Valószínűségszámítás vizsgatételek Vághy Mihály

Tartalomjegyzék

1.	Téte	el	6
	1.1.	Eseménytér	6
	1.2.	σ -algebra	6
		1.2.1. Következmény	6
		1.2.2. Példa azonos eseménytér feletti különböző σ -algebrákra	6
2.	Téte	el	7
		Eloszlás	7
	2.2.	Eloszlásfüggvény	7
		2.2.1. Tulajdonságok	7
	2.3.	Diszkrét eloszlású valószínűségi változó	7
		2.3.1. Képtér	7
		2.3.2. Eloszlás	7
		2.3.3. Eloszlásfüggvény	7
3.	Téte	el	8
	3.1.	Független események	8
	3.2.	Független eseményrendszer	8
	3.3.	Feltételes valószínűség	8
	3.4.	Teljes valószínűség tétel	8
	3.5.	Bayes tétel	8
4.	Téte	el	9
		Binomiális eloszlás	9
		4.1.1. Példa	9
	4.2.	Poisson eloszlás	9
	4.3.	Kapcsolat a binomiális és a Poisson eloszlás között	9
۳	Téte	-1	1.0
Э.		Geometrikus eloszlás	$\frac{10}{10}$
	0.1.	5.1.1. Példa	
		5.1.2. Várható érték	
	5.2.		
	0.2.	5.2.1. Példa	
6 .	Téte		11
	6.1.	Diszkrét eloszlású valószínűségi változó	
		6.1.1. Képtér	
	6.0	6.1.2. Várható érték kiszámítása	
	6.2.		$\frac{11}{11}$
	6.3		11 11
	0.5.		$\frac{11}{11}$
		Visiti Validato creati.	
7.	Tét		12
	7.1.		12
			12
	7.2.		12
			12
		·	12
			12
		7.2.3. Kapcsolatos a sűrűségfüggvény és az eloszlásfüggvény között	12

8.	Tétel	13
•	8.1. Folytonos eloszlású valószínűségi változó	
	8.2. Várható érték kiszámítása	
	8.3. Exponenciális eloszlás	13
	8.3.1. Tétel	
	8.3.2. Várható érték	13
n	Tétel	1.4
9.	9.1. Normális eloszlás	14
	9.1.1. Standard normális eloszlás	
	9.1.1. Standard normális eloszlás	
	•	
10	.Tétel	15
	10.1. Szórás, szórásnégyzet	
	10.1.1. Kiszámítása	
	10.1.1.1. Diszkrét eset	
	10.1.1.2. Folytonos eset	
	$10.2.\ k$ oldalú szabályos testtel való dobás szórása	15
11	.Tétel	16
	11.1. Mérhető tér	
	11.2. Mérhető függvény	
	11.2.1. Példa nem mérhető függvényre	
	11.3. Mérték	
	11.3.1. Példa mértékekre	16
	11.4. Valószínűségi mérték	16
	11.5. Valószínűségi mező	
	11.6. Valószínűségi változó	16
19	.Tétel	17
12	12.1. Indikátorfüggvény	
	12.2. Lépcsős függvény	
	12.3. Lépcsős függvény adott halmaz feletti és mérték szerinti integrálja	
	12.4. Várható érték	
	12.4.1. Kiszámítása diszkrét esetben	
	12.5. Markov egyenlőtlenség	
	12.0. Markov egyemoticinseg	11
13	.Tétel	18
	13.1. Külső Lebesgue-mérték	18
	13.2. Mértékek abszolút folytonossága	18
	13.3. Mértékek szingularitása	18
	13.4. Radon-Nikodym tétel	18
14	.Tétel	19
. 4	14.1. Valószínűségi változó által generált σ -algebra	
	14.1.1. Valószínűségi változó által generált σ-algebra	
	14.2. Független valószínűségi változók	
	14.2.1. Független valószínűségi változók várható értéke	
	14.2.2. Független valószínűségi változók szórása	
	14.2.3. Független valószínűségi változók együttes eloszlása	
	11.2.0. 1 appendix tanophinapel tanophin of action clopping	10

15.Tétel	2 0
15.1. Vektor értékű valószínűségi változó	
15.1.1. Eloszlás	
15.1.2. Eloszlásfüggvény	20
15.1.2.1. Tulajdonságok	20
15.1.2.2. Peremeloszlás-függvények diszkrét esetben	20
15.2. Folytonos vektor értékű valószínűségi változók	20
15.2.1. Összefüggés a peremsűrűség-függvények és az együttes sűrűségfüggvény között független	
$\operatorname{esetben}$	21
15.2.2. Peremsűrűség-függvények	
15.2.3. Intervallumba esés valószínűsége	
16.Tétel	22
16.1. Kovariancia	22
16.1.1. Kovariancia kiszámítása	22
16.1.1.1. Diszkrét eset	22
16.1.1.2. Folytonos eset	
16.1.2. Kovariancia független esetben	
16.1.3. Valószínűségi változó standardizáltja	
16.2. Korrelációs együttható	
10.2. Rolleddos egy dwilato	22
17.Tétel	23
17.1. Diszkrét eset	
17.2. Folytonos eset	
17.2.1. Lineáris transzformáció	
17.2.1. Efficació d'anoziolinació	20
18.Tétel	2 4
18.1. Diszkrét feltételes eloszlás eloszlásfüggvénye	
18.2. Folytonos feltételes eloszlás eloszlásfüggvénye	
18.2.1. Sűrűségfüggvény	
18.2.2. Várható érték	
18.2.2.1. Regressziós függvény	
10.2.2.1. Itegresszios ruggveny	24
19.Tétel	25
19.1. 1-valószínűséggel megegyező valószínűségi változók	
$19.2. \mathcal{L}^p$ tér	
19.3. <i>p</i> -norma	
19.4. Konvergencia-fajták \mathcal{L}^p terekben	
19.4.1. 1-valószínűséggel egyenletes konvergencia	
19.4.2. 1-valószínűséggel konvergencia	
19.4.3. \mathcal{L}^p -ben való konvergencia	
19.4.4. Sztochasztikus konvergencia	
19.4.5. Eloszlásban való konvergencia	
19.4.6. Konvergencia-fajták közti összefüggés	
19.5. Centrális határeloszlás tétel	
19.6. DeMoivre-Laplace tétel	26
20.Tétel	27
20.1 Minta	
20.1.1. Középérték	
•	
20.1.2. Empirikus szórás	
20.1.2.1. Korrigált empirikus szórásnégyzet	
20.1.3. Középpont	
20.1.4. Medián	
20.1.5. Terjedelem	
20.1.6. Empirikus eloszlásfüggvény	27

20.	1.7. Empirikus sűrűségfüggvény
20.2. Bed	eslés
20.	2.1. Tulajdonságok
20.3. Ma	ximum likelihood estimation
20.4. Ko	nfidenciaintervallum
20.	4.1. Normális eloszlás ismert szórással
20.	4.2. Nem normális eloszlás ismert szórással

Valószínűségszámítás 1. TÉTEL

1. Tétel

1.1. Eseménytér

Eseménytérnek nevezünk egy Ω nemüres halmazt.

1.1.1. Esemény

Események az eseménytér részhalmazai. Elemi események az esetménytér egyelemű részhalmazai.

1.2. σ -algebra

 ${\mathcal F}$ legyen Ω részhalmazainak olyan rendszere, hogy

- 1. $\mathcal F$ zárt a véges és a megszámlálhatóan végtelen unióra
- 2. ${\mathcal F}$ zárt a különbségképzésre
- 3. $\Omega \in \mathcal{F}$.

Ekkor \mathcal{F} egy σ -algebra, az elemeit pedig eseménynek nevezzük.

