

بسم الله الرحمن الرحيم

گرازش تمرین 6

درس مبانی سیستم نهفته و بیدرنگ

جواب سوال 1)

1- امکان زمانبندی مجموعه وظایف مقابل را هم بهصورت تحلیلی با به کارگیری کران های بهرهگیری مرتبط و هم با رسم زمانبندی برای یک فراتناوب بررسی کنید.

> RMS. بEDF.

$$U = \sum_{i=1}^{\infty} \frac{c_i}{T_i} = \frac{2}{10} + \frac{5}{20} + \frac{8}{30} = \frac{42}{60} = 0.7$$

b) EDF.

جواب سوال 2)

بخش الف: ترسيم گراف وابستگی)

directed acyclic graph (DAG)

بخش ب:

زمان بندی با الگوریتم EDL) بله همان طوریکه در شکل زیر می ببینید زمان بندی ممکن است.

زمان بندى وظايف با الگوريتم پايه EDF

	ti	1	t2		t3		t4	1	t5	5	
0	1	2	3	4	5	6	7	8	9	10	11

بخش ج:

برای اینکه وظایف را با استفاده از الگوریتم *EDF زمان بندی کنیم در قدم اول باید r_i^* , d

$$r_j' = \max(r_j, r_i + C_i)$$

$$d_i' = \min(d_i, d_i' - C_i)$$

ها را حساب کنیم پس داریم r_i

$$r_1 = 0$$

$$r_2$$
 = max(1, 0 + 2) = max(1, 2) = 2

$$r_3$$
 = max(3,0 + 2) = max(3,2) = 3

$$r_4$$
' = max(4,2 + 1,3 + 3) = max(4,3,6) = 6

$$r_5$$
 = max(5,3 + 3) = max(5,6) = 6

ها را حساب کنیم پس داریم d_i `

$$d_5$$
` = d_5 = 11

$$d_4$$
` = d_4 = 10

$$d_3$$
 = min(8, 10 – 2, 11 – 2) = min(8,8,9) = 8

$$d_2$$
 = min(7, 10 – 2) = min(7,8) = 7

$$d_1$$
 = min(6, 7 - 1, 8 - 3) = min(6,6,5) = 5

آپدیت جدول تسک ها با استفاده از الگوریتم *EDF

	C_i	r_i	d_i	r_i	d_i
$ au_1$	2	0	6	0	5
$ au_2$	1	1	7	2	7
$ au_3$	3	3	8	3	8
$ au_4$	2	4	10	6	10
$ au_5$	2	5	11	6	10

بله همان طوریکه در شکل زیر می ببینید با استفاده از دلاین ها و زمان منتشر جدید که بدست آوردیم امکان زمان بندی ممکن است.

زمان بندی وظایف با الگوریتم پایه *EDF

	ti	1	t2		t3		t4	1	t:	5	
o	1	2	3	4	5	6	7	8	9	10	11

جواب سوال 3)

قسمت الف)


```
V UNTITLED (WORKSPACE) 📮 📴 🖔 🗿

✓ FreeRTOS

  ≡ EmbeddEx6.pdsprj
                                           #include <Arduino.h>

✓ Ex6_Embedd

  > .pio
                                           void setup()
  > .vscode
  > include
  > lib
                                              pinMode(LED_BUILTIN, OUTPUT);
  ∨ src
   • main.cpp
  > test
                                           void loop()
  .gitignore
  platformio.ini
                                              // turn the LED on (HIGH is the voltage level)

    241220-223336-arduino-blink

                                              digitalWrite(LED_BUILTIN, HIGH);
  > .pio
  > .vscode
  > include
                                              delay(1000);
  > lib
  ∨ src
                                              digitalWrite(LED_BUILTIN, LOW);
   Blink.cpp
                                              delay(1000);
  > test
  .gitignore
  🍑 platformio.ini
  ① README.md
                                                                      TERMINAL
                                                                                        PROMPT FLOW
                                  OPS C:\Users\Fartash\Documents\PlatformIO\Projects\Ex6_Embedd>
```

قسمت ب)

بخش الف:

وظايف توليد خروجيها:

1. وظیفه :vFanSpeedTask

- مسئول تنظیم سرعت فن است.
- صرعت فن از طریق صفی به نام xSpeedQueueدریافت می شود.
- o با استفاده از تابع analogWriteمقدار سرعت (Duty Cycle) به پایه فن اعمال می شود.
- در صورت دریافت سرعت جدید، مقدار بهروز میشود و پیام مناسبی برای نمایش سرعت فن ثبت میشود.

