Scilab Textbook Companion for Fluid Mechanics by J. F. Douglas¹

Created by
Jay Chakra
B.Tech
Others
IIT Bombay
College Teacher
Madhu Belur
Cross-Checked by
Mukul R. Kulkarni

May 24, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Fluid Mechanics

Author: J. F. Douglas

Publisher: Pearson Prentice Hall

Edition: 5

Year: 2005

ISBN: 9780131292932

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes	
1	Fluids and their properties	6
2	Pressure and Head	7
3	Static Forces on Surfaces Buoyancy	14
4	Motion of Fluid Particles and Streams	21
5	The Momentum Equation and its Applications	25
6	The Energy Equation and its Applications	33
7	Two dimensional Ideal Flow	41
8	Dimensional Analysis	45
9	Similarity	46
10	Laminar and Turbulent Flows in Bounded Systems	51
11	Boundary Layer	56
12	Incompressible Flow around a Body	58
13	Compressible Flow around a Body	63
14	Steady Incompressible Flow in Pipe and Duct Systems	66

15 Uniform Flow in Open Channels	7 6
16 Non uniform Flow in Open Channels	78
17 Compressible Flow in Pipes	80
20 Pressure Transient Theory and Surge Control	84
22 Theory of Rotodynamic Machines	86
23 Performance of Rotodynamic Machines	89
24 Positive Displacement Machines	95
25 Machine Network Interactions	99

List of Scilab Codes

Exa 1.1	Excess Pressure	6
Exa 2.1	VARIATION OF PRESSURE VERTICALLY	7
Exa 2.2	VARIATION OF PRESSURE WITH ALTITUDE	7
Exa 2.3	VARIATION OF PRESSURE WITH ALTITUDE IN A	
	GAS UNDER ADIABATIC CONDITIONS	8
Exa 2.4	VARIATION OF PRESSURE AND DENSITY WITH	
	ALTITUDE FOR A CONSTANT TEMPERATURE GRA	_
	DIENT	9
Exa 2.5	PRESSURE AND HEAD	9
Exa 2.6	PRESSURE MEASUREMENT BY MANOMETER .	10
Exa 2.7	PRESSURE MEASUREMENT BY MANOMETER .	10
Exa 2.8	PRESSURE MEASUREMENT BY MANOMETER .	11
Exa 2.9	PRESSURE MEASUREMENT BY MANOMETER .	12
Exa 2.10	RELATIVE EQUILIBRIUM	12
Exa 3.1	RESULTANT FORCE AND CENTRE OF PRESSURE	
	ON A PLANE SURFACE UNDER UNIFORM PRES-	
	SURE	14
Exa 3.2	RESULTANT FORCE AND CENTRE OF PRESSURE	
	ON A PLANE SURFACE UNDER UNIFORM PRES-	
	SURE	15
Exa 3.3	PRESSURE DIAGRAMS	16
Exa 3.4	FORCE ON A CURVED SURFACE DUE TO HYDRO-	
	STATIC PRESSURE	16
Exa 3.5	BUOYANCY	17
Exa 3.6	DETERMINATION OF THE POSITION OF THE META	_
	CENTRE RELATIVE TO THE CENTRE OF BUOY-	
	ANCY	18

Exa 3.7	STABILITY OF A VESSEL CARRYING LIQUID IN	
	TANKS WITH A FREE SURFACE	19
Exa 4.1	DISCHARGE AND MEAN VELOCITY	21
Exa 4.2	CONTINUITY OF FLOW	23
Exa 4.3	CONTINUITY EQUATIONS FOR THREE DIMEN-	
	SIONAL FLOW USING CARTESIAN COORDINATES	23
Exa 5.1	GRADUAL ACCELERATION OF A FLUID IN A PIPEL	INE
	NEGLECTING ELASTICITY	25
Exa 5.2	FORCE EXERTED BY A JET STRIKING A FLAT	
	PLATE	25
Exa 5.3	FORCE DUE TO THE DEFLECTION OF A JET BY	
	A CURVED VANE	27
Exa 5.4	FORCE EXERTED WHEN A JET IS DEFLECTED	
	BY A MOVING CURVED VANE	27
Exa 5.5	FORCE EXERTED ON PIPE BENDS AND CLOSED	
	CONDUITS	28
Exa 5.6	REACTION OF A JET	29
Exa 5.7	REACTION OF A JET	30
Exa 5.8	REACTION OF A JET	31
Exa 5.10	ANGULAR MOTION	31
Exa 6.1	MECHANICAL ENERGY OF A FLOWING FLUID .	33
Exa 6.2	CHANGES OF PRESSURE IN A TAPERING PIPE .	34
Exa 6.3	PRINCIPLE OF THE VENTURI METER	35
Exa 6.4	THEORY OF SMALL ORIFICES DISCHARGING TO	
	ATMOSPHERE	35
Exa 6.5	THEORY OF LARGE ORIFICES	36
Exa 6.6	ELEMENTARY THEORY OF NOTCHES AND WEIRS	36
Exa 6.7	ELEMENTARY THEORY OF NOTCHES AND WEIRS	37
Exa 6.8	THE POWER OF A STREAM OF FLUID	38
Exa 6.9	VORTEX MOTION	38
Exa 6.10	Free vortex or potential vortex	39
Exa 7.2	STRAIGHT LINE FLOWS AND THEIR COMBINA-	
	TIONS	41
Exa 7.3	COMBINED SOURCE AND SINK FLOWS DOUBLET	42
Exa 7.4		43
Exa 7.5	CURVED FLOWS AND THEIR COMBINATIONS .	43

Exa 8.1	CONVERSION BETWEEN SYSTEMS OF UNITS IN-	
	CLUDING THE TREATMENT OF DIMENSIONAL	
	CONSTANTS	45
Exa 9.1	MODEL STUDIES FOR FLOWS WITHOUT A FREE	
	SURFACE	46
Exa 9.2	MODEL STUDIES FOR FLOWS WITHOUT A FREE	
	SURFACE	46
Exa 9.3	ZONE OF DEPENDENCE OF MACH NUMBER	47
Exa 9.4	SIGNIFICANCE OF THE PRESSURE COEFFICIENT	47
Exa 9.5	MODEL STUDIES IN CASES INVOLVING FREE SUR-	
	FACE FLOW	48
Exa 9.6	SIMILARITY APPLIED TO ROTODYNAMIC MA-	
	CHINES	49
Exa 9.8	RIVER AND HARBOUR MODELS	49
Exa 10.1	INCOMPRESSIBLE STEADY AND UNIFORM LAM-	
	INAR FLOW BETWEEN PARALLEL PLATES	51
Exa 10.2	INCOMPRESSIBLE STEADY AND UNIFORM LAM-	
	INAR FLOW IN CIRCULAR CROSS SECTION PIPES	52
Exa 10.3	INCOMPRESSIBLE STEADY AND UNIFORM TUR-	
	BULENT FLOW IN CIRCULAR CROSS SECTION	
	PIPES	53
Exa 10.4	STEADY AND UNIFORM TURBULENT FLOW IN	
	OPEN CHANNELS	54
Exa 10.5	VELOCITY DISTRIBUTION IN TURBULENT FULLY	
	DEVELOPED PIPE FLOW	54
Exa 10.7	SEPARATION LOSSES IN PIPE FLOW	55
Exa 11.1	PROPERTIES OF THE LAMINAR BOUNDARY LAYER	,
	FORMED OVER A FLAT PLATE IN THE ABSENCE	
	OF A PRESSURE GRADIENT IN THE FLOW DI-	
	RECTION	56
Exa 11.2	PROPERTIES OF THE TURBULENT BOUNDARY	
	LAYER OVER A FLAT PLATE IN THE ABSENCE	
	OF A PRESSURE GRADIENT IN THE FLOW DI-	
	RECTION	57
Exa 12.1	DRAG	58
Exa 12.2	RESISTANCE OF SHIPS	59
Exa 12.3	FLOW PAST A CYLINDER	59
Exa 12.4	FLOW PAST A SPHERE	60

Exa 12.5	FLOW PAST A SPHERE
Exa 12.6	FLOW PAST AN AEROFOIL OF FINITE LENGTH
Exa 13.1	EFFECTS OF COMPRESSIBILITY
Exa 13.2	SHOCK WAVES
Exa 14.1	INCOMPRESSIBLE FLOW THROUGH DUCTS AND
	PIPES
Exa 14.3	INCOMPRESSIBLE FLOW THROUGH PIPES IN PAR-
	ALLEL
Exa 14.4	INCOMPRESSIBLE FLOW THROUGH BRANCHING
	PIPES THE THREE RESERVOIR PROBLEM
Exa 14.5	INCOMPRESSIBLE STEADY FLOW IN DUCT NET-
	WORKS
Exa 14.6	INCOMPRESSIBLE STEADY FLOW IN DUCT NET-
	WORKS
Exa 14.7	RESISTANCE COEFFICIENTS FOR PIPELINES IN
	SERIES AND IN PARALLEL
Exa 14.8	THE QUANTITY BALANCE METHOD FOR PIPE
	NETWORKS
Exa 14.9	QUASI STEADY FLOW
Exa 14.12	QUASI STEADY FLOW
Exa 15.1	RESISTANCE FORMULAE FOR STEADY UNIFORM
	FLOW IN OPEN CHANNELS
Exa 15.2	OPTIMUM SHAPE OF CROSS SECTION FOR UNI-
	FORM FLOW IN OPEN CHANNELS
Exa 16.2	EFFECT OF LATERAL CONTRACTION OF A CHAN-
	NEL
Exa 16.3	CLASSIFICATION OF WATER SURFACE PROFILES
Exa 17.1	MASS FLOW THROUGH A VENTURI METER
Exa 17.2	THE LAVAL NOZZLE
Exa 17.3	NORMAL SHOCK WAVE IN A DIFFUSER
Exa 17.4	COMPRESSIBLE FLOW IN A DUCT WITH FRIC-
	TION UNDER ADIABATIC CONDITIONS FANNO
	FLOW
Exa 17.5	ISOTHERMAL FLOW OF A COMPRESSIBLE FLUID
	IN A PIPELINE
Exa 20.3	APPLICATION OF THE SIMPLIFIED EQUATIONS
	TO EXPLAIN PRESSURE TRANSIENT OSCILLA-
Exa 20.5	TIONS

Exa~20.5	CONTROL OF SURGE FOLLOWING VALVE CLO-	
	SURE WITH PUMP RUNNING AND SURGE TANK	
	APPLICATIONS	85
Exa 22.1	ONE DIMENSIONAL THEORY	86
Exa 22.2	DEPARTURES FROM EULERS THEORY AND LOSSES	8
Exa 22.3	COMPRESSIBLE FLOW THROUGH ROTODYNAMIC	
	MACHINES	88
Exa 23.1	DIMENSIONLESS COEFFICIENTS AND SIMILAR-	
	ITY LAWS	89
Exa 23.2	THE PELTON WHEEL	91
Exa 23.3	FRANCIS TURBINES	91
Exa 23.4	AXIAL FLOW TURBINES	92
Exa 23.5	HYDRAULIC TRANSMISSIONS	93
Exa 24.1	RECIPROCATING PUMPS	95
Exa 24.2	RECIPROCATING PUMPS	97
Exa 25.1	FANS PUMPS AND FLUID NETWORKS	99
Exa 25.4	AN APPLICATION OF THE STEADY FLOW EN-	
	ERGY EQUATION	101
Exa 25.7	JET FANS	102
Exa 25.8	JET FANS	103
Exa 25.9	CAVITATION IN PUMPS AND TURBINES	104
Exa 25.11	VENTILATION AND AIRBORNE CONTAMINATION	
	AS A CRITERION FOR FAN SELECTION	105
AP 1	UDF Intersect Function	107

List of Figures

4.1	DISCHARGE AND MEAN VELOCITY	22
23.1	DIMENSIONLESS COEFFICIENTS AND SIMILARITY LAWS	90
25.1	FANS PUMPS AND FLUID NETWORKS	.00

Chapter 1

Fluids and their properties

Scilab code Exa 1.1 Excess Pressure

```
1 funcprot(0); clc;
2 //Example 1.1
3 //Initialization of Variable
4 sigma = 72.7*10^-3; //Surface Tension
5 r = 1 *10^-3; //Radius of Bubble
6
7 //Calculations
8 P = 2*sigma/r;
9 disp(P,"Excess Pressure(N/m2):")
```

Chapter 2

Pressure and Head

Scilab code Exa 2.1 VARIATION OF PRESSURE VERTICALLY

```
1 clc ;funcprot(0);
2 //Example 2.1
3
4 //Initializing the variables
5 z1 = 0; //Taking Ground as reference
6 z2 = -30; //Depth
7 rho = 1025; //Density
8 g = 9.81; // Acceleration due to gravity
9
10 //Calculation
11 pressureIncrease = -rho*g*(z2-z1);
12 disp(pressureIncrease/1000, "Increase in Pressure (KN/m2):");
```

Scilab code Exa 2.2 VARIATION OF PRESSURE WITH ALTITUDE

```
1 clc ; funcprot(0);
2 //Example 2.2
```

Scilab code Exa 2.3 VARIATION OF PRESSURE WITH ALTITUDE IN A GAS UNDER ADIABATIC CONDITIONS

```
1 clc ; funcprot(0);
2 //Example 2.3
3
4 //Initializing the variables
5 p1 = 101*10^3; // Initial Pressure
6 z1 = 0; // Initial Height
7 z2 = 1200; // Final Height
8 T1 = 15+273; // Initial Temperature
9 g = 9.81; // Acceleration due to gravity
10 gamma = 1.4; //Heat capacity ratio
11 R = 287; //Gas Constant
12
13 // Calculations
14 p2 = p1*(1-g*(z2-z1)*(gamma-1)/(gamma*R*T1))^(gamma
      /(gamma-1));
15 dT_dZ = -(g/R)*((gamma-1)/gamma);
16 	ext{ T2} = 	ext{T1} + 	ext{dT_dZ*(z2-z1)};
```

```
17 disp(T2-273, "Density at 1200 m (in degree celcius) : ",p2/1000, "Final Pressure(kN/m2) :");
```

