Power Electronics

Dr. D. S. More

Department of Electrical engg

W. C. E. Sangli

E-mail => dsm.wce@gmail.com

Course Contents

- Power semiconductor devices
- Uncontrolled AC to DC converters
- Controlled AC to DC Converters
- DC to DC converters (Choppers)
- Inverters (DC to AC converters)
- AC to AC converter (Cyclo-converters)

Reference Books

 M. H. Rashid "Power electronics : Circuit devices and Applications", Prentice Hall &co

- Ned Mohan and others "Power Electronics applications and design
- B. K. Bose "Modern power Electronics and AC drives" Pearson education Inc

P. S. Bhimra " Power Electronics" third edition Khanna publishers

- Power supply distribution
- Three phase 4 wire supply
- Line voltage 400 V and phase voltage =230V
- DC supply is required for various applications
- DC Motors
- Battery charging
- What are the possible options?

Induction motor DC generator

- Losses in the system
- Overall efficiency of energy conversion

- Diode bridge rectifier / controlled converter
- Single phase

three Phase

- Losses
- overall conversion efficiency

Incandescent lamp and LED lamp

- 100 W Incandescent lamp => 15 lumens/watt
- 25 W led lamp => 60 lumens/ Watt
- Energy efficiency

Resistance type fan regulator

Traic based fan regulator

- Fan regulator
- Resistance type Traic based fan regulator

Applications of Power Electronics

- Variable speed drives
- Power supplies
- Lighting
- High frequency heating
- Electric Wielding
- Bulk power transmission
- Electric vehicles
- Active filters
- Process power from non conventional energy resources

Definition of Power Electronics

- Power electronics is technology associated with efficient conversion and control of electric power with the help of power semiconductor devices
- Goal of Power Electronics : control the flow of power from source to load

Electrical Energy conversion

 Efficient conversion of electric power from one from to other form

Development in PE

- Progress in PE is primarily due to
- Advances in power semiconductor devices
- Fast processors
- Dedicated chips
- Circuit configurations
- Control and estimation techniques

Interdisciplinary Nature of PE

Power Electronics course contents

- Power semiconductor devices
- Uncontrolled AC to DC converters
- Controlled AC to DC Converters
- DC to DC converters (Choppers)
- Inverters (DC to AC converters)
- AC to AC converter (Cyclo-converters)

Semiconductor Switches

Diode

Thyristor

Power transistor

MOSFET

Semiconductor Switches

- IGBT
- Insulated gate bipolar transistor

- GTO
- Gate turn off thyristor

V-I characteristics Ideal Semiconductor

Switch

 $A \rightarrow k$

When switch is off

____g

 It should block large forward and reverse voltage
 Current through device =0

When switch is on

- It allows large current
- And drop across device =0

Properties of an ideal Switch

- Power loss in the device when on =0
- Power loss in the device when off = 0
- Time required to turn on $(t_{on})=0$
- Time required to turn off (t_{off})=0
- Power required to turn on =0
- Power required to turn off =0
- It can block large voltage during turn off
- It can carry large current during turn on

Characteristics of practical Switch

- Practical switches characteristics
- During off state I ≠ 0 and V≠ infinity.
- V_(sw on) ≠ 0 on state current carrying capacity is limited
- P_{loss} in off state (blocking loss) and on state (conduction loss) **‡**0
- t_{on} ≠ 0 and t_{off} ≠ 0

Classification of Switches

- Uncontrolled switched => Diode
- Only two terminals device
- On and off of the device is determined by circuit conditions where it is connected
- When D is ON
- $I_L = (10-0.7)/10 = 0.93A$

Classification of Switches

- Semi controlled switch =>Thyristor
- It is a three terminal device
- Device turns on when it is forward biased
- (anode is +Ve wrt cathode) and positive gate current Ig is applied
- Turn off is not possible with gate
- Turns off when la = 0 and reverse bias is applied across the device.

