Lunar Vision-SOI Problem Final Report

1. Problem Overview

The Lunar Vision Challenge aimed to automate the detection and classification of surface features on the Moon—specifically, identifying **craters** and **boulders** in high-resolution lunar satellite images. The task involved training a model on annotated datasets and evaluating its performance on unseen test data. This problem has relevance to real-world space exploration, aiding in terrain analysis for future lunar missions.

2. Our Approach

We used **YOLOv8** for object detection due to its speed, accuracy, and flexibility in custom training. Our approach involved the following stages:

1. Dataset Preparation:

- Dataset was extracted from the provided zipfile and structured into standard YOLOv8 format.
- Each label file contained class, x_center, y_center, width, and height normalized to the image size.

2. Model Training:

- We trained a custom YOLOv8n (nano) model due to compute constraints.
- The model was trained for 10 epochs with a batch size of 8 using an Adam optimizer.
- Image augmentation and validation split were employed to improve generalization.

3. Evaluation:

- o Post-training, we evaluated the model on the validation set.
- Key metrics: mean Average Precision (mAP@0.5), precision, and recall were logged.

• We ensured that both **crater (class 0)** and **boulder (class 1)** detections were captured to the best of the model's capabilities.

4. Testing Phase:

- o The model was used to generate predictions on the test set.
- Each prediction was saved as a .txt file following the filename_label.txt format.
- Additionally, we saved visualizations of each prediction overlayed on the original image.

3. Implementation Details

Libraries Used:

- PyTorch
- Ultralytics (YOLOv8)
- o OpenCV
- o matplotlib
- o numpy
- o tqdm

• Model Configuration:

- o imgsz=640
- o epochs=10
- o device='cuda' if available else 'cpu'
- o optimizer=Adam

• Evaluation Snippet:

```
results = model.val()
metrics_dict = results.results_dict

print(f"mAP@0.5: {metrics_dict['metrics/mAP50(B)']:.4f}")
print(f"mAP@0.5:0.95: {metrics_dict['metrics/mAP50-95(B)']:.4f}")
print(f"Precision: {metrics_dict['metrics/precision(B)']:.4f}")
print(f"Recall: {metrics_dict['metrics/recall(B)']:.4f}")
```

4. Results

Metric	Value
mAP@0.5	0.8596
mAP@0.5:0.95	0.6526
Precision	0.8142
Recall	0.7635

The model demonstrated strong performance on craters and acceptable precision for boulder detection, despite the imbalance in training samples.

5. Visualization

We saved two forms of results for the test set:

- .txt label files with bounding box predictions
- Image overlays with colored boxes (blue for craters, red for boulders)

These visuals aided in qualitative verification of detection accuracy.

6. Key Learnings & Insights

- **Data imbalance**: Boulders were less frequent in the dataset, leading to lower confidence predictions for class 1.
- Augmentations like flipping and brightness adjustments improved generalization.
- Transfer learning via pre-trained YOLOv8 weights boosted initial performance.

Real-world use cases:

- Terrain risk analysis for rover navigation.
- Automated crater count for geological age estimation.
- Resource extraction planning (e.g., locating safe flat zones).

7. Future Scope

- Fine-tuning with high-res inputs using YOLOv8m or YOLOv8l.
- Adding metadata such as elevation or radar data for better boulder prediction.
- Creating a Streamlit-based interface for public demonstrations.

8. Files in Submission

- best.pt Trained model
- label_generator.py Inference and label generation script
- README.md Guide to run code
- requirements.txt Dependency list
- test_labels/ Output .txt files
- test_visuals/ Prediction overlays

• report.pdf – This document

9. Conclusion

This project gave us hands-on experience in object detection, model training, metric evaluation, and real-world problem-solving. We learned to handle messy data, tune hyperparameters, and interpret spatial patterns from satellite images. It was both challenging and rewarding.

Thank you for the opportunity.

— Team Chaand Sitaare