VERİ SIKIŞTIRMA

Hata Bulma Ve Düzeltme-2

- Veri iletilirken bazı bitlerde bozulmalar olabilir. Bu bozulmalara hata denir.
- > Ortama bağlı olarak bu hataların oluşma olasılığı değişiklik gösterir.
- > Atmosferik olaylar (yıldırım, vs.) telli ve telsiz ortamlarda hataya sebep olurlar.
- > Meydana gelen bozulmalar çoğu uygulama tarafından kabul edilmez.
- Veri içerisindeki 1 bitlik bozulma tüm verinin yanlış anlaşılmasına neden olabilir. Bu sebeple iletişim sırasında veri içerisinde bir bozulmanın olup olmadığının anlaşılması gerekir.
- Bu sebeple hata sezme ve düzeltme teknikleri kullanılır. Hatayı sezme işlemi hatayı düzeltmeye göre daha kolaydır.
- > Bazen hatayı sezebilir ama düzeltemeyiz.
- > Bir bitlik bozulmaları sezmek ve düzeltmek kolaydır, ancak bir bit üzeri bozulmaları sezsek bile düzeltemeyiz, verinin yeniden gönderilmesi gerekir.

Veri iletiminde iki çeşit hata söz konusudur.

- 1-Patlama hatası (burst error): Çevre koşulları nedeniyle alıcıya gerçek olmayan anlamsız bilgiler gelir. (yıldırım v.s 1-100 ms)
- 2-Rasgele hata (random error): İletim yolundaki elektriksel gürültü nedeniyle bilgi bloğu içinde rastgele bir bitin bozulması söz konusudur.

İletim hatalarının veriye olan etkisi

- Çok kısa süren girişim, spike olarak adlandırılır. Tek bitlik hataya sebep olur.
- Uzun süren girişim veya bozulma burst (birden fazla bitlik) hatalara neden olur. Sinyal açık olarak 1 veya 0 değildir. Öyle belirsiz bir alana düşer ki bu erasure (silinmiş yer) olarak adlandırılır.

En çok kullanılan hata denetim metotları

1- FEC (Error Correction Code - Forward Error Correction-İleri Yönlü Hata Denetimi)

- · Hata denetimi için gönderilen veri kümesine ek bitler ekler
- · Hatayı bulur ve gerekirse alıcıda düzeltmeye çalışır
- Hız kaybı yaşanmaz
- Çok gürültülü ortamlarda kullanılamaz
- FEC metodu, yeniden iletimin zor veya imkansız olduğu bağlantılarda ve veri kümesinin küçük olduğu uygulamalarda kullanılır
- Katlamalı kodlar, BCH kodlar, Hamming Kodlar, Reed-Salamon kodları

2- ARQ (Automatic Repeat Request- Otomatik Tekrar İsteği)

- Hatayı bulma ve bozulan verinin yeniden iletilmesi için alıcı taraftan istekte bulunulması işlemidir
- Uygulamalarda bu teknik kullanılır, çünkü aynı hatayı tespit için gerekli bit sayısı, düzeltmek için kullanılan bit sayısından çok daha azdır.
- CRC kodları, Seri Eşlik (Parity), Blok Eşlik, Modül Toplamı

Uygulama

Gönderilen Veri: 1011010110.....

Alman Veri: 10100100110..... Hata sezilemez

Her bir biti çift sayıda yazalım

Gönderilen Veri: 11 00 11 11 00 11 00 00 11 11 00

Alman Veri : 11 00 11 01 00 11 00 00 11 11 00 Hatayı sezeriz ama düzeltemeyiz

Her bir biti iki kopya ile yazalım

Gönderilen Veri: 111 000 111 **111** 000 111 000 000 111 111 000

Alınan Veri : 111 000 111 011 000 111 000 000 111 111 010......

Hatayı sezeriz bir bitlik bozulma var ise düzeltebiliriz aksi durumda düzeltemeyiz

Her iki bit için 5 bitlik bir kod kelimesi kullanırsak

 $00 \to 00001$

 $01 \to 01010$

10 → 10100

 $11 \rightarrow 11111$

Kod kelimeleri seçilirken en az 3 bitte değişiklik olacak şekilde seçilmiştir.

Orijinal mesaj

10 11 01 00 11... olsun 10100 11111 01010 00001 11111

Bir bitte oluşan bozulmalar kesinlikle düzeltilebilir

Bozulmamış Kod kelime	00001	01010	10100	11111
b a	10001	11010	00100	01111
ΞĒ	01001	00010	11100	10111
Mümkün ola bitteki bozul	00101	01110	10000	11011
	00011	01000	10110	11101
	00000	01011	10101	11110

Hamming Kodlama

4 bitlik verideki yer değiştirmeler ile 7 bitlik kod-kelimelerinin elde edildiği lineer bir kodlamadır. (1 bit ≈1,75 bit)

- Bütün kod kelimelerinde en az 3 bitte değişim vardır.
- Bir bitte oluşan bozulmaları düzeltebiliriz.

