応用数学

1

iを虚数単位とする. f(x) を実解析的関数で $f(x+2\pi)=f(x)$ を満たし,

$$D_{\xi} = \{ z = x + iy \in \mathbb{C} \mid x, y \in \mathbb{R}, |y| \le \xi \}$$

を含む開集合まで解析接続できるとする.ここで, ξ は正の定数である.このとき,f(x) はフーリエ級数展開可能で

$$f(x) = \sum_{k=-\infty}^{\infty} a_k e^{ikx}, \qquad a_k = \frac{1}{2\pi} \int_0^{2\pi} f(x)e^{-ikx} dx$$

が成り立つ. 以下の問いに答えよ.

(i) 複素平面上の点 $0, 2\pi, 2\pi + i\xi, i\xi$ をこの順で結んでできる長方形の経路に沿った周回 積分を考えることにより、任意の整数kに対し、

$$a_k = \frac{e^{k\xi}}{2\pi} \int_0^{2\pi} f(x+i\xi)e^{-ikx}dx$$

を示せ. また,

$$a_k = \frac{e^{-k\xi}}{2\pi} \int_0^{2\pi} f(x - i\xi)e^{-ikx} dx$$

を示せ.

- (ii) $L = \max\{|f(z)| \mid z \in D_{\xi}\}$ とする. 任意の整数 k に対し、 $a_k \leq Le^{-\xi|k|}$ を示せ.
- (iii) c > 1を定数とし,

$$f(x) = \frac{1}{\cos x - c}$$

とする. 任意の正の実数 $\eta < \log(c+\sqrt{c^2-1})$ に対し、ある M>0 が存在し、すべての整数 k に対し $a_k \leq Me^{-\eta|k|}$ が成り立つことを示せ.

Applied Mathematics

1

Let i denote the imaginary unit. Let f(x) be a real analytic function satisfying $f(x+2\pi) = f(x)$ and having an analytic continuation on an open set including

$$D_{\xi} = \{ z = x + iy \in \mathbb{C} \mid x, y \in \mathbb{R}, |y| \le \xi \}$$

where $\xi > 0$ is a constant. Then the Fourier series of f(x) converges to f(x) and

$$f(x) = \sum_{k=-\infty}^{\infty} a_k e^{ikx}, \qquad a_k = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-ikx} dx.$$

Answer the following questions.

(i) Considering the contour integration along the rectangular path connecting the points $0, 2\pi, 2\pi + i\xi$ and $i\xi$ in this order on the complex plane, show that for any integer k,

$$a_k = \frac{e^{k\xi}}{2\pi} \int_0^{2\pi} f(x+i\xi)e^{-ikx}dx.$$

Moreover show that

$$a_k = \frac{e^{-k\xi}}{2\pi} \int_0^{2\pi} f(x - i\xi) e^{-ikx} dx.$$

- (ii) Let $L = \max\{|f(z)| \mid z \in D_{\xi}\}$. Show that for any integer $k, a_k \leq Le^{-\xi|k|}$.
- (iii) Let c > 1 be a constant and let

$$f(x) = \frac{1}{\cos x - c}.$$

Show that for any positive real number $\eta < \log(c + \sqrt{c^2 - 1})$, there is a constant M > 0 such that for all integer k, $a_k \leq Me^{-\eta|k|}$ holds.

グラフ理論

2

G を点集合 V,枝集合 E から成る単純連結無向グラフとし,各枝 $e \in E$ には実数値の重み w(e) が付与されている.点の部分集合 $X \subseteq V$ に対し X と $V \setminus X$ の間の枝の集合をE(X) と記す.枝の部分集合 $S \subseteq E$ に対して $w(S) \triangleq \sum_{e \in S} w(e)$, $w_{\max}(S) \triangleq \max_{e \in S} w(e)$ と定める.以下の問いに答えよ.

- (i) $(X,F),X \neq V$ を G の部分木とし,G の最小木には木 (X,F) を含むものが存在すると仮定する. $a_F=uv\in E(X)$ を E(X) の中で重み最小の枝とする.このとき G の最小木には $(X\cup\{u,v\},F\cup\{a_F\})$ を含むものが存在することを証明せよ.
- (ii) 最小木を求めるプリム法を記述し、その正当性を証明せよ.
- (iii) (V,T^*) を G の最小木とする.このとき G の任意の全域木 (V,T) に対して $w_{\max}(T^*) \le w_{\max}(T)$ が成り立つことを証明せよ.

