

Add value.

Report On

Application for Grant of Equipment Authorization of the Oculus VR, LLC HM-A Virtual Reality Headset

FCC Part 15 Subpart C §15.247 (FHSS) IC RSS-247 Issue 1 May 2015 IC RSS-Gen Issue 4, November 2014

Report No. SD72112194-1215A

December 2015

FCC ID 2AGOZHM-A IC: 20849-HMA

Report No. SD72112194-1215A

REPORT ON Radio Testing of the

Oculus VR, LLC

Virtual Reality Headset

TEST REPORT NUMBER SD72112194-1215A

PREPARED FOR Oculus VR, LLC

1 Hacker Way

Menlo Park, CA 94025

CONTACT PERSON Pelagio Payumo

Consumer Product Health & Safety Manager

(408) 564-9962

pelagio.payumo@oculus.com

PREPARED BY Ferdinand S. Custodio

Name

Authorized Signatory

Title: EMC/Senior Wireless Test Engineer

APPROVED BY Chip R. Fleury

Name

Authorized Signatory

Title: West Coast EMC Manager

DATED December 17, 2015

FCC ID 2AGOZHM-A IC: 20849-HMA Report No. SD72112194-1215A

Revision History

SD72112194-1215A Oculus VR, LLC HM-A Virtual Reality Headset							
DATE	OLD REVISION	NEW REVISION	REASON	PAGES AFFECTED	APPROVED BY		
12/17/2015	Initial Release				Chip R. Fleury		

CONTENTS

Section		Page No
1	REPORT SUMMARY	5
1.1	Introduction	6
1.2	Brief Summary Of Results	7
1.3	Product Information	8
1.4	EUT Test Configuration	10
1.5	Deviations From The Standard	12
1.6	Modification Record	12
1.7	Test Methodology	12
1.8	Test Facility Location	12
1.9	Test Facility Registration	12
2	TEST DETAILS	14
2.1	Conducted Emissions	15
2.2	Carrier Frequency Separation	19
2.3	Number Of Hopping Frequencies	21
2.4	Time Of Occupancy (Dwell Time)	23
2.5	20 dB Bandwidth	26
2.6	99% Emission Bandwidth	29
2.7	Peak Output Power	32
2.8	Band-Edge Compliance Of RF Conducted Emissions	35
2.9	Spurious RF Conducted Emissions	38
2.10	Spurious Radiated Emissions	41
2.11	Radiated Immediate Restricted Bands	49
3	TEST EQUIPMENT USED	55
3.1	Test Equipment Used	56
3.2	Measurement Uncertainty	57
4	DIAGRAM OF TEST SETUP	59
4.1	Test Setup Diagram	60
5	ACCREDITATION, DISCLAIMERS AND COPYRIGHT	63
5.1	Accreditation, Disclaimers and Copyright	64

FCC ID 2AGOZHM-A IC: 20849-HMA Report No. SD72112194-1215A

SECTION 1

REPORT SUMMARY

Radio Testing of the Oculus VR, LLC Virtual Reality Headset

1.1 **INTRODUCTION**

The information contained in this report is intended to show verification of the Oculus VR, LLC HM-A Virtual Reality Headset to the requirements of FCC Part 15 Subpart C §15.247 and IC RSS-247 Issue 1 May 2015.

Objective To perform Radio Testing to determine the Equipment Under

Test's (EUT's) compliance with the Test Specification, for the

series of tests carried out.

Manufacturer Oculus VR, LLC

Model Number(s) HM-A

FCC ID Number 2AGOZHM-A

IC Number 20849-HMA

Serial Number(s) N/A (Engineering Sample)

Number of Samples Tested 2 (radiated sample and antenna port conducted sample)

Test Specification/Issue/Date FCC Part 15 Subpart C §15.247 (October 1, 2014).

> IC RSS-247 Issue 1 May 2015 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-

Exempt Local Area Network (LE-LAN) Devices.

IC RSS-Gen Issue 4, November 2014 - General Requirements for Compliance of Radio Apparatus (Issue 4, November

2014).

Public Notice (DA 00-705 Released March 30, 2000) Filing and Measurement Guidelines for Frequency Hopping Spread

Spectrum Systems.

Start of Test October 08, 2015

Finish of Test December 17, 2015

Ferdinand Custodio Name of Engineer(s)

Nikolay Shtin

Related Document(s) setup and connection.txt

Supporting documents for EUT certification are separate

exhibits.

1.2 BRIEF SUMMARY OF RESULTS

A brief summary of the tests carried out in accordance with FCC Part 15 Subpart C §15.247 with cross-reference to the corresponding IC RSS standard is shown below.

Section	§15.247 Spec Clause	RSS	Test Description	Result	Comments/ Base Standard
2.1	§15.207 (a)	RSS-Gen 8.8	Conducted Emissions	Compliant	
2.2	§15.247(a)(1)	RSS-247 5.1 (2)	Carrier Frequency Separation	Compliant	
2.3	§15.247(a)(1) (iii)	RSS-247 5.1 (4)	Number of Hopping Frequencies	Compliant	
2.4	§15.247(a)(1) (iii)	RSS-247 5.1 (4)	Time of Occupancy (Dwell Time)	Compliant	
2.5	§15.215(c)	RSS-247 5.1 (1)	20 dB Bandwidth	Compliant	
2.6		RSS-Gen 6.6	99% Emission Bandwidth	Compliant	
2.7	§15.247(b)(1)	RSS-247 5.4 (2)	Peak Output Power	Compliant	
2.8	§15.247(d)	RSS-247 5.5	Band-edge Compliance of RF Conducted Emissions	Compliant	
2.9	§15.247(d)	RSS-247 5.5	Spurious RF Conducted Emissions	Compliant	
2.10	§15.247(d)	RSS-Gen 8.9 and 8.10	Spurious Radiated Emissions	Compliant	
2.11	§15.247(d)	RSS-Gen 8.9 and 8.10	Radiated Immediate Restricted Bands	Compliant	

1.3 **PRODUCT INFORMATION**

1.3.1 Technical Description

The Equipment Under Test (EUT) was an Oculus VR, LLC HM-A Virtual Reality Headset as shown in the photograph below. The EUT is part of a Virtual Reality Headset System comprising of the EUT, the Oculus Remote (Simple Input Device) and the Oculus Constellation Sensor.