1.2.1. Következmény

Ha \mathcal{F} egy σ -algebra, akkor zárt a komplementerképzésre és a metszetre is, hiszen

$$\begin{split} A^C &= \Omega \backslash A \\ A \cap B &= \left(A^C \cup B^C\right)^C = \Omega \backslash \left((\Omega \backslash A) \cup (\Omega \backslash B)\right). \end{split}$$

1.2.2. Példa azonos eseménytér feletti különböző σ -algebrákra

Legyen $\Omega = \{1, 2\}$. Ekkor legyen

$$\begin{split} \mathcal{F}_1 &= \big\{\emptyset, \{1,2\}\big\} \\ \mathcal{F}_2 &= \big\{\emptyset, \{1\}, \{2\}, \{1,2\}\big\}. \end{split}$$

Valószínűségszámítás 2. TÉTEL

2. Tétel

2.1. Eloszlás

Adott (Ω, \mathcal{F}, P) valószínűség mező és $\xi : (\Omega, \mathcal{F}, P) \mapsto \mathbb{R}$ valószínűségi változó. Ekkor $A \in \mathcal{B}_{\mathbb{R}}$ ξ eloszlása

$$Q_{\xi}(A) = P(\xi^{-1}(A)).$$

2.2. Eloszlásfüggvény

Adott (Ω, \mathcal{F}, P) valószínűségi mező és $\xi: (\Omega, \mathcal{F}, P) \mapsto \mathbb{R}$ valószínűségi változó. Ekkor ξ eloszlásfüggvénye $F_{\xi}: \mathbb{R} \mapsto \mathbb{R}$

$$F_{\xi}(x) = P(\xi < x) = P(\omega \in \Omega | \xi(\omega) < x) = P(\xi^{-1}(-\infty, x)) = Q_{\xi}((-\infty, x)).$$

2.2.1. Tulajdonságok

Adott (Ω, \mathcal{F}, P) valószínűség mező és $\xi: (\Omega, \mathcal{F}, P) \mapsto \mathbb{R}$ valószínűségi változó, melynek eloszlásfüggvénye F_{ξ} . Ekkor

- 1. F_{ξ} monoton nő
- 2. F_{ξ} balról folytonos

3

$$\lim_{x \to -\infty} F_{\xi}(x) = 0$$

4.

$$\lim_{x \to \infty} F_{\xi}(x) = 1.$$

2.3. Diszkrét eloszlású valószínűségi változó

Egy valószínűségi változót diszkrétnek nevezünk, ha legfeljebb megszámlálhatóan végtelen sok értéket vesz fel.

2.3.1. Képtér

Adott (Ω, \mathcal{F}, P) valószínűség mező és $\xi : (\Omega, \mathcal{F}, P) \mapsto \mathbb{R}$ valószínűségi változó. Ekkor ξ képtere

$$\operatorname{Im} \xi = \{\xi_n | n \in \mathbb{N}\} = \{\xi(\omega) | \omega \in \Omega\}.$$

2.3.2. Eloszlás

Adott $\xi:(\Omega,\mathcal{F},P)\mapsto\mathbb{R}$ diszkrét eloszlású valószínűségi változó. Ekkor $A\in\mathcal{B}_{\mathbb{R}}$ ξ eloszlása

$$Q_{\xi}(A) = P(\xi^{-1}(A)) = \sum_{\xi_i \in \xi^{-1}(A)} P(\xi = \xi_i).$$

2.3.3. Eloszlásfüggvény

Adott $\xi:(\Omega,\mathcal{F},P)\mapsto\mathbb{R}$ diszkrét eloszlású valószínűségi változó. Ekkor

$$F_{\xi}(x) = Q_{\xi}\big((-\infty, x)\big) = \sum_{\xi_i < x} P(\xi = \xi_i).$$

Valószínűségszámítás 3. TÉTEL

3. Tétel

3.1. Független események

Adott (Ω, \mathcal{F}, P) valószínűségi mező. $A, B \in \mathcal{F}$ függetlenek pontosan akkor, ha $P(A \cap B) = P(A)P(B)$.

3.2. Független eseményrendszer

Adott (Ω, \mathcal{F}, P) valószínűségi mező. Ekkor az $(A_k)_{k \leq n \in \mathbb{N}}$ eseményrendszer független, ha az A_k események páronként függetlenek. Ekkor

$$P\bigg(\bigcap_{k=1}^{n} A_k\bigg) = \prod_{k=1}^{n} P(A_k).$$

3.3. Feltételes valószínűség

Adott (Ω, \mathcal{F}, P) valószínűségi mező. Ekkor $A \in \mathcal{F}$ feltételes valószínűsége $B \in \mathcal{F}$ szerint

$$P_B(A) = P(A|B) := \frac{P(A \cap B)}{P(B)}.$$

3.4. Teljes valószínűség tétel

Adott (Ω, \mathcal{F}, P) valószínűségi mező és $(B_k)_{k \leq n \in \mathbb{N}}$ teljes eseményrendszer, melyre $\forall P(B_k) > 0$. Ekkor $\forall A \in \mathcal{F}$ esetén

$$P(A) = \sum_{k=1}^{n} P(A|B_k)P(B_k).$$

Bizonyítás

Tudjuk, hogy

$$A = A \cap \Omega = A \cap \left(\bigcup_{k=1}^{n} B_k\right) = \bigcup_{k=1}^{n} (A \cap B_k) \implies P(A) = \sum_{k=1}^{n} P(A \cap B_k)$$

és
$$P(A|B) = \frac{P(A \cap B)}{P(B)} \implies P(A \cap B) = P(A|B)P(B).$$
 Ekkor

$$P(A) = \sum_{k=1}^{n} P(A \cap B_k) = \sum_{k=1}^{n} P(A|B_k)P(B_k).$$

3.5. Bayes tétel

Adott (Ω, \mathcal{F}, P) valószínűségi mező és $(B_k)_{k \leq n \in \mathbb{N}}$ teljes eseményrendszer, melyre $\forall P(B_k) > 0$. Ekkor $\forall A \in \mathcal{F}$ esetén

$$P(B_k|A) = \frac{P(A|B_k)P(B_k)}{P(A)} = \frac{P(A|B_k)P(B_k)}{\sum_{j=1}^{n} P(A|B_j)P(B_j)}.$$

Bizonyítás

Tudjuk, hogy $P(B_k|A)P(A) = P(B_k \cap A) = P(A \cap B_k) = P(A|B_k)P(B_k)$. Ebből

$$P(B_k|A) = \frac{P(A|B_k)P(B_k)}{P(A)}.$$

2018. január 3. 19:36 Vághy Mihály

Valószínűségszámítás 4. TÉTEL

4. Tétel

4.1. Binomiális eloszlás

Azt mondjuk, hogy $\xi:(\Omega,\mathcal{F},P)\mapsto\mathbb{R}$ valószínűségi változó (n,p) paraméterű binomiális eloszlású, ha

$$P(\xi = k)_{k \le n} = \binom{n}{k} p^k (1-p)^{n-k}.$$

Ekkor

$$F_{\xi}(x) = \begin{cases} 0, & \text{ha } x \le 0\\ \sum_{m=0}^{k} {n \choose m} p^m (1-p)^{n-m}, & \text{ha } k < x \le k+1.\\ 1, & \text{ha } x > n. \end{cases}$$

4.1.1. Példa

Valószínűségszámításból egy hallgató p valószínűséggel megy át. Ekkor n hallgatóból átment hallgatók száma binomiális eloszlású.

4.2. Poisson eloszlás

Azt mondjuk, hogy $\xi:(\Omega,\mathcal{F},P)\mapsto\mathbb{R}$ valószínűségi változó λ paraméterű Poisson eloszlású, ha

$$P(\xi = k) = \frac{\lambda^k}{k!} e^{-\lambda}.$$

4.3. Kapcsolat a binomiális és a Poisson eloszlás között

A Poisson eloszlás közelíti, illetve határértékben felveszi a binomiális eloszlást ha $np = \lambda$ állandó (tehát a várható értékük azonos).

Bizonyítás

$$\lim_{n \to \infty} P(\xi = k) = \lim_{n \to \infty} \binom{n}{k} p^k (1 - p)^{n - k} = \lim_{n \to \infty} \binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n - k} = \lim_{n \to \infty} \frac{\frac{n!}{(n - k)!}}{n^k} \frac{\lambda^k}{k!} \left(1 - \frac{\lambda}{n}\right)^{n - k} = \frac{\lambda^k}{k!} e^{-\lambda}$$

Valószínűségszámítás 5. TÉTEL

5. Tétel

5.1. Geometrikus eloszlás

Azt mondjuk, hogy $\xi:(\Omega,\mathcal{F},P)\mapsto\mathbb{R}$ valószínűségi változó p paraméterű geometrikus eloszlású, ha

$$P(\xi = k) = p(1 - p)^{k-1}.$$

5.1.1. Példa

Valószínűségszámításból egy hallgató p valószínűséggel megy át. Ekkor annak a valószínűsége, hogy hanyadik hallgató megy át először, geometrikus eloszlású.

