Assignment4

CS20Btech11035 -NYALAPOGULA MANASWINI

Download python code from

https://github.com/N-Manaswini23/assignment4/ tree/main/python%20codes

Download latex code from

https://github.com/N-Manaswini23/assignment4/ blob/main/assignment4.tex

GATE 2021 XE-A QUESTION 7(PG:9)

A person who speaks truth 3 out of 4 times, throws a fair dice with six faces and informs the outcome is 5. The probability that the outcome is really 5 is

SOLUTION

Event	definition			
A	Event of person speaking truth			
В	Event of person speaking false			
С	Event that person informs outcome			
	of dice is 5			
Pr(C A)	Probability of person informing			
	outcome is 5			
	if person speaks truth			
Pr(C B)	Probability of person informing			
	outcome is 5			
	if person speaks false			
Pr(A C)	Probability of person speaking			
	truth(outcome is 5)			
	if person informs outcome is 5			

TABLE 0: Table 1

Probability	Pr(A)	Pr (<i>B</i>)	Pr(C A)	Pr(C B)
value	$\frac{3}{4}$	$\frac{3}{4}$	$\frac{1}{6}$	<u>5</u>

TABLE 0: Table 2

From Baye's theorem

$$Pr(C) = Pr(C|A) \times Pr(A)$$
$$+ Pr(C|B) \times Pr(B) \qquad (0.0.1)$$

Substiting values from table (0) in (0.0.1)

$$Pr(C) = \frac{1}{6} \times \frac{3}{4} + \frac{5}{6} \times \frac{1}{4}$$
 (0.0.2)

$$=\frac{8}{24} \tag{0.0.3}$$

We need to find Pr(A|C)

$$Pr(A|C) = \frac{Pr(AC)}{Pr(C)}$$
(0.0.4)

$$= \frac{\Pr(C|A) \times \Pr(A)}{\Pr(C)}$$
 (0.0.5)

$$= \frac{\Pr(C|A) \times \Pr(A)}{\Pr(C)}$$

$$= \frac{\frac{1}{6} \times \frac{3}{4}}{\frac{8}{24}}$$
(0.0.5)

$$=\frac{3}{8}$$
 (0.0.7)

... The desired probability that outcome is really 5 $=\frac{3}{8}=0.375$

