Определение местоположения по сигналам акселерометра*

Зайнулина Э. Т., Киселёва Е. А., Фатеев Д. А., Божедомов Н., Толканев А. А., Ночевкин В., Протасов В., Рябов А.

Аннотация: данная статья посвящена методам отслеживания местоположения человека по сигналам акселерометра, гироскопа, магнитометра. Основной задачей исследования является увеличение точности позиционирования в условиях, когда глобальная навигационная система не может быть использована. В качестве базовой модели был выбран PDR (pedestrian dead reckoning). Для уменьшения зашумленности данных был использован фильтр Калмана. Новизна исследования заключается в постановке задачи в терминах Projection to Latent Spaces.

Ключевые слова: Pedestrian dead reckoning, (Indoor) inertial positioning, Simultaneous Localization and Mapping, PLS.

1 Введение

В настоящее время системы по определению местоположения человека стали неотъемлемой частью повседневной жизни. Информация о точном местоположении человека используется для обеспечения безопасности, для "мобильного здоровья для эффективной организации рабочих процессов, для мониторинга толпы и др. Огромную роль в определении местоположения человека играет GNSS (глобальная навигационная система). Однако в помещении навигационные спутниковые сигналы не всегда доступны, из-за чего качество данных, предоставляемых GNSS, сильно уменьшается. Тем не менее большую часть времени человек проводит в помещениях, в связи с чем должны быть разработаны надежные, точные методы, позволяющие определять местоположение человека в помещении.

Современные смартфоны обладают большим числом сенсоров и высокой вычислительной способностью. Так как в настоящее время почти каждый человек им обладает, то методы определения местоположения человека с использованием смартфонов получили наибольшее внимание со стороны исследователей. Среди этих методов - методы, основанные на беспроводных сигналах (WiFi, Bluetooth, UWB), датчиках обзора (лазерный сканер, монокулярная и бинокулярная камера), инерционных датчиках (акселерометр, гироскоп, магнитометр). Многие из предложенных методов локализации человека представляют собой комбинацию выше перечисленных для увеличения точности позиционирования. Методы, основанные на беспроводных сигналах и датчиках обзора, помимо наличия смартфона требуют также введения дополнительного оборудования либо наличия дополнительных знаний, например карты помещения или базы данных "отпечатка". Однако не всегда возможно предоставить карту помещения, например, в силу конфиденциальности; вспомогательное оборудование, в свою очередь, требует технического обслуживания и больших затрат. Что касается WiFi позиционирования, то при наличии существующей базы данных "отпечатка"при некотором изменении среды, позиционирование будет неточным, поэтому база данных нуждается в постоянном обновлении.

Чтобы избежать данных проблем, предлагается метод, основанный на инерционных датчиках. В качестве базового алгоритма рассматривается PDR. По сравнению с методами, основанными на беспроводных сигналах и датчиках обзора, PDR рассчитывает относительно точное местоположение человека быстрее и потребляя меньше вычислительной

^{*} Научный руководитель: Стрижов В. В. Консультант: Мотренко А.

мощности. Для фильтрации шума в данных используется фильтр Калмана. Особенность данной работы состоит в том, чтобы восстанавливать траекторию не от точки к точке, а всю целиком. Для работы с полученным многомерным пространством предлагается использовать метод PLS.