

Κεφάλαιο 23

Τεχνολογία Γνώσης

Τεχνητή Νοημοσύνη - Β' Έκδοση

Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου

Διαδικασία Ανάπτυξης Συστημάτων Γνώσης

Ανάλυση Προβλήματος

- ❖ Προσδιορίζεται η επιθυμητής λύσης του προβλήματος
- Κυριότερα ζητήματα:
 - Είναι το πρόβλημα κατάλληλο για επίλυση από σύστημα γνώσης ή συμβατικό πρόγραμμα;
 - □ Υπάρχουν έτοιμες μελέτες περιπτώσεων επίλυσης του προβλήματος (case-studies);
 - Ποια είναι τα οφέλη από την κατασκευή του συστήματος γνώσης;

Ş

Απόκτηση της Γνώσης (knowledge acquisition)

- ❖ Ο μηχανικός της γνώσης
 - □ Εκμαιεύει από τον ειδικό τη γνώση του πάνω στο πρόβλημα (knowledge elicitation)
 - □ Μοντελοποιεί (knowledge analysis & modeling) τη γνώση σε κάποια ενδιάμεση μορφή αναπαράστασης
- ❖ Εκμαίευση γνώσης (knowledge elicitation)
 - 🗖 Απαιτεί συνεχή επικοινωνία ανάμεσα στο μηχανικό γνώσης και τον ειδικό.
 - Εκτός από τις κλασικές μεθόδους, υπάρχουν:
 - **Ημι-αυτόματες μέθοδοι:** π.χ. Teiresias, Opal, κλπ
 - Αυτόματες μέθοδοι: τεχνικές μηχανικής μάθησης
- Η απόκτηση γνώσης και η παρουσία ειδικού είναι απαραίτητη ακόμα και όταν η γνώση δεν είναι εμπειρική.
 - **Σ**υλλογιστική των μοντέλων: Ο μηχανικός γνώσης δεν είναι πάντα δυνατό να μπορεί να ερμηνεύσει τα εγχειρίδια επιστημονικής γνώσης.
 - □ Συλλογιστική των περιπτώσεων: Ο ειδικός καθορίζει τη σπουδαιότητα των χαρακτηριστικών, τη μέθοδο δεικτοδότησης, τη μέθοδο προσαρμογής των λύσεων, κλπ.

-

Μοντελοποίηση Γνώσης

Knowledge Analysis & Modeling

- **Ανάλυση** της γνώσης από το μηχανικό με σκοπό τη δημιουργία ενός **μοντέλου** της γνώσης.
 - Η αναπαράσταση της γνώσης γίνεται με διάφορες ημιδομημένες μορφές αναπαράστασης.
- * Υπάρχουν μεθοδολογίες που τυποποιούν τη μοντελοποίηση της γνώσης (KADS).
- Το μοντέλο βοηθά στο να αποκαλυφθούν ατέλειες, ασάφειες και ελλείψεις στη γνώση

Σχεδίαση

- ❖ Προσδιορίζονται:
 - Η μορφή της αναπαράστασης της γνώσης και η συλλογιστική
 - □ Το εργαλείο για την ανάπτυξη του συστήματος γνώσης.
- Παράγεται η αρχιτεκτονική του συστήματος
 - Λειτουργικές υπομονάδες (modules) του συστήματος
 - 🗖 Λειτουργικότητα της κάθε υπομονάδας
 - Αλληλεξαρτήσεις υπομονάδων

Ş

Υλοποίηση

- ❖ Κωδικοποιείται το μοντέλο της γνώσης χρησιμοποιώντας εργαλεία ανάπτυξης
- Αρχικά αναπτύσσεται ένα πρωτότυπο σύστημα.
 - 🗖 Επιδεικνύεται στον ειδικό και σε μία μικρή ομάδα χρηστών
 - Καθοδηγεί στη συνέχεια την ανάπτυξη, ή
 - Οδηγεί σε επανασχεδιασμό όταν δεν ικανοποιεί τις απαιτήσεις που τέθηκαν στην αρχή.
 - Επαληθεύει τη γνώση που αποκτήθηκε από τον ειδικό και μοντελοποιήθηκε από το μηχανικό γνώσης.
- ❖ Το βάθος της γνώσης πρέπει να είναι μεγάλο.
 - Πρέπει να μπορεί επιλύσει πλήρως μερικά από τα προβλήματα για τα οποία προορίζεται το σύστημα γνώσης.
- Το εύρος της γνώσης δε χρειάζεται να είναι μεγάλο.
 - Δεν είναι αναγκαίο να αντιμετωπίζει πολλές περιπτώσεις.

Επαλήθευση και Έλεγχος Αξιοπιστίας

❖ Επαλήθευση (verification):

- Έλεγχος της συμβατότητας του συστήματος με τις αρχικές προδιαγραφές.
- Επιβεβαίωση της συνέπειας και πληρότητας της κωδικοποίησης της γνώσης που περιέχεται στο σύστημα

* Έλεγχος αξιοπιστίας (validation):

- Επιβεβαίωση της ορθότητας και γενικότητας της γνώσης που περιέχει το σύστημα
- Το σύστημα επιλύει ένα σύνολο από υποδειγματικές περιπτώσεις (test cases).
 - Διαφορετικές από αυτές που χρησιμοποιήθηκαν στην ανάπτυξης του συστήματος
 - Εξασφαλίζεται η ευρωστία (robustness) σε μη-προσδοκώμενα δεδομένα
- Οι λύσεις συγκρίνονται με λύσεις που δόθηκαν από διάφορους ειδικούς του τομέα.

Μεθοδολογία Ανάλυσης Προβλήματος KADS

Knowledge Acquisition and Domain Structuring

- Σε πολύπλοκα προβλήματα η ανάλυση χρειάζεται να ακολουθήσει "πεπατημένες οδούς" γιατί αλλιώς ο μηχανικός γνώσης κινδυνεύει να "χαθεί" μέσα στην πολυπλοκότητα
- ❖ Η μεθοδολογία KADS προσφέρει καθοδήγηση:
 - στην απόκτηση (κυρίως εμπειρικής) γνώσης
 - στην ανάλυση της γνώσης (κυριότερος στόχος του KADS)
 - στην μετατροπή της γνώσης σε λεπτομερές σχέδιο-μοντέλο για την υλοποίηση ενός έμπειρου συστήματος

Οι Βασικές Αρχές του KADS

- Η γνώση πρέπει να αναλύεται πριν από τη σχεδίαση και την υλοποίηση
- Η ανάλυση της γνώσης πρέπει να οδηγεί από την αρχή σε ανάπτυξη "μοντέλων της γνώσης"
 - Δομημένες περιγραφές του πεδίου του προβλήματος
 - Τα μοντέλα βοηθούν στην ευκολότερη κατανόηση των επόμενων σταδίων της εκμαίευσης
- ❖ Το μοντέλο πρέπει να είναι εκφρασμένο σε επιστημολογικό επίπεδο
 - Η γνώση πρέπει να αναπαρασταθεί με μία κατάλληλη ενδιάμεση μορφή αναπαράστασης
 - Όχι απευθείας στην τελική μορφή αναπαράστασης γνώσης, γιατί ακόμα δεν έχει αποφασιστεί
- Η ανάλυση θα πρέπει να καλύπτει την λειτουργικότητα του τελικού συστήματος
 - 🗖 Ποιος θα χρησιμοποιεί το σύστημα και υπό ποιες συνθήκες
- Η ανάλυση θα πρέπει να προχωράει σταδιακά
- Τα δεδομένα και η γνώση που αποκτούνται πρέπει να αναλύονται και μετά να προχωράει η διαδικασία στην απόκτηση νέων

