

(1) Publication number: 0 519 728 A2

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 92305627.9

(5) Int. Cl.⁵: **C12P 21/08,** G01N 33/577,

G01N 33/68, // C07K3/18

22) Date of filing: 19.06.92

(30) Priority: 21.06.91 JP 177236/91

(43) Date of publication of application : 23.12.92 Bulletin 92/52

(84) Designated Contracting States:
AT BE CH DE DK ES FR GB IT LI NL SE

Applicant: SNOW BRAND MILK PRODUCTS & CO., LTD.
1-1, Naebo-cho 6-chome Higashi-ku
Sapporo-shi Hokkaido 065 (JP)

72 Inventor: Higashio, Kanji 1769-10, Yamada Kawagoe-shi, Saltama (JP) Inventor: Itagaki, Yasuharu 1-27, Minami Iljo Nishi 18-chome Chuo-ku, Sapporo-shi (JP) Inventor: Ohgaki, Fumiko 8-11, Yamato 1-chome Utsunomiya-shi, Tochigi (JP)

(4) Representative: Davies, Jonathan Mark Reddie & Grose 16 Theobalds Road London WC1X 8PL (GB)

(54) Anti-TCF-II monoclonal antibodies and method for the measurement of TCF-II by applying the antibodies.

G) Disclosed are monoclonal antibodies having specific affinity to an anti-tumor protein, TCF-II, derived from human fibroblasts. The monoclonal antibodies have a molecular weight of approximately 150,000 and belong to a subclass of IgG₁, with N-terminal amino acid sequence of the L chain identified. The monoclonal antibodies can be used for the purification of TCF-II and for the diagnosis of liver disease by measuring the content of TCF-II in the plasma by the aid of the monoclonal antibodies.

BACKGROUND OF THE INVENTION

1. Field of the Invention

5

The present invention relates to novel monoclonal antibodies to a human anti-tumor protein, termed TCF-II, and a method for the measurement of TCF-II by employing the monoclonal antibodies.

2. Description of the Related Art

β-Interferon is well known as a tumor cytotoxic factor, which is produced by human fibroblasts. Other substances produced by the fibroblasts are disclosed, respectively, in Japanese Patent Laid-open Publication (ko-kai) Nos. 58-146,293, 61-33,120, 61-1,872, 62-103,021 and 64-10,998. In the process of the investigation of anti-tumor proteins derived from the human fibroblasts, the present inventors have found a novel anti-tumor protein different from those having so far been reported and succeeded in the cloning of a cDNA encoding this protein. Further, they have determined all the primary amino acid sequence of this protein and confirmed its utility. This novel anti-tumor protein and its gene are disclosed in WO90/10651, and the novel anti-tumor protein is termed as TCF-II. All the primary amino acid sequences of the anti-tumor protein, TCF-II, which is deduced from its cDNA, is indicated in Table 1.

It is further confirmed that the TCF-II has a strong anti-tumor activity and a growth stimulating activity for normal cells and that it is a kind of families of hepatocyte growth factors, HGFs, which are potent growth stimulators for hepatocytes. The TCF-II has the molecular weight (MW) of $78,000 \pm 2,000$ or $74,000 \pm 2,000$, on SDS-polyacrylamide gel electrophoresis under non-reducing conditions. Under the non-reducing conditions, it separates into three polypeptide chains: A-chain, as a common band, with the MW of $52,000 \pm 2,000$; B-chain with the MW of $30,000 \pm 2,000$; and C-chain with the MW of $26,000 \pm 2,000$. The N-terminus of the A-chain is blocked. The B- and C-chains have the same N-terminal amino acid sequence. The TCF-II essentially has a heterodimer structure composed of the A-chain and B-chain or C-chain.

It is further to be noted that neither monoclonal nor polyclonal antibodies to the TCF-II have been produced. With attention paid to the utility of the TCF-II, the present inventors have investigated the utilization of the TCF-II as a anti-tumor agent or a diagnostic marker. In order to quantitate the TCF-II, there has so far been employed only biological assay method that utilizes the cytotoxic effect on tumor cells. Immunological assay is currently taking the main place due to accuracy of the determination of such a substance as being contained in a minute amount, so that strong demands have been made to develop an antibody capable of being employed for the measurement of the TCF-II. It is further noted that, although the TCF-II can be purified by repeating classical gel filtration and adsorptive chromatographies, the use of the antibody can remarkably improve the efficiency of purifying and recovering the TCF-II by taking advantage of affinity chromatography using such antibodies.

SUMMARY OF THE INVENTION

Therefore, the present invention has the object to provide monoclonal antibodies having high specificity and high affinity to TCF-II.

Another object of the present invention is to provide a method for measuring the TCF-II by employing the monoclonal antibodies.

5 BRIEF DESCRIPTION OF THE DRAWINGS

55

Fig. 1 shows standard curves for measuring TCF-II, being obtainable in various combination of the monoclonal antibodies.

Fig. 2 shows the results of recovery of the TCF-II added to the plasma and specificity of the monoclonal antibodies, used in the measurement system, to the TCF-II.

Fig. 3 shows the results of measurement for the contents of TCF-II in the plasma samples from patients with liver diseases.

