離散最適化基礎論 第 5 回 幾何ハイパーグラフ (1): VC 次元

岡本 吉央 okamotoy@uec.ac.jp

電気通信大学

2017年11月17日

最終更新: 2017年12月8日 16:16

主題

離散最適化のトピックの1つとして<mark>幾何的被覆問題</mark>を取り上げ、 その<mark>数理</mark>的側面と計算的側面の双方を意識して講義する

なぜ講義で取り扱う?

- ▶ 「離散最適化」と「計算幾何学」の接点として重要な役割を 果たしているから
- ▶ 様々なアルゴリズム設計技法・解析技法を紹介できるから
- ▶ 応用が多いから

スケジュール 前半 (予定)

1 幾何的被覆問題とは?	(10/6)
★ 国内出張のため休み	(10/13)
2 最小包囲円問題 (1):基本的な性質	(10/20)
③ 最小包囲円問題 (2): 乱択アルゴリズム	(10/27)
★ 文化の日のため休み	(11/3)
4 クラスタリング (1): k−センター	(11/10)
5 幾何ハイパーグラフ (1): VC 次元	(11/17)
★ 調布祭 のため 休み	(11/24)
$oldsymbol{6}$ 幾何ハイパーグラフ $(2):arepsilon$ ネット	(12/1)

注意:予定の変更もありうる

スケジュール 後半 (予定)

	(10 /0)
7 幾何的被覆問題 (1):線形計画法の利用	(12/8)
8 幾何的被覆問題 (2):シフト法	(12/15)
g 幾何的被覆問題 (3):局所探索法	(12/22)
🔟 幾何的被覆問題 (4):局所探索法の解析	(1/5)
⋆ センター試験準備 のため 休み	(1/12)
💵 幾何ハイパーグラフ (3) : $arepsilon$ ネット定理の証明	(1/19)
$leve{1}$ 幾何アレンジメント (1) :合併複雑度と $arepsilon$ ネット	(1/26)
○ 幾何アレンジメント (2):合併複雑度の例	(2/2)
14 最近のトピック	(2/9)
15 期末試験	(2/16?)

注意:予定の変更もありうる

幾何ハイパーグラフの特殊性

特に, VC 次元

- ▶ VC 次元の定義
- ▶ Sauer の補題 (VC 次元の小さいハイパーグラフの性質)
- ▶ VC 次元の例
 - ▶ 区間,半平面,凸多角形
 - 集合演算との関係

復習:ハイパーグラフ

被覆問題 (covering problem) で与えられるものはハイパーグラフ

定義:ハイパーグラフ (hypergraph)

Nイパーグラフとは、次を満たす順序対 H = (V, E)

- ▶ Vは (有限)集合
- \triangleright $E \subset 2^V$

(Hの辺集合)

(Hの頂点集合)

- 例:H = (V, E)
 - $V = \{1, 2, 3, 4, 5\}$

 - $E = \{\{1, 2, 3\}, \{1, 3, 5\}, \{1, 4\}, \{2, 4, 5\}\}$

- 2
 - 3

計算幾何・離散幾何では領域空間 (range space) と呼ばれることもある

復習:ハイパーグラフ

被覆問題 (covering problem) で与えられるものはハイパーグラフ

定義:ハイパーグラフ (hypergraph)

ハイパーグラフとは、次を満たす順序対 H = (V, E)

- ▶ Vは (有限)集合
- $E \subset 2^V$

- (Hの頂点集合)
 - (Hの辺集合)

$$\underline{M}: H = (V, E)$$

- $V = \{1, 2, 3, 4, 5\}$
- $E = \{\{1,2,3\},\{1,3,5\},\{1,4\},\{2,4,5\}\}$

計算幾何・離散幾何では<mark>領域空間</mark> (range space) と呼ばれることもある

復習:被覆問題(1)

被覆問題 (covering problem) と言ったら、次のような設定の問題

<u>入力として与</u>えられるもの

▶ ハイパーグラフ *H* = (*V*, *E*)

復習:被覆問題 (2)

被覆問題 (covering problem) と言ったら,次のような設定の問題

出力したいもの

 E の部分集合 E' で、V の要素をすべて被覆するもの (任意の v_i ∈ V に対して、ある e_j ∈ E' が存在して、v_i ∈ e_j)

復習:被覆問題 (3)

被覆問題 (covering problem) と言ったら、次のような設定の問題

目的

▶ |E'| の最小化

復習:被覆問題 (3)

被覆問題 (covering problem) と言ったら、次のような設定の問題

目的

▶ |E'| の最小化

復習:幾何的被覆問題の例 (1) 再掲

幾何的被覆問題の例 (1)

平面上にいくつかの点といくつかの単位円が与えられたとき 単位円を選んで、点をすべて覆いたい 選ばれる単位円の数を最も少なくするにはどうすればよいか?

