Topic 8 - Metrics for Performance Evaluation

Aims of the Session

Aims of the Session

• Learn different metrics used to evaluate classification frameworks

Aims of the Session

- Learn different metrics used to evaluate classification frameworks
- Understand some alternatives to design proper tests

Resources for the Lecture

Websites

- https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229
- https://en.wikipedia.org/wiki/Precision_and_recall
- https://en.wikipedia.org/wiki/Sensitivity_and_specificity
- https://en.wikipedia.org/wiki/Confusion_matrix
- https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5
- https://towardsdatascience.com/multi-class-metrics-made-simple-part-i-precision-and-recall-9250280bddc2
- https://machinelearningmastery.com/k-fold-cross-validation/
- https://pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-objectdetection/
- https://medium.com/mlearning-ai/understanding-evaluation-metrics-in-medicalimage-segmentation-d289a373a3f

Online Courses

• Deep Learning Specialization by Andrew NG (Coursera)

Some important concepts

• Generalisation: The ability to correctly classify new examples different from those used for training a model

• Generalisation: The ability to correctly classify new examples different from those used for training a model

- \bullet Overfitting : The trained classifier gets a 100% accuracy in the training/validation data, but only 50% in the testing data.
 - Also known as high variance.

- \bullet Overfitting : The trained classifier gets a 100% accuracy in the training/validation data, but only 50% in the testing data.
 - Also known as high variance.

- Underfitting: The learned classifier is so simplistic that does not capture the structure of the data.
 - This translates on a poor performance on the validation data
 - Also known as high bias

- Underfitting: The learned classifier is so simplistic that does not capture the structure of the data.
 - This translates on a poor performance on the validation data
 - Also known as high bias

• What do we expect?

• What do we expect?

The bias-variance trade-off

The bias-variance trade-off

• As you can see, a model can either have high bias or high variance

The bias-variance trade-off

- As you can see, a model can either have high bias or high variance
- ullet The main objective of machine learning is to find a function h(x) that maps feature X to class/target y minimising:
 - bias error
 - variance error
 - irreducible error (noise in the data)

Typically¹, the **Error** of a learner/classifier is modelled using the following equation:

 $Err(x) = Bias^2 + Variance + Irreducible\ Error$

Typically¹, the **Error** of a learner/classifier is modelled using the following equation:

$$Err(x) = Bias^2 + Variance + Irreducible\ Error$$

Why $Bias^2$?

• Assume that we are evaluating the classification success of a **binary** dataset

- Assume that we are evaluating the classification success of a **binary** dataset
- True Positives (TP): This is what many people understand as *accuracy* (but is not!)
 - Samples from the positive class that are classified correctly

- Assume that we are evaluating the classification success of a **binary** dataset
- True Positives (TP): This is what many people understand as *accuracy* (but is not!)
 - Samples from the positive class that are classified correctly
- True Negatives (TN): How many samples from the negative class are **NOT** classified as being from the positive one

- False Positives (FP): How many samples from the negative class are classified as being from the positive class
 - Also known in statistics as False alarms or Type I Error

- False Positives (FP): How many samples from the negative class are classified as being from the positive class
 - Also known in statistics as False alarms or Type I Error
- False Negatives (FN): How many samples from the positive class are classified as being from the negative class
 - Also known in statistics as Type II Error

• $Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$

•
$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

 $\bullet\,$ The value of the accuracy must be between~0 and 1

•
$$Accuracy = \frac{TP+TN}{TP+TN+FP+FN}$$

- \bullet The value of the accuracy must be $\textbf{between}\ 0$ and 1
- Recall that we said that this is **not** a good measure for imbalanced datasets

•
$$Accuracy = \frac{TP+TN}{TP+TN+FP+FN}$$

- \bullet The value of the accuracy must be $\textbf{between}\ 0$ and 1
- Recall that we said that this is **not** a good measure for imbalanced datasets
- WHY?

Error Rate

Error Rate

• $Error\ Rate = rac{FP + FN}{TP + TN + FP + FN} = 1 - Accuracy$

Error Rate

$$ullet$$
 $Error\ Rate = rac{FP + FN}{TP + TN + FP + FN} = 1 - Accuracy$

 \bullet Also must be $\ensuremath{\text{\textbf{between}}}\ 0$ and 1

Error Rate

•
$$Error\ Rate = rac{FP + FN}{TP + TN + FP + FN} = 1 - Accuracy$$

- Also must be **between** 0 and 1
- Do you think this one is good for imbalanced datasets?

