$$u_n = 1 + \frac{1}{n}$$

1. Umumiy hadi

$$\frac{2}{1} + \frac{3}{2} + \frac{4}{3} + \frac{5}{4} + \cdots$$

=====

======

$$\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$$

=====

$$1 + \frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \cdots$$

$$1 - \frac{1}{2} + \frac{2}{3} - \frac{3}{4} + \cdots$$

2. n-xususiy yigʻindisi S_n boʻlgan sonli qator qaysi shartda uzoqlashuvchi boʻlmaydi?

boʻlgan sonli qatorni toping .

=====

#) koʻrsatilgan barcha hollarda sonli qator uzoqlashuvchi boʻladi

$$\lim_{n\to\infty}S_n=-\infty$$

$$\lim_{n\to\infty} S_n = +\infty$$

$$\lim_{n\to\infty} S_n = \pm \infty$$

$$\frac{1}{a} + \frac{1}{a^2} + \dots + \frac{1}{a^n} + \dots$$
sonli qator qaysi shartda yaqinlashuvchi boʻladi?

$$_{\#}|a| < 1$$

$$|a| \neq 0$$

$$|a|=1$$

=====

$$|a| \neq 1$$

$$1 + \frac{1}{3} + \frac{1}{3^2} + \dots + \frac{1}{3^{n-1}} + \dots$$

sonli qator yigʻindisini toping.

======

2

1.33

=====

1

$$\frac{1}{1\cdot 3} + \frac{1}{2\cdot 4} + \frac{1}{3\cdot 5} + \dots + \frac{1}{n(n+2)} + \dots$$

sonli qator yigʻindisini

toping.

#0.75 .
=====
1
e
=====
$\Pi/2$
$\lim_{n\to\infty} u_n$ Musbat hadli $\lim_{n\to\infty} u_n$ sonli qatorni Dalamber alomati orqali $\lim_{n\to\infty} \frac{u_{n+1}}{u_{n+1}} = d$
tekshirishda $n \to \infty$ u_n boʻlsa, quyidagi tasdiqlardan qaysi biri notoʻgʻri?
=====
barcha tasdiqlar toʻgʻri .
=====
d<1 boʻlsa qator yaqinlashuvchi
=====
<i>d</i> >1 boʻlsa qator uzoqlashuvchi .
=====
d=1 boʻlsa qator yoki yaqinlashuvchi, yoki uzoqlashuvchi
Quyidagi musbat hadli sonli qatorlardan qaysi birining yaqinlashuvini Dalamber alomati orqali aniqlab boʻladi ?
=====
$\sum_{n=1}^{\infty} \frac{n}{3^n}$

$$\sum_{n=1}^{\infty} \frac{n}{1+n^2}$$

$$\sum_{n=1}^{\infty} \frac{1}{1+2n}$$

======

$$\sum_{n=1}^{\infty} \frac{n}{(1+n)^2}$$

Umumiy hadi $u_n=(3n+1)/2^n$ bo'lgan sonli qator Dalamber alomati orqali tekshirilganda

$$d = \lim_{n \to \infty} (u_{n+1} / u_n)$$

qiymati va qator yaqinlashuvi haqidagi tasdiq qaysi javobda

toʻgʻri koʻrsatilgan?

=====

d=0.5 va qator yaqinlashuvchi

=====

d=1 va qator uzoqlashuvchi

======

d=0 va qator yaqinlashuvchi .

======

d=∞ va qator uzoqlashuvchi.

$$1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p} + \dots$$

1. Umumlashgan garmonik qator p parametrning qanday qiymatlarida yaqinlashuvchi boʻladi?

=====
<i>p</i> ≥1
=====
p < 1
=====
<i>p</i> ≤1
$1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p} + \dots$ 1. Umumlashgan garmonik qator uzoqlashuvchi boʻladigan p parametrning barcha qiymatlari qayerda toʻliq va toʻgʻri koʻrsatilgan ?
< 1
$\#p \le 1$
$p \leq 0$
$p \ge 0$
=====
$p\neq 0$
Mavhum birlik i uchun qaysi tenglik oʻrinli emas?
=====
#barcha tengliklar to'g'ri
=====
$i^{4n}=1$
=====
$i^{4n+1}=i$

