Bayesian Analysis of Stochastic Betas

Jostova and Philipov (2005, JFQA)

Authors

Gergana Jostova George Washington

Alexander Philipov George Mason

Abstract

- A Mean-Reverting Stochastic Process for the Market β
- Precise β Estimates than
 - GARCH βs, Firm-level Conditioned βs and Rolling-regression βs
- Stronger Support for the Conditional CAPM
- Resolve asset pricing anomalies
 - Size, B/M and Idiosyncratic Volatility Effects

We propose a mean-reverting stochastic process for the market beta. In a simulation study, the proposed model generates significantly more precise beta estimates than GARCH betas, betas conditioned on aggregate or firm-level variables, and rolling regression betas, even when the true betas are generated based on these competing specifications. Our model significantly improves out-of-sample hedging effectiveness. In asset pricing tests, our model provides substantially stronger support for the conditional CAPM relative to competing beta models and helps resolve asset pricing anomalies such as the size, bookto-market, and idiosyncratic volatility effects in the cross section of stock returns.

I. Introduction

- Capital Asset Pricing Model: Normative
 - Sharpe (1964, JF), Merton (1973, EMA): β Prices Capital Assets
 - Ang and Liu (2004, JF): β Matters in Explaining Long-run Cash-flows
 - Zhang (2004, JF), Petkova and Zhang (2005, JFE): β and Business Cycles
 - Avramov and Chordia (2006, RFS): Time-varying β Causes Anomalies
- β as a General Mean-reverting Stochastic Process: More Precise
 - Embraces Existing β Models as Special Cases
 - Allows Both Time (Recent Models) and Stochastic (Past) Variation
 - Justifies Excess Kurtosis (Empirically Observed)
 - Explains High β Persistence
 - Berk, Green and Naik (1999, JF): Persistent β and Momentum Effects
 - Ang and Chen (2003, JEF): Persistent β and B/M Effects

I. Introduction (Cont'd)

- Why Mean-reverting β?
 - Theoretically
 - Gomes, Kogan and Zhang (2003, JPE): Ensure Return Stationarity
 - Kaldor (1961): Ensure Non-exploding Growth Rate of Output
 - Empirically
 - Ang and Chen (2003, JEF): Time-varying βs with Slow Mean-reversion
 - Campbell and Vuolteenaho (2004, AER): Discount-rate βs Reverts
 - Zhang (2004, JF), Pekova and Zhang (2005, JFE)

Why Bayesian?

- Bayesian Prior-Posterior Relations: Investor's Learning Process
- Inherent Uncertainty about Model Parameters
- MCMC: Exact Finite Sample Inference (Unlike MLE and GMM)
 - Ang and Chen (2003, JEF): Asymptotic Theory Can Be Misleading

I. Introduction (Cont'd)

- SBETA (Stochastic β) Estimates...
 - Highly Precise Relative to
 - Multivariate GARCH βs
 - βs Scaled by Aggregate and Firm-level Variables
 - Rolling Regression βs
 - Even When the True βs Are Generated Based on These Competing Models
 - When βs Are Persistent, OLS βs Fail to Capture the Time-variation
 - Lewellen and Nagel (2006, JFE): Disagree with the Results of This Paper
 - Empirically, βs Exhibit Both Mean-reversion and Stochastic Behavior
 - Generates Superior β Forecasts: Effective Hedging
 - Provides Strong Support for the Conditional CAPM
 - Helps Resolve Previously Documented Asset Pricing Anomalies
 - Size, B/M and Idiosyncratic Risk Effects
 - Gomes, Kogan and Zhang (2003, JPE): βs Are Correlated with Those Variables

II. The Model

(1)
$$r_{pt} = \beta_{pt}r_{mt} + \sigma_{p}\varepsilon_{pt}, \qquad \varepsilon_{pt} \sim N(0, 1)$$

$$\beta_{pt} = \alpha_{p} + \delta_{p}(\beta_{p,t-1} - \alpha_{p}) + \sigma_{\beta_{p}}\nu_{pt}, \qquad \nu_{pt} \sim N(0, 1)$$

$$\left(\alpha_{p}, \delta_{p}, \sigma_{\beta_{p}}^{2}, \sigma_{p}^{2}\right) \sim p\left(\alpha_{p}, \delta_{p}, \sigma_{\beta_{p}}^{2}, \sigma_{p}^{2}\right),$$

- r_{pt}≡Portfolio Excess Return, r_{mt}≡Market Excess Return
- β_{pt}≡Portfolio p's Sensitivity to Market Movements
- $\alpha_p \equiv Unconditional Mean of \beta_{pt}$
- δ_p =Persistence of β_{pt}
- $\sigma_{\beta p}^2 \equiv \text{Conditional Volatility of } \beta_{pt}$
- σ_p²≡Portfolio p's Idiosyncratic Return Volatility
- $p(\alpha_p, \delta_p, \sigma_{\beta p}^2, \sigma_p^2) \equiv Joint Distribution of the Model Parameters$
- ϵ_{pt} =Stochastic Components of r_{pt} , v_{pt} =Stochastic Components of β_{pt}

II. The Model (Cont'd)

(1)
$$r_{pt} = \beta_{pt}r_{mt} + \sigma_{p}\varepsilon_{pt}, \qquad \varepsilon_{pt} \sim N(0, 1)$$

$$\beta_{pt} = \alpha_{p} + \delta_{p}(\beta_{p,t-1} - \alpha_{p}) + \sigma_{\beta_{p}}\nu_{pt}, \qquad \nu_{pt} \sim N(0, 1)$$

$$\left(\alpha_{p}, \delta_{p}, \sigma_{\beta_{p}}^{2}, \sigma_{p}^{2}\right) \sim p\left(\alpha_{p}, \delta_{p}, \sigma_{\beta_{p}}^{2}, \sigma_{p}^{2}\right),$$

- High δ_p : Captures Discrete and Rare One-time Shocks to β_p
- Low $\delta_{\rm p}$: Captures More Frequent and Dynamic Events
 - Reversion to the Long-term Mean over Shorter Periods of Time

(2)
$$E(\beta_p) = \frac{\alpha_p(1-\delta_p)}{1-\delta_p} = \alpha_p$$

$$\operatorname{var}(\beta_p) = \frac{\sigma_{\beta_p}^2}{1-\delta_p^2}.$$

• $\delta_p \downarrow \rightarrow var(\beta_p) \uparrow$: Slow Reversion Implies Volatile Unconditional β s

II. The Model (Cont'd)

(1)
$$r_{pt} = \beta_{pt}r_{mt} + \sigma_{p}\varepsilon_{pt}, \qquad \varepsilon_{pt} \sim N(0, 1)$$

$$\beta_{pt} = \alpha_{p} + \delta_{p}(\beta_{p,t-1} - \alpha_{p}) + \sigma_{\beta_{p}}\nu_{pt}, \qquad \nu_{pt} \sim N(0, 1)$$

$$\left(\alpha_{p}, \delta_{p}, \sigma_{\beta_{p}}^{2}, \sigma_{p}^{2}\right) \sim p\left(\alpha_{p}, \delta_{p}, \sigma_{\beta_{p}}^{2}, \sigma_{p}^{2}\right),$$