Classification of Switches

- Fully controlled switches = (3 terminal device)
- Power transistor, MOSFET, IGBT & GTO
- Device can be made ON or OFF by applying control signal to control terminal
- Turn on and turn off by current signal => current controlled switch => BJT and GTO
- Turn on and turn off by voltage signal => voltage controlled switch=> MOSFET &IGBT

- Constructional details
- It is a pn junction
- Impurities concentration (impurities/cm³)
- $^{\bullet}$ N⁺ or P⁺=10¹⁹
- N or P = 10^{17}
- $^{-}$ N⁻ or N⁻ = 10^{14}
- Thickness of Ndetermines the

voltage rating of the diode

Cross sectional area determines the current rating

- V-I characteristics
- Ideal

- Operating Mode
- Forward conduction
- Reverse blocking

Actual

- Forward biased Vak >0
- Voltage drop = 0.7 V for low power rating
- Voltage drop = 1.5 V for high power rating
- Current in the ON mode is limited by load resistance
- When reverse biased => small leakage current will flow
- Avalanche breakdown when applied voltage>
 Vbo

- Conduction loss = V_f * I_d
- Vf= forward voltage drop across the device
- Id = diode current (average)
- As loss increases, to dissipate the heat generated to atmosphere we have to use heatsink

Heat sinks

Heat sinks

Mounting of devices on heat sink

Heat sink

Heat sink with device mounted on it

Cooling

- Natural air cooled
- Forced air cool
- Water cooling => heat sink is cooled by circulating the cold water through it.

Turn off of diode

Diode goes to turn off state after t_{rr} when forward current becomes zero and reverse bias is applied

Minority carriers
 requires certain time
 to recombine with
 opposite polarity and
 get neutralized

 I_{rr} $Q_{rr} = I_{rr} \frac{t_{rr}}{2}$

Q_{rr}=> Reverse recovery charge

Turn off of diode

 Reverse recovery time(t_{rr}): is the time duration from 1st initial zero crossing of diode current to 25% of maximum reverse recovery current

 During t_{rr} negative I flows through the device

 t_{rr} decided maximum switching frequency of the device

Data sheet of power diode

150U/150UR

SILICON POWER DIODE

NAINA

FEATURES

- Diffused Series
 Available in Normal & Reverse Polarity
- Industrial Grade
- Available In Avalanche Characteristic

ELECTRICAL SPECIFICATIONS

Ι	Maximum Average Forward	150A
F	Current Te=125°C	
	kimum peak forward voltage drop @ Rated IF(AV)	1.4V
I FSM	Maximum peak one cycle (non-rep) surge current 10 m sec	3000A
I FRM	Maximum peak repetitive surge current	750A
I ² t Ma	kimum I ² t rating (non-rep.) for 45,000 5 to 10 msec.	A2 Sec

DO - 8

Data sheet of power diode

THERMAL MECHANICAL SPECIFICATIONS

θ .c	Maximum thermal resistance Junction to case	0,25°C/W
Tj	Operating Junction Temp.	-65°C to 150°C
Tstg	Storage temperature	-65°C to 200°C
	Mounting torque	2.0 M-kg min,
	(Non-lubricated threads)	3.0 M-kg max
W	Approx, weight	150 gms.

ELECTRICAL RATINGS

TYPE	150U/150UR	10	20 40	60	80 10	0	120 1	40 160	
VRRM	Max. repetitive peak reverse voltage (v)	100	200 4	00 600	800 1	000	1200 1	400 16	00
Vr(RMS)	Max. R.M.S. reverse voltage (V) 70		140 2	80 420	560 70	00 840 9	80 1120		
V R	Max. D.C. Blocking Voltage (V) 10				1400 1	600			
	Recommended R.M.S. working 40 Voltage(v)						480 5	60 640	
IR(AV)	Max. Average reverse leakage 200 current @ VRRM Tc 25°C (uA)	200 2	00 200		200 20	00	200 2	00 200	

NAINA SEMICONDUCTOR LTD.,

D-95,SECTOR 63, NOIDA(INDIA)

e-mail:sales@nainasemi.com, web site: www.nainasemi.com

com

Important specifications

- Average Forward current= to access suitability with power circuit
- Reverse blocking voltage
- On state voltage => to determine conduction loss
- t_{rr} => to access high frequency switching capability.
- I²t rating => coordinate fuse with device
- Short time surge energy that diode can withstand

Types of diode

- Line frequency diode or rectifier diode
- Suitable for line frequency applications
- Recovery time is not specified or > 25 micro seconds
- 6 KV, 4.5 KA rating are available
- Fast recovery diodes
- High frequency switching applications
- 6.0KV &1.1KA are available
- t_{rr} could be less than 0.5 micro seconds

