Gröbner 基底

単項式順序

K を体, $R=K[X_1,...,X_n]$ を K-上 n 変数多項式環とする. R の単項式全体の集合を \mathcal{M}_R とおく. \mathcal{M}_R は乗法に関して可換モノイドをなす.

定義1単項式順序

多項式環 R の **単項式順序** (monomial order) とは, \mathcal{M}_R 上の全順序 \preccurlyeq であって,任意の $\mu,\mu',\nu\in\mathcal{M}_R$ に対して以下を満たすもののことである:

- 1. $1 \preccurlyeq \mu$;
- 2. $\mu \preccurlyeq \mu' \Longrightarrow \mu \cdot \nu \preccurlyeq \mu' \cdot \nu$.

命題1

任意の単項式順序は整礎である.

証明

略.

先頭イデアル

以下,多項式環Rの単項式順序 \preccurlyeq を固定する.

定義 2

多項式 $f \in R$ を

$$f = \sum_{\mu \in \mathcal{M}_R} c_\mu \cdot \mu$$

と表すとき, $c_{\mu} \neq 0$ となる $\mu \in \mathcal{M}_R$ 全体の集合を

$$\operatorname{supp}_R f := \left\{ \mu \in \mathcal{M}_R \mid c_u \neq 0 \right\}$$

と書き、f の **台** (support) と呼ぶ。 多項式の台は有限集合であることに注意する。f の台の、 \preccurlyeq に関する最大元 μ を \preccurlyeq に関する f の **先頭項係数** (initial monomial) と呼び、 $in_{\preccurlyeq}f$ と書く。 c_{μ} を \preccurlyeq に関する f の **先頭項係数** (initial coefficient)、 $c_{\mu} \cdot \mu$ を \preccurlyeq に関する f の **先頭項** (initial term) と呼び、それぞれ $inic_{\preccurlyeq}f$ 、 $init_{\preccurlyeq}f$ と書く。

定義3

多項式環 R のイデアル I に対し、イデアル

$$\operatorname{in}_{\preccurlyeq} I := \langle \operatorname{in}_{\preccurlyeq} f \mid f \in I \rangle$$

を I の **先頭イデアル** (initial ideal) と呼ぶ.

注意

 $f_1,...,f_n\in I$ が I を生成するとき, $\mathrm{in}_{\preccurlyeq}f_1,...,\mathrm{in}_{\preccurlyeq}f_n\in\mathrm{in}_{\preccurlyeq}I$ は $\mathrm{in}_{\preccurlyeq}I$ を生成するとは限らない.

定義 4

R のイデアル I の生成元 $f_1,...,f_n\in I$ が I の $Gr\"{o}bner$ 基底 であるとは,先頭単項式 $\operatorname{in}_{\preccurlyeq}f_1,...,\operatorname{in}_{\preccurlyeq}f_n\in\operatorname{in}_{\preccurlyeq}I$ が先頭イデアル $\operatorname{in}_{\preccurlyeq}I$ を生成することをいう.