that $2\|T(t) - Id\| - \|(T(t) - Id)^2\| \le \|T(2t) - Id\|$. Hence $2s \le \lim \sup_{t \downarrow 0} \|T(2t) - Id\|$. Obviously, $\lim \sup_{t \downarrow 0} \|T(2t) - Id\| = s$ and so, $2s \le s$. Consequently, s = 0.

<u>Remarks</u>. 1. If in Lemma 3.1 $T = (T(t))_{t \ge 0}$ is strongly continuous, in which case $s < \infty$, one can replace $\lim_{t \to 0} \| (T(t) - Id)^2 \| = 0$ by the weaker condition $\lim \sup_{t \to 0} r(T(t) - Id) < 1$ [Lotz (1985), Lemma 2] where r denotes the spectral radius.

2. The condition s < ∞ in Lemma 3.1 is essential as the following example shows:

Let $f: \mathbb{R} \to \mathbb{R}$ be non-continuous with f(s+t) = f(s) + f(t) for all s, $t \in \mathbb{R}$ (see [Hamel (1905)]). Then $\{(t, f(t)): t \in \mathbb{R}\}$ is dense in \mathbb{R}^2 . Hence for the semigroups $T = (T(t))_{t \geq 0}$ on \mathbb{R}^2 with

$$T(t) = \begin{pmatrix} 1 & f(t) \\ 0 & 1 \end{pmatrix} \quad \text{for } t \ge 0$$

we have $s = \infty$. Therefore 7 is not uniformly continuous. However, $(T(t) - Id)^2 = 0$ for all $t \ge 0$.

<u>Lemma</u> 3.2. Let $T = (T(t))_{t \ge 0}$ be a one-parameter semigroup of operators on a Banach space E . Then the following assertions are equivalent:

- (a) $T' = (T(t)')_{t \ge 0}$ is a strongly continuous semigroup on the dual E'.
- (b) $((T(t) Id)x_n)$ converges weakly to zero for every bounded sequence (x_n) in E and every sequence (t_n) in $[0,\infty)$ with $\lim t_n = 0$.

Moreover, (a) implies

(c) T is strongly continuous.

<u>Proof.</u> Let $x' \in E'$ and $t_n \ge 0$ be given. Then $\lim \| (T(t_n) - Id)'x'\| = 0$ if and only if $\lim \langle x_n, (T(t_n) - Id)'x' \rangle = 0$ for every bounded sequence (x_n) in E. This easily implies the equivalence of (a) and (b). In particular, (a) implies that $((T(t_n) - Id)x)$ converges weakly to zero for every sequence (t_n) in $[0,\infty)$ with $\lim t_n = 0$ and every $x \in E$. Hence T is strongly continuous by Proposition 1.23 in [Davies (1980)].

We recall that a Banach space E is called a <u>Grothendieck space</u> if every weak* convergent sequence in E' converges weakly.