

Chapter 6

Estimation based on Normal Distribution

Overview

- Point Estimation
- Parameter and statistic
- Unbiased estimator
- Interval estimation
- Confidence Interval for the Mean
- Sample size
- Confidence Intervals for the Difference between Two Means
- Confidence Interval for Variances and Ratio of Variances

6.1 Point Estimation of Mean and Variance

6.1.1 Introduction

• Assume that **some characteristics** of the elements in a population can be represented by a **random variable** X whose p.d.f. (or p.f.) is $f_X(x;\theta)$,

• where the form of the probability density function (or probability function) is assumed known except that it contains an unknown parameter θ .

6.1.1 Introduction (Continued)

• Further assume that the values x_1, x_2, \dots, x_n of a random sample X_1, X_2, \dots, X_n from $f_X(x; \theta)$ can be observed.

• On the basis of the observed sample values x_1, x_2, \dots, x_n , it is desired to estimate the value of the unknown parameter θ .

6.1.2 Estimation

The estimation can be made in two ways: **Point estimation** and **Interval estimation**

• Point estimation is to let the value of some statistic, say

$$\widehat{\Theta} = \widehat{\Theta}(X_1, X_2, \cdots, X_n),$$

to estimate the unknown parameter θ ; such a statistic

$$\widehat{\Theta}(X_1, X_2, \cdots, X_n),$$

is called a point estimator.

Statistic

- A statistic is a function of the random sample which does not depend on any unknown parameters.
- For example

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

or

$$X_{(n)} = \max(X_1, X_2, \cdots, X_n)$$

are some examples of a statistic.

Statistic (Continued)

• Let

$$W = \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2$$

Then W is not a statistic if μ is not known.

• However W is a statistic if μ is known.

Point Estimate of Mean

- Suppose μ is the population mean.
- The statistic that one uses to obtain a point estimate is called an estimator,

For example, \bar{X} is an estimator of μ .

The value of \bar{X} , denoted by \bar{x} , is an estimate of μ .

Point Estimate of Mean (Continued)

Example

- If the sample mean of a random sample taken from a population with mean μ is 5,
- Then a point estimate for the population mean μ is 5.

Note: Different random samples give different point estimates of μ .

Interval Estimation

Interval estimation is to define two statistics, say,

$$\widehat{\Theta}_L$$
 and $\widehat{\Theta}_U$, where $\widehat{\Theta}_L < \widehat{\Theta}_U$

so that $(\widehat{\Theta}_L, \ \widehat{\Theta}_U)$ constitutes a random interval for which the probability of containing the unknown parameter θ can be determined.

For example

• Suppose σ^2 is known. Let

$$\widehat{\Theta}_L = \overline{X} - 2 \frac{\sigma}{\sqrt{n}}$$
 and $\widehat{\Theta}_U = \overline{X} + 2 \frac{\sigma}{\sqrt{n}}$.

Then

$$\left(\bar{X}-2\frac{\sigma}{\sqrt{n}},\bar{X}+2\frac{\sigma}{\sqrt{n}}\right)$$

is an interval estimator for μ .

6.1.3 Unbiased Estimator

Definition 6.1 (Unbiased estimator)

• A statistic $\widehat{\Theta}$ is said to be an **unbiased estimator** of the parameter θ if

$$E(\widehat{\Theta}) = \theta.$$

Unbiased Estimator (Continued)

Example 1

 \overline{X} is an unbiased estimator of μ . That is, $E(\overline{X}) = \mu$.

Example 2

$$S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$
 is an **unbiased** estimator of σ^2 .

That is,

$$E(S^2) = \sigma^2$$

Unbiased Estimator (Continued)

Example 3

• $T = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$ is a **biased** estimator of σ^2 .

It can be shown that,

$$E(T) = \frac{n-1}{n}\sigma^2 \neq \sigma^2.$$

6.2 Interval Estimation

• An interval estimate of a population parameter θ is an interval of the form

$$\hat{\theta}_L < \theta < \hat{\theta}_U$$

where $\hat{\theta}_L$ and $\hat{\theta}_U$ depend on

- (1) the value of the statistic $\widehat{\Theta}$ for a particular sample and
- (2) the sampling distribution of $\widehat{\Theta}$.

• The interval estimate of a population parameter θ is an interval of the form

- Since different samples will generally yield different values of $\widehat{\Theta}$,
- therefore, different values of $\hat{\theta}_L$ and $\hat{\theta}_U$, these end points of the interval are values of corresponding random variables $\widehat{\Theta}_L$ and $\widehat{\Theta}_U$.
- These intervals may not contain the parameter θ as $\hat{\theta}_L$ and $\hat{\theta}_U$ vary.

We shall seek a random interval

$$(\widehat{\Theta}_L, \widehat{\Theta}_U)$$

containing θ with a given probability $1 - \alpha$.

