

Mecânica dos Fluidos I MEAer

Escoamento compressível unidimensional em regime permanente - 2014/12/13

João Henriques // joaochenriques@tecnico.ulisboa.pt

JCCH / MFI / Escoamento compressível unidimensional em regime permanente - 2014/12/13

1/96

Programa 2014/2015

- 1. Introdução
- 2. Equações para escoamento compressível unidimensional em regime permanente
- 3. Velocidade do som
- 4. Escoamento adiabático e escoamento isentrópico
- 5. Escoamento isentrópico com variação de área
- 6. Ondas de choque normais
- 7. Tubeiras convergentes e divergentes

Bibliografia

- ▶ Bibliografia consultada nesta apresentação
 - [1] Shapiro, A.H., *The Dynamics and Thermodynamics of Compressible Fluid Flow*, Volume 1, The Ronald Press Company, 1953
 - [2] André, J.M., Mecânica dos Fluidos I Apontamentos de Escoamentos Compressíveis, 2013.
 - [3] Fox, R.W., McDonald, A.T., *Introduction to Fluid Mechanics*, 8th Edition, John Wiley & Sons, 2011.
 - [4] White, F.M., Fluid Mechanics, 4th Edition, McGraw-Hill, 1998.

JCCH / MFI / Escoamento compressível unidimensional em regime permanente - 2014/12/13

3/96

Modelo de gás perfeito

Equação de estado

$$\rho = \rho RT = \frac{1}{\nu}RT\tag{1}$$

com

$$\rho = \frac{1}{V}$$

sendo v o volume específico

- "específico" ≡ por unidade de massa
- Tomando logaritmos

$$\ln p = -\ln v + \ln R + \ln T = \ln \rho + \ln R + \ln T$$

e diferenciando obtemos

$$\frac{d\rho}{\rho} = -\frac{dv}{v} + \frac{dT}{T} = \frac{d\rho}{\rho} + \frac{dT}{T} \tag{2}$$

Modelo de gás perfeito

► Energia interna

$$e = e(v, T)$$

para um gás perfeito a energia interna, e, depende apenas da temperatura

$$\left(\frac{\partial e}{\partial v}\right)_T = 0$$

$$de = \left(\frac{\partial e}{\partial v}\right)_T dv + \underbrace{\left(\frac{\partial e}{\partial T}\right)_v}_{C_V} dT = c_v dT$$

$$e_2 - e_1 = \int_1^2 c_\nu dT = c_\nu (T_2 - T_1)$$
 (3)

 $\mathsf{JCCH} \ / \ \mathsf{MFI} \ / \ \mathsf{Escoamento} \ \mathsf{compressível} \ \mathsf{unidimensional} \ \mathsf{em} \ \mathsf{regime} \ \mathsf{permanente} \ \mathsf{-} \ \mathsf{2014}/\mathsf{12}/\mathsf{13}$

5/96

Modelo de gás perfeito

Entalpia

$$h = h(v,T) = e + pv = e + RT = e + \frac{p}{\rho}$$
 (4)

⇒ depende apenas da temperatura

$$\left(\frac{\partial h}{\partial v}\right)_T = 0$$

$$dh = \left(\frac{\partial h}{\partial v}\right)_T dv + \underbrace{\left(\frac{\partial h}{\partial T}\right)_p}_{c_p} dT = c_p dT$$

$$h_2 - h_1 = \int_1^2 c_p dT = c_p (T_2 - T_1)$$
 (5)

Modelo de gás perfeito

Constantes do gás

$$c_{p} \equiv \left(\frac{\partial h}{\partial T}\right)_{p} = \frac{dh}{dT} = \frac{d}{dT} \left(e + pv\right) = \frac{de}{dT} + \frac{d}{dT} \left(RT\right) = c_{v} + R$$

Usando a definição

$$\gamma = \frac{c_p}{c_v} \tag{6}$$

obtemos

$$c_{\nu} = \frac{R}{\gamma - 1} \tag{7}$$

$$c_p = \frac{\gamma R}{\gamma - 1} \tag{8}$$

▶ No caso geral

$$R = \frac{\Lambda}{M} \tag{9}$$

sendo $\Lambda = 8314 \, \text{J/kmol K}$ e M o massa molecular do gás em (kg/kmol)

JCCH / MFI / Escoamento compressível unidimensional em regime permanente - 2014/12/13

7/96

Modelo de gás perfeito

Da teoria cinética dos gases

$$\gamma = \frac{n+2}{n} \tag{10}$$

- gases monoatómicos $n=3 \rightarrow \gamma = 5/3$
- gases diatomicos $n = 5 \rightarrow \gamma = 7/5$
- ▶ Para o ar (21% O₂ mais 78% N₂)

$$\gamma = 1.4$$

$$R = 287 \frac{\text{m}^2}{\text{s}^2 \text{K}}$$

$$c_v = \frac{R}{\gamma - 1} = 718 \frac{\text{m}^2}{\text{s}^2 \text{K}}$$

$$c_p = \frac{\gamma R}{\gamma - 1} = 1005 \frac{m^2}{s^2 K}$$

Modelo de gás perfeito

Variações de entropia

$$Tds = dh - \frac{dp}{\rho} \tag{11}$$

$$ds = c_p \frac{dT}{T} - R \frac{dp}{p} \tag{12}$$

integrando e usando as Eqs. (6), (8) e (1)

$$\int_{1}^{2} ds = \int_{1}^{2} c_{p} \frac{dT}{T} - \int_{1}^{2} R \frac{dp}{p}$$
 (13)

$$s_2 - s_1 = c_p \ln \frac{T_2}{T_1} - R \ln \frac{p_2}{p_1} = c_v \ln \left[\left(\frac{T_2}{T_1} \right)^{\gamma} \left(\frac{p_2}{p_1} \right)^{1-\gamma} \right]$$
 (14)

$$s_2 - s_1 = c_v \ln \left[\left(\frac{T_2}{T_1} \right) \left(\frac{\rho_1}{\rho_2} \right)^{\gamma - 1} \right] \tag{15}$$

$$s_2 - s_1 = c_v \ln \left[\left(\frac{p_2}{p_1} \right) \left(\frac{\rho_1}{\rho_2} \right)^{\gamma} \right] \tag{16}$$

 ${\sf JCCH} \ / \ {\sf MFI} \ / \ {\sf Escoamento} \ {\sf compressível} \ {\sf unidimensional} \ {\sf em} \ {\sf regime} \ {\sf permanente} \ - \ 2014/12/13$

9/96

Modelo de gás perfeito

- **Processo isentrópico** $ds = s_2 s_1 = 0$ \rightarrow limite de um processo real adiabático
 - ▶ Da Eq. (14)

$$\left(\frac{T_2}{T_1}\right) = \left(\frac{p_2}{p_1}\right)^{\frac{\gamma - 1}{\gamma}} \tag{17}$$

► Da Eq. (15)

$$\left(\frac{T_2}{T_1}\right) = \left(\frac{\rho_2}{\rho_1}\right)^{\gamma - 1} \tag{18}$$

► Da Eq. (16)

$$\left(\frac{\rho_2}{\rho_1}\right) = \left(\frac{\rho_2}{\rho_1}\right)^{\gamma} \tag{19}$$

Relações integrais para um volume controlo

▶ Balanço de massa - equação da continuidade na forma integral

$$\underbrace{\int_{V_{\it c}} \frac{\partial \rho}{\partial \it t} \, dV}_{permanente=0} + \int_{S_{\it c}} \rho \left({\bf u} \cdot {\bf n} \right) \, dS = 0$$

$$\int_{S_c} \rho\left(\mathbf{u} \cdot \mathbf{n}\right) \ dS = \underbrace{-\rho_1 u_1 A_1}_{S_1} + \underbrace{\rho_2 u_2 A_2}_{S_2} + \underbrace{0}_{S_3}$$

$$\rho_2 u_2 A_2 - \rho_1 u_1 A_1 = 0 \tag{20}$$

$$\dot{m}_2 = \dot{m}_1 \tag{21}$$

JCCH / MFI / Escoamento compressível unidimensional em regime permanente - 2014/12/13

11/96

Relações integrais para um volume controlo

► Balanço de quantidade de movimento segundo *x*

$$\underbrace{\int_{\mathsf{V}_c} \frac{\partial \rho u}{\partial t} \, d\mathsf{V}}_{\mathsf{permanente}=0} + \int_{\mathsf{S}_c} \rho u \, (\mathbf{u} \cdot \mathbf{n}) \, d\mathsf{S} = -\underbrace{\int_{\mathsf{S}_c} \rho \, n_x \, d\mathsf{S}}_{(\mathsf{A})} + \underbrace{\int_{\mathsf{V}_c} \rho \, g_x \, d\mathsf{V}}_{(\mathsf{B})} + \int_{\mathsf{S}_c} (\mathbf{T} \mathbf{n})_x \, d\mathsf{S}$$

► Em escoamentos de alta velocidade usualmente $(A) \gg (B) \Rightarrow$ desprezamos (B)

Relações integrais para um volume controlo

Balanço de energia

$$\int_{\underbrace{V_c}} \frac{\partial \rho \varepsilon}{\partial t} dV + \int_{S_c} \rho \varepsilon \left(\mathbf{u} \cdot \mathbf{n} \right) dS = -\int_{\underbrace{S_c}} \rho \left(\mathbf{u} \cdot \mathbf{n} \right) dS + \int_{\underbrace{V_c}} \rho \mathbf{g} \cdot \mathbf{u} dV + \int_{S_c} \mathbf{T} \mathbf{n} \cdot \mathbf{u} dS + \dot{Q} + \dot{W}$$
permanente=0
(A)
(B)

A energia total por unidade de massa definida por

$$\varepsilon = e + \frac{1}{2} \left(\mathbf{u} \cdot \mathbf{u} \right) \tag{22}$$

- $ightharpoonup \dot{Q}$ é o calor trocado com o exterior
- \dot{W} é o trabalho realizado/extraído sobre o fluido (excluindo forças viscosas)

JCCH / MFI / Escoamento compressível unidimensional em regime permanente - 2014/12/13

13/96

Relações integrais para um volume controlo

- lacktriangle Em escoamento de alta velocidade usualmente (A) \gg (B) \Rightarrow desprezamos (B)
- Uma vez que $\mathbf{u} \cdot \mathbf{n} = 0$ em Γ_3

$$-\int_{S_c} p \left(\mathbf{u} \cdot \mathbf{n}\right) dS = \underbrace{p_1 u_1 A_1}_{S_1} - \underbrace{p_2 u_2 A_2}_{S_1} + \underbrace{0}_{S_3}$$

ightharpoonup Pela mesma razão e por termos perfis uniformes T=0 em S_1 e em S_2

$$\int_{S_c} \textbf{Tn} \cdot \textbf{u} \, dS = 0$$

Relações integrais para um volume controlo

Equação de conservação de energia segundo x

$$\rho_2 \varepsilon_2 u_2 A_2 - \rho_1 \varepsilon_1 u_1 A_1 = \dot{Q} + \dot{W}' + p_1 u_1 A_1 - p_2 u_2 A_2$$

em que

$$\dot{W}' = \dot{W} + \int_{S_3} \mathbf{Tn} \cdot \mathbf{u} \, dS$$

Usando o balanço de massa

$$\begin{split} \dot{m}\left(\varepsilon_2-\varepsilon_1\right)&=\dot{Q}+\dot{W}'+\dot{m}\left(\frac{p_1}{\rho_1}-\frac{p_2}{\rho_2}\right)\\ &\left(\varepsilon_2+\frac{p_2}{\rho_2}\right)-\left(\varepsilon_1+\frac{p_1}{\rho_1}\right)=\left(e_2+\frac{1}{2}u_2^2+\frac{p_2}{\rho_2}\right)-\left(e_1+\frac{1}{2}u_1^2+\frac{p_1}{\rho_1}\right)=q+w'\\ \text{onde}\\ &\dot{Q}+\dot{W}' \end{split}$$

$$\frac{\dot{Q} + \dot{W}'}{\dot{m}} = q + w'$$

usando as definições de energia interna e entalpia, Eq. (4),

$$\left(h_2 + \frac{1}{2}u_2^2\right) - \left(h_1 + \frac{1}{2}u_1^2\right) = q + w' \tag{23}$$

 ${\sf JCCH\ /\ MFI\ /\ Escoamento\ compressível\ unidimensional\ em\ regime\ permanente\ -\ 2014/12/13}$

15/96

Velocidade de propagação da onda de pressão

Balanço de massa

$$\int_{S_c} \rho(\mathbf{u} \cdot \mathbf{n}) dS = 0$$

$$(\rho + d\rho) (-c + du) (-1)A + \rho(-c)A = 0$$

 \triangleright desprezando o termo de ordem superior, $(du d\rho)$, resulta

$$du = c \frac{d\rho}{\rho} \tag{24}$$

Velocidade de propagação da onda de pressão

Balanço de quantidade de movimento

$$\int_{S_c} \rho \mathbf{u} \left(\mathbf{u} \cdot \mathbf{n} \right) dS = -\int_{S_c} \rho \mathbf{n} dS$$

$$(\rho + d\rho) \rho \left(-c + du \right)^2 (-1)A + \rho (-c)^2 A = (\rho + d\rho) A - \rho A$$

expandindo e substituindo a definição de du, Eq. (24),

$$c^2 d\rho - c^2 \frac{d\rho^3}{\rho^2} + c^2 \frac{d\rho^2}{\rho} = d\rho$$

• desprezando o termos de ordem superior, $d\rho^2$ e $d\rho^3$,

$$c^2 = \frac{\mathsf{d}p}{\mathsf{d}\rho} \tag{25}$$

 $\mathsf{JCCH} \; / \; \mathsf{MFI} \; / \; \mathsf{Escoamento} \; \mathsf{compress\'{i}vel} \; \mathsf{unidimensional} \; \mathsf{em} \; \mathsf{regime} \; \mathsf{permanente} \; \mathsf{-} \; \mathsf{2014}/\mathsf{12}/\mathsf{13}$

17/96

Velocidade do som e número de Mach

Para um processo isentrópico, da Eq. (19),

$$\frac{p}{\rho^{\gamma}} = \text{const}$$

Tomando o logaritmo e diferenciando

$$\ln p - \gamma \ln \rho = \text{const}$$

$$\frac{\mathrm{d}\rho}{\rho} = \gamma \frac{\mathrm{d}\rho}{\rho}$$

$$\frac{\mathrm{d}\rho}{\mathrm{d}\rho} = \frac{\gamma \rho}{\rho}$$
(26)

Substituindo em (25)

$$c^{2} = \left(\frac{\mathrm{d}p}{\mathrm{d}\rho}\right)_{s} = \frac{\gamma p}{\rho} = \gamma RT \tag{27}$$

Para escoamento incompressível $d\rho = 0$

$$c^2 = \frac{\mathrm{d}p}{\mathrm{d}\rho} = \infty$$

Velocidade do som e número de Mach

- Significado físico do número de Mach
 - Razão de velocidades medida da assimetria do escoamento

$$\mathsf{Ma} = \frac{u}{c} \tag{28}$$

► Forças de inércia ⇒ caudal de quantidade de movimento

$$\int \rho u \left(\mathbf{u} \cdot \mathbf{n} \right) dS \sim \rho u^2 L^2$$

► Forças elásticas ⇒ forças de pressão

$$\int p \, \mathbf{n} \, \mathrm{d}S \sim pL^2$$

Relação entre as forças de inércia e as forças elásticas

$$\frac{F_{\text{inercia}}}{F_{\text{elastica}}} = \frac{\rho u^2 L^2}{\rho L^2} = \frac{u^2}{\left(\frac{\rho}{\rho}\right)} \propto \frac{u^2}{\left(\frac{\gamma \rho}{\rho}\right)} = \frac{u^2}{c^2} = \text{Ma}^2$$

 $\mathsf{JCCH} \; / \; \mathsf{MFI} \; / \; \mathsf{Escoamento} \; \mathsf{compress\'{i}vel} \; \mathsf{unidimensional} \; \mathsf{em} \; \mathsf{regime} \; \mathsf{permanente} \; \mathsf{-} \; \mathsf{2014}/\mathsf{12}/\mathsf{13}$

19/96

Regimes do escoamento

Critério de escoamento incompressível

$$Ma = \frac{u}{c} \ll 1$$

- Escoamentos externos
 - ▶ incompressível 0.0 < Ma < 0.3
 - ▶ subsónico 0.3 < Ma < 0.8</p>
 - ▶ transónico 0.8 < Ma < 1.2</p>
 - ▶ supersónico 1.2 < Ma < 3.0</p>
 - ► hipersónico 3.0 < Ma
- Escoamentos internos
 - ▶ subsónico Ma < 1</p>
 - supersónico Ma > 1

Propagação de ondas sonoras

JCCH / MFI / Escoamento compressível unidimensional em regime permanente - 2014/12/13

21/96

Exemplo 1

A figura mostra a posição de duas ondas sonoras geradas por uma partícula que se desloca a uma velocidade constante no ar em repouso, à temperatura de 20°C. Determine a velocidade da partícula.

A figura mostra a posição de duas ondas sonoras geradas por uma partícula que se desloca a uma velocidade constante no ar em repouso, à temperatura de 20°C. Determine a velocidade da partícula.

▶ A velocidade do som, c, é

$$c = \sqrt{\gamma RT} = \sqrt{1.4 \times 287 \times 293} = 343.1\,\mathrm{m/s}$$

 $\mathsf{JCCH} \ / \ \mathsf{MFI} \ / \ \mathsf{Escoamento} \ \mathsf{compressível} \ \mathsf{unidimensional} \ \mathsf{em} \ \mathsf{regime} \ \mathsf{permanente} \ \mathsf{-} \ \mathsf{2014} / \mathsf{12} / \mathsf{13}$

23/96

Exemplo 1

- Seja δt_1 o tempo que a partícula demora entre o ponto a e b, e δt_2 o tempo decorrido para que a perturbação originada em b atinja um raio r_2
- Logo

$$\begin{aligned} r_2 &= c \, \delta t_2 = u \, \delta t_1 \\ r_1 &= c \, (\delta t_1 + \delta t_2) \\ \mathsf{Ma} &= \frac{u \, \delta t_1}{c \, (\delta t_1 + \delta t_2) - c \, \delta t_2} = \frac{u \, \delta t_1}{c \, \delta t_1} = \frac{r_2}{r_1 - r_2} = \frac{0.6}{1.5 - 0.6} = 0.67 \\ u &= \mathsf{Ma} \times c = 0.67 \times 343.1 = 228.7 \, \mathsf{m/s} \end{aligned}$$

Um avião supersónico deslocando-se em linha recta a velocidade constante e a uma altitude de $h=1.5\,\mathrm{km}$, passa por cima de um observador que só o ouve quando este se encontra já numa posição $L=3\,\mathrm{km}$ à sua frente.

