

L4, Estimation of R_0 ; and Effective reproduction numbers

Tom Britton

June 2020

Statistical inference/estimation in general

Stochastic modelling can tell us (within a model and given some parameter values): what are the likely outcomes?

Example: Given R_0 , about how many will get infected?

Statistical inference goes in the "opposite direction" (within a certain model): given an observed outcome, which parameter "fits" to the observation best?

Example: Suppose 20% were infected during an outbreak. What is R_0 ?

Estimation from outbreak sizes

Suppose an epidemic outbreak is observed and we want to estimate parameters, e.g. transmission probability p, or R_0

What is observed?

Final size: how many were infected and how many were not during outbreak

Important with additional knowledge of how many/what fraction were susceptible prior to outbreak!

If data comes from many small controlled experiments inference is quite easy:

Estimation from many small outbreaks

Example: suppose we have many (n) units of size 2 in which one was initially infected

If m out of the n households resulted in the second individual getting infected then we estimate the transmission probability p by the observed fraction of units in which infection took place:

$$\hat{p} = \frac{m}{n}$$

Note: Parameter estimates are equipped with "hat" (so \hat{p} is an estimate of p)

Estimation from many small outbreaks

If units are isolated (independent) we have a binomial experiment and can easily give confidence bounds:

$$\hat{p} \pm \lambda_{lpha/2} \sqrt{\hat{p}(1-\hat{p})/n}$$

where $\lambda_{\alpha/2}$ is normal distribution quantile:

95% confidence interval (
$$lpha=$$
 0.05) gives $\lambda_{lpha/2}=\lambda_{0.025}=$ 1.96

Exercise 4.1: Suppose 27 out of 100 units had the second individual infected. Give a 95% confidence interval for transmission probability p

Estimation of R_0 from one large outbreak

Assume a homogeneously mixing community and no preventive measures

From before: in case of a large outbreak and assuming everyone was initially susceptible, the final fraction infected will be close to the positive solution of

$$1 - \tau = e^{-R_0 \tau}$$

Inference other way around: we observe that a fraction $\tilde{\tau}$ got infected. What is R_0 ?

Rewrite the equation: $R_0 = -\ln(1-\tau)/\tau$

Our estimate of R_0 is given by the corresponding observed value:

$$\hat{R}_0 = -\ln(1- ilde{ au})/ ilde{ au}$$

Exercise 4.2: Estimate R_0 if 20% were infected during an outbreak

Estimation from one large outbreak, cont'd

This estimate assumed everyone was initially susceptible!

If in fact a fraction r was initially immune we know from before that τ , the fraction among the initially susceptible who got infected approximately equals positive solution of

$$1-\tau=e^{-R_0(1-r)\tau}$$

This leads to the estimate:

$$\hat{R}_0 = -\ln(1-\tilde{\tau})/(1-r)\tilde{\tau}$$

Note: The over all fraction infected equals $\tilde{\tau}(1-r)$

Exercise 4.3: Suppose as before that 20% were infected during an outbreak, but that only 50% were initially susceptible and the rest were immune. Compute first $\tilde{\tau}$ and then estimate R_0

Estimation before outbreak has ended

For new (so-called *emerging diseases*) and/or lethal diseases it is of course not desirable to wait until the outbreak is over in order to estimate R_0 and other parameters ...

We now describe how to estimate R_0 from the initial phase of an epidemic

The early stage of an epidemic outbreak

Consider a large homogeneous community and the beginning of an outbreak when few have been infected

Then it is very unlikely that two infectious people have infectious contact with the same person

 \implies Infectious individuals infect new people \approx independently

Branching process model: a model where individuals "give birth" (=infect in our case) independently of each other

Important result: Number of infectives I(t) (as well as the number infected n - S(t)) grows exponentially: $I(t) \sim e^{rt}$

Exercise 4.4: Suppose the exponential growth rate r equals r=2.8 (per week) and that there is one index case week 0. Compute the expected incidence $(\approx I(t))$ after 1, 2 and 3 weeks.

Ebola (beginning): How many will get infected?

NEJM Sept 24, 2014. WHO Ebola response team: (There had been 4 500 cases by Sept 14, 2014): "If no preventive measures: >20 000 will have been infected by Nov 2, 2014"

Estimating the initial growth rate *r*

Branching process theory. $I(t) \sim e^{rt}$ and $n - S(t) \sim e^{rt}$. Cumulative number of infected n - S(t) is more robust

$$\ln((n-S(t_k))/(n-S(t_0)))\approx r(t_k-t_0)$$

$$\Longrightarrow \hat{r} = \frac{\ln((n-S(t_k))/(n-S(t_0)))}{t_k-t_0}$$

(A more proper estimate would be based on logistic regression)

Exercise 4.5: Suppose the incidence ($\approx I(t)$) was observed the first three weeks and the numbers were: 7, 29 and 121 respectively. Estimate r using estimator above (as well as with logistic regression).

