Mat is, B(+) is a Gaussian process.

6. Brownian Motion

- definition and invariance principle, properties
- reflected Brownian mation

- Brownian bridge, Ornstein-Uhlenbech proc. - diffusion processes

Brownian makin is an important stochastic model used in many applications, e.g. in dinance, in dustry and elsewhere. It also plays important roles in medhametical statistics, e.g. in studyinging goodness-of-fit, non parametric duction estimation and many other procedures. Brownian metion is the ultimate extension of a random wall and is crucial to the definition of a diffusion process.

Def. 6.1 Let &B(+)} be a stochastic process with the following assurptions.

(i) B has independent increments.

B(t) is a levy process (recall Def. 419)

- (ii) B(+)- (xs) ~ Normal (0, +-s).
- (iii) B(t) is a continuous function, with probability 1.
- (iv) B(0) = 0 w.p. 1.

B(t) is called <u>Standard Brownian Motion</u> (or <u>standard Wiener process</u>). A more general Brownian motion is W(t) = Wot of B(t) where $\sigma > 0$ and Wo ~ normal (x, y), independent of \mathbb{F}_{η} , $\eta > 0$, $\pi \in \mathbb{R}$.

Thm. 6.2 B(t) is standard Brownian Modion iff for every $t_1,...,t_n,h$, $\Rightarrow (B(t_1),...,B(t_n)) \sim normal(O, Z)$ where Z is the madrix with (i_1j) element min(ti,ti) and B has continuous paths wip.1.

proof. => By (ii) &(iv), B(+) ~ normal (0,+) for each +.

Let s < t.

COV (B(t), B(s)) = E(B(t)B(s)) $= E(B^2(s)) + E(B(t)-B(s))B(s)$ $= S + O \quad (since increments are independent)$ = min(t, s).

Of course, since $(B(t_1), B(t_2)-B(t_1), \ldots, B(t_k)-B(t_{k-1}))$ is multivariate normal, $(B(t_1), \ldots, B(t_k))$ is also.

E Reversing the argument, the increments are multivariate normal and, by the form of Σ , uncorrelated, hence independent. Also, $B(0) \sim normal(0,0)$, i.e. B(0) = 0 u.p.1.

Brownian motion is a limiting version of a zero mean random walk with both the time axis and the vertical axis shrunk.

Thm 6.3 (Functional CLT-loosely) Let $\{X_n\}$ be cid $\{X_n\}$ with mean 0 and variance |. Let $S_n = X_1 + \cdots + X_n$, $S_0 = 0$ and $\{S_n(t) = \frac{S_{[n+1]}}{\sqrt{n}}$. ([5] = greatest integer less) them are equal to s

Then, $(B_n(t_i),...,B_n(t_k)) \Rightarrow (B(t_i),...,B(t_k))$ for all $t_i,...,t_k$.

Renarh This is finite dinensional convergence. "Functional" ChT actually refers to convergence in a Sunctional metric space, a stronger result.

proof. We may assume
$$t_1 < t_2 \le ... < t_n$$
.

 $S_n(t_j) - S_n(t_{j-1}) = \sqrt{n} \sum_{i=[nt_{j-1}]+1}^{Cnt_{j-1}} \times i$
 $d = \sqrt{n} \sum_{i=[nt_{j-1}]+1}^{Cnt_{j-1}} = \sqrt{n} \sum_{i=[nt_{j-1}]+1}^$

Also, the increments of Bn: (Bn(+,), Bn(+,)-Bn(+,), --, Bn(+,)-Bn(+,,)) are independent so they converge jointly to independent normal r.v.), in dist. The conclusion follows from this.

We now state the stronger version.

Thum 6.4 (Functional CLT - or Invariance Principle) Let $C(0,\infty)$ be the metric space of continuous functions on $(0,\infty)$ with metric $p(f_1,f_2) = \sum_{n=1}^{\infty} 2^{-n} \min(1, \sup_{t \le n} |f_1(t) - f_2(t)|).$ (thus $p(f_m,f) \to 0 \iff \sup_{t \le n} |f_m(t) - f_k(t)| \to 0$, becal uniformly.)

Define $B_n(t) = \frac{S_{cntJ}}{\sqrt{N}} + (nt-[n+J]) \frac{X_{[n+J+1]}}{\sqrt{N}}$ (which is continuous - "connects").

If $T: C[0,\infty) \to \mathbb{R}$ is continuous (i.e. $p(f_m,f) \to 0 \Rightarrow T(f_m) \to T(f)$) Then $T(B_n) \to T(B)$.

Remark The invariance principle is extremely important in statistics because with it we can study the behavior of $\frac{S_{Cn+J}}{V_{Tn}}$, not just of $\frac{S_{N}}{V_{N}}$. For example,

 $T(B_n(t)) = \max_{0 \le t \le 1} |B_n(t)| \implies \max_{0 \le t \le 1} |B(t)|, \text{ which is use for } for$

	Ex. 6.1 Suppose Y, Yz, are ital with wear 0
The state of the s	Ex. 6.1 Suppose Y, Y2, are ited with mean of and variance . For fixed sample size n,
	consider the statistic
	$M_n = \max_{k \leq n} S_k = \max_{k \leq n} \sum_{j=1}^{k}$
	Note that $\frac{Mn}{\sqrt{n}} = \max_{0 \le t \le 1} B_n(t)$, where B_n is as in Thum. 6.4.
	$T(f) = \max_{0 \le t \le 1} f(t)$ is a cont. Inctional on $C[0,\infty)$.
	Thus, $\frac{\mu_n}{\sqrt{n}} \Rightarrow \max_{0 \le t \le 1} B(t)$. We show later that this
	has the same dist. as Z , Zunormal(0,1
No. The Control of th	
QL v C V D	
- C-100	
	,
Taraba da la caractería de la caractería	
and the second s	
T D. C.	

We now discuss basic properties of Brownian motion.

Thm. 6.5 Let BH) be standard Brownian motion.

- (i) B(+) is a Markov process with homogeneous transition probabilities such that the cond. dist. of B(++s), given B(+)=x is normal(x,s).
- (ii) B(+) is standard B.M.
- (iii) (et Bs(t) = B(t+s)-B(s) with soo fixed. Bs is standard B.M. and independent of 3B(u)} osuss.
- (iv) $B_s^*(t) = \begin{cases} B(t), & t \leq s, \\ 2B(s) B(t), & t \geq s \end{cases}$ is stand. B.M. (Reflection at t = s)
- (1) For any c>o, 3rc B(+k)} is stand. B.M. (self-similarity)
- (vi) {tB(1/4)} is stand. B.M. (fine reversal)

proof. (i) This follows from the fact that B has independent, stutionary normal increments:

$$P(B(t_{n+1}) \le y | B(t_i) = x_{i,i} \le n) = P(B(t_{n+1}) - B(t_n) \le y - x_n | B(t_i) = x_{i,i} \le n)$$

$$= P(B(t_{n+1}) - B(t_n) \le y - x_n)$$

$$= \Phi(\frac{y - x_n}{\sqrt{t_{n+1}}}).$$

(ii) Easy to chech.

(iii) Like (i), chech the finite-dim. distillations.

(iv) Let $t_1 < t_2 < \cdots < t_k$. It suffices to assume $S = t_j$ (o.w. include $S - we still will characterise all finite dim. distis)

The increments of <math>B_S^*$ are

which are independent, normal and have the right variances. Note that Bs is cont. also. So this ensures it is B.M.

r (Shetch)

(V) $\sqrt{c} B(^{0}/c) = 0$, $\sqrt{c}B(^{t}/c)$ is cont., has indep. increments and $\sqrt{c}B(^{t}/c) - \sqrt{c}B(^{t}/c)$ ~ Normal (t-s).

