Università degli Studi Roma Tre Corso di Laurea in Matematica, a.a. 2022/2023 AL310 - Istituzioni di Algebra Superiore Esercizi

Esercizio 1. Sia F un campo e sia $f(X) \in F[X]$.

1. Per ogni $a \in F[X]$, mostrare che esiste un polimio $q(X) \in F[X]$ tale che

$$f(X) = q(X)(X - a) + f(a);$$

- 2. dedurre che f(a) = 0 se e solo se (X a) | f(X);
- 3. dedurre che f(X) può avere al più deg f radici.
- 4. Sia G un gruppo abeliano finito. Mostrare che, se G ha al più m elementi di ordine un divisore di m per ogni divisore m di |G|, allora G è ciclico.
- 5. Dedurre che, se F è un campo, ogni sottogruppo finito di F^{\times} è ciclico.

Esercizio 2.

- 1. Sia $\alpha \in \mathbb{C}$ una radice del polinomio $f(x) = x^4 + x^3 + x^2 + x + 1$; verificare se gli elementi $\alpha^2 + \alpha$, $\alpha^6 1$, $2\alpha^3$ sono linearmente indipendenti su \mathbb{Q} ;
- 2. Determinare il polinomio minimo di $\alpha^4 + \alpha$ su \mathbb{Q} .

Esercizio 3.

- Sia $\alpha \in \mathbb{C}$ una radice del polinomio $g(x) = x^3 + 2x 1$. Trovare il polinomio minimo di $\alpha + 1$, α^{-1} , $\alpha^2 + 1$ su \mathbb{Q} .
- Sia $a \in \mathbb{Q}$; calcolare il polinomio minimo di $a + \frac{\sqrt{5}}{2}$ su \mathbb{Q} ; per quali valori di a tale polinomio minimo appartiene a $\mathbb{Z}[x]$?
- Determinare il polinomio minimo di $\sqrt{2\sqrt{2}-3}$ su \mathbb{Q} e su $\mathbb{Q}(i)$. Qual è il campo di spezzamento di questo polinomio su \mathbb{Q} ? E su $\mathbb{Q}(i)$?

Esercizio 4. Calcolare $[\mathbb{Q}(\sqrt[3]{3} + \sqrt{2}) : \mathbb{Q}].$

Esercizio 5. Calcolare il campo di spezzamento di $f(x) = x^8 - 1$ su $\mathbb{C}, \mathbb{R}, \mathbb{Q}, \mathbb{F}_{17}$ e \mathbb{F}_{43} .

Esercizio 6. Calcolare il campo di spezzamento di $f(x) = (x^3 + 1)(x^3 - 5)$ su \mathbb{Q} e su \mathbb{F}_7 .

Esercizio 7.

- Sia F un campo di caratteristica p. Mostrare che, se il polinomio $x^p x a$ è riducibile in F[x], allora spezza in fattori lineari in F[x].
- Mostrare che, per ogni primo p, il polinomio $x^p x 1$ è irriducibile su \mathbb{Q} .

Esercizio 8. Per ogni $k \ge 1$ indichiamo con ζ_k la radice primitiva k-esima dell'unità data da $e^{\frac{2\pi i}{k}}$. Dimostrare che, se n è dispari, allora $\mathbb{Q}(\zeta_{2n}) = \mathbb{Q}(\zeta_n)$. Resta vero se n è pari?

Esercizio 9. Calcolare il campo di spezzamento del polinomio $g(x) = x^4 - 5$; denotiamo tale campo con E_g .

- Esiste un Q-omomorfismo $\phi: E_f \to E_f$ tale che $\phi(\sqrt[4]{5}) = -\sqrt[4]{5}$ e $\phi(\sqrt[4]{5}i) = -\sqrt[4]{5}i$, dove i denota l'unità immaginaria?
- Esiste un Q-omomorfismo $\psi: E_f \to E_f$ tale che $\phi(\sqrt[4]{5}) = \sqrt[4]{5}i$ e $\phi(\sqrt[4]{5}i) = -\sqrt[4]{5}i$?

Esercizio 10. Sia f un polinomio irriducibile in F[x], con F un campo di caratteristica p. Mostrare che f(X) si può scrivere come $f(x) = g(x^{p^e})$ con g(x) irriducibile e separabile. Dedurre che ogni radice di f ha la stessa molteplicità p^e in ogni campo di spezzamento.