Structures algébriques usuelles

1 Loi de composition interne

Exercice $\mathbb{N}^{o} 1$: On définit une loi de composition interne \star sur \mathbb{R} par

$$\forall a, b \in \mathbb{R}, \ a \star b = \ln(e^a + e^b).$$

Quelles en sont les propriétés?

Exercice Nº 2 : Soit E = [0, 1]. On définit une loi \star sur E par

$$\forall x, y \in E, \ x \star y = x + y - xy.$$

- 1. Montrer que \star est une loi de composition interne commutative et associative.
- 2. Montrer que * possède un neutre.
- 3. Quels sont les éléments inversibles?

Exercice N° 3 : Soit \star une loi de composition interne sur E.

Pour $A, B \in \mathcal{P}(E)$ on pose

$$A \perp B = \{a \star b / a \in A, b \in B\}.$$

- 1. Étudier les propriétés de \star sur E (commutativité, associativité, existence d'un neutre) conservées par \bot sur $\mathcal{P}(E)$.
- 2. Étudier les propriétés de \bot sur $\mathcal{P}(E)$ (commutativité, associativité, existence d'un neutre) conservées par \star sur E.
- 3. La loi \perp est-elle distributive par rapport l'union? par rapport à l'intersection?

Exercice Nº 4 : Soit E un ensemble munit d'une loi \star de composition interne associative et possédant un élément neutre et fixons $a \in E$.

Montrer que a est inversible si, et seulement si, l'application $f: E \to E$ définie par $f(x) = a \star x$ est bijective.

Exercice No 5: Soit E et F deux ensembles et $\varphi: E \to F$ une application bijective.

On suppose E muni d'une loi de composition interne \star et on définit une loi \top sur F par :

$$\forall x, y \in F, \ x \top y = \varphi(\varphi^{-1}(x) \star \varphi^{-1}(y)).$$

- 1. Montrer que si \star est commutative (respectivement associative) alors \top l'est aussi. Étudier la réciproque.
- 2. Montrer que si \star possède un neutre e alors \top possède aussi un neutre à préciser. Étudier la réciproque.

Exercice N° 6 : Soit \star une loi de composition interne associative sur E.

On suppose qu'il existe $a \in E$ tel que l'application $f : E \to E$ définie par $f(x) = a \star x \star a$ soit surjective et on note b un antécédent de a par f.

1. Montrer que $e = a \star b$ (respectivement $e' = b \star a$) est élément neutre à gauche (respectivement à droite) puis que e = e'.

2. Montrer que a est inversible et f bijective.

Exercice No 7: Soit \top la loi de composition interne définie sur [-1,1] par

$$x \top y = x\sqrt{1 - y^2} + y\sqrt{1 - x^2}.$$

Étudier les propriétés de la loi \top .

Indication: On pourra montrer que 1 admet plusieurs inverses.

2 Groupe

Exercice N° 8: Soit (G, \star) un groupe tel que

$$\forall x \in G, \ x^2 = e.$$

Montrer que G est commutatif.

Exercice N° 9 : Soient $G = \mathbb{R}^* \times \mathbb{R}$ et \star la loi de composition interne définie sur G par

$$(x,y) \star (x',y') = (xx',xy'+y).$$

- 1. Montrer que (G, \star) est un groupe non commutatif.
- 2. Montrer que $\mathbb{R}^{+\star} \times \mathbb{R}$ est un sous-groupe de (G, \star) .

Exercice N° 10 : Addition des vitesses en théorie de la relativité Soient c > 0 et I =]-c, c[.

1. Montrer

$$\forall (x,y) \in I^2, \ x \star y = \frac{x+y}{1+\frac{xy}{x^2}} \in I.$$

2. Montrer que la loi \star munit I d'une structure de groupe abélien.

Cette loi ★ correspond à l'addition des vitesses portées par un même axe en théorie de la relativité.

Exercice \mathbb{N}° 11 : Soit \top la loi de composition interne définie sur \mathbb{R} par

$$x \top y = x\sqrt{1+y^2} + y\sqrt{1+x^2}.$$

Montrer que (\mathbb{R}, \top) est un groupe abélien.

3 Sous-groupe

Exercice N° 12: Soient $\omega \in \mathbb{C}$ et $H = \{a + \omega b \mid a, b \in \mathbb{Z}\}$. Montrer que H est un sous-groupe de $(\mathbb{C}, +)$.

Exercice N° 13: Soient $a \in \mathbb{C}^*$ et $H = \{a^n \mid n \in \mathbb{Z}\}$. Montrer que H est un sous-groupe de (\mathbb{C}^*, \times) .

Exercice N° 14 : Soit a un élément d'un ensemble E. On forme $H = \{ f \in S_E \ / \ f(a) = a \}$. Montrer que H est un sous-groupe de (S_E, \circ) .

Exercice N° 15: Soient (G, \times) un groupe, H un sous-groupe de (G, \times) et $a \in G$.

1. Montrer que $aHa^{-1}=\left\{axa^{-1}\ /\ x\in H\right\}$ est un sous-groupe de (G,\times) .

2. A quelle condition simple $aH = \{ax \mid x \in H\}$ est un sous-groupe de (G, \times) ?

Exercice No 16: On appelle centre d'un groupe (G, \star) , la partie C de G définie par

$$\mathcal{Z}(G) = \{ x \in G \mid \forall y \in G, x \star y = y \star x \}.$$

Montrer que $\mathcal{Z}(G)$ est un sous-groupe de (G, \star) .

Exercice No 17: Soient H et K deux sous-groupes d'un groupe (G, \star) .

- 1. Montrer que $H \cap K$ est un sous-groupe de G. Ce résultat subsiste-t-il pour une intersection quelconque de sous-groupes?
- 2. Montrer que $H \cup K$ est un sous-groupe de (G, \star) si, et seulement si, $H \subset K$ ou $K \subset H$.

Exercice No 18: Soit (G, \star) un groupe et A une partie finie non vide de G stable pour \star .

- 1. Soit $x \in A$ et $\varphi : \mathbb{N} \to G$ l'application définie par $\varphi(n) = x^n$. Montrer que φ n'est pas injective.
- 2. En déduire que $x^{-1} \in A$ puis que A est un sous-groupe de (G, \star) .

Exercice No 19:

- 1. Montrer que l'ensemble des similitudes directes du plan complexe est un groupe pour la composition.
- 2. Que dire de l'ensemble des translations? De l'ensemble des homothéties? Et de l'ensemble des rotations?
- 3. Soit A un point quelconque du plan complexe. Reprendre la question précédente avec l'ensemble des homothéties fixant A et l'ensemble des rotations fixant A.

Exercice N° 20 : Montrer que H est un sous-groupe fini de (\mathbb{C}^*, \times) si, et seulement si, il existe $n \in \mathbb{N}^*$ tel que $H = \mathbb{U}_n$.

4 Anneau et sous-anneau

Exercice N° 21 : On définit sur \mathbb{Z}^2 deux lois de compositions internes notées + et \star par : (a,b)+(c,d)=(a+c,b+d) et $(a,b)\star(c,d)=(ac,ad+bc)$.

- 1. Montrer que $(\mathbb{Z}^2, +, \star)$ est un anneau commutatif.
- 2. Montrer que $A = \{(a,0) \mid a \in \mathbb{Z}\}$ est un sous-anneau de $(\mathbb{Z}^2, +, \star)$.

