XML - Part 1 STAT 133

Gaston Sanchez

Department of Statistics, UC-Berkeley

gastonsanchez.com
github.com/gastonstat

Course web: gastonsanchez.com/teaching/stat133

Data Storage

Motivation

Various formats

- We don't usually have control over the format in which data is given to us
- ► Consider the **IBTrACS Data**https://www.ncdc.noaa.gov/ibtracs/index.php?name=wmo-data
- ▶ IBTrACS available formats: ATCF, CSV, cXML, HURDAT, netCDF, WMO

IBTrACS Formats

Format	Data File Access		
ATCF	All storms (2 MB)	Storms by basin	Storms by year
csv	All storms (2 MB)	Storms by basin	Storms by year
cXML	All storms (2 MB)	Storms by basin	Storms by year
HURDAT format	All storms (1 MB)	Storms by basin	Storms by hemisphere NH - SH
netCDF	All storms (2 MB)	Storms by basin	Storms by year
WMO	All storms (2 MB)	Storms by basin	Storms by year

IBTrACS Formats

HURDAT / NOAA Tape Format / TD9697 format

Data from IBTrACS file: Basin. WP. ibtracs. v03r06.tape which includes the corection to report 10-min winds.

```
00001 07/18/2006 M= 5 1 SNBR= 1 BERYL XING-0 SSS=0
00002 07/18*000000 0 0*000000 0 0*323867 35 1008*302867 35 1008*
00003 07/19*3382865 35 1006*3452863 35 1005*3522864 40 1004*3592865 50 1003*
00004 07/20*368268 50 1002*3742886 50 1001*3832870 50 1002*3912875 45 1002*
00005 07/21*3982882 45 1003*4102895 45 1000*429164 40 10024389297 35 1000*
00006 07/2284552967 35 1002E4723000 35 1003E4853035 30 1004*0000000 0 0*
```

ATCF

Data from IBTrACS file: Year, 1969, ibtracs, v03r06, atcf

```
NA,0,2006071812,00,0,32.30N, 73.30W, 30.0,1010.0,TS
NA,0,2006071818,00,0,33.00N, 73.30W, 35.0,1008.0,TS
NA.0.2006071900.00.0.33.80N. 73.50W. 35.0.1006.0.TS
NA.0.2006071906.00.0.34.50N, 73.70W, 35.0.1005.0.TS
NA,0,2006071912,00,0,35.20N, 73.60W, 40.0,1004.0,TS
NA,0,2006071918,00,0,35.90N, 73.50W, 50.0,1003.0,TS
NA,0,2006072000,00,0,36.60N, 73.20W, 50.0,1002.0,TS
NA.0.2006072006.00.0.37.40N. 73.20W. 50.0.1001.0.TS
NA.0.2006072012.00.0.38.30N, 73.00W, 50.0.1002.0.TS
NA,0,2006072018,00,0,39.10N, 72.50W, 45.0,1002.0,TS
NA,0,2006072100,00,0,39.80N, 71.80W, 45.0,1003.0,TS
NA.0.2006072106.00.0.41.00N. 70.50W. 45.0.1000.0.TS
NA.0.2006072106.45.0.41.30N. 70.10W. 45.0.1000.0.TS
NA.0.2006072112.00.0.42.40N. 68.40W. 40.0.1002.0.TS
NA,0,2006072118,00,0,43.80N, 66.30W, 35.0,1000.0,ET
NA,0,2006072200,00,0,45.50N, 63.30W, 35.0,1002.0,ET
NA.0.2006072206.00.0.47.20N. 60.00W. 35.0.1003.0.ET
NA.0.2006072212.00.0.48.50N. 56.50W. 30.0.1004.0.ET
```

