This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

WORLD INTELLECTUAL PROPERTY ORGANIZATION

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:
C12N 15/12, 15/62, 5/10, 1/21, C07K
14/515, 14/52

(11) International Publication Number: WO 00/37642
(43) International Publication Date: 29 June 2000 (29.06.00)

(21) International Application Number:

PCT/US99/30900

(22) International Filing Date:

23 December 1999 (23.12.99)

(30) Priority Data:

60/113,387

23 December 1998 (23.12.98) US

(71) Applicant (for all designated States except US): REGENERON PHARMACEUTICALS, INC. [US/US]; 777 Old Saw Mill River Road, Tarrytown, NY 10591-6707 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): DAVIS, Samuel, J. [US/US]; 332 W. 88th Street, #B2, New York, NY 10024 (US). GALE, Nicholas, W. [US/US]; Apartment 46V, 177 White Plains Road, Tarrytown, NY 10591 (US). YANCOPOULOS, George, D. [US/US]; 1519 Baptist Church Road, Yorktown Heigths, NY 10598 (US). STAHL, Neil [US/US]; RD # 10, Kent Shore Drive, Carmel, NY 10512 (US).
- (74) Agents: PALLADINO, Linda, O., Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591 (US) et al.

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SI.

ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: METHOD OF ENHANCING THE BIOLOGICAL ACTIVITY OF LIGANDS

(57) Abstract

Novel fusion polypeptide ligands that bind Eph family receptors or the Tie-2 receptor are identified, and methods for making the fusion polypeptide ligands in biologically active form are described. Nucleic acids encoding these novel fusion polypeptide ligands enable production of the fusion polypeptide ligands. The method of making the nucleic acids and the fusion polypeptide ligands is broadly applicable to the production of polypeptide ligands in general, resulting in improved affinity and/or increased activity of the ligand when compared to its native form.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FT	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GB	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	T.J	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	18	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	ltaly	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Notherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zcaland		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazaksian	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	u	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SB	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

METHOD OF ENHANCING THE BIOLOGICAL ACTIVITY OF LIGANDS

This application claims priority of U.S. Application No. 60/113,387, filed December 23, 1998. Throughout this application, various publications are cited. The disclosures of each and all of those publications are hereby incorporated by reference in their entireties into this application.

INTRODUCTION

The present invention provides for novel methods for producing novel fusion polypeptide ligands that have enhanced biological activity as compared to the polypeptide ligands in their native form. The invention also provides for nucleic acids useful for producing biologically active fusion polypeptide ligands, and the fusion polypeptide ligands themselves.

15

20

BACKGROUND OF THE INVENTION

The ability of polypeptide ligands to bind cells and thereby elicit a phenotypic response such as cell growth, survival or differentiation is often mediated through transmembrane tyrosine kinases. The extracellular portion of each receptor tyrosine kinase (RTK) is generally the most distinctive portion of the molecule, as it provides the protein with its ligand-recognizing characteristic. Binding of a ligand to the extracellular domain results in signal transduction via an intracellular tyrosine kinase catalytic domain which transmits a biological signal to intracellular target proteins. The particular array of sequence motifs of this cytoplasmic, catalytic domain determines its access to potential kinase substrates (Mohammadi, et al.,1990, Mol. Cell. Biol., 11: 5068-5078; Fantl, et al., 1992, Cell, 69:413-413).

30

RTKs appear to undergo dimerization or some related conformational change following ligand binding (Schlessinger, J., 1988, Trend Biochem. Sci.

13:443-447; Ullrich and Schlessinger, 1990, Cell, 61:203-212; Schlessinger and Ullrich, 1992, Neuron 9:383-391); molecular interactions between dimerizing cytoplasmic domains lead to activation of kinase function. In some instances, such as the growth factor platelet derived growth factor (PDGF), the ligand is a dimer that binds two receptor molecules (Hart, et al., 1988, Science, 240: 1529-1531; Heldin, 1989, J. Biol. Chem. 264:8905-8912) while, for example, in the case of EGF, the ligand is a monomer (Weber, et al., 1984, J. Biol. Chem., 259:14631-14636).

Throughout the history of the biotechnology industry, many novel genes and associated proteins have been identified by virtue of their sequence homology with known genes. Many such proteins are purported to be receptors, but since their cognate ligands have not been identified, they are referred to as orphan receptors. The screening of many of these orphan receptors often leads to the identification of ligands that are capable of binding to the receptor, although the binding is often not associated with activation of any intracellular kinases or any other phenotypic change. Such was the case for members of the Eph receptor family. For sake of clarity, applicants incorporate by reference herein a letter cited as Eph Nomenclature Committee, 1997, published in Cell vol. 90: 403-403 (1997) which sets forth a nomenclature for the Eph Receptor and Eph Ligand Families.

Little, if any, biological activity had been observed in response to binding of a ligand to an Eph family receptor prior to the discovery as set forth in U.S. Patent No. 5,747,033 issued May 5, 1998. That patent describes the concept of "clustering" whereby the soluble domains of ligands were combined to create multimers capable of activating the cognate receptors. Applicants have now extended the concept of clustering to additional ligands outside the Eph family, for example, the Tie-2 receptor ligands known as the angiopoietins, and have also discovered that this method for production of homogeneous forms of clustered ligands is broadly applicable to improve

20

25

the affinity and/or increase the activity of a ligand as compared to the native form of the ligand.

Angiopoietin-1 (Ang) is one of two known ligands for the Tie-2 receptor and has been shown to be an agonist for Tie-2 (Davis, et al, 1996, Cell 87:1161-1169), whereas the second known ligand, angiopoietin-2, has been shown to be a naturally occurring antagonist of the Tie-2 receptor (Maisonpierre, et al., 1997, Science 277:55-60). Ang1* is a mutant form of angiopoietin-1 that comprises the N-terminal domain of angiopoietin-2 fused to the coiled-coil domain and the fibrinogen domain of angiopoietin-1 and that has a Cys to Ser mutation at amino acid 245. Ang1* has been shown to be a potent agonist for the Tie-2 receptor.

Experiments with mutants of angiopoietin-1 and angiopoietin-2 have demonstrated that the fibrinogen domains (FD) are the receptor-binding domains, and that dimerized versions of, for example Ang-1-FD-Fc, (i.e., the fibrinogen domain of Ang-1 fused to an Fc domain), can bind to the Tie-2 receptor with much higher affinity than monomeric Ang-1-FD (dimerization occurs due to the interaction between the Fc components of adjacent molecules). However, Ang-1-FD-Fc is not able to induce phosphorylation (activate) the Tie-2 receptor on endothelial cells unless it is further clustered with goat anti-human Fc antibodies (Jackson Immunoresearch). For this reason, mutant versions of Ang-1-FD and Ang-2-FD (i.e., the fibrinogen domain of Ang-2) were designed that were intrinsically more highly clustered.

SUMMARY OF THE INVENTION

The present invention provides for novel, biologically active, soluble forms of polypeptide ligands that bind to receptors on cells. Such polypeptide ligands are useful in promoting a differential function and/or influencing the phenotype, such as growth and/or proliferation, of receptor-bearing

cells. The invention also provides for nucleic acids encoding such polypeptide ligands, and both prokaryotic and eukaryotic expression systems for producing such polypeptide ligands. According to the invention, soluble forms of the polypeptide ligands described herein may be used to promote biological responses in receptor-expressing cells. In particular, a general method is described herein which produces fusion polypeptide ligands that may then be clustered, which functions to make otherwise inactive soluble polypeptide ligands biologically active, or which enhances the biological activity of polypeptide ligands that, absent such clustering, would have lower levels of biological activity. This method may be used to cluster a plurality of (more than one) receptor binding domains from any ligand which has improved affinity and/or increased activity (i.e. signaling ability) when clustered as compared to the native form of the ligand.

DESCRIPTION OF THE FIGURES

<u>Figure 1A-1E -</u> Nucleic acid sequence and deduced amino acid sequence of Ang-1-FD-Fc.

Figure 2A-2E - Nucleic acid sequence and deduced amino acid sequence of Ang-2-FD-FD-Fc.

<u>Figure 3A-3E</u> - Nucleic acid sequence and deduced amino acid sequence of Ang-1-FD-Fc-FD.

25

10

15

Figure 4A-4E - Nucleic acid sequence and deduced amino acid sequence of Ang-2-FD-Fc-FD.

Figure 5 - Molecular Weight Analysis of Ang-1-FD-Fc-FD protein. SDS
PAGE analyses showing a band running at about 210kD under non-reducing conditions (lane 3) and a band running at about 85kD under reducing conditions (lane 7).

Figure 6 - Light scatter analysis to confirm the molecular weight of Ang-1-FD-Fc-FD and to determine whether or not the protein is a homogeneous species. Light scattering is a function of mass and concentration of a macromolecule. To determine molecular weight, the protein sample was injected onto a gel filtration column and the effluent is monitored with an on line light scattering detector and a refractive index and/or a UV detector. The on line refractive index detector or UV detector serve to measure protein concentration. Astra 4.7 Software (Wyatt Technology Corporation, Santa Barbara, CA) is used to calculate the protein concentration. The molecular weight of protein is then calculated from the angular dependence of light scattering. The molecular weight of the dimeric protein appears to be approximately 200kD and presence of a single peak implies that the protein solution is homogenous.

15 .

Figure 7 - Molecular Weight Analysis of Ang-2-FD-Fc-FD. SDS PAGE analyses showing a band running at about 200kD under non-reducing conditions (lanes 7 and 8) and a band running at about 88kD under reducing conditions (lanes 3 and 4).

20

30

Figure 8 - Light scatter analysis to confirm the molecular weight of Ang-2-FD-Fc-FD and to determine whether or not the protein is a homogeneous species. Light scattering is a function of mass and concentration of a macromolecule. To determine molecular weight, the protein sample was injected onto a gel filtration column and the effluent is monitored with an on line light scattering detector and a refractive index and/or a UV detector. The on line refractive index detector or UV detector serve to measure protein concentration. Astra 4.7 Software (Wyatt Technology Corporation, Santa Barbara, CA) is used to calculate the protein concentration. The molecular weight of protein is then calculated from the angular dependence of light scattering. The molecular weight of the dimeric protein appears to be approximately 171kD and presence of a single peak implies that the

protein solution is homogenous.

Figure 9 - Ang1*-mediated vs. Ang-1-FD-Fc-FD-mediated Tie-2 receptor phosphorylation in EAhy926 cells. A standard phosphorylation assay revealed that Ang-1-FD-Fc-FD was equivalent to Ang1* in its ability to stimulate phosphorylation of the Tie-2 receptor in EAhy926.

Figure 10 - Ability of Ang-2-FD-Fc-FD to block Ang1*-mediated Tie-2 receptor phosphorylation in EAhy926 cells. In a standard phosphorylation assay, Ang-2-FD-Fc-FD is able to block Ang1* stimulation of the Tie-2 receptor when it is present in at least a 10-15 fold molar excess of Ang1*.

Figure 11 - Ability of angiopoietin-2 to block Ang1*-mediated Tie-2 receptor phosphorylation in EAhy926 cells. In a standard phosphorylation assay, at a 20 fold molar excess, angiopoietin-2 is not able to reduce the Ang1*-mediated phosphorylation level to 50%. This result, coupled with the results described in Figure 10 implies that Ang-2-FD-Fc-FD is a more potent inhibitor of Ang1*-mediated Tie-2 receptor phosphorylation than angiopoietin-2.

20

25

10

Figure 12 - Ability of Ang-2-FD-Fc-FD to block angiopoietin-1-mediated phosphorylation of the Tie-2 receptor in EAhy926 cells. In a standard phosphorylation assay, it is shown that while there is a trend toward blocking angiopoietin-1-mediated phosphorylation of the Tie-2 receptor in these cells, Ang-2-FD-Fc-FD seems to be more effective at blocking Ang1*-mediated phosphorylation of Tie-2, as shown in Figure 10.

Figure 13 - Ability of angiopoietin-2 to block angiopoietin-1-mediated phosphorylation of the Tie-2 receptor in EAhy926 cells. In a standard phosphorylation assay, it is shown that there is a trend toward blocking angiopoietin-1-mediated phosphorylation of the Tie-2 receptor in these cells, but, like Ang-2-FD-Fc-FD, angiopoietin-2 seems to be more effective at

blocking Ang1*-mediated phosphorylation of Tie-2, as shown in Figure 11.

<u>Figure 14A-14E</u> - Nucleic acid sequence and deduced amino acid sequence of Ephrin-B1-Ephrin-B1-Fc.

<u>Figure 15A-15E</u> - Nucleic acid sequence and deduced amino acid sequence of Ephrin-B2-Ephrin-B2-Fc.

Figure 16 - Comparison of Ephrin-B1-Fc, Ephrin-B1-Ephrin-B1-Fc, Ephrin-B2-Fc and Ephrin-B2-Ephrin-B2-Fc in standard EphB2 phosphorylation assays. COS cells were serum-starved and then left untreated (UT), lane 1, or were treated with unclustered and clustered Ephrin-B1-Fc (Efn-B1), lanes 2 and 3. COS cells were also treated with unclustered and clustered Ephrin-B1-Ephrin-B1-Fc (Efn-B1 DD), lanes 4 and 5. In addition cells were likewise treated with unclustered and clustered Ephrin-B2-Fc (Efn-B2), lanes 6 and 7 and with unclustered and clustered Ephrin-B2-Ephrin-B2-Fc (Efn-B2 DD), lanes 8 and 9. The extent of EphB2 phosphorylation was assessed by anti-phosphotyrosine western blotting (upper panels) and the relative amounts of EphB2 in each lane was determined by anti-EphB2 western blotting (lower panels).

Figure 17 - Ang1*-mediated vs. stable CHO clone-derived Ang-1-FD-Fc-FD-mediated Tie-2 receptor phosphorylation in EAhy926 cells. EAhy926 cells were stimulated with 0.4 μg/ml Ang1* or 0.2 μg/ml or 0.4 μg/ml stable

CHO clone-derived Ang-1-FD-Fc-FD protein. A standard phosphorylation assay revealed that stable CHO clone-derived Ang-1-FD-Fc-FD was equivalent to Ang1* in its ability to stimulate phosphorylation of the Tie-2 receptor in EAhy926 cells.

Figure 18 - Ability of stable CHO clone-derived Ang-2-FD-Fc-FD to block stable CHO clone-derived Ang-1-FD-Fc-FD-mediated Tie-2 receptor phosphorylation in EAhy926 cells. EAhy926 cells were treated with 0.2

10

15

20

 μ g/ml of the Tie-2 agonist Ang-1-FD-Fc-FD and 2 μ g/ml, 4 μ g/ml, 8 μ g/ml or 16 μ g/ml of stable CHO clone-derived Ang-2-FD-Fc-FD. Ang-2-FD-Fc-FD is able to block or stable CHO clone-derived Ang-1-FD-Fc-FD stimulation of the Tie-2 receptor when it is present in at least a 40 fold molar excess of stable CHO clone-derived Ang-1-FD-Fc-FD.

DETAILED DESCRIPTION OF THE INVENTION

As described in greater detail below, applicants have discovered a method for "clustering" polypeptide ligands, which functions to make otherwise inactive soluble polypeptide ligands biologically active, or which enhances the biological activity of polypeptide ligands that, absent such clustering, would have lower levels of biological activity. This method may be used to cluster a plurality of (more than one) receptor binding domains from any ligand which has improved affinity and/or increased activity (i.e. signaling ability) when clustered as compared to the native form of the ligand.

The present invention provides for a nucleic acid encoding a fusion polypeptide wherein the fusion polypeptide comprises a first subunit comprising at least one copy of the receptor binding domain of a ligand, the first subunit being fused to the N-terminal end of a multimerizing component, said multimerizing component being fused at its C-terminal end to a second subunit comprising at least one copy of the receptor binding domain of a ligand.

25

30

In one embodiment of the invention, the receptor binding domains of the first and second subunits are copies of the receptor binding domain of the same ligand. The first and second subunits may each have one or more than one copy of the receptor binding domain of the ligand. In specific embodiments of the invention, the receptor binding domain is the fibrinogen domain of angiopoietin-1 or angiopoietin-2. Alternatively, the

receptor binding domain is from a ligand selected from the group consisting of the EPH family of ligands (i.e., the ephrins).

In another embodiment of the invention, the receptor binding domains of the first subunit are copies of the receptor binding domain of a different ligand from the receptor binding domains of the second subunit. For example, the first subunit may comprise the receptor binding domain of an angiopoietin and the second subunit may comprise the receptor binding domain of vascular endothelial growth factor (VEGF). Alternatively, the first subunit may comprise the receptor binding domain of VEGF and the second subunit may comprise the receptor binding domain an angiopoietin. Still further, the first and second subunits may each have one or more than one copy of the receptor binding domain of their respective ligand.

By "receptor binding domain" what is meant is the minimal portion of the ligand that is necessary to bind its receptor.

In preferred embodiments of the invention, the multimerizing component comprises an immunoglobulin derived domain. More specifically, the immunoglobulin derived domain may be selected from the group consisting of the Fc domain of IgG, the heavy chain of IgG, and the light chain of IgG. In another embodiment, the multimerizing component may be an Fc domain from which the first five amino acids (including a cysteine) have been removed to produce a multimerizing component referred to as $Fc(\Delta C1)$.

The present invention also provides for fusion polypeptides encoded by the nucleic acid molecules of the invention. Preferably, the fusion polypeptides are in multimeric form, due to the function of the multimerizing component. In a preferred embodiment, the multimer is a dimer. Suitable multimerizing components are described in European Patent Application of ZymoGenetics, Inc., Publication No. EP 0 721 983 A1 published 17 July 1996

and include <u>S. cerevisiae</u> repressible acid phosphatase (Mizunaga et al., 1988, J. Biochem. (Tokyo) <u>103</u>:321-326); the <u>S. cerevisiae</u> type 1 killer preprotoxin (Sturley et al., 1986, EMBO J. <u>5</u>:3381-3390); the <u>S. calsbergensis</u> alpha galactosidase melibiase (Sumner-Smith, et al., 1985, Gene <u>36</u>:333-340); and the <u>Neurospora crassa</u> ornithine decarboxylase (Digangi, et al., 1987, J. Biol. Chem. <u>262</u>:7889-7893). Sequences encoding an immunoglobulin heavy chain hinge region (Takahashi et al., 1982, Cell <u>29</u>:671-679); the <u>S. cerevisiae SUC2</u> gene (Carlson et al., 1983, Mol. Cell. Biol. <u>3</u>:439-447); immunoglobulin gene sequences, and portions thereof. In a preferred embodiment of the invention, immunoglobulin gene sequences, especially one encoding the Fc domain, are used to encode the multimerizing component.

The present invention also contemplates a vector which comprises the nucleic acid molecule of the invention as described herein.

15

Also provided is an expression vector comprising a nucleic acid molecule of the invention as described herein, wherein the nucleic acid molecule is operatively linked to an expression control sequence. Also provided is a host-vector system for the production of a fusion polypeptide which comprises the expression vector of the invention which has been introduced into a host cell suitable for expression of the fusion polypeptide. The suitable host cell may be a bacterial cell such as <u>E. coli</u>, a yeast cell, such as <u>Pichia pastoris</u>, an insect cell, such as <u>Spodoptera frugiperda</u>, or a mammalian cell, such as a COS or CHO cell.

25

The present invention also provides for methods of producing the fusion polypeptides of the invention by growing cells of the host-vector systems described herein, under conditions permitting production of the fusion polypeptide and recovering the fusion polypeptide so produced.

30

The fusion polypeptides useful for practicing the present invention may be prepared by expression in a prokaryotic or eukaryotic expression system.

The recombinant gene may be expressed and the polypeptide purified utilizing any number of methods. The gene may be subcloned into a bacterial expression vector, such as for example, but not by way of limitation, pCP110.

5

10

The fusion polypeptides may be purified by any technique which allows for the subsequent formation of a stable, biologically active protein. For example, and not by way of limitation, the factors may be recovered from cells either as soluble proteins or as inclusion bodies, from which they may be extracted quantitatively by 8M guanidinium hydrochloride and dialysis. In order to further purify the factors, conventional ion exchange chromatography, hydrophobic interaction chromatography, reverse phase chromatography or gel filtration may be used.

The present invention also provides for a nucleic acid encoding a fusion polypeptide wherein the fusion polypeptide comprises more than one copy of the receptor binding domain of a ligand in tandem, and wherein either the N-terminal or the C-terminal receptor binding domain is also fused to a multimerizing component. In one embodiment of the invention, the receptor binding domains are fused contiguously. In another embodiment of the invention, the receptor binding domains are from a ligand that is not a member of the EPH family of ligands (i.e., not an ephrin). In specific embodiments of the invention, the receptor binding domain is the fibrinogen domain of angiopoietin-1 or angiopoietin-2. In an alternative embodiment, the receptor binding domain is from vascular endothelial growth factor (VEGF). In another embodiment, the receptor binding domain is from an ephrin.

By "receptor binding domain" what is meant is the minimal portion of the ligand that is necessary to bind its receptor.

In preferred embodiments of the invention, the multimerizing component comprises an immunoglobulin derived domain. More specifically, the immunoglobulin derived domain may be selected from the group consisting of the Fc domain of IgG, the heavy chain of IgG, and the light chain of IgG. In another embodiment, the multimerizing component may be an Fc domain from which the first five amino acids (including a cysteine) have been removed to produce a multimerizing component referred to as $Fc(\Delta C1)$.

10 The present invention also provides for fusion polypeptides encoded by the nucleic acid molecules of the invention. Preferably, the fusion polypeptides are in multimeric form, due to the function of the multimerizing component. In a preferred embodiment, the multimer is a dimer. Suitable multimerizing components are described in European Patent Application of 15 ZymoGenetics, Inc., Publication No. EP 0 721 983 A1 published 17 July 1996 and include S. cerevisiae repressible acid phosphatase (Mizunaga et al., 1988, J. Biochem. (Tokyo) 103:321-326); the S. cerevisiae type 1 killer preprotoxin (Sturley et al., 1986, EMBO J. 5:3381-3390); the S. calsbergensis alpha galactosidase melibiase (Sumner-Smith, et al., 1985, Gene 36:333-340); and the Neurospora crassa ornithine decarboxylase (Digangi, et al., 1987, J. Biol. Chem. 262:7889-7893). Sequences encoding an immunoglobulin heavy chain hinge region (Takahashi et al., 1982, Cell 29:671-679); the S. cerevisiae SUC2 gene (Carlson et al., 1983, Mol. Cell. Biol. 3:439-447); immunoglobulin gene sequences, and portions thereof. In a preferred embodiment of the invention, immunoglobulin gene sequences, especially one encoding the Fc domain, are used to encode the multimerizing component.

The present invention also contemplates a vector which comprises the nucleic acid molecule of the invention as described herein.

Also provided is an expression vector comprising a nucleic acid molecule of the invention as described herein, wherein the nucleic acid molecule is

operatively linked to an expression control sequence. Also provided is a host-vector system for the production of a fusion polypeptide which comprises the expression vector of the invention which has been introduced into a host cell suitable for expression of the fusion polypeptide.

The suitable host cell may be a bacterial cell such as <u>E. coli</u>, a yeast cell, such as <u>Pichia pastoris</u>, an insect cell, such as <u>Spodoptera frugiperda</u>, or a mammalian cell, such as a COS or CHO cell.

The present invention also provides for methods of producing the fusion polypeptides of the invention by growing cells of the host-vector systems described herein, under conditions permitting production of the fusion polypeptide and recovering the fusion polypeptide so produced.

The fusion polypeptides useful for practicing the present invention may be prepared by expression in a prokaryotic or eukaryotic expression system. The recombinant gene may be expressed and the polypeptide purified utilizing any number of methods. The gene may be subcloned into a bacterial expression vector, such as for example, but not by way of limitation, pCP110.

20

The fusion polypeptides may be purified by any technique which allows for the subsequent formation of a stable, biologically active protein. For example, and not by way of limitation, the factors may be recovered from cells either as soluble proteins or as inclusion bodies, from which they may be extracted quantitatively by 8M guanidinium hydrochloride and dialysis. In order to further purify the factors, conventional ion exchange chromatography, hydrophobic interaction chromatography, reverse phase chromatography or gel filtration may be used.

The Examples describe the preparation of novel polypeptide ligands that comprise a receptor binding domain of a member of the Eph (Eph transmembrane tyrosine kinase family ligands) family of ligands or of a

member of the angiopoietin family of ligands that can bind the Tie-2 receptor.

For a description of novel Eph family ligands, methods of making and using them, as well as the sequences of EHK-1L, B61 and ELK-L, together with a description of a method of enhancing the biological activity of EPH family ligands by clustering them, applicants refer to U.S. Patent No. 5,747,033 issued on May 5, 1998 which is hereby incorporated by reference in its entirety. Applicants further refer to International Application PCT/US93/10879, published as WO 94/11020 on May 26, 1994; and International Application PCT/US96/17201 published as WO 97/15667 entitled "Biologically Active EPH Family Ligands" each of which is hereby incorporated by reference in its entirety.

15 As has been previously reported, a family of ligands for the TIE-2 receptor has been discovered and named the Angiopoietins. This family, consisting of TIE-2 ligand 1 (Ang-1); TIE-2 ligand 2 (Ang-2); TIE ligand 3 (Ang-3); and TIE ligand 4 (Ang-4) has been extensively characterized. For a description of the cloning, sequencing and characterization of the angiopoietins, as well as 20 for methods of making and uses thereof, including the production and characterization of modified and chimeric ligands thereof, reference is hereby made to the following publications, each of which is incorporated by reference herein in its entirety: U.S. Patent No. 5,521,073 issued May 28, 1996; U.S. Patent No. 5,643,755 issued July 1, 1997; U.S. Patent No. 5,650,490 issued July 22, 1997; U.S. Patent No. 5,814,464 issued September 29, 1998; U.S. 25 Patent No. 5,879,672 issued March 9, 1999; U.S. Patent No. 5,851,797 issued December 22, 1998; PCT International Application entitled "TIE-2 Ligands Methods of Making and Uses Thereof," published as WO 96/11269 on 18 April 1996 in the name of Regeneron Pharmaceuticals, Inc.; PCT International Application entitled "TIE-2 Ligands Methods of Making and 30 Uses Thereof,"published as WO 96/31598 on 10 October 1996 in the name of Regeneron Pharmaceuticals, Inc.; PCT International Application entitled

"TIE-2 Receptor Ligands (TIE Ligand-3; TIE Ligand-4) And Their Uses," published as WO 97/48804 on 24 December 1997 in the name of Regeneron Pharmaceuticals, Inc; and PCT International Application entitled "Modified TIE-2 Receptor Ligands," published as WO 98/05779 on 12 February 1998 in the name of Regeneron Pharmaceuticals, Inc.

