Curs 4

Cuprins

1 Logica de ordinul I - sintaxa (recap.)

2 Substituții și unificare

Logica de ordinul I - sintaxa (recap.)

☐ Sloganul programării logice:

Un program este o teorie într-o logică formală, iar execuția sa este o deducție în teorie.

- Programarea logică folosește un fragment din logica de ordinul l (calculul cu predicate) ca limbaj de reprezentare.
- ☐ În această reprezentare, programele sunt teorii logice mulțimi de formule din calculul cu predicate.
- Reamintim că problema constă în căutarea unei derivări a unei întrebări (formule) dintr-un program (teorie).

Limbaje de ordinul I

```
Un limbaj \mathcal{L} de ordinul I este format din:

o mulțime numărabilă de variabile V = \{x_n \mid n \in \mathbb{N}\}

conectorii \neg, \rightarrow, \land, \lor

paranteze

cuantificatorul universal \forall și cuantificatorul existențial \exists

o mulțime \mathbf{R} de simboluri de relații

o mulțime \mathbf{F} de simboluri de funcții

o mulțime \mathbf{C} de simboluri de constante

o funcție aritate ar : \mathbf{F} \cup \mathbf{R} \rightarrow \mathbb{N}^*
```

- \square \mathcal{L} este unic determinat de $\tau = (\mathbf{R}, \mathbf{F}, \mathbf{C}, ari)$
- $\ \square \ au$ se numește signatura (vocabularul, alfabetul) lui $\mathcal L$

Exemplu

Un limbaj \mathcal{L} de ordinul I în care:

- \square $\mathbf{R} = \{P, R\}$
- \Box $\mathbf{F} = \{f\}$
- \square **C** = {c}
- \square ari(P) = 1, ari(R) = 2, ari(f) = 2

Sintaxa Prolog

Atenție!

- ☐ În sintaxa Prolog
 - □ termenii compuși sunt predicate: father(eddard, jon_snow)
 - operatorii sunt funcții: +, *, mod
- □ Sintaxa Prolog nu face diferență între simboluri de funcții și simboluri de predicate!
- □ Dar este important când ne uităm la teoria corespunzătoare programului în logică să facem acestă distincție.

Termenii lui \mathcal{L} sunt definiți inductiv astfel:

- orice variabilă este un termen;
- orice simbol de constantă este un termen;
- \square dacă $f \in \mathbf{F}$, ar(f) = n și t_1, \ldots, t_n sunt termeni, atunci $f(t_1, \ldots, t_n)$ este termen.

Notăm cu $Trm_{\mathcal{L}}$ mulțimea termenilor lui \mathcal{L} .

$$c, x_1, f(x_1, c), f(f(x_2, x_2), c)$$

Formulele atomice ale lui \mathcal{L} sunt definite astfel:

□ dacă $R \in \mathbf{R}$, ar(R) = n și t_1, \ldots, t_n sunt termeni, atunci $R(t_1, \ldots, t_n)$ este formulă atomică.

$$P(f(x_1,c)), R(c,x_3)$$

Formulele lui \mathcal{L} sunt definite astfel:

- orice formulă atomică este o formulă
- \square dacă φ este o formulă, atunci $\neg \varphi$ este o formulă
- \square dacă φ și ψ sunt formule, atunci $\varphi \lor \psi$, $\varphi \land \psi$, $\varphi \to \psi$ sunt formule
- □ dacă φ este o formulă și x este o variabilă, atunci $\forall x \, \varphi$, $\exists x \, \varphi$ sunt formule

$$P(f(x_1, c)), P(x_1) \vee P(c), \forall x_1 P(x_1), \forall x_2 R(x_2, x_1)$$

Exemplu

Fie limbajul
$$\mathcal{L}_1$$
 cu $\mathbf{R} = \{<\}$, $\mathbf{F} = \{s, +\}$, $\mathbf{C} = \{0\}$ și $ari(s) = 1$, $ari(+) = ari(<) = 2$.

