NAME: SID:

Problem 1: For each piece of pseudo-code below, give its asymptotic running time as a function of n. Express this running time using the $\Theta()$ notation. Include a brief justification (at most 25 words).

Pseudo-code	Running time	Justification
for $i \leftarrow 1$ to $3n^2$ do $x \leftarrow x^2$ for $j \leftarrow 1$ to $n+3$ do $z \leftarrow x+z$		
for $i \leftarrow 1$ to n do $j \leftarrow 1$ while $j < n$ do $j \leftarrow 4j$ $x \leftarrow j \cdot x$		
for $i \leftarrow 1$ to n^2 do $k \leftarrow 1$ while $k < n$ $x \leftarrow x^2$ $k \leftarrow k + 3$		
for $i \leftarrow n/2$ to n do $x \leftarrow 2x - 1$ for $j \leftarrow 1$ to $2i$ do $x \leftarrow 2j \cdot x$		
$k \leftarrow 1$ for $i \leftarrow 1$ to n do while $k < 9i$ do $k \leftarrow k + 1$ $x \leftarrow x^2$		

Note 1: " \leftarrow " denotes the assignment statement. The scope and nesting of loops is indicated by the indentation.

roblem 2: (a) Give a complete statement of Fermat's Little Th	eorem.
o) Compute $3^{1895} \pmod{19}$. (You must use Fermat's Little Theo	rem.)
	CS111-S16 QUIZ 2A, April 21, 9:00-9:30AM

Problem 3: For each statement below tell whether it is true or false and give a brief justification (at most 50 words). All numbers a, b, c are positive integers.

(a) If a is prime and a is a divisor of bc then a is a divisor of b or c.

TRUE FALSE

(b) If a and b are divisors of c then ab is a divisor of c

TRUE FALSE

(c) $gcd(ab, c) = gcd(a, c) \cdot gcd(b, c)$.

TRUE FALSE

(d) gcd(a + b, b) = gcd(a, b).

TRUE FALSE