Explaining probabilistic predictions on the simplex with Shapley compositions

Paul-Gauthier Noé ¹, Miquel Perelló-Nieto ², Peter Flach ², Jean-François Bonastre ¹

¹Avignon Université

 $^2\mbox{University of Bristol}$

LIA seminar, Avignon Université January 18, 2024

Local explanation in machine learning:

Given one instance \mathbf{x} with d features, what is the contribution/effect of a feature's value on the prediction?

 \neq Global explanation

Examples of local explanation methods:

- Local Interpretable Model-Agnostic Explanations (LIME)¹,
- Shapley values² (SHAP toolkit³)

3/23

¹Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "" Why should i trust you?" Explaining the predictions of any classifier". In: *Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining.* 2016, pp. 1135–1144.

²Erik Štrumbelj and Igor Kononenko. "Explaining prediction models and individual predictions with feature contributions". In: *Knowledge and information systems* 41 (2014), pp. 647–665.

³Scott M Lundberg and Su-In Lee. "A Unified Approach to Interpreting Model Predictions". In: *Advances in Neural Information Processing Systems 30.* Ed. by I. Guyon et al. Curran Associates, Inc., 2017, pp. 4765–4774.

Shapley values in cooperatibe game theory⁴

- Distributes the total payoff among the players.
- The unique quantity respecting a set of desired axiomatic properties:
 - Linearity:

$$\phi_{\alpha\nu+(1-\alpha)w}(i) = \alpha\phi_{\nu}(i) + (1-\alpha)\phi_{w}(i), \tag{1}$$

for a player i and two games v and w, and for $\alpha \in [0,1]$

Efficiency,

$$\sum_{i\in\mathcal{C}}\phi_{\nu}(i)=\nu(\mathcal{C}),\tag{2}$$

4/23

(the sum of the value is equal to the total payoff)

Symmetry

⁴Lloyd S Shapley et al. "A value for n-person games". In: (1953), pp 307 = 317.3 +

Paul-Gauthier Noé Shapley compositions LIA seminar

Shapley values in machine learning

Shapley values in machine learning

 Features are treated as players, and the scalar output of the model as the payoff,

5/23

Shapley values in machine learning

 Features are treated as players, and the scalar output of the model as the payoff,

ullet Binary classifier, regressor with one-dimensional output \checkmark

Shapley values in machine learning

 Features are treated as players, and the scalar output of the model as the payoff,

- Binary classifier, regressor with one-dimensional output
- Multiclass classifier X
 ex: The output of a softmax layer lives on a multidimensional simplex!

Some explain the output one-by-one,

Some explain the output one-by-one,

But a probability distribution lives on a simplex,

The relative information matter!!

◆ロト ◆個ト ◆差ト ◆差ト 差 めるぐ

We will explain the probablities all together using the *Aitchison geometry of the simplex*⁵.

7/23

⁵John Aitchison. "The Statistical Analysis of Compositional Data". In: Journal of the Royal Statistical Society. Series B (Methodological) 44.2 (1982), pp. 139–177, Vera Pawlowsky-Glahn, Juan José Egozcue, and Raimon Tolosana-Delgado. Modeling and Analysis of Compositional Data. John Wiley & Sons, 2015.

Outline

- Introduction
- The Shapley values in machine learning
- Compositional data analysis
- Shapley composition on the simplex
- 5 Explaining a prediction with Shapley compositions
- 6 Discussion and conclusion

We want to explain a prediction $f(\mathbf{x})$ on the instance $\mathbf{x} \in \mathcal{X} \subset \mathbb{R}^d$, where $f \colon \mathcal{X} \to \mathbb{R}$ is the learned model.

We want to explain a prediction $f(\mathbf{x})$ on the instance $\mathbf{x} \in \mathcal{X} \subset \mathbb{R}^d$, where $f \colon \mathcal{X} \to \mathbb{R}$ is the learned model.

Some notation. Let:

ullet Pr be the probability distribution over ${\mathcal X}$ of the data.