(vi) Define
$$B(t) = \begin{cases} t B(1/t), & \text{if } t > 0 \\ 0, & \text{if } t = 0 \end{cases}$$

Obviously, $(\tilde{S}(t_1),...,\tilde{B}(t_N))$ is multivariate normal with mean 0. So we need only to check it has the correct covariances (by Thm. 6.2). Let $S \ge 0$, $t \ge 0$.

$$\operatorname{Cov}(\vec{B}(s), \vec{B}(t)) = E(stB(1/s)B(1/s))$$

$$= st \min(s,t) = \min(s,t).$$

 \tilde{B} is continuous, except possibly at 0, which we need to check. (Continuity at 0 neans $\frac{1}{5}B(s) \rightarrow 0$ as $s \rightarrow \infty$.)

Let $Z_n = \max |B(t) - B(n)|$. The Z_n 's are iid. $n \leq t \leq n + 1$

Then, for MSSSNHI:

$$\left|\frac{B(s)}{s} - \frac{B(n)}{N}\right| \leq \frac{\left|B(s) - B(n)\right|}{s} + \left|B(n)\right| \left(\frac{1}{N} - \frac{1}{s}\right)$$

$$\leq \frac{2n}{N} + \frac{\left|B(n)\right|}{n^2}$$

 $B(n) = \sum_{i=1}^{N} (B(i)-B(i\cdot 1)) \text{ is a sum of } iid r.v.\text{ so } \text{ mean } 0.$ $So B(n)/n \to 0 \text{ w.p.l.} \text{ and } (B(n))/n^2 \to 0 \text{ w.p.l.}$ $Likewise, if E(Z_1) < \infty, \text{ then } \int_{i=1}^{N} Z_i \to E(Z_1) \text{ w.p.l.} \text{ (strong law)}$ $and hence Zn/n \to 0 \text{ w.p.l.} \text{ (3h's are nonneg.)}$ $We will show later that Z_1 = \sup_{i=1}^{N} |B(t)| \text{ has a finite mean } \text{ (Cor. 6.10)}.$

In Thm. 6.5(iv) the B.M. was reflected at a fixed time s. It is also useful to reflect it at the random time it reaches a fixed boundary a.

 \square

Def. 6.6 Let \$X(t) be a stochastic process for $t \in [0, \infty)$.

A nonnegative random variable T is a <u>stopping</u> time for \$X(t) fift the event $\{T \le t\}$ is determined to have occurred or not by the process up to time t.

(More precisely, STEt) is in the T-field of events generated by events 3X(s) ∈ A), 0≤s≤t, Barelsets A. Also, some stronger cassimptions are required, including X(t) is right. cont, w/left-hand limits

As in the discrete time case, if T is a stopping time toral process {X(4)} which you have been dollowing, then at any fixed time t you know either (a) the value of T and that Tit, or (b) that T>t.

Thm. 6.7 (Strong Marhor Property der B.M.) Suppose 3B(t)) is Brownian motion and T is a stopping time for B(t). Then, conditional on the event 3T<0), the process

is Brownian modian and is independent of TESB(s) of SET.

proof. (see book-Sec. 6.6. Also, recall Thm. 2.16.)

Thm. 6.8 (Reflection property of B.M.) Define Ta = inf } +: B(+) = a }, a > 0. (Ta is the first time B(·) hits level a.) Define

$$B^*(t) = \begin{cases} B(t), & t \leq T_{\alpha}, \\ 2\alpha - B(t), & t > T_{\alpha}. \end{cases}$$

Then Bit) is Brownian motion.

proof. Given $Ta < \infty$, $B(t) = B(Tatt) - \alpha = B(Tatt) - B(Ta)$ is B.M.by Thun 6.7 and independent of $SB(S) |_{S = Ta}$. Since Ta is

a stopping time, it may be shown it is a function salely of \$13(5) seta and is therefore independent of B(·). (this can be made precise in measure theore tic terms.)

First, we compute $P(B(t) \ge \alpha) = P(B(t) \ge \alpha, T_{\alpha} \le t) \quad \text{since } B(t) \ge \alpha \implies T_{\alpha} \le t$ $= P(B(t) \ge \alpha, T_{\alpha} \le t \mid T_{\alpha} < \infty) P(T_{\alpha} < \infty)$ $= P(T_{\alpha} < \infty) \int_{0}^{t} P(B(t > s) \ge 0 \mid T_{\alpha} = s) F(ds)$ $= P(T_{\alpha} < \infty) \int_{0}^{t} F_{T_{\alpha}}(ds) \quad \text{for } C_{\alpha} < \infty$ $= \frac{t}{2} P(T_{\alpha} < \infty) \int_{0}^{t} F_{T_{\alpha}}(ds) \quad \text{given } T_{\alpha} < \infty$ $= \frac{t}{2} P(T_{\alpha} \le t)$

Since $P(B(t) \ge \alpha) = 1 - \phi(\frac{\alpha}{V_t}) \rightarrow \frac{1}{2}$ as $t \rightarrow \infty$, we have $P(T_{\alpha} \le \alpha) = 1$.

Now we observe that the process (not just at each fixed t) $B^{*}(t) = \begin{cases} B(t), & t \leq T_{\alpha} \\ B(T_{\alpha}) - \vec{B}(t-T_{\alpha}), & t \geq T_{\alpha} \end{cases} \Rightarrow B(t), & t \leq T_{\alpha} = B(t), \\ B(T_{\alpha}) - \vec{B}(t-T_{\alpha}), & t \geq T_{\alpha} \end{cases}$

Since $\vec{B} = -\vec{B}$ and \vec{B} is indep. of $\frac{3}{8}$ (This can be made precise by using finite-dim distributions or by using finite-dim distributions or by using finite-dim distributions.)

That is, \vec{B}^* is Brownian motion.

U

The reflection property is idiosyncratic of Brownian motion but it is also very useful for discovering a lot about the extremal nature of Brownian motion.

Thm. 6.9 Let B(t) be stand. B.M. and define $M(t) = \max_{0 \le s \le t} B(s)$.

(i) For all $y \ge 0$, a > 0, $P(B(t) \le a - y, M(t) \ge a) = P(B(t) > a + y)$.

(ii) For each fixed t≥0, M(t) = |B(t)|, with mean 12+ and vuriance (1-=)t.

proof.(i) $M(t) \ge \alpha \iff T_{\alpha} \le t \iff T_{\alpha}^* \le t$ ($T_{\alpha} = T_{\alpha}^*$)

where $T_{\alpha}^* = \inf\{t: B^*(t) = \alpha\}$ and B^* is as in Thm. 6.8.

So $P(B(t) \leq a \cdot y, M(t) \geq a) = P(B(t) \leq a \cdot y, T_a \leq t)$ $= P(B^*(t) \leq a \cdot y, T_a^* \leq t) \qquad \text{by Thm 6.8}$ $= P(2a - B(t) \leq a \cdot y, T_a \leq t) \qquad \text{by def. of } B^*$ $= P(B(t) \geq a + y). \qquad (B(t) \geq a + y \Rightarrow T_a \leq t)$

(ii) $P(M(t) \ge a) = P(M(t) \ge a, B(t) \le a) + P(M(t) \ge a, B(t) \ge a)$ $= 2P(B(t) \ge a) \qquad \text{by symmetry of normal dist.}$ $= P(|B(t)| \ge a) \qquad \text{by symmetry of normal dist.}$ $Thus M(t) \stackrel{d}{=} |B(t)|, \text{ for each fixed t. That is, } \frac{M(t)}{\sqrt{t}} \stackrel{D}{=} |Z|, Z \text{ in normal}(0,1),$ Also, this tells is $E(M(t)) = \sqrt{\frac{2\pi}{L}} \text{ and } E(M^2(t)) = t$.