2. وظیفه :vFanDirectionTask

- مسئول تنظيم جهت چرخش فن است.
- o مقدار جهت از طریق صف xDirectionQueueدریافت می شود.
- از یک سروو موتور برای تغییر جهت استفاده می کند و موقعیت جدید سروو را بر اساس مقدار دریافت شده تنظیم می کند.
 - تغییر جهت با حرکت نرم (Smooth) انجام می شود و موقعیت نهایی ثبت می گردد.

وظایف پردازش ورودیها:

1. وظیفه :vInputProcessingTask

- o ورودیهای مربوط به دما و وضعیت کلید را پردازش می کند.
- ی دمای سنسور از طریق پایه TEMP_SENSOR_PINخوانده می شود و به مقدار سلسیوس تبدیل می شود.
 - وضعیت کلید از پایه SWITCH_PINخوانده میشود.
- بر اساس دما، مقدار سرعت و بر اساس وضعیت کلید، مقدار جهت چرخش تعیین شده و در صفهای مربوطه قرار
 می گیرد.

2. تابع Callback تايمر :vTimerCallback

- c به صورت دورهای (هر ۱۰۰۰ میلی ثانیه) یک مقدار سرعت پیش فرض را به صف xSpeedQueueارسال می کند.
 - و این تابع برای تولید رویدادهای دورهای استفاده می شود و بهنوعی مکمل وظایف پردازش ورودی ها است.

نكات اضافي:

- استفاده از وقفه :در برنامه از یک وقفه شبیهسازی شده (visrHandler) استفاده شده است که وظیفه فعال سازی یک Semaphore را برای هماهنگی وظیفه ها برعهده دارد.
- ارتباط وظیفه ها :وظایف از طریق صفها و Semaphore با یکدیگر ارتباط دارند و هرکدام بخشی از کار را مستقل و همزمان انجام می دهند.

این ساختار به خوبی اصول طراحی برنامههای چندوظیفهای را نشان میدهد و ارتباط مؤثر بین وظیفهها و استفاده از منابع بهینه را تضمین می کند.

بخش دوم:

وظایف متناوب:(Time-Triggered)

vTimerCallback: تابع

این وظایف به صورت دورهای اجرا میشوند و زمانبندی آنها مشخص است.

1. وظیفه: vInputProcessingTask

- نوع تحریک: متناوب.
- ، روش اجرا: این وظیفه هر 500 میلی ثانیه با استفاده از تأخیر (vTaskDelay) اجرا می شود.
- وظیفه :خواندن ورودیهای دما و کلید، پردازش آنها و ارسال مقادیر به صفهای xSpeedQueue

xDirectionQueue.

- o **نوع تحربک:**متناوب.
- روش اجرا: این تابع توسط یک تایمر نرمافزاری FreeRTOS به نام xTimerهر 1000 میلی ثانیه اجرا می شود.
 - o وظیفه:ارسال مقدار سرعت پیشفرض به صف xSpeedQueueبرای بهروزرسانی متناوب سرعت فن.

وظایف نامتناوب:(Event-Triggered)

این وظایف فقط در پاسخ به یک رویداد (مانند داده در صف یا فعال شدن Semaphore) اجرا می شوند.

1. وظیفه :vFanSpeedTask

- نامتناوب.
- روش اجرا : زمانی که دادهای در صف SpeedQueue قرار گیرد، وظیفه با استفاده از xQueueReceive فعال می شود.
 - o وظیفه: تنظیم سرعت فن با مقدار دریافتی.

vFanDirectionTask: وظيفه

- نوع تحریک: نامتناوب.
- o روش اجرا: زمانی که داده ای در صف xDirectionQueue قرار گیرد، وظیفه با استفاده از QueueReceive فعال می شود.
 - o **وظیفه**: تغییر جهت چرخش فن با مقدار دریافتی.

Semaphore مربوط به وقفه:(ISR)

- نوع تحریک: نامتناوب.
- روش اجرا: وقفه شبیه سازی شده (vISRHandler) یک Semaphore باینری به نام xISRTriggerرا آزاد می کند. وظیفه
 Semaphore سریعاً به ورودی های جدید پاسخ دهد.
 - o وظیفه:همگامسازی یک رویداد خاص (مانند تغییر حالت کلید یا وضعیت خاص) با وظایف.

نحوه اتصال وظایف به:ISR

1. وقتی که ورودی جدیدی در صفها قرار می گیرد:

- o وظایف vFanSpeedTaskو vFanSpeedTaskاز این مکانیزم استفاده می کنند. به محض اینکه دادهای وارد صف شود، وظیفه از حالت بلوک خارج شده و اجرا می شود.
 - 2. وقتی که یک وقفه خارجی شبیهسازی شده اجرا می شود:
 - در (vISRHandler) از SSemaphoreGiveFromISR برای فعال کردن وظایف مرتبط (مانند v (مانند این روش وظیفه را فوراً در پاسخ به رویداد فعال می کند.

