Firm Uncertainty Cycles and the Propagation of Nominal Shocks

Isaac Baley UPF and Barcelona GSE Julio Andrés Blanco U Michigan

€ABCN Meeting Banque de France May 5th, 2017

Motivation

- Firms operate in constantly changing environments
 - New technologies and products become available
 - o Unfamiliar markets and competitors appear
 - $\circ~$ Workers and suppliers get replaced

Motivation

- Firms operate in constantly changing environments
 - New technologies and products become available
 - Unfamiliar markets and competitors appear
 - Workers and suppliers get replaced
- Characteristics of these idiosyncratic changes Evidence

- Large, infrequent and persistent (fat-tailed risk)
- Lack of perfect knowledge about their impact ⇒ Uncertainty

Motivation

Firms operate in constantly changing environments

- New technologies and products become available
- Unfamiliar markets and competitors appear
- Workers and suppliers get replaced

Characteristics of these *idiosyncratic* changes Evidence

- Large, infrequent and persistent (fat-tailed risk)
- Lack of perfect knowledge about their impact ⇒ Uncertainty

Questions...

- How does uncertainty affect firms' decisions?
- Does firm-level uncertainty matter in the aggregate?

Our contributions

- We answer these questions in a general framework
 - Imperfect information about persistent idiosyncratic characteristics
 - \circ Fixed adjustment costs

Our contributions

- We answer these questions in a general framework
 - Imperfect information about persistent idiosyncratic characteristics
 - Fixed adjustment costs
- In the context of price-setting...
 - Positive relationship between uncertainty and price flexibility
 - Uncertainty and price flexibility move in cycles
 - $\circ~$ Identify uncertainty's moments from micro-price data

Our contributions

- We answer these questions in a general framework
 - Imperfect information about persistent idiosyncratic characteristics
 - Fixed adjustment costs
- In the context of price-setting...
 - Positive relationship between uncertainty and price flexibility
 - Uncertainty and price flexibility move in cycles
 - $\circ~$ Identify uncertainty's moments from micro-price data
- Aggregate effects are quantitatively important
 - $\circ~$ Heterogeneous uncertainty amplifies real effects of nominal shocks
 - Real effects up to $9 \times \text{Golosov}$ and Lucas (2007)
 - Average uncertainty dampens real effects of nominal shocks
 - Monetary policy less effective in more uncertain times

Roadmap

1 Price-setting with uncertainty cycles (one firm)

2 Aggregate effects of heterogeneous uncertainty

Price-setting with uncertainty cycles

- Firm chooses prices to maximize profits
 - o Pricing friction: menu cost θ

- Firm chooses prices to maximize profits
 - o Pricing friction: menu cost θ
- Period profits: $\Pi(\mu_t) = -B\mu_t^2$, B > 0
 - $\circ \ \mu_t \equiv \log \omega_t \log \omega^* \text{ is log markup gap}$
 - ω_t : markup at t (price_t/marginal cost_t)
 - $-\omega^*$: static optimal markup

- Firm chooses prices to maximize profits
 - o Pricing friction: menu cost θ
- Period profits: $\Pi(\mu_t) = -B\mu_t^2$, B > 0
 - $\mu_t \equiv \log \omega_t \log \omega^*$ is log markup gap
 - ω_t : markup at t (price_t/marginal cost_t)
 - $-\omega^*$: static optimal markup
- Trade-off: losses from $\mu_t \neq 0$ vs. paying menu cost θ

- Firm chooses prices to maximize profits
 - Pricing friction: menu cost θ
- Period profits: $\Pi(\mu_t) = -B\mu_t^2$, B > 0
 - o $\mu_t \equiv \log \omega_t \log \omega^*$ is log markup gap
 - ω_t : markup at t (price_t/marginal cost_t)
 - $-\omega^*$: static optimal markup
- Trade-off: losses from $\mu_t \neq 0$ vs. paying menu cost θ
- Stochastic process for marginal costs
 - ⇒ stochastic process for markup-gaps

