ECS 171: Machine Learning

Summer 2023
Edwin Solares

<u>easolares@ucdavis.edu</u>
Support Vector Machines

& Logistic Regression Again!?

Wikipedia

 \hat{Y}_i Is our prediction given formula on the right, but is given a value of 0 or 1 based on the threshold of 0.5

Prior to threshold we can say our raw value is our probability. As our raw value is continuous from 0 to 1.

$$\gamma_i = \begin{cases} 0 \text{ ; predicted value } < \text{thresold} \\ 1 \text{ ; predicted value } \ge \text{threshold} \end{cases}$$

Where we have Bernoulli observations And p_k is the probability of $y_k=1$ and $1-p_k$ is the probability $y_k=0$

The log loss for the *k*-th point is:

We can say p_k is our raw value, which is our probability of of $y_k = 1$ given x_i w

$$\mathsf{Cost} \, egin{cases} -\ln p_k & ext{if } y_k = 1, \ -\ln (1-p_k) & ext{if } y_k = 0. \end{cases}$$

$$-y_k \ln p_k - (1-y_k) \ln (1-p_k)$$

$$\ell = \sum_{k:y_k=1}^{N} \ln(p_k) + \sum_{k:y_k=0}^{N} \ln(1-p_k) = \sum_{k=1}^{K} \left(\left. y_k \ln(p_k) + (1-y_k) \ln(1-p_k)
ight)$$

 $J(w) = d/dw \ell^* 1/k$

log-likelihood

$$\int rac{1}{\ell = \sum_{k:y_k = 1}^{K} \ln(p_k) + \sum_{k:y_k = 0}^{K} \ln(1 - p_k) = \sum_{k = 1}^{K} \left(\left. y_k \ln(p_k) + (1 - y_k) \ln(1 - p_k)
ight)$$

$$J(w) = 1/k d/dw \ell$$

d/dw
$$\ell$$
 = $\sum_{k=1}^{N} \left(y_k - p_k \right) + \left(y_k - p_k \right) x_k$

The log loss for the *k*-th point is:

ŷ; Is our prediction given formula on the right, but is given a value of 0 or 1 based on the threshold of 0.5 Prior to threshold we can say our raw value is our probability. As our raw value is continuous from 0 to 1.

$$\hat{y} = \frac{1}{1 + e^{(\mu - x)/s}}$$

$$= \frac{1}{1 + e^{(\mu - x)/s}}$$

where
$$w_0 = -\mu/s$$
 and $w_1 = 1/s$: we can solve for μ and s

$$\mu = w_0/w_1 \text{ and } s = 1/w_1$$

 \hat{Y}_i Is our prediction given formula on the right, but is given a value of 0 or 1 based on the threshold of 0.5

Prior to threshold we can say our raw value is our probability. As our raw value is continuous from 0 to 1.

$$\gamma_i = \begin{cases} 0 \text{ ; predicted value } < \text{thresold} \\ 1 \text{ ; predicted value } \ge \text{threshold} \end{cases}$$

Wikipedia

Adding Margin (Recall Inner Products)

$$||\mathbf{v}|| = \text{Length of } \mathbf{v}$$

 $||\mathbf{v}|| = \sqrt{v_1^2 + v_2^2}$

 $\mathbf{v}^{\mathsf{T}}\mathbf{u} = ||\mathbf{v}|| p$ Where p is the projection of u onto v

Wikipedia

Kernels will not be on the midterm!

