Introduction to Topological Manifolds, Lee - Homework 1

suremark

August 23, 2023

1 Problem 1

- (a). f is continuous.
- (b). f is an open and closed mapping.
- (c). Let us first show that continuity on X implies continuity at every point in X.

Let $x_0 \in X$ and $U \in N(f(x_0))$ be arbitrary, where N(x) denotes the collection of open neighborhoods of x. Then there exists $V \in N(x_0)$ such that $f(V) \subseteq U$; simply take $V = f^{-1}(U)$ which is open (by continuity on X) and contains x_0 .

To show the converse, suppose f is continuous at every point in X, and let $A \subseteq Z$ be an arbitrary open set. Take

$$V = \bigcup \{ V_x : x \in f^{-1}(A) \}$$

where each V_x is a neighborhood of x such that $f(V_x) \subseteq A$. The existence of each V_x is guaranteed by continuity at every point in X (simply take $x_0 = x$ and U = A in the definition of continuity at a point). By construction, $f(V) \subseteq A$ since $f(V_x) \subseteq A$, which implies $V \subseteq f^{-1}(A)$. But V contains every point in $f^{-1}(A)$ since $x \in V_x$, which implies that $f^{-1}(A) \subseteq V$. Hence $V = f^{-1}(A)$. Since V is a union of open sets V_x , V is clearly open, so $f^{-1}(A)$ is open.

Since A was arbitrary, continuity on all of X is proved.

2 Problem 2

A manifold is a second-countable Hausdorff space locally homeomorphic to the Euclidean d-ball. For each $x \in M$ let $U_x \in N(x)$ such that there exists a homeomorphism $\varphi_x : U_x \to B^d$. Let $\{B_{x,i}\}_{i \in I}$ be a basis for U_x induced by the homeomorphism to B^d . Our basis will simply be the union of every $\{B_{x,i}\}_{i \in I}$. Now let $A \subseteq M$ be an arbitrary open set. One has that

$$A = A \cap M = A \cap \bigcup_{x \in M} U_x = \bigcup_{x \in M} A \cap U_x$$

which is a decomposition of A into a union of open sets. Now, one has for each $x \in M$,

$$A \cap U_x = \bigcup_{i \in I_x \subseteq I} B_{x,i}$$

essentially saying $A \cap U_x$ can be represented as a union of elements from $\{B_{x,i}\}_{i \in I}$, since $B_{x,i}$ is a basis for U_x . It follows that

$$A = \bigcup_{x \in M} \bigcup_{i \in I_x \subseteq I} B_{x,i}$$

which gives A as a union of open sets from our basis.

3 Problem 3

- (a). $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x \mod 1$.
- (b). $f : \mathbb{R} \to \mathbb{R}$ given by f(x) = |x|.
- (c). $f : \mathbb{R} \{0\} \to [-1, 1]$ given by $f(x) = \sin x^{-1}$.
- (d). $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = \frac{x}{x^2+1}$.
- (e). $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = \exp((x(1-x))^{-1})$ if $x \notin [0,1]$, and 0 otherwise (f). $f: S^1 \to [0,1)$ where f(z) is the unique $t \in [0,1)$ such that $\exp(2i\pi t) = z$.

Problem 4 4

- (a). The empty set is represented by the zeroes of p(x) = 1. \mathbb{C} is represented by the zeroes of p(x) = 0.
- (b). Let $\{p_i(x)\}_{i\in I}$ be a family of polynomials (representing closed sets). Let R_i be the set of roots for each p_i . Since each R_i is finite, there is a unique monic polynomial whose roots are $\bigcap_{i \in I} R_i$, provided that it is nonempty.

If R_i is empty then just choose p(x) = 1.

(c).
$$\{x: p(x) = 0\} \cup \{x: q(x) = 0\} = \{x: p(x)q(x) = 0\}$$

5 Problem 5

Let \mathcal{U} be an open cover of X, i.e. a collection of open sets s.t. $\bigcup_{u \in \mathcal{U}} u = X$.

(a). Let U be open in X. Let B_u be a basis for each $u \in \mathcal{U}$. Then

$$U=U\cap X=U\cap (\bigcup_{u\in\mathcal{U}}u)=\bigcup_{u\in\mathcal{U}}U\cap u$$

Now, let $\mathcal{F}_u \subseteq B_u$ such that $\bigcup_{f \in \mathcal{F}_u} f = U \cap u$ (since B_u is a basis). Then

$$U = \bigcup_{u \in \mathcal{U}} \bigcup_{f \in \mathcal{F}_u} f$$

which is a union of open sets from $\bigcup_{u\in\mathcal{U}} B_u$ which forms a basis for X.

