Iso-seq structral analysis

Changfu Jia

2022-09-10

```
setwd("F:/dir")
library(tidyverse)
L596_cor<-read.table("m64032_191231_031514.subreads.6--6_75.ccs.lima.refine.cluster.hq..corrected.blasr
L596<-read.table("m64032_191231_031514.subreads.6--6_75.ccs.lima.refine.cluster.hq.blasr.out55.pid", sep
H596_cor<-read.table("m64032_191231_031514.subreads.7--7_75.ccs.lima.refine.cluster.hq..corrected.blasr
H596<-read.table("m64032_191231_031514.subreads.7--7_75.ccs.lima.refine.cluster.hq.blasr.out55.pid", sep
all<-rbind(H596_cor %>% mutate(type="LoRDEC", cond="H596"),
          H596 %>% mutate(type="Uncorrected", cond="H596"),
          L596_cor %>% mutate(type="LoRDEC", cond="L596"),
           L596 %>% mutate(type="Uncorrected", cond="L596"))
ggplot(all, aes(x=V2, fill=cond, alpha=type))+
  geom_histogram(bins = 30) +
  facet_grid(rows = c("cond" ,"type"), scales = "free_y")+
  theme_bw()+
  theme(legend.position ="none",
        axis.title.x=element_text(size=14,color="black",vjust=1,face = "bold"),
       axis.title.y=element_text(size=14,color="black",face = "bold" ),
       axis.text.x=element_text(size=12,color="black"),
        axis.text.y=element_text(size=12,color="black"),
        legend.text=element_text(size=15,color="black"),
        legend.title=element_text(size=15,color="black"),
       plot.title=element_text(size=15,color="black",hjust=10,face = "bold")) +
  scale_alpha_manual(values=c(1,0.6))+
  annotate("text", x=0.75,y=6500, hjust=0, color= "black",
          label=paste("blasr", "m:match,M:mismatch,","D:deletion,I:insertion",
                    "PID = m/(m+M+D+I)", sep="\n"), size=3)+
  ylab("Isoform Counts")+
  xlab("PID identity")
```



```
setwd("F:/dir")
#library(tidyverse)
frag <- read.table("m64032_191231_031514.subreads.6--6_75.fragment", sep="\t")</pre>
frag <- read.table("6.fragment.length.txt", sep="\t")</pre>
bin <- seq(0,10000,length.out=100)</pre>
#?seq
out<-data.frame( bin, 0 )</pre>
for (i in 1:nrow(frag)) {
  num<-frag[i,]$V1</pre>
  freq<-frag[i,]$V2</pre>
  ind<-length(which(num-bin >0))
  out[ind,2]<-out[ind,2]+freq</pre>
}
options(scipen=200)
L596_subreads<-ggplot(out, aes(x=bin,y=X0)) +
  geom_col(fill="#0077b6", color="black") +
  theme_bw() +
  theme(legend.position ="none",
```

```
axis.title.x=element_text(size=14,color="black",vjust=1,face = "bold"),
                    axis.title.y=element_text(size=14,color="black",face = "bold" ),
                    axis.text.x=element_text(size=12,color="black"),
                    axis.text.y=element_text(size=12,color="black"),
                    legend.text=element text(size=15,color="black"),
                    legend.title=element_text(size=15,color="black"),
                    plot.title=element text(size=15,color="black",hjust=10,face = "bold")) +
  ylab("SubReads Number")+
  xlab("Subreads Length")
dir.create("1.reads_quality/")
frag<- read.table("7.fragment.length.txt", sep="\t")</pre>
bin <- seq(0,10000,length.out=100)
#?seq
out<-data.frame( bin, 0 )</pre>
for (i in 1:nrow(frag)) {
 num<-frag[i,]$V1</pre>
  freq<-frag[i,]$V2</pre>
  ind<-length(which(num-bin >0))
 out[ind,2]<-out[ind,2]+freq</pre>
}
H596_subreads<-ggplot(out, aes(x=bin,y=X0)) +
  geom_col(fill="#40916c", color="black") +
  theme_bw() +
  theme(legend.position = "none",
        axis.title.x=element_text(size=14,color="black",vjust=1,face = "bold"),
        axis.title.y=element_text(size=14,color="black",face = "bold" ),
        axis.text.x=element_text(size=12,color="black"),
        axis.text.y=element_text(size=12,color="black"),
        legend.text=element_text(size=15,color="black"),
        legend.title=element_text(size=15,color="black"),
        plot.title=element_text(size=15,color="black",hjust=10,face = "bold")) +
  ylab("SubReads Number")+
  xlab("Subreads Length")
