Comparação de classificadores

Procedimento típico

- Validação cruzada k-fold estratificado
 - A cada iteração todos os modelos usam as mesmas partições de treinamento e validação
- Média de medida de desempenho obtida sob igualdade de condições: acurácia, precisão, cobertura, medida-F, AUC, etc..
- O modelo que obtiver melhor média, Vence!

Problema

- O modelo que obtiver melhor média, Vence?
- Muitas vezes, as diferenças não são significativas.

Teste de hipótese

- Hipótese estatística é uma alegação sobre o valor de um ou mais parâmetros
 - Medidas de desempenho (alg. 1 e alg. 2): μ_1 e μ_2
 - Hipóteses (H): $\mu_1 \mu_2 = 0$ ou $\mu_1 \mu_2 > 0$ ou etc..
- Normalmente há duas suposições contraditórias:
 - $H_0: \mu_1 \mu_2 = 0$ (hipótese *nula*, inicialmente assumida como verdadeira)
 - vs. $H_1: \mu_1 \mu_2 \neq 0$ (hipótese alternativa):
- O teste visa então rejeitar ou não a Hipótese nula

Procedimento de teste

- Regra para decidir se H₀ deve ser aceita
- Possui:
 - Estatística de teste (em função dos dados da amostra em que a decisão se baseia)
 - Região de rejeição (representa o conj. de val. da estatística de teste p/ os quais H₀ é rejeitada. H₀ é rejeitada se valor da estat. calc. cair na região de rejeição.)
- Dois tipos de erro: Tipo I ($H_0 = V$ rejeitada) e Tipo II ($H_0 = F$ ñ rejeitada)
- A região de rejeição é calculada de modo a manter a probabilidade lpha de ocorrência de erro **Tipo I** sob controle

Procedimento de teste

- ...
- Dois tipos de erro: Tipo I ($H_0 = V$ rejeitada) e Tipo II ($H_0 = F$ ñ rejeitada)
- A região de rejeição é calculada de modo a manter a probabilidade α de ocorrência de erro **Tipo I** sob controle

Nível de significância

 α = 0.05 \rightarrow 95% de confiança de não ter cometido erro Tipo I

Procedimentos de teste para ML

- <u>OBS</u>: ainda **não há consenso** sobre melhor procedimento, pois amostras apresentam dependências!
- Testes **não paramétricos** → ñ há restrição de que as amostras sigam alguma distribuição conhecida (ex: Normal)
- Bastante utilizado: Wilcoxon signed-rank
 - Baseado em ranqueamento e permite adição de outras medidas de desempenho (ex: tempo de treinamento)
- Dois cenários de testes:
 - Conjunto de dados específico é o alvo → usar único conjunto de dados
 - Algoritmo é o alvo → usar vários conjuntos de dados (preferível)

Comparação de dois modelos: Wilcoxon signed-rank

H₀: modelos A e B são equivalentes

- 1. Aplica-se A e B a alguns conjuntos de dados (i = 1...N)
- 2. Calcula-se $d_i = \mu_B \mu_A$
- 3. Ranqueia-se via $|\mu_B \mu_A|$. Havendo empate, atribui-se valores médios

Conj. dados	C4.5	C4.5+m	Diferença	Dif_absoluta	Posição
Pulmão	0,583	0,583	0,000	0,000	1,5
Fungo	0,583	0,583	0,000	0,000	1,5
Atmosfera	0,882	0,888	+0,006	0,006	3,0
Mama	0,599	0,591	-0,008	0,008	4,0

Comparação de dois modelos: Wilcoxon signed-rank

4. Calcula-se
$$R+e$$
 $R R+=\sum_{d_i>0} rank(d_i) + \frac{1}{2}\sum_{d_i=0} rank(d_i)$ (B melhor que A)

$$R-=\sum_{d_i<0} rank(d_i) + \frac{1}{2} \sum_{d_i=0} rank(d_i) \quad \text{(A melhor que B)}$$

5. Seja S a menor dessas somas. Livros de Estatística trazem tabelas com os valores críticos exatos para S, com N variando de 1 até 25. Para mais conjuntos de dados, a estatística do teste seria:

$$z = \frac{S - \frac{1}{4}N(N-1)}{\sqrt{\frac{1}{24}N(N+1)(2N+1)}}$$

Comparação de dois modelos: Wilcoxon signed-rank

$\operatorname{Com} \alpha = 0.05,$					
H ₀ pode ser rejeitada	se	z < -1.96			

Grau de Confiança	$lpha$ Valor Crítico $z_{lpha/2}$		
90%	0,10	1,645	
95%	0,05	1,96	
99%	0,01	2,575	

Divulgação científica

Hendrik Macedo

Escreve sobre <u>Inteligência Artificial</u> no Saense.

http://www.saense.com.br/autores/artigos-publicados-por-hendrik-macedo/