= 5UM

1) Maximal Margin Classifier (Constrained optimization)

Maximuze M B. P., P. P., M

Subject de

Subject de

Subject de

Subject de

Subject de

Supularization

Supulariz

y'(\$0 + \$2x, + \$3x3... \$PPXP) 2M - 3

for all i - 1 to n

19: Three lines (hypuplane)

2x, + 3x2 - 5 = 0

-x2 + 4x3 + 7 = 0

5x, 0 - 12x3 + 10 = 0

Dataul

2, 2, y

3 4 1

2 3 1

1 -1 -1

-2 1 -1

MA =
$$\frac{13}{13}$$

MA = $\frac{13}{13}$

MA = $\frac{13}$

Hyperplane -2

M1 =
$$\frac{1}{7}$$
 + $\frac{1}{2}$ + $\frac{1}{3}$ + $\frac{1}{3}$

$$\frac{20}{\sqrt{17}}$$

$$\frac{1}{\sqrt{17}}$$

$$d_1 = \frac{10 + 5(3) + -12(4)}{\sqrt{5^2 + 12^2}}$$

$$d_{3}^{2} = \frac{10 + 5(2) - 12(-1)}{13}$$

$$M = \max \left\{ \frac{6}{\sqrt{13}}, \frac{2}{\sqrt{17}}, \frac{12}{13} \right\}$$

$$d_{2} = \frac{10 + 5(2) - 12(1)}{13}$$

$$= \frac{10 + 10 - 36}{13}$$

$$d_{4} = \frac{10 + 5(-2) - 12(1)}{13}$$

$$= \frac{10 - 10 - 12}{13}$$

- a) Norm of vector
- 3) Vector addelear
- 4) Orthogonality
- 5) subspaces

sure to fit in curee in Polynomical Kanel suates a very dulined foundary around one type of dataset ********** RBF Keinel

- * Each model will give us a secre

 Model 1 = 0.8

 Model 2 = 0.9

 Model 3 = 0.7
- A Then we select model with highest score.
- * Probability score of the test sample will correspond to the positive sample in the model.
- ie, when we pass a test data to the model, if the sigmoid function value of the model is equal to value of the test data sigmoid function value, then the test data latel will be same as model partice latel

⇒ Evaluation Metrics Example:

alxuvation	Actual falel	Predicted Score	Predicted Sold
2	1	0.85	1
2	0	0.60	2 * FP
3	2 (8	0.70	2 minima
4	1	0.40	0 *FN
5	0	0.55	2 * FP
6	2	0.50	2
1 1 marget	0	0.65	2 * FP
8	all and plus	0.35	0
9	1	0.60	2
10	0	0.25	Mission o very

Predict

1) Accuracy

2) Precision :

- 3) Sursibirty / True parties or Recall
- 4) specifically
- 6) False positive
- 6) F1 score.
- 7) ROC plot
- 8) AUC.

	ouguial (+)	Original (1)
(+ne)	1, 199	curacy "
Predicted (+ "=)	Nine Parket	3
wild ()	1	2
Pudute	·	Marie Breedel

Three	shold = 0.2		0(+)	001
ctual	Score	Predicted	4 7	- 6
2	0.85	2	5 5	9
0	0.60	+ + 2)	9113 + Els.]	
1	0.70	2		
1	0-40	2	0.456 7	\ e
0	0.65	2		
1	0.50	2 3 3 3 3 8	G X (EEO	
0	0.66	2		6.00
0	0.35	2		
21	0.60	1		ROC - plot
0	0.20	1 (00,0	[0.3,0.6,00	Trushold =
				(F-O - brailer

FPR = 5 = 1 TPR = 5 · 1 5

Thushold	FPR	TPR
0.7	0	0.4
0.5	8-6	0.8
0.4	0.6	1
0.2	1	1

$$= (1 - 0.6) * (1+1) + (6.6 - 0.6) * (1+0.8)$$

Eg:
$$b = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$
 $a = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$

$$=\begin{bmatrix}1 & 2\\ 2 & 4\end{bmatrix}\begin{bmatrix}3\\ 4\end{bmatrix}$$

$$=\frac{2\times 2}{5}$$

$$a \times a' = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \times \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$a' \times a = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \times \begin{bmatrix} 1 \\ 2 \end{bmatrix} \times \begin{bmatrix} 1 \\ 2 \end{bmatrix} = 1 + 4 \times \frac{6}{2}$$

