# Activity Course 5 Automatidata project lab

December 6, 2023

# 1 Automatidata project

#### Course 5 - Regression Analysis: Simplify complex data relationships

The data consulting firm Automatidata has recently hired you as the newest member of their data analytics team. Their newest client, the NYC Taxi and Limousine Commission (New York City TLC), wants the Automatidata team to build a multiple linear regression model to predict taxi fares using existing data that was collected over the course of a year. The team is getting closer to completing the project, having completed an initial plan of action, initial Python coding work, EDA, and A/B testing.

The Automatidata team has reviewed the results of the A/B testing. Now it's time to work on predicting the taxi fare amounts. You've impressed your Automatidata colleagues with your hard work and attention to detail. The data team believes that you are ready to build the regression model and update the client New York City TLC about your progress.

A notebook was structured and prepared to help you in this project. Please complete the following questions.

# 2 Course 5 End-of-course project: Build a multiple linear regression model

In this activity, you will build a multiple linear regression model. As you've learned, multiple linear regression helps you estimate the linear relationship between one continuous dependent variable and two or more independent variables. For data science professionals, this is a useful skill because it allows you to consider more than one variable against the variable you're measuring against. This opens the door for much more thorough and flexible analysis to be completed.

Completing this activity will help you practice planning out and building a multiple linear regression model based on a specific business need. The structure of this activity is designed to emulate the proposals you will likely be assigned in your career as a data professional. Completing this activity will help prepare you for those career moments.

The purpose of this project is to demostrate knowledge of EDA and a multiple linear regression model

**The goal** is to build a multiple linear regression model and evaluate the model *This activity has three parts:* 

Part 1: EDA & Checking Model Assumptions \* What are some purposes of EDA before constructing a multiple linear regression model?

**Part 2:** Model Building and evaluation \* What resources do you find yourself using as you complete this stage?

Part 3: Interpreting Model Results

- What key insights emerged from your model(s)?
- What business recommendations do you propose based on the models built?

# 3 Build a multiple linear regression model

# 4 PACE stages

Throughout these project notebooks, you'll see references to the problem-solving framework PACE. The following notebook components are labeled with the respective PACE stage: Plan, Analyze, Construct, and Execute.

#### 4.1 PACE: Plan

Consider the questions in your PACE Strategy Document to reflect on the Plan stage.

#### 4.1.1 Task 1. Imports and loading

Import the packages that you've learned are needed for building linear regression models.

```
[1]:  # Imports
     # Packages for numerics + dataframes
     import pandas as pd
     import numpy as np
     # Packages for visualization
     import matplotlib.pyplot as plt
     import statsmodels.api as sm
     import seaborn as sns
     # Packages for date conversions for calculating trip durations
     from datetime import datetime
     from datetime import date
     from datetime import timedelta
     # Packages for OLS, MLR, confusion matrix
     from statsmodels.formula.api import ols
     from sklearn.preprocessing import StandardScaler
     from sklearn.model_selection import train_test_split
     import sklearn.metrics as metrics
```

```
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error,r2_score,mean_squared_error
```

**Note:** Pandas is used to load the NYC TLC dataset. As shown in this cell, the dataset has been automatically loaded in for you. You do not need to download the .csv file, or provide more code, in order to access the dataset and proceed with this lab. Please continue with this activity by completing the following instructions.

```
[2]: # Load dataset into dataframe df0=pd.read_csv("2017_Yellow_Taxi_Trip_Data.csv")
```

# 4.2 PACE: Analyze

In this stage, consider the following question where applicable to complete your code response:

• What are some purposes of EDA before constructing a multiple linear regression model?

==> ENTER YOUR RESPONSE HERE

# 4.2.1 Task 2a. Explore data with EDA

Analyze and discover data, looking for correlations, missing data, outliers, and duplicates.

Start with .shape and .info().

```
[79]: # Start with `.shape` and `.info()`
print(df0.shape)
df0.info()
```

```
(22699, 18)
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 22699 entries, 0 to 22698
Data columns (total 18 columns):

| #  | Column                | Non-Null Count | Dtype   |
|----|-----------------------|----------------|---------|
|    |                       |                |         |
| 0  | Unnamed: 0            | 22699 non-null | int64   |
| 1  | VendorID              | 22699 non-null | int64   |
| 2  | tpep_pickup_datetime  | 22699 non-null | object  |
| 3  | tpep_dropoff_datetime | 22699 non-null | object  |
| 4  | passenger_count       | 22699 non-null | int64   |
| 5  | trip_distance         | 22699 non-null | float64 |
| 6  | RatecodeID            | 22699 non-null | int64   |
| 7  | store_and_fwd_flag    | 22699 non-null | object  |
| 8  | ${\tt PULocationID}$  | 22699 non-null | int64   |
| 9  | ${\tt DOLocationID}$  | 22699 non-null | int64   |
| 10 | payment_type          | 22699 non-null | int64   |
| 11 | fare_amount           | 22699 non-null | float64 |
| 12 | extra                 | 22699 non-null | float64 |

```
mta_tax
                                   22699 non-null
                                                    float64
      13
      14
          tip_amount
                                   22699 non-null
                                                    float64
      15
           tolls_amount
                                   22699 non-null
                                                    float64
           improvement_surcharge
                                   22699 non-null
                                                    float64
      16
           total amount
      17
                                   22699 non-null
                                                    float64
     dtypes: float64(8), int64(7), object(3)
     memory usage: 3.1+ MB
     Check for missing data and duplicates using .isna() and .drop_duplicates().
 [3]: | # Check for missing data and duplicates using .isna() and .drop_duplicates()
      df0.isna().any(axis=0).sum()
 [3]: 0
     Use .describe().
[81]: # Use .describe()
      df0.describe()
                                           passenger_count
                Unnamed: 0
                                                              trip_distance
                                 VendorID
                            22699.000000
                                               22699.000000
                                                               22699.000000
      count
             2.269900e+04
      mean
              5.675849e+07
                                 1.556236
                                                   1.642319
                                                                   2.913313
      std
              3.274493e+07
                                 0.496838
                                                   1.285231
                                                                   3.653171
      min
              1.212700e+04
                                 1.000000
                                                   0.00000
                                                                   0.000000
                                                                   0.990000
      25%
              2.852056e+07
                                                   1.000000
                                 1.000000
      50%
              5.673150e+07
                                 2.000000
                                                   1.000000
                                                                   1.610000
      75%
              8.537452e+07
                                 2.000000
                                                   2.000000
                                                                   3.060000
              1.134863e+08
                                                                  33.960000
      max
                                 2.000000
                                                   6.000000
                RatecodeID
                            PULocationID
                                           DOLocationID
                                                          payment_type
                                                                           fare_amount
                                                          22699.000000
                                                                          22699.000000
      count
             22699.000000
                             22699.000000
                                           22699.000000
      mean
                  1.043394
                               162.412353
                                              161.527997
                                                               1.336887
                                                                             13.026629
      std
                  0.708391
                                66.633373
                                               70.139691
                                                               0.496211
                                                                             13.243791
      min
                  1.000000
                                 1.000000
                                                1.000000
                                                               1.000000
                                                                           -120.000000
      25%
                  1.000000
                               114.000000
                                              112.000000
                                                               1.000000
                                                                              6.500000
      50%
                  1.000000
                               162.000000
                                              162.000000
                                                               1.000000
                                                                              9.500000
      75%
                  1.000000
                               233.000000
                                              233.000000
                                                               2.000000
                                                                             14.500000
      max
                 99.000000
                               265.000000
                                              265.000000
                                                               4.000000
                                                                            999.990000
                                  mta_tax
                                              tip_amount
                                                          tolls_amount
                     extra
              22699.000000
                             22699.000000
                                           22699.000000
                                                          22699.000000
      count
                  0.333275
                                 0.497445
                                                1.835781
                                                               0.312542
      mean
                                                               1.399212
      std
                  0.463097
                                 0.039465
                                                2.800626
      min
                 -1.000000
                                -0.500000
                                                0.000000
                                                               0.000000
      25%
                  0.00000
                                 0.500000
                                                0.000000
                                                               0.00000
      50%
                  0.000000
                                 0.500000
                                                1.350000
                                                               0.000000
```

[81]:

75%

0.500000

2.450000

0.000000

0.500000

4.500000 0.500000 200.000000 19.100000 maximprovement\_surcharge total\_amount 22699.000000 22699.000000 count 0.299551 16.310502 mean std 0.015673 16.097295 min -0.300000 -120.300000 25% 0.300000 8.750000 50% 0.300000 11.800000 75% 0.300000 17.800000 0.300000 1200.290000 max

# 4.2.2 Task 2b. Convert pickup & dropoff columns to datetime

