# Causal limits of distributed computation



#### Francesco d'Amore

Based on joint work with the Xavier Coiteux-Roy, Rishikesh Gajjala, Fabian Kuhn, François Le Gall, Henrik Lievonen, Augusto Modanese, Marc-Olivier Renou, Gustav Schmid, Jukka Suomela

Bocconi University

05 December 2023

- ullet distributed systems with n nodes/processors
- synchronous rounds
- infinite computational power
- unbounded bandwidth



- ullet distributed systems with n nodes/processors
- synchronous rounds
- infinite computational power
- unbounded bandwidth
- unique IDs in  $\{1,\ldots,n^{\Theta(1)}\}$



- $\bullet$  distributed systems with n nodes/processors
- synchronous rounds
- infinite computational power
- unbounded bandwidth
- unique IDs in  $\{1,\ldots,n^{\Theta(1)}\}$
- knowledge of n



- $\bullet$  distributed systems with n nodes/processors
- synchronous rounds
- infinite computational power
- unbounded bandwidth
- unique IDs in  $\{1,\ldots,n^{\Theta(1)}\}$
- knowledge of  $\boldsymbol{n}$
- complexity measure: # of rounds



- $\bullet$  **distributed systems** with n nodes/processors
- synchronous rounds
- infinite computational power
- unbounded bandwidth
- unique IDs in  $\{1,\ldots,n^{\Theta(1)}\}$
- knowledge of n
- **complexity** measure: # of rounds
- E.g., T rounds of computation



- $\bullet$  distributed systems with n nodes/processors
- synchronous rounds
- infinite computational power
- unbounded bandwidth
- unique IDs in  $\{1,\ldots,n^{\Theta(1)}\}$
- knowledge of n
- **complexity** measure: # of rounds
- E.g., T rounds of computation
- also called locality



- $\bullet$  **distributed systems** with n nodes/processors
- synchronous rounds
- infinite computational power
- unbounded bandwidth
- unique IDs in  $\{1,\ldots,n^{\Theta(1)}\}$
- knowledge of n
- **complexity** measure: # of rounds
- E.g., T rounds of computation
- also called locality
- randomized-LOCAL
- infinite i.i.d. random bit strings
- error probability  $\leq 1/n$



- strongest lower bounds for synchronous distributed computation
- upper bounds  $\Longrightarrow$  lower bounds cannot be moved forward

- strongest lower bounds for synchronous distributed computation
- upper bounds ⇒ lower bounds cannot be moved forward
- modelling cost(message exchange) >> cost(computation)

- strongest lower bounds for synchronous distributed computation
- upper bounds ⇒ lower bounds cannot be moved forward
- modelling cost(message exchange) >> cost(computation)

- [Linial, SIAM J. of C. '92]
  - 3-coloring cycles:  $\Omega(\log^* n)$
  - $\mathcal{O}(\sqrt{d})$ -coloring d-regular trees:  $\Theta(\text{diameter})$

- strongest lower bounds for synchronous distributed computation
- upper bounds ⇒ lower bounds cannot be moved forward
- modelling cost(message exchange) >> cost(computation)

- [Linial, SIAM J. of C. '92]
  - 3-coloring cycles:  $\Omega(\log^* n)$
  - $\mathcal{O}(\sqrt{d})$ -coloring d-regular trees:  $\Theta(\text{diameter})$
- [Kuhn and Wattenhofer, PODC '06]
  - $(\Delta + 1)$ -coloring:  $\mathcal{O}(\Delta \log \Delta + \log^* n)$

- strongest lower bounds for synchronous distributed computation
- upper bounds ⇒ lower bounds cannot be moved forward
- modelling cost(message exchange) >> cost(computation)

- [Linial, SIAM J. of C. '92]
  - 3-coloring cycles:  $\Omega(\log^* n)$
  - $\mathcal{O}(\sqrt{d})$ -coloring d-regular trees:  $\Theta(\text{diameter})$
- [Kuhn and Wattenhofer, PODC '06]
  - $(\Delta + 1)$ -coloring:  $\mathcal{O}(\Delta \log \Delta + \log^* n)$
- [Chang and Pettie, FOCS '16]
  - T(n)-round rand-algoritm  $\implies T(2^{2^n})$ -round det-algorithm

- strongest lower bounds for synchronous distributed computation
- upper bounds  $\Longrightarrow$  lower bounds cannot be moved forward
- modelling cost(message exchange) >> cost(computation)

- [Linial, SIAM J. of C. '92]
  - 3-coloring cycles:  $\Omega(\log^* n)$
  - $\mathcal{O}(\sqrt{d})$ -coloring d-regular trees:  $\Theta(\text{diameter})$
- [Kuhn and Wattenhofer, PODC '06]
  - $(\Delta + 1)$ -coloring:  $\mathcal{O}(\Delta \log \Delta + \log^* n)$
- [Chang and Pettie, FOCS '16]
  - T(n)-round rand-algoritm  $\implies T(2^{2^n})$ -round det-algorithm
- [Balliu et al., FOCS '19]
  - MM and MIS cannot be solved in  $o(\Delta) + \mathcal{O}(\log^* n)$
- 3 6

[Naor and Stockmeyer, STOC '93]

• problems that can be locally checked



- problems that can be locally checked
- $\Sigma_{\text{in}}$ ,  $\Sigma_{\text{out}}$ : finite input and output label sets



- problems that can be locally checked
- $\Sigma_{\text{in}}$ ,  $\Sigma_{\text{out}}$ : finite input and output label sets
- family  ${\mathcal F}$  of admissible output neighborhoods of radius  $r=\Theta(1)$



- problems that can be locally checked
- $\Sigma_{\text{in}}$ ,  $\Sigma_{\text{out}}$ : finite input and output label sets
- family  ${\mathcal F}$  of admissible output neighborhoods of radius  $r=\Theta(1)$
- input: labelled graph of degree  $\Delta$



- problems that can be locally checked
- $\Sigma_{\text{in}}$ ,  $\Sigma_{\text{out}}$ : finite input and output label sets
- family  ${\mathcal F}$  of admissible output neighborhoods of radius  $r=\Theta(1)$
- input: labelled graph of degree  $\Delta$
- output: labelled graph that is valid iff each node verifies positively



- problems that can be locally checked
- $\Sigma_{\text{in}}$ ,  $\Sigma_{\text{out}}$ : finite input and output label sets
- family  ${\mathcal F}$  of admissible output neighborhoods of radius  $r=\Theta(1)$
- input: labelled graph of degree  $\Delta$
- output: labelled graph that is valid iff each node verifies positively
- 3-coloring: r=1



- problems that can be locally checked
- $\Sigma_{\text{in}}$ ,  $\Sigma_{\text{out}}$ : finite input and output label sets
- family  ${\mathcal F}$  of admissible output neighborhoods of radius  $r=\Theta(1)$
- input: labelled graph of degree  $\Delta$
- output: labelled graph that is valid iff each node verifies positively
- 3-coloring: r=1



