CONDUITE DE PROJET LOGICIEL

ESTIMATION DES COUTS DE DEVELOPPEMENT

Estimation des coûts

- Charge × Taux
- Achats / approvisionnements
- Frais de déplacements
- + Couts indirects (si non inclus dans le taux)
- Provisions pour aléas

→ BUDGET DU PROJET

Estimation de l'effort

- <u>L'estimation de l'effort (devis technique)</u> est une activité critique dans un projet informatique.
- L'estimation est un préalable <u>nécessaire à la planification</u>.
- Le <u>« jour×homme »</u> (ou homme × jour) est l'unité de mesure de la <u>charge de travail</u> (ou effort) on trouve également «mois × homme » (HM) ou même « année × homme » pour les très grands projets

- Un projet estimé à <u>2000 jours*homme</u> pourra être réalisé par :
 - 10 hommes en 1 an
 - 20 hommes en 6 mois
 - 5 hommes en 2 ans
 - mais certainement pas par 2000 hommes en 1 jour !!!

Certitudes

- Les programmes de grande taille ont un coût relatif supérieur à celui des petits programmes (<u>loi des rendements décroissants</u>)
- La qualité et le coût de production d'un logiciel sont sujets à de grandes variances individuelles (facteurs humains)
- Le <u>coût et la récupération des erreurs</u> représentent près de la moitié de l'effort total
- Les problèmes de conception constituent la principale source d'erreurs
- Dans les grands logiciels la <u>majorité des erreurs</u> est localisée dans <u>un petit</u> nombre de modules
- La <u>détection et la réparation</u> précoces des erreurs
- La prévention des fautes
- L'utilisation des langages évolués
- Les environnements intégrés de programmation

augmentent la productivité

Approche analytique

Types de modèles

MODELES DE REGRESSION

- Relation mathématique entre paramètres d'entrée et de sortie
- Calibrage pour un environnement donné (à partir de projets antérieurs)
 Ex: Halstead, cocomo de Boehm

MODELES HEURISTIQUES

 Découpage du projet en unités élémentaires pour lesquels le retour d'expérience fournit des ratios de productivité

MODELES PHENOMENOLOGIQUES

 Description d'un phénomène général et application à des phénomènes particuliers (en l'occurrence le développement du logiciel)

Ex: Putnam, Norden-Rayleigh

Modèles de régression

Calcul de l'effort et du délai a partir d'une donnée unique

Taille du logiciel = Nombre de milliers de lignes de code à produire (KISL)

CALCUL DE L'EFFORT (en MOIS-HOMMES)

 $EFFORT = A \times (Taille)^B$

CALCUL DU DELAI (en MOIS)

 $DELAI = C \times (Effort)^{D}$

Modèles de régression: Equations de calcul d'effort

WATSON-FELIX 77	HM= $5.2 \times (Taille)^{0.91}$
NELSON 78	HM= $4.9 \times (Taille)^{0.98}$
FREBERGER-BASILI 79	HM= $1.48 \times (Taille)^{1.02}$
BOEHM 81 (Modèle1)	HM= $2.4 \times (Taille)^{1.05}$
BOEHM 81 (Modèle2)	HM= $3.0 \times (Taille)^{1.12}$
FREDERIC 74	HM= $2.43 \times (Taille)^{1.18}$
BOEHM 81 (Modèle3)	HM= $3.6 \times (Taille)^{1.20}$
PHISTER 79	HM= $0.99 \times (Taille)^{1.275}$
JONES 77	. HM= 1.0 × (Taille) $^{1.40}$
HALSTEAD 77	HM= 0.70 ×(Taille) ^{1.50}

