

מבוא למערכות לומדות (236756)

סמסטר חורף תשפ"ב – 07 במרץ 2022

מרצה: ד"ר יונתן בלינקוב

<u>מבחן מסכם מועד ב'</u>

הנחיות הבחינה:

- **משך הבחינה:** 3 שעות.
- **חומר עזר:** המבחן בחומר סגור (ללא ספרים, מחברות, דפי נוסחאות).
 - אין צורך במחשבון. •
 - מותר לכתוב בעט **בלבד**.
 - מותר לענות בעברית או באנגלית.
- יש לכתוב את התשובות **על גבי שאלון זה** בכתב יד קריא. תשובה בכתב יד לא קריא לא תיבדק.
- במבחן 16 עמודים ממוספרים סה"כ, כולל עמוד שער זה שמספרו 1 ושלושה עמודי טיוטה בסוף הגיליון.
 - נא לכתוב רק את המבוקש ולצרף הסברים קצרים עפ"י ההנחיות.
 - בתום המבחן יש להגיש את שאלון זה בלבד.

מבנה הבחינה:

- **חלק א' [76 נק']:** 4 שאלות פתוחות.
- **חלק ב' [24 נק']:** 4 שאלות סגורות (אמריקאיות) [כל אחת 6 נק'].

בהצלחה!

חלק א' – שאלות פתוחות [76 נק']

[נק'] Linear regression & Optimization – 1 שאלה

.argmin $_{m{w} \in \mathbb{R}^2} \frac{1}{m} \sum_{i=1}^m (m{w}^{\mathsf{T}} \pmb{x}_i - y_i)^2$:נתונה בעיית רגרסיה ליניארית דו-ממדית (בעיה בשני פרמטרים)

אוספים דאטה S ומחלקים אותו לסט אימון וַלסט ואלידציה.

. η עם גודל צעד (SGD אל) gradient descent מתחילים מווקטור (עבור סט הבעיה (עבור סט האימון) ופותרים את ופותרים את פותרים את הבעיה (

תראה את (המסלול מתואר ע"י עקומה במרחב \mathbb{R}^2 , ומראה את GD בתרשים השמאלי: המסלול המלא שנוצר מאימון עם \mathbf{w}_0 החל מ \mathbf{w}_0 החל מ- \mathbf{w}_0 שהמינימום שלו הוא loss landscape כל הפתרונות ($\mathbf{w}_0 = \mathbf{0}, \mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_{480} = \mathbf{b}$ שהמינימום שלו הוא training בנקודה \mathbf{a} . עליכם להבין האם מדובר ב-loss על ה- \mathbf{v} 0 על ה- \mathbf{v} 1 שהמינימום עם מדובר ב- \mathbf{v} 3 בנקודה \mathbf{v} 3.

.validation loss- ואת training loss- <u>בתרשים הימני</u>: מופיע גרף ההתכנסות המראה את ה-

 $m{w}^*_{ ext{train}}$ א. $m{w}^*_{ ext{train}}$ התאימו בין הפתרונות $m{a}, m{b}$ שבתרשים השמאלי לבין הפיתרון האופטימלי על סט הואלידציה $m{w}^*_{ ext{val}}$. התאימו בין העקומות $m{c}, m{d}$ לבין ה-training loss וה- $m{w}^*_{ ext{val}}$ מלאו את המקומות הריקים באותיות $m{a}, m{b}, m{c}, m{d}$ כנדרש.

