MOwNiT

Rozwiązywanie układów równań liniowych metodami iteracyjnymi

Kacper Bieniasz

14 czerwca 2024

1 Dane techniczne sprzętu

Obliczenia zostały wykonane na komputerze o następującej specyfikacji:

- Procesor: AMD Ryzen 7 5800U

- Pamięć RAM: 16 GB DDR4 3200 MHz (2×8GB)

- System operacyjny: Windows 11 Home x64

2 Opis zagadnienia oraz sposób realizacji

Celem zadania było wykorzystanie metody **Jacobiego** [1] [2] do rozwiązania układu równań liniowych w postaci macierzowej $\mathbf{A}\mathbf{x} = \mathbf{b}$.

W celu otrzymywania takich samych wyników niezależnie od czynników losowych ustawiam seed korzystając z funkcji np.random.seed(42). Jest ona konieczna, ponieważ na początku losuję wektor początkowy \mathbf{x} jako permutację $\{-1,1\}$, na jego podstawie obliczam wektor \mathbf{b} . Korzystam z metody **Jacobiego**, w ten sposób otrzymuję wektor obliczony \mathbf{y} . Obliczenia powtarzam dla różnych wielkości układu, dwóch wektorów początkowych (jeden wektor zerowy, drugi jako permutacja $\{-100, 100\}$), dwóch kryteriów stopu z różnymi dokładnościami. Obliczam czas oraz liczbę iteracji (wprowadziłem limit iteracji na 1000) dla danego kryterium po czym wyznaczam promień spektralny macierzy iteracji.

3 Rozważany układ

Postać ogólna układu eksperymentalnego ma się następująco:

$$\mathbf{A} = \begin{cases} a_{i,i} = k \\ a_{i,j} = \frac{1}{|i-j|+m} \text{ dla } i \neq j \end{cases}$$
 (1)

Gdzie:

k, m- parametry

 $i, j \in \{1, \dots, n\}$ – współrzędne elementów macierzy

n- rozmiar macierzy

 $a_{i,j}-$ element macierzy na $i-{\rm tym}$ wierszu, na $j-{\rm tej}$ kolumnie

W rozważanym układzie parametry przyjmują wartości k=10 i m=5, układ prezentuje się następująco:

$$\mathbf{A} = \begin{cases} a_{i,i} = 10 \\ a_{i,j} = \frac{1}{|i-j|+5} \text{ dla } i \neq j \end{cases}$$
 (2)

4 Kryteria stopu

Korzystam z dwóch kryteriów stopu. Dla każdego użyta norma to norma euklidesowa.

1. Kryterium różnicy iteracyjnej:

$$||\mathbf{x}^{(i+1)} - \mathbf{x}^i|| < \rho \tag{3}$$

Stosując wzór na normę euklidesową kryterium przyjmuje postać:

$$\sqrt{\sum_{p=1}^{n} (\mathbf{x}_{p}^{(i+1)} - \mathbf{x}_{p}^{(i)})^{2}} < \rho$$

2. Kryterium rezidualne:

$$||\mathbf{A}\mathbf{x}^{(i)} - \mathbf{b}|| < \rho \tag{4}$$

Stosując wzór na normę euklidesową kryterium przyjmuje postać:

$$\sqrt{\sum_{p=1}^{n}((\mathbf{A}\mathbf{x}^{(i)})_{p}-\mathbf{b}_{p})^{2}}<\rho$$

Dla obu kryteriów:

 $\mathbf{x}^{(k)}$ – k – te wyznaczenie wektora \mathbf{x}

 ρ – dokładność

 \mathbf{x}_p – p – ta współrzędna wektora \mathbf{x}

5 Kryterium pomiaru błędu

W celu wyznaczenia różnicy miedzy zadanym wektorem, a wyznaczonym metodą **Jacobiego**, ponownie korzystam z normy euklidesowej. Wzór na błąd ma się następująco:

$$||\mathbf{x} - \mathbf{y}|| = \sqrt{\sum_{i=1}^{n} (\mathbf{x}_i - \mathbf{y}_i)^2}$$
 (5)

gdzie:

 \mathbf{x} -wektor zadany

y-wektor obliczony metoda Jacobiego

 $\mathbf{x}_i, \mathbf{y}_i - i$ -ta współrzędna danego wektora

6 Promień spektralny

W celu wyznaczenia promienia spektralnego macierzy iteracji stosuję wbudowane funkcje biblioteczne. Promień spektralny pozwala stwiedzić czy metoda **Jacobiego** będzie zbierzna. Promień spektralny macierzy iteracji < 1 jest warunkiem koniecznym i wystarczającym zbieżności metody **Jacobiego**.

7 Otrzymane wyniki

Wyniki prezentuję zmieniając rozmiar macierzy o 25, zaczynając od n=25, dla $n \in \{25, ..., 500\}$. Dla większych n krok wynosi 100. Tabele liczby iteracji, czasów i błędów są przedstawione w opisany powyżej sposób.

7.1 Wyniki dla wektora zerowego

Porównanie liczby iteracji w zależności od wybranego kryterium

Tabele (1, 2) zawierają liczbę iteracji w zależności od rozmiaru układu i dokłandości. Prównując obie tabele między sobą pierwsze co dostrzegamy to większa liczba iteracji dla kryterium rezidualnego (4). Dokładność 10^{-15} jest zbyt restrykcyjna dla kryterium rezidualnego, nawet dla małych rozmiarów układu. Dodatkowo wcześniej osiągany jest limit iteracji nawet dla największych dokładność. Dla obu kryteriów występuje ciekawa właściwość, ponieważ liczba iteracji nie wzrasta monotonicznie. Przeważnie dla rozmiarów parzystych liczba iteracji jest mniejsza niż dla mniejszych nieparzystych.

	Dokładność ρ						
n	10^{-1}	10^{-2}	10^{-3}	10^{-5}	10^{-10}	10^{-15}	
25	3	5	6	10	17	24	
50	4	4	5	11	20	32	
75	3	7	6	13	25	38	
100	4	8	7	15	29	43	
125	4	8	9	17	31	49	
150	5	6	12	14	34	51	
175	6	9	9	19	38	59	
200	5	7	15	22	36	63	
225	6	11	15	21	44	65	
250	5	11	13	23	44	73	
275	7	10	17	26	47	74	
300	10	11	18	25	49	78	
325	8	11	18	29	55	77	
350	8	13	18	31	59	85	
375	10	10	19	34	61	90	
400	8	14	21	26	64	98	
425	9	8	21	34	59	94	
450	5	8	14	35	69	105	
475	9	17	23	37	71	119	
500	9	19	23	38	69	101	
600	11	20	28	45	86	137	
700	15	25	34	54	102	1000	
800	16	27	39	61	118	1000	
900	12	25	38	64	130	1000	
1000	23	38	54	84	160	248	
1100	25	42	60	95	184	1000	
1200	26	47	67	109	212	1000	
1300	21	45	70	119	242	1000	
1400	24	53	83	142	290	1000	
1500	52	88	125	198	380	1000	
1600	41	87	133	226	458	1000	
1700	68	130	192	316	627	1000	
1800	149	240	330	512	964	1000	
1900	231	389	548	866	1000	1000	
2000	809	1000	1000	1000	1000	1000	
2100	1000	1000	1000	1000	1000	1000	

