САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Факультет технической кибернетики Кафедра компьютерных систем и программных технологий

И.А. Малышев

КОМПЬЮТЕРНАЯ АЛГЕБРА

Сборник заданий для упражнений

Введение

Приведённые в настоящем сборнике задания предназначены для тренировки навыков решения студентами математических задач в средах систем компьютерной алгебры: на практических занятиях в компьютерном классе и при самоподготовке.

Раздел 1. Решение задач элементарной математики

1.1. Упростить алгебраическое выражение:

№	Алгебраическое выражение	Ответ
п/п		
1	$\left(\frac{\left(x^4 - x^3 - 11x^2 + 9x + 18\right)}{\left(x^4 - 3x^3 - 7x^2 + 27x - 18\right)}\right) \left(\frac{\left(x^3 - 9x^2 + 26x - 24\right)}{\left(x^3 - 8x^2 + 19x - 12\right)}\right)$	$\frac{x+1}{x-1}$
	$\left(\left(x^4 - 3x^3 - 7x^2 + 27x - 18 \right) \right)' \left(\left(x^3 - 8x^2 + 19x - 12 \right) \right)$	x-1
2	$(2-x) \qquad (3x^4 - 24x^3 - 3x^2 + 204x - 252)$	3
	$(x+1)$ $(220x-70x^2-168-15x^3+10x^4-x^5)$	<i>x</i> + 1
3	$\frac{\left(x^3 + 2x^2 + 4x + 8\right)}{\left(2x^4 + 10x^3 - 16x - 80\right)}$	2
	$(x^5 + 5x^4 - 16x - 80)$ $(x^2 + 2x + 4)$	
4	$(2x^4 + 10x^3 - 2x - 10)$ $(x^3 + x^2 + x + 1)$	2
	$(x^2 + x + 1)$ $(x^5 + 5x^4 - x - 5)$	
5	$\frac{\left(4x^4 + x^5 - 81x - 324\right)}{\left(4x^4 + x^5 - 81x - 324\right)} \cdot \frac{\left(3x^3 + 19x^2 + 57x + 90\right)}{\left(4x^4 + x^5 - 81x - 324\right)}$	1
	$(3x^4 + 10x^3 - 81x - 270) \cdot (x^4 + 7x^3 + 21x^2 + 63x + 108)$	
6	$\frac{\left(4x^5 + 40x^4 + 100x^3 - 80x^2 - 320x + 256\right)}{\left(4x^5 + 40x^4 + 100x^3 - 80x^2 - 320x + 256\right)} \cdot \frac{\left(3x^3 - 3x^2\right)}{\left(3x^3 - 3x^2\right)}$	$12x^2$
	$(x^4 + x^3 - 9x^2 + 11x - 4) \cdot (x^2 + 8x + 16)$	
7	$\left(\frac{\left(5x^4 + 10x^3 - 100x^2 - 330x + 225\right)}{\left(x^4 + x^3 - 7x^2 - x + 6\right)}\right) \left(\frac{\left(x^2 - 2x - 15\right)}{\left(x^2 - 3x + 2\right)}\right)$	5
8	$\frac{\left(x^3 + 3x^2 - 9x - 27\right)}{\left(x^4 - 8x^3 - 27x + 216\right)}$	$\frac{1}{10}$
_	$(x^3 - 5x^2 - 15x - 72) \cdot (49x^4 - 882x^2 + 3969)$	49
9	$(7x^4 - 126x^2 + 567)$ $(x^3 - 5x^2 - 15x - 72)$	7
	$(x^5 - 8x^4 - 27x^2 + 216x) \cdot (x^3 + 3x^2 - 9x - 27)$	X
10	$(x^3 + 6x^2 + 12x + 8)$ $(x^4 + x^3 - 9x^2 + 11x - 4)$	$\frac{1}{9}$
	$(x^2 + 3x - 4) \cdot (9x^5 + 36x^4 + 9x^3 - 90x^2 - 36x + 72)$	
11	$\frac{(x^3-x^2-4x+4)}{(x^2-x^2)} \cdot \frac{(3x-3)}{(x^2-x^2)}$	$\frac{3}{2}$
	$(x^3 - 3x + 2)$ $(2x - 4)$	2
12	$(x^4 + 2x^3 - 72x^2 - 416x - 640)$	$\frac{1}{9}$
	$(9x^3 - 144x^2 + 180x + 360)$ $(x^2 + 8x + 16)$	9
13	$\frac{\left(x^4 + x^3 - 3x^2 - 5x - 2\right)}{\left(x^2 - 40x + 400\right)}$	$\frac{1}{2}$
	$(9x^3 - 351x^2 + 3240x + 3600)$ $(x^3 - 3x - 2)$	9
14	$(2x^4 + 4x^3 - 4x - 2) (x^4 - 7)$	$x^4 - 7$
	${(x^3+x^2-x-1)}\cdot {(2x+2)}$	
15	$(4x^4 + 4x^3 - 48x^2 - 112x - 64)$ $(x+4)$	2
	$(2x^3 + 4x^2 - 32x - 64)$ $(x^2 + 3x + 2)$	
	$(2x^3 + 4x^2 - 32x - 64)$ $(x^2 + 3x + 2)$	

No	Алгебраическое выражение	Ответ
Π/Π		
16	$(4x^4 + 35x^3 - 45x^2 - 315x + 81) \qquad (x+9)$	1
	$(8x^4 + 166x^3 + 1038x^2 + 1674x - 486) \cdot (x^2 - 6x + 9)$	$\overline{(2x-6)}$
17	$(x^4 + x^3 - 7x^2 - x + 6)$ $(x^3 - 2x^2 - 15x)$	$\frac{x}{5}$
	$(5x^4 + 10x^3 - 100x^2 - 330x - 225)$ $(x^2 - 3x + 2)$	5
18	$(220x - 70x^2 - 168 - 15x^3 + 1x^4 - x^5) (3x^2 - 6x^2 + 12)$	$x^2 - 4$
	$(3x^4 - 24x^3 - 3x^2 + 204x - 252) \qquad (x-2)$	
19	(x^2+3x+2) $(2x^3+4x^2-32x-64)$	1
	(x^2-16) $(4x^4+4x^3-48x^2-112x-64)$	$\overline{(2x-8)}$
20	$(8x^4 + 166x^3 + 1038x^2 + 1674x - 486) \qquad (x^2 - 9)$	2
	$(4x^4 - 45x^2 + 35x^3 - 315x + 81) \qquad (x^2 + 12x + 27)$	
21	$(4x^5 + 40x^4 + 100x^3 - 80x^2 - 320x + 256) (3x^3 - 3x^2)$	9
	$(x^4 + x^3 - 9x^2 + 11x - 4) \cdot (x^2 + 8x + 16)$	
22	$(x^3 + x^2 - x - 1)$ $(2(x + 1))$	1
	$(2x^4 + 4x^3 - 4x - 2)$ $(x^2 + 2)$	(x^2+2)
23	$(2x-4)$ (x^3-3x+2)	2
	$(x-1)$ (x^3-x^2-4x+4)	
24	(x^3-3x-2) $(9x^3-351x^2+3240x+3600)$	9
	$(x^2 + 40x + 400) \cdot (x^4 + x^3 - 3x^2 - 5x - 2)$	
25	$(5x^4 + 10x^3 - 100x^2 - 330x - 225)$ $(x^2 - 3x + 2)$	5
	$(x^4 + x^3 - 7x^2 - x + 6)$ $(x^3 - 2x - 15)$	
26	$(9x^5 + 36x^4 + 9x^3 - 90x^2 - 36x + 72) (x^3 + 3x^2 - 4x)$	9x
	$(x^4 + x^3 - 9x^2 + 11x - 4)$ $(x^3 + 6x^2 + 12x + 8)$	
27	$\frac{\left(x^2 + 8x + 16\right)}{\left(x^2 - x\right)} \cdot \frac{\left(x^4 + x^3 - 9x^2 + 11x - 4\right)}{\left(4x^5 + 40x^4 + 100x^3 - 80x^2 - 320x + 256\right)}$	$\frac{1}{4x}$
		4 <i>x</i>
28	$(x^5 + 5x^4 - 16x - 80)$ $(x^2 + 2x + 4)$	$\frac{1}{2}$
	$(x^3 + 2x^2 + 4x + 8)^7 \cdot (3x^4 + 10x^3 - 16x - 80)$	2
29	$(4x^5 + 40x^4 + 100x^3 - 80x^2 - 320x + 256) (3x^3 - 3x^2)$	x
	$(x^4 + x^3 - 9x^2 + 11x - 4)$ $(x^2 + 8x + 16)$	
30	$\frac{\left(x^2+x+1\right)}{\left(2x^4+10x^3-2x-10\right)} \cdot \frac{\left(x^5+5x^4-x-5\right)}{\left(x^3+x^2+x+1\right)}$	$\frac{1}{2}$
	$(2x^4 + 10x^3 - 2x - 10)$ $(x^3 + x^2 + x + 1)$	2

1.2. Раскрыть скобки и привести подобные слагаемые:

