Scilab Textbook Companion for Fluid Mechanics by R. H. F. Pao¹

Created by
Rahul Paramata
Chemical Engineering
Chemical Engineering
IIT Bombay
College Teacher
Na
Cross-Checked by
Lavitha Pereira

May 27, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Fluid Mechanics

Author: R. H. F. Pao

 ${\bf Publisher:}\,$ John Wiley and Sons

Edition: 2

Year: 1995

ISBN: 0486683567

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		
2	Fluid Statics	5
3	Fluid Kinematics	11
4	Fluid Dynamics	13
5	Fluid Viscosity and Flow of real fluids	24
6	Dimensional Analysis and Model similitude	28
7	Flow of In compressible fluids in closed conduits	30
8	Fluid Compressibility and Compressible Flow	43
9	Fluid flow about Immersed Bodies	55
10	Dynamic Lift	62
11	Flow of Liquids in Open Channels	66

List of Scilab Codes

Exa 2.1	Final pressure
Exa 2.2	Final specific weight
Exa 2.3	Absolute pressure in feet of water
Exa 2.4	Absolute pressure of Air
Exa 2.5	Pressure difference
Exa 2.6	Magnitude of total force
Exa 2.7	Magnitude of total force
Exa 2.8	Location of metacenter
Exa 3.1	Mean velocity
Exa 3.5	component of velocity
Exa 4.1	dp/ds
Exa 4.2	pressure difference
Exa 4.3	Power transferred
Exa 4.4	Kinetic energy correction factor
Exa 4.5.a	Pressure at the lower end if friction is neglected 18
Exa 4.5.b	Pressure at the lower end if friction is neglected 16
Exa 4.6.b	Pressure
Exa 4.6	discharge
Exa 4.7	Time required
Exa 4.8	Rate of flow
Exa 4.9	Discharge
Exa 4.11	Horsepower
Exa 4.12	component of force
Exa 4.14.b	
Exa 4.14	Exit velocity
Exa 4.16	Horsepower dissipation
Exa 4.17	Acceleration
Exa 5.3	Viscosity of oil

Exa 5.4	Alpha/ beta
Exa 5.5.a	Energy loss
Exa 5.5.b	Flow rate
Exa 5.7	Flow in model
Exa 6.3	Pressure drop
Exa 6.4	Time, Accelaration and Force ratio
Exa 7.1.b	Kinematic viscosity
Exa 7.1.c	Theoretical entrance transistion length
Exa 7.1	Reynolds number
Exa 7.2	Horsepower required
Exa 7.3	Alpha/ beta
Exa 7.5	Horsepower input of the fan
Exa 7.7.a	velocity
Exa 7.7.b	buffer zone
Exa 7.7.c	velocity
Exa 7.7.d	velocity
Exa 7.7.e	shearing stress
Exa 7.8	velocity
Exa 7.9	roughness factor
Exa 7.10	Pressure difference
Exa 7.11	horsepower required
Exa 7.12	Discharge
Exa 7.13	Discharge
Exa 7.14	Diameter of steel pipe
Exa 8.1	Final temperature
Exa 8.2	Pressure difference
Exa 8.3	Speed of test plane
Exa 8.4.a	Velocity at section
Exa 8.4.b	Pressure difference between two stations 48
Exa 8.4.c	Area ratio
Exa 8.4.d	Density of air at station
Exa 8.5	Mass rate of air flow
Exa 8.6	Mass rate of air flow
Exa 8.7.a	weight of air flow through the nozzle
Exa 8.7.b	Mach number exit
Exa 8.8.a	Exit mach number
Exa 8.8.b	Exit mach number
Exa 8.9	Mach number upstream

Exa	8.10	Pressure at section
Exa	8.11	Limiting pressure in adiabatic case
Exa	9.1.b	Boundary layer thickness
Exa	9.1	Drag on the plates
Exa	9.2.b	Horsepower required
Exa	9.2.c	Total frictional drag
Exa	9.2	Total frictional drag
Exa	9.3	Drag on the model
Exa	9.4	Velocity of flow
Exa	9.5	Horsepower required
Exa	9.6	terminal velocity
Exa	10.2.a	Max. theoretical porpulsive force 62
Exa	10.2.b	Force required
		Boundary circulation
Exa	10.3.b	Horsepower required 64
		Horsepower required 64
Exa	11.1.a	Discharge using Darcy equation
Exa	11.1.b	Discharge using kutter ganguillet formula 67
Exa	11.1.c	Discharge using bazin formula
		Discharge using Darcy equation 69
		froude number
		Critical depth
	11.2	Minimum scale ratio
Exa	11.3	Discharge in the channel
Exa	11.4	distance from vena contracta

Chapter 2

Fluid Statics

Scilab code Exa 2.1 Final pressure

```
1 clc
2 clear
3 //Initialization of variables
4 gam=0.0765 //lb/ft^3
5 p=14.7 //psia
6 dz=10560 //ft
7 //calculations
8 pg=p*144/gam
9 p2=p*exp(-dz/pg)
10 gam2=p2/p*gam
11 //results
12 printf("Final pressure = %.2f psia",p2)
13 printf("\n Final specific weight = %.4f lb/ft^3", gam2)
```

Scilab code Exa 2.2 Final specific weight

```
1 clc
```

```
2 clear
3 //Initialization of variables
4 gam=0.0765 //lb/ft^3
5 p=14.7 //psia
6 dz=10560 //ft
7 n=1.235
8 //calculations
9 pg=p*144/gam
10 p2=p*(1- dz/pg *(n-1)/n)^(n/(n-1))
11 gam2=(p2/p)^(1/n) *gam
12 //results
13 printf("Final pressure = %.2 f psia",p2)
14 printf("\n Final specific weight = %.4 f lb/ft^3", gam2)
```

Scilab code Exa 2.3 Absolute pressure in feet of water

Scilab code Exa 2.4 Absolute pressure of Air

```
1 clc
2 clear
3 //Initialization of variables
4 pb=28 //in mercury
5 d=13.6 //g/cc
6 \text{ gam} = 62.4
7 \text{ xm} = 15 // \text{in}
8 \text{ xw} = 10 // in
9 patm=28 //in
10 //calculations
11 pB = -xm/12 *gam/144 *d + xw*gam/144
12 pair=patm/12 *gam/144 *d - xm/12 *gam/144 *d
13 //results
14 printf ("The pressure gauge at B indicates a reading
      of %.2 f psi vacuum", -pB)
15 printf("\n Absolute pressure of Air = \%.2 f psia",
      pair)
```

Scilab code Exa 2.5 Pressure difference

```
1 clc
2 clear
3 //Initialization of variables
4 pb=28.5 //in mercury
5 d=13.6 //g/cc
6 gam=62.4
7 xm=10 //in
8 xw=2 //ft
9 //calculations
10 dp= xw*gam/144 - xm/12 *gam/144 + xm/12 *gam/144 *d
11 //results
12 printf("Pressure difference = %.2f psi",dp)
13 if dp>0 then
```

Scilab code Exa 2.6 Magnitude of total force

```
1 clc
2 clear
3 //Initialization of variables
4 \text{ gam} = 62.4
5 \text{ x} 1 = 4 // ft
6 \text{ x2=6} // \text{ft}
7 y1=6 //ft
8 z=8 //ft
9 dy = 1 / ft
10 angle=60 // degrees
11 //calculations
12 A1 = x1 * x2
13 \quad A2=1/2 \quad *y1^2
14 \ yc = (A1*(x1+x2+dy) + A2*(x1+x2))/(A1+A2)
15 hc=yc*sind(angle)
16 F=hc*gam*(A1+A2)
17 \text{ ic1}=1/12 *x1*y1^3
18 \text{ ic2=1/36*y1*x2^3}
19 ad1=A1*(x1+x2+dy-yc)^2
20 ad2=A2*(x1+x2-yc)^2
21 It=ic1+ic2+ad1+ad2
22 ydc=It/(yc*(A1+A2))
23 function m= momen(u)
24
        m = gam * sind(angle) * (2*x1+u)*0.5*(x2-u)*(y1-u)
```

```
25 endfunction
26 MED=intg(0, y1, momen)
27 FEDC=gam*sind(angle) *A2*(x1+x2)
28 xed=MED/FEDC
29 xp= (A1*2*(x1+x2+dy) + (x1+x2)*(A2)*(x1+xed))/(A1*(x1+x2+dy) + A2*(x1+x2))
30 //results
31 printf("Magnitude of total force = %d lb",F)
32 printf("\n Vertical location of force = %.3 f ft",ydc
)
33 printf("\n Horizontal location of force = %.2 f ft
from AB",xp)
34 printf("\n Direction of force is perpendicular to
the plane surface")
```

Scilab code Exa 2.7 Magnitude of total force

```
1 clc
2 clear
3 //Initialization of variables
4 \text{ gam} = 62.4
5 z=10 //ft
6 z2=5 //ft
7 z3=4.25 //ft
8 p=2 //psig
9 //calculations
10 h=p*144/gam
11 Av=z^2
12 Fh=gam*(z+h)*Av
13 hpc=1/12 *z^4 /((h+z)*z^2)
14 Fv = gam*(z2+h) *z^2 + gam*pi/4 *z^2 *z
15 xp = (gam*(z2+h) *z^2 *z^2 + gam*%pi/4 *z^2 *z*z^3)/(Fv)
      )
16 \text{ F=} \text{sqrt} (\text{Fh}^2 + \text{Fv}^2)
17 //results
```

