Q/A Assignment

1. When we duplicate a feature in logistics regression and retain the model, the new weights w_{new} and $w_{new_{(n+1)}}$ assigned to the original and the duplicated feature would be almost half the original weight w_n , assuming all other conditions remain the same. This is because the contribution to the prediction that was previously made by feature n is now being shared by feature n and n+1.

$$W_{new_n} + W_{new_{n+1}} \approx W_n$$

2.

```
(2) Given observed CTRs.

A: 10°/0, B: 7°/0, C: 85, D: 12°/1, E: 14°/1,

Now using Z-test for the proportion to
determine if the differences in CTRs are
statistically significant at a 55°/0.

confidence lived.

Z = (CTR employe - CTR control)
    P is the pooled click though rate

P = 711+72, where 210 and 712

The P = others for template and are number of clicks for template and control and no and no are the no. of emals sent for template and control.
   for E and A.
     CTRE = 14% = 0.14, CTRA = 10% = 0.)
     N_1 = N_2 = 1000, N_1 = 1000 \times 0.14 = 140

N_2 = 1000 \times 0.1 = 100
  Pooled = 1000 +1000 = 2008 = 0.12
                         1000 41000
SE:

Handard = | Proste × (1-Prosted) × (the the)

error = | 0.12 × 0.08 × (too too) 1000

= | 0.000 2112 = 0.0183
 Z = \left(\frac{0.14 - 0.1}{0.01452}\right) = 0.753
 Similarly, ZB = -2,405, Zc = -1,158
Zp = 1,429, Zc = 2,752
Hence if Z-Score is greater than 1.36 or less than -1.36, the difference is considered statistically significent at 35.1. confidence level.
    Hence correct option.
     (b) E is better than A with over 35% confidence, B is worse than A with 35% confidence.
```

E is better than A with over 95% confidence, B is worse than A with over 95% confidence. You need to run the test for longer to tell where C and D compared to A with 95% confidence.

3.

For each training example i, the hypothesis function $h_{\theta}(x^i)$ requires computing $\theta^T x^i$ which has a computational cost proportional to the number of non-zero entries, k, since we ignore the zeros in the sparse matrix-vector multiplication. This makes the cost for computing the hypothesis for all m examples O(mk). The gradient computation also requires us to multiply $(h_{\theta}(x^i) - y^i \ with \ each \ x^i_j$. Since there are k non-zero features on average for each training example, and we need to update all n features, the naïve computational cost would be O(mnk). However, due to the sparsity, we only need to perform updates for non-zero features, reducing the cost to O(mk) for the gradient computation.

4. Assuming the goal is to improve the accuracy of V2, analyzing how each approach might influence the classifier's performance:

Uncertainty Sampling	Random Sampling	Boosting hard
This method selects	This method provides a	By selecting examples
examples where the	random set of labeled	that the classifier
classifier is most	examples. While it	currently gets wrong and
uncertain. Training on	ensures a variety of	are farthest from the
these examples can help	examples, it might not be	decision boundary, this
the classifier to better	as efficient as other	method focuses on the
define the decision	methods in improving the	most challenging cases.
boundary, which may be	decision boundary since	Training on these hard
particularly useful when	it's not targeted. This	examples can significantly
the classes are not well-	approach might still	improve the classifier's
separated. This can lead	improve the classifier's	performance, especially if
to a more refined model	overall performance but	the current errors are
that performs better on	potentially requires more	systematic or if there's a
examples where it was	data to achieve significant	particular subset of the
previously uncertain.	improvements compared	data that V1 struggles
	to targeted methods.	with.

Hence in terms of pure accuracy, without considering the cost and efforts.

- Method a might increase accuracy significantly because it helps the classifier to refine the decision boundary.
- Method b might yield a less significant accuracy improvement because it might include many examples that are easy to classify and thus may not contribute much to learning.
- Method c is likely to yield a significant improvement in accuracy, particularly if V1's mistakes are not random but systematic. By correcting these mistakes, V2 can potentially make large gains in accuracy.
 - Therefore, in terms of expected improvements in accuracy for V2
- 1) Method c
- 2) Method a
- 3) Method b

here p estimate is $p = \frac{n}{k}$

(b) for the Bayesian estimate, with a uniform prior distribution for p.

The posterior distribution for p.

Beta distribution with parameter

$$X = K + 1$$
, $B = N - K + 1$
 $\Rightarrow F(P) = \frac{x}{x + p}$ (expected value distribution)

 $\Rightarrow G(P) = \frac{x + 1}{x + 1 + N - K + 1} = \frac{x + 1}{N + 2}$

Here p estimate is $\frac{k+1}{n+2}$

(c) for the MAP estimate with a wristorm prior, the posterior distribution is same Beta distribution as in Bayesian estimate.

Mode [P] =
$$\frac{\chi - 1}{\chi + \beta - 2}$$

Hence, the MAP estimate for P is;

= $\frac{K+1-1}{n+2-2} = \frac{K}{n}$

here p estimate is $p = \frac{n}{\nu}$

The MLE and MAP turn out to be the same in this case due to the uniform prior, which does not influence the estimation heavily. The Bayesian estimate, however, takes into account the prior and is more conservative, especially when n is small.