

Análisis Secundario I: Variant Calling

Sara Monzón

BU-ISCIII

Unidades Científico Técnicas - SGAFI-ISCIII

22-26 Mayo 2023, 10ª Edición Programa Formación Continua, ISCIII

Índice

- Dónde estamos
- ¿Qué es llamada a variantes?
- Problemas que nos encontramos
- Software de variant calling
- Formatos: vcf y bed
- Anotación y filtrado
- Ejemplos de llamada a variantes:
 - Cáncer
 - Trío
 - Bacterias

Dónde estamos

3

¿Qué es llamada a variantes?

- El concepto de la llamada a variantes es sencillo:
 - Encontrar posiciones en nuestras secuencias que sean diferentes a referencia -
- A partir de nuestras secuencias mapeadas en el genoma, se recorre cada columna del alineamiento y se cuentan cuántos alelos se encuentran y se comparan con la referencia.

¿Qué es la llamada a variantes?

- Preparación de la librería
- Errores en la secuenciación
- Errores de alineamiento
- Fiabilidad de la referencia

- Artefactos en la preparación de la librería
 - Mutaciones inducidas por PCR
 - Duplicados
 - Errores a final de la lectura
 - Contaminaciones

- Ratio de error asociado con la secuenciación.
- Soluciones:
 - Evaluación de Phred
 - Strand bias

• Problemas de alineamiento

• Problemas de alineamiento

- Fiabilidad del genoma de referencia.
 - Ejemplo genoma humano:
 - Genoma obtenido de mezcla de 8 personas diferentes (Watson entre ellos)
 - Genoma haploide para individuo diploide.
 - Zonas de baja complejidad
 - Incompleto

Principales sofware de variant calling

Formato vcf

- Formato bed
 - Se utiliza para representar regiones y/o posiciones

- Formato bed
 - Se utiliza para representar regiones y/o posiciones
 - Consideraciones pare representar variantes.
 - Utiliza coordenadas 0-based para el inicio y 1-based para el final
 - De manera que la primera base del cromosoma 1 sería:

chrl 0 1 first base

Ejemplo de formato bed de variantes:

Esta es la posición donde se encuentra la variante

ch rl	100154496	100154497	Α	G
chr1	100182982	100182983	C	T
chr1	100195206	100195207	C	Α
chr1	1002596 1002597	C A		
chr1	100343384	100343385	G	T
chr1	10041131	10041132	C	Α
chr1	100575981	100575982	G	Т
chr1	100621863	100621864	G	T
chr1	100672062	100672063	C	Т
chr1	10067673	10067674	G	T
chr1	100733834	100733835	G	T
chr1	101007160	101007161	G	Т
chr1	101186145	101186146	G	T _.
chr1	101376658	101376659	C	Α
chr1	101379322	101379323	C	Α
chr1	101490740	101490741	G	Т
chr1	10161234	10161235	G	Α
chr1	101705323	101705324	C	Α
chr1	101705774	101705775	C	Α
chr1	10179467	10179468	C	Α
chr1	10197177	10197178	C	G
ch rl	10197185	10197186	G	Т
	γ			

Admite prácticamente de todo En este caso Alelo alternativo y Alelo referencia

Anotación y Filtrado

Anotación y filtrado

Anotación:

- A nivel de gen: se anota gen y "feature" según la base de datos refgene (variante tipo missense, frameshit, intron, etc.)
- Anotación de variantes no sinónimas: dbNSFP
 - SLR
 - SIFT
 - Polyphen2_HDIV
 - Polyphen2_HVAR
 - LRT
 - Mutation Taster
 - Mutation Assesor

- FATHMM score
- CADD score
- GERP++ NR
- GERP++ RS
- PhyloP100way_vertebrate
- 29way logOdds
- A nivel funcional: pseudogenes, UniprotFeature, etc.
- A nivel de enfermedad: anotación de enfermedad asociada con ese gen en OMIM

• Software específico para comparaciones tumor-control

	Samtool s	GATK	VarS can 2	Somatic Sniper	JointS NVmix	Strelk a	LoFre q	MuTe c	Shimme r	EBCalling	Virmi d
Publication	Li et al	McKen na et al	Kobo ldt et al	Larson et al	Roth et al	Saunde rs et al	Wilm et al	Cibulski s et al	Hansen et al	Shiraishi et al	Kim et al
Year	2009	2010	201 2	2012	2012	2012	2012	2013	2013	2013	2013
Model	Bayesian	Bayesi an	Fish er test		Prob	Bayesi an	Binom ial	Bayesi an		Bayesian	Prob
Programmi ng language	С	java	Java ,perl	С	python	perl	C,pyth on	java	perl	Perl,c,R	Bayesi an
Paired sample	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Realignme nt	No	Yes	No	No	No	Yes	No	Yes	No	No	No

