Algebraic Geometry

邹海海 ID: 17210180015

1 Week 1

Exercise 1.1. Any nonempty open subset of an irreducible topological space is dense and irreducible.

Let X be an irreducible space and $U \hookrightarrow X$ be an nonempty open subset of X. Let $V_1 = X \setminus U$ and $V_2 = \bar{U}$. Then we have

$$V_1 \cup V_2 \supseteq (X \setminus U) \cup U = X$$

Since X is irreducible and V_1, V_2 are closed subsets, we have $V_1 = \emptyset$ or $V_2 = X$. That means $\overline{U} = X$. Hence U is dense open subset of X. We can further prove that X is irreducible if any nonempty open subset of X is dense. Otherwise, X is reducible, then $X = V_1 \cup V_2$ where V_1 and V_2 are non-trivial closed subset of X. Then $(X \setminus V_1) \cap (X \setminus V_2) = \emptyset$. It implies $X \setminus V_1$ is non-empty open subset of X which is not dense. Hence we can conclude that any nonempty open subset of irreducible space X is irreducible because its open subsets are all dense in X, also in itself.

Exercise 1.2. Let Y be an affine variety of dimension r in \mathbb{A}^n . Let H be a hypersurface in \mathbb{A}^n and assume that $Y \subsetneq H$. Then every irreducible component of $Y \cap H$ has dimension r-1.

Suppose H be irreducible. It means ideal of H is prime ideal (f) of $k[x_1, \dots, x_n]$. Let $Y \cap H = V_1 \cup \dots \cup V_k$ be the irreducible components decomposition and ideal of V_i is \mathfrak{p}_i . Hence we have

$$I(V \cap H) = \mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_k$$

Since $Y \subsetneq H$, we have $f \notin I(Y)$. Hence the minimal prime ideals of I(Y) + (f) is with height n - k + 1 by Krull principal ideal theorem, since I(Y) is of height n - r. We claim that p_i is a minimal ideal which contains I(Y) + (f). Otherwise, let \mathfrak{p} be the minimal prime ideal satisfying $I(Y) + (f) \subseteq \mathfrak{p} \subsetneq \mathfrak{p}_i$. Then $V_i \subsetneq Z(\mathfrak{p})$, a irreducible closed subset of X. It contradicts to the fact that V_i is irreducible component of $V \cap H$. Hence $ht(\mathfrak{p}_i) = n - r + 1$ for all $1 \le i \le k$. It implies

$$\dim V_i = \dim A(V_i) = \dim k[x_1, \cdots, x_n] - ht(\mathfrak{p}_i) = r - 1$$

Exercise 1.3. Let $\alpha \subseteq k[x_1, \dots, x_n]$ be an ideal which can be generated by r elements. Then every irreducible components of $Z(\alpha)$ has dimension $\geq n-r$.

Let $Z(\alpha) = V_1 \cup \cdots \cup V_k$ be the decomposition of irreducible components, where $I(V_i) = \mathfrak{p}_i$ is prime ideal of $k[x_1, \cdots, x_n]$. It implies $\alpha \subseteq \mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_k$. So $\alpha \subseteq \mathfrak{p}_i$ for each i. Hence $ht(\mathfrak{p}_i) \leq r$ by Krull principal ideal theorem. Therefore, the dimension of V_i is greater than n-r.

2 Week2

Exercise 2.1. Prove following statments

• If $T_1 \subseteq T_2$ are subsets of S^h , then $Z(T_1) \supseteq Z(T_2)$.

- If $Y_1 \subseteq Y_2$ are subsets of \mathbb{P}^n , then $I(Y_1) \supseteq I(Y_2)$.
- For any two subsets Y_1, Y_2 of \mathbb{P}^n , $I(Y_1 \cup Y_2) = I(Y_1) \cap I(Y_2)$.
- If $\mathfrak{a} \subseteq S$ is a homogeneous ideal with $Z(\mathfrak{a}) \neq \emptyset$, then $I(Z(\mathfrak{a})) = \sqrt{\mathfrak{a}}$.
- For any subset $Y \subset \mathbb{P}^n$, $Z(I(Y)) = \bar{Y}$.

Z(I(Y)). We now conclude that $Z(I(Y)) = \overline{Y}$.

Let $x \in Z(T_2)$, we have f(x) = 0 for all $f \in Y_2$. Since all $g \in T_1$ are all in Y_2 , we have g(x) = 0. Hence $g \in Z(T_1)$. If $g \in I(Y_2)$, then g vanishs on all Y_2 , so on all Y_1 . Hence $g \in I(Y_1)$. This also implies that both $I(Y_1)$ and $I(Y_2)$ contain $I(Y_1 \cup Y_2)$ since $Y_i \subseteq Y_1 \cup Y_2$. Conversely, if $f \in I(Y_1) \cap I(Y_2)$, then f vanishes on both Y_1 and Y_2 , so $f \in I(V_1 \cup V_2)$ by definition.

If $f \in \sqrt{\mathfrak{a}}$, then there exists $n \geq 1$ such that $f^k \in \mathfrak{a}$. It implies every homogeneous part vanishes on $Z(\mathfrak{a})$. Let $f = f_1 + \dots + f_n$ be the homogeneous decomposition of f. Then the homogeneous part of f^k with degree nk is f_n^k , so $f_n^k(P) = 0$ for all $P \in Z(\mathfrak{a})$. Therefore, $f_n(P) = 0$. By induction, we can conclude that $f_i(P) = 0$ for all i. Hence $f \in I(Z(\mathfrak{a}))$. Conversely, if $f \in I(Z(\mathfrak{a}))$. By homogeneous Nullstellensatz, we have $f_i^{r_i} \in \mathfrak{a}$. Let $f = f_1 + \dots + f_n$, then $f^r \in \mathfrak{a}$. Hence $f \in I(Z(\mathfrak{a})) = f_n$. Since $f \in I(Z(\mathfrak{a})) = f_n$ is homogeneous ideal $f \in I(Z(\mathfrak{a}))$ and $f \in I(Z(\mathfrak{a}))$ is closed, we have $f \in I(Z(\mathfrak{a})) = f_n$. Hence $f \in I(Z(\mathfrak{a})) = f_n$ such that $f \in I(Z(\mathfrak{a})) = I(Z(\mathfrak{a}))$

Exercise 2.2. a) There is a 1-1 inclusion-reversing correspondence between algebraic sets in \mathbb{P}^n , and homogeneous radical ideals of S not equal to S_+ does not occur in this correspondence, it is sometimes called the irrelevant maximal of S.

- b) An algebraic set $Y \subseteq \mathbb{P}^n$ is irreducible if and only if I(Y) is a prime ideal.
- c) Show that \mathbb{P}^n itself is irreducible.
- a) If \mathfrak{a} is radical homogeneous ideal of S such that $Z(\mathfrak{a}) \neq 0$, then $I(Z(\mathfrak{a})) = \sqrt{\mathfrak{a}} = \mathfrak{a}$. If $Z(\mathfrak{a}) = 0$, then $I(Z(\mathfrak{a})) = I(\emptyset) = S$. $Z(\mathfrak{a}) = 0$ implies $\mathfrak{a} = S$ or S_+ . By assumption, S_+ is not in the correspondence, so $\mathfrak{a} = S$. Hence $I \circ Z$ is identity functor. Similarly, $Z \circ I$ is also identity. With previous exercise, this correspondence is inclusion-reversing.
- b) If Y is irreducible, then for all $x, y \in I(Y)$, we can let $Y_1 = Z(x) \cap Y$ and $Y_2 = Z(y) \cap Y$. Since $Y_1 \cup Y_2 = (Z(x) \cap Y) \cup (Z(y) \cap Y) = Z(xy) \cap Y = Y$, $Y_1 = Y$ or $Y_2 = Y$ by irreducible condition. It implies that Z(x) = Y or Z(y) = Y. So $x \in I(Y)$ or $y \in I(Y)$. Conversely, suppose I(Y) is prime. However, for any closed cover $Y_1 \cup Y_2 = Y$, we have $I(Y) = I(Y_1) \cap I(Y_2)$, therefore $I(Y_1) = I(Y)$ or $I(Y_2) = I(Y)$. Hence $Y_1 = Y$ or $Y_2 = Y$ since they are closed.
- c) \mathbb{P}^n is algebraic set corresponding to radical homogeneous ideal (0). It is prime ideal since $k[x_0, x_1 \cdots x_n]$ is integral domain. So \mathbb{P}^n is irreducible from previous statement.

Exercise 2.3. If Y is a projective variety with homogeneous coordinate ring S(Y), show that $\dim S(Y) = \dim Y + 1$.

Y is projective variety, so let $Y = Z(\mathfrak{p}) \subseteq \mathbb{P}^n$ for some prime homogeneous ideal \mathfrak{p} . Hence any descending chain of closed subset of Y corresponds to a descending chain of radical homogeneous ideal containing \mathfrak{p} with the same length. However, S_+ is prime homogeneous ideal of S which contains any non-zero ideal of S but doesn't correspond to a algebraic set. Hence the dim $S(Y) > \dim Y$. Since radical ideals contains \mathfrak{p} except S_+ also correspond to closed subsets of Y, dim $Y \ge \dim S(Y) - 1$. Hence dim $S(Y) = \dim Y + 1$.

Week 33

Exercise 3.1. A regular function on projective variety is continuous map (view k as affine line \mathbb{A}^1).

Let $Y \subseteq P^n$ be a projective variety, then Y can be covered by affine varieties $U_i = Y \cap A_i^n$, where A_i^n are canonical affine coverings of \mathbb{P}^n . If $f:Y\to k$ be a regular function, then its restrictions $f_{U_i}: U_i \to k$ are continuous maps, and since U_i are all open in Y, f itself is continuous on Y.