Graph Theory

2

Let G be a simple and connected undirected graph with a vertex set V and an edge set E such that each edge $e \in E$ is weighted by a real value w(e). For a subset $X \subseteq V$ of vertices, let E(X) denote the set of edges between X and $V \setminus X$. For a subset $S \subseteq E$ of edges, define $w(S) \triangleq \sum_{e \in S} w(e)$ and $w_{\max}(S) \triangleq \max_{e \in S} w(e)$. Answer the following questions.

- (i) Let $(X, F), X \neq V$ be a subtree of G and assume that one of the minimum spanning trees of G contains the tree (X, F). Let $a_F = uv \in E(X)$ be an edge with the minimum weight among the edges in E(X). Prove that one of the minimum spanning trees of G contains $(X \cup \{u, v\}, F \cup \{a_F\})$.
- (ii) Describe Prim's method for computing a minimum spanning tree and prove its correctness.
- (iii) Let (V, T^*) be a minimum spanning tree of G. Prove that $w_{\max}(T^*) \leq w_{\max}(T)$ holds for every spanning tree (V, T) of G.

オペレーションズ・リサーチ

3

 $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$, $\mathbf{C} \in \mathbb{R}^{n \times n}$ とする. パラメータ $\mathbf{x} = (x_1, \dots, x_n)^{\top} \in \mathbb{R}^n$ をもつ次の非線形計画問題を考える.

P(
$$\boldsymbol{x}$$
): Minimize
$$\sum_{i=1}^{n} (\boldsymbol{z}^{i})^{\top} \boldsymbol{z}^{i} + \boldsymbol{y}^{\top} \boldsymbol{y} + \boldsymbol{x}^{\top} \boldsymbol{C} \boldsymbol{x}$$
subject to $\boldsymbol{y} - \sum_{i=1}^{n} x_{i} \boldsymbol{z}^{i} = \boldsymbol{A} \boldsymbol{x} - \boldsymbol{b}$

ここで、P(x) の決定変数は $y, z^i \in \mathbb{R}^m$ (i = 1, ..., n) である。また、「は転置記号を表す。さらに、任意のx に対して、問題 P(x) の最適値が定義されているとし、その最適値を f(x) と表す。

以下の問いに答えよ.

- (i) 問題 P(x) のカルーシュ・キューン・タッカー条件 (Karush-Kuhn-Tucker 条件) を書け.
- (ii) 問題 P(x) の目的関数が、 $y, z^i \in \mathbb{R}^m$ (i = 1, ..., n) に対して凸であることを示せ.
- (iii) C を正定値対称行列と仮定し,次の最適化問題を考える.

P1: Minimize
$$f(\mathbf{x})$$
 subject to $\mathbf{x} \in \mathbb{R}^n$

 $x^* \in \mathbb{R}^n$ を問題 P1 の大域的最適解とするとき、以下の不等式が成り立つことを示せ、

$$(oldsymbol{x}^*)^ op oldsymbol{x}^* \leqq rac{oldsymbol{b}^ op oldsymbol{b}}{\lambda_{\min}(oldsymbol{C})}$$

ただし、 $\lambda_{\min}(C)$ は C の最小固有値を表す.

(iv) \boldsymbol{A} を $m \times n$ 零行列, \boldsymbol{b} を m 次元零ベクトルと仮定する.以下の最適化問題を考える.

P2: Minimize
$$f(\boldsymbol{x})$$

subject to $\boldsymbol{x}^{\top}\boldsymbol{x} \leq \alpha$

ここで、 $\alpha \in \mathbb{R}$ は正の定数である. $(\hat{x}, \rho), (\bar{x}, \rho) \in \mathbb{R}^n \times \mathbb{R}$ が共に問題 P2 のカルーシュ・キューン・タッカー条件を満たすとき、 $f(\hat{x}) = f(\bar{x})$ が成り立つことを示せ.

Operations Research

3

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$ and $\mathbf{C} \in \mathbb{R}^{n \times n}$. Consider the following nonlinear programming problem with parameter $\mathbf{x} = (x_1, \dots, x_n)^{\top} \in \mathbb{R}^n$:

$$P(\boldsymbol{x}): \quad \text{Minimize} \quad \sum_{i=1}^{n} (\boldsymbol{z}^i)^{\top} \boldsymbol{z}^i + \boldsymbol{y}^{\top} \boldsymbol{y} + \boldsymbol{x}^{\top} \boldsymbol{C} \boldsymbol{x}$$

$$\text{subject to} \quad \boldsymbol{y} - \sum_{i=1}^{n} x_i \boldsymbol{z}^i = \boldsymbol{A} \boldsymbol{x} - \boldsymbol{b},$$

where the decision variables are $\boldsymbol{y}, \boldsymbol{z}^i \in \mathbb{R}^m$ (i = 1, ..., n), with $^{\top}$ denoting transposition. Moreover, denote by $f(\boldsymbol{x})$ the optimal value of problem $P(\boldsymbol{x})$, assuming that it is well-defined for all \boldsymbol{x} .