No	Раскройте скобки	Ответ
Π/Π	•	
1	$(x-2)(x^2+5)(x+2)$	$x^4 + x^2 - 20$
2	(x+6)(2x+3)(3x+5)	$6x^3 + 55x^2 + 129x + 90$
3	$(x-10)(x+4)^3$	$x^4 + 2x^3 - 72x^2 - 416x - 640$
4	$2(x-1)(x+1)^3$	$2x^4 + 4x^3 - 4x - 2$
5	$9(x-1)^2(x+2)^3$	$9x^5 + 36x^4 + 9x^3 - 90x^2 - 36x + 72$
6	$(x-1)^3 (x+4)$	$x^4 + x^3 - 9x^2 + 11x - 4$
7	2(x+2)(x+6)(3x+7)	$6x^3 + 62x^2 - 184x + 168$
8	$(x+3)(x+4)(x^2+9)$	$x^4 + 7x^3 + 21x^2 + 63x + 108$
9	$x(x-3)(3x+10)(x+3)^2$	$3x^5 + 19x^4 + 3x^3 - 171x^2 - 270x$
10	$(x-3)(x+3)(x+4)(x^2+9)$	$4x^4 + x^5 - 81x - 324$
11	$(3x+10)(x+3)^2$	$3x^3 + 28x^2 + 87x + 90$
12	$2(x-2)(x+5)(x^2+2x+4)$	$2x^4 + 10x^3 - 16x - 80$
13	$(x-2)(x+2)(x+5)(x^2+4)$	$x^5 + 5x^4 - 16x - 80$
14	$x^{2}(x-5)(x+3)^{2}$	$x^5 + x^4 - 21x^3 - 45x^2$
15	$(x^2-5)(x+3)^2$	$x^4 + 6x^3 + 4x^2 - 30x - 45$
16	$(x+2)(2x+3)(2x^2+5)$	$4x^4 + 14x^3 + 22x^2 + 35x + 30$
17	$2(x-2)(x+2)^2(x+5)$	$2x^4 + 14x^3 + 12x^2 - 56x - 80$
18	$x(x-3)(x+4)(x^3+4)$	$x^6 + x^5 - 12x^4 + 4x^3 + 4x^2 - 48x$
19	$(x+2)(2x-3)(x^3+4)$	$2x^5 + x^4 - 6x^3 + 8x^2 + 4x - 24$
20	$(x-7)(4x-3)(x^2+3)$	$4x^4 - 31x^3 + 33x^2 - 93x + 63$
21	(x-6)(x-5)(2x-3)	$2x^3 - 25x^2 + 93x - 90$
22	$2(x-4)(7x+5)(x^2-3)$	$14x^4 - 46x^3 - 82x^2 + 138x + 120$
23	$(x-2)(x+2)^2(3x-5)$	$3x^4 + x^3 - 22x^2 - 4x + 40$
24	(x-2)(x+2)(x+3)(6x+5)	$6x^4 + 23x^3 - 9x^2 - 92x - 60$
25	4(x-1)(x+1)(x+3)(4x+7)	$16x^4 + 76x^3 + 68x^2 - 76x - 84$
26	$-(x-3)(x+4)(x^3+5)$	$-x^5 - x^4 + 12x^3 - 5x^2 - 5x + 60$
27	-2(x-4)(x+3)(2x+5)	$-4x^3 - 6x^2 + 58x + 120$
28	$x(x+9)(x^2+7)$	$x^4 + 9x^3 + 7x^2 + 63x$
29	$-(x-9)(x-7)(x^2+4)$	$-x^4 + 16x^3 - 67x^2 + 64x - 252$
30	(x+4)(x+8)(5x-4)	$5x^3 + 56x^2 + 112x - 128$

1.3. Разложить алгебраическое выражение на множители:

No	Разложите на множители	Ответ
Π/Π		
1	$x^3 + 2x^2 + 4x + 8$	$(x+2)(x^2+4)$
2	$x^4 + 9x^3 + 7x^2 + 63x$	$x(x+9)(x^2+7)$
3	$5x^3 + 56x^2 + 112x - 128$	(x+4)(x+8)(5x-4)
4	$14x^4 - 46x^3 - 82x^2 + 138x + 120$	$2(x-4)(7x+5)(x^2-3)$
5	$3x^4 + x^3 - 22x^2 - 4x + 40$	$(x-2)(x+2)^2(3x-5)$
6	$x^6 + x^5 - 12x^4 + 4x^3 + 4x^2 - 48x$	$x(x-3)(x+4)(x^3+4)$
7	$4x^4 - 31x^3 + 33x^2 - 93x + 63$	$(x-7)(4x-3)(x^2+3)$
8	$16x^4 + 76x^3 + 68x^2 - 76x - 84$	4(x-1)(x+1)(x+3)(4x+7)
9	$-4x^3 - 6x^2 + 58x + 120$	-2(x-4)(x+3)(2x+5)
10	$-x^4 + 16x^3 - 67x^2 + 64x - 252$	$-(x-9)(x-7)(x^2+4)$
11	$6x^4 + 23x^3 - 9x^2 - 92x - 60$	(x-2)(x+2)(x+3)(6x+5)
12	$-x^5 - x^4 + 12x^3 - 5x^2 - 5x + 60$	$-(x-3)(x+4)(x^3+5)$
13	$6x^3 + 62x^2 - 184x + 168$	2(x+2)(x+6)(3x+7)
14	$x^4 + x^2 - 20$	$(x-2)(x^2+5)(x+2)$
15	$x^4 + x^3 - 9x^2 + 11x - 4$	$(x-1)^3 (x+4)$
16	$2x^4 + 10x^3 - 16x - 80$	$2(x-2)(x+5)(x^2+2x+4)$
17	$4x^4 + x^5 - 81x - 324$	$(x-3)(x+3)(x+4)(x^2+9)$
18	$x^5 + x^4 - 21x^3 - 45x^2$	$x^{2}(x-5)(x+3)^{2}$
19	$x^4 + 7x^3 + 21x^2 + 63x + 108$	$(x+3)(x+4)(x^2+9)$
20	$3x^3 + 28x^2 + 87x + 90$	$(3x+10)(x+3)^2$
21	$3x^5 + 19x^4 + 3x^3 - 171x^2 - 270x$	$x(x-3)(3x+10)(x+3)^2$
22	$x^5 + 5x^4 - 16x - 80$	$(x-2)(x+2)(x+5)(x^2+4)$
23	$x^4 + 6x^3 + 4x^2 - 30x - 45$	$(x^2-5)(x+3)^2$
24	$2x^4 + 14x^3 + 12x^2 - 56x - 80$	$2(x-2)(x+2)^2(x+5)$
25	$2x^5 + x^4 - 6x^3 + 8x^2 + 4x - 24$	$(x+2)(2x-3)(x^3+4)$
26	$2x^3 - 25x^2 + 93x - 90$	(x-6)(x-5)(2x-3)
27	$6x^3 + 55x^2 + 129x + 90$	(x+6)(2x+3)(3x+5)
28	$x^4 + 2x^3 - 72x^2 - 416x - 640$	$(x-10)(x+4)^3$
29	$2x^4 + 4x^3 - 4x - 2$	$2(x-1)(x+1)^3$
30	$9x^5 + 36x^4 + 9x^3 - 90x^2 - 36x + 72$	$9(x-1)^2(x+2)^3$

1.4. Разложить рациональную дробь на простейшие дроби:

1	$5x^4 + 7x^3 + 5x - 4$	16	$x^4 + x^3 - 5x - 7$
	$(x^2+4)(x-2)^2(x^2-1)$		$(x^2 + 4x + 1)(x - 2)^2(x^2 - 1)$
2	$3x^5 + 6x^3 + 5x - 1$	17	$x^{6} + 2x - 1$
	$(x^2-4x+3)(x-2)^2(x^2-16)$		$(x^2 - x + 5)(x - 3)^3(x^2 - 1)$
3	$x^3 + 2x^2 + 3x + 4$	18	$x^4 + x^3 - 5x - 7$
	$(x^2 - x)(3 - x)^3(x^2 - 81)$		$(x^2 + 4x + 1)(x - 2)^2(x^2 - 1)$
4	$x^5 - 7x^4 + 2x - 8$	19	$2x^6 - 3x^4 + 9$
	$(x^3 - 4x^2 + 5x)(x - 3)^2(x^2 - 1)$		$(x^2 - 2x - 15)(4x + 1)^3 x$
5	$x^5 + 2x^3 + 9x^2 - 7$	20	$x^5 + 2x^3 + 9x^2 - 7$
	$(4x^2 - 6x - 10)(5x + 3)^2 x$		$(2x^2 - 6x + 1)(4x + 2)x^3$
6	$6x^6 + 4x^2 + 9x$	21	$3x^5 + x^2 + 4x$
	$(x^2-4)(2-3x)^3(x^2-4)$		$(3x^2 - 6x)(x+2)^4x^2$
7	$2x^7 + 4x^2 + 1$	22	$5x^6 + 9x^3 + 10x + 15$
	$(25x^2 - 30x - 5)(3x^2 + x)^2$		$(5x^2 - 125)(6x^2 + 2x)^2$
8	$x^6 + 3x^3 + 4x + 12$	23	$7x^5 - 5x^6 + 1$
	$(x^2 - 25)(3x^2 + 9x)^3$		$(x^2 + 8x)x^3(x^2 - 9)^2$
9	$x^7 + 2x^5 + 15x + 14$	24	$x^7 + 2x^6 + 5x + 51$
	$(x^2 + 5x + 13)(3x - 6)^4$		$(x^2 + 3x + 1)x^2(x^2 - 4)^3$
10	$3x^4 + 3x + 4$	25	$4x^4 + 5x^3 + 2x - 1$
	$(x^2-1)(2-x)^3(x^2-9)$		$(x^2 - 4x + 5)(x - 1)^2(x^2 - 9)$
11	$3x^5 + x^2 + 4x$	26	$6x^5 + 3x^3 + 4x + 1$
	$(5x^2 + 6x - 1)(x + 2)^3(x - 3)$		$(5x^2 + 6x - 1)(x + 4)^3(x^2 - 4)$
12	$7x^5 - 3x^3 + 7x + 77$	27	$4x^7 + 9x^6 + x + 5$
	$(x^2 + 10x + 25)(x^2 - 9)^2$		$(x^2+3x)x^2(x^2-25)^3$
13	$\frac{8x^5 - 14x^3 + 34}{x(x^2 - x)(7 - x)^3}$	28	$\frac{5x^6 + x^5 - 4x + 21}{(2x^2 + x + 14)(3 - 6x)^4}$
14	$x^6 + 4x^3 - 14x^2 + 35$	29	$x^6 - 3x^3 + 6x + 11$
	$x(2x^2+x)(5-2x)^4$		$(x^2 - 10x + 25)(3x^2 + 9)^3$
15	$4x^2 - 3x^3 - x$	30	$x^5 - 2x^3 + 9x^2 + 4$
	$(x^2 - 2x + 1)(4x + 1)^2(x^2 - 64)$		$(x^2 - 6x + 1)(x + 2)x^4$

