

## Surface Area and volume of A Right Circular cone Ex 20.2 Q14 Answer:

The formula of the volume of a cone with base radius 'r' and vertical height 'h' is given as

Volume of cone = 
$$\frac{1}{3}\pi r^2 h$$

It is given that the top diameter is 3.5 m. Hence the radius of the conical pit is  $\frac{3.5}{2}$  m.

Substituting the values of  $r = \frac{3.5}{2}$  m and h = 12 m in the above equation and using  $\pi = \frac{22}{7}$  we get

Volume = 
$$\frac{(22)(3.5)(3.5)(12)}{(7)(3)(2)(2)}$$
$$= 22 \times 0.5 \times 3.5$$
$$= 38.5$$

Hence the volume of the conical pit is 38.5 m<sup>3</sup> or 38.5 kilo litre

## Surface Area and volume of A Right Circular cone Ex 20.2 Q15

Given that out of the 551  $\mathrm{m}^2$ , 1  $\mathrm{m}^2$  has to be used for stitching, etc we are left with 550  $\mathrm{m}^2$  of canvas to make a tent.

The amount of canvas needed to make the conical tent would be equal to the curved surface area of the conical tent.

The formula of the curved surface area of a cone with base radius 'r' and slant height 'l' is given as Curved Surface Area =  $\pi n l$ 

Here the C.S.A =  $550 \text{ m}^2$  and the base radius 'r' = 7 m. We can get the slant height 'l' of the tent by using the formula for curved surface area.

$$=\frac{(550)(7)}{(22)(7)}$$
$$=25$$

Hence the slant height of the conical tent is  $25\ \mathrm{m}$ .

The height 'h' can be found out using the relation between r; 1 and h.

We know that in a cone

$$l^{2} = r^{2} + h^{2}$$

$$h^{2} = l^{2} - r^{2}$$

$$h = \sqrt{l^{2} - r^{2}}$$

$$= \sqrt{25^{2} - 7^{2}}$$

$$= \sqrt{625 - 49}$$

$$= \sqrt{576}$$

$$= 24$$

Hence the height of the conical tent is 24 m.

The formula of the volume of a cone with base radius r and vertical height h is given as

Volume of cone = 
$$\frac{1}{3}\pi r^2 h$$

Substituting the values of r = 7 m and h = 24 m in the above equation and using  $\pi = \frac{22}{7}$  we get,

Volume = 
$$\frac{(22)(7)(7)(24)}{(7)(3)}$$
  
= (22) (7) (8)  
= 1232

Hence the volume of the conical tent that can be made out of the given canvas with the given dimensions is  $1232 \text{ m}^3$