Answer the following questions.

- (i) Write out the Karush-Kuhn-Tucker conditions of P(x).
- (ii) Prove that the objective function of problem P(x) is convex with respect to $y, z^i \in \mathbb{R}^m \ (i = 1, ..., n)$.
- (iii) Assume that C is symmetric positive definite and consider the following optimization problem:

P1: Minimize
$$f(x)$$
 subject to $x \in \mathbb{R}^n$.

Show that the following inequality holds when $x^* \in \mathbb{R}^n$ is a global optimal solution of problem P1:

$$(oldsymbol{x}^*)^ op oldsymbol{x}^* \leqq rac{oldsymbol{b}^ op oldsymbol{b}}{\lambda_{\min}(oldsymbol{C})},$$

where $\lambda_{\min}(C)$ denotes the smallest eigenvalue of C.

(iv) Assume that \mathbf{A} is the $m \times n$ zero matrix and \mathbf{b} is the m-dimensional zero vector. Consider the following optimization problem:

P2: Minimize
$$f(\boldsymbol{x})$$

subject to $\boldsymbol{x}^{\top}\boldsymbol{x} \leq \alpha$,

where $\alpha \in \mathbb{R}$ is a positive constant. Show that $f(\hat{x}) = f(\bar{x})$ holds, when both $(\hat{x}, \rho), (\bar{x}, \rho) \in \mathbb{R}^n \times \mathbb{R}$ satisfy the Karush-Kuhn-Tucker conditions of problem P2.

現代制御論

4

線形状態方程式

$$\frac{d}{dt}x = Ax + Bu, \quad x(0) = x_0$$

で記述されるシステムを考える.ただし, $A\in\mathbb{R}^{n\times n}, B\in\mathbb{R}^{n\times m}, x_0\in\mathbb{R}^n$ とする.対称行列 $P\in\mathbb{R}^{n\times n}$ を未知変数とする行列代数方程式

$$A^{\top}P + PA - PBB^{\top}P + I = 0 \tag{1}$$

を導入する.ただし,行列 A の転置行列を A^{T} ,ベクトル x の転置ベクトルとノルムを それぞれ x^{T} , $\|x\| = \sqrt{x^{\mathsf{T}}x}$ と表す.このとき以下の問いに答えよ.

- (i) $ab \neq 0$ を満たす $(a,b) \in \mathbb{R}^2$ に対して n=2, $A=\begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix}$, $B=\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ とする.このとき,システムが不可制御となる (a,b) に対して,(1) の正定解 P の個数を求めよ.
- (ii) B=0 とし、ある正定行列 P が (1) の解であるとする.このとき、任意の x_0 に対して $\lim_{t\to\infty}\|x(t)\|=0$ であることを示せ.
- (iii) あるPが(1)の解であるとする。このとき,任意の x_0 および $\tau>0$ に対して $\int_0^\tau (\|x(t)\|^2 + \|u(t)\|^2) dt = x_0^\top P x_0 x(\tau)^\top P x(\tau) + \int_0^\tau \|u(t) + B^\top P x(t)\|^2 dt$ が成り立つことを示せ.
- (iv) $H = \begin{bmatrix} A & -BB^\top \\ -I & -A^\top \end{bmatrix}$ とするとき, λ が H の固有値ならば $-\lambda$ も H の固有値であることを示せ.

Modern Control Theory

4

A linear system is described by the state equation

$$\frac{d}{dt}x = Ax + Bu(t), \quad x(0) = x_0,$$

where $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $x_0 \in \mathbb{R}^n$. A matrix algebraic equation

$$A^{\mathsf{T}}P + PA - PBB^{\mathsf{T}}P + I = 0 \tag{1}$$

with respect to a symmetric matrix $P \in \mathbb{R}^{n \times n}$ is introduced. The transpose of a matrix A is denoted by A^{\top} . The transpose and the norm of a vector x are denoted by and x^{\top} and $||x|| = \sqrt{x^{\top}x}$, respectively. Answer the following questions.