- problems that can be locally checked
- $\Sigma_{\text{in}}$ ,  $\Sigma_{\text{out}}$ : finite input and output label sets
- family  $\mathcal F$  of admissible output neighborhoods of radius  $r=\Theta(1)$
- input: labelled graph of degree  $\Delta$
- output: labelled graph that is valid iff each node verifies positively
- 3-coloring: r=1



- problems that can be locally checked
- $\Sigma_{\text{in}}$ ,  $\Sigma_{\text{out}}$ : finite input and output label sets
- family  $\mathcal F$  of admissible output neighborhoods of radius  $r=\Theta(1)$
- input: labelled graph of degree  $\Delta$
- output: labelled graph that is valid iff each node verifies positively
- 3-coloring: r = 1
- maximal independent set: r = 1



- problems that can be locally checked
- $\Sigma_{\text{in}}$ ,  $\Sigma_{\text{out}}$ : finite input and output label sets
- family  ${\mathcal F}$  of admissible output neighborhoods of radius  $r=\Theta(1)$
- input: labelled graph of degree  $\Delta$
- output: labelled graph that is valid iff each node verifies positively
- 3-coloring: r=1
- maximal independent set: r = 1



- problems that can be locally checked
- $\Sigma_{\text{in}}$ ,  $\Sigma_{\text{out}}$ : finite input and output label sets
- family  ${\mathcal F}$  of admissible output neighborhoods of radius  $r=\Theta(1)$
- input: labelled graph of degree  $\Delta$
- output: labelled graph that is valid iff each node verifies positively
- 3-coloring: r = 1
- maximal independent set: r = 1



- problems that can be locally checked
- $\Sigma_{\text{in}}$ ,  $\Sigma_{\text{out}}$ : finite input and output label sets
- family  ${\mathcal F}$  of admissible output neighborhoods of radius  $r=\Theta(1)$
- input: labelled graph of degree  $\Delta$
- output: labelled graph that is valid iff each node verifies positively
- 3-coloring: r = 1
- ullet maximal independent set: r=1
- maximal matching: r = 2



- problems that can be locally checked
- $\Sigma_{\text{in}}$ ,  $\Sigma_{\text{out}}$ : finite input and output label sets
- family  ${\mathcal F}$  of admissible output neighborhoods of radius  $r=\Theta(1)$
- input: labelled graph of degree  $\Delta$
- output: labelled graph that is valid iff each node verifies positively
- 3-coloring: r=1
- maximal independent set: r = 1
- maximal matching: r = 2



- problems that can be locally checked
- $\Sigma_{\text{in}}$ ,  $\Sigma_{\text{out}}$ : finite input and output label sets
- family  ${\mathcal F}$  of admissible output neighborhoods of radius  $r=\Theta(1)$
- input: labelled graph of degree  $\Delta$
- output: labelled graph that is valid iff each node verifies positively
- 3-coloring: r = 1
- maximal independent set: r = 1
- maximal matching: r = 2



- problems that can be locally checked
- $\Sigma_{\text{in}}$ ,  $\Sigma_{\text{out}}$ : finite input and output label sets
- family  ${\mathcal F}$  of admissible output neighborhoods of radius  $r=\Theta(1)$
- input: labelled graph of degree  $\Delta$
- output: labelled graph that is valid iff each node verifies positively
- 3-coloring: r = 1
- maximal independent set: r = 1
- maximal matching: r = 2
- sinkless orientation: r = 1



- problems that can be locally checked
- $\Sigma_{\text{in}}$ ,  $\Sigma_{\text{out}}$ : finite input and output label sets
- family  ${\mathcal F}$  of admissible output neighborhoods of radius  $r=\Theta(1)$
- input: labelled graph of degree  $\Delta$
- output: labelled graph that is valid iff each node verifies positively
- 3-coloring: r = 1
- maximal independent set: r = 1
- maximal matching: r = 2
- sinkless orientation: r=1
- minimal dominating set: r=1
- many others...



• LCLs' complexity has been **characterized** in many graph families

- LCLs' complexity has been **characterized** in many graph families
- paths & cycles

| det-LOCAL  | $\mathcal{O}(1)$ | $\Theta(\log^{\star} n)$ | $\Theta(n)$ |
|------------|------------------|--------------------------|-------------|
| rand-LOCAL | $\mathcal{O}(1)$ | $\Theta(\log^{\star} n)$ | $\Theta(n)$ |

- LCLs' complexity has been characterized in many graph families
- paths & cycles

| det-LOCAL  | $\mathcal{O}(1)$ | $\Theta(\log^{\star} n)$ | $\Theta(n)$ |
|------------|------------------|--------------------------|-------------|
| rand-LOCAL | $\mathcal{O}(1)$ | $\Theta(\log^{\star} n)$ | $\Theta(n)$ |

- balanced d-dimensional toroidal grids

| det-LOCAL  | $\mathcal{O}(1)$ | $\Theta(\log^{\star} n)$ | $\Theta(n^{1/d})$ |
|------------|------------------|--------------------------|-------------------|
| rand-LOCAL | $\mathcal{O}(1)$ | $\Theta(\log^{\star} n)$ | $\Theta(n^{1/d})$ |

- LCLs' complexity has been characterized in many graph families
- paths & cycles

| det-LOCAL  | $\mathcal{O}(1)$ | $\Theta(\log^{\star} n)$ | $\Theta(n)$ |
|------------|------------------|--------------------------|-------------|
| rand-LOCAL | $\mathcal{O}(1)$ | $\Theta(\log^{\star} n)$ | $\Theta(n)$ |

- balanced d-dimensional toroidal grids

| det-LOCAL  | $\mathcal{O}(1)$ | $\Theta(\log^{\star} n)$ | $\Theta(n^{1/d})$ |
|------------|------------------|--------------------------|-------------------|
| rand-LOCAL | $\mathcal{O}(1)$ | $\Theta(\log^{\star} n)$ | $\Theta(n^{1/d})$ |

- bounded-degree trees

| det-LOCAL  | $\mathcal{O}(1)$ | $\Theta(\log^{\star} n)$ | $\Theta(\log n)$      |                  | $\Theta(n^{1/k})$ | $\Theta(n)$ |
|------------|------------------|--------------------------|-----------------------|------------------|-------------------|-------------|
| rand-LOCAL | $\mathcal{O}(1)$ | $\Theta(\log^{\star} n)$ | $\Theta(\log \log n)$ | $\Theta(\log n)$ | $\Theta(n^{1/k})$ | $\Theta(n)$ |

- LCLs' complexity has been characterized in many graph families
- paths & cycles

| det-LOCAL  | $\mathcal{O}(1)$ | $\Theta(\log^{\star} n)$ | $\Theta(n)$ |
|------------|------------------|--------------------------|-------------|
| rand-LOCAL | $\mathcal{O}(1)$ | $\Theta(\log^{\star} n)$ | $\Theta(n)$ |