⊕	parity	addition	işlemidir.	(01/10)	→ 1	(00/	11)	\rightarrow	0
----------	--------	----------	------------	---------	------------	------	------------	---------------	---

	Kod-
mesaj	kelimesi
0000	0000000
0001	0001011
0010	0010111
0100	0100101
1000	1000110
1100	1100011
1010	1010001
1001	1001101
0110	0110010
0101	0101110
0011	0011100
1110	1110100
1101	1101000
1011	1011010
0111	0111001

$$b_1b_2b_3b_4 (b_{1\theta}b_{2\theta}b_3)(b_{1\theta}b_{3\theta}b_4)(b_{2\theta}b_{3\theta}b_4)$$

Hamming Kodlamada 3 şart geçerlidir

$$b_1 \oplus b_2 \oplus b_3 \oplus b_5 = 0$$

$$b_1 \oplus b_3 \oplus b_4 \oplus b_6 = 0$$

$$b_2 \oplus b_3 \oplus b_4 \oplus b_7 = 0$$

Kod çözme işleminde basit bir algoritma kullanılır. Bozulmuş kod kelimesinin $\widetilde{b_1}\widetilde{b_2}\widetilde{b_3}\widetilde{b_4}\widetilde{b_5}\widetilde{b_6}\widetilde{b_7}$ olduğunu düşünelim ve 3 parity-check bilgisini kontrol edelim.

Parity check kontrolü

$$\begin{split} & \mathsf{P}_1 = \widetilde{b_1} \oplus \widetilde{b_2} \oplus \widetilde{b_3} \oplus \widetilde{b_5} \\ & \mathsf{P}_2 = \widetilde{b_1} \oplus \widetilde{b_3} \oplus \widetilde{b_4} \oplus \widetilde{b_6} \\ & \mathsf{P}_3 = \widetilde{b_2} \oplus \widetilde{b_3} \oplus \widetilde{b_4} \oplus \widetilde{b_7} \end{split}$$

Hesaplanan P_1 , P_2 ve P_3 farklı değerler aldığı görülmektedir. Hatayı düzeltmek için yapılması gerekenler.

- Arr P₁=P₂=P₃=0 ise $\widetilde{b_1}\widetilde{b_2}\widetilde{b_3}\widetilde{b_4}\widetilde{b_5}\widetilde{b_6}\widetilde{b_7}$ doğru kod kelimesidir. Dördüncü bitten sağa doğru giderek $\widetilde{b_5}\widetilde{b_6}\widetilde{b_7}$ atılır.
- * Eğer P_j lerden biri 1, diğer ikisi 0 ise; $\widetilde{b_l}$ nin hangi P_j den geldiği bulunur İlgili P_j de olup, diğerlerinde olmayan $\widetilde{b_l}$ seçilir ve tersi alınır. Örnek

 P_2 =1 P_1 = P_3 =0 ise P_2 de olup, P_1 ve P_3 de olmayan $\widetilde{b_6}$ bitinin tersi alınarak doğru kod kelimesi elde edilir.

* Eğer P_j lerden biri 0, diğer ikisi 1 ise; diğer ikisinde mevcut olup, P_j de olmayan $\widetilde{b_l}$ bulunup, tersi alınır. Örnek P_3 =0 P_1 = P_2 =1 ise P_3 de olup, P_1 ve P_2 de olmayan $\widetilde{b_1}$ bitinin tersi alınarak doğru kod kelimesi elde edilir.

Arr P₁=P₂=P₃=1 ise her üçünde olan $\widetilde{b_l}$ ($\widetilde{b_3}$) bitinin tersi alınarak doğru kod kelimesi elde edilir.

Eşlik Sınaması

- Gönderilen veride oluşan tek sayıdaki hatayı sezmek için kullanılır.
- Verideki birlerin sayısını tek veya çift olarak düzenlemektir.
- Eşlik biti 1 veya 0 yapılarak tüm veri grubunun içindeki birlerin sayısının çift veya tek olması sağlanır.
- Tek Eşlik yönteminde veri içerisindeki 1'lerin sayısı tek ise eşlik biti 0 olur.
- Çift Eşlik yönteminde veri içerisindeki 1'lerin sayısı tek ise eşlik biti 1 olur.

■ 1, 3, 5... gibi tek sayıda hatayı sezer. Genellikle yedi, sekiz bit gibi kısa verilerin aktarımında kullanılır.

Universal Product Code (UPC)

- Kod üzerinde bar kodun kendisi ve dijitleri olmak üzere iki farklı kısım yer alır.
- Her decimal dijit, 7 binary dijit ile kodlanır
- Kodun sol, sağ yanlarında ve ortasında separatörler vardır.

	left	right
0	0001101	1110010
1	0011001	1100110
2	0010011	1101100
3	0111101	1000010
4	0100011	1011100
5	0110001	1001110
6	0101111	
7	0111011	
8		1001000
9	0001011	1110100.

