4.1-2 Exponential functions

The general form of an exponential function is $f(x) = b^x$, where b > 0 and $b \ne 1$.

Domain: $(-\infty, +\infty)$ Range: $(0, +\infty)$ *y*-intercept: (0,1)

asymptote: *x*-axis

Case I
$$(0 < b < 1)$$

Decreasing

Case II (b > 1)

Increasing

Properties:

•
$$b^0 = 1$$

$$\bullet \qquad b^{-x} = \frac{1}{b^x}$$

$$\bullet \qquad b^x \cdot b^y = b^{x+y}$$

$$\bullet \qquad \frac{b^x}{b^y} = b^{x-y}$$

4.3-5 Logarithmic functions

The general form of a logarithmic function is $f(x) = \log_b x$, where b > 0 and $b \ne 1$.

Domain: $(0, +\infty)$ Range: $(-\infty, +\infty)$ *x*-intercept: (1,0) asymptote: *y*-axis

Case I (0 < b < 1)

Case II (b > 1)

Decreasing

Increasing

Relation between logarithmic and exponential functions:

$$y = \log_b x \quad \Leftrightarrow \quad b^y = x$$

Exponential form ⇔ Logarithmic form

This means that both functions are inverse of each other.

- $\log_b x = y \Rightarrow x = b^y$ (From logarithmic to exponential form)
- $\log_b x = y \Rightarrow x = b^y$ (From exponential to logarithmic form)

Remember:

- $\log_{10} x = \log x$ (Common Logarithm)
- $\log_e x = \ln x$ (Natural Logarithm)

Properties of Logarithms:

•
$$\log_b 0 = undefined$$

•
$$\log_b 1 = 0$$

•
$$\log_b b = 1$$

•
$$\log_b b^x = x$$

Laws of Logarithms:

•
$$\log_h(x \cdot y) = \log_h x + \log_h y$$

(Caution:
$$\log_b(x+y) \neq \log_b x \cdot \log_b y$$
)

•
$$\log_h(x/y) = \log_h x - \log_h y$$

(Caution:
$$\log_b(x - y) \neq \log_b x / \log_b y$$
)

•
$$\log_b(x^r) = r \cdot \log_b x$$

(Caution:
$$(\log_b x)^r \neq r \cdot \log_b x$$
)

Note:

$$\log_b(x^2) = 2 \cdot \log_b x = \log_b x + \log_b x$$
 Whereas $(\log_b x)^2 = \log_b x \cdot \log_b x$

Change of base formula:

$$\log_b a = \frac{\log a}{\log b} \quad or \quad \frac{\ln a}{\ln b}$$

Some useful results:

•
$$\log_b a = \frac{1}{\log_a b}$$

$$\bullet \qquad \log_{1/_{b}} x = -\log_{b} x$$

$$\bullet \qquad \log_{h^n} x = \log_h x^{1/n}$$

5.1 Angle Measure

- An angle is the rotation of a ray from one position (initial side) to another position (terminal side).
- Starting side is called the initial side and the ending side is called the terminal side.
- An angle is in standard position if its vertex is at origin and initial side is along positive
 x-axis.
- If the rotation is anti-clockwise then it's a positive angle and if the rotation is clockwise then it is a negative angle.

Measurement of angles:

- 1 rotation (one complete circle) = 360° = 2π radians.
- $\theta^{\circ} = \theta \times \frac{\pi}{180}$ radians

(From degrees to radian conversion)

• θ radians = $\left(\theta \times \frac{180}{\pi}\right)^{\circ}$

(From radians to degree conversion)

Radian measure

Types of angles:

- Zero angle $\theta = 0^{\circ} = 0$ radians.
- Right-angle $\theta = 90^{\circ} = \frac{\pi}{2}$ radians.
- Straight-angle $\theta=180^\circ=\pi$ radians.
- Acute angle $0^{\circ} < \theta < 90^{\circ}$ or $0 < \theta < \frac{\pi}{2}$.
- Obtuse angle $90^{\circ} < \theta < 180^{\circ}$ or $\frac{\pi}{2} < \theta < \pi$.
- Quadrantal angles are all those angles that are along x-axis or y-axis i.e. $\theta = k \cdot 90^\circ$ or $\theta = k \cdot \frac{\pi}{2}$ where k is any integer.
- Any two angles α and β are called complementary angles if $\alpha+\beta=90^\circ=\frac{\pi}{2}$ radians.
- Any two angles α and β are called supplementary angles if $\alpha+\beta=180^\circ=\pi$ radians.

