Introduction
What are Radial Basis Functions(RBFs)
The Black-Scholes Model
Numerical Methods
Numerical Experiments and Results

RBF Meshfree Methods For The Black-Scholes PDE in Option Pricing

Nana Akwasi Abayie Boateng

Middle Tennessee State University

Thesis Advisor: Abdul Q. M. Khaliq Middle Tennessee State University

Outline

- Introduction
 - What are Options
- What are Radial Basis Functions(RBFs)
 - Radial Basis Functions
 - Some well-known RBFs
- The Black-Scholes Model
 - Pricing the European Option
 - The American Option
- Mumerical Methods
 - Meshfree Numerical Approximation
 - The Theta Method Time Stepping
- 5 Numerical Experiments and Results

stock prices over time

Simulations of Small, Medium, and Large-Cap Stock Prices

$$\tfrac{\partial v}{\partial t} + \tfrac{1}{2}\sigma^2 s^2 \tfrac{\partial^2 v}{\partial s^2} + r s \tfrac{\partial v}{\partial s} - r v = 0$$

In 1997,the Nobel Price in Economics was awarded for the work that led to Black-Scholes option pricing theory. The goal of the theory of option pricing is to be able to compute a fair price for the option.

Black and Scholes, *The pricing of options and corporate liabilities*, J. pol. Econ.81,pp 637-659,1973

what are options

- An Option is a derivative product that represents a contract, which gives the holder or buyer the right to buy or sell at a prescribed price(the strike or exercise price) over a certain period of time or on a prescribed date(exercise date).
- Call Option
 Have option to buy asset S for price E at date T in the future.(Person who buys makes the choice)
- Put Option
 Have option to sell asset S for price E at date T in the future.(Person who sells makes the choice)

Standard Options

European Option
 Option to buy or sell can be exercised only at date T

American Option
 Option to buy or sell can be exercised once at anytime up to and including T

Brief History

- Black and Scholes in 1973 observed that the price of European call options by assuming a risk-neutrality of the underlying asset price, satisfies a lognormal partial differential equation of diffusiion type which is backward in time.
- The analytical solution of the European option exist. However, there is no analytical solution for the American option because of the free boundary condition (early exercise constraint).

Radial Basis Functions

• Let x_1, x_2, x_N be a given set of distinct points in $\mathbb{R}^d, d \geq 1$. The basic idea behind the use of RBF's is that we interpolate the function by a linear combination of RBF's of the type as follows

$$F(x) = \sum_{j=1}^{N} c_j \phi(\|x - x_j\|)$$

where $\|.\|$ denotes the Euclidean norm, c_j are unknown scalars and ϕ denotes the radial basis function.

some well-known radial basis functions

- Multiquadratic = $\sqrt{r^2 + c^2}$
- Inverse Multiquadratic= $\frac{1}{\sqrt{r^2+c^2}}$
- Gaussian= $e^{-(cr)^2}$
- Cubic= $|r|^3$
- Thin plate spline= $r^2 \ln |r|$, where r denotes the distance between two nodes

Advantages

- Require neither domain nor surface discretization
- The formulation is similar for 2D and 3D problems
- Ease of learning
- Cost effective due to man-power reduction involved for the meshing

Disadvantages

- Ill-conditioning
- Dense matrices

Pricing the European Option

•
$$\frac{\partial v}{\partial t} + \frac{1}{2}\sigma^2 s^2 \frac{\partial^2 v}{\partial s^2} + rs \frac{\partial v}{\partial s} - rv = 0$$

- r is the risk -free interest rate
- \bullet σ is the volatility of the stock
- v(S, t) is the option value at time t and stock price S

Final conditions

$$v(s, T) = \begin{cases} max(E - S, 0), & \text{for a put} \\ max(S - E, 0), & \text{for a call} \end{cases}$$

E is the exercise price and T is the time to maturity

Boundary Condition

$$V(0,t)=E\exp(-r(T-t))$$
 $V(S,t) o 0$ as $S o \infty$ for put $V(0,t)=0$ $V(S,t) o S$ as $S o \infty$ for call