- balanced d-dimensional toroidal grids

| det-LOCAL  | $\mathcal{O}(1)$ | $\Theta(\log^{\star} n)$ | $\Theta(n^{1/d})$ |
|------------|------------------|--------------------------|-------------------|
| rand-LOCAL | $\mathcal{O}(1)$ | $\Theta(\log^{\star} n)$ | $\Theta(n^{1/d})$ |

bounded-degree trees

| det-LOCAL  | $\mathcal{O}(1)$ | $\Theta(\log^{\star} n)$ | $\Theta(\log n)$      |                  | $\Theta(n^{1/k})$ | $\Theta(n)$ |
|------------|------------------|--------------------------|-----------------------|------------------|-------------------|-------------|
| rand-LOCAL | $\mathcal{O}(1)$ | $\Theta(\log^{\star} n)$ | $\Theta(\log \log n)$ | $\Theta(\log n)$ | $\Theta(n^{1/k})$ | $\Theta(n)$ |

- general graphs: much more complex

- LCLs' complexity has been characterized in many graph families
- paths & cycles

| det-LOCAL  | $\mathcal{O}(1)$ | $\Theta(\log^{\star} n)$ | $\Theta(n)$ |
|------------|------------------|--------------------------|-------------|
| rand-LOCAL | $\mathcal{O}(1)$ | $\Theta(\log^{\star} n)$ | $\Theta(n)$ |

- balanced d-dimensional toroidal grids

| det-LOCAL  | $\mathcal{O}(1)$ | $\Theta(\log^{\star} n)$ | $\Theta(n^{1/d})$ |
|------------|------------------|--------------------------|-------------------|
| rand-LOCAL | $\mathcal{O}(1)$ | $\Theta(\log^{\star} n)$ | $\Theta(n^{1/d})$ |

- bounded-degree trees

| det-LOCAL  | $\mathcal{O}(1)$ | $\Theta(\log^{\star} n)$ | $\Theta(\log n)$      |                  | $\Theta(n^{1/k})$ | $\Theta(n)$ |
|------------|------------------|--------------------------|-----------------------|------------------|-------------------|-------------|
| rand-LOCAL | $\mathcal{O}(1)$ | $\Theta(\log^{\star} n)$ | $\Theta(\log \log n)$ | $\Theta(\log n)$ | $\Theta(n^{1/k})$ | $\Theta(n)$ |

- general graphs: much more complex
  - randomness does not help up to  $\Theta(\log^{\star} n)$  and for  $\Theta(n)$

## Complexity of LCLs

- LCLs' complexity has been **characterized** in many graph families
- paths & cycles

| det-LOCAL  | $\mathcal{O}(1)$ | $\Theta(\log^{\star} n)$ | $\Theta(n)$ |
|------------|------------------|--------------------------|-------------|
| rand-LOCAL | $\mathcal{O}(1)$ | $\Theta(\log^{\star} n)$ | $\Theta(n)$ |

- balanced *d*-dimensional toroidal grids

| det-LOCAL  | $\mathcal{O}(1)$ | $\Theta(\log^{\star} n)$ | $\Theta(n^{1/d})$ |
|------------|------------------|--------------------------|-------------------|
| rand-LOCAL | $\mathcal{O}(1)$ | $\Theta(\log^{\star} n)$ | $\Theta(n^{1/d})$ |

- bounded-degree trees

| det-LOCAL  | $\mathcal{O}(1)$ | $\Theta(\log^{\star} n)$ | $\Theta(\log n)$      |                  | $\Theta(n^{1/k})$ | $\Theta(n)$ |
|------------|------------------|--------------------------|-----------------------|------------------|-------------------|-------------|
| rand-LOCAL | $\mathcal{O}(1)$ | $\Theta(\log^{\star} n)$ | $\Theta(\log \log n)$ | $\Theta(\log n)$ | $\Theta(n^{1/k})$ | $\Theta(n)$ |

- general graphs: much more complex
  - randomness does not help up to  $\Theta(\log^* n)$  and for  $\Theta(n)$
  - gap  $\Theta(\log^* n)$ - $\Theta(\log n)$  ( $\Theta(\log \log n)$ ) for det- (rand-) LOCAL

## Complexity of LCLs

- LCLs' complexity has been characterized in many graph families
- paths & cycles

| det-LOCAL  | $\mathcal{O}(1)$ | $\Theta(\log^{\star} n)$ | $\Theta(n)$ |
|------------|------------------|--------------------------|-------------|
| rand-LOCAL | $\mathcal{O}(1)$ | $\Theta(\log^{\star} n)$ | $\Theta(n)$ |

- balanced *d*-dimensional toroidal grids

| det-LOCAL  | $\mathcal{O}(1)$ | $\Theta(\log^{\star} n)$ | $\Theta(n^{1/d})$ |
|------------|------------------|--------------------------|-------------------|
| rand-LOCAL | $\mathcal{O}(1)$ | $\Theta(\log^{\star} n)$ | $\Theta(n^{1/d})$ |

- bounded-degree trees

| det-LOCAL  | $\mathcal{O}(1)$ | $\Theta(\log^{\star} n)$ | $\Theta(\log n)$      |                  | $\Theta(n^{1/k})$ | $\Theta(n)$ |
|------------|------------------|--------------------------|-----------------------|------------------|-------------------|-------------|
| rand-LOCAL | $\mathcal{O}(1)$ | $\Theta(\log^{\star} n)$ | $\Theta(\log \log n)$ | $\Theta(\log n)$ | $\Theta(n^{1/k})$ | $\Theta(n)$ |

- general graphs: much more complex
  - randomness does not help up to  $\Theta(\log^* n)$  and for  $\Theta(n)$
  - gap  $\Theta(\log^* n)$ - $\Theta(\log n)$  ( $\Theta(\log \log n)$ ) for det- (rand-) LOCAL
  - in general, randomness helps both exponentially and polynomially

#### Round elimination

- input: LCL problem of complexity T
- output 1: LCL problem of complexity T-1

#### Round elimination

- input: LCL problem of complexity  ${\cal T}$
- output 1: LCL problem of complexity T-1

•

- output T: LCL problem of complexity 0

#### Round elimination

- input: LCL problem of complexity T
- output 1: LCL problem of complexity T-1

•

- output T: LCL problem of complexity 0

If output T is not 0-round solvable, then lower bound T for the input

#### Round elimination

- input: LCL problem of complexity T
- output 1: LCL problem of complexity T-1

•

- output T: LCL problem of complexity 0

If output T is not 0-round solvable, then lower bound T for the input

#### Indistinguishability argument

- local algorithms cannot recognize "global" modifications
- "fool" the algorithm

#### Round elimination

- input: LCL problem of complexity T
- output 1: LCL problem of complexity T-1

•

- output T: LCL problem of complexity 0

If output T is not 0-round solvable, then lower bound T for the input

#### Indistinguishability argument

- local algorithms cannot recognize "global" modifications
- "fool" the algorithm

## Indistinguishability argument

• Example: 2-coloring cycles requires  $\Theta(n)$ 



## Indistinguishability argument

• Example: 2-coloring cycles requires  $\Theta(n)$ 



- red nodes must output the same
- blue nodes must output the same
- more complex arguments show  $T \geq \lfloor \frac{n}{2} \rfloor 1$

- Natural questions
- can quantum communication bring advantage?