Generality

- δ_p=0→"Noisy β" Model: Chen and Lee (1982, JEB)
- $-\sigma_{\beta}^2=0$
 - Multivariate GARCH Type Filter: Braun, Nelson and Sunier (1995, JF)
 - Conditional β Model: Shanken (1990, Journal of Econometics)
 - Characteristic-based β Model: Avramov and Chordia (2006, RFS)
- δ_p = $\sigma_β^2$ =0→Constant β Model: Sharpe (1964, JF)
- Significance of Parameters: Test the Restrictions Imposed by these Embedded Models

III. Estimation Methodology

(1)
$$r_{pt} = \beta_{pt}r_{mt} + \sigma_{p}\varepsilon_{pt}, \qquad \varepsilon_{pt} \sim N(0, 1)$$

$$\beta_{pt} = \alpha_{p} + \delta_{p}(\beta_{p,t-1} - \alpha_{p}) + \sigma_{\beta_{p}}\nu_{pt}, \qquad \nu_{pt} \sim N(0, 1)$$

$$\left(\alpha_{p}, \delta_{p}, \sigma_{\beta_{p}}^{2}, \sigma_{p}^{2}\right) \sim p\left(\alpha_{p}, \delta_{p}, \sigma_{\beta_{p}}^{2}, \sigma_{p}^{2}\right),$$

(4)
$$p(\omega_p) \propto N(\mu_\alpha, \sigma_\alpha^2) \times N(\mu_\delta, \sigma_\delta^2) \times IG(a_1, b_1) \times IG(a_2, b_2)$$

 $= N(1, 100) \times N(0, 100)$
 $\times IG(0.001, 0.001) \times IG(0.001, 0.001).$

A. Choice of Prior Distributions

- Where $\omega_p = (\alpha_p, \delta_p, \sigma_{\beta p}^2, \sigma_p^2)$
- $\alpha_p \sim N(1,10^2)$: Since It Is Unconditional Mean of β
- $\delta_p \sim \text{Truncated}_{(-1,1)} \text{N}(.5,10^2)$: Ensure Stationarity of β
- $\sigma_{\beta p}^{2} \sim IG(10^{-3}, 10^{-3})$: Variance of β
- $\sigma_p^2 \sim IG(10^{-3}, 10^{-3})$: Variance of r_p

III. Estimation Methodology (Cont'd)

(1)
$$r_{pt} = \beta_{pt}r_{mt} + \sigma_{p}\varepsilon_{pt}, \qquad \varepsilon_{pt} \sim N(0, 1)$$

$$\beta_{pt} = \alpha_{p} + \delta_{p}(\beta_{p,t-1} - \alpha_{p}) + \sigma_{\beta_{p}}\nu_{pt}, \qquad \nu_{pt} \sim N(0, 1)$$

$$\left(\alpha_{p}, \delta_{p}, \sigma_{\beta_{p}}^{2}, \sigma_{p}^{2}\right) \sim p\left(\alpha_{p}, \delta_{p}, \sigma_{\beta_{p}}^{2}, \sigma_{p}^{2}\right),$$

B. Likelihood Function

(6)
$$r_{pt} \mid \beta_{pt}, r_{mt} \sim N\left(\beta_{pt}r_{mt}, \sigma_p^2\right).$$

(5)
$$\beta_{pt} \mid \beta_{p,t-1} \sim N\left(\alpha_p + \delta_p(\beta_{p,t-1} - \alpha_p), \sigma_{\beta_p}^2\right).$$

(7)
$$L\left(\beta_{p}, \alpha_{p}, \delta_{p}, \sigma_{\beta_{p}}^{2}, \sigma_{p}^{2} \middle| \mathbf{r}_{t}, \mathbf{r}_{m}\right) \propto \prod_{t=1}^{T} N\left(\alpha_{p} + \delta_{p}(\beta_{p,t-1} - \alpha_{p}), \sigma_{\beta_{p}}^{2}\right) \times \prod_{t=1}^{T} N\left(\beta_{pt}r_{mt}, \sigma_{p}^{2}\right),$$

where $\beta_p = (\beta_{p1}, ..., \beta_{pT}), \mathbf{r}_p = (r_{p1}, ..., r_{pT}), \text{ and } \mathbf{r}_m = (r_{m1}, ..., r_{mT}).$

III. Estimation Methodology (Cont'd)

(8)
$$p(\theta_p \mid \mathbf{r}_p, \mathbf{r}_m) \propto p(\omega_p) L(\theta_p \mid \mathbf{r}_p, \mathbf{r}_m).$$

(9)
$$p(\boldsymbol{\theta}_{p} \mid \mathbf{r}_{p}, \mathbf{r}_{m}) \propto N(\mu_{\alpha}, \sigma_{\alpha}^{2}) \times N(\mu_{\delta}, \sigma_{\delta}^{2}) \times IG(a_{1}, b_{1}) \times IG(a_{2}, b_{2})$$

$$\times \prod_{t=1}^{T} N(\alpha_{p} + \delta_{p}(\beta_{p,t-1} - \alpha_{p}), \sigma_{\beta_{p}}^{2})$$

$$\times \prod_{t=1}^{T} N(\beta_{pt}r_{mt}, \sigma_{p}^{2}).$$

C. Joint Posterior Distribution

- Where $\theta_p = (\beta_p, \omega_p)$
- Use Gibbs Sampler
 - β_{pt},α_p~Normal, δ_p~Truncated−Normal, $σ_{βp}^2$, $σ_p^2$ ~Inverse $χ^2$
 - Appendix A Contains Posteriors

(B-1)
$$p(\theta_k^{(i+1)} \mid \theta_1^{(i+1)}, \dots, \theta_{k-1}^{(i+1)}, \theta_{k+1}^{(i)}, \dots, \theta_K^{(i)}, \mathbf{y}), \quad k = 1, \dots, K, \quad i = 1, \dots, I.$$

IV. Simulation Study

A. SBETA Data-Generating Process

- For Each Parameter Combination $(\alpha, \delta, \sigma_{\beta}, \sigma)$, Generate
 - 500 Sets of True β Series (Each of Length T=120)
 - 500 Samples of r_p Series Based on the True β , σ and r_m (1991–2000)
- Use the Gibbs Sampler to Estimate the Model Parameters
 - Iterates 3,000 Draws, Discard the First 1,000 Draws
 - Use the Last 2,000 Draws to Calculate the Posterior Means
 - Compare the Posterior Means to the True Parameters

(10)
$$RMSE_{\widehat{\theta}} = \sqrt{\frac{1}{500} \sum_{i=1}^{500} (\widehat{\theta}_i - \theta)^2}, \quad \rightarrow For \, \mathbf{\omega}_p s$$

(11)
$$RMSE_{\widehat{\boldsymbol{\beta}}_{\mathcal{M}}} = \frac{1}{500} \sum_{i=1}^{500} \sqrt{\frac{1}{T} \sum_{t=1}^{T} \left(\widehat{\boldsymbol{\beta}}_{\mathcal{M},i,t} - \boldsymbol{\beta}_{i,t}\right)^{2}}. \rightarrow For \boldsymbol{\beta}_{p}s$$