frag<-read.table("H596_flnc.qv.txt")</pre>
bin <- seq(0.8,1,length.out=100)</pre>
out<-data.frame( bin, 0 )</pre>
```

```
for (i in 1:nrow(frag)) {
 num<-frag[i,]$V1</pre>
 freq<-frag[i,]$V2</pre>
 ind<-length(which(num-bin >0))
 out[ind,2]<-out[ind,2]+freq</pre>
}
H596 flnc quality \leftarrow ggplot(out, aes(x=bin,y=X0)) +
  geom col(fill="#40916c", color="black") +
  theme_bw() +
  theme(legend.position = "none",
        axis.title.x=element_text(size=14,color="black",vjust=1,face = "bold"),
        axis.title.y=element_text(size=14,color="black",face = "bold" ),
        axis.text.x=element_text(size=12,color="black"),
        axis.text.y=element_text(size=12,color="black"),
        legend.text=element_text(size=15,color="black"),
        legend.title=element_text(size=15,color="black"),
        plot.title=element_text(size=15,color="black",hjust=10,face = "bold")) +
  ylab("Reads Number")+
  xlab("FLNC Quality")
frag<-read.table("L596_flnc.qv.txt")</pre>
bin <- seq(0.8,1,length.out=100)
out<-data.frame( bin, 0 )</pre>
for (i in 1:nrow(frag)) {
 num<-frag[i,]$V1</pre>
  freq<-frag[i,]$V2</pre>
  ind<-length(which(num-bin >0))
  out[ind,2]<-out[ind,2]+freq
L596_flnc_quality<-ggplot(out, aes(x=bin,y=X0)) +
  geom col(fill="#0077b6", color="black") +
  theme bw() +
  theme(legend.position = "none",
        axis.title.x=element_text(size=14,color="black",vjust=1,face = "bold"),
        axis.title.y=element_text(size=14,color="black",face = "bold" ),
        axis.text.x=element_text(size=12,color="black"),
        axis.text.y=element_text(size=12,color="black"),
        legend.text=element_text(size=15,color="black"),
        legend.title=element_text(size=15,color="black"),
        plot.title=element_text(size=15,color="black",hjust=10,face = "bold")) +
  vlab("Reads Number")+
  xlab("FLNC Quality")
ggpubr::ggarrange(L596_subreads, H596_subreads, L596_flnc_quality, H596_flnc_quality)
```



```
setwd("F:/dir/2.Structral_analysis/4.PolyA")
library(tidyverse)
H596_poly<-read.table("H596_polyA_summary.txt", sep="\t",header = T)
L596_poly<-read.table("L596_polyA_summary.txt", sep="\t",header = T)
rbind(L596_poly %% mutate(type="L596") , H596_poly %>% mutate(type="H596")
                                                                               ) %>%
  filter(num.sites>0) %>%
  group_by(num.sites, type) %>%
  mutate(number=n()) %>%
  ungroup() %>%
  select(num.sites, number, type) %>%
  unique(.) %>%
  ggplot(aes(x=num.sites, y=number, fill=type))+
  geom_col(position = position_dodge(width = 1) ) +
  theme_bw() +
  theme(legend.position="right",
        axis.title.x=element_text(size=14,color="black",hjust=0.5),
        axis.title.y=element_text(size=14,color="black"),
        axis.text.x=element_text(size=12,color="black"),
        axis.text.y=element_text(size=12,color="black"),
        legend.text=element_text(size=15,color="black"),
        legend.title=element_text(size=15,color="black"),
        plot.title=element_text(size=15,color="black",hjust=0.5))+
  xlab("Poly(A) sites")+
```



```
#ggsave("PolyA_sites_stat.pdf", height = 7, width = 8)

rm(H596_poly, L596_poly)

library(scatterplot3d)
setwd("F:/dir/2.Structral_analysis/6.misa")

H596_misa<-read.table("H596.fasta.misa", sep="\t",header = T)
L596_misa<-read.table("L596.fasta.misa", sep="\t",header = T)

L596_misa_s<-
L596_misa_s<-
L596_misa %>% filter( !grepl("c",SSR.type ) ) %>%
    group_by(SSR.nr., SSR.type) %>%
    mutate(count=n()) %>%
    select(SSR.nr., SSR.type, count) %>%
    unique(.) %>%
    ungroup() %>%
    filter(SSR.nr.!=6)
```



```
rm(H596_misa, H596_misa_s, L596_misa, L596_misa_s, p1,p2)
setwd("F:/dir/2.Structral_analysis/8.SNP_indel")
H596_vcf<-read.table("H596.vcf",sep="\t")
L596_vcf<-read.table("L596.vcf",sep="\t")
p1<-
L596_vcf %>%
  filter(!grepl("INDEL", V8)) %>%