Scilab code Exa 2.4 VARIATION OF PRESSURE AND DENSITY WITH ALTITUDE FOR A CONSTANT TEMPERATURE GRADIENT

```
1 clc ;funcprot(0);
2 //Example 2.4
3
4 //Initializing the variables
5 p1 = 101*10^3; // Initial Pressure
6 z1 = 0; // Initial Height
7 z2 = 7000; // Final Height
8 T1 = 15+273; // Initial Temperature
9 g = 9.81; // Acceleration due to gravity
10 R = 287; //Gas Constant
11 dT = 6.5/1000; //Rate of Variation of Temperature
12
13 // Calculations
14 p2 = p1*(1-dT*(z2-z1)/T1)^(g/(R*dT));
15 T2 = T1 - dT*(z2-z1);
16 \text{ rho2} = p2/(R*T2);
17 disp(rho2, "Final Density (kg/m3):",p2/1000,"Final
      Pressure (kN/m2):");
```

Scilab code Exa 2.5 PRESSURE AND HEAD

```
1 clc ;funcprot(0);
2 //Example 2.5
3
4 //Initializing the variables
5 p = 350*10^3; //Gauge Pressure
6 pAtm = 101.3*10^3; //Atmospheric Pressure
```

```
7 rhoW = 1000; // Density of Water
8 sigma = 13.6; //Relative Density of Mercury
9 g = 9.81; // Acceleration due to gravity
10
11 // Calculations
12 function[head] = Head(rho)
      head = p/(rho*g);
13
14 endfunction
15 rhoM = sigma*rhoW;
16 pAbs = p + pAtm;
17
18 disp(pAbs/1000, "Absolute pressure(kN/m2)", Head(rhoM)
     ," Equivalent head of water (m):", "Part (b)", Head(
     rhow), "Equivalent head of water (m):", "Part (a)"
      );
```

Scilab code Exa 2.6 PRESSURE MEASUREMENT BY MANOMETER

```
1 clc ;funcprot(0);
2 //Example 2.6
3
4 //Initializing the variables
5 rho = 10^3; //Density of water
6 h = 2; //Height
7 g = 9.81; //Acceleration due to gravity
8
9 //Calculations
10 p=rho*h*g;
11 disp(p/1000, "Gauge pressure (k/m2):");
```

Scilab code Exa 2.7 PRESSURE MEASUREMENT BY MANOMETER

```
1 clc ; funcprot(0);
```

```
//Example 2.7
//Initializing the variables
rho = 0.8*10^3; //Density of fluid
rhoM = 13.6*10^3; //Density of manometer liquid
g = 9.81; // Acceleration due to gravity

//Calculations
function[P]=fluidPressure(h1,h2)
P = rhoM*g*h2-rho*g*h1;
endfunction

disp(fluidPressure(0.1,-0.2)/1000, "Gauge pressure (kN/m2):","!-----Part (b)-----!", fluidPressure (0.5,0.9)/1000, "Gauge pressure (kN/m2):","!------Part (a)-----!");
```

Scilab code Exa 2.8 PRESSURE MEASUREMENT BY MANOMETER

```
clc ; funcprot(0);
//Example 2.8

//Initializing the variables
frho = 10^3; //Density of fluid
frhoM = 13.6*10^3; //Density of manometer liquid
frhoM = 13.6*10^3; //Density of manometer liquid
frhoM = 9.81; //Acceleration due to gravity
H = 0.3; // Differnce in height = b-a as in text
h = 0.7;
//Calculations
result = rho*g*H + h*g*(rhoM-rho);
disp(result/1000, Pressure difference (kN/m2):");
```

Scilab code Exa 2.9 PRESSURE MEASUREMENT BY MANOMETER

```
1 clc ;funcprot(0);
2 //Example 2.9
3
4 //Initializing the variables
5 rho = 10<sup>3</sup>; //Density of fluid
6 rhoM = 0.8*10^3; // Density of manometer liquid
7 g = 9.81;
               //Acceleration due to gravity
8 \ a = 0.25;
9 b = 0.15;
10 h = 0.3;
11 // Calculations
12 function[P]=PressureDiff(a,b,h,rho,rhoM)
       P = rho*g*(b-a) + h*g*(rho-rhoM);
13
14 endfunction
15
16 disp(PressureDiff(a,b,h,rho,rhoM),"Pressure
     Differnece (N/m2): ","!----Part (b)----!",
     PressureDiff(a,b,h,rho,0)/1000, "Pressure
     Differnece(kN/m2):","!----Part(a): rhoM is
     negligible assuming zero ----!");
```

Scilab code Exa 2.10 RELATIVE EQUILIBRIUM

```
1 clc ;funcprot(0);
2 //Example 2.10
3
4 //Initializing the variables
5 phi = 30; //30 degree
6 h = 1.2; // Height of tank
7 l = 2; // Length of tank
8
9 //Calculations
10 function[Theta]=SurfaceAngle(a,phi)
```

```
Theta = atand(-a*cosd(phi)/(g+a*sind(phi)));
11
12 endfunction
13
14 // case (a) a = 4
15 disp(tand(SurfaceAngle(4,phi)), "Tan of Angle between
       surface of fluid and horizontal:");
16 disp(180 + SurfaceAngle(4,phi), "ThetaA (degree):");
17
18 //Case (b) a = -4.5
19 tanThetaR = tand(SurfaceAngle(-4.5,phi));
20 disp(tanThetaR, "Tan of Angle between surface of
      fluid and horizontal :");
21 disp(SurfaceAngle(-4.5,phi), "ThetaR (degree):");
22
23 Depth = h - 1*tanThetaR/2;
24 disp(Depth, "Maximum Depth of tank (m):");
```

Chapter 3

Static Forces on Surfaces Buoyancy

Scilab code Exa 3.1 RESULTANT FORCE AND CENTRE OF PRESSURE ON A PLANE SURFACE UNDER UNIFORM PRESSURE

```
1 clc ; funcprot(0);
2 //Example 3.1
4 //Initializing the variables
              //Upper edge
5 a = 2.7;
6 b = 1.2 ; //Lower edge
7 width = 1.5; //Width of trapezoidal plate
8 h = 1.1; //Height of water column above
      surface
9 \text{ rho} = 1000;
10 g = 9.81; // Acceleration due to gravity
11 phi = 90; // Angle between wall and surface
12
13 // Calculations
14 A = 0.5*(a+b)*width; //Area of Trapezoidal
      Plate
15 \text{ y} = (2*(0.5*\text{width}*0.75)*0.5 + (1.2*\text{width})*0.75)/A;
16 z = y+h; //Depth of center of pressure
```

Scilab code Exa 3.2 RESULTANT FORCE AND CENTRE OF PRESSURE ON A PLANE SURFACE UNDER UNIFORM PRESSURE

```
1 clc;funcprot(0);
2 //Example 3.2
4 //Initializing the variables
5 \text{ w} = 1.8; //Width of plate
6 \text{ h1} = 5;
                  //Height of plate and water in
     upstream
               //Height of water in downstream
7 h2 = 1.5;
8 \text{ rho} = 1000;
9 g = 9.81; //Acceleration due to gravity
10
11 // Calculations
12 function [F] = waterForce (area, meanHeight)
       F = rho * g * area * meanHeight;
13
14 endfunction
15
16 P = waterForce(w*h1,h1/2)-waterForce(w*h2,h2/2); //
     Resultant force on gate
17 x = (waterForce(w*h1,h1/2)*(h1/3) - waterForce(w*h2,
     h2/2)*(h2/3))/P; // point of action of p from
     bottom
18 R = P/(2*sind(20));
                              // Total Reaction force
19 Rt = 1.18*R/4.8;
                          //Reaction on Top
```

Scilab code Exa 3.3 PRESSURE DIAGRAMS

```
1 clc; funcprot(0);
2 //Example 3.3
3
4 //Initializing the variables
5 D = 1.8; //Depth of tank
6 h = 1.2;
                  //Depth of water
7 1 = 3; //Length of wall of tank
8 p = 35000; //Air pressure
9 \text{ rho} = 10^3;
                //Density of water
10 g = 9.81; //Acceleration due to gravity
11
12
13 // Calculations
14 Ra = p*D*1; //Force due to air
15 Rw = .5*(rho*g*h)*h*l; //Force due to water
16 R = Ra + Rw; // Resultant force
17 x = (Ra*0.9+Rw*0.4)/R; // Height of center of
     pressure from base
18 disp(x," Height of the centre of pressure above the
     base(m): ",R/1000," Resultant force on the wall(kN
     )");
```

Scilab code Exa 3.4 FORCE ON A CURVED SURFACE DUE TO HYDROSTATIC PRESSURE

```
1 clc;funcprot(0);
```

```
2 //Example 3.4
4 //Initializing the variables
5 R = 6; // Radius of arc
6 h = 2*R*sind(30);
                        //Depth of water
7 rho = 10^3; //Density of water
8 g = 9.81;
                  //Acceleration due to gravity
10 // Calculations
11 Rh = (rho*g*h^2)/2; // Resultant horizontal force
     per unit length
12 Rv = rho*g*((60/360)*\%pi*R^2 - R*sind(30)*R*cosd(30))
     ; // Resultant vertical force per unit length
13 R = sqrt(Rh^2+Rv^2); // Resultant force on gate
14 theta = atand(Rv/Rh); //Angle between resultant
     force and horizontal
15
16 disp(theta," Direction of resultant force to the
     horizontal (Degree): ",R/1000, "Magnitute of
     resultant force (kN/m):");
```

Scilab code Exa 3.5 BUOYANCY

```
clc; funcprot(0);
//Example 3.5

//Initializing the variables
B = 6; // Width of pontoon
L = 12; //Length of pontoon
D = 1.5; //Draught of pontoon
Dmax = 2; //Maximum permissible draught
rhow = 1000; //Density of fresh water
rhos = 1025; //Density of sea water
Respond to the control of the control of
```

Scilab code Exa 3.6 DETERMINATION OF THE POSITION OF THE METACENTRE RELATIVE TO THE CENTRE OF BUOYANCY

```
1 clc; funcprot(0);
2 //Example
               3.6
4 //Initializing the variables
5 D = 1.8; // Diameter of buoy
                   //Height of buoy
6 H = 1.2;
7 W = 10*10^3; //Weight of buoy
8 L = 2*10^3; //Load
                   // Center of gravity
9 G = 0.45;
9 G = 0.45; // Center of gravity
10 rho = 1025; // Density of sea water
11 g = 9.81; // Acceleration due to gravity
12
13 // Calculations
                                      // Depth of
14 Z = 4*(W+L)/(rho*g*%pi*D^2);
      Immersion
15 BG# = (\%pi*D^4/64)/(\%pi*D^2*Z/4);
16 \ Z# = 0.5*Z + BG#;
                                              // Position of
```

```
combined center of gravity
17 Z1 = ((W+L)*Z#-0.45*W)/L; //Maximum height
    of load above bottom
18
19 disp(Z1,"Maximum height of center of gravity above
    bottom(m) :");
```

Scilab code Exa 3.7 STABILITY OF A VESSEL CARRYING LIQUID IN TANKS WITH A FREE SURFACE

```
1 clc;funcprot(0);
2 //Example 3.7
3
4 //Initializing the variables
5 1 = 20; // Length of barage
              //Width of barage
6 b = 6;
7 r = 3; //Radius of circular top of barage
8 W = 200*10^3; //Weight of empty barage
                 // Depth of water in 1st half
9 	 d1 = 0.8;
// Depth of water in 2nd half
12 R = 0.8; //Relative density of liquid
13 g = 9.81; //Acceleration due to gravity
14 \ ZG = 0.45;
                  // Center of gravity of barage
15
16 // Calculations
17 I00 = 1*b^3/12 + \%pi*b^4/128;
18 ICC = 1*(.5*b)^3/12;
19 L = d1*rho*g*l*b/2*(d1+d2); // Weight of liquid
     load
20 \quad W# = L + W;
                          //Total weight
21 A = 1*b +%pi*r^2/2; // Area of plane of
     waterline
22 V = W#/(rho*g);
                         // Volume of vessel submerged
23 D = V/A;
                       //Depth submerged
```

Chapter 4

Motion of Fluid Particles and Streams

Scilab code Exa 4.1 DISCHARGE AND MEAN VELOCITY

```
1 clc;funcprot(0);
2 //Example 4.1
4 //Initializing the variables
5 y = linspace(0,80,9);
6 x = [0 23 28 31 32 29 22 14 0];
7 xlabel('Velocity (m/s)');
8 ylabel('Distance from one side (mm)');
9 xgrid(1);
10
11 // Calculations
12 plot(x,y,'-*');
13 mu=[17.5 26.0 29.6 31.9 30.7 25.4 18.1 7.7];
14
            // mean velocity
15 disp(mean(mu), "Mean velocity (m/s):");
16
17 // the plot is attached as 4.1.png
```


Figure 4.1: DISCHARGE AND MEAN VELOCITY

Scilab code Exa 4.2 CONTINUITY OF FLOW

```
1 clc; funcprot(0); //Example 4.2
3 //Initializing the variables all unknowns are
      assigned 0
5 d = [0.05 0.075 0 0.030];
6 Q = [0 0 0 0];
7 V = [0 2 1.5 0];
8 // Calculations
9 A2 = \%pi*d(2)^2/4;
10 Q(2) = A2*V(2);
11 Q = [Q(2) Q(2) Q(2)/1.5 0.5*Q(2)/1.5];
12 d(3) = (Q(3)*4/(V(3)*\%pi))^0.5;
13 A = \%pi*d^2/4;
14 \ V(1) = V(2)*(A(2)/A(1));
15 V(4) = Q(4)/A(4);
16
17 disp([d*1000;A;Q;V]', "! Diameter(mm)
                                             Area (m2)
     Flow Rate(m3/s) Velocity(m/s)!");
```

