Lec10 Note of Complex Analysis

Xuxuayame

日期: 2023年4月6日

例 6.1. P126.3: 设 D 是由有限条光滑简单闭曲线围成的域, \mathbf{n} 是 ∂D 的单位法向量场,指向 D 的外部, $u,v \in C^2(\overline{D})$ 。证明:

$$\iint_D u \Delta v \, \mathrm{d} x \, \mathrm{d} y + \iint_D (u_x v_x + u_y v_y) \, \mathrm{d} x \, \mathrm{d} y = \int_{\partial D} u \frac{\partial v}{\partial \overrightarrow{n}} | \, \mathrm{d} z |.$$

证明. 设 ∂D : z(t) = x(t) + iy(t) $(a \le t \le b)$, $\vec{\tau}$ 为单位切向量,则

$$\vec{\tau}(t) = \frac{x'(t) + iy'(t)}{\sqrt{x'(t)^2 + y'(t)^2}}$$

$$\Rightarrow \vec{n}(t) = \vec{\tau}(t) \cdot (-i) = \frac{y'(t) - ix'(t)}{\sqrt{x'(t)^2 + y'(t)^2}}.$$

而 $|\mathrm{d}z| = |z'(t)|\mathrm{d}t = \sqrt{x'(t)^2 + y'(t)^2}\mathrm{d}t$,所以

$$\int_{\partial D} u \frac{\partial v}{\partial \vec{n}} | dz | = \int_{\partial D} u \cdot \operatorname{grad} v \cdot \vec{n} | dz |$$

$$= \int_{a}^{b} u \left(\frac{\partial v}{\partial x} \cdot y'(t) - \frac{\partial v}{\partial y} x'(t) \right) dt = \int_{\partial D} u \left(\frac{\partial v}{\partial x} dy - \frac{\partial v}{\partial y} dx \right)$$

$$\stackrel{Green}{=} \iint_{D} (u_{x}v_{x} + u \cdot v_{xx} + u_{y}v_{y} + u \cdot v_{yy}) dx dy.$$

例 6.2. P119.4: f 为整函数,且 $f(\mathbb{C}) \subset \{z \in \mathbb{C} \mid \text{Im} z > 0\}$,证明: f 为常数。

证明.
$$\forall z \in \mathbb{C}, |f(z) + i| > 1 \Rightarrow \left| \frac{1}{f(z) + i} \right| < 1 \Rightarrow \frac{1}{f(z) + i} = \text{Const.}.$$
 \Box 我们稍作推广:

f 为整函数且 $f(\mathbb{C})$ 的补集含有内点,则 f 为常数。($f(\mathbb{C})$ 在 \mathbb{C} 中非稠密。)

例 6.3. P119.5: f 为整函数且 $f(\mathbb{C}) \subset \mathbb{C} \setminus [0,1]$ 。证明 f 为常数。

证明.
$$\frac{1}{f(z)} - 1$$
: $\mathbb{C} \to \mathbb{C} \setminus [0, +\infty)$ 全纯。
$$\sqrt{z} \colon \mathbb{C} \setminus [0, +\infty) \to \operatorname{Im} z > 0$$
 全纯。
$$\sqrt{\frac{1}{f(z)} - 1} \colon \mathbb{C} \to \operatorname{Im} z > 0$$
 全纯 $\Rightarrow \sqrt{\frac{1}{f(z)} - 1}$ 为常数,从而 $f(z)$ 为常数。 \square

Part IV

全纯函数的 Taylor 展开及应用

1 函数列与函数项级数

定义 1.1. 设 $K \subset \mathbb{C}$,称 $f_n \colon K \to \mathbb{C}$ $(n = 1, 2, \cdots)$ 在 $K \perp$ 一致收敛于 $f \colon K \to \mathbb{C}$,如果 对 $\forall \varepsilon > 0$,当 N,当 n > N 时, $|f_n(z) - f(z)| < \varepsilon$, $\forall z \in K$ 。

定理 1.1. Weierstrass: 设 $D \subset \mathbb{C}$ 为区域, $f_n: D \to \mathbb{C}$ 全纯。若 f_n 在 D 的每个紧致子集中一致收敛于 $f: D \to \mathbb{C}(f$ 在 D 中紧一致收敛), 则

- (1) f 在 D 中全纯。
- (2) 对 $\forall k \geq 1$, $f_n^{(k)}(z)$ 在 D 中紧一致收敛于 $f^{(k)}(z)$ 。

证明. (1) 对 $\forall z_0 \in D$ 和 r > 0 s.t. $\overline{B(z_0, r)} \subset D$,设 γ 为 $B(z_0, r)$ 中的一条可求长简 单闭曲线, γ 为紧致集,故在 $\gamma \perp f_n \Rightarrow f$ 。对 $\forall \varepsilon > 0$, $\exists N$,当 n > N 时,

$$|f_n(z) - f(z)| < \varepsilon, \ \forall \ z \in \gamma$$

$$\Rightarrow \left| \int_{\gamma} f_n(z) \, \mathrm{d} z - \int_{\gamma} f(z) \, \mathrm{d} z \right| \le \int_{\gamma} |f_n(z) - f(z)| |\, \mathrm{d} z| < \varepsilon |\gamma|.$$

从而 $\int_{\gamma} f(z) dz = \lim_{n \to \infty} \int_{\gamma} f_n(z) dz = 0$,由 Morera 定理, f(z) 在 $B(z_0, r)$ 中全纯,再由 z_0 的任意性知 f 在 D 中全纯。

(2) 只需对 k=1 证明即可。

固定 $z_0 \in D$,取 $\delta > 0$ s.t. $\overline{B(z_0, 2\delta)} \subset D$ 。设 $z \in B(z_0, \delta)$, $\zeta \in \partial B(z_0, 2\delta)$,则 $|\zeta - z| \ge \delta$ 。于是

$$|f'_n(z) - f'(z)| = \left| \frac{1}{2\pi i} \int_{|\zeta - z_0| = 2\delta} \frac{f_n(\zeta) - f(\zeta)}{(\zeta - z)^2} \, \mathrm{d} \, \zeta \right|$$

$$\leq \frac{1}{2\pi} \int_{|\zeta - z_0| = 2\delta} \frac{|f_n(\zeta) - f(\zeta)|}{\delta^2} |\, \mathrm{d} \, \zeta|$$

$$\leq \frac{1}{2\pi} \sup_{|\zeta - z_0| = 2\delta} |f_n(\zeta) - f(\zeta)| \cdot \frac{1}{\delta^2} \cdot 2\pi \cdot 2\delta \to 0 \ (n \to +\infty).$$

所以 $f_n(z)$ 在 $B(z_0, \delta)$ 中一致收敛于 f'(z)。

设 $K \subset D$ 为紧致子集,对 $\forall z \in K$, $\exists \delta_z > 0$ s.t. f_n 在 $B(z, \delta_z)$ 中一致收敛。 $\{B(z, \delta_z) \mid z \in K\}$ 为 K 的开覆盖,故有有限子覆盖 $\{B(z_i, \delta_{z_i}) \mid i = 1, \cdots, n\}$,则 f_n 在 $\bigcup_{i=1}^n B(z_i, \delta_{z_i}) \supset K$ 上一致收敛。

评论. 这个定理对实函数不成立,因为一列实解析函数可以一致收敛到非 C^1 的连续函数 (Weierstrass 逼近定理)。

Lec11 Note of Complex Analysis

Xuxuayame

日期: 2023年4月11日

设 $z_n \in \mathbb{C}$, $n = 1, 2, \dots$, 称级数 $\sum_{n=1}^{\infty} z_n$ 收敛, 如果 $\lim_{n \to \infty} s_n$ 存在有限, 其中 $s_n =$ $z_1 + z_2 + \cdots + z_n$

- $\sum_{n} z_n$ 收敛 $\Rightarrow \lim_{n} z_n = 0$ 。 $\sum_{n} |z_n|$ 收敛 $\Rightarrow \sum_{n} a_n$ 收敛。

定义 1.2. 设 $f_n: K \to \mathbb{C}$,称函数项级数 $\sum_{n=1}^{\infty} f_n(z)$ 在 K 上一致收敛于 $f: K \to \mathbb{C}$,如果 $S_n(z) = \sum_{k=1}^n f_k(z)$ 在 K 上一致收敛于 f(z)。

一致收敛有如下性质:

Cauchy 准则 $\sum\limits_{n=1}^{\infty}f_n(z)$ 在 K 上一致收敛 \Leftrightarrow \forall $\varepsilon>0$, \exists N, $\overset{}{=}$ n>N 时 $|f_{n+1}(z)+f_{n+2}(z)+\cdots+f_{n+p}(z)|<\varepsilon,$ \forall $z\in K$ 。

Weierstrass 判别法 设 $|f_n(z)| \le a_n$, $\forall z \in k$, $\forall n$, 且 $\sum_{n=1}^{\infty} a_n < +\infty$, 则 $\sum_{n=1}^{\infty} f_n(z)$ 在 K上一致收敛。

连续性 设 $f_n: K \to \mathbb{C}$ 连续且 $\sum_{n=1}^{\infty} f_n(z)$ 在 K 上一致收敛于 f(z), 则 f(z) 连续。

可积性 设 $f_n: K \to \mathbb{C}$ 连续且 $\sum_{n=1}^{\infty} f_n(z)$ 在可求长曲线 γ 上一致收敛于 f(z),则 $\int_{\gamma} f(z) dz =$ $\sum_{n=1}^{\infty} \int_{\gamma} f_n(z) \, \mathrm{d} z \, .$

可导性 (即 Weierstrass) 设 $D \subset \mathbb{C}$ 为区域, $f_n \colon D \to \mathbb{C}$ 全纯且 $\sum_{n=1}^{\infty} f_n(z)$ 在 D 中紧一致 收敛于 f(z),则

- (1) f(z) 在 D 中全纯;
- (2) $\sum_{n=1}^{\infty} f_n^{(k)}(z)$ 在 D 中紧一致收敛于 $f^{(k)}(t)$ 。

例 1.1. 定义函数:

$$\zeta(z) = \sum_{r=1}^{\infty} \frac{1}{n^z}, \ z = x + iy.$$

则 $|n^z| = |e^{z \log n}| = |e^{x \log n}e^{iy \log n}| = n^x$ 。由 W-判别法, $\sum_{n=1}^{\infty} \frac{1}{n^z}$ 在 $D = \{z \mid \text{Re}z > 1\}$ 中 紧一致收敛,故 $\zeta(z)$ 在D中全纯。

例 1.2. 求收敛点集:

(i)
$$\sum_{n=1}^{\infty} \frac{\cos nz}{n^2};$$

(ii)
$$\sum_{n=0}^{\infty} \frac{z^n}{1-z^n} \circ$$

解. (i) z = x + iy,若 y = 0,则 $\sum_{n=1}^{\infty} \frac{\cos nx}{n^2}$ 收敛。若 y > 0,

$$\frac{\cos nz}{n^2} = \frac{1}{2n^2} (e^{in(x+iy)} + e^{-in(x+iy)})$$
$$= \frac{e^{inx} \cdot e^{-ny}}{2n^2} + \frac{e^{-inx} \cdot e^{ny}}{2n^2}.$$

从而 $\sum \frac{\cos nz}{n^2}$ 发散。同理 y < 0 时也发散。

(ii) 当 $|z| \ge 1$ 时, $|\frac{z^n}{1-z^n}| \ge \frac{|z|^n}{1+|z|^n} \ge \frac{1}{2}$ 。 当 |z| < 1 时, $|\frac{z^n}{1-z^n}| \le \frac{|z|^n}{1-|z|^n} \le \frac{|z|^n}{1-\frac{1}{2}} = 2|z|^n$ 。 (n 足够大时) 而 $\sum_{n=0}^{\infty} 2|z|^n$ 收敛,故 $\sum_{n=0}^{\infty} \frac{z^n}{1-z^n}$ 收敛。

例 1.3. 设 $D \subset \mathbb{C}$ 为区域, $F(z,s): D \times [0,1] \to \mathbb{C}$ 满足:

- (1) 对 $\forall s \in [0,1], F(z,s)$ 关于 z 全纯;
- (2) F 连续。

则 $f(z) = \int_0^1 F(z, s) ds$ 为 D 上的全纯函数。

证明. $\forall z_0 \in D$,取 $\varepsilon_0 > 0$ s.t. $\overline{B(z_0, \varepsilon_0)} \subset D$ 。下证 f 在 $\Omega = B(z_0, \varepsilon_0)$ 中全纯。记 $f_n(z) = \frac{1}{n} \sum_{k=1}^n F(z, \frac{k}{n}) \to f(z) \ (n \to \infty)$ 。由于 F 在 $\overline{\Omega} \times [0, 1]$ 中一致连续,对 $\forall \varepsilon > 0$, $\exists \delta > 0$,当 $|s_1 - s_2| < \delta$ 时, $F(z, s_1) - F(z, s_2)| < \varepsilon$, $\forall z \in \overline{\Omega}$ 。那么当 $n > \frac{1}{\delta}$ 时, $\forall z \in \Omega$,

$$|f_n(z) - f(z)| = \left| \sum_{k=1}^n \int_{\frac{k-1}{n}}^{\frac{k}{n}} \left(F\left(z, \frac{k}{n}\right) - F(z, s) \right) ds \right|$$

$$< \sum_{k=1}^n \varepsilon \cdot \frac{1}{n} = \varepsilon.$$

所以 $f_n(z)$ 在 Ω 上一致收敛到 f(z), 从而 f(z) 在 Ω 中全纯。

2 幂级数

 $\sum\limits_{n=0}^{\infty}a_{n}(z-z_{0})^{n}$ 称为幂级数,这里 $a_{n}\in\mathbb{C},\ z_{0}\in\mathbb{C}$ 。

定理 2.1. 设 $\sum\limits_{n=0}^{\infty}a_nz^n$ 为幂级数,记 $R=\frac{1}{\limsup\limits_{n\to\infty}\sqrt[n]{|a_n|}}$ $(0\leq R\leq +\infty)$,则

(1) 当
$$|z| < R$$
 时, $\sum_{n=0}^{\infty} a_n z^n$ 绝对收敛;

(2) 当
$$|z| > R$$
 时, $\sum_{n=0}^{\infty} a_n z^n$ 发散。

证明. (1) 不妨设 $0 < R < +\infty$ 。设 |z| < R,取 ρ , $|z| < \rho < R$,由于

$$\limsup_{n \to \infty} \sqrt[n]{|a_n|} = \frac{1}{R} < \frac{1}{\rho}.$$

进而 $\exists N$, 当 n > N 时, $\sqrt[n]{|a_n|} < \frac{1}{\rho}$, 所以 $|a_n z^n| \le \left(\frac{|z|}{\rho}\right)^n$ 且 $\sum_{n=1}^{\infty} (\frac{|z|}{\rho})^n < +\infty$ 。

$$\limsup_{n \to \infty} \sqrt[n]{|a_n|} = \frac{1}{R} > \frac{1}{r}.$$

进而 $\exists \{n_k\} \ s.t. \ \frac{n_k}{|a_{n_k}|} > \frac{1}{r}$,那么 $|a_{n_k}z^{n_k}| \ge (\frac{|z|}{r})^{n_k} > 1$,从而 $\lim a_n z^n \ne 0$,故 $\sum_{n=0}^{\infty} a_n z^n$ 发散。

定理 2.2. Abel: 若 $\sum_{n=0}^{\infty} a_n z^n$ 在 $z_0 \neq 0$ 处收敛,则 $\sum_{n=1}^{\infty} |a_n z^n|$ 在 $D = \{z \mid |z| < |z_0|\}$ 中紧一致收敛。

证明. 设 K 是 $\{z \mid |z| < |z_0|\}$ 的一个紧子集,取 $r < |z_0|$ s.t. $K \subset B(0,r)$,则 $\sum\limits_{n=1}^{\infty} a_n z_0^n$ 收 敛 ⇒ $\lim\limits_{n \to \infty} a_n z_0^n = 0$ ⇒ \exists M > 0 s.t. $|a_n z_0^n| \le M$, \forall $n \ge 0$ 。

当 $z \in K$ 时, $|a_n z^n| = |a_n z_0^n|(\frac{|z|}{|z_0|})^n \le M(\frac{r}{|z_0|})^n$,于是由 W-判别法, $\sum |a_n z^n|$ 在 D中紧一致收敛。

定理 2.3. 设 $\sum_{n=0}^{\infty} a_n z^n$ 的收敛半径为 R,则 $\sum_{n=0}^{\infty} a_n z^n$ 在 B(0,R) 中全纯。

证明. 由定理 2.1,当 $|z_0| < R$ 时, $\sum_{n=0}^{\infty} a_n z_0^n$ 收敛,再由定理 2.2, $\sum_{n=0}^{\infty} a_n z^n$ 在 $D = \{z \mid |z| < |z_0|\}$ 中紧一致收敛,由 W-定理, $\sum_{n=0}^{\infty} a_n z^n$ 在 D 中全纯 \Rightarrow 在 B(0,R) 中全纯。 \square

评论. 设 $f(z) = \sum_{n=0}^{\infty} a_n z^n$, |z| < R, 则

(1)
$$f'(z) = \sum_{n=1}^{\infty} n a_n z^{n-1}, |z| < R;$$

(2)
$$\int_{\gamma} f(z) dz = \int_{\gamma} \left(\sum_{n=0}^{\infty} a_n z^n \right) dz = \sum_{n=0}^{\infty} \int_{\gamma} a_n z^n dz.$$

Lec12 Note of Complex Analysis

Xuxuayame

日期: 2023年4月13日

例 2.1. 计算 $\sum_{n=1}^{\infty} \frac{z^n}{n} = f(z)$,收敛半径 R = 1。

解.

$$f'(z) = \sum_{n=1}^{\infty} z^{n-1} = \frac{1}{1-z} \Rightarrow f(z) = -\log(1-z) \ (|z| < 1).$$

而当 |z|=1 且 $z \neq 1$ 时, $z=e^{i\theta}$ $(0<\theta<2\pi)$,则

$$\sum_{n=1}^{\infty} \frac{z^n}{n} = \sum_{n=1}^{\infty} \frac{e^{in\theta}}{n} = \sum_{i=1}^{\infty} \frac{\cos n\theta}{n} + i \sum_{n=1}^{\infty} \frac{\sin n\theta}{n}.$$

定义 2.1. 设 g 是定义在单位圆盘中的函数, $e^{i\theta_0}$ 是单位圆周上一点,设 $0<\alpha<\frac{\pi}{2}$,四 边形 $S_{\alpha}(e^{i\theta_0})$ 如图所示¹。

如果对任意 $0<\alpha<\frac{\pi}{2}$,当 z 在 $S_{\alpha}(e^{i\theta_0})$ 中趋于 $e^{i\theta_0}$ 时,g(z) 有相同的极限 l,则称 g 在 $e^{i\theta_0}$ 处有非切向极限 l。

¹旁边那两个角是直角。

定理 2.4. Abel 第二定理: 设 $f(z) = \sum_{n=0}^{\infty} a_n z^n$ 的 R = 1 且级数在 z = 1 处收敛于 s,则 f(z) 在 z = 1 处有非切向极限 s。

证明. 只需证,对 $\forall \alpha \in (0, \frac{\pi}{2}), \sum_{n=0}^{\infty} a_n z^n$ 在 $\overline{S_{\alpha}(1) \cap B(1, \delta)}$ $(\delta = \cos \alpha)$ 一致收敛。

记 $\sigma_{n,p}=a_{n+1}+\cdots+a_{n+p}$ 。 对 $\forall \, \varepsilon>0$,由于 $\sum_{n=0}^{\infty}a_n$ 收敛,故 $\exists \, N$,当 n>N 时, $|\sigma_{n,p}|<\varepsilon, \, \forall \, p>0$,于是

$$a_{n+1}z^{n+1} + a_{n+2}z^{n+2} + \dots + a_{n+p}z^{n+p}$$

$$= \sigma_{n,1}z^{n+1} + (\sigma_{n,2} - \sigma_{n,1})z^{n+2} + \dots + (\sigma_{n,p} - \sigma_{n,p-1})z^{n+p}$$

$$= \sigma_{n,1}z^{n+1}(1-z) + \sigma_{n,2}z^{n+2}(1-z) + \dots + \sigma_{n,p-1}z^{n+p-1}(1-z) + \sigma_{n,p}z^{n+p}$$

$$= z^{n+1}(1-z)(\sigma_{n,1} + \sigma_{n,2}z + \dots + \sigma_{n,p-1}z^{p-2}) + \sigma_{n,p}z^{n+p}.$$

所以当 |z| < 1, n > N 时对 $\forall p$, 有

$$|a_{n+1}z^{n+1} + \dots + a_{n+p}z^{n+p}| \le |1 - z|\varepsilon(1 + |z| + \dots + |z|^{p-2}) + \varepsilon < \varepsilon\left(\frac{|1 - z|}{1 - |z|} + 1\right).$$

取 $z \in S_{\alpha}(1) \cap B(1,\delta)$,记 $r = |z|, \ \rho = |1-z| \ (0 \le \theta \le \alpha)$,则 $r^2 = 1 + \rho^2 - 2\rho \cos \theta \ (\rho < \delta = \cos \alpha)$,

$$\frac{|1-z|}{1-|z|} = \frac{\rho}{1-r} = \frac{\rho(1+r)}{1-r^2} \le \frac{2\rho}{2\rho\cos\theta - \rho^2} \le \frac{2}{2\cos\alpha - \rho} < \frac{2}{\cos\alpha}.$$

当 z=1 时, $|a_{n+1}+\cdots+a_{n+p}|<\varepsilon$,

$$|a_{n+1}z^{n+1} + \dots + a_{n+p}z^{n+p}| \le M\varepsilon, \ \forall \ z \in \overline{S_{\alpha}(1) \cap B(1,\delta)}.$$

由 Cauchy 准则, $\sum_{n=0}^{\infty} a_n z^n$ 在 $\overline{S_{\alpha}(1) \cap B(1,\delta)}$ 中一致收敛。