Scilab code Exa 2.8 Location of metacenter

```
1 clc
2 clear
3 //Initialization of variables
4 gam = 0.0765 / lb / ft^3
5 1 = 40 // ft
6 \text{ w=16} // \text{ft}
7 d=8 //ft
8 z=6 //ft
9 BG=1 //ft
10 //calculations
11 I=1/12 *1*w^3
12 V = 1 * w * z
13 IVG=I/V - BG
14 MB = I/V
15 // results
16 printf ("I/V -BG = \%.2 \,\mathrm{f} ft ", IVG)
17 if IVG >0 then
18
       printf("\n Barge is stable")
19 else
        printf("\n The barge is unstable")
20
21 end
22 printf("\n Location of metacenter = \%.2 f ft above
      the center of buoyancy ", MB)
```

Chapter 3

Fluid Kinematics

Scilab code Exa 3.1 Mean velocity

```
1 clc
2 clear
3 //Initialization of variables
4 gam=0.0765 //lb/ft^3
5 \ Q=100 \ // ft^3/sec
6 d1=2.5 //ft
7 d2=9 //in
8 1=12 //ft
9 //calculations
10 \text{ A1=\%pi/4 *d1^2}
11 V1=Q/A1
12 \quad A2 = \%pi * 1 * d2 / 12
13 \quad V2 = Q/A2
14 //results
15 printf ("Mean velocity of flow at section 1 = \%.1 \, \text{f} ft
      /sec", V1)
16 printf("\n Mean velocity of flow at section 2 = \%.2 \,\mathrm{f}
        ft/sec", V2)
```

Scilab code Exa 3.5 component of velocity

```
1 clc
2 clear
3 //Initialization of variables
4 x=3
5 y=1
6 //calculations
7 u=-3*y^2
8 v=-6*x
9 //results
10 printf("Horizontal component of velocity = %d ",u)
11 printf("\n vertical component of velocity = %d ",v)
```

Chapter 4

Fluid Dynamics

Scilab code Exa 4.1 dp/ds

```
1 clc
2 clear
3 //Initialization of variables
4 rho=1.5 //g/cc
5 \text{ g=32.2} // \text{ft/s}^2
6 \, dzds = -0.5
7 x 1 = 0
8 x2=3
9 //calculations
10 function dpds = func(s)
       dpds=-rho*g*dzds - rho*(3+9*s)*9
12 endfunction
13 r1 = func(x1)
14 r2=func(x2)
15 //results
16 printf("At the upper end, dp/ds = \%.1 f lb/ft^2 per
      foot", r1)
17 printf("\n At the lower end, dp/ds = \%.1 f lb/ft^2
      per foot", r2)
```

Scilab code Exa 4.2 pressure difference

```
1 clc
2 clear
3 //Initialization of variables
4 g=32.2 //ft/s^2
5 v1=3 //ft/s
6 z1=1.5 //ft
7 rho=1.5 //g/cc
8 z2=0
9 v2=30 //ft/s
10 //calculations
11 dp= rho*(v2^2 /2 - g*z1 +g*z2 - v1^2 /2)
12 //results
13 printf("pressure difference = %.1 f lb/ft^2",dp)
```

Scilab code Exa 4.3 Power transferred

```
1 clc
2 clear
3 //Initialization of variables
4 pd=15 //psia
5 rhod=0.005//slug/ft^3
6 pi=150 //psia
7 rhoi=0.03 //slug/ft^3
8 dz=-25 //ft
9 vd=1000 //ft/s
10 vi=100 //ft/s
11 ud=200 //Btu/slug
12 ui=250 //Btu/slug
13 g=32.2 //ft/s^2
14 J=778
```

Scilab code Exa 4.4 Kinetic energy correction factor

```
1 clc
2 clear
3 //Initialization of variables
4 r0=1
5 \text{ ri}=0
6 //calculations
7 function v= func1(y)
       v = 2*v^(1/7) *(v-1)
9 endfunction
10 V=intg(ri,r0,func1)
11 function alpha= func2(y)
       alpha= 1/(\%pi*V^3) *2*\%pi *(y)^(3/7) *(y-1)
12
13 endfunction
14 a2=intg(ri,r0,func2)
15 //results
16 printf ("Kinetic energy correction factor = \%.2 \,\mathrm{f}", a2)
```

Scilab code Exa 4.5.a Pressure at the lower end if friction is neglected

```
1 clc
2 clear
3 //Initialization of variables
4 gam=62.4
5 pu=40 //psia
6 zu=25 //ft
7 vu=8 //ft/s
8 g=32.2 //ft/s^2
9 vl=8 //ft/s
10 zl=0 //ft
11 //calculations
12 pl= gam*(pu*144/gam +zu-zl+ (vu^2 -vl^2)/(2*g))/144
13 //results
14 printf("Pressure at the lower end if friction is neglected = %.2 f psig",pl)
```

Scilab code Exa 4.5.b Pressure at the lower end if friction is neglected

```
1 clc
2 clear
3 //Initialization of variables
4 hl=5
5 \text{ gam} = 62.4
6 \text{ pu}=40 // \text{psia}
7 \text{ zu}=25 // \text{ft}
8 \text{ vu=8} //\text{ft/s}
9 g=32.2 //ft/s^2
10 v1=8 // ft / s
11 zl=0 // ft
12 //calculations
13 pl= gam*(pu*144/gam +zu-zl-hl+ (vu^2 -vl^2)/(2*g))
      /144
14 //results
15 printf ("Pressure at the lower end if friction is
       neglected = \%.2 f psig", pl)
```

Scilab code Exa 4.6.b Pressure

```
1 clc
 2 clear
 3 //Initialization of variables
 4 \text{ gam} = 62.4
 5 pa=0
 6 \text{ za=15} // \text{ft}
 7 va=0
8 pg=0
9 zg=0
10 g=32.2 //ft/s^2
11 d=4 //in
12 dg=2 //in
13 \text{ zd=}25 //\text{ft}
14 //calculations
15 vg = sqrt(2*g*(pa/gam + za + va^2 / (2*g) - pg/gam - zg))
16 \text{ Ag=\%pi/4 *(dg/12)^2}
17 Q = Ag * vg
18 A = \%pi/4 * (d/12)^2
19 \text{ v4=Q/A}
20 pc=-v4^2 *gam/(2*g*144)
21 \text{ pgd} = za-zd - v4^2 /(2*g)
22 \text{ pd=pgd*gam}/144
23 pe=-v4^2 *gam/(2*g*144)
24 \text{ pfg} = za - v4^2 /(2*g)
25 \text{ pf=pfg*gam}/144
26 //results
27 printf ("Pressure at C = \%.2 f \text{ psig}", pc)
28 printf("\n Pressure at D = \%.2 f psig",pd)
29 printf("\n Pressure at E = \%.2 f \text{ psig}", pe)
30 printf("\n Pressure at F = \%.2 f \text{ psig}",pf)
```

Scilab code Exa 4.6 discharge

```
1 clc
2 clear
3 //Initialization of variables
4 \text{ gam} = 62.4
5 pa=0
6 za=15 //ft
7 \text{ va=0}
8 pg=0
9 zg=0
10 g=32.2 //ft/s^2
11 dg=2 //in
12 //calculations
13 vg= sqrt(2*g*(pa/gam +za+va^2 /(2*g) -pg/gam - zg))
14 \text{ Ag=\%pi/4 *(dg/12)^2}
15 Q = Ag * vg
16 // results
17 printf("discharge = \%.2 \, \text{f} \, \text{ft} \, ^3/ \, \text{sec}",Q)
```

Scilab code Exa 4.7 Time required

```
1 clc
2 clear
3 //Initialization of variables
4 d1=6 //ft
5 d2=3 //in
6 pa=2 //ft
7 d=13.6
8 sg=0.75
9 h1=5 //sec
10 h2=3 //sec
```

Scilab code Exa 4.8 Rate of flow

```
1 clc
2 clear
3 //Initialization of variables
4 x=12 //ft
5 angle=30 //degrees
6 g=32.2 //ft/s^2
7 z=-2 //ft
8 d=2 //in
9 //calculations
10 vj= x/cosd(angle) *sqrt(g/(2*(x*tand(angle) -z)))
11 Q=%pi/4 *(d/12)^2 *vj
12 //results
13 printf("Rate of flow = %.2 f ft^3/s",Q)
```

Scilab code Exa 4.9 Discharge

```
1 clc
2 clear
3 //Initialization of variables
4 x=10 //in of mercury
```

```
5 sg=13.6 //g/cc
6 d1=8 //in
7 d2=4 //in
8 g=32.2 //ft/s^2
9 //calculations
10 vdiff=x/12 *sg- x/12
11 Vts=vdiff/(1-(d2/d1)^4)
12 Vt=sqrt(2*g*Vts)
13 Q=Vt*%pi/4 *(d2/12)^2
14 //results
15 printf("Discharge = %.2f ft^3/s",Q)
```

Scilab code Exa 4.11 Horsepower

```
1 clc
2 clear
3 //Initialization of variables
4 \text{ gam} = 62.4
5 ds=12 //in
6 dd = 10 //in
7 Q=4 //ft^3/s
8 \text{ pd}=40 // \text{psia}
9 \text{ ps=-6} // \text{psia}
10 \text{ zd=5} // \text{ft}
11 zs=0
12 g=32.2 //ft/s^2
13 //calculations
14 \text{ vs=Q/(\%pi/4 *(ds/12)^2)}
15 vd=Q/(\%pi/4 *(dd/12)^2)
16 emp = (pd-ps)*144/gam + zd-zs + (vd^2 - vs^2)/(2*g)
17 hpp=emp*Q*gam/550
18 //results
19 printf ("Horsepower input of the test pump = %.1 f hp"
       ,hpp)
```

