Olimpiada Națională de Matematică Etapa Județeană și a Municipiului București, 8 Martie 2014

CLASA a VIII-a

SOLUŢII ŞI BAREME ORIENTATIVE

Problema 1. În paralelipipedul dreptunghic ABCDA'B'C'D' cu $AB = 12\sqrt{3}$ cm și AA' = 18 cm, se consideră punctele $P \in [AA']$ și $N \in [A'B']$ astfel încât A'N = 3B'N.

Determinați lungimea segmentului [AP] astfel încât, pentru orice punct $M \in [BC]$, triunghiul MNP să fie dreptunghic în N.

Gazeta Matematică

Problema 2. Pentru fiecare număr natural nenul n se notează cu p(n) cel mai mare pătrat perfect cel mult egal cu n.

a) Determinați numărul perechilor de numere naturale nenul
e $(m,n)\,,$ cu $m\leq n,$ pentru care

$$p(2m+1) \cdot p(2n+1) = 400.$$

b) Determinați mulțimea
$$\left\{n \in \mathbb{N}^* \left| n \le 100 \text{ și } \frac{p(n+1)}{p(n)} \notin \mathbb{N} \right.\right\}$$
.

Soluţie. a) Sunt posibile trei cazuri:

 $(k+1)^2$, adică $n=(k+1)^2-1$, $k\in\mathbb{N}$, $k\geq 2$. Cum $n\leq 100$, rezultă $k\leq 9$.

Mulțimea cerută este $\{8, 15, 24, 35, 48, 63, 80, 99\}$

Problema 3. In vârful A al hexagonului regulat ABCDEF de latură ase ridică perpendiculara $AS = 2a\sqrt{3}$ pe planul hexagonului. Punctele M, N, P, Q, respectiv R sunt projectiile punctului A pe dreptele SB, SC, SD, SE, respectiv SF.

- a) Demonstrați că punctele M, N, P, Q, R sunt coplanare.
- b) Determinați măsura unghiului format de planele (MNP) și (ABC).

Soluție. a) Cu teorema celor trei perpendiculare, din $SA \perp (ABC)$ și $AB \perp BD$, rezultă $SB \perp BD$. Intrucât $BD \perp AB$ și $BD \perp SB$, obținem

Deoarece $AM \perp SB$, rezultă $AM \perp (SBD)$, deci $AM \perp SD$. De aici,

Analog, se arată că $SD \perp (ARP)$, $SD \perp (ANP)$ și $SD \perp (AQP)$. Din unicitatea planului perpendicular pe o dreaptă într-un punct, rezultă că

b) Folosind eventual faptul că $MR \parallel BF$, se arată că dreapta de intersecție a planelor (MNP) și (ABC) este paralela d dusă prin A la BF **1p**

Cum $d \perp SA$ și $d \perp AD$, rezultă $d \perp (SAD)$, deci $d \perp AP$. Ca urmare, măsura unghiului format de planele (MNP) și (ABC) este egală cu măsura

Folosind teorema lui Pitagora, se obține SD = 4a, de unde rezultă $m(PDA) = 60^{\circ} \text{ si } m(PAD) = 30^{\circ} \dots 1$

Problema 4. Fie $n \geq 2$ un număr natural. Determinați mulțimea valorilor pe care le poate lua suma

$$S = [x_2 - x_1] + [x_3 - x_2] + \ldots + [x_n - x_{n-1}],$$

unde $x_1, x_2, ..., x_n$ sunt numere reale cu partea întreagă 1, 2, ..., n.

Soluţie. Fie $a, b \in \mathbb{R}$. Atunci $[a] \le a < [a] + 1$, de unde $-[a] - 1 < -a \le a$ -[a]. Adunând cu [b] < b < [b] + 1, rezultă

$$[b] - [a] - 1 < b - a < [b] - [a] + 1, \\$$

de unde se obţine $[b] - [a] - 1 \le [b - a] \le [b] - [a]$ 2p

Atunci $[x_k] - [x_{k-1}] - 1 \le [x_k - x_{k-1}] \le [x_k] - [x_{k-1}], \text{ de unde } 0 \le$ $[x_k - x_{k-1}] \le 1$, pentru orice k = 2, 3, ..., n. Ca urmare, $0 \le S \le n - 1$. **2p**

Vom arăta că mulțimea valorilor pe care le poate lua S este $\{0, 1, 2, ..., n-1\}$.

Valoarea maximă S = n - 1 se obține, de exemplu, pentru $x_k = k$,

Suma
$$S = p$$
, unde $0 \le p \le n - 2$, se obţine, de exemplu, pentru:
$$x_k = \begin{cases} k + \frac{1}{k+1}, & \text{dacă } 1 \le k \le n - 1 - p \\ k, & \text{dacă } n - p \le k \le n \end{cases}$$
2p