Exercício 4 - Precondicionadores e Reordenamento

Lorena B. Bassani

2021

Abstract

Este documento relata os resultados do terceiro exercício da disciplina de Algoritmos Numéricos II, no semestre 2021/01 EARTE. O objetivo é observar o comportamento do Método dos Gradientes Conjugados e GMRES para um conjunto de matrizes esparsas da SuiteSparse Matrix Collection¹ considerarando precondicionamento e reordenamento.

1 Introdução

Para a primeira etapa deste exercício, foram utilizadas quatro matrizes quadradas esparsas, a mesh3em5 de 289 linhas e colunas, a 662_bus com 662, a pdb1HYS com 36.417 e a Dubcova3 de dimensão 146.689, e para a segunda etapa, foram utilizadas três matrizes quadradas esparsas, a cavity05 com 1.182 linhas e colunas, a cz2548 com 2.548 e a epb3 de dimensão 84.617, obtidas da coleção de matrizes esparsas $SuiteSparse\ Matrix\ Collection$. Nessas sete matrizes, foram realizadas análises quanto ao comportamento da aplicação de diferentes precondicionadores, com e sem reordenamento, utilizando a ferramenta Octave. Na seção 2 são relatadas algumas observações sobre a utilização deste método para resolução de sistemas lineares, e na última parte do trabalho, nas seções 3 e 4, se encontram as figuras e as tabelas com os resultados obtidos, respectivamente.

2 Exercício Proposto – Precondicionadores e Reordenamento

O objetivo deste exercício é observar o comportamento de matrizes esparsas na solução de sistemas lineares via métodos iterativos não estacionários, considerando precondicionamento e reordenamento. Para isto, as matrizes escolhidas foram submetidas a métodos de precondicionamento e reordenamento e utilizadas como matriz de coeficientes para solução de sistemas lineares através de método nativo do Octave, e foram observados uma série de fatores quanto ao comportamento das matrizes a respeito da convergência da resposta e seu número de condicionamento.

 $^{^{1}}$ https://sparse.tamu.edu

2.1 Fatoração Incompleta de Cholesky – ICC

Na primeira parte do exercício, foi estudado o método da fatoração incompleta de Cholesky-ICC. Para isto, cada uma das quatro primeiras matrizes eram submetidas a duas configurações diferentes do método: a fatoração ICC(0), ou incomplete Cholesky with zero-fill 2 , e a fatoração incomplete Cholesky with threshold dropping. Cada uma foi realizada com e sem reordenamento. O resultado foi testado aplicando-o como entrada para o método dos gradientes conjugados, estudado no Exercício 2.

O método dos gradientes conjugados é um dos métodos que levariam a uma resposta exata em n passos, a menos de erros de arredondamento, porém, levando em consideração que a maior parte do decrescimento do erro ocorre nos passos primários, ele é tratado como método iterativo, parando após atingir critérios de tolerância do erro. Isso faz com que o método, para matrizes bem condicionadas, convirja rapidamente, em pouquíssimas iterações quando comparado a dimensão da própria matriz. A ideia do uso de precondicionadores é melhorar o condicionamento da matriz de entrada, para melhorar a convergência do método.

Um dos passos realizados nas duas menores matrizes para verificar a diferença entre a matriz original e a matriz resultante do precondicionamento foi calcular o número de condicionamento delas³. Na mesh3em5, o precondicionamento não alterou o número de condicionamento de forma significativa, de forma que este permaneceu o mesmo até as primeiras quatro casas decimais. O número de condicionamento dessa matriz ficou, assim, próximo de 4,9659 tanto na original quanto nas precondicionadas. Já na matriz 662_bus , o método de precondicionamento diminuiu o número de precondicionamento, levando de $7,941 \times 10^5$ para seu menor número em $5,903 \times 10^3$ com o precondicionamento ICC(0) sem reordenamento.

Outras observações realizadas antes de submeter as matrizes ao método dos gradientes conjugados foi a alteração do número de elementos não nulos. A matriz mesh3em5 possuía originalmente 1.377 elementos não nulos, atingindo um máximo de 1.891 com o precondicionamento ICC(0) sem reordenamento, e um mínimo de 833 no ICC, tanto com quanto sem reordenamento. Na matriz 662_bus, que tinha originalmente 2.474 elementos não nulos, encontrou um máximo de 5.910 no precondicionamento ICC sem reordenamento. A matriz pdb1HYS saiu de 4.344.765 elementos não nulos para um máximo de 10.409.889 com o precondicionamento ICC(0) sem reordenamento. Por fim, a matriz Dubcova3 partindo de 3.636.643 elementos não nulos, conseguiu aumentar até 52.898.003 no precondicionamento ICC sem reordenamento. Com exceção da mesh3em5 que conseguiu diminuir o número de elementos não nulos com o ICC, as matrizes tiveram aumentos significativos de elementos não nulos.

