Pytanie 1. Czy kolumny $R(t,t_0)$ są liniowo niezależne $\forall t_{t,t_0 \in [a,b]}$?

Wiemy, że
$$R(t,t_0) = \mathbb{I} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ \vdots & 1 & \ddots & \vdots \\ \vdots & \dots & \ddots & \vdots \\ 0 & \dots & \dots & 1 \end{bmatrix}$$
.

Chcielibyśmy, żeby $\forall t_{t,t_0 \in [a,b]} \det R(t,t_0) \neq 0$

Przypomnienie z algebry:

Z macierzą
$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_n \end{bmatrix} \text{ możemy związać macierz } D = \begin{bmatrix} D_{11} & \dots & D_{1n} \\ \vdots & & \vdots \\ D_{n1} & \dots & D_{nn} \end{bmatrix}.$$

Zatem det A uzyskamy mnożąc np. pierwszy wiersz A z pierwszą kolumną D^T

Pytanie: Co się stanie, jeśli przemnożymy pierwszy wiersz A przez drugą kolumnę D^T ?

Przykład 1.
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
, $D = \begin{bmatrix} 4 & -3 \\ -2 & 1 \end{bmatrix}$, $D^T = \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$ i wtedy
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix},$$

 $zatem\ AD^T = \sum_{i=1}^n D_{ik} a_{si} = \delta_{ks} \det A$

Twierdzenie 1. (Liouville)

 $Je\dot{z}eli~R(t,t_0)$ - rezolwenta~dla~problemu

$$\frac{dx}{dt} = A(x)x(t)$$
$$x(t_0) = x_0.$$

 $i \ x \in \mathbb{R}^n$, to $w(t) = w(t_0)e^{\int_{t_0}^t tr(A(s))ds}$, $gdzie \ w(t) = \det R(t,t_0) \ i \ w(t)$ nazywamy wrońskianem.

Uwaga:

Zauważmy, że w(t) nigdy nie będzie równa zero, bo

$$w(t_0) = \det(R(t_0, t_0)) = \det \begin{bmatrix} 1 & \dots & 0 \\ 0 & \dots & 1 \end{bmatrix} = 1$$

a $\left| \int_{t_0}^t tr A(s) ds \right| < +\infty$ (bo $A(t) \to \text{lipszycowalna}$).

Oznacza to, że kolumny $R(t,t_0)$ są $\bigvee_{t,t_0\in[a,b]}$ liniowo niezależne, więc możemy badać bazę rozwiązań złożoną z kolumn $R(t,t_0)$

Dowód 1. Rezolwenta jest postaci:

$$R(t,t_0) = \begin{bmatrix} u_{11}(t) & u_{12}(t) & \dots & u_{1n}(t) \\ \vdots & & & & \\ u_{n1}(t) & \dots & \dots & u_{nn}(t) \end{bmatrix},$$

 $gdzie\ u_{ij}(t_0) = \delta_{ij}.$

Wiemy, $\dot{z}e^{\frac{dR(t,t_0)}{dt}} = A(t)R(t,t_0).$

Obserwacja: policzmy det $R(t,t_0)$ względem pierwszego wiersza:

$$w(t) = (-1)^{1+1} u_{11}(t) \begin{bmatrix} u_{22} & \dots & u_{2n} \\ \vdots & & & \\ u_{n2}(t) & \dots & u_{nn}(t) \end{bmatrix} + (brak \ u_{11}).$$

Zatem $\frac{\partial w(t)}{\partial u_{11}} = D_{11} \ i \ og\'olnie \ \frac{\partial w(t)}{\partial u_{ij}} = D_{ij}$.

 $Zatem\ w(t)\ możemy\ potraktować\ jako\ funkcję\ od\ n\times n\ zmiennych.$

$$w(t) = w(u_{11}(t), u_{12}(t), \dots, u_{nn}(t)),$$

zatem

$$\frac{\partial w(t)}{\partial t} = \frac{\partial w}{\partial u_{11}} \frac{\partial u_{11}}{\partial t} + \frac{\partial w}{\partial u_{12}} \frac{\partial u_{12}}{\partial t} + \ldots + \frac{\partial w}{\partial u_{nn}} \frac{\partial u_{nn}}{\partial t}.$$