Scilab code Exa 4.12 component of force

```
1 clc
2 clear
3 //Initialization of variables
4 d1=12 //in
5 d2=8 //in
6 v1=15 // ft/s
7 p1=12 // psig
8 p2=5.85 //psig
9 rho=1.94 // ft^3/ slug
10 angle=60 // degrees
11 //calculations
12 Q = \%pi/4 * (d1/12)^2 *v1
13 v2=Q/(\%pi/4 *(d2/12)^2)
14 pa1=p1*%pi/4 *(d1)^2
15 \text{ pa2=p2*\%pi/4 *(d2)^2}
16 \text{ qv1=rho*Q*v1}
17 \text{ qv2=rho*Q*v2}
18 Fx=pa1+qv1+ cosd(angle)*(pa2+qv2)
19 Fy=sind(angle)*(pa2+qv2)
20 //results
21 printf("Horizontal component of force = %d lb",Fx)
22 printf("\n Vertical component of force = %d lb", Fy)
```

Scilab code Exa 4.14.b Thrust

```
1 clc
2 clear
3 //Initialization of variables
4 de=4 //in
5 T=1000 //lb
```

```
6 g=32.2 //ft/s^2
7 vele=8.5 //lb/s
8 pe=16.5 //psia
9 pa=14.7 //psia
10 pa2=1 //psia
11 //calculations
12 Ae=%pi/4 *de^2
13 Ve= (T-(pe-pa)*Ae)*g/vele
14 T2=vele/g *Ve + (pe-pa2)*Ae
15 //results
16 printf("Thrust = %d lb",T2)
```

Scilab code Exa 4.14 Exit velocity

```
1 clc
2 clear
3 // Initialization of variables
4 de=4 //in
5 T=1000 //lb
6 g=32.2 //ft/s^2
7 vele=8.5 //lb/s
8 pe=16.5 //psia
9 pa=14.7 //psia
10 //calculations
11 Ae=%pi/4 *de^2
12 Ve= (T-(pe-pa)*Ae)*g/vele
13 //results
14 printf("Exit velocity = %d ft/s", Ve)
```

Scilab code Exa 4.16 Horsepower dissipation

```
1 clc
2 clear
```

```
3 //Initialization of variables
4 q = 240 //ft^3/sec/ft
5 v1 = 60 //ft/s
6 \text{ gam} = 62.4
7 rho=1.94 //slug/ft<sup>3</sup>
8 g=32.2 //ft/s^2
9 //calculations
10 y1=q/v1
11 v2=8.6 //ft/s
12 y2 = 28 / ft
13 hl= (y1+ v1^2 /(2*g)) - (y2+ v2^2 /(2*g))
14 \text{ hpp=hl*q*gam/550}
15 // results
16 printf("Downstream depth = %.1 f ft", y2)
17 printf("\n Horsepower dissipation = %d hp per foot
      width", hpp)
```

Scilab code Exa 4.17 Acceleration

```
1 clc
2 clear
3 //Initialization of variables
4 dh=3 //in
5 L=12 //in
6 g=32.2 //ft/s^2
7 //calculations
8 a=dh/L *g
9 //results
10 printf("Acceleration = %.2 f ft/s^2",a)
```

Chapter 5

Fluid Viscosity and Flow of real fluids

Scilab code Exa 5.3 Viscosity of oil

```
1 clc
2 clear
3 //Initialization of variables
4 \text{ m} = 1155 // \text{lb}
5 \text{ gam} = 62.4
6 \text{ spg} = 0.93
7 t = 3*60 // sec
8 d=1/6 //in
9 L=20 //ft
10 dp=2.5 // psi
11 //calculations
12 Q=m/(t*spg*gam)
13 A = \%pi/4 *d^2
14 V = Q/A
15 mu=dp*d^2 *144/(32*V*L)
16 //results
17 printf("Viscosity of oil = \%.4 \,\mathrm{f}\,\mathrm{lb-sec/ft^2}", mu)
```

Scilab code Exa 5.4 Alpha/ beta

```
1 clc
2 clear
3 //Initialization of variables
4 g = 32.2
5 \text{ gam} = 62.4
6 r0=1
7 //calculations
8 function al= func1(r)
       al=8/r0^8 *(r0^2-r^2)^3 *(2*r)
10 endfunction
11 alpha=intg(0,r0,func1)
12 function a2= func2(r)
       a2=4/r0^6 *(r0^2 -r^2)^2 *(2*r)
13
14 endfunction
15 bet=intg(0,r0,func2)
16 //results
17 printf("Alpha = \%d", alpha)
18 printf("\n beta = \%.2 \, f", bet)
```

Scilab code Exa 5.5.a Energy loss

```
1 clc
2 clear
3 //Initialization of variables
4 spg=0.93
5 mu=3.1e-3 //lb-sec/ft^2
6 gam=62.4
7 z=50 //m
8 p1=60 //psia
9 p2=25 //psia
```

```
// calculations
plg=144*p1
p2g=144*p2 + spg*gam*z
dp=plg-p2g
// results
if plg>p2g then
    printf("The flow is in upward direction")
else
    printf("The flow is in downward direction")
end
printf("\n Energy loss= %d ft-lb/ft^3",dp)
```

Scilab code Exa 5.5.b Flow rate

```
1 clc
2 clear
3 //Initialization of variables
4 hl=2140 // \text{ft} - \text{lb} / \text{ft} ^3
5 \text{ spg} = 0.93
6 mu=3.1e-3 //lb-sec/ft^2
7 \text{ gam} = 62.4
8 z = 50 / m
9 p1=60 // psia
10 p2=25 //psia
11 d=1 //in
12 //calculations
13 V = h1*(d/12)^2 /(32*mu*z)
14 \ Q=V*\%pi/4 *(d/12)^2
15 \quad Q2 = Q * 7.48 * 60
16 //results
17 printf ("Flow rate = \%.2 \,\mathrm{f} gal/min", Q2)
```

Scilab code Exa 5.7 Flow in model

```
1 clc
2 clear
3 //Initialization of variables
4 muw=2.04e-5 //lb-sec/ft^2
5 rhow=1.94 //slugs/ft^3
6 mua=3.74e-7 //lb-sec/ft^2
7 rhoa=0.00237 //slug/ft^3
8 Qw=200 //gal/min
9 Lr=5
10 //calculations
11 Qa=Qw*Lr *(rhow/rhoa)*(mua/muw)
12 //results
13 printf("Flow in model = %d gal/min",Qa)
```

Chapter 6

Dimensional Analysis and Model similitude

Scilab code Exa 6.3 Pressure drop

```
1 clc
2 clear
3 //Initialization of variables
4 \, dg = 0.5 \, //in
5 \, dw = 12 \, //in
6 rhog=0.022 // slug/ft^3
7 rhow=1.94 //slug/ft<sup>3</sup>
8 muw=2.34e-5 //lb-sec/ft^2
9 mug=3.50e-7 //lb-sec/ft^2
10 Qg=0.15 // ft^3/s
11 dpg=100 //lb/ft^2
12 //calculations
13 Vr=dg/dw *rhog/rhow *muw/mug
14 \ Qr = Vr * dw^2 / dg^2
15 \quad Qw = Qr * Qg
16 dpr=rhow/rhog *(Vr)^2
17 dpw=dpr*dpg
18 //results
19 printf("Flow rate of water = \%.2 \, \text{f} \, \text{ft} \, ^3/\, \text{s}", Qw)
```

```
20 printf("\n Pressure drop = \%.1 f lb/ft^2", dpw)
```

Scilab code Exa 6.4 Time, Accelaration and Force ratio

```
1 clc
2 clear
3 //Initialization of variables
4 Lr = 1/10
5 \text{ rhom}=2
6 \text{ rhop=1.94}
7 //calculations
8 Vr=sqrt(Lr)
9 Tr=Lr/Vr
10 ar=Vr/Tr
11 Fr=rhom/rhop *ar*Lr^3
12 // results
13 printf("Velocity ratio = \%.4 \, \text{f}", Vr)
14 printf("\n Time ratio = \%.4 \, \text{f}", Tr)
15 printf("\n Acceleration ratio = %d ",ar)
16 printf("\n Force ratio = \%.6 \, f", Fr)
```

Chapter 7

Flow of In compressible fluids in closed conduits

Scilab code Exa 7.1.b Kinematic viscosity

```
1 clc
2 clear
3 //Initialization of variables
4 z1=2 //ft
5 \ Q=0.1 \ // gal/min
6 \text{ alpha=2}
7 g=32.2 // ft/s^2
8 L=4 //ft
9 D=1/96 //ft
10 //calculations
11 v2=Q/(7.48*60* \%pi/4 *D^2)
12 \text{ hl}=z1-\text{alpha}*v2^2 /(2*g)
13 Nr = 64/hl *L/D *v2^2 /(2*g)
14 \text{ mu} = \text{v2} \times \text{D/Nr}
15 //results
16 printf("Kinematic viscosity = \%.2e ft^2/s", mu)
```

