Analízis előadások

Vajda István

Neumann János Informatika Kar Óbudai Egyetem

2013. március 10.

Definíció: *Elsőrendű lineáris differenciálegyenletnek* nevezzük az olyan differenciálegyenletet, amely elsőrendű és elsőfokú is.

Megjegyzés: Az elsőrendű differenciálegyenlet mindig

$$y' + g(x)y = h(x)$$

alakra hozható, ahol *g* és *h* adott egyváltozós függvények, *y* pedig ismeretlen egyváltozós függvény. Ezt az alakot az elsőrendű differenciálegyenlet *általános alakjának* szokás nevezni.

Definíció: Ha az elsőrendű lineáris differenciálegyenletben a *h* függvény (az ún. zavaró függvény) azonosan 0, akkor a differenciálegyenlet *homogén*, ellenkező esetben *inhomogén*.

Definíció: *Elsőrendű lineáris differenciálegyenletnek* nevezzük az olyan differenciálegyenletet, amely elsőrendű és elsőfokú is.

Megjegyzés: Az elsőrendű differenciálegyenlet mindig

$$y'+g(x)y=h(x)$$

alakra hozható, ahol *g* és *h* adott egyváltozós függvények, *y* pedig ismeretlen egyváltozós függvény. Ezt az alakot az elsőrendű differenciálegyenlet általános alakjának szokás nevezni.

Definíció: Ha az elsőrendű lineáris differenciálegyenletben a *h* függvény (az ún. zavaró függvény) azonosan 0, akkor a differenciálegyenlet homogén, ellenkező esetben inhomogén.

Definíció: *Elsőrendű lineáris differenciálegyenletnek* nevezzük az olyan differenciálegyenletet, amely elsőrendű és elsőfokú is.

Megjegyzés: Az elsőrendű differenciálegyenlet mindig

$$y'+g(x)y=h(x)$$

alakra hozható, ahol *g* és *h* adott egyváltozós függvények, *y* pedig ismeretlen egyváltozós függvény. Ezt az alakot az elsőrendű differenciálegyenlet általános alakjának szokás nevezni.

Definíció: Ha az elsőrendű lineáris differenciálegyenletben a *h* függvény (az ún. zavaró függvény) azonosan 0, akkor a differenciálegyenlet *homogén*, ellenkező esetben *inhomogén*.

- Az $y' + x^2y = 3x 2$ differenciálegyenlet elsőrendű, lineáris és inhomogén.
- Az $y' + x^2y = 0$ differenciálegyenlet elsőrendű, lineáris és homogén.
- Az $(x^2 + 1)y' 2xy = 1$ differenciálegyenlet elsőrendű, lineáris és inhomogén. Ha osztunk az $x^2 + 1$ együtthatóval az $y' \frac{2x}{x^2 + 1} \cdot y = \frac{1}{x^2 + 1}$ általános alakját kapjuk.
- Az yy' = 2x + 1 differenciálegyenlet elsőrendű, inhomogén, de nem lineáris.
- Az $y'' + 2x^3y' (x^2 + 2)y = 0$ differenciálegyenlet lineáris, homogén, de nem elsőrendű.

- Az $y' + x^2y = 3x 2$ differenciálegyenlet elsőrendű, lineáris és inhomogén.
- Az $y' + x^2y = 0$ differenciálegyenlet elsőrendű, lineáris és homogén.
- Az $(x^2 + 1)y' 2xy = 1$ differenciálegyenlet elsőrendű, lineáris és inhomogén. Ha osztunk az $x^2 + 1$ együtthatóval az $y' \frac{2x}{x^2 + 1} \cdot y = \frac{1}{x^2 + 1}$ általános alakját kapjuk.
- Az yy' = 2x + 1 differenciálegyenlet elsőrendű, inhomogén, de nem lineáris.
- Az $y'' + 2x^3y' (x^2 + 2)y = 0$ differenciálegyenlet lineáris, homogén, de nem elsőrendű.