3. با استفاده از تایمر:

 وظیفه متناوب vTimerCallback به تایمر نرم افزاری FreeRTOS متصل است. این تایمر هر 1000 میلی ثانیه یک بار رویداد ایجاد می کند.

جدول خلاصه:

روش اتصال به ISR یا تایمر	نوع تحریک	وظيفه
مف xSpeedQueue	نامتناوب	vFanSpeedTask
صف xDirectionQueue	نامتناوب	vFanDirectionTask
تأخير زمانی / Semaphore.	متناوب/نامتناوب	vInputProcessingTask
. xTimer تايمر نرمافزاری	متناوب	vTimerCallback
.Semaphore xISRTrigger	نامتناوب	وقفه شبيهسازىشده

بخش سوم:

ارتباط بين وظايف:

ارتباط بین وظایف با **صفها** انجام شده است. وظایف با ارسال و دریافت داده از صفها، با یکدیگر ارتباط برقرار میکنند.

1. ارتباط وظایف از طریق xSpeedQueue :

- وظایف فرستنده:
- vInputProcessingTask : سرعت محاسبه شده بر اساس دمای سنسور را در این صف قرار میدهد.
 - vTimerCallback : به صورت دورهای مقادیر سرعت پیشفرض را در این صف قرار میدهد.
 - وظیفه گیرنده:
 - vFanSpeedTask : مقادیر موجود در صف را دریافت کرده و سرعت فن را تنظیم میکند.
- نحوه اجرا: وظیفه گیرنده (مصرف کننده) از طریق تابع xQueueReceive منتظر داده در صف باقی می ماند
 و بلافاصله پس از دریافت داده، اجرا می شود.

2. ارتباط وظایف از طریق xDirectionQueue :

- وظیفه فرستنده:
- vInputProcessingTask : مقدار جهت چرخش فن را بر اساس وضعیت کلید، محاسبه کرده و در این صف قرار میدهد.
 - وظیفه گیرنده:
- vFanDirectionTask: مقادیر موجود در صف را دریافت کرده و جهت چرخش فن را از طریق سروو موتور تنظیم میکند.
- نحوه اجرا: مشابه xSpeedQueue ، وظیفه مصرفکننده به محض دریافت داده از صف، اجرا می شود.

ارتباط بین وظایف و ISRها:

ارتباط بین وظایف و ISRها با استفاده از **سمافور باینری (Binary Semaphore)** پیادهسازی شده است.

1. سمافور xISRTrigger:

- فرستنده:
- وقفه شبیه سازی شده vISRHandler: به هنگام وقوع یک رویداد (مثلاً تغییر وضعیت کلید)، با استفاده از تابع xSemaphoreGiveFromISR این سمافور را آزاد میکند.
 - وظیفه گیرنده:
- vInputProcessingTask : منتظر فعال شدن سمافور باقی میماند (xSemaphoreTake) و به محض دریافت سیگنال، عملیات پردازش ورودی را انجام میدهد.
 - نحوه اجرا: وقفه باعث میشود وظیفه وابسته به رویداد، سریعا و بدون تأخیر به وقفه باسخ دهد.

ارتباط وظایف با تایمر:

از تایمر نرمافزاری FreeRTOS برای ایجاد ارتباط زمانبندی شده بین وظایف استفاده شده است.

1. تايمر xTimer:

- وظیفه تولیدکننده:
- تايمر نرمافزاری xTimerCreate هر 1000 ميلىثانيه يک بار تابع vTimerCallback را اجرا مىکند.
 - وظیفه گیرنده:
 - vFanSpeedTask : با دریافت داده از صف xSpeedQueue ، مقادیر جدید سرعت را اعمال میکند.
- نحوه اجرا: تایمر به صورت دورهای یک مقدار سرعت پیشفرض را به صف ارسال میکند و وظیفه مربوطه را تحریک میکند.

جمعبندی ارتباطات:

توضيح	گیرنده	فرستنده	ابزار ارتباطی
انتقال مقادير سرعت فن.	vFanSpeedTask	<pre>9 vInputProcessingTask vTimerCallback</pre>	xSpeedQueue
انتقال جهت چرخش فن.	vFanDirectionTask	vInputProcessingTask	xDirectionQueue
هماهنگی با وقفهها.	vInputProcessingTask	vISRHandler	xISRTrigger
تولید رویدادهای دورهای برای سرعت.	vFanSpeedTask	سیستم زمانبندی FreeRTOS	تايمر xTimer

قسمت ج) بخش 1)

بخش 3و2) تست شبه سازی حسگرها و فعالگرهای