Fig. 4 shows changes in the TCF-II levels in the patients with acute hepatitis at acute stage and at the recovery stage.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The monoclonal antibodies according to the present invention indicate specific affinity to human anti-tumor

protein termed TCF-II. The antibodies have a molecular weight of about 150,000 and belong to IgG₁ subclass. Further, each monoclonal antibody has an N-terminal amino acid sequence of its L chain defined by either one of the amino acid sequences (1) to (3), inclusive, as follows:

Amino acid sequence (1):

20 Amino acid sequence (2):

Amino acid sequence (3):

35

The monoclonal antibody according to the present invention can be prepared in the manner as will be described hereinafter. The monoclonal antibody can be prepared in accordance with conventional procedures by employing TCF-II as an antigen. The TCF-II can be produced from human fibroblasts according to the procedures as described in WO90/10651 or from microorganisms or other cells by recombinant technique on the basis of the cDNA sequence disclosed in WO90/10651. Further, there also can be employed synthetic peptides synthesized on the basis of the amino acid sequence of the TCF-II or peptides derived from partially decomposed TCF-II. It is also to be noted that these antigens may not necessarily be purified homogeneously. The

antigen is applied to immunize mammalian animals in vivo or lymphocytes (splenocytes) in vitro, and then the splenocytes are fused with myeloma cells derived from a mammalian animal. The fusion suspension is distributed into 96-well plates and cultured in medium containing HAT (hypoxanthine, amino protein, and thymidine). After 7-10 days, the plates are examined for the growth of hybridomas. The supernatant removed from these cells was screened for the presence of anti-TCF-II antibodies by ELISA. The hybrid cells which produce the desired antibody are cloned by limiting dilution and the clones are assayed again. The established hybridomas may be cultured in flasks or grown in mice to produce the objective antibodies.

In employing the mammalian animals in the formation of the hybridomas, it is common to use a small animal such as mouse or rat although there may be employed any mammalian animals.

Immunization may be carried out by diluting the TCF-II with physiological saline to appropriate concentrations, administering the small animals such as mice or rats with a given quantity of the resulting solution through intravenous or intraperitoneal route two to five times at every two to twenty days. An adjuvant is administered, if needed or when desired, in combination with a TCF-II antigen. The animals are then sacrificed in the third day after final immunization and the spleens are taken out from the animals. The splenocytes are fused with a mouse myeloma cell line, for example, p3/x63-Ag8, p3-U1, NS-1, MPC-11, SP2/0, FO, P3x63Ag8.653, S194 and so on. Rat-derived cells may include cell lines such as R-210. A humanized antibody may be produced by immunizing human B lymphocytes in vitro and employing human myeloma cell lines or human B cell lines transformed by EB viruses as a parent cell line.

The fusion of the splenocytes with the myeloma cells may be carried out in conventional manner, as disclosed, for example, in Koehler, G., et al.: Nature, Vol. 256, 11 495-497, 1975. An electric pulse method may also be employed. The splenocytes are mixed with the myeloma cells in a conventional ratio, and the mixture is incubated for fusion in a serum-free medium which is conventionally employed for cell culture, to which polyethylene glycol has been added. The fusion suspension is distributed into 96-well plates and cultured in HAT medium containing FCS to select fused cells.

For the screening of the cells capable of producing anti-TCF-II antibodies, there may be employed procedures as have been conventionally employed for detection of antibodies, such as ELISA, plaque, ouchterlony, aggregation or the like. Among them, the ELISA method using purified TCF-II can select the desired antibody-producible cells with comparatively easy and high accuracy.

The hybridomas selected in the manner as described above can be sub-cultured in conventional manner and may be frozen for storage as needed. The hybridomas may be incubated in conventional manner and transplanted peritoneally into mice. The ascites containing anti-TCF-II antibodies are recovered from the mice and the antibodies in the ascites are purified by conventional method such as salting-out, gel filtration, affinity chromatography or the like.

The resulting antibody is found to react specifically with the TCF-II and can be employed for measurement and purification of the TCF-II. In using the antibody for the measurement of the TCF-II, the antibody is labelled with an isotope or an enzyme and can be employed as an antibody specific to the TCF-II-in the measurement system which is known as radioimmunoassay (RIA) or enzyme immunoassay (EIA). Since each antibody in the present invention recognizes the different sites in the molecule of the TCF-II, the antibodies-can be employed for sandwich immunoassay. The use of this assay system makes it possible to easily measure the amount of the TCF-II antigen in samples such as blood, urine and so on as well as a culture solution.

The TCF-II can readily be purified by means of immunoprecipitation or affinity chromatography prepared by immobilizing the antibody on a carrier such as Affigel 10 (Biorad).

The present invention will then be described more in detail by way of examples.

Example 1

10

Purification of TCF-II for Antigen

Purified TCF-II was prepared by incubating cells in accordance with the method as disclosed in WO90/10651 and the purification method as disclosed by Higashio, K. et al. (B.B.R.C., vol. 170, pp. 397-404, 1990).

A total number of 3 x 10⁶ cells of human fibroblasts, IMR-90 (ATCC CCL 186), was seeded in a roller bottle (one liter; Corning) containing 100 ml of DMEM with 10% calf serum (Hyclone). The cells were cultured by rotating the roller bottle at 0.5 to 2 rpm for seven days. The cells were then tripsinized when the total cell numbers reached 1 x 10⁷. The cells were suspended in 250 ml of DMEM with 10% calf serum and allowed to settle to the bottom of the bottle. Ceramic pieces (3.5 to 5.0 mesh; Toshiba Ceramics Co., Ltd.) were autoclaved and 100 grams of the autoclaved ceramic pieces were added to the cell suspension in the roller bottle as the cell matrices; static culture was continued for 24 hours. After the static culture at 37° C for 24 hours, the roller bottle

was supplemented with 250 ml of the same medium and further incubated for 7 days. The culture medium was replaced with 500 ml of DMEM supplemented with 5% calf serum in every 7 to 10 days. The conditioned medium was collected during two months at a rate of four liters from every roller bottle.

The activity of the TCF-II in the collected conditioned medium was found to be 32 units per milliliter.

Seventy five liters of the culture medium were concentrated by treatment with ultrafiltration module (MW 6,000 cuts; Asahi Chemical Industries Co., Ltd.) in accordance with the method as described in Patent Publication No. 90/10651 (WO90/10651). The TCF-II in the concentrate was then purified by a four-step chromatography consisting of CM Sephadex C-50 (Pharmacia), ConA Sephadex (Pharmacia), Mono S column (Pharmacia) and Heparin Sepharose (Pharmacia), thereby yielding the purified TCF-II having the specific activity of 5,248,000 units per mg.