Para simplificar, admita que o movimento do avião produz uma peturbação de pressão pontual, de pequena amplitude, e ignore a variação da velocidade do som com a altitude.

- a) Determine o número de Mach a que se desloca o avião e o ângulo de Mach da respectiva onda de pressão;
- b) A posição do avião quando este produziu o som ouvido em primeiro lugar pelo observador.

 ${\sf JCCH}\ /\ {\sf MFI}\ /\ {\sf Escoamento}\ {\sf compressível}\ {\sf unidimensional}\ {\sf em}\ {\sf regime}\ {\sf permanente}\ {\sf -}\ 2014/12/13$

25/96

Exemplo 2

$$\mu=\text{atan}\frac{1.5}{3.0}=26.5^\circ$$

$$\mathsf{Ma} = \frac{1.0}{\sin\mu} = 2.24$$

$$x = h \tan \mu = 0.748 \,\mathrm{km}$$

NOTA: o cone de Mach é tangente a todas as circunferências

JCCH / MFI / Escoamento compressível unidimensional em regime permanente - 2014/12/13

27/96

Propriedades em condições de estagnação

- Propriedades que podem ser obtidas se o escoamento for desacelerado até à condição de velocidade zero num processo irreversível e adiabático
- ► Entalpia de estagnação

$$h_0 = \left(h + \frac{1}{2}u^2\right)$$

da Eq. (23) para escoamento adiabático q=w=0

$$\left(h_2 + \frac{1}{2}u_2^2\right) = \left(h_1 + \frac{1}{2}u_1^2\right)$$

logo

$$h_{02} = h_{01} (29)$$

► Considerando 0 K como a temperatura de referência

$$h = c_p T$$

resulta

$$T_1 + \frac{u_1^2}{2c_p} = T_2 + \frac{u_2^2}{2c_p} \tag{30}$$

Propriedades em condições de estagnação

Definimos a **temperatura de estagnação** T_0 como a temperatura que o escoamento atingiria se fosse desacelerado **adiabaticamente** até u=0

$$h_0 = c_p T_0 = h + \frac{1}{2} u^2 \tag{31}$$

$$T_0 = T + \frac{1}{2c_p}u^2 \tag{32}$$

usando a definição de c_p , Eq. (8),

$$\frac{T_0}{T} = 1 + \frac{1}{2c_pT}u^2 = T + \frac{\gamma - 1}{2}\frac{1}{\gamma RT}u^2$$

 Com a definição de velocidade do som, Eq. (27), podemos escrever a temperatura de estagnação como

$$\frac{T_0}{T} = 1 + \frac{\gamma - 1}{2} Ma^2 \tag{33}$$

 $\mathsf{JCCH} \ / \ \mathsf{MFI} \ / \ \mathsf{Escoamento} \ \mathsf{compress\'{i}vel} \ \mathsf{unidimensional} \ \mathsf{em} \ \mathsf{regime} \ \mathsf{permanente} \ \mathsf{-} \ \mathsf{2014} \ / \ \mathsf{12} \ / \ \mathsf{13}$

29/96

Propriedades em condições de estagnação isentrópicas

Pressão de estagnação isentrópica - se a desaceleração até condições de estagnação for adiabática e isentrópica, podemos usar a Eq. (17) para obter

$$\frac{p_0}{p} = \left(\frac{T_0}{T}\right)^{\frac{\gamma}{\gamma - 1}} = \left(1 + \frac{\gamma - 1}{2} Ma^2\right)^{\frac{\gamma}{\gamma - 1}} \tag{34}$$

Massa volúmica de estagnação isentrópica - usando a Eq. (19) obtemos

$$\frac{\rho_0}{\rho} = \left(\frac{T_0}{T}\right)^{\frac{1}{\gamma - 1}} = \left(1 + \frac{\gamma - 1}{2} \mathsf{Ma}^2\right)^{\frac{1}{\gamma - 1}} \tag{35}$$

Usando (33) definimos a velocidade do som em condições de estagnação

$$\left(\frac{c_0}{c}\right)^2 = \frac{T_0}{T} = 1 + \frac{\gamma - 1}{2} Ma^2$$
 (36)

Propriedades em condições de estagnação isentrópicas

JCCH / MFI / Escoamento compressível unidimensional em regime permanente - 2014/12/13

31/96

Escoamento isentrópico

Em escoamento isentrópico a pressão de estagnação é constante

Seja p_{01} e p_{02} a pressão de estagnação nas secções 1 e 2

$$\frac{p_{02}}{p_{01}} = \frac{p_{02}}{p_2} \frac{p_2}{p_1} \frac{p_1}{p_{01}} = \left(\frac{T_{02}}{T_2}\right)^{\frac{\gamma}{\gamma-1}} \left(\frac{T_2}{T_1}\right)^{\frac{\gamma}{\gamma-1}} \left(\frac{T_1}{T_{01}}\right)^{\frac{\gamma}{\gamma-1}} = 1 \tag{37}$$

porque $T_0 = T_{01} = T_{02}$ (ver Eq. (29))

Considere um tubo de Pitot utilizado para a medição da velocidade de um avião subsónico. No caso da pressão total registada pelo tubo de Pitot ser 84 kPa e as condições de pressão e temperatura num ponto infinitamente a monstante do avião serem respectivamente de 70 kPa e -50°, qual é a velocidade do avião.

 $\mathsf{JCCH} \ / \ \mathsf{MFI} \ / \ \mathsf{Escoamento} \ \mathsf{compress\'{i}vel} \ \mathsf{unidimensional} \ \mathsf{em} \ \mathsf{regime} \ \mathsf{permanente} \ \mathsf{-} \ \mathsf{2014}/\mathsf{12}/\mathsf{13}$

33/96

Exemplo 3

Considere um tubo de Pitot utilizado para a medição da velocidade de um avião subsónico. No caso da pressão total registada pelo tubo de Pitot ser 84 kPa e as condições de pressão e temperatura num ponto infinitamente a monstante do avião serem respectivamente de 70 kPa e -50°, qual é a velocidade do avião.

Partindo da Eq. (32)

$$T_0 = T_1 + \frac{1}{2c_p}u_1^2 \Rightarrow u_1 = \sqrt{2c_p(T_0 - T_1)}$$
 (38)

Da Eq. (34) temos

$$T_0 = T_1 \left(\frac{p_0}{p_1}\right)^{\frac{\gamma-1}{\gamma}} = 223 \left(\frac{84}{70}\right)^{\frac{\gamma-1}{\gamma}} = 234.9 \,\mathrm{K}$$

logo

$$u_1 = \sqrt{2 \times 1005 \times (234.9 - 223)} = 154.7 \,\mathrm{m/s}$$
 (39)

Escoamento isentrópico com variação de área

lacktriangle Por definição de escoamento isentrópico $\Rightarrow ds=0$

$$Tds = dh - \frac{dp}{\rho} = 0$$

$$dh = \frac{dp}{\rho} \tag{40}$$

Para escoamento adiabático $\Rightarrow h_0 = \mathsf{const}$

$$dh_0 = d\left(h + \frac{1}{2}u^2\right) = dh + udu = 0$$

$$dh = -udu \tag{41}$$

substituindo (41) em (40) e dividindo por u

$$\frac{dp}{\rho u^2} = -\frac{du}{u} \tag{42}$$

 ${\sf JCCH} \ / \ {\sf MFI} \ / \ {\sf Escoamento} \ {\sf compressível} \ {\sf unidimensional} \ {\sf em} \ {\sf regime} \ {\sf permanente} \ - \ 2014/12/13$

35/96

Escoamento isentrópico com variação de área

da equação da continuidade

$$\frac{d\rho}{\rho} + \frac{du}{u} + \frac{dA}{A} = 0$$

usando (42) e (26)

$$\frac{dA}{A} = -\frac{d\rho}{\rho} + \frac{dp}{\rho u^2} = -\frac{1}{\rho} \frac{d\rho}{dp} dp + \frac{dp}{\rho u^2} = -\frac{1}{\rho c^2} dp + \frac{dp}{\rho u^2}$$

$$dA = A \left(1 - \mathsf{Ma}^2\right) \frac{dp}{\rho u^2}$$

usando outra vez (42)

$$dA = -A\left(1 - \mathsf{Ma}^2\right) \frac{du}{u}$$

Escoamento isentrópico com variação de área

► Relações área-velocidade e área-pressão

$$\frac{dA}{du} = \left(\mathsf{Ma}^2 - 1\right) \frac{A}{u} \tag{43}$$

$$\frac{dA}{dp} = -\left(\mathsf{Ma}^2 - 1\right) \frac{A}{\rho u^2} \tag{44}$$

- ▶ Das Eqs. (43) e (44) podemos concluir que
 - ▶ Para Ma < 1

$$\frac{dA}{dp} > 0$$
 e $\frac{dA}{du} < 0$

Para Ma = 1 (condições sónicas \Rightarrow na área mínima)

$$\frac{dA}{dp} = 0$$
 e $\frac{dA}{du} = 0$

▶ Para Ma > 1

$$\frac{dA}{dp} < 0$$
 e $\frac{dA}{du} > 0$

JCCH / MFI / Escoamento compressível unidimensional em regime permanente - 2014/12/13

37/96

Escoamento isentrópico com variação de área

geometria	S	subsónico Ma < 1	supersónico $Ma > 1$
	dA > 0	du < 0 dp > 0 difusor	du>0 $dp<0$ tubeira
	dA < 0	du > 0 dp < 0 tubeira	du < 0 $dp > 0$ difusor

Ma < 1 $Ma = 1$		Ma > 1	
$\frac{dA}{dp} > 0 \text{ e } \frac{dA}{du} < 0$	$\frac{dA}{dp} = 0 \text{ e } \frac{dA}{du} = 0$	$\frac{dA}{dp} < 0 \text{ e } \frac{dA}{du} > 0$	

Escoamento isentrópico com variação de área

Ma < 1	Ma=1	Ma > 1	
$\frac{dA}{dp} > 0 \text{ e } \frac{dA}{du} < 0$	$\frac{dA}{dp} = 0 e \frac{dA}{du} = 0$	$\frac{dA}{dp} < 0 \text{ e } \frac{dA}{du} > 0$	

- No bojo quando temos dA > 0, Ma < 1 e estamos em desaceleração, du < 0, não podemos passar de forma descontínua para Ma = 1 em dA = 0
- ightharpoonup O mesmo raciocínio se aplica para dA>0, Ma>1 e estamos em aceleração, du>0

JCCH / MFI / Escoamento compressível unidimensional em regime permanente - 2014/12/13

39/96

Valores críticos (Ma=1)

Fazendo Ma = 1 e usando γ = 1.4, obtemos para as Eqs. (33), (36), (34) e (35)

$$\frac{T^*}{T_0} = \frac{c^{*^2}}{c_0^2} = \frac{2}{\gamma + 1} = 0.8333 \tag{45}$$

$$\frac{p^*}{p_0} = \left(\frac{2}{\gamma + 1}\right)^{\frac{\gamma}{\gamma - 1}} = 0.5283\tag{46}$$

$$\frac{\rho^*}{\rho_0} = \left(\frac{2}{\gamma + 1}\right)^{\frac{1}{\gamma - 1}} = 0.6339\tag{47}$$

NOTA: O asterisco como índice superior, *, indica que a propriedade é definida para condições sónicas \Rightarrow Ma = 1

Velocidades de referência

Velocidade máxima - partindo de (32), T = 0

$$u_{\text{max}} = \sqrt{2c_p T_0} \tag{48}$$

Velocidade do som à temperatura de estagnação

$$c_0 = \sqrt{\gamma R T_0} \tag{49}$$

ightharpoonup velocidade a número de Mach 1

$$u^* = c^* = \sqrt{\gamma R T^*} \tag{50}$$

lacktriangle Fazendo os rácios entre as três velocidades, para $\gamma=1.4$, obtemos

$$\frac{c^*}{c_0} = \sqrt{\frac{2}{\gamma + 1}} = 0.913 \tag{51}$$

$$\frac{u_{\text{max}}}{c_0} = \sqrt{\frac{2}{\gamma - 1}} = 2.24 \tag{52}$$

$$\frac{u_{\text{max}}}{c^*} = \sqrt{\frac{\gamma + 1}{\gamma - 1}} = 2.45 \tag{53}$$

 $\mathsf{JCCH} \; / \; \mathsf{MFI} \; / \; \mathsf{Escoamento} \; \mathsf{compress\'{i}vel} \; \mathsf{unidimensional} \; \mathsf{em} \; \mathsf{regime} \; \mathsf{permanente} \; \mathsf{-} \; \mathsf{2014}/\mathsf{12}/\mathsf{13}$

41/96

Velocidades de referência

Equação da energia na forma cinética

$$h_0 = c_p T + \frac{1}{2} u^2 = \frac{c_p}{\gamma R} \gamma R T + \frac{1}{2} u^2$$

logo

$$h_0 = \frac{1}{\gamma - 1}c^2 + \frac{1}{2}u^2 \tag{54}$$

$$h_0 = rac{1}{2}u_{\sf max}^2 = rac{1}{\gamma-1}c_0^2 = rac{1}{2}rac{\gamma+1}{\gamma-1}{c^*}^2$$

Caudal mássico por unidade de área

Caudal mássico por unidade de área

$$\begin{split} \frac{\dot{m}}{A} &= \rho \, u \\ &= \frac{p}{RT} \, u \\ &= \sqrt{\frac{\gamma}{R}} \frac{p_0}{\sqrt{T_0}} \frac{u}{\sqrt{\gamma RT}} \sqrt{\frac{T_0}{T}} \frac{p}{p_0} \\ &= \sqrt{\frac{\gamma}{R}} \frac{p_0}{\sqrt{T_0}} \mathsf{Ma} \left(1 + \frac{\gamma - 1}{2} \mathsf{Ma}^2\right)^{-\frac{1}{2} \frac{\gamma + 1}{\gamma - 1}} \end{split}$$

resultando uma função que depende apenas de Ma

$$\frac{\dot{m}}{A} \frac{\sqrt{T_0}}{p_0} = \sqrt{\frac{\gamma}{R}} \operatorname{Ma} \left(1 + \frac{\gamma - 1}{2} \operatorname{Ma}^2 \right)^{-\frac{1}{2} \frac{\gamma + 1}{\gamma - 1}}$$
(55)

 $\mathsf{JCCH} \; / \; \mathsf{MFI} \; / \; \mathsf{Escoamento} \; \mathsf{compress\'{i}vel} \; \mathsf{unidimensional} \; \mathsf{em} \; \mathsf{regime} \; \mathsf{permanente} \; \mathsf{-} \; \mathsf{2014}/\mathsf{12}/\mathsf{13}$

43/96

Caudal mássico por unidade de área

- ▶ Da Eq. (55) verifica-se
 - lacksquare Para um dado número Mach o caudal é propocional a $p_0/\sqrt{T_0}$
 - Dadas as condições de estagnação T_0 e p_0 , o caudal mássico por unidade de área, \dot{m}/A , é máximo para Ma=1

Caudal mássico por unidade de área

Máximo caudal mássico por unidade de área

$$\frac{\dot{m}}{A^*} \frac{\sqrt{T_0}}{p_0} = \sqrt{\frac{\gamma}{R} \left(\frac{2}{\gamma + 1}\right)^{\frac{\gamma + 1}{\gamma - 1}}} \tag{56}$$

para ar $\gamma=1.4$ e $R=287\,\mathrm{m^2/(s^2K)}$

$$\frac{\dot{m}}{A^*} \frac{\sqrt{T_0}}{p_0} = 0.0404 \tag{57}$$

É conveniente introduzir a definição de razão de áreas

$$\frac{A}{A^*} = \frac{\left(\frac{\dot{m}}{A^*}\right)}{\left(\frac{\dot{m}}{A}\right)} = \frac{1}{\mathsf{Ma}} \left[\frac{2}{\gamma + 1} \left(1 + \frac{\gamma - 1}{2} \mathsf{Ma}^2 \right) \right]^{\frac{1}{2} \frac{\gamma + 1}{\gamma - 1}} \tag{58}$$

 $\mathsf{JCCH} \; / \; \mathsf{MFI} \; / \; \mathsf{Escoamento} \; \mathsf{compress\'{i}vel} \; \mathsf{unidimensional} \; \mathsf{em} \; \mathsf{regime} \; \mathsf{permanente} \; \mathsf{-} \; \mathsf{2014}/\mathsf{12}/\mathsf{13}$

45/96

Caudal mássico por unidade de área

Podemos aproximar a Eq. (58) por (ver [4])

$$\mathsf{Ma} \approx \left\{ \begin{array}{l} 1 - 0.88 \left(\mathsf{In} \, \frac{A}{A^*} \right)^{0.45}, \quad \mathsf{Ma} < 1 \ \, \text{e} \ \, 1.0 < \frac{A}{A^*} < 1.34 \\ \\ 1 + 1.2 \left(\frac{A}{A^*} - 1 \right)^{0.5}, \quad \mathsf{Ma} > 1 \ \, \text{e} \ \, 1.0 < \frac{A}{A^*} < 2.9 \end{array} \right. \tag{59}$$

Considere um escoamento de ar num Venturi com uma área da garganta de $A_2 = 0.6 \times 10^{-3} \, \mathrm{m}^2$, e uma área da entrada de $A_1 = 2.4 \times 10^{-3} \, \mathrm{m}^2$. Sabendo que a pressão e a temperatura na entrada são $p_1 = 2.1 \times 10^6 \, \mathrm{Pa}$ e $T_1 = 590 \, \mathrm{K}$, e que a pressão na garganta é $p_2 = 1.68 \times 10^6 \, \mathrm{Pa}$, determine o caudal mássico escoado. Considere o escoamento isentrópico.

 $\mathsf{JCCH} \ / \ \mathsf{MFI} \ / \ \mathsf{Escoamento} \ \mathsf{compress\'{i}vel} \ \mathsf{unidimensional} \ \mathsf{em} \ \mathsf{regime} \ \mathsf{permanente} \ \mathsf{-} \ \mathsf{2014}/\mathsf{12}/\mathsf{13}$

47/96

Exemplo 4

Considere um escoamento de ar num Venturi com uma área da garganta de $A_2 = 0.6 \times 10^{-3} \, \text{m}^2$, e uma área da entrada de $A_1 = 2.4 \times 10^{-3} \, \text{m}^2$. Sabendo que a pressão e a temperatura na entrada são $p_1 = 2.1 \times 10^6 \, \text{Pa}$ e $T_1 = 590 \, \text{K}$, e que a pressão na garganta é $p_2 = 1.68 \times 10^6 \, \text{Pa}$, determine o caudal mássico escoado. Considere o escoamento isentrópico.