于是我们重新回顾例 2.1 的计算,我们进一步可以给出边界处的值:

$$\sum_{n=1}^{\infty} \frac{(e^{i\theta})^n}{n} \stackrel{Thm2.4}{=} \lim_{z \to e^{i\theta}} -\log(1-z) = -\log(1-e^{i\theta})$$
$$= -(\log|1-e^{i\theta}| + i\arg(1-e^{i\theta})) = -\log\left(2\sin\frac{\theta}{2}\right) + i\frac{\pi-\theta}{2}.$$

进一步我们还能知道

$$\sum_{n=1}^{\infty} \frac{\cos n\theta}{n} = -\log\left(2\sin\frac{\theta}{2}\right), \ \sum_{n=1}^{\infty} \frac{\sin n\theta}{n} = \frac{\pi-\theta}{2} \ (0 < \theta < 2\pi).$$

例 2.2. P149.7: 设 $f(z)=\sum\limits_{n=0}^{\infty}a_nz^n$ 是 B(0,1) 上的有界全纯函数,证明 $\sum\limits_{n=0}^{\infty}|a_n|^2<+\infty$ 。

证明. 设 $|f(z)| \leq M, \; \forall \; z \in B(0,r)$, 对 $\forall \; 0 < r < 1$, 则 $\sum\limits_{n=0}^{\infty} a_n z^n, \; \sum\limits_{n=0}^{\infty} \overline{a}_n \overline{z}^n$ 在 |z| = r 上

一致收敛。于是

$$M^{2} \cdot 2\pi r \geq \int_{|z|=r} |f(z)|^{2} |\operatorname{d} z| = \int_{|z|=r} f(z)\overline{f(z)} |\operatorname{d} z| = \int_{|z|=r} \sum_{n=0}^{\infty} a_{n} z^{n} \overline{f(z)} |\operatorname{d} z|$$

$$= \sum_{n=0}^{\infty} \int_{|z|=r} a_{n} z^{n} \cdot \overline{f(z)} |\operatorname{d} z| = \sum_{n=0}^{\infty} \int_{|z|=r} \sum_{m=0}^{\infty} \overline{a}_{m} \overline{z}^{m} \cdot a_{n} z^{n} |\operatorname{d} z|$$

$$= \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \int_{|z|=r} a_{n} z^{n} \cdot \overline{a}_{m} \overline{z}^{m} |\operatorname{d} z| = \sum_{n=0}^{\infty} \int_{|z|=r} |a_{n}|^{2} |z|^{2n} |\operatorname{d} z|$$

$$= \sum_{n=0}^{\infty} |a_{n}|^{2} \cdot r^{2n} 2\pi r$$

$$\Rightarrow \sum_{n=0}^{\infty} (|a_{n}|^{2} r^{2n}) \leq M \Rightarrow \forall k, \sum_{n=0}^{k} |a_{n}|^{2} \cdot r^{2n} \leq M$$

$$\Rightarrow \forall k, \sum_{n=0}^{k} |a_{n}|^{2} \leq M \Rightarrow \sum_{n=1}^{\infty} |a_{n}|^{2} \leq M.$$

3 全纯函数的 Taylor 展开

定理 3.1. 设 $f \in H(B(z_0, R))$, 则 f 可以在 $B(z_0, R)$ 中 (以 z_0 为中心) 展开为幂级数:

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n (|z - z_0| < R).$$

称为f的 Taylor 级数。

证明. 固定 $z \in B(z_0, R)$,取 $0 < \rho < R$,且 $|z - z_0| < \rho$ 。记 γ_ρ : $|z - z_0| = \rho$,由 Cauchy 积分公式,

$$f(z) = \frac{1}{2\pi i} \int_{\gamma_{\rho}} \frac{f(\zeta)}{\zeta - z} dz.$$

而

$$\frac{1}{\zeta - z} = \frac{1}{(\zeta - z_0) - (z - z_0)} = \frac{1}{\zeta - z_0} \cdot \frac{1}{1 - \frac{z - z_0}{\zeta - z_0}} = \sum_{n = 0}^{\infty} \frac{(z - z_0)^n}{(\zeta - z_0)^{n+1}}.$$

记 $M = \sup\{|f(\zeta)| \mid \zeta \in \gamma_{\rho}\} < +\infty$, 当 $\zeta \in \gamma_{\rho}$ 时,

$$\left| f(\zeta) \cdot \frac{(z-z_0)^n}{(\zeta-z_0)^{n+1}} \right| \le M \frac{1}{\rho} \left(\frac{|z-z_0|}{\rho} \right)^n$$
 $\mathbb{H} \frac{|z-z_0|}{\rho} < 1.$

由 Weierstrass 判别法, $\sum_{n=0}^{\infty} f(\zeta) \frac{(z-z_0)^n}{(\zeta-z_0)^{n+1}}$ 关于 $\zeta \in \gamma_\rho$ 一致收敛,故

$$f(z) = \frac{1}{2\pi i} \sum_{n=0}^{\infty} \int_{\gamma_{\rho}} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta (z - z_0)^n = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n.$$

定理 3.2. f 在区域 D 上全纯 $\Leftrightarrow f$ 在区域 D 中每点 z_0 的某个邻域中可以展开为幂级数。

满足后者的称为解析函数, 故全纯函数等价于解析函数。

Lec13 Note of Complex Analysis

Xuxuayame

日期: 2023年4月18日

我们回忆 f 全纯 $\Leftrightarrow f$ 解析 $\Rightarrow f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z-z_0)^n$,那么对于初等函数而言:

(1)
$$f(z) = e^z$$
, $f^{(n)}(0) = 1$ $(n = 0, 1, 2, \dots)$, $e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$ $(z \in \mathbb{C})$.

(2)
$$\cos z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}, \sin z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}$$

(3)
$$\sum_{n=1}^{\infty} \frac{z^n}{n} = -\log(1-z) (|z| < 1)$$
, $\mathbb{R} \log(1+z) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{z^n}{n} (|z| < 1)$.

$$(4) (1+z)^{\alpha} = \sum_{n=0}^{\infty} {\alpha \choose n} z^n (|z| < 1), {\alpha \choose n} := \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!} \circ$$

定义 3.1. 设 f(z) 在 z_0 处全纯且不恒为零,如果

$$f(z_0) = 0, \ f'(z_0) = 0, \cdots, f^{(m-1)}(z_0) = 0, \ f^{(m)}(z_0) \neq 0,$$

则称 z_0 为 f 的 m 阶零点。

例如 $f(z) = (z - z_0)^m$ 。

命题 3.3. z_0 为 f 的 m 阶零点 \Leftrightarrow f 在 z_0 的邻域中可以表示为 $f(z)=(z-z_0)^mg(z),\ g(z)$ 在 z_0 全纯且 $g(z_0)\neq 0$ 。

证明. "⇒": f 全纯 ⇒ $f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$,若收敛半径为 R,则 $f(z) = (z - z_0)^m \left[\frac{f^{(m)}(z_0)}{m!} + \frac{f^{(m+1)}(z_0)}{(m+1)!} (z - z_0) + \cdots \right]$,括号中级数收敛半径也为 R,设为 g(z),则 $f(z) = (z - z_0)^m g(z)$, g(z) 在 z_0 处全纯且 $g(z_0) = \frac{f^{(m)}(z_0)}{m!} \neq 0$ 。
" \Leftarrow ": 直接验算即可。

定理 3.4. 零点的孤立性:设 f 为域 D 上的全纯函数,若 f 在 D 上不恒为零,则 f 在 D 中的零点是孤立的。即,若 $f(z_0)=0$,则存在 z_0 的邻域 $B(z_0,\varepsilon)$,f 在 $B(z_0,\varepsilon)$ 中除去 z_0 不再有其它零点。

证明. (1) 假设 $\exists m \geq 1$ s.t. $f(z_0) = f'(z_0) = \cdots = f^{(m-1)}(z_0) = 0$ 且 $f^{(m)}(z_0) \neq 0$ 。 由命题 3.3,在 z_0 的某个邻域中 $f(z) = (z-z_0)^m g(z)$,g(z) 全纯且 $g(z_0) \neq 0$ 。g(z) 在 z_0 处连续 $\Rightarrow \exists \varepsilon > 0$ s.t. $g(z) \neq 0$, $\forall z \in B(z_0, \varepsilon)$ 。从而 f(z) 在 $B(z_0, \varepsilon)$ 中除去 z_0 外无其它零点。

(2) 假设 $f^{(m)}(z_0) = 0$ $(m = 1, 2, \cdots)$ 。由定理 3.1, $\exists \delta > 0$ s.t.

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n = 0, \ \forall \ z \in B(z_0, \delta).$$

任取 $a \in D$,在 D 中取曲线 γ 连接 z_0 和 a,记 $\rho = d(\gamma, \partial D) > 0$,取 $\varepsilon = \min\{\delta, \rho\}$,在 γ 上依次取点 $z_0, z_1, \dots, z_n = a$, $|z_j - z_{j-1}| < \varepsilon \ (j = 1, \dots, n)$,则 f 在 $B(z_0, \varepsilon)$ 中恒 为 0, $z_1 \in B(z_0, \varepsilon) \Rightarrow f^{(m)}(z_1) = 0 \ (m \ge 0)$ 。由定理 3.1, $f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_1)}{n!} (z - z_1)^n = 0$, $z \in B(z_1, \varepsilon)$ 。

依次下去, f 在 $B(z_{n-1}, \varepsilon)$ 中恒为零 $\Rightarrow f(a) = 0 \Rightarrow f \equiv 0$ 在 D 上。

定理 3.5. 唯一性定理: 设 f_1, f_2 为域 D 上的全纯函数, 如果存在 D 中的点列 $\{z_n\}$, 使 得 $f_1(z_n) = f_2(z_n)$ $(n \ge 1)$ 且 $\lim z_n = a \in D$,则 $f_1 = f_2$ 。

证明. 令 $f(z) = f_1(z) - f_2(z)$,则 $f(z_n) = 0$ $(n \ge 1)$,于是 $f(a) = \lim_{n \to \infty} f(z_n) = 0 \Rightarrow a$ 不是 f 的孤立零点 $\Rightarrow f = 0 \Rightarrow f_1 = f_2 \circ$

推论. 设 f_1, f_2 在 D 上全纯,若存在开集 $U \subset D$ 且 $f_1 = f_2$ 在 U 上成立,则 $f_1 = f_2$ 在 D 上成立。

例 3.1. P155.1: D 为区域, $a \in D$,f 在 $D \setminus \{a\}$ 上全纯且 $\lim_{z \to a} (z - a) f(z) = 0$,则 f 在 D 上全纯。

证明. 令 $F(z) = \begin{cases} (z-a)f(z), & z \neq a, \\ 0, & z = a. \end{cases}$ 则 F(z) 在 $D \setminus \{a\}$ 中全纯且在 a 处连续,由

Morera 定理,F 在 D 中全纯。设 a 为 F(z) 的 m 阶零点 $(m \ge 1)$,由命题 3.3, $F(z) = (z - z_0)^m g(z)$,g(z) 在 a 处全纯且 $g(a) \ne 0$,从而 $f(z) = (z - z_0)^{m-1} g(z)$ 在 D 上全纯。

例 3.2. P155.5: 是否存在 $f \in H(B(0,1))$ s.t.

$$f\left(\frac{1}{n}\right) = f\left(-\frac{1}{n}\right) = \frac{1}{n^3} \ (n \ge 2).$$

解. 令 $g(z) = f(z) - z^3$, $g(\frac{1}{n}) = 0$ $(n \ge 2)$ 且 $g(0) = \lim_{n \to \infty} g(\frac{1}{n}) = 0$ 。 从而 $g(z) \equiv 0 \Rightarrow f(z) = z^3$,与 $f(-\frac{1}{n}) = \frac{1}{n^3}$ 矛盾。

例 3.3. P155.10: 若函数 $\frac{1}{\cos z}$ 在 z=0 处的 Taylor 级数为 $\sum_{n=0}^{\infty} (-1)^n \frac{E_{2n}}{(2n)!} z^{2n}$,则 Euler 数 E_{2n} 满足关系式:

$$E_0 = 1,$$

$$\sum_{k=0}^{n} {2n \choose 2k} E_{2k} = 0.$$

证明.

$$1 = \left(\sum_{n=0}^{\infty} (-1)^n \frac{E_{2n}}{(2n)!} z^{2n}\right) \left(\sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}\right)$$

$$= E_0 + \sum_{n=0}^{\infty} \left(\sum_{k=0}^{\infty} (-1)^k \frac{E_{2k}}{(2k)!} (-1)^{n-k} \frac{1}{(2n-2k)!}\right) z^{2n}$$

$$= E_0 + \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \frac{(-1)^n}{(2n)!} {2n \choose 2k} E_{2k}\right) z^{2n}$$

$$\Rightarrow E_0 = 1, \sum_{k=0}^{\infty} {2n \choose 2k} E_{2k} = 0.$$

例 3.4. P155.6: 设 $f(z) = \sum_{n=0}^{\infty} a_n z^n$, R > 0, 0 < r < R, $A(r) = \max_{|z|=r} \operatorname{Re} f(z)$, 证明:

(1)
$$a_n r^n = \frac{1}{\pi} \int_0^{2\pi} [\text{Re} f(re^{i\theta})] e^{in\theta} d\theta \ (n \ge 1);$$

(2)
$$|a_n|r^n \le 2A(r) - 2\text{Re}f(0) \ (n \ge 1)_\circ$$

Lec14 Note of Complex Analysis

Xuxuayame

日期: 2023年4月20日

我们补充一下例 3.4 的 (2) 的证明。

证明. (2) 要证 $|a_n r^n| \le 2A(r) - 2\text{Re}f(0)$ $(A(r) = \max_{|z|=r} \text{Re}f(z))$ 。由

$$a_n r^n = \frac{1}{\pi} \int_0^{2\pi} (-A(r) + \operatorname{Re} f(z)) e^{-in\theta} d\theta \quad (n \ge 1)$$

$$\Rightarrow |a_n| r^n \le \frac{1}{\pi} \int_0^{2\pi} |-A(r) + \operatorname{Re} f(z)| \cdot |e^{-in\theta}| d\theta$$

$$= \frac{1}{\pi} \int_0^{2\pi} (A(r) - \operatorname{Re} f(z)) d\theta = 2A(r) - 2\operatorname{Re} f(0).$$

后者用到了调和函数的平均值公式。

例 3.5. P117.8:(Schwarz 积分公式) $f \in H(B(0,R)) \cap C(\overline{B(0,R)})$, 证明:

$$f(z) = \frac{1}{2\pi} \int_0^{2\pi} \frac{Re^{i\theta} + z}{Re^{i\theta} - z} \operatorname{Re} f(e^{i\theta}) \, d\theta + i \operatorname{Im} f(0).$$

证明.
$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$
,则

$$a_n = \frac{1}{\pi R^n} \int_0^{2\pi} \operatorname{Re} f(Re^{i\theta}) e^{-in\theta} d\theta \ (n \ge 1)$$

$$a_0 = f(0) = \text{Re}f(0) + i\text{Im}f(0) = \frac{1}{2\pi} \int_0^{2\pi} \text{Re}f(Re^{i\theta}) d\theta + i\text{Im}f(0).$$

于是

$$f(z) = \frac{1}{2\pi} \int_0^{2\pi} \operatorname{Re} f(Re^{i\theta}) \left[1 + \sum_{n=1}^{\infty} 2 \cdot R^{-n} e^{-in\theta} z^n \right] d\theta + i \operatorname{Im} f(0)$$

$$= \frac{1}{2\pi} \int_0^{2\pi} \operatorname{Re} f(Re^{i\theta}) \left[1 + \frac{2\frac{z}{Re^{i\theta}}}{1 - \frac{z}{Re^{i\theta}}} \right] d\theta + i \operatorname{Im} f(0)$$

$$= \frac{1}{2\pi} \int_0^{2\pi} \frac{Re^{i\theta} + z}{Re^{i\theta} - z} \operatorname{Re} f(Re^{i\theta}) d\theta + i \operatorname{Im} f(0).$$

例 3.6. P117.9: 设 $f \in H(B(0,R)) \cap C(\overline{B(0,R)})$, 则对 $\forall 0 < r \le R$, 有

$$f'(0) = \frac{1}{\pi r} \int_0^{2\pi} \operatorname{Re}(re^{i\theta}) e^{-i\theta} d\theta.$$

证明.

$$f(0) = \frac{1}{2\pi} \int_0^{2\pi} f(re^{i\theta}) d\theta$$

$$\frac{f(z) - f(0)}{z} = \frac{1}{z} \left[\frac{1}{2\pi} \int_0^{2\pi} \frac{re^{i\theta} + z}{re^{i\theta} - z} \operatorname{Re} f(re^{i\theta}) d\theta - \frac{1}{2\pi} \int_0^{2\pi} \operatorname{Re} f(re^{i\theta}) d\theta \right]$$

$$= \frac{1}{\pi} \int_0^{2\pi} \frac{\operatorname{Re} f(re^{i\theta})}{re^{i\theta} - z} d\theta.$$

$$\Leftrightarrow z \to 0, \ f'(0) = \frac{1}{\pi r} \int_0^{2\pi} \operatorname{Re} f(re^{i\theta}) e^{-i\theta} d\theta.$$

4 辐角原理与 Rouché 定理

定理 4.1. 设 $f \in H(D)$, $\gamma \neq D$ 中可求长简单闭曲线, γ 的内部位于 D 中, 如果 f 在 γ 上没有零点, 在 γ 的内部有零点 a_1, a_2, \dots, a_k ,阶数分别为 $\alpha_1, \alpha_2, \dots, \alpha_k$ 。则

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{k=1}^{n} \alpha_k.$$

证明. 取 $\varepsilon > 0$ s.t. $B(a_j, \varepsilon)$ 两两不交且包含在 γ 的内部 Ω 中,则 $\frac{f'(z)}{f(z)}$ 在 $\Omega \setminus \bigcup_{j=1}^k B(a_j, \varepsilon)$ 中全纯,则

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{i=1}^{k} \int_{\partial B(a_{i},\varepsilon)} \frac{f'(z)}{f(z)} dz.$$

 a_j 是 f(z) 的 α_j 阶零点 \Rightarrow f 在 a_j 的某个邻域中有 $f(z) = (z - a_j)^{\alpha_j} g_j(z)$, $g_j(z)$ 全纯且 $g_i(a_i) \neq 0$,于是

$$\begin{split} \frac{f'(z)}{f(z)} &= \frac{\alpha_j (z - a_j)^{\alpha_j - 1} g_j(z) + (z - a_j)^{\alpha_j} g_j'(z)}{(z - a_j)^{\alpha_j} g_j(z)} = \frac{\alpha_j}{z - a_j} + \frac{g_j'(z)}{g_j(z)} \\ \Rightarrow & \frac{1}{2\pi i} \int_{\partial B(a_j,\varepsilon)} \frac{f'(z)}{f(z)} \, \mathrm{d}\, z = \alpha_j. \end{split}$$

设 Γ 是 w- 平面上一条不过原点的曲线,方程为 w=w(t) ($a \le t \le b$),w(t) 的辐角记为 $\theta(t)$,且 $\theta(t)$ 为 t 的连续函数,记 $\triangle_{\Gamma} \operatorname{Arg} w = \theta(b) - \theta(a)$,称之为曲线 Γ 的**辐角** 增量。

如果Γ为不过原点的闭曲线 (可能是非简单的闭曲线),则

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{\mathrm{d} w}{w} = \frac{1}{2\pi} \triangle_{\Gamma} \mathrm{Arg} w = \Gamma$$
绕原点的圈数.