שימו לב כיצד שני ה-losses (ובפרט ה-training loss) לא יורדים מתחת

- ב. $[5 \ training \ training \ toss]$ בסוף האימון (ביחס לתוצאות המוצגות לעיל)? ב. $[5 \ training \ toss]$ בסוף האימון (ביחס לתוצאות המוצגות לעיל)? סמנו את [5] התשובות המתאימות.
 - ℓ^2 הוספת רגולריזציית
 - שימוש במדיניות early stopping (עצירת ה-GD לפני התכנסות, לפי קריטריון כלשהו). 🔏
 - . אימון עם SGD (עם batch_size=1) במקום GD, במשך מספר צעדים זהה (480). .★
 - feature mapping המקוריים ל-feature mapping פולינומיאלי.
 - $(oldsymbol{w}_0 = oldsymbol{0})$ ביב ראשית הצירים של ה-features המקוריים (ב-S dataset כולו) ב-S סיבוב מערכת הצירים של ה-
- עיל)? בסוף האימון (ביחס לתוצאות המוצגות לעיל)? אילו מהפתרונות הבאים עשויים לשפר את ה-validation loss בסוף האימון (ביחס לתוצאות המוצגות לעיל)? סמנו את $\underline{\vec{e}}$ התשובות המתאימות.
 - ℓ^2 הוספת רגולריזציית (.a
 - .(עצירת ה-GD לפני התכנסות, לפי קריטריון כלשהו) early stopping שימוש במדיניות (.b)
 - (עם SGD במקום אימון עם GD) במקום (batch_size=1 עם SGD). אימון עם SGD אימון עם
 - feature mapping המקוריים ל-features פולינומיאלי. d .d .d
 - $(oldsymbol{w}_0 = oldsymbol{0})$ ביבר אשית הצירים של ה-features המקוריים (ב-S dataset כולו) המצירים של ה-features המקוריים (ב-S

(נק'] Deep learning – 2 שאלה

נתונות שתי הפונקציות הרציפות $f,g:\mathbb{R} \to \mathbb{R}$ שבתרשימים הבאים:

.2 בתחום q השיפוע של q הוא בתחום

בתחום [-1,1] הפונקציה היא אפס.

-1 הוא $(-\infty, -1)$ בתחום ($-\infty, -1$) הוא בתחום ($-\infty, -1$) הוא

יכולה להיות אחת מהשתיים: σ יכולה להיות אחת מהשתיים:

$$F(x) = w_3 \cdot \sigma(w_1 \cdot x + b_1) + w_4 \cdot \sigma(w_2 \cdot x + b_2)$$
 בעזרת רשת הנוירונים הבאה: f, g בעזרת רשת הנוירונים הבאה:

. באשר $x\in\mathbb{R}$ הוא הקלט של הרשת הם פרמטרים ה $w_1,w_2,w_3,w_4,b_1,b_2\in\mathbb{R}$ כאשר

 $.\sigma(z) = \frac{1}{1+a^{-z}}$ סיגמואיד, משמע .1

 $\sigma(z) = \max\{0, z\}$ משמע, ReLU .2

 $\forall x \in \mathbb{R}: F(x) = g(x)$ שמקיימים: σ שמקיימים את ערכי w_1, w_2, w_3, w_4 כתבו את ערכי $w_2 = b_2 = w_4 = 0$ א. $w_3 = b_2 = w_4$ תשובהַ סופית (לרשותכם דפי טיוטה בסוף הגיליון):

First layer:

$$w_1 = 2$$
השלימו

$$b_1 = \underline{-2}$$

$$w_1 = \underbrace{\frac{2}{2}}_{\text{indicate}};$$
 $b_1 = \underbrace{-\frac{2}{2}}_{\text{ordinate}};$ Second layer: $w_3 = \underbrace{\frac{2}{2}}_{\text{ordinate}}.$

Activation:

 $\forall x \in \mathbb{R}: \ F(x) = f(x)$ שמקיימים: σ שמקיירה של w_1, w_2, w_3

First layer:

$$w_1 =$$

 $w_1 = \underbrace{2}_{\text{indical}}; \qquad w_2 = \underbrace{-1}_{\text{indical}};$

$$b_1 = 2$$
השלימו

 $b_1 = \underbrace{-2}_{\text{outing}}; \qquad \left(b_2 = \underbrace{-1}_{\text{outing}};\right)$

Second layer:

$$w_3 = \underbrace{1}_{\text{השלימו}}; \qquad \left(w_4 = \underbrace{1}_{\text{השלימו}}\right)$$

Activation:

Sigmoid or ReLU

(circle your choice).

הערה: סעיף ג' לא תלוי בסעיפים הקודמים.

 $\sum_{i=1}^m \ellig(f(x_i),\ F(x_i)ig)$ שמתאימה לבעיית הרגרסיה שהוגדרה, כך שמזעור של loss ג. F(x)=f(x) שמתאימים שיקיימו F(x)=f(x)

Answer:
$$\ell(a,b) = (C - D)^2$$

הערה: סעיף ד' תלוי בסעיף ב' רק דרך הבחירה של פונקציית האקטיבציה.

