Contents

1	Bas	eio.															1
-																	
	1.1	.vimrc			 												1
	1.2	Increase Stack Size															1
	1.2	Increase Stack Size		•	 ٠.	•	•		•	•	•	•	•	•	•		-
2	Ma	th															1
	0.1	T3 1:1 1 A1 ::1															-
	2.1	Euclidean's Algorithm			 												1
	2.2	Big Integer															1
	$^{2.3}$	FFT			 												3
	2.4	NTT															3
	2.5	Miller Rabin			 												4
	2.6	Chinese Remainder															4
	2.7	Pollard's rho			 												5
																	5
	2.8	Roots of Polynomial			 	•					•	٠					Ü
	2.9	Simplex															5
		Simplest Color Color Color		•	 	•	•		•	•	•	•	•	•	•	•	_
3	Da	ta Structure															6
																	ì
	3.1	Disjoint Set			 							٠					6
	3.2	Disjoint Set with Undo															6
	3.3	Segement Tree with Lazy Tag			 												6
	3.4	Copy on Write Segement Tree															6
	3.5	Persistent Segement Tree			 												7
	3.6																8
		Rope															
	3.7	pb ds			 												8
	3.8	Link-Cut Tree			 												8
	3.9	Treap															9
	5.5	1100p		•	 		•	٠.	•	•	•	•	•	•	•		
4	Gra	anh														1	n
-		-															
	4.1	Dijkstra's Algorithm			 											. 1	C
	4.2	Tarjan's Algorithm															r
	4.3	Jump Pointer Algorithm			 											. 1	C
	4.4	Maximum Clique															U
	4.5	Heavy-Light Decomposition .														. 1	(
	4.6	Dominator Tree			 											. 1	1
	4.7	Number of Maximal Clique .														. 1	9
	4.8	Strongly Connected Componen	ıt.		 											. 1	2
	4.9	Dynamic MST															9
	4.10	General Matching			 											. 1	3
		l Minimum General Weighted M															J
	4 1 6	2 Minimum Steiner Tree														. 1	3
	4 1			•										•			
																	4
		BCC based on Vertex			 											. 1	
					 	٠	•		٠	٠		•	٠			. 1	
-	4.13	BCC based on Vertex			 	•	٠		٠	٠	٠	•	•	•	•		
5	4.13 Flo	BCC based on Vertex			 		•		•	•	•	•	•		•	. 1 1	4
5	4.13 Flo	B BCC based on Vertex w														1	
5	4.13 Flo 5.1	B BCC based on Vertex w Bipartite Matching			 											. 1	4
5	4.13 Flo	B BCC based on Vertex w Bipartite Matching			 											. 1	4
5	4.13 Flo 5.1 5.2	B BCC based on Vertex			 											. 1 . 1	4
5	4.13 Flo 5.1 5.2 5.3	w Bipartite Matching MaxFlow (ISAP) MinCostMaxFlow			 											. 1 . 1 . 1	5
5	4.13 Flo 5.1 5.2	w Bipartite Matching MaxFlow (ISAP) MinCostMaxFlow			 											. 1 . 1 . 1	5
5	4.13 Flo 5.1 5.2 5.3 5.4	w Bipartite Matching MaxFlow (ISAP) MinCostMaxFlow BoundedMaxFlow			 											. 1 . 1 . 1	4 5 5 5
5	4.13 Flo 5.1 5.2 5.3 5.4 5.5	BCC based on Vertex W Bipartite Matching MaxFlow (ISAP) MinCostMaxFlow BoundedMaxFlow Dinic			 											1 . 1 . 1 . 1 . 1 . 1	4 5 5 5
5	4.13 Flo 5.1 5.2 5.3 5.4	BCC based on Vertex W Bipartite Matching MaxFlow (ISAP) MinCostMaxFlow BoundedMaxFlow Dinic			 											1 . 1 . 1 . 1 . 1 . 1	4 5 5 5
5	4.13 Flo 5.1 5.2 5.3 5.4 5.5 5.6	### BBCC based on Vertex			 											1 . 1 . 1 . 1 . 1 . 1 . 1	5 5 6
5	4.13 Flo 5.1 5.2 5.3 5.4 5.5	BCC based on Vertex W Bipartite Matching MaxFlow (ISAP) MinCostMaxFlow BoundedMaxFlow Dinic			 											1 . 1 . 1 . 1 . 1 . 1 . 1	5 5 6
5	4.13 Flo 5.1 5.2 5.3 5.4 5.5 5.6	B BCC based on Vertex w Bipartite Matching			 											1 . 1 . 1 . 1 . 1 . 1 . 1 . 1	4 5 5 6 6 7
5	4.13 Flo 5.1 5.2 5.3 5.4 5.5 5.6 5.7	### BBCC based on Vertex			 											1 . 1 . 1 . 1 . 1 . 1 . 1 . 1	4 5 5 6 6 7
	4.13 Flo 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8	B BCC based on Vertex w Bipartite Matching			 											1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1	4 5 5 6 7
5	4.13 Flo 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8	B BCC based on Vertex w Bipartite Matching			 											1 . 1 . 1 . 1 . 1 . 1 . 1 . 1	4 5 5 6 7
	4.13 Flo 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 Ge	B BCC based on Vertex w Bipartite Matching			 											1 . 1 . 1 . 1 . 1 . 1 . 1	4 5 5 6 7 7
	4.13 Flo 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 Geo	B BCC based on Vertex w Bipartite Matching			 											1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 .	45556677 77
	4.13 Flo 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 Geo	B BCC based on Vertex w Bipartite Matching			 											1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 .	45556677 77
	4.13 Flo 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 Geo. 6.1 6.2	W Bipartite Matching MaxFlow (ISAP) MinCostMaxFlow BoundedMaxFlow Dinic DMST SW min-cut Theorem Demetry Half Plane Intersection Intersection of 2 Lines														1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 .	45556677 777
	4.13 Flo 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 Geo	W Bipartite Matching														1 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1	45556677 777
	4.13 Flo 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 Geometric Geometric Geome	W Bipartite Matching														1 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1	45556677 7778
	4.13 Flo 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 Ge 6.1 6.2 6.3 6.4	W Bipartite Matching														1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 .	45556677 77788
	4.13 Flo 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 Geometric Geometric Geome	W Bipartite Matching														1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 .	45556677 77788
	4.13 Flo 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 Ge 6.1 6.2 6.3 6.4 6.5	B BCC based on Vertex w Bipartite Matching	· · · · · · · · · · · · · · · · · · ·													1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 .	4.5.5.6.6.7.7.7.8.8.8.8
	4.13 Floo 5.1 5.2 5.3 5.4 5.5 5.6 6.7 5.8 Gee 6.1 6.2 6.3 6.4 6.5 6.6	B BCC based on Vertex w Bipartite Matching														1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 .	45556677 7788888
	4.13 Flo 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 Ge 6.1 6.2 6.3 6.4 6.5	B BCC based on Vertex w Bipartite Matching														1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 .	45556677 7788888
	4.13 Flo 5.1 5.2 5.3 5.4 5.5 5.6 6.1 6.2 6.3 6.4 6.5 6.6 6.7	BBCC based on Vertex w Bipartite Matching														1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 .	45 55 66 77 77 78 88 88 88
	4.13 Flo 5.1 5.2 5.3 5.4 5.5 5.6 6.7 5.8 Ge 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8	B BCC based on Vertex w Bipartite Matching														1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 .	45 55 66 77 77 78 88 88 88
	4.13 Flo 5.1 5.2 5.3 5.4 5.5 5.6 6.1 6.2 6.3 6.4 6.5 6.6 6.7	B BCC based on Vertex w Bipartite Matching														1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 .	45 55 66 77 77 78 88 88 88
	4.13 Flo 5.1 5.2 5.3 5.4 5.5 5.6 6.7 5.8 Gee 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9	B BCC based on Vertex w Bipartite Matching														1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 .	45556677 777888888899
	4.13 Flo 5.1 5.2 5.3 5.4 5.5 5.6 6.7 5.8 Gee 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9	B BCC based on Vertex w Bipartite Matching														1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 .	45556677 777888888899
	4.13 Flo 5.1 5.2 5.3 5.4 5.5 5.6 6.7 5.8 Ge 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.1	B BCC based on Vertex w Bipartite Matching														1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 .	45555566777 77 7788888888888888888888888888888
	4.13 Flo 5.1 5.2 5.3 5.4 5.5 6.5 6.7 6.8 6.9 6.10 6.11	B BCC based on Vertex w Bipartite Matching														1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.5 5.5 5.6 6.7 7.7 7.7 8.8 8.8 8.8 9.9 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0
	4.13 Flo 5.1 5.2 5.3 5.4 5.5 6.5 6.7 6.8 6.9 6.10 6.11	B BCC based on Vertex w Bipartite Matching														1	4.5 5.5 5.6 6.7 7.7 7.7 8.8 8.8 8.8 9.9 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0
	4.13 Flo 5.1 5.2 5.3 5.4 5.5 6.5 6.7 6.8 6.9 6.10 6.11	B BCC based on Vertex w Bipartite Matching														1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.5 5.5 5.6 6.7 7.7 7.7 8.8 8.8 8.8 9.9 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0
6	4.13 Flo 5.1 5.2 5.3 5.4 5.5 5.6 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.1 6.1 6.1 6.1	B BCC based on Vertex w Bipartite Matching														1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 .	45 5 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10
	4.13 Flo 5.1 5.2 5.3 5.4 5.5 6.5 6.7 6.8 6.9 6.10 6.11	B BCC based on Vertex w Bipartite Matching														1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	45 5 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10
6	4.13 Floo 5.1 5.2 5.3 5.4 5.5 5.6 6.7 6.8 6.9 6.10 6.11 6.12 Str	B BCC based on Vertex w Bipartite Matching														1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 .	45 5 6 6 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10
6	4.13 Floo 5.1 5.2 5.3 5.4 5.5 5.6 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.1 6.1 6.1 5tr 7.1	B BCC based on Vertex w Bipartite Matching														1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	455 556 677 777 888 888 990 121
6	4.13 Floo 5.1 5.2 5.3 5.4 5.5 5.6 6.7 6.8 6.9 6.10 6.11 6.12 Str	B BCC based on Vertex w Bipartite Matching														1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	455 556 677 777 888 888 990 121
6	4.13 Flo 5.1 5.2 5.3 5.4 5.5 5.6 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 7.1 7.1	B BCC based on Vertex w Bipartite Matching	nent													1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	45556677 7 7778888888888888888888888888888888
6	4.13 Floo 5.12 5.3 5.4 5.5 5.6 6.7 5.8 Gee 6.1 6.2 6.3 6.4 6.5 6.6 6.6 6.7 6.8 6.9 6.1 6.1 6.1 6.1 6.1 7.7 7.7 7.7 7.7	B BCC based on Vertex w Bipartite Matching														1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	45556677 7 77888888899000 1 111111111111111111111111111111111
6	4.13 Floo 5.12 5.3 5.4 5.5 5.6 6.7 5.8 Gee 6.1 6.2 6.3 6.4 6.5 6.6 6.6 6.7 6.8 6.9 6.1 6.1 6.1 6.1 6.1 7.7 7.7 7.7 7.7	B BCC based on Vertex w Bipartite Matching														1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	45556677 7 77888888899000 1 111111111111111111111111111111111
6	4.13 Floo 5.1 5.2 5.3 5.4 5.5 5.6 6.2 6.3 6.4 6.5 6.6 6.1 6.1 7.1 7.2 7.3 7.4	B BCC based on Vertex w Bipartite Matching														11. 11. 11. 11. 11. 11. 11. 11. 11. 11.	45556677 7 7788888889900 1 1111111111111111111111111111111111
6	4.13 Floo 5.12 5.3 5.4 5.5 5.6 6.7 5.8 Gee 6.1 6.2 6.3 6.4 6.5 6.6 6.6 6.7 6.8 6.9 6.1 6.1 6.1 6.1 6.1 7.7 7.7 7.7 7.7	B BCC based on Vertex w Bipartite Matching														11. 11. 11. 11. 11. 11. 11. 11. 11. 11.	45556677 7 7788888889900 1 1111111111111111111111111111111111
6	4.13 Floo 5.1 5.2 5.3 5.4 5.5 6.6 6.7 6.8 6.6 6.7 6.8 6.1 6.1 7.1 7.2 7.3 7.4 7.5	B BCC based on Vertex w Bipartite Matching	on the second se													11. 11. 11. 11. 11. 11. 11. 11. 11. 11.	14556677 7778888888999000 115111111111111111111111111111111
6	4.13 Floo 5.1 5.2 5.3 5.4 5.6 6.7 6.8 6.9 6.1 6.1 6.1 7.1 7.2 7.3 7.4 7.5 7.6	B BCC based on Vertex w Bipartite Matching	onent													1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 4.5 \\ 5.5 \\ 6.77 \\ 7.77 \\ 8.8 \\ 8.8 \\ 9.00 \\ 1.11 \\ 1.11 \\ 1.12 \\ 1.12 \\ 1.12 \\ 1.13 \\ 1.14 \\$
6	4.13 Floo 5.1 5.2 5.3 5.4 5.5 6.6 6.7 6.8 6.6 6.7 6.8 6.1 6.1 7.1 7.2 7.3 7.4 7.5	B BCC based on Vertex w Bipartite Matching	onent													1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 4.5 \\ 5.5 \\ 6.77 \\ 7.77 \\ 8.8 \\ 8.8 \\ 9.00 \\ 1.11 \\ 1.11 \\ 1.12 \\ 1.12 \\ 1.12 \\ 1.13 \\ 1.14 \\$

1 Basic

1.1 .vimrc

1.2 Increase Stack Size

```
//stack resize (linux)
#include <sys/resource.h>
void increase_stack_size() {
  const rlim_t ks = 64*1024*1024;
  struct rlimit rl;
  int res=getrlimit(RLIMIT_STACK, &rl);
  if(res==0) {
    if(rl.rlim_cur<ks) {
      rl.rlim_cur=ks;
      res=setrlimit(RLIMIT_STACK, &rl);
    }
  }
}</pre>
```

${f 2}$ Math

2.1 Euclidean's Algorithm

```
// a must be greater than b
pair< int, int > gcd( int a, int b ) {
   if ( b == 0 ) return { 1, 0 };
   pair< int, int > q = gcd( b, b % a );
   return { q.second, q.first - q.second * ( a / b ) };
}
```