Table 1: MCMC Estimates SBETA Precisely

TABLE 1
Sampling Properties of the SBETA Estimates

March 23, 2016

Figure 1: α , σ_{β} , σ Are Unbiased, But δ Is Biased

Positive skew due to truncation

Table 2: SBETA Better Captures Time-variation

TABLE 2 Performance of the SBETA and Rolling OLS Betas

		Average	Average Bias		RMSE	
True α	True δ	True Beta	SBETA	OLS	SBETA	OLS
0.7	0.40	0.6995	-0.0003	-0.0011	0.2119	0.2771
	0.60	0.6996	0.0008	-0.0007	0.2115	0.3087
	0.80	0.6913	0.0016	-0.0001	0.2092	0.3916
	0.95	0.7101	0.0010	0.0018	0.2031	0.5630
1.3	0.40	1.2995	-0.0003	-0.0011	0.2119	0.2771
	0.60	1.2989	-0.0005	0.0004	0.2100	0.3116
	0.80	1.2976	0.0001	0.0034	0.2084	0.3948
	0.95	1.2875	0.0005	-0.0036	0.2037	0.5547

RMSE_{$$\widehat{\theta}$$} = $\sqrt{\frac{1}{500} \sum_{i=1}^{500} (\widehat{\theta}_i - \theta_i)^2}$. Both are performing well In estimating averages of β s

But for every case, SBETA has smaller RMSE than rolling OLS

Conclusion: MCMC is Efficient, Quick and Precise

Table 3: SBETA Estimates βs More Accurately

TABLE 3

True Beta vs. Estimated Confidence Bounds

			Percentage of Times True Beta Lies Outside the:					
		SBETA Conf	SBETA Confidence Bounds		OLS Confidence Bounds			
True α	True δ	$ \beta < \widehat{\beta}_{0.05} $	$\beta > \widehat{\beta}_{0.95}$	$ \beta < \widehat{\beta}_{0.05} $	$\beta > \widehat{\beta}_{0.95}$			
0.7	0.40 0.60 0.80 0.95	6.85% 5.76% 5.45% 5.01%	6.83% 5.91% 5.25% 4.91%	37.55% 38.39% 39.48% 40.60%	37.76% 38.11% 39.38% 40.27%			
1.3	0.40 0.60 0.80 0.95	6.85% 5.74% 5.28% 5.04%	6.83% 5.96% 5.42% 5.08%	37.55% 38.52% 39.64% 40.20%	37.76% 38.27% 39.17% 40.72%			

True βs touch OLS confidence interval more frequently than SBETA confidence interval

Figure 2: SBETA Closely Follows True βs

FIGURE 2
OLS and SBETA Estimates vs. Generated True Betas

In all cases,
SBETA closely
follows true β,
while OLS does
not follow it
(especially when
β is persistent)

IV. Simulation Study (Cont'd)

(12)
$$\mathbf{x}_{t} \sim N_{k}(0, \mathbf{H}_{t})$$
$$\mathbf{H}_{t} = \mathbf{C} + \mathbf{A}\boldsymbol{\Sigma}_{t-1} + \mathbf{B}\mathbf{H}_{t-1},$$

B. GARCH Data-Generating Process

- Ledoit, Santa-Clara and Wolf (2003, RES)
- Where A, B and C are Matrix Parameters
- H₁=Conditional Covariance Matrix

$$\Sigma_t = \mathbf{x}_t \mathbf{x}_t^T = \text{Cross-product of Variables Observed at Time t}$$

- Use 2 Step Procedure for the Diagonal and Off-diagonal \mathbf{H}_{t} Elements
- Time-varying βs Are Implied by \mathbf{H}_{t} , i.e. $Cov(x_{1t}, x_{2t})/Var(x_{2t})$
- Braun, Nelson and Sunier (1995, JF): Heavy Parametrization, Often Infeasible
- Generate 300 Observations of x_t and H_t 100 Times
- Estimate A, B, C, H_t and β_{pt} for Each Simulation
 - Estimate SBETA and Rolling OLS βs as Well

$$\mathbf{H}_t = \mathbb{E} \begin{pmatrix} x_{1t}^2 & x_{1t} x_{2t} \\ x_{2t} x_{1t} & x_{2t}^2 \end{pmatrix}$$

$$\boldsymbol{\beta} = \frac{\mathbb{E}(x_{1t}x_{2t})}{\mathbb{E}(x_{2t}^2)}$$

Table 4: SBETA Works Better Under GARCH

TABLE 4

Performance of Beta Estimates when the Data is Generated Using a GARCH Model

Panel A. Predetermined True Parameters of the GARCH Model

$$\mathbf{A} = \begin{bmatrix} 0.1326 & 0.1252 \\ 0.1252 & 0.1208 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} 0.8486 & 0.8532 \\ 0.8532 & 0.8581 \end{bmatrix}$$

$$\mathbf{C} = \begin{bmatrix} 0.9321 & 0.7585 \\ 0.7585 & 0.7162 \end{bmatrix}$$

Panel B. Parameter Estimates of the GARCH Model

$$\widehat{\mathbf{A}} = \left[\begin{array}{ccc} 0.1604 & 0.1469 \\ (0.0505) & (0.0487) \\ 0.1469 & 0.1458 \\ (0.0487) & (0.0499) \end{array} \right] \qquad \widehat{\mathbf{B}} = \left[\begin{array}{ccc} 0.7992 & 0.7814 \\ (0.0767) & (0.1204) \\ 0.7814 & 0.8074 \\ (0.1204) & (0.0679) \end{array} \right]$$

$$\hat{\mathbf{B}} = \begin{bmatrix} 0.7992 & 0.7814 \\ (0.0767) & (0.1204) \\ 0.7814 & 0.8074 \\ (0.1204) & (0.0679) \end{bmatrix}$$

$$\hat{\mathbf{C}} = \begin{bmatrix} 1.7282 & 1.3603 \\ (1.6589) & (1.0143) \\ 1.3603 & 1.3659 \\ (1.0143) & (1.1003) \end{bmatrix}$$

Panel C. Parameter Estimates of the SBETA Model

â

	<u>α</u>
Mean BCI	1.1195 [0.9984 1.2433]

Panel D. RMSE of the Beta Estimates

RMSE

GARCH 0.1180 (0.0183)

0.1051 (0.0029) Rolling OLS 0.2104 (0.0086)

Figure 3: SBETA Works Better Under GARCH

FIGURE 3
SBETA, GARCH, and Rolling Regression Betas Using GARCH Model Generated Data

IV. Simulation Study (Cont'd)

$$(13) y_t = \alpha + \beta_t x_t + \varepsilon_t, \quad \varepsilon_t \sim N(0, \sigma^2)$$

(14)
$$\beta_t = \alpha_{\beta} + \delta_1 z_{1,t-1} + \delta_2 z_{2,t-1}.$$

C. Beta Process with Conditioning Information

- Where x_t=value-weighted index from CRSP
- $-z_{1t}$ =Yield on the 3-month T-bill, z_{2t} =Dividend Yield of the Dow Jones Index
 - Shanken (1990, Journal of Econometrics), Ferson and Harvey (1993, RFS),
 Avramov and Chordia (2005, RFS)
- Draw 100 Data Samples of 300 Observations Each
- Estimate the Conditional βs Using the Cross-product (Shanken)

$$y_t = \alpha + (\alpha_{\beta} + \delta_1 z_{1,t-1} + \delta_2 z_{2,t-1}) x_t + \varepsilon_t$$

