Pokročilá kryptologie Symetrická kryptografie

prof. Ing. Róbert Lórencz, CSc.

České vysoké učení technické v Praze, Fakulta informačních technologií Katedra informační bezpečnosti

Obsah přednášky

- Bloková šifra
- DES
- AES

Blokové symetrické šifry (1)

Bloková symetrická šifra

- Nechť A je abeceda q symbolů, t ∈ N a M = C je množina všech řetězců délky t nad A. Nechť K je množina klíčů.
- Bloková šifra: šifrovací systém (M, C, K, E, D), kde E a D jsou zobrazení, definující pro každé $k \in K$ transformaci zašifrování E_k a dešifrování D_k tak, že zašifrování bloků OT m_1, m_2, m_3, \ldots , kde $m_i \in M$ pro každé $i \in N$, probíhá podle vztahu $c_i = E_k(m_i)$ pro každé $i \in N$.
- Dešifrování probíha podle vztahu $m_i = D_k(c_i)$ pro každé $i \in N$.
- Pro blokovou šifru je podstatné, že všechny bloky OT jsou šifrovány toutéž transformací a všechny bloky ŠT jsou dešifrovány toutéž transformací.

Blokové symetrické šifry (2)

OT	ŠT		ŠT	OT
0000	0111	\	0000	0010
0001	1110	\	0001	0111
0010	0000	\\	0010	1001
0011	0100		0011	1110
0100	1001		0100	0011
0101	1101	\ _\ >	0101	0110
0110	0101	$+$ \	0110	1010
0111	0001	/ 4	0111	0000
1000	1100	I \ ,	1000	1111
1001	0010	l \/	1001	0100
1010	0110)	1010	1100
1011	1111	 	1011	1101
1100	1010	$V \setminus V$	1100	1000
1101	1011	$ \land $	1101	0101
1110	0011	/ \	1110	0001
1111	1000	Y 1	1111	1011

Bloková šifra

- Převádí n-bitový OT na n-bitový ŠT.
- Blok o délce n-bitů vytváří 2ⁿ různých bloků OT.
- Transformuje 2ⁿ bloků OT na 2ⁿ bloků ŠT.
- Pro n = 4 je 16 b OT převedeno na 16 b ŠT → jednoduché prolomení.
- U jednoduché "substituce" můžeme 2. sloupec považovat za klíč o délce 64 b.
- Pro n-bitovou substituční šifru je klíč nx2ⁿ bitový.
- Pro 64 bitovou šifru je klíč
 64x2⁶⁴ = 2⁷⁰ b.
- Problém velkých klíčů řeší → Feistelová bloková šifra

Blokové symetrické šifry (3)

Feistelová bloková šifra

- Řeší problém velkých klíčů (její struktura).
- Aproximuje ideální blokovou šifru po velká n.
- Je složená šifra, která využíva posloupnost dvou resp. více šifer pro dosažení kryptografický silnější šifry.
- Redukuje délku klíče ideální blokové šifry.
- Využívá střídavě substituci a transpozici.
- Má parametry:
 - velikost bloku,
 - délka klíče,
 - počet rund,
 - algotitmus generování klíčů rund,
 - složitost operací v rundě.
- Větší blok, větší délka klíče, větší počet rund, složitější algoritmus a složitější operace v rundě zvyšuji bezpečnost, ale snižuji rychlost šifrovaní a dešifrování.

