化学で使われる量・単位・記号

日本化学会 単位・記号専門委員会

この資料は"物理化学で用いられる量・単位・記号"要約版(参考文献 1)に基づいて、一部を最新の資料により補足修正したものである。本資料に収録された内容は、国際純正・応用化学連合 IUPAC の資料(参考文献 2)を基礎として、その資料の中で最もよく用いられる単位と基礎物理定数に関する情報を抜粋している。単位と基礎物理定数に関する最新情報と、物理量の用語および訳語と記号の使い方については、末尾の参考文献を参照されたい。

1. SI 基本単位と物理量

物理量(自明のときには量と略してもよい)の値は、一般に「数値と単位の積」として表される。たとえば、「本冊子の横幅の長さ l は $21~\rm cm$ である」というのは、「長さを国際的に合意された "cm" という単位との比で表すと、l は cm の $21~\rm fe$ である」という意味であり、 $l/\rm cm=21~\rm st$ は $l=21~\rm cm$ と表される。単位の名称・定義・記号に関する合意は、国際度量衡総会で行われている。

下記の7個の基本量の積または商の形で表した次元系を用いると、いろいろな量を組立てることができる。国際単位系(略してSI)は、これら7個の基本量がもつ次元にそれぞれ対応する次元をもつ7個の基本単位を基礎として構成されている。基本単位の定義は参考文献5に記されている。日本をはじめ世界のほぼすべての国では、計量に関する法規をSIに基づいて制定している。基本単位の名称と記号は次のとおりである。metre は meter と表記されることが多い。

	物 理 量	量の記号	SI単位の名称	記号
長さ	length	l	メートル metre	m
質 量	mass	m	キログラム kilogr	am kg
時 間	time	t	秒 second	d s
電 流	electric current	I	アンペア amper	re A
熱力学温度	thermodynamic temperature	T	ケルビン kelvin	K K
物 質 量	amount of substance	n	モ ル mole	mol
光度	luminous intensity	$I_{ m V}$	カンデラ cande	la cd

物理量の記号は、ラテン文字またはギリシャ文字の1文字を用い、イタリック体(斜体)で印刷する。その内容をさらに明確にしたいときには、上つき添字または下つき添字(あるいは両方)に固有の意味をもたせて用い、さらに場合に応じて、記号の直後に説明をカッコに入れて加える。単位の記号はローマン体(立体)で印刷する。物理量の記号にも単位の記号にも、終わりにはピリオドをつけない。

「モル」という基本単位 mol の定義は、「0.012 kg の炭素 12 の中に存在する原子の数に等しい数の要素粒子(elementary entity)を含む系の物質量」である。この単位で表される「物質量」という基本量 n(X) は、対象としている試料を構成している要素粒子 X の数 N(X) に比例する $[n(X)=N(X)/N_A]$ 。すなわち、この比例定数はアボガドロ定数 N_A の逆数である。「要素粒子」とは「原子、分子、イオン、電子、光子、その他の粒子または前記粒子の特定の集合体」である。モルという単位を用いるときには、かならず要素粒子を化学式などで指定しなければならない。物質量を表していることが文脈から明らかであれば、略して単に、たとえば「この実験に用いた酸素分子 O_2 の量は 1 mol である」と表現してもよい。なお、「物質量」は昔から「モル数」とよばれていたが、「量の用語には特定の単位名を用いない」という基本原則に従って、「モル数、ミリモル数」などの用語は認められていない。これは「質量」という一般的な用語を、用いる単位により「キログラム数、ポンド数」などとよばないのと同様である。

2. SI 接頭語

SI 単位の 10 進の倍量および分量を表すために SI 接頭語が使われる。それらの名称と記号は次のとおりである^{a)}。

倍 数	接頭	語 記 号	倍 数	接 頭	語	記号
10	デカ de	eca da	10 ⁻¹	デ シ	deci	d
10^{2}	ヘクト he	ecto h	10 -2	センチ	centi	c
10^{3}	キロ ki	lo k	10 ⁻³	ミリ	milli	m
10^{6}	メ ガ m	ega M	10 ⁻⁶	マイクロ	micro	μ
10^{9}	ギ ガ gi	ga G	10-9	ナノ	nano	n
10^{12}	テラ te	ra T	10 ⁻¹²	ピコ	pico	p
10^{15}	ペ タ pe	eta P	10 ⁻¹⁵	フェムト	femto	f
10^{18}	エクサ ex	a E	10 ⁻¹⁸	アト	atto	a
10^{21}	ゼ タ ze	tta Z	10^{-21}	ゼプト	zepto	Z
10^{24}	ヨ タ yo	otta Y	10^{-24}	ヨクト	yocto	У

a) 質量の単位の 10 進の分量あるいは倍量は、グラムに単一の接頭語をつけて表示する。たとえば、mg (μ kg と書かない);Mg (μ kg と書かない)。

