Newton's Second Law: The Atwood Machine

Lab #1

Name: Avery Karlin Partner: Alon Levin

Newton's Second

Objective

The objective of the lab is to measur varying total masses and forces, while

Introduction

The main theory used within the lab

such that within an Atwood machine, of gravity, $F_g = mg$, works in opposite total acceleration of the system is con we must also subtract the force of fric air), and add the mass of the pulley t

Thus, $F_{net} = (m_1 + m_2 + m_{pulley})$ This can then be rewritten as

a =

This can then be taken when a = 0, so the gravitational constant to find the

a =

The acceleration of the actual ex time the mass takes to fall a specific of

can be used to find the acceleration o modified due to starting from rest, so

Procedures and Results

Lab #1

First, the entire Atwood machine setup must be built, with equal masses on both sides, adding mass to one side until a=0, such that the added mass is m_f , the mass needed to compensate for friction, then we added mass to the descending side, and measuring the amount of time it took to fall a specific distance. After, we tested using different masses on both, but preserving the relative mass, creating different frictional masses/forces on each, measuring the resultant acceleration.

Next,

$$m_{eq} = 31.6g$$

Trial	1	2	3	4
Descending	0.06636	0.165		
Mass, m_2 (kg)				
Ascending	0.055	0.150		
Mass, m_1 (kg)				
Distance of	0.8984	0.855		
Travel, y (m)				
Time of Travel,	1.47	2.1		
Run 1, t_1 (s)				
Time of Travel,	1.21	2.27		
Run 2, t_2 (s)				
Time of Travel,	1.31	2.18		
Run 3, t_3 (s)				
Average Time,	1.33	2.183		
t_{avg} (s)				
Measured Ac-	1.015			
celeration, a_m (kgm/s^2)	1.019			
$\frac{(kgm/s)}{\text{Total Mass, } m_t}$				
(kg)	0.1529			
Frictional Mass,	0.00136	0.005		
m_f (kg)				
Net Force, F_{net}				
(N)				
Theoretical				
Acceleration, a_t				
$(kg*m/s^2)$				
Percent Accel-				
eration Error				

 ${\rm Lab}\ \#1$

Discussion

Calculations for the data for the first tests on differing frictional force are as shown:

$$t_{avg} = \frac{t_1 + t_2 + t_3}{3} = \frac{1.47 + 1.21 + 1.31}{3} = 1.33$$

$$a = \frac{2y}{t^2} = \frac{2 * 0.8984}{1.33^2} = 1.015$$

$$m_t = m_1 + m_2 + m_{pulley} = 0.06636 + 0.055 + 0.0316 = 0.1529$$

Conclusion