Precision and Recall

Precision and Recall

• Assume that we have the following **binary** classification scenario

Precision and Recall

• Assume that we have the following **binary** classification scenario

•
$$Precision = \frac{TP}{TP+FP}$$

•
$$Precision = \frac{TP}{TP+FP}$$

How many selected items are relevant?

•
$$Precision = \frac{TP}{TP+FP}$$

How many selected items are relevant?

• How much of what I have I need?

•
$$Recall = \frac{TP}{TP + FN}$$

•
$$Recall = \frac{TP}{TP + FN}$$

How many relevant items are selected?

•
$$Recall = \frac{TP}{TP + FN}$$

How many relevant items are selected?

• How much of what I **need** I **have**?

• The difference is in what you divide the TP with

- The difference is in what you divide the TP with
- Most systems are known to have a precision/recall trade-off

- The difference is in what you divide the TP with
- Most systems are known to have a precision/recall trade-off
- Which is better?

F1-score (or F1-measure)

F1-score (or F1-measure)

• Harmonic mean between precision and recall

F1-score (or F1-measure)

• Harmonic mean between precision and recall

$$ullet$$
 $F1=2 imes rac{Precision imes Recall}{Precision+Recall}=rac{2 imes TP}{(2 imes TP)+FP+FN}$

Sensitivity and Specificity

Sensitivity and Specificity

• Similar to precision and recall, but used more in the health sciences domain

Sensitivity

Sensitivity

• Just another name for **recall**

Sensitivity

• Just another name for recall

How many relevant items are selected? e.g. How many sick people are correctly identified as having the condition.

Specificity

Specificity

• The precision for the negative class

Specificity

• The precision for the negative class

How many negative selected elements are truly negative? e.g. How many healthy peple are identified as not having the condition.

Is there any "F-measure" for these two?

• Also known as error matrix

- Also known as error matrix
- Table that allows you to visualise the performance of a supervised learning algorithm

- Also known as error matrix
- Table that allows you to visualise the performance of a supervised learning algorithm

Example

- Also known as error matrix
- Table that allows you to visualise the performance of a supervised learning algorithm

Example

• A classifier has been trained to distinguish cats from dogs

• Assuming a sample of 13 animals (8 cats and 5 dogs), you get the following confusion matrix

• Assuming a sample of 13 animals (8 cats and 5 dogs), you get the following confusion matrix

		Actual class	
		Cat	Dog
Predicted	Cat	5	2
	Dog	3	3

This table can also be interpreted with respect to the previously seen terms

• This table can also be interpreted with respect to the previously seen terms

		Actual class					
		Cat	Non-cat				
edicted	Cat	5 True Positives	2 False Positives				
Pred	Non-cat	3 False Negatives	3 True Negatives				

Suitable to compare classification rates in a more visual way and at different threshold settings

	threshold s	settings						
•	Suitable to	compare	classification	rates in	a more	visual w	ay and at	different

• It is a probability curve that tells you how much your model is able to distinguish between classes

	threshold s	settings									
•	Suitable to	compare	classification	rates i	in a	more	visual	way	and at	diffe	rent

- It is a probability curve that tells you how much your model is able to distinguish between classes
- Higher the AUC, better the model is capable of performing the distinction

- The curve plots False Positive Rate (x-axis) vs True Positive Rate (y-axis)
 - FPR: 1 Specificity
 - ullet $TPR: Recall\ (also\ known\ as\ Sensitivity)$

- The curve plots False Positive Rate (x-axis) vs True Positive Rate (y-axis)
 - ullet FPR: 1-Specificity
 - ullet $TPR: Recall\ (also\ known\ as\ Sensitivity)$

• It's not a bad idea to report this, particularly in large image datasets

- It's not a bad idea to report this, particularly in large image datasets
- Not very "accepted" in the academic world, but extremely useful in the industrial one!