Tabela 1: Liczba iteracji dla wektora zerowego stosując pierwsze kryterium

				dność ρ		
n	10^{-1}	10^{-2}	10^{-3}	10^{-5}	10^{-10}	10^{-15}
25	3	5	6	9	17	1000
50	4	6	8	12	22	1000
75	6	8	11	16	27	1000
100	7	10	12	18	31	1000
125	6	9	12	18	33	1000
150	8	11	14	21	38	1000
175	9	12	16	23	41	1000
200	10	13	17	25	44	1000
225	10	14	18	26	47	1000
250	5	7	11	20	42	1000
275	10	15	20	29	52	1000
300	8	12	17	27	52	1000
325	13	18	23	34	60	1000
350	12	18	23	34	61	1000
375	7	12	17	29	58	1000
400	15	21	27	39	69	1000
425	11	17	23	36	67	1000
450	16	23	29	42	75	1000
475	17	23	30	44	78	1000
500	16	23	30	45	80	1000
600	19	27	35	52	94	1000
700	24	33	43	63	111	1000
800	26	38	49	72	128	1000
900	24	37	50	76	142	1000
1000	37	53	68	98	174	1000
1100	41	59	77	112	200	1000
1200	46	66	87	128	232	1000
1300	44	69	94	143	266	1000
1400	52	82	111	171	319	1000
1500	87	124	160	233	416	1000
1600	86	132	179	272	504	1000
1700	129	191	253	378	688	1000
1800	239	329	420	601	1000	1000
1900	388	547	706	1000	1000	1000
2000	1000	1000	1000	1000	1000	1000

Tabela 2: Liczba iteracji dla wektora zerowego stosując drugie kryterium

Porównanie czasów dla obu kryteriów

Tabele (3, 4) zawierają czas obliczeń w zależności od rozmiaru układu oraz wybranej dokładności. Zauważamy wzrost potrzebnego czasu na wykonanie obliczeń wraz ze wzrostem liczby iteracji. Czas dla krytereium rezidualnego jest dodatkowo wydłużany przez obliczenie mnożenia macierzy $\mathbf{A} \cdot \mathbf{x}$.

	Dokładność ρ						
n	10^{-1}	10^{-2}	10^{-3}	10^{-5}	10^{-10}	10^{-15}	
25	3.0740e-04	2.3750e-04	2.3460e-04	2.5780e-04	2.7240e-04	3.2020e-04	
50	4.6490e-04	4.8340e-04	5.0270e-04	5.0910e-04	5.4650 e - 04	6.1260e-04	
75	8.0820e-04	8.9360e-04	8.4430e-04	9.5890e-04	1.0690e-03	1.0379e-03	
100	1.9404e-03	2.4234e-03	2.4601e-03	3.4853e-03	5.0315e-03	6.9896e-03	
125	2.3116e-03	2.5917e-03	3.0923e-03	3.9587e-03	5.9034e-03	8.3711e-03	
150	4.0683e-03	2.9761e-03	4.7752e-03	4.9841e-03	7.6610e-03	9.9247e-03	
175	8.0248e-03	5.2342e-03	8.0299e-03	5.9146e-03	7.7042e-03	4.1949e-02	
200	6.8167e-03	6.3513e-03	6.0511e-03	7.2152e-03	9.5379e-03	1.1168e-02	
225	6.0800 e-03	5.7303e-03	7.5692e-03	8.0586e-03	9.6049e-03	1.2729e-02	
250	7.4557e-03	4.5964e-03	5.6641e-03	7.9715e-03	1.0025e-02	2.3062e-02	
275	8.1620e-03	7.3429e-03	7.7019e-03	8.7348e-03	1.0693e-02	1.6019e-02	
300	7.4400e-03	8.2084e-03	7.4752e-03	1.4276e-02	1.1317e-02	1.6313e-02	
325	7.7016e-03	3.8913e-02	8.6033e-03	9.5279e-03	1.4486e-02	1.8799e-02	
350	7.2812e-03	1.1433e-02	8.5260e-03	1.0448e-02	1.3273e-02	1.3811e-01	
375	4.3344e-02	4.3528e-02	9.8505e-03	1.0441e-02	1.5851e-02	3.3919e-02	
400	9.3825 e-03	8.8780e-03	9.6822e-03	1.0944e-02	1.4678e-02	2.1307e-02	
425	9.4914e-03	1.0148e-02	1.0520e-02	2.5876e-02	2.1459e-02	2.2206e-02	
450	1.3350e-02	1.4118e-02	1.4781e-02	1.8852e-02	2.1599e-02	2.6689e-02	
475	1.2125e-02	1.5309e-02	1.3917e-02	1.7205e-02	2.3155e-02	2.6501e-02	
500	1.3847e-02	2.5797e-02	1.5124e-02	1.8191e-02	2.2216e-02	1.4734e-01	
600	1.8556e-02	1.9377e-02	2.6279e-02	2.2912e-02	3.5385e-02	3.3851e-02	
700	2.5456e-02	2.9261e-02	2.8727e-02	3.9025e-02	3.9170e-02	1.6702e-01	
800	2.9434e-02	3.3739e-02	3.8172e-02	4.0584 e-02	5.5428e-02	1.9474e-01	
900	4.7171e-02	4.1076e-02	3.8177e-02	7.3766e-02	5.5597e-02	2.2656e-01	
1000	4.8736e-02	5.4134e-02	6.1726e-02	8.2111e-02	1.2451e-01	1.9844e-01	
1100	1.6151e-01	7.3325e-02	8.7945e-02	9.3098e-02	1.1162e-01	6.1186e-01	
1200	7.8389e-02	8.4032e-02	9.6837e-02	1.1488e-01	1.5303e-01	4.9386e-01	
1300	8.2348e-02	9.2083e-02	1.1661e-01	1.4288e-01	2.1707e-01	6.8230e-01	
1400	1.4007e-01	1.2868e-01	1.4486e-01	2.0406e-01	3.1034e-01	9.3563e-01	
1500	1.4556e-01	3.9022e-01	2.8915e-01	2.8820e-01	4.7099e-01	1.1110e+00	
1600	1.7538e-01	2.3072e-01	2.7994e-01	3.9241e-01	6.6850e-01	1.3320e+00	
1700	2.4974e-01	3.5179e-01	4.8414e-01	5.8966e-01	1.0887e + 00	1.7570e + 00	
1800	1.1613e+00	1.5167e + 00	1.6047e+00	1.6963e+00	3.0986e+00	3.2069e+00	
1900	1.4914e + 00	2.2288e+00	2.1781e+00	3.1471e+00	$3.3584e{+00}$	3.4382e+00	
2000	3.2448e+00	3.6060e+00	3.3804e+00	3.0086e+00	2.5465e+00	2.4396e+00	
2100	$3.8800e{+00}$	3.6098e+00	3.9130e+00	4.6909e+00	$4.8320e{+00}$	4.1195e+00	

