CS 473ug: Algorithms

Mahesh Viswanathan vmahesh@cs.uiuc.edu 3232 Siebel Center

University of Illinois, Urbana-Champaign

Spring 2008

Part I

Dynamic Programming: An Introduction

Weighted Interval Scheduling

- Input A set of jobs with start times, finish times and weights
 - Goal Schedule jobs so that total weight of jobs is maximized
 - Two jobs with overlapping intervals cannot both be scheduled!

Weighted Interval Scheduling

- Input A set of jobs with start times, finish times and weights
 - Goal Schedule jobs so that total weight of jobs is maximized
 - Two jobs with overlapping intervals cannot both be scheduled!

Interval Scheduling

Input A set of jobs with start and finish times to be scheduled on a resource; special case where all jobs have weight 1

Goal Schedule as many jobs as possible

Interval Scheduling

Input A set of jobs with start and finish times to be scheduled on a resource; special case where all jobs have weight 1

Goal Schedule as many jobs as possible

Interval Scheduling

Input A set of jobs with start and finish times to be scheduled on a resource; special case where all jobs have weight 1

Goal Schedule as many jobs as possible

Interval Scheduling

Input A set of jobs with start and finish times to be scheduled on a resource; special case where all jobs have weight 1

Goal Schedule as many jobs as possible

Interval Scheduling

Input A set of jobs with start and finish times to be scheduled on a resource; special case where all jobs have weight 1

Goal Schedule as many jobs as possible

Interval Scheduling

Input A set of jobs with start and finish times to be scheduled on a resource; special case where all jobs have weight 1

Goal Schedule as many jobs as possible

Interval Scheduling

Input A set of jobs with start and finish times to be scheduled on a resource; special case where all jobs have weight 1

Goal Schedule as many jobs as possible

Greedy Strategy for Weighted Interval Scheduling

- Pick jobs in order of finishing times
- Add job to schedule if it does not conflict with current schedule

Greedy Strategy for Weighted Interval Scheduling

- Pick jobs in order of finishing times
- Add job to schedule if it does not conflict with current schedule

Moral: Greedy strategies often don't work!

Conventions

Definition

Conventions

Definition

• Let the requests be sorted according to finish time, i.e., i < j implies $f_i \le f_j$

Conventions

Definition

- Let the requests be sorted according to finish time, i.e., i < j implies $f_i \le f_j$
- Define p(j) to be the largest i (less than j) such that job i
 and job j are not in conflict

Conventions

Definition

- Let the requests be sorted according to finish time, i.e., i < j
 implies f_i ≤ f_j
- Define p(j) to be the largest i (less than j) such that job i and job j are not in conflict

Example

Towards a Recursive Solution

Observation

Consider an optimal schedule ${\cal O}$

Case $n \in \mathcal{O}$ None of the jobs between n and p(n) can be scheduled. Moreover \mathcal{O} must contain an optimal schedule for the first p(n) jobs.

Case $n \notin \mathcal{O}$ \mathcal{O} is an optimal schedule for the first n-1 jobs!

A Recursive Algorithm

Let O_1 be optimal schedule for the first p(n) jobs, computed recursively

Let O_2 be optimal schedule for the first n-1 jobs, computed recursively

If $(O_1+v_n< O_2)$ then optimal schedule is O_2 else optimal schedule is $O_1\cup\{n\}$

A Recursive Algorithm

```
Let O_1 be optimal schedule for the first p(n) jobs, computed recursively

Let O_2 be optimal schedule for the first n-1 jobs, computed recursively

If (O_1+v_n< O_2) then optimal schedule is O_2 else optimal schedule is O_1\cup\{n\}
```

Time Analysis

Running time is T(n) = T(p(n)) + T(n-1) + O(1) which is . . .

Bad Example

Figure: Bad instance for recursive algorithm

Running time on this instance is

$$T(n) = T(n-1) + T(n-2) + O(1)$$

Bad Example

Figure: Bad instance for recursive algorithm

Running time on this instance is

$$T(n) = T(n-1) + T(n-2) + O(1) = \Theta(\phi^n)$$

where $\phi \approx 1.618$ is the golden ratio.

