「지능화 파일럿 프로젝트」 프로젝트 설계 최종보고

모듈별 발전량비교를 이용한 태양광발전소 고장진단 연구

2021. 12. 09

2021254003 원 형 일

서 론

1. 연구 배경

- 태양광발전기술의 발전에 비하여 고장진단 기술은 답보
- 가동율 저하로 인한 비용손실증가로 실시간 모니터링 기술 개발의 필요성 대두
- 인공지능기술등 기반 기술의 발전

2. 기존 기술의 문제점 및 필요성

- 출장진단으로는 고장진단에 한계
- 발전량의 뚜렷한 감소가 있어야 고장 인지

서 론

1. 연구 목표

- 발전된 전압과 전류의 특성을 이용한 고장진단방법의 인공지능 적용가능성 타진
- 원격지 고장 모니터링을 위한 방안 마련

2. 연구방법

- 기후와 태양광 발전량에 대한 상관관계 조사 및 분석후 적용방안 도출
- 태양광패널을 이용한 실데이터 확보 및 분석으로 발전 특성 분석

3. 연구차별성

- 기존의 연구는 현장에서의 고장탐구를 목적으로 함
- 본 연구에서는 원격지에서의 실시간 고장딘단을 목적으로 함

1. 날씨가 고장진단에 미치는 영향 연구

1) 연구 샘플

항목	내용	비고
조사기관	서부발전 영암FC태양광 발전소	공공데이터포털
총데이터	42064	
조사기간	2017년 1월 - 2020년 6월	42개월
설비용량	13,296MW	
표본추출	2017년 1,2월 /각년도 8월	시간별변화조사, 년도별변화량 조사

2) 연구 내용

연구방법

- 2017년도 1월, 2월중 각각 10일간 11시부터 14시까지 발전량 조사 및 분석
- 2017년 2018년 2019년 8월 1일부터 10일간의 발전량 조사 및 분석

2) 연구 내용

2017년 1,2월 분석

- 1,2월 모두 13시에서 14시 발전량 편차가 가장 큼
- 발전총량과 발전 편차는 관련이 없음

2) 연구 내용

2018년

2019년

분석내용

- 3년 평균 : 80,492,280

- 최고발전량:

2017년(총 82,492,800W) – 8월3일, 10일 (10,051,200W 9.936,000W)

2018년 (총 75,513,600W) - 8월5일, 8일

(9,859,200W, 9,561,600W)

2019년(총 83,472,000W) - 8월2일, 4일)

(9,811,200W, 9,619,200W)

분석결과

- 가장 발전량이 많은 13시에서 14시에 가중치를 주어 야함
- 흐린날보다 맑은날에 가중치를 주어야함
- 지속적인 평균이하발전량을 보일때 말고는 발전총량으로 고장유무 판단엔 어려움이 많다

2. 고장모델의 특성 분석

1) 고장모델 선정

표본샘플

- 1MW 태양광발전소
- 모듈 200W, 220W, 인버터 250kw x 4개
- 자료 출처 : ㈜에스테코

고장원인 분석

- 열화상 드론 조사후 육안검사, 열화상 카메라 진단
- 컨넥터 소손, 핫스팟, snail trail, 바이패스 다이오드 고장 등

고장 사례

- 스트링 결선
- 쇼트로인한 화재

고장 집계

Failure mode	모듈 수량 (%)	비고	
Hot spot (핫스팟)	339 (7.2%)	심각한 경우 40 Snail trail, back-sheet bubble, scratch	
Bypass diode failure (바이패스다이오드 고장)	89 (1.9%)	동일 모듈 BPD 2개 불량 3개	
Disconnection (결선)	48 (1.0%)		
Fire (화재)	2	결선 커넥터 소손 부분음영 케이블 소손	
Discoloration (황변)		모든 A모듈	
합계* (황변 제외)	468 (10.0%)	중복결함 8개	

실 험

- 모델1(정상, 기준), 모델2(결선), 모델3(오염, 핫스팟: 부분발전), 모델4(누전)
- 병렬연결
- 13시에서 14시 3일 : 5회조사

모델1 - 정상, 테스트기준

모델3 - 부분오염

모델2 - 1개판넬 단선

모델4 - 1개 판넬 결선에의한 누전

실험결과

상태	전압	전류	전압낮음	전류낮음	전압불규칙	전류불규칙	날씨
단선	24.65	4.8	0	1	1	0	맑음
(모델2)	21.97	5.23	0	1	1	0	맑음
	20.73	0.94	0	1	1	0	흐림
	21.98	5.28	1	1	0	0	맑음
	22.29	4.34	0	1	1	0	맑음
오염	21.12	3.52	1	1	0	0	맑음
(모델3)	21.57	3.78	1	1	0	0	맑음
	20.16	0.52	1	1	0	0	흠림
	21.79	3.5	1	1	0	0	맑음
	21.65	2.36	1	1	0	0	맑음
누전	21.68	5.8	0	0	0	1	맑음
(모델4)	22.03	5.62	0	1	0	1	맑음
	21.06	0.92	0	1	0	1	흐림
	22.08	6.86	0	0	0	1	맑음
	22.09	4.28	0	1	0	1	맑음
기준	21.53	5.52					맑음
(모델1)	21.96	5.9					맑음
	20.73	1.4					흐림
	22.08	5.28					맑음
	22.04	5.43					맑음

실험결과 분석

분류	내용
단선(결선)	전체적으로 미세하게 전압이 높음 전류 낮음 불규칙현상이 전압에 1번 나옴
오염	전압 전류 모두 낮음 돌발 없음
누전	전압이 높고 전류의 값은 불규칙

결 론

연구내용정리

- 고장상태에서의 발전특성을 이용한 고장진단법 제안
- 날씨는 가장 발전이 활성한 때에 발전 특성이 뚜렸이 나타남으로 가장 발전량이 많은 시간때에 가중치를 주는것이 타당
- 각 모델들의 실험을 통하여 발전의 특성이 나타남이 밝혀졌고 고장발전 데이터를 이용하여 고장진단이 가능함을 증명

제안 및 실험 방법의 한계점

- 충분한데이터 수집에 실패
- 충분한데이터를 수집하여 딥러닝을 이용하여 발전상태를 진단까지 진행했어야 함

향후 진행방향

- 지속적인 데이터 수집
- 딥러닝을 통한 판결 알고리즘 정의

감사합니다