Similarity searching / sequence alignment summary

Thurs, February 22, 2016 Biol4230

Bill Pearson wrp@virginia.edu 4-2818 Pinn 6-057

What have we covered?

- Homology excess similiarity
 - but no excess similarity ≠ non-homology
 - what is an Expectation E() value?
 - DNA vs protein searches?
- Alignment scores
 - use scoring matrix not identity (for proteins)
 - why is protein comparison more sensitive?
- BLAST lab I:
 - non-significant ≠ not-homologous
 - domains show homology when pairwise score does not (why?)
 - are parts of domains missing when only part aligns?

fasta.bioch.virginia.edu/biol4230

Similarity searching summary (2)

- Quick overview of alignment algorithms
 - local vs global
 - dynamic programming
 - non-overlapping local alignments
- Improving search performance local alignment statistics
 - the extreme value distribution
 - why database size matters
 - evaluating statistical accuracy what is the "control?"
- What are E()-values good for? Not good for?
- Where scoring matrices come from
 - scoring matrices as log-odds matrices
 - shallow matrices: short higher identity alignments / deep matrices: long alignments, lower identity alignments – WHY??
 - · shallow matrices, higher identity alignment (less overextension)
- Blast lab II -
 - local alignments of duplicated domains?
 - alignment over-extension

fasta.bioch.virginia.edu/biol4230

Domains

- domain definitions
 - domains are "atomic" mobile structural units
 - why do only parts of domains align?
- InterPro, a "meta"-database of domain databases, and Pfam
 - when do the domain databases agree? where do they disagree?
- Where do pairwise scoring matrices come from?
 - log(odds) [f-homology/f-chance]
 - which part changes for different amounts of divergence?
- What are position specific scoring matrices (PSSMs)
 - [f-position/f-chance] PSI-BLAST
 - what are the starting values? which part changes?
- What mistakes do Iterative methods (PSI-BLAST) make?
 - alignment over-extension (which can lead to ...)
 - multiple alignment (PSSM) contamination

fasta.bioch.virginia.edu/biol4230

3

Over-extension into random sequence

Empirical matrix performance (median results from random alignments)

Matrix	target % ident	bits/position	aln len (50 bits)
VT160 -12/-2	23.8	0.26	192
BLOSUM50 -10/-2	25.3	0.23	217
BLOSUM62* -11/-1	28.9	0.45	111
VT120 -11/-1	27.4	1.03	48
VT80 -11/-1	51.9	1.55	32
PAM70* -10/-1	33.8	0.64	78
PAM30* -9/-1	45.5	1.06	47
VT40 -12/-1	72.7	2.76	18
VT20 -15/-2	84.6	3.62	13
VT10 /16/-2	90.9	4.32	12

HMMs can be very "deep"
What is a "deep" matrix? a "shallow" matrix?

Pearson (2013) Curr. Protoc. Bioinformatics 3.5.1

fasta.bioch.virginia.edu/biol4230

Scoring matrices affect alignment boundaries (homologous over-extension) BLOSUM62 -11/-1 BLOSUM62 -11/-1 32- 42: 69- 79 : Id=0.455; Q= 0.0 : NODOM :0 43- 79: 80-116 : Id=0.158; Q= 0.0 : Hs1_Cortactin 80-116:117-153 : Id=0.622; Q=37.4 : Hs1_Cortactin 117-153:154-190 : Id=0.757; Q=50.2 : Hsl_Cortactin 154-190:191-227 : Id=0.811; Q=61.0 : Hs1_Cortactin 191-227:228-264 : Id=0.568; Q=35.3 : Hs1_Cortactin $228-264:265-301 : Id=0.649; Q=41.5 : Hs1_Cortactin$ 400 265-287:302-324 : Id=0.565: O= 8.9 : Hs1 Cortactin 288-458:325-491 : Id=0.165; Q= 0.0 : NODOM 459-473:492-506 : Id=0.200; Q= 0.0 : SH3 82-116:119-153 : Id=0.657; Q=102.2 : Hs1_Cortactin 117-153:154-190 : Id=0.757: O=138.0 : Hs1 Cortactin 154-190:191-227 : Id=0.811; Q=164.6 : Hs1_Cortactin 191-227:228-264 : Id=0.568; Q= 91.9 : Hs1_Cortactin 228-264:265-301 : Id=0.649; Q=112.4 : Hs1_Cortactin VTML80 -10/-1 fasta.bioch.virginia.edu/biol4230