Exercice N° 22 : Soit x et y deux éléments d'un anneau $(A, +, \times)$.

- 1. Montrer que si x est nilpotent et que x et y commutent, alors xy est nilpotent.
- 2. Montrer que si x et y sont nilpotents et commutent, alors x + y est nilpotent.
- 3. Montrer que si xy est nilpotent, alors yx l'est aussi.
- 4. Montrer que si x est nilpotent alors 1-x est inversible. Préciser $(1-x)^{-1}$.

Exercice No 23: Soit $d \in \mathbb{N}$, on note

$$\mathbb{Z}\left[\sqrt{d}\right] = \left\{a + b\sqrt{d} / (a, b) \in \mathbb{Z}^2\right\}.$$

Montrer que $\mathbb{Z}\left[\sqrt{d}\right]$ est un sous-anneau de $(\mathbb{R}, +, \times)$.

Exercice No 24: On note

$$\mathbb{D} = \left\{ \frac{n}{10^k} \ / \ n \in \mathbb{Z}, k \in \mathbb{N} \right\}$$

l'ensemble des nombres décimaux.

Montrer que $\mathbb D$ est un sous-anneau de $(\mathbb Q,+,\times)$.

Exercice Nº 25: Anneau des entiers de Gauss

On note

$$\mathbb{Z}[i] = \left\{ a + ib / (a, b) \in \mathbb{Z}^2 \right\}.$$

- 1. Montrer que $\mathbb{Z}[i]$ est un anneau commutatif pour l'addition et la multiplication des nombres complexes.
- 2. Déterminer les éléments inversibles de l'anneau $\mathbb{Z}[i]$.

Exercice Nº 26: Soit

$$A = \left\{ \frac{m}{n} / m \in \mathbb{Z} \text{ et } n \in \mathbb{N}^*, \text{ impair} \right\}.$$

- 1. Montrer que A est un sous anneau de $(\mathbb{Q}, +, \times)$.
- 2. Quels en sont les éléments inversibles?

5 Corps

Exercice N° 27 : Pour $a, b \in \mathbb{R}$, on pose $a \top b = a + b - 1$ et $a \star b = ab - a - b + 2$. Montrer que $(\mathbb{R}, \top, \star)$ est un corps commutatif.

Exercice N° 28 : Soit $d \in \mathbb{N}$ tel que $\sqrt{d} \notin \mathbb{Q}$, on note

$$\mathbb{Q}\left[\sqrt{d}\right] = \left\{a + b\sqrt{d} / (a, b) \in \mathbb{Q}^2\right\}.$$

Montrer que $(\mathbb{Q}\left[\sqrt{d}\right], +, \times)$ est un corps.

Exercice N° 29 : Soit F un sous-corps de $(\mathbb{Q}, +, \times)$. Montrer que $F = \mathbb{Q}$.

Correction des exercices

Solution Exercice Nº 1:

• Soient $a, b \in \mathbb{R}$. $a \star b = \ln(e^a + e^b) = \ln(e^b + e^a) = b \star a$.

Ainsi ★ est commutative.

- Soient $a, b, c \in \mathbb{R}$. $(a \star b) \star c = \ln(e^{\ln(e^a + e^b)} + e^c) = \ln(e^a + e^b + e^c) = \ln(e^a + e^{\ln(e^b + e^c)}) = a \star (b \star c)$. Ainsi \star est associative.
- ♦ On suppose que * possède un élément neutre.

Il existe $\mathcal{E} \in \mathbb{R}$ tel que, pour tout $x \in \mathbb{R}$, $x \star \mathcal{E} = x$.

Pour x=0, on obtient $e^{\mathcal{E}}$. C'est absurde puisque exp ne s'annule jamais. Ainsi \star ne possède pas d'élément neutre.

Solution Exercice No 2:

1. \blacklozenge Soient $x, y \in [0, 1]$.

 $x \star y = x + y - xy = x(1 - y) + y \ge 0$ et $x \star y = x + y - xy = x(1 - y) + y \le 1 - y + 1 = 1$.

Ainsi \star est bien une loi de composition interne sur [0,1].

- \blacklozenge Soient $x, y \in E$. $x \star y = x + y xy = y + x yx = y \star x$. Ainsi \star est commutative.
- \blacklozenge Soient $x, y, z, \in E$.

$$(x \star y) \star z = (x + y - xy) \star z = (x + y - xy) + z + (x + y - xy)z = x + y + z - xy - xz - yz + xyz.$$

De même,

$$x \star (y \star z) = x \star (y + z - yz) = x + y + z - yz - x(y + z - yz) = x + y + z - xy - xz - yz + xyz.$$

Ainsi $(x \star y) \star z = x \star (y \star z)$ et donc la loi \star est donc associative.

2. Pour tout $x \in E$, $x \star 0 = x + 0 - x \times 0 = x$.

Comme la loi \star est commutative alors 0 est l'élément neutre de la loi \star .

3. Cherchons les éléments inversible de (E, \star) par analyse-synthèse. Analuse.

Soit $x \in E$ inversible pour la loi \star . Alors il existe $y \in E$ tel que $x \star y = 0$, c'est-à-dire x + y - xy = 0. Ainsi y(1 - x) = -x.

Nécessairement $x = \neq 1$ (car sinon 0 = -1) et donc $y = -\frac{x}{1-x} \leq 0$. Comme $y \in E$ alors y = 0 puis x = 0.

Synthèse.

0 est inversible car $0 \star 0 = 0$.

Le seul élément inversible de (E, \star) est 0.

Solution Exercice No 3:

1. \blacklozenge On suppose que \star est commutative sur E.

Soient $A, B \in \mathcal{P}(E)$. On a:

$$A \perp B = \{a \star b / a \in A, b \in B\}$$
$$= \{b \star a / a \in A, b \in B\} = B \perp A.$$

Ainsi \perp est commutative sur $\mathcal{P}(E)$.

lacktriangle On suppose que \star est associative sur E.

Soient $A, B, C \in \mathcal{P}(E)$. On a:

$$\begin{split} (A \perp B) \perp C &= \{(a \star b) \star c \ / \ a \in A, b \in B, c \in C\} \\ &= \{a \star (b \star c) \ / \ a \in A, b \in B, c \in C\} = A \perp (B \perp C). \end{split}$$

Ainsi \perp est associative sur $\mathcal{P}(E)$.

 \blacklozenge On suppose que \star possède un élément neutre sur E, notons-le e.

On pose $E = \{e\}$.

Soit $A \in \mathcal{P}(E)$. On a :

$$A \perp E = \{a \star e \ / \ a \in A\} = \{a / \ a \in A\} = A.$$

De même,

$$E \perp A = \{e \star a \ / \ a \in A\} = \{a/\ a \in A\} = A.$$

Ainsi E est l'élément neutre de \perp sur $\mathcal{P}(E)$.

2. \blacklozenge On suppose que \bot est commutative sur $\mathcal{P}(E)$.

On sait donc que, pour tous $A, B \in \mathcal{P}(E), A \perp B = B \perp A$.

Soient $a, b \in E$. En choisissant $A = \{a\}$ et $B = \{b\}$, on obtient $a \star b = b \star a$.

Ainsi \star est commutative sur E.

 \blacklozenge On suppose que \bot est associative sur $\mathcal{P}(E)$.