Tabela 3: Czasu obliczeń dla wektora zerowego stsując pierwsze kryterium

	Dokładność ρ						
n	10^{-1}	10^{-2}	10^{-3}	10^{-5}	10^{-10}	10^{-15}	
25	2.4230e-04	2.4510e-04	2.4260e-04	2.5230e-04	2.9840e-04	7.2020e-03	
50	5.4700e-04	5.0730e-04	5.2520e-04	5.2510e-04	6.6540 e - 04	8.0289e-03	
75	9.7820e-04	7.7610e-04	8.2720e-04	9.6330e-04	9.7830e-04	9.7252e-03	
100	3.2296e-03	2.9589e-03	4.6197e-03	4.7745e-03	7.0723e-03	1.8940e-01	
125	4.1705e-03	4.3237e-03	4.3353e-03	4.7993e-03	8.2096e-03	1.9274e-01	
150	4.2630e-03	1.2762e-02	5.7484e-03	6.9408e-03	9.8441e-03	1.8879e-01	
175	3.5709e-02	9.2929e-03	5.5129e-03	6.7357e-03	9.9401e-03	1.8757e-01	
200	5.8223e-03	7.8408e-03	6.0029e-03	8.0438e-03	1.1054e-02	1.9073e-01	
225	5.2325 e-03	7.7718e-03	6.6793e-03	8.0652e-03	1.1937e-02	1.8860e-01	
250	1.4872e-02	1.1362e-02	5.9670e-03	8.6196e-03	1.2103e-02	1.9478e-01	
275	6.0929 e-03	7.0621e-03	8.0912e-03	4.4202e-02	1.3764e-02	1.8701e-01	
300	6.8063 e-03	7.8147e-03	8.4737e-03	1.1577e-02	1.4820e-02	1.9245e-01	
325	7.9032e-03	9.8516e-03	9.7136e-03	1.1827e-02	1.6508e-02	1.9162e-01	
350	9.3082e-03	1.0171e-02	1.1577e-02	1.4267e-02	3.8342e-02	2.0266e-01	
375	8.1932e-03	9.0177e-03	1.1206e-02	1.2511e-02	1.8192e-02	2.0037e-01	
400	1.1738e-02	1.1357e-02	1.3177e-02	1.5320e-02	2.0411e-02	1.9622e-01	
425	1.2752e-02	1.4572e-02	1.6692e-02	1.7124e-02	2.2813e-02	2.0500e-01	
450	1.4327e-02	1.4787e-02	1.4713e-02	2.3164e-02	2.4674e-02	2.9390e-01	
475	2.3464e-02	1.3234e-02	1.4774e-02	1.7913e-02	2.3995e-02	2.1814e-01	
500	1.6620e-02	1.9215e-02	1.9083e-02	1.9782e-02	2.8360e-02	2.2337e-01	
600	2.3660e-02	2.7465e-02	7.9791e-02	3.6098e-02	3.5978e-02	2.5047e-01	
700	3.6308e-01	3.9648e-01	2.8487e-02	3.2802e-02	4.5588e-02	2.3612e-01	
800	7.2977e-02	3.6081e-02	6.6478e-02	5.5792e-02	5.8265 e-02	3.1206e-01	
900	3.7801e-02	4.2548e-02	4.6215e-02	6.1215 e-02	8.2674e-02	3.4827e-01	
1000	5.9691e-02	7.2514e-02	7.7090e-02	1.1618e-01	1.5800e-01	5.9915e-01	
1100	7.9645e-02	1.0319e-01	1.2916e-01	1.2652e-01	1.8762e-01	7.2689e-01	
1200	1.0832e-01	1.1955e-01	1.4103e-01	1.7823e-01	2.7855e-01	9.7460e-01	
1300	1.2257e-01	1.4984e-01	1.8506e-01	2.4585e-01	3.9610e-01	1.2950e + 00	
1400	1.6204e-01	2.5364e-01	2.5314e-01	3.3019e-01	5.7494e-01	1.8921e+00	
1500	2.4805e-01	3.0746e-01	3.7480e-01	6.5136e-01	8.3420e-01	1.8322e+00	
1600	3.2739e-01	4.2021e-01	5.0937e-01	6.7587e-01	$1.2295\mathrm{e}{+00}$	2.3296e+00	
1700	6.3395e-01	1.6622e+00	$1.8610\mathrm{e}{+00}$	2.0553e+00	2.4194e+00	3.1202e+00	
1800	8.8965e-01	1.9480e + 00	2.5548e + 00	2.9309e+00	4.1445e+00	4.5635e + 00	
1900	2.2003e+00	3.1903e+00	3.6203e+00	4.6038e+00	4.5009e+00	4.8653e + 00	
2000	4.2519e+00	$4.2046\mathrm{e}{+00}$	4.0187e + 00	4.1592e+00	3.9623e+00	4.8676e + 00	

Tabela 4: Czasy obliczeń dla wektora zerowego stosując drugie kryterium

Dla przykładu biorąc czas dla rozmiaru n=1000, tabela (5) zawiera zestawienie czsów dla obu kryteriów w zależności od dokładości.

	Dokładność ρ						
n	10^{-1}	10^{-2}	10^{-3}	10^{-5}	10^{-10}	10^{-15}	
Kryterium 1	4.8736e-02	5.4134e-02	6.1726e-02	8.2111e-02	1.2451e-01	1.9844e-01	
Kryterium 2	5.9691e-02	7.2514e-02	7.7090e-02	1.1618e-01	1.5800e-01	5.9915e-01	

Tabela 5: Czasy obliczeń dla wektora zerowego stosując drugie kryterium

Porównanie błędów obliczeń dla obu kryteriów

Tabele (6, 7) zawierają błędy obliczeń w zależności od rozmiaru układu oraz wybranej dokładności. Kryterium rezidualne cechuje się lepszą dokłanodścią przeważnie jest to jeden rząd wielkości. Nawet w przypadku gdzie osiągnieta jest maksymalna liczba iteracji (n=2000) błąd jest rzędu 10^{-2} .