Scilab code Exa 7.1.c Theoretical entrance transistion length

```
1 clc
2 clear
3 //Initialization of variables
4 z1=2 //ft
5 \ Q=0.1 \ // gal/min
6 \text{ alpha=2}
7 g=32.2 //ft/s^2
8 L=4 //ft
9 D=1/96 //ft
10 //calculations
11 v2=Q/(7.48*60* \%pi/4 *D^2)
12 \text{ hl}=z1-alpha*v2^2 /(2*g)
13 Nr = 64/hl *L/D *v2^2 /(2*g)
14 Ld=0.058*Nr*D
15 //results
16 printf ("Theoretical entrance transistion length = \%
      .3 f ft", Ld)
```

Scilab code Exa 7.1 Reynolds number

```
1 clc
2 clear
3 //Initialization of variables
4 z1=2 //ft
5 Q=0.1 //gal/min
6 alpha=2
7 g=32.2 //ft/s^2
8 L=4 //ft
9 D=1/96 //ft
10 //calculations
11 v2=Q/(7.48*60* %pi/4 *D^2)
12 h1=z1-alpha*v2^2 /(2*g)
13 Nr=64/h1 *L/D *v2^2 /(2*g)
```

Scilab code Exa 7.2 Horsepower required

```
1 clc
2 clear
3 //Initialization of variables
4 Q = 350 // gal/min
5 D=6 //in
6 \text{ rho} = 0.84
7 \text{ gam} = 62.4
8 g=32.2 //ft/s^2
9 mu=9.2e-5 //lb-sec/ft^2
10 L=5280 //ft
11 //calculations
12 V=Q/(7.48*60*\%pi/4*(D/12)^2)
13 Nr=V*D/12 *rho*gam/g/mu
14 f = 0.3164/(Nr)^0.25
15 hl=f*L*12/D *V^2 /(2*g)
16 hp=hl*gam*Q*rho/(550*7.48*60)
17 //resu; ts
18 printf ("Horsepower required = \%.2 \, \text{f hp/mile}", hp)
```

Scilab code Exa 7.3 Alpha/ beta

```
1 clc
2 clear
3 //Initialization of variables
4 n=7
```

```
5 // calculations
6 alpha= (n+1)^3 *(2*n+1)^3 /(4*n^4 *(n+3)*(2*n+3))
7 bet=(n+1)^2 *(2*n+1)^2 /(2*n^2 *(n+2)*(2*n+2))
8 // results
9 printf("alpha = %.2f",alpha)
10 printf("\n beta = %.2f",bet)
```

Scilab code Exa 7.5 Horsepower input of the fan

```
1 clc
2 clear
3 //Initialization of variables
4 \text{ spg} = 0.84
5 z=1 //in
6 \text{ gam} = 62.4
7 patm=14.7 // psia
8 \text{ T} = 459.6 + 85 / R
9 R = 53.3
10 g=32.2 //ft/s^2
11 D=3 // ft
12 mu = 3.88e - 7 / lb - sec / ft^2
13 //calculations
14 \text{ dp=spg*z/12 *gam}
15 rho=patm*144/(R*T*g)
16 umax=sqrt(2*dp/rho)
17 \ V=0.8*umax
18 \text{ Nr} = V * D * \text{rho/mu}
19 V2=0.875*umax
20 mass=rho*%pi/4 *D^2 *V2
21 \text{ emf} = V2^2 / (2*g)
22 \text{ hp=emf*mass*g/550}
23 //results
24 printf("Mass flow rate = \%.2 \, \text{f slug/sec}", mass)
25 printf("\n Horsepower input of the fan = \%.2 \, \mathrm{f} hp", hp
```

Scilab code Exa 7.7.a velocity

```
1 clc
2 clear
3 //Initialization of variables
4 D=36 //in
5 rho=0.00226 // slug/ft^3
6 mu=3.88e-7 //lb-sec/ft^2
7 \text{ umax} = 62.2 // \text{ft/s}
8 V = 54.5 //ft/s
9 \text{ Nr} = 9.5 \text{ e} 5
10 \text{ r0} = 18 //\text{in}
11 r = 12 //in
12 n=8.8
13 k = 0.4
14 //calculations
15 f = 0.0032 + 0.221/(Nr^0.237)
16 \text{ Vs=} \text{sqrt}(f/8) *V
17 y=r0-r
18 u1=umax*(y/r0)^(1/n)
19 u2=umax + 2.5*Vs*log(y/r0)
20 u3=umax+ Vs/k *(sqrt(1-y/r0) + log(1-sqrt(1-y/r0)))
21 \quad u4=Vs*(5.5+5.75*log10(Vs*y/12*rho/mu))
22 //results
23 printf ("Using equation 7-13, velocity = \%.1 \, \text{f ft/s}",
24 printf("\n Using equation 7-18, velocity = \%.1 \, \text{ft/s}
25 printf("\n Using equation 7-25, velocity = \%.1 \, \text{ft/s}
26 printf("\n Using equation 7-34a, velocity = \%.1 f ft/
      s", u4)
```

Scilab code Exa 7.7.b buffer zone

```
1 clc
2 clear
3 //Initialization of variables
4 D=36 //in
5 rho=0.00226 // slug/ft^3
6 mu=3.88e-7 //lb-sec/ft^2
7 umax=62.2 // ft/s
8 V = 54.5 //ft/s
9 \text{ Nr} = 9.5 \text{ e} 5
10 \text{ r0} = 18 //\text{in}
11 r=12 //in
12 n=8.8
13 k = 0.4
14 //calculations
15 f = 0.0032 + 0.221/(Nr^0.237)
16 \text{ Vs=} \text{sqrt}(f/8) *V
17 y=r0-r
18 delta1=D*5*sqrt(8) /(Nr*sqrt(f))
19 \text{ vss} = 70
20 thick=13*delta1
21 / results
22 printf("Outer edge of buffer zone is at %d", vss)
23 printf("\n Thickness of buffer zone = \%.4 \, \mathrm{f} in", thick
```

Scilab code Exa 7.7.c velocity

```
1 clc
2 clear
3 //Initialization of variables
```

```
4 D=36 //in
5 rho=0.00226 // slug/ft^3
6 mu=3.88e-7 //lb-sec/ft^2
7 umax=62.2 // ft / s
8 V = 54.5 //ft/s
9 \text{ Nr} = 9.5 \text{ e} 5
10 \text{ r0=18} //\text{in}
11 r=12 //in
12 n=8.8
13 \ k=0.4
14 //calculations
15 f = 0.0032 + 0.221/(Nr^0.237)
16 \text{ Vs=} \text{sqrt}(f/8) *V
17 delta1=D*5*sqrt(8) /(Nr*sqrt(f))
18 y=delta1
19 u2=Vs^2 *delta1/12 *rho/mu
20 \text{ u1=62.2 *(delta1/18)^(1/n)}
21 //results
22 printf("using equation 7-13, velocity = \%.1 \, \text{f ft/s}",
23 printf("\n using equation 7-30, velocity = \%.1 \, \text{f ft/s}
      ",u2)
```

Scilab code Exa 7.7.d velocity

```
1 clc
2 clear
3 //Initialization of variables
4 D=36 //in
5 rho=0.00226 //slug/ft^3
6 mu=3.88e-7 //lb-sec/ft^2
7 umax=62.2 //ft/s
8 V=54.5 //ft/s
9 Nr=9.5e5
10 r0=18 //in
```

```
11  r=12 //in
12  n=8.8
13  k=0.4
14  // calculations
15  f=0.0032 + 0.221/(Nr^0.237)
16  Vs=sqrt(f/8) *V
17  delta1=D*5*sqrt(8) /(Nr*sqrt(f))
18  y=14*delta1
19  u2=62.2*(y/18)^(1/n)
20  u3=Vs*(5.50 + 5.75*log10(Vs*y/12 *rho/mu))
21  // results
22  printf("Using equation 7-13, velocity = %.1 f ft/s", u2)
23  printf("\n using equation 7-34a, velocity = %.1 f ft/s", s", u3)
```

Scilab code Exa 7.7.e shearing stress

```
1 clc
2 clear
3 //Initialization of variables
4 D=36 //in
5 rho=0.00226 // slug/ft^3
6 mu=3.88e-7 //lb-sec/ft^2
7 umax=62.2 // ft/s
8 V = 54.5 //ft/s
9 \text{ Nr} = 9.5 \text{ e} 5
10 r0 = 18 //in
11 r = 12 //in
12 n=8.8
13 \ k=0.4
14 //calculations
15 f = 0.0032 + 0.221/(Nr^0.237)
16 \text{ Vs=} \text{sqrt}(f/8) *V
17 delta1=D*5*sqrt(8) /(Nr*sqrt(f))
```

Scilab code Exa 7.8 velocity

```
1 clc
2 clear
3 //Initialization of variables
4 umax=62.2 //ft/s
5 r0=18 //in
6 e=0.0696 //in
7 r=6 //in
8 //calculations
9 Vs=umax/(8.5 + 5.75*log10(r0/e))
10 u=Vs*(8.5 + 5.75*log10(r/e))
11 //results
12 printf("Velocity = %.1 f ft/s",u)
```

Scilab code Exa 7.9 roughness factor

```
1 clc
2 clear
3 //Initialization of variables
4 d=8 //in
5 V=3.65 //ft/s
```

```
6 u1=4.75 //ft/s
7 r0=4 //in
8 //calculations
9 f=0.0449
10 Q=V*%pi/4 *(d/12)^2
11 Vs=(u1-V)/3.75
12 r0e=10^((u1/Vs - 8.5)/5.75)
13 e=r0/r0e
14 //results
15 printf("Flow rate = %.2f ft^3/s",Q)
16 printf("\n roughness factor = %.3f in",e)
```