- Unobserved markup-gap: $d\mu_t = \sigma_f dW_t + \sigma_u u_t dQ_t$
 - $\circ W_t \sim \text{Weiner}; \quad Q_t \sim \text{Poisson counter } (\lambda); \quad u_t \sim \mathcal{N}(0,1)$

- Unobserved markup-gap: $d\mu_t = \sigma_f dW_t + \sigma_u u_t dQ_t$
 - o $W_t \sim \text{Weiner}; \quad Q_t \sim \text{Poisson counter } (\lambda); \quad u_t \sim \mathcal{N}(0,1)$
- Noisy signal: $ds_t = \mu_t dt + \gamma dZ_t$
 - Noise $Z_t \sim \text{Wiener}, \gamma \text{ measures information frictions}$
 - o (Continuous limit) permanent and transitory shocks

- Unobserved markup-gap: $d\mu_t = \sigma_f dW_t + \sigma_u u_t dQ_t$
 - $W_t \sim \text{Weiner}; \quad Q_t \sim \text{Poisson counter } (\lambda); \quad u_t \sim \mathcal{N}(0,1)$
- Noisy signal: $ds_t = \mu_t dt + \gamma dZ_t$
 - Noise $Z_t \sim \text{Wiener}, \gamma \text{ measures information frictions}$
 - o (Continuous limit) permanent and transitory shocks
- Timing signal: dQ_t
 - \circ Arrival of Poisson shock is known...but not realization of u_t
 - Focus on case $\mathbb{E}[u_t] = 0$, extensions

- Unobserved markup-gap: $d\mu_t = \sigma_f dW_t + \sigma_u u_t dQ_t$
 - $W_t \sim \text{Weiner}; \quad Q_t \sim \text{Poisson counter } (\lambda); \quad u_t \sim \mathcal{N}(0,1)$
- Noisy signal: $ds_t = \mu_t dt + \gamma dZ_t$
 - Noise $Z_t \sim \text{Wiener}, \gamma \text{ measures information frictions}$
 - o (Continuous limit) permanent and transitory shocks
- Timing signal: dQ_t
 - \circ Arrival of Poisson shock is known...but not realization of u_t
 - Focus on case $\mathbb{E}[u_t] = 0$, extensions
- Learning technology Filter $\mu_t | \mathcal{I}_t$, with $\mathcal{I}_t = \sigma\{(s_r, Q_r)_{r \leq t}\}$
 - Bayesian firms solve filtering problem

Filtering with Jumps \Rightarrow Uncertainty Cycles

Filtering equations

Markup-gap's posterior distribution is Normal $\mu_t | \mathcal{I}_t \sim \mathcal{N}(\hat{\mu}_t, \gamma \Omega_t)$

$$\begin{array}{lcl} \text{(estimate)} & d\hat{\mu}_t & = & \Omega_t \; d\hat{Z}_t \\ \text{(uncertainty)} & d\Omega_t & = & \frac{\sigma_f^2 - {\Omega_t}^2}{\gamma} dt + \frac{\sigma_u^2}{\gamma} dQ_t \end{array}$$

Filtering with Jumps \Rightarrow Uncertainty Cycles

Filtering equations

Markup-gap's posterior distribution is Normal $\mu_t | \mathcal{I}_t \sim \mathcal{N}(\hat{\mu}_t, \gamma \Omega_t)$

(estimate)
$$d\hat{\mu}_t = \Omega_t d\hat{Z}_t$$

(uncertainty) $d\Omega_t = \frac{\sigma_f^2 - \Omega_t^2}{\gamma} dt + \frac{\sigma_u^2}{\gamma} dQ_t$

