Imperial College London

Department of Mathematics

M3S1	Statistical Theory I	

Question	Examiner's Comments
Q1	Many students did not realised that the support of the distribution depends on parameter (though we had a lot of discussions and examples in the lectures), so a sufficient statistic also contains order statistics (the maximum order statistic x_n) for this question).
Q 2	This question was very similar to two of the exercises in Chapter 5: exercises 5.4 and 5.5. The key point for writing the likelihood function was to define an indicator function for the number of observations being equal to 1.
Q3	It was a difficult question for some students because they did not use indicator function for parameter theta to obtain the right posterior distribution. There was a similar question in the coursework (the last question in the coursework).
Q 4	It was surprising that many students used a wrong direction for the rejection region. In the lectures, we emphasised that the direction of rejection region for one-sided hypotheses needs to be in accordance with the direction of the alternative hypothesis (H1).

Printed: 27/07/2018 11:48:00

Imperial College London

Department of Mathematics

M4S1 Statistical Theory I

Question	Examiner's Comments
Q1	Many students did not realise that the support of the distribution depends on parameter (though we had a lot of discussions and examples in the lectures), so a sufficient statistic also contains order statistics (the maximum order statistic x_n) for this question).
Q 2	This question was very similar to two of the exercises in Chapter 5: exercises 5.4 and 5.5. The key point for writing the likelihood function was to define an indicator function for the number of observations being equal to 1.
Q 3	It was a difficult question for some students because they did not use indicator function for parameter theta to obtain the right posterior distribution. There was a similar question in the coursework (the last question in the coursework).
Q 4	It was surprising that many students used a wrong direction for the rejection region. In the lectures, we emphasised that the direction of rejection region for one-sided hypotheses needs to be in accordance with the direction of the alternative hypothesis (H1).
Q 5	Students have had good attempts for the mastery question showing that they read the material carefully.

Printed: 27/07/2018 11:48:00

Imperial College

London

M4/5S1

BSc, MSci and MSc EXAMINATIONS (MATHEMATICS)

May-June 2018

This paper is also taken for the relevant examination for the Associateship of the Royal College of Science

Statistical Theory I

Date: Friday, 01 June 2018

Time: 2:00 PM - 4:30 PM

Time Allowed: 2.5 hours

This paper has 5 questions.

Candidates should use ONE main answer book.

Supplementary books may only be used after the relevant main book(s) are full.

All required additional material will be provided.

- DO NOT OPEN THIS PAPER UNTIL THE INVIGILATOR TELLS YOU TO.
- Affix one of the labels provided to each answer book that you use, but DO NOT USE THE LABEL WITH YOUR NAME ON IT.
- Each question carries equal weight.
- Calculators may not be used.

- 1. (a) Write down the definition for each of the following concepts:
 - (i) Ancillary statistic.
 - (ii) Minimal sufficient statistic.
 - (iii) Complete statistic.
 - (b) Let X_1, \ldots, X_n be n i.i.d. observations from the following probability density function:

$$f_{\theta}(x) = \frac{1}{\theta} e^{-\frac{(x-\theta)}{\theta}}, \qquad x > \theta, \ \theta > 0,$$

where we know that $E(X)=2\theta$, $E(X^2)=5\theta^2$, and $E(\min(X_1,\ldots,X_n))=(1+n^{-1})\theta$.

- (i) Find a minimal sufficient statistic for θ .
- (ii) Show whether the minimal sufficient statistic obtained in part (i) is complete or not.
- (iii) Obtain a method of moments (MM) estimator for θ .
- (iv) Find the asymptotic distribution of the MM estimator of θ in part (iii).
- 2. (a) Suppose that X_1, \ldots, X_n are n i.i.d. observations from the following probability mass function:

$$f_{\theta_1,\theta_2}(x) = \begin{cases} \theta_1 & x = 1\\ \frac{1-\theta_1}{\theta_2-1} & x = 2, \dots, \theta_2 \end{cases} \qquad 0 \le \theta_1 \le 1, \quad \theta_2 \in \{1,2,3,\dots\}.$$

