디지털 시대 금융권 빅데이터 활용을 위한 R&D 전략

신한금융그룹 디지털혁신연구소 빅데이터랩 최민정 수석 컨설턴트

요약

1. 금융과 데이터

- 혁신 금융과 빅데이터
- 금융 데이터의 특성

2. 디지털 시대 금융권 R&D 방향성

- 데이터 재구축
- 재현 데이터
- 머신러닝 모델의 설명성

3. 데이터의 효과적 활용을 위한 제언

■ 데이터 파이프라인의 3단계

데이터와 알고리즘은 금융 혁신 선순환 사이클에 진입

데이터 알고리즘이 금융업 가치사슬의 혁신을 주도하고 비용 효율화를 달성하는 시대에서 혁신 금융 서비스가 새로운 데이터를 다시 창출하고 금융의 외연을 확장하는 시대

MACHINE LEARNING USE CASES IN FINANCE Process Automation Security Underwriting and credit scoring Algorithmic trading Robo-advisory

___ 계좌·통장

지급·결제

개인재무관리 (PFM)

오픈뱅킹 (조회, 송금)

마이데이터

1. 금융 데이터의 특성 (1)

데이터의 정합성과 거래정보의 신뢰도가 높음

- 금융기업 내·외부에서 분석의 니즈가 증가하고 있음
- 통신, 이커머스, SNS, 공공 등과 결합시 더욱 강력한 인사이트

데이터의 결합성과 잠재가치가 높음

- 대부분이 정형, 관계형 데이터의 형태로 수집·저장되어 데이터의 결합성과 적재 효율성이 높음
- 빅데이터 활용시 고 부가가치 창출 가능한 영역

필요시 신기술 도입에 적극적

- 고객의 정보와 자산의 보호는 가장 중요한 가치이기 때문에 새로운 기술의 도입이 필요하다면 적극 활용하는 추세
- 예를 들어, 이상탐지(Fraud Detection) 시스템은 업계의 고급 알고리즘 도입으로 기술 수준의 상향 달성

그림 | 미국 산업별 빅데이터 활용의 잠재 가치

AI SOLUTIONS TO BE IMPLEMENTED OR CONSIDERED

1. 금융 데이터의 특성 (2)

거래빈도수가 낮아 분석의 폭이 제한됨

• 예금, 여신, 보험 등 대부분의 금융활동은 거래빈도가 높지 않아 지도학습의 레이블(label) 값으로 활용이 부적절

데이터 접근 및 확산에 법적 제약 존재

• 고객의 중요정보를 관리해야 하는 금융권 특성상 다른 업권에 비하여 데이터 이용 정책의 허들이 높음

머신러닝 결과물 활용에 설명력 필요

• 대출신청 심사, 상품가입 심사, 신용등급 산정 등에 결정근거를 알 수 없는 '블랙박스' 모델을 바로 적용하기 어려움

2. 금융권 데이터의 활용을 위한 R&D 방향성

	① 데이터 재구축 (Resampling)	개현 데이터 (Synthetic Data)	3 설명가능한 Al (Explainable Al)
목적	저빈도 데이터의 극복	진짜와 같은 모의 데이터의 생성	민감할 수 있는 금융영역 학습 모델에 신뢰성과 투명성 부여
기대효과	머신러닝 예측성과 향상, 금융 데이터의 불균형성 해결	개인정보 접근과 열람 규제 극복, 데이터의 활용도 제고	모델 개선의 명확한 근거 제공, 학습결과의 안정성 강화
예시	과대표집(Oversampling), 과소표집(Undersampling), SMOTE, Tomek Links 등	베이지안 사후분포 추정, CART 등의 비모수 기법, GAN 등의 생성 알고리즘	필터 시각화, 피처 중요도 분석, LIME, SHAP 등의 대리 모델 (Surrogate Analysis)
사례	신한금융그룹	신용정보원, KCB	신한금융그룹

● 레이블 부족 현상과 불균형 데이터의 처리

리샘플링(Resampling)과 피처 변환

원 데이터: 희소한 타겟 고객

- 불균형 데이터(Imbalanced Data): 머신러닝의 지도학습에서 분류하기 위한 각 클래스(레이블)에 해당하는 데이터의 양에 차이가 큰 경우를 뜻함
- 특정 클래스가 부족할 때 생기는 문제: (1) 과대적합 발생, (2) 알고리즘이 수렴하지 않는 현상 발생
- 금융 영역에서 불균형 데이터 처리가 중요한 이유: 예측 오류를 최소화 하고 신뢰성 있는 서비스 제공

