

# CogLab: Making Inferences

WEEK 11

#### recap: Oct 24/26, 2023

- what we covered:
  - manipulating data using tidyverse verbs
  - linear regression
- your to-do's were:
  - prep: complete all primers
  - prep: read about hypothesis testing
  - schedule: group meeting

# today's agenda

- linear regression continued
- two-way/multiple linear regression

# linear regression

- a linear regression (or a linear model) is a model that fits a line to a set of data points
  - Y = aX + b
  - Y: dependent variable
  - X: independent variable
  - aśpś
- a: slope, b: intercept
- sometimes, we reorder this equation:
  - $y = \beta_0 + \beta_1 x$
  - $\beta_{0:}$  intercept (where the line cuts the y-axis)
  - $\beta_1$ : slope (the change in y due to x)
- in this framework, the null hypothesis ( $H_0$ ) is that  $\beta_1$  = 0, i.e., there is no change in y due to x
  - $H_0$ :  $\beta_1 = 0$



#### linear regression in R

- predict height by weight
- print the summary of the model
- what is the equation of the line?

```
women_model = lm(data = women, height ~ weight)
summary(women_model)
Call:
lm(formula = height ~ weight, data = women)
Residuals:
    Min
              10 Median
                                       Max
-0.83233 -0.26249 0.08314 0.34353 0.49790
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 25.723456
                     1.043746 24.64 2.68e-12 ***
            0.287249
                      0.007588 37.85 1.09e-14 ***
weight
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.44 on 13 degrees of freedom
Multiple R-squared: 0.991,
                              Adjusted R-squared: 0.9903
F-statistic: 1433 on 1 and 13 DF, p-value: 1.091e-14
```

#### linear regression and correlation

- correlations also describe the relationship between Y and X, so what's the difference?
- mathematically, correlations are equivalent to a linear model where a line is being fit to a set of data points
- two common correlation
  - Pearson's r: r = slope if x and y have the same standard deviation
  - Spearman's rho = same linear model but with ranks of x and Y
    - rank(y) =  $\beta_0$  +  $\beta_1$  rank(x)



#### linear regression and correlation

- compute the standard deviation of the height and weight columns
- create two new columns that contain the z-scored height and weight
- compute the standard deviation of the z-scored height and weight columns

```
sd(women$height)
sd(women$weight)
```

```
women = women %>%
mutate(z_height = scale(height),
    z_weight = scale(weight))
```

```
sd(women$height)
sd(women$weight)
```

#### linear regression and correlation

- predict the z-scored height with the z-scored weight using linear regression
- now compute the correlation between the two columns using summarize() and cor()

```
women_model_2 = lm(data = women, z_height ~ z_weight)
summary(women_model_2)
lm(formula = z_height ~ z_weight, data = women)
Residuals:
            1Q Median
-0.18611 -0.05869 0.01859 0.07682 0.11133
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -8.268e-16 2.541e-02
          9.955e-01 2.630e-02 37.85 1.09e-14 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.0984 on 13 degrees of freedom
Multiple R-squared: 0.991,
                          Adjusted R-squared: 0.9903
F-statistic: 1433 on 1 and 13 DF, p-value: 1.091e-14
women %>%
  summarise(r = cor(z_height, z_weight))
                                                                 1 0.9954948
```

#### linear regression and t-tests

- unpaired/independent samples ttest
  - $y = \beta_0 + \beta_1 x$
  - x = 0 or 1 (which group)
  - $H_0$ :  $\beta_1 = 0$
  - comparing paired differences and testing whether the difference is significantly different from 0
  - note that "x" here contains information about group membership for each y