When used herein, fusion polypeptide includes functionally equivalent molecules in which amino acid residues are substituted for residues within the sequence resulting in a silent or conservative change. For example, one or more amino acid residues within the sequence can be substituted by another amino acid of a similar polarity which acts as a functional equivalent, resulting in a silent or conservative alteration. Substitutes for an amino acid within the sequence may be selected from other members of the class to which the amino acid belongs. For example, the nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan and methionine. The polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine. The positively charged (basic) amino acids include arginine, lysine and histidine. The negatively charged (acidic) amino acids include aspartic acid and glutamic acid. Also included within the scope of the invention are proteins or fragments or derivatives thereof which exhibit the same or similar biological activity and derivatives which are differentially modified during or after translation, e.g., by glycosylation, proteolytic cleavage, linkage to an antibody molecule or other cellular ligand, etc.

Cells that express the fusion polypeptides of the invention are genetically engineered to produce them by, for example, transfection, transduction, electroporation, or microinjection.

25

The present invention encompasses the nucleic acid sequences encoding the fusion polypeptides of the invention, as well as sequences that hybridize under stringent conditions to nucleic acid sequences that are complementary to the nucleic acid sequences of the invention. Stringent conditions are set forth in, for example, Sambrook, et al. Molecular Cloning: A Laboratory Manual, 2 ed. Vol. 1, pp. 101-104, Cold Spring Harbor Laboratory Press (1989). In addition, the present invention encompasses nucleic acid sequences that are different from the nucleic acid sequences of the invention but which nevertheless encode the fusion polypeptides of the invention due to the degeneracy of the genetic code.

In addition, the present invention contemplates use of the fusion polypeptides described herein in tagged forms.

15

20

25

Any of the methods known to one skilled in the art for the insertion of DNA fragments into a vector may be used to construct expression vectors encoding the fusion polypeptides of the invention using appropriate transcriptional/translational control signals and the protein coding sequences. These methods may include in vitro recombinant DNA and synthetic techniques and <u>in vivo</u> recombinations (genetic recombination). Expression of nucleic acid sequence encoding the fusion polypeptides of the invention may be regulated by a second nucleic acid sequence so that the fusion polypeptide is expressed in a host transformed with the recombinant DNA molecule. For example, expression of the fusion polypeptides described herein may be controlled by any promoter/enhancer element known in the art. Promoters which may be used to control expression of the fusion polypeptide include, but are not limited to the long terminal repeat as described in Squinto et al., (1991, Cell 65:1-20); the SV40 early promoter region (Bernoist and Chambon, 1981, Nature 290:304-310), the CMV promoter, the M-MuLV 5' terminal repeat the promoter contained in the 3' long terminal repeat of Rous sarcoma virus (Yamamoto, et al., 1980,

Cell 22:787-797), the herpes thymidine kinase promoter (Wagner et al., 1981, Proc. Natl. Acad. Sci. U.S.A. 78:144-1445), the regulatory sequences of the metallothionein gene (Brinster et al., 1982, Nature 296:39-42); prokaryotic expression vectors such as the b-lactamase promoter (Villa-Kamaroff, et al., 1978, Proc. Natl. Acad. Sci. U.S.A. <u>75</u>:3727-3731), or the <u>tac</u> promoter (DeBoer, et al., 1983, Proc. Natl. Acad. Sci. U.S.A. 80:21-25), see also "Useful proteins from recombinant bacteria" in Scientific American, 1980, 242:74-94; promoter elements from yeast or other fungi such as the Gal 4 promoter, the ADH (alcohol dehydrogenase) promoter, PGK (phosphoglycerol kinase) promoter, alkaline phosphatase promoter, and the following animal 10 transcriptional control regions, which exhibit tissue specificity and have been utilized in transgenic animals: elastase I gene control region which is active in pancreatic acinar cells (Swift et al., 1984, Cell 38:639-646; Ornitz et al., 1986, Cold Spring Harbor Symp. Quant. Biol. 50:399-409; MacDonald, 15 1987, Hepatology 7:425-515); insulin gene control region which is active in pancreatic beta cells (Hanahan, 1985, Nature 315:115-122), immunoglobulin gene control region which is active in lymphoid cells (Grosschedl et al., 1984, Cell <u>38</u>:647-658; Adames et al., 1985, Nature <u>318</u>:533-538; Alexander et al., 1987, Mol. Cell. Biol. 7:1436-1444), mouse mammary tumor virus control 20 region which is active in testicular, breast, lymphoid and mast cells (Leder et al., 1986, Cell 45:485-495), albumin gene control region which is active in liver (Pinkert et al., 1987, Genes and Devel. 1:268-276), alpha-fetoprotein gene control region which is active in liver (Krumlauf et al., 1985, Mol. Cell. Biol. 5:1639-1648; Hammer et al., 1987, Science 235:53-58); alpha 1-antitrypsin gene control region which is active in the liver (Kelsey et al, 1987, Genes and Devel. 1:161-171), beta-globin gene control region which is active in myeloid cells (Mogram et al., 1985, Nature 315:338-340; Kollias et al., 1986, Cell 46:89-94); myelin basic protein gene control region which is active in oligodendrocyte cells in the brain (Readhead et al., 1987, Cell 48:703-712); myosin light chain-2 gene control region which is active in skeletal muscle (Shani, 1985, Nature 314:283-286), and gonadotropic releasing hormone gene

control region which is active in the hypothalamus (Mason et al., 1986, Science 234:1372-1378).

Thus, according to the invention, expression vectors capable of being replicated in a bacterial or eukaryotic host comprising Eph fusion polypeptide encoding or angiopoietin fusion polypeptide encoding nucleic acids as described herein, are used to transfect the host and thereby direct expression of such nucleic acid to produce fusion polypeptides which may then be recovered in biologically active form. As used herein, a biologically active form includes a form capable of binding to the relevant receptor and causing a differentiated function and/or influencing the phenotype of the cell expressing the receptor. Such biologically active forms would, for example, induce phosphorylation of the tyrosine kinase domain of the Ehk-1, Elk, or Tie2 receptor, or stimulation of synthesis of cellular DNA.

15

20

25

30

10

Expression vectors containing the nucleic acid inserts can be identified by three general approaches: (a) DNA-DNA hybridization, (b) presence or absence of "marker" gene functions, and (c) expression of inserted sequences. In the first approach, the presence of a foreign nucleic acids inserted in an expression vector can be detected by DNA-DNA hybridization using probes comprising sequences that are homologous to an inserted nucleic acid sequences. In the second approach, the recombinant vector/host system can be identified and selected based upon the presence or absence of certain "marker" gene functions (e.g., thymidine kinase activity, resistance to antibiotics, transformation phenotype, occlusion body formation in baculovirus, etc.) caused by the insertion of foreign nucleic acid sequences in the vector. For example, if an efl nucleic acid sequence is inserted within the marker gene sequence of the vector, recombinants containing the insert can be identified by the absence of the marker gene function. In the third approach, recombinant expression vectors can be identified by assaying the foreign nucleic acid product expressed by the recombinant. Such assays can be based, for example, on the physical or

functional properties of the nucleic acid product of interest, for example, by binding of a ligand to a receptor or portion thereof which may be tagged with, for example, a detectable antibody or portion thereof or binding to antibodies produced against the protein of interest or a portion thereof.

5

Cells of the present invention may transiently or, preferably, constitutively and permanently express the ephrin or angiopoietin fusion polypeptide as described herein.

- The ephrin fusion polypeptides of the invention may be useful in methods of treating a patient suffering from a neurological disorder comprising treating the patient with an effective amount of the ephrin fusion polypeptide.
- For example, the Elk receptor is expressed primarily in brain. Accordingly, it is believed that an Elk binding ephrin fusion polypeptide ligand will support the induction of a differential function and/or influence the phenotype, such as growth and/or survival of neural cells that express this receptor.

20

The present invention also provides for pharmaceutical compositions comprising the ephrin fusion polypeptide in a suitable pharmacologic carrier. The compositions may be administered systemically or locally. Any appropriate mode of administration known in the art may be used, including, but not limited to, intravenous, intrathecal, intraarterial, intranasal, oral, subcutaneous, intraperitoneal, or by local injection or surgical implant. Sustained release formulations are also provided for

As our understanding of neurodegenerative disease/neurotrauma becomes clearer, it may become apparent that it would be beneficial to decrease the effect of endogenous Efl-6. Therefore, in areas of nervous system trauma, it may be desirable to provide Efl-6 antagonists, including, but not limited to,

fusion polypeptide forms of Efl-6 which may compete with cell-bound ligand for interaction with Elk receptor. It may be desirable to provide such antagonists locally at the injury site rather than systemically. Use of an Efl-6 antagonist providing implant may be desirable.

5

Alternatively, certain conditions may benefit from an increase in Efl-6 responsiveness. It may therefore be beneficial to increase the number or binding affinity of Efl-6 in patients suffering from such conditions.

The invention herein further provides for the development of a fusion polypeptide, as a therapeutic for the treatment of patients suffering from disorders involving cells, tissues or organs which express the TIE-2 receptor. Such molecules may be used in a method of treatment of the human or animal body, or in a method of diagnosis.

15

20

25

30

Because TIE-2 receptor has been identified in association with endothelial cells and, as was previously demonstrated, blocking of agonists of the receptor such as TIE-2 ligand 1 (Ang-1) has been shown to prevent vascularization, applicants expect that TIE-2 agonist fusion polypeptides of the invention may be useful for the induction of vascularization in diseases or disorders where such vascularization is indicated. Such diseases or disorders would include wound healing, ischemia and diabetes. The ligands may be tested in animal models and used therapeutically as described for other agents, such as vascular endothelial growth factor (VEGF), another endothelial cell-specific factor that is angiogenic. Ferrara, et al. U.S. Patent No. 5,332,671 issued July 26, 1994. The Ferrara reference, as well as other studies, describe in vitro and in vivo studies that may be used to demonstrate the effect of an angiogenic factor in enhancing blood flow to ischemic myocardium, enhancing wound healing, and in other therapeutic settings wherein neoangiogenesis is desired. [see Sudo, et al., European Patent Application 0 550 296 A2 published July 7, 1993; Banai, et al. Circulation 89:2183-2189 (1994); Unger, et al. Am. J. Physiol. 266:H1588-H1595

(1994); Lazarous, et al. Circulation 91:145-153 (1995)]. According to the invention, the agonist fusion polypeptides may be used alone or in combination with one or more additional pharmaceutically active compounds such as, for example, VEGF or basic fibroblast growth factor (bFGF).

Conversely, antagonists of the TIE-2 receptor, such as TIE-2 receptorbodies or TIE-2 ligand 2 (Ang-2) as described in Example 9 in International Publication No. WO 96/31598 published 10 October 1996, have been shown to prevent or attenuate vascularization, and are thus expected to be useful in preventing or attenuating, for example, tumor growth. Similarly then, TIE-2 antagonist fusion polypeptides of the invention would also be useful for those purposes. These antagonists may be used alone or in combination with other compositions, such as anti-VEGF antibodies, that have been shown to be useful in treating conditions in which the therapeutic intent is to block angiogenesis.

For example, applicants have determined that TIE-2 ligands are expressed in cells within, or closely associated with, tumors. For example, TIE-2 ligand 2 (Ang-2) appears to be tightly associated with tumor endothelial cells. Accordingly, TIE-2 antagonist fusion polypeptides of the invention may also be useful in preventing or attenuating, for example, tumor growth.

In other embodiments, the TIE-2 agonist fusion polypeptides of the invention described herein may be used as hematopoietic factors. A variety of hematopoietic factors and their receptors are involved in the proliferation and/or differentiation and/or migration of the various cells types contained within blood. Because the TIE-2 receptors are expressed in early hematopoietic cells, the TIE-2 ligands are expected to play a comparable role in the proliferation or differentiation or migration of these cells. Thus, for example, TIE-2 agonist fusion polypeptide compositions may be prepared, assayed, examined in <u>in vitro</u> and <u>in vivo</u> biological systems and

used therapeutically as described in any of the following: Sousa, U.S. Patent No. 4,810,643, Lee, et al., Proc. Natl. Acad. Sci. USA 82:4360-4364 (1985) Wong, et al. Science, 228:810-814 (1985); Yokota, et al. Proc. Natl. Acad. Sci (USA) 81:1070 (1984); Bosselman, et al. WO 9105795 published May 2, 1991 entitled "Stem Cell Factor" and Kirkness, et al. WO 95/19985 published July 27, 1995 entitled "Haemopoietic Maturation Factor". Accordingly, the fusion polypeptides may be used to diagnose or treat conditions in which normal hematopoiesis is suppressed, including, but not limited to anemia, thrombocytopenia, leukopenia and granulocytopenia. In a preferred 10 embodiment, the fusion polypeptides may be used to stimulate differentiation of blood cell precursors in situations where a patient has a disease, such as acquired immune deficiency syndrome (AIDS) which has caused a reduction in normal blood cell levels, or in clinical settings in which enhancement of hematopoietic populations is desired, such as in conjunction with bone marrow transplant, or in the treatment of aplasia or 15 myelosuppression caused by radiation, chemical treatment or chemotherapy.

The fusion polypeptides of the present invention may be used alone, or in combination with another pharmaceutically active agents such as, for example, cytokines, neurotrophins, interleukins, etc. In a preferred embodiment, the fusion polypeptides may be used in conjunction with any of a number of factors which are known to induce stem cell or other hematopoietic precursor proliferation, or factors acting on later cells in the hematopoietic pathway, including, but not limited to, hemopoietic maturation factor, thrombopoietin, stem cell factor, erythropoietin, G-CSF, GM-CSF, etc.

In an alternative embodiment, TIE-2 receptor antagonist fusion

polypeptides are used to diagnose or treat patients in which the desired result is inhibition of a hematopoietic pathway, such as for the treatment of myeloproliferative or other proliferative disorders of blood forming organs

such as thrombocythemias, polycythemias and leukemias. In such embodiments, treatment may comprise use of a therapeutically effective amount of the fusion polypeptides as described herein.

Effective doses useful for treating these or other diseases or disorders may be determined using methods known to one skilled in the art [see, for example, Fingl, et al., The Pharmacological Basis of Therapeutics, Goodman and Gilman, eds. Macmillan Publishing Co., New York, pp. 1-46 ((1975)]. Pharmaceutical compositions for use according to the invention include the fusion polypeptides described above in a pharmacologically acceptable liquid, solid or semi-solid carrier, linked to a carrier or targeting molecule (e.g., antibody, hormone, growth factor, etc.) and/or incorporated into liposomes, microcapsules, and controlled release preparation prior to administration in vivo. For example, the pharmaceutical composition may comprise a fusion polypeptide in an aqueous solution, such as sterile water, saline, phosphate buffer or dextrose solution. Alternatively, the active agents may be comprised in a solid (e.g. wax) or semi-solid (e.g. gelatinous) formulation that may be implanted into a patient in need of such treatment. The administration route may be any mode of administration known in the art, including but not limited to intravenously, intrathecally, subcutaneously, by injection into involved tissue, intraarterially, intranasally, orally, or via an implanted device.

Administration may result in the distribution of the active agent of the
invention throughout the body or in a localized area. For example, in some
conditions which involve distant regions of the nervous system,
intravenous or intrathecal administration of agent may be desirable. In
some situations, an implant containing active agent may be placed in or
near the lesioned area. Suitable implants include, but are not limited to,
gelfoam, wax, or microparticle-based implants.

The present invention also provides for pharmaceutical compositions comprising the fusion polypeptides described herein, in a pharmacologically acceptable vehicle. The compositions may be administered systemically or locally. Any appropriate mode of administration known in the art may be used, including, but not limited to, intravenous, intrathecal, intraarterial, intranasal, oral, subcutaneous, intraperitoneal, or by local injection or surgical implant. Sustained release formulations are also provided for.

The present invention is not to be limited in scope by the specific embodiments described herein. Indeed, various modifications of the invention in addition to those described herein will become apparent to those skilled in the art from the foregoing description and accompanying figures. Such modifications are intended to fall within the scope of the appended claims.

15

10

EXAMPLES

Angiopoietin ligands:

As described *supra*, experiments with mutants of Ang-1 and Ang-2 have demonstrated that the fibrinogen domains (FD) are the receptor-binding domains, and that dimerized versions (dimerization occurs due to the interaction between the Fc components of adjacent molecules), for example Ang-1-FD-Fc, can bind to the Tie-2 receptor with much higher affinity than monomeric Ang-1-FD. However, Ang-1-FD-Fc is not able to induce phosphorylation (activate) the Tie-2 receptor on endothelial cells unless it is further clustered with goat anti-human Fc antibodies (Jackson Immunoresearch). For this reason, mutant versions of Ang-1-FD and Ang-2-FD were designed that were intrinsically more highly clustered.

30

Two general types of nucleic acid molecules were constructed. The first type consisted of two tandem copies of Ang-1-FD fused to an Fc tag, thus leading

20

to a secreted polypeptide molecule that is dimeric with respect to the Fc tag but tetrameric with respect to Ang-1-FD. Similarly, two tandem copies of Ang-2-FD fused to an Fc tag constituted the angiopoietin-2 version of this type of construct. These molecules were designated Ang-1-FD-FD-Fc and Ang-2-FD-FD-Fc, respectively.

In the second type of nucleic acid molecule constructed, two copies of Ang-1-FD were connected by an Fc tag bridging between them, thus creating the structure Ang-1-FD-Fc-FD that is still dimeric with respect to the Fc, as well as tetrameric with respect to Ang-1-FD. An angiopoietin-2 version was also constructed and these two molecules were designated Ang-1-FD-Fc-FD and Ang-2-FD-Fc-FD, respectively.

For either type of construct, similar properties were observed: unlike dimeric Ang-1-FD-Fc, which fails to activate Tie-2 in endothelial cells, both Ang-1-FD-Fc and Ang-1-FD-Fc-FD could readily activate Tie-2 in endothelial cells, with a potency comparable to that of the native ligand. Also, like native angiopoietin-2, Ang-2-FD-Fc-FD could antagonize angiopoietin-1 activity with a potency that is comparable to that of native angiopoietin-2, and with much greater potency than the marginally antagonistic activity of the Ang-2-FD-Fc dimer.

Construction of mutant angiopoietin nucleic acid molecules.

All of the following nucleic acid molecules were constructed by standard recombinant DNA techniques (See e.g., Molecular Cloning, A Laboratory Manual (Sambrook, et al., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY), Current Protocols in Molecular Biology (Eds. Ausubel, et al., Greene Publ. Assoc., Wiley-Interscience, NY), sequence-verified by standard techniques using an ABI 373A DNA sequencer and Taq Dideoxy Terminator Cycle Sequencing Kit (Applied Biosystems, Inc., Foster City, CA), and subcloned into the mammalian expression vector pMT21 (Genetics

Institute, Inc.) with a Kozak sequence (Kozak, M., 1987, Nucleic Acids Res. 15:8125-8148) at the 5' end to promote protein translation. The bridging sequences described *infra* were introduced to provide convenient restriction sites and to give flexibility to the junctions between the domains, but there is no indication that there is a very critical nature to these bridging sequences (though varying the length of the linker in some of these constructs led to some variation in the amount of protein produced).

Example 1: Construction of the Ang-1-FD-Fc, Ang-2-FD-Fc, Ang-1-FD-Fc-FD, and Ang-2-FD-Fc-FD nucleic acid molecules.

Ang-1-FD-Fc: Ang-1-FD-Fc consists of a trypsin signal sequence at its amino terminus to allow for secretion (bases 1-45 of Figure 1A) followed by the angiopoietin-1 fibrinogen domain (FD) (bases 46-690 of Figure 1A-Figure 1B), a short bridging sequence consisting of the amino acids Gly-Pro Ala-Pro (bases 691-702 of Figure 1B), a second angiopoietin-1 FD (bases 703-1750 of Figure 1B-Figure 1D), another bridging sequence consisting of the amino acids Gly-Pro-Gly (bases 1351-1359 of Figure 1D), and the coding sequence for the Fc portion of human IgG1 (bases 1360-2058 of Figure 1D-Figure 1E).

20

25

5

10

Ang-2-FD-FC: The Ang-2-FD-FC nucleic acid molecule was similarly constructed. It consists of a trypsin signal sequence (bases 1-45 of Figure 2A), an angiopoietin-2 FD (bases 46-690 of Figure 2A- Figure 2B), a bridging amino acid sequence Gly-Gly-Pro-Ala-Pro (bases 691-705 of Figure 2B), a second angiopoietin-2 FD (bases 706-1353 of Figure 2B-Figure 2D), another bridging amino acid sequence Gly-Pro-Gly (bases 1354-1362 of Figure 2D), and the coding sequence for the Fc portion of human IgG1 (bases 1363-2061 of Figure 2D-Figure 2E.

30 <u>A</u>

Ang-1-FD-Fc-FD: The Ang-1-FD-Fc-FD consists of a trypsin signal sequence (bases 1-45 of Figure 3A), an angiopoietin-1 FD (bases 46-690 of Figure 3A-3B), the bridging amino acid sequence Gly-Pro-Gly (bases 691-699 of Figure

3B), the coding sequence for the Fc portion of human IgG1 (bases 700-1395 of Figure 3B-3D), another bridging amino acid sequence Gly-Gly-Gly-Gly-Ser-Gly-Ala-Pro (bases 1396-1419 of Figure 3D), and a second angiopoietin-1 FD (bases 1420-2067 of Figure 3D-Figure 3E).

5

25

30

Ang-2-FD-Fc-FD: The Ang-2-FD-Fc-FD nucleic acid molecule consists of a trypsin signal sequence (bases 1-45 of Figure 4A), an angiopoietin-2 FD domain (bases 46-690 of Figure 4A-Figure 4B), the bridging amino acid sequence Gly-Gly-Pro-Gly (bases 691-702 of Figure 4B), the coding sequence for the Fc portion of human IgG1 (bases 703-1398 of Figure 4B- Figure 4D), the bridging amino acid sequence Gly-Gly-Gly-Gly-Ser-Gly-Ala-Pro (bases 1399-1422 of Figure 4D), and a second angiopoietin-2 FD (bases 1423-2067 of Figure 4D-Figure 4E).

15 Example 2: Characterization of Ang-1 FD-Fc-FD protein.

Molecular Weight Analysis: The predicted molecular weight for Ang-1-FD-Fc-FD protein was determined using the MacVector Program (Kodak, Scientific Imaging Systems, New Haven, CT) The monomeric form (with respect to the Fc) has a predicted weight of 76,349. In addition, there are three predicted N-linked glycosylation sites, approximately 2500 MW/site, that could potentially increase the molecular weight of the monomeric protein to 83,849. Due to the interaction between the Fc components of adjacent molecules, the protein actually exists as a dimer with a predicted molecular weight, including possible N-linked glycosylation, of 167,698. Subsequent SDS PAGE analyses of COS cell-derived protein described infra confirmed these approximate molecular weights, with a band running at about 210kD under non-reducing conditions and a band running at about 85kD under reducing conditions (Figure 5). Light scatter analysis was performed to further confirm the molecular weight and, more importantly, determine whether or not the protein was a homogeneous species. Light scattering is a function of mass and concentration of a macromolecule. To

15

20

25

30

determine molecular weight, the protein sample was injected onto a gel filtration column and the effluent was monitored with an on line light scattering detector and a refractive index and/or a UV detector. The light scattering detector is a MiniDawn laser light scattering detector was from Wyatt Technology Corporation (Santa Barbara, CA). This instrument measures static light at three different angles. The on line refractive index detector or UV detector serve to measure protein concentration. Astra 4.7 Software (Wyatt Technology Corporation, Santa Barbara, CA) was used to calculate the protein concentration based on either dn/dc (dn = change of refractive index; dc = concentration) or the extinction coefficient of the protein. The molecular weight of protein is then calculated from the angular dependence of light scattering. Figure 6 shows the results of this analysis using COS cell-derived protein. The molecular weight of the dimeric protein appears to be approximately 200kD and presence of a single peak implies that the protein solution is, in fact, homogenous.

Expression Level in COS Cells: COS cell supernatant containing recombinant Ang-1-FD-Fc-FD protein was generated by transiently transfecting COS cells with the Ang1-FD-Fc-FD DNA construct described supra. All transfections were performed using standard techniques known in the art. The COS cell supernatant was analyzed using Biacore technology (Pharmacia, Inc.) to quantitate the amount of Ang-1-FD-Fc-FD protein present in the supernatant. This analysis resulted in an RU value of 765, which is equivalent to 0.9mg of recombinant protein/liter of COS cell supernatant. These values represent very high levels of expression.

<u>Purification of COS Supernatants</u>: Because the Ang-1-FD-Fc-FD protein contains an Fc domain, purification is relatively simple and straight forward using standard Protein A column chromatography (Pharmacia, Inc.) followed by standard size exclusion chromatography (Pharmacia, Inc.). In fact, the relative ease of purification of the Ang-1-FD-Fc-FD protein gives it a distinct advantage over the parent protein, angiopoietin-1, from which

it is derived, and the mutant version of angiopoietin-1 called Ang1* that consists of the N-terminal of angiopoietin-2 fused to the coiled-coil domain and fibrinogen domain of angiopoietin-1 and that has a Cys to Ser mutation at amino acid 245. (See PCT International Application entitled "Modified TIE-2 Receptor Ligands," published as WO 98/05779 on 12 February 1998 in the name of Regeneron Pharmaceuticals, Inc., especially Figure 27, which is hereby incorporated by reference).

Both angiopoietin-1 and Ang1* require extensive, expensive and labor-intensive purification schemes that result in relatively poor yields of recombinant protein. The need for cost-effective, simple purification schemes for biologicals intended for clinical use can not be over-emphasized.

