

Einführung ins wissenschatliche Arbeiten

Teilchensimulationen von Polymermischungen in begrenzten Geometrien mit zeitabhängigen Randbedingungen

Particle simulations of polymer mixtures in confined geometries with time dependent boundary conditions

prepared by

Justus Multhaup

from Boffzen

at the Institut für Theoretische Physik

Thesis period: 1st April 2009 until 15th July 2009

First Rreferee: Prof. Dr. Marcus Müller

Second referee: Prof. Dr. Stefan Klumpp

Contents

1.	Introduction	1
2.	Theory	3
	2.1. Polymeric mixtures	3
	2.1.1. Flory Huggins Theory	3
	2.2. Collective diffusion	4
3.	Simulation technique	7
4.	Collective diffusion of symmetric homopolymers	9
	4.1. Reference system	9
	4.2. Collective diffusion coefficient	9
5.	Discussion	11
6.	Summary	13
Α.	erster Anhang	15

Nomenclature

Lateinische Buchstaben

Variable	Bedeutung	Einheit
\overline{A}	Querschnittsfl"ache	m^2
c	Geschwindigkeit	m/s

Griechische Buchstaben

Variable	Bedeutung	Einheit
α	Winkel	°; –
ϱ	Dichte	$^{\mathrm{kg}}\!/_{\mathrm{m}^3}$

Indizes

Index	Bedeutung
m	Meridian
r	Radial

Abk"urzungen

${f Abk}$ "urzung	Bedeutung
2D	zweidimensional
3D	dreidimensional

Abk"urzung	Bedeutung	
max	maximal	

1. Introduction

2. Theory

2.1. Polymeric mixtures

Polymer mixtures consist of two or more chemically different polymer types. The mechanical and thermodynamic properties can vary greatly with several factors such as composition, molecular weight and interactions between the polymers. This makes them desirable for manufacturing materials with tailored properties.

If the composition is uniform everywhere, then the mixture is called homogeneous. In this case, the properties do not change throughout the mixture. In a heterogeneous mixture, in contrast, the composition is non-uniform, leading to visible boundaries which may have very different properties. This phenomenon is also called macrophase separation. From an entropic viewpoint, mixing is always favored. However, energetic interactions between polymers can either favor or suppress mixing. Whether a mixture is homogeneous or heterogeneous therefore depends on the balance between entropy and energy [5, S. 137].

2.1.1. Flory Huggins Theory

Whether mixing or phase separation will be favored can be predicted by determining the free energy change associated with mixing the components. This free energy change can be computed within the lattice model developed by Flory and Huggins [4]. Within the Flory-Huggins framework, no volume change is assumed upon mixing. With this assumption, it is convenient to represent the system on a lattice. The lattice site volume v_0 corresponds to the smallest molecular unit and every macromolecule takes up one or multiple lattice sites. Consider a binary mixture with n_A polymers of species A and chain length N_A and n_B polymers of species B and chain length N_B . The free energy of mixing per lattice site ΔF_{mix} is then given by the Flory-Huggins equation of polymer solutions [5, S. 143]:

$$\frac{\Delta F_{mix}}{k_B T} = \frac{\phi}{N_A} \ln \phi + \frac{1 - \phi}{N_B} \ln(1 - \phi) + \chi \phi (1 - \phi).$$
 (2.1)

Here, $\phi = \frac{n_A N_A}{n_A N_A + n_B N_B}$ is the monomer fraction of species A, k_B is the Boltzmann constant, T is the system temperature and χ is the Flory interaction parameter which characterizes the interaction between different polymer species and can be obtained from experiments. A positive value of χ opposes mixing while a negative value promotes it, knowing the value of χ , therefore, allows a qualitative prediction of the phase separation behavior. Note that so far, no space dependence of ϕ has been assumed. To fully capture the complexity of the system, the Flory-Huggins model has to be extended to include spatial variations of ϕ , which gives rise to the de Gennes-Flory-Huggins free energy functional [2, 6]:

$$\frac{F[\phi]}{k_B T} = \rho_0 \int d^3 \mathbf{r} \left\{ \frac{\phi}{N_A} \ln \phi + \frac{1 - \phi}{N_B} \ln(1 - \phi) + \chi \phi (1 - \phi) + k(\phi) [\nabla \phi]^2 \right\}. \tag{2.2}$$