- Natural questions
- can quantum communication bring advantage?
- can **pre-shared quantum states** bring advantage?

- Natural questions
- can quantum communication bring advantage?
- can **pre-shared quantum states** bring advantage?
- For non-LCLs, yes
- complexity  $\Theta(n)$  in LOCAL with shared randomness and  $\Theta(1)$  in q-LOCAL with pre-shared quantum state [Gavoille et al., DISC '09]

- Natural questions
- can quantum communication bring advantage?
- can **pre-shared quantum states** bring advantage?
- For non-LCLs, yes
- complexity  $\Theta(n)$  in LOCAL with shared randomness and  $\Theta(1)$  in q-LOCAL with pre-shared quantum state [Gavoille et al., DISC '09]
- complexity  $\Theta(n)$  in rand-LOCAL and  $\Theta(1)$  in q-LOCAL [Le Gall et al., STACS '19]

- Natural questions
- can quantum communication bring advantage?
- can **pre-shared quantum states** bring advantage?
- For non-LCLs, yes
- complexity  $\Theta(n)$  in LOCAL with shared randomness and  $\Theta(1)$  in q-LOCAL with pre-shared quantum state [Gavoille et al., DISC '09]
- complexity  $\Theta(n)$  in rand-LOCAL and  $\Theta(1)$  in q-LOCAL [Le Gall et al., STACS '19]
- For LCLs, unknown
- how to prove lower bounds for q-LOCAL?

- Natural questions
- can quantum communication bring advantage?
- can **pre-shared quantum states** bring advantage?
- For non-LCLs, yes
- complexity  $\Theta(n)$  in LOCAL with shared randomness and  $\Theta(1)$  in q-LOCAL with pre-shared quantum state [Gavoille et al., DISC '09]
- complexity  $\Theta(n)$  in rand-LOCAL and  $\Theta(1)$  in q-LOCAL [Le Gall et al., STACS '19]
- For LCLs, unknown
- how to prove lower bounds for q-LOCAL?
- some indistinguishability arguments works! [Gavoille et al., DISC '09]

• Principle (informal): no signal can be sent from the future to the past

• Principle (informal): no signal can be sent from the future to the past

• In distributed systems?

- Principle (informal): no signal can be sent from the future to the past
- In distributed systems?

Some preliminary remarks . . .

ullet Fix a set V of n processors



- Principle (informal): no signal can be sent from the future to the past
- In distributed systems?

- ullet Fix a set V of n processors
- fix any algorithm  $\mathcal{A}$



- Principle (informal): no signal can be sent from the future to the past
- In distributed systems?

- ullet Fix a set V of n processors
- fix any algorithm  ${\cal A}$
- freedom on how to set links (the graph)



- Principle (informal): no signal can be sent from the future to the past
- In distributed systems?

- ullet Fix a set V of n processors
- fix any algorithm  ${\cal A}$
- freedom on how to set links (the graph)



- Principle (informal): no signal can be sent from the future to the past
- In distributed systems?

- ullet Fix a set V of n processors
- fix any algorithm  $\mathcal{A}$
- freedom on how to set links (the graph)



- Principle (informal): no signal can be sent from the future to the past
- In distributed systems?

- ullet Fix a set V of n processors
- fix any algorithm  ${\cal A}$
- freedom on how to set links (the graph)
- the algorithm always outputs something



- Principle (informal): no signal can be sent from the future to the past
- In distributed systems?

- ullet Fix a set V of n processors
- fix any algorithm  ${\cal A}$
- freedom on how to set links (the graph)
- the algorithm always outputs something
- Wlog, we assume algorithms are defined over **all graphs** of n nodes



- In distributed systems?
- ullet Fix a **distributed system** with |V|=n processors



- In distributed systems?
- Fix a **distributed system** with |V| = n processors
- run algorithm  ${\mathcal A}$  for T rounds



- In distributed systems?
- Fix a **distributed system** with |V| = n processors
- run algorithm  ${\mathcal A}$  for T rounds
- fix  $S \subseteq V$



- In distributed systems?
- Fix a **distributed system** with |V|=n processors
- run algorithm  ${\mathcal A}$  for T rounds
- fix  $S \subseteq V$
- consider  $G[\mathcal{N}_T(S)]$  (T=2)



- In distributed systems?
- Fix a **distributed system** with |V|=n processors
- run algorithm  ${\mathcal A}$  for T rounds
- fix  $S \subseteq V$
- consider  $G[\mathcal{N}_T(S)]$  (T=2)
- modify G outside  $G[\mathcal{N}_T(S)]$



- In distributed systems?
- Fix a **distributed system** with |V|=n processors
- run algorithm  ${\mathcal A}$  for T rounds
- fix  $S \subseteq V$
- consider  $G[\mathcal{N}_T(S)]$  (T=2)
- modify G outside  $G[\mathcal{N}_T(S)]$
- the output distribution over  $G[\mathcal{N}_T(S)]$  must be the same no matter the structure outside



- In distributed systems?
- Fix a **distributed system** with |V|=n processors
- run algorithm  ${\mathcal A}$  for T rounds
- fix  $S \subseteq V$
- consider  $G[\mathcal{N}_T(S)]$  (T=2)
- modify G outside  $G[\mathcal{N}_T(S)]$
- the output distribution over  $G[\mathcal{N}_T(S)]$  must be the same no matter the structure outside



Outcome: "generalization" of algorithm

• An outcome assigns to inputs (G,x) a distribution over outputs  $\{(y_i,p_i)\}_{i\in I}$ ,  $y_i:V\to \Sigma_{\mathrm{out}}$ 

• An outcome is **non-signaling beyond distance** T if for all  $S \subseteq V$ , for all inputs (G,x),(H,y) on V with  $G[\mathcal{N}_T(S)] \sim H[\mathcal{N}_T(S)]$ , the distributions restricted to G[S] and H[S] are the same

• An outcome is **non-signaling beyond distance** T if for all  $S \subseteq V$ , for all inputs (G, x), (H, y) on V with  $G[\mathcal{N}_T(S)] \sim H[\mathcal{N}_T(S)]$ , the distributions restricted to G[S] and H[S] are the same

Example: 2-coloring cycles

• Outcome: sample uniformly at random a consistent 2-coloring

• An outcome is **non-signaling beyond distance** T if for all  $S \subseteq V$ , for all inputs (G, x), (H, y) on V with  $G[\mathcal{N}_T(S)] \sim H[\mathcal{N}_T(S)]$ , the distributions restricted to G[S] and H[S] are the same

Example: 2-coloring cycles

• Outcome: sample uniformly at random a consistent 2-coloring



• An outcome is **non-signaling beyond distance** T if for all  $S \subseteq V$ , for all inputs (G, x), (H, y) on V with  $G[\mathcal{N}_T(S)] \sim H[\mathcal{N}_T(S)]$ , the distributions restricted to G[S] and H[S] are the same