Scilab code Exa 4.3 CONTINUITY EQUATIONS FOR THREE DIMENSIONAL FLOW USING CARTESIAN COORDINATES

```
1 clc;funcprot(0);
2 //Example 4.3
3
4 //Initializing the variables
5 vx= -poly(3, 'x');
6 vy = 2*poly(-2, 'x');
```

Chapter 5

The Momentum Equation and its Applications

Scilab code Exa 5.1 GRADUAL ACCELERATION OF A FLUID IN A PIPELINE NEGLECTING ELASTICITY

```
clc;funcprot(0);
//Example 5.1

//Initializing the variables

//Length of pipeline
rho = 1000; // Density of liquid
a = 0.02; //Acceleration of fluid

//Calculations
delP = rho*l*a; //Change in pressure
disp(delP/1000, "Increase of pressure difference required (kN/m2):");
```

Scilab code Exa 5.2 FORCE EXERTED BY A JET STRIKING A FLAT PLATE

```
1 clc; funcprot(0);
2 //Example 5.2
4 //Initializing the variables
5 v = 5; // Velocity of jet
6 \text{ rho} = 1000;
                       //density of water
7 d = 0.025;
                      //Diameter of fixed nozzle
8
9 // Calculations
10 //--Part(a) Variation of force exerted normal to the
       plate with plate angle --//
                                                  A v " "
                            vcos(x)" "
11 header = ["Theta" "
           Force"];
12 unit = [" deg" "
                                m/s" "
                                                kg/s" "
               N"];
13
14 A = \%pi*d^2/4;
15 x = linspace(0,90,7);
16 \text{ vcomp} = \text{v*cosd}(x);
17 m = rho*A*v;
18 ma = linspace(m, m, 7);
19 force = rho*A*v^2*cosd(x);
20 value = [x;vcomp;ma;force]';
21 disp(value, unit, header);
22
23 //--Part(b) Variation of force exerted normal to the
       plate with plate velocity --//
24 header = ["Theta" " v" " u" " v-u" "
                                                      A (v-u)
      ) " "
            Force"];
  unit = [" \deg " "m/s" "m/s " " m/s" "
                                                      kg/s
                N"];
26
27 x = linspace(0,0,5);
28 \ v = linspace(5,5,5);
29 u = linspace(2, -2, 5);
30 D = v - u;
31 \text{ Prod} = \text{rho}*A*D;
32 \text{ Force} = \text{rho}*A*D^2;
```

```
33 value = [x;v;u;D;Prod;Force]';
34 disp(value,unit,header);
```

Scilab code Exa 5.3 FORCE DUE TO THE DEFLECTION OF A JET BY A CURVED VANE

```
1 clc;funcprot(0);
2 //Example 5.3
3
4 //Initializing the variables
5 x = 60;
                //Angle of deflection
6 \text{ rho} = 1000;
                   // Density of liquid
                   //Acceleration of fluid
7 V1 = 30;
8 V2 = 25;
                   //Discharge through A
9 m = .8;
10
11 // Calculations
12 function[R] = Reaction(Vin , Vout)
13
       R = m*(Vin -Vout);
14 endfunction
15
16 Rx = Reaction(V1, V2*cosd(x));
17 Ry = -Reaction(0, V2*sind(x));
18 disp(Rx, "Reaction in X-direction (N):");
19 disp(Ry, "Reaction in Y-direction (N):");
20 disp(sqrt(Rx^2 + Ry^2), "Net Reaction (N):");
21 disp(atand(Ry/Rx),"Inclination of Resultant Force
      with x-direction (Degree):");
```

Scilab code Exa 5.4 FORCE EXERTED WHEN A JET IS DEFLECTED BY A MOVING CURVED VANE

```
1 clc;funcprot(0);
```

```
\frac{2}{\text{Example 5.4}}
4 //Initializing the variables
5 \text{ v1} = 36 \text{ ; } //\text{Exit velocity}
6 u = 15; //Velocity of vane\
7 x = 30; // Angle between vanes and flow
8 rho = 1000; // Density of water
9 d = .1; // Diameter of jet
10
11 // Calculations
12 alp = atand(v1*sind(x)/(v1*cosd(x)-u));
13 \text{ v2} = 0.85*v1*sind(x);
14 bta = acosd(u*sind(alp)/v2);
15 m = (rho*\%pi*v1*d^2)/4;
16 Vin = v1*cosd(x);
17 Vout = v2*cosd(90);
18 Rx = m*(Vin-Vout);
19
20 disp(Rx, "Force exerted by vanes(N):",bta,"Outlet
        Angle (Degree): ",alp," Inlet Angle (Degree): ");
```

Scilab code Exa 5.5 FORCE EXERTED ON PIPE BENDS AND CLOSED CONDUITS

```
1 clc; funcprot(0);
2 //Example 5.5
3
4 //Initializing the variables
5 rho = 850; // Density of liquid
6 a = 0.02; //Acceleration of fluid
7 x = 45;
8 d1 = .5;
9 d2 = .25;
10 p1 = 40*10^3;
11 p2 = 23*10^3;
```

```
12  Q = .45;
13
14  // Calculations
15  A1 = (%pi*d1^2)/4;
16  A2 = (%pi*d2^2)/4;
17  v1 = Q/A1;
18  v2 = Q/A2;
19
20  Rx = p1*A1 - p2*A2*cosd(x) - rho*Q*(v2*cosd(x)-v1);
21  Ry = p2*A2*sind(x) + rho*Q*v2*sind(x);
22
23  disp(sqrt(Rx^2 +Ry^2)/1000, "Resultant force on the bend(kN):");
24  disp(atand(Ry/Rx), "Inclination of Resultant Force with x-direction(Degree):");
```

Scilab code Exa 5.6 REACTION OF A JET

```
1 clc;funcprot(0);
2 //Example 5.6
3
4 //Initializing the variables
                  //Velocity of Jet
5 v = 4.9;
                 // Density of water
6 \text{ rho} = 1000;
7 d = 0.05;
                   // Velocity of tank
8 u = 1.2 ;
9 // Calculations
10 Vout = v;
11 \text{ Vin = 0};
12 m = rho*\%pi*d^2*v/4;
13 R = m*(Vout-Vin);
14 disp(R, "Reaction (N):");
15 disp(R*u, "Work done per second (W):");
```

Scilab code Exa 5.7 REACTION OF A JET

```
1 clc;funcprot(0);
2 //Example 5.7
3
4 //Initializing the variables
5 \text{ Vj} = 5*10^6;
                        //Velocity of Jet
                    // Mass of Rocket
6 \text{ Mr} = 150000;
                    // Mass of initial fuel
7 \text{ MfO} = 300000;
8 \text{ Vr} = 3000;
                      //Velocity of jet relative to
      rocket
9 g = 9.81;
                    // Acceleration due to gravity
10
11 // Calculations
                  //Rate of fuel consumption
12 m = Vj/Vr;
13 T = MfO/m;
                 // Burning time
14 function[DVt]=f(t)
15
       DVt = m*Vr /(Mr + Mf0 - m*t) - g;
16 endfunction
17
18 function [V] = h(t)
       V = -g*t - Vr*log(1 - t/269.95);
19
20 endfunction
21
22 \text{ Vt} = intg(0, 180, f);
23 \quad Z1 = intg(0,180,h);
24
25 	 Z2 = Vt^2/(2*g);
26 disp(T, "(a) Burning time (s): ");
27 disp(Vt,"(b)Speed of rocket when all fuel is burned
      (m/s):");
28 disp((Z2+Z1)/1000,"(c)Maximum height reached (km):")
```

Scilab code Exa 5.8 REACTION OF A JET

```
1 clc; funcprot(0); //Example 5.8
3 //Initializing the variables
4 V = 200;
               //Velocity in still air
5 Vr = 700; //velocity of gas relative to engine
                // Fuel Consumption
6 \text{ mf} = 1.1;
7 r = 1/40 ;
8 P1 = 0;
9 P2 = 0;
10
11 // Calculations
12 \text{ m1} = \text{mf/r};
13 T = m1*((1+r)*Vr -V);
14 disp(T/1000, "(a) Thrust (kN) :");
15
16 \quad W = T * V;
17 disp(W/1000, "(b) Work done per second (kW):");
18
19 Loss = 0.5*m1*(1+r)*(Vr-V)^2;
20 disp(W/(W+Loss)*100,"(c)) Efficiency (%):");
```

Scilab code Exa 5.10 ANGULAR MOTION

```
1 clc;funcprot(0);//Example 5.10
2
3 //Initializing the variables
4 rho = 1000; // Density of water
5 Q = 10; //Acceleration of fluid
6 r2 = 1.6;
7 r1 = 1.2;
```

```
8 V1 = 2.3;
9 V2 = 0.2;
10 rot = 240;
11
12 //Calculations
13 Tf = rho*Q*(V2*r2 - V1*r1);
14 T = -Tf;
15 n = rot / 60;
16 P = 2*%pi*n*T;
17
18 disp(T, "Torque exerted (N-m):");
19 disp(P/1000, "Theoretical power output (kW):");
```

The Energy Equation and its Applications

Scilab code Exa 6.1 MECHANICAL ENERGY OF A FLOWING FLUID

```
18 disp(U3, "Velocity of Jet through nozzle (m/s):"); 19 disp(Pb/1000, "Pressure in the suction pipe at the inlet to the pump at B(kN/m2):");
```

Scilab code Exa 6.2 CHANGES OF PRESSURE IN A TAPERING PIPE

```
1 clc; funcprot(0); //Example 6.2
3 //Initializing the variables
4 x = 45;
             // Inclination of pipe
5 \ 1 = 2;
                 //Length of pipe under consideration
                     //Energy per unit weight supplied
6 \text{ Ep} = 50 ;
     by pump
7 d1 = 0.2;
                    //Diameter of sump
                   //Diameter of delivery pipe
8 d2 = 0.1;
                    // Acceleration due to gravity
9 g = 9.81;
10 rho = 1000; // Density of water
11 V1 = 2;
12 RD_oil = 0.9; // relative density of oil
13 RD_Merc = 13.6; // Relative density of
      Mercury
14
15 // Calculations
16 \ V2 = V1*(d1/d2)^2;
17 dZ = 1*sind(x);
18 rho_Oil = RD_oil*rho;
19 rho_Man = RD_Merc*rho;
20 	ext{ dP} = 0.5*\text{rho}_0il*(V2^2-V1^2) + \text{rho}_0il*g*dZ;
21 h = rho_0il *(dP/(rho_0il*g) - dZ)/(rho_Man -
      rho_Oil);
22
23 disp(h, "Difference in the level of mercury (m):",dP
      , "Pressure Difference (N/m2): ");
```

Scilab code Exa 6.3 PRINCIPLE OF THE VENTURI METER

```
1 clc; funcprot(0); //Example 6.3
3 //Initializing the variables
4 d1 = 0.25;
                                //Pipeline diameter
                                //Throat diameter
5 d2 = 0.10;
                             //Difference in height
6 h = 0.63;
7 \text{ rho} = 1000;
                             //Density of water
8 g = 9.81
                           //Acceleration due to gravity
9
10 // Calculations
11 \text{ rho}_Hg = 13.6*\text{rho};
12 \text{ rho\_Oil} = 0.9*\text{rho};
13 \text{ A1} = (\%pi*d1^2)/4;
                                     // Area at entry
                                     //Area ratio
14 m = (d1/d2)^2;
15 Q = (A1/sqrt(m^2-1))*sqrt(2*g*h*(rho_Hg/rho_Oil -1))
16
17 disp(Q, "Theoretical Volume flow rate (m3/s):");
```

Scilab code Exa 6.4 THEORY OF SMALL ORIFICES DISCHARGING TO ATMOSPHERE

```
1 clc; funcprot(0); //Example 6.4
2
3 //Initializing the variables
4
5 x = 1.5;
6 y =0.5;
7 H = 1.2;
8 A = 650*10^-6;
```

Scilab code Exa 6.5 THEORY OF LARGE ORIFICES

```
1 clc; funcprot(0); // Example 6.5
2
3 //Initializing the variables
4 B = 0.7;
5 \text{ H1} = 0.4;
6 \text{ H2} = 1.9;
7 g = 9.81;
                          // height of opening
8 z = 1.5;
9
10 // Calculations
11 Q_Th = 2/3 *B*sqrt(2*g)*(H2^1.5 - H1^1.5);
12 A = z*B;
13 h = 0.5*(H1+H2);
14 Q = A*sqrt(2*g*h);
15
16 disp((Q-Q_Th)*100/Q_Th, "Percentage error in
      discharge (\%):");
```

Scilab code Exa 6.6 ELEMENTARY THEORY OF NOTCHES AND WEIRS

```
clc;funcprot(0); //Example 6.6

// Initializing the variables
Cd = 0.6; // Coefficient of discharge
Q = 0.28;
x = 90; //Theta
g = 9.81;
dH = 0.0015;

// Calculations
H = (Q*(15/8)/(Cd*sqrt(2*g)*tand(x/2)))^(2/5)
Frac_Q = 5/2 *( dH/H);

disp(Frac_Q*100, "Percentage error in discharge(%)")
;
```

