41.	х 的 状态 空间 Го. 1, ···, S7. м
	$\chi_{n+1} = \begin{cases} (S-D)^+ & \chi_0 < S \\ (\chi_0 - D)^+ & \chi_0 \ge S \end{cases}$
	$L(X_{n}-D)^{+}$ $X_{n} \geqslant s$
	故转粉矩阵
	$P_{ij} = \int d_{s-j}$ $i = 0, 1, 2,, s-1, j = 0, 1, 2,, S$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	0 i=s.s+1,S, j=i+1,,S.
4.2 .	$P(X_{n} = \hat{j} \mid X_{n} = i_{1}, \dots, X_{n} = i_{K})$
	$= \frac{P(X_{0,i}=i_1,\cdots,X_{0K}=i_K,X_{0}=j)}{P(X_{0,i}=i_1,\cdots,X_{0K}=i_K,X_{0}=j)}$
	$= \frac{P_{i_1 i_2}^{n_2 - n_1} \cdots P_{i_{k+1} i_k}^{n_k - n_{k+1}} \times P_{i_k j}^{n_k - n_k}}{P_{i_1 i_2}^{n_2 - n_1} \times P_{i_2 i_3}^{n_3 - n_2} \times \dots \times P_{i_{k+1} i_k}^{n_k - n_{k+1}}} = P(X_{n-j} X_{n_k - i_k}).$
	$P_{i_1 i_2} \times P_{i_2 i_3}^{r_{i_3}} \times \dots \times P_{i_{k+1} k}^{r_{k+1} k-1} = P_{i_k,j} = P_{i_k,j} \times \dots \times P_{i_{k+1} k}^{r_{k+1} k-1} \times \dots \times P_{i_{k+1} k-1}^{r_{k+1} k-1} \times \dots \times P_$
_	
4.3	由于了是可以从i可达的.因此日水.使得 Pij~o,
	$P_{ij}^{\mathcal{X}} = P(X_{k} = j \mid X_{0} = i) = P(X_{0} = i, X_{1} = i, \dots, X_{k-1} = i_{k-1}, X_{k} = j).$
	故存在某条长度为 K, 从 i 到 j. 的 转 砌 链 , 注意 到 . 满 足条
	件的最短链应该没有环. 即不可能存在某个im = in , 否则
	im到in中的转的可直接截掉因此从i到j的转构过程
	中. n介结点至约被访问1次.即转粉次数 <n.< td=""></n.<>
44,	直观上来看、Pj 表示;经过入没转粉到j,而在这入没转粉
1	
	中, 可能已经到达过了为次, 因此.
	Pif = P(j 经过n次转粉到j)
	= P(i 经过 K: 次转粉第 1 次到达 j) x P(j 经过 D- K: 次

				转私	少到)	j)	= 4	<u> </u>	K ij · J	n-k jj						
4.5.	α). b).							查的	۶.) j.	A V	五中金	经过	_ K ;}	犬 をぃ		
			= .	n 2 P(χυ= (j . X	κ=ì,							XK=i	\ \(\sigma_{\infty} = 0 \)	i)
			= 2 K	n = P(= P	Xh=ĵ	, Xe							,			
4.10.		即为			•					近面台	乡 根廷	字.	故为	1 -	- (1-)	>) ^î
	b) с).	不是不是		为水为												
	dλ	足.	.													
