ECE 203

Circuits I

Thévenin and Norton Theorems With Dependent Sources

Lecture 8-2

What is the Thévenin equivalent of this circuit at AB terminal?

What is the value of V_{oc} ? $V_{oc} = 0V$

What is the value of I_{sc} ? $I_{sc} = 0A$

What is the value of R_{Th} ? $R_{Th} = V_{oc}/I_{sc} = 0/0$!

How to find R_{Th} ?

Connect a 1V voltage source at AB terminal and calculate the current flowing back into the circuit

Note: In a circuit with a dependent source, you can't directly calculate the Thévenin resistance.

Thévenin's & Norton's Equivalent Currents

Yet Another Example:

What is the Thévenin equivalent of this circuit at AB terminal?

What is the value of V_{oc} ? $V_{oc} = 0V$

What is the value of I_{sc} ? $I_{sc} = 0A$

What is the value of R_{Th} ? $R_{Th} = V_{oc}/I_{sc} = 0/0$!

How to find R_{Th} ?

Connect a 1A (or 1mA) current source at AB terminal and measure the voltage

$$\begin{cases} \frac{V_1 - 2000I_x}{2k} + \frac{V_1}{1k} + \frac{V_1 - V_2}{3k} = 0\\ \frac{V_2 - V_1}{3k} + \frac{V_2}{2k} = 1 \times 10^{-3} \end{cases}$$

$$V_2 = \frac{10}{7} \text{ V}$$

$$= \frac{10}{7} k\Omega$$

Utility of Thévenin's & Norton's Theorems

- ☐ Thévenin's & Norton's theorems often permit us to break a large problem into several smaller problems.
- They allow us to replace a network, no matter how large, at a pair of terminals with Thévenin or Norton equivalent circuit.
- □ In fact, we could represent the entire US power grid at a pair of terminals with one of the equivalent circuits.

Summary of how to apply Thévenin and Norton Theorems

- I. Circuits with all independent sources
 - 1) Break circuit at point of interest
 - 2) Calculate $V_{oc} = V_{Th}$; Or, calculate I_{sc}
 - 3) Short voltage sources and open current sources; calculate R_{Th}

Summary of how to apply Thévenin and Norton Theorems

- II. Circuits with only dependent sources
 - Generally don't break the circuit anywhere; usually have an output we are interested in
 - 2) Put test voltage (or current) at output
 - 3) Calculate I_{in} (or Vin) due to test voltage
 - 4) $R_{Th} = V_{test}/I_{in}$ or, $R_{Th} = V_{in}/I_{test}$; There is neither a voltage source nor a current source in the equivalent circuit

Note: Do not short (or open) dependent sources

Summary of how to apply Thévenin and Norton Theorems

- III. Circuits with independent and dependent sources
 - 1) Break circuit at point of interest
 - 2) Calculate $V_{oc} = V_{Th}$
 - 3) Calculate I_{sc}
 - 4) $R_{Th} = V_{oc}/I_{sc}$

Note: Do not open (or short) dependent sources

Examples:

Go to examples 8-2.1 thru 8-2.3