10/567765 IAP5 Rec'd PCT/PTO 10 FEB 2006

SEQUENCE LISTING

<110> EXELIXIS, INC.
<120> MELKS AS MODIFIERS OF THE RAC PATHWAY AND METHODS OF USE
<130> EX04-059C-PC
<150> US 60/495,193 <151> 2003-08-14
<160> 6
<170> PatentIn version 3.2
<210> 1 <211> 2470 <212> DNA <213> Homo sapiens
<400> 1 ttggcgggcg gaagcggcca caacccggcg atcgaaaaga ttcttaggaa cgccgtacca 60
gccgcgtctc tcaggacagc aggcccctgt ccttctgtcg ggcgccgctc agccgtgccc 120
teegeceete aggitetitt tetaatteea aataaacitg caagaggaet atgaaagatt 180
atgatgaact totcaaatat tatgaattac atgaaactat tgggacaggt ggctttgcaa 240
aggtcaaact tgcctgccat atccttactg gagagatggt agctataaaa atcatggata 300
aaaacacact agggagtgat ttgccccgga tcaaaacgga gattgaggcc ttgaagaacc 360
tgagacatca gcatatatgt caactctacc atgtgctaga gacagccaac aaaatattca 420
tggttcttga gtactgccct ggaggagagc tgtttgacta tataatttcc caggatcgcc 480
tgtcagaaga ggagacccgg gttgtcttcc gtcagatagt atctgctgtt gcttatgtgc 540
acagccaggg ctatgctcac agggacctca agccagaaaa tttgctgttt gatgaatatc 600
ataaattaaa gctgattgac tttggtctct gtgcaaaacc caagggtaac aaggattacc 660
gtggatttct accatttgat gatgataatg taatggcttt atacaagaag attatgagag 840
gaaaatatga tgttcccaag tggctctctc ccagtagcat tctgcttctt caacaaatgc 900
tgcaggtgga cccaaagaaa cggatttcta tgaaaaatct attgaaccat ccctggatca 960
tgcaagatta caactateet gttgagtgge aaageaagaa teettttatt caeetegatg 1020
atgattgcgt aacagaactt tctgtacatc acagaaacaa caggcaaaca atggaggatt 1080

taatttcact	gtggcagtat	gatcacctca	cggctaccta	tcttctgctt	ctagccaaga	1140
aggctcgggg	aaaaccagtt	cgtttaaggc	tttcttcttt	ctcctgtgga	caagccagtg	1200
ctaccccatt	cacagacatc	aagtcaaata	attggagtct	ggaagatgtg	accgcaagtg	1260
ataaaaatta	tgtggcggga	ttaatagact	atgattggtg	tgaagatgat	ttatcaacag	1320
gtgctgctac	tccccgaaca	tcacagttta	ccaagtactg	gacagaatca	aatggggtgg	1380
aatctaaatc	attaactcca	gccttatgca	gaacacctgc	aaataaatta	aagaacaaag	1440
aaaatgtata	tactcctaag	tctgctgtaa	agaatgaaga	gtactttatg	tttcctgagc	1500
caaagactcc	agttaataag	aaccagcata	agagagaaat	actcactacg	ccaaatcgtt	1560
acactacacc	ctcaaaagct	agaaaccagt	gcctgaaaga	aactccaatt	aaaataccag	1620
taaattcaac	aggaacagac	aagttaatga	caggtgtcat	tagccctgag	aggcggtgcc	1680
gctcagtgga	attggatctc	aaccaagcac	atatggagga	gactccaaaa	agaaagggag	1740
ccaaagtgtt	tgggagcctt	gaaagggggt	tggataaggt	tatcactgtg	ctcaccagga	1800
gcaaaaggaa	gggttctgcc	agagacgggc	ccagaagact	aaagcttcac	tataatgtga	1860
ctacaactag	attagtgaat	ccagatcaac	tgttgaatga	aataatgtct	attcttccaa	1920
agaagcatgt	tgactttgta	caaaagggtt	atacactgaa	gtgtcaaaca	cagtcagatt	1980
ttgggaaagt	gacaatgcaa	tttgaattag	aagtgtgcca	gcttcaaaaa	cccgatgtgg	2040
tgggtatcag	gaggcagcgg	cttaagggcg	atgcctgggt	ttacaaaaga	ttagtggaag	2100
acatcctatc	tagctgcaag	gtataattga	tggattcttc	catcctgccg	gatgagtgtg	2160
ggtgtgatac	agcctacata	aagactgtta	tgatcgcttt	gattttaaag	ttcattggaa	2220
ctaccaactt	gtttctaaag	agctatctta	agaccaatat	ctctttgttt	ttaaacaaaa	2280
gatattattt	tgtgtatgaa	tctaaatcaa	gcccatctgt	cattatgtta	ctgtcttttt	2340
taatcatgtg	gttttgtata	ttaataattg	ttgactttct	tagattcact	tccatatgtg	2400
aatgtaagct	cttaactatg	tctctttgta	atgtgtaatt	tctttctgaa	ataaaaccat	2460
ttgtgaatat						2470

