

Europäisches Patentamt
European Patent Office
Office européen des brevets

⑪ Veröffentlichungsnummer: **0 668 328 A2**

⑫

EUROPÄISCHE PATENTANMELDUNG

⑬ Anmeldenummer: 95101916.5

⑮ Int. Cl. 6. **C09B 67/00**

⑭ Anmeldetag: 13.02.95

⑯ Priorität: 19.02.94 DE 4405358

⑰ Anmelder: HOECHST AKTIENGESELLSCHAFT
Brüningstrasse 50
D-65929 Frankfurt am Main (DE)

⑰ Veröffentlichungstag der Anmeldung:
23.08.95 Patentblatt 95/34

⑱ Erfinder: Russ, Werner Hubert, Dr.
Wingertstrasse 8a
D-65439 Flörsheim (DE)
Erfinder: Hussong, Kurt, Dr.
Gluckstrasse 19
D-65812 Bad Soden (DE)
Erfinder: Schulze-Braucks, Manfred, Dipl.-Ing.
Föhrenweg 8
D-65719 Hofheim (DE)
Erfinder: Kunze, Michael, Dr.
Platanenweg 1a
D-65719 Hofheim (DE)

⑲ Benannte Vertragsstaaten:
BE CH DE FR GB IE IT LI

⑳ **Reaktivfarbstoffmischungen.**

㉑ Spezielle Farbstoffkombinationen an sich bekannter Reaktivfarbstoffe werden zum Färben und Bedrucken, von Cellulose- und Polyamidfasern, insbesondere zum Nuancieren, eingesetzt.

EP 0 668 328 A2

Die vorliegende Erfindung betrifft neue Mischungen von Reaktivfarbstoffen zum Färben und Bedrucken von Cellulose- und/oder Polyamidfasern enthaltenden Fasermaterialien.

Es ist bekannt (EP-A-0 525 805), mehrere Reaktivfarbstoffe miteinander zu mischen, um bestimmte Mischfarben, beispielsweise beige, zu erhalten. Weiterhin ist bekannt, daß beim Trichromefärben Farbstoffe der drei Grundfarben blau, rot und gelb miteinander gemischt werden (EP-A-0 437 184). Mischfarbtöne zeigen oft Nachteile in der Farbtiefe, im Aufbau, in den Echtheiten, in der Auswaschbarkeit und teilweise fehlende Ätzbarkeit.

Die der Erfindung zugrundeliegende Aufgabe war es, geeignete Farbstoffmischungen zum Färben und Bedrucken, insbesondere zum Nuancieren, von cellulosehaltigen Fasermaterialien und Polyamidfasern zu finden, die unter Berücksichtigung von Brillanz, Phototropie, Metamerie und Substantivität sowie Blockiereffekten sich vorteilhaft ergänzen. Es zeigte sich, daß nur spezielle Farbstoffkombinationen die gestellte Aufgabe lösen können.

Gegenstand der vorliegenden Erfindung sind die nachstehenden Reaktivfarbstoffmischungen der Typen 1 bis 17, in denen die Reste in den Formeln (1) bis (27) jeweils unabhängig voneinander die folgenden Bedeutungen haben:

- D ist phenyl-SO₂-CH₂CH₂-Z, wobei der phenyl-Rest mit 1 oder 2 Methyl-, Methoxy- oder Sulfogruppen substituiert sein kann;
- D¹ ist D, naphthyl oder naphthyl-SO₂-CH₂CH₂-Z, wobei der naphthyl-Rest jeweils mit bis zu 3 Sulfogruppen substituiert sein kann;
- D² ist D oder phenyl-SO₃H;
- D³ ist D¹ oder phenyl-CONH-phenyl-SO₂Y;
- Y ist -CH₂CH₂-Z oder -CH=CH₂;
- Z ist -OSO₃H, Cl oder -SSO₃H und
- m ist eine Zahl von 1 bis 3.

Die erfindungsgemäßen Farbstoffmischungen der Typen 1 bis 17 bestehen im wesentlichen aus 90 bis 99,99 Gew.-% eines Farbstoffes A, 0 bis 10 Gew.-% eines weiteren Farbstoffes A', 0 bis 10 Gew.-% eines Farbstoffes B, 0 bis 10 Gew.-% eines Farbstoffes C, 0 bis 10 Gew.-% eines Farbstoffes D und 0 bis 10 Gew.-% eines Farbstoffes E, wobei die Summe der Farbstoffe jeweils 100 Gew.-% ergibt und die Mischung mindestens zwei Reaktivfarbstoffe enthält.

30

35

40

45

50

55

		Formelnummern zu den Farbstoffen				
Typ	Farbton	A	B	C	D	E
1	gelb	(1)	(2)	(3)	-	-
2	gelb	(4)	(5)	(6)	-	-
3	gelb	(7)	(1)	(2)	-	-
4	orange	(2)	(8)	(1)	(9)	(10)
5	rot	(11)	(12)	(2)	(13)	(22)
6	rot	(14)	(13)	(12)	-	-
7	violett	(12)	(14)	(15)	-	-
8	blau	(12)	(10)	-	-	-
9	blau	(16)	(12)	(17)	-	-
10	blau	(10)	(18)	(12)	(25)	-
11	blau	(19)	(16)	(4)	-	-
12	braun	(23)	(9)	(15)	(10)	-
13	dunkelblau	(20)	(16)	(21)	-	-
14	marineblau	(24)	(1)	(11)	-	-
15	schwarz	(25)	(9)	(12)	(16)	-
16	blau	(26)	(1)	(8)	-	-
17	gelbbraun	(27)	(1)	(14)	-	-

30

35

40

45

R¹ ist CH₃, COOH oder CO-NH₂;