On sait donc que, pour tous $A, B, C \in \mathcal{P}(E)$, $(A \perp B) \perp C = A \perp (B \perp C)$.

Soient $a, b, c \in E$. En choisissant $A = \{a\}, B = \{b\}$ et $C = \{c\}$, on obtient $(a \star b) \star c = a \star (b \star c)$.

Ainsi \star est associative sur E.

 \blacklozenge On suppose que \bot possède un élément neutre sur $\mathcal{P}(E)$. Notons-le \mathcal{E} .

On sait donc que, pour tous $A \in \mathcal{P}(E)$, $A \perp \mathcal{E} = \mathcal{E} \perp A = A$.

On observe que E est nécessairement non vide.

Soit $a \in E$. Choisissons $A = \{a\}$. On obtient que, pour tout $e \in \mathcal{E}$, $a \star e = e \star a = a$.

On en déduit que \mathcal{E} est réduit à un élément et que \star possède un élément neutre.

3. Soient $A, B, C \in \mathcal{P}(E)$.

 $x \in A \perp (B \cup C)$ si, et seulement si, il existe $a \in A$ et $u \in B \cup C$ tels que $x = a \star u$ si, et seulement si, il existe $a \in A$ et $u \in B$ tels que $x = a \star u$ ou il existe $a \in A$ et $u \in C$ tels que $x = a \star u$ si, et seulement si, $x \in A \perp B$ ou $x \in A \perp C$ si, et seulement si, $x \in A \perp B \cup C$.

Ainsi, par double inclusion, $A \perp (B \cup C) = (A \perp B) \cup (A \perp C)$.

De même, on montre que $(A \cup B) \perp C = (A \perp C) \cup (B \perp C)$.

Ainsi \perp est distributive par rapport à \cup .

En revanche, \perp n'est pas distributive par rapport à \cap .

Considérons $E = \mathbb{R}, \star = +$ et $A = \mathbb{R}, B = \mathbb{R}^+$ et $C = \mathbb{R}^{-\star}$.

Alors $A \perp (B \cap C) = \emptyset$ et $(A \cap B) \perp (A \cap C) = \mathbb{R} + \mathbb{R} = \mathbb{R}$.

Solution Exercice Nº 4:

" \Rightarrow : Si a est inversible alors il existe $b \in E$ tel que $a \star b = b \star a = e$.

On pose $g: E \to E$ définie par $g(x) = b \star x$.

On vérifie alors que $g\circ f=f\circ g=\mathrm{Id}_E.$ Ainsi f est bijective.

" \Leftarrow : Comme f est bijective alors e admet un antécédent par f. Il existe $b \in E$ tel que $a \star b = e$.

Or $f(e) = a \star e = a$ et $f(b \star a) = a \star (b \star a) = (a \star b) \star a = e \star b = b$.

Par injectivité de f, on en déduit que $e=b\star a$

Ainsi a est inversible.

Solution Exercice No 5:

1. \blacklozenge On suppose que \star est commutative sur E. Soient $x, y \in F$.

$$x\top y = \varphi(\varphi^{-1}(x) \star \varphi^{-1}(y)) = \varphi(\varphi^{-1}(y) \star \varphi^{-1}(x)) = y\top x.$$

Ainsi \top est commutative sur F.

 \blacklozenge On suppose que \star est associative sur E.

Soient $x, y, z \in F$.

$$(x\top y)\top z = \varphi\left(\varphi^{-1}(\varphi(\varphi^{-1}(x)\star\varphi^{-1}(y)))\star\varphi^{-1}(z))\right) = \varphi(\varphi^{-1}(x)\star\varphi^{-1}(y)\star\varphi^{-1}(z)).$$

Et, de même,

$$x \top (y \top z) = \varphi(\varphi^{-1}(x) \star \varphi^{-1}(\varphi(\varphi^{-1}(y) \star \varphi^{-1}(z)))) = \varphi(\varphi^{-1}(x) \star \varphi^{-1}(y) \star \varphi^{-1}(z)).$$

Ainsi \top est associative sur F.

On observe que, pour tout $x, y \in E$, $x \star y = \varphi^{-1}(\varphi(x) \top \varphi(y))$.

2. \blacklozenge On suppose que \star possède un élément neutre noté e. Notons $f = \varphi(e)$. Montrons que f est élément neutre de \top . Pour tout $x \in F$,

$$x\top f = \varphi(\varphi^{-1}(x)\star\varphi^{-1}(f)) = \varphi(\varphi^{-1}(x)\star\varphi^{-1}(\varphi(e))) = \varphi(\varphi^{-1}(x)\star e) = \varphi(\varphi^{-1}(x)=x.$$

De même, on montre que, pour tout $x \in F$, $f \top x = x$.

Ainsi f est élément neutre de \top .

Comme précédemment, quitte à remplacer φ par φ^{-1} , on en déduit que la réciproque est vraie.

Solution Exercice Nº 6:

1. On a $a = a \star b \star a$.

Notons $e = a \star b$.

Soit $x \in E$. Par surjectivité de f, il existe $y \in E$ tel que x = f(y).

$$e \star x = a \star b \star a \star y \star a = a \star y \star a = x.$$

Notons $e' = b \star x$.

Soit $x \in E$. Par surjectivité de f, il existe $y \in E$ tel que x = f(y).

$$x \star e' = a \star y \star a \star b \star a = a \star y \star a = x.$$

En particulier, $e' = e \star e' = e$.

2. On en déduit que e est élément neutre de E et a est inversible d'inverse b.

Soient $x, y \in E$ tel que f(x) = f(y). Alors $a \star x \star a = a \star y \star a$. En multipliant à gauche et à droite par a^{-1} , on en déduit que x = y.

Ainsi f est injective et, étant surjective, elle est donc bijective.

Solution Exercice $N^{o} 7$:

- lacktriangle Soient $x,y\in[-1,1]$. Il existe $u,v\in\mathbb{R}$ tel que $x=\sin(u)$ et $y=\sin(v)$. Ainsi $x \top y = \sin(u)\sqrt{1 - \sin(v)^2} + \sin(v)\sqrt{1 - \sin(u)^2} = \pm \sin(u)\cos(v) \pm \sin(v)\cos(u) = \pm \sin(u \pm v) \in [-1, 1].$ Ainsi \top est bien une loi interne sur [-1,1]. \blacklozenge Soient $x,y \in [-1,1]$. $x \top y = x\sqrt{1-y^2} + y\sqrt{1-x^2} = y\sqrt{1-x^2} + x\sqrt{1-y^2} = y \top x$. Ainsi \top est commutative sur \mathbb{R} . \blacklozenge Pour tout $x \in \mathbb{R}$, $x \top 0 = 0$. Comme \top est commutative alors \top possède un élément neutre : 0.

- ♦ $1 \top 1 = 1 \top (-1) = 0$. Comme la loi \top est commutative, on en déduit que 1 possède, au moins, deux inverses : 1 et -1. On en déduit que ⊤ n'est pas associative.

Solution Exercice N° 8 : L'hypothèse donne que, pour tout $x \in G$, $x = x^{-1}$.

Soient $x, y \in G$.

$$x \star y = x^{-1} \star y^{-1} = (y \star x)^{-1} = y \star x.$$

Ainsi G est un groupe abélien.

