# Background on modeling for explanation

MODELING WITH DATA IN THE TIDYVERSE

Albert Y. Kim

Assistant Professor of Statistical and Data Sciences





### Course overview

- 1. Introduction to modeling: theory and terminology
- 2. Regression:
  - Simple linear regression
  - Multiple regression
- 3. Model assessment

### General modeling framework formula

$$y = f(\vec{x}) + \epsilon$$

#### Where:

- y: outcome variable of interest
- $\vec{x}$ : explanatory/predictor variables
- f(): function of the relationship between y and  $\vec{x}$  AKA the signal
- $\epsilon$ : unsystematic error component AKA *the noise*

### Two modeling scenarios

Modeling for either:

- Explanation:  $\vec{x}$  are *explanatory* variables
- Prediction:  $\vec{x}$  are *predictor* variables

### Modeling for explanation example

A University of Texas in Austin study on teaching evaluation scores (available at openintro.org).

**Question**: Can we explain differences in teaching evaluation score based on various teacher attributes?

#### Variables:

- y: Average teaching score based on students evaluations
- $\vec{x}$ : Attributes like rank , gender , age , and bty\_avg

### Modeling for explanation example

From the moderndive package for ModernDive.com:

```
library(dplyr)
library(moderndive)
glimpse(evals)
```

Three basic steps to exploratory data analysis (EDA):

- 1. Looking at your data
- 2. Creating visualizations
- 3. Computing summary statistics



```
library(ggplot2)
ggplot(evals, aes(x = score)) +
  geom_histogram(binwidth = 0.25) +
  labs(x = "teaching score", y = "count")
```





## Let's practice!

MODELING WITH DATA IN THE TIDYVERSE



# Background on modeling for prediction

MODELING WITH DATA IN THE TIDYVERSE

Albert Y. Kim

Assistant Professor of Statistical and Data Sciences





### Modeling for prediction example

A dataset of house prices in King County, Washington State, near Seattle (available at **Kaggle.com**).

**Question**: Can we predict the sale price of houses based on their features?

#### Variables:

- y: House sale price is US dollars
- $\vec{x}$ : Features like sqft\_living , condition , bedrooms , yr\_built , waterfront

### Modeling for prediction example

From the moderndive package for ModernDive:

```
library(dplyr)
library(moderndive)
glimpse(house_prices)
```

```
library(ggplot2)
ggplot(house_prices, aes(x = price)) +
   geom_histogram() +
   labs(x = "house price", y = "count")
```

### Histogram of outcome variable





### Gapminder data

1952 country-level life expectancy vs population





### Log10 rescaling of x-axis

1952 country-level life expectancy vs population





### Log10 transformation

```
# log10() transform price and size
house_prices <- house_prices %>%
  mutate(log10_price = log10(price)) %>%
  select(price, log10_price)
```

```
# A tibble: 21,613 x 2
    price log10_price
    <dbl>
              <dbl>
   221900
          5.35
          5.73
   538000
          5.26
   180000
   604000
          5.78
   510000
              5.71
6 1225000
               6.09
```

### Histogram of new outcome variable

```
# Histogram of original outcome variable
ggplot(house_prices, aes(x = price)) +
  geom_histogram() +
  labs(x = "house price", y = "count")
```

```
# Histogram of new, log10-transformed outcome variable
ggplot(house_prices, aes(x = log10_price)) +
   geom_histogram() +
   labs(x = "log10 house price", y = "count")
```

### Comparing before and after log10-transformation





## Let's practice!

MODELING WITH DATA IN THE TIDYVERSE



# The modeling problem for explanation

MODELING WITH DATA IN THE TIDYVERSE

Albert Y. Kim

Assistant Professor of Statistical and Data Sciences





### Recall: General modeling framework formula

$$y = f(\vec{x}) + \epsilon$$

#### Where:

- y: outcome variable of interest
- $\vec{x}$ : explanatory/predictor variables
- f(): function of the relationship between y and  $ec{x}$  AKA the signal
- $\epsilon$ : unsystematic error component AKA *the noise*

### The modeling problem

Consider  $y = f(\vec{x}) + \epsilon$ .

- 1. f() and  $\epsilon$  are unknown
- 2. n observations of y and  $ec{x}$  are known/given in the data
- 3. **Goal**: Fit a model  $\hat{f}()$  that *approximates* f() while ignoring  $\epsilon$
- 4. Goal restated: Separate the signal from the noise
- 5. Can then generate *fitted/predicted* values  $\hat{y} = \hat{f}\left(\vec{x}
  ight)$

### Modeling for explanation example





### **EDA** of relationship

```
library(ggplot2)
library(dplyr)
library(moderndive)

ggplot(evals, aes(x = age, y = score)) +
   geom_point() +
   labs(x = "age", y = "score",
        title = "Teaching score over age")
```

### **EDA** of relationship





### Jittered scatterplot

```
library(ggplot2)
library(dplyr)
library(moderndive)
# Use geom_jitter() instead of geom_point()
ggplot(evals, aes(x = age, y = score)) +
  geom_jitter() +
  labs(x = "age", y = "score",
       title = "Teaching score over age (jittered)")
```

### Jittered scatterplot

Teaching score over age (jittered)





### **Correlation coefficient**





### Computing the correlation coefficient



## Let's practice!

MODELING WITH DATA IN THE TIDYVERSE



# The modeling problem for prediction

MODELING WITH DATA IN THE TIDYVERSE

Albert Y. Kim

Assistant Professor of Statistical and Data Sciences





### Modeling problem

Consider  $y = f(\vec{x}) + \epsilon$ .

- 1. f() and  $\epsilon$  are unknown
- 2. n observations of y and  $\vec{x}$  are known/given in the data
- 3. **Goal**: Fit a model  $\hat{f}()$  that *approximates* f() while ignoring  $\epsilon$
- 4. **Goal restated**: Separate the *signal* from the *noise*
- 5. Can then generate *fitted/predicted* values  $\hat{y} = \hat{f}\left(\vec{x}
  ight)$

### Difference between explanation and prediction

Key difference in modeling goals:

- 1. **Explanation**: We care about the form of  $\hat{f}()$ , in particular any values quantifying relationships between y and  $\vec{x}$
- 2. **Prediction**: We don't care so much about the form of  $\hat{f}()$ , only that it yields "good" predictions  $\hat{y}$  of y based on  $\vec{x}$

### Condition of house

```
house_prices %>%
  select(log10_price, condition) %>%
  glimpse()
```

```
Observations: 21,613
Variables: 2
$ log10_price <dbl> 5.346157, 5.730782, 5.255273...
$ condition <fct> 3, 3, 3, 5, 3, 3, 3, 3, 3, 3...
```

### Exploratory data visualization: boxplot

```
library(ggplot2)
library(dplyr)
library(moderndive)
# Apply log10-transformation to outcome variable
house_prices <- house_prices %>%
  mutate(log10_price = log10(price))
# Boxplot
ggplot(house_prices, aes(x = condition, y = log10_price))
  geom_boxplot() +
  labs(x = "house condition", y = "log10 price",
       title = "log10 house price over condition")
```

### Exploratory data visualization: boxplot







### **Exploratory data summaries**

```
house_prices %>%
  group_by(condition) %>%
  summarize(mean = mean(log10_price),
        sd = sd(log10_price), n = n())
```

### **Exploratory data summaries**

```
# Prediction for new house with condition 4 in dollars 10^{5.65}
```

446683.6



## Let's practice!

MODELING WITH DATA IN THE TIDYVERSE