Example 2

15

Preparation of Hybridoma Producing Anti-TCF-II Antibody

The purified TCF-II obtained in Example 1 was dissolved in PBS at a concentration of 10 µg per 100 µl, and BALB/c mice were immunized with the resulting solution at every two weeks. At the first and second immunization, a mixture of Freund's complete adjuvant and the TCF-II solution (1 : 1) was administered to the mice. In the third day after final immunization, the spleens of the mice were taken out and B lymphocytes were isolated from the spleens. Then, the resulting B lymphocytes were fused with mouse myeloma cells, P3x63-AG8.653, in accordance with the method as described by Koehler, G., et al. (Nature: vol. 256, pp. 495-497, 1975). The fused cells were cultured in a HAT culture medium. In order to select hybridomas producing the antibody specific to the TCF-II, a supernatant of hybridoma culture was measured for its antibody specific to the TCF-II by means of solid phase ELISA using a microplate coated with the TCF-II. The hybridoma which had produced the objective antibody was cloned five or six times by the limiting dilution technique, while the quantity of the antibody produced by the cloned hybridoma was measured at every time by means of the ELISA.

Then, the clones which have high productivities of the antibodies were selected from the cloned hybridomas.

Example 3

Production of Monoclonal Antibody

An amount of 1 x 10⁶ cells of the strain producing a high amount of the antibody, obtained in Example 2, was intraperitoneally transplanted into Balb/c mice which were primed with pristane (Aldrich Chemicals, Inc.). In two weeks after transplantation, the accumulated ascites were collected, thereby producing the ascites containing the monoclonal antibodies according to the present invention. The antibody in the ascites was purified by means of Affigel Protein A Sepharose® (BioRad) chromatography in accordance with its manual. In other words, the ascites was diluted with the equal amount of a binding buffer (BioRad), and the resulting dilution was charged onto a protein A column, followed by washing the column with a sufficient amount of the binding buffer. The antibody, IgG, was eluted with an elution buffer (BioRad) and, after neutralization, the resulting eluate was then dialyzed against water, followed by lyophilization. The purified antibody was then subjected to SDS-PAGE electrophoresis to check its purity and it was found that the purified antibody migrates as a homogeneous band having a molecular weight of approximately 150,000.

Example 4

Selection of Monoclonal Antibody Having High Affinity to TCF-II

The antibodies obtained in Example 3 were dissolved in PBS and the concentration of the protein was determined by the Lowry method. Then, each of the antibodies was dissolved in PBS to give the same concentration. The resulting antibody solution was diluted by means of stepwise dilution, and the resulting antibody dilutions were measured by solid phase ELISA, as described in Example 2 above, to select the monoclonal antibody that can react with the TCF-II even at high dilution rates. As a result, three antibodies were selected and they were referred to as P5A8, P2D6 and P1C8. The strains producing the antibodies P5A8, P2D6 and P1C8 were referred to as P5A8 strain, P2D6 strain and P1C8 strain and deposited with under Deposit Nos. BP-3820, BP-3821 and BP-3822, respectively.

Example 5

Analysis of Subclass of Antibody

The subclass of each antibody selected in Example 4 was analyzed by an immunoglobulin subclass analysis kit (Funakoshi) in accordance with protocol as instructions as given on the kit. The analysis results are shown in Table 2.

TABLE 2

15

10

5

IgG _i	IgG _{za}	IgG _{ab}	IgG,	IgA	IgM
+	-	- 20			2911
+	-	-			
+	-		_		_
	IgG ₁ + + + +	IgG ₁ IgG _{2a} + - + - + -	IgG ₁ IgG _{2a} IgG _{2b} + + +	IgG ₁ IgG _{2a} IgG _{2b} IgG ₃ + + +	IgG ₁ IgG _{2a} IgG _{2b} IgG ₃ IgA + +

20

As is apparent from Table 2, all the monoclonal antibodies were found positive to $\lg G_1$ only, so that all the three monoclonal antibodies were confirmed that they belong to a subclass of $\lg G_1$.

25 Example 6

Determination of N-Terminal Amino Acid Sequence of Antibody

It is well known that antibodies are proteins having the structure consisting of two chains, i.e. light and heavy chains. The two chains are classified into a heavy chain (a H chain) having a larger molecular weight and a light chain (an L chain) having a smaller molecular weight, and each of the chains of the monoclonal antibodies can be defined by their N-terminal amino acid sequences.

The N-terminal amino acid sequence of each antibody was determined in the manner as will be described hereinafter.

The purified antibody selected in Example 4 was dissolved at a final concentration of $2 \mu g/\mu l$ in 150 μl of SDS-PAGE buffer solution (a 10 mM Tris-hydrochloride buffer solution (pH 8.0) containing 1 mM of EDTA, 25% SDS, 0.01% BPB, 10% mercaptoethanol, and 10% glycerol). After the solution was heated at 100° C for 3 minutes, the antibody solution was centrifuged at 15,000 rpm for 3 minutes. The resulting supernatant was subjected to electrophoresis using a 10% SDS polyacrylamide gel. The H and L chains of the antibody were electrically transferred to a PVDF (polyvinylidene difluoride) membrane by the wester blotting method. The PVDF membrane with protein was stained with a Coomassie Brilliant Blue and the membrane with bands corresponding to the objective H and L chains were cut out. The cut membranes were introduced directly into vapor-phase protein sequencer (ABI) and subjected automatically to coupling, cleavage and conversion in accordance with the protocols, thereby yielding phenyl thiohydantoin (PTH) amino acid which in turn was dissolved in a 20% accontrille. The resulting solution was then applied to reverse-phase high-pressure liquid chromatography (ABI; C-18 column) and each PTH-amino acid was identified by comparing the retention time thereof with that of a standard PTH-amino acid. Although neither of the H chains of the three antibodies could be determined because their N-terminal amino acids were blocked, the L chains of the three antibodies were found to having the N-terminal amino acid sequences as follows:

Antibody P5A8:

Asp-Val-Val-Leu-Thr-Gln-Ser-Pro-Ala-9. Thr-Leu-Ser-Val-Thr-Pro-Gly-Asp-Ser-Val

Antibody P2D6:

Asp-Ser-Val-Leu-Thr-Gln-Ser-Pro-Ala-Ser-Leu-Ala-Val-Ser-Leu-Gly-Gln-Arg-Ala-Thr-Ile-Ser

Antibody P1C8:

Asp-Ile-Val-Leu-Thr-Gln-Ser-Pro-Val-Thr-Leu-Ser-Val-Thr-Pro-Gly-Gly-Ser-Val

Example 7

Measurement for TCF-II by ELISA

The best combination of the antibodies for sandwich ELISA was selected by using three antibodies P5A8. P2D6 and P1C8 as solid phase and labelled antibodies. The solid phase antibody of each antibody was prepared by dissolving the antibody at a final concentration of 10 μ g per ml in a 0.1M sodium bicarbonate solution, pouring 100 μ l of the solution into each well in 96-well microplates (NunC), allowing the microplates to stand overnight at room temperature. Subsequently, each well was filled with PBS containing a 1% BSA (bovine serum albumin), and then the microplates were allowed to stand at room temperature for one hour to block the

residual binding sites on the plates; the microplates were washed three times with a washing buffer (PBS containing 0.05% Tween 20). On the other hand, each monodonal antibody was labelled with peroxidase in accordance with the method devised by Ishikawa et al. (J. Immunoassay, vol. 4, pp. 209-327, 1983).

Samples of the TCF-II were prepared by diluting the TCF-II solution with a diluting buffer (PBS containing 0.0.1% BSA and 0.05% Tween® 20) and 100 μ I of the sample was added to each well of the microplates. The microplates were allowed to stand at 37° C for 3 hours, followed by washing each well three times with the washing buffer, and adding 100 μ I of the labelled antibody diluted 200- to 400-fold with the diluting buffer to each well. After the labelled antibody was added, the microplates were allowed to stand at 37° C for 2 hours and washed three times with the washing buffer, followed by adding 100 μ I of a substrate solution (a 0.1 M citrate-phosphate buffer (pH 4.5) containing 0.4mg/ml of orthophenylenediamine hydrochloride and 0.006% hydrogen peroxide) to each well in the microplates. After the microplates were allowed to stand at 37° C in dark place for 30 minutes, 50 μ I of 6N sulfuric acid was added to each well to stop enzymatic reaction and absorbency of each well at 492 nm was measured by microplate spectrophotometer (Corona).

The combinations between the solid phase antibodies and the labelled antibodies are as shown in Table 3.

TABLE 3

2	(2	

25

15

Solid Phase Antibody	Labelled Antibody
P1C8	P2D6
P5A8	P2D6
P5A8	P1C8

It can be noted that Fig. 1 shows the standard curves for measuring TCF-II, obtained at different combinations of the monoclonal antibodies. In Fig. 1, reference symbol "B-B" denotes a combination of the solid phase monoclonal antibody P1C8 and the labelled monoclonal antibody P2D6; reference symbol "D-C" denotes a combination of the solid phase monoclonal antibody P5A8 and the labelled monoclonal antibody P1C8. It can be found as a result that the measurement by the combination of the monoclonal antibodies P1C8 and P2D6 as well as that of the monoclonal antibodies P5A8 and P2D6 gave the good results.

It is further to be noted as apparent that each of the monoclonal antibodies P1C8, P5A8 and P2D6 has the property of recognizing epitopes which are different from each other.

40 Example 8

45

Determination of TCF-II in Human Plasma

The following tests were carried out using the combination of the solid phase monoclonal antibody P1C8 and the labelled monoclonal antibody P2D6.

1. Standard curve of TCF-II and recovery of added TCF-II in Plasma

As the solid phase antibody, the monoclonal antibody P1C8 was dissolved at a final concentration of 10 μ g/ml in a 0.1 M sodium bicarbonate solution, and 100 μ l of the solution was added to each well in 96-well microplates (NunC), followed by allowing the microplates to stand overnight at room temperature. The wells in the microplates were then filled with a solution which had been prepared by diluting Block Ace® (Snow Brand) twofold with distilled water in accordance with the procedures as described by Shinmoto et al. (Reports of Snow Brand Research Laboratories, vol. 88, pp. 45-51, 1989). The blocking was implemented by allowing the microplate to stand at room temperature for 1 hour, and the microplates were washed three times with a washing buffer (PBS containing 0.05% Tween® 20).

Then, the TCF-II samples having various concentrations were prepared by diluting the TCF-II solution with a diluting buffer (PBS containing 50% Block Ace® and 0.1% Tween® 20). To examine the recovery of the TCF-

If from human plasma, samples of plasma containing exogenous TCF-II were prepared by adding the TCF-II having the same concentration series to human plasma. As a negative control, plasminogen, which is assumed to be high in structural homology to TCF-II (Nakamura et al.: Nature, vol. 34, pp. 440-443, 1989), was prepared by diluting the plasminogen solution with the same diluting buffer. A volume of 50 μ of the first reaction buffer (0.2M Tris-Hydrochloride buffer containing 50% Block Ace®, 0.2 M NaCl, 0.1% Tween® 20, 0.2% CHAPS, 20 mM benzamidine hydrochloride and 10 mM EDTA)were applied to each well in the microplates, and then a volume of 50 μ of each sample was applied to each well con 50 μ of the first buffer. The microplates were allowed to stand at 37° C for 3 hours, followed by washing three times with the washing buffer.

For the dilution of the labelled antibody, there was employed a 0.1 M phosphate buffer, pH 7, containing 1/10 Block Ace®, 0.15 M NaCl, 0.1% Tween® 20, 4% rat serum and 500 μ g/ml of mouse IgG. To each well in the microplates was added 100 μ l of a 400-fold dilution of the antibody P2D6 labelled with peroxidase. The microplates were allowed to stand at 37° C for 2 hours, followed by washing three times with the washing buffer and adding 100 μ l of a substrate solution (a 0.1 M citrate-phosphate buffer, pH 4.5, containing 0.4 mg/ml of orthphenylenediamine hydrochloride and 0.006% hydrogen peroxide). The resulting microplates were then allowed to stand in dark place at 37° C for 30 minutes and 50 μ l of 6 N sulfuric acid was added to each well in the microplates to cease the enzymatic reaction. Then, the absorbance at 492 nm of each well in the microplates was measured by the microplate spectrophotometer (corona).