Exemple de termeni:

0,
$$x$$
, $s(0)$, $s(s(0))$, $s(x)$, $s(s(x))$, ...,
+(0,0), +($s(s(0))$, +(0, $s(0)$)), +(x , $s(0)$), +(x , $s(x)$), ...,

Exemple de formule atomice:

$$<(0,0),<(x,0),<(s(s(x)),s(0)),\ldots$$

Exemple de formule:

$$\forall x \, \forall y < (x, +(x, y))$$

 $\forall x < (x, s(x))$

Logica clauzelor definite

Alegem un fragment al logicii de ordinul I astfel:

- Renunțăm la cuantificatori (dar păstrăm variabilele)
- \square Renunțăm la \neg , \lor (dar păstrăm \land , \rightarrow)
- Singurele formule admise sunt de forma:
 - \square $P(t_1,\ldots,t_n)$, adică formule atomice
 - \square $\alpha_1 \wedge \ldots \wedge \alpha_n \rightarrow \alpha$, unde $\alpha_1, \ldots, \alpha_n, \alpha$ sunt formule atomice.

Astfel de formule se numesc clauze definite (sau clauze Horn).

Acest fragment al logicii de ordinul I se numește logica clauzelor definite (sau logica clauzelor Horn).

Programare logica

- \square Presupunem că putem reprezenta cunoștințele ca o mulțime de clauze definite Δ și suntem interesați să aflăm răspunsul la o întrebare de forma $\alpha_1 \wedge \ldots \wedge \alpha_n$, unde toate α_i sunt formule atomice.
- Adică vrem să aflăm dacă

$$\Delta \models \alpha_1 \wedge \ldots \wedge \alpha_n$$

- \square Variabilele din \triangle sunt considerate ca fiind cuantificate universal!
- □ Variabilele din $\alpha_1, \ldots, \alpha_n$ sunt considerate ca fiind cuantificate existențial!

Logica clauzelor definite

Fie următoarele clauze definite: father(jon, ken). father(ken, liz). $father(X, Y) \rightarrow ancestor(X, Y)$ $dauther(X, Y) \rightarrow ancestor(Y, X)$ $ancestor(X, Y) \land ancestor(Y, Z) \rightarrow ancestor(X, Z)$ Putem întreba: \square ancestor(jon, liz) ancestor(Q, ken) adică $\exists Q$ ancestor(Q, ken)

Răspunsul la întrebare este dat prin unificare!

Substituții și unificare

Substituții

Definiție

O subtituție σ este o funcție (parțială) de la variabile la termeni, adică

$$\sigma: V \to \mathit{Trm}_{\mathcal{L}}$$

Exemplu

În notația uzuală, $\sigma = \{x/a, y/g(w), z/b\}$.

Substituții

- Substituţiile sunt o modalitate de a înlocui variabilele cu alţi termeni.
- □ Substituţiile se aplică simultan pe toate variabilele.

- \square substituția $\sigma = \{x/a, \ y/g(w), z/b\}$
- \square substituția $\phi = \{x/y, \ y/g(a)\}$

Substituții

Două substituții σ_1 și σ_2 se pot compune

$$\sigma_1$$
; σ_2

(aplicăm întâi σ_1 , apoi σ_2).

Exempli

- $\square \ t = P(u, v, x, y, z)$
- $\square \ \tau = \{x/f(y), \ y/f(a), \ z/u\}$
- $\square \mu = \{y/g(a), u/z, v/f(f(a))\}$
- $\Box (\tau; \mu)(t) = \mu(\tau(t)) = \mu(P(u, v, f(y), f(a), u)) =$ = P(z, f(f(a)), f(g(a)), f(a), z)
- $\Box (\mu; \tau)(t) = \tau(\mu(t)) = \tau(P(z, f(f(a)), x, g(a), z))$ = P(u, f(f(a)), f(y), g(a), u)

