SAEMIX, an R version of the SAEM algorithm

Emmanuelle Comets 1* , Audrey Lavenu 2 and Marc Lavielle 1

INSERM UMR738, Paris, France; Université Paris Diderot, Paris, France ² University Rennes, France; INSERM CIC 0203, Rennes, France ³ INRIA, Saclay, France

Objective: to implement the SAEM algorithm [1] in the statistical software R [2].

Introduction

- Stochastic Approximation Expectation Maximization (SAEM) algorithm
- stochastic approximation version of the EM algorithm
- quick and efficient convergence to the maximum likelihood estimators (MLE) [3]
- increasingly widespread use over the last few years
- Implementation in MONOLIX, NONMEM 7 and Matlab (statistical toolbox)
- R [2], a general statistical software
- many packages for statistical analyses, including parameter estimation in linear and nonlinear mixed models (nlme, lmer, ...)
- used by many modellers to handle data, prepare runs and evaluate
- flexible programming language including object-oriented concepts

Methods

Statistical models

Model for observation y_{ij}

$$y_{ij} = f(\mathbf{\psi}_i, x_{ij}) + g(\mathbf{\psi}_i, \mathbf{\gamma}, x_{ij}) \mathbf{\varepsilon}_{ij}$$

- subject i (i = 1,...N), with n_i observations $\mathbf{y}_i = \{y_{i1},...,y_{in_i}\}$ at times t_{ij} , and covariates \mathbf{z}_i
- f: structural model (analytical expression, see example)
- g = g(a,b,c): residual error model (one of: constant, proportional, combined, exponential) with parameters $\gamma = \{a, b, c\}$
- individual parameters ψ_i
- modelled parametrically as a function $\psi_i = h(\phi_i, \mathbf{z}_i) = h(\mu(\mathbf{z}_i), \eta_i)$ of fixed effects μ and random effects η_i ($\eta \sim \mathcal{N}(0,\Omega)$)
- in SAEMIX, h can be the identity function (normal distribution for

 ψ), the exponential function (log-normal distribution for ψ), or the logit or probit transformations

The SAEM algorithm

The SAEM algorithm computes the MLE of the unknown set of parameters $\theta = (\mu, \Omega, \gamma)$, by maximizing the likelihood of the observations $\ell(y;\theta)$. Given an initial estimate θ_0 , at iteration k:

- Simulation-step: draw $\psi^{(k)}$ from the conditional distribution $p(\cdot|y;\theta_k)$
- Stochastic approximation: update the conditional expectation $Q_k(\theta)$ of the complete likelihood $p(y, \psi^{(k)}; \theta)$ according to

$$Q_{k}(\theta) = Q_{k-1}(\theta) + \gamma_{k}(\log p(y, \psi^{(k)}; \theta) - Q_{k-1}(\theta))$$
 (1)

where (γ_k) is a decreasing sequence of positive numbers with $\gamma_1 = 1$.

• Maximization-step: update θ_k according to

$$\theta_{k+1} = \operatorname{Arg\,max} Q_k(\theta).$$

Using SAEMIX - a PK example

Input - Data

Dataset from 12 subjects given a single oral dose of theophylline used as an illustration:

- 11 blood samples over a period of 25 hours (data at t=0 was omitted from the dataset for all patients): nominal times 15 and 30 min, 1, 2, 4, 5, 7, 9, 12, 24 h
- one-compartment model with first-order absorption, parameterised as k_a , V, CL
- variability models: IIV modelled using an exponential model with diagonal variance-covariance matrix, residual variability modelled with a combined error model
- covariate model: weight on CL

Dataset available in the library (theo.saemix), used to create SAEMIX data object through the saemixData function:

data(theo.saemix) data(theo.saemix)

saemix.data<-saemixData(name.data="theo.saemix",header=TRUE,sep=" ",</pre> na=NA,name.group=c("Id"),name.predictors=c("Dose","Time"), name.response=c("Concentration"), name.covariates=c("Weight", "Sex"), units=list(x="hr",y="mg/L",covariates=c("kg","-")), name.X="Time")

Input - Model

Define the model function and create SAEMIX model object through the saemixModel function:

Parameter estimation

saemix.options<-list((seed=632545,nb.chains=5,nbiter.saemix=c(300,150))</pre> saemix.fit<-saemix(saemix.model,saemix.data,saemix.options)</pre>

Output - Fit results

Figure 1: Convergence plots.

g and g		
Parameter	Population estimate	IIV Variance
	(SE%)	(SE%)
$k_a (hr^{-1})$	1.57 (19%)	0.39 (45%)
CL (L.hr ⁻¹)	1.58 (64%)	0.07 (49%)
$\beta_{BW,CL}$ (-)	0.008 (110%)	-
V(L)	31.5 (4%)	0.02 (59%)
a $(mg.L^{-1})$	0.74 (6%)	_

a (mg.L Table 1: Pharmacokinetic parameters estimated by SAEMIX for the theophylline data.