				$\hat{n} = \hat{i} - \hat{j}$		·				ĵ)						
	1	即假										, ,				_
		'		左角字形。			3		·		_		onije	ctous	, m	
4,15.	X-	r I M	161	1	syst	en.	我.	们每	当 -	个顾	客原	A A E	计, 观	察系	统	P
	长	人数									'			⊐ <i>₹\</i> ?	e de	
			· */	火夷 田 出 又n+1				,			似 各	而升	. 共円 ()	目到这		

```
\overline{P} (p) = P(\overline{Y}_n = j) = \int_0^\infty P(\overline{Y}_n = j \mid T = t) dG(t)
                                = \int_0^\infty \frac{(\lambda t)^{\frac{1}{2}}}{j!} e^{-\lambda t} dG(t)
从而转柳版率. P_{ij} = \int Q_{j} \qquad j=0 i \ge 1, j \ge i-1
    故 \pi_{\hat{i}} = \sum_{i=0}^{\infty} P_{i} \pi_{i}
                = \varphi_{\hat{1}} \pi_{0} + \sum_{i=1}^{\infty} \pi_{i} \varphi_{\hat{1}-i+1}
    \pi(S) = \pi_0 S^0 + \sum_{i=1}^{\infty} \pi_i S^i
               = \left(\sum_{i=1}^{\infty} \varphi_{i} S^{\hat{i}}\right) \pi_{o} + \sum_{i=1}^{\infty} \sum_{i=1}^{\infty} \pi_{i} \varphi_{\hat{i}-i+1} S^{\hat{j}}
                = \pi. A(s) + \sum_{i=1}^{\infty} \pi_i \sum_{j=i+1}^{\infty} \varphi_{j-i+1} S^{j}
                 = \pi_0 A(s) + \sum_{i=1}^{\infty} \pi_i S^i \sum_{j=i+1}^{\infty} \mathcal{Q}_{j-j+1} S^{j-i+1} \times S^{-1}
                  = \pi_0 A(S) + (\pi(S) - \pi_0) \frac{A(S)}{S}
     \Rightarrow \pi(S) = \frac{(S-1) \text{ To } A(S)}{S-A(S)}
          \pi A_{(S)} = \sum_{i=0}^{\infty} \psi_i = 1
        \pi'(s) = \frac{[\pi_0 A(s) + (s-1)\pi_0 A'(s)] (s-A(s)) - (1-A'(s)) (s-1)\pi_0 A(s)}{(s+A(s))^2}
                  = \frac{II_{\circ} (A(s) - A^{2}(s) + s^{2}A'(s) - sA'(s))}{(s - A(s))^{2}}
        我们记 \rho = \sum_{j} \varrho_{j}. 则 \rho为一个服务期间平均到达人
        数. 而 arrivals 股丛 Poisson 分布. 故
                          P = ZECTJ.
           下是一个服务 罰期的 时长
            A'(s) = \sum_{j=0}^{\infty} j \varphi_j s^j, 4\pi A'(1) = \rho.
```

	共而 $\pi'(s) = (1 - A'(1)) A(s) - A(s) + S(s-1)A'(s)$.
	$\sum_{i=0}^{\infty} i \pi_{i} = \lim_{s \to 1} \pi'(s) = (I - \rho) \frac{A(s) - 2A(s)A'(s) + (2s - 1)A'(s) + s(s - 1)A''(s)}{2(s - A(s)) \cdot (1 - A'(s))} \Big _{s=1}$
	$= (1-p) \frac{2A(s)(s-A(s)) + s(s-1)A''(s)}{2(1-A'(s))(s-A(s))} \Big _{s=1}$
	$= (1-\rho) \left[\frac{A'(s)}{2(1-A'(s))} \right]_{s=1}$
	$=\frac{1-\rho}{2}$
4.21	positive recurrence 要求在有限步力返回状态的 航空大子 O.
	因此. 方程: yo = P1,o y1 = (1-P1) y1
	$y_{j} = P_{j-1} - y_{j-1} + (1 - P_{j+1}) y_{j+1}$
	有A. 且 分>0. □分=1.