  mutate(class = paste(V4,">",V5, sep="")) %>%
  select(class) %>%
  filter(!grepl(",",class)) %>%
  ggplot(aes(x=class,fill=class))+
  geom_bar()+
  theme_bw() +
  theme(legend.position="right",
        axis.title.x=element_text(size=14,color="black",hjust=0.5),
        axis.title.y=element_text(size=14,color="black"),
        axis.text.x=element_text(size=12,color="black"),
```

```
axis.text.y=element_text(size=12,color="black"),
        legend.text=element_text(size=15,color="black"),
        legend.title=element_text(size=15,color="black"),
        plot.title=element_text(size=15,color="black",hjust=0.5))+
  xlab("")+
  ylab("L596 count")
H596_vcf %>%
  filter(!grepl("INDEL", V8)) %>%
  mutate(class = paste(V4,">",V5, sep="")) %>%
  select(class) %>%
  filter(!grepl(",",class)) %>%
  ggplot(aes(x=class,fill=class))+
  geom_bar()+
  theme_bw() +
  theme(legend.position="right",
        axis.title.x=element_text(size=14,color="black",hjust=0.5),
        axis.title.y=element_text(size=14,color="black"),
        axis.text.x=element_text(size=12,color="black"),
        axis.text.y=element_text(size=12,color="black"),
        legend.text=element_text(size=15,color="black"),
        legend.title=element_text(size=15,color="black"),
        plot.title=element_text(size=15,color="black",hjust=0.5))+
  xlab("")+
  ylab("H596 count")
ggpubr::ggarrange(p1,p2,common.legend = T)
```



```
#ggsave("SNP_freq.pdf", width = 20, height = 13)
#rbind( L596_vcf %>%mutate(class="L596"), H596_vcf %>%mutate(class="H596") ) %>%
L596_vcf_ind<-
L596_vcf %>%
  filter(grepl("INDEL", V8)) %>%
  mutate(ind_len= str_length(V4) - str_length(V5) ) %>%
  select(ind_len) %>%
  ggplot(aes(x=ind_len))+
  geom_bar()+
  theme_bw() +
  xlim(-20,20)+
  xlab("L596 Indel length")
H596_vcf_ind<-
H596_vcf %>%
  filter(grep1("INDEL", V8)) %>%
  mutate(ind_len= str_length(V4) - str_length(V5) ) %>%
  select(ind_len) %>%
  ggplot(aes(x=ind_len))+
  geom_bar()+
  theme_bw() +
  xlim(-20,20) +
  xlab("H596 Indel length") +
  ylab("")
```

ggpubr::ggarrange(L596_vcf_ind, H596_vcf_ind)


```
\#ggsave("Indel\_freq.pdf", width = 8)
rm(H596_vcf, H596_vcf_ind, L596_vcf,L596_vcf_ind,p1,p2 )
setwd("F:/dir/2.Structral_analysis/9.TF")
H596<- read.csv("H596.TF.csv" ,header = F )</pre>
L596<- read.csv("L596.TF.csv", header = F)
H596 TF<-
H596 %>%
  select(V5) %>%
  group_by(V5)%>%
  mutate(count= n()) %>%
  unique(.) %>%
  arrange(desc(count)) %>%
  ungroup() %>%
  filter(V5!="")%>%
  top_n(n=14) \%>\%
  ggplot(aes(y=factor(V5,levels = rev(V5)), x=count,
             fill= factor(V5,levels = rev(V5)))) +
  geom_col()+
  theme_bw() +
  theme(legend.position="none",
```

```
axis.title.x=element_text(size=14,color="black",hjust=0.5),
        axis.title.y=element_text(size=14,color="black"),
        axis.text.x=element_text(size=12,color="black"),
        axis.text.y=element_text(size=12,color="black"),
        legend.text=element_text(size=15,color="black"),
        legend.title=element_text(size=15,color="black"),
        plot.title=element_text(size=15,color="black",hjust=0.5))+
  ylab("")+
  xlab("H596 Count")
L596 TF<-
L596 %>%
  select(V5) %>%
  group_by(V5)%>%
  mutate(count= n()) %>%
  unique(.) %>%
  arrange(desc(count)) %>%
  ungroup() %>%
  filter(V5!="")%>%
  top_n(n=14) \%
  ggplot(aes(y=factor(V5,levels = rev(V5)), x=count,
             fill= factor(V5,levels = rev(V5)))) +
  geom_col()+
  theme bw() +
  theme(legend.position="none",
        axis.title.x=element_text(size=14,color="black",hjust=0.5),
        axis.title.y=element_text(size=14,color="black"),
        axis.text.x=element_text(size=12,color="black"),
        axis.text.y=element_text(size=12,color="black"),
        legend.text=element_text(size=15,color="black"),
        legend.title=element_text(size=15,color="black"),
