$$D_{s1}(2536)^{\pm}$$

$$I(J^P) = 0(1^+)$$

J, P need confirmation.

Seen in $D^*(2010)^+$ K^0 , $D^*(2007)^0$ K^+ , and D_s^+ π^+ π^- . Not seen in D^+ K^0 or D^0 K^+ . $J^P=1^+$ assignment strongly favored.

$D_{s1}(2536)^{\pm}$ MASS

The fit includes D^{\pm} , D^{0} , D_{s}^{\pm} , $D^{*\pm}$, D^{*0} , $D_{s}^{*\pm}$, $D_{1}(2420)^{0}$, $D_{2}^{*}(2460)^{0}$, and $D_{s1}(2536)^{\pm}$ mass and mass difference measurements.

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
2535.10±0.06 OUR F	=IT			
2535.18±0.24 OUR	AVERAGE			
$2535.7 \ \pm 0.6 \ \pm 0.5$	46 ± 9	$^{ m 1}$ ABAZOV	09G D0	$B_s^0 \rightarrow D_{s1}^- \mu^+ \nu_\mu X$
$2534.78\!\pm\!0.31\!\pm\!0.40$	182	AUBERT	08B BABF	$B \rightarrow \overline{D}^{(*)}D^*K$
$2534.6 \pm 0.3 \pm 0.7$	193	AUBERT	06P BABF	10.6 $e^+e^- \to D_s^+ \pi^+ \pi^- X$
2535.3 ±0.7	92	² HEISTER	02B ALEP	$e^{+}e^{-} \rightarrow D^{*+}K^{0}X,$ $D^{*0}K^{+}X$
2534.2 ± 1.2	9	ASRATYAN	94 BEBC	$ \nu \stackrel{N}{\rightarrow} \stackrel{\rightarrow}{D^*} K^0 X, D^{*0} K^{\pm} X $
$2535 \pm 0.6 \pm 1$	75	FRABETTI	94B E687	$\gamma \operatorname{Be} \to D^{*+} K^{0} X,$ $D^{*0} K^{+} X$
$2535.3 \pm 0.2 \pm 0.5$	134	ALEXANDER	93 CLE2	$e^+e^- ightarrow~D^{st 0}K^+{ m X}$
$2534.8 \pm 0.6 \pm 0.6$	44	ALEXANDER	93 CLE2	$e^+e^- ightarrow~D^{*+}K^0X$
$2535.2 \pm 0.5 \pm 1.5$	28	ALBRECHT	92R ARG	$10.4 \ e^{+} e^{-} \rightarrow D^{*0} \ K^{+} \ X$
$2536.6 \pm 0.7 \pm 0.4$		AVERY	90 CLEO	
$2535.9 \pm 0.6 \pm 2.0$		ALBRECHT	89E ARG	$D_{s1}^* \to D^*(2010) K^0$
ullet $ullet$ We do not use	the following	g data for averages	s, fits, limits	, etc. • • •
2534.1 ± 0.6	116	³ AUSHEV	11 BELL	$B \to D_{s1}(2536)^+ D^{(*)}$
$2535.08 \pm 0.01 \pm 0.15$	8038	⁴ LEES	11B BABF	
$2535.57 {}^{+ 0.44}_{- 0.41} \pm 0.10$	236 ± 30	⁵ CHEKANOV	09 ZEUS	$e^{\pm} p \rightarrow D^{*+} K_S^0 X,$ $D^{*0} K^+ X$
2535 ± 28		⁶ ASRATYAN	88 HLBC	$\nu N \to D_{S} \gamma \gamma X$
¹ Using the D^* (201	.0) $^\pm$ mass of	f 2010.0 \pm 0.4 Me	V from PD	G 06.

² Calculated using $m(D^*(2010)^{\pm}) = 2010.0 \pm 0.5$ MeV, $m(D^*(2007)^0) = 2006.7 \pm 0.5$ MeV, and the mass difference below.

Created: 5/30/2017 17:21

³ Systematic uncertainties not evaluated.