- (i) Obtain the maximum likelihood estimates (MLEs) of parameters θ_1 and θ_2 when at least one observation is equal to 1 and at least one observation is greater than 1. (You do not need to check the regularity conditions or evaluate the second derivative of the likelihood.)
- (ii) Derive the asymptotic distribution of the MLE of θ_1 when θ_2 is known. For the asymptotic variance, it is adequate to just provide its general form without calculating it.
- (b) Suppose that X_1, \ldots, X_n are n i.i.d. observations from the Bernoulli distribution with parameter θ where $0 < \theta < 1$.
 - (i) Find the UMVUE of $\theta^2(1-\theta)$.
 - (ii) Compute the Cramér-Rao lower bound for the variance of unbiased estimators of $\theta^2(1-\theta)$. Explain whether the variance of the UMVUE of $\theta^2(1-\theta)$ attains the lower bound or not. [Hint: The Fisher information for one observation is $\frac{1}{\theta(1-\theta)}$]

- 3. (a) Prove that a unique Bayes estimator is admissible.
 - (b) Suppose that X_1, \ldots, X_n are n i.i.d. observations from $U(\theta a, \theta + a)$ where a is a known positive constant, and further assume θ has as prior distribution the Exponential distribution with mean 1.
 - (i) Obtain the posterior distribution of θ .
 - (ii) Is the prior distribution a conjugate prior? Justify your answer.
 - (iii) Find the Bayesian point estimator of θ under the squared error loss function. [Hint: You may use integration by parts: $\int u dv = uv \int v du$]
 - (iv) Is the Bayes estimator obtained in part (iii) admissible or not?
- 4. (a) Let X_1, \ldots, X_n be i.i.d. observations from the Exponential distribution with parameter λ where $\lambda > 0$.
 - (i) Find the uniformly most powerful (UMP) size α test for testing $H_0: \lambda = \lambda_0$ versus $H_1: \lambda < \lambda_0$ where λ_0 is a known positive value. [Hint: If $X \sim Gamma(a,b)$ then $cX \sim Gamma(a,\frac{b}{c})$]
 - (ii) Find a uniformly most accurate (UMA) $1-\alpha$ confidence interval for λ .
 - (b) Now, let X_1, \ldots, X_n be independent Exponential random variables with $E(X_i) = \frac{1}{\lambda t_i}$ where t_1, \ldots, t_n are known positive constants and λ is an unknown parameter. We want to test

$$H_0: \lambda = 1$$
 versus $H_1: \lambda \neq 1$.

- (i) Derive the likelihood ratio test statistic.
- (ii) For a given significance level α , perform the likelihood ratio test in part (i) using the asymptotic distribution of the likelihood ratio test statistic under H_0 .

Mastery Question:

- 5. Suppose that X_1, \ldots, X_n are i.i.d. observations from a uniform distribution on interval $(0, \theta)$ where θ is an unknown parameter.
 - (a) Find the maximum likelihood estimator (MLE) $\hat{\theta}$ of θ .
 - (b) Compute the bias of the MLE of θ . Does the MLE underestimate θ or overestimate it? Why?
 - (c) Obtain the jackknife estimator of bias of $\hat{\theta}$.
 - (d) Derive the jackknifed estimator of θ .
 - (e) Which estimator has a smaller bias: the MLE of θ or the jackknifed estimator of θ ? Explain why (without giving a proof).

	COOPERAL MARKET MAN ANAMAN PROPRIES ANAMAN PROPRIES.	DISCR	DISCRETE DISTRIBUTIONS	į.			
	RANGE	PARAMETERS	MASS	CDF	E _{fx} [X]	Var _{fx} [X]	MGF
	×		ţ,	F_{X}			M_{X}
Bernoulli(θ)	$\{0, \lambda\}$	θ.ε.(0, 1)	$\theta^{x}(1-\theta)^{1-x}$		Ô	$\dot{ heta}(1- heta)$	$1- heta+ heta e^t$
Binomial(n, 0)	(0,1,,n)	$n \in \mathbb{Z}^+, \theta \in (0,1)$	$\binom{n}{x} \theta^x (1-\theta)^{n-x}$		$\eta \theta$	$n\theta(1-\theta)$	$(1-\theta+\theta e^i)^{n_i}$
$Poisson(\lambda)$	{0,1,2,}	አ ድ ጹ [‡]	<u>e-Ar</u>		X	~	$\exp\left\{\lambda\left(c^{t}-1\right)\right\}$
Geometric(0)	(1, 2,)	Ø ∈ (0, 1)	$(1-\theta)^{x-1}\theta$	$1 - (1 - \theta)^x$	$\tilde{\theta}$	$\frac{(1-\theta)}{\theta^2}$	$\frac{\partial e^t}{1-e^t(1-\theta)}$
$NegBinomial(n, \theta)$	$\{\hat{n}, n+1,\}$	$n \in \mathbb{Z}^+, \theta \in (0,1)$	$\binom{x-1}{n-1}\theta^n(1-\theta)^{x-n}$		n O	$\frac{n(1-\theta)}{\theta^2}$	$\left(\frac{\theta e^I}{1-e^I(1-\theta)}\right)^n$
6	{0,1,2,}	$n \in \mathbb{Z}^+, \theta \in (0,1)$	$\binom{n+x-1}{2}\theta^n(1-\theta)^x$		$\frac{ii(1-\theta)}{\theta}$	$\frac{n(1-\theta)}{\theta^2}$	$\left(\frac{\theta}{1-e^t(1-\theta)}\right)^{tt}$