(b). Second-countability of each element in the cover implies the existence of a family of countable bases $\{B_u\}_{u\in\mathcal{U}}$. Then it follows that, since \mathcal{U} is a countable open cover, $\bigcup_{u\in\mathcal{U}} B_u$ is a countable open cover of all of X, since the union of a countable family of countable sets is also countable.

Problem 6 6

(a).
$$d(f,g)=|f-g|=\left(\int_{\mathbb{R}}|f(t)-g(t)|^2dt\right)^{\frac{1}{2}}$$

$$d(f,g)=d(g,f) \quad \text{by symmetry of } |\cdot|$$

 $d(f,g) \ge 0$ by non-negativity of $|\cdot|$, and $d(f,g) = 0 \iff |f(t) - g(t)|^2 \sim 0$

$$\begin{split} d(f,h) &= \left(\int_{\mathbb{R}} |f(t) - g(t)|^2 dt \right)^{\frac{1}{2}} = \left(\int_{\mathbb{R}} |g(t) - g(t) + g(t) - h(t)|^2 dt \right)^{\frac{1}{2}} \\ &\leq \left(\int_{\mathbb{R}} |f(t) - g(t)|^2 dt \right)^{\frac{1}{2}} + \left(\int_{\mathbb{R}} |g(t) - h(t)|^2 dt \right)^{\frac{1}{2}} \quad \text{by Minkowski's inequality} \\ &\leq d(f,g) + d(g,h). \quad \blacksquare \end{split}$$

(b).

$$B_r(f) = \{ g : \int_{\mathbb{R}} |f(t) - g(t)|^2 dt \le r^2 \} \cong B_r(0) + f$$

U is first-countable and Hausdorff.

 $f_n \to f \iff (\forall \varepsilon > 0)(\exists N \in \mathbb{N})(\forall n \geq N)|f_n - f| < \varepsilon$, which is not equivalent to uniform continuity for functions on \mathbb{R} .

(c). It suffices to show the primage of an open ball is open.

$$+^{-1}(B_r(h)) = \{ (f,g) : |f+g-h| < r \}$$

Now suppose $(f,g) \in +^{-1}(B_r(h))$. Let $\delta > 0$, and let (f',g') be such that $(|f'-f|^2 + |g'-g|^2)^{\frac{1}{2}} < \delta$. Then of course $|f'-f| < \delta$ and $|g'-g| < \delta$ by the properties of the Euclidean metric. Now,

$$|f' - f - (-(g' - g))| \le |f' - f| + |-(g' - g)| = |f' - f| + |g' - g| < 2\delta$$
 by the triangle inequality.

Note that $|f' + g' - (f + g)| < 2\delta$ and |(f + g) - h| < r. Then if we choose δ such that $2\delta < r - |f + g - h|$,

$$|f'+g'-h| = |f'+g'-(f+g)+(f+g)-h| \le |f'+g'-(f+g)| + |(f+g)-h| < 2\delta + |(f+g)-h| < r$$

From this it follows that every $(f,g) \in +^{-1}(B_r(h))$ has an open neighborhood of radius $\delta < \frac{1}{2}(r - |f + g - h|)$ inside the preimage, which proves continuity in the metric sense.

Now let us prove continuity of $\times : \mathbb{R} \times U \to U$:

$$\times^{-1}(B_r(g)) = \{ \lambda f : |\lambda f - g| < r \}.$$

Let (λ', f') such that $((\lambda' - \lambda)^2 + |f' - f|^2)^{\frac{1}{2}} < \delta$.

Then of course $|\lambda' - \lambda| < \delta$ and $|f' - f| < \delta$ by the properties of the Euclidean metric. Now,

$$|\lambda'f' - \lambda f| = |(\lambda' - \lambda)f - \lambda(f' - f)|$$

$$\leq |\lambda' - \lambda||f| + |\lambda||f' - f|$$

$$\leq \delta(|f| + |\lambda|).$$

Now, $|\lambda f - g| < r$, so $\delta(|f| + |\lambda|) < r - |\lambda f - g| \implies |\lambda' f' - g| < r$ in a similar fashion to the previous argument with the + function. If $|f| = |\lambda| = 0$ then $\delta > 0$ can be arbitrary. Otherwise, just choose $\delta < \frac{r - |\lambda f - g|}{|f| + |\lambda|}$. Then $B_{\delta}((\lambda, f)) \subseteq \times^{-1}(g)$.