Επίπεδα Αφαίρεσης του KADS

- * Το KADS χρησιμοποιεί γενικά (ή εξιδανικευμένα) μοντέλα της γνώσης για να καθοδηγήσει την ανάπτυξη ενός συστήματος
- Υπάρχουν 4 επίπεδα αφαίρεσης των μοντέλων
- * Επίπεδο πεδίου γνώσης (domain layer)
 - Αντικείμενα του προβλήματος
 - Έννοιες, στοιχεία και σχέσεις μεταξύ τους
- * Επίπεδο εξαγωγής συμπερασμάτων (inference layer)
 - Οργάνωση της γνώσης σε επίπεδο αντικειμένων
 - □ Τρόπος χρήσης αντικειμένων για την επίλυση προβλημάτων.
 - 🗖 Δηλωτική φύση
- ❖ Επίπεδο διεργασιών (task layer)
 - Τρόποι εκτέλεσης στόχων-υποστόχων του προβλήματος ώστε αυτό να λυθεί
 - Διαδικαστική φύση
- * Επίπεδο στρατηγικής (strategy layer)
 - Έλεγχος της εκτέλεσης των διεργασιών επίλυσης προβλημάτων

Ş

Ερμηνευτικά Μοντέλα

Interpretation Models

- Βιβλιοθήκη από δομημένες περιγραφές διαφόρων τύπων διεργασιών που μπορεί να επιτελεί ένα σύστημα
 - Π.χ. κατηγοριοποίηση, διαμόρφωση, διάγνωση, κλπ.
 - □ Μοντέλα γενικής χρήσης και επαναχρησιμοποιήσιμα
 - Για κάθε είδος διεργασίας, περιγράφουν ποια στοιχεία γνώσης και ποιες συμπερασματικές διαδικασίες είναι απαραίτητες
- Η μεθοδολογία KADS συστήνει την επιλογή και χρήση κάποιου τέτοιου μοντέλου,
 ανάλογα με το είδος του πεδίου της γνώσης
- ❖ Το KADS έχει μια ιεραρχία διεργασιών
 - Τα γενικά ερμηνευτικά μοντέλα προσαρμόζονται σταδιακά και γίνονται όλο και πιο συγκεκριμένα
 - Διάφορα ερμηνευτικά μοντέλα μπορούν να συνδυαστούν μεταξύ τους

Η Ιεραρχία Διεργασιών του KADS

Ερμηνευτικό Μοντέλο Αποτίμησης

Ερμηνευτικό Μοντέλο για Αποτίμηση Επένδυσης

Εκμαίευση Γνώσης

Knowledge Elicitation

- Διαδικασία απόκτησης (εκμαίευσης) της γνώσης από άτομα που θεωρούνται "ειδικοί" στο συγκεκριμένο τομέα γνώσης (domain experts).
 - □ Π.χ. επιστήμονες, τεχνικοί ή εμπειρογνώμονες.
 - 🗖 Θεωρείται το πιο δύσκολο-αμφίβολο βήμα στην ανάπτυξη ενός συστήματος γνώσης.
- **Ειδικός** είναι το άτομο που έχει ειδική γνώση ή ικανότητα πάνω σε ένα θέμα.
- Γνώση: Κατανόηση του κόσμου η οποία αποκτάται μέσω εμπειρίας ή μελέτης.
 - 🗖 Πληροφορίες, εμπειρίες, ικανότητες, δεξιότητες
 - Είδη γνώσης:
 - Αντικείμενα, γεγονότα, διαδικασίες, κτλ.,
 - Βαθιά-επιφανειακή γνώση (deep-shallow knowledge).
 - Ρητή και άρρητη γνώση (explicit-tacit knowledge)

Ç

Προβλήματα στην Εκμαίευση της Γνώσης

- ❖ Παράδοξο της ειδίκευσης
 - □ Όσο πιο πολύ ισχυρίζεται κάποιος ότι είναι ειδικός σε κάποιο θέμα, τόσο πιο δύσκολη είναι η ανταλλαγή πληροφοριών μαζί του.
- * Ευσεβής πόθος (wishful thinking)
 - Ο ειδικός εκφράζει το τι θα έπρεπε να γίνεται και όχι το τι πραγματικά γίνεται.
- **Κατάλληλο υπόβαθρο γνώσης** του μηχανικού γνώσης.
- * Έλλειψη χρόνου
- Ο μηχανικός γνώσης πρέπει να διασφαλίσει ότι ικανοποιούνται οι **στόχοι** της **συνέντευξης**.
- **Αμεροληψία** του μηχανικού γνώσης
- ❖ Ανεπιτήδειος έμπειρος (inexpert expert)
- **Απροθυμία** του ειδικού να μεταδώσει γνώση
- ❖ Ο ειδικός μπορεί να μην είναι εξοικειωμένος στη διαδικασία της εκμαίευσης γνώσης
- Αδυναμία του ειδικού να θυμηθεί ακριβώς τη ροή των γεγονότων σε παλιές περιπτώσεις
- **Επικοινωνιακά προβλήματα** του ειδικού ή/και του μηχανικού γνώσης
- **Υποκειμενικότητα** του ειδικού

Ç

Χρήση ενός μόνο Ειδικού

Πλεονεκτήματα	Μειονεκτήματα
 Προτιμητέο όταν αναπτύσσεται ένα απλό σύστημα ΔΓ Το πεδίο της γνώσης του προβλήματος είναι περιορισμένο 	 Πολλές φορές τα προβλήματα απαιτούν πολλαπλούς τομείς γνώσης για να επιλυθούν Ένας ειδικός δεν μπορεί να έχει εμπειρία σε όλα
Διευκολύνεται ο χρονοπρο- γραμματισμός των συναντήσεων	 Όταν υπάρχει ένας μόνο ειδικός είναι πιο πιθανό να αναβάλλει τις συναντήσεις, παρά όταν είναι πολλοί
Οι ασυνέπειες και οι αντιφάσεις στη γνώση είναι ευκολότερο να αντιμετωπιστούν	 ★ Ένας μόνο ειδικός → μία μοναδική συλλογιστική οδός □ Αυθεντία: Η γνώμη του ειδικού ακολουθείται «τυφλά» □ Το πεδίο της γνώσης δεν μπορεί να εξεταστεί σε βάθος
Με λίγα άτομα παρόντα, ο ειδικός «ανοίγεται» πιο εύκολα για να δώσει τη γνώση του	Αν ο ειδικός δεν έχει επικοινωνιακές ικανότητες τότε η απόκτηση της γνώσης δυσχεραίνει