Types of diode

- Schottky diode
- They have low on state voltage drop = 0.3 V
- Rating: 100 V and current = 300 A
- Low voltage high current rectifiers
- Silicon carbide diode
- Ultra low power loss
- Ultra fast switching behavior
- Highly reliable (no temperature influence on the switching behavior)

Thyristor or Silicon Controlled Rectifier

- Three terminal device
- Anode (A), Cathode (C)
- & Gate (G)
- A&K are power terminal
- Control signal is applied to gate wrt Cathode

Constructional details

- N2 => Layer is very thin & highly doped.
- P2 => layer is thicker & less highly doped
- N1 => blocking layer is thickest & less doped
- P1 => has having highly doped & less doped
- Junction J3 has low breakdown voltage in either direction
- J3 can not support reverse voltage

Constructional details

Various Case configurations

Various Case configurations

www.shutterstock.com · 1453920995

www.shutterstock.com · 1453921889

LASCR

- Forward blocking mode
- VAK > 0, Ig=0 device is off
- Forward voltage is blocked by J2
- Junctions J1 and J3 are forward biased
- As V_{AK} goes on increasing, leakage Current goes on Increasing.
- At V_{BO} junction J2 break downs and device turns on

- Fórward conduction => Gate triggering
- As value of gate current increases blocking voltage decrease and device goes into
 I_A
 conduction
- Once device turns on gate will loose the control

- Thyristor is latching device
- Thyristors can have blocking voltage 5KV 8KV

- Forward conduction
- Current to several kiloamps for V(on) of 2- 4 volts.
- Blocking voltages to 5-8 kilovolts.
- VBO = breakover voltage;
- I_H = holding current
- I_I = Latching current
- Maximum junction temperature = 125 °C
- Forward blocking voltage depends upon capacity of junction J2

Two transistor Analogy

For any transistor

$$I_{c} = \alpha I_{E} + I_{CBO}$$

 $\alpha \rightarrow$ common base current gai

$$\alpha = \frac{I_c}{I_E}$$

 $I_{CBO} \rightarrow Ieakage current of the C-B junction.$

$$\therefore \text{ for } \mathsf{T_1}, \, \mathsf{I_E} = \mathsf{I_A} \qquad \mathsf{I_{C1}} = \alpha_1 \mathsf{I_A} + \mathsf{I_{CBO1}}$$

$$\text{for } \mathsf{T_2}, \, \mathsf{I_E} = \mathsf{I_K} \qquad \therefore \; \mathsf{I_{C2}} = \alpha_2 \mathsf{I_K} + \mathsf{I_{CBO2}}$$

Two transistor Analogy

Now,
$$I_{E} = I_{C} + I_{B}$$
 $I_{E1} = I_{A}$ and $I_{B1} = I_{C2}$
 $\therefore I_{C1} + I_{C2} = I_{A} = \alpha_{1}I_{A} + I_{CBO1} + \alpha_{2}I_{K} + I_{CBO2}$
 $I_{K} = I_{B2} + I_{C2}$

for finite I_{G} ,

 $I_{K} = I_{C1} + I_{G} + I_{C2}$
 $I_{A} = I_{A} + I_{C}$
 $I_{C} = I_{A} + I_{C}$
 $I_{C} = I_{C} + I_{C}$
 $I_{C} = I_{C}$

Two transistor Analogy

 α increases with I_{E}

$$\therefore \ \alpha_1 \text{ also increases with } I_A \ \because \ I_{E1} = I_A$$
Similarly α_2 varies with $I_K \ \because \ I_{E2} = I_K = I_A + I_G$
If I_G is suddenly \uparrow , $I_A \ \uparrow \ \because \ I_A = \frac{\alpha_2 I_G + I_{CBO1} + I_{CBO2}}{1 - (\alpha_1 + \alpha_2)}$

- As $I_A \uparrow$, $\alpha_1 \uparrow$ and $\alpha_2 \uparrow$.
- \Rightarrow \uparrow in α_1 and α_2 further increases I_{Δ}
- ⇒ +ve feedback.