For CONTINUOUS distributions (see over), define the GAMMA FUNCTION

$$\Gamma(lpha) = \int_0^\infty x^{lpha-1} e^{-x} \, dx$$

and the LOCATION/SCALE transformation $Y = \mu + \sigma X$ gives

$$f_Y(y) = f_X\left(\frac{y-\mu}{\sigma}\right)\frac{1}{\sigma}$$
 $F_Y(y) = F_X\left(\frac{y-\mu}{\sigma}\right)$ $M_Y(t) = c^{\mu t}M_X(\sigma t)$

$$\operatorname{Var}_{f_Y}[Y] = \sigma^2 \operatorname{Var}_{f_X}[X]$$

 $\mathbb{E}_{f_Y}\left[Y\right] = \mu + \sigma \mathbb{E}_{f_X}\left[X\right]$

	MGF	M_X	$\frac{e^{\partial t} - e^{\partial t}}{t(\beta - c)}$	$\begin{pmatrix} \frac{\lambda}{\lambda-t} \end{pmatrix}$	$\frac{1}{g}$		e{u+v²{2'/2}		errola i sali lado errola conserva errola		
	$\operatorname{Var}_{J_X}[X]$		$\frac{(\beta-\alpha)^2}{12}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a And and and and and and and and and and a	$\frac{\Gamma(1+2/\alpha)-\Gamma(1+1/\alpha)^2}{\beta^{3/\alpha}}$. 0.5	$\frac{\nu}{\nu - 2} \text{(if } \nu > 2\text{)}$	$\frac{\alpha\theta^2}{(\alpha-1)(\alpha-2)}$ (if $\alpha > 2$)	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	
	$\mathbb{E}_{f_{X}}[X]$		$(\alpha + \beta)$ 2		1. A	$\frac{\Gamma(1+1/\alpha)}{\beta^{1/\alpha}}$	#	0 (If \(\nu > 1\)	$\frac{\theta}{\alpha - 1}$ (if $\alpha > 1$)	$\frac{\alpha}{\alpha + \beta}$	
RIBUTIONS	CDF	F_{χ}	8 - 0 8 - 0	gγ _~ , β, †	10000 00000 1 TO	1 Bundar			$1 - \left(\frac{\theta}{\theta + x}\right)^{4}$		
CONTINUOUS DISTRIBUTIONS	PDR	ſx	$\frac{1}{\beta-\alpha}$	λα- ^λ ⁄2	$\frac{\rho_{\alpha}}{\Gamma(\alpha)}$ $I^{\alpha-1}c^{-\beta x}$	aßxa-16-3±	$\frac{1}{\sqrt{2\pi\sigma^2}}\exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$	$\Gamma\left(\frac{\nu}{2}\right)\left\{1+\frac{x^2}{\nu}\right\}$	$\frac{\alpha \theta^{\alpha}}{(\theta + x)^{\alpha + 1}}$	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}$	
	PARAMS.		akhen	A C K 中	C. A. E. R. T.	a.# & R.	# ∈ R, σ ∈ R+	# ₩ +.	θ,α ∈ 限 ⁺	a, B e R+	
		×	(a, B)	. .	+	jet.	e	œ	÷ ±	(0,1)	
			$Uinform(\alpha,\beta)$ (standard model $\alpha=0,\beta=1$).	Exponential(λ) (standard model $\lambda = 1$)	Gainma(α, β) (standard model $\beta = 1$)	Weibull(lpha,eta) (standard model $eta=1$)	Normal(μ, σ^2) (standard model) $\mu = 0, \sigma = 1$)	Student(v)	Pareto(0, a)	Beta(lpha,eta)	

BSc and MSci EXAMINATIONS (MATHEMATICS) May-June 2018

This paper is also taken for the relevant examination for the Associateship of the Royal College of Science.