        plot.title=element_text(size=15,color="black",hjust=0.5))+
  ylab("TF Class")+
  xlab("L596 Count")
ggpubr::ggarrange(L596_TF, H596_TF, ncol = 1)
```



```
#ggsave("TF_class_stat.pdf", width = 25, height = 15)
rm(H596,L596,H596_TF, L596_TF)
setwd("F:/dir/2.Structral_analysis/2.AS")
AS<-read.table("AS.list", header = F, sep="\t")
H596_AS<-read.table("H596_AS.list", header = F, sep = "\t")
L596_AS<-read.table("L596_AS.list", header = F, sep = "\t")
all_AS<-
AS %>%
 right_join(rbind(H596_AS,L596_AS)
                                      ,by=c("V1"="V2")) %>%
  mutate(class=ifelse(is.na(V2), "other", V2
  select(V1.y, class) %>%
  group_by(class) %>%
  #mutate(number= sum() ) %>%
  summarize(number = sum(V1.y)) %>%
  select(class,number) %>%
  ungroup() %>%
# unique(.)
  ggplot(aes(x=factor(class, levels = c("IR", "AA", "AD", "ES",
                              "other")),y=number,fill=class)) +
  geom_col()+
  theme_bw() +
  theme(legend.position="none",
       axis.title.x=element_text(size=14,color="black",hjust=0.5),
```

```
axis.title.y=element_text(size=14,color="black"),
        axis.text.x=element text(size=12,color="black"),
       axis.text.y=element_text(size=12,color="black"),
        legend.text=element_text(size=15,color="black"),
        legend.title=element_text(size=15,color="black"),
        plot.title=element_text(size=15,color="black",hjust=0.5))+
  xlab("")+
  ylab("Count") +
  geom_text(aes(y=number+100, label = number ))
sample AS<-
  AS %>%
  right_join(rbind(H596_AS%>% mutate(sample="H596"),
              L596_AS%>% mutate(sample="L596") ) ,by=c("V1"="V2")) %>%
  mutate(class=ifelse(is.na(V2), "other", V2 )) %>%
  select(V1.y, class, sample) %>%
  group_by(class, sample) %>%
  #mutate(number= sum() ) %>%
  summarize(number = sum(V1.y)) %>%
  select(class,number, sample) %>%
  ungroup() %>%
  # unique(.)
  ggplot(aes(x=factor(class, levels = c("IR", "AA", "AD", "ES", "other")),
            y=number,fill=sample)) +
  geom col(position = position dodge() )+
  theme bw() +
  theme(legend.position="right",
        axis.title.x=element_text(size=14,color="black",hjust=0.5),
        axis.title.y=element_text(size=14,color="black"),
       axis.text.x=element_text(size=12,color="black"),
       axis.text.y=element_text(size=12,color="black"),
        legend.text=element_text(size=15,color="black"),
        legend.title=element_text(size=15,color="black"),
        plot.title=element_text(size=15,color="black",hjust=0.5))+
  xlab("")+
  ylab("Count")
  #qeom_text(aes(y=number+50 , label = number ))
ggpubr::ggarrange(all_AS, sample_AS, ncol = 1)
```



```
AS_sam<-
AS %>%
 right join(rbind(H596 AS%>% mutate(sample="H596"), L596 AS%>%
                    mutate(sample="L596") ) ,by=c("V1"="V2")) %>%
 mutate(class=ifelse(is.na(V2), "other", V2 )) %>%
  select(V1.y, class,sample) %>%
  group_by(class, sample) %>%
  #mutate(number= sum() ) %>%
  summarize(number = sum(V1.y)) %>%
  select(class,number, sample) %>%
 ungroup()
AS_al<-
 AS %>%
 right_join(rbind(H596_AS,L596_AS)
                                    ,by=c("V1"="V2")) %>%
  mutate(class=ifelse(is.na(V2), "other", V2 )) %>%
  select(V1.y, class) %>%
 group_by(class) %>%
  #mutate(number= sum() ) %>%
  summarize(number = sum(V1.y)) %>%
  select(class,number) %>%
  ungroup() %>%
 mutate(sample="all")
#write.csv(rbind(AS_al,AS_sam) %>%
\# spread(key = sample, value =number), row.names = F, quote = F, "AS_stat.csv")
```

```
\#ggsave("AS\_stat.pdf", height = 10, width = 7)
setwd("F:/dir/2.Structral analysis/5.lncRNA")
L596_lnc<-read.table("m64032_191231_031514.subreads.6--6_75.ccs.lima.refine.cluster.hq..corrected.fastq
H596_lnc<-read.table("m64032_191231_031514.subreads.7--7_75.ccs.lima.refine.cluster.hq..corrected.fastq
L596_lnc$class<-cut(L596_lnc$V2,c(0, seq(200,2000,100), Inf),
