Particle spectrograph

Wave operator and propagator

Source constraints		
SO(3) irreps	Fundamental fields Mult	Multiplicities
$t_0^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$ 1	
$\tau_1^{\#2}{}^{\alpha} + 2ik \ \sigma_1^{\#2}{}^{\alpha} == 0$	$\tau_1^{\#2}{}^{\alpha} + 2ik \ \sigma_1^{\#2}{}^{\alpha} = 0 \ \partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi} \ 3$	
$\tau_{1}^{\#1}{}^{\alpha}$ == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha} $ 3	
$\tau_1^{\#1}\alpha\beta + ik \ \sigma_1^{\#2}\alpha\beta == 0$	$\tau_{1}^{\#1}\alpha\beta + ik \ \sigma_{1}^{\#2}\alpha\beta == 0 \ \partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} + 3 \ 3 \ 3 \ \beta = 0 \$	
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha} t^{\chi\beta} + \partial_{\chi}\partial^{\beta} t^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
Total constraints/gauge generators:	uge generators:	
$O_{-+}^{#1}$, $O_{-+}^{#2}$,	C_{1}^{*} , $C_{$	7#2

$\sigma_{1}^{\#1}{}_{lphaeta}$	Ĭ	$t_1^{#1}$	$\sigma_{1^{-}lpha}^{\#1}$	$\sigma_{1^{-}\alpha}^{\#2}$	${\mathfrak l}_{1}^{\#1}{}_{lpha}$	$t_1^{\#2}$
0	$\frac{2\sqrt{2}}{\alpha_0 + \alpha_0 k^2}$	$\frac{2i\sqrt{2k}}{\alpha_0 + \alpha_0 k^2}$	0	0	0	0
$\frac{2\sqrt{2}}{\alpha_0 + \alpha_0 k^2}$	$\frac{2}{2} \left -\frac{2}{\alpha_0 (1+k^2)^2} \right $	$-\frac{2ik}{\alpha_0(1+k^2)^2}$	0	0	0	0
$\frac{2i\sqrt{2}k}{\alpha_0 + \alpha_0k^2}$	$\frac{2 i k}{\alpha_0 (1+k^2)^2}$	$-\frac{2k^2}{\alpha_0(1+k^2)^2}$	0	0	0	0
0	0	0	0	$-\frac{2\sqrt{2}}{\alpha_0+2\alpha_0 k^2}$	0	$-\frac{4ik}{\alpha_0+2\alpha_0k^2}$
0	0	0	$-\frac{2\sqrt{2}}{\alpha_0+2\alpha_0 k^2}$	$-\frac{2}{\alpha_0 (1+2 k^2)^2}$	0	$-\frac{2i\sqrt{2}k}{\alpha_0(1+2k^2)^2}$
0	0	0	0	0	0	0
0	0	0	$\frac{4ik}{\alpha_0 + 2\alpha_0k^2}$	$\frac{2i\sqrt{2}k}{\alpha_0(1+2k^2)^2}$	0	$-\frac{4k^2}{\alpha_0(1+2k^2)^2}$

Quadratic (free) action
S==
$\iiint (f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} + \alpha_0 (-\frac{1}{2} \omega_{\alpha\zeta\beta} \omega^{\alpha\beta\zeta} - \frac{1}{2} \omega^{\alpha\beta}_{\alpha} \omega_{\beta\zeta}^{\zeta} - f^{\alpha\beta} \partial_{\beta}\omega_{\alpha\zeta}^{\zeta} +$
$\partial_{\beta}\omega^{\alpha\beta}_{\alpha}+f^{\alpha\beta}\partial_{\zeta}\omega_{\alpha\beta}^{\zeta}$ -
$f^{\alpha}_{\alpha} \partial_{\zeta} \omega^{\beta\zeta}_{\beta}))[t, x, y, z] dz dy dx dt$

0

$f_{1}^{#2}$	0	0	0	$-rac{1}{2}ar{l}lpha_0$	0	0	0	$\omega_{0}^{\#1}$	0	0	0	$\frac{\alpha_0}{2}$	
$f_{1}^{\#1}$ α	0	0	0	0	0	0	0	$f_{0}^{#2}$	0	0	0	0	
$\omega_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{\alpha_0}{2\sqrt{2}}$	0	0	0	$f_{0}^{\#1}$	$-\frac{i\alpha_0k}{\sqrt{2}}$	0	0	0	
$\omega_{1^{-}}^{\#1}{}_{lpha}$	0	0	0	<u>α</u> 0	$-\frac{\alpha_0}{2\sqrt{2}}$	0	$\frac{i\alpha_0 k}{2}$	$\omega_{0}^{\#1}$	† α0/2	$+$ $\frac{i\alpha_0 k}{\sqrt{2}}$	0 +	0	
$f_{1}^{\#1}{}_{\alpha\beta}$	$\frac{i\alpha_0k}{2\sqrt{2}}$	0	0	0	0	0	0		σ_{0}^{\sharp}	t_{-}^{+}	z+0 +0 -1 τ'	-i0 #3 +2 σ	#1 0
$\omega_1^{\#1}{}_+ \alpha_eta \; \omega_1^{\#2}{}_+ \alpha_eta$	$\frac{\alpha_0}{2\sqrt{2}}$	0	0	0	0	0	0	$\sigma_{0}^{\#1}$	+ 0	$-\frac{i}{\alpha_0}$	$\frac{\overline{2}}{2}$		0
$\omega_1^{\#1}{}_+^{}_{lphaeta}$	$\frac{\alpha_0}{4}$	$\frac{\alpha_0}{2\sqrt{2}}$	$-\frac{i\alpha_0k}{2\sqrt{2}}$	0	0	0	0	$ au_{0}^{\#1}$	$+ \frac{i\sqrt{2}}{\alpha_0}$	1		0 (0
l	$+^{\alpha\beta}$	$\dagger^{\alpha \beta}$	$+^{\alpha\beta}$	$+_{\alpha}$	$+^{\alpha}$	$+^{\alpha}$	$+_{\alpha}$	$ au_{0}^{\#2}$	† 0	0	(0	0
	$\omega_1^{\#1}$ -	$\omega_1^{\#2}$ -	$f_1^{#1}$	$\omega_{1^{ar{-}}}^{\#1}$.	$\omega_{1}^{\#2}$.	$f_{1^{\bar{-}}}^{\#1}$	$f_1^{\#2}$	$\sigma_0^{\sharp 1}$	† 0	0	($\frac{1}{a}$	2 2 ₀

Massive and massless spectra

(No massive particles)

Unitarity conditions