[ECE30001] Deep Learning Applications

Support Vector Machines

Injung Kim
Handong Global University

Agenda

- Linear SVM
- Kernel SVM
- SVM in scikit-learn

Support Vector Machines

- Search for the boundary that separates classes with maximum margin
 - Linear SVM
 - C-SVM (SVM with soft margin)
 - Nonlinear SVM (SVM with kernel)

Linear SVM

- Search for $W^* = argmin_W |W|_2^2$ s.t.
 - $WX_i + b \ge +1$ for $y_i = +1$
 - $WX_i + b \le -1$ for $y_i = -1$
 - $\rightarrow y_i(WX_i + b) 1 \ge 0$ combines the two conditions
- Loss function

$$L_p = \frac{1}{2} |W|_2^2 - \sum_{i=1}^l \alpha_i y_i (WX_i + b) + \sum_{i=1}^l \alpha_i$$

- $\alpha_i \geq 0$'s are Lagrange multipliers
- Dual formulation
 - Minimizing L_P subject to $\frac{\partial L_P}{\partial \alpha_i} = 0$, $\alpha_i \ge 0$
 - Maximizing L_P subject to $\frac{\partial L_P}{\partial W}=0$, $\frac{\partial L_P}{\partial b}=0$, $\alpha_i\geq 0$

Lagrange Multiplier

- A strategy for finding the local maxima and minima of a function subject to equality constraints

 - Subject to $g_j(X) = g_j(x_1, ..., x_n) = 0, 1 \le j \le m$
 - * Assume $f(\cdot)$ and $g_j(\cdot)$ are continuous and have 1st partial derivatives
- Lagrange function
 - $L(x_1, ..., x_n, \lambda_1, ..., \lambda_m) = f(x_1, ..., x_n) \sum_j \lambda_j g_j(x_1, ..., x_n)$ □ λ_i 's are called Lagrange multiplier
- We can find local optimum X^* by jointly optimize $L(\cdot)$ w.r.t. X and all λ_i 's (assume $g_i'(\cdot) \neq 0$)

Lagrange Multiplier

Example)

- Objective: $f(x,y) = x^2 + y^2$
- Subject to $g(x,y) = x^2 + xy + y^2 = 0$
- The optimum solution is found at the tangent points of the two curves.
- lacktriangledown
 abla f(x,y) and
 abla g(x,y) are parallel
- $\nabla f(x,y) = \lambda \nabla g(x,y)$

Linear SVM

Substitute
$$\frac{\partial L_p}{\partial W} = 0$$
, $\frac{\partial L_p}{\partial b} = 0$ into L_p

$$L_D = \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j X_i \cdot X_j$$

- Find α_i 's that maximize L_D .
 - $\square X_i$'s with $\alpha_i > 0$ are called support vectors
- Discriminant function: $WX_j + b = \sum_{i=1}^{l} \alpha_i y_i X_i \cdot X_j + b$

Linear SVM with Soft Margin (C-SVM)

- $W^* = argmin_W \left\{ \left[\frac{|W|^2}{2} + C(\sum_i \xi_i) \right] \right\} \text{ s.t. }$
 - $\square WX_i + b \ge +1 \xi_i$ for $y_i = +1$
 - $\square WX_i + b \le -1 + \xi_i$ for $y_i = -1$
- Equivalent to

$$y_i(X_iW + b) - 1 + \xi_i \ge 0$$

Primal formulation

$$L_p = \frac{1}{2}|W|^2 + C\sum_{i=1}^{l} \xi_i - \sum_{\{i=1\}}^{l} \alpha_i \{y_i (X_iW + b) - 1 + \xi_i\} - \sum_{i} \mu_i \xi_i$$

Agenda

- Kernel SVM
- SVM in scikit-learn

SVM with Kernel

Nonlinear SVM

- Transforms input feature to higher dimensional space using nonlinear kernel functions
- Samples are better separated in higher-dimensional space

Nonlinear SVM

■ Transform X to high dimension space through a nonlinear transform $\phi(\cdot)$

	Loss function	Discriminant function
Linear SVM	$L_D = \sum_{i} \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j X_i \cdot X_j$	$WX + b$ $= \sum_{i=1}^{l} \alpha_i y_i X_i \cdot X + b$
Nonlinear SVM	$L_D = \sum_{i} \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \phi(X_i) \phi(X_j)$	$W\phi(X) + b$ $= \sum_{i} \alpha_{i} y_{i} \phi(X_{i}) \phi(X) + b$

It is hard to find appropriate high-dimensional transform $\phi(\cdot)$

Nonlinear SVM - Kernel Trick

- Replace $\phi(X_i)\phi(X_j)$ by $K(X_i,X_j)$
 - We don't need to know $\phi(\cdot)$
 - $K(X_i, X_j)$ eliminates computation in high-dimensional space.

	Loss function	Discriminant function
Linear SVM	$L_D = \sum_{i} \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j X_i \cdot X_j$	$WX + b$ $= \sum_{i=1}^{l} \alpha_i y_i X_i \cdot X + b$
Nonlinear SVM	$L_D = \sum_{i} \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \phi(X_i) \phi(X_j)$	$W\phi(X) + b$ $= \sum_{i} \alpha_{i} y_{i} \phi(X_{i}) \phi(X) + b$
Nonlinear SVM (kernel)	$L_D = \sum_{i} \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \mathbf{K}(\mathbf{X}_i, \mathbf{X}_j)$	$W\phi(X) + b$ $= \sum_{i} \alpha_{i} y_{i} K(X_{i}, X) + b$

Popular Kernels for SVM

Polynomial kernel

$$k(\mathbf{x_i}, \mathbf{x_j}) = (\mathbf{x_i} \cdot \mathbf{x_j} + 1)^d$$

Gaussian kernel

$$k(x,y) = \exp\left(-\frac{\|x - y\|^2}{2\sigma^2}\right)$$

RBF kernel

$$k(\mathbf{x_i}, \mathbf{x_j}) = \exp(-\gamma ||\mathbf{x_i} - \mathbf{x_j}||^2)$$

SVM in scikit-learn

- SVM classifiers in scikit-learn
 - SVC
 - NuSVC (νSVC)
 - LinearSVC
 - Example

```
from sklearn import svm # import X = [[0, 0], [1, 1]] # input data y = [0, 1] # target label clf = svm.SVC(gamma='scale') # create SVC clf.fit(X, y) # train clf.predict([[2., 2.]]) # predict
```

- Reference
 - https://scikit-learn.org/stable/modules/svm.html

- Penalty parameter C of the error term (default: 1)
 - Too small C: underfitting
 - Too high C: overfitting

- Kernel coefficient gamma for 'rbf', 'poly' and 'sigmoid'.
 - Too small: underfitting
 - Too large: overfitting

scikit-learning gamma options

- 'auto': 1/n_features
 - 'scale': 1/(n_feature * X.var()) X.var(): variance of X

■ C – gamma grid

Handling Unbalanced Datasets

Assign heavier weights to the class with less sample

References

- https://machinelearningmastery.com/tactics-to-combatimbalanced-classes-in-your-machine-learning-dataset/
- https://shiring.github.io/machine_learning/2017/04/02/unbal anced
- https://www.datascience.com/blog/imbalanced-data
- Support Vector Regression
 - https://www.saedsayad.com/support_vector_machine_reg.h
 tm

Thank you for your attention!

