Autómatas y Lenguajes Formales, 2021-2 Tarea 1

Oscar Andres Rosas Hernandez

19 de marzo de 2021

- 1. (1.5 pts.) Sea x una cadena, x^R su reversa y x^i la cadena concatenada consigo misma i veces (por ejemplo: $(abc)^R = cba$ y $(abc)^2 = abcabc$). Demuestre por inducción matemática que $(x^R)^i = (x^i)^R$. (**Hint:** Use el hecho de que $(xy)^R = y^R x^R$.)
- 2. a) (0.5 pts.) Encuentre un lenguaje L sobre el alfabeto $\Sigma = \{a, b\}$ que no sea $\{\varepsilon\}$ ni $\{a, b\}^*$ y satisfaga $L = L^*$.
 - b) (0.5 pts.) Dé un ejemplo de dos lenguajes L_1 y L_2 tales que $L_1^* \cup L_2^* \neq (L_1 \cup L_2)^*$.
 - c) (0.5 pts.) Considere la siguiente definición recursiva para $L \subseteq \{a, b\}^*$: $b \in L$; $\forall w \in L$, bw, wa y aw están en L. Dé una definición no-recursiva para L (por ejemplo, en español).
- 3. (2 pts.) Suponga que $L \subseteq \{a, b\}^*$ se define como sigue:
 - $\epsilon \in L$,
 - $\forall x, y \in L$, las cadenas xy, axb y bxa están en L.

Demuestre que $L = L_{AB}$, el lenguaje de todas las cadenas $w \in \{a, b\}^*$ tales que $n_a(w) = n_b(w)$.

4. (2 pts.) Sea $M = (Q, \Sigma, \delta, q_0, F)$ un AFD. Sea $M_1 = (Q, \Sigma, \delta, q_0, F_1)$ un AFD idéntico a M excepto por el conjunto de estados finales, donde F_1 se define como el conjunto de estados $q \in Q$ para los cuales $\widehat{\delta}(q, z) \in F$ para alguna z. ¿Cuál es la relación entre el lenguaje aceptado por M_1 y el lenguaje aceptado por M? Justifique su respuesta. (**Hint:** Use el hecho de que $\widehat{\delta}(q, xy) = \widehat{\delta}(\widehat{\delta}(q, x), y)$.)

Pues habra muchas relaciones entre los lenguajes que reconocen ambos automatas, uno de ellos, relativamente trivial es:

Sea L_M el lenguaje que acepta M, L_{M_1} el lenguaje que acepta M_1 , entonces $L_M \subseteq L_{M_1}$.

Esto se demuestra viendo que cualquier cadena que es aceptada por M tambien lo es por M_1 , dependiendo del automata particular puede que existan cadenas que solo acepte M_1 .

Pero bueno, si una cadena c es aceptada por M, entonces podemos decir que esta bien definida la expresion $\widehat{\delta}(q_0, c)$, ahora podemos usar la idea que: $c = c\epsilon$.

Entonces $\widehat{\delta}(q_0, c) = \widehat{\delta}(\widehat{\delta}(q_0, c), \epsilon).$

Y recordemos que como esta cadena es aceptada por M entonces podemos decir que: $\widehat{\delta}(q_f, \epsilon)$, donde q_f es un estado final, ahora, podemos afirmar que $q_f \in F_1$ pues ya vimos que existe

una transicion, esta: $\widehat{\delta}(q_f, \epsilon) = q_f \in F$. Entonces $q_f \in F_1$, por lo tanto cualquier cadena aceptada por L_M tambien la aceptara L_{M_1}

5. Describa informalmente el lenguaje reconocido por los siguientes Autómatas Finitos Deterministas (AFD):

 $\{w \in \{a,b\}^* \mid w \ (ab|ba)^* \text{ es decir}, \text{ la concatenacion n veces de las cadenas } ab \text{ y } ba \}$ (1)

 $\{w \in \{a,b\}^* \mid w$ Que empiece en a y acabe en $b\}$

6. a) (1 pt.) Diseñe un Autómata Finito Determinista (AFD) que reconozca el lenguaje $\{w \in \{a,b\}^* \mid w \text{ tiene como subcadenas a } ab \text{ y a } ba.\}.$

b) (1 pt.) Diseñe un Autómata Finito Determinista (AFD) que reconozca el lenguaje $\{w \in \{a,b\}^* \mid w \text{ contiene como subcadenas a } ab \text{ o a } bba.\}.$

