总结

黄飞虎 2021.2.3

学习情况

看了李宏毅的视频,完成了实验八和实验九

cn vocab size: 3805

en vocab size: 3922

training dataset size: 18000

validation dataset size: 500

testing dataset size: 2636

```
train [4800] loss: 3.111, Perplexity: 22.442
val [4800] loss: 3.518, Perplexity: 33.722, bleu score: 0.419
train [5100] loss: 2.813, Perplexity: 16.667
val [5100] loss: 3.498, Perplexity: 33.055, bleu score: 0.428
train [5400] loss: 2.956, Perplexity: 19.221
val [5400] loss: 3.479, Perplexity: 32.422, bleu score: 0.428
train [5700] loss: 2.791, Perplexity: 16.301
val [5700] loss: 3.488, Perplexity: 32.708, bleu score: 0.438
train [6000] loss: 2.842, Perplexity: 17.156
val [6000] loss: 3.483, Perplexity: 32.557, bleu score: 0.437
```

test loss: 3.594911128966553, bleu_score: 0.41896599218356556

```
test_output.txt - 记事本
                                                                                                                                              П
                                                                                                                                                     \times
文件(F) 编辑(E) 格式(O) 查看(V) 帮助(H)
(['<BOS>', 'do', "n't", 'underestimate', 'my', 'power', '.'], ['不要', '低估', '我', '的', '力量', '。'], ['不要', '<UNK>', '我', '的', '力量', '。'])
(['<BOS>', 'could', 'you', 'please', 'talk', 'a', 'bit', 'louder', '?', 'i', 'ca', "n't", 'hear', 'very', 'well', '.'], ['你', '可以', '說', '钱', '<UNK>', '好', '嗎', '
嗎'], ['你', '能', '大聲', '點', '講', '嗎', '? ', '我', '聽', '不', '<UNK>', '。'])
(['<BOS>', 'now', 'is', 'the', 'time', 'to', 'act', '.'], ['現在', '就要', '的', '。'], ['現在', '是', '行動', '的', '時候', '了', '。'])
|(['<BOS>', 'i', 'was', 'just', 'talking', 'about', 'tom', '.'], ['我', '只是', '湯姆', '湯姆', '。'], ['我', '僅僅', '是', '在', '和', 'Tom', '交談', '。'])
([i'<BOS>', 'you', 'have', "n't", 'changed', 'at', 'all', '.'], ['你', '沒', '有', '<UNK>', '。'], ['你', '真的', '一點', '<UNK>', '。'])
|(['<BOS>', 'this', 'is', 'a', 'beautiful', 'flower', '.'], ['這是', '是', '<UNK>', '的', '的', '。'], ['這是', '一朵', '美麗', '的', '花', '。'])
(['<BOS>', 'how', 'much', 'do', 'you', 'want', 'in', 'terms', 'of', 'salary', '?'], ['你', '有', '多少', '<UNK>', '多少', '大', '? '], ['您', '想要', '多少', '工
資', '? '])
(['<BOS>', 'she', "'s", 'got', 'a', 'good', 'eye', 'for', 'paintings', '.'], ['她', '是', '個', '好', '的', '廚師', '。'], ['她', '對', '<UNK>', '有', '很', '好', '的',
'<UNK>', '。'])
([i'<BOS>', 'everyone', 'comes', 'to', 'tom', 'for', 'advice', '.'], ['所有人', '人', '都', '同意', '湯姆', '。'], ['每個', '人', '都', '請', '<UNK>', '。'])
(['<BOS>', 'one', 'of', 'the', 'girls', 'was', 'left', 'behind', '.'], ['所有', '們', '被', '<UNK>', '。'], ['這些', '女孩', '<UNK>', '其中', '一個', '被', '留下',
'來', '了', '。'])
(['<BOS>', 'i', 'got', 'it', 'free', '.'], ['我', '沒關', '它', '了', '。'], ['我', '是', '免費', '得到', '的', '。'])
|(['<BOS>', 'i', 'do', "n't", 'believe', 'the', 'child', 'came', 'to', 'tokyo', 'alone', '.'], ['我', '不', '記得', '<UNK>', '<UNK>', '。'], ['我', '不', '相信', '
孩子', '能', '獨自', '到', '東京', '。'])
(['<BOS>', 'there', 'is', "n't", 'anyone', 'in', 'the', 'room', '.'], ['房間裡', '房間裡', '房間', '。'], ['房間裡', '沒有', '任何人', '。'])
(['<BOS>', 'i', 'will', 'have', 'finished', 'reading', 'this', 'novel', 'by', 'the', 'time', 'you', 'come', 'tomorrow', '.'], ['我', '明早', '在', '這裡',
'<UNK>', '<UNK>', 'ĥ; 'ゐ', '你', '。'], ['你', '明天', '來', '的', '時候', ', ', '我', '就', '看', '完', '這本', '小說', '了', '。'])
(['<BOS>', 'i', 'like', 'may', 'the', 'best', 'of', 'all', 'the', 'months', '.'], ['我', '想要', '<UNK>', '最', '最', '最', '最', '的', '。', '。'], ['所有', '月份', '中', '我',
'最', '喜歡', '五月', '。'])
                                                                                            第1行,第1列
                                                                                                                100% Windows (CRLF) UTF-8
```

```
checkpoint_10.pth
checkpoint_20.pth
checkpoint_30.pth
checkpoint_40.pth
checkpoint_50.pth
checkpoint_60.pth
checkpoint_70.pth
checkpoint_80.pth
checkpoint_90.pth
checkpoint_100.pth
checkpoint_100.pth
checkpoint_100.pth
```

```
epoch [89/100], loss:6.56356
epoch [90/100], loss:6.53214
epoch [91/100], loss:6.51322
epoch [92/100], loss:6.48728
epoch [93/100], loss:6.46248
epoch [94/100], loss:6.43906
epoch [95/100], loss:6.39340
epoch [96/100], loss:6.39340
epoch [97/100], loss:6.35316
epoch [98/100], loss:6.35316
epoch [99/100], loss:6.32759
epoch [100/100], loss:6.30697
Latents Shape: (8500, 4096)
```

