HAUPTSEMINAR

Data Mining And Machine Learning Approaches For Semiconductor Test And Diagnosis

Title: Dimensionality Reduction for Test Optimization

Presenter: Chuyu, WANG

Advisor: Prof. Dr. Hans-Joachim Wunderlich

M.Sc. Alejandro Cook

OUTLINE

INTRODUCTION: Chip Test

INTRODUCTION: Challenges

High Dimensionality Costly & Time-Consuming Test

Test Optimization:
Dimensionality Reduction
Time & Cost Saving

Burn-in Test Machine

METHODOLOGY OVERVIEW

A USEFUL TOOL: PCA

A USEFUL TOOL: PCA

How PCA Works: Finding PCs

Covariance Matrix

$$\left(\begin{array}{cccc} Var(x_1, x_1) & Cov(x_1, x_2) & \cdots & Cov(x_1, x_n) \\ Cov(x_2, x_1) & Var(x_2, x_2) & \cdots & Cov(x_2, x_n) \\ \vdots & & & & \\ Cov(x_n, x_1) & Cov(x_{n1}, x_2) & \cdots & Var(x_{n1}, x_n) \end{array} \right)$$

Outlier Removing

Outlier Removing Criteria

Criterion	Equation	Application Situation		
1st	$d_{1i}^2 = \sum_{k=p-q+1}^p z_{ik}^2$	Data whose insignificant PCs have a narrow range of variances.		
2nd	$d_{2i}^2 = \sum_{k=p-q+1}^p rac{z_{ik}^2}{l_k}$	Data whose insignificant PCs have variances that are appreciable compared to the excursions caused by defects, and cover a wide range.		
3rd	$d_{3i}^2 = \sum_{k=1}^p l_k z_{ik}^2$	The significant PCs are already strongly reflected in the original variables themselves.		
4th	$d_{4i} = \max_{p-q+1 \le k \le p} \left(\left \frac{z_{ik}}{\sqrt{l_k}} \right \right)$	Sharp and unexpected excursion of PC is caused by adding it to all the other insignificant PCs.		

Variable Reduction Using PCA

Classification

An Application Case: Burn-in Reduction

Experimental Analysis Basing on Burn-in Test Contribution 1: Dimensionality Reduction

	No. of variables retained				Variance retained (%)			
Wafer no. Iteration no.	1	2	3	4	1	2	3	4
1	60	62	61	64	96	95	95	95
6	27	25	24	23	81	79	79	78

Experimental Analysis Basing on Burn-in Test Contribution 2: Cost & Time Saving for Test

Normal Provability Plot 0.999 0.997 0.98 0.90 → Burn-in fail Probability 0.75 0.50 0.25 Population to be taken 0.10 to burn-in = 11.74%0.02 0.001 10 20 30 40 50 60 70 0 Distance

CDF of ED for single wafer before VR

CDF of ED for single wafer after VR

Experimental Analysis Basing on Burn-in Test Contribution 3: Identifying Process Problems

CONCLUSIONS

Contributions:

- Reduce the dimensionality of the test dataset
- Reduce the number of dies undergoing costly and timeconsuming test, thereby saving test expense

Further Improvement:

- Better methods for outlier removing
- Better threshold setting method for variable reduction
- Better classification approaches