτυα LSTM-GRU Πολλαπλών Επιπέδων	10
Μεμονωμένα Δίκτυα LSTM-GRU με χρήση Skip Layers	12
Συνδυασμένα δίκτυα LSTM-GRU με χρήση Skip Layers	14
Βελτιστοποίηση του καλύτερου μοντέλου	17
Προσθήκη Attention	22
Το Τελικό Μοντέλο	24
Σύγκριση με το αντίστοιχο μοντέλο DNN	26

Προεπεξεργασία των Δεδομένων

Τα δεδομένα δέχονται **προεπεξεργασία** για την βέλτιστη αντιστοίχιση κατά τη διανυσματοποίηση τους.

Δοκιμάστηκαν οι παρακάτω μέθοδοι:

- 1. Αφαίρεση συνδέσμων.
- 2. Αφαίρεση hashtags.
- 3. Αφαίρεση mentions.
- 4. Αντικατάσταση συνδέσμων σε k>.
- 5. Αντικατάσταση hashtags σε <hashtag>.
- 6. Αντικατάσταση mentions σε <mention>.
- 7. Αντικατάσταση αριθμών σε <number>.
- 8. Αντικατάσταση κεφαλαίων χαρακτήρων σε <upper>.
- 9. Διατήρηση μόνο των αλφαριθμητικών χαρακτήρων.
- 10. Μετατροπή σε πεζά γράμματα.
- 11. Lemmatizing.
- 12. Αφαίρεση stop words.

Για την αντιστοίχιση tokens-embeddings πραγματοποιήθηκαν πειράματα με τα pretrained embeddings glove.twitter.26B και glove.6B. Οι περιπτώσεις 4 έως 8 συνεισφέρουν στη διανυσματοποίηση των οντοτήτων όπως περιγράφονται εντός των glove twitter pretrained embeddings.

Δοκιμές με το σετ GloVe 6B

Με χρήση της βοηθητικής συνάρτησης **token_statistics** έγινε εξαγωγή των χαρακτηριστικών που παρουσιάζει ο παρακάτω πίνακας για τους διαφορετικούς **συνδυασμούς προεπεξεργασίας** των δεδομένων. Συγκεκριμένα αναγράφονται το συνολικό πλήθος των tokens που παρήγαγε ο tokenizer, το συνολικό πλήθος των tokens που βρέθηκαν στο λεξικό των pretrained embeddings, αντίστοιχα το συνολικό πλήθος των tokens που δεν εντοπίστηκαν, το ποσοστό κάλυψης των συνολικών tokens από το λεξικό και σχόλια σχετικά με τη κάθε δοκιμή.

No	<u>Modules</u>	<u>Total</u>	Found	Not	Percentage	<u>Comments</u>
				<u>Found</u>	Coverage	
Π1	remove_non_alphato_lowercaselemmatize	210226	186094	24132	0.88	 Αγνοεί ενωμένα, ανορθόγραφα και δυσνόητα tokens.
	remove_stop_words					"timehealth", "mncqnpdqgc", "aaaaaa"
Π2	to_lowercaselemmatizeremove_stop_words	275535	245948	29587	0.89	 Αγνοεί emoji, links, ενωμένα tokens και αριθμούς.
П3	 remove_links remove_hashtags remove_mentions to_lowercase lemmatize remove_stop_words 	214250	204721	9529	0.95	 Αγνοεί tokens που χρησιμοποιούν emoji, παύλες ή είναι ανορθόγραφα.
Π4	 replace_links replace_hashtags replace_mentions replace_numbers replace_upper_words to_lowercase lemmatize remove_stop_words 	250272	198291	51981	0.79	 Αγνοεί το μετασχηματισμό των ειδικών tokens όπως αναμενόταν.

Παρατηρήσεις:

- Φαίνεται πως η δοκιμή Π3 προσφέρει την καλύτερη κάλυψη από το λεξικό και ίσως αποτελεί την καλύτερη αναπαράσταση του κειμένου, όμως η δοκιμή Π2 προσφέρει περισσότερες αντιστοιχήσεις σε tokens συνεπώς μία μεγαλύτερη αναπαράσταση από την Π3.
- Η δοκιμή Π4 όπως αναμενόταν αγνοεί τα ειδικά tokens που σχηματίστηκαν για τα twitter pretrained embeddings, συνεπώς είναι πιθανό να μην αποτελεί καλή αναπαράσταση.
- Όλες οι δοκιμές αδυνατούν να αναγνωρίσουν ενωμένα, ανορθόγραφα και δυσνόητα tokens

Δοκιμές στο σετ GloVe Twitter 26B

Αντίστοιχα, εφαρμόζονται οι ίδιες δοκιμές για το σετ glove.twitter.26B. Παρουσιάζεται ο πίνακας των αποτελεσμάτων.