⁴ Calculated using the mass difference $m(D_{s1}^+)-m(D^{*+})_{PDG}$ below and $m(D^{*+})_{PDG}$ = 2010.25 \pm 0.14 MeV. Assuming *S*-wave decay of the D_{s1} (2536) to D^{*+} K_S^0 , using a Breit-Wigner line shape corresponding to L=0.

⁵ Calculated using the mass difference $m(D_{s1}^+)-m(D^{*+})_{PDG}$ reported below and $m(D^{*+})_{PDG}=2010.27\pm0.17$ MeV.

⁶ Not seen in D^*K .

$m_{D_{s1}(2536)^{\pm}} - m_{D_{s}^{*}(2111)}$

The fit includes D^{\pm} , D^{0} , D_{s}^{\pm} , $D^{*\pm}$, D^{*0} , $D_{s}^{*\pm}$, $D_{1}(2420)^{0}$, $D_{2}^{*}(2460)^{0}$, and $D_{s1}(2536)^{\pm}$ mass and mass difference measurements.

 VALUE (MeV)
 DOCUMENT ID
 TECN
 COMMENT

423.0± 0.4 OUR FIT

 424 ± 28

ASRATYAN 88 HLBC $D_{s}^{*\pm}\gamma$

$m_{D_{s1}(2536)^{\pm}} - m_{D^*(2010)^{\pm}}$

The fit includes D^{\pm} , D^{0} , D_{s}^{\pm} , $D^{*\pm}$, D^{*0} , $D_{s}^{*\pm}$, $D_{1}(2420)^{0}$, $D_{2}^{*}(2460)^{0}$, and $D_{s1}(2536)^{\pm}$ mass and mass difference measurements.

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
524.84±0.04 OUR F	IT .				
524.84±0.04 OUR A	WERAGE				
$524.83\!\pm\!0.01\!\pm\!0.04$	8038	⁷ LEES	11 B	BABR	10.6 $e^+e^- \to D^{*+}K_S^0 X$
					$e^{\pm} p \rightarrow D^{*+} K_S^0 X$,
525.3 ±0.6 ±0.1	41	HEISTER	02 B	ALEP	$e^{+}e^{-} \xrightarrow{D^{*0}} K^{+} X X$
					ng a Breit-Wigner line shape
corresponding to		-		J	

$m_{D_{s1}(2536)^{\pm}} - m_{D^*(2007)^0}$

The fit includes D^\pm , D^0 , D_s^\pm , $D^{*\pm}$, D^{*0} , $D_s^{*\pm}$, $D_1(2420)^0$, $D_2^*(2460)^0$, and $D_{s1}(2536)^\pm$ mass and mass difference measurements.

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT	
528.25 ± 0.05 OUR FIT	Error ind	cludes scale factor of 1.	L.		
528.1 ±1.5 OUR AVERAGE					
$528.7 \pm 1.9 \pm 0.5$	51			$e^+e^- ightarrow D^{*0}K^+X$	
527.3 ± 2.2	29	ACKERSTAFF 97W	OPAL	$e^+e^- ightarrow D^{*0} K^+ X$	

$D_{s1}(2536)^{\pm}$ WIDTH

VALUE (MeV)	CL% EVTS		DOCUMENT ID		TECN	COMMENT
$0.92 \pm 0.03 \pm 0.04$	8038		⁸ LEES	11 B	BABR	10.6 $e^+e^- \to D^{*+}K^0_S X$
• • • We do not use the follo		wing data for aver	ages,	fits, limi	ts, etc. • • •	
0.75 ± 0.23		116	⁹ AUSHEV	11	BELL	$B \to D_{s1}(2536)^+ D^{(*)}$
< 2.5	95	193	AUBERT		BABR	$10.6 e^+e^- \rightarrow$
						$D_s^+ \pi^+ \pi^- X$ $\gamma Be \to D^{*+} \kappa^0 X,$
< 3.2	90	75	FRABETTI	94 B	E687	$\gamma \operatorname{Be} \to D^{*+} K^{0} X$,
< 2.3	90		ALEXANDER	93	CLEO	$e^{+}e^{-} \rightarrow D^{*0}K^{+}X$
HTTP://PDG.LBL.GOV			Page 2	<u>)</u>	Cr	reated: 5/30/2017 17:21

< 3.9	90	ALBRECHT	92R ARG	10.4 $e^+e^- \to D^{*0}K^+X$
< 5.44	90	AVERY	90 CLEO	$e^+e^- ightarrow D^{*+} K^0 X$
< 4.6	90	ALBRECHT	89E ARG	$D_{s1}^* \to D^*(2010) K^0$

⁸ Assuming S-wave decay of the $D_{s1}(2536)$ to $D^{*+}K_S^0$, using a Breit-Wigner line shape corresponding to L=0.