復習:幾何的被覆問題の例 (1) 被覆問題としての定式化

被覆問題としての定式化

- $V = \{v_1, v_2, v_3, v_4, v_5, v_6\}$
- \triangleright $E = \{e_1, e_2, e_3, e_4\}$
- $ightharpoonup e_1 = \{v_1, v_2\}, \ e_2 = \{v_1, v_3, v_4\}, \ e_3 = \{v_3, v_4\}, \ e_4 = \{v_4, v_5, v_6\}$

復習:幾何的被覆問題の例 (1) 被覆問題としての定式化

被覆問題としての定式化

- $V = \{v_1, v_2, v_3, v_4, v_5, v_6\}$
- \triangleright $E = \{e_1, e_2, e_3, e_4\}$
- $ightharpoonup e_1 = \{v_1, v_2\}, \ e_2 = \{v_1, v_3, v_4\}, \ e_3 = \{v_3, v_4\}, \ e_4 = \{v_4, v_5, v_6\}$

復習:幾何的被覆問題の例 (1) 被覆問題としての定式化 (続き)

被覆問題としての定式化:最適解と最適値

- \triangleright $E = \{e_1, e_2, e_3, e_4\}$
- $ightharpoonup e_1 = \{v_1, v_2\}, \ e_2 = \{v_1, v_3, v_4\}, \ e_3 = \{v_3, v_4\}, \ e_4 = \{v_4, v_5, v_6\}$
- $ightharpoonup E' = \{e_1, e_2, e_4\}$ は<mark>最適解で,3 が最適値</mark>

復習:幾何的被覆問題の例 (1) 被覆問題としての定式化 (続き 2)

被覆問題としての定式化:最適解と最適値

- $ightharpoonup E = \{e_1, e_2, e_3, e_4\}$
- $ightharpoonup e_1 = \{v_1, v_2\}, \ e_2 = \{v_1, v_3, v_4\}, \ e_3 = \{v_3, v_4\}, \ e_4 = \{v_4, v_5, v_6\}$
- $ightharpoonup E' = \{e_1, e_3, e_4\}$ も<mark>最適解で,3が最適値</mark>

復習:違う幾何配置が同じハイパーグラフを与えることもある

→ ハイパーグラフは幾何配置の「組合せ構造」に着目している

復習:ハイパーグラフについて知られていること

ハイパーグラフ H = (V, E) に対する被覆問題を考える

よく知られた事実 (定理)

H = (V, E) に対する被覆問題には,

多項式時間 $1+\ln n$ 近似アルゴリズムが存在する (ただし, n=|V|)

つまり、ほとんどの幾何的被覆問題は同じ近似比で解ける

よいこと:万能であること

このアルゴリズムから どんな幾何的被覆問題にも $1 + \ln n$ 近似解が得られる

悪いこと:大きな近似比

近似比 1 + ln n が大きすぎる (n に関して単調増加)

目標:この「悪いこと」を改善したい

この講義では、いくつかの技法を見る(予定である)

- ▶ 離散型単位円被覆問題:多項式時間 O(1) 近似アルゴリズム
 - (Brönnimann, Goodrich '95)
 - → アルゴリズム:線形計画法の利用
- lacktriangle連続型単位円被覆問題:多項式時間 1+arepsilon 近似アルゴリズム (Hochbaum, Maass '85)
 - → アルゴリズム:シフト法
- lackbox 離散型単位円被覆問題:多項式時間 1+arepsilon 近似アルゴリズム

(Mustafa, Ray '10)

→ アルゴリズム:局所探索法

つまり

- ▶ 幾何的に得られるハイパーグラフは特殊な性質を持つ
- それはどんな性質なのか?