Modèles de régression: Equations de calcul de delai

WALSTON-FELIX 77......TDEV= $2.47 \times (Effort)^{0.35}$

BOEHM 81 Modèle 1TDEV= 2.5 × (Effort) 0.38

BOEHM 81 Modèle 2TDEV= $2.5 \times (Effort)^{0.35}$

BOEHM 81 Modèle 3TDEV= $2.5 \times (Effort)^{0.32}$

Le modèle COCOMO

COnstructive COst Model

- Modèle de régression pour calculer l'effort et les délais de développement
- Méthode heuristique de répartition des charges et délais par phase.
- Première version en 1981 (64 projets)
- Mise à jour pour ADA (1987)
- Actualisation pour nouveaux cycles de vie (COCOMO 2.0/1998)
- Activités couvertes:
 - Spécifications
 - Conception générale et détaillée
 - Réalisation
 - Tests
 - Management
 - Gestion des configurations
 - assurance qualité
 - Documentation
- Nécessité d'une base de référence

Barry BOEHM

COCOMO 81

3 MODELES:

MODELE BASIC

- Calcul des charges et des délais
- Répartition par phases
- Seul paramètre = la taille du logiciel

MODELE INTERMEDIAIRE

- Calcul des charges et des délais
- Répartition par phases
- 2 paramètres = taille du logiciel + facteurs d'ajustement

MODELE DETAILLE

 Même procédé d évaluation que le modèle intermédiaire avec application des facteurs d'ajustement pour chaque phase du projet

Hypothèses et définitions

- La spécification est validée
- 1 Mois-Homme = 152 heures (hors congés)
- Unité de mesure de la taille du logiciel =

Ligne d 'Instruction Source Livrable Produite (ISL ou DSI)

= ligne d'instruction(s) figurant dans un programme créé par le personnel du projet, traduite en code exécutable selon un quelconque procédé de génération (générateur, préprocessseur, compilateur, etc.) pour être intégré à l'un des composants du produit livré.

Exemples: 1 ligne composée de 3 instructions = 1 ISL 3 lignes de déclaration de données = 3 ISL

KISL = Millier d 'instructions source Livrables

Influence du langage

Un programmeur écrit le même nombre de lignes de code par jour quel que soit le langage utilisé.

Comptage des lignes d'instructions

comptabilisé

>Type Instruction

- instruction exécutable
- déclaration
- directives de compilation

≻Procédé de production

- programmeur
- traducteur automatique
- copie ou réutilisation sans modif.
- modification

≻Origine

- nouveau développement
- version précédente modifiée
- composant ou librairie réutilisable

non comptabilisé

- commentaire
- générateur de code source
- suppression
- composant sur étagère (COTS)
- composant fourni (GFS)
- librairie ou produit du commerce
- •librairie ou produit sous-traité

COCOMO 81

3 TYPES DE PROJETS

- ORGANIQUE
 - Equipes restreintes dans un environnement familier et stable
 - Domaine d'application et technologies connues
 - Développement autonome ou peu dépendant
 - Taille relativement petite
- SEMI-DETACHE
 - Niveau intermédiaire
- IMBRIQUE
 - Fortes contraintes d'environnement
 - Logiciel intégré dans un système complexe
 - Exigences mal connues et/ou évolutives
 - Montage industriel complexe
 - Modules critiques
 - Montée en charge brutale

Basic COCOMO: Calcul de l'effort

Charge exprimée en Homme_Mois (HM) (*)

Mode Organique

Mode Semi-détaché

Mode Imbriqué

 $HM = 2.4 \times KISL^{1.05}$

 $HM = 3.0 x KISL^{1.12}$

 $HM = 3.6 \times KISL^{1,20}$

Taille du Logiciel (KISL)

8 70 80 80 30 30 80 80 80

(*) Charge calculee sur la base de 152 neures /mois (modele americain)

modele trançais => HIVI x 152/146

Basic COCOMO: Calcul du délai

Temps de développement (TDEV) exprimé en Mois

Mode Organique

Mode Semi-détaché

•Mode Imbriqué

 $TDEV = 2.5 \times HM \ 0.38$

 $TDEV = 2.5 \times HM \ 0.35$

 $TDEV = 2.5 \times HM \ 0.32$

Effort (HM)

