Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики

Отчет по заданию $N_{0}6$

«Сборка многомодульных программ. Вычисление корней уравнений и определенных интегралов.»

Вариант 7 / 3 / 3

Выполнил: студент 102 группы Савиных Ю. С.

> Преподаватель: Кулагин А. В.

Содержание

Постановка задачи	2
Математическое обоснование	3
Результаты экспериментов	5
Структура программы и спецификация функций	6
Сборка программы (Маке-файл)	8
Отладка программы, тестирование функций	9
Программа на Си и на Ассемблере	10
Анализ допущенных ошибок	11
Список цитируемой литературы	12

Постановка задачи

Необходимо реализовать метод Симпсона для подсчёта площади фигуры с точностью $\varepsilon=0.001,$ ограниченной тремя функциями:

- $f_1(x) = \ln x$
- $f_2(x) = -2x + 14$
- $f_3(x) = \frac{1}{2-x} + 6$

Для вычисления точек персечения функций использовать метод Ньютона, причём отрезок, к которому будет применяться метод касательных, вычислить аналитически.

Математическое обоснование

Для вычисления площади фигуры, ограниченной тремя заданными кривыми(рис. 1), необходимо вычислить точки пересечения, а значит корни уравнений $f_1(x) = f_2(x)$, $f_1(x) = f_3(x)$, $f_2(x) = f_3(x)$ т.е. корни уравнения $f_1(x) - f_2(x) = 0$, $f_1(x) - f_3(x)$, $f_2(x) - f_3(x) = 0$, которые в дальнейшем для простоты обозначим $F_1(x) = 0$, $F_2(x) = 0$, $F_3(x) = 0$ соответственно. Из нижеприведённых условий сходимости метода Ньютона [1]:

- Искомый корень изолирован на [a, b]
- \bullet F(x) имеет непрерывную и монотонную первую производную.
- Первая производная F(x) сохраняет знак на [a,b]

следует, что метод касательных необходимо применять на отрезке, на котором гарантированно существует и единственен корень. Достаточным условием существования корня на отрезке [a,b] таково: на концах отрезка функция F(x) (т.е. наши функции $F_1(x)$, $F_2(x)$, $F_3(x)$) имеет разные знаки и на всём отрезке производная не меняет знак. Проанализируем функции $F_1(x)$, $F_2(x)$, $F_3(x)$, с целью вычислить отрезки, на которых существует единственный корень. Поиск a, b:

Из построения графиков $f_1(x)$ и $f_2(x)$ (рис. 1) видно, что корень существует на отрезке [5, 7], причём единственным образом. Проверим это утверждение с помощью достаточного условия существования корня:

- $F_1(5) = \ln 5 + 2 * 5 14 < 0 \text{ (T.K. } \ln 5 < 3)$
- $F_1(7) = \ln 7 + 2 * 7 14 > 0$
- $F_1'(x) = 1/x + 2$, очевидно, что $F_1'(x) > 0$ на отрезке [5, 7].

Значит корень действительно существует. Аналогичные рассуждения для $F_2(x)$ и $F_3(x)$ на отрезках [2.1,4] и [4,5] соответственно:

- $F_2(2.1) > 0 \ (F_3(4) > 0)$
- $F_2(4) < 0 \ (F_3(5) < 0)$
- $F_2'(x) = -\frac{1}{x} \frac{1}{(2-x)^2}$. Значит $F_2'(x) \le 0$ на отрезке [2.1,4] ($F_3'(x) = -2 \frac{1}{(2-x)^2}$. Значит $F_3'(x) < 0$ на отрезке [4,5]).

Точность метода Ньютона Погрешность метода Ньютона [1]:

$$|x_i - c| \le \frac{|F(x_i)|}{m}$$

Где x_i - і-ый член иттерационной последовательности, с - корень, m - минимальное значение $|F'_x|$ на сегменте [a,b].

Величины $\varepsilon_1 = 0.0001$ и $\varepsilon_2 = 0.0001$, при которых вычисление площади происходит с погрешностью $\varepsilon = 0.001$, были подобраны вручную.

Рис. 1: Плоская фигура, ограниченная графиками заданных уравнений

Результаты экспериментов

Координаты точек пересечения предаствлены в таблице 1 и на рис. 2

Кривые	x	y
1 и 3	2.191742	0.784653
2 и 3	4.224745	5.550510
1 и 2	6.096169	1.807662

Таблица 1: Координаты точек пересечения

Рис. 2: Плоская фигура, ограниченная графиками заданных уравнений

Структура программы и спецификация функций

Программа состоит из трёх модулей:

- 1. main.c
- 2. fun.h
- 3. fun.asm

ФУНКЦИИ РЕАЛИЗОВАННЫЕ В main.c:

double root(double (*f)(double), double (*g)(double), double a, double b, double eps, double (*df)(double), double (*dg)(double))