Unificare

- Doi termeni t_1 și t_2 se unifică dacă există o substituție ν astfel încât $\nu(t_1) = \nu(t_2)$.
- \square În acest caz, ν se numesțe unificatorul termenilor t_1 și t_2 .
- ☐ În programarea logică, unificatorii sunt ingredientele de bază în execuția unui program.
- Un unificator ν pentru t_1 și t_2 este un cel mai general unificator (cgu,mgu) dacă pentru orice alt unificator ν' pentru t_1 și t_2 , există o substituție μ astfel încât

$$\nu' = \nu; \mu.$$

Unificator

Exempli

```
\Box t = x + (y \star y) = +(x, \star (y, y))
\Box t' = x + (v \star x) = +(x, \star (v, x))
\square \nu = \{x/y, y/y\}
      \square \nu(t) = y + (y \star y)
      \square \nu(t') = y + (y \star y)
      \square \nu este cgu
\nu' = \{x/0, y/0\}
      \nu'(t) = 0 + (0 \star 0)
      \nu'(t') = 0 + (0 \star 0)
      \nu' = \nu : \{ v/0 \}
      \square \nu' este unificator, dar nu este gcu
```

Algoritmul de unificare

- □ Pentru o mulțime finită de termeni $\{u_1, \ldots, u_n\}$, $n \ge 2$, algoritmul de unificare stabilește dacă există un cgu.
- □ Există algoritmi mai eficienți, dar îl alegem pe acesta pentru simplitatea sa.
- ☐ Algoritmul lucrează cu două liste:
 - Lista soluție: *S*
 - ☐ Lista de rezolvat: R
- ☐ Iniţial:
 - \square Lista soluție: $S = \emptyset$
 - \blacksquare Lista de rezolvat: $R = \{u_1 \stackrel{\cdot}{=} u_2, \dots, u_{n-1} \stackrel{\cdot}{=} u_n\}$
- este un simbol nou care ne ajută sa formăm perechi de termeni (ecuații).

Algoritmul de unificare

Algoritmul constă în aplicarea regulilor de mai jos:

- □ SCOATE
 - \square orice ecuație de forma t = t din R este eliminată.
- DESCOMPUNE
 - orice ecuație de forma $f(t_1, \ldots, t_n) = f(t'_1, \ldots, t'_n)$ din R este înlocuită cu ecuațiile $t_1 = t'_1, \ldots, t_n = t'_n$.
- □ REZOLVĂ
 - orice ecuație de forma x = t sau t = x din R, unde variabila x nu apare în termenul t, este mutată sub forma x = t în S. În toate celelalte ecuații (din R și S), x este înlocuit cu t.

Algoritmul de unificare

Algoritmul se termină normal dacă $R = \emptyset$. În acest caz, S conține cgu.

Algoritmul este oprit cu concluzia inexistenței unui cgu dacă:

■ În R există o ecuație de forma

$$f(t_1,\ldots,t_n) \stackrel{\cdot}{=} g(t_1',\ldots,t_k')$$
 cu $f \neq g$.

2 În R există o ecuație de forma x = t sau t = x și variabila x apare în termenul t.

Algoritmul de unificare - schemă

	Lista soluție	Lista de rezolvat
	S	R
Inițial	Ø	$t_1 \stackrel{.}{=} t'_1, \ldots, t_n \stackrel{.}{=} t'_n$
SCOATE	S	R', $t = t$
	S	R'
DESCOMPUNE	S	R' , $f(t_1,\ldots,t_n) \stackrel{.}{=} f(t'_1,\ldots,t'_n)$
	5	R' , $t_1 \stackrel{.}{=} t'_1, \ldots t_n \stackrel{.}{=} t'_n$
REZOLVĂ	S	R', $x = t$ sau $t = x$, x nu apare în t
	x = t, $S[x/t]$	R'[x/t]
Final	S	Ø

S[x/t]: în toate ecuațiile din S, x este înlocuit cu t

Exemplu

Exemplu

 \square Ecuațiile $\{g(y) \stackrel{.}{=} x, \ f(x, h(x), y) \stackrel{.}{=} f(g(z), w, z)\}$ au gcu?

