BASIC WELL LOGGING FORMULAE

Temperature Calculation Assuming a Linear Geothermal Gradient

$$T(z) = T(z_1) + \frac{T(z_2) - T(z_1)}{z_2 - z_1} (z - z_1)$$

where:

T = temperature (either °C or °F),

z = true vertical depth (TVD) measured with respect to the logging reference point,

 z_1 = TVD of a point in at which the temperature was measured (usually the at the surface), and

 z_2 = TVD of a second point at which the temperature was measured (usually at the bottom of the well).

Shale/Clay Index Based on Gamma-Ray Log

$$I_{sh} = \frac{GR - GR_{cn}}{GR_{sh} - GR_{cn}}$$

where:

 I_{sh} = shale index,

GR = gamma-ray reading in the depth zone of interest,

 GR_{cn} = gamma-ray reading in a depth zone which is considered clean (shale/clay free), also referred to as GR_{min} , and

 GR_{sh} = gamma-ray reading in a "pure" shale depth zone, also referred to as GR_{max} .

Shale/Clay Index Based on Gamma-Ray Log Across a Water-Saturated Sandstone

$$I_{sh} = I_{shw} + \frac{1 - I_{shw}}{GR_{sh} - GR_{w}} (GR - GR_{w})$$

where:

 I_{sh} = shale index,

 I_{shw} = shale index in the water-saturated sandstone ($I_{shw} \leq 1$),

GR = gamma-ray reading in the depth zone of interest,

 GR_{w} = gamma-ray reading in the water-saturated sandstone ($GR_{w} \leq GR_{sh}$), and

 GR_{sh} = gamma-ray reading in a "pure" shale depth zone, also referred to as GR_{max} .

Spontaneous Electrical Potential

$$SSP \approx -K \times \log_{10}(\frac{C_w}{C_{mf}})$$

where:

SSP = Static spontaneous electrical potential in mV, C_{mf} = salt concentration of mud filtrate in NaCl ppm,

 C_w = salt concentration of connate water in NaCl ppm, and

K is a temperature-independent constant = 71 mV.

Conversion of Electrical Resistivity due to Temperature Change

$$R_2 = R_1 \left(\frac{T_1 + 6.77}{T_2 + 6.77} \right) \operatorname{deg} F$$

or

$$R_2 = R_1 \left(\frac{T_1 + 21.5}{T_2 + 21.5} \right) \operatorname{deg} C$$

where:

 R_1 = electrical resistivity (Ohm-m) measured at temperature T_1 , and

 R_2 = corresponding electrical resistivity (Ohm-m) at temperature T_2 .

Conversion of Salt Concentration to Electrical Resistivity of Water Diluted with NaCl

$$R_{w} \approx \left(0.0123 + \frac{3647.5}{\left[NaCl_{ppm}\right]^{0.955}}\right) \left(\frac{81.77}{T + 6.77}\right)$$

where:

 R_{w} = Electrical resistivity of water in Ω m (Ohm-m), $NaCl_{ppm}$ = salt (NaCl) concentration of water in ppm, and T = temperature in ${}^{\circ}F$.

The error of the above equation is approximately 2% when the concentration of NaCl is between 500 and 100,000 ppm, and between 2-10% when the concentration of NaCl is between 100,000 and 230,000 ppm.

It follows that

$$\left\{ \frac{3.562 - \log_{10} \left[\left(\frac{T + 6.77}{81.77} \right) \cdot R_w - 0.0123 \right]}{0.955} \right\}$$

$$\left\lceil NaCl_{ppm} \right\rceil \approx 10^{-1}$$

Archie's Equation

$$R_{t} \approx R_{w} \left[\frac{a}{\phi^{m}} \right] \frac{1}{S_{w}^{n}}$$

where:

 R_{t} = electrical resistivity of a fluid-saturated porous rock,

 R_{w} = electrical resistivity of the water contained in the rock's pore space,

 ϕ = interconnected porosity,

 S_w = water saturation,

a = Winsauer's multiplier,

m = porosity exponent, and

n =saturation exponent.

General Relationship between Bulk Density and Porosity

$$\rho_b = \phi \ \rho_f + (1 - \phi) \ \rho_m$$

where:

 ρ_b = bulk density of the rock (aka rock's density),

 $\rho_{\it f}$ = density of the fluid occupying the rock's pore space,

 ϕ = total porosity, and

 $\rho_{\scriptscriptstyle m}$ = density of the matrix (solid component) contained in the rock.

Alternatively, one can write

$$\phi = \frac{\rho_b - \rho_m}{\rho_f - \rho_m} = \frac{\rho_m - \rho_b}{\rho_m - \rho_f}.$$

Likewise,

$$\rho_f = \frac{1}{\phi} \left[\rho_b - (1 - \phi) \ \rho_m \right]$$

General Relationship between Bulk Density and Non-Shale (Sandstone) Porosity for the Case of Shaly Sands with Laminated Shale

$$\rho_{b} = (1 - C_{sh}) \rho_{s} + C_{sh} \rho_{sh}$$

where:

 ρ_b = bulk density of the rock (aka rock's density),

 C_{sh} = volumetric concentration of shale,

 $\rho_{\rm s}$ = sandstone density, and

 ρ_{sh} = shale density (includes shale porosity, silt, dry clay, and water).

