Team Contest Reference

ChaosKITs Karlsruhe Institute of Technology

6. Oktober 2016

Ιt	nhal	tsverzeichnis			2.8 Min-Cost-Max-Flow2.9 Maximal Cardinatlity Bipartite Mat-	7		4.10.1 Berühmte Zahlen 4.10.2 Verschiedenes	
1	Date	enstrukturen	2		ching	8		4.11 Satz von Sprague-Grundy	1
	1.1	Union-Find	2		2.10 TSP			4.12 3D-Kugeln	1
	1.2	Segmentbaum	2		2.11 Bitonic TSP	9		4.13 Big Integers	1
	1.3	Fenwick Tree	2	_			_		
	1.4	Range Minimum Query	2	3	Geometrie	9	5	Strings	1
	1.5	STL-Tree			3.1 Closest Pair			5.1 Knuth-Morris-Pratt-Algorithmus	
					3.2 Geraden			5.2 Aho-Corasick-Automat	
2	Gra	phen	3		3.3 Konvexe Hülle			5.3 Levenshtein-Distanz	
	2.1	Minimale Spannbäume	3		3.4 Formeln - std::complex	10		5.4 Trie	
		2.1.1 Kruskal		4	M.d.	10		5.5 Suffix-Array	
	2.2	Kürzeste Wege		4	Mathe	12		5.6 Longest Common Substring	
		2.2.1 Algorithmus von Dijkstra			4.1 ggT, kgV, erweiterter euklidischer Al-	10		5.7 Longest Common Subsequence	2
		2.2.2 Bellmann-Ford-Algorithmus.	3		gorithmus	12			
		2.2.3 FLOYD-WARSHALL-Algorithmus	4		4.1.1 Multiplikatives Inverses von x		6	Java	2
	2.3	Strongly Connected Components	I		$\operatorname{in} \mathbb{Z}/n\mathbb{Z}$			6.1 Introduction	
	2.5		1		4.2 Mod-Exponent über \mathbb{F}_p			6.2 BigInteger	2
	2.4	(Tarjans-Algorithmus)			4.3 LGS über \mathbb{F}_p				
	2.4	Artikulationspunkte und Brücken			4.4 Chinesischer Restsatz		7	8	2
	2.5	Eulertouren			4.5 Primzahlsieb von Eratosthenes			7.1 2-SAT	
	2.6	Lowest Common Ancestor			4.6 Miller-Rabin-Primzahltest			7.2 Zeileneingabe	
	2.7	Max-Flow			4.7 Binomialkoeffizienten			7.3 Bit Operations	
		2.7.1 Capacity Scaling			4.8 Maximales Teilfeld			7.4 Josephus-Problem	
		2.7.2 Push Relabel	6		4.9 Polynome & FFT			7.5 Gemischtes	2
		2.7.3 Anwendungen	7		4.10 Kombinatorik	15		7.6 Sonstiges	2

1 Datenstrukturen

1.1 Union-Find

```
// Laufzeit: 0(n*alpha(n))
2 // "height" ist obere Schranke für die Höhe der Bäume. Sobald
3 // Pfadkompression angewendet wurde, ist die genaue Höhe nicht mehr
4 // effizient berechenbar.
   vector<int> parent // Initialisiere mit Index im Array.
   vector<int> height; // Initialisiere mit 0.
   int findSet(int n) { // Pfadkompression
    if (parent[n] != n) parent[n] = findSet(parent[n]);
     return parent[n];
11 | }
12
13 void linkSets(int a, int b) { // Union by rank.
     if (height[a] < height[b]) parent[a] = b;</pre>
15
     else if (height[b] < height[a]) parent[b] = a;</pre>
16
17
       parent[a] = b;
18
      height[b]++;
19
20
21
   void unionSets(int a, int b) { // Diese Funktion aufrufen.
    if (findSet(a) != findSet(b)) linkSets(findSet(a), findSet(b));
24 | }
```

1.2 Segmentbaum

```
// Laufzeit: init: O(n), query: O(log n), update: O(log n)
2 // Berechnet das Maximum im Array.
3 int a[MAX_N], m[4 * MAX_N];
  int query(int x, int y, int k = 0, int X = 0, int Y = MAX_N - 1) {
    if (x <= X && Y <= y) return m[k];</pre>
    if (y < X || Y < x) return -1000000000; // Ein "neutrales" Element.</pre>
     int M = (X + Y) / 2;
     return max(query(x, y, 2*k+1, X, M), query(x, y, 2*k+2, M+1, Y));
10
11
12 void update(int i, int v, int k = 0, int X = 0, int Y = MAX_N - 1) {
13
    if (i < X || Y < i) return;</pre>
    if (X == Y) { m[k] = v; a[i] = v; return; }
     int M = (X + Y) / 2;
     update(i, v, 2 * k + 1, X, M);
17
     update(i, v, 2 * k + 2, M + 1, Y);
18
     m[k] = max(m[2 * k + 1], m[2 * k + 2]);
19 }
20
21 void init(int k = 0, int X = 0, int Y = MAX_N - 1) {
```

Mit update() können ganze Intervalle geändert werden. Dazu: Offset in den inneren Knoten des Baums speichern.

1.3 Fenwick Tree

```
1 vector<int> FT; // Fenwick-Tree
2 | int n;
3
4 // Addiert val zum Element an Index i. O(log(n)).
5 void updateFT(int i, int val) {
    i++; while(i <= n) { FT[i] += val; i += (i & (-i)); }
  // Baut Baum auf. O(n*log(n)).
10 void buildFenwickTree(vector<int>& a) {
    n = a.size();
   FT.assign(n+1,0);
13
    for(int i = 0; i < n; i++) updateFT(i,a[i]);</pre>
14 }
15
  // Präfix-Summe über das Intervall [0..i]. O(log(n)).
17 int prefix_sum(int i) {
    int sum = 0; i++;
    while(i > 0) { sum += FT[i]; i -= (i & (-i)); }
20
    return sum;
21 }
```

1.4 Range Minimum Query

```
vector<int> data(RMQ_SIZE);
   vector<vector<int>> rmq(floor(log2(RMQ_SIZE))+1, vector<int>(RMQ_SIZE));
   // Baut Struktur auf. O(n*log(n))
5 void initRMQ() {
     for(int i = 0, s = 1, ss = 1; s <= RMQ_SIZE; ss=s, s*=2, i++) {</pre>
       for(int 1 = 0; 1 + s <= RMQ_SIZE; 1++) {</pre>
8
         if(i == 0) rmq[0][1] = 1;
9
         else {
10
           int r = 1 + ss;
11
           rmq[i][l] = (data[rmq[i-1][l]] <= data[rmq[i-1][r]]) ?
12
               rmq[i-1][l] : rmq[i-1][r];
13 | } } }
14
15 // Gibt den Index des Minimums im Intervall [1,r) zurück. 0(1).
```

```
16  int queryRMQ(int 1, int r) {
    if(1 >= r) return 1;
    int s = floor(log2(r-1)); r = r - (1 << s);
    return (data[rmq[s][1]] <= data[rmq[s][r]] ? rmq[s][1] : rmq[s][r]);
20  }</pre>
```

1.5 STL-Tree

2 Graphen

2.1 Minimale Spannbäume

Schnitteigenschaft Für jeden Schnitt *C* im Graphen gilt: Gibt es eine Kante *e*, die echt leichter ist als alle anderen Schnittkanten, so gehört diese zu allen minimalen Spannbäumen. (⇒ Die leichteste Kante in einem Schnitt kann in einem minimalen Spannbaum verwendet werden.)

Kreiseigenschaft Für jeden Kreis *K* im Graphen gilt: Die schwerste Kante auf dem Kreis ist nicht Teil des minimalen Spannbaums.

2.1.1 Kruskal

```
9     if(uf.findSet(u) != uf.findSet(v)) {
10         mst.push_back(g[i]); mst_cost += g[i].first;
11         uf.unionSets(u,v);
12     }
13     }
14     return make_pair(mst,mst_cost);
15 }
```

2.2 Kürzeste Wege

2.2.1 Algorithmus von Dijkstra

Kürzeste Pfade in Graphen ohne negative Kanten.

```
// Laufzeit: 0((|E|+|V|)*log |V|)
  void dijkstra(int start) {
     priority_queue<ii, vector<ii>, greater<ii> > pq;
     vector<int> dist(NUM_VERTICES, INF), parent(NUM_VERTICES, -1);
     dist[start] = 0;
     pq.push(ii(0, start));
     while (!pq.empty()) {
10
       ii front = pq.top(); pq.pop();
11
       int curNode = front.second, curDist = front.first;
12
13
       if (curDist > dist[curNode]) continue;
14
15
       for (auto n : adjlist[curNode]) {
16
         int nextNode = n.first, nextDist = curDist + n.second;
17
         if (nextDist < dist[nextNode]) {</pre>
18
           dist[nextNode] = nextDist; parent[nextNode] = curNode;
           pq.push(ii(nextDist, nextNode));
21
      }
22
23 }
```

2.2.2 Bellmann-Ford-Algorithmus

Kürzestes Pfade in Graphen mit negativen Kanten. Erkennt negative Zyklen.

```
// Laufzeit: 0(|V|*|E|)
struct edge {
   int from; int to; int cost;
   edge () {};
   edge (int from, int to, int cost) : from(from), to(to), cost(cost) {};
};

vector<edge> edges; // Kanten einfügen!
vector<int> dist, parent;
```

```
11 void bellmannFord() {
     dist.assign(NUM_VERTICES, INF); dist[0] = 0;
13
     parent.assign(NUM_VERTICES, -1);
14
     for (int i = 0; i < NUM_VERTICES - 1; i++) {</pre>
15
       for (int j = 0; j < (int)edges.size(); j++) {
16
         if (dist[edges[j].from] + edges[j].cost < dist[edges[j].to]) {</pre>
17
           dist[edges[j].to] = dist[edges[j].from] + edges[j].cost;
18
           parent[edges[j].to] = edges[j].from;
19
20
       }
21
22
23
     // "dist" und "parent" sind korrekte kürzeste Pfade.
24
     // Folgende Zeilen prüfen nur negative Kreise.
25
     for (int j = 0; j < (int) edges.size(); <math>j++) {
26
       if (dist[edges[j].from] + edges[j].cost < dist[edges[j].to]) {</pre>
27
         // Negativer Kreis gefunden.
28
29
    }
30 | }
```

2.2.3 FLOYD-WARSHALL-Algorithmus

- Evtl. überschreibt die Eingabe die Nullen auf der Hauptdiagonalen. Nur negative Werte sollten die Nullen überschreiben.
- Von parallelen Kanten sollte nur die günstigste gespeichert werden.
- Knoten i liegt genau dann auf einem negativen Kreis, wenn dist[i][i] < 0 ist.
- Ein u-v-Pfad existiert nicht, wenn dist[u][v] == INF.
- Gibt es einen Knoten c, sodass dist[u][c] != INF && dist[c][v] != INF && dist [c][c] < 0, wird der u-v-Pfad beliebig kurz.