例 4.1.
$$\Gamma \colon [0,2\pi] \to \mathbb{C}, \ \gamma(t) = e^{it}, \ \frac{1}{2\pi i} \int_{\Gamma} \frac{\mathrm{d}\,w}{w} = \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{e^{it} i \, \mathrm{d}\,t}{e^{it}} = 1 \circ \Gamma \colon [0,2\pi] \to \mathbb{C}, \ \gamma(t) = e^{2it}, \ \frac{1}{2\pi i} \int_{\Gamma} \frac{\mathrm{d}\,w}{w} = \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{e^{2it} 2i \, \mathrm{d}\,t}{e^{2it}} = 2 \circ \mathbb{C}$$

定义 **4.1.** $\frac{1}{2\pi i}\int_{\Gamma}\frac{\mathrm{d}\,w}{w}$ 称为闭曲线 Γ 绕原点的环绕指数 (Winding number)。

定理 4.2. 辐角原理:设 $f \in H(D)$, $\gamma \to D$ 中可求长简单闭曲线, γ 的内部包含在 D 内,如果 f 在 γ 上无零点,则 f 在 γ 内部的零点个数等于 $f \circ \gamma$ 绕原点的环绕指数,即 γ 在 f 下的像绕原点的圈数。

例 4.2. $f(z)=z^2$ 在 |z|<1 中的零点个数 = 2,另一方面,当 z 沿 |z|=1 绕行一周时,其像在 w- 平面绕原点绕行 2 周。

Lec15 Note of Complex Analysis

Xuxuayame

日期: 2023年4月23日

讲解部分期中考试题。

1、设E连通,证明 \overline{E} 连通。

证明. 假设 \overline{E} 不连通,则存在非空不交集 $E_1, E_2 s.t.$ $\overline{E} = E_1 \cup E_2$ 且 $\overline{E_1} \cap E_2 = \emptyset$, $E_1 \cap \overline{E_2} = \emptyset$ 。

那么 $E = E \cap \overline{E} = (E \cap E_1) \cup (E \cap E_2)$,而 $\overline{E \cap E_1} \cap (E \cap E_2) \subset \overline{E_1} \cap E_2 = \emptyset$, $E \cap E_1 \cap \overline{E \cap E_2} \subset E_1 \cap \overline{E_2} = \emptyset$ 。

不妨设 $E \cap E_2 = \varnothing$,则 $E \subset E_1$, $\overline{E} \subset \overline{E_1}$, $E_2 \subset \overline{E} \cap E_2 \subset \overline{E_1} \cap E_2 = \varnothing$,矛盾。 \square

2、 $f: D \to \mathbb{C}$ 连续,f 恒不为零,若 f^2 全纯,证明 f 全纯。

证明.
$$\forall z_0 \in D, \ \frac{f^2(z) - f^2(z_0)}{z - z_0} = (f(z) + f(z_0)) \frac{f(z) - f(z_0)}{z - z_0} \circ$$

3、 $p(z)=z^n+a_{n-1}z^{n-1}+\cdots+a_1z-1,\ a_1,\cdots,a_{n-1}\in\mathbb{R},\ p(z)$ 在 |z|<1 中无零点,求 P(1)。

证明. 设 P(z) 的根 z_1, z_2, \dots, z_n ,则 $(-1)^n z_1 \dots z_n = -1$,于是 $|z_j| \ge 1 \Rightarrow |z_j| = 1$ $(1 \le j \le n)$,由 $P: \mathbb{R} \to \mathbb{R}$ 为连续函数,P(0) = -1, $P(+\infty)$,P(z) 在 $(0, +\infty)$ 中有零点,只能是 1,即 P(1) = 0。

 $4 \cup u : \mathbb{C} \to \mathbb{R}$ 调和函数且对 $\forall z \in \mathbb{C}, \ u(z) \leq 2|\log|z||+1$,证明 u 为常数。

证明. \mathbb{C} 单连通, $\exists v \ s.t. \ f(z) = u + iv$ 全纯。

当 $n \geq 3$ 时,令 $r \to +\infty$,得 $F^{(n)}(0) = 0$ 。那么 $F(z) = \sum_{n=0}^{\infty} \frac{F^{(n)}(0)}{n!} z^n$ 为多项式,而 $F(z) = e^{f(z)}$ 恒不为零,由代数学基本定理,F(z) 只能是常数。

回到正文。

定理 4.3. Rouché: 设 $f,g \in H(D)$, $\gamma \not\in D$ 中可求长简单闭曲线, γ 的内部位于 D 中,如果当 $z \in \gamma$ 时

$$|f(z) - g(z)| < |f(z)|.$$

则 f 与 g 在 γ 的内部零点个数相等。

证明. (From Stein) \diamondsuit $F_t(z) = f(z) + t \cdot (g(z) - f(z)), \ 0 \le t \le 1, \ F_0(t) = f(z), F_1(z) = g(z)$ 。 当 $z \in \gamma$ 时 $|f(z) - g(z)| < |f(z)| \Rightarrow t \cdot |f(z) - g(z)| < |f(z)| \ (0 \le t \le 1) \Rightarrow F_t(z) \ne 0, \ \forall \ z \in \gamma$ 。

于是 F_t 在 γ 中零点个数 $N_{f_t} = \frac{1}{2\pi i} \int_{\gamma} \frac{F_t'(z)}{F_t(z)} \, \mathrm{d}\,z$,由于 $\frac{F_t'(z)}{F_t(z)}$ 关于 t 连续,故 N_{f_t} 关于 t 连续。由于 N_{f_t} 只取整数,故 N_{f_t} 为常数。

例 4.3. 求方程 $z^4 - 6z + 3 = 0$ 在圆环 1 < |z| < 2 中的根的个数。

解. (1) 在 |z| = 1 上,取 f(z) = -6z, $g(z) = z^4 - 6z + 3$,那么 $|f(z) - g(z)| = |z^4 + 3| \le 4 < |f(z)|$

⇒ 方程在 |z| < 1 中有一个根。

$$|f(z) - g(z)| = |-6z + 3| \le 15 < |f(z)|$$

 \Rightarrow 方程在 |z| < 2 中有 4 个根。

(3) 当 |z| = 1 时, $|z^4 - 6z + 3| \ge 2$ ⇒ 方程在 |z| = 1 上无根。 综上,方程在 1 < |z| < 2 中有 3 个根。

例 4.4. 设 $a_1, a_2, \dots, a_n \in B(0,1), f(z) = \prod_{k=1}^n \frac{a_k - z}{1 - \overline{a_k z}},$ 证明: 若 |b| < 1,则 f(z) - b 在 B(0,1) 中恰有 n 个根。

证明. 当 |z| = 1 时,|f(z) - b - f(z)| = |b| < 1 = |f(z)|,于是 f(z) - b 在 |z| < 1 中零 点个数 = f(z) 在 |z| < 1 中零点个数 = n。

例 4.5. 设 f 在域 D 上全纯, γ 为 D 中的简单闭曲线, γ 的内部位于 D 中,若 f 在 γ 上 只取实数,证明 f 为常数。

证明. 任取 $z_0 = a + ib$ (b > 0),取 $g(z) = f(z) - z_0$,当 $z \in \gamma$ 时, $\operatorname{Im} g(z) < 0$,若 $g \circ \gamma$ 绕原点的圈数 = 0,由辐角原理,g(z) 在 γ 内部无零点,即对 $\forall z \in \operatorname{int}(\gamma)$, $f(z) \neq z_0$ 。

同理对 $\tilde{z_0} = a + ib \ (b < 0), \ f(z) \neq \tilde{z_0}, \ \forall \ z \in \operatorname{int}(\gamma), \$ 故 $\operatorname{Im} f(z) = 0, \ z \in \operatorname{int}(\gamma), \$ 于 是由 C-R 方程,f 在 $\operatorname{int}(\gamma)$ 上为常数,进而由唯一性定理,f 在 D 上为常数。

例 4.6. 证明: $z^4 + 2z^3 - 2z + 10 = 0$ 在每个象限各有 1 个根。

证明. 设 $P(z) = z^4 + 2z^3 - 2z + 10$ 。我们如图取一个扇形围道。

当 $z \in \gamma_1$ 时,z = x > 0, $P(x) = (x^2 - 1)(x + 1)^2 + 11$,当 x > 1 时 P(x) > 11,当 0 < x < 1 时 $P(x) \ge -2 + 11 = 0$,故 P(z) 在 γ_1 上无零点。

当 $R \gg 1$, $z \in \gamma_2$ 时无零点。 $z \in \gamma_3$ 时, $P(iy) = y^4 + 10 - 2iy(y+1) \neq 0$ 。

P(z) 在 γ_1 上取正实数,故 $\Delta_{\gamma_1} \mathrm{Arg} P(z) = 0$,当 $z \in \gamma_2$ 时, $P(z) = z^4 (1 + \frac{2z^3 - 2z + 10}{z^4})$,故 $\Delta_{\gamma_2} P(z) = 4 \times \frac{\pi}{2} + o(1) = 2\pi + o(1) \ (R \to +\infty)$ 。而 $P(iy) = (y^4 + 10) (1 - \frac{2y(y+1)}{y^4 + 10}i) \Rightarrow \Delta_{\gamma_3} P(z) = o(1)$ 。从而 $\Delta_{\gamma} P(z) = 2\pi$,于是 f(z) 在第一象限有一个根。

而实系数多项式的根共轭出现,于是第四象限有一个根。进而第二、第三象限也各有一个根。 □

Lec16 Note of Complex Analysis

Xuxuayame

日期: 2023年4月25日

对于 $f(z) = z^2$, $z \in B(0,1)$, f(0) = 0, 0 为 2 阶零点,则 f 在 0 附近是 2 对 1 的,即将两个点打到一个点去。

定理 4.4. 设 $f \in H(D)$, $z_0 \in D$, $w_0 = f(z_0)$, 如果 z_0 是 $f(z) - w_0$ 的 m 阶零点,则 $\exists \rho_0 > 0$,对任意 $0 < \rho < \rho_0$,存在 $\delta = \delta(\rho) > 0$,使得对任意 $a \in B(w_0, \delta)$, $a \neq w_0$,f(z) - a 在 $B(z_0, \rho)$ 中恰有 m 个不同的零点。

证明. 由零点的孤立性, $\exists \rho_0 > 0 \ s.t. \ f(z) - w_0 \ \text{在} \ \overline{B(z_0, \rho)}$ 中除去 z_0 外没有其它零点,设 $0 < \rho < \rho_0$,记 $\delta = \inf\{|f(z) - w_0| \mid z \in \partial B(z_0, \rho)\}$, $\forall a \in B(w_0, \delta)$,记 $F(z) = f(z) - w_0$,G(z) = f(z) - a,则当 $z \in \partial B(z_0, \rho)$, $|F(z) - G(z)| = |a - w_0| < \delta \leq |F(z)|$ 。由 Rouché 定理,f(z) - a 与 $f(z) - w_0$ 在 $B(z_0, \rho)$ 中零点个数相同,即 m 个。

为证 m 个零点两两不同,可能需要将 ρ_0 再减小一些。不妨设 $m \ge 2$,则 $f(z_0) = w_0$ 且 $(f(z) - w_0)'(z_0) = 0$,即 $f'(z_0) = 0$,f 不是常数 $\Rightarrow z_0$ 为 f' 的孤立零点,取 $\rho_0 > 0$ 满足

- (1) $z_0 \to f(z) w_0 \in B(z_0, \rho_0)$ 中唯一零点;
- (2) z_0 为 f'(z) 在 $B(z_0, \rho_0)$ 中唯一零点。

重复上述证明,易见 f(z) - a 在 $B(z_0, \rho)$ 中的零点都是 1 阶的,从而是 m 个不同的零点。

推论. 设 $f \in H(D)$, $z_0 \in D$, $w_0 = f(z_0)$, 则对充分小的 $\rho > 0$, $\exists \delta = \delta(\rho) > 0$ s.t. $f(B(z_0, \rho)) \supset B(w_0, \delta)$ 。

定义 4.2. 设 $D \subset \mathbb{C}$ 为区域, $f: D \to \mathbb{C}$ 称为**开映射**,如果对任何开集 $U \subset D$,f(U) 为开集。

定理 4.5. 设 f 为域 D 上非常数的全纯映射,则

- (1) f 为开映射;
- (2) f(D) 为 \mathbb{C} 中的区域。
- 证明. (1) 设 $U \subset D$ 为开集,任取 $w_0 \in f(U)$, $\exists z_0 \in U$, $f(z_0) = w_0$,取 $\rho > 0$ s.t. $B(z_0, \rho) \subset U$,由推论, $\exists \delta > 0$ s.t. $B(w_0, \delta) \subset f(B(z_0, \rho)) \subset f(U) \Rightarrow f(U)$ 为开集。

(2) D 连通 $\Leftrightarrow D$ 道路连通 $\Rightarrow f(D)$ 道路连通。

定理 4.6. 若 f 为域 D 中单叶全纯函数,则对 $\forall z \in D, f'(z) \neq 0$ 。

证明. 假设存在 $z_0 \in D$, $f'(z_0) = 0$, 则 z_0 为 $f(z) - w_0$ 的 m 阶零点且 $m \ge 2$,由定理 4.4(加强版) 知 f 在 z_0 附近不是单射,矛盾。

评论. 逆命题不成立。如 $f(z) = e^z$, 但局部是对的。

定理 4.7. 设 $f \in H(D)$, 如果 $z_0 \in D$ 且 $f'(z_0) \neq 0$, 则 f 在 z_0 的某个邻域中是单叶的。

证明. $f'(z_0) \neq 0 \Rightarrow z_0$ 为 $f(z) - f(z_0)$ 的 1 阶零点。由定理 4.4, $\exists \rho > 0$, $\exists \delta > 0$ s.t. 对 $\forall a \in B(f(z_0), \delta), f(z) - a$ 在 $B(z_0, \rho)$ 中有唯一的零点。再由 f 在 z_0 处连续,故 $\exists \rho_1 < \rho \ s.t. \ f(B(z_0, \rho_1)) \subset B(f(z_0), \delta) \Rightarrow f|_{B(z_0, \rho_1)}$ 为单射。

定理 4.8. 设 f 为域 D 上的单叶全纯函数,则逆映射 f^{-1} : $f(D) \to D$ 为全纯函数且 $(f^{-1})'(w) = \frac{1}{f'(z)}$,其中 $w = f(z) \in f(D)$ 。

证明. f 为开映射 $\Rightarrow f^{-1}$ 为连续映射。

$$\lim_{w \to w_0} \frac{f^{-1}(w) - f^{-1}(w_0)}{w - w_0} = \lim_{z \to z_0} \frac{z - z_0}{f(z) - f(z_0)} = \frac{1}{\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}} = \frac{1}{f'(z_0)} (f'(z_0) \neq 0).$$

定义 4.3. 单叶全纯函数也称为双全纯函数。

定理 **4.9.** Hurwitz: 设 f_n 为域 D 上的一列全纯函数,在 D 中紧一致收敛于不恒为零的函数 f,设 γ 为 D 中的可求长简单闭曲线, γ 的内部位于 D 中且不经过 f 的零点,则存在 N,当 $n \geq N$ 时, f_n 与 f 在 γ 内部的零点个数相同。

证明. 由 W-定理, f 全纯, f 在 γ 上无零点, 故

$$\min\{|f(z)|\mid z\in\gamma\}=\varepsilon>0.$$

$$|f_n(z) - f(z)| < \varepsilon \le |f(z)|.$$

由 Rouché 定理, $f_n(z)$, f(z) 在 $int(\gamma)$ 中零点个数相同。

定理 **4.10.** 设 f_n 为域 D 上的一列单叶全纯函数,在 D 中紧一致收敛于 f。如果 f 不是 常数,则 f 为 D 中的单叶全纯函数。

证明. 若 f 不是常数,也不单叶,则存在 $z_1 \neq z_2$ s.t. $f(z_1) = f(z_2) = w_0$ 。记 $F(z) = f(z) - w_0$, $F(z_1) = F(z_2) = 0$, z_1, z_2 为 F(z) 的孤立零点。故 $\exists \varepsilon > 0$ s.t. $\overline{B(z_1, \varepsilon)} \cap \overline{B(z_2, \varepsilon)} = \varnothing$ 且 F(z) 在 $\overline{B(z_1, \varepsilon)}$, $\overline{B(z_2, \varepsilon)}$ 中无其它零点。令 $F_n(z) = f_n(z) - w_0$,则 $F_n(z)$ 在 D 中紧一致收敛于 F(z),由定理 4.9, $\exists N$,当 n > N 时, $F_n(z)$ 在 $B(z_1, \varepsilon)$ 与 $B(z_2, \varepsilon)$ 中各有一个零点,记为 z'_n, z''_n ,则 $z'_n \neq z''_n$, $f_n(z'_n) = w_0 = f_n(z''_n)$,与 f_n 单射矛盾。

例 4.7. 设 r > 0,证明: 当 n 充分大时, $f_n(z) = 1 + z + \frac{z^2}{2!} + \dots + \frac{z^n}{n!}$ 在 B(0,r) 中无零点。

证明. $f_n(z)$ 在 $\overline{B(0,1)}$ 中一致收敛于 e^z ,而 e^z 在 B(0,r) 中无零点,由 Hurwitz 定理,n 充分大时 f_n 在 B(0,r) 中无零点。

例 4.8. 用辐角原理证明代数学基本定理:

证明. 设 $P(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0$, $Q(z) = a_n z^n$ $(a_n \neq 0)$, 那么取 r 足够大,在 $\partial B(0,r)$ 上 P(z), Q(z) 无零点,且 |P(z) - Q(z)| < |Q(z)|,故 P(z) 在 B(0,r) 中零点个数与 Q(z) 一致,而 $Q(z) \circ \partial B(0,r)$ 的环绕指数为 n,从而 P(z) 有零点。

Lec17 Note of Complex Analysis

Xuxuayame

日期: 2023年4月27日

5 最大模原理和 Schwarz 引理

定理 5.1. 设 f 是区域 D 中非常值全纯函数,则 |f(z)| 在 D 中取不到最大值。

证明. f 非常值全纯 \Rightarrow f 为开映射。设 $z_0 \in D$ 且 $|f(z_0)|$ 取到最大值。取 $\delta > 0$ s.t. $B(z_0, \delta) \subset D$,则 $f(B(z_0, \delta))$ 为开集。取 $w \in f(B(z_0, \delta))$ 且 $|w| > |f(z_0)|$,取 $z \in B(z_0, \delta)$ 且 f(z) = w,则 $|f(z)| > |f(z_0)|$,与 z_0 的取法矛盾。

定理 5.2. 设 $D \subset \mathbb{C}$ 为有界区域, $f \in H(D) \cap C(\overline{D})$ 。若 f 非常值,则 f 的最大模在 D 的边界上达到。

证明. \overline{D} 为紧集 $\Rightarrow |f(z)|$ 在 \overline{D} 中有最大值。由定理 5.1,最大值只能在 ∂D 中取到。 \Box

例 5.1. 当 D 无界时,最大模不一定在 ∂D 上取到。例如 $f(z) = e^{e^z}$, $z \in D = \{z \mid |\mathrm{Im}z| < \frac{\pi}{2}\}$,当 $z \in \partial D$, $z = x \pm \frac{\pi}{2}i$, $e^z = e^x \cdot e^{\pm \frac{\pi}{2}i} = \pm i e^x$, $|e^{e^z}| = |e^{\pm i e^x}| = 1$,当 $z = x \in \mathbb{R}$ 且 $x \to +\infty$ 时, $e^{e^x} \to +\infty$ 。

例 5.2. 用最大模原理证明代数学基本定理。

证明. 设 $P(z)=a_nz^n+a_{n-1}z^{n-1}+\cdots+a_1z+a_0\ (a_n\neq 0)$,假设 P(z) 无零点,则 $\frac{1}{P(z)}$ 在 $\mathbb C$ 上全纯。由于 $\lim_{z\to\infty}|P(z)|=+\infty$, $\exists\,R>0$,当 |z|=R 时 |P(z)|>|P(0)|, $|\frac{1}{P(z)}|<|\frac{1}{P(0)}|$,与定理 5.2 矛盾。

例 5.3. 设 $f \in H(B(\infty,R)) \cap C(\overline{B(\infty,R)})$,并且 $a = \lim_{\substack{z \to \infty \\ |z| = r}} f(z)$ 存在。证明:若 f 非常数,则 $M(r) = \max_{\substack{|z| = r}} |f(z)|$ 是 $[R, +\infty)$ 上的严格递减函数。

证明. $\diamondsuit g(z) = \begin{cases} f(\frac{1}{z}), & z \neq 0, \\ a, & z = 0 \end{cases}$,则 g(z) 在 $0 < |z| < \frac{1}{R}$ 中全纯且在 z = 0 处连续 $\Rightarrow g(z)$ 在 $|z| < \frac{1}{R}$ 中全纯。

由定理 5.2, 当 $R < R_1 < R_2$ 时 $\frac{1}{R_2} < \frac{1}{R_1}$, $\max_{|z| = \frac{1}{R_2}} |g(z)| < \max_{|z| < \frac{1}{R_1}} |g(z)|$, 即 $\max_{|z| = R_2} |f(z)| < \max_{|z| = R_1} |f(z)|$ □

例 5.4. Hadamand 三圆定理: $D: 0 < r_1 < |z| < r_2, \ f \in H(D) \cap C(\overline{D}), \ M(r) = \max_{|z|=r} |f(z)|$ 。

证明: $\log M(r)$ 在 $[r_1, r_2]$ 上是 $\log r$ 的凸函数,即

$$\log M(r) \le \frac{\log r_2 - \log r}{\log r_2 - \log r_1} \log M(r_1) + \frac{\log r - \log r_1}{\log r_2 - \log r_1} \log M(r_2).$$

证明. 只需证 $\log M(r) \le s \log M(r_1) + (1-s) \log M(r_2)$ 。

取 $\alpha \in \mathbb{R}$ s.t. $M(r_1) \cdot r_1^{\alpha} \leq M(r_2) \cdot r_2^{\alpha}$,即 $\alpha = \frac{\log M(r_1) - \log M(r_2)}{\log r_2 - \log r_1}$,如果对 $\forall r \in (r_1, r_2), M(r) \cdot r^{\alpha} \leq M(r_1) r_1^{\alpha}$,则

$$\log M(r) + \alpha \log r \le \log M(r_1) + \alpha \log r_1,$$

即得结论。

于是令 $g(z) = z^{\alpha} f(z)$, 对 g(z) 用最大模原理。(稍有瑕疵)

考虑
$$F(z) = |z|^{\alpha} \cdot |f(z)|$$
,则 $\max_{|z|=r_1} F(z) = \max_{|z|=r_2} F(z) = A$ 。 下证 $\max_{z \in \overline{D}} F(z) = A$ 。 否则存在 $z_0 \in D$ s.t. $F(z_0) = \sup\{F(z) \mid z \in \overline{D}\} > A$,记 $z_0 = r_0 e^{i\theta_0}$, $D' = r_0 e^{i\theta_0}$

否则存在 $z_0 \in D$ s.t. $F(z_0) = \sup\{F(z) \mid z \in \overline{D}\} > A$,记 $z_0 = r_0 e^{i\theta_0}$, $D' = D \setminus \{re^{i(\theta_0 + \pi)} \mid r_1 < r < r_2\}$,D' 为不含 0 的单连通区域,故 $z^{\alpha}f(z)$ 在 D' 中有单值分支,记为 g。则 g 在 D' 中取到最大模,故 g 为常值函数,即 |g(z)| = A,与 $|g(z_0)| > A$ 矛盾。

例 5.5. D 如图所示, $f \in H(D) \cap C(\overline{D})$,M 是 |f(z)| 在 \overline{D} 上的最大值,m 是 |f(z)| 在 $[z_1, z_2]$ 上的最大值,证明: $|f(0)| \leq m^{\frac{1}{4}} \cdot M^{\frac{3}{4}}$ 。

证明. 令 $F(z) = f(z) \cdot f(iz) \cdot f(i^2z) \cdot f(i^3z)$ 全纯,对 $\forall z \in \partial D, z, iz, i^2z, i^3z$ 至少有一个属于 $[z_1, z_2]$,故 $|F(z)| \leq m \cdot M^3$ 。由最大模, $|F(0)| \leq mM^3$,即 $|f(0)|^4 \leq mM^3$ 。

例 5.6. 设 P 是一个 k 次多项式, 当 |z|=1 时 $|P(z)|\leq 1$, 证明: 当 |z|>1 时, $|P(z)|\leq |z|^k$ 。

