Jak być pięknym na 99%

Wojciech Wdowski

Uwaga!

Ten referat nie jest poradą medyczną!

Plastry na wypryski

Historyjka

- >bądź mną
- >wstań rano w świetnym humorze
- >przejrzyj się w lustrze
- >zauważ, że masz dwa wypryski
- >*humor popsuty*
- >przypomnij sobie, że masz dwa plastry
- >*humor znów świetny*

No dobrze ale...

Ile muszę miec plastrów, aby mi na pewno wystarczyło?

Przyczyny występowania wyprysków

Przyczyny występowania trądziku:

- 1 zwiększona produkcja łoju,
- 2 zablokowanie aparatu włosowo-łojowego przez czop rogowy,
- 3 kolonizacja przewodu wyprowadzającego przez bakterie Cutibacterium acnes,
- 4 reakcja zapalna,
- 5 reakcja immunologiczna.

Czynniki zostrzające trądzik:

- powtarzające się urazy mechaniczne skóry,
- 2 zwiększone spożycie mleka i produktów o wysokim indeksie glikemicznym,
- 3 stres,
- 4 insulinooporność,
- 5 zbyt mała masa ciała lub nadmierna masa ciała.

Problem jest zbyt skąplikowany

Dziękuje za uwagę : \int .

Podejście probabilistyczne.

Załóżmy, że pojawienie się wyprysku jest losowe.

Przeformujmy pytanie

Ile muszę miec plastrów, aby mi wystarczyło na 99%?

Stopniowanie kłamstwa

Kłamstwo Większe kłamstwo Wykład popularno-naukowy

Matematyczne sformułowanie problemu

Zapis

$$\mathbb{P}(X \leqslant n)$$

rozumiemy jako:

Prawdopodobieństwo zdarzanie, że ilość nowych wyprysków w danym dniu jest mniejsza niż n.

Co będziemy robić?

Szukamy najmniejszego $n \in \mathbb{N}$, które spelnia

$$\mathbb{P}(X \leqslant n) \geqslant 0,99.$$

To X nazywamy zmienną losową.

Przypomnienie z liceum

Prawdopodobieństwo klasyczne.

Gdy Ω jest niepustym i skończonym zbiorem wszystkich zdarzeń elementarnych doświadczenia losowego oraz wszystkie zdarzenia jednoelementowe są jednakowo prawdopodobne, to prawdopodobieństwo zdarzenia losowego A jest równe

$$\mathbb{P}(A) = \frac{|A|}{|\Omega|}$$

Gdzie |B| oznacza ilość elementów w zbiorze B.

Przypomnienie z liceum

Prawdopodobieństwo klasyczne.

Gdy Ω jest niepustym i skończonym zbiorem wszystkich zdarzeń elementarnych doświadczenia losowego oraz wszystkie zdarzenia jednoelementowe są jednakowo prawdopodobne, to prawdopodobieństwo zdarzenia losowego A jest równe

$$\mathbb{P}(A) = \frac{|A|}{|\Omega|}$$

Gdzie zapiś |B| oznacza ilość elementów w zbiorze B.

My jednak nie możemy z tego skorzystać!!

Przypomnienie z liceum

Niech Ω będzie niepustym zbiorem wszystkich zdarzeń elementarnych doświadczenia losowego, natomiast \mathbb{P} - prawdopodobieństwem określonym na podzbiorach Ω , wtedy:

- $\mathbb{P}(\emptyset) = 0$
- $\mathbb{P}(\Omega) = 1$
- $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$

W szczególnośći gdy $A \cap B = \emptyset$ to

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$$

Wizualizacja

Gdy
$$A\cap B=\emptyset$$
 to

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$$

Jak mogę dla dwóch, to dla trzech też?

Gdy
$$A \cap B = \emptyset$$
, $B \cap C = \emptyset$, $C \cap A = \emptyset$ to

$$\mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C)$$

A czy mogę iść jeszcze dalej?