 $\frac{\text{cor6.10}}{\text{proof.}} \quad Z_1 = \max_{0 \le t \le 1} |B(t)| \text{ has a finite mean.}$ $\text{proof.} \quad Z_1 \le \max_{0 \le t \le 1} |B(t)| + \max_{0 \le t \le 1} (-B(t)), \quad S_0$ $\text{osts} \quad \text{osts} \quad \text{o$

Cor. 6.11 For fixed too, the joint density of (B(t), M(t)) is $f_{(x,w)} = \sqrt{\frac{2}{\pi}} \frac{2w - x}{t^{3/2}} e^{-(2w - x)^{2}/2t}, \quad x \in \mathbb{R}, w > 0, x < w,$ proof. The density is

proof. The density is $-\frac{d^2}{dxdw}P(B(t) \leq x, M(t) \geq w) = -\frac{d^2}{dxdw}P(B(t) > 2w + x)$ by Thun 6.9(i). $= \frac{d^2}{dxdw}\Phi(\frac{2w - x}{\sqrt{t}}), \text{ where } \Phi(z) = \text{std. Normal cdf. } \square$

Cor. 6.12 Let $Ta = min\{t: B(t) = at, a>0$, as before. Then

(i) $P(T_a \le t) = 2(1-\phi(\frac{a}{t}))$ and $E(e^{-\lambda T_a}) = e^{\sqrt{2\lambda}a}$.

(This is the dist. of $\frac{a^2}{2^2}$, where Z_n std. normal.)

(ii) Ta = a2T, for all a>0.

(iii) As a process, 3 Tagazo has stationary I in dependent increments. (That is, it is another Lévy process.)

(iv) Stat is a pure jour process increasing on every interval.

(v) Stat = Sc2 Take (self-similarity of order t).

proof (i) This follows directly from Tast \$> M(t) > a and thm. 6.9(ii). The haplace transform can be found Simply - but by use of a clever "trich". We do not show the calculation here.

(ii) This is immediate from (i). (Note the difference: B(t)=IFB(1).)

(iii) By use of induction, it soffices to show

To-Ta is indo, of STuJusa and has the same

dist. as To-a.

```
let B(t) = B(Ta+t)-a, t>0, which is a B.M.
by Thm. 6.7. Let Tb=a = min { t: B(t) = b-a}
 Then Tb=Tb-a+Ta, which says
          To-ta = Tb-a = Tb-a, since B(+) is a stal B.M.
 like B(t). More over, To-a is independent of {Bt} to to
(Since Bis) & thus Ty-Ta is independent of 3 B+1/45Ta.
However, Tu, usa, is completely characterized by Bt, tsta.
So Ty-Ta is independent of 3Tulusa.
(iv) Here is a heuristic explanation. Let Ta-= sup 3Tb: 6 = ay,
Consider that the extremal process M(t) can have flat
stretches up pos prob. (since it can take a while for B(t)
to return to its previous maximum value). This means
 P(Ta-Ta-20) > 0. By using the self-similarity property
of B(t) (Thm. 6.5(v)) it can be shown that in fact
 P(T_a - T_{a-} > 0) = 1.
(v) This also follows from the Self-similarity of $B(t)
(exercise):
                3/B(f)/ is a homogeneous Markov process.
                   This is B.M. repeatedly reflected at 0.
proof. The joint densities for {|B(+)|} are (tistien < th)
                            = \sum_{\delta_i = \pm 1} f_{\beta(t_i), \dots, \beta(t_k)} (\delta_i \beta_i, \dots, \delta_k \beta_k)
                  = \underbrace{\sum_{\substack{\delta_{i}=\pm 1\\ i \leq k}} f_{B(t_{i}), \dots, B(t_{k-1})}^{(\delta_{1} \gamma_{1}, \dots, \delta_{k-1} \gamma_{k-1})} (Q(\frac{\delta_{k} \gamma_{k} - \delta_{k-1} \gamma_{k-1}}{\sqrt{t_{k} - t_{k-1}}}) \frac{1}{\sqrt{t_{i} - t_{i-1}}}
                   = \underbrace{\sum_{\delta_{i}=\pm 1}^{i} f_{\beta(t_{1}),...,\beta(t_{k-1})}}_{(\pm k-1)} \underbrace{\left(Q\left(\frac{y_{k}-y_{k-1}}{\sqrt{t_{k}-t_{k-1}}}\right) + Q\left(\frac{y_{k}+y_{k-1}}{\sqrt{t_{k}-t_{k-1}}}\right)\right)}_{\downarrow}
```

$$= f_{|\mathcal{B}(f_{0})|,...|\mathcal{B}(f_{m})|} \left(Q \left(\frac{y_{n} - y_{n-1}}{\sqrt{f_{n} - f_{n-1}}} \right) + Q \left(\frac{y_{n} + y_{n-1}}{\sqrt{f_{n} - f_{n-1}}} \right) \right) \frac{1}{\sqrt{f_{n} - f_{n-1}}}$$

This must be the cond. density of |B(tu)|, given |B(ti)| > yi, i = k. Since it depends only on yu-1, 3|B(t)| is Marhor and its transition density is

$$P_{s}(y|x) = \frac{d}{dy} P(X(s) \leq y | X(o) = \chi)$$

$$= \frac{1}{\int_{t_{u}-t_{w-1}}^{t_{u}-t_{w-1}}} \left(Q\left(\frac{y-x}{\sqrt{s}}\right) + Q\left(\frac{y+x}{\sqrt{s}}\right) \right). \quad \square$$

We now turn to the Brownian bridge process.

Two 6.14 Let $\{B(t)\}$ be stand. B.M. and Lefine the Brownian bridge process $B^{(0)}(t) = B(t) - t B(1)$, $0 \le t \le 1$. Then $\{B^{(0)}\}$ is a Gaussian process (i.e. has multiveriate normal finite dimensional distributions) with mean 0 and covariance function $Cov(B^{(0)}(t_1), B^{(0)}(t_2)) = t_1(1-t_2)$ for $0 \le t_1 \le t_2 \le 1$.

proof. (B(0)(t,),...,B(0)(th)) is clearly multivariate normal for any ti,...,the and has mean 0.

let ost, strs1. Then

 $Cov(3^{\circ}(t_1), B^{(\circ)}(t_2)) = E((B(t_1) - t_1 B(1))(B(t_2) - t_2 B(1))$ $= \min(t_1, t_2) - t_1 \min(t_1, t_2) - t_2 \min(t_1, t_1) + t_1 t_2$

= t, (1-t2),

Remark let $3\times(1)$ be a Gaussian process and let g(t) be non-decreasing. Then $3\times(g(t))$ is a Gaussian process also. In particular, $3\times(g(t))$ has covariance function $3\times(g(t))$ has covariance function $3\times(g(t))$, $3\times(g(t))$ = $3\times(g(t))$

 \Box

Example 6.2 Suppose $X_1, X_2, ... \sim iid F$. To estimate F we can use the <u>empirical distribution function</u> $F_n(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{(-\infty, x)} \qquad (= rel. freq. of data not greater than x).$

Since $1_{(-\infty, x)}$ ried Bernoulli (p = F(x)), we know that $\forall n (F_n(x) - F(x)) \implies normal(0, F(x)(1-F(x)))$ by the central limit theorem.

Now suppose that $x_1 \leq x_2$. Then $Cov\left(\frac{1}{(-\infty, \kappa_1)}, \frac{1}{(-\infty, \kappa_2)}\right) = F(x_1)(1-F(x_2))$ (chech)

Thus $r_n\left(\begin{bmatrix} F_n(x_i) \\ F_n(x_i) \end{bmatrix} - \begin{pmatrix} F(x_i) \\ F(x_2) \end{bmatrix} \Rightarrow \text{ birariate normal } \omega \mid \text{ the appropriate covariance matrix}.$

In fact we have the following.

Thur. 6.15 let X1, X2, ... ried F and let Fn(1) be the empirical dist. function. Then

 $M(F_n(\cdot) - F(\cdot)) \Rightarrow B^{(0)}(F(\cdot))$

in the Shite dimensional distribution sense.

(Actually, conveyence can be stated in a 5 tronger sense as well.)

proof. Extending Ex. 6.2 above, if $x_1 < x_2 < \dots < x_k$, $\sqrt{n} \left(\begin{bmatrix} F_n(x_1) \\ \vdots \\ F_n(x_k) \end{bmatrix} - \begin{pmatrix} F(x_1) \\ \vdots \\ F(x_k) \end{bmatrix} \right) = mult. normal (0, \Sigma)$

where, for isy, the (ij) the element of Ξ is $F(x_i)(1-F(x_i))$. That is, the finite dim. distins of $Vn(F_n(\cdot)-F(\cdot))$ converge to the finite dim. dists. of $B^{(0)}(F(\cdot))$.

