

МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа прикладной математики и информатики

Отчёт о выполнении лабораторной работы 3.2.8 Релаксационные колебания

Автор: Чикин Андрей Павлович Б05-304

Цель работы:

- 1. изучение вольт-амперной характеристики нормального тлеющего разряда
- 2. исследование релаксационного генератора на стабилитроне

Приборы:

- 1. стабилитрон СГ-2 (газонаполненный диод) на монтажной панели
- 2. магазин ёмкостей
- 3. магазин сопротивлений
- 4. источник питания
- 5. амперметр
- 6. вольтметр
- 7. осциллограф

0.1 Теоретические сведения

Рис. 1: BAX газонаполненного диода

Рис. 2: Осциллограмма релаксационных колебаний

Рис. 3: Схема для исследования ВАХ

Рис. 4: Схема для исследования релаксационного генератора

При стационарном режиме (I, U = const),

$$I_{\rm cr} = \frac{\varepsilon - U}{R + r} \tag{1}$$

$$RC\frac{dU}{dt} = \varepsilon - U \tag{2}$$

$$U = \varepsilon - (\varepsilon - U_2) \exp\left(\frac{-t}{RC}\right)$$
 (3)

В момент зажигания: $t = \tau_3$, $U = U_1$:

$$U_1 = \varepsilon - (\varepsilon - U_2) \exp\left(\frac{-\tau_3}{RC}\right)$$
 (4)

$$T \approx \tau_3 = RC \ln \frac{\varepsilon - U_2}{\varepsilon - U_1} \tag{5}$$

0.2 Ход работы.

1. Соберем схему 1. (см. рис. 3)

$$r = 5.1$$
кОм.

- 2. Установим мин. напряжение.
- 3. Получим ВАХ. (см. таблицу 1)

			U, B	I, A
U, B	I, A		313.0	45.5
25	0		263.0	36.9
43	0		225.0	28.9
65	0		196.0	23.4
69	0		171.0	18.7
72	0		145.3	13.9
93	0		125.0	10.1
93	4		109.3	7.1
97	5		94.7	4.4
99	4		84.7	2.4
102	6		82.6	2.0
105	6		80.6	1.6
116	8		79.7	1.5
127	10		78.5	1.2
139	13		76.9	0.9
159	16		75.0	0.6
184	21		74.0	0.4
206	25		73.6	0.0
234	30		72.9	0.0
262	36		71.3	0.0
331	45		67.2	0.0
		•	30.0	0.0

Таблица 1: BAX стабилитрона

$$U_1 \approx 93B$$
 (6)

$$U_2 \approx 74B$$
 (7)

- 4. Соберем схему 2. (см. рис. 4)
- 5. Установим на магазине ёмкостей значение C = 50н Φ , а на магазине сопротивлений R = 900к Θ м.
- 6. Подсоединим осцилограф и установим $\varepsilon \approx 1.2 U_1$.

$$\varepsilon = 112 \text{ B}.$$

7. Подберем частоту осциллографа так, чтобы были видны колебания на конденсаторе (канал 1) и на стабилитроне (канал 2).

8. По графику "пилы"
оценим τ_3, τ_p, T, ν .

$$\tau_3 = 35.5 \text{MC}$$
 (8)

$$\tau_p = 1.5 \text{MC} \tag{9}$$

$$T = 37 \text{MC} \tag{10}$$

$$\nu = 27\Gamma \mathbf{I} \tag{11}$$

9. Найдем $R_{\text{кр}}$, уменьшая R.

$$R_{\rm kp} = 150 \text{kOm} \tag{12}$$

- 10. Убедимся, что колебаня пропадают и при уменьшении ε .
- 11. Измерим зависимость T(C), $C \in [2, 50]$ нФ. (см. таблицу 2).

$$R_0 = 450 \text{кOm}.$$

С, нФ	Т, мс
50	31
45	27
40	25
35	21
30	19
25	15
20	13
15	9
10	7
5	3

Таблица 2: Т(С)

12. Измерим зависимость T(R), $R \in [R_{\text{кр}}, R_{max}]$. (см. таблицу 3).

$$C_0 = 50$$
H Φ .

$R, 10^5 O_M$	Т, мс
10	68
8	54
7	46
6	40
5	33
4	26
3	20
2	14

Таблица 3: T(R)

- 13. Восстановим работу релаксационного генератора (рис. 4) с настройками, рекомендованными в п. 5-6.
- 14. Переведем осциллограф в измерительный двухканальный режим. Установм по осям координат сдвиги и коэффициенты усиления, подходящие для наблюдения фазовой траектории релаксационных колебаний. Должны получится фигуры Лиссажу.
- 15. Не выполняли.

16. Построим графики ВАХ.

17. Построим графики $T_{\text{эксп}}(C)$, $T_{\text{теор}}(C)$ и $T_{\text{эксп}}(R)$, $T_{\text{теор}}(R)$.

По ур-ию 5:

$$T \approx RC \ln \frac{\varepsilon - U_2}{\varepsilon - U_1} \tag{13}$$

$$\varepsilon = 112, \quad U_1 \approx 93, \quad U_2 \approx 74, \quad R_0 = 450 \text{кOm}, \quad C_0 = 50 \text{н}\Phi$$

$$\ln \frac{\varepsilon - U_2}{\varepsilon - U_1} \approx 0.7$$

$$T_{\text{reop}}(C) \approx 0.2 \frac{\text{MC}}{\text{H}\Phi} \cdot C$$
 (14)
 $T_{\text{reop}}(R) \approx 3.5 \frac{\text{MC}}{10^5 \text{OM}} R$ (15)

$$T_{\text{reop}}(R) \approx 3.5 \frac{\text{MC}}{10^5 \text{OM}} R \tag{15}$$

$$T_{\text{эксп}}(C) \approx 0.6 \frac{\text{MC}}{\text{H}\Phi} \cdot C$$
 (16)

$$T_{\text{эксп}}(C) \approx 0.6 \frac{\text{MC}}{\text{H}\Phi} \cdot C$$
 (16)
 $T_{\text{эксп}}(R) \approx 6.8 \frac{\text{MC}}{10^5 \text{OM}} R$ (17)

18. Эксперементальные значения стабильно выше, чем теоритические. Как было сказано выше, данная систематическая погрешность может быть связана с пренебрежением паразитных емкостей и индуктивностей схемы, отличие U_2 от реального потенциала гашения лампы.

Оченим потенциал гашения.

$$V \approx 40B$$
 (18)

- 19. Не выполняли.
- 20. Не выполняли.

Вывод. 0.3

В данной лабораторной работе мы получили ВАХ нормального тлеющего затяда и исследовали релаксационный генератор на стабилитроне. Получили напряжение зажигания U_1 и напряжение гашения U_2 :

$$U_1 \approx 93B \tag{19}$$

$$U_2 \approx 74B \tag{20}$$

Получили зависимости T(C) и T(R), построили графики. Из результатов видно, что динамический потенциал гашения значительно меньше статического напряжения гашения. В пределах применения теоретической модели наблюдается прямопропорциональная зависимость периода от сопротивления и емкости.