Name: Gonzalo Ortega Carpintero

Exercise 1

Exercise 2

Let $\mathbb{Q}^* = \mathbb{Q} - \{0\}$ be the multiplicative group of non-zero rationals. Every element $q \in \mathbb{Q}^*$ can be written as $q = \frac{a}{b}$ with $a, b \in \mathbb{Z}$. Every integer admits a prime factorization such that $a = p_1^{e_1} \dots p_n^{e_n}$, $b = q_1^{f_1} \dots q_m^{f_m}$ with p_i, q_i prime numbers and $e_i, f_k \in \mathbb{N}$. If Q^* were finitely generated, there would be a finite set S which generates Q^* . Each element $\frac{a}{b} \in S$ could be decompose into a fraction of prime factorizations. But prime numbers are infinite, so piking a prime p not included in any of the factorizations of the elements in S would be a contradiction. As $p \in \mathbb{Q}^*$ but it can not be generated by elements of S as it is a prime not in S. Thus, \mathbb{Q}^* must be infinitely generated.

Exercise 3

Exercise 4

Let $G_1 = \langle S_1 = \{a,b\} \mid R_1 = \{a^3b^5a^{-3}b^{-5}\}\rangle$. To show that G_1 is infinite we will construct a surjective homomorphism from G_1 to \mathbb{Z} . First, define $\theta \colon S_1 \to \mathbb{Z}$ as $\theta(a) = 2$ and $\theta(b) = -1$. By the universal property of free groups there is a unique homomorphism $\hat{\theta} \colon F(S) \to \mathbb{Z}$ extending θ such that $\hat{\theta}(a) = 2$ and $\hat{\theta}(b) = -1$. Thus, we have that

$$\hat{\theta}(a^3b^5a^{-3}b^{-5}) = 3\hat{\theta}(a) + 5\hat{\theta}(b) - 3\hat{\theta}(a) - 5\hat{\theta}(b) = 0.$$

Thus, $R_1 \subset \ker(\hat{\theta})$ and in fact $\langle \langle R_1 \rangle \rangle \subset \ker(\hat{\theta})$. For $(ab)^n \in F(S_1)$, $n \in \mathbb{Z}$, we have that $\hat{\theta}((ab)^n) = n$. This makes any element of \mathbb{Z} reachable from an element of $F(S_1)$ by $\hat{\theta}$, making $\hat{\theta}$ a surjective homomorphism. Hence, by the fundamental theorem on homomorphisms, there exists a unique surjective homomorphism $h_1 : F(S_1)/\langle \langle R_1 \rangle \rangle = G_1 \to \mathbb{Z}$ proving G_1 is infinite.

Let now $G_2 = \langle S_2 = \{a,b\} \mid R_2 = \{a^2b^3\}\rangle$. We proceed as before. Define $\phi \colon S_2 \to \mathbb{Z}$ as $\phi(a) = 3$ and $\phi(b) = -2$. Then there exists a unique homomorphism $\hat{\phi} \colon F(S_2) \to \mathbb{Z}$ such that $\hat{\phi}(a) = 3$ and $\hat{\phi}(b) = -2$. Then

$$\hat{\phi}(a^2b^3) = 3\hat{\phi}(a) - 2\hat{\phi}(b) = 3 \cdot (-2) - 2 \cdot 3 = 0.$$

Hence, $\langle \langle R_2 \rangle \rangle \subset \ker(\hat{\phi})$ and $\hat{\phi}((ab)^n) = n$, ϕ is surjective and there exists a unique surjective $h_2 : F(S_2)/\langle \langle R_2 \rangle \rangle = G_2 \to \mathbb{Z}$. Thus, G_2 is also infinite.

Exercise 8

Let $G = \langle S \mid R \rangle = F(S)/\langle \langle R \rangle \rangle$ be a finite presentation. All words $w \in (S \sqcup S^{-1})^*$ such that w = 1 in G are the words $w \in \langle \langle R \rangle \rangle$ by the definition of group presentation. Recall that

$$\langle\langle R\rangle\rangle = \bigcup_{i=0}^{\infty} \left\{ \prod_{j=0}^{\infty} (g_j^{-1} r_j^{\epsilon_j} g_j) \mid g_j \in F(G), r_j \in R, \epsilon_j \in \{\pm 1\} \right\}.$$

To enumerate the words w we can proceed as follows:

1. As |R| is finite, suppose |R| = n. We can enumerate all elements of R and R^{-1} numbering them as:

$$r_1, r_1^{-1}, r_2, r_2^{-1}, \dots, r_n, r_n^{-1}.$$
 (1)

2. In the same manner, as |S| is finite, suppose |S| = m, and enumerate all elements of S and S^{-1} as:

$$s_1, s_1^{-1}, s_2, s_2^{-1}, \dots, s_m, s_m^{-1}.$$
 (2)

3. Finally, now we just need to enumerate the elements of $\langle\langle R\rangle\rangle$ in a sorted way without enumerating one same element more than once. For so, start enumerating the elements $g \in F(S)$ by making combinations of the elements of (2) in a lexicographic order and in increasing word length. As |S| is finite, for each word length k, the amount of words of F(S) of length k is going to be m^k minus the number of produced words that can be reduced. In any case, there is a finite number of words of length k in F(S). Denote the set of words of length less than or equal to k as $F(S)_k$ and note that it is finite too.

For each word length k, we can iterate over the elements of (1), and enumerate all the elements

$$\prod_{j=0}^k (g_j^{-1} r_j^{\epsilon_j} g_j) \text{ with } g_j \in F(S)_k, r_j \in R, \epsilon_j \in \{\pm 1\}.$$

We reduce each obtained word and compare it with the finite number of words we had previously enumerated. If it is a new word, we enumerate it.

Each k-th iteration of Step 3 of the previous procedure is finite as (1) is finite and $F(S)_k$ is finite. Therefore, on an input $w \in (S \sqcup S^{-1})^*$, if w = 1 in G, as w would have finite length, our procedure will find it in finite time. Else, our procedure may run forever.

References

[1] Marco Linton, Geometric group theory notes, UAM Algebra Advance Course, 2025.