ICS Summer Academy Session II

Topic 6: Bayesian Networks Michael Shindler

11 1 P (sur, red/no) . Pro)

Review of Naive Bayes

Example No.	Color Type		Origin	Stolen?
1	Red	Sports	Domestic	Yes -
2	Red	Sports	Domestic	No
3	Red	Sports	Domestic	Yes~
4	Yellow	Sports	Domestic	No
5	Yellow	Sports	Imported	Yes -
6	Yellow	SUV	Imported	No
7	Yellow	SUV	Imported	Yes
8	Yellow	SUV	Domestic	No
9	Red	SUV	Imported	No
10	Red	Sports	Imported	Yes

Training Data Tables

D/	tupe=	Sports	Staten=40)
1 (. 3)	9	= 4/5

Stolen=Yes	Stolen=No
1/2	1/2

Туре	St	olen= `	es/	Stolen=No
Sports		4/5		2/5
SUV		1/5		3/5
		~ /		

Color	Stolen=Yes	Stolen=No
Yellow	2/5	3/5
Red	3/5	2/5

Want! P(yes |...)

Would a red domestic SUV be stolen according to your prediction?

Joint probability P(A,B,C,D) as product of conditional probabilities?

$$P(A,B,c,D) = P(A) \cdot P(B|A) \cdot P(c|B) \cdot P(b|B)$$

How many independent parameters needed to fully define?

Define the joint distribution P(A,B,C,D) if no assumptions about independence or conditional independence?

- ightharpoonup You now know about B happened or not
- ► Then you find out about *A*
- ▶ Belief changed for *C* or *D*?

Draw a Bayesian Network

 $X \perp Y \mid Z$ means that X is conditionally independent of Y, given Z.

- $A \perp B \mid \emptyset \checkmark$
 - $ightharpoonup A \not\perp D|B$

 - $ightharpoonup A \perp D|C$ $\blacktriangleright A \not\perp C | \emptyset$
- $\triangleright B \not\perp C | \emptyset$
- $\triangleright A \not\perp B|D$

 $\triangleright B \perp D|A,C$

Think of 1 as "does not

John Calls" I "Farthquake

"Alaim"

True or False: C and D are conditionally independent given A

Did not discuss this or the other three parts.

Material was covered as part of conversations.

True or False: C and B are conditionally independent given D

True or False: ${\cal C}$ is conditionally independent of ${\cal B}$ given ${\cal A}$

True or False: ${\cal C}$ is conditionally independent of ${\cal B}$ given ${\cal D}$

Famous Alarm Example

More about Hidden Variables