Co-terminal angles:

Any two angles in standard position are co-terminal if their **terminal sides coincides** (matches) each other.

- If α is any angle measure in degrees then $\acute{\alpha}$, the co-terminal angle is given by the formula $\acute{\alpha}=\alpha+k\cdot 360^\circ$ where k is any non-zero integer.
- If α is any angle measure in radians then $\acute{\alpha}$, the co-terminal angle is given by the formula $\acute{\alpha}=\alpha+k\cdot 2\pi$ where k is any non-zero integer.

Length of a circular arc:

 $s = r \cdot \theta$ where $s = arc\ length$, r = radius and $\theta = angle$ subtended by the arc.

Area of a circular sector:

 $A = \frac{1}{2} \cdot r^2 \cdot \theta$ where A = area of the region, r = radius and $\theta = angle$ of the region.

Linear and Angular Speed:

Angular and linear speeds of a point moving along a circular path are given by following formulas:

Angular speed:

$$\omega = \frac{\theta}{t}$$

$$v = \frac{s}{t}$$

Relation between linear and angular speed:

$$v = r \cdot \omega$$

5.2 Trigonometry of Right Triangles

Trigonometry ratios:

Let p = perpendicular, b = base and h = hypotenuse, then:

$$\sin\theta = \frac{p}{h}$$

$$\cos \theta = \frac{b}{h}$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{p}{b}$$

$$\csc\theta = \frac{1}{\sin\theta} = \frac{h}{p}$$

$$\sec \theta = \frac{1}{\cos \theta} = \frac{h}{b}$$

$$\cot \theta = \frac{1}{\tan \theta} = \frac{b}{p}$$

Special Triangles:

θ	0°	30°	45°	60°	90°
$\sin \theta$	0	1/2	$\sqrt{2}/_{2}$	$\sqrt{3}/_{2}$	1
$\cos \theta$	1	$\sqrt{3}/_{2}$	$\sqrt{2}/2$	1/2	0
$\tan \theta$	0	$^{1}/_{\sqrt{3}}$	1	$\sqrt{3}$	8

 $\sin\theta$

 $\cos \theta$

 $\tan \theta$

5.3 Trigonometric Functions of Angles

$$\sin\theta = \frac{y}{r}$$

$$\csc\theta = \frac{1}{\sin\theta} = \frac{r}{y}$$

$$\cos \theta = \frac{x}{r}$$

$$\sec \theta = \frac{1}{\cos \theta} = \frac{r}{x}$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{y}{x}$$

$$an \theta = \frac{\sin \theta}{\cos \theta} = \frac{y}{x}$$
 $\cot \theta = \frac{1}{\tan \theta} = \frac{x}{y}$

Where

$$r = \sqrt{x^2 + y^2}$$

Sign rules for trigonometric functions:

Reference Angle:

Smallest positive angle with x-axis is called a reference angle.

The reference angle $\bar{\theta}$ for an angle θ

$$\bar{\theta} = \theta$$

$$\bar{\theta} = 180^{\circ} - \theta = \pi - \theta$$

$$\bar{\theta} = \theta - 180^{\circ} = \theta - \pi$$

$$\bar{\theta} = 360^{\circ} - \theta = 2\pi - \theta$$

Co-function Identities:

$$\sin(90^{\circ} - \theta) = \cos\theta$$

$$\cos(90^{\circ} - \theta) = \sin \theta$$

$$\sin(90^{\circ} - \theta) = \cos \theta$$
 $\cos(90^{\circ} - \theta) = \sin \theta$ $\tan(90^{\circ} - \theta) = \cot \theta$

$$\csc(90^{\circ} - \theta) = \sec \theta$$

$$sec(90^{\circ} - \theta) = csc \theta$$

$$\csc(90^{\circ} - \theta) = \sec \theta$$
 $\sec(90^{\circ} - \theta) = \csc \theta$ $\cot(90^{\circ} - \theta) = \tan \theta$

Trigonometric Identities:

Pythagorean Identities:

•
$$\sin^2\theta + \cos^2\theta = 1$$

•
$$1 + \tan^2 \theta = \sec^2 \theta$$

•
$$1 + \cot^2 \theta = \csc^2 \theta$$

Areas of Triangles:

The area \mathcal{A} of a triangle with sides of lengths a and b and with included angle θ is

$$\mathcal{A} = \frac{1}{2}ab\sin\theta$$

6.2 Trigonometric Functions of Real Numbers

Consider a circle of radius 1 then $s=r\cdot\theta \ \Rightarrow t=1\cdot\theta=\theta$, therefore:

$$\sin t = y$$

$$\csc t = \frac{1}{\sin t} = \frac{1}{y}$$

$$\cos t = x$$

$$\sec t = \frac{1}{\cos t} = \frac{1}{x}$$

$$\tan t = \frac{\sin t}{\cos t} = \frac{y}{x}$$

$$\cot t = \frac{1}{\tan t} = \frac{x}{y}$$

Hence the coordinates of any point P(x, y) on the circle are given by: $(\cos t, \sin t)$ where t is the angle subtended by the ray \overrightarrow{OP} .

Note:

- We use reference angles to find the trigonometric functions for any real number t.
- $\sin \theta$ and $\tan \theta$ are odd functions whereas $\cos \theta$ is an even function. i.e. $\sin(-\theta) =$ $-\sin(\theta)$, $\tan(-\theta) = -\tan(\theta)$ and $\cos(-\theta) = \cos(\theta)$.

6.3-4 Trigonometric Graphs

All trigonometric functions are periodic i.e. their values (and hence their graphs) repeat after certain intervals called periods. $\sin \theta$, $\cos \theta$, $\sec \theta$ and $\csc \theta$ have periods of 2π whereas $\tan \theta$ and $\cot \theta$ have period π .

•
$$\sin(\theta + 2\pi) = \sin \theta$$
, $\cos(\theta + 2\pi) = \cos \theta$, $\tan(\theta + \pi) = \tan \theta$

$$\cos(\theta + 2\pi) = \cos\theta,$$

$$\tan(\theta + \pi) = \tan\theta$$

•
$$\csc(\theta + 2\pi) = \csc \theta$$
, $\sec(\theta + 2\pi) = \sec \theta$, $\cot(\theta + \pi) = \cot \theta$

$$\sec(\theta + 2\pi) = \sec\theta,$$

$$\cot(\theta + \pi) = \cot\theta$$

Formula Sheet

Transformation of trigonometric functions:

Consider the following two functions:

$$y = a \sin k(x - b) + c$$
 and $y = a \cos k(x - b) + c$

These two functions have following transformations:

Amplitude = |a|, Period = $\frac{2\pi}{k}$, Horizontal shift = b, Vertical shift = c

• An interval on which it completes one period = $\left[b, b + \frac{2\pi}{k}\right]$

Graphs of $\tan \theta$ and $\cot \theta$:

Consider the following two functions:

$$y = a \tan k(x - b) + c$$
 and $y = a \cot k(x - b) + c$

$$y = a \cot k(x - b) + c$$

These two functions have following transformations:

Period =
$$\frac{\pi}{\nu}$$
,

Period = $\frac{\pi}{k}$, Horizontal shift = b, Vertical shift = c

- An interval on which $y = a \tan k(x b) + c$ completes one period $= \left[b \frac{\pi}{2k}, b + \frac{\pi}{2k} \right]$
- An interval on which $y = a \cot k(x b) + c$ completes one period $= \left[b, b + \frac{\pi}{k} \right]$

Graphs of $\sec \theta$ and $\csc \theta$:

Consider the following two functions:

$$y = a \sec k(x - b) + c$$

and
$$y = a \csc k(x - b) + c$$

These two functions have following transformations:

Period =
$$\frac{2\pi}{k}$$

Period = $\frac{2\pi}{k}$, Horizontal shift = b, Vertical shift = c

An interval on which it completes one period = $\left[b, \ b + \frac{2\pi}{k}\right]$

One period of $y = \csc x$

One period of $y = \sec x$

5.4, 6.5 Inverse Trigonometric Functions and Right Triangles

 $y = \sin x$

Graphs of
$$y = \sin^{-1}x$$

$$\sin(\sin^{-1} x) = x \quad \text{for} \quad -1 \le x \le 1$$

$$\sin^{-1}(\sin x) = x \quad \text{for} \quad -\frac{\pi}{2} \le x \le \frac{\pi}{2}$$

$$cos(cos^{-1}x) = x$$
 for $-1 \le x \le 1$
 $cos^{-1}(cos x) = x$ for $0 \le x \le \pi$

$$\tan(\tan^{-1} x) = x$$
 for $x \in \mathbb{R}$
 $\tan^{-1}(\tan x) = x$ for $-\frac{\pi}{2} < x < \frac{\pi}{2}$