<210> 2

<211> 2510 <212> DNA <213> Homo sapiens

<400> 2

cccctgtcct	tctgtcgggc	gccgctcagc	cgtgccctcc	gcccctcagg	ttcttttct	120	
aattccaaat	aaacttgcaa	gaggactatg	aaagattatg	atgaacttct	caaatattat	180	
gaattacatg	aaactattgg	gacaggtggc	tttgcaaagg	tcaaacttgc	ctgccatatc	240	
cttactggag	agatggtagc	tataaaaatc	atggataaaa	acacactagg	gagtgatttg	300	
ccccggatca	aaacggagat	tgaggccttg	aagaacctga	gacatcagca	tatatgtcaa	360	
ctctaccatg	tgctagagac	agccaacaaa	atattcatgg	ttcttgagta	ctgccctgga	420	
ggagagctgt	ttgactatat	aatttcccag	gatcgcctgt	cagaagagga	gacccgggtt	480	
gtcttccgtc	agatagtatc	tgctgttgct	tatgtgcaca	gccagggcta	tgctcacagg	540	
gacctcaagc	cagaaaattt	gctgtttgat	gaatatcata	aattaaagct	gattgacttt	600	
ggtctctgtg	caaaacccaa	gggtaacaag	gattaccatc	tacagacatg	ctgtgggagt	660	
ctggcttatg	cagcacctga	gttaatacaa	ggcaaatcat	atcttggatc	agaggcagat	720	
gtttggagca	tgggcatact	gttatatgtt	cttatgtgtg	gatttctacc	atttgatgat	780	
gataatgtaa	ţggctttata	caagaagatt	atgagaggaa	aatatgatgt	tcccaagtgg	840	
ctctctccca	gtagcattct	gcttcttcaa	caaatgctgc	aggtggaccc	aaagaaacgg	900	
atttctatga	aaaatctatt	gaaccatccc	tggatcatgc	aagattacaa	ctatcctgtt	960	
gagtggcaaa	gcaagaatcc	ttttattcac	ctcgatgatg	attgcgtaac	agaactttct	1020	
gtacatcaca	gaaacaacag	gcaaacaatg	gaggatttaa	tttcactgtg	gcagtatgat	1080	
cacctcacgg	ctacctatct	tctgcttcta	gccaagaagg	ctcggggaaa	accagttcgt	1140	
ttaaggcttt	cttctttctc	ctgtggacaa	gccagtgcta	ccccattcac	agacatcaag	1200	
tcaaataatt	ggagtctgga	agatgtgacc	gcaagtgata	aaaattatgt	ggcgggatta	1260	
atagactatg	attggtgtga	agatgattta	tcaacaggtg	ctgctactcc	ccgaacatca	1320	
cagtttacca	agtactggac	agaatcaaat	ggggtggaat	ctaaatcatt	aactccagcc	1380	
ttatgcagaa	cacctgcaaa	taaattaaag	aacaaagaaa	atgtatatac	tcctaagtct	1440	
gctgtaaaga	atgaagagta	ctttatgttt	cctgagccaa	agactccagt	taataagaac	1500	
cagcataaga	gagaaatact	cactacgcca	aatcgttaca	ctacaccctc	aaaagctaga	1560	
aaccagtgcc	tgaaagaaac	tccaattaaa	ataccagtaa	attcaacagg	aacagacaag	1620	
ttaatgacag	gtgtcattag	ccctgagagg	cggtgccgct	cagtggaatt	ggatctcaac	1680	
caagcacata	tggaggagac	tccaaaaaga	aagggagcca	aagtgtttgg	gagccttgaa	1740	
agggggttgg	ataaggttat	cactgtgctc	accaggagca	aaaggaaggg	ttctgccaga	1800	

