Enthalpy Change

-2006 III(1)

Use equations 1-3 provided below to find the heat Q(kJ) of the thermochemical equation (A).

Thermochemical equation (A): $2H_2(g) + O_2(g) = 2NH_3(g) + QkJ$

1:
$$2H_2(g) + O_2(g) = 2H_2O(l) + 572 kJ$$

2:
$$4NH_3(g) + 3O_2(g) = 2N_2(g) + 6H_2O(g) + 1268 kJ$$

3:
$$H_2O(l) = H_2O(g) - 44 kJ$$

-2012 II

II Give the appropriate values for (a) and (b) in the sentences below.

1 mol of graphite is completely oxidized to carbon dioxide while evolving 394 kJ of heat, and 1 mol of carbon monoxide is completely oxidized to carbon dioxide while evolving 283 kJ of heat. At 0 °C, under 1 atm, (a) L of oxygen is required to oxidize 1 mol of graphite to carbon monoxide with the heat evolution of (b) kJ.

-2013 II

II Give the appropriate values for (a) and (b) in the sentences below.

Complete oxidation of 1 mol of methane requires (a) L of oxygen at 0 °C, under 1 atm. The heat of formation of methane is calculated to be (b) kJ mol⁻¹ using following values; bonding energy of a hydrogen molecule: 432 kJ mol⁻¹, bonding energy of a C-H bond in methane: 414 kJ mol⁻¹, sublimation energy of carbon (graphite): 717 kJ mol⁻¹.

-2017 IV(2)

(2) A crystalline silicon adopts a diamond-type structure. The number of Si atom covalently bonded to one Si atom in the crystalline silicon is ($\,$ c $\,$). The energy required for breaking the bonds in crystalline silicon to convert the crystal into Si atoms is 439 kJ mol $^{-1}$, and the bond energies for Si-H and H-H bonds are 318 and 436 kJ mol $^{-1}$, respectively. Hence, the heat of formation for SiH₄(g) is evaluated to be ($\,$ d $\,$) kJ mol $^{-1}$.

-2018 IV(1)(a)

(1) Heat of 11.6 kJ was released when 11.2 g of KOH was completely dissolved in water. The heat of solution is (a) kJ mol⁻¹. Water was more added to adjust 2.0 L of KOH solution.

-2019 IV(1)

(1) The dissociation energies of H₂ and O₂ are 436 kJ mol⁻¹ and 498 kJ mol⁻¹, respectively, and the bond energy of O–H bond is 463 kJ mol⁻¹. The heat of vaporization for water (liquid) is 44.0 kJ mol⁻¹. Therefore, the heat of formation for water (liquid) is (a) kJ mol⁻¹. Furthermore, hydrogen reacts with oxygen to form gaseous hydrogen peroxide as follows:

$$H_2 + O_2 \rightarrow H_2O_2$$

In the above reaction, 142 kJ mol⁻¹ is released as heat. Hence, the bond energy of O–O bond in the hydrogen peroxide molecule is (b) kJ mol⁻¹.