

6. SETS & RELATIONS

SYNOPSIS

Set Definition: Any collection of well defined objects is called a set. The objects in a set are called its members or elements.

Empty Set, Non-Empty Set:

A set consisting of no elements is called an empty set or **null set** or **void set** and is denoted by the symbol ϕ or $\{\}$. Ex: (1) $\{x \in R/x^2 < 0\}$ Ex: (2) $\{x \mid x \text{ is a real number and } x^2 + 1 = 0\}$

A set which has atleast one element is called a non-empty set.

Singleton set: A set consisting of only one element is called a singleton set.

Finite Set: A set in which the process of counting of elements surely comes to an end is called a finite set.

Infinite Set: A set which is not finite is called an infinite set. In other words, a set in which the process of counting of elements does not come to an end is called an infinite set.

Cardinal Number of a finite set:

The number of distinct elements contained in a finite set A is called its cardinal number to be denoted by n(A).

Equal Sets:

Two sets A and B are said to be equal if every elements of A is an element of B and every element of B is an element of A. i.e, $x \in A \Rightarrow x \in B$ and $y \in B \Rightarrow y \in A$, then A and B are equal, and we write A = B

Equivalent sets:

Two finite sets A and B are said to be equivalent, if n(A) = n(B).

Clearly equal sets are equivalent, but equivalent sets need not be equal.

Equivalence of two sets is denoted by the symbol -. Thus if A and B are equivalent sets, we write A - B which is read as A is equivalent to B.

Subset and super set:

The set B is said to be subset of set A if every element of set B is also an element of set A. Symbolically we write it as, $B \subseteq A$ or $A \supseteq B$, where A is super set of B.

- i) $B \subseteq A$ is read as B is contained in A or B is subset of A or A is super set of B.
- ii) $A \supseteq B$ is read as A contains B or B is a subset of A or A is super set of B.

Proper Subset:

The set B is said to be a proper subset of set A if every element of set B is an element of A whereas some element of A is not an element of B.

We write it as $B \subset A$ and read it as 'B is a proper subset of A'. Thus B is a proper subset of A if every element of B is an element of A and there is at least one element in A which is not in B.

Note: $N \subset W \subset Z \subset Q \subset R \subset C$

OBJECTIVE MATHEMATICS II A - Part 2

SETS & RELATIONS

Power Set:

The set formed by all the subsets of a given set A is called the power set of A, it is usually denoted by P(A). If A contains n element, then P(A) contains 2^n subsets.

A set containing all the elements under consideration is known as universal set and it is denoted by either 'U' or 'X'.

Union of sets:

The union of two sets A and B, denoted by $A \cup B$ is the set of all those elements, each one of which is either in A or in B or in both A and B.

Intersection of sets:

The intersection of two sets A and B, denoted by $A \cap B$ is the set of all elements, common to both

Disjoint Sets and Intersecting Sets:

- i) Two sets A and B are said to be disjoint, if $A \cap B = \emptyset$.
- ii) If $A \cap B \neq \emptyset$, then A and B are said to be intersecting or overlapping sets.

Difference of Sets:

If A and B are two sets, then their difference A - B is the set of all those elements of A which do not belong to B.

A,B are two sets, then

- (1) $A B = \{x \mid x \in A \text{ but } x \notin B\}$
- (2) $B A = \{x \mid x \in B \text{ but } x \notin A\}$ Generally $A B \neq B A$
- (3) $(A B) \cap B = \emptyset$, $(A B) \cup B = A \cup B$ (4) $A (A B) = A \cap B$

Symmetric Difference of two sets:

The symmetric difference of two sets A and B denoted by $A\Delta B$ is the set $(A-B)\cup (B-A)$.

 $A\Delta B = (A - B) \cup (B - A) = \{x \mid x \in A \text{ or } B \text{ but } x \notin A \cap B\} = (A \cup B) - (A \cap B)$

- 1) $A\Delta B = B\Delta A$

- 2) $A\Delta A = \phi$ 3) $A\Delta \phi = \phi \Delta A = A$ 4) $A\Delta B = \phi \Leftrightarrow A = B$

Compliment of a set:

i.e.

Let U be the universal set and $A \subset U$, then the complement of A, denoted by A' or A^C or A or U - A is defined as $A' = \{x : x \in U \text{ and } x \notin A\}$

- (1) $A \cup \overline{A} = U$
- (2) $A \cap \overline{A} = \emptyset$ (3) $(A^C)^C = A$

SETS & RELATIONS

OBJECTIVE MATHEMATICS II A - Part 2

Idempotent Laws: For any set A, we have

- (i) $A \cup A = A$
- (ii) $A \cap A = A$

Identity Laws: For any set A, we have (i) $A \cup \phi = A$

- (ii) $A \cap U = A$

Commutative Laws: For any two sets A and B we have

- (i) $A \cup B = B \cup A$
- (ii) $A \cap B = B \cap A$.