• Higher uncertainty $\Omega_t \implies$ More volatile estimates

$$\hat{\mu}_{t+\Delta} = \underbrace{\frac{\gamma}{\Omega_t \Delta + \gamma}}_{\text{weight on prior}} \hat{\mu}_t + \underbrace{\left(1 - \frac{\gamma}{\Omega_t \Delta + \gamma}\right)}_{\text{weight on signal}} \left(\frac{s_t - s_{t-\Delta}}{\Delta}\right)$$

Filtering with Jumps \Rightarrow Uncertainty Cycles

Filtering equations

Markup-gap's posterior distribution is Normal $\mu_t | \mathcal{I}_t \sim \mathcal{N}(\hat{\mu}_t, \gamma \Omega_t)$

(estimate)
$$d\hat{\mu}_t = \Omega_t d\hat{Z}_t$$

(uncertainty) $d\Omega_t = \frac{\sigma_f^2 - \Omega_t^2}{\gamma} dt + \frac{\sigma_u^2}{\gamma} dQ_t$

• Higher uncertainty $\Omega_t \implies \text{More volatile estimates}$

$$\hat{\mu}_{t+\Delta} = \underbrace{\frac{\gamma}{\Omega_t \Delta + \gamma}}_{\text{weight on prior}} \hat{\mu}_t + \underbrace{\left(1 - \frac{\gamma}{\Omega_t \Delta + \gamma}\right)}_{\text{weight on signal}} \left(\frac{s_t - s_{t-\Delta}}{\Delta}\right)$$

- Uncertainty cycles
 - If $\lambda = 0$ (no jumps), then Ω_t converges to σ_f
 - If $\lambda > 0$ (jumps), then Ω_t features cycles
 - "Long-run" uncertainty $\Omega^* = \sqrt{\sigma_f^2 + \lambda \sigma_u^2}$ $(\mathbb{E}[d\Omega_t] = 0)$

Pricing policy

• Stopping Time Problem

$$V(\hat{\mu}_0, \Omega_0) = \max_{\tau} \mathbb{E}\left[\underbrace{\int_0^{\tau} e^{-rt} \left(-\hat{\mu}_t^2\right) dt}_{\text{payoff from inaction}} + \underbrace{e^{-r\tau} \left(-\bar{\theta} + \max_{x} V(x, \Omega_{\tau})\right)}_{\text{payoff from action}}\right]$$

s.t.
$$d\hat{\mu}_t = \Omega_t d\hat{Z}_t \qquad d\Omega_t = \frac{\sigma_f^2 - \Omega_t^2}{\gamma} dt + \frac{\sigma_u^2}{\gamma} dQ_t \qquad \bar{\theta} \equiv \frac{\theta}{B}$$

- o τ : stopping time
- $\circ x$: reset markup-gap estimate
- \circ r: discount factor

Pricing policy

• Stopping Time Problem

$$V(\hat{\mu}_0, \Omega_0) = \max_{\tau} \mathbb{E}\bigg[\underbrace{\int_0^{\tau} e^{-rt} \left(-\hat{\mu}_t^2\right) dt}_{\text{payoff from inaction}} + \underbrace{e^{-r\tau} \left(-\bar{\theta} + \max_{x} V(x, \Omega_{\tau})\right)}_{\text{payoff from action}}\bigg]$$

s.t.
$$d\hat{\mu}_t = \Omega_t d\hat{Z}_t \qquad d\Omega_t = \frac{\sigma_f^2 - \Omega_t^2}{\gamma} dt + \frac{\sigma_u^2}{\gamma} dQ_t \qquad \bar{\theta} \equiv \frac{\theta}{B}$$

- \circ τ : stopping time
- $\circ x$: reset markup-gap estimate
- \circ r: discount factor

