Open Elective Course [OE]

Course Code: CSO507 Winter 2023-24

Lecture#

Deep Learning

Unit-4: Convolutional Neural Networks (Part-III)

Course Instructor:

Dr. Monidipa Das

Assistant Professor

Department of Computer Science and Engineering

Indian Institute of Technology (Indian School of Mines) Dhanbad, Jharkhand 826004, India

Convolution Example (revisited)

Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

Output volume size: ? (32+2*2-5)/1+1=32 spatially, so

10 x 32 x 32

Number of learnable parameters: ? Parameters per filter: 3*5*5 + 1 (for bias) = 76

10 filters, so total is 10 * 76 = 760

Number of multiply-add operations: ?

10*32*32 = 10,240 outputs; each output is the inner product of two 3x5x5 tensors (75 elems); total = 75*10240 = 768K

Max-pooling: Applying the filter and finding the maximum value for each chunk

Pooling Layer: Summarizes Neighborhood

Single depth slice

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

max pool with 2x2 filters and stride 2

Pooling Layer: Summarizes Neighborhood

- Max-pooling: Applying the filter and finding the maximum value for each chunk
- Average-pooling: Applying the filter and finding the average value for each chunk

5	6	7	8
3	2	1	0
1	2	3	4

Avg pool with 2x2 filters and stride 2

Pooling Layer: Summarizes Neighborhood

- Max-pooling: Applying the filter and finding the maximum value for each chunk
- Average-pooling: Applying the filter and finding the average value for each chunk

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbac

Pooling for Multi-Channel Input

Pooling is applied to each input channel separately

Pooling Layer: Benefits

- How many parameters must be learned?
 - None
- Benefits?
 - Builds in invariance to translations of the input
 - makes the representations smaller and more manageable
 - operates over each activation map independently
 - Reduces memory requirements
 - Reduces computational requirements

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbac

Pooling layer: summary

Input: C x H x W **Hyperparameters**:

- Kernel size: K

- Stride: S

Pooling function (max, avg)

Output: C x H' x W' where

- H' = (H - K) / S + 1

- W' = (W - K) / S + 1

Learnable parameters: None!

Common settings:

max, K = 2, S = 2

max, K = 3, S = 2 (AlexNet)

Training ConvNet

- Split and preprocess your data
- Choose your network architecture
- Initialize the weights
- Find a learning rate and regularization strength
- Minimize the loss and monitor progress

Data Augmentation

- Horizontal Flips
- Random crops and scales
- Random mix/combinations of:
 - Translation
 - Rotation
 - Stretching
 - Shearing
 - lens distortions

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbad

Regularization

 $\lambda = 0.001$

L2 regularization

$$L_{\text{reg}} = \lambda \frac{1}{2} ||W||_2^2$$

(L2 regularization encourages small weights)

L1 regularization

$$L_{ ext{reg}} = \lambda ig|ig|Wig|ig|_{ ext{l}} = \lambda \sum_{ii} ig|W_{ij}ig|$$

(L1 regularization encourages sparse weights: weights are encouraged to reduce to exactly zero)

"Elastic net" $L_{\mathrm{reg}} = \lambda_{\scriptscriptstyle 1} ||W||_{\scriptscriptstyle 1} + \lambda_{\scriptscriptstyle 2} ||W||_{\scriptscriptstyle 2}^2$

(combine L1 and L2 regularization)

Dropout

Simple but powerful technique to reduce overfitting:

Mini-batch gradient descent

- In classic gradient descent, we compute the gradient from the loss for all training examples
- Could also only use some of the data for each gradient update
- We cycle through all the training examples multiple times
- Each time we've cycled through all of them once is called an 'epoch'
- Allows faster training (e.g. on GPUs), parallelization

Finding a learning rate

Plot the Loss

Visualize the weights

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbad

Determining best number of hidden units

- Too few hidden units prevent the network from adequately fitting the data.
- Too many hidden units can result in over-fitting.

 Use internal cross-validation to empirically determine an optimal number of hidden units.

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbac

Batch Normalization

- Consider a single layer y = Wx
- The following could lead to tough optimization:
 - Inputs x are not centered around zero (need large bias)
 - Inputs x have different scaling per-element (entries in W will need to vary a lot)
- Idea: force inputs to be "nicely scaled" at each layer!

- Idea: "Normalize" the inputs of a layer so they have zero mean and unit variance
- We can normalize a batch of activations like this:

$$\hat{x} = \frac{x - E[x]}{\sqrt{Var[x]}}$$

• This is a differentiable function, so we can use it as an operator in our networks and backprop through it!

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbac

Batch Normalization

Usually inserted after Fully Connected or Convolutional layers, and before nonlinearity.

$$\hat{x} = \frac{x - E[x]}{\sqrt{Var[x]}}$$

- Makes deep networks **much** easier to train!
- Allows higher learning rates, faster convergence
- Networks become more robust to initialization
- Acts as regularization during training
- Zero overhead at test-time: can be fused with conv!
- Not well-understood theoretically (yet)
- Behaves differently during training and testing: this is a very common source of bugs!