M3S1/M4S1

Statistical Theory I

Date: Friday, 1 June 2018 Time: 14.00 - 16.00

Solutions

- 1. (a) (i) Ancillary statistic: A statistic is ancillary if its distribution does not depend on any parameter θ .
- seen ↓
- 2
- seen \$
- (ii) Minimal sufficient statistic: A minimal sufficient statistic is a sufficient statistic that represents the maximal reduction of the data that contains as much information about the unknown parameter as the data itself does. Equivalently, a minimal sufficient statistic is a statistic that is a function of any other sufficient statistic (i.e., if T is a minimal sufficient statistic, then for any other sufficient statistic T^* , there is a function h such that $T = h(T^*)$).
- 2
- (iii) Complete statistic: A statistic T=T(X) is said to be complete for parameter θ if for any function g, if $E_{\theta}[g(T)]=0$ for all $\theta\in\Theta$ then $P_{\theta}(g(T)=0)=1$ for all $\theta\in\Theta$. In simple words, T is a complete statistic if the only unbiased estimator of zero based on T is zero.
- seen ↓
- 2
- meth seen ↓

(b) (i) For any two sample points x and x^* , we can write

$$\frac{f_{\theta}(x)}{f_{\theta}(x^*)} = e^{-\frac{n}{\theta}(\bar{x} - \bar{x}^*)} \frac{I_{(\theta,\infty)}(x_{(1)})}{I_{(\theta,\infty)}(x_{(1)}^*)},$$

and this is independent of θ if and only if $\bar{x}=\bar{x}^*$ and $x_{(1)}=x_{(1)}^*$. Therefore, $(\bar{X},X_{(1)})$ or $(\sum_{i=1}^n X_i,X_{(1)})$ as a one-to-one function of it is a minimal sufficient statistic for θ .

- (ii) Since $E(\bar{X}) = E(X_1) = 2\theta$, we can get
 - $E(\frac{1}{2}(1+n^{-1})\vec{X} X_{(1)}) = 0,$

while $\frac{1}{2}(1+n^{-1})\bar{X}-X_{(1)}\neq 0$. Therefore, a non-zero function of $(\bar{X},X_{(1)})$ is an unbiased estimator of zero, and hence $(\bar{X},X_{(1)})$ is not complete.

(iii) A method of moments estimator for θ can be obtained by equating the sample moments with the population moments. From the first moments, we have

$$2\theta = E(X) \doteq \frac{1}{n} \sum_{i=1}^{n} X_i = \bar{X},$$

so an MM estimator for heta is $\widehat{ heta}_{MM}=ar{X}/2$.

3

(iv) Since $E(X)=2\theta$ and ${\rm var}(X)=E(X^2)-E^2(X)=5\theta^2-4\theta^2=\theta^2$, by the central limit theorem we get

$$\sqrt{n}(\bar{X}-2\theta) \stackrel{D}{\to} N(0,\theta^2).$$

Now using the delta method, by considering g(x)=x/2, we obtain that

$$\sqrt{n}(\widehat{\theta}_{MM}-\theta) \stackrel{D}{\rightarrow} N(0,\frac{\theta^2}{4}).$$

3

M34S1 Statistical Theory I (2018)

Page 2 of 7

2. (a) (i) First note that the distribution function can be rewritten as

 $\sin ,\ seen\ \Downarrow$

$$f_{\theta_1,\theta_2}(x) = \theta_1^{I(x=1)} \big(\frac{1-\theta_1}{\theta_2-1}\big)^{I(x\neq 1)} I_{\{1,\dots,\theta_2\}}(x).$$

Then, the likelihood function for the n observations is given by

$$L(\theta_1,\theta_2) = \theta_1^{\sum\limits_{i=1}^n I(x_i=1)} \big(\frac{1-\theta_1}{\theta_2-1}\big)^{\sum\limits_{i=1}^n I(x_i\neq 1)} I_{\{1,\dots,\theta_2\}}(x_{(n)}).$$

For each value of θ_1 , the likelihood is decreasing in θ_2 , therefore $\widehat{\theta}_{2ML} = X_{(n)}$.