Blokové symetrické šifry (3)

Feistelová bloková šifra (1)

- šifrovací systém LUCIFER (projekt H. Feistela), předchůdce DES (Data Encryption Standard), má 64 b blok a 128 b klíč
- v současné době se přechází na blok 128 bitů, který používá standard AES (není v něm použit princip Feistela).
- blokové symetrické šifry využívajíci principy algoritmů Feistelova typu umožňují postupnou aplikací relativně jednoduchých transformací na bázi nelineárních posuvných registrů vytvořit složitý kryptografický algoritmus.
- tento přístup je využíván také v jiných oblastech: zabezpečovací kódy

Blokové symetrické šifry (4)

Definice – Feistelův kryptosystém

Nechť množina zpráv M je složená ze všech možných 2n-tic V_{2n} prostoru a prostor K klíčů k je tvořen všechnymi možnými h-ticeme funkci $\{f_1, f_2, \ldots, f_n\}$, kde $f_i: V_n \to V_n$ pro každé $i=1,2,\ldots,h$ a kde $C=V_{2n}$ je prostor zašifrovaných textů. Zobrazení $T_k: K \times V_{2n} \to V_{2n}$, definované rekurentně vztahy

$$m_{i+1} = m_{i-1} + f_i(m_i), \text{ pro } i = 1, 2, ..., h$$

 $T_k(m) = (m_h m_{h+1}),$

kde $m = (m_0 \ m_1) \in M$, definuje Feistelův kryptosystem.

Příklad:

Pro $m=(m_0\ m_1)=(1001\ 1101)$ dostáváme postupně: $c_1=(1101\ 1110)$, kde $m_2=1001\oplus f_1(1101)=1001\oplus 0111=1110$ $c_2=(1110\ 0000)$, kde $m_3=1101\oplus f_2(1110)=1101\oplus 1101=0000$ f_1 a f_2 – premutační funkce (konfuze), \oplus – funkce xor (difuze)

DES (1)

Algoritmus DES

- Veřejná soutěž (1977): šifrovací standard (FIPS 46-3) v USA pro ochranu citlivých, ale neutajovaných dat ve státní správě.
- Součást průmyslových, internetových a bankovních standardů.
- 1977: varování příliš krátký klíč 56b, který byl do původního návrhu IBM zanesen vlivem americké tajné služby NSA.
- DES intenzivní výzkum a útoky ⇒ objeveny teoretické negativní vlastnosti jako: tzv. slabé a poloslabé klíče, komplementárnost a teoreticky úspěšná lineární a diferenciální kryptoanalýza.
- V praxi jedinou zásadní nevýhodou je pouze krátký klíč.
- 1998: stroj DES-Cracker, luštící DES hrubou silou.
- DES jako americký standard skončil (jen v "dobíhajících"systémech a kvůli kompatibilitě) a místo něj: Triple-DES, (1999, FIPS 46-3).
- 3DES (3xDES) až 3x delší klíč.
- Od 26. 5. 2002 šifrovací standard nové generace AES.

DES (2)

Charakteristika DES (1)

- DES je iterovaná šifra typu $E_{k_{16}}(E_{k_{15}}(\dots(E_{k_1}(m_i)\dots)))$.
- Používá 16 rund a 64b bloky OT a ŠT. Šifrovací klíč k má délku 56 b (vyjadřuje se ale jako 64b číslo, kde každý 8. bit je bit parity)
- 56b klíč k je v inicializační fázi nebo za chodu algoritmu expandován na 16 rundovních klíčů k₁ až k₁₆, které jsou řetězci 48 bitů, každý z těchto bitů je některým bitem původního klíče k.
- Místo počátečního zašumění OT se používá bezklíčová pevná permutace Počáteční permutace a místo závěrečného zašumění permutace k ní inverzní (Počáteční permutace)⁻¹.
- Po počáteční permutaci je blok rozdělen na dvě 32b poloviny (L_0, R_0) . Každá ze 16 rund i = 1, 2, ..., 16 transformuje (L_i, R_i) na novou hodnotu $(L_{i+1}, R_{i+1}) = (R_i, L_i \oplus f(R_i, k_{i+1}))$, liší se jen použitím jiného rundovního klíče k_i .
- Ve smyslu definice Feistelova kryptosystému je v tomto případě h = 16 a 2n = 64.