2.3 Strongly Connected Components (TARJANS-Algorithmus)

```
1 // Laufzeit: 0(|V|+|E|)
2 int counter, sccCounter;
3 | vector < bool > visited, inStack;
  vector< vector<int> > adjlist;
5 vector < int > d, low, sccs;
  stack<int> s:
8 void visit(int v) {
     visited[v] = true;
     d[v] = counter; low[v] = counter; counter++;
     inStack[v] = true; s.push(v);
12
13
     for (int i = 0; i < (int)adjlist[v].size(); i++) {</pre>
14
       int u = adjlist[v][i];
       if (!visited[u]) {
15
16
         visit(u);
17
         low[v] = min(low[v], low[u]);
       } else if (inStack[u]) {
19
         low[v] = min(low[v], low[u]);
20
       }
21
22
     if (d[v] == low[v]) {
24
       int u;
25
       do {
26
         u = s.top(); s.pop(); inStack[u] = false;
27
         sccs[u] = sccCounter;
28
       } while(u != v);
29
       sccCounter++;
30
    }
31
32
   void scc() {
     // Initialisiere adjlist!
     visited.clear(); visited.assign(NUM_VERTICES, false);
     d.clear(); d.resize(NUM_VERTICES);
     low.clear(); low.resize(NUM_VERTICES);
     inStack.clear(); inStack.assign(NUM_VERTICES, false);
     sccs.clear(); sccs.resize(NUM_VERTICES);
41
     counter = 0;
     sccCounter = 0;
     for (i = 0; i < NUM_VERTICES; i++) {</pre>
44
       if (!visited[i]) {
45
         visit(i);
46
       }
47
48
     // sccCounter ist Anzahl der starkem Zusammenhangskomponenten.
     // sccs enthält den Index der SCC für jeden Knoten.
```

2.4 Artikulationspunkte und Brücken

```
vector< vector<int> > adjlist;
   vector<int> low;
  vector<int> d:
   vector<bool> isArtPoint;
  vector< vector<int> > bridges; //nur fuer Bruecken
   int counter = 0:
   void visit(int v, int parent) {
     d[v] = low[v] = ++counter;
10
     int numVisits = 0, maxlow = 0;
11
12
     for (vector<int>::iterator vit = adjlist[v].begin(); vit != adjlist[v].
          end(); vit++) {
13
       if (d[*vit] == 0) {
14
         numVisits++;
15
         visit(*vit, v);
16
         if (low[*vit] > maxlow) {
17
           maxlow = low[*vit];
18
19
20
         if (low[*vit] > d[v]) { //nur fuer Bruecken, evtl. parent
               betrachten!
21
           bridges[v].push_back(*vit);
22
           bridges[*vit].push_back(v);
23
24
25
         low[v] = min(low[v], low[*vit]);
26
       } else {
27
         if (d[*vit] < low[v]) {
28
           low[v] = d[*vit];
29
30
       }
31
     }
32
33
     if (parent == -1) {
34
       if (numVisits > 1) isArtPoint[v] = true;
35
     } else {
36
       if (maxlow >= d[v]) isArtPoint[v] = true;
37
38
39
   void findArticulationPoints() {
41
     low.clear(); low.resize(adjlist.size());
42
     d.clear(); d.assign(adjlist.size(), 0);
43
     isArtPoint.clear(); isArtPoint.assign(adjlist.size(), false);
     bridges.clear(); isBridge.resize(adjlist.size()); //nur fuer Bruecken
     for (int v = 0; v < (int)adjlist.size(); v++) {</pre>
46
       if (d[v] == 0) visit(v, -1);
47
    }
48 | }
```

2.5 Eulertouren

- Zyklus existiert, wenn jeder Knoten geraden Grad hat (ungerichtet), bzw. bei jedem Knoten Ein- und Ausgangsgrad übereinstimmen (gerichtet).
- Pfad existiert, wenn alle bis auf (maximal) zwei Knoten geraden Grad haben (ungerichtet), bzw. bei allen Knoten bis auf zwei Ein- und Ausgangsgrad übereinstimmen, wobei einer eine Ausgangskante mehr hat (Startknoten) und einer eine Eingangskante mehr hat (Endknoten).
- Je nach Aufgabenstellung überprüfen, wie isolierte Punkte interpretiert werden sollen.
- Der Code unten läuft in Linearzeit. Wenn das nicht notwenidg ist (oder bestimmte Sortierungen verlangt werden), gehts mit einem set einfacher.

```
VISIT(v):
forall e=(v,w) in E

delete e from E

VISIT(w)
print e
```

```
1 // Laufzeit: 0(|V|+|E|)
  vector< vector<int> > adjlist;
3 | vector < vector < int > > otherIdx;
  vector<int> cycle;
   vector<int> validIdx;
  void swapEdges(int n, int a, int b) { // Vertauscht Kanten mit Indizes a
        und b von Knoten n.
     int neighA = adjlist[n][a];
     int neighB = adjlist[n][b];
     int idxNeighA = otherIdx[n][a];
11
     int idxNeighB = otherIdx[n][b];
     swap(adjlist[n][a], adjlist[n][b]);
     swap(otherIdx[n][a], otherIdx[n][b]);
     otherIdx[neighA][idxNeighA] = b;
15
     otherIdx[neighB][idxNeighB] = a;
16 }
17
  void removeEdge(int n, int i) { // Entfernt Kante i von Knoten n (und die
         zugehörige Rückwärtskante).
19
     int other = adjlist[n][i];
20
     if (other == n) { //Schlingen.
21
       validIdx[n]++;
22
       return;
23
     }
     int otherIndex = otherIdx[n][i];
25
     validIdx[n]++;
     if (otherIndex != validIdx[other]) {
27
       swapEdges(other, otherIndex, validIdx[other]);
28
29
     validIdx[other]++;
30 }
31
32 // Findet Eulerzyklus an Knoten n startend.
```

- Die Ausgabe erfolgt in falscher Reihenfolge.
- Algorithmus schlägt nicht fehl, falls kein Eulerzyklus existiert. Die Existenz muss separat geprüft werden.

2.6 Lowest Common Ancestor

```
//RMQ muss hinzugefuegt werden!
   vector<int> visited(2*MAX_N), first(MAX_N, 2*MAX_N), depth(2*MAX_N);
   vector<vector<int>> graph(MAX_N);
   //Runtime: 0(n)
   void initLCA(int gi, int d, int &c) {
    visited[c] = gi, depth[c] = d, first[gi] = min(c, first[gi]), c++;
    for(int gn : graph[gi]) {
      initLCA(gn, d+1, c);
10
       visited[c] = gi, depth[c] = d, c++;
11
12 }
13 //[a, b]
14 //Runtime: 0(1)
15 int getLCA(int a, int b) {
    return visited[queryRMQ(min(first[a], first[b]), max(first[a], first[b
          ]))];
17 }
18 //=> int c = 0; initLCA(0,0,c); initRMQ(); done! [rmq on depth]
```

2.7 Max-Flow

2.7.1 Capacity Scaling

Gut bei dünn besetzten Graphen.

```
vector<edge> adjlist[MAX_N];
     int visited[MAX_N] = {0}, target, dfsCounter = 0;
     ll capacity;
     bool dfs(int x) {
11
       if (x == target) return 1;
       if (visited[x] == dfsCounter) return 0;
13
       visited[x] = dfsCounter;
14
       for (edge &e : adjlist[x]) {
15
         if (e.capacity >= capacity && dfs(e.dest)) {
16
           e.capacity -= capacity; adjlist[e.dest][e.rev].capacity +=
                 capacity;
17
           e.flow += capacity; adjlist[e.dest][e.rev].flow -= capacity;
18
           return 1;
19
         }
20
       }
21
       return 0;
22
23
24
     void addEdge(int u, int v, ll c) {
25
       adjlist[u].push_back(edge {v, (int)adjlist[v].size(), c, 0});
26
       adjlist[v].push_back(edge {u, (int)adjlist[u].size() - 1, 0, 0});
27
     }
28
29
     11 maxFlow(int s, int t) {
       capacity = 1L << 62;
31
       target = t;
32
       11 \text{ flow} = 0L;
       while (capacity) {
34
         while (dfsCounter++, dfs(s)) {
35
           flow += capacity;
36
37
         capacity /= 2;
38
       return flow;
40
41 | };
```

2.7.2 Push Relabel

Gut bei sehr dicht besetzten Graphen.

```
11
12
     inline void addEdge(int u, int v, ll c) { capacities[u][v] += c; }
13
14
15
     void push(int u, int v) {
16
      ll send = min(excess[u], capacities[u][v] - flow[u][v]);
17
       flow[u][v] += send; flow[v][u] -= send;
18
       excess[u] -= send; excess[v] += send;
19
20
21
     void relabel(int u) {
22
       int minHeight = INT_MAX / 2;
23
       for (int v = 0; v < n; v++) {
24
         if (capacities[u][v] - flow[u][v] > 0) {
25
           minHeight = min(minHeight, height[v]);
26
           height[u] = minHeight + 1;
27
     }}}
28
29
     void discharge(int u) {
30
       while (excess[u] > 0) {
31
         if (seen[u] < n) {
32
           int v = seen[u]:
33
           if (capacities[u][v] - flow[u][v] > 0 && height[u] > height[v])
                push(u, v);
34
           else seen[u]++;
35
         } else {
36
           relabel(u);
37
           seen[u] = 0;
38
     }}}
39
40
     void moveToFront(int u) {
41
      int temp = list[u];
       for (int i = u; i > 0; i--)
42
43
         list[i] = list[i - 1];
       list[0] = temp;
44
45
46
47
     ll maxFlow(int source, int target) {
       for (int i = 0, p = 0; i < n; i++) if (i != source && i != target)
48
            list[p++] = i;
49
50
       height[source] = n;
51
       excess[source] = LLONG_MAX / 2;
52
       for (int i = 0; i < n; i++) push(source, i);</pre>
53
54
       int p = 0;
55
       while (p < n - 2) {
56
         int u = list[p], oldHeight = height[u];
57
         discharge(u);
58
         if (height[u] > oldHeight) {
59
           moveToFront(p);
60
           p = 0;
61
         } else p++;
62
       }
```

2.7.3 Anwendungen

• Maximum Edge Disjoint Paths

Finde die maximale Anzahl Pfade von *s* nach *t*, die keine Kante teilen.

