Automaten, formale Sprachen und Entscheidbarkeit

Mitschrift

Fabian Damken

25. Oktober 2016

Inhaltsverzeichnis

1	Einf	ührung	
	1.1	Beispi	ele
		1.1.1	Transitionssystem: Uhr
		1.1.2	Transitionssystem: Mann/Wolf/Hase/Kohl
		1.1.3	Transitionssystem: Strom von Buchstaben
	1.2	Alpha	het

1 Einführung

1.1 Beispiele

1.1.1 Transitionssystem: Uhr

In diesem Beispiel wird eine einfache Uhr modelliert.

 $h \coloneqq hour$ $m \coloneqq minute$

Zustände:

$$(h, m, q) = \begin{cases} h \in H = \{0, \dots, 23\} \\ m \in M = \{0, \dots, 59\} \\ q \in \{SETH, SETM, NIL, ERROR\} \end{cases}$$
(1.1)

Aktionen/Operationen: seth, setm, +, -, set, reset

Typische Transitionen: Dies sind nur beispielhafte Transsitionen, es gibt deutlich mehr.

$$\begin{array}{c} (h,m,NIL) \xrightarrow{seth} (h,m,SETH) \\ (h,m,SETH) \xrightarrow{set} (h,m,NIL) \\ (h,m,SETH) \xrightarrow{seth} (h,m,ERROR) \\ (h,m,NIL) \xrightarrow{+} (h,m,ERROR) \\ (h,m,SETH) \xrightarrow{+} ((h+1)mod24,m,SETH) \\ (h,m,ERROR) \xrightarrow{reset} (0,0,NIL) \end{array}$$

1.1.2 Transitionssystem: Mann/Wolf/Hase/Kohl

Zustände: Die Elemente $\{m, w, h, k\}$ wobei

m := Mann

 $w \coloneqq Wolf$

 $h \coloneqq Hase$

 $k \coloneqq Kohl$

sind, sind auf links/rechts verteils, symbolisiert durch $[m, w, h, k|l], \ldots, [m, w|lh, k]$.

Dabei sind folgende Kombinationen sowohl links als auch rechts nicht erlaubt: [w, h] [h, k] [w, h, k].

Aktionen/Operationen: Der Mann kann zur anderen Seite wechseln und dabei maximal ein anderes Element (Wolf, Hase, Kohl) mitnehmen.

Start/Ziel Der Startzustand ist [m, w, h, k|l]. Der Endzustand soll [||m, w, h, k| sein.

Lösungsgraph Der folgende Graph visualisiert alle (sinnvollen) Zustände des Transitionssystems.

1.1.3 Transitionssystem: Strom von Buchstaben

Sei Σ ein Alphabet und $a \in \Sigma$.

Es soll ein System gefunden werden, welches bei einem laufenen Strom von Elementen aus Σ die Information hält, ob die Anzahl der eingetroffenen a durch 3 Teilbar ist.

Zustandsgraph Der folgende Graph visualisiert den Ablauf der oben beschriebenen Prozedur mit Hilfe von drei Zuständen.

1.2 Alphabet

- Ein Alphabet ist eine nicht-leere, endliche Menge Σ .
- $a \in \Sigma$ wird als ein Buchstabe/Zeichen/Symbol bezeichnet.
- Ein Σ -Wort bezeichnet eine endlich Sequenz von Buchstaben in Σ , $w = a_1 a_2 \dots a_n$ mit $a \in \Sigma^*$.
- Σ^* ist die Menge aller Wörter und unendlich.
- ϵ ist das leere Wort: $\epsilon \in \Sigma^*$
- Eine Σ -Sprache ist eine Teilmenge $L \subseteq \Sigma^*$ von Σ -Wörtern.