24/05/2023 Curso iniciación NGS 19

• Teoría de la llamada a variantes en cáncer

- Problemas añadidos a la llamada a variantes
 - Heterogeneidad tumoral

- Comparativa de distintos software de llamada a variantes en cáncer
 - Evaluar la mejor opción
 - Plantearse seleccionar la intersección de varios.
 - Caracterizar su comportamiento frente a cobertura y frecuencia del alelo alternativo.

>¤_BU-ISCIII

Ejemplo de variant calling: Cáncer

Problemas de no detectar verdaderas mutaciones somáticas

Problemas de realineamiento

Contrariamente a lo que se piensa identificar variantes somáticas de datos WGS es todavía un gran reto.

SSM calls	Aligner	SSM Detection Software	TP	FP	FN	P	R	F1
MB.GOLD	BWA, GEM	Curated	1,255 (8)	0	0	1.00	1.00	1.00
MB.A	BWA	In-house	775 (0)	147	480	0.84	0.62	0.71
MB.B	BWA	samtools, Varscan	788 (1)	12	467	0.99	0.63	0.77
MB.C	GEM	samtools, bcftools	766 (3)	1,025	489	0.43	0.61	0.50
MB.D	n.a.	SMuFin	737 (4)	1,086	518	0.41	0.59	0.48
MB.E	BWA	SomaticSniper	750 (4)	229	505	0.77	0.60	0.67
MB.F	BWA	Strelka	884 (2)	165	371	0.84	0.70	0.77
MB.G	BWA	Caveman, Picnic	899 (3)	140	356	0.87	0.72	0.78
MB.H	Novoalign	MuTect	947 (3)	6,296	308	0.13	0.76	0.22
MB.I	BWA	samtools	879 (7)	129	376	0.87	0.70	0.78
MB.J	None, BWA	SGA + freebayes	856 (1)	62	399	0.93	0.68	0.79
MB.K	BWA	Atlas2-snp	945 (8)	7,923	310	0.11	0.75	0.19
MB.L1	BWA	MuTect. Strelka	385 (0)	3	870	0.99	0.31	0.47
MB.L2	BWA	MuTect. Strelka	900 (1)	253	355	0.78	0.72	0.75
MB.M	BWA mem	samtools, GATK + MuTect	937 (4)	1,695	318	0.36	0.75	0.48
MB.N	BWA	Strelka	847 (1)	289	408	0.75	0.68	0.71
MB.O	BWA	MuTect	944 (3)	272	311	0.78	0.75	0.76
MB.P	BWA	Sidron	833 (3)	256	422	0.77	0.66	0.71
MB.Q	BWA	qSNP + GATK	842 (2)	25	413	0.97	0.67	0.79
SIM calls								
MB.GOLD	BWA, GEM	Curated	337 (10)	0	0	1.00	1.00	1.00
MB.A	BWA	In-house	16 (0)	63	321	0.20	0.05	0.08
MB.B	BWA	GATK SomaticIndelDetector, Varscan	167 (0)	20	173	0.89	0.49	0.63
MB.C	GEM	samtools, boftools	103 (0)	26	236	0.80	0.30	0.44
MB.D	none	SMuFin	29 (0)	25	308	0.54	0.09	0.15
MB.F	BWA	Strelka	147 (8)	12	193	0.93	0.43	0.58
MB.G	BWA	Pindel	189 (2)	82	152	0.70	0.55	0.61
MB.H	Novoalign	VarScan2	55 (0)	248	282	0.18	0.16	0.17
MB.I	BWA	Platypus	271 (7)	224	70	0.55	0.79	0.65
MB.I	None	SGA	90 (1)	34	249	0.72	0.26	0.38
MB.K	BWA	Atlas2-indel	268 (6)	444	72	0.38	0.79	0.51
MB.L1	BWA	Strelka	64 (1)	3	273	0.96	0.19	0.32
MB.L2	BWA	Strelka	130 (3)	13	210	0.91	0.38	0.53
MB.N	BWA	Strelka	128 (6)	16	209	0.89	0.38	0.53
MB.O	BWA	GATK SomaticIndelDetector	140 (1)	47	197	0.75	0.42	0.53
MB.P	BWA	bcftools, PolyFilter	37 (0)	57	301	0.39	0.11	0.17
MB.O	BWA	Pindel	100 (2)	61	237	0.63	0.30	0.40

F1, F1 score; FN, false negative; FP, false positives; P, precision; R, recall; TP, true positives.