4

To obtain the MLE of θ_1 , by replacing θ_2 with $x_{(n)}$ we can write the log-likelihood function as follows

$$l(\theta_1) = \ln(\theta_1) \sum_{i=1}^n I(x_i = 1) + \ln\left(\frac{1 - \theta_1}{x_{(n)} - 1}\right) \sum_{i=1}^n I(x_i \neq 1).$$

Now by taking the derivative w.r.t θ_1 , we get the log-likelihood equation as follows

$$\frac{d}{d\theta_1}l(\theta_1) = \frac{\sum_{i=1}^n I(x_i = 1)}{\theta_1} - \frac{\sum_{i=1}^n I(x_i \neq 1)}{1 - \theta_1} = 0.$$

Since $I(x_i \neq 1) = 1 - I(x_i = 1)$, we obtain that

$$\widehat{\theta}_{1ML} = \frac{\sum_{i=1}^{n} I(X_i = 1)}{n}.$$

4

meth seen #

(ii) From a theorem in the lecture notes we know that the MLEs are asymptotically normally distributed, and in fact for this question we have

$$\sqrt{n}(\widehat{\theta_1}_{ML} - \theta_1) \stackrel{D}{\rightarrow} N(0, \frac{1}{I(\theta_1)}),$$

where $I(\theta_1)$ is the Fisher information for one observation, which is given by

$$I_{X_1}(\theta_1) = E\left(\frac{d}{d\theta_1}l_{X_1}(\theta_1)\right)^2.$$

2

meth seen ↓

(b) (i) An unbiased estimator of $\theta^2(1-\theta)$ is $I(X_1=1,X_2=1,X_3=0)$. Also, because Bernoulli distribution is a member of full rank exponential families, $T=\sum_{i=1}^n X_i$ is a complete and sufficient statistic for θ . Therefore, using

the Lehmann-Scheffe Theorem, the UMVUE of $heta^2(1- heta)$ is as follows

$$E(I(X_1 = 1, X_2 = 1, X_3 = 0)|T = t) = P(X_1 = 1, X_2 = 1, X_3 = 0|\sum_{i=1}^{n} X_i = t)$$

$$= \frac{P(X_1 = 1, X_2 = 1, X_3 = 0, \sum_{i=1}^{n} X_i = t)}{P(\sum_{i=1}^{n} X_i = t)}$$

$$= \frac{P(X_1 = 1, X_2 = 1, X_3 = 0, \sum_{i=1}^{n} X_i = t - 2)}{P(\sum_{i=1}^{n} X_i = t)}$$

$$= \frac{\theta^2(1 - \theta) \binom{n - 3}{t - 2} \theta^{t - 2}(1 - \theta)^{n - 3 - t + 2}}{\binom{n}{t} \theta^t(1 - \theta)^{n - t}}$$

$$= \frac{\binom{n - 3}{t - 2}}{\binom{n}{t}} = \frac{t(t - 1)(n - t)}{n(n - 1)(n - 2)}$$

and, hence, the UMVUE of $\theta^2(1-\theta)$ is

$$\frac{T(T-1)(n-T)}{n(n-1)(n-2)},$$

where
$$T = \sum_{i=1}^{n} X_i$$
.

Note: another way to obtain the above UMVUE is to directly find a function of $T = \sum_{i=1}^{n} X_i$ that is unbiased for $\theta^2(1-\theta)$.

(ii) The Cramer-Rao lower bound here is

meth seen \Downarrow

$$\frac{\left(\frac{d}{d\theta}\left(\theta^2(1-\theta)\right)\right)^2}{I(\theta)} = \frac{\left(\theta(2-3\theta)\right)^2}{nI_{X_1}(\theta)} = \frac{\theta^2(2-3\theta)^2}{\frac{n}{\theta(1-\theta)}} = \frac{\theta^3(1-\theta)(2-3\theta)^2}{n}.$$

Ž

Only estimators of the form $\left\{a\sum_{i=1}^n X_i+b\right\}$ achieve the Cramer-Rao lower bound. So the variance of the UMVUE of $\theta^2(1-\theta)$ does not attain the lower bound.