Analytical Solution(Black-Scholes Formula)

$$V(S,t) = E \exp(-r(T-t))N(-d_2) - SN(-d_1)$$
 for put $V(S,t) = SN(d_1) - E \exp(-r(T-t))N(d_2)$ for call

where N(.) is the cumulative distribution function of the standard normal distribution with

$$d_1 = \frac{\ln(\frac{S}{E}) + (r + \frac{\sigma^2}{2})(T - t)}{\sigma\sqrt{T - t}}$$
$$d_2 = \frac{\ln(\frac{S}{E}) + (r - \frac{\sigma^2}{2})(T - t)}{\sigma\sqrt{T - t}}$$

American Option

In the region $0 \le S \le S_f(t)$

$$\frac{\partial P}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 P}{\partial S^2} + rS \frac{\partial P}{\partial S} - rP < 0$$
$$P = E - S$$

In the other region, $S_f(t) < S < \infty$

$$\frac{\partial P}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 P}{\partial S^2} + rS \frac{\partial P}{\partial S} - rP = 0$$
$$P > E - S$$

Final and boundary conditions

$$egin{aligned} P(S,T) &= \max(E-S,0), \quad S \geq 0 \ &rac{\partial P}{\partial S}(S_f,t) = -1, \ P(S_f(t),t) &= \max(E-S_f(t),0) \ &\lim_{S o \infty} P(S,t) = 0 \ S_f(T) &= E \ P(S,t) &= E-S, \quad 0 \leq S < S_f(t) \ P(S,t) - \max(E-S,0) \geq 0, \quad S \geq 0, \quad 0 \leq t \leq T \end{aligned}$$

RBF Approximation

We consider a penalty method approach(Nielson et al(2002))

$$\frac{\partial P_{\epsilon}}{\partial t} + \frac{1}{2}\sigma^2 s^2 \frac{\partial^2 P_{\epsilon}}{\partial S^2} + rs \frac{\partial P_{\epsilon}}{\partial S} - rP_{\epsilon} + \frac{\epsilon C}{P_{\epsilon} + \epsilon - q(s)} = 0$$

$$P(S,T) = max(E - S, O)$$
 $P(0,t) = E$
 $P(S_{\infty},t) = 0$

RBF Approximation

$$P_{\epsilon}(S,t) = \sum_{j=1}^{N} c_{j}(t)\phi(\|S - x_{j}\|)$$

This results in the system of(nonlinear)ODEs for the coefficients c_j (collected in the vector \mathbf{c})

$$\Phi \dot{\mathbf{c}} + R\mathbf{c} + Q_c = 0$$

Here
$$R = \frac{1}{2}\sigma^2\Phi_s'' + r\Phi_s' - r\Phi$$

Entries of the matrices Φ, Φ'_s , and Φ''_s are given by

$$\Phi_{ij} = \phi(\|x_i - x_j\|), \Phi'_{s,ij} = x_i \phi'(\|x_i - x_j\|), \Phi''_{s,ij} = x_i \phi''(\|x_i - x_j\|)$$

The Theta Method Time Stepping Approach

We will use θ -method($\theta=0$) for the time stepping which leads to the following equation

$$\Phi \frac{c^{n+1} - c^n}{k} + \theta R c^{n+1} + (1-\theta) R c^n + \theta Q(c^{n+1}) + (1-\theta) Q(c^n) = 0$$

After collocation points at the points x_i , i = 1, ..., N coefficients

 $c_j(T)$ are given as the solution of the linear system

$$\Phi c(T) = P$$

where Φ is as above and

$$P = [P_{\epsilon}(x_1, T), ...P_{\epsilon}(x_N, T)]^T$$

Single Asset American Option

Parameter [4]	Value
Minimum Asset Price	$S_0 = 0$
Maximum Asset Price	$S_{\infty} = 2$
Number of asset data points	N = 101
Number of time steps	M = 100
Time-step size	k = 0.01
Initial Time	t = 0
Expiration Time	T=1(year)
Exercise price	E = 1
Risk-free interest rate	r = 0.1
Volatility	$\sigma = 0.2$
Shape parameter for Gaussian RBF	c = 1.5
Shape parameter Multiquadric RBF	c = 1.0
Shape parameter Inverse-Multiquadric RBF	c = 1.5
Regularization parameter	$\epsilon=0.01$

