Домашнее задание 5

Цифры Вашего кода — a_0, \ldots, a_9 . В каждом из четырех блоков задач Вам нужно решить только один вариант, выбор которого определяется цифрами Вашего кода так, как указано.

1. Вам нужно решить тот пункт, номер которого совпадает с последней цифрой числа $a_5 + a_7$. Вычислите интеграл

$$\int_{\gamma} f(z) \, dz$$

от функции f по пути γ .

(0)
$$f(x+iy) = x$$
, $\gamma(t) = e^{\pi i \sin t}$, $t \in [0, \pi/2]$.

(1)
$$f(z) = \bar{z}, \ \gamma(t) = 2t + i, \ t \in [0, 4].$$

(2)
$$f(z) = 1$$
, $\gamma(t) = t + i \operatorname{ch}(t)$, $t \in [0, 1]$.

(3)
$$f(x+iy) = 1 - ix$$
, $\gamma(t) = t + i\frac{t^2}{2}$, $t \in [0,1]$.
(4) $f(z) = \frac{1}{z}$, $\gamma(t) = e^{it^2}$, $t \in [0,3\pi]$.
(5) $f(x+iy) = e^y$, $\gamma(t) = t + i \ln(t)$, $t \in [1,2]$.

(4)
$$f(z) = \frac{1}{z}$$
, $\gamma(t) = e^{it^2}$, $t \in [0, 3\pi]$

(5)
$$f(x+iy) = e^y$$
, $\gamma(t) = t+i \ln(t)$, $t \in [1,2]$

(6)
$$f(x+iy) = x^2$$
, $\gamma(t) = t+i \ln(t)$, $t \in [0,1]$.
(7) $f(x+iy) = x^5$, $\gamma(t) = t+\frac{i}{t}$, $t \in [0,1]$.

(7)
$$f(x+iy) = x^5$$
, $\gamma(t) = t + \frac{i}{t}$, $t \in [0,1]$

(8)
$$f(x+iy) = x^2 + y^2$$
, $\gamma(t) = e^{it^2}$, $t \in [0,2]$.

(9)
$$f(z) = e^z$$
, $\gamma(t) = (2+i)t$, $t \in [0,1]$.

Hапомним, что $\operatorname{ch}(t) = \cos(it) = \frac{e^t + e^{-t}}{2}$.

- 2. Вам нужно решить тот пункт, номер которого совпадает с последней цифрой числа $a_3 + 2a_4$.
- (0) Нарисуйте замкнутый путь с, такой, что $\operatorname{Ind}_0 \gamma = 3$ и $\operatorname{Ind}_1 \gamma =$
 - (1) Найдите максимум $\operatorname{Ind}_z \gamma$, где

$$\gamma(t) = \begin{cases} 2e^{4\pi it}, \text{если } t \in [0, 1/2], \\ e^{4\pi i(t-1)} + 1, \text{если } t \in [1/2, 1] \end{cases}$$

- (2) Для каждой из связных областей, на которые плоскость разбивает лемниската Бернулли ("восьмёрка", заданная в полярных координатах ρ , θ уравнением $\rho^2 = 2\cos 2\theta$), найдите значение индекса относительно лемнискаты (направление выберите произвольно).
- (3) Нарисуйте схематично путь γ и найдите индекс относительно γ в каждой из связных областей, на которые он разбивает плоскость, где

$$\gamma(t) = \sin(t)e^{2it}, \quad t \in [0, \pi].$$

(4) Нарисуйте путь γ и найдите индекс относительно γ в каждой из связных областей, на которые он разбивает плоскость, где

$$\gamma(t) = \begin{cases} e^{6\pi i t}, \text{ если } t \in [0, 1/3], \\ 3e^{6\pi i (t-1/3)} + 1, \text{ если } t \in [1/3, 2/3], \\ e^{6\pi i (1-t)} - 1, \text{ если } t \in [2/3, 1]. \end{cases}$$

