

CURSO TÉCNICO SUPERIOR PROFISSIONAL - TGA

Unidade Curricular: MATEMÁTICA

Ano Letivo: 2015/2016

Exame da Época Normal – Parte sobre ED e MNEDO » Data: 26/02/2016

Código da prova: 1702201601

Nota: A resolução completa dos exercícios inclui a justificação do raciocínio utilizado. Duração:

Nome do aluno: Número:

- 1. Considere a equação diferencial (ED) $dy + (x^2 1)ydx = 0$
- [1.50] (a) Mostre que a ED é de variáveis separáveis e determine a sua solução geral.
- [0.75] (b) Sabendo que a figura 1 representa o campo direcional dado pela ED, qual das figuras 2 ou 3 representa o gráfico da sua solução geral? Justifique.
- [2.75] (c) Sabendo que $y(t) = 5 \times \exp\left(t \frac{t^3}{3}\right)$ é a solução exata do PVI dado por $y' = y yt^2$, y(0) = 5, $t \in \left[0, 2\right]$, complete a tabela seguinte e interprete os resultados obtidos.

			Aproximações			Erros	
		$y(t_i)$	y_i	y_i	$ y(t_i)-y_i $	$ y(t_i)-y_i $	
i	t_i	Exata	Euler	RK2	Euler	RK2	
0	0	5			0	0	
1				7.5000			
3	2	2.5671				6.3171	

Figura 1

Figura 2

Figura 3

FORMULÁRIO							
PVI	Método de Euler		Método de Runge-Kutta (RK2)				
y' = f(t, y)	$y_{i+1} = y_i + h \times f(t_i, y_i)$, i = 0,1,2,,n-1	$k1 = h \times f(t_i, y_i)$				
$(P)\left\{t\in\left[a,b\right]\right.$	$y_{i+1} = y_i + h \times f(t_i, y_i)$		$k2 = h \times f(t_{i+1}, y_i + k1)$				
$y(a) = y_0$			$y_{i+1} = y_i + \frac{1}{2}(k1 + k2), i = 0,1,2,,n-1$				