

Respuesta Transitoria de Sistemas de Primer y Segundo Orden

Materia: Teoría de Sistemas II — Profesor: Emmanuel Cruz Zavala Unidad de Aprendizaje: Características de Sistemas de Primer y Segundo Orden.

Los Carlos

Aguirre Gonzales Alberto Carlos Almanza Castañeda Carlos Eduardo Rodriguez Vazquez Carlos Omar

Fecha de Entrega: September 30, 2024

1 Introducción

1.1 Sistemas de Segundo Orden

Dada la ecuación caracteristica de un sistema de segundo orden

$$s^2 + 2\zeta\omega_n s + \omega_n^2. \tag{1}$$

Donde

- ullet ω_n : Frecuencia Natural del Sistema
- ζ : Amortiguamiento Relativo.

La frecuencia natural amortiguada es la frecuencia a la que realmente oscila el sistema y esta dada por la expressión

$$w_d = w_n \sqrt{1 - \zeta^2}. (2)$$

1.1.1 Caracteristicas de la Respuesta Transitoria

- El **tiempo de retardo** t_d es el tiempo requerido para que la resputesta alcance la primera vez la itad del valor final.
- El tiempo de subida t_r es el tiempo requerido para que la respuesta pase del 10 al 90%, del 5 al 95% o del 0 al 100% de su valor final.
- El **tiepo pico** t_p es el tiempo requerido par que la resputesta alcance el primer pico de sobreelongación.
- La sobreelongación máxima M_p es el máximo valor del pico de la curva de resputesta, medido a partir de la unidad.
- El tiempo de asentamiento t_s es el tiempo que se requiere para que la curva de resputesta alcance un rango alrededor del valor final del tamaño especificando por el porcentaje absoluto del valor final.

1.1.2 Sistemas subamortiguados

El valor de amortiguamiento relativo es

$$0 < \zeta < 1$$
.

La respuesta de un sistema de segundo orden subamoriguado a una entrada escaloón es

$$y(t) = 1 - e^{-\zeta \omega_n t} \left(\cos(\omega_d t) + \frac{\zeta}{\sqrt{1 - \zeta^2}} \sin(\omega_d t) \right).$$
 (3)

La sobreelongación maxima esta dada por la expresión

$$M_p = e^{-\frac{\zeta}{\sqrt{1-\zeta^2}}}. (4)$$

El tiempo de asentamiento esta dada por la expresión

$$t_s = \frac{4}{\zeta \omega_n}. (5)$$

El tiempo de retarto se determina al resolver la siguiente ecuación en forma numérica.

$$e^{-\zeta \omega_n t_r} \left(\cos \omega_n \sqrt{1 - \zeta^2} t_r + \frac{\zeta}{\sqrt{1 - \zeta^2}} \sin \omega_n \sqrt{1 - \zeta^2} t_r \right) = \frac{1}{2}.$$
 (6)

El tiempo de subida esta dado por la expresión

$$t_r = \frac{\pi - \beta}{\omega_n}, \quad \beta = \arctan\left(\frac{1 - \zeta^2}{\zeta}\right).$$
 (7)

El tiempo pico esta dado por la expresión

$$t_p = \frac{\pi}{\omega_n}. (8)$$

2 Desarrollo

Para el sistema no lineal modelado con la siguiente ecuación diferencial.

$$\ddot{\theta}(t) + 2\cos(\theta(t))\dot{\theta} + 3\theta(t) = 3f(t).$$

Se puede linealizar el modelo no lineal en $\theta=0$ y $\dot{\theta}=0$ considerando ángulos pequeoños. Sabiendo que

$$\cos x = 1$$

para angulos pequeños.

