UNIVERSIDADE DO MINHO

6 de fevereiro de 2012

Álgebra Linear

Exame de Recurso - A

LEI

Esboço de possível resolução

Duração: 2 horas

Nome: ______ $N^{\underline{o}}$: _____

Ι

Relativamente às questões deste grupo indique, para cada alínea, se a afirmação é verdadeira (V) ou falsa (F), colocando uma circunferência no símbolo correspondente. As respostas incorrectamente assinaladas têm cotação negativa.

- **1**. **a**) Se $AB = \begin{pmatrix} 1 & 1 \\ 0 & b \end{pmatrix}$, com $b \in \mathbb{R}$, e $AC = \begin{pmatrix} 2 & 3 \\ 5 & 0 \end{pmatrix}$ então $A(B+C) = \begin{pmatrix} 3 & 4 \\ 5 & b \end{pmatrix}$.
 - **b**) A matriz, de ordem $n, A = [a_{ij}]$ com $a_{ij} = i^2 + j^2$ é uma matriz simétrica.
 - c) Se $A=\begin{pmatrix} x & 4 & -2 \end{pmatrix}$ e $B=\begin{pmatrix} 2 & -3 & 5 \end{pmatrix}$, não existe $x\in\mathbb{R}$ tal que $AB^T=0$.
- **2**. **a)** A matriz $A = \begin{pmatrix} 1 & k-3 \\ -2 & k-2 \end{pmatrix}$ tem característica 2 para qualquer valor real, não nulo, k. V $\stackrel{\frown}{(F)}$
 - **b**) A matriz $A = \begin{pmatrix} 1 & 1 & 1 \\ a & b & c \\ b+c & c+a & a+b \end{pmatrix}$ tem determinante nulo, $\forall a,b,c \in \mathbb{R}$. \bigcirc V
 - c) Sendo A e B matrizes de ordem n>1 invertíveis e $AB=I_n,$ tem-se $A^{-1}=B$ e $B^{-1}=A.$ \bigcirc
- 3. Sejam $\mathbf{x} = (1, 1, 1), \mathbf{y} = (1, 1, 0), \mathbf{z} = (0, 0, 1)$ e $\mathbf{w} = (0, 1, 1)$ quatro vectores de \mathbb{R}^3 .
 - a) Os vectores \mathbf{x} e \mathbf{y} geram um subespaço vectorial de \mathbb{R}^3 .
- V (F)

 $\mathbf{b}) \ \{\mathbf{x},\mathbf{y},\mathbf{z}\} \ \text{\'e} \ \text{uma base de} \ \mathbb{R}^3.$

V F

c) Existem reais α , β e γ , tais que, $\alpha \mathbf{x} + \beta \mathbf{y} + \gamma \mathbf{z} = \mathbf{w}$.

- V (F)
- **4.** Seja f uma aplicação linear de \mathbb{R}^2 em \mathbb{R}^3 , tal que, f((-1,3)) = (-1,2,1) e f((-2,3)) = (3,3,3).
 - a) f((1,0)) = (-2, -5, -4).

V F

b) f((0,0)) = (1,1,1).

V(F)

c) A matriz da aplicação linear f é de ordem 3×2 .

 \widehat{V} F

Responda às questões deste grupo justificando a sua resposta e apresentando todos os cálculos efectuados.

1. Sendo

$$A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 0 & 2 \\ -1 & 2 & \alpha \end{pmatrix} \quad \mathbf{e} \quad \mathbf{b} = \begin{pmatrix} 6 \\ 1 \\ \beta \end{pmatrix}, \quad \mathbf{com} \ \alpha, \beta \in \mathbb{R},$$

considere o sistema $AX = \mathbf{b}$, de variáveis x, y, z, cuja matriz ampliada é $[A|\mathbf{b}]$.

- a) Complete de modo a obter afirmações verdadeiras.
 - i) O sistema $AX = \mathbf{b}$ é impossível se e só se $\alpha = 7$ e $\beta \neq 8$.
 - ii) O sistema $AX = \mathbf{b}$ é possível e indeterminado se e só se $\alpha = 7$ e $\beta = 8$.
 - iii) O sistema $AX = \mathbf{b}$ é possível e determinado se e só se $\alpha \neq 7$.
- b) Considere o sistema homogéneo $AX = \mathbf{0}$, para $\alpha = 7$, e determine o seu conjunto solução.

A matriz dos coeficientes do sistema homogéneo é: $A=\begin{pmatrix} 1 & 2 & 3 \\ -1 & 0 & 2 \\ -1 & 2 & 7 \end{pmatrix}$, tendo-se

$$\begin{pmatrix} 1 & 2 & 3 \\ -1 & 0 & 2 \\ -1 & 2 & 7 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & 5 \\ 0 & 0 & 0 \end{pmatrix}, \text{ donde vem } \begin{cases} x + 2y + 3z & = 0 \\ 2y + 5z & = 0 \end{cases} \Rightarrow \begin{cases} x & = 2z \\ y & = -5z/2 \end{cases}$$

e assim o conjunto solução é $S = \{(2z, -5z/2, z), z \in \mathbb{R}\}.$

TTT

Responda às questões deste grupo justificando a sua resposta e apresentando todos os cálculos efectuados.