Analysis of the Problem

Figure: Label of node indicates size of sub-problem. Tree of sub-problems grows very quickly

Memo(r)ization

Observation

Memo(r)ization

Observation

• Number of different sub-problems in recursive algorithm is

Memo(r)ization

Observation |

• Number of different sub-problems in recursive algorithm is O(n)

Memo(r)ization

Observation

- Number of different sub-problems in recursive algorithm is O(n)
- Exponential time is due to recomputation of solutions to sub-problems

Memo(r)ization

Observation

- Number of different sub-problems in recursive algorithm is O(n)
- Exponential time is due to recomputation of solutions to sub-problems

Solution

Store optimal solution to different sub-problems, and perform recursive call only if not already computed.

Recursive Solution with Memoization

```
computeOpt(int j)
  if j = 0 then return 0
  if M[j] is defined then (* sub-problem already solved *)
     return M[j]
  if M[j] is not defined then
     M[j] = max(v<sub>j</sub> + computeOpt(p(j)), computeOpt(j-1))
     return M[j]
```

Time Analysis

 Each invocation, O(1) time plus: either return a computed value, or generate 2 recursive calls and fill one M[·]

Recursive Solution with Memoization

```
computeOpt(int j)
  if j = 0 then return 0
  if M[j] is defined then (* sub-problem already solved *)
     return M[j]
  if M[j] is not defined then
     M[j] = max(v<sub>j</sub> + computeOpt(p(j)), computeOpt(j-1))
     return M[j]
```

Time Analysis

- Each invocation, O(1) time plus: either return a computed value, or generate 2 recursive calls and fill one M[·]
- Initially no entry of M[] is filled

Recursive Solution with Memoization

```
computeOpt(int j)
  if j = 0 then return 0
  if M[j] is defined then (* sub-problem already solved *)
    return M[j]
  if M[j] is not defined then
    M[j] = max(v<sub>j</sub> + computeOpt(p(j)), computeOpt(j-1))
    return M[j]
```

Time Analysis

- Each invocation, O(1) time plus: either return a computed value, or generate 2 recursive calls and fill one M[·]
- Initially no entry of M[] is filled; at the end all entries of M[]
 are filled

Recursive Solution with Memoization

```
computeOpt(int j)
  if j = 0 then return 0
  if M[j] is defined then (* sub-problem already solved *)
    return M[j]
  if M[j] is not defined then
    M[j] = max(v<sub>j</sub> + computeOpt(p(j)), computeOpt(j-1))
    return M[j]
```

Time Analysis

- Each invocation, O(1) time plus: either return a computed value, or generate 2 recursive calls and fill one M[·]
- Initially no entry of M[] is filled; at the end all entries of M[] are filled
- So total time is O(n)

Automatic Memoization

Fact

Many functional languages (like LISP) automatically do memoization for recursive function calls!

Back to Weighted Interval Scheduling

Iterative Solution

```
M[0] = 0
for i = 1 to n
M[i] = max(v_i + M[p(i)], M[i-1])
```

Computing Solutions

 Memoization + Recursion/Iteration allows one to compute the optimal value. What about the actual schedule?

Computing Solutions

 Memoization + Recursion/Iteration allows one to compute the optimal value. What about the actual schedule?

```
 \begin{aligned} & M[0] = 0 \\ & S[0] \text{ is empty schedule} \\ & \text{for i = 1 to n} \\ & M[i] = \max(v_i + M[p(i)], M[i-1]) \\ & S[i] = v_i + M[p(i)] < M[i-1] ? S[i-1] : S[p(i)] U i \end{aligned}
```

Computing Solutions

 Memoization + Recursion/Iteration allows one to compute the optimal value. What about the actual schedule?

Computing Solutions

 Memoization + Recursion/Iteration allows one to compute the optimal value. What about the actual schedule?

• Naïvely updating S[] takes O(n) time

The Problem Greedy Solution Recursive Solution Dynamic Programmin Computing Solutions

Computing Solutions: First Attempt

 Memoization + Recursion/Iteration allows one to compute the optimal value. What about the actual schedule?

```
M[0] = 0

S[0] is empty schedule

for i = 1 to n

M[i] = \max(v_i + M[p(i)], M[i-1])

S[i] = v_i + M[p(i)] < M[i-1] ? S[i-1] : S[p(i)] U i
```

- Naïvely updating S[] takes O(n) time
- Total running time is $O(n^2)$

The Problem
Greedy Solution
Recursive Solution
Dynamic Programmir
Computing Solutions

Computing Implicit Solutions

Observation

Solution can be obtained from M[] in O(n) time, without any additional information

```
findSolution(int j)
   if (j=0) then return empty schedule
   if (v<sub>j</sub> + M[p(j)] > M[j-1]) then
      return findSolution(p(j)) U {j}
   else
      return findSolution(j-1)
```

Makes O(n) recursive calls, so findSolution runs in O(n) time.