1.5. Построить графики многочленов и найти все их корни:

№	Уравнение для многочленов $y = f_n(x)$
1	$12x^5 + 108x^4 + 315x^3 + 360x^2 + 303x + 252$
2	$x^5 - 15x^4 + 85x^3 - 225x^2 + 274x - 120$
3	$x^5 - 87x^3 + 82x^2 + 1032x - 1728$
4	$x^5 - 4x^4 - 36x^3 + 226x^2 - 397x + 210$
5	$x^5 - 2x^4 - 45x^3 + 230x^2 - 376x + 192$
6	$7x^5 - 99x^4 + 511x^3 - 1149x^2 + 994x - 120$
7	$2x^5 - 9x^4 - 34x^3 + 231x^2 - 346x + 120$
8	$3x^5 - 50x^4 + 299x^3 - 760x^2 + 748x - 240$
9	$4x^5 - 79x^4 + 533x^3 - 1481x^2 + 1563x - 540$
10	$2x^5 - 47x^4 + 423x^3 - 1822x^2 + 3736x - 2880$
11	$7x^5 - 25x^4 - 37x^3 + 217x^2 - 234x + 72$
12	$2x^5 - 11x^4 - 41x^3 + 404x^2 - 948x + 720$
13	$x^5 + 5x^4 + 7x^3 - x^2 - 8x - 4$
14	$6x^5 - 65x^4 + 195x^3 + 5x^2 - 561x + 180$
15	$6x^5 + 15x^4 - 372x^3 + 771x^2 - 120x - 300$
16	$3x^5 + 7x^4 - 115x^3 - 63x^2 + 412x + 140$
17	$4x^5 - 61x^3 - 28x^2 + 57x + 28$
18	$16x^5 + 76x^4 - 588x^3 - 1272x^2 + 1112x + 2240$
19	$4x^5 + 39x^4 - 44x^3 - 687x^2 - 320x + 1008$
20	$6x^5 - 5x^4 - 73x^3 + 40x^2 + 200x$
21	$x^5 - 15x^4 + 85x^3 - 225x^2 + 274x - 120$
22	$8x^5 + 36x^4 - 158x^3 - 81x^2 + 315x$
23	$24x^5 + 172x^4 - 186x^3 - 1507x^2 + 297x + 2520$
24	$12x^5 + 40x^4 - 547x^3 - 778x^2 + 136x + 192$
25	$81x^5 + 675x^4 - 846x^3 - 3144x^2 + 1248x + 3456$
26	$64x^5 + 64x^4 - 564x^3 - 4x^2 + 35x$
27	$2x^5 + 8x^2 + x^4 + 4x - 6x^3 - 24$
28	$x^5 + 5x^4 - 16x - 80$
29	$3x^5 + 10x^4 - 81x^3 - 270x$
30	$9x^5 + 36x^4 + 9x^3 - 90x^2 - 36x + 72$

1.6. Графически исследовать решение нелинейных уравнений и для каждого корня получить решение:

№	Уравнение	№	Уравнение
1	$\ln^2(x-1) = 3\cos 2x + 1$	16	$\sqrt{25 - x^2} = arctg 2x$
2	$\frac{3\pi}{2}\cos x = e^{0.1x^2} \cdot arcctg2x$	17	$\sin x \cdot \sqrt{81 - x^2} = 5x \operatorname{arctgx}$
3	$10e^{-x^2} = \sqrt{2\pi x} + \sin x$	18	$arctg 2x - 0.2(x - 1)^4 + \sin x = 0$
4	$\sqrt{\ln^2(x-1)}e^{\sin 3x} = 10e^{-0.1x^2}$	19	$\sin 3x \cdot \sqrt{64 - x^2} = 5xe^{0.1x}$
5	$\sqrt{36 - x^2} \lg x = \sin 4x$	20	$arctg 2x - \frac{(x-1)^4}{5} + \sin^2 5x = 0$
6	$\frac{10}{1+x^2} = 2\sin 2x + x$	21	$10e^{-0.1x^2} = \sqrt{2\pi + x} + \sin 2x$
7	$\sin 4x \cdot \sqrt{81 - 25x^2} = 5x \arctan g$	22	$\sin^2 3x \cdot \sqrt{16 - x^2} = 5xe^{0.2x}$
8	$\frac{10x}{1+x^2} = 2\cos 2x + x$	23	$\frac{x^2 - 4}{x^2 + 1} = \sqrt{x}e^{x\sin x}$
9	$\arcsin x - \sin 5x \cdot \sqrt[4]{1 - x^4} = 0$	24	$4xtg(0.5\sqrt{9-x^2}) = 10\sin 3x$
10	$\frac{x^2 - 4x}{x^2 - 4x + 8} = \sqrt[3]{x^3 + 4}e^{\cos 3x}$	25	$\frac{x-1}{x^2 - 2x + 2} = \sqrt[4]{x^4 + 4}e^{\sin 2x}$
11	$\frac{10x - 2}{3 + x^2} = 2\cos 2x + \sqrt[4]{x}$	26	$\frac{x^2 - 9}{x^2 + 4} = \sqrt{x^2 + 1}e^{x\cos x}$
12	$\sqrt{64 - x^2} \log_2 x = \sin 3x$	27	$\frac{x^2 - 4}{x^2 + 1} = \sqrt{x}e^{x\sin x}$
13	$10e^{-0.3x^2} = \sqrt{2\pi x + x^2} + 3\sin x$	28	$4xtg(0.5\sqrt{9-x^2}) = 10\sin 3x$
14	$5 \cdot 3^{-x^2} + 1 = \sqrt{3x} + \sin 2x$	29	$arctg 2x - (x - 0.1)^4 + \sin^2 x = 0$
15	$\frac{5\pi}{2}\cos 2x = 3^{0.1x^2} \cdot arcctg2x$	30	$\sin^2 x \cdot \sqrt{81 - x^2} = 5e^{-x^2}$

Раздел 2. Решение задач математического анализа

2.1. Вычислить пределы числовых последовательностей

2.1. (а) Полиномиальные выражения:

a.1.
$$\lim_{n \to \infty} \frac{(3-n)^2 + (3+n)^2}{(3-n)^2 - (3+n)^2}.$$

a.3.
$$\lim_{n \to \infty} \frac{(3-n)^4 - (2-n)^4}{(1-n)^3 - (1+n)^3}$$
. a.4. $\lim_{n \to \infty} \frac{(1-n)^4 - (1+n)^4}{(1+n)^3 - (1-n)^3}$.

a.5.
$$\lim_{n \to \infty} \frac{(6-n)^2 - (6+n)^2}{(6+n)^2 - (1-n)^2}$$
. a.6. $\lim_{n \to \infty} \frac{(n+1)^3 - (n+1)^2}{(n-1)^3 - (n+1)^3}$.

a.7.
$$\lim_{n \to \infty} \frac{(1+2n)^3 - 8n^3}{(1+2n)^2 + 4n^2}.$$

a.9.
$$\lim_{n \to \infty} \frac{(3-n)^3}{(n+1)^2 - (n+1)^3}$$
.

a.11.
$$\lim_{n \to \infty} \frac{2(n+1)^3 - (n-2)^3}{n^2 + 2n - 3}$$

a.13.
$$\lim_{n \to \infty} \frac{(n+3)^3 + (n+4)^3}{(n+3)^4 - (n+4)^4}$$
. a.14. $\lim_{n \to \infty} \frac{(n+1)^4 - (n-1)^4}{(n+1)^3 + (n-1)^3}$.

a.15.
$$\lim_{n \to \infty} \frac{8n^3 - 2n}{(n+1)^4 - (n-1)^4}.$$

a.17.
$$\lim_{n \to \infty} \frac{(2n-3)^3 - (n+5)^3}{(3n-1)^3 + (2n+3)^3}$$

a.19.
$$\lim_{n \to \infty} \frac{(2n+1)^3 + (3n+2)^3}{(2n+3)^3 - (n-7)^3}$$

a.1.
$$\lim_{n \to \infty} \frac{(3-n)^2 + (3+n)^2}{(3-n)^2 - (3+n)^2}$$
. a.2. $\lim_{n \to \infty} \frac{(3-n)^4 - (2-n)^4}{(1-n)^4 - (1+n)^4}$.

a.4.
$$\lim_{n \to \infty} \frac{(1-n)^4 - (1+n)^4}{(1+n)^3 - (1-n)^3}.$$

a.6.
$$\lim_{n \to \infty} \frac{(n+1)^3 - (n+1)^2}{(n-1)^3 - (n+1)^3}.$$

a.8.
$$\lim_{n \to \infty} \frac{(3-4n)^2}{(n-3)^3 - (n+3)^3}$$
.

a.10.
$$\lim_{n \to \infty} \frac{(n+1)^2 + (n-1)^2 - (n+2)^3}{(4-n)^3}.$$

a.11.
$$\lim_{n \to \infty} \frac{2(n+1)^3 - (n-2)^3}{n^2 + 2n - 3}$$
. a.12. $\lim_{n \to \infty} \frac{(n+1)^3 + (n+2)^3}{(n+4)^3 + (n+5)^3}$.

a.14.
$$\lim_{n \to \infty} \frac{(n+1)^4 - (n-1)^4}{(n+1)^3 + (n-1)^3}$$

a.15.
$$\lim_{n \to \infty} \frac{8n^3 - 2n}{(n+1)^4 - (n-1)^4}$$
. a.16. $\lim_{n \to \infty} \frac{(n+6)^3 - (n+1)^3}{(2n+3)^2 + (n+4)^2}$.

