JEE EXPERT

ANSWER KEY

REGULAR TEST SERIES - (RTS-04)

11TH A01 (Zenith)

Date 28.07.2019

				PHY	'SICS				
1	(C)	2	(C)	3	(B)	4	(C)	5	(A)
6	(C)	7	(B)	8	(B)	9	(A)	10	(A)
11	(A)	12	(C)	13	(C)	14	(A)	15	(A)
16	(A)	17	(B)	18	(D)	19	(A)	20	(D)
21	(B)	22	(C)	23	(A)	24	(A)	25	(D)
26	(B)	27	(C)	28	(C)	29	(C)	30	(B)
				CHE	MISTRY				
31	(C)	32	(C)	33	(C)	34	(B)	35	(D)
36	(D)	37	(D)	38	(D)	39	(C)	40	(B)
41	(C)	42	(B)	43	(B)	44	(A)	45	(B)
46	(A)	47	(B)	48	(B)	49	(C)	50	(D)
51	(A)	52	(C)	53	(D)	54	(D)	55	(C)
56	(A)	57	(C)	58	(B)	59	(B)	60	(C)
				MATHE	EMATICS				
61	(A)	62	(B)	63	(B)	64	(A)	65	(C)
66	(B)	67	(B)	68	(D)	69	(B)	70	(D)
71	(B)	72	(D)	73	(B)	74	(D)	75	(A)
76	(C)	77	(C)	78	(B)	79	(C)	80	(C)
81	(D)	82	(A)	83	(A)	84	(C)	85	(C)
86	(C)	87	(B)	88	(B)	89	(B)	90	(C)

JEE EXPERT

SOLUTIONS

REGULAR TEST SERIES - (RTS-04)

11TH A01 (Zenith) Date 28.07.2019

CHEMISTRY

31.	(C) Out of N and P, N has higher IE, and out of O and S, O has higher IE and out of N and O
	N has higher IE, due to greater stability of the exactly half-filled 2p-subshell.

- 32. **(C)**
- 33.
- **(C)**
- 34. **(B)**
- 35. **(D)**
- 36. **(D)**

- **37. (D)**
- **38.**
- **(D)**
- **39. (C)**
- **40.**
 - **(B)**

41. (C)
$$A \rightarrow (S)$$
; $B \rightarrow (P)$; $C \rightarrow (Q)$; $D \rightarrow (R)$

- **42. (B)**
- $100 \times N_{H_2O_2} = 50 \times 0.2 \times 2$ 43. **(B)**

$$\Rightarrow$$
 $N_{H_2O_2} = 0.2$ $M_{H_2O_2} = \frac{0.2}{2} = 0.1$

Volume strength of $H_2O_2 = 0.1 \times 11.2 = 1.12$

Alternatively volume strength = $N \times 5.6 = 1.12$

- Meq of $H_2O_2 = Meq$ of $Na_2S_2O_3$
 - $10 \times N = 20 \times 0.1$ \Rightarrow
 - \Rightarrow N = 0.2

Volume Strength of $H_2O_2 = 5.6 \times Normality$

$$= 5.6 \times 0.2$$

$$= 1.12$$

45. **(B)** Mass of H_2SO_4 present in 1 gm oleum = 0.6 gm Mass of SO_3 present in 1 gm oleum = 0.4 gm $H_2SO_4 + NaOH \rightarrow Na_2SO_4 + H_2O$

$$SO_3 + 2NaOH \rightarrow Na_2SO_4 + H_2O$$

Eq. Wt. of SO₃ =
$$\frac{80}{2}$$
 = 40.

