Малко контролно №2 по ДАА 7 юни 2017г.

Зад.1. (2т.) Разполагаме с n на брой правоъгълни кутийки с разнообразни широчини и дължини. Можем да поставяме кутийка в някоя друга само ако широчината и дължината на първата кутийка са строго по-малки съответно от широчината и дължината на втората кутийка. "Въртене" на кутийките е забранено и очевидно можем да имаме кутийки, които няма как да поставим една в друга. Опишете алгоритъм, който за $O(n^2)$ време намира колко най-много кутийки от дадените можем да поставим последователно "като матрьошки" една в друга.

Зад.2 (1,5т.) Отворили сме празен текстови файл и имаме следните опции за работа с него (всяка от тях се счита за едно *действие*):

- Добавяне на един символ, без значение какъв;
- Маркиране на цялото съдържание на файла (Ctrl-A);
- Копиране на всичко маркирано (Ctrl-C, имаме неограничен буфер);
- Поставяне на копираното (Ctrl-V) след това буферът остава празен!

Естествено, за да поставим някакво съдържание, трябва преди това да сме го маркирали и копирали в буфера. Предложете алгоритъм, който за O(n) време изчислява колко най-много символа може да съдържа файлът след n такива действия.

Зад.3 (2т.) Нека имаме неориентиран свързан тегловен граф с n върха и m ребра, в който теглото на всяко ребро е точно едно измежду реалните числа a и b (нека 0 < a < b). Предложете nинееn0 алгоритъм, който изчислява теглото n0 на минимално покриващо дърво за графа (не е задължително да намирате такова дърво). За по-бавен алгоритъм ще получите само n1.

Упътване: ако премахнем по-тежките ребра от графа, ще получим евентуално несвързан граф. Каква е връзката между броя на неговите свързани компоненти и W?

→ Обърнете на задната страна за бонус задачите!

Бонус1 (1,5т.) Ами ако дължината на кутийките няма значение при сравненията, т.е. сравняваме само по тяхната широчина? Предложете O(nlgn) алгоритъм, който отговаря на същия въпрос при тази промяна в условието.

Бонус2 (1т.) Какво би се променило със **Зад.2**, ако след поставяне буферът не остава празен, т.е. можем няколко пъти подред да натискаме Ctrl-V? Предложете квадратичен алгоритъм, който взима предвид тази промяна в условието.

Можете ли да решите двата варианта на тази задача по-бързо?

Решения (с обяснения):

Зад.1. Виждаме, че имаме описана релация между две кутийки "едната кутийка може да се постави в другата". Тази релация не е симетрична (и очевидно е бинарна), което означава, че можем да моделираме задачата по следния начин: ще построим граф, в който на всяка кутийка ще съответства точно един връх, а ребро от връх u към връх v ще има само ако кутийката, съответстваща на u, може да се "постави" по тази дефиниция в кутийката, съответстваща на v. Поради гореспоменатите свойства на тази релация този граф ще бъде ориентиран и ацикличен (няма нужда от доказателство, но ако Ви съмнява, проверете го сами). В задачата се изисква да намерим възможно най-големия брой кутийки, които да можем да поставяме последователно една в друга. Това съответства на намирането на най-дълъг път в построения граф (LPDAG). Дължината на този път в брой върхове ще е търсеният максимален брой кутийки.

Тук можем да спрем и да не пишем алгоритъма, тъй като за целите на това контролно го считаме за "популярен" и "известен", но все пак не е лошо да го направим:

```
LPDAG(G(V, E): directed acyclic graph)

1. A \leftarrow TopoSort(G)

2. M[1..n] \leftarrow array \ of \ integers

3. foreach \ u \ in \ reverse \ order \ of \ A

4. M[u] \leftarrow 1

5. foreach \ v \ in \ Adj(u)

6. M[u] \leftarrow max\{M[u], M[v] + 1\}

7. return \ Maximum(M[1..n])
```

Построението на графа отнема $O(n^2)$ време, тъй като сме длъжни да проверим за всеки две кутийки дали едната не се влага в другата, т.е. дали не трябва в графа да има ребро между всеки два върха. Ясно е, че ребрата ще бъдат $m=O(n^2)$ на брой. След това алгоритъмът за топологическо сортиране отнема O(n+m) време, и допълнителната работа също толкова, което води до обща сложност по време $T(n)=O(n^2)+O(n+m)+O(n+m)=O(n^2)$ и по памет $M(n)=O(n+m)+O(n)+O(n)=O(n+m)=O(n^2)$. Допълнителната памет идва от съхранението на самия граф с най-много $O(n^2)$ -та си ребра, паметта необходима на TopoSort, и паметта за масива M.

Важно е да се отбележи, че задачата НЕ Е за най-дълга нарастваща подредица, тъй като никъде не е указано, че можем да поставяме кутийка с индекс i в кутийка с индекс j само ако i < j, тоест само кутийка по-рано в масива в друга след нея. Ако беше указана такава наредба, тогава получаваме LongestIncreasingSubsequence, което се решава с подобен алгоритъм, но в случая това би било грешно решение.