Ao aplicar os métodos de precondicionamento nas matrizes, foram encontrados problemas no ICC para a matriz pdb1HYS. Em ambos casos, o método retornou com

²De acordo com a documentação do método Octave ichol, disponível em: https://octave.sourceforge.io/octave/function/ichol.html

³As matrizes *pdb1HYS* e *Dubcova3* não permitiram o calculo do número de condicionamento por serem muito grandes, causando fechamento forçado do programa Octave depois de certo tempo do início da operação. A operação de cálculo de condicionamento é tão ou até mais custosa do que a própria solução do sistema linear, podendo até não ser possível em alguns casos, como observado.

o erro negative pivot encountered. Dessa forma, esta matriz foi estudada apenas quanto a aplicação do ICC(0) com e sem reordenamento. Além de gerar gráficos para comparação da solução para a melhoria na convergência das matrizes, algumas matrizes menores puderam ser observadas quanto ao preenchimento através do método spv 4 .

2.2 Fatoração LU incompleta – ILU

Na segunda parte do exercício, foi estudado o método da fatoração LU incompleta—ILU. Para isto, as três últimas matrizes da lista foram submetidas a duas configurações diferentes do método: a fatoração ILU(0), ou ILU factorization with no fill-in 5 , e a Crout version of ILU factorization. Cada uma foi realizada com e sem reordenamento. O resultado foi testado aplicando-o como entrada para o método do resíduo mínimo generalizado, ou GMRES, estudao no Exercício 3.

O método do resíduo mínimo generalizado é um método iterativo não estacionário para resolver sistemas com matrizes quadradas esparsas não-simétricas, que baseia-se nos métodos de projeção ortogonal sobre um subespaço de Krylov. Sua versão pura garante convergência em no máximo n iterações, porém sua complexidade temporal é de $\mathcal{O}(n^3)$ e complexidade espacial é de $\mathcal{O}(n^2)$, tornando-o computacionalmente muito custoso para n muito grande. Dessa forma, neste trabalho utiliza-se a versão reiniciada, onde se considera um subespaço de krylov de dimensão k, iterando sob a diminuição do resíduo. Sua complexidade temporal se torna $\mathcal{O}(kn^2)$ e complexidade espacial $\mathcal{O}(kn)$. Infelizmente, essa versão perde a garantia de convergência e ainda possui a dificuldade inerente de encontrar um valor ideal para k. Para esta atividade, foram utilizados os valores de k retirados dos resultados do experimento do Exercício 3.

Um dos passos realizados das duas menores matrizes para verificar a diferença entre a matriz original e a matriz resultante do precondicionamento foi calcular o número de condicionamento delas 6 . A matriz cavity05 possuía um número de condicionamento igual a $5,77\times10^5$ originalmente, e conseguiu diminuir para $7,245\times10^4$ com o precondicionamento ILU sem reordenamento. Enquanto a matriz cz2548 conseguiu diminuir seu número de condicionamento de $2,564\times10^6$ para um mínimo de $1,026\times10^5$ com o precondicionamento ILU(0) sem reordenamento.

Outras observações realizadas antes de submeter as matrizes ao método do resíduo mínimo generalizado foi a alteração do número de elementos não nulos. Na matriz cavity05, com originalmente 32.632 elementos não nulos, teve um aumento para 133.644 elementos não nulos com o precondicionamento ILU sem reordenamento. A matriz cz2548, partindo de 25.674 elementos não nulos, teve um aumento pequeno para 39.000 elementos não nulos, quando comparado com a cavity05. Por último, a matriz epb3, que tinha originalmente 463.625 elementos não nulos, chegou a 1.500.473 elementos

 $^{^4{\}rm N}$ ão foi possível gerar visualização da matriz Dubcova3 por questões de limitação de memória da máquina utilizada para o trabalho

 $^{^5\}mathrm{De}$ acordo com a documentação do método Octave ilu, disponível em: https://octave.sourceforge.io/octave/function/ilu.html

⁶A matriz *epb3* não permitiu o calculo do número de condicionamento por ser muito grande, da mesma forma que as matrizes *pdb1HYS* e *Dubcova3*, observadas anteriormente.

não nulos no precondicionamento ILU com reordenamento.