2.2 Big Integer

```
const int base = 1000000000;
const int base_digits = 9;
class Bigint {
public:
  vector< int > a;
  int sign;
  Bigint() : sign( 1 ) {}
Bigint( long long v ) { *this = v; }
Bigint( const string &s ) { read( s ); }
  void operator=( const Bigint &v ) {
    sign = v.sign;
    a = v.a;
  void operator=( long long v ) {
    sign = 1;
    if (v < 0) sign = -1, v = -v;
    for (; v > 0; v = v / base ) a.push_back( v % base
  Bigint operator+( const Bigint &v ) const {
     if ( sign == v.sign ) {
       Bigint res = v;
       for ( int i = 0, carry = 0; i < (int)max( a.size
         (), v.a.size() ) || carry; ++i ) {
if ( i == (int)res.a.size() ) res.a.push_back(
         0);
res.a[i] += carry + (i < (int)a.size() ? a[
         i ] : 0 );
carry = res.a[ i ] >= base;
         if ( carry ) res.a[ i ] -= base;
       return res;
    }
    return *this - ( -v );
  Bigint operator-( const Bigint &v ) const {
    if ( sign == v.sign ) {
      if ( abs() >= v.abs() ) {
  Bigint res = *this;
```

```
for ( int i = 0, carry = 0; i < (int)v.a.size()
            | carry; ++i ) {
         res.a[ i ] -= carry + ( i < (int)v.a.size() ?
        v.a[i]:0);
carry = res.a[i] < 0;
        if ( carry ) res.a[ i ] += base;
      res.trim();
      return res;
    return -( v - *this );
  return *this + ( -v );
void operator*=( int v ) {
  if ( i == (int)a.size() ) a.push_back( 0 );
long long cur = a[ i ] * (long long)v + carry;
carry = (int)( cur / base );
    a[ i ] = (int)( cur % base );
  trim();
Bigint operator*( int v ) const {
  Bigint res = *this;
  res *= v;
  return res;
friend pair< Bigint, Bigint > divmod( const Bigint &
    a1, const Bigint &b1 ) {
  int norm = base / ( b1.a.back() + 1 );
  Bigint a = a1.abs() * norm;
  Bigint b = b1.abs() * norm;
  Bigint q, r;
  q.a.resize( a.a.size() );
  for ( int i = a.a.size() - 1; i >= 0; i-- ) {
  r *= base;
  r += a.a[i];
    int s1 = r.a.size() \leftarrow b.a.size() ? 0 : r.a[b.a.
         size() ];
    int s2 = r.a.size() <= b.a.size() - 1 ? 0 : r.a[
         b.a.size() - 1];
    int d = ((long long)base * s1 + s2) / b.a.back
    ();
r -= b * d;
    while (r < 0) r += b, --d;
    q.a[ i ] = d;
  q.sign = a1.sign * b1.sign;
  r.sign = a1.sign;
  q.trim();
  r.trim();
  return make_pair( q, r / norm );
Bigint operator/( const Bigint &v ) const { return
    divmod( *this, v ).first; }
Bigint operator%( const Bigint &v ) const { return
    divmod( *this, v ).second; }
void operator/=( int v ) {
  if (v < 0) sign = -sign, v = -v;
  for ( int i = (int)a.size() - 1, rem = 0; i >= 0;
    long long cur = a[ i ] + rem * (long long)base;
a[ i ] = (int)( cur / v );
    rem = (int)(cur % v);
  trim();
Bigint operator/( int v ) const {
  Bigint res = *this;
  res \neq v;
  return res;
int operator%( int v ) const {
```

```
if ( v < 0 ) v = -v;
  int m = 0;
  for ( int i = a.size() - 1; i >= 0; --i ) m = ( a[
      i ] + m * (long long)base ) % v;
  return m * sign;
void operator+=( const Bigint &v ) { *this = *this +
void operator-=( const Bigint &v ) { *this = *this -
    v; }
void operator*=( const Bigint &v ) { *this = *this *
void operator/=( const Bigint &v ) { *this = *this /
bool operator<( const Bigint &v ) const {</pre>
  if ( sign != v.sign ) return sign < v.sign;</pre>
  if ( a.size() != v.a.size() ) return a.size() *
  sign < v.a.size() * v.sign;
for ( int i = a.size() - 1; i >= 0; i-- )
    if ( a[ i ] != v.a[ i ] ) return a[ i ] * sign <
    v.a[ i ] * sign;</pre>
  return false;
}
bool operator>( const Bigint &v ) const { return v <
    *this; }
bool operator<=( const Bigint &v ) const { return !(</pre>
    v < *this ); }</pre>
bool operator>=( const Bigint &v ) const { return !(
*this < v ); }
bool operator==( const Bigint &v ) const { return !(
    *this < v ) && !( v < *this ); }
bool operator!=( const Bigint &v ) const { return *
    this < v || v < *this; }
void trim() {
  while ( !a.empty() && !a.back() ) a.pop_back();
  if (a.empty()) sign = 1;
Bigint operator-() const {
  Bigint res = *this;
  res.sign = -sign;
  return res;
Bigint abs() const {
  Bigint res = *this;
  res.sign *= res.sign;
  return res;
long longValue() const {
  long long res = 0;
  for ( int i = a.size() - 1; i >= 0; i-- ) res = res
    * base + a[ i ];
return res * sign;
void read( const string &s ) {
  sign = 1
  a.clear();
  int pos = 0;
while ( pos < (int)s.size() && ( s[ pos ] == '-' ||</pre>
    s[ pos ] == '+' ) ) {
if (s[ pos ] == '-' ) sign = -sign;
    ++pos;
  for ( int i = s.size() - 1; i >= pos; i -=
      base_digits ) {
    int x = 0;
    for ( int j = max( pos, i - base_digits + 1 ); j
     <= i; j++ ) x = x * 10 + s[ j ] - '0';</pre>
    a.push_back( x );
  trim();
```

```
friend istream &operator>>( istream &stream, Bigint &
     v ) {
  string s;
  stream >> s;
  v.read( s );
  return stream;
friend ostream &operator<<( ostream &stream, const</pre>
                                                                     Bigint res;
    Bigint &v ) {
  if ( v.sign == -1 ) stream << '-'</pre>
  stream << ( v.a.empty() ? 0 : v.a.back() );</pre>
  for ( int i = (int)v.a.size() - 2; i >= 0; --i )
    stream << setw( base_digits ) << setfill( '0'</pre>
         << v.a[ i ];
  return stream;
}
static vector< int > convert_base( const vector< int</pre>
                                                                     res.trim();
    > &a, int old_digits, int new_digits ) {
                                                                     return res;
  vector< long long > p( max( old_digits, new_digits
  ) + 1 );
p[ 0 ] = 1;
  for ( int i = 1; i < (int)p.size(); i++ ) p[ i ] =
   p[ i - 1 ] * 10;</pre>
                                                                2.3 FFT
  vector< int > res;
  long long cur = 0;
  int cur_digits = 0;
  for ( int i = 0; i < (int)a.size(); i++ ) {
  cur += a[ i ] * p[ cur_digits ];</pre>
                                                                // (must be 2^k)
    cur_digits += old_digits;
                                                                //
    while ( cur_digits >= new_digits ) {
       res.push_back( int( cur % p[ new_digits ] ) );
                                                                //
       cur /= p[ new_digits ];
       cur_digits -= new_digits;
    }
  }
  res.push_back( (int)cur );
  while ( !res.empty() && !res.back() ) res.pop_back
                                                                //
       ();
  return res;
typedef vector< long long > vll;
static vll karatsubaMultiply( const vll &a, const vll
                                                                const cplx I(0, 1);
     &b ) {
                                                                cplx omega[MAXN+1];
  int n = a.size();
                                                                void pre_fft(){
  vll res(n + n);
  if ( n <= 32 ) {
    for ( int i = 0; i < n; i++ )
       for ( int j = 0; j < n; j++ ) res[ i + j ] += a
   [ i ] * b[ j ];</pre>
                                                                // n must be 2^k
    return res;
                                                                  int theta = basic;
  int k = n \gg 1;
  vll a1( a.begin(), a.begin() + k );
  vll a2( a.begin() + k, a.end() );
vll b1( b.begin(), b.begin() + k );
  vll b2( b.begin() + k, b.end() );
  vll a1b1 = karatsubaMultiply( a1, b1 );
  vll a2b2 = karatsubaMultiply( a2, b2 );
  for ( int i = 0; i < k; i++ ) a2[ i ] += a1[ i ];
for ( int i = 0; i < k; i++ ) b2[ i ] += b1[ i ];
                                                                       }
  vll r = karatsubaMultiply(a2, b2)
  for ( int i = 0; i < (int)a1b1.size(); i++ ) r[ i ]
         -= a1b1[ i ];
  for ( int i = 0; i < (int)a2b2.size(); i++ ) r[ i ]
        -= a2b2[ i ];
  for ( int i = 0; i < (int)r.size(); i++ ) res[ i +
    k ] += r[ i ];</pre>
                                                                  if (inv)
  for ( int i = 0; i < (int)a1b1.size(); i++ ) res[ i
  ] += a1b1[ i ];
for ( int i = 0; i < (int
+ n ] += a2b2[ i ];
                                                                       a[i] /= n;
                        < (int)a2b2.size(); i++ ) res[ i
  return res;
                                                                2.4 NTT
Bigint operator*( const Bigint &v ) const {
  vector< int > a6 = convert_base( this->a,
       base_digits, 6 );
  vector< int > b6 = convert_base( v.a, base_digits,
       6);
```

```
vll a( a6.begin(), a6.end() );
vll b( b6.begin(), b6.end() );
while ( a.size() < b.size() ) a.push_back( 0 );
while ( b.size() < a.size() ) b.push_back( 0 );</pre>
while ( a.size() & ( a.size() - 1 ) ) a.push_back(
     0 ), b.push_back( 0 )
vll c = karatsubaMultiply( a, b );
res.sign = sign * v.sign;
for ( int i = 0, carry = 0; i < (int)c.size(); i++
  long long cur = c[ i ] + carry;
res.a.push_back( (int)( cur % 1000000 ) );
  carry = (int)(cur / 1000000);
res.a = convert_base( res.a, 6, base_digits );
```

```
// const int MAXN = 262144;
// before any usage, run pre_fft() first
// To implement poly. multiply:
// fft( n , a );
// fft( n , b );
// for( int i = 0 ; i < n ; i++ )
// c[ i ] = a[ i ] * b[ i ];
// fft( n , c , 1 );
// then you have the result in c :: [cplx]
typedef long double ld;
typedef complex<ld> cplx;
const ld PI = acosl(-1);
  for(int i=0; i<=MAXN; i++)
  omega[i] = exp(i * 2 * PI / MAXN * I);</pre>
void fft(int n, cplx a[], bool inv=false){
   int basic = MAXN / n;
   for (int m = n; m >= 2; m >>= 1) {
      int mh = m \gg 1;
      for (int i = 0; i < mh; i++) {</pre>
        cplx w = omega[inv ? MAXN-(i*theta%MAXN)]
                                  : i*theta%MAXN];
         for (int j = i; j < n; j += m) {</pre>
           int k = j + mh;
           cplx x = a[j] - a[k];
           a[j] += a[k];
           a[\bar{k}] = w * \bar{x};
      theta = (theta * 2) % MAXN;
   for (int j = 1; j < n - 1; j++) {
  for (int k = n >> 1; k > (i ^= k); k >>= 1);
  if (ci = i) ====(-5i] ====(-5i] ====(-5i);
      if (j < i) swap(a[i], a[j]);</pre>
     for (i = 0; i < n; i++)
```

```
typedef long long LL;
// Remember coefficient are mod P
/* p=a*2^n+1
```

```
reverse( a+1 , a+n );
for (i = 0; i < n; i++)
         2^n
                                         root
         32
                      97
                                         5
                                                                          a[i] = (a[i] * ni) % P;
   6
         64
                      193
                                   3
   7
         128
                      257
                                         3
   8
                      257
                                                                   }
         256
   9
         512
                      7681
                                   15
                                         17
                                                                    void operator()(int n, LL a[], bool inv_ntt=false) {
   10
         1024
                      12289
                                   12
                                        11
                                                                      tran(n, a, inv_ntt);
   11
         2048
                      12289
                                   6
                                        11
         4096
   12
                      12289
                                   3
                                         11
   13
         8192
                      40961
                                         3
                                                                 const LL P=2013265921, root=31;
   14
         16384
                      65537
                                                                 const int MAXN=4194304;
   15
         32768
                      65537
                                         3
                                                                 NTT<P, root, MAXN> ntt;
         65536
                                   1
   16
                      65537
   17
                      786433
         131072
                                   6
                                         10
   18
         262144
                      786433
                                        10 (605028353,
                                                                 2.5 Miller Rabin
        2308, 3)
         524288
                      5767169
                                   11
                                                                                                 3 : 2, 7, 61
   20
         1048576
                      7340033
                                                                 // n < 4,759,123,141
   21
         2097152
                      23068673
                                   11
                                         3
                                                                 // n < 1,122,004,669,633
// n < 3,474,749,660,383
// n < 2^64
                                                                                                 4:
                                                                                                      2, 13, 23, 1662803
6: pirmes <= 13
   22
         4194304
                      104857601
                                   25
                                         3
         8388608
                      167772161
                                   20
                      167772161
   24
         16777216
                                   10
                                                                 // 2, 325, 9375, 28178, 450775, 9780504, 1795265022
   25
         33554432
                      167772161
                                         3 (1107296257, 33,
                                                                 // Make sure testing integer is in range [2, n-2] if
        10)
                                                                 // you want to use magic.
   26
         67108864
                      469762049
                                                                 bool witness(LL a,LL n,LL u,int t){
         134217728
   27
                      2013265921 15
                                         31 */
                                                                    LL x=mypow(a,u,n);
// (must be 2^k)
                                                                    for(int i=0;i<t;i++) {</pre>
// To implement poly. multiply:
                                                                      LL nx=mul(x,x,n);
// NTT<P, root, MAXN> ntt;
// ntt( n , a ); // or ntt.tran( n , a );
                                                                      if(nx==1&&x!=1&&x!=n-1) return 1;
// ntt( n , b );
                                                                   }
// for( int i = 0 ; i < n ; i++ )
// c[ i ] = a[ i ] * b[ i ];
// ntt( n , c , 1 );
                                                                    return x!=1;
                                                                 bool miller_rabin(LL n,int s=100) {
//
                                                                    // iterate s times of witness on n
// then you have the result in c :: [LL]
                                                                    // return 1 if prime, 0 otherwise
template<LL P, LL root, int MAXN>
                                                                    if(n<2) return 0;
struct NTT{
                                                                    if(!(n\&1)) return n == 2;
  static LL bigmod(LL a, LL b) {
                                                                    LL u=n-1; int t=0;
    LL res = 1;
                                                                    // n-1 = u*2^t
    for (LL bs = a; b; b >>= 1, bs = (bs * bs) % P) {
                                                                    while(!(u&1)) u>>=1, t++;
      if(b&1) res=(res*bs)%P;
                                                                    while(s--)
                                                                      LL a=randll()\%(n-1)+1;
    return res;
                                                                      if(witness(a,n,u,t)) return 0;
  static LL inv(LL a, LL b) {
                                                                    return 1;
    if(a==1)return 1;
                                                                 }
    return (((LL)(a-inv(b%a,a))*b+1)/a)%b;
  LL omega[MAXN+1];
                                                                        Chinese Remainder
  NTT() {
    omega[0] = 1;
    LL r = bigmod(root, (P-1)/MAXN);
                                                                 int pfn;
    for (int i=1; i<=MÁXN; i++)
                                                                 // number of distinct prime factors
      omega[i] = (omega[i-1]*r)%P;
                                                                 int pf[MAXN]; // prime factor powers
                                                                 int rem[MAXN]; // corresponding remainder
  // n must be 2^k
                                                                 int pm[MAXN];
  void tran(int n, LL a[], bool inv_ntt=false){
                                                                 inline void generate_primes() {
    int basic = MAXN / n;
                                                                   int i,j;
    int theta = basic;
                                                                    pnum=1
    for (int m = n; m >= 2; m >>= 1) {
                                                                    prime[0]=2;
       int mh = m >> 1;
                                                                    for(i=3;i<MAXVAL;i+=2) {</pre>
       for (int i = 0; i < mh; i++) {
                                                                      if(nprime[i]) continue;
         LL w = omega[i*theta%MAXN];
                                                                      prime[pnum++]=i;
         for (int j = i; j < n; j += m) {
  int k = j + mh;</pre>
                                                                      for(j=i*i;j<MAXVAL;j+=i) nprime[j]=1;</pre>
           LL x = a[j] - a[k];
           if (x < 0) x += P;
                                                                 inline int inverse(int x,int p) {
           a[j] += a[k];
                                                                    int q, tmp, a=x, b=p;
           if (a[j] > P) a[j] -= P;
a[k] = (w * x) % P;
                                                                    int a0=1,a1=0,b0=0,b1=1;
                                                                    while(b) {
                                                                      q=a/b; tmp=b; b=a-b*q; a=tmp;
                                                                      tmp=b0; b0=a0-b0*q; a0=tmp;
       theta = (theta * 2) % MAXN;
                                                                      tmp=b1; b1=a1-b1*q; a1=tmp;
    int i = 0;
                                                                    return a0;
    for (int j = 1; j < n - 1; j++) {
  for (int k = n >> 1; k > (i ^= k); k >>= 1);

                                                                 inline void decompose_mod() {
       if (j < i) swap(a[i], a[j]);</pre>
                                                                    int i,p,t=mod;
                                                                    pfn=0;
    if (inv_ntt) {
                                                                    for(i=0;i<pnum&&prime[i]<=t;i++) {</pre>
      LL ni = inv(n,P);
                                                                      p=prime[i];
```

```
if(t%p==0) {
    pf[pfn]=1;
    while(t%p==0) {
        t/=p;
        pf[pfn]*=p;
    }
    pfn++;
}
if(t>1) pf[pfn++]=t;
}
inline int chinese_remainder() {
    int i,m,s=0;
    for(i=0;i<pfn;i++) {
        m=mod/pf[i];
        pm[i]=(LL)m*inverse(m,pf[i])%mod;
        s=(s+(LL)pm[i]*rem[i])%mod;
}
return s;
}</pre>
```