No	<u>Modules</u>	Total	Found	<u>Not</u> Found	Percentage Coverage	Comments
П5	 remove_non_alpha to_lowercase lemmatize remove_stop_words 	210226	188028	22198	0.89	 Αγνοεί ενωμένα, ανορθόγραφα και δυσνόητα tokens.
Π6	to_lowercase lemmatize remove_stop_words	275535	241178	34357	0.87	Αγνοεί emoji, links, ενωμένα tokens και αριθμούς.
П7	 remove_links remove_hashtags remove_mentions to_lowercase lemmatize remove_stop_words 	214250	198881	15369	0.92	 Αγνοεί tokens που
П8	 replace_links replace_hashtags replace_mentions replace_numbers replace_upper_words to_lowercase lemmatize remove_stop_words 	250272	239805	10467	0.95	 Αγνοεί tokens που χρησιμοποιούν emoji, παύλες ή είναι ανορθόγραφα.

Παρατηρήσεις:

- Ο συνολικός αριθμός των tokens είναι κοινός με των προηγούμενων δοκιμών,
 ωστόσο υπάρχουν διαφοροποιήσεις ως προς την κάλυψη από το λεξικό.
- Όπως στις προηγούμενες δοκιμές, τα πειράματα αδυνατούν να αναγνωρίσουν ενωμένα, ανορθόγραφα και δυσνόητα tokens.
- Η δοκιμή Π8 αναγνωρίζει τα ειδικά tokens προσφέροντας καλή κάλυψη από το λεξικό.

Δίκτυα LSTM Πολλαπλών Επιπέδων

Για τη συγκεκριμένη ενότητα πραγματοποιήθηκαν δοκιμές σε δίκτυα bidirectional LSTM πολλαπλών επιπέδων. Ο παρακάτω πίνακας συνοψίζει τις δοκιμές αυτές και παρουσιάζει το σχήμα του δικτύου (scheme), την τιμή της gradient clipping norm (CG) αν αυτή εφαρμόστηκε, την τιμή της πιθανότητας απόρριψης Dropout (DO) πριν κάθε layer αν αυτό εφαρμόστηκε, το σφάλμα, το f1 score, την εποχή καθώς και σχόλια που αφορούν την εκπαίδευση.

Περαιτέρω Επεξήγηση Σχήματος:

Στο σχήμα περιγράφονται ο αριθμός των layers, το μέγεθος των output χαρακτηριστικών από κάθε layer και η bidirectional ιδιότητα κάθε layer.

Για παράδειγμα, η **δοκιμή 7** παρουσιάζει ένα δίκτυο όπου το πρώτο layer είναι bidirectional lstm layer με μέγεθος χαρακτηριστικών εξόδου 80 και το δεύτερο layer είναι lstm layer με μέγεθος χαρακτηριστικών εξόδου 3.

Η δοκιμή 3 είναι παραλλαγή της δοκιμής 2 όπου προστέθηκε batch normalization.

No	<u>Scheme</u>	CG	<u>DO</u>	Loss (Train/Val)	Score (Train/Val)	Ер	Comments
1	LSTM (3)	=	-	0.795867/ 0.844803	0.636654/ 0.585740	20	Καλό μοντέλοΕμφάνιση overfitting
2	LSTM (100) LSTM (50) LSTM (3)		0.2	0.972222/ 0.97556	0.324968/ 0.33421	35	 Εμφάνιση Vanishing gradients
3	2 -> + Batch Norm		0.2	0.965144/ 0.96573	0.468938/ 0.47350	8	Χαμηλό f1Τείνει σε σύγκλισηΠερισσότερες εποχές
4	LSTM (75) LSTM (3)	-	0.2	0.941710/ 0.94435	0.509177/ 0.51350	15	 Καλή σύγκλιση σφάλματος Απότομες εναλλαγές f1
5	LSTM (3)	-	0.2	0.824040/ 0.83875	0.611877/ 0.60518	49	• Καλό μοντέλο
6	LSTM (100, bid) LSTM (50, bid) LSTM (3)	1	0.2	0.895485/ 0.89606	0.558384/ 0.54903	8	
7	LSTM (80, bid) LSTM (3)	1	0.2	0.843929/ 0.85413	0.611622/ 0.60835	42	 Καλή σύγκλιση Καλό σφάλμα και f1 Περισσότερες εποχές
8	7 -> + epochs	ī	0.2	0.843089/ 0.85619	0.617186/ 0.60303	19	 Αμετάβλητο Τιμές των Gradients έως 6-7
9	7 -> + Gradient Clip	2	0.2	0.80189/ 0.8362	0.65215/ 0.6229	48	• Μέση Βελτίωση f1 Κατά 1-2%

Κατά τη **δοκιμή 1** τα αποτελέσματα είναι ικανοποιητικά εμφανίζοντας ελάχιστο **overfitting.** Γίνεται εισαγωγή **Dropout** με τιμή απόρριψης 0.2 (ακολουθήθηκε η προτεινόμενη τιμή 0.2~0.3 για αναδρομικά δίκτυα σύμφωνα με τη θεωρία) για την αντιμετώπιση του φαινομένου και αύξηση του τελικού f1 σκορ.