Scilab code Exa 6.7 ELEMENTARY THEORY OF NOTCHES AND WEIRS

```
1 clc; funcprot(0); //Example 6.7
2
3 //Initializing the variables
4 B = 0.9;
5 H = 0.25;
6 \text{ alpha} = 1.1;
7 g = 9.81;
9 // Calculations
10 Q = 1.84 * B * H^{(3/2)};
11 disp(Q, "Q:");
12
13 i = 1;
14 \text{ while}(i < = 3)
     v = Q /(1.2* (H+0.2));
15
16
       disp(v, "V(m/s) :");
17
      k = ((1 + alpha*v^2/(2*g*H))^1.5 - (alpha*v)
```

```
^2/(2*g*H))^1.5);

18 Q = k* 1.84 * B * H^(3/2);

19 disp(Q, "Q(m3/s):");

20 i = i+1;

21 end
```

Scilab code Exa 6.8 THE POWER OF A STREAM OF FLUID

```
1 clc; funcprot(0); //Example
3 //Initializing the variables
4 \text{ rho} = 1000;
5 v = 66 ;
6 Q = 0.13;
7 g = 9.81;
8 z = 240;
10 // Calculations
11 P_Jet = 0.5*rho*v^2*Q;
12 P_Supp = rho*g*Q*z;
13 P_Lost = P_Supp -P_Jet;
14 h = P_Lost/(rho*g*Q);
15 eff = P_Jet/P_Supp;
16
17 disp(eff*100, "Part(d) Efficiency(%):", h, "Part(C)
      head used to overcome losses (m): ", P_Supp/1000
      , "Part(b) power supplied from the reservoir (kW)
      :", P_{\text{Jet}}/1000, "P_{\text{artI}}(a) power of the jet(kW)");
```

Scilab code Exa 6.9 VORTEX MOTION

```
1 clc; funcprot(0); //Example 6.9
```

```
3 //Initializing the variables
4 r1 = 0.2;
5 	 Z1 = 0.500;
6 \quad Z2 = 0.340;
7 g = 9.81;
8 \text{ rho} = 0.9*1000 ;
10 // Calculations
11 r0 = r1*(sqrt(2-2*Z2/Z1));
12 omega = sqrt(2*g*Z1/r0^2);
13
14 function [out] = G(r)
15
       out =r^3 - r*r0^2;
16 endfunction
17
18 F = rho*omega^2*\%pi*intg(r0,r1,G);
19
20 disp(F, "Part(b) Upward force on the cover (N): ",
      omega, "Part(a) Speed of rotation (rad/s):");
```

Scilab code Exa 6.10 Free vortex or potential vortex

```
1 clc; funcprot(0); //Example 6.10
2
3 //Initializing the variables
4 Ra = 0.2;
5 Rb = 0.1;
6 H = 0.18;
7 Za = 0.125;
8
9 //Calculations
10 Y = Ra^2*(H-Za);
11 Zb = H - Y/Rb^2;
12
13 disp(Zb*1000, "Height above datum of a point B on the
```

free surface at a radius of $100 \ \text{mm} \ (\text{mm}):\text{")};$

Two dimensional Ideal Flow

Scilab code Exa 7.2 STRAIGHT LINE FLOWS AND THEIR COMBINATIONS

```
1 clc; funcprot(0); //Example 7.2
2
3 //Initializing the variables
4 x = 120*(2*\%pi)/180; //Theta
5 r = 1;
6 \text{ v0} = 0.5;
7 q = 2;
9 // Calculations
10 function[y] =shi(r,theta)
       y = v0*r*sin(theta) + q*theta/(2*%pi);
11
12 endfunction
13
14
15 //--Approx differentiation at a point using central
      difference formula --//
16 h = 0.0000001;
17 at_theta=x;
18 \text{ at_r} = r;
19 Vr = (\sinh(r, at_{theta+h}) - \sinh(r, at_{theta-h}))/(r*2*h);
```

Scilab code Exa 7.3 COMBINED SOURCE AND SINK FLOWS DOUBLET

```
1 clc; funcprot(0); //Example 7.3
3 //Initializing the variables
4 q = 10;
5 \quad function[Z] = shi(x,y)
       Z = (q/2/\%pi)*(atan(y/(x-1))-atan(y/(x+1))) -
          25*v;
7 endfunction
8 h = 0.0000001;
9 \text{ Vinf} = 25;
10
11 // Calculations
12 x = poly(0, 'x');
13 f = x^2 - 2/(5*\%pi) -1;
14 root = roots(f);
15 \quad 1 = abs(root(1)) + abs(root(2));
16 \text{ Ymax} = 0.047;
17 width = 2*Ymax;
18 Vx = (\sinh(1-h,1)-\sinh(1-h,1-h))/h; // At x=1 the
      function atan is not defined hence taking x a
      little smaller.
19 Vy = -1*(shi(1-2*h,1)-shi(1-h,1))/h; // At x=1 the
      function atan is not defined hence taking x a
      little smaller.
20
```

Scilab code Exa 7.4 FLOW PAST A CYLINDER

```
1 funcprot(0); clc; //Example 7.4
3 //Initializing the variables
4 a = 0.02;
5 r = 0.05;
6 \ VO = 1;
7 x = 135; // Theta
8 \text{ function}[Z] = \text{shi}(r,x)
       Z = V0*sind(x)*(r - ((a^2)/r));
10 endfunction
11 h = 0.0001;
12
13 // Calculations
14 Vr = 57*(shi(r,x+h)-shi(r,x))/(r*h);
15 Vx = -1*(shi(r+h,x)-shi(r,x))/h;
16
17 disp(Vr, 'Radial Velocity (m/s):', Vx, 'Normal
      component of velocity (m/s): ');
```

Scilab code Exa 7.5 CURVED FLOWS AND THEIR COMBINATIONS

```
1 clc; funcprot(0); //Example 7.5
```

```
3 //Initializing the variables
4 rho = 1000;
5 r = 2;
6 psi = 2*log(r);
7
8 //Calculations
9 y = psi/log(r); // y = GammaC / 2*pi
10 v = y/r;
11 dPbydr = rho*v^2/r;
12 disp(dPbydr, 'Pressuer Gradient (N/m3):');
```

Dimensional Analysis

Scilab code Exa 8.1 CONVERSION BETWEEN SYSTEMS OF UNITS INCLUDING THE TREATMENT OF DIMENSIONAL CONSTANTS

```
1 clc; funcprot(0)//Example 8.1
3 //Initializing the variables
4 P1 = 57;
                            //Power in SI
5 M = 1/14.6;
                           //Ratio of mass in SI/
     British
6 L = 1/0.3048;
                        //Ratio of length in SI/
     British
7 T = 1;
                         //Ratio of time in SI/British
9 // Calculations
10
11 P2 = M*(L^2)*(T^-3)*P1; //Power in kW
12 P2/P1;
13
14 disp(P2/P1, "Conversion Factor: ", P2, 'Power(Kw): '
     );
```

Similarity

Scilab code Exa 9.1 MODEL STUDIES FOR FLOWS WITHOUT A FREE SURFACE

```
clc;funcprot(0); //Example 9.1

//Initializing the variables
Vp = 10;
LpByLm = 20;
rhoPbyRhoM = 1;
muPbymuM = 1;
//Calculations
Vm = Vp*LpByLm*rhoPbyRhoM*muPbymuM;

disp(Vm, 'Mean water tunnel flow velocity (m/s):');
```

Scilab code Exa 9.2 MODEL STUDIES FOR FLOWS WITHOUT A FREE SURFACE

```
1 funcprot(0);clc; //Example 9.2
```

```
3 //Initializing the variables
4 Vp = 3;
5 LpByLm = 30;
6 rhoPbyRhoM = 1;
7 muPbymuM = 1;
8
9 //Calculations
10 Vm = Vp*LpByLm*rhoPbyRhoM*muPbymuM;
11
12 disp(Vm, 'Mean water tunnel flow velocity (m/s):');
```

Scilab code Exa 9.3 ZONE OF DEPENDENCE OF MACH NUMBER

```
1 funcprot(0); clc; //Example 9.3
3 //Initializing the variables
4 \text{ Vp} = 100;
5 \text{ cP} = 340;
6 \text{ cM} = 295;
7 \text{ rhoM} = 7.7;
8 \text{ rhoP} = 1.2;
9 \text{ muM} = 1.8*10^-5;
10 muP = 1.2*10^-5;
11
12 // Calculations
13 Vm = Vp*(cM/cP);
14 LmByLp = 1/((Vm/Vp)*(muM/muP)*(rhoM/rhoP));
15 FmByFp = (rhoM/rhoP)*(Vm/Vp)^2*(LmByLp)^2;
16
17 disp(FmByFp*100, "Percentage ratio of forces (%):",
      Vm, 'Mean wind tunnel flow velocity (m/s):');
```

Scilab code Exa 9.4 SIGNIFICANCE OF THE PRESSURE COEFFICIENT

```
1 funcprot(0);clc; //Example 9.4
3 //Initializing the variables
4 function [Z] =pLossRatio(RatRho, RatMu, RatL)
       Z = RatRho*RatMu^2*RatL^2;
6 endfunction
8 // Calculations
9 //Case (a) : water is used
10 \text{ RatRho} = 1;
11 \text{ RatMu} = 1;
12 \text{ RatL} = 10;
13 disp(pLossRatio(RatRho, RatMu, RatL), "(a) Ratio of
      pressure losses between the model and the
      prototype if water is used ");
14
15 \text{ RatRho} = 1000/1.23;
16 \text{ RatMu} = 1.8*10^-5/10^-3;
17
18 disp(pLossRatio(RatRho, RatMu, RatL), "(b) Ratio of
      pressure losses between the model and the
      prototype if air is used ");
```

Scilab code Exa 9.5 MODEL STUDIES IN CASES INVOLVING FREE SURFACE FLOW

```
1 funcprot(0);clc; //Example 9.5
2
3 //Initializing the variables
4 scale = 1/50;
5 ratArea = scale^2;
6 Qp = 1200;
7
8 //Calculations
9 LmByLp = sqrt(ratArea);
```

```
10 VmByVp = sqrt(LmByLp);
11 Qm = Qp*ratArea*VmByVp;
12
13 disp(Qm, "Water flow rate (m3/s):");
```

Scilab code Exa 9.6 SIMILARITY APPLIED TO ROTODYNAMIC MACHINES

```
1 funcprot(0); clc; //Example 9.6
3 //Initializing the variables
4 \ Qa = 2;
5 \text{ Na} = 1400;
6 \text{ rhoA} = 0.92;
7 \text{ rhoS} = 1.3;
8 \text{ DaByDs} = 1;
9 \text{ dPa} = 200;
10
11 // Calculations
12 Ns = Na*(rhoA/rhoS)*(DaByDs);
13 Qs = Qa*(Ns/Na);
14 dPs = dPa *(rhoS/rhoA)*(Ns/Na)^2*(1/DaByDs)^2;
15
16
    disp(dPs, "Pressure rise(N/m2):",Qs, "Flow rate (
       m3/s):", Ns, "Fan test speed (rev/s):");
```

Scilab code Exa 9.8 RIVER AND HARBOUR MODELS

```
1 funcprot(0);clc; //Example 9.8
2
3 //Initializing the variables
4 V = 300; // Volume rate
5 w = 3;
```

```
6 d = 65;
7 1 = 30;
8 \text{ scaleH} = 30/1000/18;
9 \text{ scaleV} = 1/60;
10 ZmByZr = 1/60;
11 LmByLr = 1/600;
12 \text{ rho} = 1000;
13 \text{ mu} = 1.14*10^-3;
14
15 // Calculations
16 Vr = V/(w*d);
17 Vm = Vr*sqrt(ZmByZr);
18 m = (w*d*scaleH*scaleV)/(d*scaleH + 2*w*scaleV);
19 Rem = rho*Vm*m/mu;
20 TmByTr = LmByLr*sqrt(1/ZmByZr);
21 \text{ Tm} = 12.4*60*TmByTr;
22
23 disp(Tm, "Tidal Period (minutes):");
```

Laminar and Turbulent Flows in Bounded Systems

Scilab code Exa 10.1 INCOMPRESSIBLE STEADY AND UNIFORM LAMINAR FLOW BETWEEN PARALLEL PLATES

```
1 clc; funcprot(0); //Example 10.1
3 //Initializing the variables
4 \text{ mu} = 0.9;
5 \text{ rho} = 1260;
6 g = 9.81;
7 x = 45; //theta in degrees
8 P1 = 250 * 10^3;
9 P2 = 80* 10^3;
10 \ Z1 = 1;
11 Z2 = 0; // datum
12 U = -1.5;
13 \quad Y = 0.01;
14
15 // Calculations
16 \text{ gradP1} = P1 + rho*g*Z1;
17 \text{ gradP2} = P2 + \text{rho}*g*Z2;
18 DPstar = (gradP1-gradP2)*sind(x)/(Z1-Z2);
```

```
19 A = U/Y; // Coefficient U/Y for equation 10.6
20 B = DPstar/(2*mu); // Coefficient dp*/dx X(1/2mu) for
      equation 10.6
21 \ y = poly(0, 'y');
22 v = (A + B*Y)*y -B*y^2;
23 duBYdy = derivat(v);
24 tau = 0.9*duBYdy;
25 ymax = roots(duBYdy);
                             //value of y where
      derivative vanishes .;
26 umax = (A + B*Y)*ymax + B*ymax^2; // Check the value
       there is slight mistake in books answer
27 \quad function[z] = u(y)
28
       z = (A + B*Y)*y -B*y^2;
29 endfunction
30 tauMax =abs( mu*derivative(u,Y));
32 disp(tauMax/1000, "Maximum Shear Stress (kN/m2):",
     umax, "Maximum Flow Velocity (m/s)", tau, "Shear
     Distribution: ", v, "Velocity Distribution: ")
```