We want to explain a prediction $f(\mathbf{x})$ on the instance $\mathbf{x} \in \mathcal{X} \subset \mathbb{R}^d$, where $f \colon \mathcal{X} \to \mathbb{R}$ is the learned model.

Some notation. Let:

- ullet Pr be the probability distribution over ${\mathcal X}$ of the data.
- $S \subseteq \mathcal{I} = \{1, 2, \dots d\}$ be a subset of indices,

We want to explain a prediction $f(\mathbf{x})$ on the instance $\mathbf{x} \in \mathcal{X} \subset \mathbb{R}^d$, where $f \colon \mathcal{X} \to \mathbb{R}$ is the learned model.

Some notation. Let:

- ullet Pr be the probability distribution over ${\mathcal X}$ of the data.
- $S \subseteq \mathcal{I} = \{1, 2, \dots d\}$ be a subset of indices,
- x_S refers to an instance x restricted to the features indicated by the indices in S.

The value function:

$$v_{f,\mathbf{x},\Pr}: 2^{\mathcal{I}} \to \mathbb{R},$$

 $S \mapsto \mathbb{E}_{\Pr}[f(\mathbf{x}) \mid \mathbf{x}_S],$ (3)

where $\mathbb{E}_{Pr}[f(\mathbf{x}) \mid \mathbf{x}_S] = \int_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) \Pr(\mathbf{x} \mid \mathbf{x}_S) d\mathbf{x}$.

When an instance \mathbf{x} is observed, the expected value of the prediction is simply $\mathbb{E}[f(\mathbf{x}) \mid \mathbf{x}] = f(\mathbf{x})$. However, when only \mathbf{x}_S is given with $S \neq \mathcal{I}$, there is uncertainty about the non-observed features and we therefore compute the expected prediction given \mathbf{x}_S .

< ロ ト 4 個 ト 4 重 ト 4 重 ト ■ 9 へ ()

10 / 23

Paul-Gauthier Noé Shapley compositions LIA seminar

The **contribution** of the feature indexed by $i \notin S$ in the prediction f(x) given the known features indexed by S is given by:

$$c_{f,\mathbf{x},\Pr}(i,\mathbf{X}_S) = v_{f,\mathbf{x},\Pr}(\mathbf{X}_{S\cup\{i\}}) - v_{f,\mathbf{x},\Pr}(\mathbf{X}_S), \tag{4}$$

This measures the contribution of the ith features with a particular coalition of features indexed by S.

<□ > <□ > <□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

11/23

Paul-Gauthier Noé Shapley compositions LIA seminar

The whole contribution of the *i*th feature is computed by averaging this quantity over all possible coalitions of features as follows:

$$\phi_{f,\mathbf{x},\Pr}(i) = \frac{1}{d!} \sum_{\pi} c_{f,\mathbf{x},\Pr}(i, \pi_{\mathbf{X}}^{< i}), \tag{5}$$

where π is a permutation of the set \mathcal{I} of indexes and $\pi_{\mathbf{X}}^{< i}$ is the features of \mathbf{X} coming before the *i*th feature in the ordering given by π .

Paul-Gauthier Noé Shapley compositions LIA seminar 12 / 23

The whole contribution of the *i*th feature is computed by averaging this quantity over all possible coalitions of features as follows:

$$\phi_{f,\mathbf{x},\Pr}(i) = \frac{1}{d!} \sum_{\pi} c_{f,\mathbf{x},\Pr}(i, \pi_{\mathbf{X}}^{\leq i}), \tag{5}$$

where π is a permutation of the set \mathcal{I} of indexes and $\pi_{\mathbf{X}}^{< i}$ is the features of \mathbf{X} coming before the *i*th feature in the ordering given by π .

This quantity is known as the **Shapley value** for the *i*th feature.

Paul-Gauthier Noé Shapley compositions LIA seminar 12 / 23

It comes from cooperative game theory and is known to be the only quantity respecting a set of desired axiomatic properties⁶.