Likewise,

$$\phi_t = (1 - C_{sh}) \phi_s + C_{sh} \phi_{sh}$$

where:

 ϕ_{t} = total rock porosity,

 C_{sh} = volumetric concentration of shale,

 ϕ_s = porosity of the sand fraction, and

 ϕ_{sh} = shale porosity.

It follows that

$$\phi_s = \frac{\phi_t - C_{sh} \ \phi_{sh}}{1 - C_{sh}}$$

General Relationship between Bulk Density and Non-Shale (Sandstone) Porosity for the Case of Shaly Sandstone with **Dispersed** (Grain-Coating) Shale

$$\rho_b = \phi_s \rho_f + (1 - \phi_s - C_{sh}) \rho_m + C_{sh} \rho_{sh}$$

where:

 ρ_b = bulk density of the rock (aka rock's density),

 $\rho_{\rm f}$ = density of the fluid occupying the rock's pore space,

 $\phi_{\rm s}$ = non-shale (sandstone) porosity,

 C_{sh} = volumetric concentration of shale,

 $\rho_{\scriptscriptstyle m}$ = grain density (for reference, density of quartz = 2.65 gm/cm³), and

 $ho_{\rm sh}$ = shale density (includes shale porosity, silt, dry clay, and water).

Alternatively, one can write

$$\phi_s = \frac{\rho_m - \rho_b}{\rho_m - \rho_f} - C_{sh} \frac{\rho_m - \rho_{sh}}{\rho_m - \rho_f}.$$

Likewise,

$$\rho_{f} = \frac{1}{\phi_{s}} \left[\rho_{b} - (1 - \phi_{s} - C_{sh}) \rho_{m} - C_{sh} \rho_{sh} \right]$$

Additionally,

$$\phi_T = \phi_s + C_{sh} \phi_{sh},$$

where:

 ϕ_T = total porosity,

 ϕ_{sh} = shale porosity, and

 ϕ_s = sandstone (non-shale) porosity.

Fluid Density and Saturations

For the case of water and hydrocarbon, one has

$$\rho_f = S_w \rho_w + (1 - S_w) \rho_H$$

where:

 ρ_f = density of the fluid occupying the rock's pore space,

 ρ_{w} = density of water (depends on salt concentration),

 $\rho_{\scriptscriptstyle H}$ = density of hydrocarbon, and

 S_{w} = water saturation.

It follows that

$$\rho_H = \frac{\rho_f - S_w \rho_w}{1 - S_w}$$

For the case of water, gas, and oil, one has

$$\rho_f = S_w \rho_w + S_o \rho_o + (1 - S_w - S_o) \rho_g$$

where:

 $\rho_{\it f}$ = density of the fluid occupying the rock's pore space,

 ρ_{w} = density of water (depends on salt concentration),

 ρ_o = density of oil,

 $\rho_{\scriptscriptstyle g}$ = density of gas,

 $S_{_{\scriptscriptstyle{W}}}$ = water saturation, and

 S_a = oil saturation.

Density-Neutron Porosity Corrections for Shaly Sandstone (case of laminated shale)

$$\phi_D^{\odot} = \frac{\phi_D - C_{sh} \ \phi_{D,sh}}{1 - C_{sh}},$$

where:

 ϕ_{D} = density (apparent) porosity expressed in water-filled <u>sandstone</u> porosity units, $\phi_{D,sh}$ = density (apparent) porosity of "pure shale" expressed in water-filled <u>sandstone</u> porosity units,

 C_{sh} = volumetric concentration of shale, and

 ϕ_D^{\odot} = shale-corrected density porosity expressed in water-filled <u>sandstone</u> porosity units.

$$\phi_N^{\odot} = \frac{\phi_N - C_{sh} \, \phi_{N,sh}}{1 - C_{sh}},$$

where:

 ϕ_N = neutron (apparent) porosity expressed in water-filled <u>sandstone</u> porosity units, $\phi_{N,sh}$ = neutron (apparent) porosity of "pure shale" expressed in water-filled <u>sandstone</u> porosity units,

 C_{sh} = volumetric concentration of shale, and

 ϕ_N^{\odot} = shale-corrected neutron porosity expressed in water-filled <u>sandstone</u> porosity units.

It follows that

$$\phi_s \approx \sqrt{\frac{\left(\phi_D^{\odot}\right)^2 + \left(\phi_N^{\odot}\right)^2}{2}}$$

where:

 ϕ_s = sandstone porosity.