50

55

R² ist CH₃ oder Phenyl;

30 R^4 und R^{40} sind Wasserstoff, Methyl oder Methoxy;

x ist eine Zahl von 1 bis 3, vorzugsweise 1 bis 2; M ist Ni;

5

10

15

R⁶ ist CH₃ oder NH₂,
n ist 1 bis 3,
X ist Cl oder F;

20

25

30

R⁷ und R⁷⁰ sind Wasserstoff, C₁-C₄-Alkyl oder CH₂-CH₂-OSO₃H,
R⁷¹ ist Cl, NH-CO-CH₃ oder NH-CO-NH₂;
a ist 0 oder 1;

35

40

45

50

55

15 R⁹ ist Methyl oder -NH₂;

35

R¹¹ ist

oder CO-CH₃ oder CO-Phenyl:

A ist ein zweiwertiger Rest auf Basis von D¹, wobei die beiden freien Valenzen im phenyl- oder naphthyl-Rest sind;

30

35

40

45

50

55

(17) entspricht Formel (5), wobei M Cu ist.

45

50

55

(19) entspricht Formel (5), wobei M Cu oder Ni ist.

50

55

40 wobei die Reste R²⁴ unabhängig voneinander Wasserstoff, Sulfo oder Methoxy sind;

45

50

55

Eine Sulfogruppe ist eine Gruppe der allgemeinen Formel $-SO_3M$, eine Carboxygruppe ist eine Gruppe der allgemeinen Formel $-COOM$, eine Sulfatogruppe ist eine Gruppe der allgemeinen Formel $-OSO_3M$ und eine Thiosulfatogruppe ist eine Gruppe der allgemeinen Formel $-S-SO_3M$.

Die Farbstoffe der Formeln (1) bis (27) können bei gleichem Chromophor hinsichtlich der faserreaktiven Gruppen $-SO_2-Y$ unterschiedliche Struktur besitzen. Insbesondere können die Farbstoffmischungen Farb-

stoffe gleichen Chromophors enthalten, in denen die faserreaktiven Gruppen $-SO_2-Y$ zum einen Vinylsulfonylgruppen und zum anderen β -Chlorethylsulfonyl oder Thiosulfatoethylsulfonyl- oder bevorzugt β -Sulfatoethylsulfonyl-Gruppen sind. Enthalten die Farbstoffgemische die jeweiligen Farbstoffkomponenten in Form eines Vinylsulfonyl-Farbstoffes, so liegt der Farbstoffanteil des jeweiligen Vinylsulfonylfarbstoffes zu dem jeweiligen β -Chlor- oder β -Thiosulfato- oder Sulfatoethylsulfonyl-Farbstoff bei bis zu etwa 30 %, bezogen auf den jeweiligen Farbstoffchromophor, vor.

Die erfindungsgemäßen Farbstoffmischungen können als Präparation in fester oder in flüssiger (gelöster) Form vorliegen. In fester Form enthalten sie im allgemeinen die bei wasserlöslichen und insbesondere faserreaktiven Farbstoffen üblichen Elektrolytsalze, wie Natriumchlorid, Kaliumchlorid, Lithiumchlorid, Lithiumsulfat und Natriumsulfat, und können des weiteren die in Handelsfarbstoffen üblichen Hilfsmittel enthalten, wie Puffersubstanzen, die einen pH-Wert in wäßriger Lösung zwischen 3 und 7 einzustellen vermögen, wie Natriumacetat, Natriumborat, Natriumhydrogencarbonat, Natriumdihydrogenphosphat und Dinatriumhydrogenphosphat, geringe Mengen an Sikkativen oder, falls sie in flüssiger, wäßriger Lösung (einschließlich des Gehaltes von Verdickungsmitteln, wie sie bei Druckpasten üblich sind) vorliegen, Substanzen, die die Haltbarkeit dieser Präparationen gewährleisten, wie beispielsweise schimmelverhürende Mittel.

Im allgemeinen liegen die Farbstoffmischungen als Farbstoffpulver mit einem Gehalt von 10 bis 70 Gew.-%, bezogen auf das Farbstoffpulver bzw. die Präparation, an einem Elektrolytsalz, das auch als Stellmittel bezeichnet wird, vor. Diese Farbstoffpulver können zudem die erwähnten Puffersubstanzen in einer Gesamtmenge von bis zu 5 %, bezogen auf das Farbstoffpulver enthalten. Sofern die erfindungsgemäßen Farbstoffmischungen in wäßriger Lösung vorliegen, so beträgt der Gesamtfarbstoffgehalt in diesen wäßrigen Lösungen bis zu etwa 50 Gew.-%, wobei der Elektrolytsalzgehalt in diesen wäßrigen Lösungen bevorzugt unterhalb 10 Gew.-%, bezogen auf die wäßrige Lösung, beträgt; die wäßrigen Lösungen können die erwähnten Puffersubstanzen in der Regel in einer Menge von bis zu 5 Gew.-%, bevorzugt bis zu 2 Gew.-%, enthalten.