Skoro $\frac{dR(t,t_0)}{dt} = A(t)R(t,t_0)$ to znaczy, że

$$\frac{\partial u_{ki}}{\partial t} = \sum_{s=1}^{n} a_{ks} u_{si}.$$

Czyli

$$\frac{dw}{dt} = \sum_{k,i} D_{ki} \sum_{s} a_{ks} u_{si} = \sum_{k=1}^{n} \sum_{i=1}^{n} \sum_{s=1}^{n} a_{ks} D_{ki} u_{si} =$$

$$= \sum_{k=1}^{n} \sum_{s=1}^{n} a_{ks} \delta_{ks} w(t) = \sum_{k=1}^{n} a_{kk} w(t)$$

Zatem $\frac{\partial w}{\partial t} = tr(A(t)) \cdot w(t)$. Jak przyłożymy obustronnie całkę to otrzymamy:

$$\int_{t_0}^t \frac{dw}{w} = \int_{t_0}^t tr(A(s))ds \implies -\ln t_0 + \ln w = \int_{t_0}^t tr(A(s))ds \to w(t) = e^{\int_{t_0}^t tr(A(s))ds} e^{\ln \ln t_0}.$$

Czyli

$$w(t) = w(t_0)e^{\int_{t_0}^t tr(A(s))ds} \quad \Box$$

0.1 Równania liniowe wyższych rzędów (na skróty)

Rozważmy równanie:

$$\frac{d^n x}{dt^n} = a_0 x(t) + a_1 x'(t) + \dots + a_{n-1} x^{n-1}(t)$$
 (1)

(gdzie $a_0, \ldots, a_{n-1} \in \mathbb{R}$).

Chcemy znaleźć bazę rozwiązań.

Możemy zapisać (1) jako

$$\frac{d}{dt} \begin{bmatrix} x(t) \\ x'(t) \\ \vdots \\ x^{n-1}(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & & & & 1 \\ a_0 & a_1 & \dots & & a_{n-1} \end{bmatrix} \begin{bmatrix} x(t) \\ x'(t) \\ \vdots \\ x^{n-1}(t) \end{bmatrix}.$$

Zatem

$$\begin{bmatrix} x(t) \\ x'(t) \\ \vdots \\ x^n(t) \end{bmatrix} = \sum_i e^{\lambda_i (t - t_0)} \sum_j \frac{t - t_0}{j} (a - \lambda_i \mathbb{I})^{\ln_i - 1} \underbrace{x_0^i}_{(*)}.$$

Chcemy znaleźć pierwiastki $w(\lambda) = \det(A - \lambda \mathbb{I})$

Przykład 2.

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ a_0 & a_1 & a_2 & a_3 \end{bmatrix}.$$

$$\det(A - \lambda \mathbb{I}) = \det \begin{bmatrix} -\lambda & 1 & 0 & 0 \\ 0 & -\lambda & 1 & 0 \\ 0 & 0 & -\lambda & 1 \\ a_0 & a_1 & a_2 & a_3 - \lambda \end{bmatrix} = a_0(-1)^{1+4} \begin{vmatrix} 1 & 0 & 0 \\ -\lambda & 1 & 0 \\ 0 & -\lambda & 1 \end{vmatrix} + \left(-1\right)^{2+4} a_1 \begin{vmatrix} -\lambda & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -\lambda & 1 \end{vmatrix} + \left(-1\right)^{3+4} a_2 \begin{vmatrix} -\lambda & 1 & 0 \\ 0 & -\lambda & 0 \\ 0 & 0 & 1 \end{vmatrix} + \left(-1\right)^{4+4} (a_3 - \lambda) \begin{vmatrix} -\lambda & 1 & 0 \\ 0 & -\lambda & 1 \\ 0 & 0 & -\lambda \end{vmatrix} = -a_0 \cdot 1 - a_1 \lambda - a_2 \lambda^2 - a_3 \lambda^3 + \lambda^4$$

$$\frac{d^4 x}{dt^4} = a_0 x + a_1 x' + a_2 x'' + a_3 x''', \quad \lambda^4 = a_0 + a_1 \lambda + a_2 \lambda^2 + a_3 \lambda^3$$

$$\ddot{x} + \omega^2 x = t e^t$$

$$\frac{d}{dt} \begin{bmatrix} x \\ x' \\ \vdots \\ x+1 \end{bmatrix} = \begin{bmatrix} \vdots \\ x \\ x' \\ \vdots \\ x+1 \end{bmatrix} + \begin{bmatrix} 0 \\ \vdots \\ b(t) \end{bmatrix}$$

$$\begin{bmatrix} x^{n+1} \end{bmatrix} \quad \begin{bmatrix} \cdot \end{bmatrix} \begin{bmatrix} x^{n+1} \end{bmatrix} \quad \begin{bmatrix} b(t) \end{bmatrix}$$
$$\frac{d^n x}{dt^n} = a_0 x + a_1 x' + \dots + a_{n-1} x^{n-1}$$