• Policy: Inaction region that depends on uncertainty

change price if
$$(\hat{\mu}_t, \Omega_t) \notin [-\bar{\mu}(\Omega_t), \bar{\mu}(\Omega_t)]$$

and reset markup-gap estimate to x = 0

Pricing effects of uncertainty

1. Uncertainty increases estimate volatility

$$d\hat{\mu}_t = \frac{\Omega_t d\hat{Z}_t}{2}$$

Pricing effects of uncertainty

1. Uncertainty increases estimate volatility

$$d\hat{\mu}_t = \frac{\Omega_t d\hat{Z}_t}{2}$$

2. Uncertainty widens inaction region

$$\bar{\mu}(\Omega) = \left(\frac{6\bar{\theta}\Omega^2}{1 + \mathcal{L}^{\bar{\mu}}(\Omega)}\right)^{1/4} \quad \text{with} \quad \mathcal{L}^{\bar{\mu}}(\Omega) \propto \left(\frac{\Omega}{\Omega^*} - 1\right)$$

Key: Elasticity of inaction region $\mathcal{E}(\Omega) < 1/2 < 1$.

Pricing effects of uncertainty

1. Uncertainty increases estimate volatility

$$d\hat{\mu}_t = \frac{\Omega_t d\hat{Z}_t}{2}$$

2. Uncertainty widens inaction region

$$\bar{\mu}(\Omega) = \left(\frac{6\bar{\theta}\Omega^2}{1 + \mathcal{L}^{\bar{\mu}}(\Omega)}\right)^{1/4} \quad \text{with} \quad \mathcal{L}^{\bar{\mu}}(\Omega) \propto \left(\frac{\Omega}{\Omega^*} - 1\right)$$

Key: Elasticity of inaction region $\mathcal{E}(\Omega) < 1/2 < 1$.

3. Uncertainty decreases expected time to adjustment

$$\mathbb{E}[\tau \middle| 0, \Omega] = \left(\frac{\bar{\mu}(\Omega)}{\Omega}\right)^2 (1 + \mathcal{L}^{\tau}(\Omega)) \quad \text{with} \quad \mathcal{L}^{\tau}(\Omega) \propto \left(\frac{\Omega}{\Omega^*} - 1\right) (1 - \mathcal{E}(\Omega^*))$$

Key: Expected time is decreasing and convex in uncertainty.

Uncertainty Cycles \Rightarrow Adjustment Cycles

Uncertainty Cycles \Rightarrow Adjustment Cycles

- Low uncertainty: small price changes, unlikely to be changed
- High uncertainty: large price changes, likely to be changed
- Suggestive evidence: Bachmann, et.al. ('13), Vavra ('14)
 - IFO Firm Survey: $corr(freq_i, std(forecast\ errors_i)) > 0$

More suggestive evidence

• At product level, recurrent episodes of very frequent price changes. (Campbell & Eden, '14)

Note: Weekly observations of the price of Fleischmann's Margarine at a store in Sioux Falls, South Dakota, and the average of all other stores' prices for the identical product. Dates are the final days of the given week.

More suggestive evidence

• At product level, recurrent episodes of very frequent price changes. (Campbell & Eden, '14)

Note: Weekly observations of the price of Fleischmann's Margarine at a store in Sioux Falls, South Dakota, and the average of all other stores' prices for the identical product. Dates are the final days of the given week.

Clustering ⇒ Non-mononotic hazard rate

Clustering \Longrightarrow Non-mononotic hazard rate

- Hazard rate: $h(\tau|\Omega) = Prob(\text{adjust } \tau \mid \text{no adjustment until } \tau)$
- Shape: driven by uncertainty Ω
 - Low uncertainty: increasing hazard (standard menu cost model)
 - High uncertainty: non-monotonic hazard (learning)
- Slope: driven by information friction γ

• Consider a continuum of firms with independent shocks.