2

3. (a) Suppose that $\widehat{\theta}_{\mathsf{Bayes}}$ is not admissible, then there must be an estimator $\widetilde{\theta}$ such that

seen 🄱

$$R_{\theta}(\widetilde{\theta}) \le R_{\theta}(\widehat{\theta}_{\mathsf{Bayes}}) \quad \forall \theta \in \Theta.$$

Hence

$$R_B(\widetilde{ heta}) = \int_{\Theta} R(\widetilde{ heta}) \pi(heta) d heta \leq \int_{\Theta} R(\widehat{ heta}_{\mathsf{Bayes}}) \pi(heta) d heta = R_B(\widehat{ heta}_{\mathsf{Bayes}}),$$

which contradicts the uniqueness of $\widehat{\theta}_{\mathsf{Bayes}}.$ Therefore, $\widehat{\theta}_{\mathsf{Bayes}}$ must be admissible.

4

unseen \downarrow

(b) (i) First note that we must have $\theta-a \le x_{(1)} \le x_{(n)} \le \theta+a$ which gives us $x_{(n)}-a \le \theta \le x_{(1)}+a$. Now, the posterior is given by

$$\pi(\theta|x_{1},...,x_{n}) = \frac{f_{\theta}(x_{1},...,x_{n})\pi(\theta)}{\int f_{\theta}(x_{1},...,x_{n})\pi(\theta)d\theta} = \frac{(2a)^{-n}e^{-\theta}}{x_{(1)}+a}$$

$$= \frac{e^{-\theta}}{x_{(1)}+a} = \frac{e^{-\theta}}{e^{a-x_{(n)}} - e^{-a-x_{(1)}}}, \quad x_{(n)} - a \le \theta \le x_{(1)} + a.$$

$$\int_{x_{(n)}-a}^{x_{(n)}-a} e^{-\theta}d\theta$$

(ii) No, because the posterior distribution is not an Exponential distribution. In fact, the support of θ in the posterior depends on the data (the posterior is a truncated Exponential distribution).

meth seen \Downarrow

meth seen #

4

(iii) Under the squared error loss, we know that the Bayes estimator is the posterior mean, which can be directly obtained as follows:

$$\begin{split} \widehat{\theta}_{\text{Bayes}} &= E(\theta|x_1,...,x_n) = \int\limits_{x_{(n)}-a}^{x_{(1)}+a} \frac{\theta e^{-\theta}}{e^{a-x_{(n)}} - e^{-a-x_{(1)}}} d\theta \\ &= \frac{1}{e^{a-x_{(n)}} - e^{-a-x_{(1)}}} \int\limits_{x_{(n)}-a}^{x_{(1)}+a} \theta e^{-\theta} d\theta \\ &= \frac{1}{e^{a-x_{(n)}} - e^{-a-x_{(1)}}} \Big[-\theta e^{-\theta} + \int\limits_{x_{(n)}-a}^{\theta -\theta} e^{-\theta} d\theta \Big]_{x_{(n)}-a}^{x_{(1)}+a} \\ &= \frac{1}{e^{a-x_{(n)}} - e^{-a-x_{(1)}}} \Big[-(\theta+1)e^{-\theta} \Big]_{x_{(n)}-a}^{x_{(1)}+a} \\ &= \frac{(x_{(n)}-a+1)e^{a-x_{(n)}} - (x_{(1)}+a+1)e^{-a-x_{(1)}}}{e^{a-x_{(n)}} - e^{-a-x_{(1)}}}. \end{split}$$

(iv) Yes, the Bayes estimator obtained in part (iii) is admissible because it is unique.

meth seen #

2

4

M34S1 Statistical Theory I (2018)

4. (a) (i) The joint distribution can be written as

meth seen 4

$$f_{\lambda}(x) = \lambda^n \exp(-\lambda \sum_{i=1}^n x_i)$$

which belongs to the exponential family of distributions and it has monotone likelihood ratio in $-\sum\limits_{i=1}^n x_i$. Using the Karlin-Rubin Theorem, the UMP size α test rejects H_0 if $\sum\limits_{i=1}^n X_i \geq k$ and k is calculated such that

$$\alpha = P_{H_0}(\sum_{i=1}^n X_i \ge k) = P_{\lambda_0}(2\lambda_0 \sum_{i=1}^n X_i \ge 2\lambda_0 k) = P_{\lambda_0}(\chi^2(2n) \ge 2\lambda_0 k).$$

Hence $k=\frac{\chi_{\alpha}^2(2n)}{2\lambda_0}$, where $\chi_{\alpha}^2(2n)$ satisfies $P(\chi^2(2n)\geq\chi_{\alpha}^2(2n))=\alpha$.

