- Mmost prinitive machine
- 1) concerned with I and o only
- 3) behaves like a function that maps input set I to output set 0
- (9) It has only machine function (MAF)
 NO state Function (STF) >

eg. Logic Gale OR

$$I$$
 output (0,0) 0 (0,1) 1 (1,0) 1

(1,1)

$$M = (I, 0)$$

$$I = \{(0,0), (0,1), (1,0), (1,0), (1,1)\}$$
ie set of ordered pair of o or 1.

FSM Finite state machine

Design Fsm For testing divisibility by 3 for decimal numbers.

step1: Defn of FSM

American American

Fsm is a machine which consists of finite set of states (s) that alters on receiving the input set of symbols (I) to produce output set of symbols (o).

FSM definer two functions.

- (1) State function (STF): SXI >S
- 2) machine function (MAF): SXI -> 0

step2: Logic

- 1 = 10,1,2,3,4,5,6,7, 8,99
- 2) The machine checks for divisibility by 3. 0 = 14, NY
- 3) we define one initial/start state 9s = initial/start state.
- 4) Whenever the number is divided by 3 there are 3 remainder Possibilities.

Scanned by CamScanner

Step3: Implementation - Transition table

MAF. SXI -> 0

2/5	aivib pri	101 405	Lange of Ma	F 51
3	10,3,6,95	11,4,7}	12,5,8	<u> </u>
95	Ϋ́	N	N	. engle
90	shich rons	1003 N N A 3014300	N	i javie
			- 40 A-103	54 art
92	137 6 6	loomes to	tor. ful	01 944

e define

SI	103,6,94 \$1,4,74 12,5,84
90	90 91 91 92 TE
9 _D	90 92 90
92	9, 92 90
92	92 90

Fam defines two functions

17 State Function (STE) " IN I -> S-

teps 10910

Transition diagram

Step 5: - FSM =
$$\{1, 0, 5\}$$

where $I = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 $0 = \{1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 $5 = \{1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 $5 = \{1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 $5 = \{1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 $5 = \{1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 $5 = \{1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 $5 = \{1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 $5 = \{1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 $5 = \{1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 $5 = \{1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 $5 = \{1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 $5 = \{1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 $5 = \{1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 $5 = \{1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Finite state machine (FSM)

FSM consist of set of input symbols (I) set of output symbols (0) set of states (s)

It defines two functions $MAF = I \times S \rightarrow 0$ STF = OIXS -> 5 the homeson

* Design Fsm for binary numbers sadditiontus of I to turn sysm

(a) It has only machine, obtained and all step1 = FSM def1 31 51 52 5 tep 2 = 10 gic

01 or = 30,14

(4) initral state = S, (No carry)

An How Sum carry

$$0+0=0$$
 0

$$1 + 0 = 0$$
 $1 + 1 = 0$

step3 - Design

Transition diagram

6	MAF		STF NC C				
	I V	NC 51	с 52	I	81	52	
	(0,0)	0		(0,0)	SI	51	
	(0,1)	1	O	(0,1)	51	52	
	C1,0)	1	0	(1,0)	51	S2	
	(1, 1)	0	1	(1,1)	52	52	
$1 \times 5 \rightarrow 0$ $5 \times 00 \rightarrow 5$				$I \times S \rightarrow S$ $\Xi \times Q \rightarrow Q$			