- Consider a continuum of firms with independent shocks.
- Uncertainty's distribution:
 - Marginal: $h(\Omega) = \int f(\hat{\mu}, \Omega) d\hat{\mu}$
 - o Distribution in whole cross-section
 - ▶ Renewal: $r(\Omega)$
 - $\circ~$ Distribution within adjusters, used for aggregation

- Consider a continuum of firms with independent shocks.
- Uncertainty's distribution:
 - ▶ Marginal: $h(\Omega) = \int f(\hat{\mu}, \Omega) \ d\hat{\mu}$
 - o Distribution in whole cross-section
 - ▶ Renewal: $r(\Omega)$
 - $\circ~$ Distribution within adjusters, used for aggregation

Ratio of renewal to steady-state uncertainty

$$\frac{r(\Omega)}{h(\Omega)} \propto \frac{1}{\mathbb{E}[r|(0,\Omega)]}$$
 and is increasing in uncertainty (around $\Omega^*).$

- Consider a continuum of firms with independent shocks.
- Uncertainty's distribution:
 - Marginal: $h(\Omega) = \int f(\hat{\mu}, \Omega) d\hat{\mu}$
 - o Distribution in whole cross-section
 - ▶ Renewal: $r(\Omega)$
 - o Distribution within adjusters, used for aggregation

Ratio of renewal to steady-state uncertainty

 $\frac{r(\Omega)}{h(\Omega)} \propto \frac{1}{\mathbb{E}[\tau|(0,\Omega)]}$ and is increasing in uncertainty (around $\Omega^*).$

- Price statistics reflect behavior of high uncertainty firms
 - o i.e. aggregate decreasing hazard rate Evidence

Aggregate effects of heterogenous uncertainty

General Equilibrium Model

- 1 Representative household
 - ▶ Consumes, supplies labor, and holds money
 - ▶ Access to complete financial markets

General Equilibrium Model

1 Representative household

- Consumes, supplies labor, and holds money
- ► Access to complete financial markets

2 Continuum of monopolistic firms

- ▶ Ex-ante identical. Constant demand elasticity
- Same price-setting problem as before
- ▶ Independent shocks to markup-gaps and signals across firms

General Equilibrium Model

1 Representative household

- Consumes, supplies labor, and holds money
- Access to complete financial markets

2 Continuum of monopolistic firms

- ▶ Ex-ante identical. Constant demand elasticity
- ► Same price-setting problem as before
- ▶ Independent shocks to markup-gaps and signals across firms

3 Equilibrium with constant money supply

- ► Nominal wage = Money supply
- ▶ Steady state distribution of markup gaps and uncertainty

Calibration to match micro-price data

	US Data	No heterogeneity	Heterogeneous
		(baseline)	uncertainty
Moments			
$\mathbb{E}[\tau]$ in months	10	10	10
$\operatorname{std}[\Delta p]$	0.08	0.007	0.05
hazard rate slope	-0.007	0.007	-0.005

Propagation of nominal shocks

- Unanticipated increase in money supply $\delta = 1\%$
 - True markup-gaps fall in 1%
- Output effects = inaction errors + forecast errors
 - Deviation from steady state (IRF):

$$\tilde{Y}_t = -\int_0^1 \mu_t(z)dz = \underbrace{-\int_0^1 \hat{\mu}_t(z)dz}_{\text{inaction error}} + \underbrace{\int_0^1 \varphi_t(z)dz}_{\text{forecast error}}$$

• Total effect (area under IRF):

$$\mathcal{M}(\delta) = \int_0^\infty \tilde{Y}_t \; dt \; = \mathcal{I} + \mathcal{F}$$

- Three exercises:
 - A) Disclosed money shock (fully observed)
 - B) Undisclosed money shock (partially observed)
 - C) Aggregate uncertainty shock

A) Effects of *disclosed* monetary shock

- Fully observed shock ⇒ Only inaction errors
- Only *first* price change matters
- Persistence driven by low uncertainty firms

A) Effects of *disclosed* monetary shock

- Fully observed shock ⇒ Only inaction errors
- Only first price change matters
- Persistence driven by low uncertainty firms

$$\mathcal{M}(\delta) \geq \delta \underbrace{\left(\frac{\mathbb{E}[\tau]}{6}\right)}_{\text{no heterog} = 1.6}$$