gacgggccca gaagactaaa	gcttcactat	aatgtgacta	caactagatt	agtgaatcca	1860
gatcaactgt tgaatgaaat	aatgtctatt	cttccaaaga	agcatgttga	ctttgtacaa	1920
aagggttata cactgaagtg	tcaaacacag	tcagattttg	ggaaagtgac	aatgcaattt	1980
gaattagaag tgtgccagct	tcaaaaaccc	gatgtggtgg	gtatcaggag	gcagcggctt	2040
aagggcgatg cctgggttta	caaaagatta	gtggaagaca	tcctatctag	ctgcaaggta	2100
taattgatgg attcttccat	cctgccggat	gagtgtgggt	gtgatacagc	ctacataaag	2160
actgttatga tcgctttgat	tttaaagttc	attggaacta	ccaacttgtt	tctaaagagc	2220
tatcttaaga ccaatatctc	tttgttttta	aacaaaagat	attattttgt	gtatgaatct	2280
aaatcaagcc catctgtcat	tatgttactg	tctttttaa	tcatgtggtt	ttgtatatta	2340
ataattgttg actttcttag	attcacttcc	atatgtgaat	gtaagctctt	aactatgtct	2400
ctttgtaatg tgtaatttct	ttctgaaata	aaaccatttg	tgaatataaă	aaaaaaaaa	2460
aaaaaaaaaa aaaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa		2510

<210> 3

<211> 2158

<212> DNA

<213> Homo sapiens

<400> 3

60 gctagcgcta ccggactcag atctatttag gtgacactat agaagagcca agctgctcga 120 gccgccacca tggactacaa ggacgatgac gataagggat ccaaagatta tgatgaactt 180 ctcaaatatt atgaattaca tgaaactatt gggacaggtg gctttgcaaa ggtcaaactt 240 gcctgccata tccttactgg agagatggta gctataaaaa tcatggataa aaacacacta gggagtgatt tgccccggat caaaacggag attgaggcct tgaagaacct gagacatcag 300 catatatgtc aactctacca tgtgctagag acagccaaca aaatattcat ggttcttgag 360 420 tactgccctg gaggagagct gtttgactat ataatttccc aggatcgcct gtcagaagag 480 gagacccggg ttgtcttccg tcagatagta tctgctgttg cttatgtgca cagccagggc tatgctcaca gggacctcaa gccagaaaat ttgctgtttg atgaatatca taaattaaag 540 600 ctgattgact ttggtctctg tgcaaaaccc aagggtaaca aggattacca tctacagaca 660 tgctgtggga gtctggctta tgcagcacct gagttaatac aaggcaaatc atatcttgga 720 tcagaggcag atgtttggag catgggcata ctgttatatg ttcttatgtg tggatttcta 780 ccatttgatg atgataatgt aatggcttta tacaagaaga ttatgagagg aaaatatgat