Die erfindungsgemäßen Farbstoffmischungen können in üblicher Weise hergestellt werden, so durch mechanisches Mischen der einzelnen Farbstoffe in den erforderlichen Anteilen. Dabei kann durch Variationen der Farbstoffanteile gezielt Einfluß auf die Nuance genommen werden. Flüssigpräparationen der erfindungsgemäßen Farbstoffmischungen können hergestellt werden, indem die pulverförmigen Einzelkomponenten in Wasser gelöst und miteinander vermischt werden, oder indem man die bei der Herstellung der Einzelkomponenten erhaltenen wäßrigen Lösungen miteinander vermischt oder die Reaktionslösung der in einem Rührapparat nebeneinander hergestellten Farbstoffe durch Verdünnen mit Wasser oder Aufstärken (Verdampfen von Wasser) auf die gewünschte Stärke (%-Gehalt) bringt. Das Aufstärken kann auch durch Zumischen des pulverförmigen Farbstoffgemisches zu einer niedrigprozentigen Lösung des Farbstoffgemisches erfolgen. Dabei können hochkonzentrierte Farbstoffeinstellungen erzielt werden. Weiterhin kann durch bekannte Membranverfahren der Salzgehalt reduziert werden. Die wäßrige flüssige Farbstoffzusammensetzung wird unter Verwendung einer Mineralsäure oder Base auf einen pH-Wert von 3 bis 6 eingestellt. Ebenso kann ein Puffer, beispielsweise eine Carbonsäure oder Phosphorsäure, und ein grenzflächenaktives Mittel in die wäßrige flüssige Farbstoffzusammensetzung mit einbezogen werden.

Die erfindungsgemäßen Farbstoffmischungen aus den Farbstoffen der Formeln (1) bis (27) liefern nach den in der Technik für faserreaktive Farbstoffe zahlreich beschriebenen Anwendungs- und Fixierverfahren auf hydroxy- und/oder carbonamidgruppenhaltigen Fasermaterialien Färbungen mit gutem Farbaufbau und guter Auswaschbarkeit nicht fixierter Farbstoffanteile. Darüber hinaus sind die erhaltenen Färbungen teilweise gut ätzbar. Die erfindungsgemäßen Farbstoffmischungen eignen sich sowohl zum Färben von Cellulose nach dem diskontinuierlichen Ausziehverfahren, für halkontinuierliche Färbeverfahren, insbesondere Klotzkaltverweilverfahren oder pad steam sowie zum Drucken.

Gegenstand der vorliegenden Erfindung ist deshalb auch die Verwendung der erfindungsgemäßen Farbstoffmischungen zum Färben (einschließlich Bedrucken) von hydroxy- und/oder carbonamidgruppenhaltigen Fasermaterialien sowie Verfahren zum Färben solcher Fasermaterialien unter Verwendung einer erfindungsgemäßen Farbstoffmischung, indem man die Farbstoffmischung in gelöster Form auf das Substrat appliziert und die Farbstoffe durch Einwirkung eines alkalisch wirkenden Agens oder durch Hitze oder durch beide Maßnahmen auf der Faser fixiert.

Hydroxygruppenhaltige Materialien sind natürliche oder synthetische hydroxygruppenhaltige Materialien, wie beispielsweise Cellulosefasermaterialien, auch in Form von Papier, oder deren Regeneratprodukte und Polyvinylalkohole. Cellulosefasermaterialien sind vorzugsweise Baumwolle, aber auch andere Pflanzenfasern, wie Leinen, Hanf, Jute und Ramiefasern; regenerierte Cellulosefasern sind beispielsweise Zellwolle und Viskosekunstseide.

Carbonamidgruppenhaltige Materialien sind beispielsweise synthetische und natürliche Polyamide und Polyurethane, insbesondere in Form der Fasern, beispielsweise Wolle und andere Tierhaare, Seide, Leder, Polyamid-6,6, Polyamid-6, Polyamid-11 und Polyamid-4.

- Die Anwendung der erfindungsgemäßen Farbstoffmischungen erfolgt nach allgemein bekannten Verfahren zum Färben und Bedrucken von Fasermaterialien gemäß den bekannten Anwendungstechniken für faserreaktive Farbstoffe. Da die Farbstoffe der erfindungsgemäßen Farbstoffmischungen zueinander ein sehr gutes Kombinationsverhalten zeigen, können die erfindungsgemäßen Farbstoffmischungen auch mit Vorteil in die Ausziehfärbeverfahren eingesetzt werden. Demgemäß erhält man mit ihnen beispielsweise auf Cellulosefasern nach den Ausziehverfahren aus langer Flotte bei Temperaturen zwischen 40 und 105° C, gegebenenfalls bei Temperaturen bis zu 130° C, und gegebenenfalls in Gegenwart von üblichen Färbereihilfsmitteln unter Verwendung von säurebindenden Mitteln und gegebenenfalls neutralen Salzen, wie Natriumchlorid oder Natriumsulfat, Färbungen in sehr guten Farbausbeuten und mit ausgezeichnetem Farbaufbau und gleicher Nuance. Man kann dabei so vorgehen, daß man das Material in das warme Bad einbringt und dieses allmählich auf die gewünschte Färbetemperatur erwärmt und den Färbeprozess bei dieser Temperatur zu Ende führt. Die das Ausziehen der Farbstoffe beschleunigenden Neutralsalze können dem Bade gewünschtenfalls auch erst nach Erreichen der eigentlichen Färbetemperatur zugesetzt werden.

- Ebenfalls erhält man nach den üblichen Druckverfahren für Cellulosefasern, - die entweder einphasig durchgeführt werden können, beispielsweise durch Bedrucken mit einer Natriumcarbonat oder ein anderes säurebindendes Mittel und das Farbmittel enthaltenden Druckpaste und durch anschließendes Dämpfen bei 100 bis 103° C, oder die zweiphasig, beispielsweise durch Bedrucken mit neutraler oder schwach saurer, das Farbmittel enthaltenden Druckpaste und anschließendes Fixieren entweder durch Hindurchführen der bedrucken Ware durch ein heißes elektrolythaltiges alkalisches Bad oder durch Überklotzen mit einer alkalischen elektrolythaltigen Klotzflotte mit anschließendem Verweilen dieses behandelten Materials oder anschließendem Dämpfen oder anschließender Behandlung mit Trockenhitze, durchgeführt werden können, - farbstarke Drucke mit gutem Stand der Konturen und einem klaren Weißfond. Der Ausfall der Drucke ist von wechselnden Fixierbedingungen nur wenig abhängig. Sowohl in der Färberei als auch in der Druckerei sind die mit den erfindungsgemäßen Farbstoffmischungen erhaltenen Fixiergrade sehr hoch. Bei der Fixierung mittels Trockenhitze nach den üblichen Thermofixierverfahren verwendet man Heißluft von 120 bis 200° C. Neben dem üblichen Wasserdampf von 101 bis 103° C kann auch überhitzter Dampf und Druckdampf von Temperaturen bis zu 160° C eingesetzt werden.

