

DATASETsTeoria e Prática

Prof. Dr. Diego Bruno

Education Tech Lead na DIO Doutor em Robótica e *Machine Learning* pelo ICMC-USP

O que é um Dataset?

Dataset

Fonte: https://www.linkedin.com/pulse/cats-vs-dogs-image-classification-using-cnn-piyush-pareek/?trk=public_profile_article_view

Dataset

Como devem ser minhas amostras?

Predicted:Dog

Predicted:Cat

Predicted:Cat

Predicted:Dog

Predicted:Dog

Dataset

Como devem ser minhas amostras?

Fonte: https://www.linkedin.com/pulse/cats-vs-dogs-image-classification-using-cnn-piyush-pareek/?trk=public_profile_article_view

Como criar um Dataset?

Como gerar uma base de dados...

Serviços de DATASETs?

Bases de dados disponíveis

O que são SVMs?

Máquina de Vetores de Suporte

Não supervisionado

Supervisionado

Supervisionado

Os **algoritmos** de aprendizagem **supervisionada** relacionam uma saída com uma entrada com base em dados rotulados. Neste caso, o usuário alimenta ao **algoritmo** pares de entradas e saídas conhecidos.

Diferença entre RNA e SVM

Diferenças entre RNA e SVM?

Supervisionado

Na prática não há muita diferença... O principal fator é o modo de estabelecer o hiperplano.

SVM buscando a otimização das margens e a **RNA** buscando o mínimo global

SVM RNA

Resultado esperado de uma SVM

	Modelo discriminativo
Objetivo	Estimar diretamente $P(y ert x)$
O que é aprendido	Fronteira de decisão
Ilustração	
Exemplos	Regressões, SVMs

SVM buscando a otimização das margens e a **RNA** buscando o mínimo global

Por que "Vetores"?

Por que "Máquina de Vetores"?

Os "**Vetores de suporte**" são simplesmente as coordenadas da observação individual. Uma **SVM** é uma fronteira que melhor realiza as duas classes (hiperplano / linha).

Desenvolvimento

Desenvolvendo a hipótese: Aqui, temos três hiperplanos (A, B e C). Mas qual o hiperplano certo para classificar estrela e círculo?

Aqui, temos três **hiperplanos (A, B e C)** e todos estão dividindo bem as classes. Agora, como podemos identificar o hiperplano certo?

Maximizar as distâncias entre o ponto de dados mais próximo (de qualquer classe) e o hiperplano nos ajudará a decidir o hiperplano correto.

Neste caso, o melhor hiperplano é o B (já que ele tem uma margem maior em comparação a A)?

Existem caso onde não é possivel separar as duas classes usando uma linha reta, pois uma das classes está no território de outra (**outlier**).

Algoritmos

Obrigado!

Prof. Dr. Diego Bruno