과소 추출

보정된 샘플

머신러닝 분류 성능 향상 예시

활용사례

샘플 데이터와 피처 데이터의 변환으로 분류 모델의 성과 향상

- 잠재 타겟 고객 예측: 타겟하고자 하는 고객이 전체 고객 모수의 2% 내외
- 불균형 데이터, 희소한 레이블로 제대로 된 학습이 불가: 예측 결과의 과도한 bias 발생
- 리샘플링 후 기존 모델 대비 예측력 최소 11%p, 최대 29%p 증가, 강건성 또한 향상

❷ PCA로 차원 축소 후 주성분 추출 (N_f = 2)

❷ 모의 데이터의 생성과 재현

생성적 적대 신경망(Generative Adversarial Network, GAN)

- 데이터를 생성하는 생성망(Generator)과 인풋 데이터의 진위를 판별하는 판별망(Discriminator) 2개의 심층신경망을 경쟁적으로 학습시켜 생성과 판별을 최고 수준까지 발전시키는 것을 목표로 설계
- 원 데이터의 분포를 만드는 모델을 학습하여 존재하지 않는 데이터를 생성하거나 입력값을 다른 정보로 변환
- 금융 영역에서 모의 데이터 생성이 중요한 이유: 법적 제약 해결, 데이터의 한계 극복
 - * 개정된 데이터 3법(개인정보보호법, 신용정보법)은 개인정보를 식별 불가능하도록 **가명화** 요구 k-익명성을 준수하기 위해서 각 항목을 군집화하게 되면, **데이터 활용도가 매우 낮아지는 문제**가 발생

StyleGAN 예시(2014)

영상 데이터 생성 예시(2017)

재현 데이터 기술의 금융권 활용 예시

활용사례1

실제와 유사한 재현 데이터 생성으로 비식별 기법의 한계 극복

- 신용정보원, 신용정보 교육용 DB 개발을 위하여 개인신용정보(대출, 연체 등)를 재현데이터로 구현(2019)
- 기대효과: 데이터 전문가 양성을 위해 가상의 데이터를 교육기관에 제공, 표본DB와 달리 교육목적 높은 활용성
- CART 기법을 이용하여 신용 데이터 생성, 재현 자체는 완성도가 높으나 활용은 아직 초기 수준

활용사례2

개인정보 관련 법적 제약을 해결하여 양질의 금융정보를 정책 개발에 이용

- 신용평가사 KCB와 제주특별자치도청은 KCB 보유 신용정보와 제주도의 행정 데이터를 기반으로 실제 데이터와 통계적 특성이 유사한 가상 데이터 개발 착수(2019)
- 기대효과: 개인정보의 유출 우려 없이 연구 활용, 공공정책 개발에 활용
- 성별•연령•자택주소•소득 데이터를 이용하여 제주도 전입인구 특성 분석, 도내 인구 구조적 변화와 영향도 파악

❸ 설명가능한 기계학습

기계학습에서의 설명가능성(Explainable AI, XAI)

- 알고리즘이 도출한 결과에 대하여 설명 가능한 근거나 해석력을 보장하여 신뢰성과 투명성을 강화하려는 기술,
 미국 DARPA에서 제안한 XAI 프레임워크가 대표적(2017)
- Element AI, "설명가능한 AI 기술은 특히 **금융 영역에서 높은 가치**를 지닌다. 왜냐하면 금융 데이터의 낮은 신호 대 잡음비(signal-to-noise ratio)가 기계 학습에 인간의 피드백을 강하게 필요로 하기 때문" (2020)
- 금융위, "인공지능이 도출한 결과에 대해 객관적 설명이 가능한 '설명가능한 Al'에 대한 기준 정립" 요구(2020.7)
 - * 개정된 신용정보법(2020.8.5 시행)에서는 AI 등을 활용한 자동화 평가 결과에 대해 설명을 요구하고 이의를 제기할 수 있는 **프로파일링 대응권**을 도입(제36조의 2)

(b) Explanation

허스키를 늑대로 잘못 분류한 알고리즘의 판단근거를 확인했더니 개의 생김새가 아니라 눈이 쌓긴 배경을 근거로 지목 문서의 주제를 예측한 근거를 도식화 했더니 판단은 동일하게 맞추었지만 정확도가 더 높게 나온 알고리즘의 설명성이 더 낮은 것으로 확인됨

출처: Riberio et al. (2016)

AI와 XAI의 개념 비교

- · 왜 이런 결론을 냈지?
- 왜 다른 것은 안되지?
- 어떻게 성공한 거지?
- 어떻게 실패한 거지?
- 이를 신뢰해도 되나?
- 에러를 어떻게 수정하지?