Κατά τη **δοκιμή 2** εμφανίστηκε το φαινόμενο **vanishing gradients** καθώς το μοντέλο δεν εκπαιδευόταν με την πάροδο των εποχών και αντιμετωπίστηκε με την εισαγωγή **batch normalization** πριν τα κατάλληλα layers μειώνοντας όμως την απόδοση των μετρικών.

Ικανοποιητικά μοντέλα φαίνονται αυτά των **δοκιμών 5 και 7**, ενώ παρατηρούνται έντονες τιμές gradients στη δοκιμή 8. Με την εισαγωγή **gradient clipping** παρουσιάζεται το βέλτιστο μέχρι στιγμής **μοντέλο 9**.

Τα παραγόμενα διαγράμματα

(Μετρικές από αριστερά προς τα δεξιά: Precision-f1-Recall-Accurasy):

Δίκτυα GRU Πολλαπλών Επιπέδων

Ακολουθεί η ίδια διαδικασία για δίκτυα GRU πολλαπλών επιπέδων. Τα αποτελέσματα συνοψίζονται στον παρακάτω πίνακα.

No	<u>Scheme</u>	CG	DO	Loss (Train/Val)	Score	<u>Ep</u>	Comments
					(Train/Val)		
10	• GRU (100,	2	0.2	0.98223/	0.30288/	8	 Πιθανό φαινόμενο
	bid)			0.9848	0.3036		vanishing gradients
	• GRU (50,						 Πιθανή λύση layer
	bid)						skipping
	• GRU (3)						
11	10 ->	2	0.2	0.99197894/0.991144	0.3029489/	21	 Όμοια συμπεριφορά
	+ Batch Norm				0.306185		
12	• GRU (80,	2	0.2	0.803736/	0.61974/	49	 Καλό μοντέλο
	bid)			0.838224	0.60035		• Χρειάζεται
	• GRU (3)						περισσότερες εποχές.
13	12 ->	2	0.2	0.7990404/	0.6213335/	48	 Αμετάβλητο
	+ epochs			0.832291	0.601295		 Καλό μοντέλο
14	• GRU (3)	2	0.2	0.7756615/	0.6455074/	50	 Καλό μοντέλο
				0.8241831	0.6252712		 Απότομες Εναλλαγές
							σε σφάλμα και f1
							στις εποχές 3-7

Κατά τη δοκιμή 10 εμφανίζεται το φαινόμενο vanishing gradients το οποίο δεν αντιμετωπίζεται με επιτυχία κατά την δοκιμή 11. Τα μοντέλα 12 και 14 παρουσιάζουν καλή απόδοση σύμφωνα με τις μετρικές και είναι ικανοποιητικά. Τελικά, τα μοντέλα που χρησιμοποιούν GRU layers είναι περισσότερο αποδοτικά σε χρόνο.

Τα παραγόμενα διαγράμματα

(Μετρικές από αριστερά προς τα δεξιά: Precision-f1-Recall-Accurasy) :

Συνδυασμένα δίκτυα LSTM-GRU Πολλαπλών Επιπέδων

Ακολουθεί η ίδια διαδικασία για συνδυασμένα δίκτυα LSTM-GRU πολλών επιπέδων. Ο πίνακας των αποτελεσμάτων:

No	<u>Scheme</u>	GC	DO	Loss (Train/Val)	Score (Train/Val)	<u>Ep</u>	Comments
15	LSTM (100, bid) GRU (50, bid) GRU (3)	2	0.2	0.9653315/ 0.974742	0.3026444/ 0.3035751	22	Vanishing Gradients
16	15 -> + Batch Norm	2	0.2	0.972217/ 0.9810409	0.452055/ 0.4383760	36	• Χαμηλό f1
17	LSTM (100, bid) LSTM (50, bid) GRU (3)	2	0.2	0.991864/ 0.990924	0.33748/ 0.35720	19	 Χαμηλό f1 Ικανοποιητική Εκπαίδευση
18	GRU (100, bid) GRU (50, bid) LSTM (3)	2	0.2	0.86703/ 0.86879	0.5895/ 0.58651	33	 Καλή σύγκλιση Καλό μοντέλο Αρχικά έντονες μεταβολές
19	17 -> + Batch Norm	2	0.2		0.34 - 0.42		• Έντονα Μεταβαλλόμενο
20	18 -> + Batch Norm	2	0.2	0.932307/ 0.944228	0.303753/ 0.3073211	13	Vanishing Gradients
21	GRU (100, bid) LSTM (50, bid) LSTM (3)	2	0.2	0.90307/ 0.9107	0.5530/ 0.55516	33	 Καλή σύγκλιση Κακό f1 Αρχικές έντονες μεταβολές
22	LSTM (80, bid) GRU (3)	2	0.2	0.85375/ 0.8818	0.3130/ 0.3145		Vanishing Gradients
23	22 -> + Batch Norm	2	0.2	0.83938/ 0.8645	0.6103/ 0.5936	46	• Καλό μοντέλο
24	GRU (80, dim) LSTM (3)	2	0.2	0.8278/ 0.84330	0.60052/ 0.5943	43	 Καλή σύγκλιση Καλό μοντέλο Αρχικά έντονες μεταβολές

Ο συνδυασμός διαφορετικού είδους στρωμάτων δεν επιφέρει βελτίωση στην απόδοση των μετρικών. Φαινόμενα vanishing gradients αντιμετωπίστηκαν με χρήση batch normalization μειώνοντας περισσότερο την απόδοση των μετρικών. Τελικά προτιμώνται μοντέλα που δοκιμάστηκαν στις προηγούμενες ενότητες.

Τα παραγόμενα διαγράμματα

(Μετρικές από αριστερά προς τα δεξιά: Precision-f1-Recall-Accurasy) :

Μεμονωμένα Δίκτυα LSTM/GRU με χρήση Skip Layers

Εφαρμόστηκαν δοκιμές χρησιμοποιώντας skipping layers σε δίκτυα που περιέχουν LSTM ή GRU layers. Στην επόμενη ενότητα παρουσιάζονται πολυπλοκότερα μοντέλα με συνδυασμούς των δύο ειδών.

No	<u>Scheme</u>	GC	DO	Loss	<u>Score</u>	Ep	<u>Comments</u>
				(Train/Val)	(Train/Val)		
42	a=LSTM (80, bid) b=LSTM (80, bid) Addition (a, b) LSTM (3)	4	0.2	0.7394/ 0.7416	0.58668/ 0.58299	42	Καλή σύγκλισηΚαλό μοντέλο
43	a=LSTM (80, bid) b=LSTM (80. bid) a=Addition (a, b) b=LSTM (80. bid) Addition (a, b) LSTM (3)	3	0.2	0.8226/ 0.8220	0.4293/ 0.4281	35	• Χαμηλό f1 score και υψηλό σφάλμα
44	a=GRU (80, bid) b=GRU (80, bid) Addition (a, b) GRU (3)	3	0.2	0.75135/ 0.76209	0.56577/ 0.57006	47	Καλό μοντέλοΧαμηλό score
45	a= GRU (80, bid) b= GRU (80. bid) a=Addition (a, b) b= GRU (80. bid) Addition (a, b) GRU (3)	3	0.2	0.8080/ 0.8070	0.48211/ 0.49407	48	Χαμηλό scoreΚαλό μοντέλο

Οι δοκιμές επέφεραν ικανοποιητικά αποτελέσματα όπως φαίνεται από τις δοκιμές 42 και 44. Πολυπλοκότερα δίκτυα όπως των δοκιμών 43 και 45 μειώνουν την απόδοση των μετρικών. Τελικά τα αποτελέσματα των παραπάνω δοκιμών δεν είναι υψηλότερα των παραπάνω ενοτήτων.

Τα παραγόμενα διαγράμματα:

Συνδυασμένα δίκτυα LSTM-GRU με χρήση Skip Layers

Πραγματοποιήθηκαν δοκιμές σε πολυπλοκότερα δίκτυα συνδυασμένων LSTM-GRU layers με χρήση skipping layers. Παρακάτω φαίνονται η σχεδίαση και τα αποτελέσματα των μετρικών.

Πείραμα 25:

Αποτελέσματα:

• Clip Gradients Norm: 2

• Dropout: 0.2

Training Loss: 0.832539
Validation Loss: 0.852747
Training f1 score: 0.59584
Validation f1 score: 0.58669

Epoch: 38Im: 18

Το πείραμα 25 εμφανίζει ικανοποιητικά αποτελέσματα. Δεν παρατηρείται φαινόμενο overfitting και η εκπαίδευση είναι ορθή. Ωστόσο δεν αποτελεί την καλύτερη απόδοση των μετρικών.

