COMP0009 Logic and Databases Exercises 6: First order compactness.

Robin Hirsch

November 30, 2020

Let \vdash be a proof system for first order logic (denoting either proof by an axiom system, by tableau or by some other method, sound and complete for first order validities.).

- 1. Let Γ be a set of first order sentences and let ϕ be a single sentence. Explain what $\Gamma \vdash \phi$ means.
- 2. Explain the notation $\Gamma \models \phi$.
- 3. Explain what it means when we say that a set Σ of L-formulas is inconsistent.
- 4. What does it mean when we say \vdash is sound? What does it mean when we say \vdash is strongly complete?
- 5. State the compactness theorem for first order logic.

Let L = L(C, F, P) be a signature with constants $C = \{0, 1\}$, functions $F = \{+, \times\}$ and predicates $\{<, =\}$. Let $N = (\mathbb{N}, I)$ be the L-structure whose domain is the set of natural numbers, where I(0) = 0, I(1) = 1, where I(+), I(+) denote ordinary addition and multiplication of natural numbers (respectively) and where I(+), I(+) denote ordinary less than or equal (respectively) on natural numbers.

- 6. Write down a closed term t in this language that denotes 7.
- 7. Which elements of the domain \mathbb{N} are named by closed terms in N?

Let Σ be the set of all L-sentences true in N.

8. Write down an L-sentence in Σ . Write down an L sentence not in Σ .

Now let L^+ be the same signature as L, but also including one new constant symbol ω . Consider the infinite theory

$$\Sigma^+ = \Sigma \cup \{t < \omega : t \text{ is a closed } L\text{-term}\}$$

- 9. Let F be a finite subset of Σ^+ . Prove that F is consistent. [Hint: find a model of F based on N, but with a suitable interpretation of ω .]
- 10. Use the compactness theorem to prove that Σ^+ has a model $N^+ = (\mathbb{N}^+, I^+)$.
- 11. If $m \in \mathbb{N}^+$ is named by a closed L-term t, then we say that m is a standard number, other elements of \mathbb{N}^+ are non-standard. Write down several closed L^+ -terms denoting distinct, non-standard numbers.

- 12. Is $\forall x \forall y (x \times y = y \times x)$ true in N^+ ?
- 13. Is there a number $m \in \mathbb{N}^+$ such that $\mathbb{N}^+ \models m+1 = \omega$? If so, is m interpretted as a standard number?
- 14. We say that m is a predecessor of n if m+1=n. Which elements of \mathbb{N}^+ have predecessors?
- 15. The principal of induction can be written as the second order formula $\forall P((P(0) \land \forall x (P(x) \rightarrow P(x+1))) \rightarrow \forall x P(x))$, where P is a unary predicate. Does the principal of induction hold in N^+ ?