The COS cell supernatant was purified as described *supra* and yielded approximately 1 mg of purified Ang-1-FD-Fc-FD protein that was used in the studies described *infra* to further characterize the protein.

N-terminal sequencing of COS cell-derived Ang-1-FD-Fc-FD protein:

- Purified Ang-1-FD-Fc-FD protein was subjected to standard N-terminal sequence analysis to determine if any truncated species of the protein were being generated. This was of concern because the mutant molecule, Ang1*, has a history of containing between 10-20% N-terminally truncated species. The analysis revealed only one N-terminal sequence, Arg-Asp-X-Ala-Asp, wherein X is Cys. This sequence can be found at amino acids 16-20 of Figure 3A, and immediately follows the protein's signal sequence corresponding to amino acids 1-15 Figure 3A.
- Receptor binding analysis of COS cell-derived Ang-1-FD-Fc-FD: Previous studies have determined that the fibrinogen domain (FD) of the angiopoietin molecules is necessary for ligand/receptor interaction. Furthermore, in order for high affinity binding to the Tie-2 receptor to

20

25

30

occur, native angiopoietin-1, angiopoietin-2, and the mutant Ang1* must form at least tetrameric, and possibly higher order, multimers. To determine whether the COS cell-derived Ang-1-FD-Fc-FD protein, which is tetrameric with respect to the FD domain, could bind to Tie-2 with high affinity, standard Biacore analysis was performed. Briefly, Tie-2-Fc receptor body protein, which is a fusion protein comprising the ectodomain of Tie-2 fused to the Fc domain of human IgG1, was immobilized on a Biacore chip. Ang-1-FD-Fc-FD-containing solution was passed over the chip and binding between Tie-2 ectodomain and Ang-1-FD-Fc-FD was allowed to occur. The binding step was followed by a 0.5 M NaCl high salt wash. The high salt wash was not able to disrupt the interaction between the Ang-1-FD-Fc-FD protein and the Tie-2 receptor ectodomain, implying that there is a strong interaction between the mutant ligand and receptor. This result is consistent with earlier Biacore results in which both Ang-1-FD-Fc-FD parent 15 molecule, angiopoietin-1 and the mutant Ang1* molecule, have been shown to interact strongly with the Tie-2-Fc receptor and that this interaction is not disrupted by high salt. In contrast, several mutant molecules derived from the parent angiopoietin-1 molecule are readily dissociated from the Tie-2-Fc receptor when treated with high salt. The mutant molecules, designated Ang-1/FD (a monomer with respect to the FD), Ang-1/FD-Fc (also a monomer with respect to the FD, but which is able to form a dimer due to the presence of the Fc domain), and Ang-1/C/FD (a monomer with respect to the FD, but which also contains the coiled-coil domain of angiopoietin-1), do not exist in multimeric forms sufficient for high affinity binding to the Tie-2 receptor.

Example 3: Characterization of COS cell-derived Ang-2-FD-Fc-FD protein.

Molecular Weight Analysis: As described for Ang-1-FD-Fc-FD supra, the predicted molecular weight for Ang-2-FD-Fc-FD protein was determined using the MacVector Program (Kodak, Scientific Imaging Systems, New Haven, CT) The monomeric form of Ang-2-FD-Fc-FD has a predicted

weight of 76,052, with three predicted N-linked glycosylation sites that could potentially increase the molecular weight of the monomeric protein to 83,552. Like Ang-1-FD-Fc-FD, the protein exists as a dimer with a predicted molecular weight, including possible N-linked glycosylation, of 167,104.

SDS PAGE analyses of COS cell-derived protein confirmed these approximate molecular weights, with a band running at about 200kD under non-reducing conditions and a band running at about 88kD under reducing conditions (Figure 7). Light scatter analysis confirmed the molecular weight (171kD) and revealed that the Ang-2-FD-Fc-FD protein, like Ang-1-FD-Fc-

10 FD, exists as a homogeneous species (Figure 8).

Expression Level in COS Cells: COS cell supernatant containing recombinant Ang-2-FD-Fc-FD protein was generated by transiently transfecting COS cells with the Ang-2-FD-Fc-FD DNA construct described supra. The COS cell supernatant was analyzed by Biacore to quantitate the amount of Ang-2-FD-Fc-FD protein present in the supernatant. This analysis resulted in an RU value of 606, which is equivalent to 0.7mg of recombinant protein/liter of COS cell supernatant. These values represent relatively high levels of expression.

20

30

15

Purification of COS Supernatants: As with Ang-1-FD-Fc-FD, Ang-2-FD-Fc-FD protein contains an Fc domain, so purification is relatively simple and straight forward using standard Protein A column chromatography followed by standard size exclusion chromatography. The COS cell supernatant was purified as described for Ang-1-FD-Fc-FD supra and yielded approximately 2 mg of purified Ang-2-FD-Fc-FD protein that was used in the studies described *infra* to further characterize this protein.

N-terminal sequencing: Purified COS cell-derived Ang-2-FD-Fc-FD protein was subjected to standard N-terminal sequence analysis to determine if any truncated species of the protein were being generated. The analysis revealed only one N-terminal sequence, Arg-Asp-X-Ala-Glu, wherein X is Cys. This

20

25

sequence can be found at amino acids 16-20 of Figure 4A, and immediately follows the protein's signal sequence corresponding to amino acids 1-15 of Figure 4A.

Receptor binding analysis of COS cell-derived protein: To determine whether the COS cell-derived Ang-2-FD-Fc-FD protein could bind to the Tie-2 receptor, standard Biacore analysis was performed as described for Ang-1-FD-Fc-FD supra. As with Ang-1-FD-Fc-FD, a high salt wash was not able to disrupt the interaction between the Ang-2-FD-Fc-FD protein and the Tie-2-Fc receptor, again implying that there is a strong interaction between mutant ligand and receptor.

Example 4: Effects of COS cell-derived Ang-1-FD-Fc-FD and Ang-2-FD-Fc-FD on Tie-2 receptor phosphorylation in EAhy926 cells.

Because Ang-1-FD-Fc-FD is a mutant molecule derived from the agonist angiopoietin-1 and Ang-2-FD-Fc-FD is a mutant molecule derived from the antagonist angiopoietin-2, we wanted to determine whether or not these two mutant molecules would retain the activity associated with the parent molecule from which it was derived.

Assay system: All of the experiments described *infra* utilized the cell line EAhy926 (Edgell, C. J., et al., (1983) Proc. Natl. Acad. Sci. USA <u>80</u>:3734-3737) and standard phosphorylation assays and reagents familiar to those of skill in the art.

(A) Ang1*-mediated vs. Ang-1-FD-Fc-FD-mediated Tie-2 receptor phosphorylation in EAhy926 cells: EAhy926 cells were stimulated with either 0.1 μ g/ml, 0.2 μ g/ml, or 0.8 μ g/ml Ang1* or Ang-1-FD-Fc-FD protein. A standard phosphorylation assay revealed that Ang-1-FD-Fc-FD was equivalent to Ang1* in its ability to stimulate phosphorylation of the Tie-2 receptor in EAhy926 cells (Figure 9).

(B) Ability of Ang-2-FD-Fc-FD to block Ang1*-mediated Tie-2 receptor phosphorylation in EAhy926 cells: EAhy926 cells were treated with 0.4 μg/ml of the Tie-2 agonist Ang1* and 1 μg/ml, 2 μg/ml, 4 μg/ml. 6 μg/ml, or 8 μg/ml of Ang-2-FD-Fc-FD. As shown in Figure 10, Ang-2-FD-Fc-FD is able to block Ang1* stimulation of the Tie-2 receptor when it is present in at least a 10-15 fold molar excess of Ang1*.

(C) Ability of angiopoietin-2 to block Ang1*-mediated Tie-2 receptor

phosphorylation in EAhy926 cells: To compare the blocking effects of the naturally occurring antagonist angiopoietin-2 with that of Ang-2-FD-Fc-FD, the same experiment described in (B) supra was performed, substituting angiopoietin-2 for Ang-2-FD-Fc-FD. The results of this experiment are shown in Figure 11. At a 20 fold molar excess, the angiopoietin-2 has not reduced the phosphorylation level to 50%. This result, coupled with the results described in (B) supra implies that Ang-2-FD-Fc-FD is a more potent inhibitor or Ang1*-mediated Tie-2 receptor phosphorylation than angiopoietin-2.

- 20 (D) Ability of Ang-2-FD-Fc-FD to block angiopoietin-1-mediated phosphorylation of the Tie-2 receptor in EAhy926 cells: EAhy926 cells were treated with 0.2 μg/ml of the naturally occurring Tie-2 agonist angiopoietin-1 and 1 μg/ml, 2 μg/ml, 4 μg/ml. 6 μg/ ml, or 8 μg/ml of Ang-2-FD-Fc-FD. The results of this experiment, shown in Figure 12, show that while there is a trend toward blocking angiopoietin-1-mediated phosphorylation of the Tie-2 receptor in these cells, Ang-2-FD-Fc-FD seems to be more effective at blocking Ang1*-mediated phosphorylation of Tie-2, as shown in Figure 10 and described in (B) supra.
- (E) Ability of angiopoietin-2 to block angiopoietin-1-mediated

 phosphorylation of the Tie-2 receptor in EAhy926 cells: EAhy926 cells were treated with 0.2 μg/ml of the angiopoietin-1 and 1 μg/ml, 2 μg/ml, 4 μg/ml,

6 μg/ ml, or 8 μg/ml of angiopoietin-2. The results of this experiment, shown in Figure 13, show that there is a trend toward blocking angiopoietin-1-mediated phosphorylation of the Tie-2 receptor in these cells, but, like Ang-2-FD-Fc-FD, angiopoietin-2 seems to be more effective at blocking Ang1*-mediated phosphorylation of Tie-2, as shown in Figure 11 and described in (C) *supra*.

Example 5: Construction of Ang-1-FD-Fc-FD CHO cell expression vector pRG763/Ang-1-FD-Fc-FD.

The pRG763/Ang-1-FD-Fc-FD CHO cell expression vector was constructed by isolating from the plasmid pCDNA3.1/Ang1-FD-Fc-FD a 2115 base pair EcoRI - NotI fragment containing Ang1-FD-Fc-FD and ligating this fragment into pRG763 vector digested with EcoRI and NotI. A large scale (2L) culture of E. coli DH10B cells carrying the pRG763/Ang-1-FD-Fc-FD plasmid was grown overnight in TB + ampicillin and the plasmid DNA was extracted using a Promega Wizard Plus Maxiprep kit, following the manufacturer's protocol. The concentration of the purified plasmid DNA was determined in a UV spectrophotometer and fluorometer. The plasmid DNA was verified by digestion of aliquots with NcoI and HincII restriction enzymes. All restriction enzyme digest fragments corresponded to the predicted sizes in a 1% agarose gel.

Example 6: Expression of Ang-1-FD-Fc-FD in CHO cells.

25

10

15

Forty 15 cm petri plates were seeded with CHO-K1/E1A cells at a density of 4 x 10^6 cells/plate. Plating media was Gibco Ham's F-12 w/10% Hyclone Fetal Bovine Serum (FBS) + penicillin/streptomycin and supplemented with glutamine. The following day each plate was transfected with 6 μ g of pRG763/Ang-1-FD-Fc-FD using Gibco Optimem and Gibco Lipofectamine in 12 ml volume, following the manufacturer's protocol. Four hours after adding the transfection mix to the cells 12 ml/plate of Optimem w/ 10%

10

FBS was added. Plates were incubated at 37°C in a 5% CO₂ incubator overnight. The following day the media was removed from each plate and 25 ml expression media (Gibco CHO-S-SFM II w/ glutamine + 1mM sodium butyrate) was added. The plates were incubated at 37°C for 3 days. After 3 days of incubation the media was aspirated from each plate and centrifuged at 400 rpm in a swinging bucket rotor to pellet cells. The supernatant was decanted into sterile 1L bottles and purified as described *infra*.

Example 7: Construction of Ang-2-FD-Fc-FD CHO cell expression vector pRG763/Ang-2-FD-Fc-FD.

The plasmid pRG763/Ang-2-FD-Fc-FD was constructed by isolating from the plasmid pCDNA3.1/Ang-2-FD-Fc-FD a 2097 base pair EcoRI - NotI fragment containing Ang-2-FD-Fc-FD and ligating this fragment into the pRG763 vector digested with EcoRI and NotI. A large scale (1L) culture of E. coli DH10B cells carrying the pRG763/Ang-2-FD-Fc-FD plasmid was grown overnight in TB + ampicillin and the plasmid DNA was extracted using a Promega Wizard Plus Maxiprep kit, following the manufacturer's protocol. The concentration of the purified plasmid DNA was determined in a UV spectrophotometer and fluorometer. The plasmid DNA was also verified by digestion of plasmid DNA with NcoI and Ppu10I restriction enzymes. All restriction enzyme digest fragments corresponded to the predicted sizes in a 1% agarose gel.

25 Example 8: Expression of Ang-2-FD-Fc-FD in CHO cells.

Forty 15 cm petri plates were seeded with CHO-K1/E1A cells at a density of 4 x 106 cells/plate. Plating media was Gibco Ham's F-12 w/10% Hyclone Fetal Bovine Serum (FBS) + penicillin/streptomycin and supplemented with glutamine. The following day each plate was transfected with 6 µg of pRG763/Ang-2-FD-Fc-FD using Gibco Optimem and Gibco Lipofectamine in 12 ml volume, following the manufacturer's protocol. Four hours after

adding the transfection mix to the cells 12 ml/plate of Optimem w/ 10% FBS was added. Plates were incubated at 37°C in a 5% CO₂ incubator overnight. The following day the media was removed from each plate and 25 ml expression media (Gibco CHO-S-SFM II w/ glutamine + 1mM sodium butyrate) was added. The plates were incubated at 37°C for 3 days. After 3 days of incubation the media was aspirated from each plate and centrifuged at 400 rpm in a swinging bucket rotor to pellet cells. The supernatant was decanted into sterile 1L bottles purified as described infra.

Example 9: Characterization of stable CHO clone-derived Ang-1-FD-Fc-FD protein.

Molecular Weight Analysis: The predicted molecular weight for stable CHO clone-derived Ang-1-FD-Fc-FD protein was determined using the MacVector Program (Kodak, Scientific Imaging Systems, New Haven, CT) The monomeric form (with respect to the Fc) has a predicted weight of 76,349. In addition, there are three predicted N-linked glycosylation sites, approximately 2500 MW/site, that could potentially increase the molecular weight of the monomeric protein to 83,849. Due to the interaction between 20 the Fc components of adjacent molecules, the protein actually exists as a dimer with a predicted molecular weight, including possible N-linked glycosylation, of 167,698. Subsequent SDS PAGE analyses confirmed these approximate molecular weights, with a band running at about 210kD under non-reducing conditions and a band running at about 85kD under reducing 25 conditions. Light scatter analysis was performed to further confirm the molecular weight and, more importantly, determine whether or not the protein was a homogeneous species. Light scattering is a function of mass and concentration of a macromolecule. To determine molecular weight, the protein sample was injected onto a gel filtration column and the effluent was monitored with an on line light scattering detector and a 30 refractive index and/or a UV detector. The light scattering detector is a MiniDawn laser light scattering detector was from Wyatt Technology

Corporation (Santa Barbara, CA). This instrument measures static light at three different angles. The on line refractive index detector or UV detector serve to measure protein concentration. Astra 4.7 Software (Wyatt Technology Corporation, Santa Barbara, CA) was used to calculate the protein concentration based on either dn/dc (dn = change of refractive index; dc = concentration) or the extinction coefficient of the protein. The molecular weight of protein is then calculated from the angular dependence of light scattering. The results of this analysis show that the dimeric protein appears to be approximately 173.9kD and the presence of a single peak implies that the protein solution is homogenous.

Expression level of Ang-1-FD-Fc-FD in stable CHO clones: CHO cell supernatant containing recombinant Ang-1-FD-Fc-FD protein was generated by stably transfecting CHO cells with the Ang-1-FD-Fc-FD DNA construct described *supra*. The CHO cell supernatant was analyzed by standard ELISA using an anti-human IgG antibody as a capture antibody and an anti-human IgG antibody conjugated to alkaline phosphatase as a reporter antibody to quantitate the amount of Ang-1-FD-Fc-FD protein present in the supernatant. This analysis revealed expression levels of 2-3 pg/cell/day.

20

30

10

15

Purification of Ang-1-FD-Fc-FD protein derived from stable CHO clone supernatants: Because the Ang-1-FD-Fc-FD protein contains an Fc domain, purification is relatively simple and straight forward using standard Protein A column chromatography (Pharmacia, Inc.) followed by standard size exclusion chromatography (Pharmacia, Inc.). The CHO cell supernatant was purified as described *supra* and the purified ANG-1-FD-Fc-FD protein was used in the studies described *infra* to further characterize the protein.

N-terminal sequencing of stable CHO clone-derived Ang-1-FD-Fc-FD protein: Purified Ang-1-FD-Fc-FD protein was subjected to standard N-terminal sequence analysis to determine if any truncated species of the protein were being generated. The analysis revealed only one N-terminal

sequence, Arg-Asp-X-Ala-Asp, wherein X is Cys. This sequence can be found at amino acids 16-20 of Figure 3A, and immediately follows the protein's signal sequence corresponding to amino acids 1-15 Figure 3A.

Example 10: Characterization of stable CHO clone-derived Ang-2-FD-Fc-FD protein.

Molecular Weight Analysis: As described for stable CHO clone-derived Ang-1-FD-Fc-FD supra, the predicted molecular weight for stable CHO 10 clone-derived Ang-2-FD-Fc-FD protein was determined using the MacVector Program (Kodak, Scientific Imaging Systems, New Haven, CT). The monomeric form of Ang-2-FD-Fc-FD has a predicted weight of 76,052, with three predicted N-linked glycosylation sites that could potentially increase the molecular weight of the monomeric protein to 83,552. Like 15 Ang-1-FD-Fc-FD, the protein exists as a dimer with a predicted molecular weight, including possible N-linked glycosylation, of 167,104. SDS PAGE analyses confirmed these approximate molecular weights, with a band running at about 200kD under non-reducing conditions and a band running at about 85kD under reducing conditions. Light scatter analysis confirmed the molecular weight (176.6kD) and revealed that the stable CHO clonederived Ang-2-FD-Fc-FD protein, like stable CHO clone-derived Ang-1-FD-Fc-FD, exists as a homogeneous species.

Expression level of Ang-2-FD-Fc-FD derived from stable CHO clones: CHO
cell supernatant containing recombinant Ang-2-FD-Fc-FD protein was
generated by stably transfecting CHO cells with the Ang-2-FD-Fc-FD DNA
construct described supra. The CHO cell supernatant was analyzed by
standard ELISA using an anti-human IgG antibody as a capture antibody
and an anti-human IgG antibody conjugated to alkaline phosphatase as a
reporter antibody to quantitate the amount of Ang-2-FD-Fc-FD protein
present in the supernatant. This analysis revealed expression levels of
approximately 1-2 pg/cell/day.

Purification of stable CHO clone-derived Ang-2-FD-Fc-FD from cell

supernatants: As with Ang-1-FD-Fc-FD, Ang-2-FD-Fc-FD protein contains an Fc domain, so purification is relatively simple and straight forward using standard Protein A column chromatography followed by standard size exclusion chromatography. The CHO cell supernatant was purified as described for stable CHO clone-derived Ang-1-FD-Fc-FD supra and was used in the studies described infra to further characterize this protein.

N-terminal sequencing of stable CHO clone-derived Ang-2-FD-Fc-FD

protein: Purified stable CHO clone-derived Ang-2-FD-Fc-FD protein was subjected to standard N-terminal sequence analysis to determine if any truncated species of the protein were being generated. The analysis revealed only one N-terminal sequence, Asp-X-Ala-Glu-Val, wherein X is Cys. This sequence can be found at amino acids 17-21 of Figure 4A, and immediately follows the protein's signal sequence corresponding to amino acids 1-15 of Figure 4A.

Example 11: Effects of stable CHO clone-derived Ang-1-FD-Fc-FD and Ang-2-FD-Fc-FD on Tie-2 receptor phosphorylation in EAhy926 cells.

20

10

Assay system: All of the experiments described *infra* utilized the cell line EAhy926 (Edgell, C. J., et al., (1983) Proc. Natl. Acad. Sci. USA <u>80</u>:3734-3737) and standard phosphorylation assays and reagents familiar to those of skill in the art.

25

30

(A) Ang1*-mediated vs. stable CHO clone-derived Ang-1-FD-Fc-FD-mediated Tie-2 receptor phosphorylation in EAhy926 cells: EAhy926 cells were stimulated with 0.4 μ g/ml Ang1* or 0.2 μ g/ml or 0.4 μ g/ml stable CHO clone-derived Ang-1-FD-Fc-FD protein. A standard phosphorylation assay revealed that or stable CHO clone-derived Ang-1-FD-Fc-FD was equivalent to Ang1* in its ability to stimulate phosphorylation of the Tie-2 receptor in EAhy926 cells (Figure 17).

(B) Ability of stable CHO clone-derived Ang-2-FD-Fc-FD to block stable CHO clone-derived Ang-1-FD-Fc-FD-mediated Tie-2 receptor phosphorylation in EAhy926 cells: EAhy926 cells were treated with 0.2 μg/ml of the Tie-2 agonist Ang-1-FD-Fc-FD and 2 μg/ml, 4 μg/ml, 8 μg/ml or 16 μg/ml of stable CHO clone-derived Ang-2-FD-Fc-FD. As shown in Figure 18, Ang-2-FD-Fc-FD is able to block stable CHO clone-derived Ang-1-FD-Fc-FD stimulation of the Tie-2 receptor when it is present in at least a 40 fold molar excess of stable CHO clone-derived Ang-1-FD-Fc-FD.

10

Ephrin ligands:

In previous experiments (Davis et al., 1994, Science, 266:816-819; Gale et al., 1996, Neuron 17:9-19, Gale and Yancopoulos, 1997, Cell Tissue Research 290:227-241), soluble, unclustered Ephrin-B1-Fc and Ephrin-B2-Fc, which 15 dimerize at their respective Fc domains and therefore are dimeric with respect to either the Ephrin-B1 or Ephrin-B2 ectodomain, failed to induce EphB2 receptor phosphorylation. However, when either molecule was multimerized by pre-clustering with an anti-Fc antibody, they became 20 potent agonists for the EphB2 receptor, as judged by tyrosine phosphorylation of the EphB2 receptor in a COS cell reporter assay. Because multimerization of both Ephrin-B1 and Ephrin-B2 appears to be necessary for induction of receptor phosphorylation, we theorized that a molecule that contained tandem repeats of either Ephrin-B1 or Ephrin-B2 ectodomains fused to an Fc domain, which would be dimeric with respect to the Fc domain but which would be tetrameric with respect to Ephrin ectodomains, might be sufficiently clustered to induce receptor phosphorylation. To test this hypothesis, the following DNA constructs were constructed, recombinant proteins produced, and reporter assays 30 performed.

Construction of tandem Ephrin ectod main/Fc domain nucleic acid molecules.

All of the following nucleic acid molecules were constructed by standard recombinant DNA techniques (See e.g., Molecular Cloning, A Laboratory Manual (Sambrook, et al., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY), Current Protocols in Molecular Biology (Eds. Ausubel, et al., Greene Publ. Assoc., Wiley-Interscience, NY), sequence-verified by standard techniques using an ABI 373A DNA sequencer and Taq Dideoxy Terminator Cycle Sequencing Kit (Applied Biosystems, Inc., Foster City, CA), and subcloned into either the mammalian expression pJFE14 (Ephrin-B1-Ephrin-B1-Fc) or pMT21 (Ephrin-B2-Ephrin-B2-Fc), each with a Kozak sequence (Kozak, M., 1987, Nucleic Acids Res. 15:8125-8148) at the 5' end to promote protein translation. The bridging sequences described infra were introduced to provide convenient restriction sites and to give flexibility to the junctions between the domains, but there is no indication that there is a very critical nature to these bridging sequences (though varying the length of the linker in some of these constructs led to some variation in the amount of protein produced).

20

Example 12: Construction of Ephrin-B1-Ephrin-B1-Fc and Ephrin-B2-Ephrin-B2-Fc nucleic acid molecules.

(A) Ephrin-B1-Ephrin-B1-Fc: The Ephrin-B1-Ephrin-B1-Fc DNA molecule consists of the coding sequence of the ectodomain of Ephrin-B1 (Davis et al., ibid.), which corresponds to nucleotides 1-711 of Figure 14A-Figure 14B, followed by a bridging sequence consisting of the amino acids Gly-Pro-Gly (nucleotides 712-720 of Figure 14B), followed by a second copy of the ectodomain of Ephrin-B1 (corresponding to nucleotides 721-1344 of Figure 14B-Figure 14D), except that in this copy of the Ephrin-B1 ectodomain the signal sequence has been removed. This second copy is followed by a second Gly-Pro-Gly amino acid bridge (nucleotides 1345-1353 of Figure 14D),

followed by the coding sequence for the Fc portion of human IgG1 (nucleotides 1354-2049 of Figure 14D-Figure 14E).

(B) Ephrin-B2-Ephrin-B2-Fc: The Ephrin-B2-Ephrin-B2-Fc DNA molecule consists of the coding sequence of the ectodomain of Ephrin-B2 (Bergemann et al., 1995, Mol. Cell Biol. 15:4821-4929), which corresponds to nucleotides 1-675 of Figure 15A-Figure 15B, followed by a bridging sequence consisting of the amino acids Gly-Pro-Gly (nucleotides 676-684 of Figure 15B), followed by a second copy of the ectodomain of Ephrin-B2 (corresponding to nucleotides 685-1270 of Figure 15B-Figure 15D), except that in this copy the signal sequence has been removed. This second copy is followed by a second Gly-Pro-Gly amino acid bridge (nucleotides 1270-1278 of Figure 15D), followed by the coding sequence for the Fc portion of human IgG1 (nucleotides 1279-1977 of Figure 15D-Figure 15E).

15

10

5

As with the angiopoietin nucleic acid molecules described *supra*, the bridging sequences were introduced to provide convenient restriction sites and to give flexibility to the junctions between the domains.

20 <u>Example 13: Expression of tandem Ephrin recombinant proteins in COS</u> cells.

COS cells were transiently transfected with either the Ephrin-B1-Ephrin-B1-Fc or Ephrin-B2-Ephrin-B2-Fc nucleic acid molecules described *supra* using standard transfection techniques known in the art. Two days subsequent to transfection, the growth medium (DMEM supplemented with 100 U/ml penicillin, 100 µg/ml streptomycin, 2 mM glutamine, and 10% calf serum) was aspirated and replaced with serum-free medium (DMEM supplemented with 100 U/ml penicillin, 100 µg/ml streptomycin, 2 mM glutamine). Cell were grown for an additional three days and then the serum-free medium containing the recombinant proteins was collected. Recombinant protein concentration was determined by performing dot blots and comparing the

signal obtained to a standard curve. Once approximate protein concentrations were determined, the Ephrin-B1-Ephrin-B1-Fc and Ephrin-B2-Ephrin-B2-Fc recombinant proteins were used in the cell reporter assays described *infra*.

5

15

25

Example 14: Characterization of the COS cell-derived tandem Ephrin ectodomain/Fc domain recombinant proteins.

Reporter Assay: COS cells, which endogenously express the Eph family receptor EphB2 (Gale et al., 1996, Neuron 17:9-19), were used in reporter assays to evaluate the ability of Ephrin-B1-Ephrin-B1-Fc and Ephrin-B2-Ephrin-B2-Fc to induce receptor phosphorylation. The assays were performed as previously described (Davis et al., ibid.; Gale et al., ibid.). Briefly, COS cells were grown to 80-90% confluency in standard growth medium described supra. After growth, the medium was aspirated, and replaced with serum-free medium (described supra) for 1-2 hours prior to treatment with either Ephrin-B1-Ephrin-B1-Fc or Ephrin-B2-Ephrin-B2-Fc recombinant protein. The cells were stimulated with 500 ng/ml Ephrin-B1-Ephrin-B1-Fc or Ephrin-B2-Ephrin-B2-Fc for 30 minutes at 37°C, with or without affinity purified human IgG1 Fc-specific goat anti-human antibody (Jackson Immunoresearch, West Grove, PA) at a final concentration of 17 μ g/ml. This antibody is capable of clustering the Fc tagged fusion. Subsequent to treatment, the COS cells were harvested and cell lysates were prepared as described in Davis, et al. and Gale, et al., supra. The EphB2 receptor protein was immunoprecipitated from the cell lysates using an anti-EphB2 antisera (Henkemeyer et al., 1994, Oncogene 9:1001-1014). Immunoprecipitates were resolved by standard SDS PAGE and transferred to PVDF membranes (Millipore) for western blot analysis. The membranes were probed with either anti-phosphotyrosine antibody 4G10 (Upstate Biotechnology Institute, Lake Placid, NY) or anti-EphB2 antibodies (Henkemeyer, et al., ibid.) to determine the extent of EphB2

phosphorylation and the relative quantities of EphB2 in the experimental conditions described *supra*.

Results: Both Ephrin-B1-Ephrin-B1-Fc and Ephrin-B2-Ephrin-B2-Fc were shown to be approximately as active as anti-Fc antibody-clustered Ephrin-B1-Fc in their ability to induce EphB2 receptor phosphorylation in the COS cell reporter assay. Furthermore, if either of the proteins were further clustered with the goat anti-human Fc antibody, they became even more potent in their ability to induce EphB2 receptor phosphorylation. Figure 16 shows the results of this phosphorylation assay.

Example 15: Construction of Ephrin-B2-Ephrin-B2-Fc CHO expression vector.

- The Ephrin-B2-Ephrin-B2-Fc DNA molecule consists of the coding sequence of the ectodomain of Ephrin-B2 (Bergemann et al., 1995, Mol. Cell Biol. 15:4821-4929), which corresponds to nucleotides 1-675 of Figure 15A-Figure 15B, followed by a bridging sequence consisting of the amino acids Gly-Pro-Gly (nucleotides 676-684 of Figure 15B), followed by a second copy of the 20 ectodomain of Ephrin-B2 (corresponding to nucleotides 685-1270 of Figure 15B-Figure 15D), except that in this copy the signal sequence has been removed. This second copy is followed by a second Gly-Pro-Gly amino acid bridge (nucleotides 1270-1278 of Figure 15D), followed by the coding sequence for the Fc portion of human IgG1 (nucleotides 1279-1977 of Figure 25 15D-Figure 15E). This molecule was subcloned into the HindIII and NotI polylinker sites in the expression vector pRG763 and was designated pRG763-m(Ephrin-B2)2-Fc. As with the angiopoietin nucleic acid molecules described supra, the bridging sequences were introduced to provide convenient restriction sites and to give flexibility to the junctions between 30 the domains.
 - 44

Example 16: Expression of Ephrin-B2-Ephrin-B2-Fc in CHO-K1 (E1A) cells.

Forty 15 cm petri plates were seeded with CHO-K1/E1A cells at a density of 4 x 106 cells/plate. Plating media was Gibco Ham's F-12 w/10% Hyclone Fetal Bovine Serum (FBS) + penicillin/streptomycin and supplemented with glutamine. The following day each plate was transfected with 6 µg of pRG763-m(Ephrin-B2)2-Fc using Gibco Optimem and Gibco Lipofectamine in 12 ml volume, following the manufacturer's protocol. Four hours after adding the transfection mix to the cells 12 ml/plate of Optimem w/ 10% FBS was added. Plates were incubated at 37°C in a 5% CO₂ incubator overnight. The following day the media was removed from each plate and 25 ml expression media (Gibco CHO-S-SFM II w/ glutamine + 1mM sodium butyrate) was added. The plates were incubated at 37°C for 3 days. After 3 days of incubation the media was aspirated from each plate and centrifuged at 400 rpm in a swinging bucket rotor to pellet cells. The supernatant was

decanted into sterile 1L bottles and purified as described supra.

WHAT IS CLAIMED IS:

- 1. A nucleic acid encoding a fusion polypeptide wherein the fusion polypeptide comprises a first subunit comprising at least one copy of the receptor binding domain of a ligand, the first subunit being fused to the N-terminal end of a multimerizing component, said multimerizing component being fused at its C-terminal end to a second subunit comprising at least one copy of the receptor binding domain of a ligand.
- The nucleic acid of claim 1, wherein the receptor binding domains of the first and second subunits are copies of the receptor binding domain of the same ligand.
- 3. The nucleic acid of claim 1, wherein the receptor binding domains of the first subunit are copies of the receptor binding domain of a different ligand from the receptor binding domains of the second subunit.
 - 4. The nucleic acid of claim 2, wherein the first and second subunits each have one copy of the receptor binding domain of the ligand.
 - 5. The nucleic acid of claim 3, wherein the first and second subunits each have one copy of the receptor binding domain of the ligand.
 - 6. The nucleic acid of claim 2, wherein the receptor binding domain is the fibrinogen domain of angiopoietin-1 or angiopoietin-2.
 - 7. The nucleic acid of claim 4, wherein the receptor binding domain is the fibrinogen domain of angiopoietin-1 or angiopoietin-2.

- 8. The nucleic acid of claim 2, wherein the ligand is selected from the group consisting of the EPH family of ligands.
- 9. The nucleic acid of claim 4, wherein the ligand is selected from the group consisting of the EPH family of ligands.
- 10. The nucleic acid of claims 1 through 9, wherein the multimerizing component comprises an immunoglobulin derived domain.
- 11. The nucleic acid molecule of claim 10, wherein the immunoglobulin derived domain is selected from the group consisting of the Fc domain of IgG, the heavy chain of IgG, and the light chain of IgG.
- 12. A fusion polypeptide encoded by the nucleic acid molecule of claims 1 through 11.
- 13. A composition comprising a multimer of the fusion polypeptide of claim 12.
- 14. The composition of claim 13, wherein the multimer is a dimer.
- 15. A vector which comprises the nucleic acid molecule of claims 1 through 11.
- 16. An expression vector comprising a nucleic acid molecule of claims 1 through 11, wherein the nucleic acid molecule is operatively linked to an expression control sequence.
- 17. A host-vector system for the production of a fusion polypeptide which comprises the expression vector of claim 16, in a suitable host cell.

- 18. The host-vector system of claim 17, wherein the suitable host cell is a bacterial cell, yeast cell, insect cell or mammalian cell.
- 19. The host-vector system of claim 17, wherein the suitable host cell is E. coli.
- 20. The host-vector system of claim 17, wherein the suitable host cell is a COS cell.
- 21. The host-vector system of claim 17, wherein the suitable host cell is a CHO cell.
- 22. A method of producing a fusion polypeptide which comprises growing cells of the host-vector system of claims 17 through 21, under conditions permitting production of the fusion polypeptide and recovering the polypeptide so produced.
- 23. A nucleic acid encoding a fusion polypeptide wherein the fusion polypeptide comprises more than one copy of the receptor binding domain of a ligand in tandem, and wherein either the N-terminal or the C-terminal receptor binding domain is also fused to a multimerizing component.
- 24. The nucleic acid of claim 23, wherein the receptor binding domains are fused contiguously.
- 25. The nucleic acid of claim 23, wherein the ligand is not a member of the EPH family of ligands.
- 26. The nucleic acid of claim 24, wherein the ligand is not a member of

- the EPH family of ligands.
- 27. The nucleic acid of claim 23, wherein the receptor binding domain is the fibrinogen domain of angiopoietin-1 or angiopoietin-2.
- 28. The nucleic acid of claim 24, wherein the receptor binding domain is the fibrinogen domain of angiopoietin-1 or angiopoietin-2.
- 29. The nucleic acid of claims 23 through 28, wherein the multimerizing component comprises an immunoglobulin derived domain.
- 30. The nucleic acid molecule of claim 29, wherein the immunoglobulin derived domain is selected from the group consisting of the Fc domain of IgG, the heavy chain of IgG, and the light chain of IgG.
- 31. A fusion polypeptide encoded by the nucleic acid molecule of claims 23 through 30.
- 32. A composition comprising a multimer of the fusion polypeptide of claim 31.
- 33. The composition of claim 32, wherein the multimer is a dimer.
- 34. A vector which comprises the nucleic acid molecule of claims 23 through 30.
- 35. An expression vector comprising a nucleic acid molecule of claims 23 through 30, wherein the nucleic acid molecule is operatively linked to an expression control sequence.

36. A host-vector system for the production of a fusion polypeptide which comprises the expression vector of claim 35, in a suitable host cell.

- 37. The host-vector system of claim 36, wherein the suitable host cell is a bacterial cell, yeast cell, insect cell or mammalian cell.
- 38. The host-vector system of claim 36, wherein the suitable host cell is <u>E. coli</u>.
- 39. The host-vector system of claim 36, wherein the suitable host cell is a COS cell.
- 40. The host-vector system of claim 36, wherein the suitable host cell is a CHO cell.
- 41. A method of producing a fusion polypeptide which comprises growing cells of the host-vector system of claims 36 through 40, under conditions permitting production of the fusion polypeptide and recovering the polypeptide so produced.

1/42 Figure 1A

					Figu	re 1	.A							
		:	10			20			30		_	4	0	
N TYC	an Curr	GC A	e Corr	CTG	ATC.	CTA	GCT	CTT.	لملئ	ADD	GCT	GCA	GTT	GCT
Met	Ser	Ala	Leu	Leu	Ile	Leu	Ala	Leu	Val	Gly	Ala	Ala	Val	Ala>
	a		a	a_TRY	PSI	N SI	GNAL	SEQ	UENC	E	a	aa	،ر	·>
								20			80			90
	50		*	60		*		70 *			*		*	*
AGA	GAC	TGT	GCA	GAT	GTA	TAT	CAA	GCT	GGT	TTT	TAA	AAA	AGT	GGA
Arg	qaA	Суя	Ala	Asp	Val	Tyr	Gln	Ala	Gly	Phe	Asn	Lys	Ser	Gly>
	p	p	p	ANG1	FIB	RINO	GEN-	LIKE	DON	AIN_	.b	b	ь	b>
		,	.00			110			120	3		1	30	
	*		*	*		*		*		t	•		•	•
ATC	TAC	ACT	TTA	TAT	ATT	LAA '	' AA	OTA 7	CC	A GA	CCC	AAA	. AAG	GTG
Ile	Tyr	Thi	: Ile	Tyr	Ile	: Asn	ASI	Met	Pro	GIL VATN	Pro	Lys h	Lys h	Val> _b>
	D	.Б		_ANGI	FLE	SKTNC	V2EW.	-DIVI	יטעיב	WITH.		ــــــــــــــــــــــــــــــــــــــ	.–	
	140			150			:	160			170			180
	*		*	. *		*		*		*	*		*	*
TTT	TGC	: AA	T ATC	GAT	GT	C AAT	r GG	G GG	A GG	T TG	G AC	r Val	1 AT	A CAA = Gln>
Pne	b b	b b	b b	ANG1	, va.	BRIN	OGEN	-LIK	E DO	MAIN	_b	_b	_b	_b>
			190			200		_	21	.0		;	220	
CN	יי רכי דר רכי	ተ ርል	א כאי ד	י יים כני		տ Նաև -	A GA	ጥ ጥጥ ጉ	C CA	A AG	A GG	C TG	G AA	G GAA
Hi:	s Ar	a Gl	u Ası	p Gly	, Se	r Le	u As	p Ph	.e G1	n Ar	g Gl	y Tr	р Lу	s Glu>
	_b	_b	_ه_	_ANG	l FI	BRIN	OGEN	-LIK	E DO	MAIN	_b	_b	_b	_b>
	220			24	r N			250			260			270
	230		*	24	*	•		*		*	*		*	*
TA	T AA	A AT	rg gg	T TT	T GG	AA A	T C	C TO	C G	T G	LA TA	T TG	G CI	C GGG
Ту	r Ly	s Me	t Gl	y Ph	e G1	y As	n Pi	o Se	er G	Ly GI	lu Ty	T TI	τρ Le h	u Gly>
-	_¤	_b_	₽	ANG	I FI	PKTV	OGEA	AFIE	Œ D	JUMELI				_b>
			280			290)		3	00			310	
	•		•		•		• 	•		•		t .a. m:	*	*
AA	T GA	G T	r ai	T TI	T G	CC AT	T A	CC A	GT C	AG AI	ra G	NG 17	r Me	rg CTA et Leu>
AS	n c.	b b	_b_	_ANG	1 P	IBRII	NOGE	N-LI	KE D	OMAI	N_b_	b_	_b_	b>
				_										
	320	0		33	30			340			35	0 *	*	360
A.	ים מב ים מב	rr G	AG T	TA AT	rg G	AC T	GG G	AA G	GG A	AC C	GA G	CC T	ат т	CA CAG
A:	ra I	le G	lu L	eu Me	et A	sp T	rp G	lu G	ly F	ısn A	xg A	la T	yr S	er Gln>
	b_	b_	b_	AN	31 F	IBRI	NOGE	N-LI	KE I	IAMO	N_b_	—p_	_b_	b>
			370			38	0		•	90			400	
		•			*		•	•	,	*		*	•	•
T	AT G	AC A	GA T	TC C	AC A	TA G	GA A	AAT G	AA	AAG (AA:	AC I	AT A	GG TTG
Т	yr A	sp A	rg P	he H	is I	le G	ily /	Asn (ilu :	LYS (iln A	isn 1	yr A	rg Leu> b>
-	¤-	D_	—-Б-	AN	GI E	IDK	.14061	514 - D.	LKE	ooran.		~-	~	 -
	41	.0		4	20			430	0		4	10		450
_		•	•		*		•		* *	CC 2		* ግልር፡ ፣	י פר	י • אפר ריזיני
														AGC CTG
T														er Leu>
-	a_	D_	a_	AN	G. F	TOKI	NUGE	74 - T1	. A.C. 1	JOHN 1	.14_D"			b>

2/42 Figure 1B

460		470		480	4	90
• •	•	*	•	•	•	* *
ATC TTA CAC GG	CT G	TTC AGO	ACT	AAA GAS	GCT GAT	AAT GAC
Ile Leu His Gly	/ Ala As	p Phe Ser	Thr	Lys Ası	Ala Asp	AST ASD>
bbb	ANG1 F	BRINOGEN-	LIKE	DOMAIN	b b	b b >
500	510	9	20		530	540
* *	*	*	*	*	*	* *
AAC TGT ATG TG	AAA TO	T GCC CTC	ATG	TTA AC	A GGA GGA	TGG TGG
Asn Cys Met Cy	Lys Cy	s Ala Lei	Met	Leu Th	r Glv Glv	Tro Tro>
bbb	ANG1 P	BRINGEN-	LIKE	DOMAIN	b b	b b >
550		560		570	5	80
• •	*	*	*	•	*	
TTT GAT GCT TG	r GGC C	C TCC AA	CTA	AAT GG	A ATG TTC	TAT ACT
Phe Asp Ala Cy	B Gly P	co Ser Asi	Leu	Asn Gl	v Met Phe	Tur Thry
bbb	ANG1 F	BRINGEN.	-LIKE	DOMAIN	h h	h h >
						<u>.</u>
590	600	(510		620	630
* *	*	•	•	•	*	* *
GCG GGA CAA AA	C CAT G	SA AAA CTY	TAA E	GGG AT	A AAG TOO	ראר חאר
Ala Gly Gln As	n His G	ly Ivs Le) Agn	Gly Tl	e Lve Trr	Wie Tores
bbb	ANG) F	TRRINGEN	-T.TER	DOMATN	h h	h h >
				DOIDLIN		
640		650		660		570
• •	*	*		*	•	* *
TTC AAA GGG CC	ር ልርጥ ጥ	אר יייר ייי	a com	TOC AC	A ACT ATV	ייייי איייי
Phe Lys Gly Pr	o Ser T	ur Ser Le	. y~~	Cor Mb	A ACI AN	S AIG AIT
bbb	ANG1 P	indinocom	L ALG	DOWN THE	I THE ME	r wer lie>
	_rugar c	PULLINGEN	-DIKE	DOMAIN	_66	
680	690		700		710	720
* *	*	*	*	*	*	* *
CGA CCT TTA GA	ጥ ጥጥጥ ር	פכ רכר פר	G CCT	טע האשטיי א	יא כאר ייני	T CC3 C3T
Arg Pro Leu As		JC CCC GC	5 CC1	111 10	in die 10	I GCA GAI
ANG1 FIBRIN	-					
		ly Pro Al	a Pro	>		
		GPAP BR				
	_			· .	a Asn Cv	s Ala Asp>
				_		OGEN>
					I LIDRAN	OGB!\"
730		740		750		760
	*	•	•	*	•	* *
GTA TAT CAA GO	T GGT T	TT AAT AA	A AGT	r GGA A1	ר דאר אר	ייבר דיים יי
Val Tyr Gln Al	a Gly F	he Asn Iv	s Sei	Clv T	le Tur Th	r Tle Tur
ddd	ANG1 F	IBRINGEN	-LTK	TAMOO S		4 4 >
					·	
770	780		790		800	810
. * *				•	•	
ATT AAT AAT A	G CCA C	AA CCC AA	A AA	3 ር ጥር ጥ	ተተ ብርቦ ል	ጥ ልጥር ርኔጥ
Ile Asn Asn Me	t Pro C	lu Pro In	s Lar	R Val Di	ne Cve An	n Met here
ddd	_ANG1 F	IBRINGE	I-LIKI	E DOMATI	nd d	- A A
					·,u	
820		830		840		850
•	•	•	•	*	•	• •
GTC AAT CCC CC						
GTC AAT GGG GG Val Asn Glv Gl	A GGT T	GG ACT GT	A ATA	CAA CA	T CGT GA	A GAT GGA
Val Asn Gly Gl ddd	, ,,,	TO THE VA	1 116	GIN Wi	c A Cl	
aad	_ANG1 F	IBRINOGEN	-IJKE	DOMATE	1 4 4	٠ .

3/42 Figure 1C

860 870	880	890	900
* * *	* *	• • •	*
AGT CTA GAT TTC CAA	AGA GGC TGG AAG GA	A TAT AAA ATG GG	T TTT
Ser Leu Asp Phe Gln	Arg Gly Trp Lys Gl	u Tyr Lys Met Gl	y Phe>
aaAMG1	FIBRINOGEN-LIKE DO	MAIN_ddd	_d>
910	920 93	0 940	
* * *	* *	* * *	*
GGA AAT CCC TCC GGT	GAA TAT TGG CTG GG	G AAT GAG TTT AT	T TTT
Gly Asn Pro Ser Gly	Glu Tyr Trp Leu Gl	y Asn Glu Phe Il	e Phe>
ddANG1	FIBRINOGEN-LIKE DO	MAIN_ddd	_d>
950 960	970	980	990
* * *	• •	* * *	•
GCC ATT ACC AGT CAG	AGG CAG TAC ATG CT	A AGA ATT GAG TT	A ATG
Ala Ile Thr Ser Gln	Arg Gln Tyr Met Le	u Arg Ile Glu Le	u Met>
ddANG1	FIBRINOGEN-LIKE DO	MAIN_ddd	<ه
1000	1010 102	0 1030	
	* *	* * *	* .
GAC TGG GAA GGG AAC	CGA GCC TAT TCA CA	G TAT GAC AGA TT	C CAC
Asp Trp Glu Gly Asn	Arg Ala Tyr Ser Gl	n Tyr Asp Arg Ph	e His>
ddANG1	FIBRINOGEN-LIKE DO	bb_main_d	_d>
1040 1050	1000		
1040 1050	1060	1070	1080
ATA GGA AAT GAA AAG	CAA AAC TAT AGG TT	ነር ጥስጥ ጥጥል አልአ ሶ ር	יים רוארים
Ile Gly Asn Glu Lys	Gln Asn Tvr Arg Le	u Tvr Leu Lve Gl	T CAC
ddANG1	FIBRINOGEN-LIKE DO	MAIN d d d	d >
1090	1100 111	.0 1120	
10T CCC 101 CC1 CC1	* *	• • •	•
ACT GGG ACA GCA GGA Thr Gly Thr Ala Gly	AAA CAG AGC AGC CI	G ATC TTA CAC GG	T GCT
ddANG1	PIBRINOGEN-LIKE DO	u lie leu his Gi	TA TTA
2.72	· · · · · · · · · · · · · · · · · · ·	MAIN_UUU_	>
1130 1140	1150	1160	1170
* * *	* *	• • •	*
GAT TTC AGC ACT AAA	GAT GCT GAT AAT G	LC AAC TGT ATG TO	GC AAA
Asp Phe Ser Thr Lys	ASP ALA ASP ASN AS	p Asn Cys Met Cy	/s Lys>
uunwer	FIBRINOGEN-LIKE DO	main_aaa_	_a,>
1180	1190 120	1210	
* * *	• •	• •	•
TGT GCC CTC ATG TTA	ACA GGA GGA TGG TG	G TTT GAT GCT TO	GT GGC
Cys Ala Leu Met Leu	Thr Gly Gly Trp T	rp Phe Asp Ala Cy	ys Gly>
aaANG1	FIBRINOGEN-LIKE DO	dddd	a>
1220 1230	1240	1250	1260
• •	* *		•
CCC TCC AAT CTA AAT	GGA ATG TTC TAT A	T GCG GGA CAA A	AC CAT
Pro Ser Asn Leu Asn	Gly Met Phe Tyr T	hr Ala Gly Gln As	sn His>
dddANG1	FIBRINOGEN-LIKE D	_bb_nramc	d>