Basic COCOMO: Répartition de l'effort par phase

Rép	partition de l'effort			Taille		
Mode	Phase	Petit 2KISL	Intermédiaire 8KISL	Moyen 32KISL	Grand 128 KISL	Très Grand 512 KISL
	Plans & Spécifications	+6%	+6%	+6%	+6%	
	Conception Préliminaire	16%	16%	16%	16%	
Organiana	Réalisation	68%	65%	62%	59%	
<u>Organique</u>	Conception Détaillée	26%	25%	24%	23%	
	Codage et tests unitaires	42%	40%	38%	36%	
	Intégration & Tests	16%	19%	22%	25%	
	Plans & Spécifications	+7%	+7%	+7%	+7%	+7%
	Conception Préliminaire	17%	17%	17%	17%	17%
Com:	Réalisation	64%	61%	58%	55%	52%
<u>Semi-</u> <u>détaché</u>	Conception Détaillée	27%	26%	25%	24%	23%
<u>aotaono</u>	Codage et tests unitaires	37%	35%	33%	31%	29%
	Intégration & Tests	19%	22%	25%	28%	31%
	Plans & Spécifications	+8%	+8%	+8%	+8%	+8%
	Conception Préliminaire	18%	18%	18%	18%	18%
l ma la mi av v á	Réalisation	60%	57%	54%	51%	48%
Imbriqué	Conception Détaillée	28%	27%	26%	25%	24%
	Codage et tests unitaires	32%	30%	28%	26%	24%
	Intégration & Tests	22%	25%	28%	31%	34%

Basic COCOMO: Répartition des délais par phase

Répa	artition des délais			Taille		
Mode	Phase	Petit 2KISL	Intermédiaire 8KISL	Moyen 32KISL	Grand 128 KISL	Très Grand 512 KISL
	Plans & Spécifications	+10%	+11%	+12%	+13%	
	Conception Préliminaire	19%	19%	19%	19%	
<u>Organique</u>	Réalisation	63%	59%	55%	51%	
	Intégration & Tests	18%	22%	28%	30%	
	Plans & Spécifications	+16%	+18%	+20%	+22%	+24%
	Conception Préliminaire	24%	25%	26%	27%	28%
Semi-	Réalisation	56%	52%	48%	44%	40%
<u>détaché</u>	Intégration & Tests	20%	23%	26%	29%	32%
	Plans & Spécifications	+24%	+28%	+32%	+36%	+40%
	Conception Préliminaire	30%	32%	34%	36%	38%
<u>Imbriqué</u>	Réalisation	48%	44%	40%	36%	32%
	Intégration & Tests	22%	24%	26%	28%	30%

Prise en compte de la réutilisation

Le logiciel réutilisé ne fait pas partie du volume de code à produire et ses lignes d'instructions ne doivent pas être comptabilisées dans l'évaluation de la taille du produit a développer.

Mais ...

PEUT-ON CONSIDERER QUE LA REUTILISATION EST « GRATUITE » ?

- Ne faudra-t-il pas modifier ou enrichir la conception pour atteindre les objectifs particuliers du produit a développer?
- Ne faudra-t-il pas reprendre certaines sections de code pour les adapter aux particularités de l'environnement cible?
- Ne faut-il pas intégrer et tester le module réutilisé avec les autres modules développés?

En pratique, utilisation d'un coefficient de 0.3 à 0.7 dans les phases de conception, réalisation, intégration et tests.

Modèle de Putnam: Courbe d'effort instantané

UNIVERSITE DE ROUEN

Ajustement de l'effectif

POURQUOI

- Pour réduire le délai (+ de personnes)
- Parce que l'effectif disponible est différent de l'effectif calculé (- de personnes)

Attention à la loi de Brook : doubler le nombre de programmeurs sur un projet en retard ne fait que doubler le retard.