Se obtiene el siguiente sistema lineal.

$$\ddot{\theta}(t) + 2\dot{\theta}(t) + 3\theta(t) = 3f(t). \tag{9}$$

2.1 Función de Transferenia

Aplicamos la Transformada de Laplace a la Ecuación (9), considerando condiciones iniciales iguales a cero y que

$$\mathcal{L}\left\{\theta(t)\right\} = \Theta(s).$$

Se obtiene

$$s^{2}\Theta(s) + 2s\Theta(s) + 3\Theta(s) = 3F(s)$$

$$(s^{2} + 2s + 3)\Theta(s) = 3F(s)$$

$$\Theta(s) = \frac{3}{s^{2} + 2s + 3}F(s)$$

$$\frac{\Theta(s)}{F(s)} = \frac{3}{s^{2} + 2s + 3}.$$
(10)

Por la definición de funcion de transferencia de la Ecuación (10) se obtiene

$$G(s) = \frac{3}{s^2 + 2s + 3}.$$

La ecuación caracteristica del sistema es

$$s^2 + 2s + 3$$
.

Si tomamos

$$w_n = \sqrt{3}, \quad \zeta = \frac{1}{\sqrt{3}}.$$

Podemos llevar la ecuación caracteristica de la forma de la Ecuación (1)

Es claro que $\omega_n > 0$ por otro lado

$$\sqrt{1} < \sqrt{3}^1 \implies 1 < \sqrt{3} \implies 1 > \frac{1}{\sqrt{3}} = \zeta.$$

¹La función ₁/ es una función estrictamente creciente.

Ademas por la Ecuación (2)

$$\omega_n = \sqrt{3}\sqrt{1 - \frac{1}{3}}$$
$$= \sqrt{3} \cdot \frac{\sqrt{2}}{\sqrt{3}}$$
$$= \sqrt{2}.$$

Por lo que el sistema es un sistema de segundo orden sub-amortiguado.

2.2 Respuesta ante al escalón unitario

Debido a que es un sistema subamortiguado por la Eucuación (3) la respuesta ante el escalón unitario es

$$\theta(t) = 1 - e^{-t} \left(\cos \sqrt{2}t + \frac{1}{\sqrt{2}} \sin \sqrt{2}t \right).$$

La cual se encuentra graficada en la Figura (1).

Figure 1: Gráfica del sistema ante el escalón.

2.3 Tiempo de Retardo

Para calcular el tiempo de retardo por la Ecuación (6) se tiene que resolver la ecuación

$$e^{-t_r} \left[\cos \sqrt{2}t_r + \frac{\sqrt{2}}{2} \sin \sqrt{2}t_r \right] = \frac{1}{2}.$$

Al resolver la ecuación numericamente obtenemos el valor de tiempo de retardo

$$t_r \approx 0.7753$$
.

2.4 Tiempo de Subida

El tiempo de Subida por la Ecuación (7) esta dado por

$$\beta = \arctan\left(\frac{\sqrt{1 - \frac{1}{3}}}{\frac{1}{\sqrt{3}}}\right)$$
$$= \arctan\sqrt{2}.$$

Por lo que

$$t_r = \frac{\pi - \arctan\sqrt{2}}{\sqrt{3}}$$
$$\approx 1.5459.$$

2.5 Tiempo Pico

Por la Equación (8)

$$t_p = \frac{\pi}{\sqrt{3} \cdot \sqrt{1 - \frac{1}{3}}}$$
$$= \frac{\pi}{\sqrt{2}}$$
$$\approx 2.2214.$$

2.6 Sobreelongación Máxima

La sobreelongación maxima esta dada por la Ecuación (4) por lo que

$$M_p = e^{-\left(\frac{\frac{\pi}{\sqrt{3}}}{\sqrt{1-\frac{1}{3}}}\right)}$$
$$= e^{-\frac{\pi}{\sqrt{2}}}$$
$$\approx 0.10845$$

O en porcentaje

$$M_p \approx 10.545\%$$
.

2.7 Tiempo de Asentamineto

El tiempo de asentamiento esta dada por la Ecuación (5) por lo que

$$t_s = \frac{4}{1}$$
$$= 4.$$

2.8 Segundo Sistema

El sistema dado por la función de transferencia

$$G(s) = \frac{1}{s^2 + 4s + 5}.$$

La ecuación caracteristica del sistema es

$$s^2 + 4s + 5$$
.

Si tomamos

$$\omega_n = \sqrt{5}, \quad \zeta = \frac{2}{\sqrt{5}}.$$

Podemos llevar la ecuación caracteristica de la forma de la Ecuación (1).

Es claro que $\omega_n > 0$ y $\zeta < 1$.

Por lo que el sistema es un sistema de segundo orden sub-amortiguado.