Example: 2-coloring cycles

• Outcome: sample uniformly at random a consistent 2-coloring



- non-signaling beyond distance  $T = \lceil \frac{n-2}{4} \rceil$ 

11 - 4

• An outcome is **non-signaling beyond distance** T if for all  $S \subseteq V$ , for all inputs (G, x), (H, y) on V with  $G[\mathcal{N}_T(S)] \sim H[\mathcal{N}_T(S)]$ , the distributions restricted to G[S] and H[S] are the same

Example: 2-coloring cycles

• Outcome: sample uniformly at random a consistent 2-coloring



- non-signaling beyond distance  $T = \lceil \frac{n-2}{4} \rceil$ 

### The $\varphi$ -LOCAL and non-signaling LOCAL models

### [Gavoille et al., DISC '09]

- The  $\varphi$ -LOCAL model is a computational model that produces non-signaling outcomes
- class  $\Phi[T]$  consists of problems solvable by outcomes that are non-signaling beyond distance T

### The $\varphi$ -LOCAL and non-signaling LOCAL models

### [Gavoille et al., DISC '09]

- The  $\varphi$ -LOCAL model is a computational model that produces non-signaling outcomes
- class  $\varPhi[T]$  consists of problems solvable by outcomes that are non-signaling beyond distance T

### [Arfaoui and Fraigniaud, PODC '12]

- The non-signaling (NS) LOCAL model is a computational model that produces non-signaling outcomes defined for every possible input graph
- class  $\mathcal{NS}[T]$  defined analogously

### The $\varphi$ -LOCAL and non-signaling LOCAL models

### [Gavoille et al., DISC '09]

- The  $\varphi$ -LOCAL model is a computational model that produces non-signaling outcomes
- class  $\Phi[T]$  consists of problems solvable by outcomes that are non-signaling beyond distance T

### [Arfaoui and Fraigniaud, PODC '12]

- The non-signaling (NS) LOCAL model is a computational model that produces non-signaling outcomes defined for every possible input graph
- class  $\mathcal{NS}[T]$  defined analogously
- $\mathcal{P} \in \mathcal{NS}[T] \implies \mathcal{P} \in \Phi[T]$

• [Linial, FOCS '87] combines the indistinguishability argument with some graph-theoretic results

• [Linial, FOCS '87] combines the indistinguishability argument with some graph-theoretic results

- Ramanujan graphs of n nodes with the following properties
  - $2c^2$ -regular
  - girth  $\Omega(\log_c n)$
  - chromatic number > c

• [Linial, FOCS '87] combines the indistinguishability argument with some graph-theoretic results

- Ramanujan graphs of n nodes with the following properties
  - $2c^2$ -regular
  - girth  $\Omega(\log_c n)$
  - chromatic number > c
- By contradiction: det-LOCAL algorithm  $\mathcal{A}$  with  $T = \mathcal{O}(\log_c n)$

• [Linial, FOCS '87] combines the indistinguishability argument with some graph-theoretic results

- Ramanujan graphs of n nodes with the following properties
  - $2c^2$ -regular
  - girth  $\Omega(\log_c n)$
  - chromatic number > c
- By contradiction: det-LOCAL algorithm  $\mathcal{A}$  with  $T = \mathcal{O}(\log_c n)$
- run  ${\mathcal A}$  in the Ramanujan graph R



• [Linial, FOCS '87] combines the indistinguishability argument with some graph-theoretic results

- Ramanujan graphs of n nodes with the following properties
  - $2c^2$ -regular
  - girth  $\Omega(\log_c n)$
  - chromatic number > c
- By contradiction: det-LOCAL algorithm  $\mathcal{A}$  with  $T = \mathcal{O}(\log_c n)$
- run  ${\mathcal A}$  in the Ramanujan graph R
- $\mathcal{A}$  fails somewhere



• [Linial, FOCS '87] combines the indistinguishability argument with some graph-theoretic results

- Ramanujan graphs of n nodes with the following properties
  - $2c^2$ -regular
  - girth  $\Omega(\log_c n)$
  - chromatic number > c
- By contradiction: det-LOCAL algorithm  $\mathcal{A}$  with  $T = \mathcal{O}(\log_c n)$
- run  ${\mathcal A}$  in the Ramanujan graph R
- $\mathcal{A}$  fails somewhere
- T-radius neighborhood around the failing region



• [Linial, FOCS '87] combines the indistinguishability argument with some graph-theoretic results

- Ramanujan graphs of n nodes with the following properties
  - $2c^2$ -regular
  - girth  $\Omega(\log_c n)$
  - chromatic number > c
- By contradiction: det-LOCAL algorithm  $\mathcal{A}$  with  $T = \mathcal{O}(\log_c n)$
- run  ${\mathcal A}$  in the Ramanujan graph R
- $\mathcal{A}$  fails somewhere
- T-radius neighborhood around the failing region
- it's a c-regular tree (completable to n nodes)



- By contradiction: rand-LOCAL algorithm  $\mathcal{A}$  with  $T = \mathcal{O}(\log_c n)$
- run  ${\mathcal A}$  in the Ramanujan graph R



R

- By contradiction: rand-LOCAL algorithm  $\mathcal{A}$  with  $T = \mathcal{O}(\log_c n)$
- run  ${\mathcal A}$  in the Ramanujan graph R
- $\mathcal{A}$  fails somewhere, but then?



R

- By contradiction: rand-LOCAL algorithm  $\mathcal{A}$  with  $T = \mathcal{O}(\log_c n)$
- run  ${\mathcal A}$  in the Ramanujan graph R
- $\mathcal{A}$  fails somewhere, but then?



R

• Suppose R can admits a family of subgraphs  $\{R_i\}_{i=1}^k$  such that

$$- \cup_{i=1}^k R_i = R$$

- By contradiction: rand-LOCAL algorithm  $\mathcal{A}$  with  $T = \mathcal{O}(\log_c n)$
- run  ${\mathcal A}$  in the Ramanujan graph R
- $\mathcal{A}$  fails somewhere, but then?



- ullet Suppose R can admits a family of subgraphs  $\{R_i\}_{i=1}^k$  such that
- $\cup_{i=1}^k R_i = R$
- $\Longrightarrow \exists i^{\star} \in [k]$  such that  $\mathcal{A}$  fails in  $R_i$  with probability at least 1/k

- By contradiction: rand-LOCAL algorithm  $\mathcal{A}$  with  $T = \mathcal{O}(\log_c n)$
- run  ${\mathcal A}$  in the Ramanujan graph R
- $\mathcal{A}$  fails somewhere, but then?



R

- Suppose R can admits a family of subgraphs  $\{R_i\}_{i=1}^k$  such that
- $\cup_{i=1}^k R_i = R$
- $\Longrightarrow \exists i^{\star} \in [k]$  such that  $\mathcal{A}$  fails in  $R_i$  with probability at least 1/k
- $R[\mathcal{N}_T[R_i]]$  is a tree for each i

- By contradiction: rand-LOCAL algorithm  $\mathcal{A}$  with  $T = \mathcal{O}(\log_c n)$
- run  ${\mathcal A}$  in the Ramanujan graph R
- $\mathcal{A}$  fails somewhere, but then?