Alignment statistics II / Algorithms II

- Foundation of homology from excess similarity
 - Unrelated sequence similarity scores are indistinguishable from "random" scores
 - Not-random → not unrelated
- what is the probability of an alignment score?
 - given two sequences
 - after a database search
 - after N (100-10,000) database searches
- Hidden Markov Models
 - transition state models
 - profile HMMs

fasta.bioch.virginia.edu/biol4230

1

Multiple sequence alignment

- No multiple alignments without HOMOLOGY
- Multiple sequence alignments can resolve ambiguous gaps – largely used to specify gap positions
- Optimal methods are O(n^k) impractical for > 5 sequences
- Most programs build successive pair-wise alignments (progressive alignment) – Clustal-W (Clustal-Omega), T-coffee, MUSCLE
- Simple progressive alignment methods fix gaps early, after which they cannot be moved
- Iterative approaches required to adjust gaps
- Tree-based alignments bring a more phylogenetic perspective
- What is the "correct" answer?

fasta.bioch.virginia.edu/biol4230

12

Multiple sequence alignment

- Why multiple sequence alignment (MSA)?
 - identify conserved (functional?) positions among related sequences
 - input to evolutionary tree methods
- MSA computational complexity
 - Models for MSA: tree-based, Sum-of-pairs, star
 - "optimal" O(N^k) (k sequences of length N)
 - progressive: O(k²N²)
 - progressive/iterative: O(k²N²)
- Evaluating MSA accuracy
 - BALIBASE
 - are structural alignments correct?

fasta.bioch.virginia.edu/biol4230

13

First exam sample questions—2 hours, collab Due Monday, Feb. 26 at 5:00 PM

- Statistical estimates based on sequence shuffling on the fasta.bioch web site typically shows the expectation value as E(10,000).
 - a. What does E(10,000) mean?
 - b. Since only two sequences are being compared, why does it make sense to present E(10,000)? What E() context would be more appropriate?
- In the similarity searching exercise, you were asked to find the highest scoring non-homolog in the search.
 - a. If the statistical estimates are accurate, what should the Expect (E()-value) be for the highest scoring unrelated sequence (approx.)?
 - b. are all sequences with scores worse than the highest scoring non-homolog non-homologous?
- Expectation values
 - a. What is the range of Expect values (smallest and largest) in a database search of the human proteome, with 44,000 proteins?
 - b. Expect values are corrected by the size of the database for a single query; E()<0.001 means that a score this good would occur less than once in 1000 searches by chance. What Expect threshold should you choose if you wanted a 1% (0.01) chance of getting a similarity score by chance after a large scale genome analysis that required 10,000 searches?
 - c. What kinds of errors might occur because you adjusted the Expect threshold to the value you chose in part (b)?

fasta.bioch.virginia.edu/biol4230

14

First exam sample questions— 2 hours, collab Due Monday, Feb. 26 at 5:00 PM

- 4. A Pfam annotation suggests that a domain with model length 200 aligns in two places to a 150 residue protein. One location has (seq_start,seq_end) = (1,60), with (hmm_start,hmm_end) = (11,70), while the other location has (seq_start, seq_end)=(61,150) and (hmm_start, hmm_end) = (111,200).
 - a) Do these mappings of domain regions make biological sense? Why or why not?
 - b) Give an explanation for the annotation that makes biological sense.
 - Give an explanation for the annotation that suggests some kind of artifact
- 5. What is the expectation (E()) for a pairwise alignment with a score of 45 bits between two average length proteins (400 aa) in a search of the human proteome (44,000 proteins)
 - a) If the 45 bit score were produced by a 200 residue alignment, what is the expected percent identity (approximately) and what scoring matrix should be used?
 - b) If the score were produced by a 50 residue alignment, what would be the best scoring matrix and expected percent identity?
- 6. Why would raising the gap penalty improve the E()-value for very closely related sequences, but reduce the significance (increase the E()-value) for distantly related sequences?

fasta.bioch.virginia.edu/biol4230

15