论文情况

任务型对话系统平台的设计与实现

本文的工作

一个任务型对话系统通常主要包含两个模块:一是命令解析模块,二是对话管理模块。

首先本课题从任务型对话系统纵向的维度出发,重点考察命令解析模块的算法准确性,考察了采用基于语义槽填充的命令解析方法。

另外从任务型对话系统横向扩展性的维度出发,考察了任务型对话系统中, 命令解析模块和对话管理模块实现的通用流程。随后本文设计并实现了一个 任务型对话系统服务平台,用于提供开发者创建自己的基于自然语言交互的 任务型对话系统。

任务型对话系统的框架

表 1-1 任务型对话系统的模块划分

模块名称	子模块名称	含义
	意图识别	识别用户输入的自然语言
	忌图以加	语句的意图
命令解析		识别用户输入的自然语言
	语义槽填充	语句中与意图相关的语义
		槽信息
	-	在一个意图之内的对话轮
	意图内的对话控制	次,控制机器人与用户的
对话控制		自然语言交互。
刈坑左刺		在不同意图之间,控制机
	意图间的对话控制	器人与用户的自然语言交
		互

图 1-2 命令解析模块

图 1-3 命令解析和对话管理模块

图 1-4 本文研究的两个维度

表 2-1 意图定义 领域 意图 查机票 查火车 订机票 出行 订火车 查公交 查地铁 叫车 饮食 查饭店 住宿 查酒店 查歌曲 娱乐 查小说 查电影

从任务型对话系统纵向维度进行考虑,研究重点放在 命令解析的算法 准确性。重点考察了命令解析任务中 一个关键的任务——语义槽填充。

命令解析任务的传统工作流程是: 首先识别出用户输入的语句所属的领域; 接着系统根据识别得到的领域, 进一步识别出该输入所属的意图; 最后, 系统 根据识别得到的领域或者意图, 识别出输入语句的语义表示。其中, 基于语义 槽填充 (slot filling) 的方法是命令解析的重要方法之一。

