NOM:

Exercice 1 : Discuter suivant les valeurs de $\lambda \in \mathbb{R}$ le rang de la matrice $\begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{4} & \lambda \end{pmatrix}$.

Exercice 2 : Soit $A = \begin{pmatrix} 1 & 2 & 1 \\ 3 & 4 & 1 \\ 5 & 6 & 1 \\ 7 & 8 & 1 \end{pmatrix}$. Calculer $\operatorname{rg}(A)$ et déterminer une base du noyau et une base de l'image de A.

Exercice 4 : Soit $s \in \mathcal{S}_7$, $s = \begin{pmatrix} 1 & 4 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 4 \end{pmatrix} \circ \begin{pmatrix} 4 & 5 \end{pmatrix} \circ \begin{pmatrix} 1 & 4 \end{pmatrix}$. Décomposer s en produit de transpositions, en produit de cycles de supports disjoints, donner la signature de s