That is

$$\Pr(\widehat{\Theta}_L < \theta < \widehat{\Theta}_U) = 1 - \alpha.$$

- Then the interval $\hat{\theta}_L < \theta < \hat{\theta}_U$, computed from the selected sample is called a $(1 \alpha)100\%$ confidence interval for θ ,
- and the fraction (1α) is called **confidence coefficient** or **degree of confidence**,
- and the end points $\hat{\theta}_L$ and $\hat{\theta}_U$ are called lower and upper confidence limits respectively.

- This means that if samples of the same size *n* are taken,
- then in the long run, $(1 \alpha)100\%$ of the intervals will contain the unknown parameter θ ,
- and hence with a confidence of $(1 \alpha)100\%$, we can say that the interval covers θ .

Intervals and Level of Confidence

Sampling Distribution of the Mean

6.3 Confidence Intervals for the Mean

6.3.1 Known Variance Case

- Confidence interval for mean with
 - (i) known variance and
 - (ii) the population is normal or n is sufficiently large (say $n \ge 30$)

Confidence Intervals for the Mean (Continued)

Known Variance Case (Continued)

 When the population is normal or by the Central Limit Theorem, we can expect that

$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right).$$

Therefore

$$Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1).$$

C.I. for Mean with Known Variance

Hence

$$\Pr\left(-z_{\alpha/2} < \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} < z_{\alpha/2}\right) = 1 - \alpha$$

or

$$\Pr\left(\bar{X} - z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}}\right) < \mu < \bar{X} + z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}}\right)\right) = 1 - \alpha$$

C.I. for Mean with Known Variance (Continued)

- If \bar{X} is the mean of a random sample of size n from a population with known variance σ^2 ,
- a $(1 \alpha)100\%$ confidence interval for μ is given by

$$\left(\bar{X} - z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}}\right) < \mu < \bar{X} + z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}}\right)\right)$$

Sample Size for Estimating μ

- Most of the time, \bar{X} will not be exactly equal to μ and the point estimate is in error.
- The size of this error will be $|\bar{X} \mu|$.
- We know that

$$\Pr\left(-z_{\alpha/2}\frac{\sigma}{\sqrt{n}} < \bar{X} - \mu < z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha$$

or

$$\Pr\left(|\bar{X} - \mu| < \frac{z_{\alpha/2}}{\sqrt{n}}\right) = 1 - \alpha$$

Sample Size for Estimating µ (Continued)

- Let e denote the margin of error.
- We want the error $|\bar{X} \mu|$ does not exceed the margin of error, e, with a probability larger than 1α .
- That is,

$$\Pr(|\bar{X} - \mu| \le e) \ge 1 - \alpha$$

Sample Size for Estimating μ (Continued)

• Since $\Pr\left(|\bar{X} - \mu| < \frac{z_{\alpha/2}}{\sqrt{n}}\right) = 1 - \alpha$, therefore

$$e \ge z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right)$$

 Hence for a given margin of error e, the sample size is given by

$$n \ge \left(z_{\alpha/2} \frac{\sigma}{\rho}\right)^2$$

Example 1

The mean for the CAP of a random sample of 36 college seniors is calculated to be 3.5. Assuming that it is known from previous studies that $\sigma = 0.3$,

- (i) Find a 95% confidence interval for the mean of the entire senior class;
- (ii) How large a sample is required if we want to be 95% confidence that our estimate of μ is off by less than 0.05?

Solution to Example 1

(i) A 95% confidence interval for μ is

$$\bar{x} - z_{0.025} \frac{\sigma}{\sqrt{n}} < \mu < \bar{x} + z_{0.025} \frac{\sigma}{\sqrt{n}}$$

$$3.5 - 1.96 \frac{0.3}{6} < \mu < 3.5 + 1.96 \frac{0.3}{6}$$

$$3.402 < \mu < 3.598$$

Solution to Example 1 (Continued)

(ii) e = 0.05, $\sigma = 0.3$ and $\alpha = 0.05$ implies $z_{\alpha/2} = 1.96$.

$$n \ge \left(z_{\alpha/2} \frac{\sigma}{e}\right)^2 = \left(\frac{1.96(0.3)}{0.05}\right)^2 = 138.3.$$

Hence $n \ge 139$.

6.3.2 Unknown Variance Case

Confidence interval for mean with

- (i) unknown population variance and
- (ii) the population is normal or very closed to a normal distribution
- (iii) the sample size is small

Unknown Variance Case (Continued)

• Let

$$T = \frac{(\bar{X} - \mu)}{S/\sqrt{n}},$$

where S^2 is the sample variance.

• We know that $T \sim t_{n-1}$.

