Определения 10.

Применение определителей

Вырожденная квадратная матрица – матрица с определителем, равным 0.

Невырожденная квадратная матрица — матрица с определителем, не равным 0.

Теорема. Матрица А является невырожденной тогда и только тогда, когда выполняется хотя бы одно из следующих утверждений:

- 1) строки (столбцы) этой матрицы линейно независимы;
- 2) матрица А имеет обратную;
- 3) система уравнений с основной матрицей А имеет единственное решение.

Обратная к квадратной матрице A — такая матрица A^{-1} , что произведение этих матриц (в любом порядке) равно единичной матрице. Если существует, то находится по формуле:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \Rightarrow A^{-1} = \frac{1}{|A|} \cdot \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \dots & \dots & \dots & \dots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix}.$$

Теорема. Пусть дана СЛУ $\begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2 \\ \cdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m \end{cases} c$

невырожденной основной матрицей A. Обозначим столбцы основной матрицы через A_1 , A_2 , ..., A_n , а столбец свободных членов – как обычно через B, $|A| = |A_1, A_2, ..., A_n|$. Тогда эта система имеет единственное решение (c_1, c_2, \ldots, c_n) , каждая координата которого вычисляется по формуле: $c_i = \frac{|A_1, \ldots, A_{i-1}, B, A_{i+1}, \ldots, A_n|}{|A_i|} = \frac{\Delta_i}{\Lambda}$ $(i = 1, \ldots, n)$.