Formale Grundlagen der Informatik I 2. Übungsblatt

Fachbereich Mathematik
Prof. Dr. Ulrich Kohlenbach

SoSe 2014 30. April 2014

Davorin Lešnik, Daniel Günzel, Daniel Körnlein

Gruppenübung

Aufgabe G4 (Induktionsbeweise)

- (a) Sei Σ ein endliches Alphabet. Zeige $|\Sigma^n| = |\Sigma|^n$ für alle $n \in \mathbb{N}$. (Σ^n ist die Menge der Wörter der Länge n über dem Alphabet Σ).
- (b) Zeige $|\mathcal{P}(M)| = 2^{|M|}$ für alle endlichen Mengen M.
- (c) Bestimme eine Formel für $|\Sigma^{\leq n}|$ und beweise ihre Richtigkeit für alle $n \in \mathbb{N}$. Dabei ist

$$\Sigma^{\leq n} := \bigcup_{0 \leq i \leq n} \Sigma^i$$

die Menge der Σ -Wörter mit einer Länge $\leq n$.

Lösung:

- (a) Induktions an fang: $|\Sigma^0| = |\{\varepsilon\}| = 1 = |\Sigma|^0$
 - Induktionsschritt: Da man alle Wörter in Σ^{n+1} durch Anfügen eines Buchstaben an ein Wort in Σ^n erhält, gilt $|\Sigma^{n+1}| = |\Sigma^n| \cdot |\Sigma|$. Mit der I.A. folgt $|\Sigma^n| \cdot |\Sigma| = |\Sigma|^n \cdot |\Sigma| = |\Sigma|^{n+1}$.
- (b) Induktion über die Mächtigkeit von *M*:
 - Induktions an fang: $|\mathcal{P}(\emptyset)| = |\{\emptyset\}| = 1 = 2^0 = 2^{|\emptyset|}$
 - Induktionsschritt: Angenommen |M| = n + 1. Wähle ein festes Element $x \in M$, dann folgt $|\mathscr{P}(M)| = |\{A \mid A \subseteq M, x \in A\}| + |\{A \mid A \subseteq M, x \notin A\}|$. Weiterhin gilt $|\{A \mid A \subseteq M, x \in A\}| = |\{A \mid A \subseteq M \setminus \{x\}\}|$ und $|\{A \mid A \subseteq M, x \notin A\}| = |\{A \mid A \subseteq M \setminus \{x\}\}|$. Es folgt $|\mathscr{P}(M)| = 2 \cdot |\{A \mid A \subseteq M \setminus \{x\}\}\}|$ $\stackrel{\text{I.A.}}{=} 2 \cdot 2^n = 2^{n+1} = 2^{|M|}$.
- (c) Die gesuchte Formel lautet

$$|\Sigma^{\leq n}| = \frac{|\Sigma|^{n+1} - 1}{|\Sigma| - 1} \quad \text{falls } |\Sigma| \geq 2.$$

Falls $|\Sigma| = 1$, dann sieht man leicht, dass $|\Sigma^{\leq n}| = n + 1$ gilt.

• Induktionsanfang:

$$|\Sigma^{\leq 0}| = 1 = \frac{|\Sigma|^1 - 1}{|\Sigma| - 1}$$

• Induktionsschritt:

$$\begin{split} |\Sigma^{\leq n+1}| &= |\Sigma^{\leq n}| + |\Sigma^{n+1}| \\ &= \frac{|\Sigma|^{n+1} - 1}{|\Sigma| - 1} + |\Sigma^{n+1}| & \text{Induktions annahme} \\ &= \frac{|\Sigma|^{n+1} - 1}{|\Sigma| - 1} + |\Sigma|^{n+1} & \text{nach Teilaufgabe (a)} \\ &= \frac{|\Sigma|^{n+1} - 1 + |\Sigma|^{n+2} - |\Sigma|^{n+1}}{|\Sigma| - 1} \\ &= \frac{|\Sigma|^{n+2} - 1}{|\Sigma| - 1} \end{split}$$

Aufgabe G5 (Sprachen)

Beweisen oder widerlegen Sie (mit einem Gegenbeispiel) die folgenden Gleichungen für beliebige Σ -Sprachen L_1, L_2 .

