

EVERLASTING Cearning

FUNDAMENTALS OF COMPUTER GRAPHICS (CSIT304)

SURFACE REPRESENTATION

CHIRANJOY CHATTOPADHYAY

Associate Professor,
FLAME School of Computation and Data Science

OBJECTIVE

After completing this lecture, students will be able to

- Mathematically represent a surface patches
 - Planar Surface
 - Curved Surface
 - Bi-linear Surface
 - Lofted or Ruled Surface
- Solve related mathematical problems

SURFACE

Representation of surface

Explicit

o Implicit

o Parametric

A SURFACE PATCH

DISPLAYING A SURFACE PATCH

• A surface patch can be displayed either as a wire frame

NON-PARAMETRIC SURFACES

A quadratic surface would have an equation of the form:

$$ax^{2} + ey^{2} + hz^{2} + 2bxy + 2cxz + 2fyz + 2dx + 2gy + 2iz + 1 = 0$$

Can we represent this as matrix multiplication?

$$\left[egin{array}{cccc} a & b & c & d \ b & e & f & g \ c & f & h & i \ d & g & i & 1 \ \end{array}
ight]$$

PARAMETRIC SURFACES

A point on a surface patch is a function of two parameters

$$P(u,v) = au^2 + 2buv + 2cu + dv^2 + 2ev + f = 0$$

Can we represent this as matrix multiplication?

$$P(u,v) = \begin{bmatrix} u & v & 1 \end{bmatrix} \begin{bmatrix} \mathbf{a} & \mathbf{b} & \mathbf{c} \\ \mathbf{b} & \mathbf{d} & \mathbf{e} \\ \mathbf{c} & \mathbf{e} & \mathbf{f} \end{bmatrix} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix}$$

SURFACE EDGES

• The surface has edges given by the four curves for which one of the parameters is either 0 or 1.

$$P(u,v) = au^2 + 2buv + 2cu + dv^2 + 2ev + f = 0$$

$$P(0, v) = ?$$

$$P(1, v) = ?$$

$$P(u, 0) = ?$$

$$P(u, 1) = ?$$

VISUALIZATION

$$P(u,v) = au^2 + 2buv + 2cu + dv^2 + 2ev + f = 0$$

	u	υ
P_0	0	0
P_1	0	1
P_2	1	0
P_3	1	1
P_4	1/2	0
P_5	1/2	1

CURVED SURFACE REPRESENTATION

• A curve is represented as a vector valued function of a single variable

• A surface is represented by a bivariate vector-valued function

How to represent a curve on the surface?

How a point on the surface may be represented?

LINEAR COONS SURFACE

• If the four boundary curves P(u, 0), P(u, 1), P(0, v), and P(1, v) are known, then?

Intuitive solution

• What about the corner points and at the edges?

• Solution?

• Matrix representation of the linear Coons surface

PARAMETRIC SURFACE PATCH

$$P(u,v) = ? \text{ [INTERPOLATION]}$$

$$P(u,v) = P(u,0)(1-v) + P(u,1)v + P(0,v)(1-u) + P(1,v)u \text{ [INCORRECT]}$$

$$P(u,v) = P(u,0)(1-v) + P(u,1)v + P(0,v)(1-u) + P(1,v)u - P(0,0)(1-u)(1-v) - P(0,1)(1-u)v + P(1,0)u(1-v) - P(1,1)uv \text{ www.flame.edu.in}$$

P(1,0) = ?

IDENTIFY THE CORNER POINTS

(y, v)

P(0,0) = ?		2	3	4	5	6	7	P(0,1) = ?
	7							
	8			10	9			
(x, u)	9		14	12	11	10		
	10		15	13	14	10		
	11			10	11			

P(1,1) = ?

Gradients at the corners of the patch

$$P(0,0) = (9,4,12)$$

$$\frac{\partial (P(0,0))}{\partial u} = ((10,4,13) - (8,4,10))/2 = (1,0,1.5)$$

$$\frac{\partial (P(0,1)}{\partial u} =$$

$$\frac{\partial (P(1,0)}{\partial u} =$$

$$\frac{\partial (P(1,1))}{\partial u} =$$

(y, v)

	2	3	4	5	6	7
7						
8			10	3		
9		14	12	11	10	
10		15	13	1 4	10	
11			10	11		

(x, u)

Gradients at the corners of the patch

$$P(0,0) = (9,4,12)$$

$$\frac{\partial (P(0,0))}{\partial v} = ((9,5,11) - (9,3,14))/2 = (0,1,-1.5)$$

$$\frac{\partial (P(0,1)}{\partial v} =$$

$$\frac{\partial (P(1,0)}{\partial v} =$$

$$\frac{\partial (P(1,1))}{\partial v} =$$

• To find the bounding contours we use the cubic spline patch equation.

$$P(u,0) = a_3 u^3 + a_2 u^2 + a_1 u + a_0$$

$$a_0 = P_0 = (9, 4, 12)$$

$$a_1 = P'_0 = (1, 0, 1.5)$$

$$a_2 = -3P_0 - 2P_0' - 3P_1 - P_1'$$

$$a_3 = 2P_0 + P_0' - 2P_1 + P_1'$$

SURFACE REPRESENTATION

OBJECTIVE

- After completing this lecture, students will be able to
 - Derive mathematical expressions for
 - Bi-cubic surface
 - Surface sub-division
 - o Geometric properties of surface

BICUBIC SURFACE PATCH

- Discussed so far simple surface patches from a conceptual point of view.
- Useful patch descriptions
- Boundary points are given
- Need to calculate the basis functions
- Steps:
 - Calculate for a fixed u, calculated for a fixed v
 - Add the two set of curves to generate the surface

BICUBIC SURFACE REPRESENTATION

- 1. Start with the cubic spline expression and derive for boundary conditions
- 2. Represent the curve as a function of the extreme points and the blending functions
- 3. For a fixed u, represent the curve
- 4. For a fixed v, represent the curve
- 5. Add them
- 6. Do the correction
- 7. Final expression

SUBDIVISION OF SURFACE PATCH

- To construct a surface patch with an interactive algorithm
- Changing the boundary (global) points doesn't change the shape
- Local control is required
- Add more points
- How many points we should add?
- Constraints?