Here, ρ_0 is the average monomer density in the system. The term proportional to $[\nabla \phi]^2$ is added to the free energy density to ensure that unphysical, sharp changes in the local densities are penalized. The precise form of $k(\phi)$ depends on the strength of the parameter χ . For $\chi N \ll 1$, one considers the weak segregation limit (WSL). For $\chi N \gg 1$, the strong segregation limit (SSL) is considered. For symmetric mixtures with $N_A = N_B = N$, the prefactors k take the form [6]:

$$k_{WSL} = \frac{R_e^2}{36N\phi(1-\phi)}; \qquad k_{SSL} = \frac{R_e^2}{18N\phi(1-\phi)}.$$
 (2.3)

2.2. Collective diffusion

Consider a binary mixture of polymers with $N_A = N_B = N$. Since the number of monomers in the system is constant, the continuity equation holds:

$$\frac{\partial \phi}{\partial t} + \nabla \mathbf{J} = 0. \tag{2.4}$$

Here, **J** is the local current of species A. Near equilibrium, one postulates a linear

relation between **J** and the local chemical potential difference μ [2]:

$$\mathbf{J}(\mathbf{r}) = -\int_{V} \frac{\Lambda(\mathbf{r}, \mathbf{r}')}{k_{B}T} \nabla' \mu(\mathbf{r}') d\mathbf{r}'. \qquad (2.5)$$

The Onsager coefficient $\Lambda(\mathbf{r}, \mathbf{r}')$ relates the force acting on a monomer at position \mathbf{r}' due to the gradient of chemical potential to the density at position \mathbf{r} . It therefore determines the dynamics of the system. For an incompressible symmetric mixture with $N_A = N_B = N$, in the simplest case, the current is coupled only locally to the chemical potential gradient. The Onsager coefficient then takes the simple form [1, 2]

$$\Lambda = DN\phi(\mathbf{r}')(1 - \phi(\mathbf{r}'))\delta(\mathbf{r} - \mathbf{r}'). \tag{2.6}$$

Here, D is the single-chain diffusion coefficient.

3. Simulation technique

 $\mathrm{Text}...$

4. Collective diffusion of symmetric homopolymers

4.1. Reference system

In this section, the collective diffusion properties of noninteracting homopolymers with $N_A = N_B = N$ and $\chi = 0$ are investigated. As a reference system, a simulation box with 10000 polymers and dimensions $L_x \times L_y \times L_z = 9.25 \times 3 \times 3 R_e^3$ is considered with a spatial discretization of $\Delta L = 0.125 R_e$, so the invariant degree of polymerization is $\sqrt{N} \approx 120$. Periodic boundary conditions are applied in the lateral y and z directions, whereas impassable walls are applied in the x direction. Initially, the polymers are distributed homogeneously in the system. To stimulate diffusion, conversion zones are introduced close to the walls at $x < 0.25 R_e$ and $x > 9 R_e$. In each time step, if the center-of-mass coordinate \mathbf{r}_{cm} of a polymer of type A lies in the conversion zone at $x < 0.25 R_e$, it is converted to type B with probability $p(A \to B) = r\phi(\mathbf{r}_{cm})$ [3]. Analogously, conversion from B to A takes place in the conversion zone at $x > 9 R_e$ at the same rate r. The total currents $\mathbf{J}_{\mathbf{A}}$ and $\mathbf{J}_{\mathbf{B}}$ are measured by tracking the number of polymer conversions.

