Project Design Phase-II Technology Stack (Architecture & Stack)

Date	04-11-23
Team ID	Team-592384
Project Name	Deep Learning Model For Detecting Diseases In Tea Leaves
Maximum Marks	4 Marks

Technical Architecture:

The Deliverable shall include the architectural diagram as below and the information as per the table 1 & table 2

Technical architecture refers to the design and structure of a system's hardware, software, networks, and components. It defines how these elements interact and work together to achieve specific goals, ensuring efficiency, scalability, and security. A well-defined technical architecture provides a blueprint for building and integrating various IT components, enabling seamless communication and functionality within a system or across multiple systems. It plays a crucial role in guiding the development and maintenance of complex technological solutions.

Guidelines:

- 1. Include all the processes (As an application logic / Technology Block)
- 2. Provide infrastructural demarcation (Local / Cloud)
- 3. Indicate external interfaces (third party API's etc.)
- 4. Indicate Data Storage components / services
- 5. Indicate interface to machine learning models (if applicable)

Table-1 : Components & Technologies:

S.No	Component	Description	Technology
1.	User Interface	How user interacts with application e.g. Web UI	HTML, CSS, JavaScript / Angular Js / React Js etc.
2.	Application Logic-1	Logic for a process in the application	Java / Python
3.	Database	Collect the Dataset Based on the Problem Statement	File Manager, MySQL, NoSQL, etc.
4.	File Storage/ Data	File storage requirements for Storing the dataset	Local System, Google Drive Etc
5.	Frame Work	Used to Create a web Application, Integrating Frontend and Back End	Python Flask, Django etc
6.	Deep Learning Model	Purpose of Model	CNN, Transfer Learning etc.
7.	Infrastructure (Server / Cloud)	Application Deployment on Local System / Cloud Local Server Configuration: Cloud Server Configuration:	Local, Cloud Foundry, Kubernetes, etc.

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source Frameworks	List the open-source frameworks used	Python's Flask
2.	Security Implementations	List all the security / access controls implemented,	e.g. SHA-256, Encryptions, IAM
		use of firewalls etc.	Controls, OWASP etc.
3.	Scalable Architecture	Justify the scalability of architecture (3 – tier, Micro-	Kubernetes. Microservices architecture
		services)	
4.	Availability	Justify the availability of application (e.g. use of	Load balancing
		load balancers, distributed servers etc.)	

S.No	Characteristics	Description	Technology
5.	Performance	Design consideration for the performance of the application (number of requests per sec, use of Cache, use of CDN's) etc.	Content Delivery Networks (CDNs)