C.I. for Mean with Unknown Variance

Hence

$$\begin{split} \Pr\left(-t_{n-1;\alpha/2} < T < t_{n-1;\alpha/2}\right) &= 1 - \alpha \\ \text{or } \Pr\left(-t_{n-1;\alpha/2} < \frac{(\overline{X} - \mu)}{S/\sqrt{n}} < t_{n-1;\alpha/2}\right) &= 1 - \alpha \\ \text{or } \Pr\left(-t_{n-1;\alpha/2} \left(\frac{S}{\sqrt{n}}\right) < \overline{X} - \mu < t_{n-1;\alpha/2} \left(\frac{S}{\sqrt{n}}\right)\right) &= 1 - \alpha \\ \text{or } \Pr\left(\overline{X} - t_{n-1;\alpha/2} \left(\frac{S}{\sqrt{n}}\right) < \mu < \overline{X} + t_{n-1;\alpha/2} \left(\frac{S}{\sqrt{n}}\right)\right) &= 1 - \alpha \end{split}$$

C.I. for Mean with Unknown Variance (Continued)

- If \overline{X} and S are the sample mean and standard deviation of a random sample of size n < 30 from an approximate normal population with unknown variance σ^2 ,
- a $(1 \alpha)100\%$ confidence interval for μ is given by

$$\bar{X} - t_{n-1;\alpha/2} \left(\frac{S}{\sqrt{n}} \right) < \mu < \bar{X} + t_{n-1;\alpha/2} \left(\frac{S}{\sqrt{n}} \right)$$

C.I. for Mean with Unknown Variance (Continued)

- For large n (say n > 30),
- the t-distribution is approximately the same as the N(0, 1) distribution. Hence,
 - when σ^2 is unknown,
 - population is normal and
 - -n > 30,
- a $(1 \alpha)100\%$ confidence interval for μ is given by

$$\bar{X} - z_{\alpha/2} \left(\frac{S}{\sqrt{n}} \right) < \mu < \bar{X} + z_{\alpha/2} \left(\frac{S}{\sqrt{n}} \right)$$

Example 1

• The contents of 7 similar containers of sulphuric acid are 9.8, 10.2, 10.4, 9.8, 10.0, 10.2 and 9.6 litres.

• Find a 95% confidence interval for the mean content of all such containers,

assuming an approximate normal distribution for container contents.

Solution to Example 1

- From the data, we have n = 7, $\bar{x} = 10$ and $s^2 = 0.08$.
- Also from the statistical table, we have $t_{6.0.025} = 2.447$.
- Therefore a 95% confidence interval for the mean is given by

$$\overline{X} - t_{6;0.025} \left(\frac{S}{\sqrt{n}} \right) < \mu < \overline{X} + t_{6;0.025} \left(\frac{S}{\sqrt{n}} \right)$$

$$10 - 2.447 \frac{0.2828}{\sqrt{7}} < \mu < 10 + 2.447 \frac{0.2828}{\sqrt{7}}$$

$$10 - 0.262 < \mu < 10 + 0.2626$$

$$9.738 < \mu < 10.262.$$

Example 2

- A major department store chain is interested in estimating the average amount its credit card customers spent on their first visit to the chain's new store in the mall.
- Fifty credit card accounts were randomly sampled and analyzed with the following results:

$$\bar{x} = \$62.56$$
 and $s^2 = 400$.

Example 2 (Continued)

- (a) Identify the population the department store chain is interested in learning about.
- (b) Which population parameter does the chain wish to estimate?
- (c) Construct a 90% confidence interval for the parameter identified in part (b).

Solution to Example 2

- (a) The population is all its credit card customers.
- (b) μ , the average amount spent on their first visit to the chain's new store in the mall.

Solution to Example 2 (Continued)

(c) Since *n* is large, we use *z*-value instead of *t*-value

From the statistical table, we have $z_{0.05} = 1.645$.

Therefore a 90% confidence interval for the mean is given by

$$\bar{X} - z_{0.05}(S/\sqrt{n}) < \mu < \bar{X} + z_{0.05}(S/\sqrt{n})$$

From the data, we have $\bar{x} = 62.56$ and $s^2 = 400$. Hence, the 90% CI for μ is given by

$$62.56 - 1.645 \sqrt{400/50} < \mu < 62.56 + 1.645 \sqrt{400/50}$$

 $57.907 < \mu < 67.213$.

6.4 Confidence Intervals for the Difference between Two Means

• If we have two populations with means μ_1 and μ_2 and variances σ_1^2 and σ_2^2 respectively,

Then

$$\bar{X}_1 - \bar{X}_2$$

is the point estimator of $\mu_1 - \mu_2$.