5.1.2. Várható érték

 ξ p paraméterű geometrikus eloszlású valószínűség változó várható értéke $\frac{1}{p}.$

Bizonyítás

Tudjuk, hogy $P(\xi = k) = p(1-p)^{k-1}$. Ekkor

$$E(\xi) = \sum_{k=0}^{n} kp(1-p)^{k-1} = p\sum_{k=1}^{n} k(1-p)^{k-1}.$$

Tudjuk, hogy $\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k$ ha $x \in (-1,1)$. Ezen felül tudjuk, hogy egy hatványsor a konvergenciahalmaz belső pontjaiban tagonként differenciálható, tehát

$$\frac{\mathrm{d}}{\mathrm{d}x} \frac{1}{1-x} = \frac{1}{(1-x)^2} = \sum_{k=1}^{\infty} kx^{k-1} = \sum_{k=1}^{\infty} kx^{k-1}.$$

Mivel $1 - p \in (-1, 1)$, így azonnal kapjuk, hogy $E(\xi) = \frac{1}{p}$.

5.2. Hipergeometrikus eloszlás

Azt mondjuk, hogy $\xi:(\Omega,\mathcal{F},P)\mapsto\mathbb{R}$ valószínűségi változó (N,K,n) paraméterű hipergeometrikus eloszlású, ha

$$P(\xi = k) = \frac{\binom{K}{k} \binom{N - K}{n - k}}{\binom{N}{n}}.$$

5.2.1. Példa

 $\label{eq:lambda} \mbox{Valószínűségszámításból} \ K \ \mbox{darab fiú és} \ N-K \ \mbox{darab lány vizsgázik.} \ \mbox{Feltéve, hogy ugyanakkora valószínűségel mennek át, annak a valószínűsége, hogy pontosan k hallgató megy át, hipergeometrikus eloszlású.}$

Valószínűségszámítás 6. TÉTEL

6. Tétel

6.1. Diszkrét eloszlású valószínűségi változó

Egy valószínűségi változót diszkrétnek nevezünk, ha legfeljebb megszámlálhatóan végtelen sok értéket vesz fel.

6.1.1. Képtér

Adott (Ω, \mathcal{F}, P) valószínűségi mező és $\xi : (\Omega, \mathcal{F}, P) \mapsto \mathbb{R}$ valószínűségi változó. Ekkor ξ képtere

$$\operatorname{Im} \xi = \{ \xi_n | n \in \mathbb{N} \} = \{ \xi(\omega) | \omega \in \Omega \}.$$

6.1.2. Várható érték kiszámítása

Adott $\xi:(\Omega,\mathcal{F},P)\mapsto\mathbb{R}$ valószínűségi változó és képtere

$$\operatorname{Im} \xi = \{\xi_n | n \in \mathbb{N}\} = \{\xi(\omega) | \omega \in \Omega\}.$$

Ekkor

$$E(\xi) = \sum_{n=1}^{\infty} \xi_n P(\xi = \xi_n).$$

6.2. Binomiális eloszlás

Azt mondjuk, hogy $\xi:(\Omega,\mathcal{F},P)\mapsto\mathbb{R}$ valószínűségi változó (n,p) paraméterű binomiális eloszlású, ha

$$P(\xi = k)_{k \le n} = \binom{n}{k} p^k (1 - p)^{n - k}.$$

6.2.1. Várható érték

 ξ (n,p) paraméterű binomiális eloszlású valószínűségi változó várható értéke np.

Bizonvítás

Tudjuk, hogy $P(\xi = k) = \binom{n}{k} p^k (1-p)^{n-k}$. Ekkor

$$E(\xi) = \sum_{k=0}^{n} k \binom{n}{k} p^k (1-p)^{n-k} = np \sum_{k=1}^{n} \binom{n-1}{k-1} p^{k-1} (1-p)^{n-1-(k-1)}$$

hiszen $\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}$ (elnyelési tulajdonság).

$$E(\xi) = np \sum_{k=1}^{n} {n-1 \choose k-1} p^{k-1} (1-p)^{n-1-(k-1)} = np \sum_{k=0}^{n-1} {n-1 \choose k} p^k (1-p)^{n-1-k} = np$$

6.3. Poisson eloszlás

Azt mondjuk, hogy $\xi:(\Omega,\mathcal{F},P)\mapsto\mathbb{R}$ valószínűségi változó λ paraméterű Poisson eloszlású, ha

$$P(\xi = k) = \frac{\lambda^k}{k!}e^{-\lambda}.$$

6.3.1. Várható érték

 $\xi~\lambda$ paraméterű Poisson eloszlású valószínűségi változó várható értéke $\lambda.$

Bizonyítás

Tudjuk, hogy $P(\xi = k) = \frac{\lambda^k}{k!} e^{-\lambda}$. Ekkor

$$E(\xi) = \sum_{k=0}^{\infty} k \frac{\lambda^k}{k!} e^{-\lambda} = \lambda \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} e^{-\lambda} = \lambda \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda} = \lambda.$$

Valószínűségszámítás 7. TÉTEL

7. Tétel

7.1. Valószínűségi változó

Adott (Ω, \mathcal{F}, P) valószínűségi mező. Ekkor a $\xi: (\Omega, \mathcal{F}, P) \mapsto \mathbb{R}$ mérhető függvényt valószínűségi változónak nevezzük.

7.1.1. Eloszlás

Adott (Ω, \mathcal{F}, P) valószínűség mező és $\xi : (\Omega, \mathcal{F}, P) \mapsto \mathbb{R}$ valószínűségi változó. Ekkor $A \in \mathcal{B}_{\mathbb{R}}$ ξ eloszlása

$$Q_{\xi}(A) = P(\xi^{-1}(A)).$$

7.2. Folytonos eloszlású valószínűségi változó

Adott (Ω, \mathcal{F}, P) valószínűségi mező és $\xi : \Omega \mapsto \mathbb{R}$ valószínűségi változó. Azt mondjuk, hogy ξ folytonos eloszlású, ha $Q_{\xi} \ll \lambda_{\mathbb{R}}$.

7.2.1. Sűrűségfüggvény

Adott ξ folytonos eloszlású valószínűségi változó. Ekkor $\exists! f: \mathbb{R} \mapsto \mathbb{R}$ olyan mérhető függvény, hogy $\forall A \in \mathcal{B}_{\mathbb{R}}$ esetén

$$Q_{\xi}(A) = \int_{A} f \, \mathrm{d}\lambda_{\mathbb{R}} \,.$$

Ekkor fa ξ valószínűségi változó sűrűségfüggvénye, illetve a Q_ξ eloszlás sűrűségfüggvénye.

7.2.1.1. Tulajdonságok

Adott ξ folytonos eloszlású valószínűség változó f_{ξ} sűrűségfüggvénnyel.