4/42 Figure 1D

GGA AAA CTG AAT GGG ATA AAG TGG CAC TAC TTC AAA GGG CCC AGT Gly Lys Leu Asn Gly Ile Lys TTP His Tyr Phe Lys Gly Pro Sery			127	0		12	80		1	1290			130	0	
Gly Lys Leu Asn Gly I Le Lys TTP His TYP Phe Lys Gly Pro Ser>		*		•	•		•		•	•		*		*	*
1310 1320 1330 1340 1350	GGA .	AAA	CTG	AAT	GGG	ATA	AAG	TGG	CAC	TAC	TTC	AAA	GGG	CCC	AGT
TAC TCC TTA CGT TCC ACA ACT ATG ATG ATT CGA CCT TTA GAT TTT TYY SER LEU ARG SER THY THY MET MET LIE ARG PYO LEU ASP PHEN- d_d_d_ANGI FIBRINOGEN-LIKE DOMAIN_d_d_d_d_ 1360 1370 1380 1390 GGA CCG GGC GAG CCC AAA TCT TGT GAC AAA ACT CAC ACA TGC CCA Gly PYO Gly> ———————————————————————————————————	GIA.	Lys	Leu	Asn	Gly	Ile	Lys	Trp	His	Tyr	Phe	Lys	Gly	Pro	Ser>
TAC TCC TTA CGT TCC ACA ACT ATG ATG ATT CGA CCT TTA GAT TTT TYY Ser Leu Arg Ser Thr Thr Met Met Ile Arg Pro Leu Asp Phe> d_d_d_ANGI FIBRINGGEN-LIKE DOMAIN_d_d_d_d_d_ 1360 1370 1380 1390 GGA CCG GGC GAG CCC AAA TCT TGT GAC AAA ACT CAC ACA TGC CCA Gly Pro Gly> Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro>	—_а		·c	·	ANG1	FIBE	SINOC	EN-I	LIKE	DOM	IN_c	t	1d	a	\>
TAC TCC TTA CGT TCC ACA ACT ATG ATG ATT CGA CCT TTA GAT TTT TYY Ser Leu Arg Ser Thr Thr Met Met Ile Arg Pro Leu Asp Phe> d_d_d_ANGI FIBRINGGEN-LIKE DOMAIN_d_d_d_d_d_ 1360 1370 1380 1390 GGA CCG GGC GAG CCC AAA TCT TGT GAC AAA ACT CAC ACA TGC CCA Gly Pro Gly> Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro>	• •	• •													
Tyr Ser Leu Arg Ser Thr Thr Met Met Itle Arg Pro Leu Asp Phe>dddANG1 FIBRINOGEN-LIKE DOMAIN_dddd> 1360	13	T0		_	1320		_	133	30		1:	340		1	.350
Tyr Ser Leu Arg Ser Thr Thr Met Met Itle Arg Pro Leu Asp Phe>dddANG1 FIBRINOGEN-LIKE DOMAIN_dddd> 1360	ma c			-	*				*			•		•	•
1360	TAC	Sor	Lou	CGT	TCC	ACA	ACT	ATG	ATG	ATT	CGA	CCT	TTA	GAT	LIT
GGA CCG GGC GAG CCC AAA TCT TGT GAC AAA ACT CAC ACA TGC CCA Gly Pro Gly> ———————————————————————————————————	-7-	361	1 64	ALG	NC1	PTD	THE	met Tev 1	net	TIE	Arg	Pro	Leu	Asp	Phe>
GGA CCG GGC GAG CCC AAA TCT TGT GAC AAA ACT CAC ACA TGC CCA Gly Pro Gly> ———————————————————————————————————		·'	·`		MIGI	FIDE	THO	3 E-14 - 1	TIVE	שוטע	ett/C	<u> </u>			·^
GGA CCG GGC GAG CCC AAA TCT TGT GAC AAA ACT CAC ACA TGC CCA Gly Pro Gly> ———————————————————————————————————			136	50		1 :	370			1380			130		
Gly Pro Gly> ———————————————————————————————————		*		•	•		*		•	-300			133	*	
Gly Pro Gly> ———————————————————————————————————	GGA	CCG	GGC	GAG	CCC	AAA	TCT	TGT	GAC	AAA	ACT	CAC	ACA	TGC	CCA
Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro> fffFCTAG {SPLIT}_ffff> 1400	Gly	Pro	Gly	•											
	е		<u></u> >	•						_					
				Glu	Pro	Lys	Ser	Cys	Asp	Lys	Thr	His	Thr	Сув	Pro>
1400					f	£:	€	_FC	TAG	(SPL	IT]_	£	£1		£>
CCG TGC CCA GCA CCT GAA CTC CTG GGG GGA CCG TCA GTC TTC CTC Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu> fffffFC TAG [SPLIT]fff															
Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu> f	14	00			1410			14	20		1	430		1	1440
Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu> f				•	*		*		*	•		*		*	*
1450 1460 1470 1480 TTC CCC CCA AAA CCC AAG GAC ACC CTC ATG ATC TCC CGG ACC CCT Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro> —fffffFC TAG [SPLIT]ffff	Doc	TGC	CCA	GCA	CCT	GAA	CTC	CTG	GGG	GGA	CCG	TCA	GTC	TTC	CTC
TTC CCC CCA AAA CCC AAG GAC ACC CTC ATG ATC TCC CGG ACC CCT Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro>	PIO	Cys	e PIO	e Ala	PIO	ern.	Leu	Leu	GIY	Gly	Pro	Ser	Val	Phe	Leu>
TTC CCC CCA AAA CCC AAG GAC ACC CTC ATG ATC TCC CGG ACC CCT Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro> ffffFFC TAG [SPLIT]ffff	—,	—			-	IF	C TA	GIS	PLIT	'J	Ľ	±	£	·:	£>
TTC CCC CCA AAA CCC AAG GAC ACC CTC ATG ATC TCC CGG ACC CCT Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro> ffffFFC TAG [SPLIT]ffff			14	50		1.	460			1470			1.44	20	
Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro>fffffFC TAG [SPLIT]ffff				•		_	*		*	T4/0			140	*	
Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro>fffffFC TAG [SPLIT]ffff	TTC	ccc	CCA	AAA	ccc	AAG	GAC	ACC	CITC	באדע	AπC	TCC	ccc	א רר	CCAL
fffffFC TAG [SPLIT]ffff	Phe	Pro	Pro	Lys	Pro	Lys	Asp	Thr	Leu	Met	Ile	Ser	Arg	Thr	Pro>
1490 1500 1510 1520 1530 GAG GTC ACA TGC GTG GTG GTG GAC GTG AGC CAC GAA GAC CCT GAG Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu> fffffFC TAG [SPLIT]fffff	f	:	£:	£	£	f_F	C TA	G [S	PLIT	11	£	£	£	£	f >
GAG GTC ACA TGC GTG GTG GTG GAC GTG AGC CAC GAA GAC CCT GAG Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu> fffffFC TAG [SPLIT]ffff															
Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu> ffffFC TAG [SPLIT]fff	14	90			1500			15	10		1	520			1530
Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu> ffffFC TAG [SPLIT]fff		*		*	*		*		*	*		*		*	*
ffffFC TAG [SPLIT]ffff	GAG	GTC	ACA	TGC	GTG	GTG	GTG	GAC	GTG	AGC	CAC	GAA	GAC	CCT	GAG
1540 1550 1560 1570 GTC AAG TTC AAC TGG TAC GTG GAC GGC GTG GAG GTG CAT AAT GCC Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala> fffffFC TAG [SPLIT]ffff	Glu	Val	Thr	Cys	Val	Val	Val	Asp	Val	Ser	His	Glu	Asp	Pro	Glu>
GTC AAG TTC AAC TGG TAC GTG GAC GGC GTG GAG GTG CAT AAT GCC Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala> ffffffFC TAG [SPLIT]fffff			f	f	.f	£F	C TA	G [S	PLIT	`][.f	.£	.£	£	£>
GTC AAG TTC AAC TGG TAC GTG GAC GGC GTG GAG GTG CAT AAT GCC Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala> ffffffFC TAG [SPLIT]fffff						_									
Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala> fffffFC TAG [SPLIT]ffff			15	40	_	.1	550			1560	i		15	70	
Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala> fffffFC TAG [SPLIT]ffff	CTC	220	MATO.				-		*	•				*	*
fffffFC TAG [SPLIT]ffff	Val	TARS	Phe	Anc.	Tree	TAC	Val	Acr		. GIG	GAG	GIG	CAT	AAT	GCC
1580 1590 1600 1610 1620 AAG ACA AAG CCG CGG GAG GAG CAG TAC AAC AGC ACG TAC CGT GTG Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val> fffffffff_	,	E E	f	f	f	f E	עם. אמז	CIC	י עד. מד.דם:	ין וין	. GIL	ε 1 Λ97	. Hls	ASN E	A18>
AAG ACA AAG CCG CGG GAG GAG CAG TAC AAC AGC ACG TAC CGT GTG Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val> fffffFC TAG [SPLIT]ffff	_						•						· ' —	`	·
AAG ACA AAG CCG CGG GAG GAG CAG TAC AAC AGC ACG TAC CGT GTG Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val> fffffffff	1	580			1590)		16	00		1	610			1620
Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val> fffffFC TAG (SPLIT)ffff		•		*	•	•	•		•	•	,			*	
Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val> fffffFC TAG (SPLIT)ffff	AAG	ACA	AAG	ccc	CGG	GAG	GAG	CAG	TAC	C AAC	: AGO	ACC	TAC	CGI	GTG
ffffFC TAG [SPLIT]fff	Lys	Thr	Lys	Pro	Arg	, Glu	Glu	Glr	Ту	r Asr	ı Sei	Thi	Tyr	Aro	val>
GTC AGC GTC CTC ACC GTC CTG CAC CAG GAC TGG CTG AAT GGC AAG Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys>		£	.f	.£	_f	_fF	C TA	IG [5	SPLI'	r)	_f	_f	.f	.f	.f>
GTC AGC GTC CTC ACC GTC CTG CAC CAG GAC TGG CTG AAT GGC AAG Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys>															
Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys>			16	30		. 1	640			1650) .		16	60	
Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys>	CITY:	ACC.	. Catho		, ,,,,		* • • • • • • • • • • • • • • • • • • •		•			*			*
f f f f FC TAG (SPLIT) f f f f f f	U=1	Spe	י טונ	. CIC	, ALL	- GTC	. CTC	, CAC	CAC	GA(TG	CT(AAT	GGC	AAG
		f_	_f	e1	_£.	f I	י הפו	AG (!	SPLT'	n asj Ti	רני דני	t b re/	. ASD	t GT?	/ LYS>

