CUANTAS CADENAS DE TAMAÑO n PUEDEN SER CREADAS CON EXACTAMENTE m SÍMBOLOS DE UN ALFABETO DE k SÍMBOLOS?

EMILIANO MARTINEZ LUQUE

Lo que estamos buscando es, dado A un alfabeto de tamaño k, la cantidad de cadenas de tamaño n que contienen exactamente m símbolos de A.

Para resolver este problema primero vamos a resolver lo siguiente:

1. Cuantas cadenas de tamaño n pueden ser creadas con todos los símbolos de un alfabeto de k símbolos?

Se propone la siguiente relación de recurrencia de 2 variables, donde:

n: representa el tamaño de la cadena k: representa la cantidad de símbolos en el alfabeto

$$(1) f(0,k) = 0$$

Para todo k, ya que la cantidad de cadenas de tamaño 0 que pueden formarse con todos los símbolos de A es 0.

$$(2) f(1,1) = 1$$

Ya que existe solo una cadena de tamaño 1 con 1 símbolo.

(3)
$$f(n,k) = k(f(n-1,k) + f(n-1,k-1))$$

2. Demostración

Llamemos $A_{n,k}$ al conjunto de todas las cadenas de tamaño n que contienen a todos los símbolos de A e intentemos construir todas las cadenas que pertenecen a este conjunto.

Para cada símbolo a de $A_{n,k}$ vamos a realizar el siguiente procedimiento:

1. Llamemos $A_{n-1,k}$ al conjunto de todas las cadenas de tamaño (n-1) con exactamente k símbolos de A (o sea con todos los símbolos de A).

Para cada cadena α de $A_{n-1,k}$ construimos una nueva cadena concatenandole a, nos queda así una nueva cadena: $a\alpha$. Como α tiene tamaño (n-1), la nueva cadena $a\alpha$ tiene tamaño n.

Ademas por definición de $A_{n-1,k}$, α contiene a todos los símbolos de A, y en particular contiene a a. Entonces de esta manera hemos formado todas las cadenas de $A_{n,k}$ que comienzan por a y tienen al menos 2 ocurrencias de a.

Nos queda todavía construir todas las cadenas de $A_{n,k}$ que comienzan por a pero

tienen solo una ocurrencia de a.

2. Llamemos $A_{n-1,k-1}$ al conjunto de todas las cadenas de tamaño (n-1) que están formadas por todos los símbolos de A menos a.

Para cada cadena β de $A_{n-1,k-1}$ construimos una nueva cadena $a\beta$. Se cumple entonces que $a\beta$ tiene tamaño n y ademas dado que β contiene a todos los símbolos de A menos a a y le hemos concatenado a, $a\beta$ contiene los k símbolos de A.

A partir de estos dos pasos hemos construido todas las cadenas de $A_{n,k}$ que comienzan con a. Como por definición de $A_{n,k}$, cualquier cadena de $A_{n,k}$ necesariamente tiene que comenzar con un símbolo de A y a es un elemento arbitrario podemos aplicar el procedimiento para construir todas las cadenas del conjunto $A_{n,k}$.

Como por hipótesis, $|A_{n-1,k-1}| = f(n-1,k-1)$, $|A_{n-1,k}| = f(n-1,k)$ y como existen exactamente k símbolos de A se cumple que f(n,k) = k(f(n-1,k) + f(n-1,k-1)).

3. Cuantas cadenas de tamaño n pueden ser creadas con exactamente m símbolos de un alfabeto de k símbolos?

Asumiendo que la función anterior es correcta, podemos proponer la siguiente función:

$$g(n, m, k) = \binom{m}{k} \times f(n, m)$$

Llamemos A_m al conjunto de todos los subconjuntos de A con exactamente m elementos. Es conocido que la cantidad de subconjuntos de tamaño m de un conjunto se puede calcular como: $|A_m| = {m \choose k}^{-1}$. Sabemos ademas por el resultado anterior que la cantidad de cadenas de tamaño n que pueden hacerse de un conjunto de tamaño m es igual a f(n,m), a partir de lo cual derivamos la formula.

¹http://en.wikipedia.org/wiki/Combination