Dr. D. Sinden

CA-MATH-804: Numerical Analysis

Assignment Sheet 6. Due: February 23, 2022

Exercise 1 [5 x 4* Points]: Consider the bending of a clamped beam subject to a transversal force f, which is described by the boundary value problem

$$u''''(x) = f(x)$$
 in $(0,1)$,
 $u(0) = u(1) = 0$,
 $u'(0) = u'(1) = 0$.

a) Show that under certain conditions this problem is equivalent to the following variational (weak) problem:

$$(u'', v'') = (f, v) \quad \forall v \in W$$

where

 $W = \{v : (0,1) \to \mathbb{R} \mid v \text{ and } v' \text{ are continuous, } v'' \text{ is piecewise continuous}$ and $v(0) = v(1) = v'(0) = v'(1) = 0\}$.

b) For an interval I = [a, b] define

$$P_3\left(I\right) = \left\{v: I \to \mathbb{R} \mid v \text{ is a polynomial of degree} \le 3, \text{ i.e.} \right.$$

$$v(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0 \text{ for } a_i \in \mathbb{R} \right\}.$$

Show that $v \in P_3(I)$ is uniquely defined by the values v(a), v'(a), v(b), v'(b) and determine the corresponding basis functions $b_i(x)$ such that

$$v(x) = v(a)b_0(x) + v'(a)b_1(x) + v(b)b_2(x) + v'(b)b_3(x)$$
.

- c) Starting from b) use a uniform partitioning of (0,1) to construct a finite dimensional subspace W_h of W consisting of piecewise cubic functions. Specify suitable parameters to describe the functions in W_h and determine the corresponding basis functions of W_h . What is the dimension of the resulting finite element space W_h ?
- **d)** Formulate a finite element method for the problem based on the space W_h . Find the corresponding system of equations.
- **e)** Determine the finite element solution in the case of two intervals and f=1. Compare with the exact solution.

Exercise 2 [5 Points]: Prove that $G^{k}(x_{j}) = hG(x_{i}, x_{j})$, where G(x, y) is the Green's function for the one-dimensional Laplacian with Dirichlet boundary conditions, i.e.

$$-u''(x) = f(x)$$
 in $(0,1)$,
 $u(0) = u(1) = 0$ (1)

and $G^{k}\left(x_{i}\right)$ is the corresponding discrete counterpart with h the uniform step-size.

Exercise 3 [5 Points]: For the differential equation -u''(x) + ku' + u = f, find a value for k such that a(u,v) = 0 but $v \neq 0$ for some $v \in H^1(0,1)$. Note: that the Hilbert space $H^1(0,1)$ contains functions on the unit interval which have a weak derivative, however, for which no boundary values are prescribed.

Exercise 4 [5 Points]: Let $a(\cdot, \cdot)$ be the inner product for a Hilbert space V and let $F: V \to \mathbb{R}$ be a linear mapping. Prove that the following two statements are equivalent:

- 1. $u \in V$ satisfies a(u, v) = F(v) for all $v \in V$.
- 2. u minimizes $\frac{1}{2}a(u,v) F(v)$ over V.

i.e. show that the existence of one implies the existence of the other.

Hint: Consider a similar theorem which we had regarding the gradient method for solving linear systems.

Exercise 5 [5 Points]: Compare the linear systems which result from the finite difference and finite element approximations for the numerical solution of equation 1, assuming that f is a constant, that both methods using equidistant nodes on [0,1] and that the finite element method uses piecewise linear basis functions. For the integration of the right-hand side of the finite element method, you can use a midpoint quadrature rule.

Exercise 6 [5 Points]: Let a be a bilinear form on $H_0^1(0,1)$ of the form:

$$a(u,v) = \int_0^1 (u'v' + u'v + uv) dx$$

Show that

$$a(v,v) = \int_0^1 ((v')^2 + v^2) dx$$

for all $v \in H_0^1(0,1)$.