1.1 ><> >

- a) $x^2 < y^2$. Falsa. Contra-exemplo x = -1, y = 0.
- b) x3<y3. Verdadeira.

 - (ii) se x<y com x=o (ey>0) então $x^2=o$ ey $^2>0$, donde $x^3=o$ e $y^3>0$, pelo que $x^3<y^3$.
 - (iii) Se x < y com y = 0 (e x < 0) então $x^2 > 0$ e $y^3 > 0$, donde $x^3 < 0$ e $y^3 = 0$ e, portanto, $x^3 < y^3$.
 - (iv) Se x<y com y<0 (e x<0) então $x^2 > xy > y^2$, donde $x<y^2 > x^2 < x^2 < y^2 > y^3$, ou seja, $x^3 < y^3$.
 - (v) se x < y com x < 0 e y > 0 então $x^2 > 0$, $y^2 > 0$ e $x^3 = x^2 \cdot x < 0$, $y^3 = y^2 \cdot y > 0$, donde $x^3 < y^3$.
- c) $\frac{1}{2x} < \frac{1}{y} (x \neq 0, y \neq 0)$. Falsa. Contra-excueplo x = 1, y = 2.
- d) $\frac{1}{23}$ > $\frac{1}{3}$ (x = 0, y = 0). Falsa. Contra-exemplo x = -2, y = 1.

- 1.2 Escreven umo intervalo ou neuri ão de intervalos.
- a) frek: 1-262} = [-1,+00[
- b) $\int x \in \mathbb{R}$: $0 \le 1 2x \le 1$ = $\int x \in \mathbb{R}$: $-1 \le -2x \le 0$ = $\int x \in \mathbb{R}$: $0 \le 2x \le 1$ = $\int [0, \frac{1}{2}]$
- c) $\{x \in \mathbb{R}: x^2 > 5\} = \{x \in \mathbb{R}: x > \sqrt{5} \ x < -\sqrt{5}\}$ = $[-\infty, -\sqrt{5}] \cup [5, +\infty[$
- (*) d) $\{x \in \mathbb{R} : x^2(x^2-1) > 0\} = \{x \in \mathbb{R} : x = 0 \lor x^2 1 > 0\}$ = $\{x \in \mathbb{R} : x = 0 \lor x > 1 \lor x < -1\}$ = $[x \in \mathbb{R} : x = 0 \lor x > 1 \lor x < -1]$
- (*) e) $\{x \in \mathbb{R}: | 5 \frac{1}{2} | < 1\} = \{x \in \mathbb{R}: -1 < 5 \frac{1}{2} < 1\}$ = $\{x \in \mathbb{R}: 4 < \frac{1}{2} < 6\} = \{x \in \mathbb{R}^+: \frac{1}{6} < x < \frac{1}{4}\}$ = $\frac{1}{6}, \frac{1}{4}$
 - 1) \xeR: 13-x1>2} = \xeR: 3-x7,2 \ 3-x<-2} = \xeR: x < 1 \ x75} = J-00,1] U [5,+00[
 - 9) $4 \times \epsilon \mathbb{R} : |5 \times 4 \times 2| \le 1$ = $4 \times \epsilon \mathbb{R} : -1 \le 5 \times 4 \times 2 \le 1$ = $4 \times \epsilon \mathbb{R} : -\frac{3}{5} \le x \le -\frac{4}{5}$ = $[-\frac{3}{5}, -\frac{4}{5}]$

$$(x)$$
 h) $\begin{cases} x \in \mathbb{R} : \sqrt{3x+1} = 2x \end{cases}$

$$= [1,1]$$

$$= [-2,0] \cup [2,+\infty[$$

$$\int \int \chi \in \mathbb{R} : 6x^{2} - 5x \le -1 = \int \chi \in \mathbb{R} : 6x^{2} - 5x + 1 \le 0$$

$$= \left[\frac{1}{3}, \frac{1}{2} \right]$$

$$= \left[\frac{1}{3}, \frac{1}{2} \right]$$

$$\left(6x^{2} - 5x + 1 \le 0 \right)$$

$$\left(6x^{2} - 5x + 1 \le 0 \right)$$

K)
$$\frac{1}{3} \times \frac{1}{3} = \frac{1}{3} \times \frac{1}{3} = \frac$$

m)
$$\left\{ x \in \mathbb{R} : \frac{1-x}{2x+3} > 0 \right\}$$

= $\left\{ x \in \mathbb{R} : \left(1-x > 0 \land 2x+3 > 0 \right) \lor \left(1-x < 0 \land 2x+3 < 0 \right) \right\}$
= $\left\{ x \in \mathbb{R} : \left(x < 1 \land x > 7 - \frac{3}{2} \right) \lor \left(x > 1 \land x < - \frac{3}{2} \right) \right\}$