#### revisiting iris

 recall that iris contains flower petal and sepal information for three species

data("iris")
View(iris)

| Sepal.Length <sup>‡</sup> | Sepal.Width <sup>‡</sup> | Petal.Length <sup>‡</sup> | Petal.Width <sup>‡</sup> | Species <sup>‡</sup> |
|---------------------------|--------------------------|---------------------------|--------------------------|----------------------|
| 5.1                       | 3.5                      | 1.4                       | 0.2                      | setosa               |
| 4.9                       | 3.0                      | 1.4                       | 0.2                      | setosa               |
| 4.7                       | 3.2                      | 1.3                       | 0.2                      | setosa               |
| 4.6                       | 3.1                      | 1.5                       | 0.2                      | setosa               |
| 5.0                       | 3.6                      | 1.4                       | 0.2                      | setosa               |
| 5.4                       | 3.9                      | 1.7                       | 0.4                      | setosa               |
| 4.6                       | 3.4                      | 1.4                       | 0.3                      | setosa               |
| 5.0                       | 3.4                      | 1.5                       | 0.2                      | setosa               |
| 4.4                       | 2.9                      | 1.4                       | 0.2                      | setosa               |
| 4.9                       | 3.1                      | 1.5                       | 0.1                      | setosa               |
| 5.4                       | 3.7                      | 1.5                       | 0.2                      | setosa               |
| 4.8                       | 3.4                      | 1.6                       | 0.2                      | setosa               |
| 4.8                       | 3.0                      | 1.4                       | 0.1                      | setosa               |
| 4.3                       | 3.0                      | 1.1                       | 0.1                      | setosa               |
| 5.8                       | 4.0                      | 1.2                       | 0.2                      | setosa               |
| 5.7                       | 4.4                      | 1.5                       | 0.4                      | setosa               |



#### subset of iris

- create a subset of iris that only contains setosa and virginica
- plot the petal lengths by species in a boxplot



#### ## t -test

```
```{r}
iris_subset = iris %>%
  filter(Species %in% c("setosa", "virginica"))
...
```

```
iris_subset %>%
  ggplot(aes(x = Species, y = Petal.Length))+
  geom_col()
```



# comparing

- create linear model
- conduct t-test



iris\_subset\_lm = lm(data = iris\_subset, Petal.Length ~ Species)
summary(iris\_subset\_lm)

t.test(Petal.Length ~ Species, data = iris\_subset)

Welch Two Sample t-test

# testing more than two groups

- a t-test is a special case of linear models
- it is also a special case of only comparing two groups
- example of comparing more than two groups?

#### ANOVA: Analysis of Variance

- a generalized t-test for more than two means/groups!
- key idea: we will try to understand the difference between groups and whether it can be attributed to our "conditions" or randomness
- \$\$<sub>between</sub> = variation between groups
- SS<sub>within</sub> = variation within groups
- $F = SS_{between}/SS_{within}$
- If F > 1, the group differences are greater than what would be expected as random variation within groups





#### types of ANOVAs

- n(independent variables)
  - one-way
  - two-way
  - three-way
- within or between subjects
  - between subjects: regular ANOVA
  - within-subjects: repeated measures ANOVA





#### one-way ANOVA

 predict the petal lengths using the full iris dataset



```
full_iris_model = lm(data = iris, Petal.Length ~ Species)
summary(full_iris_model)
           Call:
           lm(formula = Petal.Length ~ Species, data = iris)
           Residuals:
                    10 Median
           -1.260 -0.258 0.038 0.240 1.348
           Coefficients:
                          Estimate Std. Error t value Pr(>|t|)
           (Intercept)
                           1.46200
                                    0.06086 24.02
           Speciesversicolor 2.79800
                                    0.08607
                                            32.51
                                                   <2e-16 ***
           Speciesvirginica
                           4.09000
                                    0.08607 47.52 <2e-16 ***
           Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
           Residual standard error: 0.4303 on 147 degrees of freedom
           Multiple R-squared: 0.9414, Adjusted R-squared: 0.9406
           F-statistic: 1180 on 2 and 147 DF, p-value: < 2.2e-16
full_iris_aov = aov(data = iris, Petal.Length ~ Species)
summary(full_iris_aov)
               Df Sum Sa Mean Sa F value Pr(>F)
                2 437.1 218.55
                                        1180 <2e-16 ***
Species
Residuals
              147 27.2
                              0.19
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
```

#### follow-up tests

- when more than two groups are present, it can be useful to understand exactly which groups differ from each other
- install emmeans package
- load the package inline and compute pairwise differences
- compare to Im summary