1. $f_{\xi} \geq 0$

2.

$$\int_{-\infty}^{\infty} f_{\xi} dt = \int_{\mathbb{R}} f_{\xi} d\lambda_{\mathbb{R}} = Q_{\xi}(\mathbb{R}) = P(\xi^{-1}(\mathbb{R})) = 1$$

7.2.2. Intervallumba esés valószínűsége

Adott $\xi:(\Omega,\mathcal{F},P)\mapsto\mathbb{R}$ folytonos eloszlású valószínűségi változó és $[a,b]\subset\mathbb{R}$ intervallum. Ekkor

$$P(a < \xi < b) = P(a \le \xi < b) = P(a \le \xi \le b) = P(a \le \xi \le b) = F_{\xi}(b) - F_{\xi}(a) = \int_{a}^{b} f_{\xi}(x) dx.$$

7.2.3. Kapcsolatos a sűrűségfüggvény és az eloszlásfüggvény között

Adott $\xi:(\Omega,\mathcal{F},P)\mapsto\mathbb{R}$ folytonos eloszlású valószínűségi változó. Ekkor

$$F_{\xi}(x) = \int_{-\infty}^{x} f_{\xi}(t) \, \mathrm{d}t$$

illetve

$$F'_{\xi}(x) = f_{\xi}(x).$$

Valószínűségszámítás 8. TÉTEL

8. Tétel

8.1. Folytonos eloszlású valószínűségi változó

Adott (Ω, \mathcal{F}, P) valószínűségi mező és $\xi : \Omega \mapsto \mathbb{R}$ valószínűségi változó. Azt mondjuk, hogy ξ folytonos eloszlású, ha $Q_{\xi} \ll \lambda_{\mathbb{R}}$.

8.2. Várható érték kiszámítása

Adott ξ folytonos eloszlású valószínűségi változó várható értéke

$$E(\xi) = \int_{\Omega} \xi \, dP = \int_{\mathbb{R}} i d_{\mathbb{R}} \, dQ_{\xi} = \int_{\mathbb{R}} i d_{\mathbb{R}} \, \frac{dQ_{\xi}}{d\lambda_{\mathbb{R}}} \, d\lambda_{\mathbb{R}} = \int_{-\infty}^{\infty} x f_{\xi}(x) \, dx \,.$$

8.3. Exponenciális eloszlás

Azt mondjuk, hogy a ξ folytonos eloszlású valószínűségi változó α paraméterű exponenciális eloszlású, ha

$$f_{\xi}(x) = \begin{cases} \alpha e^{-\alpha x}, & \text{ha } x > 0\\ 0, & \text{ha } x \le 0. \end{cases}$$

8.3.1. Tétel

Adott ξ α paraméterű exponenciális eloszlású valószínűségi változó. Ekkor f_{ξ} valóban sűrűségfüggvény.

Bizonyítás

Tudjuk, hogy $f_{\xi} \geq 0$. Ezen felül

$$\int_{-\infty}^{\infty} \alpha e^{-\alpha x} \, \mathrm{d}x = \int_{0}^{\infty} \alpha e^{-\alpha x} \, \mathrm{d}x = -e^{-\alpha x} \bigg|_{0}^{\infty} = 1$$

tehát f_ξ valóban sűrűségfüggvény.

8.3.2. Várható érték

 $\xi \alpha$ paraméterű exponenciális eloszlású valószínűségi változó várható értéke $\frac{1}{\alpha}$.

Bizonyítás

$$E(\xi) = \int_{-\infty}^{\infty} x f_{\xi}(x) dx = \int_{0}^{\infty} x \alpha e^{-\alpha x} dx = -xe^{-\alpha x} \bigg|_{0}^{\infty} + \int_{0}^{\infty} e^{-\alpha x} dx = -\frac{1}{\alpha} e^{-\alpha x} \bigg|_{0}^{\infty} = \frac{1}{\alpha}$$

Valószínűségszámítás 9. TÉTEL

9. Tétel

9.1. Normális eloszlás

Azt mondjuk, hogy a ξ folytonos eloszlású valószínűségi változó (m, σ) paraméterű normális eloszlású, ha

$$f_{\xi}(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-(x-m)^2}{2\sigma^2}}.$$

9.1.1. Standard normális eloszlás

Azt mondjuk, hogy a ξ folytonos eloszlású valószínűségi változó standard normális eloszlású, ha $(m=0,\sigma=1)$ paraméterű normális eloszlású. Ekkor

$$f_{\xi}(x) = \frac{1}{\sqrt{2\pi}}e^{\frac{-x^2}{2}}$$

és

$$\Phi(x) = F_{\xi}(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{\frac{-t^2}{2}} dt.$$

9.1.1.1. Kapcsolat a normális és a standard normális eloszlás között

Adott ξ (m, σ) normális eloszlású valószínűségi változó eloszlásfüggvénye visszavezethető standard normális eloszlásúra.

Bizonyítás

$$F_{\xi}(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-(t-m)^2}{2\sigma^2}} dt = \int_{-\infty}^{\frac{x-m}{\sigma}} \int_{-\infty}^{\frac{x-m}{\sigma}} \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-z^2}{2}} \sigma dz = \int_{-\infty}^{\frac{x-m}{\sigma}} \frac{1}{\sqrt{2\pi}} e^{\frac{-z^2}{2}} dz = \Phi\left(\frac{x-m}{\sigma}\right)$$

Valószínűségszámítás 10. TÉTEL

10. Tétel

10.1. Szórás, szórásnégyzet

Adott $\xi:(\Omega,\mathcal{F},P)\mapsto\mathbb{R}$ valószínűségi változó véges várható értékkel. Ekkor ξ szórása

$$\sigma(\xi) = \sqrt{E((\xi - E(\xi))^2)}.$$

 ξ szórásnégyzete vagy varianciája

$$\sigma^{2}(\xi) = E\left(\left(\xi - E(\xi)\right)^{2}\right).$$

10.1.1. Kiszámítása

Adott ξ valószínűségi változó. Ekkor

$$\sigma^{2}(\xi) = E(\xi^{2}) - E^{2}(\xi).$$

Bizonyítás

$$\sigma^{2}(\xi) = E((\xi - E(\xi))^{2}) = E(\xi^{2} - 2E(\xi)\xi + E^{2}(\xi)) = E(\xi^{2}) - 2E(E(\xi)\xi) + E(E^{2}(\xi)) = E(\xi^{2}) - 2E(\xi)E(\xi) + E^{2}(\xi) = E(\xi^{2}) - E^{2}(\xi)$$

10.1.1.1. Diszkrét eset

Adott $\xi:(\Omega,\mathcal{F},P)\mapsto\mathbb{R}$ diszkrét eloszlású valószínűségi változó és képtere

$$\operatorname{Im} \xi = \{\xi_n \big| n \in \mathbb{N}\} = \{\xi(\omega) \big| \omega \in \Omega\}.$$

Ekkor

$$\sigma^{2}(\xi) = E(\xi^{2}) - E^{2}(\xi) = \sum_{n=1}^{\infty} \xi_{n}^{2} P(\xi = \xi_{n}) - \left(\sum_{n=1}^{\infty} \xi_{n} P(\xi = \xi_{n})\right)^{2}.$$

10.1.1.2. Folytonos eset

Adott ξ folytonos eloszlású valószínűségi változó szórásnégyzete

$$\sigma^{2}(\xi) = E(\xi^{2}) - E^{2}(\xi) = \int_{-\infty}^{\infty} x^{2} f_{\xi}(x) dx - \left(\int_{-\infty}^{\infty} x f_{\xi}(x) dx\right)^{2}.$$

10.2. k oldalú szabályos testtel való dobás szórása

Legyen a dobás eredményét jelző valószínűségi változó ξ . Tudjuk, hogy $\forall P(\xi = n) = \frac{1}{k}$. Ekkor

$$\sigma^{2}(\xi) = \sum_{n=1}^{k} n^{2} P(\xi = n) - \left(\sum_{n=1}^{k} n P(\xi = n)\right)^{2} = \frac{1}{k} \sum_{n=1}^{k} n^{2} - \frac{1}{k^{2}} \left(\sum_{n=1}^{k} n\right) =$$

$$= \frac{1}{k} \frac{k(k+1)(2k+1)}{6} - \frac{1}{k^{2}} \frac{k^{2}(k+1)^{2}}{4} = \frac{2(k+1)(2k+1) - 3(k+1)^{2}}{12} = \frac{k^{2} - 1}{12}$$

Valószínűségszámítás 11. TÉTEL

11. Tétel

11.1. Mérhető tér

Adott Ω eseménytér és $\mathcal{F} \subset 2^{\Omega}$ σ -algebra. Ekkor az (Ω, \mathcal{F}) rendezett párt mérhető térnek nevezzük.