A) Effects of *disclosed* monetary shock

- Fully observed shock ⇒ Only inaction errors
- Only first price change matters
- Persistence driven by low uncertainty firms

B) Effects of *undisclosed* monetary shock

- Fraction α is observed
- Forecast errors arise
- Incomplete pass-through

B) Effects of *undisclosed* monetary shock

- Fraction α is observed
- Forecast errors arise
- Incomplete pass-through

 $\mathcal{M}(\delta, \alpha) \ge \delta \underbrace{\left(\alpha \frac{\mathbb{E}[\tau]}{6} + (1 - \alpha) \sqrt{\frac{\gamma^2 \mathbb{E}[\tau]}{\mathbb{V}[\Delta p]}}\right)}_{\text{no heterog} = 1.6\alpha + 10(1 - \alpha)}$

C) Effect of aggregate uncertainty shock

- Uncertainty shock $\kappa \mathbb{E}[\Omega]$
- Forecast errors fall with κ
- Faster learning

C) Effect of aggregate uncertainty shock

- Uncertainty shock $\kappa \mathbb{E}[\Omega]$
- Forecast errors fall with κ
- Faster learning

$$\mathcal{F}(\kappa) \ge \underbrace{\sqrt{\frac{\gamma^2 \mathbb{E}[\tau]}{\mathbb{V}[\Delta p]}} \xi(\kappa)}_{\text{no heterog} = 10\xi(\kappa)}, \quad \xi'(\kappa) < 0$$

C) Effect of aggregate uncertainty shock

- Uncertainty shock $\kappa \mathbb{E}[\Omega]$
- Forecast errors fall with κ
- Faster learning

$$\mathcal{F}(\kappa) \ge \underbrace{\sqrt{\frac{\gamma^2 \mathbb{E}[\tau]}{\mathbb{V}[\Delta p]}} \xi(\kappa)}_{\text{no heterog} = 10\xi(\kappa)}, \quad \xi'(\kappa) < 0$$

- Monetary policy is less effective in uncertain times
 - o Castelnuovo, et al (2015), Aastveit, et al (2013)
- Forecast errors are smaller in uncertain times
 - o Gorodnichenko et al (2016)

Conclusions

- Pricing theory with menu costs and idiosyncratic uncertainty cycles
- Macro implications:
 - Uncertainty heterogeneity amplifies effects of money shocks
 - Average uncertainty dampens effects of money shocks
- Information friction identified with hazard rate
- General framework, potential applications...
 - o Portfolio choice s.t. adjustment fees and uncertain returns
 - o Occupational choice s.t. mobility costs and uncertain skills.

APPENDIX

Characteristics of *idiosyncratic* shocks Return

- Evidence of fat-tailed (leptokurtic) risk
 - Price change distribution
 - For US CPI: Klenow and Malin (2011)
 - For French CPI: Alvarez, Le Bihan and Lippi (2016)
 - Employment growth distribution
 - For US Census data: Davis and Haltinwanger (1992)
 - Profit rate, employment, sales and capital growth
 - Own computations using COMPUSTAT 1980-2015 annual
- Evidence of idiosyncratic uncertainty
 - Heterogeneity and time-variation in firm-level uncertainty
 - German firms: Bachmann, Elstner and Hristov (2016) w/IFO Survey
 - US firms: Senga (2016) using I/B/E/S

Evidence of Leptokurtic Shocks Return

• COMPUSTAT 1980-2015 annual data, growth rates

Moment	Profits	Employment	Sales	Capital
Mean	-0.035	0.002	0.004	-0.002
Median	0.078	-0.002	-0.004	-0.005
Standard Deviation	1.337	0.150	0.179	0.101
Skewness	-0.170	0.483	0.539	0.699
Kurtosis	30.324	11.174	11.097	10.488

