

Optimization in Machine Learning: Lecture 3

# **Convex Functions**

by Xiaolin Huang

xiaolinhuang@sjtu.edu.cn SEI

**SEIEE 2-429** 

Institute of Image Processing and Pattern Recognition



http://www.pami.sjtu.edu.cn/

**Definitions and Properties** 

Operations that Preserve Convexity

Conjugate Functions





#### **Convex Set**



- convex optimization is to minimize a convex function over a convex set
  - convex combination
  - convex sets
  - operations that preserve convexity
  - separating hyperplane
  - supporting hyperplane



#### **Convex Function**



- convex optimization is to minimize a convex function over a convex set
  - convex combination
  - convex sets
  - operations that preserve convexity
  - separating hyperplane
  - supporting hyperplane

1 Definitions and Properties

Operations that Preserve Convexity

Conjugate Functions



#### **Definition**



•  $f: \mathbb{R}^n \to \mathbb{R}$  is convex, if **dom** f is a convex set and

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y) \quad \forall x, y \in \text{dom } f, \theta \in [0, 1]$$

"line is above the curve":



- strictly convex if strict inequality holds for  $x \neq y$  and  $\theta \in (0,1)$
- concave function: f is concave iff -f is convex.

#### **Convex Function and Convex Sets**

- $f: R^n \to R$  is convex, if **dom** f is a convex set and  $f(\theta x + (1 \theta)y) \le \theta f(x) + (1 \theta)f(y) \quad \forall x, y \in \mathbf{dom} \ f, \theta \in [0, 1]$
- if f(x) is convex, then  $\{x: f(x) \le 0\}$  is a convex set

• if *C* is a convex set, then it could be represented as the solution of a system of (maybe infinite number of) convex inequalities

supporting hyperplanes





#### **Equivalent Conditions**



•  $f: \mathbb{R}^n \to \mathbb{R}$  is convex, if **dom** f is a convex set and

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y) \quad \forall x, y \in \text{dom } f, \theta \in [0, 1]$$

extension to multiple points

$$f\left(\sum_{i=1}^{m}\theta_{i}x_{i}\right)\leq\sum_{i=1}^{m}\theta_{i}f(x_{i}),\forall x_{i}\in\operatorname{dom}f,\theta_{i}\geq0,\sum_{i=1}^{m}\theta_{i}=1.$$

restriction on R:

g(t) = f(x + tv), dom  $g = \{t: x + tv \in \text{dom } f\}$  is convex for  $\forall x \in \text{dom } f, v \in \mathbb{R}^n$ 





### **Equivalent Conditions**



#### First-order condition

$$f(y) \ge f(x) + \nabla f(x)^{\mathsf{T}} (y - x) \quad \forall x, y \in \operatorname{dom} f$$

"tangent plane is below the surface" proof. consider univariate functions given by the gradient.





#### **Gradient and Sub-Gradient**



#### First-order condition

$$f(y) \ge f(x) + \nabla f(x)^{\mathsf{T}} (y - x) \quad \forall x, y \in \operatorname{dom} f$$

- consider a convex set  $\{x: f(x) \le 0\}$
- $\nabla f(x)$  gives a supporting hyperplane
- how about non-smooth function?
  - there are multiple hyperplanes
  - the set containing the vectors of all supporting hyperplanes is called sub-gradient  $\partial f(x)$

$$f(x) = |x|, \ \partial f(x) = \begin{cases} 1, & x > 0 \\ [-1,1], & x = 0 \\ -1, & x < 0 \end{cases}$$





### **Equivalent Conditions**



#### First-order condition

$$f(y) \ge f(x) + \nabla f(x)^{\mathsf{T}} (y - x) \quad \forall x, y \in \operatorname{dom} f$$

"tangent plane is below the surface" proof. consider univariate functions given by the gradient.



#### Second-order condition

$$\nabla^2 f(x) \ge 0, \forall x \in \operatorname{dom} f \iff f \text{ is convex}$$

$$\nabla^2 f(x) > 0, \forall x \in \operatorname{dom} f$$
 is strictly convex

### **Examples**



- affine functions  $f(x) = a^{\mathsf{T}}x + b$
- exponential  $f(x) = e^{ax}$
- powers  $f(x) = x^{\alpha}$ , with x > 0,  $\alpha > 1$  or  $\alpha \le 0$
- negative entropy  $f(x) = x \log x$  with x > 0
- (minus powers)  $f(x) = x^{\alpha}, 0 \le \alpha \le 1$
- (minus logarithm)  $f(x) = \log x$  with x > 0



