Lab 3

Student Name: Zhichao Wang

Student E-mail: hansen_wong@sjtu.edu.cn Unit System: Si unit Lab 3 Pre-setting Fixed joint Determine the bolt diameter From shear stress From max cutting load of the bolt Crumpling stress of the eye Determine the length of the bolt Strength Design on break load Strength Design on cutting Sliding joint/Small-sliding joints Determine the bolt diameter From shear stress From max cutting load of the bolt Eye thickness Crumpling along the inner diameter d of the bush Crumpling along the outer diameter *D* of the bush **Bolted connection parameters** Check on tensile strength Check on shear strength **Design Parameters** Fixed joint Eye Double Eye Bolt Washer Sliding joint Eye Double eye Bolt Sleeve Washer Sketch

Pre-setting

Table – Variants of Task

	Fixed joint				Sliding joint/Small-sliding joints			
Variants	1	2	3	4	1	2	3	4
P, [N]	160000	185000	175000	155000	145000	150000	165000	170000

Variant №: 1

For fixed joint, $P=160000\,\mathrm{N}$, and for sliding joint, $P=145000\,\mathrm{N}$.

Table 1 - Material Properties

Materials	Ultimate tensile strength σ_{ultr} [MPa]	Proof strength σ_{02} , [MPa]	Shear strength* $\tau_{\rm ult}$, $\tau_{\rm 02}$ (% of tensile strength)	Modulus of elasticity E, [Gpa]	Shear modulus G, [Gpa]	Density, ρ, [g/cm³]
ЗОХГСА	1100	850	63	210	78	7,85
OT4	700	600	50	110	80	4,5
BT20	1000	910	50	110	44	4,5
BHC-2	1250	1100	60	190	76	7,8

Materials of eye and double eye are chosen to be **BT20** while the material of the bolt complex is chosen to be **30XFCA**.

Fixed joint

Determine the bolt diameter

From shear stress

$$au_{cut} = rac{P_{cut}}{A_{cut}} = rac{2P}{\pi d^2} \Rightarrow d_{bolt} \geq \sqrt{rac{2P}{\pi au_{ult}}} = 12.12 ext{ mm}$$

We round up to 16 mm.

$$\tau_{cut} = \frac{2P}{\pi d^2} = 398 \ \mathrm{MPa}$$

$$\eta = rac{ au_{ult}}{ au_{cut}} = 1.7$$

From max cutting load of the bolt

							Т	аблица 2		
Номипальный	Марка материала									
диаметр глад-	30XFCA, 16XCH, 40XH2MA			30ХГСН2А	14X17H2		07X16H6			
кой части	Температура, ^о С									
стержия	25	100 - 300	400	25	25	400	25	400		
болта, мм	Расчетная разрушающая изгрузка на срез, Н (кгс)									
4	8340 (850)	7950 (810)	-	-	6370(650)	4800(490)	-			
5	13400 (1370)	13400 (1370)	-	-	10000(1020)	7450(760)	13330(1360)	12160(1240		
6	19300 (1970)	19300 (1970)	16500 (1680)	28000 (2850)	14410(1470)	10780(1100)	19310(1970)	17550(1790		
7	26400 (2690)	26400 (2690)	22400 (2280)		19700(2010)	14700(1500)	26270(2680)	23820(2430		
8	34300 (3500)	34300 (3500)	29200 (2980)	49700 (5070)	25680(2620)	19310(1970)	34410(3510)	31180(3180)		
9	43700 (4450)	43700 (4450)	37100 (3780)	-	32650(3330)	24410(2490)	43530(4440)	39510(4030)		
10	53900 (5490)	53900 (5490)	45600 (4650)	77500 (7900)	40290(4110)	30200(3080)	53820(5490)	48820(4980)		
12	77500 (7900)	77500 (7900)	-	111800 (11400)	-	-	-	-		
14	105000 (10700)	105000 (10700)	-	152100 (15500)	-	-	-	_		
15	120700 (12300)	120700 (12300)	_	-	-	-	-			
16	137300 (14000)	137300 (14000)		198200 (20200)	-					
17	155000 (15800)	155000 (15800)						-		
18	174600 (17800)	174600 (17800)		251100(25600)		<u> </u>	-			
20	214800 (21900)	214800 (21900)	-	311000 (31700)	1	 	-	-		
22	260000 (26500)	260000 (26500)		375700 (38300)			-			
. 24	310000 (31600)	310000 (31600)		447300 (45600)	-	-	-	-		

According to the table, $[P_{cut}]=120700~\mathrm{N}$

$$P_{cut} = 80000 \ {
m N} \leq [P_{cut}] = 120700 \ {
m N}$$
 is true.