$i^{4n+2} = -1$
Mavhum birlik i uchun qaysi tenglik oʻrinli?
=====
$\#i^{4n} = 1$
=====
$i^{4n}=i$
=====
$i^{4n} = -1$
$i^{4n} = -i$
$z_1=x_1+y_1i$ va $z_2=x_2+y_2i$ kompleks sonlar qaysi shartda teng deyiladi?
=====
$ # x_1 = x_2, y_1 = y_2 $
=====
$x_1 = x_2$
=====
$x_1 = x_2$, $y_1^{-1}y_2$
=====
$x_1^1 x_2$, $y_1 = y_2$
Quyidagi tengliklarning qaysi birida $z_1=x_1+y_1i$ va $z_2=x_2+y_2i$ kompleks sonlar teng boʻlmasligi mumkin?
=====
#barcha hollarda $z_1=z_2$ bo'ladi.
=====
$x_1 - x_2 = 0, y_1 - y_2 = 0$
=====
$(x_1 - x_2)^2 - (y_1 - y_2)^2 = 0$

 $(x_1 - x_2)^2 + (y_1 - y_2)^2 = 0$ $z_1=2a-4i$ va $z_2=6+b^2i$ kompleks sonlar a va b parametrlarning qaysi qiymatida teng boʻladi? ===== # to'g'ri javob keltirilmagan. ====== $a = 3, b = \pm 2$. ____ a = 3, b = -2____ a = 3, b = 2 $z_1=x_1+iy_1$ va $z_2=x_2+iy_2$ kompleks sonlarni qoʻshish amalining ta'rifi qayerda toʻgʻri ifodalangan? ===== $# z_1+z_2=(x_1+x_2)+i(y_1+y_2)$ ===== $z_1+z_2=(x_1+y_2)+i(x_2+y_1)$ ====== $z_1+z_2=(y_1+y_2)+i(x_1+x_2)$ ____ $z_1+z_2=(x_2+y_1)+i(x_1+y_2)$ $z_1=5+3i$ va $z_2=-1+2i$ kompleks sonlarning z_1+z_2 yig'indisini toping. ____ #4+5i===== 6+5i

======

5+4i======

8+5iKompleks sonlarni qoʻshish amali uchun quyidagi tengliklardan qaysi biri oʻrinli boʻlmaydi?
====== $\frac{z}{z} + \overline{z} = 0$ ====== $z_1 + z_2 = z_2 + z_1$ ======

 $z_1+(z_2+z_3)=(z_1+z_2)+z_3$

=====

z+z=2z

 $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$

sonli qator uchun $S_{10}\,$ xususiy yigʻindining qiymatini toping.

=====

#10/11

1/10

=====

1/110

1

$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{x - y}, & x \neq 1 \text{ va } y \neq 1; \\ \alpha, & x = 1 \text{ va } y = 1 \end{cases}$$

$f(x,y) = \begin{cases} \frac{1}{x-y}, & x \neq 1 \text{ va } y \neq 1; \\ \alpha, & x = 1 \text{ va } y = 1 \end{cases}$ funksiya M ₀ (1, 1) nuqtada
α , $x=1$ va $y=1$ funksiya $M_0(1, 1)$ nuqtada
uzluksiz boʻladi?
=====
2
=====
1
=====
0
=====
-1
1. <i>Ta'rifni to'ldiring:</i> $z=x+iy$ ko'rinishdagi ifoda kompleks son deb ataladi. Bunda i -mavhum birlik ($i^2=-1$) va $x,y-\cdots$ sonlarni ifodalaydi.
=====
haqiqiy
=====
natural
=====
butun
irratsional.
Agar n -ixtiyoriy natural son boʻlsa, unda mavhum birlik i uchun qaysi tenglik oʻrinli?
=====
$\#i^{2n} = (-1)^n$

5-2i2-3i===== 2+3ifunksiyaning O(0,0) nuqtadagi limitini toping. ____ # Mavjud emas ====== 1 ===== 2 ===== 1/2 n-xususiy yigʻindisi S_n boʻlgan yaqinlashuvchi sonli qatorning S yigʻindisi qanday aniqlanadi? $S = \lim_{n \to \infty} S_n$ $S = \lim_{n \to \infty} nS_n$

$$S = \lim_{n \to \infty} \frac{S_n}{n}$$

ifodalangan?