Πείραμα 26:

Αποτελέσματα:

• Clip Gradients Norm: 2

• Dropout: 0.2

Training Loss: 0.758902
Validation Loss: 0.782089
Training f1 score: 0.634616
Validation f1 score: 0.62566

Epoch: 43Im: 17

Τα αποτελέσματα είναι επίσης ικανοποιητικά. Η σύγκλιση των καμπυλών μάθησης είναι πολύ καλή και το τελικό μοντέλο είναι αποδοτικό.

Πείραμα 27:

Αποτελέσματα:

• Clip Gradients Norm: 2

• Dropout: 0.2

Training Loss: 0.98942534
Validation Loss: 0.98810594
Training f1 score: 0.3020103
Validation f1 score: 0.303968

• Epoch: 15

• Σχόλια: Εμφάνιση Vanishing gradients.

Το μοντέλο εμφανίζει το φαινόμενο των vanishing gradients. Το επόμενο πείραμα αφορά την προσθήκη batch normalization προς αποφυγή αυτού του φαινομένου.

Πείραμα 28: 27 -> Batch Normalization

• Clip Gradients Norm: 2

• Dropout: 0.2

Training Loss: 0.98796
Validation Loss: 0.9875
Training f1 score: 0.302010
Validation f1 score: 0.30396

• Epoch: 39

• Comments: Αρχικές μεταβολές της f1 τιμής και τελικά εμφάνιση vanishing gradients

Η προσθήκη batch normalization στο μοντέλο του πειράματος 27 δεν επέφερε αλλαγή στα αποτελέσματα. Το μοντέλο δεν είναι ικανοποιητικό.

Βελτιστοποίηση του τελικού μοντέλου

Πραγματοποιείται βελτιστοποίηση του καλύτερου μοντέλου των παραπάνω δοκιμών (δοκιμή 9).

Συγκεκριμένα χρησιμοποιήθηκαν:

• Weight balancing

Με χρήση της συνάρτησης get_weights για να αντιμετωπιστεί η ανισορροπία των κλάσεων στο σετ δεδομένων. Αποτέλεσμα είναι η μείωση του σφάλματος, αλλά και η μείωση του f1 score.

Reset Ir

Εκτέλεση περισσότερων εποχών με επαναρχικοποίηση της τιμής learning rate για την αποφυγή τοπικών ελάχιστων.

• Διαφορετικές τιμές της νόρμας gradient clipping

Η τιμή 3 δείχνει να φέρει τα βέλτιστα αποτελέσματα (δοκιμή 34).

• Αλλαγή των bidirectional στρωμάτων σε non bidirectional

Δεν επέφερε βελτίωση

• Επιλογή του τελικού hidden sequence αντί του μέσου όρου των hidden sequences τελευταίου layer για επιστροφή από το δίκτυο.

Επέφερε μείωση στην απόδοση των μετρικών.

Ascending/descending sorted dataset

Επιστροφή του διανυσματοποιημένου σετ δεδομένων με ταξινομημένα sequences ως προς το πλήθος των embeddings που αναγνωρίστηκαν για ελαχιστοποίηση του padding πριν την εισαγωγή στο δίκτυο.

H descending τεχνική επέφερε ικανοποιητικά αποτελέσματα, αλλά όχι τα βέλτιστα.

Τα αποτελέσματα:

No	Scheme	GC	DO	Loss	Score	Ер	Comments
	<u> </u>			(Train/Val)	(Train/Val)	<u> </u>	
29	9 -> + weight balance	1	0.2	0.75281/ 0.7788	0.52852/ 0.52068	49	 Καλή σύγκλιση Μεγάλη εναλλαγή κέρδους αλλά όχι σφάλματος. Καλύτερο ως προς το σφάλμα μοντέλο
30	29 -> + more epochs + reset LR	1	0.2	0.745487/ 0.767176	0.587623/ 0.576243	44	• Καλή σύγκλιση
31	30-> + more epochs + reset LR	1	0.2	0.75936/ 0.7687	0.58129/ 0.5820	39	• Καλό μοντέλο
32	31-> + more epochs + reset LR	1	0.2	0.75004/ 0.76633	0.587584/ 0.58212	36	• Αμετάβλητο
33	29-> No reset LR	1	0.2	0.70946/ 0.722208	0.620402/ 0.611640	100	Βέλτιστο σφάλμα μέχρι στιγμήςΚαλό μοντέλο
34	29-> + gradient clipping norm =3	3	0.2	0.70536/ 0.71558	0.62864/ 0.62826	22	Καλό μοντέλοΚαλή σύγκλισηΕλάχιστο σφάλμα και βέλτιστο f1 σκορ
35	34-> + return max hidden state of final layer	3	0.2	0.75680/ 0.76665	0.3020/ 0.303961	27	 Χαμηλό f1 σκορ Εμφάνιση vanishing gradients
36	34-> +attention	3	0.2	0.7363/ 0.7457	0.593833/ 0.5849	46	Καλό μοντέλο Καλή σύγκλιση
37	36-> - bidirect lstm	3	0.2	0.73255/ 0.73943	0.59686/ 0.59336	36	Κακό σκορ - μέτριο σφάλμα
38	34 -> + batch size = 8	3	0.2	0.69982/ 0.7338	0.64718/ 0.6190	50	 Καλό μοντέλο Ελάχιστη απόκλιση καμπυλών Χειρότερο αποτέλεσμα από το αναμενόμενο
39	34 -> + ascending sorted dataset for minimized padding	3	0.2	0.7521/ 0.78398	0.3053/ 0.30731	26	