	Dokładność ρ						
n	10^{-1}	10^{-2}	10^{-3}	10^{-5}	10^{-10}	10^{-15}	
25	6.7818e-03	1.4402e-03	6.5241e-05	6.2926e-07	1.2461e-11	6.3777e-16	
50	1.2246e-02	1.1769e-03	1.1472e-04	1.0910e-06	9.6232e-12	1.3999e-15	
75	1.2547e-02	1.7871e-03	2.5475e-04	1.9546e-06	1.6404e-11	1.5701e-15	
100	2.1983e-02	1.7035e-03	1.3207e-04	1.8618e-06	2.8684e-11	2.4825e-15	
125	1.5195e-02	1.5321e-03	1.5454e-04	1.5723e-06	1.6416e-11	3.4506e-15	
150	3.2693 e-02	2.0097e-03	2.4836e-04	1.8895e-06	2.7135e-11	3.4738e-15	
175	2.6292e-02	2.0140e-03	2.9326e-04	3.2712e-06	3.1179e-11	4.0245e-15	
200	2.2484e-02	2.0664e-03	3.4495e-04	2.9143e-06	3.4725e-11	4.2422e-15	
225	2.4164e-02	2.5932e-03	2.7844e-04	3.2103e-06	2.6229e-11	4.8151e-15	
250	7.8714e-03	1.0138e-03	2.7166e-04	2.3469e-06	2.3069e-11	5.4276e-15	
275	2.4582e-02	3.4031e-03	2.8737e-04	3.3595e-06	2.3650e-11	5.6567e-15	
300	1.8263e-02	2.4733e-03	3.7930e-04	3.5268e-06	2.9409e-11	5.7987e-15	
325	2.9963e-02	3.2563e-03	3.5389e-04	2.6816e-06	2.6084e-11	6.7028e-15	
350	2.8238e-02	3.4177e-03	2.7145e-04	2.6120e-06	2.9299e-11	7.0199e-15	
375	1.6243e-02	2.5029e-03	2.9374e-04	3.5090e-06	3.0102e-11	7.6910e-15	
400	3.0033e-02	2.9987e-03	2.9944e-04	2.9859e-06	2.9648e-11	7.6919e-15	
425	2.7966e-02	2.9562e-03	3.2663e-04	3.9900e-06	3.1583e-11	8.2948e-15	
450	3.1530e-02	3.8297e-03	3.2735e-04	3.3986e-06	3.1313e-11	8.6576e-15	
475	3.2613e-02	3.0892e-03	4.0976e-04	3.6769e-06	3.9272e-11	9.4395e-15	
500	3.5306e-02	3.6816e-03	3.8399e-04	4.1774e-06	3.7335e-11	1.0180e-14	
600	3.9101e-02	3.2801e-03	3.6246e-04	3.3606e-06	4.2040e-11	1.1665e-14	
700	3.8385e-02	3.6017e-03	4.2817e-04	3.7696e-06	4.4009e-11	1.3454e-14	
800	4.1552e-02	4.3986e-03	3.7965e-04	4.2543e-06	3.7595e-11	1.4660e-14	
900	4.2606e-02	4.3053e-03	4.3527e-04	4.4490e-06	3.9398e-11	1.6325e-14	
1000	4.4142e-02	4.5192e-03	3.9745e-04	4.1658e-06	4.0250e-11	1.8687e-14	
1100	4.2422e-02	4.6237e-03	4.4235e-04	4.6126e-06	4.2116e-11	1.9573e-14	
1200	4.3878e-02	4.2587e-03	4.6189e-04	4.3511e-06	4.6796e-11	2.3691e-14	
1300	4.4785e-02	4.7365e-03	4.5618e-04	4.6468e-06	4.6436e-11	2.2950e-14	
1400	4.4635e-02	4.6904 e-03	4.5605e-04	4.6596e-06	4.7297e-11	2.5828e-14	
1500	4.5472e-02	4.6934e-03	4.5482e-04	4.5493e-06	4.6977e-11	2.8179e-14	
1600	4.6688e-02	4.7686e-03	4.8705e-04	4.8352e-06	4.8670e-11	2.8378e-14	
1700	4.8349e-02	4.8513e-03	4.8678e-04	4.9010e-06	4.8033e-11	3.1023e-14	
1800	4.9013e-02	4.8491e-03	4.9210e-04	4.8167e-06	4.9272e-11	1.9730e-11	
1900	4.9053e-02	4.9576e-03	4.9382e-04	4.8998e-06	7.0143e-07	7.0143e-07	
2000	4.9718e-02	2.2056e-02	2.2056e-02	2.2056e-02	2.2056e-02	2.2056e-02	
2100	3.4492e + 02	3.4492e+02	3.4492e+02	3.4492e+02	3.4492e+02	3.4492e + 02	

Tabela 6: Błedy dla wektora zerowego stosując pierwsze kryterium

			Dokłac	lność ρ		
n	10^{-1}	10^{-2}	10^{-3}	10^{-5}	10^{-10}	10^{-15}
25	6.7818e-03	3.0650e-04	6.5241e-05	6.2926e-07	2.6526e-12	5.9787e-16
50	3.7768e-03	3.6739e-04	3.5826e-05	3.4071e-07	3.0053e-12	1.3506e-15
75	4.7341e-03	6.7474e-04	3.6316e-05	2.7864e-07	6.1936e-12	1.4812e-15
100	3.9951e-03	3.0973e-04	5.6316e-05	3.3851e-07	5.2153e-12	2.4425e-15
125	3.2913e-03	3.3198e-04	3.3486e-05	3.4069e-07	3.5571e-12	3.4291e-15
150	4.0347e-03	4.9861e-04	6.1622e-05	4.6881e-07	3.3534e-12	3.4399e-15
175	3.8282e-03	5.5743e-04	4.2702e-05	4.7632e-07	4.5399e-12	4.0076e-15
200	3.7529e-03	6.2648e-04	5.7584e-05	4.8650e-07	5.7972e-12	4.3398e-15
225	4.5302e-03	4.8642e-04	5.2229e-05	6.0217e-07	4.9194e-12	4.7675e-15
250	2.5745e-03	4.9279e-04	5.4546e-05	4.8714e-07	4.7885e-12	5.4117e-15
275	5.5790e-03	4.7112e-04	3.9784e-05	4.6509e-07	5.3675e-12	5.6687e-15
300	3.9715e-03	6.0563e-04	5.8387e-05	5.4295e-07	4.5274e-12	5.7796e-15
325	5.0757e-03	5.5163e-04	5.9950e-05	4.5427e-07	4.4190e-12	6.6973e-15
350	5.2128e-03	4.1403e-04	5.0159e-05	4.8265e-07	5.4136e-12	7.0199e-15
375	4.2861e-03	4.4050e-04	5.8639e-05	4.6950e-07	4.0274e-12	7.7007e-15
400	4.4025e-03	4.3963e-04	4.3900e-05	4.3776e-07	4.3462e-12	7.6750e-15
425	4.2692e-03	4.7149e-04	5.2112e-05	4.4100e-07	5.0389e-12	8.3267e-15
450	5.4419e-03	4.6516e-04	5.6499e-05	5.8659e-07	5.4044e-12	8.6896e-15
475	4.3257e-03	5.7379e-04	5.4353e-05	4.8773e-07	5.2094e-12	9.4088e-15
500	5.0848e-03	5.3035e-04	5.5317e-05	4.3571e-07	5.3786e-12	1.0180e-14
600	4.3199e-03	4.7735e-04	5.2748e-05	4.8905e-07	4.6456e-12	1.1678e-14
700	4.5632e-03	5.4247e-04	5.0900e-05	4.4813e-07	5.2308e-12	1.3454e-14
800	5.3949e-03	4.6563e-04	4.9291e-05	4.5036e-07	4.8816e-12	1.4660e-14
900	5.1352e-03	5.1917e-04	5.2489e-05	5.3651e-07	4.7510e-12	1.6325e-14
1000	5.2607e-03	4.6267e-04	4.7367e-05	4.9648e-07	4.7970e-12	1.8680e-14
1100	5.2676e-03	5.0395e-04	4.8213e-05	5.0274e-07	5.2302e-12	1.9573e-14
1200	4.7590e-03	5.1615e-04	5.0096e-05	5.2735e-07	5.0757e-12	2.3691e-14
1300	5.2013e-03	5.0095e-04	4.8247e-05	4.9146e-07	4.9109e-12	2.2950e-14
1400	5.0693e-03	4.9289e-04	5.1795e-05	4.8966e-07	4.9697e-12	2.5828e-14
1500	4.9990e-03	4.8444e-04	5.0002e-05	5.0013e-07	4.8489e-12	2.8179e-14
1600	5.0111e-03	5.1182e-04	4.9747e-05	4.9385e-07	4.9703e-12	2.8378e-14
1700	5.0346e-03	5.0517e-04	5.0689e-05	4.9176e-07	5.0003e-12	3.1023e-14
1800	4.9740e-03	5.0477e-04	4.9939e-05	5.0140e-07	1.9730e-11	1.9730e-11
1900	5.0300e-03	5.0104e-04	4.9909e-05	7.0143e-07	7.0143e-07	7.0143e-07
2000	2.2056e-02	2.2056e-02	2.2056e-02	2.2056e-02	2.2056e-02	2.2056e-02