Durante a aplicação dos precondicionadores, a matriz cavity05 teve problema em todos os casos menos para o precondicionamento ILU sem reordenamento. Para a mesma versão com reordenamento, foi obtido o erro encountered a pivot equal to 0, enquanto que para o precondicionamento ILU(0) foi encontrado o erro A has a zero on the diagonal tanto com quando sem reordenamento. Dessa forma, a matriz foi estudada apenas quanto a aplicação do ILU sem reordenamento. Além de gerar gráficos para comparação da solução quanto a melhoria na convergência da matrizes, foram geradas imagens para observação do preenchimento das matrizes através do método spy.

3 Figuras dos resultados observados

Figure 1: Gráfico do Resíduo da matriz mesh3em5

Figure 2: Spy de da matriz mesh3em5

Figure 3: Gráficos do preenchimento de mesh3em5.

Figure 4: Gráfico do Resíduo da matriz 662_bus

Figure 5: Spy de da matriz 662_bus

Figure 6: Gráficos do preenchimento de 662_bus.

Gráfico do resíduo: pdb1HYS

Figure 7: Gráfico do Resíduo da matriz pdb1HYS

Figure 8: Spy de da matriz pdb1HYS

(a) Spy após ICC(0) sem reordenamento

(b) Spy após ICC(0) com reordenamento

Gráfico do resíduo: Dubcova3

Figure 10: Gráfico do Resíduo da matriz Dubcova3

Figure 11: Gráfico do Resíduo da matriz cavity05

Figure 12: Spy de da matriz *cavity05*

Figure 13: Gráficos do preenchimento de cavity05.

Figure 14: Gráfico do Resíduo da matriz cz2548

Figure 15: Spy de da matriz cz2548

Figure 16: Gráficos do preenchimento de cz2548.

Figure 17: Gráfico do Resíduo da matriz epb3

Figure 18: Spy de da matriz epb3

Figure 19: Gráficos do preenchimento de epb3.

4 Tabelas dos resultados observados

			Tabel	a de analise dos p	recondicionador	es					
In	Informações da matriz				Informações do precondicionamento						
Nome	n	Não-nulos	k = cond(A)	Precondicionador	Reordenamento	Não-nulos	k = cond(A)	tempo (s)			
mesh3em5	289	1377	4.965950e+00	ICC(0)	com	1889	4.965948e+00	0.000751972 s			
mesh3em5	289	1377	4.965950e+00	ICC(0)	sem	1891	4.965948e+00	0.000439167 s			
mesh3em5	289	1377	4.965950e+00	ICC	com	833	4.965944e+00	0.000847816 s			
mesh3em5	289	289 1377 4.965950e+00		ICC	sem	833	4.965944e+00	0.000476837 s			

Table 1: Tabela de análise dos precondicionadores utilizados na matriz mesh3em5

Tabela	do Método	dos Gradie	entes Conjugado	s com	tolerância	a 10^{-11} e máx	imo de iteraçõe	es 10.000		
Informações	da matriz	Resultados do método								
Nome	n	Precond.	Reordenamento flag iterações erro relativo $ x _{\infty}$					tempo (s)		
mesh3em5	289	-	-	0	20	6.495063e-12	1.000000e+00	0.00497293 s		
mesh3em5	em5 289 ICC(0) co		com	0	3	1.789972e-15	1.000000e+00	$0.00606489 \mathrm{\ s}$		
mesh3em5	289	ICC(0)	sem	0	3	2.865405e-15	1.000000e+00	0.00613403 s		
mesh3em5	289	289 ICC com			3	1.142175e-14	1.000000e+00	$0.00574207 \mathrm{\ s}$		
mesh3em5	289	ICC	sem	0	3	1.142175e-14	1.000000e+00	0.00563097 s		

Table 2: Tabela de resultados observados na resolução da matriz mesh3em5 pelo Método Gradientes Conjugados com tolerância 10^{-11} e máximo de iterações 10.000.

			Tabe	ela de analise dos	precondicionado	ores				
	Inform	nações da m	atriz	Informações do precondicionamento						
Nome	n	Não-nulos	k = cond(A)	Precondicionador	Reordenamento	Não-nulos	k = cond(A)	tempo (s)		
662_bus	662	2474	7.941311e+05	ICC(0)	com	2918	6.574479e + 03	0.0118921 s		
662_bus	662	2474	7.941311e+05	ICC(0)	sem	3702	5.903236e+03	$0.000622034 \mathrm{\ s}$		
662_bus	662	2474	7.941311e+05	ICC	com	4564	3.104181e+04	0.00163412 s		
662_bus	662	2474	7.941311e+05	ICC	sem	5910	3.131869e+04	0.0014472 s		