- 결론을 내린 이유가 이해된다
- 왜 아닌지 이해된다
- 성공한 이유를 알 수 있다
- 실패한 이유를 알 수 있다
- 신뢰할 수 있다
- 에러가 난 이유를 알 수 있다

기대효과

- 신뢰도 확보
- 컴플라이언스 요구 충족 (규제 대응)
- 학습결과의 일반화
- 머신러닝 모델의 개선
- 판단 과정의 편향 발견
- 새로운 지식을 가설로 검증

출처: DARPA (2017)

금융당국 'AI추천상품 손실시' 가이드라인 만든 다

금융위, 관련 영구용역 발주 연말까지 세부안 마련할 듯

등록 2020-08-24 오전 600:00 수정 2020-08-24 오전 600:00 가 가

카드론 한도가 왜 올라갔냐고?...삼성카드 '설명하는 AI' 만든다

입력 2020.11.23. 오후 5:13

금융당국 역시 가이드라인을 통해 '설명 가능한' Al의 실현을 목표로 제시할 계획이다. 설명 가능한 Al는 Al가 자신의 결정에 대해 사람이 이해할 수 있는 형태로 직접 설명할 수 있어야 한다는 개념이다. 금융 Al가 단순히 상품 추천만 하는 게 아니라 추천한 이유 도 자세하게 제시해야 한다는 것이다. 가령 주식형 펀드를 추천할 경우 투자성향과 관련 전망 등을 바탕으로 해당 투자자에게 주식형 펀드가 필요한 이유까지 설명할 수 있어야 한다는 것이다. Al가 투자 상담이나 권유를 하게 되면 불완전판매를 포함해 소비자와 금 융사 사이의 분쟁 소지가 생길 수밖에 없는 데 이런 상황까지 대비해서다. 삼성카드는 XAI를 상품추천 서비스에 활용할 계획이다. 카드 회원의 소비 동선과 결제액 등 데이터를 분석해 <mark>특정 카드상품을 추천한 이유를 알려주겠다</mark>는 의미다. 금융소비자에게 적합한 마케팅 혜택을 알려줄 때도 이런 XAI를 적용할 예정이다. 삼성카드 관계자는 "마이데이터 사업이 시작되면 다른 업종과 금융권으로부터 금융소비자 관련 정보를 더 끌어올 수 있다"며 "소비자에게 자신의소비 패턴에 대해 더 많은 정보를 알려줄 수 있을 것"이라고 말했다.

설명 가능한 AI 적용 예시

활용사례

분류모델의 판단 근거와 개별 데이터를 설명하는 기법을 이용하여 목적에 따라 예측 모델 개선

- 신용정보 레이블 값이 있는 28만 명 고객 대상으로 머신러닝을 이용하여 예측 소득 구간을 학습
- 소득 구간별로 변수의 기여 효과 계산을 돕는 SHAP 알고리즘을 적용하여 시각화
- [그림] Top 11 변수가 등급 결정에 미친 영향력 분포: 등급에 따라 영향을 미친 피처 순위와 방향, 크기가 상이함을 발견

3. 데이터의 효과적 활용을 위한 제언

데이터를 중심으로 돌아가는 3개의 톱니바퀴는 서로 없어서는 안 될 불가분의 관계

- 데이터 지원 역할(기획, IT, 컴플라이언스 등)
- 데이터 분석 역할(디지털, R&D, IT 등)
- 데이터 활용 역할(마케팅, 영업, HR 등)

STEP (1) 조직 차원의 투자와 리스크 균형 추구

AI 기술을 성공적으로 도입한 금융회사*는 AI 투자의 중요성과 리스크를 동시에 인지

* 서베이에 응답한 1,100개의 미국 기업 중 206개의 금융회사만을 추려 보고서로 발간 이 중 AI 도입 수준과 AI 투자의 재무적 성과를 바탕으로 선두주자(30%), 추종자(43%), 초보자(27%) 3개의 그룹으로 나누어 정리

잠재 리스크의 평가

O. 기업의 AI 기술 투자에 대한 리스크는?

선두기업의 2/3 정도가 AI와 관련된 잠재 리스크가 매우 혹은 극도로 걱정된다고 강조

출처: Deloitte (2018)

참고)

우려되는 리스크의 종류

Q. AI 투자 관련 우려되는 최대 3가지 리스크는?

AI 리스크	선두주자	추종자	초보자
AI/인지 기술의 사이버보안 취약점	1	2	1
Al/인지 기술의 추천에 근거해 잘못된 전략적 의사결정을 내릴 가능성	2	1	3
규제 미준수 리스크	3	3	4
Al/인지 기술의 실패로 인한 고객 신뢰 손상	4	5	7
AI/인지 기술의 윤리적 리스크	4	4	6
AI/인지 기술 시스템으로 이뤄지는 의사결정/행동의 법적 책임	6	5	2
업무 수행에 치명적인 혹은 생과사를 가르는 상황에서의 AI/인지 기술 시스템의 실패	7	7	5
AI/인지 기술의 잠재적 리스크에 관해 걱정하지 않음	8	8	8

AI 기술 포트폴리오

Q. 조사 대상 금융기관 중 사용한다고 응답한 기술과 비중

- 머신러닝 (70%)
- 현금흐름 예측과 고객의 지출 및 저축 습관에 대한 사전 조언
- 신용점수 개발, 고급 신용 모델 구축
- 머신러닝 기반의 상권 분석 서비스 제공
- 조기 사기 탐지
- 자연어 처리 (60%)
- 정보 검증, 사용자 식별, 승인을 위해 문서 파악
- 언더라이팅 효율성 개선
- 디지털 음성비서, 고객 질의의 이해
- 딥러닝 (52%)
- 보험금 청구 문서를 읽고 청구건의 긴급성, 심각성 등 순위를 매김
- 혁신적인 트레이딩 및 투자 전략의 개발
- 컴퓨터 비전 (58%)
- 운전자의 주의 수준 분류 후, 안전 운전자 대상 낮은 보험료 제안
- 은행 ATM과 같은 환경에서 생체인식 보안체계 구축

출처: Deloitte (2018)

STEP (2) 데이터 팀의 과학적이고 지속적인 소통

향후 금융 데이터 분석가는 모델링 지식뿐 아니라 도메인 지식에 기반한 고급 응용능력이 요구될 것임

분석 결과의 평가

향후 요구될 데이터 사이언티스트의 역량은?

- □ 머신러닝의 자동화(AutoML) 경향
- □ 인풋 데이터 처리의 자동화(전이학습, 비지도, 강화학습 등)
- □ 현실 적용 가능성과 금융업 특성을 고려한 모델 배포의 필요성
- → 데이터 분석가의 신뢰성 있는 모델 평가 역량과 해석이 중요 일률적인 판단보다 도메인과 맥락을 고려한 가치 평가와 의사결정

분석 결과의 설득 경영진의 52%는 데이터를 이해할 수 없어서 **52**% 보고서를 기각한다고 답변 54%의 비즈니스 리더는 데이터 분석 능력이 **54%** 자신들의 의사결정을 개선시킬 수 있다고 응답 자사 데이터에 대한 신뢰 부족으로 규제 처벌의 위협이 **52%** 증가하고 있다고 생각하는 조직의 수 * CMMI Institute 서베이 응답 (2020) Higher Need Focus on Human Persuasibility (Target on general end-users) Fidelity Focus on Machine (Target on model developers) Predictability Lower Need

STEP (3) 발빠른 디지털 전환을 위한 데이터 거버넌스 개념의 확장

사용자 중심의 데이터 거버넌스 포털 구축 및 프로세스 보완으로 데이터 인텔리전스 기업으로 전환

IT 중심 데이터 거버넌스

- ✓ 데이터 모델
- ✓ 데이터 품질관리
- ✓ 데이터 호환성
- ✓ 데이터 주기 관리
- ✓ 데이터 정책, 표준화 체계 등

디지털 데이터 거버넌스

- ✓ 안정적인 데이터와 모델 서빙(serving)
- ✓ 데이터 파이프라인 일원화, 동기화
- ✓ 현업 사용자도 필요할 때 원하는 데이터를 검색, 활용할 수 있어야 함 (Self-service Analytics)
- ✓ 언제든 데이터에서 가치를 발견할 수 있도록 하는 유·무형 체계의 총칭

참고자료

1장

- McKinsey (2011), Big Data: The Next Frontier for Innovation, Competition, and Productivity
- Towards data science (2018), Machine Learning in Finance: Why, What & How

2장

- 신용정보원 (2019), 진짜 같은 가짜: 재현데이터의 개념 및 활용 사례
- KCB (2020), 가명처리 관련 신기술 동향 동형암호기술과 재현데이터
- DARPA (2017), Explainable Al
- Element AI (2020), Opening the Black Box: The Value of Explainable AI in Financial Services
- Ribeiro et al. (2016), "Why Should I Trust You?" Explaining the Predictions of Any Classifier

3장

- Deloitte (2018), Al Leaders in Financial Services
- DATAVERSITY, ERwin (2020), The 2020 State of Data Governance and Automation