安徽大学 2022—2023 学年第 二 学期

《大学物理 A(上)》考试试卷(期中) (闭卷 时间 120 分钟)

考场登记表序号 _____

	题 号	_	=	三(15)	三(16)	三(17)	三(18)	四(19)	四(20)	总分
	得 分									
	阅卷人									
一、单选题(每小题 2 分, 共 20 分)									得分	
1. 某质点作直线运动的运动学方程为 $x=3t-5t^3+6$ (SI),则该质点作								()	

- (A) 匀加速直线运动,加速度沿x轴正方向.
- (B) 匀加速直线运动,加速度沿 x 轴负方向.
- (C) 变加速直线运动,加速度沿x轴正方向.
- $\frac{1}{2}$ (D) 变加速直线运动,加速度沿x轴负方向.
 - 2. 在升降机天花板上拴有轻绳,其下端系一重物,当升降机以加速度 a_1 上升时,绳 中的张力正好等于绳子所能承受的最大张力的一半,问升降机以多大加速度上升时, 绳子刚好被拉断?

- (A) $2a_1$.
- (B) $2(a_1+g)$.
- (C) $2a_1+g$.
- 3. 人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点上,则卫星的
- (A) 动量不守恒, 动能守恒.
- 业(B) 动量守恒,动能不守恒.
 - (C) 对地心的角动量守恒,动能不守恒.
 - (D) 对地心的角动量不守恒,动能守恒.
 - 4. 一船浮于静水中,船长 L,质量为 m,一个质量也为 m 的人从船尾走到船头. 不计水和空气的阻力, 则在此过程中船将
 - (A) 不动.
- (B) 后退 L.
- (C) 后退 $\frac{1}{2}L$. (D) 后退 $\frac{1}{3}L$.
- 5. 两质量分别为 m_1 、 m_2 的小球,用一劲度系数为 k 的轻弹簧相连,放在水平光滑桌面上,如图所示. 今 以等值反向的力分别作用于两小球,则两小球和弹簧这系统的
- (A) 动量守恒,机械能守恒.

(1) 保守力作正功时,系统内相应的势能增加
(2) 质点运动经一闭合路径,保守力对质点作的功为零
(3)作用力和反作用力大小相等、方向相反,所以两者所作功的代数和必为零
在上述说法中:
(A) (1)、(2)是正确的. (B) (2)、(3)是正确的.
(C) 只有(2)是正确的. (D) 只有(3)是正确的.
7. 一质量为 m 的滑块,由静止开始沿着 $1/4$ 圆弧形光滑的木槽滑下.设木槽的质量也是 m .槽的圆半
径为 R ,放在光滑水平地面上,如图所示.则滑块离开槽时的速度是 ()
(A) $\sqrt{2Rg}$.
(B) $2\sqrt{Rg}$.
(C) \sqrt{Rg} .
(D) $\frac{1}{2}\sqrt{Rg}$.
8. 如图所示,假设物体沿着竖直面上圆弧形轨道下滑,轨道是光滑的,在从 $A \subseteq C$ 的下滑过程中,下
面哪个说法是正确的? ()
(A) 它的加速度大小不变,方向永远指向圆心. R
(B) 它的速率均匀增加. A

将两臂收回,使转动惯量减少为 $\frac{1}{3}$ J_0 . 这时她转动的角速度变为 (B) $\frac{1}{\sqrt{3}}\omega_0$. (A) $\frac{1}{3}\omega_0$. (C) $\sqrt{3}\omega_0$. (D) $3\omega_0$.

9. 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为 J_0 ,角速度为 ω_0 。然后她

- 10. 关于刚体对轴的转动惯量,下列说法中正确的是
- (A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关.
- (B) 取决于刚体的质量和质量的空间分布,与轴的位置无关.
- (C) 取决于刚体的质量、质量的空间分布和轴的位置.

(C) 它的合外力大小变化,方向永远指向圆心.

(D) 轨道支持力的大小不断增加.

(B) 动量守恒,机械能不守恒.

(C) 动量不守恒,机械能守恒.

6. 对功的概念有以下几种说法:

(D) 动量不守恒,机械能不守恒.

(D) 只取决于转轴的位置,与刚体的质量和质量的空间分布无关.

38

江

装

製

圝

坳

二、填空题(每小题3分,共12分)

11. 一质点作半径为 0.1 m 的圆周运动, 其角位置的运动学方程为:

$$\theta = \frac{\pi}{4} + \frac{1}{2}t^2 \qquad (SI)$$

则其切向加速度为 a_{\star} =

- 12. 一人从 10 m 深的井中提水. 起始时桶中装有 10 kg 的水,桶的质量为 1 kg,由于水桶漏水,每升高 1 m 要漏去 0.2 kg 的水. 求水桶匀速地从井中提到井口,人所作的功为 .
- 13. 将一质量为 m 的小球,系于轻绳的一端,绳的另一端穿过光滑水平桌面上的小孔用手拉住. 先使小球以角速度 ω 1在桌面上做半径为 r_1 的圆周运动,然后缓慢将绳下拉,使半径缩小为 r_2 ,在此过程中小球的动能增量是
- 14. 一根匀质细杆质量为m,长度为l,可绕过其端点的水平轴在竖直平面内转动.则它在水平位置时所受的重力矩为

三、计算题(每小题14分,共56分)

- 得分
- 15. 一质点沿 x 轴运动,其加速度为 a = 4t (SI),已知 t = 0 时,质点位于 $x_0 = 10$ m 处,初速度 $v_0 = 0$. 试求其位置和时间的关系式.
- 16. 质量为m 的子弹以速度 v_0 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为K,忽略子弹的重力,求:
 - (1) 子弹射入沙土后,速度随时间变化的函数式;
 - (2) 子弹进入沙土的最大深度.
- 17. 一光滑水平面上静止摆放一质量为M的滑块,滑块上方有一框架(轻质),用长度为l的细绳悬挂一质量为m的小球,如图所示。现将小球拉至水平位置由静止开始向平衡位置摆动。

- 求: (1) 小球经过最低点时相对于水平面的速度; (2) 小球经过最低点时滑块相对于水平面的速度; (3)小球经过最低点时绳子的张力.
- 18. 质量为m,长为l 的均质细杆,可绕水平的光滑轴在竖直平面内转动,转轴在杆的一端。若使棒从静止开始由水平位置下摆,求:杆摆至铅直位置时的角速度和角加速度。

四、简答题(每小题6分,共12分)

得分

- 19. 请分别写出质点系的动量守恒、动能守恒和机械能守恒的条件.
- 20. 计算一个刚体对某转轴的转动惯量时,一般能不能认为它的质量集中于其质心,成为一质点,然后 计算这个质点对该轴的转动惯量?为什么?