Hence, meq of $H_2SO_4 + meq$ of $SO_3 = meq$ of NaOH

$$\Rightarrow \frac{0.6}{49} \times 1000 + \frac{0.4}{40} \times 1000 = 10 \times N$$

$$\Rightarrow$$
 N = 2.22

46. (A)
$$\frac{1}{2}$$
 meq of Na₂CO₃(nf = 2) = x×1

 $meq \ Na_2CO_3 \ (nf=2) + meq \ of \ NaHCO_3 = y \times 1$

Hence, meq of $NaHCO_3 = y - 2x$

No. of eq of NaHCO₃ =
$$\frac{y-2x}{1000}$$

No. of mole of NaHCO₃ =
$$\frac{y-2x}{1000}$$

$$2NaHCO_3 \rightarrow Na_2CO_3 + CO_2 + H_2O$$

No. of mole of
$$CO_2$$
 formed = $\frac{y-2x}{2000}$

47. (B) Let
$$x g$$
 of NH_3 is present in 0.5 g of NH_4Cl

Equivalent of NH_3 = equivalent of H_2SO_4 taken to neutralise it - equivalent of H_2SO_4 left.

$$\frac{x}{17} = \left(\frac{150}{1000} \times \frac{1}{5}\right) - \frac{20 \times 1}{1000}$$

$$x = \frac{17}{100}$$

% of NH₃ =
$$\frac{17}{100 \times 0.5} \times 100 = 34\%$$

48. (B)
$$2Na_2CO_3 + H_2SO_4 \rightarrow 2NaHCO_3 + Na_2SO_4$$

$$25 \times N_{Na_2CO_3} = 20 \times 0.1$$

$$\Rightarrow$$
 $N_{\text{Na}_2\text{CO}_3} = \frac{20 \times 0.1}{25} = \frac{4}{5} \times 0.1 = \frac{4}{50} = \frac{2}{25}$

$$M_{Na_2CO_3} = \frac{2}{25}$$

Millimole of Na₂CO₃ =
$$250 \times \frac{2}{25} = 20$$

No. of mole of Na₂CO₃ =
$$20 \times 10^{-3} = \frac{2}{100}$$

Mass of Na₂CO₃ =
$$\frac{2}{100} \times 106 = 2 \times 1.06 = 2.12$$
 gm.

49. (C) Meq of Salt = Meq. of Na₂SO₃

$$50 \times 0.1 \times n = 25 \times 0.1 \times 2$$

$$\therefore$$
 n = 1 (change in oxidation number)

$$\therefore \qquad M^{3+} + e^{-} \rightarrow M^{2+}$$

50. (D)
$$\left[As_2 S_3^{-2} \to H_3 AsO_4 + H_2 SO_4 + 28e^- \right] \times 3$$
$$\left[3e^- + HNO_3 \to NO \right] 28$$

$$\therefore$$
 1 mole HNO₃ will oxidise $\frac{3}{28}$ mole of As₂S₃.

Alternatively $n_{eq} As_2S_3 = n_{eq} HNO_3$

Moles of
$$As_2S_3 \times 28 = 1 \times 3$$

$$\Rightarrow$$
 Moles of As₂S₃ = $\frac{3}{28}$

51. (A)

$$A \rightarrow (Q) ; B \rightarrow (P) ; C \rightarrow (S) ; D \rightarrow (R);$$

(P)
$$CrI_3 \rightarrow Cr_2O_7^{2-} + IO_4^{-1}$$

 $Cr^{+3} \rightarrow Cr^{+6} + 3e^{-}$
 $(I_3)^{3-} \rightarrow 3I^{+7} + 24e^{-}$
 $CrI_3 \rightarrow Cr^{+6} + 3I^{+7} + 27e^{-}$
 $\therefore nf = 27$

(Q)
$$Fe(SCN)_2 \rightarrow Fe^{+3} + SO_4^{-2} + CO_3^{-2} + NO_3^{-1}$$

 $Fe^{+2} \rightarrow Fe^{+3} + e^{-}$
 $(S^{2-})_2 \rightarrow 2S^{+6} + 16e^{-}$
 $(N^{3-})_2 \rightarrow 2N^{+5} + 16e^{-}$
 $Fe^{+2} + (S^{2-})_2 + (N^{3-})_2 \rightarrow Fe^{+3} + 2S^{+6} + 2N^{+5} + 33e^{-}$
 $\therefore nf = 33$

(A) $\stackrel{.}{\vdash}$ S; (B) $\stackrel{.}{\vdash}$ Q; (C) $\stackrel{.}{\vdash}$ R; (D) $\stackrel{.}{\vdash}$ P.

