Indukcyjne metody analizy danych Ćwiczenie 2

Indukcja drzew decyzyjnych C4.5 w R

Prowadzący: dr inż. Paweł Myszkowski

Student: Piotr Bielak, 218137

WT 17:05

Wrocław, 10 kwietnia 2018r.

Spis treści

1	Wpr	wadzenie	3
	1.1	Wadzenie Cel ćwiczenia	3
	1.2	Algorytm C4.5	3
2	Ana	za zbiorów danych	4
	2.1	Zbiór danych – "Diabetes"	4
	2.2	Zbiór danych – "Glass"	5
	2.3	Zbiór danych – "Wine"	7
3	Eks	eryment	9
	3.1	Założenia	9
	3.2	Badanie parametrów algorytmu C4.5	9
	3.3	Wyniki kroswalidacji	
		3.3.1 Zbiór danych – "Diabetes"	13
		3.3.2 Zbiór danych – "Glass"	17
		3.3.3 Zbiór danych – "Wine"	21
1	W/ni	ski	25

- 1 Wprowadzenie
- 1.1 Cel ćwiczenia
- 1.2 Algorytm C4.5

2 Analiza zbiorów danych

2.1 Zbiór danych – "Diabetes"

Nazwa klasy	Liczba instancji	% instancji
1 (chory)	500	65 (%)
0 (zdrowy)	268	35 (%)

Tabela 1: Udział procentowy klas w zbiorze "Diabetes".

Nazwa atrybutu	Min	Max	Średnia	Ochyl. stand.	Rozkład
Glucose	0	199	120.89	31.95	90 90 90 90 90 90 90 90 90 90 90 90 90 9
BloodPressure	0	122	69.11	19.34	100 100 100 100 100 100 100 100 100 100
SkinThickness	0	99	20.54	15.94	200 - 130 - 100 -
Insulin	0	846	79.80	115.17	500 500 500 500 500 500 500 500 500 500
BMI	0	67.1	31.99	7.88	100 60 60 20 20 30 40 50 50 50 50 50 50 50 50 50 50 50 50 50
DiabetesPedigreeFunction	0.08	2.42	0.47	0.33	100 100 100 100 100 100 100 100 100 100
Age	21	81	33.24	11.75	100 100 100 100 100 100 100 100 100 100

Tabela 2: Atrybuty zbioru danych "Diabetes".

2.2 Zbiór danych – "Glass"

Nazwa klasy	Liczba instancji	% instancji
1 (building_windows_float_processed)	70	33 (%)
2 (building_windows_non_float_processed)	76	36 (%)
3 (vehicle_windows_float_processed)	17	8 (%)
4 (vehicle_windows_non_float_processed)	0	0 (%)
5 (containers)	13	6 (%)
6 (tableware)	9	4 (%)
7 (headlamps)	29	13 (%)

Tabela 3: Udział procentowy klas w zbiorze "Glass".

Name	Min	Max	Mean	Std	Distribution
RI	1.51	1.53	1.52	0.00	0- 20- 22- 23- 24- 25- 26- 27- 28- 29- 39- 39- 39- 39- 39- 39- 39- 39- 39- 3
Na	10.73	17.38	13.41	0.81	30 30 30 31 30 31 31 31 31 31 31 31 31 31 31 31 31 31
Mg	0.00	4.49	2.68	1.44	50 50 50 50 50 50 50 50 50 50 50 50 50 5
Al	0.29	3.50	1.44	0.50	20 20 30 30 30 40 131 20 23 130 33
Si	69.81	75.41	72.65	0.77	39- 22- 30- 30- 30- 30- 30- 30- 30- 30- 30- 30
K	0.00	6.21	0.50	0.65	20 2 3 4 5 6

Tabela 4: Atrybuty zbioru danych "Glass".

2.3 Zbiór danych – "Wine"

Nazwa klasy	Liczba instancji	% instancji
1 (Class 1)	59	33 (%)
2 (Class 2)	71	40 (%)
3 (Class 3)	48	27 (%)

Tabela 5: Udział procentowy klas w zbiorze "Wine".

Name	Min	Max	Mean	Std	Distribution
Alcohol	11.03	14.83	13.00	0.81	32
Macil_acid	0.74	5.80	2.34	1.11	20 20 30 30 30 30 30 30 30 30 40 40 40 40 40 40 40 40 40 40 40 40 40
Ash	1.36	3.23	2.37	0.27	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
Alcalinity_of_ash	10.60	30.00	19.49	3.33	30- 30- 30- 31- 31- 31- 31- 31- 31- 31- 31- 31- 31
Magnesium	70.00	162.00	99.74	14.24	23 20 33 30 30 100 100 120 100 100
Total_phenols	0.98	3.88	2.30	0.62	39 6 10 10 10 10 10 10 10 10 10 10 10 10 10

