The (inescapable) *p*-adics

Alex J. Best

10/10/22

VU Master Seminar - Algebra

Definition: Linear recurrence sequence

A linear recurrence sequence, is a sequence whose nth term is a linear combination of the previous k terms (for all $n \ge k$).

Definition: Linear recurrence sequence

A linear recurrence sequence, is a sequence whose nth term is a linear combination of the previous k terms (for all $n \ge k$).

Example: Fibonacci

$$a_0 = 0, a_1 = 1 \text{ and } a_n = a_{n-1} + a_{n-2} \text{ for } n \ge k = 2$$
:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 41

Definition: Linear recurrence sequence

A linear recurrence sequence, is a sequence whose nth term is a linear combination of the previous k terms (for all $n \ge k$).

Example: Fibonacci

$$a_0 = 0$$
, $a_1 = 1$ and $a_n = a_{n-1} + a_{n-2}$ for $n \ge k = 2$:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4187, 1487

 a_n grows exponentially.

Definition: Linear recurrence sequence

A linear recurrence sequence, is a sequence whose nth term is a linear combination of the previous k terms (for all $n \ge k$).

Example: A periodic sequence

$$a_0 = 1, a_1 = 0$$
 with $a_n = -a_{n-1} - a_{n-2}$

$$1, 0, -1, 1, 0$$

Definition: Linear recurrence sequence

A linear recurrence sequence, is a sequence whose nth term is a linear combination of the previous k terms (for all $n \ge k$).

Example: A periodic sequence

$$a_0 = 1, a_1 = 0$$
 with $a_n = -a_{n-1} - a_{n-2}$

$$1, 0, -1, 1, 0$$

 a_n is periodic now.

Definition: Linear recurrence sequence

A linear recurrence sequence, is a sequence whose nth term is a linear combination of the previous k terms (for all $n \ge k$).

Example: Natural numbers interlaced with zeroes

$$a_0 = 1, a_1 = 0, a_2 = 2, a_3 = 0$$
 with $a_n = 2a_{n-2} - a_{n-4}$

1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 12, 0, 13, 0, 14

Definition: Linear recurrence sequence

A linear recurrence sequence, is a sequence whose nth term is a linear combination of the previous k terms (for all $n \ge k$).

Example: Natural numbers interlaced with zeroes

$$a_0 = 1$$
, $a_1 = 0$, $a_2 = 2$, $a_3 = 0$ with $a_n = 2a_{n-2} - a_{n-4}$

not periodic but the zeroes *do* have a regular repeating pattern.

The ultimate question

Question

What possible patterns are there for the zeroes of a linear recurrence sequence?

The ultimate question

Question

What possible patterns are there for the zeroes of a linear recurrence sequence?

Observation

A linear recurrence sequence is the Taylor expansion around 0 of a rational function

$$\frac{a_1 + a_2 x + \dots + a_\ell x^\ell}{b_1 + b_2 x \dots + b_k x^k}$$

with $b_1 \neq 0$ (so that the expansion makes sense).

Example

$$\frac{x}{1-x-x^2}$$
. \leftrightarrow Fibonacci

Example

$$\frac{x}{1-x-x^2}$$
. \leftrightarrow Fibonacci

$$\frac{1}{1+x+x^2}. \leftrightarrow 1, 0, -1, 1, 0, -$$

Example

$$\frac{x}{1-x-x^2}$$
. \leftrightarrow Fibonacci

$$\frac{1 - x - x^{2}}{1 + x + x^{2}} \longleftrightarrow 1, 0, -1,$$

$$\frac{1}{(1-x^2)^2}. \leftrightarrow 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 0, 9, 0, 10, 0, 11, 0, 12, 0$$

Example

$$\frac{x}{1-x-x^2}. \leftrightarrow \mathsf{Fibonacci}$$

$$\frac{1}{1+x+x^2}. \leftrightarrow 1, 0, -1, 1, 0,$$

$$\frac{1}{(1-x^2)^2} \leftrightarrow 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 0, 9, 0, 10, 0, 11, 0, 12, 0$$

 $\frac{(1+x)^3 - x^3}{(1+x)^5 - x^5} \leftrightarrow 1, -2, 3, -5, 10, -20, 35, -50, 50, 0, -175, 625, -1625, 3625, -7250, 13125, -21250, 29375, -29375, 0, 106250, -384375, 1006250, -2250000, 4500000,$

0, 106250, -384375, 1006250, -2250000, 4500000, 3 $-8140625, 13171875, -18203125, 18203125, \emptyset, -656$

Consequences

Observation

The set of all linear recurrence sequences is a vector space! Hard to tell how the rule changes.

