Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа М3112	К работе допущен		
Студент Баатарцогт Анужин	Работа выполнена		
Преподаватель Мейлахс Александр Павлович	Отчет принят		
Рабочий про	токол и отчет по		
лабораторно	й работе №1.04V		

1. Цель работы.

Проверка основного закона динамики вращения. Проверка зависимости момента инерции от положения масс относительно оси вращения

2. Задачи, решаемые при выполнении работы.

Измерение времени падения каретки с шайбами.

3. Объект исследования.

Маятник Обербека.

4. Метод экспериментального исследования.

Измерение времени падения каретки при изменении массы каретки и изменении положения утяжелителей.

5. Измерительные приборы.

№ n/n	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Цифровой секундомер			0,01

6. Рабочие формулы и исходные данные.

Constant:

 $d = (46.0 \pm 0.5)$ мм; масса $m_{\rm yr}$ каждого из грузов-утяжелителей на крестовине; сумма I_0 моментов инерции стержней крестовины, момента инерции ступицы и собственных центральных моментов инерции утяжелителей; момент $M_{\rm TP}$ силы трения в оси крестовины.

Range for R and m_w:

расстояние R от оси вращения крестовины до центров грузов-утяжелителей вычислять не нужно — оно задается непосредственно, обычно, не меньше пяти значений в диапазоне $0.07 m \dots 0.23 m$;

значения массы m_{Γ} подвешенного груза устанавливаются экспериментатором, обычно, не меньше четырех значений в диапазоне $0.1 \kappa z ... 0.9 \kappa z$;

Formula:

$$a = \frac{2h}{t^2}, \quad \varepsilon = \frac{2a}{d}, \qquad M = \frac{md}{2}(g - a). \quad I\varepsilon = M - M_{\text{Tp}}. I = I_0 + 4m_{\text{yr}}R^2,$$

$$ma = mg - T. \quad R = I_1 + (n-1)I_0 + \frac{1}{2}b.$$

$$\overline{x} = \frac{x_1 + \ldots + x_i + \ldots + x_n}{n} = \frac{1}{n} \sum_{i=1}^n x_i . \quad S_{\overline{x}} = \sqrt{\frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n(n-1)}} . \quad \Delta_{\overline{x}} = t_{\alpha,n} S_{\overline{x}},$$

$$S_b^2 = \frac{1}{D} \frac{\sum d_i^2}{n-2}; \qquad S_a^2 = \left(\frac{1}{n} + \frac{\overline{x}^2}{D}\right) \frac{\sum d_i^2}{n-2}. \quad \Delta_a = 2S_a \quad \Delta_b = 2S_b$$

7. Схема установки (перечень схем, которые составляют Приложение 1). Механика - Лабораторная работа №2

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Протокол измерений времени падения груза при разной массе груза и разном положении утяжелителей на крестовине

Magaz FDV00 KE	ti o	Положение утяжелителей					
Масса груза, кг	ti, c	0.07	0.10	0.13	0.16	0.19	0.22
	t1	10.80	13.16	15.79	18.59	21.50	24.46
	t2	10.81	13.15	15.80	18.60	21.48	24.45
0.40	t3	10.81	13.17	15.79	18.60	21.49	24.45
0.10	t4	10.80	13.17	15.80	18.60	21.50	24.44
	t5	10.81	13.16	15.80	18.59	21.50	24.44
	tcp	10.81	13.16	15.80	18.60	21.49	24.45
0.30	t1	5.07	6.15	7.38	8.68	10.05	11.42

