# Optimization Techniques (MAT-2003)

Dr. Yada Nandukumar

Department of Mathematics
School of Advanced Sciences (SAS)
VIT-AP University

# Non classical Optimization Method:

- 1) Region Elimination Methods
  - (i) Fibonacci Search Method
  - (ii) Golden Search Method
- 2) Gradient Based Methods
  - (i) Newton Method

Unimodal function: A function f(x) is said to be unimodal function if for some value m it is monotonically increasing for x > m and monotonically decreasing for x < m. For function f(x), maximum value is f(m) and there is no other local maximum.

# Region of Elimination Methods:

The fundamental rule for the region of elimination method as follows:

Let us consider two points  $x_1$  and  $x_2$  which lie in the interval (a, b) and satisfy  $x_1 < x_2$ . For unimodal functions for minimization, we can conclude the following:

- If  $f(x_1) > f(x_2)$  then the minimum does not lie in  $(a, x_1)$ .
- If  $f(x_1) < f(x_2)$  then the minimum does not lie in  $(x_2, b)$ .
- If  $f(x_1) = f(x_2)$  then minimum does not lie in  $(a, x_1)$  and  $(x_2, b)$ .

### Fibonacci Search Method:

- This method is an elimination Technique.
- The function should be unimodal function.
- In this method, the search interval is reduced according to Fibonacci numbers. The property of the Fibonacci numbers is that, given two consecutive numbers  $f_{n-2}$  and  $F_{n-1}$ , the third number is calculated as follows:

$$F_n = F_{n-1} + F_{n-2}, \dots (1)$$
  
where  $n = 2, 3, 4, \dots$ 

The first few Fibonacci numbers are  $F_0 = 1$ ,  $F_1 = 1$ ,  $F_2 = 2$ ,  $F_3 = 3$ ,  $F_4 = 5$ ,  $F_6 = 13$ , ...

• The property of the Fibonacci numbers can be used to create a search algorithm that requires only one function evaluation at each iteration.

- The principle of Fibonacci search is that out of two points required for the use of region-elimination rule, one is always the previous point and the other point is new.
- Thus, only one function evaluation is required at each iteration.
- When the region-elimination rule eliminates a portion of the search space depending on the function values at these two points, the remaining search is  $L_k$ . By defining  $L_k^* = (F_{n-k+1}/F_{n+1})L$  and  $L_k = (F_{n-k+2}/F_{n+1})L$ , it can be shown that  $L_k L_k^* = L_{k+1}$ , which means that one of the two points used in iteration k remains as one point in iteration (k+1). If the region  $(a, x_2)$  is eliminated in the  $k^{th}$  iteration, the point  $x_1$  is at a distance  $(L_k L_k^*)$  or  $L_{k+1}^*$  from the point  $x_2$  in the (k+1) iteration. Since, the first two Fibonacci numbers are the same, the algorithm usually starts with k=2.

# Fibonacci Search Algorithm:

(i) Choose a lower bound a and an upper bound b. Set L = b - a. Assume the desired number of function evaluations to be n. Set k = 2.

(ii) Compute 
$$L_k^* = (F_{n-k+1}/F_{n+1})L$$
. Set  $x_1 = a + L_k^*$  and  $x_2 = b - L_k^*$ .

(iii) Compute one of  $f(x_1)$  or  $f(x_2)$ , which was not evaluated earlier. Use the fundamental region-elimination rule to eliminate a region. Set new a and b.

(iv) Is k = n? If not, set k = k + 1 and go to step (ii), else terminate the procedure.

Note: In this algorithm, the interval reduces to  $(2/F_{n+1})L$  after n function evaluations. Thus, for a desired accuracy  $\epsilon$ , the number of required function evaluations n can be calculated using the following equation:

$$\frac{2}{F_{n+1}}(b-a) = \epsilon.$$

# Example:

Find the minimum of  $f(x) = x^2 + \frac{54}{x}$  using Fibonacci search method on [0, 5] and n = 3.

**Solution:** Given function  $f(x) = x^2 + \frac{54}{x}$ 

**Step 1:** Let a=0,b=5. Thus, the initial interval is L=b-a=5. Let us choose the number of function evaluations to be three (n=3). In practice the large number of n is usually chosen to get the more accurate value. Also,. We set k=2.

