Math 535a Homework 4

Due Friday, February 24, 2017 by 5 pm

Please remember to write down your name on your assignment.

1. In \mathbb{R}^2 , consider the vector fields X and Y defined by

$$X = e^{x^2 + y^2} \frac{\partial}{\partial x} + \sin(xy) \frac{\partial}{\partial y}$$
$$Y = (x^2 + 3xy) \frac{\partial}{\partial x} + (x+y) \frac{\partial}{\partial y}.$$

Compute the Lie bracket [X, Y].

- 2. Consider the vector field $X = x^2 \frac{d}{dx}$ on \mathbb{R} . Compute its integral curves. Explain why X does not admit a global flow $\Phi : \mathbb{R} \times (-\epsilon, \epsilon) \to \mathbb{R}$ for any ϵ .
- 3. Let $\mathcal{D} = \ker(dz + (xdy ydx)) \subset T\mathbb{R}^3$ be the two-dimensional distribution considered in class, called the *(standard) contact distribution* on \mathbb{R}^3 . Verify that \mathcal{D} is not integrable.
- 4. A Lie group is a manifold G equipped with a multiplication map $G \times G \to G$ which both satisfies the axioms of a group, and is a C^{∞} map, such that the map $G \to G$ sending $g \mapsto g^{-1}$ is also C^{∞} .

For an element $g \in G$, let $L_g : G \to G$ be the left multiplication, defined by $L_g(h) = gh$. A vector field X on G is *left invariant* if $(L_g)_*(X_h) = X_{gh}^{-1}$ for every $g, h \in G$.

- (a) Show that, if $\mathbf{1} \in G$ denotes the identity element of G, then the map $X \mapsto X_1$ induces a linear isomorphism between the vector space of all left invariant vector fields and the tangent space T_1G .
- (b) Suppose G is a group of matrices that is a submanifold of $M_{n\times n}(\mathbb{R}) \cong \mathbb{R}^{n^2}$ (for instance $G = GL_n(\mathbb{R}), SL_n(\mathbb{R}), O_n(\mathbb{R}), or SO_n(\mathbb{R})$). (You may take for granted in this exercise that such a group is in fact a Lie group). Let X and Y be two left invariant vector fields. Show that

$$[X,Y]_1 = X_1Y_1 - Y_1X_1$$

where, on the right hand side, the product is just the usual multiplication of matrices in $M_{n\times n}(\mathbb{R})$.

- 5. (worth double weight) Write out a proof of the Frobenius theorem in the general case.
- 6. Let $f:M^m\to\mathbb{R}^N=\mathbb{R}^p\times\mathbb{R}^{N-p}$ be an embedding of an m-dimensional manifold into Euclidean space.
 - (a) Show that every horizontal subspace $\mathbb{R}^p \times \{z_0\}$ is arbitrarily close to a subspace $\mathbb{R}^p \times \{z\}$ whose pre-image $f^{-1}(\mathbb{R}^p \times \{z\})$ is an (m-N+p)-dimensional submanifold

If $f: M \to N$ is a map between smooth manifolds, then there is an induced map $f_*: \mathfrak{X}(M) \to \mathfrak{X}(N)$ given by $(f_*X)_p = X_{f(p)}$

of M. (note: there is a reasonable notion of m-N+p-dimensional manifold assuming $m-N+p\geq 0$, with the convention that $\mathbb{R}^0=\{0\}$, so 0-manifolds are collections of points. In this problem, we allow m-N+p to be arbitrary, with the convention that the only possible negative dimensional manifold is the empty set).

- (b) Show that, for $z \in \mathbb{R}^{N-p}$ as in the previous part, the intersection $f(M) \cap \mathbb{R}^p \times \{z\}$ is a submanifold of \mathbb{R}^N .
- 7. Let $f: M^m \to \mathbb{R}^N$ be an immersion from a smooth manifold of dimension m to \mathbb{R}^N .
 - (a) Let $T^1M \subset TM$ be the locus

$$T^{1}M = \{(x, v) \in TM \mid ||df_{x}(v)|| = 1\}.$$

Show that T^1M is a smooth manifold of dimension 2m-1.

(b) Show, adapting arguments given in class, that if if N>2m, then there exists $v\in S^{N-1}=\{v\in\mathbb{R}^N|||v||=1\}$ such that $\pi_v\circ f$ is still an immersion, where π_v is the orthogonal projection from \mathbb{R}^N to $H_v=\{w\in\mathbb{R}^N|w\cdot v=0\}$. Conclude that, at least if M is compact, that there exists an immersion $g:M\to\mathbb{R}^{2m}$.