Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра Систем Управления и Информатики Группа Р3340

Лабораторная работа №11 "Исследование математической модели пьезоэлектрического исполнительного устройства" Вариант - 02

Выполнил			(подпись)
		(фамилия, и.о.)	
Проверил		(фамилия, и.о.)	(подпись)
"_"	20г.	Санкт-Петербург,	20г.
Работа выпол	гнена с оценкой		
Пата рашити	_"_" 20_	T.	
дата защиты	20_	_1.	

Цель работы

Целью работы является изучение математических моделей и исследование характеристик исполнительного устройства, построенного на основе пьезоэлектрического двигателя микроперемещений.

Исходные данные

На рисунке 1 приведена структурная схема пьезоэлектрического двигателя, параметры двигателя - таблица 1

Таблица 1 – Исходные данные

C_p ,	m,	K_0 ,	K_d ,	T_u ,	F_B ,
H/M	ΚΓ	$\mathrm{H/B}$	Н∙с/м	мс	H
$0,5\cdot 10^8$	0,3	8,2	$0,9\cdot 10^3$	0,06	80

Рисунок 1 – Структурная схема пьезоэлектрического исполнительного устройства

Коэффициенты передачи измерительных устройств K_u^{-1}, K_F, K_V и K_x выбираются таким образом, чтобы обеспечить соответствие максимального значения измеряемого сигнала уровню 10 В на выходе измерительного устройства. В итоге получим следующие значения коэффициентов:

$$K_u = 30 \tag{1}$$

$$K_F = 0.0081$$
 (2)

$$K_V = 22.9382 (3)$$

$$K_x = 2.03267 * 10^5 \tag{4}$$

1 Исследование исполнительного устройства

Составим математическую модель в относительно исходных данных и получившихся значений коэффициентов. Модель представлена на рисунке 2, а на рисунке 3 графики переходных процессов при нулевом внешнем воздействии.

Рисунок 2 – Функциональная схема пьезоэлектрического исполнительного устройства

Рисунок 3 – Переходные процессы при $F_b=0$ Н U=10 В

2 Исследование влияния массы нагрузки на вид переходных процессов

На рисунке 4 показаны переходные процессы при различных значениях массы нагрузки. В таблице 2 приведена зависимость характеристик системы от массы нагрузки.

Рисунок 4 – Переходные процессы при изменении массы

Таблица 2 – Данные переходных процессов при изменяющейся массе нагрузки

т, кг	t_{π}, c	$\sigma,\%$	$x_{ m y}$
0,15	0,8	35,9	10
0,3	1,81	53,2	10
0,375	2,29	58,1	10
0,45	2,79	61,9	10

3 Исследование влияния постоянной времени на вид переходных процессов

Передаточная функция системы:

$$W(s) = \frac{K_U K_0}{T_U m s^3 + (m + K_d T_U) s^2 + (K_d + C_p T_U) s + C_p}$$
(5)

В таблице приведена зависимость характеристик системы от постоянной времени и расчитанные корни передаточной функции 5.

Таблица 3 – Данные переходных процессов при изменяющейся постоянной времени

T_u , MC	t_{π} , MC	$\sigma,\%$	x_y	s_1	s_2	s_3
0,06	1,8	53,2	10	-16666,67	-1500 + j12822,5	-1500 - j12822,5
0,12	1,6	30,1	10	-8333,33	-1500 + j12822,5	-1500 - j12822,5
0,24	1,2	6,1	10	-4166,67	-1500 + j12822,5	-1500 - j12822,5
0,36	1,1	0,7	10	-2777,78	-1500 + j12822,5	-1500 - j12822,5

На рисунке 5 показаны переходные процессы при различных значениях массы нагрузки.

Рисунок 5 – Переходные процессы при изменении постоянной времени

4 Исследование влияния коэффициентов упругости на вид переходных процессов

На рисунках 6 и 7 показаны переходные процессы по скорости и положению, относительно коэффициента упругости.

Рисунок 6 – Переходные процессы при изменении коэффициента упругости

Рисунок 7 – Переходные процессы при изменении коэффициента упругости

5 Построение ЛАЧХ исполнительного устройства

Представим асипмтотическую логарифмическую характеристику для нашей системы в виже колебательного звена:

$$W(s) = \frac{\frac{K_0}{C_p}}{\frac{m}{C_p}s^2 + \frac{K_d}{C_p}s + 1}.$$
 (6)

На рисунке 8 видно где асимптотическая ЛАЧХ имеет нулевой наклон и после какой частоты ее наклон составляет -40 дБ/дек.

Рисунок 8 – Асимптотическая ЛАЧХ

Вывод

В лабораторной работе было исследовано пьезоэлектрическое устройство, которое можно представить в виде колебательного звена.

При исследовании влияния массы нагрузки на пьезоэлектрическое устройство, было выявлено, что при ее увеличении, увеличивается время переходного процесса

При изменении постоянной времени изменяется время переходного процесса и перерегулирование. При увеличении T_u , растет $t_{\rm n}$ и убывает σ , установившееся значение остается неизменным.

При исследовании коэффициента упругости было выявлено, что, при увеличении C_p , увеличивается колебательность системы без изменения времени переходного процесса.