LL(1) Parsing

Greta Yorsh Yu-Yang Lin Hou Julian Nagele

Tutorial 05

February 12 2018

ECS652: Compilers (Spring 2018)

Top-down Parsing

traversal of the parse tree in preorder

Backtracking Parsers

- try different possibilities, backing up an arbitrary amount in the input if one possibility fails
- powerful but slow
- unsuitable for practical compilers

Predictive Parsers

- predict the next construction using one or more look-ahead tokens
- recursive-descent parsing = "hand-written" parsers
- LL(1) parsing = process input from left to right, trace out a leftmost derivation and use 1 look-ahead symbol

LL(1) Parsing

- use an explicit stack rather than recursive calls
- mark the bottom of the stack with EOF (e.g. a \$ sign)

Two Basic Actions

- prediction: replace a non-terminal A at the top of the stack by a string α using the grammar rule $A \to \alpha$; α pushed onto the stack in reversed order of symbols
- match a token on top of the stack with the next input token

Example

- grammar $S \rightarrow (S)S \mid \epsilon$
- input ()\$

LL(1) Parsing Table

Recall

context-free grammar G is 4-tuple $\langle V, T, P, S \rangle$ with

- V is set of non-terminals, T is set of terminals
- $S \in V$ is start symbol
- P is set of derivation rules of the form $N \to \alpha$ where $N \in V$ and $\alpha \in (V \cup T)^*$
- parsing table is 2-dimensional array indexed by N and T which contains rules to use when non-terminal is on top of the stack and terminal is next in the input
- grammar is LL(1) if table has at most one rule per entry

Example

$table[\mathit{N},\mathit{T}]$	()	\$
5	$S \rightarrow (S)S$	$S o \epsilon$	$S o \epsilon$

First and Follow Sets

- how to build table?
- \bullet for a sequence α want terminal that begins strings derivable from α

Definition

let $t \in T$, $N \in V$, and $\alpha, \beta \in (V \cup T)^*$, then

- First $(t) = \{t\}$
- First(N) = { $t \mid N \rightarrow^* t\beta$ }
- First(α) = { $t \mid \alpha \rightarrow^* t\beta$ }

Algorithm

whiteboard

Parsing Table Construction

for every rule $N \to \alpha$ for every $t \in \mathsf{First}(\alpha)$, add $N \to \alpha$ to $\mathsf{table}[N,t]$

Examples

- *S* → (*S*) | []
- $S \rightarrow (S)S \mid \epsilon$

Definition

let $t \in T$, $N \in V$, and $\alpha, \beta \in (V \cup T)^*$, then

- Follow(N) = $\{t \mid S \rightarrow^* \alpha Nt\beta\}$
- Follow(S) additionally contains \$

Algorithm

whiteboard

Parsing Table Construction

for every rule $N \to \alpha$

for every $t \in \mathsf{First}(\alpha)$, add $\mathsf{N} \to \alpha$ to $\mathsf{table}[\mathsf{N},t]$

if $\alpha \to^* \epsilon$ then

for every $t \in \text{Follow}(N)$, add $N \to \alpha$ to table[N, t]

Left-factoring

Examples

- *S* → (*S*) | ()
- ifstmt \rightarrow if (exp) statement | if (exp) statement else statement
- required when rules share common prefix: $N o lpha eta \mid lpha \gamma$
- factor out α (pick longest common prefix of right-hand sides)
- $N \rightarrow \alpha N'$ $N' \rightarrow \beta \mid \gamma$

Example

- $stmt o assignstmt \mid callstmt \mid other$ assignstmt o ident := exp callstmt o ident (args)
- beware of "indirect" common prefixes need to use substitution first

Left-recursion

Example

- $\exp o \exp + \operatorname{term} \mid \operatorname{term} \quad \operatorname{term} o \operatorname{term} * \operatorname{factor} \mid \operatorname{factor}$ factor $\to (\exp) \mid \operatorname{number}$
- bounded look-ahead cannot deal with left recursion
- transform to right recursion
- $N \rightarrow N\alpha \mid \beta$
- $N \rightarrow \beta N'$ $N' \rightarrow \alpha N' \mid \epsilon$

Examples

- $stmtseq \rightarrow stmtseq$; $stmt \mid stmt$
- stmtseq → stmt; stmtseq | stmt

Examples

- $\bullet \;\; S \to \textit{Bc} \;|\; \textit{DB} \quad \; \textit{B} \to \textit{ab} \;|\; \textit{cS} \quad \; \textit{D} \to \textit{d} \;|\; \epsilon$
- S o AB $A o Ca \mid \epsilon$ $B o BaAC \mid c$ $C o b \mid \epsilon$