Reuters News Topic Classification

Hao Yin

About me

- Data Analyst in Fintech Startup Cmin
- Master in Data Science at WPI
- Bachelor in Finance at JinanUniversity

Goal

Tag the news with various topics with NLP technologies

Getting to know the data -Reuters 21578

1. Dataset Introduction

2. Data Preprocess

3. Data Visualization

Reuters 21578

- **10000** news in 22 sgm data files
- **135** topics
- The Modified Apte Split
 - 9303 training set
 - 3299 testing set
 - Split by 1987/4/7

```
REUTERS TOPICS="YES" <u>LEWISSPLIT</u>="TRAIN" <u>CGISPLIT</u>="TRAINING-SET" NEWID="1">
 <DATE>26-FEB-1987 15:01:01.79
 <TOPICS> <D>cocoa</D> </TOPICS>
 <PLACES> <D>el-salvador</D> <D>usa</D> <D>uruquay</D> </PLACES>
 <PEOPLE></PEOPLE>
 <ORGS></ORGS>
 <EXCHANGES></EXCHANGES>
 <COMPANIES></COMPANIES>
 <UNKNOWN>C T f0704reute u f BC-BAHIA-COCOA-REVIEW 02-26 0105/UNKNOWN>
 <TEXT>
   <TITLE>BAHIA COCOA REVIEW</TITLE>
   <DATELINE>SALVADOR, Feb 26 -</dateLine>
   <BODY>Showers continued throughout the week in the Bahia cocoa zone,
         alleviating the drought since early January and improving prospects for
         after carnival which ends midday on February 27. Reuter</BODY>
 </TEXT>
:/REUTERS>
```

Data Preprocessing

- Parse SGM file
 - Extract topics
 - Extract news title and body
- Build Training and Testing data based on the modified apte split
 - Flatten topics

	id	topics	texts
0	4005	interest	u.s. economic data key to debt futures outlook
1	4005	retail	u.s. economic data key to debt futures outlook
2	4005	ipi	u.s. economic data key to debt futures outlook
3	4012	earn	bank of british columbia 1st qtr jan 31 netope
4	4014	earn	restaurant associates inc <ra> 4th qtr jan 3sh</ra>

Top topics distribution in reuters dataset

Problem Statement

- Multiclass classification
- Challenges include dealing with over 100 classes, imbalanced dataset, topics overlapping

Research

Text Categorization with Support Vector Machines [1]

Approaches	Data Preprocess	Criteria	Best Result
Tf-idf + SVM	 Remove stop words Keep words over 3 occurrences Choose best 500, 1000, 2000, 5000 features ModApte split One-vs-all classification 	Precision / recall	86.4

Reference: [1] Text Categorization with Support Vector Machines

Research

- Previous research only makes classifier on topics with most frequency
- BERT shows capacity in imbalanced dataset, but for over 100 classes?
- A close look at the dataset

Hierarchical Classifier

1. Multilabel Classification

2. Few Shot Learner

Hierarchical Classifier

****Subject Codes (135)

Money/Foreign Exchange (MONEY-FX) Shipping (SHIP) Interest Rates (INTEREST)

**Economic Indicator Codes (16)

Balance of Payments (BOP)
Trade (TRADE)
Consumer Price Index (CPI)
Wholesale Price Index (WPI)
Unemployment (JOBS)
Industrial Production Index (IPI)
Capacity Utilisation (CPU)
Gross National/Domestic Product (GNP)
Money Supply (MONEY-SUPPLY)
Reserves (RESERVES)

Markets Home Deals

U.S. Markets Global Market Data

European Markets Stocks

Asian Markets Bonds

Funds

Commodities

Currencies

First Layer:

Multilabel Classifier

1. Data Preprocessing

2. Model Construction

3. Model Evaluation

Data Preprocess

- Generate mapping for topics and categories
- Add categories columns
- Generate labels
 - 7% of news have over 2 categories.

```
"money-fx": ["money-fx"],
"ship": ["ship"],
"interest": ["interest"],
"acq": ["acq"],
"earn": ["earn"],
"economic_indicator": ["bop", "trade", "cpi", "wpi",...],
"currency": ["dlr", "austdlr", "hk", "singdlr", ...],
"commodity": ["alum", "barley", "carcass", "castor-meal",...],
"energy": ["crude", "heat", "fuel", "gas", "nat-gas",...]}
```