- Az $y' + x^2y = 3x 2$ differenciálegyenlet elsőrendű, lineáris és inhomogén.
- Az $y' + x^2y = 0$ differenciálegyenlet elsőrendű, lineáris és homogén.
- Az $(x^2 + 1)y' 2xy = 1$ differenciálegyenlet elsőrendű, lineáris és inhomogén. Ha osztunk az $x^2 + 1$ együtthatóval az $y' \frac{2x}{x^2 + 1} \cdot y = \frac{1}{x^2 + 1}$ általános alakját kapjuk.
- Az yy' = 2x + 1 differenciálegyenlet elsőrendű, inhomogén, de nem lineáris.
- Az $y'' + 2x^3y' (x^2 + 2)y = 0$ differenciálegyenlet lineáris, homogén, de nem elsőrendű.

- Az $y' + x^2y = 3x 2$ differenciálegyenlet elsőrendű, lineáris és inhomogén.
- Az $y' + x^2y = 0$ differenciálegyenlet elsőrendű, lineáris és homogén.
- Az $(x^2 + 1)y' 2xy = 1$ differenciálegyenlet elsőrendű, lineáris és inhomogén. Ha osztunk az $x^2 + 1$ együtthatóval az $y' \frac{2x}{x^2 + 1} \cdot y = \frac{1}{x^2 + 1}$ általános alakját kapjuk.
- Az yy' = 2x + 1 differenciálegyenlet elsőrendű, inhomogén, de nem lineáris.
- Az $y'' + 2x^3y' (x^2 + 2)y = 0$ differenciálegyenlet lineáris, homogén, de nem elsőrendű.

- Az $y' + x^2y = 3x 2$ differenciálegyenlet elsőrendű, lineáris és inhomogén.
- Az $y' + x^2y = 0$ differenciálegyenlet elsőrendű, lineáris és homogén.
- Az $(x^2 + 1)y' 2xy = 1$ differenciálegyenlet elsőrendű, lineáris és inhomogén. Ha osztunk az $x^2 + 1$ együtthatóval az $y' \frac{2x}{x^2 + 1} \cdot y = \frac{1}{x^2 + 1}$ általános alakját kapjuk.
- Az yy' = 2x + 1 differenciálegyenlet elsőrendű, inhomogén, de nem lineáris.
- Az $y'' + 2x^3y' (x^2 + 2)y = 0$ differenciálegyenlet lineáris, homogén, de nem elsőrendű.

Az elsőrendű lineáris homogén differenciálegyenletek szétválasztható változójú differenciálegyenletek, így megoldásuk az ott megismert módszerrel történik.

Példa: Oldjuk meg az $y' + \frac{y}{x} = 0$ elsőrendű lineáris homogér differenciálegyenletet!

Megoldás:

$$\frac{dy}{dx} = -\frac{y}{x} \quad \Rightarrow \quad \frac{dy}{y} = -\frac{dx}{x} \quad \Rightarrow \quad \int \frac{dy}{y} = -\int \frac{dx}{x}$$

$$\ln|y| = -\ln|x| + \ln|C| = \ln\left|\frac{C}{x}\right|$$

$$y = \frac{C}{y}$$

Ha utólag a C=0 esetet is megengedjük, az általános megoldás az $\gamma=0$ konstans megoldást is tartalmazza.

Az elsőrendű lineáris homogén differenciálegyenletek szétválasztható változójú differenciálegyenletek, így megoldásuk az ott megismert módszerrel történik.

Példa: Oldjuk meg az $y' + \frac{y}{x} = 0$ elsőrendű lineáris homogén differenciálegyenletet!

Megoldás:

$$\frac{dy}{dx} = -\frac{y}{x} \quad \Rightarrow \quad \frac{dy}{y} = -\frac{dx}{x} \quad \Rightarrow \quad \int \frac{dy}{y} = -\int \frac{dx}{x}$$

$$\ln|y| = -\ln|x| + \ln|C| = \ln\left|\frac{C}{x}\right|$$

$$y = \frac{C}{x}$$

Ha utólag a C=0 esetet is megengedjük, az általános megoldás az $\gamma=0$ konstans megoldást is tartalmazza.

Az elsőrendű lineáris homogén differenciálegyenletek szétválasztható változójú differenciálegyenletek, így megoldásuk az ott megismert módszerrel történik.