No	<u>Scheme</u>	GC	DO	Loss (Train/Val)	Score (Train/Val)	Ер	<u>Comments</u>
40	34 -> + descending sorted dataset for minimized padding	3	0.2	0.6908/ 0.7208	0.62736/ 0.61396	20	Καλό μοντέλοΈντονες μεταβολές κατά την αρχή της εκπαίδευσης
41	29 -> + gradient clipping = 4	4	0.2	0.6941/ 0.71384	0.61315/ 0.60482	47	Καλό μοντέλοΠολύ καλή σύγκλιση
42	34 -> + selected last sequence per layer rather than mean of sequences	3	0.2	0.83623/ 0.8396	0.31857/ 0.3168	15	Χαμηλό σκορ και υψηλό σφάλμα

Τα παραγόμενα διαγράμματα:

Εναλλακτική Προεπεξεργασία Δεδομένων

Το βέλτιστο μοντέλο των παραπάνω δοκιμών (δοκιμή 34) δοκιμάζεται με εναλλακτικές μορφές προεπεξεργασίας του σετ δεδομένων (Π1~Π8) που παρουσιάστηκαν στην πρώτη ενότητα. Τα αποτελέσματα των τελικών συγκρίσεων:

No	<u>Scheme</u>	GC	DO	Loss (Train/Val)	Score (Train/Val)	Ер	Comments
1	Μοντέλο 34 με προεπεξεργασία δεδομένων Π2	3	0.2	0.6835/ 0.7110	0.65149/ 0.62560	39	 Καλό μοντέλο Καλή σύγκλιση Υψηλό σκορ και χαμηλό σφάλμα
2	Μοντέλο 34 με προεπεξεργασία δεδομένων Π3	3	0.2	0.7008/ 0.7308	0.63269/ 0.5990	49	Καλό μοντέλοΚαλή σύγκλιση
3	Μοντέλο 34 με προεπεξεργασία δεδομένων Π5	3	0.2	0.67689/ 0.7116	0.65198/ 0.61822	47	 Καλό μοντέλο Καλό σκορ και σφάλμα
4	Μοντέλο 34 με προεπεξεργασία δεδομένων Π6	3	0.2	0.6687/ 0.7025	0.6427/ 0.6207	40	 Καλό μοντέλο Ελάχιστη απόκλιση καμπυλών
5	Μοντέλο 34 με προεπεξεργασία δεδομένων Π7	3	0.2	0.6736/ 0.7167	0.63542/ 0.60413	49	 Καλό μοντέλο Ελάχιστη απόκλιση καμπυλών
6	Μοντέλο 34 με προεπεξεργασία δεδομένων Π8	3	0.2	0.7524/ 0.77130	0.30647/ 0.30545	24	 Χαμηλό σκορ και Υψηλό σφάλμα Πολύ χαμηλότερη από τη αναμενόμενη απόδοση

Το μοντέλο 34 με την προεπεξεργασία Π1 (εφαρμόστηκε στα πειράματα των παραπάνω ενοτήτων) παρουσιάζει τη βέλτιστη απόδοση.

Το πείραμα 34 σε συνδυασμό με τη προεπεξεργασία Π8 παρουσιάζει χαμηλά αποτελέσματα σε σχέση με τα αναμενόμενα. Η αντιστοίχιση των ειδικών tokens δεν συνείσφερε στην διαφοροποίηση των δεδομένων της κάθε κλάσης, ενώ αντιθέτως ομαδοποιούσε τα ειδικά tokens σαν να είναι κοινά.

