

## **Unit 1: Partial Differentiation Assignment**

## Class - 5

## Homogeneous functions and Euler's theorem:

- 1. State and prove Euler's theorem for a function of two variables.
- 2. Verify Euler's theorem for the function  $u = \frac{1}{\sqrt{x^2 + y^2}}$ .
- 3. Find the marginal productivities of capital (K) and labour (L) if P = 10L + $0.1L^2$  +5 K -0.3  $K^2$  + 4KL when K=L=10 . (Hint: Marginal productivity of labour:  $\frac{\partial P}{\partial L}$  and Marginal productivity of capital :  $\frac{\partial P}{\partial K}$

Ans: 
$$\frac{\partial P}{\partial L}(10, 10) = 52$$
;  $\frac{\partial P}{\partial K}(10, 10) = 39$ 

- 4. Verify Euler's theorem for the production function  $P=4L^{\frac{3}{4}}K^{\frac{1}{4}}$  (Hint: Marginal productivity of labour:  $\frac{\partial P}{\partial L}$  and Marginal productivity of capital :  $\frac{\partial P}{\partial K}$ )
- 5. Find the degree of the homogeneity of the function  $f(x,y) = \frac{xy}{x+y}$  and determine whether Euler's theorem holds?