INCIDENCE

- ↑Effectif ⇒↑Charge (Personnes x 2 ⇒ 25% de charge en +)
- ◆Effectif ⇒ ↓ Charge (Personnes / 2 ⇒ 20% de charge en -)

```
Charge Réelle = Charge Estimée x (0.8 log_{2} \frac{Effectif calculé}{Effectif réel})

Délai = \frac{Charge Réelle}{Effectif Réel}
```


Application au processus incrémental

LISSAGE DE LA CHARGE

Avantage:

Optimisation de l'utilisation des ressources

Inconvénient:

•Facteur de cassure du logiciel [Software Breakage Factor]

Evaluation de chaque incrément en considérant la réutilisation du logiciel développé à l'occasion des précédentes itérations

Principes du modèle intermédiaire

 Même méthode de calcul que pour le modèle basic avec d'autres équations:

```
    Mode Organique
    HM = 3,2 x KISL <sup>1,05</sup>
```

Mode Semi-détaché
 HM = 3,0 x KISL ^{1,12}

Mode Imbriqué
 HM = 2,8 x KISL ^{1,20}

 Pondération de la charge par des facteurs d'ajustement

Facteurs d'ajustement (COCOMO 81)

	FACTEURS	Coefficient						
	FACILORS	Très faible	Faible	Nominal	Fort	Très Fort	Extra Fort	
Caractéristiqu	ies du Produit							
RELY Fiabilit	té requise	0.75	0.88	1.00	1.15	1.40		
DATA Volum	e de données à gérer		0.94	1.00	1.08	1.16		
CPLX Compl	exité du produit	0.70	0.85	1.00	1.15	1.30	1.65	
Caractéristiqu	ies de la machine							
TIME Contra	nintes de temps d'exécution			1.00	1.11	1.30	1.66	
STOR Contra	nintes d'occupation mémoire			1.00	1.06	1.21	1.56	
VIRT Stabili	té de la plate-forme cible		0.87	1.00	1.15	1.30		
TURN Dispor	nibilité de la plate-forme de développement		0.87	1.00	1.07	1.15		
Caractéristiqu	ies du personnel							
ACAP Compe	étence des analystes	1.46	1.19	1.00	0.86	0.71		
AEXP Expéri	ence du domaine d'application	1.29	1.13	1.00	0.91	0.82		
PCAP Compe	étence des programmeurs	1.42	1.17	1.00	0.86	0.70		
VEXP Expéri	ence de la machine virtuelle	1.21	1.10	1.00	0.90			
LEXP Expéri	ence du language de programmation	1.14	1.07	1.00	0.95			
Caractéristiqu	ies du projet							
MODP Utilisa	tion de techniques modernes	1.24	1.10	1.00	0.91	0.82		
TOOL Utilisa	tion d'outils de développement	1.24	1.10	1.00	0.91	0.83		
SCED Exiger	nces du planning de développement	1.23	1.08	1.00	1.04	1.10		

Intermediate COCOMO: méthode

Calcul du facteur global d'ajustement

 Facteur global d'ajustement = produit des 15 coefficients de facteurs élémentaires

Calcul de la charge

 Charge ajustée = charge estimée x facteur global d'ajustement

Calcul des délais

Mêmes formules que pour le modèle basic

Répartition des charges et délais par phases

Mêmes tables que pour le modèle basic

Detailed COCOMO

- Certains facteurs tels que la fiabilité, l'expérience du domaine d'application ou du langage de programmation sont plus sensibles sur certaines phases du développement.
 - Le modèle détaillé fournit, pour chaque facteur d'ajustement, un ensemble de coefficients différents en fonction de la phase
- Dans le modèle intermédiaire, les facteurs d'ajustement peuvent être appliqués soit globalement pour l'ensemble du logiciel, soit composant par composant.
 - Le modèle détaillé permet de prendre en compte les facteurs au niveau approprié en proposant une hiérarchie à 3 niveaux (système/ sous-système/composant élémentaire) avec possibilité «d'ajuster» à chacun des niveaux.
 - Les équations sont identiques à celle du modèle intermédiaire.

