BIẾN ĐỔI Z VÀ ỨNG DỤNG VÀO HỆ THỐNG LTI RỜI RẠC

- 1 BIẾN ĐỔI Z
- 2 CÁC TÍNH CHẤT BIẾN ĐỔI Z
- 3 BIẾN ĐỔI Z NGƯỢC
- 4 HÀM TRUYỀN CỦA HỆ LTI RỜI RẠC
- 5 GIẢI PTSP DÙNG BIẾN ĐỔI Z 1 PHÍA

1 BIẾN ĐỔI Z

1.1 ĐỊNH NGHĨA BIẾN ĐỔI **Z**:

Biến đổi Z của dãy x(n):

$$X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n} \qquad (*)$$

Biểu thức (*) còn gọi là biến đổi Z hai phía

Biến đổi Z 1 phía dãy x(n): $X(z) = \sum x(n)z^{-n}$

$$X(z) = \sum_{n=0}^{\infty} x(n)z^{-n} \qquad (**)$$

- Ký hiệu:

$$x(n) \stackrel{Z}{\longleftrightarrow} X(z)$$
 hay $X(z) = Z\{x(n)\}$

$$X(z) \xleftarrow{Z^{-1}} x(n)$$
 hay $x(n) = Z^{-1}\{X(z)\}$

1.2 MIÈN HỘI TỤ CỦA BIẾN ĐỔI Z (ROC)

- Miền hội tụ của biến đổi Z ROC (Region Of Convergence) là tập hợp tất cả **c**ác giá trị Z nằm trong mặt phẳng phức sao cho X(z) hội tụ. $\overline{\text{Im}(Z)}$
- Để tìm ROC của X(z) ta áp dụng tiêu chuẩn Cauchy
- Tiêu chuẩn Cauchy:

Một chuỗi có dạng:
$$\sum_{n=0}^{\infty} x(n) = x(0) + x(1) + x(2) + \cdots$$

ROC

Re(z)

hội tụ nếu:

$$\lim_{n\to\infty} |x(n)|^{\frac{1}{n}} < 1$$

Ví dụ 1.1: Tìm biến đổi Z & ROC của: Giải:

$$x(n) = a^n u(n)$$

$$X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n} = \sum_{n=-\infty}^{\infty} \left[a^n u(n) \right] z^{-n} = \sum_{n=0}^{\infty} a^n \cdot z^{-n} = \sum_{n=0}^{\infty} \left(az^{-1} \right)^n$$

Theo tiêu chuẩn Cauchy, X(z) sẽ hội tụ:

$$X(z) = \frac{1}{1 - az^{-1}}$$

Nếu: $\lim_{n\to\infty} \left(\left| az^{-1} \right|^n \right)^{1/n} < 1 \Leftrightarrow |z| > |a|$

Vậy:
$$X(z) = \frac{1}{1 - az^{-1}}; ROC: |Z| > |a|$$

<u>Ví dụ 1.1</u>: Tìm biến đổi Z & ROC của: Giải:

$$x(n) = -a^n u(-n-1)$$

$$X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n} = \sum_{n=-\infty}^{\infty} \left[-a^n u(-n-1) \right] z^{-n} = -\sum_{n=-\infty}^{-1} a^n \cdot z^{-n}$$

$$= -\sum_{\mathbf{m}=1}^{\infty} (\mathbf{a}^{-1}\mathbf{z})^{\mathbf{m}} = -\sum_{\mathbf{m}=0}^{\infty} (\mathbf{a}^{-1}\mathbf{z})^{\mathbf{m}} + 1$$

Theo tiêu chuẩn Cauchy, X(z) sẽ hội tụ:

$$X(z) = -\sum_{m=0}^{\infty} (a^{-1}z)^{m} + 1 = \frac{1}{1 - az^{-1}}$$

Nếu:
$$\lim_{n\to\infty} \left(\left| a^{-1}z \right|^n \right)^{1/n} < 1 \quad \Leftrightarrow \quad |z| < |a|$$

2 CÁC TÍNH CHẤT BIẾN ĐỔI Z

a) Tuyến tính

Nếu:
$$\begin{cases} x_1(n) \stackrel{Z}{\longleftrightarrow} X_1(z) : ROC = R_1 \\ x_2(n) \stackrel{Z}{\longleftrightarrow} X_2(z) : ROC = R_2 \end{cases}$$

Thì:
$$a_1 x_1(n) + a_2 x_2(n) \xleftarrow{Z} a_1 X_1(z) + a_2 X_2(z)$$

ROC chứa R₁∩ R₂

Ví du 1: Tìm biến đổi Z & ROC của:

$$x(n) = a^n u(n) - b^n u(-n-1) \quad \text{v\'oi} \quad |a| < |b|$$

<u>Giải:</u>

Theo ví dụ 1.1 và 1.2, ta có:

$$a^{n}u(n) \longleftrightarrow \frac{1}{1 - az^{-1}}$$

$$|R_1:|z|>|a|$$

$$-b^{n}u(-n-1) \stackrel{Z}{\longleftrightarrow} \frac{1}{1-bz^{-1}} \qquad R_{2}: |z| < |b|$$

$$R_2:|z|<|b|$$

Áp dụng tính chất tuyến tính, ta được:

$$a^{n}u(n)-b^{n}u(-n-1) \longleftrightarrow \frac{z}{1-az^{-1}} + \frac{1}{1-bz^{-1}}$$

$$R = R_1 \cap R_2 : |a| < |z| < |b|$$

b) Dịch theo thời gian

Nếu:
$$x(n) \stackrel{Z}{\longleftrightarrow} X(z) : ROC = R$$

Thi:
$$x(n-n_0) \stackrel{Z}{\longleftrightarrow} Z^{-n_0} X(z) : ROC = R'$$

Với:
$$R' = \begin{cases} R \text{ trừ giá trị } z=0, \text{ khi } n_0>0 \\ R \text{ trừ giá trị } z=\infty, \text{ khi } n_0<0 \end{cases}$$