Equipment Under Test

1.3.2 **EUT General Description**

EUT Description Virtual Reality Headset Model Name HM-A Model Number(s) HM-A Rated Voltage 5VDC via USB Mode Verified Proprietary 2.4GHz FHSS in the ISM Band Capability Proprietary 2.4GHz FHSS in the ISM Band Modulation **GFSK** Production Primary Unit (EUT) Pre-Production **Engineering** Antenna Type Custom 95mm GTK and PSA antenna (PCBA with 50Ω coax cable) Antenna Manufacturer Oculus Antenna Model Number 340-00234-01 **Antenna Dimensions** 134.4mm x 20.4mm x 0.19mm Antenna Gain 3.53 dBi

1.3.3 Maximum Conducted Output Power

Mode	Frequency Range (MHz)	AverageOutput Power (dBm))	Peak Output Power (dBm)	Peak Output Power (mW)	
FHSS	2404-2478	0.22	2.57	1.81	

1.4 **EUT TEST CONFIGURATION**

1.4.1 Test Configuration Description

Test Configuration	Description
А	Single Carrier Test Mode. Manufacturer provided a Command Prompt window wherein a command could be issued forcing the EUT to single carrier test mode; otherwise the EUT will default to hopping mode.
В	Hopping Mode. Default mode when EUT is first powered up.

1.4.2 **EUT Exercise Software**

Command Prompt window on the host PC (support laptop) to program single carrier mode.

1.4.3 Support Equipment and I/O cables

Manufacturer	Equipment/Cable	Description
Apple Inc.	Support laptop	Model MacBookPro 11.3 S/N: C02LX29CFR1M
LiteOn Technology Corporation	AC Adapter for Support Laptop	Model PA-1850-7 NSW25679

1.4.4 Worst Case Configuration

The EUT has only one modulation scheme. Being a mobile device, the EUT was verified on all axes. Only the worst axis ("X") presented in this test report for radiated measurements. Worst case Channel based from power measurements is Low channel.

1.4.5 Simplified Test Configuration Diagram (Antenna conducted port otherwise stand-alone for Radiated)

1.5 **DEVIATIONS FROM THE STANDARD**

No deviations from the applicable test standards or test plan were made during testing.

1.6 MODIFICATION RECORD

Description of Modification	Modification Fitted By	Date Modification Fitted
Serial Number N/A		
N/A		

The table above details modifications made to the EUT during the test programme. The modifications incorporated during each test (if relevant) are recorded on the appropriate test pages.

1.7 **TEST METHODOLOGY**

All measurements contained in this report were conducted with ANSI C63.4-2014, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

For conducted and radiated emissions the equipment under test (EUT) was configured to measure its highest possible emission level. This level was based on the maximized cable configuration from exploratory testing per ANSI C63.4-2014. The test modes were adapted according to the Operating Instructions provided by the manufacturer/client.

1.8 TEST FACILITY LOCATION

1.8.1 TÜV SÜD America Inc. (Mira Mesa)

10040 Mesa Rim Road, San Diego, CA 92121-2912 (32.901268,-117.177681). Phone: 858 678 1400 FAX: 858-546 0364

1.8.2 TÜV SÜD America Inc. (Rancho Bernardo)

Sony Electronics Inc., Building #8 16530 Via Esprillo, San Diego, CA 92127-1708 (33.018644,-117.092409). Phone: 858 942 5542 FAX: 858-546 0364

1.9 TEST FACILITY REGISTRATION

1.9.1 **FCC – Registration No.: US1146**

TUV SUD America Inc. (San Diego), is an accredited test facility with the site description report on file and has met all the requirements specified in §2.948 of the FCC rules. The acceptance letter from the FCC is maintained in our files and the Registration is US1146.

FCC ID 2AGOZHM-A IC: 20849-HMA Report No. SD72112194-1215A

1.9.2 Industry Canada (IC) Registration No.: 3067A

The 10m Semi-anechoic chamber of TUV SUD America Inc. (San Diego) has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No. 3067A.

FCC ID 2AGOZHM-A IC: 20849-HMA Report No. SD72112194-1215A

SECTION 2

TEST DETAILS

Radio Testing of the Oculus VR, LLC Virtual Reality Headset

2.1 **CONDUCTED EMISSIONS**

2.1.1 Specification Reference

Part 15 Subpart C §15.207(a) and RSS-Gen 8.8

2.1.2 Standard Applicable

An intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).

	Conducted limit (dBµV)				
Frequency of emission (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5–5	56	46			
5–30	60	50			

^{*}Decreases with the logarithm of the frequency.

2.1.3 Equipment Under Test and Modification State

Serial No: N/A /Test Configuration A

2.1.4 Date of Test/Initial of test personnel who performed the test

October 09, 2015/FSC

2.1.5 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.1.6 Environmental Conditions

Test performed at TÜV SÜD America Inc. Rancho Bernardo facility.

Ambient Temperature 25.7 °C Relative Humidity 55.2 % ATM Pressure 99.5 kPa

2.1.7 Additional Observations

- The EUT was verified using the host laptop supplied by the manufacturer.
- Test performed for reference only and to show general compliance with the rules.
- Only worst case channel configuration verified. EUT was transmitting at 2404 MHz (non-hopping) during verification.

See Section 1.4.3 of this test report for list of support equipment

 Measurement was done using EMC32 automated software. Reported level is the actual level with all the correction factors factored in. Correction Factor column is for informational purposes only.
 See Section 2.1.8 for sample computation.

2.1.8 Sample Computation (Conducted Emission – Quasi Peak)

Measuring equipment raw me		5.5		
Correction Factor (dB)	Asset# 8607 (20 dB attenuator)	19.9		
	Asset# 1177 (cable)	0.15	20.7	
	Asset# 1176 (cable)	0.35	20.7	
	Asset# 7567 (LISN)	0.30		
Reported QuasiPeak Final Me	26.2			

2.1.9 Test Results

Compliant. See attached plots and tables.

2.1.10 FCC Conducted Emissions Line 1 - Hot

Quasi Peak

Frequency (MHz)	QuasiPeak (dBμV)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBµV)
0.150000	44.9	1000.0	9.000	Off	L1	20.1	21.1	66.0
0.757500	31.6	1000.0	9.000	Off	L1	20.1	24.4	56.0
1.095000	29.4	1000.0	9.000	Off	L1	20.3	26.6	56.0
5.046000	35.4	1000.0	9.000	Off	L1	20.6	24.6	60.0
5.149500	31.9	1000.0	9.000	Off	L1	20.6	28.1	60.0
18.168000	27.8	1000.0	9.000	Off	L1	21.0	32.2	60.0

Average

Frequency (MHz)	Average (dBμV)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin - Ave (dB)	Limit - Ave (dBµV)
0.208500	30.2	1000.0	9.000	Off	L1	20.1	22.9	53.1
0.721500	22.3	1000.0	9.000	Off	L1	20.2	23.7	46.0
1.014000	22.2	1000.0	9.000	Off	L1	20.2	23.8	46.0
4.933500	24.2	1000.0	9.000	Off	L1	20.6	21.8	46.0
5.158500	25.2	1000.0	9.000	Off	L1	20.6	24.8	50.0
18.834000	22.0	1000.0	9.000	Off	L1	21.0	28.0	50.0