Scilab code Exa 10.2 INCOMPRESSIBLE STEADY AND UNIFORM LAMINAR FLOW IN CIRCULAR CROSS SECTION PIPES

```
1 clc; funcprot(0); //Example 10.2
2
3 //Initializing the variables
4 mu = 0.9;
5 rho = 1260;
6 d = 0.01;
7 Q = 1.8/60*10^-3; //Flow in m^3 per second
8 l = 6.5;
9 ReCrit = 2000;
10 //Calculations
11 A = (%pi*d^2)/4;
12 MeanVel = Q/A;
```

Scilab code Exa 10.3 INCOMPRESSIBLE STEADY AND UNIFORM TURBULENT FLOW IN CIRCULAR CROSS SECTION PIPES

```
1 clc; funcprot(0);//Example 10.3
3 //Initializing the variables
4 \text{ mu} = 1.14*10^-3;
5 \text{ rho} = 1000;
6 d = 0.04;
7 \ Q = 4*10^-3/60; //Flow in m^3 per second
8 1 = 750;
9 \text{ ReCrit} = 2000;
10 g = 9.81;
11 k = 0.00008; // Absolute Roughness
12
13 // Calculations
14 A = (\%pi*d^2)/4;
15 MeanVel = Q/A;
16 Re = rho*MeanVel*d/mu;
17 Dp = 128*mu*l*Q/(%pi*d^4);
18 hL = Dp/(rho*g);
19 f = 16/Re;
20 hlDa = 4*f*l*MeanVel^2/(2*d*g); // By Darcy Equation
21 \text{ Pa} = \text{rho*g*hlDa*Q};
22
23 // Part (b)
24 Q = 30*10^-3/60; //Flow in m<sup>3</sup> per second
25 \text{ MeanVel} = Q/A;
```

Scilab code Exa 10.4 STEADY AND UNIFORM TURBULENT FLOW IN OPEN CHANNELS

```
1 clc; funcprot(0); //Example 10.4
2
3 //Initializing the variables
4 w = 4.5;
5 d = 1.2 ;
6 \ C = 49;
7 i = 1/800;
9 // Calculations
10 A = d*w;
11 P = 2*d + w;
12 m = A/P;
13 v = C*sqrt(m*i);
14 Q = v * A;
15
16 disp(Q, "Discharge (m3/s):", v, "Mean Velocity (m/s):"
      );
```

Scilab code Exa 10.5 VELOCITY DISTRIBUTION IN TURBULENT FULLY DEVELOPED PIPE FLOW

```
clc; funcprot(0); //Example 10.5

//Initializing the variables
R = poly(0, 'R');

//Calculations
r = R*(1 - (49/60)^7);

disp(r, "Radius at which the actual velocity is equal to the mean velocity:");
```

Scilab code Exa 10.7 SEPARATION LOSSES IN PIPE FLOW

```
clc; funcprot(0); //Example 10.7

//Initializing the variables

d1 = 0.140;

d2 = 0.250;

DpF_DpR = 0.6; //Difference in head loss when in forward and in reverse direction

K = 0.33 ;//From table

g = 9.81;

//Calculations

ratA = (d1/d2)^2;

v = sqrt(DpF_DpR*2*g/((1 - ratA)^2 - K));

disp(v, "Velocity (m/s):");
```

Boundary Layer

Scilab code Exa 11.1 PROPERTIES OF THE LAMINAR BOUNDARY LAYER FORMED OVER A FLAT PLATE IN THE ABSENCE OF A PRESSURE GRADIENT IN THE FLOW DIRECTION

```
1 clc; funcprot(0); //Example 11.1
3 //Initializing the variables
4 \text{ rho} = 860;
5 v = 10^-5;
6 \text{ Us} = 3;
7 b = 1.25;
8 1 = 2;
10 // Calculations
11 x = 1; // At x =1
12 Rex = Us*x/v;
13 ReL = Us*1/v;
14 \text{ mu} = \text{rho*v};
15 T0 = 0.332*mu*Us/x*Rex^0.5;
16 \text{ Cf} = 1.33*ReL^-0.5;
17 F = rho*Us^2*1*b*Cf ;
18
19 disp(F, "Total, double-sided resistance of the plate
```

```
(N): ",TO, "Shear stress at mid-length (N/m2)");
```

Scilab code Exa 11.2 PROPERTIES OF THE TURBULENT BOUNDARY LAYER OVER A FLAT PLATE IN THE ABSENCE OF A PRESSURE GRADIENT IN THE FLOW DIRECTION

```
1 clc; funcprot(0); //Example 11.2
3 //Initializing the variables
4 \text{ Us} = 6;
5 b = 3;
6 \ 1 = 30;
7 \text{ rho} = 1000;
8 \text{ mu} = 10^{-3};
9 T = 20+273; // Temperature in Kelvin
10
11 // Calculations
12 1/mu;
13 ReL = rho*Us*1/mu;
14 Cf = 0.455*log10(ReL)^-2.58
15
16 F = rho*Us^2*1*b*Cf ;
17 Lt = 10^5*mu/(rho*Us); // Assuming transition at Rel
       = 10^{5}
18 disp(Lt, "Transition length (m): ",F/1000, "Total drag
       on the plate (kN):");
```

Incompressible Flow around a Body

Scilab code Exa 12.1 DRAG

```
1 clc; funcprot(0);//Example 12.1
3 //Initializing the variables
4 \times =35;
5 T = 50;
6 m = 1;
7 g = 9.81;
8 \text{ rho} = 1.2;
9 A = 1.2;
10 U0 = 40*1000/3600; // Velocity in m/s
11
12 // Calculations
13 L = T*sind(x)+m*g;
14 D = T * cosd(x);
15 Cl = 2*L/(rho*U0^2*A);
16 \text{ Cd} = 2*D/(\text{rho}*U0^2*A);
17 disp(Cd, "Drag Coefficient:", Cl, "Lift Coefficient:"
      );
```

Scilab code Exa 12.2 RESISTANCE OF SHIPS

```
1 clc; funcprot(0); //Example 12.2
3 //Initializing the variables
4 \text{ Vp } = 12;
5 lp = 40;
6 \, lm = 1;
7 \text{ As} = 2500;
8 \text{ Dm} = 32;
9 \text{ rhoP} = 1025;
10 \text{ rhoM} = 1000;
11 Ap = As;
12
13 // Calculations
14 \text{ Am} = As/40^2;
15 Vm = Vp*sqrt(lm/lp);
16 Dfm = 3.7*Vm^1.95*Am;
17 \text{ Rm} = Dm - Dfm;
18 Rp = Rm *(rhoP/rhoM)*(lp/lm)^2*(Vp/Vm)^2;
19 Dfp = 2.9*Vp^1.8*Ap;
20 Dp = Rp + Dfp;
21
22 disp(Dp/1000, "Expected total resistance (kN):");
```

Scilab code Exa 12.3 FLOW PAST A CYLINDER

```
1 clc; funcprot(0); //Example 12.3
2
3 //Initializing the variables
4 U0 = 80*1000/3600;
5 d = 0.02;
```

```
6  rho =1.2;
7  mu = 1.7*10^-5;
8  A = 0.02*500; // Projected area of wire
9  N = 20; // No of cables
10
11  // Calculations
12  Re = rho*U0*d/mu;
13  Cd = 1.2; // From figure 12.10 for given Re;
14  D = 0.5*rho*Cd*A*U0^2
15  F = N*D;
16  f = 0.198*(U0/d)*(1-19.7/Re);
17
18  disp(f, "Frequency (Hz):", F/1000, "Total force on tower (kN):");
```

Scilab code Exa 12.4 FLOW PAST A SPHERE

```
1 clc; funcprot(0); //Example 12.4
3 //Initializing the variables
4 \text{ mu} = 0.03;
5 d = 10^{-3};
6 \text{ rhoP} = 1.1*10^3;
7 g = 9.81;
8 \text{ rho0} = 0.9*10^3;
9 // Calculations
10 B = 18*mu/(d^2*rhoP);
11 t = 4.60/B;
12 Vt = d^2*(rhoP - rho0)*g/(18*mu);
13 Re = rho0*Vt*d/mu;
14
15
16 disp(Re, "Reynolds No corrosponding to the velocity:
      ",t,"Time taken by the particle take to reach 99
      per cent of its terminal velocity (s):");
```

Scilab code Exa 12.5 FLOW PAST A SPHERE

```
1 clc; funcprot(0); //Example 12.5
3 //Initializing the variables
4 \text{ muO} = 0.0027;
5 \text{ Vt} = 3*10^{-3};
6 \text{ rhoW} = 1000;
7 \text{ rhoP} = 2.4*\text{rhoW};
8 \text{ rho0} = 0.9*\text{rhoW};
9 g = 9.81;
10 muA = 1.7*10^-5;
11 \text{ rhoA} = 1.3;
12
13 // Calculations
14 d = sqrt(18*mu0*Vt/(rhoP-rho0)/g);
15 Re = Vt*d*rho0/mu0;
16
17 //Movement of particle in upward direction
18 if (Re < 1 ) then
       v = 0.5;
19
20
       Re = 5; // from fig 12.15
21
       vt = muA*Re/(rhoA*d);
22
       u = vt+v;
        disp(u ," Velocity of air stream blowing
23
           vertically up (m/s):");
24 else
        disp("strokes law is not valid");
25
26 \text{ end}
```

Scilab code Exa 12.6 FLOW PAST AN AEROFOIL OF FINITE LENGTH

```
1 clc; funcprot(0); //Example 12.6
3 //Initializing the variables
4 c = 2;
5 s = 10;
6 \text{ rho} = 5.33;
7 \text{ rho\_ellip} = 1.2;
8 D = 400;
9 L = 45000;
10 \text{ scale} = 20;
11 U_windTunnel = 500;
12 \ U_{proto} = 400*1000/3600;
13
14 // Calculations
15 A = c*s;
16 U_model = U_windTunnel/scale;
17 Cd = D/(0.5*rho*U_model^2*A);
18 Cl = L/(0.5*rho_ellip*U_proto^2*A); // Considering
      elliptical Lift model
19 Cdi = Cl^2/(\%pi*s/c); // Aspect Ratio = s/c
20 Cdt = Cd + Cdi;
21 Dw = 0.5*Cdt*rho_ellip*U_proto^2*A;
22 disp(Dw/1000, "Total drag on full sized wing (kN):"
      );
```

Compressible Flow around a Body

Scilab code Exa 13.1 EFFECTS OF COMPRESSIBILITY

```
1 clc; funcprot(0); //Example 13.1
3 //Initializing the variables
4 \text{ rho0} = 1.8;
5 R = 287;
6 T = 75+273; // Temperature in kelvin
7 \text{ gma} = 1.4;
8 \text{ Ma} = 0.7;
10 // Calculations
11 P0 = rho0*R*T;
12 c = sqrt(gma*R*T);
13 \text{ VO} = \text{Ma*c};
14 Pt = (P0^{((gma-1)/gma)} + rho0*((gma-1)/gma)*(V0)
      ^2/(2*P0^(1/gma))))^(gma/(gma-1));
15 \text{ rhoT} = \text{rhoO}*(Pt/PO)^(1/gma);
16 Tt = Pt/(R*rhoT)-273;
17
18 disp(rhoT, "Density of airstream (kg/M3):", Tt,"
```

```
Temperature (Degree) :", Pt/1000," Staganation Pressure (kN/m2):");
```

Scilab code Exa 13.2 SHOCK WAVES

```
1 clc; funcprot(0); //Example 13.2
3 //Initializing the variables
4 R = 287;
5 T = 28+273;
6 \text{ gma} = 1.4;
7 P = 1.02*10^5;
8 \text{ rhoHg} = 13.6*10^3;
9 g = 9.81;
10
11 // Calculations
12 // Case (a)
13 \text{ UO} = 50;
14 c = sqrt(gma*R*T);
15 Ma = U0/c;
16 rho = P/(R*T);
17 DelP = 0.5*rho*U0^2; //Pt-P
18 ha = DelP/(rhoHg*g);
19
20 // Case (b)
21 \text{ UO} = 250;
22 \text{ Ma} = \text{UO/c};
23 Pt = P*(1+(gma-1)*Ma^2/2)^(gma/(gma-1));
24 DelP = Pt-P
25 hb = DelP/(rhoHg*g);
26
27 // Case (c)
28 \text{ UO} = 420;
29 \text{ Ma1} = \text{UO/c};
30 P2 = P*((2*gma/(gma+1))*Ma1^2 - ((gma-1)/(gma+1)));
```

```
31  N = Ma1^2 +2/(gma-1); // Numerator
32  D = 2*gma*Ma1^2/(gma-1)-1;
33  Ma2 = sqrt(N/D);
34  Pt2 = P2*(1+(gma-1)*Ma2^2/2)^(gma/(gma-1));
35  hc = (Pt2-P2)/(rhoHg*g);
36
37  disp(hc*1000," Difference in height of mercury column in case (c) in mm:",hb*1000," Difference in height of mercury column in case (b) in mm:",ha *1000," Difference in height of mercury column in case (a) in mm:");
```

Steady Incompressible Flow in Pipe and Duct Systems

Scilab code Exa 14.1 INCOMPRESSIBLE FLOW THROUGH DUCTS AND PIPES

```
1 clc; funcprot(0);//Example 14.1
3 //Initializing the variables
4 L1 = 5;
5 L2 = 10;
6 d = 0.1;
7 f = 0.08;
                    //difference in height between A
8 \text{ Za}_Zc = 4;
      and C
9 g = 9.81;
10 \text{ Pa} = 0;
11 Va = 0;
12 \text{ Za}_Zb = -1.5;
13 \ V = 1.26;
14 \text{ rho} = 1000;
15
16 // Calculations
17 D = 1.5 + 4*f*(L1+L2)/d; // Denominator in case of
```