11.2. Mérhető függvény

Adott (Ω, \mathcal{F}) mérhető tér. $f:(\Omega, \mathcal{F}) \mapsto \mathbb{R}$ függvény mérhető, ha $\forall B \in \mathcal{B}_{\mathbb{R}}$ esetén

$$f^{-1}(B) := \{ \omega \in \Omega | f(\omega) \in B \} \in \mathcal{F}$$

teljesül.

11.2.1. Példa nem mérhető függvényre

Legyen $\Omega = \{1, 2\}, \mathcal{F} = \{\emptyset, \{1, 2\}\}\$ és f identitásfüggvény. Ekkor

$$f^{-1}(1) = \{1\} \notin \mathcal{F}.$$

11.3. Mérték

Adott (Ω, \mathcal{F}) mérthető tér. $\mu : \mathcal{F} \mapsto \mathbb{R}$ függvény mérték, ha

- 1. $\forall A \in \mathcal{F}$ esetén $\mu(A) \geq 0$ teljesül
- 2. $\mu(\emptyset) = 0$
- 3. $\forall (A_n)_{n\in\mathbb{N}}\subset\mathcal{F}$ páronként diszjunkt halmazrendszerre teljesül a σ -additivitás, azaz

$$\mu\bigg(\bigcup_{n=0}^{\infty} A_n\bigg) = \sum_{n=0}^{\infty} \mu(A_n).$$

11.3.1. Példa mértékekre

- 1. Nullmérték mindenhez 0-t rendel.
- 2. Számláló mérték elemszámot rendel.
- 3. x-re koncentrált Dirac-mérték

$$\mu(A) = \begin{cases} 1, & \text{ha } x \in A \\ 0, & \text{ha } x \notin A. \end{cases}$$

11.4. Valószínűségi mérték

Adott (Ω, \mathcal{F}) mérhető tér és $\mu : \mathcal{F} \mapsto \mathbb{R}$ mérték. Ha $\mu(\Omega) = 1$, akkor valószínűségi mértéknek nevezzük, jele P.

11.5. Valószínűségi mező

Adott (Ω, \mathcal{F}) mérhető tér és P valószínűségi mérték. Ekkor az (Ω, \mathcal{F}, P) rendezett hármast valószínűségi mezőnek nevezzük.

11.6. Valószínűségi változó

Adott (Ω, \mathcal{F}, P) valószínűségi mező. Ekkor a $\xi: (\Omega, \mathcal{F}, P) \mapsto \mathbb{R}$ mérhető függvényt valószínűségi változónak nevezzük.

Valószínűségszámítás 12. TÉTEL

12. Tétel

12.1. Indikátorfüggvény

Adott (Ω, \mathcal{F}, P) valószínűségi mező. Ekkor $A \in \mathcal{F}$ indikátorfüggvénye

$$\chi_A(\omega) = \begin{cases} 0, & \text{ha } \omega \notin A \\ 1, & \text{ha } \omega \in A. \end{cases}$$

12.2. Lépcsős függvény

Adott (Ω, \mathcal{F}, P) valószínűségi mező, $(A_k)_{k \leq n \in \mathbb{N}} \subset \mathcal{F}$ rendszer és $(\lambda_k)_{k \leq n \in \mathbb{N}}$ rendszer. Ekkor $f: (\Omega, \mathcal{F}, P) \mapsto \mathbb{R}$ lépcsős függvény

$$f(\omega) := \sum_{k=1}^{n} \lambda_k \chi_{A_k}(\omega).$$

12.3. Lépcsős függvény adott halmaz feletti és mérték szerinti integrálja

Adott (Ω, \mathcal{F}, P) valószínűségi mező és $f: (\Omega, \mathcal{F}, P) \mapsto \mathbb{R}$ olyan lépcsős függvény, hogy

$$f(\omega) := \sum_{k=1}^{n} \lambda_k \chi_{A_k}(\omega)$$

és az A_k halmazok páronként diszjunktak. Ekkor

$$\int_{\Omega} f \, \mathrm{d}P := \sum_{k=1}^{n} \lambda_k P(A_k).$$

12.4. Várható érték

Adott (Ω, \mathcal{F}, P) valószínűségi mező és $\xi : (\Omega, \mathcal{F}, P) \mapsto \mathbb{R}$ valószínűségi változó. Ekkor ξ várható értéke

$$E(\xi) = \int_{\Omega} \xi \, \mathrm{d}P.$$

12.4.1. Kiszámítása diszkrét esetben

Adott $\xi:(\Omega,\mathcal{F},P)\mapsto\mathbb{R}$ diszkrét eloszlású valószínűségi változó és képtere

$$\operatorname{Im} \xi = \{\xi_n \big| n \in \mathbb{N}\} = \{\xi(\omega) \big| \omega \in \Omega\}.$$

Ekkor

$$E(\xi) = \sum_{n=1}^{\infty} \xi_n P(\xi = \xi_n).$$

12.5. Markov egyenlőtlenség

Adott ξ valószínűségi változó és $\varepsilon>0\in\mathbb{R}$ skalár. Ekkor

$$P(\xi \ge \varepsilon) \le \frac{E(\xi)}{\varepsilon}.$$

Bizonyítás

$$E(\xi) = \int_{\Omega} \xi \, \mathrm{d}P \ge \int_{\{\xi \ge \varepsilon\}} \xi \, \mathrm{d}P \ge \int_{\{\xi \ge \varepsilon\}} \varepsilon \, \mathrm{d}P = \varepsilon \int_{\{\xi \ge \varepsilon\}} \mathrm{d}P = \varepsilon P(\xi \ge \varepsilon) \implies P(\xi \ge \varepsilon) \le \frac{E(\xi)}{\varepsilon}$$

Valószínűségszámítás 13. TÉTEL

13. Tétel

13.1. Külső Lebesgue-mérték

Tetszőleges $A\subset\mathbb{R}$ külső Lebesgue-mértéke

$$\overline{\lambda}(A) := \inf \left\{ \sum_{n=0}^{\infty} \lambda(I_n) \middle| A \subset \bigcup_{n=0}^{\infty} I_n \right\}$$

ahol $(I_n)_{n\in\mathbb{N}}$ halmazrendszer, $\lambda(I_n)$ pedig az intervallum hossza.

13.2. Mértékek abszolút folytonossága

Adott (Ω, \mathcal{F}) mérhető tér és $\mu_1, \mu_2 : \mathcal{F} \mapsto \mathbb{R}$ mértékek. Azt mondjuk, hogy μ_1 abszolút folytonos μ_2 -re nézve, azaz $\mu_1 \ll \mu_2$, ha $\forall A \in \mathcal{F}$ esetén $\mu_2(A) = 0 \implies \mu_1(A) = 0$.

13.3. Mértékek szingularitása

Adott (Ω, \mathcal{F}) mérhető tér és $\mu_1, \mu_2 : \mathcal{F} \mapsto \mathbb{R}$ mértékek. Azt mondjuk, hogy μ_1 szinguláris μ_2 -re nézve, azaz $\mu_1 \perp \mu_2$, ha $\exists \Omega_1, \Omega_2 \in \mathcal{F}$ olyan halmazok, hogy $\Omega_1 \cup \Omega_2 = \Omega$ és $\Omega_1 \cap \Omega_2 = \emptyset$ és $\mu_1(\Omega_1) = 0$ és $\mu_2(\Omega_2) = 0$.

13.4. Radon-Nikodym tétel

Adott (Ω, \mathcal{F}) mérhető tér és $\mu, \nu : \mathcal{F} \mapsto \mathbb{R}$ olyan mértékek, hogy $\mu \ll \nu$. Ekkor $\exists ! f : \Omega \mapsto \mathbb{R}_+$ olyan mérhető függvény, hogy $\forall A \in \mathcal{F}$ esetén

$$\mu(A) = \int_A f \, d\nu = \int_{\Omega} \chi_A f \, d\nu.$$

Ekkor $f = \frac{\mathrm{d}\mu}{\mathrm{d}\nu}$ a μ mérték ν szerinti Radon-Nikodym deriváltja.

Valószínűségszámítás 14. TÉTEL

14. Tétel

14.1. Valószínűségi változó által generált σ -algebra

Adott $\xi:(\Omega,\mathcal{F},P)\mapsto\mathbb{R}$ valószínűségi változó által generált σ -algebra $\mathcal{F}_{\xi}=\mathcal{F}_{\xi^{-1}(\mathcal{B}_{\mathbb{R}})}$.

