Metagenomic Binning via Graph Representation Learning and Clustering

Presenter: Wei Zhou Supervisor: Dr Yu Lin

Presentation Outline

01	Background & Goal	03
02	Challenge	09
03	Methodology	11
04	Experiment	19
05	Visualization	23
06	Further Analysis	24
07	Q & A	25

CRICOS PROVIDER #00120C

3

Background

What is Metagenomic?

- Defined as the study of genetic materials that are collected directly from various natural environments
- No need for isolation and lab cultivation of individual species
- Culture-independent method
- Allow analyse of 100% genetic materials

Application

- Medicine
- Engineering
- Agriculture
- Ecology

Background

Pipeline of Metagenomic Analysis

4

Background

Nucleotide sequences

- Carrying genetic information of organisms
- Composing of 4 nucleotide bases
 - adenine (A)
 - thymine (T)
 - cytosine (C)
 - guanine (G)

Background

High-throughput Sequencing(HTS)

- Input sampled DNA fragments
- Produce short reads with 100-300 base pairs length
- About 0.1% error rate
- Low costs
- High throughput

https://www.omnia-health.com/product/next-generation-sequencing-platforms

Background

Assembly

- Reads are too short to produce reliable binning results
- Assemble short reads into longer contigs
- Obtain assembly graph

Background & Goal

Metagenomic Binning

- 1. Microorganism samples are mixed
- **2. Goal**: Bin assembled contigs correctly
- 3. Gain valuable insights about the complex microbial communities
- 4. Identify association between diseases and human microbiome

Metagenomic Workflow

Challenge in Metagenomic Binning

1. How to learn the homophilous features of contigs?

2. How to mine the heterophilous relations among marker genes?

Challenge in Metagenomic Binning

1. How to learn the homophilous features of contigs?

- solve by graph representation learning with both assembly graph and composition information of assembled contigs

2. How to mine the heterophilous relations among marker genes?

- solve by graph matching and clustering with single-copy marker genes contained in assembled contigs

single-copy marker genes

Methodology

Composition Information

- Biology information
- Contigs of same species have high similarity in composition

Assembly Graph

- Contigs as nodes
- Majority linked contigs belong to same species

Methodology

MixBin framework

Methodology

MixBin Part 1: Contrastive graph representation learning

14

Methodology

MixBin Part 1: Contrastive graph representation learning

- 1. Generate negative graph with corruption function
- 2. Learn h and h tilde using Graph Diffusion Convolution
- 3. Concatenate with composition information

- 4. Obtain global representation S by readout function R
- 5.Maximize the mutual information with discriminator D
- 6. Obtain representations

Methodology

MixBin Part 2: Constrained bipartite graph matching

Methodology

MixBin Part 2: Constrained bipartite graph matching

Methodology

MixBin Part 3: GCN-based label propagation

Methodology

MixBin Part 3: GCN-based label propagation

Experiment Setup

Datasets: 5 simulated data sets

Datasets	Read length (bp)	Number of paired-end reads	Number of assembled contigs	Mean contigs length (bp)	Number of links	Number of constraints	Number of species in ground truth
Sim-5G	300	2,000,000	519	51,723	2,488	91	5
Sim-10G	300	6,999,998	920	$47,\!279$	4,210	67	10
Sim-20G	300	15,000,001	1,452	48,021	6,531	75	20
Sim-50G	300	20,477,955	5,088	28,680	18,808	85	50
Sim-100G	300	$51,\!167,\!221$	15,729	19,978	$62,\!518$	85	100

Baselines: 4 unsupervised GNNs, 4 graph clustering models, and 8 binning tools.

GNNs: GraphSAGE GAT, DGI, VGAE.

Graph Clustering: O2MAC, AGC, CSC, DCC.