Shown are the evaluation results with respect to the medulloblastoma Gold Set (Tier 3). Shown are the number of true calls (TP) with additional Tier 4 calls in parentheses, the number of FP, the number of FP. P. R and FI. The submissions with the best precision recall and FI score are in bold.

- Llamada a variantes con diferentes pipelines y datos de diferentes librerías da lugar a un bajo consenso.
- Checklist para estudios WGS en cáncer:
 - Preparar librería PCR-free
 - Tumor coverage 100x
 - Control coverage close to tumor coverage (+/-10%)
 - Reference genome hs37d5 o GRCh38
 - Combinación de alineador/variant caller optimo
 - Combinar varios llamadores de mutaciones
 - Permitir mutaciones en zonas repetidas o cerca de repeticiones.
 - Filtrado por calidad de mapado, strand bias, positional bias, presencia de soft-clipping

Ejemplo de variant calling: TRIOS

• Formato: fastq

• <u>Plataforma:</u> HiSeq Illumina, 2x101

• Carreras: 1

• <u>Lanes:</u> 2 y 8

• <u>Kit Enriquecimiento:</u> TruSeq Exome Enrichment Kit (2011)

Pedigrí	Sexo	Afectado
Padre	V	N
Madre	М	N
Hijo	V	S

Variant Calling

Best Practices for Germline SNPs and Indels in Whole Genomes and Exomes - June 2016

Postprocesamiento y QC alineamiento

GATK

- Filtrado de duplicados: Picard
- Análisis de la calidad del BAM

- Recalibración de variantes
- Realineamiento

Sample	Target Specificity	Target Enrichment	Mean Coverage	SD Coverage	5X	10X	20X	30X
Padre	0.77	39.40	90.92	79.87	95%	93%	90%	85%
Madre	0.78	39.85	72.68	64.91	93%	92%	87%	81%
Hijo	0.78	39.78	60.46	53.12	93%	90%	84%	75%

Variant Calling: Realineamiento

Realineamiento local de múltiples secuencias

Proporciona un alineamiento consistente entre todas las lecturas. Se identifican las regiones susceptibles de realineamiento, si:

- Al menos una lectura contiene un indel
- Existe un cluster de bases mismatch
- Existe un indel conocido

NA12878, chr1:1,510,530-1,510,589

Variant Calling: Realineamiento

Score de calidad de una base

Probabilidad de que la base determinada sea verdadera (y no un error de secuenciación).

- En escala Phred. $Q = -10 \cdot \log_{10} P$
- Se códifica en ASCII (normalmente Q+33)
- Se estima de un modo muy inexacto porque sigue un esquema de correlación complejo entre la tecnología de secuenciación, el ciclo de máquina y el contexto de secuencia.

Los errores de mapado y la inexactitud de los scores de calidad se propagan a la etapa de identificación de variantes y genotipado

Variant Calling: HaplotypeCaller

- Determina si una región es potencialmente variable
- Construye un ensamblado de Bruijn de la región.
- Los "paths" en el grafo son haplotipos potenciales que tienen que ser evaluados.
- Se calcula los likelihoods de los haplotipos dados los datos usando un modelo PairHMM.
- Determina si hay alguna variante entre los haplotipos más probables.
- Calcula la distribución de la frecuencia alélica para determinar el contaje de alelos más probables y emite una variante si se da el caso.
- Si se emite una variante se calcula el genotipo para cada muestra.

24/05/2023 Curso iniciación NGS 34

Estadísticas del filtrado

Variants	Raw	HardFiltering*	GenotypeRefinement	Quality Filtering
SNPs	294018	189031	188910	177660
INDELs	40677	27695	26646	177660

^{*}Siendo este número aquellas variantes marcadas como PASS después del filtrado.

Modelos de Enfermedad

- Modelo de novo
- Modelo double-hit gene
- Modelo Recesivo
- Modelo dominante

Seleccionamos estos dos como los más probables en nuestro caso.