- 1. Setze *s* als Quelle, *t* als Senke und die Kapazität jeder Kante auf 1.
- 2. Der maximale Fluss entspricht der unterschiedlichen Pfade ohne gemeinsame Kanten.

• Maximum Independent Paths

Finde die maximale Anzahl Pfade von *s* nach *t*, die keinen Knoten teilen.

- 1. Setze *s* als Quelle, *t* als Senke und die Kapazität jeder Kante *und jedes Knotens* auf 1.
- 2. Der maximale Fluss entspricht der unterschiedlichen Pfade ohne gemeinsame Knoten.

• Min-Cut

Der maximale Fluss ist gleich dem minimalen Schnitt. Bei Quelle *s* und Senke *t*, partitioniere in *S* und *T*. Zu *S* gehören alle Knoten, die im Residualgraphen von *s* aus erreichbar sind (Rückwärtskanten beachten).

2.8 Min-Cost-Max-Flow

```
1 typedef long long 11;
2 static const 11 flowlimit = 1LL << 60; // Should be bigger than the max
3 struct MinCostFlow { // Should be initialized with new.
     static const int maxn = 400; // Should be bigger than the #vertices.
     static const int maxm = 5000; //#edges.
     struct edge { int node; int next; ll flow; ll value; } edges[maxm <<</pre>
     int graph[maxn], queue[maxn], pre[maxn], con[maxn], n, m, source,
          target, top;
     bool inqueue[maxn];
     11 maxflow, mincost, dis[maxn];
10
11
     MinCostFlow() { memset(graph, -1, sizeof(graph)); top = 0; }
12
     inline int inverse(int x) { return 1 + ((x >> 1) << 2) - x; }
     // Directed edge from u to v, capacity c, weight w.
     inline int addedge(int u, int v, int c, int w) {
17
       edges[top].value = w; edges[top].flow = c; edges[top].node = v;
18
       edges[top].next = graph[u]; graph[u] = top++;
19
       edges[top].value = -w; edges[top].flow = 0; edges[top].node = u;
```

```
edges[top].next = graph[v]; graph[v] = top++;
21
       return top - 2;
22
24
     bool SPFA() {
25
       int point, node, now, head = 0, tail = 1;
26
       memset(pre, -1, sizeof(pre));
27
       memset(inqueue, 0, sizeof(inqueue));
28
       memset(dis, 0x7F, sizeof(dis));
29
       dis[source] = 0; queue[0] = source;
30
       pre[source] = source; inqueue[source] = true;
31
32
       while (head != tail) {
33
         now = queue[head++];
34
         point = graph[now];
35
         inqueue[now] = false;
         head %= maxn;
36
37
38
         while (point != -1) {
39
           node = edges[point].node;
           if (edges[point].flow > 0 && dis[node] > dis[now] + edges[point].
                value) {
41
             dis[node] = dis[now] + edges[point].value;
             pre[node] = now; con[node] = point;
42
43
             if (!inqueue[node]) {
               inqueue[node] = true; queue[tail++] = node;
45
               tail %= maxn:
46
48
           point = edges[point].next;
49
50
51
       return pre[target] != -1;
52
54
     void extend() {
55
      11 w = flowlimit;
       for (int u = target; pre[u] != u; u = pre[u]) {
57
         w = min(w, edges[con[u]].flow);
58
59
       maxflow += w;
60
       mincost += dis[target] * w;
61
       for (int u = target; pre[u] != u; u = pre[u]) {
62
         edges[con[u]].flow -= w;
63
         edges[inverse(con[u])].flow += w;
64
      }
65
    }
66
67
     void mincostflow() {
      maxflow = 0:
       mincost = 0;
       while (SPFA()) {
71
         extend():
```

```
74 | };
```

2.9 Maximal Cardinatlity Bipartite Matching

```
1 // Laufzeit: 0(n*(|V|+|E|))
2 vector< vector<int> > adjlist; // Gerichtete Kanten, von links nach
3 vector<int> pairs; // Zu jedem Knoten der gematchte Knoten rechts, oder
        -1.
 4 | vector < bool > visited:
6 bool dfs(int v) {
     if (visited[v]) return false;
    visited[v] = true;
     for (auto w : adjlist[v]) if (pairs[w] < 0 || dfs(pairs[w])) {</pre>
       pairs[w] = v; pairs[v] = w; return true;
11
12
    return false;
13 }
14
15 // n = #Knoten links (0..n-1), m = #Knoten rechts
16 int kuhn(int n, int m) {
    pairs.assign(n + m, -1);
     // Greedy Matching. Optionale Beschleunigung.
     for (int i = 0; i < n; i++) for (auto w : adjlist[i]) if (pairs[w] ==</pre>
21
       pairs[i] = w; pairs[w] = i; ans++; break;
     for (int i = 0; i < n; i++) if (pairs[i] == -1) {</pre>
       visited.assign(n + m, false);
25
       ans += dfs(i);
26
    return ans; // Größe des Matchings.
```

2.10 TSP

```
if(g != c && !((1 << g) & v)) {
13
             if((dp[g][(v | (1 << g))].first + dist[c][g]) < dp[c][v].first)</pre>
14
               dp[c][v].first = dp[g][(v | (1 << g))].first + dist[c][g];
15
               dp[c][v].second = q;
16
     }}}}
17
18
     vector<int> res; res.push_back(0); int v = 0;
19
     while(res.back() != 0 || res.size() == 1) {
20
       res.push_back(dp[res.back()][(v |= (1 << res.back()))].second);</pre>
21
     return res; // Enthält Knoten 0 zweimal. An erster und letzter Position
23 | }
```

2.11 Bitonic TSP

```
// Laufzeit: 0(|V|^2)
2 | vector < vector < double > > dp; // Initialisiere mit -1
3 vector < vector < double > > dist: // Initialisiere mit Entfernungen zwischen
4 | vector<int> lr, rl; // Links-nach-rechts und rechts-nach-links Pfade.
   int n: // #Knoten
   // get(0, 0) gibt die Länge der kürzesten bitonischen Route.
   double get(int p1, int p2) {
    int v = max(p1, p2) + 1;
    if (v == n - 1) return dist[p1][v] + dist[v][p2];
     if (dp[p1][p2] > -0.5) return dp[p1][p2];
     double tryLR = dist[p1][v] + get(v, p2), tryRl = dist[v][p2] + get(p1,
13
     if (tryLR < tryRL) lr.push_back(v); // Baut die Pfade auf. Fügt v zu rl</pre>
           hinzu, falls beide gleich teuer.
14
     else rl.push_back(v); // Änder das, falls nötig.
15
     return min(tryLR, tryRL);
16 | }
```

3 Geometrie

3.1 Closest Pair

```
8 3
9
10 double shortestDist(vector<point> &points) {
     //check that points.size() > 1 and that ALL POINTS ARE DIFFERENT
     set<point, bool(*)(point, point)> status(compY);
13
     sort(points.begin(), points.end());
     double opt = 1e30, sqrtOpt = 1e15;
     auto left = points.begin(), right = points.begin();
     status.insert(*right); right++;
     while (right != points.end()) {
19
       if (fabs(left->first - right->first) >= sqrt0pt) {
20
         status.erase(*(left++));
21
       } else {
         auto lower = status.lower_bound(point(-1e20, right->second -
23
         auto upper = status.upper_bound(point(-1e20, right->second +
              sgrtOpt));
24
         while (lower != upper) {
25
           double cand = squaredDist(*right, *lower);
26
           if (cand < opt) {</pre>
27
             opt = cand:
28
             sqrtOpt = sqrt(opt);
29
30
           ++lower;
31
32
         status.insert(*(right++));
33
34
    }
35
    return sqrt0pt;
36 }
```

3.2 Geraden

```
1 struct pt { //complex < double > does not work here, because we need to set
        pt.x and pt.y
     double x, y;
     pt() {};
     pt(double x, double y) : x(x), y(y) {};
   struct line {
    double a, b, c; //a*x+b*y+c, b=0 <=> vertical line, b=1 <=> otherwise
11 line pointsToLine(pt p1, pt p2) {
     line 1;
    if (fabs(p1.x - p2.x) < EPSILON) {
     l.a = 1; l.b = 0.0; l.c = -p1.x;
      1.a = -(double)(p1.y - p2.y) / (p1.x - p2.x);
16
      1.b = 1.0;
17
18
      1.c = -(double)(1.a * p1.x) - p1.y;
```

```
20
    return 1;
21 | }
   bool areParallel(line 11, line 12) {
24
    return (fabs(11.a - 12.a) < EPSILON) && (fabs(11.b - 12.b) < EPSILON);</pre>
25 }
26
27
  bool areSame(line 11, line 12) {
     return areParallel(11, 12) && (fabs(11.c - 12.c) < EPSILON);</pre>
29
30
31 bool areIntersect(line 11, line 12, pt &p) {
32
    if (areParallel(l1, l2)) return false;
33
    p.x = (12.b * 11.c - 11.b * 12.c) / (12.a * 11.b - 11.a * 12.b);
    if (fabs(11.b) > EPSILON) p.y = -(11.a * p.x + 11.c);
35
     else p.y = -(12.a * p.x + 12.c);
36
    return true;
37 | }
```