gttcccaagt ggctctctcc	cagtagcatt	ctgcttcttc	aacaaatgct	gcaggtggac	840
ccaaagaaac ggatttctat	gaaaaatcta	ttgaaccatc	cctggatcat	gcaagattac	900
aactatcctg ttgagtggca	aagcaagaat	ccttttattc	acctcgatga	tgattgcgta	960
acagaacttt ctgtacatca	cagaaacaac	aggcaaacaa	tggaggattt	aatttcactg	1020
tggcagtatg atcacctcac	ggctacctat	cttctgcttc	tagccaagaa	ggctcgggga	1080
aaaccagttc gtttaaggct	ttcttctttc	tcctgtggac	aagccagtgc	taccccattc	1140
acagacatca agtcaaataa	ttggagtctg	gaagatgtga	ccgcaagtaa	taaaaattat	1200
gtggcgggat taatagacta	tgattggtgt	gaagatgatt	tatcaacagg	tgctgctact	1260
ccccgaacat cacagtttac	caagtactgg	acagaatcaa	atggggtgga	atctaaatca	1320
ttaactccag ccttatgcag	aacacctgca	aataaattaa	agaacaaaga	aaatgtatat	1380
actcctaagt ctgctgtaaa	gaatgaagag	tactttatgt	ttcctgagcc	aaagactcca	1440
gttaataaga accagcataa	gagagaaata	ctcactacgc	caaatcgtta	cactacaccc	1500
tcaaaagcta gaaaccagtg	cctgaaagaa	actccaatta	aaataccagt	aaattcaaca	1560
ggaacagaca agttaatgac	aggtgtcatt	agccctgaga	ggcggtgccg	ctcagtggaa	1620
ttggatctca accaagcaca	tatggaggag	actccaaaaa	gaaagggagc	caaagtgttt	1680
gggagccttg aaagggggtt	ggataaggtt	atcactgtgc	tcaccaggag	caaaaggaag	1740
ggttctgcca gagacgggcc	cagaagacta	aagcttcact	ataatgtgac	tacaactaga	1800
ttagtgaatc cagatcaact	gttgaatgaa	ataatgtcta	ttcttccaaa	gaagcatgtt	1860
gactttgtac aaaagggtta	tacactgaag	tgtcaaacac	agtcagattt	tgggaaagtg	1920
acaatgcaat ttgaattaga	agtgtgccag	cttcaaaaac	ccgatgtggt	gggtatcagg	1980
aggcagcggc ttaagggcga	tgcctgggtt	tacaaaagat	tagtggaaga	catcctatct	2040
agctgcaagg tagaattctg	ataatgagcg	gccgcctcgg	ccaaacatcg	ataaaataaa	2100
agattttatt tagtctccag	aaaaaggggg	gaatgaaaga	ccccacctgt	aggtttgg	2158

<210> 4 <211> 1734

<400> 4

tatttaggtg acactataga agagccaagc tgctcgagcc gccaccatgg actacaagga 60 cgatgacgat aagggatcca aagattatga tgaacttctc aaatattatg aattacatga 120

<212> DNA

<213> Homo sapiens

180 aactattggg acaggtggct ttgcaaaggt caaacttgcc tgccatatcc ttactggaga 240 gatggtagct ataaaaatca tggataaaaa cacactaggg agtgatttgc cccggatcaa 300 aacggagatt gaggcettga agaacetgag acateageat atatgteaac tetaceatgt gctagagaca gccaacaaaa tattcatggt tcttgagggt aacaaggatt accatctaca 360 gacatgctgt gggagtctgg cttatgcagc acctgagtta atacaaggca aatcatatct 420 tggatcagag gcagatgttt ggagcatggg catactgtta tatgttctta tgtgtggatt 480 tctaccattt gatgatgata atgtaatggc tttatacaag aagattatga gaggaaaata 540 600 tgatgttccc aagtggctct ctcccagtag cattctgctt cttcaacaaa tgctgcaggt 660 ggacccaaag aaacggattt ctatgaaaaa tctattgaac catccctgga tcatgcaaga 720 ttacaactat cctgttgagt ggcaaagcaa gaatcctttt attcacctcg atgatgattg 780 cgtaacagaa ctttctgtac atcacagaaa caacaggcaa acaatggagg atttaatttc 840 actgtggcag tatgatcacc tcacggctac ctatcttctg cttctagcca agaaggctcg 900 gggaaaacca gttcgtttaa ggctttcttc tttctcctgt ggacaagcca gtgctacccc 960 attcacagac atcaagttta ccaagtactg gacagaatca aatggggtgg aatctaaatc 1020 attaactcca gccttatgca gaacacctgc aaataaatta aagaacaaag aaaatgtata 1080 tactcctaag tctgctgtaa agaatgaaga gtactttatg tttcctgagc caaagactcc 1140 agttaataag aaccagcata agagagaaat actcactacg ccaaatcgtt acactacacc 1200 ctcaaaagct agaaaccagt gcctgaaaga aactccaatt aaaataccag taaattcaac 1260 aggaacagac aagttaatga caggtgtcat tagccctgag aggcggtgcc gctcagtgga 1320 attggatete aaccaageae atatggagga gactecaaaa agaaagggag ecaaagtgtt 1380 tgggagcctt gaaagggggt tggataaggt tatcactgtg ctcaccagga gcaaaaggaa 1440 gggttctgcc agagacgggc ccagaagact aaagcttcac tataatgtga ctacaactag 1500 attagtgaat ccagatcaac tgttgaatga aataatgtct attcttccaa agaagcatgt 1560 tgactttgta caaaagggtt atacactgaa gtgtcaaaca cagtcagatt ttgggaaagt gacaatgcaa tttgaattag aagtgtgcca gcttcaaaaa cccgatgtgg tgggtatcag 1620 1680 gaggcagcgg cttaagggcg atgcctgggt ttacaaaaga ttagtggaag acatcctatc 1734 tagctgcaag gtagaattct gataatgagc ggccgcctcg gccaaacatc gata