	ı	ı	1		
Flavanoids	0.34	5.08	2.03	1.00	30 30 30 30 30 30 30 30 30 30 30 30 30 3
Nonflavanoid_phenols	0.13	0.66	0.36	0.12	323- 326- 323- 324- 32- 32- 32- 32- 32- 32- 32- 32- 32- 32
Nonnavanoid_pnenois	0.13	0.00	0.30	0.12	
Proanthocyanins	0.41	3.58	1.59	0.57	33-1 33-1 33-1 33-1 33-1 33-1 33-1 33-1
Intensity	1.28	13.00	5.06	2.31	33 - 32 - 34 - 4 - 50 - 32 - 32 - 32 - 32 - 32 - 32 - 32 - 3
Hue	0.48	1.71	0.96	0.23	31- 31- 32- 33- 4- 4- 4- 5- 5- 5- 5- 5- 5- 5- 5- 5- 5- 5- 5- 5-
OD280_OD315	1.27	4.00	2.61	0.71	32- 32- 33- 4- 4- 2- 33- 34- 35- 4- 35- 4- 35- 4- 35- 4- 35- 4- 35- 35- 35- 35- 35- 35- 35- 35- 35- 35
Proline	278.00	1680.00	746.89	314.02	33 34 34 35 36 36 36 36 36 36 36 36 36 36 36 36 36

Tabela 6: Atrybuty zbioru danych "Wine".

3 Eksperyment

3.1 Założenia

Eksperyment został podzielony na dwie fazy. Pierwsza służyła do zbadania parametrów algorytmu C4.5, natomiast druga miała na celu ocenę jakości działania drzewa decyzyjnego dla wybranych zbiorów danych (**Diabetes**, **Glass** oraz **Wine**). Podobnie jak w przypadku algorytmu klasyfikatora Bayesa została tutaj również zastosowana krowalidacja zwykła oraz stratyfikowana i zostały obliczone miary accuracy, precision, recall oraz F1.

Szczegółowe wyniki (wykresy, tabelki, wizualizacje drzew) tego eksperymentu są przedstawione w kolejnych podrozdziałach.

3.2 Badanie parametrów algorytmu C4.5

W implementacji ćwiczenia wykorzystano bibliotekę rWeka. Spośród dostępnych tutaj parametrów algorytmu C4.5 zostały wybrane i zbadane następujące:

Nazwa parametru	Wybrane wartości	Opis		
Reduced error pruning	$RE = \{ TRUE, FALSE \}$	czy przeprowadzać przycinanie		
		drzewa metodą "reduced error"		
Number of folds for RE pruning	$NBF = \{ 2, 10 \}$	liczba podziałów danych (podzbio-		
		rów) używanych podczas przycina-		
		nia "reduced error"		
Min. number of instances per leaf	$NBINST = \{1, 40\}$	min. liczba instancji w liściu		
Confidence threshold for prunning	$CONF = \{0.01, 0.4\}$	próg ufności dla przycinania drzewa		

Tabela 7: Zbadane parametry algorytmu C4.5.

Dodatkowo zostało zbadane zachowanie drzewa dla domyślnych wartości parametrów (ustalonych przez autorów biblioteki rWeka). Poniższe rysunki obrazują drzewa decyzyjne dla zbioru "Iris" przy zastosowaniu powyższych opcji konfiguracyjnych.

Domyślne opcje konfiguracyjne

Rysunek 1: Drzewo dla domyślnej konfiguracji.

Przycinanie "Reduced error"

Rysunek 2: Drzewo dla RE = TRUE oraz NBF = 2.

Rysunek 3: Drzewo dla RE = TRUE oraz NBF = 10.

Min. liczba instancji w liściu

Rysunek 4: Drzewo dla NBINST = 1.

Rysunek 5: Drzewo dla NBINST = 40.

Próg ufności

Rysunek 6: Drzewo dla CONF = 0.01.

Rysunek 7: Drzewo dla CONF = 0.4.

3.3 Wyniki kroswalidacji

Poniżej zostały przedstawione wyniki zastosowania kroswalidacji dla wybranych zbiorów danych. W ramach danego procesu kroswalidacji, wyznaczono wartości miar oceny jakości klasyfikatora. Dodatkowo zostały zamieszczone tabelki z dokładnymi wartościami tych miar. Parametrami każdego procesu kroswalidacji są:

- liczba podzbiorów (foldów), zmieniająca się od 2 do 9 ze skokiem 1,
- zestaw opcji konfiguracyjnych:
 - (C1) domyślna konfiguracja,
 - (C2) RE = TRUE, NBF = 10, NBINST = 10,
 - (C3) CONF = 0.01, NBINST = 10.

3.3.1 Zbiór danych – "Diabetes"

Kroswalidacja zwykła

Rysunek 8: Wartości metryk dla klasyfikatora Bayesowskiego.

