1. Заряженный мыльный пузырь

Сферический мыльный пузырь радиусом R_0 , наполненный воздухом с плотностью ρ_i при температуре T_i , находится в воздухе с плотностью ρ_a при температуре T_a и атмосферном давлении P_a . Мыльная пленка характеризуется поверхностным натяжением γ , плотностью ρ_s и толщиной t. Поверхностное натяжение и масса мыльной пленки не изменяются с температурой. Считается, что $R_0 >> t$.

Увеличение энергии dE, требуемое для увеличения площади поверхности границы между мыльной пленкой и воздухом на величину dA, дается соотношением $dE/dA = \gamma$, где γ – поверхностное натяжение пленки.

- 2.1. Запишите отношение $\rho_i T_i/\rho_a T_a$ через γ , P_a и R_0 . [1,7 балл]
- 2.2. Найдите численное значение ($\rho_i T_i/\rho_a T_a$) 1, используя значения $\gamma = 0.0250$ H/м, $R_0 = 1.00$ см и $P_a = 1.013 \times 10^5$ H/м².
- 2.3. Воздух внутри пузыря первоначально теплее атмосферного. Найдите значение минимальной температуры T_i , необходимой для того, чтобы пузырь мог парить в воздухе, не падая. Используйте значения $T_a = 300 \text{ K}$, $\rho_s = 1000 \text{ kг/m}^3$, $\rho_a = 1,30 \text{ kг/m}^3$, t = 100 нм и $g = 9,80 \text{ m/c}^2$. [2,0 балла]

Через некоторое время после образования мыльного пузыря установится тепловое равновесие между ним и окружающим воздухом. Поэтому в неподвижном воздухе мыльный пузырь опустится на землю.

- 2.4. Найдите минимальную скорость u поднимающегося вверх воздуха, при которой мыльный пузырь, находящийся в тепловом равновесии с воздухом, не опускается. Выразите ответ через ρ_s , R_0 , g, t и коэффициент вязкости воздуха η . Сила сопротивления определяется законом Стокса: $F = 6\pi \eta R_0 u$. [1,6 балла]
- 2.5. Рассчитайте численно величину u, используя значение $\eta = 1.8 \times 10^{-5}$ кг/(м·с). [0,4 балла]

Проведенные расчеты показывают, что слагаемые, включающие поверхностное натяжение γ , не оказывают существенного влияния на результат. Поэтому во всех последующих пунктах поверхностным натяжением можно пренебречь.

- 2.6. Предположим теперь, что пузырь заряжен равномерно с общим зарядом q. Выведите уравнение для определения радиуса R_1 пузыря после его зарядки через R_0 , P_a , q и электрическую постоянную ε_0 . [2,0 балла]
- 2.7. Предположим, что заряд пузыря q не очень велик $(q^2/(\epsilon_0 R_0^4) << P_a)$, так что зарядка пузыря увеличивает его радиус на малую величину ΔR ($\Delta R = R_1 R_0$). Найдите ΔR .

Известно, что
$$(1 + x)^n$$
 » $1 + nx$ при $x = 1$. [0,7 балла]

2.8. Найдите такой заряд q, выраженный через t, ρ_a , ρ_s , ϵ_0 , R_0 , P_a , при котором пузырь будет неподвижно висеть в воздухе. Вычислите величину этого заряда. Электрическая постоянная $\epsilon_0 = 8,85 \times 10^{-12} \ \Phi/\mathrm{M}$.

ЧЕРЕНКОВСКОЕ ИЗЛУЧЕНИЕ И КОЛЬЦЕВОЙ ЧЕРЕНКОВСКИЙ ДЕТЕКТОР

Свет распространяется в вакууме со скоростью c. Не существует частиц, движущихся со скоростью больше, чем c. Однако в прозрачной среде частица может двигаться со скоростью v, превышающей скорость света в этой среде c/n, где n — показатель преломления среды. Эксперимент (Черенков, 1934) и теория (Тамм и Франк, 1937) показали, что заряженная частица, движущаяся со скоростью v в прозрачной среде с показателем преломления n, удовлетворяющим условию v > c/n, излучает свет, названный *черенковским излучением*, в направлениях, образующих c ее траекторией угол

$$\theta = \arccos \frac{1}{\beta n},\tag{1}$$

где $\beta = v/c$.

1. Чтобы объяснить этот эффект, рассмотрим частицу, движущуюся с постоянной скоростью v>c/n по прямой

линии. Она проходит точку A в момент времени 0 и точку B в момент t_1 . Так как задача симметрична относительно вращения вокруг оси AB, достаточно рассмотреть световые лучи в любой плоскости, содержащей AB.

В любой точке С между A и B частица излучает сферическую световую волну, распространяющуюся со скоростью c/n. Назовем волновым фронтом в заданный момент времени t огибающую всех таких сфер в этот момент.

