Lecture 16: Statistical Power

16. 1 Fundamentals and Factors Affecting Power of a Statistical Test

- **Power** $(1-\beta)$: The probability of correctly rejecting a false null hypothesis

- It is desirable to have a small alpha (few Type I errors) and large power (few Type II errors), but usually is a trade-off
- Power is affected by:
 - alpha (α)
 - the true H_1 (distance between μ_0 and μ_1)
 - the chances of finding a difference between μ_0 and μ_1 depend on how large the difference actually is
 - sample size and variability
 - the variance of the sampling distribution of the mean decreases as n increases and σ^2 decreases

$$\sigma_N = \frac{\sigma}{\sqrt{n}}$$

- it results in less variability without affecting the means
- *n* is the most controllable factor
- type of test (i.e., 1-tailed test vs. 2-tailed test)

• 16. 2 Effect Size

- Power depends on the overlap between the sampling distributions of H_0 and H_1
- This overlap is a function of the differences between $\mu_0 \mu_1$ and the standard error (variability)
- One possible way to express the certainty of H_0 being false would be the distance $\mu_0 \mu_1$ expressed in terms of standard errors
 - But this distance requires computing n (in the standard error), which is precisely a factor to be estimated when computing power
- An alternative way to compute the distance is **d** (effect size)

$$\boldsymbol{d} = \frac{\mu_1 - \mu_0}{\sigma}$$

where σ is the standard deviation of the parent population (thus, n is not required)

- Estimating **d**

- Prior research: guess values for $\mu_0-\mu_1$ and σ from sample means and variances in other studies
- Desired differences: specific $\mu_0 \mu_1$ determined by the researcher; estimate σ from other data (e.g., norming studies)
- Convention: Cohen's effect sizes

Effect size	d	% Overlap
Small	.20	85
Medium	.50	67
Large	.80	53

- Estimating δ (delta): to combine the effect size with n

$$\delta = \mathbf{d}[f(n)]$$

where [f(n)] is defined by the specific test, but δ is comparable across various tests

• 16. 3 Calculating Power for the One-Sample t

- The most basic test; $[f(n)] = \sqrt{n}$

$$\delta = \mathbf{d}\sqrt{n}$$

where δ can now be determined by power tables

- *Example*: test the hypothesis of a precise difference (e.g., 5 points) between the mean IQ in the general population and the mean IQ in a specific population (e.g., clinically depressed) with a random sample of 25 individuals

$$\mu_0 = 100$$
, $\mu_1 = 105$, $\sigma = 15$, $n = 25$

$$\mathbf{d} = \frac{\mu_1 - \mu_0}{\sigma} = \frac{105 - 100}{15} = 0.33$$

$$\delta = \mathbf{d}\sqrt{n} = 0.33\sqrt{25} = 1.65$$

Using $\alpha = .05$ and a two-tailed test, power $\approx .38$ (.38 probability of detecting *true* differences...or .62 probability of making a Type II error)

- How can power be increased?
 - Increase alpha
 - Increase n, by how much? It depends on the power desired. For example, power = .80

If power = .80 and
$$\alpha$$
 = .05, δ = 2.80, thus

$$\delta = \mathbf{d}\sqrt{n}$$
; $n = \left(\frac{\delta}{\mathbf{d}}\right)^2 = \left(\frac{2.80}{0.33}\right)^2 = 71.91$, or 72 individuals

• 16. 4 Calculating Power for Differences Between Two Independent Means

- Assuming $\sigma^2_1 = \sigma^2_2 = \sigma^2$, under H_0 , $\mu_1 - \mu_2 = 0$, so the difference to be expected under H_1 is

$$\boldsymbol{d} = \frac{(\mu_1 - \mu_2) - (\mu_1 - \mu_2)}{\sigma} = \frac{(\mu_1 - \mu_2) - (0)}{\sigma} = \frac{\mu_1 - \mu_2}{\sigma}$$

- If
$$n_1 = n_2 = n$$
, then $\delta = \mathbf{d}\sqrt{\frac{n}{2}}$

where n is the number of cases in any one sample

- If $n_1 \neq n_2$, when n_1 and n_2 are reasonably large and nearly equal, choosing the smallest n gives a conservative approximation
- If $n_1 \neq n_2$, when n_1 and n_2 are not reasonably large and not nearly equal, the harmonic mean of the sample sizes is used

$$\overline{n}_h = \frac{2}{\frac{1}{n_1} + \frac{1}{n_2}} = \frac{2n_1n_2}{n_1 + n_1}$$

- *Example*: given two samples with $\overline{X}_1 = 9.58$ and $\overline{X}_2 = 6.55$, with $n_1 = 18$ and $n_2 = 12$, and a pooled standard deviation s = 3.10

$$\mathbf{d} = \frac{\mu_1 - \mu_2}{\sigma} = \frac{9.58 - 6.55}{3.10} = 0.98$$

$$\overline{n}_h = \frac{2n_1n_2}{n_1 + n_2} = \frac{2(18)(12)}{18 + 12} = \frac{432}{30} = 14.40$$

$$\delta = \mathbf{d}\sqrt{\frac{\overline{n}_h}{2}} = 0.98\sqrt{\frac{14.4}{2}} = 0.98\sqrt{7.2} = 2.63$$

