

Examen 2A ISN & ISA Transmission de l'information

1h30 - Sans document Les rappels sont en annexe

Partie A: Transmission de l'information

Signal Numérique

Un signal numérique est représenté par une grandeur physique. Définissez les caractéristiques de cette grandeur physique dans le cas général.

Quantification & Débit

Une image TV numérisée doit être transmise à partir d'une source qui utilise une matrice d'affichage de 450x500 pixels, chacune des valeurs d'intensité des pixels est quantifiée sur 5 bits. On suppose que 30 images sont envoyées par seconde.

- 1) Quel est le débit D de la source ?
- 2) L'image TV est transmise sur une voie de largeur de bande 4,5 MHz avec un rapport signal/bruit de 35 dB. Déterminer la capacité de la voie de transmission

Transmission en bande base

On considère un système de transmission binaire en bande de base unipolaire, où les bits 0 et 1 sont respectivement codés par les symboles binaires $a_k = 0$ et $a_k = 1$ avec k qui représente le k^{eme} moment élémentaire transmis. Le moment élémentaire a une durée Tb. Les symboles a_k sont supposés indépendants et équiprobables. Le filtre de mise en forme (format)

- des a_k=1 est une fonction porte de durée Tb/2 soit la première demi période d'amplitude 1et zéro sur la seconde demi période (signal de type RZ).
- des a_k=0 est une fonction égale à zéro pendant toute la durée du moment élémentaire k
- 1) Tracer le signal émis pour une séquence binaire 0 1 1 0 1
- 2) Calculer la moyenne, la variance et l'énergie des deux symboles $a_k=1$ et $a_k=0$.
- 3) Calculer la transformée de Fourier du filtre de mise en forme pour les a_k=1 et a_k =0
- 4) Donner l'expression de la densité spectrale du signal émis
- 5) Tracer la densité spectrale de puissance et en déduire les avantages et les inconvénients de ce format de codage

Modulation de données numérique

Soit la partie réelle du signal MDA en bande de base suivant :

$$e(t) = \sum_{k} a_{k} g(t - kT_{b}) \text{ avec } g(t) = \begin{cases} 1 & pour & 0 < t < T_{b} \\ & 0 & ailleurs \end{cases}$$

Avec
$$a_k = (2m-1-M)A$$
 où $m \in \{1,...,M\}$

Nous faisons les hypothèses suivantes

La partie imaginaire ne comporte pas d'information et ne sera donc pas considérée.

On suppose que $M = 2^{N_b}$ avec N_b un nombre entier

Les symboles sont supposés indépendants et équiprobables.

- 1) Exprimer les valeurs minimum et maximum des a_k en fonction de N_b et de A.
- 2) Indiquer en fonction de A la valeur de la séparation entre deux symboles a_k adjacents

- 3) Combien de bits peut-on transmettre par symbole a_k
- 4) Si les M valeurs de chaque symbole sont équiprobables, quelle est la variance σ_a^2 des symboles émis en fonction de A
- 5) Donner l'expression de 1'énergie Es reçue associée à chaque symbole
- 6) Représenter la constellation d'émission
- 7) Le signal e(t) porté par un cosinus de fréquence f_p passe dans un canal de fréquence de coupure f_c $(f_p < f_c)$ à bruit additif gaussien de moyenne nulle et de variance N_o . A la réception après le multiplieur un filtre passe bas idéal de fréquence de coupure f_{PB} récupère parfaitement le signal démodulé et $f_{PB} << f_p < f_c$. Exprimer l'énergie Eb reçue pour chaque symbole ?
- 8) Exprimer le rapport signal sur bruit pour un symbole situé au centre de la constellation
- 9) Exprimer le rapport signal sur bruit pour les symboles situés aux extrémités de la constellation
- 10) Conclure sur ce type de modulation

Quelques rappels

- 1. Capacité théorique d'un canal de transmission (Formule de Shannon) notée C: $C=B \cdot log_2(I+\frac{Ps}{Pb})$ avec B largeur de bande du canal de transmission, Ps Puissance moyenne du signal, Pb Puissance moyenne de bruit
- 2. Relation entre P la puissance moyenne et G(f) la densité spectrale de puissance d'un signal $P = \int_{R} G(f) df$ (Attention B peut être bilatérale)
- 3. Pour un signal *s* déterministe, on définit son *énergie* dans le domaine continue par $E(s) = \int |s(t)|^2 dt$ et dans le domaine discret par $\sum_{n=1}^{\infty} |s_n|^2$.
- 4. L'espérance mathématique (ou moyenne théorique) d'une variable aléatoire discrète X est définie par : $E(X) = \mu(X) = \sum_i p_i x_i$

La variance théorique d'une variable aléatoire discrète $\, X \,$ est définie par :

$$\sigma^{2}(X) = \mu(X - \mu(X))^{2} = \sum_{i} p_{i}(X_{i} - \mu)^{2} = \sum_{i} p_{i}X_{i}^{2} - \mu^{2}$$

