

Elevador Espacial

A China está construindo um elevador espacial, que permitirá o lançamento de sondas e satélites a um custo muito mais baixo, viabilizando não só projetos de pesquisa científica como o turismo espacial.

No entanto, os chineses são muito supersticiosos, e por isso têm um cuidado muito especial com a numeração dos andares do elevador: eles não usam nenhum número que contenha o dígito "4" ou a sequência de dígitos "13". Assim, eles não usam o andar 4, nem o andar 13, nem o andar 134, nem o andar 113, mas usam o andar 103. Assim, os primeiros andares são numerados 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16....

Como o elevador espacial tem muitos andares, e eles precisam numerar todos os andares do elevador, os chineses pediram que você escrevesse um programa que, dado o andar, indica o número que deve ser atribuído a ele.

Entrada

Cada caso de teste consiste de uma única linha, contendo um inteiro N $(1 \le N \le 10^6)$ que indica o andar cujo número deve ser determinado.

Saída

Para cada caso de teste, imprima uma linha contendo um único número inteiro indicando o número atribuído ao N-ésimo andar.

Exemplo de Entrada	Exemplo de Saída
1	1
4	5
11	12
12	15
440	666
5128	8300
10^{6}	2.102.629

Folha de Pagamentos

Este governo, como todos os anos, está muito preocupado com a folha de pagamentos. Neste ano, porém, a maneira que os pagamentos serão efetuados será trocada. Ao invés de pagar os funcionários como de costume, a formula utilizada para calcular os salários será mais simples: A soma dos divisores do número de matrícula do funcionário.

Para evitar fraudes, ajude o governo a fazer este cálculo!

Entrada

A entrada começa com uma linha com um número $1 \le N \le 10^4$ que é o número de funcionários. Cada uma das N linhas seguintes representa um funcionário através de seu numero de matrícula $1 \le M \le 3 \times 10^4$.

Saída

A saída consiste de N linhas, cada uma contendo o salário do funcionário na ordem que foram incluídos na entrada.

Exemplo de Entrada	Exemplo de Saída
7	
1	1
2	3
3	4
4	7
50	93
60	168
77	96

Azulejos

Rafael resolveu trocar os azulejos de sua sala de estar, e para isto fez as medições e comprou N azulejos brancos na loja.

O fato de todos os azulejos serem brancos deixou Rafael um pouco preocupado com o design de sua sala de estar, e então decidiu pintar alguns deles para dar um "ar mais moderno" à sua casa.

Posicionou todos os N azulejos em uma linha reta, e enumerou todos eles de 1 até N, da esquerda para a direita.

Para escolher quais azulejos pintar, pensou na seguinte lógica: Escolheu dois inteiros **A** e **B**, e disse que iria pintar todos os azulejos cuja enumeração fosse múltipla de **A** e/ou **B**.

Ajude Rafael a descobrir quantos azulejos serão pintados no total.

Entrada

Haverá diversos casos de teste. Cada caso de teste contém três inteiros, N, A e B $(3 \le N \le 10000, 2 \le A, B \le N)$.

O último caso de teste é indicado quando N = A = B = 0, o qual não deverá ser processado.

Saída

Para cada caso de teste, imprima uma linha contendo um inteiro, mostrando quantos azulejos serão pintados no final do processo.

Exemplo de Entrada	Exemplo de Saída
10 2 3	7
50 5 7	16
10000 28 32	625

Máquina de Café

O novo prédio da Sociedade Brasileira de Computação (SBC) possui 3 andares. Em determinadas épocas do ano, os funcionários da SBC bebem muito café. Por conta disso, a presidência da SBC decidiu presentear os funcionários com uma nova máquina de expresso. Esta máquina deve ser instalada em um dos 3 andares, mas a instalação deve ser feita de forma que as pessoas não percam muito tempo subindo e descendo escadas.

Cada funcionário da SBC bebe 1 café expresso por dia. Ele precisa ir do andar onde trabalha até o andar onde está a máquina e voltar para seu posto de trabalho. Todo funcionário leva 1 minuto para subir ou descer um andar. Como a SBC se importa muito com a eficiência, ela quer posicionar a máquina de forma a minimizar o tempo total gasto subindo e descendo escadas.

Sua tarefa é ajudar a diretoria a posicionar a máquina de forma a minimizar o tempo total gasto pelos funcionários subindo e descendo escadas.

Entrada

A entrada consiste em 3 números, A_1 , A_2 , A_3 (\leq 0 $A_i \leq$ 1000), onde A_i representa o número de pessoas que trabalham no **i**-ésimo andar.

Saída

Seu programa deve imprimir na primeira linha, o número total de minutos a serem gastos com o melhor posicionamento possível da máquina, e na segunda linha, o(s) andar(es) de melhor posicionamento para a máquina.

Exemplo de Entrada	Exemplo de Saída
10 20 30	Tempo: 80 Maquina localizada no(s) andar(es): 2 OU 3
	Maquina localizada no(s) andan (es). 2 00 3
10 30 20	Tempo: 60 Maquina localizada no(s) andar(es): 2
30 10 20	Tempo: 100
	Maquina localizada no(s) andar(es): 1 OU 2
1000 0 1000	Tampa . 4000
1000 0 1000	Tempo: 4000 Maquina localizada no(s) andar(es): 1 OU 2 OU 3