Estimation of R_0 from initial phase

Suppose we have estimated the growth rate r from an emerging outbreak

How about estimating R_0 ?

Unfortunately the connection between r and R_0 is week (see next slide): r is a rate (depends on time) and R_0 is dimensionless (indep of time)

Illustration that R_0 and r not very related

Illustration. Consider a disease with contact intensity $\beta=2$ contacts per week and mean infectious period $1/\gamma=1$ week. Then $R_0=\beta/\gamma=2$ and some exponential growth rate r.

Consider now another disease having $\beta=1$ and $1/\gamma=2$ (less infectious but longer infectious period). Clearly this new disease also has the same $R_0=\beta/\gamma=2$. How about r?

The latter is twice as slow \implies new r is half of the former: $r_{\text{new}} = r_{\text{old}}/2$. So same R_0 but different r

However, branching process theory connect r and R_0 be means of the generation time distribution!

Initial growth rate

The growth rate parameter r is called the **Malthusian parameter** and depends both on R_0 and the generation time distribution g(s). Branching process theory: r is the solution to the Euler-Lotka equation

$$R_0 \int_0^\infty e^{-rs} g(s) ds = 1$$

So if we know the generation time distribution $g(\cdot)$ we can estimate R_0 from observing the exponential growth r!

(Problems with estimating g(s) treated in L3!, see consequences a few slides ahead)

Exercise 4.6: Show that if $g(s) \sim \Gamma(\alpha, \beta)$ then Euler-Lotka gives that

$$R_0 = \left(\frac{r}{\beta} + 1\right)^{\alpha}$$

Covid-19: R_0 estimates from different countries

Covid-19: A common estimate is that $g(s) \sim \Gamma$ with mean 6.5 days and s.d. 4 days. We assume this to apply to all countries!

We estimate "country" specific r from reported cumulative case fatalities: starting first day with > 50 cumulative case fatalities (c_0) and two weeks later c_{14} case fatalities: $\hat{r} = \ln(C_{14}/C_0))/14$ (Data: Worldometer)

Common dates: first half of March to end of March (before effects of lockdown)

When 50 have died, between 5 000 and 20 000 had been infected so not VERY early in epidemic which is usually atypical and faster (except Norway and Denmark: start instead when > 10 have died)

Covid-19: R_0 estimates from different countries

Country	C_0	C ₁₄	r	\hat{R}_0	ĥ _C
"Norway"	12	89	0.14	2.2	54%
"Denmark"	13	161	0.18	2.6	62%
"Sweden"	62	687	0.17	2.5	60%
"Germany"	68	1275	0.21	3.0	67%
"Belgium"	67	1283	0.21	3.0	67%
"UK"	65	2043	0.25	3.5	71%
"Spain"	55	3647	0.30	4.3	77%

 $(h_C = critical \ vaccination \ coverage \ for \ herd \ immunity, \ more \ later)$

 \Longrightarrow There is not one correct R_0 for covid-19!!

Big differences also within countries! (Sweden starting when > 10 had died gave $\hat{R}_0 = 3.1$)

Effects of bias in estimates of g(s)

I(t) =incidence day t = # infected day t (now discrete time)

How many that get infected day t depends on: $R_0 =$, basic reproduction number and $\{g(s)\}$ = Generation time

– how many that got infected s days ago? Answer: = I(t - s)

Model definition (common model)

$$I(t) \sim \mathsf{Pois}\left(R_0 \sum_{s=1}^t g(s) I(t-s)\right), t = 1, 2 \dots,$$
 (*)

"Pois()" means Poisson distribution, and the mean equals the parameter, $R_0 \sum_{s=1}^{t} g(s) I(t-s)$

Exercise 4.7: Show that this is more or less identical to the Euler-Lotka equation (Hint: replace the Poisson random variable by its mean)

$$I(t) \sim \operatorname{Pois}\left(R_0 \sum_{s=1}^t g(s) I(t-s)\right), t = 1, 2 \dots,$$
 (*)

If $\{g(s)\}\$ known (or estimated), Eq. (*) can be used for:

1: Estimating R_0 (from observed incidence $I(1), \ldots, I(t)$), or

2: Predicting outbreak incidence $I(1), \ldots, I(t)$ (if R_0 known before-hand)

Both 1 and 2 require knowledge about $\{g(s)\}$

Main question: How to estimate generation time distribution $\{g(s)\}$ and what happens to estimates of R_0 (or predictions $I(1), I(2), \ldots$) if $\{g(s)\}$ is estimated incorrectly?

