

EE2029: Introduction to Electrical Energy System How do Generators Work?

Lecturer: Dr. Sangit Sasidhar

Department of Electrical and Computer Engineering

© Copyright National University of Singapore. All Rights Reserved.

Learning Outcomes

- Electromagnetic induction
- A simple generator
- Main components of a generator
- Types of rotor

Electromagnetic Induction

- Moving a conductor through a magnetic field.
- Induced electromotive force (EMF), voltage generated by the magnetic force across wire.
- Faraday's law:

A Simple Generator

- Need **mechanical force** to move the **magnetic field** to generate "Relative motion" between a conductor and a magnetic field.
- Key concept:

Mechanical Input → Electrical Output

Main Components of a Generator

Rotor

 Moving part that is usually made of electromagnet materials.

Stator

 Stationary part that contains a set of conductors called 'armature winding'.

indicates the positive current is directed out of plane of the paper.
indicates the positive currents is directed into the plane of the paper.

© Copyright National University of Singapore. All Rights Reserved.

Constant Magnetic Fields at Rotor

- We can produce constant magnetic fields at the rotor by two methods.
 - 1. Using permanent magnet. This is only suitable for small generators.
 - 2. Create magnetic fields using DC current supplied through coil. The DC power source is called 'exciter'. The coil is called 'field winding'.

Source: http://www.magnet.fsu.edu/education/tutorials/magnetminute/permanent.html

Source: Source

Electromagnetic Induction at Stator

Positive VS Negative Sequence

 Positive and negative sequences can be achieved by how we label the conductors at the stator.

By swapping b to c, the voltage source will produce negative sequence.

Types of Rotor

Cylindrical (Round) Rotor

 High speed application such as steam turbine at 3600 or 1800

rpm

Salient Rotor

 Low speed hydro turbines at a few hundred rpm.

Source: http://cnx.org/content/m28323/latest/?collection=col10767/latest

Multi-Pole Rotor

2-pole round rotor

4-pole salientpole rotor

4-pole round rotor

6-pole salient-pole rotor

Source: http://www.bugman123.com/ Engineering/Motor-large.jpg

Summary

© Copyright National University of Singapore. All Rights Reserved.