Resolução

▶ Podemos calcular imediatamente T_1 via a Eq. (1)

$$\rho_1 = \frac{p_1}{RT_1} = 12.4\,\mathrm{kg/s}$$

Sendo um processo isentrópico

$$\left(\frac{T_2}{T_1}\right) = \left(\frac{p_2}{p_1}\right)^{\frac{\gamma-1}{\gamma}} = \left(\frac{\rho_2}{\rho_1}\right)^{\gamma-1}$$

 Como temos as áreas, usando a Eq. da continuidade (20) e as relações isentrópicas obtemos

$$\frac{u_2^2}{u_1^2} = \left(\frac{\rho_1}{\rho_2}\right)^2 \left(\frac{A_1}{A_2}\right)^2 = \left(\frac{p_1}{p_2}\right)^{\frac{2}{\gamma}} \left(\frac{A_1}{A_2}\right)^2$$

▶ Podemos agora calcular u_1 através do energia (30)

$$\frac{u_1^2}{2c_p} - \frac{u_2^2}{2c_p} = T_2 - T_1$$

$$\frac{u_2^1}{2c_p} \left(1 - \frac{u_2^2}{u_1^2}\right) = T_1 \left(\frac{T_2}{T_1} - 1\right)$$

Consequentemente

$$\frac{u_1^2}{2c_p} \left[1 - \left(\frac{p_1}{p_2} \right)^{\frac{2}{\gamma}} \left(\frac{A_1}{A_2} \right)^2 \right] = T_1 \left[\left(\frac{p_2}{p_1} \right)^{\frac{\gamma - 1}{\gamma}} - 1 \right]$$

$$u_1^2 = 2c_p T_1 \left[\left(\frac{p_2}{p_1} \right)^{\frac{\gamma - 1}{\gamma}} - 1 \right] / \left[1 - \left(\frac{p_1}{p_2} \right)^{\frac{2}{\gamma}} \left(\frac{A_1}{A_2} \right)^2 \right] = 3481 \text{ (m/s)}^2$$

logo

$$u_1 = 59 \,\mathrm{m/s}$$
 $\dot{m} =
ho_1 A_1 u_1 = 1.75 \,\mathrm{kg/s}^{-1}$

JCCH / MFI / Escoamento compressível unidimensional em regime permanente - 2014/12/13

49/96

Estados num escoamento isentrópico

Consideremos o túnel supersónico representado na figura.

A pressão e a temperatura de estagnação do ar no reservatório são $p_0=4\times 10^5\, {
m Pa}$ e $\,T_0=293\, {
m K}.$

Determine a área da secção de ensaios bem como as propriedades do escoamento p, ρ , T e \dot{m} que ai se verificam.

Considere que o número de Mach nessa secção é Ma=2.4 e a área da garganta a montante é de $A^*=0.12\,\mathrm{m}^2$.

Usando a Eq. (58) obtemos

$$A = A^* \frac{1}{\mathsf{Ma}} \left[\frac{2}{\gamma + 1} \left(1 + \frac{\gamma - 1}{2} \mathsf{Ma}^2 \right) \right]^{\frac{1}{2} \frac{\gamma + 1}{\gamma - 1}} = 0.2884 \, \mathsf{m}^2$$

JCCH / MFI / Escoamento compressível unidimensional em regime permanente - 2014/12/13

51/96

Exemplo 5

Assumindo escoamento isentrópico de (33)

$$\frac{T_0}{T} = 1 + \frac{\gamma - 1}{2} \text{Ma}^2 = 2.152 \Rightarrow T = 136.15 \, \text{K}$$

Usando (34)

$$rac{p_0}{p}=\left(rac{T_0}{T}
ight)^{rac{\gamma}{\gamma-1}}=14.62\Rightarrow p=27360\, ext{Pa}$$

Da equação de estado dos gases perfeitos (1)

$$\rho = \frac{p}{RT} = 0.7 \, \text{kg/m}^3$$

Da definição de número de Mach

$$u = c \text{ Ma} = \sqrt{\gamma RT} \text{ Ma} = 561.34 \text{ m/s}$$

logo

$$\dot{m} = \rho u A = 113.34 \, \text{kg/s}$$

- $\Delta x \simeq 0.2 \times 10^{-6}$ m $\simeq 0.2$ μm (3 a 4 vezes o percurso livre médio das moléculas do fluido)
- ▶ Como $\Delta x \rightarrow 0 \Rightarrow A_1 = A_2$

 ${\sf JCCH}\ /\ {\sf MFI}\ /\ {\sf Escoamento}\ {\sf compressível}\ {\sf unidimensional}\ {\sf em}\ {\sf regime}\ {\sf permanente}\ {\sf -}\ 2014/12/13$

53/96

Onda de choque normal num gás perfeito

Conservação da energia

$$h_0 = h_1 + \frac{1}{2}u_1^2 = h_2 + \frac{1}{2}u_2^2$$

ou

$$T_0 = T_{02} = T_{01} \tag{60}$$

- ► Todas as expressões para escoamento adiabático se aplicam na onda de choque normal
- ightharpoonup Os estados 1 e 2 tem a mesma T^* , c^* e c_0
- ightharpoonup Usando as relações adiabáticas entre T e T_0

$$\frac{T_2}{T_1} = \frac{T_0/T_1}{T_0/T_2} = \frac{2 + (\gamma - 1)Ma_1^2}{2 + (\gamma - 1)Ma_2^2}$$
 (61)

lacktriangle Combinando a Eq. de estado e a equação da Eq. da continuidade com $A_1=A_2$

$$\frac{T_2}{T_1} = \frac{p_2}{p_1} \frac{\rho_1}{\rho_2} = \frac{p_2}{p_1} \frac{u_2}{u_1}$$

Usando a definição de Ma

$$\frac{T_2}{T_1} = \frac{p_2}{p_1} \frac{\mathsf{Ma}_2}{\mathsf{Ma}_1} \frac{c_2}{c_1} = \frac{p_2}{p_1} \frac{\mathsf{Ma}_2}{\mathsf{Ma}_1} \sqrt{\frac{T_2}{T_1}}$$

Simplificando

$$\frac{p_2}{p_1} = \frac{\mathsf{Ma}_1}{\mathsf{Ma}_2} \sqrt{\frac{T_2}{T_1}}$$

▶ Utilizando a Eq. (61) resulta

$$\frac{p_2}{p_1} = \frac{\mathsf{Ma}_1}{\mathsf{Ma}_2} \sqrt{\frac{2 + (\gamma - 1)\mathsf{Ma}_1^2}{2 + (\gamma - 1)\mathsf{Ma}_2^2}} \tag{62}$$

 $\mathsf{JCCH} \ / \ \mathsf{MFI} \ / \ \mathsf{Escoamento} \ \mathsf{compressível} \ \mathsf{unidimensional} \ \mathsf{em} \ \mathsf{regime} \ \mathsf{permanente} \ \mathsf{-} \ \mathsf{2014}/\mathsf{12}/\mathsf{13}$

55/96

Onda de choque normal num gás perfeito

Conservação da quantidade de movimento

$$p_1 + \rho_1 u_1^2 = p_2 + \rho_2 u_2^2 \tag{63}$$

sabendo que

$$\rho u^2 = \rho \frac{u^2}{a^2} \gamma RT = \gamma p Ma^2$$

logo

$$p_1 + \gamma p_1 \mathsf{Ma}_1^2 = p_2 + \gamma p_2 \mathsf{Ma}_2^2$$

ou

$$\frac{p_2}{p_1} = \frac{1 + \gamma M a_1^2}{1 + \gamma M a_2^2} \tag{64}$$

► Combinando a Eq. (62) com a Eq. (64)

$$\frac{\mathsf{Ma}_1\sqrt{2+(\gamma-1)\mathsf{Ma}_1^2}}{1+\gamma\mathsf{Ma}_1^2} = \frac{\mathsf{Ma}_2\sqrt{2+(\gamma-1)\mathsf{Ma}_2^2}}{1+\gamma\mathsf{Ma}_2^2} \tag{65}$$

Resolvendo a Eq. (65) em ordem a Ma₂ obtemos duas soluções

$$Ma_2 = Ma_1$$

$$Ma_2^2 = \frac{(\gamma - 1)Ma_1^2 + 2}{2\gamma Ma_1^2 - (\gamma - 1)}$$
(66)

- ► A primeira solução expressa que não houve onda de choque (estado 1 = estado 2)
- ► A segunda mostra que numa onda de choque existe uma relação discontinua entre o estado 1 e o estado 2

JCCH / MFI / Escoamento compressível unidimensional em regime permanente - 2014/12/13

57/96

Onda de choque normal num gás perfeito

Substituindo a Eq. (66) na Eq. (64)

$$\frac{p_2}{p_1} = \frac{2\gamma}{\gamma + 1} \operatorname{Ma}_1^2 - \frac{\gamma - 1}{\gamma + 1} \tag{67}$$

▶ Substituindo a Eq. (66) na Eq. (61)

$$\frac{T_2}{T_1} = \left[2 + (\gamma - 1)\mathsf{Ma}_1^2\right] \frac{2\gamma \mathsf{Ma}_1^2 - (\gamma - 1)}{(\gamma + 1)^2 \mathsf{Ma}_1^2} \tag{68}$$

Usando (1), em termos de massas volúmicas temos

$$\frac{\rho_2}{\rho_1} = \frac{p_2}{p_1} \frac{T_1}{T_2} = \frac{(\gamma + 1) Ma_1^2}{(\gamma - 1) Ma_1^2 + 2}$$
(69)

Conservação da quantidade de movimento

$$p_1 - p_2 = \rho_2 u_2^2 - \rho_1 u_1^2 = \rho_1 u_1 (u_2 - u_1)$$
(70)

Conservação da energia

$$h_0 = h_1 + \frac{1}{2}u_1^2 = h_2 + \frac{1}{2}u_2^2$$

logo

$$h_2 - h_1 = \frac{1}{2} (u_1 - u_2) (u_1 + u_2)$$

ightharpoonup Eliminando u_1 e u_2 (conhecida como Eq. de Rankine-Hugoniot)

$$h_2 - h_1 = \frac{1}{2} (p_2 - p_1) \left(\frac{u_1}{\rho_1 u_1} + \frac{u_2}{\rho_2 u_2} \right) = \frac{1}{2} (p_2 - p_1) \left(\frac{1}{\rho_1} + \frac{1}{\rho_2} \right)$$

► Esta eq. relaciona o estado termodinâmico 1 com o 2 sem utilizar a eq. de estado.

 ${\sf JCCH} \ / \ {\sf MFI} \ / \ {\sf Escoamento} \ {\sf compressível} \ {\sf unidimensional} \ {\sf em} \ {\sf regime} \ {\sf permanente} \ - \ 2014/12/13$

59/96

Onda de choque normal num gás perfeito

► Usando (1) e (8)

$$h_2 - h_1 = c_p (T_2 - T_1) = \frac{\gamma R}{\gamma - 1} \left(\frac{p_2}{R \rho_2} - \frac{p_1}{R \rho_1} \right)$$

logo

$$\frac{\gamma}{\gamma-1}\left(\frac{p_2}{\rho_2}-\frac{p_1}{\rho_1}\right)=\frac{1}{2}\left(p_2-p_1\right)\left(\frac{1}{\rho_1}+\frac{1}{\rho_2}\right)$$

donde

$$\frac{\rho_2}{\rho_1} = \frac{1 + \beta \frac{\rho_2}{\rho_1}}{\beta + \frac{\rho_2}{\rho_1}} \tag{71}$$

com

$$\beta = \frac{\gamma + 1}{\gamma - 1}$$

Comparação com a equação de uma evolução isentrópica

$$\frac{\rho_2}{\rho_1} = \left(\frac{p_2}{p_1}\right)^{\frac{1}{\gamma}} \tag{72}$$

Escrevendo a Eq. (16) em termos de massas volúmicas

$$\frac{s_2 - s_1}{c_v} = \ln\left[\left(\frac{p_2}{p_1}\right) \left(\frac{\rho_1}{\rho_2}\right)^{\gamma}\right] \tag{73}$$

Para $\gamma = 1.4$

<i>p</i> ₂		$s_2 - s_1$	
$\overline{p_1}$	Eq. (71)	ρ_2/ρ_1 Isentrópico, Eq. (72)	C_V
0.5	0.61540	0.60950	-0.01340
0.9	0.92750	0.92750	-0.00005
1.0	1.00000	1.00000	0.00000
1.1	1.00704	1.00705	0.00004
1.5	1.33333	1.33590	0.00270
2.0	1.62500	1.64070	0.01340

- ightharpoonup As ondas de choque para $p_2/p_1 < 2$ são quase isentrópicas
- $ho_2/p_1 < 1 \Rightarrow s_2 < s_1 \Rightarrow$ não respeita 2^a Lei da Termodinâmica!
- ▶ Numa onda de choque temos sempre $p_2 > p_1$

JCCH / MFI / Escoamento compressível unidimensional em regime permanente - 2014/12/13

61/96

Onda de choque normal num gás perfeito

Relações em termos do número de Mach

► Combinando a Eq. (14) com as Eqs. (67) e (69) resulta

$$\frac{s_2 - s_1}{R} = \frac{\gamma}{\gamma - 1} \ln \left[\frac{2}{(\gamma + 1) \operatorname{Ma}_1^2} + \frac{\gamma - 1}{\gamma + 1} \right] + \frac{1}{\gamma - 1} \ln \left[\frac{2\gamma}{\gamma + 1} \operatorname{Ma}_1^2 - \frac{\gamma - 1}{\gamma + 1} \right]$$
(74)

Relações em termos do número de Mach

► Usando a Eq. (54)

$$\frac{c_1^2}{\gamma - 1} + \frac{u_1^2}{2} = \frac{c_2^2}{\gamma - 1} + \frac{u_2^2}{2}$$

► Rearranjando, vem

$$\frac{c_1^2}{u_2^2} + \frac{u_1^2}{u_2^2} \frac{\gamma - 1}{2} = \frac{c_2^2}{u_2^2} + \frac{\gamma - 1}{2}$$

$$\frac{u_1^2}{u_2^2} \left(\frac{1}{\mathsf{Ma}_1^2} + \frac{\gamma - 1}{2} \right) = \frac{1}{\mathsf{Ma}_2^2} + \frac{\gamma - 1}{2}$$

▶ Usando (66) resulta

$$\frac{u_2}{u_1} = \frac{(\gamma - 1)\mathsf{Ma}_1^2 + 2}{(\gamma + 1)\mathsf{Ma}_1^2} = \frac{2}{\gamma + 1} \frac{1}{\mathsf{Ma}_1^2} + \frac{\gamma - 1}{\gamma + 1} \tag{75}$$

JCCH / MFI / Escoamento compressível unidimensional em regime permanente - 2014/12/13

63/96

Onda de choque normal num gás perfeito

Relação entre as velocidades numa onda de choque

Gráfico da função (75)

- Se considerarmos que a onda de choque normal ocorre numa conduta ou tubeira podemos obter a variação da área crítica
- Partindo da Eq. (58) podemos obter a relação entre as áreas críticas antes e depois de uma onda de choque normal

$$\frac{\left(\frac{A_{1}}{A_{1}^{*}}\right)}{\left(\frac{A_{2}}{A_{2}^{*}}\right)} = \frac{\frac{1}{\mathsf{Ma}_{1}}\left[\frac{2}{\gamma+1}\left(1+\frac{\gamma-1}{2}\mathsf{Ma}_{1}^{2}\right)\right]^{\frac{1}{2}\frac{\gamma+1}{\gamma-1}}}{\frac{1}{\mathsf{Ma}_{2}}\left[\frac{2}{\gamma+1}\left(1+\frac{\gamma-1}{2}\mathsf{Ma}_{2}^{2}\right)\right]^{\frac{1}{2}\frac{\gamma+1}{\gamma-1}}}$$

simplificando resulta $(A_1 = A_2)$

$$\frac{A_2^*}{A_1^*} = \frac{Ma_2}{Ma_1} \left[\frac{2 + (\gamma - 1) Ma_1^2}{2 + (\gamma - 1) Ma_2^2} \right]^{\frac{1}{2} \frac{\gamma + 1}{\gamma - 1}}$$
(76)

Adicionalmente, usando a Eq. (56) resulta

$$\frac{\dot{m}}{A_1^*} \frac{\sqrt{T_{01}}}{p_{01}} = \frac{\dot{m}}{A_2^*} \frac{\sqrt{T_{02}}}{p_{02}}$$

vindo ($T_{01} = T_{02}$)

$$\rho_{01}A_1^* = \rho_{02}A_2^* \tag{77}$$

JCCH / MFI / Escoamento compressível unidimensional em regime permanente - 2014/12/13

65/96

Onda de choque normal num gás perfeito

Resumo da variação das propriedades numa onda de choque normal

$$T_{02} = T_{01}$$
 (Eq. 60)

$$p_{01}A_1^* = p_{02}A_2^*$$
 (Eq. 77)

$$Ma_2^2 = \frac{(\gamma - 1)Ma_1^2 + 2}{2\gamma Ma_1^2 - (\gamma - 1)}$$
 (Eq. 66)

$$\frac{p_2}{p_1} = \frac{2\gamma}{\gamma + 1} Ma_1^2 - \frac{\gamma - 1}{\gamma + 1}$$
 (Eq. 67)

$$\frac{u_1}{u_2} = \frac{\rho_2}{\rho_1} = \frac{(\gamma + 1) \,\mathsf{Ma}_1^2}{2 + (\gamma - 1) \,\mathsf{Ma}_1^2} \tag{Eqs. 69 e 75}$$

$$\frac{T_2}{T_1} = \frac{2 + (\gamma - 1) Ma_1^2}{2 + (\gamma - 1) Ma_2^2}$$
 (Eq. 61)

$$\frac{A_2^*}{A_1^*} = \frac{p_{01}}{p_{02}} = \frac{\text{Ma}_2}{\text{Ma}_1} \left[\frac{2 + (\gamma - 1) \, \text{Ma}_1^2}{2 + (\gamma - 1) \, \text{Ma}_2^2} \right]^{\frac{1}{2} \frac{\gamma + 1}{\gamma - 1}}$$
(Eq. 76)

$$\frac{p_{02}}{p_{01}} = \left[\frac{(\gamma + 1) \operatorname{Ma}_{1}^{2}}{2 + (\gamma - 1) \operatorname{Ma}_{1}^{2}} \right]^{\frac{\gamma}{\gamma - 1}} \left(\frac{\gamma + 1}{2\gamma \operatorname{Ma}_{1}^{2} - (\gamma - 1)} \right)^{\frac{1}{\gamma - 1}}$$
(78)

Variação das propriedades numa onda de choque normal

 $\mathsf{JCCH} \ / \ \mathsf{MFI} \ / \ \mathsf{Escoamento} \ \mathsf{compress\'{i}vel} \ \mathsf{unidimensional} \ \mathsf{em} \ \mathsf{regime} \ \mathsf{permanente} \ \mathsf{-} \ \mathsf{2014}/\mathsf{12}/\mathsf{13}$

67/96

Exemplo 6

Considere um tubo de Pitot num escoamento supersónico. Métodos ópticos de observação do escoamento mostram que se forma uma onda de choque à frente da tomada de pressão total de tubo.