- 1.1. Определите волновой фронт в момент времени t_1 и начертите линию его сечения плоскостью, содержащей траекторию частицы.
- 1.2. Выразите угол φ между указанной линией и траекторией частицы через n и β .
- 2. Рассмотрим пучок частиц, движущихся вдоль прямой линии IS, пересекающей в точке S выпуклое сферическое зеркало с фокусным расстоянием f и центром C. Скорость пучка v>c/n такова, что угол θ мал. Отрезок SC образует с линией SI малый угол α (смотри рисунок в Листе ответов). Излучение пучка частиц создает кольцевое изображение в фокальной плоскости зеркала. Поясните это явление с помощью рисунка. Определите положение центра кольца O и его радиус r.

Установка, описанная выше, используется в *кольцевых черенковских детекторах* (КЧД), а среда, через которую частицы проходят, называется

излучателем.

Примечание: поскольку углы α и θ малы, во всех пунктах данной задачи соответствующими членами второго и высших порядков малости можно пренебречь.

3. Рассмотрим пучок частиц с известным импульсом $p=10.0~\Gamma$ эВ/c, состоящий из частиц трех типов: протонов, каонов и пионов с массами покоя $M_p=0.94~\Gamma$ эВ/ c^2 , $M_{\kappa}=0.50~\Gamma$ эВ/ c^2 и $M_{\pi}=0.14~\Gamma$ эВ/ c^2 соответственно. Напомним, что величины pc и Mc^2 имеют размерность энергии, 1 эВ — энергия, приобретаемая электроном, ускоренным разностью потенциалов 1 В, 1 ГэВ = 10^9 эВ, 1 МэВ = 10^6 эВ.

Пучок частиц движется в воздухе, находящемся под давлением P, который играет роль излучателя. Показатель преломления воздуха выражается через его давление P, измеренное в атмосферах, с помощью формулы n=1+aP, где $a=2.7\cdot 10^{-4}$ атм $^{-1}$.

- 3.1. Рассчитайте для каждого из трех типов частиц минимальное значение P_{min} атмосферного давления, при котором они начинают давать черенковское излучение.
- 3.2. Рассчитайте давление $P_{1/2}$, при котором радиус кольцевого изображения, порожденного излучением каонов, равен половине радиуса кольцевого изображения, порожденного излучением пионов, а также значения θ_{κ} и θ_{π} для этого случая. Можно ли при таком давлении наблюдать кольцевое изображение, порожденное излучением протонов?
- **4**. Предположим теперь, что пучок не является полностью монохроматическим: импульс частиц распределен в интервале с центром в точке $10~\Gamma$ эВ/c, имеющем полуширину Δp (на половине высоты). Это приводит к уширению кольцевого изображения. Соответствующее уширение распределения по θ характеризуется полушириной $\Delta \theta$ (на половине высоты).
 - 4.1. Вычислить $\Delta\theta_{\kappa}/\Delta p$ и $\Delta\theta_{\pi}/\Delta p$, то есть значение $\Delta\theta/\Delta p$ для пионов и каонов.
- **5**. Черенков впервые открыл эффект, ныне носящий его имя, наблюдая за сосудом с водой, расположенным вблизи радиоактивного источника. Он увидел, что вода в сосуде светилась.

- 5.1. Найдите минимальное значение кинетической энергии T_{min} частицы с массой покоя M, движущейся в воде, при котором появляется черенковское излучение. Показатель преломления воды n=1.33.
- 5.2. Радиоактивный источник, использованный Черенковым, излучал α -частицы (ядра гелия), имеющие массу покоя M_{α} =3.8 ГэВ/ c^2 , и β -частицы (электроны), имеющие массу покоя M_e =0.51 МэВ/ c^2 . Рассчитайте численные значения T_{min} для α и β -частиц.

Зная, что кинетическая энергия частиц, излучаемых радиоактивными источниками, не превышает нескольких МэВ, определите, какие частицы порождали излучение, наблюдавшееся Черенковым.

- **6.** В предыдущих пунктах задачи не учитывалась зависимость черенковского излучения от длины волны λ . Учтем теперь тот факт, что черенковское излучение частицы имеет широкий непрерывный спектр, включающий видимую область (длины волн от 0.4 мкм до 0.8 мкм). Известно также, что при возрастании λ в пределах этой области показатель преломления излучателя линейно уменьшается на 2% от величины (n-1).
- 6.1. Рассмотрим пучок пионов с заданным импульсом $10.0~\Gamma$ эВ/c, движущийся в воздухе, находящемся под давлением 6 атм. Определите разность углов $\delta\theta$, соответствующих краям видимой области.
- 6.2. Качественно исследуйте влияние дисперсии (т.е. зависимости n от λ) на изображение кольца, созданное излучением пучка пионов. Импульсы пионов распределены в интервале с центром в точке p=10 ГэВ/c, имеющем полуширину Δp =0.3 ГэВ/c (на половине высоты).
- 6.2.1. Рассчитайте уширение, обусловленное дисперсией (изменением показателя преломления), а также уширение, вызываемое немонохроматичностью пучка (разбросом импульсов частиц).
- 6.2.2. Опишите, как изменяется цвет кольца при переходе от его внутреннего края к внешнему, отметив соответствующие клеточки в Листе ответов.