Def. 6.16 let $X_1, ..., X_n$ wild F. The <u>Kolmogorov</u>-Smirnov statistic (for testing $H_0: F = F_0$) is $P_n = \sqrt{n} \sup_{x} |F_n(x) - F_0(x)|$

where $X_{(1)} = X_{(2)} \le ... \le X_{(N)}$ are the order statistics of the sample. The latter formula is correct because $F_n(x)$ is a step function with jumps at $X_{(1)}$'s. So for $x \in (X_{(1)}, X_{(1-1)})$, $F_0(x) - F_n(x)$ is a non-decreasing function with next maximum absolute value at one of the endpoints $(X_{(i)} \text{ or } X_{(i-1)})$.

Theorem 6.17 Assume $X_1, X_2, ...$ nicid F where F is continuous and let D_n be the Kolmogoror-Smirnov statistic. If $F = F_0$, then $D_n \Rightarrow D$ where $P(D > y) = 2 \stackrel{\circ}{\underset{k=1}{\sum}} (-1)^{k-1} e^{-2k^2 y^2}$.

proof. First we verify a very useful result about $F(X_1)$. Let $F = \{x \in \mathbb{R} \mid x \in \mathbb$

Therefore, $P(F(X_1) \ge u) = P(X_1 \ge F^*(u))$ = $1 - F(F^*(u)) = 1 - u$ (by Thm. 4.10).

That is, F(X1) ~ Uniform (0,1).

It follows that $F(X_{(1)}), \ldots, F(X_{(m)})$ are distributed like the order Statistics for a sample from the Uniform (0,1) dist.

	Hence, if Fo=F, the distribution of Dn is independent of F.	
	(That is, Dn is a "pivotal" statistic.) It suffices, there dore,	. ,
	to continue as if F(x)=x, 0 ≤x ≤1, and Xi niid Uniform(0,1).	
		
	Thus, we have	
	$\operatorname{vn}(F_n(\cdot)-F(\cdot)) \Rightarrow B^{(0)}(F(\cdot))$ in the fin. dim. dist. sense.	
	If we know we had a stronger, functional convergence (as in	
	Thm. 6.4) we could deduce that	
	$D_n = \max_{0 \le t \le 1} \nabla_n (F_n(t) - t) \implies \max_{0 \le t \le 1} \mathcal{B}^{(a)}(t) .$,
	(of course, such a result is well-known.	· · · · · · ·
	See the book for a proof which determines the convergence	
	above directly by applying Thm. 6.7.)	
	Calculating the distribution of max (B'o)(+1) is tedious	
	but it may be shown if has the probability tail given in	
	the theorem statement.	
`		:
	be now turn to Brownian motion with drift.	
		economista en
	Del. 6.18 Let B(t) be standard B.M. and By(t) = D(t) + pt, t=	÷ 0 ·
	The process & Bult) is called Brownian motion with drift u.	
• .	The process &But) is called Brownian motion with drift in. (This also is a Levy process-check. Hence, it is Markov.)	_
-	Obviously, Bult) ~ normal (ut, t) for each t.	
and the second s	More generally, set Bult) = B(t)+ pt+Xo, Xo indep. of B()),
	So this is B. M. with drift a and initial state Xo. It	:
	Follows that Bult) is a homogeneous Markov process with	
	So this is B. M. with drift a and initial state Xo. It follows that Bult) is a homogeneous Markov process with $ f(y) = \frac{1}{ t_2-t_1 } \left(\frac{y-\mu(t_2-t_1)-x}{\sqrt{t_2-t_1}} \right) (exercise) $ Bult_2) $ B_{\mu}(t_1)=x$	
-	$B_{\mu}(t_2) B_{\mu}(t_1)=\kappa$ $\forall t_2-t_1$ $\forall t_2-t_1$	

For simplicity, let the cond. pdf of $B_{\mu}(t)$, given $B_{\mu}(0)=x$, be written $f_{\chi}(y) \approx \frac{1}{\sqrt{t}} \left(\frac{y - \mu t - x}{\sqrt{t}} \right) = \frac{1}{\sqrt{2\pi t}} e^{-(y - \mu t - x)^2/2t}$

Thm.6.19 (i) $f_{\epsilon}(y;x)$ solves the Fohker-Planck equations $f_{\epsilon}(y;x) = M \frac{1}{2} f_{\epsilon}(y;x) + \frac{1}{2} \frac{1}{2} f_{\epsilon}(y;x)$

and also = - μ by $f_{\chi}(y;x) + \frac{1}{2} \frac{\partial^{2}}{\partial y^{2}} f_{\chi}(y;x)$,

(ii) In fact, it is the unique cond. pet to solve the exactions such that $f_{\chi}(y;x) \rightarrow 0$ and $f_{\chi}(y;x) \rightarrow 0$ as $t \rightarrow 0$.

proof (i) (exercise)

ejocations, for which there are several different methods of proof. We do not give a demostration have.

Diffusion properties $\frac{1}{4}E(B_{\mu}(t)-B_{\mu}(0)|B_{\mu}(0)=x)=\mu \quad \text{for all } x$

+ Ver (Bu(+)-Bu(0) | Bu(0) = x) = 1 for all x.

Specifically, over a small time interval t, Bu is moved, on average, by an amount ut. But it is also perturbed by a random amount with variance t. The Fokker-Planch equations, describing the perturbation of the pdf of Bu, given Bulo = x, are reflective of these diffusion properties.

We define hitting times the same as we did for B.M. $T_a = \inf \S t : B_u(t) = a \S$, for any $a \in \mathbb{R}$.

These are stopping times, of course. Again we would like to compare hitting time probabilities. Thm 6.20 Suppose a =x =b. Then $P(T_{a} < T_{b} | B_{\mu}(0) = x) = \begin{cases} e^{-2\mu b} - e^{-2\mu x} & \text{if } \mu \neq 0. \\ e^{-2\mu b} - e^{-2\mu a} & \text{if } \mu = 0 \end{cases}$ Proof (heuristic) Define Bu(t) = Bu(t+h). So Bu(+) is B.M. w/ drift u & initial state Bu(h) Furthermore, it is independent of Bu(s), ssh. Suppose a < x < b and define g(x) = P(Ta < Tb | Bu(0) = x).

We will find g(x) by showing it satisfies a differential equation. 3 Ta < To g is the event that a is visited before b. Consider first the possibility that either a or b are Visited guidely. For small h, P(min(Ta, Tb) &h) = P(max (B(5) + us) > b-x ~ min(B(s) + us) ≤ a-x) $\leq P(M(h) \geqslant b-x-Mh) + P(M(h) \geqslant x-a-Mh) \qquad (M(t)=max B(s))$ = o(h), using the dist. for M(h) as given in Thm. 6.9. This says we can safely compate, for very small h, as if neither a nor b have been visited in [0, h].

That is, conditioning on
$$B_{\mu}(h) = y$$
,

 $g(x) = \int_{0}^{\infty} P(B_{\mu} \text{ visits a before } b \mid B_{\mu}(h) = y) f_{B_{\mu}(h)}(y) dy$

$$= \int_{-\infty}^{\infty} P(B_{\mu} \text{ visits a before } b \mid B_{\mu}(h) = y) f_{B_{\mu}(h)}(y) dy + o(h)$$

$$= \int_{-\infty}^{\infty} P(B_{\mu} \text{ visits a before } b \mid B_{\mu}(h) = y) f_{B_{\mu}(h)}(y) dy + o(h)$$

$$= \int_{-\infty}^{\infty} P(B_{\mu} \text{ visits a before } b \mid B_{\mu}(h) = y) f_{B_{\mu}(h)}(y) dy + o(h)$$

$$= \int_{-\infty}^{\infty} P(B_{\mu} \text{ visits a before } b \mid B_{\mu}(h) = y) f_{B_{\mu}(h)}(y) dy + o(h)$$

$$= \int_{-\infty}^{\infty} P(y) f_{B_{\mu}(h)}(y) dy + o(h) f_{B_{\mu}(h)}(y) f_{B_{\mu}(h)}(y) dy + o(h)$$

$$= \int_{-\infty}^{\infty} P(x) f_{B_{\mu}(h)}(x) f_{B_{\mu}(h)}(x) f_{B_{\mu}(h)}(x) f_{B_{\mu}(h)}(x) f_{B_{\mu}(h)}(y) f_{B_{\mu}(h)}($$

proof. use Tun 6.20 and take lim P(Ta < Tb | Bu(0) = X).