- Estimate based on
 - All True Instruments
 - A Subsample of the True Instruments
 - Proxy Instruments (i.e. the True Instruments Are Unknown)

Table 5: SBETA Outperforms Under Cond'l β

Figure 4: SBETA Outperforms Under Cond'l β

FIGURE 4

SBETA and Rolling Regression Beta Estimates when the True Betas are Generated Based on the Conditional Beta Model

V. Industry Betas over the Past 40 Years

- January 1962—December 2001 Period
- Fit the SBETA Model to r_{pt} s of 5 US Industry Portfolios
 - Value-weighted Across All NYSE, AMEX and NASDAQ Stocks
 - Assign to a Portfolio Based on Their 4-digit SIC Codes
- r_{mt}: Value-weighted CRSP Index Return-1-month T-bill Rate
- Geweke (1992): Numerical Standard Errors (NSE)

(15)
$$\operatorname{NSE}(\overline{\theta}_n) = \sqrt{\frac{S_{\theta}(0)}{n}}.$$
 If the Gibbs sampler draws were i.i.d. then s.e. $(\overline{\theta}_n) = \sqrt{\frac{S_{\theta}(0)}{n}} = \sqrt{\frac{\sigma_{\theta}^2}{n}} = \frac{\sigma_{\theta}}{n^{1/2}}.$

Portfolio	Industry	SIC Code
1	Manufacturing	2000–3999
2	Utilities	4900-4999
3	Shops (wholesale, retail, and some services)	5000-5999, 7000-7999
4	Finance	6000–6999
5	Other (all remaining industries)	All others

Table 6: βs Vary Differently by Industry

March 23, 2016 Junyong Kim 26

Figure 5: βs Vary Differently by Industry

FIGURE 5 Estimated Industry Portfolio SBETA Betas, $\hat{\beta}_t$, with 90% Bayesian Posterior Bounds

VI. Out-of-Sample Hedging Application

Table 7: SBETA Facilitates Effective Hedging

(16) This should be close to 0

According to CAPM (normative) (if β is correctly estimated)

TABLE 7
Out-of-Sample Hedging Results

Better hedging performance by SBETA

Better than just OLS (statistically significant)

March 23, 2016 Junyong Kim 28

VII. Asset Pricing Application: Test of the CAPM

- Fama and MacBeth (1973, JPE): 2-step Test of the CAPM
- Whether the SBETA Estimates
 - Produce a More Significant Market Risk Premium
 - Reduce Asset Pricing Errors
 - Can Help Explain the Size, B/M and Volatility Effects (i.e. Anomalies)
- The Asset Pricing Tests Are Based on Individual Stock
 - Brennan, Chordia and Subrahmanyam (1998, JFE)
 - Avramov and Chordia (2006, RFS)
 - Guards against Data-snooping Biases
 - Eliminates the Error in the Variables Problem
 - Avoids the Loss of Information Caused by Sorting Stocks into Groups
 - Litzenberger and Ramaswamy (1979, JFE)
 - Circumvents Berk's (2000, JF) Problem: a Bias in Favor of Rejecting the Model

VII. Asset Pricing Application (Cont'd)

- Monthly Stock Data from CRSP & Compustat: Jan 1964—Dec 2003
 - At Least 10 Years of Monthly Data (Each Stock)
 - Sufficient Data for Calculating Size (CRSP), B/M (Compustat)
 - Winsorizing at .005 and .995 (Each Variable)→809 Stocks as a Result
- Estimate βs by Using CRSP VW Return Index
 - i. 60-month Rolling Regression OLS βs
 - ii. Characteristic-scaled βs Suggested by Avramov and Chordia (2005, RFS)
 - iii. Conditional βs Suggested by Shanken (1990, Journal of Econometrics)
 - iv. GARCH βs Implied by Ledoit, Santa-Clara and Wolf (2003, RES)

(17)
$$r_{it} = \alpha_t + \lambda_t \widehat{\beta}_{it} + e_{it},$$
(18)
$$r_{it} = \alpha_t + \lambda_t \widehat{\beta}_{it} + \gamma_t \mathbf{C}_{it} + e_{it},$$

– Where r_{it} =Excess Returns, $\hat{\beta}_{it}$ =Estimated βs, α_t =Returns Unexplained by βs, λ_t =Market Risk Premium, C_{it} =Firm-level Characteristics & γ_t =Their Premiums

Table 8: Candidates for the Best β

TABLE 8

Descriptive Statistics of Estimated Stock Betas

	SBETA OLSChar. ScaledConditional	GARCH
Weighted average beta Std. dev. of individual stock betas Std. dev. of weighted average beta	0.9852 1.0016 0.4637 0.9818 0.3913 0.2406 0.0551 0.1629 0.0466 0.0884 0.2327 0.0366	0.9169 0.2014 0.1169
	$= \beta_{pt}r_{mt} + \sigma_p \varepsilon_{pt}, \qquad \varepsilon_{pt} \sim N(0, 1)$	
	$= \alpha_p + \delta_p(\beta_{p,t-1} - \alpha_p) + \sigma_{\beta_p}\nu_{pt}, \qquad \nu_{pt} \sim N(0,1)$	
$\left(\alpha_p, \delta_p, \sigma_{\beta_p}^2, \sigma_p^2\right)$	$\sim p\left(\alpha_p, \delta_p, \sigma_{\beta_p}^2, \sigma_p^2\right),$	
(13)	$y_t = \alpha + \beta_t x_t + \varepsilon_t, \varepsilon_t \sim N(0, \sigma^2)$ $\beta_t = \alpha_\beta + \delta_1 z_{1,t-1} + \delta_2 z_{2,t-1}.$	
(14)	$\beta_t = \alpha_{\beta} + \delta_1 z_{1,t-1} + \delta_2 z_{2,t-1}.$	
(12)	$\mathbf{x}_t \sim N_k(0, \mathbf{H}_t)$	
	$\mathbf{H}_{t} \leftarrow \mathbf{C} + \mathbf{A} \boldsymbol{\Sigma}_{t-1} + \mathbf{B} \mathbf{H}_{t-1},$	

Table 9: SBETA Better Explains r_{it}s

But... Fama and French (1992, JF)

33

But... Ang, Hodrick, Xing and Zhang (2009, JFE)