Figure: Comparison of RMSE for different c values using MQ-RBF at N=101

Figure: Comparison of RMSE for Different v values for Gaussian-RBF at N = 101 nodes

Figure: Comparison of RMSE for Different c values for IMQ-RBF at N = 101 nodes

S	FD 1001 [4]	RBF 41	RBF 81	RBF 101
0.6	0.4000037	4.000079284231482e-01	4.000137274388471e-01	4.000140155227794e-01
0.7	0.3001161	3.002190386780568e-01	3.002244584184045e-001	3.002248173328785e-01
0.8	0.2020397	2.026026872289588e-01	2.026217219929730e-01	2.026237471581654e-01
0.9	0.1169591	1.176250974697884e-01	1.176927181568679e-01	1.177005653395421e-01
1.0	0.0602833	5.952849811933896e-02	5.963331031716317e-02	5.964562793120096e-02
1.1	0.0293272	2.739145951270390e-02	2.748615753723662e-02	2.749734464846737e-02
1.2	0.0140864	1.210898358038832e-02	1.216998804034032e-02	1.217722986470464e-02
1.3	0.0070408	5.620025402083054e-03	5.650899377080217e-03	5.654603136082172e-03
1.4	0.0038609	3.034489511209617e-03	3.047863317966305e-03	3.049553028430248e-03
RMSE		3.800531000028380e-04	3.679472322155780e-04	3.665413983887557e-04
CPU				
time		7.80004999999814e-02	3.276021000000000e-01	9.516060999999993e-01
COND				
number		8.540711140948943e+03	9.371517158130049e+03	9.477187078272415e+03

Table: Values of American option at t = 0 using Gaussian-RBF with c = 1.5.

S	FD 1001 [4]	RBF 41	RBF 81	RBF 101
0.6	0.4000037	4.000136025947318e-01	4.000143544675322e-01	4.000144691188708e-01
0.7	0.3001161	3.002281861141670e-01	3.002328054598784e-01	3.002333928317463e-01
0.8	0.2020397	2.026990698419577e-01	2.027118053149325e-01	2.027132241451394e-01
0.9	0.1169591	1.180054049292558e-01	1.180378873827233e-01	1.180415024971369e-01
1.0	0.0602833	6.003360140092645e-02	6.011839322106172e-02	6.012808397308078e-02
1.1	0.0293272	2.777378229860611e-02	2.787819507876477e-02	2.789129963720338e-02
1.2	0.0140864	1.230516651466951e-02	1.240253754684245e-02	1.241824783091772e-02
1.3	0.0070408	5.682600710233188e-03	5.790463354382935e-03	5.817249701233540e-03
1.4	0.0038609	3.019767309641319e-03	3.204100755105077e-03	3.263693145839186e-03
RMSE		3.468133973660428e-04	3.255796482865938e-04	3.212911530746730e-04
CPU				
time		1.40400900000031e-01	2.652017000000058e-01	5.460034999999976e-01
COND				
number		1.350297755352479e+04	5.276831666999462e+04	8.204955512679130e+04

Table: Values of American option at t = 0 using Multiquadric-RBF with c = 1.0.

S	FD 1001 [4]	RBF 41	RBF 81	RBF 101
0.6	0.4000037	4.000081846731239e-01	3.999944677251256e-01	3.999848597023653e-01
0.7	0.3001161	3.002194386244130e-01	3.002110833603666e-01	3.002039340350107e-01
0.8	0.2020397	2.026110427716545e-01	2.026254392415477e-01	2.026245530783953e-01
0.9	0.1169591	1.176619409499281e-01	1.177464819756828e-01	1.177650983203513e-01
1.0	0.0602833	5.958535731817690e-02	5.973980242505235e-02	5.978150361976092e-02
1.1	0.0293272	2.745184583462177e-02	2.761876322846362e-02	2.767204819099156e-02
1.2	0.0140864	1.216693881001230e-02	1.231781400468144e-02	1.237667347724274e-02
1.3	0.0070408	5.680432372339327e-03	5.835817190838141e-03	5.909043172578131e-03
1.4	0.0038609	3.110299805121982e-03	3.332465656092971e-03	3.447089842679579e-03
RMSE		3.673986998156583e-04	3.341736920608062e-04	3.213851282534414e-04
CPU				
time		2.808017999999990e-01	1.060806800000002	1.388408899999998
COND				
number		1.511671497888172e+03	1.890239112015076e+03	2.011469801137463e+03

Table: Values of American option at t = 0 using Inverse-Multiquadric-RBF with c = 1.5.