Binning Tools: MetaWatt, CONCOCT, MaxBin2, BusyBeeWeb,

MetaBAT2, SolidBin, VAMB, RepBin,

Metrics: F1, ARI, and NMI for ML-based baselines;

Precision, **Recall**, and **F1** for Binning tools

Experiments & Result

Benchmarking against GNNs

Datasets		Gr	MixBin-			
		GSAGE GAT		DGI	VGAE	Learning
	F1	88.0±0.6	94.5 ± 1.6	79.9 ± 3.4	$85.7{\pm}1.4$	95.04 ± 0.09
$\mathbf{Sim}\text{-}\mathbf{5G}$	ARI	$72.9 {\pm} 0.9$	86.9 ± 1.7	$54.6{\pm}6.8$	$70.1{\pm}2.6$	91.00 ± 0.17
	NMI	81.6 ± 0.8	87.7 ± 0.7	$68.2 {\pm} 3.3$	80.1±3.2	90.92±0.42
	F1	76.6 ± 0.2	73.7 ± 0.5	$68.1 {\pm} 1.9$	71.4 ± 1.9	$92.23{\pm}2.19$
Sim-10G	ARI	59.3 ± 0.7	$54.0{\pm}2.6$	$39.3 {\pm} 2.4$	$46.0{\pm}2.6$	84.65 ± 5.56
	NMI	75.9 ± 0.6	$74.3 {\pm} 0.4$	$61.8 {\pm} 2.4$	$68.9{\pm}1.1$	$91.17{\pm}2.14$
	F1	77.4 ± 0.6	79.8 ± 1.0	$63.9{\pm}2.5$	$72.2{\pm}1.7$	$85.19{\pm}2.40$
$\mathbf{Sim}\text{-}\mathbf{20G}$	ARI	61.5 ± 1.8	65.4 ± 1.3	$40.1{\pm}2.3$	54.8 ± 2.1	73.20±3.74 !
	NMI	81.5 ± 0.3	83.6 ± 0.7	$65.8 {\pm} 2.5$	$75.9{\pm}1.2$	$86.37{\pm}1.77$
Sim-50G	F1	58.8 ± 0.1	64.2 ± 0.8	51.4 ± 0.3	$62.1{\pm}1.2$	69.38 ± 3.27
	ARI	$40.9{\pm}1.7$	44.7 ± 1.8	$37.1 {\pm} 1.1$	41.1 ± 0.5	53.68 ± 3.44
	NMI	$72.6 {\pm} 0.2$	75.9 ± 0.2	$64.2 {\pm} 0.7$	$68.7 {\pm} 0.8$	79.48 ± 1.98
Sim-100G	F1	46.7 ± 0.5	50.1 ± 0.1	$20.8 {\pm} 0.5$	37.6 ± 1.1	54.10 ± 2.23
	ARI	31.2 ± 0.8	26.9 ± 0.3	21.7 ± 0.8	$25.8 {\pm} 0.6$	$37.90{\pm}2.88$
	NMI	68.2 ± 0.2	66.8 ± 0.8	51.6 ± 0.4	62.3 ± 0.9	71.70 ± 1.30

Experiments & Result

Benchmarking against Graph Clustering methods

Datasets			MixBin			
		O2MAC	AGC	CSC	DCC	
	F1	74.9 ± 3.5	80.9 ± 0.4	96.7 ± 0.0	$90.9 {\pm} 0.0$	$99.69{\pm}0.18$
Sim 45G	ARI	$63.6{\pm}2.1$	$92.7{\pm}0.8$	87.9 ± 0.0	94.0 ± 1.0	$99.11 {\pm} 0.42$
	NMI	$72.5{\pm}3.1$	90.4 ± 0.5	91.5 ± 0.0	88.6 ± 1.1	$98.75 {\pm} 0.68$
	F1	$65.8{\pm}1.4$	78.3 ± 0.3	$90.9{\pm}1.3$	92.1 ± 2.9	$99.55{\pm}0.00$
Sim-10G	ARI	$53.5{\pm}2.1$	87.9 ± 0.3	77.9 ± 4.2	83.3±3.0	$99.39{\pm}0.08$
	NMI	$69.1{\pm}1.7$	89.6 ± 0.7	$85.1{\pm}1.7$	77.3 ± 2.3	$99.20{\pm}0.05$
	F1	61.0 ± 3.4	67.0 ± 0.2	83.0 ± 1.4	82.1±1.9	97.78 ± 0.05
$\mathbf{Sim}\text{-}\mathbf{20G}$	ARI	$52.0{\pm}2.7$	75.9 ± 1.1	$63.2 {\pm} 4.3$	$65.3{\pm}2.8$	$96.20{\pm}0.11$
	NMI	$71.1 {\pm} 1.8$	82.0 ± 0.5	83.1 ± 1.1	75.1 ± 3.3	97.06 ± 0.02
	F1	$37.1 {\pm} 0.5$	54.9 ± 0.2	86.8 ± 0.8	$64.4{\pm}5.7$	$87.62{\pm}1.91$
\mathbf{Sim} -50 \mathbf{G}	ARI	$16.5 {\pm} 0.3$	$44.4{\pm}0.8$	77.0 ± 2.6	$48.7{\pm}4.1$	$85.49{\pm}2.83$
	NMI	$59.8 {\pm} 0.8$	$79.3 {\pm} 0.1$	90.3 ± 0.5	$51.3{\pm}4.0$	91.54 ± 0.99
Sim-100G	F1	$29.0{\pm}2.0$	$50.5 {\pm} 0.4$	$72.5 {\pm} 0.7$	57.1±3.3	71.97 ± 0.73
	ARI	$8.5{\pm}0.1$	$21.1 {\pm} 0.5$	$37.5 {\pm} 7.9$	40.9 ± 7.9	$58.58 {\pm} 0.80$
	NMI	58.9 ± 0.1	72.0 ± 0.2	81.0 ± 1.7	55.4 ± 0.9	$82.51{\pm}0.37$