5/42 Figure 1E

16	570			1680			169	0		17	700		:	1710
GAG	TAC	AAG	TGC	AAG	CTC	10CC	220	* .	-	OMO	*	~~~	•	
Glu	Tyr	Lys	Cvs	Lvs	Val	Ser	Asn	TAR	Ala	LAU	Dro	Ala	CCC	Ile>
	E1	£:	f	£1	EF(TAC	G (SI	PLIT:	l f		E 1	nia E f		£>
												·•		·——
		17:	20		17	730			1740			175	0	
~~~	•		*	*				*	•		•		*	*
GAG	AAA	ACC	ATC	TCC	AAA	GCC	AAA	GGG	CAG	CCC	CGA	GAA	CCA	CAG
GIU	f 9	F .	t TTG	ser f	Lys F 97	AIE	Lys	GIA	Gln	Pro	Arg	Glu	Pro	Gln>
					F(	. IM	3 (5)	PLIT	ıı	·—-	·1	·¹		£>
11	760			1770			17	30		1.	790			1800
	*		*	*		•		*	*		*		*	*
GTG	TAC	ACC	CTG	cec	CCA	TCC	CGG	GAT	GAG	CTG	ACC	AAG	AAC	CAG
Val	Tyr	Thr	Leu	Pro	Pro	Ser	Arg	Asp	Glu	Leu	Thr	Lvs	Asn	Gln>
—	·	·—	£	£:	£F(	TAC	G (S	PLIT	11	·:	E1	E1	·	f>
		18:	10		1 (	820						• •		
	*		*		10	*		*	1830			184	10	
GTC	AGC	CTG	ACC	TGC	CTG	GTC	AAA	GGC	مكلك	ጥልጥ	CCC	»cc	GAC	ATC
Val	Ser	Leu	Thr	Cys	Leu	Val	Lys	Glv	Phe	Tvr	Pro	Ser	Asn	Ile>
	£:	£	£	£:	fF	C TA	G (S	PLIT	]	E	£:	E:	E	f>
1	B50		_	1860			18	70		1	880			1890
CCC	CIVC:	CAC	m			*		•	*		*		*	*
Ala	Val	GAG	Type	GAG	AGC	AAT	GGG	CAG	CCG	GAG	AAC	AAC	TAC	AAG Lys>
	£	f	£	f	e Pi	TABIL ABIL	G to	GLD T.TT	PFO	e GIA	ASD.	ASD.	TYT •	
					<b></b>	- 111	<b>U</b> (U	EDII	,			<b></b>	<b></b>	>
		19	00		1	910			1920			19:	30	
	*		*	*		*		*	*		*		*	*
ACC	ACG	CCT	ccc	GTG	CTG	GAC	TCC	GAC	GGC	TCC	TTC	TTC	CTC	TAC
Thr	TNY F	PTO e	Pro €	Val	Leu	qaA	Ser	Asp	Gly	Ser	Phe	Phe	Leu	Tyr>
—			<b></b>	٠-	IF	C TA	હ (ડ	PLIT	.,—	£	£	£	£	£>
1	940			1950			19	60		1	970			1980
										-	,,,			1300
	*		-	*				*	*				*	
AGC	* AAG	CTC	ACC	GTG	GAC	AAG	AGC	* AGG	* TGG	CAG	* CAG	GGG	AAC	GTC
Ser	Lys	Leu	The	· Val	Asp	Lys	Ser	Arg	Tro	Gln	Gln	Glv	Asr	GTC
Ser	Lys	Leu	The	· Val	Asp	Lys	Ser	Arg	Tro	Gln	Gln	Glv	Asr	Val>
Ser	Lys	Leu f	f	· Val	Asp fF	Lys C TA	Ser	Arg	Trp	Gln f	Gln	Gly f	Asr f	GTC Val> f>
Ser	Lys	Leu f	The	· Val	Asp fF	Lys	Ser	Arg	Tro	Gln f	Gln	Glv	Asr f	Val>
Ser	Lys f	Leu f 19	Thr. f 90	Val f	Asp fF	Lys C TA 000	Ser G (S	Arg PLIT	2010	Gln f	Gln f	Gly f 20	Asr f 20	Val>_f>
TTC	Lys f TCA Ser	f19 TGC	90 TCC	Val f	Asp f_F 2 ATG Met	Lys C TA 000 CAT His	Sex G (S GAG Glu	Arg PLIT * GCT Ala	2010 * CTG	Gln f CAC	Gln f	Gly f 20 CAC	20 TAC	Val> _f> C ACG
TTC	Lys f TCA Ser	f19 TGC	90 TCC	Val f	Asp f_F 2 ATG Met	Lys C TA 000 CAT His	Sex G (S GAG Glu	Arg PLIT * GCT Ala	2010 * CTG	Gln f CAC	Gln f	Gly f 20 CAC	20 TAC	Val> _f> C ACG
TTC	tys f TCA Ser f	f19 TGC	90 TCC	Yal	Asp fF 2 ATG Met fF	Lys C TA 000 CAT His	Sex G (S GAG Glu	Arg PLIT * GCT Ala	2010 * CTG	Gln f CAC	Gln f	Gly f 20 CAC	20 TAC	Val>
TTC	Lys f TCA Ser	f19 TGC	90 TCC	Val f	Asp fF 2 ATG Met fF	Lys C TA 000 CAT His	Ser G (S GAG Glu	Arg PLIT * GCT Ala	2010 * CTG	Gln f CAC	Gln f	Gly f 20 CAC	20 TAC	Val> _f> C ACG
TTC Phe	TCA Ser f	f19 TGC Cys f	Thr.f	C GTG Val	Asp f_F 2 ATG Met f_F	Lys C TA 000 CAT His C TA	Ser G {S GAG Glu G [S	Arg PLIT * GCT Ala PLIT	2010 *CTG	Gln f CAC His	f	Gly f 20 CAC	20 TAC	Val> _f> C ACG
TTC Phe	tys f TCA Ser f	Leu f 19 TGC Cys f	90 * TCC	Yal	Asp f_F 2 ATG Met f_F	Lys C TA 000 CAT His C TA	Ser G {S GAG Glu G {S	Arg PLIT * GCT Ala PLIT	2010  CTG Leu	Gln f CAC His f	f AAC Asn	Gly f 20 CAC	20 TAC	Val> _f> C ACG

6/42 Figure 2A 10 20 ATG TCT GCA CTT CTG ATC CTA GCT CTT GTT GGA GCT GCA GTT GCT Met Ser Ala Leu Leu Ile Leu Ala Leu Val Gly Ala Ala Val Ala> _a__a__a__a_TRYPSIN SIGNAL SEQUENCE__a__a__a__a___> 70 80 90 AGA GAC TGT GCT GAA GTA TTC AAA TCA GGA CAC ACC ACA AAT GGC Arg Asp Cys Ala Glu Val Phe Lys Ser Gly His Thr Thr Asn Gly> __b__b__ang2 fibrinogen-like domain #1__b__b__b__> 110 100 ATC TAC ACG TTA ACA TTC CCT AAT TCT ACA GAA GAG ATC AAG GCC Ile Tyr Thr Leu Thr Phe Pro Asn Ser Thr Glu Glu Ile Lys Ala> __b_b_b_ang2 fibrinogen-like domain #1__b_b_b__> 170 150 160 TAC TGT GAC ATG GAA GCT GGA GGA GGC GGG TGG ACA ATT ATT CAG Tyr Cys Asp Met Glu Ala Gly Gly Gly Trp Thr Ile Ile Gln> b b b ang2 fibrinogen-like domain #1_b_b_b_> 210 200 CGA CGT GAG GAT GGC AGC GTT GAT TTT CAG AGG ACT TGG AAA GAA Arg Arg Glu Asp Gly Ser Val Asp Phe Gln Arg Thr Trp Lys Glu> _b_b_b_ang2 fibrinogen-like domain #1__b_b_b__> 250 230 240 TAT AAA GTG GGA TTT GGT AAC CCT TCA GGA GAA TAT TGG CTG GGA Tyr Lys Val Gly Phe Gly Asn Pro Ser Gly Glu Tyr Trp Leu Gly> ___b__b__b__ang2 FIBRINOGEN-LIKE DOMAIN #1___b__b__b__> 310 290 300 AAT GAG TTT GTT TCG CAA CTG ACT AAT CAG CAA CGC TAT GTG CTT Asn Glu Phe Val Ser Gln Leu Thr Asn Gln Gln Arg Tyr Val Leu> __b__b__b__ang2 fibrinogen-like domain #1__b__b__b__> 340 330 AAA ATA CAC CTT AAA GAC TGG GAA GGG AAT GAG GCT TAC TCA TTG Lys Ile His Leu Lys Asp Trp Glu Gly Asn Glu Ala Tyr Ser Leu> __b__b__b__ang2 Fibrinogen-like Domain #1__b__b__b__> 370 TAT GAA CAT TTC TAT CTC TCA AGT GAA GAA CTC AAT TAT AGG ATT Tyr Glu His Phe Tyr Leu Ser Ser Glu Glu Leu Asn Tyr Arg Ile> __b_b_ang2 fibrinogen-like domain #1__b_b_b__> 440 420 430 410 • CAC CTT AAA GGA CTT ACA GGG ACA GCC GGC AAA ATA AGC AGC ATC His Leu Lys Gly Leu Thr Gly Thr Ala Gly Lys Ile Ser Ser Ile> _b_b_b_ang2 fibrinogen-like domain #1__b_b_b_>

PCT/US99/30900

7/42 Figure 2B 490 480 AGC CAA CCA GGA AAT GAT TTT AGC ACA AAG GAT GGA GAC AAC GAC Ser Gln Pro Gly Asn Asp Phe Ser Thr Lys Asp Gly Asp Asn Asp> __b_b_ang2 fibrinogen-like domain #1__b_b_ 500 510 520 530 540 AAA TGT ATT TGC AAA TGT TCA CAA ATG CTA ACA GGA GGC TGG TGG Lys Cys Ile Cys Lys Cys Ser Gln Met Leu Thr Gly Gly Trp Trp> _b__b_ANG2 FIBRINOGEN-LIKE DOMAIN #1__b_b_ 550 560 TTT GAT GCA TGT GGT CCT TCC AAC TTG AAC GGA ATG TAC TAT CCA Phe Asp Ala Cys Gly Pro Ser Asn Leu Asn Gly Met Tyr Tyr Pro> _b__b_ANG2 FIBRINOGEN-LIKE DOMAIN #1__b_b_b > 590 610 620 630 CAG AGG CAG AAC ACA AAT AAG TTC AAC GGC ATT AAA TGG TAC TAC Gln Arg Gln Asn Thr Asn Lys Phe Asn Gly Ile Lys Trp Tyr Tyr> _b__b__b__ANG2 FIBRINOGEN-LIKE DOMAIN #1__b__b__b__> 640 650 660 670 TGG AAA GGC TCA GGC TAT TCG CTC AAG GCC ACA ACC ATG ATG ATC Trp Lys Gly Ser Gly Tyr Ser Leu Lys Ala Thr Thr Met Met Ile> 680 690 700 710 720 CGA CCA GCA GAT TTC GGG GGC CCC GCG CCT TTC AGA GAC TGT GCT Arg Pro Ala Asp Phe> __ANG2 FIBRINO_ Gly Gly Pro Ala Pro> GGPAP BRIDGE_ Phe Arg Asp Cys Ala> ANG2 FIBRINO__ 730 740 750 760 GAA GTA TTC AAA TCA GGA CAC ACC ACA AAT GGC ATC TAC ACG TTA Glu Val Phe Lys Ser Gly His Thr Thr Asn Gly Ile Tyr Thr Leu> _d__d_ang2 FIBRINOGEN-LIKE DOMAIN#2___d__d_ 770 780 800 ACA TTC CCT AAT TCT ACA GAA GAG ATC AAG GCC TAC TGT GAC ATG Thr Phe Pro Asn Ser Thr Glu Glu Ile Lys Ala Tyr Cys Asp Met> 820 GAA GCT GGA GGC GGG TGG ACA ATT ATT CAG CGA CGT GAG GAT Glu Ala Gly Gly Gly Trp Thr Ile Ile Gln Arg Arg Glu Asp> __d__d__d__ANG2 FIBRINOGEN-LIKE DOMAIN#2____d__d__d__

8/42 Figure 2C

8	160			870			88	30		ε	90			900
	•		•	•		•		•	*		*		•	•
												AAA		
														Gly>
	<u>.                                    </u>	<u>.                                    </u>	<u></u> A	1G2 E	PIBRI	NOGE	EN-L	CKE I	DOMA:	IN#2_	6	ic		i>
		9:	10		9	20			930			94	10	
	• •		* .	*		•		•	•		•		•	*
														GTT
														Val>
°	'ـــــــــــن	٠٥	dA	NG2	FIBR	INOG	EN-L	IKE	DOMA:	IN#2.	°	٠٥	٠	đ>
٠.	950			960				70			000			000
•	*		*	700			9	/U			980			990
TCG	CA.	CTC	ልርጥ	AAT	CNG	ממיז	cec	ጥልጥ	CIV2	Color	***	አጥአ	CAC	CTT
														Leu>
														d>
										u		<u> </u>	<u>-</u> —	·
		10	00		1	010			1020			10	30	
	*		*		_	•			•		*		*	
AAA	GAC	TGG	GAA	GGG	AAT	GAG	GCT	TAC	TCA	TTG	TAT	GAA	CAT	TTC
Lys	Asp	Trp	Glu	Gly	Asn	Glu	Ala	Tyr	Ser	Leu	Tyr	Glu	His	Phe>
														d>
1	040			1050			10	60		1	070			1080
	٠		*	*		*		*	•		*		•	*
TAT	CTC	TCA	AGT	GAA	GAA	CTC	TAA	TAT	AGG	ATT	CAC	CTT	AAA	GGA
														Gly>
	.d	b_	.dA	NG2	FIBR	INOG	EN-L	IKE	DOM	IN#2		ه_	ه	_ <b>d</b> >
		10	90		1	100		_	1110	}		11	20	
	*		•	*		*		*		• 			*	*
														GGA
														Gly>
	.a	-a	م_ہ	ING2	LTR	ITNOG	SEN-I	JIKE	DOM	TINE	<b>'</b> ——	_ه	ــــــە.	_d>
,	.130			1140			٠,,				1.50			1170
1	.130			1140			1.	150			1160			11/0
א א מ		-	ה אכר ה			י כאי			~ 22	- - CN		n men	- -	r TGC
														e Cys>
														_d>
				2102		121101	J		DON	LTT14 M.				
		13	180			1190			120	0		1.2	210	•
	•		•		•	*		*		•	*		*	•
AA	A TG	r TC	A CA	YTA A	G CT	A AC	A GG	A GG	C TG	G TG	G TT	T GA'	r GC	A TGT
														a Cys
														_d;
										-				
:	1220			123	0		1	240			1250			1260
	•		*		•	*		٠		*	•		•	
GG'	r cc	T TC	C AA	C TT	G AA	C GG	A AT	G TA	C TA	т сс	A CA	G AG	G CA	G AAC
G1	y Pr	o Se	r As	n Le	u As	n Gl	у Ме	t Ty	r Ty	r Pr	o Gl	n Ar	g Gl	n Asn
	_d	_d	_d	ANG2	FIB	RINO	GEN-	LIKE	DOM	LAIN#	2	_d	_d	_d:

9/42 Figure 2D

1270 1280 1290 1300 ACA AAT AAG TTC AAC GGC ATT AAA TGG TAC TAC TGG AAA GGC TCA Thr Asn Lys Phe Asn Gly Ile Lys Trp Tyr Tyr Trp Lys Gly Ser> 1320 1330 1340 GGC TAT TCG CTC AAG GCC ACA ACC ATG ATG ATC CGA CCA GCA GAT Gly Tyr Ser Leu Lys Ala Thr Thr Met Met Ile Arg Pro Ala Asp> _d__d__d__ang2 fibrinogen-like domain#2___d__d__d__> 1380 1370 TTC GGA CCG GGC GAG CCC AAA TCT TGT GAC AAA ACT CAC ACA TGC Phe> Gly Pro Gly> Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys> _f__f__f__f__FC TAG__f__f__f____> 1410 1420 1430 1440 CCA CCG TGC CCA GCA CCT GAA CTC CTG GGG GGA CCG TCA GTC TTC Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe> _f__f__f__f__f__f__FC TAG__f__f__f__f__f____ CTC TTC CCC CCA AAA CCC AAG GAC ACC CTC ATG ATC TCC CGG ACC Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr> _f__f__f__f__f__f__FC TAG__f__f__f__f__f____ 1490 1500 1510 1520 CCT GAG GTC ACA TGC GTG GTG GTG GAC GTG AGC CAC GAA GAC CCT Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro> __f__f__f__f__f__FC TAG__f__f__f__f___f____ 1560 GAG GTC AAG TTC AAC TGG TAC GTG GAC GGC GTG GAG GTG CAT AAT Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn> __f__f__f__f__f__f__FC TAG__f__f__f__f___f___ 1600 GCC AAG ACA AAG CCG CGG GAG GAG CAG TAC AAC AGC ACG TAC CGT Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg> 1630 1640 1650 1660. GTG GTC AGC GTC CTC ACC GTC CTG CAC CAG GAC TGG CTG AAT GGC Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly> ___f__f__f__f__f__f__FC TAG___f__f__f__f__f___f____

### 10/42 Figure 2E

			-6010 22			
1670	1680		1690	1	700	1710
AAG GAG TR	- NAC TOO	***		•	•	• •
AAG GAG TA	T IVE OVE	AAG GIC	TCC AAC	AAA GCC	CTC CCA	GCC CCC
Lys Glu Ty	f f	ras var	Ser Asn	Lys Ala	Leu Pro	Ala Pro>
ff_			TAG	tt	ff	.ff>
1	720	1730		1740	17	50
•		*	*	1140		* *
ATC GAG A	A ACC ATC	TCC AAA	GCC AAA	GGG CAG	רכר רכי	CAN CCA
IIE GIU Ly	's Thr Ile	Ser Lvs	Ala Lvs	Glv Gln	Pro Aro	Glu Pros
ff_	_ff	ffF(	TAG	f f	f f	f f >
				~—		
1760	1770		1780	1	790	1800
•	* *	*	•	*		
CAG GTG TA	C ACC CTG	CCC CCA	TCC CGG	GAT GAG	CTG ACC	AAG AAC
GTU AST 12	r Thr Leu	Pro Pro	Ser Arg	Asp Glu	Leu Thr	LVS Asn>
ff_	_ff	ffF(	TAG	ff	ff	££>
				•		- <del></del>
	1810	1820		1830	18	340
	* *	*		*	*	* *
CAG GTC AG	CTG ACC	TGC CTG	GTC AAA	GGC TTC	TAT CCC	: AGC GAC
Gln Val Se	er Leu Thr	Cys Leu	Val Lys	Gly Phe	Tyr Pro	Ser Asp>
ff	tt	ff	TAG	ff	.ff	_f>
1850	1060					
1030	1860		1870	. 1	.880	1890
ATC CCC CT	י באכ שאכ	010 100	*	*		* *
ATC GCC GT	I Glu Too	Clu Com	AAT GGG	CAG CCG	GAG AAC	: AAC TAC
Ile Ala Va	f f	err ser	ABD GIA	GID Pro	GIU ASI	Asn Tyr>
		F	c ING	· I I	·rr	-r>
1	L900	1910		1920	10	930
*	* *	*	*	1320		,30
AAG ACC AC	G CCT CCC	GTG CTG	GAC TCC	GAC GGC	י חרירי חיזעי	יי יואוער פיווערי
Lys Thr Ti	ar Pro Pro	Val Leu	Asp Ser	Asp Glv	Ser Phe	Pho Lous
ff	_ff_	f_fF	TAG	f f	f f	f f >
1940	1950		1960	1	970	1980
*	* *	*	•	•		* *
TAC AGC A	AG CTC ACC	GTG GAC	AAG AGC	AGG TGG	CAG CAG	GGG AAC
Tyr Ser Ly	s Leu Thr	Val Asp	Lvs Ser	Ara Trr	Gln Gli	n Gly Asna
ff_	_ff	ffF	C TAG	.ff	_ff	_f;
						•
	1990	2000		2010	20	020
הער מער ש	~ <b>*</b>	* 				* *
GTC TTC TO	A TGC TCC	GIG ATG	CAT GAG	GCT CTC	CAC AAG	CAC TAC
f f	er cys ser	. Agt Wet	HIE GIA	Ala Leu	His Ası	n His Tyr>
·		F	C TAG	-rr	-¤t	_ff>
2030	2040		2050		2060	
*	* *	•	2030		*	
ACG CAG A	AG AGC CTC	TCC CTG	TCT CCC	144 TOD :	A TICA	
Thr Gln L	ys Ser Leu	Ser Leu	Ser Pro	Glv Lvs	s ***>	
ff_	ff	_FC TAG	ff	f f	f >	
		-				

#### 11/42 Figure 3A

. 1	.0	20	_	30	40	)
ATG TCT GCA	כדיד כיזיכ	* አጥር ርጥል	GCT CTT	GTT GGA	GCT GCA C	TT GCT
Met Ser Ala	Leu Leu	Ile Leu	Ala Leu	Val Gly	Ala Ala V	/al-Ala>
aaa						
<b></b>	c		70		80	90
50 *	60	; <b>*</b>	/ U	*	•	
AGA GAC TGT	GCA GAT	GTA TAT	CAA GCT	GGT TTT	AAA TAA	AGT GGA
Arg Asp Cys	Ala Asp	Val Tyr	Gln Ala	Gly Phe	Asn Lys	Ser Gly>
bb	bANG	FIBRINO	GEN-LIKE	DOMAIN_	obb.	b>
1	00	110		120	13	0
*	*		•	•	*	* *
ATC TAC ACT	ATT TA	TAA TTA 1	AAT ATG	CCA GAA	CCC AAA	AAG GTG
Ile Tyr Thr	Ile Ty	r Ile Asn	Asn Met	Pro Glu	Pro Lys	Lys Val>
bb	DANG	I FIBRING	GEN-LIVE	DOMALIN_		
140	15	0	160		170	180
*	*	* *	*	•	*	• •
TTT TGC AAT	ATG GA	T GTC AAT	GGG GGA	GGT TGG	ACT GTA	ATA CAA
bb	net As Dan d	p val Asi 1 FIRRING	GEN-LIKE	DOMAIN	b b h	b b >
	,					
1	90	200		210	. 22	20
CAT CGT GAA	*	* *	* •	* * * * * * * * * * * * * * * * * * * *	t COO TOO	ANC CAA
His Arg Gl	i Asn Gl	v Ser Lei	A GAT TIC	Gln Arc	Gly Tro	Lvs Glu>
bb	_bANG	1 FIBRIN	OGEN-LIKE	DOMAIN	ئے۔	bb>
230	24	10	250	•	260	270
TA AAA TAT	G GGT T	T GGA AA	T CCC TC	GGT GA	A TAT TGG	CTG GGG
Tyr Lys Me	t Gly Pl	ne Gly As	n Pro Se	r Gly Gl	u Tyr Trp	Leu Gly>
bb	_bAN(	31 FIBRIN	OGEN-LIK	e domain	_bb	pp>
	280	290		300	3	10
*	*	• •	* *	*	*	* *
AAT GAG TT	T TTA T	TT GCC AT	T ACC AG	T CAG AG	G CAG TAC	ATG CTA
Asn Glu Ph						
BB	_DAN	GI LIBKID	IOGEN-PIK	E DOMAIN		_pb>
320	3	30	340		350	360
•		* .	• •		*	* *
AGA ATT GA						r TCA CAG r Ser Gln>
_				-		_bb>
	370	38	0	390	•	400
TAT GAC AC	ች ያል ጥጥር ር	- •⊃ 4™4 ⊃4°	- * 13 አልጥ ር፤	10 DAA 44	" АА ААС ТА	T AGG TTG
Tyr Asp A:	rg Phe i	is Ile G	ly Asn G	lu Lys G	ln Asn Ty	r Arg Leu>
bb_	bA	G1 FIBRI	NOGEN-LI	KE DOMAI	N_bb_	_bb>

12/42 Figure 3B 410 420 TAT TTA AAA GGT CAC ACT GGG ACA GCA GGA AAA CAG AGC AGC CTG Tyr Leu Lys Gly His Thr Gly Thr Ala Gly Lys Gln Ser Ser Leu> __b__b__b__ANG1 FIBRINOGEN-LIKE DOMAIN_b__b__b__b__> 470 480 490 ATC TTA CAC GGT GCT GAT TTC AGC ACT AAA GAT GCT GAT AAT GAC Ile Leu His Gly Ala Asp Phe Ser Thr Lys Asp Ala Asp Asn Asp> __b_b_b_ang1 Fibrinogen-Like DOMAIN_b_b_b_b_> 520 510 AAC TGT ATG TGC AAA TGT GCC CTC ATG TTA ACA GGA GGA TGG TGG Asn Cys Met Cys Lys Cys Ala Leu Met Leu Thr Gly Gly Trp Trp> __b_b_b_ANG1 FIBRINOGEN-LIKE DOMAIN_b_b_b_b_> 550 TTT GAT GCT TGT GGC CCC TCC AAT CTA AAT GGA ATG TTC TAT ACT Phe Asp Ala Cys Gly Pro Ser Asn Leu Asn Gly Met Phe Tyr Thr> 600 610 620 * GCG GGA CAA AAC CAT GGA AAA CTG AAT GGG ATA AAG TGG CAC TAC Ala Gly Gln Asn His Gly Lys Leu Asn Gly Ile Lys Trp His Tyr> __b_b_b_ANG1 FIBRINOGEN-LIKE DOMAIN_b_b_b_b_> 650 660 640 TTC AAA GGG CCA AGT TAC TCC TTA CGT TCC ACA ACT ATG ATG ATT Phe Lys Gly Pro Ser Tyr Ser Leu Arg Ser Thr Thr Met Met Ile> __b__b__b__ANG1 FIBRINOGEN-LIKE DOMAIN_b__b__b__> 680 690 700 710 * CGA CCT TTA GAT TTT GGC CCG GGC GAG CCC AAA TCT TGT GAC AAA Arg Pro Leu Asp Phe> ___ANG1 FIBRINO__ Gly Pro Gly> Glu Pro Lys Ser Cys Asp Lys> _d__d__FC TAG___d___d___> 740 750 ACT CAC ACA TGC CCA CCG TGC CCA GCA CCT GAA CTC CTG GGG GGA Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly> __d__d__d__d__d___d__d__d__d__d__d____> 770 780 790 800

13/42 Figure 3C

8	20	830	840	850	)
•	•	*	• •	• •	•
ATC TCC CGG	ACC CCT GA	G GTC ACA	TGC GTG G1	ng gtig gac g	TG AGC
Ile Ser Arg	Thr Pro Gl	u Val Thr	Cys Val Va	al Val Asp V	al Ser>
dd	ddd_	_dfC TA	Gdd_	_ddd_	d>
960	970		0.0	000	
860	870		80	890	900
CAC GAA GAC	CCT GAG GT	ር ልልር ጥጥር	ልልሮ ጥርር ጥ	AC GTG GAC G	
				yr Val Asp G	
				_ddd_	
9	10	920	930	940	
CAC CMC CAM	* *	* ~ .~	* *	* *	•
				AG GAG CAG 1 lu Glu Gln 1	
dd	d d d	d FC TX	ic d d	ddd	d >
<del></del>					
950	960	9	70	980	990
*	* *	*	* *	* 1	•
				TC CTG CAC	
				al Leu His (	
	<u> </u>	_urc 11	.uu_	ddd	a>
10	000	1010	1020	1030	)
•	* *	•	* *	•	• •
				TC TCC AAC	
Trp Leu Asr	Gly Lys G	lu Tyr Ly	s Cys Lys V	al Ser Asn	Lys Ala>
aa	.aaa_	_dFC T	AGaa_	aaa	a>
1040	1050	1	060	1070	1080
*	* *	•	* *	•	• •
				AA GCC AAA	
				ys Ala Lys ddd	
			<b></b> uu	uu	u
10	090	1100	1110	112	0
*	* *	•	* , *	*	* *
				CCA TCC CGG	
				Pro Ser Arg	
aa	_aa_	aFC 1	AGaa	dd	a>
1130	1140	. 1	150	1160	1170
•	* *	•	* *	•	* *
				CTG GTC AAA	
				Leu Val Lys	
aa	_aaa_	dFC 1	AGdd	aa	Ld>
1	180	1190	1200	121	0
*	* *	*	* *	*	* •
TAT CCC AG	C GAC ATC	CC GTG G	G TGG GAG	AGC AAT GGG	CAG CCG
Tyr Pro Se	r Asp Ile A	la Val G	lu Trp Glu	Ser Asn Gly	Gln Pro>
dd	_ddd_	dFC ?	ragdd	dd(	dd>
1220	1230		L240	1250	1260
*	* *	*	4 4	*	4 +
GAG AAC AA	C TAC ANG	ארכ ארכ כי	ייד ככר פיזפ	כדה האר דירר	GAC GGC
	ic inc was a	acc acc ci		CIO OILC ICC	
GIU ASh AS				Leu Asp Ser	

#### 14/42 Figure 3D

. 1	270	1280	1290	13	00
TCC TTC TT	C CTC TAC	AGC AAG CTY	ACC GTG G	AC AAG AGC	AGG TGG
		Ser Lys Le			
aa_	_aa	dd T	AGdd_	dd	d>
1310	1320	1	330	1340	1350
		TTC TCA TG			
		Phe Ser Cy			
aa_	_aa	dd_FC T	AGdd	dd	d>
1	.360	1370	1380	13	90
*	* *	•	* *		• •
		CAG AAG AG Gln Lys Se			
dd_	_dd	ddFC T	AGdd	dd	_dd>
			•		
1400	1410	. 1	420	1430	1440
GGC GGT G	C GGT TCT	GGC GCG CC	T TTT AGA	GAC TGT GC	GAT GTA
		Gly Ala Pr			
G4S LII	NKER/ASC E	RIDGE (N	_	Asp Cys Ala	Acn Vals
	•		_	FIBRINOGEN	-
•	1450	1460	1470	*	180 * *
		AAT AAA AG			
		Asn Lys Se			
t-	IANG	FIBRINOGE	N-DIKE DOWA	TN_II	_r>
1490	1500	) :	1510	1520	1530
* ***	* * * TC CCA CA!	CCC AAA A	* *	* ************************************	* *
		Pro Lys Ly			
		FIBRINGE	_	-	_
	1540	1550	1560	•	F70
•	+ ,	1550	1560 * *		570
		G ACT GTA A			
Asn Gly G	ly Gly Tr	p Thr Val I 1 FIBRINOGE	le Gln His	Arg Glu As	p Gly Ser>
		1 FIBRINGE	N-LIKE DOM		
1580	159	0	1600	1610	1620
יים אדר מדר יום אינים איני אינים אינים אי	• מר כממ אם	* * A GGC TGG A	* * * TAC CAD TAT	* * * * * * * * * * * * * * * * * * *	* *
		g Gly Trp L			
ff	fang	1 FIBRINOGE	N-LIKE DOM	AIN_ff_	_f;
	1630	1640	1650		L660 [.]
•	•	•	• •	•	• •
AAT CCC	PCC GGT GA	A TAT TGG C	TG GGG AAT	GAG TTT A	TTT GCC
Asn Pro	Ser Gly Gl אמר ל	u Tyr Trp I 1 FIBRINOGE	eu Gly Asn	Glu Phe I	le Phe Ala>
		T LIBRINOGE	M-DIVE DOW	~+M_r	—>

15/42 Figure 3E

		1680			169	0		17	00		1	710
ATT ACC AGT	CAG	AGG	CAG	TAC	ATG	CTA	AGA	ATT	GAG '	LATT	ATYC:	* CAC
Ile Thr Ser	Gln	Arg	Gln	Tyr	Met	Leu	Arg	Ile	Glu	Leu 1	let.	Asp>
ff	£	ANG1	FĮBR	INOG	EN-L	IKE	DOMA	IN_f	f	f.	f	>
17	20	•	17	30		1	740			1750	1	
•	*	*		*		•	•		*		ŧ	•
TGG GAA GGG	AAC	CGA	GCC	TAT	TCA	CAG	TAT	GAC	AGA	TTC (	CAC	ATA
Trp Glu Gly	Asn f	Arg	Ala	TYT	Ser	Gln	Tyr	Asp	Arg	Phe 1	His	Ile>
		ruit	LIDI		31774 – F	IKE	DOM	,1M_1		—	—- <u>'</u>	
1760		1770			178	0		17	90		1	800
GGA AAT GAA		C	220	* mam	200	*	*	<i></i>	*		* .	•
Gly Asn Glu	Lys	Gln	Asn	Tyr	Ara	Leu	Tvr	Leu	AAA Lvs	GGT (	CAC His	ACT Thr>
ff	.£	ANG1	FIBR	INO	SEN-I	IKE	DOM	IN_f	£	f	£	>
1.0	10		10	20						•••	_	
	*	*	16	20			L830		*	184	0 *	
GGG ACA GCA	GGA	AAA	CAG	AGC	AGC	CTG	ATC	TTA	CAC	GGT	GCT	GAT
Gly Thr Ala	Gly	Lys	Gln	Ser	Ser	Leu	Ile	Leu	His	Gly	Ala	<qza< td=""></qza<>
ff	.r	ANGI	FIBR	LINO	3EN−I	LIKE	DOM	AIN_f	f	f		>
1850		1860			183	70		18	80		1	L <b>89</b> 0
• ,	*	*		*		*	*		*		*	*