1. Considere o subconjunto de \mathbb{R}^3 ,

$$S = \{(x, y, z) : \mathbb{R}^3 : x + y - z = 0\}.$$

- a) Mostre que S é um subespaço de \mathbb{R}^3 .
- **b**) Calcule, justificando, a dimensão de S.
- c) Considere $B = \{(1,0,1), (1,1,2)\}$. Verifique se B é uma base de S.
- d) Averigúe se o vector (1,2,3) pertence ao subespaço gerado pelos vectores (1,0,1) e (-1,1,0).
- a) De $x + y z = 0 \Leftrightarrow x = z y \text{ vem } S = \{(z y, y, z) : \mathbb{R}^3 : y, z \in \mathbb{R}\}.$
 - * $S \neq \emptyset$, pois, por exemplo, $(0,0,0) \in U_0$.
 - * Sejam $\mathbf{a}=(z-y,y,z)$ e $\mathbf{b}=(z'-y',y',z)'$ elementos de S, com $y,y',z,z'\in\mathbb{R}$. Então $\mathbf{a}+\mathbf{b}=((z+z')-(y+y'),y+y',z+z')$ e, portanto, é também um elemento de S.
 - * Seja $k \in \mathbb{R}$ e seja $\mathbf{a} = (z y, y, z)$ um elemento de S, com $y, z \in \mathbb{R}$. Então $k\mathbf{a} = (k(z y), ky, kz)$ e, portanto, é também um elemento de S.

Sendo S um subconjunto de \mathbb{R}^3 , não vazio, fechado relativamente à soma de vectores e relativamente ao produto escalar, conclui-se que é um subespaço vectorial de \mathbb{R}^3 .

2

b) Tendo-se
$$(z-y,y,z)=z(1,0,1)+y(-1,1,0)$$
 vem que $S=\langle (1,0,1),(-1,1,0)\rangle$.
Tendo-se ainda $\begin{pmatrix} 1 & -1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 \\ 0 & 1 \\ 0 & -1 \end{pmatrix}$, matriz cuja característica é 2, pode concluir-se que os vectores $\{(1,0,1),(-1,1,0)\}$ são linearmente independentes. Assim o conjunto $\{(1,0,1),(-1,1,0)\}$ constituí uma base do subespaço S , já que é formado por um conjunto de vectores geradores, de S , linearmente

c) Os vectores
$$(1,0,1)$$
 e $(1,1,2)$ pertencem ao subespaço S já que se tem $1+0-1=0$ e $1+1-2=0$.

$$De \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 temos uma matriz cuja característica é 2. Assim os dois vectores que constituem o conjunto B , e são também vectores de S , são linearmente independentes e,

vectores que constituem o conjunto B, e são também vectores de S, são linearmente independentes e, sendo pela alinea b) S um subespaço de dimensão 2, temos dois vectores linearmente independesntes num subespaço de dimensão 2, formando então uma base desse subespaço, S.

d) De
$$\begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 2 \\ 1 & 0 & 3 \end{pmatrix}$$
 \rightarrow $\begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{pmatrix}$ \rightarrow $\begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ tendo-se $\begin{cases} x - y = 1 \\ y = 2 \end{cases}$ \Leftrightarrow $\begin{cases} x = 3 \\ y = 2 \end{cases}$

E assim podemos escrever (1,2,3) = 3(1,0,1) + 2(-1,1,0), e concluir que o vector (1,2,3) pertence aos espaço gerado por (1,0,1) e (-1,1,0).

2. Considere a matriz
$$A = \begin{pmatrix} 4 & 0 & 2 \\ 1 & 1 & 3 \\ 0 & 0 & -2 \end{pmatrix}$$
.

independentes.

- a) Escreva o polinómio característico da matriz A.
- **b**) Verifique, justificando, que $\lambda = 1$ é valor próprio de A.
- \mathbf{c}) Calcule os restantes valores próprios da matriz A.
- d) Considere o valor próprio $\lambda = 1$ e calcule o respectivo subespaço próprio.

$$[\mathbf{a})\ p(\lambda) = |A - \lambda I| = \begin{vmatrix} 4 - \lambda & 0 & 2\\ 1 & 1 - \lambda & 3\\ \underline{0} & \underline{0} & \underline{-2 - \lambda} \end{vmatrix} = (-2 - \lambda)(4 - \lambda)(1 - \lambda).$$

b) Se 1 é valor próprio então |A - 1.I| = 0.