בסעיף הבא נבחן את הקמירות של הבעיה שנוצרה.

תזכורת: הפונקציה
$$g:\mathbb{R}\to\mathbb{R}$$
 נקראת פונקציה קמורה אם מתקיים $\forall z_1,z_2\in\mathbb{R},\ \forall t\in[0,1]:\ tg(z_1)+(1-t)g(z_2)\geq g(t\ z_1+(1-t)z_2)$

 $w_2 = b_2 = w_4 = 0$ ד. $[7 \, \mathrm{ig}]$ בסעיף זה נניח שוב

 (b_1,w_3,a,x) קמורה ביחס לפרמטר (בהינתן כל בחירה של $\ellig(a,\ F(x)ig)$ קמורה של ℓ ניתן לענות לפי הגדרת הקמירות או לפי מאפיינים שלמדנו (אך יש לציין אותם במפורש).

.'עריכם להשתמש בבחירה של σ מסעיף ב' ובבחירה של ℓ מסעיף ג'. אין להציב ערכים מסעיף א'.

['נק'] Naïve Bayes – 3 שאלה

בשאלה זו נראה ש-Gaussian Naïve Bayes הינו מסווג לינארי.

 $y_i \in \{0,1\}$ ותיוגים $\pmb{x}_i \in \mathbb{R}^d$ עם דוגמאות $S = \{(\pmb{x}_i, y_i)\}_{i=1}^m$ נתון דאטה

:הינה $k=1,\ldots,d$ הינה של כל כניסה Gaussian Naïve Bayes, נניח שההתפלגות

$$,(X[k]\mid Y=y)\sim \mathcal{N}(\mu_{\gamma}[k],\sigma[k]^2)$$

x[k] המסומנת המקרי המתאים לכניסה ה-x ב-x, המסומנת משרנה המקרי המתאים לכניסה ה-

$$P(z)=rac{1}{\sigma\sqrt{2\pi}}\exp\left(-rac{(z-\mu)^2}{2\sigma^2}
ight)$$
 נתונה ע"י: $\mathcal{N}(\mu,\sigma^2)$ נתונה על התפלגות גאוסיאנית אוסיאנית $\mathcal{N}(\mu,\sigma^2)$

$$P(X=x\mid Y=1) = \left(\prod_{k=1}^d \frac{1}{\sigma[k]\sqrt{2\pi}}\right) \exp\left(-\sum_{k=1}^d \frac{1}{2\sigma[k]^2}(x[k]-\mu_1[k])^2\right)$$
 א. $P(X=x\mid Y=1) = \left(\prod_{k=1}^d \frac{1}{\sigma[k]\sqrt{2\pi}}\right) \exp\left(-\sum_{k=1}^d \frac{1}{2\sigma[k]^2}(x[k]-\mu_1[k])^2\right)$

הוכחה <u>מנומקת</u> :

טענה (ללא הוכחה): בעזרת חוק בייס ונוסחת ההסתברות השלמה, ניתן להראות:

$$P(Y = 1 \mid X = x) = \frac{1}{1 + \frac{P(Y = 0)P(X = x \mid Y = 0)}{P(Y = 1)P(X = x \mid Y = 1)}}$$

טענה (ללא הוכחה): נסמן $p \triangleq P(Y=1)$ נסמן (הראות:

$$\frac{P(Y=0)P(X=x\mid Y=0)}{P(Y=1)P(X=x\mid Y=1)} = \frac{1-p}{p} \cdot \exp\left(\sum\nolimits_{k=1}^{d} \left(\frac{\mu_0[k] - \mu_1[k]}{\sigma[k]^2} x[k] + \frac{\mu_1[k]^2 - \mu_0[k]^2}{2\sigma[k]^2}\right)\right)$$

$$P(Y=1 \mid X=x) = \frac{1}{1+\exp(w^{\mathsf{T}}x+b)}$$
ב. בי (7 נק') בעזרת האמור לעיל, הוכיחו שמתקיים:

. המקיימים זאת $oldsymbol{w} \in \mathbb{R}^d, oldsymbol{b} \in \mathbb{R}$ בסוף ההוכחה, ציינו במפורש את ערכי

הוכחה:

(2022)	תשפ"ב (חורף '	ד ר	ນາກ –	לומדוח	מערכות	לר	מרוא
~~~~	,		_ '	בווע	7 11 1/21/	ועו בוונ	٦,	1 1 1 1 1

וכיחו כי מתקבל כלל החלטה ליניארי.	. [7 נק'] בהסתמך על האמור לעיל, הו

 הוכחה תמציתית:
3131 4/37 11113111

### (נק'] SVM – 4 שאלה

.(Soft-בעיות ה-SVM במקרה ההומוגני (נניח שמתקיים  $\lambda=1$  בבעיה ה-Soft):

#### **Hard SVM**

**Soft SVM** 

 $\underset{\boldsymbol{w} \in \mathbb{R}^d}{\operatorname{argmin}} \|\boldsymbol{w}\|_2^2$ 

s.t.  $y_i \cdot \mathbf{w}^{\mathsf{T}} \mathbf{x}_i \ge 1$ ,  $\forall i \in [m]$ 

$$\underset{\boldsymbol{w} \in \mathbb{R}^d}{\operatorname{argmin}} \left( \frac{1}{m} \sum\nolimits_{i=1}^m \max\{0, 1 - y_i \cdot \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_i\} + \|\boldsymbol{w}\|_2^2 \right)$$

. נתון דאטה פריד ליניארית ע"י מפריד הומוגני.  $\{(x_i,y_i)\}_{i=1}^m$  עם סיווגים בינאריים ( $\pm 1$ ). ידוע שהדאטה פריד ליניארית ע"י מפריד הומוגני. צוות מחקר פתר את שתי בעיות האופטימיזציה שלמעלה, וקיבל את  $m{w}_{\mathrm{hard}}, m{w}_{\mathrm{soft}} \in \mathbb{R}^d$  כפתרונות.

א.  $\|\mathbf{w}_{\text{hard}}\|_{2} \geq \|\mathbf{w}_{\text{soft}}\|_{2}$  או  $\|\mathbf{w}_{\text{hard}}\|_{2} \geq \|\mathbf{w}_{\text{hard}}\|_{2}$  מתקיים <u>בהכרח!</u> אם ניתן לומר שאחד מהמקרים בקצרה.

Altrocalle of the color of the

 $.oldsymbol{w}_{\mathrm{hard}}' \in \mathbb{R}^{d+1}$  ממקור לא ידוע. הצוות פתר את בעיית ה-Hard-SVM ממקור ממקור לא ידוע. הצוות פתר את בעיית ה $\|oldsymbol{w}_{\mathrm{hard}}\|_2 \geq \|oldsymbol{w}_{\mathrm{hard}}\|_2 \leq \|oldsymbol{w}_{\mathrm{hard}}\|_2 \leq \|oldsymbol{w}_{\mathrm{hard}}\|_2$  מתקיים בהכרח? אם ניתן לומר שאחד מהמקרים  $\|oldsymbol{w}_{\mathrm{hard}}\|_2 \leq \|oldsymbol{w}_{\mathrm{hard}}\|_2$  אם כן, איזה מהם? בכל מקרה – הסבירו בקצרה.

			הסבר תמציתי:
- NIC 0316 1217<- 2510 18 23, 22 PIC	(V)V	11 w/z = /w'/z	
(d+1 ) (2) M (D) () (d+1)	1) Whard	לן חרוסה אנ	6,6
/IW )	> 11w1/2	ر لااكد <i>~</i>	عام دوا في

 $x_i \in \mathbb{R}^d, y_i \in \{\pm 1\}$  עבורו (לאו דווקא פריד ליניארית) סט אימון כלשהו (לאו  $\{(x_i, y_i)\}_{i=1}^m$  ייהי יהי אימון של Soft-SVM על סט זה.  $w_{\mathrm{soft}} \in \mathbb{R}^d \setminus \{\underline{\mathbf{0}}\}$ 

עליכם להוכיח אחת מבין שתי הטענות הבאות (השנייה מזכה בניקוד חלקי <u>בלבד</u>):

- האחרים ואת התיוגים הנתונים), feature חדש (בלי לשנות את ה-features האחרים ואת התיוגים הנתונים), (i) (i) פאט כזה ניתן להוסיף feature חדש (בלי לשנות את ה-feature האחרים ואת העודכנת (עם ה-feature). כך שמתקיים  $\|m{w}_{ ext{soft}}\|_2 > \|m{w}_{ ext{soft}}\|_2$  אופטימלי עבור הבעיה המעודכנת (עם ה-feature).