	故 $y_{j+1} q_{j+1} = y_{j} p_{j}$
	$\Rightarrow y_{\hat{j}+1} = y_0 \frac{p_0 \cdot p_{\hat{j}}}{q_1 \cdot q_{\hat{j}+1}}$
	数 若要求 positive recurrent. □). ♥ Po···Pi
	$1 = \sum_{j=0}^{\infty} y_{j+1} = y_0 \sum_{j=0}^{\infty} \frac{P_0 \cdots P_j}{q_1 \cdots q_{j+1}} \implies \sum_{j=0}^{\infty} \frac{P_0 \cdots P_j}{q_1 \cdots q_{j+1}} < \infty.$
	而 拟限 概 字: $y_0 = \frac{1}{\sum_{j=0}^{\infty} \frac{P_0 \cdots P_j}{a_1 \cdots a_{j+1}}}$ $y_{j+1} = y_0 \frac{P_0 \cdots P_j}{a_1 \cdots a_{j+1}}$
4,2}.	转 柳
412)	IL iz A: she wins the next gamble present fortune i
	B: present fortune; eventually reaches N.
	$\mathcal{D}_{i} = \frac{P(AB)}{P(B)}$
	电算 p(B). 则. 记 f(i)为: 在输掉i介筹码前.赢得从个
	筹码的概率.则.
	f(N)=1. $f(0)=0$.

	$f(i) = qf(i-1) + pf(i+1). \overline{m} p+q=1$
	$\Rightarrow pf(i) + qf(i) = qf(i-1) + pf(i+1).$
	$\Rightarrow f(i+1) - f(i) = \frac{q}{p} (f(i) - f(i-1))$
	从而可推出: $f(i) = \begin{cases} \frac{1 - (\frac{r}{p})^i}{1 - \frac{r}{p}} f(1) \\ \frac{r}{r} f(1) \end{cases}$ 若 $p \neq \frac{1}{r}$
	$\pi f(N) = 1 \Rightarrow f(N) = \int \frac{1-\frac{p}{p}}{1-\frac{p}{p}} dx = \frac{1}{p} = \frac{1}{p}$
	故 $P(B) = \begin{cases} \frac{1-(\frac{4}{p})^{\frac{1}{1}}}{1-(\frac{4}{p})^{\frac{1}{N}}} \end{cases}$ $p \neq \frac{1}{2}$
	$\overline{p} = \frac{1}{2}$
	$ \sqrt{n} P(A) = \begin{cases} \frac{P[1 - (\frac{N}{P})^{i+1}]}{1 - (\frac{N}{P})^{i}} & p \neq \frac{1}{2} \\ \frac{i+1}{2i} & p = \frac{1}{2} \end{cases} $
4.20	我们假设一个二之变量 Xij (n). 若第n 次从状态;转胸到达3
	状态了,则取值为1. 否则为0. 记从;为在回到状态、0前到达
	状态(i的 次数.
	$M\hat{y} = E \left[\sum_{i=1}^{N} X_{ij}(n) \right] = \sum_{i=1}^{N} E \left[X_{ij}(n) \right]$
	= \(\sum_{i}\) mi \(x\) Pij
	第二种证明,由于MC是Positive recurrent.因此在有限步后
	回到状态、 $0.$ 从而 $\pi_{j} > 0$,而由 Blackwell's theorem. 我们 知道 $\frac{M_{1}}{\mu_{00}} = \pi_{j}$,从而 $M_{j} = \mu_{00}\pi_{j}$.

