Método de los Elementos Finitos (Curso 19-20)

EXAMEN FINAL EXTRAORDINARIO (10 de julio de 2020)

1. Se considera una chapa cuyas dimensiones y geometría son las indicadas en la figura adjunta. La condiciones en los bordes de la chapa se indican en el siguiente cuadro¹:

Lado	Condición
AB	$q_n = -250 \text{ W/m}^2$
BC	$q_n = -250 \text{ W/m}^2$
CD	383 °K
DA	180 °K
EF	Aislado
FG	Aislado
GH	Aislado
HE	Aislado

El coeficiente de conductividad térmica es $\lambda = 150 \text{ W/(m\cdot K)}$.

Se desea conocer la distribución de temperaturas y el flujo de calor en la chapa. Para ello se modelizará y resolverá el problema empleando el programa de elementos finitos FEAP.

Cotas en cm.

Se pide cargar los siguientes ficheros:

- 1. Fichero de entrada de datos de feap
- 2. Contornos de temperatura
- 3. Contornos de flujo horizontal

NOTAS:

- La malla estará formada por elementos cuadrados de lado 0,2 cm
- En los puntos singulares en los que hay una condición de flujo y temperatura impuestos de forma simultánea, se considerará la condición de temperatura impuesta.
- \blacksquare En el vértice D la temperatura a considerar es 180 °K

¹En las esquinas en que hay definidas tanto condición de flujo como de temperatura se impondrá esta última