Finding Hedges by Chasing Weasels: Hedge Detection Using Wikipedia Tags and Shallow Linguistic Features

Viola Ganter and Michael Strube EML Research gGmbH Heidelberg, Germany ACL and AFNLP, 2009

> 22 May, 2014 Jaehwan Lee

Outline

- Introduction
- Related Work
- Weasel Words
- Data and Annotation
- Method
 - Words Preceding Weasel Tags
 - Adding shallow linguistic features
- Results and Discussion
- Conclusions

Introduction

- Distinguishing facts from fiction
- Indicate that speakers do not back up their opinions with facts
- in Abstract
 - "We investigate the automatic detection of sentences containing linguistic hedges using corpus statistics and syntactic patterns

Introduction

- Distinguishing facts from fiction
- Indicate that speakers do not back up their opinions with facts
- in Abstract
 - "We investigate the automatic detection of sentences containing linguistic hedges using **corpus statistics** and **syntactic patterns**

Related Work

- Focused on the biomedical domain
 - Light et al. (2004)
- Weakly supervised system for hedge classification
 - in a very narrow subdomain in the life sciences
 - Medlock and Briscoe (2007)

Weasel Words

- Wikipedia editors are advised to avoid weasel words
 - E.g. "Some people say ...", "I think ...", "Clearly ..."
- Wikipedia style guidelines instruct editors to
 - if they notice weasel words, insert a {{weasel-inline}} or a {{weasel-word}} tag to mark sentences or phrases for improvement
 - E.g. Others argue {{weasel-inline}} that the news media are simply catering to public demand.
- Many Wikipedia articles contain a specific weasel tag
 - so that Wikipedia can be viewed as a **readily annotated corpus**

Data and Annotation

- Balanced set
 - chose one random, non-tagged sentence per tagged sentence
 - Wikipedia dumps from years 2006 to 2008
 - articles that contained the string {{weasel
 - 168,923 unique sentences containing 437 weasel tags
 - one random, non-tagged sentence per tagged sentence
 - resulting in a set of 500 sentences
 - Wikipedia dumps completed on March 6, 2009
 - 70,436 sentences with 328 weasel tags
 - Again, a balanced set of 500 sentences
- Manually annotated set
 - expected there to be a much higher number of potential weasel words which had not yet been tagged leading to false positives
 - one of the authors, two linguists and one computer scientist
 - resulting in a set of 246 sentences for evaluation

Method

- in Abstract
 - "We investigate the automatic detection of sentences containing linguistic hedges using **corpus statistics and syntactic patterns**
- Corpus statistics
 - Words Preceding Weasel Tags (wpw)
- Syntactic patterns
 - Adding shallow linguistic features (asp)

Method

Words Preceding Weasel Tags (wpw)

- Assumption
 - weasel phrases contain at most five words
 - weasel tags are mostly inserted behind weasel words or phrase

```
⋯ {{weasel tag}} ···
```


- Assumption
 - weasel phrases contain at most five words
 - weasel tags are mostly inserted behind weasel words or phrase

5개 이하의 단어

- Assumption
 - weasel phrases contain at most five words
 - weasel tags are mostly inserted behind weasel words or phrase

5개 이하의 단어

- Two Factors
 - Relative frequency
 - Average distance
- Equation goes,

$$Score(w) = RelF(w) + AvgDist(w)$$
 (1)

Relative frequency

$$RelF(w) = \frac{W(w)}{\log_2(C(w))} \tag{2}$$

- W(w): the number of times word w occurred in the context of a weasel tag
- C(w): the total number of times w occurred in the corpus
- to give those words a high score which occur frequently in the context of a weasel tag
- due to the sparseness of tagged instances, words that occur with a very high frequency in the corpus automatically receive a lower score than low-frequent words
- Thus, use the logarithmic function to diminish this effect

Average distance

$$AvgDist(w) = \frac{W(w)}{\sum_{j=0}^{W(w)} dist(w, weaseltag_j)}$$
(3)

- j : each weasel context
- dist(w, weaseltag_i): the distance of word w to the weasel tag in j
- E.g. A word that always appears directly before the weasel tag will receive an AvgDist value of 1
- E.g. A word that always appears five words before the weasel tag will receive an AvgDist value of 1/5

- Normalization
 - wpw(S): the sum of scores over all words in S
 - normalized by the hyperbolic tangent

$$wpw(S) = \tanh \sum_{i=0}^{|S|} Score(w_i)$$
 (5)

with |S| = the number of words in the sentence.

- Classification
 - After calculating wpw(S) score for a sentence S
 - if wpw(S) is larger than a threshold, it is classified as weasel

$$S \rightarrow weasel \ if \ wpw(S) > \sigma$$
 (4)

Adding Shallow Linguistic Features (asp)

- the Weasel words in Wikipedia can be divided into
 - Numerically underspecified subjects ("Some people", "Many")
 - Passive constructions ("It is believed", "It is considered")
 - Adverbs ("Often", "Probably")
- If a pattern is found,
 - only the head of the pattern is assigned a score
 - i.e. adverbs, main verbs for passive patterns, nouns and quantifiers for numerically underspecified subjects

$$asp(S) = \tanh \sum_{i=0}^{heads_S} Score(w_i)$$
 (6)

where $heads_S$ = the number of pattern heads found in sentence S.

Results and Discussion

Result

- Both model perform comparably well on the development test data
- the syntactic patterns do not contribute to the regeneration of weasel tags
- Word frequency and distance to the weasel tag are sufficient

Limitation

- decreasing precision of both approaches when trained on more tagged sentences (i.e., computed with a higher threshold) might be caused by the great number of unannotated weasel words
- A disadvantage of the weasel tag is its short life span

Results and Discussion

Comparison

- difference becomes more distinct when manually annotated data form the test set
- asp out performs wpw by a large margin (also because wpw performs rather poorly)
- suggests that the added syntactic patterns indeed manage to detect weasels that have not yet been tagged

σ	.60	.70	.76	.80	.90	.98
balanced set						
wpw	.68	.68	.68	.69	.69	.70
wpw asp	.67	.68	.68 .68	.68	.61	.59
manual annot.						
wpw	-	.59	-	-	-	.59
wpw asp	.68	.69	.69	.69	.70	.65

Table 2: F-scores at different thresholds (bold at the precision/recall break-even-points determined on the development data)

Conclusions

- Main Idea
 - to use Wikipedia as a readily annotated corpus
- The experiments show that
 - the syntactic patterns work better on manual annotations
 - word frequency and distance work better on Wikipedia weasel tags itself
- This approach
 - takes a much broader domain than previous work
 - easily be applied to different languages by using Wikipedia
 - using the Wikipedia edit history will resolve short span of weasel tags

