Vertex of the Quadratic

 $j_1 = -\frac{b}{2a}$ namely $u(j_1) = C - \frac{b^2}{4a}$ Now compute the same quadratic at ${\sf j}_{1^+}{\sf h}$, namely

Given a quadratic $u(j) = a j^2 + b j + c$ compute its value at

 $u(j_1+h) = -\frac{b^2}{4a} + a h^2 + c$

Compute $\triangle = u(j_1 + h) - u(j_1) = a h^2$

Since $h^2 > 0$, therefore if a > 0 then $\triangle > 0$ or vertex is the global minimum!

Example 1. $u(j) = 4 j^2 + 32 j - 70$ 1000 500 Secant

10

-500

Example 2.

