Dagrammatic (00, n) - categories

C. Chanavat & A. Hadzihasanovic Taltech

SYCO 13 QUEL

24 April 2025

What is an (p, n) - category ?

- · We want (p,0)-categories to be precisely or-groupoids i.e. classical homotopy types.
- · We want all categories to be $(\infty, 1)$ -categories and bicategories to be $(\infty, 2)$ -categories.
- · an (0, n+1) category should have an (00, n)-category of cells between any two points.

What is an (o,n)-category? (continued)

- · There are by non fully established models of $(\omega, 1)$ categories, often called just " ∞ categories".
- · It is commonly expected that strict in-categories should be a subclass of (oo,n) categories = Except IN A WEAR SENSE

What does a model of (or, n) - categories consist of?

- 1) A model of k-cells for each k.
- 2) A model of structural homotopies existing between (diagrams of) cells.
- 3) A notion of what cells are internal equivalences, s.t. all k-cells for k>n are internal equivalences.

What does a model of (o,n)-categories consist of? etd.

- (4) A class of composable diagrams, i.e.
- 5) A notion of what it means for a cell to be a composite of a composable diagram.
- a characterisation of (weak) equivolences among them.

Example: Categories as a model of (00,1)-categories

- (1) · , . . . , no k-cells for k>1
- 2) Identity 1-cells, no other structural hamotopie,
- 3 Isomorphisms as internal equivalences
- (5) Algebraic operation of composition
- 6 Functors are functors, equivolences are equivalences

A rough classification of models

· Are structural homotopies, resp. composites determined explicitly by operations (rather than assenting their mere existence?)

YES: ALGEBRAIC NO: GEOMETRIC

· Does composition satisfy nontrivial equations, strictly?

YES: SEMISTRICT NO: WEAK

The current landscape

SEGAL MAINSTREAM
REZLI

Tamsamani Simpson

GEOMETRIC

SHAPED

Cubical

Complicial

Diagrammatic

WEAK

Trimble

alobular

anotherdiech Maltsiniotis

Batanin

Leinster

Type
theoretic

ALGEBRAIC

Charted

Strict

SEMISTRICT

When are two models equivalent?

The current gold standard: define model structures whose bifibrant objects are (ω, n) -categories k ω . eq. between bifibrants are the ω . eqs. of (∞, n) -categories, then establish a Quillen equivalence

THIS DOESN'T QUARANTEE THAT, E.G., WE HAVE THE SAME "LAX TRANSFORMATIONS", BUT IT'S THE BEST WE HAVE FOR NOW) The current landscape

How does it feel to do (0, n)-category theory?

With "mainstream" models: more like model category theory!

· Models are not "self-contained" — basic constructions take you outside the model, and you are always havigating some network of Quillen Functors...

the mainstream answer: Just work synthetically!

J.e. "univalent"-style -- never læde inside a madel,
just find the right equivalence-invariant language...

· Who this leaves stranded: us Syco-folks

(& representation theorists, low-dim topologists...)

who need explicit diagrammatic presentation!

Towards a self-contained model

- · The diagrammatic model is closed under the most important constructions (higher functor categories, slices...)
- · It has an in-built, powerful diagrammatic language, such that e.g. diagrammatic arguments in 2-categories easily adapt to $(\infty, 2)$ -categories

- 1) The model of cells
 - of atoms, molecules & regular directed complexes

 (cfr. my book, Combinatorics of higher-categorical diagrams)
 - · Cells can be pasted together globularly to form
 parting diagrams; pasting satisfies strict associativity &
 interchange

2 Structural homotopies

- · they are specified algebraically by the category ((atom) of atoms & cantesian maps
- · The underlying structure of an (∞, n) category is a diagrammatic set, a presheaf on \odot

3 Internal equivalences

- · Cells in a diagrammatic set are an instance of a more general notion of round diagram.
- · One can instantiate the notion of coinductive weak invertibility (cfr. Cheng, Rice,...) at the level of round diagrams these are the equivalences.

 (c.c., A.A., Equivalences in diagrammatic sets, 2024)

1 Composable diagrams

- . They are precisely the round diagrams.
- · Every globular pasting of cells can be "padded" with structural homotopies (in a simple, systematic way) to Turn it into a round diagram.

5 Composition

An (D,D)-category is precisely a diagrammatic set X s.t.,

Yound diagram u in X

WEAK COMPOSITE

The acell end in X and compositor

an equivalence ch: u => <u>

"EVERY ROUND DIAGRAM IS EQUIVALENT TO A SINGLE CELL"

6 Functors & weak equivelences

- anderlying presheaves.
- · It is an w-equivalence precisely when it is "essentially surjective" on cells of every dimension.

Main results

(c.c., A.H., Model structures for diagrammatic (p, n)-categories)

An (∞, ∞) -category is an (∞, n) -category when all

k-cells for k>n are equivalences.

Then There is a model structure on O Set whose

- (b) fibrants are the (00, n) categories,
- 1 w.eqs. between fibrants are the w-equivalences.

Main results (continued) (c.c., A.H., Model structures for diagrammatic (p, n)-categories) HOMOTOPY HYPOTHESIS

Than There is a triangle

5Set 5 5 Set of Quiller equivalences between a) the classical model structure on slet, b) the (0,0) - model structure on O Set.

THANKS FOR LISTENING!

www. ioc. ee/n amar