Fig. 2 shows the results of recovery of the TCF-II from the plasma and the specificity of the antibodies used in the assay system to the TCF-II. In Fig. 2, reference symbol "●-●" indicates the plasma samples to which the TCF-II was added; reference symbol "X-X" indicates standard TCF-II; reference symbol "◆-◆" indicates plasminogen.

As is apparent from Fig. 2, it is found that the sample with TCF-II added to the plasma indicates the line parallel to the standard curve of the TCF-II and it is thus confirmed that the whole amount of the TCF-II in the plasma has been recovered and that the plasminogen did not react at all in the measurement system.

2. Determination of TCF-II in the plasma samples from patients with liver diseases

The levels of the TCF-II in the plasma samples from 45 patients with liver diseases were determined by means of the system as described in item 1 above. The liver diseases include fulminant hepatitis, acute hepatitis, chronic active hepatitis, chronic inactive hepatitis, compensated liver cirrhosis, decompensated liver cirrhosis, and hepatocellular carcinoma.

Fig. 3 indicates the results of determination of the TCF-II in the plasma from the patients with liver diseases. In Fig. 3, reference symbol "●" indicates a patient with chronic active hepatitis; reference symbol "□¬" indicates an average and the range of ±1SD; reference symbol "□" indicates the range of the TCF-II for normal subjects. Fig. 3 indicates a normal control obtained from 21 healthy volunteers. Further, in Fig. 3, abbreviation "FH" means fulminant hepatitis; "AH" means acute hepatitis; "CH" means chronic hepatitis (inactive & active); "cLC" means compensated liver cirrhosis; and "HCC" means hepatocellular carcinoma. It is apparent from Fig. 3 that the plasma collected from the patients with liver diseases indicated a higher average concentration of the TCF-II than those collected from the normal persons.

3. Measurement for TCF-II in the plasma samples from the patients with acute hepatitis in the acute stage and in the recovery stage

The levels of the TCF-II in the plasma samples from 8 patients with acute hepatitis were measured. The results of measurement are shown in Fig. 4. The results in Fig. 4 reveal that, except for one case, the levels of the TCF-II are reduced in the recovery stage of the acute hepatitis for the rest of the cases, so that it is recognized that the measurement of the TCF-II levels can serve as an indicator representing changes of the pathema of a patient with acute hepatitis.

As described hereinabove, the present invention can provide the monoclonal antibody to TCF-II, and the monoclonal antibody to the TCF-II is useful for the purification and determination of the TCF-II. The method for the determination of the TCF-II using the monoclonal antibodies according to the present invention can permit an accurate diagnosis of liver diseases or their pathemas by using an extremely small amount of samples.

40

SEQUENCE LISTING

5	Information for Seq. No: 1	
	Length: 19	
10	Type: amino acids	
	Topology: linear	
15	Molecular type: peptide	
	Sequence:	
20	Asp Val Val Leu Thr Gln Ser Pro Ala Thr Leu Ser Val Thr Pro Gl	у
20	1 5 10 15	
	Asp Ser Val	
25	19	
30	Information for Seq. No:2	
	Length: 22	
35	Type: amino acids	
	Topology: linear	
	Molecular type: peptide	
40	Sequence:	
	Asp Ser Val Leu Thr Gln Ser Pro Ala Ser Leu Ala Val Ser Leu Gly	v
45	1 5 10 15	•
	Gln Arg Ala Thr Ile Ser	
50	20 22	

	Infor	mat	ion	fo	r Se	eq.	No:	3								
	Lengt	h:	19													
5	Type:	am	ino	ac	ids											
	Topol	ogy	: 1	ine	ar											
10	Molec	ula	r t	уре	: p	ept:	ide									
	Seque	nce	:													
15	Asp	Ile	Val	Leu	Thr	G1n	Ser	Pro	Val	Thr	Leu	Ser	Val	Thr	Pro	Gly
	1				5					10					15	
	Gly	Sei	r Val	l												
20			19	9												
	Infor	mat	ion	fo	r S	eq.	No:	: 4								
25	Lengt	h:	723													
	Type:	am	ino	ac	ids											
30	Topol	ogy	: 1	ine	ar											
	Molec	ula	r t	ype	: p	rote	ein						,			
	Seque	nce	:													
35	Met	Trp	Val	Thr	Lys	Leu	Leu	Pro	Ala	Leu	Leu	Leu	Gln	His	Val	Leu
	. 1				5					10					15	
40	Leu	His	Leu		Leu	Leu	Pro	lle		Ile	Pro	Tyr	Ala	Glu	G1y	Gln
	A	1		20		~ L	71 -	<i>11</i> • _	25 C1	ns.	1	1	C	30	1	ጥե
45	Arg	Lys	arg 35	Hrg	AST	ınr	116	л I S	GIU	rne	Lys	Lys	45	Ala	гуз	1111
			00				_		,			t		1		W i 1
	Thr	Leu	He	Lys	Ile	Asp	Pro	Ala	Leu	Lys	11e	Lys	Inr	Lys	Lys	vai
EA.	Thr	Lеч 50	He	Lys	lle	Asp	Pro 55	Ala	Leu	Lys	116	60	Inr	Lys	Lys	vai
5a		50					55					60		Lys		
50		50					55					60				

