Name: _____

There are 20 points possible on this quiz. This is a closed book quiz and closed note quiz. Calculators are not allowed. If you have any questions, please raise your hand.

1. Evaluate the iterated integral $\int_{0}^{1} \int_{0}^{e^{x}} \sqrt{1+3e^{x}} \, dy \, dx$ $= \int_{0}^{1} (1+3e^{x})^{2} \cdot y \int_{y=e^{x}}^{y=e^{x}} dx = \int_{0}^{1} e^{x} (1+3e^{x})^{2} dx = \frac{2}{9} (1+3e^{x})^{2} \int_{0}^{1} e^{x} (1+3e^{x})^{2} dx = \frac{2}{9} \left[(1+3e^{x})^{2} - (1+3e^{x})^{2} + (1+3e^{x})^{2} +$

* mini cleck: 2. 3 (1+3ex) (3) ex

Lake

derivetile

2. Evaluate the double integral $\iint_D e^{-x^2} dA$ where $d = \{(x,y) \mid 0 \le x \le 3, \ 0 \le y \le x\}$.

$$= \int_{0}^{3} \int_{0}^{x} e^{-x^{2}} dy dx = \int_{0}^{3} y e^{-x^{2}} \int_{y=0}^{y=x} dx$$

$$= \int_{0}^{3} x e^{x^{2}} dx = -\frac{1}{2} e^{x^{2}} \Big]_{0}^{3} = -\frac{1}{2} (e^{9} - 1)$$

* mini-cleck; = 2 / -1/2. (-27). et/ 3. Sketch the region of integration and then reverse the order of integration for the integral $\int_0^4 \int_{\sqrt{x}}^2 \sqrt{y^2 + 1} \, dy \, dx$. [NOTE: You do not need to evaluate the integral.]

4. **Set up** the iterated integral to find volume of the solid under the surface $z = 2 + x^2 + \sin(y)$ and above the region bounded by the parabolas $y = x^2$ and $x = y^2$. [NOTE: You do not need to evaluate the integral.]

$$\int_{0}^{1} \int_{x^{2}}^{1} (2+x^{2}+\sin y) dy dx$$

or •

$$\int_{0}^{1} \int_{0}^{y^{2}} (2x^{2} + \sin y) dxdy$$