专业:	学号: _	姓名:		
	- 密封线	密封线	密封线	

南开大学滨海学院

2019-2020-1学期《线性代数II》期末试卷 **经管类**

适用专业(2018级财务管理、市场营销、国际经济与贸易、工商管理、物流管理、公共事业管理、行政管理、应用心理学、信息管理与信息系统、中职升本)

题号	填空选择	解答题	总分	核分签字	复核签字
得分					

填空题与选择题答题	区(填空与选择	¥题的答3	案务必:	填写在此区域	城内)		
1. 1. 2.	3	4		5			
6. ()	601	8. ()	9. ()	10. ()

一、填空题(每小题3分,共15分)

1. 若行列式	$\begin{vmatrix} a_{11} \\ a_{21} \end{vmatrix}$	$a_{12} \\ a_{22}$	$\begin{vmatrix} = 1, $ 则行列式 $\begin{vmatrix} 2a_{11} & a_{12} & 2 \\ 2a_{21} & a_{22} & 1 \end{vmatrix} = 1$

2. 设行列式
$$D = \begin{vmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{vmatrix}$$
, D 的第1行第2列的元素 a_{12} 的代数余子

式 $A_{12} =$ ____.

- 3. 设矩阵A为 4×3 矩阵且r(A) = 2,矩阵P是3阶初等矩阵,则AP的 秩 $r(AP) = _____$.
- 4. 设矩阵 $\mathbf{A} = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 0 & -2 & 2 \end{pmatrix}$, 则齐次线性方程组 $\mathbf{A}\mathbf{X} = \mathbf{0}$ 的基础解

线性代数II 第1页/共7页

二、单项选择题(每小题3分,共15分)

- 6. 设**A**B是n阶可逆方阵, 下列等式不成立的是

 - (A) |AB| = |A||B| (B) $|(AB)^{-1}| = |A|^{-1}|B|^{-1}$

 - (C) $(AB)^{-1} = A^{-1}B^{-1}$ (D) $|(-1)AB| = (-1)^n |AB|$.
- 7. 设 α 为n维单位列向量, E为n阶单位矩阵, 则
 - (A) $\mathbf{E} \alpha \alpha^T \overline{\Lambda}$ 可逆
- (B) $\mathbf{E} + \alpha \alpha^T \overline{\Lambda}$ 可逆
- (C) $\mathbf{E} + 2\alpha \alpha^T$ 不可逆 (D) $\mathbf{E} + 2\alpha \alpha^T$ 不可逆
- 8. 若向量组 $\alpha = (1,2,3)^T$, $\beta = (3,-1,2)^T$, $\gamma = (2,-3,m)^T$ 线性相关, 则m = (
 - (A) 1

- 9. 已知 β_1, β_2 为3元非齐次线性方程组AX量, A为方程组的增广矩阵,则下列结论可能正确的是
 - (A) $r(\mathbf{A}) = 2, r(\overline{\mathbf{A}}) = 3$ (B) $r(\mathbf{A}) = 2, r(\overline{\mathbf{A}}) = 2$
 - (C) $r(\mathbf{A}) = 1, r(\overline{\mathbf{A}}) = 2$ (D) $r(\mathbf{A}) = 3, r(\overline{\mathbf{A}}) = 3$
- 10. 设3阶方阵 \mathbf{A} 与 \mathbf{B} 相似, 且 $|\mathbf{A}| = 0$, 则 \mathbf{B} 必有一个特征值为()
 - (A) 3

(B) 1

- (C) 2
- (D) 0

得 分

三、解答题(每小题7分,共70分。)

11. 计算下列4阶行列式

$$D_4 = \begin{vmatrix} 1 & 0 & -1 & 0 \\ 0 & 2 & 0 & 1 \\ 0 & -1 & 3 & 2 \\ 0 & 1 & 0 & 2 \end{vmatrix}.$$

12. 计算n阶行列式

13. 解矩阵方程
$$\mathbf{A}\mathbf{X} = \mathbf{B} + \mathbf{X}$$
, 其中 $\mathbf{A} = \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 0 & -1 \\ 3 & 1 \end{pmatrix}$.

14. 已知
$$a$$
是常数,矩阵 $A = \begin{pmatrix} 1 & 2 & 2 \\ 1 & 3 & 0 \\ 2 & 7 & -2 \end{pmatrix}$ 可经初等变换化为矩阵 $B = \begin{pmatrix} 1 & a & 2 \\ 0 & 1 & -2 \\ 1 & 5 & -4 \end{pmatrix}$,求 a 的值。

15. 求向量组 $\alpha_1 = (1,0,1,1)^T$, $\alpha_2 = (2,1,3,4)^T$, $\alpha_3 = (1,-1,0,-1)^T$, $\alpha_4 = (3,1,4,5)^T$ 的秩, 给出它的一个极大无关组, 并用该极大无关组表示其余向量.

16. 设向量组 $\alpha_1 = (k, 1, 0)^T$, $\alpha_2 = (1, k, 1)^T$, $\alpha_3 = (0, 1, k)^T$, 求k取何值 따示 访向量组线性相关。

17. 求非齐次线性方程组 $\begin{cases} x_1 + x_2 + x_3 = 1 \\ x_2 + 2x_3 = 2 \text{ 的通解, 并用其导} \\ 3x_1 + 2x_2 + x_3 = 0 \end{cases}$ 出组的基础解系表示.

18. 已知2阶方阵**A** = (-3 2) (1) 求矩阵**A**的特征值和特征向量; 一个是否可对角化? 若能, 求

 (1) 求矩阵A的特征值和特征向量;
(2) 矩阵A是否可对角化?若能,求可逆矩阵P,使得P-1AP为对 角矩阵.

19. 已知矩阵
$$\mathbf{A} = \begin{pmatrix} -2 & -2 & 1 \\ 2 & x & -2 \\ 0 & 0 & -2 \end{pmatrix}$$
 与矩阵 $\mathbf{B} = \begin{pmatrix} 2 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & y \end{pmatrix}$ 相似, 求常数 x, y 的值.

20. 设A为3阶矩阵 α_1 , α_2 , α_3 为线性无关的3维列向量组, 若 $A\alpha_1=2\alpha_1+\alpha_2+\alpha_3$, $A\alpha_2=\alpha_2+2\alpha_3$, $A\alpha_3=3\alpha_3$. 求矩阵A的特征值.

线性代数II 第7页/共7页