Ví dụ 2: Tìm biến đổi Z & ROC của:

$$x(n) = a^n u(n-1)$$

<u>Giải:</u>

$$a^n u(n) \stackrel{Z}{\longleftrightarrow} \frac{1}{1 - az^{-1}}; ROC: |z| > |a|$$

Vậy:
$$x(n) = a^n u(n-1) = a.a^{n-1} u(n-1)$$
 $\longleftrightarrow \frac{az^{-1}}{1 - az^{-1}} : |z| > |a|$

c) Nhân với hàm mũ an

Nếu:
$$x(n) \stackrel{Z}{\longleftrightarrow} X(z) : ROC = R$$

Thi:
$$a^n x(n) \stackrel{Z}{\longleftrightarrow} X(a^{-1}z) : ROC = |a|R$$

Ví dụ 3: Xét biến đổi Z & ROC của:

$$x_1(n) = a^n u(n)$$
 và $x_2(n) = u(n)$

<u>Giải:</u>

$$x(n) = u(n) \stackrel{Z}{\longleftrightarrow} X(z) = \sum_{n=-\infty}^{\infty} u(n)z^{-1} = \frac{1}{1-z^{-1}}; R: |z| > 1$$

$$|a^n x(n) = a^n u(n) \stackrel{Z}{\longleftrightarrow} X(az^{-1}) = \frac{1}{1 - az^{-1}}; R': |z| > |a|$$

d) Đạo hàm X(z) theo z

Nếu:
$$x(n) \stackrel{Z}{\longleftrightarrow} X(z) : ROC = R$$

Thi:
$$nx(n) \leftarrow \frac{z}{dz} - z \frac{dX(z)}{dz} : ROC = R$$

Ví dụ 4: Tìm biến đổi Z & ROC của: $g(n) = na^n u(n)$ Giải:

Theo ví dụ 1:

$$x(n) = a^n u(n) \stackrel{Z}{\longleftrightarrow} X(z) = \frac{1}{1 - az^{-1}}; \text{ROC}: |z| > |a|$$

$$g(n) = nx(n) \stackrel{Z}{\longleftrightarrow} G(z) = -z \frac{dX(z)}{dz} = \frac{az^{-1}}{(1 - az^{-1})^2} : |z| > |a|$$

e) Đảo biến số

Nếu
$$x(n) \stackrel{Z}{\longleftrightarrow} X(z) : ROC = R$$

Thi:
$$x(-n) \stackrel{Z}{\longleftrightarrow} X(z^{-1}) : ROC = 1/R$$

Ví dụ 5: Tìm biến đổi Z & ROC của:

$$y(n) = (1/a)^n u(-n)$$

Giải: Theo ví dụ 1.1:

$$x(n) = a^n u(n) \stackrel{Z}{\longleftrightarrow} X(z) = \frac{1}{1 - az^{-1}}; \text{ROC}: |z| > |a|$$

$$\Rightarrow y(n) = (1/a)^n u(-n) = a^{-n} u(-n) = x(-n)$$

Áp dụng tính chất đảo biến số:

$$Y(z) = X(z^{-1}) = \frac{1}{1 - a(z^{-1})^{-1}} = \frac{1}{1 - az}; ROC: |z| < 1/|a|$$

f) Liên hiệp phức

Nếu:
$$x(n) \stackrel{Z}{\longleftrightarrow} X(z) : ROC = R$$

Thi:
$$x^*(n) \xleftarrow{Z} X^*(z^*) : ROC = R$$

g) Tích 2 dãy

Nếu:
$$\begin{cases} x_1(n) \stackrel{Z}{\longleftrightarrow} X_1(z) : ROC = R_1 \\ x_2(n) \stackrel{Z}{\longleftrightarrow} X_2(z) : ROC = R_2 \end{cases}$$

Thi:
$$x_1(n)x_2(n) \stackrel{Z}{\longleftrightarrow} \frac{1}{2\pi} \oint_c X_1(\nu)X_1\left(\frac{z}{\nu}\right)\nu^{-1} d\nu : ROC = R_1 \cap R_2$$

h) Định lý giá trị đầu

Nếu x(n) nhân quả thì:
$$x(0) = \lim_{Z \to \infty} X(z)$$

- Ví dụ: Tìm x(0), biết $X(z)=e^{1/z}$ và x(n) nhân quả
- □ Giải:

Theo định lý giá trị đầu:

$$x(0) = \lim_{Z \to \infty} X(z) = \lim_{Z \to \infty} e^{1/z} = 1$$

i) Tổng chập 2 dãy

Nếu:
$$\begin{cases} x_1(n) \stackrel{Z}{\longleftrightarrow} X_1(z) : ROC = R_1 \\ x_2(n) \stackrel{Z}{\longleftrightarrow} X_2(z) : ROC = R_2 \end{cases}$$