Output - Graphs

- Data
- Basic diagnostic plots
- observations versus predictions
- distribution of random effects
- random effects and/or parameters versus covariates
- individual fits

Figure 2: Individual plots for 4 subjects, log-scale.

- Simulation-based diagnostics
- prediction discrepancies (pd), normalised prediction distribution errors (npde)
 - * residuals versus time and predictions
- * histograms and QQ-plots of the distributions
- VPC

Figure 3: VPC plot for the theophylline data.

- A number of plots saved in output directory by default – additional options to customise plots (title, labels, colours, ...)
- example of code to obtain a VPC plot:

plot(saemix.fit,plot.type="vpc")

Simulation study

Methods

Same design as the simulation study performed by Plan et al. [4] to compare different estimation software:

- Models
- structural model: sigmoid E_{max}
- -IIV: exponential model, no IIV on γ , correlation between E_{max} and $EC_{50} (\rho = 0.5)$
- residual error model: additive

Parameter	Value	Parameter	Value
E ₀ (-)	5	$\omega_{E_0}^2$	0.09
E_{max} (-)	30	$\omega_{E_{ ext{max}}}^2$	0.49
EC ₅₀ (mg)	500	$\omega_{EC_{50}}^2$	0.49
γ(-)	2	$\operatorname{cov}(E_0, E_{\max})$	0.245
σ (-)	2	, ,	

Table 2: Parameter values used in the simulation.

- Design
- 100 subjects simulated, 4 doses (0, 100, 300, 1000)
- added a binary covariate (treatment) randomly assigned (50 subjects in each group)
- Evaluation
 - K=100 datasets simulated
- bias and RMSE: compared to the parameters used for the simulation
- type I error for a covariate model
- * simulation under $H_0=\{\text{no covariate effect}\}\$, estimation under H_0 or $H_1 = \{ \text{treatment effect on EC}_{50} \}$
- * likelihood ratio test comparing the log-likelihood for both models
- * Wald test using the results from a model with the covariate
- settings: 5 chains, number of iterations K_1 =400 and K_2 =500

• Comparison to the results obtained by nlme [5] (FOCE algorithm)

Results

Figure 4: Relative estimation errors for the fixed effects (left) and the variance components (right) for SAEMIX (top, K=100) and nlme (bottom, K=45).

Performances similar to the results reported in [4]:

- good parameter estimates for SAEMIX
- fixed effects: less than 1% bias and RMSE around 5-10%
- variances: less than 5% bias and RMSE ranging from 20 to 40%
- estimation problems with nlme
- low convergence rate, problems obtaining standard errors
- performance of nlme remains poor when altering initial estimates

Type I error for covariate inclusion

Test	SAEMIX	nlme
LRT	0.07 [0.03-0.14]	0.21 [0.09-0.36] (K=39
Wald	0.08 [0.03-0.15]	0.28 [0.15-0.44] (K=43

Table 3: Estimate ([CI]) of type I error rate under the null hypothesis. For SAEMIX, the LRT was performed using the estimate of LL obtained by importance sampling, and was computed over K=100 simulated datasets. For nlme, the number for each test is reported.

Good performance for SAEMIX compared with nlme:

- adequate type I error for both tests
- for LRT, type I error based on linearised LL is p=0.22 (close to nlme)

Conclusion

The SAEMIX package for R implements the SAEM algorithm for parameter estimation in nonlinear mixed effect models. The algorithm has good performance.

It will be available on the CRAN shortly (installation as any other R package through the GUI or in command line).

It uses the S4 class system of R to provide a user-friendly input and output system.

REFERENCES

- [1] E Kuhn and M Lavielle. Maximum likelihood estimation in nonlinear mixed effects models. *Computational Statistics and* Data Analysis, 49:1020–1038, 2005.
- Computing, Vienna, Austria, 2006. ISBN 3-900051-07-0.
- [2] R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical
- of Statistics, 27:94–128, 1999.
- [4] E Plan, A Maloney, F Mentré, MO Karlsson, and J Bertrand. Nonlinear mixed effects estimation algorithms: a performance comparison for continuous pharmacodynamic population models. 19th meeting of the Population Approach Group in Europe, Berlin, Germany, 2010.

[3] B Delyon, M Lavielle, and E Moulines. Convergence of a stochastic approximation version of the EM algorithm. Annals

[5] Jose Pinheiro, Douglas Bates, Saikat DebRoy, Deepayan Sarkar, and the R Core team. nlme: Linear and Nonlinear Mixed

Effects Models, 2009. R package version 3.1-96. ★ Presenting author

Inserm email: emmanuelle.comets@inserm.fr de la santé et de la recherche médic