Yutanda bahsettigimiz uninin bartodu 048500 00139 4 obun. 6+6 digit olarak kodlanmutir. Bu says upc bour code ile 1+5 +5 + 1 digit areticinin ureticinin ureinon kontrol (Beircode de dimesina regimen disté (decimal says degeri rakteimile yeszilmaz) Olduju kodu kodu 0 0001101 0011001 MoHar: Ø ile baslar 1 ile biter. 0010011 her 7'li grup * Sol taraftati I le baslair & ile biter. Sag taraftaki icerisinde birlerin sayısı tek tir. x Sol terrofteti her 714 grup igerisinde birlerin sayus aft fr. 0111011 her 7'li grup Sag taraptabi 0110111 9 0001011 1110100.

right 1110010

1100110

1101100

1000010

1011100

1001110

1010000

1000100

1001000

```
Kontrol dixt
 ilk 11 disiti alip hesciplayelim
       3a1+a2+3a3+a4+3a5+a6+3a3+a8+3a3+a10+3a11 = A(mod 10)
 Kontrol dbiti C veyar and ise an= C= 10. - A (mod 10).
            3 91 + 92+393+94+395 +96+397 +98+395+910+3911
            4+24+5+3+3+27 = 66 => A=6=) Q12=C=4
```

Permit No. 10207

Postage will be paid by addressee

ISSUES IN SCIENCE AND TECHNOLOGY

National Academy of Sciences 2101 Constitution Avenue, N.W. Washington, D.C. 20077-5576

Intelligation to the latest the latest throught

The dictionary to read these is the following:

- · initial and final long bars are just guard lines
- every group of five lines encodes one digit, according to the following correspondence:

Decimal Digit	Bar Code	Binary Code	
1	ıııll	00011	
2	ulil	00101	
3	ulli	00110	
4	dul	01001	
	ddi	01010	
6	illu	01100	
7	Ind	10001	
8	luli	10010	
9	blu	10100	
0	Ilm	11000	

The Postnet bar code

The number above is therefore 2007755761. This correspondes to the ZIP+4 code 20077-5576; 1 is a check digit. How does one construct the check digit?

$$a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 + a_8 + a_9 + a_{10} \\ \uparrow \\ \text{check digit}$$

Her grup 2 uzun, 3 kısa çubuktan oluşur. Kısa yerine uzun ve tam tersi durum olduğunda hata oluşur.

Oluşan bir bitlik hata düzeltilebilir mi?

2007 ? 55761 Beşinci dijit hatalı olsun.

$$2+0+0+7+?+5+5+7+6+1 = (33+?) \mod 10$$

Kontrol dijit nasıl bulunur?

Dijitler toplamı 10'un katı olmalıdır.

CRC (Cyclic Redundancy Check)

Gönderilecek mesaj 0111101

- G(x): Üreteç fonksiyonumuz
- Üreteç fonksiyonunun derecesi CRC kodunun bit uzunluğunu verir ve başlangıçta değeri 0 dır.
- Encode edilmiş mesaj

0111101111

Encode edilmiş mesaj 0111101111

Hatalı mı gitti ? Yoksa doğru mu?

Bozulma YOK

Encode edilmiş mesaj 0111101111

Üçüncü bit hatalı alınmış olsaydı, anlaşılacak mıyı?

MD5 (Message Digest)

Bir internet standartı olup, veri güvenliğinde de kullanılır

- Veri güvenliği ve bütünlüğünde kullanılır.
- Büyük bir veriden küçük bir özet oluşturulur ve bu özet bilgiden orijinal veriye dönülür.
- Tam güvenli bir algoritma değildir, ama hızlı çalışan bir algoritma olduğu için tercih edilir.
- İstenilen her boyuttaki veriden 128 bitlik bir özet elde eder. Bu özet bilgiyi de 32 bitlik 4 eşit parçaya böler.
- MD5'in sıkıştırma fonksiyonunda bir çakışma bulunmasından yola çıkarak SHA (Secure Hashing Algorithm)
 gibi algoritmalara yönelinse de MD5'in kırılabilirliği ispat edilmediğinden günümüzde halen veri güvenliği için tercih edilir.
- SHA1 (2⁶⁴-1) bitlik mesajdan 160 bitlik özetleme değeri (hash fonksiyonu) üretir.
- MD5 tek yönlü bir algoritmadır. Geri dönüşümü yoktur. Örneğin: Kullanıcı şifresini unutursa sistem kullanıcıya şifresini veremez. Yeniden şifre oluşturması istenir.
- Eldeki veri 512 bitlik bloklara ayrılır ve her birine aynı işlem uygulanır. Veri 512'in katı değilse padding işlemi uygulanır.