3.3 Konvexe Hülle

```
// Laufzeit: 0(n*log(n))
  typedef pair<ll, ll> pt;
4 // >0 => PAB dreht gegen den Uhrzeigersinn.
5 // <0 => PAB dreht im Uhrzeigersinn.
6 // =0 => PAB sind kollinear.
7 11 cross(const pt p, const pt a, const pt b) {
     return (a.first - p.first) * (b.second - p.second) -
         (a.second - p.second) * (b.first - p.first);
10 | }
11
12 // Punkte auf der konvexen Hülle, gegen den Uhrzeigersinn sortiert.
13 // Kollineare Punkte sind nicht enthalten. Entferne "=" im CCW-Test um
        sie aufzunehmen.
14 // Achtung: Der erste und letzte Punkt im Ergebnis sind gleich.
15 // Achtung: Alle Punkte müssen verschieden sein.
16 | vector < pt > convexHull(vector < pt > p) {
17
    int n = p.size(), k = 0;
18
     vector<pt> h(2 * n);
19
     sort(p.begin(), p.end());
20
     // Untere Hülle.
21
     for (int i = 0; i < n; i++) {
22
       while (k \ge 2 \& cross(h[k - 2], h[k - 1], p[i]) \le 0.0) k--;
23
      h[k++] = p[i];
24
    }
25
     // Obere Hülle.
26
     for (int i = n - 2, t = k + 1; i >= 0; i--) {
27
       while (k \ge t \& cross(h[k - 2], h[k - 1], p[i]) \le 0.0) k--;
28
      h[k++] = p[i];
29
     h.resize(k);
```

```
31 | return h;
32 | }
```

3.4 Formeln - std::complex

```
1 // Komplexe Zahlen als Darstellung für Punkte.
2 \mid // Wenn immer möglich complex<int> verwenden. Achtung: Funktionen wie abs
        () geben dann int zurück.
3 typedef pt complex < double >;
  // Winkel zwischen Punkt und x-Achse in [0, 2 * PI). Winkel zwischen a
6 double angle = arg (a), angle_a_b = arg (a - b);
8 // Punkt rotiert um Winkel theta.
9 pt a_rotated = a * exp (pt (0, theta));
11 // Mittelpunkt des Dreiecks abc.
12 pt centroid = (a + b + c) / 3.0;
14 // Skalarprodukt.
15 double dot(pt a, pt b) {
    return real(conj(a) * b);
17 | }
18
19 // Kreuzprodukt, 0, falls kollinear.
20 double cross(pt a, pt b) {
21
    return imag(conj(a) * b);
22 }
23
24 // Flächeninhalt eines Dreicks bei bekannten Eckpunkten.
25 double areaOfTriangle(pt a, pt b, pt c) {
26
    return abs(cross(b - a, c - a)) / 2.0;
27 }
28
   // Flächeninhalt eines Dreiecks bei bekannten Seitenlängen.
30 double areaOfTriangle(double a, double b, double c) {
     double s = (a + b + c) / 2;
32
     return sqrt(s * (s-a) * (s-b) * (s-c));
33 }
35 // Sind die Dreiecke al, bl, cl, and a2, b2, c2 ähnlich?
36 // Erste Zeile testet Ähnlichkeit mit gleicher Orientierung,
37 // zweite Zeile testet Ähnlichkeit mit unterschiedlicher Orientierung
38 | bool similar (pt a1, pt b1, pt c1, pt a2, pt b2, pt c2) {
    return (
40
       (b2 - a2) * (c1 - a1) == (b1 - a1) * (c2 - a2) | |
41
       (b2 - a2) * (conj (c1) - conj (a1)) == (conj (b1) - conj (a1)) * (c2)
            - a2)
42
    );
43 }
44
45 // -1 => gegen den Uhrzeigersinn, 0 => kolliniear, 1 => im Uhrzeigersinn.
```

```
46 // Einschränken der Rückgabe auf [-1,1] ist sicherer gegen Overflows.
47 double orientation(pt a, pt b, pt c) {
48 double orien = cross(b - a, c - a);
      if (abs(orien) < EPSILON) return 0; // Might need large EPSILON: ~1e-6
50
       return orien < 0 ? -1 : 1;
51 }
52
53 // Test auf Streckenschnitt zwischen a-b und c-d.
54 bool lineSegmentIntersection(pt a, pt b, pt c, pt d) {
         if (orientation(a, b, c) == 0 && orientation(a, b, d) == 0) { // Falls
                    kollinear.
56
              double dist = abs(a - b);
57
              return (abs(a - c) \le dist && abs(b - c) \le dist) || (abs(a - d) \le
                        dist \&\& abs(b - d) \ll dist;
58
59
        return orientation(a, b, c) * orientation(a, b, d) <= 0 && orientation(
                    c, d, a) * orientation(c, d, b) <= 0;
60 }
61
62 // Berechnet die Schnittpunkte der Strecken a-b und c-d.
63 // Enthält entweder keinen Punkt, den einzigen Schnittpunkt oder die
                Endpunkte der Schnittstrecke.
64 // Achtung: operator<, min, max müssen selbst geschrieben werden!
      vector<pt> lineSegmentIntersection(pt a, pt b, pt c, pt d) {
         vector<pt> result;
67
         if (orientation(a, b, c) == 0 && orientation(a, b, d) == 0 &&
68
                  orientation(c, d, a) == 0 && orientation(c, d, b) == 0) {
69
              pt minAB = min(a, b), maxAB = max(a, b), minCD = min(c, d), maxCD =
                        max(c. d):
70
             if (minAB < minCD && maxAB < minCD) return result:</pre>
71
             if (minCD < minAB && maxCD < minAB) return result;</pre>
72
             pt start = max(minAB, minCD), end = min(maxAB, maxCD);
73
             result.push_back(start);
74
             if (start != end) result.push_back(end);
75
             return result:
76
77
          double x1 = real(b) - real(a), y1 = imag(b) - imag(a);
          double x2 = real(d) - real(c), y2 = imag(d) - imag(c);
          double u1 = (-y1 * (real(a) - real(c)) + x1 * (imag(a) - imag(c))) / (-
                    x2 * y1 + x1 * y2);
          double u2 = (x2 * (imag(a) - imag(c)) - y2 * (real(a) - real(c))) / (-
                    x2 * y1 + x1 * y2);
81
         if (u1 >= 0 && u1 <= 1 && u2 >= 0 && u2 <= 1) {
82
              double x = real(a) + u2 * x1, y = imag(a) + u2 * y1;
83
             result.push_back(pt(x, y));
84
85
         return result;
86 }
87
88 // Entfernung von Punkt p zur Gearden durch a-b.
89 double distToLine(pt a, pt b, pt p) {
90
       return abs(cross(p - a, b - a)) / abs(b - a);
91 }
93 // Liegt p auf der Geraden a-b?
```

```
94 | bool pointOnLine(pt a, pt b, pt p) {
    return orientation(a, b, c) == 0;
96 }
98 // Liegt p auf der Strecke a-b?
99 bool pointOnLineSegment(pt a, pt b, pt p) {
100 if (orientation(a, b, p) != 0) return false;
    return real(p) >= min(real(a), real(b)) && real(p) <= max(real(a), real</pre>
         imag(p) >= min(imag(a), imag(b)) && imag(p) <= max(imag(a), imag(b))
              );
103 }
104
105 // Entfernung von Punkt p zur Strecke a-b.
106 double distToSegment(pt a, pt b, pt p) {
107
     if (a == b) return abs(p - a);
108
       double segLength = abs(a - b);
109
       double u = ((real(p) - real(a)) * (real(b) - real(a)) +
110
            (imag(p) - imag(a)) * (imag(b) - imag(a))) /
111
            (segLength * segLength);
112
       pt projection(real(a) + u * (real(b) - real(a)), imag(a) + u * (imag(
             b) - imag(a))):
113
       double projectionDist = abs(p - projection);
       if (!pointOnLineSegment(a, b, projection)) projectionDist = 1e30;
114
115
       return min(projectionDist, min(abs(p - a), abs(p - b)));
116 }
117
118 // Kürzeste Entfernung zwischen den Strecken a-b und c-d.
119 double distBetweenSegments(pt a, pt b, pt c, pt d) {
120
     if (lineSegmentIntersection(a, b, c, d)) return 0.0;
121
     double result = distToSegment(a, b, c);
     result = min(result, distToSegment(a, b, d));
123
     result = min(result, distToSegment(c, d, a));
124
     return min(result, distToSegment(c, d, b));
125 | }
126
127 // Liegt d in der gleichen Ebene wie a, b, und c?
128 bool isCoplanar(pt a, pt b, pt c, pt d) {
    return abs((b - a) * (c - a) * (d - a)) < EPSILON;
130 }
131
132 // Berechnet den Flächeninhalt eines Polygons (nicht selbstschneidend).
133 double areaOfPolygon(vector<pt> &polygon) { // Jeder Eckpunkt nur einmal
         im Vektor.
134
     double res = 0; int n = polygon.size();
    for (int i = 0; i < n; i++)
       res += real(polygon[i]) * imag(polygon[(i + 1) % n]) - real(polygon[(
            i + 1) % n]) * imag(polygon[i]);
     return 0.5 * res; // Positiv, wenn Punkte gegen den Uhrzeigersinn
           gegeben sind. Sonst negativ.
138 }
139
140 // Testet, ob sich zwei Rechtecke (p1, p2) und (p3, p4) schneiden (
         jeweils gegenüberliegende Ecken).
141 bool rectIntersection(pt p1, pt p2, pt p3, pt p4) {
```

```
double minx12 = min(real(p1), real(p2)), maxx12 = max(real(p1), real(p2)
     double minx34 = min(real(p3), real(p4)), maxx34 = max(real(p3), real(p4)
143
     double miny12 = min(imag(p1), imag(p2)), maxy12 = max(imag(p1), imag(p2)
     double miny34 = min(imag(p3), imag(p4)), maxy34 = max(imag(p3), imag(p4)
145
146
     return (maxx12 >= minx34) \&\& (maxx34 >= minx12) \&\& (maxy12 >= miny34)
           && (maxy34 >= miny12);
147 }
148
   // Testet, ob ein Punkt im Polygon liegt (beliebige Polygone).
150 bool pointInPolygon(pt p, vector<pt> &polygon) { // Jeder Eckpunkt nur
         einmal im Vektor.
     pt rayEnd = p + pt(1, 1000000);
152
     int counter = 0, n = polygon.size();
153
     for (int i = 0; i < n; i++) {</pre>
154
       pt start = polygon[i], end = polygon[(i + 1) % n];
155
       if (lineSegmentIntersection(p, rayEnd, start, end)) counter++;
156
157
     return counter & 1:
158 }
```

4 Mathe

4.1 ggT, kgV, erweiterter euklidischer Algorithmus

```
1  // Laufzeiten: O(log(a) + log(b))
2  ll gcd(ll a, ll b) {
    return b == 0 ? a : gcd (b, a % b);
4  }
5  6
6  ll lcm(ll a, ll b) {
    return a * (b / gcd(a, b)); // Klammern gegen Overflow.
8  }
```

4.1.1 Multiplikatives Inverses von x in $\mathbb{Z}/n\mathbb{Z}$

Sei $0 \le x < n$. Definiere $d := \gcd(x, n)$.