```
[4]: # Check the format of the data df0['tpep_pickup_datetime'][0]
```

[4]: '03/25/2017 8:55:43 AM'

```
[5]: # Convert datetime columns to datetime

df0['tpep_pickup_datetime'] = pd.to_datetime(df0['tpep_pickup_datetime'])

df0['tpep_dropoff_datetime'] = pd.to_datetime(df0['tpep_dropoff_datetime'])

df0.dtypes
```

[5]: Unnamed: 0 int64 VendorID int64 tpep\_pickup\_datetime datetime64[ns] tpep\_dropoff\_datetime datetime64[ns] passenger\_count int64 trip\_distance float64 RatecodeID int64 store\_and\_fwd\_flag object PULocationID int64 DOLocationIDint64 payment\_type int64 fare\_amount float64 float64 extra mta tax float64 tip\_amount float64 float64 tolls\_amount improvement\_surcharge float64 total\_amount float64

dtype: object

#### 4.2.3 Task 2c. Create duration column

Create a new column called duration that represents the total number of minutes that each taxi ride took.

```
[6]: # Create `duration` column

df0['duration'] = (df0['tpep_dropoff_datetime'] - df0['tpep_pickup_datetime'])/

→np.timedelta64(1,'m')
```

#### 4.2.4 Outliers

Call df.info() to inspect the columns and decide which ones to check for outliers.

```
[86]: ### YOUR CODE HERE ###

df0.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 22699 entries, 0 to 22698
Data columns (total 19 columns):

| #                                                                     | Column                           | Non-Null Count | Dtype          |  |
|-----------------------------------------------------------------------|----------------------------------|----------------|----------------|--|
|                                                                       |                                  |                |                |  |
| 0                                                                     | Unnamed: 0                       | 22699 non-null | int64          |  |
| 1                                                                     | VendorID                         | 22699 non-null | int64          |  |
| 2                                                                     | tpep_pickup_datetime             | 22699 non-null | datetime64[ns] |  |
| 3                                                                     | tpep_dropoff_datetime            | 22699 non-null | datetime64[ns] |  |
| 4                                                                     | passenger_count                  | 22699 non-null | int64          |  |
| 5                                                                     | trip_distance                    | 22699 non-null | float64        |  |
| 6                                                                     | RatecodeID                       | 22699 non-null | int64          |  |
| 7                                                                     | ${\tt store\_and\_fwd\_flag}$    | 22699 non-null | object         |  |
| 8                                                                     | PULocationID                     | 22699 non-null | int64          |  |
| 9                                                                     | DOLocationID                     | 22699 non-null | int64          |  |
| 10                                                                    | payment_type                     | 22699 non-null | int64          |  |
| 11                                                                    | fare_amount                      | 22699 non-null | float64        |  |
| 12                                                                    | extra                            | 22699 non-null | float64        |  |
| 13                                                                    | mta_tax                          | 22699 non-null | float64        |  |
| 14                                                                    | tip_amount                       | 22699 non-null | float64        |  |
| 15                                                                    | tolls_amount                     | 22699 non-null | float64        |  |
| 16                                                                    | <pre>improvement_surcharge</pre> | 22699 non-null | float64        |  |
| 17                                                                    | total_amount                     | 22699 non-null | float64        |  |
| 18                                                                    | duration                         | 22699 non-null | float64        |  |
| <pre>dtypes: datetime64[ns](2), float64(9), int64(7), object(1)</pre> |                                  |                |                |  |
| memo                                                                  | ry usage: 3.3+ MB                |                |                |  |

Keeping in mind that many of the features will not be used to fit your model, the most important columns to check for outliers are likely to be: \* trip\_distance \* fare\_amount \* duration

## 4.2.5 Task 2d. Box plots

Plot a box plot for each feature: trip\_distance, fare\_amount, duration.

```
[87]: fig, axes = plt.subplots(1, 3, figsize=(15, 2))
    fig.suptitle('Oulier Detection')
    sns.boxplot(ax=axes[0], x=df0['trip_distance'])
    sns.boxplot(ax=axes[1], x=df0['fare_amount'])
    sns.boxplot(ax=axes[2], x=df0['duration'])
    plt.show()
```







**Questions:** 1. Which variable(s) contains outliers?

- 2. Are the values in the trip\_distance column unbelievable?
- 3. What about the lower end? Do distances, fares, and durations of 0 (or negative values) make sense?

All variables contain outliers but fare amount and duration have extreme outliers.

The distance does seem believable, a maximum of 35 miles does not seem unreasonable.

It does not make sense for 0 or negative values to be present unless it is within fare amount (like possible refunds)

## 4.2.6 Task 2e. Imputations

trip\_distance outliers You know from the summary statistics that there are trip distances of 0. Are these reflective of erroneous data, or are they very short trips that get rounded down?

To check, sort the column values, eliminate duplicates, and inspect the least 10 values. Are they rounded values or precise values?

```
[50]: # Are trip distances of 0 bad data or very short trips rounded down? sorted(set(df0['trip_distance']))[:10]
```

```
[50]: [0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09]
```

The distances are captured with a high degree of precision. However, it might be possible for trips to have distances of zero if a passenger summoned a taxi and then changed their mind. Besides, are there enough zero values in the data to pose a problem?

Calculate the count of rides where the trip\_distance is zero.

```
[51]: sum(df0['trip_distance']==0)
```

[51]: 148

#### fare\_amount outliers

```
[52]: df0['fare_amount'].describe()
```

```
22699.000000
[52]: count
                   13.026629
      mean
      std
                   13.243791
                -120.000000
      min
      25%
                    6.500000
      50%
                    9.500000
      75%
                   14.500000
      max
                 999.990000
```

Name: fare\_amount, dtype: float64

Question: What do you notice about the values in the fare\_amount column?