2.1.11 FCC Conducted Emissions Line 2 – Neutral

Quasi Peak

Frequency (MHz)	QuasiPeak (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBμV)
0.150000	43.8	1000.0	9.000	Off	N	20.1	22.2	66.0
0.505500	33.4	1000.0	9.000	Off	N	20.1	22.6	56.0
1.027500	32.4	1000.0	9.000	Off	N	20.2	23.6	56.0
4.825500	33.8	1000.0	9.000	Off	N	20.5	22.2	56.0
5.356500	32.7	1000.0	9.000	Off	Ν	20.6	27.3	60.0
14.379000	27.6	1000.0	9.000	Off	N	20.8	32.4	60.0

Average

Frequency (MHz)	Average (dBμV)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin - Ave (dB)	Limit - Ave (dBµV)
0.312000	22.4	1000.0	9.000	Off	N	20.1	27.3	49.7
0.415500	21.3	1000.0	9.000	Off	N	20.2	26.1	47.4
1.018500	15.8	1000.0	9.000	Off	N	20.2	30.2	46.0
4.830000	24.7	1000.0	9.000	Off	N	20.5	21.3	46.0
5.370000	25.0	1000.0	9.000	Off	N	20.6	25.0	50.0
14.478000	19.3	1000.0	9.000	Off	N	20.8	30.7	50.0

2.2 CARRIER FREQUENCY SEPARATION

2.2.1 Specification Reference

Part 15 Subpart C §15.247(a)(1) and RSS-247 5.1 (2)

2.2.2 Standard Applicable

(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

2.2.3 Equipment Under Test and Modification State

Serial No: N/A /Test Configuration B

2.2.4 Date of Test/Initial of test personnel who performed the test

October 08, 2015/FSC

2.2.5 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.2.6 Environmental Conditions

Test performed at TÜV SÜD America Inc. Rancho Bernardo facility.

Ambient Temperature 24.8 °C Relative Humidity 57.1 % ATM Pressure 99.1 kPa

2.2.7 Additional Observations

- Hopping function enabled.
- Span is wide enough to capture the peaks of two adjacent channels.
- RBW is 1% of the span.
- VBW is 3x RBW
- Sweep is auto

- Detector is peak.
- Trace is max hold.
- An offset of 21.2dB was added to compensate for the external attenuator and cable used.
- Marker-delta function is used between the peaks of the adjacent channels.
- Limit used is >490 kHz (2/3 of worst case 20dB BW).

2.2.8 Test Results

Observed carrier frequency separation between Channel 4 and Channel 6 = 2 MHz (Complies. Greater than 490 kHz, this is 2/3 of 0.7352 MHz 20 dB BW)

2.3 NUMBER OF HOPPING FREQUENCIES

2.3.1 Specification Reference

Part 15 Subpart C §15.247(a)(1)(iii) and RSS-247 5.1 (4)

2.3.2 Standard Applicable

(iii) Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

2.3.3 Equipment Under Test and Modification State

Serial No: N/A /Test Configuration B

2.3.4 Date of Test/Initial of test personnel who performed the test

October 08, 2015/FSC

2.3.5 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.3.6 Environmental Conditions

Test performed at TÜV SÜD America Inc. Rancho Bernardo facility.

Ambient Temperature 24.8 °C Relative Humidity 57.1 % ATM Pressure 99.1 kPa

2.3.7 Additional Observations

- Hopping function enabled.
- Span was set to the entire Frequency Band.
- RBW is >1% of the span.
- VBW is 3x RBW
- Sweep is auto
- Trace was set to Max Hold.
- Marker Peak List function of the spectrum analyzer was used for this test.

2.3.8 Test Results

Observed Number of Hopping Frequencies is = 37 (Complies)

2.4 GHz Frequency Band showing 37 channels where the EUT hops

2.4 TIME OF OCCUPANCY (DWELL TIME)

2.4.1 Specification Reference

Part 15 Subpart C §15.247(a)(1)(iii) and RSS-247 5.1 (4)

2.4.2 Standard Applicable

(iii) Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

2.4.3 Equipment Under Test and Modification State

Serial No: N/A /Test Configuration B

2.4.4 Date of Test/Initial of test personnel who performed the test

October 08, 2015/FSC

2.4.5 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.4.6 **Environmental Conditions**

Test performed at TÜV SÜD America Inc. Rancho Bernardo facility.

Ambient Temperature 24.8 °C Relative Humidity 57.1 % ATM Pressure 99.1 kPa

2.4.7 Additional Observations

- Hopping function enabled.
- Span = zero span, centered on a hopping channel.
- RBW is 1MHz.
- VBW is 3x RBW
- Detector is peak.
- A single pulse is first measured. This measurement is then used to compute the average time of occupancy in the required period (no. of channels x 0.4 second).
- Marker Peak List function of the spectrum analyzer was used to determine the number of pulses within 3.16 seconds.
- Threshold set to -10 dBm in order to capture actual transmission within the channel being investigated (adjacent channel transmissions are rejected).

2.4.8 Test Results

Modulation	Measured time of occupancy	Requirement	
GFSK	4.28 ms	<400 ms	

2.4.9 Sample Computation

Width of single pulse = 0.000214 second
Observed occurrence = 20 pulses/1.48 seconds
Required period = 37 channels x 0.4 second

= 14.8 seconds

Average time of occupancy = Pulse width x #pulses in 1.48 seconds x 10

= 0.000214 second x 20 x 10

= 0.0428 second

Compliance = Complies. 0.0428 second < 0.4 second

2.4.10 Test Results Plots

GFSK width of single pulse (0.214 ms)

20 pulses/1.48 seconds

2.5 **20 dB BANDWIDTH**

2.5.1 Specification Reference

Part 15 Subpart C §15.215(c) and RSS-247 5.1 (1)

2.5.2 Standard Applicable

(c) Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

2.5.3 Equipment Under Test and Modification State

Serial No: N/A /Test Configuration A

2.5.4 Date of Test/Initial of test personnel who performed the test

October 08, 2015/FSC

2.5.5 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.5.6 Environmental Conditions

Test performed at TÜV SÜD America Inc. Rancho Bernardo facility.