Exercise 3.2. Let $\varphi: \mathbb{A}^1 \to C \hookrightarrow \mathbb{A}^2$ be curve defined as $t \mapsto (t^2, t^3)$. Obviously, φ is 1-1correspondence. Prove φ is not isomorphism between varieties.

Suppose the coordinate ring of \mathbb{A}^2_k be k[x,y]. Then we have coordinate ring $A(C) \cong k[x,y]/(y^2$ x^3). From definition of φ , we can write down its pull-back on coordinate rings

$$\varphi^* \colon A(C) \to k[t]$$
$$f \mapsto f \circ \varphi$$

If φ is isomorphism, then φ^* is isomorphism between coordinate ring. Therefore it is also bijection between regular functions. Since t is regular function on \mathbb{A}^1_k , it must have preimage f such that $\varphi^*(f) = t$. This means that $f(t^2, t^3) = t$. f is regular on C, so it is also regular at point (0,0). Nearby (0,0), f can be written as

$$\frac{\alpha(x,y)}{\beta(x,y)}$$

where α, β are polynomials in k[x, y] and $\beta(0, 0) \neq 0, \frac{\alpha(t^2, t^3)}{\beta(t^2, t^3)} = t$. It is impossible since $\alpha(t^2, t^3) = t$ $t\beta(t^2,t^3)$ cannot have term of degree 1. Hence we can conclude φ can not be an isomorphism otherwise it will induce isomorphism between coordinate ring.

Exercise 3.3. Let $S = Z(y_0y_2 - y_1^2)$ be the surface in \mathbb{P}^2_k with the coordinates $(y_0: y_1: y_2)$. Let \mathbb{P}^1_k be projective line with coordinate ring $k[x_0, x_1]$. Consider morphism

$$\varphi: \mathbb{P}_k^1 \to S \subset \mathbb{P}_k^2$$
$$(x_0: x_1) \mapsto (x_0^2: x_0 x_1: x_1^2)$$

and show that φ is isomorphism.

It is well-defined regular morphism since $(x_0^2)(x_1^2) - (x_0x_1)^2 = 0$ and with polynomial in each component. We can see that φ is bijection and φ^{-1} is defined as

$$\varphi^{-1}$$
: $(y_0: y_1: y_2) = \begin{cases} (y_0: y_1) & \text{if } y_0 \neq 0\\ (y_1: y_2) & \text{if } y_2 \neq 0 \end{cases}$

It is well-defined since we have $(y_0:y_1)=(\frac{y_0}{y_1}:1)=(\frac{y_1}{y_2}:1)=(y_1:y_2)$ when neither y_0 or y_2 are equal to 0. Moreover, it is regular map because it is regular on open subsets $S\cap\{y_0\neq 0\}$ and $S \cap \{y_2 \neq 0\}$. With the fact that $\varphi \circ \varphi^{-1} = id_S$, $\varphi^{-1} \circ \varphi = id_{\mathbb{P}^1_k}$, we can conclude that φ is isomorphism.

4 Week 4

Exercise 4.1. Let Y be an affine variety in \mathbb{A}_k^n . Show that $K(Y) \cong K(\mathcal{O}_{Y,p})$ for all $p \in Y$.

Since Y is affine variety, we have $\mathcal{O}_{Y,p} \cong A(Y)_{m_p}$ for all point $p \in Y$. Therefore, $K(\mathcal{O}_{Y,p})$ is fraction field of local ring $A(Y)_{m_p}$. Moreover, K(Y) is fraction field of coordinate ring A(Y). Hence we have following commutative localization diagram

$$A(Y) \xrightarrow{l_{m_p}} A(Y)_{m_p}$$

$$\downarrow l \qquad \qquad \downarrow l'$$

$$K(A(Y)) \qquad K(A(Y)_{m_p})$$

 l_{m_p} maps non-zero divisor of A(Y) to non-zero divisor, so $l' \circ l_{m_p}$ maps non-zero divisors to units. Therefore, with universal property of localization, there is unique homomorphism $g: K(A(Y)) \to K(A(Y)_{m_p})$ making this diagram commute. Also, with universal property of l_{m_p} , there is unique morphism h making following diagram commute

$$A(Y) \xrightarrow{l_{m_p}} A(Y)_{m_p}$$

$$\downarrow l \qquad \qquad h$$

$$K(A(Y))$$

Now we get a new localization diagram

$$A(Y)_{m_p}$$

$$\downarrow^{l'}$$

$$K(A(Y)) \leftarrow_{\exists \bar{l}} - K(A(Y)_{m_p})$$

Hence we can conclude that $K(A(Y)) \cong K(A(Y)_{m_p})$, which implies that $K(Y) \cong K(\mathcal{O}_{Y,p})$ for all $p \in Y$.