- Suppose R can admits a family of subgraphs  $\{R_i\}_{i=1}^k$  such that
- $\cup_{i=1}^k R_i = R$
- $\Longrightarrow \exists i^{\star} \in [k]$  such that  $\mathcal{A}$  fails in  $R_i$  with probability at least 1/k

-  $R[\mathcal{N}_T[R_i]]$  is a tree for each i



- By contradiction: rand-LOCAL algorithm  $\mathcal{A}$  with  $T = \mathcal{O}(\log_c n)$
- run  ${\mathcal A}$  in the Ramanujan graph R
- $\mathcal{A}$  fails somewhere, but then?



- Suppose R can admits a family of subgraphs  $\{R_i\}_{i=1}^k$  such that
- $\cup_{i=1}^k R_i = R$
- $\Longrightarrow \exists i^{\star} \in [k]$  such that  $\mathcal{A}$  fails in  $R_i$  with probability at least 1/k

-  $R[\mathcal{N}_T[R_i]]$  is a tree for each i



- Failing prob.:  $1 (1 \frac{1}{k})^N$
- lower bound  $T_{\text{new}}(n) = T(n/N)$

#### **Issues**

Possible dependencies: output distributions for two subsets of nodes
 X and Y, then even if X and Y are far from each other, the outputs
 of these subsets might be dependent

#### **Issues**

- Possible dependencies: output distributions for two subsets of nodes
  X and Y, then even if X and Y are far from each other, the outputs
  of these subsets might be dependent
- No-cloning principle: if two graphs G and H have different sizes, then even if they share two identical subgraphs G' and H' with isomorphic radius-T neighborhoods, the output distribution is not guaranteed to be identical over G' and H'

#### **Issues**

- Possible dependencies: output distributions for two subsets of nodes
  X and Y, then even if X and Y are far from each other, the outputs
  of these subsets might be dependent
- No-cloning principle: if two graphs G and H have different sizes, then even if they share two identical subgraphs G' and H' with isomorphic radius-T neighborhoods, the output distribution is not guaranteed to be identical over G' and H'
- Can we do something similar?

#### **Issues**

- Possible dependencies: output distributions for two subsets of nodes
  X and Y, then even if X and Y are far from each other, the outputs
  of these subsets might be dependent
- No-cloning principle: if two graphs G and H have different sizes, then even if they share two identical subgraphs G' and H' with isomorphic radius-T neighborhoods, the output distribution is not guaranteed to be identical over G' and H'
- Can we do something similar?
- We need to refine the definition of cheating graph

Fix an LCL problem  ${\mathcal P}$  over some graph family  ${\mathcal F}$ 

**Cheating graph:** 

Fix an LCL problem  ${\mathcal P}$  over some graph family  ${\mathcal F}$ 

### Cheating graph:

ullet For some n, there exist a value T=T(n) and a graph  $G_n$  on n nodes with a family of subgraphs  $\{G_n^{(i)}\}_{i=1}^k$  such that

Fix an LCL problem  ${\mathcal P}$  over some graph family  ${\mathcal F}$ 

### Cheating graph:

• For some n, there exist a value T=T(n) and a graph  $G_n$  on n nodes with a family of subgraphs  $\{G_n^{(i)}\}_{i=1}^k$  such that

$$- \cup_{i=1}^k G_n^{(i)} = G_n$$

Fix an LCL problem  ${\mathcal P}$  over some graph family  ${\mathcal F}$ 

### Cheating graph:

- For some n, there exist a value T=T(n) and a graph  $G_n$  on n nodes with a family of subgraphs  $\{G_n^{(i)}\}_{i=1}^k$  such that
- $\cup_{i=1}^k G_n^{(i)} = G_n$
- ${\mathcal P}$  is solvable on each  $G_n[{\mathcal N}_T(G_n^{(i)})]$

Fix an LCL problem  ${\mathcal P}$  over some graph family  ${\mathcal F}$ 

### Cheating graph:

- For some n, there exist a value T=T(n) and a graph  $G_n$  on n nodes with a family of subgraphs  $\{G_n^{(i)}\}_{i=1}^k$  such that
- $\cup_{i=1}^k G_n^{(i)} = G_n$
- ${\mathcal P}$  is solvable on each  $G_n[{\mathcal N}_T(G_n^{(i)})]$
- for some N>0, and all  $\mathbf{x}\in\{1,\ldots,k\}^N$ ,  $\mathcal{F}$  contains a graph  $H_{\mathbf{x}}$  on  $n\cdot N$  nodes which admits  $\sqcup_{j=1}^N G_n^{(\mathbf{x}_j)}$  as induced subgraph  $H_{\mathbf{x}}'$  so that  $H_{\mathbf{x}}[\mathcal{N}_T(H_{\mathbf{x}}')]$  and  $\sqcup_{j=1}^N G_n[\mathcal{N}_T(G_n^{(\mathbf{x}_j)})]$  are isomorphic

Fix an LCL problem  ${\mathcal P}$  over some graph family  ${\mathcal F}$ 

### **Cheating graph:**

- For some n, there exist a value T=T(n) and a graph  $G_n$  on n nodes with a family of subgraphs  $\{G_n^{(i)}\}_{i=1}^k$  such that
- $\cup_{i=1}^k G_n^{(i)} = G_n$
- ${\mathcal P}$  is solvable on each  $G_n[{\mathcal N}_T(G_n^{(i)})]$
- for some N>0, and all  $\mathbf{x}\in\{1,\ldots,k\}^N$ ,  $\mathcal{F}$  contains a graph  $H_{\mathbf{x}}$  on  $n\cdot N$  nodes which admits  $\sqcup_{j=1}^N G_n^{(\mathbf{x}_j)}$  as induced subgraph  $H_{\mathbf{x}}'$  so that  $H_{\mathbf{x}}[\mathcal{N}_T(H_{\mathbf{x}}')]$  and  $\sqcup_{j=1}^N G_n[\mathcal{N}_T(G_n^{(\mathbf{x}_j)})]$  are isomorphic

**Theorem**: failing probability  $\geq 1 - (1 - \frac{1}{k})^N$  and  $T_{\mathsf{new}}(n) = T(\frac{n}{N})$ 

Cheating graph  ${\cal G}$ 



Locally,  ${\mathcal P}$  solvable

Globally,  ${\mathcal P}$  not solvable

 ${\it Cheating graph}\ {\it G}$ 



Locally,  ${\mathcal P}$  solvable Globally,  ${\mathcal P}$  not solvable

 ${\cal N}$  copies of the cheating graph  ${\cal G}$ 



- Result 1: c-coloring trees with success probability  $\varepsilon$  requires locality  $T = \Omega(\log_c n \log_c \log \frac{1}{\varepsilon})$
- Ramanujan graphs

- Result 1: c-coloring trees with success probability  $\varepsilon$  requires locality  $T = \Omega(\log_c n \log_c \log \frac{1}{\varepsilon})$
- Ramanujan graphs
- **Result 2**: 3-coloring  $n \times n$  grids with success probability  $\geq \varepsilon$  requires locality  $T = \Omega(\frac{n}{\log \frac{1}{\varepsilon}})$