- Die säurebindenden und die Fixierung der Farbstoffe auf den Cellulosefasern bewirkenden Mittel sind beispielsweise wasserlösliche basische Salze der Alkalimetalle und der Erdalkalimetalle von anorganischen oder organischen Säuren, ebenso Verbindungen, die in der Hitze Alkali freisetzen. Insbesondere sind Alkalimetallhydroxide und Alkalimetallsalze von schwachen bis mittelstarken anorganischen oder organischen Säuren zu nennen, wobei von den Alkaliverbindungen vorzugsweise die Natrium- und Kaliumverbindungen gemeint sind. Solche säurebindenden Mittel sind beispielsweise Natriumhydroxid, Kaliumhydroxid, Natriumcarbonat, Natriumbicarbonat, Kaliumcarbonat, Natriumformiat, Natriumhydrogenphosphat und Dina-triumhydrogenphosphat.

- Durch die Behandlung der Farbstoffe der erfindungsgemäßen Farbstoffmischungen mit den säurebindenden Mitteln, gegebenenfalls unter Wärmeeinwirkung, werden die Farbstoffe chemisch an die Cellulosefaser gebunden; insbesondere die Cellulosefärbungen zeigen nach der üblichen Nachbehandlung durch Spülen zur Entfernung von nicht fixierten Farbstoffanteilen ausgezeichnete Naßechtheiten, zumal sich nicht fixierte Farbstoffanteile leicht wegen ihrer guten Kaltwasserlöslichkeit auswaschen lassen.

- Die Färbungen auf Polyurethan- und Polyamidfasern werden üblicherweise aus saurem Milieu ausgeführt. So kann beispielsweise dem Färbebad Essigsäure und/oder Ammoniumsulfat und/oder Essigsäure und Ammoniumacetat oder Natriumacetat zufügen, um den gewünschten pH-Wert zu erhalten. Zur Erreichung einer brauchbaren Egalität der Färbung empfiehlt sich ein Zusatz an üblichen Egalisierhilfsmitteln, wie beispielsweise auf Basis eines Umsetzungsproduktes von Cyanurchlorid mit der dreifach molaren Menge einer Aminobenzolsulfonsäure oder Aminonaphthalinsulfonsäure oder auf Basis eines Umsetzungsproduktes von beispielsweise Stearylamin mit Ethylenoxid. In der Regel wird das zu färbende Material bei einer Temperatur von etwa 40° C in das Bad eingebracht, dort einige Zeit darin bewegt, das Färbebad dann auf den gewünschten schwach sauren, vorzugsweise schwach essigsauren pH-Wert nachgestellt und die eigentliche Färbung bei einer Temperatur zwischen 60 und 98° C durchgeführt. Die Färbungen können aber auch bei Siedetemperatur oder bei Temperaturen bis zu 120° C (unter Druck) ausgeführt werden.

- Die nachstehenden Beispiele dienen zur Erläuterung der Erfindung. Die Teile sind Gewichtsteile, die Prozentangaben stellen Gewichtsprozente dar, sofern nicht anders vermerkt. Gewichtsteile stehen zu Volumenteilen im Verhältnis von Kilogramm zu Liter.

Beispiel 1

- 5 1000 g des blauen Formazanfarbstoffs der Formel (B 27) werden mit 4 g des Farbstoffs der Formel (B 34) in einem mechanischen Mischer gemischt. Man erhält 1004 g einer Farbstoffmischung, die Cellulose in blauen Tönen färbt.

Beispiel 2

- 10 1000 g des Farbstoffs der Formel (B 30) werden mit 3,5 g des Farbstoffs der Formel (B 26) in einem mechanischen Mischer gemischt. Man erhält 1003,5 g einer Farbstoffmischung, die Cellulose in grünen Tönen färbt.

Beispiel 3

- 15 1000 g des Farbstoffs (B 23) werden mit 10 g des Farbstoffs der Formel (B 24) in einem mechanischen Mischer gemischt. Man erhält 1010 g einer Farbstoffmischung, die Cellulose in violetten Tönen färbt.

Beispiel 4

- 20 1000 g des Farbstoffs (B 38) werden mit 25 g des Farbstoffs der Formel (B 33) in einem mechanischen Mischer gemischt. Man erhält 1025 g einer Farbstoffmischung, die Cellulose in marineblauen Tönen färbt.

Beispiel 5

- 25 1000 g des Farbstoffs der Formel (B 33) werden mit 6 g des Farbstoffs der Formel (B 23) in einem mechanischen Mischer gemischt. Man erhält 1006 einer Farbstoffmischung, die Cellulose in marineblauen Fönen färbt.

Beispiel 6

- 30 1000 g des Farbstoffs der Formel (B 28) werden mit 5 g des Farbstoffs der Formel (B 1) in einem mechanischen Mischer gemischt. Man erhält 1005 g einer Farbstoffmischung, die Cellulose in grünen Tönen färbt.

35 In der folgenden Tabelle werden jeweils 1000 g der Hauptkomponente mit der entsprechenden Menge an Nuancierkomponente gemischt.

