10 Continuity

10.1
$$u(-1) = u(0) = u(1) = 0$$
, $1 - x^2|_{x=0} = 1$, $x(1-x)|_{x=0} = 0$

10.2 For $-a \le x < 0$, h(x) is a straight line: h(-a) = 0 and $\left(1 + \frac{x}{a}\right)\Big|_{x=0} = 1$. For $0 \le x \le a$, h(x) is a straight line: h(a) = 0 h(0) = 1.

10.3 (a) $\lim_{x \to 0^{-}} f_a(x) = 1 = \lim_{x \to 0^{+}} f_a(x)$

No jumps.

10.3 (b) $\lim_{x \to 0^{-}} f_b(x) = -1 \lim_{x \to 0^{+}} f_b(x) = 1$

Jump of height 2 at x = 0.

(c) Two jumps of height 1 at x = 0.

(d) $\lim_{x \to 0^{-}} f_d(x) = 0 = \lim_{x \to 0^{+}} f_d(x)$

No jumps.

10.3 (e) We have $f(-2^-) = 0$ and $f(-2^+) = -1$; $f(-1^+) = 0$ and $f(-1^+) = +1$; $f(1^-) = 1$ and $f(1^+) = 0$; $f(2^-) = -1$ and $f(2^+) = 0$.

Jumps of 1 at -2, 1 at -1, 1 at 1 and 1 at 2.

10.4 (a) x = 5. Can be 'patched' since the limit of the expression at x = 5 is 10.

(b) x = -5, x = 5. The discontinuity at x = -5 cannot be 'patched'.

(c) x = -4. Can be 'patched' since the limit of the expression at x = -4 is -1

(d) x = 8, x = -3. The discontinuity at x = -3 cannot be 'patched'.

10.5 (a) $\lim_{x \to -2} \frac{x^2 + 6x + 8}{x + 2} = 2$, so hole at (-2, 2).

(b) $\lim_{x \to -3} \frac{x^3 + 27}{x+3} = \lim_{x \to -3} \frac{(x^2 - 3x + 9)(x+3)}{(x+3)} = 9 + 9 + 9 = 27$, so hole at (-3, 27).

(c) $\lim_{x\to 12} \sqrt{\frac{x^2-4}{x-2}} = \lim_{x\to 2} \sqrt{x+2} = 2$ so hole at (2,2).

10.6 At x = 0 we have $|f(0)| \le |0| = 0$ and so f(0) = 0. But also $\lim_{x \to 0} f(x) = 0$ as for any $\epsilon > 0$ we have with $\delta = \epsilon$ that

$$|f(x) - 0| = |f(x)| \le |x| < \epsilon,$$

and so whenever $0 < |x| < \delta = \epsilon$ also $|f(x) - 0| < \epsilon$. Hence f is continuous at 0.

10.7 We first compute f(0): for all x, by definition f(x) = f(x+0) = f(x) + f(0), and so f(0) = 0. Since f is continuous at 0, $\lim_{h\to 0} f(h) = f(0) = 0$. Then

$$\lim_{x \to a} f(x) = \lim_{h \to 0} f(a+h) = \lim_{h \to 0} (f(a) + f(h)) = f(a) + \lim_{h \to 0} f(h) = f(a)$$

shows that f is continuous at a.