There is a minimum of -120 and a maximum of 999.99

Impute values less than \$0 with 0.

```
[7]: # Impute values less than $0 with 0
df0.loc[df0['fare_amount'] < 0, 'fare_amount'] = 0
df0['fare_amount'].min()</pre>
```

[7]: 0.0

Now impute the maximum value as Q3 + (6 \* IQR).

```
[8]: def outlier_imputer(column_list, iqr_factor):

'''

Impute upper-limit values in specified columns based on their interquartile_□

→ range.

Arguments:

column_list: A list of columns to iterate over
iqr_factor: A number representing x in the formula:

Q3 + (x * IQR). Used to determine maximum threshold,
beyond which a point is considered an outlier.

The IQR is computed for each column in column_list and values exceeding
the upper threshold for each column are imputed with the upper threshold_□

→ value.

''''
```

```
for col in column_list:
               # Reassign minimum to zero
               df0.loc[df0[col] < 0, col] = 0
               # Calculate upper threshold
               q1 = df0[col].quantile(0.25)
               q3 = df0[col].quantile(0.75)
               iqr = q3 - q1
               upper_threshold = q3 + (iqr_factor * iqr)
               print(col)
               print('q3:', q3)
               print('upper_threshold:', upper_threshold)
               # Reassign values > threshold to threshold
               df0.loc[df0[col] > upper_threshold, col] = upper_threshold
               print(df0[col].describe())
               print()
 [10]: outlier_imputer(['fare_amount'], 6)
      fare_amount
      q3: 14.5
      upper_threshold: 62.5
      count
               22699.000000
                  12.897913
      mean
      std
                  10.541137
                   0.000000
      min
      25%
                   6.500000
      50%
                   9.500000
      75%
                  14.500000
                  62.500000
      max
      Name: fare_amount, dtype: float64
      duration outliers
[106]: # Call .describe() for duration outliers
       df0['duration'].describe()
[106]: count
                22699.000000
      mean
                   17.013777
       std
                   61.996482
      min
                  -16.983333
       25%
                    6.650000
       50%
                   11.183333
       75%
                   18.383333
```

```
max 1439.550000
```

Name: duration, dtype: float64

The duration column has problematic values at both the lower and upper extremities.

- Low values: There should be no values that represent negative time. Impute all negative durations with 0.
- **High values:** Impute high values the same way you imputed the high-end outliers for fares: Q3 + (6 \* IQR).

```
[8]: # Impute a 0 for any negative values
df0.loc[df0['duration'] < 0, 'duration'] = 0
df0['duration'].min()</pre>
```

#### [8]: 0.0

```
[13]: # Impute the high outliers
outlier_imputer(['duration'], 6)
```

#### duration

```
q3: 18.383333333333333
```

upper\_threshold: 88.783333333333333

count 22699.000000 14.460555 mean 11.947043 std min 0.000000 25% 6.650000 50% 11.183333 75% 18.383333 88.783333 max

Name: duration, dtype: float64

#### 4.2.7 Task 3a. Feature engineering

Create mean\_distance column When deployed, the model will not know the duration of a trip until after the trip occurs, so you cannot train a model that uses this feature. However, you can use the statistics of trips you do know to generalize about ones you do not know.

In this step, create a column called mean\_distance that captures the mean distance for each group of trips that share pickup and dropoff points.

For example, if your data were:

The results should be:

A -> B: 1.25 miles C -> D: 2 miles D -> C: 3 miles

Notice that C -> D is not the same as D -> C. All trips that share a unique pair of start and end points get grouped and averaged.

Then, a new column mean\_distance will be added where the value at each row is the average for all trips with those pickup and dropoff locations:

| Trip | Start        | End          | Distance | mean_distance |
|------|--------------|--------------|----------|---------------|
| 1    | A            | В            | 1        | 1.25          |
| 2    | $\mathbf{C}$ | D            | 2        | 2             |
| 3    | A            | В            | 1.5      | 1.25          |
| 4    | D            | $\mathbf{C}$ | 3        | 3             |

Begin by creating a helper column called pickup\_dropoff, which contains the unique combination of pickup and dropoff location IDs for each row.

One way to do this is to convert the pickup and dropoff location IDs to strings and join them, separated by a space. The space is to ensure that, for example, a trip with pickup/dropoff points of 12 & 151 gets encoded differently than a trip with points 121 & 51.

So, the new column would look like this:

| Trip | Start        | End          | pickup_dropoff |
|------|--------------|--------------|----------------|
| 1    | A            | В            | 'A B'          |
| 2    | $\mathbf{C}$ | D            | 'C D'          |
| 3    | A            | В            | 'A B'          |
| 4    | D            | $\mathbf{C}$ | 'D C'          |

```
[9]: # Create `pickup_dropoff` column

df0['pickup_dropoff'] = df0['PULocationID'].astype(str) + ' ' +

df0['DOLocationID'].astype(str)

df0['pickup_dropoff'].head(2)
```

Now, use a groupby() statement to group each row by the new pickup\_dropoff column, compute the mean, and capture the values only in the trip\_distance column. Assign the results to a variable named grouped.

```
[10]: grouped = df0.groupby('pickup_dropoff').

→mean(numeric_only=True)[['trip_distance']]
grouped[:5]
```

grouped is an object of the DataFrame class.

1. Convert it to a dictionary using the to\_dict() method. Assign the results to a variable called grouped\_dict. This will result in a dictionary with a key of trip\_distance whose values are another dictionary. The inner dictionary's keys are pickup/dropoff points and its values are mean distances. This is the information you want.

#### Example:

```
grouped_dict = {'trip_distance': {'A B': 1.25, 'C D': 2, 'D C': 3}
```

2. Reassign the grouped\_dict dictionary so it contains only the inner dictionary. In other words, get rid of trip\_distance as a key, so:

## Example:

```
grouped_dict = {'A B': 1.25, 'C D': 2, 'D C': 3}
```

```
[11]: # 1. Convert `grouped` to a dictionary
grouped_dict = grouped.to_dict()

# 2. Reassign to only contain the inner dictionary
grouped_dict = grouped_dict['trip_distance']
```

- 1. Create a mean\_distance column that is a copy of the pickup\_dropoff helper column.
- 2. Use the map() method on the mean\_distance series. Pass grouped\_dict as its argument. Reassign the result back to the mean\_distance series. When you pass a dictionary to the Series.map() method, it will replace the data in the series where that data matches the dictionary's keys. The values that get imputed are the values of the dictionary.

