

DS106-01-11

Lesson 1 Practice Hands-On

Heather Walker - 2022-10-26

Testing for Linearity Mainté Change Robuson Merring and Europie

Testing for Homoscedasticity

GVLMA Library of Assumptions

	Value	p-value	Decision
Global Stat	16.8650	2.053e-03	Assumptions NOT satisfied!
Skewness	0.2130	6.444e-01	Assumptions acceptable.
Kurtosis	0.1223	7.266e-01	Assumptions acceptable.
Link Function	15.4224	8.596e-05	Assumptions NOT satisfied!
Heteroscedasticity	1.1073	2.927e-01	Assumptions acceptable.

Testing for Outliers

Plotting for Linearity

Plotting with Normal Distribution Lines

Regression Results Summary

OLS Regression Re	esults							
Dep. Variable	9 :	PM_Height		R-squared (uncentered):				0.983
Mode	l:		OLS	Adj. R	-squa	red (unce	ntered):	0.983
Method	d: Le	Least Squares		F-statistic:				2347.
Date	: Thu, 2	27 Oct :	2022			Prob (F-st	atistic):	3.84e-37
Time	e:	00:3	37:36			Log-Like	elihood:	-278.68
No. Observations	s:		41				AIC:	559.4
Df Residuals	s:		40				BIC:	561.1
Df Mode	l:		1					
Covariance Type	e:	nonro	bust					
coef s	td err	t	P> t	[0	.025	0.975]		
x1 1.8e-09 3.7	1e-11 4	8.450	0.000	1.72	e-09	1.87e-09		
Omnibus:	0.340	Durt	oin-Wa	tson:	1.55	5		
Prob(Omnibus):	0.844	Jarque	e-Bera	(JB):	0.51	6		
Skew:	-0.105		Prob	(JB):	0.77	3		
Kurtosis:	2.492		Cond	l. No.	1.0	0		

Looking for Outliers

Conclusions

- The data looks linear when plotted
- The data seems heteroscedastic...
- But has homoscedasticity when tested
- There are several outliers

 If not working in strict statistical analysis, my preferred coding language is Python!