Calculando $|A-1.I|=\begin{vmatrix}3&0&2\\1&0&3\\0&0&-3\end{vmatrix}=0$, já que a matriz tem uma coluna toda de zeros, e pode concluir-se que $\lambda=1$ é valor próprio da matriz A.

c) Da alínea a), se $p(\lambda) = (-2 - \lambda)(4 - \lambda)(1 - \lambda)$ e, sendo os valores próprios de A os valores que anulam os zeros do polinómio característico, tem-se

$$p(\lambda) = 0 \Leftrightarrow (-2 - \lambda)(4 - \lambda)(1 - \lambda) = 0$$

$$\Leftrightarrow (-2 - \lambda) = 0 \lor (4 - \lambda) = 0 \lor (1 - \lambda) = 0$$

$$\Leftrightarrow \lambda = -2 \lor \lambda = 4 \lor \lambda = 1$$

sendo os restantes valores próprios da matriz A, -2 e 4.

d) De $Ax = \lambda x$ com $\lambda = 1$ vem (A - 1I)x = 0.

$$(A-1I) = \begin{pmatrix} 3 & 0 & 2 \\ 1 & 0 & 3 \\ 0 & 0 & -3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 3 \\ 3 & 0 & -7 \\ 0 & 0 & -3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 3 \\ 0 & 0 & -7 \\ 0 & 0 & 0 \end{pmatrix}$$

tendo-se o sistema homógeneo $\begin{cases} x+3z=0 \\ -7z=0 \end{cases} \Leftrightarrow \begin{cases} x=0 \\ z=0 \end{cases} \text{ com solução } S=\{(0,y,0): y\in \mathbb{R}\}.$ Assim, o subespaço próprio associado ao valor próprio $\lambda=1$ é $U_{\lambda=1}=\{(0,y,0): y\in \mathbb{R}\}.$

3. Considere a aplicação linear $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ tal que

$$f((1,1)) = (1,2,1), f((-1,1)) = (-1,0,3).$$

a) Determine f((1,0)) e f((0,1)) e indique, justificando, qual a matriz da aplicação linear f relativamente às bases canónicas de \mathbb{R}^2 e \mathbb{R}^3 .

$$f((1,0)) = f(\frac{1}{2}(1,1) - \frac{1}{2}(-1,1)) = \frac{1}{2}f((1,1)) - \frac{1}{2}f((-1,1)) = \frac{1}{2}(1,2,1) - \frac{1}{2}(-1,0,3) = (1,1,-1)$$

$$f((0,1)) = f(\frac{1}{2}(1,1) + \frac{1}{2}(-1,1)) = \frac{1}{2}f((1,1)) + \frac{1}{2}f((-1,1)) = \frac{1}{2}(1,2,1) + \frac{1}{2}(-1,0,3) = (0,1,2)$$

Os vectores, (1,0) e (0,1), constituem a base canónica de \mathbb{R}^2 , pelo que a matriz da aplicação linear f em relação às bases canónicas de \mathbb{R}^2 e \mathbb{R}^3 é:

$$\left(\begin{array}{cc}
1 & 0 \\
1 & 1 \\
-1 & 2
\end{array}\right)$$

b) Determine f((x,y)) com $(x,y) \in \mathbb{R}^2$.

Veja-se que,
$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ x+y \\ -x+2y \end{pmatrix}$$
, pelo que, $f((x,y)) = (x,x+y,-x+2y)$.

 ${f c})$ Determine Nuc(f) e classifique, justificando, f quanto à injectividade.

O Nuc(f) corresponde ao conjunto solução do sistema homogéneo associado à matriz da aplicação.

Logo,
$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ -1 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$$
, $\begin{cases} x = 0 \\ y = 0 \end{cases}$ e $Nuc(f) = \{(0,0)\}.$

Como Nuc(f) é apenas constituído pelo vector nulo de \mathbb{R}^2 , conclui-se que f é injectiva.

4. Seja P uma matriz quadrada de ordem n, invertível, e seja $T:\mathbb{R}^{n\times n}\longrightarrow\mathbb{R}^{n\times n}$ a aplicação definida por

$$T(A) = P^{-1}AP, \quad \forall A \in \mathbb{R}^{n \times n}.$$

Mostre que T é uma aplicação linear.

Veja-se que, $\forall A, B \in \mathbb{R}^{n \times n}$

$$T(A + B) = P^{-1}(A + B)P$$
(1)
$$= P^{-1}AP + P^{-1}BP$$
(2)
$$= T(A) + T(B)$$
(1)

4

com (1): definição da aplicação T.

com (2): operação válida em $\mathbb{R}^{n \times n}$

Tem-se ainda que, $\forall A \in \mathbb{R}^{n \times n}$ e $\alpha \in \mathbb{R}$

$$T(\alpha A) = P^{-1}(\alpha A)P$$

$$(1)$$

$$= \alpha P^{-1}AP$$

$$(2)$$

$$= \alpha T(A)$$

$$(1)$$

com (1): definição da aplicação T, e sabendo que $\alpha A \in \mathbb{R}^{n \times n}$.

com (2): operação válida em $\mathbb{R}^{n\times n}.$

E verificando a aplicação T, T(A+B)=T(A)+T(B) e $T(\alpha A)=\alpha T(A)$, $\forall A,B\in\mathbb{R}^{n\times n}$ e $\alpha\in\mathbb{R}$, podemos concluir que T é uma aplicação linear.

Cotação:

000	cotação.					
I	II	III - 1	III - 2	III - 3	III - 4	
3	1.5 + 1	$1\!+\!1\!+\!1\!+\!1$	1 + 1 + 1 + 1.5	2 + 1 + 1.5	1.5	
3	2.5	4	4.5	4.5	1.5	