3. 固有の名称と記号をもつ SI 組立単位の例^{a)}

物	理量	SI 単 位	の名称	記号	SI 基本単位による表現
周波数・振動数	frequency	ヘルツ	hertz	Hz	s ⁻¹
力	force	ニュートン	newton	N	${ m m~kg~s}^{-2}$
圧力,応力	pressure, stress	パスカル	pascal	Pa	$m^{-1} kg s^{-2} (= N m^{-2})$
エネルギー, 仕事, 熱量	energy, work, heat	ジュール	joule	J	$m^2 kg s^{-2} (= N m = Pa m^3)$
工率, 仕事率	power	ワット	watt	W	$m^2 kg s^{-3} (= J s^{-1})$
電荷・電気量	electric charge	クーロン	coulomb	С	s A
電位差(電圧)・ 起電力	electric potential difference, electromotive force	ボルト	volt	V	$m^2 kg s^{-3} A^{-1} (= J C^{-1})$
静電容量・ 電気容量	capacitance	ファラド	farad	F	$m^{-2} kg^{-1} s^4 A^2 (= C V^{-1})$
電気抵抗	electric resistance	オーム	ohm	Ω	$m^2 kg s^{-3} A^{-2} (= V A^{-1})$
コンダクタンス	electric conductance	ジーメンス	siemens	S	$m^{-2} kg^{-1} s^3 A^2 (= \Omega^{-1})$
磁東	magnetic flux	ウェーバ	weber	Wb	$m^2 kg s^{-2} A^{-1} (= V s)$
磁束密度	magnetic flux density	テスラ	tesla	Τ	$kg s^{-2} A^{-1} (= V s m^{-2})$
インダクタンス	inductance	ヘンリー	henry	Н	$m^2 kg s^{-2} A^{-2} (= V A^{-1} s)$
セルシウス温度 ^{b)}	Celsius temperature	セルシウス度	degree Celsius	$^{\circ}$	K
平 面 角	plane angle	ラジアン	radian	rad	1
立 体 角	solid angle	ステラジアン	steradian	sr	1
放射能的	radioactivity	ベクレル	becquerel	Bq	s^{-1}
吸収線量゚	absorbed dose	グレイ	gray	Gy	$m^2 s^{-2} (= J kg^{-1})$
線量当量的	dose equivalent	シーベルト	sievert	Sv	$m^2 s^{-2} (= J kg^{-1})$
酵素活性()	catalytic activity	カタール	katal	kat	mol s ⁻¹

- a) 人名に由来する単位の記号は大文字で始め、その他の単位記号はすべて小文字とする。ただし体積の単位リットル1 は数字の1とまぎらわしいので、例外として大文字Lを用いてもよい(イタリック体 *l* としない)。単位の名称は、人名に由来する場合でも(セルシウス度の Celsius を除き)小文字で始める。
- b) セルシウス温度は $\theta/\mathbb{C} = T/K 273.15$ と定義される。
- c) 人の健康保護に関連して、1970年代の後半以降に導入された組立単位である。

4. SI 以外の単位

4.1 SIと併用される単位

物	Į	里量	単位の	名 称	記 号	SI単位による表現
時	間	time	分	minute	min	60 s
時	間	time	時	hour	h	3600 s
時	間	time	日	day	d	86 400 s
平 面	ī 角	plane angle	度	degree	0	$(\pi/180)$ rad
体	積	volume	リットル	litre, liter	l, L	10^{-3}m^3
質	量	mass	トン	tonne, ton	t	$10^3 \mathrm{kg}$
長	さ	length	オングストローム	ångström	Å	$10^{-10} \mathrm{m}$
圧	力	pressure	バール	bar	bar	$10^5 \mathrm{Pa}$
面	積	area	バーン	barn	b	10^{-28}m^2
エネル	ギー	energy	電子ボルト ^{a,b)}	electronvolt	eV	$1.602\ 18 \times 10^{-19}\ J$
質	量	mass	ダルトン ^{a,c)}	dalton	Da	$1.66054 \times 10^{-27}\mathrm{kg}$
			統一原子質量単位	unified atomic mass unit	u	1 u = 1Da

