Trend		Seasonal	
	N	Α	M
	$\hat{y}_{t+h t} = \ell_t$	$\hat{y}_{t+h t} = \ell_t + s_{t-m+h_m^+}$	$\hat{y}_{t+h t} = \ell_t s_{t-m+h_m^+}$
N	$\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$	$\ell_t = \alpha(y_t - s_{t-m}) + (1 - \alpha)\ell_{t-1}$	$\ell_t = \alpha(y_t/s_{t-m}) + (1-\alpha)\ell_{t-1}$
		$s_t = \gamma (y_t - \ell_{t-1}) + (1 - \gamma) s_{t-m}$	$s_t = \gamma(y_t/\ell_{t-1}) + (1-\gamma)s_{t-m}$
	$\hat{y}_{t+h t} = \ell_t + hb_t$	$\hat{y}_{t+h t} = \ell_t + hb_t + s_{t-m+h_m^+}$	$\hat{y}_{t+h t} = (\ell_t + hb_t)s_{t-m+h_m^+}$
A	$\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + b_{t-1})$	$\ell_t = \alpha(y_t - s_{t-m}) + (1 - \alpha)(\ell_{t-1} + b_{t-1})$	$\ell_t = \alpha(y_t/s_{t-m}) + (1 - \alpha)(\ell_{t-1} + b_{t-1})$
	$b_t = \beta^* (\ell_t - \ell_{t-1}) + (1 - \beta^*) b_{t-1}$	$b_t = \beta^* (\ell_t - \ell_{t-1}) + (1 - \beta^*) b_{t-1}$	$b_t = \beta^* (\ell_t - \ell_{t-1}) + (1 - \beta^*) b_{t-1}$
		$s_t = \gamma (y_t - \ell_{t-1} - b_{t-1}) + (1 - \gamma)s_{t-m}$	$s_{t} = \gamma(y_{t}/(\ell_{t-1} - b_{t-1})) + (1 - \gamma)s_{t-m}$
	$\hat{y}_{t+h t} = \ell_t + \phi_h b_t$	$\hat{y}_{t+h t} = \ell_t + \phi_h b_t + s_{t-m+h_m^+}$	$\hat{y}_{t+h t} = (\ell_t + \phi_h b_t) s_{t-m+h_m^+}$
A_d	$\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1})$	$\ell_t = \alpha (y_t - s_{t-m}) + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1})$	$\ell_t = \alpha(y_t/s_{t-m}) + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1})$
	$b_t = \beta^* (\ell_t - \ell_{t-1}) + (1 - \beta^*) \phi b_{t-1}$	$b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)\phi b_{t-1}$ $s_t = \gamma(y_t - \ell_{t-1} - \phi b_{t-1}) + (1 - \gamma)s_{t-m}$	$b_t = \beta^* (\ell_t - \ell_{t-1}) + (1 - \beta^*) \phi b_{t-1}$ $s_t = \gamma (y_t / (\ell_{t-1} - \phi b_{t-1})) + (1 - \gamma) s_{t-m}$
	h		
	$\hat{y}_{t+h t} = \ell_t b_t^h$	$\hat{y}_{t+h t} = \ell_t b_t^h + s_{t-m+h_m^+}$	$\hat{y}_{t+h t} = \ell_t b_t^h s_{t-m+h_m^+}$
M	$\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}b_{t-1}$	$\ell_t = \alpha (y_t - s_{t-m}) + (1 - \alpha)\ell_{t-1}b_{t-1}$	$\ell_t = \alpha(y_t/s_{t-m}) + (1-\alpha)\ell_{t-1}b_{t-1}$
	$b_t = \beta^* (\ell_t / \ell_{t-1}) + (1 - \beta^*) b_{t-1}$	$b_t = \beta^* (\ell_t / \ell_{t-1}) + (1 - \beta^*) b_{t-1}$	$b_t = \beta^* (\ell_t / \ell_{t-1}) + (1 - \beta^*) b_{t-1}$
		$s_t = \gamma (y_t - \ell_{t-1} b_{t-1}) + (1 - \gamma) s_{t-m}$	$s_{t} = \gamma(y_{t}/(\ell_{t-1}b_{t-1})) + (1-\gamma)s_{t-m}$
	$\hat{y}_{t+h t} = \ell_t b_t^{\phi_h}$	$\hat{y}_{t+h t} = \ell_t b_t^{\phi_h} + s_{t-m+h_m^+}$	$\hat{y}_{t+h t} = \ell_t b_t^{\phi_h} s_{t-m+h_m^+}$
M_d	$\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1} b_{t-1}^{\phi}$ $b_t = \beta^*(\ell_t/\ell_{t-1}) + (1 - \beta^*)b_{t-1}^{\phi}$	$\ell_t = \alpha (y_t - s_{t-m}) + (1 - \alpha)\ell_{t-1} b_{t-1}^{\phi}$	$\ell_t = \alpha(y_t/s_{t-m}) + (1-\alpha)\ell_{t-1}b_{t-1}^{\phi}$
	$b_t = \beta^*(\ell_t/\ell_{t-1}) + (1 - \beta^*)b_{t-1}^{\phi}$	$b_t = \beta^* (\ell_t / \ell_{t-1}) + (1 - \beta^*) b_{t-1}^{\phi}$	$b_t = \beta^* (\ell_t / \ell_{t-1}) + (1 - \beta^*) b_{t-1}^{\phi}$
		$s_t = \gamma (y_t - \ell_{t-1} b_{t-1}^{\phi}) + (1 - \gamma) s_{t-m}$	$s_t = \gamma(y_t/(\ell_{t-1}b_{t-1}^{\phi})) + (1-\gamma)s_{t-m}$