	Beispiel	Haupt-komponente	Menge [g]	Nuancier-komponente	Farbton
40	7	B1	0,2	B30	gelb
45	8	B1	3	B7	gelb
	9	B1	3	B10	gelb
50	10	B2	5	B10	gelb

	Beispiel	Haupt-komponente	Menge [g]	Nuancier-komponente	Farbton
5	11	B2	5	B27	gelb
10	12	B3	2,5	B12	gelb
15	13	B4	3	B14	gelb
20	14	B5	1	B14	gelb
25	15	B6	2	B14	gelb
30	16	B7	27	B1	gelb
35	17	B7	2,3	B19	gelb
40	18	B8	4,8	B2	gelbbraun
45	19	B8	5,2	B20	gelbbraun
50	20	B9	5,1	B4	goldgelb
	21	B9	4	B14	goldgelb
	22	B10	3	B4	goldgelb
	23	B10	3	B14	goldgelb
	24	B11	22,5	B4	goldgelb
	25	B11	5,5	B14	goldgelb
	26	B12	6,5	B3	goldorange
	27	B12	4,7	B15	goldorange
	28	B13	4,6	B18	orange
	29	B13	3,8	B3	orange
	30	B14	4	B10	orange
	30a	B13	9,5	B4	orange

EP 0 668 328 A2

Beispiel	Haupt-komponente	Menge [g]	Nuancier-komponente	Farbton	
5	31	B14	0,2	B18	orange
10	32	B14	4,1	B27	orange
15	33	B15	5,1	B2	rot
20	34	B15	5,1	B18	rot
25	35	B16	7,6	B14	rot
30	36	B16	3,6	B23	rot
35	37	B17	2,7	B13	rot
40	38	B17	5	B23	rot
45	39	B18	2	B13	rot
50	40	B18	3,2	B23	rot
	41	B19	2,3	B7	rot
	42	B19	1,2	B23	rot
	43	B20	5	B2	rot
	44	B20	5,5	B23	rot
	45	B21	4,5	B14	rot
	46	B21	4	B23	rot
	47	B22	5	B14	rot
	48	B22	3,5	B23	rot
	49	B23	4	B17	violett
	50	B23	11,8	B23	violett
	51	B24	9,3	B23	blau

	Beispiel	Haupt-komponente	Menge [g]	Nuancier-komponente	Farbton
5	52	B24	4,8	B27	blau
10	53	B25	10	B23	blau
15	54	B25	7	B27	blau
20	55	B26	6,2	B23	blau
25	56	B26	6,2	B28	blau
30	57	B27	3,3	B2	blau
35	58	B27	3,3	B24	blau
40	59	B28	2	B26	türkisblau
45	60	B28	8,2	B30	türkisblau
50	61	B29	9,2	B26	türkisblau
	62	B29	9,2	B30	türkisblau
	63	B30	1,2	B1	grün
	64	B30	3	B28	grün
	65	B31	3,1	B10	braun
	66	B31	3,1	B17	braun
	67	B31	3,2	B27	braun
	68	B32	3,2	B26	dunkelblau
	69	B33	2,6	B35	marineblau
	70	B33	1,9	B4	marineblau
	71	B34	6,4	B10	schwarz
	72	B34	21,8	B26	schwarz

Black

Beispiel	Haupt-komponente	Menge [g]	Nuancier-komponente	Farbton
73	B35	3,5	B17	schwarz
74	B36	5	B37	blau
75	B36	5	B18	blau

B1 (DE-A-33 03 156)

B2 (DE-A-925 121)

B3 (DE-A-12 82 213)

5

10

15

20

25

B4 (CA-A-519 978)

30

35

40

45

50

55

B5 1:1-Mischung (DE-A-2442553)

B6 (DE-A-12 06 107)

55

B7

5

10

15

20

25

B8 (DE-A-25 33 250)

30

35

40

45

50

55

B9 (CA-A-519 978)

B10 (DE-A-31 34 357)

55

B11 (DE-A-26 53 478)

5

10

15

20

25

30

B12 (DE-A-16 96 198)

35

40

45

50

55

B13 (DE-A-19 43 904)

5

10

15

20

25

B14 (CA-A-519 978)

30

35

40

45

50

55

B15 (DE-A-16 44 240)

5

10

15

20

B16 (DE-A-29 49 034)

25

30

35

40

45

50

55

B17 (DE-A-11 26 547)

B18 (DE-A-19 43 904)

50

55

B19

B20 (DE-A-14 69 990)

50

55

B21 (CA-A-519 978)

B22 (DE-A-21 42 728)

45

50

55

B23 (DE-A-11 26 542)

B24 (DE-A-11 26 542)

50

55

B25 (DE-A-20 10 656)

B26 (DE-A-24 12 964)

B27 (DE-A-29 45 537)

B28 (DE-A-11 79 317)

- $(SO_2NH\text{---}C_6H_4\text{---}SO_2(CH_2)_2OSO_3Na)_n$
- $(SO_3Na)_{3-n}$
- n = 1, 1

B29 (DE-A-12 33 963)

entspricht der Formel B30, jedoch ist Ni durch Cu ersetzt.
25

B30 (DE-A-11 79 317)

- $(SO_2NH\text{---}C_6H_4\text{---}SO_2(CH_2)_2OSO_3Na)_n$
- $(SO_3Na)_{4-n}$
- n = ca. 1, 5

50

55

B31 (DE-A-12 33 963)

20

B32

40

45

50

55

B33 (DE-A-31 13 885)

²⁵ B34 (DE-A-15 44 538)

50

55

B35 (CA-A-519 978)

