形式语言与自动机理论笔记

Leo Lu

2021年9月27日

蒋宗礼 信息楼 214 jiangzl@bjut.edu.cn

第一章绪论

1.1 引入:过河问题

人 -> m 狼 -> w 羊 -> g 白菜 -> c 初状态:

mwgc -

wc - mg

mwc - g

c - mwg

mgc - w

g - mcw

mg - cw

- mgcw

1.2 重要性

GRE 中 80 道题, 其中有 8~15 道形式语言。

1.3 Basic Concepts

1.3.1 Alphabet

An alphabet is a collection of characters.

Product of two alphabets:

$$\{0,1\} \times \{a,b\} = \{0a,0b,1a,1b\}$$

Power of an alphabet:

$$\Sigma^0 = \epsilon, \Sigma^n = \Sigma^{n-1} \times \Sigma$$

Positive closure of an alphabet:

$$\Sigma^+ = \bigcup_{i=1}^{\infty} \Sigma^i$$

Kleene closure of an alphabet:

$$\Sigma^* = \bigcup_{i=0}^{\infty} \Sigma^i = \{\epsilon\} \cup \Sigma^+$$

第一章绪论 2

1.3.2 Senctence

X is a "Sentence" if: $\forall X \in \Sigma^*$

1.3.3 Empty sentence

An empty sentence, denoted by ϵ or λ , is a string with no characters at all.

1.3.4 "Length" of a "Sentence"

 $\forall X \in \Sigma^*$, the count of characters appeared in x is called the length of x, denote by |x|For example: |ababab| = 6; $|\epsilon| = 0$ Note that $\{\epsilon\} \neq \Phi$.

1.3.5 Concatenation of sentences

 $\forall x, y \in \Sigma^*$, the concatenation of sentences x, y, denoted by |xy|, is the direct join of two strings.

$$|xy| = |x| + |y|$$

1.3.6 N-power of sentences

 $\forall x \in \Sigma^*$, the n-power of sentence x:

$$x^n = \begin{cases} \epsilon & \text{n=0} \\ x^{n-1}x & \text{Other} \end{cases}$$

1.3.7 Prefix and Suffix

 $\forall x, y, z, w, v \in \Sigma^*$, given that x = yz, w = yv, then:

- 1. y is the Prefix of x
- 2. z is the Suffix of x
- 3. if $z \neq \epsilon$, y is "Proper Prefix" of x
- 4. if $y \neq \epsilon$, z is "Proper Suffix" of x
- 5. y is the "Common Suffix" of x and w

For example, if x = 0110:

- Prefix of x is ϵ , 0, 01, 011, 0110
- Proper prefix of x is ϵ , 0, 01, 011
- Suffix of x is ϵ , 0, 10, 110, 0110
- Proper suffix of x is ϵ , 0, 10, 110

1.3.8 Reverse of a sentence

The reverse of sentence x is denoted by x^R or x^T .

第一章绪论 3

1.3.9 Language on Alphabet Σ

 $\forall L \subseteq \Sigma^*, L \text{ is called a Language on alphabet } \Sigma$

 $\forall x \in L, x \text{ is called } a \text{ sentence of } L$

For example: let $\Sigma = \{0, 1\}$, we have

1.
$$L_1 = \{0, 1\}$$

2.
$$L_2 = \{00, 01, 10, 11\}$$

3.
$$L_3 = \{0, 1, 00, 01, 10, 11, \ldots\} = \Sigma^+$$

4.
$$L_4 = \{\epsilon, 0, 1, 00, 01, 10, 11, \ldots\} = \Sigma^*$$

5.
$$L_5 = \{0^n | n \ge 1\}$$

6.
$$L_6 = \{0^n 1^n | n \ge 1\}$$

7.
$$L_7 = \{1^n | n \ge 1\}$$

8.
$$L_8 = \{0^n 1^m | n, m > 1\}$$

9.
$$L_9 = \{0^n 1^n 0^n | n \ge 1\}$$

10.
$$L_{10} = \{0^n 1^m 0^k | n, m, l \ge 1\}$$

11. $L_{11} = \{x | x \in \Sigma^+ \text{ and the number of } 0 \text{ and } 1 \text{ of } x \text{ are same} \}$

1.3.10 Operation of Language

All operatio on Sets also works on Language.

Note that \cup , \cap , -, - *are closure* (封闭的).