- (a) $(L_1 \cup L_2)^* = (L_1^* L_2^*)^*$
- (b) $(L_1L_2)^* \setminus \{\varepsilon\} = L_1(L_2L_1)^*L_2$
- (c) $(L_1L_2)^*(L_1L_2) = L_1(L_2L_1)^*L_2$

Lösung:

(a) Wir weisen nach, dass obige Gleichung gilt:

Es gilt $L_i \subseteq (L_1^*L_2^*)^*$ für i=1,2, also auch $L_1 \cup L_2 \subseteq (L_1^*L_2^*)^*$ und es folgt $(L_1 \cup L_2)^* \subseteq (L_1^*L_2^*)^*$. Für die umgekehrte Inklusion gilt $L_i^* \subseteq (L_1 \cup L_2)^*$ für i=1,2. Es folgt $L_1^*L_2^* \subseteq (L_1 \cup L_2)^* (L_1 \cup L_2)^* \subseteq (L_1 \cup L_2)^*$, und schließlich $(L_1^*L_2^*)^* \subseteq (L_1 \cup L_2)^* \subseteq (L_1 \cup L_2)^*$.

Hier noch ein alternativer Beweis:

Sei $w \in (L_1 \cup L_2)^*$, dann ist $w = v_1 \dots v_n$ mit $v_i \in L_1 \cup L_2$ für $i = 1, \dots, n$. Da $\varepsilon \in L_j^*$ für j = 1, 2, folgt $L_j \subseteq L_1^* L_2^*$ für j = 1, 2 und demnach $L_1 \cup L_2 \subseteq L_1^* L_2^*$. Schließlich folgt $w \in (L_1^* L_2^*)^*$. Ist andererseits $w \in (L_1^* L_2^*)^*$, dann ist $w = v_1 \dots v_n$ mit $v_i \in L_1^* L_2^*$ für $i = 1, \dots, n$. Es folgt $v_i = u_{i_1} u_{i_m} u'_{i_1} u'_{i_{m'}}$ mit $u_{i_i} \in L_1$ und $u'_{i_i} \in L_2$. Also ist jedes der v_i in $(L_1 \cup L_2)^*$ und demnach auch $w \in (L_1 \cup L_2)^*$.

- (b) Obige Gleichung gilt im Allgemeinen nicht. Falls $\varepsilon \in L_1$ und $\varepsilon \in L_2$ dann folgt $\varepsilon \in L_1(L_2L_1)^*L_1$ aber $\varepsilon \notin (L_1L_2)^*\setminus \{\varepsilon\}.$
 - (Übrigens, falls $\varepsilon \notin L_1 \cap L_2$, dann zeigt man leicht, dass die Gleichung gilt.)
- (c) Wir beweisen, dass obige Gleichung gilt:

Es gilt für $n \ge 0$

$$(L_1L_2)^{n+1} = \underbrace{(L_1L_2)\cdots(L_1L_2)}_{(n+1)\text{-mal}} = L_1\underbrace{(L_2L_1)\cdots(L_2L_1)}_{n\text{-mal}} L_2 = L_1(L_2L_1)^n L_2$$

es folgt

$$(L_{1}L_{2})^{*}(L_{1}L_{2}) = \left(\bigcup_{n\geq 0} (L_{1}L_{2})^{n}\right) (L_{1}L_{2})$$

$$= \bigcup_{n\geq 0} \left((L_{1}L_{2})^{n}(L_{1}L_{2})\right)$$

$$= \bigcup_{n\geq 0} (L_{1}L_{2})^{n+1}$$

$$= \bigcup_{n\geq 0} L_{1}(L_{2}L_{1})^{n}L_{2} \qquad (s.o.)$$

$$= L_{1} \left(\bigcup_{n\geq 0} (L_{2}L_{1})^{n}\right) L_{2}$$

$$= L_{1}(L_{2}L_{1})^{*}L_{2}$$

Aufgabe G6 (DFA)

Sei $\Sigma := \{0, 1\}$. Finden Sie DFA \mathcal{A}_i mit $L(\mathcal{A}_i) = L_i$ für

- (a) L_1 : {0, 1}-Wörter von gerader Länge mit genau dreimal 0.
- (b) L_2 : {0,1}-Wörter die 10 und 01 als (nicht notwendigerweise disjunkte) Teilwörter enthalten.
- (c) L₃: {0, 1}-Wörter, in denen alle 1-Blöcke Länge 3n + 2 haben (für ein n ∈ N).
 (Ein 1-Block ist ein Teilwort, das nur aus dem Buchstaben 1 besteht und durch 0 bzw. Wortanfang oder Wortende begrenzt ist.)