Table 3		Geograph	hic areas	G7 c	ountries	All c	ountries
(p. 9)		Europe	Asia	G7	G7 Ex. U.S.	All	All Ex. U.S.
(p. <i>5)</i>	Constant	0.823 [2.11]	1.402 [2.27]	1.382 [3.64]	0.871 [2.11]	1.320 [3.58]	0.861 [2.15]
—	W-FF idiosyncratic volatility	-0.668 [-2.33]	-1.177 [-3.17]	-1.747 [-6.40]	-1.069 [-4.14]	-1.536 [-5.82]	-0.604 [-2.32]
– for	$\beta(MKT^{w})$	0.145	0.209	0.367	0.331	0.314	0.238
volatility	β(SMB ^W)	[1.31] 0.026	[2.18] -0.020	[4.52] -0.055	[3.73] -0.031	[3.94] -0.048	[2.78] -0.039
volatility	β(HML ^W)	[0.39] -0.071	[-0.26] -0.039	[-1.38] -0.057	[-0.59] -0.067	[-1.15] -0.048	[-0.71] -0.051
	Size	[-1.48] -0.087	[-0.59] -0.190	[-1.77] -0.111	[-1.22] -0.099	[-1.57] -0.107	[-1.02] -0.107
		[-2.45]	[-3.19]	[-2.89]	[-2.73]	[-2.95]	[-3.16]
	Book-to-market	0.189 [5.51]	0.517 [3.52]	0.293 [6.01]	0.275 [5.15]	0.268 [6.79]	0.241 [5.85]
– for size	Lagged return	0.010 [3.57]	-0.006 [-1.45]	0.000 [0.12]	0.003 [1.31]	0.001 [0.58]	0.004 [1.78]
+ for B/M	Dummy Canada			-0.054 [-0.26]	0.240 [0.81]	-0.055 [-0.26]	0.190 [0.6 4]
	Dummy France	0.254 [0.79]		-0.060 [-0.15]	0.275 [0.84]	-0.024 [-0.06]	0.278 [0.84]
	Dummy Germany	-0.190 [-0.59]		-0.552 [-1.49]	-0.195 [-0.58]	-0.527 [-1.41]	-0.190 [-0.58]
	Dummy Italy	0.517 [1.01]		0.291 [0.52]	0.636 [1.22]	0.324 [0.58]	0.630 [1.22]
	Dummy Japan	[]		-0.128 [-0.25]	-0.043 [-0.10]	-0.133 [-0.26]	-0.040 [-0.08]
	Dummy U.K.			-0.311 [-0.94]	[0.10]	-0.280 [-0.84]	[0.00]
	Dummy other country	0.081 [0.34]		[-0.54]		-0.104 [-0.33]	0.176 [0.79]
	Adjusted R ²	0.114	0.115	0.105	0.168	0.099	0.144

Table 9: SBETA Better Explains r_{it}s (Cont'd)

TABLE 9 (continued)
Test of CAPM: Cross-Sectional Regression Results

β persistence (δ) explains r_{it}s (i.e. it is priced)

	SBETA	OLS	Char.Scaled	Conditional	GARCH
Panel D.					
α	-0.15	0.24	0.35*	0.23	0.36*
	(<u>-</u> 1.06)	(1.62)	(2.18)	(1.41)	(2.23)
λ	1.12**	0.18	-0.10	0.21	-0.03
	(2.78)	(0.77)	(-1.24)	(0.91)	(-0.18)
$\gamma({\sf size})$	-0.04	0.05	0.07*	0.04	0.06*
	(-1.59)	(1.62)	(2.26)	(1.42)	(2.24)
γ (book-to-market)	-0.05	-0.17*	-0.14	-0.15	-0.17*
	(-0.82)	(-2.21)	(-1.66)	(-1.82)	(-2.11)
γ (idiosyncratic volatility)	-0.00	0.00**	0.00*	0.00**	0.00**
	(-1.29)	(3.35)	(2.38)	(3.23)	(3.83)
γ (beta persistence)	0.17*	0.17	0.19*	0.23*	0.16
	(2.27)	(1.91)	(2.03)	(2.43)	(1.75)
Adj. R ²	25.83%	8.93%	5.16%	7.93%	6.92%
Panel E.					
α	-0.16	0.24	0.35*	0.23	0.35*
	(<u>-1.09)</u>	(1.59)	(2.21)	(1.40)	(2.21)
λ	1.15**	0.19	-0.10	0.22	-0.03
	(2.80)	(0.82)	(-1.24)	(0.96)	(-0.16)
$\gamma({\sf size})$	-0.04	0.04	0.07*	0.04	0.06*
	(-1.69)	(1.58)	(2.24)	(1.39)	(2.22)
γ (book-to-market)	-0.05	-0.17*	-0.14	-0.14	-0.17*
	(-0.77)	(-2.16)	(-1.64)	(-1.79)	(-2.09)
γ (idiosyncratic volatility)	-0.00	0.00**	0.00*	0.00**	0.00**
	(-1.36)	(3.18)	(2.30)	(3.02)	(3.70)
γ (beta persistence)	0.16*	0.17	0.19*	0.23*	0.17
	(2.07)	(1.90)	(2.01)	(2.40)	(1.79)
γ (beta volatility)	-0.02	-0.00	-0.01	-0.00	-0.00
	(-1.22)	(-0.15)	(-0.50)	(-0.29)	(-0.02)
Adj. R ²	26.05%	9.21%	5.50%	8.23%	7.23%

β volatility ($σ_β^2$) cannot explain – (i.e. not priced)

VIII. Conclusion

- Dynamics of β as a Mean-Reverting Stochastic Process
 - Randomness in the Systematic/Idiosyncratic r_{pt} Components
 - More Kurtosis in the r_{pt} Distribution
 - Testing the Restriction on β 's Mean and Volatility
- SBETA Estimates Outperform Competing β Estimates
 - Even under the Competing Environments: GARCH and Conditional β
 - Rolling βs Are Poor: Especially When the True βs Are Persistent
 - Superior Predictability: 30% Smaller Hedging Errors than Rolling OLS
- SBETA Provides Stronger Support for the Conditional CAPM
 - Helps Resolve Asset Pricing Anomalies: Size, B/M and Volatility Effects
 - Better Explains r_{pt}: High R²s with Insignificant Pricing Errors

Q&A Session

Thanks for Listening

Appendix A. Derivation of Posteriors

(A-1)
$$p(\boldsymbol{\theta}_p \mid \mathbf{r}_p, \mathbf{r}_m) \propto p(\boldsymbol{\omega}_p) L(\boldsymbol{\theta}_p \mid \mathbf{r}_p, \mathbf{r}_m),$$

$$(A-2) \quad p(\sigma_p^2) = IG(a_1, b_1) \qquad \propto \quad \left(\sigma_p^2\right)^{-(a_1+1)} \exp\left(-\frac{b_1}{\sigma_p^2}\right)$$

$$(A-3) \quad p(\alpha_p) = N(\mu_\alpha, \sigma_\alpha) \qquad \propto \quad \frac{1}{\sigma_\alpha} \exp\left(-\frac{(\alpha_p - \mu_\alpha)^2}{2\sigma_\alpha^2}\right)$$

$$(A-4) \quad p(\delta_p) = \text{truncated}_{(-1,1)} - N(\mu_\delta, \sigma_\delta) \qquad \propto \quad \frac{1}{\sigma_\delta} \exp\left(-\frac{(\delta_p - \mu_\delta)^2}{2\sigma_\delta^2}\right)$$

(A-3)
$$p(\alpha_p) = N(\mu_\alpha, \sigma_\alpha)$$
 $\propto \frac{1}{\sigma_\alpha} \exp\left(-\frac{(\alpha_p - \mu_\alpha)^2}{2\sigma_\alpha^2}\right)$

