Frequently Asked Questions 1

问 1: 教材第 104 页等式 $ma_t=m\frac{\mathrm{d}v}{\mathrm{d}t}=-mg\sin\theta$ 是如何得到的? 答 1: 首先,我们要知道什么是一个矢量的投影矢量和投影分量。如 图 1所示, 矢量 a_t 为 a 在 v 上的投影矢量。因为 a_t 与 v 共线, 所以有 $\mathbf{a}_t = a_t \hat{\mathbf{v}}$, 其中 $\hat{\mathbf{v}} = \frac{\mathbf{v}}{n}$ 为与 \mathbf{v} 同向的单位矢量; $a_t = \mathbf{a} \cdot \hat{\mathbf{v}}$ 称作 \mathbf{a} 在 \mathbf{v} 上 的投影分量。

若a和v为加速度和速度,则有

$$a_t = \boldsymbol{a} \cdot \hat{\boldsymbol{v}} = \frac{d\boldsymbol{v}}{dt} \cdot \frac{\boldsymbol{v}}{v} = \frac{dv}{dt}$$
 (1.1)

其中利用了 $2v\frac{dv}{dt}=\frac{d(v^2)}{dt}=\frac{d(\boldsymbol{v}\cdot\boldsymbol{v})}{dt}=2\boldsymbol{v}\cdot\frac{d\boldsymbol{v}}{dt}$ 。 与教材第 31 页 (1.21) 式比较,可知 (1.21) 式中的 a_t 是 \boldsymbol{a} 在 \boldsymbol{v} 上的投影分量,但要注意 (1.22) 式中的 a_n 不是在 a_n 方向上的投影分量,而是法向加速度 a_n 的模。 a_t 取正值意 味速率增加, 反之意味速率减小。

由牛二定律可知 $ma_t = g_t$,其中 g_t 表示力在速度方向上的投影分量。 按教材图 3-8 所示可知,此时速度朝右上—— $\hat{v} = \cos \theta i + \sin \theta j$,而重力 朝下 $--G = -mg\mathbf{j}$; 因此, $g_t = \mathbf{G} \cdot \hat{\mathbf{v}} = -mg\sin\theta$ 。

问 2: 教材第 119 页例 3 中的 $L_{\text{\text{\text{\pi}}}} = -\kappa \theta$ 是如何得到的?

答 2: 为了简单起见,此处我们不考虑力矩的方向性。首先要说明的 是 κ 不是弹性系数 k。当倒摆处于如图 2时,弹簧的形变量为 $s = r\theta$,故 弹力为 $ks = kr\theta$, 力矩为 $kr^2\theta$, 由此可知 $\kappa = kr^2$ 。

问 3: 如何理解教材第 180 页例 13 运用可倒逆性的证明?

答 3: 首先,我们应明确此处"可倒逆性"的含义。教材运用简谐近 似得出复摆的等值摆长

$$l_0 = \frac{I}{mr_a} \tag{1.2}$$

其中转动惯量I和质心与转轴间的距离 r_c 均依赖于转轴所处位置。利用 平行轴定理可将(1.2)转换为

$$l_0 = r_c + \frac{I_c}{mr_c} \tag{1.3}$$

与(1.2)不同的是,(1.3)中的 I_c 是固定量——转轴过质心时的转动惯量, 只有 r_c 依赖于转轴所在位置。因此,(1.3)明确了 l_0 与 r_c 之间的函数关系 -即 $l_0 = f(r_c) = r_c + \frac{I_c}{mr_c}$; 很显然,当转轴的位置处于以质心为圆心 半径为 r_c 的圆上时(图3), 复摆的等值摆长均为 $l_0 = f(r_c)$ 。如果给定 l_0 ,那么 r_c 的取值是否唯一呢? (见图 4) 这就需要求解方程 $f(x) = l_0$, 简单的计算表明方程有根

$$x_1 = \frac{l_0}{2} + \sqrt{\frac{l_0^2}{4} - \frac{I_c}{m}}$$
 and $x_2 = \frac{l_0}{2} - \sqrt{\frac{l_0^2}{4} - \frac{I_c}{m}}$

显然 $x_1 + x_2 = l_0$,不妨记 $r_c = x_1$ 和 $r'_c = x_2$,此即教材的结果。但是教材采用了一个更巧妙的方法,即把方程(1.3)转换为

$$\frac{I_c}{mr_c(l_0 - r_c)} = 1 (1.4)$$

图 1: 矢量的投影

图 2: 倒摆

图 3: 可倒逆性——正 方形的复摆

注意到当 $r_c \to (l_0 - r_c)$ 时,有 $(l_0 - r_c) \to r_c$,等价于分母中 r_c 和 $l_0 - r_c$ 交换了一下位置,这不影响结果。也就是说,若 r_c 满足方程 $f(x) = l_0$,则 $(l_0 - r_c)$ 也满足。如同把跷跷板两端的人颠倒一下彼此的位置,若颠倒之前能保持平衡,则之后也能保持平衡;此处, r_c 和 $(l_0 - r_c)$ 彼此交换能保持的平衡指的是方程能得以满足。

一般而言,我们可以把复摆对同一等值摆长可以具有两不同 r_c 取值的属性就称之为复摆的可倒逆性。由前面可知,图 3中的大圆上的所有点与 A 点等价,小圆上的所有点与 B 点等价;如果二者的半径均满足方程 $f(x) = l_0$,由可倒逆性知二者彼此等价。

但是,教材对"可倒逆性"——特别是互为倒逆点——是有所特指,这是为了其后关于 g 值的测量服务的。假设处于 A 和 D 位置的转轴对应相同的周期,二者之间的距离 $\overline{AD}(\neq r_c + r'_c)$ 不是等值摆长,只有当质心处于连接二者的线段之上时,二者的间距才是等值摆长,如 \overline{AB} 。

图 4: f(x) 的曲线图