CS5760: Topics in Cryptanalysis

26 June 2025

Lecture 9: Introduction to Gröbner Bases

Instructor: Maria Francis Scribe: Gautam Singh

In multivariate polynomial rings, long division can yield different results depending on the monomial order chosen. Gröbner bases provide a systematic way to handle these variations by defining a canonical form for polynomials. In particular, the ordering of divisors does not matter in $k[x_1, \ldots, x_n]$.

9.1 Monomial Orders

We begin by defining a monomial order on the polynomial ring $k[x_1, \ldots, x_n]$.

Definition 9.1 (Monomial Order). A monomial order is an order on the set of monomials in $k[x_1, \ldots, x_n]$ satisfying the following properties:

- 1. It is a total ordering.
- 2. If $\alpha > \beta$ are monomials, then $\alpha \gamma > \beta \gamma$ for any monomial γ .
- 3. It is well ordering, meaning every non-empty set of monomials has a least element.

An example of a monomial order is $lexicographic\ order$ (lex), where we set an ordering on the variables such as $x_1 > x_2 > \ldots > x_n$ and compare monomials by considering the leftmost nonzero element in their pointwise difference. Accounting for the total degree of the monomials gives the $graded\ lexicographic\ order$ (grlex) and $graded\ reverse\ lexicographic\ order$ (grrevlex).

9.2 Monomial Ideals

Definition 9.2 (Monomial Ideal). An ideal $I \subseteq k[x_1, \ldots, x_n]$ is called a *monomial ideal* if there is a finite subset $A \subset \mathbb{N}^n$ such that I consists of all polynomials that can be written as finite sums of monomials cx^{α} where $c \in k$ and $\alpha \in A$.

In other words, monomial ideals are those which have a generator solely consisting of monomials.

Lemma 9.1 (Dickson's Lemma). All monomial ideals in $k[x_1, \ldots, x_n]$ are finitely generated.

Theorem 9.1 (Hilbert Basis Theorem). Any ideal in $R[x_1, ..., x_n]$ is finitely generated if and only if it is **Definition 9.3.** Let $I \in k[x_1, ..., x_n]$ be an ideal other than $\{0\}$. We define the following sets.

1. LT(I) is the set of leading terms of the polynomials in I.

Suppose that $I = \langle f_1, \dots, f_s \rangle$ is an ideal. Then $\langle LT(f_1), \dots, LT(f_s) \rangle \subseteq LT(I)$, with equality iff $\langle f_1, \dots, f_s \rangle$ is a Gröbner basis of I.

Proposition 9.2 (Existence of Gröbner Bases). Let $I \subseteq k[x_1, \ldots, x_n]$ be an ideal. Then,

- 1. $\langle LT(I) \rangle$ is a monomial ideal.
- 2. $\exists g_1, \ldots, g_t \in I \text{ such that } \langle LT(g_1), \ldots, LT(g_t) \rangle = \langle LT(I) \rangle$.

Definition 9.4 (Gröbner Basis). Fix a monomial order. A finite subset $G = \{g_1, \ldots, g_t\}$ of an ideal I is said for be a Gröbner basis of I iff $\langle LT(g_1), \ldots, LT(g_t) \rangle = \langle LT(I) \rangle$.

In particular, we also have $\langle g_1, \ldots, g_t \rangle = I$.

9.3 Properties of Gröbner Bases

1. Remainder on division of f by G is unique.

Definition 9.5 (S-Polynomial). Let $f, g \in k[x_1, ..., x_n]$ be two polynomials with $\text{Im}(f) = x^{\alpha}$ and $\text{Im}(g) = x^{\beta}$ and γ be the least common multiple (LCM) of Im(f) and Im(g), i.e., $\gamma_i = \text{max}(\alpha_i, \beta_i)$. The S-polynomial of f and g is defined as

$$S(f,g) \triangleq x^{\gamma} \left(\frac{f}{\operatorname{lt}(f)} - \frac{g}{\operatorname{lt}(g)} \right) \tag{9.1}$$

The S-polynomial is a way to combine two polynomials such that their leading terms are eliminated.

Theorem 9.3 (Buchberger's Criterion). Let I be a polynomial ideal. Then a basis $G = \{g_1, \ldots, g_t\}$ of I is a Gröbner basis of I iff for all $f, g \in I$, $f \neq g$, the S-polynomial S(f, g) reduces to zero modulo G.

This gives us Buchberger's algorithm for computing Gröbner bases.

9.4 Buchberger's Algorithm

Input: Finite set of polynomials $F = \{f_1, \dots, f_s\}$.

Output: Gröbner basis G of the ideal generated by F.

- 1. Set $G \leftarrow F$.
- 2. For each pair of polynomials $f_i, f_j \in G$:
 - (a) Compute the S-polynomial $S(f_i, f_j)$ using (9.1).
 - (b) Reduce $S(f_i, f_j)$ modulo G.
 - (c) If the result is non-zero, add it to G.
- 3. Repeat step 2 until no new polynomials are added to G.

To speed up this algorithm, especially the reduction step, we can use signatures of polynomials p to predict which polynomials in G will contribute to the reduction of p.