Experiments & Result

Benchmarking against metagenomic binning tools

Datasets			CON COCT	MaxBin2	BusyBee Web	MetaBAT2			RepBin	MixBin
Sim-5G	Precision	<u>100.00</u>	91.60	91.13	86.57	100.00	90.00	100.00 ± 0.00	$ 99.69\pm0.10 $	99.69 ± 0.18
	Recall	24.59	40.50	46.69	49.79	6.61	46.49	33.92 ± 0.90	99.69 ± 0.10	99.69 ± 0.18
	F1	39.47	56.16	61.75	63.22	12.40	61.31	50.66 ± 1.02	99.69 ± 0.10	99.69 ± 0.18
	Pred. bins	12	7	5	4	34	5	6	5	5
	Precision	99.29	86.99	89.43	84.47	100.00	91.58	99.93 ± 0.15	99.20 ± 0.00	$99.52 {\pm} 0.05$
Sim-10G	Recall	26.13	39.72	40.30	45.53	6.39	41.70	33.80 ± 0.20	99.55 ± 0.08	$99.57 {\pm} 0.05$
51m-10G	F1	41.38	54.54	55.56	59.17	12.01	57.30	$50.51 {\pm} 0.23$	99.37 ± 0.04	99.55 ± 0.00
	Pred. bins	20	12	10	6	56	10	11	10	10
	Precision	96.85	84.02	88.25	77.39	96.77	96.51	99.35 ± 0.10	97.31 ± 0.31	98.72 ± 0.03
Sim-20G	Recall	32.01	42.27	41.69	44.51	7.73	85.04	$36.88 {\pm} 0.60$	96.98 ± 0.69	96.86 ± 0.13
SIIII-20G	F1	48.12	56.24	56.63	56.52	14.32	90.41	53.79 ± 0.64	97.15 ± 0.61	97.78 ± 0.05
	Pred. bins	33	22	21	12	88	20	22	20	20
Sim-50G	Precision	79.26	63.22	66.78	8.58	78.41	77.52	84.22 ± 0.73	80.31 ± 0.48	$83.24{\pm}1.63$
	Recall	17.65	38.76	40.89	4.21	5.67	38.67	$39.32{\pm}0.45$	90.59 ± 2.01	92.49 ± 2.42
	F1	41.42	47.65	51.23	5.65	11.32	51.60	$55.37{\pm}1.56$	84.55 ± 1.80	87.62 ± 1.91
	Pred. bins	75	56	53	12	98	45	48	50	47
Sim-100G	Precision	63.22	52.31	54.78	50.95	67.32	77.93	$65.31{\pm}1.21$	66.42 ± 1.72	64.39 ± 0.72
	Recall	15.73	22.61	27.62	41.69	4.81	12.22	32.29 ± 0.39	83.79 ± 2.02	81.63 ± 2.43
	F1	32.34	34.59	36.73	45.86	9.63	21.12	45.21 ± 0.79	74.08 ± 0.74	71.97 ± 0.73
	Pred. bins	157	132	127	28	256	84	87	100	92

Visualization

Further Analysis

24

Thank you Any question?

