A Concrete Introduction to Number Theory and Algebra–Elliptic Curve.

Libin Wang

Shool of Computer Science, South China Normal University

November 2, 2022

Elliptic Curve.(椭圆曲线)

What exactly is an elliptic curve?

- Elliptic curves are number theoretic objects that are central to both pure and applied number theory.
- In particular, elliptic curves are widely believed to be useful in many applications.
- An elliptic curve is a point set of an Abelian group. The group law is constructed geometrically.
- Elliptic curves have (almost) nothing to do with ellipses.

Elliptic Curve.

Definition

(Elliptic Curve.) Let $a, b \in \mathbb{R}$ be constants such that $4a^3 + 27b^2 \neq 0$. A non-singular elliptic curve is the set E of solutions $(x, y) \in \mathbb{R} \times \mathbb{R}$ to the equation: $y^2 = x^3 + ax + b$ together with a special point \mathcal{O} called the point at infinity. The solution set E forms an Abelian group with identity \mathcal{O} .

Play with EC using Sage.

Listing 1: "Play with EC using Sage."

```
## Play with EC using Sage.
_{2} | # The elliptic curve \sqrt{2} = x^{3} - 5x + 4 over R.
_3 | E0 = EllipticCurve(RR, [-5, 4])
   show(plot(E0, hue=.9))
  \# The elliptic curve over F_p.
_{6} | p = 137
_{7} \mid \mathsf{F} = \mathsf{FiniteField}(\mathsf{p})
   E1 = EllipticCurve(F, [F.random element(), F.random element()])
    print E1
    E1.points()
10
    show(plot(E1, hue=.9))
11
```

Graphical Representation of EC over \mathbb{R} .

Figure: Elliptic Curve defined by $y^2 = x^3 - 5 * x + 4$ over $\mathbb R$.

Graphical Representation of EC over a finite field.

Figure: Elliptic Curve over \mathbb{F}_{137} .

Group Operations of Elliptic Curves.

Let E be an elliptic curve over a field \mathbb{F} , given by an equation $y^2 = x^3 + ax + b$. We begin by defining a binary operation + on $E(\mathbb{F})$.

Group Operation.

- P + O = O + P = P;
- $P + (-P) = \mathcal{O}$, when P = (x, y), -P = (x, -y);
- P + (Q + R) = (P + Q) + R;
- P + Q = Q + P;

Graphical Representation of Negtive and the Point at Infinity.

Figure: 椭圆曲线群的逆元与无穷远点

Group Operations of Elliptic Curves.

Given $P, Q \in E(\mathbb{F})$, computes a third point $R = P + Q \in E(\mathbb{F})$.

Addition of the Group $E(\mathbb{F})$.

Let
$$P = (x_1, y_1)$$
, and $Q = (x_2, y_2)$, $R = (x_3, y_3)$.

- \bullet P=Q.
 - compute $\lambda = (3x_1^2 + a)/2y_1$
 - compute $x_3 = \lambda^2 2x_1$, $y_3 = \lambda(x_1 x_3) y_1$.
 - \bullet $P \neq Q$.
 - compute $\lambda = (y_2 y_1)/(x_2 x_1)$
 - compute $x_3 = \lambda^2 x_1 x_2$, $y_3 = \lambda(x_1 x_3) y_1$.

Graphical Representation of Addtion.

Figure: Add two different points in Elliptic Curve.

Graphical Representation of Addtion.

Figure: Add two same points in Elliptic Curve.

To Explain the Group Operations of Elliptic Curves-1.

Addition of two distinct points.

Given distinct points $P = (x_1, y_1)$ and $Q = (x_2, y_2)$, computes $R = (x_3, y_3)$.

• $\lambda = (y_2 - y_1)/(x_2 - x_1)$ is the slope of the line L through P and Q. L can be written as:

$$y = \lambda(x - x_1) + y_1;$$

• The intersection of L and E is

$$(\lambda(x-x_1)+y_1)^2=x^3+ax+b,$$

and it can be rearranged to the form

$$0 = x^3 - \lambda^2 x^2 + \cdots$$

To Explain the Group Operations of Elliptic Curves-2.