$$\eta = \frac{[P_{cut}]}{P_{cut}} = 1.5$$

Crumpling stress of the eye

For the eye,
$$a_{eye} = \frac{P}{d \cdot \sigma_{ult}} = \frac{160000}{0.016 \cdot 10^9} = 10 \text{ mm}.$$

For the double eye, $a_{double_eye} = \frac{P/2}{d \cdot \sigma_{ult}} = \frac{80000}{0.016 \cdot 10^9} = 5 \text{ mm}.$

Thus, $[\sigma_{crump}] = K\sigma_{ult} = 1000 \text{ MPa}$

$$\sigma_{eye} = \frac{P}{d \cdot a_{eye}} = \frac{160000}{0.016 \cdot 0.01} = 1000 \text{ MPa}$$

$$\sigma_{double_eye} = \frac{P/2}{d \cdot a_{double_eye}} = \frac{80000}{0.016 \cdot 0.005} = 1000 \text{ MPa}$$

$$\eta_{eye} = \eta_{double_eye} = 1$$

Determine the length of the bolt

We will use a low self-locking hex nut. According to *OCT 1 33048-80 Гайки шестигранные прорезные низкие сталь*, we select a nut from steel 30XГСА. Thread - M16x1.5. Nut height H=9 mm. Turnkey size S=22 mm. Head diameter $D_1=24.6$ mm and $D_2=21$ mm.

Take the washer from steel 30XГСA according to *OCT 1 34507-80 Шайбы сталь*, we have $d_1=17$ mm and $d_2=32$ mm, and its height is 2 mm.

Taking into account the protruding threaded part of the bolt from the nut and its chamfer (according to the design rules, the threaded part of the bolt should protrude from the nut by 1-2 turns), then add the following value in addition to the bolt size:

$$\Delta l = 1.5 imes 2 + 1.5 = 4.5$$
 mm.

$$L=a_{eye}+2a_{double_eye}+\delta_{washer}+\delta_{nut}=10+10+9+2+4.5=35.5$$
 mm.

We round up to L=36 mm.

There is a standard bolt length according to *OCT 1 31132-80 Болты с шестигранной уменьшенной головкой и короткой резьбовой частью сталь* 36 mm.

Strength Design on break load

For the eye structure,

$$x = \frac{P_{\mathrm{break}}}{2 \cdot a \cdot \sigma_{\mathrm{ut}}} = \frac{160000}{2 \cdot 0.01 \cdot 10^9} = 8 \, \mathrm{mm}.$$

$$\sigma_{\text{break,eye}} = \frac{P_{\text{break}}}{A_{\text{break}}} = \frac{P_{\text{break}}}{(b-d) \cdot a} = \frac{P_{\text{break}}}{2 \cdot a \cdot x} = \frac{160000}{2 \cdot 0.01 \cdot 0.008} = 1000 \text{ MPa}$$

$$[\sigma_{\rm break, eye}] = K_{\rm break} \sigma_{\rm ult} = \left(0.565 + 0.48 \cdot \frac{y}{x} - 0, 1 \cdot \frac{b}{a}\right) \sigma_{\rm ult} = \left(0.565 + 0.48 \cdot 1.4 - 0.1 \cdot 2\right) \cdot 1000 = 1037 \ \rm MPa$$

 $\sigma_{\mathrm{break,eye}} \leq [\sigma_{\mathrm{break,eye}}]$ is true.

$$\eta_{ ext{eye}} = rac{[\sigma_{ ext{break,eye}}]}{\sigma_{ ext{break,eye}}} = 1.037$$

For the double-eye structure,

$$\sigma_{\text{break,double-eye}} = \frac{P_{\text{break}}}{A_{\text{break}}} = \frac{P_{\text{break}}}{(b-d) \cdot a} = \frac{P_{\text{break}}}{2 \cdot a \cdot x} = \frac{80000}{2 \cdot 0.005 \cdot 0.008} = 1000 \text{ MPa}$$

$$[\sigma_{\mathrm{break,double-eye}}] = K_{\mathrm{break}}\sigma_{\mathrm{ult}} = (0.565 + 0.48 \cdot \frac{y}{x} - 0.1 \cdot \frac{b}{a})\sigma_{\mathrm{ult}} = (0.565 + 0.48 \cdot 1.4 - 0.1 \cdot 2) \cdot 1000 = 1037 \,\mathrm{MPa}$$

 $\sigma_{\mathrm{break,double-eye}} \leq [\sigma_{\mathrm{break,double-eye}}]$ is true.

$$\eta_{ ext{double-eye}} = rac{\left[\sigma_{ ext{break,double-eye}}
ight]}{\sigma_{ ext{break,double-eye}}} = 1.037$$