CONSTRAINT ON SURFACE SUBDIVISION

The algorithm

Takes a surface defined by n points

- Partitions it into several patches, so that
 - Together they represent the same surface
 - Each patch is now represented with n points
 - They are computed from the original set of points

BEZIER AND B-SPLINE SURFACE

OBJECTIVE

- After completing this lecture, students will be able to
 - Derive the mathematical expressions for
 - Bezier surface
 - B-spline surface
 - Construct Bezier surface
- Calculate expressions for
 - Surface subdivision
 - Degree elevation

BÉZIER CURVE

Bézier equation

$$P(t) = \sum_{i=0}^{n} P_i B_i^n(t)$$

$$B_i^n(t)$$
= Bernstein Basis = $\binom{n}{i}t^i(1-t)^{n-i}$

 P_i = Control points

The corresponding point of t on the new curve is obtained by translating the corresponding point of t on the original curve in the direction of v with a distance $B_i^n(t)$

BEZIER SURFACE

• $m+1 \times n+1$ point grid

• A rectangular Bezier patch is defined as:

$$Q(u,v) = \sum_{i=0}^{m} \sum_{j=0}^{n} B_i^m(u) P_{i,j} B_j^n(v)$$

• In Matrix form this can be written as: $Q(u, v) = UNPN^TV^T$

$$U = [u^m, u^{m-1}, ..., u, 1]$$
 $V = [v^n, v^{n-1}, ..., v, 1]$ $N = ?$

EXAMPLE

Given the six three-dimensional points

$$egin{array}{cccc} {f P}_{10} & {f P}_{11} & {f P}_{12} \\ {f P}_{00} & {f P}_{01} & {f P}_{02} \end{array}$$

- **Problem:** Generate the corresponding Bezier Surface patch
- Step 1: Find the orders m and n of the surface
- Step 2: Calculate the weight functions $B_i^1(v)$, $B_j^2(u)$
 - 0 i = 0.1
 - o j = 0,1,2
 - o m = 1, n = 2

SCAFFOLDING CONSTRUCTION

The scaffolding construction (or de Casteljau algorithm)

• Extension of the idea discussed in Bezier curves

SUBDIVIDING RECTANGULAR PATCHES

- To change the surface shape, if there are not enough points
- Just adding points is not a good solution because
 - o this changes the shape of the surface
- A better solution is to subdivide the patch into four connected surface patches

Step 1: Select values for u and w

Step 2: Apply de Casteljau Algo (column wise)

Step 3: Apply de Casteljau Algo (row wise)

DEGREE ELEVATION

- In an application it is desired that all involved curves to have the same degree
- Increase the degree of a Bézier curve without changing its shape.
- Degree elevation
- Existing degree = n; elevated degree = n+1
- Existing control points = $\{P_0, \dots, P_n\}$; New control points = $\{Q_0, \dots, Q_{n+1}\}$, such that $P_0 = Q_0 \& P_n = Q_{n+1}$

$$Q_i = \frac{i}{n+1}P_{i-1} + \left(1 - \frac{i}{n+1}\right)P_i; 1 \le i \le n$$

DEGREE ELEVATION FOR SURFACE

Extension of the idea discussed in case of curves

• Bezier patch of degree $m \times n$

• Definition:
$$Q(u,v) = \sum_{i=0}^{m} \sum_{j=0}^{n} B_i^m(u) P_{i,j} B_j^n(v)$$

• Degree elevated patch is defined by (m+2), (n+2) control points

$$\mathbf{Q}_{ij} = \left(\frac{i}{m+1}, 1 - \frac{i}{m+1}\right) \begin{bmatrix} \mathbf{P}_{i-1,j-1} & \mathbf{P}_{i-1,j} \\ \mathbf{P}_{i,j-1} & \mathbf{P}_{i,j} \end{bmatrix} \begin{bmatrix} \frac{j}{n+1} \\ 1 - \frac{j}{n+1} \end{bmatrix},$$
for $i = 0, 1, \dots, m+1$, and $j = 0, 1, \dots, n+1$.

EXAMPLE

Starting with the 2×3 control points

$$egin{array}{cccc} {f P}_{10} & {f P}_{11} & {f P}_{12} \ {f P}_{00} & {f P}_{01} & {f P}_{02} \end{array}$$

Elevation: 1x2 to 2x3

B-SPLINE SURFACE

B-Spline surface can be represented as:

$$Q(u,v) = \sum_{i=0}^{m} \sum_{j=0}^{n} B_{j+1}^{i+1} N_k^i(u) M_L^j(v)$$

$$N_1^i(u) = \begin{cases} 1 & \text{if } x_i \le u \le x_i + 1 \\ 0 & \text{otherwise} \end{cases}$$

$$N_k^i(u) = \frac{(u - x_i)N_{k-1}^i(u)}{x_{i+k-1} - x_i} + \frac{(x_{i+k} - u)N_{k-1}^{i+1}(u)}{x_{i+k} - x_{i+1}}$$

EVERLASTING *Cearning*

THANK YOU