Thì:
$$x_1(n) * x_2(n) \xleftarrow{Z} X_1(z) X_2(z)$$
; ROC có chứa $R_1 \cap R_2$

Ví dụ 6: Tìm y(n) = x(n)*h(n), biết:

$$x(n) = (0.5)^n u(n)$$
 $h(n) = -2^n u(-n-1)$

· Giải:

$$x(n) = (0.5)^n u(n) \stackrel{Z}{\longleftrightarrow} X(z) = \frac{1}{1 - 0.5z^{-1}}; ROC: |z| > 0.5$$

$$h(n) = -2^{n} u(-n-1) \stackrel{Z}{\longleftrightarrow} H(z) = \frac{1}{1 - 2z^{-1}}; ROC: |z| < 2$$

$$|Y(z) = X(z)H(z) = \frac{1}{(1 - 0.5z^{-1})} \cdot \frac{1}{(1 - 2z^{-1})}; ROC: 0,5 < |z| < 2$$

$$= -\frac{1}{3} \cdot \frac{1}{(1-0.5z^{-1})} + \frac{4}{3} \cdot \frac{1}{(1-2z^{-1})}; ROC: 0, 5 < |z| < 2$$

$$y(n) = x(n) * h(n) = -\frac{1}{3} (0.5)^n u(n) - \frac{4}{3} 2^n u(-n-1)$$

TỔNG KẾT CÁC TÍNH CHẤT BIẾN ĐỔI Z

x(n)	X(z)	R
$a_1x_1(n)+a_2x_2(n)$	$a_1X_1(z)+a_2X_2(z)$	Chứa R₁ ∩ R₂
$x(n-n_0)$	$Z^{-n0}X(z)$	R'
a ⁿ x(n)	X(a ⁻¹ z)	R
nx(n)	-z dX(z)/dz	R
x(-n)	X(z ⁻¹)	1/R
x*(n)	X*(z*)	R
$x_1(n)x_2(n)$	$\frac{1}{2\pi j} \oint_C X_1(v) X_2\left(\frac{z}{v}\right) v^{-1} dv$	$R_1 \cap R_2$
x(n) nhân quả	$x(0)=\lim X(z \rightarrow \infty)$	
$x_1(n)^*x_2(n)$	$X_1(z)X_2(z)$	Chứa R ₁ ∩ R ₂

BIẾN ĐỔI Z MỘT SỐ DÃY THÔNG DỤNG

x(n)	X(z)	ROC
δ(n)	1	∀z
u(n)	1	/z/ >1
-u(-n-1)	$1-z^{-1}$	/z/ <1
a ⁿ u(n)	1	/z/ > /a/
-a ⁿ u(-n-1)	$\overline{1-az^{-1}}$	/z/ < /a/
na ⁿ u(n)	az^{-1}	/z/ > /a/
-na ⁿ u(-n-1)	$\overline{(1-az^{-1})^2}$	/z/ < /a/
$cos(\omega_o n)u(n)$	$(1-z^{-1}\cos\omega_{o})/(1-2z^{-1}\cos\omega_{o}+z^{-2})$	/z/ >1
$sin(\omega_o n)u(n)$	$(z^{-1}\sin\omega_{o})/(1-2z^{-1}\cos\omega_{o}+z^{-2})$	/z/ >1

3 BIẾN ĐỔI Z NGƯỢC

3.1 CÔNG THỰC BIẾN ĐỔI Z NGƯỢC

$$x(n) = \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz$$
 (*)

Với **C** - đường cong khép kín bao quanh gốc tọa độ trong mặt phẳng phức, nằm trong miền hội tụ của X(z), theo chiều (+) ngược chiều kim đồng hồ

- Trên thực tế, biểu thức (*) ít được sử dụng do tính chất phức tạp của phép lấy tích phân vòng
- Các phương pháp biến đổi Z ngược:
- Thặng dư
- Khai triển thành chuỗi luỹ thừa
- Phân tích thành tổng các phân thức tối giản

3.2 PHƯƠNG PHÁP THẶNG DƯ

a) Khái niệm thặng dư của 1 hàm tại điểm cực:

Thặng dư tại điểm cực Z_{ci} bội r của F(z) được định nghĩa:

Re
$$s[F(z)]_{Z=Z_{ci}} = \frac{1}{(r-1)!} \frac{d^{(r-1)}}{dz^{(r-1)}} [F(z)(z-z_{ci})^r]_{Z=Z_{ci}}$$

Thặng dư tại điểm cực đơn **Z_{ci} của F(z)** được định nghĩa:

Re
$$s[F(z)]_{Z=Z_{ci}} = [F(z)(z-z_{ci})]_{Z=Z_{ci}}$$

b<u>) Phương pháp</u>:

Theo lý thuyết thặng dư, biểu thức biến đổi Z ngược theo tích phân vòng (*) được xác định bằng tổng các thặng dư tại tất cả các điểm cực của hàm X(z)zⁿ⁻¹:

$$x(n) = \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz = \sum_i \text{Res} \left[X(z) z^{n-1} \right]_{Z=Z_{ci}}$$
 (*)

Trong đó:

- Z_{ci} các điểm cực của X(z)zⁿ⁻¹ nằm trong đường cong C
- Res[X(z)zⁿ⁻¹]_{z=zci} thặng dư của X(z)zⁿ⁻¹ tại điểm cực z_{ci}
- Tổng cộng các thặng dư tại tất cả các điểm cực, ta được x(n)

Ví dụ: Tìm biến đổi Z ngược của:

Giải:
$$X(z) = \frac{z}{(z-2)}$$

Thay X(z) vào (*), ta được

$$|x(n) = \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz = \frac{1}{2\pi j} \oint_C \frac{z}{(z-2)} z^{n-1} dz = \sum_{i=1}^n \operatorname{Re} \left[\frac{z^n}{(z-2)} \right]$$

Chọn C là đường cong khép kín nằm bên ngoài vòng tròn có bán kính là 2

• n≥0:
$$X(z)z^{n-1} = \frac{z^n}{(z-2)}$$
 có 1 điểm cực đơn $Z_{c1}=2$

Thặng dư tại $Z_{c1}=2$:

$$\operatorname{Res}\left[\frac{z^{n}}{(z-2)}\right]_{z=2} = \left[\frac{z^{n}}{(z-2)}(z-2)\right]_{z=2} = 2^{n}$$

•
$$X(z)z^{n-1} = \frac{1}{(z-2)z^{-n}} = \frac{1}{(z-2)z^m}$$
 $Z_{c1} = 2 \text{ down},$ $Z_{c2} = 0 \text{ bội m}$

$$Z_{c1}$$
=2 đơn,
 Z_{c2} =0 bội m

Với:
$$Z_{c1}=2$$
 $\left[\text{Res} \left[\frac{1}{(z-2)z^m} \right]_{z=2} = \left[\frac{1}{(z-2)z^m} (z-2) \right]_{z=2} = \frac{1}{2^m}$

Với: Z_{c2}=0 bội m:

$$\operatorname{Res}\left[\frac{1}{(z-2)z^{m}}\right]_{z=0} = \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} \left[\frac{1}{(z-2)z^{m}} z^{m}\right]_{z=0}$$

$$= \frac{1}{(m-1)!} \left[\frac{(m-1)!(-1)^{m-1}}{(-2)^m} \right] = -\frac{1}{2^m}$$

Vậy, với **n<0**:
$$\sum \text{Res} \left[\frac{z^n}{(z-2)} \right] = \frac{1}{2^m} - \frac{1}{2^m} = 0$$

suy ra $x(n) = 2^n : n \ge 0$ hay $x(n) = 2^n u(n)$

3.3 PHƯƠNG PHÁP KHAI TRIỂN THÀNH CHUỗI LUỸ THỪA

Giả thiết **X(z)** có thể khai triển:

$$X(z) = \sum_{n = -\infty}^{\infty} a_n z^{-n} \tag{*}$$

Theo định nghĩa biến đổi Z

$$X(z) = \sum_{n = -\infty}^{\infty} x(n) z^{-n}$$
 (**)

Đồng nhất (*) & (**), rút ra:

$$x(n) = a_n$$

Ví dụ: Tìm x(n) biết:

$$X(z) = (z^2 + 1)(1 - 2z^{-1} + 3z^{-2})$$

Giải:

$$|ROC:0<|z|<\infty$$

Khai triển X(z) ta được:

$$X(z) = z^{2} - 2z + 4 - 2z^{-1} + 3z^{-2} = \sum_{n=-2}^{2} x(n)z^{-n}$$

Suy ra:
$$x(n) = \{1, -2, 4, -2, 3\}$$

Ví dụ: Tìm x(n) biết:

$$|X(z)| = \frac{1}{1 - 2z^{-1}} : |z| > 2$$

Giải:

Do ROC của X(z) là **/z/>2**, nên **x(n)** sẽ là dãy nhân quả và sẽ được khai triển thành chuỗi có dạng:

$$X(z) = \sum_{n=0}^{\infty} a_n z^{-n} = a_0 + a_1 z^{-1} + a_2 z^{-2} + \cdots$$
 (*)

Để có dạng (*), thực hiện phép chia đa thức dưới đây:

$$\begin{array}{c|c}
1 & 1-2z^{-1} \\
\hline
1-2z^{-1} & 1+2z^{-1}+2^{2}z^{-2}+\cdots \\
\hline
2z^{-1} & \Rightarrow X(z) = \sum_{n=0}^{\infty} 2^{n}z^{-n} \\
\hline
2z^{-1}-2^{2}z^{-2} & \Rightarrow x(n) = 2^{n}: n \ge 0 \equiv 2^{n}u(n)
\end{array}$$

Ví dụ: Tìm x(n) biết:

$$|X(z)| = \frac{1}{1 - 2z^{-1}} : |z| < 2$$

Giải:

Do ROC của X(z) là **/z/<2**, nên **x(n)** sẽ là dãy phản nhân quả và sẽ được khai triển thành chuỗi có dạng:

$$X(z) = \sum_{n=-1}^{-\infty} a_n z^{-n} = a_{-1} z^1 + a_{-2} z^2 + a_{-3} z^3 + \cdots$$
 (**)

Để có dạng (**), thực hiện phép chia đa thức dưới đây:

3.4 PHƯƠNG PHÁP PHÂN TÍCH THÀNH TổNG CÁC PHÂN THỰC TỐI GIẢN

Xét X(z) là phân thức hữu tỉ có dạng:

$$X(z) = \frac{D(z)}{B(z)} = \frac{d_K z^K + d_{K-1} z^{K-1} + \dots + d_1 z + d_0}{b_N z^N + b_{N-1} z^{N-1} + \dots + b_1 z + b_0}$$
 với: $K, N > 0$