Associative Laws:

If A, B and C are any three sets, then

- (i) $(A \cup B) \cup C = A \cup (B \cup C)$ (ii) $A \cap (B \cap C) = (A \cap B) \cap C$

Distributive Laws:

If A, B and C are any three sets, then

- (i) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
 - (ii) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

De-morgan's Laws: If A and B are any two sets, then (i) $(A \cup B)' = A' \cap B'$ (ii) $(A \cap B)' = A' \cup B'$

Some very important results on Cardinal numbers:

- i) $n(A \cup B) = n(A) + n(B) - n(A \cap B)$
- ii) $n(A \cup B) = n(A) + n(B) \Leftrightarrow A \text{ and } B \text{ are disjoint non void sets.}$
- iii) $n(A \cup B \cup C) = n(A) + n(B) + n(C) n(A \cap B) n(B \cap C) n(C \cap A) + n(A \cap B \cap C)$
- iv) $n(A B) = n(A) n(A \cap B) = n(A \cap B') = n(A \cup B) n(B)$
- $v) n(B-A) = n(B) n(A \cap B) = n(A' \cap B) = n(A \cup B) n(A)$
- vi) $n(A\Delta B) = n[(A-B)\cup(B-A)] = n(A) + n(B) 2n(A\cap B) = n(A\cup B) n(A\cap B)$
- vii) n(A') = n(U) n(A)
- viii) $n(A' \cup B') = n(U) n(A \cap B)$
- ix) $n(A' \cap B') = n(U) n(A \cup B)$
- x) Let n(A) = p and n(B) = q, where A and B are two sets having different elements. Then i) $Max\{p,q\} \le n(A \cup B) \le p+q$
 - ii) $0 \le n(A \cap B) \le Min\{p,q\}$
- xi) No. of elements in exactly one of the sets A, B,

 $= n(A) + n(B) + n(C) - 2n(A \cap B) - 2n(B \cap C) - 2n(A \cap C) + 3n(A \cap B \cap C)$

xii) No. of elements in exactly two of the sets $A,B,C=n(A\cap B)+n(B\cap C)+n(C\cap A)-3n(A\cap B\cap C)$

III. VEN Diagrams

1) A,B are two sets then

2) A,B,C are 3 sets then

- 1) A O B 2) A O B' 1) A O B O C 2) A O B O C'
 - $A \cap B \cap C$ 2) $A \cap B \cap C'$ 3) $A' \cap B \cap C$ 4) $A \cap B' \cap C$
- 3) Anb 4) Anb' 5) Anbnc' 6) Anbnc' 7) Anbnc 8) Anbnc'

SYNOPSIS ON RELATIONS

1. Ordered Pair:

A pair of elements listed in order in brackets is called an ordered pair denoted by (a, b)

- i) $(a,b) \neq (b,a)$
- ii) $(a,b) = (c,d) \Leftrightarrow a = c,b = d$
- 2. If A, B are non empty sets then set of all ordered pairs (a, b) where $a \in A$, $b \in B$, is called Cartesian Product of A and B. It is denoted by $A \times B$. $A \times B = \{(a,b)/a \in A, b \in B\}$
 - i) In General $A \times B \neq B \times A$
 - ii) If $A \times B = B \times A \Rightarrow A = B$
 - iii) n(A) = p, n(B) = q then $n(A \times B) = pq = n(B \times A)$
 - iv) n(A) = p, n(B) = q, n(C) = r then $n(A \times B \times C) = pqr$
 - v) $n(A \cap B) = m$ then $n\{(A \times B) \cap (B \times A)\} = m^2$
- 3. If A, B are non empty sets then every sub set of $A \times B$ is a relation R from A to B.
- 4. If R is a relation from A to B then
- i) Domain of $R : \{a/(a,b) \in R\}$ is called the domain of R. i.e., the set of all 1^{st} elements of all order pairs in the relation R.
- ii) Range of $R:\{b/(a,b) \in R\}$ is the called the Range of R which is a subset i.e., the set of all 2^{nd} elements of all ordered pairs in the Relation R.
- 5. i) If R is a relation from A to B and $(x,y) \in R$, then x is related to y under the relation R we write this as xRy
 - ii) If n(A) = m, n(B) = n then
 - 1) the number of possible relations from A to B is 2mn
 - 2) the number of possible relations from A to A is $2^{(m^2)}$
 - 3) the number of possible relations from B to B is $2^{(n^2)}$

Note: If R, S are two relations from A to B, then $R \cup S$, $R \cap S$, R - S are relations from A to B.

- 6. Void Relation: $\phi \subseteq A \times B$. So ϕ is also a relation from A to B. This relation ϕ is called as null relation or void relation.
- 7. Universal Relation: $A \times B \subseteq A \times B$. So $A \times B$ is also a relation from A to B and it is called as Universal Relation.