DES (3)

DES (4)

Charakteristika DES (2)

- Po 16. rundě dochází ještě k výměně pravé a levé strany:
 (L₁₆, R₁₆) = (R₁₅, L₁₅ ⊕ f(R₁₅, k₁₆)) a závěrečné permutaci
 (Počáteční permutace)⁻¹.
- Dešifrování probíhá stejným způsobem jako zašifrování, pouze se obrátí pořadí výběru rundovních klíčů.

Rundovní funkce f

- Rundovní funkce se skládá z binárního načtení klíče k_i na vstup.
 48b klíč k_i je vytvořen po kompresi ze 2 28b rotovaných částí původního klíče k, kde počet bitů rotace je závislý na čísle rundy.
- Tento klíč k_i je dál xorován s expandovanou 32b částí R_{i-1}, která je expanzně permutovaná v bloku E z 32b na 48b. Tato operace kromě rozšíření daného 32b slova také permutuje bity tohoto slova tak, aby se dosáhlo lavinového efektu.

DES (5)

Charakteristika DES (3)

- Následně je prováděna pevná, nelineární substituce na úrovni 6b znaků do 4b znaků s následnou transpozicí na úrovni bitů. Těmito operacemi se dosahuje dobré difúze i konfúze.
- Použité substituce se nazývají substituční boxy: S-boxy, jsou
 jediným nelineárním prvkem schématu. Pokud bychom substituce
 vynechali, mohli bychom vztahy mezi ŠT, OT a klíčem popsat
 pomocí operace binárního sčítání ⊕, tedy lineárními vztahy.
- Tato nelinearita je překážkou jednoduchého řešení rovnic, vyjadřující vztah mezi OT, ŠT a K.
- Následně 32b výsledné slovo z S-boxu je permutováno c bloku P. Tato permutace převádí každý vstupní bit do výstupu, kde žádbý vstupní bit se nepoužije 2×.
- Nakonec se výsledek permutace sečte modulo 2 s levou 32b polovinou a začne další runda.

DES (6)

Vnitřní struktura DES (1)

Počátečni permutace - IP a koncová permutace - IP-1

- Nezvyšují bezpečnost DES.
- Lehce implementovane v HW, ale ne v SW.
- Původ permutací je pravděpodobně v snaze přeuspořádat OT do podoby, která je lépe dále zpracovatelná (souviselo to s technologickou úrovní, dnes to již neplatí).

Příklad:

DES (7)

Vnitřní struktura DES (2)

Počátečni permutace - IP a koncová permutace - IP-1

	Počáteční permutace - IP												
58													
					20								
62	54	46	38	30	22	14	6						
64	56	48	40	32	24	16	8						
57	49	41	33	25	17	9	1						
59	51	43	35	27	19	11	3						
61													
63	55	47	39	31	23	15	7						

	Koncová permutace - IP ⁻¹												
40	8	48	16	56	24	64	32						
39	7	47	15	55	23	63	31						
38	6	46	14	54	22	62	30						
37	5	45	13	53	21	61	29						
36	4	44	12	52	20	60	28						
35	3	43	11	51	19	59	27						
34	2	42	10	50	18	28	26						
33	1	41	9	49	17	57	25						

Realizace expanzní funkce E

DES (8)

Vnitřní struktura DES (3) Substituce pomocí S-boxů

Příklad dekódovaní vstupu "011011"

msb	1	I. – 4		lsb		
0	1	1	0	1	1	

S-box S₅

			1. – 4. bit														
msb	Isb	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0	0	0010	1100	0100	0001	0111	1100	1011	0110	1000	0101	0011	1111	1101	0000	1110	1001
0	1	1110	1011	0010	1100	0100	0111	1101	0001	0101	0000	1111	1100	0011	1001	1000	0110
1	0	0100	0010	0001	1011	1100	1101	0111	1000	1111	1001	1100	0101	0110	0011	0000	1110
1	1	1011	1000	1100	0111	0001	1110	0010	1101	0110	1111	0000	1001	1100	0100	0101	0011