6

unseen #

meth seen 🎚

(ii) By inverting the UMP size α test we get a UMA $1-\alpha$ confidence interval as follows

 $\chi^2_{\alpha}(2n)$,

$$C(x) = \{\lambda : 0 \le \lambda \le \frac{\chi_{\alpha}^{2}(2n)}{2\sum_{i=1}^{n} X_{i}}\}.$$

4

(b) (i) The log-likelihood under the whole parameter space is

$$l(\lambda) = n \ln(\lambda) + \sum_{i=1}^{n} \ln(t_i) - \lambda \sum_{i=1}^{n} t_i x_i,$$

which gives $\widehat{\lambda}_{ML}=\frac{n}{\sum\limits_{i=1}^{n}\iota_{i}X_{i}}$ as the MLE of λ under the whole parameter space.

And under H_0 , the MLE of λ is $\widehat{\lambda}=1$. Therefore, the likelihood ratio test statistic is as follows

$$\lambda(x) = \frac{\left(\sum_{i=1}^{n} t_i X_i\right)^n e^{-\sum_{i=1}^{n} t_i X_i}}{n^n e^{-n}}.$$

6

meth seen 🎚

(ii) Under H_0 and under regularity conditions, the asymptotic distribution of $-2\log{(\lambda(x))}$ is $\chi^2(1)$. Hence, the likelihood ratio level α test based on the asymptotic distribution rejects H_0 if $-2\log{(\lambda(x))} \geq \chi^2_{\alpha}(1)$.

4

5. (a) The likelihood function is

meth seen \Downarrow

$$l(\theta) = \frac{1}{\theta^n} I_{(0,\theta)}(x_{(n)}),$$

which is a decreasing function of θ . Therefore, the MLE of $\widehat{\theta}$ is $\widehat{\theta} = X_{(n)}$.

4

meth seen 1

(b) The bias of the MLE of θ is equal to

 $b_{\widehat{\theta}}(\theta) = E(X_{(n)}) - \theta = \frac{n}{n+1}\theta - \theta = -\frac{\theta}{n+1}.$

Because the bias is always negative, the MLE of θ underestimates θ .

4

unseen ↓

(c) First, it follows that $\widehat{\theta}_{-i} = X_{(n)}$ for n-1 values of i and $\widehat{\theta}_{-i} = X_{(n-1)}$ for the other value of i. Thus, we obtain that

$$\widehat{\theta}_{\bullet} = \frac{1}{n} \sum_{i=1}^{n} \widehat{\theta}_{-i} = \frac{n-1}{n} X_{(n)} + \frac{1}{n} X_{(n-1)}.$$

Then, the jackknife estimator of bias is

$$\widehat{b}(\widehat{\theta}) = (n-1)(\widehat{\theta}_{\bullet} - \widehat{\theta}) = (n-1)(\frac{n-1}{n}X_{(n)} + \frac{1}{n}X_{(n-1)} - X_{(n)}) = \frac{n-1}{n}(X_{(n-1)} - X_{(n)}).$$

unseen #

(d) The jackknifed estimator of θ is as follows:

$$\widehat{\theta}_{Jack} = \widehat{\theta} - \widehat{b}(\widehat{\theta}) = n\widehat{\theta} - (n-1)\widehat{\theta}_{\bullet}$$

$$= X_{(n)} + \frac{n-1}{n}(X_{(n)} - X_{(n-1)}).$$

unseen ↓

(e) The jackknifed estimator $\widehat{\theta}_{Jack}$ has a smaller bias than the MLE $\widehat{\theta}$ because $\widehat{\theta}_{Jack}$ is a bias-corrected version of $\widehat{\theta}$ by reducing the finite-sample bias of the MLE.

4

4