Homework 13 of Introduction to Analysis (I), Honor Class

AM15 黃琦翔 111652028

December 16, 2023

1. (a) Since $f(x) = \ln(x)$ is concave down, $\ln(uv) = \ln(u) + \ln(v) = \frac{1}{p} \ln(u^p) + \frac{1}{q} \ln(v^q) \le \ln(\frac{u^p}{p} + \frac{v^q}{q})$.

And since $\ln(x)$ is strictly increasing, $uv \le \frac{u^p}{p} + \frac{v^q}{q}$.

If $u^p = v^q$, $\frac{u^p}{p} + \frac{v^q}{q} = (\frac{1}{p} + \frac{1}{q})u^p = u^p = u^{p(\frac{1}{p} + \frac{1}{q})} = u \cdot u^{\frac{p}{q}} = uv$.

(b) $\int_a^b \frac{(f(x))^p}{p} dx = \frac{1}{p}$ and $\int_a^b \frac{(g(x))^q}{q} = \frac{1}{q}$.

Then, $\int_a^b \frac{(f(x))^p}{p} + \frac{(g(x))^q}{q} dx = \frac{1}{p} + \frac{1}{q} = 1$.

And since $f(x)g(x) \le \frac{(f(x)^p)}{p} + \frac{(g(x))^q}{q}$ for all $x \in [a,b]$ and f,g are Reimann integral, $\int_a^b f(x)g(x)dx$ exists and $\int_a^b f(x)g(x)dx \le \int_a^b \frac{(f(x))^p}{p} + \frac{(g(x))^q}{q} dx = 1$.

(c)

2.