证明. 设 $P(z) = a_k z^k + a_{k-1} z^{k-1} + \dots + a_1 z + a_0 \ (a_k \neq 0), \ P(\frac{1}{z}) = a_k \cdot \frac{1}{z^k} + a_{k-1} \cdot \frac{1}{z^{k-1}} + a_{k-1} \cdot \frac{1}{z$

$$\dots + \frac{a_1}{z} + a_0 \circ \Leftrightarrow f(z) = \begin{cases} z^k P(\frac{1}{z}), & z \neq 0, \\ a_k, & z = 0 \end{cases}$$
 在 $|z| < 1$ 中全纯。 $z^k P(\frac{1}{z}) = a_0 z^k + a_1 z^{k-1} + a_0 z^k + a_1 z^{k-1} + a_0 z^k + a_1 z^{k-1} + a_0 z^k +$

 $\cdots + a_{k-1}z + a_k$,当 |z| = 1 时, $|f(z)| = |z^k||P(\frac{1}{z})| \le 1$,由最大模,当 |z| < 1 时, $|f(z)| \le 1$, $|z^k||P(\frac{1}{z})| \le 1 \Rightarrow |P(\frac{1}{z})| \le |\frac{1}{z}|^k \Rightarrow |P(w)| \le |w|^k \ (|w| > 1)$ 。

Lec18 Note of Complex Analysis

Xuxuayame

日期: 2023年5月4日

定理 5.3. Schwarz 引理: 设 $f: B(0,1) \to B(0,1)$ 全纯且 f(0) = 0,则

- (1) $|f(z)| \le |z|$;
- (2) $|f'(0)| \le 1$;
- (3) 若存在 $z_0 \neq 0$ 使得 $|f(z_0)| = |z_0|$ 或者 |f'(0)| = 1,则存在 $\theta \in \mathbb{R}$ s.t. $f(z) = e^{i\theta}z$ 。
- 证明. (1) f(0) = 0,故 $f(z) = a_1 z + a_2 z^2 + \cdots = z g(z)$, $g(0) = a_1 = f'(0)$,g(z) 在 B(0,1) 中全纯。

任取 0 < r < 1,当 |z| = r 时 $|g(z)| = \frac{|f(z)|}{|z|} \le \frac{1}{r}$,由最大模,当 |z| < r 时 $|g(z)| \le \frac{1}{r}$,令 $r \to 1$,当 |z| < 1 时, $|g(z)| \le 1 \Rightarrow |f(z)| \le |z|$ 。

- (2) $|f'(0)| = |g(0)| \le 1$.
- (3) 若 $\exists z_0 \neq 0$ s.t. $|f(z_0)| = |z_0|$,则 $|g(z_0)| = 1$ 。由最大模原理, $g(z) = \text{Const.} = g(z_0) = e^{i\theta}$,因 $f(z) = e^{i\theta}z$ 。

若 |f'(0)| = 1,则 $|g(0)| = 1 \Rightarrow g(z) = \text{Const.}$ 。

定义 5.1. 设 D 为区域, $f: D \to D$ 单叶全纯且 f(D) = D,则称 f 为域 D 上的一个全纯自同构 (Automorphism)。

D 上全体全纯自同构的集合记为 Aut(D), Aut(D) 在复合下构成群,称为 D 的全纯自同构群。

设
$$|\alpha| < 1$$
,定义 $\varphi_{\alpha}(z) = \frac{\alpha - z}{1 - \overline{\alpha}z}$, $\varphi_{\alpha}(\alpha) = 0$, $\varphi_{\alpha}(0) = \alpha$, $|\varphi_{\alpha}(z)| < 1$ 。且.
$$\varphi_{\alpha} \circ \varphi_{\alpha}(z) = \frac{\alpha - \frac{\alpha - z}{1 - \overline{\alpha}z}}{1 - \overline{\alpha} \cdot \frac{\alpha - z}{1 - \overline{\alpha}z}} = \frac{-\alpha \overline{\alpha}z + z}{1 - |\alpha|^2} = z.$$

这就意味着 φ_{α} 可逆且 $\varphi_{\alpha}^{-1} = \varphi_{\alpha}$ 。

定理 5.4.

$$\operatorname{Aut}(B(0,1)) = \left\{ f(z) = e^{i\theta} \frac{a-z}{1-\overline{a}z} \middle| \theta \in \mathbb{R}, |a| < 1 \right\}.$$

证明. 设 $f \in \text{Aut}(B(0,1))$,设 f(a) = 0 (|a| < 1),令 $g = f \circ \varphi_a$, $g(0) = f \circ \varphi_a(0) = 0$,那么由 S-引理, $|g(z)| \le |z|$ 对 |z| < 1,由于 g 可逆, $g^{-1} \in \text{Aut}(B(0,1))$, $g^{-1}(0) = 0$ 。由 S-引理, $|g^{-1}(z)| < |z|$ 对 |z| < 1,令 z = g(w),则 |w| < |g(w)| 对 |w| < 1。

从而 |g(z)|=|z| 对 |z|<1,由 S-引理, $g(z)=e^{i\theta}z$, ∃ θ , 于是 $f=f\circ\varphi_a\circ\varphi_a=g\circ\varphi_a$ 。

定理 5.5. Schwarz-Pick: 设 $f: B(0,1) \to B(0,1)$ 全纯, 对于 $a \in B(0,1), f(a) = b$, 则

- (1) $\forall |z| < 1, |\varphi_b \circ f(z)| \leq |\varphi_a(z)|;$
- (2) $\frac{|f'(z)|}{1-|f(z)|^2} \leq \frac{1}{1-|z|^2}$;
- (3) (1) 或 (2) 中等号成立,则 $f \in Aut(B(0,1))$ 。
- 证明. (1) 令 $g = \varphi_b \circ f \circ \varphi_a$,则 g(0) = 0。由 S-引理, $|g(z)| \leq |z|$,即 $|\varphi_b \circ f \circ \varphi_a(z)| \leq |z|$, $\forall z$ 。令 $z = \varphi_a(w)$,则 $|\varphi_b \circ f(w)| \leq |\varphi_a(w)|$ 。
 - (2) 由 S-引理, $|g'(0)| \le 1$,即 $|(\varphi_b \circ f \circ \varphi_a)'(0)| \le 1$,即 $|\varphi_b'(b)f'(a)\varphi_a'(0)| \le 1$ 。 易见 $\varphi_a'(z) = \frac{|a|^2 1}{(1 \overline{a}z)^2}, \ \varphi_a'(0) = |a|^2 1, \ \varphi_a'(a) = \frac{-1}{1 |a|^2}, \$ 故 $\frac{1}{1 |b|^2}|f'(a)|(-|a|^2 + 1) \le 1 \Rightarrow \frac{|f'(a)|}{1 |f(a)|^2} \le \frac{1}{1 |a|^2}$ 。
 - (3) 若等号成立,则 $g = \varphi_b \circ f \circ \varphi_a$ 为旋转映射 $\Rightarrow f = \varphi_b \circ g \circ \varphi_a \in \operatorname{Aut}(B(0,1))$ 。

例 5.7. 设 $f: B(0,1) \rightarrow B(0,1)$ 全纯,证明:

$$\frac{||f(0)| - |z||}{1 - |f(0)| \cdot |z|} \le |f(z)| \le \frac{|f(0)| + |z|}{1 - |f(0)| \cdot |z|}.$$

证明. 左边不等号不成立,如 $f(z) = z^2$ 。

另一方面,由 S-P 定理, $|\varphi_{f(0)} \circ f(z)| \leq |\varphi_0(z)| = |z|$,

$$|f(z)| = |\varphi_{f(0)} \circ (\varphi_{f(0)} \circ f)(z)| = \frac{|f(0) - \varphi_{f(0)} \circ f(z)|}{|1 - \overline{f(0)}\varphi_{f(0)} \circ f(z)|}$$
$$= \frac{|f(0)| + |z|}{1 - |\overline{f(0)}| \cdot |\varphi_{f(0)} \circ f(z)|} \le \frac{|f(0)| + |z|}{1 - |f(0)| \cdot |z|}.$$

分式线性变换

考虑变换

$$L(z) = \frac{az+b}{cz+d} (a,b,c,d \in \mathbb{C}, ad-bc \neq 0).$$

我们有如下事实:

- 1. $c \neq 0$ 时,除去 $z = -\frac{d}{c}$,L(z) 全纯。 c = 0 时,L(z) = Az + b,在 \mathbb{C} 上全纯。
- 2. L(z) 有反函数, $z = L^{-1}(w) = \frac{-dw+b}{cw-a}$ 。
- 3. $c \neq 0$ 时,规定 $L(-\frac{d}{c}) = \infty$, $L(\infty) = \frac{a}{c}$ 。 c = 0 时,规定 $L(\infty) = \infty$,此时, $L: \mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$ 为一对一映射。

4. 分解。c = 0 时 L(z) = Az + B, $A = re^{i\theta}$ (r > 0),于是由旋转 $z_1 = e^{i\theta}z$,伸缩 $z_2 = rz_1$,平移 $L(z) = z_2 + B$ 复合而成。 $c \neq 0$ 时, $L(z) = \frac{a}{c} + \frac{bc - ad}{c^2} \frac{1}{z + \frac{d}{c}}$,这里反演 $z \mapsto \frac{1}{z}$ 可以分解为 $z \mapsto \frac{1}{\overline{z}}$, $z \mapsto \overline{z}$,分别为关于圆周和实轴的对称。

定义 5.2. 设 $\gamma: |z-a| = R$, 如果 $z_2 - a = \frac{R^2}{z_1 - a}$, 则称 z_1, z_2 关于 γ 对称。

评论. 蕴含了 a,z_1,z_2 共线,且 $\frac{|z_1-a|}{R}=\frac{R}{|z_2-a|}$ 。

命题 5.6. 过圆周 γ 的两个对称点 z_1, z_2 的任意圆周与 γ 正交。

证明. 设 Γ 是过 z_1, z_2 的圆周, 过 a 点作 Γ 的切线, 切点为 z'。由切割线定理,

$$|z' - a|^2 = |z_1 - a||z_2 - a| = R^2 \Rightarrow z' \in \Gamma.$$

于是 γ 与 Γ 在z'处正交。

圆周的表示

- (1) 考虑 $\frac{|z-z_1|}{|z-z_2|} = k(z_1, z_2 \in \mathbb{C}$ 为给定的两点)。
 - (i) $k \neq 1$, $|z z_1| = k|z z_2|$ 。 易见,当 $|z_1| = \lambda |z_2|$ 时, $|z_1 - \lambda^2 z_2| = \lambda |z_1 - z_2|$,故 $|z - z_1 - k^2(z - z_2)| = k|(z - z_1) - (z - z_2)|$,即

$$\left|z - \frac{z_1 - k^2 z_2}{1 - k^2}\right| = \frac{k}{|1 - k^2|} |z_1 - z_2|.$$

可以验证, z_1, z_2 为这个圆周的对称点。

(ii) k=1,则为直线 (在 \mathbb{C}_{∞} 中可以看成圆周)。

Lec19 Note of Complex Analysis

Xuxuayame

日期: 2023年5月9日

我们已经知道 $\left| \frac{z-z_1}{z-z_2} \right| = k$ 为圆周 (k > 0)。

反过来,设 γ : |z-a|=R 为一个圆周,设 z_1,z_2 为 γ 的对称点。则 $|\frac{z-z_1}{z-z_2}|=\frac{|z_1-a|}{R}=\frac{R}{|z_2-a|}$ 。

定理 5.7. 任何圆周都可以表示为 $\left|\frac{z-z_1}{z-z_2}\right| = k(常数) > 0$, 其中 z_1, z_2 为圆周的对称点。

分式线性变换 $w=f(z)=\frac{z-z_1}{z-z_2}$ 把圆族 $C_k:|\frac{z-z_1}{z-z_2}|=k\ (k>0)$ 映为 w- 平面上的圆族 |w|=k。

定理 5.8. 分式线性变换将圆周映为圆周且将对称点映为对称点。

证明. 设
$$\gamma$$
: $|\frac{z-z_1}{z-z_2}| = k$, $w = f(z) = \frac{az+b}{cz+d}$, 则 $z = f^{-1}(w) = \frac{-dw+b}{cw-a} \Rightarrow$
$$\left|\frac{\frac{-dw+b}{cw-a} - z_1}{\frac{-dw+b}{cw-a} - z_2}\right| = k \Rightarrow \left|\frac{(cz_1+d)w - (az_1+b)}{(cz_2+d)w - (az_2+b)}\right| = k.$$

- (1) $\ddot{z}_1 + d \neq 0, \ cz_2 + d \neq 0, \ \ |\frac{w f(z_1)}{w f(z_2)}| = k'.$
- (2) 若 $cz_1 + d = 0$,则 $cz_2 + d \neq 0$ 且 $az_1 + b \neq 0$,故 $|w f(z_2)| = k' > 0$ 为圆周 Γ ,此时 $f(z_1) = \infty \Rightarrow f(z_1), f(z_2)$ 关于 Γ 对称。

(3) 若 $cz_2 + d = 0$,类似。

注意 $w=f(z)=\frac{az+b}{cz+d}=z$ 最多只有 2 个解,除非 $f=\mathrm{id}$ 。

故当 L_1, L_2 同时将三个不同点 z_1, z_2, z_3 都映为 w_1, w_2, w_3 ,则

$$L_1^{-1} \circ L_2(z_i) = z_i \ (i = 1, 2, 3) \Rightarrow L_1^{-1} \circ L_2 = \mathrm{id} \Rightarrow L_1 = L_2.$$

给定 $z_2, z_3, z_4 \in \mathbb{C}_{\infty}$ 将 z_2, z_3, z_4 分别映为 $0, 1, \infty$ 的分式线性变换 $L^*(z) = \frac{z-z_2}{z-z_4} \cdot \frac{z_3-z_4}{z_3-z_2}$ 。若 $z_i = \infty$ $(2 \le i \le 4)$,则在上式中令 $z_i \to \infty$,例如 $z_2 = \infty$,则 $L^*(z) = \frac{z_3-z_4}{z-z_4}$ 。

定义 5.3. 给定 $z_1, z_2, z_3, z_4 \in \mathbb{C}_{\infty}$, 定义 z_1, z_2, z_3, z_4 的交比为

$$(z_1, z_2, z_3, z_4) = L^*(z_1) = \frac{z_1 - z_2}{z_1 - z_4} \cdot \frac{z_3 - z_4}{z_3 - z_2}.$$

定理 5.9. 分式线性变换 L 保持交比不变,即

$$(z_1, z_2, z_3, z_4) = (L(z_1), L(z_2), L(z_3), L(z_4)).$$

证明. 设 $w_i = L(z_i)$, 则 $L^* \circ L^{-1}$ 将 w_2, w_3, w_4 映为 $0, 1, \infty$, 故

$$(w_1, w_2, w_3, w_4) = L^* \circ L^{-1}(w_1) = L^*(z_1) = (z_1, z_2, z_3, z_4).$$

将三点 z_1, z_2, z_3 映为 w_1, w_2, w_3 的唯一的分式线性变换的方程为 $(w, w_1, w_2, w_3) = (z, z_1, z_2, z_3)$,即

$$\frac{(w-w_1)(w_2-w_3)}{(w-w_3)(w_2-w_1)} = \frac{(z-z_1)(z_2-z_3)}{(z-z_3)(z_2-z_1)}.$$
 (*)

几个重要的分式线性变换:

(1) 将上半平面映为单位圆盘。

于是实轴被映为 $|w|=1^1$ 。设 $L(\alpha)=0$, $\operatorname{Im}\alpha>0$,则 $L(\overline{\alpha})=\infty$,故 $L(z)=\frac{z-\alpha}{z-\overline{\alpha}}\cdot\lambda\ (\lambda\in\mathbb{C})$,

$$1 = |L(1)| = \left| \frac{1 - \alpha}{1 - \overline{\alpha}} \cdot \lambda \right| = |\lambda| \Rightarrow L(z) = e^{i\theta} \frac{z - \alpha}{z - \overline{\alpha}}.$$

(2) 将 |z| < 1 映为 |w| < 1。

设
$$L(\alpha)=0$$
 $(|\alpha|<1)$,则 $L(\frac{1}{\overline{\alpha}})=\infty$,故
$$L(z)=\frac{z-\alpha}{z-\frac{1}{\overline{\alpha}}}\cdot\lambda=\frac{z-\alpha}{1-\overline{\alpha}z}\cdot\lambda'$$

$$1=|L(1)|=\left|\frac{1-\alpha}{1-\overline{\alpha}}\cdot\lambda'\right|=|\lambda'|\Rightarrow L(z)=e^{i\theta}\cdot\frac{z-\alpha}{1-\overline{\alpha}z}.$$

(3) 将上半平面映为上半平面。

设 $w=L(z)=rac{az+b}{cz+d}$,将实轴映为实轴,由 (*) 知 $a,b,c,d\in\mathbb{R}$ 。

$$w-\overline{w}=\frac{az+b}{cz+d}-\frac{a\overline{z}+b}{c\overline{z}+d}=\frac{(ad-bc)(z-\overline{z})}{|cz+d|^2},\;\mathrm{Im}z>0.$$

故 $\text{Im} w > 0 \Leftrightarrow ad - bc > 0$ 。

¹因为边界被映射到边界。

Lec20 Note of Complex Analysis

Xuxuayame

日期: 2023年5月11日

例 5.8. 将 $\gamma_1:|z|=1$ 和 $\gamma_2:|z-1|=\frac{5}{2}$ 围成的区域共形地映为 1<|w|< R,并求 R。

解. 假设分式线性变换 $f: D \to \widetilde{D}$,0 和 ∞ 为 Γ_1 , Γ_2 的对称点,记 $z_1 = f^{-1}(0)$, $z_2 = f^{-1}(\infty)$,则 z_1, z_2 为 γ_1, γ_2 的对称点。

故
$$z_1, z_2, 0, 1$$
 四点共线 $\Rightarrow z_1, z_2 \in \mathbb{R} \Rightarrow \begin{cases} z_1 \cdot z_2 = 1 \\ (z_1 - 1)(z_2 - 1) = \frac{25}{4} \end{cases} \Rightarrow \begin{cases} z_1 = -\frac{1}{4} \\ z_2 = -4 \end{cases}$ (或

反过来)。

令
$$f(z) = \lambda \frac{z + \frac{1}{4}}{z + 4}$$
,此时 $f(\gamma_1) = \Gamma_1$,
$$1 = |f(1)| = \left|\lambda \frac{1 + \frac{1}{4}}{1 + 4}\right| = \left|\frac{\lambda}{4}\right| \Rightarrow \lambda = 4e^{i\theta}$$
$$\Rightarrow f(z) = e^{i\theta} \frac{4z + 1}{z + 4} \Rightarrow R = \left|f\left(\frac{7}{2}\right)\right| = 2.$$

评论. 1 < |z| < R 和 1 < |z| < R' 共形等价 $\Leftrightarrow R = R'$ (待证明)。

S-引理的习题

例 5.9. $f \in H(B(0,1)), \ f(0)=0$,并且存在 A>0 使得 $\mathrm{Re} f \leq A$,证明 $|f(z)| \leq \frac{2A|z|}{1-|z|}, \ \forall \ z \in B(0,1).$

证明. 构造分式线性变换 $\varphi\colon D\to B(0,1)\ (0\to 0,\ 2A\to \infty)$,取 $\varphi(z)=\frac{z-0}{z-2A}$ 。

令
$$g=\varphi\circ f\colon B(0,1)$$
 (5), $g(0)=0$, 由 S-引理, $|g(z)|\leq |z|$, 故
$$g(z)=\frac{f(z)}{f(z)-2A}\Rightarrow f(z)=\frac{2Ag(z)}{1-g(z)}$$

$$\Rightarrow |f(z)|\leq \frac{2A|g(z)|}{1-|g(z)|}\leq \frac{2A|z|}{1-|z|}.$$

例 5.10. P177.26: $f: B(0,1) \rightarrow B(0,1)$ 全纯,证明:

$$|f(z) - f(0)| \le |z| \cdot \frac{1 - |f(0)|^2}{1 - |f(0)||z|}.$$

证明. 由 S-P 定理, $|\varphi_{f(0)}\circ f(z)|\leq |\varphi_0(z)|=|z|$ $(\varphi_a(z)=\frac{a-z}{1-\overline{a}z})$ 。

$$\Rightarrow g(z) = \varphi_{f(0)}(z) \circ f(z) = \frac{f(0) - f(z)}{1 - \overline{f(0)}z} \Rightarrow f(z) = \frac{f(0) - g(z)}{1 - \overline{f(0)}g(z)}$$
$$\Rightarrow f(z) - f(0) = \frac{g(z)(|f(0)|^2 - 1)}{1 - \overline{f(0)}g(z)}$$

$$\Rightarrow |f(z) - f(0)| \le |z| \frac{1 - |f(0)|^2}{1 - |f(0)||z|}.$$

例 5.11. 设 $f: B(0,1) \to B(0,1)$ 全纯且 $\exists a \neq b \in B(0,1), f(a) = f(b) = 0$,证明:

$$|f(z)| \le \left| \frac{z-a}{1-\overline{a}z} \right| \cdot \left| \frac{z-b}{1-\overline{b}z} \right|.$$

证明. $f \circ \varphi_a(0) = 0$,由 S-引理, $|f \circ \varphi_a(z)| \leq |z|$,将 z 替换成 $\varphi_a(z)$, $|f(z)| \leq |\varphi_a(z)|$ 。由于 $f \circ \varphi_a(0) = 0$, $f \circ \varphi_a(z) = zg(z)$,则 g(z) 全纯且 $|g(z)| \leq 1$ 。