2.7 Pollard's rho

```
// does not work when n is prime
LL f(LL x, LL mod){
   return add(mul(x,x,mod),1,mod);
}
LL pollard_rho(LL n) {
   if(!(n&1)) return 2;
   while(true){
      LL y=2, x=rand()%(n-1)+1, res=1;
      for(int sz=2; res==1; sz*=2) {
        for(int i=0; i<sz && res<=1; i++) {
            x = f(x, n);
            res = __gcd(abs(x-y), n);
        }
        y = x;
    }
   if (res!=0 && res!=n) return res;
}</pre>
```

2.8 Roots of Polynomial

```
const double eps = 1e-12;
const double inf = 1e+12;
double a[ 10 ], x[ 10 ];
int n;
int sign( double x ){
 return (x < -eps)?(-1):(x>eps);
double f(double a[], int n, double x){
  double tmp=1,sum=0;
  for(int i=0;i<=n;i++){</pre>
    sum=sum+a[i]*tmp;
    tmp=tmp*x;
  return sum;
double binary(double l,double r,double a[],int n){
  int sl=sign(f(a,n,l)),sr=sign(f(a,n,r));
  if(sl==0) return l;
  if(sr==0) return r;
  if(sl*sr>0) return inf;
 while(r-l>eps){
    double mid=(l+r)/2;
    int ss=sign(f(a,n,mid));
    if(ss==0) return mid;
    if(ss*sl>0) l=mid; else r=mid;
  return 1;
void solve(int n,double a[],double x[],int &nx){
  if(n==1){
    x[1]=-a[0]/a[1];
    nx=1:
    return;
```

```
double da[10], dx[10];
  int ndx;
  for(int i=n;i>=1;i--) da[i-1]=a[i]*i;
  solve(n-1,da,dx,ndx);
  nx=0;
  if(ndx==0){
     double tmp=binary(-inf,inf,a,n);
     if (tmp<inf) x[++nx]=tmp;</pre>
  double tmp;
  tmp=binary(-inf,dx[1],a,n);
  if(tmp<inf) x[++nx]=tmp;
for(int i=1;i<=ndx-1;i++){</pre>
     tmp=binary(dx[i],dx[i+1],a,n);
     if(tmp<inf) x[++nx]=tmp;</pre>
  tmp=binary(dx[ndx],inf,a,n);
  if(tmp<inf) x[++nx]=tmp;</pre>
int main() {
  scanf("%d",&n);
  for(int i=n;i>=0;i--) scanf("%lf",&a[i]);
  int nx:
  solve(n,a,x,nx);
  for(int i=1;i<=nx;i++) printf("%.6f\n",x[i]);</pre>
}
```

2.9 Simplex

```
const int MAXN = 111;
const int MAXM = 111:
const double eps = 1E-10;
double a[MAXN] [MAXM], b[MAXN], c[MAXM], d[MAXN][MAXM];
double x[MAXM];
int ix[MAXN + MAXM]; // !!! array all indexed from 0
// \max\{cx\} subject to \{Ax \le b, x > = 0\}
// n: constraints, m: vars !!!
\//\ x[] is the optimal solution vector
// usage :
// value = simplex(a, b, c, N, M);
double simplex(double a[MAXN][MAXM], double b[MAXN],
                   double c[MAXM], int n, int m){
  ++m;
  int r = n, s = m - 1;
  memset(d, 0, sizeof(d));
  for (int i = 0; i < n + m; ++i) ix[i] = i;
for (int i = 0; i < n; ++i) {
  for (int j = 0; j < m - 1; ++j) d[i][j] = -a[i][j];
     d[i][m - 1] = 1;

d[i][m] = b[i];
     if(d[r][m] > d[i][m]) r = i;
  for (int j = 0; j < m - 1; ++j) d[n][j] = c[j];
d[n + 1][m - 1] = -1;
  for (double dd;; ) {
     if (r < n) {
  int t = ix[s]; ix[s] = ix[r + m]; ix[r + m] = t;
       for (int j = 0; j <= m; ++j)
if (j != s) d[r][j] *= -d[r][s];
        for (int i = 0; i <= n + 1; ++i) if (i != r) {
          for (int j = 0; j <= m; ++j) if (j != s)
d[i][j] += d[r][j] * d[i][s];
d[i][s] *= d[r][s];
       }
     }
     r = -1; s = -1;
     for (int j = 0; j < m; ++j)
if (s < 0 || ix[s] > ix[j]) {
          if (d[n + 1][j] > eps | |
               (d[n + 1][j] > -eps && d[n][j] > eps))
     if (s < 0) break;
     for (int i = 0; i < n; ++i) if (d[i][s] < -eps) {
       if (r < 0 ||
             (dd = d[r][m] / d[r][s] - d[i][m] / d[i][s])
                  < -eps ||
             (dd < eps && ix[r + m] > ix[i + m]))
```

```
r = i;
}
if (r < 0) return -1; // not bounded
}
if (d[n + 1][m] < -eps) return -1; // not executable
double ans = 0;
for(int i=0; i<m; i++) x[i] = 0;
for (int i = m; i < n + m; ++i) { // the missing
    enumerated x[i] = 0
    if (ix[i] < m - 1){
        ans += d[i - m][m] * c[ix[i]];
        x[ix[i]] = d[i-m][m];
}
return ans;
}</pre>
```

3 Data Structure

3.1 Disjoint Set

3.2 Disjoint Set with Undo

```
struct DisjointSet{
  // save() is like recursive
  // undo() is like return
  int n, fa[ N ], sz[ N ];
  vector< pair<int*,int> > h;
  vector<int> sp;
  void init( int tn ){
     n=tn;
     for( int i = 0 ; i < n ; i ++ ){
       fa[ i ]=i;
sz[ i ]=1;
     sp.clear(); h.clear();
  void assign( int *k, int v ){
   h.PB( {k, *k} );
     *k = v;
  void save(){ sp.PB(SZ(h)); }
  void undo(){
     assert(!sp.empty());
     int last=sp.back(); sp.pop_back();
    while( SZ(h)!=last ){
       auto x=h.back(); h.pop_back();
       *x.first = x.second;
    }
  int f( int x ){
    while( fa[x] != x) x = fa[x];
    return x;
  void uni( int x , int y ){
  x = f( x ); y = f( y );
  if( x == y ) return;
    if( sz[ x ] < sz[ y ] ) swap( x, y );</pre>
    assign( &sz[ x ] , sz[ x ] + sz[ y ] );
assign( &fa[ y ] , x);
}djs;
```

3.3 Segement Tree with Lazy Tag

```
#define L( X ) ( X << 1 )
#define R( X ) ( ( X << 1 ) + 1 )
#define mid ( ( l + r ) >> 1 )
 class SegmentTree {
  public:
   static const int N = 1e5 + 10;
   int arr[ N ], st[ N << 2 ], lazy[ N << 2 ];</pre>
   inline void Pull( int now ) { st[ now ] = max( st[ L(
    now ) ], st[ R( now ) ] ); }
inline void Push( int now, int l, int r ) {
      if ( lazy[ now ] != 0 ) {
        if ( l != r ) {
    st[ L( now ) ] += lazy[ now ];
    st[ R( now ) ] += lazy[ now ];
           lazy[ L( now ) ] += lazy[ now ];
lazy[ R( now ) ] += lazy[ now ];
        lazy[now] = 0;
      }
   void Build( int now, int 1, int r ) {
      if ( l == r ) {
        st[ now ] = arr[ l ];
        return;
      Build( L( now ), l, mid );
      Build( R(now), mid + 1, r);
      Pull( now );
   void Update( int ql, int qr, int value, int now, int
      l, int r ) {
if ( ql > qr || l > qr || r < ql ) return;</pre>
      Push( now, 1, r );
if ( l == ql && qr == r ) {
        st[ now ] += value;
lazy[ now ] += value;
        return;
      if ( qr <= mid )
        Update( ql, qr, value, L( now ), l, mid );
      else if ( mid < ql )
        Update(ql, qr, value, R( now ), mid + 1, r );
        Update( ql, mid, value, L( now ), l, mid );
        Update(mid + 1, qr, value, R(now), mid + 1, r
             );
      Pull( now );
   int Query( int ql, int qr, int now, int l, int r ) {
  if ( ql > qr || l > qr || r < ql ) return 0;</pre>
      Push( now, 1, r );
      if ( l == ql && qr == r ) return st[ now ];
      if ( qr <= mid )</pre>
        return Query( ql, qr, L( now ), l, mid );
      else if ( mid < ql )</pre>
        return Query( ql, qr, R( now ), mid + 1, r );
      else {
        int left = Query( ql, mid, L( now ), l, mid );
        int right = Query( mid + 1, qr, R( now ), mid +
              1, r);
        int ans = max( left, right );
        return ans;
   }
};
```

3.4 Copy on Write Segement Tree

```
// tested with ASC 29 B
#define mid ( ( l + r ) >> 1 )
class Node {
  public:
   int value, l, r, who;
  Node() {}
```

```
Node( int_v ) : value( v ) { l = r = who = 0; }
class SegmentTree {
public:
  static const int N = 1e9;
  vector< Node > st;
  inline void Pull( int now ) {
    int lchild = st[ now ].l;
int rchild = st[ now ].r;
if ( lchild != 0 ) {
      st[ now ].value = st[ lchild ].value;
      st[ now ].who = st[ lchild ].who;
    if ( rchild != 0 && st[ rchild ].value > st[ now ].
         value ) {
       st[ now j.value = st[ rchild ].value;
      st[ now ].who = st[ rchild ].who;
  void Build() {
    st.push_back( Node() ); // Null Node
st.push_back( Node( 0 ) );
  void Update( int ql, int qr, int value, int who, int
  now = 1, int l = 1, int r = N ) {
  if ( ql > qr or qr < l or ql > r ) return;
}
    if (l == ql \& qr == r) {
      st[ now ].value = value;
st[ now ].who = who;
      return;
    if ( qr <= mid ) {
   if ( st[ now ].l == 0 ) {</pre>
         st[ now ].l = st.size();
         st.push_back( Node( 0 ) );
      Update( ql, qr, value, who, st[ now ].l, l, mid )
    else if ( mid < ql ) {
   if ( st[ now ].r == 0 ) {
         st[ now ].r = st.size()
         st.push_back( Node( 0 ) );
      Update( ql, qr, value, who, st[ now ].r, mid + 1,
    }
    else {
       if ( st[ now ].l == 0 ) {
         st[ now ].l = st.size();
         st.push_back( Node( 0 ) );
      if (_st[ now ].r == 0 ) {
         st[ now ].r = st.size()
         st.push_back( Node( 0 ) );
      Update( ql, mid, value, who, st[ now ].l, l, mid
      Update( mid + 1, qr, value, who, st[ now ].r, mid
            + 1, r);
    Pull( now );
  pair< int, int > Query( int ql, int qr, int now = 1,
      int l = 1, int r = N) {
    if ( ql > qr or qr < l or ql > r ) return { 0, 0 }; if ( l == ql && qr == r ) {
      return { st[ now ].value, st[ now ].who };
    if ( qr <= mid ) {
      if ( st[ now ].l == 0 ) return { 0, 0 };
      return Query( ql, qr, st[ now ].l, l, mid );
    else if ( mid < ql ) {
      if ( st[ now ].r == \emptyset ) return { \emptyset, \emptyset };
      return Query( ql, qr, st[ now ].r, mid + 1, r );
    else {
      pair< int, int > lchild = { 0, 0 };
       if ( st[ now ].l != 0 ) lchild = Query( ql, mid,
            st[ now ].1, 1, mid );
```

3.5 Persistent Segement Tree

```
// tested with spoj MKTHNUM - K-th Number
#define mid ((l+r) >> 1)
class Node {
 public:
  int value, 1, r;
  Node() { value = l = r = 0; }
class SeamentTree {
 public:
  static const int N = 1e5 + 10;
  int ver_size, st_size;
  vector< int > ver;
  vector< Node > st;
  SegmentTree() {
    ver_size = st_size = 0;
    ver.resize( N );
st.resize( 70 * N );
    ver[ ver_size++ ] = 1;
st[ 0 ] = st[ 1 ] = Node();
    st_size = 2;
  void AddVersion() {
    ver[ ver_size++ ] = st_size++;
    st[ ver[ ver_size - 1 ] ] = st[ ver[ ver_size - 2 ]
          ];
  inline void Pull( int now ) {
  int lchild = st[ now ].l, rchild = st[ now ].r;
    st[ now ].value = st[ lchild ].value + st[ rchild
         ].value;
  void Build( int now = 1, int l = 1, int r = N ) {
    if ( l == r ) return;
    st[now].l = st_size++;
    st[now].r = st_size++;
    Build( st[ now ].l, l, mid );
Build( st[ now ].r, mid + 1, r );
    Pull( now );
  void Update( int prv_now, int now, int pos, int l =
      1, int r = N) {
    if ( l == r ) {
  st[ now ].value += 1;
      return:
    if ( pos <= mid ) {
      st[ now ].l = st_size++;
      st[ st[ now ].l ] = st[ st[ prv_now ].l ];
      Update( st[ prv_now ].l, st[ now ].l, pos, l, mid
    else {
   st[ now ].r = st_size++;
      st[ st[ now ].r ] = st[ st[ prv_now ].r ];
      Update( st[ prv_now ].r, st[ now ].r, pos, mid +
    Pull( now );
```

3.6 Rope

```
#include<ext/rope>
using namespace ___gnu_cxx;
// inserts c before p.
iterator insert(const iterator& p, charT c) :
// inserts n copies of c before p.
iterator insert(const iterator& p, size_t n, charT c) :
// inserts the character c before the ith element.
void insert(size_t i, charT c)
// erases the element pointed to by p.
void erase(const iterator& p) :
// erases the range [f, 1).
void erase(const iterator& f, const iterator& l) :
// Appends a C string.
void append(const charT* s) :
void replace(const iterator& f, const iterator& l,
    const rope& x)
void replace(const iterator& f, const iterator& l,
    const charT* s)
void replace(const iterator& f1, const iterator& l1,
    const charT* f2, const charT* l2)
void replace(const iterator& f1, const iterator& l1,
    const iterator& f2, const iterator& 12)
void replace(const iterator& p, const rope& x)
void replace(size_t i, size_t n, const rope& x)
void replace(size_t i, size_t n, charT c)
void replace(size_t i, size_t n, const charT* f, const
    charT* 1)
rope substr(iterator f, iterator l) const
rope substr(const_iterator f, const_iterator l) const
rope substr(size_t i, size_t n = 1) const
```