Product of Languages:

Given $L_1 \subseteq \Sigma_1^*, L_2 \subseteq \Sigma_2^*$, the product of L_1 and L_2 is a Language on alphabet $\Sigma_1 \cup \Sigma_2$.

$$L_1L_2 = \{xy | x \in L_1, y \in L_2\}$$

Power of Languages:

Given a language L, we have:

$$L^{n} = \begin{cases} \epsilon & n = 0\\ L^{n-1}L & Other \end{cases}$$

Positive closure of a language:

$$L^+ = \bigcup_{i=1}^{\infty} L^i$$

Kleene closure of a language:

$$L^* = \bigcup_{i=0}^{\infty} L^i = \{\epsilon\} \cup L^+$$

Note that: $L^+ = L^* \iff \epsilon \in L$

Examples

- 给定 Σ , 讨论 Σ 上典型语言的结构特征
 - $-\{0^n1^m|n,m\geq 1\}:$

- $\{0^n 1^n 0^n | n \ge 1\}$
- 给定 Σ , 讨论语言的结构与表示

$$- \{xx|x \in \Sigma^+\} = \{a_1 a_2 \dots a_n a_1 a_2 \dots a_n | a_1, a_2, \dots, a_n \in \Sigma, n \ge 1\}$$

$$- \left\{ xx^T | x \in \Sigma^+ \right\}$$

$$- \{xx^T w | x, w \in \Sigma^+\}$$

= \{ a_1 a_2 \ldots a_n \ldots a_1 b_1 \ldots b_m | a_1, \ldots, a_n, b_1, \ldots, b_m \in \Sigma, n, m \ge 1\}

$$- \{xwx^{T}|x, w \in \Sigma^{+}\}$$

$$= \{a_{1} \dots a_{n}b_{1}b_{2} \dots b_{n}a_{n} \dots a_{1}|a_{1}, \dots, a_{n}, b_{1}, \dots, b_{m} \in \Sigma, n, m \geq 1\}$$

$$= \{aa_{1} \dots a_{n}a|a, a_{1}, a_{2}, \dots, a_{n} \in \Sigma, n \geq 1\}$$

第二章 文法

2.1 启示

- 对无穷对象的描述
 - $-\{0^n|n\geq 1\}$
 - * 0 是 S 的元素
 - $* \forall x \in S, x0 \in S$
 - $* S \rightarrow 0$
 - $* S \rightarrow S0$
 - $-\{0^n1^m|n,m\geq 1\}$

$$* 0 \in S$$

$$\forall x \in S, 0x, x1 \in S$$

*
$$S \rightarrow 01$$

$$S \to 0S|S1$$

$$* S \rightarrow S_1S_2$$

$$S_1 \to 0$$

$$S_1 \to S_1 0$$

$$S_2 \to 0$$

$$S_2 \rightarrow S_2 0$$

$$-\{0,1\}^*$$

$$* \ \epsilon \in S$$

$$\forall x \in S, 0x, 1x \in S$$

*
$$S \to \epsilon$$

 $S \to 0S$
 $S \to 1S$
- $\{0,1\}^*\{11\}\{0,1\}^*$
* $11 \in S$
 $\forall x \in S, 0x, 1x, x0, x1 \in S$
* $S \to 11$

 $S \rightarrow 0S|1S|S0|S1$

- 如何定义中缀表达式: 递归
 - 描述:
 - * ident 是表达式
 - * 表达式加表达式是表达式
 - * 表达式减表达式是表达式
 - * 表达式乘表达式是表达式
 - * 表达式除表达式是表达式
 - * 表达式加括号是表达式
 - 定义:
 - * 表达式定义为标识符
 - * 表达式定义为表达式 + 表达式
 - * 表达式定义为表达式 表达式
 - * 表达式定义为表达式 × 表达式
 - * 表达式定义为表达式 : 表达式
 - * 表达式定义为(表达式)
 - 符号化

 $E \to ident$

 $E \to E + E$

 $E \to E - E$

 $E \to E \times E$

 $E \to E \div E$

 $E \to (E)$

- 表示优先级
 - * 因子是标识符
 - * 因子是括号的表达式
 - * 项是因子
 - * 项是因子 */ 因子
 - * 表达式是项
 - * 表达式是表达式 +- 表达式
- 符号化
 - * Variables: E, T, F

- * Terminals: $+ \times \div ident()$
- * Products:

$$E \to T + T$$

$$E \to T - T$$

$$E \to T$$

$$T \to F \times F$$

$$T \to F \div F$$

$$T \to F$$

 $F \rightarrow ident$

$$F \to (E)$$

* Start Symbol: E

2.2 形式定义

定义 2.1. 文法 (Grammar) G 是一个四元组

$$G = (V, T, P, S)$$

其中,

V— 变量(Variable)的非空有穷集。 $\forall A \in V$,A 叫做语法变量($syntactic\ variable$),也叫非终极符号(nonterminal)。

T— 终极符 (Terminal) 的非空有穷集。 $\forall a \in T, a$ 叫做终极符。 $V \cup T = \Phi$ 。

P— 产生式 (Production) 的非空有穷集。对于 $a \rightarrow b$, a 是左部, b 是右部。

 $S-S \in V$, 文法 G 的开始符号 (Start symbol)。

约定:

- 只写产生式,第一个产生式的左部为开始符号
- 对一组有相同左部的产生式 $\alpha \to \beta_1, \alpha \to \beta_2, \alpha \to \beta_3, \ldots$ 可以记为 $\alpha \to \beta_1 | \beta_2 | \beta_3 \ldots \beta_1, \beta_2, \beta_3$ 称为候选式(Candidate)
- 形如 $\alpha \to \epsilon$ 的产生式叫做空产生式, 也可叫做 ϵ 产生式
- 符号
 - 英文大写字母为语法变量
 - 英文小写字母为终结符号
 - 英文较后的大写字母为语法变量或者终极符号
 - 英文较后的大写字母为终极符号行
 - 希腊字母表示语法变量和终极符号组成的行

定义 2.2. 设 G = (V, T, P, S) 是一个文法,如果 $\alpha \to \beta \in P, \gamma, \delta \in (V \cup T)$,则称 $\gamma \alpha \delta$ 在 G 中直接推导(Derivation)出 $\gamma \beta \delta$,记作 $\gamma \alpha \delta \Rightarrow \gamma \beta \delta$ 。

于此相对应, $\gamma\beta\delta$ 归约到 $\gamma\alpha\delta$, 简称 β 归约为 α 。

$$\Rightarrow_G \mathcal{L}(V \cup T)^*$$
 上的二元关系。

定义 2.3. 对于文法 G:

$$\frac{n}{G} = \left(\frac{1}{G}\right)^{n}$$

$$\stackrel{*}{\Longrightarrow} = \left(\frac{1}{G}\right)^{*}$$

$$\stackrel{=}{\Longrightarrow} = \left(\frac{1}{G}\right)^{+}$$

当只有唯一的文法 G 时,可以省略 $G: \stackrel{n}{\Longrightarrow}, \stackrel{*}{\Longrightarrow}, \stackrel{+}{\Longrightarrow}$

定义 2.4. 对于语言 G = (V, T, P, S):

语法范畴
$$A\ L(A) = \left\{ w | w \in T^* \mathbf{L} A \stackrel{*}{\Rightarrow} w \right\}$$

语言 (Language)
$$L(G) = \left\{ w | w \in T^* \mathbb{1} S \stackrel{*}{\Rightarrow} w \right\}$$

句子 (Sentence) $\forall w \in L(G)$

句型 (Sentential Form) $\forall \alpha \in (V \cup T)^*$,如果 $S \stackrel{*}{\Rightarrow} \alpha$,则称 α 是 G 产生的一个句型。

定义 2.5. 对于文法 G_1, G_2 , 如果 $L(G_1) = L(G_2)$, 则称 G_1 与 G_2 等价。

2.3 文法的构造

- $L(G) = \{0, 1, 00, 11\}$
 - $-G_1: S \to 0|1|00|11$
 - $-G_2: S \to A|B|AA|BB, A \to 0, B \to 1$
 - $-G_3: S \to 0|1|0A|1B, A \to 0, B \to 1$
 - $-G_4: S \to A|B|AA|BB, A \to 0, B \to 1, C \to 1$
- $\{x | x \in \mathbb{Z} \setminus \{x \in \mathbb{Z}$
 - $-~G:S\rightarrow A1A1A1A, A\rightarrow \epsilon|0A|1A$
 - $-G: S \to A1A1A1B, A \to \epsilon | 0A, B \to \epsilon | 0B | 1B$
 - $-G: S \to AAAB, A \to 1|0A, B \to \epsilon|0B|1B$

2.4 文法的乔姆斯体系

定义 2.6. 对于文法 G = (V, T, P, S):

G 叫做 0 型文法, $Type\ 0$ Grammar, 也叫短语结构文法 (PSG, $Phrase\ Structure\ Grammar$) L(G) 是 0 型语言, 也叫短结构语言, 可递归枚举集。

定义 2.7. 对于 0 型文法文法 G = (V, T, P, S):

如果对于 $\forall \alpha \to \beta \in P$, 均有 $|\beta| \ge |\alpha|$, 则 $G \in \mathcal{B}$ 1 型文法, 或上下文有关文法。

定义 2.8. 对于 1 型文法文法 G = (V, T, P, S):

如果对于 $\forall \alpha \to \beta \in P$,均有 $|\beta| \ge |\alpha|$,并且 $\alpha \in V$ 则 $G \in \mathbb{Z}$ 型文法,或上下文无关文法。

定义 2.9. 对于 2 型文法文法 G = (V, T, P, S):

如果对于 $\forall \alpha \rightarrow \beta \in P$:

如果形如 $A \rightarrow wB$ 和 $A \rightarrow w$, 其中 $A, B \in V, w \in T+$: G 是右线性文法。

如果形如 $A \to Bw$ 和 $A \to w$, 其中 $A, B \in V, w \in T+$: G 是右线性文法。

则 G 是 3 型文法, 或正则文法。

2.5 空产生式

允许在 CSG, CFG, RG 文法中存在空产生式。 允许在 CSL, CFL, RL 语言中存在空语句。

习题: p67 3, 4, 8.2, 8.6, 10.3, 11.3