Figure: Illustration of the Markup Gap and the Signal Processes

Sufficient Conditions for Optimal ST Return

Proposition

Let $\phi: R \times R^+ \to R$ be a function and let ϕ_x . Assume ϕ satisfies the following conditions:

1. Hamilton-Jacobi-Bellman (HJB) equation:

$$r\phi(\hat{\mu},\Omega) = -\hat{\mu}^2 + \left(\frac{\sigma_f^2 - \Omega^2}{\gamma}\right)\phi_{\Omega}(\hat{\mu},\Omega) + \frac{\Omega^2}{2}\phi_{\hat{\mu}^2}(\hat{\mu},\Omega) + \tag{1}$$

$$+\lambda \left[\phi\left(\hat{\mu}, \Omega + \frac{\sigma_u^2}{\gamma}\right) - \phi(\hat{\mu}, \Omega)\right]$$
 (2)

2. value matching condition

$$\phi(0,\Omega) - \bar{\theta} = \phi(\bar{\mu}(\Omega),\Omega) \tag{3}$$

3. Two smooth pasting conditions

$$\phi_{\hat{\mu}}(\bar{\mu}(\Omega), \Omega) = 0, \quad \phi_{\Omega}(\bar{\mu}(\Omega), \Omega) = \phi_{\Omega}(0, \Omega)$$
 (4)

Then ϕ is the value function $\phi = V$ and $\tau = \inf\{t > 0 : \phi(0, \Omega_t) - \theta > \phi(\hat{\mu}_t, \Omega_t)\}\$ is the optimal stopping time.

Markup process in discrete time

• Stochastic process with permanent and transitory shocks:

$$(Total) \quad \mu_{t} = \mu_{t-1} + \mu_{t}^{P} + \mu_{t}^{T}$$

$$(Permanent) \quad \mu_{t}^{P} = \mu_{t-1}^{P} + \sigma_{F} \varepsilon_{t}^{F} + \sigma_{U} \varepsilon_{t}^{U} J_{t}$$

$$(Transitory) \quad \mu_{t}^{T} = \gamma \varepsilon_{t}^{T}$$

$$J_{t} = \begin{cases} 1 & \text{w.p. } 1 - e^{-\lambda} \\ 0 & \text{w.p. } e^{-\lambda} \end{cases}$$

$$\varepsilon_{t}^{F}, \varepsilon_{t}^{U}, \varepsilon_{t}^{T} \sim \mathcal{N}(0, 1)$$

- Firm observes total markup μ_t , but not its components separately.
- Firm knows realization of binomial J_t , but not the size of the shock.
- Timing assumption: Choose price before observing productivity.

Young prices: more flexible and dispersed

- Price age is current date minus the last stopping time: $a = t \tau_{t-1}$
- Age thresholds:
 - Young price if a < 7, (20% age percentile)
 - Old price if a > 66, (80% age percentile)
- Frequency and dispersion for young and old prices

Statistic	Data*		Data*		Mo	del		
	All	Young	Old	Ratio	All	Young	Old	Ratio
Frequency %	15	36	13	2.8	11.4	16.4	8.3	2.0
std(Price gap)	11.4	15.1	6.9	2.2	3.4	3.8	3.0	1.3
Uncertainty*100					0.3	0.4	0.2	2.5

^{*}Campbell and Eden (2014), average all products without discounts, with thresholds $\underline{a} < 3$ and $\overline{a} > 4$ weeks.

• Frequency ratio informs about underlying uncertainty.