Table 3: Tabela de análise dos precondicionadores utilizados na matriz 662-bus

Tabe	la do Método d	los Gradie	ntes Conjugados	s com	tolerância	$10^{-11}~{ m e}~{ m m\acute{a}xi}$	mo de iteraçõe	s 10.000		
Informaç	ões da matriz	Resultados do método								
Nome n Precond. Reordenamento flag iterações en							$ x _{\infty}$	tempo (s)		
$662_{ m bus}$	662	-	-	0	678	8.627720e-11	1.000000e+00	$0.100955 \mathrm{\ s}$		
662_bus	662	ICC(0)	com	0	53	7.447388e-11	1.000000e+00	0.0568819 s		
$662_{ m bus}$	662	ICC(0)	sem	0	76	7.837325e-11	1.000000e+00	$0.0569861 \mathrm{\ s}$		
662_bus	662	ICC	com	0	10	9.035513e-12	1.000000e+00	0.0133121 s		
$662_{ m bus}$	662	ICC	sem	0	10	6.091978e-12	1.000000e+00	0.014411 s		

Table 4: Tabela de resultados observados na resolução da matriz 662-bus pelo Método Gradientes Conjugados com tolerância 10^{-11} e máximo de iterações 10.000.

	Tabela de analise dos precondicionadores											
	Informa	ações da mat	riz	Informações do precondicionamento								
Nome	n	Não-nulos	k = cond(A)	Precondicionador	Reordenamento	Não-nulos	k = cond(A)	tempo (s)				
pdb1HYS	36417	4344765	-1.000000e+00	ICC(0)	com	9347919	-1.000000e+00	2.12236 s				
pdb1HYS	36417	4344765	-1.000000e+00	ICC(0)	sem	10409889	-1.000000e+00	1.30761 s				

Table 5: Tabela de análise dos precondicionadores utilizados na matriz pdb1HYS

Tabela d	Tabela do Método dos Gradientes Conjugados com tolerância 10^{-11} e máximo de iterações 10.000											
Informaçõe	s da matriz	Resultados do método										
Nome	n	Precond.	recond. Reordenamento flag iterações erro relativo $ x _{\infty}$ tempo (s)									
pdb1HYS	36417	-	-	3	6205	3.618273e-06	1.000001e+00	106.573 s				
pdb1HYS	36417	ICC(0)	com	3	1026	8.864919e-07	1.000001e+00	3281.42 s				
pdb1HYS	36417	ICC(0)	CC(0) sem 3 1266 1.024893e-06 1.000001e+00 4548.05 s									

Table 6: Tabela de resultados observados na resolução da matriz pdb1HYS pelo Método Gradientes Conjugados com tolerância 10^{-11} e máximo de iterações 10.000.

	Tabela de analise dos precondicionadores											
	Informaç	ões da matr	iz		Informações do precondicionamento							
Nome	n	Não-nulos	k = cond(A)	Precondicionador	Reordenamento	Não-nulos	k = cond(A)	tempo (s)				
Dubcova3	146689	3636643	-	ICC(0)	com	4769297	-	0.913333 s				
Dubcova3	146689	3636643	-	ICC(0)	sem	16025173	-	1.03894 s				
Dubcova3	146689	3636643	-	ICC	com	8061119	-	1.71888 s				
Dubcova3	146689	3636643	-	ICC	sem	52898003	-	7.16305 s				

Table 7: Tabela de análise dos precondicionadores utilizados na matriz Dubcova3

Tabela	a do Método	Gradiente	es Conjugados co	om to	lerância 10	$ m ^{-11}$ e máximo	de iterações 1	0.000			
Informaçõe	s da matriz	Resultados do método									
Nome	n	Precond.	Reordenamento	flag	iterações	erro relativo	$ x _{\infty}$	tempo (s)			
Dubcova3	146689	-	- 0 215 9.438705e-11 1.000000e+00 4.30950								
Dubcova3	146689	ICC(0)	com	0	97	9.742899e-11	1.000000e+00	299.55 s			
Dubcova3	146689	ICC(0)	sem	0	143	9.606530e-11	1.000000e+00	$1575.17 \mathrm{\ s}$			
Dubcova3	146689	ICC	com	0	26	2.954087e-11	1.000000e+00	138.95 s			
Dubcova3	146689	ICC	sem	0	32	6.821619e-11	1.000000e+00	1842 s			

Table 8: Tabela de resultados observados na resolução da matriz Dubcova3 pelo Método GMRES com tolerância 10^{-11} e máximo de iterações 10.000.

