Modelos SARIMA e Previsões

Lucas Domingues e Lucas Moschen

November 22, 2020

Questões Teóricas

Questão 6 (Capítulo 9)

Se $Y \sim N\left(\mu, \sigma^2\right)$, então X tal que $\log X = Y$ terá uma distribuição log-normal com $E[X] = e^{\mu + \sigma^2/2}$ e $Var[X] = e^{2\mu + \sigma^2} \left(e^{\sigma^2} - 1\right)$. Baseado nessa definição, se $Y_t = \log Z_t$ e Y_t é Gaussiano, então

$$\hat{Z}_t(h) = \exp\left\{\hat{Y}_t(h) + \frac{1}{2}V_y(h)\right\}$$

$$V_Z(h) = \exp\left\{2\hat{Y}_t(h) + V_y(h)\right\} \left[\exp\{V_y(h)\} - 1\right]$$

Resposta: Sabemos que a distribuição de Y_{t+h} em um processo Gaussiano é $N\left(\hat{Y}_t(h), V_Y(h)\right)$, onde

$$\hat{Y}_t(h) = E[Y_{t+h}|Y_t, Y_{t-1}, ...]$$

Como $Z_{t+h} = \log Y_{t+h}$, pelo enunciado, a distribuição de $Z_{t+h}|Z_t,Z_{t-1},..$ é uma log-normal, tal que:

$$\hat{Z}_t(h) = E[Z_{t+h}|Z_t, Z_{t-1}, \dots] = e^{\hat{Y}_t(h) + \frac{1}{2}V_Y(h)}$$
$$V_Z(h) = e^{2\hat{Y}_t(h) + V_Y(h)} \left(e^{V_Y(h)} - 1\right)$$

utilizando os valores do valor esperado e variância descritos. Isso demonstra a relação.

Questão 8 (Capítulo 9)

Considere o problema de encontrar a previsão linear ótima (erro quadrático médio mínimo) de um processo estacionário de média zero, $\{Z_t\}$, baseado em um número finito de observações, $Z_t,...,Z_{t-r}$. Em resumo, queremos encontrar os coeficientes a_i na fórmula de previsão

$$\hat{Z}_t(h) = a_0 Z_t + a_1 Z_{t-1} + \dots + a_r Z_{t-r}$$

que fornecem erro quadrático médio mínimo.

(a) Mostre que

$$E\left[(Z_{t+h} - \hat{Z}_t(h))^2 \right] = \gamma_0 - 2\sum_{i=0}^r a_i \gamma_{i+h} + \sum_{i=0}^r \sum_{j=0}^r a_i a_j \gamma_{i-j}$$
$$= \gamma_0 - 2\mathbf{a}' \gamma_r(h) + \mathbf{a}' \Gamma_{r+1} \mathbf{a},$$

onde

$$\Gamma_{r+1} = \begin{bmatrix} \gamma_0 & \gamma_1 & \dots & \gamma_r \\ \gamma_1 & \gamma_0 & \dots & \gamma_{r-1} \\ \dots & \dots & \dots & \dots \\ \gamma_r & \gamma_{r-1} & \dots & \gamma_0 \end{bmatrix}, \gamma_r(h) = \begin{bmatrix} \gamma_h \\ \gamma_{h+1} \\ \dots \\ \gamma_{h+r} \end{bmatrix}, \boldsymbol{a} = \begin{bmatrix} a_0 \\ a_1 \\ \dots \\ a_r \end{bmatrix}$$