(5) Нарисуйте схематично путь γ и найдите индекс относительно γ в каждой из связных областей, на которые он разбивает плоскость, где

$$\gamma(t) = \sin(3t)e^{it}, \quad t \in [0, \pi].$$

(6) Нарисуйте схематично путь γ и найдите индекс относительно γ в каждой из связных областей, на которые он разбивает плоскость, где

$$\gamma(t) = \left(\sin(t) - \frac{\sqrt{2}}{2}\right)e^{2it}, \quad t \in [0, \pi].$$

- (7) Нарисуйте замкутый путь γ , такой что $\operatorname{Ind}_z\gamma$ принимает на \mathbb{C} ровно 4 значения.
- (8) Нарисуйте замкунтый путь γ , такой, что $\forall k \in \mathbb{Z}, |k| \leq 2$, верно $\operatorname{Ind}_k \gamma = k$.
 - (9) Для пути

$$\gamma(t) = \begin{cases} 2e^{-6\pi it}, \text{если } t \in [0, 1/3], \\ e^{6\pi it} + 1, \text{если } t \in [1/3, 2/3], \\ e^{-6\pi it} - 1, \text{если } t \in [2/3, 1] \end{cases}$$

найдите площадь области, в которой $\operatorname{Ind}_z \gamma = -1$

3. Вам нужно решить тот пункт, номер которого совпадает с последней цифрой числа $5a_0 + 7a_1$. Найдите все значения интеграла

$$\int_C f(z) \, dz$$

для выписанной ниже функции f и любых замкнутых контуров (=путей) C, не имеющих самопересечений и не проходящих через точки, в которых функция f не определена или обращается в бес-

(0)
$$f(z) = \frac{1}{z(z-1)(z-2)}$$
.

(1)
$$f(z) = \frac{e^{z}-1}{z}$$
.

(0)
$$f(z) = \frac{1}{z(z-1)(z-2)}$$
.
(1) $f(z) = \frac{e^z-1}{z}$.
(2) $f(z) = \frac{z^2+2z-3}{(z-1)^2(z+1)}$.
(3) $f(z) = \frac{z^2-3z-4}{(z-1)^2(z+1)}$.
(4) $f(z) = \frac{2}{z^3+z}$.

(3)
$$f(z) = \frac{z^2 - 3z - 4}{(z - 1)^2(z + 1)}$$
.

(4)
$$f(z) = \frac{2}{z^3+z}$$
.