Ş

Χρήση πολλών Ειδικών

Πλεονεκτήματα	Μειονεκτήματα
Τα πολύπλοκα προβλήματα απαιτούν πολλές ειδικότητες για να λυθούν	Δυσκολίες συντονισμούΠολλές φορές απαιτείται να υπάρχουν περισσότεροι μηχανικοί γνώσης
Οσο πιο πολλές και διαφορετικές γνώμες ακούει ο μηχανικός της γνώσης, τόσο πιο πολύ μπορεί να εμβαθύνει στο πεδίο της γνώσης γιατί μπορεί να το «δει» από πολλές σκοπιές	 Ο μηχανικός γνώσης μπορεί να αποπροσανατολιστεί από τις διαφορετικές απόψεις
 Η συνεργασία και ο διάλογος πολλών ειδικών μπορεί να δημιουργήσει γνώση 	Συχνά υπάρχουν διαφωνίες
 Οι επίσημες συναντήσεις είναι πολλές φορές πρόκληση για προσφορά και δημιουργικότητα εκ μέρους των ειδικών (ανταγωνισμός) 	Φέματα εμπιστευτικότητας

Ş

Μεθοδολογίες Εκμαίευσης Γνώσης

Συνέντευξη

- ❖ Ο πιο διαδεδομένος και αποδοτικός τρόπος εκμαίευσης γνώσης
 - Χρησιμοποιούνται συνήθως στα αρχικά στάδια απόκτησης της γνώσης
 - 🗖 Απαιτεί εκτεταμένη προετοιμασία και εξάσκηση από την πλευρά του μηχανικού
 - Είναι χρονοβόρα διαδικασία
- **Φ** Πλεονέκτημα: άμεση επαφή με τον ειδικό και παρατήρηση της συμπεριφοράς του

Είδη Συνεντεύξεων

- **Φ** Μη-δομημένες συνεντεύξεις.
 - Γενικές ερωτήσεις που υποβάλλονται με την ελπίδα της καταγραφής όσο περισσότερων πληροφοριών
- **Ημιδομημένες** συνεντεύξεις.
 - Σειρά ανοιχτών ερωτήσεων και θεμάτων που πρέπει να καλυφθούν.
- **Δομημένες** συνεντεύξεις.
 - Ερωτηματολόγιο με αυστηρά καθορισμένη δομή που περιλαμβάνει συγκεκριμένες ερωτήσεις σχετικές με τα χαρακτηριστικά του προβλήματος

Τεχνικές Συνέντευξης (1/4)

***** Άμεση Παρατήρηση

- Ο μηχανικός γνώσης πρέπει να παρατηρεί, να ερμηνεύει και να καταγράφει τις διαδικασίες επίλυσης προβλημάτων στο φυσικό τους χώρο
- Η παρατήρηση μπορεί να εκτρέψει την προσοχή των υπολοίπων υπαλλήλων
- Η καταγραφή των γεγονότων απέχει χρονικά από τα ίδια τα γεγονότα, συνεπώς μπορεί να υπάρξουν λάθη
- Είναι απαραίτητο οι επισκέψεις να είναι σύντομες και επαναλαμβανόμενες

* Ανάλυση Πρωτοκόλλου

- Ο ειδικός καλείται να λύσει ένα πρόβλημα σκεπτόμενος μεγαλόφωνα
- Αποτελεσματικός τρόπος καταγραφής της διαδικασία σκέψης
- 🗖 Βοηθάει τον ειδικό να συνειδητοποιήσει τις διαδικασίες τις οποίες περιγράφει
- Η μέθοδος βοηθάει αργότερα στην αναπαράσταση της γνώσης

9	
V	

Τεχνικές Συνέντευξης (2/4)

❖ Επαναδιδασκαλία (teach-back):

- Ο μηχανικός γνώσης προσπαθεί να επαναδημιουργήσει και να συνοψίσει ότι έχει ειπωθεί από τον ειδικό και να το διδάξει σε αυτόν.
- Μειονέκτημα: Ο ειδικός μπορεί να κάνει το λάθος να εγκρίνει την επαναδιδασκαλία, χωρίς να εμβαθύνει σε έλεγχο για πληρότητα και η συνέπεια

* Διδακτική συνέντευξη (tutorial interview):

- Ο ειδικός δίνει μια διάλεξη πάνω στην περιοχή του θέματος.
- Μειονέκτημα: Δεν επιτρέπει στο μηχανικό γνώσης να επιβάλλει τη δομή της διαδικασίας

* Ταξινόμηση καρτών (card sorting)

- Ανακάλυψη κατάλληλων ιδιοτήτων των στοιχείων που απαρτίζουν την περιοχή του πεδίου, για την ταξινόμηση των εννοιών.
- □ Κάθε στοιχείο της περιοχής γράφεται σε μία κάρτα.
- Ο μηχανικός γνώσης ζητάει από τον ειδικό να ταξινομήσει τις κάρτες σε σωρούς.
- 🗖 Ρωτάει τη βάση στην οποία στηρίχτηκε η ταξινόμηση
- Ρωτάει παραπλήσιες ερωτήσεις για κάθε στοιχείο μέλος του σωρού.
- □ Ιεραρχική ταξινόμηση: Μετά την πρώτη ταξινόμηση, κάθε σωρός θεωρείται σαν ένας χώρος (domain) και μπορεί να ταξινομηθεί ξεχωριστά σε υποσωρούς

Ş

Τεχνικές Συνέντευξης (3/4)

Βαθμωτά πλέγματα (laddered grids)

- ❖ Οι έννοιες θεωρείται ότι ανήκουν σε έναν άξονα γενικού-ειδικού
- ❖ Γίνονται ερωτήσεις:
 - Στον άξονα γενικού-ειδικού, ή αντίθετα
 - □ Κάθετα στον άξονα
- Εκκίνηση από έννοια-"σπόρο"
 - Ανάπτυξη δικτύου περιγραφής των σχέσεων των στοιχείων του θέματος (domain items)
- ***** Κατευθυντικές ερωτήσεις:
 - Για τη μετακίνηση από το γενικό προς το ειδικό:
 - "Μπορείς να δώσεις παράδειγμα του ..."
 - "Πώς μπορείς να εξηγήσεις ότι ..."
 - Για τη μετακίνηση από το ειδικό προς το γενικό:
 - "Τι κοινό υπάρχει ..."
 - "Τι παραδείγματα υπάρχουν από ..."
 - "Τι διαφορές υπάρχουν από ..."
 - Για την κάθετη μετακίνηση:
 - "Τι εναλλακτικά παραδείγματα του ... υπάρχουν ..."

Τεχνικές Συνέντευξης (4/4)

Πλέγματα Ρεπερτορίων (repertory grid)

- Ο ειδικός καλείται να κατηγοριοποιήσει το πεδίο του προβλήματος χρησιμοποιώντας το προσωπικό του μοντέλο
 - 🗖 Το πλέγμα χρησιμεύει στη σύλληψη και στην αξιολόγηση του μοντέλου του ειδικού
- Το πλέγμα είναι ένας πίνακας διπλής εισόδου
 - Τα στοιχεία τοποθετούνται με διαβάθμιση
- * Κάθε στοιχείο της περιοχής κατηγοριοποιείται σύμφωνα με ένα σύνολο από έννοιες ή χαρακτηρισμούς
 - Εφαρμόζονται σε όλα τα στοιχεία σε κάποιο βαθμό
- ❖ Κάθε έννοια εκφράζεται σε μια γραμμική, αριθμητική κλίμακα.
 - Η κλίμακα είναι ίδια κάθε φορά.
 - Τυπικά οι τιμές κυμαίνονται 1-5 ή 1-10
 - Υπάρχουν δύο ακραίες τιμές, π.χ. βαρύς/ελαφρύς, φτηνός/ακριβός, κ.α.
 - □ Η μέση τιμή (π.χ. 3 στα 5) αντιπροσωπεύει μια ενδιάμεση τιμή της έννοιας.
- Ζητείται από τον ειδικό να αποδώσει μια τιμή σε κάθε έννοια για όλα τα στοιχεία της περιοχής, στο πλέγμα που δημιουργείται.