$$1 \times 2 = \frac{1}{2} \times \frac{1}{2} \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{2} \times \frac{1}{2}$$

$$\begin{bmatrix} 3 \\ 4 \end{bmatrix}$$

$$= \frac{3}{2} \times 1$$

$$X = \begin{bmatrix} 2 & 100 \\ 4 & 200 \\ 6 & 300 \end{bmatrix} \xrightarrow{apply PCA} Z = \begin{bmatrix} 2_1 \\ 2_2 \\ 2_3 \end{bmatrix}$$

$$3 \times 2$$

$$\mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

O Standardize each columns

Column - 1

$$M_1 = 4$$
 $a_1 = \frac{5(x_1 - y_1)^2}{N - 1}$

$$= \frac{(2 - 4)^2 + (4 - 4)^2 + (6 - 4)^2}{3}$$

$$= \frac{2^2 + 0 + 2^2}{3 - 1}$$

$$= \frac{4}{\sqrt{3 - 1}}$$

$$M_{2} = 200$$

$$\sigma_{2} = \sqrt{(100 - 200)^{2} + (200 - 200)^{2}}$$

$$= \sqrt{(100)^{2} + (100)^{2}}$$

$$= \sqrt{(100)^{2} + (100)^{2}}$$

$$= \sqrt{100000}$$

$$X = std = \begin{bmatrix} -1 & -1 \\ 0 & 0 \\ 1 & 1 \end{bmatrix}$$

(column - 1
$$\frac{2-4}{2} = \frac{1}{2} = \frac{1}{2}, \quad \frac{4-4}{2} = 0$$

$$\frac{6\cdot 4}{2} = \frac{1}{2}$$
(column - 2
$$\frac{100 - 200}{2} = \frac{1}{2}, \quad \frac{200 - 200}{100} = 0$$

Compared
$$X_{atd}$$
 X_{atd} X_{at

3)
$$A = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$$
 $\lambda I = \begin{bmatrix} \lambda & \alpha \\ \alpha & \lambda \end{bmatrix}$

$$\begin{vmatrix} A = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$$

$$\begin{vmatrix} A - \lambda I \end{vmatrix} = \begin{vmatrix} 1 - \lambda & 1 \\ 1 - 1 - \lambda \end{vmatrix} = 0$$

$$0 = (1-\lambda)(1-\lambda) - (1\times 1)$$

$$= 2/-\lambda - \lambda + \lambda^2 - 2$$

eigen Nechn
$$\begin{bmatrix}
1-2 & 1 \\
1 & 1-3
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix} = 0$$

$$\begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix} = 0$$

$$\begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix} = 0$$

$$\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2$$

$$\chi = -y$$

$$V_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 2 \\ -2 \end{bmatrix}$$

(2×2) - (1×2)

* To which if there south is

$$\begin{bmatrix} -\sqrt{5}a & -\frac{1}{2} \\ 0 \\ \frac{2}{5a} + 2\sqrt{5} \end{bmatrix}_{3\times 1}$$

$$= \begin{bmatrix} -2/\sqrt{2} \\ 0 \\ 2/\sqrt{2} \end{bmatrix}$$

$$=\begin{bmatrix} -2/\sqrt{2} \\ 0 \\ 2/\sqrt{2} \end{bmatrix}$$

(1) (1) (1) B

$$\mathbb{O}_{C_{1}^{2}}\left(5-1\right)^{2}+\left(5-2\right)^{2}=\sqrt{25\cdot 25}$$

$$\mathbb{C}_{3}=\left(1-4\cdot5\right)^{2}+\left(5-2\right)^{2}=\sqrt{21\cdot25\cdot 25}$$

$$C_{(2)}(5-1)^{2}+(5-1)^{2}$$
 $= \sqrt{32}$

$$\omega(x)$$
 sample (3)
$$C_1 = \sqrt{(8-5)^2 + (9-5)^2} = \sqrt{25}$$

$$C_2 = \sqrt{(8-4-5)^2 + (9-5)^2} = \sqrt{28.25}$$

$$C_{1} = \sqrt{(9-5)^{2} + (9-5)^{2}}$$
 $C_{2} = \sqrt{(9-4.5)^{2} + (8-5)^{2}}$
 $C_{3} = \sqrt{(9-4.5)^{2} + (8-5)^{2}}$
 $C_{4} = \sqrt{(9-4.5)^{2} + (8-5)^{2}}$

Compute / Do the same steps again & again surlil centraid remains same