计算机问题求解-论题 3.6 图的基本概念

陶先平 2016年9月29日

Königsberg七桥问题

- 问题的抽象:
 - 用顶点表示对象-"地块"
 - 用边表示对象之间的关系-"有桥相连"

"巧渡河"问题

- •问题:人、狼、羊、菜用一条只能同时载两位的小船渡河,"狼羊"、"羊菜"不能在无人在场时共处,当然只有人能架船。
- 图模型: 顶点表示"原岸的状态",两点之间有边当且仅当一次合理的渡河"操作"能够实现该状态的转变。
- 起始状态是"人狼羊菜",结束状态是"空"。
- 问题的解: 找到一条从起始状态到结束状态的尽可能短的通路。

"巧渡河"问题的解

• 注意: 在"人狼羊菜"的16种组合种允许出现的只有10种。

考试时间编排问题

- •问题:排考试时间,一方面要总时间尽可能短(假设教室没问题),另一方面一个同学所选的任意两门课不能同时间。
- 图模型:每门课程对应一个顶点。任意两点相邻当且仅当对应的两门课程有相同的选课人。
- 解:用不同颜色给顶点着色。相邻的点不能同颜色。则最少着色数即至少需要的考试时间段数(可以将颜色相同的点所对应的课程安排在同一时间)。

如何定义图这个数学概念?

What we have drawn in Figure 1.1 is called a graph. Formally, a **graph** *G* consists of a finite nonempty set *V* of objects called **vertices** (the singular is **vertex**) and a set *E* of 2-element subsets of *V* called **edges**. The sets *V* and *E* are the **vertex set** and **edge set** of *G*,

$$G = (V, E)$$

$$E = \{ \{u, v\} \mid u, v \in V \}$$

有向图和无向图之间的本质区别是什么?

Figure 1.37: Digraphs

无向图是有向图的特殊类, 简化表达为无向图

如何用图进行问题建模?

- 构造图节点
 - 确定什么作为图节点?
- 构造图中的边
 - 确定什么作为图中的边?
- 用图中数学语言重述待解问题
 - 从自然语言到形式(数学)语言

Theorem 1.6 If a graph G contains a u - v walk of length l, then G contains a u - l path of length at most l.

Proof. Among all u - v walks in G, let

$$P = (u = u_0, u_1, \dots, u_k = v)$$

be a u - v walk of smallest length k. Therefore, $k \le l$. We claim that P is a u - v path. Assume, to the contrary, that this is not the case. Then some vertex of G must be repeated in P, say $u_i = u_j$ for some i and j with $0 \le i < j \le k$. If we then delete the vertices u_{i+1} , u_{i+

$$(u = u_0, u_1, \dots, u_{i-1}, u_i = u_j, u_{j+1}, \dots, u_k = v)$$

whose length is less than k, which is impossible. Therefore, as claimed, P is a u-v path of length $k \le l$.

图理明用的法中的,如构定证多此造

图的连通性和牢固程度是图结构的重要特性

Theorem 1.10 Let G be a graph of order 3 or more. Then G is connected if and only if G contains two distinct vertices u and v such that G - u and G - v are connected.

这个定理给了你什么直观感觉?

如果需要找到某个点到其它点的距离,你有什么办法?

Figure 1.19: Distances from a given vertex

如果需要找到某个连通图的直径,你有什么办法?

Theorem 1.12 A nontrivial graph G is a bipartite graph if and only if G contains no odd cycles.

直观上看,这个结论是否合理?

- 证明思路:
 - 从任意一点出发,按距离值的奇偶性将节点进行划分;
 - 证明所有的边都跨两个子集
 - 反证法

图中的参数

•我们讨论一个图的"参数",主要目的是什么?你应该记住的参数有哪些?

$$0 \le \delta(G) \le \deg v \le \Delta(G) \le n - 1.$$

图第一定理(握手定理)

Theorem 2.1 (The First Theorem of Graph Theory) If G is a graph of size m, then

$$\sum_{v \in V(G)} \deg v = 2m.$$

图的连通性

- 直觉上,图的连通性和边数(size)有什么关系?
- 随着边数的增长, 什么时候, 图必定是连通的?
- 当我们将边数转换为点度和时,结论如何?