                    labels = c(paste(seq(0,1900,100)[-2],
                                      seq(200,2000,100) ,sep="-"), ">2000" ))
p1<-
L596_lnc %>%
  group_by(class) %>%
 mutate(num=n()) %>%
 arrange(V2) %>%
  select(class,num) %>%
  unique(.) %>%
  rbind( data.frame(class = c("0-200") , num=0 ), .) %>%
  ggplot(aes(x= factor(class, levels = class), y=num, fill=class)) +
  geom_col()+
  theme bw() +
  theme(legend.position="none",
       axis.title.x=element_text(size=14,color="black",hjust=0.5),
       axis.title.y=element_text(size=14,color="black"),
       axis.text.x=element_text(size=12,color="black",angle = 90),
       axis.text.y=element_text(size=12,color="black"),
       legend.text=element_text(size=15,color="black"),
        legend.title=element_text(size=15,color="black"),
        plot.title=element_text(size=15,color="black",hjust=0.5))+
  xlab("L596_lnc RNA distribution")+
  ylab("Count") +
  geom_text(aes(label=num,y = num+25))
H596_lnc$class<-cut(H596_lnc$V2,c(0, seq(200,2000,100), Inf),
                    labels = c(paste(seq(0,1900,100)[-2],
                                      seq(200,2000,100) ,sep="-"), ">2000" ))
p2<-
H596_lnc %>%
  group_by(class) %>%
  mutate(num=n()) %>%
  arrange(V2) %>%
  select(class,num) %>%
  unique(.) %>%
  rbind( data.frame(class = c("0-200") , num=0 ), .) %>%
  ggplot(aes(x= factor(class, levels = class), y=num, fill=class)) +
  geom_col()+
  theme_bw() +
```

```
theme(legend.position="none",
           axis.title.x=element_text(size=14,color="black",hjust=0.5),
           axis.title.y=element_text(size=14,color="black"),
           axis.text.x=element_text(size=12,color="black",angle = 90),
           axis.text.y=element_text(size=12,color="black"),
           legend.text=element_text(size=15,color="black"),
           legend.title=element_text(size=15,color="black"),
           plot.title=element text(size=15,color="black",hjust=0.5))+
  xlab("H596 lnc RNA distribution")+
  ylab("") +
  geom_text(aes(label=num,y = num+25))
ggpubr::ggarrange(p1,p2)
          1396
                                                                          1599
                                                                  1500
              285
                                                                             140
   1000
                931
                                                                  1000
Count
                                                                                787
    500
                   432
                                                                   500
                                                                                  336
                                                                                     194
                        129
102106
                                 70 77 59 82 57
                                                                                        111118114
                                              30 26 18 20 17
                                                                                                              33 34 20 17 16
                                                                                                   1100-1200
1200-1300
1300-1400
1500-1600
1600-1700
1700-1800
1800-2000
>2000
                                 1000-1100
1200-1200
1300-1400
1400-1500
1500-1600
1600-1700
1700-1800
1800-1900
                                                                                400–500
500–600
600–700
700–800
800–900
                                                                                              900-1000
              300–400
400–500
500–600
600–700
700–800
800–900
                              900-1000