- , האחרים ואת התיוגים הנתונים), feature חדש (בלי לשנות את ה-features חדש (בלי לשנות התיוגים העור 8 (ii) (ii) אחרים לכל סט כזה ניתן להוסיף  $\|w_{
  m soft}\|_2 > \|w'\|_2$  באשר מגדירים כך שקיים  $\|w'\|_2 > \|w'\|_2 + \|w'\|_2$  באשר מגדירים

$$\mathcal{L}(\mathbf{w}) \triangleq \frac{1}{m} \sum_{i=1}^m \max\{0, 1 - y_i \cdot \mathbf{w}^{\mathsf{T}} \mathbf{x}_i\}, \quad \mathcal{L}'(\mathbf{w}) \triangleq \frac{1}{m} \sum_{i=1}^m \max\{0, 1 - y_i \cdot \mathbf{w}^{\mathsf{T}} \mathbf{x}_i'\}$$
הדוגמאות המעודכנות feature ה-מחדש

הדוגמאות המעודכנות עם ה–feature החדש	<i>····</i>
הוכחה (יש לציין איזו טענה מוכיי $(\dot{c})$ אנג הפיצ'ים	כבן שוניגיאל הטומה הכוללה
	\(\omega_1^2 + \omega_2^2 + \omega_2^2 + \omega_2^2\)
wf+112+1 mal	K < IIwsoffly wildo K =
+ m, + m, + m, )	
	$W'_{\varepsilon}[o,o,,o,\frac{1}{16}] $ $\gamma'  \forall i: X_i = Ky_i$
الرم (الم)2	∠(w') = 1 ≥ m m m v, 1 - K is 3 +
L - 1	y.w.x.= 1.
	Ky.y.
/ (W) > (Ws.f+) > 1	T2 = /W/

#### עמ' 12

## חלק ב' – שאלות רב-ברירה [24 נק']

בשאלות הבאות סמנו את התשובות המתאימות (לפי ההוראות). בחלק זה אין צורך לכתוב הסברים.

- א. [6 נק'] היזכרו בבעיות רגרסיה ליניארית עם (Least squares (LS, וסמנו את <u>כֹּל</u> התשובות הנכונות. subgradients- שימו לב: בסעיף זה, הגזירוּת מתייחסת להגדרת ה-gradients
  - .w-עם הפיצ'רים המקוריים, הבעיה קמורה ביחס ל LS כאשר פותרים (a
- .w-ט ביחס קמורה ביחס למשל פולינומיאלי), הבעיה קמורה ביחס ל feature mapping באשר פותרים (b cb).
  - .w- היא בעיה קמורה אך לא גזירה ביחס ל ( $\ell^2$ ) Ridge regression
    - w- היא בעיה קמורה אך לא גזירה ביחס ל ( $\ell^1$ ) Lasso (d



 $\mathcal{L}(z) = (1-z)^2$ 

L'(2): 2

(12)=-2(1-2)= 22-2



- ב. [6 נק'] הטענות הבאות עוסקות במודלים מסוג Linear Soft SVM, Perceptron, and Logistic Regression. סמנו את <u>פֿל</u> הטענות הנכונות.
- .non-linearity יכול ללמוד גם מפרידים לא ליניאריים בגלל שה-Logistic Regression 💥
  - .Softmax בעזרת פונקציית multiclass לבעיות Logistic Regression ניתן להכליל (b)
  - . כל עוד הדאטה פריד ליניארית, Soft SVM ופרספטרון מחזירים את אותו המפריד. 🗶
  - בשלושת האלגוריתמים ניתן להשתמש ב-feature mapping כדי ללמוד מפרידים לא ליניאריים.
    - .SGD יש ללמוד באמצעות Soft SVM (לא stochastic), ואילו Soft SVM יש ללמוד באמצעות).

77

ג. [6 נק'] נגדיר את פונקציית ה-squared loss הבאה:

סמנו את  $\underline{\hat{c}} \underline{t}$  הטענות הנכונות ביחס לפונקציה זו.

- z-ביחס ל (convex) ביחס ל  $\overline{a}$
- $\frac{\partial}{\partial z}\mathcal{L}=2z-2$  הנגזרת של הפונקציה היא b.
- $z = y_i w^{\mathsf{T}} x_i$  עבור בעיות  $z = y_i w^{\mathsf{T}} x_i$  מחושב ע"י והפרדיקציות ניתנות ע"י (ה-loss) עבור בעיות סיווג ליניארי (ה-training error הוא 0, גם ה-training loss).
- $z = y_i w^{\top} x_i$  מחושב ע"י והפרדיקציות ניתנות ע"י (ה-loss מחושב ע"י מיווג ליניארי (ה-loss מחושב ע"י מחושב ע"י מרווג ליניארי (ה-training loss מחושב ע"י מחושב ע"י מחושב ע"י מחושב ע"י ליניארי (ה-loss מחושב ע"י מחוש



ד. [6] נק'] נגדיר מחלקת היפותזות שמכלילה את המסווגים שמחזיר Adaboost ד. בעדים עם מחלקת שמכלילה את המסווגים שמחזיר בסיס. משמע:

$$\mathcal{H}_{\mathcal{B},T} = \left\{ h_{\text{strong}}(x) = \text{sign}(\sum_{t=1}^{T} \alpha_t h_t(x)) \mid \boldsymbol{\alpha} \in \mathbb{R}^T, \ h_t \in \mathcal{B} \right\}$$

 $ext{.VCdim}ig(\mathcal{H}_{\mathcal{B},T}ig)$  על VCdim $ig(\mathcal{B})$ ו ו- VCdim על ההשפעה על ההשפעה לפניכם מספר אינות על א

בחרו בטענה <u>היחידה</u> הנכונה (השאלה אינה עוסקת במקרי קצה אלא במקרה הסביר).

$$\mathsf{VCdim}(\mathcal{H}_{\mathcal{B},T}) \Longleftrightarrow \mathsf{VCdim}(\mathcal{B})$$
 גְּדֵל VCdim $(\mathcal{H}_{\mathcal{B},T}) \Longleftrightarrow \mathsf{VCdim}(\mathcal{H}_{\mathcal{B},T})$  גָּדַל VCdim $(\mathcal{H}_{\mathcal{B},T}) \Longleftrightarrow \mathsf{VCdim}(\mathcal{H}_{\mathcal{B},T})$ 

$$\mathsf{VCdim}(\mathcal{H}_{\mathcal{B},T}) \Leftarrow \mathsf{VCdim}(\mathcal{B})$$
 גְּדֵל.  $\mathsf{VCdim}(\mathcal{H}_{\mathcal{B},T}) \Leftarrow \mathsf{VCdim}(\mathcal{H}_{\mathcal{B},T})$  גָּדַל.

$$\mathsf{VCdim}ig(\mathcal{H}_{\mathcal{B},T}ig) 
ot\in \mathsf{VCdim}(\mathcal{B})$$
 גְּדַל.  $\mathsf{VCdim}ig(\mathcal{H}_{\mathcal{B},T}ig) 
otin (\mathcal{H}_{\mathcal{B},T})$  גָּדַל

$$\mathsf{VCdim}(\mathcal{H}_{\mathcal{B},T}) \Leftarrow \mathsf{VCdim}(\mathcal{B})$$
 גְּדַל.  $\mathsf{VCdim}(\mathcal{H}_{\mathcal{B},T}) \neq \mathsf{VCdim}(\mathcal{H}_{\mathcal{B},T})$  גָּדַל.

. $\operatorname{VCdim}ig(\mathcal{H}_{\mathcal{B},T}ig)$  משפיע על VCdim $(\mathcal{B})$  .e

. $VCdim(\mathcal{H}_{\mathcal{B},T})$  רק T משפיע על

מסגרת נוספת (יש לציין אם מדובר בטיוטה או בהמשך לתשובה אחרת):

 <u> </u>	
	_

מסגרת נוספת (יש לציין אם מדובר בטיוטה או בהמשך לתשובה אחרת):

-		
-		
-		

מסגרת נוספת (יש לציין אם מדובר בטיוטה או בהמשך לתשובה אחרת):