Exercise 4.2. Prove that for any integer $0 \le i \le n$

$$K(\mathbb{P}^n_k) \cong k(x_0/x_i, \cdots, \widehat{x_i/x_i}, \cdots, x_n/x_i)$$

For any variety Y, if U is open subvariety of Y, then by definition $K(Y) \cong K(U)$. More precisely, we can send $\langle f, V \rangle$ to $\langle f, V \cap U \rangle$ and it is an well-defined isomorphism between function fields. Therefore, for any $0 \leq i \leq n$, we have $K(A_i) \cong K(\mathbb{P}^n_k)$, where A_i is affine cover which is isomorphic to \mathbb{A}^n_k with coordinate ring $k[x_0/x_i, \cdots, \widehat{x_i/x_i}, \cdots, x_n/x_i]$. With the conclusion in last exercise, we can conclude that

$$K(\mathbb{P}^n_k) \cong K(A_i) \cong k(x_0/x_i, \cdots, \widehat{x_i/x_i}, \cdots, x_n/x_i)$$

Exercise 4.3. Equation $x_0^2 + x_1^2 + x_2^2 = 0$ defines a conic $X \hookrightarrow \mathbb{P}^2_k$. Find $t \in K(X)$ such that $K(X) \cong k(t)$ is a transcendental extension of k with degree 1.

K(X) is equal to function field of affine open subset defined by

$$\left(\frac{x_1}{x_0}\right)^2 + \left(\frac{x_2}{x_0}\right)^2 = -1\tag{1}$$

Consider linear transform

$$y_1 = \frac{x_1}{x_0} + i\frac{x_2}{x_0} \qquad \qquad y_2 = \frac{x_1}{x_0} - i\frac{x_2}{x_0} \tag{2}$$

Then the equation 4 becomes

$$y_1 y_2 = -1 \tag{3}$$

Hence $K(X) = k(y_1, y_2) = k(y_1)$ since $y_2 = -1/y_1$. Therefore y_1 is the required t.

5 Week5

Exercise 5.1. Suppose $S = Z(xy - zw) \subset \mathbb{P}^3_k = \operatorname{Proj} k[x, y, z, w]$. Let $H \subset \mathbb{P}^3_k$ the hyperplane in \mathbb{P}^3_k defined by x = 0. It is isomorphic to \mathbb{P}^2_k .

$$\varphi \colon S \dashrightarrow H$$
$$(x:y:z:w) \mapsto (0:y:z-x:w)$$

Prove that φ is birational map.

Proof. Actually, we define its rational inverse as

$$\varphi^{-1} \colon H \dashrightarrow S$$

$$(0: s_1: s_2: s_3) \mapsto (\frac{s_2 s_3}{s_1 - s_3}: s_1: \frac{s_1 s_2}{s_1 - s_3}: s_3)$$

It is defined on H on the open subset $\{s_1 \neq s_3\} \cap H$ and $\varphi^{-1}(H) \cap (S \cap A_i) \neq \emptyset$ for all canonical affine covers A_i of \mathbb{P}^3_k . It means φ^{-1} is well-defined dominant rational map on H. Furthermore, its compositions with φ are all identities as rational maps since

$$\varphi((\frac{s_2s_3}{s_1-s_3}:s_1:\frac{s_1s_2}{s_1-s_3}:s_3))=(0:s_1:\frac{s_2(s_1-s_3)}{s_1-s_3}:s_3)=(0:s_1:s_2:s_3)$$

and

$$\varphi^{-1}((0:y:z-x:w)) = (\frac{(z-x)w}{y-w}:y:\frac{y(z-x)}{y-w}:w)$$
$$= (\frac{xy-xw}{y-w}:y:\frac{yz-zw}{y-w}:w)$$
$$= (x:y:z:w)$$

Exercise 5.2. If $Y, Z \subset \mathbb{A}^2_k$ are two distinct curves given by equations f = 0, g = 0, and if $p \in Y \cap Z$, we define the intersection multiplicity $(Y \cdot Z)_p$ at point p to be the length of the \mathcal{O}_p -module $\mathcal{O}_p/(f,g)$. Show that

- $(Y \cdot Z)_p$ is finite and $(Y \cdot Z)_p \ge \mu_p(Y)\mu_p(Z)$
- If $p \in Y$ show that for almost all lines l through p, we have $(l \cdot Y)_p = \mu_p(Y)$.
- If Y is a curve of degree d in \mathbb{P}^2_k , and if l is a line in \mathbb{P}^2_k , $l \neq Y$, show that $(l \cdot Y) = d$. Here we define $(l \cdot Y) = \sum_p (l \cdot Y)_p$ taken over all points $p \in l \cap Y$, where $(l \cdot Y)_p$ is defined using a suitable affine cover of \mathbb{P}^2_k .
- Proof. To show $(Y \cdot Z)_p$ is finite, we just need to prove \mathcal{O}_p -module $\mathcal{O}_p/(f,g)$ is of finite length. This is equivalent to prove that $\mathcal{O}_p/(f,g)$ is both Artinian and Noetherian module. Since \mathcal{O} is localization of Noether ring k[x,y], it is also Noether. The natural morphism $\mathcal{O}_p \twoheadrightarrow \mathcal{O}_p/(f,g)$ implies that $\mathcal{O}_p/(f,g)$ is finitely generated \mathcal{O}_p -module, so it is Noetherian module. Furthermore, $\mathcal{O}_p/(f,g)$ is of Krull dimension 0, because of dim $\mathcal{O}_p=2$ together with Krull's principal ideal theorem. Therefore $\mathcal{O}_p/(f,g)$ is Artinian ring since $\mathcal{O}_p/(f,g)$ is Noether ring and it is also Artinian module as \mathcal{O}_p -module. Suppose Y and Z intersect at (0,0).