IBTrACS Formats

cXML

The following is from Storm.1969287N11150.ibtracs_wmo.v03r06.cxml.

```
<?xml version="1.0" encoding="UTF-8"?>
<cxml xmlns:xsd="http://www.w3.org/2001/XMLSchema"</pre>
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xsi:noNamespaceSchemaLocation="http://www.bom.gov.au/bmrc/projects/THORPEX/CXML/cxml.1.1.xsd">
  <header>
    oduct>IBTrACS
    <generatingApplication>
      <applicationType>IBTrACS Merged Analysis</applicationType>
    </generatingApplication>
    cproductionCenter>NCDC</productionCenter>
    <moreInfo>http:/www.ncdc.noaa.gov/wdc/ibtracs/</moreInfo>
    <creationTime>2014-08-21T13:48:31</creationTime>
    <missing>-999</missing>
  </header>
  <data type="analysis">
    <disturbance ID="2006071812 323N 733W">
      <cvcloneName>BERYL</cvcloneName>
        <validTime>2006-07-18T12:00:00</validTime>
        <latitude units="deg N"> 32.30</latitude>
        <longitude units="deg E"> -73.30</longitude>
        <cvcloneData>
          <minimumPressure>
            sure units="hPa">1010.0</pressure>
          </minimumPressure>
          <maximumWind>
            <speed units="kt"> 30.0</speed>
            <averagingPeriod units="min">1</averagingPeriod>
          </maximumWind>
        </cvcloneData>
      </fix>
```

Motivation

Various formats

- There is no overall best storage format
- ► The correct choice will depend on:
 - the size and complexity of the data set
 - what the data set will be used for
- Every storage format has its strengths and weaknesses