SETS & RELATIONS

OBJECTIVE MATHEMATICS II A - Part 2

- 8. Inverse of a Relation: If R is a relation from A to B then R^{-1} is a relation from B to A and is defined by $R^{-1} = \{(b, a)/(a, b) \in R\}$.
 - i) $aRb \Leftrightarrow bR^{-1}a$
- ii) $(R^{-1})^{-1} = R$
- iii) a) Domain of R^{-1} = Range of R, b) Range of R^{-1} = Domain of R
- iv) If $R \subseteq A \times B$ and $(a,b) \in R$ then $R^{-1} \subseteq B \times A$ and $(b,a) \in R^{-1}$
- v) If R is a relation from A to B and $R \subseteq R^{-1}$ then $R = R^{-1}$
- 9. Identity Relation: Let A be a non-empty set then the Relation $\{(a,a)/a \in A\}$ is called the identity relation on A. It is denoted by I_A

Ex: Let $A = \{a,b,c,d\}$ then $I_A = \{(a,a), (b,b), (c,c), (d,d)\}$ is the identity relation on A.

- 10. Compositive Relation: If R is a relation from A to B and S is a relation from B to C respectively then the set of all ordered pairs (a, c) whenever $(a,b) \in R$ and $(b,c) \in S$ is called composite relation of R and S from A to C is denoted by SOR.
 - $SOR = \{(a,c)/(a,b) \in R \text{ and } (b,c) \in S\} \subseteq A \times C$

Types of Relations:

- 1. Reflexive Relation: A Relation R on a set A is said to be reflexive if every element of A is related to it self. i.e., $\forall a \in A \Rightarrow (a,a) \in R$
 - *Note:* If a set A contains n elements then the number of reflexive relations from A to A is $2^{n(n-1)}$ Ex: Let $A = \{1, 2, 3\}$ be a set then $R = \{(1,1), (2,2), (3,3), (1,3), (2,1)\}$ is a Reflexive Relation on A But $R = \{(1,1), (3,3), (2,1), (3,2), (1,2)\}$ is not a reflexive relation on set A because $2 \in A$, but $(2,2) \notin R$.
- 2. Symmetric Relation: A Relation R on a set A is said to be symmetric if $(a,b) \in R \Leftrightarrow (b,a) \in R$
 - *Note*: i) If a set A contains n elements then number of symmetric relations from A to A is 2^{-2}
 - ii) If R is a symmetric Relation then $R = R^{-1}$
 - Ex: Let $A = \{1, 2, 3, 4\}$ be a set then $R = \{(1,3)(1,4)(3,1)(2,2)(4,1)\}$ is a Symmetric Relation on A But $R_1 = \{(1,1), (2,2), (3,3), (1,3)\}$ is not a Symmetric relation on set A because $(1,3) \in R_1$, but $(3,1) \notin R_1$
- 3. Anti Symmetric Relation: If R is a Relation on a set A such that If aRb and bRa then a = b, then R is called Anti Symmetric Relation on A.
 - Note: A relation which not Symmetric need not be Anti Symmetric.
 - Ex: The relation ' \leq ' on the set R of real numbers is Anti Symmetric because $a \leq b$ and $b \leq a$ $\Rightarrow a = b + A, b \in R$
- 4. Transitive Relation: A Relation R on a set A is said to be transitive if aRb and $bRc \Rightarrow aRc \ \forall a,b,c \in A$ Ex: On the set N,R is defined by $aRb \Rightarrow a < b$ is transitive because $a,b,c \in N$, a < b and $b < c \Rightarrow a < c$
- 5. Equivalence Relation: A relation on a set A is said to be an equivalence relation on A, if it is
 - i) Reflexive
- ii) Symmetric and
- iii) Transitive
- 6. Partial Order Relation: A Relation R on a set A is said to be a partial ordered relation on A if it is
 - i) Reflexive
- ii) Anti Symmetric
- and
- iii) Transitive
- Note: In Real Numbers <, ≤; in sets ⊂, ⊆ are not equivalence relations.

3) 800

4) 900

1) 600

2) 700

ELITE SERIES for Sri Chaitanya Sr. ICON Students

S	ETS & RELATIONS	•••	OBJECTIVE MAT	HEMATICS II A - Part 2			
11.	If $n(U) = 60$, $n(A) = 35$,	$n(B) = 24$ and $n(A \cup B)$	$p' = 10$ then $n(A \cap B)$ is				
	1) 9	2) 8	3) 6	4) 7			
12.	Two finite sets have m a	and n elements. The total	number of subsets of the	first set is 56 more than the			
	total nuber of subsets of	f the second set. The va	lues of m and n are				
	1) $m = 7$, $n = 6$	2) $m = 6$, $n = 3$	3) $m = 5$, $n = 1$	4) $m = 8$, $n = 7$			
13.	A survey shows that 6 Americans like both ch		ike cheese whereas 76%	like apples. If $x\%$ of the			
	1) $x = 39$	2) $x = 63$	3) $39 \le x \le 63$	4) $30 \le x \le 80$			
14.				y. Let B be the subset of A set of all determinants with			
	1) C is empty		2) B has as many elen	nents as C			
	3) $A = B \cup C$		$4) \ n(B) = 2 \ n(C)$				
15.	Out of 800 boys in a school 224 played cricket, 240 played hockey and 336 played basketball. Of the total, 64 played both basketball and hockey; 80 played cricket and basketball and 40 played cricket and hockey; 24 played all the three games. The number of boys who did not play any game is						
	1) 160	2) 240	3) 216	4) 128			
16.	Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economic, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is						
	1) 7	2) 5	3) 10	4) 4			
17.	A group of 123 workers went to a canteen for cool drinks, ice - cream and tea; 42 workers took ice-cream; 36 tea and 30 cool drinks; 15 workers purchased ice cream and tea; 10 ice cream and cool drinks; 4 cool drinks and tea but not ice cream; 11 took ice cream and tea but not cool drinks. Number of workers that did not purchase anything is 1) 54 2) 64 3) 56 4) 44						
18.	7 play Hockey and Bas	Account to the second	et and Basket ball, 4 pla	all and 20 play cricket. y Hockey and Cricket and			
	1) 4 play Hockey, Bask						
	2) 20 play Hockey but						
		Cricket but not Basket	hall				
	all above are correct		Dall .				
40			CEDIEC 4- Cui Phoite	ONUS CALICON CANADATA			
18	4 • • • • • •	-1 ETHE	SERIES for off Gildill	anya Sr. ICON Students			