Scilab code Exa 14.3 INCOMPRESSIBLE FLOW THROUGH PIPES IN PARALLEL

```
1 clc; funcprot(0);//Example 14.3
3 //Initializing the variables
4 \text{ Za}_Zb = 10;
5 f = 0.008;
6 L = 100;
7 d1 = 0.05;
8 g = 9.81;
9 d2 = 0.1;
10 // Calculations
11 function[z] = flowRate(d)
12
        D = 1.5 + 4*f*L/d; // Denominator in case of
           v1^2
        A = \%pi*d^2/4;
13
14
        v = sqrt(2*g*Za_Zb/D);
15
        z = A * v;
16 endfunction
17
18 Q1 = flowRate(d1);
19 Q2 = flowRate(d2);
20
21 Q = Q1+Q2;
22 D = poly(0, 'D');
23 v = 4*Q/(%pi*D^2);
24 X = 1.5 + 4*f*L/D;
25 f = 10*2*g/(X*v^2)
                       - 1;
```

```
26 f = numer(f);
27 diameter = roots(f); // Taking roots of numerator
      denominator will be multiplied by zero
28 i = 1;
29 while (i <= length (diameter))
30
       x = diameter(i);
       if(imag(x) == 0) then
31
32
           dia = diameter(i);
33
           i = i + 1;
34
       else
35
           i = i+1;
36
       end
37 end
38
39 disp(dia*1000, "Diameter of single equivalent pipe (mm
     ) :", Q2 ,"Flow throught pipe 2 (m3/s):", Q1 ,"
     Flow throught pipe 1 (m3/s):");
```

Scilab code Exa 14.4 INCOMPRESSIBLE FLOW THROUGH BRANCHING PIPES THE THREE RESERVOIR PROBLEM

```
1 clc; funcprot(0); //Example 14.4
2
3 //Initializing the variables
4 Za_Zb = 16;
5 Za_Zc = 24;
6 f = 0.01;
7 l1 = 120;
8 l2 = 60;
9 l3 = 40;
10 d1 = 0.12;
11 d2 = 0.075;
12 d3 = 0.060;
13 g = 9.81;
14 //Calculations
```

```
15
16 A = [\%pi*d1^2/4 \%pi*d2^2/4 \%pi*d3^2/4]
17 function[z] = Coeff(1,d)
       z = 4*f*1/(d*2*g);
18
19 endfunction
20
21 \quad function[f] = F(x)
       f(1) = Coeff(11,d1)*x(1)^2 + Coeff(12,d2)*x(2)^2
22
            - Za_Zb;
       f(2) = Coeff(11,d1)*x(1)^2 + Coeff(13,d3)*x(3)^2
23
            - Za_Zc;;
24
       f(3) = x(1)*d1^2 - x(2)*d2^2 - x(3)*d3^2; // Q1=
25 endfunction
26
27 \quad function[j] = jacob(x)
       j(1,1) = 2*Coeff(11,d1)*x(1); j(1,2) = 2*Coeff(
28
          12,d2)*x(2);j(1,3) = 0;
       j(2,1) = 2*Coeff(11,d1)*x(1); j(2,2) = 0; j(2,3)
29
          = 2*Coeff(13,d3)*x(3);
       j(3,1) = d1^2; j(3,2) = -d2^2; j(3,3) = -d3^2;
30
31 endfunction
32
33 \times = [1.8 \ 0 \ 0];
34 \text{ v} = \text{fsolve}(x,F,jacob, 10^-20);
35 disp(v(3)*A(3),"Flow rate in pipe 3 (m3/s):",v(2)*A
      (2), "Flow rate in pipe 2 (m3/s):", v(1)*A(1), "Flow
       rate in pipe 1 (m3/s):");
```

Scilab code Exa 14.5 INCOMPRESSIBLE STEADY FLOW IN DUCT NETWORKS

```
1 clc; funcprot(0); //Example 14.5
2
3 //Initializing the variables
```

```
4 D = 0.3;
5 Q = 0.8;
6 \text{ rho} = 1.2;
7 f = 0.008;
8 L_{entry} = 10;
9 L_exit = 30;
10 Lt = 20*D; // Transition may be represented by a
      separation loss equivalent length of 20 the
      approach duct diameter
11 K_{entry} = 4;
12 \text{ K_exit} = 10
                  // length of cross section
13 \quad 1 = 0.4;
14 b = 0.2;
                  // width of cross section
15
16 // Calculations
17 A = \%pi*D^2/4;
18 Dp1 = 0.5*rho*Q^2/A^2*(K_entry + 4*f*(L_entry+Lt)/D)
19 area = 1*b;
20 perimeter = 2*(1+b);
21 m = area/perimeter;
22 Dp2 = 0.5*rho*Q^2/area^2*(K_exit + f*L_exit/m);
23 Dfan = Dp1+Dp2;
24
25 disp(Dfan, "fan Pressure input (N/m2):");
```

Scilab code Exa 14.6 INCOMPRESSIBLE STEADY FLOW IN DUCT NETWORKS

```
1 clc; funcprot(0); //Example 14.6
2
3 //Initializing the variables
4 D = [0.15 0.3];
5 rho = 1.2;
6 f = 0.008;
```

```
7 L_{entry} = 10;
8 L_{exit} = 20;
9 Lt = 20*D(2); // Transition may be represented by a
      separation loss equivalent length of 20
                                                 the
      approach duct diameter
10 K = 4;
11 \ Q1 = 0.2;
12
13 // Calculations
14 \ Q2 = 4*Q1;
15 A = \%pi*D^2/4;
16 Dp1 = 0.5*rho*Q1^2/A(1)^2*(K + 4*f*L_entry/D(1));
17 Dp2 = 0.5*rho*Q2^2/A(2)^2*(4*f*(L_exit + Lt)/D(2));
18 Dfan = Dp1+Dp2;
19
20 disp(Dfan, "fan Pressure input (N/m2):");
```

Scilab code Exa 14.7 RESISTANCE COEFFICIENTS FOR PIPELINES IN SERIES AND IN PARALLEL

```
K(i) = f*l(i)/(3*d(i)^5);
14
15 end
16
17 K_{ab} = K(1)*K(2)/(sqrt(K(1))+sqrt(K(2)))^2;
18 \text{ K_ac} = \text{K_ab} + \text{K(3)};
19 Hc = (K_ac*Hf + K(5)*Ha/4)/(K_ac+K(5)/4);
20 Q = sqrt((Ha - Hc)/K_ac);
21
22 \quad function[z] = f(n)
       z = He - Hc + (0.5*Q)^2 *(K(4)+(4000/n)^2);
24 endfunction
25
26 n = fsolve(1,f);
27
28 disp(n, "Percentage valve opening (%):", Hc, "Head at
       C(m):", Q, "total Volume flow rate (m3/s):");
```

Scilab code Exa 14.8 THE QUANTITY BALANCE METHOD FOR PIPE NETWORKS

```
1 clc; funcprot(0); // Example 14.8
2
3 // Initializing the variables
4 d = [0.3 0.25 0.2];
5 l = [1500 800 400];
6 f = 0.01;
7 Ha = 60;
8 Hb = 30;
9 Hc = 15;
10 Hd = 35; // Assumption
11 H(1) = Ha - Hd;
12 H(2) = Hb - Hd;
13 H(3) = Hc - Hd;
14
15 // Calculations
```

```
16 K = 0;
17 for(i=1:length(d))
       K(i) = f*l(i)/(3*d(i)^5);
18
19 end
20 \text{ Qsum} = 0.001;
21 for (i=1:2)
22
       Q = 0; Qby2h = 0; Qs = 0; Qby2hsum = 0;
       for(i=1:3)
23
24
            if(imag(sqrt(H(i)/K(i)))~=0) then
                Q(i) = -1*abs(imag(sqrt(H(i)/K(i))));
25
26
            else
27
                Q(i) = sqrt(H(i)/K(i));
28
            end,
29
            Qby2h = Q(i)/(2*H(i));
30
            Qs = Qs+Q(i);
31
32
           Qby2hsum = Qby2hsum + Qby2h
33
34
       end
35
       dH = Qs/Qby2hsum;
36
       for(i=1:3)
            H(i)=H(i)+dH;
37
38
       end
39
       Qsum = Qs;
40 end
41
42 disp(Q(3), "Q_dc (m3/s) : ",Q(2), "Q_db (m3/s) : ",Q(1),
      "Q_{ad} (m3/s) : ");
```

Scilab code Exa 14.9 QUASI STEADY FLOW

```
1 clc; funcprot(0);//Example 14.9
2
3 //Initializing the variables
4 As = 6;
```

```
5 d = 0.02;
6 	 f = 0.01;
7 L = 1.5;
8 K = 0.9;
9 g = 9.81;
10
11 // Calculations
12 Ap = \%pi*d^2/4;
13 function[y] = Qinv(h)
       y = sqrt((4*f*L/d + K+1)/(2*g*h))/Ap;
15 endfunction
16 //By direct integration
17 t = -As*intg(3.5, 2.25, Qinv); // Discharge is 2 m
      below
18 disp(t, "Time of discharge by direct integration (s)
      : ");
19
20 // By numerical integrations
21 \text{ interval} = [0.250 \ 0.125 \ 0.0083 \ 0.0063 \ 0.005 \ 0.0042];
22 for(i=1:length(interval))
23
24
       start = 3.5; piece = 3.5: -interval(i):2.25;
       X = -As * integrate ('Qinv(h)', 'h', start, piece);
25
26
       disp(X(length(X)), "Value of t(s) : ", interval(i))
27
          ),"____For Interval(Dh in m)____");
28 end
```

Scilab code Exa 14.12 QUASI STEADY FLOW

```
1 clc; funcprot(0);//Example 14.12
2
3 //Initializing the variables
4 As = 6;
5 A2 = 4.5;
```

```
6 d = 0.02;
7 f = 0.01;
8 L = 1.5;
9 K = 0.9;
10 g = 9.81;
11
12 // Calculations
13 Ap = \%pi*d^2/4;
14 C = Ap*sqrt(2*g/(4*f*L/d+K+1));
15
16 function[y] = Qinv(h)
       y = sqrt(1/h)/(C*(1+As/A2));
17
18 endfunction
19
20 //By direct integration
21 t = -As*intg(3.0,2.0,Qinv); // Discharge is 2 m
      below
22 disp(t, "Time of discharge by direct integration (s)
      : ");
23
24 //By Numerical Integration
25 \text{ interval} = [0.250 \ 0.125 \ 0.0083 \ 0.0063 \ 0.005 \ 0.0042];
26 for(i=1:length(interval))
27
28
       start = 3.0; piece = 3.5: -interval(i):2.0;
       X=-As*integrate('Qinv(h)', 'h', start, piece);
29
30
       disp(X(length(X)), "Value of t (s): ",interval(i)
31
          ," ____. For Interval (Dh in m) ____.");
32 end
```

Uniform Flow in Open Channels

Scilab code Exa 15.1 RESISTANCE FORMULAE FOR STEADY UNIFORM FLOW IN OPEN CHANNELS

```
1 clc; funcprot(0);//Example 15.1
3 //Initializing the variables
4 B = 4;
5 D = 1.2;
6 \ C = 7.6;
7 n = 0.025;
8 s = 1/1800;
9
10 // Calculations
11 W = B + 2*1.5*D;
12 A = D*(B+C)/2; // Area of parallelogram formed
13 P = B + 2*1.2*sqrt(D^2 + (1.5D)^2);
14 m = A/P;
15 i=s;
16 \ C = (23+0.00155/i+1/n)/(1+(23+0.00155/i)*n/sqrt(m));
      // By Kutter formula
17 Q1 = C*A*sqrt(m*i);
```

```
18 Q2 = A*(1/n)*m^(2/3)*sqrt(i);
19 disp(Q2,"Q using the Manning formula(m3/s):",Q2,"Q
      using Chezy formula with C determined from the
      Kutter formula (m3/s):");
```

Scilab code Exa 15.2 OPTIMUM SHAPE OF CROSS SECTION FOR UNIFORM FLOW IN OPEN CHANNELS

Non uniform Flow in Open Channels

Scilab code Exa 16.2 EFFECT OF LATERAL CONTRACTION OF A CHANNEL

Scilab code Exa 16.3 CLASSIFICATION OF WATER SURFACE PROFILES

```
1 clc; funcprot(0); //Example 16.3
3 //Initializing the variables
4 = 0.5;
5 b = 0.5;
6 Dn = 1.2;
7 s = 1/1000;
8 \ C = 55;
9 g = 9.81;
10
11 // Calculations
12 c = (1 + a)/b;
13 QbyB = Dn*C*sqrt(Dn*s);
14 q = QbyB;
15 Dc = (q^2/g)^(1/3);
16
17 m = 2.4:-0.15:1.35;
18 total = 0; Dm = 0; N = 0; D = 0; Lm = 0;
19 for(i=1:length(m)-1)
20
21
       Dm(i) = (m(i)+m(i+1))/2;
       N(i) = 1 - (Dc/Dm(i))^3; // Numerator
22
      D(i) = 1 - (Dn/Dm(i))^3; // Denominator
23
24
       Lm(i) = 150*(N(i)/D(i));
       total = total +Lm(i);
25
26 end
27 \text{ result} = [Dm N D Lm];
28 disp(total, "distance upstream covered (approx in m):
     ",result," Mean Depth (Dm) Numerator Denominator
           L(m)");
```

Compressible Flow in Pipes

Scilab code Exa 17.1 MASS FLOW THROUGH A VENTURI METER

```
1 clc; funcprot(0);//Example 17.1
3 //Initializing the variables
4 g = 9.81;
5 \text{ rho} = 1000;
6 \text{ rhoHg} = 13.6*\text{rho};
7 d1 = 0.075;
8 d2 = 0.025;
9 \text{ Pi} = 0.250;
10 \text{ Pt} = 0.150;
11 P_Hg = 0.760;
12 \text{ rho1} = 1.6;
13 \text{ gma} = 1.4;
14
15 // Calculations
16 P1 = (Pi+P_Hg)*rhoHg*g;
17 P2 = (Pt+P_Hg)*rhoHg*g;
18 \text{ rho2} = \text{rho1}*(P2/P1)^(1/gma);
19
20 function[f] = velocity(V)
        f(1) = d2^2*V(2)*rho2-d1^2*V(1)*rho1;
```