Resposta: Temos a seguinte expressão:

$$E\left[(Z_{t+h} - \hat{Z}_{t}(h))^{2} \right] = E\left[\left(Z_{t+h} - \sum_{i=0}^{r} a_{i} Z_{t-i} \right)^{2} \right]$$

$$= E\left[Z_{t+h}^{2} - 2Z_{t+h} \sum_{i=0}^{r} a_{i} Z_{t-i} + \left(\sum_{i=0}^{r} a_{i} Z_{t-i} \right)^{2} \right]$$

$$= E[Z_{t+h}^{2}] - 2\sum_{i=0}^{r} a_{i} E[Z_{t+h} Z_{t-i}] + \sum_{i=0}^{r} \sum_{j=0}^{r} a_{i} a_{j} E[Z_{t-i} Z_{t-j}]$$

$$= \gamma_{0} - 2\sum_{i=0}^{r} a_{i} \gamma_{h+i} + \sum_{i=0}^{r} \sum_{j=0}^{r} a_{i} a_{j} \gamma_{i-j}$$

$$= \gamma_{0} - 2a' \gamma_{r}(h) + a' \Gamma_{r+1} a$$

onde a última igualdade vem da definição dada pelo enunciado e usando a notação de produto matricial.

(b) Encontre os a_i que minimizam o EQM e mostre que as equações resultantes são $\Gamma_{r+1}\mathbf{a} = \gamma_r(h)$.

Resposta: Queremos minimizar a expressão

$$\gamma_0 - 2\boldsymbol{a}^T \gamma_r(h) + \boldsymbol{a}^T \Gamma_{r+1} \boldsymbol{a}$$

Equivalente a minimizar

$$f(\boldsymbol{a}) = -2\boldsymbol{a}^T \gamma_r(h) + \boldsymbol{a}^T \Gamma_{r+1} \boldsymbol{a}$$

Para isso, fazemos

$$\nabla f(\boldsymbol{a}) = -2\gamma_r(h) + 2\Gamma_{r+1}\boldsymbol{a} = 0 \implies \Gamma_{r+1}\boldsymbol{a} = \gamma_r(h)$$

Vamos verificar a segunda derivada

$$\operatorname{Hess}(f(a)) = 2\Gamma_{r+1}$$

Como a matriz de covariância é positiva semi-definida e, nesse caso, definida, temos um mínimo local quando

$$\Gamma_{r+1}\boldsymbol{a} = \gamma_r(h),$$

como queríamos provar.

Série Consumo - Questão 3 (Capítulo 10)

Usando um programa de computador apropriado, obtenha as autocorrelações estimadas para $Z_t, \Delta Z_t, \Delta_4 Z_t, \Delta \Delta_4 Z_t$, sendo Z_t a série de consumo de gasolina.

Consumo trimestral de gasolina na Califórnia

(a) O que você pode observar nas autocorrelações de \mathbb{Z}_t ?

Autocorrelação Zt

Podemos observar um decaimento exponencial no gráfico acima que é não significante apenas após o lag 25. Também podemos observar que os lags 12, 23 e 36 tem picos fora do comum que indicam sazonalidade.

(b) A mesma pergunta para ΔZ_t .

Autocorrelação Zt

Resposta: Podemos observar que grande parte da ACF foi anulada, apenas os lags que indicam uma diferença dos picos de sazonalidade, e os próprios picos.

(c) Qual das séries você consideraria estacionária?

Resposta: Não consideramos nenhuma das séries estacionária. Quando fizemos a primeira diferença, vários lags desapareceram, o que indica uma uma tendência na série original. Porém a segunda série também apresenta lags nos períodos 12, 24, 36 e 48, o que indica a sazonalidade que já havíamos notado.

(d) Utilizando um programa de identificação, sugira um ou mais modelos adequados para a série; obtenha as estimativas preliminares para os parâmetros.

Resposta: Vamos utilizar a função auto.arima para identificar o modelo.

```
## Series: consumo
## ARIMA(1,0,1)(0,1,1)[12]
##
##
  Coefficients:
##
            ar1
                      ma1
                               sma1
                  -0.2294
##
         0.9407
                           -0.7340
         0.0324
                   0.0928
                            0.0739
##
## sigma^2 estimated as 93.81:
                                  log likelihood=-527.47
## AIC=1062.94
                  AICc=1063.24
                                  BIC=1074.77
##
## Training set error measures:
##
                         ME
                                 RMSE
                                           MAE
                                                       MPE
                                                                MAPE
                                                                          MASE
```

```
## Training set -0.3770845 9.201688 7.100073 -0.5534727 6.053567 0.4431577 ## ACF1 ## Training set 0.01366012
```

Vemos que o programa identifica um ARIMA(1,0,1)(0,1,1)[12]. Além disso, ele mostra as estimativas preliminares dos coeficientes.