Παράδειγμα Πλέγματος Ρεπερτορίων

	μιι	μικροκλοπή						
		διάρρηξη						
		ναρκωτικά						
		δολοφονία						
			ληστεία					
					βιασμός Ι		 ασμός Ι	
οποιονδήποτε	2	1	1	1	1	5	μόνο γυναίκες	
μεγάλη καταδίκη	2	1	1	2	3	5	μικρή καταδίκη	
ειδική τοποθεσία	2	5	1	1	4	5	οποιαδήποτε τοποθεσία	
προσχεδιασμένο	5	3	1	2	5	4	αφθόρμητα	
μη-απειλητικός	3	2	2	5	5	5	απειλητικός	
απρόσωπο	2	2	1	5	4	5	προσωπικό	
ασήμαντο	1	3	1	5	4	5	σημαντικό	
μη-βίαιος	1	1	2	5	5	5	βίαιος	

μικροκλοπή διάρρηξη ναρκωτικά δολοφονία ληστεία βιασμός

ſ	μικροκλοπή								
	μικροκλοτιτή								
-	40	διάρρηξη							
	10 - ναρκωτικά								
	10	10	ο δολοφονία						
	18	18	16 _ ληστεία						
	15	15	21	9	-	 βιασμός			
	23	21	29	13	10				

Επεξεργασία Πλεγμάτων Ρεπερτορίων

- Εξετάζεται αν κάποιο ζευγάρι είναι παρόμοιο κατά τη σύγκριση των οριζοντίων γραμμών του πλέγματος
 - 🗖 Παραλείπονται κάποιες παραπλήσιες έννοιες
- Υπολογίζεται, σε ένα νέο πλέγμα, πόσο όμοια ή ανόμοια είναι τα στοιχεία της περιοχής μεταξύ τους.
- ❖ Πλεονέκτημα: Αναγκάζει τον ειδικό να σκεφτεί το πρόβλημα πιο σοβαρά
- **Φ** Μειονέκτημα: Είναι δύσκολη η διαχείριση των μεγάλων πλεγμάτων
- ❖ Η μέθοδος χρησιμοποιείται συνήθως στα αρχικά στάδια της απόκτησης της γνώσης

Επαλήθευση (verification)

Η ορθή ανάπτυξη του συστήματος (O'Keefe, 1987)

Building the system right.

- ❖ Έλεγχος της συμβατότητας του συστήματος με τις αρχικές προδιαγραφές.
- * Επιβεβαίωση της συνέπειας και πληρότητας της κωδικοποίησης της γνώσης που περιέχεται στο έμπειρο σύστημα.
 - Έλεγχος λαθών που οφείλονται στους κατασκευαστές του συστήματος.
 - Δεν ελέγχεται η ίδια η γνώση που εκμαιεύτηκε αλλά ο τρόπος με τον οποίο υλοποιήθηκε.
 - Ο έλεγχος πραγματοποιείται από το μηχανικό της γνώσης με τη βοήθεια εργαλείων (π.χ. CHECK, TEIRESIAS)
- **Υ**πάρχουν λάθη
 - 🗖 Σε συστήματα Κανόνων
 - Στις δομημένες αναπαραστάσεις γνώσης.

Λάθη στις Δομημένες Αναπαραστάσεις Γνώσης

- ❖ Οφείλονται συνήθως σε εννοιολογικές παρανοήσεις
- ❖ Λάθη ταξινόμησης
 - Κάποια κλάση τοποθετείται σε άλλο σημείο της ιεραρχίας από εκείνο που θα έπρεπε.
- ❖ Λάθη ιδιοτήτων
 - □ Κάποιες ιδιότητες (slots) τοποθετούνται σε λάθος σημεία της ιεραρχίας.
 - \Box Π.χ. αν κάποια ιδιότητα s αποδίδεται και στις δύο υποκλάσεις B και C της κλάσης A, τότε το ορθότερο είναι η ιδιότητα αυτή να ορισθεί στην κλάση A αντί στις υποκλάσεις της.
- **❖** Λάθη τιμών
 - Οι ιδιότητες κάποιων αντικειμένων είτε παίρνουν τιμές αντίθετες με τους περιορισμούς της ιδιότητας, είτε παίρνουν την εξ' ορισμού τιμή, ενώ δεν είναι απαραίτητο.

Λάθη στα Συστήματα Κανόνων

- ❖ Πιθανά συντακτικά και σημασιολογικά λάθη σε συστήματα κανόνων.
- Επηρεάζουν την ορθότητα του συστήματος
 - □ Πλεονάζοντες κανόνες (redundant rules)
 - □ Αντικρουόμενοι κανόνες (conflicting rules)
 - □ Υπονοούμενοι κανόνες (subsumed rules)
 - □ Κυκλικοί κανόνες (circular rules)
 - □ Περιττές συνθήκες (unnecessary conditions)
- Επηρεάζουν την πληρότητα του συστήματος
 - □ Αδιέξοδοι κανόνες (dead-end rules)
 - \Box Απόντες κανόνες (missing rules)
 - □ Απρόσιτοι κανόνες (unreachable rules)

Πλεονάζοντες Κανόνες (redundant rules)

Φ Συντακτικός πλεονασμός: Ίδιες συνθήκες και συμπέρασμα.

```
(defrule rule1 (defrule rule2 (humidity high) (temperature hot) (temperature hot) (humidity high) => =>  (assert (weather thunderstorms))) (assert (weather thunderstorms))) \square \quad M\pi \circ \rho \epsilon i \ v\alpha \ \pi \rho \circ \kappa \alpha \lambda \epsilon \sigma \circ \upsilon v \ \pi \rho \circ \beta \lambda \eta \mu \alpha \tau \alpha \ \sigma \tau \upsilon v \circ \delta \epsilon \upsilon \upsilon v \tau \alpha \iota \alpha \pi \delta \ \sigma \upsilon v \tau \epsilon \lambda \epsilon \sigma \tau \epsilon \varsigma \ \beta \epsilon \beta \alpha \iota \delta \tau \eta \tau \alpha \varsigma,
```

- γιατί αυξάνουν τεχνητά τη βεβαιότητα του συμπεράσματος.
- ❖ Σημασιολογικός πλεονασμός: Συνθήκες ή/και συμπεράσματα μπορεί να είναι διαφορετικά στη σύνταξη αλλά ίδια στη σημασία.

- □ Είναι πιο σπάνιο φαινόμενο
- Αντιμετωπίζεται δυσκολότερα λόγω αδυναμίας αυτόματου ελέγχου από το σύστημα της ομοιότητας των εννοιών
- Οφείλεται στη μη σωστή δόμηση του συστήματος εννοιών (πλαίσια)

Αντικρουόμενοι Κανόνες (conflicting rules)

❖ Ίδιες συνθήκες, διαφορετικά συμπεράσματα.

Τεχνητή Νοημοσύνη, Β' Έκδοση

Υπονοούμενοι Κανόνες (subsumed rules)

 Αν ένας κανόνας έχει περισσότερους περιορισμούς στη συνθήκη του από έναν άλλο, ενώ και οι δύο έχουν το ίδιο συμπέρασμα.