- ① VC 次元
- 2 Sauer の補題
- 3 幾何ハイパーグラフの VC 次元:例
- 4 集合の操作と VC 次元
- 5 今日のまとめ

ハイパーグラフとその射影

ハイパーグラフ H = (V, E), 部分集合 $X \subseteq V$

定義:ハイパーグラフの射影 (projection)

 $H \cap X \cap \mathbb{R}$ の上への射影とは、ハイパーグラフ $H|_X = (X, E|_X)$ で、

$$E|_X = \{e \cap X \mid e \in E\}$$

 $V = \{v_1, v_2, v_3, v_4\}, E = \{e_1, e_2, e_3, e_4\}, X = \{v_1, v_4, v_5\},$ $e_1 = \{v_1, v_2, v_3\}, e_2 = \{v_1, v_4\}, e_3 = \{v_2, v_3\}, e_4 = \{v_3, v_4, v_5\}$ のとき

 $H|_{\{v_1,v_4,v_5\}}$

ハイパーグラフと集合の粉砕

ハイパーグラフ H = (V, E), 部分集合 $X \subseteq V$

定義:集合の粉砕

X が H によって粉砕される (shattered) とは, $E|_X=2^X$ となること

 $\{v_1, v_4, v_5\}$ は H によって粉砕されない

ハイパーグラフと集合の粉砕 (続)

Nイパーグラフ H = (V, E), 部分集合 $X \subseteq V$

定義:集合の粉砕

X が H によって粉砕される (shattered) とは, $E|_X=2^X$ となること

 $\{v_1, v_4\}$ は H によって粉砕される

ハイパーグラフの VC 次元

ハイパーグラフH = (V, E)

定義:ハイパーグラフの VC 次元 (VC-dimension)

 $H \cap VC$ 次元とは,H によって粉砕される集合の最大要素数

 $\operatorname{vc-dim}(H) = \sup\{|X| \mid X \subseteq V, X \text{ は } H \text{ に粉砕される }\}$

vc-dim(H) = 2

ハイパーグラフの VC 次元

ハイパーグラフ H = (V, E)

定義:ハイパーグラフの VC 次元 (VC-dimension)

H の VC 次元とは,H によって粉砕される集合の最大要素数

 $\operatorname{vc-dim}(H) = \sup\{|X| \mid X \subseteq V, X \text{ は } H \text{ に粉砕される }\}$

$\operatorname{vc-dim}(H) \geq d$ であることを証明するには

要素数 d の集合で、粉砕されるものを見つければよい

$\overline{{ m vc-dim}(H)} \le d$ であることを証明するには

要素数 d+1 のどんな集合も,粉砕されないことを確認すればよい

Vladimir Vapnik & Alexey Chervonenkis

ヴァプニク

チェルフォネンキス

http://clrc.rhul.ac.uk/people/vlad/ http://clrc.rhul.ac.uk/people/chervonenkis/

- ① VC 次元
- 2 Sauer の補題
- ③ 幾何ハイパーグラフの VC 次元:例
- ④ 集合の操作と VC 次元
- 5 今日のまとめ

Sauer の補題

ハイパーグラフ
$$H = (V, E)$$

Sauer の補題

n = |V|, d = vc-dim(H) とするとき,

$$|E| \leq \sum_{i=0}^d \binom{n}{i}$$

解釈:VC 次元の小さいハイパーグラフの辺数は小さい

Sauer の補題:帰結

ハイパーグラフ $H = (V, E), X \subseteq V$

Sauer の補題

n = |V|, d = vc-dim(H) とするとき,

 $H(x) = -x \log_2 x - (1-x) \log_2 (1-x)$ をエントロピー関数とすると

$$|E| \le \sum_{i=0}^d \binom{n}{i} \le 2^{n \cdot H(d/n)}$$

d ≥ 1 ならば

$$|E| \le \sum_{i=0}^d \binom{n}{i} \le \left(\frac{e \, n}{d}\right)^d \le (3n)^d$$

つまり、d が定数であるとき、 $|E| = O(n^d)$

Sauer の補題:証明 (1)

 $\overline{\underline{u}}$ 明:n+d に関する帰納法.

