Measurement Research within the Python3 Ecosystem

Steffie Jacob Eravuchira and Vaibhav Bajpai

(s.eravuchira|v.bajpai)@jacobs-university.de

Computer Networks and Distributed Systems Group, Jacobs University Bremen, Bremen, Germany

RIPE 69, London

November 2014

Leone Project: leone-project.eu

Table of Contents

- Development Environment
- Petching Multi-Dimensional Data
- Peeking at the Raw Data
- 4 Frictionless SQL storage
- 5 Frictionless Data Retrieva
- 6 Data Analysis
- 7 Data Visualization

Development Environment

ipython notebook

import requests

import requests

```
def get_json_from_url(url):
    try: res = requests.get(url)
    except Exception as e: print(e)
    else: return(res.json())
```

requests + atlas.ripe.net

```
count = get_total_registered_atlas_probes()<sup>1</sup>
print("Total Registered RIPE Atlas probes: %d"%total)
```

[Out] Total Registered RIPE Atlas probes: 10434

¹ http://goo.gl/FDqISn

requests + stat.ripe.net

```
asn, holder = asn_from_endpoint('8.8.8.8')<sup>2</sup>
print(asn, holder)

[Out] 15169 GOOGLE - Google Inc.,US
```

² http://goo.gl/FDqISn

requests + stat.ripe.net

```
holder = holder_from_asn(15169)<sup>3</sup>
print(holder)

[Out] GOOGLE - Google Inc.,US
```

³ http://goo.gl/FDqISn

requests + stat.ripe.net

```
node = create_pretty_node_names(holder, asn)<sup>4</sup>
print(node)

[Out] GOOGLE (AS15169)
```

⁴ http://goo.gl/FDqISn

requests + peeringdb

Peeking at the Raw Data

csvkit

```
$ csvcut -n data.csv
$ csvcut -c col1, col2,... data.csv
$ csvgrep -c col1 -m pattern data.csv
$ csvsort -c col1 data.csv
```

Frictionless SQL storage

Pandas Dataframe

```
import pandas as pd
...
url = 'https://atlas.ripe.net/api/v1/probe'
res = get_json_from_url(url)
df = pd.DataFrame(res['objects'])
df.head()
```

	address_v4	address_v6	asn_v4	asn_v6	country_code	id	is_anchor	is_public	latitude
0	NaN	NaN	6830	NaN	NL	1	False	False	52.3875
1	NaN	NaN	5615	NaN	NL	2	False	False	52.3085
2	213.93.36.211	None	6830	NaN	NL	3	False	True	52.3385
3	83.163.50.165	2001:980:57a4:1:220:4aff:fec8:244a	3265	3265	NL	4	False	True	52.3995
4	81.56.221.200	None	12322	NaN	NL	5	False	True	52.0595

Frictionless SQL storage

import pandas as pd; pd.to_sql(...)

```
import sqlite3
con = sqlite3.connect('$DB_LOCATION')
df.to_sql('$TABLENAME'
, con
, flavor='sqlite'
, if_exists = 'append'
, index_label = 'id'
)
```

Frictionless Data Retrieval

import pandas as pd; pd.read(...)

```
query = '''select asn_v4, count(asn_v4) as
    probe_count from %s where is_anchor = 0
    and status = 1 group by asn_v4 having
    count(asn_v4) > 50'''%TABLENAME
```

```
df = pd.read_sql(query, con)
df.head()
```

	asn_v4	probe_count				
0	701	65				
1	2856	73				
2	3215	94				
3	3265	75				
4	3320	191				

Data Analysis

import ipaddress

```
import ipaddress
shared=ipaddress.ip_network('100.64.0.0/10')
myip=ipaddress.ip_address('192.168.0.1')
isPvt = myip.is_private
print('Is %s Private[RFC1918]? %s'%(myip,isPvt))

[Out] Is 192.168.0.1 Private[RFC1918]? True
```

Data Analysis

import socket

```
import socket
def if_ipv6(address):
  try:
    socket.inet_pton(socket.AF_INET6, address)
    return True
  except socket.error: return False
def if_ipv4(address):
  try:
    socket.inet_pton(socket.AF_INET, address)
    return True
  except socket.error: return False
```

Data Visualization

import matplotlib

```
df.head()
df = df.sort('probe_count', ascending=False)
ax = df.plot('asn_v4', 'probe_count', kind='bar')
ax.set_xlabel("ASN");
ax.set_ylabel("#Connected Probes");
```

	asn_v4	probe_count				
0	701	65				
1	2856	73				
2	3215	94				
3	3265	75				
4	3320	191				