SETS & RELATIONS OBJECTIVE MATHEMATICS II A - Part 2 19. In a certain town 25% families own a phone and 15% own a car, 65% families own neither a phone nor a car, 2000 families own both a car and a phone. Consider the following statements in this regard. A) 10% families own both a car and a phone B) 35% familes own either a car or a phone C) 40,000 families live in the town. Which of the following statements are correct 1) A and B 2) A and C 3) B and C 4) A, B and C Relations 20. If the relation $R: A \to B$ where $A=\{1,2,3,4\}$, $B=\{1,3,5\}$ is defined by $R=\{(x,y): x < y, x \in A, y \in B\}$ then $RoR^{-1} =$ 1) {(1, 3), (1, 5), (2, 3), (2, 5), (3, 5), (4, 5)} 2) {(3, 1), (5, 1), (3, 2), (5, 2), (5, 3), (5, 4)} 4) {(3, 3), (3, 4), (4, 5)} 3) {(3, 3), (3, 5), (5, 3), (5, 5)} 21. Let A be set of first ten natural numbers and R be a relation on A, defined by $(x, y) \in R \Rightarrow x + 2y = 10$, then domain of R is 1) {1, 2, 3,, 10} 4) {2, 4, 6, 8, 10} 2) {2, 4, 6, 8} 3) {1, 2, 3, 4} 22. Let A be set of first ten natural numbers and R be a relation on A, defined by $(x, y) \in R \Rightarrow x + 2y = 10$. Then range of R is 2) {2, 4, 6, 8} 3) {1, 2, 3, 4} 4) {2, 4, 6, 8, 10} 1) {1, 2, 3,...., 10} 23. Let L denote the set of all straight lines in a plane. Let a relation R defined on L by $XRY \Leftrightarrow X \perp Y$; $X,Y \in L$ then R is 1) only reflexive 2) only symmetric 3) only transitive 4) equivalence 24. If R is a relation on Z defined by $xRy \Leftrightarrow x$ divides y then R is 2) reflexive and transitive 1) reflexive and symmetric 3) symmetric, transitive 4) equivalence 25. Consider the non empty set consisting of children in a house, consider a relation R; xRy iff x is brother of y then R is 1) symmetric but not transitive 2) transitive but not symmetric and reflexive 3) neither symmetric nor transitive 4) both symmetric and transitive 26. Let S be the set of all real numbers. For $a,b \in S$, relation R is defined by aRb iff |a-b|<1 then R is 1) only reflexive 2) only symmetric 3) only transitive 4) reflexive &symmetric 27. Let R be a relation defined on the set of real numbers by $aRb \Leftrightarrow 1+ab>0$ then R is 1) reflexive & symmetric 2) transitive 3) anti symmetric 4) equivalence 28. Let $A = \{1, 2, 3, 4, 5\}$ and a relation on it is $R = \{(x, y)/x, y \in A \text{ and } x+y=5\}$ then R is 1) not reflexive, not symmetric but transitive 2) not reflexive, not transitive but symmetric 3) not reflexive, not symmetric, not transitive 4) equivalence