	·幼. 我们记 Zi = Xi - Yi, 则我们见略 Xi = Yi 的情况.则
	$P(Z_i = -1 \mid Z_i \neq 0) = \frac{P(X_i = 0, Y_i = 1)}{P(X_i = 1, Y_i = 0) + P(X_i = 0, Y_i = 1)} = \frac{(1-P_1)P_2}{P_1(1-P_2) + P_2(1-P_1)}$
	因此,可转化为 gambler's ruin problem. 从而
	p(ertor) = p (M down before M up)
	$= \frac{1 - \left(\frac{P}{Q}\right)^{M}}{1 - \left(\frac{P}{Q}\right)^{2M}} = \frac{1 - \left(\frac{P_{1}(1 - P_{2})}{P_{2}(1 - P_{1})}\right)^{M}}{1 - \left(\frac{P_{1}(1 - P_{2})}{P_{2}(1 - P_{1})}\right)^{2M}}$
	1- (-P) 1- (-P))2/1
	$= \frac{1 - \lambda^{M}}{1 - \lambda^{2M}} = \frac{1}{1 + \lambda^{M}}$
	$E[\frac{\sum_{i=1}^{n}}{X_i} - Y_i] = EX \cdot (P_1 - P_2),$
	而 $\frac{1}{1-1}$ $\frac{1}{1-1}$ $\frac{1}{1-1}$ $\frac{1}{1-1}$ $\frac{1}{1-1}$
	一州 城寺 1
	$\exists \mu \qquad = \exists \lambda (P_1 - P_2)$
	$\Rightarrow EN = \frac{M(\lambda^{M}-1)}{(P_1-P_2)(1+\lambda^{M})}$
4) 4	我们记状态 1 为: spider at 1. fly at 2.
401.	
	状态2为: spider at 2. fly at 1.
	状态 3 为 spider 和 fly 在桐司位置.
	火而 我们有如下转柳 矩阵:
	$P_{11} = P_1 \text{ spider} : 1 \rightarrow 1$. $f(y: 2 \rightarrow 2) = a_1 \times o_1 4 = a_1 28$.
	$P_2 = P(spider : 1 \rightarrow 2. fly : 2 \rightarrow 1) = 0.3 \times 0.6 = 0.18.$
	$P_3 = P(\text{spider}: 1 \rightarrow 1 \cdot fly: 2 \rightarrow 1) + P(\text{spider}: 1 \rightarrow 2, fly: 2 \rightarrow 2)$
	$= 0.7 \times 0.6 + 0.3 \times 0.4 = 0.54$
	类似地、可算得: - 0.18 0.18 0.54 - 0.54 - 0.18 0.54 - 0.54 - 0.18 0.54 - 0.54 - 0.18 0.54 -
	$P = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

	a). 根据 CK Equation. 我们需要计算 P ⁿ - γ-0.28 -0.18 -0.54]
	$ \pi $
	$= (2-1) [(2-0.28)^2 - 0.(8^2)]$
	$= \alpha - 1) (\lambda - 0.46) (\lambda - 0.1).$
	λ=1. 特征向量: (1,1,1)/
	λ= 0.46 、特征向量: (1,1,0)′
	λ=α, , 特征向量: (1,-1,σ)′
	因此 $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 46 \\ 0 & 1 & 1 \end{bmatrix}$
	$\Rightarrow P^{\cap} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0.46 \\ 0.10 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$
	$= \begin{bmatrix} 1 & 0_1 & 4b^{0} & 0_1 & 1 \\ 1 & 0_1 & 4b^{0} & 0_1 & 1 \\ 0 & 0 & 0 & 0_1 & 0_1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0_1 & 0_1 & 0_1 \\ 0_1 & 0_1 & 0_1 \end{bmatrix}$
	[0.5 (0,46 ⁿ + 0.1 ⁿ)
	$= as (0.46^{n} - 0.1^{n}) o.s (0.46^{n} + 0.1^{n}) (-0.46^{n})$
	## P cinitial location) = $\frac{1}{2}$ (0.46° + 0.(°)
	b) 注意到 R要 spider 和 fly 位置不同.则下次转移位
	置相同的概率为. 0.54. 从而第几次被捕食的概率
	为 (0.46) ^M 0.54. 服从几何分布. 从而 均值为: 0.54 = 50
	70 (01 10) V(3)
	h > ==
4.33.	a) $\pm + E[Xn] = E[E[Xn[Xn+1]]$
	= E [M Xntz]
	$= \mu^{0}.E \times_{0}$
	故若 $\mu<1$. μ EXA \rightarrow 0、 从而 XA \rightarrow 0.
