Algebra general exam January 11, 2018

Your name:

- Please show all your work and justify any statements that you make.
- State any theorem you use clearly and fully.
- Vague statements and hand-waving arguments will not be appreciated.
- You may assume the statement of an earlier question proven in order to solve a later one.

Sign below the pledge:

"On my honor, I pledge that I have neither given nor received help on this assignment."

- 1. (10 points) Classify, up to isomorphism, all finite groups of order 2p, where p is a prime number.
- 2. (12 points, 6 points each) Consider the ring $R = \mathbb{Z}[\sqrt{-11}] = \{m + n\sqrt{-11} \mid m, n \in \mathbb{Z}\}.$
 - (a) Is R a UFD? Give arguments for your answer.
 - (b) Exhibit an ideal I in R which is not principal. Show that your I is not principal.
- 3. (15 points, 5 points each) Decide in each of the following three cases whether the given polynomial is irreducible. Include arguments.
 - (a) $x^2 2i$ in $\mathbb{Z}[i][x]$;
 - (b) $x^3 49x^2 + (3 + \sqrt{2})x + 7$ in $\mathbb{Z}[\sqrt{2}][x]$; (c) $x^2 + xy + y^2$ in $\mathbb{C}[x, y]$.
- 4. (12 points) Let A be a finite abelian group of order n, p a prime divisor of n and $n=p^k m$ with $k,m\in\mathbb{N}$ such that (p,m)=1. Denote by A_n the Sylow p-subgroup of A.
 - (a) (8 points) Show that the abelian groups A_p and $\mathbb{Z}/p^k\mathbb{Z} \otimes_{\mathbb{Z}} A$ are isomorphic.
 - (b) (4 points) Describe $\mathbb{Z}/p\mathbb{Z} \otimes_{\mathbb{Z}} A$ as an abelian group without using tensor products but (certain) invariants of A.

- 5. (16 points) We set $M := M_3(\mathbb{Q})$ and denote by 0 the zero matrix and by I the identity matrix of M.
 - (a) (2 points) Prove or disprove: If $A \in M$ satisfies $A^6 = 0$, then also $A^3 = 0$.
 - (b) (4 points) Classify, up to similarity, all matrices in M satisfying $A^6=0$. Exhibit one representative for each such similarity class.
 - (c) (2 points) Prove or disprove: If $A \in M$ satisfies $A^6 = I$, then also $A^3 = I$.
 - (d) (8 points) Classify, up to similarity, all matrices in M satisfying $A^6 = I$. Exhibit one representative for each such similarity class.
- 6. (10 points) Let $n \geq 2$ be a natural number, F a field and $A = (a_{ij}) \in M_n(F)$ the matrix with entries $a_{ij} = j \cdot 1_F \in F$ for all $1 \leq i, j \leq n$. Determine the characteristic polynomial, the minimal polynomial and the JCF of A.

Hint: The result may depend on the characteristic of F.

- 7. (15 points)
 - (a) (8 points) Construct, using cyclotomic fields, a Galois extension K of \mathbb{Q} of degree 3. Include arguments.
 - (b) (7 points) Find, explicitly, a polynomial $f(x) \in \mathbb{Q}[x]$ such that your field K in (a) is the splitting field of f(x) over \mathbb{Q} .
- 8. (10 points) Let $M \mid K \mid F$ be a tower of finite field extensions such that $M \mid F$ and $K \mid F$ are both Galois. Assume that the Galois group G(M|K) is cyclic. Prove that $L \mid F$ is Galois for every intermediate field L with $M \mid L \mid K$.