(P)
$$(P_2)^{-4} \to P^{-3} + (P_4)^{-2}$$

$$2e^- + (P_2)^{-4} \to 2P^{-3} \times 3$$

$$2(P_2)^{4-} \to (P_4)^{2-} + 6e^-$$

$$5(P_2)^{4-} \to 6P^{3-} + P_4^{2-}$$

$$\therefore \qquad nf = \frac{6}{5}$$

(Q)
$$I_2 \rightarrow \Gamma + IO_3^{-1}$$
 $2e^- + I_2 \rightarrow 2\Gamma \times 5$
 $I_2 \rightarrow 2I^{+5} + 10e^ 6I_2 \rightarrow 10\Gamma + 2I^{+5}$
 $\therefore nf = \frac{10}{6} = \frac{5}{3}$

(R)
$$2Mn^{+7} + Mn^{+2} \rightarrow Mn_3O_4$$

 $3Mn^{+7} + 13e^- \rightarrow (Mn_3)^{+8} \times 2$
 $3Mn^{+2} \rightarrow (Mn_3)^{+8} + 2e^- \times 13$
 $39Mn^{+2} + 6Mn^{+7} \rightarrow 15(Mn_3)^{+8}$
 $\therefore \text{ nf } Mn_3O_4 = \frac{26}{15}$

(S)
$$H_3PO_2 \rightarrow PH_3 + H_3PO_3$$

 $P^{+1} \rightarrow P^{3-} + P^{+3}$
 $4e^- + P^{+1} \rightarrow P^{3-}$
 $P^{+1} \rightarrow P^{+3} + 2e^- \times 2$
 $3P^{+1} \rightarrow 2P^{+3} + P^{3-}$
 $\therefore nf = \frac{4}{3}$

54. (D)
$$\frac{1}{\lambda} = R_H Z^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

$$\begin{split} &\frac{1}{970.6 \times 10^{-8}} = 109678 \times 1 \left(\frac{1}{1} - \frac{1}{N_2^{\ 2}}\right) \\ &\frac{9.1176 \times 10^{-6}}{970.6 \times 10^{-8}} = 1 - \frac{1}{n_2^{\ 2}} \\ &\frac{1}{n_2^{\ 2}} = 0.0606 \\ &n_2 = 4 \end{split}$$

Number of lines =
$$\frac{(4-1)(4)}{2} = 6$$

57. (C)
$$hv = hv_0 + KE$$
 i.e. $\frac{hc}{\lambda} = \frac{hc}{\lambda_0} + \frac{1}{2}mv^2$

$$v = \left(\frac{2hc}{m}\left(\frac{1}{\lambda} - \frac{1}{\lambda_0}\right)\right)^{1/2}$$

59. (B)
$$\frac{1}{\lambda_{\text{He}^+}} = R_{\text{H}} Z^2 \left[\frac{1}{2^2} - \frac{1}{3^2} \right] = 109678 \times 4 \left[\frac{5}{36} \right]; \ \lambda_{\text{He}^+} = \mathbf{1641.1} \ \mathring{\mathbf{A}}$$

60. (C) Number of lines in the spectrum =
$$\frac{(n_2 - n_1)(n_2 - n_1 + 1)}{2} = \frac{(7 - 2)(7 - 2 + 1)}{2} = 15$$
.

MATHEMATICS

69. (B)
$$OM = c$$
 (Clear from normal form of the line)

ON =
$$\frac{c}{\sqrt{a^2 + b^2}}$$

Also \angle OMN = 45°
So, ON = OM cos45°
 $\frac{c}{\sqrt{a^2 + b^2}} = \frac{c}{\sqrt{2}}$
 $\Rightarrow a^2 + b^2 = 2$

(D) $\tan (180^{\circ} - \theta) = \text{slope of AB} = -3$

$$\therefore \quad \tan\theta = 3$$

$$\therefore \frac{OC}{AC} = \tan \theta, \frac{OC}{BC} = \cot \theta$$

$$\Rightarrow \frac{BC}{AC} = \frac{\tan \theta}{\cot \theta} = \tan^2 \theta = 9.$$

71. (B) The sides are x + y - 4 = 0, x - 1 = 0, y - 2 = 0. So, the triangle is right angled at (1, 2).