COCOMO 2: Objectifs

Tenir compte ...

- des nouveaux marchés et des avancées du génie logiciel (Génération d'applications, intégration de COTS, méthodes agiles...)
- de l'information rendue disponible au fur et à mesure de l'évolution du processus de développement (complexité, taille du logiciel, risques, etc.)
- de la stratégie particulière choisie pour conduire le processus de développement d'un projet.

Les 3 modèles d'estimation de COCOMO II

- Le modèle « Elaboration d'application »
 (Premières phases du cycle, Prototypage,...)
- Le modèle « Conception primitive »
 (Ebauche d'architecture, Premiers incréments, ...)
- Le modèle « Post-Architecture »
 (Architecture définie, Début de développement,...)

Principes de base

Effort = $A \times (Taille)^B$

A = Paramètre de productivité (constante représentative de l'effort requis pour chaque ligne produite)

B = Paramètre d'échelle (permet de traduire l'économie d'échelle / la croissance exponentielle de l'effort en fonction de la taille)

B=
$$0.91 + 0.01 \sum_{i} W_{i}$$

(W_i = facteurs d 'échelle)

Facteurs d'échelle

Facteurs d'échelle (W _i)	Très Bas (5)	Bas (4)	Nominal (3)	Haut (2)	Très Haut (1)	Extra Haut (0)
Expérience du domaine et des technologies PREC	totalement nouveau	en grande partie nouveau	quelques originalités	plutôt familier	bien connu	parfaitement connu
Flexibilité par rapport au modèle de dévelop ^t FLEX	rigoureux	libertés occasionnelles	quelques libertés	Globalement conforme	A peu près conforme	objectifs généraux
Résolution des risques identifiés en conception RESL	rarement (20%)	parfois (40%)	souvent (60%)	généralement (75%)	la plupart du temps (90%)	toujours (100%)
Cohésion de l'équipe / relations humaines TEAM	relations très difficiles	quelques relations difficiles	relations plutôt coopératives	relations coopératives	relations fortement coopératives	comme si il n'y avait pas de relation
Maturité du processus (mesure CMM) PMAT	Moyen	ne pondérée des	s " oui " aux répoi	nses du question	naire de maturite	é CMM

Facteurs d'échelle: valeurs

Scalefactor Paramters									
	Aro	LO	NOM	HI	VHI	XHI			
PREC	6.20	4.96	3.72	2.48	1.24	0.00			
FLEX	5.07	4.05	3.04	2.03	1.01	0.00			
RESL	7.07	5.65	4.24	2.83	1.41	0.00			
TEAM	5.48	4.38	3.29	2.19	1.10	0.00			
PMAT	7.80	6.24	4.68	3.12	1.56	0.00			

Facteurs d'ajustement avec COCOMO II

Cara	ctéristic	gues du Produit	
	RELY	Fiabilité requise	
	DATA	Volume de données à gérer RCPX	Fiabilité et complexité du produit
	CPLX	Complexité du produit	i labilito di compionito da picalan
New≥	DOCU	Adéquation de la doc avec le besoin	
New≥	RUSE	Exigences de réutilisationRUSE	
<u>Cara</u>	ctéristic	ques de la machine	
	TIME	Contraintes de temps d'exécution	
	STOR		
•	VIRT	Contraintes d'occupation mémoire Stabilité de la plate forme cible PDIF	Difficultés de la plate-forme
	TURN	-Disponibilité de la plate forme de devpt-	•
New≥	PVOL	Volatilité de la plate-forme	
Carac	ctéristiq	<u>jues du personnel</u>	
4	ACAP	Compétence des analystes	
New≥	PCON	Renouvellement du personnel	Aptitudes du personnel
M	PCAP	Compétence des programmeurs	
	AEXP	Expérience du domaine d'application	
	VEXP	Expérience de la machine virtuelle	Expérience du personnel
	LEXP	Expérience du langage de programmation	
<u>Cara</u>		ques du projet	
	MODP		
M	TOOL	Utilisation d'outils de développement	Expérience du personnel
∑New ≥	SITE	Développement sur plusieurs sites	•
. 4 4	SCED	Exigences du planning de développementSCED	

