Univerza v Ljubljani

Fakulteta za matematiko in fiziko

Finančni praktikum

Največje neodvisne množice z lokalnim iskanjem

Avtorja: Jaka Mrak Žiga Gartner

Mentorja: prof. dr. Sergio Cabello doc. dr. Janoš Vidali

Ljubljana, 8. januar 2022

Kazalo

1	Navodilo	2
2	Opis problema	2
3	Opis dela3.1 Generiranje podatkov3.2 Algoritmi3.3 Analiza rezultatov	3
4	Sklep	3
5	Viri	3

1 Navodilo

Naloga je iskanje največje neodvisne množice v grafu G=(V,E) s pomočjo celoštevilskega linearnega programiranja. Velike neodvisne množice v grafu lahko poiščemo s pomočjo metode lokalnega iskanja. Začnemo s poljubno neodvisno množico $U\subseteq V$, kjer k vozlišč nadomestimo s k+1 vozlišči tako, da ohranjamo neodvisnost množice U. Konstanta k je dana na začetku. Primerjali bomo metodi lokalnega iskanja in optimalne rešitve ter primerjali njune rešitve za nekatere preproste grafe.

2 Opis problema

Definicija 1. Naj bo G = (V, E) graf. **Neodvisna množica** U, v grafu G, je taka podmnožica množice vozlišč V, kjer poljubni dve vozlišči iz množice U nista sosednji. **Maksimalna neodvisna množica** v grafu G pa je taka neodvisna množica, kjer ne obstaja vozlišče $v \in V$ in $v \notin U$, ki bi ga lahko dodali množici U in pri tem ohranili neodvisnost množice U. Torej je neodvisna množica U največja taka, če velja ena od naslednjih dveh lastnosti:

- 1. $v \in U$
- 2. $S(v) \cap U \neq \emptyset$, kjer je S(v) množica sosedov v.

Največja neodvisna množica je neodvisna množica, največje možne velikosti, za dan graf G. Velikosti največje neodvisne množice, za graf G, pa pravimo **neodvisnostno število** in pogosto označimo $\alpha(G)$.

Definicija 2. Celoštevilski linearni program v standardni obliki je dan z matriko $A \in \mathbb{R}^{m \times n}$, vektorjem $b \in \mathbb{R}^m$ in vektorjem $c \in \mathbb{R}^n$. Iščemo

$$max < c, x >$$
,

da bodo zadoščeni pogoji

 $kjer\ je\ x\in\mathbb{Z}^n.$

Posledica 1. Problem največje neodvisne množice v grafu G = (V, E) lahko s celoštevilskim linearnim programiranjem modeliramo na sledeč način:

$$\max \sum_{v \in V} x_v,$$

da velja:

$$x_v + x_w \le 1 \ za \ \forall vw \in E,$$
$$x_v \in \{0, 1\}$$

$$x_{u} = \begin{cases} 1, & za \ u \in U \\ 0, & za \ u \notin U \end{cases}, U \text{ neodvisna množica v grafu } G.$$

Največjo neodvisno množico v množici vseh neodvisnih podmnožic grafa G = (V, E) bomo iskali s pomočjo celoštevilskega lineranega programiranja in lokalnega iskanja. **Lokalno iskanje** temelji na izbiri začetne neodvisne podmnožiče vozlišč $U \subset V$ v kateri k vozlišč zamenjamo s k+1 vozlišči in pri tem ohranjamo neodvisnost množice U.

3 Opis dela

3.1 Generiranje podatkov

3.2 Algoritmi

Algorithm 1 Naključni MIS

```
1: I \leftarrow \emptyset
2: \forall v \in V dobi vro
3: if P(v) < P(w)
```

2: $\forall v \in V$ dobi vrednost $P(v) \in permutacija(V)$

```
3: if P(v) < P(w) za \forall w \in sosedi(v) then
```

```
4: I \leftarrow I \cup v
```

5: $V' \leftarrow V \setminus (I \cup sosedi(I))$.

6: $E' \leftarrow E \setminus povezave(I)$.

7: return $I \cup MIS(G' = (V', E'))$

Algorithm 2 Naključni MIS

```
1: I \leftarrow \emptyset
```

2: $\forall v \in V \text{ dobi vrednost } P(v) \in permutacija(V)$

3: if
$$P(v) < P(w)$$
 za $\forall w \in sosedi(v)$ then

4:
$$I \leftarrow I \cup v$$

5: $V' \leftarrow V \setminus (I \cup sosedi(I))$.

6: $E' \leftarrow E \setminus povezave(I)$.

7: return $I \cup MIS(G' = (V', E'))$

3.3 Analiza rezultatov

- 4 Sklep
- 5 Viri