Solution Exercice No 9:

- 1. $\blacklozenge \star$ est une loi de composition interne sur G.
 - ♦ Soient $(x, y), (x', y'), (x'', y'') \in G$. On a

$$(x,y)\star((x',y')\star(x'',y'')) = (x,y)\star(x'x'',x'y''+y') = (xx'x'',x(x'y''+y')+y=(xx'x'',xx'y''+xy'+y).$$

De même

$$((x,y)\star(x',y'))\star(x'',y'') = (xx',xy'+y)\star(x'',y'') = (xx'x'',xx'y''+xy'+y).$$

Ainsi \star est associative.

 \blacklozenge Soit $(x,y) \in G$.

$$(x,y) \star (1,0) = (x,y)$$
 et $(1,0) \star (x,y) = (x,y)$.

Ainsi * possède un élément neutre.

igstar Soit $(x,y) \in G$.

$$(x,y)\star\left(\frac{1}{x},-\frac{y}{x}\right)=(1,0)\text{ et }\left(\frac{1}{x},-\frac{y}{x}\right)\star(x,y)=(1,0).$$

Ainsi (x, y) est inversible dans (G, \star) .

 (G,\star) est donc un groupe.

Comme $(2,1) \star (1,-2) = (2,-3) \neq (2,-1) = (1,-2) \star (2,1)$ alors (G,\star) n'est pas commutatif.

2. $\mathbb{R}^{+\star} \times \mathbb{R} \subset G$ et (G, \star) est un groupe.

Montrons que $\mathbb{R}^{+\star} \times \mathbb{R}$ est un sous-groupe de (G,\star) par caractérisation.

 $(1,0) \in \mathbb{R}^{+\star} \times \mathbb{R} \text{ donc } \mathbb{R}^{+\star} \times \mathbb{R} \text{ est non vide.}$

Soient
$$(x,y), (x',y') \in \mathbb{R}^{+*} \times \mathbb{R}$$
.
 $(x,y) \star \left(\frac{1}{x'}, -\frac{y'}{x'}\right) = \left(\frac{x}{x'}, \frac{yx'-xy'}{x'}\right) \in \mathbb{R}^{+*} \times \mathbb{R}$.

Solution Exercice N° 10 : \blacklozenge Soient $x,y \in I$. $1 + \frac{xy}{c^2} \neq -1$ et donc la quantité $\frac{x+y}{1+\frac{xy}{c^2}}$ est bien définie.

y-c < 0donc x(y-c) < -c(y-c). Ainsi $c(x+y) < c^2 + xy$ puis $\frac{x+y}{1+\frac{x^2y}{2}} < c$.

De même, y-c<0 donc x(y-c)>c(y-c). Ainsi $c(x+y)>-c^2+xy$ puis $\frac{x+y}{1+\frac{xy}{c^2}}>-c$.

Ainsi $x \star y \in I$ et, par conséquent, \star est une loi de composition interne sur G.

 \blacklozenge Soient $x, y \in I$.

$$x \star y = \frac{x + y}{1 + \frac{xy}{c^2}} = \frac{y + x}{1 + \frac{yx}{c^2}} = y \star x.$$

Ainsi \star est commutative.

lacktriangle Soient $x,y,z\in I.$

$$(x \star y) \star z = \frac{x + y}{1 + \frac{xy}{c^2}} \star z = \frac{\frac{x + y}{1 + \frac{xy}{c^2}} + z}{\left(\frac{x + y}{1 + \frac{xy}{c^2}}\right)z} = \frac{x + y + z + \frac{xyz}{c^2}}{1 + \frac{xy + yz + xz}{c^2}}.$$

De même

$$x \star (y \star z) = x \star \frac{y+z}{1 + \frac{yz}{c^2}} = \frac{x + \frac{y+z}{1 + \frac{yz}{c^2}}}{1 + \frac{x\left(\frac{y+z}{1 + \frac{yz}{c^2}}\right)}{c^2}} = \frac{x + y + z + \frac{xyz}{c^2}}{1 + \frac{xy + yz + xz}{c^2}}.$$

Ainsi \star est associative.

ightharpoonup Soit $x \in I$.

$$x\star 0=x\text{ et }0\star x=x.$$

Ainsi 0 est l'élément neutre de (I, \star) .

 \blacklozenge Soit $x \in I$. $-x \in I$ et

$$x \star (-x) = (-x) \star x = 0.$$

Ainsi x est inversible dans (I, \star) . Tous les éléments de (I, \star) sont donc inversibles.

Ainsi (I, \star) est un groupe abélien.

Solution Exercice No 11 : \top est clairement une loi interne sur \mathbb{R} .

La fonction sh'étant strictement croissante et continue sur \mathbb{R} , elle induit une bijection de \mathbb{R} dans $\operatorname{sh}(\mathbb{R}) = \mathbb{R}$.

Soient $x, y \in \mathbb{R}$. Il existe $u, v \in \mathbb{R}$ tel que $x = \operatorname{sh}(u)$ et $y = \operatorname{sh}(v)$.

Ainsi $x \top y = \operatorname{sh}(u)\sqrt{1 + \operatorname{sh}(v)^2} + \operatorname{sh}(v)\sqrt{1 + \operatorname{sh}(u)^2} = \operatorname{sh}(u)\operatorname{ch}(v) + \operatorname{sh}(v)\operatorname{ch}(u) = \operatorname{sh}(u + v) = \operatorname{sh}(\operatorname{sh}^{-1}(x) + \operatorname{sh}^{-1}(y)).$

L'exercice N° 5 permet de conclure à l'associativité de ⊤, la commutativité de ⊤ et à l'existence d'un élément neutre 0 = sh(0).

Soit $x \in \mathbb{R}$. On observe que $x \top (-x) = 0$. Par commutativité de la loi \top , on en déduit que x est inversible. On peut donc conclure que (\mathbb{R}, \top) est un groupe abélien.

Solution Exercice No 12: $H \subset \mathbb{C}$ et $(\mathbb{C}, +)$ est un groupe.

Montrons que H est un sous-groupe de $(\mathbb{C},+)$ par caractérisation.

 $0 \in H$ donc $H \neq \emptyset$.

Soient $x, y \in H$. Il existe $a, b, a', b' \in \mathbb{Z}$ tels que $x = a + \omega b$ et $y = a' + \omega b'$.

Ainsi $x - y = (a - a') + \omega(b - b') \in H$.

Solution Exercice N° 13: $H \subset \mathbb{C}^*$ et (\mathbb{C}^*, \times) est un groupe.

Montrons que H est un sous-groupe de $(\mathbb{C}^{\star}, \times)$ par caractérisation.

 $1 \in H$ donc $H \neq \emptyset$.

Soient $x, y \in H$. Il existe $n, n' \in \mathbb{Z}$ tels que $x = a^n$ et $y = a^{n'}$.

Ainsi $\frac{x}{y} = a^{n-n'} \in H$.

Solution Exercice N° 14: $H \subset S_E$ et (S_E, \circ) est un groupe.

Montrons que H est un sous-groupe de (S_E,\circ) par caractérisation.

 $\mathrm{Id}_E \in H \text{ donc } H \neq \emptyset.$

Soient $f, g \in H$. f(a) = a et g(a) = a donc $g^{-1}(a) = a$. $f \circ g^{-1}(a) = f(g^{-1}(a)) = f(a) = a$. Ainsi $f \circ g \in H$.

Solution Exercice Nº 15:

1. $aHa^{-1}\subset G$ et (G,\times) est un groupe. Montrons que aHa^{-1} est un sous-groupe de (G,\times) par caractérisation.

