Atividade 1

Allan

05/03/2021

a)

O espaço de probabilidade (Ω, \mathcal{A}, P) é definido como:

$$\mathcal{A} = \mathcal{B}(\Omega)$$

$$\Omega = [-10, 10] = \{x \in \mathbb{R} : x \in [-10, 10]\}$$

$$\forall A \in \mathcal{A}, P(A) = \frac{\text{"comprimento de "}A}{\text{"comprimento" de }\Omega} = \frac{\int_A dx}{\int_\Omega dx} = \int_A f(x) dx$$

onde

$$f(x) = \begin{cases} \frac{1}{\int_{\Omega} dx} = \frac{1}{10 - (-10)} = \frac{1}{20}, & x \in [-10, 10] \\ 0, & x \notin [-10, 10] \end{cases}$$

no qual

$$\Omega = [-10, 10] \subset \mathbb{R}$$

$$\Omega = \int_{-10}^{10} dx = 2 \int_{0}^{10} dx = 2(10 - 0) = 20$$

b)

Para a função $P:\mathcal{A} \to \mathbb{R}$ ser definida como uma medida de probabilidade:

• (A1)
$$P(\Omega) = 1$$
:
- Como $\Omega = [-10, 10]$

$$P(\Omega) = \int_{\Omega} f(x)dx = \int_{\Omega} \frac{1}{20}dx$$

onde $x \in [-10, 10]$ e

$$P(\Omega) = \int_{\Omega} f(x)dx = 0$$

onde $x \notin [-10, 10]$, então:

$$P(\Omega) = \int_{\Omega} \frac{1}{20} dx = \frac{1}{20} \int_{-10}^{10} dx = \frac{(10 - (-10))}{20} = 1$$

• (A2) $\forall A \in \mathcal{A}, P(A) \geq 0$:

Se $A \in [-10, 10] = \Omega$ então

$$1 = P(\Omega) \ge P(A)$$

Para qualquer intervalo de $A \subset [-10, 10]$

Se $A\notin [-10,10]=\Omega$ então

$$P(A) = 0$$

Pela definição de Ω para $P(A) = \int_A f(x)dx$ onde

$$f(x) = \begin{cases} \frac{1}{\int_{\Omega} dx}, & \Omega \in [-10, 10] \\ 0, & \Omega \notin [-10, 10] \end{cases}$$

Então a $P(A) \ge 0$

• (A3) $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$ para $A_1, A_2, \ldots \in \mathcal{A}$ e $A_i \cap A_j = \emptyset$ para todo $i \neq j$:

Como $\Omega = [-10, 10]$ e definindo $A_i = (-21 + i, -20 + i)$,

Assim $A_1=(-20,-19)$ e $A_2=(-19,-18)$ tem como $A_1\cap A_2=\emptyset$, sendo assim para todo $A_i\cap A_j$ onde $i\neq j$ de $i=\{1,2,\ldots\}$.

E calculando $P(A) = P(\bigcup_{i=1}^{\infty} A_i)$

$$P(A) = P(\bigcup_{i=1}^{\infty} A_i) = P(A_1 \cup A_2 \cup \dots)$$

$$= \int_{-20}^{\infty} f(x)dx$$

$$= \int_{-20}^{-19} f(x)dx + \int_{-19}^{-18} f(x)dx + \dots = P(A_1) + P(A_2) + \dots$$

$$= \sum_{i=1}^{\infty} P(A_i)$$

No qual $\sum_{i=1}^{\infty} P(A_i) = 1$, pelo fato onde $A_i \notin \Omega$, $P(A_i) = 0$ e $A_i \in \Omega$, $P(A_i) = \frac{1}{20}$.

Calculado para todo os intervalos de A_i onde todos os comprimento são igual a 1 dado por $\int_{A_i} dx = \int_{-21+i}^{-20+i} dx = -20 + i - (-21+i) = 1$

c)

$$A \in (0, \infty)$$

 $B \in (2,8)$

$$P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{\frac{1}{20} \int_2^8 dx}{\frac{1}{20} (\int_0^{10} dx + \int_{10}^\infty dx)}$$
$$= \frac{(8-2)}{(10-0)+0} = \frac{6}{10}$$

d)

$$A = \{-10, -9, ..., 9, 10\}$$

$$P(A) = \frac{1}{20} \int_{A} dx = \frac{1}{20} \left(\int_{-10}^{-10} dx + \int_{-9}^{-9} dx + \dots + \int_{10}^{10} dx \right) = \frac{1}{20} + (0 + 0 + \dots + 0) = 0$$

e)

$$A = [-10, 0)$$

$$P(A) = \frac{1}{20} \int_{-10}^{0} dx = \frac{0 - (-10)}{20} = \frac{10}{20}$$

$$B = B_1 \cup B_2$$

$$B_1 = 0 < x \le 4$$

$$B_1 = -4 > x \ge 0$$

$$P(B) = P(B_1) + P(B_2) = \frac{1}{20} \left(\int_0^4 dx + \int_{-4}^0 dx \right) = \frac{4+4}{20} = \frac{8}{20}$$

$$P(A).P(B) = \frac{10}{20}.\frac{8}{20} = \frac{4}{20}$$

$$P(A \cap B) = \frac{1}{20} \int_{-4}^{0} dx = \frac{4}{20}$$

Ou seja, $P(A \cap B) = P(A).P(B)$. Provando a independência