$$S = \lim_{n \to \infty} \frac{S_n}{S_{n-1}}$$

1. Ikki oʻzgaruvchili $z = f(x,y)$ funksiya qanday geometrik obyektni ifodalaydi?
=====
#fazodagi sirtni
tekislikdagi toʻgʻri chiziqni
=====
tekislikdagi egri chiziqni
=====
fazodagi tekislikni
$z_1=x_1+iy_1$ va $z_2=x_2+iy_2$ kompleks sonlarni ayirish amalining ta'rifi qayerda to'g'ri ifodalangan'
=====
$\#z_1-z_2=(x_1-x_2)+i(y_1-y_2)$
=====
$z_1-z_2=(x_1-y_2)+i(x_2-y_1)$
=====
$z_1-z_2=(x_2-y_1)+i(x_1-y_2)$
=====
$z_1-z_2=(x_1-y_1)+i(x_2-y_2)$
$z_1=x_1+iy_1$ va $z_2=x_2+iy_2$ kompleks sonlarni koʻpaytmasini hisoblash formulasi qayerda toʻgʻri

$\#z_1 \cdot z_2 = x_1 x_2 - y_1 y_2 + i(x_1 y_2 + x_2 y_1)$
=====
$z_1 \cdot z_2 = x_1 x_2 - y_1 y_2 + i(x_1 x_2 + y_1 y_2)$
=====
$z_1 \cdot z_2 = x_1 x_2 + y_1 y_2 + i(x_1 x_2 - y_1 y_2)$
=====
$z_1 \cdot z_2 = x_1 x_2 + i y_1 y_2$
$z_1=5+3i$ va $z_2=-1+2i$ kompleks sonlarning $z_1\cdot z_2$ koʻpaytmasini toping.
=====
#-11+7i
=====
15–2 <i>i</i>
=====
-5+6i
=====
10-3 <i>i</i>
$f(x,y) = \sqrt{9 - x^2 - y^2}$ funksiyaning D{f} aniqlanish sohasini toping.
=====
Radiusi R=3 va markazi O(0,0) nuqtada joylashgan doira;
=====
Tomoni $a=3$ va markazi $O(0,0)$ nuqtada joylashgan kvadratning tashqarisidan iborat soha;
=====
Tomoni $a=3$ va markazi $O(0,0)$ nuqtada joylashgan kvadrat;
=====

Radiusi R=3 va markazi O(0,0) nuqtada joylashgan aylananing tashqarisidan iborat soha;

$$\sum_{k=1}^{\infty} u_k$$

Qaysi shartda k=1

sonli qator yaqinlashuvchi boʻladi?

$$\lim_{n\to\infty} u_n$$

mavjud emas

$$\lim_{n\to\infty}u_n<0$$

=====

$$\lim_{n\to\infty}u_n>0$$

=====

$$\lim_{n\to\infty}u_n\neq 0$$

$$\sum_{n=0}^{\infty} u_n$$

Musbat hadli hisoblanadi?

sonli qatorni Dalamber alomati orqali tekshirish uchun qaysi limit

=====

$$\lim_{n\to\infty}\frac{u_{n+1}}{u_n}$$

$$\lim_{n\to\infty} \sqrt[n]{u_n}$$

$$\lim_{n\to\infty}(u_{n+1}-u_n)$$

=====

$$\lim_{n\to\infty}(u_{n+1}+u_n)$$

$$\lim \sqrt{u_n}$$

Musbat hadli

sonli qatorni Koshi alomati orqali tekshirishda

$$\lim_{n \to \infty} \sqrt[n]{u_n} = k$$

boʻlsa, quyidagi tasdiqlardan qaysi biri notoʻgʻri?

=====

#) barcha tasdiqlar toʻgʻri

=====

k<1 boʻlsa qator yaqinlashuvchi

k>1 boʻlsa qator uzoqlashuvchi

=====

k=1 boʻlsa qator yaqinlashuvchi ham, uzoqlashuvchi ham boʻlishi mumkin

Umumlashgan garmonik qatorning umumiy u_n hadini koʻrsating

=====

$$u_n = \frac{1}{n^p}$$

$$u_n = \frac{1}{p+n}$$

$$u_n = \frac{p^n}{n}$$

$$u_n = \frac{1}{p^n}$$

Umumiy hadi $u_n=[(2n+3)/(4n+5)]^n$ bo'lgan sonli qator Koshi alomati yordamida

$$k = \lim_{n \to \infty} \sqrt[n]{u_n}$$

limit qiymati va qator yaqinlashuvi haqidagi tasdiq qaysi

tekshirilganda javobda toʻgʻri koʻrsatilgan? ===== #k = 0.5 va qator yaqinlashuvchi _____ *k*=2 va qator uzoqlashuvchi ____ *k*=1 va qator uzoqlashuvchi ===== *k*=0 va qator yaqinlashuvchi ____

z = x+iy kompleks son uchun Rez qanday aniqlanadi?