Példa: Oldjuk meg az $y' + \frac{y}{x} = 0$ elsőrendű lineáris homogén differenciálegyenletet!

Megoldás:

$$\frac{dy}{dx} = -\frac{y}{x} \quad \Rightarrow \quad \frac{dy}{y} = -\frac{dx}{x} \quad \Rightarrow \quad \int \frac{dy}{y} = -\int \frac{dx}{x}$$

$$\ln|y| = -\ln|x| + \ln|C| = \ln\left|\frac{C}{x}\right|$$

$$y = \frac{C}{x}$$

Ha utólag a C=0 esetet is megengedjük, az általános megoldás az c=0 konstans megoldást is tartalmazza.

Az elsőrendű lineáris homogén differenciálegyenletek szétválasztható változójú differenciálegyenletek, így megoldásuk az ott megismert módszerrel történik.

Példa: Oldjuk meg az $y' + \frac{y}{y} = 0$ elsőrendű lineáris homogén differenciálegyenletet!

Megoldás:

$$\frac{dy}{dx} = -\frac{y}{x} \quad \Rightarrow \quad \frac{dy}{y} = -\frac{dx}{x} \quad \Rightarrow \quad \int \frac{dy}{y} = -\int \frac{dx}{x}$$

$$\ln|y| = -\ln|x| + \ln|C| = \ln\left|\frac{C}{x}\right|$$

$$y = \frac{C}{x}$$

Ha utólag a C=0 esetet is megengedjük, az általános megoldás az y = 0 konstans megoldást is tartalmazza.

Példa: Oldjuk meg az y' + tg(x)y = 0 elsőrendű lineáris homogén differenciálegyenletet!

Megoldás:

$$\frac{dy}{dx} = -\lg(x)y = \frac{-\sin(x)}{\cos(x)}y$$

$$\frac{dy}{y} = \frac{-\sin(x)}{\cos(x)} dx$$

$$\int \frac{dy}{y} = \int \frac{-\sin(x)}{\cos(x)} dx$$

$$\ln|y| = \ln|\cos(x)| + \ln|C| = \ln|C\cos(x)|$$

$$y = C\cos(x)$$

Az elsőrendű, lineáris, homogén differenciálegyenletek megoldására általános képlet is adható:

$$y' + g(x) y = 0 \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -g(x) y \Rightarrow \frac{\mathrm{d}y}{y} = -g(x) \mathrm{d}x$$
$$\int \frac{\mathrm{d}y}{y} = -\int g(x) \mathrm{d}x$$
$$\ln|y| = -G(x) + \ln|C| = \ln e^{-G(x)} + \ln|C| = \ln \left| C \cdot e^{-G(x)} \right|$$
$$y = C \cdot e^{-G(x)},$$

ahol G a g függvény egy (tetszőleges) primitív függvénye.

Elsőrendű, állandó együtthatós, lineáris differenciálegyenletek

Definíció: Ha az elsőrendű lineáris differenciálegyenlet általános alakjában a *g* függvény konstans, akkor *állandó együtthatósnak* nevezzük.

Az elsőrendű, állandó együtthatós, lineáris, homogén differenciálegyenletek általános alakja:

$$y' + ay = 0$$
 $(a \in \mathbb{R})$

Az elsőrendű, állandó együtthatós, lineáris, homogén differenciálegyenletek megoldása:

$$y = Ce^{-ax}$$
,

hiszen g(x) = a egy primitív függvénye G(x) = ax.

Tekintsük az

$$y' + g(x)y = h(x) \qquad (*)$$

elsőrendű differenciálegyenletet. Ha a $h\left(x\right)$ zavaró függvény helyébe 0-t írunk. az

$$y' + g(x)y = 0 \qquad (**)$$

homogén egyenletet kapjuk. A (**)-gal jelölt egyenletet a (*)-gal jelölt egyenlethez rendelt homogén egyenletnek nevezzük.