Batch Normalization

Input: $x \in \mathbb{R}^{N \times D}$

 $\mu_j = \frac{1}{N} \sum_{i=1}^{N} x_{i,j}$ Per-channel mean, shape is D

$$\sigma_j^2 = \frac{1}{N} \sum\nolimits_{i=1}^N \! \left(x_{i,j} - \mu_j \right)^2 \quad \text{Per-channel} \\ \text{std, shape is D}$$

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}} \qquad \text{Normalized x,} \\ \text{Shape is N x D}$$

Input: $x \in \mathbb{R}^{N \times D}$

Learnable scale and shift parameters:

$$\gamma,\beta\in\mathbb{R}^D$$

$$\mu_j = \frac{1}{N} \sum\nolimits_{i=1}^N x_{i,j} \qquad \begin{array}{c} \text{Per-channel} \\ \text{mean, shape is D} \end{array}$$

$$\sigma_j^2 = \frac{1}{N} \sum\nolimits_{i=1}^N \! \left(x_{i,j} - \mu_j \right)^2 \quad \text{Per-channel} \\ \text{std, shape is D}$$

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}} \qquad \text{Normalized x,} \\ \text{Shape is N x D}$$

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$

Output, Shape is N x D

Batch Normalization

Input: $x \in \mathbb{R}^{N \times D}$

Learnable scale and shift parameters:

$$\gamma,\beta\in\mathbb{R}^D$$

$$\mu_j = \frac{1}{N} \sum_{i=1}^{N} x_{i,j}$$

$$\mu_j = \frac{1}{N} \sum_{i=1}^N x_{i,j} \qquad \begin{array}{l} \text{Per-channel } \\ \text{mean, shape is D} \end{array}$$

$$\sigma_j^2 = \frac{1}{N} \sum_{i=1}^N \left(x_{i,j} - \mu_j \right)^2 \quad \begin{array}{l} \text{Per-channel } \\ \text{std, shape is D} \end{array}$$

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}} \quad \begin{array}{l} \text{Normalized x,} \\ \text{Shape is N x D} \end{array}$$

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_i^2 + \varepsilon}}$$

Problem: Estimates depend on minibatch; can't do this at test-time!

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$

Output, Shape is N x D

Input:
$$x \in \mathbb{R}^{N \times D}$$

Learnable scale and shift parameters:

$$\gamma, \beta \in \mathbb{R}^D$$

$$\mu_j = { (Running) \ {
m average \ of} \ {
m values \ seen \ during} \ {
m training} } \ {
m Per-channel} \ {
m mean, \ shape \ is \ D}$$

$$\sigma_{\!j}^{\,2} = {}^{ ext{(Running)}}_{ ext{values seen during training}} {}^{ ext{Per-channel}}_{ ext{std, shape is D}}$$

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$
 Normalized x, Shape is N x D

During testing batchnorm becomes a linear operator! Can be fused with the previous fully-connected or conv layer

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$

Output, Shape is N x D

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbac

Batch Normalization for ConvNets

Batch Normalization for **fully-connected** networks

$$x: N \times D$$
Normalize
$$\mu, \sigma: 1 \times D$$

$$\gamma, \beta: 1 \times D$$

$$y = \frac{(x - \mu)}{\sigma} \gamma + \beta$$

Batch Normalization for **convolutional** networks (Spatial Batchnorm, BatchNorm2D)

$$x: N \times C \times H \times W$$
Normalize
$$\mu, \sigma: 1 \times C \times 1 \times 1$$

$$\gamma, \beta: 1 \times C \times 1 \times 1$$

$$y = \frac{(x - \mu)}{\sigma} \gamma + \beta$$

Comparison of Normalization Layers

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbac

Layer Normalization

Batch Normalization for **fully-connected** networks

$$x: N \times D$$
Normalize
$$\mu, \sigma: 1 \times D$$

$$\gamma, \beta: 1 \times D$$

$$y = \frac{(x - \mu)}{\sigma} \gamma + \beta$$

Layer Normalization for fullyconnected networks Same behavior at train and test! Used in RNNs, Transformers

Normalize
$$\mu, \sigma : N \times D$$

$$\mu, \sigma : N \times 1$$

$$\gamma, \beta : 1 \times D$$

$$y = \frac{(x - \mu)}{\sigma} \gamma + \beta$$

Instance Normalization

Batch Normalization for convolutional networks

Instance Normalization for convolutional networks

$$x: N \times C \times H \times W$$
Normalize
$$\mu, \sigma: N \times C \times 1 \times 1$$

$$\gamma, \beta: 1 \times C \times 1 \times 1$$

$$y = \frac{(x - \mu)}{\sigma} \gamma + \beta$$