- Result 1: c-coloring trees with success probability  $\varepsilon$  requires locality  $T = \Omega(\log_c n \log_c \log \frac{1}{\varepsilon})$
- Ramanujan graphs
- Result 2: 3-coloring  $n \times n$  grids with success probability  $\geq \varepsilon$  requires locality  $T = \Omega(\frac{n}{\log \frac{1}{\varepsilon}})$
- quadrangulations of the Klein bottle

- Result 1: c-coloring trees with success probability  $\varepsilon$  requires locality  $T = \Omega(\log_c n \log_c \log \frac{1}{\varepsilon})$
- Ramanujan graphs
- Result 2: 3-coloring  $n \times n$  grids with success probability  $\geq \varepsilon$  requires locality  $T = \Omega(\frac{n}{\log \frac{1}{\varepsilon}})$
- quadrangulations of the Klein bottle
- **Result 3**: c-coloring  $\chi$ -chromatic graphs with success probability  $\geq \varepsilon$  requires locality  $T = \Omega((\frac{n}{\log \frac{1}{\varepsilon}})^{1/\alpha})$  where  $\alpha = \lfloor \frac{c-1}{\chi-1} \rfloor$

- Result 1: c-coloring trees with success probability  $\varepsilon$  requires locality  $T = \Omega(\log_c n \log_c \log \frac{1}{\varepsilon})$
- Ramanujan graphs
- **Result 2**: 3-coloring  $n \times n$  grids with success probability  $\geq \varepsilon$  requires locality  $T = \Omega(\frac{n}{\log \frac{1}{\varepsilon}})$
- quadrangulations of the Klein bottle
- **Result 3**: c-coloring  $\chi$ -chromatic graphs with success probability  $\geq \varepsilon$  requires locality  $T = \Omega((\frac{n}{\log \frac{1}{\varepsilon}})^{1/\alpha})$  where  $\alpha = \lfloor \frac{c-1}{\chi-1} \rfloor$
- construction in [Bogdanov '13]

- Result 1: c-coloring trees with success probability  $\varepsilon$  requires locality  $T = \Omega(\log_c n \log_c \log \frac{1}{\varepsilon})$
- Ramanujan graphs
- Result 2: 3-coloring  $n \times n$  grids with success probability  $\geq \varepsilon$  requires locality  $T = \Omega(\frac{n}{\log \frac{1}{\varepsilon}})$
- quadrangulations of the Klein bottle
- **Result 3**: c-coloring  $\chi$ -chromatic graphs with success probability  $\geq \varepsilon$  requires locality  $T = \Omega((\frac{n}{\log \frac{1}{\varepsilon}})^{1/\alpha})$  where  $\alpha = \lfloor \frac{c-1}{\chi-1} \rfloor$
- construction in [Bogdanov '13]
- deterministic upper bound  $T = \mathcal{O}(n^{\frac{1}{\alpha}} \operatorname{polylog}(n))$

- Result 1: c-coloring trees with success probability  $\varepsilon$  requires locality  $T = \Omega(\log_c n \log_c \log \frac{1}{\varepsilon})$
- Ramanujan graphs
- Result 2: 3-coloring  $n \times n$  grids with success probability  $\geq \varepsilon$  requires locality  $T = \Omega(\frac{n}{\log \frac{1}{\varepsilon}})$
- quadrangulations of the Klein bottle
- Result 3: c-coloring  $\chi$ -chromatic graphs with success probability  $\geq \varepsilon$  requires locality  $T = \Omega((\frac{n}{\log \frac{1}{\varepsilon}})^{1/\alpha})$  where  $\alpha = \lfloor \frac{c-1}{\chi-1} \rfloor$
- construction in [Bogdanov '13]
- deterministic upper bound  $T = \mathcal{O}(n^{\frac{1}{\alpha}} \operatorname{polylog}(n))$

### Approximate graph coloring

**Problem**: Let  $2 \le \chi \le c$ . The approximate graph coloring problem asks to c-color  $\chi$ -chromatic graphs.

- Previous results (classical LOCAL model)
- $-c=2, \chi=2 \implies T=\Theta(n)$
- $c=3, \chi=2 \implies T=\Omega(\sqrt{n})$  [Brandt et al., PODC '17]
- $c \ge 4, \chi = 2 \implies T = \Omega(\log(n))$  [Linial, FOCS '87]
- Our results (All LOCAL models from det. to non-signaling)
- $-\alpha = \lfloor \frac{c-1}{\chi-1} \rfloor \implies T = \Omega(n^{\frac{1}{\alpha}}), T = \mathcal{O}(n^{\frac{1}{\alpha}}\operatorname{polylog}(n))$
- ⇒ no quantum advantage

- **Theorem**: Let  $\chi \geq 2$ ,  $r \geq 1$ ,  $\alpha \geq 0$  be integers. There exists a graph  $G_{\alpha,\chi}$  such that
- $\mathcal{L}\mathcal{X}_r(G_{\alpha,\chi}) = \chi$

- **Theorem**: Let  $\chi \geq 2$ ,  $r \geq 1$ ,  $\alpha \geq 0$  be integers. There exists a graph  $G_{\alpha,\chi}$  such that
- $\mathcal{L}\mathcal{X}_r(G_{\alpha,\chi}) = \chi$
- $\mathcal{X}(G_{\alpha,\chi}) = (\alpha + 1)(\chi 1) + 1$

- **Theorem**: Let  $\chi \geq 2$ ,  $r \geq 1$ ,  $\alpha \geq 0$  be integers. There exists a graph  $G_{\alpha,\chi}$  such that
- $\mathcal{L}\mathcal{X}_r(G_{\alpha,\chi}) = \chi$
- $\mathcal{X}(G_{\alpha,\chi}) = (\alpha + 1)(\chi 1) + 1$
- $|V(G_{\alpha,\chi})| = n = \frac{(2r\chi + 1)^{\alpha + 1} 1}{2r}$

- **Theorem**: Let  $\chi \geq 2$ ,  $r \geq 1$ ,  $\alpha \geq 0$  be integers. There exists a graph  $G_{\alpha,\chi}$  such that
- $\mathcal{L}\mathcal{X}_r(G_{\alpha,\chi}) = \chi$
- $\mathcal{X}(G_{\alpha,\chi}) = (\alpha+1)(\chi-1)+1$
- $-|V(G_{\alpha,\chi})| = n = \frac{(2r\chi+1)^{\alpha+1}-1}{2r}$
- Remark 1: Let  $c \ge \chi \ge 2$ . If  $\alpha = \lfloor \frac{c-1}{\chi-1} \rfloor$ , then  $\alpha(\chi-1)+1 \le c < (\alpha+1)(\chi-1)+1$

