

LENDING CLUB CASE STUDY SUBMISSION

Group Assignment

Submitted by: Navoneel Chakrabarty

Ankita Chakrabarti

For the analysis on the past customer data provided by Lending Club, firstly target variable is found and then the impact of all other variables, on the target variable is analyzed so as to conclude whether the borrowers are likely to be defaulters or not.

Flowchart:

Analysis:

- > Original data-frame is loaded, and distribution plot for Target Variable (loan_status) is constructed and shown in Fig 1.
- Continuous Variable Analysis:
 - ✓ The features containing null values are detected. Those containing medium % of NaN values (mths_since_last_delinq) are imputed with median, those containing large % of NaN values (mths_since_last_record) are removed and for those containing very small % of NaN values (revol_util), corresponding rows are dropped.
 - ✓ The required continuous features are extracted from the main data-frame and mutual correlation is calculated and presented in the form of a heatmap in Fig 2.
 - ✓ The resulting data-frame with only continuous features is further bifurcated into 2 sub data-frames, df_not_default and df_default containing 'fully paid' and 'charged off' data respectively.
 - ✓ Default Rate for each category (synthetic class intervals) based Bar Plots are constructed for analysis along with Box-Plots for both not_default and default data for outlier-range detection.
- > Categorical Variable Analysis:
 - ✓ The features containing null values are detected. Those containing medium % of NaN values (emp_title, emp_length, pub_rec_bankruptcies) are imputed with median, those containing large % of NaN values (next_pymnt_d), are removed and for those containing very small % of NaN values (last_pymnt_d, last_credit_pull_d), corresponding rows are dropped.
 - The resulting data-frame with only categorical features is further bifurcated into 2 sub data-frames, df_not_default and df_default containing 'fully paid' and 'charged off' data respectively.
 - ✓ Default Rate for each category based Bar Plots are constructed for analysis.

Fig 1. Distribution Plot for Target Variable

Fig 2. Heat-Map showing mutual correlation for continuous variables

Fig 3. It can be concluded that for **loan_amnt** > 29700.0 there are higher chances of the borrower to be a DEFAULTER.

Fig 4. It can be concluded that if the **funded_amnt** > 28600.0, there are higher chances for the borrower to be a DEFAULTER.

Fig 5 . It can be concluded that for *int_rate* > 20%, there are higher chances of the borrower to be a DEFAULTER.

Fig 6. It can be concluded that for mths_since_last_delinq > 100, there are higher chances of the borrower to be a DEFAULTER.

Fig 7. It can be concluded that if the *installment* > 800, there are higher chances for the borrower to be a DEFAULTER.

Fig 8. It can be concluded that for annual_inc <= 100000, there are higher chances of the borrower to be a DEFAULTER.

Fig 9. It can be concluded that for **dti** > 20, there are higher chances of the borrower to be a DEFAULTER.

Fig 10. It can be concluded that for open_acc > 20, there are higher chances of the borrower to be a DEFAULTER.

Fig 11. It can be concluded that for revol_util > 90, there are higher chances of the borrower to be a DEFAULTER.

Fig 12. It can be concluded that for **collection_recovery_fee** > 2000, there are higher chances of the borrower to be a DEFAULTER

Fig 13. It can be concluded that if the **revol_bal** <= 50000, there are higher chances for the borrower to be a DEFAULTER.

Fig 14. It can be concluded that for **total_pymnt** <= 15000, there are higher chances of the borrower to be a DEFAULTER.

Fig 15. It can be concluded that for **total_acc** <= 20, there are higher chances of the borrower to be a DEFAULTER.

Fig 16. It can be concluded that if **total_rec_int** <= 10000, then there are higher chances that the borrower is a DEFAULTER.

Fig 17. It can be concluded that if **total_rec_prncp** < 11577.76, then there are higher chances that the borrower is a DEFAULTER.

Fig 18. It can be concluded that for **recoveries** > 5000, there are higher chances of the borrower to be a DEFAULTER.

Fig 19. It can be concluded that for **total_rec_late_fee** in range 50-100 (100 included), there are higher chances of the borrower to be a DEFAULTER.

Fig 20. It can be concluded that if **total_rec_prncp** < 845.9 then there are higher chances that the borrower is a DEFAULTER.

<u>1. term</u>

For a 60-month-term, there are higher chances of the borrower to be a Defaulter.

3. sub grade

For sub grade F5, there are higher chances of the borrower to be a Defaulter.

2. grade

For grade G, there are higher chances of the borrower to be a Defaulter.

4. emp title

emp_title_analysis.sort_values(by	= 'default_rate'	, ascending = Fa	lse, inplace = Tru
emp_title_analysis.head()			

	emp_title	Not_Defaulter_Count	Defaulter_Count	default_rate
19578	UNITED STATES POSTAL SERVICE	1	3.0	0.750000
10991	Level 3 Communications	1	3.0	0.750000
13069	National Grid	1	3.0	0.750000
2414	Blockbuster	1	2.0	0.666667
23607	shaw group	1:	2.0	0.666667

For UNITED STATES POSTAL SERVICE, Level 3 Communications and National Grid, there are higher chances of the borrower to be a Defaulter.

5. emp length

For 10+ years of service, there are higher chances of the borrower to be a Defaulter.

7. verification status

For Verified status, there are higher chances of the borrower to be a Defaulter.

6. home ownership

For home_ownership OTHER, there are higher chances of the borrower to be a Defaulter.

8. issue d

For issue_month to be December, there are higher chances of the borrower to be a Defaulter.

9. purpose

For small business, there are higher chances of the borrower to be a Defaulter.

11. zip code

zip_code_analysis.sort_values(by = 'default_rate', ascending = False, inplace = True)
zip_code_analysis.head(5)

	zip_code	Not_Defaulter_Count	Defaulter_Count	default_rate
605	746xx	2	5.0	0.714286
468	561xx	2	5.0	0.714286
566	685xx	1	2.0	0.666667
433	496xx	3	3.0	0.500000
558	673xx	1	1.0	0.500000

For zip_code of 746xx and 561xx, there are higher chances of the borrower to be a Defaulter.

10. addr state

For addr_state NE, there are higher chances of the borrower to be a Defaulter.

12. deling 2yrs

For delinq_2yrs to be 8, there are higher chances of the borrower to be a Defaulter.

13. earliest cr line

For earliest_cr_line in the month of January, there are higher chances of the borrower to be a Defaulter.

15. pub rec

For pub_rec of 1, there are higher chances of the borrower to be a Defaulter.

14. inq last 6mths

For inq_last_6mths to be 7, there are higher chances of the borrower to be a Defaulter.

16. last pymnt d

For last_pymnt_d to be October, there are higher chances of the borrower to be a Defaulter.

17. last credit pull d

For last_credit_pull_d to be in the month of May, there are higher chances of the borrower to be a Defaulter.

18. pub rec bankruptcies

For pub_rec_bankruptcies of 2.0, there are higher chances of the borrower to be a Defaulter.