Falls d = 1:

- Erweiterter euklidischer Algorithmus liefert α und β mit $\alpha x + \beta n = 1$.
- Nach Kongruenz gilt $\alpha x + \beta n \equiv \alpha x \equiv 1 \mod n$.
- $x^{-1} :\equiv \alpha \mod n$

Falls $d \neq 1$: Es existiert kein x^{-1} .

```
1  // Laufzeit: 0(log (n) + log(p))
2  ll multInv(ll n, ll p) {    // Berechnet das multiplikative Inverse von n in
        F_p.
3  extendedEuclid(n, p);    // Implementierung von oben.
4  x += ((x / p) + 1) * p;
5  return x % p;
6  }
```

4.2 Mod-Exponent über \mathbb{F}_p

```
1  // Laufzeit: O(log(b))
2  ll mult_mod(ll a, ll b, ll n) {
3    if(a == 0 || b == 0) return 0;
4    if(b == 1) return a % n;
5    if(b % 2 == 1) return (a + mult_mod(a, b-1, n)) % n;
6    else return mult_mod((a + a) % n, b / 2, n);
8  }
9  // Laufzeit: O(log(b))
11  pow_mod(ll a, ll b, ll n) {
12    if(b == 0) return 1;
13    if(b == 1) return a % n;
14    if(b % 2 == 1) return mult_mod(pow_mod(a, b-1, n), a, n);
16    else return pow_mod(mult_mod(a, a, n), b / 2, n);
17 }
```

4.3 LGS über \mathbb{F}_n

```
1  // Laufzeit: O(n^3)
2  void normalLine(ll n, ll line, ll p) { // Normalisiert Zeile line.
3  ll factor = multInv(mat[line][line], p); // Implementierung von oben.
4  for (ll i = 0; i <= n; i++) {
5  mat[line][i] *= factor;
6  mat[line][i] %= p;
7  }
8 }
9  void takeAll(ll n, ll line, ll p) { // Zieht Vielfaches von line von allen anderen Zeilen ab.</pre>
```

```
for (11 i = 0; i < n; i++) {
       if (i == line) continue;
12
13
       ll diff = mat[i][line];
14
       for (ll j = 0; j <= n; j++) {
15
         mat[i][j] -= (diff * mat[line][j]) % p;
16
         while (mat[i][j] < 0) {</pre>
17
           mat[i][j] += p;
18
19
       }
20
21
22
   void gauss(ll n, ll p) { // nx(n+1)-Matrix, Koerper F_p.
24
     for (ll line = 0; line < n; line++) {</pre>
25
       normalLine(n, line, p);
26
       takeAll(n, line, p);
27
```

4.4 Chinesischer Restsatz

- Extrem anfällig gegen Overflows. Evtl. häufig 128-Bit Integer verwenden.
- Direkte Formel für zwei Kongruenzen $x \equiv a \mod n$, $x \equiv b \mod m$:

$$x \equiv a - y * n * \frac{a - b}{d} \mod \frac{mn}{d}$$
 mit $d := ggT(n, m) = yn + zm$

Formel kann auch für nicht teilerfremde Moduli verwendet werden.

• Sind die Moduli nicht teilerfremd, existiert genau dann eine Lösung, wenn $a_i \equiv a_j \mod \gcd(m_i, m_j)$. In diesem Fall sind keine Faktoren auf der linken Seite erlaubt.

```
// Laufzeit: O(n * log(n)), n := Anzahl der Kongruenzen
2 // Nur für teilerfremde Moduli.
3 // Berechnet das kleinste, nicht negative x, das die Kongruenzen simultan
4 // Alle Lösungen sind kongruent zum kgV der Moduli (Produkt, falls alle
        teilerfremd sind).
   struct ChineseRemainder {
     typedef __int128 111;
     vector<lll> lhs, rhs, module, inv;
     111 M; // Produkt über die Moduli. Kann leicht überlaufen.
10
     11 g(vector<111> &vec) {
11
      111 \text{ res} = 0:
12
       for (int i = 0; i < (int)vec.size(); i++) {</pre>
13
         res += (vec[i] * inv[i]) % M;
14
         res %= M;
15
16
       return res;
17
18
```

```
// Fügt Kongruenz l * x = r (mod m) hinzu.
     void addEquation(ll l, ll r, ll m) {
21
       lhs.push_back(1);
       rhs.push_back(r);
23
       module.push_back(m);
24
25
26
     // Löst das System.
     11 solve() {
       M = accumulate(module.begin(), module.end(), lll(1), multiplies<lll</pre>
29
       inv.resize(lhs.size());
       for (int i = 0; i < (int)lhs.size(); i++) {</pre>
31
         111 x = (M / module[i]) % module[i];
32
         inv[i] = (multInvers(x, module[i]) * (M / module[i]));
33
34
       return (multInvers(g(lhs), M) * g(rhs)) % M;
35
36 }:
```

4.5 Primzahlsieb von Eratosthenes

```
// Laufzeit: 0(n * log log n)
   #define N 100000001 // Bis 10^8 in unter 64MB Speicher.
  bitset<N / 2> isPrime:
  inline bool check(int x) { // Diese Methode zum Lookup verwenden.
     if (x < 2) return false:</pre>
     else if (x == 2) return true;
     else if (!(x & 1)) return false;
     else return !isPrime[x / 2];
10 }
11
  inline int primeSieve(int n) { // Gibt die Anzahl der Primzahlen <= n zur</pre>
        ück.
13
     int counter = 1;
     for (int i = 3; i \le min(N, n); i += 2) {
       if (!isPrime[i / 2]) {
         for (int j = 3 * i; j \le \min(N, n); j = 2 * i) is Prime [j / 2] = 1;
16
17
         counter++;
18
      }
19
    return counter;
```

4.6 MILLER-RABIN-Primzahltest

```
1 // Theoretisch: n < 318,665,857,834,031,151,167,461 (> 10^23)
2 // Praktisch: n <= 10^18 (long long)
3 // Laufzeit: O(log n)
```

```
4 | bool isPrime(ll n) {
     if(n == 2) return true;
     if(n < 2 \mid \mid n \% 2 == 0) return false;
     11 d=n-1, j=0;
     while (d \% 2 == 0) d >>= 1, j++;
     for(int a = 2; a \le min((11)37, n-1); a++) {
10
       ll v = pow_mod(a, d, n);
11
       if(v == 1 || v == n-1) continue;
       for(int i = 1; i <= j; i++) {</pre>
12
13
         v = mult_mod(v, v, n);
14
         if(v == n-1 \mid \mid v <= 1) break;
15
16
       if(v != n-1) return false;
17
18
    return true;
19 }
```

4.7 Binomialkoeffizienten

Vorberechnen, wenn häufig benötigt.

```
1  // Laufzeit: 0(k)
2  ll calc_binom(ll n, ll k) {
3    ll r = 1, d;
4    if (k > n) return 0;
5    for (d = 1; d <= k; d++) {
6       r *= n--;
7       r /= d;
8    }
9    return r;
10 }</pre>
```

4.8 Maximales Teilfeld

```
// N := Länge des Feldes.
   // Laufzeit: O(N)
3 int maxStart = 1, maxLen = 0, curStart = 1, len = 0;
  double maxValue = 0, sum = 0;
  for (int pos = 0; pos < N; pos++) {
    sum += values[pos];
    len++:
    if (sum > maxValue) { // Neues Maximum.
       maxValue = sum; maxStart = curStart; maxLen = len;
10
11
    if (sum < 0) { // Alles zurücksetzen.</pre>
12
       curStart = pos +2; len = 0; sum = 0;
13
14 | }
15 // maxSum := maximaler Wert, maxStart := Startposition, maxLen := Länge
        der Sequenz
```

Obiger Code findet kein maximales Teilfeld, das über das Ende hinausgeht. Dazu:

- 1. Finde maximales Teilfeld, das nicht übers Ende geht.
- 2. Berechne minimales Teilfeld, das nicht über den Rand geht (analog).
- 3. Nimm Maximum aus gefundenem Maximalen und Allem ohne dem Minimalen.

4.9 Polynome & FFT

Multipliziert Polynome *A* und *B*.

- deg(A * B) = deg(A) + deg(B)
- Vektoren a und $\mathfrak b$ müssen mindestens Größe $\deg(A*B)+1$ haben. Größe muss eine Zweierpotenz sein.
- Für ganzzahlige Koeffizienten: (int)round(real(a[i]))

```
1 // Laufzeit: O(n log(n)).
  typedef complex < double > cplx; // Eigene Implementierung ist noch deutlich
         schneller.
3 vector<cplx> fft(const vector<cplx> &a, bool inverse = 0) { // a.size()
        muss eine Zweierpotenz sein!
     int logn = 1, n = a.size();
     vector<cplx> A(n);
     while ((1 << logn) < n) logn++;</pre>
     for (int i = 0; i < n; i++) {
       int j = 0;
       for (int k = 0; k < logn; k++) j = (j << 1) | ((i >> k) & 1);
10
11
12
     for (int s = 2: s <= n: s <<= 1) {
13
       double angle = 2 * PI / s * (inverse ? -1 : 1);
14
       cplx ws(cos(angle), sin(angle));
15
       for (int j = 0; j < n; j+= s) {
16
         cplx w = 1;
17
         for (int k = 0; k < s / 2; k++) {
18
           cplx u = A[j + k], t = A[j + s / 2 + k];
19
           A[j + k] = u + w * t;
           A[j + s / 2 + k] = u - w * t;
21
           if (inverse) A[j + k] /= 2, A[j + s / 2 + k] /= 2;
22
           w *= ws:
23
24
       }
25
26
    return A;
27 }
29 / / Polynome: a[0] = a_0, a[1] = a_1, ... und b[0] = b_0, b[1] = b_1, ...
30 // Integer-Koeffizienten: Runde beim Auslesen der Koeffizienten: (int)
        round(a[i].real())
31 | vector < cplx> a = \{0,0,0,0,0,1,2,3,4\}, b = \{0,0,0,0,0,2,3,0,1\};
32 \mid a = fft(a); b = fft(b);
33 | for (int i = 0; i < (int)a.size(); i++) a[i] *= b[i];
34 \mid a = fft(a,1); // a = a * b
```