- ❖ Μόνο ένας κανόνας είναι απαραίτητος.
 - Είτε ο rule7 είναι πολύ εξειδικευμένος ενώ δε χρειάζεται, ή ο rule8 είναι πολύ γενικός.
- Αν υπάρχουν συντελεστές βεβαιότητας, τότε μπορεί οι υπονοούμενοι κανόνες να χρησιμεύουν στην αύξηση της βεβαιότητας του συμπεράσματος.

```
(defrule rule7 (defrule rule8 CF=0,5 CF=0,7 ...)
```

- Αν ισχύει μόνο temperature hot και humidity high η βεβαιότητα καταιγίδας είναι 0.7 (λόγω rule8).
- Aν επιπλέον ισχύει ότι pressure low, τότε η βεβαιότητα αυξάνει σε 0,85 (λόγω rule8 και rule7).

Κυκλικοί Κανόνες (circular rules)

- ❖ Δημιουργούν προβλήματα τερματισμού (αέναος βρόχος infinite loop)
- **Φ** Εμφανίζονται με 2 μορφές:
 - □ Συντακτικά κυκλικοί κανόνες: Η συνθήκη κάποιου κανόνα αποτελεί συμπέρασμα κάποιου άλλου και αντίστροφα.

- Δημιουργείται πρόβλημα μόνο στα συστήματα παραγωγής που δεν ελέγχουν αν κάποιο συμπέρασμα έχει εισαχθεί ξανά.
- □ Κυκλικά δεδομένα: Η συνθήκη και το συμπέρασμα κάποιου κανόνα αναφέρονται σε δεδομένα που συνδέονται μεταξύ τους κυκλικά.

```
(defrule rule11
     (important-city ?x)
     (connected-with-road ?x ?y)
=>
     (assert (important-city ?y)))
```

• Δημιουργείται πρόβλημα τερματισμού μόνο αν τα δεδομένα έχουν κυκλική αλληλεξάρτηση.

Περιττές Συνθήκες (unnecessary conditions)

Δύο κανόνες με ίδια συμπεράσματα αλλά περίπου ίδιες συνθήκες (defrule rule12 (defrule rule12 (patient ?x) (patient ?x) (has-pink-spots ?x) (has-pink-spots ?x) (has-fever ?x) (not (has-fever ?x)) (assert (has-measles ?x))) (assert (has-measles ?x))) ❖ Η συνθήκη has-fever φαίνεται μη αναγκαία για να έχει κάποιος ιλαρά. Οι 2 κανόνες πρέπει να συμπτυχθούν σε 1: (defrule rule14 (patient ?x) (has-pink-spots ?x) => (assert (has-measles ?x))) Πολλές φορές τέτοιες καταστάσεις προκαλούνται όχι λόγω άχρηστων συνθηκών αλλά λόγω: Ελλιπών συνθηκών Λάθος κωδικοποίηση της γνώσης Λάθος στην εκμαιευμένη γνώση

Αδιέξοδοι Κανόνες (dead-end rules)

❖ Κανόνες με συμπεράσματα τα οποία: Δεν ανήκουν στα τελικά συμπεράσματα του συστήματος. Δεν εμφανίζονται στις συνθήκες άλλων κανόνων. Παράδειγμα (defrule rule15 (gas-gauge empty) => (assert (gas-tank empty))) Είναι αδιέξοδος κανόνας, αν το συμπέρασμα gas-tank empty: Δεν ανήκει στους τελικούς στόχους του συστήματος. Δεν εμφανίζεται στη συνθήκη κάποιου άλλου κανόνα. ❖ Προβλήματα που προκαλούν οι αδιέξοδοι κανόνες: Αχρηστα συμπεράσματα (πρόβλημα απόδοσης του συστήματος) Ένδειξη για κανόνες που λείπουν (πρόβλημα ορθότητας-πληρότητας του συστήματος)

Απόντες Κανόνες (missing rules)

- Η απουσία κανόνων μπορεί να γίνει αντιληπτή από:
 - Παρουσία γεγονότων που δεν εμφανίζονται στη συνθήκη κανενός κανόνα.
 - Παρουσία τελικών συμπερασμάτων που δεν εμφανίζονται στο συμπέρασμα κανενός κανόνα.
 - Υπαρξη αδιέξοδων κανόνων.

Απρόσιτοι Κανόνες (unreachable rules)

- * Κανόνες που δεν ενεργοποιούνται ποτέ γιατί οι συνθήκες στις οποίες στηρίζονται δεν αποτελούν το συμπέρασμα κανενός κανόνα, ούτε ανήκουν στα αρχικά δεδομένα.
- ❖ Είναι ακριβώς το αντίθετο των αδιέξοδων κανόνων.

Έλεγχος Αξιοπιστίας (validation)

Η ανάπτυξη του σωστού συστήματος (O'Keefe, 1987)

Building the right system.

- Διαπίστωση της ορθότητας του τελικού συστήματος σε σχέση με τις ανάγκες και απαιτήσεις του τελικού χρήστη.
 - Επιβεβαίωση της ορθότητας των αποτελεσμάτων του συστήματος
 - Επιβεβαίωση ότι το σύστημα ανταποκρίνεται στις απαιτήσεις των χρηστών
- Τελικός ποιοτικός έλεγχος στην ανάπτυξη συστημάτων γνώσης.
 - Ελέγχεται η ορθότητα και γενικότητα της ίδιας της γνώσης που εκμαιεύτηκε και περιέγεται στο έμπειρο σύστημα
 - Ελέγχεται αν το σύστημα επιλύει τα προβλήματα με ορθό και επακριβή τρόπο

Τεχνητή Νοημοσύνη, Β' Έκδοση

Ç

Μεθοδολογίες Ελέγχου Αξιοπιστίας

- * Άτυπος έλεγχος: Συναντήσεις μηχανικού γνώσης με ειδικούς κατά τη διάρκεια ανάπτυξης του συστήματος για τον έλεγχο της εγκυρότητας κάποιων αποτελεσμάτων
- ❖ Δοκιμασία σε υποδειγματικές περιπτώσεις (test cases)
 - Οι λύσεις που δίνει το έμπειρο σύστημα συγκρίνονται με λύσεις που δόθηκαν από διάφορους ειδικούς του τομέα στις ίδιες περιπτώσεις.
 - Οι ειδικοί συμφωνούν ή διαφωνούν (ίσως διαβαθμισμένα) με τις υποδείξεις του έμπειρου συστήματος.
 - □ Δοκιμασία Turing: Οι λύσεις ειδικών και συστήματος παρουσιάζονται με την ίδια μορφή σε άλλους ειδικούς, οι οποίοι τις αξιολογούν αντικειμενικά.
 - Οι υποδειγματικές περιπτώσεις πρέπει να είναι διαφορετικές από αυτές που χρησιμοποιήθηκαν στις προηγούμενες φάσεις ανάπτυξης του συστήματος.
 - Εξασφαλίζεται η ευρωστία (robustness) σε μη-προσδοκώμενα δεδομένα.
 - Όταν αυξάνεται η πολυπλοκότητα του συστήματος, ο αριθμός των δοκιμασιών που θα έπρεπε να πραγματοποιηθούν αυξάνεται εκθετικά.
- ❖ Δοκιμασία σε πραγματικές συνθήκες
 - Κίνδυνος απώλειας εμπιστοσύνης από τους τελικούς χρήστες
 - □ Πρέπει να γίνεται κοντά στο τελικό στάδιο ανάπτυξης

Μεθοδολογίες Ελέγχου Αξιοπιστίας

- * Ελεγχος αξιοπιστίας των υποσυστημάτων: Το σύστημα γνώσης χωρίζεται σε ανεξάρτητα υποσυστήματα τα οποία ελέγχονται ξεχωριστά
 - Ευκολότερη η επίλυση προβλημάτων σε μικρότερα συστήματα
 - Η αξιοπιστία του καθενός υποσυστήματος ξεχωριστά δεν εγγυάται πάντα την αξιοπιστία του συνολικού συστήματος
- * Ανάλυση ευαισθησίας: Δοκιμασία με σύνολο παραμέτρων που διαφέρουν λίγο σε μία από τις παραμέτρους κάθε φορά
 - Ιδιαίτερα χρήσιμος έλεγχος σε συστήματα με αβεβαιότητα.

