Homework 8: Work and Mechanical Energy

Due: Tuesday November 20th, 16:00

Policy: Collaboration is allowed, but every student is required to hand in his/her own version of the solutions. Please include your name and student number on the solutions.

Problem 1. A particle with mass m=0.2 kg moves under the influence of a conservative force \vec{F} . The components of the force with respect to a Cartesian coordinate system are:

$$F_x = 2 p x^3 y^2,$$

$$F_y = x^q y,$$

$$F_z = 0.$$

The constants p and q are $\neq 0$.

- 1. Determine p and q.
- 2. The particle passes the point P = (1, 2, 0) with velocity $\vec{v} = 6\hat{j}$. Determine the magnitude of the component of the acceleration tangential to the trajectory and the curvature radius of the trajectory at that point.
- 3. Determine the potential energy of the particle at P with respect to the origin.

Problem 2. (K. & K. 5.13)

A bead of mass m slides without friction on a smooth rod along the x-axis. The rod is equidistant between two spheres of mass M. The spheres are located at x = 0, $y = \pm a$ as shown and attract the bead gravitationally.

- 1. Find the potential energy of the bead.
- 2. The bead is released at x = 3a with velocity v_i , toward the origin. Find the speed as it passes the origin.

