Pretrained Transformers for Text Ranking: BERT and Beyond

Andrew Yates, Rodrigo Nogueira, and Jimmy Lin

@andrewyates

@rodrigfnogueira

@lintool

Based on the survey:

Pretrained Transformers for Text Ranking: BERT and Beyond

by Jimmy Lin, Rodrigo Nogueira, and Andrew Yates https://arxiv.org/abs/2010.06467

<u>Tutorial organization</u>:

- Recorded tutorial
- Live sessions: hands-on component and Q&A

Outline

- Part 1: Background (text ranking, IR, ML)
- Part 2: Ranking with relevance classification
- Part 3: Ranking with dense representations
- Part 4: Conclusion & future directions

Text Ranking

Text ranking problems
Transformers

Definition

Given: a piece of text

(keywords, question, news article, ...)

other pieces of text Rank:

(passages, documents, queries, ...)

Ordered by: their similarity

e.g., Web search

Focus: Ad hoc Retrieval

Given: query q

collection of texts

a ranked list of k texts d₁ ... d_k Return:

Maximizing: a metric of interest

metric: 0.66

Other Problems: Question Answering

Approach:

- Rank passages
- Rank answer spans

Question

What causes precipitation to fall?

Passage Sentence

In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravity.

Answer Candidate

gravity

Source: SQuAD

Other Problems: Community Question Answering

New question: What is the longest airline flight?

Related Questions What is the longest a

What is the longest airline flight physically possible? Not flying around...

Once aircraft range is maxed out, what will eventually be the longest non-stop...

What is the longest commercial flight?

What is the world's shortest daily airline flight?

What is the longest airline flight you have been on? Where were you going?

What's the longest flight from New York?

Other Problems: Text Recommendation

NEWS

ASTRONOMY

Andromeda's and the Milky Way's black holes will collide. Here's how it may play out

Supermassive black holes will merge less than 17 million years after galaxy merger

By Sid Perkins

MARCH 5, 2021 AT 8:00 AM

The supermassive black holes at the centers of the Milky Way and Andromeda galaxies are doomed to engulf each other in an ill-fated cosmological dance.

Source: Science News

Supermassive black hole gets kicked to the galactic curb By Ashley Yeager • March 28, 2017

A newfound black hole in the Milky Way is weirdly heavy By Christopher Crockett • November 27, 2019

Big black holes can settle in the outskirts of small galaxies
By Lisa Grossman • May 23, 2019

Focus: Content-based Similarity

Agreement between query and a piece of text

Transformers

Pretrained Transformers

Machine Learning Background

Learning to rank
Deep learning for ranking
BERT

Machine Learning Background

Learning to rank
Deep learning for ranking
BERT

A Simple Search Engine

Learning to Rank (> 1990)

- Supervised machine learning techniques
- Typically based on hand-crafted features:
 - Content (e.g. term frequencies, document lengths)
 - Meta-data (e.g.: PageRank scores)
- RankNet (Burges et al., 2005): a neural net
 - Different from DL models because they require hand-crafted features

Gained popularity with user click data (Burges., 2010)

Machine Learning Background

Learning to rank **Deep learning for ranking**BERT

Neural Ranking Models (> 2016)

We will revisit these architectures in Dense Retrieval Section

Representation-based

Interaction-based

Popular Neural Ranking Models

- DESM (Nalisnick et al., 2016)
- MatchPyramid (Pang et al., 2016)
- <u>DUET (Mitra et al., 2017)</u>
- PACRR (Hui et al., 2017)
- Co-PACRR (Hui et al., 2018)
- ConvKNRM (Dai et al., 2018)
- Query Expansion w/ Embeddings
 - (Diaz et al., 2016, Roy et al., 2016)
-
- Check Mitra and Craswell, (2017) for an excellent survey of these methods

Microsoft

Siding window

Word-s-gram layer

May-pooling layer s

Semantic matrix IV,

Semartic layer y

Machine Learning Background

Learning to rank
Deep learning for ranking
BERT

Progress in Information Retrieval - Robust04

Source: Yang et al., (2019)

Adoption by Commercial Search Engines

Google Search

We're making a significant improvement to how we understand queries, representing the biggest leap forward in the past five years, and one of the biggest leaps forward in the history of Search.