Mostre que, nestas circunstâncias, o número de Mach, Ma_1 , do escoamento está relacionado com a pressão estática do escoamento, antes da onda de choque, p_1 , e com a pressão total registada pelo tubo de Pitot, p_{02} , através da seguinte expressão (Eq. de Rayleigh do tubo de Pitot)

$$\frac{p_{02}}{p_1} = \frac{\left(\frac{\gamma+1}{2}\mathsf{Ma}_1^2\right)^{\frac{\gamma}{\gamma-1}}}{\left[\frac{2\gamma\,\mathsf{Ma}_1^2-(\gamma-1)}{\gamma+1}\right]^{\frac{1}{\gamma-1}}}$$

NOTA: Esta expressão mostra que para calcular a velocidade do avião, em escoamento supersónico, é necessário determinar Ma_1 iterativamente e, para além disso, também é preciso medir a temperatura \mathcal{T}_1 para calcular a velocidade.

Resolução

- ▶ Sabemos que $p_3 = p_{02}$

- $\qquad \qquad \bullet \quad \frac{p_{02}}{p_1} = \left[\frac{(\gamma+1) \, \mathrm{Ma}_1^2}{2 + (\gamma-1) \, \mathrm{Ma}_1^2} \right]^{\frac{\gamma}{\gamma-1}} \left[\frac{\gamma+1}{2\gamma \, \mathrm{Ma}_1^2 (\gamma-1)} \right]^{\frac{1}{\gamma-1}} \left[\frac{2 + (\gamma-1) \, \mathrm{Ma}_1^2}{2} \right]^{\frac{\gamma}{\gamma-1}} \\$
- Após manipulação algébrica obtem-se o resultado pretendido.

 ${\sf JCCH} \ / \ {\sf MFI} \ / \ {\sf Escoamento} \ {\sf compressível} \ {\sf unidimensional} \ {\sf em} \ {\sf regime} \ {\sf permanente} \ - \ 2014/12/13$

69/96

Regimes de escoamento numa tubeira convergente

Regimes de escoamento numa tubeira convergente/divergente

JCCH / MFI / Escoamento compressível unidimensional em regime permanente - 2014/12/13

71/96

Regimes de escoamento numa tubeira convergente/divergente

Escoamento supersónico ou subsónico em função da pressão de saída $\left(\frac{p_b}{p^*}\frac{p^*}{p_0}\right)$

Controlo de caudal

Partindo da Eq. (55) temos

$$rac{\dot{m}}{A} = rac{p_0}{\sqrt{T_0}} \sqrt{rac{\gamma}{R}} \mathsf{Ma} \left(1 + rac{\gamma - 1}{2} \mathsf{Ma}^2
ight)^{-rac{1}{2}rac{\gamma + 1}{\gamma - 1}}$$

Para o mesmo número de Mach, Ma,

$$\frac{\dot{m}}{A} \propto \frac{p_0}{\sqrt{T_0}}$$

JCCH / MFI / Escoamento compressível unidimensional em regime permanente - 2014/12/13

73/96

Controlo de caudal

- Cada linha de $\left(\frac{p_0}{\sqrt{T_0}}\right)$ = const representa uma evolução isentrópica
- ► Fig. (b), a evolução 0-1-2 é uma aceleração isentrópica seguida de uma desaceleração 2-3-4 por aumento de área
- lacksquare Sendo o processo isentrópico e $A_1=A_4\Rightarrow \mathsf{Ma}_1=\mathsf{Ma}_4$

Controlo de caudal

- lacktriangle Enquanto Ma < 1 a diminuição de área apenas altera o número de Mach sem afectar (\dot{m}/A)
- lacktriangle Se contrairmos ainda mais A_2 atingimos a área crítiva A^* (Ma $_2=1$)
 - ▶ não é possível aumentar mais $\left(\frac{\dot{m}}{A}\right)$ sem aumentar $\left(\frac{p_0}{\sqrt{T_0}}\right)$,
 - O caudal mássico fica **controlado na secção 2** pela impossibilidade de ultrapassar $\dot{m} = \left(\frac{\dot{m}}{A^*}\right)A^*$

JCCH / MFI / Escoamento compressível unidimensional em regime permanente - 2014/12/13

75/96

Controlo de caudal

- Depois de uma secção sónica 2, o alargamento pode seguir uma evolução subsónica, Fig. (b), ou supersónica, Fig. (c)
- ▶ De acordo com o slide 34, o efeito na velocidade é oposto em subsónico e supersónico

Controlo de caudal

- ▶ Depois de uma secção sónica 2, se o alargamento seguir uma evolução supersónica pode ocorrer uma onda de choque, secção 3
- ▶ $A_{3A} = A_{3B}$ mas o escoamento passa de supersónico a subsónico com diminuição da condição de estagnação isentrópica $(p_0/\sqrt{T_0})_{3A} > (p_0/\sqrt{T_0})_{3B}$
- A condição de estagnação isentrópica só se altera na onda de choque
- ▶ O escoamento é isentrópico entre 1-3A e entre 3B-4

JCCH / MFI / Escoamento compressível unidimensional em regime permanente - 2014/12/13

77/96

Controlo de caudal

- Matematicamente é possível desacelerar escoamento isentrópico sem ocorrência de ondas de choque (Figs. (a), (b) e (c))
- ▶ É muito **instável** desacelerar escoamento supersónico sem que ocorra uma onda de choque

Considere um escoamento de ar numa tubeira convergente. As condições de estagnação à entrada são de $p_0=1.0\,\mathrm{MPa}$ e $T_0=333\,\mathrm{K}$ e à saída a pressão estática é de $p_2=591\,\mathrm{kPa}$. A área de saída é de $A_2=0.001\,\mathrm{m}^2$. Calcule o número de Mach à saída e o caudal mássico. Considere o escoamento isentrópico.

Resolução

Vamos verificar se o escoamento não está bloqueado na garganta ($Ma_2 = 1$). Para isso basta garantir que a razão entre p_2 e p_0 é maior que a razão entre a pressão crítica p^* e p_0 (ver slide 18 e Eq. (46))

$$\frac{p_2}{p_0} = 0.591 > \frac{p^*}{p_0} = 0.5283$$

 $\mathsf{JCCH} \ / \ \mathsf{MFI} \ / \ \mathsf{Escoamento} \ \mathsf{compress\'{i}vel} \ \mathsf{unidimensional} \ \mathsf{em} \ \mathsf{regime} \ \mathsf{permanente} \ \mathsf{-} \ \mathsf{2014}/\mathsf{12}/\mathsf{13}$

79/96

Exemplo 7

▶ Usando a relação isentrópica (34), podemos obter explicitamente Ma₁

$$1+rac{\gamma-1}{2}\mathsf{Ma}_2^2=\left(rac{ extstyle{p}_0}{ extstyle{p}_2}
ight)^{rac{\gamma-1}{\gamma}}$$

$$\mathsf{Ma}_2 = \sqrt{\frac{2}{\gamma - 1} \left[\left(\frac{p_0}{p_2} \right)^{\frac{\gamma - 1}{\gamma}} - 1 \right]} = 0.9$$

▶ Para calcular o caudal basta aplicar a Eq. (55)

$$\dot{m} = A_2 \; rac{p_0}{\sqrt{T_0}} \; \sqrt{rac{\gamma}{R}} \, \mathsf{Ma}_2 \left(1 + rac{\gamma - 1}{2} \, \mathsf{Ma}_2^2
ight)^{-rac{1}{2} \, rac{\gamma + 1}{\gamma - 1}} = 2.195 \, \mathsf{kg/s}$$

▶ Resolução alternativa. O caudal mássico é dado por

$$\dot{m} = \rho_2 \ u_2 \ A_2 = \rho_2 \ c_2 \ \mathsf{Ma}_2 \ A_2 = \frac{\rho_2}{RT_2} \ \sqrt{\gamma RT_2} \ \mathsf{Ma}_2 \ A_2$$

Como sabemos p_2 e Ma₂ basta calcular a temperatura T_2 usando a relação adiabática (33)

$$T_2 = \frac{T_0}{1 + \frac{\gamma - 1}{2} Ma_2^2} = 286.5 \,\mathrm{K}$$

logo

$$\dot{m}=2.195\,\mathrm{kg/s}$$

 $\mathsf{JCCH} \ / \ \mathsf{MFI} \ / \ \mathsf{Escoamento} \ \mathsf{compressível} \ \mathsf{unidimensional} \ \mathsf{em} \ \mathsf{regime} \ \mathsf{permanente} \ \mathsf{-} \ \mathsf{2014}/\mathsf{12}/\mathsf{13}$

81/96

Exemplo 8

Um depósito pressurizado descarrega ar para a atmosfera através de uma tubeira convergente-divergente, representada na figura.

O escoamento é crítico na garganta (secção 1) e supersónico à saída (secção 2). Pretende-se:

- a) a pressão do depósito
- b) a temperatura do ar à saída

Dados:

$$A_1 = 5 \times 10^{-3} \text{ m}^2$$

 $A_2 = 10 \times 10^{-3} \text{ m}^2$
temperatura no depósito: 293 K
 $p_2 = p_{\text{atm}} = 10^5 \text{ Pa}$

(Adaptado de [2])

 Como referido no enunciado, o escoamento é crítico em 1. Com a razão de áreas

$$\frac{A_2}{A^*} = \frac{A_2}{A_1} = 2$$

podemos calcular Ma₂ usando a aproximação (59)

$$\mathsf{Ma}_2 = 1 + 1.2 \left(\frac{A_2}{A^*} - 1 \right)^{0.5} = 2.2$$

Notar que existe também um escoamento subsónico para a mesma razão de áreas.

JCCH / MFI / Escoamento compressível unidimensional em regime permanente - 2014/12/13

83/96

Exemplo 8

▶ Como sabemos Ma_2 e p_2 podemos usar (34) para calcular

$$p_0=p\left(1+rac{\gamma-1}{2}\mathsf{Ma}^2
ight)^{rac{\gamma}{\gamma-1}}=1.065 imes10^6\,\mathsf{Pa}$$

ightharpoonup Sabendo a temperatura de estagnação T_0 e Ma_2 podemos calcular com (33)

$$T = \frac{T_0}{1 + \frac{\gamma - 1}{2} Ma^2} = 149.1 \text{ K} = -124^{\circ} \text{ C!}$$

Tabelas de escoamento compressível

Relações isentrópicas com $\gamma=1.4$ (ver, por exemplo, White [4])

Appendix B Compressible-Flow Tables

Table B.1 Isentropic Flow of a Perfect Gas, k = 1.4

Ma	p/p_0	ρ/ρ_0	T/T_0	A/A*
				71/71
0.0	1.0	1.0	1.0	∞
0.02	0.9997	0.9998	0.9999	28.9421
0.04	0.9989	0.9992	0.9997	14.4815
06	0.9975	0.9982	0.9993	9.6659
0.08	0.9955	0.9968	0.9987	7.2616
0.1	0.9930	0.9950	0.9980	5.8218
0.12	0.9900	0.9928	0.9971	4.8643
0.14	0.9864	0.9903	0.9961	4.1824
0.16	0.9823	0.9873	0.9949	3.6727
0.18	0.9776	0.9840	0.9936	3.2779
0.2	0.9725	0.9803	0.9921	2.9635
0.22	0.9668	0.9762	0.9904	2.7076
0.24	0.9607	0.9718	0.9886	2.4956
0.26	0.9541	0.9670	0.9867	2.3173
0.28	0.9470	0.9619	0.9846	2.1656
0.3	0.9395	0.9564	0.9823	2.0351

JCCH / MFI / Escoamento compressível unidimensional em regime permanente - 2014/12/13

85/96

Tabelas de escoamento compressível

Relações para onda de choque normal com $\gamma=1.4$ (ver, por exemplo, White [4])

Appendix BCompressible-Flow Tables

Table B.2 Normal-Shock Relations for a Perfect Gas, k = 1.4

Ma_{n1}	Ma_{n2}	p_2/p_1	$V_1/V_2= ho_2/ ho_1$	T_2/T_1	p_{02}/p_{01}	A_{2}^{*}/A_{1}^{*}
1.0	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
1.02	0.9805	1.0471	1.0334	1.0132	1.0000	1.0000
1.04	0.9620	1.0952	1.0671	1.0263	0.9999	1.0001
1.06	0.9444	1.1442	1.1009	1.0393	0.9998	1.0002
1.08	0.9277	1.1941	1.1349	1.0522	0.9994	1.0006
1.1	0.9118	1.2450	1.1691	1.0649	0.9989	1.0011
1.12	0.8966	1.2968	1.2034	1.0776	0.9982	1.0018
1.14	0.8820	1.3495	1.2378	1.0903	0.9973	1.0027
1.16	0.8682	1.4032	1.2723	1.1029	0.9961	1.0040
1.18	0.8549	1.4578	1.3069	1.1154	0.9946	1.0055
1.2	0.8422	1.5133	1.3416	1.1280	0.9928	1.0073
1.22	0.8300	1.5698	1.3764	1.1405	0.9907	1.0094
1.24	0.8183	1.6272	1.4112	1.1531	0.9884	1.0118

Ar entra numa tubeira convergente-divergente com uma pressão de estagnação de $1200\,\mathrm{kPa}$. Observa-se que existe uma onda de choque na zona divergente onde o número de Mach é de $\mathrm{Ma_1}=2$.

- 1. Determine a razão de áreas entre a secção 1 e a secção da garganta.
- 2. Se a razão de áreas entre a secção 3 e a garganta for 4, calcule o número de Mach e a pressão estática à saída.

 $\mathsf{JCCH} \ / \ \mathsf{MFI} \ / \ \mathsf{Escoamento} \ \mathsf{compressível} \ \mathsf{unidimensional} \ \mathsf{em} \ \mathsf{regime} \ \mathsf{permanente} \ \mathsf{-} \ \mathsf{2014}/\mathsf{12}/\mathsf{13}$

87/96

Exemplo 9

Resolução

- $lackbox{ Como Ma}_2>1$ sabemos que na garganta temos escoamento bloqueado, donde $A_{
 m g}=A_1^*$
- ► Da Eq. (58)

$$\frac{A_1}{A_1^*} = \frac{1}{\mathsf{Ma}_1} \left[\frac{2}{\gamma + 1} \left(1 + \frac{\gamma - 1}{2} \mathsf{Ma}_1^2 \right) \right]^{\frac{1}{2} \frac{\gamma + 1}{\gamma - 1}} = 1.6875$$

Usando a tabela de escoamento isentrópico

Ma	p/p_0	$ ho/ ho_0$	T/T_0	A/A*
1.98	0.1318	0.2352	0.5605	1.6597
2.0	0.1278	0.2300	0.5556	1.6875
2.02	0.1239	0.2250	0.5506	1.7160

Usando a tabela das ondas de choque normais

Ma_{n1}	Ma _{n2}	p_2/p_1	$V_1/V_2= ho_2/ ho_1$	T_2/T_1	p_{02}/p_{01}	A_{2}^{*}/A_{1}^{*}
1.98	0.5808	4.4071	2.6369	1.6713	0.7302	1.3695
2.0	0.5774	4.5000	2.6667	1.6875	0.7209	1.3872
2.02	0.5740	4.5938	2.6962	1.7038	0.7115	1.4054

ficamos a saber Ma₂ = 0.5774, $p_{02}/p_{01} = 0.7209$ e $A_2^*/A_1^* = 1.3872$

Pressão de saída $(p_{03} = p_{02})$

$$p_3 = \frac{p_3}{p_{02}} \frac{p_{02}}{p_{01}} p_{01} \tag{79}$$

precisamos de saber p_3/p_{03}

▶ Da razão de áreas

$$\frac{A_3}{A_2^*} = \frac{A_3}{A_1^*} \frac{A_1^*}{A_2^*} = 4 \times \frac{1}{1.3872} = 2.8835$$

JCCH / MFI / Escoamento compressível unidimensional em regime permanente - 2014/12/13

89/96

Exemplo 9

► Com a razão de área A_3/A_2^* podemos determinar Ma₃ e p_{02}/p_3 das tabelas isentrópicas

Ma	p/p_0	$ ho/ ho_0$	T/T_0	<i>A</i> / <i>A</i> *
0.18	0.9776	0.9840	0.9936	3.2779
0.2	0.9725	0.9803	0.9921	2.9635
0.22	0.9668	0.9762	0.9904	2.7076
0.24	0.9607	0.9718	0.9886	2.4956

Obviamente depois de uma onda de choque escolhemos a solução subsónica (ver slide 43)

Interpolando o número de Mach, seja

$$\alpha = \frac{2.8835 - 2.9635}{2.7076 - 2.9635} = 0.313$$

logo

$$Ma_3 = 0.2 (1 - \alpha) + 0.22 \alpha = 0.206$$

▶ Do mesmo modo, interpolando a razão de pressões

$$\frac{p_3}{p_{02}} = 0.9725 (1 - \alpha) + 0.9668 \alpha = 0.9707$$

► Substituindo em (79)

$$p_3 = 0.9707 \times 0.7209 \times 1200 = 839.7 \,\mathrm{kPa}$$

 $\mathsf{JCCH} \; / \; \mathsf{MFI} \; / \; \mathsf{Escoamento} \; \mathsf{compressível} \; \mathsf{unidimensional} \; \mathsf{em} \; \mathsf{regime} \; \mathsf{permanente} \; \mathsf{-} \; 2014/12/13$

91/96

Material complementar à aula prática da semana 14

Posição da onda de choque numa tubeira convergente/divergente

- ► A posição da onda de choque é aquele que garante que a pressão de saída resultante é a imposta *p_b*
- ▶ Seja g a posição da garganta da tubeira convergente/divergente, 1 e 2 as posições a montante e a jusante da onda de choque
- O método de cálculo consiste em iterar a área A_s onde ocorre a onda de choque tal que à saída resulte $p_e = p_b$
- lacktriangle Condição necessária, mas não suficiente, para haver onda de choque dentro da tubeira ${\sf Ma}_g=1$ e ${\sf Ma}_1>1$

Material complementar à aula prática da semana 14

Posição da onda de choque numa tubeira convergente/divergente

Conhecendo p_b , $A_g = A_1^*$ e A_e (ver slide 23)

1. Montante da onda choque (escoamento isentrópico supersónico)

- Estimar a posição da onda de choque x_s e determinar $\frac{A_s}{A_1^*} = \frac{A(x_s)}{A_1^*}$
- Calcular Ma₁ antes do choque

$$rac{A_s}{A_1^*} = rac{1}{\mathsf{Ma}_1} \left[rac{2}{\gamma+1} \left(1 + rac{\gamma-1}{2} \mathsf{Ma}_1^2
ight)
ight]^{rac{1}{2} rac{\gamma+1}{\gamma-1}} \ \longrightarrow \ \mathsf{Ma}_1$$

2. Através da onda de choque normal (escoamento não isentrópico)

$$\qquad \qquad \mathbf{M}\mathbf{a}_2 = \sqrt{\frac{(\gamma-1)\mathsf{M}\mathbf{a}_1^2 + 2}{2\gamma\mathsf{M}\mathbf{a}_1^2 - (\gamma-1)}}$$

$$\frac{A_2^*}{A_1^*} = \frac{p_{01}}{p_{02}} = \frac{\mathsf{Ma}_2}{\mathsf{Ma}_1} \left[\frac{2 + (\gamma - 1) \, \mathsf{Ma}_1^2}{2 + (\gamma - 1) \, \mathsf{Ma}_2^2} \right]^{\frac{1}{2} \frac{\gamma + 1}{\gamma - 1}}$$

JCCH / MFI / Escoamento compressível unidimensional em regime permanente - 2014/12/13

93/96

Material complementar à aula prática da semana 14

Posição da onda de choque numa tubeira convergente/divergente

3. Jusante da onda de choque (escoamento isentrópico subsónico)

- $A_e \over A_2^* = \frac{A_e}{A_1^*} \frac{A_1^*}{A_2^*}$
- ► Calcular Ma_e à saída da tubeira

$$\frac{\textit{A}_{e}}{\textit{A}_{2}^{*}} = \frac{1}{\mathsf{Ma}_{e}} \left[\frac{2}{\gamma + 1} \left(1 + \frac{\gamma - 1}{2} \mathsf{Ma}_{e}^{2} \right) \right]^{\frac{1}{2} \frac{\gamma + 1}{\gamma - 1}} \; \longrightarrow \; \mathsf{Ma}_{e}$$

$$p_{02} = \frac{p_{02}}{p_{01}} p_{01}$$

4. Repetir todos os passos até que $p_e = p_b$

- Se $p_e > p_b$ aumentar x_s
- Se $p_e < p_b$ diminuir x_s

Material complementar à aula prática da semana 14

Exemplo 10

Considere um escoamento de ar numa tubeira convergente/divergente. Na secção de entrada da tubeira, i, temos Ma $_i=0.50$, $p_i=280\,\mathrm{kPa}$ e $T_i=10^\circ$ C. A área da garganta é de $A_g=6.5\times10^{-4}\,\mathrm{m^2}$ a área na secção de saída, e, é de $A_e=4A_g$. Se a pressão de saída é de $p_e=170\,\mathrm{kPa}$, determine Ma $_e$, T_e e a área A_s no ponto onde ocorre a onda de choque normal.