 $y = \cot^{-1}x$

Important results:

•
$$\sin^{-1}(-x) = -\sin^{-1}(x)$$

because
$$\sin^{-1}(-x) \in Q$$
-IV

•
$$\cos^{-1}(-x) = \pi - \cos^{-1}(x)$$

because
$$\cos^{-1}(-x) \in \mathbb{Q}$$
-II

•
$$\tan^{-1}(-x) = -\tan^{-1}(x)$$

because
$$tan^{-1}(-x) \in Q-IV$$

•
$$\cot^{-1}(-x) = \pi - \cot^{-1}(x)$$

because
$$\cot^{-1}(-x) \in Q$$
-II

•
$$\csc^{-1}(-x) = \pi + \csc^{-1}(x)$$

because
$$ccs^{-1}(-x) \in Q$$
-III

$$\sec^{-1}(-x) = \pi + \sec^{-1}(x)$$

because
$$\sec^{-1}(-x) \in Q$$
-III

$$x = \pi - \tilde{x}$$

$$\tilde{x} \text{ is a reference angel}$$

$$x = \pi + \tilde{x}$$

$$\tilde{x} \text{ is a reference angel}$$

$$\tilde{x} = x$$

$$\tilde{x} \text{ is a reference angel}$$

Important identities:

- $\cot^{-1}(x) = \tan^{-1}\left(\frac{1}{x}\right)$ where x > 0.
- $\operatorname{cs} c^{-1}(x) = \sin^{-1}\left(\frac{1}{x}\right)$ where x > 0.
- $\operatorname{se} c^{-1}(x) = \cos^{-1}\left(\frac{1}{x}\right)$ where x > 0.

7.1 Trigonometry Identities

FUNDAMENTAL TRIGONOMETRIC IDENTITIES

Reciprocal Identities

$$\csc x = \frac{1}{\sin x} \qquad \sec x = \frac{1}{\cos x} \qquad \cot x = \frac{1}{\tan x}$$
$$\tan x = \frac{\sin x}{\cos x} \qquad \cot x = \frac{\cos x}{\sin x}$$

Pythagorean Identities

$$\sin^2 x + \cos^2 x = 1$$
 $\tan^2 x + 1 = \sec^2 x$ $1 + \cot^2 x = \csc^2 x$

Even-Odd Identities

$$\sin(-x) = -\sin x$$
 $\cos(-x) = \cos x$ $\tan(-x) = -\tan x$

Cofunction Identities

$$\sin\left(\frac{\pi}{2} - x\right) = \cos x \qquad \tan\left(\frac{\pi}{2} - x\right) = \cot x \qquad \sec\left(\frac{\pi}{2} - x\right) = \csc x$$

$$\cos\left(\frac{\pi}{2} - x\right) = \sin x \qquad \cot\left(\frac{\pi}{2} - x\right) = \tan x \qquad \csc\left(\frac{\pi}{2} - x\right) = \sec x$$

7.2 Addition and Subtraction Formulas

ADDITION AND SUBTRACTION FORMULAS

Formulas for sine: $\sin(s+t) = \sin s \cos t + \cos s \sin t$

 $\sin(s-t) = \sin s \cos t - \cos s \sin t$

Formulas for cosine: cos(s + t) = cos s cos t - sin s sin t

 $\cos(s-t) = \cos s \cos t + \sin s \sin t$

Formulas for tangent: $\tan(s+t) = \frac{\tan s + \tan t}{1 - \tan s \tan t}$

$$\tan(s-t) = \frac{\tan s - \tan t}{1 + \tan s \tan t}$$

SUMS OF SINES AND COSINES

If A and B are real numbers, then

$$A\sin x + B\cos x = k\sin(x + \phi)$$

where $k = \sqrt{A^2 + B^2}$ and ϕ satisfies

$$\cos \phi = \frac{A}{\sqrt{A^2 + B^2}}$$
 and $\sin \phi = \frac{B}{\sqrt{A^2 + B^2}}$

