The Euler-Bernoulli beam in differential form

Andrea Brugnoli

May 5, 2020

1 Classical formulation

The Euler-Bernoulli beam model consists of one PDE, describing the vertical displacement along the beam length:

$$\rho A(x) \frac{\partial^2 w}{\partial t^2}(x, t) + \frac{\partial^2}{\partial x^2} \left(EI(x) \frac{\partial^2 w}{\partial x^2} \right) = 0, \quad x \in \Omega = \{0, L\},$$
 (1)

where w(x,t) is the transverse displacement of the beam. The coefficients $\rho(x)$, A(x)E(x) and I(x) are the mass density, cross section, Young's modulus of elasticity and the moment of inertia of a cross section. The energy variables are then chosen as follows:

$$\alpha_w = \rho A(x) \frac{\partial w}{\partial t}(x, t)$$
, Linear Momentum, $\alpha_\kappa = \frac{\partial^2 w}{\partial x^2}(x, t)$, Curvature. (2)

Those variables are collected in the vector $\boldsymbol{\alpha} = (\alpha_w, \alpha_\kappa)^T$, so that the Hamiltonian can be written as a quadratic functional in the energy variables:

$$H = \frac{1}{2} \int_{\Omega} \left\{ \frac{1}{\rho A} \alpha_w^2 + E I \alpha_\kappa^2 \right\} d\Omega \tag{3}$$

The co-energy variables are found by computing the variational derivative of the Hamiltonian:

$$e_{w} := \frac{\delta H}{\delta \alpha_{w}} = \frac{\partial w}{\partial t}(x, t), \qquad \text{Vertical velocity,}$$

$$e_{\kappa} := \frac{\delta H}{\delta \alpha_{\kappa}} = EI(x) \frac{\partial^{2} w}{\partial x^{2}}(x, t), \qquad \text{Flexural momentum.}$$
(4)

The underlying interconnection structure is then found to be:

$$\frac{\partial}{\partial t} \begin{pmatrix} \alpha_w \\ \alpha_\kappa \end{pmatrix} = \begin{bmatrix} 0 & -\partial_{xx} \\ \partial_{xx} & 0 \end{bmatrix} \begin{pmatrix} e_w \\ e_\kappa \end{pmatrix}. \tag{5}$$

The power flow gives access to the boundary variables:

$$\dot{H} = \int_{\Omega} \{e_w \partial_t \alpha_w + e_\kappa \partial_t \alpha_\kappa\} \, d\Omega,$$

$$= \int_{\Omega} \{-e_w \partial_{xx} e_\kappa + e_\kappa \partial_{xx} e_w\} \, d\Omega, \quad \text{Integration by parts,}$$

$$= \int_{\partial\Omega} \{-e_w \partial_x e_\kappa + e_\kappa \partial_x e_w\} \, ds = \langle -e_w, \, \partial_x e_\kappa \rangle_{\partial\Omega} + \langle e_\kappa, \, \partial_x e_w \rangle_{\partial\Omega}$$
(6)

Since the system is of differential order two, two pairing appears, giving rise to four combination of uniform boundary causality

- First case $u_{\partial,1} = e_w$, $u_{\partial,2} = \partial_x e_w$, $y_{\partial,1} = -\partial_x e_\kappa$, $y_{\partial,2} = e_\kappa$. This imposes the vertical $e_w := \partial_t w$ and angular velocity $\partial_x e_w := \partial_{xt} w$ as boundary inputs. If the inputs are null a clamped boundary condition is obtained.
- Second case $u_{\partial,1} = e_w$, $u_{\partial,2} = e_\kappa$, $y_{\partial,1} = -\partial_x e_\kappa$, $y_{\partial,2} = \partial_x e_w$. This imposes the vertical velocity and flexural momentum $e_\kappa := EI\partial_{xx}w$ as boundary inputs. Zero inputs lead to a simply supported condition is found.
- Third case $u_{\partial,1} = -\partial_x e_{\kappa}$, $u_{\partial,2} = e_{\kappa}$, $y_{\partial,1} = e_w$, $y_{\partial,2} = \partial_x e_w$. This imposes the shear force $\partial_x e_{\kappa} := \partial_x (EI\partial_{xx}w)$ and flexural momentum as boundary inputs. Null inputs correspond to a free condition.
- Forth case $u_{\partial,1} = -\partial_x e_{\kappa}$, $u_{\partial,2} = \partial_x e_w$, $y_{\partial,1} = e_w$, $y_{\partial,2} = e_{\kappa}$. This imposes the shear force and angular velocity as boundary inputs.

2 Differential forms formulation

The co-energy now are 1-forms $e_w, e_{\kappa} \in \Lambda^1(\Omega)$ with the flows are 0-forms $f_w = \partial_t \alpha_w, f_{\kappa} = \partial_t \alpha_{\kappa} \in \Lambda^0(\Omega)$. To recast (5) using the exterior derivative, the Hodge star operator is needed.

$$*: \Lambda^k(\Omega) \to \Lambda^{n-k}(\Omega).$$
 (7)

For one dimensional domain and using Euclidian coordinates this operator can be either used on 1-forms or 0-forms

$$*: \Lambda^{1}(\Omega) \to \Lambda^{0}(\Omega),$$

$$dx \to 1$$
(8)

or

$$*: \Lambda^{0}(\Omega) \to \Lambda^{1}(\Omega),$$

$$1 \to dx$$
(9)

Then the equivalent system reads

$$\frac{\partial}{\partial t} \begin{pmatrix} \alpha_w \\ \alpha_\kappa \end{pmatrix} = \begin{bmatrix} 0 & -d*d \\ d*d & 0 \end{bmatrix} \begin{pmatrix} e_w \\ e_\kappa \end{pmatrix}. \tag{10}$$

Proof 1 The operator $d*d: \Lambda^0(\Omega) \to \Lambda^1(\Omega)$ is a composition of operators that reads in Euclidean coordinates

$$d*de = d*(\frac{\partial e}{\partial x} dx),$$

$$= d(\frac{\partial e}{\partial x}),$$

$$= \frac{\partial^2 e}{\partial x^2} dx,$$
(11)

The Hamiltonian energy is then

$$H = \frac{1}{2} \int_{\Omega} e_w \wedge \alpha_w + e_\kappa \wedge \alpha_\kappa \tag{12}$$

The power rate then reads

$$\dot{H} = \int_{\Omega} e_w \wedge \partial_t \alpha_w + e_\kappa \wedge \partial_t \alpha_\kappa,
= \int_{\Omega} e_w \wedge \partial_t \alpha_w + e_\kappa \wedge \partial_t \alpha_\kappa,
= \int_{\Omega} -e_w \wedge (d*de_w) + e_\kappa \wedge (d*de_\kappa)$$
(13)