若 $\exists z_0$ s.t. $|g(z_0)| = 1 \Rightarrow f \circ \varphi_a$ 为旋转 $\Rightarrow f$ 为单射,矛盾。故 |g(z)| < 1, $\forall z \in B(0,1)$,于是 $f \circ \varphi_a(z) = zg(z) \Rightarrow f(z) = \varphi_a(z) \cdot g \circ \varphi_a(z)$,因为 f(b) = 0,故 $g \circ \varphi_a(b) = 0$,由前面证明, $|g \circ \varphi_a(z)| \leq |\varphi_b(z)|$ 。故 $|f(z)| \leq |\varphi_a(z)||\varphi_b(z)|$ 。

Part V

全纯函数的 Laurent 展开及应用

6 Laurent 展开

我们熟知

•
$$f(z) = \sum_{k=0}^{n} a_k z^k$$
,多项式,在 \mathbb{C} 中全纯。

•
$$\tilde{f}(z) = \sum_{k=0}^{\infty} a_k z^k$$
, $\exists R \ge 0$ s.t. $\tilde{f}(z)$ 在 $|z| < R$ 中全纯。

•
$$g(z) = \sum_{k=0}^{n} \frac{a_k}{z^k} \, \text{t} \, |z| > 0 \, \text{pex.}$$

•
$$\tilde{g}(z) = \sum_{k=0}^{\infty} \frac{a_k}{z^k}$$
, $\exists R'$, $\dot{\exists} |\frac{1}{z}| < R'$, 即 $|z| > \frac{1}{R'}$ 时全纯。

定义 6.1. 称级数

$$\sum_{n=-\infty}^{\infty} a_n (z-z_0)^n + \sum_{n=1}^{\infty} a_{-n} (z-z_0)^{-n}$$

为 Laurent 级数。

设 $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ 的收敛半径为 R, $\sum_{n=0}^{\infty} a_{-n} \zeta^n$ 的收敛半径为 ρ , 则 $\sum_{n=0}^{\infty} a_{-n} (z-z_0)^{-n}$ 在 $|z| > r := \frac{1}{\rho}$ 中收敛。

当 $r < |z-z_0| < R$ 时,Laurent 级数在 $r < |z-z_0| < R$ 中内闭一致收敛 \Rightarrow 和函数在环中全纯。

定理 6.1. 设 $D=\{z\mid r<|z-z_0|< R\}$ 。如果 $f\in H(D)$,则 f 可以在 D 中展开为 Laurent 级数 $f(z)=\sum_{n=-\infty}^{+\infty}a_n(z-z_0)^n$,且

$$a_n = \frac{1}{2\pi i} \int_{|z-z_0|=a} \frac{f(\zeta)}{(\zeta-z_0)^{n+1}} \,\mathrm{d}\,\zeta \,(r < \rho < R)$$

并且展开式是唯一的。

证明. 任意固定 $z \in D$,取 $r_1, r_2, r < r_1 < |z - z_0| < r_2 < R$,记 $\gamma_j = \{z \mid |z - z_0| = r_1 < r_2 < r_2 < r_3 < r$

 r_i } (j=1,2),由 Cauchy 积分公式,

$$f(z) = \frac{1}{2\pi i} \int_{\gamma_2} \frac{f(\zeta)}{\zeta - z} d\zeta - \frac{1}{2\pi i} \int_{\gamma_1} \frac{f(\zeta)}{\zeta - z} d\zeta.$$

记 $M_j = \max_{\zeta \in \gamma_j} |f(\zeta)| \ (j=1,2)$,当 $\zeta \in \gamma_1$ 时, $\left|\frac{\zeta - z_0}{z - z_0}\right| < 1$,

$$\frac{f(\zeta)}{\zeta - z} = \frac{f(\zeta)}{(\zeta - z_0) - (z - z_0)} = -\frac{f(\zeta)}{z - z_0} \frac{1}{1 - \frac{\zeta - z_0}{z - z_0}} = -f(\zeta) \sum_{n=0}^{\infty} \frac{(\zeta - z_0)^n}{(z - z_0)^{n+1}},$$
$$\left| \frac{f(\zeta)(\zeta - z_0)^n}{(z - z_0)^{n+1}} \right| \le M_1 \frac{1}{|z - z_0|} \left(\frac{r}{|z - z_0|} \right)^n.$$

由 W-判别法知 $\sum_{n=0}^{\infty} \frac{f(\zeta)(\zeta-z_0)^n}{(z-z_0)^{n+1}}$ 关于 $\zeta \in \gamma_1$ 一致收敛

$$\Rightarrow -\frac{1}{2\pi i} \int_{\gamma_1} \frac{f(\zeta)}{\zeta - z} \, d\zeta = \frac{1}{2\pi i} \sum_{n=0}^{\infty} \int_{\gamma_1} \frac{f(\zeta)(\zeta - z_0)^n}{(z - z_0)^{n+1}} \, d\zeta$$

$$= \sum_{n=1}^{\infty} \frac{1}{2\pi i} \int_{\gamma_1} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} \, d\zeta \cdot (z - z_0)^{-n}$$

$$= \sum_{n=1}^{\infty} a_{-n} (z - z_0)^{-n}.$$

类似地 $\frac{1}{2\pi i} \int_{\gamma_2} \frac{f(\zeta)}{\zeta - z} d\zeta = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ 。

唯一性: 若 $f(z) = \sum_{n=0}^{\infty} a_n'(z-z_0)^n$, 设 $r < \rho < R$, 则该级数在 $|z| = \rho$ 上一致收

逐项积分得

敛。

$$a_m = \frac{1}{2\pi i} \int_{\gamma_\rho} \frac{f(\zeta)}{(\zeta - z_0)^{m+1}} d\zeta = \sum_{n = -\infty}^{+\infty} a'_n \frac{1}{2\pi i} \int_{\gamma_\rho} \frac{(\zeta - z_0)^n}{(\zeta - z_0)^{m+1}} d\zeta = a'_m.$$

例 6.1. 设 $f(z) = \frac{1}{(z-1)(z-2)}$,求它的 1 < |z| < 2 和 $2 < |z| < +\infty$ 中的 Laurent 展开式。

(1) $\stackrel{\underline{}}{=}$ 1 < |z| < 2 $\stackrel{\underline{}}{\mapsto}$, $\frac{1}{(z-1)(z-2)} = \frac{1}{z-2} - \frac{1}{z-1} = -\frac{1}{2} \frac{1}{1-\frac{z}{2}} - \frac{1}{z} \frac{1}{1-\frac{1}{z}} = -\frac{1}{2} \sum_{n=0}^{\infty} (\frac{z}{2})^n - \frac{1}{z} \frac{1}{1-\frac{z}{2}} = -\frac{1}{2} \sum_{n=0}^{\infty} (\frac{z}{2})^n - \frac{1}{2} \frac{1}{1-\frac{z}{2}} = -\frac{1}{2} \sum_{n=$ $\frac{1}{\pi} \sum_{n=0}^{\infty} (\frac{1}{\pi})^n = \cdots$

(2)
$$\stackrel{\text{def}}{=} |z| > 2$$
, $\frac{1}{(z-1)(z-2)} = \frac{1}{z} \frac{1}{1-\frac{2}{z}} - \frac{1}{z} \frac{1}{1-\frac{1}{z}} = \frac{1}{z} \sum_{n=0}^{\infty} (\frac{2}{z})^n - \frac{1}{z} \sum_{n=0}^{\infty} (\frac{1}{z})^n = \sum_{n=0}^{\infty} \frac{2^n-1}{z^{n+1}}$.

Lec21 Note of Complex Analysis

Xuxuayame

日期: 2023年5月16日

孤立奇点 7

定义 7.1. 若 f 在 $0 < |z - z_0| < R$ 中全纯,在 z_0 处无定义,则称 z_0 为 f 的**孤立奇点**。

- (i) 若 $\lim_{z\to z_0} f(z)$ 存在,则称 z_0 为可去奇点。
- (ii) 若 $\lim_{z \to z_0}^{z \to z_0} f(z) = \infty$,则称 z_0 为 f 的极点。 (iii) 若 $\lim_{z \to z_0} f(z)$ 不存在,则 z_0 称为 f 的本性奇点。

定理 7.1. Riemann: z_0 为 f 的可去奇点 $\Leftrightarrow f$ 在 z_0 附近有界。

证明. ⇒: 显然。

$$|a_{-n}| = \left| \frac{1}{2\pi i} \int_{|z-z_0|=\rho} \frac{f(\zeta)}{(\zeta - z_0)^{-n+1}} \, \mathrm{d} \, \zeta \right| \le \frac{1}{2\pi} \frac{M}{\rho^{-n+1}} 2\pi \rho = M \rho^n \to 0, \ \rho \to 0$$

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n \ (0 < |z - z_0| < R) \Rightarrow \lim_{z \to z_0} f(z) = a_0 \in \mathbb{C} \Rightarrow z_0$$
 为 f 的可去奇点。

评论. 若 z_0 为 f 的可去奇点,补充定义 $f(z_0) = \lim_{z \to z_0} f(z)$,则 f 在 $|z - z_0| < R$ 中全纯。

定理 7.2. z_0 为 f 的极点 $\Leftrightarrow z_0$ 为 $\frac{1}{f}$ 的零点。

证明. z_0 为 f 的极点 $\Rightarrow \lim_{z \to z_0} f(z) = \infty \Rightarrow \exists \varepsilon > 0$,当 $0 < |z - z_0| < \varepsilon$ 时 $|f(z)| \neq 0 \Rightarrow \varphi(z) := \frac{1}{f(z)}$ 在 $0 < |z - z_0| < \varepsilon$ 中全纯,且 $\lim_{z \to z_0} \varphi(z) = 0 \Rightarrow z_0$ 为 φ 的可去奇点且 $\varphi(z_0)=0$.

反过来,设
$$\varphi(z_0)=0$$
,则 $\lim_{z\to z_0}f(z)=\lim_{z\to z_0}\frac{1}{\varphi(z)}=\infty$ 。

定义 7.2. z_0 称为 f 的 m 阶极点,如果 z_0 为 $\frac{1}{f}$ 的 m 阶零点。

定理 7.3. z_0 为 f 的 m 阶极点 $\Leftrightarrow a_{-m} \neq 0$ 且当 $n \geq m$ 时 $a_{-n} = 0$ 。

证明. ⇒: 设 z_0 为 f 的 m 阶极点,则 z_0 为 $\frac{1}{f}$ 的 m 阶零点。故在 z_0 附近 $\frac{1}{f(z)} = (z-z_0)^m g(z)$, g(z) 在 z_0 处全纯且 $g(z_0) \neq 0 \Rightarrow \frac{1}{g(z)}$ 在 z_0 处全纯,设 $\frac{1}{g(z)} = c_0 + c_1(z-z_0) + \cdots$ $(c_0 \neq 0) \Rightarrow f(z) = (z-z_0)^{-m} \frac{1}{g(z)} = \frac{c_0}{(z-z_0)^m} + \frac{c_1}{(z-z_0)^{m-1}} + \cdots$ 。

 \Leftarrow : 由条件知 $(z-z_0)^m f(z) = a_{-m} + a_{-(m-1)}(z-z_0) + \cdots =: \varphi(z)$,则 $\varphi(z)$ 在 z_0 处 全纯且 $\varphi(z_0) = a_{-m} \neq 0$,故 $\frac{1}{f(z)} = (z-z_0)^m \frac{1}{\varphi(z)} \Rightarrow z_0$ 为 $\frac{1}{f}$ 的 m 阶零点。

综上,设 f 在 $0 < |z - z_0| < R$ 中的 Laurent 展开式为 $f(z) = \sum_{m=-\infty}^{+\infty} a_m (z - z_0)^m$,则

- (1) z_0 为 f(z) 的可去奇点 $\Leftrightarrow a_{-n} = 0, n \ge 1$ 时。
- (2) z_0 为 f 的 m 阶极点 $\Leftrightarrow a_{-m} \neq 0$ 且 n > m 时 $a_{-n} = 0$ 。
- (3) z_0 为 f 的本性奇点 \Leftrightarrow 有无穷多个 $n \ge 1$ 使得 $a_{-n} \ne 0$ 。

定理 7.4. Weierstrass: 设 z_0 为 f 的本性奇点,则对任意 $A\in\mathbb{C}_\infty$,存在 $z_n\to z_0$ 且 $\lim_{n\to\infty}f(z_n)=A$ 。

- 证明. (1) 设 $A=\infty$,由定理 7.1,f 在 z_0 附近无界 $\Rightarrow \forall n>0$, $\exists |z_n-z_0|<\frac{1}{n}$,且 |f(z)|>n,故 $\lim z_n=z_0$ 且 $\lim_{n\to\infty}f(z_n)=\infty$ 。
 - (2) 设 $A \in \mathbb{C}$,设 $\varphi(z) = \frac{1}{f(z) A}$,若 $\varphi(z)$ 在 z_0 附近有界 $\Rightarrow z_0$ 为 $\varphi(z)$ 的可去奇点 $\Rightarrow \varphi(z)$ 在 z_0 处全纯。

- (i) 若 $\varphi(z_0) \neq 0$,则 $f(z) = A + \frac{1}{\varphi(z)}$ 在 z_0 处全纯,矛盾。
- (ii) 若 $\varphi(z_0) = 0$,则 $\lim_{z \to z_0} f(z) = \infty$,与 z_0 为本性奇点矛盾。

同理 $\varphi(z)$ 在 z_0 附近无界 $\Rightarrow \exists z_n \to z_0, f(z_n) \to A$ 。

对于 ∞ 为孤立奇点的情形:

定义 7.3. 若 f 在 $R < |z| < +\infty$ 中全纯,则称 ∞ 为 f 的孤立奇点。

令 $g(z) = f(\frac{1}{z})$,则 g(z) 在 $0 < |z| < \frac{1}{R}$ 中全纯。若 z = 0 为 g 的可去奇点 (m 阶极点,本性奇点),则称 ∞ 为 f 的可去奇点 (m 阶极点,本性奇点)。

设 f 在 |z|>R 中的 Laurent 级数为 $f(z)=\sum_{n=-\infty}^{+\infty}a_nz^n$,则 $g(z)=f(\frac{1}{z})=\sum_{n=-\infty}^{+\infty}a_nz^{-n}$ 。 故

- (1) ∞ 为 f 的可去奇点 \Leftrightarrow $n \ge 1$ 时 $a_n = 0 \Leftrightarrow f(z) = a_0 + \frac{a_{-1}}{z} + \frac{a_{-2}}{z^2} + \cdots$
- (2) ∞ 为 f 的 m 阶极点 $\Leftrightarrow \exists m \geq 1, \ a_m \neq 0$ 且当 n > m 时 $a_n = 0 \Leftrightarrow f(z) = a_m z^m + \dots + a_1 z + a_0 + \frac{a_{-1}}{z} + \dots$ 。
- (3) ∞ 为 f 的本性奇点 \Leftrightarrow 存在无穷多个 $n \ge 1$ s.t. $a_n \ne 0$ 。
- **例 7.1.** (1) 0 为 $e^{\frac{1}{z}}$ 的本性奇点。
 - (2) ∞ 为 e^z 的本性奇点。
- **例 7.2.** 非孤立奇点的例子: $f(z) = \frac{1}{\sin \frac{1}{z}}$, $z_n = \frac{1}{n\pi}$ 为 f 的奇点, z = 0 为 f 的非孤立奇点。

例 7.3. (1) $\frac{e^{\frac{1}{1-z}}}{e^z-1}$; (2) $e^{\cot \frac{1}{z}}$.

- (1) (a) $\lim_{z \to 1} \frac{1}{1-z} = \infty$ 而 $\lim_{z \to \infty} e^z$ 不存在 $\Rightarrow z = 1$ 为 f 的本性奇点。 (b) $e^{2k\pi i} 1 = 0$, $(e^z 1)'|_{z = 2k\pi i} = e^{2k\pi i} \neq 0 \Rightarrow 2k\pi i$ 为 $e^z 1$ 的 1 阶零点 $\Rightarrow 2k\pi i$ 为f的1阶极点。
 - (c) ∞ 为非孤立的奇点。
 - (2) 0 是非孤立奇点, $\infty, \frac{1}{k\pi}$ 为本性奇点。

Lec22 Note of Complex Analysis

Xuxuayame

日期: 2023年5月18日

8 亚纯函数

设 f 为整函数, $f(z)=\sum\limits_{n=0}^{\infty}a_nz^n,\ z\in\mathbb{C}$ 也可以看成 f 在 ∞ 附近的 Laurent 展开式。

定理 8.1. 设 f 为整函数,

- (1) 若 ∞ 为 f 的可去奇点,则 f 为常数。
- (2) 若 ∞ 为 f 的极点,则 f 为多项式。

评论. 若 ∞ 为整函数 f 的本性奇点,则称 f 为超越整函数。例如 e^z , $\sin z$ 。

定义 8.1. 若 f 在 \mathbb{C} 上只有孤立奇点且均为极点,则称 f 为亚纯函数。

- 评论. (1) 亚纯函数可能有无穷多个极点, 但是这些极点在 \mathbb{C} 中没有聚点 (趋于 ∞), 例 如 $f(z) = \frac{1}{\sin z}$ 。
 - (2) 整函数和有理函数 $\frac{P(z)}{Q(z)}$ 都是亚纯函数。 设 $P(z) = a_n z^n + \cdots + a_1 z + a_0 \ (a_n \neq 0), \ Q(z) = b_m z^m + \cdots + b_1 z + b_0 \ (b_m \neq 0),$ 则

$$\lim_{z \to \infty} \frac{P(z)}{Q(z)} = \begin{cases} \frac{a_n}{b_n}, & n = m, \\ \infty, & n > m, \\ 0, & n < m \end{cases}$$

可见 ∞ 为有理函数的可去奇点或极点。

定理 8.2. 若 ∞ 为 \mathbb{C} 上的亚纯函数 f 的可去奇点或极点,则 f 为有理函数。

证明. ∞ 为孤立奇点 $\Rightarrow \exists R > 0, |z| > R 中 f(z)$ 全纯。

f 亚纯 \Rightarrow f 在 $|z| \le R$ 中只有有限多个极点,记为 z_1, z_2, \cdots, z_n ,阶数记为 m_1, m_2, \cdots, m_n ,记 f(z) 在 z_i 处 Laurent 展开式的主要部分为

$$h_j(z) = \frac{C_{n_j}^{(j)}}{(z-z_j)^{m_j}} + \dots + \frac{C_1^{(j)}}{z-z_j}, \ (j=1,2,\dots,n).$$

令 $F(z) = f(z) - \sum_{j=1}^{n} h_j(z)$,易见 F(z) 为整函数,且 ∞ 为 F(z) 的可去奇点或极点 \Rightarrow F(z) 为常数或多项式 \Rightarrow f(z) 为有理函数。

定理 8.3.

$$\operatorname{Aut}(\mathbb{C}) = \{ f(z) = az + b \mid a, b \in \mathbb{C}, \ a \neq 0 \}.$$

证明. 设 f(z) = az + b, $a \neq 0$, 则显然 $f \in \operatorname{Aut}(\mathbb{C})$ 。

设 $f \in Aut(\mathbb{C})$,则f为整函数。

- (i) 若 ∞ 为f的可去奇点,则f为常数,矛盾。
- (ii) 若 ∞ 为f的极点,则f为多项式,由于f为单射,故f为一次函数。
- (iii) 若 ∞ 为本性奇点,由 W-定理,任取 $A \in \mathbb{C}$,存在 $z_n \to \infty$ 且 $f(z_n) \to A$ 。由于 f^{-1} 全纯,故 $z_n = f^{-1}(f(z_n)) \to f^{-1}(A)$,故 $f^{-1}(A) = \infty$,与 $f^{-1}: \mathbb{C} \to \mathbb{C}$ 全纯 矛盾。

那么 $f: \mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$ 全纯该如何定义? 我们分类讨论:

- 1. 若 $f(z_0) = \infty$, $z_0 \in \mathbb{C}$, 那么 f 在 z_0 处全纯 : $\Leftrightarrow \frac{1}{f(z)}$ 在 z_0 全纯。
- 2. 若 $f(\infty) = \alpha \in \mathbb{C}$,则 f 在 ∞ 处全纯 $\Leftrightarrow f(\frac{1}{z})$ 在 0 处全纯。
- 3. 若 $f(\infty) = \infty$,则 f 在 ∞ 处全纯 $\Leftrightarrow \frac{1}{f(\frac{1}{2})}$ 在 0 处全纯。

定理 8.4.

$$\operatorname{Aut}(\mathbb{C}_{\infty}) = \left\{ f(z) = \frac{az+b}{cz+d} \middle| a, b, c, d \in \mathbb{C} \, \, \mathbb{L} ad - bc \neq 0 \right\}.$$

证明. 可以验证 $f(z) = \frac{az+b}{cz+d} \in \operatorname{Aut}(\mathbb{C}_{\infty})$ 。

反过来,设 $f \in \mathbb{C}_{\infty}$ 。

- (i) 若 $\exists z_0 \in \mathbb{C}$, $f(z_0) = \infty$, 由于 f 为单射, z_0 为 $f|_{\mathbb{C}}$ 上的唯一的奇点且为极点 $\Rightarrow f$ 为 \mathbb{C} 上的亚纯函数。由于 $f(\infty) = \alpha \in \mathbb{C}$, ∞ 为 f 的可去奇点。由定理 8.2,f 为有理函数 $\frac{P(z)}{Q(z)}$,由于 f 为单射,P(z),Q(z) 为一次函数。
- (ii) 若 $f(\infty) = \infty$,则 $f|_{\mathbb{C}}$ 为整函数。由定理 8.1, f(z) 为多项式,由单射性知 f 为一次函数。

定理 8.5.

$$Aut(\mathbb{H}) = \left\{ f(z) = \frac{az + b}{cz + d} \middle| a, b, c, d \in \mathbb{R}, \ ad - bc > 0 \right\}, \ \mathbb{H} = \{ z \mid Imz > 0 \}.$$

证明. ⊃: 已证。

C: 见 Stein。

9 留数定理

定义 9.1. 设 a 是 f 的孤立奇点,r > 0,f 在 $B(a,r) \setminus \{a\}$ 中全纯,设其 Laurent 展开式 为 $f(z) = \sum_{n=-\infty}^{+\infty} c_n(z-a)^n$,称 c_{-1} 为 f 在 a 点的**留数**,记为 $\operatorname{Res}(f,a)$ 或 $\operatorname{Res}_{z=a} f$ 。