14.1.1. Valószínűségi változó által generált $\sigma\text{-algebra}$

Adott $\xi:(\Omega,\mathcal{F},P)\mapsto\mathbb{R}$ valószínűségi változó által generált σ -algebra $\mathcal{F}_{\xi}=\mathcal{F}_{\xi^{-1}(\mathcal{B}_{\mathbb{R}})}$.

14.2. Független valószínűségi változók

Adott (Ω, \mathcal{F}, P) valószínűségi mező és $\xi, \mu : (\Omega, \mathcal{F}, P) \mapsto \mathbb{R}$ valószínűségi változók. Ekkor ξ, μ függetlenek, ha $\forall (A_k)_{k \leq n \in \mathbb{N}} \subset \mathcal{F}_{\xi}$ és $\forall (B_j)_{j \leq m \in \mathbb{N}} \subset \mathcal{F}_{\mu}$ rendszerek függetlenek, azaz $\forall (A_k, B_j) \in (A_k) \times (B_j)$ független.

14.2.1. Független valószínűségi változók várható értéke

Ha ξ, η független valószínűségi változók, akkor

$$E(\xi \eta) = E(\xi)E(\eta).$$

14.2.2. Független valószínűségi változók szórása

Ha ξ, η független valószínűségi változók, akkor

$$\sigma^2(\xi + \eta) = \sigma^2(\xi) + \sigma^2(\eta).$$

Bizonyítás

$$\sigma^{2}(\xi + \eta) = E((\xi + \eta)^{2}) - E^{2}(\xi + \eta) = E(\xi^{2} + 2\xi\eta + \eta^{2}) - E^{2}(\xi) - 2E(\xi)E(\eta) - E^{2}(\eta) =$$

$$= E(\xi^{2}) - E^{2}(\xi) + E(\eta^{2}) - E^{2}(\eta) = \sigma^{2}(\xi) + \sigma^{2}(\eta)$$

14.2.3. Független valószínűségi változók együttes eloszlása

Adottak $(\xi_k)_{k \leq n \in \mathbb{N}}$ független valószínűségi változók együttes eloszlása

$$Q_{\xi} = \prod_{i=1}^{n} Q_{\xi_i}.$$

Valószínűségszámítás 15. TÉTEL

15. Tétel

15.1. Vektor értékű valószínűségi változó

Adott $\xi:(\Omega,\mathcal{F},P)\mapsto\mathbb{R}^n$ valószínűségi változó

$$\xi = \begin{pmatrix} \xi_1 \\ \xi_2 \\ \vdots \\ \xi_n \end{pmatrix}$$

ahol $\forall \xi_i : (\Omega, \mathcal{F}, P) \mapsto \mathbb{R}$.

15.1.1. Eloszlás

 $\xi:(\Omega,\mathcal{F},P)\mapsto\mathbb{R}^n$ vektor értékű valószínűségi változó eloszlása

$$Q_{\xi}(A) = P(\xi^{-1}(A)).$$

15.1.2. Eloszlásfüggvény

 $\xi:(\Omega,\mathcal{F},P)\mapsto\mathbb{R}^n$ vektor értékű valószínűségi változó eloszlásfüggvénye $F_\xi:\mathbb{R}^n\mapsto\mathbb{R}$

$$F_{\xi}(x) = P\left(\omega \in \Omega \middle| \forall \xi_i(\omega) < x_i\right) = P\left(\xi^{-1}\left(\prod_{i=1}^n(-\infty, x_i)\right)\right) = Q_{\xi}\left(\prod_{i=1}^n(-\infty, x_i)\right).$$

15.1.2.1. Tulajdonságok

Adott $\xi: (\Omega, \mathcal{F}, P) \mapsto \mathbb{R}^n$ vektor értékű valószínűségi változó és $a < b \in \mathbb{R}^n$.

- 1. F_{ξ} minden változójában monoton nő
- 2. F_{ξ} minden változójában balról folytonos

3.

$$\forall \lim_{x \to -\infty} F_{\xi}(x) = 0$$

4.

$$\lim_{\forall x_i \to \infty} F_{\xi}(x) = 1$$

5.

$$\sum_{\varepsilon \in \{0,1\}^n} (-1)^{|\varepsilon|} F_{\xi} (a\varepsilon + b(1-\varepsilon)) \ge 0$$

ahol $|\varepsilon|$ az ε 1-es koordinátáinak száma.

15.1.2.2. Peremeloszlás-függvények diszkrét esetben

Adott $\xi = \begin{pmatrix} \eta \\ \gamma \end{pmatrix}$ diszkrét eloszlású vektor értékű valószínűségi változó peremeloszlásai

$$P(\eta=i) = \sum_k P(\eta=i, \gamma=k) \qquad P(\gamma=k) = \sum_i P(\eta=i, \gamma=k).$$

15.2. Folytonos vektor értékű valószínűségi változók

Azt mondjuk, hogy $\xi:(\Omega,\mathcal{F},P)\mapsto\mathbb{R}^n$ vektor értékű valószínűségi változó folytonos eloszlású, ha $Q_\xi\ll\lambda_{\mathbb{R}^n}.$

Valószínűségszámítás 15. TÉTEL

15.2.1. Összefüggés a peremsűrűség-függvények és az együttes sűrűségfüggvény között független esetben

Adott ξ folytonos eloszlású vektor értékű valószínűségi változó. Ha $\forall \xi_i$ függetlenek, akkor

$$f_{\xi}(x) = \prod_{i=1}^{n} f_{\xi_i}(x_i).$$

15.2.2. Peremsűrűség-függvények

Adott $\xi = \begin{pmatrix} \eta \\ \gamma \end{pmatrix}$ folytonos eloszlású vektor értékű valószínűségi változó f_{ξ} sűrűségfüggvénnyel. Ekkor

$$f_{\eta}(x) = \int_{-\infty}^{\infty} f_{\xi}(x, y) \, \mathrm{d}y \qquad f_{\gamma}(y) = \int_{-\infty}^{\infty} f_{\xi}(x, y) \, \mathrm{d}x.$$

15.2.3. Intervallumba esés valószínűsége

Adott $\xi = \begin{pmatrix} \eta \\ \gamma \end{pmatrix}$ folytonos eloszlású vektor értékű valószínűségi változó f_{ξ} sűrűségfüggvénnyel. Ekkor

$$P(\eta \in I, \gamma \in J) = \iint_{I \times J} f_{\xi}(x, y) d(x, y).$$

Valószínűségszámítás 16. TÉTEL

16. Tétel

16.1. Kovariancia

Adottak ξ, η valószínűségi változók. Ekkor ξ és η kovarianciája

$$cov(\xi, \eta) = E((\xi - E(\xi))(\eta - E(\eta))).$$

16.1.1. Kovariancia kiszámítása

Adottak ξ, η valószínűségi változók. Ekkor

$$cov(\xi, \eta) = E(\xi\eta) - E(\xi)E(\eta).$$

Bizonyítás

$$cov(\xi,\eta) = E((\xi - E(\xi))(\eta - E(\eta))) = E(\xi\eta - \xi E(\eta) - \eta E(\xi) + E(\xi)E(\eta)) =$$
$$= E(\xi\eta) - 2E(\xi)E(\eta) + E(\xi)E(\eta) = E(\xi\eta) - E(\xi)E(\eta)$$

16.1.1.1. Diszkrét eset

Adottak $\xi, \eta: (\Omega, \mathcal{F}, P) \mapsto \mathbb{R}$ diszkrét eloszlású valószínűségi változók kovarianciája

$$cov(\xi, \eta) = \sum_{i} \sum_{j} \xi_{i} \eta_{j} P(\xi = \xi_{i}, \eta = \eta_{j}) - \left(\sum_{i} \xi_{i} P(\xi = \xi_{i})\right) \left(\sum_{j} \eta_{j} P(\eta = \eta_{j})\right).$$

16.1.1.2. Folytonos eset

Adottak ξ, η folytonos eloszlású valószínűségi változók kovarianciája

$$\operatorname{cov}(\xi, \eta) = \iint_{\mathbb{R}^2} xy f_{(\xi, \eta)}(x, y) \, \mathrm{d}(x, y) - \left(\int_{\mathbb{R}} x f_{\xi}(x) \, \mathrm{d}x \right) \left(\int_{\mathbb{R}} y f_{\eta}(y) \, \mathrm{d}y \right).$$

16.1.2. Kovariancia független esetben

Ha ξ, η független valószínűségi változók, akkor $cov(\xi, \eta) = 0$.