	λ
	b). Var (Xn Xo = 1) =

	Var (E[Xn) Xn-1, Xo=17) + E[Var (Xn) Xn-1, Xo=1)]
	= Var (μ xn-1 x0=1) + E[σ² xn-1/x0=1]
	$=\mu^{2} \sqrt{ar} (x_{n-1} + \sigma^{2}\mu^{n-1})$
	$= \mu^{2} (\mu^{2} \text{ Var} (X_{n-2} X_{0} = 1) + \sigma^{2} \mu^{n-2}) + \sigma^{2} \mu^{n-1}$
	$= \mu^{4} \text{ Var } (x_{n-2}) x_{0} = 1) + \sigma^{2} (\mu^{n-1} + \mu^{n})$
	$= O^{1}(\mu^{1-1} + \cdots + \mu^{1-2})$
	$= \int_{-\infty}^{\infty} \mu^{n-1} \frac{\mu^{n}-1}{\mu-2} \qquad \mu \neq 1$
	$\lim_{n \to \infty} 1$
44	$\overline{\pi}_{\hat{j}} = \sum_{i=0}^{M} \overline{D}_{i\hat{j}} \cdot \overline{\pi}_{\hat{i}}$
	$ \begin{array}{cccc} \lambda & \overline{\pi}_i & = & \underline{\pi}_i \\ \lambda & \overline{\pi}_i & = & \underline{\pi}_i \end{array} $
	中0
	$\overline{D}_{ij} \overline{\pi}_{i} = \frac{\pi_{i}}{\underline{\mu}_{i=0}} (P_{ij} + \int_{(i=\hat{j})} \Sigma_{k,M} P_{ik})$
	而原 Markov Chain 是 time - reversible 的.
	故 $\bar{P}_{ij} \bar{\pi}_{i} = \frac{\pi_{ij}}{M} (P_{ji} + I(i=j) \sum_{k>M} P_{jk})$
	故 $\overline{P}_{ij} \overline{\pi}_{i} = \frac{\pi_{j}}{\sum_{i=0}^{M} \pi_{i}} (P_{ji}) + I(i=j) \sum_{k>M} P_{jk}$ $= \overline{\pi}_{j} \times \overline{P}_{ji}$
	故 thun cated chain 是 time — reversible 的.
	同时可得: 其 Pij x Ti
	$= \sum_{i=0}^{\infty} \overline{p_{i}} \times \frac{\pi_{i}}{2\pi_{i}} = \frac{\pi_{i}}{2\pi_{i}}$
	$= \underbrace{\sum_{i=0}^{M} \overline{P_{ji}} \times \frac{\pi_{i}}{\sum_{j=0}^{M} \pi_{j}}}_{j=0} = \underbrace{\pi_{j}}_{j=0}$ 由 叔 限 概见 产 的 o 作 一 性 知:
	カースティースティースティースティースティースティースティースティースティースティ
	#
	1 Σ π _j .

4.46.																
	Ы).		πj	=	<u>九</u> 之 兀;	<u> </u>		j = (), 1,	N						
	c)		π; (λ))= _	EEnw	uber	of Y-	-trans	1 aitions	betwe	ευ λ	— visi	t toi			
			ガ (M)	~	E[<u>E num</u> number	lber of	of Y- Y-tla	visits nsition	to j s bet	betwe ween	EU ,	Y-visit sit to	s to	;]	
				= 7	ti W)	ΧЕΙ	_ Num,	ber (of X	-visit	s to	ĵ	oetwee	n x	– vi sits	, to
	d)	k	F	symme-												
							Pi,i-1		Pun =	1 = P	. C-N,N					
		故		Doub)			(ήχ.							
		母((N)= C知	-											
	e)		由b	丸, 丫 t	ガj b 是	t; M	πĵ ,≟,π; e – r	evers	тр iЫe.	X足	time	— Re	versib	le.		