(A-4)
$$p(\delta_p) = \text{truncated}_{(-1,1)} - N(\mu_{\delta}, \sigma_{\delta}) \propto \frac{1}{\sigma_{\delta}} \exp\left(-\frac{(\delta_p - \mu_{\delta})^2}{2\sigma_{\delta}^2}\right)$$

(A-5)
$$p(\sigma_{\beta p}^2) = IG(a_2, b_2) \propto \left(\sigma_{\beta p}^2\right)^{-(a_2+1)} \exp\left(-\frac{b_2}{\sigma_{\beta p}^2}\right).$$

(A-6)
$$L(\theta_{p}|\mathbf{r}_{p},\mathbf{r}_{m}) \propto \prod_{t=1}^{T} N(\alpha_{p} + \delta_{p}(\beta_{p,t-1} - \alpha_{p}), \sigma_{\beta_{p}}^{2}) \times \prod_{t=1}^{T} N(\beta_{pt}r_{mt}, \sigma_{p}^{2})$$

$$\propto \frac{1}{\sigma_{\beta p}^{T}} \exp\left(-\frac{\sum_{t=1}^{T} (\beta_{pt} - \alpha_{p} - \delta_{p}(\beta_{p,t-1} - \alpha_{p}))^{2}}{2\sigma_{\beta p}^{2}}\right)$$

$$\times \frac{1}{\sigma_{p}^{T}} \exp\left(-\frac{\sum_{t=1}^{T} (r_{pt} - \beta_{pt}r_{mt})^{2}}{2\sigma_{p}^{2}}\right).$$

Priors

Likelihood

(A-7)
Joint
posterior

$$p(\theta_{p}|\mathbf{r}_{p},\mathbf{r}_{m}) \propto \frac{1}{\sigma_{\alpha}} \exp\left(-\frac{(\alpha_{p}-\mu_{\alpha})^{2}}{2\sigma_{\alpha}^{2}}\right) \times \frac{1}{\sigma_{\delta}} \exp\left(-\frac{(\delta_{p}-\mu_{\delta})^{2}}{2\sigma_{\delta}^{2}}\right)$$

$$\times \left(\sigma_{\beta p}^{2}\right)^{-(a_{2}+1)} \exp\left(-\frac{b_{2}}{\sigma_{\beta p}^{2}}\right) \times \left(\sigma_{p}^{2}\right)^{-(a_{1}+1)} \exp\left(-\frac{b_{1}}{\sigma_{p}^{2}}\right)$$

$$\times \exp\left(-\frac{\sum_{t=1}^{T} (r_{pt}-\beta_{pt}r_{mt})^{2}}{2\sigma_{p}^{2}}\right) \frac{1}{\sigma_{\beta p}^{T}}$$

$$\times \exp\left(-\frac{\sum_{t=1}^{T} (\beta_{pt}-\alpha_{p}-\delta_{p}(\beta_{p,t-1}-\alpha_{p}))^{2}}{2\sigma_{\beta p}^{2}}\right).$$

(A-8)
$$p(\beta_{pt}|\text{rest}) \propto p(\beta_{pt}|\beta_{p,t-1})p(\beta_{p,t+1}|\beta_{pt})p(r_{pt}|\beta_{pt})$$

$$\propto \exp\left(-\frac{(\beta_{pt}-\alpha_p-\delta_p(\beta_{p,t-1}-\alpha_p))^2}{2\sigma_{\beta p}^2}\right)$$

$$\times \exp\left(-\frac{(\beta_{p,t+1}-\alpha_p-\delta_p(\beta_{pt}-\alpha_p))^2}{2\sigma_{\beta p}^2}\right) \exp\left(-\frac{(r_{pt}-\beta_{pt}r_{mt})^2}{2\sigma_p^2}\right)$$

$$\propto \exp\left(-\frac{\beta_{pt}^2-2\beta_{pt}(\alpha_p+\delta_p(\beta_{p,t-1}-\alpha_p))}{2\sigma_{\beta p}^2}\right)$$

$$\times \exp\left(-\frac{\beta_{pt}^2-2\beta_{pt}(\alpha_p+\delta_p(\beta_{p,t-1}-\alpha_p))}{2\sigma_{\beta p}^2}\right)$$

$$\times \exp\left(-\frac{\beta_{pt}^2\delta_p^2-2\beta_{pt}\delta_p(\beta_{p,t+1}-\alpha_p+\delta_p\alpha_p)}{2\sigma_{\beta p}^2}-\frac{\beta_{pt}^2r_{mt}^2-2r_{pt}\beta_{pt}r_{mt}}{2\sigma_p^2}\right)$$

$$\propto \exp\left(-\frac{\left(\beta_{pt}-\frac{(\sigma_{\beta p}^2r_{mt}r_{pt}+\sigma_p^2(\alpha_p(1-\delta_p)^2+\delta_p(\beta_{p,t-1}+\beta_{p,t+1})))}{2\sigma_p^2(1+\delta_p^2)+\sigma_{\beta p}^2r_{mt}^2}}\right)^2$$

$$\propto N\left(\frac{\left(\sigma_{\beta p}^{2}r_{mt}r_{pt}+\sigma_{p}^{2}\left(\alpha_{p}(1-\delta_{p})^{2}+\delta_{p}(\beta_{p,t-1}+\beta_{p,t+1})\right)\right)}{\sigma_{p}^{2}\left(1+\delta_{p}^{2}\right)+\sigma_{\beta p}^{2}r_{mt}^{2}}, \quad \beta_{pt}\text{'s posteriors} \\ \left(\frac{\sigma_{\beta p}\sigma_{p}}{\sqrt{\sigma_{p}^{2}\left(1+\delta_{p}^{2}\right)+\sigma_{\beta p}^{2}r_{pt}^{2}}}\right)^{2}\right).$$
 for t=1,...,T-1

for t=1,...,T-1

(A-9)
$$\begin{array}{c} p(\beta_{pT}|\text{rest}) & \propto & p(\beta_{pT}|\beta_{p,T-1})p(r_{pT}|\beta_{pT}) \\ & \propto & \exp\left(-\frac{(\beta_{pT}-\alpha_p-\delta_p(\beta_{p,T-1}-\alpha_p))^2}{2\sigma_{\beta p}^2}\right) \\ & \times \exp\left(-\frac{(r_{pT}-\beta_{pT}r_{mT})^2}{2\sigma_p^2}\right) \\ & \propto & \exp\left(-\frac{\left(\beta_{pT}-\frac{\sigma_{\beta p}^2r_{mT}r_{pT}+\sigma_p^2(\alpha_p+\delta_p(\beta_{p,T-1}-\alpha_p))}{\sigma_p^2+\sigma_{\beta p}^2r_{mT}}\right)^2}{2\left(\frac{\sigma_{\beta p}\sigma_p}{\sqrt{\sigma_p^2+\sigma_{\beta p}^2r_{mT}}}\right)^2}\right) \\ & \propto & N\left(\frac{\sigma_{\beta p}^2r_{mT}r_{pT}+\sigma_p^2(\alpha_p+\delta_p(\beta_{p,T-1}-\alpha_p))}{\sigma_p^2+\sigma_{\beta p}^2r_{mT}^2}\right) \\ & \left(\frac{\sigma_{\beta p}\sigma_p}{\sqrt{\sigma_p^2+\sigma_{\beta p}^2r_{mT}^2}}\right)^2\right). \end{array}$$