 $\begin{array}{lll} \mbox{Ambient Temperature} & 24.8 \ ^{\circ}\mbox{C} \\ \mbox{Relative Humidity} & 57.1 \ \% \\ \mbox{ATM Pressure} & 99.1 \ \text{kPa} \end{array}$

2.5.7 Additional Observations

- This is a conducted test.
- An offset of 21.2dB was added to compensate for the external attenuator and cable used.
- Span is approximately 2 to 3 times the expected 20dB bandwidth.
- RBW is ≥ 1% of the expected 20dB bandwidth while VBW is ≥ RBW.
- Sweep is auto.
- Detector is peak.
- Max hold function activated.
- "n dB down" marker function (20dB) of the spectrum analyzer was used for this test.

2.5.8 Test Results

Modulation	Channel	Frequency (MHz)	Measured 20dB Bandwidth (MHz)	
	4	2404	0.7352	
GFSK	40	2440	0.7120	
	78	2478	0.7265	

Using worst case 20 dB BW:

2404 MHz - (0.7352/2) = 2403.6324 MHz (within the frequency band - **Compliant**) 2478 MHz + (0.7352/2) = 2478.3675 MHz (within the frequency band - **Compliant**)

2.5.9 Test Results Plots

Low Channel (2404 MHz)

Mid Channel (2440 MHz)

High Channel (2478 MHz)

2.6 99% EMISSION BANDWIDTH

2.6.1 Specification Reference

RSS-Gen Clause 6.6

2.6.2 Standard Applicable

The emission bandwidth (x dB) is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated x dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth in the range of 1% to 5% of the anticipated emission bandwidth, and a video bandwidth at least 3x the resolution bandwidth.

When the occupied bandwidth limit is not stated in the applicable RSS or reference measurement method, the transmitted signal bandwidth shall be reported as the 99% emission bandwidth, as calculated or measured.

- The transmitter shall be operated at its maximum carrier power measured under normal test conditions.
- The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.
- The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the occupied bandwidth (OBW) and video bandwidth (VBW) shall be approximately 3x RBW.

Note: Video averaging is not permitted.

A peak, or peak hold, may be used in place of the sampling detector as this may produce a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold may be necessary to determine the occupied bandwidth if the device is not transmitting continuously.

The trace data points are recovered and are directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded.

The difference between the two recorded frequencies is the 99% occupied bandwidth.

2.6.3 Equipment Under Test and Modification State

Serial No: N/A /Test Configuration A

2.6.4 Date of Test/Initial of test personnel who performed the test

October 08, 2015/FSC

2.6.5 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.6.6 Environmental Conditions

Test performed at TÜV SÜD America Inc. Rancho Bernardo facility.

 $\begin{array}{ll} \mbox{Ambient Temperature} & 24.8\ ^{\circ}\mbox{C} \\ \mbox{Relative Humidity} & 57.1\ \% \\ \mbox{ATM Pressure} & 99.1\ \mbox{kPa} \end{array}$

2.6.7 Additional Observations

- This is a conducted test.
- A TDF factor was used to compensate for the external attenuator and cable used within the frequency band.
- Span is wide enough to capture the channel transmission.
- RBW is 1% of the span.
- VBW is 3X RBW.
- Sweep is auto.
- Detector is peak.
- The % Power Bandwidth setting in the spectrum analyzer was set to 99% (default).
- The OBW power measurement function of the spectrum analyzer was used for this test.

2.6.8 Test Results (For reporting purposes only)

Modulation	Channel	Frequency (MHz)	Measured 20dB Bandwidth (MHz)	
	4	2404	0.622	
GFSK	40	2440	0.622	
	78	2478	0.637	

2.6.9 Test Results Plots

Low Channel (2404 MHz)

Mid Channel (2440 MHz)

High Channel (2478 MHz)

2.7 **PEAK OUTPUT POWER**

2.7.1 Specification Reference

Part 15 Subpart C §15.247(b)(1) and RSS-247 5.4 (2)

2.7.2 Standard Applicable

(1) For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

For FHSs operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W and the e.i.r.p. shall not exceed 4 W if the hopset uses 75 or more hopping channels; the maximum peak conducted output power shall not exceed 0.125 W and the e.i.r.p. shall not exceed 0.5 W if the hopset uses less than 75 hopping channels (see Section 5.4(5) for exceptions).

2.7.3 Equipment Under Test and Modification State

Serial No: N/A /Test Configuration A

2.7.4 Date of Test/Initial of test personnel who performed the test

October 08, 2015/FSC

2.7.5 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.7.6 Environmental Conditions

Test performed at TÜV SÜD America Inc. Rancho Bernardo facility.

Ambient Temperature 24.8 °C Relative Humidity 57.1 % ATM Pressure 99.1 kPa

2.7.7 Additional Observations

- This is a conducted test using a Peak Power Meter.
- An offset of 21.2dB was added to compensate for the external attenuator and cable used.
- EUT was verified while in single carrier test mode.

2.7.8 Test Results (Conducted)

Modulation	Channel	Frequency (MHz)	Measured Average Output Power (dBm)	Measured Peak Output Power (dBm)	Measured Peak Output Power (mW)	Limit (mW)
	4	2404	0.22	2.57	1.81	125.0
GFSK	40	2440	-0.81	2.27	1.69	125.0
	78	2478	-0.64	2.20	1.66	125.0

2.7.9 Test Results (*De Facto* EIRP Limit)

Modulation	Channel	Frequency (MHz)	Measured Peak Output Power (dBm))	Antenna Gain (dBi)	Calculated Peak Output Power EIRP (dBm))	Limit (dBm))
GFSK	4	2404	2.57	3.53	6.1	27

2.7.10 Test Display

Low channel (Channel 4 2404 MHz)

Mid channel (Channel 40 2440 MHz)

High channel (Channel 78 2478 MHz)

2.8 BAND-EDGE COMPLIANCE OF RF CONDUCTED EMISSIONS

2.8.1 Specification Reference

Part 15 Subpart C §15.247(d) and RSS-247 5.5

2.8.2 Standard Applicable

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

2.8.3 Equipment Under Test and Modification State

Serial No: N/A /Test Configuration A and B

2.8.4 Date of Test/Initial of test personnel who performed the test

October 08, 2015/FSC

2.8.5 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.8.6 Environmental Conditions

Test performed at TÜV SÜD America Inc. Rancho Bernardo facility.

 $\begin{array}{lll} \mbox{Ambient Temperature} & 24.8 \ ^{\circ}\mbox{C} \\ \mbox{Relative Humidity} & 57.1 \ \% \\ \mbox{ATM Pressure} & 99.1 \ \text{kPa} \end{array}$

2.8.7 Additional Observations

- This is a conducted test.
- An offset of 21.2dB was added to compensate for the external attenuator and cable used.
- Span is wide enough to capture the peak level of the emission operating on the channel closest to the band edge.
- RBW is \geq 1% of the span, VBW is \geq RBW.
- Sweep is auto, detector is peak, trace is max hold.
- Trace allowed to stabilize. Marker-delta function used to verify compliance.