• Make a linear change of the coordinates so that p = (0,0). Then $\mathcal{O}_p = k[x,y]_{(x,y)} \cong k[x,y]$. Therefore, any line through p can be defined by equation ax + by = 0. If $b \neq 0$, then $y = -\frac{a}{b}x$. In this case, $\mathcal{O}_p/(f,ax+by) \cong k[x]/(f(x,-a/bx))$. Let $\mu_p(Y) = r$ and f is of degree d, then f can be written in the form

$$f(x, -\frac{a}{b}x) = c_0x^r + c_1x^{r+1} + \dots + c_{d-r}x^d = c_0x^r(1 + \dots + c_{d-r}x^{d-r})$$

 $1 + \cdots c_{d-r}x^{d-r}$ can be viewed as polynomial of $\frac{a}{b}$ with coefficients in k[x], so there are only finite a such that $1 + \cdots c_{r-d}x^{r-d} = 0$. Hence $\mathcal{O}_p/(f, ax + by) \cong k[x]/(c_0x^r)$ since c_0x^r and $1 + \cdots c_{d-r}x^{d-r}$ are coprime except finite number of a. Therefore, length of $\mathcal{O}_p/(f, ax + by) = r$. If b = 0, it determines only line in \mathbb{A}^2_k . Hence we reach the conclusion.

• Y is curve in \mathbb{P}^2_k , so Y is determined by homogeneous polynomial f. Let $A_i = \{x_i \neq 0\} \cap \mathbb{P}^2$ be the three affine covers of \mathbb{P}^2_k . Under linear transformation, we can make l through (0:0:1), hence equation of l can be written as

$$ax + by = 0$$

In this case l can be covered by $A_1 \cup A_3$ if $b \neq 0$. Then

$$(l \cdot Y) = \sum_{p \in A_1 \cap l \cap Y} (l \cdot Y)_p + (l \cdot Y)_{(0:0:1)}$$
(4)

Suppose Y is determined by homogeneous polynomial f. On A_1 , the $Y \cap l$ is determined by

$$f(1, -\frac{b}{a}, z/x) = 0$$

Let $F(t) = f(1, -\frac{1}{b}, t)$ is of degree r. Then the first term of right part of 4 is equal to r. With last exercise, we know $(l \cdot Y)_{(0:0:1)} = \mu_{(0:0:1)}(Y) = d - r$. Hence, we can conclude that $(l \cdot Y) = d$

6 Week6

Exercise 6.1. Let Y be the curve $y^2 = x^3 - x$ in \mathbb{A}^2_k , and assume that the characteristic of the base field k is not 2. We can find that Y is nonsingular and A = A(Y) is integral closed domain. Furthermore, $k[x] \subset K = K(Y)$ is a polynomial subring and A is the integral closure of k[x] in K. There is an automorphism $\sigma: A \to A$ which sends y to -y and leaves x fixed. We define the norm N of A which maps a to $N(a) = a \cdot \sigma(a)$ for any a in A.

Using this norm, show that the units in A are precisely the non-zero elements of k. Show that x and y are irreducible elements of A. Show that A is not a UFD.

Exercise 6.2. We know that if X is a quasi-projective curve and $\varphi \colon X \backslash P \to Y$ where $P \in X$ and Y is a projective variety, there is a unique morphism $\bar{\varphi} \colon X \to Y$ extending φ . But it is not true when $\dim X \geq 2$.

Let $\varphi \colon \mathbb{P}^2_k \dashrightarrow \mathbb{P}^2_k$ be the Cremona transformation which is defined on $\mathbb{P}^2_k - \{(1:0:0), (0:1:0), (0:0:1)\}$ and sends (x:y:z) to (yz:xz:xy), show that φ can not extend to a morphism from \mathbb{P}^2_k to \mathbb{P}^2_k .