- ▶ n+d=0のとき、つまり、n=0かつd=0のときを考える
- ▶ |V| = n = 0 より, $E = \emptyset$
- ▶ : |E| = 0
- ト 一方で、 $\sum_{i=0}^{d} \binom{n}{i} = \binom{0}{0} = 1$
- ▶ したがって、このとき、 $|E| \leq \sum_{i=0}^{d} \binom{n}{i}$

同様に、n=0 ならば、d>0 であっても成り立つ (したがって、 $n\geq1$ と仮定してよい)

Sauer の補題:証明 (2)

証明 (続き):帰納段階に進む

- ▶ 仟意の x ∈ V を考える
- ▶ 次のハイパーグラフ H₁ = (V₁, E₁), H₂ = (V₂, H₂) を考える

$$V_1 = V - \{x\},$$
 $E_1 = \{e - \{x\} \mid e \in E\},$ $V_2 = V - \{x\},$ $E_2 = \{e - \{x\} \mid e - \{x\} \in E, e \cup \{x\} \in E\}$

- このとき、次の3つが成り立つ
- 1 vc-dim $(H_1) \leq d$
- 2 vc-dim $(H_2) \le d 1$

(←演習問題)

 $|E| = |E_1| + |E_2|$

Sauer の補題:証明 (3)

- 1 vc-dim $(H_1) \leq d$ の証明
- ト VC 次元の定義より ある集合 $X \subseteq V \{x\}$ に対して, $E_1|_X = 2^X$ かつ $|X| = \text{vc-dim}(H_1)$
- このとき, x ∉ X なので,

$$E|_{X} = \{e \cap X \mid e \in E\}$$

= $\{(e - \{x\}) \cap X \mid e \in E\}$
= $E_{1}|_{X} = 2^{X}$

▶ したがって, X は H に粉砕され,

$$d = \operatorname{vc-dim}(H) \ge |X| = \operatorname{vc-dim}(H_1)$$

Sauer の補題: 証明 (4)

1 vc-dim $(H_2) \le d - 1$ の証明

演習問題

▶ ヒント:ある集合 $X \subseteq V - \{x\}$ に対して, $E_2|_{X} = 2^X$ かつ $|X| = \text{vc-dim}(H_2)$ であると仮定して, $X \cup \{x\}$ が H に粉砕されることを証明すればよい

Sauer の補題:証明 (5)

$$|E| = |E_1| + |E_2|$$
の証明

- ► E の要素 e を E₁ の要素に対応付けることを考える
- ▶ ここで, $x \notin e$ であるとき, $e \in E$ と $e \cup \{x\} \in E$ は同じ要素 $e \in E_1$ に対応する
- しかし、このとき、e ∈ E₂ である
- ▶ したがって, $|E| = |E_1| + |E_2|$ となる

Sauer の補題:証明 (6)

証明の続き:

▶ 帰納法の仮定より,

$$|E_1| \leq \sum_{i=0}^d \binom{n-1}{i}, \quad |E_2| \leq \sum_{i=0}^{d-1} \binom{n-1}{i}$$

▶ したがって,

$$|E| = |E_1| + |E_2| \le \sum_{i=0}^{d} {n-1 \choose i} + \sum_{i=0}^{d-1} {n-1 \choose i}$$

$$= {n-1 \choose 0} + \sum_{i=1}^{d} {n-1 \choose i} + {n-1 \choose i-1}$$

$$= {n \choose 0} + \sum_{i=1}^{d} {n \choose i} = \sum_{i=0}^{d} {n \choose i}$$

Sauer の補題:系

ハイパーグラフ H = (V, E)

Sauer の補題

n = |V|, d = vc-dim(H) とするとき,

$$|E| \le \sum_{i=0}^d \binom{n}{i}$$

Sauer の補題:系

 $X \subseteq V$ として, m = |X| とすると,

$$|E|_X| \le \sum_{i=0}^d \binom{m}{i}$$

証明: $\operatorname{vc-dim}(H|_X) \leq \operatorname{vc-dim}(H)$ を確認すればよい

(演習問題)