25

B36

55

B37

5

10

15

20

25

30

35

B38

40

45

50

55 Patentansprüche

1. Gelbe Reaktivfarbstoffmischung aus mindestens zwei Reaktivfarbstoffen, bestehend im wesentlichen aus

90 bis 99,99 Gew.-% eines Farbstoffes der Formel (1),
 0 bis 10 Gew.-% eines Farbstoffes der Formel (2) und
 0 bis 10 Gew.-% eines Farbstoffes der Formel (3)

5

10

15

20

25

30

35

40

oder

aus 90 bis 99,99 Gew.-% eines Farbstoffes der Formel (4),

0 bis 10 Gew.-% eines Farbstoffes der Formel (5) und

0 bis 10 Gew.-% eines Farbstoffes der Formel (6)

45

50

55

oder
aus 90 bis 99,99 Gew.-% eines Farbstoffes der Formel (7),
0 bis 10 Gew.-% eines Farbstoffes der Formel (1) und
0 bis 10 Gew.-% eines Farbstoffes der Formel (2)

wobei in den Formeln (1) bis (7)

- D die Bedeutung phenyl-SO₂-CH₂CH₂-Z hat, worin der phenyl-Rest mit 1 oder 2 Methyl-, Methoxy- oder Sulfogruppen substituiert sein kann und Z -OSO₃H, -Cl oder -SSO₃H ist;
- 15 D³ die Bedeutung phenyl-CONH-phenyl-SO₂Y, worin Y -CH₂CH₂-Z oder -CH=CH₂ ist; die Bedeutung von D; oder die Bedeutung naphthyl oder naphthyl-SO₂-CH₂CH₂-Z, worin der naphthyl-Rest jeweils mit bis zu 3 Sulfogruppen substituiert sein kann, hat;
- 20 R¹ die Bedeutung CH₃, COOH oder CONH₂ hat und
- R² die Bedeutung CH₃ oder Phenyl hat;
- R⁴ und R⁴⁰ die Bedeutung H, CH₃ oder OCH₃ haben;
- x eine Zahl von 1 bis 3 ist;
- M Nickel bedeutet;
- 25 R⁶ die Bedeutung CH₃ oder NH₂ hat;
- X die Bedeutung Cl oder F hat;
- n eine Zahl von 1 bis 3 ist;
- R⁷ und R⁷⁰ die Bedeutung H, C₁-C₄-Alkyl oder CH₂CH₂-OSO₃H haben;
- 30 R⁷¹ die Bedeutung Cl, NH-CO-CH₃ oder NH-CO-NH₂ hat;
- und a die Zahl 0 oder 1 ist.
- 35 2. Blaue Reaktivfarbstoffmischung aus mindestens zwei Reaktivfarbstoffen, bestehend im wesentlichen aus
90 bis 99,99 Gew.-% eines Farbstoffes der Formel (16),
0 bis 10 Gew.-% eines Farbstoffes der Formel (12) und
0 bis 10 Gew.-% eines Farbstoffes der Formel (17)

40

45

50

55

oder

45 aus 90 bis 99,99 Gew.-% eines Farbstoffes der Formel (10),
 0 bis 10 Gew.-% eines Farbstoffes der Formel (18),
 0 bis 10 Gew.-% eines Farbstoffes der Formel (12) und
 0 bis 10 Gew.-% eines Farbstoffes der Formel (25)

50

55

50 oder
aus 90 bis 99,99 Gew.-% eines Farbstoffes der Formel (19),
0 bis 10 Gew.-% eines Farbstoffes der Formel (16) und
0 bis 10 Gew.-% eines Farbstoffes der Formel (4)
(19) entspricht Formel (17), wobei M Cu oder Ni ist;

oder

aus 90 bis 99,99 Gew.-% eines Farbstoffes der Formel (12) und
0 bis 10 Gew.-% eines Farbstoffes der Formel (10);

20 oder

aus 90 bis 99,99 Gew.-% eines Farbstoffes der Formel (26),
0 bis 10 Gew.-% eines Farbstoffes der Formel (1) und
0 bis 10 Gew.-% eines Farbstoffes der Formel (8)

25

30

35

40

45

50

55

oder
aus 90 bis 99,99 Gew.-% eines Farbstoffes der Formel (20),
0 bis 10 Gew.-% eines Farbstoffes der Formel (16) und
0 bis 10 Gew.-% eines Farbstoffes der Formel (21)

25 wobei in den genannten Formeln

- D die Bedeutung phenyl-SO₂-CH₂CH₂-Z hat, worin der phenyl-Rest mit 1 oder 2 Methyl-, Methoxy- oder Sulfogruppen substituiert sein kann und Z -OSO₃H, -Cl oder -SSO₃H ist;
- D³ die Bedeutung phenyl-CONH-phenyl-SO₂Y, worin Y -CH₂CH₂-Z oder -CH=CH₂ ist; die Bedeutung von D; oder die Bedeutung naphthyl oder naphthyl-SO₂-CH₂CH₂-Z, worin der naphthyl-Rest jeweils mit bis zu 3 Sulfogruppen substituiert sein kann, hat;
- R¹ die Bedeutung CH₃, COOH oder CONH₂ hat und
- R² die Bedeutung CH₃ oder Phenyl hat;
- R⁴ und R⁴⁰ die Bedeutung H, CH₃ oder OCH₃ haben;
- x eine Zahl von 1 bis 3 ist;
- M Kupfer bedeutet;
- A einen zweiwertigen Rest auf Basis von D¹ bedeutet, worin D¹ D, naphthyl oder naphthyl-SO₂-CH₂CH₂Z, worin der naphthyl-Rest jeweils mit bis zu 3 Sulfogruppen substituiert sein kann, und die beiden freien Valenzen im phenyl- oder naphthyl-Rest sind; und
- R²⁴ die Bedeutung H, SO₃H oder OCH₃ hat.