- Limit is 20dBc.
- Both Hopping and Non-Hopping mode verified.

2.8.8 Test Results

Hopping lower band edge

Hopping upper band edge

Non-hopping lower band edge

Non-hopping upper band edge

2.9 SPURIOUS RF CONDUCTED EMISSIONS

2.9.1 Specification Reference

Part 15 Subpart C §15.247(d) and RSS-247 5.5

2.9.2 Standard Applicable

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

2.9.3 Equipment Under Test and Modification State

Serial No: N/A /Test Configuration A

2.9.4 Date of Test/Initial of test personnel who performed the test

October 08, 2015/FSC

2.9.5 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.9.6 Environmental Conditions

Test performed at TÜV SÜD America Inc. Rancho Bernardo facility.

Ambient Temperature 24.8 °C Relative Humidity 57.1 % ATM Pressure 99.1 kPa

2.9.7 Additional Observations

- This is a conducted test.
- A TDF factor was used to compensate for the external attenuator and cable used within the frequency band.
- Span is from 9 kHz up to 26.5GHz (to cover 10th harmonic of the High Channel).
- Sweep point setting of the spectrum analyzer is set to maximum (32001).
- RBW is 100 kHz, VBW is ≥ RBW.
- Sweep is auto, detector is peak.

- Trace is max hold.
- Trace allowed to stabilize. Maximum spurious emission compared to limit.
- Limit is 20dBc (30dBc presented, worst case).

2.9.8 Test Results Plots

Low Channel (2404 MHz)

Mid Channel (2440 MHz)

High Channel (2478 MHz)

2.10 SPURIOUS RADIATED EMISSIONS

2.10.1 Specification Reference

Part 15 Subpart C §15.247(d) and RSS-Gen 8.9 / 8.10

2.10.2 Standard Applicable

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

2.10.3 Equipment Under Test and Modification State

Serial No: N/A /Test Configuration A and B

2.10.4 Date of Test/Initial of test personnel who performed the test

December 16 and 17, 2015/NS

2.10.5 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.10.6 Environmental Conditions

Test performed at TÜV SÜD America Inc. Rancho Bernardo facility

Ambient Temperature 22.2 °C Relative Humidity 22.4 % ATM Pressure 99.6 kPa

2.10.7 Additional Observations

- This is a radiated test. The spectrum was searched from 30MHz to the 10th harmonic.
- There are no emissions found that do not comply to the restricted bands defined in FCC Part 15 Subpart C, 15.205 or Part 15.247(d).
- For Hopping mode verification, both the HMD and the Tracker were verified at the same time. Both units will default to hopping configuration when in normal mode.

- Only noise floor measurements observed above 18GHz.
- Measurement was done using EMC32 automated software. Reported level is the actual level with all the correction factors factored in. Correction Factor column is for informational purposes only. See Section 2.10.8 for sample computation.

2.10.8 Sample Computation (Radiated Emission)

Measuring equipment raw measur		24.4	
	Asset# 1066 (cable)	0.3	
Correction Factor (dB)	Asset# 1016 (preamplifier)	-30.7	-12.6
	Asset# 1175(cable)	0.3	
	17.2		
Reported QuasiPeak Final Measur	11.8		

2.10.9 Test Results

See attached plots.

2.10.10 Test Results Below 1GHz (Worst Case Channel – Non-hopping)

Quasi Peak Data

Frequency (MHz)	QuasiPeak (dBμV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBμV/m)
46.894990	21.5	1000.0	120.000	104.0	V	228.0	-19.0	18.5	40.0
64.006092	27.4	1000.0	120.000	272.0	Н	-8.0	-22.1	12.6	40.0
92.844409	29.9	1000.0	120.000	102.0	V	199.0	-20.1	13.6	43.5
176.031583	31.2	1000.0	120.000	100.0	Н	35.0	-17.8	12.3	43.5
477.798076	19.4	1000.0	120.000	102.0	V	16.0	-6.6	26.6	46.0
841.568978	19.0	1000.0	120.000	236.0	Н	357.0	-0.2	27.0	46.0

Test Notes: Only worst case channel presented for spurious emissions below 1GHz.

2.10.11 Test Results Below 1GHz (Hopping)

Quasi Peak Data

Frequency (MHz)	QuasiPeak (dBμV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
36.231663	22.6	1000.0	120.000	400.0	Н	213.0	-15.0	17.4	40.0
71.021643	13.7	1000.0	120.000	100.0	V	277.0	-22.4	26.3	40.0
144.025491	34.7	1000.0	120.000	152.0	Н	38.0	-19.4	8.8	43.5
400.018677	37.7	1000.0	120.000	115.0	V	64.0	-8.9	8.3	46.0
640.100762	29.1	1000.0	120.000	100.0	V	12.0	-4.2	16.9	46.0
720.040160	36.3	1000.0	120.000	100.0	V	79.0	-2.0	9.7	46.0

Test Notes:

2.10.12 Test Results Above 1GHz (Hopping)

Peak Data

Frequency (MHz)	MaxPeak (dBμV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBμV/m)
1600.333333	41.0	1000.0	1000.000	155.6	Н	334.0	-5.6	32.9	73.9
1932.400000	43.4	1000.0	1000.000	216.4	V	3.0	-2.3	30.5	73.9
3793.100000	45.7	1000.0	1000.000	191.5	Н	327.0	5.0	28.2	73.9
4843.900000	55.6	1000.0	1000.000	146.7	Н	-3.0	5.9	18.3	73.9
9986.033333	50.1	1000.0	1000.000	123.7	Н	4.0	13.0	23.8	73.9
11016.033333	50.9	1000.0	1000.000	402.2	V	341.0	15.6	23.0	73.9
16826.400000	57.5	1000.0	1000.000	229.4	٧	299.0	24.4	16.4	73.9

Average Data

. <u>46</u>	Be butu											
	Frequency (MHz)	Average (dBμV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)		
	1600.333333	27.5	1000.0	1000.000	155.6	Н	334.0	-5.6	26.4	53.9		
	1932.400000	28.9	1000.0	1000.000	216.4	V	3.0	-2.3	25.0	53.9		
	3793.100000	32.7	1000.0	1000.000	191.5	Н	327.0	5.0	21.2	53.9		
	4843.900000	32.3	1000.0	1000.000	146.7	Н	-3.0	5.9	21.6	53.9		
	9986.033333	36.5	1000.0	1000.000	123.7	Н	4.0	13.0	17.4	53.9		
	11016.033333	38.1	1000.0	1000.000	402.2	V	341.0	15.6	15.8	53.9		
	16826.400000	44.8	1000.0	1000.000	229.4	V	299.0	24.4	9.1	53.9		