                                                                                                1000-1100
                       L596 Inc RNA distribution
                                                                                      H596 Inc RNA distribution
```

```
setwd("F:/dir/2.Structral_analysis/function_annonation/")
library(tidyverse)
library("clusterProfiler")

#term<-go2term(res1_go$V2)
#GO
L596<-read.table(file= "F:/dir/2.Structral_analysis/function_annonation/5.GO_KEGG/m64032_191231_031514.</pre>
```

H596<-read.table("F:/dir/2.Structral_analysis/function_annonation/5.GO_KEGG/m64032_191231_031514.subread.table("F:/dir/2.Structral_analysis/function_annonation/5.GO_KEGG/m64032_191231_031514.subread.table("F:/dir/2.Structral_analysis/function_annonation/5.GO_KEGG/m64032_191231_031514.subread.table("F:/dir/2.Structral_analysis/function_annonation/5.GO_KEGG/m64032_191231_031514.subread.table("F:/dir/2.Structral_analysis/function_annonation/5.GO_KEGG/m64032_191231_031514.subread.table("F:/dir/2.Structral_analysis/function_annonation/5.GO_KEGG/m64032_191231_031514.subread.table("F:/dir/2.Structral_analysis/function_annonation/5.GO_KEGG/m64032_191231_031514.subread.table("F:/dir/2.Structral_analysis/function_annonation/5.GO_KEGG/m64032_191231_031514.subread.table("F:/dir/2.Structral_analysis/function_annonation/5.GO_KEGG/m64032_191231_031514.subread.table("F:/dir/2.Structral_analysis/function_annonation/5.GO_KEGG/m64032_191231_031514.subread.table("F:/dir/2.Structral_analysis/function_analysi

```
all_term<-unique(rbind(go2term(L596$V2),go2term(H596$V2)))
all_class<-unique(rbind(go2ont(L596$V2), go2ont(H596$V2)))
L596_GO<-left_join(L596, all_term, by=c("V2"="go_id"))
H596_GO<-left_join(H596, all_term, by=c("V2"="go_id"))
L596_GO<-left_join(L596_GO, all_class, by=c("V2"="go_id"))
H596_GO<-left_join(H596_GO, all_class, by=c("V2"="go_id"))
#write.csv(L596_GO, "L596_go_anno.csv")
#write.csv(H596_GO, "H596_go_anno.csv")
L596_anno<-
na.omit(L596_G0) %>%
  group_by(Term) %>%
  mutate(count=n()) %>%
  ungroup() %>%
  group_by(Ontology) %>%
  arrange(desc(count)) %>%
  select(Term, count) %>%
  ungroup() %>%
  unique(.) %>%
  group by(Ontology) %>%
  top_n(n=20, wt=count) \%
  ungroup() %>%
  arrange(Ontology, count) %>%
  \#ggplot( aes(x= factor(Term,levels=.\$Term), y=count, fill=Ontology))+
  ggplot( aes(y= factor(Term,levels =Term), x=count, fill= Ontology ))+
  geom_col() +
  scale_x_continuous(limits=c(0,5000), expand = c(0,0)) +
  \#scale\_y\_continuous(breaks=c(0.5, 1.0, 1.5, 2.0, 2.5), limits=c(0,3), expand = c(0,0)) +
  geom_text(aes(label=count), size=4, hjust=-0.5)+
  scale_fill_manual(values=c("#66C3A4", "#FD8D61", "#8DA3CB")) +
  theme_bw() +
  theme(legend.position="right",
        axis.title.x=element_text(size=14,color="black",hjust=0.5),
        axis.title.y=element_text(size=14,color="black"),
        axis.text.x=element_text(size=12,color="black"),
        axis.text.y=element_text(size=12,color="black"),
        legend.text=element text(size=15,color="black"),
        legend.title=element text(size=15,color="black"),
        plot.title=element_text(size=15,color="black",hjust=0.5))+
  xlab("Number of Genes") +
  ylab("L596 GO Term Annotation")
H596_anno<-
  na.omit(H596_GO) %>%
  group_by(Term) %>%
```

```
mutate(count=n()) %>%
  ungroup() %>%
  group_by(Ontology) %>%
  arrange(desc(count)) %>%
  select(Term, count) %>%
  ungroup() %>%
  unique(.) %>%
  group by(Ontology) %>%
  top_n(n=20,wt=count) %>%
  ungroup() %>%
  arrange(Ontology, count) %>%
  \#ggplot( aes(x= factor(Term, levels = .$Term), y=count, fill=Ontology ))+
  ggplot( aes(y= factor(Term,levels =Term), x=count, fill= Ontology ))+
  geom_col() +
  scale_x_continuous(limits=c(0,6000), expand = c(0,0)) +
  \#scale\_y\_continuous(\ breaks=c(0.5,\ 1.0,\ 1.5,2.0,2.5)\ ,limits=c(0,3),\ expand=c(0,0))+