L'écart type théorique est :
$$\sigma(X) = \sqrt{\sum_{i} p_{i} (x_{i} - \mu)^{2}}$$

Si X et Y sont deux variables aléatoires indépendantes, alors : $\mu(X + Y) = \mu(X) + \mu(Y)$ $\sigma^2(X + Y) = \sigma^2(X) + \sigma^2(Y)$

- 5. La valeur efficace est la racine carré de la puissance moyenne : $V_{eff} = \sqrt{P}$ et la valeur efficace est équivalente à l'écart type σ pour une variable aléatoire gaussienne.
- 6. Bande passante à α dB : $\alpha = 10log_{10} \frac{Ps}{Ph}$
- 7. Efficacité spectrale : Débit/Bande passante
- 8. Moment élémentaire (Intervalle de temps), noté T : période pendant laquelle les caractéristiques du signal à transmettre ne sont pas modifiées.
- 9. Valence notée V : Nombre de symboles possibles et distincts employés dans une modulation pour caractériser les éléments du signal à transmettre.
- 10. Rapidité de modulation, notée R : C'est une caractéristique physique de la ligne. Son unité est le baud. $R=\frac{1}{T}$. Dans certain cas elle correspond à la bande passante
- 11. Débit binaire, notée D : quantité de bit émis par unité de temps. Unité:bits/s. D=Rlog2V
- 12. La densité spectrale de puissance selon la loi de Bennett est donnée par la formule:

$$DSP(f) = \frac{\left|m_{s}\right|^{2}}{T_{b}} \sum_{n} \left|S(n/T_{b})\right|^{2} \delta(f - n/T_{b}) + \frac{\sigma_{s}^{2}}{T_{b}} \left|S(f)\right|^{2} \text{ avec } S(f) \text{ la transformée de Fourrier des moments}$$

élémentaires, elle dépend du format du codage

13. Pour une variable aléatoire suivant une loi gaussienne de moyenne m et d'écart type σ, la probabilité que sa valeur soit contenue dans l'intervalle [m-3σ, m+3σ] est de 0,99 et de 0,95 pour l'intervalle [m-2σ, m+2σ] et 0,68 pour l'intervalle [m-σ, m+σ].

Sans document Les rappels sont en fin d'énoncé

Partie B : Théorie de l'information

Exercice:

Une source S génère 7 symboles s_i avec les probabilités :

 $p(s_1)=1/3$,

 $p(s_2)=1/3$,

 $p(s_3)=1/9$,

 $p(s_4)=1/9$,

 $p(s_5)=1/27$,

 $p(s_6)=1/27$,

 $p(s_7)=1/27$.

- 1. Construire un code optimal ayant l'alphabet $x=\{0, 1, 2\}$ et calculer son efficacité
- 2. Construire un code binaire optimal et calculer son efficacité ainsi que sa redondance

Quelques formules utiles:

$$H(x) = -\sum_{i=1}^{N} p(x_i) \log(p(x_i))$$
 $\eta = \frac{H(S)}{\bar{l} \log(D)}$ $\bar{l} = \sum_{i=1}^{N} p(x_i) l_i$

Solution:

Signal Numérique

Un signal numérique est représenté par une grandeur physique. Définissez les caractéristiques de cette grandeur physique dans le cas général.

Valeurs des signaux est une variable discrète

Quantification & Débit

Nombre de pixels V = 33750000 bits \rightarrow le débit D est D = 33,75 Mbits/s.

2) Appliquons la relation $C = 2W \log_2(1 + S/B)^{1/2}$. Toutefois, il faut faire attention que dans cette relation S/B est exprimée en rapport de puissances et non en décibels. On écrira donc de préférence

$$C = 2W \log_2(1 + P_S/P_B)^{1/2}$$

$$P_S/P_B = \exp[(Ln(10)/10).S/B] = 3162 \text{ d'où } C = (9/2).(Ln(3163)/Ln(2)) = 52 \text{ Mbits/s}.$$

A noter que avec S/B = 30 dB, on aurait C = 44.8 Mbits/s et que avec S/B = 20 dB, on aurait C = 29.96 Mbits/s.

Transmission en bande de base

1. Soit un signal de transmission de données numérique en bande de base de formats monopolaire avec retour a zéro de la figure :

1) Calculer la moyenne, la variance et l'énergie des deux symboles $a_k=1$ et $a_k=0$.

