

Otwarte repozytoria kodu i pomiar oprogramowania laboratorium

jaroslaw.hryszko@uj.edu.pl
Instytut Informatyki i Matematyki Komputerowej UJ
Semestr letni 2024/2025

Plan realizacji projektu "SkanUJkod"

1 Założenia

- Czas trwania: 12 tygodni
- Cel: stworzenie (w formie rozszerzalnego skanera) narzędzia do liczenia metryk kodu, metryk projektowych oraz pokrycia testowego.

2 Opis głównych funkcjonalności

- Metryki statyczne kodu w oparciu o AST (drzewa składniowe) lub inne narzędzia parsujące.
- **Metryki projektowe (dane z Gita)** m.in. liczba zmian pliku, liczba deweloperów, integracja z *just-in-time defect prediction*.
- Wykrywanie code smells i potencjalnych luk bezpieczeństwa.
- **Pokrycie testowe** liczenie z wykorzystaniem instrumentacji kodu (np. statement coverage, branch coverage, condition coverage, MC/DC, prime path coverage, itp.).
- Architektura łatwa do rozszerzenia na kolejne języki zgodnie z zasadą *Open-Closed Principle*.

3 Zadania i odpowiedzialności

Każde zadanie posiada lidera (odpowiedzialnego za koordynację), jednakże wszyscy członkowie zespołu współpracują przy realizacji poszczególnych zadań w miarę potrzeb.

1. Zadanie 1: Opracowanie architektury skanera (tydzień 1–2) Lider: Student 1

Zakres:

- Analiza wymagań i ustalenie głównych modułów systemu.
- Zaprojektowanie architektury umożliwiającej dodawanie obsługi wielu języków i nowych metryk (architektura wtyczkowa).
- Przygotowanie repozytorium, narzędzi CI/CD i standardów kodowania.

2. Zadanie 2: Implementacja parsera/AST (tydzień 2-4)

Lider: Student 2

Zakres:

- Research dostępnych parserów (np. ANTLR) i wybór rozwiązania.
- Implementacja mechanizmu parsującego kod w wybranym języku (np. Java).
- Stworzenie interfejsów do analizy drzewa składniowego na potrzeby liczenia metryk.

3. Zadanie 3: Metryki statyczne kodu (tydzień 3-5)

Lider: Student 3

Zakres:

- Implementacja obliczania podstawowych metryk statycznych (np. liczba linii kodu, złożoność cyklomatyczna, liczenie klas, metod, zależności).
- Rozszerzenie modułu o bardziej zaawansowane metryki (np. kopiowanie kodu, zagnieżdżenia, itp.).
- Konfiguracja wyjścia w formie raportu (CLI).

4. Zadanie 4: Metryki projektowe na bazie Gita (tydzień 4-6)

Lider: Student 4

Zakres:

- Implementacja modułu do analizy historii zmian (logi gita).
- Wyliczanie metryk: liczba deweloperów na plik, liczba commitów, częstotliwość zmian, itp.
- Możliwe podpięcie się do metryk just-in-time defect prediction (np. metryki z pracy Kamei).

5. Zadanie 5: Code smells i luki bezpieczeństwa (tydzień 5-7)

Lider: Student 5

Zakres:

- Opracowanie listy wybranych *smells* i podstawowych luk bezpieczeństwa.
- Implementacja rozpoznawania wskazanych wzorców w kodzie (np. long method, god class, SQL injection).
- Raportowanie poziomu zagrożenia / typów smells.

6. Zadanie 6: Instrumentacja kodu i obliczanie pokrycia testowego (tydzień 6–8) Lider: Student 6

Zakres:

- Research metod instrumentacji (np. bajtkod, wstrzykiwanie probe points).
- Implementacja liczenia statement coverage, branch coverage, condition coverage, MC/DC, prime path coverage itp.
- Generowanie raportów pokrycia i integracja z poprzednimi modułami.

7. Zadanie 7: Integracja z CLI (tydzień 7–9)

Lider: Student 7

Zakres:

- Przygotowanie narzędzia w trybie command line, łączącego wszystkie funkcjonalności.
- Logika konfiguracyjna (np. wybór ścieżki do kodu, wybór metryk).
- Testy automatyczne (unit/integracyjne) potwierdzające spójność wszystkich modułów.

