

3rd Romanian Master of Sciences 2010

Physics – Theoretical Tour

A. ELECTRICITY

a) $I_F < 200$ mA (the fuse is intact):

The fuse F acts as a short-circuit, and the voltage across it vanishes. No electric current I_I flows in R_1 , $I_I = 0$.

No electric current flows in L_2 for t = 0, the voltage across the fuse is zero, the electric current I_2 is zero, $I_2 = 0$.

Across the inductance L_1 a constant voltage V causes I to increase at a constant rate $V/L_1=1000$ A/s. 0.25 p

All electrical current *I* flows in the fuse, $I_F = I$.

The melting condition is realized for $\,t=L_{\mathrm{l}}I_{F}/V$ = 0.2 ms

0.5 r

total a) 1.5 p

b) Once the fuse melts, the current I_F vanishes, $I_F = 0$.

Right after the fuse melts, the electric current I conserves its value before melting, I=200mA. 0.25 p

The current flowing in L₂ is free of jumps (discontinuities). Then, right after melting the fuse I_2 =0.0.25 p

As a consequence of Kirchhoff's first law, right after melting the fuse, the current I_I flowing in R_I is 200 mA, causing a voltage drop across R_I of 200 V, with the "+" pole in the right hand side.

As a consequence, a voltage across L_1 develops $V-R_1I_F$ =200V-10V=190V, causing the variation of I at a rate $\Delta I/\Delta t$ given by $(V-R_1I_F)/L_1$ =19000A/s. Right after the fuse melts, the voltage polarity causes I to decrease at the rate above. 0.5 p

The 200 V voltage drop across R_1 produces an increase of I_2 . Right after the fuse melts, the voltage drop across R_2 is zero, therefore, immediately after melting the fuse, I_2 raises at a rate of **40000A**/s.

From the first Kirchhoff law, it follows that immediately after the fuse melts, the current I_I falls at a rate of **59000** A/s. 0.5 p

total b) 2.25 p

c) For *t* approaching infinity:

I_I=10 mA 0.25 p

 I_2 =50 mA 0.25 p

I=60 mA 0.25 p total c) 0.75 p

B. MICHELSON'S "LADDER"

a. 1.5p

It is obvious that for $\alpha = 0$, the path length difference δ between two neighboring light rays is (n-1)h. This difference increases with α .

$$\delta = nh + a\sin\alpha - h\cos\alpha = (n-1)h + a\sin\alpha + h(1-\cos\alpha).$$

$$\delta = k\lambda, k \in \mathbb{N}.$$

One can see that in our specific example we get a diffraction maximum for $\alpha = 0$ and $k_0 = 10,000$. So the condition for the principal maxima can be written:

$$a \sin \alpha + h(1 - \cos \alpha) = p\lambda$$
, $p = k - k_0 > 0$.

b. 1.5p

One knows that the intensity of the light diffracted by a slit with aperture *a* depends on the deflecting angle according to:

$$I(\alpha) = I_0 \left[\frac{\sin\left(\frac{\pi a \sin \alpha}{\lambda}\right)}{\frac{\pi a \sin \alpha}{\lambda}} \right]^2.$$

The first diffraction minimum occurs for

$$\frac{\pi a \sin \alpha}{\lambda} = \pi \Rightarrow \sin \alpha = \frac{\lambda}{a} = 5 \cdot 10^{-5} .$$

For such a small angle,

$$\delta \approx a\alpha + h\frac{\alpha^2}{2} \approx a\alpha \approx a\sin\alpha = p\lambda$$
.

$$\sin \alpha < \frac{\lambda}{a} \Rightarrow p < 1 \Rightarrow p = 0 \Rightarrow k = k_0$$
.

So the only principal maximum that can be seen is the "central" one.

c. 1.5p

Increasing the wavelength of the light stream by $\Delta\lambda$ can lead to the overlapping of two such central maxima.

$$k_0 \lambda = (k_0 - 1)(\lambda + \Delta \lambda) \Rightarrow \Delta \lambda \approx \frac{\lambda}{k_0} = 0.5 \text{A}$$
.