HackerRank

Insert a node at a specific position in a linked list

This challenge is part of a tutorial track by MyCodeSchool and is accompanied by a video lesson.

Given a pointer to the head node of a linked list and an integer to insert at a certain position, create a new node with the given integer as its data attribute, insert this node at the desired position, and return the head node.

A position of 0 indicates the head, a position of 1 indicates one node away from the head, and so on. The head pointer given may be null, meaning that the initial list is empty.

Example

head refers to the first node in the list 1
ightarrow 2
ightarrow 3 data = 4 position = 2

Insert a node at position 2 with data=4. The new list is $1 \to 2 \to 4 \to 3$

Function Description

Complete the function insertNodeAtPosition with the following parameters:

- SinglyLinkedListNode pointer llist: a reference to the head of the list
- data: an integer value to insert as data in the new node
- position: an integer position to insert the new node, zero-based indexing

Returns

• SinglyLinkedListNode pointer: a reference to the head of the revised list

Input Format

The first line contains an integer n_i , the number of elements in the linked list.

Each of the next \boldsymbol{n} lines contains an integer SinglyLinkedListNode[i].data.

The next line contains an integer data, the data of the node that is to be inserted.

The last line contains an integer *position*.

Constraints

- $1 \le n \le 1000$
- $1 \leq SinglyLinkedListNode[i].data \leq 1000$, where SinglyLinkedListNode[i] is the i^{th} element of the linked list.
- $0 \leq position \leq n$.

Sample Input

Sample Output

```
16 13 1 7
```

Explanation

The initial linked list is $16 \to 13 \to 7$. Insert 1 at the position 2 which currently has 7 in it. The updated linked list is $16 \to 13 \to 1 \to 7$.