Scilab code Exa 17.2 THE LAVAL NOZZLE

```
1 clc; funcprot(0); //Example 17.2
2
3 //Initializing the variables
4 Ma = 4;
5 gma = 1.4;
6 At = 500; // in mm
7
8 //Calculations
9 N = 1 + (gma-1)*Ma^2/2;
10 D = (gma+1)/2;
11 A = At*(N/D)^((gma+1)/(2*(gma-1)))/Ma;
12
13 disp(A, "Area of test section (mm2):");
```

Scilab code Exa 17.3 NORMAL SHOCK WAVE IN A DIFFUSER

```
1 clc; funcprot(0); // Example 17.3
2
3 // Initializing the variables
4 Ma1 = 2;
5 gma = 1.4;
6 T1 = 15+273; // In kelvin
7 P1 = 105;
```

```
8
9 // Calculations
10 Ma2 = sqrt(((gma-1)*Ma1^2 +2)/(2*gma*Ma1^2-gma+1));
11 P2 = P1*(1+gma*Ma1^2)/(1+gma*Ma2^2);
12 T2 = T1*(1 +(gma-1)/2*Ma1^2)/(1 +(gma-1)/2*Ma2^2);
13 disp(T2 - 273, "Temperature (Degree C) of downstream shock wave :",P2, "Pressure (bar) of downstream shock wave :",Ma2, "Mach No downstream shock wave :");
```

Scilab code Exa 17.4 COMPRESSIBLE FLOW IN A DUCT WITH FRICTION UNDER ADIABATIC CONDITIONS FANNO FLOW

```
1 clc; funcprot(0); //Example 17.4
3 //Initializing the variables
4 \text{ gma} = 1.4;
5 f = 0.00375;
6 d = 0.05;
8 // Calculations
9 m = d/4;
10 function[y] = x(Ma)
11
       A = (1 - Ma^2)/(gma*Ma^2);
12
       B = (gma+1)*Ma^2/(2+(gma-1)*Ma^2);
       y = m/f*(A+ (gma+1)*log(B)/(2*gma));
13
14 endfunction
15
16 X1 = x(0.2); // At entrance Ma = 0.2;
17 X06_X1 = x(0.6); // Section(b) Ma = 0.6;
18
19 \times 06 =
          X1 - X06 - X1;
20 disp(X06, "Distance from the entrance (m):", X1," The
      Distance X1 at which the Mach number is unity (m)
       :");
```

Scilab code Exa 17.5 ISOTHERMAL FLOW OF A COMPRESSIBLE FLUID IN A PIPELINE

```
1 clc; funcprot(0); //Example 17.4
3 //Initializing the variables
4 \text{ gma} = 1.4;
5 Q = 28/60; // m3/s
6 d = 0.1;
7 p1 = 200*10^3;
8 f = 0.004;
9 x_x1 = 60;
10 R = 287;
11 T = 15+273;
12
13 // Calculations
14 A = \%pi*d^2/4;
15 m = d/4;
16 \text{ v1} = Q/A;
17 pa = p1*sqrt(1-f*(x_x1)*v1^2/(m*R*T));
18
19 function[y] =g(p)
20
       A = (v1*p1)^2/(R*T)
       B = f * A * x_x 1 / (2 * m);
21
22
       y = (p^2 - p1^2)/2 -A*log(p/p1) +B;
23 endfunction
24 pb=fsolve(pa,g);// Guessing solution around pa
25 disp(pb/1000, "Pressure at the outlet, allowing for
      velocity changes (kN) :",pa/1000,"Pressure at the
       outlet, neglecting velocity changes (kN)");
```

Pressure Transient Theory and Surge Control

Scilab code Exa 20.3 APPLICATION OF THE SIMPLIFIED EQUATIONS TO EXPLAIN PRESSURE TRANSIENT OSCILLATIONS

```
1 clc; funcprot(0); //Example 20.3
3 //Initializing the variables
4 c = 1250;
5 \text{ Dt} = 0.02;
6 \text{ Dv} = 0.5;
7 \text{ rho} = 1000;
8 v = 0.5;
9
10 // Calculations
11 \text{ cDt} = c*Dt;
12 \text{ Dp = rho*c*Dv};
13 \quad DOv_DOt = Dv/Dt;
14 \text{ vDOv}_DOt = \text{v*Dv/cDt};
15 DOp_DOt = Dp/Dt;
16 \text{ vDOp}_DOx = \text{v*Dp/cDt};
17 Error = [vD0v_D0t*100/D0v_D0t vD0p_D0x*100/D0p_D0t];
18 disp(Error, "The percentage errors are given below
```

Scilab code Exa 20.5 CONTROL OF SURGE FOLLOWING VALVE CLOSURE WITH PUMP RUNNING AND SURGE TANK APPLICATIONS

```
clc; funcprot(0); //Example 20.5

//Initializing the variables

f = 0;

Atunnel = 1.227;

Ashaft = 12.57;

Q =2;

L = 200;

g = 9.81;

//Calculations

Zmax = (Q/Ashaft)*sqrt(Ashaft*L/(Atunnel*g));

T = 2*%pi*sqrt(Ashaft*L/(Atunnel*g));

disp(T, "Mass Oscillation Period (s): ",Zmax,"Peak water level (m):");
```

Theory of Rotodynamic Machines

Scilab code Exa 22.1 ONE DIMENSIONAL THEORY

```
1 clc; funcprot(0); //Example 22.1
3 //Initializing the variables
4 Q = 5;
5 R1 = 1.5/2;
6 R2 = 2/2;
7 w = 18;
8 \text{ rho} = 1000;
9 \text{ rhoA} = 1.2;
10 \text{ Hth} = 0.017;
11 g=9.81;
12
13 // Calculations
14 A = \%pi*(R2^2-R1^2);
15 Vf = Q/A;
16 \text{ Ut} = w*R2;
17 Uh = w*R1;
18 B1t = acotd(Ut/Vf);
19 B1h = acotd(Uh/Vf);
```

Scilab code Exa 22.2 DEPARTURES FROM EULERS THEORY AND LOSSES

```
1 clc; funcprot(0); //Example 22.2
3 //Initializing the variables
4 D = 0.1;
5 t = 15*10^{-3};
6 Q = 8.5/3600;
7 N = 750/60;
8 B2 = 25; // Beta 2 ind degrees
9 g = 9.81;
10 z = 16;
11
12 // Calculations
13 A = \%pi*D*t;
14 V_f2 = Q/A;
15 \ U2 = \%pi*N*D;
16 \ V_w2 = U2 - V_f2*cotd(B2);
17 Hth = U2*V_w2/g;
18 Sf = 1 - \pi(B2)/(z*(1-(V_f2/U_2)*cotd(B_2)));
19 H = Sf*Hth;
20
21 disp(H, "Part (b) - Head developed (m): ", Hth, "Part
```

```
(a) - Head developed (m): ");
```

Scilab code Exa 22.3 COMPRESSIBLE FLOW THROUGH ROTODY-NAMIC MACHINES

```
1 clc; funcprot(0); //Example 22.3.
3 //Initializing the variables
4 \text{ Ma} = 0.6;
5 \text{ Cl} = 0.6;
6 tByC = 0.035; // Thickness to chord ratio
7 cByC = 0.015; // Camber to chord ratio
8 \times = 3; // Angle of incidence
9
10 // Calculations
11 lamda = 1/sqrt(1-Ma^2);
12 Cl# = lamda*Cl;
13 tByC1 = tByC*lamda;
14 cByC1 = cByC*lamda;
15 Cl1 = Cl*lamda^2;
16 Ae = x*lamda;
17
18 disp(Ae, "angle of incidence (Degree):", Cl1, "Lift
      Coefficient :",cByC1, "Camber to chord ratio :",
      tByC1, "Thickness to chord ratio: ", "___Geometric
       Characterstics____");
```

Performance of Rotodynamic Machines

Scilab code Exa 23.1 DIMENSIONLESS COEFFICIENTS AND SIMILARITY LAWS

```
1 clc; funcprot(0); //Example 23.1
2
3 //Initializing the variables
4 Q = [0:7:56];
5 H = [40 40.6 40.4 39.3 38 33.6 25.6 14.5 0];
6 n = [0 41 60 74 83 83 74 51 0];
7 N1 = 750;
8 N2 = 1450;
9 D1 = 0.5;
10 D2 = 0.35;
11
12 //Calculations
13 Q2 = Q*(N2/N1)*(D2/D1)^3;
14 H2 = H*(N2/N1)^2*(D2/D1)^2;
15 xlabel("Q (m3/s)");
16 ylabel("H (m of water ) and n(percent)");
```


Figure 23.1: DIMENSIONLESS COEFFICIENTS AND SIMILARITY LAWS

```
17 plot(Q,H,Q,n,Q2,H2,Q2,n);
18
19 legend("H1","n1","H2","n2");
```

Scilab code Exa 23.2 THE PELTON WHEEL

```
1 clc; funcprot(0); //Example 23.2
3 //Initializing the variables
4 n = 0.9;
5 g = 9.81;
6 D = 1.45;
7 N = 375/60;
8 H = 200; // Real height
9 x = 165; // Theta
10 P = 3750*10^3;
11 \text{ rho} = 1000;
12
13 // Calculations
14 h = n*H;
                     //Effective Head
15 \text{ v1} = \text{sqrt}(2*g*h);
16 u = \%pi*D*N;
17
18 n_a = (2*u/v1^2)*(v1-u)*(1-n*cosd(x));
20 P_b = P/n_a;
21 ppj = P_b/2; // Power per jet
22 d = sqrt(8*ppj/(rho*%pi*v1^3));
23
24 disp(d,"Diameter of Jet (m):",n_a*100, "E fficiency
       (\%) : ")
```

Scilab code Exa 23.3 FRANCIS TURBINES

```
clc; funcprot(0); //Example 23.3
3 //Initializing the variables
4 g = 9.81;
5 H = 12;
6 n = 0.8;
7 w = 300*2*\%pi/60;
8 Q = 0.28;
10 // Calculations
11 V_f1 = 0.15*sqrt(2*g*H);
12 V_f2 = V_f1;
13 V_w1 = sqrt(n*g*H);
14 \ u1 = V_w1;
15 theta = atand(V_f1/u1);
16 u2 = 0.5 * u1;
17 B2 = atand(V_f2/u2);
18 \text{ r1} = u1/w;
19 b1 = Q/(V_f2*0.9*2*\%pi*r1); // vanes occupy 10 per
      cent of the circumference hence 0.9
20 b2 = 2*b1;
21
22 disp(b2*1000, "Width of runner at exit (mm):", b1
      *1000, "Width of runner at inlet (mm):", B2,"
      Vane angle at exit (degree): ", theta, "Guide vane
       angle (degree) :");
```

Scilab code Exa 23.4 AXIAL FLOW TURBINES

```
1 clc; funcprot(0);//Example 23.4
2
3 //Initializing the variables
4 H = 35;
5 g = 9.81;
6 D = 2;
```

```
7 N = 145/60;
8 z = 30; // angle between vanes and direction of
     runner rotation
9 y = 28; // angle between runner blades at the outlet
10
11 // Calculations
12 H_net = 0.93*H; // since 7\% head is lost
13 v1 = sqrt(2*g*H_net);
14 u = \%pi*N*D;
15 V_r2 = u*cosd(y);
16 V2 = u * sind(y);
17 V_w2 = V2*sind(y);
18
19 // Function to solve the vector for Vr1 and B1 by
     just re writing the parallelogram law in arranged
      form
20 \quad function[f] = F(x)
       f(1) = u^2 + x(1)^2 + 2*u*x(1)*cosd(x(2))-v1^2;
21
22
       f(2) = x(1)*sind(x(2)) - tand(z)*(u + x(1)*cosd(
          x(2));
23 endfunction
24 X = [10 50]; // An innitial guess of vector length
     and angle by figure
25 result=fsolve(X,F);
26 V_r1 =result(1);
27 B1 = result(2);
28 \ V_w1 = u + V_r1*cosd(B1)
29 E = (u/g)*(V_w1 - V_w2);
30 n = E/H;
31 disp(n*100, "Efficiency (%):", B1, "Blade angle at
     inlet (Degree) :");
```

Scilab code Exa 23.5 HYDRAULIC TRANSMISSIONS

```
1 clc; funcprot(0);
2 // Example 23.5
4 //Initializing the variables
5 s = 0.03;
6 P = 185*10^3;
7 \text{ rho} = 0.86*10^3;
8 A = 2.8*10^-2;
9 N = 2250/60;
10 D = 0.46;
11
12 // Calculations
13 \text{ RO} = 0.46/2;
14 \text{ Ws-Wp} = 1-s;
15 n = Ws_Wp;
16 Pf = s*P;
17 Q = (2*Pf*A^2/(3.5*rho))^(1/3);
18 Wp = 2*\%pi*N;
19 Ri = sqrt((1/Ws_Wp)*(R0^2 -P/(rho*Q*Wp^2))); //
      Modified equation for power transmission.
20 \text{ Di} = 2*Ri;
21 T = P/(rho*Wp^3 *D^5);
22
23 disp(T, "Torque Coefficient:", Di*1000, "Mean
      diameter (mm) : ");
```