The Folder-Planch equation relates the fine movement of the process to the value movement of the process "instantaneously". This is characteristic of diffusion processes.

Def. 6.22 A Markov process 3X(E) sin an interval of R is a diffusion with instanteus drift mux) and instantaneous diffusion coefficient r2(x) if

(i) it has condinuous sample paths w.p. |

and (ii) $P(|X(t)-x|>\epsilon | X(0)=x)=o(t)$ for each $\epsilon>0$, $E((X(t)-x)|X(0)=x)=\mu(x)t+o(t),$ $E((X(t)-x)^2|X(0)=x)=\tau^2(x)t+o(t), \text{ as } t \text{ to}.$ $1_{|X(t)-x|\leq\epsilon}$ can be inserted to ensure think expectations.

 $\frac{E \times .6.4}{S_0}$ B.M. $\omega / drift \mu$. Let $\frac{d}{dr} \sim normal(0,1)$.

then

chech, using Zn normal(0,1)

 $P(|B_{\mu}(t)-x|7E|B_{\mu}(0)=x) = P(|2+\sqrt{t}\mu|7\frac{E}{\sqrt{t}}) = o(t), t \neq 0.$ $E(|B_{\mu}(t)-x|)|B_{\mu}(0)=x) = \mu t, so \mu(x)=\mu \text{ for all } x.$ $E(|B_{\mu}(t)-x|^{2}|B_{\mu}(0)=x) = \mu^{2}t^{2} + t = t + o(t).$ $So \sigma^{2}(x) = 1 \text{ for all } x.$

Ex. b. 5 Ornskin-Uhlenbech process. Let $\alpha > 0$, $\beta > 0$. $X(t) = e^{-\alpha t/2} B(\beta e^{\alpha t}), \text{ where } B(\cdot) \text{ is stand. B.M.}$ This is a Gaussian process (fin. dim. dist. are mult. normal)

with mean 0 and $Cov(X(s), X(t)) = \beta e^{-\alpha s/2 - \alpha t/2} \min\left(e^{\alpha s}, e^{\alpha t}\right) \qquad \text{Normal(0,ps)}$ $= \beta e^{-\alpha t s - t t/2}.$ So the process is startonary. $(X(\cdot + t) = X(\cdot \cdot))$

For
$$t>0$$
, $\chi(t) \mid \chi(0)=\chi \stackrel{D}{=} \frac{cov(\chi(t),\chi(0))}{var(\chi(0))} \chi + \left(var(\chi(t)) - \frac{cov^2(\chi(t),\chi(0))}{var(\chi(0))}\right)^{\frac{1}{2}} \chi$

$$= e^{-\alpha t/2} \chi + \sqrt{\beta} \left(1 - e^{-\alpha t}\right) \stackrel{D}{=} \left(\frac{cov^2(\chi(t),\chi(0))}{var(\chi(0))}\right)^{\frac{1}{2}} \chi$$

$$= e^{-\alpha t/2} \chi + \sqrt{\beta} \left(1 - e^{-\alpha t}\right) \stackrel{D}{=} \left(\frac{cov^2(\chi(t),\chi(0))}{var(\chi(0))}\right)^{\frac{1}{2}} \chi$$

$$= e^{-\alpha t/2} \chi + \sqrt{\beta} \left(1 - e^{-\alpha t}\right) \stackrel{D}{=} \left(\frac{cov^2(\chi(t),\chi(0))}{var(\chi(0))}\right)^{\frac{1}{2}} \chi$$

$$= e^{-\alpha t/2} \chi + \sqrt{\beta} \left(1 - e^{-\alpha t}\right) \stackrel{D}{=} \left(\frac{cov^2(\chi(t),\chi(0))}{var(\chi(0))}\right)^{\frac{1}{2}} \chi$$

$$= e^{-\alpha t/2} \chi + \sqrt{\beta} \left(1 - e^{-\alpha t}\right) \stackrel{D}{=} \left(\frac{cov^2(\chi(t),\chi(0))}{var(\chi(0))}\right)^{\frac{1}{2}} \chi$$

$$= e^{-\alpha t/2} \chi + \sqrt{\beta} \left(1 - e^{-\alpha t}\right) \stackrel{D}{=} \left(\frac{cov^2(\chi(t),\chi(0))}{var(\chi(0))}\right)^{\frac{1}{2}} \chi$$

$$= e^{-\alpha t/2} \chi + \sqrt{\beta} \left(1 - e^{-\alpha t}\right) \stackrel{D}{=} \left(\frac{cov^2(\chi(t),\chi(0))}{var(\chi(0))}\right)^{\frac{1}{2}} \chi$$

$$= e^{-\alpha t/2} \chi + \sqrt{\beta} \left(1 - e^{-\alpha t}\right) \stackrel{D}{=} \left(\frac{cov^2(\chi(t),\chi(0))}{var(\chi(0))}\right)^{\frac{1}{2}} \chi$$

$$= e^{-\alpha t/2} \chi + \sqrt{\beta} \left(1 - e^{-\alpha t}\right) \stackrel{D}{=} \left(\frac{cov^2(\chi(t),\chi(0))}{var(\chi(0))}\right)^{\frac{1}{2}} \chi$$

$$= e^{-\alpha t/2} \chi + \sqrt{\beta} \left(1 - e^{-\alpha t}\right) \stackrel{D}{=} \left(\frac{cov^2(\chi(t),\chi(0))}{var(\chi(0))}\right)^{\frac{1}{2}} \chi$$

$$= e^{-\alpha t/2} \chi + \sqrt{\beta} \left(1 - e^{-\alpha t}\right) \stackrel{D}{=} \left(\frac{cov^2(\chi(t),\chi(0))}{var(\chi(0))}\right)^{\frac{1}{2}} \chi$$

$$= e^{-\alpha t/2} \chi + \sqrt{\beta} \left(1 - e^{-\alpha t}\right) \stackrel{D}{=} \left(\frac{cov^2(\chi(t),\chi(0))}{var(\chi(0))}\right)^{\frac{1}{2}} \chi$$

$$= e^{-\alpha t/2} \chi + \sqrt{\beta} \left(1 - e^{-\alpha t}\right) \stackrel{D}{=} \left(\frac{cov^2(\chi(t),\chi(0))}{var(\chi(0))}\right)^{\frac{1}{2}} \chi$$

$$= e^{-\alpha t/2} \chi + \sqrt{\beta} \left(1 - e^{-\alpha t}\right) \stackrel{D}{=} \left(\frac{cov^2(\chi(t),\chi(0))}{var(\chi(0))}\right)^{\frac{1}{2}} \chi$$

$$= e^{-\alpha t/2} \chi + \sqrt{\beta} \left(1 - e^{-\alpha t}\right) \stackrel{D}{=} \left(\frac{cov^2(\chi(t),\chi(0))}{var(\chi(0))}\right)^{\frac{1}{2}} \chi$$

$$= e^{-\alpha t/2} \chi + \sqrt{\beta} \left(1 - e^{-\alpha t}\right) \stackrel{D}{=} \left(\frac{cov^2(\chi(t),\chi(0))}{var(\chi(0))}\right)^{\frac{1}{2}} \chi$$

$$= e^{-\alpha t/2} \chi + \sqrt{\beta} \left(1 - e^{-\alpha t}\right) \stackrel{D}{=} \left(\frac{cov^2(\chi(t),\chi(0))}{var(\chi(0))}\right)^{\frac{1}{2}} \chi$$

$$= e^{-\alpha t/2} \chi + \sqrt{\beta} \left(1 - e^{-\alpha t}\right) \stackrel{D}{=} \left(\frac{cov^2(\chi(t),\chi(0))}{var(\chi(0))}\right)^{\frac{1}{2}} \chi$$

$$= e^{-\alpha t/2} \chi + \sqrt{\beta} \left(1 - e^{-\alpha t}\right) \stackrel{D}{=} \left(\frac{cov^2(\chi(t),\chi(0))}{var(\chi(0))}\right)^{\frac{1}{2}} \chi$$

$$= e^{-\alpha t/2} \chi + \sqrt{\beta} \left(1 - e^{-\alpha t/2}\right) \stackrel{D}{=} \left(\frac{$$

The Drustein-Uhlenback process has a number of applications

(1) velocity of large solute molecule in a liquid.

due to friction the expected (instant.) change in velocity is

proportional to the relocity & in the opposite direction: $E(\Delta X(t)) = -\frac{\alpha}{2}X(t)$ due to randomners (friction is result of many small particles), the

change in velocity is variable: $Var(\Delta X(t)) = \tau \Delta t$.