 $e = aea^{-1} \in aHa^{-1} \text{ donc } aHa^{-1} \neq \emptyset.$

Soient $x,y\in aHa^{-1}$. Il existe $h,h'\in H$ tels que $x=aha^{-1}$ et $y=ah'a^{-1}$. Ainsi $y^{-1}=ah'^{-1}a^{-1}$ et donc $xy^{-1}=ah'$ $ahh'^{-1}a^{-1}$. Comme $hh'^{-1} \in H$ alors $xy^{-1} \in H$.

2. Si aH est un sous-groupe de (G, \times) alors $e \in aH$. Ainsi il existe $h \in H$ tel que e = ah. On en déduit que $a = h^{-1} \in H$. Réciproquement, si $a \in H$ alors aH = H et donc aH est un sous-groupe de (G, \times) .

La condition nécessaire et suffisante recherchée est $a \in H$.

Solution Exercice N° 16 : $\mathcal{Z}(G) \subset G$ et (G, \star) est un groupe.

Montrons que $\mathcal{Z}(G)$ est un sous-groupe de (G,\star) par caractérisation.

 $e \in \mathcal{Z}(G)$ puisque, pour tout $x \in G$, $x \star e = e \star x = e$, et donc $\mathcal{Z}(G) \neq \emptyset$.

Soient $x, y \in \mathcal{Z}(G)$.

Soit $u \in G$. Comme $x \in \mathcal{Z}(G)$ alors $x \star u = u \star x$. Comme $y \in \mathcal{Z}(G)$ alors $y \star u = u \star y$ puis $u \star y^{-1} = y^{-1} \star u$.

$$(x \star y^{-1}) \star u = x \star (y^{-1} \star u) = x \star (u \star y^{-1}) = (x \star u) \star y^{-1} = (u \star x) \star y^{-1} = u \star (x \star y^{-1}).$$

Ainsi $x \star y^{-1} \in \mathcal{Z}(G)$.

Solution Exercice Nº 17:

1. $H \cap K \subset G$ et (G, \star) est un groupe.

Montrons que $H \cap K$ est un sous-groupe de (G, \star) par caractérisation.

 $e \in H$ et $e \in K$ donc $e \in H \cap K$ et donc $H \cap K\emptyset$.

Soient $x, y \in H \cap K$. Comme H est un sous-groupe de (G, \star) alors $x \star y^{-1} \in H$. Comme H est un sous-groupe de (G, \star) alors $x \star y^{-1} \in K$. Ainsi $x \star y^{-1} \in H \cap K$.

Bien évidemment, ce résultat subsiste pour une intersection quelconque de sous-groupes.

2. " \Leftarrow : Si $H \subset K$ alors $H \cup K = K$ et si $K \subset H$ alors $H \cup K = H$.

Dans le deux cas, $H \cup K$ est un sous-groupe de (G, \star) .

" \Rightarrow " Par contraposée. On suppose que $H \not\subset K$ et que $K \not\subset H$.

Ainsi il existe $h \in H$ tel que $h \notin K$ et il existe $k \in K$ tel que $k \notin H$.

De ce fait $h \in H \cup K$ et $k \in H \cup \mathbb{K}$.

Si $h \star k \in H$ alors $k = h^{-1} \star (h \star k) \in H$. C'est absurde.

On fait de même su $h \star k \in K$.

Ainsi $h \star k \notin H \cup K$.

 $H \cup K$ n'est pas stable par \star , ce n'est donc pas un sous-groupe de (G, \star) .

Solution Exercice No 18:

- 1. Comme A est fini puisque inclus dans G alors il existe $n < k \in \mathbb{N}$ tels que $x^k = x^n$. Ainsi l'application φ n'est pas injective.
- 2. Comme $x^k = x^n$ alors $x^{k-n} = 1$. Ainsi x est inversible d'inverse x^{k-n-1} .

A est une partie de G et (G, \star) est un groupe.

Montrons que A est un sous-groupe de (G, \star) par caractérisation.

A est non vide par hypothèse.

Soient $x, y \in A$. Par ce qui précède $y^{-1} \in A$.

G est stable pour \star donc $x \star y^{-1} \in A$.

Solution Exercice N^o 19:

1. Notons $s_{\mathbb{C}}$ l'ensemble des similitude directes du plan complexe.

On a : $s_{\mathbb{C}} = \{ f_{a,b} : z \mapsto az + b \ / \ a \in \mathbb{C}^{\star}, b \in \mathbb{C} \}.$

Soit $f_{a,b} \in s_{\mathbb{C}}$. On observe que $f_{a,b}$ est bijective et que $f_{a,b}^{-1} = f_{\frac{1}{a},-\frac{b}{a}}$.

Ainsi $s_C \subset S_C$ et (S_C, \circ) est un groupe.

Montrons que s_C est un sous-groupe de $(S_{\mathbb{C}}, \circ)$ par caractérisation.

 $\mathrm{Id}_{\mathbb{C}}=f_{1,0}\in s_{\mathbb{C}}\ \mathrm{donc}\ s_{\mathbb{C}}\ \mathrm{est}\ \mathrm{non}\ \mathrm{vide}.$

Soient $f_{a,b}, f_{a',b'} \in s_C$. On a $f_{a,b} \circ f_{a',b'}^{-1} = f_{\frac{a}{a'}, \frac{ba'-ab'}{a'}} \in s_C$. On en déduit que (s_C, \circ) est un groupe en tant que sous-groupe d'un groupe.

2. \blacklozenge Notons $t_{\mathbb{C}} = \{f_{1,b} / b \in \mathbb{C}\}$ l'ensemble des translations de $s_{\mathbb{C}}$.

On a $t_{\mathbb{C}} \subset s_{\mathbb{C}}$ et $(s_{\mathbb{C}}, \circ)$ est un groupe.

Montrons que $t_{\mathbb{C}}$ est un sous-groupe de $(s_{\mathbb{C}}, \circ)$ par caractérisation.

 $\mathrm{Id}_{\mathbb{C}} = f_{1,0} \in t_{\mathbb{C}} \text{ donc } t_{\mathbb{C}} \text{ est non vide.}$

Soient $f_{1,b}, f_{1,b'} \in t_{\mathbb{C}}$. On a $f_{1,b} \circ f_{1,b'}^{-1} = f_{1,b-b'} \in t_{\mathbb{C}}$.

 \blacklozenge Notons $h_{\mathbb{C}}$ l'ensemble des homothéties de $s_{\mathbb{C}}$.

 $f_{2,2} \in h_{\mathbb{C}}$ et $f_{1/2,1} \in h_{\mathbb{C}}$ alors que $f_{2,2} \circ f_{1/2,1} = f_{1,2} \notin h_{\mathbb{C}}$.

Ainsi $h_{\mathbb{C}}$ n'est pas un sous-groupe de $(s_{\mathbb{C}}, \circ)$.

 \blacklozenge Notons $r_{\mathbb{C}}$ l'ensemble des homothéties de $r_{\mathbb{C}}$.

 $f_{-1,2} \in r_{\mathbb{C}}$ et $f_{-1,1} \in r_{\mathbb{C}}$ alors que $f_{-1,2} \circ f_{-1,1} = f_{1,1} \notin r_{\mathbb{C}}$.