$D_{s1}(2536)^+$ DECAY MODES

 $D_{\rm s1}(2536)^-$ modes are charge conjugates of the modes below.

	Mode	Fraction (Γ_i/Γ)	Confidence level
$\overline{\Gamma_1}$	$D^*(2010)^+ K^0$	0.85 ± 0.12	
Γ_2	$(D^*(2010)^+ K^0)_{S-wave}$	$0.61\ \pm0.09$	
Γ_3	$(D^*(2010)^+ K^0)_{D-wave}$		
Γ_4	$D^+\pi^-K^+$	0.028 ± 0.005	
Γ_5	$D^*(2007)^0 K^+$	DEFINED AS 1	
Γ_6	D^+K^0	< 0.34	90%
Γ_7	$D^0 K^+$	< 0.12	90%
Γ ₈	$D_s^{*+}\gamma$	possibly seen	
Γ ₉	$D_s^+\pi^+\pi^-$	seen	

$D_{s1}(2536)^+$ BRANCHING RATIOS

$\Gamma(D^*(2007)^0 K^+)/\Gamma(D^*(2010)^+ K^0)$

 Γ_5/Γ_1

1/41/15	FVTC	DOCUMENT ID		TECNI	COMMENT
<u>VALUE</u>	<u>EVTS</u>	<u>DOCUMENT ID</u>		TECN	COMMENT
1.18±0.16 OUR AV	ERAGE				
$0.88\!\pm\!0.24\!\pm\!0.08$	116	AUSHEV	11	BELL	$B \to D_{s1}(2536)^+ D^{(*)}$ $e^{\pm} p \to D^{*+} K_S^0 X$,
$2.3 \pm 0.6 \pm 0.3$	236 ± 30	CHEKANOV	09	ZEUS	$e^{\pm} p \rightarrow D^{*+} K_S^0 X$,
$1.32 \pm 0.47 \pm 0.23$	92	¹⁰ HEISTER	02в	ALEP	$e^{+}e^{-} \rightarrow D^{*+}K^{0}X,$ $D^{*0}K^{+}X$
$1.9 \ ^{+1.1}_{-0.9} \ \pm 0.4$	35	¹⁰ ACKERSTAFF	97W	OPAL	$e^{+}e^{-} \rightarrow D^{*0}K^{+}X$
1.1 ±0.3		ALEXANDER		CLEO	$e^{+}e^{-} \xrightarrow{D^{*0}K^{+}X, D^{*+}K^{0}X}$
$1.4 \pm 0.3 \pm 0.2$		¹¹ ALBRECHT	92 R	ARG	$ \begin{array}{ccc} & & & & & & & & & & & & & & & & & & &$

 $^{^{10}\,\}mathrm{Ratio}$ of the production rates measured in Z^0 decays.

$\Gamma((D^*(2010)^+ K^0)_{S-wave})/\Gamma(D^*(2010)^+ K^0)$

 Γ_2/Γ_1

Created: 5/30/2017 17:21

<u>VALUE</u> <u>EVTS</u>		DOCUMENT ID			COMMENT
0.72±0.05±0.01	5485	BALAGURA	80	BELL	$10.6 e^+e^- \rightarrow D^{*+} K^0 X$

⁹ Systematic uncertainties not evaluated.

 $^{^{11}\,\}mathrm{Evaluated}$ by us from published inclusive cross-sections.