Scilab code Exa 7.10 Pressure difference

```
1 clc
2 clear
3 //Initialization of variables
4 e0=0.00085 //ft
5 \text{ alpha=0.25 } // \text{year}
6 t=15 // years
7 \text{ r0=3 } // \text{in}
8 \ Q = 500 \ // gal/min
9 d=6 //in
10 mu = 2.04e - 5 //lb - sec/ft^2
11 rho=1.94 // s \log s / ft^3
12 g=32.2 //ft/s^2
13 L=1 // ft
14 \text{ gam} = 62.4
15 //calculations
16 = 15 = e0 * (1 + alpha * t)
17 ratio=r0/(12*e15)
18 V=Q/(7.48*60*\%pi/4*(d/12)^2)
19 Nr=V*d*rho/(mu*12)
20 f = 0.036
21 hl=f*L/(d/12) *V^2/(2*g)
```

Scilab code Exa 7.11 horsepower required

```
1 clc
2 clear
3 //Initialization of variables
4 d2=4 //in
5 d1=3 //in
6 = 0.0005 // ft
7 mu=3.75e-5 //lb-sec/ft^2
8 rho=1.94 // s \log s / ft^3
9 Q = 100 //gal/min
10 L=100 // ft
11 g=32.2 //ft/s^2
12 \text{ gam} = 62.4
13 //calculations
14 A = \%pi/4 *((d2/12)^2 -(d1/12)^2)
15 WP = \%pi * (d1 + d2) / 12
16 R = A/WP
17 RR = 2*R/e
18 V = Q/(7.48*60*A)
19 Nr = V * 4 * R * rho/mu
20 f = 0.035
21 \text{ hl}=f*L/(4*R) *V^2/(2*g)
22 hp=hl*Q/(7.48*60) *gam/550
23 //results
24 printf("horsepower required = \%.2 \text{ f hp}/100 \text{ ft}",hp)
```

Scilab code Exa 7.12 Discharge

```
1 clc
2 clear
3 //Initialization of variables
4 p1=25 // psig
5 p2=20 //psig
6 d1 = 18 //in
7 d2=12 //in
8 C1 = 0.25
9 \text{ gam} = 62.4
10 g=32.2 //ft/s^2
11 //calculations
12 Vr = (d2/d1)^2
13 \text{ xv} = (p2-p1)*144/gam
14 \ V22=xv/(-1-C1+Vr^2) *2*g
15 V2=sqrt(V22)
16 \ Q=V2*\%pi/4 *(d2/12)^2
17 //results
18 printf("Discharge = \%.1 \,\mathrm{f}\, ft^3/\mathrm{s}",Q)
```

Scilab code Exa 7.13 Discharge

```
1 clc
2 clear
3 //Initialization of variables
4 V61=10.8 //ft/s
5 V81=6.05 //ft/s
6 r0=3 //in
7 e=0.00015
8 d1=6 //in
9 rho=1.94 //slugs/ft^3
10 mu=2.34e-5 //ft-lb/s^2
11 //calculations
12 roe=r0/(12*e)
13 Nr1=V61*(d1/12)*rho/mu
14 f6=0.0165
```

```
15 V6=11.6 //ft/s

16 V8=6.52 //ft/s

17 Q=V6*%pi/4 *(d1/12)^2

18 //results

19 printf("Discharge = %.2f ft^3/s",Q)
```

Scilab code Exa 7.14 Diameter of steel pipe

```
1 clc
2 clear
3 //Initialization of variables
4 L=1000 //ft
5 Q=2000/(7.48*60) //ft63/s
6 g=32.2 //ft/s^2
7 p=5 //psi/1000 ft
8 \text{ gam} = 62.4
9 \text{ sp=0.7}
10 f=0.02
11 \quad r0 = 0.904/2
12 e=0.00015
13 mu = 7e-6 / lb - ft / s^2
14 L = 1000 // ft
15 //calculations
16 hl = p * 144/(sp * gam)
17 D5=f*8*L*Q^2 /(\%pi^2 *g*hl)
18 D = D5^{(1/5)}
19 Nr = 4 * Q * sp * gam / (g * (%pi * D * mu))
20 f2=0.0145
21 D5=f2*8*L*Q^2 /(\%pi^2 *g*hl)
22 D1 = D5^(1/5)
23 //results
24 printf("Diameter of steel pipe = \%.3 \, \text{f} ft",D1)
```

Chapter 8

Fluid Compressibility and Compressible Flow

Scilab code Exa 8.1 Final temperature

```
1 clc
2 clear
3 //Initialization of variables
4 pi = 14.7 // psia
5 \text{ pf} = 50 // \text{psia}
6 \text{ cp=0.240 } //\text{Btu/lb R}
7 cv=0.170 //Btu/lb R
8 J=778
9 T=60+459.6 //R
10 //calculations
11 R=J*(cp-cv)
12 \text{ k=cp/cv}
13 gam = pi * 144/(R*T)
14 \quad V=1/gam
15 Vf = V * (pi/pf)^(1/k)
16 \text{ Tf}=T*(pf*Vf/(pi*V))
17 //results
18 printf("Initial volume = \%.2 \, \text{f} \, \text{ft}^3", V)
19 printf("\n Final volume = \%.2 \, f cu ft", Vf)
```

Scilab code Exa 8.2 Pressure difference

```
1 clc
2 clear
3 // Initialization of variables
4 ratio=0.99
5 E=3.19e5 //lb/in^2
6 // calculations
7 pd=-E*log(ratio)
8 // ersults
9 printf("Pressure difference = %d psi",pd)
```

Scilab code Exa 8.3 Speed of test plane

```
1 clc
2 clear
3 //Initialization of variables
4 k=1.4
5 g=32.2 //ft/s^2
6 R=53.3 //ft-lb/lb R
7 T=389.9 //R
8 Nm=2
9 //calculations
10 c=sqrt(k*g*R*T)
11 V=Nm*c*3600/5280
12 //results
13 printf("Speed of test plane = %d mph", V)
```

Scilab code Exa 8.4.a Velocity at section

```
1 clc
2 clear
3 //Initialization of variables
4 T1=584.6 //R
5 g=32.2 //ft/s^2
6 k = 1.4
7 R=53.3 // \text{ft} - \text{lb} / \text{lb} R
8 V1 = 600 //ft/s
9 T2=519.6 //R
10 //calculations
11 Nm1=V1/(sqrt(k*g*R*T1))
12 Nm22 = ((1+(k-1)/2 *Nm1^2)/(T2/T1) -1)*(2/(k-1))
13 \text{ Nm2} = \text{sqrt}(\text{Nm22})
14 V2 = Nm2 * sqrt(k*g*R*T2)
15 //results
16 printf("Velocity at section 2 = \%d \text{ ft/s}", V2)
```

Scilab code Exa 8.4.b Pressure difference between two stations

```
1 clc
2 clear
3 //Initialization of variables
4 T1=584.6 //R
5 g=32.2 //ft/s^2
6 k=1.4
7 R=53.3 //ft-lb/lb R
8 V1=600 //ft/s
9 T2=519.6 //R
10 pa=14.7 //psi
11 p1=50 //psia
12 //calculations
13 Nm1=V1/(sqrt(k*g*R*T1))
14 Nm22= ((1+ (k-1)/2 *Nm1^2)/(T2/T1) -1)*(2/(k-1))
```

```
15 Nm2=sqrt(Nm22)
16 pr=((1+ (k-1)/2 *Nm1^2)/(1+ (k-1)/2 *Nm2^2))^(k/(k-1))
17 p2=pr*(p1+pa)
18 dp=p1+pa-p2
19 //results
20 printf("Pressure difference between two stations = % .1 f psi",dp)
```

Scilab code Exa 8.4.c Area ratio

```
1 clc
 2 clear
 3 //Initialization of variables
4 T1=584.6 //R
5 g=32.2 //ft/s^2
 6 k = 1.4
7 R=53.3 // \operatorname{ft} - \operatorname{lb} / \operatorname{lb} R
8 V1 = 600 //ft/s
9 T2=519.6 //R
10 //calculations
11 Nm1=V1/(sqrt(k*g*R*T1))
12 Nm22 = ((1+(k-1)/2 *Nm1^2)/(T2/T1) -1)*(2/(k-1))
13 \text{ Nm2} = \text{sqrt} (\text{Nm22})
14 \text{ Ar} = \text{Nm} 1/\text{Nm} 2 * ((1 + (k-1)/2 * \text{Nm} 2^2)/(1 + (k-1)/2 * \text{Nm} 1)
        ^2))^((k+1)/(2*(k-1)))
15 //results
16 printf ("Area ratio = \%.3 \, \text{f}", Ar)
```

Scilab code Exa 8.4.d Density of air at station

```
1 clc
2 clear
```

```
3 //Initialization of variables
4 T1=584.6 //R
5 g=32.2 //ft/s^2
6 k = 1.4
7 R=53.3 // \text{ft} - \text{lb} / \text{lb} R
8 V1 = 600 //ft/s
9 T2=519.6 //R
10 pa=14.7 // psi
11 p1=50 //psia
12 //calculations
13 Nm1=V1/(sqrt(k*g*R*T1))
14 \text{ Nm} 22 = ((1+(k-1)/2 * \text{Nm} 1^2)/(T2/T1) -1)*(2/(k-1))
15 \text{ Nm2} = \text{sqrt} (\text{Nm22})
16 pr = ((1+(k-1)/2 *Nm1^2)/(1+(k-1)/2 *Nm2^2))^(k/(k)
      -1))
17 p2=pr*(p1+pa)
18 rho1=(p1+pa)*144/(g*R*T1)
19 rho2=p2*144/(g*R*T2)
20 //results
21 printf ("Density of air at station 1 = \%.5 \,\mathrm{f} \,\mathrm{slug}/\,\mathrm{ft}^3
      ", rho1)
22 printf("\n Density of air at station 2 = \%.5 f \text{ slug}/
       ft^3", rho2)
```