0)
$$\frac{1}{3} \times ER$$
: $|x| |x+3| = 4$ = $\frac{1}{3} \times ER$: $|x^2 + 3x| = 4$ = $\frac{1}{3} \times ER$: $|x^2 + 3x| = 4$ = $\frac{1}{3} \times ER$: $|x^2 + 3x| = 4$ = $\frac{1}{3} \times ER$: $|x^2 + 3x| = 4$ = $\frac{1}{3} \times ER$: $|x^2 + 3x| = 4$ = $\frac{1}{3} \times ER$: $|x^2 + 3x| = 4$ = $\frac{1}{3} \times ER$: $|x^2 + 3x| = 4$ = $\frac{1}{3} \times ER$: $|x| + \frac{1}{3} \times ER$: $|x| + \frac{$

= face 1R: - 3 < x < 1 =] - 3/1[

- Elinuman o midulo, estudendo separadamente os

Eliminar es moi dulos, estradando separaclamente os casos x 50, 0< x 63 e x>3.

- trapiamente

J-00, -3[U]1, +00[

]1,+00[

- 1,3 Majorantes, mirrorantes, ...
 - a) $[-\sqrt{5},3] \cap Q = A$ Maj $A = [3,+\infty[$, Min $A =]-\infty, -\sqrt{5}]$ in $f A = -\sqrt{5}$, sup $A = 3 = \max A$ A mater possui mínumo.
 - B = [0,13] NR \Q Sevulhante, maragora B m jossuiminumo e possui máxumo.
 - c) $C = \frac{1}{2} \times C + \Omega : x^2 < 11 = J \sqrt{11}, \sqrt{11} [\Omega \Omega]$ Sewelhants an anteriores man $C \neq 0$ possession man nece max.
- d) $D = \{x \in \mathbb{R} : |x-5| < 3\} =]2, 8[$
- e) $1 x \in \mathbb{Z}$: $x^2 < \frac{25}{16} = 1 x \in \mathbb{Z}$: $-\frac{5}{4} < x < \frac{5}{4} = D$
- $D = \{-1,0,1\}$. Maj D = [1,+00[,MnD =]-00,-1]sup D = 1 = Max D, anf D = -1 = min D.
- $f) \, \left\{ x \in \mathbb{R} \setminus \mathbb{Q} : x < 0 \, \Lambda \, | \, x^2 1 | \, \langle \, x + 5 \, \rangle \right\} = F$ $(x^2) 5 \, \Lambda \, x < -1 \, \Lambda \, x^2 1 < x + 5 \,)$ $V(x^2) 5 \, \Lambda 1 < x < 0 \, \Lambda \, \Lambda x^2 < x + 5 \,)$ $C=1 \, \left(-5 < x < -1 \, \Lambda \, x^2 x 6 < 0 \, \right) \, V\left(-1 < x < 0 \, \Lambda \, x^2 + x + 4 > 0 \, \right)$ sew pre

$$0=0 \left(-5 \le \pi \le -1 \land -2 < \pi < 3\right) \lor \left(-1 < \pi \le 0\right)$$

$$\left[-2,-1\right] \cup \left[-1,0\right] = \left[-2,0\right]$$

Enta F =]-2,0] n R/Q

 $Maj F = [0, +\infty [, Min F =]-\infty, -2]$

Sup F = 0, inf F = -2

F mat possui ma'x never mun.

