Colgate University, Physics and Astronomy, 2023
Daniel A. Espinosa, Prof. Kenneth (Ken) Segall

Time-encoded Superconducting Spiking Neural Networks

Large artificial neural networks are expensive in data, energy, money & time

(1)

Record-setting training costs: using price-performance trend

Time-encoded Superconducting Spiking Neural Networks

Why use superconducting hardware?

Fast

Energy efficient

Superconducting spikes use about 10^{-18} Joules each.

Human brain? About 10^{-11} Joules each.

On average a 6 to 7 order of magnitude improvement. (!!)

(2-3)

Neural network basics

As universal approximators, artificial neural networks are remarkably versatile at tackling diverse tasks, such as image recognition and natural language processing.

(2)

Missing piece: Time Encoding

So, you can make a network... how can we tell if it is a useful one?

The XOR Separability Problem!

Logical Truth Table

A	В	OUT
0	0	0
0	1	1
1	0	1
1	1	0

Time Encoded Table

A	В	OUT
ТО	ТО	Т0′
ТО	T1	T1'
T1	Т0	T1'
T1	T1	T0'

Time-to-First-Spike

A	В	OUT
500ps	500ps	535ps
500ps	550ps	550ps
550ps	500ps	550ps
550ps	550ps	585ps

The SC spiking neural network

Can we train this network?

Yes, we can!

Loss Function

$$L_1(y, \hat{y}) = \sum_{i=1}^n |y_i - \hat{y}_i|$$

y = true valuesŷ = predicted values

Gradient Descent

$$\theta_{i+1} = \theta_i - \alpha \nabla L(\theta_i)$$

 θ = weight

 α = learning rate

 $L(\theta)$ = loss of model using weight θ

Before Training

After Training

Before and After Training

Time encoded: 3 Neurons

Rate encoded: 5 Neurons

Creating the networks must have taken ages, right?

Python made it simple.

We can do any graph we want, sort of.

Research trajectory?

2020 2023 2021 2022 2024 Started working Solved XOR Spiking MNIST? Continued Hiatus, refined with Prof. Segall, reservoir work, the Python separability. Spike-GPT? looking into codebase. we stumbled Python Optimization? upon ghosting reservoirs and automated for the first time. recurrent design. networks. Network sizes of 5x2 possible.

Summary

Daniel A. Espinosa Gonzalez despinosa@colgate.edu

Thank you

References

- Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dandres. Quantifying the Carbon Emissions of Machine Learning, November 2019. arXiv:1910.09700 (1)
- Espinosa, Segall. Time-encoded Superconducting Spiking Neural Networks, May 2023 (2)
- Wang Y, Wang R, Xu X. Neural Energy Supply-Consumption Properties Based on Hodgkin-Huxley Model. Neural Plast. 2017;2017:6207141. doi: 10.1155/2017/6207141. Epub 2017 Feb 16. PMID: 28316842; PMCID: PMC5337805. (3)
- Chiarello, F, P Carelli, M G Castellano, and G Torrioli. "Artificial Neural Network Based on SQUIDs: Demonstration of Network Training and Operation." Superconductor Science and Technology 26, no. 12 (December 1, 2013): 125009. https://doi.org/10.1088/0953-2048/26/12/125009. (4)
- Bodo Rueckauer and Shih-Chii Liu. Conversion of analog to spiking neural networks using sparse temporal coding. In 2018 IEEE International Symposium on Circuits and Systems (ISCAS), pages 1-5, Florence, 2018. IEEE.
- Rui-Jie Zhu, Qihang Zhao, and Jason K. Eshraghian. SpikeGPT: Generative Pre-trained Language Model with Spiking Neural Networks. 2023. Publisher: arXiv Version Number: 2.

Learning Rate

Vanishing Gradients

The function searches for the maximum voltage value and returns the corresponding time value as the time of the first spike.

We assume the maximum value is an action potential.

Detecting Spike Timing

Loss Curves