- Jediny nelineární element DES, který provádí konfuzi
- Výběr převodních tabulek nebylo nikdy úplně odhalen

DES (9)

Vnitřní struktura DES (3)

S-boxy byli navržený podle nasledujícich kritérií:

- Každý S-box má 6 vstupních bitů a 4 výstupní.
- Žádný z výstupních bitů není lineární kombinací vstupních bitů.
- Když vstupní msb = lsb a 4 prostřední bity se mění, potom každá možná 4-bitová výstupní hodnota se vyskytne jenom jednou.
- Pokud jsou 2 vstupy do S-boxu rozílné jenom právě v jednom bitě, potom jejích výstup musí být rozdílny minimálně ve 2 bitech.
- Pokud 2 vstupy do S-boxu jsou rozdílné ve 2 středních bitech, potom jejích výstup musí být rozdílný minimálně ve 2 bitech.
- Pokud 2 vstupy do S-boxu se liši v prvních 2 bitech a jsou identické v posledních 2 bitech, potom musí být výstup rozdílný.
- Pro jakýkoliv nenulový 6-bitový rozdílný vstupy je ne víc než 8 z 32 dvojíc vstupu
- Nějaká kolize (žádný rozdil ve výstupech) 32-bitových výstupů 8 S-boxů je možná jenom pro 3 sousední S-boxy.

DES (9)

Vnitřní struktura DES (4)

Permutace P

	Р											
16	7	20	21	29	12	28	17					
1	15	23	26	5	18	31	10					
	8	24	14	32	27	3	9					
19	13	30	6	22	11	4	25					

- 32-bitový vstup a 32-bitový výstup →
- příma permutace žádný bit není vynechán
- zavádí difuzi

DES (10)

Transformace klíče (1) Transformace klíče zahrnuje:

- Upraví se 64-bitový klíč na 56-bitový vynecháním každého 8. bitů parity.
- Vykoná se permutace klíče
- 56-bitový klíč se rozdělí na 28-bitové polovice, které s posouvají rotaci o 1 (1., 2. 9. 16. runda) nebo 2 bity vlevo (ostatní rundy).
- Rotace zabezpečuje vytvoření různých klíčů pro každou rundů.
- Kompresní permutace vybere z 56 bitů 48.

Tra	Transformace a permutace klíče												
57	49	41	33	25	17	9	1						
58	50	42	34	26	18	10	2						
59	51	43	35	27	19	11	3						
60	52	44	36	63	55	47	39						
31	23	15	7	62	54	46	38						
30	22	14	6	61	53	45	37						
29	21	13	5	28	20	12	4						

	Kompresní permutace klíče											
14	17	11	24	1	5	3	28					
15	6	21	10	23	19	12	4					
26	8	16	7	27	20	13	2					
41	52	31	37	47	55	30	40					
51	45	33	48	44	49	39	56					
34	53	46	42	50	36	29	32					

TripleDES (1)

TripleDES

- TripleDES (3DES) prodlužuje klíč originální DES tím, že používá DES jako stavební prvek celkem $3\times$ s 2 nebo 3 různými klíči.
- Nejčastěji se používá varianta EDE této šifry, která je definována ve standardu FIPS PUB 46-3 (v bankovní normě X9.52).
- Vstupní data OT jsou zašifrována podle vztahu
 ŠT= E_{K3}(D_{K2}(E_{K1}(OT))), kde K₁, K₂ a K₃ jsou buď 3 různé klíče
 nebo K3 = K1. Varianta EDE byla zavedena z důvodu
 kompatibility → při rovnosti všech klíčů 3DES = DES.
- Klíč 3DES je tedy buď 112 bitů (2 klíče) nebo 168 bitů (3 klíče).
 3DES je spolehlivá → klíč je dostatečně dlouhý a teoretickým slabinám (komplementárnost, slabé klíče) se dá předcházet ⇒
- 3DES a AES → platný oficiální standard nahrazující DES.
- 3DES lze, jako jakoukoliv jinou blokovou šifru, použít v různých operačních modech (CBC mod ⇒ 3DES-EDE-CBC).

