Алгебра

27 сентября 2022

Линейные операторы

§Линейные операторы

Определение. V – векторное пространство над K

Линейное отображение $f:V \to V$ называется линейным оператором на V

Пример 1.

1. $V = K^n$

$$A \in M_n(K)$$

$$f(v) = Av$$

$$f$$
 – лин.

2. V = K[x]

$$f = \frac{d}{dx}$$

$$q \in K[x]$$

$$f(g) = g' = \frac{dg}{dx}$$

3. Интегральный оператор

$$V = C([0, 1])$$

$$\mathcal{K}(x,y) \in C([0,1]^2)$$

$$g \mapsto h(x) = \int_0^1 \mathcal{K}(x, y) g(y) dy$$

Множество всех линейных операторов на V – эндоморфизм:

$$\operatorname{End}(V), \quad \mathscr{L}(V)$$

Пусть $f, g \in \text{End}(V), c \in K$

Определены:

$$f + g \in \text{End}(V), \quad c \cdot f \in \text{End}(V)$$

 $\operatorname{End}(V)$ – векторное пространство над K

 $f\circ g:V\to V,\quad fg=f\circ g\in \mathrm{End}(V),$ (умножение операторов – композиция) (Еnd(V), +, \circ) – кольцо

 $1_{\operatorname{End}(V)} = \operatorname{id}_V$

$$f \circ \mathrm{id}_V = \mathrm{id}_V \circ f = f \Rightarrow$$
 Кольfцо с 1

(*) Аксиома: $c \in K, v \in V$

$$f(cg) = (cf)g = c(fg)$$

$$(f(cg))(v) = f((cg)(v)) = f(cg(v)) =$$

$$= c(f(g(v))) = c(fg)(v) = (c(fg)(v)) =$$

$$= ((cf)g)(v) = (cf)(g(v)) = cf(g(v)) = (c(fg)(v))$$

Определение. Множество А с тремя операциями:

$$+: A \times A \rightarrow A$$

$$\circ: A \times A \rightarrow A$$

$$\cdot: A \times A \rightarrow A$$

т. ч.:

$$A, +, \cdot -$$
 векторное пространство $A, +, \circ -$ кольцо $A, +, \circ, \cdot -$ алгебра над K

Пример (Примеры алгебр).

- 1. Алгебра квадратных матриц над K
- $2. \ K[x]$ алгебра многочленов
- 3. \mathbb{H} алгебра кватернионов над \mathbb{R}

Мы проверим, что $\operatorname{End}(V)$ – алгебра над K: $\dim V < \infty$ Зафиксируем базис v_1, \ldots, v_n

 $f \in \operatorname{End}(V)$

 $A = [f]_{\{v_i\}}$ — матрица линейного оператора в базисе $\{v_i\}$

$$f(v_j) = \sum_{i=1}^{n} c_{ij} v_i$$

$$j$$
-ый столбец $A = \begin{pmatrix} c_{1j} \\ \vdots \\ c_{nj} \end{pmatrix}$ $\operatorname{End}(V) \rightarrowtail M_n(K)$ $f \mapsto [f]_{\{v_i\}}$ $[f+g]_{\{v_i\}} = [f]_{\{v_i\}} + [g]_{\{v_i\}}$

$$[cf]_{\{v_i\}} = c[f]_{\{v_i\}}$$
$$[fg]_{\{v_i\}} = [f]_{\{v_i\}}[g]_{\{v_i\}}$$
$$\operatorname{End}(V) \cong M_n(K)$$

§Собственные числа и собственные векторы

V — векторное пространство над K $f \in \text{End}(V)$

Определение. $\lambda \in K$ – собственное число f, если $\exists v \neq 0$

$$f(v) = \lambda v$$

Если λ – собственное число f, то всякий $v \in V$ такой, что $f(v) = \lambda v$ называется собственным вектором f, отвечающим собственному числу λ

Пример.

1. V=K[x] $\frac{d}{dx}:K[x]\to K[x]$ $\frac{d}{dx}g=\lambda y$ $Ecлu\ g\neq 0,\ mo\ \lambda=0$ $Eduhcmbehhoe\ coбственное\ число\ -0$ g'=0

Eсли char K = 0, mo $V_k = \{const\}$ Eсли char K = p > 0:

$$V_{\lambda} = \langle 1, x^p, x^{2p}, \dots \rangle = K[x^p]$$

 $2. \dim V = n < \infty$ $v_1, \dots, v_n - \text{базис}$ $f \in \operatorname{End}(V)$ $[f(v)]_{\{v_i\}} = [f]_{\{v_i\}}[v]_{\{v_i\}}$ $v - \text{собственный вектор c. ч. } \lambda \Leftrightarrow [v]_{\{v_i\}} - \text{c. e., отвечающий c. ч. } \lambda$ $f(v) = \lambda v \Leftrightarrow A[v]_{\{v_i\}} = \lambda [v]_{\{v_i\}}$

A — матрица оператора f в базисе v_1, \ldots, v_n $\chi_A(t) = \det(A - tI) = \chi_f(t)$ — характеристический многочлен оператора f Если C — матрица перехода от одного базиса к другому, то матрица A оператора f в другом базисе заменяется на сопряженную.

$$A \to CAC^{-1}$$

$$\det(CAC^{-1} - tI) = \det(CAC^{-1} - tCC^{-1}) = \det(CAC^{-1} - C(tI)C^{-1})$$

$$= \det(C(A - tI)C^{-1}) = \det C \cdot \det(A - tI) \cdot \det C^{-1} =$$

$$= \underbrace{\det C \cdot \det C^{-1}}_{1} \cdot \det(A - tI) = \det(A - tI)$$

$$\Rightarrow \chi_{CAC^{-1}} = \chi_{A} \Rightarrow \chi_{f} \text{ не зависит от выбора базиса}$$

§Диагонализуемые операторы

V — векторное поле над K $\dim V = n < \infty$ $f \in \operatorname{End}(V)$

Определение. f называется диагонализуемым, если \exists базис V, такой что [f] в этом базисе — диагональная

Теорема (критерий диагонадизуемости).

f — диагонадизуем \Leftrightarrow \exists базис V, состоящий из собственных векторов оператора f