Routing in space-air-ground-integrated networks

Jianping Pan
University of Victoria, BC, Canada
Pan@UVic.CA

Network architecture: Addressing, naming & routing

- Low-earth-orbit (LEO) satellite networks (LSNs)
 - Hundreds to thousands of satellites in LEO for global coverage and capacity
 - Different inclinations and altitudes: Multiple orbits and shells per constellation
 - SpaceX's Starlink, Eutelsat's OneWeb, Amazon's Project Kuiper, Telesat's Lightspeed, etc.
 - Non-terrestrial Network (NTN) architectures similar to terrestrial LTE but with new challenges
 - User terminal (UT), satellite (SAT), ground station (SAG), point of presence (PoP), etc
 - In addition to Space Broadband Internet, also Direct-to-Cell and Space Internet of Things (IoT)

(a) Starlink

(b) OneWeb

Addressing

- StarlinkISP.net, 5+ million customers now
 - ASN: 14593 globally and 45700 in Indonesia only
 - Also customer ASNs with community gateway
 - Customer IP addresses with Geofeed published
 - http://geoip.starlinkisp.net: Country, region, "city"
 - Both IPv4 (often in /24 blocks) and IPv6 (/40)
 - E.g., a stationary dish in Victoria, BC, Canada
 - UT Router LAN: 192.168.1.1/24 by default
 - UT Router WAN: 100.76.147.112/10 by hash
 - CGNAT gateway: 100.64.0.1 fixed
 - CGNAT external: 170.203.205.12 dynamic
 - GeoIP: 170.203.205.0/24,CA,CA-BC,Vancouver,
- OneWeb: ASN 800
 - Customers (enterprise, etc) bring their own addresses

Starlink infrastructure

- Backbone network
 - **1**49.19.108/23
 - **206.224.64/19**
 - Within/btw PoPs
- Satellite access network
 - 172.16/12 reused

Starlink.com corporate

- o Website, etc
- Hosted by Fastly.com

SpaceX.com corporate

- o ASN: 27277
- Employees, etc
- On Microsoft Azure

Naming

- Starlink customers: consumer, commercial, etc
 - Again, the same dish in Victoria, BC, Canada
 - Dish: dishy.starlink.com (192.168.100.1)
 - Dynamic CGNAT public IP: 170.203.205.12
 - DNS PTR: customer.sttlwax1.pop.starlinkisp.net.
 - Extended CLLI: "sttlwax1" is Seattle, WA, USA
 - At the Starlink point-of-presence (PoP) granularity
 - Also (mis)used by some content providers
 - Geofeed has a finer granularity but no TTL
 - Hosted by cloudns.net
 - Only PTR, no A record for pop.starlinkisp.net.
 - PTR resource record TTL: 300 seconds
- OneWeb
 - Customers DNS provisioning

Starlink infrastructure

- o Public 149.19.108/23
 - No PTR record
- Public 206.224.64/19
 - undefined.hostname. localhost.
- o Private 172.16/12
 - No PTR record
- IPv6 addresses (public)
 - host.starlinkisp.net
- Starlink.com corporate
 - DNS hosted by Azure
- SpaceX.com corporate
 - o DNS hosted by Google

Routing in space

- Starlink satellite access networks
 - UT-SAT
 - Starlink dictates satellite selection
 - Preferably higher elevation (closer)
 - Depending on the UT location
 - One primary beam, one secondary
 - Fast switch if obstructed
 - SAT-SAT
 - Intra and inter-plane routing
 - SAT-SAG
 - Until a landing ground station
 - SAG-PoP
 - Tunneled back to "home" PoP
 - AAA and CGNAT functions there

According to Travis from SpaceX ...

Routing in the mesh

Camp at Allan Hills, Antarctica is established. This team will continue exploring some of the oldest ice core climate records on Earth, as part of @COLDEX_STC. Thanks to @SpaceX Starlink, we can share our @NSF funded work live from a US Antarctic Program-supported field camp!

9:29 PM - Dec 2, 2022

Routing on the ground

Starlink backbone network

- Starlink points of presence (PoPs)
 - http://peeringdb.com/asn/14593
 - Currently about 40 PoPs
- Outgoing Starlink user traffic
 - Exit at the source's home PoP ASAP
 - Unless the destination is within Starlink
 - Then through the Starlink backbone network
- Incoming Starlink user traffic
 - Over the public Internet as much as possible
 - Enter Starlink near the destination's home PoP
- Also connect the landing ground stations and home PoP
 - To tunnel the user traffic
- Each PoP has at least two neighbor PoPs

Starlink PoPs in 2023

- NA: SEA, ORD, LGA,
 DEN, LAX, DFW, ATL
- SA: BOG, LIM, SCL,GRU
- o AP: SYD, AKL, NRT
- EMEA: LHR, FRA, MAD, LOS

Starlink North America backbone (red: '24; blue: '25)

Starlink global backbone

- To discover the Starlink backbone
 - traceroute from Starlink users
 - Scripts, probes, VMs, etc
 - traceroute from the Internet VMs
 - Near Starlink PoPs
- Similar to other global networks
 - MPLS-based tunnels
 - ICMP echo inflation
 - Toward Starlink users
 - But not to Starlink backbone
 - PoPs near top IXPs
 - Many other ISPs
 - Big content providers
 - Also CDN providers

Indian Ocean

Currently home PoP centric

- Route toward the home PoP first
 - UT-SAT*-SAG
 - Space and ground tunnel
 - Home PoP
- Regardless the destination
 - Exit home PoP ASAP for non-Starlink destinations
- o In 2023, from Starlink West to Starlink East Indian Ocean
 - Inter-sat links to Lagos (LOS)
 - Lagos to London (LHR)
 - London to New York City (LGA)
 - New York City to Denver (DEN)
 - Denver to Los Angeles (LAX)
 - Los Angeles to Sydney (SYD)
 - Sydney to Perth (PER), ~600ms RTT