	Pr	o Pi	ne Th	ır Cy	s Ly	s Al	a Ph	e Va	l Ph	e As	p Ly	s Al	a Ai	g Ly	's Gl	n Cys
					8	5				9	0				9	5
5	Le	ıT v	p Ph	e Pr	o Ph	e Ası	n Se	r Me	t Se	r Se	r GI	y Va	l Ly	's Ly	s GI	u Phe
				10	0				10	5				11	0	
10	G1:	y Hi	s G1	u Ph	e Ası	o Lei	туі	r GI	u Ası	n Ly	s Ası	э Ту	r II	e Ar	g As	n Cys
			11	5				120	0				12	5		
	He	e []	e Gl	y Lys	s Gly	, Arg	Ser	- Tyı	r Lys	s G1;	y Thi	· Va	l Se	r Il	e Th	r Lys
15		13	0				135	i				14	40	•		
	Ser	G1	y II	e Lys	Cys	Gln	Pro	Trp	Ser	. Sei	. Met	He	e Pr	o His	s Glu	His
20	145	;				150					155					160
	Ser	Ty:	r Arı	g Gly	Lys	Asp	Leu	Gln	Glu	Asn	Tyr	Cys	Arı	g Asr	Pro	Arg
					165					170)				175	i
25	G 1 y	Glu	ı Glu	ı Gly	Gly	Pro	Trp	Cys	Phe	Thr	Ser	Asn	Pro	Glu	ı Val	Arg
				180					185					190		
30	Tyr	Glu	ı Val	Cys	Asp	Ile	Pro	GIn	Cys	Ser	Glu	Val	Glu	Cys	Met	Thr
			195	i				200					205			
	Cys	Asn	Gly	Glu	Ser	Tyr	Arg	Gly	Leu	Met	Asp	His	Thr	Glu	Ser	Gly
35		210					215					220				
	Lys	lle	Cys	Gln	Arg	Trp	Asp	His	Gln	Thr	Pro	His	Arg	His	Lys	Phe
40	225					230					235					240
	Leu	Pro	Glu	Arg	Tyr	Pro	Asp	Lys	Gly	Phe	Asp	Asp	Asn	Tyr	Cys	Arg
					245					250					255	
45	Asn	Pro	Asp	Gly	Gļn	Pro	Arg	Pro	Trp	Cys	Туг	Thr	Leu	Asp	Pro	His
				260	-				265					270		
50	Thr	Arg	Trp	Glu	Tyr	Cys /	Ala	He	Lys	Thr	Cys .	Ala	Asp	Asn	Thr	Met
			275				:	280				:	285			
	Asn	Asp	Thr	Asp	Val i	Pro l	Leu (Glu	Thr :	ſhr	Glu (Cys	Ile	G 1 n	Gly	Gln
5 5		290				2	295				3	300				

	Gly	Glu	Gly	Tyr	Arg	Gly	Thr	Val	Asn	Thr	lle	Trp	Asn	Gly	Ile	Pro
	305					310					315					320
5	Cys	Gln	Arg	Trp	Asp	Ser	Gln	Tyr	Pro	His	Glu	His	Asp	Met	Thr	Pro
					325					330					335	
10	Glu	Asn	Phe	Lys	Cys	Lys	Asp	Leu	Arg	Glu	Asn	Tyr	Cys	Arg	Asn	Pro
				340					345					350		
	Asp	Gly	Ser	Glu	Ser	Pro	Trp	Cys	Phe	Thr	Thr	Asp	Pro	Asn	Ile	Arg
15			355					360					365			
	Val	Gly	Tyr	Cys	Ser	Gln	Ile	Pro	Asn	Cys	Asp	Met	Ser	His	Gly	Gln
20		370					375					380				
20	Asp	Cys	Tyr	Arg	Gly	Asn	Gly	Lys	Asn	Tyr	Met	Gly	Asn	Leu	Ser	Gln
	385					390					395					400
25	Thr	Arg	Ser	Gly	Leu	Thr	Cys	Ser	Met	Trp	Asp	Lys	Asn	Met	Glu	Asp
					405					410					415	
30	Leu	His	Arg	His	Ile	Phe	Trp	Glu	Pro	Asp	Ala	Ser	Lys	Leu	Asn	Glu
				420					425					430		
	Asn	Tyr	Cys	Arg	Asn	Pro	Asp	Asp	Asp	Ala	His	Gly	Pro	Trp	Cys	Tyr
35			435				•	440					445			
	Thr	G1 y	Asn	Pro	Leu	Ile	Pro	Trp	Asp	Tyr	Cys	Pro	Ile	Ser	Arg	Cys
40		450					455					460				
	Glu	Gly	Asp	Thr	Thr	Pro	Thr	Ile	Val	Asn		Asp	His	Pro	Val	Ile
	465					470					475				_	480
45	Ser	Cys	Ala	Lys	Thr	Lys	Gln	Leu	Arg			Asn	Gly	lle		Thr
					485					490		_			495	
50	Arg	Thr	Asn	Ile	G1y	Trp	Met	Val			Arg	Tyr	Arg			His
~				500					505				•	510		۸
	lle	Cys	Gly	Gly	Ser	Leu	lle			Ser	Trp	Val			АІа	Arg
55			515)				520					525			

	G1	n Cy	's Ph	e Pr	o Se	r Ar	g As	p Le	u Ly	s As	р Ту	r Gl	u Al	a Tr	p Le	u Gly
		53	0				53	5				540)			
5	I 1	e Hi	s As	p Va	l Hi	s Gl	y Ar	g Gl	y As	p Gl	u Lys	s Cys	s Ly:	s G1	n Va	l Leu
	54.	5				55	0				555	5				560
10	Ası	n Va	l Se	r Gl	n Lei	u Va	l Ty:	r Gl	y Pro	o Glu	ı Gly	' Ser	Asp	Le	u Va	l Leu
					565	5				570)				57	5
	Нe	t Ly	s Le	ı Ala	a Arg	g Pro	A la	a Va	l Le	ı Asp	Asp	Phe	Val	Sei	Th	r Ile
15				580)				585	5				590)	
	Asp	Le	ı Pro	Asr	Tyr	Gly	Cys	Thi	· Ile	Pro	Glu	Lys	Thr	Ser	· Cys	Ser
20			595	j				600)				605			
	Val			Trp	Gly	Tyr	Thr	Gly	Leu	Ile	Asn	Tyr	Asp	Gly	Leu	Leu
		610)				615					620				
25	Årg	Val	Ala	His	Leu	Tyr	Ile	Met	Gly	Asn	G1u	Lys	Cys	Ser	Gln	His
	625					630					635					640
30	His	Arg	Gly	Lys	Val	Thr	Leu	Asn	Glu	Ser	Glu	Ile	Cys	Ala	Gly	Ala
					645					650					655	
	Glu	Lys	lle	Gly	Ser	Gly	Pro	Cys	Glu	Gly	Asp	Туг	Gly	Gly	Pro	Leu
35				660					665					670		
	Val	Cys		Gln	His	Lys	Иet	Arg	Me t	Val	Leu	Gly	Val	Ile	Val	Pro
40			675	_				680					685			
	нту			Cys	Ala			Asn	Arg	Pro			Phe	Val	Arg	Val
		690					695					700				
45		Tyr	Tyr	Ala	Lys	Trp	lle	His	Lys	Ile	Ile I	leu 1	Chr (lyr	Lys	Val
	705					710				,	715					720
	Pro	Gln	Ser													
50			723													

