Synthetic Control Method

Professor Song YaoOlin Business School

Customer Analytics

Q1: The Difference of Churn Rates btw Users of New Phones and Refurbished Phones

```
Biased_Estimate = df.query("newphone==1")["churn"].mean() - \
    df.query("newphone==0")["churn"].mean()
print("Biased Estimate is", Biased_Estimate)
```

Biased Estimate is -0.02514906044317809

Q2: OLS benchmark

		coef	std err	t	P> t	[0.025	0.975]
Intercept		0.0418	0.003	12.459	0.000	0.035	0.048
newphone		-0.0251	0.004	-6.386	0.000	-0.033	-0.017
		coef	std err	t	P> t	[0.025	0.975]
Intercept		0.0660	0.009	7 . 652	0.000	0.049	0.083
newphone		-0.0202	0.004	-4.754	0.000	-0.028	-0.012
revenue		-0.0002	8.47e-05	-2.910	0.004	-0.000	-8.05e-05
mou	-4	.041e-06	5.63e-06	-0.718	0.473	-1.51e-05	7e-06
overage		0.0001	3.11e-05	3.234	0.001	3.96e-05	0.000
roam		0.0003	0.000	1.986	0.047	3.68e-06	0.001
threeway		0.0009	0.002	0.510	0.610	-0.003	0.004
months	7	.312e-05	0.000	0.347	0.729	-0.000	0.000
uniqsubs		0.0018	0.002	0.875	0.381	-0.002	0.006
phones		-0.0031	0.002	-1.978	0.048	-0.006	-2.71e-05
retcalls		0.0182	0.008	2.277	0.023	0.003	0.034
dropvce		0.0001	0.000	0.462	0.644	-0.000	0.001
webcap		-0.0123	0.006	-1.993	0.046	-0.024	-0.000
children		0.0048	0.004	1.150	0.250	-0.003	0.013
mcycle		0.0014	0.016	0.085	0.932	-0.030	0.033
occcler		0.0196	0.013	1.533	0.125	-0.005	0.045
referred		-0.0166	0.004	-4.373	0.000	-0.024	-0.009
							

3

Q3: Balance Check of Features

	Variable	Treated Mean	Control Mean	Standardized Diff	p-value
0	revenue	58.452	59.545	-0.024	0.363
1	mou	527.634	519.018	0.017	0.511
2	overage	37.406	45.833	-0.083	0.002
3	roam	1.217	1.260	-0.003	0.899
4	threeway	0.305	0.241	0.068	0.003
5	months	18.222	18.602	-0.041	0.102
6	uniqsubs	1.497	1.600	-0.117	0.000
7	phones	1.717	2.361	-0.488	0.000
8	retcalls	0.023	0.093	-0.270	0.000
9	dropvce	5.901	6.556	-0.069	0.009
10	webcap	0.920	0.841	0.246	0.000
11	children	0.238	0.248	-0.023	0.384
12	mcycle	0.015	0.005	0.100	0.000
13	occcler	0.018	0.024	-0.044	0.100
14	referred	0.422	0.198	0.501	0.000

What can we conclude?

Q4: KNN

```
from causalinference import CausalModel

CM_matching = CausalModel(
    Y=df["churn"].values,
    D=df["newphone"].values,
    X=df[user_covariates].values,
)

CM_matching.est_via_matching(matches=5, bias_adj=True)

print(CM_matching.estimates)
```

Treatment Effect Estimates: Matching

	Est.	S.e.	Z	P> z	[95% Coi	nf. int.]
ATE	-0.029	0.007	-4.089	0.000	-0.043	-0.015
ATC ATT	-0.023 -0.031	0.006 0.008	-3.812 -3.704	0.000 0.000	-0.035 -0.048	-0.011 -0.015

The bonus question (Q8): Which effect shall we focus on?

5

Q5: PSM

```
### Propensity Score Matching
# Calculate ATE using propensity score matching
cm = CausalModel(
    Y=df["churn"].values,
    D=df["newphone"].values,
    X=df["propensity_score"].values
)
cm.est_via_matching(matches=5, bias_adj=True)
print(cm.estimates)
```

Treatment Effect Estimates: Matching

	Est.	S.e.	Z	P> z	[95% Co	nf. int.]
 ATE	-0 . 032	0.007	-4.276	0.000	-0.046	-0.017
ATC	-0.016	0.006	-2.714	0.007	-0.028	-0.005
ATT	-0.038	0.009	-4.224	0.000	-0.055	-0.020

Q6: SMD


```
# Calculate standardized difference in propensity score means
treated_ps_mean = df[df['newphone']==1]['propensity_score'].mean()
control_ps_mean = df[df['newphone']==0]['propensity_score'].wean()
treated_ps_var = df[df['newphone']==1]['propensity_score'].var()
control_ps_var = df[df['newphone']==0]['propensity_score'].var()

std_diff = (treated_ps_mean - control_ps_mean) / np.sqrt((treated_ps_var + control_ps_var)/2)
print(f"\nStandardized difference in propensity score means: {std_diff:.3f}")
```

Standardized difference in propensity score means: 0.900

7

Q7: IPW

ATE using IPW:

Treatment Effect Estimates: Weighting

	Est.	S.e.	z	P> z	[95% Conf.	int.]
 ATE	-0.023	0.012	-1 . 974	0.048	-0.047	-0.000

ATT: -0.0250 ATC: -0.0161

The bonus question (Q8): Which effect shall we focus on?