Computational Physics Project 3 part 3g

Marc Kidwell Pestana¹
¹Computation Physics Geniuses

Project 3g): The perihelion precession of Mercury. Can the observed perihelion precession of Mercury be explained by the general theory of relativity?

BACKGROUND AND THEORETICAL MODELS

An important test of the general theory of relativity was to compare its prediction for the perihelion precession of Mercury to the observed value. The observed value of the perihelion precession, when all classical effects (such as the perturbation of the orbit due to gravitational attraction from the other planets) are subtracted, is 43'' (43 arc seconds) per century.

Closed elliptical orbits are a special feature of the Newtonian $1/r^2$ force. In general, any correction to the pure $1/r^2$ behaviour will lead to an orbit which is not closed, i.e. after one complete orbit around the Sun, the planet will not be at exactly the same position as it started. If the correction is small, then each orbit around the Sun will be almost the same as the classical ellipse, and the orbit can be thought of as an ellipse whose orientation in space slowly rotates. In other words, the perihelion of the ellipse slowly precesses around the Sun.

You will now study the orbit of Mercury around the Sun, adding a general relativistic correction to the Newtonian gravitational force, so that the force becomes

$$F_G = \frac{GM_{\rm Sun}M_{\rm Mercury}}{r^2} \left[1 + \frac{3l^2}{r^2c^2} \right]$$

where M_{Mercury} is the mass of Mercury, r is the distance between Mercury and the Sun, $l = |\vec{r} \times \vec{v}|$ is the magnitude of Mercury's orbital angular momentum per unit mass, and c is the speed of light in vacuum.

METHODS AND ALGORITHMS

Run a simulation over one century of Mercury's orbit around the Sun with no other planets present, starting with Mercury at perihelion on the x axis. Check then the value of the perihelion angle $\theta_{\rm p}$, using

$$\tan \theta_{\rm p} = \frac{y_{\rm p}}{x_{\rm p}}$$

where $x_{\rm p}$ ($y_{\rm p}$) is the x (y) position of Mercury at perihelion, i.e. at the point where Mercury is at its closest to the Sun. You may use that the speed of Mercury at perihelion is 12.44 AU/yr, and that the distance to the Sun at perihelion is 0.3075 AU. You need to make sure that the time resolution used in your simulation is sufficient, for example by checking that the perihelion precession you get with a pure Newtonian force is at least a few orders of magnitude smaller than the observed perihelion precession of Mercury.

RESULTS

Blah blah blah blah blah

CONCLUSIONS AND DISCUSSION

Blah blah blah blah blah

[1] M. Taut, Phys. Rev. A 48, 3561 (1993)