Ainsi $r_{\mathbb{C}}$ n'est pas un sous-groupe de $(s_{\mathbb{C}}, \circ)$.

- 3. Notons a l'affixe de A.
 - $lack Notons\ h_{\mathbb C}^A=\{f_{\lambda,a(1-\lambda)}\ /\ a\in\mathbb R^\star\}$ l'ensemble des homothéties de $s_{\mathbb C}$ de centre A.

Montrons que $h_{\mathbb{C}}^A$ est un sous-groupe de $(s_{\mathbb{C}}, \circ)$ par caractérisation.

 $\mathrm{Id}_{\mathbb{C}} = f_{1,0} \in h_{\mathbb{C}}^A \text{ et donc } h_{\mathbb{C}}^A \neq \emptyset.$

Soient $f_{\lambda,a(1-\lambda)}, f_{\mu,a(1-\mu)} \in h_{\mathbb{C}}^A$. Alors

$$f_{\lambda,a(1-\lambda)} \circ f_{\mu,a(1-\mu)}^{-1} = f_{\frac{\lambda}{\mu},a(1-\frac{\lambda}{\mu})} \in h_{\mathbb{C}}^A.$$

Ainsi $h_{\mathbb{C}}^{A}$ est un sous-groupe de $(s_{\mathbb{C}}, \circ)$.

♦ Notons $r_{\mathbb{C}}^{A} = \{f_{e^{i\theta}, a(1-e^{i\theta})} / \theta \in \mathbb{R}\}$ l'ensemble des rotations de $s_{\mathbb{C}}$ de centre A.

Montrons que $r_{\mathbb{C}}^{A}$ est un sous-groupe de $(s_{\mathbb{C}}, \circ)$ par caractérisation.

 $\mathrm{Id}_{\mathbb{C}} = f_{1,0} \in r_{\mathbb{C}}^A$ et donc $r_{\mathbb{C}}^A \neq \emptyset$.

Soient $f_{\lambda,a(1-\lambda)}, f_{\mu,a(1-\mu)} \in h_{\mathbb{C}}^A$. Alors

$$f_{e^{i\theta},a(1-e^{i\theta})}\circ f_{e^{i\theta'},a(1-e^{i\theta'})}^{-1}=f_{e^{i\theta-\theta'},a(1-e^{i\theta-\theta'})}\in r_{\mathbb{C}}^A.$$

Ainsi $r_{\mathbb{C}}^{A}$ est un sous-groupe de $(s_{\mathbb{C}}, \circ)$.

Solution Exercice Nº 20:

- \Leftarrow : D'après le cours, \mathbb{U}_n est un sous-groupe de (\mathbb{C}^*, \times) . De plus, \mathbb{U}_n contient n élément donc est un sous-groupe fini de (\mathbb{C}^*, \times) . " \Rightarrow : Soit H un sous-groupe fini de $(\mathbb{C}^\star,\times).$
- \blacklozenge Notons n le nombre d'élément de G. Si n=1 alors le résultat est banal. On suppose donc $n \geqslant 2$.
- ♦ Soit $z \in H$. Pour tout $k \in \mathbb{N}$, $z^k \in H$. Comme H est fini donc il existe $k < \ell \in N$ tels que $z^k = z^\ell = 1$. Ainsi $z^{\ell-k} = 1$. En particulier, tous les éléments de H sont racine de l'unité. En particulier, tous les éléments de H sont de module 1.
- ♦ On écrit $H = \{1, e^{i\theta_1}, \dots, e^{i\theta_{n-1}}\}$ avec $0 < \theta_1 < \dots < \theta_{n-1} < 2\pi$. ♦ Montrons que $H = \{e^{i\theta_1 k} / k \in \mathbb{N}\}$ par double inclusion.
- " \supset ": Cette inclusion est claire car $e^{i\theta_1 k} = (e^{i\theta_1})^k$, que $e^{i\theta_1} \in H$ et que H est un sous-groupe de (\mathbb{C}^*, \times) .

" \subset " : Soit $1 \leqslant i \leqslant n-1$. On note $k = \left | \frac{\theta_i}{\theta_1} \right | \in \mathbb{N}$ et $r = \theta_i - k\theta_1$ de sorte que $\theta_i = k\theta_1 + r$ avec $0 \leqslant r < \theta_1$.

Alors $e^{ir} = e^{i\theta_i} \times (e^{i\theta_1})^{-k} \in H$. Par conséquent r = 0 puis $\theta_i = k\theta_1$ avec $k \in \mathbb{N}$.

Cela prouve la seconde inclusion et on a bien

$$H = \{ e^{i\theta_1 k} / k \in \mathbb{N} \}.$$

lacktriangle Comme $e^{i heta_1}$ est une racine de l'unité alors il existe deux entiers a et b tels que $a \wedge b = 1, \ 1 \leqslant a < b$ et $e^{i heta_1} = e^{\frac{2i\pi a}{b}}$. Ainsi

$$H = \{ e^{\frac{2i\pi ak}{b}} / k \in \mathbb{N} \}.$$

♦ Soit $k \in \mathbb{N}$. On note $u = \left| \frac{ka}{b} \right| \in \mathbb{N}$ et r = ka - bu de sorte que ka = bu + r avec $0 \le r < b$. Alors

$$e^{\frac{2i\pi ak}{b}} = e^{\frac{2i\pi(bu+r)}{b}} = e^{\frac{2i\pi r}{b}}.$$

Ainsi

$$H = \{e^{\frac{2i\pi ar}{b}} / 0 \leqslant r \leqslant b - 1\}.$$

lackloss Les éléments $\left(e^{\frac{2i\pi ar}{b}}\right)_{0\leqslant r\leqslant b-1}$ sont deux à deux distincts et, par conséquent, b=n. On en déduit que $H=\mathbb{U}_n$.

Solution Exercice Nº 21:

- 1. \blacklozenge + et \star sont les lois de composition internes sur \mathbb{Z}^2 .
 - lackSoient $(a,b),(c,d)\in \mathbb{Z}^2.$

$$(a,b) + (c,d) = (a+c,b+d) = (c+a,d+b) = (c,d) + (a,b).$$

Donc + est commutative sur \mathbb{Z}^2 .

 \blacklozenge Soient $(a,b),(c,d)\in\mathbb{Z}^2$.

$$(a,b) \star (c,d) = (ac,ad+bc) = (ca,cb+da) = (c,d) \star (a,b).$$

Donc \star est commutative sur \mathbb{Z}^2 .

lackSoient $(a,b),(c,d),(e,f)\in\mathbb{Z}^2.$

$$((a,b)+(c,d))+(e,f)=(a+c,b+d)+(e,f)=(a+b+e,c+d+f)=(a,b)+((c,d)+(e,f)).$$

Donc + est associative sur \mathbb{Z}^2 .

lackSoient $(a,b),(c,d),(e,f)\in \mathbb{Z}^2.$

$$((a,b) \star (c,d)) \star (e,f) = (ac,ad+bc) \star (e,f) = (ace,acf+(ad+bc)e) = (ace,acf+ade+bce).$$

De même,

$$(a,b) \star ((c,d) \star (e,f)) = (a,b) \star (ce,cf+de) = (ace,a(cf+de)+bce) = (ace,acf+ade+bce).$$

Donc \star est associative sur \mathbb{Z}^2 .

 \blacklozenge Soit $(a,b) \in \mathbb{Z}^2$.

$$(a,b) + (0,0) = (a+0,b+0) = (a,b).$$

Par commutativité de +, on en déduit que + possède un élément neutre.

$$(a,b) \star (1,0) = (a \times 1, a \times 0 + b \times 1) = (a,b).$$

Par commutativité de *, on en déduit que * possède un élément neutre.

lack Soit $(a,b) \in \mathbb{Z}^2$.

$$(a,b) + (-a,-b) = (0,0).$$

Par commutativité de +, on en déduit que (a,b) est inversible pour la loi +.

lackSoient $(a,b),(c,d),(e,f)\in\mathbb{Z}^2.$

$$(a,b) \star ((c,d) + (e,f)) = (a,b) \star (c+e,d+f) = (a(c+e),a(d+f) + b(c+e)) = (ac+ae,ad+af+bc+be).$$

De même

$$((a,b)\star(c,d)) + ((a,b)\star(e,f)) = (ac,ad+bc) + (ae,af+be) = (ac+ae,ad+bc+af+be).$$

Ainsi, par commutativité de + et \star , on en déduit que \star est distributive par rapport à +.

 $(\mathbb{Z}^2, +, \star)$ est un anneau commutatif.

- 2. $A \subset \mathbb{Z}^2$ et $(\mathbb{Z}^2, +, \star)$ est un anneau commutatif. Montrons que A est un sous-anneau de $(\mathbb{Z}^2, +, \star)$ par caractérisation.
 - ♠ (1,0) ∈ A.
 - \blacklozenge Soient $(a,0),(a',0)\in A$.

$$(a,0) - (a',0) = (a-a',0) \in A.$$

 \bullet Soient $(a,0),(a',0)\in A$.

$$(a,0) \star (a',0) = (aa', a \times 0 + a' \times 0) = (aa',0).$$

Solution Exercice Nº 22:

- 1. Comme x et y commutent alors, par une récurrence immédiate, pour tout $n \in \mathbb{N}$, $(xy)^n = x^n y^n$. En choisissant un $n \in \mathbb{N}$ vérifiant $x^n = 0$ alors on obtient que $(xy)^n = 0$. Ainsi xy est nilpotent.
- 2. Considérons $p \in \mathbb{N}$ tel que $x^p = 0$ et $n \in \mathbb{N}$ tel que $y^n = 0$. Par la formule du binôme de Newton (applicable puisque x et y commutent), on obtient

$$(x+y)^{p+n} = \sum_{k=0}^{p+n} \binom{p+n}{k} x^k y^{p+n-k} = \sum_{k=0}^{n-1} \binom{p+n}{k} x^k y^{p+n-k}.$$

En effectuant le changement d'indice i = p + n - k, on obtient

$$(x+y)^{p+n} = \sum_{i=p+1}^{p+n} {p+n \choose i+p+1} x^{p+n-i} y^i = 0.$$

Ainsi x + y est nilpotent.

- 3. Par une récurrence immédiate, pour tout $n \in \mathbb{N}^{\star}$, $(yx)^n = y(xy)^{n-1}x$. En considérant n tel que $(xy)^n = 0$, on obtient $(yx)^{n+1} = 0$. Ainsi yx est nilpotent.
- 4. Soit $n \in \mathbb{N}$ tel que $x^n = 0$. Posons

$$y = \sum_{k=0}^{n} x^k.$$

Par télescopage, on obtient

$$(1-x)y = y - xy = \sum_{k=0}^{n} x^{k} - \sum_{k=0}^{n} x^{k+1} = \sum_{k=0}^{n} (x^{k} - x^{k+1}) = 1 - x^{n+1} = 1.$$

De même, on montre que y(1-x)=1.

Ainsi 1 - x est inversible et

$$(1-x)^{-1} = \sum_{k=0}^{n} x^k = \sum_{k=0}^{+\infty} x^k.$$

Solution Exercice N° 23 : $\mathbb{Z}\left[\sqrt{d}\right]$ est une partie de \mathbb{R} et $(\mathbb{R},+,\times)$ est un anneau commutatif.

Montrons que $\mathbb{Z}\left[\sqrt{d}\right]$ est un sous-anneau de $(\mathbb{R},+,\times)$ par caractérisation.

- $-1 = 1 + 0 \times \sqrt{d} \in \mathbb{Z} \left[\sqrt{d} \right].$
- Soient $a + b\sqrt{d}, a' + b'\sqrt{d} \in \mathbb{Z}\left[\sqrt{d}\right].$

$$a + b\sqrt{d} - (a' + b'\sqrt{d}) = a - a' + \sqrt{d}(b - b') \in \mathbb{Z}\left[\sqrt{d}\right].$$

— Soient $a + b\sqrt{d}$, $a' + b'\sqrt{d} \in \mathbb{Z}\left[\sqrt{d}\right]$.

$$(a+b\sqrt{d})\times(a'+b'\sqrt{d})=aa'+dbb'+\sqrt{d}(ab'+a'b)\in\mathbb{Z}\left[\sqrt{d}\right].$$

Solution Exercice N° 24 : $\mathbb{D} \subset \mathbb{Q}$ et $(\mathbb{Q}, +, \times)$ est un anneau.

Montrons que $\mathbb D$ est un sous-anneau de $(\mathbb Q,+,\times)$ par caractérisation. $-1 = \frac{1}{100} \in \mathbb D.$ $- \text{ Soient } \frac{n}{10^k}, \frac{n'}{10^{k'}} \in \mathbb D.$

$$\frac{n}{10^k} - \frac{n'}{10^{k'}} = \frac{10^{k'}n - 10^k n'}{10^{k+k'}} \in \mathbb{D}.$$

— Soient
$$\frac{n}{10^k}, \frac{n'}{10^{k'}} \in \mathbb{D}$$
.

$$\frac{n}{10^k} \times \frac{n'}{10^{k'}} = \frac{nn'}{10^{k+k'}} \in \mathbb{D}.$$

Solution Exercice No 25:

- 1. $\mathbb{Z}[i]$ est une partie de \mathbb{C} et $(\mathbb{C},+,\times)$ est un anneau commutatif. Montrons que $\mathbb{Z}[i]$ est un sous-anneau de $(\mathbb{C}, +, \times)$ par caractérisation.
 - $-1 = 1 + 0 \times i \in \mathbb{Z}[i].$
 - Soient $a + ib, a' + ib' \in \mathbb{Z}[i]$.

$$a + ib - (a' + ib') = a - a' + i(b - b') \in \mathbb{Z}[i].$$

— Soient a + ib, $a' + ib' \in \mathbb{Z}[i]$.

$$(a+ib) \times (a'+ib') = (aa'-bb') + i(ab'+a'b) \in \mathbb{Z}[i].$$

2. Soit $z = a + ib \in \mathbb{Z}[i]^*$. Il existe $u = \alpha + i\beta \in \mathbb{Z}[i]^*$ tel que uz = 1. En particulier $|u|^2 \times |z|^2 = 1$. Comme $|u|^2 \in \mathbb{Z}$ et $|z|^2 \in \mathbb{Z}$ alors $|u|^2 \in \mathbb{Z}^* = \{\pm 1\}$. Comme $|z|^2 \ge 0$ alors $|z|^2 = 1$ puis $a^2 + b^2 = 1$.

Ainsi $(a,b) \in \{(1,0), (-1,0), (0,1), (0,-1)\}$ puis $z \in \{1,-1,i,-i\}$.