Nếu K>N, thực hiện phép chia đa thức, ta được:

$$X(z) = \frac{D(z)}{B(z)} = C(z) + \frac{A(z)}{B(z)} = C(z) + \frac{a_M z^M + a_{M-1} z^{M-1} \dots + a_1 z + a_0}{b_N z^N + b_{N-1} z^{N-1} + \dots + b_1 z + b_0}$$

Ta được C(z) là đa thức và phân thức A(z)/B(z) có bậc M≤N

Nếu K≤N, thì X(z) có dạng giống phân thức A(z)/B(z)

Việc lấy biến đổi Z ngược đa thức C(z) là đơn giản, vấn đề phức tạp là tìm biến đổi Z ngược A(z)/B(z) có bậc M⊴N

Xét X(z)/z là phân thức hữu tỉ có bậc W≤N:

$$\frac{X(z)}{z} = \frac{A(z)}{B(z)} = \frac{a_M z^M + a_{M-1} z^{M-1} \dots + a_1 z + a_0}{b_N z^N + b_{N-1} z^{N-1} + \dots + b_1 z + b_0}$$

Xét đến các điểm cực của **X(z)/z**, hay nghiệm của B(z) là **đơn, bội và phức liên hiệp**

Xét X(z)/z có các điểm cực đơn: Z_{e1}, Z_{e2}, Z_{e3},.... Z_{eN},

$$\frac{X(z)}{z} = \frac{A(z)}{B(z)} = \frac{A(z)}{b_N(z - z_{c1})(z - z_{c2}) \cdots (z - z_{cN})}$$

Theo lý thuyết hàm hữu tỉ, X(z)/z phân tích thành:

$$\frac{X(z)}{z} = \frac{A(z)}{B(z)} = \frac{K_1}{(z - z_{c1})} + \frac{K_2}{(z - z_{c2})} + \dots + \frac{K_N}{(z - z_{cN})} = \sum_{i=1}^{N} \frac{K_i}{(z - z_{ci})}$$

Với hệ số K xác định bởi:

$$K_i = \frac{X(z)}{z}(z - z_{ci})\Big|_{Z=Z_{ci}}$$
 hay $K_i = \frac{A(z)}{B'(z)}\Big|_{Z=Z_{ci}}$

Suy ra X(z) có biểu thức:

$$X(z) = \frac{K_1}{(1 - z_{c1}z^{-1})} + \frac{K_2}{(1 - z_{c2}z^{-1})} + \dots + \frac{K_N}{(1 - z_{cN}z^{-1})} = \sum_{i=1}^{N} \frac{K_i}{(1 - z_{ci}z^{-1})}$$

Xét:
$$X_i(z) = \frac{K_i}{(1 - z_{ci}z^{-1})}$$

Nếu ROC:
$$|z| > |z_{ci}|$$
 $\Rightarrow x_i(n) = K_i(z_{ci})^n u(n)$

• Nếu ROC:
$$|\mathbf{z}| < |\mathbf{z}_{ci}|$$
 $\Rightarrow x_i(n) = -K_i(z_{ci})^n u(-n-1)$

• Vậy:
$$x(n) = \sum_{i=1}^{N} x_i(n)$$

$$X(z) = \frac{2z^2 - 5z}{z^2 - 5z + 6}$$

với các miền hội tụ: a) /z/>3, b) /z/<2, c) 2</z/>/Ciải:

$$\frac{X(z)}{z} = \frac{2z-5}{z^2-5z+6} = \frac{2z-5}{(z-2)(z-3)} = \frac{K_1}{(z-2)} + \frac{K_2}{(z-3)}$$

Với các hệ số được tính bởi:

$$K_1 = \frac{X(z)}{z}(z-2)\Big|_{z=2} = \frac{2z-5}{(z-3)}\Big|_{z=2} = 1$$

$$K_2 = \frac{X(z)}{z}(z-3)\Big|_{z=3} = \frac{2z-5}{(z-2)}\Big|_{z=3} = 1$$

$$\frac{X(z)}{z} = \frac{1}{(z-2)} + \frac{1}{(z-3)} \Rightarrow X(z) = \frac{1}{(1-2z^{-1})} + \frac{1}{(1-3z^{-1})}$$

$$X(z) = \frac{1}{(1-2z^{-1})} + \frac{1}{(1-3z^{-1})}$$

Với các miền hội tụ:

a)
$$|z| > 3$$
: $x(n) = 2^n u(n) + 3^n u(n)$

b)
$$/z/ < 2$$
: $x(n) = -2^n u(-n-1) - 3^n u(-n-1)$

c)
$$2 < z < 3$$
: $x(n) = 2^n u(n) - 3^n u(-n-1)$

b) Xét X(z)/z có điểm cực Z_{c1} bội r và các điểm cực đơn: $Z_{c(r+1)},\ldots,Z_{cN}$

$$\frac{X(z)}{z} = \frac{A(z)}{B(z)} = \frac{A(z)}{b_N(z - z_{c1})^r (z - z_{c(r+1)}) \cdots (z - z_{cN})}$$

Theo lý thuyết hàm hữu tỉ, X(z)/z phân tích thành:

$$\frac{X(z)}{z} = \frac{K_1}{(z - z_{c1})} + \frac{K_2}{(z - z_{c1})^2} + \dots + \frac{K_r}{(z - z_{c1})^r} + \dots$$

$$+\frac{K_{r+1}}{(z-z_{c(r+1)})}+\cdots+\frac{K_{N}}{(z-z_{cN})}=\sum_{i=1}^{r}\frac{K_{i}}{(z-z_{1})^{i}}+\sum_{l=r+1}^{N}\frac{K_{l}}{(z-z_{cl})}$$