$$(A-10) \qquad p(\alpha_{p}|\text{rest}) \propto \exp\left(-\frac{\sum_{t=1}^{T} (\beta_{pt} - \alpha_{p} - \delta_{p}(\beta_{p,t-1} - \alpha_{p}))^{2}}{2\sigma_{\beta p}^{2}}\right)$$

$$\times \exp\left(-\frac{(\alpha_{p} - \mu_{\alpha})^{2}}{2\sigma_{\alpha}^{2}}\right)$$

$$\propto \exp\left(-\frac{\alpha_{p}^{2}T(1 - \delta_{p})^{2} - 2\alpha_{p}(1 - \delta_{p})\sum_{t=1}^{T} (\beta_{pt} - \delta_{p}\beta_{p,t-1})}{2\sigma_{\beta p}^{2}}\right)$$

$$-\frac{\alpha_{p}^{2} - 2\alpha_{p}\mu_{\alpha}}{2\sigma_{\alpha}^{2}}\right)$$

$$\propto \exp\left(-\frac{\left(\alpha_{p} - \frac{(1 - \delta_{p})\sigma_{\alpha}^{2}\sum_{t=1}^{T} (\beta_{pt} - \delta_{p}\beta_{p,t-1}) + \mu_{\alpha}\sigma_{\beta p}^{2}}{T(1 - \delta_{p})^{2}\sigma_{\alpha}^{2} + \sigma_{\beta p}^{2}}\right)^{2}}\right)$$

$$\propto \exp\left(-\frac{\left(\alpha_{p} - \frac{(1 - \delta_{p})\sigma_{\alpha}^{2}\sum_{t=1}^{T} (\beta_{pt} - \delta_{p}\beta_{p,t-1}) + \mu_{\alpha}\sigma_{\beta p}^{2}}{T(1 - \delta_{p})^{2}\sigma_{\alpha}^{2} + \sigma_{\beta p}^{2}}\right)^{2}}\right)$$

$$\propto N\left(\frac{(1 - \delta_{p})\sigma_{\alpha}^{2}\sum_{t=1}^{T} (\beta_{pt} - \delta_{p}\beta_{p,t-1}) + \mu_{\alpha}\sigma_{\beta p}^{2}}{T(1 - \delta_{p})^{2}\sigma_{\alpha}^{2} + \sigma_{\beta p}^{2}}\right), \quad \alpha_{p}' \text{s posterior}$$

$$\left(\frac{\sigma_{\beta p}\sigma_{\alpha}}{\sqrt{T(1 - \delta_{p})^{2}\sigma_{\alpha}^{2} + \sigma_{\beta p}^{2}}}\right)^{2}\right),$$

$$(A-11) \quad p(\delta_{p}|\text{rest}) \propto \exp\left(-\frac{\sum_{t=1}^{T} (\beta_{pt} - \alpha_{p} - \delta_{p}(\beta_{p,t-1} - \alpha_{p}))^{2}}{2\sigma_{\beta p}^{2}}\right)$$

$$\times \exp\left(-\frac{(\delta_{p} - \mu_{\delta})^{2}}{2\sigma_{\delta}^{2}}\right)$$

$$\propto \exp\left(-\frac{\delta_{p}^{2} \sum_{t=1}^{T} (\beta_{p,t-1} - \alpha_{p})^{2} - 2\delta_{p} \sum_{t=1}^{T} (\beta_{p,t-1} - \alpha_{p})(\beta_{pt} - \alpha_{p})}{2\sigma_{\beta p}^{2}}\right)$$

$$-\frac{\delta_{p}^{2} - 2\delta_{p}\mu_{\delta}}{2\sigma_{\delta}^{2}}\right)$$

$$\propto \exp\left(-\frac{\left(\delta_{p} - \frac{\sigma_{\delta}^{2} \sum_{t=1}^{T} (\beta_{p,t-1} - \alpha_{p})(\beta_{pt} - \alpha_{p}) + \sigma_{\beta p}^{2}\mu_{\delta}}{2\sigma_{\delta}^{2} \sum_{t=1}^{T} (\beta_{p,t-1} - \alpha_{p})^{2} + \sigma_{\beta p}^{2}}\right)^{2}}\right)$$

$$\propto \exp\left(-\frac{\left(\delta_{p} - \frac{\sigma_{\delta}^{2} \sum_{t=1}^{T} (\beta_{p,t-1} - \alpha_{p})(\beta_{pt} - \alpha_{p}) + \sigma_{\beta p}^{2}\mu_{\delta}}{2\sigma_{\delta}^{2} \sum_{t=1}^{T} (\beta_{p,t-1} - \alpha_{p})(\beta_{pt} - \alpha_{p}) + \sigma_{\beta p}^{2}\mu_{\delta}}\right)^{2}}\right)$$

$$\propto \operatorname{truncated}_{(-1,1)} N\left(\frac{\sigma_{\delta}^{2} \sum_{t=1}^{T} (\beta_{p,t-1} - \alpha_{p})(\beta_{pt} - \alpha_{p}) + \sigma_{\beta p}^{2}\mu_{\delta}}{\sigma_{\delta}^{2} \sum_{t=1}^{T} (\beta_{p,t-1} - \alpha_{p})^{2} + \sigma_{\beta p}^{2}}\right)^{2}}\right)$$

$$\delta_{p}'s \text{ posterior}$$

$$\left(\frac{\sigma_{\beta p}\sigma_{\delta}}{\sqrt{\sigma_{\delta}^{2} \sum_{t=1}^{T} (\beta_{p,t-1} - \alpha_{p})^{2} + \sigma_{\beta p}^{2}}}{\sqrt{\sigma_{\delta}^{2} \sum_{t=1}^{T} (\beta_{p,t-1} - \alpha_{p})^{2} + \sigma_{\beta p}^{2}}}\right)^{2}}\right)$$

(A-12)
$$p(\sigma_{\beta p}^{2}|\text{rest}) \propto \frac{1}{\sigma_{\beta p}^{T}} \exp\left(-\frac{\sum_{t=1}^{T} (\beta_{pt} - \alpha_{p} - \delta_{p}(\beta_{p,t-1} - \alpha_{p}))^{2}}{2\sigma_{\beta p}^{2}}\right)$$

$$\times \left(\sigma_{\beta p}^{2}\right)^{-(a_{2}+1)} \exp\left(-\frac{b_{2}}{\sigma_{\beta p}^{2}}\right)$$

$$\propto \left(\sigma_{\beta p}^{2}\right)^{-\left(\frac{T+2a_{2}}{2}+1\right)}$$

$$\times \exp\left(-\frac{\left(T+2a_{2}\right) \frac{\left(\sum_{t=1}^{T} (\beta_{pt} - \alpha_{p} - \delta_{p}(\beta_{p,t-1} - \alpha_{p}))^{2} + 2b_{2}\right)}{T+2a_{2}}}{2\sigma_{\beta p}^{2}}\right)$$

$$\propto \text{Inv} - \chi^{2}\left(T+2a_{2}, \frac{\left(\sum_{t=1}^{T} (\beta_{pt} - \alpha_{p} - \delta_{p}(\beta_{p,t-1} - \alpha_{p}))^{2} + 2b_{2}\right)}{T+2a_{2}}\right).$$