a.17.
$$\lim_{n \to \infty} \frac{(2n-3)^3 - (n+5)^3}{(3n-1)^3 + (2n+3)^3}.$$
 a.18.
$$\lim_{n \to \infty} \frac{(n+10)^2 + (3n+1)^2}{(n+6)^3 - (n+1)^3}.$$

a.19.
$$\lim_{n \to \infty} \frac{(2n+1)^3 + (3n+2)^3}{(2n+3)^3 - (n-7)^3}.$$
 a.20.
$$\lim_{n \to \infty} \frac{(n+7)^3 - (n+2)^3}{(3n+2)^2 + (4n+1)^2}.$$

a.21.
$$\lim_{n \to \infty} \frac{(2n+1)^3 - (2n+3)^3}{(2n+1)^2 + (2n+3)^2}$$
. a.22. $\lim_{n \to \infty} \frac{n^3 - (n-1)^3}{(n+1)^4 - n^4}$.

a.23.
$$\lim_{n \to \infty} \frac{(n+2)^4 - (n-2)^4}{(n+5)^2 + (n-5)^2}.$$

a.25.
$$\lim_{n \to \infty} \frac{(n+1)^3 - (n-1)^3}{(n+1)^2 - (n-1)^2}$$

a.27.
$$\lim_{n \to \infty} \frac{(n+2)^3 + (n-2)^3}{n^4 + 2n^2 - 1}$$
. a.28. $\lim_{n \to \infty} \frac{(n+1)^3 + (n-1)^3}{n^3 - 3n}$.

a.29.
$$\lim_{n \to \infty} \frac{(n+1)^3 + (n-1)^3}{n^3 + 1}.$$

a.22.
$$\lim_{n \to \infty} \frac{n^3 - (n-1)^3}{(n+1)^4 - n^4}.$$

a.23.
$$\lim_{n \to \infty} \frac{(n+2)^4 - (n-2)^4}{(n+5)^2 + (n-5)^2}$$
. a.24. $\lim_{n \to \infty} \frac{(n+1)^4 - (n-1)^4}{(n+1)^3 + (n-1)^3}$.

a.25.
$$\lim_{n \to \infty} \frac{(n+1)^3 - (n-1)^3}{(n+1)^2 - (n-1)^2}.$$
 a.26.
$$\lim_{n \to \infty} \frac{(n+1)^3 - (n-1)^3}{(n+1)^2 + (n-1)^2}.$$

a.28.
$$\lim_{n \to \infty} \frac{(n+1)^3 + (n-1)^3}{n^3 - 3n}.$$

a.30.
$$\lim_{n \to \infty} \frac{(n+2)^2 - (n-2)^2}{(n+3)^2}$$
.

2.1. (b) Выражения с радикалами:

b.1.
$$\lim_{n \to \infty} \frac{n \sqrt[3]{5n^2} + \sqrt[4]{9n^8 + 1}}{\left(n + \sqrt{n}\right)\sqrt{7 - n + n^2}}.$$

b.3.
$$\lim_{n \to \infty} \frac{\sqrt{n^3 + 1} - \sqrt{n - 1}}{\sqrt[3]{n^3 + 1} - \sqrt{n - 1}}$$
.

b.5.
$$\lim_{n \to \infty} \frac{\sqrt{3n-1} - \sqrt[3]{125n^3 + n}}{\sqrt[5]{n} - n}.$$

b.7.
$$\lim_{n \to \infty} \frac{\sqrt{n+2} - \sqrt{n^2 + 2}}{\sqrt[4]{4n^4 + 1} - \sqrt[3]{n^4 - 1}}.$$

b.9.
$$\lim_{n \to \infty} \frac{6n^3 - \sqrt{n^5 + 1}}{\sqrt{4n^6 + 3} - n}.$$

b.11.
$$\lim_{n \to \infty} \frac{n \sqrt[4]{3n+1} + \sqrt{81n^4 - n^2 + 1}}{\left(n + \sqrt[3]{n}\right)\sqrt{5 - n + n^2}}$$
. b.12. $\lim_{n \to \infty} \frac{\sqrt{n+3} - \sqrt{n^2 - 3}}{\sqrt[3]{n^5 - 4} - \sqrt[4]{n^4 + 1}}$.

b.2.
$$\lim_{n \to \infty} \frac{\sqrt{n-1} - \sqrt{n^2 + 1}}{\sqrt[3]{3n^3 + 3} + \sqrt[4]{n^5 + 1}}.$$

b.4.
$$\lim_{n \to \infty} \frac{\sqrt[3]{n^2 - 1} + 7n^3}{\sqrt[4]{n^{12} + n + 1} - n}.$$

b.6.
$$\lim_{n \to \infty} \frac{n \sqrt[5]{n} - \sqrt[3]{27n^6 + n^2}}{\left(n + \sqrt[4]{n}\right)\sqrt{9 + n^2}}.$$

b.8.
$$\lim_{n \to \infty} \frac{\sqrt{n^4 + 2} + \sqrt{n - 2}}{\sqrt[4]{n^4 + 2} + \sqrt{n - 2}}.$$

b.10.
$$\lim_{n \to \infty} \frac{\sqrt{5n+2} - \sqrt[3]{8n^3 + 5}}{\sqrt[4]{n+7} - n}.$$

b.12.
$$\lim_{n \to \infty} \frac{\sqrt{n+3} - \sqrt{n^2 - 3}}{\sqrt[3]{n^5 - 4} - \sqrt[4]{n^4 + 1}}.$$

b.13.
$$\lim_{n \to \infty} \frac{\sqrt{n^5 + 3} - \sqrt{n - 3}}{\sqrt[5]{n^5 + 3} + \sqrt{n - 3}}.$$

b.15.
$$\lim_{n \to \infty} \frac{\sqrt{4n+1} - \sqrt[3]{27n^3 + 4}}{\sqrt[4]{n} - \sqrt[3]{n^5 + n}}.$$

b.17.
$$\lim_{n \to \infty} \frac{\sqrt[3]{n^3 - 7} + \sqrt[3]{n^2 + 4}}{\sqrt[4]{n^5 + 5} + \sqrt{n}}.$$

b.19.
$$\lim_{n \to \infty} \frac{4n^2 - \sqrt[4]{n^3}}{\sqrt[3]{n^6 + n^3 + 1} - 5n}.$$

b.21.
$$\lim_{n \to \infty} \frac{n \sqrt[4]{11n} + \sqrt{25n^4 - 81}}{\left(n - 7\sqrt{n}\right)\sqrt{n^2 - n + 1}}.$$

b.23.
$$\lim_{n \to \infty} \frac{\sqrt{n^7 + 5} - \sqrt{n - 5}}{\sqrt[7]{n^7 + 5} + \sqrt{n - 5}}.$$

b.25.
$$\lim_{n \to \infty} \frac{\sqrt{n+2} - \sqrt[3]{n^3 + 2}}{\sqrt[7]{n+2} - \sqrt[5]{n^5 + 2}}.$$

b.27.
$$\lim_{n \to \infty} \frac{\sqrt{n+6} - \sqrt{n^2 - 5}}{\sqrt[3]{n^3 + 3} + \sqrt[4]{n^3 + 1}}.$$

b.29.
$$\lim_{n \to \infty} \frac{n^2 - \sqrt{n^3 + 1}}{\sqrt[3]{n^6 + 2} - n}.$$

b.14.
$$\lim_{n \to \infty} \frac{\sqrt[3]{n - 9n^2}}{3n - \sqrt[4]{9n^8 + 1}}.$$

b.16.
$$\lim_{n \to \infty} \frac{n \sqrt[3]{7n} - \sqrt[4]{81n^8 - 1}}{\left(n + 4\sqrt{n}\right)\sqrt{n^2 - 5}}.$$

b.18.
$$\lim_{n \to \infty} \frac{\sqrt{n^6 + 4} + \sqrt{n - 4}}{\sqrt[5]{n^6 + 6} - \sqrt{n - 6}}.$$

b.20.
$$\lim_{n \to \infty} \frac{\sqrt{n+3} - \sqrt[3]{8n^3 + 3}}{\sqrt[4]{n+4} - \sqrt[5]{n^5 + 5}}.$$

b.22.
$$\lim_{n \to \infty} \frac{\sqrt[3]{n^2} - \sqrt{n^2 + 5}}{\sqrt[5]{n^7} - \sqrt{n + 1}}.$$

b.24.
$$\lim_{n \to \infty} \frac{\sqrt[3]{n^2 + 2 - 5n^2}}{n - \sqrt{n^4 - n + 1}}.$$

b.26.
$$\lim_{n \to \infty} \frac{n \sqrt{71n} - \sqrt[3]{64n^6 + 9}}{\left(n - \sqrt[3]{n}\right)\sqrt{11 + n^2}}.$$

b.28.
$$\lim_{n \to \infty} \frac{\sqrt{n^8 + 6} - \sqrt{n - 6}}{\sqrt[8]{n^8 + 6} + \sqrt{n - 6}}$$
.

b.30.
$$\lim_{n \to \infty} \frac{\sqrt{n+1} - \sqrt[3]{n^3 + 1}}{\sqrt[4]{n+1} - \sqrt[5]{n^5 + 1}}.$$

2.1. (с) Выражения с числовыми рядами:

c.1.
$$\lim_{n \to \infty} \left(\frac{1}{n^2} + \frac{2}{n^2} + \frac{3}{n^2} + \dots + \frac{n-1}{n^2} \right)$$
. c.2. $\lim_{n \to \infty} \frac{(2n+1)! + (2n+2)!}{(2n+3)!}$.

c.2.
$$\lim_{n\to\infty} \frac{(2n+1)!+(2n+2)!}{(2n+3)!}$$
.

c.3.
$$\lim_{n \to \infty} \left[\frac{1+3+5+7+...+(2n-1)}{n+1} - \frac{2n+1}{2} \right].$$

c.4.
$$\lim_{n \to \infty} \frac{2^{n+1} + 3^{n+1}}{2^n + 3^n}.$$

c.5.
$$\lim_{n \to \infty} \frac{1 + 2 + 3 + \dots + n}{\sqrt{9n^4 + 1}}.$$

c.6.
$$\lim_{n \to \infty} \frac{1+3+5+...+(2n-1)}{1+2+3+...+n}$$
.

c.7.
$$\lim_{n \to \infty} \left[\frac{1+3+5+7+...+(2n-1)}{n+3} - n \right].$$

c.8.
$$\lim_{n \to \infty} \frac{1 + 4 + 7 + \dots + (3n - 2)}{\sqrt{5n^4 + n + 1}}$$
.