Tétel: Az

$$y'+g(x)y=h(x)$$

elsőrendű differenciálegyenlet általános megoldását megkapjuk, ha a hozzárendelt homogén egyenlet y_h megoldásához hozzáadjuk az eredeti egyenlet egy (tetszőleges) y_p partikuláris megoldását. Tehát a megoldás:

$$y = y_h + y_p$$

Bizonvítás: A feltételek szerint

$$y_h' + g(x)y_h = 0$$

ahol yh egy független paramétert tartalmaz. Másrészt:

$$y_{p}^{\prime}+g\left(x\right) y_{p}=h\left(x\right)$$

Tétel: Az

$$y'+g(x)y=h(x)$$

elsőrendű differenciálegyenlet általános megoldását megkapjuk, ha a hozzárendelt homogén egyenlet y_h megoldásához hozzáadjuk az eredeti egyenlet egy (tetszőleges) y_p partikuláris megoldását. Tehát a megoldás:

$$y = y_h + y_p$$

Bizonyítás: A feltételek szerint

$$y_h'+g(x)y_h=0$$

ahol *y_h* egy független paramétert tartalmaz. Másrészt:

$$y_{p}^{\prime}+g\left(x\right) y_{p}=h\left(x\right)$$

Összeadva a két előző egyenletet:

$$+ \begin{cases} y'_{h} + g(x) y_{h} = 0 \\ y'_{p} + g(x) y_{p} = h(x) \end{cases}$$

$$y'_{h} + y'_{p} + g(x) y_{h} + g(x) y_{p} = h(x)$$

Figyelembe véve, hogy a deriváltak összege egyenlő az összeg deriváltjával és a 3-4. tagból g(x)-et kiemelve:

$$(y_h + y_p)' + g(x)(y_h + y_p) = h(x),$$

tehát $y_h + y_p$ kielégíti a differenciálegyenletet és mivel egy (az y_h -ból származó) paramétert tartalmaz, általános megoldása a differenciálegyenletnek.

Példa: Oldjuk meg az $y' + \frac{y}{x} = \frac{2x+1}{x}$ differenciálegyenletet!

Megoldás: A differenciálegyenlethez rendelt homogén egyenlet $y'+rac{y}{x}=0$, amelynek megoldása – mint azt korábban láttuk – $y_h=rac{C}{x}$.

Az eredeti differenciálegyenletnek az $y_p = x + 1$ függvény partikuláris megoldása, mert $y_p' = 1$ és behelyettesítve a differenciálegyenletbe:

$$\mathsf{Balodal} = 1 + \frac{x+1}{x} = \frac{x}{x} + \frac{x+1}{x} = \frac{2x+1}{x} = \mathsf{Jobbodal}$$

Tehát a differenciálegyenlet általános megoldása:

$$y = y_h + y_p = \frac{C}{x} + x + 1$$

Hogyan határozhatjuk meg a differenciálegyenlet egy partikuláris megoldását? Használhatjuk pl. az állandó variálás módszerét:

- A differenciálegyenlethez rendelt homogén egyenlet általános megoldásában a paraméter helyébe egy ismeretlen k (x) függvényt írunk.
- Az így kapott függvényt és deriváltját behelyettesítve a differenciálegyenletbe meghatározzuk az ismeretlen függvényt.
- A (mostmár ismert) k (x) függvényt a homogén egyenlet általános megoldásában a paraméter helyébe írva megkapjuk a differenciálegyenlet egy partikuláris megoldását.

Példa: Határozzuk meg az $y' + \frac{y}{x} = \frac{2x+1}{x}$ differenciálegyenlet egy partikuláris megoldását az állandó variálás módszerével!

Megoldás: Mint láttuk, a homogén egyenlet általános megoldása $y_h = \frac{C}{x}$.

Helyettesítsünk *C* helyére k(x)-et: $y_p = \frac{k(x)}{x}$.

Ezt deriválva $y_p' = \frac{k'(x)x - k(x)}{x^2}$. Helyettesítsük be a differenciálegyenletbe y_p -t és y_p' -t:

$$\frac{k'(x)x - k(x)}{x^2} + \frac{k(x)}{x^2} = \frac{2x + 1}{x}$$

$$k'(x)x - k(x) + k(x) = 2x^2 + x$$

$$k'(x) = 2x + 1$$

$$k(x) = x^2 + x$$

A partikuláris megoldás meghatározásának más módszerei is léteznek. Abban az esetben, ha a lineáris differenciálegyenlet állandó együtthatós, akkor használhatjuk az ún. *próbafüggvénymódszert*.