  geom_text(aes(label=count), size=4, h just=-0.5)+
  scale_fill_manual(values=c("#66C3A4", "#FD8D61", "#8DA3CB")) +
  theme_bw() +
  theme(legend.position="right",
        axis.title.x=element_text(size=14,color="black",hjust=0.5),
       axis.title.y=element_text(size=14,color="black"),
       axis.text.x=element_text(size=12,color="black"),
       axis.text.y=element_text(size=12,color="black"),
       legend.text=element text(size=15,color="black"),
       legend.title=element_text(size=15,color="black"),
       plot.title=element_text(size=15,color="black",hjust=0.5))+
  xlab("Number of Genes") +
  ylab("H596 GO Term Annotation")
ggpubr::ggarrange(L596_anno,H596_anno,common.legend = T)
```



```
#ggsave("5.GO_KEGG/GO_annotation.pdf", width = 23, height = 10)
L596_ko<-read.table("F:/dir/2.Structral_analysis/function_annonation/5.GO_KEGG/6.KEGGpathway.annot", se
H596_ko<-read.table("F:/dir/2.Structral_analysis/function_annonation/5.GO_KEGG/7.KEGGpathway.annot", se
khiA<-read.table("F:/dir/2.Structral analysis/function annonation/5.GO KEGG/khier.tsv", header = T)
khiA<-
  separate(col = pathway, sep = " ", into = c("ko", "pathway")) %>%
  select(category, ko) %>%
  mutate(ko_id= paste("ko",ko,sep=""))
L_ko<-
L596_ko %>%
  left_join(khiA, by=c("V4"= "ko_id")) %>%
  mutate(class= ifelse(is.na(category), "Unknown", category)) %>%
  #filter(!is.na(category) ) %>%
  select(V1,V7,class) %>%
  unique(.) %>%
  select(V7,class) %>%
  group_by(V7) %>%
  mutate(count=n()) %>%
  arrange(desc( count)) %>%
  unique(.) %>%
```

```
ungroup() %>%
 filter(class!="Human Diseases", class!="Drug Development", class!="Unknown") %>%
# group_by(class) %>%
 top_n(n=20,wt=count) %>%
 mutate( Pcount=ifelse(count>1000, 800,count)) %>%
 arrange(class) %>%
 #group_by(class) %>%
 ggplot( aes(y= factor(V7,levels = rev(V7)) , x=Pcount , fill=class ))+
 geom col() +
 scale_x_continuous(limits=c(0,650), expand = c(0,0)) +
 \#scale\_y\_continuous(breaks=c(0.5, 1.0, 1.5, 2.0, 2.5), limits=c(0,3), expand = c(0,0)) +
 geom_text(aes(label=count), size=4, hjust=-0.5)+
 scale_fill_manual(name="Category", values=c("#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00")) +
 theme_bw() +
 theme(legend.position="right",
       axis.title.x=element_text(size=14,color="black",hjust=0.5),
       axis.title.y=element_text(size=14,color="black"),
       axis.text.x=element_text(size=12,color="black"),
       axis.text.y=element_text(size=12,color="black"),
       legend.text=element_text(size=15,color="black"),
       legend.title=element_text(size=15,color="black"),
       plot.title=element_text(size=15,color="black",hjust=0.5))+
 xlab("Number of Genes") +
 ylab("H596 KEGG Term Annotation")
H ko<-
H596_ko %>%
 left_join(khiA, by=c("V4"= "ko_id")) %>%
 mutate(class= ifelse(is.na(category), "Unknown", category)) %>%
 #filter(!is.na(category) ) %>%
 select(V1,V7,class) %>%
 unique(.) %>%
 select(V7,class) %>%
 group_by(V7) %>%
 mutate(count=n()) %>%
 arrange(desc( count)) %>%
 unique(.) %>%
 ungroup() %>%
 filter(class!="Human Diseases", class!="Drug Development", class!="Unknown") %>%
 # group_by(class) %>%
 top n(n=20, wt=count) \%
 mutate( Pcount=ifelse(count>1000, 800,count)) %>%
 arrange(class) %>%
 #group_by(class) %>%
 ggplot( aes(y=factor(V7,levels=rev(V7))), x=Pcount, fill=class))+
 geom_col() +
 scale_x_continuous(limits=c(0,550), expand = c(0,0)) +
 geom_text(aes(label=count), size=4, hjust=-0.5)+
 scale_fill_manual(name="Category", values=c("#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00")) +
```



```
#ggsave("5.GO_KEGG/KEGG_annotation.pdf", width = 23, height = 10)

rm(H_ko)
rm(L_ko)
rm(H596_anno)
rm(L596_anno)

H596_NR<-read.table("F:/dir/2.Structral_analysis/function_annonation/3.NR/m64032_191231_031514.subreads