Addition of two distinct points.

Given distinct points $P = (x_1, y_1)$ and $Q = (x_2, y_2)$, computes $R = (x_3, y_3)$.

Since we know the three roots of this cubic equation, thus:

$$x^{3} - \lambda^{2}x^{2} + \dots = (x - x_{1})(x - x_{2})(x - x_{3}) =$$
$$x^{3} - (x_{1} + x_{2} + x_{3})x^{2} + \dots = 0$$

- We obtain $x_3 = \lambda^2 x_1 x_2$;
- Hence $y_3 = \lambda(x_1 x_3) y_1$.

To Explain the Group Operations of Elliptic Curves-3.

Addition of points when P = Q.

Given distinct points $P = (x_1, y_1)$, computes $R = 2P = (x_3, y_3)$.

 The slope of the tangent line L through P is given by implicit differentiation

$$2y\frac{dy}{dx} = 3x^2 + a,$$

hence

$$\lambda = \frac{3x_1^2 + a}{2y_1}$$

• The previous analysis is general, thus we obtain $x_3 = \lambda^2 - 2x_1$ and $y_3 = \lambda(x_1 - x_3) - y_1$.

Definition

Let p > 3 be prime. The elliptic curve $y^2 = x^3 + ax + b$ over \mathbb{F}_p is the set of solutions $(x,y) \in \mathbb{F}_p \times \mathbb{F}_p$ to the congruence: $y^2 \equiv x^3 + ax + b \pmod{p}$ where $a \in \mathbb{F}_p$, $b \in \mathbb{F}_p$, are constants such that $4a^3 + 27b^2 \neq 0 \pmod{p}$, together with a special point \mathcal{O} called the point at infinity.

Example: an EC over finite field.

Let's examine the elliptic curve $E: y^2 = x^3 + x + 6$ over \mathbb{F}_{11} as an example. List all the points of the E:

X	0	1	2	3	4	5	6	7	8	9	10
Ε	6	8	5	3	8	4	8	4	9	7	4
У			4,7	5,6		2,9		2,9	3,8		2,9

The order of E is 13, a prime number.

Example: an EC over finite field.

Since the oder of E is prime, the group is cyclic. We can generate the group by choosing any point other than the point at infinity. Let our generator be g=(2,7). Generate the group by using the rules of addition we defined earlier where 2g=g+g. We know $\lambda=(3x_1^2+a)/2y_1=(12+1)/(2*7)=8$, please check it!

Example: an EC over finite field.

Let generator be g = (2,7). a = 1, b = 6. We know

$$\lambda = (3x_1^2 + a)/2y_1 = (12+1)/(2*7) = 8.$$

- **1** $2g = (x_3, y_3)$ while $x_3 = \lambda^2 x_1 x_2 = 5$, $y_3 = \lambda(x_1 x_3) y_1 = 2$.
- 2 3g = g + 2g. Check it yourself!

How to compute ng?

Given $P \in E(\mathbb{F}_p)$, we can compute nP by using O(n) additions, namely:

$$nP = \underbrace{P + P + \dots + P}_{n \text{ times}}.$$

How to compute ng?

Given $P \in E(\mathbb{F}_p)$, we can compute nP by using O(n) additions, namely:

$$nP = \underbrace{P + P + \dots + P}_{n \text{ times}}.$$

Can we do it better?

How to compute nP?

We can compute nP in O(logn) steps by the usual Double-and-Add Method. First write

$$n = n_0 + n_1 \cdot 2 + n_2 \cdot 2^2 + \cdots + n_r \cdot 2^r$$

with $n_0, \dots, n_r \in \{0, 1\}$.

Then nP can be computed as

$$nP = n_0P + n_1 \cdot 2P + n_2 \cdot 2^2P + \cdots + n_r \cdot 2^rP$$

where $2^k g = 2 \cdot 2 \cdot \cdot \cdot 2P$ requires only k doublings.