Category Distribution in Training and Testing Dataset

Data Preprocess

texts	topics
u.s. economic data key to debt futures outlook	[interest, retail, ipi]
bank of british columbia 1st qtr jan 31 netope	[earn]
restaurant associates inc <ra> 4th qtr jan 3sh</ra>	[earn]

texts	categories	labels
key to debt futures outlook	[interest, economic_indicator]	[0, 0, 1, 1, 0, 0, 0, 0, 0]
lumbia 1st qtr jan 31 netope	[earn]	[0, 0, 0, 0, 0, 0, 0, 0, 1]
ates inc <ra> 4th qtr jan 3sh</ra>	[earn]	[0, 0, 0, 0, 0, 0, 0, 0, 1]

Model Construction

- **Pretrained DistilBert** -- light, fast
- A drop out layer is added for Regularization
- A **linear layer** are added for Classification

A dog is standing on a hardwood floor.

Multilabel Classification

- Loss function: Binary Cross Entropy
- Optimizer: Adam Optimizer
- Hyperparameter:
 - Max length: 200
 - Learning rate: 1e-05
 - Batch size: 8
 - **EPOCH**: 2

Model Evaluation

Metrics:

- Hamming Score: 0.94
- Hamming Loss: 0.013
- Accuracy Score = 0.91
- F1 Score (Micro) = 0.94
- F1 Score (Macro) = 0.89

```
>>> from sklearn.metrics import hamming_loss
>>> y_pred = [1, 2, 3, 4]
>>> y_true = [2, 2, 3, 4]
>>> hamming_loss(y_true, y_pred)
0.25
```

Second Layer:

Few Shot Learner

1. Few Shot Learner

2. Data Preprocess

3. Model Construction

4. Model Evaluation

Dataset

Main classes (5): money-fx, ship, interest, acq, earn

Train:

The proportion of main classes is 0.58. The proportion of minor classes is 0.42.

Test:

The proportion of main classes is 0.59. The proportion of minor classes is 0.41.

Category Distribution in Training and Testing Dataset

Few Shot Learner

- Classify new data having seen only a few training examples
- Learn to learn

Give him the cards:

Training Set

Query Sample

Few Shot Learner

- Learning a **similarity** function

 Running two identical CNN on two different inputs and then comparing them

Few Shot Learner

Step 1: Learn a similarity function from large-scale training sample

Step 2: Apply the similarity function for prediction

- Compare the query with every sample in the support set
- Find the sample with the highest similarity score

Loss function - triplet loss

Loss function - siamese network

Positive Samples Negative Samples $(\mathbf{z}, \mathbf{z}, \mathbf{0})$ (**%**, **%**, O) $(\mathbf{A}, \mathbf{A}, \mathbf{1})$ $(\mathbf{A}, \mathbf{A}, \mathbf{O})$

Loss function - siamese network

Data Preprocess

- For each category
 - Training set: a pair of data contains anchor, positive and negative
 - Support set: N way 1 shot
 - Test set: all data within the same category

Model Construction

- Siamese Neural Network
- Loss function: Triplet loss
- Optimizer: Adam Optimizer
- Hyperparameter:
 - Max length: 200
 - Learning rate: 1e-05
 - Batch size: 8
 - EPOCH: 2

Model Evaluation

Category	N way one shot (N)	Accuracy
commodity	65	35%
currency	18	43%

Further Study

1. Few shot fine-tuning

2. Top modeling

Figure 1: **Baseline and Baseline++ few-shot classification methods.** Both the baseline and baseline++ method train a feature extractor f_{θ} and classifier $C(.|\mathbf{W}_b)$ with base class data in the training stage In the fine-tuning stage, we fix the network parameters θ in the feature extractor f_{θ} and train a new classifier $C(.|\mathbf{W}_n)$ with the given labeled examples in novel classes. The baseline++ method differs from the baseline model in the use of cosine distances between the input feature and the weight vector for each class that aims to reduce intra-class variations.

A Closer Look at Few-shot Classification

Timeline and github

Time	Implement	Research
12/21/2020 - 12/24/2020	Parse File	Weak Supervision
12/25/2020 - 12/28/2020	TF-IDF Embedding	Few Shot Learner
12/29/2020 - 1/1/2021	Multilabel Classification	Hugging Face
1/2/2021 -1/6/2021	Few Shot Learner	Few Shot Learner
1/7/2021 - 1/11/2020	Refine Model and Presentation	

GitHub: https://github.com/yinhao0424/reuters/blob/master/README.md

Thank You