Literature Survey

Title: Intelligent Vehicle Damage Assessment and Cost Estimator for Insurance Companies

TEAM ID: PNT2022TMID16221

S.No	TITLE	PROPOSED WORK	TOOLS USED/ ALGORITH M	TECHNOLOG Y	ADVANTAGES/ DISADVANTAGES
1	Car Damage Detection	Apply deep learning-based algorithms, VGG16 and VGG19, for car damage detection and assessment in real-world datasets.	 Convention al Neural Network VGG16 VGG19 	Deep Learning	 Accuracy Damage Detection- 95.22 Damage Localization - 76.78
2	Deep Residual Learning for Image Recognition	Provide comprehensive empirical evidence showing that these residual networks are easier to optimize and can gain accuracy from considerably increased depth.	 Convention al Neural Network GoogleNet VGG16 PReLu Object Detection 	Deep Learning	 Solely due to our extremely deep representations. obtain a 28% relative improvement on the COCO object detection dataset

S.No	TITLE	PROPOSED WORK	TOOLS USED/ ALGORIT HM	TECHNO LOGY	ADVANTAGES / DISADVANTA GES
3	Applying Image Analysis To Auto Insurance Triage: A Novel Application	built a prototype a system that automatically identifies the damaged area(s) based on the comparison of before- and afteraccident automobile images.	Image ProcessingConstrained Object Detection	Machine Learning	 Success this will help auto insurance companies speed up their claim use resources more effectively.
4	Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift	this phenomenon as internal covariate shift, and address the problem by normalizing layer inputs. The method draws its strength from making normalization a part of the model architecture and performing the normalization for each training mini-batch.	 Batch Normalized neural Network Stochastic gradient descent (SGD) 	Deep Learning	 Improve upon the best-published result on ImageNet classification reaching 4.82% top-5 test error, exceeding the accuracy of human raters.

S.No	TITLE	PROPOSED WORK	TOOLS USED/ ALGORITH M	TECHNOL OGY	ADVANTAGES/ DISADVANTA GES
5	Damage Detection Based on Object-based Segmentation	object-based image segmentation and classification techniques as well as pixel-based techniques have been applied.	 Dark Object Subtraction Model Visualization Detection 	 Image Preprocessing Deep Learning 	• demonstrated that the pixel-based approach has achieved higher user's accuracy (23.2%), while the object-based approach higher producer's accuracy (49.98%).
6	Learning and Transferring Mid- Level Image Representations using Convolutional Neural Networks	CNN's is attributed to their ability to learn rich mid-level image representations as opposed to hand-designed low-level features used in other image classification methods	 CNN large- scale visual recognition challenge 	Deep Learning	 transferred representation leads to significantly improved results for object and action classification, outperforming the current state of the art on Pascal VOC 2007 and 2012 datasets