Tabela 7: Błędu dla wektora zerowego stosując drugie kryterium

7.2 Wyniki dla wektora będącego permutacją zbioru $\{-100, 100\}$

Porównanie liczby iteracji w zależności od wybranego kryterium

Tabele (8, 9) zawierają liczbę iteracji w zależności od rozmiaru układu i dokładności. Wyniki dla obu tabel mają podobne właściwości co dla wektora zerowego. Cechują się tylko większą liczbą iteracji co jest spowodowane większą odległością od rozwiązania. Przez co kryterium iteracyjne (3) wcześniej osiąga limit iteracji.

	Dokładność ρ						
n	10^{-1}	10^{-2}	10^{-3}	10^{-5}	10^{-10}	10^{-15}	
25	6	8	9	12	20	27	
50	6	8	10	14	24	35	
75	7	10	12	17	28	41	
100	10	13	15	21	34	48	
125	11	14	17	23	38	54	
150	10	13	16	23	40	58	
175	11	15	18	26	43	64	
200	14	18	22	30	49	70	
225	15	19	23	32	52	75	
250	17	21	25	34	56	80	
275	16	21	25	35	58	84	
300	18	23	28	38	63	89	
325	14	19	24	34	60	92	
350	17	23	28	39	66	96	
375	21	27	33	44	73	106	
400	18	24	30	42	72	105	
425	15	22	28	41	72	109	
450	21	28	34	47	80	118	
475	22	29	36	50	84	125	
500	26	33	40	55	90	131	
600	29	38	46	63	105	156	
700	33	42	52	71	120	176	
800	39	50	61	84	140	1000	
900	41	54	67	93	158	237	
1000	44	59	75	105	181	1000	
1100	59	76	94	129	217	1000	
1200	65	86	107	148	252	374	
1300	88	112	137	186	309	1000	
1400	83	113	142	202	350	1000	
1500	126	162	199	272	454	1000	
1600	135	181	228	320	553	1000	
1700	223	285	347	471	782	1000	
1800	267	357	448	629	1000	1000	
1900	551	710	868	1000	1000	1000	
2000	1000	1000	1000	1000	1000	1000	

Tabela 8: Liczba iteracji dla drugiego wektora stosując pierwsze kryterium

	Dokładność ρ						
n	10^{-1}	10^{-2}	10^{-3}	10^{-5}	10^{-10}	10^{-15}	
25	7	8	10	13	20	1000	
50	7	9	11	15	25	1000	
75	9	11	13	18	30	1000	
100	12	14	17	23	36	1000	
125	13	16	19	25	40	1000	
150	12	15	19	25	42	1000	
175	14	17	21	28	46	1000	
200	17	21	25	33	52	1000	
225	18	22	26	35	55	1000	
250	20	24	29	38	60	1000	
275	20	24	29	38	62	1000	
300	22	27	32	42	66	1000	
325	18	23	28	39	65	1000	
350	22	27	33	44	71	1000	
375	26	32	38	49	78	1000	
400	23	29	35	47	77	1000	
425	21	27	33	46	77	1000	
450	27	33	40	53	86	1000	
475	28	35	42	56	90	1000	
500	32	39	46	61	96	1000	
600	37	45	53	70	112	1000	
700	41	51	61	80	129	1000	
800	49	60	72	94	151	1000	
900	53	66	79	105	170	1000	
1000	58	74	89	119	195	1000	
1100	75	93	111	146	234	1000	
1200	85	106	126	168	271	1000	
1300	111	136	160	210	333	1000	
1400	112	141	171	230	378	1000	
1500	161	198	234	307	490	1000	
1600	180	227	273	366	598	1000	
1700	284	346	408	532	843	1000	
1800	356	447	537	718	1000	1000	
1900	709	867	1000	1000	1000	1000	
2000	1000	1000	1000	1000	1000	1000	

Tabela 9: Liczba iteracji dla drugiego wektora stosując drugie kryterium

Porównanie czasów dla obu kryteriów

Tabele (10, 11) zawierają czas obliczeń w zależności od rozmiaru układu oraz wybranej dokładności. Zachowanie czasów obliczeń jest analogiczne jak w przypadku dla wektora zerowego, uwzględniając liczbę iteracji.

