Prova di esame dei corsi di Fondamenti di Informatica e Informatica Teorica

20 settembre 2018

Nota Bene: Non saranno corretti compiti scritti con una grafia poco leggibile.

Problema 1. Sia $L_1 \subseteq \Sigma^*$ un linguaggio decidibile, deciso dalla macchina T_1 , e sia $L_2 \subseteq \Sigma^*$ un linguaggio accettabile, accettato dalla macchina T_2 . Dimostrare se il linguaggio

$$L = \{(x,k) : x \in \Sigma^* \land k \in \mathbb{N} \land T_1(x) \text{ accetta in } r \geq k \text{ passi } \land T_2(x) \text{ rigetta in } s \leq k \text{ passi} \}$$

è decidibile.

Problema 2. Siano $L_1, L_2, L_3 \subseteq \Sigma^*$. Dimostrare che se L_1 è riducibile polinomialmente a L_2 e L_2 è riducibile polinomialmente a L_3 allora L_1 è riducibile polinomialmente a L_3 .

Problema 3. Si consideri il seguente problema Γ : dati un insieme $X = \{x_1, x_2, \dots x_n\} \subseteq \mathbb{N}$ e un intero $k \in \mathbb{N}$, decidere se X non contiene alcun sottoinsieme X' tale che

$$\sum_{x \in X'} x = k.$$

Formalizzare il suddetto problema Γ mediante la tripla $\langle I, S, \pi \rangle$ e rispondere alle seguenti domande (nell'ordine che si ritiene opportuno), motivando in tutti i casi la propria risposta.

- a) Γ è in **P**?
- b) $\Gamma \grave{e}$ in NP?
- c) Γ è in co**NP**?