For δ = 2.63 and α = .05 (two-tailed), power = 0.75

16. 5 Calculating Power for Differences Between Two Dependent Samples

- For differences between two matched samples, an additional parameter is needed

$$\mathbf{d} = \frac{\mu_1 - \mu_2}{\sigma_{x_1 - x_2}}$$

where σ_{x1-x2} is the standard deviation of the difference scores from the two populations, which is typically unknown

- Making a few assumptions, σ_{x1-x2} can be calculated. Based on the variance sum law

$$\sigma^2_{x_1 \pm x_2} = \sigma^2_{x_1} + \sigma^2_{x_2} \pm 2\rho\sigma_{x_1}\sigma_{x_2}$$

- If we assume homogeneity of variance $\sigma^2_{x_1} = \sigma^2_{x_2} = \sigma^2$

$$\sigma^2_{x_1 - x_2} = 2\sigma^2 - 2\rho\sigma^2 = 2\sigma^2(1 - \rho) = \sigma\sqrt{2(1 - \rho)}$$

where ρ is the correlation in the population between X_1 and X_2 (it is typically positive for all dependent samples, e.g., two siblings, mother-child)

$$\mathbf{d} = \frac{\mu_1 - \mu_2}{\sigma_{x_1 - x_2}} \text{ and } \delta = \mathbf{d}\sqrt{n}$$

- Power is positively related to ρ
- When $\rho = 0$, the problem is reduced to independent samples
 - Sample sizes required for power = .80 and α = .05

Effect size	d	One-Sample t	Two-Sample t
Small	.20	196	784
Medium	.50	32	126
Large	.80	13	49

• 16. 6 Calculating Power for Analysis of Variance

- It is a straightforward extension of the power analysis for t, but with different notation

$$\frac{E(MS_{treat})}{E(MS_{error})} = \frac{\sigma_e^2 + \frac{n\sum(\mu_j - \mu)^2}{k - 1}}{\sigma_e^2} = \frac{\sigma_e^2 + \frac{n\sum\tau^2_j}{k - 1}}{\sigma_e^2}$$

- If H_0 is true, $\sum \tau^2{}_j = 0$ and $F = \frac{MS_{treat}}{MS_{error}}$ is distributed as the usual (central) F distribution
 - The mean of this *F* distribution under H_0 , $E(F) = \frac{df_{error}}{df_{error} 2}$, is close to 1 for large *n*

- If
$$H_0$$
 is false, $E(F) = \left(1 + \frac{n\sum_{j} \tau^2_{j}}{\sigma_e^2(k-1)}\right) \left(\frac{df_{error}}{df_{error} - 2}\right)$

where $\frac{n\sum_{\sigma_e^2}(k-1)}{\sigma_e^2(k-1)}$ is called a noncentrality parameter (*ncP*) and it displaces the *F*

distribution up the scale away from 1 (as a function of the true differences among the population means)

- One way to obtain a standardized measure of effect size in the ANOVA context is

$$\phi' = \frac{\sigma_{\tau}}{\sigma_{e}} = \sqrt{\frac{\sum (\mu_{j} - \mu)^{2}}{\frac{k}{\sigma_{e}^{2}}}}$$

where ϕ ' is the equivalent to Cohen's measure of effect size (equal to **d** for k = 2), σ_{τ} is the standard deviation of group means, and k is the number of groups

- In order to incorporate sample size

 $\phi = \phi' \sqrt{n}$ and can be determined by the tables of the noncentral *F* distribution, given α , and df_s

- **Example**: Let $\overline{X}_1 = 34.00$, $\overline{X}_2 = 50.80$, $\overline{X}_3 = 60.33$, $\overline{X}_4 = 48.50$, and $\overline{X}_5 = 38.10$ be five sample means of n = 10, with $\overline{X}_{..} = 46.346$ and $\sigma_e^2 = 240.35$ (MS_{error} , or average sample variance)
- Under a false H_0

$$E(F) = \left(1 + \frac{n\sum_{j} \tau^{2}_{j}}{\sigma_{e}^{2}(k-1)}\right) \left(\frac{df_{error}}{df_{error} - 2}\right)$$

$$E(F) = \left(1 + \frac{10[(34 - 46.35)^2 + ... + (38.10 - 46.35)^2]}{(240.35)(5 - 1)}\right)\left(\frac{45}{45 - 2}\right) = (1 + 4.58)(1.046) = 5.838$$