<211> 2501

<212> DNA

<213> Homo sapiens

<400> 5

60 cgaaaagatt cttaggaacg ccgtaccagc cgcgtctctc aggacagcag gcccctgtcc ttctgtcggg cgccgctcag ccgtgccctc cgcccctcag gttctttttc taattccaaa 120 taaacttgca agaggactat gaaagattat gatgaacttc tcaaatatta tgaattacat 180 gaaactattg ggacaggtgg ctttgcaaag gtcaaacttg cctgccatat ccttactgga 240 gagatggtag ctataaaaat catggataaa aacacactag ggagtgattt gccccggatc 300 360 aaaacggaga ttgaggcctt gaagaacctg agacatcagc atatatgtca actctaccat 420 qtqctaqaqa caqccaacaa aatattcatg gttcttgagt actgccctgg aggagagctg 480 tttgactata taatttccca ggatcgcctg tcagaagagg agacccgggt tgtcttccgt 540 cagatagtat ctgctgttgc ttatgtgcac agccagggct atgctcacag ggacctcaag 600 ccagaaaatt tgctgtttga tgaatatcat aaattaaagc tgattgactt tggtctctgt 660 gcaaaaccca agggtaacaa ggattaccat ctacagacat gctgtgggag tctggcttat gcagcacctg agttaataca aggcaaatca tatcttggat cagaggcaga tgtttggagc 720 atgggcatac tgttatatgt tcttatgtgt ggatttctac catttgatga tgataatgta 780 840 atggctttat acaagaagat tatgagagga aaatatgatg ttcccaagtg gctctctccc 900 agtagcattc tgcttcttca acaaatgctg caggtggacc caaagaaacg gatttctatg 960 aaaaatctat tgaaccatcc ctggatcatg caagattaca actatcctgt tgagtggcaa 1020 agcaagaatc cttttattca cctcgatgat gattgcgtaa cagaactttc tgtacatcac 1080 agaaacaaca ggcaaacaat ggaggattta atttcactgt ggcagtatga tcacctcacg gctacctatc ttctgcttct agccaagaag gctcggggaa aaccagttcg tttaaggctt 1140 1200 tcttctttct cctgtggaca agccagtgct accccattca cagacatcaa gtcaaataat 1260 tggagtctgg aagatgtgac cgcaagtgat aaaaattatg tggcgggatt aatagactat gattggtgtg aagatgattt atcaacaggt gctgctactc cccgaacatc acagtttacc 1320 aagtactgga cagaatcaaa tggggtggaa tctaaatcat taactccagc cttatgcaga 1380 acacctgcaa ataaattaaa gaacaaagaa aatgtatata ctcctaagtc tgctgtaaag 1440 1500 aatgaagagt actttatgtt tcctgagcca aagactccag ttaataagaa ccagcataag 1560 agagaaatac tcactacgcc aaatcgttac actacaccct caaaagctag aaaccagtgc