Dynamic Programming = Recursion + Memoization

Dynamic Programming = Recursion + Memoization

Pattern

 $Dynamic\ Programming = Recursion + Memoization$

Patte<u>rn</u>

 Formulate problem recursively in terms of solutions to polynomially many sub-problems

Dynamic Programming = Recursion + Memoization

Pattern

- Formulate problem recursively in terms of solutions to polynomially many sub-problems
- Solve sub-problems bottom-up, storing optimal solutions

• Systematic study pioneered by Bellman in the 1950s

- Systematic study pioneered by Bellman in the 1950s
- Name formulated to avoid confrontation with Secretary of Defense

- Systematic study pioneered by Bellman in the 1950s
- Name formulated to avoid confrontation with Secretary of Defense
 - "It is impossible to use dynamic in a pejorative sense"

- Systematic study pioneered by Bellman in the 1950s
- Name formulated to avoid confrontation with Secretary of Defense
 - "It is impossible to use dynamic in a pejorative sense"
 - "... something not even a Congressman could object to"

Interpreting Data

Problem

Given a sequence of observations, find a line that best describes the data.

Interpreting Data

Problem

Given a sequence of observations, find a line that best describes the data.

Interpreting Data

Problem

Given a sequence of observations, find a line that best describes the data.

• For a sequence of data points $(x_1, y_1), (x_2, y_2), \dots (x_n, y_n)$ and a line v = ax + b, the

and a line
$$y = ax + b$$
, the squared error is

$$Error = \sum_{i=1}^{n} (y_i - ax_i - b)^2$$

Best Fit Line

Proposition

For a set of points $(x_1, y_2), (x_2, y_2), \dots (x_n, y_n)$ the best fit line is given by y = ax + b, where

$$a = \frac{n \sum_{i} x_{i} y_{i} - (\sum_{i} x_{i})(\sum_{i} y_{i})}{n \sum_{i} x_{i}^{2} - (\sum_{i} x_{i})^{2}}$$

$$b = \frac{\sum_{i} y_{i} - a \sum_{i} x_{i}}{n}$$

Best Fit Line The Problem Structure of Optimal Solutions Dynamic Programming Algorithm Computing the Segments

Best fit line

Best Fit Line The Problem Structure of Optimal Solutions Dynamic Programming Algorithm Computing the Segments

Best fit line

Best fit line segments

Figure: Points lie on two lines not one

Problem

Given a set of points $\mathbb{D} = \{p_1, p_2, \dots p_n\}$ $(p_i = (x_i, y_i))$, find a set of line segments such that $\operatorname{Error}(\mathbb{D})$ is minimized

Problem

Given a set of points $\mathbb{D} = \{p_1, p_2, \dots p_n\}$ $(p_i = (x_i, y_i))$, find a set of line segments such that $\operatorname{Error}(\mathbb{D})$ is minimized

Error Metric

What is $Error(\mathbb{D})$?

Problem

Given a set of points $\mathbb{D} = \{p_1, p_2, \dots p_n\}$ $(p_i = (x_i, y_i))$, find a set of line segments such that $\operatorname{Error}(\mathbb{D})$ is minimized

Error Metric

What is $\mathrm{Error}(\mathbb{D})$? Needs to balance "goodness of fit" and "as few lines as possible"

Problem

Given a set of points $\mathbb{D} = \{p_1, p_2, \dots p_n\}$ $(p_i = (x_i, y_i))$, find a set of line segments such that $\text{Error}(\mathbb{D})$ is minimized

Error Metric

What is $\mathrm{Error}(\mathbb{D})$? Needs to balance "goodness of fit" and "as few lines as possible"

Add the squared error of each line segment

Problem

Given a set of points $\mathbb{D} = \{p_1, p_2, \dots p_n\}$ $(p_i = (x_i, y_i))$, find a set of line segments such that $\text{Error}(\mathbb{D})$ is minimized

