Alma 9 Validation

Dark Photon Samples

January 27, 2025

Pawan Johnson

Prof. Carl Gwilliam

Dr. Monika Weilers

Prof. Monica D'Onofrio

University of Liverpool

Introduction

- Validate ALMA9 version of Calypso for the track variables
- Sinead already looked at single muon samples
- Ansh looked at the A' analysis cutflow
- We want to look at the "two track reconstruction" as a function of separation between them

Data Description

- We will to look at Dark-Photon decays to electron pairs
- Data samples used are /eos/experiment/faser/data0/sim/mc24/foresee/1100{33,38,51}/

```
    110033 : Mass = 10 MeV, epsilon = 1E-5
    110038 : Mass = 100 MeV, epsilon = 1E-5
```

- 110038 : Mass = 100 MeV, epsilon = 1E-5
- 110051 : Mass = 10 MeV, epsilon = 1E-4
- ALMA 9 samples : ./phy/s0008-dev/
- CENTOS 7 samples: ./phy/s0008-r0019/
- Chaining them together for better statistics [total 60k events]
- Can separate based on mass/couplings if interested

Overview of Validation

Objective: To Quantify two track reconstruction efficiency as a function of separation between the tracks

- Quantify separation between tracks
- Compare generic track reconstruction as a function of above
- Define an "Efficiency" and compare
- Residues?

Distribution of Track Parameters

- longTracks
- Track Propagation Error
- Track Chi2
- Track Chi2perDoF
- Track nDoF
- Track charge
- Track nLayers

Distribution of longTracks

- Overall agreement is good in early bins
- Bin 0 has a drop in AL9
- longTracks 5 shows more discrepancy, Concerning?

Distribution of TrackPropagationError [SKIP]

More TrackPropagationErrors in CENTOS7.

Distribution of TrackChi2

Distribution of TrackChi2perDoF

- Shows "most" improvement in ALMA9.
- More events with lower Chi2/DoF and tail is also lower.

Distribution of TrackNDoF

Distribution of Track Charge

Distribution of Track nLayers

Overall we hit more layers in AL9

Quantifying Separation

Possible Track Separation Variables

- ΔR_0 : Separation between the electron and positron at the first tracking station in the x-y plane
- ΔX_0 : Same as above but only in x direction
- ΔY_0 : Same as above but only in y direction
- θ_0 : Angle between the line connection decay vertex to the two tracks at the first tracking station
- $\Delta R_P = \sqrt{\Delta \eta^2 + \Delta \phi^2}$: Momentum space separation between electron and positron

Position Based Separation variables

ADD CODE SNIPPET

Track Separation in terms of Angle

ADD CODE SNIPPET

Track Separation in η - ϕ Space

Figure: Angle between Momenta

Code Sinppets

TODO: Fix listing here

Distribution of DeltaR0

Distribution of DeltaR0 [Truth Level]

Distribution of DeltaX0

Distribution of DeltaX0 [Truth Level]

Distribution of DeltaY0

Distribution of DeltaY0 [Truth Level]

Comments on Position Based Separation

- Particle predominantly separated in the y-direction
 - Comes from the magentic field's deflection
 - Positron deflected upwards, electron downwards leading asymmetry in DeltaY0 plot
 - DeltaX0 looks symmetric
 - DeltaY0 can be approximated to DeltaR0
- In general Nevents fall off as sepration increases [characteristic of DP Decay?]
- Similar features seen in overlay plot but different in scale
- We can just look at the distributions using DeltaR0 as our primary variable for position based separation.

Overlay Plot

Figure: Overlay plot from Search for dark photons with the FASER detector at the LHC

Distribution of Theta0

Distribution of Theta0 [Truth Level]

Distribution of DeltaRP

Distribution of DeltaRP [Truth Level]

Comments on Angle Based Separation

- Theta0 is a variable to separate the tracks but falls off reapidly
- DeltaRP shows a relatively flat distribution
- To calculate the separation variables the MC level information is used
 - Same across AL9 and CENTOS7
 - More robust
 - No uncertainity from the tracking itself

Events grouped by longTracks vs DeltaR0

Events grouped by longTracks vs DeltaY0 [SKIP]

Events grouped by longTracks vs DeltaX0 [SKIP]

Events grouped by longTracks vs Theta0

Events grouped by longTracks vs DeltaRP

Comments on longTrack grouped Plots

- Good agreement between ALMA9 and CENTOS7
- Events with > 2 longTrack fall most rapidly [nothing past 10 mm]
- = 2 longTracks decay less rapidly [nothing past 30 mm]
- = 1 longTracks is relatively flat
- ullet = 0 same as above Not sure how to interpret
- In the plots where longTracks $\leq 1~\text{AL9}$ performs bad at low separation
- Maybe logscale in x?

Definition of Efficiency Metrics

In General

- One Track Event ⇒ NOT reconstructed
- Two Track event + Opposite charges ⇒ reconstructed
- ullet More than two track \Longrightarrow complicated

Some Possible Eff. Metrics

- Number of Events with ≥ 2 longTracks [good proxy]
- (Can add charge identification to above but not necessary)
- MC Based Effi. [matching reconstructed to truth level data]

Definition of Fiducial

Before we define the efficiency we need to account for the detector acceptance by requiring the particle to be Fiducial.