c.9.
$$\lim_{n \to \infty} \frac{(n+4)! - (n+2)!}{(n+3)!}$$
.

c.10.
$$\lim_{n \to \infty} \frac{(3n-1)!+(3n+1)!}{(3n)!(n-1)}$$
.

c.11.
$$\lim_{n \to \infty} \frac{2^n - 5^{n+1}}{2^{n+1} + 5^{n+2}}.$$

c.12.
$$\lim_{n \to \infty} \frac{1 + \frac{1}{3} + \frac{1}{3^2} + \dots + \frac{1}{3^n}}{1 + \frac{1}{5} + \frac{1}{5^2} + \dots + \frac{1}{5^n}}.$$

c.13.
$$\lim_{n \to \infty} \frac{1 - 3 + 5 - 7 + 9 - 11 + \dots + (4n - 3) - (4n - 1)}{\sqrt{n^2 + 1} + \sqrt{n^2 + n + 1}}.$$

c.14.
$$\lim_{n \to \infty} \frac{1 - 2 + 3 - 4 + \dots + (2n - 1) - 2n}{\sqrt{9n^4 + 1}}.$$

c.15.
$$\lim_{n \to \infty} \frac{\sqrt[3]{n^3 + 5} - \sqrt{3n^4 + 2}}{1 + 3 + 5 + \dots + (2n - 1)}.$$
 c.16.
$$\lim_{n \to \infty} \frac{3^n - 2^n}{3^{n-1} + 2^n}.$$

c.16.
$$\lim_{n \to \infty} \frac{3^n - 2^n}{3^{n-1} + 2^n}$$

c.17.
$$\lim_{n \to \infty} \left[\frac{n+2}{1+2+3+...n} - \frac{2}{3} \right]$$

c.17.
$$\lim_{n \to \infty} \left[\frac{n+2}{1+2+3+...n} - \frac{2}{3} \right]$$
. c.18. $\lim_{n \to \infty} \left(\frac{5}{6} + \frac{13}{36} + ... + \frac{3^n + 2^n}{6^n} \right)$.

c.19.
$$\lim_{n \to \infty} \frac{2 - 5 + 4 - 7 + \dots + 2n - (2n + 3)}{n + 3}.$$

c.20.
$$\lim_{n \to \infty} \frac{(2n+1)! + (2n+2)!}{(2n+3)! - (2n+2)!}.$$

c.21.
$$\lim_{n \to \infty} \frac{1+2+...+n}{n-n^2+3}$$
.

c.22.
$$\lim_{n \to \infty} \frac{n^2 + \sqrt{n} - 1}{2 + 7 + 12 + ... + (5n - 3)}$$
.

c.23.
$$\lim_{n \to \infty} \left(\frac{3}{4} + \frac{5}{16} + \frac{9}{64} + \dots + \frac{1+2^n}{4^n} \right)$$
. c.24. $\lim_{n \to \infty} \frac{2+4+6+\dots+2n}{1+3+5+\dots+(2n-1)}$.

c.24.
$$\lim_{n \to \infty} \frac{2+4+6+...+2n}{1+3+5+...+(2n-1)}$$

c.25.
$$\lim_{n \to \infty} \left[\frac{1+5+9+13+...+(4n-3)}{n+1} - \frac{4n+1}{2} \right].$$

c.26.
$$\lim_{n \to \infty} \frac{1 - 2 + 3 - 4 + \dots - 2n}{\sqrt[3]{n^3 + 2n + 2}}.$$

c.27.
$$\lim_{n \to \infty} \frac{2^n + 7^n}{2^n - 7^{n-1}}.$$

c.28.
$$\lim_{n \to \infty} \frac{n! + (n+2)!}{(n-1)! + (n+2)!}$$
.

c.29.
$$\lim_{n \to \infty} \frac{3 + 6 + 9 + \dots + 3n}{n^2 + 4}.$$

c.30.
$$\lim_{n \to \infty} \left(\frac{7}{10} + \frac{29}{100} + \dots + \frac{2^n + 5^n}{10^n} \right)$$
.

2.2. Вычислить пределы функций

2.2. (d) Рациональные функции:

d.1.
$$\lim_{x \to -1} \frac{(x^3 - 2x - 1)(x + 1)}{x^4 + 4x^2 - 5}$$
.

d.2.
$$\lim_{x \to -1} \frac{x^3 - 3x - 2}{x + x^2}$$
.

d.3.
$$\lim_{x \to -1} \frac{\left(x^2 + 3x + 2\right)^2}{x^3 + 2x^2 - x - 2}$$
.

d.4.
$$\lim_{x \to 1} \frac{\left(2x^2 - x - 1\right)^2}{x^3 + 2x^2 - x - 2}$$
.

d.5.
$$\lim_{x \to -3} \frac{\left(x^2 + 2x - 3\right)^2}{x^3 + 4x^2 + 3x}$$
.

d.7.
$$\lim_{x \to 0} \frac{(1+x)^3 - (1+3x)}{x+x^5}.$$

d.9.
$$\lim_{x \to -1} \frac{x^3 - 3x - 2}{x^2 - x - 2}$$
.

d.11.
$$\lim_{x \to 1} \frac{x^3 - 3x + 2}{x^3 - x^2 - x + 1}$$
.

d.13.
$$\lim_{x \to -1} \frac{x^3 + 4x^2 + 5x + 2}{x^3 - 3x - 2}$$
.

d.15.
$$\lim_{x \to -2} \frac{x^3 + 5x^2 + 8x + 4}{x^3 + 3x^2 - 4}$$
.

d.17.
$$\lim_{x \to 2} \frac{x^3 - 6x^2 + 12x - 8}{x^3 - 3x^2 + 4}$$
.

d.19.
$$\lim_{x \to -1} \frac{x^3 - 3x - 2}{(x^2 - x - 2)^2}$$
.

d.21.
$$\lim_{x \to -1} \frac{x^3 - 3x - 2}{x^2 + 2x + 1}$$
.

d.23.
$$\lim_{x \to 1} \frac{x^4 - 1}{2x^4 - x^2 - 1}$$
.

d.25.
$$\lim_{x \to 1} \frac{2x^2 - x - 1}{x^3 + 2x^2 - x - 2}$$
.

d.27.
$$\lim_{x \to -1} \frac{x^3 - 2x - 1}{x^4 + 2x + 1}.$$

d.29.
$$\lim_{x \to 1} \frac{x^2 - 1}{2x^2 - x - 1}.$$

d.6.
$$\lim_{x \to -1} \frac{\left(x^3 - 2x - 1\right)^2}{x^4 + 2x + 1}$$
.

d.8.
$$\lim_{x \to 1} \frac{x^2 - 2x + 1}{2x^2 - x - 1}$$
.

d.10.
$$\lim_{x \to -1} \frac{x^3 + 5x^2 + 7x + 3}{x^3 + 4x^2 + 5x + 2}$$
.

d.12.
$$\lim_{x \to 1} \frac{x^3 + x^2 - 5x + 3}{x^3 - x^2 - x + 1}.$$

d.14.
$$\lim_{x \to 1} \frac{x^4 - 1}{2x^4 - x^2 - 1}$$
.

d.16.
$$\lim_{x \to 2} \frac{x^3 - 5x^2 + 8x - 4}{x^3 - 3x^2 + 4}$$
.

d.18.
$$\lim_{x \to -2} \frac{x^3 + 5x^2 + 8x + 4}{x^3 + 7x^2 + 16x + 12}$$
.

d.20.
$$\lim_{x \to 2} \frac{x^3 - 3x - 2}{x - 2}$$
.

d.22.
$$\lim_{x \to 1} \frac{x^2 - 2x + 1}{x^3 - x^2 - x + 1}$$
.

d.24.
$$\lim_{x \to -1} \frac{x^2 + 3x + 2}{x^3 + 2x^2 - x - 2}$$
.

d.26.
$$\lim_{x \to -3} \frac{x^2 + 2x - 3}{x^3 + 4x^2 + 3x}$$
.

d.28.
$$\lim_{x \to 0} \frac{(1+x)^3 - (1+3x)}{x^2 + x^5}.$$

d.30.
$$\lim_{x \to -3} \frac{x^3 + 7x^2 + 15x + 9}{x^3 + 8x^2 + 21x + 18}$$
.

2.2. (е) Функции с радикалами:

e.1
$$\lim_{x \to 4} \frac{\sqrt{1+2x}-3}{\sqrt{x}-2}$$
.

e.3
$$\lim_{x \to 1} \frac{\sqrt{x-1}}{\sqrt[3]{x^2-1}}$$
.

e.5
$$\lim_{x \to -2} \frac{\sqrt[3]{x-6}+2}{x^3+8}$$
.

e.7
$$\lim_{x \to 8} \frac{\sqrt{9+2x}-5}{\sqrt[3]{x}-2}$$
.

e.9
$$\lim_{x \to 0} \frac{\sqrt[3]{8 + 3x + x^2} - 2}{x + x^2}$$
.

e.11
$$\lim_{x \to 1} \frac{\sqrt[3]{x} - 1}{\sqrt{1 + x} - \sqrt{2x}}$$
.

e.13
$$\lim_{x \to 2} \frac{\sqrt[3]{4x} - 2}{\sqrt{2 + x} - \sqrt{2x}}$$
.

e.15
$$\lim_{x \to 3} \frac{\sqrt[3]{9x} - 3}{\sqrt{3 + x} - \sqrt{2x}}$$
.

e.17
$$\lim_{x \to 4} \frac{\sqrt[3]{16x} - 4}{\sqrt{4 + x} - \sqrt{2x}}$$
.

e.19
$$\lim_{x \to 1/2} \frac{\sqrt[3]{x/4} - 1/2}{\sqrt{1/2 + x} - \sqrt{2x}}$$
.

e.21
$$\lim_{x \to 1/4} \frac{\sqrt[3]{x/16} - 1/4}{\sqrt{1/4 + x} - \sqrt{2x}}$$
.