2.10.13 Test Results Above 1GHz Low Channel

Peak Data

Frequency (MHz)	MaxPeak (dBμV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBμV/m)
1524.533333	37.1	1000.0	1000.000	156.7	V	-16.0	-5.9	36.8	73.9
1932.533333	44.6	1000.0	1000.000	171.6	V	10.0	-2.3	29.3	73.9
3919.466667	45.5	1000.0	1000.000	235.4	V	164.0	5.2	28.4	73.9
4808.400000	45.9	1000.0	1000.000	103.7	V	306.0	5.8	28.0	73.9
6669.466667	49.3	1000.0	1000.000	179.6	Н	224.0	11.0	24.6	73.9
16837.766666	57.5	1000.0	1000.000	169.5	V	181.0	23.4	16.4	73.9

Average Data

Frequency (MHz)	Average (dBμV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
1524.533333	24.3	1000.0	1000.000	156.7	V	-16.0	-5.9	29.6	53.9
1932.533333	31.8	1000.0	1000.000	171.6	V	10.0	-2.3	22.1	53.9
3919.466667	32.5	1000.0	1000.000	235.4	V	164.0	5.2	21.4	53.9
4808.400000	33.5	1000.0	1000.000	103.7	V	306.0	5.8	20.4	53.9
6669.466667	35.7	1000.0	1000.000	179.6	Н	224.0	11.0	18.2	53.9
16837.766666	44.3	1000.0	1000.000	169.5	V	181.0	23.4	9.6	53.9

2.10.14 Test Results Above 1GHz Mid Channel

Peak Data

•	Data	ww											
	Frequency (MHz)	MaxPeak (dBμV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)			
	1599.933333	40.4	1000.0	1000.000	214.5	Н	-3.0	-5.6	33.5	73.9			
	1932.533333	44.4	1000.0	1000.000	186.5	V	338.0	-2.3	29.5	73.9			
	4186.233333	44.9	1000.0	1000.000	186.6	V	156.0	5.3	29.0	73.9			
	4879.966667	47.0	1000.0	1000.000	128.7	V	101.0	6.1	26.9	73.9			
	6551.766667	49.3	1000.0	1000.000	144.7	V	10.0	11.5	24.6	73.9			
	11002.033333	51.1	1000.0	1000.000	215.5	Н	58.0	15.7	22.8	73.9			
	17710.100000	57.1	1000.0	1000.000	172.6	V	174.0	23.8	16.8	73.9			

Average Data

.60 2444										
Frequency (MHz)	Average (dBμV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)	
1599.933333	27.4	1000.0	1000.000	214.5	Н	-3.0	-5.6	26.5	53.9	
1932.533333	29.5	1000.0	1000.000	186.5	V	338.0	-2.3	24.4	53.9	
4186.233333	31.3	1000.0	1000.000	186.6	V	156.0	5.3	22.6	53.9	
4879.966667	35.4	1000.0	1000.000	128.7	V	101.0	6.1	18.5	53.9	
6551.766667	36.1	1000.0	1000.000	144.7	V	10.0	11.5	17.8	53.9	
11002.033333	38.1	1000.0	1000.000	215.5	Н	58.0	15.7	15.8	53.9	
17710.100000	44.0	1000.0	1000.000	172.6	V	174.0	23.8	9.9	53.9	

2.10.15 Test Results Above 1GHz High Channel

Peak Data

•	Data	wew											
	Frequency (MHz)	MaxPeak (dBμV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)			
	1600.133333	39.8	1000.0	1000.000	236.4	Н	150.0	-5.6	34.1	73.9			
	1932.533333	44.0	1000.0	1000.000	182.6	Н	326.0	-2.3	29.9	73.9			
	3788.233333	46.4	1000.0	1000.000	215.5	Н	20.0	5.0	27.5	73.9			
	4956.100000	52.1	1000.0	1000.000	147.7	Н	10.0	6.5	21.8	73.9			
	7490.266667	45.4	1000.0	1000.000	140.7	Н	350.0	9.5	28.5	73.9			
	11009.433333	50.9	1000.0	1000.000	114.7	V	99.0	15.6	23.0	73.9			
	16725.233333	58.3	1000.0	1000.000	182.6	V	342.0	24.3	15.6	73.9			

Average Data

.80 Duta										
Frequency (MHz)	Average (dBμV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)	
1600.133333	26.7	1000.0	1000.000	236.4	Н	150.0	-5.6	27.2	53.9	
1932.533333	29.2	1000.0	1000.000	182.6	Н	326.0	-2.3	24.7	53.9	
3788.233333	32.7	1000.0	1000.000	215.5	Н	20.0	5.0	21.2	53.9	
4956.100000	46.5	1000.0	1000.000	147.7	Н	10.0	6.5	7.4	53.9	
7490.266667	32.6	1000.0	1000.000	140.7	Н	350.0	9.5	21.3	53.9	
11009.433333	38.2	1000.0	1000.000	114.7	V	99.0	15.6	15.7	53.9	
16725.233333	44.8	1000.0	1000.000	182.6	V	342.0	24.3	9.1	53.9	

2.11 RADIATED IMMEDIATE RESTRICTED BANDS

2.11.1 Specification Reference

Part 15 Subpart C §15.247(d) and RSS-Gen 8.9 / 8.10

2.11.2 Standard Applicable

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

2.11.3 Equipment Under Test and Modification State

Serial No: N/A /Test Configuration A and B

2.11.4 Date of Test/Initial of test personnel who performed the test

December 16 and 17, 2015/NS

2.11.5 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.11.6 Environmental Conditions

Test performed at TÜV SÜD America Inc. Rancho Bernardo facility

Ambient Temperature 22.2 °C Relative Humidity 22.4 % ATM Pressure 99.6 kPa

2.11.7 Additional Observations

- This is a radiated test. The spectrum was searched from 2310MHz to 2390MHz for lower immediate restricted band and 2483.5MHz to 2500MHz for the upper immediate restricted band.
- There are no emissions found that do not comply with the restricted bands defined in FCC Part 15 Subpart C, 15.205.
- Both Non-hopping and Hopping modes presented.

• Measurement was done using EMC32 automated software. Reported level is the actual level with all the correction factors factored in. Correction Factor column is for informational purposes only. See Section 2.11.8 for sample computation.

2.11.8 Sample Computation (Radiated Emission)

Measuring equipment raw measur	ement (dbμV) @ 2400 MHz		53.9
	3.4		
Correction Factor (dB)	Asset# 8628(preamplifier)	-36.5	-0.4
Reported Max Peak Final Measure		53.5	

2.11.9 Test Results

See attached plots.