Scilab code Exa 8.5 Mass rate of air flow

```
1 clc
2 clear
3 //Initialization of variables
4 p0=19.7 //psia
5 R=53.3 //lb-ft/lb-R
6 T0=539.6 //R
7 g=32.2 //ft/s^2
8 pa=14.7 //psia
9 d=1 //in
```

Scilab code Exa 8.6 Mass rate of air flow

```
1 clc
2 clear
3 //Initialization of variables
4 p0=64.7 // psia
5 R=53.3 //lb-ft/lb-R
6 T0=539.6 //R
7 g=32.2 //ft/s^2
8 pa=14.7 // psia
9 d=1 //in
10 k = 1.4
11 //calculations
12 rho0=p0*144/(g*R*T0)
13 pr=pa/p0
14 G = \pi / 4 *(d/12)^2 *(k*p0*144*rho0)^(0.5) *(2/(k+1))
      ^((k+1)/(2*(k-1)))
15 //results
16 printf("Mass rate of air flow = \%.5 \, \text{f slug/sec}", G)
```

Scilab code Exa 8.7.a weight of air flow through the nozzle

```
1 clc
2 clear
```

```
3 //Initialization of variables
4 k = 1.4
5 R=53.3 //lb-ft/lb R
6 pe=14.7 // psia
7 p0 = 114.7 // psia
8 \text{ T0=524.6} / \text{R}
9 g=32.2 //ft/s^2
10 d=0.5 //in
11 //calculations
12 pr=pe/p0
13 \text{ prcr} = 0.528
14 pr=prcr*p0
15 rho0 = p0*144/(g*R*T0)
16 G = \%pi/4 *(d/12)^2 *(k*p0*144*rho0)^(0.5) *(2/(k+1))
      ((k+1)/(2*(k-1)))
17 \text{ Wt} = G * g
18 // results
19 printf ("weight of air flow through the nozzle = \%.4 \,\mathrm{f}
       lb/s", Wt)
```

Scilab code Exa 8.7.b Mach number exit

```
1 clc
2 clear
3 //Initialization of variables
4 k=1.4
5 R=53.3 //lb-ft/lb R
6 pe=14.7 //psia
7 p0=114.7 //psia
8 T0=524.6 //R
9 g=32.2 //ft/s^2
10 d=0.5 //in
11 Nm1=1
12 //calculations
13 pr=pe/p0
```

Scilab code Exa 8.8.a Exit mach number

```
1 clc
2 clear
3 //Initialization of variables
4 k=1.4
5 R = 53.3 / lb - ft / lb R
6 p0 = 100 / psia
7 \text{ T0=534.6} //R
8 g=32.2 //ft/s^2
9 d=0.5 //in
10 \, \text{Nm} \, 1 = 1
11 A = 2/144 // ft^2
12 //calculations
13 disp("Exit mach number is found using trial and
      error")
14 \, \text{Nme} = 2.44
15 \text{ rho0=p0*144/(g*R*T0)}
16 G= A*sqrt(k*p0*144*rho0) *(2/(k+1))^((k+1)/(2*(k-1))
17 pe=p0*(1/(1+(k-1)/2 *Nme^2))^(k/(k-1))
18 Te=T0/(1+ (k-1)/2 *Nme^2)
19 Ve=Nme*(sqrt(k*g*R*Te))
20 / results
```

```
21 printf("\n Exit mass flow rate = %.3 f slug/s",G)
22 printf("\n Exit pressure = %.2 f psia",pe)
23 printf("\n Exit temperature = %.1 f R",Te)
24 printf("\n Exit velocity = %d ft/s",Ve)
25 printf("\n Exit mach number = %.2 f",Nme)
```

Scilab code Exa 8.8.b Exit mach number

```
1 clc
2 clear
3 //Initialization of variables
4 k = 1.4
5 R=53.3 //lb-ft/lb R
6 p0 = 100 //psia
7 T0=534.6 //R
8 g=32.2 //ft/s^2
9 d=0.5 //in
10 \, \text{Nm} \, 1 = 1
11 A = 2/144 // ft^2
12 //calculations
13 disp("Exit mach number is found using trial and
      error")
14 \text{ Nme} = 0.24
15 rho0=p0*144/(g*R*T0)
16 G= A*sqrt(k*p0*144*rho0) *(2/(k+1))^((k+1)/(2*(k-1))
17 pe=p0*(1/(1+(k-1)/2 *Nme^2))^(k/(k-1))
18 Te=T0/(1+ (k-1)/2 *Nme^2)
19 Ve=Nme*(sqrt(k*g*R*Te))
20 //results
21 printf("\n Exit mass flow rate = \%.3 \, \text{f slug/s}",G)
22 printf("\n Exit pressure = \%.2 \, \text{f psia}", pe)
23 printf("\n Exit temperature = \%.1 \, \text{f R}", Te)
24 printf("\n Exit velocity = \%d ft/s", Ve)
25 printf("\n Exit mach number = \%.2 f", Nme)
```

Scilab code Exa 8.9 Mach number upstream

```
1 clc
    2 clear
    3 //Initialization of variables
   4 k = 1.4
    5 R=53.3 //lb-ft/lb R
    6 pu=6.43 //psia
    7 Tu = 244 / R
   8 \text{ Nmu} = 2.44
   9 //calculations
10 Nmd = sqrt(((k-1)*Nmu^2 +2)/(2*k*Nmu^2 - (k-1)))
11 pd=pu*(2*k*Nmu^2 - (k-1))/(k+1)
12 Td=Tu*(2*k*Nmu^2 - (k-1))/(k+1) *((k-1)*Nmu^2 +2)/((k+1)*Nmu^2 +2)/((
                               k+1)*Nmu^2
13 //results
14 printf("Mach number upstream = \%.3 \, f", Nmd)
15 printf("\n Pressure upstream = \%.1 f psia",pd)
16 printf("\n Temperature upstream = \%.1 f R", Td)
```

Scilab code Exa 8.10 Pressure at section

```
1 clc
2 clear
3 //Initialization of variables
4 k=1.4
5 R=53.3 //lb-ft/lb R
6 e=0.0005 //ft
7 mu=3.77e-7 //lb-sec/ft^2
8 pe=14.7 //psia
9 Te=524.6 //R
```

```
10 g=32.2 //ft/s^2
11 Vi = 12.5 // ft / s
12 1=6 //in
13 b=8 //in
14 L = 100 //ft
15 //calculations
16 rhoe=pe*144/(R*g*Te)
17 Ve=Vi/(g*rhoe*(l*b/144))
18 Nme=Ve/(sqrt(k*g*R*Te))
19 Rd=1*b/(2*(1+b)) /12
20 \text{ rr} = 2 * R/e
21 \text{ Nr=Ve}*4*Rd*rhoe/mu
22 \quad f = 0.019
23 f2=1/(2*k) *(1/Nme^2 -1) - (k+1)/(4*k) *log((1+ (k+1)/(4*k) + (1/Nme^2 -1)) - (k+1)/(4*k) *log((1+ (k+1)/(4*k) + (1/Nme^2 -1))) - (k+1)/(4*k) *log((1+ (k+1)/(4*k) + (1/Nme^2 -1))))
       -1)/2 *Nme^2/(Nme^2 *(1+(k-1)/2)))
24 \text{ ff=f*L/(8*Rd)} + f2
25 \text{ Nm} 1 = 0.305
26 Tr2=(1+ (k-1)/2 *Nm1^2)/(1+ (k-1/2))
27 Tre=(1+ (k-1)/2 *Nme^2)/(1+ (k-1/2))
28 pr2=Nm1*(1+ (k-1)/2 *Nm1^2)^(0.5) /(1+(k-1)/2)^0.5
29 pre=Nme*(1+ (k-1)/2 *Nme^2)^(0.5) /(1+(k-1)/2)^0.5
30 p1=pe/pr2 *pre
31 T1=Te/Tr2 *Tre
32 / results
33 printf ("Pressure at section 1 = \%.1 \, \text{f psia}", p1)
34 printf("\n Tempreature at section 1 = \%.1 f R", T1)
```

Scilab code Exa 8.11 Limiting pressure in adiabatic case

```
1 clc
2 clear
3 //Initialization of variables
4 k=1.4
5 R=53.3 //lb-ft/lb R
6 g=32.2 //ft/s^2
```

```
7 T1=534.6 //R
8 V1 = 400 //ft/s
9 p1 = 350 // psia
10 f=0.02
11 D=6/12 //ft
12 //calculations
13 Nm1=V1/sqrt(k*g*R*T1)
14 \text{ Nm}2=1/\text{sqrt}(k)
15 p2=p1*(Nm1)/Nm2
16 fl= log(Nm1/Nm2) + 1/(2*k*Nm1^2) *(1-Nm1^2/Nm2^2)
17 L12=f1*2*D/f
18 ps=p1*Nm1*(1+ (k-1)/2 *Nm1^2)^0.5 /(1+(k-1)/2)^0.5
19 \, \text{Nm2} = 1
20 fl2= -(k+1)/(4*k) *log((1+ (k-1)/2 *Nm1^2)/(Nm1^2)
      *(1+(k-1)/2))) + 1/(2*k*Nm1^2) *(1-Nm1^2/Nm2)
      ^2)
21 L2 = f12 * 2 * D/f
22 / results
23 printf("Limiting pressure = \%.1 f psia",p2)
24 printf("\n Distance = \%.1 f ft",L12)
25 printf("\n Limiting pressure in adiabatic case = \%.1
      f psia",ps)
26 printf("\n Distance required = \%.1 f ft",L2)
```