3.7 pb_ds

```
/************PB_DS priority_queue***********/
#include <ext/pb_ds/priority_queue.hpp>
using namespace __gnu_pbds;
typedef priority_queue<T,less<T>,pairing_heap_tag> PQ;
typedef PQ::point_iterator PQit;
point_iterator push(const_reference key)
void modify(point_iterator it, const_reference key)
void erase(point_iterator it)
T top()
void pop()
point_iterator begin()
point_iterator end()
void join(priority_queue &other)
template<class Pred> void split(Pred prd,
    priority_queue &other) //Other will contain only
    values v for which prd(v) is true. When calling
    this method, other's policies must be equivalent to this object's policies.
template<class Pred> size_type erase_if(Pred prd) //
    Erases any value satisfying prd; returns the number
     of value erased.
```

```
|//1. push will return a point_iterator, which can be
     saved in a vector and modify or erase afterward.
 //2. using begin() and end() can traverse all elements
     in the priority_queue.
//3. after join, other will be cleared.
//4. for optimizing Dijkstra, use pairing_heap
//5. binary_heap_tag is better that std::priority_queue
//6. pairing_heap_tag is better than binomial_heap_tag
     and rc_binomial_heap_tag
 //7. when using only push, pop and join, use
     binary_heap_tag
 //8. when using modify, use pairing_heap_tag or
 thin_heap_tag
/*********************************/
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
 typedef tree<K, T, less<K>, rb_tree_tag, Node_Update>
     TREE;
 //similar to std::map
//when T = __gnu_pbds::null_type, become std::set
//when Node_Update = tree_order_statistics_node_update,
      TREE become a ordered TREE with two new functions:
 //1. iterator find_by_order(size_type order) return the
      smallest order-th element(e.x. when order = 0,
     return the smallest element), when order > TREE.
     size(), return end()
//2. size_type order_of_key(const_reference key) return
      number of elements smaller than key
void join(tree &other) //other和*this的值域不能相交
void split(const_reference key, tree &other) // 清空
     other, 然後把*this當中所有大於key的元素移到other
 //自定義Node_Update : 查詢子段和的map<int, int>, 需要紀
     F 子樹的mapped_value的和。
template<class Node_CItr, class Node_Itr, class Cmp_Fn,</pre>
      class _Alloc>
 struct my_nd_upd {
  virtual Node_CItr node_begin () const = 0;
  virtual Node_CItr node_end () const = 0;
typedef int metadata_type; //額外信息, 這邊用int
  inline void operator()(Node_Itr it,Node_CItr end_it){
     Node_Itr l=it.get_l_child(), r=it.get_r_child();
     int left = 0 , right = 0;
if(l != end_it) left = l.get_metadata();
     if(r != end_it) right = r.get_metadata()
     const_cast<metadata_type&>(it.get_metadata())=
       left+right+(*it)->second;
  //operator()功能是將節點it的信息更新, end_it表空節點
//it是Node_Itr, *之後變成iterator, 再取->second變節點
       的 mapped_value
  inline int prefix_sum (int x) {
     int ans = 0;
     Node_CItr it = node_begin();
     while(it!=node_end()){
      Node_CItr l = it.get_l_child() , r = it.
           get_r_child();
       if(Cmp_Fn()(x, (*it)->first)) it = 1;
        ans += (*it)->second;
         if(l != node_end ()) ans += l.get_metadata();
         it = r;
      }
    }
    return ans;
  inline int interval_sum(int l ,int r)
  {return prefix_sum(r)-prefix_sum(l-1);}
tree<int, int, less<int>, rb_tree_tag, my_nd_upd> T;
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/hash_policy.hpp>
 __gnu_pbds::cc_hash_table<Key, Mapped>
  _gnu_pbds::gp_hash_table<Key, Mapped>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/trie_policy.hpp>
 typedef trie<string, null_type,</pre>
     trie_string_access_traits<>, pat_trie_tag,
              trie_prefix_search_node_update> pref_trie;
```

```
pref_trie.insert(const string &str);
auto range = pref_trie.prefix_range(const string &str);
for(auto it = range.first; it != range.second; ++it)
  cout << *it << '\n';
                            push
                                             modify
                                                        erase
                                                                   join
   std::priority\_queue
                           \lg(n)
                                    \lg(n)
                                             n \lg(n)
                                                        n \lg(n)
                                                                  n \lg(n)
    pairing_heap_tag
                                    \lg(n)
                                             \lg(n)
                                                        \lg(n)
   binary_heap_tag
binomial_heap_tag
                           \lg(n)
                                    lg(n)
                                                                    n
                                                          n
                                    \lg(n)
                                             \lg(n)
                                                        \lg(n)
                                                                  \lg(n)
 rc\_binomial\_heap\_tag
                                    \lg(n)
                                              \lg(n)
                                                        \lg(n)
                                                                  \lg(n)
     thin\_heap\_tag
                             1
                                   \lg(n)
                                            \lg(n)[ps]
                                                        \lg(n)
ps: 1 if increased_key only else \lg(n)
```

3.8 Link-Cut Tree

```
const int MXN = 100005;
const int MEM = 100005;
struct Splay {
  static Splay nil, mem[MEM], *pmem;
  Splay *ch[2], *f;
int val, rev, size;
  Splay () : val(-1), rev(0), size(0)
{ f = ch[0] = ch[1] = &nil; }
Splay (int _val) : val(_val), rev(0), size(1)
  \{ f = ch[0] = ch[1] = &nil; \}
  bool isr()
  { return f->ch[0] != this && f->ch[1] != this; }
  int dir()
  { return f->ch[0] == this ? 0 : 1; } void setCh(Splay *c, int d){
    ch[d] = c;
    if (c != &nil) c->f = this;
    pull();
  void push(){
    if( !rev ) return
    swap(ch[0], ch[1]);
    if (ch[0] != &nil) ch[0]->rev ^= 1;
    if (ch[1] != &nil) ch[1]->rev ^= 1;
    rev=0:
  void pull(){
    size = ch[0] -> size + ch[1] -> size + 1;
    if (ch[0] != &nil) ch[0]->f = this;
    if (ch[1] != &nil) ch[1]->f = this;
} Splay::nil, Splay::mem[MEM], *Splay::pmem = Splay::
    mem;
Splay *nil = &Splay::nil;
void rotate(Splay *x){
  Splay *p = x->f;
  int d = x->dir();
  if (!p->isr()) p->f->setCh(x, p->dir());
  else x->f = p->f
  p->setCh(x->ch[!d], d);
  x - setCh(p, !d);
  p->pull(); x->pull();
vector<Splay*> splayVec;
void splay(Splay *x){
  splayVec.clear();
  for (Splay *q=x;; q=q->f){
    splayVec.push_back(q);
    if (q->isr()) break;
  reverse(begin(splayVec), end(splayVec));
for (auto it : splayVec) it->push();
  while (!x->isr()) {
    if (x->f->isr()) rotate(x);
    else if (x->dir()==x->f->dir())
       rotate(x->f),rotate(x);
    else rotate(x),rotate(x);
  }
Splay* access(Splay *x){
  Splay *q = nil;
for (;x!=nil;x=x->f){
    splay(x)
    x - setCh(q, 1);
    q = x;
```

```
return q;
void evert(Splay *x){
   access(x);
   splay(x);
   x->rev ^= 1;
   x->push(); x->pull();
void link(Splay *x, Splay *y){
  evert(x)
   access(x):
   splay(x);
   evert(y)
   x->setCh(y, 1);
void cut(Splay *x, Splay *y){
  evert(x)
   access(y);
   splay(y)
  y->push();
  y->ch[0] = y->ch[0]->f = nil;
int N, Q;
Splay *vt[MXN];
Splay* root(Splay *x) {
   access(x);
   while(x->ch[0] != nil) x = x->ch[0];
   splay(x);
   return x;
bool con(Splay *x, Splay *y) {
   return root(x) == root(y);
int main(int argc, char** argv){
  scanf("%d%d", &N, &Q);
for (int i=1; i<=N; i++)
     vt[i] = new (Splay::pmem++) Splay(i);
     // link(vt[u], vt[v]);
// cut(vt[u], vt[v]);
     // con(vt[u], vt[v]);
  }
}
3.9 Treap
struct Treap{
  int sz , val , pri , tag;
Treap *l , *r;
Treap( int _val ){
     val = _val; sz = 1;
     pri = rand(); l = r = NULL; tag = 0;
};
void push( Treap * a ){
  if( a->tag ){
     Treap *swp = a -> 1; a -> 1 = a -> r; a -> r = swp;
     int swp2;
if( a->l ) a->l->tag ^= 1;
     if( a \rightarrow r ) a \rightarrow r \rightarrow tag ^= 1;
     a \rightarrow tag = 0;
  }
int Size( Treap * a ){ return a ? a->sz : 0; }
void pull( Treap * a ){
  a->sz = Size( a->l ) + Size( a->r ) + 1;
Treap* merge( Treap *a , Treap *b ){
  if( !a || !b ) return a ? a : b;
   if( a->pri > b->pri ){
     push( a );
     a \rightarrow r = merge(a \rightarrow r, b);
     pull( a );
     return a;
  }else{
     push( b );
     b->l = merge( a , b->l );
pull( b );
     return b;
```

}

```
void split( Treap *t , int k , Treap*&a , Treap*&b ){
  if( !t ){ a = b = NULL; return; }
  push( t );
  if( Size( t->l ) + 1 <= k ){
    a = t;
    split( t->r , k - Size( t->l ) - 1 , a->r , b );
  pull( a );
  }else{
    b = t;
    split( t->l , k , a , b->l );
  pull( b );
  }
}
```

4 Graph

4.1 Dijkstra's Algorithm

```
template< class T >
using MinHeap = priority_queue< T, vector< T >, greater
     < T > >:
vector< pair< int, int > > v[ N ];
vector< int > Dijkstra( int s ) {
 // n: number of nodes
  vector< int > d(n + 1, 1e9);
  vector< bool > visit( n + 1, false );
  d[s] = 0;
  MinHeap< pair< int, int > > pq;
pq.push( make_pair( d[ s ], s ) );
  while (1) {
     int now = -1;
    while ( !pq.empty() and visit[ now = pq.top().
    second ] ) pq.pop();
if ( now == -1 or visit[ now ] ) break;
     visit[ now ] = true;
     for ( int i = 0; i < v[ now ].size(); ++i ) {</pre>
       int child = v[ now ][ i ].first;
int w = v[ now ][ i ].second;
if ( !visit[ child ] and ( d[ now ] + w ) < d[</pre>
             child ]_) {
          d[ child ] = d[ now ] + w;
          pq.push( make_pair( d[ child ], child ) );
    }
  return d;
```

4.2 Tarjan's Algorithm

```
// Build: O( VlogV ), Query: O( logV )
 int tin[ N ], tout[ N ], ancestor[ N ][ 20 ];
 vector< int > v[ N ];
 void dfs( int now, int pnow ) {
   tin[ now ] = ++now_time;
   ancestor[ now ][ 0 ] = pnow;
   for ( int i = 1; i < 20; ++i )
    ancestor[ now ][ i ] = ancestor[ ancestor[ now ][ i - 1 ] ][ i - 1 ];
   for ( auto child : v[ now ] )
  if ( child != pnow ) dfs( child, now );
   tout[ now ] = ++now_time;
bool check_ancestor( int x, int y ) { return ( tin[ x ]
        <= tin[ y ] && tout[ x ] >= tout[ y ] ); }
 int find_lca( int x, int y ) {
  if ( check_ancestor( x, y ) ) return x;
  if ( check_ancestor( y, x ) ) return y;
   for ( int i = 19; i >= 0; --i )
      if ( !check_ancestor( ancestor[ x ][ i ], y ) ) x =
   ancestor[ x ][ i ];
return ancestor[ x ][ 0 ];
}
```

4.4 Maximum Clique

```
// max N = 64
typedef unsigned long long ll;
struct MaxClique{
  static const int N = 64;
  ll nb[ N ] , n , ans;
void init( ll _n ){
    n = _n;

for( int i = 0 ; i < n ; i ++ ) nb[ i ] = 0LLU;
  void add_edge( ll _u , ll _v ){
    nb[ _u ]  |= ( 1LLU << _v );
    nb[ _v ]  |= ( 1LLU << _u );</pre>
                            ll x , ll cnt , ll res ){
  void B( ll r , ll p ,
    if( cnt + res < ans ) return;</pre>
     if( p == 0LLU \&\& x == 0LLU ){
       if( cnt > ans ) ans = cnt;
       return;
    11 y = p | x; y &= -y;
11 q = p & ( ~nb[ int( log2( y ) ) ] );
    , cnt + 1LLU , __builtin_popcountll( p & nb[
       i ] ) );
q &= ~( 1LLU << i );
p &= ~( 1LLU << i );
       x = ( 1LLU << i );
  int solve(){
    ans = 0;
     ll _set = 0;
     if( n < 64 ) _set = ( 1LLU << n ) - 1;
     else{
       for( ll i = 0 ; i < n ; i ++ ) _set |= ( 1LLU <<
    \check{B}(\ OLLU\ ,\ \_set\ ,\ OLLU\ ,\ OLLU\ ,\ n\ );
    return ans;
} maxClique;
```

4.3 Jump Pointer Algorithm

```
#define SZ(c) (int)(c).size()
#define ALL(c) (c).begin(), (c).end()
#define REP(i, s, e) for(int i = (s); i <= (e); i++)
#define REPD(i, s, e) for(int i = (s); i >= (e); i--)
typedef tuple< int , int > tii;
const int MAXN = 100010;
const int LOG = 19;
struct HLD{
  int n;
  vector<int> g[MAXN];
int sz[MAXN], dep[MAXN];
  int ts, tid[MAXN], tdi[MAXN], tl[MAXN], tr[MAXN];
// ts : timestamp , useless after yutruli
// tid[ u ] : pos. of node u in the seq.
// tdi[ i ] : node at pos i of the seq.
       tl , tr[ u ] : subtree interval in the seq. of
        node u
  int mom[MAXN][LOG], head[MAXN];
  // head[ u ] : head of the chain contains u
  void dfssz(int u, int p){
  dep[u] = dep[p] + 1;
     mom[u][0] = p;
     sz[u] = 1;
     head[u] = u;
     for(int& v:g[u]) if(v != p){
       dep[v] = dep[u] + 1;
       dfssz(v, u);
        sz[u] += sz[v];
  }
  void dfshl(int u){
     //printf("dfshl %d\n", u);
     tid[u] = tl[u] = tr[u] = ts;
     tdi[tid[u]] = u;
     sort(ALL(g[u]),
           [&](int a, int b){return sz[a] > sz[b];});
     bool flag = 1;
     for(int& v:g[u]) if(v != mom[u][0]){
       if(flag) head[v] = head[u], flag = 0;
       dfshl(v);
       tr[u] = tr[v];
  inline int lca(int a, int b){
  if(dep[a] > dep[b]) swap(a, b);
  //printf("lca %d %d\n", a, b);
    int diff = dep[b] - dep[a];
REPD(k, LOG-1, 0) if(diff & (1<<k)){
   //printf("b %d\n", mom[b][k]);</pre>
       b = mom[b][k];
     if(a == b) return a;
     REPD(k, LOG-1, 0) if(mom[a][k] != mom[b][k]){
       a = mom[a][k];
       b = mom[b][k];
     return mom[a][0];
  void init( int _n ){
    n = _n;
     REP( i , 1 , n ) g[ i ].clear();
  void addEdge( int u , int v ){
  g[ u ].push_back( v );
  g[ v ].push_back( u );
  void yutruli(){
     dfssz(1, 0);
     ts = 0
     dfshl(1);
     REP(k, 1, LOG-1) REP(i, 1, n)
       mom[i][k] = mom[mom[i][k-1]][k-1];
  vector< tii > getPath( int u , int v ){
     vector< tii > res;
     while( tid[ u ] < tid[ head[ v ] ] ){</pre>
       res.push_back( tii(tid[ head[ v ] ] , tid[ v ]) )
       v = mom[head[v]][0];
     res.push_back( tii( tid[ u ] , tid[ v ] ) );
```

```
reverse( ALL( res ) );
return res;
/*
    * res : list of intervals from u to v
    * u must be ancestor of v
    * usage :
    * vector< tii >& path = tree.getPath( u , v )
    * for( tii tp : path ) {
    * int l , r;tie( l , r ) = tp;
    * upd( l , r );
    * uu = tree.tdi[ l ] , vv = tree.tdi[ r ];
    * uu ~> vv is a heavy path on tree
    * }
    */
} tree;
```