3. Marineblaue Reaktivfarbstoffmischung aus mindestens zwei Reaktivfarbstoffen, bestehend im wesentlichen aus
- 45 90 bis 99,99 Gew.-% eines Farbstoffes der Formel (24),
0 bis 10 Gew.-% eines Farbstoffes der Formel (1) und
0 bis 10 Gew.-% eines Farbstoffes der Formel (11)

wobei in den Formeln (24), (1) und (11)

- 45
- D die Bedeutung phenyl-SO₂-CH₂CH₂-Z hat, worin der phenyl-Rest mit 1 oder 2 Methyl-,
Methoxy- oder Sulfogruppen substituiert sein kann und Z -OSO₃H, -Cl oder -SSO₃H ist;
- D³ die Bedeutung phenyl-CONH-phenyl-SO₂Y, worin Y -CH₂CH₂-Z oder -CH=CH₂ ist; die
Bedeutung von D; oder die Bedeutung naphthyl oder naphthyl-SO₂-CH₂CH₂-Z, worin der
naphthyl-Rest jeweils mit bis zu 3 Sulfogruppen substituiert sein kann, hat;
- 50
- R¹ die Bedeutung CH₃, COOH oder CONH₂ hat;
- R²⁴ die Bedeutung H, SO₃H oder OCH₃ hat; und
- R¹¹ die Bedeutung

10 oder CO-CH₃ oder CO-Phenyl hat, worin D² phenyl-SO₃H oder D bedeutet.

- 15
4. Rote Reaktivfarbstoffmischung aus mindestens zwei Reaktivfarbstoffen, bestehend im wesentlichen aus
90 bis 99,99 Gew.-% eines Farbstoffes der Formel (11),
0 bis 10 Gew.-% eines Farbstoffes der Formel (12),
0 bis 10 Gew.-% eines Farbstoffes der Formel (2),
0 bis 10 Gew.-% eines Farbstoffes der Formel (13) und
0 bis 10 Gew.-% eines Farbstoffes der Formel (22)

20

25

30

35

40

45

50

55

50

55

oder

aus 90 bis 99,99 Gew.-% eines Farbstoffes der Formel (14)

0 bis 10 Gew.-% eines Farbstoffes der Formel (12) und

35 0 bis 10 Gew.-% eines Farbstoffes der Formel (13)

wobei in den Formeln (11), (12), (2), (13), (22) und (14)

D die Bedeutung $\text{phenyl-SO}_2\text{-CH}_2\text{CH}_2\text{-Z}$ hat, worin der phenyl-Rest mit 1 oder 2 Methyl-, Methoxy- oder Sulfogruppen substituiert sein kann und Z = SO_3H , Cl oder SCN .

D³ die Bedeutung phenyl-CONH-phenyl-SO₂Y, worin Y -CH₂CH₂-Z oder -CH=CH₂ ist; die Bedeutung von D; oder die Bedeutung naphthyl oder naphthyl-SO₂-CH₂CH₂-Z, worin der naphthyl-Rest jeweils mit bis zu 3 Sulfogruppen substituiert sein kann, hat:

- 5 R¹ die Bedeutung CH₃, COOH oder CONH₂ hat und
 R² die Bedeutung CH₃ oder Phenyl hat;
 R¹¹ die Bedeutung

10

15

- A oder CO-CH₃ oder CO-Phenyl hat;
 20 A einen zweiwertigen Rest auf Basis von D¹ bedeutet, worin D¹ D, naphthyl oder naphthyl-SO₂-CH₂CH₂Z, worin der naphthyl-Rest jeweils mit bis zu 3 Sulfogruppen substituiert sein kann, und die beiden freien Valenzen im phenyl- oder naphthyl-Rest sind;
 m eine Zahl von 1 bis 3 ist;
 X die Bedeutung Cl oder F hat, und
 25 R⁹ die Bedeutung CH₃ oder NH₂ hat.

5. Schwarze Reaktivfarbstoffmischung aus mindestens zwei Reaktivfarbstoffen, bestehend im wesentlichen aus
 90 bis 99,99 Gew.-% eines Farbstoffes der Formel (25),
 25 0 bis 10 Gew.-% eines Farbstoffes der Formel (9),
 0 bis 10 Gew.-% eines Farbstoffes der Formel (12) und
 0 bis 10 Gew.-% eines Farbstoffes der Formel (16)

30

45

wobei in den Formeln (25), (9), (12) und (16)

- D die Bedeutung phenyl-SO₂-CH₂CH₂-Z hat, worin der phenyl-Rest mit 1 oder 2 Methyl-, Methoxy- oder Sulfogruppen substituiert sein kann und Z -OSO₃H, -Cl oder -SSO₃H ist;
- Y die Bedeutung -CH₂CH₂-Z oder -CH=CH₂ hat;
- R²⁴ die Bedeutung H, SO₃H oder OCH₃ hat;
- R⁹ die Bedeutung CH₃ oder NH₂ hat;
- R² die Bedeutung CH₃ oder Phenyl hat und
- A einen zweiwertigen Rest auf Basis von D¹ bedeutet, worin D¹ D, naphthyl oder naphthyl-SO₂-CH₂CH₂Z, worin der naphthyl-Rest jeweils mit bis zu 3 Sulfogruppen substituiert sein kann, und die beiden freien Valenzen im phenyl- oder naphthyl-Rest sind.