TripleDES (2)

$$\begin{array}{l} \mathsf{K}_1 \neq \mathsf{K}_2 \neq \mathsf{K}_3 \implies 3 \ x \ \text{klíč} = 168b \ \longrightarrow \ 3\mathsf{DES} \\ \mathsf{K}_1 = \mathsf{K}_3 \neq \mathsf{K}_2 \implies 2 \ x \ \text{klíč} = 112b \ \longrightarrow \ 3\mathsf{DES} \\ \mathsf{K}_1 = \mathsf{K}_2 = \mathsf{K}_3 \implies 1 \ x \ \text{klíč} = 56b \ \longrightarrow \ \mathsf{DES} \end{array}$$

AES (1)

AES (1)

- Po útocích hrubou silou na DES, americký standardizační úřad připravil náhradu - Advanced Encryption Standard (AES).
- 2.1. 1997 výběrové řízení na AES 15 kandidátů.
- Z 5 finalistů byl vybrán algoritmus Rijndael [rájndol] (autoři J. Daemen a V. Rijmen).
- Jako AES byl přijat s účinností od 26. května 2002 a byl vydán jako standard v oficiální publikaci FIPS PUB 197.
- AES je bloková šifra s délkou bloku 128 bitů, čímž se odlišuje od současných blokových šifer, které měly blok 64 bitový.
- AES podporuje tři délky klíče: 128, 192 a 256 bitů ⇒ se částečně mění algoritmus (počet rund je po řadě 10, 12 a 14).
- Větší délka bloku a klíče zabraňují útokům, které byly aplikované na DES. AES nemá slabé klíče, je odolný proti známým útokům a metodám lineární a diferenciální kryptoanalýzy.

AES (2)

AES (2)

- Algoritmus zašifrování i odšifrování se dá výhodně programovat na různých typech procesorů, má malé nároky na paměť i velikost kódu a je vhodný i pro paralelní zpracování.
- AES bude pravděpodobně platným šifrovacím standardem několik desetiletí a bude mít obrovský vliv na počítačovou bezpečnost.
- Označíme-li délku klíče N_k jako počet 32b slov, máme $N_k = 4,6$ a 8 pro délku klíče 128, 192 a 256 bitů.
- AES je iterativní šifra, počet rund N_r se mění podle délky klíče: $N_r = N_k + 6$, tj. je to 10, 12 nebo 14 rund.
- Tato skutečnost odráží nutnost zajistit konfúzi vzhledem ke klíči. Algoritmus pracuje s prvky Galoisova tělesa $GF(2^8)$ a s polynomy, jejichž koeficienty jsou prvky z $GF(2^8)$. Bajt s bity $(b_7,...,b_0)$ je proto chápán jako polynom $b_7x^7+\cdots+b_1x^1+b_0$ a operace "násobení bajtů"odpovídá násobení těchto polynomů modulo $m(x)=x^8+x^4+x^3+x^1+1$.

AES (3)

Rundovní klíče

- Rundovní klíče AES využívá 4 + N_r × 4 rundovních 32b klíčů, které se definovaným způsobem derivují ze šifrovacího klíče.
- Před zahájením 1. rundy zašifrování se provede úvodní zašumění, kdy se na OT naxorují první 4 rundovní klíče (128b na 128b)⇒
- N_r shodných rund (s výjimkou poslední, kdy se neprovede operace MixColumns), při kterých výstup z každé předchozí rundy slouží jako vstup do rundy následující. Tím dochází k postupnému mnohonásobnému zesložiťování výstupu.

Runda (1)

- Na počátku každé rundy se vždy vstup (16 B) naplní postupně shora dolů a zleva doprava po sloupcích do matice 4x4 B $\mathbf{A} = (a_{ij})$ i, j = 0, 1, 2, 3.
- Na každý bajt matice A se zvlášť aplikuje substituce, daná pevnou substituční tabulkou SubBytes.