 $\# \operatorname{Re}_{z} = x$

=====

Rez=y

=====

Rez=x+y

to'g'ri javob keltirilmagan

z = x + iy kompleks sonning moduli |z| qanday aniqlanadi?

=====

$$_{\#}|z| = \sqrt{x^2 + y^2}$$

=====

$$|z| = x^2 + y^2$$

=====

$$|z| = \sqrt{x^2 - y^2}$$

=====

$$|z| = |x + y|$$

z = x + iy kompleks sonning moduli |z| qanday aniqlanadi?

$$_{\#}|z| = \sqrt{x^2 + y^2}$$

=====

$$|z| = x^2 + y^2$$

=====

$$|z| = \sqrt{x^2 - y^2}$$

|z| = |x + y|

$$z=32(\cos 20^0+i\sin 20^0)$$

 $z=10(\cos 75^{0}+i\sin 75^{0})$

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$

sonli qatorning S yigʻindisini toping.

======

$$\#S = 1$$

=====

$$S = 2$$

$$S = -2$$

=====

$$S = -1$$

n-xususiy yigʻindisi S_n boʻlgan sonli qator qaysi shartda yaqinlashuvchi deyiladi?

=====

$$\lim_{n\to\infty} S_n = C, |C| < \infty$$

=====

$$\lim_{n\to\infty}S_n=-\infty$$

=====

$$\lim_{n\to\infty}S_n=\infty$$

$$\mathbf{D}_{yz}\!\!=\!\!2(\mathbf{D}x\!\!+\!\!\mathbf{D}y)$$

 $D_{yz}=2(xDx+yDy+Dx\times Dy)$

$$u_n = 1 + \frac{1}{n}$$
 boʻlgan sonli qatorni toping.

Umumiy hadi

$$\frac{2}{1} + \frac{3}{2} + \frac{4}{3} + \frac{5}{4} + \cdots$$

$$\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$$

$$1 + \frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \cdots$$

$$1 - \frac{1}{2} + \frac{2}{3} - \frac{3}{4} + \cdots$$

z=f(x,y) funksiya $M_0(x_0,y_0)$ nuqtada differensiallanuvchi bo'lishi uchun qaysi shart talab etilmaydi?

$M_0(x_0,y_0)$ nuqta va uning biror atrofida f_x^\prime , f_y^\prime xususiy hosilalar musbat

=====

z=f(x,y) funksiya $M_0(x_0,y_0)$ nuqta va uning biror atrofida aniqlangan;

 $M_0(x_0,y_0)$ nuqta va uning biror atrofida f_χ' , f_y' xususiy hosilalar mavjud

) $M_0(x_0,y_0)$ nuqta va uning biror atrofida f_{χ}' , f_{y}' xususiy hosilalar uzluksiz

$$\frac{1}{a} + \frac{1}{a^2} + \dots + \frac{1}{a^n} + \dots$$

sonli qator qaysi shartda yaqinlashuvchi boʻladi?

=====

$$|a| \neq 0$$

$$|a|=1$$

$$|a| \neq 1$$

$$1 + \frac{1}{3} + \frac{1}{3^2} + \dots + \frac{1}{3^{n-1}} + \dots$$

sonli qator yigʻindisini toping.

1.5

1.33

=====

1

$$\frac{1}{1\cdot 3} + \frac{1}{2\cdot 4} + \frac{1}{3\cdot 5} + \dots + \frac{1}{n(n+2)} + \dots$$

sonli qator yigʻindisini

toping.

=====

#0.75.

=====

1

=====

e

=====

 $\Pi/2$

$$\sum_{k=1}^{\infty} u_k$$

sonli qator yaqinlashuvchi boʻlishining zaruriy sharti nimadan iborat?

=====

$$\lim_{n\to\infty} u_n = 0$$

$$\lim_{n\to\infty}u_n<0$$

$$\lim_{n\to\infty}u_n>0$$

$$\lim_{n\to\infty}u_n\neq 0$$

$$\sum_{k=0}^{\infty} u_k$$

Qaysi shartda = 1 sonli qator yaqinlashuvchi boʻladi?