E(F) exceeds the critical value for $F_{4.45} = 2.58$

$$\phi' = \frac{\sigma_{\tau}}{\sigma_{e}} = \sqrt{\frac{\sum (\mu_{j} - \mu)^{2}}{\frac{k}{\sigma_{e}^{2}}}} = \sqrt{\frac{\left[(34 - 46.35)^{2} + ... + (38.10 - 46.35)^{2}\right]}{240.35}} = \sqrt{\frac{88.0901}{240.35}} = 0.6054$$

$$\phi = \phi' \sqrt{n} = 0.6054 \sqrt{10} = 1.91$$

- For $\phi = 1.91$, $df_t = 4$, and $df_e = 45$, power can be determined by the tables of the noncentral F distribution, once we interpolate (or round off to the nearest value)
 - For $\phi = 1.8$, $df_t = 4$, $df_e = 30$, and $\alpha = .05$, $F_{4,30,1.8} = .14$ (this is β)
 - Power = (1β) = .86, probability of detecting *true* differences among the means
- If we wanted to calculate the required sample sizes for a power = .80
 - If power = .80, β = .20; we need to find the corresponding value of ϕ = ?
 - For $df_t = 4$, $df_e = 30$, $\alpha = .05$, and $\beta = .20$, $\phi \approx 1.68$
 - Given $\phi = \phi' \sqrt{n}$, then $n = \frac{\phi^2}{\phi'^2} = \frac{(1.68)^2}{(.6054)^2} = 7.70$
 - We would need ≈ 8 subjects per group to have an 80% chance of rejecting H_0 if it is false

• 16.7 Calculating Power for Factorial ANOVA

- It is a straightforward extension of the power analysis for ANOVA

$$\phi_{\alpha}' = \sqrt{\frac{\sum (\mu_j - \mu)^2}{\dot{j}}} \text{ and } \phi_{\alpha} = \phi'_{\alpha} \sqrt{nk} \text{ , for power of effect A}$$

$$\phi_{\beta}' = \sqrt{\frac{\sum (\mu_k - \mu)^2}{k \over {\sigma_e}^2}} \text{ and } \phi_{\beta} = \phi'_{\beta} \sqrt{nj} \text{ , for power of effect B, and }$$

$$\phi_{\alpha\beta}' = \sqrt{\frac{\sum (\mu_{kj} - \mu)^2}{jk} \over {\sigma_e}^2} \text{ and } \phi_{\alpha\beta} = \phi'_{\alpha\beta} \sqrt{n} \text{ , for power of the interaction}$$

- **Power:** Probability a test rejects H_0 (depends on $\mu_1 \mu_2$)
 - H_0 True: Power = P(Type I error) = α
 - H_0 False: Power = 1-P(Type II error) = $1-\beta$
- So, once H_1 is specified, we can determine β (p of erroneously retaining H_0) and the probability of $1-\beta$ (p of correctly rejecting H_0).
- Example:
 - $-H_0$: $\mu = 138$
 - H_A : $\mu = 142$
 - It is assumed that the population distribution in either situation has $\sigma = 20$
 - A sample n = 100 is drawn at random so $\sigma_{\rm M} = 20/\sqrt{100} = 2$.
 - Decision Rule: Reject H_0 at $\alpha = 0.05$ significance level if the sample result falls among the highest 5% of means in a normal distribution; Otherwise retain H_0 (reject H_1).

$$\alpha = p(\text{reject } H_0 \mid \mu = 138) \text{ or } p(\text{reject } H_0 \mid H_0)$$

$$\beta = p(\text{accept } H_0 \mid \mu = 142) \text{ or } p(\text{accept } H_0 \mid H_1)$$

- Rejection region must be bounded by a $z_{\rm M}$ such as

$$F(z_{\rm M}) = .95$$
, or 1- $F(z_{\rm M}) = .05$.

- From the tables, $z_{\rm M} = 1.65$.
- If x = 142, then

$$z_{\rm M} = (142 - 138)/2$$

- And the critical value of x forming the boundary of the rejection region is

$$x = 138 + 1.65 \, \sigma_{\rm M}$$

$$= 138 + 3.30 = 141.30$$

- The question is, To what $z_{\rm M}$ score would this critical value of 141.3 correspond if H_1 were true?

$$z_{\rm M} = (141.3 - 142)/2 = -.35$$

- In a normal distribution, F(-.35) = .36, approximately, so we can determine $\beta = .36$. Thus, the two error probabilities are

$$\alpha = .05$$
, and $\beta = .36$

- Thus, the power of the test = 1- β = .64
- All else being equal (Ceteris Paribus):
 - As sample sizes increase, power increases
 - As population variances decrease, power increases
 - As the true mean difference increases, power increases

- Power Curves for group sample sizes of 25, 50, 75, and 100, and varying true values $\mu_1 \mu_2$ with $\sigma_1 = \sigma_2 = 5$.
 - For given $\mu_1 \mu_2$, power increases with sample size
 - For given sample size, power increases with $\mu_1 \mu_2$

- **Goal:** Choose sample sizes to have a favorable chance of detecting a *clinically meaning difference*
- Step 1: Define an important difference in means:
 - Case 1: σ approximated from prior experience or pilot study difference can be stated in units of the data
 - Case 2: σ unknown difference must be stated in units of standard deviations of the data

$$\delta = \frac{\mu_1 - \mu_2}{\sigma}$$

- **Step** 2: Choose the desired power to detect the meaningful difference (1- β , typically at least .80 in clinical trials). For 2-sided test:

$$n_1 = n_2 = \frac{2(z_{\alpha/2} + z_{\beta})^2}{\delta^2}$$

- Power to detect a main effect (ES = .20 - .50)