Figure: Payoff of the American put option using the Gaussian-RBF for N = 101 nodes

Figure: Comparison of RMSE between the 3 RBFs for N = 101

Figure: Comparison of CPU Times between the 3 RBFs for N = 101 nodes

Finite Difference Approximation

We replace the spatial derivatives in the Black-Scholes PDE by central difference approximation and use BE-ETD scheme for time stepping.

S	Option Value	FD1001 [4]
0.6	0.4001500	0.4000037
0.7	0.3002437	0.3001161
0.8	0.2049304	0.2020397
0.9	0.1288876	0.1169591
1.0	0.0746978	0.0602833
1.1	0.0399911	0.0293272
1.2	0.0199422	0.0140864
1.3	0.0093622	0.0070408
1.4	0.0041843	0.0038609
CPUTIME	7.2540	
RMSE	0.0075	

Table: RMSE for Finite Difference solution at N=2001, $\epsilon=10^{-4}$, k=0.001.FD1001 is the reference solution obtained by Fausshauer and Khaliq(2004)[4] using a higher order difference approximation

Finite Difference Solutions

S	Option Value	FD1001 [4]
0.6	0.4015118	0.4000037
0.7	0.3028086	0.3001161
0.8	0.2100498	0.2020397
0.9	0.1334426	0.1169591
1.0	0.0778183	0.0602833
1.1	0.0419259	0.0293272
1.2	0.0211123	0.0140864
1.3	0.0100855	0.0070408
1.4	0.0046513	0.0038609
CPUTIME	1.0920	
RMSE	0.0098	

Table: Finite Difference solution at $N = 2001, \epsilon = 10^{-3}, k = 0.01$.

Finite Difference Solutions

S	Option Value	FD1001 [4]
0.6	0.4134769	0.4000037
0.7	0.3191524	0.3001161
0.8	0.2295821	0.2020397
0.9	0.1513232	0.1169591
1.0	0.0913208	0.0602833
1.1	0.0513920	0.0293272
1.2	0.0277877	0.0140864
1.3	0.0149302	0.0038609
1.4	0.0082378	0.0038609
CPUTIME	0.312002	
RMSE	0.0216	

Table: Finite Difference solution at $N = 2001, \epsilon = 10^{-2}, k = 0.1$.

Figure: RBF N = 101, k = 0.01 and FD N = 2001, k = 0.01

Figure: Comparison of CPU Times between the 3 RBFs for N = 101 and FD for N = 2001

Figure: Comparison of RMSE between the 3 RBFs for N = 101 and FD for N = 2001

Conclusion

- We evaluated the value of American options using both radial basis functions interpolation approach and finite difference approximation scheme.
- We implemented numerical solutions from three different RBFs namely the Gaussisn, Multiquadric and Inverse-Multiquadric RBFs.
- The three RBFs implemented were considerably efficient and accurate even at a less number of nodes than the finite difference approximation scheme implemented.

Reference

- N. Flyer and B. Fornberg, Radial basis function: Development and applications to planetary scale flows, Computers and Fluids 46(2011) 23-32.
- A.Q.M. Khaliq, D.A. Voss and S.H.K. Kazmi, A linearly implicit predictor-corrector scheme for pricing American options using a penalty method approach, Journal of Banking and Finance,30 (2006) 489-502.
- P. Wilmot,S. Howson and J. Dewynne, The Mathematics of Financial Derivatives: A Student Introduction. Cambridge University Press (1995)
- G.E. Fasshauer, A.Q.M. Khaliq and D.A. Voss, Using meshfree approximation for multi-asset American option problems, Journal of Chinese Institute of Engineers, 27 (2004) 563-571.

Introduction
What are Radial Basis Functions(RBFs)
The Black—Scholes Model
Numerical Methods
Numerical Experiments and Results

Thank you for your attention. Any questions?