Adversarial examples

The Robust Features Model

Useless directions

Robust features

Non-robust features

Correlated with label Correlated with label, but can even when perturbed be flipped via perturbation

Just bugs, too

World 1: Adversarial examples exploit directions irrelevant for classification ("bugs")

Adversarial examples occur because classifiers behave poorly off-distribution. They would occur in arbitrary directions, having nothing to do with the true data distribution.

World 2: Adversarial examples exploit useful directions for classification ("features")

Adversarial examples occur in directions that are still "on-distribution", and which contain features of the target class. Perturbation is not purely random. Moreover, we expect that this perturbation transfers to other classifiers trained to distinguish cats vs. dogs.

Adversarial Examples from Robust Features

The problem is to distinguish between CIFAR-sized images that are either all-black or all-white, with a small amount of random pixel noise and label noise.

A sample of images from the distribution.

Adversarial Examples from Robust Features

Formally, let the distribution be as follows. Pick label $Y \in \{\pm 1\}$ uniformly, and let

$$X := egin{cases} (+ec{1} + ec{\eta}_{\,arepsilon}) \cdot \eta & ext{if } Y = 1 \ (-ec{1} + ec{\eta}_{\,arepsilon}) \cdot \eta & ext{if } Y = -1 \end{cases}$$

where $ec{\eta}_{arepsilon}\sim [-0.1,+0.1]^d$ is uniform L_{∞} pixel noise, and $\eta\in\{\pm 1\}\sim Bernoulli(0.1)$ is the 10% label noise.

Adversarial Examples from Robust Features

Left: The training set (labels color-coded). Middle: The classifier after 10 SGD steps. Right: The classifier at the end of training. Note that it is overfit, and not robust.

Discontinuities

Image

 $ullet x \in \mathbb{R}^m$

Network

• $f: \mathbb{R}^m o \{1...k\}$

Loss

• $\operatorname{loss}_f: \mathbb{R}^m \times \{1...k\} \to \mathbb{R}^+$

Perturbation $r \in \mathbb{R}^m$ and minimized $\|r\|_2$ such that:

1.
$$f(x+r)=l$$
 and $l\neq f(x)$

2.
$$x + r \in [0, 1]^m$$

Discontinuities

8

Adversarial Examples from Excessive Linearity

Excessive Linearity

- Let adversarial input $x' = x + \eta$ for some input x.
- For a classifier **F**, we expect $\mathbf{F}(x) = \mathbf{F}(x')$ if $||\eta||_{\infty} < \varepsilon$, for ε small enough to be discarded by the sensor or data storage.
- Dot product of weight w and an adversarial example x' is $w^Tx + w^T\varepsilon$ (i.e., activation grows by $w^T\varepsilon$).
 - Put another way, activation grows by εmn , where n is the dimensionality of w, and m is the average magnitude of a weight.
- A simple linear model can have adversarial examples if its input has sufficient dimensionality.

The line \mathcal{L}_{θ} defined by its normal weight vector $\boldsymbol{w}_{\theta} = (\cos \theta, \sin \theta)$ separates I and J for all θ in $[0, \pi/2)$

When $\theta = 0$:

 \mathcal{L}_{θ} does not suffer from adversarial examples. \boldsymbol{x} is classified in I with high confidence and \boldsymbol{x}_m is classified in J with high confidence, in agreement with human observers.

When $\theta \to \pi/2$:

 \mathcal{L}_{θ} suffers from strong adversarial examples. \boldsymbol{x} is classified in I with high confidence and \boldsymbol{x}_m is classified in J with high confidence, yet \boldsymbol{x}_m is visually indistinguishable from \boldsymbol{x} .