ChaosKITs 15 Karlsruhe Institute of Technology

Kombinatorik

Berühmte Zahlen 4.10.1

4.10.1 Berühmte Zah	lan	(-,, -, -, -, -, -, -, -, -, -, -, -,				
		Begründung: Es gibt zwei Möglichkeiten für die n-te Zahl. Entweder si	e bildet einen			
Fibonacci-Zahlen	f(0) = 0 $f(1) = 1$ $f(n+2) = f(n+1) + f(n)$	eigene Zyklus, oder sie kann an jeder Position in jedem Zyklus einsortiert a				
Catalan-Zahlen	$C_0 = 1$ $C_n = \sum_{k=0}^{n-1} C_k C_{n-1-k} = \frac{1}{n+1} {2n \choose n} = \frac{2(2n-1)}{n+1} \cdot C_{n-1}$		Bem. 3, 4			
Euler-Zahlen (I)	$\binom{n}{0} = \binom{n}{n-1} = 1 \qquad \binom{n}{k} = (k+1)\binom{n-1}{k} + (n-k)\binom{n-1}{k-1}$	Bemerkung 8 (Stirling-Zahlen 2. Ordnung) Die Anzahl der Möglich mente in k nichtleere Teilmengen zu zerlegen.	keiten n Ele- Bem. 5			
Euler-Zahlen (II)		//n -Begründung: Es gibt k Möglichkeiten die n in eine n – 1-Partition einzuc komntif der Fall, dass die n in ihrer eigenen Teilmenge (alleine) steht.	rdnen. Dazu Bem. 6			
Stirling-Zahlen (I)	$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = 1 \qquad \begin{bmatrix} n \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ n \end{bmatrix} = 0 \qquad \begin{bmatrix} n \\ k \end{bmatrix} = \begin{bmatrix} n-1 \\ k-1 \end{bmatrix} + (n-1) \begin{bmatrix} n-1 \\ k \end{bmatrix}$		Bem. 7			
Stirling-Zahlen (II)		Bemerkung 9 Anzahl der Teilmengen von \mathbb{N} , die sich zu n aufaddieren mi Elment $\leq k$.	t maximalem Bem. 8			
Integer-Partitions	f(1,1) = 1 $f(n,k) = 0$ für $k > n$ $f(n,k) = f(n-k,k) + f(n-k,k)$	n, k-1)	Bem. 9			

Bemerkung 1
$$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} f_n \\ f_{n+1} \end{pmatrix}$$

Bemerkung 2 (Zeckendorfs Theorem) Jede positive natürliche Zahl kann eindeutig als Summe einer oder mehrerer verschiedener Fibonacci-Zahlen geschrieben werden, sodass keine zwei aufeinanderfolgenden Fibonacci-Zahlen in der Summe vorkommen. Lösung: Greedy, nimm immer die größte Fibonacci-Zahl, die noch hineinpasst.

Bemerkung 3 • Die erste und dritte angegebene Formel sind relativ sicher gegen Overflows.

• Die erste Formel kann auch zur Berechnung der Catalan-Zahlen bezüglich eines Moduls genutzt werden.

Bemerkung 4 Die Catalan-Zahlen geben an: $C_n =$

- Anzahl der Binärbäume mit n nicht unterscheidbaren Knoten.
- Anzahl der validen Klammerausdrücke mit n Klammerpaaren.
- Anzahl der korrekten Klammerungen von n + 1 Faktoren.
- Anzahl der Möglichkeiten ein konvexes Polygon mit n + 2 Ecken in Dreiecke zu zerlegen.
- Anzahl der monotonen Pfade (zwischen gegenüberliegenden Ecken) in einem n×n-Gitter, die nicht die Diagonale kreuzen.

Bemerkung 5 (Euler-Zahlen 1. Ordnung) Die Anzahl der Permutationen von $\{1, \ldots, n\}$ mit genau k Anstiegen.

Begründung: Für die n-te Zahl gibt es n mögliche Positionen zum Einfügen. Dabei wird entweder ein Ansteig in zwei gesplitted oder ein Anstieg um n ergänzt.

Bemerkung 6 (Euler-Zahlen 2. Ordnung) Die Anzahl der Permutationen von $\{1,1,\ldots,n,n\}$ mit genau k Anstiegen.

4.10.2 Verschiedenes

 $\{1,\ldots,n\}$ mit genau k Zyklen.

Türme von Hanoi, minimale Schirttzahl:	$T_n = 2^n - 1$
#Regionen zwischen n Gearden	$T_n = 2^n - 1$ n(n+1)/2 + 1
#Abgeschlossene Regionen zwischen <i>n</i> Geraden	$(n^2 - 3n + 2)/2$
#Markierte, gewurzelte Bäume	n^{n-1}
#Markierte, nicht gewurzelte Bäume	n^{n-2}

Bemerkung 7 (Stirling-Zahlen 1. Ordnung) Die Anzahl der Permutationen von

4.11 Satz von Sprague-Grundy

Weise jedem Zustand X wie folgt eine Grundy-Zahl g(X) zu:

$$g(X) := \min \{ \mathbb{Z}_0^+ \setminus \{ g(Y) \mid Y \text{ von } X \text{ aus direkt erreichbar} \} \}$$

X ist genau dann gewonnen, wenn g(X) > 0 ist.

Wenn man k Spiele in den Zuständen X_1, \ldots, X_k hat, dann ist die Grundy-Zahl des Gesamtzustandes $g(X_1) \oplus ... \oplus g(X_k)$.

```
// Laufzeit: 0(#game)
2 bool WinNimm(vector<int> game) {
    int result = 0;
    for(int s: game) result ^= s;
5
    return s > 0;
6 }
```

4.12 3D-Kugeln

```
// Great Cirlce Distance mit Längen- und Breitengrad.
  double gcDist(double pLat, double pLon, double qLat, double qLon, double
        radius) {
    pLat *= PI / 180; pLon *= PI / 180; qLat *= PI / 180; qLon *= PI / 180;
    return radius * acos(cos(pLat) * cos(pLon) * cos(qLat) * cos(qLon) +
                          cos(pLat) * sin(pLon) * cos(qLat) * sin(qLon) +
                          sin(pLat) * sin(qLat));
   // Great Cirlce Distance mit kartesischen Koordinaten.
   double gcDist(point p, point q) {
    return acos(p.x * q.x + p.y * q.y + p.z * q.z);
12 }
13
14 // 3D Punkt in kartesischen Koordinaten.
15 struct point{
     double x, y, z;
16
17
     point() {}
18
     point(double x, double y, double z) : x(x), y(y), z(z) {}
     point(double lat, double lon) {
19
20
      lat *= PI / 180.0; lon *= PI / 180.0;
21
       x = cos(lat) * sin(lon); y = cos(lat) * cos(lon); z = sin(lat);
22
23 | };
```