Modelos de enfermedad

• Modelo de novo Hijo Afectado Padre Madre 24/05/2023 Curso iniciación NGS

>¤_BU-ISCIII

Modelo de novo

- Filtros ad-hoc
 - Primera aproximación:
 - FILTER = PASS
 - Genotipo =

Padre	0/0		
Madre	0/0		
Hijo	0/1 o 1/0		

Modelos de enfermedad

- Filtros ad-hoc
 - Primera aproximación:
 - FILTER = PASS
 - Filtro por missense, frameshift, splicing o stop-gain
 - Mutation taster: A o D
 - Genotipo =

Padre	0/1
Madre	0/1
Hijo	1/1

- Glycerophosphodiester Phosphodiesterase domain-containing 4
- Proteína de membrana
- Relacionada con el metabolismo de glicerofosfolípidos.
- Relacionado mutaciones en este gen con el síndrome del shock tóxico (TSS).
- Variantes vistas en el gen:
 - Delección patogénica en el cromosoma 11 71680927-7794394
 - Relacionado con retraso en el desarrollo y fenotipos morfológicos significativos.

GDPD4

- Filtros ad-hoc
 - Segunda aproximación:
 - FILTER = PASS
 - Filtro por missense, frameshift, splicing o stop-gain
 - Mutation taster: A o D
 - Genotipo =

Padre	1/0	0/0
Madre	0/0	1/0
Hijo	0/1	0/1

NBPF1

С	hromosom e	StartPosition	Reference AlternativeAllel e	rsID	MostImpo rtantFeatu reGene	Mostimportan	GonoDoccrintion
	1	16890484	G/C	rs12117084 (suspected)	NBPF1	missense (cys -> ser)	neuroblastoma breakpoint family, member
	1	16909134	G/A		NBPF1	missense	1 (Approved)

Mutación en el 5% de los reads En madre e hijo. Posibles errores de alineamiento por tratarse de genes duplicados.

- Gen de la familia "breakpoint" de neuroblastoma. Docenas de genes duplicados localizados en duplicaciones segmentales en el cromosoma 1.
- Cambios en el número de copia se ha relacionado con enfermedades del desarrollo y neurogenéticas como microcefalia, macrocephalia, autismo, retraso mental, neuroblastoma, enfermedades del corazón congénitas, etc.

Creación de estándares

College of American Pathologists' Laboratory Standards for Next-Generation Sequencing Clinical Tests

Nazneen Aziz, PhD; Qin Zhao, PhD; Lynn Bry, MD, PhD; Denise K. Driscoll, MS, MT(ASCP)SBB; Birgit Funke, PhD; Jane S. Gibson, PhD; Wayne W. Grody, MD; Madhuri R. Hegde, PhD; Gerald A. Hoeltge, MD; Debra G. B. Leonard, MD, PhD; Jason D. Merker, MD, PhD; Rakesh Nagarajan, MD, PhD; Linda A. Palicki, MT(ASCP); Ryan S. Robetorye, MD; Iris Schrijver, MD; Karen E. Weck, MD; Karl V. Voelkerding, MD

- Recomendaciones en documentación, trazabilidad, validación, almacenamiento,...
 - Extracción de ADN
 - Preparación de librerías
 - Referencias y versiones
 - Pipeline bioinformático de análisis

Creación de estándares

Interpretación de variantes.

Table 5

Rules for Combining Criteria to Classify Sequence Variants

Pathogenic

- 1 1 Very Strong (PVS1) AND
 - a. ≥1 Strong (PS1-PS4) OR
 - b. ≥2 Moderate (PM1-PM6) OR
 - c. 1 Moderate (PM1-PM6) and 1 Supporting (PP1-PP5) OR
 - d. ≥2 Supporting (PP1–PP5)
- 2 ≥2 Strong (PS1-PS4) OR
- 1 Strong (PS1-PS4) AND
 - a. ≥3 Moderate (PM1-PM6) OR
 - b. 2 Moderate (PM1–PM6) AND ≥2 Supporting (PP1–PP5) OR
 - c. 1 Moderate (PM1-PM6) AND ≥4 Supporting (PP1-PP5)

Likely Pathogenic

- 1 1 Very Strong (PVS1) AND 1 Moderate (PM1-PM6) OR
- 1 Strong (PS1-PS4) AND 1-2 Moderate (PM1-PM6) OR
- 3 1 Strong (PS1–PS4) AND ≥2 Supporting (PP1–PP5) OR
- 4 ≥3 Moderate (PM1-PM6) OR
- 5 2 Moderate (PM1-PM6) AND ≥2 Supporting (PP1-PP5) OR
- 6 1 Moderate (PM1-PM6) AND ≥4 Supporting (PP1-PP5)

Benign

- 1 Stand-Alone (BA1) OR
- ≥2 Strong (BS1–BS4)

Likely Benign

- 1 Strong (BS1-BS4) and 1 Supporting (BP1-BP7) OR
- 2 ≥2 Supporting (BP1–BP7)

Variants should be classified as Uncertain Significance if other criteria are unmet or the criteria for benign and pathogepic are contradictory.

