

Python 数据科学 速查表

SciPy - 线性代数

天善智能 商业智能与大数据社区 www.hellobi.com

SciPy

SciPy 是基于 NumPy 创建的 Python 科学计算核心库, 提供了众多数学算法与函数。

与NumPy交互

```
>>> import numpy as np
>>> a = np.array([1,2,3])
>>> b = np.array([(1+5j,2j,3j), (4j,5j,6j)])
>>> c = np.array([[(1.5,2,3), (4,5,6)], [(3,2,1), (4,5,6)]])
```

索引技巧

```
>>> np.mgrid[0:5,0:5]
                             创建稠密栅格
>>> np.ogrid[0:2,0:2]
                             创建开放栅格
>>> np.r_[[3,[0]*5,-1:1:10j]
                             按行纵向堆叠数组按
>>> np.c_[b,c]
                             列横向堆叠数组
```

操控形状

>>>	np.transpose(b)	转置矩阵
>>>	b.flatten()	拉平数组
>>>	np.hstack((b,c))	按列横向堆叠数组
		按行纵向堆叠数组
	np.hsplit(c,2)	在索引2横向分割数组
>>>	np.vpslit(d,2)	在索引2纵向分割数组

多项式

左上	曼风数	
>>>	p = poly1d([3,4,5])	创建多项式对象
	rrom namp; rmpore por;ra	

```
>>> def myfunc(a):
         if a < 0:
          return a*2
         else:
          return a/2
```

>> from numnu import poluld

矢量函数 >>> np.vectorize(myfunc)

类型控制

>>>	np.real(c)	返回数组元素的实部
>>>	np.imag(c)	返回数组元素的虚部
>>>	np.real_if_close(c,tol=1000)	如果复数接近0,返回实部将
>>>	np.cast['f'](np.pi)	对象转化为数据类型

堂田函数

тлых	
>>> np.angle(b,deg=True) >>> g = np.linspace(0,np.pi,num=5)	返回复数的角度 创建等差数组(样本数)
>>> g [3:] += np.pi >>> np.unwrap(g) >>> np.logspace(0,10,3) >>> np.select([c<4],[c*2])	解包 创建等差数组(对数刻度) 根据条件返回数组列表的值
>>> misc.factorial(a) >>> misc.comb(10,3,exact=True) >>> misc.central_diff_weights(3) >>> misc.derivative(myfunc,1.0)	因子 取K次N项的组合,已改为scipy. special .comb NP点中心导数的权重 查找函数在某点的第n个导数

线性代数

使用 linalg 和 sparse 模块。注意 scipy.linalg 包含了 numpy.linalg,并扩展了其功能。

>>> from scipy import linalg, sparse

创建矩阵

```
>>> A = np.matrix(np.random.random((2,2)))
>>> B = np.asmatrix(b)
>>> C = np.mat(np.random.random((10,5)))
>>> D = np.mat([[3,4], [5,6]])
```

基础矩阵例程

逆矩阵 >>> A.I >>> linalg.inv(A) >>> A.T >>> A.H >>> np.trace(A)	求逆矩阵 求逆矩阵 矩阵转置 共轭转置 计算对角线元素的和
范数 >>> linalg.norm(A) >>> linalg.norm(A,1) >>> linalg.norm(A,np.inf) 排名	Frobenius 范数 L1 范数 (最大列汇总) L 范数 (最大列汇总)
>>> np.linalg.matrix_rank(C)	矩阵排名
行列式 >>> linalg.det(A)	行列式
求解线性问题 >>> linalg.solve(A,b) >>> E = np.mat(a).T >>> linalg.lstsq(D,E)	求解稠密矩阵 求解稠密矩阵 用最小二乘法求解线性代数方程
广义逆 >>> linalg.pinv(C)	计算矩阵的伪逆(最小二乘法求解器)

创建稀疏矩阵

>>> linalg.pinv2(C)

1	>>> F = np.eye(3, k=1)	创建2X2单位矩阵
ı	>>> G = np.mat(np.identity(2))	创建2X2单位矩阵
	>>> C[C > 0.5] = 0	
	>>> H = sparse.csr_matrix(C)	压缩稀疏行矩阵
	>>> I = sparse.csc_matrix(D)	压缩稀疏列矩阵
ı	>>> J = sparse.dok_matrix(A)	DOK矩阵
ı	>>> E.todense()	将稀疏矩阵转为全矩阵
ı	>>> sparse.isspmatrix_csc(A)	单位稀疏矩阵

计算矩阵的伪逆 (SVD)

ヘルスキュンシュ みく ノー・ケニ ワナ

稀疏矩阵例程

逆矩阵	
>>> sparse.linalg.inv(I)	求逆矩阵
范数	++ 144
>>> sparse.linalg.norm(I)	范数
解决线性问题 >>> sparse.linalg.spsolve(H,I)	稀求解疏矩阵
sparse.limarg.spsorve(m,1)	コログへが十岁ルグにド十

稀疏矩阵函数

>> sparse.linalg.expm(I)	稀疏矩阵指数
--------------------------	--------

矩阵函数

加法

>>> np.add(A,D)	加法
减法	
>>> np.subtract(A,D)	减法
除法	
>>> np.divide(A,D)	除法
乘法	
>>> np.multiply(D,A)	乘法
>>> np.dot(A,D)	点积
>>> np.vdot(A,D)	向量点积
>>> np.inner(A,D)	内积
>>> np.outer(A, D)	外积
>>> np.tensordot(A,D) >>> np.kron(A,D)	张量点积 Kronecker 积
指数函数	KIOHECKEI 1/A
情数函数 >>> linalg.expm(A)	矩阵指数
>>> linalg.expm(A) >>> linalg.expm2(A)	矩阵指数(泰勒级数)
>>> linalg.expm3(D)	(東京祖教 (東朝) (東下祖教 (特征值分解)
对数函数	7-1130X (19 IE IE 75 701 7
>>> linalg.logm(A)	矩阵对数
三角函数	<i>F⊏ □ +</i>
>>> linalg.sinm(D)	矩阵正弦
>>> linalg.cosm(D)	矩阵余弦 矩阵切线
>>> linalg.tanm(A)	起阵切线
双曲三角函数	双曲矩阵正弦
>>> linalg.sinhm(D)	双曲矩阵乐弦
>>> linalg.coshm(D)	双曲矩阵切线
>>> linalg.tanhm(A) 矩阵符号函数	
>>> np.sigm(A)	矩阵符号函数
矩阵平方根	
>>> linalg.sgrtm(A)	矩阵平方根
任意函数	
>>> linalg.funm(A, lambda x: x*x)	评估矩阵函数
3 ,	

4n2+

矩阵分解

特征值与特征向量 >>> la, v = linalg.eig(A)	求解方阵的普通或广义特征值问题
>>> 11, 12 = 1a >>> v[:,0] >>> v[:,1] >>> linalg.eigvals(A)	解包特征值 第一个特征值 第二个特征值 解包特征值
奇异值分解 >>> U,s,Vh = linalg.svd(B)	奇异值分解(SVD)
>>> M,N = B.shape >>> Sig = linalg.diagsvd(s,M,N)	在 SVD 中构建 Sigma 矩阵
LU分解 >>> P,L,U = linalg.lu(C)	LU 分解

解构稀疏矩阵

>>>	<pre>la, v = sparse.linalg.eigs(F,1)</pre>	特征值与特征向量
>>>	sparse.linalg.svds(H, 2)	奇异值分解(SVD)

>>> help(scipy.linalg.diagsvd) >>> np.info(np.matrix)