GRAPH ATTENTION NETWORKS

by

Petar Velic ković *, Guillem Cucurull*, Arantxa Casanova*, Adriana Romero, Pietro Lio, Yoshua Bengio

presented by Sukwon Yun

Contents

- 1. Background
- 2. Introduction
- 3. Results
- 4. Implementation
- 5. Key takeaways & Discussions

Graph Neural Network (GNN)

Notations	Descriptions
•	The length of a set.
\odot	Element-wise product.
G	A graph.
V	The set of nodes in a graph.
v	A node $v \in V$.
E	The set of edges in a graph.
e_{ij}	An edge $e_{ij} \in E$.
N(v)	The neighbors of a node v .
A	The graph adjacency matrix.

- Task of GNN
- Node Level
- Edge Level
- Graph Level

Node Level

GAT -> Node level

- Task of GNN
- Node Level
- Edge Level
- Graph Level

- Task of GNN
- Node Level
- Edge Level
- Graph Level

Graph Level

Graph Attention Networks

"Give weight to Specific / Interesting Node "

Vanilla GCN updates information of neighbor atoms with same importance.

Attention mechanism enables it to update nodes with different importance

• Architecture

• Phase 1

1. Start with original features

$$\mathbf{h} = \{ec{h}_1, ec{h}_2, \dots, ec{h}_N\}, ec{h}_i \in \mathbb{R}^F$$

2. Linear Transformation

$$\vec{h}_i' = \mathbf{W} \vec{h}_i$$

$$\mathbf{h}' = \{ \vec{h}_1', \vec{h}_2', \dots, \vec{h}_N' \}, \vec{h}_i' \in \mathbb{R}^{F'}$$

3. Evaluate Attention

 $e_{B,i} = LeakyReLU(\vec{a}^T[\vec{h}_B'||\vec{h}_i'])$, where i = A, B, C, D

3. Evaluate Attention

$$e_{B,i} = LeakyReLU(\vec{\mathbf{a}}^T[\vec{h}_B'||\vec{h}_i'])$$
, where i = A , B , C , D $lpha_{B,i} = softmax(e_{B,i}) = rac{\exp(e_{B,i})}{\sum_i \exp(e_{B,i})}$, where i = A , B , C , D .

4. Summation

$$\vec{h}_B^{\prime\prime} = \sigma(\sum_i \alpha_{B,i} \vec{h}_i^\prime)$$
, where i = A , B , C , D .

5. Multi-head attention

$$\vec{h}_{B}^{"} = ||_{k=1}^{K} \vec{h}_{B,k}^{"}|$$

- Suppose $d(\vec{h}_{B}^{"}) = 64, K = 2$, then $d(\vec{h}_{B,k}^{"}) = 32$.
- Each "head" is responsible for 32 dimensions.
- The parameters of different "head" are different

• Phase 2

6. Multi-head attention for final layer

$$\vec{h}_{A}^{\prime\prime\prime} = \sigma(\frac{1}{K}\sum_{k}\vec{h}_{A,k}^{\prime\prime\prime})$$

7. Cross-entropy loss function

3. Results

Dataset

	Cora	Citeseer	Pubmed	PPI
Task	Transductive	Transductive	Transductive	Inductive
# Nodes	2708 (1 graph)	3327 (1 graph)	19717 (1 graph)	56944 (24 graphs)
# Edges	5429	4732	44338	818716
# Features/Node	1433	3703	500	50
# Classes	7	6	3	121 (multilabel)
# Training Nodes	140	120	60	44906 (20 graphs)
# Validation Nodes	500	500	500	6514 (2 graphs)
# Test Nodes	1000	1000	1000	5524 (2 graphs)

3. Results

Transductive

Method	Cora	Citeseer	Pubmed
MLP	55.1%	46.5%	71.4%
ManiReg (Belkin et al., 2006)	59.5%	60.1%	70.7%
SemiEmb (Weston et al., 2012)	59.0%	59.6%	71.7%
LP (Zhu et al., 2003)	68.0%	45.3%	63.0%
DeepWalk (Perozzi et al., 2014)	67.2%	43.2%	65.3%
ICA (Lu & Getoor, 2003)	75.1%	69.1%	73.9%
Planetoid (Yang et al., 2016)	75.7%	64.7%	77.2%
Chebyshev (Defferrard et al., 2016)	81.2%	69.8%	74.4%
GCN (Kipf & Welling, 2017)	81.5%	70.3%	79.0 %
MoNet (Monti et al., 2016)	$81.7\pm0.5\%$	_	$78.8\pm0.3\%$
GCN-64*	$81.4 \pm 0.5\%$	$70.9 \pm 0.5\%$	79.0 \pm 0.3%
GAT (ours)	$83.0 \pm 0.7\%$	$\textbf{72.5} \pm 0.7\%$	79.0 \pm 0.3%

Inductive

Method	PPI
Random	0.396
MLP	0.422
GraphSAGE-GCN (Hamilton et al., 2017)	0.500
GraphSAGE-mean (Hamilton et al., 2017)	0.598
GraphSAGE-LSTM (Hamilton et al., 2017)	0.612
GraphSAGE-pool (Hamilton et al., 2017)	0.600
GraphSAGE*	0.768
Const-GAT (ours)	0.934 ± 0.006
GAT (ours)	0.973 ± 0.002

4. Implementation

Time per epoch: 0.288s

4. Implementation

<Including Dropout in Input>

<Excluding Dropout in Input>

5. Key takeaways

- Power of Self-Attention layers, Stacking layers
- Assigning different importances to different nodes
- Computation can be parallelized

5. Discussion

- (-) Handling larger batch size
- (-) Model interpretability
- (-) node classification -> graph classification
- (-) Incorporate edge features
- (-) Rather than Elu?

References

- (1) Veličković, Petar, et al. "Graph attention networks." arXiv preprint arXiv:1710.10903 (2017).
- (2) Wu, Zonghan, et al. "A comprehensive survey on graph neural networks." IEEE transactions on neural networks and learning systems (2020).
- (3) S6 Presenter: Graph Attention Networks by Zhang Ce, https://www.youtube.com/watch?v=6hbWpbi0Z24
- (4) Graph Attention Networks, https://www.youtube.com/watch?v=NSjpECvEf0Y&t=2264s