DONE BY :- NEHA SAHA (2251181) PRIYANSHU MONDAL (2251222)
ANKIT OJHA(2251220) ARKASNATO BHATTACHARYYA(2251064)

TOPIC:

UDP Payment Simulator Using JavaFX

1. Introduction

In the contemporary digital economy, instantaneous and secure peer-to-peer (P2P) payment solutions are fundamental. Traditional blockchain networks, while highly secure, often suffer from scalability and latency issues. This makes them less optimal for microtransactions or high-frequency transactions.

To address these limitations, off-chain solutions such as the **Bitcoin Lightning Network** have emerged, enabling fast, scalable, and cost-effective micropayments by shifting transaction processing off the main blockchain.

This project, **UDP Payment Simulator**, replicates the behaviour of such off-chain payment networks by:

- Using **UDP** for low-latency communication.
- Implementing a JavaFX-based GUI for user-friendly interaction.
- Simulating crucial aspects like payment channel management, transaction acknowledgment, packet loss, and latency measurement.

The goal is to model real-world decentralized payment behaviours in a controlled simulation environment.

2. Objective

The main objectives of this project are:

- **Simulation**: Model decentralized peer-to-peer microtransactions over an unreliable network (UDP).
- GUI Development: Create a professional and intuitive graphical interface using JavaFX.
- Acknowledgment Handling: Implement mechanisms for payment confirmation and timeout detection.
- Packet Loss Simulation: Emulate real-world network unreliability by introducing artificial packet drops.
- Latency Tracking: Measure and log the round-trip time of payments for analysis.

DONE BY :- NEHA SAHA (2251181) PRIYANSHU MONDAL (2251222)
ANKIT OJHA(2251220) ARKASNATO BHATTACHARYYA(2251064)

3. Problem Statement

Modern blockchain-based payment systems, though secure, are inherently slow due to the consensus mechanism. For micropayments, these delays and transaction fees are prohibitive.

The project addresses the problem by:

- Simulating an off-chain fast transaction environment.
- Analyzing how unreliable networks (like UDP) affect transaction reliability.
- Testing strategies to mitigate transaction failures (acknowledgment, timeout handling).

This simulation helps understand how decentralized payment systems ensure both **speed** and **reliability** despite network challenges.

4. Technologies Used

Technology	Purpose
Java 11+	Core programming language for backend and logic.
JavaFX	Graphical User Interface (GUI) framework.
UDP Sockets (java.net)	Peer-to-peer communication channel.
CSV Files	Persistent logging of transaction data.
Traffic Simulation	Packet loss and delay simulation within UDP communication.

5. Project Features

- Open/Close Payment Channels: Simulation of enabling and disabling the ability to transact.
- Send Payment Requests: Send payments via UDP packets formatted as lightweight JSON objects.
- Receive Acknowledgments: Confirm transaction delivery with acknowledgment packets.

DONE BY :- NEHA SAHA (2251181) PRIYANSHU MONDAL (2251222)
ANKIT OJHA(2251220) ARKASNATO BHATTACHARYYA(2251064)

- Packet Loss Simulation: Randomly discard 20% of outgoing packets to emulate realworld network instability.
- Latency Measurement: Record time between sending a request and receiving an acknowledgment.
- **Transaction Logging**: Save all transaction attempts (successes and failures) into a structured CSV file.
- **GUI with Status Feedback**: Provide real-time feedback to users via an auto-updating, scrollable log display.

6. Working Principle

6.1 Sender App Workflow

DONE BY :- NEHA SAHA (2251181) PRIYANSHU MONDAL (2251222)
ANKIT OJHA(2251220) ARKASNATO BHATTACHARYYA(2251064)

1. Channel Initialization:

Upon "Open Channel" command, sender can start sending payments.

2. Payment Request Sending:

A JSON packet containing payment details is created and sent via UDP.

3. Waiting for Acknowledgment:

A timer starts to measure RTT. If acknowledgment is received within timeout, success is logged. Otherwise, transaction failure is logged.