7.3 Double Angle and Half Angle Formulas

DOUBLE-ANGLE FORMULAS

Formula for sine: $\sin 2x = 2 \sin x \cos x$

Formulas for cosine: $\cos 2x = \cos^2 x - \sin^2 x$

$$= 1 - 2\sin^2 x$$

$$= 2\cos^2 x - 1$$

Formula for tangent: $\tan 2x = \frac{2 \tan x}{1 - \tan^2 x}$

FORMULAS FOR LOWERING POWERS

$$\sin^2 x = \frac{1 - \cos 2x}{2} \qquad \cos^2 x = \frac{1 + \cos 2x}{2}$$

$$\tan^2 x = \frac{1 - \cos 2x}{1 + \cos 2x}$$

HALF-ANGLE FORMULAS

$$\sin\frac{u}{2} = \pm\sqrt{\frac{1-\cos u}{2}} \qquad \cos\frac{u}{2} = \pm\sqrt{\frac{1+\cos u}{2}}$$
$$\tan\frac{u}{2} = \frac{1-\cos u}{\sin u} = \frac{\sin u}{1+\cos u}$$

The choice of the + or - sign depends on the quadrant in which u/2 lies.

9.1 Vectors

- A vector (as shown in the adjacent figure) is a line segment with a direction.
- Vectors are usually represented by bold letters $(i.e.\ u = \overrightarrow{AB})$. Point A is called the initial point and point B is called the terminal point of the vector denoted by \overrightarrow{AB} .
- The length or magnitude of the vector is given by $|\overrightarrow{AB}|$.
- Two vector are equal if they have same magnitude as well as direction.
- Zero vector is a vector with no direction and zero magnitude.
- Unit vector is a vector whose magnitude is one.

 $\mathbf{u} = \overrightarrow{AB}$

Addition of vectors:

Addition of vectors

Multiplication of a vector by a scalar:

Multiplication of a vector by a scalar

Difference of two vectors:

Vectors in the coordinate plane:

- Let $v = \langle a_1$, $a_2 \rangle$ be a vector in xy —plane.
- $oldsymbol{a}_1$ is the horizontal component and $oldsymbol{a}_2$ is the vertical component of the vector.

Component form of a Vector:

If ${\pmb v}$ is a vector in the plane with initial point $P(x_1,\ y_1)$ and terminal point $Q(x_2,\ y_2)$ then;

$$\boldsymbol{v} = \langle x_2 - x_1, y_2 - y_1 \rangle$$

Magnitude of a Vector:

The magnitude or length of a vector $\mathbf{v} = \langle a, b \rangle$ is $|\mathbf{v}| = \sqrt{a^2 + b^2}$.

Algebraic Operations on Vectors:

Let $\pmb{u}=\langle a_1,b_1\rangle$ and $\pmb{v}=\langle a_2,b_2\rangle$ be any two vectors and c is a real number then

•
$$\boldsymbol{u} + \boldsymbol{v} = \langle a_1, b_1 \rangle + \langle a_2, b_2 \rangle = \langle a_1 + a_2, b_1 + b_2 \rangle$$

•
$$\boldsymbol{u} - \boldsymbol{v} = \langle a_1, b_1 \rangle - \langle a_2, b_2 \rangle = \langle a_1 - a_2, b_1 - b_2 \rangle$$

•
$$c\mathbf{u} = c\langle a_1, b_1 \rangle = \langle ca_1, cb_1 \rangle$$

Properties of Vectors:

Let u, v and w be any two vectors and c, d are real numbers

Vector addition

•
$$u + v = v + u$$

•
$$u + (v + w) = (u + v) + w$$

•
$$u + 0 = u$$

•
$$u + (-u) = 0$$

Length of a vector

•
$$|c\mathbf{u}| = |c||\mathbf{u}|$$

Multiplication by a scalar

•
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$

•
$$(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$$

$$\bullet \quad (cd)\mathbf{u} = c(d\mathbf{u}) = d(c\mathbf{u})$$

•
$$1(\mathbf{u}) = \mathbf{u}$$

•
$$0(\boldsymbol{u}) = \mathbf{0}$$

•
$$c(\mathbf{0}) = \mathbf{0}$$

Unit vector:

- A unit vector is a vector with magnitude 1. e.g. $v = \langle \frac{3}{5}, \frac{4}{5} \rangle$
- Two useful unit vectors are ${\pmb i}=\langle {\bf 1}\,,{\bf 0}\rangle$ (along x-axis) and ${\pmb j}=\langle {\bf 0}\,,{\bf 1}\rangle$ (along y-axis)

• Unit vector in the direction of any vector $oldsymbol{v}$ is given by $\widehat{oldsymbol{v}} = rac{v}{|v|}$