TTC AGC ACT	' AAA	GAT	GCT	GAT	AAT	GAC	AAC	TGT	ATG	TGC	AAA	TGT
Phe Ser Thr	f f	ABD ANGI	FIRE	QBA ∩MTS	Asn CEN-1	ASP TYF.	Asn	Cys	Met	Cys	Lys	Cys>
		,_,,_			<b>5</b> 244 - 2		2012		·—-'		—-'	
19	900		19	10			1920			193	0	
•	*	4		*	WCC.	•	*	Cam	*		•	*
GCC CTC ATC	TT	ACA Thr	GGA	+ GGA	TGG Trp	• TGG	* TTT	GAT Asp	GCT	TGT	GGC	CCC Pro>
•	TTA	. Thr	GGA Gly	# GGA Gly	Trp	• TGG Trp	TTT Phe	Asp	Ala	TGT Cys	GGC Gly	Pro>
GCC CTC ATC	TTA	Thr ANG1	GGA Gly FIBI	# GGA Gly	Trp GEN-:	TGG Trp LIKE	TTT Phe	Asp AIN_:	Ala E	TGT Cys	GGC Gly	Pro> f>
GCC CTC ATC	TTA	. Thr	GGA Gly FIBI	# GGA Gly	Trp	TGG Trp LIKE	TTT Phe	Asp AIN_:	Ala	TGT Cys	GGC Gly	Pro>
GCC CTC ATC Ala Leu Metff 1940 + TCC AAT CT	t Leu	Thr ANG1 1950	GGA Gly FIBI	GGA Gly RINO TTC	Trp GEN-: 19 TAT	TGG Trp LIKE 60 ACT	TTT Phe DOM	Asp AIN_: 19	Ala F	TGT Cys ff	GGC Gly	Pro> f> 1980 * GGA
GCC CTC ATC Ala Leu Metfff1940 TCC AAT CTC Ser Asn Lec	t Leu	Thr ANG1 1950 GGA Gly	GGA Gly FIBI ATG Met	GGA Gly RINO TTC Phe	Trp GEN-: 19 TAT Tyr	TGG Trp LIKE 60 ACT	TTT Phe DOM GCG	Asp AIN_: 19 GGA Gly	Ala E 970 CAA Gln	TGT Cys ff	GGC Gly CAT	Pro> f> 1980  GGA Gly>
GCC CTC ATC Ala Leu Metff 1940 + TCC AAT CT	t Leu	Thr ANG1 1950 GGA Gly	GGA Gly FIBI ATG Met	GGA Gly RINO TTC Phe	Trp GEN-: 19 TAT Tyr	TGG Trp LIKE 60 ACT	TTT Phe DOM GCG	Asp AIN_: 19 GGA Gly	Ala E 970 CAA Gln	TGT Cys ff	GGC Gly CAT	Pro> f> 1980  GGA Gly>
GCC CTC ATC Ala Leu Metff  1940 TCC AAT CTC Ser Asn Leuff	t Leu	Thr ANG1 1950 GGA Gly	GGA Gly FIBI ATG Met FIBI	GGA Gly RINO TTC Phe	Trp GEN-: 19 TAT Tyr	TGG Trp LIKE 60 ACT	TTT Phe DOM GCG	Asp AIN_: 19 GGA Gly AIN_	Ala E 970 CAA Gln	TGT Cys ff	GGC Gly CAT His	Pro> f> 1980  GGA Gly>
GCC CTC ATC Ala Leu Met ff  1940  TCC AAT CTC Ser Asn Letff f f	A AAT	Thr ANG1 1950 GGA Gly ANG1	GGA Gly FIBI ATG Met FIBI	GGA Gly RINO TTC Phe RINO	Trp GEN- 19 TAT Tyr GEN-	TGG Trp LIKE 60 ACT Thr LIKE	TTT Phe DOM GCG Ala DOM	Asp AIN_: 1: GGA Gly AIN_	Ala E 970 CAA Gln f	TGT Cys ff  AAC Asn ff	GGC Gly CAT His	Pro> f > 1980 GGA Gly> f >
GCC CTC ATC Ala Leu Met ff  1940  TCC AAT CTC Ser Asn Letff f  AAA CTG AAC	A AAT L ASI  2990 T GGG	Thr ANG1 1950 GGA Gly ANG1	GGA Gly FIBI ATG Met FIB:	GGA Gly RINO TTC Phe RINO	Trp GEN- 19 TAT Tyr GEN-	TGG Trp LIKE 60 ACT Thr LIKE	TTT Phe DOM GCG Ala DOM 2010	Asp AIN_ 19 GGA Gly AIN_	Ala E 970 CAA Gln f	TGT Cys  ff  AAC Asn ff  CCA	GGC Gly CAT His	Pro> f > 1980 GGA Gly> f >  TAC
GCC CTC ATC Ala Leu Met  f f  1940  TCC AAT CTC Ser AEn Let  f f  AAA CTG AAC Lys Leu As:	Leuf A AAT A	1950 1950 GGA 1 Gly ANG1	GGA Gly FIBI ATG Met FIB: 2	GGA Gly RINO TTC Phe RINO 000	Trp GEN- 19 TAT Tyr GEN-	TGG Trp LIKE 60 ACT Thr LIKE	TTT Phe DOM GCG Ala DOM 2010	Asp AIN_ 19 GGA Gly AIN_ AAA	CAA GIn GGG GIV	TGT Cys f f AAC Asn f 202 CCA Pro	GGC Gly CAT His	Pro> f> 1980  GGA Gly> f>  TAC Tyr>
GCC CTC ATC Ala Leu Met ff ff  1940  TCC AAT CTC Ser Asn Letff t  AAA CTG AAC Lys Leu Ascff	Leuf A AAT A	Thr ANG1 1950 F GGA G Gly ANG1 ANG1 F ATA V 11e ANG1	GGA Gly FIBI ATG Met FIBI 2	GGA Gly RINO TTC Phe RINO 000	Trp GEN- 19 TAT Tyr GEN- CAC His	TGG Trp LIKE 60 ACT Thr LIKE TAC Tyr LIKE	TTT Phe DOM GCG Ala DOM 2010	ASP AIN_: 19 GGA Gly AIN_ AAA Lys AIN_	CAA Gln GGG Gly	TGT Cys f f AAC Asn f 202 CCA Pro	GGC Gly CAT His	Pro> f> 1980  GGA Gly> f>  TAC Tyr>
GCC CTC ATC Ala Leu Met  f f  1940  TCC AAT CTC Ser AEn Let  f f  AAA CTG AAC Lys Leu As:	Leuf A AAT A	1950 1950 GGA 1 Gly ANG1	GGA Gly FIBI ATG Met FIBI 2	GGA Gly RINO TTC Phe RINO 000	Trp GEN- 19 TAT Tyr GEN- CAC His	TGG Trp LIKE 60 ACT Thr LIKE	TTT Phe DOM GCG Ala DOM 2010	ASP AIN_: 19 GGA Gly AIN_ AAA Lys AIN_	CAA GIn GGG GIV	TGT Cys f f AAC Asn f 202 CCA Pro	GGC Gly CAT His	Pro> f> 1980  GGA Gly> f>  TAC Tyr>
GCC CTC ATC Ala Leu Met fff  1940  TCC AAT CTI Ser Asn Leu fff   AAA CTG AA Lys Leu As:fff  2030	A AAT A AAT A ST A GGO T GGO T GGO T GGO	1950 1950 1 GGA 1 Gly ANG1 4 Ile	GGA Gly FIBI ATG Met FIBI 2 AAG Lys FIB	GGA Gly RINO TTC Phe RINO TGG TTP RINC	Trp GEN-: 19 TAT Tyr GEN- CAC His GEN-	TGG Trp LIKE 60 * ACT Thr LIKE TAC Tyr LIKE	TTTT Phe DOM	ASP AIN_: 19 GGA Gly AIN_ AAA Lys AIN_ 2	CAA Gln GGG Gly f G60	TGT Cys f f AAC Asn f 202 CCA Pro f	GGC Gly  CAT His  AGT Ser	Pro> f
GCC CTC ATC Ala Leu Met ff ff  1940  TCC AAT CTC Ser Asn Letff t  AAA CTG AAC Lys Leu Ascff	* TTF Levent A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	Thr ANG1 1950 F GGA F Gly ANG1 J ANG1 2040 C ACA	GGA Gly FIBI ATG Met FIBI 2 AAG Lys FIB	GGA GlyRINO TTCC Phe RINO TTCG TTPR RINC ATC	Trp GEN-1 19 TAT Tyr GEN- CAC His GEN- 20 ATG	TGG Trp LIKE 60 * ACT Thr LIKE TAC TYP LIKE 50 * ATT LIKE	TITT Phe DOM GCG Ala DOM TTCC Phe DOM	ASP AIN_: 19 GGA Gly AIN_ AAA Lys AIN_ 2	Ala F P P P P P P P P P P P P P P P P P P	TGT Cys f f f	GGC Gly  CAT His  AGT Ser  TTT Phe	Pro> f

### 16/42 Figure 4A

	1	^			20			30			. 4	0	
•		•	*		*		*	•		•		*	•
ATG TCT	GCA	СТТ	CTG	ATC	CTA	GCT	CTT	GTT	GGA	GCT	GCA	GTT	GCT
Met Ser	Ala	Leu	Leu	Ile	Leu	Ala	Leu	Val	Gly	Ala	Ala	Val	Ala>
aa	a	a	_TRY	PSIN	SIG	NAL	SEQU	JENCE	:e	·	a	ª	>
50			60			•	70			80			90
•		*	•		*		*	•		•		*	•
AGA GAC	TGT	GCT	GAA	GTA	TTC	AAA	TCA	GGA	CAC	ACC	ACA	TAA	GGC
Arg Asp	Cys	Ala	Glu	Val	Phe	Lys	Ser	Gly	His	Thr	Thr	Asn	G1A>
bt	)k	·	ANG2	FIB	RINO	3EN−1	LIKE	DOM	ATN_	ر	J	,— <u>,</u>	J
•	10	00			110			120			13	10	
•		*	•		*		*	•		•		•	*
ATC TAC	ACG	TTA	ACA	TTC	CCT	AAT	TCT	ACA	GAA	GAG	ATC	AAG	GCC
Ile Tyr	Thr	Leu	Thr	Phe	Pro	Asn	Ser	Thr	Glu	Glu	Ile	Lys	Ala>
b	p1	۰	ANG2	FIB	RINO	GEN-	LIKE	DOM	AIN_	ـــــم	رم	·	D>
140			150			1	60			170			180
•		•	*		*		•	*		*		•	*
TAC TGT	GAC	ATG	GAA	GCT	GGA	GGA	GGC	GGG	TGG	ACA	ATT	ATI	CAG
Tyr Cys	Asp	Met	Glu	Ala	Gly	Gly	Gly	Gly	Tr	Thr	Ile	_Ile	Gln>
b	b	Þ	ANG2	FIE	RINC	GEN-	-LIK	DON	IVTN_		.р	D	p>
	1	90			200			210	)		2	20	
•		*	*		*		. •	•	*	*		*	•
CGA CGT	GAG	GAT	r GGC	AGC	GT	r GA	r TT	r CAC	G AG	G ACT	r TGG	. AA	A GAA
Arg Arg	Glu	Ası	G13	Se	. Va	l Ası	Pho	e Gli	n Ary	a Livi	r TYY	ь Г	p >
b	d_	.b	_ANG2	: FI	SKIN	)GEN	-PTV	יטע פ	WATH				
230			240	)		;	250			260			270
*		•	•	•	•		*		*	*		*	
TAT AAJ	A GTY	GG	A TT	r GG	T AA	c cc	T TC	A GG	A GA	A TA	T. TG	CT	G GGA
Tyr Ly	va:	l Gl	y Pho	e Gl	y As	n Pr	o Se	L GT	Y GI	เห	ים דידו	ъ ъ	_b>
	_D		_ANG	2 F1	BKTN	OGEN	-DIK	E DO	rrett.			_~	
	:	280			290	,		30	0			310	
•		*		*	•		•		*	*		*	•
AAT GA	G TT	T GT	T TC	G CA	A CI	NG AC	T AF	T CA	G C	LA CG	C TA	T GI	CTT
Asn Gl	u Ph	e Va	l Se	r Gl	n Le	iu Ti	12 A8 1_1.T1	en Gi	IN GI Mata	ın az Jb	.g ту	b b	l Leu> _b>
P_	_0		ANG	2 F1	BRID	1000	1-DI:		,,,,,,	·_~_	_~_		
320	ı		33	0			340			350	כ		360
•		*		*	•	*	*		•		•		*
TA AAA	A CA	'C C1	M A	VA GA	C TO	GG G	AA G	GG A	AT G	AG G	CT TA	C T	CA TTG
Lys Il	e Hi	.s Le	eu Ly Ny	/S A	יני קצ ידספי	rp G Nocii	M-T.T	KE D	DMAT	IUA. Nb	ta I)	b b	er Leu> b>
D				36 F.	LUNI				~- <b>~</b>				
		370			38	0		3	90			400	
•	•	*		*		*					•	*	*
TAT G	AA C	AT T	TC T	AT C	TC T	CA A	GT G	AA G	AA C	TC A	AT TA	ATA	GG ATT
Tyr G	iu H:	15 P h	ne T	yr L G2 F	eu S IBRT	er S NOGF	N-LI	KE D	OMAI	N_b	p_	b_	rg Ile
				•									

17/42 Figure 4B 410 420 430 CAC CTT AAA GGA CTT ACA GGG ACA GCC GGC AAA ATA AGC AGC ATC His Leu Lys Gly Leu Thr Gly Thr Ala Gly Lys Ile Ser Ser Ile> b_b_b_ANG2 FIBRINOGEN-LIKE DOMAIN_b_b_b_b_> AGC CAA CCA GGA AAT GAT TTT AGC ACA AAG GAT GGA GAC AAC GAC Ser Gln Pro Gly Asn Asp Phe Ser Thr Lys Asp Gly Asp Asn Asp> 500 510 530 540 520 AAA TGT ATT TGC AAA TGT TCA CAA ATG CTA ACA GGA GGC TGG TGG Lys Cys Ile Cys Lys Cys Ser Gln Met Leu Thr Gly Gly Trp Trp> _b__b__ang2 FIBRINOGEN-LIKE DOMAIN_b__b__b_ 560 TTT GAT GCA TGT GGT CCT TCC AAC TTG AAC GGA ATG TAC TAT CCA Phe Asp Ala Cys Gly Pro Ser Asn Leu Asn Gly Met Tyr Tyr Pro> 600 CAG AGG CAG AAC ACA AAT AAG TTC AAC GGC ATT AAA TGG TAC TAC Gln Arg Gln Asn Thr Asn Lys Phe Asn Gly Ile Lys Trp Tyr Tyr> _b__b__b__ang2 fibrinogen-like domain_b__b__b__ 640 660 670 650 TGG AAA GGC TCA GGC TAT TCG CTC AAG GCC ACA ACC ATG ATG ATC Trp Lys Gly Ser Gly Tyr Ser Leu Lys Ala Thr Thr Met Met Ile> _b__b__b__ang2 fibrinogen-like domain_b__b_ 680 690 700 710 720 CGA CCA GCA GAT TTC GGG GGC CCG GGC GAG CCC. AAA TCT TGT GAC Arg Pro Ala Asp Phe> ___ANG2 FIBRINO Gly Gly Pro Gly> _GGPG BRI_ Glu Pro Lys Ser Cys Asp> ___d___FC TAG_d__d__> AAA ACT CAC ACA TGC CCA CCG TGC CCA GCA CCT GAA CTC CTG GGG Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly> __d__d__d__d__d__FC TAG___d__d__d__d__d____> 770 780 790 800 810 GGA CCG TCA GTC TTC CTC TTC CCC CCA AAA CCC AAG GAC ACC CTC Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu> _d__d__d__d__d__d__FC_TAG___d__d__d__d__d__d___

18/42 Figure 4C

820	) :	830	840	85	850	
• •	•	*	• •	*	•	
ATG ATC TCC C	GG ACC CCT	GAG GTC	ACA TGC GT	G GTG GTG (	GAC GTG	
Met Ile Ser A	rg Thr Pro	Glu Val	Thr Cys Va	l Val Val	Asp Val>	
ddd	ddd	FC TAG	aa	_aaa	a>	
			_			
860	870	. 88	30	890	900	
100 010 011 0	com a.a	000			* *	
AGC CAC GAA G Ser His Glu A						
	ddd	-				
			·uu_			
910	9	20	930	. 94	0	
	•	*	* *	•	• •	
GTG GAG GTG C	AT AAT GCC	AAG ACA	AAG CCG CG	G GAG GAG	CAG TAC	
Val Glu Val H						
aaa	،ـــەـــە	1PC TAC	3aa_	_aaa	<ه>	
050	0.50					
950	960	•	70	980	990	
AAC AGC ACG	יאר רפיד פידפ	CTC ACC	בייר בייר אני	יר מתר ניתם	ראר ראה	
Asn Ser Thr						
a_a_a						
		_ `				
1000	1	010	1020	103	30	
* 1	•	*	• •	*	• •	
GAC TGG CTG						
Asp Trp Leu						
aaa	aa	dfc ta	Gdd_	aa	dd>	
1040	1 <b>0</b> 5ò	10	60	1070	1080	
*	* *	*	* *	*	* *	
GCC CTC CCA	GCC CCC ATC	GAG AAA	ACC ATC T	CC AAA GCC	AAA GGG	
Ala Leu Pro	Ala Pro Ile	Glu Lys	Thr Ile S	er Lys Ala	Lys Gly>	
aaa	dd	d_FC TA	.Gdd_	aa	db	
109	0 1	100	1110	11	20	
*	* *	*	* *	*	* *	
CAG CCC CGA						
Gln Pro Arg	GIN SEO CIL	Val Ty	Thr Leu P	ro Pro Ser	Arg Asp>	
dd	aa	_dFC 17	16aa_	aa	.a>	
1130	1140	1	L50	1160	1170	
*	* *	*		*	* *	
GAG CTG ACC	AAG AAC CAG	GTC AG	C CTG ACC T	CC CTG GTC	AAA GGC	
Glu Leu Thr						
ddd	<u>aa_</u>	_dfc T	AGdd_	aa	_db	
118	30	1190	1200	. 12	210	
TTC TAT CCC	AGC GAC AM	~ ~~~ ~	~ ~ *	*		
Phe Tyr Pro	Ser Ace #1	c GCC GT	G GAG TGG (	SAG AGC AAT	GGG CAG	
ddc	g g y	y ru u e via ng	T GIU IID (	aru ser asi A	y y /	
			uu			
1220	1230	1	240	1250	1260	
•	• •	•	• •	•		
CCG GAG AAC						
Pro Glu Asn						
dd	ddd_	_dFC 1	'AGdd	dd	_dd_ >	

#### 19/42 Figure 4D

	1270	1280	1290	13	00
Glv Ser I	he Phe Le	t TAC AGC AA	s Leu Thr V	al Asp Lys	Ser Arg>
Tro Gln	Gln Gly A	AC GTC TTC TO sn Val Phe S	er Cys Ser \	/al Met His	: Glu Ala>
Leu His	Asn His T	1370 AC ACG CAG A yr Thr Gln Ldd_FC	ys Ser Leu	* ICC CTG TCT Ser Leu Ser	r Pro Gly>
Lys>	cer eec e	GT TCT GGC G		1430 ± GAC TGT GC	1440 * T T GAA GTA
		Sly Ser Gly A	e> Arg		a Glu Val>
Phe Lys	Ser Gly	1460 ** CAC ACC ACA His Thr Thr NG2 FIBRINOG	Asn Gly Ile	TAC ACG TT	au Thr Phe>
Pro Asn	TCT ACA	GAA GAG ATC Glu Glu Ile NG2 FIBRINOG	Lys Ala Tyr	Cys Asp M	et Glu Ala>
Glv Glv	Glv Glv	1550 TGG ACA ATT Trp Thr Ile	Ile Gln Arg	CGT GAG G Arg Glu A	sp Gly Ser>
1580	_££/ :	NG2 FIBRINO	GEN-LIKE DON 1600	fAIN_ff_ 1610	f> 1620
Val As	Phe Gln	AGG ACT TGG Arg Thr Trp ANG2 FIBRINO 1640	Lys Glu Ty	t Lys Val ( MAIN_ff	Gly Phe Gly>
Asn Pr	T TCA GGA o Ser Gly	GAA TAT TGG Glu Tyr Trp	CTG GGA AA	T GAG TTT on Glu Phe	Val Ser Gln>

#### 20/42 Figure 4E

		1 TR	ire 4L			
1670	1680		1690	1	700	1710
*	• •	•	•	•	•	
CTG ACT AAT	CAG CAA	CGC TAT	GTG CTT	AAA ATA	CAC CTT	AAA GAC
Leu Thr Asn	Gln Gln	Arg Tyr	Val Leu	Lys Ile	His Leu	Lys Asp>
ff	fANG2	FIBRINO	GEN-LIKE	DOMAIN_	ff	ff>
1 7	••					
17:	2U * *	1730		1740	17	50
TGG GAA GGG	AAT GAG	- ርርጥ ጥልር	TVD THE	m>m <>>>	CAD 0000	* *
Trp Glu Gly	Asn Chu	Ala Ter	Ser Leu	TAT GAA	CAT TIC	TAT CTC
ff	fANG2	FIBRINO	GEN-LIKE	DOMPEN	t t	Tyr Leu>
						·
1760	1770		1780	1	790	1800
•	• •	*	*	*	•	* *
TCA AGT GAA	GAA CTC	AAT TAT	AGG ATT	CAC CTT	AAA GGA	CTT ACA
Ser Ser Glu	Glu Lev	Asn Tyr	Arg Ile	His Lev	Lvs Glv	Leu Thr>
ff	fang2	FIBRINO	GEN-LIKE	DOMAIN_	.ff	£\$
18	10	1820		1830	18	40
CCC NON COO		*	•	*	*	* *
GGG ACA GCC	Clu Tara	ATA AGC	AGC ATC	AGC CAA	CCA GGA	AAT GAT
Gly Thr Ala	era parca	TIE SEL	Ser Ile	Ser Gir	Pro Gly	Asn Asp>
ff	ANG2	LIBKINO	GEW-LIKE	DOMAIN_	-r	.tt>
1850	1860	ı	1870	•	.880	1890
•	* *	*	*	* 1	*	1090
TTT AGC ACA	AAG GAT	GGA GAC	AAC GAC	AAA TGT	י אחר חכני	AAA TOT
Phe Ser Thr	Lys Asp	Gly Asp	Asn Asp	Lys Cys	Ile Cvs	LVS CVS>
ff	fANG2	FIBRINO	GEN-LIKE	DOMAIN	ff	ff>
19	00	1910		1920	19	30
mar ar	* •	*		*	*	* *
TCA CAA ATG	CTA ACA	GGA GGC	TGG TGG	TTT GAT	C GCA TGT	GGT CCT
Ser Gln Met	Leu Thi	GIA GIA	Trp Trp	Phe Asy	Ala Cys	Gly Pro>
ff	.LANG2	FIBRING	GEN-LIKE	DOMAIN_	-tt	.ff>
1940	1950	1	1960		1970	1000
*	• 1	*	1300		.970	1980
TCC AAC TTG	AAC GG	ATG TAC	TAT CCA	CAG AG	CAG AAC	דמג גיא
Ser Asn Leu	i Asn Gly	/ Met Tyr	Tyr Pro	Gln Are	Gln Asr	Thr Asn>
ff	fANG	FIBRING	GEN-LIKE	DOMAIN	f f	f f >
		•		•		
19	90	2000		2010	20	20
*	• 1	•	•	*	•	* *
AAG TTC AAC	GGC AT	D AAA TGO	TAC TAC	TGG AA	A GGC TC	GGC TAT
Lys Phe Ast	Gly Ile	Lys Tr	Tyr Tyr	Trp Ly	g Gly Ser	Gly Tyr>
ff	_IANG	ribrino	JEN-LIKE	DOMAIN	_ff	_£}
2030	204	<b>1</b>	2050		2060	
*	* :		2030	•	2060	2070
TCG CTC AAC	GCC AC	ል ልሮር ልጥ	YEA OTA E	. CGA CC	א פרא פאי	יי איטיר ערייא
Ser Leu Lys	Ala Th	r Thr Mei	Met Ile	Arg Pr	o Ala Aer	n Dhes
ff	_f_ANG2	FIBRINOG	EN-LIKE I	OMAIN	_ff_	_f>

Figure 5



Angl-FD-Fc-FD

22/42

Figure 6
Molar Mass vs. Volume



Figure 7



Ang2-FD-Fc-FD

Figure 8



Figure 9



Figure 10



Figure 11



Figure 12



Figure 13 .



## 30/42 Figure 14A

		1	.0			20			30			4	0	
	* .		•	•		•		•			•		•	•
ATG	GCT	CGG	CCT	GGG	CAG	CGT	TGG	CTC	GGC	AAG	TGG	CTT	GTG	GCG
nec ;	, ,	ALG SELK	-1. F	ייטדאטני פדא	GIN MAN	MIG NI 1	TEP (WIT	יצ פע יצ פע	GIA	Lys . Dri	TIP	Leu	Val a	ATA>
	``			~	OIDI		(#11	n 31	GNAL	FEE	IIDE	·/°	·a	
	50			60			7	0			80			90
	•		*	•		•		*	•		*		*	•
ATG	GTC	GTG	TGG	GCG	CTG	TGC	CGG	CTC	GCC	ACA	CCG	CTG	GCC	AAG
														Lys>
—'	ª	a_ELF	(-L I	ECTO	CAMO	N 1	(WI7	TH S	GNAI	PE	PTIDE	E)6	1a	>
		10	10		,	.10			120				• ^	
	•	-,	*	*	•	.10		*	120		*	13	•	
AAC	CTG	GAG	ccc	GTA	TCC	TGG	AGC	TCC	CTC	AAC	CCC	AAG	TTC	CTG
														Leu>
													aa	
	140			150			10	50		:	170			180
	*		*	*				•	*		•		•	
													AAG	CTG Leu>
														Leu> <>
		u					(117	5	LUIIA			<u> </u>	۰	^
		1	90		:	200			210			2	20	
	*		*	•		•		•	•		•		•	•
														TAC
														Tyr>
_	.a	a_EL	K-L	ECTO	DOMA	IN 1	(WI	TH S	IGNA	L PE	PTID	E)	a	a>
	230			240			2	50			260			270
	•		*	*		*	-	•					•	*
TAC	AAG	CTG	TAC	CTG	GTG	CGG	CCT	GAG	CAG	GCA	GCT	GCC	TGT	AGC
Tyr	Lys	Leu	Tyr	Leu	Val	Arg	Pro	Glu	Gln	Ala	Ala	Ala	Cys	Ser:
	.a	a_EL	K-L	ECTO	DOMA	IN 1	(WI	TH S	IGNA	T DE	PTIE	E)	a	a:
		_										_		
		2	80			290			300	)	_	3	10	_
»C		_ CTIC			* * * * *		mmc			, moc				GAG
														Glu
										-				a:
							•							
							7	40			350			360
	320			330	)		-							
	•		٠	•		•		*	1	•	•		*	•
	G GAJ			• TTT	ACC		: AAC	* TTC						AAC
C) i	G GAU	. Ile	arç	TTT Phe	ACC Thr	Ile	: AAC	* TTO Pho	e Gli	ı Glu	ı Phe	e Se	rPro	Asn
C) i	G GAU	. Ile	arç	TTT Phe	ACC Thr	Ile	: AAC	* TTO Pho	e Gli	ı Glu	ı Phe	e Se		Asn
C) i	G GAU	ı Ile _a_EL	arç	TTT Phe	ACC Thr	Ile	: AAC	* TTO Pho	e Gla SIGNA	n Glu AL Pi	ı Phe	e Sei DE)_	r Pro _a	Asn
C) i	G GAU	ı Ile _a_EL	Arq LK-L	TTT Phe	ACC Thr	Ile	: AAC	* TTO Pho	e Gli	n Glu AL Pi	ı Phe	e Sei DE)_	rPro	Asn
 G1:	G GAA n Glu _a	ı Ile _a_EL	Arç LK-L 370	TTT Phe ECTO	ACC Thi	Ile IN 1	AAC Lys (W)	* TTO Pho	Gli SIGNA	n Glu AL Pi	ı Phe EPTII	e Sei	e Pro _a 400	Asn a
TA	G GAN n Glu a	Ile _a_EL	Arg LK-L 370	TTT Phe ECTO	C ACC	380 380	: AAC : Lys : (W)	* S TTC S Pho ITH S	G Gli SIGNA 390 C CA	n Glu AL PI D T GA	Phe PTII	e Sei	Pro_a400	Asn

31/42

#### Figure 14B

410			420	0		43	0		4	40			450
TCA ACA	TCC #	· VAT	GGA	AGC	CTG	GAG	GGG	CTG	GAA	AAC	CGG	GAG	GGC
Ser Thr													
aa													
	460	1		4	70			480			49	0	
•	10.	•	*	7	•		•	*		•	4,7	•	•
GGT GTG													
Gly Val													
	_02.	~ -		,0,1,1		(****	5.	·Gina	J . L.		-/ <u> </u>	٠	·—
500			510		_	52	0		:	530			540
CAA GAT	CCC 1	- Bat	GCT	GTG	ACG			CAG	CTG	a CT	ACC	AGC	AGG
Gln Asp													
aa	_ELK	-L E	CTO	AMOC	IN 1	(WIT	rh s:	IGNA	L PE	PTID	E)6	·	·—->
	550	0		9	560			570			51	30	
*	,	<b>±</b>	•		*		*	*		•		•	*
CCC AGC													
Pro Ser													
						,,,,					- <i>'</i> —		
590		_	600		_	6:	10	_		620		_	630
CCT GGT	AGT	CGG	GGC	TCC	CTG	GGT	GAC	TCT	GAT	GGC	AAG	CAT	GAG
Pro Gly													
aa	_ELK	-L 1	ECTO	DOMA	IN 1	(WI	TH S	IGNA	L PE	PTID	E)	a	a>
	64	0			650			660			6	70	
ACT GTG	AAC	CAG	GAA	GAG	AAG	AGT	GGC	י ררא	GGT	GCA	АСТ	GGG	GGC
Thr Val													
a	a_ELK	-L	ECTO	DOMA	IN 1	(WI	TH S	IGNA	T DE	PTIE	E)	a	a>
680			690			7	00			710			720
*		*	•		*		•			•		•	*
AGC AGC Ser Ser												CCG	GGT
ELK-				-	-					_			
											-		Gly>
												.b	_b>
•	73	30			740		*	750	•		7	60	*
AAG AAC	CTG	GAG	CCC	GTA	TC	TGC	AGO	TC	CTC	AA C	ccc	. AAC	TTC
Lys Asn	Leu	Glu	Pro	Val	Se	Tr	Sei	Se	r Le	ı Ası	n Pro	Lys	· Phe>
c	٠(	E	.DV -1	י בניו	וטמט	JA I N	Z (I	NO 5.	I GNA	اما	-c	_c	_c>
770			780	)		7	790			800			810
ርጥር ልርጥ	CCC	ν. •	CCC	, ww.		~ »m·		r cc	•		T CC	•	•
CTG AGT Leu Ser	Gly	Lys	Gly	Le	u Va	S AIG	TA	r Pr	G AA O LV	A AT S Il	e Gl	A GAC	D Lys:
													- درد ر _ا د د

#### 32/42 Figure 14C

				F	Lgur	6 14(	•						
	820			8	30			840			85	0	
*			•		•		•	•		•		•	•
CTG GAC													
Leu Asp	Ile I	le (	Cys	Pro	Arg	Ala	Glu	Ala	GIA	Arg	Pro	Tyr	Glu>
cc	c_	_ELI	K-L	ECTO	DOMA	IN 2	(NC	SIC	NAL)		:c	c	>
860		1	870			88	0		8	90			900
	•		•		•		•	•		•		•	•
TAC TAC	AAG C	TG	TAC	CTG	GTG	CGG	CCT	GAG	CAG	GCA	GCT	GCC	TGT
Tyr Tyr													
cc		=-	V-D	ECTO	DOM	IIN 2	: (NU	) 210	SNAL)	—	:c	:c	>
	910			9	20			930			94	10	
•	•		•	_	*		•	•		*		•	•
AGC ACA	GTT C	TC	GAC	CCC	AAC	GTG	TTG	GTC	ACC	TGC	TAA	AGG	CCA
Ser Thr													
cc													
950			960			91	70		9	980			990
*	*		•		•		•			*		•	*
GAG CAG													
Glu Gln													
	c_		'K-L	ECTC	JUOM	AIN .	2 (N	0 51	GNAL ,	·—	c	c	c>
	1000	1		11	10			1020			10	3.0	
•				- '	*		•			*		•	
AAC TAC	ATG C	GC	CTG	GAG	TTC	AAG	AAG	CAC	CAT	GAT	TAC	TAC	TTA
Asn Tyr													
c													
1040		. 1	050			10	60		1	070			1080
300 mos			•		•		*			•		*	*
ACC TCA Thr Ser													
c													
							- '	0 01		'—			
	109	0		1	100			1110	)		11	20	
•		4	•		•		•	•	,	•		*	•
GGC GGT													
Gly Gly	Val (	Cys	Arg	Thr	Arg	Thr	Met	Lys	: Ile	Ile	Met	Lys	Val>
c	.cc	E	LK-L	ECT	ODOM	NIA	2 (1)	10 SI	GNAL	(۰	.c	.c	.c>
									_				
1130		. :	1140			11	.50		. 1	160			1170
CCC CXX	C N M	•							•	•		•	•
GGG CAA													
C C													
	.~		DIC-L	,	ODO	2711	2 (1	<b>V</b> O 3.	LONAL	"			
	118	0		1	190			120	0		12	210	
•		•	•		٠		*		*	•		•	•
AGG CCC	AGC	AAG	GAC	GCA	GAG	C AAC	: AC	r GT	CAAC	TA C	G GCC	C AC	A CAG
Arg Pro	Ser	Lys	Glu	ı Ala	Ası	Ası	Th:	r Va	l Lys	s Me	t Ala	a Th	r Gln>
c	_cc	E	TK-I	ECT	odor	MIAN	2 (1	NO S	IGNA	L)	_c	_c	_c:>
						_							
1220			1230	)		13	240			1250			1260
	r ccm				•	~ ~~		m ~-	-	•	m ~~		
GCC CC	o Glo	Sor	. N.	יום ב יום ני	, 5th	r 1.5	יט פיט וויין נו	i GA	D 60	L GA	n Ch		G CAT