6.4.1 Known Variances

- σ_1^2 and σ_2^2 are known and not equal, and the two populations are normal,
- or when σ_1^2 and σ_2^2 are known and not equal, but n_1 , n_2 are sufficiently large $(n_1 \ge 30, n_2 \ge 30)$
- According to Section 5.5, we have

$$(\bar{X}_1 - \bar{X}_2) \sim N\left(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}\right).$$

6.4.1 Known Variances

We can assert that

$$\Pr\left(-z_{\alpha/2} < \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} < z_{\alpha/2}\right) = 1 - \alpha$$

Known Variances (Continued)

which leads to the following $(1 - \alpha)100\%$ confidence interval for $\mu_1 - \mu_2$

$$(\bar{X}_1 - \bar{X}_2) - z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} < \mu_1 - \mu_2$$

$$< (\bar{X}_1 - \bar{X}_2) + z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}.$$

Example 1

- A study was conducted in which two types of engines, *A* and *B*, were compared.
- Gas mileage, in miles per gallon, was measured.
- 50 experiments were conducted using engine *A*
- 75 experiments were done for engine type B.
- The gasoline used and other conditions were held constant.

Example 1 (Continued)

- The average gas mileage for 50 experiments using engine *A* was 36 miles per gallon and
- The average gas mileage for the 75 experiments using machine *B* was 42 miles per gallon.
- Find a 96% confidence interval on $\mu_B \mu_A$, where μ_A and μ_B are population mean gas mileage for machine types A and B, respectively.
- Assume that the population standard deviations are 6 and 8 for machine types *A* and *B*, respectively.

Solution to Example 1

- From the given info, we have $\bar{x}_A = 36$ and $\bar{x}_B = 42$.
- Hence the point estimate for $\mu_B \mu_A$ is

$$\bar{x}_B - \bar{x}_A = 42 - 36 = 6$$

- We also know that $\sigma_1 = 6$ and $\sigma_2 = 8$.
- Use $\alpha = 0.04$, we find $z_{0.02} = 2.05$.

[i.e.
$$Pr(Z > 2.05) = 0.02$$
, where $Z \sim N(0, 1)$]

Solution to Example 1 (Continued)

• Since the sample sizes are large, therefore the 96% confidence interval for $\mu_B - \mu_A$ is

$$6 - 2.05 \sqrt{\frac{64}{75} + \frac{36}{50}} < \mu_B - \mu_A < 6 + 2.05 \sqrt{\frac{64}{75} + \frac{36}{50}}$$
$$3.428 < \mu_B - \mu_A < 8.571.$$

6.4.2 Large Sample C.I. for Unknown Variances

- σ_1^2 and σ_2^2 are unknown
- n_1, n_2 are sufficiently large $(n_1 \ge 30, n_2 \ge 30)$
- we may replace by σ_1^2 and σ_2^2 by their estimates, S_1^2 and S_2^2 ,

Large Sample C.I. for Unknown Variances (Continued)

• A $(1 - \alpha)100\%$ confidence interval for $\mu_1 - \mu_2$ is given by:

$$(\bar{X}_1 - \bar{X}_2) - z_{\alpha/2} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}} < \mu_1 - \mu_2$$

$$< (\bar{X}_1 - \bar{X}_2) + z_{\alpha/2} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}.$$

Example 2

- Two kinds of thread are being compared for strength.
- 50 pieces of each type of thread are tested under similar conditions.
- Brand *A* had an average tensile strength of 78.3 kg with a s.d. of 5.6 kg.
- Brand *B* had an average tensile strength of 87.2 kg with a s.d. of 6.3 kg.
- Construct a 95% confidence interval for the difference of the population means.

Solution to Example 2

- From the given info, we have $\bar{x}_A = 78.3$ and $\bar{x}_B = 87.2$.
- Hence the point estimate for $\mu_A \mu_B$ is

$$\bar{x}_A - \bar{x}_B = 78.3 - 87.2 = -8.9.$$

- We also know from the data that $s_1 = 5.6$ and $s_2 = 6.3$.
- $\alpha = 0.05$ implies $z_{0.025} = 1.96$.

Solution to Example 2 (Continued)

• Since the sample sizes are large, therefore an approximate 95% confidence interval for $\mu_A - \mu_B$ is

$$-8.9 - 1.96 \sqrt{\frac{5.6^2}{50} + \frac{6.3^2}{50}} < \mu_A - \mu_B < -8.9 + 1.96 \sqrt{\frac{5.6^2}{50} + \frac{6.3^2}{50}}$$
$$-11.236 < \mu_A - \mu_B < -6.564.$$

6.4.3 Unknown but Equal Variances

- σ_1^2 and σ_2^2 are unknown but equal and
- the two populations are normal
- Small sample sizes $(n_1 \le 30 \text{ and } n_2 \le 30)$
- Let $\sigma_1^2 = \sigma_2^2 = \sigma^2$, then

$$(\bar{X}_1 - \bar{X}_2) \sim N\left(\mu_1 - \mu_2, \sigma^2\left(\frac{1}{n_1} + \frac{1}{n_2}\right)\right).$$

Therefore we obtain a standard normal variable in the form

$$Z = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\sigma^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

• σ^2 can be estimated by the pooled sample variance

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2},$$

with S_1^2 and S_2^2 being the sample variances of the first and second samples respectively.

