CS499 Homework 9 (First Draft)

Intersteller

Exercise 10.5

Since $\operatorname{dist}(s,t)=k$, we have a path $s\to u_1\to u_2\cdots u_{k-1}\to t$. For convenience, we call $s:u_0,t:u_k$. We construct $V_0,V_1\cdots V_K$ as follows:

Step1: $u_0 \in V_0, u_1 \in V_1, u_2 \in V_2 \cdots u_{k-1} \in V_{K-1}, u_k \in V_K$.

Step2: $\forall v \in V \setminus V_k$, if there is an edge $(v,t), v \in V_{k-1}$. Obviously, $\forall n, 0 \le n \le k-2, u_n$ can't link to t. Otherwise, we can skip u_{k-1} and get a shorter path from s to t, which contradicts dist(s,t) = k.

Step3: $forallv \in V \setminus (V_k \cup V_{k-1})$, if $\exists w \in V_{k-1}, \exists edge(v, w), v \in V_{k-2}$. Similarly, $\forall n, 0 \leq n \leq k-3, u_n$ can't link to any vertex in V_{k-1} .

:

 Stepk: $\forall v \in V \setminus \bigcup_{i=2}^k V_i$, if $\exists w \in V_2$, $\exists edge(v, w), v \in V_1$. Similarly, u_0 can't link to any vertex in V_2 .

Stepk + 1: $\forall v \in V$ and $v \notin V_i, i \neq 1, 2, 3 \cdots k, v \in V_0$.

Therefore, if dist(s, t) = k, (G, s, t, c) has a k-layering.

Exercise 10.7

Because there is a path from s to t, we suppose $dist_G(s,t)=k$. Based on the construction method in 10.5, we can find a k-layering and it is an optimal layering. Therefore, every network (G,s,t,c) has an optimal layering, provided there is a path from s to t.

Exercise 9.9

 $\forall S \in \{0,1\}^{\mathbb{N}}$, define f(S) = T as follows.

$$t_n = \sum_{i=1}^n (s_i + 1)3^{i-1}$$

. Obviously, f is a bijection. Let $X = \{f(S) | \forall S \in \{0,1\}^{\mathbb{N}}\}$. $X \cong \{0,1\}^{\mathbb{N}}$ is uncountable. And f(S) is infinite. Whenever distinct $x,y \in X(x=\{x_1,x_2,...\})$, suppose $m=f^{-1}(x), n=f^{-1}(y)$ and assume the first different digit between m and n is the k_{th} digit. Then $x \cap y = \{x_1, x_2, x_3, \cdots, x_{k-1}\}$, which is finite.

Question

How to prove that \mathbb{R} is smaller than $2^{\mathbb{R}}$.