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y),h(g(y)),y) \stackrel{\cdot}{=} f(g(z),w,z)$	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	$g(y) \stackrel{.}{=} g(z), h(g(y)) \stackrel{.}{=} w, y \stackrel{.}{=} z$	REZOLVĂ
$w \stackrel{\cdot}{=} h(g(y)),$	$g(y) \stackrel{.}{=} g(z), \ y \stackrel{.}{=} z$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$		
$y \stackrel{\cdot}{=} z, x \stackrel{\cdot}{=} g(z),$	$g(z) \stackrel{\cdot}{=} g(z)$	SCOATE
$w \doteq h(g(z))$		
$y \stackrel{\cdot}{=} z, x \stackrel{\cdot}{=} g(z),$	Ø	
$w \stackrel{\cdot}{=} h(g(z))$		
W = H(g(Z))		

 \square $\nu = \{y/z, x/g(z), w/h(g(z))\}$ este cgu.

Exemplu

Exemplu

 \square Ecuațiile $\{g(y) = x, f(x, h(y), y) = f(g(z), b, z)\}$ au gcu?

S	R	
Ø	$g(y) = x, \ f(x, h(y), y) = f(g(z), b, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y), h(y), y) \stackrel{\cdot}{=} f(g(z), b, z)$	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	$g(y) \stackrel{\cdot}{=} g(z), h(y) \stackrel{\cdot}{=} b, y \stackrel{\cdot}{=} z$	- EŞEC -

- ☐ *h* și *b* sunt simboluri de operații diferite!
- \square Nu există unificator pentru ecuațiile din U.

Exemplu

Exemplu

 \square Ecuațiile $\{g(y) \stackrel{\cdot}{=} x, \ f(x, h(x), y) \stackrel{\cdot}{=} f(y, w, z)\}$ au gcu?

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(y, w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	f(g(y),h(g(y)),y)=f(y,w,z)	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	g(y) = y, $h(g(y)) = w$, $y = z$	- EŞEC -

- \square În ecuația $g(y) \stackrel{\cdot}{=} y$, variabila y apare în termenul g(y).
- Nu există unificator pentru ecuațiile din U.

Terminarea algoritmului

Propoziție

Algoritmul de unificare se termină.

Demonstrație

- □ Notăm cu
 - \square N_1 : numărul variabilelor care apar în R
 - \square N_2 : numărul aparițiilor simbolurilor care apar în R
- □ Este suficient să arătăm că perechea (N_1, N_2) descrește strict în ordine lexicografică la execuția unui pas al algoritmului:

dacă la execuția unui pas (N_1, N_2) se schimbă în (N'_1, N'_2) , atunci $(N_1, N_2) \ge_{lex} (N'_1, N'_2)$

Demonstrație (cont.)

Fiecare regulă a algoritmului modifică N_1 și N_2 astfel:

	N_1	N_2
SCOATE	2	>
DESCOMPUNE	=	>
REZOLVĂ	>	

- \square N_1 : numărul variabilelor care apar în R
- \square N_2 : numărul aparițiilor simbolurilor care apar în R

Corectitudinea algoritmului

Lema 1

Mulțimea unificatorilor pentru ecuațiile din $R \cup S$ nu se modifică prin aplicarea celor trei reguli ale algoritmului de unificare.

Demonstrație

Analizăm fiecare regulă:

- □ SCOATE: evident
 - □ DESCOMPUNE: Trebuie să arătăm că

$$u$$
 unificator pt. \Leftrightarrow u unificator pt. $f(t_1, \ldots, t_n) = f(t'_1, \ldots, t'_n) \qquad t_i = t'_i, \text{ or. } i = 1, \ldots, n.$
 u unif. pt. $f(t_1, \ldots, t_n) = f(t'_1, \ldots, t'_n) \qquad \Leftrightarrow
u(f(t_1, \ldots, t_n)) =
u(f(t'_1, \ldots, t'_n)) \qquad \Leftrightarrow
f(
u(t_1), \ldots,
u(t_n)) = f(
u(t'_1), \ldots,
u(t'_n)) \qquad \Leftrightarrow
u(t_i) =
u(t'_i), \text{ or. } i = 1, \ldots, n$
 $\Leftrightarrow
u$ unificator pt. $t_i = t'_i, \text{ or. } i = 1, \ldots, n$

Demonstrație (cont.)