$\Gamma(D^+\pi^-F$	(+)/	Γ(<i>D</i> *(201	$(0)^{+} P$	(°)					Γ_4/Γ_1
$VALUE$ (units 10^{-2}) EVTS DOCK				IMENT ID		TECN	COM	ΛENT	
3.27±0.18±		1264	BAL	AGURA	08	BELL	10.6	$e^+e^- o D$	$0+\pi^-K^+X$
$\Gamma(D^+K^0)$	/F(<i>[</i>)*(2010)+	κ^0)						Γ_6/Γ_1
VALUE	/ . (-	<u>CL%</u>	•	DOCUME	ENT ID		TECN	COMMENT	. 0/ . 1
<0.40		90	-	ALEXA		93	CLEO	$e^+e^- \rightarrow$	$D^{*+} K^{0} X$
< 0.43		90		ALBRE		89E		$D_{s1}^* \rightarrow D^*$	
r(n0 v+)	/= <i>(</i>)*(000 <u>7</u>)0	v+\					31	_
$\Gamma(D^0K^+)$	/I (<i>L</i>	•	,	DOCUM	-N.T. (D.		TECN	COMMENT	Γ_7/Γ_5
<u>∨ALUE</u> <0.12		<u>CL%</u> 90	-	<u>DOCUME</u> ALEXA			TECN CLEO	$\frac{COMMENT}{e^+e^-} \rightarrow$	D*0 V+ V
<0.12		90		ALEXA	NDEK	93	CLEO	e ' e →	D. K.X
$\Gamma(D_s^{*+}\gamma)/$	/Γ _{tota}	al							Γ_8/Γ
<u>VALUE</u>			_	<u>DOCUME</u>	NT ID		TECN	COMMENT	
possibly seer	1			ASRAT	YAN	88	HLBC	$\nu N \rightarrow D_s$	$\gamma \gamma X$
$\Gamma(D_s^{*+}\gamma)/$	/F(D	*(2007)0 4	(+)						Γ_8/Γ_5
VALUE	1 (D	(2001) 7 <u>CL%</u>	-	DOCUME	NT ID		TECN	COMMENT	18/15
<0.42		90	_	ALEXA				$e^+e^- \rightarrow$	$D^{*0} K^{+} X$
• •									
$\Gamma(D_s^+\pi^+\pi^-)$	г-)/	Γ_{total}							Г9/Г
<u>VALUE</u>			_	JMENT ID		TECN		<u>MENT</u>	1 1
seen			AUB	ERT	06 P	BAB	R 10.6	$e^+e^- \rightarrow L$	$O_s^+\pi^+\pi^-X$
		,	$D_{s1}(2)$!536) [±]	REFE	RENC	CES		
AUSHEV LEES ABAZOV CHEKANOV AUBERT BALAGURA AUBERT PDG HEISTER ACKERSTAFF ASRATYAN FRABETTI ALEXANDER ALBRECHT AVERY ALBRECHT ASRATYAN	11 11B 09G 09 08B 08 06P 06 02B 97W 94 94B 93 92R 90 89E 88	PR D83 0511 PR D83 0720 PRL 102 051 EPJ C60 25 PR D77 0111 PR D77 0320 PR D74 0320 JP G33 1 PL B526 34 ZPHY C76 4 ZPHY C61 5 PRL 72 324 PL B303 377 PL B297 425 PR D41 774 PL B230 162 ZPHY C40 4	03 801 02 01 07 25 63	J.P. L V.M. S. Che B. Au V. Ba B. Au WM. A. He K. Ac A.E. A P.L. A J. Ale H. Alt P. Ave H. Alt	shev et a Abazov ekanov ekanov ebert et alagura e bert et Yao et ister et kerstaff Asratyan rabetti ekander ebrecht et ery, D. Ebrecht et Asratyan akaratyan ekanoverekt et ekanoverekt ekanover	I. et al. et al. et al. al. et al. al. al. et al.		(BABA) (E) (ZEL) (BABA) (BELL) (BABA) (PD) (ALEP) (OPA) (BIRM, BELG) (FNAL E60) (CLE) (ARGL) (ARGL)	

88

ZPHY C40 483

ASRATYAN

A.E. Asratyan et al.

(ITEP, SERP)

Created: 5/30/2017 17:21