```
lm(formula = Petal.Length ~ Species, data = iris)
  Residuals:
           1Q Median
  -1.260 -0.258 0.038 0.240 1.348
  Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
  (Intercept)
                  1.46200
                            0.06086
  Speciesversicolor 2.79800
                  4.09000
                                            <2e-16 ***
  Speciesvirainica
 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
  Residual standard error: 0.4303 on 147 degrees of freedom
 Multiple R-squared: 0.9414, Adjusted R-squared: 0.9406
 F-statistic: 1180 on 2 and 147 DF, p-value: < 2.2e-16
#install.packages("emmeans")
emmeans::emmeans(full_iris_model,
                                 pairwise ~ Species,
                                 adjust="tukey")
   $emmeans
                          SE df lower.CL upper.CL
    Species
                                              1.58
    setosa
                 1.46 0.0609 147
                                     1.34
    versicolor
                4.26 0.0609 147
                                              4.38
                 5.55 0.0609 147
                                              5.67
    virginica
   Confidence level used: 0.95
   $contrasts
    contrast
                           estimate
                                        SE df t.ratio p.value
    setosa - versicolor
                              -2.80 0.0861 147 -32.510 <.0001
    setosa - virginica
                              -4.09 0.0861 147 -47.521 <.0001
    versicolor - virginica
                              -1.29 0.0861 147 -15.012 <.0001
```

Call:

P value adjustment: tukey method for comparing a family of 3 estimates

#### linear model: assumptions

- "all models are wrong, but some are useful" (Box, 1976)
- the model does not know where the data come from or whether they are appropriate for the model that is your responsibility as a researcher
  - linearity
  - normality of residuals
  - homoskedasticity
  - independence of observations



# inspecting the model

- first we install the performance and see packages
- load performance
- check the model
- minor variations are ok, major variations are warnings!



#### multiple linear regression

- often, we want to look at the influence of more than one variable on our response measures
- a multiple linear regression is a model that attempts to find the relationship between a dependent variable and more than one independent variable
  - $Y = aX_1 + bX_2 + c$
  - Y: dependent variable
  - X<sub>1,2</sub>: independent variables



#### multiple linear regression: data

- we will use the jobsatisfaction dataset from the datarium package
- install the package datarium
- new heading (# multiple linear regression) & code chunk
- load and view the jobsatisfaction dataset

data("jobsatisfaction", package = "datarium")
View(jobsatisfaction)

| id <sup>‡</sup> | gender 🗦 | education_level <sup>‡</sup> | score ‡ |
|-----------------|----------|------------------------------|---------|
| 1               | male     | school                       | 5.51    |
| 2               | male     | school                       | 5.65    |
| 3               | male     | school                       | 5.07    |
| 4               | male     | school                       | 5.51    |
| 5               | male     | school                       | 5.94    |
| 6               | male     | school                       | 5.80    |
| 7               | male     | school                       | 5.22    |
| 8               | male     | school                       | 5.36    |
| 9               | male     | school                       | 4.78    |
| 10              | male     | college                      | 6.01    |
| 11              | male     | college                      | 6.01    |
| 12              | male     | college                      | 6.45    |
|                 |          |                              |         |

- let's explore the data:
  - find the mean and standard deviation of the score for each level of gender and education level

- let's explore the data:
  - find the mean and standard deviation of the score for each level of gender and education level

```
# A tibble: 6 \times 4
# Groups: gender [2]
 gender education_level
                         mean
  <fct> <fct>
                        <dbl> <dbl>
1 male school
                         5.43 0.364
2 male college
                         6.22 0.340
3 male
        university
                         9.29 0.445
4 female school
                         5.74 0.474
5 female college
                         6.46 0.475
6 female university
                         8.41 0.938
```

- let's explore the data:
  - visualize the pattern via a boxplot

- let's explore the data:
  - visualize the pattern via a boxplot
  - do you see differences in job satisfaction?

```
jobsatisfaction %>%
   ggplot()+
   geom_boxplot(aes(x = gender, y = score, color = education_level))
```



#### multiple linear regression: research question

- does job satisfaction vary as a function of gender and education level?
- dependent variable?
- independent variable?