- ☐ REZOLVĂ:
 - \square Se observă că orice unificator ν pentru ecuațiile din $R \cup S$, atât înainte cât și după aplicarea regulii REZOLVĂ, trebuie să satisfacă:

$$\nu(x)=\nu(t).$$

Dacă μ este unificator pentru x = t observăm că:

$$(x \leftarrow t); \mu = \mu$$

unde
$$(x \leftarrow t)(x) = t$$
 și $(x \leftarrow t)(y) = y$ pentru orice $y \neq x \in V$.

$$((x \leftarrow t); \mu)(x) = \mu(t) = \mu(x)$$

$$((x \leftarrow t); \mu)(y) = \mu(y)$$
, pentru orice $y \neq x$

Deci.

 μ este un unificator pentru ecuațiile din $R \cup S$ înainte de REZOLVĂ

$$\Rightarrow$$

 μ este un unificator pentru ecuațiile din $R \cup S$ după REZOLVĂ

Corectitudinea algoritmului

- \square Pres. că algoritmul de unificare se termină cu $R = \emptyset$.
- \square Fie $x_i \stackrel{.}{=} t_i$, i = 1, ..., k, ecuațiile din S.
- Uvariabilele care apar în partea stângă a ecuațiilor din S sunt distincte două câte două și nu mai apar în termenii $t1, \ldots, t_k$.
- Definim substituţia:

$$\nu(x_i) = t_i$$
 pentru orice $i = 1, \ldots, k$.

Observăm că $\nu(t_i) = t_i = \nu(x_i)$ oricare i = 1, ..., k, deci ν este un unificator pentru $R \cup S$.

Corectitudinea algoritmului

Lema 2

 ν definit mai sus cf. algoritmului de unificare este cgu pentru $R \cup S$.

Demonstrație

La ultimul pas $R = \emptyset$ și $\nu(x_i) = t_i$ oricare i = 1, ..., k

- \square Fie μ un alt unificator pentru S. Avem
 - $\mu(\nu(x_i)) = \mu(t_i) = \mu(x_i), \text{ or. } i = 1, ..., k,$
 - \square $\mu(\nu(y)) = \mu(y)$, or. $y \neq x$.

Deci ν ; $\mu=\mu$. În concluzie, ν este cgu deoarece oricare alt

unificator se poate scrie ca o compunere a lui ν cu o substituție.

Din Lema 1 rezultă că ν este unificator pentru problema inițială $\{u_1=u_2,\ldots,u_{n-1}=u_n\}$, deci

$$\nu(u_1) = \cdots = \nu(u_n).$$

Complexitatea algoritmului

Problema de unificare

$$R = \{x_1 = f(x_0, x_0), x_2 = f(x_1, x_1), \dots, x_n = f(x_{n-1}, x_{n-1})\}$$

are cgu $S = \{x_1 \leftarrow f(x_0, x_0), x_2 \leftarrow f(f(x_0, x_0), f(x_0, x_0)), \dots\}.$

- □ La pasul Elimină, pentru a verifica că o variabilă x; nu apare în membrul drept al ecuației (occur check) facem 2ⁱ comparații.
- □ Algoritmul de unificare prezentat anterior este exponențial. Complexitatea poate fi îmbunătățită printr-o reprezentare eficientă a termenilor.

K. Knight, Unification: A Multidisciplinary Survey, ACM Computing Surveys, Vol. 21, No. 1, 1989.

Unificare în Prolog

- □ Ce se întâmplă dacă încercăm să unificăm X cu ceva care conține X? Exemplu: ?- X = f(X).
- ☐ Conform teoriei, acești termeni nu se pot unifica.
- □ Totuși, multe implementări ale Prolog-ului sar peste această verificare din motive de eficiență.

$$?-X = f(X).$$

 $X = f(X).$

☐ Putem folosi unify_with_occurs_check/2

```
?- unify_with_occurs_check(X,f(X)).
false.
```

Pe săptămâna viitoare!