2.9 Respuesta ante al escalón unitario

La respuesta ante al escalón unitario esta dada por

$$c(t) = \mathcal{L}^{-1} \left\{ C(s) \right\} = \mathcal{L}^{-1} \left\{ \frac{1}{s(s^2 + 4s + 5)} \right\}.$$

Por otro lado

$$\frac{1}{s(s^2+4s+5)} = \frac{A}{s} + \frac{Bs+C}{s^2+4s+5}$$
$$1 = A(s^2+4s+5) + (Bs+C)s$$
$$= As^2 + 4As + 5A + Bs^2 + Cs$$
$$= (A+B)s^2 + (4A+C)s + 5A$$

$$A + B = 0$$
$$4A + C = 0$$
$$5A = 1.$$

Al resolver el sistemas de ecuaciones

$$A = \frac{1}{5}$$

$$B = -\frac{1}{5}$$

$$C = -\frac{4}{5}$$

Por lo que

$$\begin{split} \frac{1}{s(s^2+4s+5)} &= \frac{1}{5s} - \frac{1}{5} \cdot \frac{s+4}{s^2+4s+5} \\ &= \frac{1}{5s} - \frac{1}{5} \cdot \frac{s+4}{(s+2)^2+1} \\ &= \frac{1}{5s} - \frac{1}{5} \cdot \frac{s+2}{(s+2)^2+1} - \frac{2}{5} \cdot \frac{1}{(s+2)^2+1} \end{split}$$

Asi que

$$\begin{split} c(t) &= \frac{1}{5}\mathcal{L}^{-1} \left\{ \frac{1}{s} \right\} - \frac{1}{5}\mathcal{L}^{-1} \left\{ \frac{s+2}{(s+2)^2 + 1} \right\} \\ &- \frac{2}{5}\mathcal{L}^{-1} \left\{ \frac{1}{(s+2)^2 + 1} \right\} \\ &= \frac{1}{5} - \frac{1}{5}e^{-2t}\cos t - \frac{2}{5}e^{-2t}\sin t. \\ &= \frac{1}{5} - \frac{1}{5}(\cos t + 2\sin t)e^{-2t}. \end{split}$$

La cual se puede ver en la Figura (2).

Figure 2: Gráfica del sistema ante el escalón.

2.10 Tiempo de Retardo

Para calcular el tiempo de retarto por la Ecuación (6) se tiene que resolver la ecuación

$$\frac{1}{5}(\cos t_d + 2\sin t_d)e^{-t_d} = \frac{1}{10}.$$

Al resolver numericamente obtenemos

$$t_d \approx 1.4410$$
.

2.11 Tiempo de Subida

El tiempo de subida por la Ecuación (6) esta dado por

$$\beta = \arctan\left(\frac{1 - \frac{4}{5}}{\frac{2}{\sqrt{5}}}\right)$$
 = $\arctan\left(\frac{\sqrt{5}}{10}\right)$

Por lo que

$$t_r = \frac{\pi - \arctan\left(\frac{\sqrt{5}}{10}\right)}{1} = 2.6779.$$

2.12 Tiempo de Asentamiento

El tiempo de asentamiento esta dada por la Ecuación (5) por lo que

$$t_s = \frac{4}{2}$$
$$-2$$

2.13 Sobrelongación Maxima

La sobreelongación maxima esta dada por la Ecuación (4) por lo que

$$M_n = e^{-1}$$
. ≈ 0.001865

O en porcentaje

$$M_p \approx 0.1865\%$$

2.14 Tiempo pico

Por la Ecuación (8)

$$t_p = \frac{\pi}{1}$$
$$= \pi.$$

3 Conclusiones

El cálculo de las funciones de transferencia nos permite el identificar las características fundamentales del sistema, tales como la amortiguación y la frecuencia natural. Estos parámetros son fundamentales para establecer el comportamiento dinámico del sistema y sus especificaciones en la respuesta transitoria. A través de las simulaciones en MAT-LAB, pudimos verificar de forma gráfica los cálculos de los tiempos, lo que nos permitió confirmar la precisión de nuestras estimaciones y comprender mejor el comportamiento del sistema bajo diferentes condiciones.