MS Bing

Starting from April of this year (2019), we used large transformer models to deliver the largest quality improvements to our Bing customers in the past year.

source <u>source</u>

What is BERT?

Self-supervised: ∞ training data

What is BERT?

Self-supervised: ∞ training data

Supervised: (few) labeled examples

BERT's Pretraining Ingredients

Lots of texts

Cloud TPU v3 420 teraflops 128 GB HBM

100+ petaflops 32 TB HBM

Lots of Compute

BERT

string →
sequence of
vectors

String

The bank makes loans to clients.

Pretraining - Masked Language Modeling

Loss = -log(P("to" | masked input))

BERT for Relevance Classification

(aka monoBERT)

monoBERT: BERT reranker

We want:

 $s_i = P(Relevant = 1|q, d_i)$

Training monoBERT

Loss:
$$L = -\sum_{j \in J_{\mathrm{pos}}} \log(s_j) - \sum_{j \in J_{\mathrm{neg}}} \log(1-s_j)$$

Once monoBERT is trained...

TREC 2019 - Deep Learning Track - Passage

	nDCG@10	MAP	Recall@1k
BM25	0.506	0.377	0.739
+ monoBERT	0.738	0.506	0.739
BM25 + RM3	0.518	0.427	0.788
+ monoBERT	0.742	0.529	0.788

How useful is the BM25 signal?

monoBERT Effectiveness with Reranking Depth on MS MARCO Passage

$$s_i \stackrel{\Delta}{=} \alpha \cdot \hat{s}_{\text{BM25}} + (1 - \alpha) \cdot s_{\text{BERT}}$$

$$\hat{s}_{\text{BM25}} = \frac{s_{\text{BM25}} - s_{\text{min}}}{s_{\text{max}} - s_{\text{min}}}$$

monoBERT Effectiveness with BM25 Interpolation on MS MARCO Passage

Recap: Pre-BERT vs. monoBERT

Part 2: Ranking with Relevance Classification

BERT's Limitations

Cannot input entire documents

- what do we input?
- & how do we label it?

need separate embedding for every possible position

→ restricted to indices 0-511

BERT's Limitations

computationally expensive layers

→ e.g., 110+ million learned weights

(later: Beyond BERT & Dense Representations)

Multi-stage ranking pipeline

- Identify candidate documents
- Rerank

From Passages to Documents

Handling Length Limitation: Training

Chunk documents

Transfer labels (approximation)

Handling Length Limitation: Inference

Aggregate Evidence

Approach #1: Score Aggregation

Over Passage Scores: BERT-MaxP, FirstP, SumP

Over Passage Scores: Results

		Robust04		
		nDCG@20		
Mode	Model		Description	
(1) (2) (3)	BOW SDM LTR	0.417 0.427 0.427	0.409 0.427 0.441	
(4a) (4b) (4c)	BERT–FirstP BERT–MaxP BERT–SumP	0.444 [†] 0.469 [†] 0.467 [†]	0.491 [†] 0.529 [†] 0.524 [†]	

Over Sentence Scores: Birch

$$s_f \stackrel{\Delta}{=} \alpha \cdot s_d + (1-\alpha) \cdot \sum_{\substack{\text{First-stage} \\ \text{retrieval score}}}^{N} w_i \cdot s_i$$

- Trained on sentence-level judgments like tweets
- Interpolation weights are tuned on target dataset

Over Sentence Scores: Results

		Robust04		
Method		MAP	nDCG@20	
(1)	BM25 + RM3	0.2903	0.4407	
(2a)	1S: BERT(MB)	0.3408 [†]	0.4900 [†]	
(2b) (2c)	2S: BERT(MB) 3S: BERT(MB)	0.3435 [†] 0.3434 [†]	0.4964^{\dagger} 0.4998^{\dagger}	
(3a) (3b) (3c)	1S: BERT(MS MARCO) 2S: BERT(MS MARCO) 3S: BERT(MS MARCO)	0.3028 [†] 0.3028 [†] 0.3028 [†]	0.4512 0.4512 0.4512	
(4a) (4b) (4c)	1S: BERT(MS MARCO \rightarrow MB) 2S: BERT(MS MARCO \rightarrow MB) 3S: BERT(MS MARCO \rightarrow MB)	0.3676 [†] 0.3697 [†] 0.3691 [†]	0.5239 [†] 0.5324 [†] 0.5325 [†]	