Storm Tracker

CSV data

```
2012296N14283,2012,18, NA, MM, SANDY, 2012-10-21 18:00:00, DS, 14.30, -77.40, 25.0, 1006.0, atcf. 4.767, 26.983, main
2012296N14283.2012.18. NA. MM. SANDY. 2012-10-22 00:00:00. DS. 13.90. -77.80. 25.0. 1005.0.atcf.
                                                                                                4.767. 32.120.main
2012296N14283,2012,18, NA, MM, SANDY,2012-10-22 06:00:00, DS, 13.50, -78.20, 25.0, 1003.0,atcf,
                                                                                                4.767, 41.712, main
2012296N14283.2012.18, NA, MM, SANDY, 2012-10-22 12:00:00, TS, 13.10, -78.60, 30.0, 1002.0, atcf. 17.256,
                                                                                                        45.083.main
2012296N14283,2012,18, NA, MM, SANDY, 2012-10-22 18:00:00, TS, 12.70, -78.70, 35.0, 1000.0, atcf, 32.416, 50.576, main
2012296N14283,2012,18, NA, MM, SANDY, 2012-10-23 00:00:00, TS, 12.60, -78.40, 40.0, 998.0, atcf. 42.517, 57.193, main
2012296N14283,2012,18, NA, MM, SANDY, 2012-10-23 06:00:00, TS, 12.90, -78.10, 40.0, 998.0, atcf, 42.517, 57.193, main
2012296N14283,2012,18, NA, MM, SANDY, 2012-10-23 12:00:00, TS, 13.40, -77.90, 40.0, 995.0, atcf, 42.517, 62.912, main
2012296N14283,2012.18, NA, MM.SANDY,2012-10-23 18:00:00, TS, 14.00, -77.60, 45.0, 993.0.atcf, 50.140, 67.740,main
2012296N14283,2012,18, NA, MM, SANDY, 2012-10-24 00:00:00, TS, 14.70, -77.30, 55.0, 990.0, atcf, 64.208,
                                                                                                         71.051, main
2012296N14283,2012,18, NA, MM, SANDY, 2012-10-24 06:00:00, TS, 15.60, -77.10, 60.0, 987.0, atcf. 69.630,
                                                                                                         74.924, main
2012296N14283,2012.18, NA, MM.SANDY,2012-10-24 12:00:00, TS, 16.60, -76.90, 65.0, 981.0.atcf, 73.788, 81.333.main
2012296N14283,2012,18, NA, MM, SANDY, 2012-10-24 18:00:00, TS, 17.70, -76.70, 75.0, 972.0, atcf, 81.938,
                                                                                                        87.720, main
2012296N14283,2012.18, NA, MM.SANDY,2012-10-24 19:00:00, TS, 17.90, -76.60, 75.0, 971.0.atcf, 81.938, 88.215.main
2012296N14283.2012.18. NA. MM. SANDY.2012-10-25 00:00:00. TS. 18.90. -76.40. 85.0.
                                                                                  964.0.atcf. 87.354. 91.835.main
2012296N14283,2012,18, NA, MM, SANDY, 2012-10-25 05:25:00, TS, 20.00, -76.00,100.0,
                                                                                   954.0.atcf, 92.955.
                                                                                                        95.040, main
2012296N14283.2012.18. NA. MM.SANDY.2012-10-25 06:00:00. TS. 20.10. -76.00.100.0.
                                                                                   954.0.atcf. 92.955. 95.040.main
2012296N14283,2012,18, NA, MM, SANDY, 2012-10-25 09:00:00, TS, 20.90, -75.70, 95.0,
                                                                                   960.0.atcf, 91.721, 92.945,main
2012296N14283.2012.18, NA. MM.SANDY.2012-10-25 12:00:00, TS. 21.70, -75.50, 95.0.
                                                                                   966.0.atcf. 91.721. 90.872.main
2012296N14283,2012,18, NA, MM, SANDY, 2012-10-25 18:00:00, TS, 23.30, -75.30, 90.0,
                                                                                   963.0, atcf, 89.071, 92.111, main
2012296N14283,2012,18, NA, MM, SANDY, 2012-10-26 00:00:00, TS, 24.80, -75.90, 75.0,
                                                                                   965.0.atcf. 81.938. 91.220.main
2012296N14283,2012,18, NA, MM, SANDY, 2012-10-26 06:00:00, TS, 25.70, -76.40, 70.0,
                                                                                   968.0, atcf, 78.805, 90.148, main
2012296N14283,2012,18, NA, MM, SANDY, 2012-10-26 12:00:00, TS, 26.40, -76.90, 65.0,
                                                                                   970.0.atcf, 73.788, 88.562,main
2012296N14283.2012.18, NA. MM.SANDY.2012-10-26 18:00:00, TS. 27.00, -77.20, 65.0.
                                                                                   971.0.atcf. 73.788. 88.215.main
2012296N14283,2012,18, NA, MM, SANDY, 2012-10-27 00:00:00, TS, 27.50, -77.10, 60.0,
                                                                                   969.0,atcf, 69.630, 89.887,main
2012296N14283,2012.18, NA, MM, SANDY, 2012-10-27 06:00:00, TS, 28.10, -76.90, 60.0,
                                                                                   968.0.atcf. 69.630. 90.148.main
2012296N14283,2012,18, NA, MM, SANDY, 2012-10-27 12:00:00, TS, 28.80, -76.50, 70.0,
                                                                                   956.0, atcf, 78.805, 94.455, main
2012296N14283,2012,18, NA, MM, SANDY, 2012-10-27 18:00:00, TS, 29.70, -75.60, 70.0,
                                                                                   960.0.atcf, 78.805, 92.945,main
2012296N14283,2012.18, NA, MM.SANDY,2012-10-28 00:00:00, TS, 30.50, -74.70, 65.0,
                                                                                   960.0.atcf. 73.788. 92.945.main
2012296N14283,2012,18, NA, MM, SANDY, 2012-10-28 06:00:00, TS, 31.30, -73.90, 65.0,
                                                                                   959.0,atcf, 73.788, 93.787,main
2012296N14283,2012,18, NA, MM, SANDY, 2012-10-28 12:00:00, TS, 32.00, -73.00, 65.0,
                                                                                   954.0.atcf. 73.788. 95.040.main
2012296N14283.2012.18. NA. MM.SANDY.2012-10-28 18:00:00. TS. 32.80. -72.00. 65.0.
                                                                                   952.0.atcf. 73.788. 95.432.main
2012296N14283,2012,18, NA, MM, SANDY, 2012-10-29 00:00:00, TS, 33.90, -71.00, 70.0, 950.0, atcf, 78.805, 95.874, main
2012296N14283,2012.18, NA, MM.SANDY,2012-10-29 06:00:00, TS, 35,30, -70,50, 80.0, 947,0.atcf, 85,083, 96,939,main
2012296N14283,2012,18, NA, MM, SANDY, 2012-10-29 12:00:00, TS, 36.90, -71.00, 85.0,
                                                                                   945.0, atcf, 87.354,
                                                                                                        97.282, main
2012296N14283,2012,18, NA, MM, SANDY,2012-10-29 18:00:00, TS, 38.30, -73.20, 80.0,
                                                                                   940.0.atcf. 85.083.
                                                                                                         98.086, main
2012296N14283,2012,18, NA, MM, SANDY, 2012-10-29 21:00:00, ET, 38.80, -74.00, 75.0, 943.0, atcf, 81.938, 97.660, main
2012296N14283,2012,18, NA, MM, SANDY, 2012-10-29 23:30:00, ET, 39.40, -74.40, 70.0,
                                                                                   945.0,atcf, 78.805,
                                                                                                        97.282, main
2012296N14283,2012,18, NA, MM.SANDY,2012-10-30 00:00:00, ET, 39.50, -74.50, 70.0, 946.0.atcf, 78.805, 97.078,main
2012296N14283,2012,18, NA, MM, SANDY, 2012-10-30 06:00:00, ET, 39.90, -76.20, 55.0, 960.0, atcf, 64.208, 92.945, main
2012296N14283.2012.18, NA, MM, SANDY, 2012-10-30 12:00:00, ET, 40.10, -77.80, 50.0, 978.0, atcf. 58.394,
                                                                                                         84.164.main
2012296N14283,2012.18, NA, MM.SANDY,2012-10-30 18:00:00, ET. 40.40, -78.90, 40.0, 986.0.atcf. 42.517, 77.007.main
2012296N14283,2012,18, NA, MM, SANDY, 2012-10-31 00:00:00, ET, 40.70, -79.80, 35.0, 992.0, atcf, 32.416, 68.884, main
2012296N14283,2012,18, NA, MM, SANDY, 2012-10-31 06:00:00, ET, 41.10, -80.30, 35.0, 993.0, atcf, 32.416, 67.740, main
2012296N14283,2012,18, NA, MM, SANDY, 2012-10-31 12:00:00, ET, 41.50, -80.70, 30.0, 995.0, atcf, 17.256, 62.912, main
```