 $\sigma_{eta p}^{2'}$ s

(A-13)
$$p(\sigma_p^2|\text{rest}) \propto \frac{1}{\sigma_p^T} \exp\left(-\frac{\sum_{t=1}^T (r_{pt} - \beta_{pt} r_{mt})^2}{2\sigma_p^2}\right) \left(\sigma_p^2\right)^{-(a1+1)} \exp\left(-\frac{b_1}{\sigma_p^2}\right)$$

$$\propto \left(\sigma_p^2\right)^{-\left(\frac{T+2a_1}{2}+1\right)} \exp\left(-\frac{(T+2a_1)\frac{\sum_{t=1}^T (r_{pt} - \beta_{pt} r_{mt} + 2b_1)^2}{(T+2a_1)}}{2\sigma_p^2}\right)$$

$$\propto \text{Inv} - \chi^2 \left(T + 2a_1, \frac{\sum_{t=1}^T (r_{pt} - \beta_{pt} r_{mt})^2 + 2b_1}{T+2a_1}\right). \quad \sigma_p^{2'} \text{s Posterior}$$

Appendix C. Multivariate Extension

- i. Multivariate Distribution of βs
- ii. Vector Specification for the Factor Sensitivities

(C-1)
$$L(\theta_{p}|\mathbf{r}_{p}, \mathbf{r}_{m}) \propto p(\mathbf{r}_{p}, \beta_{p}|\theta_{p}^{\text{rest}}, \mathbf{f})$$

$$\propto \prod_{t=1}^{T} p(r_{pt}|\theta_{p}, \mathbf{f}_{t}) \times p(\beta_{pt}|\theta_{p}^{\text{rest}}, r_{pt}, \mathbf{f}_{t})$$

$$= \prod_{t=1}^{T} N\left(\mathbf{f}_{t}\beta_{pt}, \sigma_{p}^{2}\right) \times N_{k}\left(\alpha_{p} + \delta_{p}(\beta_{p,t-1} - \alpha_{p}), \Sigma_{\beta_{p}}\right)$$

$$\propto \frac{1}{\sigma_{p}^{T}} \exp\left(-\frac{\sum_{t=1}^{T} \left(r_{pt} - \mathbf{f}_{t}\beta_{pt}\right)^{2}}{2\sigma_{p}^{2}}\right)$$

$$\times \frac{1}{|\Sigma_{\beta_{p}}|^{T}} \exp\left(-\frac{1}{2}\sum_{t=1}^{T} \left(\beta_{pt} - \mu_{\beta t}\right)' \Sigma_{\beta_{p}}^{-1} \left(\beta_{pt} - \mu_{\beta t}\right)\right),$$

• Where $\beta_p = (\beta_{p1},...,\beta_{pT})^T$, $\mu_{\beta t} = \alpha_p - \delta_p (\beta_{p,t-1} - \alpha_p)$, δ Is a Diagnoal Matrix That Gives the Persistence Parameters

Appendix C. Multivariate Extension

Joint Uninformative Prior Distribution

(C-2)
$$p(\sigma_p^2, \alpha_p, \delta_p, \sigma_{\beta p}^2) \propto \sigma_p^{-2} |\Sigma_{\beta p}|^{-1}.$$

Joint Posterior Distribution

(C-3)
$$p(\boldsymbol{\theta}_{p}|\mathbf{r}_{p},\mathbf{f}) \propto \frac{1}{\sigma_{p}^{T+2}} \exp\left(-\frac{\sum_{t=1}^{T} (r_{pt} - \mathbf{f}_{t}\boldsymbol{\beta}_{pt})^{2}}{2\sigma_{p}^{2}}\right)$$

$$\times \frac{1}{|\boldsymbol{\Sigma}_{\boldsymbol{\beta}_{p}}|^{T+1}} \exp\left(-\frac{1}{2}\sum_{t=1}^{T} (\boldsymbol{\beta}_{pt} - \boldsymbol{\mu}_{\beta t})' \boldsymbol{\Sigma}_{\boldsymbol{\beta}_{p}}^{-1} (\boldsymbol{\beta}_{pt} - \boldsymbol{\mu}_{\beta t})\right).$$

• Posterior Distribution of $\Sigma_{\beta p}^{-1} \approx \sigma_{\beta p}^{-2} \sim Wishart Distribution$

(C-4)
$$\Sigma_{\beta_p}^{-1} \sim \operatorname{Wish}_k(\nu, \mathbf{S}),$$

where
$$\nu = 2T - k + 1$$
 and $\mathbf{S} = \sum_{t=1}^{T} (\beta_{pt} - \mu_{\beta t}) (\beta_{pt} - \mu_{\beta t})'$.

Appendix C. Multivariate Extension (Cont'd)

• Posterior Distribution of $\beta_{pt} \approx \beta_{pt} \sim Multivariate Normal Distribution$

(C-5)
$$p(\beta_t \mid \text{rest}) \sim N_k(\mu_t^*, \Sigma_\beta^*),$$
 where
$$\mu_t^* = \left(\frac{1}{\sigma_p^2} \mathbf{f}_t \mathbf{f}_t' + \Sigma_\beta^{-1} + \delta' \Sigma_\beta^{-1} \delta\right)^{-1} \left(\frac{r_p}{\sigma_p^2} \mathbf{f}_t + \Sigma_\beta^{-1} \left(\alpha + \delta(\beta_{t-1} - \alpha)\right) + \delta' \Sigma_\beta^{-1} \delta \left(\delta \alpha - \alpha + \beta_{t+1} \delta^{-1}\right)\right)$$

$$\Sigma^* = \left(\frac{1}{\sigma_p^2} \mathbf{f}_t \mathbf{f}_t' + \Sigma_\beta^{-1} + \delta' \Sigma_\beta^{-1} \delta\right)^{-1}.$$

• Posterior Distribution of $\sigma_p^2 \sim \text{Chi-square Distribution}$

(C-6)
$$p(\sigma_p^2 | \text{rest}) \propto \text{scaled} - \chi^{-2} \left(T, \frac{1}{T} \sum_{t=1}^T \left(r_{pt} - \mathbf{f}_t' \beta_{pt} \right)^2 \right).$$

• Posterior Distribution of $\alpha_p \approx \alpha_p \sim Multivariate Normal Distribution$

(C-7)
$$p(\alpha_p|\text{rest}) \propto N_k \left(\left(T(\mathbf{I} - \boldsymbol{\delta}_p) \right)^{-1} \sum_{t=1}^T \left(\beta_{pt} - \boldsymbol{\delta}_p \beta_{p,t-1} \right), \Sigma_{\alpha} \right),$$
 where $\Sigma_{\alpha} = \left(\Sigma_{\beta p} \left(\sqrt{T} (\mathbf{I} - \boldsymbol{\delta}_p) \right)^{-1} \right).$