Bizonyítás

$$cov(\xi, \eta) = E(\xi\eta) - E(\xi)E(\eta) = 0.$$

16.1.3. Valószínűségi változó standardizáltja

Adott $\xi:(\Omega,\mathcal{F},P)\mapsto\mathbb{R}$ valószínűségi változó standardizáltja $\hat{\xi}=\frac{\xi-E(\xi)}{\sigma(\xi)}$.

16.2. Korrelációs együttható

Adott ξ, η valószínűségi változók korrelációja

$$\operatorname{corr}(\xi, \eta) = \frac{\operatorname{cov}(\xi, \eta)}{\sigma(\xi)\sigma(\eta)}.$$

Valószínűségszámítás 17. TÉTEL

17. Tétel

17.1. Diszkrét eset

Adott ξ diszkrét eloszlású valószínűségi változó és $h: \mathbb{R} \to \mathbb{R}$. Ekkor az $\eta = h(\xi)$ valószínűségi változóra

$$P(\eta = \eta_i) = \sum_{h(\xi_j) = \eta_i} P(\xi = \xi_j).$$

17.2. Folytonos eset

Adott ξ folytonos eloszlású valószínűségi változó és $h: \mathbb{R} \mapsto \mathbb{R}$ szigorúan monoton, differenciálható függvény. Ekkor az $\eta = h(\xi)$ valószínűségi változó sűrűségfüggvénye

$$f_{\eta}(x) = f_{\xi}(h^{-1}(x)) \left| \frac{\mathrm{d}h^{-1}(x)}{\mathrm{d}x} \right|.$$

Bizonyítás

Tegyük fel először, hogy h szigorúan monoton nő. Ekkor

$$\{\eta < x\} = \{h(\xi) < x\} = \{\xi < h^{-1}(x)\}\$$

így

$$F_{\eta}(x) = P(\eta < x) = P(\xi < h^{-1}(x)) = F_{\xi}(h^{-1}(x))$$

amiből

$$f_{\eta}(x) = F'_{\eta}(x) = F'_{\xi}(h^{-1}(x)) = f(h^{-1}(x)) \frac{\mathrm{d}h^{-1}(x)}{\mathrm{d}x} = f_{\xi}(h^{-1}(x)) \left| \frac{\mathrm{d}h^{-1}(x)}{\mathrm{d}x} \right|$$

hiszen h szigorúan monoton nő, így a derivált pozitív.

Most tegyük fel, hogy h szigorúan monton csökken. Ekkor

$$\{\eta < x\} = \{h(\xi) < x\} = \{\xi > h^{-1}(x)\}$$

így

$$F_{\eta}(x) = P(\eta < x) = P(\xi > h^{-1}(x)) = 1 - F_{\xi}(h^{-1}(x))$$

amiből

$$f_{\eta}(x) = F'_{\eta}(x) = -F'_{\xi}(h^{-1}(x)) = -f(h^{-1}(x)) \frac{\mathrm{d}h^{-1}(x)}{\mathrm{d}x} = f_{\xi}(h^{-1}(x)) \left| \frac{\mathrm{d}h^{-1}(x)}{\mathrm{d}x} \right|$$

hiszen h szigorúan monoton csökken, így a derivált negatív.

17.2.1. Lineáris transzformáció

Adott ξ folytonos eloszlású valószínűségi változó és $\eta=a\xi+b$. Tehát h(x)=ax+b, amiből $h^{-1}(x)=\frac{x-b}{a}$, illetve $\left|\frac{\mathrm{d}h^{-1}(x)}{\mathrm{d}x}\right|=\frac{1}{|a|}$. Tehát

$$f_{\eta}(x) = \frac{1}{|a|} f_{\xi} \left(\frac{x-b}{a} \right).$$

2018. január 3. 19:36 Vághy Mihály

Valószínűségszámítás 18. TÉTEL

18. Tétel

18.1. Diszkrét feltételes eloszlás eloszlásfüggvénye

Adott $\xi = \begin{pmatrix} \eta \\ \gamma \end{pmatrix}$ diszkrét eloszlású vektor értékű valószínűségi változó. Ekkor

$$F^*(x|y_i < \gamma < y_j) = P(\xi < x|y_i < \gamma < y_j) = \frac{F_{\xi}(x, y_j) - F_{\xi}(x, y_i)}{F_{\gamma}(y_j) - F_{\gamma}(y_i)}.$$

18.2. Folytonos feltételes eloszlás eloszlásfüggvénye

Adott $\xi = \begin{pmatrix} \eta \\ \gamma \end{pmatrix}$ folytonos eloszlású vektor értékű valószínűségi változó. Ekkor

$$F^*(x|z) = P(\eta \in I|\gamma = z)) = \begin{cases} \int_I \frac{f_{\xi}(x,z)}{f_{\gamma}(z)} dx & f_{\gamma}(z) \neq 0\\ 0 & f_{\gamma}(z) = 0. \end{cases}$$

18.2.1. Sűrűségfüggvény

Adott $\xi = \begin{pmatrix} \eta \\ \gamma \end{pmatrix}$ folytonos eloszlású vektor értékű valószínűségi változó. Ekkor

$$f_{(\eta|\gamma=z)}(x) = \frac{f_{\xi}(x,z)}{f_{\gamma}(z)}.$$

18.2.2. Várható érték

Adott $\xi = \begin{pmatrix} \eta \\ \gamma \end{pmatrix}$ folytonos eloszlású vektor értékű valószínűségi változó. Ekkor

$$E(\eta|\gamma=z) = \int_{-\infty}^{\infty} x f_{(\eta|\gamma=z)}(x) \, \mathrm{d}x.$$

18.2.2.1. Regressziós függvény

Adott $\xi = \begin{pmatrix} \eta \\ \gamma \end{pmatrix}$ vektor értékű valószínűségi változó. Az η γ -ra vonatkoztatott regressziós függvény

$$r(z) = E(\eta | \gamma = z).$$

Valószínűségszámítás 19. TÉTEL

19. Tétel

19.1. 1-valószínűséggel megegyező valószínűségi változók

Adot $\xi, \eta: (\Omega, \mathcal{F}, P) \mapsto \mathbb{R}$ valószínűségi változók 1-valószínűséggel megegyeznek, ha

$$P(\omega \in \Omega | \xi(\omega) = \eta(\omega)) = 1.$$

Ekkor azt mondjuk, hogy $\xi = \eta$ P-majdnem mindenütt.

19.2. \mathcal{L}^p tér

Adott $p \in [1, \infty)$

$$\mathcal{L}^p_{\mathbb{R}}(\Omega,\mathcal{F},P) = \bigg\{ f: (\Omega,\mathcal{F},P) \mapsto \mathbb{R} \bigg| f \text{ m\'erhet\'o}, \int_{\Omega} \left| f \right|^p \mathrm{d}P < \infty \bigg\}.$$

19.3. *p*-norma

Adott $f \in \mathcal{L}^p_{\mathbb{R}}(\Omega, \mathcal{F}, P)$

$$||f||_{p} = \begin{cases} \left(\int_{\Omega} |f|^{p} dP \right)^{\frac{1}{p}} & p \in [0, \infty) \\ \sup_{\omega \in \Omega \backslash A} |f(\omega)| & p = \infty \end{cases}$$

19.4. Konvergencia-fajták \mathcal{L}^p terekben

Adott $(f_n)_{n\in\mathbb{N}}\subset\mathcal{L}^p$ függvénysorozat és $f\in\mathcal{L}^p$, illetve (Ω,\mathcal{F},P) valószínűségi mező, $(\xi_n)_{n\in\mathbb{N}}$ valószínűségi változósorozat és ξ valószínűségi változó.