#### **Examples**



- affine functions  $f(x) = a^{\mathsf{T}}x + b$
- exponential  $f(x) = e^{ax}$
- powers  $f(x) = x^{\alpha}$ , with x > 0,  $\alpha > 1$  or  $\alpha \le 0$
- negative entropy  $f(x) = x \log x$  with x > 0
- (minus powers)  $f(x) = x^{\alpha}, 0 \le \alpha \le 1$
- (minus logarithm)  $f(x) = \log x$  with x > 0





# **Examples**

- affine functions  $f(x) = a^{\mathsf{T}}x + b$
- exponential  $f(x) = e^{ax}$
- powers  $f(x) = x^{\alpha}$ , with x > 0,  $\alpha > 1$  or  $\alpha \le 0$
- negative entropy  $f(x) = x \log x$  with x > 0
- (minus powers)  $f(x) = x^{\alpha}, 0 \le \alpha \le 1$
- (minus logarithm)  $f(x) = \log x$  with x > 0

$$(x\log x)' = \log x + 1$$
  $(x\log x)'' = 1/x > 0$ 

$$(\log x)' = 1/x \qquad (\log x)'' = -1/x^2 < 0$$



- for independent data, the joint probability will be in the form of multiplication, which could be transformed to sum by log
- entropy, a good measure for information/uncertainty, is in the form of logarithm





#### **Measure of Uncertainty**



$$\Rightarrow$$
 case 1:  $x \in \{0,1,2,3\}, x_1 = 1$ 

- case 2:  $x \in \{0,1\}, x_1 = 1$
- the information of case 1 is larger
- quantitative measurement
  - no uncertainty, equal zero
  - proportional to uncertainty
  - consider case 2:  $p \triangleq p(x = 0)$ , 1 p = p(x = 1)

negative entropy =  $p \log p + (1 - p) \log (1 - p)$ 



# logarithm functions are widely used in machine learning

- for independent data, the joint probability will be in the form of multiplication, which could be transformed to sum by log
- entropy, a good measure for information/uncertainty, is in the form of logarithm





# **Sublevel Set and Epigraph**



- **sublevel set** of  $f: \mathbb{R}^n \to \mathbb{R}$   $C_\alpha = \{x \in \operatorname{dom} f: f(x) \le \alpha\}$
- sublevel sets of convex functions are convex



# **Sublevel Set and Epigraph**

- **sublevel set** of  $f: \mathbb{R}^n \to \mathbb{R}$   $C_\alpha = \{x \in \operatorname{dom} f: f(x) \le \alpha\}$
- sublevel sets of convex functions are convex
- **epigraph** of  $f: \mathbb{R}^n \to \mathbb{R}$

**epi** 
$$f = \{(x, t) \in \mathbb{R}^{n+1} \ x \in \text{dom } f : f(x) \le t\}$$



- from first order condition  $f(y) \ge f(x) + \nabla f(x)^{\mathsf{T}} (y x)$
- for  $(y, t) \in \operatorname{epi} f$   $t \ge f(y) \ge f(x) + \nabla f(x)^{\mathsf{T}} (y x)$



# **Sublevel Set and Epigraph**

- **sublevel set** of  $f: \mathbb{R}^n \to \mathbb{R}$   $C_\alpha = \{x \in \operatorname{dom} f: f(x) \le \alpha\}$
- sublevel sets of convex functions are convex
- **epigraph** of  $f: \mathbb{R}^n \to \mathbb{R}$

**epi** 
$$f = \{(x, t) \in \mathbb{R}^{n+1} \ x \in \text{dom } f : f(x) \le t\}$$

- f is convex iff **epi** f is a convex set
  - from first order condition  $f(y) \ge f(x) + \nabla f(x)^{\mathsf{T}} (y x)$
  - for  $(y, t) \in \operatorname{epi} f$   $t \ge f(y) \ge f(x) + \nabla f(x)^{\mathsf{T}} (y x)$

$$\begin{bmatrix} \nabla f(x) \\ -1 \end{bmatrix}^{-1} \left( \begin{bmatrix} y \\ t \end{bmatrix} - \begin{bmatrix} x \\ f(x) \end{bmatrix} \right) \le 0 \quad \text{supporting hyperplane}$$



