Лабораторная работа 5

Модель эпидемии (SIR)

Алади П. Ч.

Российский университет дружбы народов, Москва, Россия

Докладчик

- Алади Принц Чисом
- студент
- Российский университет дружбы народов
- · 103225007@pfur.ru
- https://pjosh456.github.io/

Цель работы

Построить модель SIR в xcos и OpenModelica.

- 1. Реализовать модель SIR в в *xcos*;
- 2. Реализовать модель SIR с помощью блока Modelica в в xcos;
- 3. Реализовать модель SIR в OpenModelica;
- 4. Реализовать модель SIR с учётом процесса рождения / гибели особей в хсоз (в том числе и с использованием блока Modelica), а также в OpenModelica;
- 5. Построить графики эпидемического порога при различных значениях параметров модели (в частности изменяя параметр μ);
- 6. Сделать анализ полученных графиков в зависимости от выбранных значений параметров модели.

Выполнение лабораторной работы

$$\begin{cases} \dot{s} = -\beta s(t)i(t); \\ \dot{i} = \beta s(t)i(t) - \nu i(t); \\ \dot{r} = \nu i(t), \end{cases}$$

где eta – скорость заражения, u – скорость выздоровления.

Зафиксируем начальные данные:

$$\beta=1,\,\nu=0,3,s(0)=0,999,\,i(0)=0,001,\,r(0)=0.$$

Рис. 3: Задание начальных значений в блоках интегрирования

Реализация модели в xcos

Рис. 4: Задание начальных значений в блоках интегрирования

Рис. 5: Задание конечного времени интегрирования в хсоз

Рис. 6: Эпидемический порог модели SIR при $\beta=1, \nu=0.3$

Рис. 7: Модель SIR в хсоз с применением блока Modelica

Рис. 8: Параметры блока Modelica для модели SIR

16/34

Упражнение

```
parameter Real I 0 = 0.001;
  parameter Real R 0 = 0:
  parameter Real S_0 = 0.999;
  parameter Real beta = 1:
  parameter Real nu = 0.3;
  parameter Real mu = 0.5:
  Real s(start=S 0):
 Real i(start=I 0);
 Real r(start=R 0);
equation
 der(s)=-beta*s*i;
  der(i)=beta*s*i-nu*i;
  der(r)=nu*i;
```

Упражнение

Основное 1	Интерактив	ная Синуляция Translation Flags Флаги Синуляции Вывести		
Интервал Сим	чуляции			1
Начальное Время:		0	secs	
Конечное Время:		30	secs	
• Число Интервалов:		500	0	
O Interval:		0.002	secs	
Интегрирован	we			
Метод: dassi			· · ·	
Точность: 1	сть: 1е-6			
Якобиан:			~	
Настройки				
[] Havour	Anna Vanna			1.0
Save experime	ent annotati	on inside model i.e., experiment annotation		
Save translation	on flags insi	de model i.e.,OpenModelica_commandLineOptions annotation		
Save simulatio	on flags insid	le model i.e.,OpenModelica_simulationFlags annotation		
Симулировать	b			
			OK OTM	

Рис. 11: Эпидемический порог модели SIR при $\beta=1, \nu=0.3$

$$\begin{cases} \dot{s} = -\beta s(t)i(t) + \mu(N - s(t)); \\ \dot{i} = \beta s(t)i(t) - \nu i(t) - \mu i(t); \\ \dot{r} = \nu i(t) - \mu r(t), \end{cases}$$

где μ — константа, которая равна коэффициенту смертности и рождаемости.

Рис. 12: Модель SIR с учетом демографических процессов в хсоѕ

Рис. 13: График модели SIR с учетом демографических процессов

Рис. 14: Модель SIR с учетом демографических процессов в хсоs с применением блока Modelica

Рис. 15: Параметры блока Modelica для модели SIR с учетом демографических процессов

Рис. 17: График модели SIR с учетом демографических процессов

parameter Real I_0 = 0.001; parameter Real R_0 = 0; parameter Real S_0 = 0.999;

```
parameter Real beta = 1;
  parameter Real nu = 0.3;
  parameter Real mu = 0.5:
  Real s(start=S 0):
  Real i(start=I 0);
 Real r(start=R 0);
equation
  der(s) = -beta*s*i + mu*i + mu*r;
  der(i)=beta*s*i-nu*i - mu*i;
  der(r)=nu*i - mu*r:
```


Рис. 18: График модели SIR с учетом демографических процессов

$$\beta = 1, \nu = 0.3, \mu = 0.1$$

Рис. 19: График модели SIR с учетом демографических процессов

$$\mu = 0.3$$

Рис. 20: График модели SIR с учетом демографических процессов

$$\mu = 0.9$$

Рис. 21: График модели SIR с учетом демографических процессов

$$\beta = 1, \nu = 0.1, \mu = 0.1$$

Рис. 22: График модели SIR с учетом демографических процессов

$$\mu = 0.9$$

Рис. 23: График модели SIR с учетом демографических процессов

$$\beta = 4, \nu = 0.3, \mu = 0.2$$

Рис. 24: График модели SIR с учетом демографических процессов

В процессе выполнения данной лабораторной работы была построен модель SIR в xcos и OpenModelica.