高等数学期中试题

2019-2020 学年第一学期

考试科目: 高等数学B(上) 考证

考试时间: 2019 年10 月 23日

姓 名:

学 号:

本试题共 6 道大题,满分 100 分

1. 简单计算题(共40分)

(1) 求极限: a.
$$\lim_{n \to \infty} (1 - \frac{1}{n})^{2n}$$
. b. $\lim_{x \to a} \frac{\sin x - \sin a}{x - a}$.

- (2) 求下列函数的导数: a. $y = (1+x)^{\frac{1}{x}}$ (x > 0). b. $y = \int_{x^2}^x \sin t^2 dt$.
- (3) 求方程 $y-x-\epsilon\sin y=0$ (0 < ϵ < 1) 确定的隐函数的一阶导数和二阶导数.

(4) a. 求定积分:
$$\int_0^{2\pi} |\sin x| dx$$
; b. 求不定积分: $\int \frac{3x^4 + 3x^2 + 1}{x^2 + 1} dx$

(2.)(10分) 定义函数

$$f(x) = \begin{cases} \frac{\sqrt{1 + \sin x + \sin^2 x - (a + b \sin x)}}{x^2}, & x \neq 0 \\ c. & x = 0 \end{cases}$$

若 f(x) 是 R 上的连续函数, 求 a,b,c 的值.

- 3. (10分)讨论方程 $|x|^{\frac{1}{4}} + |x|^{\frac{1}{2}} \cos x = 0$ 在 R 上的根的个数.
- 4. (18分) 判断下列结论是否成立。如果成立说明理由; 如果不成立, 给出反例.
 - (1) 若 $\lim_{n\to\infty} a_n = a$, 则对任给 $\epsilon > 0$. 存在 N. 使得当 n > N 时, $a_n > a \frac{1}{n}$.
 - (2) 设 f(x) 是 R 上的单调有界函数, 若 x_n 是单调序列, 则 $f(x_n)$ 是收敛序列.
 - (3) 设 $f(x) \in R([a,b])$, 则 $F(x) = \int_a^x f(t)dt$ 在 (a,b) 上可导.
- 5. (10分) 证明 $\lim_{n \to \infty} \frac{1}{\sqrt[n]{n!}} = 0$.
- 6. (12分) 定义函数

$$f(x) = \begin{cases} |x^{\ln \sin \frac{1}{x}}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

问: 当 α 取什么值时, f(x) 在x=0处可导; 当 α 取什么值时, f(x) 有连续的导函数.