======

$$\lim_{n\to\infty} u_n$$
mavjud emas

$$\lim_{n\to\infty}u_n<0$$

$$\lim_{n\to\infty}u_n>0$$

=====

$$\lim_{n\to\infty} u_n \neq 0$$

 $z_1=x_1+iy_1$ va $z_2=x_2+iy_2$ kompleks sonlarni qoʻshish amalining ta'rifi qayerda toʻgʻri ifodalangan?

======

$$#z_1+z_2=(x_1+x_2)+i(y_1+y_2)$$

======

$$z_1+z_2=(x_1+y_2)+i(x_2+y_1)$$

$z_1+z_2=(y_1+y_2)+i(x_1+x_2)$
=====
$z_1+z_2=(x_2+y_1)+i(x_1+y_2)$
$z_1=5+3i$ va $z_2=-1+2i$ kompleks sonlarning z_1+z_2 yigʻindisini toping.
=====
#4+5i
=====
6+5i
=====
5+4i
=====
8+5i
Kompleks sonlarni qoʻshish amali uchun quyidagi tengliklardan qaysi biri oʻrinli boʻlmaydi ?
=====
$_{\#}Z+\overline{Z}=0$
π
$z_1+z_2=z_2+z_1$
$z_1+(z_2+z_3)=(z_1+z_2)+z_3$
=====
z+z=2z
Trigonometrik shaklda berilgan $z_1=r_1(\cos j\ _1+i\sin j\ _1)$, $z_2=r_2(\cos j\ _2+i\sin j\ _2)\neq 0$ kompleks sonlarni z_1/z_2 boʻlinmasining moduli r nimaga teng?
=====
$\# r = r_1/r_2$
=====

Mavjud emas
=====
1
=====
2
=====
1/2
$f(x,y) = \sqrt{9 - x^2 - y^2}$ funksiyaning qiymatlar sohasini toping.
=====
#[0,3]
=====
(-3,3)
=====
(0,3)
=====
[-3,3]
1. Umumiy hadi $u_n = [(2n+1)/n]^n$ boʻlgan sonli qator Koshi alomati yordamida
$k = \lim_{n \to \infty} \sqrt[n]{u_n}$
tekshirilganda limit qiymati va qator yaqinlashuvi haqidagi tasdiq qaysi javobda toʻgʻri koʻrsatilgan ?
=====
#k=2 va qator uzoqlashuvchi
=====
<i>k</i> =0 va qator yaqinlashuvchi
======

$$f'_{x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$

$$f'_{x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y + \Delta y) - f(x, y)}{\Delta x}$$

=====

$$f'_{x} = \lim_{\Delta x \to 0} \frac{f(x, y + \Delta x) - f(x, y)}{\Delta x}$$

======

$$f'_{x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) + f(x, y)}{\Delta x}$$

 $z_1=x_1+y_1i$ va $z_2=x_2+y_2i$ kompleks sonlar qaysi shartda teng deyiladi?

$$\# x_1 = x_2, y_1 = y_2$$

=====

$$x_1 = x_2$$

$$x_1 = x_2$$
, $y_1^1 y_2$

======

$$x_1^1x_2$$
, $y_1 = y_2$

Quyidagi tengliklarning qaysi birida $z_1=x_1+y_1i$ va $z_2=x_2+y_2i$ kompleks sonlar teng boʻlmasligi mumkin?

=====

#barcha hollarda $z_1=z_2$ bo'ladi.

 $x_1 - x_2 = 0$, $y_1 - y_2 = 0$ ===== $(x_1 - x_2)^2 - (y_1 - y_2)^2 = 0$ ====== $(x_1 - x_2)^2 + (y_1 - y_2)^2 = 0$ Qayerda z kompleks sonning trigonometrik shakli toʻgʻri koʻrsatilgan? ____ $#z=r(\cos j+i\sin j)$ ____ $z=r(\cos j-i\sin j)$ $z=r(\sin j+i\cos j)$ ====== $z=r(\sin j-i\cos j)$ Agar $z_1+z_2=-3+i$ va $z_1-z_2=7-7i$ bo'lsa, z_1 nimaga teng? ====== #2-3i____ 5+2i====== -4+3i====== 2+3i z_1 =5+3i va z_2 =-1+2i kompleks sonlarning z_1 - z_2 ayirmasini toping.

keltitilgan barcha ifodalar sonli qator boʻladi

 $\lim_{n\to\infty} u_n$

Musbat hadli sonli qatorni Koshi alomati orqali tekshirish uchun qaysi limit hisoblanadi ?