Claims

^{1.} A monoclonal antibody having affinity specific to an human anti-carcinoma protein termed TCF-II and a

molecular weight of approximately 150,000 and belonging to subclass IgG_1 .

2. A monoclonal antibody as claimed in claim 1, wherein an N-terminal amino acid sequence of an L chain of the monoclonal antibody is defined by either one of the following amino acid sequences:

Amino acid sequence (1):

Asp-Val-Val-Leu-Thr-Gln-Ser-Pro-Ala-Thr-Leu-Ser-Val-Thr-Pro-Gly-Asp-Ser-Val

Amino acid sequence (2):

Asp-Ser-Val-Leu-Thr-Gln-Ser-Pro-Ala-Ser-Leu-Ala-Val-Ser-Leu-Gly-Gln-Arg-Ala-Thr-Ile-Ser

Amino acid sequence (3):

Asp-Ile-Val-Leu-Thr-Gln-Ser-Pro-Val-Thr-Leu-Ser-Val-Thr-Pro-Gly-Gly-Ser-Val

- A method for measuring a human anti-tumor protein, TCF-II, by using a monoclonal antibody having affinity
 specific to a human anti-tumor protein termed TCF-II and a molecular weight of approximately 150,000
 and belonging to subclass IgG₁.
- 4. A method as claimed in claim 3, wherein said monoclonal antibody is defined by N-terminal amino acid sequence of L chain of the monoclonal antibodies comprising either one of the following amino acid se-

quences:

Amino acid sequence (1):

Asp-Val-Val-Leu-Thr-Gln-Ser-Pro-Ala
1 2 3 4 5 6 7 8 9

Thr-Leu-Ser-Val-Thr-Pro-Gly-Asp-Ser-

10 11 12 13 14 15 16 17 18

Val

Amino acid sequence (2):

Asp-Ser-Val-Leu-Thr-Gln-Ser-Pro-Ala-Ser-Leu-Ala-Val-Ser-Leu-Gly-Gln-Arg-11 12 13 14 15 16 17 Ala-Thr-Ile-Ser 20 21

Amino acid sequence (3):

Asp-Ile-Val-Leu-Thr-Gln-Ser-Pro-Val-Thr-Leu-Ser-Val-Thr-Pro-Gly-Gly-Ser-12 13 14 15 16 17 Val

- 50 5. A method as claimed in claim 3 or 4, wherein said monoclonal antibody is in a combination of a solid phase monoclonal antibody and an enzyme-labelled monoclonal antibody.
 - 6. Use of a monoclonal antibody as claimed in claim 1 for diagnosis of a liver disease.

5

TABLE 1	l:	Sequence	of	Amino	Acids	οf	TCF-II
---------	----	----------	----	-------	-------	----	--------

5	Met	Trp	Val	Thr	Lys	Leu	Leu	Pro	Ala	Leu	Leu	Leu	Gln	His
					5					10				
10	Val	Leu	Leu	His	Leu	Leu	Leu	Leu	Pro	Ile	Ala	Ile	Pro	Tyr
	15					20					25			
15	Ala	Glu	Gly	Gln	Arg	Ĺys	Arg	Arg	Asn	Thr	Ile	His	Glu	Phe
		30					35					40		
	Lys	Lys	Ser	Ala	Lys	Thr	Thr	Leu	Ile	Lys	Ile	Asp	Pro	Ala
20			45					50					55	
	Leu	Lys	Ile	Lys	Thr	Lys	Lys	Val	Asn	Thr	Ala	Asp	Gln	Cys
25				60					65					70
	Ala	Asn	Arg	Cys	Thr	Arg	Asn	Lys	Gly	Leu	Pro	Phe	Thr	CAa
30					75					80				
30	Lys	λla	Phe	Val	Phe	Аѕр	Lys	Ala	Arg	Lys	Gln	Cys	Leu	Trp
	85					90					95			
35	Phe	Pro	Phe	Asn	Ser	Met	Ser	Ser	Gly	Val	Lys	Lys	Glu	Phe
		100					105					110		
40	Gly	His	Glu	Phe	Asp	Leu	Tyr	Glu	Asn	Lys	Asp	Tyr	Ile	Arg
			115					120					125	
	Asn	Cys	Ile	Ile	Gly	Lys	Gly	Arg	Ser	Tyr	Lys	Gly	Thr	Val
45		•		130					135					140
	Ser	Ile	Thr	Lys	Ser	Gly	Ile	Lys	Cys	Gln	Pro	Trp	Ser	Ser
50					145					150				