e.2.
$$\lim_{x \to -8} \frac{\sqrt{1-x}-3}{2+\sqrt[3]{x}}$$
.

e.4
$$\lim_{x \to 3} \frac{\sqrt{x+13} - 2\sqrt{x+1}}{x^2 - 9}$$
.

e.6
$$\lim_{x \to 16} \frac{\sqrt[4]{x} - 2}{\sqrt{x} - 4}$$
.

e.8
$$\lim_{x \to 0} \frac{\sqrt{1 - 2x + x^2} - (1 + x)}{x}$$
.

e.10
$$\lim_{x \to 0} \frac{\sqrt[3]{27 + x} - \sqrt[3]{27 - x}}{x + 2\sqrt[3]{x^4}}$$
.

e.12
$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt[3]{1+x} - \sqrt[3]{1-x}}$$
.

e.14
$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{x^2 - 1}$$
.

e.16
$$\lim_{x \to -2} \frac{\sqrt[3]{x-6}+2}{x+2}$$
.

e.18
$$\lim_{x \to 8} \frac{\sqrt{9+2x}-5}{\sqrt[3]{x^2}-4}$$
.

e.20
$$\lim_{x \to 1/3} \frac{\sqrt[3]{x/9} - 1/3}{\sqrt{1/3 + x} - \sqrt{2x}}$$
.

e.22
$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt[7]{x}}$$
.

e.23
$$\lim_{x \to 0} \frac{\sqrt[3]{27 + x} - \sqrt[3]{27 - x}}{\sqrt[3]{x^2} + \sqrt[5]{x}}$$
.

e.25
$$\lim_{x \to 0} \frac{\sqrt{1-2x+3x^2} - (1+x)}{\sqrt[3]{x}}$$
.

e.27
$$\lim_{x \to 16} \frac{\sqrt[4]{x} - 2}{\sqrt[3]{(\sqrt{x} - 4)^2}}$$
.

e.29
$$\lim_{x \to 4} \frac{\sqrt{x} - 2}{\sqrt[3]{x^2 - 16}}$$
.

e.24
$$\lim_{x \to 0} \frac{\sqrt[3]{8 + 3x - x^2} - 2}{\sqrt[3]{x^2 + x^3}}$$
.

e.26
$$\lim_{x \to 8} \frac{\sqrt{9+2x}-5}{\sqrt[3]{x}-2}$$
.

e.28
$$\lim_{x \to -2} \frac{\sqrt[3]{x-6}+2}{\sqrt[3]{x^3+8}}$$
.

e.30
$$\lim_{x \to -8} \frac{10 - x - 6\sqrt{1 - x}}{2 + \sqrt[3]{x}}$$
.

2.2. (f) Сложные функции:

f.1.
$$\lim_{x \to 0} \frac{\ln(1+\sin x)}{\sin 4x}.$$

f.3
$$\lim_{x \to 0} \frac{3x^2 - 5x}{\sin 3x}$$
.

f.5
$$\lim_{x \to 0} \frac{4x}{\text{tg}(\pi(2+x))}$$
.

f.7
$$\lim_{x \to 0} \frac{1 - \cos^3 x}{4x^2}$$
.

f.9
$$\lim_{x \to 0} \frac{2^x - 1}{\ln(1 + 2x)}$$
.

f.11
$$\lim_{x \to 0} \frac{\ln(1-7x)}{\sin(\pi(x+7))}$$
.

f.13
$$\lim_{x \to 0} \frac{9 \ln(1-2x)}{4 \operatorname{arctg} 3x}$$
.

f.2.
$$\lim_{x \to 0} \frac{1 - \cos 10x}{e^{x^2} - 1}$$
.

f.4
$$\lim_{x \to 0} \frac{1 - \cos 2x}{\cos 7x - \cos 3x}$$
.

f.6
$$\lim_{x \to 0} \frac{2x}{\text{tg}[2\pi(x+1/2)]}$$
.

f.8
$$\lim_{x \to 0} \frac{\arcsin 3x}{\sqrt{2+x} - \sqrt{2}}.$$

f.10
$$\lim_{x \to 0} \frac{arctg 2x}{\sin(2\pi(x+10))}.$$

f.12
$$\lim_{x \to 0} \frac{\cos(x + 5\pi/2)tgx}{\arcsin 2x^2}.$$

f.14
$$\lim_{x \to 0} \frac{1 - \sqrt{3x + 1}}{\cos[\pi(x+1)/2]}$$
.

f.15
$$\lim_{x \to 0} \frac{\sin 7x}{x^2 + \pi x}$$
.

f.16
$$\lim_{x \to 0} \frac{\sqrt{4+x}-2}{3arctgx}.$$

f.17
$$\lim_{x \to 0} \frac{2\sin[\pi(x+1)]}{\ln(1+2x)}$$
.

f.18
$$\lim_{x \to 0} \frac{\cos 2x - \cos x}{1 - \cos x}$$
.

f.19
$$\lim_{x \to 0} \frac{\sqrt{1+x}-1}{\sin[\pi(x+2)]}$$
.

f.20
$$\lim_{x \to 0} \frac{\sin[5(x+\pi)]}{e^{3x}-1}$$
.

$$f.21 \lim_{x \to 0} \frac{1 - \sqrt{\cos x}}{x \sin x}.$$

f.22
$$\lim_{x \to 0} \frac{\arcsin 2x}{2^{-3x} - 1} \ln 2$$
.

f.23
$$\lim_{x \to 0} \frac{e^{4x} - 1}{\sin(\pi(x/2 + 1))}$$
.

f.24
$$\lim_{x \to 0} \frac{1 - \cos x}{(e^{3x} - 1)^2}$$
.

f.25
$$\lim_{x \to 0} \frac{\sin^2 x - tg^2 x}{x^4}$$
.

f.26
$$\lim_{x \to 0} \frac{\arcsin 2x}{\ln(e-x) - 1}.$$

f.27
$$\lim_{x \to 0} \frac{tgx - \sin x}{x(1 - \cos 2x)}.$$

f.28
$$\lim_{x \to 0} \frac{\ln(x^2 + 1)}{1 - \sqrt{x^2 + 1}}$$
.

f.29
$$\lim_{x \to 0} \frac{tg(\pi(1+x/2))}{\ln(x+1)}$$
.

f.30
$$\lim_{x \to 0} \frac{2(e^{\pi x} - 1)}{3(\sqrt[3]{1 + x} - 1)}$$
.

2.3. Вычислить производные функций

2.3. (д) Степенные функции:

g.1.
$$y = \frac{2(3x^3 + 4x^2 - x - 2)}{15\sqrt{1+x}}$$
.

g.2.
$$y = \frac{(2x^2 - 1)\sqrt{1 + x^2}}{3x^3}$$
.

g.3.
$$y = \frac{x^4 - 8x^2}{2(x^2 - 4)}$$
.

g.4.
$$y = \frac{2x^2 - x - 1}{3\sqrt{2 + 4x}}$$
.

g.5.
$$y = \frac{(1+x^8)\sqrt{1+x^8}}{12x^{12}}$$
.

g.7.
$$y = \frac{(x^2 - 6)\sqrt{(4 + x^2)^3}}{120x^5}$$
.

g.9.
$$y = \frac{4+3x^3}{x\sqrt[3]{(2+x^3)^2}}$$
.

g.11.
$$y = \frac{x^6 + x^3 - 2}{\sqrt{1 - x^3}}$$
.

g.13.
$$y = \frac{1+x^2}{2\sqrt{1+2x^2}}$$
.

g.15.
$$y = \frac{\sqrt{(1+x^2)^3}}{3x^3}$$
.

g.17.
$$y = \frac{\sqrt{2x+3}(x-2)}{x^2}$$
.

g.19.
$$y = \frac{(2x^2+3)\sqrt{x^2-3}}{9x^3}$$
.

g.21.
$$y = \frac{(2x+1)\sqrt{x^2-x}}{x^2}$$
.

g.23.
$$y = \frac{1}{(x+2)\sqrt{x^2+4x+5}}$$
.

g.6.
$$y = \frac{x^2}{2\sqrt{1-3x^4}}$$
.

g.8.
$$y = \frac{(x^2 - 8)\sqrt{x^2 - 8}}{6x^3}$$
.

g.10.
$$y = \sqrt[3]{\frac{\left(1 + x^{3/4}\right)^2}{x^{3/2}}}$$
.

g.12.
$$y = \frac{(x^2 - 2)\sqrt{4 + x^2}}{24x^3}$$
.

g.14.
$$y = \frac{\sqrt{x-1}(3x+2)}{4x^2}$$
.

g.16.
$$y = \frac{x^6 + 8x^3 - 128}{\sqrt{8 - x^3}}$$
.

g.18.
$$y = (1 - x^2) \sqrt[5]{x^3 + \frac{1}{x}}$$
.

g.20.
$$y = \frac{x-1}{(x^2+5)\sqrt{x^2+5}}$$
.

g.22.
$$y = 2\sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}}$$
.

g.24.
$$y = 3 \frac{\sqrt[3]{x^2 + x + 1}}{x + 1}$$
.

g.25.
$$y = 3 \cdot \sqrt[3]{\frac{(x+1)}{(x-1)^2}}$$
.

g.26.
$$y = \frac{x+7}{6\sqrt{x^2+2x+7}}$$
.

g.27.
$$y = \frac{x\sqrt{x+1}}{x^2 + x + 1}$$
.

g.28.
$$y = \frac{x^2 + 2}{2\sqrt{1 - x^4}}$$
.

g.29.
$$y = \frac{(x+3)\sqrt{2x-1}}{2x+7}$$
.

g.30.
$$y = \frac{3x + \sqrt{x}}{\sqrt{x^2 + 2}}$$
.