Chapter 9

Fluid flow about Immersed Bodies

Scilab code Exa 9.1.b Boundary layer thickness

```
1 clc
2 clear
3 //Initialization of variables
4 x = 36/12
5 rho=2.45 // slugs/ft^3
6 mu=9.2e-3 //lb-sec/ft^2
7 v=3 //ft/s
8 //calculatons
9 \text{ Nr} = v * x * rho/mu
10 z = [4.91 5.48 4.65]
11 x = 36/12
12 delta=z*x/sqrt(Nr)
13 f = [0.332 \ 0.365 \ 0.322]
14 \text{ T=f*mu*v/x *sqrt(Nr)}
15 //results
16 disp("Boundary layer thickness = ")
17 disp("In order of Blasius, parabola and pohlhauser")
18 format('v',6);delta
19 disp(delta)
```

```
20 disp("Shearing stress = ")
21 disp("In order of Blasius, parabola and pohlhauser")
22 format('v',6);T
23 disp(T)
```

Scilab code Exa 9.1 Drag on the plates

```
1 clc
2 clear
3 // Initialization of variables
4 rho=2.45 // s \log s / ft^3
5 mu = 9.2e-3 //lb - sec/ft^2
6 x=3
7 v=3 //ft/s
8 B=6/12 //ft
9 L=36/12 //ft
10 //calculatons
11 \text{ Nr}=v*x*rho/mu
12 y = [1.32 \ 1.46 \ 1.328]
13 Cd=y*Nr^{(-0.5)}
14 Fd=2*Cd*B*L*(0.5*rho*v^2)
15 //results
16 disp ("Drag on the plates using different formulae
      blasius, parabola and pohlhauser in order")
17 format('v',6);Fd
18 disp(Fd)
```

Scilab code Exa 9.2.b Horsepower required

```
1 clc
2 clear
3 //Initialization of variables
4 e=0.01 //ft
```

```
5 rho=2 // slugs/ft^3
6 mu=2.6e-5 //lb \sec/ft^2
7 speed=10 //knots
8 L=250 //ft
9 A = 30000 //ft^2
10 //calculations
11 V = speed * 1.69
12 Nrl=V*L*rho/mu
13 Cdf=0.074/Nrl^0.2 -1700/Nrl
14 Fd=Cdf*A*0.5*rho*V^2
15 hp=Fd*V/550
16 //results
17 printf("Total frictional drag = %d lb",Fd)
18 printf("\n Horsepower required = \%.1 f hp", hp)
19 disp("The answer given in textbook is wrong. please
      use a calculator")
```

Scilab code Exa 9.2.c Total frictional drag

```
1 clc
2 clear
3 //Initialization of variables
4 e=0.01 // ft
5 rho=2 //slugs/ft^3
6 mu = 2.6e-5 //lb sec/ft<sup>2</sup>
7 speed=10 //knots
8 L=250 //ft
9 A = 30000 //ft^2
10 //calculations
11 V = speed * 1.69
12 Nrl=V*L*rho/mu
13 Cdf = 1/(1.89 + 1.62*log10(L/e))^(2.5)
14 Fd=Cdf*A*0.5*rho*V^2
15 hp=Fd*V/550
16 //results
```

```
17 printf("Total frictional drag = %d lb",Fd)
18 printf("\n Horsepower required = %.1 f hp",hp)
```

Scilab code Exa 9.2 Total frictional drag

```
1 clc
2 clear
3 //Initialization of variables
4 e=0.01 //ft
5 rho=2 // s lugs/ft^3
6 mu=2.6e-5 //lb \sec/ft^2
7 speed=10 //knots
8 L=250 //ft
9 A = 30000 //ft^2
10 //calculations
11 V=speed *1.69
12 \text{ Nrl=V*L*rho/mu}
13 Cdf = 1.32 /sqrt(Nrl)
14 Fd=Cdf*A*0.5*rho*V^2
15 \text{ hp=Fd*V/550}
16 //results
17 printf("Total frictional drag = %d lb",Fd)
18 printf("\n Horsepower required = \%.1 \, \text{f hp}", hp)
```

Scilab code Exa 9.3 Drag on the model

```
1 clc
2 clear
3 //Initialization of variables
4 V=200 //ft/s
5 L=5 //ft
6 B=2 //ft
7 rho=0.00232 //slug/ft^3
```

```
8 mu=3.82e-7 //lb-sec/ft^2
9 p2=14.815 //psia
10 pa=14.7 //psia
11 //calculations
12 Nr=V*L*rho/mu
13 Cdf=0.0032
14 Fdf=Cdf*%pi*L*B*0.5*rho*V^2
15 Fd=(p2-pa)*%pi/4 *(B*12)^2 -Fdf
16 //results
17 printf("Drag on the model = %.2 f lb",Fd)
```

Scilab code Exa 9.4 Velocity of flow

```
1 clc
2 clear
3 //Initialization of variables
4 p1=14.7 // psia
5 z1=3 //ft
6 \text{ gam} = 62.4
7 rho=1.94 // slug/ft^3
8 pa=0.4 // psia
9 za=1 //ft
10 //calculations
v3=(pa-p1)*144 + (za-z1)*gam
12 V = sqrt(-v3*2/(3*rho))
13 //results
14 printf ("Velocity of flow = \%.1 \, \text{f ft/s}", V)
15 disp("The answer is a bit different due to rounding
      off error in textbook")
```

Scilab code Exa 9.5 Horsepower required

```
1 clc
```

```
2 clear
3 //Initialization of variables
4 \text{ rpm}=60
5 rho=2 //slugs/ft^3
6 mu=3.5e-5 //lb-sec/ft^2
7 D=4/12 //ft
8 r=2 //ft
9 //calcualtions
10 \ V = rpm * 2 * \%pi / 60 * 2
11 Nr = V * D * rho/mu
12 \text{ Cd} = 1.1
13 Fd=Cd*\%pi/4 *(D)^2 *0.5*rho*V^2
14 T = 2 * Fd * r
15 w=rpm*2*%pi/60
16 \text{ hp=T*w/550}
17 // results
18 printf ("Horsepower required = %.2 f hp", hp)
```

Scilab code Exa 9.6 terminal velocity

```
1 clc
2 clear
3 //Initialization of variables
4 g=32.2 //ft/s^2
5 h=60000 //ft
6 F=2000 //;b
7 d=3 //ft
8 rho=0.00231
9 //calculations
10 V=sqrt(2*g*h)
11 disp("By trail and error")
12 Cd=0.25
13 Nm=0.87
14 A=%pi/4 *d^2
15 Vt=sqrt(2*F/(Cd*A*rho))
```

```
16 //results
17 printf("terminal velocity = %.1 f ft/s", Vt)
```

Chapter 10

Dynamic Lift

Scilab code Exa 10.2.a Max. theoretical porpulsive force

```
1 clc
2 clear
3 //Initialization of variables
4 \text{ vel=50 } //\text{mph}
5 \text{ w} = 240 \text{ //rpm}
6 \text{ r0=3 } // \text{ft}
7 L=30 //ft
8 rho=0.00230 // slug/ft^2
9 theta=30 //degrees
10 //calculations
11 V=vel*5280/3600
12 T=2*\%pi*r0^2 *w*2*\%pi/60
13 Fl=rho*V*T*L
14 F=r0*Fl*cosd(theta)
15 / results
16 printf("Max. theoretical porpulsive force = %d lb",F
```

Scilab code Exa 10.2.b Force required

```
1 clc
2 clear
3 //Initialization of variables
4 vel=50 //mph
5 \text{ w} = 240 \text{ //rpm}
6 \text{ r0=3} // \text{ft}
7 L=30 //ft
8 rho=0.00230 // slug/ft^2
9 theta=30 //degrees
10 Cl=2
11 \quad Cd=1
12 //calculations
13 \text{ vc=r0*w}
14 V=vel*5280/3600
15 \text{ vr=vc/V}
16 A = 2 * r0 * L
17 F1=C1*A*0.5*rho*V^2
18 Fd=Cd*A*0.5*rho*V^2
19 F=r0*(Fl*cosd(theta) + Fd*sind(theta))
20 //results
21 printf("Force required = %d lb",F)
```

Scilab code Exa 10.3.a Boundary circulation

```
1 clc
2 clear
3 //Initialization of variables
4 W=7500 //pounds
5 rho=0.00230
6 V=175*5280/3600 //ft/s
7 B=50
8 //calculations
9 T=W/(rho*V*B)
10 //results
11 printf("Boundary circulation = %d ft^2/s",T)
```

Scilab code Exa 10.3.b Horsepower required

```
1 clc
2 clear
3 //Initialization of variables
4 W=7500 //pounds
5 rho=0.00230
6 V=175*5280/3600 //ft/s
7 B=50
8 A=350 //ft^2
9 //calculations
10 Cl=W/(A*0.5*rho*V^2)
11 Cd=0.03
12 Fd=Cd*A*0.5*rho*V^2
13 hp=Fd*V/550
14 //results
15 printf("Horsepower required = %d hp",hp)
```