=====

$$\lim_{n\to\infty} \sqrt[n]{u_n}$$

$$\lim_{n\to\infty} \sqrt{u_n}$$

=====

$$\lim_{n\to\infty} \sqrt[n]{u_n u_{n+1}}$$

$$\lim_{n\to\infty} \sqrt[n]{\frac{u_{n+1}}{u_n}}$$

1. Ikki oʻzgaruvchili z = f(x,y) funksiya qanday geometrik obyektni ifodalaydi?

#fazodagi sirtni

======

tekislikdagi toʻgʻri chiziqni

=====

tekislikdagi egri chiziqni

=====

fazodagi tekislikni

1. $z=x^2+y^2+2xy$ funksiyaning y boʻyicha D_yz xususiy orttirmasini toping.

$\#D_{y}z=2(x+y)Dy+Dy^2$
=====
$D_{y}z=2x+2y+2 (Dx+Dy)$
=====
$D_{y}z=2(Dx+Dy)$
=====
$D_{y}z=2(xDx+yDy+Dx\times Dy)$
α parametrning qanday qiymatida $\begin{bmatrix} 2 & 2 & 2 \end{bmatrix}$
$f(x,y) = \begin{cases} \frac{x^2 - y^2}{x - y}, & x \neq 1 \text{ va } y \neq 1; \\ \alpha, & x = 1 \text{ va } y = 1 \end{cases}$ funksiya M ₀ (1, 1) nuqtada
uzluksiz boʻladi?
2
=====
1
=====
0
=====
-1
Ta'rifni to'ldiring: $y = f(x)$ funksiya aniqlanish sohasi $D\{f\}$ debaytiladi
=====
#x argument qabul qiladigan qiymatlar to'plamiga aytiladi
=====
f(x) funksiya qabul qiladigan qiymatlar to'plamiga aytiladi

=====
f(x) funksiyaning musbat qiymatlar to'plamiga aytiladi
=====
f(x) funksiyaning manfiy qiymatlar to'plamiga aytiladi
Ushbu ifodalardan qaysi biri sonli qator boʻladi ?
=====
$\#u_1+u_2+u_3+\cdots+u_n+\cdots$
u_1 · u_2 · u_3 · · · · · u_n · · · ·
$u_1:u_2:u_3:\cdots:u_n:\cdots$
=====
keltitilgan barcha ifodalar sonli qator boʻladi
$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ sonli qatorning <i>S</i> yigʻindisini toping.
=====
#S =1
=====
S =2
=====
S = -2

n-xususiy yigʻindisi S_n boʻlgan sonli qator qaysi shartda yaqinlashuvchi deyiladi ?

S =-1

$$\lim_{n\to\infty} S_n = C, |C| < \infty$$

$$====$$

$$\lim_{n\to\infty} S_n = -\infty$$

$$====$$

$$\lim_{n\to\infty} S_n = \infty$$

$$====$$

$$\lim_{n\to\infty} S_n = \pm \infty$$
"Ikkita oʻyin soqqasi tashlanganda ochkolar koʻpaytmasi" tasdiq qanday davom ettirilganda muqarrar hodisaga ega boʻlamiz?
=====
36 dan katta boʻlmadi.
======
36 ga teng boʻldi.
======

36 dan kichik bo'ldi.

Qaysi shartda II tartibli chiziqli $y'' + a_1y' + a_2y = f(x)$ differentsaial tenglama bir jinsli deyiladi ?

=====

f(x) = 0

======

f(x)>0

$f(x)\neq 0$
===== f(x)
I tartibli chiziqli differensial tenglama Bernulli usulida qanday almashtirma yordamida yechiladi ?
=====
y=uv
=====
y=u-v
=====
y=u/v
=====
y=u+v
Ehtimollar nazariyasida qanday hodisalar sinfi qaralmaydi?
=====
Noma'lum hodisalar.
=====
Tasodifiy hodisalar.
=====
Muqarrar hodisalar.
=====
Mumkin bo'lmagan hodisalar.
Muqarrar hodisalar odatda qanday belgilanadi?
=====
$\#\Omega$.

