Factorial Designs

BIOE 498/598 PJ

Spring 2021

A factorial design studies multiple factors set at discrete intervals.

A factorial design studies multiple factors set at discrete intervals.

A design with k factors set at L levels is called an L^k factorial design.

A factorial design studies multiple factors set at discrete intervals.

A design with k factors set at L levels is called an L^k factorial design.

A factorial design includes runs with every combination of factors set at every level.

Sample factorial designs

2² Factorial design

x_1	<i>x</i> ₂
_	_
+	_
_	+
+	+

2³ Factorial design

<i>x</i> ₁	<i>x</i> ₂	<i>X</i> ₃
_	_	_
+	_	_
_	+	_
+	+	_
_	_	+
+	_	+
_	+	+
+	+	+

3² Factorial design

-			
	<i>x</i> ₁	<i>X</i> ₂	
	_	_	
	0	_	
	+	_	
	_	0	
	0	0	
	+	0	
	_	+	
	0 +	+	
	+	+	

- Factorial designs find better optima.
- Factorial designs are more efficient.
- ► Factorial designs make better estimates of effect sizes.

- ► Factorial designs find better optima.
- Factorial designs are more efficient.
- ► Factorial designs make better estimates of effect sizes.

Factorial designs find better optima

The problem with OFAT: Interactions

Using interaction plots for diagnosis

Table 3.1 Mooney	y Vise	cosity	$of\ Silica$	B at 100	$)^{\circ}C$	
Naphthene Oil (phr)			Filler	(phr)		
	0	12	24	36	48	60
0	25	30	35	40	50	60
10	18	21	24	28	33	41
20	13	15	17	20	24	29
30	11	14	15	17	18	25

- Factorial designs find better optima.
- ► Factorial designs are more efficient.
- ► Factorial designs make better estimates of effect sizes.

Factorial designs seem less efficient...

Imagine an experiment with four factors, each with two levels (-, +). We want three replicates for each level.

One Factor at a Time Design

- ▶ 3 runs at level (-)
- ▶ 4 factors \times 3 runs at (+) = 12 runs
- ▶ 15 total runs

Factorial Design

 $ightharpoonup 2^4 = 16$ total runs

... until you look at the designs

OFAT J. .: ---

O	FAI	desig	'n
x_1	x_2	<i>X</i> 3	<i>X</i> ₄
_	_	_	_
_	_	_	_
_	_	_	_
+	_	_	_
+	_	_	_
+	_	_	_
_	+	_	_
_	+	_	_
_	+	_	_
_	_	+	_
_	_	+	_
_	_	+	_
_	_	_	+
_	_	_	+
_	_	_	+

Fa	ctoria	ıl des	ign
x_1	x_2	<i>X</i> ₃	<i>X</i> ₄
_	_	_	_
+	_	_	_
_	+	_	_
+	+	_	_
_	_	+	_
+	_	+	_
_	+	+	_
+	+	+	_
_	_	_	+
+	_	_	+
_	+	_	+
+	+	_	+
_	_	+	+
+	_	+	+
_	+	+	+
+	+	+	+

Factorial designs give more replicates per run

A factorial design in n variables has 2^n runs, but 2^{n-1} replicates at each level (-, +).

Factorial designs give more replicates per run

A factorial design in n variables has 2^n runs, but 2^{n-1} replicates at each level (-, +).

Imagine a design with n variables at k levels. After the initial design, adding another replicate requires

- nk runs for a OFAT design
- $ightharpoonup \sim k$ runs for a factorial design

- Factorial designs find better optima.
- Factorial designs are more efficient.
- ► Factorial designs make better estimates of effect sizes.

What are the other factors doing when x_3 is high?

О	FAT	desig	gn		F	ac	ctoria	l des	ign
x_1	x_2	<i>X</i> ₃	<i>X</i> ₄		X	1	x_2	<i>X</i> ₃	<i>X</i> ₄
_	_	_	_		_	-	_	_	_
_	_	_	_		+	-	_	_	_
_	_	_	_		_	-	+	_	_
+	_	_	_		+	-	+	_	_
+	_	_	_		_	-	_	+	_
+	_	_	_		+	-	_	+	_
_	+	_	_		_	-	+	+	_
_	+	_	_		+	-	+	+	_
_	+	_	_		_	-	_	_	+
_	_	+	_		+	-	_	_	+
_	_	+	_		_	-	+	_	+
_	_	+	_		+	-	+	_	+
_	_	_	+		_	-	_	+	+
_	_	_	+		+	-	_	+	+
_	_	_	+		_	-	+	+	+
					+	_	+	+	+

What do the effect sizes estimate?

For OFAT designs:

 β_i is the effect of moving x_i from — to + while all other factors stay at —.

What do the effect sizes estimate?

For OFAT designs:

 β_i is the effect of moving x_i from — to + while all other factors stay at —.

For factorial designs:

 β_i is the effect of moving x_i from — to + averaged over all other factors at all levels.

Factorial designs are nested

Factorial design

			0
<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄
	_	_	_
+	_	_	_
_	+	_	_
+	+	_	_
_	_	+	_
+	_	+	_
_	+	+	_
+	+	+	_
_	_	_	+
+	_	_	+
_	+	_	+
+	+	_	+
_	_	+	+
+	_	+	+
_	+	+	+
+	+	+	+

Whe	n <i>x</i> ₃	= -
x_1	x_2	<i>X</i> ₄
_	_	_
+	_	_
_	+	_
+	+	_
_	_	+
+	_	+
_	+	+
+	+	+

When
$$x_3 = +$$
 x_1 x_2 x_4
 $+$ $+$ $+$ $+$ $+$ $+$ $+$
 $+$ $+$ $+$