Betriebssysteme

Übungsblatt 5

Anne Rossl Diana Hörth

November 24, 2022

Aufgabe 1

a) - SPcken_{pre}

b) - IVNcken_{pre}

 $IVNcken_{pre} = [E*s_1*s_0] + [\overline{h}_2*\overline{h}_1*h_0] + [h_2*\overline{h}_1*\overline{h}_0]$ //In der Executephase in P3 und h₁oderh₄

Aufgabe 2

a)

```
st(x) = (var, int, 128)

st(y) = (var, int, 129)

st(z) = (const, int, 5)
```

b)

PC	Befehl	Kommentar
0	LOADIN SP ACC 3	Lade z in ACC
1	LOADIN SP IN1 1	Lade y in IN1
2	MUL ACC IN1	Multipliziere z und y
3	ADDI ACC 10	Addiere 10 noch dazu
4	LOADIN SP IN2 2	Lade x in IN2
5	ADD ACC IN2	Addiere das Ergebnis der Multiplkation mit x
6	SUBI SP 1	Stackpointer um eins nach oben verschieben
7	STOREIN SP ACC 1	Ergebnis auf Stack legen

c)

1.

2.

In den ersten Klammern, die berechnet werden müssen immer zwei Element drinnen sein und danach müssen die jeweiligen Teilergebnisse miteinander verrechnet werden. Es sind n-1 Teilergebnisse. z.B.:

```
n = 7
((x_1 \circ x_2) \circ (x_3 \circ x_4)) \circ ((x_5 \circ x_6) \circ x_7)
```

Aufgabe 3

PC	Befehl	Kommentar
13	LOAD ACC 11	Lade y in ACC
14	JUMP< 6	Schaue ob y kleiner ist als 0
15	LOAD ACC 10	Wenn y größer als 0, lade x in ACC
16	JUMP< 11	Schau ob x kleiner ist als 0
17	SUB ACC 11	Wenn y und x größer sind als 0, x-y
18	$JUMP \leq 9$	Wenn x-y kleiner oder gleich ist wird 1 bei 12 eingespeichert
19	JUMP 6	Ansonsten wird 0 bei 12 eingespeichert da x größer ist als y
20	LOAD ACC 10	Wenn y kleiner als 0, wird x in ACC geladen
21	$JUMP \ge 4$	Wenn x größer als 0 ist, ist es auch größer als y also wird 0 in 12 eingespeichert
22	LOAD ACC 11	Wenn sowohl y als auch x kleiner als 0 sind wird y-x gerechnet
23	SUB ACC 10	Ist das Ergabnis größer 0 ist x größer als y.
24	$JUMP \leq 3$	1 wird in 12 gespeichert, da y größer/ gleich x
25	STORE 12 0	0 wird gespeichert wenn die Aussage falsch ist
26	JUMP 0	Programm wird beendet, damit der Speicher 12 nicht überschrieben wird
27	STORE 12 1	1 wird gespeichert, wenn die Aussage wahr ist