	t2	5.06	6.16	7.38	8.69	10.05	11.42
	t3	5.06	6.16	7.39	8.69	10.04	11.42
	t4	5.05	6.16	7.39	8.69	10.04	11.42
	t5	5.05	6.16	7.39	8.70	10.04	11.42
	tcp	5.06	6.16	7.39	8.69	10.04	11.42
	t1	3.80	4.62	5.53	6.52	7.52	8.56
	t2	3.81	4.63	5.53	6.53	7.53	8.56
0.50	t3	3.81	4.62	5.54	6.52	7.52	8.56
0.50	t4	3.80	4.62	5.54	6.51	7.52	8.55
	t5	3.80	4.63	5.54	6.51	7.53	8.56
	tcp	3.80	4.62	5.54	6.52	7.52	8.56
	t1	3.19	3.87	4.63	5.44	6.28	7.14
	t2	3.18	3.86	4.63	5.43	6.28	7.15
0.70	t3	3.18	3.86	4.64	5.44	6.27	7.15
0.70	t4	3.18	3.87	4.62	5.43	6.28	7.14
	t5	3.18	3.86	4.63	5.43	6.28	7.15
	tcp	3.18	3.86	4.63	5.43	6.28	7.15
	t1	2.79	3.39	4.06	4.77	5.51	6.25
	t2	2.79	3.39	4.06	4.78	5.50	6.25
0.00	t3	2.80	3.40	4.06	4.78	5.50	6.25
0.90	t4	2.80	3.39	4.05	4.77	5.50	6.25
	t5	2.80	3.39	4.06	4.76	5.50	6.26
	tcp	2.80	3.39	4.06	4.77	5.50	6.25

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

Вычисленные а, ерѕ, М.

				1 /			
		Ускорение а (м/с2)					
Масса груза, к	0.07	0.1	0.13	0.16	0.19	0.22	
0.1	0.01713	0.01154	0.00802	0.00578	0.00433	0.00335	
0.3	0.07818	0.05274	0.03666	0.02648	0.01983	0.01534	
0.5	0.13821	0.09354	0.06526	0.04708	0.03533	0.02731	
0.7	0.19753	0.13395	0.09330	0.06773	0.05074	0.03917	
0.9	0.25583	0.17383	0.12145	0.08783	0.06607	0.05117	

			l l				
		Угловое ускорение Е крестовины (рад/с2)					
Масса груза, кг	0.07	0.1	0.13	0.16	0.19	0.22	
0.1	0.74468	0.50195	0.34850	0.25146	0.18822	0.14548	
0.3	3.39895	2.29310	1.59398	1.15150	0.86196	0.66676	
0.5	6.00926	4.06693	2.83733	2.04679	1.53605	1.18729	
0.7	8.58819	5.82409	4.05639	2.94485	2.20627	1.70285	
0.9	11.12315	7.55771	5.28054	3.81857	2.87251	2.22466	

		Момент силы натяжение нити М (H м)				
Масса груза, кг	0.07	0.1	0.13	0.16	0.19	0.22
0.1	0.02250	0.02251	0.02252	0.02253	0.02253	0.02253
0.3	0.06708	0.06726	0.06737	0.06744	0.06748	0.06751
0.5	0.11111	0.11162	0.11195	0.11216	0.11229	0.11239
0.7	0.15460	0.15562	0.15628	0.15669	0.15696	0.15715
0.9	0.19756	0.19926	0.20035	0.20104	0.20149	0.20180

погрешности и соответствующие доверительные интервалы Для первых значений a, eps и ${\bf M}$

Погрешность t	
t avg	10.8
S	0.00548
Sα	0.00245
α	0.95
n	5
tαn	2.8
Δt сл	0.01
Δt	0.08
Δt avg	0.04
t	10.8+-0.04
t rel	0.33%

Π	Погрешность				
$\Delta \mathcal{E} = \operatorname{sqrt}$	$((d E/d a * \Delta a)^2)$				
3	0.74468				
a	0.01713				
Δd	0.0005				
Δa	0.00008				
Δε	0.06				
ε	ε +- 0.06				
ε rel	8%				

Погр	Погрешность момента силы М		
a	0.01713		
d	0.046		
m	0.1		
g	9.82		
Δa	0.00008		
Δd	0.0005		
Δm	0.15		
Δg	1.5		
M	0.022501		
ΔΜ	0.001155748		
M	0,044 +- 0,0012		