- a) 現時点で最も正確と信じられている物理定数を用いて求めた値。正確な数値は、eV では 1.602 176 487 (40)、Da では 1.660 538 782 (83) である。
- b) 電子ボルトの大きさは、真空中で1Vの電位差の空間を通過することにより電子が得る運動エネルギーである。 電子ボルトは、meV、keVのように、しばしばSI接頭語をつけて使われる。
- c) Da は 2006 年から正式に承認されている。今まで使われていた u と同一の単位であり、「静止して基底状態にある自由な炭素原子 12 C の質量の 1/12 に等しい質量」の記号である。高分子の質量を表すときには kDa,MDa など、原子あるいは分子の微小な質量差を表すときには kDa,pDa などのように、SI 接頭語と組み合わせた単位を使うことができる。

4.2 そのほかの単位

以下にあげる単位は、従来の文献でよく使われたものである。この表は、それらの単位の身元を明らかにし、SI 単位への換算を示すためのものである。

物	理量	単 位	の名称	記 号	SI 単位による表現
力	force	ダイン	dyne	dyn	$10^{-5} \mathrm{N}$
圧 力 ^{a)}	pressure	標準大気圧 (気圧)	standard atmosphere	atm	101 325 Pa
圧 力	pressure	トル (mmHg)	torr (mmHg)	Torr	≈ 133.322 Pa
エネルギー	energy	エルグ	erg	erg	$10^{-7} \mathrm{J}$
エネルギー ^{a)}	energy	熱化学カロリー	thermochemical calorie	$\operatorname{cal}_{\operatorname{th}}$	4.184 J
磁束密度	magnetic flux density	ガ ウ ス	gauss	G	10^{-4} T
電気双極子 モーメント	electric dipole moment	デ バ イ	debye	D	$\approx 3.335 \ 641 \times 10^{-30} \ \text{C n}$
粘 性 率	viscosity	ポアズ	poise	P	10 ⁻¹ Pa s
動粘性率	kinematic viscosity	ストークス	stokes	St	$10^{-4} \mathrm{m^2 s^{-1}}$
放 射 能 ^{a)}	radioactivity	キュリー	curie	Ci	$3.7 \times 10^{10} \mathrm{Bq}$
照射線量 ^{a)}	exposure	レントゲン	röntgen	R	$2.58 \times 10^{-4} \mathrm{C \ kg^{-1}}$
吸収線量	absorbed dose	ラ ド	rad	rad	$10^{-2}{ m Gy}$
線量当量	dose equivalent	レム	rem	rem	$10^{-2} \mathrm{Sv}$