TPhO 2009.3

3. Почему звезды такие большие?

Звезды представляют собой сферы, состоящие из раскаленного газа. Большинство из них (обычные звезды) светит, потому что в их центральной части происходят реакции термоядерного синтеза, в результате которых водород превращается в гелий. В этой задаче мы используем понятия классической и квантовой механики, а также электростатики и термодинамики для того, чтобы понять, почему звезды должны быть достаточно большими, чтобы в них могли протекать реакции синтеза на основе водорода, и получим минимально необходимые для этого массу и радиус звезды.

Рис. 1. Наше Солнце, как и большинство звезд, светит в результате протекания в его центральной части реакции термоядерного синтеза, превращающей водород в гелий.

Предположим, что газ, из которого состоит звезда, — это чистый ионизированный водород (равное количество электронов и протонов), который ведет себя как идеальный газ. С классической точки зрения для осуществления реакции синтеза два протона должны приблизиться на расстояние 10^{-15} м, чтобы преодолеть короткодействующее сильное ядерное взаимодействие, обеспечивающее их притяжение.

ПОЛЕЗНЫЕ ПОСТОЯННЫЕ

Постоянная всемирного тяготения - $G = 6.7 \times 10^{-11} \text{ м}^3 \text{ кг}^{-1} \text{ c}^2$

Постоянная Больцмана - $k = 1.4 \times 10^{-23}$ Дж K^{-1}

Постоянная Планка - $h = 6.6 \times 10^{-34}$ кг м² с

Масса протона - $m_p = 1.7 \times 10^{-27}$ кг

Масса электрона - $m_e = 9.1 \times 10^{-31}$ кг

Элементарный заряд - $q = 1.6 \times 10^{-19}$ Кл

Электрическая постоянная (диэлектрическая проницаемость вакуума) - $\varepsilon_0 = 8.9 \times 10^{-12} \, \mathrm{Kn}^2$ H⁻¹ м⁻²

Радиус Солнца - $R_S = 7.0 \times 10^8 \,\mathrm{M}$

Масса Солнца - $M_S = 2.0 \times 10^{30}$ кг

1. Оценка температуры в центре звезд на основе классической физики стало доминировать. Тем не менее, для того, чтобы их сблизить, необходимо сначала преодолеть кулоновское отталкивание. Примем в соответствии с классической механикой, что при лобовом столкновении два протона, которые считаются точечными зарядами, движутся навстречу друг другу по одной прямой со скоростями, равными v_{rms} - среднеквадратичной скорости теплового движения.

2. Почему предыдущая оценка температуры неправильна

Чтобы проверить, насколько разумна полученная выше оценка температуры, необходим независимый способ расчета температуры в центре звезды. Структура звезд очень сложна, но мы можем многое понять, сделав несколько упрощений. Звезды находятся в равновесии, то есть не расширяются и не сжимаются, так как направленная внутрь сила тяжести уравновешивается направленным наружу силой давления. Для слоя газа на расстоянии r от центра звезды условие гидростатического равновесия имеет вид

$$\frac{\Delta P}{\Delta r} = -\frac{GM_r \, \rho_r}{r^2} \,,$$

где P - давление газа, G - постоянная всемирного тяготения, M_r - масса звездного вещества внутри сферы радиуса r, ρ_r - плотность газа в слое на расстоянии r от центра звезды (см. Рис. 2).

Рис. 2. Слой газа в состоянии гидростатического равновесия, когда разность давлений уравновешивает силу гравитации.

Оценка температуры в центре звезды по порядку величины может быть получена на основе следующих приближений.

Разность давлений в центре звезды P_c и на ее поверхности P_a

$$\Delta P \approx P_o - P_c$$

можно оценить как

$$\Delta P \approx -P_c$$
,

поскольку $P_c >> P_o$. В том же приближении

$$\Delta r \approx R$$
,

где R - полный радиус звезды, и

$$M_r \approx M_R = M$$
,

где M - полная масса звезды.

Плотность звездного вещества на расстоянии r от центра звезды можно оценить ее значением в центре,

$$\rho_r \approx \rho_c$$
.

Считайте, что давление соответствует давлению идеального газа.

2a	Запишите выражение для температуры T_c в центре звезды через радиус звезды, ее	0.5
	массу и физические константы.	

