## **CONCLUSION**

Finally we will get accuracy for our model, But accuracy may varies sometime, so in this case we can use confusion matrix

## **CONFUSION MATRIX:**

```
from sklearn.metrics import confusion_matrix
plt.figure(figsize=(16,9))
y_pred_labels = [ np.argmax(label) for label in y_pred ]
cm = confusion_matrix(y_test, y_pred_labels)

sns.heatmap(cm, annot=True, fmt='d',xticklabels=class_labels, yticklab
els=class_labels)

from sklearn.metrics import classification_report
cr= classification_report(y_test, y_pred_labels, target_names=class_labels)
print(cr)
```



## The Classification Report:

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| T-shirt/top  | 0.82      | 0.89   | 0.86     | 1000    |
| Trouser      | 0.98      | 0.98   | 0.98     | 1000    |
| Pullover     | 0.82      | 0.89   | 0.85     | 1000    |
| Dress        | 0.92      | 0.90   | 0.91     | 1000    |
| Coat         | 0.87      | 0.84   | 0.86     | 1000    |
| Sandal       | 0.98      | 0.98   | 0.98     | 1000    |
| Shirt        | 0.82      | 0.72   | 0.77     | 1000    |
| Sneaker      | 0.97      | 0.97   | 0.97     | 1000    |
| Bag          | 0.98      | 0.97   | 0.97     | 1000    |
| Ankle boot   | 0.97      | 0.97   | 0.97     | 1000    |
| accuracy     |           |        | 0.91     | 10000   |
| macro avg    | 0.91      | 0.91   | 0.91     | 10000   |
| weighted avg | 0.91      | 0.91   | 0.91     | 10000   |

This deep learning algorithm now identifies and predicted the images.

```
plt.figure(figsize=(16,16))

j=1
for i in np.random.randint(0, 1000,25):
   plt.subplot(5,5, j); j+=1
   plt.imshow(X_test[i].reshape(28,28), cmap = 'Greys')
   plt.title('Actual = {} / {} \nPredicted = {} / {}'.format(class_labe)
ls[y_test[i]], y_test[i], class_labels[np.argmax(y_pred[i])],np.argmax(y_pred[i])))
   plt.axis('off')
```



So we finally completed, and images are predicted correctly with the label name given. The confusion matrix represents how many products or images are perfectly predicted. And the classification report says the precision, recall, f1score of the model an also accuracy.

## THANK\_YOU.....