(2) as a limit of the Ehrenfest model for heat exchange (in some way that finite state M.C. with limit of S.R.W.)

$$Pij = \begin{cases} i/2m, & j=i-1 \\ 1-i/2m, & j=i+1 \end{cases}$$
 for $i=1,...,m-1$

and poi = Pm, m-1 = 1 (reflecting boundaries)

(3) Cont. time analog of a AR(1) time soies model. $Y_n = a Y_{n-1} + \varepsilon_n , o < a < 1, \varepsilon_1, \varepsilon_2, ... i \le u / variance y$ if $1-a = \frac{\alpha}{2m}, y = \frac{\alpha}{m}, \beta = 1$,

then $X_m(t) = Y_{m+1} \longrightarrow Ornstein-Uhlenbech process, as m > \alpha$.

check:
$$var(Y_0) = var(Y_1) = \alpha^2 Var(Y_0) + \gamma \implies Var(Y_0) = \frac{\gamma}{1 - \alpha^2} \rightarrow 1$$
 os $m \rightarrow \infty$

$$cov(X_m(t), X_m(0)) = cov(Y_0, Y_{(mt)}) = \alpha^{(mt)} Var(Y_0) \qquad (by induction)$$

$$\rightarrow e^{-\alpha t/2}.$$

Ex. 6.6 Suppose X(+) = X, +oB(+) + ut where X, & B(.) are independent, B(·) is B.M. Define $Y(t) = e^{X(t)}.$ This is called seometric Brownian motion. Since x -> ex is a 1-1 function, Y(t) is a Marhor process. It has continuous sample paths. Therefore YCt) is a diffusion. Using the moment general Lunchion for the normal distribution: Wa normal (4, 52) then E(exw)=exunting We can compute E(Y(t)-Y(0) | Y(0)=y) = E(yent+08(t)-y) = y (eut + o2t/2 -1)). (Since E(ut+ B(t))=ut < ver(ut+ 0B(+)) = 02 t) Thos £ E(Y(+)-Y(0) | Y(0)=y) = y e(\(\mu +\arg \frac{1}{2}\)t_{-1} → y(µ+7/2) as t >0, This is the drift coefficient function for YG. Note that it depends on T'as well as on u. Getting the diffusion coefficient is a little more involved, First, analogous to the above, FE (Y(t)-Y(0) Y(0)=y)= y2 E(e2/1+2018(+)-1) = = + (e2ut+2+2+1) -> 242(u++2) Second + E ((Y(+)-Y(0))2 / Y(0)=y) = = = E(Y76)-Y70) |X=y)-== E(Y(0)(Y(+)-Y(0)) | Y(0)-y) -> 242 (M+Qz) - ZYZ (M+ Qz)

The key to understanding a diffusion process is the relationship between time changes and stake changes, the so-called indivites inal behavior of the process.

Thun 6.23 Suppose X(t) is a diffusion by drift function $\mu(x)$ and diffusion function $\sigma'(x)$, we assume these are continuous with "nice" derivatives at almost all x.

Suppose f(x) is smooth - it has two continuous derivatives and f'(x) is bounded.

 $\frac{1}{\partial t} E(f(X(t)) - f(X(0)) | X(0) = \chi) \Big|_{t=0}$

= $\mu(x)f(x) + \frac{\sigma^2(x)}{2}f''(x)$. The operator A that maps f(x) to this limit is called the infinitesimal generator of the process.

Under some regularity conditions, A uniquely characterizes the distribution of the diffusion process.

proof (very houristic) This is smiler to a couple examples above. By a second-corder Taylor's expansion,

 $\frac{1}{2} E(f(X(t)) - f(X(0)) | X(0) = X)$ $= \frac{1}{2} E(f(X)(X(t) - X(0)) | X(0) = X) + \frac{1}{2} E(f(X) + \frac{1}{2}(X(t) - X(0)) | X(0)$ as the $- f(X) \mu(X) + f(X) + f(X) + f(X) + f(X) + f(X) + f(X) + f(X)$ of diffusion process.

The derivative (limit) in Thm. 6.23 can hold for more general functions, depending on the particular process

Ex. 6.5 (cont.) Ornstein-Uhlenbeck process X(t) with $\mu(x) = -\frac{4x}{2}$ and $\sigma^2(x) = \alpha \beta$. Let $\lambda = \frac{\alpha}{2}$, $\sigma^2 = \alpha \beta$. Let $f(x) = e^{\epsilon x}$. Although the drivatives are unbounded, the O-U process is sufficiently vice for the result to hold.

Af(x) = $\mu(x) f(x) + \frac{r^2(x)}{2} f'(x)$ $= -\lambda x f(x) + \frac{\sigma^2}{2} f''(x)$