## Example:

df['mean\_distance']

| mean_distar | ıce |
|-------------|-----|
| 'A B'       |     |
| 'C D'       |     |
| 'A B'       |     |
| 'D C'       |     |
| 'E F'       |     |

```
grouped_dict = {'A B': 1.25, 'C D': 2, 'D C': 3}
df['mean_distance`] = df['mean_distance'].map(grouped_dict)
df['mean_distance']
```

When used this way, the map() Series method is very similar to replace(), however, note that map() will impute NaN for any values in the series that do not have a corresponding key in the mapping dictionary, so be careful.

```
[12]: mean_distance
0 3.521667
4909 3.521667
16636 3.521667
18134 3.521667
19761 3.521667
20581 3.521667
```

Create mean\_duration column Repeat the process used to create the mean\_distance column to create a mean\_duration column.

```
[13]: grouped = df0.groupby('pickup_dropoff').mean(numeric_only=True)[['duration']]
    grouped

# Create a dictionary where keys are unique pickup_dropoffs and values are
# mean trip duration for all trips with those pickup_dropoff combos
grouped_dict = grouped.to_dict()
grouped_dict = grouped_dict['duration']

df0['mean_duration'] = df0['pickup_dropoff']
df0['mean_duration'] = df0['mean_duration'].map(grouped_dict)

# Confirm that it worked
df0[(df0['PULocationID']==100) & (df0['DOLocationID']==231)][['mean_duration']]
```

```
[13]: mean_duration
0 22.847222
4909 22.847222
16636 22.847222
18134 22.847222
19761 22.847222
20581 22.847222
```

Create day and month columns Create two new columns, day (name of day) and month (name of month) by extracting the relevant information from the tpep\_pickup\_datetime column.

```
[14]: # Create 'day' col
df0['day'] = df0['tpep_pickup_datetime'].dt.day_name().str.lower()

# Create 'month' col
df0['month'] = df0['tpep_pickup_datetime'].dt.strftime('%b').str.lower()
```

Create rush\_hour column Define rush hour as: \* Any weekday (not Saturday or Sunday) AND \* Either from 06:00–10:00 or from 16:00–20:00

Create a binary rush\_hour column that contains a 1 if the ride was during rush hour and a 0 if it was not.

```
[15]: # Create 'rush_hour' col
df0['rush_hour'] = df0['tpep_pickup_datetime'].dt.hour

# If day is Saturday or Sunday, impute 0 in `rush_hour` column
df0.loc[df0['day'].isin(['saturday', 'sunday']), 'rush_hour'] = 0
```

```
[16]: def rush_hourizer(hour):
    if 6 <= hour['rush_hour'] < 10:
        val = 1
    elif 16 <= hour['rush_hour'] < 20:
        val = 1
    else:
        val = 0
    return val</pre>
```

```
[17]: # Apply the `rush_hourizer()` function to the new column

df0.loc[(df0.day != 'saturday') & (df0.day != 'sunday'), 'rush_hour'] = df0.

→apply(rush_hourizer, axis=1)

df0.head()
```

```
[17]: Unnamed: 0 VendorID tpep_pickup_datetime tpep_dropoff_datetime \
0 24870114 2 2017-03-25 08:55:43 2017-03-25 09:09:47
1 35634249 1 2017-04-11 14:53:28 2017-04-11 15:19:58
```

```
2
    106203690
                       1 2017-12-15 07:26:56
                                                  2017-12-15 07:34:08
3
     38942136
                       2 2017-05-07 13:17:59
                                                  2017-05-07 13:48:14
4
     30841670
                         2017-04-15 23:32:20
                                                  2017-04-15 23:49:03
                     trip_distance RatecodeID store_and_fwd_flag
   passenger_count
0
                  6
                               3.34
                                               1
                                                                   N
                               1.80
                                               1
                                                                   N
1
                  1
2
                                               1
                                                                   N
                  1
                               1.00
3
                               3.70
                                               1
                                                                   N
4
                               4.37
                                                                   N
                                               1
   PULocationID
                 DOLocationID
                                    tolls_amount
                                                   improvement_surcharge
0
             100
                            231
                                              0.0
                                                                       0.3
                                              0.0
                                                                       0.3
1
             186
                             43 ...
2
                            236
                                              0.0
                                                                       0.3
             262
3
             188
                             97
                                              0.0
                                                                       0.3
4
                                              0.0
                                                                       0.3
               4
                            112
   total_amount
                   duration pickup_dropoff mean_distance
                                                              mean_duration
0
           16.56
                  14.066667
                                     100 231
                                                    3.521667
                                                                   22.847222
           20.80
                  26.500000
                                      186 43
                                                    3.108889
                                                                   24.470370
1
2
           8.75
                   7.200000
                                     262 236
                                                                    7.250000
                                                    0.881429
3
           27.69
                  30.250000
                                      188 97
                                                    3.700000
                                                                   30.250000
           17.80
                  16.716667
                                                    4.435000
                                                                   14.616667
                                        4 112
        dav
             month rush hour
0
   saturday
                mar
1
    tuesday
                             0
                apr
2
     friday
                dec
                             1
                             0
3
     sunday
                may
   saturday
                apr
                             0
```

[5 rows x 25 columns]

#### 4.2.8 Task 4. Scatter plot

Create a scatterplot to visualize the relationship between mean\_duration and fare\_amount.

```
[38]: # Create a scatterplot to visualize the relationship between variables of 

→ interest

sns.scatterplot(x = df0['mean_duration'], y = df0['fare_amount'])

plt.tight_layout()
```



The mean\_duration variable correlates with the target variable. But what are the horizontal lines around fare amounts of 52 dollars and 63 dollars? What are the values and how many are there?

You know what one of the lines represents. 62 dollars and 50 cents is the maximum that was imputed for outliers, so all former outliers will now have fare amounts of \$62.50. What is the other line?