Solução: $A_s=0.00156\,\mathrm{m^2}$, $\mathrm{Ma}_e=0.279$ e $T_e=292.5\,\mathrm{K}$.

JCCH / MF1 / Escoamento compressível unidimensional em regime permanente - 2014/12/13

95/96

Material complementar à aula prática da semana 14

Tabelas de escoamento compressível extraídas do White [4]

Appendix B Compressible-Flow Tables

Table B.1 Isentropic Flow of a Perfect Gas, k = 1.4

	p/p_0	$ ho/ ho_0$	T/T_0	<i>A</i> / <i>A</i> *	Ma	p/p_0	$ ho/ ho_0$	T/T_0
	1.0	1.0	1.0	∞	0.74	0.6951	0.7712	0.9013
	0.9997	0.9998	0.9999	28.9421	0.76	0.6821	0.7609	0.8964
)4	0.9989	0.9992	0.9997	14.4815	0.78	0.6690	0.7505	0.8915
)6	0.9975	0.9982	0.9993	9.6659	0.8	0.6560	0.7400	0.8865
80	0.9955	0.9968	0.9987	7.2616	0.82	0.6430	0.7295	0.8815
1	0.9930	0.9950	0.9980	5.8218	0.84	0.6300	0.7189	0.8763
.12	0.9900	0.9928	0.9971	4.8643	0.86	0.6170	0.7083	0.8711
.14	0.9864	0.9903	0.9961	4.1824	0.88	0.6041	0.6977	0.8659
.16	0.9823	0.9873	0.9949	3.6727	0.9	0.5913	0.6870	0.8606
.18	0.9776	0.9840	0.9936	3.2779	0.92	0.5785	0.6764	0.8552
0.2	0.9725	0.9803	0.9921	2.9635	0.94	0.5658	0.6658	0.8498
.22	0.9668	0.9762	0.9904	2.7076	0.96	0.5532	0.6551	0.8444
.24	0.9607	0.9718	0.9886	2.4956	0.98	0.5407	0.6445	0.8389
.26	0.9541	0.9670	0.9867	2.3173	1.0	0.5283	0.6339	0.8333
).28	0.9470	0.9619	0.9846	2.1656	1.02	0.5160	0.6234	0.8278
0.3	0.9395	0.9564	0.9823	2.0351	1.04	0.5039	0.6129	0.8222
0.32	0.9315	0.9506	0.9799	1.9219	1.06	0.4919	0.6024	0.8165
.34	0.9231	0.9445	0.9774	1.8229	1.08	0.4800	0.5920	0.8108
.36	0.9143	0.9380	0.9747	1.7358	1.1	0.4684	0.5817	0.8052
.38	0.9052	0.9313	0.9719	1.6587	1.12	0.4568	0.5714	0.7994
.4	0.8956	0.9243	0.9690	1.5901	1.14	0.4455	0.5612	0.7937
.42	0.8857	0.9170	0.9659	1.5289	1.16	0.4343	0.5511	0.7879
.44	0.8755	0.9094	0.9627	1.4740	1.18	0.4232	0.5411	0.7822
0.46	0.8650	0.9016	0.9594	1.4246	1.2	0.4124	0.5311	0.7764
).48	0.8541	0.8935	0.9559	1.3801	1.22	0.4017	0.5213	0.7706
).5	0.8430	0.8852	0.9524	1.3398	1.24	0.3912	0.5115	0.7648
.52	0.8317	0.8766	0.9487	1.3034	1.26	0.3809	0.5019	0.7590
).54	0.8201	0.8679	0.9449	1.2703	1.28	0.3708	0.4923	0.7532
).56	0.8082	0.8589	0.9410	1.2403	1.3	0.3609	0.4829	0.7474
).58	0.7962	0.8498	0.9370	1.2130	1.32	0.3512	0.4736	0.7416
0.6	0.7840	0.8405	0.9328	1.1882	1.34	0.3417	0.4644	0.7358
.62	0.7716	0.8310	0.9286	1.1656	1.36	0.3323	0.4553	0.7300
0.64	0.7591	0.8213	0.9243	1.1451	1.38	0.3232	0.4463	0.7242
).66	0.7465	0.8115	0.9199	1.1265	1.4	0.3142	0.4374	0.7184
0.68	0.7338	0.8016	0.9153	1.1097	1.42	0.3055	0.4287	0.7126
).7	0.7209	0.7916	0.9107	1.0944	1.44	0.2969	0.4201	0.7069
).72	0.7080	0.7814	0.9061	1.0806	1.46	0.2886	0.4116	0.7011