Strength Design on cutting

From the drawing, $y^{st}=16.3\,\mathrm{mm}.$

For the eye structure,

$$au_{
m cut, eye} = rac{P_{
m cut}}{F_{
m cut}} = rac{P_{
m cp}}{2 \cdot a \cdot y^*} = rac{160000}{2 \cdot 0.01 \cdot 0.0163} = 490.8 \, {
m MPa}.$$

$$[au_{
m cut,eye}] = 500$$
 MPa.

$$au_{\mathrm{cut,eye}} \leq [au_{\mathrm{cut,eye}}]$$
 is true.

$$\eta_{
m eye} = rac{[au_{
m cut,eye}]}{ au_{
m cut,eve}} = 1.02.$$

For the double-eye structure,

$$\tau_{\rm cut,double-eye} = \frac{P_{\rm cut}}{F_{\rm cut}} = \frac{P_{\rm cp}}{2 \cdot a \cdot y^*} = \frac{80000}{2 \cdot 0.005 \cdot 0.0163} = 490.8 \, {\rm MPa}.$$

$$[au_{
m cut,double-eye}] = 500$$
 MPa.

$$au_{
m cut,double-eye} \leq [au_{
m cut,double-eye}]$$
 is true.

$$\eta_{ ext{double-eye}} = rac{[au_{ ext{cut,double-eye}}]}{ au_{ ext{cut,double-eye}}} = 1.02.$$

Sliding joint/Small-sliding joints

Determine the bolt diameter

From shear stress

$$au_{cut} = rac{P_{cut}}{A_{cut}} = rac{2P}{\pi d^2} \Rightarrow d_{bolt} \geq \sqrt{rac{2P}{\pi au_{ult}}} = 11.54 ext{ mm}$$

We round up to 14 mm.

$$au_{cut} = rac{2P}{\pi d^2} = 471 ext{ MPa}$$

$$\eta = rac{ au_{ult}}{ au_{cut}} = 1.47$$

From max cutting load of the bolt

According to the table, $[P_{cut}]=10500~\mathrm{N}$

$$P_{cut} = 72500 \ \mathrm{N} \leq [P_{cut}] = 105000 \ \mathrm{N}$$
 is true.

$$\eta = rac{[P_{cut}]}{P_{cut}} = 1.45$$

Eye thickness

Crumpling along the inner diameter d of the bush

$$[\sigma_{
m CM}] = K_{
m CM} \cdot \sigma_{
m B} = 0.2 \cdot 1000 = 200$$
 MPa.

$$\sigma_{\rm CM} = \frac{P_{\rm CM}}{F_{\rm CM}} = \frac{P_{\rm CM}}{2 \cdot d \cdot (L_{\rm BT} + b)} \Rightarrow (L_{\rm BT} + b) = \frac{P_{\rm CM}}{2 \cdot d \cdot [\sigma_{\rm CM}]} = \frac{145000}{2 \cdot 14 \cdot 200} = 25.9 \, {\rm mm}.$$

According to *OCT 1 11127-73 Втулки с буртиком для запрессовки бронза, b=1.5* mm. We choose $L_{
m BT}=30$ mm.

$$a_1=2\cdot 30+2=62~\mathrm{mm}$$

$$\sigma_{
m CM} = rac{P_{
m CM}}{F_{
m CM}} = rac{P_{
m CM}}{2 \cdot d \cdot (L_{
m BT} + b)} = rac{145000}{2 \cdot 14 \cdot (30 + 1.5)} = 164.4 \
m{MPa}.$$

$$\eta = rac{[\sigma_{
m CM}]}{\sigma_{
m CM}} = rac{200}{164.4} = 1.22$$

Crumpling along the outer diameter D of the bush

According to OCT 1 11127-73 Втулки с буртиком для запрессовки бронза, $D=17\,\mathrm{mm}$ and $D_1=21\,\mathrm{mm}$.

$$[\sigma_{\mathrm{CM}}] = K \cdot \sigma_{\mathrm{B}} = 1 \cdot 1000 = 1000$$
 MPa.

$$L_{
m BT}=rac{P_{
m CM}}{2\cdot D\cdot \sigma_{B}}=rac{145000}{2\cdot 17\cdot 1000}=4.26
ightarrow 6$$
 mm.

$$a_2 = 2 \cdot 6 + 2 = 14 \text{ mm}.$$

$$\sigma_{
m CM} = rac{P_{
m CM}}{2 \cdot D \cdot L_{
m RT}} = rac{145000}{2 \cdot 17 \cdot 6} = 710.78 \, {
m MPa}.$$

$$\eta = rac{[\sigma_{
m CM}]}{\sigma_{
m CM}} = rac{1000}{710.78} = 1.41.$$

Of the two options, choose the largest eye thickness. Then $a=62\,\mathrm{mm}$.

