

#9

SEQUENCE LISTING

<110> SUBTIL, AGATHE

PARSOT, CLAUDE

DAUTRY-VARSAT, ALICE

<120> SECRETED CHLAMYDIA POLYPEPTIDES AND METHOD FOR IDENTIFYING SUCH POLYPEPTIDES BY THEIR SECRETION BY A TYPE III SECRETION PATHWAY OF A GRAM NEGATIVE BACTERIA

<130> 216907US0X

<140> 10/014,670

<141> 2001-12-14

<150> US 60/255,118

<151> 2000-12-14

<160> 24

<170> PatentIn version 3.1

<210> 1

<211> 32

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 1

tgacctcgag ttaacctatt aaggataaaa tt

32

<210> 2

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 2

gactgaattc gttgctctat ctacgggtga

30

<210> 3

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 3

gatcctcgag ttaatctatt ttttagatagg

30

<210> 4

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 4

gactgaattc cttgttgtac ggacagtaat

30

<210> 5

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 5

gatcctcgag ttaatctatt ttttagatagg

30

<210> 6

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 6

cttaggaattc gattgaacag taacagatcc

30

<210> 7

<211> 32

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 7

gactaaggctt gtaacctatt aaggataaaa tt

32

<210> 8

<211> 31

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 8

gacttctaga aatgataacc ttttcaatga a

31

<210> 9

<211> 32

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 9

gactaaggctt gtaatctatt ttttagatagg aa

32

<210> 10

<211> 31

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 10

gacttctaga tccagggttt tcggaagcag a

31

<210> 11

<211> 32

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 11

gactaagctt gtaagtaaaaa aacacaaaaa at

32

<210> 12

<211> 31

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 12

gacttctaga tatttgagct ggtacaacag g

31

<210> 13

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 13

gactaagctt gcatttgata attgcataaa

30

<210> 14

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 14

gacttctaga cgctcgagaa taataaccc

29

<210> 15

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 15

gactaagctt gaatacataaa gctgttc

27

<210> 16

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 16

gacttctaga aatgattagg taagcaatg

29

<210> 17

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 17

gactaagctt aaagtgtttg agatgaatt

29

<210> 18

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 18

gacttctaga cgctcccaac cccagagtc

29

<210> 19

<211> 31
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 19
gactaagctt attatataga cagattaaaa t

31

<210> 20
<211> 31
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 20
gacttctaga cttaaaaaat acccaggaac a

31

<210> 21
<211> 31
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 21
gactaagctt acaacaaatt aagatataat c

31

<210> 22
<211> 31
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 22
gacttctaga ttttattttt ttagcaatca c

31

<210> 23
<211> 32
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 23
gactaagctt gtaaaattgga gattgttagta gc

32

<210> 24
<211> 31
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 24
gacttctaga aacaattgta tgattccatc c

31