ELITE SERIES for Sri Chaitanya Sr. ICON Students

SE	TS & RELATIONS	•••	OBJECTIVE N	MATHEMATICS II A - Part 2				
29.	For $x, y \in R$, define a	relation R by xRy if a	and only if $x - y + \sqrt{2}$ is	an irrational number. Then R is				
	1) an equivalence relat	tion	2) symmetric					
	3) transitive		4) reflexive but no	ot symmetric & transitive				
30.	Let <i>n</i> be a positive inte	ger. If R is a relation	defined on Z as $xRy \Leftrightarrow z$	x - y is divisible by n then R is				
	1) reflexive	2) symmetric	3) transitive	4) equivalence				
31.	The minimum number	of elements that must	be added to the relation	$R = \{(1, 2), (2, 3)\}$ on the set				
	$\{1, 2, 3\}$ so that it is a	n equivalence relation						
	1) 3	2) 5	3) 6	4) 7				
32.	S is a relation over the	set R of all real numb	pers and it is given by (a	$(a,b) \in S \Leftrightarrow ab \ge 0$. Then S is				
	1) symmetric and trans	sitive only	2) reflexive and s	ymmetric only				
	3) a partial order relati	on	4) an equivalence	relation				
33.	Two points P and Q in	a plane are related if	OP = OQ, where O is a	fixed point. This relation is				
	1) partial order relation	1	2) equivalence rel	2) equivalence relation				
	3) reflexive but not syn	mmetric	4) reflexive but no	ot transitive				
34.	Let W denote the words in the English dictionary, Define the relation R by : $R = \{(x, y) \in W \times W \text{ the } \{(x, y) \in W \text{ the } \{(x, y) \in W \times W \text{ the } \{(x, y) \in W \times W \text{ the } \{(x, y) \in $							
	words x and y have at least one letter in common. Then R is							
	1) reflexive, symmetric and not transitive		2) reflexive, symmetric and transitive					
	3) reflexive, not symm	etric and transitive	4) not reflexive, s	symmetric and transitive				
35.	If $R = \{(x, y) x, y \in Z,$	$x^2 + y^2 \le 4$ is a rela	tion in Z, then domain of	f R is				
			3) {-2, -1, 0, 1, 2					
36.	R is a relation from {1	1, 12, 13} to {8, 10,	12) defined by $y = x-3$.	Then R^{-1} is				
	1) {(8, 11), (10, 13)}		2) {(11, 8), (13, 10)}					
	3) {(10, 13), (8, 11)}		4) {(11, 8), (10, 1	4) {(11, 8), (10, 13), (12, 15)}				
37.	If a relation R is defined	on the set Z of integer	rs as follows : $(a,b) \in R \Leftarrow$	$\Rightarrow a^2 + b^2 = 25$ then, domain(R)=				
٥,,	1) {3, 4, 5}	2) {0, 3, 4, 5}	3) {0,±3,±4,±5}					
20		70 (50 (50 (50 (50 (50 (50 (50 (50 (50 (5						
30.	1) a function	2) reflexive	3) not symmetric	= {1, 2, 3, 4}. The relation <i>R</i> is 4) transitive				
20	Management of the control of the con							
39.	Let $R = \{(3, 3), (6, 6), \\ A = \{(3, 6, 0, 12), The \}$		2), (3, 9), (3, 12), (3, 6)}	be relation on the set				
	$A = \{3, 6, 9, 12\}$. The		2) reflexive and symmetric only					
	 an equialence relation reflexive and transit 		(4) reflexive and s	yninetric only				
	50			n north				
40.	Let X be a non empty set and $P(X)$ be the set of all subsets of X. For $A, B \in P(X)$, power set of X, ARE iff $A \cap B \neq \emptyset$ then the relation is							
	A CONTRACTOR OF THE PARTY OF TH	relation is	2) only symmetric	•				
	only reflexive only transitive		equivalence rel					
	3) only transitive	• • =	•					
18	6 • • • • • •	*** *** EL	HE SERIES for STI CI	laitanya Sr. ICON Students				

OB.	JECTIVE MATHEMATIC	CS II A - Part 2	•••••	SETS & RELATIONS		
	N is the set of natural numbers and R is a relation on $N \times N$ defined by $(a, b) R(c, d)$ if and only if					
	a+d = b+c then R is					
	1) only reflexive		2) only symmet	tric		
	3) only transitive		4) equivalence	relation		
42.	Let R be the real line. Consider following subsets of the plane $R \times R$. $S = \{(x, y): y = x + 1 \text{ and } (x, y): y = x + 1 \}$					
	$0 < x < 2$, $T = \{(x,y): x - y \text{ is an integer}\}$. Which one of the following is true?					
	1) Neither S nor T is an	equivalence rela	ation on R			
	2) Both S and T are equ	ivalence relation	s on R			
	3) S is an equivalence re	lation on R but	T is not			
	4) T is an equivalence re	elation on R but	S is not			
43.	Consider the relations F	$R = \{(x,y) x,y \text{ are}$	e real numbers and $x = y$	wy for some rational number w};		
	$S = \left\{ \left(\frac{m}{n}, \frac{p}{q} \right) m, n, p \text{ and } q \text{ are integers such that } n, q \neq 0 \text{ and } qm = pn \right\}. \text{ Then}$					
	1) R is an equivalence relation but S is not an equivalence relation					
	2) neither R nor S is an equivalence relation					
	3) S is an equivalence relation but R is not an equivalence relation					
	4) R and S are both equ	ivalence relation				
44.	If A, B and C are three s	ets such that A	$\cap B = A \cap C$ and $A \cup B =$	$=A\cup C$, then		
	1) A = B		3) $B = C$			
45.	Let R be the set of real	numbers				
	Statement-1 : $A = \{(x, y) \in R \times R : y - x \text{ is an integer}\}$ is an equivalence relation on R					
	Statement-2: $B = \{(x, y) \in R \times R : x = \alpha, y \text{ for some rational number } \alpha \}$ is an equivalence relation on R.					
	1) Statement-1 is true, Statement-2 is false					
	2) Statement-1 is false, Statement-2 is true					
	3) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1					
	4) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1					
46.	Let $X = \{1,2,3,4,5\}$. The number of different ordered pairs (Y, Z) that can be formed such that					
	$Y \subseteq X, Z \subseteq X$ and $Y \cap Z$ is empty, is					
	1) 52	2) 35	3) 2 ³	4) 5 ³		
	0.0 P (0.0 0.49)	V	I value type questions	SERVICES		