Зад.2. Знаем по условие, че преди действие Ctrl-V трябва задължително да има Ctrl-C, а преди него задължително Ctrl-A. Тогава, за всяко действие имаме четири възможности: натискане на един символ, натискане само на Ctrl-A, натискане на Ctrl-C веднага след Ctrl-A или Ctrl-V след Ctrl-C след Ctrl-A. Тези последователни натискания се броят към действията, следователно за максималния брой символи след n действия имаме следната рекурентна връзка:

$$f(n) = \max\{f(n-1) + 1, f(n-1), f(n-2), 2 * f(n-3)\}\$$

Четирите случая съответстват на четирите възможни избора за "последно" действие. Очевидно Ctrl-A и Ctrl-C не увеличават броя символи, а чак след три действия се поставя копираното, тоест съдържанието се удвоява. Можем да мемоизираме това изчисление в едномерен масив, индексиран от 1 до n, който да запълним по следния начин:

```
CopyPaste(n: positive integer)

1. M[1..n] \leftarrow array \ of \ integers

2. M[1] \leftarrow 1, M[2] \leftarrow 2, M[3] \leftarrow 3

3. for \ i \leftarrow 4 \ to \ n

4. M[i] \leftarrow \max\{M[i-1]+1, M[i-1], M[i-2], 2*M[i-3]}

5. return \ M[n]
```

Мемоизираме наивната рекурентна връзка по наивен начин, което води до прост и работещ алгоритъм в T(n)=M(n)=O(n). Първите три стойности в масива можем да изчислим на ръка. Понататък бихме могли да оптизираме изразходваната памет, т.к. изчислението за всяка позиция в масива използва само предишните три. Тогава ще са ни достатъчни 4 локални променливи, за да държим на всяка итерация текущата стойност и предишните 3, и накрая да върнем същия резултат. Ще получим решение с M(n)=O(1).

Не е трудно човек да забележи, че от гореизброените четири случая само първият и последният са смислени. Иначе казано, няма смисъл да натискаме Ctrl-A без след това да натиснем Ctrl-C и после Ctrl-V (независимо дали маркираното се размаркира и т.н.). Следователно можем да опростим f(n) до $f(n) = \max\{f(n-1)+1, 2*f(n-3)\}$ и ред 4 на $M[i] \leftarrow \max\{M[i-1]+1, 2*M[i-3]\}$.

- **Зад.3.** За тази задача могат да се предложат две различни, но коректни решения. Важат стандартните означения графът е G(V,E) и $n=|V|;\; m=|E|$:
- Решение първо: Следвайки упътването, можем да направим следните наблюдения. Нека построим само графа G', индуциран от по-леките ребра. Тогава, за да направим покриващо дърво на целия оригинален граф, можем първо да направим минималната покриващата гора на G' (МПД за всяка негова компонента – както казахме, G' може да не е свързан и да няма минимално покриващо ∂ ърво). Забележете, че понеже всички ребра в G са с едно и също тегло, всяко покриващо дърво е минимално, но това не е нужно за решението. След това, за да свържем тези дървета, съответстващи на компонентите на G', е необходимо да използваме от тежките ребра. Разковничето тук е, че за да свържем k на брой компоненти, ни трябват mочноk-1 тежки ребра (представете си k върха, които трябва да обединим в дърво). Няма как с помалко тежки ребра, защото е възможно някоя компонента да не бъде свързана с общото покриващото дърво. Това значи, че в МПД на G със сигурност ще има точно k-1 от "тежките ребра". Всички ребра трябва да са n-1 на брой, откъдето $\pmb{W} = (\pmb{n} - \pmb{k}) * \pmb{a} + (\pmb{k} - \pmb{1}) * \pmb{b}$. Задачата се свежда до това да построим графа G' и да намерим броя негови свързани компоненти (k във формулата), откъдето можем да получим теглото. Построението се извършва за T(n,m)=M(n,m)=O(n+m), а търсенето на свързаните компоненти е възможно с DFS или BFS със сложност T(n,m) = O(n+m), M(n,m) = O(n). Окончателно, T(n,m) = M(n,m) =O(n+m).
- **Решение второ:** Можем да използваме алгоритъма на Крускал със следната модификация: вместо да сортираме ребрата за O(nlgn), можем да се възползваме от това, че са само две

възможни стойности и да приложим или CountingSort, или Partition (or QuickSort). И двата варианта ще отнемат O(m) време, а оттам нататък алгоритъмът продължава работа по нормален начин. След като получим дървото, можем просто да съберем теглата на всички ребра в него, намирайки търсеното W. Сложността по време ще е $T(n,m) = O(m+n,\alpha(n))$, и можем тънко да се възползваме от свойствата на функцията α и да заключим, че това е "линейно" време. Факт е, че за $\forall n \leq$ от порядъка на $2^{2^{2^{2^{16}}}}$ е мнооого голямо число и за целите на това контролно този алгоритъм се признава за линеен. Сложността по памет е M(n,m) = O(n+m): n заради Disjoint-Set структурата и m за масива с ребра, който сортираме.