Também podemos fazer uma identificação de um modelo alternativo feito artesanalmente. Primeiro fazemos uma transformação Box-Cox com o parâmetro λ ótimo. Depois podemos fazer um teste de estacionariedade. Porém o teste ADF acusa que não rejeitamos a hipótese nula (de não estacionariedade) a nível 0,05.

```
##
##
    Augmented Dickey-Fuller Test
##
  data: consumo.bc
##
## Dickey-Fuller = -3.2868, Lag order = 5, p-value = 0.07602
  alternative hypothesis: stationary
Portanto, fazemos uma diferença e refazemos o teste.
## Warning in adf.test(consumo.diff): p-value smaller than printed p-value
##
##
    Augmented Dickey-Fuller Test
##
## data: consumo.diff
## Dickey-Fuller = -6.9311, Lag order = 5, p-value = 0.01
## alternative hypothesis: stationary
```

Nesse caso possuimos a estacionaridade desejada. Como ainda temos a sazonalidade já observada, também fazemos a diferença sazonal e, assim:

Observe que a ACF (morte após lag 12) + PACF (decaimento exponencial) nos lags da sazonalidade indicam um componente MA sazonal. Vamos utilizar os critérios de informação para definir o modelo final. Os valores máximos de p e q serão 3 porque tanto a ACF quando a PACF parecem morrer cedo.

```
## [1] "Modelo com menor AIC"
##
     рq
               AIC
                         BIC
                                   AICc
## 9 2 0 -1061.232 -1049.437 -1060.938
## [1] "Modelo com menor AICc"
##
     рq
               AIC
                         BIC
                                   AICc
## 9 2 0 -1061.232 -1049.437 -1060.938
## [1] "Modelo com menor BIC"
##
     рq
               AIC
                         BIC
                                   AICc
## 9 2 0 -1061.232 -1049.437 -1060.938
```

Em particular, as três informações escolheram o modelo ARIMA(2,1,0)(0,1,1)[12]. Por isso, esse é nosso modelo alternativo.

(e) Obtenha as estimativas finais para os parâmetros do(s) modelo(s) através de um programa de estimação; verifique se o(s) modelo(s) é (são) adequado(s).

Resposta: Será utilizada a função Arima, que estima os parâmetros do modelo de dada ordem. Além disso, ela permite incluir o parâmetro lambda para a transformação de Box-Cox.

Vejamos o resultado da estimação para um modelo ARIMA(1,0,1)(0,1,1)[12] com parâmetro lambda escolhido automaticamente:

```
## Series: consumo
## ARIMA(1,0,1)(0,1,1)[12]
## Box Cox transformation: lambda= -0.5531393
##
##
  Coefficients:
##
            ar1
                     ma1
                              sma1
                           -1.0000
##
         0.9757
                 -0.3881
## s.e.
         0.0227
                  0.0828
                            0.1081
##
## sigma^2 estimated as 2.547e-05:
                                    log likelihood=536.49
## AIC=-1064.99
                  AICc=-1064.7
                                  BIC=-1053.17
##
## Training set error measures:
##
                         ME
                                RMSE
                                          MAE
                                                      MPE
                                                              MAPE
                                                                         MASE
## Training set 0.07607136 7.705328 5.810603 -0.2945207 4.892397 0.3626742
##
                      ACF1
## Training set 0.1217969
```

Observamos que as estimativas atuais dos parâmetros são próximas daquelas preliminares (do exercício anterior). O parâmetro lambda também é estimado.