Approach #2: Representation Aggregation

Over Term Embeddings: CEDR

Over Term Embeddings: CEDR

Over Term Embeddings: Results

	Method	Input Representation	Robust04 nDCG@20
(1)	BM25	n/a	0.4140
(2)	Vanilla BERT	BERT (fine-tuned)	[B] 0.4541
(3a)	PACRR	GloVe	0.4043
(3b)	PACRR	BERT	0.4200
(3c)	PACRR	BERT (fine-tuned)	[BVG] 0.5135
(3d)	CEDR-PACRR	BERT (fine-tuned)	[BVG] 0.5150
(4a)	KNRM	GloVe	0.3871
(4b)	KNRM	BERT	[G] 0.4318
(4c)	KNRM	BERT (fine-tuned)	[BVG] 0.4858
(4d)	CEDR-KNRM	BERT (fine-tuned)	[BVGN] 0.5381
(5a)	DRMM	GloVe	0.3040
(5b)	DRMM	BERT	0.3194
(5c)	DRMM	BERT (fine-tuned)	[G] 0.4135
(5d)	CEDR-DRMM	BERT (fine-tuned)	[BVGN] 0.5259

Over Passage Representations: PARADE

Aggregation approaches: (increasing complexity)

- Average feature value
- Max feature value
- Attn-weighted average
- Two Transformer layers

Over Passage Representations: Results

		Robust04	
		nDCG@20	
Meth	od	Title Description	
(1)	BM25	0.4240	0.4058
(2)	BM25 + RM3	0.4407	0.4255
(3a)	Birch (MS)	0.4227	0.4053
(3b)	Birch (MS→MB)	0.5137	0.5069
(4)	BERT-MaxP (MS)	0.4931	0.5453
(5a)	PARADE Avg	0.4917^{\dagger}	$0.5324^{\dagger\ddagger}$
(5b)	PARADE _{Max}	$0.5115^{\dagger\S}$	$0.5487^{\dagger\ddagger}$
(5c)	PARADE Attn	$0.5134^{\dagger\S}$	$0.5517^{\dagger\ddagger}$
(5d)	PARADE	0.5252 ^{†§}	0.5605 ^{†‡§}
(6)	PARADE (with BERT _{Large})	0.5243	-

Enlarge Passage Representations: Longformer, QDS

Longformer: sparse attention

QDS-Transformer: specialize to IR

		MS MARCO Doc	TREC 2019 DL Doc	
Method		MRR@10	nDCG@10	MAP
(1)	Birch (BM25+RM3)	-	0.640	0.328
(2) (3)	Sparse-Transformer Longformer-QA	0.328 0.326	0.634 0.627	0.257 0.255
(4)	QDS-Transformer	0.360	0.667	0.278

Multi-stage rerankers

why multi-stage? duoBERT

Multi-stage rerankers

why multi-stage? duoBERT

From Single to Multiple Rerankers

Why Multi-stage?

 Trade-off between effectiveness (quality of the ranked lists) and efficiency (retrieval latency)

Multi-stage Rerankers

why multi-stage? **duoBERT**

Multi-stage with duoBERT

Training duoBERT

Is doc d_i more relevant than doc d_i to the query q?

$$p_{i,j} = p(d_i > d_j | q)$$

Loss:

$$L_{\text{duo}} = -\sum_{i \in J_{\text{pos}}, j \in J_{\text{neg}}} \log(p_{i,j}) - \sum_{i \in J_{\text{neg}}, j \in J_{\text{pos}}} \log(1 - p_{i,j})$$

CLS

Query q

SEP

text d_i

SEP

text d_i

Inference with duoBERT

Takeaways of Multi-stage Rerankers

Advantage:

more tuning knobs → more flexibility in effectiveness/efficiency tradeoff space

Disadvantage:

more tuning knobs → more complexity

We are only starting exploring the design space for multi-stage reranking pipelines with Transformers