Some variables in CSV - IBTrACS

Variables	Variables
Serial_Num	Wind(WMO)
Season	Pres(WMO)
Num	Center
Basin	Wind(WMO) Percentile
Sub_basin	Pres(WMO) Percentile
Name	Track_type N/A
ISO_time	Year
Nature	#
Latitude	BB
Longitude	YYYY-MM-DD HH:MM:SS

XML

XML & HTML

The goal of these slides is to give you a **crash introduction to XML and HTML** so you can get a good grasp of those formats for the following lectures

Motivation

Two main limitations of field-delimited files

- ▶ In plain text formats there is no information to describe the location of the data values
- ► There is no recognizable label for each data value within the file
- Serious limitations to store data with hierarchical structure

XML format

XML advantages

- XML is a storage format that is still based on plain text
- ▶ In XML formats every single value is distinctly labeled
- Moreover, every single value is self-described
- The information is organized in a much more sophisticated manner

XML and HTML

Why should you care about XML and HTML?

- ► Large amounts of data and information are stored, shared and distributed using HTML and XML-dialects
- ▶ They are widely adopted and used in many applications
- Working with data from the Web means dealing with HTML

XML eXtensible Markup Language

Some Definitions

"XML is a markup language that defines a set of rules for encoding documents in a format that is both human-readable and machine-readable"

http://en.wikipedia.org/wiki/XML

"XML is a data description language used for describing data"

Paul Murrell

Introduction to Data Technologies

Some Definitions

"XML is a very general structure with which we can define any number of new formats to represent arbitrary data"

"XML is a standard for the semantic, hierarchical representation of data"

Deb Nolan & Duncan Temple Lang

XML and Web Technologies for Data Sciences with R

About XML

XML

XML stands for eXtensible Markup Language

Broadly speaking ...

XML provides a flexible framework to create formats for describing and representing data

Markups

Markup

A **markup** is a sequence of characters or other symbols inserted at certain places in a document to indicate either:

- how the content should be displayed when printed or in screen
- describe the document's structure

Markups

Markup Language

A markup language is a system for **annotating** (i.e. *marking*) a document in a way that the content is distinguished from its representation (eg LaTeX, PostScript, HTML, SVG)

Markups

XML Markups

In XML (as well as in HTML) the marks (aka *tags*) are defined using angle brackets: <>

<mark>Text marked with special tag</mark>

Extensible

Extensible?

