Le Dévelopement d'un programme joueur

T.I.P.E 2015-2016

Plan

Introduction

Aproche simple

Recherche aléatoire

Section 1

Introduction

Hex

Section 2

Aproche simple

Recherche aléatoire 20000 200 200

Présentation

Présentation

Présentation de l'algorithme Minimax

Présentation de l'algorithme Minimax

Complexité

Décomposition du minimax

- ► getWinningPlay
- winner

winner

Calcul de la compléxité

Compléxité d'un parcours

$$P(n) = \sum_{k=1}^{\left\lceil \frac{n^2}{2} \right\rceil} k$$

$$\implies P(n) = O\left(\left\lceil \frac{n^2}{2} \right\rceil^2\right)$$

$$\implies P(n) = O\left(n^4\right)$$

Compléxité de winner

$$W(n) = nP(n) = O(n^5)$$

${\rm getWinninglay}$

Calcul de la compléxité

Calcul de la compléxité d'un étage

Pour le p-ème étage.

Calcul de la compléxité d'un étage

Pour le p-ème étage. p coups à jouer parmis n^2 cases.

Calcul de la compléxité d'un étage

Pour le p-ème étage. p coups à jouer parmis n^2 cases. $\mathcal{A}_p^{n^2}$ noeuds

Calcul de la compléxité d'un étage

Pour le *p*-ème étage. *p* coups à jouer parmis n^2 cases. $\mathcal{A}_p^{n^2}$ noeuds

$$E_p(n) = \mathcal{A}_p^{n^2} n^2$$

$$\implies E_p(n) = \frac{(n^2)!}{(n^2 - p)!} n^2$$

Calcul de la compléxité total

Calcul de la compléxité total

$$M(n) = \sum_{k=1}^{n^2} E_p(n) + n^2! \ W(n)$$

Calcul de la compléxité total

$$M(n) = \sum_{k=1}^{n^2} E_p(n) + n^2! \ W(n)$$

$$M(n) = \sum_{k=1}^{n^2} \left(\frac{(n^2)!}{(n^2 - p)!} n^2 \right) + n^2! \ O(n^5)$$

Calcul de la compléxité total

$$M(n) = \sum_{k=1}^{n^2} E_p(n) + n^2! \ W(n)$$

$$M(n) = \sum_{k=1}^{n^2} \left(\frac{(n^2)!}{(n^2 - p)!} n^2 \right) + n^2! \ O(n^5)$$

$$M(n) = O(n^2! \ n^4) + n^2! \ O(n^5)$$

$$\implies M(n) = O(n^2! \ n^5)$$

Section 3

Recherche aléatoire

Présentation

Différence

Différence

Avantage

Avantage

▶ Donne un résultat en un temp fini.

Avantage

- Donne un résultat en un temp fini.
- ▶ Peux facilement être utilisé pendant le long d'une partie.

Inconvénients

Inconvénients

Perds la sureté de la victoire.

Inconvénients

- Perds la sureté de la victoire.
- Utilise beaucoup mémoire.

Efficacité

Efficacité

Statistique

Efficacité

Comparaison

Python

Section 4

Conclusion

Structure de donnée adaptée

- Structure de donnée adaptée
- ► Fonction d'évaluation

- Structure de donnée adaptée
- ► Fonction d'évaluation
- Plus d'information sur la partie