Κριτήρια Αξιοπιστίας

- Σύγκριση με γνωστά αποτελέσματα
- Σύγκριση με την απόδοση ειδικών
 - □ Μεγαλύτερη ανεκτικότητα σε λάθη, αφού και ο ειδικός μπορεί να κάνει λάθη
- Σύγκριση με αποτελέσματα που προβλέπονται θεωρητικά
 - 🗖 Συνήθως γίνεται όταν το σύστημα γνώσης μοντελοποιεί κάποια φυσική διαδικασία
 - Όταν δεν υπάρχει ακριβές θεωρητικό μοντέλο, γιατί το φυσικό σύστημα είναι πολύπλοκο, τότε δεν είναι δυνατή αυτή η σύγκριση

Μέτρηση Αξιοπιστίας

- * Ακρίβεια (accuracy): Ποσοστό των αποδεκτών απαντήσεων του συστήματος
 - Αποδεκτές απαντήσεις είναι αυτές που συμπίπτουν σε αυτές ενός ειδικού
- * Επάρκεια (adequacy): Ποσοστό κάλυψης (coverage) του πεδίου γνώσης του προβλήματος
 - 🗖 Π.χ. ένα σύστημα κατηγοριοποίησης αναγνωρίζει σωστά το 83% των ειδών
 - Θα μπορούσε το ποσοστό να περιέχει και βάρη, δίνοντας μεγαλύτερη έμφαση στα σημαντικότερα στοιχεία του πεδίου της γνώσης

Λάθη στην Αναπαράσταση της Γνώσης

- Λάθη απόφασης: Συμβαίνουν όταν το σύστημα καταλήγει σε λάθος αποτέλεσμα
 - Επηρεάζουν την ακρίβεια του συστήματος
 - 🗖 Διαπιστώνονται εύκολα, αλλά εντοπίζονται και διορθώνονται δύσκολα
- Λάθη παράλειψης: Συμβαίνουν όταν το σύστημα δεν μπορεί να καταλήξει σε αποτέλεσμα
 - Η απαραίτητη γνώση για να λυθεί κάποιο πρόβλημα παραλήφθηκε
 - Επηρεάζουν την επάρκεια του συστήματος
 - Διαπιστώνονται δύσκολα γιατί η δοκιμαστική περίπτωση (test case) που θα αποκαλύψει την έλλειψη δεν είναι προφανής στο μηχανικό γνώσης

Εργαλεία Ανάπτυξης Συστημάτων Γνώσης

Τεχνητή Νοημοσύνη, Β' Έκδοση

Γλώσσες Προγραμματισμού ΤΝ

- Αποτελούν εργαλείο για γρήγορη κατασκευή πρωτοτύπου του συστήματος γνώσης.
 - Ο κώδικας μπορεί να εκτελεστεί και να ελεγχθεί την ώρα που δημιουργείται.
- ❖ Η διασύνδεση αυτών των γλωσσών με το χρήστη δεν είναι αρκετά εξελιγμένη.
- Οι γλώσσες προγραμματισμού διαθέτουν συνήθως έναν απλό μηχανισμό ελέγχου.
- ❖ Δίνουν στον προγραμματιστή τη δυνατότητα να "δημιουργήσει":
 - Μηχανισμό ελέγχου για το σύστημα γνώσης (συλλογιστική).
 - Τρόπο αναπαράστασης της γνώσης, με τις δομές δεδομένων.
- ❖ Κατηγορίες γλωσσών προγραμματισμού TN:
 - **Συναρτησιακός προγραμματισμός (π.χ. LISP)**
 - □ Λογικός προγραμματισμός (π.χ. PROLOG)
 - □ Αντικειμενοστραφής προγραμματισμός (π.χ. SMALLTALK)
 - Προγραμματισμός με κανόνες παραγωγής (π.χ. OPS5)

Συναρτησιακός Προγραμματισμός (LISP)

- ❖ Είναι προσανατολισμένη στο χειρισμό συμβόλων και λιστών.
- **Διαδικαστική θεώρηση**: Η γνώση του προβλήματος αναμιγνύεται με τη γνώση του τρόπου επίλυσης.
- * Έχει μόνο 2 τύπους δεδομένων (άτομο-σύμβολο και **λίστα**).
- Το λεξιλόγιο αποτελείται από 6 θεμελιώδεις συναρτήσεις.
 - □ Με βάση αυτές τις στοιχειώδεις συναρτήσεις ο χρήστης ορίζει πιο σύνθετες.

***** Πλεονεκτήματα:

- Δυναμικότητα, αυτόματη διαχείριση της μνήμης, εύκολη διόρθωση λαθών.
- 🗖 Δυνατότητα για ορισμό αναδρομικών συναρτήσεων.
- **Τμηματοποιημένη (modular)** ανάπτυξη προγραμμάτων με τη χρήση πολλών συναρτήσεων.

❖ Μειονέκτημα:

- Δεν αποδίδει κάποια ιδιαίτερη σημασία στα σύμβολα που χειρίζεται.
 - **Μέσο** "κατασκευής" εργαλείων ανάπτυξης συστημάτων γνώσης (π.χ. OPS5).
 - Όχι εργαλείο άμεσης κωδικοποίησης και εκτέλεσης της γνώσης.

LISP

Παράδειγμα

❖ Η συνάρτηση **consecutive** ελέγχει αν τα ορίσματα **a** και **b** εμφανίζονται συνεχόμενα στη λίστα **list**.

```
(defun consecutive (a b list)
  (cond ((null list) NIL)
          ((and (equal a (car list)) (equal b (car (cdr list))))          T)
          (T (consecutive a b (cdr list)))))
```

❖ Κλήση της συνάρτησης για να ελέγξει αν δύο γεγονότα (temperature_inc, pressure_inc) έχουν συμβεί το ένα αμέσως μετά το άλλο κατά την παρακολούθηση της λειτουργίας ενός κινητήρα:

```
(consecutive
```

- 'temperature inc 'pressure inc
- '(open_valve temperature_inc piston_compression pressure_inc))

Λογικός Προγραμματισμός (Prolog) (1/2)