Với hệ số K xác định bởi:

$$K_{i} = \frac{1}{(r-i)!} \frac{d^{(r-i)}}{dz^{(r-i)}} \left[\frac{X(z)}{z} (z - z_{c1})^{r} \right]_{z=z_{c1}} \qquad K_{l} = \frac{X(z)}{z} (z - z_{cl}) \Big|_{z=z_{cl}}$$

$$K_{l} = \frac{X(z)}{z} (z - z_{cl}) \bigg|_{z = Z_{cl}}$$

Với giả thiết ROC của X(z): $|z| > max{ <math>|z_{ci}| }$: $i=1 \div N$, biến đổi Z ngược của thành phần K/(z z) sẽ là:

$$\frac{z}{(z-a)^{i}} \longleftrightarrow \frac{n(n-1)...(n-i+2)a^{n-i+1}}{(i-1)!}u(n)$$

Vậy ta có biểu thức biến đổi Z ngược là:

$$x(n) = \sum_{i=1}^{r} K_i \frac{n(n-1)...(n-i+2)a^{n-i+1}}{(i-1)!} u(n) + \sum_{l=r+1}^{N} K_l (z_{cl})^n u(n)$$

Ví dụ: Tìm x(n) biết:

$$X(z) = \frac{2z^3 - 5z^2 + 4z}{(z - 2)^2(z - 1)} ROC: |z| > 2$$

Giải:

$$\frac{X(z)}{z} = \frac{2z^2 - 5z + 4}{(z - 2)^2(z - 1)} = \frac{K_1}{(z - 2)} + \frac{K_2}{(z - 2)^2} + \frac{K_3}{(z - 1)}$$

Với các hệ số được tính bởi:

$$K_{1} = \frac{1}{(2-1)!} \frac{d^{(2-1)}}{dz^{(2-1)}} \left[\frac{X(z)}{z} (z-2)^{2} \right]_{z=2} = \frac{d}{dz} \left[\frac{2z^{2} - 5z + 4}{(z-1)} \right]_{z=2} = 1$$

$$K_{2} = \frac{1}{(2-2)!} \frac{d^{(2-2)}}{dz^{(2-2)}} \left[\frac{X(z)}{z} (z-2)^{2} \right]_{z=2} = \frac{2z^{2} - 5z + 4}{(z-1)} \bigg|_{z=2} = 2$$

$$K_3 = \frac{X(z)}{z}(z-1)\Big|_{z=1} = \frac{2z^2 - 5z + 4}{(z-2)^2}\Big|_{z=1} = 1$$

Vậy **X(z)/z** có biểu thức là:

$$\frac{X(z)}{z} = \frac{1}{(z-2)} + \frac{2}{(z-2)^2} + \frac{1}{(z-1)}$$

$$\Rightarrow X(z) = \frac{1}{(1 - 2z^{-1})} + \frac{2z^{-1}}{(1 - 2z^{-1})^2} + \frac{1}{(1 - z^{-1})}$$

|ROC:|z|>2

$$\Rightarrow x(n) = 2^n u(n) + n2^n u(n) + u(n)$$

c) Xét X(z)/z có cặp điểm cực Z_{c1} và Z*_{c1} phức liên hiệp, các điểm cực còn lại đơn: Z_{c3},...,Z_{cN},

$$\frac{X(z)}{z} = \frac{A(z)}{B(z)} = \frac{A(z)}{b_N(z - z_{c1})(z - z_{c1}^*)(z - z_{c3})\cdots(z - z_{cN})}$$

X(z)/z được phân tích thành:

$$\frac{X(z)}{z} = \frac{K_1}{(z - z_{c1})} + \frac{K_2}{(z - z_{c1})} + \frac{K_3}{(z - z_{c3})} + \dots + \frac{K_N}{(z - z_{cN})}$$

$$\frac{X(z)}{z} = \frac{K_1}{(z - z_{c1})} + \frac{K_2}{(z - z_{c1})} + \sum_{i=3}^{N} \frac{K_i}{(z - z_{ci})}$$

Với các hệ số K, K được tính giống điểm cực đơn:

$$K_{i} = \frac{X(z)}{z}(z-z_{ci})\Big|_{z=z_{ci}} : i=1 \div N$$

Do các hệ số **A(z), B(z)** là thực, nên K,=K,

Xét:
$$\frac{\mathbf{X}_{1}(\mathbf{z})}{\mathbf{z}} = \frac{\mathbf{K}_{1}}{(\mathbf{z} - \mathbf{z}_{c1})} + \frac{\mathbf{K}_{1}^{*}}{(\mathbf{z} - \mathbf{z}_{c1}^{*})}$$

$$\Rightarrow \mathbf{X}_{1}(\mathbf{z}) = \frac{\mathbf{K}_{1}}{(1 - \mathbf{z}_{c1}\mathbf{z}^{-1})} + \frac{\mathbf{K}_{1}^{*}}{(1 - \mathbf{z}_{c1}^{*}\mathbf{z}^{-1})} \quad \text{N\'eu gọi:} \quad \frac{K_{1} = |K_{1}|e^{j\beta}}{z_{c1} = |z_{c1}|e^{j\alpha}}$$