Check the value of the rides in the second horizontal line in the scatter plot.

```
[18]: df0[df0['fare_amount'] > 50]['fare_amount'].value_counts().head()

[18]: 52.0     514
     59.0     9
     50.5     9
     57.5     8
     51.0     7
     Name: fare_amount, dtype: int64

Examine the first 30 of these trips.
```

```
[19]: # Set pandas to display all columns
pd.set_option('display.max_columns', None)
df0[df0['fare_amount']==52].head(30)
```

```
[19]:
            Unnamed: 0
                       VendorID tpep_pickup_datetime tpep_dropoff_datetime \
                                   2017-03-05 19:15:30
                                                           2017-03-05 19:52:18
      11
              18600059
      110
              47959795
                                   2017-06-03 14:24:57
                                                           2017-06-03 15:31:48
      161
              95729204
                                   2017-11-11 20:16:16
                                                           2017-11-11 20:17:14
      247
                                2
                                   2017-12-06 23:37:08
                                                           2017-12-07 00:06:19
             103404868
      379
              80479432
                                   2017-09-24 23:45:45
                                                           2017-09-25 00:15:14
      388
              16226157
                                   2017-02-28 18:30:05
                                                           2017-02-28 19:09:55
                                   2017-06-05 12:51:58
                                                           2017-06-05 13:07:35
      406
              55253442
      449
              65900029
                                2
                                   2017-08-03 22:47:14
                                                           2017-08-03 23:32:41
                                                           2017-09-26 14:31:17
      468
              80904240
                                2
                                   2017-09-26 13:48:26
      520
              33706214
                                2
                                   2017-04-23 21:34:48
                                                           2017-04-23 22:46:23
      569
              99259872
                                2
                                   2017-11-22 21:31:32
                                                           2017-11-22 22:00:25
      572
                                2
                                   2017-07-18 13:29:06
                                                           2017-07-18 13:29:19
              61050418
      586
              54444647
                                   2017-06-26 13:39:12
                                                           2017-06-26 14:34:54
      692
                                   2017-11-07 22:15:00
                                                           2017-11-07 22:45:32
              94424289
      717
             103094220
                                   2017-12-06 05:19:50
                                                           2017-12-06 05:53:52
      719
              66115834
                                   2017-08-04 17:53:34
                                                           2017-08-04 18:50:56
              55934137
      782
                                2
                                   2017-06-09 09:31:25
                                                           2017-06-09 10:24:10
      816
              13731926
                                2
                                   2017-02-21 06:11:03
                                                           2017-02-21 06:59:39
      818
              52277743
                                2
                                   2017-06-20 08:15:18
                                                           2017-06-20 10:24:37
      835
                                   2017-01-10 22:29:47
                                                           2017-01-10 23:06:46
               2684305
                                2
      840
                                   2017-10-27 21:50:00
                                                           2017-10-27 22:35:04
              90860814
      861
             106575186
                                   2017-12-16 06:39:59
                                                           2017-12-16 07:07:59
      881
             110495611
                                   2017-12-30 05:25:29
                                                           2017-12-30 06:01:29
      958
              87017503
                                1
                                   2017-10-15 22:39:12
                                                           2017-10-15 23:14:22
      970
              12762608
                                   2017-02-17 20:39:42
                                                           2017-02-17 21:13:29
      984
                                                           2017-08-23 19:18:29
              71264442
                                1
                                   2017-08-23 18:23:26
      1082
                                   2017-02-07 17:20:19
                                                           2017-02-07 17:34:41
              11006300
      1097
                                   2017-08-14 23:01:15
                                                           2017-08-14 23:03:35
              68882036
      1110
              74720333
                                   2017-09-06 10:46:17
                                                           2017-09-06 11:44:41
                                   2017-06-19 06:23:13
                                                           2017-06-19 07:03:53
      1179
              51937907
            passenger count trip distance RatecodeID store and fwd flag
      11
                           2
                                       18.90
                                                        2
                                                                           N
      110
                           1
                                       18.00
                                                        2
                                                                           N
                                                        2
                           1
                                       0.23
                                                                           N
      161
                           1
                                                        2
                                                                           N
      247
                                       18.93
      379
                           1
                                       17.99
                                                        2
                                                                           N
                           1
                                                        2
      388
                                       18.40
                                                                           N
                                                        2
      406
                           1
                                       4.73
                                                                           N
                                       18.21
      449
                           2
                                                        2
                                                                           N
                                                        2
                                                                           N
      468
                           1
                                       17.27
      520
                           6
                                       18.34
                                                        2
                                                                           N
      569
                           1
                                                        2
                                                                           N
                                       18.65
      572
                           1
                                                        2
                                                                           N
                                       0.00
                                                                           N
      586
                           1
                                       17.76
                                                        2
      692
                                       16.97
                                                        2
                                                                           N
```

| 717  |              | 1 20         | .80          | 2           | N     |         |   |
|------|--------------|--------------|--------------|-------------|-------|---------|---|
| 719  |              |              | .60          | 2           | N     |         |   |
| 782  |              |              | .81          | 2           | N     |         |   |
| 816  |              |              | .94          | 2           | N     |         |   |
| 818  |              |              | .77          | 2           | N     |         |   |
| 835  |              |              | .57          | 2           | N     |         |   |
| 840  |              |              | .43          | 2           | N     |         |   |
| 861  |              |              | .80          | 2           | N     |         |   |
| 881  |              |              | .23          | 2           | N     |         |   |
| 958  |              |              | .80          | 2           | N     |         |   |
| 970  |              |              | .57          | 2           | N     |         |   |
| 984  |              |              | .70          | 2           | N     |         |   |
| 1082 |              |              | .09          | 2           | N     |         |   |
| 1097 |              |              | .12          | 2           | N     |         |   |
| 1110 |              |              | .10          | 2           | N     |         |   |
| 1179 |              |              | .77          | 2           | N     |         |   |
| 1113 |              | 0 19         | . 1 1        | 2           | 11    |         |   |
|      | PULocationID | DOLocationID | payment_type | fare_amount | extra | mta_tax | \ |
| 11   | 236          | 132          | 1            | 52.0        | 0.0   | 0.5     |   |
| 110  | 132          | 163          | 1            | 52.0        | 0.0   | 0.5     |   |
| 161  | 132          | 132          | 2            | 52.0        | 0.0   | 0.5     |   |
| 247  | 132          | 79           | 2            | 52.0        | 0.0   | 0.5     |   |
| 379  | 132          | 234          | 1            | 52.0        | 0.0   | 0.5     |   |
| 388  | 132          | 48           | 2            | 52.0        | 4.5   | 0.5     |   |
| 406  | 228          | 88           | 2            | 52.0        | 0.0   | 0.5     |   |
| 449  | 132          | 48           | 2            | 52.0        | 0.0   | 0.5     |   |
| 468  | 186          | 132          | 2            | 52.0        | 0.0   | 0.5     |   |
| 520  | 132          | 148          | 1            | 52.0        | 0.0   | 0.5     |   |
| 569  | 132          | 144          | 1            | 52.0        | 0.0   | 0.5     |   |
| 572  | 230          | 161          | 1            | 52.0        | 0.0   | 0.5     |   |
| 586  | 211          | 132          | 1            | 52.0        | 0.0   | 0.5     |   |
| 692  | 132          | 170          | 1            | 52.0        | 0.0   | 0.5     |   |
| 717  | 132          | 239          | 1            | 52.0        | 0.0   | 0.5     |   |
| 719  | 264          | 264          | 1            | 52.0        | 4.5   | 0.5     |   |
| 782  | 163          | 132          | 1            | 52.0        | 0.0   | 0.5     |   |
| 816  | 132          | 170          | 1            | 52.0        | 0.0   | 0.5     |   |
| 818  | 132          | 246          | 1            | 52.0        | 0.0   | 0.5     |   |
| 835  | 132          | 48           | 1            | 52.0        | 0.0   | 0.5     |   |
| 840  | 132          | 163          | 2            | 52.0        | 0.0   | 0.5     |   |
| 861  | 75           | 132          | 1            | 52.0        | 0.0   | 0.5     |   |
| 881  | 68           | 132          | 2            | 52.0        | 0.0   | 0.5     |   |
| 958  | 132          | 261          | 2            | 52.0        | 0.0   | 0.5     |   |
| 970  | 132          | 140          | 1            | 52.0        | 0.0   | 0.5     |   |
| 984  | 132          | 230          | 1            | 52.0        | 4.5   | 0.5     |   |
| 1082 | 170          | 48           | 2            | 52.0        | 4.5   | 0.5     |   |
| 1097 | 265          | 265          | 2            | 52.0        | 0.0   | 0.5     |   |
| 1110 | 239          | 132          | 1            | 52.0        | 0.0   | 0.5     |   |
| 1110 | 239          | 132          | 1            | 5∠.0        | 0.0   | 0.5     |   |

