SIMULADOR DEL COMPORTAMIENTO DE UNA CADENA DE BLOQUES VERSIÓN 1.0

CONFIGURACIÓN DEL ENTORNO	
Sistema Operativo linux	
1.	Python 3.6.7 instalado. (https://www.python.org/downloads)
	python3version
2.	Paquetes de Instalación PIP
	sudo apt-get install python3-pip
3.	Instale el paquete NumPy (https://docs.scipy.org/doc/numpy/user/install.html)
	python3 -m pip installuser numpy
4.	Instale PyQt5
	pip3 install PyQt5
5.	Descargue el repositorio desde github: BlocksUD
	https://github.com/devappsud/blocksUD
6.	Descomprima el archivo blocksUD-master.zip
	unzip blocksUD-master

7. Ingresar al directorio de la aplicación

cd blocksUD-master

Sistema Operativo Windows

1. Python 3.6.7 instalado. (https://www.python.org/downloads

Durante la instalación seleccione: add Python 3.x to path python3 --version

REINICIE EL SISTEMA OPERATIVO

2. Paquetes de Instalación PIP

Contenido en el paquete de instalación

3. Instale el paquete NumPy (https://docs.scipy.org/doc/numpy/user/install.html)

Sìmbolo del sistema python -m pip install --user numpy

4. Instale PyQt5

pip3 install PyQt5

5. Descargue el repositorio desde github: BlocksUD

https://github.com/devappsud/blocksUD

6. Descomprima el archivo blocksUD-master.zip

7. Ingresar al directorio de la aplicación

blocksUD-master

8. Adicione la variable PYTHONPATH con la ruta donde se descargó el proyecto con sus subdirectorios.

EJECUCIÓN

1. Versión Consola

run_windows.bat

Al finalizar el proceso los resultados de la simulación quedan registrados en el archivo de salida. Este archivo puede ser procesado con la herramienta de análisis de datos de preferencia del usuario.

run_windows_grafico.bat

Al finalizar el proceso los resultados de la simulación quedan registrados en el archivo de salida (ejemplo002.txt, en este caso). Este archivo puede ser procesado con la herramienta de análisis de datos de preferencia del usuario.

AUTORES

- MSc ROBERTO A. PAVA DIAZ
 Docente de Planta Facultad de Ingeniería
 Universidad Distrital Francisco José de Caldas
- MSc NANCY GELVEZ GARCIA
 Docente de Planta Facultad de Ingeniería
 Universidad Distrital Francisco José de Caldas
- PhD NELSON ENRIQUE VERA
 Docente de Planta Facultad de Ingeniería
 Universidad Distrital Francisco José de Caldas