Vectors in terms of i and j:

The vector $\mathbf{u} = \langle a, b \rangle$ can be expressed in terms of \mathbf{i} and \mathbf{j} as:

$$\mathbf{u} = \langle a, b \rangle = a \, \mathbf{i} + b \, \mathbf{j} = |\mathbf{u}| \cos \theta \, \mathbf{i} + |\mathbf{u}| \sin \theta \, \mathbf{j}$$

Where the reference angle $\tilde{\theta}$ of the anlge θ is given by $\tilde{\theta} = \tan^{-1} \left| \frac{b}{a} \right|$

9.2 The Dot Product

Dot Product:

Let $\pmb{u}=\langle a_1,b_1\rangle$ and $\pmb{v}=\langle a_2,b_2\rangle$ be any two vectors then their dot product is defined by

$$\boldsymbol{u} \cdot \boldsymbol{v} = a_1 a_2 + b_1 b_2$$

Properties of the Dot Product:

- $u \cdot v = v \cdot u$
- $(c\mathbf{u}) \cdot \mathbf{v} = c(\mathbf{v} \cdot \mathbf{u}) = \mathbf{u} \cdot (c\mathbf{v})$
- $\bullet \quad (u+v)\cdot w = u\cdot w + v\cdot w$
- $|u|^2 = u \cdot u$

The Dot Product Theorem:

Let heta be the angle between two nonzero vectors $m{u}$ and $m{v}$, then

$$u \cdot v = |u||v|\cos\theta$$

v v v

Angle between two vectors:

Let θ be the angle between two nonzero vectors ${\pmb u}$ and ${\pmb v}$, then

$$\cos \theta = \frac{\boldsymbol{u} \cdot \boldsymbol{v}}{|\boldsymbol{u}||\boldsymbol{v}|} = \frac{a_1 a_2 + b_1 b_2}{\sqrt{a_1^2 + b_1^2} \cdot \sqrt{a_2^2 + b_2^2}}$$

Orthogonal vectors:

Two nonzero vectors ${m u}$ and ${m v}$ are orthogonal (perpendicular) if and only if ${m u}\cdot{m v}=0$

The component of u along v:

The component of u along v (also called the component of u in the direction of v or the scalar projection of u onto v) is defined to be $|u|\cos\theta$ where θ is the angle between u and v.

$$\mathsf{comp}_{v}u = |u|\cos\theta = \frac{u\cdot v}{|v|}$$

The vector projection of u onto v:

The projection of $oldsymbol{u}$ onto $oldsymbol{v}$ is the vector $\operatorname{proj}_{oldsymbol{v}}oldsymbol{u}$ given by

$$\operatorname{proj}_{v} u = \left(\frac{u \cdot v}{|v|^{2}}\right) v$$

If the vector $m{u}$ is resolved into $m{u_1}$ and $m{u_2}$, where $m{u_1}$ is parallel to $m{v}$ and $m{u_2}$ is orthogonal to $m{v}$, then

$$oldsymbol{u}_1 = \mathrm{proj}_v oldsymbol{u} \qquad \text{and} \qquad oldsymbol{u}_2 = oldsymbol{u} - \mathrm{proj}_v oldsymbol{u}$$

Work:

The work W done by a force F in moving along a vector D is $W = F \cdot D$

11.4 Determinants

- Determinant of a 2×2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is $\det(A) = |A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad bc$.
- The minor M_{ij} of the element a_{ij} is the determinant of the matrix obtained by deleting ith row and jth column of A.
- The cofactor A_{ij} of the element a_{ij} is $A_{ij} = (-1)^{i+j} M_{ij}$.
- THE DETERMINANT OF A SQUARE MATRIX

If A is an $n \times n$ matrix, then the **determinant** of A is obtained by multiplying each element of the first row by its cofactor and then adding the results. In symbols,

$$\det(A) = |A| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = a_{11}A_{11} + a_{12}A_{12} + \cdots + a_{1n}A_{1n}$$

- The inverse of a square matrix A exist if and only if $det(A) \neq 0$.
- If matrix B is obtained from matrix A by adding a multiple of one row/column another row/column then det(A) = det(B).

Properties of Determinants:

- If all the rows of a matrix are interchanged with its columns then the resulting determinant will remain same.
- If any two rows or columns of a matrix are interchanged then the sing of its determinant will be changed.
- If any two rows/columns of a matrix are equal then its determinant will be zero.
- If all elements in any row/column of a matrix are zero then its determinant will be zero.