Positive Displacement Machines

Scilab code Exa 24.1 RECIPROCATING PUMPS

```
1 clc; funcprot(0);
2 //Example 24.1
4 //Initializing the variables
5 \text{ H_at} = 10.3;
6 \text{ Hs} = 1.5;
7 \text{ Hd} = 4.5;
8 \text{ Ls} = 2;
9 \text{ Ld} = 15;
10 g = 9.81;
11 Ds = 0.4; // Diameter of stroke
12 Db = 0.15; // Diameter of bore
                  // Diameter of discharge and suction
13 \text{ Dd} = 0.05;
      pipe
14 \text{ nu} = 0.2;
15 f = 0.01;
16 abs_pump_pressure = 2.4;
17
18 // Calculations
```

```
19 A = \%pi*(Db)^2/4;
20 \ a = \%pi*(Dd)^2/4;
21 r = Ds/2;
22 W = 2*\%pi*nu;
23 \text{ Hsf} = 0;
24 function[y] = H_suck(n) // n for checking the sign
      of Hsi = 4 f l / 2 dg * (vA/a)^2
25 \text{ y} = \text{H_at} - \text{Hs} + (-1)^n*(L/g)*(A/a)*W^2*r;
26 endfunction
27
28 function[y] = H(n,DischargeOrSuction) // n for
      checking the sign of Hsi = 4 fl/2 dg *(vA/a)^2, for
       suction 1 and for discharge2
29
       if(DischargeOrSuction == 1) then
            y = H_at - Hs + (-1)^n*(Ls/g)*(A/a)*W^2*r;
30
       elseif(DischargeOrSuction == 2) then
31
            y = H_at + Hd + (-1)^n*(Ld/g)*(A/a)*W^2*r;
32
       else disp("There is something wrong :")
33
34
       end
35 endfunction
36
37 function[y] = H_mid(DischargeOrSuction,uA)// n for
      checking the sign of Hsi = 4 fl/2 dg *(vA/a)^2, for
       discharge 1 and for suction 2
38
39
       if(DischargeOrSuction == 1) then
40
            Hsf = 4*f*Ls/(2*Dd*g)*(uA/a)^2;
            y = H_at - Hs - Hsf;
41
       elseif(DischargeOrSuction == 2) then
42
            Hsf = 4*f*Ld/(2*Dd*g)*(uA/a)^2;
43
            y = H_at + Hd + Hsf;
44
45
       else disp("There is something wrong:")
46
       end
47 endfunction
48
                         // Inertia head negative
49 \text{ Hs\_start} = \text{H}(1,1);
      hence n = 1
50 \text{ Hs\_end} = \text{H(2,1)};
                          // Inertia head positive hence
```

```
n = 2
51 Hd_start = H(1,2);
52 \text{ Hd_end} = \text{H(2,2)};
53 u = W*r;
54 \text{ Hs_mid} = \text{H_mid}(1, u*A);
55 \text{ slip} = 0.04;
56 \text{ Hd_mid} = \text{H_mid}(2, u*A);
57 suction = [Hs_start Hs_end Hs_mid];
58 discharge = [Hd_start Hd_end Hd_mid];
59 header = [" Start(m)","
                                   End (m) ", " Mid (m) "];
60 W_max = sqrt((abs_pump_pressure - H_at + Hs)*(g/Ls)
      *(a/A)*(1/r));
61 W_{max_rev} = W_{max}/(2*\%pi)*60; // maximum rotation
      speed in rev/min
62 disp(W_max_rev, "Drive speed for s eperation (rev/min
      ) :","!----\operatorname{Part}\left(\operatorname{c}\right)----1", discharge, header,"!----
      Part(b)---! Head at", suction, header, "!----Part(a
      )---! Head at");
```

Scilab code Exa 24.2 RECIPROCATING PUMPS

```
1 clc; funcprot(0);
2 //Example 24.2
3
4 //Initializing the variables
5 H_friction = 2.4;
6 H_at = 10.3;
7 Hs = 1.5;
8 L =2;
9 f = 0.01;
10 d = 0.05;
11 g = 9.81;
12 Ds = 0.4; // Diameter of stroke
13 Db = 0.15; // Diameter of bore
14 r = 0.2;
```

```
15
16  // Calculations
17  A = %pi*(Db)^2/4;
18  a = %pi*(Dd)^2/4;
19  W= sqrt((H_at - Hs - H_friction)*(2*d*g/(4*f*L)))
          *(a/A)*(%pi/r);
20  W_rev = W/(2*%pi)*60; // maximum rotation speed in
          rev/min
21
22  disp(W_rev-40, "Increase in speed (rev/min):");
```

Machine Network Interactions

```
check Appendix AP 1 for dependency:
```

intersectFunc.sci

Scilab code Exa 25.1 FANS PUMPS AND FLUID NETWORKS

```
1 clc; funcprot(0);
2
3 //------------------------//
4 // Please keep intersectFunc.sci in the same folder in which this file//
5 // is kept and change the current working directory to the directory //
6 // in which both the files are kept using chdir " absolute path" //
7 //
```

8

9

Figure 25.1: FANS PUMPS AND FLUID NETWORKS

```
10 //Example 25.1
11
12 //Initializing the variables
13 exec("intersectFunc.sci");
14 \ Q = [0.010 \ 0.014 \ 0.017 \ 0.019 \ 0.024];
15 H = [9.5 8.7 7.4 6.1 0.9]';
16 n = [65 81 78 68 12];
17 d = 0.15;
18 \text{ mu} = 1.14*10^{-3};
19 \text{ rho} = 1000;
20 g = 9.81;
21
22 // Calculations
23 E1 = 3+9218*Q^2; // f = 0.0025 from moody chart
24 Q1 = intersectFunc(H,E1,Q);
25 \text{ v1} = 4*Q1/(\%pi*d^2);
26 \text{ Re1} = \text{rho*v1*d/mu};
27 E2 = 3+15486*Q^2; // s ince f = 0.0042
28 Q2 = intersectFunc(H,E2,Q);
29 n = 0.78; // efficiency at Q2 from graph
30 H1 = 7.45; // From Graph
31 P = rho*g*H1*Q2/n;
32
33 title("Example 25.1");
34 \text{ xlabel}("Q (m3/s):");
35 ylabel("H(m)");
36 plot(Q,H, Q,E1,Q,E2);
37 \text{ legend("H","E1","E2");}
38
39 disp(P/100, "Power consumed (kW):", Q2, "Flow betwen
       the reservoirs (m3/s):");
```

Scilab code Exa $25.4\,$ AN APPLICATION OF THE STEADY FLOW ENERGY EQUATION

```
1 clc; funcprot(0);
2 // Example 25.4
3
4 //Initializing the variables
5 Pa_P1 = -200; // From previous Question
6 Q = 1.4311; // From previous questions.
7
8 //Calculations
9 DpSys = Pa_P1 + 98.9*Q^2;
10 disp(DpSys, "System Operating point (m3/s):");
```

Scilab code Exa 25.7 JET FANS

```
1 clc; funcprot(0);
2 //Example 25.7
3
4 //Initializing the variables
5 \text{ Vo} = 25.3;
                        //Outlet velocity
                          // Mean hydraulic diameter
6 D = 10 ;
                          // friction factor
7 f = 0.008;
                          // Length of road
8 X = 1000;
                          // Absorbing power
9 P = 12600;
                          // Tunnel air flow
10 \text{ Va} = 300;
11 \text{ K1} = 0.96;
12 \text{ K2} = 0.9;
13 T = 590;
                          //Thrust
                          // Air density
14 \text{ rho} = 1.2;
15
16 // Calculations
17 alpha = (1/D)^2;
18 A = pi*D^2/4; // Area of tunnel
19 Vt = Va/A;
20 W = Vo/Vt;
                        //Omega
21 E = (1-alpha*W);
22 C = (1-alpha*W)*(1-E)^2 + E^2 - 1;
```

Scilab code Exa 25.8 JET FANS

```
1 clc; funcprot(0);
2 //Example 25.8
3
4 //Initializing the variables
5 f = 0.008;
6 T = 290;
7 L = 750;
                     // Diameter Tunnel
8 \text{ Dt} = 9;
9 \text{ Df} = 0.63;
                         // Diameter fan
10 \text{ K1} = 0.98;
11 \text{ K2} = 0.92;
12 \text{ Vo } = 27.9;
13 n = 10;
14
15 // Calculations
16 \text{ alpha} = (Df/Dt)^2;
17 // equation 25.20 becomes when E = 1 nad C = 0
18 W = poly(0, 'W');
```

```
19 Equation = 2*K1* (alpha*W^2 + (n-1)*alpha*W*(W-1)) -
      4*f*L/Dt -1;
20 omega = roots(Equation);
        for(i = 1:length(omega))
21
22
             if(real(omega(i))>0) then // since omega is
                 always positive and real
23
                  w = omega(i);
24
             end,
25
        end
26 \text{ Vt} = \text{Vo/w};
27 disp(Vt, "Tunnel Velocity(m/s):");
```

Scilab code Exa 25.9 CAVITATION IN PUMPS AND TURBINES

```
1 clc; funcprot(0);
2 //Example 25.9
3
4 //Initializing the variables
5 \text{ Ws} = 0.45;
6 \text{ Ks} = 3.2;
7 H = 152;
8 h = 0;
9 \text{ Hatm} = 10.3;
10 \text{ Pv} = 350;
                    //vapour pressure
11 g = 9.81;
12 \text{ rho} = 1000;
13
14 // Calculations
15 \text{ Ht1} = \text{H*(Ws/Ks)}^{(4/3)}
16 Hvap = Pv/(rho*g);
17 \ Z = Hatm -h -Hvap -Ht1;
18 disp(Z, "Elevation of pump (m):");
```

Scilab code Exa 25.11 VENTILATION AND AIRBORNE CONTAMINATION AS A CRITERION FOR FAN SELECTION

```
1 clc; funcprot(0);
2 //Example 25.11
4 //Initializing the variables
5 \text{ Co} = 0;
6 \text{ Qc} = 0.0024;
7 V = 5400;
8 c = 10;
9 // Calculations
10 function[y] = partA(n)
       Ci = 10;
11
       t = 10^1000; // infinity (a very large number)
12
       Q = V*n/3600;
13
       y = (Co + 10000*Qc/Q)*(1-%e^(-n*t)) + Ci*%e^(-n*t)
14
          *t) - c;
15 endfunction
16
17 Sol_A = fsolve(1, partA);
18
19 function[y] = partB(n)
       Ci = 0;
20
       t = 1; // time in hours
21
22
       Q = V*n/3600;
23
       A = Co + 10000*Qc/Q;
       B = Ci*\%e^{(-n*t)} - c;
24
25
       y = A*(1-\%e^{(-n*t)}) + B;
26 endfunction
27
28 Sol_B = fsolve(1,partB);
29
30 function[y] = partC(c)
31
       Ci = 0;
32
       n = 1;
       t = 0.333333; // 20  minutes in hours
33
34
       Q = V*n/3600;
```

```
y = (Co + 10000*Qc/Q)*(1-%e^(-n*t)) + Ci*%e^(-n*t)
35
          *t) - c;
36 endfunction
37
38 Sol_C = fsolve(1, partC);
39
40 function[y] = partD(t)
       Ci = 10;
41
42
       n = 1;
       c = 0.1;
43
       y = Ci*\%e^(-n*t) - c;
44
45 endfunction
46
47 \text{ Sol}_D = \text{fsolve}(0.001, partD);
48
49
50 disp(Sol_D, "Part(D): time necessary to run the
      ventilation system at the rate calculated in (b)
     to reduce the concentration to 0.001 per cent (in
      hours) : ", Sol_C, "Part(C) : the concentration
      after 20 minutes (Parts per 10000) : ", Sol_B," Part
      (B): number of air changes per hour if this
     maximum level is reached after 1 hour and the
     garage is out of use : " , Sol_A, "Part(A) : number
       of air changes per hour if the garage is in
      continuous use and the maximum permissible
      concentration of carbon monoxide is 0.1 per cent.
       :");
```

Appendix

Scilab code AP 1 UDF Intersect Function

```
1 //*************************intersectFunc scilab
     function ***********//
2 //Takes argument as three arrays namely f1, f2(
     functions) and their domain //
3 //It finds intersecting points in all the subdomains
4 //Gives output as point(s) of intersection of the
     two functions
5 // Domain should be INCREASING
6 // Created by : Jay Chakra (www.jaychakra.co.cc)
                 Undergraduate
7 //
                 Aerospace Engineering
9 //
                 IIT Bombay
10 //Comments, suggestions, bugs welcomed at jaychakra.
     jc@gmail.com
11 //
```

```
13 function[y] = intersectFunc(f1,f2,domain)
14
       L1 = length(f1);
       L2 = length(f2);
15
16
       L3 = length(domain);
17
       if ((L1~=L2)|(L1~=L3)|(L2~=L3))then
18
            error ("Check Dimensions of input parameters
               !! "):
19
       else
20
           R = 1;
           y = [];
21
22
                for (i=1:L1-1)
23
                    N1 = f1(i+1)-f1(i);
24
                    N2 = f2(i+1)-f2(i);
                    D = domain(i+1) - domain(i);
25
                    x = poly(0, 'x');
26
                    //Writing equation of straight lines
27
                         joining the terminal points
28
                    f(1) = f1(i) + (N1/D)*(x-domain(i));
29
                    f(2) = f2(i) + (N2/D)*(x-domain(i));
                    difference = f(2) - f(1);
30
                    root = roots(difference);
31
                       Solution will be the roots of
                        difference
                    if(difference == 0) then
32
                                                         //
                        if both functions are same
33
                         y = domain;
34
                         break;
                    elseif(root~=[]&root<=domain(i+1)&</pre>
35
                       root>=domain(i)) then //if roots
                       lie in the subdomain
36
                         y(R) = root;
37
                         R=R+1;
38
                     end,
39
                 end,
40
       end
41 endfunction
```