Quantum-memory-assisted Multi-photon Generation for Efficient Quantum Information Processing

Joe Becker

Texas A&M Department of Physics and Astronomy jbecker@physics.tamu.edu

September 29, 2017

Single Photon Sources

Photon self-identity issues Cartoon by Nick Kim

Most quantum optics experiments are dependent on having a reliable sources of single photons.

- Photon entanglement and interferometry
- Optical quantum computers
- Quantum cryptography

Single Photon Sources

Solid state single photon sources

Downsides

- Requires cryogenic temperatures
- Source inhomogeneity
- Difficult to achieve high-efficiency photon collection

Single Photon Sources

Spontaneous Parametric Down-conversion

• Uses a χ^2 non-linearity to generate a photon pair from a single high energy pump photon.

Downsides

- Non-Deterministic
- Does not scale to multiple coincident photons easily

Multiple Coincident Photon Source

Many quantum information applications require many photons

Example Experiment: 10 Photon Entanglement

- Using 5 SPDC crystals to generate 10 entangled photons
- Coincident rate on the order of an hour

Multiple Coincident Photon Source

Synchronization of photons of non-local SPDC sources

Example Experiment: Quantum Key Distribution

- Alice and Bob send qubit-encoded photons to Charlie
- Charlie measure correlation through a Bell-state measurement
- Increased statistics increases security

Solution: Use quantum memory to assist SPDC sources

Vol. 4, No. 9 / September 2017 / Optica 1034

Optica

Quantum-memory-assisted multi-photon generation for efficient quantum information processing

FUMIHIRO KANEDA,1,* FEIHU XU,2 JOSEPH CHAPMAN,1 AND PAUL G. KWIAT1

Received 15 June 2017; revised 1 August 2017; accepted 2 August 2017 (Doc. ID 298089); published 25 August 2017

¹Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

²Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

^{*}Corresponding author: fkaneda@illinois.edu

Quantum Memory

What is a Quantum Memory?

- A conventional memory stores data (10110101) for to be recovered at a later time.
- A quantum memory stores a quantum state $(|10110101\rangle)$ for a time so that it can be later read

Quantum Memories with a Heralded Single Photon Source

Quantum Memories integrated into Quantum Key Distribution

Experimental Schematic

Bulk Optics Quantum Memory Schematic

- Polarized beam splitter allows for storage of photons from two sources
- Rubidium titanyl phosphate crystal pair form Pockels cell (PC) to store and release photons

Coincidence Counts

Hong-Ou-Mandel Interference as BSM

Conclusions

- \bullet Integration of the quantum memory enhanced coincidence rate by 30
- The current set up could be extended to allow for generation of up to 10 synchronized single photons with a generation rate of $\gtrsim 1~s^{-1}$.
- Reduction of optical loss could make up to 30 coincident photons every few seconds a possibility.