	Dokładność ρ						
n	10^{-1}	10^{-2}	10^{-3}	10^{-5}	10^{-10}	10^{-15}	
25	2.7230e-04	2.6690e-04	2.4920e-04	2.5930e-04	2.9870e-04	3.3380e-04	
50	5.0670e-04	5.0520e-04	5.1250e-04	6.3280e-04	6.1470e-04	6.7410e-04	
75	1.2292e-03	8.7400e-04	2.5814e-03	1.3314e-03	9.6820e-04	1.0587e-03	
100	2.7223e-03	2.7888e-03	3.1252e-03	3.7963e-03	5.6491e-03	7.5273e-03	
125	3.2079e-03	3.1871e-03	4.8352e-03	4.4740e-03	6.6524e-03	8.3443e-03	
150	3.4425 e-03	7.9856e-03	3.9594e-03	5.0183e-03	6.8862e-03	1.0103e-02	
175	3.8565e-03	1.3527e-02	5.1164e-03	5.4594e-03	7.7367e-03	1.0066e-02	
200	6.7101e-03	8.5563e-03	6.8594e-03	8.1584e-03	9.8222e-03	1.2484e-02	
225	5.7972e-03	7.8795e-03	7.1558e-03	8.0208e-03	1.0382e-02	1.6517e-02	
250	8.8899e-03	8.4037e-03	7.9124e-03	8.3967e-03	1.3689e-02	1.5422e-02	
275	6.8816e-03	1.0436e-02	8.7462e-03	9.2070e-03	2.8584e-02	1.7227e-02	
300	9.2819e-03	9.1238e-03	9.0625e-03	1.5129e-02	1.4879e-02	1.7625e-02	
325	9.8453 e-03	8.6476e-03	9.2418e-03	1.3007e-02	3.1898e-02	1.8495e-02	
350	1.3042e-02	1.1828e-02	1.0618e-02	1.3144e-02	1.8056e-02	1.9884e-02	
375	1.1323e-02	1.0438e-02	1.2958e-02	1.6418e-02	3.0513e-02	2.0623e-02	
400	1.0414e-02	1.2684e-02	1.2275e-02	2.7193e-02	1.9970e-02	2.4798e-02	
425	1.2168e-02	1.5248e-02	1.4077e-02	1.4862e-02	1.8796e-02	3.9669e-02	
450	1.1691e-02	1.4524e-02	1.5284e-02	1.6386e-02	2.2649e-02	5.9863e-02	
475	1.6178e-02	2.2180e-02	1.5651e-02	2.0153e-02	2.5674e-02	2.7837e-02	
500	1.4763e-02	1.4991e-02	1.5612e-02	1.9997e-02	2.3081e-02	2.8578e-02	
600	5.2112e-02	2.0084e-02	2.2750e-02	2.5053e-02	3.4736e-02	5.5455e-02	
700	2.8498e-01	2.8297e-02	3.7880e-02	3.5178e-02	4.2962e-02	5.0458e-02	
800	4.0134e-02	3.9776e-02	3.9615e-02	6.3380e-02	4.9644e-02	1.8468e-01	
900	3.9470e-02	5.5934e-02	4.9184e-02	9.8735e-02	6.5887e-02	7.8910e-02	
1000	5.3669e-02	5.8716e-02	6.6346e-02	7.4833e-02	9.6452e-02	2.9871e-01	
1100	8.0371e-02	8.3440e-02	8.8660e-02	1.0028e-01	1.4529e-01	3.7419e-01	
1200	8.8817e-02	1.1938e-01	3.1039e-01	1.3604e-01	2.1516e-01	2.4104e-01	
1300	1.3496e-01	1.4001e-01	1.6068e-01	1.9556e-01	2.6785e-01	7.0657e-01	
1400	1.5125e-01	1.8745e-01	2.0672e-01	2.5937e-01	3.9228e-01	1.0435e+00	
1500	2.7357e-01	3.3392e-01	3.0668e-01	3.8333e-01	5.7017e-01	$1.2115\mathrm{e}{+00}$	
1600	3.2975e-01	5.1734e-01	4.3712e-01	5.7025e-01	8.7736e-01	1.4058e+00	
1700	4.7803e-01	6.0136e-01	6.7264e-01	8.6432e-01	$1.3350e{+00}$	1.6924e+00	
1800	6.3255e-01	8.7665e-01	1.0077e+00	$1.2704\mathrm{e}{+00}$	2.1720e+00	1.9229e+00	
1900	$1.3786\mathrm{e}{+00}$	1.7676e + 00	2.0337e+00	$2.4081\mathrm{e}{+00}$	$2.4021\mathrm{e}{+00}$	2.7890e+00	
2000	3.0070e+00	3.5256 e + 00	3.5386e+00	2.7719e+00	2.7170e+00	2.6566e + 00	

Tabela 10: Czas obliczeń dla drugiego wektora stosując pierwsze kryterium

	Dokładność ρ						
n	10^{-1}	10^{-2}	10^{-3}	10^{-5}	10^{-10}	10^{-15}	
25	2.7240e-04	2.7860e-04	2.5790e-04	2.7660e-04	3.3210e-04	7.1911e-03	
50	6.8170e-04	6.1550e-04	6.1320e-04	6.1540e-04	6.5050 e-04	8.2600e-03	
75	3.3961e-03	9.8380e-04	8.5810e-04	8.9210e-04	1.1659e-03	1.0649e-02	
100	3.4472e-03	5.2780e-03	4.5597e-03	5.5239e-03	8.6011e-03	1.8851e-01	
125	5.9063e-03	4.6859e-03	1.9880e-02	7.8117e-03	9.0850e-03	1.8816e-01	
150	4.5309e-03	7.1042e-03	9.8214e-03	8.0681e-03	9.9178e-03	1.9786e-01	
175	4.8902e-03	7.1531e-03	1.0237e-02	7.6858e-03	1.1111e-02	1.8943e-01	
200	6.6976e-03	8.5058e-03	7.5289e-03	2.2800e-02	1.2888e-02	1.9026e-01	
225	6.9598e-02	7.7474e-02	8.3088e-03	9.8691e-03	1.4691e-02	2.0393e-01	
250	7.6399e-03	8.1229e-03	1.0904e-02	1.1329e-02	1.7163e-02	1.9333e-01	
275	9.6756e-03	8.8322e-03	1.0121e-02	1.1708e-02	1.8384e-02	1.9255e-01	
300	1.0912e-02	1.9989e-02	2.1064e-02	1.6576e-02	2.0752e-02	2.0319e-01	
325	1.3701e-02	1.0713e-02	1.4727e-02	1.4060e-02	1.8926e-02	2.0302e-01	
350	1.0782e-02	1.1783e-02	1.2492e-02	1.4905e-02	1.3754e-01	1.9773e-01	
375	1.4034e-02	1.7202e-02	1.5309e-02	1.7082e-02	2.2664e-02	2.0004e-01	
400	1.2633e-02	4.3069e-02	1.3553e-02	1.5996e-02	2.4594e-02	2.0224e-01	
425	1.4507e-01	1.1193e-01	5.2885e-02	1.8097e-02	2.4574e-02	2.0572e-01	
450	1.6245e-02	2.4635e-02	1.5571e-02	1.8390e-02	2.5137e-02	2.0121e-01	
475	1.6481e-02	1.5838e-02	1.6926e-02	1.9984e-02	2.7023e-02	2.0165e-01	
500	1.2136e-01	1.7086e-02	1.8445e-02	2.1345e-02	2.8479e-02	2.0514e-01	
600	7.8971e-02	3.0916e-02	2.8936e-02	4.2943e-02	1.0314e-01	2.4709e-01	
700	3.1860e-02	4.5919e-02	3.6307e-02	4.0299e-02	7.6067e-02	2.4315e-01	
800	5.6475e-02	4.8056e-02	5.7879e-02	5.9141e-02	7.1657e-02	4.9053e-01	
900	5.7103e-02	7.0001e-02	5.8890e-02	6.7111e-02	9.4731e-02	3.8091e-01	
1000	7.9897e-02	9.4403e-02	1.0029e-01	1.1726e-01	1.4904e-01	6.9105 e-01	
1100	1.2942e-01	1.5117e-01	1.7045e-01	1.9220e-01	3.2841e-01	9.7681e-01	
1200	2.4812e-01	1.7715e-01	2.7725e-01	2.3374e-01	6.0971e-01	$1.1621e{+00}$	
1300	5.7010e-01	3.6267e-01	4.3339e-01	4.5464e-01	4.9804e-01	1.3310e+00	
1400	4.0011e-01	3.1062e-01	3.6715e-01	4.4044e-01	7.1698e-01	1.6317e + 00	
1500	3.9113e-01	5.2620e-01	5.4432e-01	7.4601e-01	1.0973e+00	2.1176e+00	
1600	7.5616e-01	7.4923e-01	7.4636e-01	1.0138e+00	1.4657e + 00	2.4191e+00	
1700	8.8179e-01	1.1474e + 00	1.1741e + 00	1.5592e+00	2.5875e + 00	3.0023e+00	
1800	$1.2086\mathrm{e}{+00}$	1.4515e + 00	1.7186e+00	2.6046e+00	3.3009e+00	3.4113e+00	
1900	2.7089e+00	$3.3741\mathrm{e}{+00}$	4.1490e+00	4.1679e+00	$3.7831e{+00}$	4.1902e+00	
2000	3.9687e + 00	3.9560e+00	4.3126e+00	5.1226e+00	4.1396e+00	4.0730e + 00	