Và giả thiết ROC: /z/>max{/z_{ci}/}:

$$\Rightarrow x_1(n) = \left[K_1(z_{c1})^n + K_1^* (z_{c1}^*)^n \right] \mu(n)$$

$$=2|K_1||z_{c1}|^n\cos(n\alpha+\beta)u(n)$$

Vậy:
$$x(n) = \left\{ 2|K_1||z_{c1}|^n \cos(n\alpha + \beta) + \sum_{i=3}^N K_i(z_{ci})^n \right\} u(n)$$

Ví dụ: Tìm x(n) biết:

$$X(z) = \frac{-z}{(z^2 - 2z + 2)(z - 1)} : |z| > \sqrt{2}$$

Giải:

$$\frac{X(z)}{z} = \frac{-1}{(z^2 - 2z + 2)(z - 1)} = \frac{-1}{[z - (1+j)][z - (1-j)](z - 1)}$$

$$= \frac{K_1}{[z - (1+j)]} + \frac{K_1^*}{[z - (1-j)]} + \frac{K_3}{(z-1)}$$

$$|K_1 = \frac{-1}{[z - (1 - j)](z - 1)}|_{z = 1 + j} = \frac{1}{2} |K_3 = \frac{-1}{(z^2 - 2z + 2)}|_{z = 1} = -1$$

$$\Rightarrow X(z) = \frac{1/2}{\left[1 - (1+j)z^{-1}\right]} + \frac{1/2}{\left[1 - (1-j)z^{-1}\right]} + \frac{-1}{(1-z^{-1})} \qquad |z| > \sqrt{2}$$

$$\Rightarrow x(n) = (\sqrt{2})^n \cos(n\frac{\pi}{4})u(n) - u(n)$$

4 HÀM TRUYỀN CỦA HỆ THỐNG LTI

4.1 Định nghĩa hàm truyền

Miền n:
$$x(n) \longrightarrow h(n) \longrightarrow y(n) = x(n) * h(n)$$

Miền Z: $X(z) \longrightarrow H(z) \longrightarrow Y(z) = X(z) H(z)$
 $h(n) \longrightarrow Z \longrightarrow H(z) : gọi là hàm truyền $H(z) = Y(z) / X(z)$$

4.2 Hàm truyền được biểu diễn theo các hệ số của lọc

$$\sum_{k=0}^{N} a_k y(n-k) = \sum_{r=0}^{M} b_k x(n-r)$$

$$= \sum_{k=0}^{N} a_k z^{-k} = X(z) \sum_{r=0}^{M} b_k z^{-r}$$

$$\Rightarrow H(z) = \frac{Y(z)}{X(z)} = \sum_{r=0}^{M} \mathbf{b}_r \mathbf{z}^{-r} / \sum_{k=0}^{N} \mathbf{a}_k \mathbf{z}^{-k}$$

Ví dụ: Tìm H(z) và h(n) của hệ thống nhân quả cho bởi: y(n) - 5y(n-1) + 6y(n-2) = 2x(n) - 5x(n-1)

Lấy biến đổi Z hai vế PTSP và áp dụng tính chất dịch theo t/g:

$$Y(z) \left[1 - 5z^{-1} + 6z^{-2} \right] = X(z) \left[2 - 5z^{-1} \right]$$

$$\Rightarrow H(z) = \frac{Y(z)}{X(z)} = \frac{2 - 5z^{-1}}{1 - 5z^{-1} + 6z^{-2}} = \frac{2z^2 - 5z}{z^2 - 5z + 6}$$

$$\frac{H(z)}{z} = \frac{2z-5}{(z-2)(z-3)} = \frac{K_1}{(z-2)} + \frac{K_2}{(z-3)}$$

$$K_1 = \frac{2z-5}{(z-3)} \Big|_{z=2} = 1$$
 $K_2 = \frac{2z-5}{(z-2)} \Big|_{z=3} = 1$

$$\Rightarrow H(z) = \frac{1}{(1 - 2z^{-1})} + \frac{1}{(1 - 3z^{-1})}$$

Do hệ thống nhân quả nên: $h(n) = (2^n + 3^n) u(n)$

4.3 Hàm truyền của các hệ thống ghép nối

a. Ghép nối tiếp

■ Miền n:
$$x(n) \longrightarrow h_1(n) \longrightarrow h_2(n) \longrightarrow y(n)$$

$$x(n) \longrightarrow h(n) = h_1(n) * h_2(n) \longrightarrow y(n)$$

Theo tính chất tổng chập: $h_1(n)*h_2(n) \stackrel{Z}{\longleftrightarrow} H_1(z)H_2(z)$

■ Miền Z:
$$X(z) \longrightarrow H_1(z) \longrightarrow H_2(z) \longrightarrow Y(z)$$

$$\parallel X(z) \longrightarrow H(z) = H_1(z)H_2(z) \longrightarrow Y(z)$$

4.3 Hàm truyền của các hệ thống ghép nối (tt)

4.4 Tính nhân quả và ổn định của hệ LTI rời rạc

- a. Tính nhân quả
- Miền n: Hệ thống LTI là nhân quả ⇔ h(n) = 0 : n<0</p>
- Miền Z: $H(z) = \frac{A(z)}{b_N(z z_{c1})(z z_{c2}) \cdots (z z_{cN})}$