AES (4)

Substitute bytes

- Transformace v přímem a inverzním tvaru pro přímou a inverzní substituci
- S-box organizován ve tvaru matice 16x16 (4b x 4b) pro transformaci vsech 8-bitových hodnot
- v matici je číslo řádku určeno 4 vyššími bity aktualného bytu a číslo sloupce je určeno 4 nižšími bity aktualneho bytu
- S-box je vyplněn tak, že každý byt se dá vypočítat jako multiplikatívní inverze v $GF(2^8)$ modulo $m(x) = x^8 + x^4 + x^3 + x + 1$ a nula se tranformuje sama na sebe

AES (5)

Shift Rows

- Transformace se aplikuje na řádky s jednotlivými byty
- 1. řádek zůstava beze změny, 2. řádek se posune o 1 místo do leva, 3. řádek se posune o 2 místa do leva a 3. řádek se posune o 3 místa doleva
- inverzní transformace vykonáva stejný posuv řádků, ale do prava
- Vzhledem k tomu, že první 4 byty OT jsou zapsány v prvním sloupci atd. jsou každého sloupce distribuované do 4 bytu různých sloupců, dochází úplnemu promíchání bytů OT - dochází k transpozici na úrovni bajtů.

AES (6)

Mix Columns

• Dále se na každý jednotlivý sloupec matice aplikuje operace MixColumns, která je substitucí 32 bitů na 32 bitů. Tuto substituci lze však popsat lineárními vztahy – všechny výstupní bity jsou nějakou lineární kombinací vstupních bitů. Označíme-li jednotlivé bajty v rámci daného sloupce matice A (shora dolů) jako a₀ až a₃, pak výstupem budou jejich nové hodnoty b₀ až b₃, podle vztahů

$$\begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} '02' & '03' & '01' & '01' \\ '01' & '02' & '03' & '01' \\ '01' & '01' & '02' & '03' \\ '03' & '01' & '01' & '02' \end{pmatrix} \times \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix}$$

 Násobení je násobení prvků GF(2⁸). Konstantní prvky tohoto pole jsou vyjádřeny hexadecimálně.

AES (7)

Add Round Key

 Jako poslední operace rundy se vykoná transformace AddRoundKey, v rámci níž se na jednotlivé sloupce matice A zleva doprava naxorují 4 odpovídající rundovní klíče. Tím je jedna runda popsána a začíná další. Po poslední rundě se ŠT jen vyčte

z matice B.

AES (7)

Algoritmus AES

AES – Struktura šifrování a dešifrování

AES (8)

- Při odšifrování se používají operace inverzní k operacím, použitým při zašifrování, neboť všechny jsou reverzibilní.
- Nelinearity v AES se objevují pouze v substituci SubBytes. V roce 2002 bylo zjištěno, že vzájemné vztahy výstupních (y1,...,y8) a vstupních (x1,...,x8) bitů lze popsat implicitními rovnicemi f(x1,...,x8,y1,...,y8) = 0 pouze druhého řádu.

AES (9)

Key Expansion (1)

- Operace realizuje expanzi klíče s délkou 16 bytů = 128 bitů.
- Klíč ma 4 slova s délkou 4 byty.
- Při počte rund 10 je potřená expanze na 44 slov

Proces expanze klíče

AES (10)

Key Expansion (2) Operace tvořící funkci f

- Operace Rot Word realizuje cyklický posuv bytů slova w₃ o jednu pozici vlevo.
- Operace Sub Word realizuje substitucí posunutých bytů podle předpisu v S-boxe.
- Výsledek předchozích operací se XORuje s konstantou RC(j), které hodnoty jsou definované pro každou rundu.
- $RC(j) = [B_j, 0, 0, 0]$

ſ	i	1	2	3	4	5	6	7	8	9	10
	Bj	01	02	04	08	10	20	40	80	1B	36