Бонус1: Ако проверката дали някоя кутийка може да се постави в друга е само по широчините на кутийките, това означава, че за всеки две кутийки можем да поставим едната от тях в другата, стига широчините им да не са точно равни (ще са или <, или >). Тогава можем да започнем от кутийката с най-малка широчина към тази с най-голяма, поставяйки всяка кутийка в следващата по широчина, и пропускайки единствено тези кутийки, които съвпадат по широчина. Алгоритъм, който намира търсения брой кутийки, би изглеждал така:

```
Boxes(A[1..n]: array of кутийки)
1.Sort(A[1..n])
2.counter \leftarrow 1
3.for i \leftarrow 2 to n
4. if A[i-1].width \neq A[i].width
5. counter \leftarrow counter + 1
6.return counter
```

Естествено, сортирането на ред 1 е по широчината на кутийките в масива. Не е ограничение да приемем, че можем да достъпваме тяхната широчина и дължина така, както на ред 4. Можем да приемем, че използваме HeapSort за сортиращ алгоритъм и получаваме T(n) = O(nlgn).

Бонус2: Тази модификация в условието означава, че трябва да разглеждаме повече случаи в рекурентното отношение за максималния брой символи, получени след n действия. Ако досега имахме само две възможности за "последните" действия, а именно или едно натискане на символ, или комбинация Ctrl-A, Ctrl-C, Ctrl-V, сега може тези n действия да са завършили с Ctrl-A, Ctrl-C, Ctrl-V, Ctrl-V например. С това бихме получили 3 пъти повече символи, отколкото сме имали преди 4 действия. Ако имаме три последователни копирания, значи ще получим 4 пъти повече символи, отколкото сме имали преди 5 действия и така нататък за всеки възможен брой последователни копирания. Рекурентната връзка би изглеждала така:

$$f(n) = \max\{f(n-1) + 1, 2 * f(n-3), 3 * f(n-4), ..., (n-2) * f(1)\}$$

Тези възможности са O(n) на брой за всяко n и можем да ги изброим с прост цикъл:

```
CopyPasteN(n: positive integer)

1. M[1..n] \leftarrow array \ of \ integers

2. M[1] \leftarrow 1, M[2] \leftarrow 2, M[3] \leftarrow 3

3. for \ i \leftarrow 3 \ to \ n

4. M[i] \leftarrow M[i-1]+1

5. for \ k \leftarrow 2 \ to \ i-2
```

6.
$$M[i] \leftarrow \max\{M[i], k * M[i-k-1]\}$$

7. $return M[n]$

Очевидно вложеният цикъл на ред 6 изброява всички възможности в горната рекурентна връзка, и всичко работи за $O(n^2)$ време. Няма как да не използваме целия масив и оставаме с O(n) сложност по памет.

Бонус към бонуса (дали двата варианта могат да се решат по-бързо): За първия, при позволено еднократно натискане на Ctrl-V, можем да направим следното наблюдение: за $n \le 5$ оптималната стратегия е да добавим n пъти по един символ, получавайки n символа. За по-големи стойности оптималната стратегия е да добавим *няколко* символа в началото, след което да натискаме само Ctrl-A, Ctrl-C, Ctrl-V, Ctrl-A, Ctrl-C, Ctrl-V, и т.н. Очевидно така за всеки 3 действия си удвояваме броя символи, което води до горе-долу експоненциален брой символи. Остава да прецизираме какво имаме предвид под *няколко* символа — между 3 и 5, в зависимост какъв остатък при деление на 3 дава n. Останалите действия ще бъдат само $\approx \left\lfloor \frac{n}{3} \right\rfloor$ повторения на схемата Ctrl-A, Ctrl-C, Ctrl-V. Всяко едно от тях ще ни удвои броя символи, значи ще получим $\approx 2^{\left\lfloor \frac{n}{3} \right\rfloor}$ символа. Поточно:

CopyPasteFast(n: positive integer)
1. if n < 62. return n3. $k \leftarrow 3 + n \pmod{3}$ 4. return $k * 2^{\frac{n-k}{3}}$

Бързото на този метод е, че повдигането на степен може да се извърши в O(lgn) време по метода на бързото експоненциране, или ако приемем побитовите операции (bitwise left shift, все пак смятаме степени на двойката) за константни, в T(n) = O(1).

Аналогично разсъждение може да се приложи и за втория вариант — не е оптимално да се повтарят повече от 5 или 6 (не съм сигурен за константата) последователни Ctrl-V. Това значи, че възможностите в рекурентната връзка пак стават константен брой и можем да изчислим бройката в линейно време и константна памет. Но това вече са още по-дълбоки разсъждения и изчисления. \odot