设 γ : $|z-a| = \rho \ (0 < \rho < r)$,已知 (由定理): $c_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta-a)^{n+1}} \,\mathrm{d}\,\zeta$,特别地 $c_{-1} = \frac{1}{2\pi i} \int_{\gamma} f(\zeta) \,\mathrm{d}\,\zeta$,或者

$$\int_{\gamma} f(z) \, dz = \int_{\gamma} \sum_{n = -\infty}^{+\infty} c_n (z - a)^n \, dz = \sum_{n = -\infty}^{+\infty} \int_{\gamma} c_n (z - a)^n \, dz = 2\pi i \cdot c_{-1}.$$

定理 9.1. 留数定理: 设 $D=\mathrm{int}(\gamma)$, f 在 D 中除去 z_1,\cdots,z_n 外全纯且连续到边界,则

$$\int_{\gamma} f(z) dz = 2\pi i \sum_{j=1}^{n} \operatorname{Res}(f, z_{j}).$$

证明. 与 Cauchy 积分定理一回事。

定理 9.2. 若 a 是 f 的 m 阶极点,则

$$Res(f, a) = \frac{1}{(m-1)!} \lim_{z \to a} \frac{d^{m-1}}{dz^{m-1}} ((z-a)^m f(z)).$$

证明. 设 $f(z) = \frac{c_{-m}}{(z-a)^m} + \dots + \frac{c_{-1}}{z-a} + g(z)$, g(z) 全纯,在 a 附近。那么

$$(z-a)^m f(z) = c_{-m} + \dots + c_{-1}(z-a)^{m-1} + g(z) \cdot (z-a)^m$$

$$\Rightarrow c_{-1} = \frac{1}{(m-1)!} \lim_{z \to a} \frac{\mathrm{d}^{m-1}}{\mathrm{d}z^{m-1}} ((z-a)^m f(z)).$$

特别地, 当m=1时, $\operatorname{Res}(f,a)=\lim_{z\to a}(z-a)f(z)$ 。

定理 9.3. 设 $f=\frac{g}{h},\ g,h$ 在 a 处全纯, $g(a)\neq 0,\ h(a)=0$,且 $h'(a)\neq 0$,则 $\mathrm{Res}(f,a)=\frac{g(a)}{h'(a)}$ 。

证明. 由条件知 a 为 f 的 1 阶极点。故

Res
$$(f, a) = \lim_{z \to a} (z - a) \frac{g(z)}{h(z)} = \lim_{z \to a} \frac{g(z)}{\frac{h(z) - h(a)}{z - a}} = \frac{g(a)}{h'(a)}.$$

Lec23 Note of Complex Analysis

Xuxuayame

日期: 2023年5月23日

我们回忆,留数定理告诉我们:

$$\int_{\gamma} f(z) dz = 2\pi i \sum_{i=1}^{n} \operatorname{Res}(f, z_i).$$

留数部分的计算,当 z_i 为极点时,利用定理 9.2 的公式,当 z_i 为本性奇点,考虑 Laurent 展开 -1 项。

例 9.1. 1.

$$\int_{|z|=2} \frac{\mathrm{d} z}{1+z^2} = 2\pi i (\text{Res}(f,i) + \text{Res}(f,-i)) = 0,$$
$$\text{Res}(f,i) = \lim_{z \to i} (z-i) \frac{1}{(z+i)(z-i)} = \frac{1}{2i}.$$

2.

$$\int_{|z|=1} \frac{e^z}{\sin z} \, \mathrm{d} z = 2\pi i \cdot \lim_{z \to 0} z \frac{e^z}{\sin z} = 2\pi i.$$

3.

$$\begin{split} \int_{|z|=1} e^{z+\frac{1}{z}} \, \mathrm{d}\, z &= 2\pi i \, \mathrm{Res}(f,0), \\ e^{z+\frac{1}{z}} &= e^z \cdot e^{\frac{1}{z}} = (1+z+\frac{z^2}{2!}+\cdots)(1+\frac{1}{z}+\frac{1}{2!z^2}+\cdots), \\ \frac{1}{z} \, \mathrm{fh} \, \tilde{\mathbf{x}} \, \underline{\mathbf{y}} &= \sum_{1}^{\infty} \frac{1}{(n-1)!n!} = \mathrm{Res}(f,0). \end{split}$$

4.

$$\int_{|z|=1} \frac{z^2 \sin^2 z}{(1 - e^z)^5} dz = 2\pi i \cdot \text{Res}(f, 0),$$

$$\frac{z^2 (z - \frac{z^3}{3!} + \cdots)^2}{(-z - \frac{z^2}{2!} - \cdots)^5} = \frac{z^4 (1 = \frac{z^2}{3!})^2}{z^5 (1 + \frac{z}{2!} + \cdots)^5} \Rightarrow \text{Res}(f, 0) = -1.$$

10 计算定积分

引理 10.1. 若 f(z) 在 $D: 0 < |z-a| \le r$, $\theta_1 \le \arg(z-a) \le \theta_2$ 中连续, 且 $\lim_{z \to a} (z-a) f(z) = A$, 则

$$\lim_{\rho \to 0} \int_{\gamma_{\rho}} f(z) dz = Ai(\theta_2 - \theta_1), \ \gamma_{\rho} \colon z = a + \rho e^{i\theta} \ (\theta_1 \le \theta \le \theta_2).$$

证明.

$$\int_{\gamma_{\rho}} f(z) dz = \int_{\theta_{1}}^{\theta_{2}} f(a + \rho e^{i\theta}) \rho e^{i\theta} i d\theta$$
$$= \int_{\theta_{1}}^{\theta_{2}} f(z)(z - a) i d\theta \to A \int_{\theta_{1}}^{\theta_{2}} i d\theta = Ai(\theta_{2} - \theta_{1}).$$

引理 10.2. Jordan: 若 f(z) 在 $R_0 \le |z| < +\infty$, $\mathrm{Im} z > 0$ 连续,且 $\lim_{z \to \infty} f(z) = 0$,设 $\alpha > 0$,则

$$\lim_{R \to +\infty} \int_{\gamma_R} e^{i\alpha z} f(z) \, \mathrm{d} \, z = 0.$$

证明. 设 $M(R) = \max_{|z|=R} \{|f(z)|\}$,则

$$\begin{split} \left| \int_{\gamma_R} e^{i\alpha z} f(z) \, \mathrm{d}\, z \right| &\leq M(R) \cdot \int_0^\pi \left| e^{i\alpha (R\cos\theta + iR\sin\theta)} \right| R \, \mathrm{d}\, \theta \\ &= M(R) \cdot R \int_0^\pi e^{-\alpha R\sin\theta} \, \mathrm{d}\, \theta = 2M(R) R \int_0^{\frac{\pi}{2}} e^{-\alpha R\sin\theta} \, \mathrm{d}\, \theta \\ &< 2M(R) R \int_0^{\frac{\pi}{2}} e^{-\alpha R\frac{2}{\pi}\theta} \, \mathrm{d}\, \theta = \frac{\pi}{\alpha} M(R) (1 - e^{-\alpha R}) \to 0 \; (R \to +\infty). \end{split}$$

特别地对 $\int_{-\infty}^{+\infty} f(x) \, \mathrm{d} x$ 型的积分,有相应的策略,概括来讲是下面三步:

- 1. 复化;
- 2. 取合适的积分路径;
- 3. 留数定理。

例 10.1.
$$I = \int_{-\infty}^{+\infty} \frac{\mathrm{d}\,x}{(1+x^2)^{n+1}} \ (n \ge 0)$$
。

解. 复化取 $f(z) = \frac{1}{(1+z^2)^{n+1}}$,如图选取积分路径。

$$\int_{-R}^{R} \frac{\mathrm{d}\,x}{(1+x^2)^{n+1}} + \int_{\gamma_R} f(z) \,\mathrm{d}\,z = 2\pi i \cdot \mathrm{Res}(f,i), \ \int_{\gamma_R} f(z) \,\mathrm{d}\,z \to 0,$$

$$\mathrm{Res}(f,i) = \frac{1}{n!} \lim_{z \to i} \frac{\mathrm{d}^n}{\mathrm{d}\,z^n} \left(\frac{1}{(n+i)^{n+1}} \right) = \frac{(-1)^n (n+1)(n+2) \cdots (2n)}{n!} \frac{1}{(2i)^{n+1}}.$$

$$\Leftrightarrow R \to +\infty, \ \int_{-\infty}^{+\infty} \frac{\mathrm{d}\,x}{(1+x^2)^{n+1}} = \frac{(2n)!\pi}{2^{2n}(n!)^2} \,.$$

例 10.2. 证明: $\int_{-\infty}^{+\infty} \frac{e^{ax}}{1+e^x} dx = \frac{\pi}{\sin(\pi a)} (0 < a < 1)$ 。

证明. $1+e^z=0\Rightarrow z=i\pi+2k\pi i\;(k\in\mathbb{Z})$,令 $f(z)=\frac{e^{az}}{1+e^z}$,如图选取矩形围道。

$$\begin{split} \int_{-R}^{R} \frac{e^{ax}}{1+e^{x}} \, \mathrm{d}\,x + \int_{\gamma_{1} \cup \gamma_{2} \cup \gamma_{3}} f(z) \, \mathrm{d}\,z &= 2\pi i \cdot \mathrm{Res}(f, i\pi), \\ \mathrm{Res}(f, i\pi) &= \lim_{z \to i\pi} (z - i\pi) \frac{e^{az}}{1+e^{z}} = \lim_{z \to i\pi} \frac{e^{az}}{\frac{e^{z} - e^{i\pi}}{z - i\pi}} = \frac{e^{a\pi i}}{(a^{z})'|_{z = i\pi}} = -e^{a\pi i}, \\ \left| \int_{\gamma_{1}} \frac{e^{az}}{1+e^{z}} \, \mathrm{d}\,z \right| &\leq \int_{0}^{2\pi} \frac{|e^{a(R+iy)}|}{|1+e^{R+iy}|} |i| \, \mathrm{d}\,y \leq \int_{0}^{2\pi} \frac{e^{aR}}{e^{R}-1} \, \mathrm{d}\,y \leq \int_{0}^{2\pi} \frac{e^{aR}}{\frac{1}{2}e^{R}} \, \mathrm{d}\,y \\ &= e^{(a-1)R} 4\pi \to 0, \ (R \to +\infty) \\ \left| \int_{\gamma_{3}} \frac{e^{az}}{1+e^{z}} \, \mathrm{d}\,z \right| &\leq \int_{0}^{2\pi} \frac{|e^{a(-R+iy)}|}{|1+e^{-R+iy}|} \, \mathrm{d}\,y \leq \int_{0}^{2\pi} \frac{e^{-aR}}{\frac{1}{2}} \, \mathrm{d}\,y \to 0, \ (R \to +\infty) \\ \int_{\gamma_{2}} \frac{e^{az}}{1+e^{z}} \, \mathrm{d}\,z = \int_{R}^{-R} \frac{e^{a(x+2\pi i)}}{1+e^{x+2\pi i}} \, \mathrm{d}\,x = -e^{2\pi ai} \int_{-R}^{R} \frac{e^{ax}}{1+e^{x}} \, \mathrm{d}\,x \\ \Rightarrow \int_{-\infty}^{\infty} \frac{e^{ax}}{1+e^{x}} \, \mathrm{d}\,x = \frac{-2\pi i \cdot e^{a\pi i}}{1-e^{2\pi ai}} = \frac{-2\pi i}{e^{-a\pi i} - e^{a\pi i}} = \frac{\pi}{\sin(a\pi)}. \end{split}$$

例 10.3. $\int_{-\infty}^{+\infty} f(x) \cos ax \, \mathrm{d}x$, $\int_{-\infty}^{+\infty} f(x) \sin ax \, \mathrm{d}x$ (a>0),令 $F(z)=f(z)e^{iaz}$,当 $\lim_{z\to\infty} f(z)=0$,可以用 Jordan 引理。

例 10.4. Laplace 积分: $I = \int_0^{+\infty} \frac{\cos ax}{1+x^2} dx \ (a > 0)$.

解. 取 $F(z) = \frac{e^{iaz}}{1+z^2}$,考虑如图的围道:

$$\int_{-R}^{R} F(x) dx + \int_{\gamma_R} F(z) dz = 2\pi i \cdot \text{Res}(F, i) = \pi \cdot e^{-a}.$$

例 10.5. Dirichlet 积分: $\int_0^{+\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$.

证明. 令 $F(z) = \frac{e^{iz}}{z}$,如图取围道。

$$\int_{-R}^{-\varepsilon} \frac{e^{ix}}{x} dx + \int_{\gamma_{\varepsilon}} \frac{e^{iz}}{z} dz + \int_{\varepsilon}^{R} \frac{e^{ix}}{x} dx + \int_{\gamma_{R}} \frac{e^{iz}}{z} dz = 0.$$

而第一项 = $\int_R^\varepsilon \frac{e^{-ix}}{-x} (-\operatorname{d} x) = -\int_\varepsilon^R \frac{e^{-ix}}{x} \operatorname{d} x$,第二项由引理 10.1 计算得 $-\pi i$,第四项由 Jordan 引理为零,故 $\int_\varepsilon^R \frac{2i \cdot \sin x}{x} \operatorname{d} x \to \pi i$,即 $\int_0^{+\infty} \frac{\sin x}{x} \operatorname{d} x = \frac{\pi}{2}$ 。

Lec24 Note of Complex Analysis

Xuxuayame

日期: 2023年5月25日

现在我们来讨论 $\int_0^{+\infty} f(x) dx$ 型积分的计算方式。

例 10.6. $I = \int_0^{+\infty} \frac{x^{p-1}}{(1+x)^m} \, \mathrm{d}\, x, \; m \in \mathbb{N}, \; p$ 不是整数且 0 。

解. 令 $F(z) = \frac{z^{p-1}}{(1+z)^m} = \frac{e^{(p-1)\log z}}{(1+z)^m}$,取 $0 < \rho < 1 < R$,如图选取围道:

在正轴上沿:
$$F(x) = \frac{e^{(p-1)(\log x + i \cdot 0)}}{(1+x)^m} = \frac{x^{p-1}}{(1+x)^m}$$
。
在正轴下沿: $F(x) = \frac{e^{(p-1)(\log x + i \cdot 2\pi)}}{(1+x)^m} = \frac{x^{p-1}}{(1+x)^m}e^{2\pi(p-1)i}$ 。

$$\int_{\rho}^{R} \frac{x^{p-1} dx}{(1+x)^{m}} + \int_{\gamma_{R}} F(z) dz + \int_{R}^{\rho} \frac{x^{p-1}}{(1+x)^{m}} e^{2\pi(p-1)i} dx + \int_{\gamma_{\rho}} F(z) dz = 2\pi i \operatorname{Res}(F,-1),$$

$$\left| \int_{\gamma_{R}} F(z) dz \right| \leq \int_{\gamma_{R}} \frac{R^{p-1}}{(R-1)^{m}} |dz| = 2\pi \frac{R^{p}}{(R-1)^{m}} \to 0, \ (R \to +\infty)$$

$$\left| \int_{\gamma_{\rho}} F(z) dz \right| \leq \int_{\gamma_{\rho}} \frac{\rho^{p-1}}{(1-\rho)^{m}} |dz| = 2\pi \frac{\rho^{p}}{(1-\rho)^{m}} \to 0, \ (\rho \to 0).$$

例 10.7. $I = \int_0^{+\infty} \frac{\log x}{(1+x^2)^2} \, \mathrm{d} x$

解. 令 $F(z) = \frac{\log z}{(1+z^2)^2}$, 如图选取围道:

$$\begin{split} & \int_{-R}^{-\rho} \frac{\log|x| + i\pi}{(1+x^2)^2} \, \mathrm{d}\, x + \int_{\gamma_\rho} F(z) \, \mathrm{d}\, z + \int_{\rho}^R \frac{\log x \, \mathrm{d}\, x}{(1+x^2)^2} + \int_{\gamma_R} F(z) \, \mathrm{d}\, z = 2\pi i \cdot \mathrm{Res}(F,i) \\ & = 2\pi i \left(\frac{\pi}{8} + \frac{i}{4}\right) \\ & \left| \int_{\gamma_R} F(z) \, \mathrm{d}\, z \right| \leq \int_0^\pi \frac{|\log R + i\theta|}{(R^2-1)^2} R \, \mathrm{d}\, \theta \leq \int_0^\pi \frac{\log R + \pi}{(R^2-1)^2} R \, \mathrm{d}\, \theta \to 0, \ (R \to +\infty) \\ & \left| \int_{\gamma_\rho} F(z) \, \mathrm{d}\, z \right| \leq \int_0^\pi \frac{|\log \rho + i\theta|}{(1-\rho^2)^2} \rho \, \mathrm{d}\, \theta \to 0, \ (\rho \to 0) \\ & \Rightarrow 2 \int_0^{+\infty} \frac{\log x}{(1+x^2)^2} \, \mathrm{d}\, x + i\pi \int_0^{+\infty} \frac{\mathrm{d}\, x}{(1+x^2)^2} = 2\pi i \left(\frac{\pi}{8} + \frac{i}{4}\right). \end{split}$$
两边取实部, $I = -\frac{\pi}{4}$ 。

对于 $\int_0^{2\pi} R(\sin\theta,\cos\theta)$ 型积分。

令
$$z = e^{i\theta}$$
, $\sin \theta = \frac{1}{2i}(z - z^{-1})$, $\cos \theta = \frac{1}{2}(z + z^{-1})$, $d\theta = \frac{1}{iz}dz$, 则积分化为
$$\int_0^{2\pi} R(\sin \theta, \cos \theta) d\theta = \int_{|z|=1} R(\frac{z - z^{-1}}{2i}, \frac{z + z^{-1}}{z}) \frac{1}{iz} dz.$$

对于 Fresnel 积分 $I_1 = \int_0^{+\infty} \cos(x^2) \, \mathrm{d} \, x$, $I_2 = \int_0^{+\infty} \sin(x^2) \, \mathrm{d} \, x$ 。 令 $f(x) = e^{iz^2}$,如图选取围道:

$$\begin{split} & \int_0^R e^{ix^2} \, \mathrm{d} \, x + \int_{\gamma_R} f(z) \, \mathrm{d} \, z + \int_{\gamma_2} f(z) \, \mathrm{d} \, z = 0, \\ & \left| \int_{\gamma_R} e^{iz^2} \, \mathrm{d} \, z \right| \le \int_{\gamma_R} \left| e^{iR^2 (\cos \theta + i \sin \theta)^2} \right| \, | \, \mathrm{d} \, z | = \int_0^{\frac{\pi}{4}} e^{-R^2 \sin 2\theta} R \, \mathrm{d} \, \theta \le \int_0^{\frac{\pi}{4}} e^{-R^2 \cdot \frac{4\theta}{\pi}} R \, \mathrm{d} \, \theta \\ & = \frac{\pi}{4R} (1 - e^{-R^2}) \to 0, \ (R \to +\infty). \end{split}$$

当 $z \in \gamma_2$ 时, $z = re^{i\frac{\pi}{4}}$ (0 < r < R),于是

$$\int_{\gamma_2} e^{iz^2} \, \mathrm{d} z = \int_R^0 e^{ir^2 i} \cdot e^{i\frac{\pi}{4}} \, \mathrm{d} r \to -e^{i\frac{\pi}{4}} \int_0^{+\infty} e^{-r^2} \, \mathrm{d} r = -\frac{\sqrt{\pi}}{2} e^{i\frac{\pi}{4}}.$$

两边取实部、虚部得 $I_1=I_2=\frac{\sqrt{\pi}}{2\sqrt{2}}$ 。 对于 Poisson 积分 $\int_0^{+\infty}e^{-ax^2}\cos bx\,\mathrm{d}\,x,\ (a>0)$ 。

$$\int_{-R}^{R} e^{-ax^2} dx + \int_{\gamma_1 \cup \gamma_2 \cup \gamma_3} f(z) dz = 0.$$

可证 $\int_{\gamma_1} f(z) dz \to 0$, $\int_{\gamma_3} f(z) dz \to 0$, $(R \to +\infty)$, 面

$$\int_{\gamma_2} e^{-az^2} dz = \int_R^{-R} e^{-a(x+\frac{b}{2a}i)^2} dx = -e^{\frac{b^2}{4a}} \int_{-R}^R e^{-ax^2} e^{-bix} dx = -e^{\frac{b^2}{4a}} \int_{-R}^R e^{-ax^2} \cos bx dx$$

$$\Rightarrow I = \frac{1}{2} \sqrt{\frac{\pi}{a}} e^{-\frac{b^2}{4a}}.$$

亚纯函数的极点,整函数的零点 11

- 多项式是由零点"唯一"确定的(相差一个常数)。
- 零点无穷多个怎么办?