Tabela 11: Czas obliczeń dla drugiego wektora sotsując drugie kryterium

Porównanie błędów obliczeń dla obu kryteriów

Tabele (12, 13) zawierają błędy obliczeń w zależności od rozmiaru układu oraz wybranej dokładności. Zachowanie błędów w zależności od krytereium jest analogiczne jak dla wektora zerowego.

	Dokładność ρ							
n	10^{-1}	10^{-2}	10^{-3}	10^{-5}	10^{-10}	10^{-15}		
25	1.0836e-02	4.9098e-04	1.0451e-04	1.0080e-06	4.2493e-12	6.3777e-16		
50	1.8871e-02	1.8370e-03	1.7913e-04	1.7036e-06	1.5027e-11	1.3999e-15		
75	2.0137e-02	1.0838e-03	1.5451e-04	1.1855e-06	2.6350e-11	1.6947e-15		
100	1.9655e-02	1.5239e-03	2.7708e-04	1.6655e-06	2.5660e-11	3.1850e-15		
125	1.5898e-02	1.6035e-03	1.6175e-04	1.6456e-06	1.7182e-11	3.4596e-15		
150	2.0127e-02	2.4874e-03	3.0740e-04	2.3387e-06	1.6729e-11	3.2081e-15		
175	2.8916e-02	2.2151e-03	3.2254 e-04	1.8928e-06	3.4292e-11	3.8810e-15		
200	3.0962e-02	2.8459e-03	2.6158e-04	2.2100e-06	2.6333e-11	4.2349e-15		
225	2.7534e-02	2.9565e-03	3.1745e-04	2.0951e-06	2.9903e-11	4.8215e-15		
250	2.3729e-02	2.9163e-03	3.5842e-04	3.2055e-06	3.1510e-11	5.4163e-15		
275	3.2003e-02	2.7025e-03	3.7413e-04	2.6679e-06	3.0790e-11	5.7860e-15		
300	3.4138e-02	3.2920e-03	3.1745e-04	2.9520e-06	2.4617e-11	6.5972e-15		
325	2.6934e-02	2.9271e-03	3.1811e-04	3.7573e-06	3.6547e-11	6.3506e-15		
350	3.6001e-02	2.8595e-03	3.4642e-04	3.3334e-06	3.7391e-11	7.1150e-15		
375	3.8801e-02	3.4721e-03	3.1069e-04	3.7198e-06	3.1911e-11	7.8111e-15		
400	2.8872e-02	2.8831e-03	2.8790e-04	2.8708e-06	2.8505e-11	7.7945e-15		
425	4.0253e-02	3.0817e-03	3.4061e-04	2.8824e-06	3.2934e-11	8.1615e-15		
450	3.8038e-02	3.2514e-03	3.9492e-04	4.1002e-06	3.7777e-11	8.4574e-15		
475	3.9076e-02	3.7015e-03	3.5064e-04	3.1464e-06	3.3605e-11	8.9942e-15		
500	3.6949e-02	3.8539e-03	4.0196e-04	3.1661e-06	3.9082e-11	9.8916e-15		
600	4.1194e-02	3.4564e-03	3.8193e-04	3.5411e-06	3.3637e-11	1.1665e-14		
700	3.4924e-02	4.1518e-03	3.8956e-04	4.3454e-06	4.0040e-11	1.2887e-14		
800	3.9764 e-02	4.2094e-03	4.4560e-04	4.0713e-06	4.4126e-11	1.5507e-14		
900	3.9937e-02	4.0377e-03	4.0821e-04	4.1725e-06	4.4074e-11	1.6667e-14		
1000	4.4363e-02	4.5419e-03	3.9945e-04	4.1867e-06	4.0452e-11	1.7815e-14		
1100	4.1138e-02	4.4838e-03	4.2896e-04	4.4730e-06	4.6529e-11	2.0409e-14		
1200	4.5044e-02	4.3718e-03	4.2432e-04	4.4667e-06	4.2989e-11	2.1993e-14		
1300	4.3716e-02	4.6235e-03	4.4530e-04	4.5359e-06	4.5328e-11	2.4191e-14		
1400	4.6207e-02	4.4927e-03	4.7211e-04	4.4632e-06	4.5303e-11	2.6199e-14		
1500	4.6430e-02	4.7923e-03	4.6441e-04	4.6451e-06	4.7967e-11	2.8030e-14		
1600	4.6962 e-02	4.7966e-03	4.6621e-04	4.8636e-06	4.6587e-11	2.8856e-14		
1700	4.7903e-02	4.8066e-03	4.8230e-04	4.8558e-06	4.7589e-11	3.3895e-14		
1800	4.8131e-02	4.8845e-03	4.8325e-04	4.8518e-06	3.8906e-10	3.8906e-10		
1900	4.9135e-02	4.8943e-03	4.9465e-04	7.2895e-05	7.2895e-05	7.2895e-05		
2000	$1.6205\mathrm{e}{+00}$	$1.6205\mathrm{e}{+00}$	$1.6205\mathrm{e}{+00}$	1.6205e+00	$1.6205\mathrm{e}{+00}$	$1.6205\mathrm{e}{+00}$		