Do h(n) là tín hiệu nhân quả, nên miền hội tụ H(z) sẽ là:

$$|z| > |z_c|^{\max} = \max\{|z_{c1}|, |z_{c2}|, \dots, |z_{cN}|\}$$

Hệ thống LTI là nhân quả

ROC của H(z) là:

$$|z| > |z_c|^{\max} = \max\{|z_{c1}|, |z_{c2}|, \dots, |z_{cN}|\}$$

4.4 Tính nhân quả và ôn định của hệ LTI rời rạc (tt)

- b. Tính ôn định
- Miền n: Hệ thống LTI là ổn định $\iff \sum |h(n)| < \infty$ (*)

$$\Longrightarrow \sum_{n=-\infty}^{\infty} |h(n)| < \infty$$

Miền Z:

$$\left|H(z)\right| = \left|\sum_{n=-\infty}^{\infty} h(n)z^{-n}\right| \leq \left|\sum_{n=-\infty}^{\infty} h(n)z^{-n}\right| = \left|\sum_{n=-\infty}^{\infty} h(n)\right| |z^{-n}|$$

$$\left|\Rightarrow \left|H(z)\right| \le \left|\sum_{n=-\infty}^{\infty} h(n)\right| : \text{khi } \left|z\right| = 1$$

Theo đ/k ổn định (*), nhận thấy **H(z)** cũng sẽ hội tụ với /z/=1

Hệ thống LTI là ổn đinh

ROC của H(z) có chứa /z/=1

c. Tính nhân quả và ổn định

Hệ thống LTI là nhân quả

ROC của H(z) là:

$$|z| > |z_c|^{\max} = \max\{|z_{c1}|, |z_{c2}|, \dots, |z_{cN}|\}$$

Hệ thống LTI là ổn định

ROC của H(z) có chứa /z/=1

Hệ thống LTI là nhân quả và ổn định

ROC của H(z) là:

$$|z| > |z_c|^{\max}$$
 và $|z_c|^{\max} < 1$

Ví dụ: Tìm h(n) của hệ thống, biết:

- a. Để hệ thống là nhân quả
- b. Để hệ thống là ổn định
- c. Để hệ thống là nhân quả và ổn định

Giải:

$$\frac{H(z)}{z} = \frac{4z - 5}{2(z - 1/2)(z - 2)} = \frac{K_1}{(z - 1/2)} + \frac{K_2}{(z - 2)} = \frac{1}{(z - 1/2)} + \frac{1}{(z - 2)}$$

 $H(z) = \frac{4z^2 - 5z}{2z^2 - 5z + 2}$

$$\Rightarrow H(z) = \frac{1}{\left[1 - (1/2)z^{-1}\right]} + \frac{1}{(1 - 2z^{-1})}$$

- a. Hệ thống nhân quả (/z/>2): $h(n)=[(1/2)^n + 2^n] u(n)$
- b. Hệ thống ổn định (1/2</z/<2): h(n)=(1/2)ⁿ u(n) 2ⁿ u(-n-
- c. Hệ thống nhân quả và ổn định:
 ROC: /z/>2 không thể chứa /z/=1 ⇒ không tồn tại h(n)

5 GIẢI PTSP DÙNG BIẾN ĐỔI Z 1 PHÍA

$$y(n-1) = \sum_{n=0}^{\infty} y(n-1)z^{-n} = y(-1) + y(0)z^{-1} + y(1)z^{-2} + \cdots$$

$$= y(-1) + z^{-1} [y(0) + y(1)z^{-1} + \cdots]$$

$$= y(-1) + z^{-1}Y(z)$$

$$y(n-2) = \sum_{n=0}^{\infty} y(n-2)z^{-n} = y(-2) + y(-1)z^{-1} + y(0)z^{-2} + \cdots$$

$$y(n-2) = \sum_{n=0}^{\infty} y(n-2)z^{-n} = y(-2) + y(-1)z^{-1} + y(0)z^{-2} + \cdots$$

$$= y(-2) + y(-1)z^{-1} + z^{-2} \left[y(0) + y(1)z^{-1} + \cdots \right]$$

$$= y(-2) + y(-1)z^{-1} + z^{-2}Y(z)$$

Tổng quát, biến đổi Z 1 phía của y(n-k):

$$y(n-k) = \frac{Z}{1 \text{ phía}} \quad z^{-k}Y(z) + \sum_{r=1}^{k} y(-r)z^{r-k}$$

Ví dụ: Hãy giải PTSP dùng biến đổi Z 1 phía

$$y(n) - 3y(n-1) +2 y(n-2) = x(n) : n \ge 0$$

biết: $x(n)=3^{n-2}u(n)$ và y(-1)=-1/3; y(-2)=-4/9

Giải:

Lấy biến đổi Z 1 phía hai vế PTSP:

$$Y(z) - 3[y(-1)+z^{-1}Y(z)] + 2[y(-2)+y(-1)z^{-1}+z^{-2}Y(z)] = X(z)$$
 (*)

Thay y(-1)=-1/3; y(-2)=-4/9 và $X(z)=3^{-2}/(1-3z^{-1})$ vào (*), rút ra:

$$\frac{Y(z)}{z} = \frac{1}{(z-1)(z-3)} = -\frac{1}{2} \cdot \frac{1}{(z-1)} + \frac{1}{2} \cdot \frac{1}{(z-3)}$$

$$\Rightarrow Y(z) = -\frac{1}{2} \cdot \frac{1}{(1-z^{-1})} + \frac{1}{2} \cdot \frac{1}{(1-3z^{-1})}$$

$$\Rightarrow y(n) = \frac{1}{2} \left[3^n - 1 \right] u(n)$$