- (i) Let $n=2, A=\begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix}, B=\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ with $(a,b)\in\mathbb{R}^2$ such that $ab\neq 0$. Then, find the number of positive definite solution P to (1) for (a,b) which makes this system uncontrollable.
- (ii) Suppose that B=0 and that a positive definite matrix P satisfies (1). Prove $\lim_{t\to\infty} ||x(t)|| = 0$ holds for any x_0 .
- (iii) Suppose that P is a solution to (1). Prove that

$$\int_0^{\tau} (\|x(t)\|^2 + \|u(t)\|^2) dt = x_0^{\mathsf{T}} P x_0 - x(\tau)^{\mathsf{T}} P x(\tau) + \int_0^{\tau} \|u(t) + B^{\mathsf{T}} P x(t)\|^2 dt$$

holds for any x_0 and $\tau > 0$.

(iv) Define $H = \begin{bmatrix} A & -BB^{\top} \\ -I & -A^{\top} \end{bmatrix}$. Prove that for any eigenvalue λ of H, $-\lambda$ is also an eigenvalue of H.

物理統計学

5

エネルギーレベルが

$$E_n = h\nu\left(\frac{1}{2} + n\right) \quad n = 0, 1, 2, 3, \dots$$

なる振動数 $\nu(>0)$ の振動子系を考える. ここで h(>0) は定数であり, エネルギーレベル の縮退は無く, 同系の分配関数 Z は

$$Z = \sum_{n=0}^{\infty} \exp\left(-\frac{E_n}{kT}\right)$$

で与えられるとする. ただし, k>0 をボルツマン定数, T を絶対温度とする. 以下の問い に答えよ.

- (i) 分配関数 Z を計算せよ.
- (ii) エネルギーEの期待値 $\langle E \rangle$ を求めよ.
- (iii) 比熱 $C = \frac{d\langle E \rangle}{dT}$ を求めよ.
- (iv) 比熱 C の低温極限 $(T \rightarrow 0)$ を求めよ.
- (v) 比熱 C の高温極限 $(T \to \infty)$ を求めよ.

Physical Statistics

5

Consider an oscillator system of a frequency ν with the energy levels

$$E_n = h\nu\left(\frac{1}{2} + n\right)$$
 for $n = 0, 1, 2, 3, ...$

where h(>0) is a constant and no energy level is degenerate. The distribution function Z of the system with the absolute temperature T is given by

$$Z = \sum_{n=0}^{\infty} \exp\left(-\frac{E_n}{kT}\right),\,$$

where k(>0) is the Boltzmann constant. Answer the following questions.

- (i) Compute the distribution function Z.
- (ii) Obtain the average energy $\langle E \rangle$.
- (iii) Obtain the specific heat $C = \frac{d\langle E \rangle}{dT}$.
- (iv) Obtain the specific heat C in the low temperature limit $(T \to 0)$.
- (v) Obtain the specific heat C in the high temperature limit $(T \to \infty)$.

力学系数学

6

a(t), b(t) を t のある有理式として次の実微分方程式を考える.

$$\frac{d^2x}{dt^2} + a(t)\frac{dx}{dt} + b(t)x = 0\tag{1}$$

以下の問いに答えよ.

(i) $k \ge 1$ をある整数として, $x = t^k$ が式 (1) の解であるための a(t), b(t) に関する必要十分条件を求めよ.

以下では、ある整数 $k \ge 1$ に対して (i) で求めた条件が成り立つものとし、 $\phi(t)$ を t^k と線形独立な解として、

$$p(t) = t\frac{d\phi}{dt}(t) - k\phi(t)$$

とおく.

- (ii) a(t), b(t) を p(t) を用いて表わせ.
- (iii) p(t) = t のとき a(t), b(t) を定めよ.
- (iv) 式(1)のすべての解が定数でない多項式のとき, a(t), b(t) は多項式でないことを示せ.

Mathematics for Dynamical Systems

6

Let a(t) and b(t) be rational functions of t. Consider the real ordinary differential equation

$$\frac{d^2x}{dt^2} + a(t)\frac{dx}{dt} + b(t)x = 0.$$

$$\tag{1}$$

Answer the following questions.

(i) Obtain a necessary and sufficient condition on a(t) and b(t) for $x = t^k$ to be a solution to Eq. (1) for each integer $k \ge 1$.

In the following, assume that the condition obtained in (i) holds for an integer $k \ge 1$, and let

$$p(t) = t\frac{d\phi}{dt}(t) - k\phi(t),$$

where $\phi(t)$ is a solution which is linearly independent of t^k .

- (ii) Write down a(t) and b(t) in terms of p(t).
- (iii) Determine a(t) and b(t) when p(t) = t.
- (iv) Show that a(t) and b(t) are not polynomials if all solutions to Eq. (1) are nonconstant polynomials.