Preuve: Posons
$$P(n): F_n^{(p)} = \sum_{k=0}^{\left\lfloor \frac{n}{p+1} \right\rfloor + 1} \binom{n-pk}{k}$$

Initialisation : Pour $n \leq p$, on a

$$\sum_{k=0}^{\left\lfloor \frac{n}{p+1}\right\rfloor+1} \binom{n-pk}{k} = \sum_{k=0}^{1} \binom{n-pk}{k} = \underbrace{\binom{n}{0}}_{=1} + \underbrace{\binom{n-p}{1}}_{n-p<0 \text{ donc } 0} = 1$$

Hérédité : Soit $n \in \mathbb{N}$ tel que $\forall k \in \llbracket 0, n \rrbracket, P(k)$ soit vraie.

$$\begin{split} F_{n+1}^{(p)} &= F_{n-p}^{(p)} + F_n^{(p)} \\ &= \sum_{k=0}^{\left \lfloor \frac{n-p}{p+1} \right \rfloor + 1} \binom{n-p-pk}{k} + \sum_{k=0}^{\left \lfloor \frac{n}{p+1} \right \rfloor + 1} \binom{n-pk}{k} \\ &= \sum_{k=1}^{\left \lfloor \frac{n-p}{p+1} \right \rfloor + 2} \binom{n-p-p(k-1)}{k-1} + \sum_{k=0}^{\left \lfloor \frac{n}{p+1} \right \rfloor + 1} \binom{n-pk}{k} \end{split}$$

Or $\binom{n}{-1}=0$ donc on peut décaler l'indice de la première somme à k=0 :

$$F_{n+1}^{(p)} = \sum_{k=0}^{\left\lfloor \frac{n-p}{p+1} \right\rfloor + 2} \binom{n-pk}{k-1} + \sum_{k=0}^{\left\lfloor \frac{n}{p+1} \right\rfloor + 1} \binom{n-pk}{k}$$

On peut alors essayer de regrouper les deux sommes :

$$\left\lfloor \frac{n-p}{p+1} \right\rfloor + 2 = \left\lfloor \frac{n+p+2}{p+1} \right\rfloor \text{ et } \left\lfloor \frac{n}{p+1} \right\rfloor + 1 = \left\lfloor \frac{n+p+1}{p+1} \right\rfloor \text{ donc } \left\lfloor \frac{n-p}{p+1} \right\rfloor + 2 \geq \left\lfloor \frac{n}{p+1} \right\rfloor + 1$$

On souhaite donc montrer que $\left\lfloor \frac{n-p}{p+1} \right\rfloor + 2 > n - p \left(\left\lfloor \frac{n-p}{p+1} \right\rfloor + 2 \right)$: on a

$$\frac{n-p}{p+1} - 1 < \left\lfloor \frac{n-p}{p+1} \right\rfloor \Leftrightarrow (p+1) \left(\left\lfloor \frac{n-p}{p+1} \right\rfloor + 2 \right) > n-p+(p+1)$$

$$\Leftrightarrow -(p+1) \left(\left\lfloor \frac{n-p}{p+1} \right\rfloor + 2 \right) < -n-1$$

$$\Leftrightarrow n - (p+1) \left(\left\lfloor \frac{n-p}{p+1} \right\rfloor + 2 \right) < -1$$

$$\Leftrightarrow n - p \left(\left\lfloor \frac{n-p}{p+1} \right\rfloor + 2 \right) < -1 + \left\lfloor \frac{n-p}{p+1} \right\rfloor + 2$$

$$\Leftrightarrow n - p \left(\left\lfloor \frac{n-p}{p+1} \right\rfloor + 2 \right) < \left\lfloor \frac{n-p}{p+1} \right\rfloor + 2$$

Donc $\binom{n-\left\lfloor\frac{n-p}{p+1}\right\rfloor+2}{\left\lfloor\frac{n-p}{p+1}\right\rfloor+2}=0$, ce qui permet d'utiliser $\left\lfloor\frac{n-p}{p+1}\right\rfloor+2$ comme indice commun au deux sommes, qu'on peut donc regrouper :

$$\begin{split} F_{n+1}^{(p)} &= \sum_{k=0}^{\left \lfloor \frac{n-p}{p+1} \right \rfloor + 2} \left(\binom{n-pk}{k-1} + \binom{n-pk}{k} \right) \\ &= \sum_{k=0}^{\left \lfloor \frac{n-p}{p+1} + 1 \right \rfloor + 1} \binom{(n+1)-pk}{k} \\ &= \sum_{k=0}^{\left \lfloor \frac{n+1}{p+1} \right \rfloor + 1} \binom{(n+1)-pk}{k} \end{split}$$

Donc P(n+1) est vraie.

Par le principe de récurrence p-ième, $P(n):F_n^{(p)}=\sum_{k=0}^{\left\lfloor \frac{n}{p+1}\right\rfloor+1} \binom{n-pk}{k}$