

Big O Notation

Algorithm efficiency

Websites and applications can deal with small to huge amounts of data

Example: Data used by small local restaurant website vs. Google search engine

An inefficient algorithm used with a large set of data will incur high costs in runtime

We do not measure algorithm speed/efficiency by real-time minutes/seconds

This is because computer speeds can vary drastically

Instead, we use Big O Notation

Big O Notation

Used to analyze algorithms for efficiency

Looks at how increasing the size of inputs given to an algorithm affects the number of operations, or time complexity

We assume that each operation takes a similar amount of time

More operations = more time

Input Size

Time Complexity

Constant Time: O(1)

Linear Time: O(n)

Logarithmic Time: O(log₂n)

Linearithmic Time: $O(n \log_2(n))$

Quadratic Time: $O(n^2)$

Input Size

Constant Time: O(1)

Does not depend on input size.

Examples:

Declaring a variable

Retrieving the value of an item in a List by its index

Appending or popping last item in a List

Linear Time: O(n)

As input size grows, number of operations grows proportionally

Examples:

Iterating every value in a List or String

Linear Search

Creating a list with n items:

[x for x in range(n)]

- If n is 10, this will create: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
- If n is 10000, this will create: [0, ..., 9999]

Input Size

Logarithmic Time: $O(log_2(n))$

Also known as log time

Most efficient time complexity after Constant Time

Often shortened to: O(log (n)) or O(log n)

– base 2 is assumed in computer
science

Input Size

Logarithms

Compare to multiplication & division:

Multiplication: 4 * 5 = 20

Division: 4 = 20 / 5

Division is inverse function of multiplication

Logarithms vs exponents:

Exponent: $2^3 = 2 * 2 * 2 = 8$

Logarithm: $3 = \log_2(8)$

Logarithm is inverse function of exponent

Logarithmic Time: $O(log_2(n))$

Input is repeatedly partitioned

Example: Binary Search

Logarithmic Time: $O(log_2(n))$

$$\frac{8}{23} = 1 \longrightarrow 8 = 2^3 \longrightarrow 3 = \log_2(8)$$

$$x = \log_2(n)$$

Input Size

Depends on input size times the log of the input size

Example: Quicksort Repeatedly divides in two parts: $log_2(n)$

Compares pivot against each value: n

Combined: $O(n \cdot log_2(n))$

Depends on input size times the log of the input size

Example: Quicksort Repeatedly divides in two parts: $log_2(n)$

10 3 100 9 65

Compares pivot against each value: n

Combined: $O(n \cdot log_2(n))$

Depends on input size times the log of the input size

Example: Quicksort Repeatedly divides in two parts: $log_2(n)$

Compares pivot against each value: n

Combined: $O(n \cdot log_2(n))$

Quadratic Time: O(n²)

Input Size

Quadratic Time: O(n²)

Based on square of input size Considered an inefficient algorithm

Example: BubbleSort

$$(n-1)(n-1) = n^2 - 2n + 1$$

OR

$$O(n^2)$$