- (5) $f(z) = \frac{z^2+1}{z^2-iz+2}$. (6) $f(z) = \frac{\sin(z)}{z}$. (7) $f(z) = \frac{\cos(z)-1}{z^2}$. (8) $f(z) = \frac{e^z-\cos(z)-\sin(z)-z^2}{z^2}$. (9) $f(z) = \frac{z^3-7z^2+16z-12}{z^3-8z^2+19z-12}$.
- 4. Вам нужно решить тот пункт, номер которого совпадает с последней цифрой числа $6a_1 + a_6$.
- (0) Приведите пример открытой области $U \subset \mathbb{C}$, голоморфной функции $f:U \to \mathbb{C}$ и двух замкнутых контуров $C_1,\,C_2,\,$ таких, что $\int_{C_1} f(z) dz = 1$ и $\int_{C_2} f(z) dz = \pi$.
- (1) Приведите пример рациональной функции f и замкнутого контура C, таких, что $\int_C f(z) dz = 1$ и $\int_C z f(z) dz = -1$.
- (2) Приведите пример открытой области $U \subset \mathbb{C}$, пары голоморфных функции $f,g:U\to\mathbb{C}$ и замкнутого контура C, таких, что $\int_C \frac{f(z)}{g(z)}\,dz=\int_C \frac{g(z)}{f(z)}\,dz=1.$
- (3) Приведите пример открытой области $U \subset \mathbb{C}$, голоморфной функции $f:U\to\mathbb{C}$ и замкнутых контуров $C_1,\,C_2,\,C_3,\,$ таких, что $\int_{C_1} f(z) dz = 1$, $\int_{C_2} f(z) dz = 2$, $\int_{C_3} (z+3)f(z) dz = 3$.
- (4) Приведите пример открытой области $U \subset \mathbb{C}$, голоморфной функции $f:U\to\mathbb{C}$ и замкнутых контуров C_1 и C_2 , содержащих 0 внутри, таких, что $\int_{C_1}f(z)\,dz=1,\,\int_{C_2}(f(z)-\frac{1}{z})\,dz=1.$
- (5) Приведите пример функции f, голоморфной на $\mathbb C$ без конечного числа точек, такой, что $\int_{\gamma} f(z) dz = 3$, где $\gamma(t) = \sin(3t)e^{it}$, $t \in$ $[0,\pi].$
- (6) Приведите пример функции f, голоморфной на $\mathbb C$ без конечного числа точек, такой, что $\int_{\gamma} f(z) dz = 7$, где $\gamma(t) = e^{8it}, t \in [0, \pi]$.
- (7) Приведите пример контура C, такого, что $\int_C f(z) dz = 10\pi i$, где $f(z) = \frac{5z-1}{z^2-1}$.
- (8) Приведите пример контура C, такого, что $\int_C f(z) \ dz = 7\pi i$, где $f(z) = \frac{13z+4}{6z^2+6z}$.
- (9) Приведите пример открытой области $U \subset \mathbb{C}$, пары голоморфных функции $f,g:U\to\mathbb{C}$ и замкнутого контура C, таких, что $\int_C f(z) dz \neq 0$, $\int_C g(z) dz \neq 0$, $\int_C f(z)g(z) dz = 0$.

- **5.** Бонусная задача. Эту задачу не надо записывать. Вы можете рассказать ее вашему семинаристу и получить за нее бонусные баллы. Решайте тот пункт, номер которого совпадает с последней цифрой числа $a_5 + a_8$.
 - (0) Упражнение 4.8 на странице 59 основного учебника.
 - (1) Упражнение 4.9 на странице 59 основного учебника.
 - (2) Упражнение 4.10 на странице 59 основного учебника.
 - (3) Упражнение 4.13 на странице 60 основного учебника.
 - (4) Упражнение 4.14 на странице 60 основного учебника.
- (5) Для непрерывной функции $\varphi:\mathbb{C}\to\mathbb{C},$ дайте определение интеграла

 $\int_{\gamma} \varphi(x+iy)\sqrt{dx^2+dy^2},$

сформулируйте и докажите теорему о кусочно-гладкой замене параметра в этом интеграле.

(6) Пусть C — кусочно-гладкая замкнутая кривая (=образ кусочно-гладкого пути), а функция f определена и голоморфна в окрестности кривой C. Предполагая без доказательства непрерывность производной f' в некоторой окрестности кривой C, докажите, что интеграл

$$\int_C \overline{f(z)} f'(z) dz$$

выражается чисто мнимым числом.

(7) Пусть функция f определена и голоморфна в открытой области Ω , удовлетворяет в этой области неравенству |f(z)-1|<1, а также имеет непрерывную производную в Ω (последнее вытекает из голоморфности, но мы этого пока не знаем). Докажите, что

$$\int_{\gamma} \frac{f'(z)}{f(z)} dz = 0$$

для любого замкнутого кусочно-гладкого пути γ .

(8) Пусть $P: \mathbb{C} \to \mathbb{C}$ — многочлен, а через C обозначена окружность радиуса R > 0 с центром в точке $a \in \mathbb{C}$. Докажите, что

$$\int_{C} P(z)d\overline{z} = -2\pi i R^{2} P'(a).$$

(9) Пусть $U \subset \mathbb{C}$ — открытое связное множество, а $f: U \to \mathbb{C}$ — непрерывная функция. Докажите, что любые две первообразные функции f (если они существуют) отличаются на постоянную. Что изменится, если не предполагать множество U связным?