Bolted connection parameters

We will use a low self-locking hex nut. According to *OCT 1 33048-80 Гайки шестигранные прорезные низкие сталь*, we select a nut from steel 30XГСА. Thread - M14x1.5. Nut height H=8 mm. Turnkey size S=19 mm. Head diameter $D_1=21.1$ mm and $D_2=18$ mm.

Take the washer from steel 30XГСA according to *OCT 1 34507-80 Шайбы сталь*, we have $d_1=15$ mm and $d_2=28$ mm, and its height is 2 mm.

$$\Delta l = 1.5 imes 2 + 1.5 = 4.5$$
 mm.

$$L=62+10+2\cdot 1.5+8+2+4.5=89.5 \, \mathrm{mm}$$

We round up to 90 mm.

Check on tensile strength

$$K_{\text{break}} = 0.565 + 0.48 \cdot 1 - 0.1 \cdot 2 = 0.845$$

$$[\sigma_{
m break}] = K_{
m break} \cdot \sigma_{
m B} = 0.845 \cdot 1000 = 845$$
 MPa.

$$x = \frac{P}{2 \cdot a \cdot K_{\text{break}} \cdot \sigma_{\text{B}}} = \frac{145000}{2 \cdot 62 \cdot 0.845 \cdot 1000} = 1.38 \Rightarrow x = 2 \text{ mm}.$$

$$b=2x+D=2\cdot 2+17=21\,\mathrm{mm}$$

$$\sigma_{
m break} = rac{P}{F_{
m break}} = rac{P}{(b-D) \cdot a} = rac{145000}{(21-17) \cdot 62} = 584.68 \, {
m MPa}.$$

$$\eta = \frac{\left[\sigma_{\rm break}\right]}{\sigma_{\rm break}} = \frac{845}{584.68} = 1.45.$$

Check on shear strength

From the drawing, $y^* = 9.7$ mm.

$$au_{
m cp} = rac{P_{
m cp}}{2 \cdot a \cdot y^*} = rac{145000}{2 \cdot 62 \cdot 9.7} = 120.55 \, {
m MPa}.$$

$$[au_{
m cp}]= au_{
m B}=500$$
 MPa.

$$\eta = rac{[au_{
m cp}]}{ au_{
m cp}} = rac{500}{120.55} = 4.15.$$

Design Parameters

Fixed joint

Eye

Material: BT20

Thickness: a=10 mm

Diameter: $d=16~\mathrm{mm}$

 $x=8\,\mathrm{mm}$

```
y^*=16.3\,\mathrm{mm}
```

$$b=32\ \mathrm{mm}$$

Double Eye

Material: BT20

Thickness: $a=5~\mathrm{mm}$

 ${\rm Diameter:}\, d=16~{\rm mm}$

 $x=8\,\mathrm{mm}$

 $y^*=16.3\,\mathrm{mm}$

 $b=32\ \mathrm{mm}$

Bolt

Material: 30ΧΓCA

 ${\rm Diameter:}\, d=16~{\rm mm}$

 ${\it Height:}\,\, H=9\,{\rm mm}$

Turnkey size: $S=22\ \mathrm{mm}$

Head diameter: $D_1=24.6~\mathrm{mm}$ and $D_2=21~\mathrm{mm}$

 ${\rm Length:}\, L=36\,{\rm mm}$

Washer

Material: 30ΧΓCA

 $d_1=17\,\mathrm{mm}$

 $d_2=32\,\mathrm{mm}$

 ${\it Height:}\ h=2\,{\it mm}$

Sliding joint

Eye

Material: BT20

 ${\rm Diameter:}\, d=17~{\rm mm}$

 $a=62\ \mathrm{mm}$

 $x=2\,\mathrm{mm}$

 $b=21\ \mathrm{mm}$

 $y^*=9.7\,\mathrm{mm}$

Double eye

Material: BT20

 ${\rm Diameter:}\, d=14~{\rm mm}$

 $x=2\,\mathrm{mm}$

 $b=21~\mathrm{mm}$

 $y^*=9.7\,\mathrm{mm}$

Bolt

Material: 30ΧΓCA

 ${\rm Diameter:}\, d=14~{\rm mm}$

 ${\rm Height:}\, H=8\,{\rm mm}$

Turnkey size $S=19\,\mathrm{mm}$

Head diameter $D_1=21.1\,\mathrm{mm}$ and $D_2=18\,\mathrm{mm}$

 $L=90\ \mathrm{mm}$

Sleeve

Material: Bronze

 $b=1.5\,\mathrm{mm}$

 $L=30\ \mathrm{mm}$

 $D=17\,\mathrm{mm}$

 $D_1=21\,\mathrm{mm}$

 $d=14\,\mathrm{mm}$

Washer

Material: 30ΧΓCA

 $d_1=15\,\mathrm{mm}$ and $d_2=28\,\mathrm{mm}$

 ${\it Height:}\ h=2\,{\it mm}$

Sketch