Gdy $A_i \cap A_j = \emptyset$ dla $i \neq j$ to

$$\mathbb{P}(A_1 \cup A_2 \cup \ldots \cup A_n) = \mathbb{P}(A_1) + \mathbb{P}(A_2) + \ldots + \mathbb{P}(A_n)$$

Definicja Prawdopodobieństwa

Każda funkcje \mathbb{P} , która przyporządkowuje podzbiorowi Ω liczbę z przedziału od [0,1], nazywamy prawdopodobieństwiem jeśli spełnia poniższe warunki:

- $\mathbb{P}(\emptyset) = 0$
- $\mathbb{P}(\Omega) = 1$
- 3 Dla każdych A, B podzbiorów Ω , takich, że $A \cap B = \emptyset$ zachdzi:

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B).$$

Powrót do problemu

Matematyczne sformułowanie pytania

Szukamy najmniejszego $n \in \mathbb{N}$, które spelnia

$$\mathbb{P}(X \leqslant n) \geqslant 0,99.$$

Ale z definicji prawdopodobieństwa możemy teraz zapisać:

$$\mathbb{P}(X\leqslant n)=\mathbb{P}(X=0)+\mathbb{P}(X=1)+\ldots+\mathbb{P}(X=n)$$

Zapis $\mathbb{P}(X=k)$ rozumiemy jako: Prawdopodobieństwo zdarzenia, że ilość nowych wyprysków w danym dniu jest równe k.

Powrót do problemu

Pytamy zatem o najmniejsze $n \in \mathbb{N}$, które spełnia:

$$\mathbb{P}(X=0) + \mathbb{P}(X=1) + \ldots + \mathbb{P}(X=n) \geqslant 0.99$$

Ale jak to policzyć?

Może się wydawać, że na razie zamieniliśmy jeden dziwny i nieznany symbol na sumę dużej liczby dziwnych symboli.

Jak pójść dalej?

Jedyne co potrzebujemy teraz to wzór na $\mathbb{P}(X = k)$.

(Prawdopodobieństwo zdarzenia, że ilość nowych wyprysków w danym dniu jest równe k.)

Dlaczego?

Algorytm

By znaleźć najmniejsze $n \in \mathbb{N}$ tak by $\mathbb{P}(X \leq n) \geq 0,99$. Wystarczy zastosować poniższy algorytm.

- **1** Weź n := 0 i S := 0
- $S := S + \mathbb{P}(X = n)$
- 4 Sprawdz czy $S \ge 0.99$
 - lacksquare jeśli nie, to zwiększ n o jeden (n:=n+1) i wróc do punktu 2.
 - \blacksquare jeśli tak, brawo! Znalazłeś n.

Wizualizacja algorytmu

No ale...

Jak policzyć $\mathbb{P}(X=k)$?

Mechanizm powstawania pryszczy w uproszczeniu

 Łój swobodnie wydostaje się na powierzchnię skóry
Łój gromadzi się w mieszku włosowym

3. Łój gromadzi się w zamkniętym mieszku włosowym 4. Pojawia się stan zapalny, bakterie

Kluczowe informacja: na skórzę występują mieszki włosowe, w których może dość do powstania stanu zapalnego.

Założenia

Zakładamy, że:

- Powstanie wyprysku w mieszku włosowym jest zdarzeniem losowym.
- 2 Na skórze twarzy mamy "dużo" mieszków włosowych.
- Prawdopodobieństwo powstania wyprysku w konkretnym mieszku włosowym jest "małe".
- 4 Powstawanie wyprysków w konkretnym mieszku włosowy jest niezależne od innych mieszków włosowych.

Twierdzenie graniczne Poissona

Jeśli zachodzą powyższe założenia, to zmienna losowa X, która zlicza ilość wystąpienia wszystkich wyprysków na twarzy, ma rozkład Poissona z parametrem λ . Tzn.

$$\mathbb{P}(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

Rozkład Poissona

Rozszyfrujmy poniższy wzór

$$\mathbb{P}(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

- $\mathbb{P}(X = k)$ to Prawdopodobieństwo zdarzenia, że ilość nowych wyprysków w danym dniu jest równe k.
- $k! = k(k-1)(k-2) \cdots 3 \cdot 2 \cdot 1$
- *e* to stała Eulera tzn. $e = \sum_{n=0}^{\infty} \frac{1}{n!} = 1 + 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \dots$
- \blacksquare λ to dodatnia liczba rzeczywista, będąca wartością oczekiwaną (wartością średnią) otrzymywanych wyprysków w danym dniu.

Rozkład Poissona dla $\lambda = 2$

Algorytm

By znaleźć najmniejsze $n \in \mathbb{N}$ tak by $\mathbb{P}(X \leq n) \geq 0,99$. Wystarczy zastosować poniższy algorytm.

