$2e^{-\sqrt{2}} = 2$ \[\left(\text{nod in} \phi(\beta) = \beta - 1 \quad \text{(prime)} \] 74=1 (mod 10) y= 3 (mod 10) 2 = b] 2 23 (mod 11) 2 8 (mod 11) 8k (nod 11) 4 WTS 87 = 2 (mod 11) P(11)=10 (87) = 821 = 82-1041 = 82-10. 8 = 8 (mod 11). 1. 8 = 2 (med 11)

RSA algorithm

- ▶ Randomly pick large primes p, q, let $n = p \times q$.
- ▶ Calculate $\phi(n) = (p-1) \times (q-1)$. Don't tell anyone.
- ▶ Choose *e* with $1 < e < \phi(n)$ coprime to $\phi(n)$.
- ► Compute d such that $e \cdot d \equiv_{\phi(n)} 1$. ► Public key is (n, e).
- Private key is (n, d).
- ▶ Message is m where $0 \le m < n$. ▶ Encoding: $m \mapsto m^e \mod n$.
- ▶ Decoding: $c \mapsto c^d \mod n$.

 $Dec(Enc(m)) = Dec(m^e \mod n) = (m^e)^d \mod n = m^{e \cdot d}$ $\mod n = m$.