Un-scheduled turn on

- Junction capacitance C_{j1} C_{j2} & C_{j3}
- forward blocking J₁ and J₃ F B
- Junction J₂ blocks forward voltage
- If rate of change of voltage is very fast

- Because of that charging current
- Of C_{i2} (I_{i2}) acts as a virtual gate
- current and device turns on without gate pulse

dv/dt protection

- At higher value of dv/dt, thyristor turns on without gate pulse current
- Protection from dv/dt
- Snubber circuit (RC) is used
- R is selected such that discharge current is controlled during turn on
- RCD snubber, charging & discharging
- Currents are controlled separately

Turn on Methods

- For turn on device should be forward biased
- 1) V applied > V_{BO}
- 2) Applying +ve I_G, I_G should be maintained
 till I_A> I_{latching current}
- Once device turns on gate will loose its control
- Device turns off when I_A<I_{holding} and reverse bias is applied

Turn on Methods

- 3) dV/dt turn on normally it is not used.
- 4) Use of light radiations
- LASCR
- LASCR used in high voltage applications

Current Ratings

- Thyristor has following current Rating
- Average current
- RMS current
- Surge current rating
- di/dt current
- I²t current
- Whereas machines has only RMS current rating
- Thermal time constant comparison of machines and semiconductor devices

Average current rating

Conduction loss is determined from I_{AV}

Power loss Vs conduction angle

Average current rating

Average forward current derating characteristics

Average current rating

- Power loss depend upon I_{AV} and conduction angle.
- Suitability of the device depends on T_i
- Power loss is used to calculate T_i
- To access the suitability with power circuit average current rating is used
- Device suitability is finally decided by junction temp.

Thyristor Current Rating

I_{rms} => Heating of surface metal joints, Leads and interfaces depends upon RMS current

- Surge current rating=> Maximum allowable non repetitive current device can withstand
- Following the surge, device can be disconnected and allowed to cool down
- $I_{sm} = 3000A \text{ for } \frac{1}{2} \text{ cycle}$
- $I_{sm} = 2100A \text{ for 3 cycle}$
- $I_{sm} = 1800A \text{ for } 5 \text{ cycle}$

Thyristor Current Rating

- di/dt rating
- di/dt during turn on is high =>
- rate of spreading of conduction in the device < di/dt of current during turn on =>
- then result into high current density into device
- Hot spot temp will be high
- Failure of the device

Thyristor Current Rating

- I²t rating => it is defined as amount energy device can absorb.
- I²t rating is used for coordination of fuse with device.
- Device can be protected from short circuit with the help of semiconductor fuses.
- I²t of device > I²t of semi-conductor fuse

Semiconductor fuses

Photograph

- Peak Working Forward OFF state voltage (V_{DWM}):
- Maximum forward voltage device can withstand during working
- Peak repetitive off state forward voltage (V_{DRM}):
- Peak forward transient voltage device can block during off state
- Peak non-repetitive off state forward voltage (V_{DSM})
- Allowable peak forward transient voltage that does not repeat

- Peak working reverse voltage (V_{DWM}):
- Maximum reverse voltage device can withstand during working
- Peak repetitive reverse voltage (V_{RRM}):
- Peak reverse transient voltage device can block during reverse bias condition

- Peak non-repetitive reverse voltage (V_{RSM}):
- Allowable peak reverse transient voltage that does not repeat

- Turn on time consists of delay time, rise time and spread time
- Delay time (t_d)=> application of gate pulse to I_A rises 10% of its steady state value (few µsec)
- Rise time (t_r) => time required for I_A to rise from 10% to 90% of its steady state value
- Spread time (t_p) => time required for I_A to 90% to 100%

- Turn off time consists of reverse recovery time (t_{rr}) and gate recovery time (t_{gr})
- The negative current removes excess carriers from junctions J₁ & J₃
- Charge carriers at J₂ will be removed by the process of recombination and for that reverse voltage has to be maintained
- Once the charge carriers are removed the gate will regain its control

$$t_q = t_{rr} + t_{gr}$$

- t_q => 50-100µsec=> Converter grade thyristor
- t_q => 5-50µsec=> Inverter grade thyristor
- Turn off time determines the switching frequency
- Inverter grade thyristors are costlier compared to converter grade thyristor

72

thyristor Turn -off in AC circuit

thyristor Turn -off in DC circuit