Теперь мы можем использовать оценки, выполненные на основе этой модели, для проверки ее справедливости.

2b	Используя выражения, полученные в пункте (2a), запишите отношение M/R для звезды, используя только T_c и физические константы.	0.5
2c	Используйте значение T_c из пункта (1a) и найдите численное значение M/R для звезды.	0.5
2d	Теперь вычислите отношение $M(Sun)/R(Sun)$ для Солнца и убедитесь, что оно значительно меньше величины, полученной в пункте (2c).	0.5

3. Оценка температуры в центре звезды на основе квантовой физики Значительное несоответствие, обнаруженное в пункте (2d), указывает, что классическая оценка для T_c , полученная в пункте (1a), неправильна. Это несоответствие удается устранить, если учесть квантовые эффекты. Они состоят в том, что протоны ведут себя как волны, и отдельный протон локализуется на расстоянии порядка длины волны де Бройля λ_p . Поэтому если расстояние максимального сближения протонов d_c , оказывается близким к λ_p , протоны в квантовом смысле перекрываются и могут сливаться.

3a	Полагая, что условие $d_c = \lambda_p/\sqrt{2}$ обеспечивает возможность синтеза, для протонов со скоростью v_{rms} запишите выражение для T_c , используя только физические постоянные.	1.0
3b	Получите численное значение температуры T_c , найденной в пункте (3a).	0.5
3c	Используя значение T_c , полученное в пункте (3b), и формулу, полученную в пункте (2b), численно определите значение отношения M/R для звезды. Убедитесь, что это значение достаточно близко к определенному для Солнца отношению $M(Sun)/R(Sun)$.	0.5

В самом деле, звезды так называемой главной последовательности (те, в которых происходит синтез на основе водорода) удовлетворяют этому отношению в широком интервале масс.

4. Отношение массы к радиусу для звезд

Соответствие, полученное в предыдущем разделе, означает, что квантовая оценка температуры в центре Солнца правильна.

4a	Используйте полученные результаты чтобы показать, что для любой звезды, в	0.5
	которой происходит синтез на основе водорода, отношение ее массы M к	
	радиусу R - величина постоянная, определяемая лишь физическими	
	константами. Запишите выражение для M/R у звезд, в которых происходит	
1	синтез на основе водорода.	

5. Масса и радиус самых маленьких звезд

Результат, полученный в пункте (4а), предполагает, что если для звезд выполнено найденное соотношение, то они могут иметь любую массу; но это неверно.

Газ внутри обычных звезд, в которых происходит синтез на основе водорода, ведет себя как идеальный. Это означает, что характерное расстояние между электронами d_e в среднем должно быть больше, чем длина волны де Бройля для электронов λ_e . Если электроны находятся ближе друг к другу, они оказываются в так называемом вырожденном состоянии, что приводит к иному поведению звезд. Заметьте, что электроны и протоны внутри звезды рассматриваются по-разному. Для протонов волны де Бройля должны перекрываться, чтобы начался синтез, а для электронов перекрытия не должно быть, чтобы их можно было считать идеальным газом.

Плотность звездного вещества возрастает с уменьшением расстояния до центра звезды. Тем не менее, для оценки по порядку величины считайте, что его плотность постоянна. Можно также воспользоваться тем, что $m_p >> m_e$.

5a	Запишите уравнение для n_e - средней концентрации электронов в звезде.	0.5
5b	Запишите уравнение для d_e - характерного расстояния между электронами внутри звезды.	0.5
5c	Используйте условие $d_e \ge \lambda_e/\sqrt{2}$, чтобы записать выражение для наименьшего возможного радиуса обычной звезды. Считайте, что температура звезды равна температуре в ее центре.	1.5
5d	Найдите численное значение радиуса наименьшей обычной звезды, как выраженное в метрах, так и нормированное на радиус Солнца.	0.5
5e	Найдите численное значение массы наименьшей обычной звезды как в килограммах, так и нормированное на массу Солнца.	0.5

6. Синтез на основе ядер гелия в старых звездах

Когда звезды стареют, они сжигают почти весь водород, превращая его в гелий (Не). Чтобы свечение продолжалось, в них должен осуществляться синтез более тяжелых элементов из гелия. В ядре гелия два протона и два нейтрона, поэтому его заряд равен двум зарядам протона, а масса примерно в 4 раза больше, чем у протона. Мы уже видели, что условие слияния двух протонов имеет вид $d_{\rm c} = \lambda_{\rm p}/\sqrt{2}$.

6a	Записав аналогичное условие для ядер гелия, найдите среднеквадратичную	0.5
	скорость ядер гелия $v_{rms}(He)$ и температуру $T(He)$, необходимую для синтеза на	0.5
	основе гелия.	