4.13 Big Integers

```
// Bislang keine Division. Multiplikation nach Schulmethode.
2 #define PLUS 0
3 #define MINUS 1
   #define BASE 1000000000
   struct bigint {
    int sign;
     vector<ll> digits;
10
    // Initialisiert mit 0.
11
     bigint(void) {
12
       sign = PLUS;
13
14
15
     // Initialisiert mit kleinem Wert.
     bigint(ll value) {
16
17
      if (value == 0) sign = PLUS;
18
19
         sign = value >= 0 ? PLUS : MINUS;
20
         value = abs(value);
21
         while (value) {
22
           digits.push_back(value % BASE);
           value /= BASE;
```

```
24
25
26
    }
     // Initialisiert mit C-String. Kann nicht mit Vorzeichen umgehen.
     bigint(char *str, int length) {
      int base = 1;
31
       11 digit = 0;
32
       for (int i = length - 1; i >= 0; i--) {
         digit += base * (str[i] - '0');
34
         if (base * 10 == BASE) {
35
           digits.push_back(digit);
           digit = 0;
37
           base = 1;
38
        } else base *= 10;
39
      if (digit != 0) digits.push_back(digit);
41
       sign = PLUS;
42
    }
43
     // Löscht führende Nullen und macht -0 zu 0.
     void trim() {
       while (digits.size() > 0 && digits[digits.size() - 1] == 0) digits.
            pop_back();
47
       if (digits.size() == 0 && sign == MINUS) sign = PLUS;
48
49
50
     // Gibt die Zahl aus.
     void print() {
52
      if (digits.size() == 0) {
53
         printf("0");
54
         return:
55
56
       if (sign == MINUS) printf("-");
       printf("%11d", digits[digits.size() - 1]);
       for (int i = digits.size() - 2; i >= 0; i--) {
59
         printf("%0911d", digits[i]);
60
      }
61
62 };
64 // Kleiner-oder-gleich-Vergleich.
65 bool operator <= (bigint &a, bigint &b) {
    if (a.digits.size() == b.digits.size()) {
       int idx = a.digits.size() - 1;
68
       while (idx >= 0) {
         if (a.digits[idx] < b.digits[idx]) return true;</pre>
70
         else if (a.digits[idx] > b.digits[idx]) return false;
71
         idx--;
72
      }
73
       return true;
74
75
    return a.digits.size() < b.digits.size();</pre>
76 }
77
```

```
78 // Kleiner-Vergeleich.
    bool operator<(bigint &a, bigint &b) {</pre>
     if (a.digits.size() == b.digits.size()) {
        int idx = a.digits.size() - 1;
81
82
        while (idx >= 0) {
83
          if (a.digits[idx] < b.digits[idx]) return true;</pre>
84
          else if (a.digits[idx] > b.digits[idx]) return false;
85
          idx--:
 86
       }
87
        return false;
88
89
     return a.digits.size() < b.digits.size();</pre>
90
91
    void sub(bigint *a, bigint *b, bigint *c);
    // a+b=c. a, b, c dürfen gleich sein.
    void add(bigint *a, bigint *b, bigint *c) {
     if (a->sign == b->sign) c->sign = a->sign;
97
98
        if (a->sign == MINUS) {
99
          a->sign ^= 1:
100
          sub(b, a, c);
101
          a \rightarrow sign ^= 1;
102
       } else {
103
          b \rightarrow sign ^= 1;
104
          sub(a, b, c);
105
          b->sign ^= 1;
106
       }
107
       return;
108
     }
109
110
      c->digits.resize(max(a->digits.size(), b->digits.size()));
111
      11 \text{ carry} = 0;
112
      int i = 0:
113
      for (; i < (int)min(a->digits.size(), b->digits.size()); i++) {
114
        11 sum = carry + a->digits[i] + b->digits[i];
115
        c->digits[i] = sum % BASE;
116
        carry = sum / BASE;
117
118
     if (i < (int)a->digits.size()) {
119
        for (; i < (int)a -> digits.size(); i++) {
120
          11 sum = carry + a->digits[i];
121
          c->digits[i] = sum % BASE;
122
          carry = sum / BASE;
123
        }
124
     } else {
125
        for (; i< (int)b->digits.size(); i++) {
126
          ll sum = carry + b->digits[i];
127
          c->digits[i] = sum % BASE;
128
          carry = sum / BASE;
129
       }
130
131
     if (carry) {
132
        c->digits.push_back(carry);
```

```
133 | }
134 }
135
136 // a-b=c. c darf a oder b sein. a und b müssen verschieden sein.
    void sub(bigint *a, bigint *b, bigint *c) {
138
     if (a->sign == MINUS || b->sign == MINUS) {
        b \rightarrow sign ^= 1;
140
        add(a, b, c);
141
        b \rightarrow sign ^= 1;
142
        return;
143
     }
144
145
      if (a < b) {
146
        sub(b, a, c);
147
        c->sign = MINUS;
148
        c->trim();
149
        return;
150
     }
151
152
      c->digits.resize(a->digits.size());
153
      11 \text{ borrow} = 0;
154
      int i = 0:
      for (; i < (int)b->digits.size(); i++) {
155
156
        11 diff = a->digits[i] - borrow - b->digits[i];
157
        if (a->digits[i] > 0) borrow = 0;
158
        if (diff < 0) {
159
          diff += BASE:
160
          borrow = 1;
161
        }
162
        c->digits[i] = diff % BASE;
163
164
      for (; i < (int)a->digits.size(); i++) {
165
        ll diff = a->digits[i] - borrow;
166
        if (a->digits[i] > 0) borrow = 0;
167
        if (diff < 0) {
168
          diff += BASE;
169
          borrow = 1;
170
        }
171
        c->digits[i] = diff % BASE;
172
173
     c->trim();
174 }
175
176 // Ziffernmultiplikation a*b=c. b und c dürfen gleich sein. a muss
         kleiner BASE sein.
177 | void digitMul(ll a, bigint *b, bigint *c) {
178
    if (a == 0) {
179
        c->digits.clear();
180
        c->sign = PLUS;
181
        return:
182
183
      c->digits.resize(b->digits.size());
      11 \text{ carry} = 0:
184
185
      for (int i = 0; i < (int)b->digits.size(); i++) {
186
        ll prod = carry + b->digits[i] * a;
```

Karlsruhe Institute of Technology

```
187
       c->digits[i] = prod % BASE;
188
       carry = prod / BASE;
189
190
    if (carry) c->digits.push_back(carry);
191
     c->sign = (a > 0) ? b->sign : 1 ^ b->sign;
192
    c->trim();
193 }
194
195
   // Zifferndivision b/a=c. b und c dürfen gleich sein. a muss kleiner BASE
196 void digitDiv(ll a, bigint *b, bigint *c) {
     c->digits.resize(b->digits.size());
    11 \text{ carry} = 0;
199
    for (int i = (int)b->digits.size() - 1; i>= 0; i--) {
200
       11 quot = (carry * BASE + b->digits[i]) / a;
201
       carry = carry * BASE + b->digits[i] - quot * a;
202
       c->digits[i] = quot;
203
204
     c \rightarrow sign = b \rightarrow sign ^ (a < 0);
205
     c->trim();
206 }
207
   // a*b=c. c darf weder a noch b sein. a und b dürfen gleich sein.
   void mult(bigint *a, bigint *b, bigint *c) {
210 | bigint row = *a;
211
     bigint tmp;
212
     c->digits.clear();
213
     for (int i = 0; i < (int)b->digits.size(); i++) {
214
       digitMul(b->digits[i], &row, &tmp);
215
        add(&tmp, c, c);
216
       row.digits.insert(row.digits.begin(), 0);
217
218
     c \rightarrow sign = a \rightarrow sign != b \rightarrow sign;
219
     c->trim();
220 | }
221
   // Berechnet eine kleine Zehnerpotenz.
223 | inline 11 pow10(int n) {
224 | 11 res = 1;
225
    for (int i = 0; i < n; i++) res *= 10;
226
     return res;
227 }
228
229 // Berechnet eine große Zehnerpotenz.
230 void power10(ll e, bigint *out) {
231 out->digits.assign(e / 9 + 1, 0);
232
    if (e % 9) out->digits[out->digits.size() - 1] = pow10(e % 9);
233
     else out->digits[out->digits.size() - 1] = 1;
234 }
235
236 // Nimmt eine Zahl module einer Zehnerpotenz 10^e.
237 void mod10(int e, bigint *a) {
238 | int idx = e / 9;
239 if ((int)a->digits.size() < idx + 1) return;
240 if (e % 9) {
```

5 Strings

5.1 Knuth-Morris-Pratt-Algorithmus

```
1 // Laufzeit: O(n + m), n = #Text, m = #Pattern
2 vector<int> kmp_preprocessing(string &sub) {
     vector<int> b(sub.length() + 1);
     b\lceil 0 \rceil = -1;
     int i = 0, j = -1;
     while (i < (int)sub.length()) {</pre>
       while (j >= 0 && sub[i] != sub[j]) j = b[j];
       i++; j++;
       b[i] = j;
10
11
    return b;
12 }
13
14 vector<int> kmp_search(string &s, string &sub) {
    vector<int> pre = kmp_preprocessing(sub);
     vector<int> result;
     int i = 0, j = 0;
     while (i < (int)s.length()) {</pre>
       while (j >= 0 && s[i] != sub[j]) j = pre[j];
20
       i++; j++;
21
       if (j == (int)sub.length()) {
         result.push_back(i - j);
23
         j = pre[j];
24
       }
26
    return result;
27 }
```

5.2 Aho-Corasick-Automat

```
// Laufzeit: O(n + m + z), n = Suchstringlänge, m = Summe der Patternlä
    ngen, z = #Matches
// Findet mehrere Patterns gleichzeitig in einem String.
// 1) Wurzel erstellen: vertex *automaton = new vertex();
// 2) Mit addString(automaton, s, idx); Patterns hinzufügen.
// 3) finishAutomaton(automaton) aufrufen.
```

```
6 | / / 4) Mit automaton = go(automaton, c) in nächsten Zustand wechseln.
        DANACH: Wenn patterns-Vektor nicht leer
       ist: Hier enden alle enthaltenen Patterns.
8 // ACHTUNG: Die Zahlenwerte der auftretenden Buchstaben müssen zusammenhä
        ngend sein und bei 0 beginnen!
9 struct vertex {
     vertex *next[ALPHABET_SIZE], *failure;
11
     char character;
12
     vector<int> patterns; // Indizes der Patterns, die hier enden.
     vertex() { for (int i = 0; i < ALPHABET_SIZE; i++) next[i] = NULL; }</pre>
14 | };
15
16 void addString(vertex *v, string &pattern, int patternIdx) {
17
     for (int i = 0; i < (int)pattern.length(); i++) {</pre>
18
       if (!v->next[(int)pattern[i]]) {
19
         vertex *w = new vertex():
20
         w->character = pattern[i];
21
         v->next[(int)pattern[i]] = w;
22
23
       v = v->next[(int)pattern[i]];
24
25
     v->patterns.push_back(patternIdx);
26
27
28
   void finishAutomaton(vertex *v) {
29
     for (int i = 0; i < ALPHABET_SIZE; i++)</pre>
30
       if (!v->next[i]) v->next[i] = v;
31
32
     queue < vertex *> q;
33
     for (int i = 0; i < ALPHABET_SIZE; i++) {</pre>
34
      if (v->next[i] != v) {
35
         v->next[i]->failure = v;
36
         q.push(v->next[i]);
37
     }}
38
     while (!q.empty()) {
39
       vertex *r = q.front(); q.pop();
40
       for (int i = 0; i < ALPHABET_SIZE; i++) {</pre>
41
         if (r->next[i]) {
42
           q.push(r->next[i]);
43
           vertex *f = r->failure;
44
           while (!f->next[i]) f = f->failure;
45
           r->next[i]->failure = f->next[i];
           for (int j = 0; j < (int)f->next[i]->patterns.size(); j++) {
46
47
             r->next[i]->patterns.push_back(f->next[i]->patterns[j]);
48 | } } } }
49
50 vertex* go(vertex *v, char c) {
    if (v->next[(int)c]) return v->next[(int)c];
52
     else return qo(v->failure, c);
53 | }
```

5.3 Levenshtein-Distanz

```
1 // Laufzeit: O(nm), Speicher: O(m), n = #s1, m = #s2
2 int levenshtein(string& s1, string& s2) {
     int len1 = s1.size(), len2 = s2.size();
     vector<int> col(len2 + 1), prevCol(len2 + 1);
     for (int i = 0; i < len2 + 1; i++) prevCol[i] = i;</pre>
     for (int i = 0; i < len1; i++) {</pre>
       col[0] = i + 1;
       for (int j = 0; j < len2; j++)
         col[j+1] = min(min(prevCol[j+1] + 1, col[j] + 1), prevCol[j] + (s1[i-1])
              i]==s2[j] ? 0 : 1));
10
       col.swap(prevCol);
11
12
    return prevCol[len2];
13 }
```