4.2. Collective diffusion coefficient

It should be pointed out that the system can be described effectively in one dimension due to the periodic boundary conditions in the lateral directions and the equal conversion rates. The chemical potential is obtained by taking the functional derivative $\frac{\delta F}{\delta \phi}$ of (2.2). Since $\chi=0$, no phase separation occurs and the local density differences are only caused by the dynamics. Assuming the WSL, the chemical potential becomes:

4. Collective diffusion of symmetric homopolymers

$$\frac{\mu}{\rho_0 k_B T} = \frac{\ln \phi}{N} - \frac{\ln(1 - \phi)}{N} - \frac{R_e^2}{18N\phi(1 - \phi)} \frac{d^2 \phi}{dx^2} + \left[\frac{R_e^2 (1 - 2\phi)}{36N\phi^2 (1 - \phi)^2} \right] \left(\frac{d\phi}{dx} \right)^2.$$
(4.1)

Figure 4.1.: Chemical potential with and without including the square gradient term in (4.1) for r = 0.0007.

In figure 4.1, it can be seen that the terms arising from the square gradient term do not contribute to the chemical potential and are therefore dropped from the following calculations for further simplification. From (2.5), the current of type A becomes:

$$J_A = -D\rho_0 \frac{\partial \phi}{\partial x} \,. \tag{4.2}$$

Together with (2.4), this gives the well-known diffusion equation:

$$\frac{\partial \phi(\mathbf{r}, t)}{\partial t} - D\rho_0 \frac{\partial^2 \phi}{\partial x^2} = 0. \tag{4.3}$$

In the steady state, this simply yields $\frac{\partial^2 \phi}{\partial x^2} = 0$. Therefore, a linear density profile is obtained in the steady state. The slope is obtained from (4.2) and the intersection is obtained from the condition that $\phi(L_x/2) = 0.5$ since the density is normalized.

5. Discussion

 $\mathrm{Text}...$

6. Summary

 $\mathrm{Text}...$

A. erster Anhang

Bibliography

- [1] K. Binder. Collective diffusion, nucleation, and spinodal decomposition in polymer mixtures. *The Journal of Chemical Physics*, 79(12):6387–6409, 1983. doi: 10.1063/1.445747. URL https://doi.org/10.1063/1.445747.
- [2] P. G. de Gennes. Dynamics of fluctuations and spinodal decomposition in polymer blends. *The Journal of Chemical Physics*, 72(9):4756–4763, 1980. doi: 10.1063/1.439809. URL https://doi.org/10.1063/1.439809.
- [3] Oliver Dreyer, Gregor Ibbeken, Ludwig Schneider, Niklas Blagojevic, Maryam Radjabian, Volker Abetz, and Marcus Müller. Simulation of solvent evaporation from a diblock copolymer film: Orientation of the cylindrical mesophase. *Macromolecules*, 55(17):7564–7582, 2022. doi: 10.1021/acs.macromol.2c00612. URL https://doi.org/10.1021/acs.macromol.2c00612.
- [4] Paul J. Flory. Thermodynamics of high polymer solutions. *The Journal of Chemical Physics*, 10(1):51-61, 1942. doi: 10.1063/1.1723621. URL https://doi.org/10.1063/1.1723621.
- [5] R.H. Colby M. Rubinstein. *Polymer Physics*. Oxford University Press, 2003.
- [6] Ellen Reister. Zusammenhang zwischen der Einzelkettendynamik und der Dynamik von Konzentrationsfluktuationen in mehrkomponentigen Polymersystemen. PhD thesis, Mainz, 2002.

Danksagung

Dank...

Erklärung

Ich versichere hiermit, dass ich die vorliegende Arbeit ohne fremde Hilfe selbststij ½ndig verfasst und nur die von mir angegebenen Quellen und Hilfsmittel verwendet habe. Wij ½rtlich oder sinngemij ½ß aus anderen Werken entnommene Stellen habe ich unter Angabe der Quellen kenntlich gemacht. Die Richtlinien zur Sicherung der guten wissenschaftlichen Praxis an der Universitij ½t Gij ½ttingen wurden von mir beachtet. Eine gegebenenfalls eingereichte digitale Version stimmt mit der schriftlichen Fassung ij ½berein. Mir ist bewusst, dass bei Verstoß gegen diese Grundsij ½tze die Prij ½fung mit nicht bestanden bewertet wird.

G�ttingen, den March 21, 2023

(Justus Multhaup)