Vamos analisar os resíduos, através de seu gráfico, sua ACF e seu histograma:

Residuals from ARIMA(1,0,1)(0,1,1)[12]


```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(1,0,1)(0,1,1)[12]
## Q* = 23.808, df = 21, p-value = 0.3025
##
## Model df: 3. Total lags used: 24
```

O teste de Ljung-Box nos resíduos nos dá boas notícias: não rejeitamos a hipótese de dados não correlacionados. Observamos que a ACF nos indica que os resíduos se comportam como esperaríamos de um ruído gaussiano. Todavia, o teste jarque.bera rejeita a hipótese nula de que a assimetria e o excesso de curtose são nulos. Isso nos dá evidência para a não normalidade.

```
##
## Jarque Bera Test
##
## data: est$residuals
## X-squared = 15.555, df = 2, p-value = 0.0004192
```

Vejamos o resultado de ggtsdisplay para os resíduos:

A PACF também se comporta dentro do intervalo de confiança para que consideremos o resíduo como um ruído branco.

Para o modelo alternativo ARIMA(2,1,0)(0,1,1)[12], façamos o mesmo processo.

```
## Series: consumo
## ARIMA(2,1,0)(0,1,1)[12]
## Box Cox transformation: lambda= -0.5531393
##
##
  Coefficients:
##
           ar1
                     ar2
                             sma1
##
         -0.34
                -0.3075
                          -0.9999
          0.08
                  0.0795
                           0.1078
##
##
## sigma^2 estimated as 2.474e-05:
                                     log likelihood=534.62
  AIC=-1061.23
                  AICc=-1060.94
                                   BIC=-1049.44
##
##
## Training set error measures:
##
                         ME
                                RMSE
                                          MAE
                                                      MPE
                                                              MAPE
                                                                        MASE
##
  Training set -0.3753811 7.708961 5.572504 -0.4295857 4.704088 0.347813
##
                      ACF1
## Training set 0.1034173
```

Observamos que alguns indicadores de erros nos mostram que o modelo é pior: tem maior erro média, maior raiz do erro quadrático e erro percentual, mas tem menor MAE, MAPE, MASE e ACF1.


```
## Ljung-Box test
##
## data: Residuals from ARIMA(2,1,0)(0,1,1)[12]
## Q* = 12.873, df = 21, p-value = 0.913
##
## Model df: 3. Total lags used: 24
```

A ACF dos resíduis está particularmente boa! Além disso o teste de Ljung-Box não rejeita a hipótese nula de que não existe correlação, o que é uma boa notícia. Vamos ver o Jarque-Bera.

```
##
## Jarque Bera Test
##
## data: est2$residuals
## X-squared = 10.213, df = 2, p-value = 0.006057
```

O teste de Jarque Bera também rejeita a hipótese nula, o que não nos dá muito *insight* sobre o modelo ideial. Vamos utilizar o primeiro modelo para previsão, dado que obteve menor RMSE.

(f) Obtenha previsões para 1974 utilizando o(s) modelo(s) estimado(s).

Resposta: O ano 1974 é no passado. A última observação é de outubro de 1996. Vamos prever 12 meses à frente utilizando nosso modelo e também mostrando os intervalos de confiança:

Visualmente, isso parece um tanto razoável.

Série de serviços da Austrália

Essa série representa o gasto mensal total em serviços de cafés, restaurantes e comida para levar na Austrália em bilhões de dólares. Vamos visualizar a série:

Gasto em cafés, restaurantes e comidas para levar na Austrália

Estabilização da variância

Observamos que a variância está aumentando, então é necessário estabilizá-la. Vamos utilizar a função BoxCox, que calcula automaticamente o parâmetro ótimo lambda. Vejamos o resultado:

Estacionariedade e diferenciação

Verifiquemos agora estacionariedade e necessidade de diferenciação. Inicialmente, utilizamos o teste ADF para a verificação da estacionariedade:

```
##
   Augmented Dickey-Fuller Test
##
##
## data: bc_auscafe
## Dickey-Fuller = -3.3838, Lag order = 7, p-value = 0.05669
## alternative hypothesis: stationary
```

Não rejeitamos a hipótese de não estacionariedade, logo decidimos por uma diferenciação. Diferenciando e testando:

```
## Warning in adf.test(d_bc_auscafe): p-value smaller than printed p-value
##
   Augmented Dickey-Fuller Test
##
##
## data: d_bc_auscafe
## Dickey-Fuller = -13.205, Lag order = 7, p-value = 0.01
## alternative hypothesis: stationary
```

Agora, sim, temos um modelo estacionário. Como estamos trabalhando com modelos SARIMA, verificamos também a necessidade de uma diferenciação sazonal. Verificamos isso com os gráficos da ACF e da PACF:

Series d_bc_auscafe

Series d_bc_auscafe

A presença de sazonalidade no lag 12 (e seus múltiplos e divisores) é clara, tanto nos gráficos da ACF e PACF, quanto no próprio gráfico da série. Decidimos portanto por realizar uma diferenciação sazonal de lag 12.

```
## Warning in adf.test(dd_bc_auscafe): p-value smaller than printed p-value
##
## Augmented Dickey-Fuller Test
##
## data: dd_bc_auscafe
## Dickey-Fuller = -6.7817, Lag order = 7, p-value = 0.01
```

Ainda mantemos a estacionariedade!

alternative hypothesis: stationary

Series dd_bc_auscafe

Series dd_bc_auscafe

Os picos diminuíram de forma considerável. Os picos na ACF (1, 12 e 23) indicam um termo MA(1) (corte depois de q > 1) e um termo sazonal MA(1) (spike em lag 12). Os termos autoregressivos estão mais difíceis de interpretar se baseando apenas nos gráficos da ACF e PACF. Vamos utilizar uma abordagem de "gridsearch" para tentar encontrar o modelo mais simples que minimiza os critérios de informação.

Critério de informação

Vamos realizar um "gridsearch" entre 0 e 3 para os parâmetros p e P (com exceção de alguns modelos específicos que tiveram problemas na otimização durante a estimação).

p	Р	AIC	BIC	AICc
0	0	-1882.555	-1866.461	-1882.457
0	1	-1884.761	-1864.644	-1884.614
0	2	-1883.760	-1859.619	-1883.553
0	3	-1891.388	-1863.224	-1891.111
1	0	-1881.042	-1860.925	-1880.895
1	1	-1883.137	-1858.997	-1882.931
1	2	-1882.114	-1853.950	-1881.837
2	0	-1887.723	-1863.583	-1887.517
2	1	-1889.001	-1860.837	-1888.725
2	2	-1887.733	-1855.545	-1887.376
2	3	-1893.137	-1856.926	-1892.690
3	0	-1885.751	-1857.587	-1885.475
3	2	-1885.708	-1849.497	-1885.262
3	3	-1891.188	-1850.953	-1890.640

Verificamos que minimizamos AIC e AICc com $p=2,\,P=3,$ enquanto minimizamos o BIC com p=P=0. Vamos trabalhar ambos os modelos.