Error Metric

What is $\mathrm{Error}(\mathbb{D})$? Needs to balance "goodness of fit" and "as few lines as possible"

- Add the squared error of each line segment
- If L lines are used then add cL to the error

Best Fit Line
The Problem
Structure of Optimal Solutions
Dynamic Programming Algorithm
Computing the Segments

Partitioning and Line Segments

Observation

Partitioning and Line Segments

Observation

• Let the list of points $\mathbb{D} = \{p_1, p_2, \dots p_n\}$ be sorted according to the x-coordinate, i.e., $x_i < x_j$ for i < j

Partitioning and Line Segments

Observation

- Let the list of points $\mathbb{D} = \{p_1, p_2, \dots p_n\}$ be sorted according to the x-coordinate, i.e., $x_i < x_j$ for i < j
- A line segment must pass through a contiguous subset of $\mathbb D$ in the sorted order

Best Fit Line
The Problem
Structure of Optimal Solutions
Dynamic Programming Algorithn
Computing the Segments

Structure of Optimal Solution

Structure of Optimal Solution

• Suppose the last point $p_n = (x_n, y_n)$ is part of a segment that starts at $p_i = (x_i, y_i)$

Structure of Optimal Solution

- Suppose the last point $p_n = (x_n, y_n)$ is part of a segment that starts at $p_i = (x_i, y_i)$
- Then optimal solution is optimal solution for $\{p_1, \dots p_{i-1}\}$ plus (best) line through $\{p_i, \dots p_n\}$

Cost of Optimal Solution

- Suppose the last point p_n is part of a segment that starts at p_i
- If Opt(j) denotes the cost of the first j points and e(j, k) the error of the best line through points j to k then

$$\mathrm{Opt}(n) = e(i, n) + C + \mathrm{Opt}(i - 1)$$

Cost of Optimal Solution

- Suppose the last point p_n is part of a segment that starts at p_i
- If Opt(j) denotes the cost of the first j points and e(j, k) the error of the best line through points j to k then

$$\mathrm{Opt}(n) = e(i, n) + C + \mathrm{Opt}(i - 1)$$

• How do we find where the last segment ends?

Cost of Optimal Solution

- Suppose the last point p_n is part of a segment that starts at p_i
- If Opt(j) denotes the cost of the first j points and e(j, k) the error of the best line through points j to k then

$$\mathrm{Opt}(n) = e(i, n) + C + \mathrm{Opt}(i - 1)$$

 How do we find where the last segment ends? We find the i that minimizes the above equation!

```
let \{(x_1,y_1),\ldots(x_n,y_n)\} be list in sorted order M[0]=0 for all pairs (i,j) where i\leq j compute e(i,j) the least squares error for \{(x_i,y_i),\ldots(x_j,y_j)\} for j=1 to n M[j]=\min_{1\leq i\leq j}\;(e(i,j)+C+M[j-1])
```

Analysis

```
let \{(x_1,y_1),\ldots(x_n,y_n)\} be list in sorted order M[0]=0 for all pairs (i,j) where i\leq j compute e(i,j) the least squares error for \{(x_i,y_i),\ldots(x_j,y_j)\} for j=1 to n M[j]=\min_{1\leq i\leq j}\;(e(i,j)+C+M[j-1])
```

Analysis

• $O(n^2)$ values of e(i,j); each value takes O(n) time

```
let \{(x_1,y_1),\ldots(x_n,y_n)\} be list in sorted order M[0] = 0 for all pairs (i,j) where i \leq j compute e(i,j) the least squares error for \{(x_i,y_i),\ldots(x_j,y_j)\} for j=1 to n M[j] = \min_{1 \leq i \leq j} (e(i,j) + C + M[j-1])
```

Analysis

- $O(n^2)$ values of e(i,j); each value takes O(n) time
- Computing M[] after e(i,j) is $O(n^2)$

```
let \{(x_1,y_1),\ldots(x_n,y_n)\} be list in sorted order M[0]=0 for all pairs (i,j) where i\leq j compute e(i,j) the least squares error for \{(x_i,y_i),\ldots(x_j,y_j)\} for j=1 to n M[j]=\min_{1\leq i\leq j}\;(e(i,j)+C+M[j-1])
```