ctgaaagaaa ctccaattaa aataccagta aattcaacag gaacagacaa gttaatgaca 1620 ggtgtcatta gccctgagag gcggtgccgc tcagtggaat tggatctcaa ccaagcacat 1680 atggaggaga ctccaaaaag aaagggagcc aaagtgtttg ggagccttga aagggggttg 1740 qataaqqtta tcactgtqct caccaggagc aaaaggaagg gttctgccag agacgggccc 1800 agaagactaa agcttcacta taatgtgact acaactagat tagtgaatcc agatcaactg 1860 ttqaatqaaa taatqtctat tcttccaaaq aagcatgttg actttgtaca aaagggttat 1920 acactgaagt gtcaaacaca gtcagatttt gggaaagtga caatgcaatt tgaattagaa 1980 gtgtgccagc ttcaaaaacc cgatgtggtg ggtatcagga ggcagcggct taagggcgat 2040 gcctgggttt acaaaagatt agtggaagac atcctatcta gctgcaaggt ataattgatg 2100 gattetteca teetgeegga tgagtgtggg tgtgatacag cetacataaa gaetgttatg 2160 atcgctttga ttttaaagtt cattggaact accaacttgt ttctaaagag ctatcttaag 2220 accaatatct ctttgttttt aaacaaaaga tattattttg tgtatgaatc taaatcaagc 2280 ccatctqtca ttatqttact qtctttttta atcatqtqqt tttqtatatt aataattqtt 2340 2400 qactttctta gattcacttc catatgtgaa tgtaagctct taactatgtc tctttgtaat 2460 aaaaaaaaa aaaaaaaaaa aaaaaaaaaa a 2501