- **Συμβολική** γλώσσα που βασίζεται στην κατηγορηματική λογική πρώτης τάξης.
- ***** Ένα πρόβλημα:
 - Περιγράφεται με τη μορφή γεγονότων (αξιώματα) και κανόνων (θεωρήματα)
 - Δεν περιέχει τον ακριβή αλγόριθμο επίλυσης του προβλήματος.
- Υπάρχει σαφής διαχωρισμός της γνώσης από το μηχανισμό ελέγχου.
 - Η εξαγωγή συμπερασμάτων γίνεται με τη διαδικασία της εις άτοπο απαγωγής.
 - Οι εναλλακτικές λύσεις ενός προβλήματος ερευνώνται πρώτα σε βάθος (DFS).
- * Υπόθεση κλειστού κόσμου (closed-world assumption):
 - □ Όσες πληροφορίες δεν αναφέρονται ρητά μέσα στη βάση γνώσης θεωρείται ότι δεν αληθεύουν (ψευδείς).
- **Κατάλληλη για την ανάπτυξη συστημάτων γνώσης:**
 - 🗖 Οι κανόνες περιγράφουν έναν κανόνα συστήματος γνώσης.
 - □ Μηχανισμός ελέγχου: Ανάστροφη ακολουθίας εκτέλεσης κανόνων (backward chaining).
 - **Μηχανισμός επίλυσης συγκρούσεων**: Επιλέγεται πάντα ο πρώτος κανόνας ή γεγονός.
 - **Στις μοντέρνες εκδόσεις της Prolog υπάρχουν αρκετές επεκτάσεις γραφικής διασύνδεσης** με το χρήστη.

Λογικός Προγραμματισμός (Prolog) (2/2)

- ❖ Η PROLOG δίνει αρκετές δυνατότητες μετα-προγραμματισμού
 - Μπορεί να υλοποιηθούν πλαίσια και ορθή ακολουθίας εκτέλεσης κανόνων (forward chaining).
 - Οι μηχανισμοί που αναπτύσσονται πάνω από την PROLOG είναι αρκετά αργοί
 - Οι επεκτάσεις αποτελούν "ξένο" σώμα ως προς τη σύνταξη και ως προς την εκτέλεση.
- ❖ Η PROLOG έχει χρησιμοποιηθεί κυρίως για την ανάπτυξη πρωτοτύπου
- Σήμερα εξακολουθεί να χρησιμοποιείται για ανάπτυξη συστημάτων γνώσης
 - Με προσθήκες κάποιων εξειδικευμένων εργαλείων (π.χ. FLEX στην LPA PROLOG).

PROLOG

Παράδειγμα

- Τα γεγονότα αποτελούν αξιώματα, δηλαδή εκφράζουν γνώση που ισχύει ρητά.
 - Το παρακάτω γεγονός δηλώνει ότι ο σωλήνας pipel είναι χαλασμένος ή δυσλειτουργεί.

works_bad(pipe1).

- Οι κανόνες αποτελούν θεωρήματα, δηλαδή εκφράζουν γνώση που ισχύει υπό συνθήκη.
 - Ο παρακάτω κανόνας δηλώνει πως αν κάποιο εξάρτημα δυσλειτουργεί, τότε και όλα τα εξαρτήματα που το περιέχουν εμφανίζονται ότι δυσλειτουργούν.

works_bad(X) :- is_part_of(Y,X), works_bad(Y).

- Το κατηγόρημα works_bad μπορεί να κληθεί με δύο τρόπους, ανάλογα με αν το όρισμα έχει συγκεκριμένη τιμή, δηλαδή είναι δεσμευμένο με τιμή (bound) ή είναι μεταβλητή.
 - Η παρακάτω κλήση ελέγχει αν η βαλβίδα valvel δυσλειτουργεί:

?- works_bad(valve1).

Η παρακάτω κλήση επιστρέφει (μέσω οπισθοδρόμησης) όλα τα εξαρτήματα που μπορεί να αποδειχθεί ότι δυσλειτουργούν:

?- works_bad(X).

Αντικειμενοστραφής Προγραμματισμός

- Αποτελεί τη σύγχρονη τάση στην κατασκευή λογισμικού
 Ορθή δόμηση προβλήματος, ευκολία συντήρησης λογισμικού
- **Αντικείμενο (object)**: Συλλογή από συσχετιζόμενα δεδομένα (χαρακτηριστικά) με συγκεκριμένη δομή
 - Αντιπροσωπεύει συνήθως μία οντότητα του φυσικού κόσμου
 - Π.χ., ένα αυτοκίνητο μπορεί να αναπαρασταθεί ως αντικείμενο με χαρακτηριστικά όπως ο κατασκευαστής του, ο αριθμός θυρών και θέσεων, η μέγιστη ταχύτητα, το βάρος του, κλπ.
- **Φ** Πλεονέκτημα: Προσφέρει εκφραστικές δομές για αναπαράσταση:
 - Των αντικειμένων του φυσικού κόσμου.
 - □ Των συσχετίσεων μεταξύ τους,
 - Των διεργασιών που λαμβάνουν χώρα.
- * Μειονέκτημα: Η επιλογή των αντικειμένων και μηνυμάτων γίνεται τεχνητά-αφύσικα για τα περισσότερα προβλήματα.
 - Τα αντικείμενα αποτελούν απλώς το μέσο υλοποίησης.
- Πιο γνωστές γλώσσες:
 - □ SMALLTALK (συμβολικός προγραμματισμός), C++/Java (συμβατικός προγραμματισμός), LOOPS, FLAVORS και CLOS (αντικειμενοστραφείς επεκτάσεις της γλώσσας LISP), COOL (συνοδεύει τη γλώσσα παραγωγής CLIPS)

Προγραμματισμός με Κανόνες Παραγωγής (OPS5)

- Αποτελεί φυσικό τρόπο υλοποίησης της γνώσης.
- **Φ** Είναι εύκολος στην εκμάθηση, λόγω απλότητας
- Η απλότητα είναι αρκετές φορές περιοριστική, αφού δεν επιτρέπει τη δημιουργία σύνθετων αναπαραστάσεων της γνώσης ή απλών διαδικαστικών αλγορίθμων.
- * Χρησιμοποιείται ο αλγόριθμος Rete
 - Επιταχύνει την ταυτοποίηση (pattern matching) των κανόνων με τα δεδομένα στη μνήμη εργασίας
- Μηχανισμός ελέγχου:
 - □ Βασίζεται στη συγκέντρωση των ενεργοποιημένων κανόνων στο **σύνολο συγκρούσεων**.
 - □ Εφαρμόζονται ευριστικοί αλγόριθμοι **επίλυσης συγκρούσεων** για την επιλογή του κανόνα που θα εκτελεστεί.
- ❖ Λύσεις:
 - Συνδυασμός με άλλες προγραμματιστικές τεχνικές
 - Χρήση προηγμένων αρχιτεκτονικών δόμησης συστημάτων ΤΝ (π.χ. μαυροπίνακας)

Εργαλεία Τεχνολογίας Γνώσης

- ❖ Εξειδικευμένα εργαλεία για την ανάπτυξη συστημάτων γνώσης.
- ❖ Σημαντικά χαρακτηριστικά:
 - Μορφές αναπαράστασης γνώσης και συλλογιστικής
 - Ευκολίες διασύνδεσης με το χρήστη και με το περιβάλλον γενικότερα
- Τα σύγχρονα εργαλεία είναι εξελιγμένα
 - 🗖 Τα απλά εργαλεία παρουσιάστηκαν κυρίως στις δεκαετίες του '70 και του '80

