簡諧運動 結報

一、 測量彈簧質量

彈簧	m1(細1)	m2(中1)	m3(粗1)
質量(kg)	0.01116	0.01359	0.01162
彈簧	m4(細2)	m5(中2)	m6(粗3)
質量(kg)	0.01118	0.01371	0.01151

二、 測量靜態彈性係數

m1	伸長量(m)	懸掛物質量(kg)	原長(m)	總長(m)
第一次	0.004	0.03003	0.100	0.104
第二次	0.021	0.05011	0.100	0.121
第三次	0.042	0.07019	0.100	0.142
第四次	0.061	0.09027	0.100	0.161
第五次	0.082	0.11035	0.100	0.182

m2	伸長量(m)	懸掛物質量(kg)	原長(m)	總長(m)
第一次	0.006	0. 03003	0.103	0.109
第二次	0.039	0.05011	0.103	0.142
第三次	0.076	0.07019	0.103	0.179
第四次	0.113	0.09027	0.103	0. 216
第五次	0.152	0.11035	0.103	0. 255

m3	伸長量(m)	懸掛物質量(kg)	原長(m)	總長(m)
第一次	0.055	0.00995	0.085	0.140
第二次	0.135	0.01999	0.085	0.220
第三次	0. 220	0. 03003	0.085	0.305
第四次	0.307	0.04007	0.085	0.392
第五次	0.390	0.05011	0.085	0.475

m4	伸長量(m)	懸掛物質量(kg)	原長(m)	總長(m)
第一次	0.005	0.03003	0.100	0.105
第二次	0.022	0.05011	0.100	0.122
第三次	0.044	0.07019	0.100	0.144
第四次	0.063	0.09027	0.100	0.163
第五次	0.084	0.11035	0.100	0.184

m5	伸長量(m)	懸掛物質量(kg)	原長(m)	總長(m)
第一次	0.019	0.03003	0.100	0.119
第二次	0.056	0.05011	0.100	0.156
第三次	0.091	0.07019	0.100	0.191
第四次	0.130	0.09027	0.100	0.230
第五次	0.166	0.11035	0.100	0. 266

m6	伸長量(m)	懸掛物質量(kg)	原長(m)	總長(m)
第一次	0.081	0.00995	0.078	0.159
第二次	0.112	0.01999	0.078	0.190
第三次	0.193	0.03003	0.078	0.271
第四次	0. 281	0.04007	0.078	0.359
第五次	0.362	0.05011	0.078	0.440

根據公式:F = kx, $k = \frac{F}{x}$,將上面數據做出F - x圖後做一次擬合並乘以g = 9.8

求得靜態彈性係數 k_s :

彈簧	m1	m2	m3	m4	m5	m6
擬合直線斜率	1.0233	0.5482	0.1192	1.0077	0.5455	0.1344
$k_s(N/m)$	10.02834	5. 37236	1.16816	9.87546	5. 34590	1. 31712

三、 測量動態彈性係數

彈簧	m1	m2	m3
彈簧質量(kg)	0.01116	0.01359	0.01162
懸掛物質量(kg)	0.11035	0.07019	0.03003
週期 T(s)	0.692	0.730	1.080

根據公式:
$$k_D = \frac{4\pi^2 \left(m + \frac{1}{3}m_s\right)}{T^2}$$
 可以求得:

彈簧	m1	m2	m3
$k_D(N/m)$	9. 404138	5. 535424	1.147505
$k_s(N/m)$	10.02834	5. 37236	1.16816
誤差	6. 2%	3.0%	1.8%

四、 觀察質量與週期的關係

滑車	第一組	第二組	第三組	第四組	第五組
滑車總質量(kg)	0. 3892	0.40928	0. 42936	0.44944	0.46952
T(s)	0.904	0. 927	0. 954	0. 975	1.007
Log m	-0.40983	-0. 38798	-0.36718	-0.34733	-0.32835
Log T	-0.04383	-0.03292	-0.02045	-0.01100	0.003029

五、 觀察彈性係數與周期的關係

彈簧	m1+m2	m2+m4	m1+m5	m3+m5	m2+m6
週期 T(s)	1.024	1.033	1.039	1.500	1.510
總質量 m(kg)	0.41395	0.41397	0.41407	0.41453	0.41430

根據公式 $k = \frac{4\pi^2 m}{T^2}$ 可以求得:

彈簧	m1+m2	m2+m4	m1+m5	m3+m5	m2+m6
k 理論值(N/m)	15. 40070	15. 24782	15. 37424	6.66302	6. 68948
k實驗值(N/m)	15. 58503	15. 31539	15. 14267	7. 273328	7. 173329
誤差	1.2%	0.4%	1.5%	9.1%	7. 2%

誤差分析:短的彈簧因彈性係數過小,導致實驗常常測不到 10 個週期滑車就停下來了,因此導致最後兩組實驗值的誤差較大。

六、 驗證週期與振幅不互相影響

	第一組	第二組	第三組
振幅 A(m)	0.1	0.12	0.14
週期 T(s)	1. 223	1. 224	1. 221

由以上實驗數據可得知,無論振幅變化為何,週期都不受其影響。

七、 驗證能量守恆

彈簧	m2+m5
振幅 A(m)	0.15
週期 T(s)	1. 228
總質量 m(kg)	0.4165
彈性係數 k(N/m)	10.71826

根據公式E = K + U, $U = \frac{1}{2}kx^2$, $K = \frac{1}{2}mv^2$, $v = \frac{2\pi A}{T}$ 可得:

E實驗值(Nm)	0.122668	
E理論值(Nm)	0.12058	
誤差	1.7%	

誤差分析:由於滑車與軌道接觸面並非完全沒有摩擦力,滑車在做簡諧運動時,A與T都會逐漸變小,因此造成誤差。

八、 用 Arduino 繪製阻尼滑車簡諧運動 x-t 圖

阻尼滑車在做簡諧運動時,磁鐵會給予一個與速度方向相反的力,導致振幅與週期 逐漸減小,如同上圖所呈現的結果一樣。

九、 問題討論

- 在何種情況下,彈簧不遵守虎克定律?
 當形變量超過彈簧的彈性限度時,彈簧便不再遵守虎克定律。
- 為何實驗設置中,滑車上要兩邊裝彈簧而不能只用一條?
 因為使用兩條彈簧的彈性係數會疊加,較不容易造成彈簧形變量超出彈性限度。
- 如果彈簧的質量m_s不能忽略,而且振盪時彈簧的伸長是均勻的, 試證週期應為

$$T=2\pi\sqrt{\frac{m+\frac{1}{3}m_S}{k}}$$

動能守恆: $E = \frac{1}{2}kx^2 + \frac{1}{2}mv^2 + \int \frac{1}{2}\rho dx (\alpha v)^2$, $\alpha = \frac{x}{X}$, $\rho = \frac{m}{X}$,

$$E = \frac{1}{2}kx^2 + \frac{1}{2}\left(M + \frac{m}{3}\right)v^2$$
, $T = 2\pi\sqrt{\frac{m + \frac{1}{3}m_s}{k}}$

- 4. 做簡諧運動的滑車終將停止,找出至少兩個可能使滑車停止運動的原因。
 - (1) 軌道與滑車有摩擦力,在簡諧運動時會逐漸消耗動能,使滑車停止運動。
 - (2) 彈簧並非理想彈簧,在簡諧運動的過程中,會有部分能量以熱能的形式散出
- 空氣軌不水平對本實驗會有何影響?
 不會對週期產生影響,但會影響到平衡點的位置與能量守恆的證明。
- 6. 任何實驗皆有誤差,誤差來源除了由實驗者的操作所致以外,每一儀器都有它的測量限度,即它的解析度(resolution)。做完幾個空氣軌實驗後,你是否已了解實驗系統的性能和它的解析度?試估計由測量儀器的解析度所造成的百分誤差, 並和數據之誤差做比較。

在計算數據的過程中,我們將摩擦力假設為 0,然而在實驗裡,摩擦力是一個不可忽略的存在,因此如果我們沒有對摩擦力加以修正的話,實驗誤差會變大。不過相比之下,用肉眼測量簡諧運動的週期誤差應該是遠大於摩擦力所造成的誤差,因此我認為此性統誤差對於實驗的影響性應該不大。

十、 心得

高中時接觸到的簡諧運動都僅限於公式上的使用與計算,當時因為不會微分,還要辛苦的將公式背起來,透過這次的實驗,我更能想像出簡諧運動公式所代表的東西,不再跟以前一樣只是個冷冰冰的數字。