Proof. If φ can be extended to a morphism $\tilde{\varphi}$ on \mathbb{P}^2_k . Consider the embedding of projective line $i_1 \colon \mathbb{P}^1_k \hookrightarrow \mathbb{P}^2_k$ by sending (x:y) to (x:y:0). Then points (1:0:0) and (0:1:0) are in $i_1(\mathbb{P}^1_k)$. If $p \in \mathbb{P}^1_k$ is not equal to (1:0) or (0:1), then $\tilde{\varphi} \circ i_1(p) = (0:0:xy) = (0:0:1)$. Hence $\mathbb{P}^1_k - (1:0) - (0:1) \subseteq S = (\tilde{\varphi} \circ i_1)^{-1}((0:0:1))$. It implies

$$\mathbb{P}^1_k = \overline{\mathbb{P}^1_k - (1:0) - (0:1)} \subseteq S \subseteq \mathbb{P}^1_k$$

Therefore, $S = \mathbb{P}^1_k$. This means $\tilde{\varphi}((1:0:0)) = \tilde{\varphi}((0:1:0)) = (0:0:1)$. However, if we take another embedding i_2 of projective line into \mathbb{P}^2_k , sending (x:y) to (x:0:y), then we can get $\tilde{\varphi}((1:0:0)) = \tilde{\varphi}((0:0:1)) = (0:1:0)$. So we cannot define the value of (1:0:0) properly. Hence we can conclude that φ cannot extend to a morphism on \mathbb{P}^2_k .

Exercise 6.3. Think \mathbb{P}^1_k as $\mathbb{A}^1_k \cup \infty$. Then we define a fractional linear transformation of \mathbb{P}^1_k by sending $x \mapsto (ax+b)/(cx+d)$, for $a,b,c,d \in k$ and $ad-bc \neq 0$

- Show that a fractional linear transformation induces an automorphism of \mathbb{P}^1_k (i.e., an isomorphism of \mathbb{P}^1_k with itself). We denote the group of all these fractional linear transformations by $\operatorname{PGL}(1)$.
- Let $\operatorname{Aut}(\mathbb{P}^1_k)$ denote the group of all automorphisms of \mathbb{P}^1_k . Show that $\operatorname{Aut}(k(x))$, the group pf k-automorphisms of the fractional field k(x).
- Now show that every automorphism of k(x) is a fractional linear transformation, and deduce that $\operatorname{PGL}(1) \to \operatorname{Aut}(\mathbb{P}^1_k)$ is an isomorphism.

Proof. • Let $\infty = (1:0) \in \mathbb{P}^1_k$. Then fractional linear transformation $x \mapsto (ax+b)/(bx+d)$ can be written in coordinates as

$$(x:y) \mapsto (ax + by : cx + dy)$$

It is well-defined regular morphism since its each component is polynomial of x, y and $(ax + by : cx + dy) \neq (0:0)$ since $ad - bc \neq 0$. Take the inverse matrix of

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

We get the inverse of the fractional linear transformation

$$(m:n) \mapsto (\frac{dm-bn}{ad-bc} : \frac{-cm+an}{ad-bc})$$

Hence it is automorphism on \mathbb{P}^1_k .

• First, we note that function field $K(\mathbb{P}^1_k) \cong K(\mathbb{A}^1_k) \cong k(x)$. Taking function field of variety is functional, hence automorphism of \mathbb{P}^1_k induces automorphism of k(x) and it is k-linear since it actually induces morphism of k-algebras. Conversely, any k-automorphism φ of k(x) is determined by the image $\varphi(x)$. Let $f = \varphi(x) \in k(x)$, then we define $\varphi \colon \mathbb{P}^1_k \to \mathbb{P}^1_k$ as follows

$$\phi((x:y)) = \begin{cases} (f(x/y):1) & \text{if } y \neq 0\\ (1:f(y/x)) & \text{if } x \neq 0 \end{cases}$$

Or equivalently $\phi(x:y) = (f(x):f(y))$. Since $f \in k(x)$ and φ has inverse, ϕ is well-defined automorphism of \mathbb{P}^1_k . Furthermore, we have $K(\phi) = \varphi$, which is induced isomorphism by \mathbb{P}^1_k -automorphism on its function field. Hence we can conclude that $\operatorname{Aut}(\mathbb{P}^1_k) \cong \operatorname{Aut}(k(x))$.

• Since $f \in k(x)$, it can be written as

$$f(x) = \frac{a_0 + a_1 x + \dots + a_m x^m}{b_0 + b_1 x + \dots + b_n x^n}$$

Let y = f(x). Because φ is isomorphism, f(x) must have form

$$f(x) = \frac{a_0 + a_1 x}{b_0 + b_1 x}$$

Since φ is determined by f(x), there is one-to-one correspondence between PGL(1) and $\operatorname{Aut}(k(x))$ and it is isomorphism of groups.

邹海涛 17210180015

Week 8 7

• Find the degree of the d-uple embedding of \mathbb{P}^n in \mathbb{P}^N where $N = \binom{n+d}{n} - 1$. Exercise 7.1.

• Find the degree of the Serge embedding of $\mathbb{P}^r \times \mathbb{P}^s$ in \mathbb{P}^N where N = r + s + rs.

