AD-A023 518

SPECIAL DATA COLLECTION SYSTEM (SDCS) EVENT REPORT, MINNESOTA, 9 JULY 1975

Teledyne Geotech

Prepared for:

Air Force Technical Applications Center

5 February 1976

DISTRIBUTED BY:

DISCLAIMER NOTICE

THIS DOCUMENT IS THE BEST QUALITY AVAILABLE.

COPY FURNISHED CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

120138

SPECIAL DATA COLLECTION SYSTEM EVENT REPORT Minnesota, 9 July 1975

K.J. Hill, M.S. Dawkins, R.R. Baumstark, and M.D. Gilfspie Alexandria Laboratories Teledyne Geotech, 314 Montgomery Street, Alexandria, Virginia 22314

February 1976

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Sponsored By
The Defense Advanced Research Projects Agency
Nuclear Monitoring Research Office

1400 Wilson Boulevard, Arlington, Virginia 22209

ARPA Drder No. 2897

Monitored By

VELA Seismological Center

312 Montgomery Street, Alexandria, Virginia 22314

REPRODUCED BY
NATIONAL TECHNICAL
INFORMATION SERVICE
U. S. DEPARTMENT OF COMMERCE
SPRINGFIELD, VA. 22161

TIS	White Siz 19	0
OC MANHOUSED	But; Sr. 13	
JUSTIFICATION		
DISTRIBUTIO"	ATE	
Dist.	Lake T	
1		
IHI		

Disclaimer: Neither the Defense Advanced Research Projects Agency nor the Air Force Technical Applications Center will be responsible for information contained herein which has been supplied by other organizations or contractors, and this document is subject to later revision as may be necessary. The views and conclusions presented are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency, the Air Force Technical Applications Center, or the US Government.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Date Enter

REPORT DOCUMENT	ATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
REPORT NUMBER	2 GOVT ACCESSION NO	3 RECIPIENT'S CATALOG NUMBER
SDCS-ER-75-66		
TITLE (and Subilitie)		S TYPE OF REPORT & PERIOD COVERED
SPECIAL DATA COLLECTION SYSTE	EM (SDCS)	Technical
Minnesota, 9 July 1975		6. PERFORMING ONG. REPORT NUMBER
AUTHOR(s)		B. CONTRACT OR GRANT NUMBER(s)
Hill, K. J., Dawkins, M. S.,	Baumstark, R. R.,	F08606-74-C-0013
and Gill (spie, M. D.		
Performing organization name and Teledyne Geotech	ADDRESS	10. PROGRAM ELEMENT PROJECT TASK
314 Montgomery Street		
Alexandria, Virginia 22314		T/4703
1 CONTROLLING OFFICE NAME AND ADDR	ESS	12 REPORT DATE
Defense Advanced Research Pro	jects Agency	5 February 1976
Nuclear Monitoring Research O	office	13 NUMBER OF PAGES
1400 Wilson BlvdArlington. Monitoring agency name a address;	Virginia 22209	15 SECURITY CLASS (of this report)
VELA Seismological Center	il ditiosoni from Controlling Office)	Unclassified
312 Montgomery Street		
Alexandria, Virginia 22314		150. DECLASSIFICATION DOWNGRADING SCHEDULE
7. DISTRIBUTION STATEMENT (of the chetred	i entered in Block 20, if different from	n Report)
8 SUPPLEMENTARY NOTES		
9 KEY WORDS (Continue on reverse side if nec	and Idealth, by Machanish	
	, ,	
ABSTRACT (Continue on reverse elde II nece	eeery and identify by block number)	

SDCS EVENT REPORT NO. 66

Minnesota, 9 July 1975

This event report contains seismic data from the Special Data Collection System (SDCS), and other sources for the above event. Published epicenter information from seismic observations is:

Origin Time Lat. Long. m_b M_s PDE 14:54:14.9 45.5N 096.1W N/A N/A

Using SDCS stations and LASA, the epicenter location and magnitudes become $\begin{tabular}{ll} \end{tabular} \label{table_equation} % \end{tabular} % \end{$

14:54:17.2 45.4N 096.2W N/A N/A

All SDCS stations were operational during this period.

Short-period signals associated with this event were recorded at CPSO, HN-ME, RK-ON, FN-WV and LASA. WH2YK did not record a "P" arrival for this event and was not included in this report. Horizontal SP channels at CPSO, HN-ME, RK-ON and FN-WV were rotated. NORSAR did not report a "P" arrival for this event.

Long-period signals were recorded at CPSO and HN-ME. No signal arrival determinations were made at WH2YK, RK-ON and FN-WV because signals were mixed with event from Eastern China. Horizontal LP channels at all SDCS stations were rotated. ALPA, LASA and NORSAR long-period data were not recoverable.