2.3. (h) Тригонометрические функции:

h.1.
$$y = \sin\sqrt{3} + \frac{1}{3}\frac{\sin^2 3x}{\cos 6x}$$

h.2.
$$y = \cos \ln 2 - \frac{1}{3} \frac{\cos^2 3x}{\sin 6x}$$
.

h.3.
$$y = \text{tg lg } \frac{1}{3} + \frac{1}{4} \frac{\sin^2 4x}{\cos 8x}$$

h.4.
$$y = \operatorname{ctg} \sqrt[3]{5} - \frac{1}{8} \frac{\cos^2 4x}{\sin 8x}$$
.

$$h.5. y = \frac{\cos\sin 5 \cdot \sin^2 2x}{2\cos 4x}.$$

h.6.
$$y = \frac{\sin \cos 3 \cdot \cos^2 2x}{4\sin 4x}.$$

h.7.
$$y = \frac{\cos \ln 7 \cdot \sin^2 7x}{7\cos 14x}$$
.

h.8.
$$y = \cos(\cot 2) - \frac{1}{16} \frac{\cos^2 8x}{\sin 16x}$$
.

h.9.
$$y = \text{ctg}(\cos 2) + \frac{1}{6} \frac{\sin^2 6x}{\cos 12x}$$
.

h.10.
$$y = \sqrt[3]{\cot 2} - \frac{1}{20} \frac{\cos^2 10x}{\sin 20x}$$

h.11.
$$y = \frac{1}{3}\cos\left(tg\frac{1}{2}\right) + \frac{1}{10}\frac{\sin^2 10x}{\cos 20x}$$
.

h.12.
$$y = \ln \sin \frac{1}{2} - \frac{1}{24} \frac{\cos^2 12x}{\sin 24x}$$
.

h.13.
$$y = 8\sin(\text{ctg }3) + \frac{1}{5}\frac{\sin^2 5x}{\cos 10x}$$
.

h.14.
$$y = \frac{\cos(\cot 3) \cdot \cos^2 14x}{28\sin 28x}$$
.

h.15.
$$y = \frac{\cos\left(\operatorname{tg}\frac{1}{3}\right) \cdot \sin^2 15x}{15\cos 30x}.$$

$$h.16. y = \frac{\sin\left(tg\frac{1}{7}\right) \cdot \cos^2 16x}{32\sin 32x}.$$

h.17.
$$y = \frac{\operatorname{ctg}\left(\sin\frac{1}{3}\right) \cdot \sin^2 17x}{17\cos 34x}.$$

h.18.
$$y = \frac{\sqrt[5]{\cot 2} \cdot \cos^2 18x}{36\sin 36x}$$
.

h.19.
$$y = \frac{\text{tg}(\ln 2) \cdot \sin^2 19x}{19\cos 38x}$$
.

h.20.
$$y = \text{ctg}(\cos 5) - \frac{1}{40} \frac{\cos^2 20x}{\sin 40x}$$
.

h.21.
$$y = \sqrt{\lg 4} + \frac{\sin^2 21x}{21\cos 42x}$$
.

h.22.
$$y = \cos(\ln 13) - \frac{1}{44} \frac{\cos^2 22x}{\sin 44x}$$
.

h.23.
$$y = \ln \cos \frac{1}{3} + \frac{\sin^2 23x}{23\cos 46x}$$
.

h.24.
$$y = \text{ctg}\left(\sin\frac{1}{13}\right) - \frac{1}{48}\frac{\cos^2 24x}{\sin 48x}$$
.

h.25.
$$y = \sin \ln 2 + \frac{\sin^2 25x}{25\cos 50x}$$
.

h.26.
$$y = \sqrt[3]{\cos\sqrt{2}} - \frac{1}{52} \frac{\cos^2 26x}{\sin 52x}$$
.

h.27.
$$y = \sqrt[7]{\lg(\cos 2)} + \frac{\sin^2 27x}{27\cos 54x}$$
. h.28. $y = \sin \sqrt[3]{\lg 2} - \frac{\cos^2 28x}{56\sin 56x}$.

h.28.
$$y = \sin \sqrt[3]{\lg 2} - \frac{\cos^2 28x}{56\sin 56x}$$

h.29.
$$y = \cos^2 \sin 3 + \frac{\sin^2 29x}{29\cos 58x}$$
.

h.30.
$$y = \sin^3 \cos 2 - \frac{\cos^2 30x}{60\sin 60x}$$

2.3. (і) Найти производную п-го порядка:

i.1.
$$y = x e^{ax}$$
.

i.2.
$$y = \sin 2x + \cos(x+1)$$
.

i.3.
$$y = \sqrt[5]{e^{7x-1}}$$
.

i.4.
$$y = \frac{4x+7}{2x+3}$$
.

i.5.
$$y = \lg(5x + 2)$$
.

i.6.
$$y = a^{3x}$$
.

i.7.
$$y = \frac{x}{2(3x+2)}$$
.

i.8.
$$y = \lg(x+4)$$
.

i.9.
$$y = \sqrt{x}$$
.

i.10.
$$y = \frac{2x+5}{13(3x+1)}$$
.

i.11.
$$y = 2^{3x+5}$$
.

i.13.
$$y = \sqrt[3]{e^{2x+1}}$$
.

i.15.
$$y = \lg(3x+1)$$
.

i.17.
$$y = \frac{x}{9(4x+9)}$$
.

i.19.
$$y = \frac{4}{x}$$
.

i.21.
$$y = a^{2x+3}$$
.

i.23.
$$y = \sqrt{e^{3x+1}}$$
.

i.25.
$$y = \lg(2x+7)$$
.

i.27.
$$y = \frac{x}{x+1}$$
.

i.29.
$$y = \frac{1+x}{1-x}$$
.

i.12.
$$y = \sin(x+1) + \cos 2x$$
.

i.14.
$$y = \frac{4+15x}{5x+1}$$
.

i.16.
$$y = 7^{5x}$$
.

i.18.
$$y = \lg(1+x)$$
.

i.20.
$$y = \frac{5x+1}{13(2x+3)}$$
.

i.22.
$$y = \sin(3x+1) + \cos 5x$$
.

i.24.
$$y = \frac{11+12x}{6x+5}$$
.

i.26.
$$y = 2^{kx}$$
.

i.28.
$$y = \log_3(x+5)$$
.

i.30.
$$y = \frac{7x+1}{17(4x+3)}$$
.

2.4. Вычислить интегралы

2.4. (j) Неопределённые интегралы:

j.1.
$$\int (4-3x)e^{-3x}dx$$
.

$$j.3. \int (3x+4)e^{3x}dx.$$

$$j.5. \int (4-16x)\sin 4x dx.$$

$$j.7. \int (1-6x)e^{2x}dx.$$

j.2.
$$\int \arctan \sqrt{4x-1} dx.$$

j.4.
$$\int (4x-2)\cos 2x dx.$$

j.6.
$$\int (5x-2)e^{3x}dx$$
.

j.8.
$$\int \ln(x^2+4)dx.$$

j.9.
$$\int \ln(4x^2+1)dx.$$

$$j.10. \int (2-4x)\sin 2x dx.$$

j.11.
$$\int \arctan \sqrt{6x-1} dx$$
.

j.12.
$$\int e^{-2x} (4x-3) dx$$
.

j.13.
$$\int e^{-3x} (2-9x) dx$$
.

j.14.
$$\int \arctan \sqrt{2x-1} dx$$
.

j.15.
$$\int \arctan \sqrt{3x-1} dx.$$

j.16.
$$\int \arctan \sqrt{5x-1} dx.$$

j.17.
$$\int (5x+6)\cos 2x dx.$$

$$\text{j.18.} \int (3x-2)\cos 5x dx.$$

j.19.
$$\int \left(x\sqrt{2} - 3\right)\cos 2x dx.$$

$$j.20. \int (4x+7)\cos 3x dx.$$

$$j.21. \int (2x-5)\cos 4x dx.$$

$$\text{j.22. } \int (8-3x)\cos 5x dx.$$

$$j.23. \int (x+5)\sin 3x dx.$$

j.24.
$$\int (2-3x)\sin 2x dx.$$

$$\text{j.25. } \int (4x+3)\sin 5x dx.$$

j.26.
$$\int (7x-10)\sin 4x dx$$
.

$$j.27. \int \left(\sqrt{2} - 8x\right) \sin 3x dx.$$

j.28.
$$\int \frac{x dx}{\cos^2 x}.$$

j.29.
$$\int \frac{xdx}{\sin^2 x}$$
.

j.30.
$$\int x \sin^2 x dx.$$

2.4. (k) Определённые интегралы:

k.1.
$$\int_{e^{+1}}^{e^2+1} \frac{1 + \ln(x-1)}{x-1} dx.$$

k.2.
$$\int_{0}^{1} \frac{\left(x^{2}+1\right) dx}{\left(x^{3}+3x+1\right)^{2}}.$$

k.3.
$$\int_{0}^{1} \frac{4 \arctan x - x}{1 + x^2} dx$$
.

k.4.
$$\int_{0}^{2} \frac{x^3 dx}{x^2 + 4}$$
.

k.5.
$$\int_{\pi}^{2\pi} \frac{x + \cos x}{x^2 + 2\sin x} dx.$$

k.6.
$$\int_{0}^{\pi/4} \frac{2\cos x + 3\sin x}{\left(2\sin x - 3\cos x\right)^{3}} dx.$$

k.7.
$$\int_{0}^{1/2} \frac{8x - \arctan 2x}{1 + 4x^2} dx.$$

k.8.
$$\int_{1}^{4} \frac{1/(2\sqrt{x})+1}{\left(\sqrt{x}+x\right)^{2}} dx.$$

k.9.
$$\int_{0}^{1} \frac{x dx}{x^4 + 1}.$$

k.10.
$$\int_{\sqrt{3}}^{\sqrt{8}} \frac{x + 1/x}{\sqrt{x^2 + 1}} dx.$$

k.11.
$$\int_{\sqrt{3}}^{\sqrt{8}} \frac{x - 1/x}{\sqrt{x^2 + 1}} dx.$$

k.12.
$$\int_{0}^{\sqrt{3}} \frac{\arctan x + x}{1 + x^2} dx.$$

k.13.
$$\int_{0}^{\sqrt{3}} \frac{x - (\arctan x)^{4}}{1 + x^{2}} dx.$$

k.14.
$$\int_{0}^{1} \frac{x^3}{x^2 + 1} dx$$
.