Lösung:

(a)

(b)

Dabei wurde benutzt, dass man L_2 auch folgendermaßen charakterisieren kann: Für jedes Wort $a_1 \dots a_n$ gibt es i < j < k mit $(a_i = a_k = 0 \text{ und } a_j = 1)$ oder $(a_i = a_k = 1 \text{ und } a_j = 0)$.

(c)

Hausübung

Aufgabe H4 (Induktion)

(12 Punkte)

Sei t ein aus den Operationen + und · und der Konstanten 1 gebildeter Term. (Ein solcher Term kann als Wort über dem Alphabet $\{+,\cdot,1,(,)\}$ aufgefasst werden.) Beweisen Sie per Induktion über den Termaufbau, dass der Wert von t (bzgl. der üblichen Interpretation von $+,\cdot$ und 1) kleiner als $2^{|t|}$ ist.

Änderung: |t| ist die Länge des Terms t. Beispiel: Betrachte den Term $(1+(1+1))\cdot(1+1)$, mit Länge 15.

Lösung: Sei A(t) die Aussage: "Der Wert von t ist kleiner als $2^{|t|}$."

Induktionsanfang: Für t = 1 ist $1 < 2 = 2^1 = 2^{|1|}$. Also gilt A(1).

Induktionsschritt: Wir betrachten zuerst den Fall, dass $t = t_1 + t_2$. Sei n_i der Wert von t_i . Nach Induktionsvoraussetzung gelten $A(t_1)$ und $A(t_2)$. Somit ist der Wert von t gleich

$$n_1 + n_2 < 2^{\left|t_1\right|} + 2^{\left|t_2\right|} \le 2^{\left|t_1\right| + \left|t_2\right|} < 2^{\left|t\right|} \,.$$

Analog erhalten wir für $t = t_1 \cdot t_2$ den Wert

$$n_1 n_2 < 2^{|t_1|} \cdot 2^{|t_2|} = 2^{|t_1| + |t_2|} < 2^{|t|}.$$

Aufgabe H5 (DFA) (12 Punkte)

Betrachten Sie das Alphabet $\Sigma = \{a, b, c, d\}$.

Geben Sie DFA an, die die folgenden Sprachen erkennen:

(a)
$$L_1 = L((a(b+c+d))^*)$$

(b)
$$L_2 = L(a^+b^+c^+)$$
 (wobei $a^+ := a(a^*)$)

(c)
$$L_3 = \overline{L_2}$$

Lösung:

(a)

$$b,c,d$$
 b,c,d
 a
 a,b,c,d

(b)

(c) Zustände des Automaten für L_2 durch nicht akzeptierende ersetzen und umgekehrt:

Aufgabe H6 (NFA) (12 Punkte)

Betrachten Sie den folgenden NFA \mathcal{A} :

Geben Sie zu ${\mathscr A}$ einen DFA ${\mathscr A}^{\det}$ an, der die gleiche Sprache akzeptiert.

Lösung:

δ	а	b
{0}	{0}	{0,1}
$\{0, 1\}$	$\{0, 2\}$	$\{0, 1, 2\}$
{0, 2}	{0,3}	$\{0, 1, 3\}$
$\{0, 1, 2\}$	{0, 2, 3}	{0, 1, 2, 3}
{0,3}	{0}	$\{0, 1\}$
$\{0, 1, 3\}$	$\{0, 2\}$	$\{0, 1, 2\}$
$\{0, 2, 3\}$	{0,3}	{0, 1, 3}
$\{0, 1, 2, 3\}$	{0,2,3}	{0, 1, 2, 3}

Die aktiven Zustände sind $\{0\}, \{0,1\}, \{0,2\}, \{0,1,2\}, \{0,3\}, \{0,1,3\}, \{0,2,3\}, \{0,1,2,3\}.$ Akzeptierend sind $\{0,2\}, \{0,1,2\}, \{0,3\}, \{0,1,3\}, \{0,2,3\}, \{0,1,2,3\}.$