4.6 Dominator Tree

```
const int MAXN = 100010;
struct DominatorTree{
#define REP(i,s,e) for(int i=(s);i<=(e);i++)</pre>
#define REPD(i,s,e) for(int i=(s);i>=(e);i--)
   int n , m , s;
   vector< int > g[ MAXN ] , pred[ MAXN ];
vector< int > cov[ MAXN ];
   int dfn[ MAXN ] , nfd[ MAXN ] , ts;
   int dTI[ MAXN ];
int par[ MAXN ];
int sdom[ MAXN ] , idom[ MAXN ];
int mom[ MAXN ] , mn[ MAXN ];
   inline bool cmp('int'u , int'v )
{ return dfn[ u ] < dfn[ v ]; }
int eval( int u ){</pre>
      if( mom[ u ] == u ) return u;
int res = eval( mom[ u ] );
if(cmp( sdom[ mn[ mom[ u ] ] ] , sdom[ mn[ u ] ] ))
          mn[ u ] = mn[ mom[ u ] ];
      return mom[ u ] = res;
   void init( int _n , int _m , int _s ){
  ts = 0; n = _n; m = _m; s = _s;
  REP( i, 1, n ) g[ i ].clear(), pred[ i ].clear();
   void addEdge( int u , int v ){
  g[ u ].push_back( v );
  pred[ v ].push_back( u );
   void dfs( int u ){
      ts++:
      dfn[ u ] = ts;
      nfd[ ts ] = u;
for( int v : g[ u ] ) if( dfn[ v ] == 0 ){
         par[ v ] = u;
dfs( v );
   void build(){
      REP( i , 1 , n ){
   dfn[ i ] = nfd[ i ] = 0;
   cov[ i ].clear();
   mom[ i ] = mn[ i ] = sdom[ i ] = i;
      if( u == 0 ) continue ;
for( int v : pred[ u ] ) if( dfn[ v ] ){
             eval( v );
             if( cmp( sdom[ mn[ v ] ] , sdom[ u ] ) )
  sdom[ u ] = sdom[ mn[ v ] ];
         cov[ sdom[ u ] ].push_back( u );
mom[ u ] = par[ u ];
for( int w : cov[ par[ u ] ] ){
             eval( w );
             if( cmp( sdom[ mn[ w ] ] , par[ u ] ) )
             idom[w] = mn[w];
else idom[w] = par[u];
          cov[ par[ u ] ].clear();
```

```
}
REP( i , 2 , n ){
    int u = nfd[ i ];
    if( u == 0 ) continue;
    if( idom[ u ] != sdom[ u ] )
        idom[ u ] = idom[ idom[ u ] ];
    }
}
domT;

FZ(vst);
for (auto v : vec){
    if (!vst[v]){
        rDFS(v);
        nScc++;
    }
}
}
```

4.7 Number of Maximal Clique

```
// bool g[][] : adjacent array indexed from 1 to n
void dfs(int sz){
  int i, j, k, t, cnt, best = 0;
if(ne[sz]==ce[sz]){    if (ce[sz]==0) ++ans; return; }
  for(t=0, i=1; i<=ne[sz]; ++i){
  for (cnt=0, j=ne[sz]+1; j<=ce[sz]; ++j)
   if (!g[lst[sz][i]][lst[sz][j]]) ++cnt;</pre>
     if (t==0 || cnt<best) t=i, best=cnt;</pre>
  } if (t && best<=0) return;
for (k=ne[sz]+1; k<=ce[sz]; ++k) {
   if (t>0){ for (i=k; i<=ce[sz]; ++i)</pre>
           if (!g[lst[sz][t]][lst[sz][i]]) break;
       swap(lst[sz][k], lst[sz][i]);
i=lst[sz][k]; ne[sz+1]=ce[sz+1]=0;
     for (j=1; j<k; ++j)if (g[i][lst[sz][j]])
    lst[sz+1][++ne[sz+1]]=lst[sz][j];</pre>
     for (ce[sz+1]=ne[sz+1], j=k+1; j<=ce[sz]; ++j)</pre>
     if (g[i][lst[sz][j]]) lst[sz+1][++ce[sz+1]]=lst[sz
     dfs(sz+1); ++ne[sz]; --best;
      for (j=k+1, cnt=0; j<=ce[sz]; ++j) if (!g[i][lst[sz</pre>
            ][j]]) ++cnt;
      if (\tilde{t}=0) | cnt<br/>best) t=k, best=cnt;
     if (t && best<=0) break;
}}
void work(){
  ne[0]=0; ce[0]=0;
for(int i=1; i<=n; ++i) lst[0][++ce[0]]=i;
   ans=0; dfs(0);
```

4.8 Strongly Connected Component

```
struct Scc{
  int n, nScc, vst[MXN], bln[MXN];
vector<int> E[MXN], rE[MXN], vec;
  void init(int _n){
    n = _n;
for (int i=0; i<MXN; i++){</pre>
       E[i].clear();
       rE[i].clear();
  void add_edge(int u, int v){
    E[u].PB(v);
    rE[v].PB(u);
  void DFS(int u){
    vst[u]=1;
    for (auto v : E[u])
  if (!vst[v]) DFS(v);
    vec.PB(u);
  void rDFS(int u){
    vst[u] = 1;
    bln[u] = nScc;
    for (auto v : rE[u])
  if (!vst[v]) rDFS(v);
  void solve(){
    nScc = 0;
    vec.clear();
    FZ(vst);
     for (int i=0; i<n; i++)
       if (!vst[i]) DFS(i);
     reverse(vec.begin(),vec.end());
```

4.9 Dynamic MST

```
/* Dynamic MST O( Q lg^2 Q )
 (qx[i], qy[i])->chg weight of edge No.qx[i] to qy[i]
 delete an edge: (i, \infty)
 add an edge: change from \infty to specific value
const int SZ=M+3*MXQ;
int a[N],*tz;
int find(int xx){
  int root=xx; while(a[root]) root=a[root];
  int next; while((next=a[xx])){a[xx]=root; xx=next; }
  return root;
bool cmp(int aa,int bb){ return tz[aa]<tz[bb]; }</pre>
int kx[N],ky[N],kt, vd[N],id[M], app[M];
bool extra[M];
void solve(int *qx,int *qy,int Q,int n,int *x,int *y,
     int *z,int m1,long long ans){
  if(Q==1){
    for(int_i=1;i<=n;i++) a[i]=0;</pre>
    z[qx[0]]=qy[0]; tz = z;
for(int i=0;i<m1;i++) id[i]=i;
    sort(id,id+m1,cmp); int ri,rj;
     for(int i=0;i<m1;i++){</pre>
       ri=find(x[id[i]]); rj=find(y[id[i]]);
       if(ri!=rj){ ans+=z[id[i]]; a[ri]=rj; }
    printf("%lld\n",ans);
    return;
  int ri,rj;
  //contract
  kt=0:
  for(int i=1;i<=n;i++) a[i]=0;</pre>
  for(int i=0;i<Q;i++){</pre>
    ri=find(x[qx[i]]); rj=find(y[qx[i]]); if(ri!=rj) a[
         ri]=rj;
  int tm=0;
  for(int i=0;i<m1;i++) extra[i]=true;
for(int i=0;i<0;i++) extra[ qx[i] ]=false;</pre>
  for(int i=0;i<m1;i++) if(extra[i]) id[tm++]=i;</pre>
  tz=z; sort(id,id+tm,cmp);
  for(int i=0;i<tm;i++){</pre>
    ri=find(x[id[i]]); rj=find(y[id[i]]);
    if(ri!=rj){
       a[ri]=rj; ans += z[id[i]];
       kx[kt]=x[id[i]]; ky[kt]=y[id[i]]; kt++;
    }
  for(int i=1;i<=n;i++) a[i]=0;</pre>
  for(int i=0;i<kt;i++) a[ find(kx[i]) ]=find(ky[i]);</pre>
  int n2=0;
  for(int i=1;i<=n;i++) if(a[i]==0)</pre>
  vd[i]=++n2;
  for(int i=1;i<=n;i++) if(a[i])</pre>
  vd[i]=vd[find(i)];
int m2=0, *Nx=x+m1, *Ny=y+m1, *Nz=z+m1;
  for(int i=0;i<m1;i++) app[i]=-1;</pre>
  for(int i=0;i<Q;i++) if(app[qx[i]]==-1){</pre>
    Nx[m2]=vd[ x[ qx[i] ] ]; Ny[m2]=vd[ y[ qx[i] ] ];
    Nz[m2]=z[ qx[i] ];
app[qx[i]]=m2; m2++;
  for(int i=0;i<Q;i++){ z[ qx[i] ]=qy[i]; qx[i]=app[qx[
       i]]; }
  for(int i=1;i<=n2;i++) a[i]=0;</pre>
  for(int i=0;i<tm;i++){</pre>
    ri=find(vd[ x[id[i]] ]);    rj=find(vd[ y[id[i]] ]);
```

4.10 General Matching

```
const int N = 514, E = (2e5) * 2;
struct Graph{
  int to[E],bro[E],head[N],e;
  int lnk[N],vis[N],stp,n;
  void init( int _n ){
    stp = 0; e = 1; n = _n;
    for( int i = 1 ; i <= n ; i ++ )
      lnk[i] = vis[i] = 0;
  void add_edge(int u,int v){
    to[e]=v,bro[e]=head[u],head[u]=e++;
    to[e]=u,bro[e]=head[v],head[v]=e++;
  bool dfs(int x){
    vis[x]=stp;
    for(int i=head[x];i;i=bro[i]){
      int v=to[i];
      if(!lnk[v]){
        lnk[x]=v, lnk[v]=x;
        return true
      }else if(vis[lnk[v]]<stp){</pre>
        int w=lnk[v];
        lnk[x]=v, lnk[v]=x, lnk[w]=0;
        if(dfs(w)){
          return true;
        lnk[w]=v, lnk[v]=w, lnk[x]=0;
      }
    return false;
  int solve(){
    int ans = 0;
    for(int i=1;i<=n;i++)</pre>
      if(!lnk[i]){
        stp++; ans += dfs(i);
    return ans;
  }
} graph;
```

4.11 Minimum General Weighted Matching

```
| struct Graph {
    // Minimum General Weighted Matching (Perfect Match)
    static const int MXN = 105;
    int n, edge[MXN][MXN];
    int match[MXN], dis[MXN], onstk[MXN];
    vector<int> stk;
    void init(int _n) {
        n = _n;
        for( int i = 0 ; i < n ; i ++ )
            for( int j = 0 ; j < n ; j ++ )
            edge[ i ][ j ] = 0;
    }
    void add_edge(int u, int v, int w)</pre>
```

```
\{ edge[u][v] = edge[v][u] = w; \}
  bool SPFA(int u){
     if (onstk[u]) return true;
     stk.PB(u);
     onstk[u] = 1;
     for (int v=0; v<n; v++){
       if (u != v && match[u] != v && !onstk[v]){
         int m = match[v];
         if (dis[m] > dis[u] - edge[v][m] + edge[u][v]){
           dis[m] = dis[u] - edge[v][m] + edge[u][v];
onstk[v] = 1;
            stk.PB(v)
            if (SPFA(m)) return true;
           stk.pop_back();
            onstk[v] = 0;
       }
     onstk[u] = 0
     stk.pop_back();
     return false;
  int solve() {
     // find a match
     for (int i=0; i<n; i+=2){
  match[i] = i+1;</pre>
       match[i+1] = i;
     while (true){
  int found = 0;
       for( int i = 0 ; i < n ; i ++ )</pre>
       onstk[ i ] = dis[ i ] = 0;
for (int i=0; i<n; i++){</pre>
         stk.clear();
         if (!onstk[i] && SPFA(i)){
            found = 1
            while (SZ(stk)>=2){
              int u = stk.back(); stk.pop_back();
              int v = stk.back(); stk.pop_back();
              match[u] = v;
              match[v] = u;
         }
       if (!found) break;
     int ret = 0;
     for (int i=0; i<n; i++)
      ret += edge[i][match[i]];
     ret /= 2;
     return ret;
}graph;
```

4.12 Minimum Steiner Tree

```
dst[ i ][ k ] + dst[ k ][ j ] );
   int solve( const vector<int>& ter ){
       int t = (int)ter.size();
      for( int i = 0 ; i < ( 1 << t ) ; i ++ )
  for( int j = 0 ; j < n ; j ++ )
    dp[ i ][ j ] = INF;
for( int i = 0 ; i < n ; i ++ )</pre>
          dp[0][i] = 0;
      for( int msk = 1 ; msk < ( 1 << t ) ; msk ++ ){
  if( msk == ( msk & (-msk) ) ){</pre>
             int who = __lg( msk );
for( int i = 0 ; i < n ; i ++ )
  dp[ msk ][ i ] = dst[ ter[ who ] ][ i ];</pre>
             continue;
          for( int i = 0 ; i < n ; i ++ )</pre>
             for( int submsk = ( msk - 1 ) & msk ; submsk ;
                   submsk = ( submsk - 1 ) & msk )

dp[ msk ][ i ] = min( dp[ msk ][ i ],

dp[ submsk ][ i ] +
                                              dp[ msk ^ submsk ][ i ] );
          for( int i = 0; i < n; i ++){
             tdst[ i ] = INF;
             for( int j = 0 ; j < n ; j ++ )
  tdst[ i ] = min( tdst[ i ],</pre>
                                   dp[ msk ][ j ] + dst[ j ][ i ] );
          for( int i = 0 ; i < n ; i ++
  dp[ msk ][ i ] = tdst[ i ];</pre>
      int ans = INF;
for( int i = 0 ; i < n ; i ++ )
  ans = min( ans , dp[ ( 1 << t ) - 1 ][ i ] );</pre>
      return ans;
} solver;
```

4.13 BCC based on Vertex

```
struct BccVertex {
  int n,nScc,step,dfn[MXN],low[MXN];
  vector<int> E[MXN],sccv[MXN];
  int top, stk[MXN];
  void init(int _n) {
    n = _n;
    nScc = step = 0;
for (int i=0; i<n; i++) E[i].clear();</pre>
  void add_edge(int u, int v) {
    E[u].PB(v);
    E[v].PB(u);
  void DFS(int u, int f) {
    dfn[u] = low[u] = step++;
    stk[top++] = u;
    for (auto v:E[u]) {
  if (v == f) continue;
      if (dfn[v] == -1) {
        DFS(v,u);
        low[u] = min(low[u], low[v]);
         if (low[v] >= dfn[u]) {
           int z
           sccv[nScc].clear();
           do {
             z = stk[--top];
             sccv[nScc].PB(z);
           } while (z != v);
           sccv[nScc].PB(u);
           nScc++;
      } else {
        low[u] = min(low[u], dfn[v]);
    }
  vector<vector<int>> solve() {
    vector<vector<int>> res;
    for (int i=0; i<n; i++) {</pre>
      dfn[i] = low[i] = -1;
```

```
for (int i=0; i<n; i++) {
    if (dfn[i] == -1) {
       top = 0;
      DFS(i,i);
    }
    REP(i,nScc) res.PB(sccv[i]);
    return res;
}
}graph;</pre>
```