• Note that if the two populations are normal with the same variance σ^2 , then

$$\frac{(n_1-1)S_1^2}{\sigma^2} \sim \chi_{n_1-1}^2$$
 and $\frac{(n_2-1)S_2^2}{\sigma^2} \sim \chi_{n_2-1}^2$,

Hence

$$\frac{(n_1-1)S_1^2+(n_2-1)S_2^2}{\sigma^2}\sim \chi_{n_1+n_2-2}^2.$$

• Substituting S_p^2 for σ^2 , we obtain the statistic

$$T = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \sim t_{n_1 + n_2 - 2}.$$

CYM

We can assert that

$$\Pr\left(-t_{n_1+n_2-2;\alpha/2} < \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} < t_{n_1+n_2-2;\alpha/2}\right)$$

$$= 1 - \alpha.$$

• Therefore a $(1-\alpha)100\%$ confidence interval for $\mu_1-\mu_2$ is given by

$$(\bar{X}_1 - \bar{X}_2) - t_{n_1 + n_2 - 2; \alpha/2} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} < \mu_1 - \mu_2$$

$$< (\bar{X}_1 - \bar{X}_2) + t_{n_1 + n_2 - 2; \alpha/2} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

where S_p is the pooled estimate of the population standard deviation and $t_{n_1+n_2-2;\alpha/2}$ is the value from the t-distribution with the degrees of freedom n_1+n_2-2 , leaving an area of $\alpha/2$ to the right.

[i.e.
$$\Pr(W > t_{n_1+n_2-2;\alpha/2}) = \alpha/2$$
 where $W \sim T_{n_1+n_2-2}$.]

Unknown but Equal Variances for Large Samples

- Note that for large samples such that $n_1 \ge 30$ and $n_2 \ge 30$, we can replace $t_{n_1+n_2-2;\alpha/2}$ by $z_{\alpha/2}$ in the above formula.
- Therefore a $(1-\alpha)100\%$ confidence interval for $\mu_1-\mu_2$ is given by

$$(\bar{X}_1 - \bar{X}_2) - z_{\alpha/2} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} < \mu_1 - \mu_2$$

$$< (\bar{X}_1 - \bar{X}_2) + z_{\alpha/2} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

Example 3

- A course in mathematics is taught to 12 students by the conventional classroom procedure.
- A second group of 10 students was given the same course by means of programmed materials.
- At the end of the semester the same examination was given to each group.
- The 12 students meeting in the classroom made an average grade of 85 with standard deviation of 4.

Example 3 (Continued)

- The 10 students using programmed materials made an average of 81 with a standard deviation of 5.
- Find a 90% confidence interval for the difference between the population means,
- assuming the populations are approximately normally distributed with equal variances.

Solution to Example 3

- Let μ_1 and μ_2 represent the average grades of all students who might take this course by the classroom and programmed presentations respectively.
- So $\bar{x}_1 \bar{x}_2 = 85 81 = 4$ is the point estimate for $\mu_1 \mu_2$.
- Since $\sigma_1^2 = \sigma_2^2$, we estimate the population variance by the pooled variance

$$s_p^2 = \frac{11(16) + 9(25)}{12 + 10 - 2} = 20.05.$$

Solution to Example 3 (Continued)

• A 90% confidence interval for $\mu_1 - \mu_2$ is given by

$$(\bar{X}_1 - \bar{X}_2) - t_{20; 0.05} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} < \mu_1 - \mu_2$$

$$< (\bar{X}_1 - \bar{X}_2) + t_{20; 0.05} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

Solution to Example 3 (Continued)

• From the given data, we have a 90% confidence interval for $\mu_1 - \mu_2$ is given by

$$4 - 1.7247 \sqrt{20.05} \sqrt{\frac{1}{12} + \frac{1}{10}} < \mu_1 - \mu_2$$

$$< 4 + 1.7247 \sqrt{20.05} \sqrt{\frac{1}{12} + \frac{1}{10}}$$

$$0.693 < \mu_1 - \mu_2 < 7.307.$$

6.4.4 C.I. for the difference between two means for paired data (dependent data)

- If we run a test on a new diet using 15 individuals, the weights before (x_i) and after (y_i) completion of the test form our two samples.
- Observations in the two samples made on the same individual are related and hence form a pair.
- To determine if the diet is effective, we must consider the differences d_i (= $x_i y_i$) of paired observations.

C.I. for the difference between two means for paired data (Continued)

- These differences are the values of a random sample d_1, d_2, \cdots, d_n from a population that we shall assume to be normal with mean μ_D and unknown variance σ_D^2 .
- In fact $\mu_D = \mu_1 \mu_2$ and the point estimate of μ_D is given by

$$\bar{d} = \frac{1}{n} \sum_{i=1}^{n} d_i = \frac{1}{n} \sum_{i=1}^{n} (x_i - y_i)$$

• The point estimate of σ_D^2 is given by

$$s_D^2 = \frac{1}{n-1} \sum_{i=1}^n (d_i - \bar{d})^2$$
.

