Prove inf $S \leq \sup S$:

Proof. Since $S \neq \emptyset$, $S \subseteq \mathbb{R}$, S is bounded above and below, $\inf S$, $\sup S$ exist. Since $S \neq \emptyset$, $\exists s \in S$. By definiation, $\inf S \leq s \leq \sup S$ for all $s \in S$. Taking the extremes of the inequality, we get $\inf S \leq \sup S$.

What if $\inf S = \sup S$?

If $\alpha = \inf S = \sup S$, then we know S contains only one element so $\inf S \leq s \leq \sup S \implies \alpha \leq s \leq \alpha \implies s = \alpha$.

Let S and T be nonempty subsets of $\mathbb R$ with the following property: $s \le t$ for all $s \in S$ and $t \in T$. Prove $S \subseteq T \implies \inf T \le \inf S \le \sup T$:

Proof. Since both $S, T \neq \emptyset$, $S, T \subseteq \mathbb{R}$, and bounded, $\inf S, \inf T, \sup S, \sup T$ exist. Then, since $S \subseteq T$, $\forall s \in S, s \in T$. Since $\forall t \in T, t \leq \sup T$, $\sup T$ is an upper bound for S. Since $\sup S$ is the least upper bound by definition, we have that $\sup S \leq \sup T$. Since $\forall t \in T, \inf T \leq t$, we have that $\inf T$ is a lower bound for S. Since $\inf S$ is the greatest lower bound by definition, we have that $\inf T \leq \inf S$. Note that since $S \neq \emptyset$, $\forall s \in S$, $\inf S \leq s \leq \sup S$, so we get the following inequality: $\inf T \leq \inf S \leq s \leq \sup S \leq \sup T$ so $\inf T \leq \inf S \leq \sup T$

Prove that if a > 0, then there exists $n \in \mathbb{N}$ such that $\frac{1}{n} < a < n$:

Proof. Multiplying n on both sides of $\frac{1}{n} < a$, we get 1 < na. By the Archemedian property, since a, 1 > 0, there exists an $n \in \mathbb{N}$ s.t. na > 1.

Since a, 1 > 0 in the inequality $a < 1 \cdot n$, by the Archemedian property, there exists an $n \in \mathbb{N}$ s.t. n > a. Therefore, $\frac{1}{n} < a < n$.

Prove $\lim \frac{(-1)^n}{n} = 0$

Scratch:

$$\left| \frac{(-1)^n}{n} - 0 \right| < \varepsilon$$

$$\left| \frac{(-1)^n}{n} \right| < \varepsilon$$

$$\frac{1}{n} < \varepsilon$$

$$n > \frac{1}{\varepsilon}$$

$$n > \frac{1}{\varepsilon}$$

Proof. Let $\varepsilon > 0$. Let $N \geq \frac{1}{\varepsilon}$. The, $\forall n > N$, we have

$$n>\frac{1}{\varepsilon}$$

$$\frac{1}{n}<\varepsilon$$

$$\left|\frac{(-1)^n}{n}-0\right|\leq \frac{1}{n}<\varepsilon$$

$$\left|\frac{(-1)^n}{n}-0\right|<\varepsilon$$
 taking the extremes of the inequalities

Therefore, $\lim \frac{(-1)^n}{n} = 0$.

Prove $\lim \frac{1}{n^{1/3}} = 0$

Scratch:

$$\left| \frac{1}{n^{1/3}} - 0 \right| < \varepsilon$$

$$\frac{1}{n^{1/3}} < \varepsilon$$

$$n > \frac{1}{\varepsilon^3}$$

Proof. Let $\varepsilon > 0$. Let $N \ge \frac{1}{\varepsilon^3}$. Then $\forall n > N$, we have

$$n > \frac{1}{\varepsilon^3} \implies \left| \frac{1}{n^{1/3}} - 0 \right| < \varepsilon$$

by the scratch work above.

Prove $\lim \frac{2n-1}{3n+2} = \frac{2}{3}$

Scratch:

$$\left|\frac{2n-1}{3n+2} - \frac{2}{3}\right| < \varepsilon$$

$$\left|\frac{6n-3-(6n+4)}{3(3n+2)}\right| < \varepsilon$$

$$\left|\frac{-7}{3(3n+2)}\right| < \varepsilon$$

$$\frac{7}{3(3n+2)} < \varepsilon$$

$$\frac{7}{9n+6} < \varepsilon$$

$$n > \frac{7-6\varepsilon}{9\epsilon}$$

Proof. Let $\varepsilon > 0$. Let $N \ge \frac{7-6\varepsilon}{9\epsilon}$. Then $\forall n > N$, we have

$$n > \frac{7-6\varepsilon}{9\epsilon} \implies \left|\frac{2n-1}{3n+2} - \frac{2}{3}\right| < \varepsilon$$

by the scratch work above.

Prove $\lim \frac{n+6}{n^2-6} = 0$

Scratch:

$$\left| \frac{n+6}{n^2-6} - 0 \right| < \varepsilon$$

$$\left| \frac{n+6}{n^2-6} \right| < \varepsilon$$

Note that when $n \ge 6$, we have that $|n+6| \le 2n, \, |n^2-6| \ge \frac{1}{2}n^2$.

$$\begin{split} \left| \frac{n+6}{n^2-6} \right| & \leq \frac{2n}{\frac{1}{2}n^2} < \varepsilon \\ & \frac{4n}{n^2} < \varepsilon \\ & \frac{4}{n} < \varepsilon \\ & n > \max{\{\frac{4}{\varepsilon}, 6\}} \end{split}$$

Proof. Let $\varepsilon > 0$. Let $N \ge \max{\{\frac{4}{\varepsilon}, 6\}}$. Then $\forall n > N$, we have

$$n > \frac{4}{\varepsilon} \implies \left| \frac{n+6}{n^2-6} \right| \leq \frac{2n}{\frac{1}{2}n^2} < \varepsilon$$

from the scratch work above. Taking the extremes of both sides of the inequality, we get

$$\left| \frac{n+6}{n^2-6} - 0 \right| < \varepsilon$$