- **1** VC 次元
- 2 Sauer の補題
- 3 幾何ハイパーグラフの VC 次元:例
- ④ 集合の操作と VC 次元
- 5 今日のまとめ

N + (V, E) として、次を考える

- $V = \mathbb{R}$
- ▶ $E = \{ [a, b] \mid a, b \in \mathbb{R}, a \le b \}$

つまり、H は数直線上の閉区間を全部集めてできるハイパーグラフ

ハイパーグラフH = (V, E)として,次を考える

- $V = \mathbb{R}$
- ▶ $E = \{ [a, b] \mid a, b \in \mathbb{R}, a \leq b \}$

VC 次元の下界

ハイパーグラフH = (V, E)として,次を考える

- $V = \mathbb{R}$
- ▶ $E = \{[a, b] \mid a, b \in \mathbb{R}, a \le b\}$

VC 次元の下界

ハイパーグラフH = (V, E)として,次を考える

- $V = \mathbb{R}$
- ▶ $E = \{[a, b] \mid a, b \in \mathbb{R}, a \le b\}$

VC 次元の下界

ハイパーグラフH = (V, E)として,次を考える

- $V = \mathbb{R}$
- ▶ $E = \{[a, b] \mid a, b \in \mathbb{R}, a \le b\}$

VC 次元の下界

ハイパーグラフH = (V, E)として,次を考える

- $V = \mathbb{R}$
- ▶ $E = \{[a, b] \mid a, b \in \mathbb{R}, a \le b\}$

VC 次元の下界

数直線上の閉区間族:VC次元の上界

ハイパーグラフH = (V, E)として,次を考える

- $V = \mathbb{R}$
- ▶ $E = \{[a, b] \mid a, b \in \mathbb{R}, a \le b\}$

VC 次元の上界

このハイパーグラフ H に対して、vc-dim(H) ≤ 2

数直線上の任意の3点を考える

数直線上の閉区間族:VC次元の上界

ハイパーグラフH = (V, E)として,次を考える

- $V = \mathbb{R}$
- ▶ $E = \{ [a, b] \mid a, b \in \mathbb{R}, a \leq b \}$

VC 次元の上界

このハイパーグラフ H に対して、vc-dim(H) ≤ 2

数直線上の任意の3点を考える

数直線上の閉区間族:VC次元の上界

ハイパーグラフH = (V, E)として,次を考える

- $V = \mathbb{R}$
- ▶ $E = \{[a, b] \mid a, b \in \mathbb{R}, a \le b\}$

VC 次元の上界

このハイパーグラフ H に対して、vc-dim(H) ≤ 2

数直線上の任意の3点を考える

ハイパーグラフH = (V, E)として、次を考える

- $V = \mathbb{R}^2$
- ► E = { 閉半平面 }

つまり、 H は平面上の閉半平面を全部集めてできるハイパーグラフ

平面上の閉半平面族: VC 次元の下界

ハイパーグラフ *H* = (*V*, *E*) として,次を考える

- $V = \mathbb{R}^2$
- ► E = { 閉半平面 }

VC 次元の下界

平面上の閉半平面族: VC 次元の下界

ハイパーグラフ *H* = (*V*, *E*) として,次を考える

- $V = \mathbb{R}^2$
- ► E = { 閉半平面 }

VC 次元の下界

平面上の閉半平面族:VC次元の下界

<u> ハイパーグラフ H = (V, E)</u> として,次を考える

- $V = \mathbb{R}^2$
- ► E = { 閉半平面 }

VC 次元の下界

平面上の閉半平面族:VC次元の下界

ハイパーグラフ *H* = (*V*, *E*) として,次を考える

- $V = \mathbb{R}^2$
- ► E = { 閉半平面 }

VC 次元の下界

平面上の閉半平面族: VC 次元の下界

ハイパーグラフH = (V, E)として,次を考える

- $V = \mathbb{R}^2$
- ► E = { 閉半平面 }

VC 次元の下界

平面上の閉半平面族:VC次元の下界

ハイパーグラフH = (V, E)として,次を考える

- $V = \mathbb{R}^2$