Proof. The d-uple embedding is defined as

$$\rho_d \colon P = (a_0 : \dots : a_n) \mapsto (M_0(a) : \dots : M_N(a))$$

where M_i are all monomial of degree d with variables a_0, \dots, a_n . Let $S(\mathbb{P}^N) = k[y_0, \dots, y_N]$ and $S(\mathbb{P}^n) = k[x_0, \cdots, x_n].$ ρ_d induce k-algebra homomorphism

$$\varrho_d \colon y_i \mapsto M_i(x_0, \cdots, x_n) = x_0^{i_0} \cdots x_n^{i_n}$$

Suppose kernel of this morphism is \mathfrak{a} . It is homogeneous prime ideal corresponds to image of ρ_d . Hence the coordinate ring of image M of ρ_d is $S(M) = k[y_0, \dots, y_N]/\mathfrak{a} \cong \operatorname{Im} \varrho_d$. It means that

$$S(M) = \bigoplus_{l=0} S(M)_l \cong \bigoplus_{l=0} k[x_0, \cdots, x_n]_{ld}$$

where $S(M)_l \cong k[x_0, \dots, x_n]_{ld}$ is $\binom{ld+n}{n}$ dimensional vector space. Hence the degree M is d^n . Similarly as d-uple embedding, the ideal of image of Segre embedding is kernel of

$$\theta \colon k[z_{00}, \cdots, z_{ij}, \cdots, z_{rs}] \to k[x_0, \cdots, x_r; y_0, \cdots, y_s]$$

$$z_{ij} \mapsto x_i y_j$$

We denote its kernel by \mathfrak{b} , hence $S(X) \cong k[z_{00}, \cdots, z_{ij}, \cdots, z_{rs}]/\mathfrak{b} \cong \operatorname{Im} \theta$. Hence

$$S(X) = \bigoplus_{j=0} S(X)_j \cong \bigoplus_{j=0} k[x_0y_0, \cdots, x_ry_s]_j \cong \bigoplus_{j=0} k[x_0, \cdots, x_r]_j \times k[y_0, \cdots, y_s]_j$$

where $x_i y_j$ is of grade 1. Hence $\dim_k S(X)_j = {j+r \choose i} {j+s \choose i}$.

Exercise 7.2. Show that an algebraic set Y of pure dimension r (i.e., every irreducible component of Y has dimension r) has degree 1 if and only if Y is a linear variety.

Proof. If Y is linear variety of codimension 1 in \mathbb{P}^n , then Y is variety in \mathbb{P}^n determined by single linear equation, so it is just hyperplane in \mathbb{P}^n . Then we assume that all linear varieties of codimension k is of degree 1. For some linear variety Y^{k+1} of codimension k+1, it intersection of a hyperplane H and a linear variety Y^k of codimension k, so with theorem 7.7, we have

$$i(Y^k,H;Y^{k+1})\deg Y^{k+1}=\deg Y^k\deg H=1$$

this means that $i(Y^k, H; Y^{k+1}) = \deg Y^{k+1} = 1$. Hence a linear variety is of degree 1. Conversely, let $Y^1 = Z(I)$ be some algebraic set in \mathbb{P}^n of pure codimension 1 and $n \geq 2$. Assume $Y = \bigcup_i Y_i$ it the decomposition of irreducible components of Y. For each Y_i , we can choose two distinct points P, Qand a hyperplane H in \mathbb{P}^n which contains this two points. The theorem 7.7 implies that the degree of Y_i is greater than 2 if Y_i is not contained in H. So if Y_i is of degree 1, then Y_i is contained in a hyperplane in \mathbb{P}^n . Hence Y_i is just this hyperplane since they are irreducible and of same dimension n-1. So each components of Y^1 is hyperplane in \mathbb{P}^n , hence Y^1 itself is irreducible hyperplane since every two hyperplane intersects with each other. If n=1, then Y is just single point of degree 1 or \mathbb{P}^1 itself, of course it is linear. Now, by induction, we can assume it is true for algebraic set of **ం**శ్రీ∾

pure codimension k with degree 1 that it is linear. For a algebraic set Y^{k+1} in projective space \mathbb{P}^n . Suppose Y_i^{k+1} is one of its irreducible components. We can also choose two distinct points P,Q in Y_i^{k+1} and it also implies Y_i^{k+1} is contained in a hyperplane H. Take an isomorphism $H \cong \mathbb{P}^{n-1}$, then Y_i^{k+1} can be viewed as variety in \mathbb{P}^{n-1} with codimension k of degree 1 (since all mentioned embeddings are closed embeddings). Hence it is linear variety. We have already known that degree of algebraic set is sum the degrees of its irreducible components. Hence Y^{k+1} is irreducible, and furthermore it is linear variety.

Exercise 7.3. Let Y^r be a r-dimensional variety of degree 2. Show that Y is contained in a linear subspace L of dimension r+1 in \mathbb{P}^n . Thus Y is isomorphic to a quadratic hypersurface in \mathbb{P}^{r+1} .

Proof. Choose non-singular point $x \in Y^r$. Then the union of all lines through x and some other points in Y^r is an r+1-dimensional variety of degree 1, denoted by P. Therefore, combine statement of previous exercise, we can conclude that P is linear.