| 1179       | 29                     | 38 132            | 2 1                   | 52.0                   | 0.0            | 0.5 |
|------------|------------------------|-------------------|-----------------------|------------------------|----------------|-----|
|            | tip_amount             | tolls_amount      | improvement_sur       | charge total_          | amount \       |     |
| 11         | 14.58                  | 5.54              |                       | 0.3                    | 72.92          |     |
| 110        | 0.00                   | 0.00              |                       | 0.3                    | 52.80          |     |
| 161        | 0.00                   | 0.00              |                       | 0.3                    | 52.80          |     |
| 247        | 0.00                   | 0.00              |                       | 0.3                    | 52.80          |     |
| 379        | 14.64                  | 5.76              |                       | 0.3                    | 73.20          |     |
| 388        | 0.00                   | 5.54              |                       | 0.3                    | 62.84          |     |
| 406        | 0.00                   | 5.76              |                       | 0.3                    | 58.56          |     |
| 449        | 0.00                   | 5.76              |                       | 0.3                    | 58.56          |     |
| 468        | 0.00                   | 5.76              |                       | 0.3                    | 58.56          |     |
| 520        | 5.00                   | 0.00              |                       | 0.3                    | 57.80          |     |
| 569        | 10.56                  | 0.00              |                       | 0.3                    | 63.36          |     |
| 572        | 11.71                  | 5.76              |                       | 0.3                    | 70.27          |     |
| 586        | 11.71                  | 5.76<br>5.76      |                       | 0.3<br>0.3             | 70.27<br>70.27 |     |
| 692<br>717 | 11.71<br>5.85          | 5.76              |                       | 0.3                    | 64.41          |     |
| 719        | 12.60                  | 5.76              |                       | 0.3                    | 75.66          |     |
| 782        | 13.20                  | 0.00              |                       | 0.3                    | 66.00          |     |
| 816        | 2.00                   | 5.54              |                       | 0.3                    | 60.34          |     |
| 818        | 11.71                  | 5.76              |                       | 0.3                    | 70.27          |     |
| 835        | 13.20                  | 0.00              |                       | 0.3                    | 66.00          |     |
| 840        | 0.00                   | 5.76              |                       | 0.3                    | 58.56          |     |
| 861        | 6.00                   | 5.76              |                       | 0.3                    | 64.56          |     |
| 881        | 0.00                   | 0.00              |                       | 0.3                    | 52.80          |     |
| 958        | 0.00                   | 0.00              |                       | 0.3                    | 52.80          |     |
| 970        | 11.67                  | 5.54              |                       | 0.3                    | 70.01          |     |
| 984        | 42.29                  | 0.00              |                       | 0.3                    | 99.59          |     |
| 1082       | 0.00                   | 5.54              |                       | 0.3                    | 62.84          |     |
| 1097       | 0.00                   | 0.00              |                       | 0.3                    | 52.80          |     |
| 1110       | 15.80                  | 0.00              |                       | 0.3                    | 68.60          |     |
| 1179       | 17.57                  | 5.76              |                       | 0.3                    | 76.13          |     |
|            |                        | pickup_dropoff    | mean_distance         | mean_duration          | •              | \   |
| 11         | 36.800000              | 236 132           | 19.211667             | 265.147222             | J              |     |
| 110        | 66.850000              | 132 163           | 19.229000             | 52.941667              | •              |     |
| 161        | 0.966667               | 132 132           | 2.255862              | 3.021839               | v              |     |
| 247        | 29.183333              | 132 79            | 19.431667             | 47.275000              | •              |     |
| 379        | 29.483333              | 132 234           | 17.654000             | 49.833333              | •              |     |
| 388        | 39.833333              | 132 48            | 18.761905             | 61.604762              | v              |     |
| 406<br>449 | 15.616667              | 228 88            | 4.730000<br>18.761905 | 15.616667              | U              |     |
| 449<br>468 | 45.450000<br>42.850000 | 132 48<br>186 132 | 17.096000             | 61.604762<br>42.920000 | •              |     |
| 520        | 71.583333              | 132 148           | 17.994286             | 46.340476              | v              |     |
| 569        | 28.883333              | 132 146           | 18.537500             | 37.000000              | •              |     |
| 509<br>572 | 0.216667               | 230 161           | 0.685484              | 7.965591               | -              |     |
| 012        | 0.210007               | 250 101           | 0.000404              | 1.300091               | tuesuay        |     |

| 86   | 55.700000  | 211 132 | 16.580000 | 61.691667  | monday    |
|------|------------|---------|-----------|------------|-----------|
| 92   | 30.533333  | 132 170 | 17.203000 | 37.113333  | tuesday   |
| 17   | 34.033333  | 132 239 | 20.901250 | 44.862500  | wednesday |
| 19   | 57.366667  | 264 264 | 3.191516  | 25.329964  | friday    |
| 782  | 52.750000  | 163 132 | 17.275833 | 164.759722 | friday    |
| 316  | 48.600000  | 132 170 | 17.203000 | 37.113333  | tuesday   |
| 318  | 129.316667 | 132 246 | 18.515000 | 86.583333  | tuesday   |
| 335  | 36.983333  | 132 48  | 18.761905 | 61.604762  | tuesday   |
| 340  | 45.066667  | 132 163 | 19.229000 | 52.941667  | friday    |
| 361  | 28.000000  | 75 132  | 18.442500 | 36.204167  | saturday  |
| 381  | 36.000000  | 68 132  | 18.785000 | 63.737500  | saturday  |
| 958  | 35.166667  | 132 261 | 22.115000 | 51.493750  | sunday    |
| 970  | 33.783333  | 132 140 | 19.293333 | 36.791667  | friday    |
| 984  | 55.050000  | 132 230 | 18.571200 | 60.800000  | wednesday |
| .082 | 14.366667  | 170 48  | 1.265789  | 14.135965  | tuesday   |
| .097 | 2.333333   | 265 265 | 0.753077  | 3.411538   | monday    |
| 110  | 58.400000  | 239 132 | 19.795000 | 50.562500  | wednesday |
| 179  | 40.666667  | 238 132 | 19.470000 | 53.861111  | monday    |

|      | man+h | wiigh house |
|------|-------|-------------|
|      | month | rush_hour   |
| 11   | mar   | 0           |
| 110  | jun   | 0           |
| 161  | nov   | 0           |
| 247  | dec   | 0           |
| 379  | sep   | 0           |
| 388  | feb   | 1           |
| 406  | jun   | 0           |
| 449  | aug   | 0           |
| 468  | sep   | 0           |
| 520  | apr   | 0           |
| 569  | nov   | 0           |
| 572  | jul   | 0           |
| 586  | jun   | 0           |
| 692  | nov   | 0           |
| 717  | dec   | 0           |
| 719  | aug   | 1           |
| 782  | jun   | 1           |
| 816  | feb   | 1           |
| 818  | jun   | 1           |
| 835  | jan   | 0           |
| 840  | oct   | 0           |
| 861  | dec   | 0           |
| 881  | dec   | 0           |
| 958  | oct   | 0           |
| 970  | feb   | 0           |
| 984  | aug   | 1           |
| 1082 | feb   | 1           |

| 1097 | aug | 0 |
|------|-----|---|
| 1110 | sep | 0 |
| 1179 | jun | 1 |

Question: What do you notice about the first 30 trips?

Nearly all of the rides with fare amounts of \$52 have location 132 in common. And every one has a ratecode of 2. Also all of the pickup times seem to be very late at night or very early morning, there is only a few that have mid-after times.