 $\lambda^n = a_0 + a_1 \lambda + \ldots + a_{n-1} \lambda^{n-1}$

 $Pol\acute{o}\dot{z}my \ x = e^{\lambda t} \rightarrow skr\acute{o}t \ mnemotechniczny$

$$e^{\lambda t}\lambda^n = e^{\lambda t}a_0 + a_1\lambda e^{\lambda t} + \ldots + a_{n-1}\lambda^{n-1}e^{\lambda t}.$$

0.2 Warunek początkowy

czy można znaleźć współczynniki x_0^i we wzorze (*) bez konieczności rozkładu warunku brzegowego w bazie wektorów własnych macierzy A?

Przykład 3. Niech $\ddot{x} + \omega^2 x = 0$ i x(0) = 0, x'(0) = 1 i wiemy, $\dot{z}e$ $\lambda^2 + \omega^2 = 0$. Oznacza to, $\dot{z}e$ $x(t) = Ae^{i\omega t} + Be^{-i\omega t}(*)$,

$$\lambda_1 = i\omega,$$
 $n_1 = 1$ $\lambda_2 = -i\omega,$ $n_2 = 1.$

 $\textit{gdzie A i B nieznane, ale wiemy, } \textit{że } x(0) = 0 \textit{ i } x'(0) = 1 \textit{ i } x'(t) = Ai\omega e^{i\omega t} - Bi\omega e^{-i\omega t}.$

$$Ae^{0} + Be^{-0} = 0 \implies -A = +B$$

$$Ai\omega e^{0} - Bi\omega e^{-0} = 1$$

$$2Ai\omega = 1$$

$$A = \frac{1}{2i\omega}$$

$$B = -\frac{1}{2i\omega}$$

Czyli

$$x(t) = \frac{1}{2i\omega} \left(e^{i\omega t} - e^{-i\omega t} \right) = \frac{1}{\omega} \sin(\omega t).$$

Pytanie 2. Czy możemy zmienić bazę w równaniu (*)?

Odp: Możemy. Na przykład przyjmując $x(t) = A\cos(\omega t) + B\sin(\omega t)$. Wówczas

$$x'(t) = -A\omega \sin(\omega t) + B\omega \cos(\omega t)$$

$$x(0) = A = 0$$

$$x'(0) = B\omega = 1 \to B = \frac{1}{\omega} \implies x(t) = \frac{1}{\omega} \sin(\omega t).$$

Pytanie 3. Co robić z niejednorością? (Dla równań wyższych rzędów)

$$\frac{d}{dt}\vec{x} = A\vec{x} + b, \frac{d}{dt}\vec{x} = A\vec{x}, \vec{x} = R(t, t_0)x_0.$$

Przykład 4.

$$\ddot{x} + \omega^2 x = e^t(\Delta).$$

Wiemy, że rozwiązaniem problemu $\ddot{x}+\omega^2x=0$ jest $x(t)=A\cos(\omega t)+B\sin(\omega t)$. Może uzmiennimy stałe:

$$x(t) = A(t)\cos(\omega t) + B(t)\sin(\omega t)$$

$$\dot{x}(t) = \dot{A}(t)\cos(\omega t) - At\sin(\omega t) + \dot{B}\sin(\omega t) + B(t)t\cos(\omega t).$$

W efekcie dostaniemy równanie drugiego rzędu na A(t) i B(t) :(Zapiszmy więc równanie (Δ) w postaci macierzowej.

$$\frac{d}{dt} \begin{bmatrix} x \\ x' \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\omega^2 & 0 \end{bmatrix} \begin{bmatrix} x \\ x' \end{bmatrix} + \begin{bmatrix} 0 \\ e^t \end{bmatrix} (\Delta \nabla).$$

Jak wygląda rezolwenta?