**Step 2:** We compute  $L_2^*$  as follows:

$$L_2^* = \left(\frac{F_{3-2+1}}{F_{3+1}}\right)L = \left(\frac{F_2}{F_4}\right).5 = \frac{2}{5}.5 = 2.$$

Calculate  $x_1 = 0 + 2 = 2$  and  $x_2 = 5 - 2 = 3$ .

**Step 3:** Let us compute  $f(x_1) = 31$  and  $f(x_2) = 27$ We have  $f(x_1) > f(x_2)$ , we eliminate the region  $(0, x_1)$  or (0, 2). Now, we set a = 2, b = 5. **Step 4:** Since  $k=2\neq 3$ , we increase k=k+1 and go to step 2. This completes one iteration.

Iteration 2: Now the new interval is (2,5), i.e., a=2, b=5

**Step 2:** Compute, 
$$L_3^* = \left(\frac{F_1}{F_4}\right)L = \frac{1}{5}$$
.  $5 = 1$ ,  $x_1 = 2 + 1 = 3$ , and  $x_2 = 5 - 1 = 4$ .

**Step 3:** The function evaluation at  $x_1 = 3$  is evaluated in the last iteration. Thus, we need to compute the function at  $x_2 = 4$  implies  $f(x_2) = 29.5$ . We have  $f(x_1) < f(x_2)$ . Therefore, eliminate the region (4,5).

**Step 4:** At this iteration k=n=3 and we terminate the algorithm. Therefore, the final interval is (2,4).



# Example:

Find the minimum of the function  $f(x) = 10 + x^3 - 2x - 5e^x$  using Fibonacci search method on (-5,5) and n=3.

## Golden Search Method

## Algorithm:

Step 1: Choose a lower bound a and an upper bound b. Also choose a small number  $\epsilon$ . Normalize the variable by using the equation w = (x - a)/(b - a). Thus,  $a_w = 0$ ,  $b_w = 1$ , and  $L_w = 1$ . Set k = 1.

Step 2: Set  $w_1 = a_w + (0.618)L_w$  and  $w_2 = b_w - (0.618)L_w$ . Compute  $f(w_1)$  or  $f(w_2)$ , depending on whichever of the two was not evaluated earlier. Use the fundamental region-elimination rule to eliminate a region. Set new  $a_w$  and  $b_w$ .

Step 3: Is  $|L_w| < \epsilon$  small? If not, set k = k + 1, go to step 2; Else terminate.

### Note:

- 1) Using golden search method, after n function evaluations the interval reduces to  $(0.618)^{n-1}$ .
- 2) The number of function evaluations n required to achieve a desired accuracy  $\epsilon$  is given by  $(0.618)^{n-1}(b-a)=\epsilon$ .

### Relation between Fibonacci method and Golden search method:

$$F_n = F_{n-1} + F_{n-2}$$
  $\frac{F_n}{F_{n-1}} = 1 + \frac{F_{n-2}}{F_{n-1}}$  If  $n$  is large i.e., as  $n \to \infty$  then 
$$\lim_{n \to \infty} \frac{F_n}{F_{n-1}} = 1 + \lim_{n \to \infty} \frac{F_{n-2}}{F_{n-1}}$$
  $r = 1 + \frac{1}{r}$   $r^2 = r + 1$   $r^2 - r - 1 = 0$  By solving  $r = \frac{1 \pm \sqrt{5}}{2}$   $r = 1.618, -0.618$ .

Here, r=1.618 is the golden ratio and r=-0.618 is the conjugate golden ratio.

Note: As  $n \to \infty$ ,  $\lim_{n \to \infty} \frac{F_n}{F_{n-1}} = \frac{1}{\lim_{n \to \infty} \frac{F_{n-2}}{F_{n-1}}}$ 

### Example:

Find the minimum of  $f(x) = x^2 + \frac{54}{x}$  using Golden search method on [0, 5] and  $\epsilon = 0.01$ .

#### Solution:

**Step 1:** Given a=0,b=5. The transformation of the variable x is given by  $w=\frac{x-a}{b-a}$   $w=\frac{x}{5}$ . Thus,  $a_w=0$ ,  $b_w=1$ , and  $L_w=1$ . Since, given function transformed to  $g(w)=25w^2+\frac{54}{5w}$ , we set k=1.

#### Iteration 1:

**Step 2:** We set  $w_1 = 0 + (0.618)1 = 0.618$  and  $w_2 = 1 - (0.618)1 = 0.382$ . The function values are  $g(w_1) = 27.02$  and  $g(w_2) = 31.92$ . Here,  $g(w_1) < g(w_2)$ . Therefore, the minimum cannot lie in any point smaller than 0.382. Thus, we eliminate the region  $(a, w_2)$  or (0, 0.382). Thus,  $a_w = 0.382$  and  $b_w = 1$ . At this stage,  $L_w = 1 - 0.382 = 0.618$ .