Theorem 2.4 Let G be a graph of order n. If

$$\deg u + \deg v \ge n - 1$$

为什么说这个 结论很sharp?

for every two nonadjacent vertices u and v of G, then G is connected and diam $(G) \le 2$.

Theorem 2.6 Let r and n be integers with $0 \le r \le n - 1$. There exists an r-regular graph of order n if and only if at least one of r and n is even.

1,为什么r和n都是奇数时,这个图不可能是r-regular的?

2, 当r或者n中有一个为偶数时,构造r-regular图

First, assume that r is even. Then $r = 2k \le n - 1$ for some nonnegative integer $k \le (n-1)/2$. For each i $(1 \le i \le n)$, we join v_i to $v_{i+1}, v_i + 2, \ldots, v_{i+k}$ and to $v_{i-1}, v_{i-2}, \ldots, v_{i-k}$. If we think of arranging the vertices v_1, v_2, \ldots, v_n cyclically, then each vertex v_i is adjacent to the k vertices that immediately follow v_i and the k vertices that immediately precede v_i . Thus $H_{r,n}$ is r-regular.

Theorem 2.6 Let r and n be integers with $0 \le r \le n - 1$. There exists an r-regular graph of order n if and only if at least one of r and n is even.

Second, assume that r is odd. Then n=2l is even. Also, $r=2k+1 \le n-1$ for some nonnegative integer $k \le (n-2)/2$. We join v_i to the 2k vertices described above as well as to v_{i+l} . In this case, we again think of arranging the vertices $v_1, v_2, ..., v_n$ cyclically and joining each vertex v_i to the k vertices immediately following it, the k vertices immediately preceding it and the unique vertex "opposite" v_i . Thus $H_{r,n}$ is r-regular. For r=5 and n=1

度数序列

- 图的度数序列及非负整数序列的可图化
 - 非负整数序列(d₁,d₂,...,d_n)是图的度数序列当且仅当其各项之和 为偶数。
 - 必要性显然。
 - 可以用构造法证明充分性

注意: 奇数顶点成对出现。构造图如下:

奇数顶点两两相连。度数还小于相应的di的顶点上加上相应数量的环

度序列可简单图化:

• Havel定理:

- 度序列排成不增序: $d_1 \ge d_2 >= ... >= d_n$,则d可简单图化当且仅当d'=(d_2 -1, d_3 -1, ... $d_{(d1+1)}$ -1, $d_{(d1+2)}$, $d_{(d1+3)}$, ... d_n)可简单图化
- •说明:把d排序以后,找出度最大的点(设度为d₁),把它和度次大的d₁个点之间连边,然后这个点就可以不管了,一直继续这个过程,直到建出完整的图,或出现负度等明显不合理的情况。

构造法,是利用图论解题时的重要方法!但是我们必须注意构造过程中的"一般性"

用图中点相邻矩阵表示无向图

Theorem 2.13 Let G be a graph with vertex set $V(G) = \{v_1, v_2, ..., v_n\}$ and adjacency matrix $A = [a_{ij}]$. Then the entry $a_{ij}^{(k)}$ in row i and column j of A^k is the number of distinct $v_i - v_j$ walks of length k in G.

$$a_{ij}^{(k+1)} = \sum_{t=1}^{n} a_{it}^{(k)} a_{tj} = a_{i1}^{(k)} a_{1j} + a_{i2}^{(k)} a_{2j} + \ldots + a_{in}^{(k)} a_{nj}.$$

上式中的每个乘法的结果表示了什么? 其中的加法又表示了什么?

Merging Two Vertices

Matrix Operation for Merging

$$v_0$$
, v_2 , v_3 , v_4 , v_5 , v_6
 v_0 , $\begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ v_4 & 1 & 0 & 0 & 0 & 0 & 0 \\ v_5 & 1 & 1 & 0 & 0 & 0 & 0 \\ v_6 & 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}$

Merging v_0 and v_1

Merging v_0 ' and v_2

Open topics

- •战争时期我们需要将n个通讯基站连接起来以保障通讯安全。为提高安全性,每个基站都有k个对外信道(当敌人破坏其中一条或k-1条时,基站仍能工作)。请你设计基站连接方案,使得整个通讯系统最为坚固。
- · 你能写出一个算法,找到一个连通图的直径吗? 提示: 节点的 merge对你可能有帮助