4. Channel Closure:

After payments are done, the "Close Channel" command halts further transmission.

6.2 Receiver App Workflow

DONE BY :- NEHA SAHA (2251181) PRIYANSHU MONDAL (2251222)
ANKIT OJHA(2251220) ARKASNATO BHATTACHARYYA(2251064)

1. Listening for Packets:

The receiver stays in a loop, continuously monitoring the UDP port for incoming payment packets.

2. Acknowledgment Handling:

Upon receiving a payment packet, the receiver sends back a simple acknowledgment packet immediately.

3. User Interface Updates:

Received payments and sent acknowledgments are logged and displayed on the receiver's GUI in real-time.

7. System Architecture Diagram

8. Outputs shown in a separate file attached after.

DONE BY :- NEHA SAHA (2251181) PRIYANSHU MONDAL (2251222)
ANKIT OJHA(2251220) ARKASNATO BHATTACHARYYA(2251064)

9. Why UDP is Used

UDP is selected as the communication protocol because:

No Handshakes:

Minimal connection overhead ensures fast communication.

Low Latency:

UDP allows quicker message delivery without waiting for network setup.

Lightweight Headers:

Less data overhead compared to TCP improves transmission speed.

Resembling Lightning Network Characteristics:

Similar to Bitcoin's Lightning Network philosophy where speed is prioritized over reliability (handled cryptographically, not by the transport layer).

Real-World Comparison:

- Lightning Network: Guarantees reliability through cryptographic contracts.
- **UDP Payment Simulator**: Simulates fast, possibly unreliable communication, where responsibility lies at application logic.

10. Risk of Money Loss Discussion

In this simulation:

- Packet loss results in missing transactions without real-world financial loss.
- CSV log records failed attempts for analysis.

In actual Lightning Network systems:

- Loss of acknowledgment does not necessarily mean monetary loss because of Hashed Timelock Contracts (HTLCs).
- If a payment is not confirmed within a timelock, it is automatically refunded to the sender.
- Cryptographic rules ensure either payment completion or no fund movement.

Thus, real systems are significantly more resilient than the simple UDP simulator.

DONE BY :- NEHA SAHA (2251181) PRIYANSHU MONDAL (2251222)
ANKIT OJHA(2251220) ARKASNATO BHATTACHARYYA(2251064)

11. How This Project Relates to Real Bitcoin Lightning Network

Simulator Feature	Lightning Network Concept
Channel Management	Channel opening/closing
Payment Sending	Off-chain transaction
Acknowledgment Processing	Cryptographic receipt
Packet Loss Simulation	Node failure or unstable routing paths
Latency Measurement	Tracking transaction finalization time
Transaction Logging	Maintaining payment records (commitment states)

12. Future Improvements

Add Encryption:

Introduce DTLS (Datagram TLS) to encrypt UDP traffic.

Retry Mechanism:

Implement retransmissions for unacknowledged packets based on timeout.

Multi-client System:

Extend to support concurrent multi-peer payment sessions.

Data Visualization:

Integrate charting libraries to plot transaction statistics (e.g., success/failure rate, latency distribution).

• Blockchain Integration:

Connect with a Bitcoin testnet to simulate on-chain channel settlements.

• Mobile Compatibility:

Extend GUI to Android or lightweight platforms using JavaFX Mobile.

DONE BY :- NEHA SAHA (2251181) PRIYANSHU MONDAL (2251222)
ANKIT OJHA(2251220) ARKASNATO BHATTACHARYYA(2251064)

13. Conclusion

The **UDP Payment Simulator** successfully models the key principles of decentralized, real-time payment systems, focusing on speed, packet loss handling, and acknowledgment verification.

It serves as an educational tool to understand network behaviour in unreliable environments and offers a foundational prototype that can be enhanced into a real-world payment layer system with further cryptographic and blockchain integrations.

By providing insights into transaction behaviour over unreliable mediums, this project bridges academic learning with modern decentralized finance concepts.