$$R(t,t_0) = \begin{bmatrix} u_{11}(t) & u_{12}(t) \\ u_{21}(t) & u_{22}(t) \end{bmatrix} i \frac{d}{dt} R(t,t_0) = AR(t,t_0), R(t_0,t_0) = 1.$$

$$\begin{pmatrix} \begin{bmatrix} x \\ x' \end{bmatrix} = R(t, t_0) x_0 \\ Zauważmy, \text{ $\dot{z}e$ skoro} \\ \end{cases}$$

$$x(t) = A\cos(\omega t) + B\sin(\omega t)$$

$$x'(t) = A\left(\cos(\omega t)\right)' + B\left(\sin(\omega t)\right)'$$

$$to \ widdy \begin{bmatrix} x(t) \\ x'(t) \end{bmatrix} = \begin{bmatrix} \cos(\omega t) & \sin(\omega t) \\ -\omega\sin(\omega t) & \omega\cos(\omega t) \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix}.$$

I możemy zbudować macierz

$$\begin{bmatrix} u_{11} & u_{12} \\ u'_{11} & u'_{12} \end{bmatrix},$$

która od rezolwenty różni się tym, że w $t=t_0$ nie zmienia się w macierz jednostkową. Uzmienniamy stale:

$$(\mathbf{x}) \begin{bmatrix} x(t) \\ x'(t) \end{bmatrix} = \begin{bmatrix} \cos \omega t & \sin \omega t \\ -\omega \sin \omega t & \omega \cos \omega t \end{bmatrix} \begin{bmatrix} A(t) \\ B(t) \end{bmatrix}$$

i wstawiamy do $(\Delta \nabla)$

$$\frac{d}{dt} \begin{bmatrix} \cos \omega t & \sin \omega t \\ -\omega \sin \omega t & \omega \cos \omega t \end{bmatrix} \begin{bmatrix} A(t) \\ B(t) \end{bmatrix} = \begin{bmatrix} \ldots \end{bmatrix} + \begin{bmatrix} 0 \\ e^t \end{bmatrix}.$$

$$\begin{bmatrix} \cos \omega t & \sin \omega t \\ -\omega \sin \omega t & \omega \cos \omega t \end{bmatrix} \begin{bmatrix} \dot{A}(t) \\ \dot{B}(t) \end{bmatrix} + \left(\begin{bmatrix} \cos \omega t & \sin \omega t \\ -\omega \sin \omega t & \omega \cos \omega t \end{bmatrix} \right)' \begin{bmatrix} A(t) \\ B(t) \end{bmatrix} =$$

$$\begin{bmatrix} 0 & 1 \\ -\omega^2 & 0 \end{bmatrix} \cdot (\mathbf{e}) + \begin{bmatrix} 0 \\ e^t \end{bmatrix}, \ ale$$

$$\left(\begin{bmatrix} \cos \omega t & \sin \omega t \\ -\omega \sin \omega t & \omega \cos \omega t \end{bmatrix} \right)' \begin{bmatrix} A(t) \\ B(t) \end{bmatrix} = \begin{bmatrix} -\omega \sin \omega t & \omega \cos \omega t \\ -\omega^2 \cos \omega t & -\omega^2 \sin \omega t \end{bmatrix} \begin{bmatrix} A(t) \\ B(t) \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 \\ -\omega^2 & 0 \end{bmatrix} \begin{bmatrix} \cos \omega t & \sin \omega t \\ -\omega \sin \omega t & \omega \cos \omega t \end{bmatrix} \begin{bmatrix} A(t) \\ B(t) \end{bmatrix} = \begin{bmatrix} -\omega \sin \omega t & \omega \cos \omega t \\ -\omega^2 \cos \omega t & -\omega^2 \sin \omega t \end{bmatrix} \begin{bmatrix} A(t) \\ B(t) \end{bmatrix}$$

$$\begin{bmatrix} \cos \omega t & \sin \omega t \\ (\cos \omega t)' & (\sin \omega t)' \end{bmatrix} \begin{bmatrix} A'(t) \\ B'(t) \end{bmatrix} = \begin{bmatrix} 0 \\ e^t \end{bmatrix}.$$

Czyli mamy:

$$A'(t)\cos\omega t + B'(t)\sin\omega t = 0$$

$$A'(t)(\cos\omega t)' + B'(t)(\sin\omega t)' = e^t$$

$$x(t) = A\cos\omega t + B\sin\omega t$$

$$x(t) = A(t)\cos\omega t + B(t)\sin\omega t$$

$$x'(t) = A'(t)\cos\omega t + B'(t)\sin\omega t + A(t)(\cos\omega t)' + B(t)(\sin\omega t)'.$$