19

5.4 Trie

```
1 // Implementierung für Kleinbuchstaben.
2 struct node {
3 | node *(e)[26];
    int c = 0; // Anzahl der Wörter, die an diesem node enden.
   node() { for(int i = 0; i < 26; i++) e[i] = NULL; }
6 };
8 void insert(node *root, string &txt, int s) { // Laufzeit: 0(|txt|)
    if(s == (int)txt.size()) root->c++;
     else {
11
      int idx = (int)(txt[s] - 'a');
12
      if(root->e[idx] == NULL) root->e[idx] = new node();
13
       insert(root->e[idx], txt, s+1);
14
15 }
17 int contains(node *root, string &txt, int s) { // Laufzeit: 0(|txt|)
   if(s == txt.size()) return root->c;
    int idx = (int)(txt[s] - 'a');
    if(root->e[idx] != NULL) return contains(root->e[idx], txt, s + 1);
21
     else return 0;
22 }
```

5.5 Suffix-Array

```
else { //beide groesser tifft nicht mehr ein, da ansonsten vorher schon
           unterschied in Laenge
      if(u2 >= s.length()) return -1;
       else if(12 >= s.length()) return 1;
       else return v[vi2][u2] - v[vi2][12];
11
12 }
13
14 string lcsub(string s) {
     if(s.length() == 0) return "";
     vector<int> a(s.length());
17
     vector<vector<int>>> v(2, vector<int>(s.length(), 0));
18
     int vi = 0;
19
     for(int k = 0; k < a.size(); k++) a[k] = k;
20
     for(int i = 1; i <= s.length(); i *= 2, vi = (vi + 1) % 2) {</pre>
       sort(a.begin(), a.end(), [&] (const int &u, const int &l) {
22
         return cmp(s, v, i, vi, u, 1) < 0;
23
      });
24
      v[vi][a[0]] = 0;
       for(int z = 1; z < a.size(); z++) v[vi][a[z]] = v[vi][a[z-1]] + (cmp(
            s, v, i, vi, a[z], a[z-1]) == 0 ? 0 : 1);
26
27
   //
     int r = 0, m=0, c=0;
     for(int i = 0; i < a.size() - 1; i++) {</pre>
30
       while(a[i]+c < s.length() && a[i+1]+c < s.length() && s[a[i]+c] == s[
            a[i+1]+c]) c++;
32
      if(c > m) r=i, m=c;
33
34
    return m == 0 ? "" : s.substr(a[r], m);
35 }
```

5.7 Longest Common Subsequence

```
string lcss(string &a, string &b) {
     int m[a.length() + 1][b.length() + 1], x=0, y=0;
     memset(m, 0, sizeof(m));
     for(int y = a.length() - 1; y >= 0; y--) {
       for(int x = b.length() - 1; x >= 0; x--) {
      if(a[y] == b[x]) m[y][x] = 1 + m[y+1][x+1];
         else m[y][x] = max(m[y+1][x], m[y][x+1]);
8
    } //for length only: return m[0][0];
     string res;
     while(x < b.length() && y < a.length()) {</pre>
       if(a[y] == b[x]) res += a[y++], x++;
13
       else if(m[y][x+1] > m[y+1][x+1]) x++;
14
       else y++;
15
    }
16
    return res;
```

5.6 Longest Common Substring

```
//longest common substring.
  struct lcse {
    int i = 0, s = 0;
4 | };
  string lcp(string s[2]) {
    if(s[0].length() == 0 || s[1].length() == 0) return "";
     vector<lcse> a(s[0].length()+s[1].length());
     for(int k = 0; k < a.size(); k++) a[k].i=(k < s[0].length() ? k : k - s
          [0].length()), a[k].s = (k < s[0].length() ? 0 : 1);
     sort(a.begin(), a.end(), [&] (const lcse &u, const lcse &l) {
10
       int ui = u.i, li = l.i;
11
       while(ui < s[u.s].length() && li < s[l.s].length()) {</pre>
12
         if(s[u.s][ui] < s[l.s][li]) return true;</pre>
13
         else if(s[u.s][ui] > s[l.s][li]) return false;
14
         ui++; li++;
15
```

6 Java

6.1 Introduction

- Compilen: javac main.java
- Ausführen: java main < sample.in
- Eingabe: Scanner ist sehr langsam. Bei großen Eingaben muss ein Buffered Reader verwendet werden.

```
Scanner in = new Scanner(System.in); // java.util.Scanner

String line = in.nextLine(); // Liest die nächste Zeile.

int num = in.nextInt(); // Liest das nächste Token als int.

double num2 = in.nextDouble(); // Liest das nächste Token als double
.
```

• Ausgabe:

6.2 BigInteger

```
// Berechnet this +,*,/,- val.
  BigInteger add(BigInteger val), multiply(BigInteger val), divide(
        BigInteger val), substract(BigInteger val)
   // Berechnet this *e.
  BigInteger pow(BigInteger e)
   // Bit-Operationen.
   BigInteger and(BigInteger val), or(BigInteger val), xor(BigInteger val),
        not(), shiftLeft(int n), shiftRight(int n)
   // Berechnet den ggT von abs(this) und abs(val).
11 BigInteger gcd(BigInteger val)
12
13 // Berechnet this mod m, this 1 mod m, this e mod m.
14 BigInteger mod(BigInteger m), modInverse(BigInteger m), modPow(BigInteger
         e, BigInteger m)
15
   // Berechnet die nächste Zahl, die größer und wahrscheinlich prim ist.
17 | BigInteger nextProbablePrime()
18
   // Berechnet int/long/float/double-Wert. Ist die Zahl zu großen werden
        die niedrigsten Bits konvertiert.
20 int intValue(), long longValue(), float floatValue(), double doubleValue
```

7 Sonstiges

7.1 2-SAT

- 1. Bedingungen in 2-CNF formulieren.
- 2. Implikationsgraph bauen, $(a \lor b)$ wird zu $\neg a \Rightarrow b$ und $\neg b \Rightarrow a$.
- 3. Finde die starken Zusammenhangskomponenten.
- 4. Genau dann lösbar, wenn keine Variable mit ihrer Negation in einer SCC liegt.

7.2 Zeileneingabe

7.3 Bit Operations

```
1  // Bit an Position j auslesen.
2  (a & (1 << j)) != 0
3  // Bit an Position j setzen.
4  a |= (1 << j)
5  // Bit an Position j löschen.
6  a &= ~(1 << j)
7  // Bit an Position j umkehren.
8  a ^= (1 << j)
9  // Wert des niedrigsten gesetzten Bits.
10  (a & -a)
11  // Setzt alle Bits auf 1.
12  a = -1
13  // Setzt die ersten n Bits auf 1. Achtung: Overflows.
14  a = (1 << n) - 1</pre>
```

7.4 Josephus-Problem

n Personen im Kreis, jeder *k*-te wird erschossen.

Spezialfall k = 2: Betrachte Binärdarstellung von n. Für $n = 1b_1b_2b_3..b_n$ ist $b_1b_2b_3..b_n1$ die Position des letzten Überlebenden. (Rotiere n um eine Stelle nach links)

Allgemein: Sei F(n,k) die Position des letzten Überlebenden. Nummeriere die Personen mit $0, 1, \ldots, n-1$. Nach Erschießen der k-ten Person, hat der Kreis noch Größe n-1 und die Position des Überlebenden ist jetzt F(n-1,k). Also: F(n,k) = (F(n-1,k)+k)%n. Basisfall: F(1,k) = 0.

```
int josephus(int n, int k) { // Gibt Index des letzten Überlebenden
    zurück, 0-basiert.
if (n == 1) return 0;
return (josephus(n - 1, k) + k) % n;
}
```

Beachte bei der Ausgabe, dass die Personen im ersten Fall von 1, ..., n nummeriert sind, im zweiten Fall von 0, ..., n-1!

7.5 Gemischtes

- Johnsons *Reweighting Algorithmus*: Füge neue Quelle s hinzu, mit Kanten mit Gewicht 0 zu allen Knoten. Nutze Bellmann-Ford zum Betsimmen der Entfernungen d[i] von s zu allen anderen Knoten. Stoppe, wenn es negative Zyklen gibt. Sonst ändere die gewichte von allen Kanten (u,v) im ursprünglichen Graphen zu d[u]+w[u,v]-d[v]. Dann sind alle Kantengewichte nichtnegativ, Dijkstra kann angewendet werden.
- Für ein System von Differenzbeschränkungen: Ändere alle Bedingungen in die Form *a* − *b* ≤ *c*. Für jede Bedingung füge eine Kante (b, a) mit Gweicht c ein. Füge Quelle s hinzu, mit Kanten zu allen Knoten mit Gewicht 0. Nutze Bellmann-Ford, um die kürzesten Pfade von s aus zu finden. d[v] ist mögliche Lösung für v.
- Min-Weight-Vertex-Cover im bipartiten Graph: Partitioniere in A, B und füge Kanten s -> A mit Gewicht w(A) und Kanten B -> t mit Gewicht w(B) hinzu. Füge Kanten mit Kapazität ∞ von A nach B hinzu, wo im originalen Graphen Kanten waren. Max-Flow ist die Lösung.

Im Residualgraphen:

- Das Vertex-Cover sind die Knoten inzident zu den Brücken. oder
- Die Knoten in A, die *nicht* von s erreichber sind und die Knoten in B, die von erreichber sind.
- Allgemeiner Graph: Das Komplement eines Vertex-Cover ist ein Indepen-

dent Set. \Rightarrow Max Weight Independent Set ist Komplement von Min Weight Vertex Cover.

- Bipartiter Graph: Min Vertex Cover (kleinste Menge Kanten, die alle Knoten berühren) = Max Matching.
- Bipartites Matching mit Gewichten auf linken Knoten. Minimiere Matchinggewicht. Lösung: Sortiere Knoten links aufsteigend nach Gewicht, danach nutze normlen Algorithmus (Kuhn, Seite 8)
- Tobi, cool down!

7.6 Sonstiges

```
// Alles-Header.
  #include <bits/stdc++.h>
   // Setzt das deutsche Tastaturlayout.
  setxkbmap de
   // Schnelle Ein-/Ausgabe mit cin/cout.
  ios::sync_with_stdio(false);
10 // Set mit eigener Sortierfunktion. Typ muss nicht explizit angegeben
11 | set<point2, decltype(comp)> set1(comp);
13
  // PI
14 #define PI (2*acos(0))
  // STL-Debugging, Compiler flags.
   -D_GLIBCXX_DEBUG
  #define _GLIBCXX_DEBUG
   // 128-Bit Integer. Muss zum Einlesen/Ausgeben in einen int oder long
        long gecastet werden.
21
   __int128
```