Consequences

Observation

The set of all linear recurrence sequences is a vector space! Hard to tell how the rule changes.

We can always mess up a finite amount of behaviour. So assume a_n has infinitely many zeroes, what is the structure of the zero set?

Example

$$\frac{1}{(1-x^2)^2} - (1-x+2x^2+3x^4+4x^6) \leftrightarrow 0, 1, 0, 0, 0, 0, 0, 0, 5, 0, 6, 0, 7, 0, 8$$

Example

$$\frac{1}{(1-x^2)^2} - (1-x+2x^2+3x^4+4x^6) \leftrightarrow 0, 1, 0, 0, 0, 0, 0, 0, 5, 0, 6, 0, 7, 0, 8$$

Example

$$\frac{1}{(1-x^2)^2} - (1-x+2x^2+3x^4+4x^6) \leftrightarrow 0, 1, 0, 0, 0, 0, 0, 0, 5, 0, 6, 0, 7, 0, 8$$

Example

$$\frac{1}{(1-x^2)^2} - (1-x+2x^2+3x^4+4x^6) \leftrightarrow 0, 1, 0, 0, 0, 0, 0, 0, 5, 0, 6, 0, 7, 0, 8$$

$$\frac{1}{(1-x)^2} \leftrightarrow 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21$$

$$\frac{1}{(1-x^2)^2} \leftrightarrow 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13$$

$$\frac{1}{(1-x)^2} \leftrightarrow 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, \frac{1}{(1-x^2)^2} \leftrightarrow 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13$$

$$\frac{1}{(1-x)^2} \leftrightarrow 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, \frac{1}{(1-x^2)^2} \leftrightarrow 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, \frac{1}{(1-x^4)^2} \leftrightarrow 1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0, 5, 0, 0, 0, 6, 0, 0, 7, 0, 0$$

 $\frac{x}{(1-x^4)^2} \leftrightarrow 0, 1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0, 5, 0, 0, 0, 6, 0, 0, 7, 0$

$$\frac{1}{(1-x)^2} \leftrightarrow 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21$$

$$\frac{1}{(1-x^2)^2} \leftrightarrow 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13$$

$$\frac{1+2x}{(1-x^4)^2} \leftrightarrow 1, 2, 0, 0, 2, 4, 0, 0, 3, 6, 0, 0, 4, 8, 0, 0, 5, 10, 0, 0, 6, 12, 0, 0, 7, 1$$

$$\frac{1}{(1-x)^2} \leftrightarrow 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21$$

$$\frac{1}{(1-x^2)^2} \leftrightarrow 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13$$

$$\frac{1+2x}{(1-x^4)^2} \leftrightarrow 1, 2, 0, 0, 2, 4, 0, 0, 3, 6, 0, 0, 4, 8, 0, 0, 5, 10, 0, 0, 6, 12, 0, 0, 7, 1$$

Still has periodic zero set, all n congruent to 2,3 modulo 4.

Expand into partial fractions

$$\frac{p(x)}{q(x)} = \sum_{i=1}^{m} \sum_{j=1}^{n_j} \frac{r_{ij}}{(1 - \alpha_i x)^j}$$

Expand into partial fractions

$$\frac{p(x)}{q(x)} = \sum_{i=1}^{m} \sum_{j=1}^{n_j} \frac{r_{ij}}{(1 - \alpha_i x)^j}$$

do some math:

$$\sum_{n=0}^{\infty} \left(\sum_{i=1}^{m} \sum_{j=1}^{n_j} r_{ij} \binom{n+j-1}{j-1} \alpha_i^n \right) x^n$$

Expand into partial fractions

$$\frac{p(x)}{q(x)} = \sum_{i=1}^{m} \sum_{j=1}^{n_j} \frac{r_{ij}}{(1 - \alpha_i x)^j}$$

do some math:

$$\sum_{n=0}^{\infty} \left(\sum_{i=1}^{m} \sum_{j=1}^{n_j} r_{ij} \binom{n+j-1}{j-1} \alpha_i^n \right) x^n$$

Upshot: there are polynomials $A_i(n)$ such that

$$a_n = \sum_{i=1}^m A_i(n)\alpha_i^n.$$

Like that formula for Fibonacci with the golden ratio in.

So a_n is an analytic function of n which has zeroes for infinitely many integer values.

So a_n is an analytic function of n which has zeroes for infinitely many integer values.

Like

$$sin(\pi x)!$$

So a_n is an analytic function of n which has zeroes for infinitely many integer values.

