## Univerza na Primorskem, FAMNIT: TOR I Študijsko leto 2017/2018

**Izpit** 23. januar 2018

Ime in priimek: \_\_\_\_\_ Študijski program: \_\_\_\_\_

VPISNA ŠT.:

Letnik: \_

| 1. Za naslednjo sestavljeno izjavo podajte pravilnostno tabelo, določite izbrano konjunktivno in disjunktivno obliko, ter narišite preklopno vezje, prirejeno tej izjavi.  | n izbr | ano   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|
| $(A \Rightarrow \neg (B \lor C)) \Leftrightarrow (A \land \neg B)$                                                                                                         |        |       |
| 2. Ali so nasledne logiče implikacija pravilne. Pokaži svojo delo.                                                                                                         |        |       |
| (a) $\neg A \land A \Rightarrow B$                                                                                                                                         |        |       |
| (b) $A \wedge (A \Leftrightarrow B) \Rightarrow B$                                                                                                                         |        |       |
| (c) $((A \Rightarrow B) \land (C \Rightarrow A)) \Rightarrow (C \Rightarrow B)$                                                                                            |        |       |
| (d) $(A \lor C \Rightarrow B \lor C) \Rightarrow (A \Rightarrow B)$                                                                                                        |        |       |
| 3. Za naslednji izjavi napišite njihovi negaciji.                                                                                                                          |        |       |
| (a) $(\forall a)(a < 0) \Rightarrow ((a = 0) \lor (a \ge 0))).$                                                                                                            |        |       |
| (b) $(\exists a)(a > 3 \land a \le 4)$ .                                                                                                                                   |        |       |
| (c) $(\forall a)(\exists b)((ab = 0) \land ((a \le 0) \lor (b \ne 0))).$                                                                                                   |        |       |
| 4. Zapiši kompozitum naslednih relaciji in praslike dane množice, Če je relacija funkcija potem je injektiva, surjektivna, bijektivna ali nič od tega.                     | pove   | j ali |
| a. $\mathcal{R}_1 = \{(1,2),(2,2),(3,4),(4,1),(5,3)\}, \mathcal{R}_2 = \{(1,4),(2,1),(3,2),(4,3)\}, f = \mathcal{R}_2 \circ \mathcal{R}_1 = ?, f^{-1}(\{1,2\}) = ?$        |        |       |
| b. $\mathcal{R}_1 = \{(1,2), (2,3), (3,4), (4,1)\}, \mathcal{R}_2 = \{(1,4), (2,3), (3,1), (4,2)\}, f = \mathcal{R}_2 \circ \mathcal{R}_1 =?, f^{-1}(\operatorname{Im} f)$ |        |       |
| c. $\mathcal{R}_1 = \{(1,2), (1,3), (2,2), (3,4), (4,4)\}, f = \mathcal{R}_1 \circ \mathcal{R}_1 =?, f^{-1}(2)$                                                            |        |       |
| d. $g: \mathbb{Z} \to \mathbb{Z}$ , $g(x) = (x^2 + x)^2$ , $f = g \circ g = ?$ , $f^{-1}(-1)$                                                                              |        |       |
| 5. Naj bosta A in B poljubni množici. Dokažite: $(A \cup B) \backslash B = A \backslash B$                                                                                 |        |       |
| <b>6.</b> Naj bo $f$ funkcija in naj bo $A = f^{-1}(\operatorname{Im} f)$ . Za vsako množico $U \subseteq A$ , dokažite: $U \subseteq f^{-1}(f(U))$                        |        |       |
| 7. Določite, ali so naslednje trditve pravilne ali nepravilne.                                                                                                             |        |       |
| (a) Če je <i>R</i> delno ureja <i>S</i> potem je <i>R</i> tranzitiven.                                                                                                     | DA     | NE    |
| (b) Če je $f$ funkcija potem $f(U \cup V) = f(U) \cup f(V)$ .                                                                                                              | DA     | NE    |
| (c) Če je $f$ injektivna funkcija in $g$ bijektivna potem je $g \circ f$ surjektivna                                                                                       | DA     | NE    |
| (d) Vsaka podmnožica mreže ima natanko en infimum.                                                                                                                         | DA     | NE    |
| (e) Če je antecedens tavtologija mora biti konsekvens protislovje.                                                                                                         | DA     | NE    |

8. Nariši Venn diagrame in označite nasledne množice

a. 
$$A \cap B \cap C \neq \emptyset$$
, označi  $(\overline{A \cup B}) \cup C$ 

b. 
$$\bar{A} \setminus (B \cup C) = \emptyset$$
, označi  $A \cap B$ 

c. 
$$(A \cup B) \cap (C \cup D) \subseteq A$$
, označi  $A \setminus D$ 

9. (a-c) Nariši interni diagram za nasledne kategorije

a. Kategorija C - Objekti: {a,b,c}, Preslikave: 
$$1_a$$
,  $1_b$ ,  $1_c$ ,  $f:a \to b$ ,  $g:a \to c$ , $h:b \to c$ ,

b. Kategorija 
$$D$$
 - Objekti: {a}, Preslikave:  $1_a$ 

c. Kategorija 
$$E$$
 - Objekti: {a,b,c,d}, Preslikave:  $1_a$ ,  $1_b$ ,  $1_c$ ,  $1_d$ ,  $f:a \to b$ ,  $g:b \to c$ , $h:c \to d$ ,

d. Definiraj 
$$F: C \to D$$
,  $\forall x \in Ob(C)$ ,  $F(x) = a$ . A je lahko  $F$  funktor?

e. Definiraj  $G: C \rightarrow E$ , je G lahko funktor če imamo spodne preslikave objektov

$$-G(a) = a$$

$$-G(b)=b$$

$$-G(c)=d$$

**10.** Koliko možnih funkcij,  $f:A\to B$  je med danim množicam, in koliko surjektivnih funkcij?

a. 
$$A = \{1, 2, 3, 4\}, B = \{2, 3, \dots, 11\}$$

b. 
$$A = \{1, 4, 5\}, B = \{1, 2\}$$

c. 
$$A = \{1, 2\}$$
,  $B = A$ 

**11.** Ali so nasledni diagrami mreže? Označi infimum in supremum danih množic in vse minimalne elemente.



**12.** 
$$A = \{1, 2, 3\}$$
 in  $S = \mathcal{P}(A)$ .

$$xRy \Leftrightarrow |x| = |y|$$

 $|\cdot|$  označi število elementov v množici. Ali je R ekvivalenňa relacije? Če je, naštej evkivalencne razrede, če pa ni pa razloži zakaj ni.