Recall, $I(t) \sim \text{Pois}\left(R_0 \sum_{s=1}^t g(s) I(t-s)\right)$ where $I(0), \dots, I(t)$ grows, typically exponentially

How are estimates of R_0 (or predictions $I(1), \ldots, I(t)$) affected by the generation time distribution $\{g(s)\}$?

Recall,
$$I(t) \sim \text{Pois}\left(R_0 \sum_{s=1}^{t} g(s)I(t-s)\right)$$
 where $I(0), \dots, I(t)$ grows, typically exponentially

How are estimates of R_0 (or predictions $I(1), \ldots, I(t)$) affected by the generation time distribution $\{g(s)\}$?

It is easy to show that the mean parameter

$$R_0 \sum_{s=0}^{t} g(s)I(t-s)$$
 increases if:

- -g(s) is replaced by $\hat{g}(s)$ which has smaller mean
- -g(s) is replaced by $\hat{g}(s)$ which has same mean and larger variance

Recall,
$$I(t) \sim \text{Pois}\left(R_0 \sum_{s=1}^t g(s)I(t-s)\right)$$
 where $I(0), \dots, I(t)$ grows, typically exponentially

How are estimates of R_0 (or predictions $I(1), \ldots, I(t)$) affected by the generation time distribution $\{g(s)\}$?

It is easy to show that the mean parameter

$$R_0 \sum_{s=0}^{t} g(s) I(t-s)$$
 increases if:

- -g(s) is replaced by $\hat{g}(s)$ which has smaller mean
- -g(s) is replaced by $\hat{g}(s)$ which has same mean and larger variance

So, if our estimate of $\{g(s)\}$ has mean biased from below we will **under-estimate** R_0

And if we estimate $\{g(s)\}$ by something with the correct mean but larger variance we will **under-estimate** R_0

In Lecture 3 we showed three problems when estimating g(s) from **contact tracing**:

- 1) Looking backwards rather than forward in time: g(s) was biased from below (E(G) under-estimated)
- $\Longrightarrow R_0$ will be under-estimated
- 2) What if multiple infector candidates: g(s) was biased from below (E(G) under-estimated)
- $\Longrightarrow R_0$ will be under-estimated
- 3) Observing Serial intervals instead of Generation times g(s) has too large standard deviation (V(G) over-estimated)
- \implies R_0 will be under-estimated

In Lecture 3 we showed three problems when estimating g(s) from **contact tracing**:

- 1) Looking backwards rather than forward in time: g(s) was biased from below (E(G) under-estimated)
- $\Longrightarrow R_0$ will be under-estimated
- 2) What if multiple infector candidates: g(s) was biased from below (E(G) under-estimated)
- \implies R_0 will be **under-estimated**
- 3) Observing Serial intervals instead of Generation times g(s) has too large standard deviation (V(G) over-estimated)
- \implies R_0 will be under-estimated

Conclusion: Unless taken account for, all three problems make R_0 under-estimated. See Britton & Scalia-Tomba (Interface, 2019)

Preventive measures: homogeneous case – initial phase

Suppose **preventive measures** (put in place very early) reduce contact rate β by a factor c

 \implies new *Effective* reproduction number equals $R_E = (1-c)R_0$

No outbreak possible if $R_{\it E} \leq 1$ which is equivalent to $c \geq 1 - 1/R_0$

More focus on preventive measures in e.g. Lecture 7, now focus is on Effective reproduction nmbers

Preventive measures and immunity

If $R_E \ge 1$ the epidemic still grows initially and immunity builds up: only infectious contacts with not yet infected individuals result in infection:

 $R_E(t) = R_0(1-c)s(t)$, where s(t) is fraction susceptible

If initially $R_E = R_E(0) > 1$ then $R_E(t)$ decays and for t large enough $R_E(t) < 1$ (because s(t) becomes small) and then the epidemic starts declining

Currently $R_E(t) < 1$ in all (?) countries of Europe for Covid-19 (but probably $R_E = R_E(0) > 1$ in Sweden)

Terminology: some use "effective reproductiion number" for R_E and others for $R_E(t)$ (i.e. also including immunity). $R_E(t)$ also denoted "current", "instantaneous" or "daily" reproduction number