- ► E = { 閉半平面 }

VC 次元の下界

平面上の閉半平面族: VC 次元の下界

N + (V, E) として、次を考える

- $V = \mathbb{R}^2$
- ► E = { 閉半平面 }

VC 次元の下界

平面上の閉半平面族:VC次元の下界

ハイパーグラフ *H* = (*V*, *E*) として,次を考える

- $V = \mathbb{R}^2$
- ► E = { 閉半平面 }

VC 次元の下界

平面上の閉半平面族: VC 次元の上界

ハイパーグラフH = (V, E)として,次を考える

- $V = \mathbb{R}^2$
- ► E = { 閉半平面 }

VC 次元の上界

このハイパーグラフ H に対して、vc-dim(H) ≤ 3

平面上の任意の4点を考える

平面上の閉半平面族: VC 次元の上界

ハイパーグラフ H = (V, E) として,次を考える

- $V = \mathbb{R}^2$
- ► E = { 閉半平面 }

VC 次元の上界

このハイパーグラフ H に対して、vc-dim(H) ≤ 3

平面上の任意の4点を考える

平面上の凸多角形族

ハイパーグラフ *H* = (*V*, *E*) として,次を考える

- $V = \mathbb{R}^2$
- ► E = { 凸多角形 }

つまり、H は平面上の凸多角形を全部集めてできるハイパーグラフ

平面上の凸多角形族: VC 次元の下界

ハイパーグラフ H = (V, E) として,次を考える

- $V = \mathbb{R}^2$
- ► E = { 凸多角形 }

VC 次元の下界

このハイパーグラフ H に対して、 $\operatorname{vc-dim}(H) = \infty$

つまり、任意の自然数nに対して、 凸多角形族が粉砕するn個の点の 集合が存在する

•

平面上の凸多角形族:VC 次元の下界

ハイパーグラフ H = (V, E) として,次を考える

- $V = \mathbb{R}^2$
- ► E = { 凸多角形 }

VC 次元の下界

このハイパーグラフ H に対して、 $vc-dim(H) = \infty$

つまり、任意の自然数nに対して、 凸多角形族が粉砕する n 個の点の 集合が存在する

平面上の凸多角形族: VC 次元の下界

ハイパーグラフ H = (V, E) として,次を考える

- $V = \mathbb{R}^2$
- ► E = { 凸多角形 }

VC 次元の下界

このハイパーグラフHに対して、 $\operatorname{vc-dim}(H) = \infty$

つまり,任意の自然数nに対して, 凸多角形族が粉砕するn個の点の 集合が存在する

平面上の凸多角形族:VC 次元の下界

ハイパーグラフ H = (V, E) として,次を考える

- $V = \mathbb{R}^2$
- ► E = { 凸多角形 }

VC 次元の下界

このハイパーグラフ H に対して、 $vc-dim(H) = \infty$

つまり、任意の自然数nに対して、 凸多角形族が粉砕する n 個の点の 集合が存在する

平面上の凸多角形族: VC 次元の下界

ハイパーグラフ H = (V, E) として,次を考える

- $V = \mathbb{R}^2$
- ► E = { 凸多角形 }

VC 次元の下界

このハイパーグラフHに対して、 $\operatorname{vc-dim}(H) = \infty$

つまり,任意の自然数 n に対して, 凸多角形族が粉砕する n 個の点の 集合が存在する

VC 次元の例:まとめ

- ▶ $H = (\mathbb{R}, \mathbb{R})$ $\rightsquigarrow \text{vc-dim}(H) = 2$
- ▶ $H = (\mathbb{R}^2, \text{半平面}) \rightsquigarrow \text{vc-dim}(H) = 3$
- ▶ $H = (\mathbb{R}^2, \Delta$ 多角形) $\rightsquigarrow \text{vc-dim}(H) = \infty$

今から行いたいこと

他にも様々なハイパーグラフの VC 次元を考えたい

- **1** VC 次元
- ② Sauer の補題
- 3 幾何ハイパーグラフの VC 次元:例
- 4 集合の操作と VC 次元
- 5 今日のまとめ

補集合から作られるハイパーグラフ

ハイパーグラフH = (V, E)