Rysunek 9: Wartości metryk dla drzewa decyzyjnego C4.5.

		Liczba foldów							
Konfiguracja	Metryka	2	3	4	5	6	7	8	9
C1	Accuracy	0.70	0.73	0.77	0.73	0.74	0.72	0.74	0.75
C1	Precision	0.75	0.78	0.80	0.81	0.79	0.79	0.79	0.81
C1	Recall	0.82	0.80	0.86	0.78	0.82	0.78	0.83	0.79
C1	F1	0.78	0.79	0.83	0.79	0.80	0.78	0.81	0.80
C2	Accuracy	0.72	0.73	0.74	0.73	0.75	0.74	0.73	0.72
C2	Precision	0.75	0.81	0.77	0.80	0.79	0.78	0.79	0.76
C2	Recall	0.84	0.76	0.87	0.80	0.84	0.85	0.81	0.83
C2	F1	0.79	0.78	0.81	0.80	0.81	0.81	0.79	0.79
C3	Accuracy	0.73	0.76	0.73	0.76	0.74	0.74	0.75	0.76
C3	Precision	0.76	0.77	0.76	0.79	0.77	0.78	0.77	0.78
C3	Recall	0.86	0.90	0.85	0.86	0.86	0.86	0.88	0.87
C3	F1	0.80	0.83	0.80	0.82	0.81	0.81	0.82	0.82

Tabela 8: Dokładne wartości metryk dla drzewa decyzyjnego C4.5.

Krowalidacja stratyfikowana

Rysunek 10: Wartości metryk dla klasyfikatora Bayesowskiego.

Rysunek 11: Wartości metryk dla drzewa decyzyjnego C4.5.

		Liczba foldów							
Konfiguracja	Metryka	2	3	4	5	6	7	8	9
C1	Accuracy	0.74	0.72	0.74	0.74	0.74	0.75	0.76	0.74
C1	Precision	0.81	0.79	0.79	0.80	0.81	0.79	0.79	0.81
C1	Recall	0.79	0.79	0.83	0.81	0.79	0.84	0.85	0.79
C1	F1	0.80	0.78	0.81	0.80	0.80	0.81	0.82	0.80
C2	Accuracy	0.73	0.74	0.73	0.71	0.73	0.74	0.74	0.74
C2	Precision	0.76	0.78	0.79	0.72	0.77	0.78	0.78	0.76
C2	Recall	0.85	0.85	0.79	0.91	0.86	0.85	0.83	0.87
C2	F1	0.80	0.81	0.79	0.80	0.81	0.81	0.81	0.81
C3	Accuracy	0.71	0.74	0.74	0.75	0.75	0.75	0.75	0.76
C3	Precision	0.78	0.78	0.78	0.78	0.77	0.78	0.77	0.78
C3	Recall	0.76	0.84	0.85	0.86	0.89	0.86	0.88	0.87
C3	F1	0.77	0.81	0.81	0.82	0.82	0.82	0.82	0.82

Tabela 9: Dokładne wartości metryk dla drzewa decyzyjnego C4.5.

3.3.2 Zbiór danych – "Glass"

Kroswalidacja zwykła

Rysunek 12: Wartości metryk dla klasyfikatora Bayesowskiego.

Rysunek 13: Wartości metryk dla drzewa decyzyjnego C4.5.

			Liczba foldów						
Konfiguracja	Metryka	2	3	4	5	6	7	8	9
C1	Accuracy	0.67	0.64	0.65	0.72	0.70	0.65	0.73	0.65
C1	Precision	0.64	0.64	0.64	0.76	0.74	0.67	0.72	0.67
C1	Recall	0.66	0.62	0.61	0.69	0.71	0.65	0.66	0.64
C1	F1	0.63	0.65	0.67	0.71	0.76	0.74	0.77	0.70
C2	Accuracy	0.63	0.57	0.58	0.64	0.61	0.61	0.60	0.61
C2	Precision	0.69	0.59	0.58	0.63	0.59	0.60	0.61	0.62
C2	Recall	0.40	0.50	0.50	0.57	0.55	0.53	0.60	0.60
C2	F1	0.74	0.61	0.69	0.68	0.68	0.67	0.71	0.73
C3	Accuracy	0.54	0.65	0.63	0.63	0.64	0.65	0.62	0.70
C3	Precision	0.57	0.66	0.63	0.59	0.58	0.62	0.65	0.68
C3	Recall	0.41	0.57	0.57	0.67	0.60	0.69	0.67	0.69
C3	F1	0.61	0.70	0.67	0.66	0.70	0.69	0.70	0.74

Tabela 10: Dokładne wartości metryk dla drzewa decyzyjnego C4.5.