Tabela 12: Błędu dla drugiego wektora stosując pierwsze kryterium

	Dokładność ρ					
n	10^{-1}	10^{-2}	10^{-3}	10^{-5}	10^{-10}	10^{-15}
25	2.3065e-03	4.9098e-04	2.2247e-05	2.1458e-07	4.2493e-12	5.9787e-16
50	5.8840e-03	5.7363e-04	5.5941e-05	5.3201e-07	4.6924e-12	1.3867e-15
75	2.8706e-03	4.0922e-04	5.8336e-05	4.4759e-07	3.7561e-12	1.5857e-15
100	3.5738e-03	6.4980e-04	5.0379e-05	3.0283e-07	4.6657e-12	3.0827e-15
125	3.4448e-03	3.4747e-04	3.5048e-05	3.5659e-07	3.7235e-12	3.4363e-15
150	4.9936e-03	6.1714e-04	3.7991e-05	5.8026e-07	4.1507e-12	3.2235 e-15
175	4.2104e-03	6.1307e-04	4.6965e-05	5.2387e-07	4.9934e-12	3.8315e-15
200	5.1686e-03	4.7507e-04	4.3667e-05	3.6892e-07	4.3957e-12	4.2334e-15
225	5.1648e-03	5.5456e-04	5.9546e-05	3.9299e-07	5.6086e-12	4.8799e-15
250	4.9255e-03	6.0535e-04	4.4050e-05	3.9396e-07	3.8725e-12	5.3957e-15
275	4.4304e-03	6.1334e-04	5.1794e-05	6.0550 e-07	4.2623e-12	5.7421e-15
300	5.2555e-03	5.0680e-04	4.8871e-05	4.5446e-07	6.0498e-12	6.5906e-15
325	4.5625 e-03	4.9585e-04	5.3889e-05	4.0834e-07	3.9721e-12	6.3884e-15
350	4.3614e-03	5.2837e-04	4.1967e-05	4.0382e-07	4.5294e-12	7.1331e-15
375	5.1916e-03	4.6456e-04	4.1570e-05	4.9770e-07	4.2692e-12	7.7644e-15
400	4.2327e-03	4.2267e-04	4.2207e-05	4.2088e-07	4.1786e-12	7.8151e-15
425	4.4485e-03	4.9167e-04	5.4342e-05	4.5988e-07	5.2550 e-12	8.1713e-15
450	4.6202 e-03	5.6118e-04	4.7968e-05	4.9802e-07	4.5886e-12	8.4479e-15
475	5.1832e-03	4.9099e-04	4.6511e-05	4.1735e-07	4.4578e-12	8.9743e-15
500	5.3228e-03	5.5518e-04	5.7906e-05	4.5610e-07	5.6305e-12	9.8810e-15
600	4.5520e-03	5.0300e-04	5.5582e-05	5.1533e-07	4.8949e-12	1.1678e-14
700	5.2602 e-03	4.9356e-04	4.6311e-05	5.1657e-07	4.7596e-12	1.2923e-14
800	5.1627e-03	5.4652e-04	4.7170e-05	5.2859 e-07	4.6703e-12	1.5507e-14
900	4.8160e-03	4.8691e-04	4.9227e-05	5.0316e-07	5.3152e-12	1.6684e-14
1000	5.2871e-03	4.6499e-04	4.7605e-05	4.9897e-07	4.8209e-12	1.7815e-14
1100	5.1082e-03	4.8870e-04	4.6754 e - 05	4.8752e-07	5.0710e-12	2.0409e-14
1200	4.8854e-03	4.7417e-04	5.1427e-05	4.8445e-07	5.2104e-12	2.1996e-14
1300	5.0772e-03	4.8899e-04	5.1717e-05	4.7973e-07	4.7941e-12	2.4191e-14
1400	4.8556e-03	5.1025e-04	4.9612e-05	5.0691e-07	5.1453e-12	2.6199e-14
1500	5.1044e-03	4.9465e-04	5.1055e-05	5.1067e-07	4.9505e-12	2.8030e-14
1600	5.0405 e-03	4.8992e-04	5.0039e-05	4.9675e-07	4.9986e-12	2.8856e-14
1700	4.9882e-03	5.0052e-04	5.0222 e-05	5.0564e-07	4.9550e-12	3.3895e-14
1800	5.0102e-03	4.9569e-04	5.0303e-05	5.0505e-07	3.8906e-10	3.8906e-10
1900	4.9658e-03	5.0187e-04	7.2895e-05	7.2895 e-05	7.2895 e-05	7.2895 e-05
2000	$1.6205\mathrm{e}{+00}$	1.6205e+00	$1.6205\mathrm{e}{+00}$	$1.6205\mathrm{e}{+00}$	$1.6205\mathrm{e}{+00}$	1.6205 e + 00

Tabela 13: Błędy dla drugiego wektora stosując drugie kryterium

Promień spektralny

Tabela (14), zawiera wartości promienia spektralnego dla rozważanych rozmiarów macierzy. Promienie rosną bardzo wolno co wizualnie przedstawia wykres (1). Biorą pod uwagę wszystkie table błędów zauważamy, że im większy promień spektralny tym gorszy wynik otrzymujemy.

n	Promień spektralny		
25	2.1286e-01		
50	3.1228e-01		
75	3.7756e-01		
100	4.2641e-01		
125	4.6550e-01		
150	4.9811e-01		
175	5.2610e-01		
200	5.5061e-01		
225	5.7243e-01		
250	5.9209e-01		
275	6.0998e-01		
300	6.2639e-01		
325	6.4155 e-01		
350	6.5564 e - 01		
375	6.6879e-01		
400	6.8113e-01		
425	6.9275 e-01		
450	7.0373e-01		
475	7.1414e-01		
500	7.2403e-01		
600	7.5931e-01		
700	7.8929e-01		
800	8.1534e-01		
900	8.3838e-01		
1000	8.5904 e - 01		
1100	8.7776e-01		
1200	8.9488e-01		
1300	9.1064e-01		
1400	9.2525 e - 01		
1500	9.3887e-01		
1600	9.5161e-01		
1700	9.6360e-01		
1800	9.7490e-01		
1900	9.8560e-01		
2000	9.9575e-01		
2100	1.0054e+00		
2200	$1.0146\mathrm{e}{+00}$		
2300	1.0234e+00		
2400	1.0319e+00		
2500	$1.0400\mathrm{e}{+00}$		

Tabela 14: Promień spektralny

Rysunek 1: Wykres promienia spektralnego w zależności od rozmiaru układu

8 Wnioski

Zwiększanie rozmiarów oraz dokładności skutkuje wzrostem wykonywanych iteracji, czasu oraz spadkiem dokładności. Korzystanie z kryterium 1 (3) daje mniejszą liczbę iteracji, co przekłada się na mniejszy czas. Jednak dokładność wyników jest gorsza w porównaniu z kryterium 2 (4), co jest jego zaletą. Dobór odpowiedniego wektora początkowego również wpływa na liczbę iteracji. Interesującą właściwością rozważanego układu jest liczba iteracji w zależności od parzystości rozmiaru układu. Dla każdej z rozważanych możliwości rozmiary nieparzyste często potrzebowały mniejszej liczby interacji niż macierze mniejsze, ale parzyste.

Literatura

- [1] https://maa.org/press/periodicals/loci/joma/iterative-methods-for-solving-iaxi-ibi-jacobis-method
- [2] https://en.wikipedia.org/wiki/Jacobi_method