4.14 BCC based on Edge

```
vector<int> g[N];
int dep[N], low[N], stmp;
void go(int now, int prt){
  dep[now]=low[now]=++stmp;
  for( int son : g[now] ){
    if( son == prt ) continue;
if( dep[son] ){
       low[now]=min(low[now], dep[son]);
     go(son, now);
     low[now]=min(low[now], low[son]);
     if(dep[now] >= low[son])
  djs.uni(now, son);
       // (now, son) is a bridge
void solve(){
  stmp = 0;
  for( int i = 1 ; i <= n ; i ++ )</pre>
  dep[ i ] = 0;
for( int i = 1 ; i <= n ; i ++ )
  if( dep[i] == 0 )</pre>
       go(i,i);
```

5 Flow

5.1 Bipartite Matching

```
struct BipartiteMatching { // O( ( V + E ) * sqrt( V )
                              // N = total number of
  vector< int > G[ N ];
      nodes = n + m
  int n, m, match[ N ], dist[ N ];
  // n: number of nodes on left side, nodes are
      numbered 1 to n
  // m: number of nodes on right side, nodes are
      numbered n+1 to n+m
  // G = NIL[0] \cup G1[G[1---n]] \cup G2[G[n+1---n+m]]
  bool BFS() {
    dist[i] = 0;
        Q.push( i );
      }
      else
        dist[ i ] = INF;
    dist[ 0 ] = INF;
    while ( !Q.empty() ) {
      int u = Q.front();
      Q.pop();
      if ( dist[ u ] < dist[ 0 ] )
  for ( int v : G[ u ] )</pre>
          if ( dist[ match[ v ] ] == INF ) {
  dist[ match[ v ] ] = dist[ u ] + 1;
             Q.push( match[ v ] );
    return ( dist[ 0 ] != INF );
```

```
bool DFS( int u ) {
     if ( u != 0 ) {
    for ( int v : G[ u ] )
        if ( dist[ match[ v ] ] == dist[ u ] + 1 && DFS
              ( match[ v ] ) ) {
match[ v ] = u;
match[ u ] = v;
               return true;
         dist[ u ] = INF;
         return false;
      return true;
   int Max_Match() {
      int matching = 0;
      fill_n( match, n + m + 1, 0 );
     while ( BFS() )
  for ( int i = 1; i <= n; i++ )
    if ( match[ i ] == 0 && DFS( i ) ) matching++;</pre>
      return matching;
   void AddEdge( int u, int v ) { G[ u ].push_back( n +
   void DFS2( int u ) {
  dist[ u ] = 1;
      for ( int v : G[ u ] )
  if ( v != match[ u ] ) {
           dist[ v ] = 1;
            if ( match[ v ] != 0 ) DFS2( match[ v ] );
   void Min_Vertex_Cover( vector< int > &lrtn, vector<</pre>
         int > &rrtn ) {
      // after calling Max_Match
     fill_n( dist + 1, n + m, 0 );
for ( int i = 1; i <= n; i++ )
  if ( match[ i ] == 0 ) DFS2( i );
      for ( int i = 1; i <= n; i++ )
  if ( dist[ i ] == 0 ) lrtn.push_back( i );</pre>
      for ( int i = n + 1; i <= n + m; i++ )
  if ( dist[ i ] == 1 ) rrtn.push_back( i - n );</pre>
} ob;
```

5.2 MaxFlow (ISAP)

```
// O( V^2 * E ) V up to 2w
#define SZ( c ) ( (int)( c ).size() )
class MaxFlow {
 public:
  static const int MAXV = 5e3 + 10;
  static const int INF = 1e18;
  struct Edge {
    int v, c, r;
Edge( int _v, int _c, int _r ) : v( _v ), c( _c ),
    r( _r ) {}
  int s, t;
  vector< Edge > G[ MAXV * 2 ];
  int iter[MAXV * 2], d[MAXV * 2], gap[MAXV * 2],
         tot
  void Init( int x ) {
     tot = x + 2;
     s = x + 1, t = x + 2;
     for ( int i = 0; i <= tot; i++ ) {
       G[ i ].clear();
       iter[ i ] = d[ i ] = gap[ i ] = 0;
  void AddEdge( int u, int v, int c ) {
  G[ u ].push_back( Edge( v, c, SZ( G[ v ] )
  G[ v ].push_back( Edge( u, 0, SZ( G[ u ] )
  int DFS( int p, int flow ) {
  if ( p == t ) return flow;
     for ( int &i = iter[ p ]; i < SZ( G[ p ] ); i++ ) {
       Edge &e = G[ p ][ i ];
if ( e.c > 0 && d[ p ] == d[ e.v ] + 1 ) {
```

```
int f = DFS( e.v, min( flow, e.c ) );
          if (f) {
            e.c -= f;
G[ e.v ][ e.r ].c += f;
            return f;
          }
     if ( ( --gap[ d[ p ] ] ) == 0 )
       d[ s ] = tot;
     else {
       d[ p ]++;
iter[ p ] = 0;
++gap[ d[ p ] ];
     return 0:
   int Solve() {
     int res_= 0;
     gap[ 0 ] = tot;
     for ( res = 0; d[ s ] < tot; res += DFS( s, INF ) )</pre>
     return res;
};
```

5.3 MinCostMaxFlow

```
// 0( V^2 * F )
class MinCostMaxFlow {
public:
  static const int MAXV = 2000;
  static const int INF = 1e9;
  struct Edge {
    int v, cap, w, rev;
Edge() {}
    Edge( int t2, int t3, int t4, int t5 ) : v( t2 ),
        cap( t3 ), w( t4 ), rev( t5 ) {}
  int V, s, t;
  vector< Edge > g[ MAXV ];
  void Init( int n ) {
    V = n + 4;
                            // total number of nodes
    s = n + 1, t = n + 4; // s = source, t = sink
    for ( int i = 1; i <= V; i++ ) g[ i ].clear();</pre>
  // cap: capacity, w: cost
  void AddEdge( int a, int b, int cap, int w ) {
    g[ a ].push_back( Edge( b, cap, w, (int)g[ b ].size
        (,);
    g[ b ].push_back( Edge( a, 0, -w, (int)g[ a ].size
        (\bar{)} - 1 \bar{)};
  int d[ MAXV ], id[ MAXV ], mom[ MAXV ];
  bool inqu[ MAXV ];
  int qu[ 2000000 ], ql, qr;
  // the size of qu should be much large than MAXV
  int MncMxf()
    int INF = INF;
    int mxf = 0, mnc = 0;
    while ( 1 ) {
      fill(d + 1, d + 1 + V, INF);
      fill( inqu + 1, inqu + 1 + V, 0 );
      fill( mom + 1, mom + 1 + V, -1);
      mom[s] = s;
      d[\bar{s}] = 0;
      ql = 1, qr = 0;
      qu[ ++qr ] = s;
      inqu[ s ] = 1;
      while ( ql \ll qr ) {
        int u = qu[ ql++ ];
        inqu[u] = 0;
        for ( int i = 0; i < (int)g[ u ].size(); i++ )</pre>
          Edge &e = g[u][i];
          int v = e.v;
          if ( e.cap > 0 && d[ v ] > d[ u ] + e.w ) {
            d[v] = d[u] + e.w;
            mom[v] = u;
            id[v] = i;
```

```
if ( !inqu[ v ] ) qu[ ++qr ] = v, inqu[ v ]
      }
    }
  if ( mom[ t ] == -1 ) break;
  int df = INF;
  for ( int u = t; u != s; u = mom[ u ] ) df = min(
        df, g[ mom[ u ] ][ id[ u ] ].cap );
  for ( int u = t; u != s; u = mom[ u ] ) {
  Edge &e = g[ mom[ u ] ][ id[ u ] ];
    e.cap -= df;
    g[e.v][e.rev].cap += df;
  mxf += df;
  mnc += df * d[ t ];
return mnc;
```

BoundedMaxFlow

```
// node from 0 \sim \text{size} - 1
class Graph {
public:
  Graph( const int &size )
       : size_{(size + 2)},
         source_( size )
         sink_{(size + 1)}
         edges_( size_ ),
         capacity_( size_, vector< int >( size_, 0 ) ),
         lower_bound_( size_, vector< int >( size_, 0 )
  lower_bound_sum_( size_, 0 ) {}
void AddEdge( int from, int to, int lower_bound, int
       capacity ) {
    edges_[ from ].push_back( to );
    edges_[ to ].push_back( from );
    capacity_[ from ][ to ] += capacity - lower_bound;
lower_bound_[ from ][ to ] += lower_bound;
    lower_bound_sum_[ from ] += lower_bound;
lower_bound_sum_[ to ] -= lower_bound;
  int MaxFlow() {
     int expected_source = 0, expected_sink = 0;
    for ( int i = 0; i < source_; ++i )
       if ( lower_bound_sum_[ i ] > 0 ) {
         capacity_[ i ][ sink_ ] = lower_bound_sum_[ i
         edges_[ i ].push_back( sink_ );
edges_[ sink_ ].push_back( i );
expected_sink += lower_bound_sum_[ i ];
       else if ( lower_bound_sum_[ i ] < 0 ) {</pre>
         capacity_[ source_ ][ i ] = -lower_bound_sum_[
         edges_[ source_ ].push_back( i );
         expected_source -= lower_bound_sum_[ i ];
    int Flow = 0;
    while ( BFS( source_, sink_ ) )
  for ( auto &from : edges_[ sink_ ] ) {
         if ( from_[ from ] == -1 ) continue;
         from_[ sink_ ] = from;
         int current_Flow = numeric_limits< int >::max()
         for ( int i = sink_; i != source_; i = from_[ i
                ])
           current_Flow = min( current_Flow, capacity_[
    from_[ i ] ][ i ] );
         if ( not current_Flow ) continue;
         for ( int i = sink_; i != source_; i = from_[ i
     ] ) {
            capacity_[ from_[ i ] ][ i ] -= current_Flow;
            capacity_[ i ][ from_[ i ] ] += current_Flow;
```

```
Flow += current_Flow;
   if ( Flow != expected_source ) return -1;
   return Flow;
 int Flow( int from, int to ) { return lower_bound_[
     from ][ to ] + capacity_[ to ][ from ]; }
private:
 bool BFS( int source, int sink ) {
   queue< int > Q;
   Q.push( source );
   from_ = vector< int >( size_, -1 );
   from_[ source ] = source;
   while ( !Q.empty() ) {
     int node = Q.front();
     Q.pop();
     if ( node == sink ) continue;
     for ( auto &neighbour : edges_[ node ] )
  if ( from_[ neighbour ] == -1 && capacity_[
            node ][ neighbour ] > 0 ) {
          from_[ neighbour ] = node;
          Q.push( neighbour );
   return from_[ sink ] != -1;
int size_, source_, sink_;
vector< vector< int > > edges_
 vector< vector< int > > capacity_;
 vector< vector< int > > lower_bound_;
 vector< int > lower_bound_sum_;
 vector< int > from_;
    Dinic
```

5.5

```
struct Dinic{
  static const int MXN = 10000;
  struct Edge{ int v,f,re; };
  int n,s,t,level[MXN];
  vector<Edge> E[MXN];
  void init(int _n, int _s, int _t){
    n = _n;    s = _s;    t = _t;
     for (int i=0; i<n; i++) E[i].clear();</pre>
  void add_edge(int u, int v, int f){
    E[u].PB(\{v,f,SZ(E[v])\});
    E[v].PB({u,0,SZ(E[u])-1});
  bool BFS(){
    for (int i=0; i<n; i++) level[i] = -1;</pre>
    queue<int> que;
    que.push(s)
     level[s] = 0;
    while (!que.empty()){
  int u = que.front(); que.pop();
       for (auto it : E[u]){
         if (it.f > 0 && level[it.v] == -1){
           level[it.v] = level[u]+1;
           que.push(it.v);
         }
      }
    return level[t] != -1;
  int DFS(int u, int nf){
    if (u == t) return nf;
    int res = 0;
     for (auto &it : E[u]){
       if (it.f > 0 && level[it.v] == level[u]+1){
  int tf = DFS(it.v, min(nf,it.f));
         res += tf; nf -= tf; it.f -= tf;
         E[it.v][it.re].f += tf;
         if (nf == 0) return res;
      }
    if (!res) level[u] = -1;
    return res;
```

return r1+r2;

```
}
  int flow(int res=0){
    while ( BFS() )
      res += DFS(s,2147483647);
                                                             5.7 SW min-cut
    return res;
}flow;
                                                             // global min cut
                                                             struct SW{ // 0(V^3)
                                                               static const int MXN = 514;
                                                               int n,vst[MXN],del[MXN];
5.6 DMST
                                                               int edge[MXN][MXN],wei[MXN];
                                                               void init(int _n){
                                                                 n = _n;
                                                                 FZ(edge);
* Edmond's algoirthm for Directed MST
* runs in O(VE)
                                                                 FZ(del);
*/
const int MAXV = 10010;
                                                               void add_edge(int u, int v, int w){
const int MAXE = 10010;
                                                                 edge[u][v] += w;
const int INF = 2147483647;
                                                                 edge[v][u] += w;
struct Edge{
 int u, v, c;
Edge(){}
                                                               void search(int &s, int &t){
                                                                 FZ(vst); FZ(wei);
  Edge(int x, int y, int z) :
                                                                 s = t = -1;
   u(x), v(y), c(z)
                                                                 while (true){
                                                                   int mx=-1, cur=0;
int V, E, root;
                                                                   for (int i=0; i<n; i++)</pre>
                                                                     if (!del[i] && !vst[i] && mx<wei[i])</pre>
Edge edges[MAXE]
                                                                   cur = i, mx = wei[i];
if (mx == -1) break;
inline int newV(){
 V++:
                                                                   vst[cur] = 1;
 return V;
                                                                   s = t;
inline void addEdge(int u, int v, int c){
                                                                   t = cur;
                                                                   for (int i=0; i<n; i++)
  edges[E] = Edge(u, v, c);
                                                                     if (!vst[i] && !del[i]) wei[i] += edge[cur][i];
bool con[MAXV];
int mnInW[MAXV],
                 prv[MAXV], cyc[MAXV], vis[MAXV];
                                                               int solve(){
inline int DMST(){
                                                                 int res = 2147483647;
                                                                 for (int i=0,x,y; i<n-1; i++){
  fill(con, con+V+1, 0);
  int r1 = 0, r2 = 0;
                                                                   search(x,y);
                                                                   res = min(res,wei[y]);
  while(1){
    fill(mnInW, mnInW+V+1, INF);
                                                                   del[y] = 1;
   fill(prv, prv+V+1, -1);
REP(i, 1, E){
                                                                   for (int j=0; j<n; j++)
  edge[x][j] = (edge[j][x] += edge[y][j]);</pre>
      int u=edges[i].u, v=edges[i].v, c=edges[i].c;
      if(u != v && v != root && c < mnInW[v])
                                                                 return res;
        mnInW[v] = c, prv[v] = u;
                                                            }graph;
    fill(vis, vis+V+1, -1);
fill(cyc, cyc+V+1, -1);
    r1 = 0;
                                                                   Theorem
                                                             5.8
    bool jf = 0;
   if(prv[i] == -1 && i != root) return -1;
                                                             Lucas, Theorem:
      if(prv[i] > 0) r1 += mnInW[i];
                                                               For non-negative integer n,m and prime P,
                                                               C(m,n) \mod P = C(m/M,n/M) * C(m/M,n/M) \mod P = mult_i (C(m_i,n_i))
      for(s = i; s != -1 && vis[s] == -1; s = prv[s])
        vis[s] = i;
                                                               where m_i is the i-th digit of m in base P.
      if(s > 0 \& vis[s] == i){
         // get a cycle
                                                             Pick's Theorem
        jf = 1;
                                                               A = i + b/2 - 1
        int v = s;
        do{
                                                             Kirchhoff's theorem
          cyc[v] = s, con[v] = 1;
                                                               A_{ii} = deg(i), A_{ij} = (i,j) \in ? -1 : 0
          r2 += mnInW[v];
                                                               Deleting any one row, one column, and cal the det(A)
          v = prv[v];
        }while(v != s);
        con[s] = 0;
                                                                  Geometry
                                                             6
    if(!jf) break;
    REP(i, 1, E){
      int &u = edges[i].u;
                                                                   Half Plane Intersection
                                                             6.1
      int &v = edges[i].v;
      if(cyc[v] > 0) edges[i].c -= mnInW[edges[i].v];
                                                                   Intersection of 2 Lines
                                                             6.2
      if(cyc[u] > 0) edges[i].u = cyc[edges[i].u];
      if(cyc[v] > 0) edges[i].v = cyc[edges[i].v];
                                                             #define N 100010
      if(u == v) edges[i--] = edges[E--];
                                                             #define EPS 1e-8
```

