Action operads comments to fix

1. Introduction

•

2. ACTION OPERADS

- I put in G0abel (2.3.8) to prove: typed in proof of abelianness but need to show that $\mu(e_2; g, h) = gh$ (suffices to show that $\mu(e_2; g, e_0) = g$). Thought it would be a straightforward Eckmann-Hilton argument but it gets stuck.
- Proof of 2.3.4: just needs checking
- I have been changing tensor product to block sum for a lot of things, we need to go through and decide how to do that consistently
- Prop 2.5.19 follows from Theorem 3.3.8, except for the part about the monad map (it can't be (F, id) so I've called it (F, ψ^F) and added details to the propositions).

3. Operads in the category of categories

- Defn 3.3.7 of cocomplete symmetric monoidal cat
- Prop 3.3.11-4 The proofs need filling out
- Should we change $E\Lambda(n) \times X^n/\Lambda(n)$ to be $(E\Lambda(n) \times X^n)/\Lambda(n)$?

4. Monoidal structures and multicategories

- \bullet Intro
- Use

\lmc

for lambda monoidal categories

- Lemma 4.3.2: Needs rewording. Is the underlying set of the free monoid?
- Prop 4.3.3: Is $im(\pi)$ defined? What is the underlying permutation operad? Does this mean the symmetrized operad?
- What is an action morphism? Update: Been through Ed's thesis. From what I can gather, they are morphisms which look like $\alpha(g; id_{x_1}, \dots, id_{x_n})$.
- Do we want another notation to emphasise the underlying monoid?
- Lemma 4.3.8: Should be a $\Lambda(n)$, not just Λ .
- 4.3.8: extra couple of steps to show α is a monoid homomorphism?
- Defn 4.5.1: Odd mix of α and g. Think something is mixed up here. $(-\cdot \alpha)$. Also should the iso have $\pi(g)^{-1}$ in the target?
- Monad maps are defined in the specific case of the 2-category of categories in Section 2.5 - refer back to these definitions.

5. Invertible objects

- The notation in the very first sentence needs to be explained somewhere!
- Rewrite intro: Need to explain that the goal is to understand some group actions
- Decide on ELambda algebras or Lambda monoidal categories throughout (we decided the second!)

- New notation: added earlier (line 905, search beta_to_oplus), just need to implement, search for action maps or superscript tensors
- ullet Fix weakly invertible section

Leftover fixes that I'm not sure about:

- Move comment (QQQ)
- Fix paragraph; make clear we are determining composition
- Explain M strategy, include forward refs

6. Invertibility and group actions

- I want to write Λ^{\oplus} for the underlying monoid maybe??
- why? This one involves real math
- not happy with last section

7. Computing automorphisms of the unit

- 4.1.3 check 2.3.10: need to make sure this is in an earlier section, and ref'ed
- explain purpose
- improve proof 4.2.3
- check commutative Square
- \bullet redo 4.4
- insert diagram
- consistent text after 4.5.3
- move something to earlier
- highlight that star means the inverse under tensor product for morphisms
- check the note

8. A FULL DESCRIPTION OF L_n

- Think about n vs 2n in AGndef
- check reference
- rewrite calculation
- check universal property
- insert for a simple example

9. Examples

• Actually read this section, fix anything

Comments addressed

10. Invertible objects

- Include notation for η as the unit here
- Change to equalizers
- Change to $(LX)_{inv} = LX$
- Fix ()s
- Include triangle NO
- Uniform gp superscripts
- Remove actually
- Ref η
- Replace with is, remove parts
- Remove proof
- Fix ab superscripts, same as gp
- q
- Under red line: move? make remark? delete some?
- Where do we say this?
- Need 2-adjunction: this should follow from Thm 8.6 in the enriched_sketches paper I saved
- include forward ref to where we use crefepi: I can't find it
- Get better Eckmann-Hilton ref: don't care anymore

11. Invertibility and group actions

- Forward ref
- definition env
- little wording fixes
- change G to Lambda
- S vs Sigma for symmetric groups: I picked Sigma
- Think about free monoid lem again
- Fix triangle
- lots of notation issues (e, G, length bars)
- why splitting
- missing ref?
- splits by construction: hmm
- ref?
- for v, v' not delta of something
- inverses for morphisms under comp vs tensor
- more G's (x2)
- another missing ref
- another G
- include corollary?
- forward refs
- practical?

12. Computing automorphisms of the unit

• in the next two results

- 4.1.2 two boxes
- the above following square
- \bullet insert =
- check 4n or 2n (it is correct in 7.2.1)
- mentioned Delta, I
- fixed proof 4.3.2
- \bullet remove functor
- isomorphism symbol
- clarify this
- $\bullet\,$ make sure length and size notation is introduced earlier
- bad line break at the beginning of 4.5
- change prove to shows
- bad line break
- ullet insert the proof from Ed's email
- put a short proof
- $\bullet\,$ change express to describe
- isomorphism symbol
- change make sure to ensures
- remove calculation
- change we want to do

13. A FULL DESCRIPTION OF L_n

- bad line break
- remove exposition
- fix fancy G
- change G to lambda
- isomorphism symbol
- tensor product given component wise

•

14. Examples

•