[0,4]
(0,4)
=====
$\#[4,+\infty)$
$(-\infty,4]$
f(z)=u(x,y)+iv(x,y) funktsiyaning differensiallanuvchi boʻlishi uchun qaysi shartlar zarur va yetarli boʻladi? I. $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial x}$. II. $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$. III. $\frac{\partial u}{\partial x} = -\frac{\partial v}{\partial x}$. IV. $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$.
I va IV
I va II
=====
I va III
=====
IIva III
Ehtimollar nazariyasida hodisa qanday ta'riflanadi?
=====
Hodisa tushunchasi ta'rifsiz qabul etiladi.
=====
Har qanday tajribaning ixtiyoriy natijalari hodisa deyiladi.
Har qanday kuzatuvning ixtiyoriy natijalari hodisa deyiladi.
=====
Har qanday tasdiqlar hodisa deyiladi.

Umumlashgan garmonik qatorning umumiy u_n hadini koʻrsating

$$u_n = \frac{1}{n^p}$$

=====

$$u_n = \frac{1}{p+n}$$

=====

$$u_n = \frac{p^n}{n}$$

=====

$$u_n = \frac{1}{p^n}$$

Ehtimolning klassik ta'rifida barcha natijalar soni n=20, A hodisaga qulaylik yaratuvchi natijalar soni m(A)=8 boʻlsa, P(A) ehtimol qiymati nimaga teng boʻladi?

=====

0.4.

======

0.6.

=====

0.8.

=====

0.2.

A={tanlangan natural son juft} hodisaga qarama-qarshi hodisani aniqlang.

= { tanlangan natural son toq}.
=====
={ tanlangan natural son tub}.
=====
={ tanlangan natural son 2 ga karrali}.
=====
={ tanlangan natural son 3 ga karrali}.
n=6 ta elementdan hosil etilgan oʻrin almashtirishlar soni P6 nimaga teng?
=====
720 .
=====
220.
=====
160.
=====
640.
y=xlnx funksiya oʻsish sohasi qayerda toʻgʻri koʻrsatilgan?
=====
(1/e; ∞)
=====
(0, e)
=====
(-∞, 1/e)
=====
$(0,\!\infty)$

n=5 ta elementdan m=3 tadan hosil etilgan kombinatsiyalar soni nimaga teng?
=====
10
=====
12
15
=====
18
Differensial tenglama ta'rifini ko'rsating.
=====
$\#$ noma'lum funksiya va uning hosilalarining x_0 nuqtadagi qiymatlari qatnashgan tenglama .
=====
noma'lum funksiyaning hosilalari qatnashgan tenglama .
=====
noma'lum funksiyaning turli qiymatlari qatnashgan tenglama
=====
noma'lum funksiya qatnashgan tenglama .
$\label{thm:continuous} Ta'rifni to'ldiring: A va B hodisalarning ko'paytmasi deb ro'y berishini ifodalovchi va A·B kabi belgilanadigan yangi bir hodisaga aytiladi.$
=====
ularning ikkalasini ham
=====
ulardan birortasini.
=====
ulardan faqat bittasini.
=====

ulardan kamida bittasini.

-11

Ehtimolning klassik ta'rifida barcha natijalar soni n=20, A hodisaga qulaylik yaratuvchi natijalar soni m(A)=4 boʻlsa, P(A) ehtimol qiymati nimaga teng boʻladi?
=====
0.2 .
=====
0.6.
=====
0.8.
=====
0.12.
M(x,y)dx+N(x,y)dy=0 to 'liq differensialli tenglama bo 'lsa, uning umumiy integrali qaysi formula bilan ifodalanadi?
=====
$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} .$
=====
$\frac{\partial M}{\partial x} = \frac{\partial N}{\partial y}$
=====
$\frac{\partial M}{\partial x} = -\frac{\partial^2 N}{\partial y^2}$
=====
$\frac{\partial^2 M}{\partial x^2} = \frac{\partial^2 N}{\partial y^2}$
z=f(x,y) funksiyaning toʻliq differensiali df= $(2x+5y)$ dx+ $(3xy-4y)$ dy boʻlsa, $f_y'(-3,2)$ qiymatini toping
=====

4

-6

$$\sum_{n=0}^{\infty} u_n$$

Musbat hadli n=1 sonli qatorni Dalamber alomati orqali tekshirish uchun qaysi limit hisoblanadi?

=====

$$\lim_{n\to\infty}\frac{u_{n+1}}{u_n}$$

$$\lim_{n\to\infty} \sqrt[n]{u_n}$$

======

$$\lim_{n\to\infty}(u_{n+1}-u_n)$$

=====

$$\lim_{n\to\infty}(u_{n+1}+u_n)$$

 $z=x^2+y^3+xy$ funksiyaning dz toʻliq differensialini toping.