**************************************	C C	.,GI : F	I.K - 1	, ECT	יסתסיו	MAIN	2 1	y AS No s	ICNV P 2G	. KS	יר 10 כדי	ν. γιη	s 111 s > C <

33/42 Figure 14D

	127	0		128	30		1	290			130	0	
GAG ACT Glu Thr	Val /	Asn (	Gln (	Glu (	3lu	Lys .	Ser	Gly :	Pro (	Gly i	Ala :	Ser	Gly>
1310		. 1	320			133	0		13	40		. 1	350
GGC AGC	AGC	GGG	GAC	CCT (	GAT	GGC	TTC	TTC .	AAC '	TCC .	AAA (	GGC	
Gly Ser		_	_		-	_					_		
											,		Pro>
	136	0		13	70		1	380			139	0	
GGC GAG	ccc	* AAA	TCT	TGT	GAC	AAA	* ACT	CAC	ACA	* TGC	CCA	* CCG	TGC
Gly>													
> Glu	Pro	Lys	Ser	Cys	Asp	Lys	Thr	His	Thr	Cys	Pro	Pro	Cys>
	≥€	e		HU	MAN	IGG	L FC	TAG_	<u></u>		:e	·	e>
1400		1	1410			142	20		14	130			1440
CCA GCA	ССТ	GAA	CTC	CTG	* GGG	GGA	* CCG	TCA	GTC	* TTC	CTC	TTC	ccc
Pro Ala	Pro	Glu	Leu	Leu	Gly	Gly	Pro	Ser	Val	Phe	Leu	Phe	Pro>
e	ee	• <u> </u>	e	_HUM2	M I	GG1	FC T	AG		e	e(		e>
	145	50		14	160			1470			14	ВО.	•
CCA AAA													
Pro Lys													
											·		
1490			1500			15	10		1	520			1530
•		•	•		*		•	*		*		*	*
ACA TGC		GTG		GAC		AGC	CAC		GAC	CCT			
Thr Cys	Val	GTG Val	Val	GAC Asp	Val	AGC Ser	CAC His	Glu	GAC Asp	CCT	Glu	Va)	Lys>
	Val e	GTG Val e	Val	GAC Asp _HUM	Val AN I	AGC Ser	CAC His	Glu PAG	GAC Asp e	CCT	Glu e	Val e	Lys>
Thr Cys	Val e	GTG Val	Val	GAC Asp _HUM	Val	AGC Ser	CAC His	Glu	GAC Asp e	CCT	Glu e	Va)	Lys>
Thr Cys	Val e 15	GTG Val e	Val e	GAC Asp HUM 1	Val AN I 550 GGC	GG1	CAC His FC T	Glu PAG 1560 G GTG	GAC Asp e	CCT Pro	15 GCC	70 • AA	Lys> _e>  G ACA
Thr Cys	Val e 15 c TGG	GTG Val e 40 TYI	Val e	GAC Asp HUM 1 G GAC	Val AN I 550 GGC Gly	GG1	CAC His FC T	Glu PAG 1560 *GGTG 1 Val	GAC Asp e	CCT Pro	Glu e 15 GCC Ala	Val	Lys> _e>  G ACA s Thr>
Thr Cys	Val e 15 c TGG	GTG Val e 40 TYI	Val	GAC Asp HUM 1 G GAC Asp	Val AN I 550 GGC Gly	GGG1	CAC His FC T	Glu PAG 1560 *GGTG 1 Val	GAC Asp e CAT His	CCT Pro e	Glu e 15 GCC Ala	Val	Lys> _e>  G ACA s Thr> _e>
TTC AAC Phe Asre1580	Val	GTG Val e GTAC TAC TYI e	Val	GAC Asp HUM  1 GAC Asp	Val AN I 550 GGC Gly IAN I	GGG1	CAC His FC T	GGLU TAG 1560 GGTG I Val	GAC Asp e CAT His	CCT Pro e	Glu e 15 G GCC n Ala e	Val	Lys> _e>  G ACA s Thr> _e>
TTC AAC Phe Asr ——e  1580  AAG CCC	Val	GTG Val e 40 TYI TO TYI	Val	GAC Asp HUM  1 GAC Asp	Val AN I 550 GGO Gly IAN I	G AAC	CAC His FC T GAC FC T	GOLUMAN STATE OF THE STATE OF T	GAC Asp e GAT GTAG	CCT Pro	Glu 15 GCC Ala e	Value —	Lys> _e>  G ACA s Thr> _e>  1620 *C AGC
TTC AAC Phe Asre1580	Val.e15 C TGG Trp _e	GTG Val e 40 TYI F GGAG GGAG GGAG	Valle STORY Valle	GAC ASP HUM  1 GAC ASP HUM  3 GAC	Val AN I 550 GGC Gly IAN I	GAGC CGG1 CGG1 CGG1 CGG1 CGG1 CGG1 CGG1	CAC His FC T GAC GIN FC T	G Glu  1560  G GTG  Val  TAG  C ACC  r Thi	GAC Asp e  CAT His e  TAG TAG	CCT Pro e	Glu E 15 GCC Ala E CTC G Vai	Val	L Lys> _e>  G ACA s Thr> _e>  1620 c AGC l Ser>
TTC AAC Phe Asr ——e  1580  AAG CCC Lys Pro	15 TGG TTP _e	GTG Val e 40 TYI F GGAG GGAG GGAG	Valle STORY Valle	GAC Asp HUM  1 GAC Asp HUM  3 GAC GAC HUM	Val AN I 550 GGC Gly IAN I	GAGC CGG1 CGG1 CGG1 CGG1 CGG1 CGG1 CGG1	CAC His FC T GAC GIN FC T	G Glu  1560  G GTG  Val  TAG  C ACC  r Thi	GAC ASP CAT His CTAC TYP	CCT Pro e	Glu e 15 r GCC n Ala_e  e r GTC g Vai	Val	L Lys> _e>  G ACA s Thr> _e>  1620 c AGC l Ser>
TTC AAC Phe Asr ——e  1580  AAG CCC Lys Pro	S CGC  G CGC  Arc  C ACC	GTG Val e 40 TAC TYI E GGAC GGAC GGAC GGC GGC GGC GGC GGC GGC	Val	GAC Asp HUM  1 GGAC Asp HUM  3 GGAC GI HUM  1 GGAC GCAC	VallAN I 550 GGC GGC HAN I TY: HAN :	G GAAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	CAC His FC T GAL Glu FC T GAL GLU FC T GG T	G GTG  C ACCC  TAG  TAG  C ACCC  TAG  TAG  TAG  C ACCC  TAG  TAG  TAG  C CTC  C CTC	GAC Asp e  CAT His GTAC TY  GGAA	CCT Property And Annual Property And Annual Property Annual Pr	15 C AA	Valle Ly: AA(  * AA( Ly: -e  6600  * G GA	L Lys> _e>  G ACA s Thr> _e>  1620 c AGC l Ser> _e>

#### 34/42 Figure 14E

16	70		. 1	1680			169	90		17	00		1	710
AAC	TCC	A A C	(24) 2	TCC	NAC.	*	ccc	•	~~	ccc	*	λπ <b>∨</b> °	ere.	**
														Lys>
				e										
		17:	20		1	730			1740			175	0	
	*		•	•		*		*	*		*		*	*
				GCC										
														Tyr>
—		·	='	e	_non	HEN I	GGI .	FC 1	AG	E	<u>-</u>	·—-	·'	=
1	760			1770			17	80		1	790		:	1800
	*		*	•		•		*	*		*		•	*
ACC	CTG	CCC	CCA	TCC	CGG	GAT	GAG	CTG	ACC	AAG	AAC	CAG	GTC	AGC
					_	_				-				Ser>
	e	е	е	.e	_HUM	AN I	GG1	FC T	AG	e	e	e	e	e>
		18	10		,	820			1830			18	40	
	*	10	*		-	020		*	1020		*	10	*	*
CTG	ACC	TGC	CTG	GTC	AAA	GGC	TTC	TAT	ccc	AGC	GAC	ATC	GCC	GTG
														Val>
														e>
1	850			1860			18	370		1	.880			1890
	*		*	*				*	•				*	*
										-			- 1	: ACG : Thr>
														_e>
		.~										.~		
		19	000		1	1910			1920	)		19	30	
	*		*	•	•	*		*	•	•	*		*	*
														AAG
				-		-		-						c Lys>
_	.е	_e	-e	_e	HUI	MAN .	IGGI	FC '	TAG	_e	_e	_е	_е	_e>
1	940			1950	3		1	960			1970			1980
	•		*			*	_	•		•	*		•	*
CT	AC	C GT	G GA	C AAG	G AG	CAG	G TG	G CA	G CA	G GG	G AA	C GT	TT	C TCA
														e Şer>
_	_e	_e	_e	_e	HU	MAN	IGG1	FC	TAG_	_e	_e	_e	_e	_e>
		•	990			2000			201			2	020	
	*	1	*		•	2000			201	*		2	J2U	
TG	C TC	C GT	G AT	G CA	T GA	G GC	тст	G CA	CAA	C CA	СТА	C AC	G CA	G AAG
														n Lys>
											-			_e>
					_									
	2030			204	0		. 2	050						
**	ر م	v m^		~ ~~	* T. ^^	•	·	*	••					
				NG TC										
				IGG1					. >					

#### 35/42 Figure 15A

10	20	30	40
ATG GCC ATG GCC (	CGG TCC AGG A	OG GAC TOT GTG	TGG AAG TAC TGT
Met Ala Met Ala			
aEPHRIN-B2	ECTO DOMAIN	1 (WITH SIGNAL	PEPTIDE) >
5.0			
50 * *	60	70	80 90
TGG GGA CTT TTG	ATG GTT TTG 1	GC AGA ACT GCG	ATC TCC AGA TCG
Trp Gly Leu Leu	Met Val Leu (	ys Arg Thr Ala	Ile Ser Arg Ser>
a_EPHRIN-B2	ECTO DOMAIN	1 (WITH SIGNAL	PEPTIDE)>
100	110	120	130
* *		+ +	* * *
ATA GTT TTA GAG	CCT ATC TAC	NGG AAT TCC TCG	AAC TCC AAA TTT
			Asn Ser Lys Phe>
a_EPHRIN-B2	ECTO DOMAIN	1 (WITH SIGNAL	PEPTIDE)a>
140	150	160	170 18Ö
. * *	• •	* *	* * *
CTA CCC GGA CAA	GGC CTG GTA	CTA TAC CCA CAG	ATA GGA GAC AAA
			Ile Gly Asp Lys>
a_EPHRIN-B2	ECTO DOMAIN	1 (WITH SIGNAL	PEPTIDE)a>
190	200	210	220
		* *	* * *
			ACT GTT GGC CAG
_			Thr Val Gly Gln>
aEPHRIN-B2	ECTO DOMAIN	I (WITH SIGNAL	PEPTIDE)a>
230	240	250	260 270
* *	• •	• •	• • •
			GAC CAA GCA GAC
			Asp Gln Ala Asp> PEPTIDE)a>
abriikIN-bz	. Ecro Boiler	, I /WIIII DIGHAL	, recribe/a
280	290	300	310
	* *		
			G CTC AAC TGT GCC Leu Asn Cys Ala>
			PEPTIDE)a>
<del></del>			· <del></del>
320	330	340	350 360
* * * * * * * * * * * * * * * * * * *	כאד כדכ אאא	* * ייירר גרוני אידר אאנ	G TTT CAA GAA TTC
			s Phe Gln Glu Phe>
		-	L PEPTIDE)a>
370	380	390	400
AGC CCT AAC CTC	TGG GGT CTA	GAA TTT CAG AA	G AAC AAA GAT TAC
			s Asn Lys Asp Tyr>
			L PEPTIDE)a>

### 36/42 Figure 15B

410	420	430	440	450
*	• •	• •	• •	• •
			TTG GAG GGC CT	
			Leu Glu Gly Le	
a_EPHRI	N-B2 ECTO	OMAIN 1 (WITH	SIGNAL PEPTID	E)>
4	60	470	480	490
•	• •	•	· · · · ·	
CAG GAG GGA	GGG GTG TGC	CAG ACA AGA	GCC ATG AAG AT Ala Met Lys I]	C CTC ATG
a_EPHRI	N-B2 ECTO	OMAIN 1 (WITH	SIGNAL PEPTIE	DE)a>
500	510	520	530	540
*	• •			
AAA GTT GGA	A CAA GAT GC	A AGT TCT GCT	GGA TCA GCC A	GG AAT CAC
-	_		Gly Ser Ala A	
a_EPHRI	IN-B2 ECTO	DOMAIN 1 (WITH	SIGNAL PEPTI	DE)>
ţ	550	560	570	580
•	• •	* *	• •	
GGT CCA AC	A AGA CGT CC	A GAG CTA GAA	GCT GGT ACA A	AT GGG AGA
GIY PIO TIL	r Arg Arg Pr TN=R2 FCTO	O GIU LEU GIU O GIU LEU GIU	Ala Gly Thr A SIGNAL PEPTI	DEI a >
	20 2010			
590	600	610	620	630
*			* * *	* *
			CCA AAT CCA G Pro Asn Pro G	
a_EPHR	IN-B2 ECTO	DOMAIN 1 (WIT:	H SIGNAL PEPTI	DE)a>
			•	
•	640	650	660	670
ACC GAT GG	C AAC AGC GO	G GGG CAT TCC	GGG AAC AAT C	TC CTG GGG
Thr Asp Gl	y Asn Ser Al	la Gly His Ser	Gly Asn Asn I	Leu Leu Gly>
аЕРНЯ	IN-B2 ECTO	DOMAIN 1 (WIT	H SIGNAL PEPTI	(DE)a>
680	690	700	710	720
•	• •	* *	• •	• •
		TA GAG CCT ATC	TAC TGG AAT	TCC TCG AAC
Gly Pro Gl				•
pp		eu Glu Pro Ile	Tyr Trp Asn	Ser Ser Asn>
			IN 2 ( WITHOU	
	730	740	750	760
•	* *	140	* *	
TCC AAA T	TT CTA CCC G	GA CAA GGC CTG	GTA CTA TAC	CCA CAG ATA
			. Val Leu Tyr	
EPHRI	N-B2 ECTO D	OMAIN 2 ( WIT	HOUT SIGNAL PE	:PTIDE)_e>
770	780	790	800	810
•	• •	• •		
			C AAA GTG GAC	
Gly Asp L			o Lys Val Asp	

37/42 Figure 15C 820 830 GTT GGC CAG TAT GAA TAT TAT AAA GTT TAT ATG GTT GAT AAA GAC Val Gly Gln Tyr Glu Tyr Tyr Lys Val Tyr Met Val Asp Lys Asp> _EPHRIN-B2 ECTO DOMAIN 2 ( WITHOUT SIGNAL PEPTIDE)_e___> 880 CAA GCA GAC AGA TGC ACA ATT AAG AAG GAG AAT ACC CCG CTG CTC Gln Ala Asp Arg Cys Thr Ile Lys Lys Glu Asn Thr Pro Leu Leu> ___EPHRIN-B2 ECTO DOMAIN 2 ( WITHOUT SIGNAL PEPTIDE)_e___> 920 910 930 AAC TGT GCC AGA CCA GAC CAA GAT GTG AAA TTC ACC ATC AAG TTT Asn Cys Ala Arg Pro Asp Gln Asp Val Lys Phe Thr Ile Lys Phe> ____EPHRIN-B2 ECTO DOMAIN 2 ( WITHOUT SIGNAL PEPTIDE) _e___> 960 970 980 990 CAA GAA TTC AGC CCT AAC CTC TGG GGT CTA GAA TTT CAG AAG AAC Gln Glu Phe Ser Pro Asn Leu Trp Gly Leu Glu Phe Gln Lys Asn> __EPHRIN-B2 ECTO DOMAIN 2 ( WITHOUT SIGNAL PEPTIDE) _e___> 1010 1020 AAA GAT TAC TAC ATT ATA TCT ACA TCA AAT GGG TCT TTG GAG GGC Lys Asp Tyr Tyr Ile Ile Ser Thr Ser Asn Gly Ser Leu Glu Gly> __EPHRIN-B2 ECTO DOMAIN 2 ( WITHOUT SIGNAL PEPTIDE) _e___> 1060 1040 1050 1070 CTG GAT AAC CAG GAG GGA GGG GTG TGC CAG ACA AGA GCC ATG AAG Leu Asp Asn Gln Glu Gly Gly Val Cys Gln Thr Arg Ala Met Lys> ____EPHRIN-B2 ECTO DOMAIN 2 ( WITHOUT SIGNAL PEPTIDE)_e___> 1100 1110 1120 ATC CTC ATG AAA GTT GGA CAA GAT GCA AGT TCT GCT GGA TCA GCC Ile Leu Met Lys Val Gly Gln Asp Ala Ser Ser Ala Gly Ser Ala> __EPHRIN-B2 ECTO DOMAIN 2 ( WITHOUT SIGNAL PEPTIDE) _e___> 1140 1150 AGG AAT CAC GGT CCA ACA AGA CGC CCA GAG CTA GAA GCT GGT ACA Arg Asn His Gly Pro Thr Arg Arg Pro Glu Leu Glu Ala Gly Thr> __EPHRIN-B2 ECTO DOMAIN 2 ( WITHOUT SIGNAL PEPTIDE) _e ___ > 1200 1180 1190 AAT GGG AGA AGT TCA ACA ACA AGT CCC TTT GTG AAG CCA AAT CCA Asn Gly Arg Ser Ser Thr Thr Ser Pro Phe Val Lys Pro Asn Pro> ____EPHRIN-B2 ECTO DOMAIN 2 ( WITHOUT SIGNAL PEPTIDE) _c___> 1220 1230 1240 GGT TCT AGC ACC GAT GGC AAC AGC GGG GGG CAT TCC GGG AAC AAT Gly Ser Ser Thr Asp Gly Ash Ser Ala Gly His Ser Gly Ash Ash>

EPHRIH-BZ ECTO DOMAIN 2 ( WITHOUT SIGNAL PEPTIDE) 4

38/42 Figure 15D 1270 1280 1290 1300 • . CTC CTG GGG G GC CCG GGC GAG CCC AAA TCT TGT GAC AAA ACT CAC Glu Pro Lys Ser Cys Asp Lys Thr His> _c___HUMAN IGG1 FC TAG__c__c__> Gly Pro Gly> _d__d___d___> Leu Leu Gly Xxx> _e___e_> 1310 1320 1330 1340 ACA TGC CCA CCG TGC CCA GCA CCT GAA CTC CTG GGG GGA CCG TCA Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser> ___c__c__c__HUMAN IGG1 FC TAG_c_c__c__c__> GTC TTC CTC TTC CCC CCA AAA CCC AAG GAC ACC CTC ATG ATC TCC Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser> 1400 1410 1430 1420 CGG ACC CCT GAG GTC ACA TGC GTG GTG GTG GAC GTG AGC CAC GAA Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu> _c__c__c__c__human igg1 fc tag_c__c__c__c__c__> 1450 1470 1460 GAC CCT GAG GTC AAG TTC AAC TGG TAC GTG GAC GGC GTG GAG GTG Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val> ___c__c__c__human igg1 fc tag_c__c__c__c__c__> 1490 1500 CAT AAT GCC AAG ACA AAG CCG CGG GAG GAG CAG TAC AAC AGC ACG His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr> _c__c__c__c__human igg1 fc tag_c__c__c__c__c__> 1550 1560 TAC CGT GTG GTC AGC GTC CTC ACC GTC CTG CAC CAG GAC TGG CTG Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu> __c__c__c__human igg1 fc tag_c__c__c__c__> 1610 1590 1600 AAT GGC AAG GAG TAC AAG TGC AAG GTC TCC AAC AAA GCC CTC CCA Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro> ___c__c__c__HUMAN IGG1 FC TAG_c_c_c_c_c_> 1640 1650 1660 GCC CCC ATC GAG AAA ACC ATC TCC AAA GCC AAA GGG CAG CCC CGA Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg-LC. LC LC LC HUMAN IGG1 FC TAG C C C LC LC

39/42 Figure 15E

1670	1680	169	0	1700	1710
GAA CCA CAG GTG	TAC ACC	דה ככר	CCA TCC	CCC CAT C	እር ሮሞር እርር
Glu Pro Gln Val	Tyr Thr I	Leu Pro	Pro Ser	Arg Asp G	lu Leu Thro
ccc	HUMAI	N IGG1 F	'C TAG	g Mop o	C C >
			••		
1720	17:	30	1740		1750
* *	•	•	* *	•	• •
AAG AAC CAG GTC	AGC CTG	ACC TGC	CTG GTC	AAA GGC T	TC TAT CCC
Lys Asn Gln Val	Ser Leu	Thr Cys	Leu Val	Lys Gly P	he Tyr Pro>
ccc	CHUMAI	N IGG1 F	C TAGc	:cc_	c>
1760	1770				
1700	1//0	178	50	1790	1800
AGC GAC ATC GCC	GTG GAG	TOO ONO	ACC AAM	-	00 010 110
Ser Asp Ile Ala	Val Glu	Trn Glu	AGC AAI	Cly Cln C	CG GAG AAC
ccc	C HIMAI	יים מבני א דממו א	C TAC C	GIA GIU E	TO GIU ASII>
			C 176C		
1810	18:	20	1830		1840
• •	•	*		•	* *
AAC TAC AAG ACC	ACG CCT	CCC GTG	CTG GAC	TCC GAC G	GC TCC TTC
Asn Tyr Lys Thr	Thr Pro	Pro Val	Leu Asp	Ser Asp G	ly Ser Phe>
ccc	CHUMA	N IGG1	FC TAGC	cc_	cc>
			•		
1850	1860	18	70	1880 .	1890
• •	•	*	* *	*	* *
TTC CTC TAC AGC	AAG CTC	ACC GTG	GAC AAG	AGC AGG T	NGG CAG CAG
Phe Leu Tyr Ser	Lys Leu	Thr Val	Asp Lys	Ser Arg 1	Trp Gln Gln>
ccc	CHUMA	N IGG1	FC TAG	cc_	cc>
1000	• •				
1900	. 19	10	1920		1930
GGG AAC GTC TTC	- TCN TCC	TCC CDC			* *
Gly Asn Val Phe	Ser Cus	Sor Val	Mot Win	Clu Na	OTG CAC AAC
ccc	C HIMA	N TCC1	EC TAC .	GIU AIA 1	Jeu His Asn>
		1 1001	rc ino	·	
1940	1950	19	60	1970	
• •	•		• •	*	*
CAC TAC ACG CAG	AAG AGC	CTC TCC	CTG TCT	CCG GGT A	AAA TGA
His Tyr Thr Gln	Lys Ser	Leu Ser	Leu Ser	Pro Glv	Lvs ***>
ccc_	cHUMAN	IGG1 FC	TAG	ccc	c> '

Figure 16



Figure 17



42/42

Figure 18



1 2 3 4 5 6 7 8 9

# INTERNATIONAL SEARCH REPORT

In. .ational Application No PCT/US 99/30900

A CLASS IPC 7	ification of subject matter C12N15/12 C12N15/62 C12N5/ C07K14/52	10 C12N1/21	C07K14/515
According	to International Patent Classification (IPC) or to both national class	ification and IPC	
	SEARCHED		
Minimum d IPC 7	ocumentation searched (classification system followed by classific C12N C07K	ation symbols)	
Documenta	tion searched other than minimum documentation to the extent the	at such documents are included	d in the fields searched
Electronic o	ista base consulted during the International search (name of data	base and, where practical, sea	terms used)
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the	relevant passages	Relevant to claim No.
X	WO 96 37621 A (MORPHOSYS PROTEINOPTIMIERUNG ; PACK PETER ( ADOLF (DE)) 28 November 1996 (19	(DE); HOESS	1-5, 12-22
	abstract page 1, line 12 - line 15 page 2, line 4 - line 9 page 14, line 6 - line 11 page 16, line 29 - line 34 figure 1A	<del></del> ,	
Y A			8-11 6,7
	·	-/	
χ Furth	er documents are listed in the continuation of box C.	X Patent family memi	pers are listed in annex.
* Special cat	egories of cited documents :	*T* later document published	l after the international filing date n conflict with the application but
conside E" earlier de filing da		cited to understand the invention  "X" document of particular re	principle or theory underlying the levance; the claimed invention ovel or cannot be considered to
which is citation	it which may throw doubts on priority claim(s) or cited to establish the publication date of another or other special reason (as specified) nt referring to an oral disclosure, use, exhibition or	"Y" document of particular re cannot be considered to	when the document is taken alone levance; the claimed invention involve an inventive step when the
otherm 'P'documer	eans It published prior to the international filing date but In the priority date claimed	ments, such combined to ments, such combination in the art.  "&" document member of the	with one or more other such docu- n being obvious to a person skilled same patent family
Date of the a	ctual completion of the international search	Date of mailing of the int	
22	May 2000	09/06/2000	
Name and m	ailing address of the ISA  European Patent Office, P.B. 5818 Patentiaan 2  NL - 2280 HV Rijswijk  Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3018	Authorized officer  Galli, I	

Form PCT/ISA/210 (second sheet) (July 1992)

# INTERNATIONAL SEARCH REPORT

in. attornal Application No PCT/US 99/30900

NAME OF THE PARTIES O	PCT/US 99/30900
citization of documents, with inforcation, where appropriate, of the relevant passages	Relevant to claim No.
WO 92 03569 A (SANGSTAT MEDICAL CORP) 5 March 1992 (1992-03-05) abstract page 1 -page 3 page 19 line 14 - line 23	23-26, 29,32-41
page 13, Time 14 - Time 23	30 27,28
WO 95 27060 A (REGENERON PHARMA) 12 October 1995 (1995-10-12) cited in the application abstract page 23, line 21 -page 24, line 8 claims 4,8	8-11,30
EP 0 816 510 A (TORAY RESEARCH CENTER INC ;TORAY INDUSTRIES (JP)) 7 January 1998 (1998-01-07) abstract	1-22
DAVIS S. ET AL.: "Isolation of Angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning" CELL, vol. 87, 27 December 1996 (1996-12-27), pages 1161-1169, XP002138354 cited in the application the whole document	6,7,27, 28
MAISONPIERRE P.C. ET AL.: "Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis." SCIENCE, vol. 277, 4 July 1997 (1997-07-04), pages 55-60, XP002138355 cited in the application the whole document	6,7,27, 28
TOURNAY C. ET AL.: "Uptake of recombinant myeloperoxidase, free or fused to Fc-gamma, by macrophages enhances killing activity towards micro-organisms" DNA CELL BIOLOGY, vol. 15, no. 8, 1996, pages 617-624, XP000907279 abstract page 618	21,40
	5 March 1992 (1992-03-05) abstract page 1 -page 3 page 19, line 14 - line 23  WO 95 27060 A (REGENERON PHARMA) 12 October 1995 (1995-10-12) cited in the application abstract page 23, line 21 -page 24, line 8 claims 4,8  EP 0 816 510 A (TORAY RESEARCH CENTER INC; TORAY INDUSTRIES (JP)) 7 January 1998 (1998-01-07) abstract  DAVIS S. ET AL.: "Isolation of Angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning" CELL, vol. 87, 27 December 1996 (1996-12-27), pages 1161-1169, XP002138354 cited in the application the whole document  MAISONPIERRE P.C. ET AL.: "Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis." SCIENCE, vol. 277, 4 July 1997 (1997-07-04), pages 55-60, XP002138355 cited in the application the whole document  TOURNAY C. ET AL.: "Uptake of recombinant myeloperoxidase, free or fused to Fc-gamma, by macrophages enhances killing activity towards micro-organisms" DNA CELL BIOLOGY, vol. 15, no. 8, 1996, pages 617-624, XP000907279 abstract

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

#### INTERNATIONAL SEARCH REPORT

information on patent family members

in ational Application No PCT/US 99/30900

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
WO 9637621	A	28-11-1996	CA	2222055 A	28-11-1996
			EP	0827544 A	11-03-1998
			JP	11508126 T	21-07-1999
WO 9203569		05-03-1992	CA	2090105 A	01-03-1992
	•		EP	0547163 A	23-06-1993
			JP	6502301 T	17-03-1994
			ÜS	5672486 A	30-09-1997
WO 9527060	A	12-10-1995	US	5747033 A	05-05-1998
			ΑU	691915 B	28-05-1998
			AU	2278995 A	23-10-1995
			CA	2187167 A	12-10-1995
			ĔΡ	0758381 A	19-02-1997
			JΡ	9511401 T	18-11-1997
			ZA	9502762 A	20-02-1996
EP 0816510	Α	07-01-1998	CA	2213512 A	03-07-1997
			WO	9723639 A	03-07-1997