L596_NR<-read.table("F:/dir/2.Structral_analysis/function_annonation/3.NR/m64032_191231_031514.subreads</pre>
L596_NR$Subject_annotation<-gsub("\\]", "",gsub(".*\\[", "", L596_NR$Subject_annotation))</pre>
```

```
H596_NR$Subject_annotation<-gsub("\\]", "",gsub(".*\\[", "", H596_NR$Subject_annotation))
blank_theme <- theme_minimal()+</pre>
  theme(
   axis.title.x = element_blank(),
   axis.title.y = element_blank(),
   panel.border = element blank(),
   panel.grid=element_blank(),
   axis.ticks = element_blank(),
   plot.title=element_text(size=14, face="bold")
L596_NR_p<-
L596_NR %>%
  mutate(Genus=ifelse(grepl("Brassica", Subject_annotation), "Brassica", ifelse(grepl("Arabidopsis", Su
  group_by(Genus) %>%
  mutate(count=n(),c="c") %>%
  select(Genus, count,c)%>%
  unique(.) %>%
  arrange(count) %>%
  mutate(prop= count/sum(.$count), per=scales::percent(prop,accuracy = 0.01) ,lab= paste(count,"(",per,
  ungroup() %>%
  ggplot(aes(y=prop,x=c, fill=Genus)) +
  geom_bar(stat = 'identity', position = 'stack')+
  coord_polar(theta = 'y', start = 14) + labs(x = '', y = '', title = 'L596')+
  #theme(axis.text = element_blank()) +
  geom_text(aes(x=1.8, y = prop/3 + c(0, cumsum(prop)[-length(prop)]),
                label = lab), size=5.5) +
  blank_theme +
  theme(axis.text = element_blank()) +
  scale_fill_manual(values=c("#EE6464","#4169E2", "#7CD074"))
H596_NR_p<-
H596_NR %>%
  mutate(Genus=ifelse(grepl("Brassica", Subject_annotation), "Brassica", ifelse(grepl("Arabidopsis", Su
  group_by(Genus) %>%
  mutate(count=n(),c="c") %>%
  select(Genus, count,c)%>%
  unique(.) %>%
  arrange(count) %>%
  mutate(prop= count/sum(.$count), per=scales::percent(prop,accuracy = 0.01), lab= paste(count, "(",per,
  ungroup() %>%
  ggplot(aes(y=prop,x=c, fill=Genus)) +
  geom_bar(stat = 'identity', position = 'stack')+
  coord_polar(theta = 'y', start = 14) + labs(x = '', y = '', title = 'H596')+
  #theme(axis.text = element_blank()) +
  geom_text(aes(x=1.8, y = prop/3 + c(0, cumsum(prop)[-length(prop)]),
                label = lab), size=5.5) +
  blank_theme +
  theme(axis.text = element_blank()) +
  scale_fill_manual(values=c("#EE6464","#4169E2", "#7CD074"))
```

```
ggsave("3.NR/Genus_Distribution.pdf", height = 12, width = 15)
rm(H596_NR,H596_NR_p,L596_NR,L596_NR_p)
L596_KOG<-read.table("F:/dir/2.Structral_analysis/function_annonation/1.COG_KOG/m64032_191231_031514.6-
H596_KOG<-read.table("F:/dir/2.Structral_analysis/function_annonation/1.COG_KOG/m64032_191231_031514_7-
H596_KOG_p<-
H596_KOG %>%
  ggplot(aes(x=V4)) +
  geom_bar(fill= "#4169E2")+
  theme bw() +
  theme(legend.position="right",
        axis.title.x=element_text(size=14,color="black",hjust=0.5),
        axis.title.y=element_text(size=14,color="black"),
        axis.text.x=element_text(size=12,color="black"),
        axis.text.y=element_text(size=12,color="black"),
        legend.text=element_text(size=15,color="black"),
        legend.title=element_text(size=15,color="black"),
        plot.title=element_text(size=15,color="black",hjust=0.5)) +
  xlab("H596 KOG function classification") +
  ylab("Number of Genes")
L596_KOG_p<-
```

```
L596_KOG %>%
  ggplot(aes(x=V4)) +
  geom_bar(fill= "#4169E2")+
  theme_bw() +
  theme_low() +
  theme(legend.position="right",
        axis.title.x=element_text(size=14,color="black",hjust=0.5),
        axis.title.y=element_text(size=14,color="black"),
        axis.text.x=element_text(size=12,color="black"),
        axis.text.y=element_text(size=12,color="black"),
        legend.text=element_text(size=15,color="black"),
        legend.title=element_text(size=15,color="black"),
        plot.title=element_text(size=15,color="black",hjust=0.5)) +
        xlab("L596 KOG function classification") +
        ylab("Number of Genes")
```


 $\#ggsave("1.COG_KOG/KOG_anno.pdf", width = 16, height = 8)$