MTH101A: Mathematics-I

Problem Set 2: Series

(To be discussed in the week starting on 12 August 2019)

The problems marked with an asterisk(*) will not be asked during any quiz or exam. The problems marked with a plus sign(+) are extra questions and will be discussed in the tutorial only if time permits.

- 1. (+) Use the Cauchy condensation test to find the values of p > 0 for which the p-Harmonic series $\sum_{n\geq 1}\frac{1}{n^p}$ converges. For what values of p does it diverge?
- 2. Are the following series convergent or divergent? Give appropriate reasons.
 - (a) $\sum_{n\geq 1} \frac{1}{n^2} sin(\frac{n\pi}{4})$
 - (b) $\sum_{n\geq 1} \frac{n-1}{2n+1}$
 - (c) $\sum_{n>1} \frac{n^2}{2^n}$
 - (d) $\sum_{n>1} ne^{-n}$
 - (e) $\sum_{n>1} (n \ln(1+\frac{1}{n}))$
 - (f) $\sum_{n>1} (\tan^{-1} n)^n$
- 3. Show that the alternating series $\sum_{n\geq 1} \frac{(-1)^{n+1}}{n^p}$ converges iff p>0.
- 4. (+) (The Bouncing Ball.) Suppose that a rubber ball is dropped from a height of 1 metre and that each time it bounces it rises to a height of (2/3) of the previous height. How far does it travel before it stops bouncing (and yes, it does stop)?
- 5. Let (a_n) be a sequence of non-negative terms. Show that $\sum_{n\geq 1}$ converges iff $\sum_{n\geq 1}\frac{a_n}{1+a_n}$ converges.
- 6. Find the radius of convergence for the following power series:
 - (a) $\sum_{n\geq 0} \frac{x^n}{n}$
 - (b) $\sum_{n>0} \frac{x^n}{n!}$
 - (c) $\sum_{n>0} n! x^n$
 - (d) $\sum_{n>0} \frac{(3n)!}{(n!)^3} x^n$
- 7. We showed above that $\sum_{n\geq 0} \frac{x^n}{n!}$ is convergent for all $x\in\mathbb{R}$. Define $e^x:=\sum_{n\geq 0} \frac{x^n}{n!}$. Show that $e^x \cdot e^y = e^{x+y}$ for all $x, y \in \mathbb{R}$.

Can you guess individual terms of the product of two series?

8. (*) Let $\sum_{n\geq 1} (-1)^{n+1} a_n$ be an absolutely convergent series. Show that for any one-to-one correspondence $\phi: \mathbb{N} \to \mathbb{N}$ we have that $\sum_{n\geq 1} (-1)^{n+1} a_{\phi(n)}$ converges to $\sum_{n\geq 1} (-1)^{n+1} a_n$.

(Hint: Use the sequences (a_n^+) and (a_n^-) .)

9. (*) (Riemann rearrangement theorem) Let $\sum_{n>1} (-1)^{n+1} a_n$ be a conditionally convergent series. Show that given any $\alpha \in \mathbb{R}$, there exists a one-to-one correspondence $\phi : \mathbb{N} \to \mathbb{N}$ such that $\sum_{n\geq 1} (-1)^{n+1} a_{\phi(n)}$ converges to α .

(Hint: Use the sequences (a_n^+) and (a_n^-) .)