9)
$$G = \{x \in \mathbb{R}: S - x^2 < 1\} = \{x \in \mathbb{R}: x^2 > 4\}$$

$$= J - \infty, -2 [U]_{2, +00} [$$
May $G = \emptyset = \text{Nem } G$ e G posser $\{x \in \mathcal{M}\}$
max

h)
$$H = \frac{1}{4} + \frac{1}{m} : m \in \mathbb{N}$$
 $\int U \, dx \in \mathbb{R} : x^2 < 1$ $\int 1 + \frac{1}{m} : m \in \mathbb{N}$ $\int U \, dx \in \mathbb{R} : x^2 < 1$ $\int 1 + \frac{1}{m} : m \in \mathbb{N}$ $\int U \, dx \in \mathbb{R} : x^2 < 1$ $\int 1 + \frac{1}{m} : m \in \mathbb{N}$ $\int U \, dx \in \mathbb{R} : x^2 < 1$ $\int 1 + \frac{1}{m} : m \in \mathbb{N}$ $\int U \, dx \in \mathbb{R} : x^2 < 1$ $\int 1 + \frac{1}{m} : m \in \mathbb{N}$ $\int U \, dx \in \mathbb{R} : x^2 < 1$ $\int 1 + \frac{1}{m} : m \in \mathbb{N}$ $\int U \, dx \in \mathbb{R} : x^2 < 1$ $\int 1 + \frac{1}{m} : m \in \mathbb{N}$ $\int U \, dx \in \mathbb{R} : x^2 < 1$ $\int 1 + \frac{1}{m} : m \in \mathbb{N}$ $\int U \, dx \in \mathbb{R} : x^2 < 1$ $\int 1 + \frac{1}{m} : m \in \mathbb{N}$ $\int U \, dx \in \mathbb{R} : x^2 < 1$ $\int 1 + \frac{1}{m} : m \in \mathbb{N}$ $\int U \, dx \in \mathbb{R} : x^2 < 1$ $\int 1 + \frac{1}{m} : m \in \mathbb{N}$ $\int U \, dx \in \mathbb{R} : x^2 < 1$ $\int 1 + \frac{1}{m} : m \in \mathbb{N}$ $\int U \, dx \in \mathbb{R} : x^2 < 1$ $\int 1 + \frac{1}{m} : m \in \mathbb{N}$ $\int U \, dx \in \mathbb{R} : x^2 < 1$ $\int 1 + \frac{1}{m} : m \in \mathbb{N}$ $\int U \, dx \in \mathbb{R} : x^2 < 1$ $\int 1 + \frac{1}{m} : m \in \mathbb{N}$ $\int U \, dx \in \mathbb{R} : x^2 < 1$ $\int 1 + \frac{1}{m} : m \in \mathbb{N}$ $\int U \, dx \in \mathbb{R} : x^2 < 1$ $\int 1 + \frac{1}{m} : m \in \mathbb{N}$ $\int U \, dx \in \mathbb{R} : x^2 < 1$ $\int 1 + \frac{1}{m} : m \in \mathbb{N}$ $\int U \, dx \in \mathbb{R} : x \in \mathbb{R} : x \in \mathbb{R}$ $\int U \, dx \in \mathbb{R} : x \in \mathbb{R}$ $\int U \, dx \in \mathbb{R}$ $\int U \, dx \in \mathbb{R} : x \in \mathbb{R}$ $\int U \, dx \in \mathbb{R}$

Maj $H = [3,+\infty)$ Man $H = [3,-\infty,-1]$ $\sup H = 3$, $\inf H = -1$, $\max H = 3$ $H = \infty$ possui mirumo. 1.4 ...

- 1,5 a) $\forall x \in \mathbb{R}: x>7 \Rightarrow |x|>7$ Vendadeina.
 - b) $fx \in \mathbb{R}$: $|1+4x|<1 = 0 x>_{7} \frac{1}{z}$ Vendadeura. -1<1+4x<1 - $\frac{1}{2}$ <x<0
 - c) $fx \in \mathbb{R}$: $|x| > 1 = 0 \times > 1$ Falsa. Podeuws ter |x| > 1 com $x \le -1$.
 - d) $\forall x \in \mathbb{R}$: $|x-5| \le 2 \Rightarrow 0 \implies 3 < x < 7$ Falsa. $-2 \le x - 5 \le 2$ $3 \le x \le 7$ Podemos ter $|x-5| \le 2$ com x=3 (or x=7).

1.6 - Now é válida a lei do conte (3º inuplicação), pg a-6=0.

1.7-
$$\sqrt{x+y} = \sqrt{x} + \sqrt{y}$$
: Falsa $(x=1, y=1)$

$$\sqrt{xy} = \sqrt{x} \sqrt{y}$$
: Falsa $(x<0, y<0)$
Vendaderra se $x>0$ $y>0$.

Supus men $(x+y)^m = x^m + y^m$: Falsa $(m=2, x=1, y=1)$

$$(xy)^m = x^m + y^m$$
: Vendaderra