The concept of *extensibility* means that we can define our own marks, the order in which they occur, and how they should be processed. For example:

- <my_mark>
- <awesome>
- ▶ <boring>
- ▶ <cool>

About XML

XML is NOT

- a programming language
- ▶ a network transfer protocol
- a database

About XML

XML is

- more than a markup language
- a generic language that provides structure and syntax for representing any type of information
- a meta-language: it allows us to create or define other languages

XML Applications

Some XML dialects

- KML (Keyhole Markup Language) for describing geo-spatial information used in Google Earth, Google Maps, Google Sky
- ► **SVG** (*Scalable Vector Graphics*) for visual graphical displays of two-dimensional graphics with support for interactivity and animation
- ► PMML (Predictive Model Markup Language) for describing and exchanging models produced by data mining and machine learning algorithms

Minimalist Example


```
Ultra Simple XML
<movie>
   Good Will Hunting
</movie>
```

Ultra Simple XML

```
<movie>
  Good Will Hunting
</movie>
```

- one single element movie
- start-tag: <movie>
- end-tag: </movie>
- ▶ content: Good Will Hunting

Ultra Simple XML

```
<movie mins="126" lang="en">
  Good Will Hunting
</movie>
```

- xml elements can have attributes
- attributes: mins (minutes) and lang (language)
- attributes are attached to the element's start tag
- attribute values must be quoted!

Minimalist XML

```
<movie mins="126" lang="en">
  <title>Good Will Hunting</title>
  <director>Gus Van Sant</director>
  <year>1998</year>
  <genre>drama</genre>
</movie>
```

- an xml element may contain other elements
- movie contains several elements: title, director, year, genre

Simple XML

Now director has two child elements: first_name and last_name

XML Hierarchy Structure

Conceptual XML

```
<Root>
  <child_1>...</child_1>
  <child_2>...</child_2>
        <subchild>...</subchild>
  <child_3>...</child_3>
</Root>
```

- An XML document can be represented with a tree structure
- An XML document must have one single Root element
- ► The Root may contain child elements
- A child element may contain subchild elements

Well-Formedness

Well-formed XML

We say that an XML document is **well-formed** when it obeys the basic syntax rules of XML. Some of those rules are:

- one root element containing the rest of elements
- properly nested elements
- self-closing tags
- attributes appear in start-tags of elements
- attribute values must be quoted
- element names and attribute names are case sensitive

Well-Formedness

Importance of Well-formed XML

Not well-formed XML documents produce potentially fatal errors or warnings when parsed.

Documents may be well-formed but not valid. Well-formed just guarantees that the document meets the basic XML structure, not that the content is valid.

Additional XML Elements

Some Additional Elements

```
<?xml version="1.0"? encoding="UTF-8" ?>
<![CDATA[ a > 5 & b < 10 ]]>
<?GS print(format = TRUE)>
<!DOCTYPE Movie>
<!-- This is a commet -->
<movie mins="126" lang="en">
 <title>Good Will Hunting</title>
 <director>
   <first_name>Gus</first_name>
   <last_name>Van Sant
 </director>
 <year>1998
 <genre>drama</genre>
</movie>
```

Additional Optional XML Elements

Markup	Description
xml	XML Declaration
	identifies content as an XML document
PI	Processing Instruction
	processing instructions passed to application PI
	Document-type Declaration
	defines the structure of an XML document
	CDATA Character Data
	anything inside a CDATA is ignored by the parser
	Comment
	for writing comments

DTD

Document-Type Declaration

The Document-type Declaration identifies the **type** of the document. The *type* indicates the structure of a **valid** document:

- what elements are allowed to be present
- how elements can be combined
- how elements must be ordered

Basically, the DTD specifies what the format allows to do.

Wrapping Up

About XML

About XML

- designed to store and transfer data
- designed to be self-descriptive
- tags are not predefined and can be extended

Characteristics of XML

XML is

- a generic language that provides structure and syntax for many markup dialects
- ▶ is a syntax or format for defining markup languages
- a standard for the semantic, hierarchical representation of data
- provides a general approach for representing all types of information dialects

XML document example

Simple XML

```
<?xml version="1.0"?>
<!DOCTYPE movies>
<movie mins="126" lang="en">
 <!-- this is a comment -->
 <title>Good Will Hunting</title>
 <director>
   <first_name>Gus</first_name>
   <last name>Van Sant
 </director>
 <year>1998
 <genre>drama</genre>
</movie>
```

XML Tree Structure

Each Node can have:

- a Name
- any number of attributes
- optional content
- other nested elements

Traversing the tree

There's a unique path from the root node to any given node

Some References

- XML Files website (http://www.xmlfiles.com) by Jan Egil Refsnes
- XML in a Nutshell by Elliotte Rusty Harold; W. Scott Means
- ➤ XML Tutorial (http://www.w3schools.com/xml/default.asp) by w3schools
- Introduction to Data Technologies by Paul Murrell
- XML and Web Technologies for Data Sciences with R by Deb Nolan and Duncan Temple Lang