19.4.1. 1-valószínűséggel egyenletes konvergencia

Azt mondjuk, hogy $f_n \to f$ 1-valószínűséggel egyenletesen, ha

$$\lim_{n \to \infty} \left\| f_n - f \right\|_{\infty} = 0.$$

Ekkor $f_n \stackrel{m.m.e.}{\longrightarrow} f$.

19.4.2. 1-valószínűséggel konvergencia

Azt mondjuk, hogy $f_n \to f$ 1-valószínűséggel, ha

$$P(\omega \in \Omega | f_n(\omega) \to f(\omega)) = 1.$$

Ekkor $f_n \stackrel{m.m.}{\longrightarrow} f$.

19.4.3. \mathcal{L}^p -ben való konvergencia

Azt mondjuk, hogy $f_n \to f \mathcal{L}^p$ -ben, ha

$$\lim_{n \to \infty} \left\| f_n - f \right\|_p = 0.$$

Ekkor $f_n \xrightarrow{\mathcal{L}^p} f$.

19.4.4. Sztochasztikus konvergencia

Azt mondjuk, hogy $\xi_n \to \xi$ sztochasztikusan, ha $\forall \varepsilon > 0$ esetén

$$\lim_{n \to \infty} P\left(\omega \in \Omega \Big| \big| \xi_n(\omega) - \xi(\omega) \big| > \varepsilon\right) = 0.$$

Valószínűségszámítás 19. TÉTEL

19.4.5. Eloszlásban való konvergencia

Azt mondjuk, hogy $\xi_n \to \xi$ eloszlásban, ha

$$\lim_{n \to \infty} F_{\xi_n}(x) = F_{\xi}(x).$$

19.4.6. Konvergencia-fajták közti összefüggés

19.5. Centrális határeloszlás tétel

Adottak $(\xi_n)_{n\in\mathbb{N}}$ független, azonos eloszlású valószínűségi változók. Ekkor

$$P\left(\frac{\sum_{i=1}^{n} \xi_i - nE(\xi_1)}{\sqrt{n}\sigma(\xi_1)} < x\right) \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt.$$

19.6. DeMoivre-Laplace tétel

A (n,p) paraméterű binomiális eloszlás sztochasztikusan konvergál a $\left(np,\sqrt{np(1-p)}\right)$ paraméterű normális eloszláshoz.

Valószínűségszámítás 20. TÉTEL

20. Tétel

20.1. Minta

Mintának nevezzük a (ξ_i) mintavételi változók összességét. A nagyság szerint növekvő sorrendbe rendezett elemeket (ξ_i^*) -al jelöljük.

20.1.1. Középérték

A minta középértéke

$$\overline{\xi} = \frac{\sum_{i=1}^{n} \xi_i}{n}.$$

20.1.2. Empirikus szórás

A minta empirikus szórása

$$\sigma_n = \sqrt{\frac{\sum_{i=1}^n \left(\xi_i - \overline{\xi}\right)^2}{n}}.$$

20.1.2.1. Korrigált empirikus szórásnégyzet

A minta korrigált empirikus szórásnégyzete

$$s_n^2 = \frac{n}{n-1}\sigma_n^2.$$

20.1.3. Középpont

A minta középpontja

$$\frac{\xi_1^* + \xi_n^*}{2}.$$

20.1.4. Medián

A minta mediánja

$$\begin{cases} \xi_k^* & n=2k-1 \\ \frac{\xi_k^* + \xi_{k+1}^*}{2} & n=2k \end{cases}.$$

20.1.5. Terjedelem

A minta terjedelme

$$\xi_n^* - \xi_1^*$$
.

20.1.6. Empirikus eloszlásfüggvény

A minta empirikus eloszlásfüggvénye

$$F_n(x) = \begin{cases} 0 & x \le \xi_1^* \\ \frac{k}{n} & \xi_k^* < x \le \xi_{k+1}^* \\ 1 & \xi_n^* < x \end{cases}.$$

20.1.7. Empirikus sűrűségfüggvény

A minta empirikus sűrűségfüggvénye

$$f(x) = \frac{k(x+h) - k(x)}{nh}$$

ahol k(x) azon mintaelemek száma, melyek értéke kisebb, mint x.

Valószínűségszámítás 20. TÉTEL

20.2. Becslés

Adott

1. ξ megfigyelt valószínűségi változó

2. $\theta \xi$ eloszlása

3. (ξ_i) ξ -ből vett *n*-elemű minta.

A becslés célja, hogy készítsünk egy

$$\hat{\theta} = f(\xi_1, \xi_2, \dots, \xi_n)$$

függvényt, mellyel becsüljük θ -t.

20.2.1. Tulajdonságok

- 1. A becslés torzítatlan, ha $E(\hat{\theta}) = \theta$.
- 2. $\hat{\theta}_1$ hatásosabb, mint $\hat{\theta}_2$, ha $\sigma(\hat{\theta}_1) < \sigma(\hat{\theta}_2)$.
- 3. A $(\hat{\theta}_n)$ sorozat aszimptotikusan torzítatlan, ha $\lim_{n\to\infty} E(\hat{\theta}_n) = \theta$.
- 4. A becslés elégséges, ha a változók együttes feltételes eloszlása bármilyen $\hat{\theta} = y$ feltétel esetén nem tartalmazza a becsült θ paramétert.
- 5. A becslés konzisztens, ha torzzítatlan és $\hat{\theta} \stackrel{m.m.}{\longrightarrow} \theta$.

20.3. Maximum likelihood estimation

Az MLE során az $L(\theta)$ likelihood függvényt kell maximalizálnunk, ahol n független minta esetén

$$L(\theta) = \prod_{i=1}^{n} f(x_i|\theta).$$

Hasonló elv alapján az $l(\theta)$ log likelihood függvény is elég maximalizálnunk, ahol

$$l(\theta) = \ln L(\theta) = \sum_{i=1}^{n} \ln f(x_i|\theta).$$

20.4. Konfidenciaintervallum

A $\hat{\theta}$ becsléshez tartozó $(\hat{\theta}-z,\hat{\theta}+z)$ konfidencia
intervallumról azt mondjuk, hogy $100(1-\alpha)\%$ -os megbízhatósági szinthez tartozik, h
a $1-\alpha$ valószínűséggel a ténylegesen meghatározott intervallum lefedi a becsült paraméter valódi értékét.

20.4.1. Normális eloszlás ismert szórással

Becsüljük $E(\xi) = m$ -t a középértékkel! Definiáljunk egy új változót

$$\eta = \frac{\overline{\xi} - m}{\frac{\sigma}{\sqrt{n}}}$$

így η standard normális eloszlású. Ekkor kell

$$P(-z < \eta < z) = \Phi(z) - \Phi(-z) = 2\Phi(z) - 1 = 1 - \alpha$$

Valószínűségszámítás 20. TÉTEL

amiből $\Phi(z)=1-\frac{\alpha}{2},$ amibőlzmeghatározható. Ekkor

$$\begin{split} &-z<\frac{\overline{\xi}-m}{\frac{\sigma}{\sqrt{n}}}$$

tehát a konfidenciaintervallum

$$\left(\overline{\xi} - z \frac{\sigma}{\sqrt{n}}, \overline{\xi} + z \frac{\sigma}{\sqrt{n}}\right).$$

20.4.2. Nem normális eloszlás ismert szórással

Becsüljük $E(\xi)=m$ -t a középértékkel! A centrális határeloszlás tételből

$$P\left(\frac{\sum_{i=1}^{n} \xi_i - nE(\xi_1)}{\sqrt{n}\sigma(\xi_1)} < z\right) \approx \Phi(z).$$

Tehát

$$P\left(\frac{\left|\overline{\xi}-m\right|}{\frac{\sigma}{\sqrt{n}}}\right) < z \approx 2\Phi(z) - 1 = 1 - \alpha$$

amiből a konfidenciaintervallum

$$\left(\overline{\xi} - z\frac{\sigma}{\sqrt{n}}, \overline{\xi} + z\frac{\sigma}{\sqrt{n}}\right).$$