```
jobsatisfaction %>%
   ggplot()+
   geom_boxplot(aes(x = gender, y = score, color = education_level))
```



#### main effects

- when you have multiple variables in your experiment design, there are few different possibilities for how the pattern of data might look
- you could have the dependent variable vary as a function of IV1 and/or IV2 (main effects), and these effects might interact with each other
- main effects refer to differences in means of levels of an independent variable
- what is an example of a main effect for the jobsatisfaction dataset?
- what would the plot of this main effect look like?

| id <sup>‡</sup> | gender <sup>‡</sup> | education_level | score <sup>‡</sup> |
|-----------------|---------------------|-----------------|--------------------|
| 1               | male                | school          | 5.51               |
| 2               | male                | school          | 5.65               |
| 3               | male                | school          | 5.07               |
| 4               | male                | school          | 5.51               |
| 5               | male                | school          | 5.94               |
| 6               | male                | school          | 5.80               |
| 7               | male                | school          | 5.22               |
| 8               | male                | school          | 5.36               |
| 9               | male                | school          | 4.78               |
| 10              | male                | college         | 6.01               |
| 11              | male                | college         | 6.01               |
| 12              | male                | college         | 6.45               |

#### interactions

- interactions refer to situations when the difference in means between IV1's levels differs based on the levels of IV2, i.e., you cannot simply infer a difference in means
- what is an example of an interaction for the jobsatisfaction dataset?
- what would the plot of this main effect look like?

| id <sup>‡</sup> | gender <sup>‡</sup> | education_level $\stackrel{=}{\circ}$ | score <sup>‡</sup> |
|-----------------|---------------------|---------------------------------------|--------------------|
| 1               | male                | school                                | 5.51               |
| 2               | male                | school                                | 5.65               |
| 3               | male                | school                                | 5.07               |
| 4               | male                | school                                | 5.51               |
| 5               | male                | school                                | 5.94               |
| 6               | male                | school                                | 5.80               |
| 7               | male                | school                                | 5.22               |
| 8               | male                | school                                | 5.36               |
| 9               | male                | school                                | 4.78               |
| 10              | male                | college                               | 6.01               |
| 11              | male                | college                               | 6.01               |
| 12              | male                | college                               | 6.45               |

# visually...



#### multiple linear regression

- often, we want to look at the influence of more than one variable on our response measures
- a multiple linear regression is a model that attempts to find the relationship between a dependent variable and more than one independent variable
  - $Y = aX_1 + bX_2 + c$
  - Y: dependent variable
  - X<sub>1,2</sub>: independent variables



#### linear regression and ANOVAs

- ANOVAs are special cases of linear regression models, when the predictors are categorical
- two-way ANOVA equation
  - $y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2$
  - note that the X's here are different independent variables
  - $H_0$ :  $\beta_1$ =0 (for  $X_1$  main effect)
  - $H_0$ :  $\beta_2$ =0 (for  $X_2$  main effect)
  - $H_0$ :  $\beta_3$ =0 (for interaction)



#### mathematically...

- main effect of gender:
  - mean (male) mean (female)
- main effect of education level
  - mean(school) mean (college)
  - mean(college) mean (university)
  - mean(university) mean(school)
- interaction (difference of differences)
  - diff(male-female)<sub>school</sub>- diff(male-female)<sub>college</sub>
  - diff(male-female)<sub>university</sub>- diff(male-female)<sub>college</sub>
  - diff(male-female)<sub>school</sub> diff(male-female)<sub>university</sub>

| <b>gender</b><br><fctr></fctr> | education_level<br><fctr></fctr> | mean<br><dbl></dbl> | sd<br><dbl></dbl> |
|--------------------------------|----------------------------------|---------------------|-------------------|
| male                           | school                           | 5.426667            | 0.3638681         |
| male                           | college                          | 6.223333            | 0.3396322         |
| male                           | university                       | 9.292000            | 0.4445422         |
| female                         | school                           | 5.741000            | 0.4744225         |
| female                         | college                          | 6.463000            | 0.4746941         |
| female                         | university                       | 8.406000            | 0.9379078         |



# next class

- before class
  - resubmit: formative assignment #2
  - finalize: experiment
  - submit: pre-registration
- during class
  - multiple regression in R
  - linear models for non-independent data