a) 定義された値である。

5. 基礎物理定数の値(参考文献 7)カッコの中の数値は最後の桁につく標準不確かさを示す。

物	理量	記号		単 位
真空の透磁率 ^{a,b)}	permeability of vacuum	μ_0	$4\pi \times 10^{-7}$	N A ⁻²
真空中の光速度 ^{a)}	speed of light in vacuum	c, c_0	299 792 458	$\mathrm{m\ s}^{-1}$
真空の誘電率 ^{a,c)}	permittivity of vacuum	$\varepsilon_0 = 1/\mu_0 c^2$	$8.854\ 187\ 817\times 10^{-12}$	$\mathrm{F}\mathrm{m}^{-1}$
電気素量	elementary charge	e	$1.602\ 176\ 620\ 8(98) \times 10^{-19}$	С
プランク定数	Planck constant	h	$6.626\ 070\ 040\ (81) \times 10^{-34}$	Js
アボガドロ定数	Avogadro constant	$N_{ m A}$, L	$6.022\ 140\ 857(74) \times 10^{23}$	mol^{-1}
電子の質量	electron mass	$m_{ m e}$	$9.109\ 383\ 56\ (11) \times 10^{-31}$	kg
陽子の質量	proton mass	$m_{\rm p}$	$1.672621898(21) \times 10^{-27}$	kg
中性子の質量	neutron mass	$m_{ m n}$	$1.674927472(21) \times 10^{-27}$	kg
原子質量定数 (統一原子質量単位)	atomic mass constant (unified atomic mass unit)	$m_{\rm u}$ =1 u	$1.660\ 539\ 040\ (20) \times 10^{-27}$	kg
ファラデー定数	Faraday constant	F	$9.648533289(59)\times10^4$	C mol ⁻¹
ハートリーエネルギー	Hartree energy	$E_{ m h}$	$4.359744650(54) \times 10^{-18}$	J
ボーア半径	Bohr radius	a_0	$5.291\ 772\ 106\ 7(12) \times 10^{-11}$	m
ボーア磁子	Bohr magneton	$\mu_{\scriptscriptstyle m B}$	$9.274\ 009\ 994\ (57) \times 10^{-24}$	$\mathrm{J} \mathrm{T}^{-1}$
核 磁 子	nuclear magneton	$\mu_{ ext{ iny N}}$	$5.050783699(31) \times 10^{-27}$	$\rm J~T^{-1}$
リュードベリ定数	Rydberg constant	R_{∞}	$1.097\ 373\ 156\ 850\ 8\ (65) \times 10^7$	m^{-1}
気 体 定 数	gas constant	R	8.314 459 8 (48)	$J K^{-1} mol^{-1}$
ボルツマン定数	Boltzmann constant	$k,k_{ m B}$	$1.38064852(79) \times 10^{-23}$	$\mathrm{J~K}^{-1}$
万有引力定数(重力定数)	gravitational constant	G	$6.674~08(31) \times 10^{-11}$	$m^3 kg^{-1} s^{-2}$
重力の標準加速度 ^{a)}	standard acceleration of gravity	$oldsymbol{g}_{\mathrm{n}}$	9.806 65	m s ⁻²
水の三重点。	triple point of water	$T_{\rm tp}({ m H_2O})$	273.16	K
理想気体(1 bar, 273.15 K)のモル体積	molar volume of ideal gas (at 1 bar and 273.15 K)	V_0	22.710 981 (40)	L mol ⁻¹
標準大気圧a)	standard atmosphere	atm	101 325	Pa
微細構造定数	fine structure constant	$\alpha = \mu_0 e^2 c / 2h$ α^{-1}	$7.297\ 352\ 566\ 4(17) \times 10^{-3}$	
歴マの登与す ハコ			137.035 999 139 (31)	T (T) =1
電子の磁気モーメント	electron magnetic moment	$\mu_{\rm e}$	$-9.284764620(57) \times 10^{-24}$	J T ⁻¹
自由電子のランデタ因子	Landé <i>g</i> factor for free electron	$g_{\mathrm{e}} = 2\mu_{\mathrm{e}}/\mu_{\mathrm{B}}$	- 2.002 319 304 361 82 (52)	
陽子の磁気モーメント	proton magnetic moment	$\mu_{\scriptscriptstyle \mathrm{p}}$	$1.410\ 606\ 787\ 3(97) \times 10^{-26}$	J T -1

a) 定義された正確な値である。b) 磁気定数 magnetic constant ともよばれる。c) 電気定数 electric constant ともよばれる。

参考文献 6

- (a) A Concise Summary of Quantities, Units and Symbols in Physical Chemistry, IUPAC, Physical and Biophysical Chemistry Division, Commission on Physicochemical Symbols, Terminology and Units, J. Stohner, M. Quack, RSC Publishing (2009), (b) [物理化学で用いられる量・単位・記号 要約版] $\widehat{\Box}$
- (a) Quantities, Units and Symbols in Physical Chemistry, IUPAC, Physical and Biophysical Chemistry Division, 3rd Edition, RSC Publishing (2007) (b) [物理化学で用いられる量・単位・記号,第3版,日本化学会監修,産業技術総合研究所計量標準総合センター訳,講談社(2009)]. http://www.chemistry.or.jp/activity/international/GreenBook.html (本書全文と正誤表) (N
- 丸善 (2003), p. 378. http://www.nmij.jp/public/report/translation/IUPACからもアクセスできる. 化学で使う量の単位と記号,日本化学会編,朽津耕三著,丸善(2002). 化学で使われる量の単位と用語,第5版実験化学講座1,基礎編 I,42,日本化学会編,物理定数と諸単位,化学便覧・基礎編 I,1,日本化学会編,丸善(2004),p. 11.
 - 6936
- Le Système International d'Unitès (SI), Bureau International des Poids et Mesures, 8th French and English Edition, BIPM, Sèvres, 2006. http://www.bipm.org/utils/common/pdf/si_brochure_8_en.pdf 国際文書第 8 版(2006)国際単位系(SI)日本語版,訳・監修:(独) 産業技術総合研究 ・計量標準総合センター (2006). http://www.nmij.jp/library/units/si/ 市
- CODATA が推奨する基礎物理定数の速報値については P. J. Mohr, B. N. Taylor, D. B. Newell, Physics Today, 60, 52 (2007) を参照. 2006 年の推奨値が CODATA が推奨する基礎物理定数の選筆個については F. J. Mourt, D. IV. 14 yiot, D. D. 18 14 yiot, D. D. Mourt, D. D. Newell, Rev. Mod. Phys. 80, 633 (2008) を参照. 基礎物理定数については http://physics.nist. 決定された詳細については, P. J. Mohr, B. N. Taylor, D. B. Newell, Rev. Mod. Phys. 80, 633 (2008) を参照. 基礎物理定数については http://physics.nist. gov/cuu/Constants/index.html に記載されている。おもな基礎物理定数については、藤井賢一、大苗敦、日本物理学会誌、57,239 (2002) と工業, 66, 103 (2013) の解説を参照. <u>~</u>