Facteurs d'ajustement du modèle «conception primitive»

arly Desi	gn Paramte	ers					>
	XLO	Aro	LO	NOM	HI	VHI	XHI
RCPX	0.73	0.81	0.98	1.00	1.30	1.74	2.38
RUSE	xxxx	xxxx	0.95	1.00	1.07	1.15	1.24
PDIF	xxxx	>>>>	0.87	1.00	1.29	1.81	2.61
PERS	2.12	1.62	1.26	1.00	0.83	0.63	0.50
PREX	1.59	1.33	1.12	1.00	0.87	0.71	0.62
FCIL	1.43	1.30	1.10	1.00	0.87	0.73	0.62
SCED	xxx	1.43	1.14	1.00	1.00	1.00	XXXX

Facteurs d'ajustement du modèle « post-architecture »

Exigences de délai

	Très serré	Serré	Nominal	Lâche	Très lâche
SCED	75% of nominal	85%	100%	130%	160%
	1.43	1.14	1.00	1.00	1.00

TDEV =
$$[3.0 \times (Effort)^{(0.28 + 0.2 \times (B - 0.91))}] \times \frac{\% SCED}{100}$$

$$= 0.91 + 0.01 \Sigma W_{i}$$

Méthodes d'évaluation de taille

Les points d'objets

Les points de fonctions

Le nombre de lignes de code

Evaluation par points d'objets

OBJET := ECRAN | RAPPORT | COMPOSANT L3G

Avantages:

- Simple, Rapide et Facile à mettre en œuvre
- Orienté « utilisateur final »
- Ne nécessite ni référentiel ni calibrage (pas de lignes de code)
- Utilisable en tout début de projet
- Prend en compte globalement l'environnement de développement (utilisation d'outils et d'ateliers de Génie Logiciel)
- Assez bien adapté aux développement RAD

Inconvénients:

- Evaluation « grossière »
- Très forte incertitude relative (Optimiste = 50%, Pessimiste = 200%)

Points d'objets: évaluer la difficulté du logiciel

- 1) Dénombrer les objets
- 2) Evaluer la complexité des objets

	Ecra	ns		Rapports				
	nombre et	origine des	s données		nombre et origine des données			
Nombre de vues incluses	Total < 4 (< 2 srv. < 3 clnt)	Total < 8 (< 2-3 srv < 3-5 clnt)	Total >=8 (>3 srv >5 clnt)	Nombre de sections incluses	Total < 4 (< 2 srv. < 3 clnt)	Total < 8 (< 2-3 srv < 3-5 clnt)	Total >=8 (>3 srv >5 clnt)	
<3	simple	simple	moyen	0 ou 1	simple	simple	moyen	
entre 3 et 7	simple	moyen	difficile	2 ou 3	simple	moyen	difficile	
> 8	moyen	difficile	difficile	> 3	moyen	difficile	difficile	

3) Pondérer les nombres d'objets en tenant compte de leur complexité

Type d'objet	Pondération de complexité						
Type a objet	Simple	Moyen	Difficile				
Ecran	1	2	3				
Rapport	2	5	8				
Composant L3G			10				

Points d'objets: convertir en effort

- 4) Totaliser les points d'objets
- 5) Estimer le pourcentage de réutilisation et calculer les points d'objets nouveaux (PON)

PON = (Points d'Objets) \times (100 - % réutilisation) /100

6) Déterminer le taux de productivité (PROD)

