CS & IT ENGINEERING

Operating System

Process Management

Lecture -3

Topic

Process states

Topic

Process State Transition

Topic

Process Scheduling

Topic

Types of Schedulers

Context switch is done by dispate

current activity the process is performing.

All installed processes are in known to be in new state Process is not in memory

Ready:- All processes which are waiting to run on CPU are known to be in ready state

Running:- A process which is running on CPU has its state as running

Terminated:-A completed process has its state as terminated => Brocess not in main memory

Blocked:-All processes which are waiting for any IO or event

New To Ready: When process is admitted by OS > Memory & resources allocation

Ready to Running: When a process is dispatched to CPU

Running to Terminated: When a process is completed => Memory & resources deallocated

Running to Blocked: When a process goes for IO or event

Running to Ready: When a process is preempted

Blocked to Ready: When a process completes IO or event

- □ 2 Transitions are voluntary: (Brocess can take)
 - Running to Terminated
 - Running to Blocked

Topic: Non-preemptive Process States

Topic: CPU vs IO Bound Process

CPU Bound: If the process is intensive in terms of CPU operations

IO Bound: If the process is intensive in terms of IO operations

Topic: Process Scheduling

Needed Because?

La needed when one process is to be selected among multiple.

reason => to have efficiency (better performance)

Topic: Scheduling Queues

- · Job Queue sall processes which are in New state, are kept in this
- Device Queue > ____ " waiting for a device are kept gn °it's device Queue.

Topic: Types of Schedulers Dogums of Os

skings a process from new state to ready state

- Long-Term Scheduler (Job) /
- Short-Term Scheduler (CPU) > selects one of the ready processes to
- Mid-Term Scheduler (Medium-term)

List performs swapping of processes.

If swapping is done on the basis of priority of processes then it is called as rolling.

Topic: Updates Process States

=> Long-term	schedule =	s Can	increas	se degree	of multiprogg
→ Mid — 11 -	=>	1	_ inc./	dec.	11 ——
=> short					

Topic: CPU Scheduling

Function:

Make a selection

Goal

- Minimize Wait time and Turn-around time Maximize CPU utilization
- (Throughput) Fairness

[MCQ]

#Q. Which of the following scheduler reduces the degree of multiprogramming?

- A Short-Term
- B Long-Term
- C Mid-Term
- Long-Term and Mid-Term both

2 mins Summary

Topic

Process states

Topic

Process State Transition

Topic

Process Scheduling

Topic

Types of Schedulers

Happy Learning THANK - YOU