七 当 休 C 始 笛 末g) (条 多 た 計 c) Н

		エンギビ	压 J 毕 凹 VJ 按 异 玫 (参布入駅 Z)	5 久歌 2/		
Pa	kPa	bar	atm	mbar	Torr	psi
1 Pa = 1	10^{-3}	10^{-5}	9.86923×10^{-6}	10^{-2}	$7.500 62 \times 10^{-3}$	$1.450~38 \times 10^{-4}$
$1 \text{ kPa} = 10^3$	1	10^{-2}	9.86923×10^{-3}	10	7.500 62	0.145 038
1 bar = 10^5	10^2	1	0.986 923	10^{3}	750.062	14.5038
1 atm = 101 325	101.325	1.013 25	1	1013.25	092	14.6959
1 mbar = 100	10^{-1}	10^{-3}	$9.869 23 \times 10^{-4}$	1	0.750 062	1.45038×10^{-2}
1 Torr \approx 133.322	0.133 322	1.33322×10^{-3}	1.31579×10^{-3}	1.333 22	1	1.93368×10^{-2}
1 psi ≈ 6894.76	6.894 76	6.89476×10^{-2}	$6.804 60 \times 10^{-2}$	68.9476	51.714 94	1

機算表の使用例:1 bar ≈ 0.986 923 atm,1 Torr ≈ 133.322 Pa,1 mmHg = 1 Torr (2×10 ⁻7 Torr 以内の港で成立する)

(参考文献 2) エネルギーに関係する単位の換算表®

 $E = hv = hc\tilde{v} = kT \; ; \; \mathbf{E}_{\mathbf{m}} = N_{\mathbf{A}}E$

a)

 4.799237×10^{-5} 7.242963×10^{4} 1.160451×10^4 3.157747×10^{5} L 座 M 1.438 775 503.2189 120.2722 赙 2.859144×10^{-3} 9.537076×10^{-8} $1.987\ 207 \times 10^{-3}$ kcal/mol 0.239 005 7 E_{m} 23.060 55 143.9326 627.5095 モルエネルギ 11.96266×10^{-3} 3.990313×10^{-7} 8.314472×10^{-3} k]/mol 602.2142 96.485 34 2625.500 4.184 1.519830×10^{-10} 1.593601×10^{-3} 4.556335×10^{-6} 3.674933×10^{-2} 3.166815×10^{-6} 3.808799×10^{-4} 0.229 371 3 $E_{
m p}$ \mathcal{H} 4.135667×10^{-9} 4.336410×10^{-2} 8.617343×10^{-5} 1.239842×10^{-4} 1.036427×10^{-2} # eV6.241 510 27.211 38 $\stackrel{\sim}{\sim}$ × Н 6.626069×10^{-10} 1.986446×10^{-5} 1.660539×10^{-3} 6.947694×10^{-3} 1.380650×10^{-5} 0.160 217 6 aj 4.359 744 > 2.997925×10^{4} 1.509190×10^{9} 2.417989×10^{8} 6.579684×10^{9} 2.506069×10^{6} 1.048539×10^{7} 2.083664×10^{4} 数 MHz 動 崇 3.335641×10^{-5} Ž, 0.695 035 6 219 474.63 83.593 47 cm^{-1} 50 341.17 8065.545 349.7551 数 波 ۱۱) ۲|| ۱۱> ۲|| **(**|| ۱۱) ۲|| ۱۱) 1 kcal/mol . 1 kJ/mol $\tilde{v} : 1 \, \mathrm{cm}^{-1}$: 1 MHz : 1 eV $1E_{\rm h}$ l aJ : 1 K E_{m} : H H

換算表の使用例:1.aJ= 1×10−18 J ≘50 341 cm−1,1 eV ≘ 96.4853 kJ mol−1。 ≘ は"に対応する"あるいは"とほぼ等価である"(1 を除く)という意味を表す。