<210> 6

<211> 651

<212> PRT

<213> Homo sapiens

<400> 6

Met Lys Asp Tyr Asp Glu Leu Leu Lys Tyr Tyr Glu Leu His Glu Thr 1 5 10 15

Ile Gly Thr Gly Gly Phe Ala Lys Val Lys Leu Ala Cys His Ile Leu 20 25 30

Thr Gly Glu Met Val Ala Ile Lys Ile Met Asp Lys Asn Thr Leu Gly 35 40 45

Ser Asp Leu Pro Arg Ile Lys Thr Glu Ile Glu Ala Leu Lys Asn Leu 50 55 60

Arg His Gln His Ile Cys Gln Leu Tyr His Val Leu Glu Thr Ala Asn

Lys Ile Phe Met Val Leu Glu Tyr Cys Pro Gly Gly Glu Leu Phe Asp 85 90 95

65

Tyr Ile Ile Ser Gln Asp Arg Leu Ser Glu Glu Glu Thr Arg Val Val 100 105 110

Phe Arg Gln Ile Val Ser Ala Val Ala Tyr Val His Ser Gln Gly Tyr 115 120 125

Ala His Arg Asp Leu Lys Pro Glu Asn Leu Leu Phe Asp Glu Tyr His 130 135 140

Lys Leu Lys Leu Ile Asp Phe Gly Leu Cys Ala Lys Pro Lys Gly Asn 145 150 155 160

Lys Asp Tyr His Leu Gln Thr Cys Cys Gly Ser Leu Ala Tyr Ala Ala 165 170 175

Pro Glu Leu Ile Gln Gly Lys Ser Tyr Leu Gly Ser Glu Ala Asp Val 180 185 190

Trp Ser Met Gly Ile Leu Leu Tyr Val Leu Met Cys Gly Phe Leu Pro 195 200 205

Phe Asp Asp Asp Asn Val Met Ala Leu Tyr Lys Lys Ile Met Arg Gly 210 215 220

Lys Tyr Asp Val Pro Lys Trp Leu Ser Pro Ser Ser Ile Leu Leu Leu 225 230 235 240

Gln Gln Met Leu Gln Val Asp Pro Lys Lys Arg Ile Ser Met Lys Asn 245 250 255

Leu Leu Asn His Pro Trp Ile Met Gln Asp Tyr Asn Tyr Pro Val Glu 260 265 270

Trp Gln Ser Lys Asn Pro Phe Ile His Leu Asp Asp Asp Cys Val Thr 275 280 285

Glu Leu Ser Val His His Arg Asn Asn Arg Gln Thr Met Glu Asp Leu 290 295 300

Ile 305	Ser	Leu	Trp	Gln	Tyr 310	Asp	His	Leu	Thr	Ala 315	Thr	Tyr	Leu	Leu	Leu 320
Leu	Ala	Lys	Lys	Ala 325	Arg	Gly	Lys	Pro	Val 330	Arg	Leu	Arg	Leu	Ser 335	Ser
Phe	Ser	Cys	Gly 340	Gln	Ala	Ser	Ala	Thr 345	Pro	Phe	Thr	Asp	Ile 350	Lys	Ser
Asn	Asn	Trp 355	Ser	Leu	Glu	Asp	Val 360	Thr	Ala	Ser	Asp	Lys 365	Asn	Tyr	Val
Ala	Gly 370	Leu	Ile	Asp	Tyr	Asp 375	Trp	Cys	Glu	Asp	Asp 380	Leu	Ser	Thr	Gly
Ala 385	Ala	Thr	Pro	Arg	Thr 390	Ser	Gln	Phe	Thr	Lys 395	Tyr	Trp	Thr	Glu	Ser 400
Asn	Gly	Val	Glu	Ser 405	Lys	Ser	Leu	Thr	Pro 410	Ala	Leu	Cys	Arg	Thr 415	Pro
Ala	Asn	Lys	Leu 420	Lys	Asn	Lys	Glu	Asn 425	Val	Tyr	Thr	Pro	Lys 430	Ser	Ala
Val	Lys	Asn 435	Glu	Glu	Tyr	Phe	Met 440	Phe	Pro	Glu	Pro	Lys 445	Thr	Pro	Val
Asn	Lys 450	Asn	Gln	His	Lys	Arg 455	Glu	Ile	Leu	Thr	Thr 460	Pro	Asn	Arg	Tyr
Thr 465	Thr	Pro	Ser	Lys	Ala 470	Arg	Asn	Gln	Cys	Leu 475	Lys	Glu	Thr	Pro	Ile 480
Lys	Ile	Pro	Val	Asn 485	Ser	Thr	Gly	Thr	Asp 490	Lys	Leu	Met	Thr	Gly 495	Val
Ile	Ser	Pro	Glu 500	Arg	Arg	Cys	Arg	Ser 505	Val	Glu	Leu	Asp	Leu 510	Asn	Gln
Ala	His	Met 515	Glu	Glu	Thr	Pro	Lys 520	Arg	Lys	Gly	Ala	Lys 525	Val	Phe	Gly

- Ser Leu Glu Arg Gly Leu Asp Lys Val Ile Thr Val Leu Thr Arg Ser 530 535 540
- Lys Arg Lys Gly Ser Ala Arg Asp Gly Pro Arg Arg Leu Lys Leu His 545 550 555 560
- Tyr Asn Val Thr Thr Arg Leu Val Asn Pro Asp Gln Leu Leu Asn 565 570 575
- Glu Ile Met Ser Ile Leu Pro Lys Lys His Val Asp Phe Val Gln Lys 580 585 590
- Gly Tyr Thr Leu Lys Cys Gln Thr Gln Ser Asp Phe Gly Lys Val Thr $595 \hspace{1.5cm} 600 \hspace{1.5cm} 605$
- Met Gl
n Phe Glu Leu Glu Val Cys Gl
n Leu Gl
n Lys Pro Asp Val Val 610 $\,$ 615 $\,$ 620
- Gly Ile Arg Arg Gln Arg Leu Lys Gly Asp Ala Trp Val Tyr Lys Arg 625 630 635 640

Leu Val Glu Asp Ile Leu Ser Ser Cys Lys Val 645 650