6.4.4.1 Small Sample and Approximate Normal Population

• A $(1 - \alpha)100\%$ confidence interval for μ_D can be established by writing

$$\Pr\left(-t_{n-1;\alpha/2} < T < t_{n-1;\alpha/2}\right) = 1 - \alpha,$$

where $T = \frac{d-\mu_D}{s_d/\sqrt{n}} \sim t_{n-1}$ distribution.

• Therefore a $(1-\alpha)100\%$ confidence interval for $\mu_D=\mu_1-\mu_2$ is given by

$$\bar{d} - t_{n-1;\alpha/2} \left(\frac{s_D}{\sqrt{n}} \right) < \mu_D < \bar{d} + t_{n-1;\alpha/2} \left(\frac{s_D}{\sqrt{n}} \right).$$

For large sample (n > 30)

• For sufficiently large sample, we may replace $t_{n-1;\alpha/2}$ by $z_{\alpha/2}$ and

• a $(1 - \alpha)100\%$ confidence interval for $\mu_D = \mu_1 - \mu_2$ is given by

$$\bar{d} - z_{\alpha/2} \left(\frac{s_D}{\sqrt{n}} \right) < \mu_D < \bar{d} + z_{\alpha/2} \left(\frac{s_D}{\sqrt{n}} \right).$$

Example 4

- Twenty students were divided into 10 pairs,
- each member of the pair having approximately the same IQ.
- One of each pair was selected at random and
- assigned to a mathematics section using programmed materials only.
- The other member of each pair was assigned to a section in which the professor lectured.
- At the end of the semester each group was given the same examination and the following results were recorded.

Example 4 (Continued)

Pair	1	2	3	4	5	6	7	8	9	10
P.M.	76	60	85	58	91	75	82	64	79	88
Lecture	81	52	87	70	86	77	90	63	85	83
d	– 5	8	-2	-12	5	-2	-8	1	– 6	5

• Find a 98% confidence interval for the true difference in the two learning procedures.

Solution to Example 4

• From the data, we have

$$\bar{d} = \frac{1}{10} \sum_{i=1}^{10} d_i = -1.6 \text{ and}$$

$$s_D^2 = \frac{1}{9} \left(\sum_{i=1}^{10} d_i^2 - 10\bar{d}^2 \right) = 40.71.$$

 $\alpha = 0.02$ implies that $t_{9;0.01} = 2.821$.

Solution to Example 4 (Continued)

• Therefore, a 98% confidence interval for μ_D is

$$\bar{d} - t_{9;0.01} \left(\frac{s_D}{\sqrt{10}}\right) < \mu_D < \bar{d} + t_{9;0.01} \left(\frac{s_D}{\sqrt{10}}\right)$$

$$-1.6 - 2.821 \sqrt{\frac{40.71}{10}} < \mu_D < -1.6 + 2.821 \sqrt{\frac{40.71}{10}}$$

$$-7.292 < \mu_D < 4.092.$$

6.5 C.I. for Variances and Ratio of Variances

6.5.1 Confidence intervals for a variance (of a normal population)

- Let X_1, X_2, \dots, X_n be a random sample of size n from a (approximately) $N(\mu, \sigma^2)$ distribution.
- Then the sample variance

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_{i}^{2} - n\bar{X}^{2} \right)$$

is a **point estimate** of σ^2 .

Case 1 µ is known

• When μ is known, we have

$$\frac{X_i - \mu}{\sigma} \sim N(0, 1) \quad \text{for all } i$$

or

$$\left(\frac{X_i - \mu}{\sigma}\right)^2 \sim \chi^2(1)$$
 for all i

and hence

$$\sum_{i=1}^{n} \frac{(X_i - \mu)^2}{\sigma^2} \sim \chi^2(n).$$

Case 1 µ is known (Continued)

Therefore

$$\Pr\left(\chi_{n;1-\alpha/2}^2 < \sum_{i=1}^n \frac{(X_i - \mu)^2}{\sigma^2} < \chi_{n;\alpha/2}^2\right) = 1 - \alpha$$

Rearranging the two inequalities with σ^2 on 1 side, we have

$$\Pr\left(\frac{\sum_{i=1}^{n} (X_i - \mu)^2}{\chi_{n; \alpha/2}^2} < \sigma^2 < \frac{\sum_{i=1}^{n} (X_i - \mu)^2}{\chi_{n; 1 - \alpha/2}^2}\right) = 1 - \alpha$$

[Note:
$$\chi_{n;\alpha/2}^2$$
 satisfies $\Pr\left(W > \chi_{n;\alpha/2}^2\right) = \frac{\alpha}{2}$, where $W \sim \chi^2(n)$.]

