# DOCUMENT TAGGING SYSTEM FOR INFORMATION RETRIEVAL AND RELEVANCE

# INTRODUCTION

Document tagging involves assigning meaningful labels or keywords to documents that represent their core content. This enables IR systems to:

- Enhance search precision: Tags help the system understand the context and content of documents, leading to more accurate retrieval results.
- Facilitate categorization: Tags allow documents to be grouped by themes or topics, making navigation and filtering easier.
- Support relevance ranking: Properly tagged documents help IR systems rank results based on their relevance to the query.

# PROBLEM STATEMENT

- Inaccurate Tagging: Current document tagging systems often struggle to assign contextually accurate tags, especially for interdisciplinary or highly specialized papers.
- Incomplete or Irrelevant Tags: Many systems generate incomplete or irrelevant tags, making it difficult for users to retrieve the most relevant documents.
- Challenges in Discoverability: These inaccuracies hinder researchers from efficiently discovering relevant literature, impacting research quality and speed.



# DATASET DESCRIPTION

Using the NIPS Papers dataset, focused on machine learning and Al.

·High-quality abstracts ideal for extracting meaningful features.



#### Why NIPS Papers?

- They are highly specialized for the ML domain, aligning with tasks like topic modeling and keyword prediction.
- Abstracts are concise yet information-dense, ideal for extracting meaningful features.

# MODEL ARCHITECTURE

#### 1. Training Documents:

A collection of labeled research papers used for training the system.

#### 2. Pre-processing:

Text cleaning and normalization (removal of stopwords, tokenization, stemming).

#### 3. Keyword Extraction:

Identifies important key-phrases from the research papers.

#### 4. Prediction Model:

A machine learning or deep learning model that predicts the most relevant domain.



Fig. 1. System Architecture

# MODEL ARCHITECTURE

#### 5. Domain Identification:

Assigns a specific domain to each paper based on the prediction model output.

#### 6. Dataset:

Serves as input for the model, consisting of previously labeled research data.

#### 7. Tag Selection:

Selects appropriate tags (keywords and domains) for the untagged paper.

#### 8. Tagged Research Paper:

The final output is a research paper enriched with selected tags and domain labels.

# **MODEL PREPARATION**

#### 1. Multi-Label Binarization:

- Converts the extracted keywords into a multihot encoded format using MultiLabelBinarizer.
- This creates a binary representation for each keyword.

#### 2.Train-Test Split:

 Splits the dataset into 80% training and 20% testing subsets to evaluate model performance effectively.

#### 3. Removing Constant Labels:

 Identifies and removes labels that are constant (always present), as they do not contribute to the model's learning.



## **MODEL PIPELINE**

#### Classification

- Logistic Regression with One-vs-Rest (OvR):
  - A Logistic Regression classifier is trained with an OvR strategy, where one binary classifier is trained for each label.

#### Why Logistic Regression?

- Computationally efficient.
- Works well with high-dimensional data like BERT embeddings.
- The OvR strategy handles multi-label classification effectively.
- Model Evaluation:
  - Predicted labels are compared to ground truth using accuracy and F1score, assessing how well the model generalizes.

## **EVALUATION OF MODELS**

#### • RAKE:

Precision: 50%

o Recall: 33%

o F1:40%

 RAKE struggles to align with the ground truth due to its reliance on statistical features alone.

#### YAKE:

Precision: 66%

Recall: 50%

o F1: 57%

 Better performance due to context-aware extraction but still not optimal for complex language.

# **EVALUATION OF MODELS**

#### • BERT:

Precision: 80%

• Recall: 66%

o F1: 72%

 Achieves the best balance of precision and recall, making it the most reliable option for nuanced keyword extraction tasks.

#### **KEYWORDS GENERATED BY EACH MODEL EXAMPLE**

```
print("YAKE Keywords:", yake_keywords)
print("BERT Keywords:", bert_keywords)

Deep learning techniques have revolutionized natural language processing
RAKE Keywords: ['revolutionized natural language processing', 'deep learning techniques']
YAKE Keywords: ['Deep', 'processing', 'learning', 'techniques', 'revolutionized', 'natural', 'language']
BERT Keywords: ['learning techniques', 'natural language', 'deep learning', 'language processing']
```

- "Deep learning" (BERT) is more precise because it captures a well-recognized concept without extra or missing words.
- "Deep" or "learning" (YAKE) are less relevant because they lack context.
- "Deep learning techniques" (RAKE) is less precise because it adds unnecessary details ("techniques") that dilute the focus.

# MODEL COMPARISON

| Feature                                       | RAKE                     | YAKE                          | BERT                           |
|-----------------------------------------------|--------------------------|-------------------------------|--------------------------------|
| Туре                                          | Statistical              | Statistical                   | Deep Learning                  |
| Contextual Awareness                          | Low                      | Medium                        | High                           |
| Training Requirement                          | None                     | None                          | Pre-trained<br>embeddings      |
| Speed                                         | Fast                     | Moderate                      | Slow                           |
| Accuracy                                      | Basic keywords           | Moderately<br>accurate        | Highly accurate                |
| Scalability                                   | Works for small datasets | Scalable                      | Requires significant resources |
| Evaluation Metrics<br>(Precision, Recall, F1) | Lower (0.5, 0.33, 0.4)   | Moderate (0.66,<br>0.5, 0.57) | Higher (0.8, 0.66, 0.72)       |

### CONCLUSION

- 1. For Scalability: Use YAKE, as it offers a balance between accuracy and computational efficiency.
- 2. For Precision and Depth: Use BERT for tasks requiring high-quality keyword extraction, especially in academic or complex textual datasets.
- 3. For Simplicity: Choose RAKE for straightforward and small-scale keyword extraction needs.

# **①**

# ThankYou