Scilab code Exa 10.4 Horsepower required

```
1 clc
2 clear
3 //Initialization of variables
4 F1=7500 //pounds
5 rho=0.00230
6 V=175*5280/3600 //ft/s
7 B=50
8 A=350 //ft^2
9 //calculations
10 Vi=2*F1/(%pi*rho*V*B^2)
11 C1=F1/(A*0.5*rho*V^2)
```

```
12     Cdi=C1*Vi/(V)
13     Fdi=Cdi*A*0.5*rho*V^2
14     hp=Fdi*V/550
15     // results
16     printf("Horsepower required = %.1 f hp",hp)
```

Chapter 11

Flow of Liquids in Open Channels

Scilab code Exa 11.1.a Discharge using Darcy equation

```
1 clc
2 clear
3 //Initialization of variables
4 rho=1.94 // s lugs/ft^3
5 mu=2.34e-5 //lb-sec/ft^2
6 y=5 //ft
7 T = 25 //ft
8 d=10 // ft
9 \text{ slope}=3/2
10 g=32.2 //ft/s^2
11 S = 0.001
12 //calculations
13 A=y*d+ 2*0.5*y*(slope*y)
14 \text{ WP}=d+ 2*sqrt(3^2 +2^2) /2 *y
15 R=A/WP
16 e=0.01 //ft
17 \text{ rr}=2*R/e
18 \quad f = 0.019
19 C=sqrt(8*g/f)
```

Scilab code Exa 11.1.b Discharge using kutter ganguillet formula

```
1 clc
   2 clear
   3 //Initialization of variables
   4 rho=1.94 // s \log s / ft^3
   5 mu = 2.34e-5 //lb-sec/ft<sup>2</sup>
   6 y = 5 //ft
   7 T = 25 / ft
   8 d=10 //ft
   9 \text{ slope}=3/2
10 g=32.2 //ft/s^2
11 S = 0.001
12 n = 0.017
13 //calculations
14 A=y*d+ 2*0.5*y*(slope*y)
15 WP=d+ 2*sqrt(3^2 + 2^2) /2 *y
16 R=A/WP
17 e=0.01 //ft
18 \text{ rr}=2*R/e
19 f=0.019
20 C = (41.65 + 0.00281/S + 1.811/n)/(1+(41.65 + 0.00281/S + 0.0
                               0.00281/S)*n/sqrt(R)
21 \quad V=C*sqrt(R*S)
22 Q=V*A
23 / results
24 printf ("Discharge using kutter ganguillet formula =
```

```
\%.1\,f ft^3/s",Q)  
25 disp("The answer is a bit different due to rounding off error in textbook")
```

Scilab code Exa 11.1.c Discharge using bazin formula

```
1 clc
 2 clear
 3 //Initialization of variables
4 rho=1.94 //slugs/ft<sup>3</sup>
5 \text{ mu} = 2.34 \text{ e} - 5 // \text{lb} - \text{sec} / \text{ft}^2
 6 y = 5 / ft
7 T = 25 / ft
8 d=10 // ft
9 \text{ slope}=3/2
10 g=32.2 //ft/s^2
11 S = 0.001
12 m = 0.21
13 //calculations
14 A=y*d+ 2*0.5*y*(slope*y)
15 WP=d+ 2*sqrt(3^2 + 2^2) /2 *y
16 R = A/WP
17 e=0.01 // ft
18 \text{ rr}=2*R/e
19 f = 0.019
20 C=157.6 / (1+ m/sqrt(R))
21 V=C*sqrt(R*S)
22 Q = V * A
23 / results
24 printf("Discharge using bazin formula = \%.1 \, \text{f} \, \text{ft} \, ^3/\, \text{s}"
25 disp("The answer is a bit different due to rounding
       off error in textbook")
```

Scilab code Exa 11.1.d Discharge using Darcy equation

```
1 clc
2 clear
3 //Initialization of variables
4 rho=1.94 // s \log s / ft^3
5 mu=2.34e-5 //lb-sec/ft^2
6 y = 5 // ft
7 T = 25 / ft
8 d=10 //ft
9 \text{ slope}=3/2
10 g=32.2 //ft/s^2
11 S=0.001
12 n = 0.017
13 //calculations
14 A=y*d+ 2*0.5*y*(slope*y)
15 WP=d+ 2*sqrt(3^2 + 2^2) / 2 * y
16 R = A/WP
17 e=0.01 // ft
18 \text{ rr} = 2*R/e
19 \quad f = 0.019
20 C=1.486*R^{(1/6)}/n
21 V=C*sqrt(R*S)
22 Q=V*A
23 //results
24 printf("Discharge using Darcy equation = \%.1 f ft \^3/s
      ",Q)
25 disp("The answer is a bit different due to rounding
      off error in textbook")
```

Scilab code Exa 11.1.e froude number

```
1 clc
2 clear
3 //Initialization of variables
4 rho=1.94 // s \log s / ft^3
5 mu=2.34e-5 //lb-sec/ft^2
6 y = 5 // ft
7 T = 25 //ft
8 d=10 // ft
9 \text{ slope}=3/2
10 g=32.2 //ft/s^2
11 S = 0.001
12 n = 0.017
13 //calculations
14 A=y*d+ 2*0.5*y*(slope*y)
15 WP=d+ 2*sqrt(3^2 + 2^2) / 2 * y
16 R = A/WP
17 e=0.01 // ft
18 \text{ rr} = 2 * R / e
19 f = 0.019
20 C = (41.65 + 0.00281/S + 1.811/n)/(1+(41.65 +
      0.00281/S)*n/sqrt(R)
21 \quad V=C*sqrt(R*S)
22 \text{ T=d+ } 2*(slope*y)
23 \text{ yh} = A/T
24 \text{ Nf=V/(sqrt(g*yh))}
25 //results
26 printf ("froude number = \%.2 \,\mathrm{f}", Nf)
```

Scilab code Exa 11.1.f Critical depth

```
1 clc
2 clear
3 //Initialization of variables
4 rho=1.94 //slugs/ft^3
5 mu=2.34e-5 //lb-sec/ft^2
```

```
6 y = 5 // ft
7 T = 25 // ft
8 d=10 // ft
9 \text{ slope}=3/2
10 g=32.2 //ft/s^2
11 S = 0.001
12 n = 0.017
13 //calculations
14 A=y*d+ 2*0.5*y*(slope*y)
15 WP=d+ 2*sqrt(3^2 + 2^2) /2 *y
16 R = A/WP
17 e=0.01 //ft
18 \text{ rr} = 2*R/e
19 f=0.019
20 C = (41.65 + 0.00281/S + 1.811/n)/(1+(41.65 +
      0.00281/S)*n/sqrt(R)
21 \quad V=C*sqrt(R*S)
22 Q = V * A
23 \text{ T=d+ } 2*(slope*y)
24 \text{ yh}=A/T
25 \text{ yc} = 2.88 // ft
26 // results
27 disp("yc is obtained using trial and error method")
28 printf("Critical depth = \%.2 f ft", yc)
```

Scilab code Exa 11.2 Minimum scale ratio

```
1 clc
2 clear
3 //Initialization of variables
4 Re=4000
5 rho=1.94 //slugs/ft^3
6 vm=5.91 //ft/s
7 mu=3.24e-5 //ft-lb/s^2
8 Rm=3.12 //ft
```

```
9 //calculations
10 lam3=Re*mu/(vm*4*Rm*rho)
11 lam=lam3^(2/3)
12 //results
13 printf("Minimum scale ratio = %.2e",lam)
```

Scilab code Exa 11.3 Discharge in the channel

```
1 clc
2 clear
3 //Initialization of variables
4 yc = 2 // ft
5 g=32.2 //ft/s^2
6 d=10 //ft
7 \text{ gam} = 62.4
8 \text{ rho} = 1.94
9 B=10 //ft
10 //calculations
11 Vc=sqrt(g*yc)
12 Ac=yc*d
13 Q=Vc*Ac
14 y1=5.88 // ft
15 \text{ y}2=0.88 // ft
16 V1=2.73 // ft / s
17 V2=18.25 //ft/s
18 Nf1=0.198
19 Nf2=3.43
20 F = 0.5*gam*y1^2 *B - 0.5*gam*y2^2 *B - Q*rho*V2 +Q*
      rho*V1
21 / results
22 printf("Discharge in the channel = \%.1 \, \text{f t} \, ^3/\, \text{s}",Q)
23 printf("\n Depth of the channel at upstream and
      downstream = \%.2 f ft and \%.2 f ft", y1, y2)
24 printf("\n froude numbers at upstream and downstream
       = \%.3 f and \%.3 f, Nf1, Nf2)
```

Scilab code Exa 11.4 distance from vena contracta

```
1 clc
2 clear
3 //Initialization of variables
4 S0 = 0.0009
5 n = 0.018
6 w = 20 / ft
7 d=0.5 // ft
8 \ Q=400 \ // ft^3/s
9 \text{ g=32.2} // \text{ft/s}^2
10 //calculations
11 y2=4 // ft
12 V2=Q/(w*y2)
13 Nf2=V2/sqrt(g*y2)
14 \text{ yr} = 0.5*(\text{sqrt}(1+ 8*Nf2^2) -1)
15 y1=yr*y2
16 L1=32.5
17 L2 = 37.1
18 L3=51.4
19 L=L1+L2+L3
20 // results
21 printf("distance from vena contracta = %.1 f ft and
      \%.2 f ft", y2, y1)
22 printf("\n Total distance = \%.1 f ft",L)
```