The hypotenuse is x + y - 4 = 0 whose ends are (1, 3) and (2, 2).

The circumcentre
$$=$$
 $\left(\frac{1+2}{2}, \frac{3+2}{2}\right)$ and circumradius $=\frac{1}{2}\sqrt{(1-2)^2+(3-2)^2}=\frac{1}{\sqrt{2}}$.

72. **(D)** Clearly joint equation of lines is (y + 1)(x + 1) = 0

- $\Rightarrow x + y + xy + 1 = 0$
- **73. (B)** The pair of straight lines 6xy 2x 3y + 1 = 0 are perpendicular to each other i.e., (2x 1)(3y 1) = 0. So orthocentre is the point of intersection of these lines.
- **74. (D)** Given pair of lines is $y^2 9xy + 18x^2 = 0$...(i)

or
$$(y-3x)(y-6x)=0$$

Hence given lines are y - 3x = 0 ...(ii)

$$y - 6x = 0$$
 ...(iii)

and
$$y = a$$
 ...(iv)

Vertices of triangle formed are (0, 0), $(\frac{a}{3}, a)$, $(\frac{a}{6}, a)$

Area of the triangle =
$$\frac{1}{2} \left| \left(\frac{a}{3} \cdot a - a \cdot \frac{a}{6} \right) \right| = \frac{a^2}{12}$$

75. (A)
$$(x+y-1)p + (2x-3y+1)q = 0$$

Hence, $x+y-1=0$...(i) $2x-3y+1=0$...(ii)

$$\therefore \qquad \text{(i) and (ii), passes through } \left(\frac{2}{5}, \frac{3}{5}\right)$$

76. (C) Any line through (1, 2) can be written as
$$\frac{x-1}{\cos \theta} = \frac{y-2}{\sin \theta} = r$$

where θ is the angle which this line makes with positive direction of x-axis. Any point on this line is $(r\cos\theta + 1, r\cos\theta + 2)$ when $|r| = \frac{1}{3}\sqrt{6}$, this point lies on the line x + y = 4.

i.e.
$$r\cos\theta + 1 + r\sin\theta + 2 = 4$$
,

$$|r| = \frac{1}{3}\sqrt{6}$$
 \Rightarrow $r(\cos\theta + \sin\theta) = 1, |r| = \frac{1}{3}\sqrt{6}$

$$\Rightarrow r^{2} (1 + 2\sin\theta\cos\theta) = 1, r^{2} = \frac{6}{9} \Rightarrow 1 + \sin 2\theta = \frac{1}{r^{2}} = \frac{9}{6} \Rightarrow \sin 2\theta = \frac{1}{2}$$

$$\Rightarrow$$
 $2\theta = \frac{\pi}{6} \text{ or } \frac{5\pi}{6}$ \Rightarrow $\theta = \frac{\pi}{12} \text{ or } \frac{5\pi}{12}$

78. (B)
$$\sqrt{3}x + y = 0$$
 makes an angle of 120° with OX and $\sqrt{3}x - y = 0$ makes an angle 60° with OX. So, the required line is $y - 2 = 0$.

79. (C) Let
$$\alpha = t^2$$
, $\beta = t + 1 \implies t = \beta - 1$

$$\therefore \qquad \alpha = (\beta - 1)^2 \implies x = (y - 1)^2$$

So A(0, 0) is orthocentre and mid-point D of BC i.e. (1, 1) is circumcentre.

:. distance between circumcentre and orthocentre =
$$AD = \sqrt{2}$$
.

