



Figure 1. A Schematic Illustration of the Use of a Fluorous Reaction Component in an Organic Transformation





Figure 2. Illustrative Uses of Fluorous Tin Reagent (C<sub>6</sub>F<sub>13</sub>CH<sub>2</sub>CH<sub>2</sub>)<sub>3</sub>SnH



## Catalytic Use









1) **4b** or **4c** \*BuOH, NaCNBH<sub>3</sub>

2) Fluorous-solid phase extraction



| tin<br>reagent | eluting solvent             | yleid |
|----------------|-----------------------------|-------|
| 4b             | 85/15 MeOH/H <sub>2</sub> O | 83%   |
| 4c             | 100% CH <sub>3</sub> N      | 83%   |

Figure 5. Synthesis and Use of Representative Fluorous Tin Reagents Bearing Two Fluorous Chains

$$Rf = \frac{1) \text{ Mg/Et}_2O}{2) \text{ Ph}_2\text{SnCl}_2} \qquad (RfCH_2CH_2)_2\text{SnPh}_2 \qquad \frac{\text{CICH}_2\text{CO}_2\text{H}}{\text{heat}}$$

$$1a \text{ Rf} = C_6\text{F}_{13} \qquad \qquad 5a$$

$$(RfCH_2CH_2)_2\text{Sn}(OCOCH_2Cl)_2 \qquad \frac{\text{NaOH}}{\text{CH}_2\text{Cl}_2} \qquad (C_6\text{F}_{13}\text{CH}_2\text{CH}_2)_2\text{Sn=O}$$

$$6a \qquad \qquad 7a, \text{ exists as oligomer/polymer}$$

either liquid-liquid or solld-liquid extraction can be used for the separation

: