

1.3 一个典型的机器学习案例——对鱼进行分类

CSDN学院 2017年10月

▶例:鱼的分类

• 根据一些光学传感器对传送带上的鱼进行分类

▶形式化为机器学习问题

- 训练数据 $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$
 - 每条鱼的测量向量 (特征) $: x_i$ (如重量、长度、颜色)
 - 每条鱼的标签 y_i (如三文鱼/salmon、鲈鱼/sea bass)

- 测试:
 - 给定一个新的特征向量x
 - <u>预测</u>对应的标签y

▶将长度作为特征进行分类

- 需要先则一个决策边界
 - 最小化平均损失

训练误差:90/316=28%

▶将亮度作为特征进行分类

训练误差:16/316=5%

▶长度和亮度一起作为特征

• 线性决策函数

训练误差: 8/316 = 2.5%

▶更复杂的决策边界

• 二次决策边界函数

训练误差:8/316=2.5%

▶更复杂的决策边界...

"ideal" classifier "? Is this good?

训练集上的误差 ≠ 测试集上的误差

- 分类器应该在新数据上表现好
- 上述 "ideal" 分类器在新数据集上的错误率: 25%

► What's Wrong?

• 推广性(generalization)差

- 复杂的决策边界不能泛化/推广到新数据上,根据特定调制得太好,而不是真正将salmon和sea bass 分开的模型
 - 被称为数据过拟合(overfitting)

▶ 小结: 设计一个鱼分类器

- 选择特征
 - 可能是<mark>最重要的</mark>步骤! (收集训练数据)
- 选择模型(如决策边界的形状)
- 根据训练数据估计模型
- 利用模型对新样本进行分类