- **Theorem**: Let  $\chi \geq 2$ ,  $r \geq 1$ ,  $\alpha \geq 0$  be integers. There exists a graph  $G_{\alpha,\chi}$  such that
- $\mathcal{L}\mathcal{X}_r(G_{\alpha,\chi}) = \chi$
- $\mathcal{X}(G_{\alpha,\chi}) = (\alpha + 1)(\chi 1) + 1$
- $-|V(G_{\alpha,\chi})| = n = \frac{(2r\chi+1)^{\alpha+1}-1}{2r}$
- Remark 1: Let  $c \ge \chi \ge 2$ . If  $\alpha = \lfloor \frac{c-1}{\chi-1} \rfloor$ , then  $\alpha(\chi-1)+1 \le c < (\alpha+1)(\chi-1)+1$
- Remark 2:  $r = \Theta(n^{\frac{1}{\alpha}}/\chi^{1+\frac{1}{\alpha}})$

- **Theorem**: Let  $\chi \geq 2$ ,  $r \geq 1$ ,  $\alpha \geq 0$  be integers. There exists a graph  $G_{\alpha,\chi}$  such that
- $\mathcal{L}\mathcal{X}_r(G_{\alpha,\chi}) = \chi$
- $\mathcal{X}(G_{\alpha,\chi}) = (\alpha+1)(\chi-1)+1$
- $-|V(G_{\alpha,\chi})| = n = \frac{(2r\chi+1)^{\alpha+1}-1}{2r}$
- Remark 1: Let  $c \ge \chi \ge 2$ . If  $\alpha = \lfloor \frac{c-1}{\chi-1} \rfloor$ , then  $\alpha(\chi-1)+1 \le c < (\alpha+1)(\chi-1)+1$
- Remark 2:  $r = \Theta(n^{\frac{1}{\alpha}}/\chi^{1+\frac{1}{\alpha}})$

 $G_{\alpha,\chi}$  is constructed recursively in  $\alpha$ 

















• **r-join** of graphs (r=2)  $K_2^{(1)} \star_2 K_2^{(2)}$   $v_1 u_1 1 \qquad v_1 u_2 1 \qquad v_1 u_1 2 \qquad v_1 u_2 2$   $K_2^{(1)}$ 

 $K_2^{(1)} \times K_2^{(2)} \times \{1\}$   $K_2^{(1)} \times K_3^{(2)} \times \{2\}$ 

$$K_2^{(1)} \star_2 K_2^{(2)}$$



$$K_2^{(1)} \star_2 K_2^{(2)}$$



$$K_2^{(1)} \star_2 K_2^{(2)}$$

- 
$$\mathcal{X}(K_2^{(1)} \star_2 K_2^{(2)}) = 3$$



• **r-join** of graphs (r=2)

$$K_2^{(1)} \star_2 K_2^{(2)}$$

- 
$$\mathcal{X}(K_2^{(1)} \star_2 K_2^{(2)}) = 3$$

- 
$$G_{\alpha,\chi} = K_2^{(1)} \star_2 K_2^{(2)}$$
 for  $(\alpha,\chi) = (1,2)$ 



• **r-join** of graphs (r=2)

$$K_2^{(1)} \star_2 K_2^{(2)}$$

- 
$$\mathcal{X}(K_2^{(1)} \star_2 K_2^{(2)}) = 3$$

- 
$$G_{\alpha,\chi} = K_2^{(1)} \star_2 K_2^{(2)}$$
 for  $(\alpha,\chi) = (1,2)$ 

$$- G_{\alpha,\chi} = G_{\alpha-1,\chi} \star_r K_{\chi}^{(\alpha)}$$



• **r-join** of graphs (r=2), example for  $\chi=3$ 



• **r-join** of graphs (r=2), example for  $\chi=3$ 



$$- \mathcal{X}(K_3^{(1)} \star_2 K_3^{(2)}) = 5$$

 To date, no quantum advantage has been shown in the LOCAL model for LCLs

- To date, no quantum advantage has been shown in the LOCAL model for LCLs
- We prove that the following LCLs cannot admit quantum advantage
- *c*-coloring trees
- 3-coloring grids
- c-coloring  $\chi$  chromatic graphs
- how? Extending indistinguishability and graph existential arguments all the way up to NS-LOCAL

- To date, no quantum advantage has been shown in the LOCAL model for LCLs
- We prove that the following LCLs cannot admit quantum advantage
- *c*-coloring trees
- 3-coloring grids
- c-coloring  $\chi$  chromatic graphs
- how? Extending indistinguishability and graph existential arguments all the way up to NS-LOCAL
- Under development (spoiler alert)

- To date, no quantum advantage has been shown in the LOCAL model for LCLs
- We prove that the following LCLs cannot admit quantum advantage
- *c*-coloring trees
- 3-coloring grids
- c-coloring  $\chi$  chromatic graphs
- how? Extending indistinguishability and graph existential arguments all the way up to NS-LOCAL
- Under development (spoiler alert)
- all problems' complexities  $\mathcal{O}(\log^* n)$  in classical LOCAL become  $\mathcal{O}(1)$  in NS-LOCAL (plus independence!)

- To date, no quantum advantage has been shown in the LOCAL model for LCLs
- We prove that the following LCLs cannot admit quantum advantage
- *c*-coloring trees
- 3-coloring grids
- c-coloring  $\chi$  chromatic graphs
- how? Extending indistinguishability and graph existential arguments all the way up to NS-LOCAL
- Under development (spoiler alert)
- all problems' complexities  $\mathcal{O}(\log^* n)$  in classical LOCAL become  $\mathcal{O}(1)$  in NS-LOCAL (plus independence!)
- (paths, cycles, trees): all problems' complexities  $\mathcal{O}(1)$  in  $\varphi$ -LOCAL become  $\mathcal{O}(\log^* n)$  in classical LOCAL

- To date, no quantum advantage has been shown in the LOCAL model for LCLs
- We prove that the following LCLs cannot admit quantum advantage
- *c*-coloring trees
- 3-coloring grids
- c-coloring  $\chi$  chromatic graphs
- how? Extending indistinguishability and graph existential arguments all the way up to NS-LOCAL
- Under development (spoiler alert)
- all problems' complexities  $\mathcal{O}(\log^* n)$  in classical LOCAL become  $\mathcal{O}(1)$  in NS-LOCAL (plus independence!)
- (paths, cycles, trees): all problems' complexities  $\mathcal{O}(1)$  in  $\varphi$ -LOCAL become  $\mathcal{O}(\log^* n)$  in classical LOCAL
- (paths, cycles, rooted trees): there cannot be quantum advantage beyond complexity  $\mathcal{O}(\log^\star n)$

- To date, no quantum advantage has been shown in the LOCAL model for LCLs
- We prove that the following LCLs cannot admit quantum advantage
- *c*-coloring trees
- 3-coloring grids
- c-coloring  $\chi$  chromatic graphs
- how? Extending indistinguishability and graph existential arguments all the way up to NS-LOCAL
- Under development (spoiler alert)
- all problems' complexities  $\mathcal{O}(\log^* n)$  in classical LOCAL become  $\mathcal{O}(1)$ in NS-LOCAL (plus independence!)
- (paths, cycles, trees): all problems' complexities  $\mathcal{O}(1)$  in  $\varphi$ -LOCAL become  $\mathcal{O}(\log^* n)$  in classical LOCAL
- (paths, cycles, rooted trees): there cannot be quantum advantage beyond complexity  $\mathcal{O}(\log^* n)$ THANKS!