- If matrix B is obtained from matrix A by multiplying one row/column by a real number k then, $det(B) = k \cdot det(A)$.
- If a row/column of a square matrix A is a multiple of another row/column then $\det(A) = 0$.
- If $A=\left[a_{ij}
 ight]$ is an n imes n triangular matrix, then $|A|=a_{11}\;a_{22}\;a_{33}\cdots a_{nn}$
- Let A and B be two square matrix then $det(A \cdot B) = det(A) \cdot det(B)$
- $\det(A^{-1}) = \frac{1}{\det(A)}$

12.1 Parabola

	$x^2 = 4py$		$y^2 = 4px$	
rix	1		Vertex $V = (0,0)$ Focus $F = (p,0)$	
		Directrix $y = -p$	Directrix $x = -p$	
	p > 0	y = -p $F(0, p)$ x	x = -p y $F(p, 0)$ x	
	<i>p</i> < 0	y = -p $F(0, p)$	F(p,0) 0 x $x = -p$	

	Vertical Parabola	Horizontal Parabola
	(Axis of sym is parallel to y-axis)	(Axis of sym is parallel to x-axis)
Standard equation:	$(x-h)^2 = 4p(y-k)$	$(y-k)^2 = 4p(x-h)$
Axis of symmetry:	x = h	y = k
Vertex:	(h, k)	(h, k)
Focus:	(h, k+p)	(h+p, k)
Directrix:	y = k - p	x = h - p
If $p > 0$:	parabola opens up	parabola opens right
If <i>p</i> < 0:	parabola opens down	parabola opens left
Distance:	d(P,F) = d(P,D)	P: a point on the parabola F: the focus D: the directrix

12.2 Ellipse

- *a* > *b*
- $c^2 = a^2 b^2$
- Major Axis length = 2a
- Minor Axis length = 2b

DEFINITION OF ECCENTRICITY

For the ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 or $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$ (with $a > b > 0$), the **eccentricity** e is the number

$$e = \frac{c}{a}$$

where $c = \sqrt{a^2 - b^2}$. The eccentricity of every ellipse satisfies 0 < e < 1.

The eccentricity is a measure of how "stretched" the ellipse is.

	Horizontal Ellipse (Major axis parallel to x-axis)	Vertical Ellipse (Major axis parallel to <i>y</i> -axis)
Standard equation:	$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1, a > b$	$\frac{(y-k)^2}{a^2} + \frac{(x-h)^2}{b^2} = 1, a > b$
Center:	(h,k)	(h,k)
Vertices:	$(\pm a + h, k)$	$(h, \pm a + k)$
Foci:	$(\pm c + h, k)$ where $c^2 = a^2 - b^2$	$(h, \pm c + k)$ where $c^2 = a^2 - b^2$
Equation of major axis:	y = k	x = h
End points of minor axis:	$(h, \pm b + k)$	$(\pm b + h, k)$
Eccentricity: $e = \frac{c}{a} < 1; 0 < e < 1$		0 < e < 1

12.3 Hyperbola

- $c^2 = a^2 + b^2$
- Transverse Axis length = 2a
- $e = \frac{c}{a} > 1$

	Horizontal Hyperbola (Transverse axis parallel to x-axis)	Vertical Hyperbola (Transverse axis parallel to <i>y</i> -axis)
Standard equation:	$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$	$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$
Center:	(h,k)	(h,k)
Vertices:	$(\pm a+h, k)$	$(h, \pm a + k)$
Foci:	$(\pm c + h, k)$	$(h, \pm c + k)$
End points of conjugate axis:	$(h, \pm b + k)$	$(\pm b + h, k)$
Asymptote:	$y - k = \pm \frac{b}{a} (x - h)$	$y - k = \pm \frac{a}{b} (x - h)$
Eccentricity:	$e = \frac{c}{a} > 1$	-

GENERAL EQUATION OF A SHIFTED CONIC

The graph of the equation

$$Ax^2 + Cy^2 + Dx + Ey + F = 0$$

where A and C are not both 0, is a conic or a degenerate conic. In the nondegenerate cases the graph is

- 1. a parabola if A or C is 0,
- 2. an ellipse if A and C have the same sign (or a circle if A = C),
- **3.** a hyperbola if A and C have opposite signs.