 $= \frac{1}{2} \left(-\alpha r \times + \alpha \beta r^{2} \right) e^{r \times} = \frac{1}{2} \left(-\alpha r \times + \alpha \beta r^{2} \right) e^{r \times} = \frac{1}{2} \left(-\alpha r \times + \alpha \beta r^{2} \right) e^{r \times} = \frac{1}{2} \left(-\alpha r \times + \alpha \beta r^{2} \right) e^{r \times} = \frac{1}{2} \left(-\alpha r \times + \alpha \beta r^{2} \right) e^{r \times} = \frac{1}{2} \left(-\alpha r \times + \alpha \beta r^{2} \right) e^{r \times} = \frac{1}{2} \left(-\alpha r \times + \alpha \beta r^{2} \right) e^{r \times} = \frac{1}{2} \left(-\alpha r \times + \alpha \beta r^{2} \right) e^{r \times} = \frac{1}{2} \left(-\alpha r \times + \alpha \beta r^{2} \right) e^{r \times} = \frac{1}{2} \left(-\alpha r \times + \alpha \beta r^{2} \right) e^{r \times} = \frac{1}{2} \left(-\alpha r \times + \alpha \beta r^{2} \right) e^{r \times} = \frac{1}{2} \left(-\alpha r \times + \alpha \beta r^{2} \right) e^{r \times} = \frac{1}{2} \left(-\alpha r \times + \alpha \beta r^{2} \right) e^{r \times} = \frac{1}{2} \left(-\alpha r \times + \alpha \beta r^{2} \right) e^{r \times} = \frac{1}{2} \left(-\alpha r \times + \alpha \beta r^{2} \right) e^{r \times} = \frac{1}{2} \left(-\alpha r \times + \alpha \beta r^{2} \right) e^{r \times} = \frac{1}{2} \left(-\alpha r \times + \alpha \beta r^{2} \right) e^{r \times} = \frac{1}{2} \left(-\alpha r \times + \alpha \beta r^{2} \right) e^{r \times} = \frac{1}{2} \left(-\alpha r \times + \alpha \beta r^{2} \right) e^{r \times} = \frac{1}{2} \left(-\alpha r \times + \alpha \beta r^{2} \right) e^{r \times} = \frac{1}{2} \left(-\alpha r \times + \alpha \beta r^{2} \right) e^{r \times} = \frac{1}{2} \left(-\alpha r \times + \alpha \beta r^{2} \right) e^{r \times} = \frac{1}{2} \left(-\alpha r \times + \alpha \beta r^{2} \right) e^{r \times} = \frac{1}{2} \left(-\alpha r \times + \alpha \beta r^{2} \right) e^{r \times} = \frac{1}{2} \left(-\alpha r \times + \alpha \beta r^{2} \right) e^{r \times} = \frac{1}{2} \left(-\alpha r \times + \alpha \beta r^{2} \right) e^{r \times} = \frac{1}{2} \left(-\alpha r \times + \alpha \beta r^{2} \right) e^{r \times} = \frac{1}{2} \left(-\alpha r \times + \alpha \beta r^{2} \right) e^{r \times} = \frac{1}{2} \left(-\alpha r \times + \alpha \beta r^{2} \right) e^{r \times} = \frac{1}{2} \left(-\alpha r \times + \alpha \beta r^{2} \right) e^{r \times} = \frac{1}{2} \left(-\alpha r \times + \alpha \beta r^{2} \right) e^{r \times} = \frac{1}{2} \left(-\alpha r \times + \alpha \beta r^{2} \right) e^{r \times} = \frac{1}{2} \left(-\alpha r \times + \alpha \beta r^{2} \right) e^{r \times} = \frac{1}{2} \left(-\alpha r \times + \alpha \beta r^{2} \right) e^{r \times} = \frac{1}{2} \left(-\alpha r \times + \alpha \beta r^{2} \right) e^{r \times} = \frac{1}{2} \left(-\alpha r \times + \alpha \beta r^{2} \right) e^{r \times} = \frac{1}{2} \left(-\alpha r \times + \alpha \beta r^{2} \right) e^{r \times} = \frac{1}{2} \left(-\alpha r \times + \alpha \beta r^{2} \right) e^{r \times} = \frac{1}{2} \left(-\alpha r \times + \alpha \beta r^{2} \right) e^{r \times} = \frac{1}{2} \left(-\alpha r \times + \alpha \beta r^{2} \right) e^{r \times} = \frac{1}{2} \left(-\alpha r \times + \alpha \beta r^{2} \right) e^{r \times} = \frac{1}{2} \left(-\alpha r \times + \alpha \beta r^{2} \right) e^{r \times} = \frac{1}{2} \left(-\alpha r \times + \alpha \beta r^{2} \right) e^{r \times} = \frac{1}{2} \left(-\alpha r \times + \alpha \beta r^{2} \right) e^{r \times} = \frac{1}{2} \left(-\alpha r \times + \alpha \beta r^{2} \right) e^{r \times} = \frac{1}{2} \left(-\alpha r \times + \alpha \beta r^{2} \right) e^{r \times} = \frac{1}{2} \left(-\alpha r \times + \alpha \beta r^{2} \right) e^{r \times} = \frac{1}{2} \left(-\alpha r \times + \alpha$

In this case, since X(t) has a normal distribution, one can also check this directly using the mgf for normal rvs.

 E_{x} , 6.6 (cont) Geom. B.M. Y(t) with $y(y) = (\mu + \frac{\pi}{2})y$, $\sigma^{2}(y) = \sigma^{2}y^{2}$. Suppose $f(y) = \log(1+y)$. Then

= E(log(1+Y(+))-log(1+y)|Y(0)=y)

→ (µ+5)y 1+y - 52y2 1 2 (1+y) , as t >0

Thun 6.24 (Kolmogorov's Backward & Forward Equations) Assume $X(t) \notin f(x)$ are as in thin 6.23. Let $g_t(x) = E(f(X(t))|X(t)=x) \quad (\text{of tendenoted } (P^tf)(x))$ $(i) \xrightarrow{\delta} g_t(x) = \mu(x) \xrightarrow{\delta} g_t(x) + \frac{r^2(x)}{2} \xrightarrow{\delta} g_t(x).$ (ii) $f = f(x(t)) f(x(t)) + \frac{\sigma^2(x(t))}{2} f'(x(t)) | x(0) = \frac{1}{2}$ The 1st is called the backward eguation as it references perturbations at the initial state x. The 2nd, which refers to X(t) is called the forward eguation. proof. These can be argued heuristically in a manner similar to the proof of Thm. 6.23. Thun 6.24 is used to prove many results about diffusions. The concept actually extends to (most) continuous time Marhou processes, including those with countable state space - if the infinitesimal generator A is defined appropriately.
The next result is one of the principle applications. Thin 6-25 Let 7x = min {t: X(t) = x}. Assume as before and that o'(x)>0 for all x e(c,d). For $P(T_{\alpha} < T_{b} | X(o) = x) = \int_{x}^{b} e^{-I(y)} dy$ c<a<x < b< d, Jo G-ICA) JA where $I(y) = \int_{\chi_0}^{y} \frac{2\mu(z)}{\sigma^2(z)} dz$ (χ_0 can be any fixed value in the state space.)

Note:
$$s(x) = e^{-I(x)}$$
 is called the scale density
and $s(x) = \int_{x_0}^{x} s'(y) dy$ is called the scale function.

Ex. 6.4 (cont.) O-U process. For simplicity, let $\lambda = \frac{\alpha}{2}$ and $\tau^2 = \alpha \beta$. Then $\mu(x) = -\lambda x$ and $\tau^2(x) = \sigma^2$ (constant) We can choose $\chi_0 = 0$. Then

 $T(y) = \int_0^y -2\lambda z dz = -\frac{\lambda y^2}{\nabla^2} \text{ and }$

s(y) = & e/22/02 dz.

So $P(T_a < T_b \mid X(b) = \pi) = \frac{\int_x^b e^{\lambda y^2/a^2} dy}{\int_a^b e^{\lambda y^2/a^2} dy}$, $a \le x \le b$

Letting $b \to \infty$, we can see that $P(T_a < \infty | X_o = x) = 1$. Likewise, $P(T_b < \infty | X(o) = x) = 1$.

proof of Thm 6.25. (again, houristic) Let $g(x) = P(T_a < T_b | X(o) = x)$.

1st step. Similar to our earlier proof (Thm. 6.20) for B. M.

with drift, (et Xs(t) = X(s+t) for smalls

P(min(Ta,Tb) = 5 | X(0)=x) = 0(5) as 5->0

So

g(x) = P(Ta < Tb, min(Ta, Tb) > 5 | X(0)=x) + 0(5)

= E(P(X(s+t) | risits a before b | X(s)) | X(o) = x) + o(s)

= E(g(X(s))|X(o)=x)+o(s)

Letting s >0

 $\frac{\partial}{\partial s} E(g(X(s)) - g(X(o)) | X(o) = x) = 0.$

2nd step. By Thm 6.23, we obtain $0 = \mu(x) g'(x) + \frac{T'(x)}{2} g''(x)$ (We are assuming we know that g''(x) is cont & bounded on the interval [a,b].)

That is, $g''(x) = -\frac{2\mu(x)}{T^2(x)}g'(x)$. This implies g'(x) = c, s'(x) and $g(x) = c_0 + c$, s(x)for some constants $c_0 \not\equiv c$.

3rd step. Using the initial conditions g(a) = 1 and g(b) = 0, we can solve for $c_0 \not\equiv c_1$. Plugging those values in leads to the desired conclusion.

Det. 6.26. Let X be the state space for X(t) (an interval

(i) X(t) is irreducible if P(Ty < 0 | X(0)=x)>0 all x, y ∈ X.

(ii) X(t) is recurrent if P(Ty < 0 | X(0)=x) = 1 all x, y ∈ X.

(iii) X(t) is positive recurrent if E(Ty | X(0)=x) < 0 all x, y ∈ X.

Note the distinction w/ definitions for countable state

Marhor processes (for which only y=x was required).

Most diffusions do not have first return times because

X(0)=x => infinitely many visits to x in [0,5], frrany 5>0.

Thm. 6.27 Assume M(x) & T'(x) are continuous and T'(x) > 0 for all x & X. Then X(t) is irreducible.