	Met	Ile	Pro	His	Glu	His	Ser	Tyr	Arg	Gly	Lys	Asp	Leu	Gln
5	155					160					165			
	Glu	Asn	Tyr	Cys	Arg	Asn	Pro	Arg	Gly	Glu	Glu	Gly	Gly	Pro
		170					175					180		
10	Trp	Cys	Phe	Thr	Ser	Asn	Pro	Glu	Val	Arg	Tyr	Glu	Val	Cys
			185					190					195	
15	Asp	Ile	Pro	Gln	Cys	Ser	Glu	Val	Glu	Cys	Met	Thr	Cys	Asn
				200					205					210
	Gly	Glu	Ser	Tyr	Arg	Gly	Leu	Met	Asp	His	Thr	Glu	Ser	Gly
20					215					220				
	Lys	Ile	Cys	Gln	Arg	Trp	Asp	His	Gln	Thr	Pro	His	Arg	His
25	225					230					235			
	Lys	Phe	Leu	Pro	Glu	Arg	Tyr	Pro	Asp	Lys	Gly	Phe	Asp	Asp
30		240					245					250		
	Asn	Tyr	Cys	Arg	Asn	Pro	Asp	Gly	Gln	Pro	Arg	Pro	Trp	Cys
			255					260					265	
35	Tyr	Thr	Leu	Asp	Pro	His	Thr	Arg	Trp	Glu	Tyr	Cys	Ala	Ile
				270					275					280
1 0	Lys	Thr	Cys	Ala	Asp	Asn	Thr	Met	Asn	Asp	Thr	Asp	Val	Pro
					285					290				
	Leu	Glu	Thr	Thr	Glu	Cys	Ile	Gln	Gly	Gln	Gly	Glu	Gly	Tyr
1 5	295					300					305			
	Arg	Gly	Thr	Val	λsn	Thr	Ile	Trp	Asn	Gly	Ile	Pro	Cys	Gln
50		310		·			315					320		

_	Λrg	Trp	λsp	Ser	Gln	Tyr	Pro	His	Glu	His	Asp	Met	Thr	Pro
5			325					330					335	
	Glu	Asn	Phe	Lys	Cys	Lys	Asp	Leu	Arg	Glu	Asn	туг	Cys	Arg
10				340					345					350
	Asn	Pro	Asp	Gly	Ser	Glu	Ser	Pro	Trp	Cys	Phe	Thr	Thr	Asp
15					355					360				
15	Pro	Asn	Ile	Arg	Val	Gly	Tyr	Cys	Ser	Gln	Ile	Pro	Asn	Cys
	365					370					375			
20	Asp	Met	Ser	His	Gly	Gln	Asp	Cys	Tyr	Arg	Gly	Asn	Gly	Lys
		380					385					390		
25	Asn	Tyr	Met	Gly	Asn	Leu	Ser	Gln	Thr	Arg	Ser	Gly	Leu	Thr
			395					400					405	;
	Cys	Ser	Met	Trp	Asp	Lys	Asn	Met	Glu	Asp	Leu	His	Arg	His
30				410					415					420
	Ile	Phe	Trp	Glu	Pro	Asp	Ala	Ser	Lys	Leu	Asn	Glu	Asn	Tyr
35					425					430				
	Cys	Arg	Asn	Pro	Asp	Asp	Asp	Ala	His	Gly	Pro	Trp	Cys	Tyr
	435					440					445			
40	Thr	Gly	Asn	Pro	Leu	Ile	Pro	Trp	Asp	Tyr	Cys	Pro	Ile	Ser
		450					455					460		
45	Arg	Cys	Glu	Gly	Asp	Thr	Thr	Pro	Thr	Ile	Val	Asn	Leu	Asp
			465					470					475	
50	His	Pro	Val	Ile	Ser	Cys	Ala	Lys	Thr	Lys	Gln	Leu	Arg	Val
				480					485					490

	Уal	. Asn	GL	, Ile	e Pro	o Thi	Arg	Thi	r Ası	ı Ile	e Gly	y Tri	p Met	t Val
5					495	5				500				
	Ser	Leu	Arg	Туг	Arg	Asn	Lys	His	Ile	Cys	Gly	Gly	Ser	Leu
	505					510					515			
10	Ile	Lys	Glu	Ser	Trp	val	Leu	Thr	Ala	Arg	Glr	Cys	s Phe	Pro
		520					525					530		
15	Ser	Arg	Asp	Leu	Lys	asp	Tyr	Glu	Ala	Trp	Leu	Gly	, Ile	His
			535					540					545	
	Asp	Val	His	Gly	Arg	Gly	Asp	Glu	Lys	Cys	Lys	Gln	Val	Leu
20				550					555					560
	Asn	Val	Ser	Gln	Leu	Val	Tyr	Gly	Pro	Glu	Gly	Ser	Asp	Leu
25					565					570				
	Val	Leu	Met	Lys	Leu	Ala	Arg	Pro	Ala	Val	Leu	Asp	Asp	Phe
3 0	575					580					585			
.,0	Val	Ser	Thr	Ile	Asp	Leu	Pro	Asn	Tyr	Gly	Cys	Thr	Ile	Pro
		590					595					600		
35	Glu	Lys	Thr	Ser	Cys	Ser	Val	Tyr	Gly	Trp	Gly	Tyr	Thr	Gly
			605					610					615	
1 0	Leu	Ile	Asn	Tyr	Asp	Gly	Leu	Leu	Arg	Val /	Ala	His :	Leu T	yr
				620					625				(630
	Ile	Met	Gly	Asn	Glu	Lys	Cys	Ser	Gln	His	His	Arg	Gly	Lys
4 5					635					640				
	Val	Thr	Leu	λsn	Glu	Ser	Glu	Ile	Cys	Ala	Gly	Ala	Glu	Lys
50	645					650				(555			

	Ile	Gly	Ser	Gly	Pro	Cys	Glu	Gly	Asp	Tyr	Gly	Gly	Pro	Leu
		660					665					670		
5	Val	Cys	Glu	Gln	His	Lys	Met	Arg	Met	Val	Leu	Gly	Val	Ile
			675					680					685	
10	Val	Pro	Gly	Arg	Gly	Cys	Ala	Ile	Pro	Asn	Arg	Pro (Gly 1	le
				690					695				•	700
15	Phe	Val	Arg	Val	Ala	Tyr	Tyr	Ala	Lys	Trp	Ile	His	Lys	Ile
					705					710				
	Ile	Leu	Thr	Tyr	Lys	Val	Pro	Gln	Ser					
20	715					720)		723					
25														
30														
35														
33														
40														
45														
50														
			•											
55														

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Acute phase Recovering phase

			-
	·		