Απλά Εργαλεία

- Είναι γνωστά ως κελύφη εμπείρων συστημάτων (expert system shells).
- Προήλθαν από υπάρχοντα έμπειρα συστήματα, με αφαίρεση της βάσης γνώσης τους
 Περιβάλλουν ως κελύφη μια βάση γνώσης.
- Ο όρος χρησιμοποιείται καταχρηστικά για να περιγράψει όλα τα εργαλεία τεχνολογίας γνώσης

Το Κέλυφος ΕΜΥCIN

Προήλθε από το έμπειρο σύστημα ΜΥCIN. Σρησιμοποιήθηκε για την κατασκευή διαφόρων εμπείρων συστημάτων:

LITHIO (γεωλογία)

CLOT (ασθένειες πήξης του αίματος)

PUFF (πνευμονικές ασθένειες)

TAX-ADVISOR (νομική) SACON (ανάλυση μηχανολογικών

ΗΕΑΟ ΜΕΟ (ψυγιατρικές

σχεδίων)

διαγνώσεις)

- * Τα γεγονότα παριστάνονται σαν τριάδες: "**έννοια-παράμετρος-τιμή**".
 - □ Κάθε τριάδα συνοδεύεται και από ένα συντελεστή βεβαιότητας.
- **Ο**ι κανόνες εκτελούνται **ανάστροφα**:
 - □ Όταν επαληθεύεται η συνθήκη τότε προστίθενται στη μνήμη οι τριάδες της ενέργειας.
 - Η ενέργεια συνοδεύεται με συντελεστές βεβαιότητας.
- **Υποστηρίζονται μετα-κανόνες:**
 - Εξετάζουν τις συνθήκες των κανόνων που μπορούν να εκτελεστούν.
 - □ Καθορίζουν τη σειρά εκτέλεσης, ή αποτρέπουν την εκτέλεση κάποιων κανόνων.
- ❖ Μειονέκτημα: Δεν είναι κατάλληλα για την επίλυση όλων των προβλημάτων, αφού δημιουργήθηκαν από έμπειρο σύστημα που επιλύει συγκεκριμένο πρόβλημα.
 - Π.χ. το ΕΜΥCIN είναι κατάλληλο κυρίως για προβλήματα διάγνωσης (όπως το ΜΥCIN).
 - Υποστήριξη ενός είδους αναπαράστασης γνώσης, συλλογιστικής και αβεβαιότητας

Εξελιγμένα Εργαλεία (1/2)

- Εργαλεία της τεχνολογίας της γνώσης τα οποία υποστηρίζουν:
 - □ Πολλαπλούς τρόπους αναπαράστασης γνώσης και συλλογιστικής.
 - Εξελιγμένες δυνατότητες διασύνδεσης.
 - □ Μεγαλύτερη γενικότητα εφαρμογών.
- Κάποια προήλθαν αρχικά από έμπειρα συστήματα
 - Στη συνέχεια μετατράπηκαν και επεκτάθηκαν ώστε να υποστηρίζουν περισσότερα είδη αναπαράστασης γνώσης και συλλογιστικής.
 - \Box Π.χ. Personal Consultant, S1 και M4, κ.ά.
- Κάποια αναπτύχθηκαν από την αρχή σε κάποια γλώσσα προγραμματισμού.
 - □ Art, Kee, και Knowledge Craft (αναπτύχθηκαν σε Lisp)
 - □ Flex και Mike (αναπτύχθηκαν σε Prolog)
 - ΝΕΧΡΕΝΤ και CLIPS (αναπτύχθηκαν σε C/C++)
 - JESS (αναπτύχθηκε σε JAVA)
- Υπάρχουν εργαλεία που υποστηρίζουν την ανάπτυξη συστημάτων γνώσης με τη χρήση της συλλογιστικής των περιπτώσεων
 - \Box Π.χ. INDUCE-IT, KAIDARA, κτλ.

Εξελιγμένα Εργαλεία (2/2)

- ❖ Διαφορές με τα απλά εργαλεία:
 - 🗖 Δε δεσμεύονται από τη δόμηση και τους περιορισμούς κάποιου συστήματος γνώσης.
 - Δίνουν πολλές δυνατότητες στην κατασκευή και τη συντήρηση των συστημάτων γνώσης.
 - 🗖 Δυσκολότερα στην εκμάθηση
 - Περιέχουν πολλές και ετερογενείς προγραμματιστικές έννοιες
- Οι κυριότεροι μέθοδοι αναπαράστασης γνώσης:
 - Πλαίσια: Πλεονεκτούν στη δομημένη αναπαράσταση σύνθετων φυσικών αντικειμένων και στο συμπαγή τρόπο χειρισμού τους.
 - **Κανόνες**: Πλεονεκτούν στο δηλωτικό τρόπο αναπαράστασης εμπειρικών συσχετίσεων μεταξύ παρατηρηθέντων δεδομένων και επαρκούντων δράσεων για την αντιμετώπιση των περιπτώσεων.
- ❖ Ο συνδυασμός των δύο μεθόδων αναπαράστασης γνώσης γίνεται ως εξής:
 - Οι συνθήκες των κανόνων μπορούν να αναφέρονται σε τιμές των ιδιοτήτων των πλαισίων.
 - Οι ενέργειες μπορούν να αλλάζουν τις τιμές των ιδιοτήτων ή να δημιουργούν και να διαγράφουν πλαίσια.

Personal Consultant

- ❖ Είναι εξέλιξη του ΕΜΥCIN.
 - 🗖 Γεγονότα και Κανόνες.
 - Τα γεγονότα παριστάνονται με τριάδες όπως και στο ΕΜΥCIN.
 - Υποστηρίζει αβεβαιότητα
- Υποστηρίζει ανάστροφη και ορθή συλλογιστική
- **Φ** Εξελιγμένες δυνατότητες:
 - Επεξεργαστής κειμένου για τη βάση γνώσης
 - Επεξήγηση πορείας συλλογισμού
 - Πρόγραμμα επεξεργασίας φυσικής γλώσσας
 - 🗖 Έλεγχος της συνέπειας της βάσης γνώσης

Ç

ART

Automated Reasoning Tool

- Προσφέρει διάφορους τρόπους αναπαράστασης της γνώσης.
 - Κανόνες (ορθή ανάστροφη συλλογιστική)
 - 🗖 Σενάρια.
 - \Box $\kappa\lambda\pi$.
- Εξελιγμένοι μηχανισμοί ελέγχου
 - Αρχιτεκτονική μαυροπίνακα
 - □ Μηχανισμός συντήρησης της αλήθειας (truth maintenance)
- **Φ** Εξελιγμένες δυνατότητες:
 - ART Studio: Γραφικό εργαλείο για τη σταδιακή ανάπτυξη της βάσης γνώσης μέσω παραθύρων, μενού, κλπ.
 - Δυνατότητα κλήσης προγραμμάτων σε άλλες γλώσσες προγραμματισμού

KEE

Knowledge Engineering Environment

- ❖ Η αναπαράσταση γνώσης γίνεται με μονάδες (units) ή πλαίσια.
- Ορθή ή ανάστροφη εκτέλεση κανόνων, με μηχανισμό οπισθοδρόμησης
- **Φ** Εξελιγμένες δυνατότητες:
 - Εργαλείο σύνταξης της βάσης γνώσης.
 - □ Kee Worlds: Αναπαράσταση και σύγκριση εναλλακτικών σεναρίων
 - □ TMS: μηχανισμός συντήρησης της αλήθειας
 - □ Kee Connection: διασύνδεση με σχεσιακές βάσεις δεδομένων