Krowalidacja stratyfikowana

Rysunek 14: Wartości metryk dla klasyfikatora Bayesowskiego.

Rysunek 15: Wartości metryk dla drzewa decyzyjnego C4.5.

		Liczba foldów							
Konfiguracja	Metryka	2	3	4	5	6	7	8	9
C1	Accuracy	0.61	0.64	0.68	0.65	0.65	0.70	0.70	0.67
C1	Precision	0.61	0.65	0.70	0.65	0.70	0.73	0.73	0.66
C1	Recall	0.65	0.63	0.69	0.61	0.64	0.65	0.69	0.65
C1	F1	0.62	0.67	0.68	0.71	0.69	0.72	0.77	0.74
C2	Accuracy	0.65	0.61	0.64	0.56	0.61	0.63	0.62	0.63
C2	Precision	0.67	0.65	0.65	0.60	0.65	0.67	0.68	0.66
C2	Recall	0.48	0.42	0.45	0.40	0.55	0.54	0.58	0.61
C2	F1	0.73	0.69	0.72	0.67	0.67	0.68	0.71	0.73
C3	Accuracy	0.56	0.67	0.65	0.64	0.64	0.69	0.65	0.69
C3	Precision	0.58	0.65	0.64	0.68	0.69	0.71	0.68	0.70
C3	Recall	0.43	0.64	0.66	0.62	0.69	0.69	0.65	0.70
C3	F1	0.62	0.67	0.69	0.68	0.67	0.72	0.71	0.74

Tabela 11: Dokładne wartości metryk dla drzewa decyzyjnego C4.5.

3.3.3 Zbiór danych – "Wine"

Kroswalidacja zwykła

Rysunek 16: Wartości metryk dla klasyfikatora Bayesowskiego.

Rysunek 17: Wartości metryk dla drzewa decyzyjnego C4.5.

		Liczba foldów							
Konfiguracja	Metryka	2	3	4	5	6	7	8	9
C1	Accuracy	0.90	0.92	0.93	0.95	0.94	0.90	0.94	0.94
C1	Precision	0.90	0.92	0.92	0.95	0.94	0.90	0.94	0.95
C1	Recall	0.90	0.92	0.92	0.94	0.94	0.91	0.92	0.93
C1	F1	0.90	0.92	0.92	0.94	0.93	0.90	0.93	0.93
C2	Accuracy	0.87	0.84	0.86	0.89	0.87	0.90	0.89	0.85
C2	Precision	0.89	0.85	0.87	0.90	0.88	0.91	0.90	0.86
C2	Recall	0.89	0.84	0.87	0.90	0.86	0.90	0.88	0.86
C2	F1	0.87	0.83	0.87	0.89	0.86	0.89	0.88	0.84
C3	Accuracy	0.88	0.90	0.90	0.89	0.91	0.91	0.87	0.88
C3	Precision	0.87	0.92	0.91	0.90	0.91	0.92	0.87	0.90
C3	Recall	0.89	0.90	0.92	0.89	0.92	0.91	0.89	0.90
C3	F1	0.87	0.90	0.90	0.88	0.91	0.91	0.86	0.88

Tabela 12: Dokładne wartości metryk dla drzewa decyzyjnego C4.5.

Kroswalidacja stratyfikowana

Rysunek 18: Wartości metryk dla klasyfikatora Bayesowskiego.

Rysunek 19: Wartości metryk dla drzewa decyzyjnego C4.5.

		Liczba foldów							
Konfiguracja	Metryka	2	3	4	5	6	7	8	9
C1	Accuracy	0.90	0.93	0.93	0.91	0.95	0.95	0.92	0.92
C1	Precision	0.91	0.93	0.94	0.91	0.96	0.96	0.93	0.94
C1	Recall	0.90	0.92	0.93	0.90	0.94	0.95	0.92	0.92
C1	F1	0.90	0.93	0.93	0.90	0.95	0.95	0.92	0.92
C2	Accuracy	0.84	0.83	0.85	0.86	0.79	0.88	0.90	0.88
C2	Precision	0.85	0.87	0.86	0.88	0.82	0.89	0.90	0.90
C2	Recall	0.84	0.82	0.87	0.87	0.80	0.88	0.90	0.87
C2	F1	0.84	0.82	0.86	0.86	0.81	0.88	0.90	0.87
C3	Accuracy	0.87	0.85	0.87	0.89	0.90	0.84	0.89	0.93
C3	Precision	0.88	0.85	0.89	0.89	0.90	0.86	0.91	0.93
C3	Recall	0.86	0.85	0.87	0.89	0.91	0.83	0.90	0.93
C3	F1	0.86	0.85	0.87	0.89	0.90	0.83	0.90	0.93

Tabela 13: Dokładne wartości metryk dla drzewa decyzyjnego C4.5.

4 Wnioski

•