Ez azt jelenti, hogy a partikuláris megoldást olyan alakban keressük, ami "hasonló" a zavaró függvényhez.

Példa: Oldjuk meg az y' + 2y = x - 1 differenciálegyenletet!

Megoldás: Mivel a h(x)=x-1 zavaró függvény elsőfokú, a partikuláris megoldást $y_p=Ax+B$ alakban keressük, ahol $a,b\in\mathbb{R}$. Nyilván $y_p'=A$. Behelyettesítve a differenciálegyenletbe

$$A + 2(Ax + B) = x - 1 \quad \Rightarrow \quad 2Ax + A + 2B = x - 1$$

Az azonos fokszámú tagok együtthatóinak összehasonlításával:

x: konstans:

$$2A = 1$$
 $A + 2B = -1$
 $A = \frac{1}{2}$ $B = -\frac{3}{4}$

Tehát a partikuláris megoldás $y_p = \frac{1}{2}x - \frac{3}{4}$, a differenciálegyenlet megoldása

$$y = y_h + y_p = Ce^{-2x} + \frac{1}{2}x - \frac{3}{4}$$

Milyen zavaró függvény esetén milyen próbafüggvényt alkalmazhatunk?

- Ha a zavaró függvény n-edfokú polinom, akkor a próbafüggvény is n-edfokú polinom általános együtthatókkal.
 - Pl. ha $h(x) = x^2 1$, akkor $y_p = Ax^2 + Bx + D$.
- Ha $h(x) = be^{ax}$, ahol $a, b \in \mathbb{R}$, akkor $y_p = Ae^{ax}$. Pl. ha $h(x) = 2e^{3x}$, akkor $y_p = Ae^{3x}$.
- Ha a zavarófüggvény a $\sin(ax + b)$ és $\cos(ax + b)$ lineáris kombinációja, akkor $y_p = A \sin(ax + b) + B \cos(ax + b)$. Pl. ha $h(x) = 2 \sin(2x) + 3 \cos(2x)$, akkor $y_p = A \sin(2x) + B \cos(2x)$, ha $h(x) = 4 \cos(x)$, akkor $y_p = A \sin(x) + B \cos(x)$

- Ha a zavaró függvény h₁ + h₂ vagy h₁ h₂ alakú és a h₁-hez tartozó próbafüggvény y_{p1}, a h₂-höz tartozó pedig y_{p2}, akkor a zavarófüggvényhez az y_{p1} + y_{p2} próbafüggvény tartozik.
 Pl. Ha a zavarófüggvény h (x) = 2x + e^{3x}, akkor az y_p = Ax + B + De^{3x} próbafüggvényt alkalmazzuk.
- Ha a zavaró függvény h₁ · h₂ alakú és a h₁-hez tartozó próbafüggvény y_{p1}, a h₂-höz tartozó pedig y_{p2}, akkor a zavarófüggvényhez az y_{p1} · y_{p2} próbafüggvény tartozik.
 Pl. Ha a zavarófüggvény h(x) = x sin(x), akkor a próbafüggvény y_p = (x + D) (A sin(x) + B cos(x)).

Példa: Oldjuk meg az $y' - 3y = e^{2x} - 6x + 5$ differenciálegyenletet! *Megoldás*:

- A homogén egyenlet megoldása: $y_h = Ce^{3x}$.
- A partikuláris megoldást keressük $y_p = Ae^{2x} + Bx + D$ alakban. Deriválva: $y_p' = 2Ae^{2x} + B$.

$$2Ae^{2x} + B - 3Ae^{2x} - 3Bx - 3D = e^{2x} - 6x + 5$$

 $-Ae^{2x} - 3Bx + B - 3D = e^{2x} - 6x + 5$
 e^{2x} : x: konstans:
 $-A = 1$ $-3B = -6$ $B - 3D = 5$
 $A = -1$ $B = 2$ $D = -1$

Tehát
$$y_p = -e^{2x} + 2x - 1$$

• Az általános megoldás: $y = y_h + y_p = Ce^{3x} - e^{2x} + 2x - 1$