表 2-2 查机票意图的语义槽定义

语义槽类型	说明
from_date	出发日期
to_date	到达日期
from_city	出发城市
to_city	到达城市
airline	航空公司

表 2-3 语义槽填充结果

语义槽类型	出发日期	出发城市	到达城市	航空公司
语义槽值	明天	北京	上海	南方航空

在命令解析模块中,其中关键的任务是指令的语义槽识别。我们可以将语义槽识别的任务视为序列标注任务。

目前在序列标注方面提出的方法主要分为三个类别:1)基于规则的方法;2)基于传统机器学习的方法;3)基于深度学习的方法。

本文使用的基线模型为条件随机场模型(CRF),特征模板如右图所示。

表 2-5 本文使用的 CRF 特征模板

特征模版	特征模版类型	特征模版说明			
1={c-2}	Unigram	当前词之前两个的词			
$2 = \{c-1\}$	Unigram	Unigram 当前词之前的词			
$3 = \{c-0\}$	Unigram 当前词				
$4=\{c+1\}$	Unigram	Unigram 当前词之后的词			
$5 = \{c+2\}$	Unigram	当前词之后两个的词			
$6=\{c-2\}-\{c-1\}$	Bigram	当前词前两个词的组合			
$7=\{c-1\}-\{c-0\}$	Bigram	当前词前一个词和当前词的组合			
$8=\{c-0\}-\{c+1\}$	Bigram	当前词和当前词之后的词的组合			
$9=\{c+1\}-\{c+2\}$	Bigram	当前词之后两个词的组合			
$10 = \{p-2\}$	Unigram	当前词之前两个的词的词性			
$11 = \{p-1\}$	Unigram	当前词之前的词的词性			
$12 = \{p-0\}$	Unigram	当前词的词性			
$13 = \{p+1\}$	Unigram	当前词之后的词的词性			
$14 = \{p+2\}$	Unigram	当前词之后两个的词的词性			
$15 = \{p-2\} - \{p-1\}$	Bigram	当前词之前两个词的词性组合			
$16 = \{p-1\} - \{p-0\}$	Bigram	当前词之前的词和当前词的词性组合			
$17 = \{p-0\} - \{p+1\}$	Bigram	当前词和当前词之后的词的词性组合			
$18 = \{p+1\} - \{p+2\}$	Bigram	当前词之后两个词的词性组合			

实验模型

1.循环神经网络

2.双向长短期记忆神经网络

3.加入条件随机场层的双向长短期记忆神经网络

实验

数据集:本文使用ATIS (Airline Travel Information System)数据集作为实验的数据集。

标注方法: 使用经典的 IOB(in/out/begin)标记法, 例如对于句子"查一下明天从北京到上海 的机票", 将原句子分词后, 标注为:

表 2-6 IOB 标注方法

分词结果	查	明天	从	北京	到	上海	的	机票
标签	O	B-from_date	O	B-from_city	O	B-to_city	O	O

实验结果

评价指标:本实验采用准确率(Precision, P)、召回率(Recall, R)以及 F1 值对模型 的性能进行评价。

P = 正确识别的语义槽个数 语义槽总数

R = 正确识别的语义槽个数识别出的语义槽总数

$$F = \frac{2 \times P \times R}{(P+R)}$$

	开发集 F1	测试集 F1
CRF	94.45	90.93
RNN	97.67	94.47
Bi-LSTM	97.99	94.87
Bi-LSTM-CRF	98.35	95.22

任务型对话系统平台的设计

案例展示

= :	4-2	≟ ∓f.	立は	i 📥	V	- 1.	ılı
スマ	4-2	冶	又 作	环	X	万下19	4

意图名称	语义槽参数				
息图石柳	语义槽名称	实体类型	是否必须	描述	
	from_city	geoloc	√	出发地	
查询机票	to_city	geoloc	√	到达地	
	from_date	date	√	出发时间	
	from_city	geoloc	√	出发地	
查询火车票	to_city	geoloc	√	到达地	
旦两八十示	from_date	date	✓	出发时间	
	railway_type	railway_type	×	车型	

图 4-11 创建出行对话系统

图 4-12 添加用户自定义实体

103.29.71.168

0 0 +

图 4-13 火车票意图的语义槽定义

图 4-14 为火车票意图添加并标注语料

图 4-15 训练任务列表

表 4-3 调用结果示例

	文本
输入	查一下明天去北京的高铁
输出	从哪出发?
输入	后天从哈尔滨出发
输出	下面是[2017-06-21]从[哈尔滨]去[北京]的[高铁]

图 4-16 查询火车票测试示例

Thank you