Calcolatore diluizioni per EC

nota: per usare i link, scaricare questo file ed utilizzare un pdf-viewer sul vostro PC.

Usando un conduttivimetro economico, si ha un'unica scala di misura limitata: il mio arriva solo a 999 µS/cm: è quindi più adatto per le acque potabili che per le soluzioni idroponiche!

Pazienza: misure di conduttività superiori alla portata del conduttivimetro in uso si possono fare con diluizioni singole o doppie.

Per agevolare le operazioni, rendendole molto semplici ma affidabili, ho sviluppato un protocollo ed un calcolatore 'ad hoc' (fino a diluizioni oltre 1:10000). Il calcolatore è realizzato in *OpenOffice-calc*, utilizzabile su PC e soprattutto su smartphone.

Materiale occorrente:

- Conduttivimetro
- Bilancia digitale: la mia ha una portata massima di 200 g e una precisione di ± 0.01 g (negozi cinesi, 11€)
- Bicchieri usa e getta da 200 ml (pari alla portata massima della bilancia)
- Acqua per la diluizione, a basso EC (bidistillata, di osmosi, oligominerale).

Installazione sw

- Windows, Linux, OS X: scaricare OpenOffice da http://www.openoffice.org/
- *Android*: installare *AndrOpenOffice* da *GooglePlay* https://play.google.com/store/apps/details?id=com.andropenoffice&hl=it

Scaricare da il file diluizioni_it.ods e copiarlo in una posizione nota, esempio: documenti/idroponica per Windows oppure memoria interna/idro per Android (usare un programma di gestione sul PC adatto al vostro telefonino per copiare il file).

Lanciare *OpenOffice/AndrOpenOffice* poi dal menu File/apri caricare diluizioni it.ods.

Associare i file '.ods' con *OpenOffice*, *AndrOpenOffice* per aprirli automaticamente.

Se richiesto, abilitare le macro

Potete anche creare uno shortcut al file diluizioni_it.ods per lanciarlo rapidamente.

Al termine, chiudendo *OpenOffice/AndrOpenOffice*, NON salvare le modifiche.

nota: i fogli dello spreadsheet sono protetti solo per evitare modifiche accidentali. La password, per chi volesse modificarli è 'diluizioni'.

setup

Opzioni e valori costanti da inserire 'una tantum'.

Fattore TDS/EC

convenzionale, varia a seconda della composizione della soluzione:

NaCl, usato in USA = 0.5

KCl, poco usato = 0,55 Euro, usato in Europa = 0.65

442 usato in Australia (40% di solfato di sodio, 40% di bicarbonato di sodio e 20% di cloruro di sodio) = 0,7.

note:

- 'Il coefficiente di 0,64 è appropriato per una gamma piuttosto ampia di condizioni. Per le acque di composizione mista, si consideri invece l'utilizzo di un fattore 0,735, e per soluzioni concentrate con EC superiori a 5000 μS/cm si consideri l'utilizzo di un fattore 0,8' (modificato da <u>WateReuse Foundation</u>). Vedi anche <u>Correlation</u> between conductivity and total dissolved solid in various type of water: A review
- E' possibile inserire valori non previsti del Fattore TDS/EC scrivendoli direttamente nella cella.

Per la gestione delle soluzioni usare sempre misure di EC. I tester che misurano il TDS usano in genere il fattore 0,5.

Usando TDS per confrontare i propri valori con dei dati pubblicati, occorre verificare sempre di utilizzare lo stesso *Fattore TDS/EC* perché può variare molto e falsare completamente i risultati.

EC acqua di diluizione: valore di conducibilità misurato dell'acqua usata per le diluizioni

Acqua bidistillata: quasi 0 μS/cm; quasi 0 ppm

Acqua da osmosi/demineralizzata/deionizzata: 0 - 5 μS/cm; 0 – 2.5 ppm@0.5

• Acqua piovana: 5 – 20 μS/cm; 2.5 - 10 ppm@0.5

Acqua minerale minimamente mineralizzata: 20 – 100 μS/cm; 10 – 50 ppm@0.5

Acqua potabile: 150 – 600 μS/cm; 75 – 300 ppm@0.5

Tara del recipiente: pesare un bicchiere vuoto ed inserire il peso (dall'esempio nella foto, 5.42 g).

Tutti questi valori cambiano raramente, per questo sono raggruppati in un foglio separato.

diluizione singola

Eseguire in sequenza i seguenti passi:

- 1. Accendere la bilancia, controllare che mostri 0.00. Posare un bicchiere nuovo sulla bilancia. Versare una piccola quantità della soluzione da misurare (concentrata) da 2 a 50 grammi. Inserire il peso che leggete (tara inclusa) nella prima cella bianca (*Peso concentrato*).
- 2. Aggiungere l'acqua di diluizione, fino a 100 200 g. Inserire il peso che leggete (tara inclusa) nella seconda cella bianca (*Peso diluito*).
- 3. Mescolare la soluzione e misurare con il conduttivimetro il CE della soluzione diluita. E' opportuno che il valore letto sia nella metà superiore della portata dello strumento. Inserire il valore nella terza cella bianca (*EC diluito misurato*).

nota: dopo l'uso lavare sempre la sonda del conduttivimetro con l'acqua di diluizione.

I risultati appaiono in rosso.

La grande comodità di questo protocollo è che non sono necessarie precise quantità di soluzione e acqua: basta scrivere nel calcolatore i pesi esatti.

Inoltre le formule usate tengono conto dell'EC dell'acqua usata per la diluizione: non è necessario usare sempre acqua bidistillata.

nota: il tastierino numerico di *AndrOpenOffice* è molto utile per inserire i numeri: si attiva/disattiva con il simbolo a 10 punti bianchi in basso a destra (vedi figura), ma usa la convenzione USA del punto decimale al posto della virgola: per questa ragione questo calcolatore usa sempre il punto decimale invece della virgola.

diluizione doppia

Se al passo 3 la conduttività è ancora troppo elevata per essere misurata, non inserire alcun valore e scegliere l'opzione 'doppia':

- 4. Buttare gran parte della soluzione diluita ottenuta al punto 2, conservandone solo 2-50 g. Inserire il peso letto nella terza cella bianca (*Peso concentrato II*)
- 5. Aggiungere l'acqua di diluizione, fino a 100 200 g. Inserire il peso che leggete nella quarta cella bianca (*Peso diluito II*).
- 6. Mescolare bene la soluzione e misurare il CE della soluzione diluita. E' opportuno che il valore letto sia nella metà superiore della portata dello strumento. Inserire il valore nella quinta cella bianca (*EC diluito misurato*).

I risultati appaiono in rosso.

nota: Se sono richiesti valori molto precisi, ripetere 3 volte la misura, usando un bicchiere nuovo ogni volta, e fare la media dei 3 risultati ottenuti.