Analysis

- $O(n^2)$ values of e(i,j); each value takes O(n) time
- Computing M[] after e(i,j) is $O(n^2)$
- Total time $O(n^3) + O(n^2)$

Improving the Running Time

• Recall variance and covariance of a set of points $\{p_1, p_2, \dots p_n\}$, where $p_i = (x_i, y_i)$, is defined as follows

$$\sigma_x^2 = \frac{\sum_i x_i^2 - n\bar{x}^2}{n} \qquad \sigma_y^2 = \frac{\sum_i y_i^2 - n\bar{y}^2}{n}$$
$$\sigma_{x,y} = \frac{\sum_i x_i y_i - n\bar{x}\bar{y}}{n}$$

where \bar{x} and \bar{y} are the means of $\{x_i\}_{i=1}^n$ and $\{y_i\}_{i=1}^n$, respectively.

Improving the Running Time

• Recall variance and covariance of a set of points $\{p_1, p_2, \dots p_n\}$, where $p_i = (x_i, y_i)$, is defined as follows

$$\sigma_x^2 = \frac{\sum_i x_i^2 - n\bar{x}^2}{n} \qquad \sigma_y^2 = \frac{\sum_i y_i^2 - n\bar{y}^2}{n}$$
$$\sigma_{x,y} = \frac{\sum_i x_i y_i - n\bar{x}\bar{y}}{n}$$

where \bar{x} and \bar{y} are the means of $\{x_i\}_{i=1}^n$ and $\{y_i\}_{i=1}^n$, respectively.

The squared error of the best-fitting line can be expressed as

$$n(\sigma_y^2 - \frac{\sigma_{x,y}^2}{\sigma_x^2})$$

Improving the Running Time

• Recall variance and covariance of a set of points $\{p_1, p_2, \dots p_n\}$, where $p_i = (x_i, y_i)$, is defined as follows

$$\sigma_{x}^{2} = \frac{\sum_{i} x_{i}^{2} - n\bar{x}^{2}}{n} \qquad \sigma_{y}^{2} = \frac{\sum_{i} y_{i}^{2} - n\bar{y}^{2}}{n}$$
$$\sigma_{x,y} = \frac{\sum_{i} x_{i} y_{i} - n\bar{x}\bar{y}}{n}$$

where \bar{x} and \bar{y} are the means of $\{x_i\}_{i=1}^n$ and $\{y_i\}_{i=1}^n$, respectively.

The squared error of the best-fitting line can be expressed as

$$n(\sigma_y^2 - \frac{\sigma_{x,y}^2}{\sigma_x^2})$$

• The variance and covariance of $\{p_i, \dots p_{i+k+1}\}$ can be obtained from the variance and covariance of $\{p_i, \dots p_{i+k}\}$ using constantly many operations.

Best Fit Line
The Problem
Structure of Optimal Solutions
Dynamic Programming Algorithm
Computing the Segments

Faster Calculation of e(i, j)

Best Fit Line
The Problem
Structure of Optimal Solutions
Dynamic Programming Algorithm
Computing the Segments

Faster Calculation of e(i, j)

```
for all i varX[i,i] = x;
for all i varY[i,i] = y;
for all i covar[i,i] = 0
for k = 1 to n-1
    for i = 1 to n-k
        compute varX[i,i+k] from varX[i,i+k-1]
        compute varY[i,i+k] from varY[i,i+k-1]
        compute covar[i,i+k] from covar[i,i+k-1]
        compute e[i,i+k] from varX[i,i+k], covar[i,i+k]
```

Running Time $O(n^2)$

Best Fit Line
The Problem
Structure of Optimal Solutions
Dynamic Programming Algorithn
Computing the Segments

Computing the Segments

Recall M[j] stores the cost of the best way to partition $\{(x_1, y_1), \dots (x_j, y_j)\}$ into line segments

Best Fit Line
The Problem
Structure of Optimal Solutions
Dynamic Programming Algorithn
Computing the Segments

Computing the Segments

```
Recall M[j] stores the cost of the best way to partition \{(x_1, y_1), \ldots (x_j, y_j)\} into line segments

findSegments(int j)

if j = 0 then return empty sequence
else

find i such that (e(i,j) + C + M[i-1]) is minimized return findSegments(i-1) plus \{(x_i, y_i), \ldots (x_i, y_j)\}
```