Case 1 µ is known (Continued)

• Therefore, a $(1 - \alpha)100\%$ confidence interval for σ^2 of $N(\mu, \sigma^2)$ population with μ known is

$$\frac{\sum_{i=1}^{n} (X_i - \mu)^2}{\chi_{n;\alpha/2}^2} < \sigma^2 < \frac{\sum_{i=1}^{n} (X_i - \mu)^2}{\chi_{n;1-\alpha/2}^2}$$

Case 2 µ is unknown

• When μ is unknown, we have

$$\frac{(n-1)S^2}{\sigma^2} = \sum_{i=1}^n \frac{(X_i - \bar{X})^2}{\sigma^2} \sim \chi^2(n-1).$$

Case 2 µ is unknown (Continued)

• The above results are true for both small and large *n*. Therefore,

$$\Pr\left(\chi_{n-1;1-\alpha/2}^2 < \frac{(n-1)S^2}{\sigma^2} < \chi_{n-1;\alpha/2}^2\right) = 1 - \alpha,$$

and hence

$$\Pr\left(\frac{(n-1)S^2}{\chi_{n-1;\,\alpha/2}^2} < \sigma^2 < \frac{(n-1)S^2}{\chi_{n-1;1-\alpha/2}^2}\right) = 1 - \alpha.$$

Case 2 µ is unknown (Continued)

• Therefore, a $(1 - \alpha)100\%$ confidence interval for σ^2 of $N(\mu, \sigma^2)$ population with μ unknown is

$$\frac{(n-1)S^2}{\chi_{n-1;\alpha/2}^2} < \sigma^2 < \frac{(n-1)S^2}{\chi_{n-1;1-\alpha/2}^2}$$

where S^2 is the sample variance.

Remarks

- A $(1 \alpha)100\%$ confidence interval for σ is obtained by taking the square root of each end point of the interval for σ^2 .
- When μ is known, a $100(1-\alpha)\%$ C.I. for σ is

$$\sqrt{\frac{\sum_{i=1}^{n}(X_{i}-\mu)^{2}}{\chi_{n;\alpha/2}^{2}}} < \sigma < \sqrt{\frac{\sum_{i=1}^{n}(X_{i}-\mu)^{2}}{\chi_{n;1-\alpha/2}^{2}}}.$$

Remarks (Continued)

• When μ is unknown, a $100(1-\alpha)\%$ C.I. for σ is

$$\sqrt{\frac{(n-1)S^2}{\chi_{n-1;\alpha/2}^2}} < \sigma < \sqrt{\frac{(n-1)S^2}{\chi_{n-1;1-\alpha/2}^2}}.$$

• Notice that the parameter (or the degrees of freedom) of the χ^2 -distribution changes from n to n-1 when μ is unknown.

Example 1

- The following are the volume, in decilitres, of 10 cans of peaches distributed by a certain company: 46.4, 46.1, 45.8, 47.0, 46.1, 45.9, 45.8, 46.9, 45.2 and 46.0.
- Find a 95% confidence interval for the variance of all such cans of peaches distributed by this company,
- assuming volume to be a normally distributed variable.

Solution to Example 1

From the data, we have

$$s^2 = \frac{1}{9} \left(\sum_{i=1}^{10} x_i^2 - 10\bar{x}^2 \right) = 0.286$$

From the statistical table, we have

$$\chi^2_{9;0.025} = 19.023$$
 and $\chi^2_{9;0.975} = 2.7$.

Solution to Example 1 (Continued)

Substituting these values in the following formula, we have

$$\frac{(n-1)S^2}{\chi_{n-1;\alpha/2}^2} < \sigma^2 < \frac{(n-1)S^2}{\chi_{n-1;1-\alpha/2}^2}$$

• We obtain a 95% confidence interval for σ^2

$$\frac{9(0.2862)}{19.023} < \sigma^2 < \frac{9(0.2862)}{2.7}$$
 or $0.135 < \sigma^2 < 0.954$.

• Let X_1, X_2, \dots, X_{n_1} be a random sample of size n_1 from a (or approximately) $N(\mu_1, \sigma_1^2)$ population and

• Y_1, Y_2, \dots, Y_{n_2} be a random sample of size n_2 from a (or approximately) $N(\mu_2, \sigma_2^2)$ population,

• where μ_1 and μ_2 are unknown.

Then

$$\frac{(n_1 - 1)S_1^2}{\sigma_1^2} \sim \chi^2(n_1 - 1) \text{ and } \frac{(n_2 - 1)S_2^2}{\sigma_2^2} \sim \chi^2(n_2 - 1)$$

where
$$S_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (X_i - \bar{X})^2$$
 and $S_2^2 = \frac{1}{n_2 - 1} \sum_{j=1}^{n_2} (Y_j - \bar{Y})^2$.