Expérience et aptitudes des développeurs	Très bas	Bas	Nominal	Haut	Très haut
Maturité et efficacité de l'environnement de développement	Très bas	Bas	Nominal	Haut	Très haut
PROD	4	7	13	25	50

7) Calculer I 'effort

HM = PON / PROD

Evaluation par points de fonction

- Détermination d'un nombre de points caractéristiques de la taille et de la complexité du logiciel
- Valorisation des points en lignes de code par application d'un ratio de productivité dépendant du langage de programmation

Avantages:

- Facile et simple
- Permet d'estimer la taille du logiciel en fonction des caractéristiques externes du logiciel (plus facile)
- Permet d'appliquer les modèles de régression, les facteurs d'ajustement et le modèle de réutilisation

Inconvénients:

- Evaluation heuristique de la taille
- Incertitude relative importante (Optimiste= 67%, Pessimiste = 150%)

Points de fonction: caractériser le système logiciel

Quantifier les fonctions de traitement de l'information

Entrée Externe (Inputs)	Comptabiliser tous les types de données ou de commandes fournis par un utilisateur (i) dont l'origine est au delà des frontières du système logiciel à évaluer et (ii) qui ajoute ou modifie des données dans un fichier logique interne du système.
Sortie Externe (Outputs)	Comptabiliser tous les types de données ou de contrôles destinés à un utilisateur et issus de l'intérieur du système logiciel devant être mesuré.
Fichier Logique Interne (Files)	Comptabiliser tous les principaux groupes logiques de données ou d'information de contrôle du système. Prendre en compte chaque fichier logique (par exemple, chaque groupe logique de données) qui est produit, utilisé, ou mis à jour par le système.
Fichiers d'interface Externe (Interfaces)	Comptabiliser les fichiers échangés ou partagés avec d'autres systèmes logiciels.
Requête Externe (Queries)	Comptabiliser toutes les combinaisons d'entrée-sortie, où une donnée d'entrée provoque la fourniture immédiate d'un résultat.

Points de fonction: évaluer la complexité

Pour Fichiers internes et interfaces			Pour sorties et requêtes				Pour entrées				
# types	ppes # éléments d'Informations		# types	es # éléments d'informations			# types	# éléments d'informations			
	1 - 19	20 - 50	51+		1 - 5	6 - 19	20+		1 - 4	5 - 15	16+
1	Bas	Bas	Moyen	0 ou 1	Bas	Bas	Moyen	0 ou 1	Bas	Bas	Moyen
2 - 5	Bas	Moyen	Haut	2 - 3	Bas	Moyen	Haut	2 - 3	Bas	Moyen	Haut
6+	Moyen	Haut	Haut	4+	Moyen	Haut	Haut	3+	Moyen	Haut	Haut

Type de fonction	Pondération de complexité					
	Bas	Moyenne	Haut			
Fichiers Logiques Internes	7	10	15			
Fichiers Interfaces Externes	5	7	10			
Entrées Externes	3	4	6			
Sorties Externes	4	5	7			
Requêtes Externes	3	4	6			

Points de fonction: convertir les points en lignes

Langage	ISL / Points
Ada	71
AI Shell	49
APL	32
Assembleur	320
Assembleur (Macro)	213
ANSI/Quick/Turbo Basic	64
Basic- Compilé	91
Basic - Interprété	128
С	128
C++	29
ANSI COBOL 85	91
Fortran 77	105
Forth	64
Jovial	105
Lisp	64
Modula 2	80
Pascal	91
Prolog	64
Générateur de rapport	80
Tableur / L4G	6

1. Pondérer les fonctions par rapport à leur complexité.

P(type) = poids x nombre d 'unités du type

2. Calculer le nombre brut de points de fonctions.

$$N = \Sigma P(type)$$

3. Convertir les points de fonctions en nombre de lignes de code source en tenant compte du langage de programmation

Evaluation de taille à partir d'un modèle UML

1) DIMENSIONNEMENT DU SYSTEME par rapport aux

• Applications Sous-système logiciel dédié à la réalisation d'une activité du

domaine « métier » (collections de classes qui collaborent pour la

réalisation d'un ensemble de cas d'utilisation associés)

• Classes Abstractions fondamentales propres au domaine « métier »

(encapsulation des données « métier »)

• Use Cases Caractéristiques du système perceptibles pour l'utilisateur final

et décrivant ses fonctionnalités et son comportement.

