ALGEBRAIC GEOMETRY

SWAYAM CHUBE

ABSTRACT. These are terse "notes" in algebraic geometry which I've made for fun. I don't intend for these to be useful to anyone but myself. These are mostly drawn from a combination of [Vak23] through self-teaching along with some discussions with other students. I do not prove all results and use quite a few blackboxes from commutative algebra. Most results can be found with proof in [AM69] or [Lan02] as I shall reference them throughout the text.

CONTENTS

1.	Sheaves	2
1.1.	The germ of a smooth function	2
1.2.	Presheaves	2
Ref	References	

2 SWAYAM CHUBE

1. Sheaves

1.1. **The germ of a smooth function.** Let X be a topological space and $p \in X$. We shall consider elements of C(X), the set (ring) of continuous functions from X to \mathbb{R} . Define the relation \sim on C(X) by $f \sim g$ if and only if there is a neighborhood U of p on which f = g. That this relation is an equivalence relation is not hard to show. The set of equivalence classes is denoted by \mathcal{O}_p . It is not hard to see that this has the structure of a ring with pointwise addition and multiplication, which is also well defined.

We contend that the ring \mathcal{O}_p is local. Indeed, consider the ideal \mathfrak{m}_p of all germs that vanish at p (that this is an ideal is trivial to check). Further, if $f \in \mathcal{O}_p \backslash \mathfrak{m}_p$, then there is a neighborhood U of p on which f is nonzero, whereby f is a unit in \mathcal{O}_p , implying the desired conclusion. The quotient ring is a field, \mathbb{R} .

1.2. Presheaves.

Definition 1.1 (Presheaf). Let X be a topological space and $\mathfrak{Top}(X)$ denote the poset category of all open sets in X along with inclusion maps. A *presheaf* on X is a contravariant functor \mathscr{F} from $\mathfrak{Top}(X)$ to **CRing**.

Definition 1.2 (Stalk). Define the *stalk* of a presheaf \mathscr{F} at a point $p \in X$ to be the colimit of the diagram induced by \mathscr{F} . The index category in this case, $\mathfrak{Top}^{op}(X)$ is a filtered category since given any two open sets, there is an open set contained in both.

If $p \in U$ and $f \in \mathcal{F}(U)$, then the image of f in \mathcal{F}_p is called the *germ of* f *at* p.

Definition 1.3 (Sheaf). A present \mathscr{F} is a *sheaf* if it satisfies the following two axioms.

Gluability axiom.: If $\{U_i\}_{i\in I}$ is an open cover of U, then given $f_i \in \mathscr{F}(U_i)$ for all $i \in I$ such that $f_i|_{U_i \cap U_j} = f_i|_{U_i \cap U_i}$ for all $i, j \in I$, then there is some $f \in \mathscr{F}(U)$ such that $\rho_{U_i \cup U_i}(f) = f_i$ for all $i \in I$.

Identity axiom.: If $\{U_i\}_{i\in I}$ is an open cover of U and $f_1, f_2 \in \mathscr{F}(U)$, and $f_1|_{U_i} = f_2|_{U_i}$ for all $i \in I$, then $f_1 = f_2$.

A presheaf satisfying the identity axiom is called a *separated presheaf*.

Definition 1.4 (Morphisms). A morphism of presheaves $\mathscr{F},\mathscr{G}:\mathfrak{Top}(X)^{\mathrm{op}}\to\mathbf{CRing}$ is a natural transformation between the functors \mathscr{F} and \mathscr{G} , that is, a collection $\{\phi(U)\}$ of maps for each $U\in\mathfrak{Top}(X)$ such that for each $U\hookrightarrow V$, the diagram

$$\mathcal{F}(V) \xrightarrow{\rho_{V,U}} \mathcal{F}(U)
\phi(V) \downarrow \qquad \qquad \downarrow \phi(U)
\mathcal{G}(V) \xrightarrow{\rho_{V,U}} \mathcal{G}(U)$$

commutes. Similarly, a *morphism of sheaves* is simply a morphism of presheaves between sheaves, since the category of sheaves on *X* is a full subcategory of the category of presheaves on *X*.

Proposition 1.5. Let $\pi: X \to Y$ be a continuous map and \mathscr{F} a presheaf on X. Define $\pi_*\mathscr{F}$ by

$$\pi_*\mathscr{F}(V) = \mathscr{F}(\pi^{-1}(V))$$

where $V \in \mathfrak{Top}(Y)$. Then, $\pi_* \mathscr{F}$ is a presheaf on X.

Proof. Straightforward, since π^{-1} is itself a functor from $\mathfrak{Top}(Y)$ to $\mathfrak{Top}(X)$ and the composition of a contravariant functor and a covariant functor is a contravariant functor.

Definition 1.6. Let $\pi: X \to Y$ be a continuous map of topological spaces and \mathscr{F} be a presheaf on X. Then, $\pi_*\mathscr{F}$ is called the *pushforward of* \mathscr{F} *by* π and is a presheaf on Y.

REFERENCES

- [AM69] Michael Atiyah and Ian MacDonald. Introduction to Commutative Algebra. CRC Press, 1969.
 [Lan02] Serge Lang. Algebra. Springer Science & Business Media, 2002.
 [Vak23] Ravi Vakil. The Rising Sea: Foundations of Algebraic Geometry. 2023.