Scaling factors on plots are millimicrons at 1 Hz (not corrected for instrument response) with the exception of the LASA short-period plot. LASA SP scaling factors are millimicrons per inch.

STATION DESCRIPTION

SITE	LOCATION	SITE COORDINATES DEG MN SECS	ORDINA' N SECS	TES	ELEVATION METERS	INSTRUMENTATION SHORT-PERIOD LONG-	NTATION LONG-PERIOD
ALPA	Alaska	65 1	14 00.0 44 36.0	Z3	626	None	31300
CPSO	McMinnville, Tennessee	35 3	35 41.4 34 13.5	ZZ	574	6480 V 7515 H	S1210 V SL220 H
FN-WV	Franklin, West Virginia	38 3 079 3	32 58.0 30 47.0	ZZ	910	KS36000	KS36000
LASA	Billings, Montana	46 4 106 1	41 19.0 13 20.0	Z.Z	744	HS10	7505A V 8700C H
HN-ME	Houlton, Maine	46 0	09 43.0 59 09.0	ZZ	213	18300	SL210 V SL220 H
NORSAR	Kjeller, Norway	010	49 25.4 49 56.5	ZШ	379	HS10	7505A V 8700C H
RK-ON	Red Lake, Ontario	50 5	50 20.0 40 20.0	Z 3	366	18300	SL210 V SL220 H
WH2YK	White Horse, Yukon	134	41 41.0 58 02.0	Z 3	853	18300	SL210 V SL220 H

The orientation of the radial instruments at FN-WV is assumed to be $316^{\circ} + 5^{\circ}$ based on empirical data (event recordings). Rotation, where performed, is referenced to this azimuth and may be questionable. Note:

HYPOCENTER DETERMINATION

INPUT	FOR	EVENT	9 301	75
14:53:53.0	46.	000 N	97.500W	OKM.

		RESI	DUALS	CIST.	AZ.
STA.	AFFIVAL	CAIC	REST	REST	REST
FK-CN	14 55 42.0	C.3	-0.2	5.7	16.3
IAC	14 56 02.0	-0.2	-0.1	7.1	203.€
CESC	14 57 16.7	1. C	0.7	12.7	137.0
FN-WV	14 57 36.0	-1.2	-1.5	14.2	113.2
FN-ME	14 58 47.2	C. 1	1.1	19.6	77.8

67 HERRIN TRAVEL TIME TAFLES

CFIGIN	IAT.	ICNG.	DEFTH (KP)	SDV	IT	STA
14:54:07.3							
14:54:17.2							

		CA	LC					F	E	SI		
		C.	0					0		0		
	0			0			0				0	
C		1.	2		0	0		1	•	2		0
•			•	•	•	•	•	•	•	•	•	•
C		0.	2		0	0		C		2		0
	0			0			C				0	
		0 .	0					0	•	0		

CHI2 COVERAGE EILIFSE: 95 FEF CENT CONF..LEVEL, SDV= 2.59
HAJOF 47.CKM. MINCE 30.6KM. AZ= 32 ABEA= 4524 SQ.KM. BEST

DATA SUMMARY

INPUT FOR EVENT 5 JUL 75 14:53:53.0 46.000N 97.500W 0KM.

			FFI					MAGNI	TODE		
SIA	PEASE_		_11.	ri	INST	_FIE	1/1	MB	8	DIR_	DIST
FK-CNE	EF	14	55	42.0	SFZ	C.5	101.	5.24			5.7
IAC H	FF	14	56	02.0	SAE	0.8	232.	5.89			7.1
CFSC M	FP	14	57	18.7	SFZ	0.5	€4.	5.54			12.7
CFSC	7. C	15	01	24.0	IFT	17.0	137.				
FN-WVH	EP	14	57	3€.0	SFZ	C.5	32.	4.7€			14.2
HN-MEN	EF	14	3 3	47.2	SFZ	0.6	7.	3.55			19.6
HN-FE	IÇ	15	05	13.0	IFT	16.0	73.				
HN-ME	IR	15	0€	04.0	1 FZ	14.0	71.		4.26		19.6
CFI	SIN	1	AT.		ICNG.	DEPT	TH (KM)	MAG SD	V STA		
14:	4:07.3	4 5	. 446	EN S	6.116W	0.	CAIC	0.0 ****			
14:	4:17.2	45	433	SK S	6.16EW	0.	REST	C.0 ****	** 0		

Short-period magnitudes (m_b) used in averaging are restricted to those recorded at distances between 20 and 110 degrees from the epicenter.

Average long-period magnitude ($M_{\rm S}$) is based on Rayleigh wave observations in the period range of 17 to 23 seconds per cycle.

145700

2 MIN

ZHO. 43 MU TONON MANAGEMENT MANAG 15:02:00 09 JUL 75 CPSO LPZ 238.66 MU LPT 1176.58 MU IME

-- 14 -