Standars and Guidelines for the Interpretation of sequence variants. American College of Medical Genetics and Genomics. Association for Molecular Pathology. 2015

Ejemplo de variant calling: Bacterias

 Identificación de Brotes de origen alimentario, "Crisis del Pepino"

2011 Causado por la toxi-infección de Escherichia coli enterohemorrágica Primera muerte en Alemania Mayo (EHEC) (Escherichia coli O104:H4) Alemania acusa a los pepinos españoles Muerte: 32 personas en Alemania, 1 Suecia y 1 Francia y 2263 30 Prohibición de importaciones de infectados en 12 países de Europa. verduras de España y Alemania Crisis Política y Económica Europa: Laboratorios alemanes desmienten Alto impacto en la Economía oficialmente que los pepinos Europea, mayor afectación en la españoles sean el foco de Española infección Junio Resolución de la crisis Secuenciación Genoma Universitätsklinikum Hamburg-Eppendorf

Ejemplo de variant calling: Bacterias

• Identificación de Brotes de origen alimentario, "Crisis del

Pepino"

Figure 1. Timeline of the Open-Source Genomics Program.

After receiving the first batch of DNA samples on May 28, 2011, sequencing runs with the use of the Ion Torrent Personal Genome Machine (PGM) and Illumina (small-insert library) were initiated simultaneously. On May 31, the second batch of DNA was received and used for Illumina large-insert sequencing. An assembly of the Ion Torrent reads was released on June 2, which enabled subsequent analyses (multilocus sequence typing, phylogenetic analysis, and genome comparisons). Errors in the Ion Torrent data were corrected with the use of later Illumina data, and a high-quality draft genome sequence was created. GS denotes generation of sequencing technology. The symbols at May 28 and May 31 in the timeline indicate the arrival of DNA samples.

Ejemplo de variant calling: Bacterias

 Identificación de Brotes de origen alimentario, "Crisis del Pepino"

Figure 2. Phylogenetic Comparisons of 53 Escherichia coli and Shigella Isolates.

Genomic sequences were compared with the use of 100 bootstrap calculations, as described by Sahl et al. 35 The species-based phylogeny was inferred with the use of 2.56 Mbp of the conserved core genome. The O104:H4 isolates are shown in orange, the reference enteroaggregative E coli (EAEC) isolates in blue, and the enterohemorrhagic E coli isolates in green. (The classification of the other strains is shown in Fig. 4 and Table 4 in the Supplementary Appendix.) The O104:H4 isolates cluster into a single clade (dark gray); in contrast, the reference EAEC isolates are extremely divergent and are represented throughout the phylogeny.

Pipeline variant calling: Bacterias

Fastq Preprocessing	Quality ControlLow quality read filtering and trimming
Reference genome selection & Mapping	
Variant calling	
High quality SNP selection & Build phylip matrix	☐ site coverage above 10x☐ supported by al least 90% of the reads
Phylogenetic tree	Evolution model seleceb by AIC criteriumMaximum Likelihood tree
Cluster definition	

Software disponible

• CFSAN SNP Pipeline

Extracción de SNPs de alta calidad de aislados relacionados http://snppipeline.readthedocs.io/en/latest/

- GATK, modo haploide
- Samtools
- Varscan
- Snippy

Identificación de variantes haploides y construcción de filogenia usando core genome SNPs

http://github.com/tseemann/snippy

• Live-SET

High-quality SNPs para crear filogenia para investigación de brotes

https://github.com/lskatz/lyve-SET

Generación de matriz de SNPs

Sample n

Generación de matriz de SNPs

SNP matrix

Ejemplo de llamada a variantes: Virus

IRMA: Iterative Refinement Meta-Assembler

Shepard et al BMC Genomics 2016, 17:708

Ejemplo de llamada a variantes: Virus

¿Preguntas?