Density-Neutron Porosity Corrections for Shaly Sandstone (case of dispersed shale)

$$\phi_D^{\odot} = \phi_D - C_{sh} \phi_{D,sh},$$

where:

 ϕ_D = density (apparent) porosity expressed in water-filled <u>sandstone</u> porosity units, $\phi_{D,sh}$ = density (apparent) porosity of "pure shale" expressed in water-filled <u>sandstone</u> porosity units,

 C_{sh} = volumetric concentration of shale (by definition, lower than non-shale porosity in this case), and

 ϕ_D^{\odot} = shale-corrected density porosity expressed in water-filled <u>sandstone</u> porosity units.

$$\phi_N^{\odot} = \phi_N - C_{sh} \, \phi_{N \, sh} \,,$$

where:

 ϕ_N = neutron (apparent) porosity expressed in water-filled <u>sandstone</u> porosity units, $\phi_{N,sh}$ = neutron (apparent) porosity of "pure shale" expressed in water-filled <u>sandstone</u> porosity units,

 $C_{\it sh}$ = volumetric concentration of shale (by definition, lower than non-shale porosity in this case), and

 ϕ_N° = shale-corrected neutron porosity expressed in water-filled <u>sandstone</u> porosity units.

It follows that

$$\phi_s \approx \sqrt{\frac{\left(\phi_D^{\odot}\right)^2 + \left(\phi_N^{\odot}\right)^2}{2}}$$

where:

 ϕ_s = non-shale (sandstone) porosity.

<u>Density-Neutron Calculation of Volumetric Concentration of Shale in a Water-Bearing</u> Sandstone

$$C_{sh} = \frac{\phi_N - \phi_D}{\phi_{N,sh} - \phi_{D,sh}},$$

where:

 C_{sh} = volumetric concentration of shale,

 ϕ_D = density (apparent) porosity expressed in water-filled <u>sandstone</u> porosity units, $\phi_{D,sh}$ = density (apparent) porosity of "pure shale" expressed in water-filled <u>sandstone</u> porosity units,

 ϕ_N = neutron (apparent) porosity expressed in water-filled <u>sandstone</u> porosity units, and $\phi_{N,sh}$ = neutron (apparent) porosity of "pure shale" expressed in water-filled <u>sandstone</u> porosity units.

Relationship Between Rock Resistivity and Sandstone Resistivity in Laminated Shale-Sandstone Systems (Case of Isotropic Sandstone and Shale)

$$\frac{1}{R_{\parallel}} = \frac{1 - C_{sh}}{R_{s}} + \frac{C_{sh}}{R_{sh}}$$

where:

 C_{sh} = volumetric concentration of shale,

 R_{\parallel} = electrical resistivity of the rock parallel to bedding plane,

 R_s = electrical resistivity of the sandstone fraction of the rock, and

 R_{sh} = electrical resistivity of the shale fraction of the rock.

$$R_{\perp} = \left(1 - C_{sh}\right) R_s + C_{sh} R_{sh}$$

where:

 R_{\perp} = electrical resistivity of the rock perpendicular to bedding plane.

Wyllie's Relationship and Sonic Porosity

$$\Delta t_b \approx \phi_{sonic} \ \Delta t_f + (1 - \phi_{sonic}) \ \Delta t_m$$

where:

 Δt_b = bulk sonic slowness (aka rock's sonic slowness) [μ s/ft],

 Δt_f = sonic slowness of the fluid occupying the rock's pore space [μ s/ft],

 ϕ_{sonic} = sonic porosity (aka Wyllie's porosity), and

 Δt_m = sonic slowness of the matrix (solid component) contained in the rock [μ s/ft].

Alternatively,

$$\phi_{sonic} = \frac{\Delta t_b - \Delta t_m}{\Delta t_f - \Delta t_m} .$$

Timur-Tixier Equation

$$k pprox \alpha \phi^{\beta} \left(\frac{1 - S_{wirr}}{S_{wirr}} \right)^{\gamma}$$

where:

k = permeability,

 ϕ = total porosity, and

 S_{wirr} = irreducible water saturation.

Electrical Resistivity of Dispersed (Grain-Coating Clay) Shaly Sandstone

$$\frac{1}{R_t} \approx \frac{1}{R_w} \left[1 + B R_w \frac{S_b}{S_w} \right] \left[\frac{\phi^{m^*}}{a^*} \right] S_w^{n^*},$$

where:

$$S_b = C_{sh} \frac{\phi_{sh}}{\phi}$$
,

$$B = \frac{-5.41 + 0.133 \ T - 0.0001253 \ T^2}{1 + R_{\odot}^{1.23}(0.025 \ T - 1.07)},$$

and

 R_t = electrical resistivity of the sandstone with grain-coating clay,

 R_{w} = electrical resistivity of the water contained in the rock's pore space,

 ϕ = interconnected porosity,

 ϕ_{sh} = shale porosity,

 C_{sh} = volumetric concentration of shale ($C_{\mathit{sh}} < \phi$),

 S_{w} = water saturation,

 a^* = modified Winsauer's multiplier,

 m^* = modified porosity exponent,

 n^* = modified saturation exponent, and

T = temperature in ${}^{\circ}F$.