	Tabela de analise dos precondicionadores									
Informações da matriz Informações do precondicionamento										
Nome	n	Não-nulos	k = cond(A)	Precondicionador	Reordenamento	k = cond(A)	tempo (s)			
cavity05	1182	32632	5.770648e + 05	ILU sem		133644	7.245709e+04	$0.024977 \mathrm{\ s}$		

Table 9: Tabela de análise dos precondicionadores utilizados na matriz cavity05

Tabela do Método GMRES com tolerância 10^{-11} e máximo de iterações 10.000										
Informações da matriz Resultados do método										
Nome	n	Precond.	Precond. Reordenamento k flag iterações erro relativo $ x _{\infty}$ temp							
cavity05	1182	-	-	447	0	394	9.841954e-11	1.000001e+00	25.7365 s	
cavity05	1182	ILU	sem	447	0	27	6.987364e-11	1.000000e+00	2.76892 s	

Table 10: Tabela de resultados observados na resolução da matriz cavity05 pelo Método GMRES com tolerância 10^{-11} e máximo de iterações 10.000.

			Tabe	la de analise dos j	precondicionado	res				
	Inforr	nações da m	atriz	Informações do precondicionamento						
Nome	n	Não-nulos	k = cond(A)	Precondicionador	Reordenamento	Não-nulos	k = cond(A)	tempo (s)		
cz2548	2548	25674	2.563753e+06	ILU(0)	com	33225	1.083267e + 05	$0.00527596 \mathrm{\ s}$		
cz2548	2548	25674	2.563753e+06	ILU(0)	sem	36815	1.026009e+05	$0.00266695 \mathrm{\ s}$		
cz2548	2548	25674	2.563753e+06	ILU	com	25958	3.156199e+06	0.0166929 s		
cz2548	48 2548 25674 2.563753e+06		ILU	sem	39000	3.479452e + 05	0.0171821 s			

Table 11: Tabela de análise dos precondicionadores utilizados na matriz cz2548

	Tabela do Método GMRES com tolerância 10 ⁻¹¹ e máximo de iterações 10.000										
Informa	ções da matriz	Resultados do método									
Nome	n	Precond.	Reordenamento	erro relativo	$ x _{\infty}$	tempo (s)					
cz2548	2548	-	-	760	0	1294	9.880078e-11	1.000000e+00	259.886 s		
cz2548	2548	ILU(0)	sem	760	0	224	9.635935e-11	1.000000e+00	8.27269 s		
cz2548	2548	ILU(0)	com	760	0	241	6.971360e-11	1.000000e+00	9.5068 s		
cz2548	2548	ILU	sem	760	0	25	1.471816e-11	1.000000e+00	0.514301 s		
cz2548	2548	ILU	com	760	0	16	4.466133e-12	1.000000e+00	0.219451 s		

Table 12: Tabela de resultados observados na resolução da matriz cz2548 pelo Método GMRES com tolerância 10^{-11} e máximo de iterações 10.000.

Tabela de analise dos precondicionadores												
Informações da matriz				Informações do precondicionamento								
Nome	n	Não-nulos	k = cond(A)	Precondicionador	Reordenamento	Não-nulos	k = cond(A)	tempo (s)				
epb3	84617	463625	-1.000000e+00	ILU(0)	com	565126	-1.000000e+00	0.101275 s				
epb3	84617	463625	-1.000000e+00	ILU(0)	sem	571799	-1.000000e+00	$0.052027 \mathrm{\ s}$				
epb3	84617	463625	-1.000000e+00	ILU	com	1500473	-1.000000e+00	$10.6831 \mathrm{\ s}$				
epb3	84617	463625	-1.000000e+00	ILU	sem	1187509	-1.000000e+00	10.1404 s				

Table 13: Tabela de análise dos precondicionadores utilizados na matriz epb3

Tabela do Método GMRES com tolerância 10 ⁻¹¹ e máximo de iterações 10.000												
Informações da matriz		Resultados do método										
Nome	n	Precond.	Reordenamento	k	flag	iterações	erro relativo	$ x _{\infty}$	tempo (s)			
epb3	84617	-	_	800	0	7411	9.991353e-11	1.000001e+00	3933.55 s			
epb3	84617	ILU(0)	sem	800	0	150	8.829092e-11	1.000000e+00	101.365 s			
epb3	84617	ILU(0)	com	800	0	185	9.210646e-11	1.000000e+00	174.184 s			
epb3	84617	ILU	sem	800	0	44	8.526528e-11	1.000000e+00	157.286 s			
epb3	84617	ILU	com	800	0	44	7.579705e-11	1.000000e+00	209.548 s			

Table 14: Tabela de resultados observados na resolução da matriz epb3 pelo Método GMRES com tolerância 10^{-11} e máximo de iterações 10.000.