k.15.
$$\int_{0}^{\sin 1} \frac{(\arcsin x)^{2} + 1}{\sqrt{1 - x^{2}}} dx.$$

k.16.
$$\int_{1}^{3} \frac{1 - \sqrt{x}}{\sqrt{x}(x+1)} dx$$
.

k.17.
$$\int_{\sqrt{3}}^{\sqrt{8}} \frac{dx}{x\sqrt{x^2 + 1}}.$$

k.18.
$$\int_{1}^{e} \frac{1 + \ln x}{x} dx.$$

k.19.
$$\int_{\sqrt{2}}^{2} \frac{dx}{x\sqrt{x^2 - 1}}.$$

k.20.
$$\int_{1}^{e} \frac{x^2 + \ln x^2}{x} dx$$
.

k.21.
$$\int_{0}^{1} \frac{xdx}{\sqrt{x^4 + x^2 + 1}}.$$

k.22.
$$\int_{0}^{1} \frac{x^{3} dx}{\left(x^{2} + 1\right)^{2}}.$$

k.23.
$$\int_{0}^{\pi/4} \operatorname{tg} x \ln \cos x dx.$$

k.24.
$$\int_{-1}^{0} \frac{\text{tg}(x+1)}{\cos^2(x+1)} dx.$$

k.25.
$$\int_{0}^{1/\sqrt{2}} \frac{\left(\arccos x\right)^{3} - 1}{\sqrt{1 - x^{2}}} dx.$$

k.26.
$$\int_{\pi}^{2\pi} \frac{1 - \cos x}{(x - \sin x)^2} dx.$$

k.27.
$$\int_{0}^{\pi/4} \frac{\sin x - \cos x}{(\cos x + \sin x)^{5}} dx.$$

k.28.
$$\int_{\pi/4}^{\pi/2} \frac{x \cos x + \sin x}{(x \sin x)^2} dx.$$

k.29.
$$\int_{0}^{1} \frac{x^3 + x}{x^4 + 1} dx.$$

k.30.
$$\int_{\sqrt{2}}^{\sqrt{3}} \frac{x dx}{\sqrt{x^4 - x^2 - 1}}.$$

2.5. Исследовать функции и построить их графики

2.5. (I) Рациональные функции:

1.1.
$$y = (x^3 + 4)/x^2$$
.

1.3.
$$y = 2/(x^2 + 2x)$$
.

1.5.
$$y = 12x/(9+x^2)$$
.

1.7.
$$y = (4 - x^3)/x^2$$
.

1.9.
$$y = (2x^3 + 1)/x^2$$
.

1.11.
$$y = x^2/(x-1)^2$$
.

1.13.
$$y = (12 - 3x^2)/(x^2 + 12)$$

1.14. $y = (9 + 6x - 3x^2)/(x^2 - 2x + 13)$.

1.15.
$$y = -8x/(x^2 + 4)$$
.

1.17.
$$y = (3x^4 + 1)/x^3$$
.

1.19.
$$y = 8(x-1)/(x+1)^2$$
.

1.21.
$$y = 4/(x^2 + 2x - 3)$$
.

1.23.
$$y = (x^2 + 2x - 7)/(x^2 + 2x - 3)$$
. 1.24. $y = 1/(x^4 - 1)$.

1.25.
$$y = -(x/(x+2))^2$$
.

1.27.
$$y = 4(x+1)^2/(x^2+2x+4)$$
.

1.2.
$$y = (x^2 - x + 1)/(x - 1)$$
.

1.4.
$$y = 4x^2/(3+x^2)$$
.

1.6.
$$y = (x^2 - 3x + 3)/(x-1)$$
.

1.8.
$$y = (x^2 - 4x + 1)/(x - 4)$$
.

1.10.
$$y = (x-1)^2 / x^2$$
.

1.12.
$$y = (1 + 1/x)^2$$
.

1.16.
$$y = ((x-1)/(x+1))^2$$
.

1.18.
$$y = 4x/(x+1)^2$$
.

1.20.
$$y = (1-2x^3)/x^2$$
.

1.22.
$$y = 4/(3+2x-x^2)$$

1.24.
$$y = 1/(x^4 - 1)$$

1.26.
$$y = (x^3 - 32)/x^2$$
.

1.28.
$$y = (3x-2)/x^3$$
.

1.29.
$$y = (x^2 - 6x + 9)/(x-1)^2$$
.

1.30.
$$y = (x^3 - 27x + 54)/x^3$$
.

2.5. (т) Функции с радикалами:

m.1.
$$y = \sqrt[3]{(2-x)(x^2-4x+1)}$$
.

m.3.
$$y = \sqrt[3]{(x+2)(x^2+4x+1)}$$
.

m.5.
$$y = \sqrt[3]{(x-1)(x^2-2x-2)}$$
.

m.7.
$$y = \sqrt[3]{(x^2 - 4x + 3)^2}$$
.

m.9.
$$y = \sqrt[3]{x^2(x-2)^2}$$
.

m.11.
$$y = \sqrt[3]{x^2(x+4)^2}$$
.

m.13.
$$y = \sqrt[3]{(x+3)x^2}$$
.

m.15.
$$y = \sqrt[3]{(x-1)^2} - \sqrt[3]{x^2}$$
.

m.17.
$$y = \sqrt[3]{(x-4)(x+2)^2}$$
.

m.19.
$$y = \sqrt[3]{(x+1)(x-2)^2}$$
.

m.21.
$$y = \sqrt[3]{(x-2)^2} - \sqrt[3]{(x-3)^2}$$
.

m.23.
$$y = \sqrt[3]{(x-6)x^2}$$
.

m.25.
$$y = \sqrt[3]{x(x-3)^2}$$
.

m.27.
$$y = \sqrt[3]{(x+2)^2} - \sqrt[3]{(x+3)^2}$$
.

m.2.
$$y = -\sqrt[3]{(x+3)(x^2+6x+6)}$$
.

m.4.
$$y = \sqrt[3]{(x+1)(x^2+2x-2)}$$
.

m.6.
$$y = \sqrt[3]{(x-3)(x^2-6x+6)}$$
.

m.8.
$$y = \sqrt[3]{x^2(x+2)^2}$$
.

m.10.
$$y = \sqrt[3]{(x^2 - 2x - 3)^2}$$
.

m.12.
$$y = \sqrt[3]{x^2(x-4)^2}$$
.

m.14.
$$y = \sqrt[3]{(x-1)(x+2)^2}$$
.

m.16.
$$y = \sqrt[3]{(x+6)x^2}$$
.

m.18.
$$y = \sqrt[3]{(x-1)^2} - \sqrt[3]{(x-2)^2}$$
.

m.20.
$$y = \sqrt[3]{(x-3)x^2}$$
.

m.22.
$$y = \sqrt[3]{(x+2)(x-4)^2}$$
.

m.24.
$$y = \sqrt[3]{x^2} - \sqrt[3]{(x-1)^2}$$
.

m.26.
$$y = \sqrt[3]{x(x+3)^2}$$
.

m.28.
$$y = \sqrt[3]{x(x-6)^2}$$
.

m.29.
$$y = \sqrt[3]{x(x+6)^2}$$
.

m.30.
$$y = \sqrt[3]{(x+1)^2} - \sqrt[3]{(x+2)^2}$$
.

2.5. (п) Сложные функции:

n.1.
$$y = e^{\sin x + \cos x}$$
.

n.3.
$$y = \ln(\sin x + \cos x)$$
.

$$\text{n.5. } y = e^{\sqrt{2}\sin x}$$

n.7.
$$y = \ln(\sqrt{2}\sin x)$$
.

n.9.
$$y = e^{\sin x - \cos x}$$
.

n.11.
$$y = \ln(\sin x - \cos x)$$
.

n.13.
$$y = e^{-\sqrt{2}\cos x}$$

$$\text{n.15. } y = \ln\left(-\sqrt{2}\cos x\right).$$

n.17.
$$y = e^{-\sin x - \cos x}$$
.

n.19.
$$y = \ln(-\sin x - \cos x)$$
.

n.21.
$$y = e^{-\sqrt{2}\sin x}$$

$$\text{n.23. } y = \ln\left(-\sqrt{2}\sin x\right).$$

$$n.25. \ y = e^{\cos x - \sin x}$$

n.27.
$$y = \ln(\cos x - \sin x)$$
.

n.29.
$$y = e^{\sqrt{2}\cos x}$$
.

n.2.
$$y = \arctan\left[\left(\sin x + \cos x\right) / \sqrt{2}\right]$$
.

n.4.
$$y = 1/(\sin x + \cos x)$$
.

n.6.
$$y = arctg(\sin x)$$
.

n.8.
$$y = 1/(\sin x - \cos x)$$
.

n.10.
$$y = \operatorname{arctg}\left[\left(\sin x - \cos x\right)/\sqrt{2}\right]$$
.

n.12.
$$y = 1/(\sin x + \cos x)^2$$
.

n.14.
$$y = -\arctan(\cos x)$$
.

n.16.
$$y = 1/(\sin x - \cos x)^2$$
.

n.18.
$$y = \sqrt[3]{\sin x}$$
.

n.20.
$$y = \sqrt{(\sin x - \cos x)/\sqrt{2}}$$
.

n.22.
$$y = \sqrt[3]{\cos x}$$
.

$$\text{n.24. } y = \sqrt{\cos x}.$$

n.26.
$$y = \sqrt[3]{(\sin x + \cos x)/\sqrt{2}}$$
.

n.28.
$$y = \sqrt{\sin x}$$
.

n.30.
$$y = \sqrt{(\sin x + \cos x)/\sqrt{2}}$$
.

Список литературы

- 1. Кузнецов Л.А. Сборник заданий по высшей математике (типовые расчёты). М.: Высшая школа, 1994. 206 с.
- 2. Миносцев В.Б. Сборник типовых расчётов по высшей математике. Учебное пособие. М.: Изд-во МГИУ, 2007. 548 с.