- 48. An investigator interviewed 100 students to determine their preferences for the three drinks; milk(M), coffee (C) and tea (T). He reported the following: 10 students had all the three drinks M, C, T; 20 had M and C only; 30 had C and T; 25 had M and T; 12 had M only; 5 had C only; 8 had T only. The number of students that did not take any of the three drinks
- 49. A survey of 500 television viewers produced the following information, 285 watch foot ball, 195 watch hockey, 115 watch basket ball, 45 watch foot ball and basket ball, 70 watch foot ball and hockey, 50 watch hockey and basket ball, 50 do not watch any of the three games. The number of viewers, who watch exactly one of the three games is
- 50. Let A and B be two sets containing 2 elements respectively. The number of subsets of A×B having 3 or more elements is
- 51. If A={1, 2, 3}, the number of reflexive relation in A is

- 1. If $X = \{8^n 7n 1/n \in N\}$ and $Y = \{49(n-1)/n \in N\}$, then
 - X ⊂ Y

Y ⊂ X

3) X = Y

- 4) information not sufficient
- 2. Let $A = \{x : x \text{ is a multiple of 3}\}$ and $B = \{x/x \text{ is a multiple of 5}\}$. Then $A \cap B$ is given by
 - 1) {3, 6, 9,}
- 2) {5, 10, 15, 20,} 3) {15, 30, 45,} 4) {30, 60, 90,}

- 3. If $aN = \{ax \mid x \in N\}$. The set $3N \cap 7N =$
 - 1) {3, 6, 9, 12, ...}
- 2) {7, 14, 21, 28,} 3) {21, 42, 63, 84, ...} 4) {5, 10, 15,}
- 4. If $X = \{4^n 3n 1/n \in N\}$ and $Y = \{9(n-1)/n \in N\}$, then $X \cup Y$ is equal to
 - 1) X

2) Y

- 3) N
- 4) X-Y
- 5. If $aN = \{ax \mid x \in N\}$ and $bN \cap cN = dN$, where $b,c \in N$ are relatively prime, then
 - 1) d = bc
- 2) c = bd
- 3) b = cd
- 4) none

- 6. The set $A = \{x: x \in R, x^2 = 16, \text{ and } 2x = 6\}$ equals
 - 1) ø

- 2) {14, 3, 4}
- 3) [3]
- 4) {4}
- 7. If A is the set of the divisors of the number 15, B is the set of prime numbers smaller than 10 and C is the set of even numbers smaller than 9, then $(A \cup C) \cap B$ is the set
 - 1) {1, 3, 5}
- 2) {1, 2, 3}
- 3) {2, 3, 5}
- 4) {2, 5}

- 8. If $A = \{\emptyset, \{\emptyset\}\}\$, then the power set of A is

- 2) $\{\phi, \{\phi\}, A\}$
- 3) $\{\phi, \{\phi\}, \{\{\phi\}\}, A\}$ 4) $\{\phi, \{\phi\}\}$

