L13: Binomial Coefficients

- Binomial Theorem
- Pascal's Identity and Triangle
- Some Other Identities
- Reading: Rosen 6.4

Binomial Theorem

- **Definition:** The number of k-combinations of a set with n elements, denoted by C(n,k) or $\binom{n}{k}$, is also called a **binomial coefficient** because it occurs as a coefficient in the expansion of the power of a binomial expression such as $(x + y)^n$.
- Theorem (Binomial theorem)

Let x and y be variables and n be a nonnegative integer. Then

$$(x+y)^n$$

$$= \sum_{k=0}^{n} {n \choose k} x^{n-k} y^k = {n \choose 0} x^n + {n \choose 1} x^{n-1} y + \dots + {n \choose n-1} x y^{n-1} + {n \choose n} y^n$$

Example:
$$(x+y)^3 = \binom{3}{0}x^3 + \binom{3}{1}x^2y + \binom{3}{2}xy^2 + \binom{3}{3}y^3$$

$$(x+y)(x+y)(x+y)$$

$$= xxx + xyx + yxx + yyx + xxy + xyy + yxy + yyy.$$

• Coefficient of xy^2 = number of length-3 lists having y in 2 places. $\binom{3}{2}$

Proof

We give a combinatorial proof of the theorem here. When we expand the product $(x + y)^n$, the terms are of the form $x^{n-k}y^k$ for k = 0, 1, ..., n. To count the number of terms of the form $x^{n-k}y^k$, note that to obtain such a term it is necessary to choose k y's from the n sums so that the other n - k terms in the product are x's. Therefore, the coefficient of $x^{n-k}y^k$ is $\binom{n}{k}$. This proves the theorem.

Example

Example 1

What is the coefficient of $x^{12}y^{13}$ in the expansion of $(x + y)^{25}$?

Solution:

By the Binomial theorem the coefficient is $\binom{25}{13} = \frac{25!}{13!12!} = 5\ 200\ 300$

Example

Example 2

What is the coefficient of $x^{12}y^{13}$ in the expansion of $(2x-3y)^{25}$?

Solution:

By the Binomial theorem the term involving $x^{12}y^{13}$ is $\binom{25}{12}(2x)^{12}(-3y)^{13}$. Therefore the coefficient of $x^{12}y^{13}$ is $-\binom{25}{12}2^{12}3^{13}$

Example

Example 3

What is the constant term in the expansion of $(x + \frac{1}{x^3})^{12}$?

Solution:

We need the Binomial expansion term $\binom{12}{a}x^a(\frac{1}{x^3})^{12-a}$ to produce a constant. In other words, we need the power of x to be zero in the constant term, i.e.,

$$a - 3(12 - a) = 0$$

So a = 9. Therefore the constant is $\binom{12}{9} = 220$.

Corollary

Corollary

Let n be a nonnegative integer. Then

$$\sum_{k=0}^{n} \binom{n}{k} = 2^n$$

Proof

Using the binomial theorem with x = y = 1, we can get

$$2^{n} = (1+1)^{n} = \sum_{k=0}^{n} {n \choose k} 1^{n-k} 1^{k} = \sum_{k=0}^{n} {n \choose k}$$

Alternative: Combinatorial Proof

A set with n elements has a total of 2^n different subsets. Each subset has zero elements, one element, two elements, ..., or n elements in it. There are $\binom{n}{0}$ subsets with zero elements, $\binom{n}{1}$ subsets with one element, $\binom{n}{2}$ subsets with two elements, ..., and $\binom{n}{n}$ subsets with n elements. Therefore,

$$\sum_{k=0}^{n} \binom{n}{k}$$

counts the total number of subsets of a set with n elements, which is 2^n .

Corollary

Let n be a positive integer. Then

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0$$

Proof

Using the binomial theorem with x = 1 and y = -1, we can get

$$0 = (1 + (-1))^n = \sum_{k=0}^n \binom{n}{k} 1^{n-k} (-1)^k = \sum_{k=0}^n \binom{n}{k} (-1)^k$$

This proves the corollary.

Remark

The corollary implies that

$$\binom{n}{0} + \binom{n}{2} + \binom{n}{4} + \dots = \binom{n}{1} + \binom{n}{3} + \binom{n}{5} + \dots$$

Corollary

Corollary

Let n be a positive integer. Then

$$\sum_{k=0}^{n} 2^k \binom{n}{k} = 3^n$$

Proof

Using the binomial theorem with x = 1 and y = 2, we can get

$$3^{n} = (1+2)^{n} = \sum_{k=0}^{n} {n \choose k} 1^{n-k} 2^{k} = \sum_{k=0}^{n} {n \choose k} 2^{k}$$

This proves the corollary.

Outline

- Binomial Theorem
- Pascal's Identity and Triangle
- Trinomial Theorem
- Some Other Identities

Pascal's Identity

The binomial coefficients satisfy many different identities. One of the most important identities is discussed below.