Estimação

Vamos utilizar a função Arima para ajustar os modelos SARIMA(2, 1, 1)(3, 1, 1)[12] e SARIMA(0, 1, 1)(0, 1, 1)[12], com transformação de Box-Cox (automática).

```
## Series: auscafe
## ARIMA(2,1,1)(3,1,1)[12]
## Box Cox transformation: lambda= 0.109056
##
##
  Coefficients:
##
             ar1
                       ar2
                               ma1
                                      sar1
                                                sar2
                                                          sar3
                                                                   sma1
                   -0.2952
                            0.5479
                                    0.0017
                                             -0.1058
                                                      -0.1699
                                                                -0.7419
##
         -0.8834
##
          0.2250
                   0.0682
                            0.2321
                                    0.0740
                                              0.0610
                                                       0.0599
                                                                 0.0619
##
                                     log likelihood=955.47
## sigma^2 estimated as 0.0005634:
  AIC=-1894.93
                  AICc=-1894.57
                                   BIC=-1862.74
##
## Training set error measures:
                                     RMSE
                                                               MPE
                                                                       MAPE
                                                                                  MASE
                                                  MAE
## Training set -0.0006347659 0.03676802 0.02647835 -0.03142307 1.756252 0.2534141
##
                         ACF1
## Training set -0.002408055
## Series: auscafe
## ARIMA(0,1,1)(0,1,1)[12]
## Box Cox transformation: lambda= 0.109056
##
## Coefficients:
##
             ma1
                      sma1
##
         -0.3649
                  -0.8204
          0.0431
                   0.0325
##
  s.e.
##
## sigma^2 estimated as 0.0005856:
                                     log likelihood=945.15
## AIC=-1884.3
                 AICc=-1884.24
                                  BIC=-1872.23
##
## Training set error measures:
                            ME
                                     RMSE
                                                  MAE
                                                               MPE
                                                                       MAPE
                                                                                  MASE
##
## Training set -0.0007623818 0.03690703 0.02723568 -0.03770534 1.833843 0.2606623
##
                         ACF1
## Training set -0.006901538
```

Vale notar que, por mais que estamos deixando a função escolher o parâmetro lambda, ele escolhe o mesmo que encontramos anteriormente. (Existe uma vantagem em deixar a função fazer isso: o modelo todo é estimado com uma função só, então fica trivial de utilizar funções de previsão que automaticamente calculam intervalos preditivos, por exemplo.)

Diagnóstico

Precisamos verificar os resíduos das nossas estimações. Fazemos isso com a função checkresiduals, e também aplicamos um teste de Jarque-Bera (este tem hipótese nula de assimetria 0 e excesso de curtose 3).

Residuals from ARIMA(2,1,1)(3,1,1)[12]


```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(2,1,1)(3,1,1)[12]
## Q* = 31.339, df = 17, p-value = 0.01816
##
## Model df: 7. Total lags used: 24
##
## Jarque Bera Test
##
## data: mod1$residuals
## X-squared = 8.4329, df = 2, p-value = 0.01475
```

Residuals from ARIMA(0,1,1)(0,1,1)[12]


```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(0,1,1)(0,1,1)[12]
## Q* = 69.58, df = 22, p-value = 7.7e-07
##
## Model df: 2. Total lags used: 24
##
## Jarque Bera Test
##
## data: mod2$residuals
## X-squared = 4.0148, df = 2, p-value = 0.1343
```

Vamos discutir os resultados obtidos. O modelo SARIMA(2, 1, 1)(3, 1, 1)[12] rejeita as observações serem i.i.d., porém rejeita também a normalidade. Observamos valores extremos nos resíduos, assim como spike em lag 13. O modelo SARIMA(0, 1, 1)(0, 1, 1)[12] rejeita as observações serem i.i.d., mas não rejeita a normalidade! Vemos que várias autocorrelações estão fora do intervalo de confiança.

Com a posse de todas essas informações, acabamos por escolher o modelo SARIMA(0, 1, 1)(0, 1, 1)[12], que, mesmo que não seja perfeito, é um dos melhores no ajuste aos dados e também é o mais simples entre os dois. Observe ainda que este modelo é também escolhido pela função auto.arima:

```
## Series: auscafe
## ARIMA(0,1,1)(0,1,1)[12]
##
## Coefficients:
## ma1 sma1
## -0.3673 -0.5991
```

```
## s.e. 0.0443 0.0348
##
## sigma^2 estimated as 0.001673: log likelihood=732.46
## AIC=-1458.92 AICc=-1458.87 BIC=-1446.85
```