補集合から作られるハイパーグラフの VC 次元

ハイパーグラフ H' = (V', E')を次で定義する

$$V' = V, \quad E' = \{V - e \mid e \in E\}$$

このとき,

$$\operatorname{vc-dim}(H') = \operatorname{vc-dim}(H)$$

証明:演習問題

合併から作られるハイパーグラフ

ハイパーグラフ $H_1 = (V_1, E_1), H_2 = (V_2, E_2)$

合併から作られるハイパーグラフの VC 次元

ハイパーグラフ H = (V, E) を次で定義する

$$V = V_1 \cup V_2, \quad E = \{e_1 \cup e_2 \mid e_1 \in E_1, e_2 \in E_2\}$$

このとき、 $\operatorname{vc-dim}(H) = d$, $\operatorname{vc-dim}(H_1) = d_1$, $\operatorname{vc-dim}(H_2) = d_2$ ならば、

$$d = O((d_1 + d_2)\log(d_1 + d_2))$$

 $\underline{\overline{x}}$ 明:ある集合 $X\subseteq V$ に対して, $E|_X=2^X$,|X|=d が成り立つとする

▶ このとき、次のページの式が成り立つ

合併から作られるハイパーグラフ (続)

$$E|_{X} = \{e \cap X \mid e \in E\}$$

$$= \{(e_{1} \cup e_{2}) \cap X \mid e_{1} \in E_{1}, e_{2} \in E_{2}\}$$

$$= \{(e_{1} \cap X) \cup (e_{2} \cap X) \mid e_{1} \in E_{1}, e_{2} \in E_{2}\}$$

$$= \{e'_{1} \cup e'_{2} \mid e'_{1} \in E_{1}|_{X}, e'_{2} \in E_{2}|_{X}\}$$

$$\therefore |E|_{X}| \leq |E_{1}|_{X}| \cdot |E_{2}|_{X}|$$

$$\therefore 2^{d} \leq \sum_{i=0}^{d_{1}} {d \choose i} \cdot \sum_{i=0}^{d_{2}} {d \choose i} \leq (3d)^{d_{1}} \cdot (3d)^{d_{2}} = (3d)^{d_{1}+d_{2}}$$

つまり,

$$2^d \leq (3d)^{d_1+d_2}$$

したがって, $d = O((d_1 + d_2)\log(d_1 + d_2))$

共通部分から作られるハイパーグラフの VC 次元

ハイパーグラフ
$$H_1 = (V_1, E_1), H_2 = (V_2, E_2)$$

共通部分から作られるハイパーグラフの VC 次元

ハイパーグラフ H = (V, E) を次で定義する

$$V = V_1 \cup V_2, \quad E = \{e_1 \cap e_2 \mid e_1 \in E_1, e_2 \in E_2\}$$

このとき、 $\operatorname{vc-dim}(H) = d$, $\operatorname{vc-dim}(H_1) = d_1$, $\operatorname{vc-dim}(H_2) = d_2$ ならば、

$$d = O((d_1 + d_2)\log(d_1 + d_2))$$

 $\overline{\underline{\mathrm{in}}} : e_1 \cap e_2 = V - ((V - e_1) \cup (V - e_2))$ という事実を使う (詳細は演習問題)

- **1** VC 次元
- ② Sauer の補題
- ③ 幾何ハイパーグラフの VC 次元:例
- ④ 集合の操作と VC 次元
- 5 今日のまとめ

今日の内容と次回の予告

幾何ハイパーグラフの特殊性

特に,VC 次元

- ▶ VC 次元の定義
- ▶ Sauer の補題 (VC 次元の小さいハイパーグラフの性質)
- ▶ VC 次元の例
 - ▶ 区間,半平面,凸多角形
 - ▶ 集合演算との関係

次回の予告

VC 次元が小さいと何がよいのか? $\leftrightarrow \epsilon$ ネット定理

 ϵ ネット定理は、計算幾何学だけではなく、 計算論的学習理論でも使われる強力な道具

残った時間の使い方

- ▶ 演習問題をやる
 - ▶ 相談推奨 (ひとりでやらない)
- ▶ 質問をする
 - ▶ 教員は巡回
- ▶ 退室時, 小さな紙に感想など書いて提出する ← 重要
 - ▶ 内容は何でも OK
 - ▶ 匿名で OK

- ① VC 次元
- 2 Sauer の補題
- 3 幾何ハイパーグラフの VC 次元:例
- 4 集合の操作と VC 次元
- 5 今日のまとめ