Δοκιμή διαφορετικών μεγεθών διανυσμάτων Embeddings

Δοκιμάστηκαν τα σετ από embeddings glove.6B μεγέθους 300, 200, 100, 50 συνιστωσών. Τα βέλτιστα αποτελέσματα συναντώνται στο σετ των 300 διαστάσεων (εξετάστηκε στις παραπάνω ενότητες).

Τα αποτελέσματα:

No	Model	<u>Dimensions</u>	Loss	Score Ep		<u>Comments</u>
1	34	200	0.6860/ 0.719	0.6273/ 0.6052	49	Καλό μοντέλοΚαλή σύγκλιση
2	34	100	0.7215/ 0.7200	0.6049/ 0.61707	19	Καλό μοντέλοΚαλή σύγκλιση
3	34	50	0.7136/ 0.7337	0.62522/ 0.6036	48	Καλό μοντέλοΚαλή σύγκλιση

Βελτιστοποίηση Loss function και Optimizer

Δοκιμάστηκαν διαφορετικές τιμές παραμέτρων για την Loss function Cross Entropy και τον optimizer Adam. Οι βέλτιστες τιμές παραμέτρων παρουσιάζονται στην **δοκιμή 49**, όπου φέρει τα καλύτερα αποτελέσματα μετρικών.

Τα αποτελέσματα:

No	<u>Scheme</u>	GC	DO	<u>Loss</u> (Train/Val)	Score (Train/Val)	<u>Ep</u>	Comments
43	34 -> + label smoothing = 1e-4	3	0.2	0.6647/ 0.7138	0.6701/ 0.6239	45	Eλαφρύ overfitting
44	34 -> + weight decay = 1e-4	3	0.2	0.6299/ 0.6581	0.65472/ 0.6388	23	 Καλό μοντέλο Έντονο overfitting μετά την εποχή 23
45	34 -> + weight decay = 1e-3	3	0.2	0.6325/ 0.66047	0.6580/ 0.63918	28	 Καλό μοντέλο Έντονο overfitting μετά την εποχή 28

No	<u>Scheme</u>	<u>GC</u>	DO	<u>Loss</u> (Train/Val)	Score (Train/Val)	<u>Ep</u>	Comments
46	34 -> + weight decay = 1e-2	3	0.2	0.853/ 0.854	0.30317/ 0.3039	19	 Vanishing gradients
47	45 -> + betas = (0.8,0.9)	3	0.2	0.65981/ 0.6698	0.633665/ 0.635842	20	 Καλό μοντέλο Έντονο overfitting μετά την εποχή 20
48	45 -> + betas = (0.7,0.8)	3	0.2	0.6402/ 0.67552	0.65410/ 0.6328	25	 Καλό μοντέλο Έντονο overfitting μετά την εποχή 25
49	47 -> + amsgrad	3	0.2	0.6432/ 0.6662	0.65066/ 0.6402	14	 Καλό μοντέλο Βέλτιστο f1 score και σφάλμα Έντονο overfitting μετά την εποχή 20
50	49 -> + attention	3	0.2	0.7269/ 0.7268	0.57847/ 0.5900	38	 Χαμηλό σκορ και υψηλό σφάλμα
51	49 -> + relu	3	0.2	0.6368/ 0.6945	0.6709/ 0.6148	25	• Εμφάνιση overfitting σε χαμηλό σκορ και υψηλό σφάλμα

Προσθήκη Attention

Η προσθήκη της ρουτίνας attention μείωσε τα αποτελέσματα των μετρικών, ενώ αύξησε το σφάλμα, σύμφωνα με τη δοκιμή 50. Η συνδυασμένη πληροφορία του ισοσταθμισμένου αποτελέσματος των hidden states που προσφέρει η attention και του αποτελέσματος του κάθε αναδρομικού στρώματος μείωσε την απόδοση. Πιθανώς τα αποτελέσματα να ήταν ιδανικότερα με απλή χρήση του αποτελέσματος της attention κι όχι της ένωσης με το αποτέλεσμα των hidden states. Διαφορετικά, η απλοποίηση της τελικής αναπαράστασης πιθανώς να ανεδείκνυε τη λειτουργικότητα της attention. Ένα bidirectional στρώμα έχει το διπλάσιο μήκος ενός απλού, ενώ με τη προσθήκη attention το μέγεθος τετραπλασιάζεται. Τελικά, η προσθήκη της ρουτίνας attention στο συγκεκριμένο πρόβλημα δεν συνεισφέρει στη λύση του.