2.11.10 Test Results Restricted Band 2310MHz to 2390MHz (Hopping)

Peak Data

Frequency (MHz)	MaxPeak (dBμV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBμV/m)
2325.930667	55.2	1000.0	1000.000	180.6	Н	34.0	-0.6	18.7	73.9
2342.626667	40.9	1000.0	1000.000	156.6	V	0.0	-0.7	33.0	73.9
2357.205333	41.2	1000.0	1000.000	130.7	V	271.0	-0.7	32.7	73.9
2372.256000	41.6	1000.0	1000.000	265.3	Н	281.0	-0.6	32.3	73.9
2382.381333	56.5	1000.0	1000.000	205.5	Н	112.0	-0.6	17.4	73.9
2382.477333	56.9	1000.0	1000.000	225.4	V	139.0	-0.6	17.0	73.9

Average Data

Frequency (MHz)	Average (dBμV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBμV/m)
2325.930667	28.2	1000.0	1000.000	180.6	Н	34.0	-0.6	25.7	53.9
2342.626667	28.4	1000.0	1000.000	156.6	V	0.0	-0.7	25.5	53.9
2357.205333	28.3	1000.0	1000.000	130.7	V	271.0	-0.7	25.6	53.9
2372.256000	28.5	1000.0	1000.000	265.3	Н	281.0	-0.6	25.4	53.9
2382.381333	28.7	1000.0	1000.000	205.5	Н	112.0	-0.6	25.2	53.9
2382.477333	28.7	1000.0	1000.000	225.4	V	139.0	-0.6	25.2	53.9

2.11.11 Test Results Restricted Band 2310MHz to 2390MHz (Low Channel)

Peak Data

Frequency (MHz)	MaxPeak (dBμV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBμV/m)
2321.392000	40.9	1000.0	1000.000	188.6	Н	90.0	-0.7	33.0	73.9
2324.354667	41.1	1000.0	1000.000	233.4	V	303.0	-0.7	32.8	73.9
2338.173333	41.6	1000.0	1000.000	188.6	Н	20.0	-0.7	32.3	73.9
2354.453333	41.0	1000.0	1000.000	155.7	V	311.0	-0.7	32.9	73.9
2373.861333	41.0	1000.0	1000.000	171.6	V	-3.0	-0.6	32.9	73.9
2384.621333	41.6	1000.0	1000.000	131.7	Н	339.0	-0.6	32.3	73.9

Average Data

Frequency (MHz)	Average (dBμV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBμV/m)
2321.392000	28.3	1000.0	1000.000	188.6	Н	90.0	-0.7	25.6	53.9
2324.354667	28.1	1000.0	1000.000	233.4	V	303.0	-0.7	25.8	53.9
2338.173333	28.4	1000.0	1000.000	188.6	Н	20.0	-0.7	25.5	53.9
2354.453333	28.5	1000.0	1000.000	155.7	V	311.0	-0.7	25.4	53.9
2373.861333	28.5	1000.0	1000.000	171.6	V	-3.0	-0.6	25.4	53.9
2384.621333	28.7	1000.0	1000.000	131.7	Н	339.0	-0.6	25.2	53.9

2.11.12 Test Results Restricted Band 2483.5MHz to 2500MHz (Hopping)

Peak Data

Frequency (MHz)	MaxPeak (dBμV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBμV/m)
2486.806133	50.7	1000.0	1000.000	254.3	Н	18.0	0.0	23.2	73.9
2488.787300	48.2	1000.0	1000.000	268.3	Н	19.0	0.0	25.7	73.9
2490.330900	47.2	1000.0	1000.000	300.6	Н	263.0	0.0	26.7	73.9
2493.959767	49.6	1000.0	1000.000	286.2	Н	18.0	0.0	24.3	73.9
2496.028833	51.4	1000.0	1000.000	286.2	Н	18.0	0.0	22.5	73.9
2496.397300	51.2	1000.0	1000.000	300.6	Н	54.0	0.0	22.7	73.9

Average Data

Frequency (MHz)	Average (dBμV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
2486.806133	28.8	1000.0	1000.000	254.3	Н	18.0	0.0	25.1	53.9
2488.787300	28.8	1000.0	1000.000	268.3	Н	19.0	0.0	25.1	53.9
2490.330900	28.8	1000.0	1000.000	300.6	Н	263.0	0.0	25.1	53.9
2493.959767	28.9	1000.0	1000.000	286.2	Н	18.0	0.0	25.0	53.9
2496.028833	28.9	1000.0	1000.000	286.2	Н	18.0	0.0	25.0	53.9
2496.397300	28.9	1000.0	1000.000	300.6	Н	54.0	0.0	25.0	53.9

2.11.13 Test Results Restricted Band 2483.5MHz to 2500MHz (High Channel)

Peak Data

Frequency (MHz)	MaxPeak (dBμV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBμV/m)
2483.500000	43.6	1000.0	1000.000	300.6	Н	13.0	-0.1	30.3	73.9
2486.513433	43.4	1000.0	1000.000	132.7	Н	57.0	0.0	30.5	73.9
2489.552933	42.3	1000.0	1000.000	182.6	V	66.0	0.0	31.6	73.9
2493.432333	41.8	1000.0	1000.000	117.7	Н	232.0	0.0	32.1	73.9
2497.496900	41.9	1000.0	1000.000	256.3	V	87.0	0.0	32.0	73.9
2498.288567	42.1	1000.0	1000.000	235.4	Н	138.0	0.0	31.8	73.9

Average Data

Frequency (MHz)	Average (dBμV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
2483.500000	30.7	1000.0	1000.000	300.6	Н	13.0	-0.1	23.2	53.9
2486.513433	30.7	1000.0	1000.000	132.7	Н	57.0	0.0	23.2	53.9
2489.552933	29.0	1000.0	1000.000	182.6	V	66.0	0.0	24.9	53.9
2493.432333	29.0	1000.0	1000.000	117.7	Н	232.0	0.0	24.9	53.9
2497.496900	28.9	1000.0	1000.000	256.3	V	87.0	0.0	25.0	53.9
2498.288567	28.9	1000.0	1000.000	235.4	Н	138.0	0.0	25.0	53.9

FCC ID 2AGOZHM-A IC: 20849-HMA Report No. SD72112194-1215A

SECTION 3

TEST EQUIPMENT USED

3.1 **TEST EQUIPMENT USED**

List of absolute measuring and other principal items of test equipment.