- **1** Weź n := 0 i S := 0
- Policz $\mathbb{P}(X=n) = e^{-\lambda} \frac{\lambda^n}{n!}$
- $S := S + \mathbb{P}(X = n)$
- 4 Sprawdz czy $S \ge 0.99$
 - lacksquare jeśli nie, to zwiększ n o jeden (n:=n+1) i wróc do punktu 2.
 - lacktriangle jeśli tak, brawo! Znalazłeś n.

Co teraz?

Ostatnia przeszkoda

Jak otrzymać λ ?

Zauważmy, że jest to o tyle skomplikowane, że λ będzie różne dla różnych ludzi.

Notacja

Do zapisu sumy wielu elementów (jakiegoś ciągu a_n) będziemy używać symbolu Σ .

I Jeśli a_n a to ciąg majacy k elementów, to

$$a_1 + a_2 + a_3 + \dots + a_k = \sum_{n=1}^k a_n$$

2 Jeśli a_n a to ciąg przeliczalnie wiele elementów, to

$$a_1 + a_2 + a_3 + \dots = \sum_{n=1}^{\infty} a_n$$

Wartość oczekiwana

Definicja

Gdy X jest zmienną losową o wartościach $x_1, x_2, ...$

$$EX = \sum_{k=0}^{\infty} x_k \mathbb{P}(X = x_k) = x_1 \mathbb{P}(X = x_1) + x_2 \mathbb{P}(X = x_2) + \dots$$

Wartość oczekiwana rozkładu Poissona

Znany fakt

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \dots$$

Niech X będzie zmienną losową o rozkładzie Poissona z parametrem λ wtedy wartość oczekiwana wyraża się jako:

$$EX = \sum_{k=0}^{\infty} e^{-\lambda} k \frac{\lambda^k}{k!} = e^{-\lambda} \sum_{k=1}^{\infty} \lambda \frac{\lambda^{k-1}}{(k-1)!} = \lambda e^{-\lambda} \sum_{n=0}^{\infty} \frac{\lambda^n}{n!} = \lambda$$

Prawo wielkich liczb

Niech $X_1.X_2,X_3,\dots$ będą niezależnymi zmiennymi losowymi o jednakowym rozkładzie wtedy

$$\frac{X_1 + X_2 + \dots + X_n}{n} \approx EX$$

Przybliżanie λ

Niech $X_1.X_2,X_3,...$ będą niezależnymi zmiennymi losowymi o rozkładzie Poissona z tym samym parametrem λ wtedy

$$\frac{X_1 + X_2 + \dots + X_n}{n} \approx \lambda$$

Metoda przybliżania λ

By przybliżyć λ wystarczy przybliżyć EX. To natomiast otrzymamy sumując ilości nowych wyprysków jakie zaobserwujemy przez n dni i następnie dzieląc całość przez n.

Algorytm i przykład użycia

By znaleźć najmniejsze $n\in\mathbb{N}$ tak by $\mathbb{P}(X\leqslant n)\geqslant 0,99.$ Wystarczy zastosować poniższy algorytm

- **1** Weź n := 0 i S := 0
- Policz $\mathbb{P}(X=n) = e^{-\lambda} \frac{\lambda^n}{n!}$
- $S := S + \mathbb{P}(X = n)$
- \blacksquare Sprawdz czy $S \ge 0.99$
 - lacksquare jeśli nie, to zwiększ n o jeden (n:=n+1) i wróc do punktu 2.
 - \blacksquare jeśli tak, brawo! Znalazłeś n.

Weźmy $\lambda = 2$.

$$\mathbb{P}(X=0) \approx 0.13 \rightarrow 0.13 + \mathbb{P}(X=1) \approx 0.4 \rightarrow 0.4 + \mathbb{P}(X=2) \approx 0.67 \rightarrow 0.67 + \mathbb{P}(X=3) \approx 0.85 \rightarrow 0.85 + \mathbb{P}(X=4) \approx 0.94 \rightarrow 0.94 + \mathbb{P}(X=5) \approx 0.98 \rightarrow 0.98 + \mathbb{P}(X=6) > 0.99$$
. Zatem szukane n to 6. W terminach naszego problemu oznacza, to że jeżeli średnio dziennie znajdujemy dwa wypryski, to potrzebujemy mieć 6 plastrów w by na 99% móc pokryć wszystkie wypryski.

Żródła i dodatkowe materiały

Dziękuje za uwagę:)