Αριθμητική Ανάλυση – Ασκήσεις για παράδοση

Κώστας Σμαραγδάκης

Άσκηση 1

Εκτελέστε απαλοιφή Gauss (χωρίς εναλλαγές γραμμών) στον παρακάτω πίνακα χρησιμοποιώντας αριθμητική κινητής υποδιαστολής για ένα υπολογιστή με συνολό αριθμών μηχανής $\mathbb{F}(10,3,-6,11)$.

$$A = \begin{bmatrix} 10^{-4} & 1\\ 1 & 2 \end{bmatrix}$$

Ποιό θα είναι το σφάλμα προσέγγισης της λύσης ως προς την $\|\cdot\|_{\infty}$ για το σύστημα Ax=b με $b=[1,3]^T$;

Άσκηση 2

Έστω $f:[0,1]\to\mathbb{R}$ με $f(x)=x^4-2x^2+x-1$ και διαμέριση Δ με $x_0=0,\ x_1=1/2,\ x_2=1.$ Βρείτε το πολυώνυμο παρεμβολής καθώς και τις προσεγγίσεις της f στους χώρους $S_1(\Delta)$ και $S_3(\Delta)$. Γράψτε τις εκτιμήσεις του σφάλματος που αντιστοιχεί σε κάθε περίπτωση.

Άσκηση 3

Για την εύρεση της θετικής ρίζας της συνάρτησης $f(x)=x^2-2$ μπορούμε να εφαρμόσουμε τη μέθοδο της διχοτόμισης σε οποιαδήποτε διάστημα; Εξηγήστε. Στη συνέχεια, προτείνετε ένα συμβατό αρχικό διάστημα για εφαρμογή της μεθόδου της διχοτόμισης και υπολογίστε πόσες επαναλήψεις θα χρειάστουν για εγγυημένο σφάλμα μικρότερο από 10^{-3} .

Άσκηση 4

Πραγματοποιώντας δύο επαναλήψεις της μεθόδου Newton–Raphson εκτιμήστε την λύση της μη γραμμικής εξίσωσης $e^x=2e$, έχοντας ως αρχική προσέγγιση της λύσης $x^{(0)}=0$.

Μπορεί εναλλαχτικά να εφαρμοστεί η μέθοδος της διχοτόμισης στο διάστημα [1,2];

Άσκηση 5

Έστω $x^{(0)} \in (0,1)$. Ποιου προβλήματος τη λύση προσεγγίζει η ακολουθία $\{x^{(k)}\}_{k=0}^{\infty}$ η οποία ορίζεται από το επαναλληπτικό σχήμα:

$$x^{(k)} = \frac{1}{2}\cos(x^{(k-1)}).$$

Άσκηση 6

Γράψτε ένα πρόγραμμα σε μια γλώσσα προγραμματισμού το οποίο θα υλοποιεί τη μέθοδο Newton–Raphson για τη προσέγγιση μιας λύσης μιας εξίσωσης f(x)=0. Το πρόγραμμα θα τυπώνει τις τιμές $k,\ x^{(k)},\$ και $f(x^{(k)})$ σε κάθε βήμα. Δεδομένα είναι η αρχική τιμή $x^{(0)},\$ την ανοχή σφάλματος TOL>0 και το μεγιστό πλήθος των επαναλήψεων $KMAX\in\mathbb{N}.\$ Ως τελική προσέγγιση θεωρήστε το $x^{(k)}$ για το οποίο για πρώτη φορά ισχύει $\left|x^{(k)}-x^{(k-1)}\right|< TOL$ ή το $x^{(KMAX)}$ αν εξαντληθεί ο μέγιστος αριθμός των επαναλήψεων. Εφαρμόστε το πρόγραμμά σας για τα $f(x)=x^3-2x-5,\ x^{(0)}=5,\ TOL=10^{-6},\ KMAX=100.$

Άσκηση 7

Γράψτε ένα πρόγραμμα σε γλώσσα προγραμματισμού το οποίο θα υλοποιεί τη μέθοδο Jacobi για την επίλυση γραμμικών συστημάτων Ax=b, για αντιστρέψιμους πίνακες A με μηδενικά διαγώνια στοιχεία. Το πρόγραμμα θα τυπώνει τις τιμές $k,\ x^{(k)},\$ και $\left\|x^{(k)}-x^{(k-1)}\right\|_2$ σε κάθε βήμα. Χρησιμοποιήστε ως αρχική προσέγγιση $x^{(0)}$ το μηδενικό διάνυσμα. Εφαρμόστε το πρόγραμμα για το επόμενο γραμμικό σύστημα.

$$A = \begin{bmatrix} 4 & 1 & 0 & 0 & 0 & 1 \\ 1 & 4 & 1 & 0 & 0 & 0 \\ 0 & 1 & 4 & 1 & 0 & 0 \\ 0 & 0 & 1 & 4 & 1 & 0 \\ 0 & 0 & 0 & 1 & 4 & 1 \\ 1 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}, \quad b = \begin{bmatrix} 3 \\ 0 \\ -3 \\ 3 \\ 0 \\ -3 \end{bmatrix}$$

Θεωρήστε ως τελική προσέγγιση το $x^{(k)}$ για το οποίο για πρώτη φορά $\|x^{(k)} - x^{(k-1)}\|_2 < \text{TOL} < 10^{-3}$. Συνοδεψτέ το πρόγραμμα σας με τη θεωρετική απόδειξη ότι η μέθοδος Jacobi συγκλίνει για κάθε αρχική προσέγγιση $x^{(0)}$.