Hence

$$F = \frac{\frac{(n_1 - 1)S_1^2}{\sigma_1^2} / (n_1 - 1)}{\frac{(n_2 - 1)S_2^2}{\sigma_2^2} / (n_2 - 1)} = \frac{S_1^2 / \sigma_1^2}{S_2^2 / \sigma_2^2} \sim F(n_1 - 1, n_2 - 1).$$

We then can assert that

$$\Pr\left(F_{n_1-1,n_2-1;1-\alpha/2} < \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} < F_{n_1-1,n_2-1;\alpha/2}\right) = 1 - \alpha.$$

Therefore

$$\Pr\left(\frac{S_1^2}{S_2^2} \frac{1}{F_{n_1 - 1, n_2 - 1; \alpha/2}} < \frac{\sigma_1^2}{\sigma_2^2} < \frac{S_1^2}{S_2^2} \frac{1}{F_{n_1 - 1, n_2 - 1; 1 - \alpha/2}}\right)$$

$$= 1 - \alpha.$$

where $\Pr\left(\mathbf{F}_{n_1-1,n_2-1} \geq F_{n_1-1,n_2-1;\,\alpha/2}\right) = \alpha/2$ with \mathbf{F}_{n_1-1,n_2-1} denote a random variable following an F-distribution with parameters (n_1-1) and (n_2-1) .

• Hence, a $100(1-\alpha)\%$ confidence interval for the ratio σ_1^2/σ_2^2 when μ_1 and μ_2 are unknown

$$\frac{S_1^2}{S_2^2} \frac{1}{F_{n_1 - 1, n_2 - 1; \alpha/2}} < \frac{\sigma_1^2}{\sigma_2^2} < \frac{S_1^2}{S_2^2} F_{n_2 - 1, n_1 - 1; \alpha/2}$$

since
$$F_{n_1-1,n_2-1;1-\alpha/2} = \frac{1}{F_{n_2-1,n_1-1;\alpha/2}}$$
. (See p6.95)

$$\Pr\left(\mathbf{W} > F_{n_1 - 1, n_2 - 1; 1 - \alpha/2}\right) = 1 - \alpha/2$$

$$\Rightarrow \Pr\left(\frac{1}{\mathbf{W}} < \frac{1}{F_{n_1 - 1, n_2 - 1; 1 - \alpha/2}}\right) = 1 - \alpha/2$$

where
$$W \sim F_{n_1-1,n_2-1}$$
 and $\frac{1}{W} \sim F_{n_2-1,n_1-1}$.

But

$$\Pr\left(\frac{1}{W} < F_{n_2-1,n_1-1;\alpha/2}\right) = 1 - \alpha/2$$

Hence

$$\frac{1}{F_{n_1-1,n_2-1;1-\alpha/2}} = F_{n_2-1,n_1-1;\alpha/2}.$$

Remark

- A $(1 \alpha)100\%$ confidence interval for σ_1/σ_2 is obtained by taking the square root of each end point of the interval for σ_1^2/σ_2^2 .
- When μ_1 and μ_2 are unknown, a $100(1-\alpha)\%$ C.I. for σ_1^2/σ_2^2 is

$$\sqrt{\frac{S_1^2}{S_2^2}} \frac{1}{F_{n_1-1,n_2-1;\,\alpha/2}} < \frac{\sigma_1}{\sigma_2} < \sqrt{\frac{S_1^2}{S_2^2}} F_{n_2-1,n_1-1;\,\alpha/2}.$$

Example 2

- A standardized placement test in mathematics was given to 25 boys and 16 girls.
- The boys made an average grade of 82 with a standard deviation of 8, while the girls made an average grade of 78 with a standard deviation of 7.
- Find a 98% confidence interval for σ_1^2/σ_2^2 and σ_1/σ_2 ,
- where σ_1^2 and σ_2^2 are the variances of the populations of grades for all boys and girls, respectively, who at some time have taken or will take this test.
- Assume the populations to be normally distributed.

Solution to Example 2

- From the data, we have $n_1 = 25$, $s_1 = 8$, $n_2 = 16$ and $s_2 = 7$.
- Take $\alpha = 0.02$.
- $F_{24.15: 0.01} = (3.45 + 3.18)/2 = 3.305$ and
- $F_{15.24:0.01} = 3.03 3(3.03 .66)/(24 12) = 2.94$.
- By the formula, we obtain the 98% confidence interval for σ_1^2/σ_2^2 is

$$\frac{64}{49} \frac{1}{3.305} < \frac{\sigma_1^2}{\sigma_2^2} < \frac{64}{49} \text{ 2.94 or } 0.395 < \frac{\sigma_1^2}{\sigma_2^2} < 3.84.$$

Solution to Example 2 (Continued)

• the 98% confidence interval for σ_1/σ_2 is given by

$$\sqrt{0.395} < \sqrt{\frac{\sigma_1^2}{\sigma_2^2}} < \sqrt{3.84}$$

or

$$0.628 < \frac{\sigma_1}{\sigma_2} < 1.960.$$