- 40
6. Orange Reaktivfarbstoffmischung aus mindestens zwei Reaktivfarbstoffen, bestehend im wesentlichen aus
- 90 bis 99,99 Gew.-% eines Farbstoffes der Formel (2),
- 45 0 bis 10 Gew.-% eines Farbstoffes der Formel (8),
- 0 bis 10 Gew.-% eines Farbstoffes der Formel (1),
- 0 bis 10 Gew.-% eines Farbstoffes der Formel (9) und
- 0 bis 10 Gew.-% eines Farbstoffes der Formel (10)

50

55

40

45

50

55

wobei in den Formeln (1), (2), (8), (9) und (10)

- 40 D die Bedeutung phenyl-SO₂-CH₂CH₂-Z hat, worin der phenyl-Rest mit 1 oder 2 Methyl-, Methoxy- oder Sulfogruppen substituiert sein kann und Z -OSO₃H, -Cl oder -SSO₃H ist;
 D³ die Bedeutung phenyl-CONH-phenyl-SO₂Y, worin Y -CH₂CH₂-Z oder -CH=CH₂ ist; die Bedeutung von D; oder die Bedeutung naphthyl oder naphthyl-SO₂-CH₂CH₂-Z, worin der naphthyl-Rest jeweils mit bis zu 3 Sulfogruppen substituiert sein kann, hat;
 R¹ die Bedeutung CH₃, COOH oder CONH₂ hat und
 R² die Bedeutung CH₃ oder Phenyl hat und
 R⁹ die Bedeutung CH₃ oder NH₂ hat.

45 7. Violette Reaktivfarbstoffmischung aus mindestens zwei Reaktivfarbstoffen, bestehend im wesentlichen aus
 90 bis 99,99 Gew.-% eines Farbstoffes der Formel (12),
 0 bis 10 Gew.-% eines Farbstoffes der Formel (14) und
 0 bis 10 Gew.-% eines Farbstoffes der Formel (15)

wobei in den Formeln (12), (14) und (15)

D die Bedeutung phenyl-SO₂-CH₂CH₂-Z hat, worin der phenyl-Rest mit 1 oder 2 Methyl-, Methoxy- oder Sulfogruppen substituiert sein kann und Z -OSO₃H, -Cl oder -SSO₃H ist;

R² die Bedeutung CH₃ oder Phenyl hat,

Y die Bedeutung -CH₂CH₂Z oder -CH=CH₂ hat; und

A einen zweiwertigen Rest auf Basis von D¹ bedeutet, worin D¹ D, naphthyl oder naphthyl-SO₂-CH₂CH₂Z, worin der naphthyl-Rest jeweils mit bis zu 3 Sulfogruppen substituiert sein kann, und die beiden freien Valenzen im phenyl- oder naphthyl-Rest sind.

55 8. Braune Reaktivfarbstoffmischung aus mindestens zwei Reaktivfarbstoffen, bestehend im wesentlichen aus

90 bis 99,99 Gew.-% eines Farbstoffes der Formel (23),

0 bis 10 Gew.-% eines Farbstoffes der Formel (9),

0 bis 10 Gew.-% eines Farbstoffes der Formel (15) und
0 bis 10 Gew.-% eines Farbstoffes der Formel (10)

oder

90 bis 99,99 Gew.-% eines Farbstoffes der Formel (27),
 0 bis 10 Gew.-% eines Farbstoffes der Formel (1) und
 0 bis 10 Gew.-% eines Farbstoffes der Formel (14)

5

10

15

20

25

30

35

40

45

50

55

(1)

(14)

worin in den Formeln (1), (9), (10), (14), (15), (23) und (27)

- D die Bedeutung phenyl-SO₂-CH₂CH₂-Z hat, worin der phenyl-Rest mit 1 oder 2 Methyl-, Methoxy- oder Sulfogruppen substituiert sein kann und Z -OSO₃H, -Cl oder -SSO₃H ist;
- 5 D³ die Bedeutung phenyl-CONH-phenyl-SO₂Y, worin Y -CH₂CH₂-Z oder -CH=CH₂ ist; die Bedeutung von D; oder die Bedeutung naphthyl oder naphthyl-SO₂-CH₂CH₂-Z, worin der naphthyl-Rest jeweils mit bis zu 3 Sulfogruppen substituiert sein kann, hat;
- R¹ die Bedeutung CH₃, COOH oder CONH₂ hat und
- R² die Bedeutung CH₃ oder Phenyl hat
- 10 A einen zweiwertigen Rest auf Basis von D¹ bedeutet, worin D¹ D, naphthyl oder naphthyl-SO₂-CH₂CH₂Z, worin der naphthyl-Rest jeweils mit bis zu 3 Sulfogruppen substituiert sein kann, und die beiden freien Valenzen im phenyl- oder naphthyl-Rest sind;
- n eine Zahl von 1 bis 3 ist; und
- R⁹ die Bedeutung CH₃ oder NH₂ hat.
- 15 9. Verwendung einer Reaktivfarbstoffmischung gemäß einem der Ansprüche 1 bis 8 zum Färben und Bedrucken von hydroxy- und/oder carbonamidgruppenhaltigen Fasermaterialien.
10. Verwendung nach Anspruch 9, dadurch gekennzeichnet, daß das Fasermaterial aus Cellulosefasern, vorzugsweise aus Baumwolle, regenerierten Cellulosefasern, Viskosekunstseide, Wolle, Seide oder Polyamid-4 besteht.
- 20 11. Verfahren zum Färben und Bedrucken von hydroxy- und/oder carbonamidgruppenhaltigem Fasermaterialien, dadurch gekennzeichnet, daß man eine Reaktivfarbstoffmischung gemäß einem der Ansprüche 1 bis 8 in gelöster Form auf das Fasermaterial appliziert und die Farbstoffe durch Einwirkung eines alkalisch wirkenden Mittels oder durch Hitze oder durch beide Maßnahmen auf der Faser fixiert.

30

35

40

45

50

55