Τα διαγράμματα πριν και μετά τη χρήση του attention (πειράματα 49 και 50):

Το Τελικό Μοντέλο

Το τελικό μοντέλο που επιλέχθηκε παρουσιάζεται στη **δοκιμή 49** και φέρει την καλύτερη απόδοση στις μετρικές που αξιολογείται. Τα διαγράμματα μάθησης του παρουσιάζονται παρακάτω:

Παρατηρήσεις

Παρουσιάζεται πολύ καλή σύγκλιση στο μοντέλο, αποφυγή του φαινομένου overfitting και μια καλύτερη περιγραφή του μοντέλου από της ROC καμπύλες.

Συγκριμένα, το μοντέλο σταματά την διαδικασία του training την κατάλληλη στιγμή, όπου αποφεύγεται είτε η διαφορά στο κόστος μεταξύ training και validation, είτε η στασιμότητα των αποτελεσμάτων.

Παρατηρούμε πως η ποσότητα των true positive προβλέψεων είναι διαρκώς αρκετά μεγαλύτερη των false positive προβλέψεων. Οι καμπύλες των αποτελεσμάτων τείνουν προς την πάνω αριστερά κορυφή όπου περιγράφει το ιδανικό μοντέλο. Το εμβαδό των καμπυλών με τη διαγώνιο μας δίνει ικανοποιητικά αποτελέσματα, όπως αναμενόταν, εκτός της κλάσης 1. Για την κλάση 1, τα αποτελέσματα είναι κατώτερα των υπόλοιπων κλάσεων, το οποίο είναι αναμενόμενο, αφού οι εγγραφές που κατατάσσονται στην κλάση 1 αποτελούν μόλις το 15% του σετ δεδομένων εμφανίζοντας ανισορροπία.

Επιπρόσθετα, το μοντέλο παρουσιάζει χαμηλή απόδοση στη μετρική precision σε σχέση με τη μετρική recall. Συμπέρασμα αυτού είναι η ύπαρξη περισσότερων false positives σε σχέση με την ύπαρξη των false negatives δειγμάτων. Η κυρίαρχη αιτία του προβλήματος είναι η μη καλή μάθηση των δειγμάτων της κλάσης 1, αφού πολλά δείγματα εσφαλμένα κατατάσσονται ως μέλη της κλάσης 0 ή μέλη της κλάσης 2. Η αντιμετώπιση της ανισορροπίας αυτής πιθανώς να ενίσχυε τα αποτελέσματα της μετρικής precision, συνεπώς τη μάθηση στη κλάση 1 και τη συνολική απόδοση του δικτύου.

Αντιμετώπιση της Ανισορροπίας Κλάσεων

Το σετ δεδομένων αντιμετωπίζει έντονη ανισορροπία στις κλάσεις. Συγκεκριμένα, τα δείγματα της κλάσης 1 είναι πολύ λιγότερα των υπολοίπων, δημιουργώντας προβλήματα στη μάθηση. Η εφαρμογή των weights κατά την loss function cross entropy τείνει να αντιμετωπίσει το πρόβλημα αυτό. Ως αποτέλεσμα υπήρξε μείωση του σφάλματος, αλλά δεν μεταβλήθηκε η απόδοση των μετρικών και του ROC curve για την κλάση 1, διατηρώντας αδύνατα αποτελέσματα. Εναλλακτική λύση για τη διαχείριση της ανισορροπίας των δεδομένων αποτελεί η μέθοδος data augmentation όπου δε δοκιμάστηκε.

Σύγκριση με το μοντέλο DNN της Εργασίας 2

Παρακάτω παρουσιάζεται η απόδοση των μοντέλων στο σετ δεδομένων:

Εμφανώς τα βέλτιστα αποτελέσματα παρουσιάζει το μοντέλο DNN-Embeddings που παρουσιάστηκε στην Εργασία 2.

Με μια πρώτη σκέψη, ένα πιο πολύπλοκο σύστημα όπως το αναδρομικό νευρωνικό δίκτυο που χρησιμοποιήθηκε, θα έπρεπε να προσαρμόζεται καλύτερα στα δεδομένα του προβλήματος και να παράγει καλύτερα αποτελέσματα. Παρά τις πολλαπλές δοκιμές αυτό δεν επιτυγχάνεται, ενώ πολλοί παράγοντες ενδέχεται να επηρεάζουν το αποτέλεσμα αυτό, όπως:

- Μπορεί το πρόβλημα να προσαρμόζεται καλύτερα με ένα πιο απλό (multinomial logistic regression/DNN) ή πιο σύνθετο (BERT) μοντέλο, από το μοντέλο της εργασίας αυτής.
- Μπορεί το μοντέλο της εργασίας να απαιτεί ένα πιο ισχυρό σύστημα ως προς την βελτιστοποίηση της ισορροπίας των κλάσεων ώστε να αποδείξει τη δυναμικότητα του.