#define SIDE 10000000

struct PO{ double x , y ; } p[N], o ;

```
for( int i = 1 ; i <= cnt ; i ++ ) res += cross( o ,
   p[ i ] , p[ i + 1 ] ) ;</pre>
struct LI{
  PO a, b;
                                                                          if( res < 0.0 ) res *= -1.0;
  double angle;
  void in( double x1 , double y1 , double x2 , double
                                                                          return res;
       y2 ){
     a.x = x1; a.y = y1; b.x = x2; b.y = y2;
}li[ N ] , deq[ N ];
                                                                              Intersection of 2 Segments
int n , m , cnt;
inline int dc( double x ){
  if ( x > EPS ) return 1;
                                                                       int ori( const PLL& o , const PLL& a , const PLL& b ){
  LL ret = ( a - o ) ^ ( b - o );
  return ret / max( 1ll , abs( ret ) );
  else if ( x < -EPS ) return -1;
  return 0;
inline PO operator-( PO a, PO b ){
                                                                        ^{\prime}// p1 == p2 || q1 == q2 need to be handled
                                                                        bool banana( const PLL& p1 , const PLL& p2
  PO c;
                                                                          const PLL& q1 , const PLL& q2 ){
if( ( ( p2 - p1 ) ^ ( q2 - q1 ) ) == 0 ){ // parallel
  c.x = a.x - b.x; c.y = a.y - b.y;
  return c;
                                                                            inline double cross( PO a , PO b , PO c ){
  return ( b.x - a.x ) * ( c.y - a.y ) - ( b.y - a.y )
        * ( c.x - a.x );
inline bool cmp( const LI &a , const LI &b ){
  if( dc( a.angle - b.angle ) == 0 ) return dc( cross(
                                                                          return (ori( p1, p2, q1 ) * ori( p1, p2, q2 )<=0) &&
  a.a , a.b , b.a ) ) < 0;
return a.angle > b.angle;
                                                                                   (ori( q1, q2, p1 ) * ori( q1, q2, p2 )<=0);
                                                                       }
inline PO getpoint( LI &a , LI &b ){
  double k1 = cross( a.a , b.b , b.a );
                                                                        6.4 Intersection of Circle and Segment
  double k2 = cross(a.b, b.a, b.b);
  PO tmp = a.b - a.a , ans;
  ans.x = a.a.x + tmp.x * k1 / (k1 + k2);
ans.y = a.a.y + tmp.y * k1 / (k1 + k2);
                                                                        bool Inter( const Pt% p1 , const Pt% p2 , Circle% cc ){
                                                                          Pt dp = p2 - p1;
                                                                          double a = dp * dp;
double b = 2 * ( dp * ( p1 - cc.0 ) );
double c = cc.0 * cc.0 + p1 * p1 - 2 * ( cc.0 * p1 )
  return ans;
inline void getcut(){
  sort( li + 1 , li + 1 + n , cmp ); m = 1;
for( int i = 2 ; i <= n ; i ++ )
  if( dc( li[ i ].angle - li[ m ].angle ) != 0 )</pre>
                                                                          - cc.R * cc.R;
double bb4ac = b * b - 4 * a * c;
                                                                          return !( fabs( a ) < eps or bb4ac < 0 );</pre>
  li[ ++ m ] = li[i];

deq[1] = li[1]; deq[2] = li[2];
  6.5 Intersection of Polygon and Circle
           < 0 ) top --
                                                                        Pt ORI , info[ N ];
D r; int n;
     while( bot < top && dc( cross( li[i].a , li[i].</pre>
          b , getpoint( deq[ bot ] , deq[ bot + 1 ] ) ) )
                                                                        // Divides into multiple triangle, and sum up
           < 0 ) bot ++
                                                                        // oriented area
     deq[ ++ top ] = li[i];
                                                                        D area2(Pt pa, Pt pb){
                                                                          if( norm(pa) < norm(pb) ) swap(pa, pb);</pre>
  while( bot < top && dc( cross( deq[ bot ].a , deq[</pre>
                                                                          if( norm(pb) < eps ) return 0;</pre>
       bot ].b , getpoint( deq[ top ] , deq[ top - 1 ] )
) ) < 0 ) top --;
                                                                          D S, h, theta;
                                                                          D a = norm(pb), b = norm(pa), c = norm(pb - pa);
D cosB = (pb * (pb - pa)) / a / c, B = acos(cosB);
D cosC = (pa * pb) / a / b, C = acos(cosC);
  while( bot < top && dc( cross( deg[ top ].a , deg[</pre>
        if(a > r){
  cnt = 0;
                                                                             S = (C/2)*r*r
  if( bot == top ) return;
                                                                             h = a*b*sin(C)/c;
  for( int i = bot ; i < top ; i ++ ) p[ ++ cnt ] =
    getpoint( deq[ i ] , deq[ i + 1 ] );
if( top - 1 > bot ) p[ ++ cnt ] = getpoint( deq[ bot
                                                                             if (h < r \&\& B < PI/2) S = (acos(h/r)*r*r - h*sqrt
                                                                                  (r*r-h*h));
                                                                          else if(b > r){
        ] , deq[ top ] );
                                                                             theta = PI - B - asin(sin(B)/r*a);
                                                                             S = .5*a*r*sin(theta) + (C-theta)/2*r*r;
double px[ N ] , py[ N ];
void read( int rm ) {
  for( int i = 1 ; i <= n ; i ++ ) px[ i + n ] = px[ i</pre>
                                                                          else S = .5*sin(C)*a*b;
                                                                          return S;
  j, py[i + n] = py[i];
for(int i = 1; i <= n; i ++ ){
   // half-plane from li[i].a -> li[i].b
                                                                        D area() {
                                                                          DS = 0;
                                                                          for(int i = 0; i < n; ++i)
     li[i].a.x = px[i + rm + 1]; li[i].a.y = py[i]
                                                                             S += abs(area2(info[i], info[i + 1]) * sign(det(
           + rm + 1 ];
                                                                                  info[i], info[i + 1]));
    li[ i ].b.x = px[ i ]; li[ i ].b.y = py[ i ];
li[ i ].angle = atan2( li[ i ].b.y - li[ i ].a.y ,
                                                                          return fabs(S);
          li[ i ].b.x - li[ i ].a.x );
  }
inline double getarea( int rm ){
                                                                               Intersection of 2 Circles
  read( rm ); getcut();
                                                                        6.7
                                                                               Circle Cover
  double res = 0.0;
  p[cnt + 1] = p[1];
```

```
#define N 1021
struct CircleCover{
  int C; Circle c[N];
bool g[N][N], overlap[N][N];
// Area[i] : area covered by at least i circles
                                                                        };
  D Area[ N ];
void init( int _C ){ C = _C; }
bool CCinter( Circle& a , Circle& b , Pt& p1 , Pt& p2
     Pt o1 = a.0 , o2 = b.0;
    D r1 = a.R, r2 = b.R;
D d2 = (o1 - o2) * (o1 - o2);
    D d = sqrt(d2);
if( d > r1 + r2 ) return false;
    Pt u = (01+02)*0.5 + (01-02)*((r2*r2-r1*r1)/(2*d2))
    D A = sqrt((r1+r2+d)*(r1-r2+d)*(r1+r2-d)*(-r1+r2+d)
    ); Pt v = Pt( o1.Y-o2.Y , -o1.X + o2.X ) * A / (2*d2);
    p1 = u + v; p2 = u - v;
     return true;
  struct Tevent {
    Pt p; D ang; int add;
     Tevent() {}
     Tevent(Pt \_a, D \_b, int \_c): p(\_a), ang(\_b), add(\_c
     bool operator<(const Tevent &a)const
  {return ang < a.ang;}
}eve[ N * 2 ];
  // strict: x = 0, otherwise x = -1
  bool disjuct( Circle& a, Circle &b, int x ){
     return sign( norm( a.0 - b.0 ) - a.R - b.R ) > x;
  bool contain( Circle& a, Circle &b, int x ){
     return sign( a.R - b.R - norm(a.0 - b.0) ) > x;
  bool contain(int i, int j){ /* c[j] is non-strictly
       in c[i]. */
     return (sign(c[i].R - c[j].R) > 0 ||
	(sign(c[i].R - c[j].R) == 0 && i < j) ) &&
                    contain(c[i], c[j], -1);
  void solve(){
     for( int i = 0 ; i <= C + 1 ; i ++ )
Area[ i ] = 0;
     for( int i = 0; i < C; i ++ )
  for( int j = 0; j < C; j ++ )
    overlap[i][j] = contain(i, j);</pre>
     for( int i = 0 ; i < C ; i ++ )
  for( int j = 0 ; j < C ; j ++ )
    g[i][j] = !(overlap[i][j] || overlap[j][i] ||</pre>
                         disjuct(c[i], c[j], -1));
     for( int i = 0 ; i < C ; i ++ ){
       int E = 0, cnt = 1;
       for( int j = 0 ; j < C ;
          if( j != i && overlap[j][i] )
       for( int j = 0 ; j < C ; j ++ )
          if( i != j && g[i][j] ){
            Pt aa, bb;
            CCinter(c[i], c[j], aa, bb);
            D A = atan2(aa.Y - c[i].0.Y, aa.X - c[i].0.X)
            D B = atan2(bb.Y - c[i].0.Y, bb.X - c[i].0.X)
            eve[\acute{E} ++] = Tevent(bb, B, 1);
            eve[E ++] = Tevent(aa, A, -1);
            if(\bar{B} > A) cnt ++;
       if( E == 0 ) Area[ cnt ] += pi * c[i].R * c[i].R;
       else{
          sort( eve , eve + E );
          eve[E] = eve[0];
          for( int j = 0; j < E; j ++ ){
            cnt += eve[j].add;
            Area[cnt] += (eve[j].p ^ eve[j + 1].p) * .5;

D theta = eve[j + 1].ang - eve[j].ang;

if (theta < 0) theta += 2. * pi;
            Area[cnt] += ( theta - sin(theta) ) * c[i].R
* c[i].R * .5;
```

```
6.8 Tangent Line of 2 Circles
```

}

}

```
vector<Line> go( const Circle& c1 , const Circle& c2 ){
  vector<Line> ret;
  double d_{sq} = norm2(c1.0 - c2.0);
  if( d_sq < eps ) return ret;
double d = sqrt( d_sq );</pre>
  Pt v = (c2.0 - c1.0) / d;
  for( int sign1 = 1 ; sign1 >= -1 ; sign1 -= 2 ){
  double c = ( c1.R - sign1 * c2.R ) / d;
     if( c * c > 1 ) continue;
     double h = sqrt( max( 0.0 , 1.0 - c * c ) );
     for( int sign2 = 1 ; sign2 >= -1 ; sign2 -= 2 ){
       n.X = v.X * c - sign2 * h * v.Y;
       n.Y = v.Y * c + sign2 * h * v.X;
       Pt p1 = c1.0 + n * c1.R;
Pt p2 = c2.0 + n * ( c2.R * sign1 );
       if( fabs( p1.X - p2.X ) < eps and fabs( p1.Y - p2.Y ) < eps )
          p2 = p1 + perp(c2.0 - c1.0);
       ret.push_back( { p1 , p2 } );
  }
  return ret;
```

6.9 KD Tree

```
const int MXN = 100005;
struct KDTree {
  struct Node {
    int x,y,x1,y1,x2,y2;
int id,f;
Node *L, *R;
  }tree[MXN];
  int n;
Node *root;
  LL dis2(int x1, int y1, int x2, int y2) {
    LL dx = x1-x2;
    LL dy = y1-y2;
    return dx*dx+dy*dy;
  static bool cmpx(Node& a, Node& b){ return a.x<b.x; }
static bool cmpy(Node& a, Node& b){ return a.y<b.y; }</pre>
  void init(vector<pair<int,int>> ip) {
    n = ip.size();
    for (int i=0; i<n; i++) {</pre>
       tree[i].id = i;
       tree[i].x = ip[i].first;
       tree[i].y = ip[i].second;
    root = build_tree(0, n-1, 0);
  Node* build_tree(int L, int R, int dep) {
    if (L>R) return nullptr;
    int M = (L+R)/2
     tree[M].\hat{f} = dep\%2;
    nth_element(tree+L, tree+M, tree+R+1, tree[M].f ?
         cmpy : cmpx);
     tree[M].x1 = tree[M].x2 = tree[M].x;
    tree[M].y1 = tree[M].y2 = tree[M].y;
    tree[M].L = build_tree(L, M-1, dep+1);
     if (tree[M].L) {
       tree[M].x1 = min(tree[M].x1, tree[M].L->x1);
tree[M].x2 = max(tree[M].x2, tree[M].L->x2);
       tree[M].y1 = min(tree[M].y1, tree[M].L->y1);
       tree[M].y2 = max(tree[M].y2, tree[M].L->y2);
    tree[M].R = build_tree(M+1, R, dep+1);
    if (tree[M].R) {
       tree[M].x1 = min(tree[M].x1, tree[M].R->x1);
```

```
tree[M].x2 = max(tree[M].x2, tree[M].R->x2);
      tree[M].y1 = min(tree[M].y1, tree[M].R->y1);
      tree[M].y2 = max(tree[M].y2, tree[M].R->y2);
    return tree+M;
  int touch(Node* r, int x, int y, LL d2){
    LL dis = sqrt(d2)+1;
    if (x<r->x1-dis || x>r->x2+dis ||
         y<r->y1-dis || y>r->y2+dis)
       return 0;
    return 1;
  void nearest(Node* r, int x, int y,
                 int &mID, LL &md2){
    if (!r || !touch(r, x, y, md2)) return;
LL d2 = dis2(r->x, r->y, x, y);
    if (d2 < md2 \mid l \mid (d2 == md2 \&\& mID < r->id)) {
      mID = r -> id;
      md2 = d2;
    // search order depends on split dim
    if ((r->f == 0 \&\& x < r->x) ||
         (r->f == 1 \& y < r->y)) {
       nearest(r\rightarrow L, x, y, mID, md2);
      nearest(r->R, x, y, mID, md2);
    } else {
      nearest(r->R, x, y, mID, md2);
nearest(r->L, x, y, mID, md2);
  int query(int x, int y) {
    int id = 1029384756
    LL d2 = 102938475612345678LL;
    nearest(root, x, y, id, d2);
    return id;
}tree;
```