Hencefurth we assume X = (x, xu) is an open interval. If X is closed at either endpoint, or both, there is the issue of what happens when the endpoint is reached. The process could either reflect or be absorbed at that state. Dealing with these cases is a little more complicated.) Thun, 6,28 Assume as in Thun, 6.25, with $X=(x_1,x_0)$ and 02(x)>0 for all x. Sippose x1<a<x<b<xu (i) $P(7a < \infty (X_0 = x)) = \int_{x}^{x_u} s'(y) dy$ if the integrals 12 2(2) dy -0.W. 5x 5'(y)dy $P(T_b < \infty | X_o = x) =$ if the integrals are finite 12 8(h)94 0,6 ii) X(+) is recurrent iff both

[xus(y)dy = or and fros(y)dy = or,
xo proof. Just use Tim 6.25 and let b -> Xu (for Ta) and a > X, (for Tb). Ex. 6.5 (cont.) O-U mocess. We saw earlier that $S'(y) = e^{\lambda y^2/\delta^2}$ and that $P(T_y | X(0) = x) = | Sor all x, y$.

Ex. 6.6 (cont.) Grow BM.
$$\mu(x) = (\mu + \frac{\pi}{2} / x)$$
, $\pi^{2}(x) = \pi^{2} x^{2}$.

So (using $x_{0} = 1$) Note: $x_{0} = 0$, $x_{0} = \infty$.

 $I(x) = \int_{1}^{\infty} \frac{(2\mu + \frac{\pi}{2})^{2}}{7^{2}y^{2}} = (1 + \frac{2\pi}{2})^{2} \log x$
 $S'(x) = e^{-I(x)} = x^{-(1 + \frac{\pi}{2})/r^{2}}$.

Then

$$\int_{0}^{\infty} S'(x) dx = \infty \iff \mu \leq 0 \quad (P(T_{y} = \infty | X(x) = x) = 1 \text{ for } y > x)$$

So Geon BM is recurrent $\iff \mu = 0$.

(Actually, this is already apparent from the fact that Grown BM = $g(B_{\mu}(t))$ for a 1-1 known $g(\pi)$.)

Next we look at positive recurrence and stationary distributions. For this we need another function.

Use the same x_{0} as in defining $I(x)$ and $I(x)$ previously.

Dat. 6.29. The speed density is $m'(x) = \frac{2\pi}{2^{2}x^{2}}e^{-I(x)}$.

The speed function is $m(x) = \int_{x_{0}}^{x} m'(y) dy$.

Note: $\sigma^{2}(x) S'(x) m'(x) = 2$ for all x .

Thus, 6.30 Assume as before, and that $X(t)$ is recurrent.

(i) For $y < x$, $E(T_{y} | X(x) = x) < \infty \iff \int_{x_{0}}^{x_{0}} m'(y) dy < \infty$.

Ci) If $C = \int_{x_{0}}^{x_{0}} m'(y) dy < \infty$ (and $X(t)$) is recurrent. When $X(t)$ is positive recurrent with stationary density $m'(x)$.

Ex. 6.5 (cont) O-4 process, we saw above that this process is recurrent. Since $\mu(x) = -\lambda x$, $\sigma^2(x) = \sigma^2$ we find m'(x) = = = = 1x2/02, which is integrable on R. Therefore, X(t) is positive recurrent with normal (0, 2x) stationary distribution.

Ex. 6.6 (cont.) Geom BM w/ u=0 is recurrent. However, $m'(x) = \frac{2}{\sigma^2 x^2} \times \frac{2}{\sigma^2 x}$ is not integrable on either (1,00) or (0,1). So the process is not recurrent.

Ex. 6.7. (Feller's square root process) This model has been used in finance. We let $X = (0, \infty)$ and $\mu(x) = \lambda(\alpha - x)$, $\sigma^2(x) = \beta x$ ($\sigma(x) = \sqrt{\beta x}$), $\lambda > 0, \alpha > 0, \beta > 0$

 $I(x) = \int_{1}^{x} \frac{2\lambda(\alpha-y)}{\beta y} dy = \frac{2\lambda\alpha}{\beta} \log x - \frac{2\lambda}{\beta} (x-1).$

 $S(x) = x^{-2\lambda x/\beta} e^{2\lambda/\beta(x-1)}$

Clearly, $\int_{0}^{\infty} s'(x) dx = \infty$. Also, $\int_{0}^{1} s'(x) dx = \infty \iff 2\lambda \alpha \geqslant \beta$.

So X(t) is recoverent iff 2λα≥β.

Assume now that $2\lambda x \ge \beta$. $M'(x) = \frac{2}{\beta} x^{2\lambda \alpha/\beta - 1} e^{-2\lambda/\beta (x-1)}$, which

is integrable on (0,00). So X(t) is positive recurrent.

the stationary density (proportional to m(x))

13 gamma (22x 2x).

Thm. 6.31 Soppose X(t) is a diffusion with (vice)

drift $\mu(\kappa)$ and diffusion function $\sigma^2(\kappa)$. (et $g(\kappa)$)

be a 1-1 function that is twice continuously

diffusion by Y(t) = g(X(t)). Then Y(t) is a diffusion with $Y(t) = (\mu(\kappa)g'(\kappa) + \frac{\sigma^2(\kappa)}{2}g'(\kappa))|_{x=g'(y)}$ and diffusion $\mathcal{T}^2(y) = \sigma^2(\kappa)(g'(\kappa))^2|_{x=g'(y)}$.

Proof. A 1-1 function of a Murkov process is always

Markov. Formally, (at $t_1 < \dots < t_k$. Then (assume g(x)) here) $P(Y(t_k) \le y_k | Y(t_1) = y_1, \dots, Y(t_{k-1}) = y_{k-1})$ $= P(X(t_k) \le g^{-1}(y_k) | X(t_1) = g^{-1}(y_1), \dots, X(t_{k-1}) = g^{-1}(y_{k-1})$ $= P(X(t_k) \le g^{-1}(y_k) | X(t_{k-1}) = g^{-1}(y_{k-1})$ $= P(X(t_k) \le g_k | Y(t_{k-1}) = y_{k-1})$.

Since q is continuous and X(+) has cont. Sample paths, Y(+) also has cont. sample paths.
Therefore Y(+) is a diffusion.

We already know (Thm6.23) that $f \in (g(X(t)) - g(X(0)) | X(0) = X) \xrightarrow{t \ge 0} \mu(x) g'(x) + \frac{f^2(x)}{2} g''(x)$.

Substituting $x = g^{-1}(y)$ therefore gives the drift function for Y(t) = g(X(t)).

Likewise,

Potting the last two points together, $\frac{1}{1}E\left(\left(g(X(6))-g(X(0))\right)^{2} \mid X(0)=x\right)$ $=\frac{1}{1}E\left(g^{2}(X(6))-g^{2}(X(0))\mid X(0)=x\right)$ $-\frac{1}{1}2g(x)E\left(g(X(6))-g(X(0))\mid X_{0}=x\right)$ $\rightarrow \sigma^{2}(x)\left(g'(x)\right)^{2} \quad \text{(chech the algebra)}.$ Again substituting $x=g^{-1}(y)$, we have $\text{deduced the diffusion function for } Y(t)=g(X(t)). \quad \Pi$

Ex. 6.6 (conf.) Geometric BM.

Here $Y(t) = e^{B\mu(t)}$ where $B_{\mu}(t)$ is a B.M. w/drift.

Recall the derivations on page 6.21.

Ex. 6.7 (cont.) Consider a special case of Fellow's Square root process with $\mu(x) = 1-x$ and $\sigma^2(x) = x$. This is a positive process. Let $Y(t) = x^2(t)$.

and diffusion

$$\hat{\sigma}^{2}(y) = \times (2x)^{2} |_{x=y} = 4y^{3/2}$$

What is the process W(t) = log(X(t)) like? (exercise)

Ex. 6.8 Y(t) = B^(t) where B(t) is std. B.M. Here, g(x)=x² is not 1-1. However, Y(t) is Marhov (Jun. 6.13). Check that the M(y) & Fy) in Tum. 6.31 are weathingted.