ID Number (SDGE/SDRB)	Test Equipment	Туре	Serial Number	Manufacturer	Cal Date	Cal Due Date
Antenna Conduc	ted Port Setup					
7604	P-Series Power Meter	N1912A	SG45100273	Agilent	05/27/15	05/27/16
7605	50MHz-18GHz Wideband Power Sensor	N1921A	MY51100054	Agilent	04/10/15	04/10/16
7611	Signal/Spectrum Analyzer	FSW26	102017	Rhode & Schwarz	03/25/15	03/25/16
1003	Signal Generator	SMR-40	1104.0002.40	Rhode & Schwarz	04/29/15	04/29/16
8825	20dB Attenuator	46-20-34	BK5773	Weinschel Corp.	Verified by 100	3 and 7611
Radiated Test Se	tup					
1002	Bilog Antenna	3142C	00058717	ETS-Lindgren	01/30/14	01/30/16
1040	EMI Test Receiver	ESIB40	100292	Rhode & Schwarz	09/29/15	09/29/16
1016	Pre-amplifier	PAM-0202	187	PAM	12/16/15	12/16/16
1051	Double-ridged waveguide horn antenna	3115	9408-4329	EMCO	02/28/14	02/28/16
1049	EMI Test Receiver	ESU	100133	Rhode & Schwarz	03/11/15	03/11/16
8628	Pre-amplifier	QU 01182835-JO	8986002	QuinStar Technologies Inc.	03/20/15	03/20/16
1150	Horn antenna	3160-09	012054-004	ETS	07/16/15	07/16/17
1151	Pre-amplifier	TS-PR26	100026	Rhode & Schwarz	05/08/15	05/08/16
1153	High-frequency cable	SucoFlex 100 SX	N/A	Suhner	04/03/15	04/03/16
8543	High-frequency cable	Micropore 19057793	N/A	United Microwave Products	Verified by 100	3 and 7611
6815	2.4GHz Band Notch Filter	BRM50702	008	Micro-Tronics	Verified by 100	3 and 7611
Conducted Emiss	sions					
1024	EMI Test Receiver	ESCS 30	847793/001	Rhode & Schwarz	04/10/15	04/10/16
7567	LISN	FCC-LISN-50-25-2-10	120304	Fischer Custom Comm.	07/14/15	07/14/16
8822	20dB Attenuator	34-20-34	N/A	MCE / Weinschel	02/20/15	02/20/16
8824	20dB Attenuator	34-20-34	N/A	MCE / Weinschel	02/20/15	02/20/16
Miscellaneous						
6792	Multimeter	3478A	2911A70964	Hewlett Packard	08/14/15	08/14/16
11312	Mini Environmental Quality Meter	850027	CF099-56010- 340	Sper Scientific	04/09/15	04/09/16
	Test Software	EMC32	V8.53	Rhode & Schwarz	N/A	<u> </u>

3.2 **MEASUREMENT UNCERTAINTY**

For a 95% confidence level, the measurement uncertainties for defined systems are:

3.2.1 Radiated Emission Measurements (Below 1GHz)

	Contribution	Probability Distribution Type	Probability Distribution x _i	Standard Uncertainty u(x _i)	[u(x _i)]²
1	Receiver/Spectrum Analyzer	Rectangular	0.45	0.26	0.07
2	Cables	Rectangular	0.50	0.29	0.08
3	Preamp	Rectangular	0.50	0.29	0.08
4	Antenna	Rectangular	0.75	0.43	0.19
5	Site	Rectangular	3.89	2.25	5.04
6	EUT Setup	Rectangular	1.00	0.58	0.33
			Combined	d Uncertainty (u _c):	2.41
			Co	verage Factor (k):	2
			Expar	nded Uncertainty:	4.82

3.2.2 Radiated Emission Measurements (Above 1GHz)

	Contribution	Probability Distribution Type	Probability Distribution x _i	Standard Uncertainty u(x _i)	[u(x _i)]²
1	Receiver/Spectrum Analyzer	Rectangular	0.57	0.33	0.11
2	Cables	Rectangular	0.70	0.40	0.16
3	Preamp	Rectangular	0.50	0.29	0.08
4	Antenna	Rectangular	0.37	0.21	0.05
5	Site	Rectangular	3.89	2.25	5.04
6	EUT Setup	Rectangular	1.00	0.58	0.33
			Combined	l Uncertainty (uc):	2.40
			Co	verage Factor (k):	2
			Expar	nded Uncertainty:	4.81

3.2.3 Conducted Antenna Port Measurement

	Contribution	Probability Distribution Type	Probability Distribution x _i	Standard Uncertainty u(x _i)	[u(x _i)]²
1	Receiver/Spectrum Analyzer	Rectangular	0.57	0.33	0.11
2	Cables	Rectangular	0.50	0.29	0.08
3	EUT Setup	Rectangular	1.00	0.58	0.33
			Combined	d Uncertainty (u _c):	0.72
			Co	verage Factor (k):	2
			Expar	nded Uncertainty:	1.45

3.2.1 AC Conducted Measurements

	Contribution	Probability Distribution Type	Probability Distribution X _i	Standard Uncertainty u(x _i)	[u(x _i)]²
1	Receiver/Spectrum Analyzer	Rectangular	0.36	0.21	0.04
2	Cables	Rectangular	0.50	0.29	0.08
3	LISN	Rectangular	0.66	0.38	0.15
4	Attenuator	Rectangular	0.30	0.17	0.03
5	EUT Setup	Rectangular	1.00	0.58	0.33
			Combined Uncertainty (uc):		0.80
			Coverage Factor (k):		2
			Expanded Uncertainty:		1.59

FCC ID 2AGOZHM-A IC: 20849-HMA Report No. SD72112194-1215A

SECTION 4

DIAGRAM OF TEST SETUP

4.1 **TEST SETUP DIAGRAM**

Radiated Emission Test Setup (Below 1GHz)

Radiated Emission Test Setup (Above 1GHz)

Conducted Emission Test Setup

FCC ID 2AGOZHM-A IC: 20849-HMA Report No. SD72112194-1215A

SECTION 5

ACCREDITATION, DISCLAIMERS AND COPYRIGHT

5.1 ACCREDITATION, DISCLAIMERS AND COPYRIGHT

TÜV SÜD America Inc.'s reports apply only to the specific sample tested under stated test conditions. It is the manufacturer's responsibility to assure the continued compliance of production units of this model. TÜV SÜD America, Inc. shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD America, Inc.'s issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and TÜV SÜD America, Inc., extracts from the test report shall not be reproduced, except in full without TÜV SÜD America, Inc.'s written approval.

This report must not be used to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the federal government.

TÜV SÜD America, Inc. and its professional staff hold government and professional organization certifications for AAMI, ACIL, AEA, ANSI, IEEE, A2LA, NIST and VCCI.