Like

$$sin(\pi x)!$$

Ridiculous suggestion

What if the integers were bounded? In that case infinitely many zeroes \implies the function is zero!

What is bounded?

What if the integers were bounded?

How do we define boundedness?

Definition: Absolute Values

Let C be a commutative ring, an **absolute value** on C, is a function $|\cdot|\colon R\to\mathbb{R}_{\geq 0}$ satisfying for all $x,y\in C$

$$|x| = 0 \iff x = 0$$

 $|xy| = |x||y|$
 $|x + y| \le |x| + |y|$

C

Are there other absolute values for the integers?

$$|x| = 0 \iff x = 0$$
$$|xy| = |x||y|$$
$$|x + y| \le |x| + |y|$$

Property 2 implies that |1|=1 and $|-1|^2=1$ so |-1|=1 also. So it remains to decide what happens for all primes $p\in\mathbb{Z}$.

We could set |x| = 1 for all $x \neq 0$, this is the **trivial absolute** value.

Or |x| = x for all positive x, this gives the usual absolute value.

A strange absolute value

We can in fact define another absolute value $|\cdot|_p$ for each prime p.

Pick a value $\alpha = |p|_p < 1$, and let $|q|_p = 1$ for all other primes q.

Now we have that

$$|x+y| \le \max(|x|,|y|) \le |x|+|y|$$

Theorem: Ostrowski

The only nontrivial absolute values on $\mathbb Q$ are

$$x \mapsto \operatorname{sgn}(x)x$$
 and $|\cdot|_p$ for some prime p

With $|\cdot|_p$ the integers are bounded!

With $|\cdot|_p$ the integers are bounded! Are the functions

$$\sum_{i=1}^m A_i(n)\alpha_i^n$$

p-adic analytic functions of *n*?

With $|\cdot|_p$ the integers are bounded! Are the functions

$$\sum_{i=1}^m A_i(n)\alpha_i^n$$

p-adic analytic functions of n?

Problem

The *p*-adic exponential function has finite radius of convergence.

With $|\cdot|_p$ the integers are bounded! Are the functions

$$\sum_{i=1}^m A_i(n)\alpha_i^n$$

p-adic analytic functions of n?

Problem

The *p*-adic exponential function has finite radius of convergence.

The fix

Choose p so that $|\alpha_i|_p = 1$ for all i, then $\alpha_i^{p-1} = 1 + \lambda_i$ with $|\lambda_i|_p \leq \frac{1}{p}$. Now $(\alpha_i^{p-1})^n$ is analytic!

Write n as r + (p-1)n' with $0 \le r < p-1$

Write n as r + (p-1)n' with $0 \le r < p-1$, then

$$a_{n} = \sum_{i=1}^{m} A_{i}(n)\alpha_{i}^{n} = \sum_{i=1}^{m} A_{i}(r + (p-1)n')\alpha_{i}^{r+(p-1)n'}$$
$$= \sum_{i=1}^{m} A_{i}(r + (p-1)n')\alpha_{i}^{r}(\alpha_{i}^{(p-1)})^{n'}$$

for each fixed r this function of n' is analytic.

Write n as r + (p-1)n' with $0 \le r < p-1$, then

$$a_{n} = \sum_{i=1}^{m} A_{i}(n)\alpha_{i}^{n} = \sum_{i=1}^{m} A_{i}(r + (p-1)n')\alpha_{i}^{r+(p-1)n'}$$
$$= \sum_{i=1}^{m} A_{i}(r + (p-1)n')\alpha_{i}^{r}(\alpha_{i}^{(p-1)})^{n'}$$

for each fixed r this function of n' is analytic. Infinitely many zeroes for integer n means $\exists r$ with infinitely many zeroes of the form r + (p-1)n'. So the function

$$\sum_{i=1}^{m} A_{i}(r+(p-1)n')\alpha_{i}^{r}(\alpha_{i}^{(p-1)})^{n'}$$

is identically zero, and all these $a_n = 0$ when $n \equiv r \pmod{p-1}$.

Finale

Theorem: Skolem → Mahler → Lech

All except finitely many indices of the zeroes of a linear recurrence lie in a finite union of arithmetic progressions, i.e. they are all of the form nM+b for some $b\in B\subset \{0,\ldots,M-1\}$, $n\in \mathbb{N}$.

Finale

Theorem: Skolem → Mahler → Lech

All except finitely many indices of the zeroes of a linear recurrence lie in a finite union of arithmetic progressions, i.e. they are all of the form nM+b for some $b\in B\subset \{0,\ldots,M-1\}$, $n\in \mathbb{N}$.