13 / 23

Paul-Gauthier Noé Shapley compositions LIA seminar

⁶Lloyd S Shapley et al. "A value for n-person games". In: (1953), pp 307 \pm 3174 \equiv ▶ \equiv \checkmark 940

It comes from cooperative game theory and is known to be the only quantity respecting a set of desired axiomatic properties⁶.

• Linearity with respect to the model $(\alpha, \beta \in \mathbb{R})$: $\phi_{\alpha f + \beta g}(i) = \alpha \phi_f(i) + \beta \phi_g(i)$,

Paul-Gauthier Noé Shapley compositions LIA seminar

13 / 23

It comes from cooperative game theory and is known to be the only quantity respecting a set of desired axiomatic properties⁶.

- Linearity with respect to the model $(\alpha, \beta \in \mathbb{R})$: $\phi_{\alpha f + \beta g}(i) = \alpha \phi_f(i) + \beta \phi_g(i)$,
- The "centered" learned model is additively separable with respect to the Shapley values:

$$f(\mathbf{x}) - \mathbb{E}_{\mathsf{Pr}}[f(\mathbf{X})] = \sum_{i=1}^{d} \phi_f(i), \tag{6}$$

which is known as the efficiency property.

Paul-Gauthier Noé Shapley compositions LIA seminar 13 / 23

It comes from cooperative game theory and is known to be the only quantity respecting a set of desired axiomatic properties⁶.

- Linearity with respect to the model $(\alpha, \beta \in \mathbb{R})$: $\phi_{\alpha f + \beta g}(i) = \alpha \phi_f(i) + \beta \phi_g(i)$,
- The "centered" learned model is additively separable with respect to the Shapley values:

$$f(\mathbf{x}) - \mathbb{E}_{\mathsf{Pr}}[f(\mathbf{X})] = \sum_{i=1}^{d} \phi_f(i), \tag{6}$$

13 / 23

which is known as the efficiency property.

Symmetry

⁶Lloyd S Shapley et al. "A value for n-person games". In: (1953), pp 307 \pm 3174 ≡ → □ Φ Q Q

Paul-Gauthier Noé Shapley compositions LIA seminar

Example of explanation:

Figure: Explanation of the probability for the class Setosa for a flower from the Iris dataset. The classifier is an SVM with radial basis function and pairwise coupling. Image from https://github.com/shap/tree/master.

Note that the Shapley explanation is ran in the *logit* domain!

Some explain the output one-by-one,

But a probability distribution lives on a simplex,

The relative information matter!!

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ト ・ 恵 ・ からぐ

Paul-Gauthier Noé Shapley compositions LIA seminar 15/23

We will explain the probablities all together using the *Aitchison geometry of the simplex*.

16 / 23

Compositional data analysis

Shapley composition on the simplex

Explaining a prediction with Shapley compositions

Discussion and conclusion

References I

- [1] John Aitchison. "The Statistical Analysis of Compositional Data". In: Journal of the Royal Statistical Society. Series B (Methodological) 44.2 (1982), pp. 139–177.
- [2] Scott M Lundberg and Su-In Lee. "A Unified Approach to Interpreting Model Predictions". In: Advances in Neural Information Processing Systems 30. Ed. by I. Guyon et al. Curran Associates, Inc., 2017, pp. 4765–4774.
- [3] Vera Pawlowsky-Glahn, Juan José Egozcue, and Raimon Tolosana-Delgado. *Modeling and Analysis of Compositional Data*. John Wiley & Sons, 2015.
- [4] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "" Why should i trust you?" Explaining the predictions of any classifier". In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 2016, pp. 1135–1144.

References II

- [5] Lloyd S Shapley et al. "A value for n-person games". In: (1953), pp. 307–317.
- [6] Erik Štrumbelj and Igor Kononenko. "Explaining prediction models and individual predictions with feature contributions". In: *Knowledge and information systems* 41 (2014), pp. 647–665.

Thank you!!