An important question.

Can we do even better?

To Explain the Elliptic Curves over $GF(2^n)$ -1.

The Elliptic Curves over $GF(2^n)$

Why the Elliptic Curves over $GF(2^n)$ can't be $y^2 = x^3 + ax + b$?

 The slope of the tangent line L through P is given by implicit differentiation and

$$\lambda = \frac{3x_1^2 + \tilde{a}}{2y_1}$$

• What is $2y_1$ in $GF(2^n)$? 0!

To Explain the Elliptic Curves over $GF(2^n)$ -2.

The Elliptic Curves over $GF(2^n)$

The Elliptic Curves over $GF(2^n)$ may be $y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$. Two problems should consider.

- The slope of the tangent line *L* through *P*.
- The negation of a point is given by

$$-(x, y) = (x, -a_1x - a_3 - y).$$

To Explain the Elliptic Curves over $GF(2^n)$ -3.

Why the negation of a point is not the same as the previous curves?

Figure: An Elliptic Curve defined by generalized Weierstrass equation.

Elliptic Curve Factorization Method.

Given a large number N, and a bound B

Basic Idea.

- Choose a random a and a point in $P \in E(\mathbb{F}_N)$;
- Compute compute $m = lcm(1, 2, \dots, B)$;
- If at some point we cannot compute a sum of points because some denominator the computation is not coprime to N, we compute the greatest common divisor g of this denominator with N. If g is a nontrivial divisor, output it.

Elliptic Curve Factorization Method.

Listing 2: "Elliptic Curve Factorization Method."

```
def ecm(N, B=10^3, trials=10):
1
        m, R = lcm(1,2,...,B), Integers(N)
2
        R.is_field = lambda : True #Make Sage think that R is a field.
3
       for in range(trials):
            a = ChooseRandomA()
5
            try:
                m * EllipticCurve([a, 1])([0,1])
7
            except ZeroDivisionError as msg:
                # msg: "Inverse of <int> does not exist"
g
                return gcd(Integer(str(msg).split()[2]), N)
10
       return 1
11
```

Elliptic Curve Factorization Method.

Remark

Note that, actually \mathbb{F}_N is not necessary a finite field , thus $E(\mathbb{F}_N)$ is not a well-formed elliptic curve;

Why we need ECC?

Why we need ECC?

- More efficiency.
- More security.
- More functional properties.

The Elliptic Curve Discrete Logarithm Problem.

Definition

(Elliptic Curve Discrete Log Problem) Suppose E is an elliptic curve over finit field \mathbb{F} and $P \in E(\mathbb{F})$. Given a multiple Q of P, the elliptic curve discrete log problem (ECDLP) is to find $n \in \mathbb{F}$ such that nP = Q.

We believe ECDLP is hard.

Elliptic Curve Analogs of Diffie-Hellman.

Listing 3: "Elliptic Curve Diffie-Hellman."

```
p = next_prime(randrange(10^40))
F = FiniteField(p)
E = EllipticCurve(F, [F.random_element(), F.random_element()])
P = E.random_element()
b = randrange(1000); b
B = b*P
a = randrange(1000); a
A = a*P

if(a*B == b*A): print "We share a common secret."
```

Public Key Summary.

Table 4.5: Public Key Summary

Primitive	Parameters	Legacy System Minimum	Future System Minimum
RSA Problem	N, e, d	$\ell(n) \ge 1024,$	$\ell(n) \ge 3072$
		$e \ge 3$ or 65537, $d \ge N^{1/2}$	$e \ge 65537, d \ge N^{1/2}$
Finite Field DLP	p, q, n	$\ell(p^n) \ge 1024$	$\ell(p^n) \ge 3072$
		$\ell(p), \ell(q) > 160$	$\ell(p), \ell(q) > 256$
ECDLP	p, q, n	$\ell(q) \ge 160, \star$	$\ell(q) > 256, \star$

Figure: Public Key Summary.