

Contrastive Masked Auto-Encoders Based Self-supervised

Hashing for 2D Image and 3D Point Cloud Cross-modal Retrieval

Rukai Wei^{¶1}, Heng Cui^{¶1}, Yu Liu^{*1}, Yufeng Hou¹, Yanzhao Xie², Ke Zhou¹
Huazhong University of Science and Technology ² Guangzhou University

¶ Contribute equally

* Corresponding author

Motivation

- Retrieving 3D point-cloud with 2D images (or vice versa) quickly is crucial in many real-world applications, like autonomous driving, augmented reality, and robotics.
- Cross-modal hashing is a good solution since it can convert high-dimensional multi-modal data into binary hash codes to achieve fast retrieval speed and low storage overhead.
- ☐ Challenges when applying hashing to 2D-3D cross-modal retrieval:
- The irregular and unordered data structure of point-cloud data makes it difficult to capture meaningful semantics effectively.
- The feature variation and semantic gap between 2D pixels and 3D coordinates prohibit the learning of accurate correspondence between two modalities.

The Proposed CMAH

- □ We propose CMAH, which is the first job that attempts to address the issue of self-supervised cross-modal hashing for images and point-cloud data. The key insight lies in harnessing the power of contrastive learning and masked autoencoders to capture global data relationships while also acquiring fine-grained cross-modal associations.
- ✓ In multi-modal contrastive learning, we contrast both full-full and masked-full pairs of the image and point-cloud data to achieve explicit modal alignment.
- ✓ In multi-modal fusion, we employ the co-attention mechanism to fuse fine-grained features from different modalities.
- ✓ In masked image/point cloud reconstruction, we reconstruct masked 2D patches and 3D coordinates, allowing the model to focus more on local semantics.

Visualization

- ✓ Learned hash codes show compactness for the same category and dispersion for different ones.
- ✓ Hash codes of images and point clouds with similar semantics can be closely grouped together.

Comparisons with SOTAs

	Task	Method	ShapeNetRender			ModelNet			ShapeNet-55		
	1001		16-bit	32-bit	64-bit	16-bit	32-bit	64-bit	16-bit	32-bit	64-bit
	I→P	DJSRH[5]	0.624	0.642	0.663	0.314	0.349	0.393	0.466	0.491	0.513
		DGCPN[1]	0.681	0.695	0.717	0.356	0.387	0.424	0.513	0.532	0.560
		ASSPH[9]	0.716	0.740	0.749	0.373	0.411	0.446	0.541	0.564	0.593
		CMAH	0.760	0.775	0.791	0.409	0.466	0.501	0.577	0.619	0.637
	P→I	DJSRH[5]	0.610	0.647	0.661	0.357	0.384	0.429	0.474	0.506	0.531
		DGCPN[1]	0.674	0.697	0.711	0.386	0.422	0.465	0.522	0.549	0.576
		ASSPH[9]	0.709	0.736	0.744	0.409	0.448	0.487	0.557	0.581	0.614
		CMAH	0.758	0.772	0.790	0.452	0.516	0.545	0.585	0.626	0.647

- ✓ CMAH outperforms ASSPH by 5.6%, 12.3%, and 7.4% on the three benchmarks for the $I \rightarrow P$ task at 64 bits. Similarly, for the $P \rightarrow I$ task, CMAH achieves improvements of 6.2%, 11.9%, and 5.4%, respectively.
- ✓ CMAH excels at retrieving more semantically similar and relevant results compared to others, irrespective of changes in the search radius.

Top@K

(d) $P \rightarrow I$ on ModelNet

Top@K

(c) $I \rightarrow P$ on ModelNet