Réciproquement $1 \times 1 = 1$, $(-1) \times (-1) = 1$ et $i \times (-i) = 1$ et donc 1, -1, i et -i sont inversibles dans $\mathbb{Z}[i]$. Ainsi $\mathbb{Z}[i] = \{1, -1, i, -i\}.$

Solution Exercice Nº 26:

1. A est une partie de \mathbb{Q} et $(\mathbb{Q}, +, \times)$ est un anneau commutatif.

Montrons que A est un sous-anneau de $(\mathbb{Q}, +, \times)$ par caractérisation.

- $-1 = \frac{1}{1} \in A.$
- Soient $\frac{m}{n}, \frac{m'}{n'} \in A$.

$$\frac{m}{n} - \frac{m'}{n'} = \frac{mn' - m'n}{nn'} \in A$$

puisque nn' est impair.

— Soient $\frac{m}{n}, \frac{m'}{n'} \in A$.

$$\frac{m}{n} \times \frac{m'}{n'} = \frac{mm'}{nn'} \in A$$

puisque nn' est impair.

2. Soient $\frac{m}{n} \in A$. Avec $m \wedge n = 1$ et n impair. L'inverse de $\frac{m}{n}$ dans \mathbb{Q} est $\frac{n}{m}$. Cet inverse est dans A si, et seulement si, m est impair. Ainsi $A^* = \{\frac{m}{n} \mid m \wedge n = 1 \text{ et } m, n \text{ impairs}\}.$

Solution Exercice $N^{\circ} 27$:

- \blacklozenge \top et \star sont des lois de composition internes sur \mathbb{R} .

$$a \top b = a + b - 1 = b + a - 1 = b \top a.$$

 \top est donc commutative sur \mathbb{R} .

 \bullet Soient $a, b \in \mathbb{R}$.

$$a \star b = ab - a - b + 2 = ba - b - a + 2 = b \star a.$$

- \star est donc commutative sur \mathbb{R} .
- \blacklozenge Soient $a, b, c \in \mathbb{R}$.

$$(a \top b) \top c = (a+b-1) \top c = a+b-1+c-1 = a+(b+c-1)-1 = a \top (b+c-1) = a \top (b \top c).$$

Ainsi \top est associative sur \mathbb{R} .

lacktriangle Soient $a,b,c\in\mathbb{R}$.

$$(a \star b) \star c = (ab - a - b + 2) \star c = (ab - a - b + 2)c - (ab - a - b + 2) - c + 2 = abc - ac - bc - ab + a + b + c.$$

De même

$$a\star(b\star c) = a\star(bc - b - c + 2) = a(bc - b - c + 2) - a - (bc - b - c + 2) + 2 = abc - ab - ac - bc + a + b + c.$$

Ainsi ★ est associative sur ℝ.

 \bullet Soit $a \in \mathbb{R}$

$$a \top 1 = a + 1 - 1 = a.$$

Par commutativité de \top , on en déduit que \top possède un élément neutre qui est 1.

 \bullet Soit $a \in \mathbb{R}$

$$a \top (2 - a) = a + (2 - a) - 1 = 1$$

Par commutativité de \top , on en déduit que a est inversible dans (\mathbb{R}, \top) .

• Soit $a \in \mathbb{R}$

$$a \star 2 = 2a - a - 2 + 2 = a$$
.

Par commutativité de *, on en déduit que * possède un élément neutre qui est 2.

 \bullet Soit $a \in \mathbb{R} \setminus \{1\}$

$$a\top\frac{a}{a-1}=a\frac{a}{a-1}-\frac{a}{a-1}-a+2=2$$

Par commutativité de \top , on en déduit que a est inversible dans (\mathbb{R}, \star) .

lacktriangle Soient $a,b,c\in\mathbb{R}$.

$$a \star (b \top c) = a \star (b + c - 1) = a(b + c - 1) - a - (b + c - 1) + 2 = ab + ac - 2a - b - c + 3$$

De même,

$$(a \star b) \top (a \star c) = (ab - a - b + 2) \top (ac - a - c + 2) = ab - a - b + 2 + ac - a - c + 2 - 1 = ab + ac - 2a - b - c + 3.$$

Par commutativité de \top et \star , on en déduit que \star est distributive par rapport à \top .

 $(\mathbb{R}, \top, \star)$ est un corps commutatif.

Solution Exercice N° 28 : $\mathbb{Q}\left[\sqrt{d}\right]$ est une partie de \mathbb{R} et $(\mathbb{R},+,\times)$ est un anneau commutatif.

Montrons que $\mathbb{Q}\left\lceil \sqrt{d}\right\rceil$ est un sous-anneau de $(\mathbb{R},+,\times)$ par caractérisation.

$$-1 = 1 + 0 \times \sqrt{d} \in \mathbb{Q} \left[\sqrt{d} \right].$$

— Soient $a + b\sqrt{d}$, $a' + b'\sqrt{d} \in \mathbb{Q}\left[\sqrt{d}\right]$.

$$a+b\sqrt{d}-(a'+b'\sqrt{d})=a-a'+\sqrt{d}(b-b')\in\mathbb{Q}\left\lceil\sqrt{d}\right\rceil.$$

— Soient $a + b\sqrt{d}, a' + b'\sqrt{d} \in \mathbb{Q}\left[\sqrt{d}\right]$.

$$(a+b\sqrt{d})\times(a'+b'\sqrt{d})=aa'+dbb'+\sqrt{d}(ab'+a'b)\in\mathbb{Q}\left\lceil\sqrt{d}\right\rceil.$$

$$\begin{split} & - \text{ Soit } a + b\sqrt{d} \in \mathbb{Q} \left[\sqrt{d} \right] \setminus \{0\}. \\ & \frac{1}{a + b\sqrt{d}} = \frac{a - b\sqrt{d}}{a^2 - db^2} = \frac{a}{a^2 - db^2} - \frac{b}{a^2 - db^2} \sqrt{d} \in \mathbb{Q} \left[\sqrt{d} \right]. \\ & \text{Ainsi } (a + b\sqrt{d})^{-1} \in \mathbb{Q} \left[\sqrt{d} \right]. \end{split}$$

Solution Exercice N° 29 : Soit F un sous-corps de $(\mathbb{Q}, +, \times)$.

Nécessairement $0 \in F$ et $1 \in F$.

Montrons par récurrence que, pour tout $n \in \mathbb{N}$, $n \in F$.

- La propriété est vrai au rang n=0 puisque $0\in F.$
- Supposons donné $n \in \mathbb{N}$ tel que $n \in F$. Montrons que $n+1 \in F$.

 $n \in F$, $1 \in F$ et F est stable par addition. Ainsi $n + 1 \in F$.

La récurrence est achevée.

Soit $n \in \mathbb{Z} \setminus \mathbb{N}$. Par ce qui précède $-n \in \mathbb{N}$. Comme F est stable par passage à l'opposée, on en déduit que $n \in F$. On en déduit que, pour tout $n \in \mathbb{Z}$, $n \in F$.

Enfin comme F est stable par produit et par passage à l'inverse, on en déduit que, pour tout $m \in \mathbb{Z}$, pour tout $m \in \mathbb{N}^*$, $\frac{m}{n} \in F$. On en déduit alors que $\mathbb{Q} \subset F$.

Comme F est une partie de \mathbb{Q} alors $\mathbb{Q} = F$.