6.10 Lower Concave Hull

```
/****
  maintain a "concave hull" that support the following
  1. insertion of a line
  query of height(y) on specific x on the hull
 ****
/* set as needed */
typedef long double LD;
const LD eps=1e-9;
const LD inf=1e19;
class Seg {
 public:
  LD m, c, x1, x2; // y=mx+c
  bool flag;
  Seq(
       _m,LD _c,LD _x1=-inf,LD _x2=inf,bool _flag=0)
  :m(_m),c(_c),x1(_x1),x2(_x2),flag(_flag) {}
LD evaly(LD x) const {
    return m*x+c;
  }
  const bool operator<(LD x) const {</pre>
    return x2-eps<x;</pre>
  const bool operator<(const Seg &b) const {
  if(flag||b.flag) return *this<b.x1;</pre>
    return m+eps<b.m;</pre>
};
class LowerConcaveHull { // maintain a hull like: \_
public:
  set<Seg> hull;
   * functions */
  LD xintersection(Seg a, Seg b) {
    return (a.c-b.c)/(b.m-a.m);
  inline set<Seg>::iterator replace(set<Seg> &
      hull,set<Seg>::iterator it,Seg s) {
    hull.erase(it);
    return hull.insert(s).first;
```

```
void insert(Seg s) {
    // insert a line and update hull
    set<Seg>::iterator it=hull.find(s);
    // check for same slope
    if(it!=hull.end()) {
       if(it->c+eps>=s.c) return;
      hull.erase(it);
    // check if below whole hull
    it=hull.lower_bound(s);
    if(it!=hull.end()&&
       s.evaly(it->x1)<=it->evaly(it->x1)+eps) return;
    // update right hull
    while(it!=hull.end()) {
      LD x=xintersection(s,*it);
      if(x>=it->x2-eps) hull.erase(it++);
      else {
        s.x2=x;
         it=replace(hull,it,Seg(it->m,it->c,x,it->x2));
        break:
      }
    // update left hull
    while(it!=hull.begin()) {
  LD x=xintersection(s,*(--it))
      if(x<=it->x1+eps) hull.erase(it++);
      else {
         s.x1=x;
         it=replace(hull, it, Seq(it->m, it->c, it->x1,x));
        break;
      }
    }
    // insert s
    hull.insert(s);
  void insert(LD m,LD c) { insert(Seg(m,c)); }
  LD query(LD x) { // return y @ given x
    set<Seg>::iterator it =
      hull.lower_bound(Seg(0.0,0.0,x,x,1));
    return it->evaly(x);
  }
};
```

6.11 Min Enclosing Circle

```
struct Mec{
  \ensuremath{//} return pair of center and r
  static const int N = 101010;
  int n:
  Pt p[N], cen;
  double r2
  void init( int _n , Pt _p[] ){
    memcpy( p , _p , sizeof(Pt) * n );
  double sqr(double a){ return a*a; }
  Pt center(Pt p0, Pt p1, Pt p2) {
    Pt a = p1-p0;
    Pt b = p2-p0;
    double c1=norm2( a ) * 0.5;
double c2=norm2( b ) * 0.5;
    double d = a \wedge b;
    double x = p0.X + (c1 * b.Y - c2 * a.Y) / d;
    double y = p0.Y + (a.X * c2 - b.X * c1) / d;
    return Pt(x,y);
  pair<Pt,double> solve(){
    random_shuffle(p,p+n);
     for (int i=0; i<n; i++){</pre>
       if (norm2(cen-p[i]) <= r2) continue;</pre>
       cen = p[i];
       r2 = 0;
       for (int j=0; j<i; j++){</pre>
         if (norm2(cen-p[j]) <= r2) continue;</pre>
         cen=Pt((p[i].X+p[j].X)/2,(p[i].Y+p[j].Y)/2);
         r2 = norm2(cen-p[j]);
for (int k=0; k<j; k++){</pre>
           if (norm2(cen-p[k]) <= r2) continue;</pre>
           cen = center(p[i],p[j],p[k]);
```

6.12 Heart of Triangle

```
Pt inCenter( Pt &A, Pt &B, Pt &C) { // 内心 double a = norm(B-C), b = norm(C-A), c = norm(A-B); return (A * a + B * b + C * c) / (a + b + c); }
Pt circumCenter( Pt &a, Pt &b, Pt &c) { // 外心 Pt bb = b - a, cc = c - a; double db=norm2(bb), dc=norm2(cc), d=2*(bb ^ cc); return a-Pt(bb.Y*dc-cc.Y*db, cc.X*db-bb.X*dc) / d; }
Pt othroCenter( Pt &a, Pt &b, Pt &c) { // 垂心 Pt ba = b - a, ca = c - a, bc = b - c; double Y = ba.Y * ca.Y * bc.Y, A = ca.X * ba.Y - ba.X * ca.Y, x0= (Y+ca.X*ba.Y*b.X-ba.X*ca.Y*c.X) / A, y0= -ba.X * (x0 - c.X) / ba.Y + ca.Y; return Pt(x0, y0); }
```

7 String

7.1 Knuth-Morris-Pratt Algorithm

```
// test with CF 471 D
template< typename T >
vector< int > KMP( vector< T > target, vector< T >
    pattern ) {
  vector< int > match;
 if ( pattern.size() > target.size() ) return match;
 vector< int > failure_function( (int)target.size(),
      -1);
 for ( int i = 1, j = failure_function[ 0 ] = -1; i <</pre>
    (int)pattern.size(); ++i ) {
while ( j >= 0 and pattern[ j + 1 ] != pattern[ i ]
      j = failure_function[ j ];
    if ( pattern[ j + 1 ] == pattern[ i ] ) j++;
    failure_function[ i ] = j;
    int pos = i, prv = failure_function[ pos ];
   while ( pos + 1 < (int)pattern.size() and pattern[</pre>
        pos + 1 ] == pattern[ prv + 1 ] ) {
      if ( failure_function[ pos ] == -1 ) break;
      pos = prv;
      prv = failure_function[ prv ];
    failure_function[ i ] = prv;
  for ( int i = 0, j = -1; i < (int)target.size(); ++i
   while ( j \ge 0 and pattern[j + 1] != target[i]
      j = failure_function[ j ];
    if ( pattern[ j + 1 ] == target[ i ] ) j++;
    if (j == (int)pattern.size() - 1) {
     match.push_back( i - pattern.size() + 1 );
      j = failure_function[ j ];
   }
 }
  return match;
```

```
7.2 Z Value
```

```
void Z_value( string& s, vector< int >& z ) {
  z.resize( s.size() );
  int i, j, left, right, len = s.size();
  left = right = 0; z[ 0 ] = len;
  for ( i = 1; i < (int)s.size(); ++i ) {
    j = max( min( z[ i - left ], right - i ), 0 );
    for(; i + j < len && s[ i + j ] == s[ j ]; ++j );
    z[ i ] = j;
    if( i + z[ i ] > right ) {
        left = i;
        right = i + z[ i ];
    }
  }
}
```

7.3 Z Value Palindrome

```
const int N = 1000 + 10;
int len, zv[ N * 2 ];
char op[ N * 2 ];
string ip;
int main(){
   cin >> ip; len = ip.size();
  int l2 = len * 2 + 1;

for ( int i = 0; i < l2; ++i ) {

   if ( i & 1 ) op[ i ] = ip[ i / 2 ];

   else op[ i ] = '@';
   int l = 0, r = 0;
  zv[0] = 1;
for ( int i = 1; i < l2; ++i ) {
  if ( i > r ) {
         l = r = i;
         while (l > 0 and r < l2 - 1 and op[l - 1] ==
              op[r+1])
        --l, ++r;
zv[i] = r - l + 1;
        int md = ( l + r ) / 2, j = md + md - i;
zv[ i ] = zv[ j ];
int q = zv[ i ] / 2, nr = i + q;
         if (nr == r) {
           l = i + i - r;
           while (l > 0 and r < l2 - 1 and op[l - 1] ==
                  op[r+1])
           --l, ++r;
zv[i] = r - l + 1;
         else if ( nr > r )
zv[ i ] = ( r - i ) * 2 + 1;
   }
}
```

7.4 Suffix Array

```
class SuffixArray {
  public:
    static const int N = 1e5 + 10;
    string st;
  int SA[ N ], RA[ N ], tempSA[ N ], tempRA[ N ],
        counting[ N ], n;
  int LCP[ N ], PLCP[ N ], Phi[ N ];

  void build( string& s ) { st = s + '.'; n = st.size
        (); constructSA(); constructLCP(); }

  void countingSort( int k ){
    int maxRange = max( 260, n );
    memset( counting, 0, sizeof counting );
    for ( int i = 0; i < n; i++ )
        counting[ i + k < n ? RA[ i + k ] : 0 ]++;

  int sum = 0;
  for ( int i = 0; i < maxRange; ++i ) {
    int temp = counting[ i ];
    counting[ i ] = sum;
    sum += temp;</pre>
```

```
void constructSA() {
  for ( int i = 0; i < n; ++i ) {
    SA[ i ] = i;
    PA[ i ] = 
                                   RA[ i ] = st[ i ];
                          for ( int k = 1; k < n; k <<= 1 ) {
                                   countingSort( k ); countingSort( 0 );
                                    int rank;
                                   tempRA[SA[0]] = rank = 0;
                                  for ( int i = 1; i < n; ++i )
  tempRA[ SA[ i ] ] = ( RA[ SA[ i - 1 ] ] == RA
      [ SA[ i ] ] && RA[ SA[ i - 1 ] + k ] ==</pre>
                                   if (RA[SA[n-1]] == n-1) break;
                  }
                  void constructLCP() {
                          Phi[ SA[ 0 ] ] = -1;
for ( int i = 1; i < n; ++i )
                                   Phi[ SA[i]] = SA[i-1];
                          int L = 0;
for ( int i = 0; i < n; ++i ) {
  if ( Phi[ i ] == -1 ) {</pre>
                                           PLCP[i] = 0;
                                            continue;
                                   while ( st[ i + L ] == st[ Phi[ i ] + L ] ) L
                                   PLCP[i] = L;
                                   L = max(L - 1, 0);
                           for ( int i = 0; i < n; ++i ) LCP[ i ] = PLCP[ SA
                                            [i];
};
```

7.5 Palindrome Tree

```
const int MAXN = 200010:
struct PalT{
  struct Node{
     int nxt[ 33 ] , len , fail;
    ll cnt;
  int tot , lst;
Node nd[ MAXN * 2 ];
  int newNode( int l , int _fail ){
    int res = ++tot;
memset( nd[ res ].nxt , 0 , sizeof nd[ res ].nxt );
    nd[res].len = \bar{l};
    nd[ res ].cnt = 0;
nd[ res ].fail = _fail;
    return res;
  void push( int p ){
    int np = lst;
    int c = s[p] - 'a';
while(p - nd[np].len - 1 < 0
| | s[p]! = s[p - nd[np].len - 1])
       np = nd[ np ].fail;
    if( nd[ np ].nxt[ c ] ){
       nd[ nd[ np ].nxt[ c ] ].cnt++;
       lst = nd[ np ].nxt[ c ];
       return ;
    int nq = newNode( nd[ np ].len + 2 , 0 );
    nd[ nq ].cnt++;
```

```
nd[ np ].nxt[ c ] = nq;
    lst = nq;
    if( nd[ nq ].len == 1 ){
      nd[nq].fail = 2;
      return ;
    int tf = nd[ np ].fail;
    while(p_- nd[t\bar{f}].len - 1 < 0
      ii s[ p ] != s[ p - nd[ tf ].len - 1 ] )
tf = nd[ tf ].fail;
    nd[ nq ].fail = nd[ tf ].nxt[ c ];
    return;
  void init( char* _s ){
    s = _s;
    tot = 0;
    newNode( -1 , 1 );
newNode( 0 , 1 );
    for( int i = 0; s[i]; i++)
      push( i );
  void yutruli(){
#define REPD(i, s, e) for(int i = (s); i >= (e); i--)
    REPD( i , tot , 1 )
nd[ nd[ i ].fail ].cnt += nd[ i ].cnt;
    nd[ 1 ].cnt = nd[ 2 ].cnt = 0ll;
} pA;
int main(){ pA.init( sa ); }
```

7.6 Suffix Automata

```
const int MAXM = 1000010;
struct SAM{
  int tot, root, lst, mom[MAXM], mx[MAXM];
int acc[MAXM], nxt[MAXM][33];
int newNode(){
     int res = ++tot;
     fill(nxt[res], nxt[res]+33, 0);
mom[res] = mx[res] = acc[res] = 0;
     return res;
  void init(){
     tot = 0;
     root = newNode();
     mom[root] = 0, mx[root] = 0;
     lst = root;
  void push(int c){
     int p = lst;
     int np = newNode();
     mx[np] = mx[p]+1
     for(; p && nxt[p][c] == 0; p = mom[p])
       nxt[p][c] = np;
     if(p == 0) mom[np] = root;
       int q = nxt[p][c];
       if(mx[p]+1 == mx[q]) mom[np] = q;
          int nq = newNode();
          mx[nq] = mx[p]+1;
          for(int i = 0; i < 33; i++)
  nxt[nq][i] = nxt[q][i];</pre>
          mom[nq] = mom[q];
          mom[q] = nq;
         mom[np] = nq;
          for(; p && nxt[p][c] == q; p = mom[p])
            nxt[p][c] = nq;
       }
    lst = np;
  void push(char *str){
     for(int i = 0; str[i]; i++)
  push(str[i]-'a'+1);
} sam;
```

7.7 AC Automata

```
#include<bits/stdc++.h>
using namespace std;
constexpr int sizz(2000 * 1000), sigma(62);
int nx[sizz][sigma], fl[sizz], spt;
void clear_ac() { spt = 1; }
int newnode() {
  fill_n(nx[spt], sigma, 0);
  return spt++;
int add(const char *s, int Z) {
  for(int i(0); s[i]; ++i) {
    int c(s[i] - 1);
if (nx[Z][c] == 0) nx[Z][c] = newnode();
    Z = nx[Z][c];
  return Z;
int q[sizz], qe; // save BFS order
void make_fl(int root) {
  fl[root] = qe = 0;
q[qe++] = root;
  for(int qs = 0; qs < qe;) {
     int X = q[qs++];
     for(int c = 0; c < sigma; ++c) {</pre>
       if (nx[X][c]) {
          int Xc = nx[X][c], Z = fl[X];
while (Z && nx[Z][c] == 0)
          Z = fl[Z];
int d = Z ? nx[Z][c] : root;
          fl[Xc] = d;
          q[\bar{q}e+\bar{+}] = Xc;
       }
    }
  }
int cnt[sizz];
void walk(const char *s, int root) {
  int Z = root;
  for(int i = 0; s[i]; ++i) {
     int c = s[i] - 1
     while (Z \& nx[Z][c] == 0)
    Z = fl[Z];
Z = Z ? nx[Z][c] : root;
     ++cnt[Z];
  for (int i = qe-1; i >= 0; --i)
     cnt[fl[q[i]]] += cnt[q[i]];
char mapper(char c) {
  if (islower(c)) return c - 'a' + 1;
if (isupper(c)) return c - 'A' + 27;
  return c - '0' + 53;
char S[2048], M[1000514];
int main() -
  int n, op[1024];
scanf("%s %d", M, &n);
transform(M, M+strlen(M), M, mapper);
  clear_ac();
  int root = newnode();
  for(int i = 0; i < n; ++i) {
    scanf("%s", S);
    transform(S, S + strlen(S), S, mapper);</pre>
     op[i] = add(S, root);
  make_fl(root);
  walk(M, root);
  for(int i = 0; i < n; ++i)
  printf("%d\n", cnt[op[i]]);</pre>
```

```
7.8 Smallest Rotation
```

```
string mcp(string s){
  int n = s.length();
  s += s;
```

```
int i=0, j=1;
while (i<n && j<n){
   int k = 0;
   while (k < n && s[i+k] == s[j+k]) k++;
   if (s[i+k] <= s[j+k]) j += k+1;
   else i += k+1;
   if (i == j) j++;
}
int ans = i < n ? i : j;
return s.substr(ans, n);
}</pre>
```