HOST: administrator-virtual-machi	Loss%	Snt	Last	Avg	Best	Wrst	StDev	
1. 192.168.1.1	0.0%	100	0.6	0.7	0.4	9.7	0.9	
2. 100.64.0.1	2.0%	100	181.3	201.1	156.2	374.3	52.0	int
3. 172.16.249.14	1.0%	100	174.6	206.7	156.4	377.1	54.7	
4. 206.224.64.10	1.0%	100	181.6	202.4	158.4	374.2	51.7	LOS
5. 206.224.64.205	1.0%	100	267.0	297.7	252.1	463.2	51.5	LHR
6. 149.19.108.184	2.0%	100	330.7	363.6	320.5	534.3	51.2	LGA
7. 149.19.108.41	2.0%	100	335.0	364.4	314.9	533.0	51.4	LGA
8. 206.224.66.19	1.0%	100	399.0	423.1	381.4	778.7	58.9	DEN
9. 149.19.108.237	1.0%	100	415.8	447.5	395.9	714.8	57.5	LAX
10. 149.19.108.31	1.0%	100	423.6	446.5	394.6	651.0	54.2	LAX
11. 149.19.109.88	1.0%	100	568.5	596.3	553.5	760.6	49.4	SYD
12. 206.224.64.60	2.0%	100	607.3	640.1	595.9	807.8	49.3	PER
13. 149.19.109.44	2.0%	100	614.7	639.3	592.4	820.4	50.3	

• In 2024

- LOS-LHR-FRA-SIN-PER
- Better than 2023 above
- ~300ms RTT

Hopefully in near future

- Direct inter-sat links
- Across the Indian Ocean
- ~100ms RTT

Other routing issues

- Still **limited** PoP Locations
 - Two (side-by-side) Starlink users in Alaska
 - Exchange traffic at Seattle PoP
- Mismatch between PoP and content
 - Ping-to-PoP vs ping-to-content dilemma
 - E.g., a Starlink user in Africa with a PoP in Europe
 - High ping-to-PoP due to inter-sat links
 - But ping-to-content just a little bit extra
 - May receive geo-irrelevant content (by PoP)
 - Later moved to a PoP in Africa
 - Much lower ping-to-PoP with nearby GS/PoP
 - But ping-to-content even higher for some content
 - Congested PoP, fiber, limited content in Africa
 - Some content (e.g., game servers) still in Europe

Starlink moves a lot

- In addition to its satellites
- Global expansion
 - now 125+ countries
- Address allocation
 - Reshuffling
- GeoIP manually updated
 - Auto exported
 - Without timestamp
 - Or time-to-live, TTL
- Content providers use
 - an outdated copy
- Starlink customers see
 - Geo-irrelevant ads

Routing is *not* only in the network layer

Content routing

- A Starlink user in Zambia
- Now associated with the Nairobi PoP
- Traceroute to Cloudflare in Nairobi
 - As expected
- HTTP served by
 - Nairobi
 - and Johannesburg, so >100ms extra RTT
 - In an almost interleaved way
- Limited capacity/content at Nairobi?
- Load balancing?
 - Shall be consistent for a user?
 - Or stateful applications may suffer?
- Anyone from SpaceX or Cloudflare?

< CF-RAY: 9220830bea799e94-JNB 0m0.224s < CF-RAY: 9220830d992e73fa-JNB 0m0 264s real < CF-RAY: 9220830e99a68a47-NBO real 0m0.124s < CF-RAY: 9220830f69a98a41-NBO 0m0.121s real < CF-RAY: 92208310cce99e94-JNB real 0m0.262s < CF-RAY: 92208311daba8a47-NBO 0m0.120s < CF-RAY: 922083128af48a41-NBO 0m0.111s real < CF-RAY: 92208313ebc973fa-JNB 0m0.260s real < CF-RAY: 922083159f969e94-JNB real 0m0.270s < CF-RAY: 922083173d6c73fa-JNB 0m0.263s

real

Routing is a *central* function of any networks

- No exception for a large-scale low-earth-orbit satellite network
 - How to route among satellites
 - Same orbital plane?
 - Neighbor orbital planes?
 - Intersecting orbital planes?
 - How to route between satellite and ground
 - Where is the landing ground station?
 - How to exit to the Internet ASAP?
 - How to route on the ground
 - Tradeoff between space and ground?
- No exception for large-scale low-earth-orbit satellite networks
 - o Peering in space?
 - Peering at ground station?
 - Peering on the ground?

Why a cross-country/global satellite **testbed**?

For network researchers, leveraging CANARIE/Internet2 but on LEO satellites

At least one site in each province/state and territory

Much more capable than RIPE Atlas

Container-based measurement modules

Possibly different satellite technologies besides GEO

Starlink, OneWeb, Kuiper, Telesat, etc.

For community users

- In remote areas and indigenous communities
 - Improved Internet access capacity
- No security and privacy affected
 - End-to-end encryption of user traffic
- A level playground for a fair comparison
 - For vendors, operators and regulators

Thanks!

- Questions?
 - o Email: pan@uvic.ca
 - Web: http://web.uvic.ca/~pan
 - Lab: http://pan.uvic.ca
- Join us!
 - http://oac.uvic.ca/starlink
 - See our work, papers, datasets and code
 - LENS: low earth network of satellites
 - Host a virtual machine behind your dish, and/or
 - Enjoy the dataset for trace-driven evaluation
 - LOTS: low-earth orbit testbed of satellites
 - Currently pending NSERC funding
 - Host a testbed node with dish provided
 - DRDC PolarLink (selected), etc.