# Task 5. Isolate modeling variables

Drop features that are redundant, irrelevant, or that will not be available in a deployed environment.

# [42]: df0.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 22699 entries, 0 to 22698
Data columns (total 25 columns):
```

| #    | Column                           | Non-Null Count   | Dtype            |
|------|----------------------------------|------------------|------------------|
| 0    | Unnamed: 0                       | 22699 non-null   | int64            |
| 1    | VendorID                         | 22699 non-null   | int64            |
| 2    | tpep_pickup_datetime             | 22699 non-null   | datetime64[ns]   |
| 3    | tpep_dropoff_datetime            | 22699 non-null   | datetime64[ns]   |
| 4    | passenger_count                  | 22699 non-null   | int64            |
| 5    | trip_distance                    | 22699 non-null   | float64          |
| 6    | RatecodeID                       | 22699 non-null   | int64            |
| 7    | ${\tt store\_and\_fwd\_flag}$    | 22699 non-null   | object           |
| 8    | ${\tt PULocationID}$             | 22699 non-null   | int64            |
| 9    | ${\tt DOLocationID}$             | 22699 non-null   | int64            |
| 10   | payment_type                     | 22699 non-null   | int64            |
| 11   | fare_amount                      | 22699 non-null   | float64          |
| 12   | extra                            | 22699 non-null   | float64          |
| 13   | mta_tax                          | 22699 non-null   | float64          |
| 14   | tip_amount                       | 22699 non-null   | float64          |
| 15   | tolls_amount                     | 22699 non-null   | float64          |
| 16   | <pre>improvement_surcharge</pre> | 22699 non-null   | float64          |
| 17   | total_amount                     | 22699 non-null   | float64          |
| 18   | duration                         | 22699 non-null   | float64          |
| 19   | pickup_dropoff                   | 22699 non-null   | object           |
| 20   | mean_distance                    | 22699 non-null   | float64          |
| 21   | ${\tt mean\_duration}$           | 22699 non-null   | float64          |
| 22   | day                              | 22699 non-null   | object           |
| 23   | month                            | 22699 non-null   | object           |
| 24   | rush_hour                        | 22699 non-null   | int64            |
| dtyp | es: datetime64[ns](2),           | float64(11), int | 64(8), object(4) |
|      | mrr 1100mo. / 21 MD              |                  |                  |

memory usage: 4.3+ MB

```
[20]: df1 = df0.copy()

df1 = df1.drop(['Unnamed: 0', 'tpep_dropoff_datetime', 'tpep_pickup_datetime',
    'trip_distance', 'RatecodeID', 'store_and_fwd_flag',
    'PULocationID', 'DOLocationID',
    'payment_type', 'extra', 'mta_tax', 'tip_amount',
    'tolls_amount', 'improvement_surcharge',
    'total_amount', 'tpep_dropoff_datetime', 'tpep_pickup_datetime',
    'duration',
    'pickup_dropoff', 'day', 'month'
    ], axis=1)

df1.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 22699 entries, 0 to 22698

Data columns (total 6 columns):

| #                            | Column                 | Non-Null Count | Dtype   |  |  |  |
|------------------------------|------------------------|----------------|---------|--|--|--|
|                              |                        |                |         |  |  |  |
| 0                            | VendorID               | 22699 non-null | int64   |  |  |  |
| 1                            | passenger_count        | 22699 non-null | int64   |  |  |  |
| 2                            | fare_amount            | 22699 non-null | float64 |  |  |  |
| 3                            | mean_distance          | 22699 non-null | float64 |  |  |  |
| 4                            | ${\tt mean\_duration}$ | 22699 non-null | float64 |  |  |  |
| 5                            | rush_hour              | 22699 non-null | int64   |  |  |  |
| dtypes: float64(3), int64(3) |                        |                |         |  |  |  |
| memory usage: 1.0 MB         |                        |                |         |  |  |  |

#### **4.2.10** Task 6. Pair plot

Create a pairplot to visualize pairwise relationships between fare\_amount, mean\_duration, and mean\_distance.



These variables all show linear correlation with each other. Investigate this further.

# 4.2.11 Task 7. Identify correlations

Next, code a correlation matrix to help determine most correlated variables.

```
[45]: # Correlation matrix to help determine most correlated variables df1.corr(method='pearson')
```

| [45]: |                 | VendorID | passenger_count | fare_amount | mean_distance | \ |
|-------|-----------------|----------|-----------------|-------------|---------------|---|
|       | VendorID        | 1.000000 | 0.266463        | 0.001045    | 0.004741      |   |
|       | passenger_count | 0.266463 | 1.000000        | 0.014942    | 0.013428      |   |
|       | fare_amount     | 0.001045 | 0.014942        | 1.000000    | 0.910185      |   |

```
mean_distance
                 0.004741
                                  0.013428
                                                0.910185
                                                               1.000000
mean_duration
                 0.001876
                                  0.015852
                                                0.859105
                                                               0.874864
rush_hour
                -0.002874
                                 -0.022035
                                               -0.020075
                                                              -0.039725
                 mean_duration rush_hour
VendorID
                      0.001876
                                -0.002874
passenger_count
                      0.015852 -0.022035
fare_amount
                      0.859105 -0.020075
mean distance
                      0.874864 -0.039725
mean duration
                      1.000000 -0.021583
rush hour
                     -0.021583
                                  1.000000
```

Visualize a correlation heatmap of the data.

```
[46]: # Create correlation heatmap
plt.figure(figsize=(6,4))
sns.heatmap(df1.corr(method='pearson'), annot=True, cmap='Reds')
plt.title('Correlation heatmap',
fontsize=18)
plt.show()
```



Question: Which variable(s) are correlated with the target variable of fare\_amount? mean\_druation and fare\_amount are highly correlated with fare\_amount.

Try modeling with both variables even though they are correlated.

# 4.3 PACE: Construct

After analysis and deriving variables with close relationships, it is time to begin constructing the model. Consider the questions in your PACE Strategy Document to reflect on the Construct stage.

## 4.3.1 Task 8a. Split data into outcome variable and features

```
[47]: df1.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 22699 entries, 0 to 22698
     Data columns (total 6 columns):
          Column
                           Non-Null Count
                                          Dtype
          _____
                           _____
      0
          VendorID
                           22699 non-null int64
      1
          passenger_count 22699 non-null int64
      2
          fare_amount
                           22699 non-null float64
      3
          mean distance
                           22699 non-null float64
      4
                           22699 non-null float64
          mean_duration
          rush hour
                           22699 non-null int64
     dtypes: float64(3), int64(3)
     memory usage: 1.0 MB
```

Set your X and y variables. X represents the features and y represents the outcome (target) variable.

```
[21]: # Remove the target column from the features
# X = df2.drop(columns='fare_amount')
X = df1.drop(columns=['fare_amount'])

# Set y variable
y = df1[['fare_amount']]

# Display first few rows
X.head()
```

```
[21]:
         VendorID passenger count
                                     mean_distance mean_duration rush_hour
                                           3.521667
                                                         22.847222
      1
                1
                                  1
                                           3.108889
                                                         24.470370
                                                                             0
      2
                1
                                  1
                                           0.881429
                                                          7.250000
                                                                             1
      3
                2
                                  1
                                           3.700000
                                                         30.250000
                                                                             0
```