- 9. Which of the following is a null set?
 - 1) {0}

2) $\{x/x > 0 \text{ or } x < 0\}$

3) $\{x/x^2 = 4 \text{ or } x = 3\}$

4) $\{x/x^2+1=0, x \in R\}$

OB	JECTIVE MATHEMA	TICS II A - Part 2	•	SETS & RELATIONS			
10.	$A = \{n / n \text{ is a digit in } $	the number 33591} and	$B = \{n/n \in N, n < 10\},$	then $B - A =$			
	1) {2, 4, 6, 8}		2) {7, 2, 4, 8, 6}				
	3) {1, 3, 5, 7}		4) {(1, 2), (1, 3), (2	, 3)}			
11.	Consider the following	ng equations					
	a) $A - B = A - (A \cap$	B)	b) $A = (A \cap B) \cup (A \cap B)$	A-B)			
	c) $A-(B\cup C)=(A\cdot$	(A-C)					
	Which of these is / ar	re correct ?					
	1) a and c	2) b only	3) b and c	4) a and b			
12.	Let A and B be two $\{(1, 4), (2, 6), (3, 6)\}$		has 6 elements. If th	ree elements of $A \times B$ are			
	1) $A = \{1, 2\}$ and $B =$	{3, 4, 6}	2) $A = \{4, 6\}$ and B	= {1, 2, 3}			
	3) $A = \{1, 2, 3\}$ and B	$B = \{4, 6\}$	4) $A = \{1, 2, 4\}$ and	$B = \{3, 6\}$			
13.	Let A be a non-empty Then	set such that A×A has 9	elements among which	are found $(-1, 0)$ and $(0, 1)$.			
	1) $A = \{-1, 0\}$	2) $A = \{0, 1\}$	3) $A = \{-1, 0, 1\}$	4) $A = \{-1, 1\}$			
14.	Let A and B be two so	ets such that $A \times B = \{(a, b)\}$	(1), (b,3), (a,3), (b,1), (a,2),	$(b,2)$ } then			
	1) $A = \{1, 2, 3\}$ and B			2) $A = \{a, b\}$ and $B = \{1, 2, 3\}$			
	3) $A = \{1, 2, 3\}$ and B	$B \subset \{a, b\}$	4) $A \subset \{a, b\}$ and B	⊂ {1, 2, 3}			
15.	Let A and B be two i	non-empty sets having n	elements in common.	Then, the number of elements			
	common to $A \times B$ and	$B \times A$ is					
	1) 2n	2) n	3) n^2	4) n^3			
16.	For any three sets A,	B and C , $A \times (B' \cup C')'$	equals				
	1) $(A \times B) \cap (A \times C)$	2) $(A \times B) \cup (B \times C)$	3) $(A \times C) \cap (B \times C)$	4) $(A \times C) \cup (B \times C)$			
17.	If $A = \{1,3,5,7,9,11,13\}$	3,15,17}, B = {2,4,,18	and N is the universal	set, then $A' \cup ((A \cup B) \cap B')$			
	is						
	1) A	2) N	3) B	4) R			
18.	Let $S_1 = \{1, 2, 3, \dots, 20\}$	$S_2 = \{a, b, c, d, e\} S_3 = \{a, b, c, d, e\}$	c,e,f} then the number o	f elements of $(S_1 \times S_2) \cap (S_1 \times S_3)$			
	is						
	1) 60	2) 80	3) 100	4) 40			
19.	The number of non -	empty subsets of the set	{1,2,3,4} on				
	1) 14	2) 15	3) 16	4) 17			
20.	If $n(A) = 4$, $n(B) = 3$,	$n(A \times B \times C) = 24$, then $n(C)$) is equal to				
	1) 288	2) 1	3) 2	4) 12			
EL	ITE SERIES for Sri C	chaitanya Sr. ICON Stu	idents	***** 189			

SETS & RELATIONS			OBJECTIVE MATHEMATICS II A - Part 2			
21.	If $A = \{a, b\}, B = \{c, d\}$	$, C = \{d, e\} \text{ then } \{(a, e)\}$	c), (a, d), (a, e), (b, c), (b,	d), (b, e) } is equal to		
	1) $A \cap (B \cup C)$	2) $A \cup (B \cap C)$	3) $A \times (B \cup C)$	4) $A \times (B \cap C)$		
22.	If $A = \{1, 2, 4\}, B = \{2,$	$\{4, 5\}, C = \{2, 5\}$ then	$(A-B)\times (B-C)=$			
	1) {(1, 2), (1, 5), (2, 5)}	2) {(1, 4)}	3) (1, 4)	4) {(1, 2)}		
23.	If $A = \{x/x^2 - 5x + 6 = 0\}$,	$B=\{2, 4\}, C=\{4, 5\},$	then $A \times (B \cap C) =$			
	1) {(2, 4), (3, 4)}	VI. 10. 10. 10. 10. 10.	2) {(4, 2), (4, 3)}			
	3) {(2, 4), (3, 4), (4, 4)}		4) {(2, 2), (3, 3), (4, 4)	4), (5, 5)}		
24.	Let $A = \{1, 2, 3, 4, 5\}, I$	$B = \{2, 3, 6, 7\}$ then t	the number of elements in ($(A \times B) \cap (B \times A) =$		
	1) 4	2) 6	3) 2	4) 18		
25.			speak Spanish and 10 speak of these two languages is	k both Spanish and French.		
	1) 60	2) 40	3) 38	4) 22		
26.	read B and 68% read C ,	30% read A and B, 28		ple in that city read A , 51% d A and C ; 8% do not read three papers is		
	1) 25%	2) 18%	3) 20%	4) 30%		
Rela	ations:					
27.	If a set A has n elements	s then number of rela	tions defined on A is			
	1) $2^{(n^2)}$	2) $2^{n^2} - 1$	3) 2 ⁿ	4) 2^{2n}		
28.	$A = \{1, 2, 3, 4, 5\}$, Relat	tion R on A is defined	by $R = \{(x, y) / x < y \text{ and } $	$x^2 - y^2 < 9$ then $R =$		
	1) {(1, 1), (2, 2), (3, 3),	(4, 4), (5, 5)	2) {(2, 1), (3, 2), (3, 2)	2), (4, 3), (5, 4)}		
	3) {(1, 2), (1, 3), (2, 3),	(3, 4), (4, 5)	4) {(1, 2), (1, 3), (2, 3), (3, 4)}			
29.	A relation R is defined for domain of R is	rom {2, 3, 4, 5} to {3	$(6, 6, 7, 10)$ by $xRy \Leftrightarrow x$ is	relatively prime to y. Then		
	1) {2, 3, 5}	2) {3, 5}	3) {2, 3, 4}	4) {2, 3, 4, 5}		
30.	If $A = \{1, 2, 3\}$, $B = \{1, 4\}$ The range of R is	4, 6, 9) and <i>R</i> is a rela	ation from A to B defined by	xRy iff 'x is greater than y'.		
	1) {1, 4, 6, 9}	2) {4, 6, 9}	3) {1}	4) {1, 2}		
31.	Let $P = \{(x, y) x \in R, y \in R\}$	$R, x^2 + y^2 = 1$, then I	P is			
	1) reflexive		2) symmetric			
	3) anti-symmetric		4) equivalence			
32.	Let L denote the set of a $xRy \Leftrightarrow x$ is parallel to y .		plane. Let a Relation R be o	defined on L by		
	1) only symmetric		2) only transitive			
	3) anti symmetric		equivalence relation	on		
19	0 • • • • • •	· · · · · ELI	TE SERIES for Sri Chait	anya Sr. ICON Students		
-		The second second				

OBJECTIVE MATHEMATICS II A - Part 2

SETS & RELATIONS

- 33. On the set of integers Z, relation R is defined as " $mRn \Leftrightarrow m$ is an integral multiple of n" then R is
 - 1) reflexive, symmetric

2) reflexive, transitive

3) symmetric, transitive

- 4) equivalence
- 34. If $A = \{a, b, c, d\}$, then a relation $R = \{(a,b), (b,a), (a,a)\}$ on A is
 - 1) symmetric and transitive only
- 2) reflexive and transitive only

3) symmetric only

- 4) transitive only
- 35. The relation $R = \{(1, 1), (2, 2), (3, 3)\}$ on the set $\{1, 2, 3\}$ is
 - 1) symmetric only

2) reflexive only

3) transitive only

- 4) an equivalence relation
- 36. For $x, y \in I$, the relation R is defined by xRy if and only if $x \le y$ then R is
 - 1) partial order relation

2) equivalence relation

3) reflexive and symmetric

- 4) symmetric and transitive
- 37. Which of the following is not an equivalence relation on set of integers ?
 - 1) aRb if a + b is an even integer
- 2) aRb if a b is an even integer

3) aRb if a < b

- 4) aRb if a = b
- 38. If A is a non empty set then the relation \subseteq (subset) on the power set of A is
 - 1) only reflexive

2) only symmetric

3) only equivalence

- 4) partial order relation
- 39. In the set Z of all integers, which of the following relation R is not an equivalence relation?
 - 1) $xRy: if x \leq y$

- 2) xRy:if x = y
- 3) xRy:if x-y is an even integer
- 4) $xRy: if x = y \pmod{3}$
- 40. Two sets A and B are as $A = \{(a, b) \in R \times R : |a 5| < 1|b 5| < 1\}$

$$B = \{(a, b) \in R \times R : 4(a-6)^2 + 9(b-5)^2 \le 36\}$$
. Then

- A ⊂ B
- 2) $A \cap B = \emptyset$
- 3) Neither $A \subset B$ nor $B \subset A$ 4) $B \subset A$

Numerical value type questions

- 41. In a group of 1000 people, each can speak eiher Hindi or English. There are 750 people who can speak Hindi and 400 who can speak English. Then number of persons who can speak Hindi only is
- 42. In a class of 35 students, 17 have taken Mathematics, 10 have taken Mathematics but not Economics. If each student has taken either Mathematics or Economics or both, then the number of students who have taken Economics but not Mathematics is
- 43. In a town of 10,000 families it was found that 40% families buy newspaper A, 20% families buy newspaper B and 10% families buy newspaper C. 5% families buy A and B, 3% buy B and C and 4% buy A and C. If 2% buy all the three newspapers, the number of families which buy none of A, B, C is

- 44. A market research group conducted a survey of 1000 consumers and reported that 720 consumers liked product A and 450 consumers liked product B. The least number they must have liked both products is
- 45. Let A be the set of first 10 natural numbers and let $R = \{(x,y)/x \in A, y \in N \text{ and } x + 2y = 10\}$ then $n\{\text{dom}(R^{-1})\} =$

				KEY SH	IEET :				
			LE	CTURE	SHEET				
1) 3	2) 3	3) 4	4) 3	5) 2	6) 2	7) 4	8) 2	9) 3	10) 2
11) 1	12) 2	13) 3	14) 2	15) 1	16) 2	17) 4	18) 3	19) 3	20) 3
21) 2	22) 3	23) 2	24) 2	25) 2	26) 4	27) 1	28) 2	29) 4	30) 4
31) 4	32) 2	33) 2	34) 1	35) 3	36) 1	37) 3	38) 3	39) 3	40) 2
41) 4	42) 4	43) 3	44) 3	45) 1	46) 2	47) 45	48) 10	49) 325	50) 21 9
51) 64									
			PR	ACTICE	SHEET				
1) 1	2) 3	3) 3	4) 2	5) 1	6) 1	7) 3	8) 3	9) 4	10) 2
11) 4	12) 3	13) 3	14) 2	15) 3	16) 1	17) 2	18) 1	19) 2	20) 3
21) 3	22) 2	23) 1	24) 1	25) 1	26) 1	27) 1	28) 4	29) 4	30) 3
31) 2	32) 4	33) 2	34) 3	35) 4	36) 1	37) 3	38) 4	39) 1	40) 1
41) 600	42) 18	43) 4000	44) 170	45) 4					