Table B.1 (Cont.) Isentropic Flow of a Perfect Gas, k = 1.4

1.48										
1.5 0.2724 0.3990 0.6840 1.1762 2.58 0.0517 0.1205 0.4282 2.289 1.54 0.2570 0.3789 0.6783 1.2042 2.62 0.0486 0.1153 0.4214 2.951 1.56 0.2496 0.33710 0.6726 1.2190 2.64 0.0471 0.1128 0.4177 3.007 1.56 0.2493 0.3633 0.6670 1.2344 2.66 0.0443 0.109 0.4104 3.128 1.6 0.2234 0.3435 0.6614 1.2502 2.68 0.0443 0.1095 0.4084 1.64 0.2217 0.3499 0.5502 1.2836 2.72 0.0417 0.1035 0.4083 3.836 1.66 0.2213 0.3337 0.6447 1.3010 2.74 0.0440 0.1010 0.3988 3.366 1.68 0.2088 0.3260 0.6231 1.3190 2.76 0.0392 0.0989 0.3663 3.679 1.77	Ma	p/p_0	$ ho/ ho_0$	T/T_0	<i>A</i> / <i>A</i> *	Ma	p/p_0	$ ho/ ho_0$	T/T_0	<i>A</i> / <i>A</i> *
1.52 0.2646 0.3869 0.6840 1.1899 2.6 0.0501 0.1179 0.4252 2.821 1.54 0.2570 0.3710 0.6726 1.2190 2.64 0.0471 0.1128 0.4214 2.951 1.58 0.2423 0.3633 0.6670 1.2344 2.66 0.0457 0.1103 0.4141 3.07 1.62 0.22353 0.3557 0.6614 1.2502 2.68 0.0443 0.0030 0.166 0.4043 0.1616 0.2237 0.3438 0.6558 1.2666 2.77 0.0430 0.1056 0.4068 1.1816 0.2217 0.3439 0.6502 1.2836 2.72 0.0417 0.1033 3.434 1.66 0.2151 0.3337 0.6447 1.3010 2.74 0.0404 0.1010 0.3998 3.336 1.77 0.0266 0.3197 0.6337 1.3376 2.78 0.0380 0.0967 0.3928 3.434 1.77 0.1962 0.3187 0.3567 2.28 0.0358	1.48	0.2804	0.4032	0.6954	1.1629	2.56	0.0533	0.1232	0.4328	2.7891
1.54 0.2570 0.3789 0.6783 1.2042 2.62 0.0486 0.1133 0.4217 2.91 1.58 0.2423 0.3633 0.6670 1.2344 2.66 0.0457 0.1103 0.4141 3.064 1.6 0.2253 0.3633 0.6670 1.2344 2.66 0.0457 0.1103 0.4141 3.044 1.6 0.2254 0.3480 0.6558 1.2666 2.7 0.0430 0.1056 0.4068 3.183 1.64 0.2217 0.3409 0.6502 1.2836 2.72 0.0417 0.1033 0.4033 3.346 1.68 0.2181 0.3376 0.6437 1.3100 2.76 0.0392 0.0989 0.3633 3.344 1.72 0.1066 0.3129 0.6337 1.3376 2.8 0.0380 0.0967 0.3928 3.344 1.72 0.1966 0.3129 0.6283 1.3567 2.8 0.0355 0.0967 0.3828 3.500 <	1.5	0.2724	0.3950	0.6897	1.1762	2.58	0.0517	0.1205	0.4289	2.8420
1.56 0.2496 0.3710 0.6726 1.2190 2.64 0.0471 0.1128 0.4171 3.004 1.6 0.2533 0.3557 0.6614 1.2502 2.68 0.0443 0.1079 0.4104 3.123 1.62 0.2284 0.3483 0.65588 1.2666 2.77 0.0430 0.1056 0.4063 3.124 1.64 0.2217 0.3409 0.6502 1.2836 2.72 0.0417 0.1013 0.4043 3.124 1.66 0.2151 0.3337 0.6447 1.3010 2.74 0.0404 0.1010 0.3998 3.366 1.77 0.2026 0.3197 0.6337 1.3376 2.78 0.0380 0.0967 0.3928 3.434 1.72 0.1966 0.3120 0.6239 1.3764 2.82 0.0380 0.0967 0.3928 3.434 1.72 0.1960 0.3192 0.6229 1.3764 2.84 0.0347 0.0906 0.3827 3.567	1.52	0.2646	0.3869	0.6840	1.1899	2.6	0.0501	0.1179	0.4252	2.8960
1.58 0.2423 0.3633 0.6670 1.2344 2.66 0.0457 0.1103 0.4141 3.123 1.62 0.2284 0.3483 0.6558 1.2666 2.77 0.0430 0.1056 0.4068 3.183 1.64 0.2217 0.3499 0.6502 1.2836 2.72 0.0417 0.1033 0.4033 3.236 1.68 0.2151 0.3337 0.6447 1.3010 2.74 0.0404 0.1010 0.0998 3.366 1.68 0.2088 0.3266 0.6397 1.3190 2.76 0.0392 0.0999 0.3963 3.341 1.72 0.1966 0.3129 0.6337 1.3576 2.8 0.0368 0.0964 0.3894 3.500 1.74 0.1907 0.3062 0.6229 1.3764 2.82 0.0356 0.0966 0.3894 3.500 1.75 0.180 0.2931 0.6121 1.4175 2.86 0.0336 0.0868 0.3794 3.507	1.54	0.2570	0.3789	0.6783	1.2042	2.62	0.0486	0.1153	0.4214	2.9511
1.58 0.2423 0.3633 0.6670 1.2344 2.66 0.0457 0.1103 0.4141 3.123 1.62 0.2284 0.3483 0.6558 1.2666 2.77 0.0430 0.1056 0.4068 3.183 1.64 0.2217 0.3499 0.6502 1.2836 2.72 0.0417 0.1033 0.4033 3.236 1.68 0.2151 0.3337 0.6447 1.3010 2.74 0.0404 0.1010 0.0998 3.366 1.68 0.2088 0.3266 0.6397 1.3190 2.76 0.0392 0.0999 0.3963 3.341 1.72 0.1966 0.3129 0.6337 1.3576 2.8 0.0368 0.0964 0.3894 3.500 1.74 0.1907 0.3062 0.6229 1.3764 2.82 0.0356 0.0966 0.3894 3.500 1.75 0.180 0.2931 0.6121 1.4175 2.86 0.0336 0.0868 0.3794 3.507	1.56	0.2496	0.3710	0.6726	1.2190	2.64	0.0471	0.1128	0.4177	3.0073
1.6 0.2353 0.3557 0.6614 1.2502 2.68 0.0443 0.1079 0.4104 3.123 1.64 0.2217 0.3483 0.6558 1.2666 2.7 0.0447 0.1033 3.244 1.66 0.2151 0.3337 0.6447 1.3010 2.76 0.0392 0.0988 0.3266 0.3292 0.9896 3.306 1.7 0.2026 0.3197 0.6337 1.3376 2.78 0.0380 0.0967 0.3928 3.346 1.72 0.1966 0.3129 0.6223 1.3567 2.8 0.0368 0.0966 0.3899 0.3633 1.3567 2.8 0.0386 0.0966 0.3894 3.500 1.74 0.1907 0.3062 0.6229 1.3764 2.82 0.0357 0.0926 0.3860 3.667 1.75 0.174 0.1907 0.3062 0.6229 1.3775 2.84 0.0336 0.0866 0.3537 0.5536 1.4390 2.88 0.0336 0.0867 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3.0647</td>										3.0647
1.62 0.2284 0.3483 0.6558 1.2666 2.77 0.0430 0.1056 0.4068 3.183 1.64 0.2217 0.3409 0.6502 1.2836 2.72 0.0417 0.1033 0.4033 3.244 1.66 0.2151 0.3337 0.6447 1.3010 2.76 0.0392 0.0989 0.3963 3.369 1.70 0.2026 0.3197 0.6337 1.3190 2.78 0.0380 0.0967 0.3928 3.369 1.72 0.1966 0.3129 0.6223 1.3567 2.8 0.0368 0.0946 0.3827 3.500 1.74 0.1907 0.3062 0.6229 1.3764 2.82 0.0337 0.0926 0.3827 3.501 1.78 0.1740 0.2868 0.6068 1.4610 2.8 0.0337 0.0906 0.3827 3.652 1.78 0.1740 0.2868 0.6015 1.4610 2.9 0.0317 0.0849 0.373 3.849										3.1233
1.64 0.2217 0.3409 0.6502 1.2836 2.72 0.0417 0.1013 0.4033 3.244 1.66 0.2151 0.3337 0.6447 1.3010 2.74 0.0404 0.1010 0.3998 3.306 1.68 0.2088 0.3266 0.6392 1.3190 2.76 0.0392 0.0989 0.363 3.366 1.7 0.2026 0.3197 0.6337 1.3376 2.8 0.0368 0.0946 0.3899 3.536 1.76 0.1806 0.3129 0.6229 1.3764 2.82 0.0357 0.0926 0.3894 3.500 1.76 0.1850 0.2996 0.6175 1.3967 2.84 0.0336 0.0866 0.3874 3.635 1.78 0.1794 0.2931 0.6121 1.4175 2.86 0.0336 0.0867 0.3741 3.777 1.8 0.1537 0.2866 0.6015 1.4610 2.9 0.0317 0.0849 0.3739 3.849									0.4068	3.1830
1.66 0.2151 0.3337 0.6447 1.3010 2.76 0.0392 0.03998 3.306 1.7 0.2026 0.3197 0.6337 1.3376 2.78 0.0380 0.0967 0.3928 3.369 1.72 0.1966 0.3129 0.6283 1.3567 2.8 0.0368 0.0946 0.3894 3.500 1.74 0.1907 0.3622 0.6229 1.3764 2.82 0.0357 0.0926 0.6175 1.3967 2.84 0.0347 0.0906 0.3827 3.635 1.78 0.1794 0.2931 0.6121 1.4175 2.86 0.0336 0.0866 3.734 3.705 1.88 0.1740 0.2868 0.6068 1.4390 2.84 0.0317 0.0849 0.3731 3.705 1.82 0.1688 0.2806 0.6015 1.4610 2.9 0.0317 0.0849 0.3733 3.849 1.84 0.1637 0.2568 0.5910 1.5069 2.94 0.028										3.2440
1.68 0.2088 0.3266 0.6392 1.3190 2.76 0.0392 0.0989 0.3963 3.369 1.72 0.1966 0.3129 0.6233 1.3376 2.8 0.0380 0.0967 0.3928 3.434 1.74 0.1907 0.3062 0.6229 1.3764 2.82 0.0357 0.0926 0.3894 3.500 1.76 0.1850 0.2996 0.6175 1.3967 2.84 0.0347 0.0906 0.3827 3.561 1.78 0.1794 0.2931 0.6121 1.4175 2.86 0.0336 0.0866 0.3794 3.705 1.8 0.1740 0.2868 0.6068 1.4490 2.88 0.0326 0.0866 0.3794 3.705 1.8 0.1688 0.2860 0.6015 1.4610 2.9 0.0307 0.0831 0.363 4.976 1.84 0.1637 0.2267 0.5889 1.5069 2.94 0.0298 0.0931 0.0363 4.076										3.3061
1.7 0.2026 0.3197 0.6337 1.3376 2.78 0.0368 0.0967 0.3928 3.5434 1.74 0.1907 0.3062 0.6229 1.3764 2.82 0.0357 0.0926 0.3894 3.507 1.76 0.1850 0.2996 0.6175 1.3967 2.84 0.0347 0.0906 0.3824 3.535 1.78 0.1794 0.2931 0.6121 1.4175 2.86 0.0336 0.0867 0.3761 3.777 1.82 0.1688 0.2806 0.6015 1.4610 2.9 0.0317 0.0849 0.3729 3.849 1.84 0.1637 0.2748 0.5963 1.4836 2.92 0.0307 0.0813 0.3665 3.929 1.88 0.1539 0.2627 0.5889 1.5308 2.96 0.0289 0.0813 0.3665 3.999 1.88 0.1539 0.2627 0.5889 1.5308 2.96 0.0289 0.0813 0.3662 3.999										3.3695
1.72 0.1966 0.3129 0.6283 1.3567 2.8 0.03657 0.0946 0.3860 3.560 1.74 0.1850 0.2996 0.6125 1.3967 2.84 0.0347 0.0906 0.3827 3.635 1.78 0.1794 0.2931 0.6121 1.4175 2.86 0.0336 0.0886 0.3744 3.705 1.8 0.1740 0.2868 0.6068 1.4390 2.88 0.0326 0.0867 0.3741 3.777 1.82 0.1688 0.2806 0.6015 1.4610 2.9 0.0317 0.0849 0.3729 3.849 1.84 0.1637 0.2745 0.5963 1.4836 2.92 0.0307 0.0831 0.3666 3.999 1.88 0.1539 0.2627 0.5859 1.5308 2.96 0.0298 0.0813 0.3666 3.999 1.88 0.1539 0.2627 0.5807 1.5553 2.98 0.0281 0.0796 0.3633 4.076										3.4342
1.74 0.1907 0.3062 0.6229 1.3764 2.82 0.0357 0.096 0.3860 3.567 1.76 0.1850 0.2996 0.6175 1.3967 2.84 0.0347 0.0906 0.3827 3.635 1.78 0.1740 0.2931 0.6121 1.4175 2.86 0.0336 0.0886 0.3794 3.705 1.8 0.1740 0.2868 0.6068 1.4390 2.88 0.0326 0.0867 0.3761 3.775 1.8 0.1587 0.2866 0.6015 1.4610 2.9 0.0317 0.0849 0.3729 3.849 1.86 0.1587 0.2686 0.5910 1.50699 2.94 0.0298 0.0813 0.3665 3.923 1.86 0.1587 0.2686 0.5910 1.50699 2.94 0.0298 0.0813 0.3665 3.923 1.88 0.1539 0.26270 0.5859 1.5308 2.96 0.0289 0.0779 0.362 4.154										
1.76 0.1850 0.2996 0.6175 1.3967 2.84 0.0347 0.0966 0.3327 3.635 1.78 0.1794 0.2981 0.6121 1.4175 2.86 0.0336 0.0866 0.3794 3.707 1.82 0.1688 0.6068 0.6068 1.4390 2.88 0.0326 0.0867 0.3761 3.777 1.82 0.1688 0.2806 0.6015 1.4610 2.9 0.0317 0.0849 0.3729 3.849 1.84 0.1637 0.2750 0.5963 1.4836 2.92 0.0307 0.0813 0.3665 3.993 1.88 0.1539 0.2686 0.5910 1.5069 2.94 0.0289 0.0796 0.3633 4.076 1.99 0.1492 0.2570 0.5807 1.5508 2.96 0.0289 0.0796 0.3633 4.076 1.94 0.1403 0.2451 0.5756 1.5804 3.0 0.0221 0.0762 0.3511 4.399										
1.78 0.1794 0.2931 0.6121 1.4175 2.86 0.0336 0.0886 0.3794 3.705 1.8 0.1688 0.2806 0.6068 1.4390 2.88 0.0326 0.0867 0.3761 3.773 3.737 1.82 0.1688 0.2806 0.6015 1.4610 2.9 0.0317 0.0849 0.3723 3.749 1.84 0.1637 0.2745 0.5963 1.4836 2.92 0.0307 0.0831 0.3665 3.939 1.86 0.1587 0.2686 0.5910 1.50669 2.94 0.0298 0.0813 0.3665 3.99 1.88 0.1539 0.2627 0.5859 1.5508 2.96 0.0281 0.0796 0.3632 4.976 1.92 0.1447 0.2549 0.5705 1.6062 3.02 0.0264 0.0746 0.3511 4.346 1.96 0.1360 0.2459 0.5705 1.6502 3.02 0.022 0.0746 0.3541 4.316										3.6359
1.8 0.1740 0.2868 0.6068 1.4390 2.88 0.0326 0.0867 0.3761 3.777 1.82 0.1687 0.2745 0.5963 1.4836 2.92 0.0307 0.0831 0.3696 3.923 1.86 0.1587 0.2686 0.5910 1.5069 2.94 0.0298 0.0813 0.3665 3.999 1.88 0.1539 0.02627 0.5889 1.5308 2.96 0.0228 0.0079 0.3665 3.999 1.88 0.1539 0.02627 0.5889 1.5553 2.98 0.0281 0.0779 0.3662 4.154 1.92 0.1447 0.2514 0.5756 1.5804 3.0 0.0272 0.0762 0.3571 4.234 1.94 0.1403 0.2495 0.5755 1.6062 3.02 0.0264 0.0746 0.3511 4.399 1.98 0.1318 0.2352 0.5605 1.6597 3.06 0.0249 0.0715 0.3481 4.483										
1.82 0.1688 0.2806 0.6015 1.4610 2.9 0.0317 0.0849 0.3729 3.849 1.84 0.1637 0.2745 0.5963 1.4836 2.92 0.0307 0.0831 0.3665 3.993 1.88 0.1539 0.2627 0.5859 1.5308 2.96 0.0289 0.0796 0.3633 4.076 1.9 0.1492 0.2570 0.5807 1.5553 2.98 0.0221 0.0779 0.3602 4.154 1.92 0.1447 0.2514 0.5756 1.5804 3.0 0.0222 0.0762 0.3571 4.234 1.94 0.1403 0.2495 0.5705 1.6062 3.02 0.0264 0.0746 0.3511 4.394 1.98 0.1318 0.2352 0.5605 1.6597 3.06 0.0249 0.0715 0.3481 4.483 2.0 0.1239 0.2250 0.5506 1.7160 3.1 0.0224 0.07071 0.3442 4.657										
1.84 0.1637 0.2745 0.5963 1.4836 2.92 0.0307 0.0831 0.3696 3.923 1.86 0.1587 0.2686 0.5910 1.5069 2.94 0.0298 0.0813 0.3665 3.999 1.88 0.1539 0.2627 0.5859 1.5308 2.96 0.0289 0.0796 0.3633 4.076 1.9 0.1492 0.2570 0.5807 1.5553 2.98 0.0281 0.0779 0.3602 4.154 1.92 0.1447 0.2514 0.5756 1.5804 3.0 0.0272 0.0762 0.3571 4.234 1.94 0.1360 0.2495 0.5655 1.66326 3.04 0.0256 0.0730 0.3511 4.399 1.98 0.1318 0.2325 0.5605 1.6697 3.06 0.0249 0.0715 0.3481 4.483 1.98 0.1318 0.2250 0.5506 1.7160 3.1 0.0234 0.0671 0.33452 4.569										
1.86 0.1587 0.2686 0.5910 1.5069 2.94 0.0298 0.0796 0.3633 4.076 1.8 0.1539 0.2627 0.5807 1.5553 2.98 0.0289 0.0796 0.3633 4.076 1.92 0.1447 0.2514 0.5756 1.5804 3.0 0.0272 0.0762 0.3571 4.234 1.94 0.1403 0.2459 0.5705 1.6062 3.02 0.0264 0.0746 0.3541 4.316 1.96 0.1360 0.2405 0.5655 1.6326 3.04 0.0256 0.0730 0.3511 4.316 1.98 0.1318 0.2352 0.5605 1.6326 3.04 0.0256 0.0730 0.3511 4.316 2.0 0.1278 0.2300 0.5556 1.6875 3.06 0.0242 0.0700 0.3452 4.569 2.04 0.1201 0.2200 0.5488 1.7451 3.12 0.0228 0.0671 0.3333 4.746										
1.88 0.1539 0.2627 0.5859 1.5308 2.96 0.0289 0.0796 0.3633 4.076 1.9 0.1492 0.2570 0.5807 1.5553 2.98 0.0281 0.0779 0.3602 4.154 1.94 0.1403 0.2459 0.5756 1.5804 3.0 0.0272 0.0762 0.3571 4.234 1.94 0.1360 0.2405 0.5655 1.6326 3.04 0.0256 0.0730 0.3511 4.399 1.98 0.1318 0.2352 0.5605 1.6597 3.06 0.0249 0.0715 0.3481 4.339 1.98 0.1318 0.2350 0.5506 1.65875 3.08 0.0242 0.0700 0.3452 4.569 2.02 0.1239 0.2250 0.5506 1.7160 3.1 0.0234 0.0685 0.3422 4.657 2.04 0.1201 0.2200 0.5458 1.7451 3.12 0.0228 0.0671 0.3393 4.746										
1.9 0.1492 0.2570 0.5807 1.5553 2.98 0.0281 0.0779 0.3602 4.154 1.92 0.1447 0.2514 0.5756 1.5804 3.0 0.0272 0.0762 0.3571 4.234 1.96 0.1360 0.2459 0.5705 1.6062 3.04 0.0256 0.0730 0.3511 4.399 1.98 0.1360 0.2405 0.5655 1.6326 3.04 0.0256 0.0730 0.3511 4.399 1.98 0.1318 0.2352 0.5605 1.6875 3.06 0.0249 0.0715 0.3481 4.483 2.02 0.1239 0.2250 0.5506 1.7160 3.1 0.0234 0.0685 0.3422 4.657 2.04 0.1201 0.2200 0.5458 1.7451 3.12 0.0228 0.0671 0.3393 4.746 2.06 0.1164 0.2152 0.5409 1.7750 3.14 0.0221 0.0657 0.3365 4.837										
1.92 0.1447 0.2514 0.5756 1.5804 3.0 0.0272 0.0762 0.3571 4.234 1.94 0.1403 0.2459 0.5705 1.6062 3.02 0.0264 0.0746 0.3541 4.316 1.98 0.1318 0.2352 0.5605 1.6597 3.06 0.0249 0.0715 0.3481 4.483 2.0 0.1278 0.2300 0.5556 1.6875 3.08 0.0242 0.0700 0.3452 4.569 2.02 0.1239 0.2250 0.5506 1.7160 3.1 0.0234 0.0685 0.3422 4.659 2.04 0.1201 0.2200 0.5458 1.7451 3.12 0.0228 0.0671 0.3393 4.746 2.06 0.1164 0.2152 0.5409 1.7750 3.14 0.0221 0.0657 0.3365 4.837 2.08 0.1128 0.2104 0.5361 1.8056 3.16 0.0215 0.0643 0.3337 4.930										
1.94 0.1403 0.2459 0.5705 1.6062 3.02 0.0264 0.0746 0.3541 4.316 1.96 0.1360 0.2405 0.5655 1.6326 3.04 0.0256 0.0730 0.3511 4.399 2.0 0.1278 0.2300 0.5556 1.6875 3.06 0.0249 0.0700 0.3482 4.569 2.02 0.1239 0.2250 0.5506 1.7160 3.1 0.0234 0.0685 0.3422 4.657 2.04 0.1201 0.2200 0.5488 1.7451 3.12 0.0228 0.0671 0.3393 4.746 2.06 0.1164 0.2152 0.5409 1.7750 3.14 0.0221 0.0657 0.3365 4.837 2.08 0.1128 0.2104 0.5361 1.8056 3.16 0.0215 0.0643 0.3337 4.930 2.12 0.1060 0.2013 0.5266 1.8690 3.2 0.0202 0.0617 0.3281 5.121										
1.96 0.1360 0.2405 0.5655 1.6326 3.04 0.0256 0.0730 0.3511 4.399 1.98 0.1318 0.2352 0.5605 1.6597 3.06 0.0249 0.0710 0.3481 4.483 2.0 0.1278 0.2300 0.5556 1.6875 3.08 0.0242 0.0700 0.3452 4.569 2.02 0.1239 0.2250 0.5506 1.7160 3.1 0.0234 0.0685 0.3422 4.657 2.04 0.1201 0.2200 0.5458 1.7451 3.12 0.0228 0.0671 0.3393 4.746 2.06 0.1164 0.2152 0.5409 1.7750 3.14 0.0221 0.0657 0.3365 4.837 2.08 0.1128 0.2104 0.5361 1.8056 3.16 0.0221 0.0657 0.3365 4.837 2.1 0.1094 0.2058 0.5313 1.8369 3.18 0.0202 0.0617 0.3221 1.14 0.1022										
1.98 0.1318 0.2352 0.5605 1.6597 3.06 0.0249 0.0715 0.3481 4.483 2.0 0.1278 0.2300 0.5556 1.6875 3.08 0.0242 0.0700 0.3452 4.569 2.02 0.1239 0.2250 0.5506 1.7160 3.1 0.0234 0.0685 0.3422 4.657 2.04 0.1201 0.2200 0.5458 1.7451 3.12 0.0228 0.0671 0.3393 4.746 2.06 0.1164 0.2152 0.5409 1.7750 3.14 0.0221 0.0657 0.3365 4.837 2.08 0.1128 0.2104 0.5361 1.8056 3.16 0.0215 0.0643 0.3337 4.930 2.1 0.1060 0.2013 0.5266 1.8690 3.2 0.0202 0.0617 0.3281 5.121 2.14 0.1027 0.1968 0.5219 1.9018 3.22 0.0190 0.0604 0.3225 5.318										
2.0 0.1278 0.2300 0.5556 1.6875 3.08 0.0242 0.0700 0.3452 4.569 2.02 0.1239 0.2250 0.5506 1.7160 3.1 0.0234 0.0685 0.3422 4.657 2.04 0.1201 0.2200 0.5458 1.7451 3.12 0.0228 0.0671 0.3393 4.746 2.06 0.1164 0.2152 0.5409 1.7750 3.14 0.0221 0.0657 0.3365 4.837 2.08 0.1128 0.2104 0.5361 1.8056 3.16 0.0215 0.0643 0.3337 4.930 2.1 0.1060 0.2013 0.5266 1.8690 3.2 0.0202 0.0617 0.3281 5.121 2.14 0.1027 0.1968 0.5219 1.9018 3.22 0.0196 0.0604 0.3253 5.218 2.16 0.0996 0.1825 0.5173 1.9354 3.24 0.0191 0.0591 0.3226 5.318										
2.02 0.1239 0.2250 0.5506 1.7160 3.1 0.0234 0.0685 0.3422 4.657 2.04 0.1201 0.2200 0.5458 1.7451 3.12 0.0228 0.0671 0.3393 4.746 2.06 0.1164 0.2152 0.5409 1.7750 3.14 0.0221 0.0657 0.3365 4.837 2.08 0.1128 0.2104 0.5361 1.8056 3.16 0.0215 0.0643 0.3337 4.930 2.1 0.1094 0.2058 0.5313 1.8369 3.18 0.0208 0.0630 0.3337 4.930 2.12 0.1060 0.2013 0.5266 1.8690 3.2 0.0202 0.0617 0.3281 5.121 2.14 0.1027 0.1968 0.5219 1.9018 3.22 0.0196 0.0604 0.3225 5.218 2.16 0.0996 0.1925 0.5173 1.9354 3.24 0.0191 0.0591 0.3173 5.523										
2.04 0.1201 0.2200 0.5458 1.7451 3.12 0.0228 0.0671 0.3393 4.746 2.06 0.1164 0.2152 0.5409 1.7750 3.14 0.0221 0.0657 0.3365 4.837 2.08 0.1128 0.2104 0.5361 1.8056 3.16 0.0215 0.0643 0.3337 4.930 2.1 0.1094 0.2058 0.5313 1.8369 3.18 0.0208 0.0630 0.3309 5.024 2.12 0.1060 0.2013 0.5266 1.8690 3.2 0.0202 0.0617 0.3281 5.121 2.14 0.1027 0.1968 0.5219 1.9018 3.22 0.0196 0.0604 0.3225 5.218 2.16 0.0996 0.1925 0.5173 1.9354 3.24 0.0191 0.0591 0.3226 5.318 2.18 0.0965 0.1882 0.5127 1.9698 3.26 0.0185 0.0579 0.3173 5.523										
2.06 0.1164 0.2152 0.5409 1.7750 3.14 0.0221 0.0657 0.3365 4.837 2.08 0.1128 0.2104 0.5361 1.8056 3.16 0.0215 0.0643 0.3337 4.930 2.1 0.1094 0.2058 0.5313 1.8369 3.18 0.0208 0.0630 0.3309 5.024 2.12 0.1060 0.2013 0.5266 1.8690 3.2 0.0202 0.0617 0.3281 5.121 2.14 0.1027 0.1968 0.5219 1.9018 3.22 0.0196 0.0604 0.3255 5.218 2.16 0.0996 0.1925 0.5173 1.9354 3.24 0.0191 0.0591 0.3226 5.318 2.18 0.0965 0.1882 0.5127 1.9698 3.26 0.0185 0.0579 0.3199 5.420 2.2 0.0935 0.1841 0.5081 2.0050 3.28 0.0180 0.0567 0.3173 5.523										
2.08 0.1128 0.2104 0.5361 1.8056 3.16 0.0215 0.0643 0.3337 4.930 2.1 0.1094 0.2058 0.5313 1.8369 3.18 0.0208 0.0630 0.3309 5.024 2.12 0.1060 0.2013 0.5266 1.8690 3.2 0.0202 0.0617 0.3281 5.121 2.14 0.1027 0.1968 0.5219 1.9018 3.22 0.0196 0.0604 0.3253 5.218 2.16 0.0996 0.1925 0.5173 1.9354 3.24 0.0191 0.0591 0.3226 5.318 2.18 0.0965 0.1882 0.5127 1.9698 3.26 0.0185 0.0579 0.3199 5.420 2.2 0.0935 0.1841 0.5081 2.0050 3.28 0.0180 0.0567 0.3173 5.523 2.22 0.0906 0.1800 0.5036 2.04099 3.3 0.0175 0.0555 0.3147 5.628										
2.1 0.1094 0.2058 0.5313 1.8369 3.18 0.0208 0.0630 0.3309 5.024 2.12 0.1060 0.2013 0.5266 1.8690 3.2 0.0202 0.0617 0.3281 5.121 2.14 0.1027 0.1968 0.5219 1.9018 3.22 0.0196 0.0604 0.3253 5.218 2.16 0.0996 0.1925 0.5173 1.9354 3.24 0.0191 0.0591 0.3226 5.318 2.18 0.0965 0.1882 0.5127 1.9698 3.26 0.0185 0.0579 0.3199 5.428 2.2 0.0935 0.1841 0.5081 2.0050 3.28 0.0180 0.0567 0.3173 5.523 2.22 0.0906 0.1800 0.5036 2.0409 3.3 0.0175 0.0555 0.3147 5.628 2.24 0.0878 0.1760 0.4991 2.0777 3.32 0.0170 0.0544 0.3121 5.735										
2.12 0.1060 0.2013 0.5266 1.8690 3.2 0.0202 0.0617 0.3281 5.121 2.14 0.1027 0.1968 0.5219 1.9018 3.22 0.0196 0.0604 0.3253 5.218 2.16 0.0996 0.1925 0.5173 1.9354 3.24 0.0191 0.0591 0.3226 5.318 2.18 0.0965 0.1882 0.5127 1.9698 3.26 0.0185 0.0579 0.3199 5.420 2.2 0.0935 0.1841 0.5081 2.0050 3.28 0.0180 0.0567 0.3173 5.523 2.22 0.0906 0.1800 0.5036 2.0409 3.3 0.0175 0.0555 0.3147 5.628 2.24 0.0878 0.1760 0.4991 2.0777 3.32 0.0170 0.0544 0.3121 5.732 2.26 0.0851 0.1712 0.4947 2.1153 3.34 0.0165 0.0533 0.3095 5.844 2.28 0.0825 0.1683 0.4903 2.1538 3.36 0.0160										
2.14 0.1027 0.1968 0.5219 1.9018 3.22 0.0196 0.0604 0.3253 5.218 2.16 0.0996 0.1925 0.5173 1.9354 3.24 0.0191 0.0591 0.3226 5.318 2.18 0.0965 0.1882 0.5127 1.9698 3.26 0.0185 0.0579 0.3199 5.420 2.2 0.0935 0.1841 0.5081 2.0050 3.28 0.0180 0.0567 0.3173 5.523 2.22 0.0906 0.1800 0.5036 2.0409 3.3 0.0175 0.0555 0.3147 5.628 2.24 0.0878 0.1760 0.4991 2.0777 3.32 0.0170 0.0544 0.3121 5.735 2.26 0.0851 0.1721 0.4947 2.1153 3.34 0.0165 0.0533 0.3095 5.844 2.28 0.0825 0.1683 0.4903 2.1538 3.36 0.0160 0.0522 0.3069 5.955 2.3 0.0800 0.1646 0.4859 2.1931 3.38 0.0156										
2.16 0.0996 0.1925 0.5173 1.9354 3.24 0.0191 0.0591 0.3226 5.318 2.18 0.0965 0.1882 0.5127 1.9698 3.26 0.0185 0.0579 0.3199 5.420 2.2 0.0935 0.1841 0.5081 2.0050 3.28 0.0180 0.0567 0.3173 5.523 2.22 0.0906 0.1800 0.5036 2.0409 3.3 0.0175 0.0555 0.3147 5.628 2.24 0.0878 0.1760 0.4991 2.0777 3.32 0.0170 0.0544 0.3121 5.735 2.26 0.0851 0.1721 0.4947 2.1153 3.34 0.0165 0.0533 0.3095 5.844 2.28 0.0825 0.1683 0.4903 2.1538 3.36 0.0160 0.0522 0.3069 5.955 2.3 0.0800 0.1646 0.4859 2.1931 3.38 0.0156 0.0511 0.3044 6.068 2.34 0.0772 0.1574 0.4773 2.2744 3.42 0.0147										
2.18 0.0965 0.1882 0.5127 1.9698 3.26 0.0185 0.0579 0.3199 5.420 2.2 0.0935 0.1841 0.5081 2.0050 3.28 0.0180 0.0567 0.3173 5.523 2.22 0.0906 0.1800 0.5036 2.0409 3.3 0.0175 0.0555 0.3147 5.628 2.24 0.0878 0.1760 0.4991 2.0777 3.32 0.0170 0.0544 0.3121 5.735 2.26 0.0851 0.1721 0.4947 2.1153 3.34 0.0165 0.0533 0.3095 5.844 2.28 0.0825 0.1683 0.4903 2.1538 3.36 0.0160 0.0522 0.3069 5.955 2.3 0.0800 0.1646 0.4859 2.1931 3.38 0.0156 0.0511 0.3044 6.068 2.32 0.0775 0.1609 0.4816 2.2333 3.4 0.0151 0.0501 0.3019 6.183 2.34 0.0728 0.1539 0.4731 2.3164 3.44 0.0143 <										
2.2 0.0935 0.1841 0.5081 2.0050 3.28 0.0180 0.0567 0.3173 5.523 2.22 0.0906 0.1800 0.5036 2.0409 3.3 0.0175 0.0555 0.3147 5.628 2.24 0.0878 0.1760 0.4991 2.0777 3.32 0.0170 0.0544 0.3121 5.735 2.26 0.0851 0.1721 0.4947 2.1153 3.34 0.0165 0.0533 0.3095 5.844 2.28 0.0825 0.1683 0.4903 2.1538 3.36 0.0160 0.0522 0.3069 5.955 2.3 0.0800 0.1646 0.4859 2.1931 3.38 0.0156 0.0511 0.3044 6.068 2.32 0.0775 0.1609 0.4816 2.2333 3.4 0.0151 0.0501 0.3019 6.183 2.34 0.0751 0.1574 0.4773 2.2744 3.42 0.0147 0.0491 0.2995 6.300 2.38 0.0706 0.1505 0.4688 2.3593 3.46 0.0139 <										
2.22 0.0906 0.1800 0.5036 2.0409 3.3 0.0175 0.0555 0.3147 5.628 2.24 0.0878 0.1760 0.4991 2.0777 3.32 0.0170 0.0544 0.3121 5.735 2.26 0.0851 0.1721 0.4947 2.1153 3.34 0.0165 0.0533 0.3095 5.844 2.28 0.0825 0.1683 0.4903 2.1538 3.36 0.0160 0.0522 0.3069 5.955 2.3 0.0800 0.1646 0.4859 2.1931 3.38 0.0156 0.0511 0.3044 6.068 2.32 0.0775 0.1609 0.4816 2.2333 3.4 0.0151 0.0501 0.3019 6.183 2.34 0.0751 0.1574 0.4773 2.2744 3.42 0.0147 0.0491 0.2995 6.300 2.38 0.0706 0.1505 0.4688 2.3593 3.46 0.0139 0.0471 0.2946 6.540 2.4 0.0684 0.1472 0.4647 2.4031 3.48 0.0135 <										
2.24 0.0878 0.1760 0.4991 2.0777 3.32 0.0170 0.0544 0.3121 5.735 2.26 0.0851 0.1721 0.4947 2.1153 3.34 0.0165 0.0533 0.3095 5.844 2.28 0.0825 0.1683 0.4903 2.1538 3.36 0.0160 0.0522 0.3069 5.955 2.3 0.0800 0.1646 0.4859 2.1931 3.38 0.0156 0.0511 0.3044 6.068 2.32 0.0775 0.1609 0.4816 2.2333 3.4 0.0151 0.0501 0.3019 6.183 2.34 0.0751 0.1574 0.4773 2.2744 3.42 0.0147 0.0491 0.2995 6.300 2.36 0.0728 0.1539 0.4731 2.3164 3.44 0.0143 0.0481 0.2970 6.419 2.38 0.0706 0.1505 0.4688 2.3593 3.46 0.0139 0.0471 0.2946 6.540 2.4 0.0684 0.1472 0.4647 2.4031 3.48 0.0135										
2.26 0.0851 0.1721 0.4947 2.1153 3.34 0.0165 0.0533 0.3095 5.844 2.28 0.0825 0.1683 0.4903 2.1538 3.36 0.0160 0.0522 0.3069 5.955 2.3 0.0800 0.1646 0.4859 2.1931 3.38 0.0156 0.0511 0.3044 6.068 2.32 0.0775 0.1609 0.4816 2.2333 3.4 0.0151 0.0501 0.3019 6.183 2.34 0.0751 0.1574 0.4773 2.2744 3.42 0.0147 0.0491 0.2995 6.300 2.36 0.0728 0.1539 0.4731 2.3164 3.44 0.0143 0.0481 0.2970 6.419 2.38 0.0706 0.1505 0.4688 2.3593 3.46 0.0139 0.0471 0.2946 6.540 2.4 0.0684 0.1472 0.4647 2.4031 3.48 0.0135 0.0462 0.2922 6.664 2.42 0.0663 0.1498 0.4565 2.4936 3.52 0.0131										
2.28 0.0825 0.1683 0.4903 2.1538 3.36 0.0160 0.0522 0.3069 5.955 2.3 0.0800 0.1646 0.4859 2.1931 3.38 0.0156 0.0511 0.3044 6.068 2.32 0.0775 0.1609 0.4816 2.2333 3.4 0.0151 0.0501 0.3019 6.183 2.34 0.0751 0.1574 0.4773 2.2744 3.42 0.0147 0.0491 0.2995 6.300 2.36 0.0728 0.1539 0.4731 2.3164 3.44 0.0143 0.0481 0.2970 6.419 2.38 0.0706 0.1505 0.4688 2.3593 3.46 0.0139 0.0471 0.2946 6.540 2.4 0.0684 0.1472 0.4647 2.4031 3.48 0.0135 0.0462 0.2922 6.664 2.42 0.0663 0.1439 0.4606 2.4479 3.5 0.0131 0.0452 0.2899 6.789 2.46 0.0623 0.1377 0.4524 2.5403 3.54 0.0124 <										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
2.32 0.0775 0.1609 0.4816 2.2333 3.4 0.0151 0.0501 0.3019 6.183 2.34 0.0751 0.1574 0.4773 2.2744 3.42 0.0147 0.0491 0.2995 6.300 2.36 0.0728 0.1539 0.4731 2.3164 3.44 0.0143 0.0481 0.2970 6.419 2.38 0.0706 0.1505 0.4688 2.3593 3.46 0.0139 0.0471 0.2946 6.540 2.4 0.0684 0.1472 0.4647 2.4031 3.48 0.0135 0.0462 0.2922 6.664 2.42 0.0663 0.1439 0.4606 2.4479 3.5 0.0131 0.0452 0.2899 6.789 2.44 0.0643 0.1408 0.4565 2.4936 3.52 0.0127 0.0443 0.2875 6.917 2.48 0.0604 0.1346 0.4484 2.5880 3.56 0.0120 0.0426 0.2829 7.179 2.5 0.0585 0.1317 0.4444 2.6367 3.58 0.0117 <										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
2.36 0.0728 0.1539 0.4731 2.3164 3.44 0.0143 0.0481 0.2970 6.419 2.38 0.0706 0.1505 0.4688 2.3593 3.46 0.0139 0.0471 0.2946 6.540 2.4 0.0684 0.1472 0.4647 2.4031 3.48 0.0135 0.0462 0.2922 6.664 2.42 0.0663 0.1439 0.4606 2.4479 3.5 0.0131 0.0452 0.2899 6.789 2.44 0.0643 0.1408 0.4565 2.4936 3.52 0.0127 0.0443 0.2875 6.917 2.46 0.0623 0.1377 0.4524 2.5403 3.54 0.0124 0.0434 0.2852 7.047 2.48 0.0604 0.1346 0.4484 2.5880 3.56 0.0120 0.0426 0.2829 7.179 2.5 0.0585 0.1317 0.4444 2.6367 3.58 0.0117 0.0417 0.2806 7.313										
2.38 0.0706 0.1505 0.4688 2.3593 3.46 0.0139 0.0471 0.2946 6.540 2.4 0.0684 0.1472 0.4647 2.4031 3.48 0.0135 0.0462 0.2922 6.664 2.42 0.0663 0.1439 0.4606 2.4479 3.5 0.0131 0.0452 0.2899 6.789 2.44 0.0643 0.1408 0.4565 2.4936 3.52 0.0127 0.0443 0.2875 6.917 2.46 0.0623 0.1377 0.4524 2.5403 3.54 0.0124 0.0434 0.2852 7.047 2.48 0.0604 0.1346 0.4484 2.5880 3.56 0.0120 0.0426 0.2829 7.179 2.5 0.0585 0.1317 0.4444 2.6367 3.58 0.0117 0.0417 0.2806 7.313 2.52 0.0567 0.1288 0.4405 2.6865 3.6 0.0114 0.0409 0.2784 7.450										
2.4 0.0684 0.1472 0.4647 2.4031 3.48 0.0135 0.0462 0.2922 6.664 2.42 0.0663 0.1439 0.4606 2.4479 3.5 0.0131 0.0452 0.2899 6.789 2.44 0.0643 0.1408 0.4565 2.4936 3.52 0.0127 0.0443 0.2875 6.917 2.46 0.0623 0.1377 0.4524 2.5403 3.54 0.0124 0.0434 0.2852 7.047 2.48 0.0604 0.1346 0.4484 2.5880 3.56 0.0120 0.0426 0.2829 7.179 2.5 0.0585 0.1317 0.4444 2.6367 3.58 0.0117 0.0417 0.2806 7.313 2.52 0.0567 0.1288 0.4405 2.6865 3.6 0.0114 0.0409 0.2784 7.450										
2.42 0.0663 0.1439 0.4606 2.4479 3.5 0.0131 0.0452 0.2899 6.789 2.44 0.0643 0.1408 0.4565 2.4936 3.52 0.0127 0.0443 0.2875 6.917 2.46 0.0623 0.1377 0.4524 2.5403 3.54 0.0124 0.0434 0.2852 7.047 2.48 0.0604 0.1346 0.4484 2.5880 3.56 0.0120 0.0426 0.2829 7.179 2.5 0.0585 0.1317 0.4444 2.6367 3.58 0.0117 0.0417 0.2806 7.313 2.52 0.0567 0.1288 0.4405 2.6865 3.6 0.0114 0.0409 0.2784 7.450										
2.44 0.0643 0.1408 0.4565 2.4936 3.52 0.0127 0.0443 0.2875 6.917 2.46 0.0623 0.1377 0.4524 2.5403 3.54 0.0124 0.0434 0.2852 7.047 2.48 0.0604 0.1346 0.4484 2.5880 3.56 0.0120 0.0426 0.2829 7.179 2.5 0.0585 0.1317 0.4444 2.6367 3.58 0.0117 0.0417 0.2806 7.313 2.52 0.0567 0.1288 0.4405 2.6865 3.6 0.0114 0.0409 0.2784 7.450										
2.46 0.0623 0.1377 0.4524 2.5403 3.54 0.0124 0.0434 0.2852 7.047 2.48 0.0604 0.1346 0.4484 2.5880 3.56 0.0120 0.0426 0.2829 7.179 2.5 0.0585 0.1317 0.4444 2.6367 3.58 0.0117 0.0417 0.2806 7.313 2.52 0.0567 0.1288 0.4405 2.6865 3.6 0.0114 0.0409 0.2784 7.450										
2.48 0.0604 0.1346 0.4484 2.5880 3.56 0.0120 0.0426 0.2829 7.179 2.5 0.0585 0.1317 0.4444 2.6367 3.58 0.0117 0.0417 0.2806 7.313 2.52 0.0567 0.1288 0.4405 2.6865 3.6 0.0114 0.0409 0.2784 7.450										
2.5 0.0585 0.1317 0.4444 2.6367 3.58 0.0117 0.0417 0.2806 7.313 2.52 0.0567 0.1288 0.4405 2.6865 3.6 0.0114 0.0409 0.2784 7.450										7.0471
2.52 0.0567 0.1288 0.4405 2.6865 3.6 0.0114 0.0409 0.2784 7.450										
2.54 0.0550 0.1260 0.4366 2.7372 3.62 0.0111 0.0401 0.2762 7.589										7.4501
	2.54	0.0550	0.1260	0.4366	2.7372	3.62	2 0.0111	0.0401	0.2762	7.5891