Packages Elément structurel auquel est associé une responsabilité

clairement définie dans l'architecture du logiciel.

• Composants Abstractions fondamentales assurant la fournitures des services

spécialisés.

• Services Caractéristiques fonctionnelles du système communes à plusieurs

applications.

2) QUANTIFICATION (nombre de lignes = f(dimension, langage))

Outil (1)

Outil (2)

XP: Cadre méthodologique

- Exploration
 - Identifier et évaluer le travail
- Engagement
 - Sélectionner et planifier le travail
- Pilotage
 - Contrôler le travail

XP: Phase d'exploration

Au début de chaque cycle

- Description des fonctionnalités sous forme de scénarios (user stories)
- Attribution d'une priorités et d'un risque à chaque scénario
- Estimation du coût (en points) de chaque scénario

XP: « User stories »

- Décrits sur des fiches A5
- Identifiés et recensés par le client en début de projet
- Complétés au début de chaque itération
- Évalués et estimés par les développeurs
- Mis à jour à chaque changement

Priorité fonctionnelle:

1: Indispensable

2: Essentiel

3: Utile

Risque technique:

1: Fort

2: Moyen

3: Faible

Estimation en points

Projet: Éditeur XML Schéma

Titre: Copier ou Couper / Coller

Priorité: 2

Risque: 3

Estimation: 3

Description:

- 1. L'atilisateur sélectionne un symbole avec la souris
- 2. Des « poignées » apparaissent sur le symbole
- 3. L'utilisateur sélectionne l'action « copier » ou « couper » dans le menu « Edition »
- 4. Si « couper » est sélectionné, le symbole marqué est effacé.
- 5. L'utilisateur sélectionne l'action « coller » dans le menu « Edition ».
- 6. Une copie du symbole apparaît à l'écran.

Tâches à réaliser:

- · Ajout des options dans le menu « Edition »
- Gestion des clics souris et poignées de sélection
- Voir pour les raccourcis clavier et le drag & drop

XP: Estimation de coût

- Chaque scénario est estimé
 - Par les développeurs aidés du client
 - En intégrant l'effort de test et de recette
 - Suivant une unité « abstraite » de points (ou en « temps idéal»)
 - En découpant les scénarios de granularité trop importante
 - En prototypant si nécessaire pour lever les inconnues techniques
- Vélocité = Nombre de points de scénarios client que l'équipe peut traiter en une itération

XP: Estimation et planification

Pour chaque itération ...

- Le client écrit les user stories
- Les développeurs estime les histoires
 - + de 3 semaines: scinder la fonctionnalités
 - d'une semaine: fusionner des fonctionnalités.
- L'équipe planifie l'itération
- Pour chaque histoire de l'itération
 - Les développeurs implémente les histoires
 - Le client exécute les tests de recette

Scrum planning poker

Recommandations

- Ne jamais se limiter a une seule estimation.
- Confronter les résultats obtenus avec différentes méthodes et/ou différents individus
- Faire la moyenne des différentes estimations en pondérant éventuellement
- Construire puis utiliser un référentiel de base pour calibrer le modèle
 - Pour comptabiliser les lignes ou les points
 - Pour déterminer les coefficients relatifs aux facteurs d'ajustement
 - Pour adapter les équations
 - Pour distribuer l'effort correspondant a chaque phase
- La probabilité pour que le projet se termine a une date est régie par la loi de Gauss

Retour sur investissement

Jamais content !!!