Hazard Rate of Price Adjustment Return

• Include controls for observed and unobserved heterogeneity

Representative Household

$$\max_{\{C_t, c_t(z), l_t, M_t\}} \mathbb{E}\left[\int_0^\infty e^{-rt} \left(\log C_t - l_t + \log \frac{M_t}{P_t}\right) dt\right] \quad s.t$$

$$M_0 \ge \mathbb{E}\left[\int_0^\infty Q_t \left(\int_0^1 p_t(z) c_t(z) dz + R_t M_t - E_t l_t - \Pi_t\right) dt\right]$$

$$C_t = \left(\int_0^1 \left(A_t(z) c_t(z)\right)^{\frac{\eta-1}{\eta}} dz\right)^{\frac{\eta}{\eta-1}}$$

- o Q_t : time zero nominal Arrow-Debreu price
- o C_t : aggregate consumption with price P_t
- $\circ l_t$: labor with price E_t
- o $R_t M_t$: opportunity cost of money (R_t nominal i-rate)
- \circ Π_t : firms' profits
- \circ $A_t(z)$: quality shocks

Environment: Firms

- Continuum of monopolistic firms, indexed with $z \in [0,1]$.
- Firms choose price to maximize expected profits, discounted at Q_t .
- Period profits are

$$\Pi(p_t(z), A_t(z)) = c_t(p_t(z), A_t(z)) (p_t(z) - A_t(z)W_t)$$

where quality $a_t(z) = \log A_t(z)$ is *iid* across firms:

$$da_t(z) = \sigma_f dW_t(z) + \sigma_u u_t(z) dq_t(z)$$

Firms observe noisy signals about quality:

$$ds_t(z) = a_t(z)dt + \gamma dZ_t(z)$$

- Pay menu cost θ.
- Assumption: firms cannot invert the demand function

Equilibrium Definition

An equilibrium with constant money growth is a set of stochastic processes for

- i) consumption strategies $c_t(z)$, labor supply l_t and money holdings M_t for the representative consumer
- ii) labor demand $l_t(z)$ and pricing policy $p_t(z)$ for firms
- iii) prices W_t, R_t, Q_t
- iv) measure of firms that reprice N_t

such that:

- Given prices, $c_t(z)$, l_t and M_t solve the consumer's problem with initial $M_0 = M$.
- Given the prices and demands, firms' policies $l_t(z)$ and $p_t(z)$ solve her problem.
- Markets clear at each date.

Return

Steady State with Constant Money Supply

- Steady state equilibrium with zero money growth
- Constant money supply $M \Rightarrow$
 - Constant wage W = M
 - Constant nominal interest rate R = r and discount $Q_t = e^{-rt}$
- Fixed distribution $f(\hat{\mu}, \Omega)$

Related literature

• Price-setting with menu costs

Barro ('72), Caplin & Spulber ('87), Caplin & Leahy ('91), Danziger ('99), Dotsey, King & Wolman ('99), Golosov & Lucas ('07), Gertler & Leahy ('08), Nakamura & Steinsson ('10), Midrigan ('11), Alvarez & Lippi ('14).

- Price-setting with idiosyncratic information frictions

 Bachmann & Moscarini ('12), Alvarez, Lippi & Paciello ('11,'13), Bonomo,
 Carvalho, Garcia & Malta ('14), Argente and Yeh (2016).
- Uncertainty and real option effects

 Bernanke ('82), Dixit ('91), Bloom ('09), Vavra ('14), Senga ('15).
- Price micro-data Bils & Klenow ('04, '10), Nakamura & Steinsson ('08, '13), Campbell and Eden ('14), Baley, Kochen, Sámano (2016).

Disclosed Money Shock: 3 calibrations

Calibration details Return

	US Data	No uncertainty (Baseline)	Heterogenous Uncertainty
Parameters	Data	(Dascinic)	e neer tainty
σ_f		0.016	0
σ_u			0.219
λ			0.011
γ			0.467
Moments			
$\mathbb{E}[\tau]$ in months	10	10*	10*
$\operatorname{std}[\Delta p]$	0.08	0.007	0.05^{*}
hazard rate slope	-0.007	0.007	-0.005^*
$\operatorname{kurtosis}[\Delta p]$	3.95	1.027	1.84

- θ such that $\frac{\text{Average menu costs}}{\text{revenue}} = 0.5\%$
- B such that Average markup = 20%
- r = 4% year