81. (D) Let
$$(h, k)$$
 be the centroid of the given triangle ABC with coordinates of C as (α, β) then

$$h = \frac{\alpha + 2 + 4}{3}$$
, $k = \frac{\beta + 5 - 11}{3}$

$$\Rightarrow \qquad \qquad \alpha = 3h-6, \, \beta = 3k+6$$

Since
$$C(\alpha, \beta)$$
 lies on $L_1: 9x + 7y + 4 = 0$

$$9(3h-6)+7(3k+6)+4=0$$

$$\Rightarrow 3(9h + 7k) - 8 = 0$$

so that locus of (h, k) is 9x + 7y - 8/3 = 0, which is parallel to L₁.

82. (A) Let the equation of any line through
$$(4, -5)$$
 be $y + 5 = m(x - 4)$

then
$$\frac{3+5-m(-2-4)}{\sqrt{1+m^2}} = \pm 12$$

$$\Rightarrow$$
 $(6m + 8)^2 = 144 (1 + m^2)$

$$\Rightarrow 27m^2 - 24m + 20 = 0$$

which does not give any real value of m as the discriminant $24^2 - 80 \times 27 < 0$.

83. (A)
$$\frac{\Delta DBC}{\Delta ABC} = \frac{1}{2}$$
 $\Rightarrow 2 \begin{vmatrix} x & 3x & 1 \\ -3 & 5 & 1 \\ 4 & -2 & 1 \end{vmatrix} = \begin{vmatrix} 6 & 3 & 1 \\ -3 & 5 & 1 \\ 4 & -2 & 1 \end{vmatrix} \Rightarrow x = \frac{11}{8}$

$$M\left(\frac{3+1}{2}, \frac{4-1}{2}\right) = M\left(2, \frac{3}{2}\right)$$

If D is D(h, k)

and
$$B(x_1, y_1)$$
, then $2 = \frac{x_1 + h}{2}, \frac{3}{2} = \frac{y_1 + k}{2}$

$$\Rightarrow x_1 = 4 - h, \ y_1 = 3 - k$$

Now,
$$B(x_1, y_1)$$
 is $B(4-h, 3-k)$

Suppose slope of AB is m and slope of AC is $\frac{4+1}{3-1} = \frac{5}{2}$

Then
$$\tan(45^\circ) = \left| \frac{m - \frac{5}{2}}{1 + \frac{5m}{2}} \right| \implies (2m - 5) = \pm (2 + 5m)$$

$$\Rightarrow$$
 $m = -\frac{7}{3}, \frac{3}{7} \Rightarrow \text{ Equation of AB is } y - 4 = -\frac{7}{3}(x - 3)$

or
$$7x + 3y - 33 = 0$$
 and equation of BC is $y + 1 = \frac{3}{7}(x - 1)$ or $3x - 7y - 10 = 0$

solving these two equations we get B $\left(\frac{9}{2}, \frac{1}{2}\right)$

$$\Rightarrow \frac{9}{2} = 4 - h, \frac{1}{2} = 3 - k \text{ by (ii)}$$

$$\Rightarrow$$
 $h = -\frac{1}{2}, k = \frac{5}{2} \Rightarrow D(h, k) = \left(-\frac{1}{2}, \frac{5}{2}\right)$

85. (C)
$$\tan \theta = \left| \frac{2+1}{1-2} \right| = 3$$

$$\Rightarrow \theta = \tan^{-1} 3$$

- **86.** (C) $(3x y + 1)(x + 2y 5)|_{(0, 0)} < 0$ So, $(3x - y + 1)(x + 2y - 5)|_{a^2, a+1} < 0 \implies (3a^2 - a)(a^2 + 2a + 2 - 5) < 0$ $\Rightarrow a(3a - 1)(a - 1)(a + 3) < 0 \implies a \in (-3, 0) \cup (\frac{1}{3}, 1)$
- **87.** (B) **88.** (B) **89.** (B)
- **90. (C)** Since the diagonals are perpendicular, so the given quadrilateral is a rhombus.
 - :. Distance between two pairs of parallel side are equal

$$\Rightarrow \left| \frac{c' - c}{\sqrt{a^2 + b^2}} \right| = \left| \frac{c' - c}{\sqrt{a'^2 + b'^2}} \right| \Rightarrow a^2 + b^2 = a'^2 + b'^2$$