

Regulation of transposable element transposition at the final layer

Yunhao Wang Ph.D.

August 7, 2020

Department of Biomedical Informatics

Ohio State University

Transposable element (TE)

Regulation of TE activity at different layers

L1 transposition process

First-layer defense: Transcription repression

- DNA methylation
- Histone modification
- Transcription factor

Second-layer defense: mRNA degradation

- Small interfering RNA
- o miRNA
- o piRNA

Final-layer defense:Receiver (target genomic region)

- Sequence feature
- Epigenetic status
- o ..

Regulation of L1 transposition at the final layer: insights from in vitro studies

Molecular Cell

The Landscape of L1 Retrotransposons in the Human Genome Is Shaped by Pre-insertion Sequence Biases and Post-insertion Selection

Graphical Abstract

Authors

Tania Sultana, Dominic van Essen, Oliver Siol, ..., Jean-Christophe Andrau, Nicolas Gilbert, Gael Cristofari

ALLIGIE

Correspondence

gael.cristofari@univ-cotedazur.fr

In Brief

Sultana, van Essen, et al. report the genome-wide profiling of new L1 retrotransposon insertions in cultured cells. They uncover the contribution of sequence and genomic contexts on integration site selection, its link with host DNA replication, and the role of post-integration selection in the genomic distribution of L1 elements.

lon Torrent ~400 bp WGS

HeLa cell line 1565 insertions

Cell

Genome-wide *de novo* L1 Retrotransposition

Connects Endonuclease Activity with Replication ○

Graphical Abstract

Authors

Diane A. Flasch, Ángela Macia, Laura Sánchez, ..., José L. García-Péres, Thomas E. Wilson, John V. Moran

Correspondence

daflasch@umich.edu (D.A.F.), wilsonte@umich.edu (T.E.W.), moranj@umich.edu (J.V.M.)

In Brief

The examination of *de novo* engineered L1 retrotransposition events in cultured human cells reveals that L1 endonuclease activity and DNA replication dictate L1 insertion preferences and promote its widespread integration throughout the human genome.

PacBio 300-1200 bp Target 4 human cell lines >88.000 insertions

Diane A. Flasch, 1.* Ángela Macia, 2 Laura Sánchez, 2 Mats Ljungman, 3,4 Sara R. Heras, 2 José L. García-Pérez, 2,5 Thomas E. Wilson, 1,6,* and John V. Moran 1,7,8,*

¹Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA

²Department of Genomic Medicine, GENYO: Centre for Genomics and Oncology (Pfizer—University of Granada and Andalusian Regional Government), PTS Granada, 18016, Spain

³Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, Translational Oncology Program and Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, 48109, USA

⁴Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, 48109, USA

⁵Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK

⁶Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA

⁷Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA

8Lead Contact

*Correspondence: daflasch@umich.edu (D.A.F.), wilsonte@umich.edu (T.E.W.), moranj@umich.edu (J.V.M.)

Received: September 13, 2018

Revised: January 10, 2019

Accepted: February 25, 2019

Published: April 4, 2019

Tania Sultana, 1,6,7 Dominic van Essen, 1,7 Oliver Siol, 2 Marc Bailly-Bechet, 3 Claude Philippe, 1 Amal Zine El Aabidine, 4 Léo Pioger, 4 Pilvi Nigumann, 1 Simona Saccani, 1 Jean-Christophe Andrau, 4 Nicolas Gilbert, 2,5 and Gael Cristofari 1,8,*

Received: August 1, 2018

Revised: January 28, 2019

Accepted: February 25, 2019

Published: April 4, 2019

¹Université Côte d'Azur, Inserm, CNRS, IRCAN, Nice, France

²Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France

³Université Côte d'Azur, INRA, CNRS, ISA, Sophia-Antipolis, France

⁴Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France

⁵Institut de Médecine Régénératrice et de Biothérapie, Inserm U1183, CHU Montpellier, Montpellier, France

⁶Present address: Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh

⁷These authors contributed equally

⁸Lead Contact

^{*}Correspondence: gael.cristofari@univ-cotedazur.fr

Genomic/epigenomic feature of L1 insertion sites

Sample	HeLa	PA-1	NPC	hESC
# Independent Samples	7	12	9	10
PacBio CCS Read Counts	280,780	284,764	205,376	232,039
Unique L1 Insertions	21,497	27,777	12,117	3,582

Sequence

- Homogeneous throughout the genome
 - Genic
 - Intergenic
 - Functional elements (enhancer, promoter)
- No/weak association with
 - Gene transcription
 - Histone modifications
 - Chromatin accessibility

HeLa: epithelial, adenocarcinoma

> PA-1: epithelial, teratocarcinoma

o hESC: H9 cell line

NPC: H9-derived neural progenitor cells

L1 insertion vs Replication timing: early (hESC) or late (PA-1) S phase of cell cycle

DNA replication

Fraction of L1 insertions at the early replication region

Differential DNA methylation pattern between cell types?

- hESC: human embryo stem cell
- DE: definitive endoderm
- AFG: anterior foregut
- HG00514/GM12878: lymphocyte
- o MCF-10A: epithelial, breast tissue
- MCF-7/MDA-MB-231: breast cancer

Limits and Directions

Molecular Cell

The Landscape of L1 Retrotransposons in the Human Genome Is Shaped by Pre-insertion Sequence Biases and Post-insertion Selection

Authors

Tania Sultana, Dominic van Essen, Oliver Siol, ..., Jean-Christophe Andrau, Nicolas Gilbert, Gael Cristofari

Correspondence

gael.cristofari@univ-cotedazur.fr

In Brief

Sultana, van Essen, et al. report the genome-wide profiling of new L1 retrotransposon insertions in cultured cells. They uncover the contribution of sequence and genomic contexts on integration site selection, its link with host DNA replication, and the role of post-integration selection in the genomic distribution of L1 elements.

Cell

ALLICIE

Genome-wide *de novo* L1 Retrotransposition Connects Endonuclease Activity with Replication

Graphical Abstract

Authors

Diane A. Flasch, Ángela Macia, Laura Sánchez, ..., José L. García-Pérez, Thomas E. Wilson, John V. Moran

Correspondence

daflasch@umich.edu (D.A.F.), wilsonte@umich.edu (T.E.W.), moranj@umich.edu (J.V.M.)

In Brief

The examination of *de novo* engineered L1 retrotransposition events in cultured human cells reveals that L1 endonuclease activity and DNA replication dictate L1 insertion preferences and promote its widespread integration throughout the human genome.

- Blind to the full-length of L1 insertions
 - 3'end PacBio target sequencing (Cell)
 - Short-read sequencing (Mol Cell)
- No matched data for epigenetics data
 - Before and after L1 insertion
- No DNA methylation or nucleosome positioning analyses
- Association

- > Full-length insight of L1 insertion
 - MeSMLR-seq

L1 target motif (.)

- Matched data for epigenetic markers
 - DNA methylation
 - Chromatin accessibility
 - Nucleosome positioning

MeSMLR-seq + Others

- > TE/L1 insertion
- > DNA replication
- > DNA methylation
- > Nucleosome positioning

Thanks