定理 11.1. Mittag-Leffler 定理: 设 $z_n \in \mathbb{C}$ $(n=1,2,\cdots)$ 满足 $|z_1| < |z_2| \le \cdots$ 且 $\lim |z_n| = +\infty$,设 $\psi_n(z) = \sum_{j=1}^{k_n} \frac{c_{n,j}}{(z-z_n)^j}$ $(n=1,2,\cdots)$,则存在 \mathbb{C} 上的亚纯函数 f,恰以 $\{z_n\}$ 为极点,且在 z_n 处的 Laurent 展开式的主要部分为 $\psi_n(z)$ 。

证明. 不妨设 $z_n \neq 0$,对 $\forall n > 0$, $\psi_n(z)$ 在 $\overline{B(0,\frac{|z_n|}{2})}$ 中全纯,其 Taylor 级数在 $\overline{B(0,\frac{|z_n|}{2})}$ 中一致收敛于 $\psi_n(z)$,故存在多项式 $O_n(z)$ s.t. $|\psi_n(z) - O_n(z)| < \frac{1}{2^n}$, $\forall |z| \leq \frac{|z_n|}{2}$ 。

令 $f(z) = \sum_{n=1}^{\infty} (\psi_n(z) - O_n(z)), \ \forall \ z \in \mathbb{C}, \ \text{ 任取 } R > 0, \ \text{取 N 充分大 s.t. } |z_N| > 2R,$ 当 $n \geq N$ 时 $|z_n| > 2R$,从而

$$|\psi_n(z) - O_n(z)| < \frac{1}{2^n}, \ \forall \ z \in \overline{B(0, R)}$$

$$\Rightarrow f(z) = \sum_{n=1}^{N-1} (\psi_n(z) - O_n(z)) + \sum_{n=N}^{+\infty} (\psi_n(z) - O_n(z)).$$

由 W-判别法知 $\sum_{n=N}^{+\infty} (\psi_n(z) - O_n(z))$ 在 $\overline{B(0,R)}$ 中一致收敛。

由于 $n \ge N$ 时 $|z_n| > 2R$, $\psi_n(z) - O_n(z)$ 在 B(0,R) 中全纯,故 $\sum_{n=N}^{+\infty} (\psi_n(z) - O_n(z))$ 在 $\overline{B(0,R)}$ 中全纯。

由于 R 是任意的,故 f 为 \mathbb{C} 上的亚纯函数且满足定理的要求。

设 $a_n \in \mathbb{C}$,称无穷乘积 $\prod_{n=1}^{\infty} (1+a_n)$ 收敛,如果 $\lim_{n\to+\infty} \prod_{k=1}^{n} (1+a_k)$ 存在且不为 0。那么

(2)
$$\prod_{n=1}^{n=1} (1+|a_n|)$$
 收敛 $\Leftrightarrow \sum_{n=1}^{\infty} |a_n|$ 收敛。
这是因为

$$\prod_{n=1}^{\infty} (1+|a_n|) < +\infty \Leftrightarrow \sum_{n=1}^{\infty} \log(1+|a_n|) < +\infty \Leftrightarrow \sum_{n=1}^{\infty} |a_n| < +\infty.$$

Lec25 Note of Complex Analysis

Xuxuayame

日期: 2023年5月30日

定理 11.2. 设 f(z) 为整函数且没有零点,则存在整函数 g(z) 使得 $f(z)=e^{g(z)}$ 。

设 f(z) 只有有限多个零点 $0, a_1, a_2, \dots, a_n$, 重数分别为 m, m_1, \dots, m_n ,则令 $p(z) = z^m (z - a_1)^{m_1} \cdots (z - a_n)^{m_n} = Az^m \left(1 - \frac{z}{a_1}\right)^{m_1} \cdots \left(1 - \frac{z}{a_n}\right).$

则 $\frac{f(z)}{g(z)}$ 为整函数且无零点,故存在整函数 g(z)s.t. $f(z) = e^{g(z)}p(z)$ 。

定理 11.3. Weierstrass 因子分解定理: 设 f(z) 为整函数, 零点为 $0, \dots, 0, a_1, a_2, \dots, (0 < |a_1| \le |a_2| \le \dots)$,则 f(z) 可以表示为

$$f(z) = z^m e^{h(z)} \prod_{n=1}^{\infty} \left(1 - \frac{z}{a_n} \right) e^{\frac{z}{a_n} + \frac{1}{2} \left(\frac{z}{a_n} \right)^2 + \dots + \frac{1}{n-1} \left(\frac{z}{a_n} \right)^{n-1}}.$$

其中 h(z) 为整函数。

证明. 记 $E_n = \left(1 - \frac{z}{a_n}\right) e^{\frac{z}{a_n} + \frac{1}{2}\left(\frac{z}{a_n}\right)^2 + \dots + \frac{1}{n-1}\left(\frac{z}{a_n}\right)^{n-1}}$ 。任取 R > 0,取 N s.t. $n \geq N$ 时 $|a_n| > 2R$ 且 n < N 时 $|a_n| \leq 2R$ 。

$$\prod_{n=1}^{\infty} E_n = e^{\log\left(\prod_{n=1}^{\infty} E_n\right)} = e^{\sum_{n=1}^{\infty} \log E_n},$$

$$\log E_n = \log \left(1 - \frac{z}{a_n} \right) + \left[\frac{z}{a_n} + \frac{1}{2} \left(\frac{z}{a_n} \right)^2 + \dots + \frac{1}{n-1} \left(\frac{z}{a_n} \right)^{n-1} \right].$$

当 $|z| \le R$ 且 $n \ge N$ 时 $\left| \frac{z}{a_n} \right| \le \frac{R}{2R} = \frac{1}{2}$,故

$$\log E_n = \sum_{m=1}^{\infty} \left(-\frac{1}{m} \left(\frac{z}{a_n} \right)^m \right) + \left[\frac{z}{a_n} + \dots + \frac{1}{n-1} \left(\frac{z}{a_n} \right)^{n-1} \right]$$
$$= \sum_{m=1}^{\infty} \left(-\frac{1}{m} \left(\frac{z}{a_n} \right)^m \right)$$

$$\left|\log E_n\right| \le \left|\frac{z}{a_n}\right|^n \left(1 + \left|\frac{z}{a_n}\right| + \left|\frac{z}{a_n}\right|^2 + \cdots\right)$$

$$= \left|\frac{z}{a_n}\right|^n \left(\frac{1}{1 - \left|\frac{z}{a_n}\right|}\right) \le 2 \cdot \frac{1}{2^n} = \frac{1}{2^{n-1}}.$$

故 $\sum\limits_{n=N}^{\infty}\log E_n$ 在 $|z|\leq R$ 中一致收敛 $\Rightarrow\prod\limits_{n=N}^{\infty}E_n$ 在 $|z|\leq R$ 中全纯 $\Rightarrow\prod\limits_{n=1}^{\infty}E_n$ 在 $|z|\leq R$ 中全纯。由 R 的任意性, $\prod\limits_{n=1}^{\infty}E_n$ 在 $\mathbb C$ 中全纯且零点为 $a_1,a_2,\cdots\Rightarrow f(z)/z^m\prod\limits_{n=1}^{\infty}E_n$ 为无

零点的整函数。

设 f(z) 为非常数的整函数,记 $M(r) = \max_{|z|=r} |f(z)|$ 。

定义 11.1. 设 f(z) 为整函数,若存在 $\lambda > 0$ 使得对充分大的 r > 0 有 $M(r) < e^{r^{\lambda}}$,则称 f(z) 有有限的增长阶数。称 $\rho = \inf \lambda$ 为 f(z) 的增长阶数。

例 11.1. 设 $f(z) = a_m z^m + \dots + a_1 z + a_0 \ (a_m \neq 0)$, 对 $\forall \lambda > 0$, $M(r) < Ar^m < e^{r^{\lambda}}$ (r 充 分大时) $\Rightarrow \rho = 0$ 。

例 11.2. $f(z) = e^{z^m}, \ \rho = m_{\circ}$

定理 11.4. 设 f(z) 是增长阶数为 ρ 的整函数, $a_n \neq 0$ 为 f(z) 的所有非零的零点,则对 $\forall \varepsilon > 0$,级数

$$\sum_{n=1}^{\infty} \frac{1}{|a_n|^{\rho+\varepsilon}} < +\infty.$$

(增长阶数与零点分布的关系)

证明. See the Chapter5 Section2 Theorem 2.1 (ii) of Stein 《Complex Analysis》, page 138.

定理 11.5. Hadamard: 设 f(z) 为增长阶数为 ρ 的整函数,k 为正整数且 $k \le \rho < k+1$ 。 设 $a_n \ne 0$ 为 f(z) 的所有非零的零点,则存在次数 $\le k$ 的多项式 h(z),使得

$$f(z) = z^m e^{h(z)} \prod_{n=1}^{\infty} \left(1 - \frac{z}{a_n} \right) e^{\frac{z}{a_n} + \frac{1}{2} \left(\frac{z}{a_n} \right) + \dots + \frac{1}{k} \left(\frac{z}{a_n} \right)^k}.$$

例 11.3. 设 f(z) 为有限阶整函数,则 f(z) 可以取到每一个有穷复数,至多可能有一个例外值。

证明. 设 $\exists \alpha \neq \beta$ 且 $f(z) \neq \alpha$, $f(z) \neq \beta$, $\forall z \in \mathbb{C}$, 则 $f(z) - \alpha$ 无零点。由 H-定理,存在多项式 h(z) s.t $f(z) - \alpha = e^{h(z)}$, $e^{h(z)} \neq \beta - \alpha$, $\forall z \in \mathbb{C}$, 即 $h(z) \neq \log(\beta - \alpha)$, $\forall z \in \mathbb{C}$, 与代数学基本定理矛盾。

例 11.4. 将 $f(z) = \sin(\pi z)$ 展开为无穷级数。

解. 按定义 $\sin(\pi z) = \frac{1}{2i}(e^{\pi iz} - e^{-\pi iz})$,而 $|e^z| \le e^{|z|}$,故 $|\sin \pi z| \le \frac{1}{2}(e^{\pi |z|} + e^{\pi |z|}) = e^{\pi |z|}$,故 $M(r) \le e^{\pi r} \Rightarrow \rho \le 1$ 。

另一方面 $|\sin \pi ir| = \frac{1}{2}(e^{\pi r} - e^{-\pi r}) > \frac{1}{4}e^{\pi r}$ (r 充分大时)。故 $M(r) > \frac{1}{4}e^{\pi r} \Rightarrow \rho = 1$ 。而 $\sin(\pi z)$ 的零点为 $0, \pm 1, \pm 2, \cdots, \pm n$,由 H-定理,取 k = 1,

$$\sin \pi z = z^1 \cdot e^{Az+B} \prod_{n=1}^{\infty} \left[\left(1 - \frac{z}{n} \right) e^{\frac{z}{n}} \left(1 - \frac{z}{-n} \right) e^{\frac{z}{-n}} \right] = z e^{Az+B} \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2} \right).$$

而 $\lim_{z \to 0} \frac{\sin(\pi z)}{z} = \pi = e^B \Rightarrow e^B = \pi$,把 z 换成 -z,得 $e^{-Az+B} = e^{Az+B} \Rightarrow A = 0$ 。

故
$$\sin(\pi z) = \pi z \cdot \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2}\right)$$
。

Part VI

全纯开拓

定义 11.2. 设 $f: G \to \mathbb{C}$ 全纯,若存在 $D \supsetneq G$ 及全纯函数 $F: D \to \mathbb{C}$,且 $F|_G = f$,则称 F 为 f 的一个**全纯开拓**。

例 11.5. $f(z) = \sum_{n=0}^{\infty} z^n (|z| < 1), \ F(z) = \frac{1}{1-z}, \ (z \neq 1)$,则 F(z) 是 f(z) 的全纯开拓。

12 Schwarz 对称原理

定理 12.1. Painlevé 原理: 设 D 是区域, $\gamma_1, \dots, \gamma_n$ 是 D 中的可求长曲线,如果 f 在 D 上连续,在 $D\setminus\bigcup_{k=1}^n \gamma_k$ 上全纯,则 f 在 D 中全纯。

证明. Morera 定理。 □

定理 12.2. Schwarz 对称原理: 设区域 D 关于实轴对称, 如果 f 满足:

- (1) f 在 $D^+ = D \cap \{z \mid \text{Im} z > 0\}$ 中全纯;
- (2) f 在 $D \cap \{z \mid \text{Im} z \ge 0\}$ 中连续;
- (3) $f(D \cap \mathbb{R}) \subset \mathbb{R}$,

则

$$F(z) = \begin{cases} f(z), & z \in D \cap \{z \mid \text{Im} \ge 0\}, \\ \overline{f(\overline{z})}, & z \in D^- \end{cases}$$

是 f 的全纯开拓。

证明. 设 $z \in D^-$,则 $\zeta = \overline{z} \in D^+$,

$$\frac{\partial}{\partial \overline{z}}\overline{f(\overline{z})} = \overline{\frac{\partial f(\overline{z})}{\partial z}} = \overline{\frac{\partial f(\zeta)}{\partial \overline{\zeta}}} = 0.$$

对于 C_{∞} 中的圆周 γ ,用 $C_{\infty}^+(\gamma)$, $C_{\infty}^-(\gamma)$ 表示 C_{∞} 被 γ 分割成的两个单连通区域。

定理 12.3. 推广的 S-对称原理: 设 C_{∞} 中的区域 D 关于圆周 γ 对称。如果 f 满足

- (1) f 在 $D \cap C^+_{\infty}(\gamma)$ 全纯且连续到 γ 上;
- (2) $f(D \cap \gamma) \subset \Gamma$, Γ 为圆周 (以 w_0 为圆心);
- (3) $\forall z \in D \cap C_{\infty}^+(\gamma), f(z) \neq w_0$,

则 f 可以全纯开拓到 D 上的全纯函数 F, 且 F 将 γ 的对称点映为 Γ 的对称点。

Lec26 Note of Complex Analysis

Xuxuayame

日期: 2023年6月1日

例 12.1. 圆环 $D = \{z \in \mathbb{C} \mid r_1 < |z| < r_2\}$ 和 $G = \{z \in \mathbb{C} \mid R_1 < |z| < R_2\}$ 双全纯 (或共形) 等价 $\Leftrightarrow \frac{r_2}{r_1} = \frac{R_2}{R_1}$ 且双全纯 $f \colon D \to G$ 满足 $f(z) = e^{i\theta} \frac{R_2}{r_2} z$ 或 $f(z) = e^{-i\theta} \frac{r_1 R_2}{z}$, $\theta \in \mathbb{R}$ 。证明. \Leftarrow : 显然。

 \Rightarrow : 设 $f: D \to G$ 为双全纯,由边界对应原理,f 将 \overline{D} 同胚地映为 \overline{G} 。设 f 将 $|z|=r_1$ 映为 $|z|=R_1$,取

$$D_1: \frac{r_1^2}{r_2} < |z| < r_1, \quad G_1: \frac{R_1^2}{R_2} < |z| < R_1,$$

由 S-对称原理,f 可以开拓到 $D \cup D_1 \cup \{|z| = r_1\}$ 上,且将边界映为边界,继续这个过程,f 可以全纯开拓到 $B(0,r_2)$,且 f(0) = 0。故 $f(z) = e^{i\theta \frac{R_2}{r_2}} z$ 。

由于
$$f(\partial B(0,r_1)) = \partial B(0,R_1)$$
,故 $\frac{R_1}{R_2} = \frac{r_1}{r_2}$ 。

设 f 将 $|z| = r_1$ 映为 $|z| = R_2$,令 $g(z) = \frac{R_1 R_2}{f(z)}$,则 g(z) 将 $|z| = r_1$ 映为 $|z| = R_1$,故 $g(z) = e^{i\theta} \frac{R_2}{r_2} z \Rightarrow f(z) = e^{-i\theta} \frac{r_1 R_2}{z}$ 。

评论. 拓扑等价与共形等价是有差异的。

13 幂级数的全纯开拓

设 $f(z) = \sum_{n=0}^{\infty} a_n z^n$ 的收敛半径为 R > 0,取 $\zeta \in \partial B(0,R)$ 在线段 $\overline{0\zeta}$ 上取点 $z_0 \neq 0$, f 在 z_0 处的 Taylor 级数为 $\sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z-z_0)^n$,其收敛半径 $\rho \geq R - |z_0|$ 。

- (1) 若 $\rho > R |z_0|$, f 可以全纯开拓到更大的区域中, ζ 称为正则点。
- (2) 若对 $\overline{0\zeta}$ 中每个点 z_0 , $\rho=R-|z_0|$,称 ζ 为**奇点**。(与以前的孤立奇点不同)

例 13.1.
$$f(z) = \sum_{n=0}^{\infty} z^n$$
, $R = 1$ 且 $f(z) = \frac{1}{1-z} (|z| < 1)$ 。 设 $|z_0| < 1$, $f^{(n)}(z_0) = \frac{n!}{(1-z_0)^{n+1}}$,故
$$\sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z-z_0)^n = \sum_{n=0}^{\infty} \frac{(z-z_0)^n}{(1-z_0)^{n+1}},$$

其收敛半径 $\rho = |1 - z_0| \ge 1 - |z_0|$ 。故 $\zeta = 1$ 是唯一的奇点。

定理 13.1. 幂级数的收敛圆周上必有奇点。

证明. 设 $\sum\limits_{n=0}^{\infty} a_n z^n$ 的 R>0 且 $\partial B(0,R)$ 上无奇点,则对 $\forall\,\zeta\in\partial B(0,R)$,存在以 ζ 为中心 的圆盘 B_ζ 及 B_ζ 上的全纯函数 f_s s.t. $f_\zeta(z)=f(z),\,z\in B(0,R)\cap B_\zeta\circ\{B_\zeta\mid\zeta\in\partial B(0,R)\}$ 为 $\partial B(0,R)$ 的开覆盖,从而有有限的子覆盖 $\{B_{\zeta_i}\mid i=1,2,\cdots,m\}$ 。

记
$$D = B(0,R) \cup \left(\bigcup_{i=1}^{m} B_{\zeta_i}\right)$$
, 令

$$g(z) = \begin{cases} f(z), & z \in B(0, R), \\ f_{\zeta_i}(z), & z \in B_{\zeta_i}, \end{cases}$$

g 是良定义的。 g(z) 在 z=0 处的 Taylor 级数的收敛半径 >R, $\sum\limits_{n=0}^{\infty}\frac{g^{(n)}(0)}{n!}z^n=\sum\limits_{n=0}^{\infty}\frac{f^{(n)}(0)}{n!}z^n$,矛盾。

例 13.2. $\sum_{n=1}^{\infty} \frac{z^n}{n^2}$ 的 R=1,在 $\partial B(0,1)$ 上处处收敛,但 $\partial B(0,1)$ 中有 (开拓意义下的) 奇点。

例 13.3. $f(z) = \sum_{n=0}^{\infty} z^{n!}$ 的收敛半径 R = 1, $\partial B(0,1)$ 中每点都是奇点。

证明. 假设 $\exists \zeta_0 \in \partial B(0,1)$ 为正则点,则 $\exists z_0 \in \overline{0\zeta}$,且 f 在 z_0 处的 Taylor 级数 g(z) 的 收敛半径 $\rho > 1 - |z_0|$ 。由于形如 $\{e^{2\pi i \cdot \frac{p}{q}} \mid p, q \text{ 为整数且互素}\}$ 的点在 |z| = 1 上稠密,故 $\exists \zeta_1 \in \partial B(0,1), \zeta_1 = e^{2\pi i \cdot \frac{p}{q}}$,

$$g(\zeta_1) = \lim_{r \to 1^-} g(r\zeta_1) = \lim_{r \to 1^-} f(r\zeta_1)$$
$$f(r\zeta_1) = \sum_{n=0}^{q-1} r^{n!} \zeta_1^{n!} + \sum_{n=q}^{+\infty} r^{n!}.$$

対 $\forall N > q$, $\sum_{n=q}^{+\infty} r^{n!} > \sum_{n=q}^{N} r^{n!} > (N-q)r^{N!}$, 当 $r \to 1^-$ 时, $\sum_{n=q}^{+\infty} r^{n!}$ 可以大于任何正整数 $\Rightarrow \lim_{r \to 1^-} f(r\zeta_1) = +\infty \Rightarrow g(\zeta_1) = +\infty$,矛盾。

14 完全解析函数与单值性定理 (Monodromy Theorem)

考虑幂级数 $p(z)=\sum\limits_{n=0}^{\infty}c_{n}(z-a)^{n}$,收敛半径 R>0,称这个幂级数为一个解析元素。若 $|a_{1}-a|< R$,则幂级数 $p_{1}(z)=\sum\limits_{n=0}^{\infty}\frac{p^{n}(a_{1})}{n!}(z-a_{1})^{n}$,其收敛半径 $R_{1}\geq R-|a_{1}-a|>0$, $p_{1}(z)$ 也是一个解析元素,称之为解析元素 p(z) 的一个直接开拓。

假设有 m 个解析元素

$$p_k(z) = \sum_{n=0}^{\infty} c_n^{(k)} (z - a_k)^n \ (k = 1, 2, \dots, m),$$

如果 $p_1(z)$ 是 p(z) 的直接开拓, $p_{k-1}(z)$ 是 $p_k(z)$ 的直接开拓, $k=1,\cdots,m-1$,则称 p_m 是 p(z) 的一个解析开拓。

定义 14.1. 一个解析元素 p(z) 的全部解析开拓构成的集合称为由解析元素 p(z) 所产生的完全解析函数。

- **评论.** (1) p(z) 的全部解析开拓所对应的收敛圆的并集称为这个完全解析函数的存在域(定义域),其边界称为自然边界。
 - (2) 完全解析函数可能是多值函数。

设 $p(z) = \sum_{n=0}^{\infty} c_n(z-a)^n$, γ 为从 a 到 b 的曲线。称 p(z) 可以沿 γ 解析开拓,如果存在 γ 上的点列: $a_0 = a, a_1, a_2, \cdots, a_{m-1}, a_m = b$ 及一列解析元素 $p_k(z) = \sum_{n=0}^{\infty} c_n^{(k)} (z-a_k)^n$ ($k = 0, 1, \cdots, m-1$) 满足:

- (1) $p_0(z) = p(z)$;
- (2) 曲线 $a_k \widehat{a_{k+1}}$ 位于 $p_k(z)$ 的收敛圆 C_k 中, $k = 0, 1, \dots, m-1$;
- (3) $p_k(z)$ 是 $p_{k-1}(z)$ 的直接开拓, $k = 1, 2, \dots, m-1$ 。

评论. 沿着从a到b的两条不同路径解析开拓, 在b处的值可能不相同。

Lec27 Note of Complex Analysis

Xuxuayame

日期: 2023年6月6日

例 14.1. $\sum_{n=1}^{\infty} \frac{(-1)^n}{n} (z-1)^n$, |z-1| < 1, 其存在域 = $\mathbb{C} \setminus \{0\}$, 自然边界 = $\{0\}$ 。

沿 γ_1 解析开拓至z处的值 = $\log r + i\theta$,沿 γ_2 解析开拓至z处的值 = $\log r - i(2\pi - \theta)$ = $\log r + i\theta - 2\pi i$ 。