**Step 3:** Here,  $|L_w|$  is not less than  $\epsilon$ . Therefore, go to next iteration by setting k=2.

#### Iteration 2:

**Step 2:** Let us calculate 
$$w_1 = 0.382 + (0.618)0.618 = 0.764$$
.  $w_2 = 1 - (0.618)0.618 = 0.618$ .

The function value at  $w_2 = 0.618$  is calculated in the previous iteration. Therefore, we need to compute the function value at  $w_1$ :

 $g(w_1) = 28.73$ . And,  $g(w_1) > g(w_2)$  we eliminate the interval (0.763, 1) using fundamental region of elimination rule.

The new bounds are  $a_w = 0.382$  and  $b_w = 0.764$ ; and  $L_w = 0.764 - 0.382 = 0.382$ .

**Step 3:** Here,  $|L_w| = 0.382 < 0.01$ . Therefore, go to next iteration by setting k = 3.

#### Iteration 3:

**Step 2:** Here, we observe that 
$$w_1 = 0.382 + (0.618)0.382 = 0.618$$
.  $w_2 = 0.764 - (0.618)0.382 = 0.528$ 

From above  $w_1$  and  $w_2$ , the function value at  $w_1 = 0.618$  is evaluated earlier. Thus, we need to compute the function value only at  $w_2 = 0.528$  is g(0.528) = 27.43. Also, we have  $g(w_1) < g(w_2)$  and we eliminate the interval (0.382, 0.528) by fundamental region of elimination. The new interval is (0.528, 0.764) and  $L_w = 0.236$ .

**Step 3:** Here,  $|L_w| = 0.236 < 0.01$ . Therefore, go to next iteration by setting k=4.

#### Iteration 4:

### Step 2:

$$a_w = 0.528, b_w = 0.764$$
  
 $w_1 = 0.528 + (0.618)0.236 = 0.6738$   
 $w_2 = 0.764 - (0.618)0.236 = 0.6182$   
 $g(w_1) = 27.3787$  and  $g(w_2) = 27.0244$ 

From the above it is clear that  $g(w_1) > g(w_2)$  and we eliminate (0.6738, 0.764) by region elimination method. The new interval is (0.528, 0.6738) and  $L_w = 0.1458$ .

**Step 3:**  $|L_w| = 0.1458 < 0.01$ . Therefore, go to next iteration by setting k=5.

You can go further iterations until  $|L_w| < \epsilon (= 0.01)$ .

#### Note:

The termination condition for the Golden Search method can be depend on the number of functional evaluations or threshold value for the length of the interval  $(\epsilon)$ .

## Example:

Find the maximum of  $f(x) = \frac{x^4}{4} - \frac{5x^3}{3} - 6x^2 + 19x - 7$ , Using Golden section search Method with the interval [-4,0] and  $\epsilon = 0.1$ .

### Solution:

$$w = \frac{x - (-4)}{4} = \frac{x + 4}{4}$$

$$x = 4w - 4$$

$$g(w) = \frac{(4w - 4)^4}{4} - \frac{5(4w - 4)^3}{3} - 6(4w - 4)^2 + 19(4w - 4) - 7$$

Do the rest ...

### **Practice Problems:**

Minimize the following functions using Region elimination methods (Fibonacci search method, Golden section search method).

1) 
$$\frac{x^2}{16} - \frac{27x}{4}$$
 in range (0, 10)

2) 
$$x^3 + x^2 - x - 2$$
 in the interval  $(-2, 2)$ 

3) 
$$-\frac{1.5}{x} + 6(10^{-6})/x^9$$
 in  $(-4, 4)$ 

4) 
$$f(x) = \exp(x) - x^3$$
 in (0, 5)

5) 
$$f(x) = x^5 - 5x^3 - 20x + 5$$
 in  $(0, 5)$ 

6. Find the minimum of the following function using golden section search method in terms of the obtained interval after 10 function evaluations in the interval (-10,5)

$$f(x) = x^2 - 10 \exp(0.1x).$$

https://www.investopedia.com/articles/technical/04/033104.asp#:~:text=The%20golden%20ratio%20is%20an,introd uced%20the%20concept%20to%20Europe.