INSTITUTO DE CIÊNCIAS DA SAÚDE

CURSOS DE BIOLOGIA

ROTEIRO PARA AULAS PRÁTICAS

DISCIPLINA:

QUÍMICA GERAL

REGRAS BÁSICAS DE SEGURANÇA NO LABORATÓRIO:

- Durante a aula prática mantenha sempre atenção ao roteiro tendo-o sempre próximo a você. Pode ser efetuada marcação com caneta sob cada item realizado do experimento de forma a não se perder durante a execução.
- Leia sempre o roteiro antes de iniciar o prática e mesmo antes das explicações do professor.
- 3. Observe a localização do material e equipamentos de emergência (chuveiro, lava olhos, etc).
- 4. Não abra qualquer recipiente antes de reconhecer seu conteúdo pelo rótulo;
- 5. Não pipete líquidos diretamente com a boca; use pipetas adequadas;
- 6. Não tente identificar um produto químico pelo odor e nem pelo sabor;
- 7. Não deixe de utilizar os equipamentos de proteção;
- 8. Não adicione água aos ácidos, mas sim os ácidos à água;
- 9. Não trabalhe de sandálias, chinelos ou sapatos abertos e de salto no laboratório;
- 10. Sempre identifique o conteúdo presente nos frascos ou tubos utilizados no experimento com caneta para vidros. Isto facilita seu descarte adequado por parte dos responsáveis pelo laboratório.
- 11. Mantenha os solventesem recipientes adequados e, devidamente, tampados bem como materiais inflamáveis longe de fontes de calor (bico de bunsen);
- 12. Utilize a capela sempre que manipular reagentes ou solventes que liberem vapores;
- 13. Conheça as propriedades tóxicas das substâncias químicas antes de empregá-las pela primeira vez no laboratório; Caso tenha dúvidas, consulte o professor ou o técnico a respeito.
- 14. Se tiver cabelos longos, leve-os presos ao realizar qualquer experiência no laboratório; Não se alimente e nem ingira líquidos nos laboratórios.

Curso: CIÊNCIAS BIOLÓGICAS E BIOMEDICINA	AULA
Disciplina: Química Geral	1
Preparo de Soluções	_

1. OBJETIVO

Aprender a pesar e realizar diluições.

Preparo de Solução Fisiológica:

- a) Ajuste a balança seguindo as orientações do professor.
- b) Efetue a dobradura de papel manteiga para a pesagem.
- c) Pese, exatamente, 0,9 g de NaCl.
- d) Transfira, quantitativamente, a massa de NaCl pesada para um béquer de 100 mL.
- e) Com auxílio de uma proveta, colete 50 mL de água destilada e transfira para o béquer.
- f) Com auxílio de um bastão de vidro, dissolva os cristais com água destilada.
- g) Após dissolução completa, transfira o conteúdo do béquer para um balão volumétrico de 100 mL.
- h) Completar o volume do balão volumétrico obedecendo a marca de aferição e evitando cometer erro de paralaxe referente à leitura do menisco. (Obedeça às orientações do professor)
- i) Transferir o conteúdo do balão para um frasco, devidamente identificado.
- j) Efetue o cálculo da concentração em g.L e em título (%) para a solução recém preparada.

Diluição de Soluções:

- a) Partindo da solução mãe preparada anteriormente realize as seguintes diluições:
- -Solução 15%/ 100 ml;
- Solução 35%/ 100 ml.

MATERIAIS	QUANTIDADE
Cloreto de sódio (NaCl)	1 g por grupo
Água Destilada	1 grupo
EQUIPAMENTOS	
Balança	1 grupo
Balão volumétrico de 100 ml	1 grupo
Balão volumétrico de 10 ml	1 grupo
Proveta de 50 ml	1 grupo
Béquer 100 ml	1 grupo
Bagueta (bastão de vidro)	1 grupo

Curso: CIÊNCIAS BIOLÓGICAS E BIOMEDICINA		
Disciplina: Química Geral	2	
Teste de Chama	_	

1. OBJETIVO

Observar os espectros de emissão de alguns cátions metálicos e as diferentes zonas de aquecimento de um bico de Bunsen.

MATERIAIS	QUANTIDADE
Cloreto de sódio (NaCl) (Colocar os sais em vidro de relógio)	1 g por grupo
Cloreto de potássio (KCI)	1 g por grupo
cloreto de bário (BaCl ₂)	1 g por grupo
Cloreto de Estrôncio (SrCl ₂)	1 g por grupo
sulfato de cobre (II) (CuSO ₄)	1 g por grupo
Cloreto de cálcio (CaCl ₂)	1 g por grupo
Ácido clorídrico concentrada HCI (tubo com rolha)	1 por grupo
EQUIPAMENTOS	
Bico de bunsen e fósforo	1
Pinça de Ni/Cu	1
Dois vidros de cobalto	1
Alça de Platina	2

2. PROCEDIMENTO

- 1. Colocar uma pequena porção de cada um dos sais num vidro de relógio, devidamente identificada. (Técnico pode deixar pronto e identificado).
- 2. Aquecer a argola metálica do fio no cone superior da chama do bico de Bunsen. Se apresentar coloração é porque a argola está suja. Se assim for, mergulhar na solução de HCl concentrado, e levar de novo à chama. Havendo necessidade, repetir este procedimento até não haver coloração.
- 3. Mergulhar a argola na amostra, "agarrando" assim a substância que adere à argola.
- 4. Levar a argola à chama, observar e registrar a cor.
- 5. Comparar as cores das chamas obtidas com as da tabela de referência.
- 6.Colocar num vidro de relógio uma pequena porção da mistura de cloreto de sódio e cloreto de potássio.(observar a chama com e sem o vidro de cobalto duplo).

7. Observar a coloração da chama e registrar.

METAL	COR OBSERVADA	Comprimento de onda (em nm)
Na +		589
K +		420
Ba ⁺²		624
Ca ⁺²		616
Sr+ ²		707
Cu ⁺²		530
Cor	Intervalo de comprimentos de onda correspondente (em nm)	
vermelh	nelha 780 – 622	
laranja	622 – 597	
amarela	597 – 577	
verde	577 – 492	
azul	492 – 455	
violeta	455 – 380	

Para o estudo do bico de Bunsen, com o anel de ar parcialmente fechado distinguimos três zonas da chama:

- i) **zona externa:** violeta pálida, quase invisível, onde os gases expostos ao ar sofrem combustão completa, resultando em CO_2 e H_2O . Esta é a zona oxidante e pode atingir a temperatura de 1540°C;
- ii) **zona intermediária:** luminosa, caracterizada pela combustão incompleta do gás, devido a deficiência de O₂. O carbono forma CO que se decompõe pelo calor, resultando em pequenas partículas de carbono, que incandescentes dão luminosidade à chama. Esta zona é chamada de zona redutora e produz temperaturas de 1560°C;
- iii) **zona interna:** limitada por uma "casca" azulada, contendo os gases que ainda não sofreram combustão (pode atingir temperaturas entre 300 e 500°C).

Dependendo do ponto da chama, a temperatura de um bico de Bunsen pode atingir até 1560° C. Abrindo-se completamente o anel de ar tem-se a entrada de suficiente quantidade de O_2 , ocorrendo na região intermediária a combustão mais acentuada dos gases formando, além do CO, uma quantidade maior de CO_2 e H2O, tornando assim a chama quase invisível.