Функция методом Ньтона вычисляет с точностью ε корень уравнения f(x) =g(x), который гарантированно существует на отрезке [a,b]. При вычисление корня методом касательных необходимо вычислить первые производные функций f и g, которые передаются в root 6 и 7 аргументами. Возвращает посчитанный корень.

double I_n (double (*f) (double), double a, double b, int n)

Вычисляет и возвращает интегральную сумму в методе Симпсона для функции f на отрезке [a,b] с разбиением на n отрезков:

$$I_n = \frac{h}{3} * (F_0 + 2F_1 + 4F_2 + \dots + 2F_{n-2} + 4F_{n-1} + F_n),$$

где $F_i=F(a+ih),\,h=rac{b-a}{n},\,$ причём n - чётное. double integral(double (*f) (double), double a, double b, double eps)

Функция с точностью ε вычисляет и возвращает $\int\limits_a^b f(x)dx$

void test_root()

Функция запускающая тестирование фукнции root void test_integral()

Функция запускающая тестирование фукнции integral

Фукнции инициализированные в fun.h и реализованные в fun.asm: double f1 (double x)

Функция вычисляет и возвращает значение $f(x) = \ln x$ double f2 (double x)

Функция вычисляет и возвращает значение f(x) = -2x + 14double f3 (double x)

Функция вычисляет и возвращает значение $f(x) = \frac{1}{2-x} + 6$ double df1 (double x)

Функция вычисляет и возвращает значение производной функции f(x) = $\ln x$ в точке x

double df2 (double x)

Функция вычисляет и возвращает значение производной функции f(x) =-2x + 14 в точке x

double df3 (double x)

Функция вычисляет и возвращает значение производной функции f(x) = $\frac{1}{2-x} + 6$ в точке *x*

 Φ ункция всегда возвращает ноль. Это функция была необходима для проведения 3 тестов фукнции root, где корень можно было посчитать аналитически с высокой точностью.

Сборка программы (Маке-файл)

Зависимости между модулями программы:

Текст Makefile:

default:

- @ echo This is the help
- @ echo all build project
- @ echo clean remove all objects

all: main.c fun.asm

- @ gcc -Wall -m32 -std=c99 -c -o main.o main.c
- @ nasm -Wall -f elf32 -o fun.o fun.asm
- @ gcc -Wall -m32 -o main main.o fun.o -lm

clean:

- @ rm main.o
- @ rm fun.o

Отладка программы, тестирование функций

Тестирование проводилось с помощью функий test_root и test_integral. Тесты метода Ньютона:

1. Входные данные: $f(x) = f_1(x) = \ln x$, g(x) = 0 (zero(x)), a = 0.1, b = 3, $\varepsilon = 0.001$.

Выходные данные:

Root approximately equal to 0.999999

Iterations = 5

Результат аналитических вычислений root = 1

2. Входные данные: $f(x) = f_2(x) = -2x + 14$, g(x) = 0 (zero(x)), a = 5, b = 10, $\varepsilon = 0.001$.

Выходные данные:

Root approximately equal to 7.000000

Iterations = 1 Результат аналитических вычислений root = 7

3. Входные данные: $f(x) = f_3(x) = \frac{1}{2-x} + 6$, g(x) = 0 (zero(x)), a = 2.01, b = 3, $\varepsilon = 0.00001$.

Выходные данные:

Root approximately equal to 2.166667

Iterations = 8

Результат аналитических вычислений root = $\frac{13}{6} = 2.1(6) \approx 2.166667$

Тесты метода Симпсона:

1. Входные данные: $f(x) = f_1(x), a = 1, b = 11, \varepsilon = 0.1.$

Выходные данные: Integral is approximately equal to 16.376808.

Результат аналитических вычислений:

$$\int_{1}^{11} \ln x dx = 11 \ln 11 - 10 \approx 16.376848001$$

2. Входные данные: $f(x) = f_2(x), a = 0, b = 10, \varepsilon = 1.$

Выходные данные: Integral is approximately equal to 40.000000.

Результат аналитических вычислений:

$$\int_{0}^{10} -2x + 14dx = 40$$

3. Входные данные: $f(x) = f_3(x)$, a = 3, b = 5, $\varepsilon = 0.001$.

Выходные данные: Integral is approximately equal to 10.901388.

9

Результат аналитических вычислений:

$$\int_{3}^{5} \frac{1}{2-x} + 6dx = 12 - \ln 3 \approx 10.9013877113319$$

Программа на Си и на Ассемблере

Программа была написана на Си и на Ассемблере. Исхдные тексты программы имеются в архиве, который приложен к отчёту.

Анализ допущенных ошибок

При написание Makefile возникла ошибка при выполнении цели all. Проблема была в том, что в зависимостях был указан только файл main.c. Исправление: all: main.c fun.asm.

Список литературы

[1] Ильин В. А., Садовничий В. А., Сендов Бл. X. Математический анализ. Т. 1 — Москва: Наука, 1985.