- It's not a bad idea to report this, particularly in large image datasets
- Not very "accepted" in the academic world, but extremely useful in the industrial one!
- You can import the time module in Python and use the perf_counter() function to calculate the time of processes running
 - Just be very careful where in your code you calculate the time!

```
In [1]: import time

t = time.perf_counter()
# do stuff
x=0
for i in range(1000):
    x=x+i
# stuff has finished
print('Elapsed time: ',time.perf_counter() - t)
```

Elapsed time: 0.00035020000007079943

• So far, we have only spoken of metrics in the context of binary datasets

- So far, we have only spoken of metrics in the context of binary datasets
- However, in most cases you will deal with multi-class datasets

- So far, we have only spoken of metrics in the context of binary datasets
- However, in most cases you will deal with multi-class datasets
- There are many ways to adapt the aforementioned metrics to these scenarios, the most common one being the **One vs All** approach
 - Comparing a metric of one class against the rest as if these were a single class

•	Considering that you can still calculate precision, recall and F1-score for each class
	(against the rest), another commonly used approach is macro/weighted/micro
	metrics:

- Considering that you can still calculate precision, recall and F1-score for each class (against the rest), another commonly used approach is **macro/weighted/micro** metrics:
- Macro is the arithmetic mean of all metrics

- Considering that you can still calculate precision, recall and F1-score for each class (against the rest), another commonly used approach is **macro/weighted/micro** metrics:
- Macro is the arithmetic mean of all metrics
- Weighted is when we multiply each metric by the number of samples of each class

- Considering that you can still calculate precision, recall and F1-score for each class (against the rest), another commonly used approach is **macro/weighted/micro** metrics:
- Macro is the arithmetic mean of all metrics
- Weighted is when we multiply each metric by the number of samples of each class
- Micro is the harmonic mean of all metrics, which derives in the system's accuracy

- Considering that you can still calculate precision, recall and F1-score for each class (against the rest), another commonly used approach is **macro/weighted/micro** metrics:
- Macro is the arithmetic mean of all metrics
- Weighted is when we multiply each metric by the number of samples of each class
- Micro is the harmonic mean of all metrics, which derives in the system's accuracy
- To see an example of this, I recommend you to visit this site

Validation Frameworks

• Technically this is not the only way to split the data!

 Even when you split uniformly using train/val/test approach, you are still not considering that maybe some train/val data is better/worse for testing and vio versa!

•	Even when you split uniformly using train/val/test approach, you are still not
	considering that maybe some train/val data is better/worse for testing and vice
	versa!

• To address this issue, there are some iterative validation frameworks which let you split data in different ways and perform multiple tests of the same model

• Simple to understand

- Simple to understand
- Reduces "bias"
 - i.e. over-optimistic results that may be caused due to chance

- Simple to understand
- Reduces "bias"
 - i.e. over-optimistic results that may be caused due to chance
- ullet Based on a single parameter k which defined the number of times that the dataset will be folded

How it works

1. Shuffle the dataset

How it works

- 1. Shuffle the dataset
- 2. Split the dataset into k groups

3. For each group

- Take that group as the test data
- Take the remaining groups as the training data
- Fit the model
- Retain the score and discard the model

- 3. For each group
 - Take that group as the test data
 - Take the remaining groups as the training data
 - Fit the model
 - Retain the score and discard the model
- 4. Once you are done, average/summarise all results

Which k to choose?

Which k to choose?

- Representative for the model: Large enough to be statistically significant!
- ullet k=5 and k=10 are the usual standard, but it depends on how many samples you have!

ullet If you do k=n (n being the number of samples in the dataset) then you will test every sample as the test against the rest as the training set

• This is also known as the **Leave-One-Out** approach

\bullet Some datasets (like the one you will use in the bonus part of the lab) already are partitioned in the k folds

Metrics used in Computer Vision

IoU (A.K.A. Jaccard Index)

IoU (A.K.A. Jaccard Index)

 \bullet Normally, $IoU \geq 0.5$ is considered good, while 1 is perfect!

ullet Normally, $IoU \geq 0.5$ is considered good, while 1 is perfect!

• The "F1-Score" of computer vision metrics

- The "F1-Score" of computer vision metrics
- More widely used for segmentation

- The "F1-Score" of computer vision metrics
- More widely used for segmentation

What is the difference between IoU and Dice?

• IoU is more like recall, so it is good to use when you want to detect if a larger amount of the object pixels are outside the area of interest, but also if the detection is **overestimating** where the object is!

What is the difference between IoU and Dice?

- IoU is more like recall, so it is good to use when you want to detect if a larger amount of the object pixels are outside the area of interest, but also if the detection is **overestimating** where the object is!
- Dice coefficient penalises false positives, which is better for high imbalanced datasets or when the segmentations are not correct

LAB: PERFORMANCE MEASURES FOR BINARY DATASETS