Table B.1 (*Cont.*) Isentropic Flow of a Perfect Gas, k = 1.4

Ma	p/p_0	$ ho/ ho_0$	T/T_0	A/A*
3.64	0.0108	0.0393	0.2740	7.7305
3.66	0.0105	0.0385	0.2718	7.8742
3.68	0.0102	0.0378	0.2697	8.0204
3.7	0.0099	0.0370	0.2675	8.1691
3.72	0.0096	0.0363	0.2654	8.3202
3.74	0.0094	0.0356	0.2633	8.4739
3.76	0.0091	0.0349	0.2613	8.6302
3.78	0.0089	0.0342	0.2592	8.7891
3.8	0.0086	0.0335	0.2572	8.9506
3.82	0.0084	0.0329	0.2552	9.1148
3.84	0.0082	0.0323	0.2532	9.2817
3.86	0.0080	0.0316	0.2513	9.4513
3.88	0.0077	0.0310	0.2493	9.6237
3.9	0.0075	0.0304	0.2474	9.7990
3.92	0.0073	0.0299	0.2455	9.9771
3.94	0.0071	0.0293	0.2436	10.1581
3.96	0.0069	0.0287	0.2418	10.3420
3.98	0.0068	0.0282	0.2399	10.5289
4.0	0.0066	0.0277	0.2381	10.7188
4.02	0.0064	0.0271	0.2363	10.9117
4.04	0.0062	0.0266	0.2345	11.1077
4.06	0.0061	0.0261	0.2327	11.3068
4.08	0.0059	0.0256	0.2310	11.5091
4.1	0.0058	0.0252	0.2293	11.7147
4.12	0.0056	0.0247	0.2275	11.9234
4.14	0.0055	0.0242	0.2258	12.1354
4.16	0.0053	0.0238	0.2242	12.3508
4.18	0.0052	0.0234	0.2225	12.5695
4.2	0.0051	0.0229	0.2208	12.7916
4.22	0.0049	0.0225	0.2192	13.0172
4.24	0.0048	0.0221	0.2176	13.2463
4.26	0.0047	0.0217	0.2160	13.4789
4.28	0.0046	0.0213	0.2144	13.7151
4.3	0.0044	0.0209	0.2129	13.9549
4.32	0.0043	0.0205	0.2113	14.1984

Table B.2 Normal-Shock Relations for a Perfect Gas, k = 1.4

Ma_{n1}	Ma_{n2}	p_2/p_1	$V_1/V_2 = \rho_2/\rho_1$	T_2/T_1	p_{02}/p_{01}	A*/A*
1.0	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
1.02	0.9805	1.0471	1.0334	1.0132	1.0000	1.0000
1.04	0.9620	1.0952	1.0671	1.0263	0.9999	1.0001
1.06	0.9444	1.1442	1.1009	1.0393	0.9998	1.0002
1.08	0.9277	1.1941	1.1349	1.0522	0.9994	1.0006
1.1	0.9118	1.2450	1.1691	1.0649	0.9989	1.0011
1.12	0.8966	1.2968	1.2034	1.0776	0.9982	1.0018
1.14	0.8820	1.3495	1.2378	1.0903	0.9973	1.0027
1.16	0.8682	1.4032	1.2723	1.1029	0.9961	1.0040
1.18	0.8549	1.4578	1.3069	1.1154	0.9946	1.0055
1.2	0.8422	1.5133	1.3416	1.1280	0.9928	1.0073
1.22	0.8300	1.5698	1.3764	1.1405	0.9907	1.0094
1.24	0.8183	1.6272	1.4112	1.1531	0.9884	1.0118