Based on reconstructed data [Adapted from Sinead]

- Requires *longTracks* == 2
- Track_r_atMaxRadius < 100
- $t_st\{1,2,3\}_r < 100$

Based on truth level data

- $truthd0_r[\{1, 2, 3\}] < 100$
- $truthd1_r[\{1, 2, 3\}] < 100$
- Does not need the 2track cut while maintaining that particles of interest were Fiducial, While also being independent of ALMA9 or CENTOS7

Note:

• Where are NaNs coming from at the truth-level?

How do Fiducial Cuts perform?

Selection Step	Pass	All	Effi. (%)	Cum. Effi. (%)
2LongTracks	37807	60000	63.01	63.01
Opposite Charge	32427	37807	85.77	54.04
MaxRadius < 100	31489	32427	97.11	52.48
$t_{-}st1_{-}r < 100$	31471	31489	99.94	52.45
t_st2_r < 100	31458	31471	99.96	52.43
t_st3_r < 100	31383	31458	99.76	52.31

Table: Efficiencies and cumulative efficiencies at various selection steps. [ALMA9]

Selection Step	Pass	All	Effi. (%)	Cum. Effi. (%)
2LongTracks	36746	60000	61.24	61.24
Opposite Charge	30375	36746	82.66	50.62
MaxRadius < 100	29520	30375	97.19	49.20
$t_{st}1_{r} < 100$	29498	29520	99.93	49.16
$t_{st2_r} < 100$	29491	29498	99.98	49.15
t_st3_r < 100	29415	29491	99.74	49.03

Table: Efficiencies and cumulative efficiencies at various selection steps.[CENTOS7]

- ALMA9 performs better over most of the cuts.
- Using this fiducial cuts throws out 50% of the data.

Cuts. Contd.

Selection Step	Pass	All	Effi. (%)	Cum. Effi. (%)
$truthd\{0,1\}_st1_r < 100$	59634	60000	99.39	99.39
$truthd\{0,1\}_{st2_r} < 100$	58429	59634	97.98	97.38
$truthd\{0,1\}_{st3_r} < 100$	56703	58429	97.05	94.50

Table: Efficiencies and cumulative efficiencies for truth-level selection steps. [same for ALMA9/CENTOS7]

```
 \begin{array}{l} truthd\_st1\_r = \\ sqrt(\ pow(truthd0\_x[1],2) + pow(truthd0\_y[1],2)\ ) > 100\ \&\& \\ sqrt(\ pow(truthd1\_x[1],2) + pow(truthd1\_y[1],2)\ ) \end{array}
```

Efficiency Definition

- Remove acceptance based on fiducial cuts at truth level
- Define Efficiency as the fraction of events with more than 2 reconstructed longTracks divided by the total number of events.

$$\mathsf{Efficiency} = \frac{\mathsf{NEvents}(\geq 2\mathsf{longTracks})}{\mathsf{NEvents}(\mathsf{Total})}$$

>= 2 Track Efficiency as a function of DeltaR0

>= 2 Track Efficiency as a function of DeltaX0 [SKIP]

>= 2 Track Efficiency as a function of DeltaY0 [SKIP]

>= 2 Track Efficiency as a function of Theta0

Efficiency of Track Reconstruction [longTracks>=2]

>= 2 Track Efficiency as a function of DeltaRP

Efficiency of Track Reconstruction [longTracks>=2]

Comments on >2Track Efficiency

- Good agreement between ALMA9 and CENTOS7
- Minor bump at very low separation (\approx 2-6 mm) for ALMA9
- Error Bars too significant to say anything about large separation

Alternate Efficiency Definition

- · Remove acceptance based on fiducial cuts at truth level
- Define Efficiency as the fraction of events with exactly 2 reconstructed longTracks divided by the total number of events.

$$Efficiency = \frac{NEvents(= 2longTracks)}{NEvents(Total)}$$

2 Track Efficiency as a function of DeltaR0

2 Track Efficiency as a function of DeltaX0 [SKIP]

2 Track Efficiency as a function of DeltaY0 [SKIP]

2 Track Efficiency as a function of Theta0

2 Track Efficiency as a function of DeltaRP

Efficiency of Track Reconstruction [longTracks=2]

A More Robust Efficiency Metric [MC Based]

- Our interest is only in the primary two tracks from e^+e^-
- For acceptance: Truth Position of $e^+e^- < 100$
- Identify the two primary tracks
 - Wanted to use t_pdg_parent . . .
 - Find closest to truth (by position and momenta)...
 - not trivial what is the margin of allowed error?
 - Highest momenta tracks?
 - Best approach is to use t_truthHitRatio + PID
- Can further quantify the "goodness" of the reconstructed primary tracks

Distribution of t_pdg_parent

t_pdg_parent	AL9	SL7
-11	2	0
0	2	0
22	2610	2397
32	115877	112809

Table: Count of t_pdg_parent

All particles are daughters of the Dark Photon?

