# **VE270 Lecture 8 Counter**

# **Asynchronous Binary Counter**

# **T-Flip-Flops implementation**



## **D-Flip-Flops implementation**



# **Problem: Delays**



# **Synchronous Binary Counter**

## Design (With D-Flip-Flop)

| Present State |    |    | Next State |     |     | D flip flop input |    |    |
|---------------|----|----|------------|-----|-----|-------------------|----|----|
| Q2            | Q1 | Q0 | Q2+        | Q1+ | Q0+ | D2                | D1 | D0 |
| 0             | 0  | 0  | 0          | 0   | 1   | 0                 | 0  | 1  |
| 0             | 0  | 1  | 0          | 1   | 0   | 0                 | 1  | 0  |
| 0             | 1  | 0  | 0          | 1   | 1   | 0                 | 1  | 1  |
| 0             | 1  | 1  | 1          | 0   | 0   | 1                 | 0  | 0  |
| 1             | 0  | 0  | 1          | 0   | 1   | 1                 | 0  | 1  |
| 1             | 0  | 1  | 1          | 1   | 0   | 1                 | 1  | 0  |
| 1             | 1  | 0  | 1          | 1   | 1   | 1                 | 1  | 1  |
| 1             | 1  | 1  | 0          | 0   | 0   | 0                 | 0  | 0  |

With the Present State as the D flip flop output.

Apply K-Map method:



So we get  $D_n = Q_n \oplus (Q_{n-1} \cdots Q_n)$ 



#### **External Control**



# **Customize Counting Sequence**



| Q2 | Q1 | Q0 | Q2+ | Q1+ | Q0+ |
|----|----|----|-----|-----|-----|
| 0  | 0  | 0  |     | Х   |     |
| 0  | 0  | 1  |     | ^   |     |
| 0  | 1  | 0  | 0   | 1   | 1   |
| 0  | 1  | 1  | 1   | 0   | 0   |
| 1  | 0  | 0  | 1   | 0   | 1   |
| 1  | 0  | 1  | 0   | 1   | 0   |
| 1  | 1  | 0  | x   |     |     |
| 1  | 1  | 1  |     |     |     |

#### **Clock Divider**

Divide by n, let the load is activated by n-1.



### **Output Synchronization**



Since the output clock signal may have delay by the gate, so we give a D-Flip-Flop to synchronize the signal to the output.

The output still have delay, but the delay is smaller, not deleted.

#### **Up/Down Counter**



## **Alternative Design Counter with Control**