	Частные производные			
dm	0.033819902			
dd	0.000245072			
dg	0.00345			
da	-0.00000184			

Погрешность $\Delta a = \operatorname{sqrt} ((\operatorname{da} / \operatorname{dt} * \Delta t) ^ 2)$			
a	0.01713		
Δt avg	0.03591		
Δh	0.0001		
t avg	10.80		
Δa	0.00008		
a rel	0.47%		
a	a+-0.00008		

График Зависимость M(eps)

График M(eps)			
eps	M		
0.74468	0.0225006		
3.39895	0.0670806		
6.00926	0.1111106		
8.58819	0.1545998		
11.1232	0.1975643		
0.50195	0.0225134		
2.2931	0.0672561		
4.06693	0.1116243		
5.82409	0.1556233		
7.55771	0.1992618		
0.3485	0.0225216		
1.59398	0.067367		
2.83733	0.1119495		
4.05639	0.1562779		
5.28054	0.2003459		
0.25146	0.0225267		
1.1515	0.0674373		
2.04679	0.1121586		
2.94485	0.1566895		
3.81857	0.201042		
0.18822	0.02253		
0.86196	0.0674832		
1.53605	0.1122937		
2.20627	0.156963		
2.87251	0.2014924		
0.14548	0.0225323		
0.66676	0.0675142		
1.18729	0.112386		
1.70285	0.1571494		
2.22466	0.2018008		

Вычисленные момент инерции крестовины I и момент силы трения Мтр.

3	М	ļ	Мтр	
0.7447	0.0225			
3.3989	0.06708		0.00983	
6.0093	0.11111	0.01687		
8.5882	0.1546			
11.123	0.19756			
0.5019	0.02251		0.00985	
2.2931	0.06726			
4.0669	0.11162	0.02505		
5.8241	0.15562			
7.5577	0.19926			
0.3485	0.02252			
1.594	0.06737			
2.8373	0.11195	0.00007	0 00007	
4.0564	0.15628	0.03607	0.00987	
5.2805	0.20035			
0.2515	0.02253		0.00986	
1.1515	0.06744			
2.0468	0.11216	0.04999		
2.9448	0.15669			
3.8186	0.20104			
0.1882	0.02253			
0.862	0.06748		0.00998	
1.536	0.11229	0.06665		
2.2063	0.15696			
2.8725	0.20149			
0.1455	0.02253			
0.6668	0.06751			
1.1873	0.11239	0.08628 0.01000		
1.7028	0.15715			
2.2247	0.2018			

зависимость момента инерции крестовины с утяжелителями I от квадрата радиуса от центра крестовины до центров утяжелителей ${f R}.$

R	R^2	
0.07	0.0049	0.01687
0.10	0.0100	0.02505
0.13	0.0169	0.03607
0.16	0.0256	0.04999
0.19	0.0361	0.06665
0.22	0.0484	0.08628

Вычисленные коэффициенты Io и 4m зависимости $I(R^2) = I0 + 4mR^2$.

x cp = R^2 cp	y cp = I cp	xi - x	yi - y	(xi - x cp) * (yi - y	(xi - x
		ср	ср	cp)	cp)^2
0.02	0.05	-0.02	-0.03	0.000562	0.00
0.02	0.05	-0.01	-0.02	0.000297	0.00
0.02	0.05	-0.01	-0.01	0.000073	0.00
0.02	0.05	0.00	0.00	0.000006	0.00
0.02	0.05	0.01	0.02	0.000247	0.00
0.02	0.05	0.02	0.04	0.000977	0.00
la _ 4.aa	_ _ 10				

b = 4m ут a = 10 m ут 1.595116 0.0091 0.3988

11. Окончательные результаты.

12. Выводы и анализ результатов работы.

В ходе лабораторной работы, работая с маятником Обербека, мы подтвердили:

- 1. Линейную зависимость момента вращения от углового ускорения.
- 2. Угловой коэффициент = моментом инерции данного тела
- 3. Линейная зависимость инерции тела от расстояния весов до оси вращения.