若取 $D = \mathbb{C} \setminus (-\infty, 0]$ (D 单连通),则解析开拓至一个单值函数。

定理 14.1. 单值性定理: 设 D 为单连通域, $a\in D$, $p(z)=\sum\limits_{n=0}^{\infty}c_n(z-a)^n$ 是一个解析元素,若 p(z) 可以沿 D 内由 a 出发的任意曲线解析开拓,则存在 D 内的解析函数 f(z),使得在 a 附近 f(z)=p(z)。

证明. 若 $D = \mathbb{C}$,若 p(z) 的收敛半径 $R < +\infty$,则其收敛圆周上存在奇点 z_0 ,则 p(z) 不能沿线段 $\overline{az_0}$ 解析开拓,矛盾,故 $R = +\infty$,p(z) 无需开拓。

设 $D \neq \mathbb{C}$,由 Riemann 映射定理,存在共形映射 $\psi \colon B(0,1) \to D, \ \psi(0) = a$,取 $r \in (0,1)$ s.t. $\psi(B(0,r)) \subset p(z)$ 的收敛圆盘中。

 $p\circ\psi$ 在 B(0,r) 中全纯,可以展开为幂级数 $\sum\limits_{n=0}^{\infty}\beta_nz^n=:g(z),g(z)$ 的收敛半径 $\rho\geq r$,且 |z|< r 时, $g(z)=p\circ\psi(z)$ 。

若 $\rho \geq 1$,则 g(z) 在 |z| < 1 中全纯,从而 $g \circ \psi^{-1}(z)$ 在 D 中全纯且在 a 附近 $g \circ \psi^{-1}(z) = p(z)$ 。

若 ρ < 1,则 g(z) 在 $|z| = \rho$ 上至少有一个奇点 z_0 ,令 $b = \psi(z_0)$, $\psi(\overline{0z_0}) = \gamma$ 。由条件 p(z) 可以沿 γ 解析开拓,从而 g(z) 可以沿 $\overline{0z_0}$ 解析开拓,与 z_0 为奇点矛盾。

Part VII

共形映射 (Conformed Mapping)

15 正规族 (Normal Family)

定义 15.1. 设 \mathcal{F} 是域 D 上的一个函数族,如果它的任意序列 $\{f_n\} \subset \mathcal{F}$ 一定有子列 $\{f_{n_k}\}$ 在 D 上内闭一致收敛,则称 \mathcal{F} 为**正规族**。

定义 15.2. 设 \mathcal{F} 是域 D 上的函数族,如果存在 M>0,对任意 $f\in\mathcal{F}$ 和任意 $z\in D$, $|f(z)|\leq M$,则称 \mathcal{F} **一致有界**。

如果对任意紧集 $K \subset D$,存在 M = M(K) > 0,对 $\forall f \in \mathcal{F}, \forall k \in K, |f(z)| \leq M$,则称 \mathcal{F} 内闭一致有界。

定义 15.3. 设 牙 为域 D 上的函数族, 如果对 $\forall \varepsilon > 0$, $\exists \delta > 0$, 当 $z_1, z_2 \in D$ 且 $|z_1 - z_2| < \delta$

时, 对 $\forall f \in \mathcal{F}$,

$$|f(z_1) - f(z_2)| < \varepsilon,$$

则称 f 是等度连续的 (Equi-continuous)。

定理 15.1. Arzela-Ascoli: 设 $K \subset \mathbb{C}$ 为紧集, $\{f_n\}$ 在 K 上一致有界且等度连续,则 $\{f_n\}$ 必有子列在 K 上一致收敛。

证明. 设 $A = \{\zeta_1, \zeta_2, \dots\} \subset K$ 为 K 的稠密子集。

 $\{f_n(\zeta_1)\}\$ 为有界数列,故有收敛子列 $\{f_{n,1}(\zeta_1)\}:f_{1,1}(\zeta_1),f_{2,1}(\zeta_1),f_{3,1}(\zeta_1),\cdots$

 $\{f_{n,1}(\zeta_2)\}$ 为有界数列,故有收敛子列 $\{f_{n,2}(\zeta_2)\}: f_{1,2}(\zeta_2), f_{2,2}(\zeta_2), f_{3,2}(\zeta_2), \cdots$ 。

依次下去,令 $g_n = f_{n,n}$,易见 $\{g_n(\zeta_j)\}_{n=1}^\infty$ 对 $\forall j \ge 1$ 收敛,下证 g_n 在 K 上一致收敛。

由 $\{f_n\}$ 的等度连续性知, $\forall \varepsilon > 0$, $\exists \delta > 0$,当 $z_1, z_2 \in K$, $|z_1 - z_2| < \delta$ 时 $|f_n(z_1) - f_n(z_2)| < \varepsilon$,($\forall n \geq 1$)。

由于 K 紧致,开覆盖 $\{B(\zeta_j, \delta) \mid j = 1, 2, \cdots\}$ 有有限子覆盖,记为 $\{B(\zeta_j, \delta) \mid j = 1, 2, \cdots, J\}$, $\{g_n(\zeta_j)\}_{n=1}^{\infty}$ 收敛 $(j = 1, 2, \cdots, J)$,故 $\exists N$,当 n, m > N 时,

$$|g_n(\zeta_i) - g_m(\zeta_i)| < \varepsilon, \ (j = 1, 2, \dots, J).$$

对 $\forall z \in K, \exists j = j(z) \text{ s.t. } z \in B(\zeta_i, \delta),$

$$|g_n(z) - g_m(z)| \le |g_n(z) - g_n(\zeta_j)| + |g_n(\zeta_j) - g_m(\zeta_j)| + |g_m(\zeta_j) - g_m(z)| < 3\varepsilon.$$

定理 15.2. Montel: 设于是域 D 上的全纯函数族,则 \mathcal{F} 为正规族 \Leftrightarrow \mathcal{F} 在 D 上内闭一致 有界。

证明. ⇒: 设 \mathcal{F} 为正规族,如果结论不成立,则 \exists 紧集 $K \subset D$, \exists $\{f_n\} \subset \mathcal{F}$ s.t. $\sup\{|f_n(z)| \mid z \in K\} \geq n$ 。

牙为正规族 $\Rightarrow \{f_n\}$ 有子列 $\{f_{n_k}\}$ 在 K 上一致收敛于某个 f(z)(连续)。 $\exists k_0$,当 $k > k_0$ 时 $|f_{n_k}(z) - f(z)| < 1$, $\forall z \in K$,

$$|f_{n_k}(z)| \le |f(z)| + 1 \le M + 1, \ \forall \ z \in K, \ M := \sup_{z \in K} |f(z)|.$$

矛盾。

⇐: Claim: 牙内闭一致有界 ⇒ 牙在每个紧集上等度连续。

设 $K \subset D$ 为紧集, $\exists \delta > 0$ s.t. $\overline{B(K,3\delta)} \subset D$,设 $z_1, z_2 \in K$, $|z_1 - z_2| < \delta$ 。记 $\gamma = \partial B(z_1, 2\delta)$ /

$$|f(z_{2}) - f(z_{1})| = \left| \frac{1}{2\pi i} \int_{\gamma} \left(\frac{f(\zeta)}{\zeta - z_{2}} - \frac{f(\zeta)}{\zeta - z_{1}} \right) d\zeta \right|$$

$$\leq \frac{1}{2\pi} M \int_{\gamma} \frac{|z_{1} - z_{2}|}{|\zeta - z_{2}||\zeta - z_{1}|} |d\zeta| \leq \frac{M}{2\pi} \frac{|z_{1} - z_{2}|}{\delta^{2}} 2\pi \cdot 2\delta = \frac{2M}{\delta} |z_{1} - z_{2}|.$$

那么取一列紧致集 $K_1 \subset K_2 \subset \cdots$ 且 $\bigcup_{n=1}^{\infty} K_n = D$ 。(若 D 有界,则取 $K_j = \{z \in D \mid d(z,\partial D) \geq \frac{1}{j}\}$;若 D 无界,则取 $K_j = \{z \in D \mid d(z,\partial D) \geq \frac{1}{j}$ 且 $|z| \leq j\}$ 。) 由定理 15.1,对 \mathcal{F} 的序列 $\{f_n\}$,有子列 $\{f_{n,1}\}$ 在 K_1 上一致收敛, $\{f_{n,1}\}$ 也有子列 $\{f_{n,2}\}$ 在 K_2 上一致收敛,依次下去,易见 $\{f_{n,n}\}$ 在 D 上内闭一致收敛。

Lec28 Note of Complex Analysis

Xuxuayame

日期: 2023年6月8日

16 Riemann 映射定理

定理 16.1. 设 $G \subset \mathbb{C}$ 为单连通区域且 $G \neq \mathbb{C}$,对于 $a \in G$,存在唯一的共形映射 $f: G \to B(0,1)$,满足 f(a) = 0,f'(a) > 0。

证明.Step 1 构造共形映射 φ : $G \to \mathbb{C}$ s.t. $\varphi(G)$ 为有界区域。 $G \neq \mathbb{C}$, $\exists b \neq \infty$, $b \notin G$, 那 $a = \sqrt{z-b}$ 在单连通区域 a = 0 中有单值分支,记为 a = 0 定。

注意: 若 $w \in g(G)$, 则 $-w \notin g(G)$ 。

证明. 若 $-w \in g(G)$,则 $\exists z_1, z_2 \in G$ s.t. $\sqrt{z_1 - b} = w$, $\sqrt{z_2 - b} = -w$,平方后 $z_1 = z_2$ 且 w = 0,矛盾。

于是 $g(a) \in g(G) \Rightarrow -g(a) \notin g(G)$ 。 $\exists \ \delta > 0, \ B(g(a), \delta) \subset g(G) \Rightarrow B(-g(a), \delta) \subset g(G)^C$ 。 对 $\forall \ z \in G, \ |g(z) + g(a)| > \delta$,令 $\varphi(z) = \frac{1}{g(z) + g(a)}$,则 $|\varphi(z)| < \frac{1}{\delta}$, $\varphi(G)$ 有界。

Step 2 不妨设 G 为有界区域, 定义 G 上的函数族

$$\mathfrak{F} = \{ f \colon G \to \mathbb{C} \mid f \not = \mathbb{R}, \ f(a) = 0, \ f'(a) > 0, \ f(G) \subset B(0,1) \}.$$

首先牙≠Ø。

证明. G 有界 $\Rightarrow \exists R > 0$ s.t. $G \subset B(0,R)$,令 $f(z) = \frac{1}{2R}(z-a)$, $|f(z)| \leq \frac{1}{2R}(|z| + |a|) < 1 \Rightarrow f \in \mathcal{F}$ 。

取 r > 0 s.t. $B(a, r) \subset G$,由 Cauchy 不等式, $\forall f \in \mathfrak{F}$,

$$f'(a) = |f'(a)| = \left| \frac{1}{2\pi i} \int_{|\zeta - a| = r} \frac{f(\zeta)}{(\zeta - a)^2} \, \mathrm{d}\,\zeta \right| \le \frac{1}{2\pi} \frac{1}{r^2} 2\pi r = \frac{1}{r}.$$

记 $M = \sup\{f'(a) \mid f \in \mathfrak{F}\}$ 。下证: $\exists f_* \in \mathfrak{F} \text{ s.t. } f'_*(a) = M$ 。

存在 $f_n \in \mathcal{F}$ s.t. $\lim_{n \to \infty} f'_n(a) = M$ 。 因为 $|f_n(z)| < 1$, $\forall z \in G$,故 $\{f_n\}$ 在 G 上一致有界,由 Montel 定理, $\{f_n\}$ 有子列 $\{f_{n_k}\}$ 在 G 上内闭一致收敛,记 $\lim_{k \to \infty} f_{n_k} = f_*$ 。由 Weierstrass 定理, f_* 在 G 上全纯且 $f'_{n_k}(z) \to f'_*(z) \Rightarrow f'_*(a) = M$ 。

 $M \neq 0$, f_* 不是常值函数。由于 f_{n_k} 单叶全纯且 f_{n_k} 在 G 中内闭一致收敛于 f_* ,由 Hurwitz 定理, f_* 单叶全纯。

$$f_{n_k}(a) = 0 \Rightarrow f_*(a) = 0$$
.

由于 $|f_*(z)| \le 1$, $\forall z \in G$, 由最大模原理, $|f_*(z)| < 1$, $\forall z \in G \Rightarrow f_* \in \mathcal{F}$ 。

Step 3 $f_*(G) = B(0,1)$.

假设 $f_*(G) = G_1 \subsetneq B(0,1)$, $0 \in G_1$ 为单连通区域且 $\exists u_0 \in B(0,1)$ 但 $u_0 \notin G_1$ 。令 $\varphi_{u_0}(z) = \frac{u_0 - z}{1 - \overline{u_0} z}$, $\varphi_{u_0}(0) = u_0$, $\varphi_{u_0}(u_0) = 0$,且 $\varphi'_{u_0}(0) = -(1 - |u_0|^2)$ 。 $G_2 = \varphi_{u_0}(G_1)$,令 $s_0 = g(u_0)$, $s_0 = g(u_0)$ $s_0 = g(u_0)$

$$w'(a) = q'(s_0)p'(u_0)\varphi'_{u_0}(0)f'_*(0)$$

$$= \frac{s_0}{|s_0|} \frac{1}{1 - |s_0|^2} \frac{1}{2\sqrt{u_0}} (1 - |u_0|^2) \cdot M$$

$$= \frac{1 - |u_0|^2}{2|s_0|(1 - |s_0|^2)} M > 0$$

 $\Rightarrow w(z) \in \mathcal{F}$.

记 $|u_0| = \rho$,则 $|s_0| = |\sqrt{u_0}| = \sqrt{\rho}$,故 $w'(a) = \frac{1-\rho^2}{2\sqrt{\rho}(1-\rho)}M = \frac{1+\rho}{2\sqrt{\rho}}M > M$,与 f_* 的取法矛盾。

Step 4 设 f, g 满足条件,则 $f \circ g^{-1} \colon B(0,1) \to B(0,1)$ 共形且 $f \circ g^{-1}(0) = 0$,故 $f \circ g^{-1}(z) = e^{i\theta} \cdot z$,由于 $(f \circ g^{-1})'(0) = \frac{f'(a)}{g'(a)} > 0 \Rightarrow e^{i\theta} = 1 \Rightarrow f = g$ 。

17 边界对应原理

定理 17.1. 设 G 是由一条简单闭曲线 Γ 所围成的区域,如果 w = f(z) 把 G 共形地映为 B(0,1),则 f 可以扩充到 Γ 上,使得 $f \in C(\overline{G})$ 且把 Γ 一一映为 |w| = 1。

证明.Step 1 先证明: 对 $\forall 7 \zeta \in \Gamma$, $\lim_{z \to \zeta, z \in G} f(z)$ 存在,为此只需证: 如果 $\lim_{z_n \to \zeta} f(z_n) = a$, $\lim_{z_n \to \zeta} f(z_n') = b$,则 a = b。

易见 $a, b \in \partial B(0,1)$:若 $a \in B(0,1)$,则 $f^{-1}(a) \in G$,故 $\zeta = \lim_{n \to \infty} z_n = \lim_{n \to \infty} f^{-1}(f(z_n)) = f^{-1}(a) \in G$,矛盾。

假设 $a \neq b$,作分式线性变换 $T: B(0,1) \to B(0,1)$ s.t. $T(a) = e^{i\frac{\pi}{4}}$, $T(b) = e^{i\frac{5}{4}\pi}$,令 $g(z) = T \circ f(z)$ 。则 $\lim_{z_n \to \zeta} g(z_n) = e^{i\frac{\pi}{4}}$, $\lim_{z'_n \to \zeta} g(z'_n) = e^{i\frac{5}{4}\pi}$ 。对 $\forall \, \varepsilon > 0$,当 $0 < |z_n - \zeta| < \delta$, $0 < |z'_n - \zeta| < \delta$ 时,

$$\left|g(z_n) - e^{i\frac{\pi}{4}}\right| < \varepsilon, \left|g(z'_n) - e^{i\frac{5}{4}\pi}\right| < \varepsilon.$$

设 $z_0 = g^{-1}(0) \in G$,把 δ 取得充分小 s.t. $G_\delta = B(\zeta, \delta) \cap G$ 不含 z_0 。取 $z_n, z'_n \in G_\delta$ 在 G_δ 中取曲线 l 连接 z_n, z'_n ,则 L = g(l) 是连接 $g(z_n)$ 和 $g(z'_n)$ 的曲线,且 L 不过原点,从而 L 与实轴虚轴都相交,如图所示。

令 $F(w)=(g^{-1}(w)-\zeta)(\overline{g^{-1}(\overline{w})-\zeta})(g^{-1}(-w)-\zeta)(\overline{g^{-1}(-\overline{w})}-\zeta)$, 易见 F(w) 全 纯 $(\frac{\partial}{\partial\overline{w}}(\overline{g^{-1}(\overline{w})}-\overline{\zeta})=\overline{\frac{\partial}{\partial w}(g^{-1}(\overline{w}))}=0)$ 。

估计 F(w) 在 ∂D 上的值,若 $w \in \widetilde{PQ}$,则 $g^{-1}(w) \in l$,故 $|g^{-1}(w) - \zeta| < \delta$ 。记 $M = \sup_{z \in \partial G} |z - \zeta| < +\infty$,则 $|F(w)| \le \delta \cdot M^3$ 。同理可知当 $w \in \partial D$ 时总有 $|F(w)| \le \delta M^3$ 。由最大模原理, $|F(0)| \le \delta M^3$,即 $|z_0 - \zeta|^4 \le \delta M^3$,令 $\delta \to 0$,则 $z_0 = \zeta$,矛盾,故 a = b。

Lec29 Note of Complex Analysis

Xuxuayame

日期: 2023年6月13日

接着 Thm17.1 的证明。

证明.Step 2 要证: 对 $\forall \zeta \in \partial G, \lim_{\xi \to \zeta, \xi \in \partial G} f(\xi) = f(\zeta)$ 。

対 $\forall \varepsilon > 0$, $\exists \delta > 0$, $\dot{\exists} z \in B(\zeta, \delta) \cap G$ 时 $|f(z) - f(\zeta)| < \varepsilon$ 。 取 $\xi \in B(\zeta, \delta) \cap \partial G$, $\exists \delta_1 > 0$, $\dot{\exists} z \in B(\xi, \delta_1) \cap G$ 时, $|f(z) - f(\xi)| < \varepsilon$ 。 取 $z \in B(\zeta, \delta) \cap B(\xi, \delta_1) \cap G$ 时 $|f(\xi) - f(\zeta)| \le |f(z) - f(\zeta)| + |f(z) - f(\xi)| < 2\varepsilon$.

Step 3 若 $\zeta, \zeta' \in \partial G$, $\zeta \neq \zeta'$, 取 $\varepsilon > 0$ s.t. $B(\zeta, \varepsilon) \cap B(\zeta', \varepsilon) = \emptyset$, 由于 $f|_G$ 是单叶的,故 $f(B(\zeta, \delta)) \cap f(B(\zeta', \varepsilon)) = \emptyset \Rightarrow f(\zeta) \neq f(\zeta')$ 。

G 有界 \Rightarrow \overline{G} 紧集 \Rightarrow $f(\overline{G})$ 紧集 \Rightarrow $f(\overline{G})$ 为闭集。由于 $B(0,1) \subset f(\overline{G}) \subset \overline{B(0,1)}$, $\overline{B(0,1)} \subset \overline{f(\overline{G})} = f(\overline{G}) \Rightarrow f(\overline{G}) = \overline{B(0,1)}.$

要证 f^{-1} : $\overline{B(0,1)} \to \overline{G}$ 连续,只需证 f 为闭映射。设 $A \subset \overline{G}$ 为闭集,则 A 为紧集,则 f(A) 为紧集,从而为闭集。

定理 17.2. 逆定理: 设 G 和 D 分别是由可求长简单闭曲线 γ 和 Γ 围成的区域。如果 $f \in H(G) \cap C(\overline{G})$ 且把 γ 一一映满 Γ ,则 $f : G \to D$ 为共形映射。

证明. $\forall w_0 \in D$,考虑 $g(z) = f(z) - w_0$,由辐角原理,g(z) 在 G 中的零点个数 $N = g(\gamma)$ 绕原点的圈数 $= f(\gamma)$ 绕原点的圈数 $= \pm 1$ 。

故存在唯一的 $z_0 \in G$, $f(z_0) = w_0$ 。

另一方面, $w_0 \notin \overline{D}$ 时,N = 0,即 f 不会把 G 中点映到 D 的外面。

18 Schwarz-Christoffel 公式

设G是以 $w_1, w_2 \cdots, w_n$ 为顶点的多角形域。

定理 18.1. 设 D 为上半平面,设 f : $D \to G$ 共形且 f 在 \overline{D} 上连续,设 $f(a_k) = w_k$ $(-\infty < a_1 < a_2 < \cdots < a_n < +\infty)$ 。则

$$f(z) = C \int_{z_0}^{z} (z - a_1)^{\alpha_1 - 1} \cdots (z - a_n)^{\alpha_n - 1} dz + C_1.$$

其中 $z_0 \in \overline{D}$, C, C_1 为常数。

我们回忆一些重要的共形映射:

• 初等函数:

• 分式线性变换: 把圆周映为圆周; 把对称点映为对称点。

例 18.1. $D=\{z\mid |z+i|<2$ 且 $\mathrm{Im}z>0\},\ \Omega=\{z\mid 0<\mathrm{Im}z<\pi\}$,求从 D 到 Ω 的共形映射。

例 18.2. 求将 $D=\{z\mid |z|>1,\ |z-\sqrt{3}i|<2\}$ 映为单位圆盘的共形映射 f,且 $f(\sqrt{3}i)=0,\ f'(\sqrt{3}i)>0$ 。

例 18.3. 求上半平面到上半平面的分式线性变换 f,满足 f(a)=b, $\arg f'(a)=\theta$ (其中 $\operatorname{Im} a>0$, $\operatorname{Im} b>0$)