#### 目录 Contents

1 Definitions and Properties

Operations that Preserve Convexity

**Conjugate Functions** 



# Nonnegative Weighted Sum and Composition

- nonnegative weighted sum  $f = w_1 f_1 + \dots + w_m f_m$ ,  $w_m \ge 0$ 
  - nonnegative multiple:  $\alpha f$  is convex with  $\alpha \geq 0$
  - integral  $\int w(y)f(x,y)dy$
  - the set of convex function is a conic
- composition with affine function f(Ax + b)
  - residual  $r_i = b_i a_i^{\mathsf{T}} x$
  - measuring residual by convex loss is convex
    - minus log (MLE)  $-\sum_{i=1}^{m} \log(b_i a_i^{\mathsf{T}} x)$
    - $||Ax b||_2^2$

# Nonnegative Weighted Sum and Composition

- nonnegative weighted sum  $f = w_1 f_1 + \dots + w_m f_m$ ,  $w_m \ge 0$ 
  - nonnegative multiple:  $\alpha f$  is convex with  $\alpha \geq 0$
  - integral  $\int w(y)f(x,y)dy$
  - the set of convex function is a conic
- composition with affine function f(Ax + b)
  - residual  $r_i = b_i a_i^\mathsf{T} x$
  - measuring residual by convex loss is convex
    - minus log (MLE)  $-\sum_{i=1}^{m} \log(b_i a_i^{\mathsf{T}} x)$
    - norm  $||Ax b||_2^2$

$$r_i = b_i - a_i^\mathsf{T} \phi(x)$$

composition of  $g: \mathbb{R}^n \to \mathbb{R}$  and  $h: \mathbb{R} \to \mathbb{R}$ f(x) = h(g(x)) is convex, if

- g convex, h convex and non-decreasing
- g concave, h convex and non-increasing

# Pointwise Maximum/Supremum





- piecewise-linear function:  $f(x) = \max_{i} \{a_i^{\mathsf{T}} x + b_i\}$
- largest error:  $f(x) = \max_{i} \left\{ \left\| a_i^{\mathsf{T}} x b_i \right\|_2^2 \right\}$
- sum of *r* largest errors

- robust learning
- risk control
- robust control

• sum of 
$$r$$
 largest components:  $x_{[r_1]} \ge x_{[r_2]}$  if  $r_1 \le r_2$ 

$$f(x) = x_{[1]} + x_{[2]} + \cdots x_{[r]}$$

• f(x, y) is convex in x for each  $y \in Y$ , then  $\sup_{y} f(x, y)$  is convex



- distance to farthest point in a set  $f(x) = \sup_{y \in C} ||x y||$
- maximum eigenvalue  $\lambda_{\max}(X) = \sup_{\|y\|_2=1} y^{\mathsf{T}} X y$





# Minimization and Schur Complement

- if f(x, y) is convex w.r.t. (x, y) and C is a convex set, then the minimization  $g(x) = \inf_{y \in C} f(x, y)$  is convex
- distance to a convex set S

$$dist(x,S) \triangleq g(x) = \inf_{y \in S} ||x - y||$$

difference to 
$$f(x) = \sup_{y \in C} ||x - y||$$

- Shur complement
  - $f(x,y) = x^{\mathsf{T}}Ax + 2x^{\mathsf{T}}By + y^{\mathsf{T}}Cy$  with  $\begin{bmatrix} A & B \\ B^{\mathsf{T}} & C \end{bmatrix} \ge 0, C > 0$

$$C^{\uparrow} = C^{\dagger}$$

- minimizing over y, i.e.,  $g(x) = \inf_{y} f(x, y) = x^{T} (A BC^{\uparrow}B^{T})x$ , is convex widely used in matrix in
- Shur complement  $A BC^{\uparrow}B^{\top} \ge 0$

widely used in matrix inverse, and related tasks, e.g., control, SLAM, etc.



# Perspective Function and KL Divergence

• for a function  $f(x): \mathbb{R}^n \to \mathbb{R}$ , its perspective function is defined as

$$g(x,t) = t f(x/t)$$

- if f(x) is convex (concave), so is g(x,t)
- relative entropy

#### proof:

- epigraph
- perspective function preserves convexity

$$\sum_{i=1}^{n} \left( \frac{u_i \log(u_i/v_i)}{v_i} \right)$$

•  $f(x) = -\log x$  is convex and its perspective function is

$$g(x,t) = tf(x/t) = -t\log\frac{x}{t} = t\log t - t\log x$$

Kullback-Leibler divergence

$$D_{kl}(u, v) = \sum_{i}^{n} (u_i \log(u_i/v_i) - u_i + v_i)$$

#### 目录 Contents

1 Definitions and Properties

**Operations that Preserve Convexity** 

Conjugate Functions





#### **Definition and Understanding**



• the **conjugate** of a function  $f: \mathbb{R}^n \to \mathbb{R}$  is

$$f^*(y) = \sup_{x \in \mathbf{dom}\, f} (y^\mathsf{T} x - f(x))$$



for a given y,  $f^*(y)$  is the largest gap between the affine function xyand the function f(x)