4 2 1 4.435000 14.616667 0

# 4.3.2 Task 8b. Pre-process data

Dummy encode categorical variables

```
[22]: # Convert VendorID to string
X['VendorID'] = X['VendorID'].astype(str)

# Get dummies
X = pd.get_dummies(X, drop_first=True)
X.head()
```

| [22]: | passenger_count | mean_distance | ${\tt mean\_duration}$ | rush_hour | VendorID_2 |
|-------|-----------------|---------------|------------------------|-----------|------------|
| 0     | 6               | 3.521667      | 22.847222              | 0         | 1          |
| 1     | 1               | 3.108889      | 24.470370              | 0         | 0          |
| 2     | 1               | 0.881429      | 7.250000               | 1         | 0          |
| 3     | 1               | 3.700000      | 30.250000              | 0         | 1          |
| 4     | 1               | 4.435000      | 14.616667              | 0         | 1          |

# 4.3.3 Split data into training and test sets

Create training and testing sets. The test set should contain 20% of the total samples. Set random state=0.

```
[23]: # Create training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, □ → random_state=0)
```

#### 4.3.4 Standardize the data

Use StandardScaler(), fit(), and transform() to standardize the X\_train variables. Assign the results to a variable called X\_train\_scaled.

```
[27]: # Standardize the X variables
scaler = StandardScaler().fit(X_train)
X_train_scaled = scaler.transform(X_train)
print('X_train scaled: ' , X_train_scaled)

X_train scaled: [[-0.50301524  0.8694684  -0.03115262  -0.64893329  0.89286563]
        [-0.50301524  -0.60011281  -0.39523923   1.54099045  0.89286563]
```

```
...
[-0.50301524 -0.45121122 -0.3871602 -0.64893329 -1.11998936]
```

[ 0.27331093 -0.47829156 -0.34307963 -0.64893329 -1.11998936]

```
[-0.50301524 -0.58944763 -0.46149795 1.54099045 -1.11998936]
[ 1.82596329 0.83673851 0.36686348 -0.64893329 0.89286563]]
```

#### 4.3.5 Fit the model

Instantiate your model and fit it to the training data.

```
[29]: # Fit your model to the training data
lr=LinearRegression()
lr.fit(X_train_scaled, y_train)
```

[29]: LinearRegression(copy\_X=True, fit\_intercept=True, n\_jobs=None, normalize=False)

#### 4.3.6 Task 8c. Evaluate model

#### 4.3.7 Train data

Evaluate your model performance by calculating the residual sum of squares and the explained variance score (R^2). Calculate the Mean Absolute Error, Mean Squared Error, and the Root Mean Squared Error.

```
[41]: # Evaluate the model performance on the training data
r_sq = lr.score(X_train_scaled, y_train)
print('Coefficient of determination:', r_sq)
y_pred_train = lr.predict(X_train_scaled)
print('R^2:', r2_score(y_train, y_pred_train))
print('MAE:', mean_absolute_error(y_train, y_pred_train))
print('MSE:', mean_squared_error(y_train, y_pred_train))
print('RMSE:',np.sqrt(mean_squared_error(y_train, y_pred_train)))
```

Coefficient of determination: 0.5079996278862282

R^2: 0.5079996278862282 MAE: 2.6717170977886697 MSE: 92.88372147478809 RMSE: 9.637620114674997

#### 4.3.8 Test data

Calculate the same metrics on the test data. Remember to scale the X\_test data using the scaler that was fit to the training data. Do not refit the scaler to the testing data, just transform it. Call the results X\_test\_scaled.

```
[31]: # Scale the X_test data
X_test_scaled = scaler.transform(X_test)
```

```
[32]: # Evaluate the model performance on the testing data
r_sq_test = lr.score(X_test_scaled, y_test)
print('Coefficient of determination:', r_sq_test)
y_pred_test = lr.predict(X_test_scaled)
print('R^2:', r2_score(y_test, y_pred_test))
print('MAE:', mean_absolute_error(y_test, y_pred_test))
print('MSE:', mean_squared_error(y_test, y_pred_test))
print('RMSE:',np.sqrt(mean_squared_error(y_test, y_pred_test)))
```

Coefficient of determination: 0.8261127809154183

R^2: 0.8261127809154183 MAE: 2.5028493495005453 MSE: 20.458845782372048 RMSE: 4.523145562810471

#### 4.4 PACE: Execute

Consider the questions in your PACE Strategy Document to reflect on the Execute stage.

#### 4.4.1 Task 9a. Results

Use the code cell below to get actual, predicted, and residual for the testing set, and store them as columns in a results dataframe.

```
[33]: # Create a `results` dataframe
  results = pd.DataFrame(data={'actual': y_test['fare_amount'],
    'predicted': y_pred_test.ravel()})
  results['residual'] = results['actual'] - results['predicted']
  results.head()
```

```
[33]: actual predicted residual 5818 14.0 12.711169 1.288831 18134 28.0 14.592348 13.407652 4655 5.5 7.269140 -1.769140 7378 15.5 17.270201 -1.770201 13914 9.5 10.445021 -0.945021
```

### 4.4.2 Task 9b. Visualize model results

Create a scatterplot to visualize actual vs. predicted.



Visualize the distribution of the residuals using a histogram.

```
[37]: # Visualize the distribution of the `residuals`
sns.histplot(results['residual'], bins=np.arange(-15,15.5,0.5))
plt.title('Distribution of the residuals')
plt.xlabel('residual value')
plt.ylabel('count');
```



```
[38]: # Calculate residual mean results['residual'].mean()
```

[38]: -0.08253077178091318

Create a scatterplot of residuals over predicted.

```
[39]: # Create a scatterplot of `residuals` over `predicted`
    sns.scatterplot(x='predicted', y='residual', data=results)
    plt.axhline(0, c='red')
    plt.title('Scatterplot of residuals over predicted values')
    plt.xlabel('predicted value')
    plt.ylabel('residual value')
    plt.show()
```



#### 4.4.3 Task 9c. Coefficients

Use the coef\_ attribute to get the model's coefficients. The coefficients are output in the order of the features that were used to train the model. Which feature had the greatest effect on trip fare?

```
[40]: coefficients = pd.DataFrame(lr.coef_, columns=X.columns) coefficients
```

What do these coefficients mean? How should they be interpreted?

The coeffecients here show that mean\_distance is what makes the biggest impact on fare\_amount. With that being said the way to interpret this is for each +1 in standard deviation the fare amount increases \$9.68.

#### 4.4.4 Task 9d. Conclusion

1. What are the key takeaways from this notebook? Regression models take a lot of trial and error to produce information that is accurate and helpful, but once implemented correctly the results can be extremely helpful.

2. What results can be presented from this notebook? Results from this section is that the data follows multiple linear regression and the scores from the model can be presented.

Congratulations! You've completed this lab. However, you may not notice a green check mark next to this item on Coursera's platform. Please continue your progress regardless of the check mark. Just click on the "save" icon at the top of this notebook to ensure your work has been logged.