Or we can choose three distinct points in Y^r , then we can find a hyperplane H in \mathbb{P}^n that contains such three points. Since Y^r is of degree 2, then Y^r musted be contained in H. With linear transformation $H \cong \mathbb{P}^{n-1} \hookrightarrow \mathbb{P}^n$. Hence Y^r is variety in \mathbb{P}^{n-1} with degree 2. Repeating this process, we can closed embed Y^r in $\mathbb{P}^{r+1} \hookrightarrow \mathbb{P}^n$ with linear transformation. Therefore Y^r is contained in a r+1-dimensional linear subspace of \mathbb{P}^n . Hence P is linear subspace of \mathbb{P}^n of dimension r+1 which contains Y^r . This implies that Y^r is hypersurface of some $\mathbb{P}^{r+1} \hookrightarrow \mathbb{P}^n$ with degree 2. It is defined by polynomial of degree 2. Therefore we can conclude that it is quadratic in \mathbb{P}^{r+1} .

8 Week 9

Exercise 8.1. Let P = (0,0), $C = (x^2 + y^2)^2 + 3x^2y - y^3$ and $D = (x^2 + y^2)^3 - 4x^2y^2$, directly calculate the intersection number $i(P, C \cap D)$.

Proof. • We need to compute ideal $((x^2 + y^2)^2 + 3x^2y - y^3, (x^2 + y^2)^3 - 4x^2y^2)$ in local ring $k[x,y]_{(x,y)} \cong k[x,y]$. See the attached draft.

• Let $f = (x^2 + y^2)^2 + 3x^2y - y^3$ and $g = (x^2 + y^2)^3 - 4x^2y^2$. Homogenizing them, we get $F = x^4 + 2x^2y^2 + y^4 + 2x^2yz - y^3z$ $G = x^6 + 3x^4y^2 + 3x^2y^4 + y^6 - 4x^2y^2z^2$

After linear transformation $(x:y:z)\mapsto (z:x:y)$, the equation of C and D in \mathbb{P}^2 becomes

$$\begin{split} \tilde{F} &= y^4 + 2y^2z^2 + z^4 + 2y^2zx - y^3x \\ \tilde{G} &= y^6 + 3y^4z^2 + 3y^2z^4 + z^6 - 4y^2z^2x^2 \end{split}$$

Consider them as polynomial in k[x,y][z]. Compute their resultant with Mathematica

$$\operatorname{Res}(\tilde{F}, \tilde{G}, z) = 256x^{10}y^{14} - 768x^{9}y^{15} + 224x^{8}y^{16} + 432x^{7}y^{17} + 125x^{6}y^{18}$$

Hence $i(p, C \cap D)$ is degree of y in this resultant, it is equal to 14.

Exercise 8.2. Suppose char $k \neq 2$ and let X be a nonsingular projective curve of genus1, then for any effective divisor D on X we have $l(D) = \deg D$ and thus for $P \in X$ a point we have l(P) = 1. There is no element in K(X) has one pole exactly at P. Hence, $L(2P) = (1, x) \subseteq K(X)$, the bracket here is linear span with given base, where P is two order point of $x \in K(X)$ and $L(3P) = (1, x, y) \subseteq K(X)$ where P is three order pole of y.

• Show $L(4P) = (1, x, y, x^2)$ and $L(5P) = (1, x, y, x^2, xy)$.

Proof. For two degree terms x^2, xy, y^2 , we have

$$\operatorname{ord}_{p}(x^{2}) = 4 \quad \operatorname{ord}_{p}(xy) = 2 + 3 = 5 \quad \operatorname{ord}_{p}(y^{2}) = 2 \times 3 = 6$$

Hence $x^2 \in L(4P)$ and others are not. It also implies $L(5P) = (1, x, y, x^2, xy)$.

• Derive the Weierstrass equation for genus 1 curves.

Proof. For three degree terms x^3, x^2y, xy^2, y^3 , we have

$$\operatorname{ord}_{P}(x^{3}) = 6 \quad \operatorname{ord}_{P}(x^{2}y) = 7 \quad \operatorname{ord}_{P}(xy^{2}) = 8 \quad \operatorname{ord}_{P}(y^{3}) = 9$$

hence we have $(1, x, y, x^2, y^2, xy, x^3) \subseteq L(6P)$. While Riemann-Roch tells us $L(6P) \le 6$, these generators are linear dependent. Therefore we have

$$y^2 + b_0 xy + b_1 y = a_3 x^3 + a_2 x^2 + a_1 x + a_0$$

with suitable linear transformation we can assume

$$y^2 = x^3 + ax + b$$

This is Weierstrass equation for genus 1 curve. Since we have assume that X is non-singular,

$$x^3 + ax + b = 0$$

should has three distinct roots. Otherwise, if $x^3 + ax + b = (x - \alpha)^2(x - \beta)$, then the Jacobian of $y^2 - x^2 - ax - b$ at point $(\alpha, 0)$ vanishes. Therefore let

$$y^2 = \prod_{i=1}^{3} (x - \tau_i)$$

hence with embedding $(x,y)\mapsto (1:x:y),\,X$ is birational to a cubic curve in \mathbb{P}^2 defined by

$$zy^2 = x^3 + axz^2 + bz^3$$