Table B.2 (Cont.) Normal-Shock Relations for a Perfect Gas, k = 1.4

Ma_{n1}	Ma_{n2}	p_2/p_1	$V_1/V_2 = \rho_2/\rho_1$	T_2/T_1	p_{02}/p_{01}	A*/A*
1.26	0.8071	1.6855	1.4460	1.1657	0.9857	1.0145
1.28	0.7963	1.7448	1.4808	1.1783	0.9827	1.0176
1.3	0.7860	1.8050	1.5157	1.1909	0.9794	1.0211
1.32	0.7760	1.8661	1.5505	1.2035	0.9758	1.0249
1.34	0.7664	1.9282	1.5854	1.2162	0.9718	1.0290
1.36	0.7572	1.9912	1.6202	1.2290	0.9676	1.0335
1.38	0.7483	2.0551	1.6549	1.2418	0.9630	1.0384
1.4	0.7397	2.1200	1.6897	1.2547	0.9582	1.0436
1.42	0.7314	2.1858	1.7243	1.2676	0.9531	1.0492
1.44	0.7235	2.2525	1.7589	1.2807	0.9476	1.0552
1.46	0.7157	2.3202	1.7934	1.2938	0.9420	1.0616
1.48	0.7083	2.3888	1.8278	1.3069	0.9360	1.0684
1.5	0.7011	2.4583	1.8621	1.3202	0.9298	1.0755
1.52	0.6941	2.5288	1.8963	1.3336	0.9233	1.0830
1.54	0.6874	2.6002	1.9303	1.3470	0.9166	1.0030
1.56	0.6809	2.6725	1.9643	1.3606	0.9097	1.0910
1.58	0.6746	2.7458	1.9981	1.3742	0.9026	1.1080
1.56	0.6684	2.7438	2.0317	1.3742	0.9020	1.1171
1.62		2.8200	2.0653	1.3880	0.8932	
1.64	0.6625 0.6568	2.8931	2.0986	1.4018	0.8799	1.1266
						1.1365
1.66	0.6512	3.0482	2.1318	1.4299	0.8720	1.1468
1.68	0.6458	3.1261	2.1649	1.4440	0.8639	1.1575
1.7	0.6405	3.2050	2.1977	1.4583	0.8557	1.1686
1.72	0.6355	3.2848	2.2304	1.4727	0.8474	1.1801
1.74	0.6305	3.3655	2.2629	1.4873	0.8389	1.1921
1.76	0.6257	3.4472	2.2952	1.5019	0.8302	1.2045
1.78	0.6210	3.5298	2.3273	1.5167	0.8215	1.2173
1.8	0.6165	3.6133	2.3592	1.5316	0.8127	1.2305
1.82	0.6121	3.6978	2.3909	1.5466	0.8038	1.2441
1.84	0.6078	3.7832	2.4224	1.5617	0.7948	1.2582
1.86	0.6036	3.8695	2.4537	1.5770	0.7857	1.2728
1.88	0.5996	3.9568	2.4848	1.5924	0.7765	1.2877
1.9	0.5956	4.0450	2.5157	1.6079	0.7674	1.3032
1.92	0.5918	4.1341	2.5463	1.6236	0.7581	1.3191
1.94	0.5880	4.2242	2.5767	1.6394	0.7488	1.3354
1.96	0.5844	4.3152	2.6069	1.6553	0.7395	1.3522
1.98	0.5808	4.4071	2.6369	1.6713	0.7302	1.3695
2.0	0.5774	4.5000	2.6667	1.6875	0.7209	1.3872
2.02	0.5740	4.5938	2.6962	1.7038	0.7115	1.4054
2.04	0.5707	4.6885	2.7255	1.7203	0.7022	1.4241
2.06	0.5675	4.7842	2.7545	1.7369	0.6928	1.4433
2.08	0.5643	4.8808	2.7833	1.7536	0.6835	1.4630
2.1	0.5613	4.9783	2.8119	1.7705	0.6742	1.4832
2.12	0.5583	5.0768	2.8402	1.7875	0.6649	1.5039
2.14	0.5554	5.1762	2.8683	1.8046	0.6557	1.5252
2.16	0.5525	5.2765	2.8962	1.8219	0.6464	1.5469
2.18	0.5498	5.3778	2.9238	1.8393	0.6373	1.5692
2.2	0.5471	5.4800	2.9512	1.8569	0.6281	1.5920
2.22	0.5444	5.5831	2.9784	1.8746	0.6191	1.6154
2.24	0.5418	5.6872	3.0053	1.8924	0.6100	1.6393
2.26	0.5393	5.7922	3.0319	1.9104	0.6011	1.6638
2.28	0.5368	5.8981	3.0584	1.9285	0.5921	1.6888
2.3	0.5344	6.0050	3.0845	1.9468	0.5833	1.7144
2.32	0.5321	6.1128	3.1105	1.9652	0.5745	1.7406
				002		

Table B.2 (*Cont.*) Normal-Shock Relations for a Perfect Gas, k = 1.4

Ma_{n1}	Ma _{n2}	p_2/p_1	$V_1/V_2 = \rho_2/\rho_1$	T_2/T_1	p_{02}/p_{01}	A*/A*
2.34	0.5297	6.2215	3.1362	1.9838	0.5658	1.7674
2.36	0.5275	6.3312	3.1617	2.0025	0.5572	1.7948
2.38	0.5253	6.4418	3.1869	2.0213	0.5486	1.8228
2.4	0.5231	6.5533	3.2119	2.0403	0.5401	1.8514
2.42	0.5210	6.6658	3.2367	2.0595	0.5317	1.8806
2.44	0.5189	6.7792	3.2612	2.0788	0.5234	1.9105
2.46	0.5169	6.8935	3.2855	2.0982	0.5152	1.9410
2.48	0.5149	7.0088	3.3095	2.1178	0.5071	1.9721
2.5	0.5130	7.1250	3.3333	2.1375	0.4990	2.0039
2.52	0.5111	7.2421	3.3569	2.1574	0.4911	2.0364
2.54	0.5092	7.3602	3.3803	2.1774	0.4832	2.0696
2.56	0.5074	7.4792	3.4034	2.1976	0.4754	2.1035
2.58	0.5056	7.5991	3.4263	2.2179	0.4677	2.1381
2.6	0.5039	7.7200	3.4490	2.2383	0.4601	2.1733
2.62	0.5022	7.8418	3.4714	2.2590	0.4526	2.2093
2.64	0.5005	7.9645	3.4937	2.2797	0.4452	2.2461
2.66	0.4988	8.0882	3.5157	2.3006	0.4379	2.2835
2.68	0.4972	8.2128	3.5374	2.3217	0.4307	2.3218
2.7	0.4972	8.3383	3.5590	2.3429	0.4236	2.3608
2.72	0.4930	8.4648	3.5803	2.3642	0.4250	2.4005
2.72	0.4941	8.5922		2.3858		2.44003
2.74	0.4926	8.7205	3.6015 3.6224	2.3636	0.4097 0.4028	2.4411
2.78	0.4896	8.8498	3.6431	2.4292	0.3961	2.5246
2.8	0.4882	8.9800	2.6636	2.4512	0.3895	2.5676
2.82	0.4868	9.1111	3.6838	2.4733	0.3829	2.6115
2.84	0.4854	9.2432	3.7039	2.4955	0.3765	2.6561
2.86	0.4840	9.3762	3.7238	2.5179	0.3701	2.7017
2.88	0.4827	9.5101	3.7434	2.5405	0.3639	2.7481
2.9	0.4814	9.6450	3.7629	2.5632	0.3577	2.7954
2.92	0.4801	9.7808	3.7821	2.5861	0.3517	2.8436
2.94	0.4788	9.9175	3.8012	2.6091	0.3457	2.8927
2.96	0.4776	10.0552	3.8200	2.6322	0.3398	2.9427
2.98	0.4764	10.1938	3.8387	2.6555	0.3340	2.9937
3.0	0.4752	10.3333	3.8571	2.6790	0.3283	3.0456
3.02	0.4740	10.4738	3.8754	2.7026	0.3227	3.0985
3.04	0.4729	10.6152	3.8935	2.7264	0.3172	3.1523
3.06	0.4717	10.7575	3.9114	2.7503	0.3118	3.2072
3.08	0.4706	10.9008	3.9291	2.7744	0.3065	3.2630
3.1	0.4695	11.0450	3.9466	2.7986	0.3012	3.3199
3.12	0.4685	11.1901	3.9639	2.8230	0.2960	3.3778
3.14	0.4674	11.3362	3.9811	2.8475	0.2910	3.4368
3.16	0.4664	11.4832	3.9981	2.8722	0.2860	3.4969
3.18	0.4654	11.6311	4.0149	2.8970	0.2811	3.5580
3.2	0.4643	11.7800	4.0315	2.9220	0.2762	3.6202
3.22	0.4634	11.9298	4.0479	2.9471	0.2715	3.6835
3.24	0.4624	12.0805	4.0642	2.9724	0.2668	3.7480
3.26	0.4614	12.2322	4.0803	2.9979	0.2622	3.8136
3.28	0.4605	12.3848	4.0963	3.0234	0.2577	3.8803
3.3	0.4596	12.5383	4.1120	3.0492	0.2533	3.9483
3.32	0.4587	12.6928	4.1276	3.0751	0.2489	4.0174
3.34	0.4578	12.8482	4.1431	3.1011	0.2446	4.0877
3.36	0.4569	13.0045	4.1583	3.1273	0.2404	4.1593
3.38	0.4560	13.1618	4.1734	3.1273	0.2363	4.2321
3.4	0.4552	13.3200	4.1734	3.1802	0.2322	4.3062
5.4	0.4332	15.5200	4.1004	3.1002	0.2322	4.3002

 Table B.2 (Cont.)
 Normal-Shock
 Relations for a Perfect Gas, k = 1.4

Ma_{n1}	Ma_{n2}	p_2/p_1	$V_1/V_2 = \rho_2/\rho_1$	T_2/T_1	p_{02}/p_{01}	A */A *
3.42	0.4544	13.4791	4.2032	3.2069	0.2282	4.3815
3.44	0.4535	13.6392	4.2178	3.2337	0.2243	4.4581
3.46	0.4527	13.8002	4.2323	3.2607	0.2205	4.5361
3.48	0.4519	13.9621	4.2467	3.2878	0.2167	4.6154
3.5	0.4512	14.1250	4.2609	3.3151	0.2129	4.6960
3.52	0.4504	14.2888	4.2749	3.3425	0.2093	4.7780
3.54	0.4496	14.4535	4.2888	3.3701	0.2057	4.8614
3.56	0.4489	14.6192	4.3026	3.3978	0.2022	4.9461
3.58	0.4481	14.7858	4.3162	3.4257	0.1987	5.0324
3.6	0.4474	14.9533	4.3296	3.4537	0.1953	5.1200
3.62	0.4467	15.1218	4.3429	3.4819	0.1920	5.2091
3.64	0.4460	15.2912	4.3561	3.5103	0.1887	5.2997
3.66	0.4453	15.4615	4.3692	3.5388	0.1855	5.3918
3.68	0.4446	15.6328	4.3821	3.5674	0.1823	5.4854
3.7	0.4439	15.8050	4.3949	3.5962	0.1792	5.5806
3.72	0.4433	15.9781	4.4075	3.6252	0.1761	5.6773
3.74	0.4426	16.1522	4.4200	3.6543	0.1731	5.7756
3.76	0.4420	16.3272	4.4324	3.6836	0.1702	5.8755
3.78	0.4414	16.5031	4.4447	3.7130	0.1673	5.9770
3.8	0.4407	16.6800	4.4568	3.7426	0.1645	6.0801
3.82	0.4401	16.8578	4.4688	3.7723	0.1617	6.1849
3.84	0.4395	17.0365	4.4807	3.8022	0.1589	6.2915
3.86	0.4389	17.2162	4.4924	3.8323	0.1563	6.3997
3.88	0.4383	17.3968	4.5041	3.8625	0.1536	6.5096
3.9	0.4377	17.5783	4.4156	3.8928	0.1510	6.6213
3.92	0.4377	17.7608	4.5270	3.9233	0.1485	6.7348
3.94	0.4366	17.7608	4.5383	3.9540	0.1460	6.8501
3.96	0.4360	18.1285	4.5494	3.9848	0.1435	6.9672
3.98	0.4355	18.3138	4.5605	4.0158	0.1433	7.0861
4.0	0.4350	18.5000	4.5714	4.0469	0.1411	7.2069
4.02	0.4330	18.6871	4.5823	4.0409	0.1364	7.2009
4.04	0.4339	18.8752	4.5930	4.1096	0.1304	7.4542
4.04	0.4334	19.0642	4.6036	4.1412	0.1342	7.4342
4.08	0.4334	19.0042	4.6141	4.1729	0.1319	7.7092
4.08	0.4329			4.1729	0.1297	
		19.4450	4.6245			7.8397
4.12 4.14	0.4319	19.6368	4.6348	4.2368 4.2690	0.1254	7.9722
4.14	0.4314	19.8295	4.6450		0.1234	8.1067
	0.4309	20.0232	4.6550	4.3014	0.1213	8.2433
4.18	0.4304	20.2178	4.6650	4.3339	0.1193	8.3819
4.2	0.4299	20.4133	4.6749	4.3666	0.1173	8.5227
4.22	0.4295	20.6098	4.6847	4.3994	0.1154	8.6656
4.24	0.4290	20.8072	4.6944	4.4324	0.1135	8.8107
4.26	0.4286	21.0055	4.7040	4.4655	0.1116	8.9579
4.28	0.4281	21.2048	4.7135	4.4988	0.1098	9.1074
4.3	0.4277	21.4050	4.7229	4.5322	0.1080	9.2591
4.32	0.4272	21.6061	4.7322	4.5658	0.1062	9.4131
4.34	0.4268	21.8082	4.7414	4.5995	0.1045	9.5694
4.36	0.4264	22.0112	4.7505	4.6334	0.1028	9.7280
4.38	0.4260	22.2151	4.7595	4.6675	0.1011	9.8889
4.4	0.4255	22.4200	4.7685	4.7017	0.0995	10.0522
4.42	0.4251	22.6258	4.7773	4.7361	0.0979	10.2179
4.44	0.4247	22.8325	4.7861	4.7706	0.0963	10.3861
4.46	0.4243	23.0402	4.7948	4.8053	0.0947	10.5567
4.48	0.4239	23.2488	4.8034	4.8401	0.0932	10.7298

Table B.2 (*Cont.*) Normal-Shock Relations for a Perfect Gas, k = 1.4

Ma_{n1}	Ma_{n2}	p_2/p_1	$V_1/V_2 = \rho_2/\rho_1$	T_2/T_1	p_{02}/p_{01}	A*/A*
4.5	0.4236	23.4583	4.8119	4.8751	0.0917	10.9054
4.52	0.4232	23.6688	4.8203	4.9102	0.0902	11.0835
4.54	0.4228	23.8802	4.8287	4.9455	0.0888	11.2643
4.56	0.4224	24.0925	4.8369	4.9810	0.0874	11.4476
4.58	0.4220	24.3058	4.8451	5.0166	0.0860	11.6336
4.6	0.4217	24.5200	4.8532	5.0523	0.0846	11.8222
4.62	0.4213	24.7351	4.8612	5.0882	0.0832	12.0136
4.64	0.4210	24.9512	4.8692	5.1243	0.0819	12.2076
4.66	0.4206	25.1682	4.8771	5.1605	0.0806	12.4044
4.68	0.4203	25.3861	4.8849	5.1969	0.0793	12.6040
4.7	0.4199	25.6050	4.8926	5.2334	0.0781	12.8065
4.72	0.4196	25.8248	4.9002	5.2701	0.0769	13.0117
4.74	0.4192	26.0455	4.9078	5.3070	0.0756	13.2199
4.76	0.4189	26.2672	4.9153	5.3440	0.0745	13.4310
4.78	0.4186	26.4898	4.9227	5.3811	0.0733	13.6450
4.8	0.4183	26.7133	4.9301	5.4184	0.0721	13.8620
4.82	0.4179	26.9378	4.9374	5.4559	0.0710	14.0820
4.84	0.4176	27.1632	4.9446	5.4935	0.0699	14.3050
4.86	0.4173	27.3895	4.9518	5.5313	0.0688	14.5312
4.88	0.4170	27.6168	4.9589	5.5692	0.0677	14.7604
4.9	0.4167	27.8450	4.9659	5.6073	0.0667	14.9928
4.92	0.4164	28.0741	4.9728	5.6455	0.0657	15.2284
4.94	0.4161	28.3042	4.9797	5.6839	0.0647	15.4672
4.96	0.4158	28.5352	4.9865	5.7224	0.0637	15.7902
4.98	0.4155	28.7671	4.9933	5.7611	0.0627	15.9545
5.0	0.4152	29.0000	5.0000	5.8000	0.0617	16.2032

Table B.3 Adiabatic Frictional Flow in a Constant-Area Duct for k = 1.4

Ma	$\overline{f}L^*/D$	<i>p</i> / <i>p</i> *	<i>T/T</i> *	$\rho^*/\rho = V/V^*$	p_0/p_0^*
0.0	∞	&	1.2000	0.0	8
0.02	1778.4500	54.7701	1.1999	0.0219	28.9421
0.04	440.3520	27.3817	1.1996	0.0438	14.4815
0.06	193.0310	18.2508	1.1991	0.0657	9.6659
0.08	106.7180	13.6843	1.1985	0.0876	7.2616
0.1	66.9216	10.9435	1.1976	0.1094	5.8218
0.12	45.4080	9.1156	1.1966	0.1313	4.8643
0.14	32.5113	7.8093	1.1953	0.1531	4.1824
0.16	24.1978	6.8291	1.1939	0.1748	3.6727
0.18	18.5427	6.0662	1.1923	0.1965	3.2779
0.2	14.5333	5.4554	1.1905	0.2182	2.9635
0.22	11.5961	4.9554	1.1885	0.2398	2.7076
0.24	9.3865	4.5383	1.1863	0.2614	2.4956
0.26	7.6876	4.1851	1.1840	0.2829	2.3173
0.28	6.3572	3.8820	1.1815	0.3043	2.1656
0.3	5.2993	3.6191	1.1788	0.3257	2.0351
0.32	4.4467	3.3887	1.1759	0.3470	1.9219
0.34	3.7520	3.1853	1.1729	0.3682	1.8229
0.36	3.1801	3.0042	1.1697	0.3893	1.7358
0.38	2.7054	2.8420	1.1663	0.4104	1.6587
0.4	2.3085	2.6958	1.1628	0.4313	1.5901
0.42	1.9744	2.5634	1.1591	0.4522	1.5289