La moyenne des symboles $a_k = 1$ vaut $m_{ak=1} = 1/2$. La variance vaut $\sigma_{ak=1}^2 = (1/2) \times (1-1/2)^2 + (1/2) \times (0-1/2)^2 = 1/4 = E$

La moyenne des symboles $a_k = 0$ vaut $m_{ak=0} = 0$. La variance vaut $\sigma_{ak=0}^2 = 0 = E$

2) Calculer la transformée de Fourier du filtre de mise en forme pour les $a_k=1$ et $a_k=0$

La transformée de Fourier de la fonction Porte de longueur T_s /2 et d'amplitude 1 vaut $G(f) = \frac{2e^{-i\pi/T_{b/2}}}{\pi T_b} sin c(fT_b)$ /2)

d'où
$$|G(f)| = \frac{2}{\pi T_b} |\sin c(fT_b / 2)|$$

Donner l'expression de la densité spectrale du signal émis

Selon la loi de Bennett :
$$S(f) = \frac{\left|m_s\right|^2}{T_b} \sum_{k} \left|G(k/T_b)\right|^2 \delta(f - k/T_b) + \frac{\sigma_s^2}{T_b} \left|G(f)\right|^2$$

Donner l'expression de la densité spectrale du signal émis

La d.s.p. possède un pic à la fréquence 0 et des pics aux fréquences multiples impaires de 1/Tb. Le lobe principal a une largeur de bande de 2/Tb ce qui n'est pas avantageux par rapport à un filtre en cosinus surélevé.

Modulation de données numérique

Soit la partie réelle du signal MDA en bande de base suivant :

$$e(t) = \sum_{k} a_{k} g(t - kT_{b}) \text{ avec } g(t) = \begin{cases} 1 & pour & 0 < t < T_{b} \\ & 0 & ailleurs \end{cases}$$

Avec
$$a_k = (2m-1-M)A$$
 où $m \in \{1,...,M\}$

Nous faisons les hypothèses suivantes

La partie imaginaire ne comporte pas d'information et ne sera donc pas considérée.

On suppose que $M = 2^{N_b}$ avec N_b un nombre entier

Les symboles sont supposés indépendants et équiprobables.

1) Exprimer les valeurs minimum et maximum des a_k en fonction de N_b et de A.

$$a_k max = (M-1)A = (2^{N_b}-1)A$$
 et $a_k min = (1-M)A = (1-2^{N_b})A$

2) Indiquer en fonction de A la valeur de la séparation entre deux symboles a_k adjacents

$$|a_k(m) - a_k(m+1)| = |(2m-1-M)A - (2(m+1)-1-M)A| = 2A$$

3) Combien de bits peut-on transmettre par symbole $a_k: N_b$

4) Si les M valeurs de chaque symbole sont équiprobables, quelle est la variance σ_a^2 des symboles

émis en fonction de
$$A$$
 $\sigma^2 = \sum_{m=1}^{M} \frac{1}{2^{N_b}} (a_k(m))^2 = \frac{1}{2^{N_b}} \sum_{m=1}^{M} ((2m-1-M)A)^2$

5) Donner l'expression de l'énergie Es reçue associée à chaque symbole

$$Es(m) = ((2m-1-M)A)^2 T_b$$

6) Représenter la constellation d'émission

7) Le signal e(t) porté par un cosinus de fréquence f_p passe dans un canal de fréquence de coupure f_c $(f_p < f_c)$ à bruit additif gaussien de moyenne nulle et de variance N_o . A la réception après le multiplieur un filtre passe bas idéal de fréquence de coupure f_{PB} récupère parfaitement le signal démodulé et $f_{PB} << f_p < f_c$. Exprimer l'énergie Eb reçue pour chaque symbole ?

Es(m) =
$$((2m-1-M)A)^2 T_b + \frac{1}{2} \sigma_b^2 \frac{f_{pb}}{f_c}$$

8) Exprimer le rapport signal sur bruit pour un symbole situé au centre de la constellation

$$RSB = 10 \log((2m - 1 - M)A)^{2}T_{b} - 10 \log\left(\frac{1}{2}\sigma_{b}^{2}\frac{f_{pb}}{f_{c}}\right)$$

si m=M/2

alors
$$RSB = 10 log(A)^2 T_b - 10 log\left(\sigma_b^2 \frac{f_{pb}}{f_c}\right) = 10 log\left(\frac{(A)^2 T_b}{\sigma_b^2 \frac{f_{pb}}{f_c}}\right)$$

9) Exprimer le rapport signal sur bruit pour les symboles situés aux extrémités de la constellation

$$RSB = 10 \log ((2m - 1 - M)A)^{2} T_{b} - 10 \log \left(\frac{1}{2} \sigma_{b}^{2} \frac{f_{pb}}{f_{c}}\right)$$

si m=M

alors
$$RSB = 10 log((M-1)A)^2 T_b - 10 log(\sigma_b^2 \frac{f_{pb}}{f_c}) = 10 log((M-1)A)^2 T_b$$

$$RSB = 10 \log ((M-1)A)^{2} T_{b} - 10 \log \left(\sigma_{b}^{2} \frac{f_{pb}}{f_{c}}\right) = 10 \log \left(\frac{(2^{Nb}-1)A)^{2} T_{b}}{\sigma_{b}^{2} \frac{f_{pb}}{f_{c}}}\right)$$

10) Conclure sur ce type de modulation