when f is differentiable, the optimality condition tells

$$\nabla(y^{\mathsf{T}}x - f(x)) = y - f'(x) = 0$$



#### **Definition and Understanding**



• the **conjugate** of a function  $f: \mathbb{R}^n \to \mathbb{R}$  is

$$f^*(y) = \sup_{x \in \mathbf{dom}\, f} (y^\mathsf{T} x - f(x))$$

- examples
  - affine functions:

$$f(x) = ax + b \to f^*(y) = \sup_{x \in \mathbf{dom} \, f} (x^{\mathsf{T}}(y - a) - b) = \begin{cases} -b, & y = a \\ +\infty, & y \neq a \end{cases}$$

exponential functions

$$f(x) = e^x \to f^*(y) = \sup_{x \in \mathbf{dom} \, f} (xy - e^x) = \begin{cases} y \log y - y, & y > 0 \\ \infty, & y < 0 \end{cases}$$

indicator function

$$f(x) = \begin{cases} \infty, & x \notin S \\ 0, & x \in S \end{cases} \to f^*(y) = \sup_{x \in S} y^{\mathsf{T}} x \qquad \text{supporting of } S$$

### **Properties**



• the **conjugate** of a function  $f: \mathbb{R}^n \to \mathbb{R}$  is

$$f^*(y) = \sup_{x \in \mathbf{dom}\, f} (y^\mathsf{T} x - f(x))$$

- a conjugate function is convex, even when *f* is not.
- Fenchel inequality:  $f(x) + f^*(y) \ge x^T y$ 
  - example  $x^{\mathsf{T}}Qx + y^{\mathsf{T}}Q^{-1}y \ge 2x^{\mathsf{T}}y$ , when  $Q \in S_{++}^n$
- conjugate of conjugate: when f is convex, proper, and closed, then  $f^{**} = f$

#### Conjugate and sub-Gradient



• the **conjugate** of a function  $f: \mathbb{R}^n \to \mathbb{R}$  is

$$f^*(y) = \sup_{x \in \mathbf{dom}\, f} (y^\mathsf{T} x - f(x))$$

for a convex, proper, and closed function f, the following three are equal

• 
$$(1) f(x) + f^*(y) = x^T y$$

- (2)  $y \in \partial f(x)$
- (3)  $x \in \partial f^*(y)$
- sub-gradient by conjugation

$$\partial f(x) = \operatorname{argmax}_y \{ x^{\mathsf{T}} y - f^*(y) \}$$

$$\partial f^*(y) = \operatorname{argmax}_{x} \{ x^{\mathsf{T}} y - f(x) \}$$

Proof:  $(1) \rightarrow (2)$ 

- 
$$y^{\mathsf{T}}x - f(x) = f^*(y) = \sup_{x \in \text{dom } f} (y^{\mathsf{T}}x - f(x))$$

- 
$$y^{\mathsf{T}}x - f(x) \ge y^{\mathsf{T}}z - f(z), \forall z \in \mathbf{dom} \ f$$

- 
$$f(z) \ge f(x) + y^{\mathsf{T}}(z - x), \forall z \in \operatorname{dom} f$$

-  $y \in \partial f(x)$ 

Proof:  $(2) \rightarrow (1)$ 

- definition of sub-Gradient + Fenchel inequality

Proof:  $(1) \leftarrow \rightarrow (3)$ 

- 
$$f^{**} = f$$
, denote  $f^*$  as  $g$ , then  $g^*(x) + g(y) = x^T y$ 

- by (2),  $x \in \partial g(y) = \partial f^*(y)$ 

1 Definitions and Properties

Operations that Preserve Convexity

Conjugate Functions





#### **Conclusion and Home Work**



- convex optimization is to minimize a convex function over a convex set
  - definition of convex functions
  - first-, second condition
  - operations that preserve convexity
  - conjugate functions
  - subgradient and the use of conjugate function

• Excise 3.1: convexity proof

Excise 3.20: convexity preservation practice

Excise 3.38: understating conjugate

# THANKS