Dark Photon CutFlow from Ansh's Study [SKIP]

Sample 110038

CentOS7

Alma9

Cut	# Events	Efficiency	Cum. Effs		Cut	# Events	Efficiency	Cum. Effs
No Cuts	20k	1	1		No Cuts	20k	1	1
No Timing Saturation	19955	0.998	0.998		No Timing Saturation	19955	0.998	0.998
No VetoNu	19955	1	0.998		No VetoNu	19955	1	0.998
No Veto	19895	0.997	0.977		No Veto	19895	0.997	0.995
Timing Signal	19547	0.982	0.977		Timing Signal	19546	0.982	0.977
Preshower Signal	19547	1	0.977		Preshower Signal	19546	1	0.977
>=1 Good Track	18281	0.935	0.914		>=1 Good Track	18649	0.954	0.932
==2 Good Track	11954	0.654	0.598		==2 Good Track	12530	0.671	0.627
Fiducial	10874	0.91	0.544		Fiducial	11387	0.909	0.569
Calo Energy	10729	0.987	0.536		Calo Energy	11243	0.987	0.562

Sample 110033

CentOS7

Alma9

# Events 20k	Efficiency	Cum. Effs		Cut	# Events	F	
20k				Cut	# Events	Efficiency	Cum. Effs
	1	1		No Cuts	20k	1	1
19788	0.989	0.989		No Timing Saturation	19788	0.989	0.989
19788	1	0.989		No VetoNu	19788	1	0.989
19766	0.999	0.988		No Veto	19767	0.999	0.988
19299	0.976	0.965		Timing Signal	19300	0.976	0.965
19295	0.999	0.965		Preshower Signal	19296	0.999	0.965
16593	0.86	0.83		>=1 Good Track	17112	0.887	0.856
8987	0.542	0.45		==2 Good Track	9617	0.562	0.481
7685	0.855	0.385		Fiducial	8095	0.842	0.405
2354	0.306	0.118		Calo Energy	2352	0.291	0.117
	19788 19766 19299 19295 16593 8987	19788 1 19766 0.999 19299 0.976 0.999 19295 0.86 8987 0.542	19788 1 0.989 19766 0.999 0.988 19299 0.976 0.965 0.999 0.965 19295 0.86 0.83 8987 0.542 0.45	19788 1 0.989 19766 0.999 0.988 19299 0.976 0.965 0.999 0.965 19295 0.86 0.83 8987 0.542 0.45 7685 0.855 0.385	Saturation 19788 1 0.989 No VetoNu 19766 0.999 0.988 No Veto 19299 0.976 0.965 Timing Signal 0.999 0.965 Preshower Signal 16593 0.86 0.83 >=1 Good Track 8987 0.542 0.45 ==2 Good Track 7685 0.855 0.385 Fiducial	Saturation 19788 1 0.989 No VetoNu 19788 19766 0.999 0.988 No Veto 19767 19299 0.976 0.965 Timing 19300 Signal 19300 Signal 19295 19295 Preshower 19296 Signal 19295 19295 Signal 19296 19296 Signal 19296 19297 Signal 19296 19298 Signal 19296 Sig	Saturation 19788 1 0.989 No VetoNu 19788 1 19766 0.999 0.988 No Veto 19767 0.999 19299 0.976 0.965 Timing 19300 0.976 Signal 19296 0.999 19295 Preshower 19296 0.999 19295 0.86 0.83 >=1 Good 17112 0.887 Track 8987 0.542 0.45 ==2 Good 9617 0.562 7685 0.855 0.385 Fiducial 8095 0.842

Sample 110051

CentOS7

Alma9

5511.557							
Cut	# Events	Efficiency	Cum. Effs	Cut	# Events	Efficiency	Cum. Effs
No Cuts	20k	1	1	No Cuts	20k	1	1
No Timing Saturation	19958	0.998	0.998	No Timing Saturation	19958	0.998	0.998
No VetoNu	19956	0.999	0.998	No VetoNu	19956	0.999	0.998
No Veto	19900	0.997	0.998	No Veto	19900	0.998	0.995
Timing Signal	19566	0.983	0.978	Timing Signal	19566	0.983	0.978
Preshower Signal	19566	1	0.978	Preshower Signal	19566	1	0.978
>=1 Good Track	18226	0.932	0.911	>=1 Good Track	18687	0.955	0.934
==2 Good Track	12163	0.667	0.608	==2 Good Track	12837	0.687	0.642
Fiducial	11002	0.905	0.55	Fiducial	11560	0.9	0.578
Calo Energy	10849	0.986	0.542	Calo Energy	11417	0.988	0.571

Comments on Data in NTuples [SKIP]

- Need to add newly introducted variables to twiki.
- t_st0_x, y, z are filled with NaNs, We donot use/store station0 vals?
- t_pdg_parent ???
- truthParticleMatchedTracks What exactly is this column.?

Backup