8. Zadanie 8: Dokumentacja definicji metryk (tydzień 8-10)

Lider: Student 8

Zakres:

- Przygotowanie oficjalnego dokumentu opisującego definicje operacyjne metryk (jak liczymy każdą metrykę).
- Tworzenie przykładów użycia, wskazówek interpretacji wyników.
- Integracja dokumentacji technicznej (architektura, instrukcja kompilacji, uruchamianie).

9. Zadanie 9: Opcjonalny GUI (tydzień 9-11)

Lider: Student 9

Zakres:

- Zaprojektowanie uproszczonego interfejsu graficznego (lub webowego) prezentującego wyniki skanowania.
- Połączenie go z istniejącym CLI (np. wywoływanie komend w tle).
- Testy użyteczności i wyglądu.

10. Zadanie 10: Integracja końcowa, testy i dokumentacja (tydzień 11–12)

Lider: Student 10

Zakres:

- Ostateczne połączenie wszystkich modułów w jeden pakiet instalacyjny.
- Wykonanie testów akceptacyjnych i końcowa weryfikacja jakości kodu.
- Finalizacja kompletnej dokumentacji, z uwzględnieniem planów dalszego rozwoju.

4 Harmonogram realizacji

Tydzień	Zadania	Odpowiedzialni (propozy- cja)
1	 Rozpoczęcie Zadania 1 (architektura) Ustalenie repozytorium, CI/CD 	Student 1 (lider) + cały ze- spół
2	 Finalizacja Zadania 1 Start Zadania 2 (parser/AST) 	Student 1Student 2 (lider Zadania 2)
3	 Kontynuacja Zadania 2 Rozpoczęcie Zadania 3 (metryki statyczne) 	Student 2Student 3 (lider Zadania 3)
4	 Finalizacja Zadania 2 Rozwój Zadania 3 (rozszerzanie metryk) Start Zadania 4 (metryki projektowe z Gita) 	 Student 2 Student 3 Student 4 (lider Zadania 4)
5	 Kontynuacja Zadania 3 Rozwój Zadania 4 Rozpoczęcie Zadania 5 (code smells, security) 	 Student 3 Student 4 Student 5 (lider Zadania 5)

Tydzień	Zadania	Odpowiedzialni (propozy- cja)
6		
	 Finalizacja Zadania 3 i 4 	Student 3
	 Kontynuacja Zadania 5 	Student 4
	 Start Zadania 6 (instrumentacja, cove- 	■ Student 5
	rage)	Student 6 (lider Zada- nia 6)
7		
	 Kontynuacja Zadania 5 i 6 	Student 5
	 Rozpoczęcie Zadania 7 (integracja CLI) 	Student 6
		Student 7 (lider Zada- nia 7)
8		
	 Finalizacja Zadania 5 	Student 5
	 Dalsza praca nad Zadaniem 6 i 7 	Student 6
	 Start Zadania 8 (dokumentacja me tryk) 	■ Student 7
		Student 8 (lider Zada- nia 8)
9		
	 Kontynuacja Zadania 6, 7, 8 	Student 6
	 Rozpoczęcie Zadania 9 (GUI, opcjonal- ne) 	■ Student 7
		■ Student 8
		Student 9 (lider Zada- nia 9)

Tydzień	Zadania	Odpowiedzialni (propozy- cja)
10		
	 Finalizacja Zadania 6, 7, 8 	Student 6
	 Rozwój Zadania 9 	Student 7
	 Początek Zadania 10 (integracja koń- cowa) 	Student 8
		■ Student 9
		Student 10 (lider Zada- nia 10)
11		
	 Kontynuacja Zadania 9, intensywna integracja (Zadanie 10) Testy i poprawki błędów 	Student 9Student 10Wszyscy (wsparcie testów)
12		
	 Finalizacja Zadania 9 i 10 	Student 9
	 Testy akceptacyjne i przygotowanie do- kumentacji końcowej 	■ Student 10
		 Wszyscy (wsparcie te- stów)

5 Uwagi końcowe

- Plan może ulegać modyfikacjom w zależności od postępów i dostępności członków zespołu.
- Polecam cotygodniowe spotkania całego zespołu (poza piątkowymi zajęciami).
- Ważne jest prowadzenie dokumentacji technicznej i utrzymywanie *readme* w repozytorium.
- Należy uwzględnić zasady Open-Closed Principle w celu łatwej rozszerzalności o nowe języki i nowe metryki.