Theorem (Pascal's identity)

Let n and k be integers with 0 < k < n. Then,

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Example:

$$\binom{5}{2} = \binom{4}{1} + \binom{4}{2}$$

Let X = {A, B, C, D, E}
S = 2-combinations of X
= {those containing E} U {those without E}
= S₁ U S₂
S₁ = { {A,E}, {B,E}, {C,E}, {D,E} }
i.e., 1-combinations from {A, B,C,D}

$$|S_1| = {4 \choose 1}$$

S₂ = {{A,B}, {A,C}, {A,D}, {B,C}, {B,D}, {C,D}}
i.e., 2-combinations from {A, B, C, D}
 $|S_2| = {4 \choose 2}$
 ${5 \choose 2} = |S| = |S_1| + |S_2| = {4 \choose 1} + {4 \choose 2}$

Proof

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$
#k-combinations of $\{1,2,3,...,n\}$

$$\#(k-1)\text{-combinations of }\{1,2,3,...,n-1\}$$

We are using the Sum Principle

Proof

Combinatorial proof of Pascal's identity

Suppose S is a set containing n elements. Let a be an element of S and $T = S - \{a\}$. Note that there are $\binom{n}{k}$ subsets of S containing k elements. However, a subset of S with k elements either contains a together with k-1elements of T, or contains k elements of T and does not contain a. Because there are $\binom{n-1}{k-1}$ subsets of k-1elements of T, there are $\binom{n-1}{k-1}$ subsets of k elements of S that contain a. Also, because there are $\binom{n-1}{k}$ subsets of k elements of T , there are $\binom{n-1}{k}$ subsets of k elements of Sthat do not contain a. Consequently,

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Pascal's Triangle (1641)

Corollary

Pascal's identity, together with the initial conditions $\binom{n}{0} = \binom{n}{n} = 1$ for all integers n, can be used to give a geometric arrangement of the binomial coefficients in a triangle, called Pascal's triangle, as follows:

Pascal's Triangle

Yang Hui triangle (12??)

	1	1	1
1	2	3	4
1	3	6	10
1	4	10	20

The numbers of distinct paths to each square by a rook, when only rightward and downward movements are considered.

Outline

- Binomial Theorem
- Pascal's Identity and Triangle
- Some Other Identities

Vandermonde's Identity

Theorem (Vandermonde's identity, 1772)

Let m, n, and r be integers with $0 \le r \le m$ and $0 \le r \le n$. Then

$$\binom{m+n}{r} = \sum_{k=0}^{r} \binom{m}{r-k} \binom{n}{k}.$$

Discovered by Zhu Shijie in 1303.

Combinatorial Proof

Suppose that there are m elements in one set and n elements in a second set. Then the total number of ways to choose r elements from the union of the two sets is $\binom{m+n}{r}$. Another way to choose r elements from the union is to choose r-k elements from the first set and then k elements from the second set, where k is an integer with $0 \le k \le r$. By the product rule, this can be done in $\binom{m}{r-k}\binom{n}{k}$ ways. Consequently,

$$\binom{m+n}{r} = \sum_{k=0}^{r} \binom{m}{r-k} \binom{n}{k}.$$

Corollary

Corollary

Let *n* be a nonnegative integer. Then

$$\binom{2n}{n} = \sum_{k=0}^{n} \binom{n}{k}^{2}.$$

Proof

Using Vandermonde's identity with m = n = r, we can get

$$\binom{2n}{n} = \sum_{k=0}^{n} \binom{n}{n-k} \binom{n}{k} = \sum_{k=0}^{n} \binom{n}{k}^{2}.$$

Counting bit strings

We can prove combinatorial identities by counting bit strings with different properties.

Recall: Number of bit strings of length n containing r ones = number of ways to choose r positions out of n positions = number of r-combinations of n objects

Theorem

Let *n* and *r* be integers with $0 \le r \le n$. Then

$$\binom{n+1}{r+1} = \sum_{j=r}^{n} \binom{j}{r}.$$

Proof

Solution 1: The left-hand side counts the number of bit strings of length n + 1 containing (r + 1) 1's.

The right-hand side counts the same objects in an alternative way by considering the possible locations of the last 1 in a string with (r+1) 1's: the last 1 must occur at location $r+1, r+2, \ldots$, or n+1.

With the last 1 at the kth bit $(r+1 \le k \le n+1)$, there must be r 1s among the first k-1 locations. Consequently, there are $\binom{k-1}{r}$ such bit strings.

$$\sum_{k=r+1}^{n+1} \binom{k-1}{r} = \sum_{j=r}^{n} \binom{j}{r}$$

Because both sides of the identity count the same objects, they must be equal. This completes the proof.

Proof

Solution 2: The left-hand side counts the number of ways of selecting (r + 1) objects from n + 1 objects labeled 1 to n+1.

The right-hand side considers the possible highest label among the selected (r + 1) objects: the highest label must be $r + 1, r + 2, \ldots$, or n + 1.

If the highest label is r+1, the other r objects must be selected from the objects labelled 1 to r => C(r,r)

If the highest label is r+2, the other r objects must be selected from the objects labelled 1 to $r+1 \Rightarrow C(r+1, r)$

. . .

If the highest label is n+1, the other r objects must be selected from the objects labelled 1 to $n \Rightarrow C(n, r)$

Therefore, the total number of ways is $\sum_{j=r}^{n} {j \choose r}$