=====

$$_{\#}dz = (2x + y)dx + (3y^{2} + x)dy$$

$$dz = 2xdx + 3y^2 dy$$

$$dz = (3y^2 + x)dx + (2x + y)dy$$

======

$$dz = (x^2 + x)dx + (y^3 + y)dy$$

Trigonometrik shaklda berilgan $z_1=r_1(\cos j_1+i\sin j_1)$, $z_2=r_2(\cos j_2+i\sin j_2)\neq 0$ kompleks sonlarni z_1/z_2 boʻlinmasining moduli r nimaga teng?

=====

$r=r_1/r_2$

=====

 $r=r_1\cdot r_2$

 $r = r_1 - r_2$

 $r=r_1+r_2$

$$\frac{1}{a} + \frac{1}{a^2} + \dots + \frac{1}{a^n} + \dots$$

sonli qator qaysi shartda yaqinlashuvchi boʻladi?

======

======

$$|a| \neq 0$$

0.6.
=====
0.8.
=====
1
n=4 ta elementdan hosil etilgan oʻrin almashtirishlar soni P4 nimaga teng?
=====
24 .
=====
22.
=====
16.
=====
64.
n=4 ta kartochkada R, G, B, A harflari yozilgan. Shu kartochkalar tasodifiy ravishda bir qatorga yonma-yon qoʻyilganda, BARG soʻzini hosil boʻlish ehtimolini toping.
=====
1/24 .
=====
1/18.
=====
1/64.
=====
1/16.
n ta elementdan m tadan hosil etilgan oʻrinlashtirishlar soni qaysi formula bilan hisoblanadi?

n!/(n-m)!
=====
(n+m)!/n!
=====
n!/m! .
=====
(n+m)!/m!
$\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \frac{4}{5} + \cdots$ sonli gatorning u_n umumiy hadini ko'rsating
sonli qatorning u_n umumiy hadini koʻrsating.
=====
$\#u_n = n/(n+1)$
=====
$u_{n=(n-1)/(n+1)}$
=====
$u_{n=}n/(n-1)$
=====
$u_{n=(n+1)/n}$
$\lim_{n\to\infty} u_n$ Musbat hadli hisoblanadi ? sonli qatorni Koshi alomati orqali tekshirish uchun qaysi limit
=====
$\lim_{n \to \infty} \sqrt[n]{u_n}$

$$\lim_{n\to\infty} \sqrt{u_n}$$

$$\lim_{n\to\infty} \sqrt[n]{u_n u_{n+1}}$$

=====

$$\lim_{n\to\infty} \sqrt[n]{\frac{u_{n+1}}{u_n}}$$

Quyidagi qatorlardan qaysi birining yaqinlashuvini Koshi alomati yordamida aniqlab boʻladi?

=====

$$\sum_{n=1}^{\infty} \left(\frac{n}{2n+1} \right)^n$$

$$\sum_{n=1}^{\infty} \frac{n}{(n+1)^2}$$

=====

$$\sum_{n=1}^{\infty} \frac{n}{3^n}$$

$$\sum_{n=1}^{\infty} \frac{1}{1+2n}$$

$\sum_{k=0}^{\infty} u_k$
sonli qator yaqinlashuvchi boʻlishining zaruriy sharti nimadan iborat ?
=====
$\lim_{n\to\infty}u_n=0$
=====
$\lim_{n\to\infty}u_n<0$
=====
$\lim_{n\to\infty}u_n>0$
=====
$\lim_{n\to\infty}u_n\neq 0$
z = x + iy kompleks son uchun Rez qanday aniqlanadi?
=====
$\# \operatorname{Re} z = x$
=====
Rez=y
=====
Rez=x+y
=====
to'g'ri javob keltirilmagan
$z_1=x_1+iy_1$ va $z_2=x_2+iy_2$ kompleks sonlarni ayirish amalining ta'rifi qayerda to'g'ri ifodalangan?

$$#z_1-z_2=(x_1-x_2)+i(y_1-y_2)$$

$$z_1-z_2=(x_1-y_2)+i(x_2-y_1)$$

=====

$$z_1-z_2=(x_2-y_1)+i(x_1-y_2)$$

$$z_1-z_2=(x_1-y_1)+i(x_2-y_2)$$