Abstract algebra I Homework 4

B13902022 賴昱錡

1)

(a)

Define the homomorphism φ as below, where the congruent class modulo p is denoted as $[x]_p$:

$$\varphi: \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z} \to \mathbb{Z}/pq\mathbb{Z} \ \varphi(([x]_p, [x]_q)) = [x]_{pq}$$

Suppose $[x]_p = [y]_p$, $[x]_q = [y]_q$, then $\varphi(([x]_p, [x]_q)) = [x]_{pq}$. Since p|(x-y) and q|(x-y), we have pq|(x-y), $[x]_{pq} = [y]_{pq}$. Hence, $[x]_{pq} = [y]_{pq} = \varphi(([y]_p, [y]_q)) = \varphi(([x]_p, [x]_q))$. Thus φ is well-defined.

 $\varphi(([x]_p, [x]_q) + ([y]_p, [y]_q)) = \varphi(([x+y]_p, [x+y]_q)) = [x+y]_{pq} = [x]_{pq} + [y]_{pq} = \varphi(([x]_p, [x]_q)) + \varphi(([y]_p, [y]_q)), \text{ so } \varphi \text{ is a homomorphism.}$

Suppose $\varphi([x]_p, [x]_q) = 0$, x must be multiple of pq, hence, $([x]_p, [x]_q) = ([0]_p, [0]_q)$. Since $\ker \varphi = \{([0]_p, [0]_q)\}, \varphi$ is injective, and obviously $|\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}| = |\mathbb{Z}/pq\mathbb{Z}| = pq$, φ is also surjective. By proposition above, φ is an isomorphism.

(b)

Let $G = \langle g \rangle$, $H = \langle h \rangle$, |G| = n, |H| = m. If $G \times H$ is cyclic, there exists an integer d such that $(g,h)^d = (e_G,e_H)$. Since G,H are cyclic, we have $n|d,m|d \to \text{lcm }(n,m)|d$. The minimum integer we can choose for d is lcm (n,m), it's also the order of $G \times H$. Since $|G \times H| = nm = \text{lcm }(n,m)$, we conclude that gcd (n,m) = 1.

Suppose $\gcd(n,m) = 1$, $\langle (g,h) \rangle$ can generate $G \times H$, since the least integer d such that $(g,h)^d = (e_G,e_H)$ is $\operatorname{lcm}(n,m) = nm$, which equals to the order of $G \times H$. Thus, $G \times H$ is cyclic if and only if $\gcd(|G|,|H|) = 1$.

(c)

 $S_3 = (e, (12), (13), (23), (123), (132)),$ the only proper subgroups are

$$\{e\}, \{e, (12)\}, \{e, (13)\}, \{e, (23)\}, \{e, (123), (132)\}$$

Since every two distinct subgroups follow the property: their orders are coprime and both are cyclic, their direct product should also be cyclic group by the result of last subproblem. But S_3 is not cyclic, thus it's not direct product of any of its proper subgroups.

2)

G is the dicyclic group Dic₃, it contains $\{e_G, a, a^2, a^3, a^4, a^5, ab, a^2b, a^3b, a^4b, a^5b\}$, where e_G is its identity. The order is 12.

H is the dihedral group D_3 , it contains $\{e_H, r, r^2, r^3, r^4, r^5, rs, r^2s, r^3s, r^4s, r^5s\}$, where e_H is its identity. The order is 12.

Consider the order of each element in H, $|e_H| = 1$, |r| = 6, $|r^2| = 3$, $|r^3| = 2$, $|r^4| = 3$, $|r^5| = 6$. Since $sr = r^{-1}s$, $sr^2 = r^{-1}sr = r^{-2}s$, $\cdots \Rightarrow sr^i = r^{-i}s$ and $s^2 = 1$, all elements in the form of r^is have order of 2. Since $(r^is)^2 = r^isr^is = r^ir^{-i}ss = e_H$.

Consider the order of each element in G, $|e_G| = 1$, |a| = 6, $|a^2| = 3$, $|a^3| = 2$, $|a^4| = 3$, $|a^5| = 6$. Since $ba = a^{-1}b$, $ba^2 = a^{-1}ba = a^{-2}b \cdots \Rightarrow ba^i = a^{-i}b$ and $b^2 = a^3$, $b^4 = 1$, all the elements in the form of a^ib have order of 4 $((a^ib)^2 = a^iba^ib = b^2 = a^3$, the order of a^3 is 2).

Suppose there exists an isomorphism φ from H to G, for any element $h \in H$, we have $|\varphi(h)|$ divides |h|, since if |h| = m, then $\varphi(h^m) = \varphi(e_H) = \varphi(h)^m = e_G$, so the order of $\varphi(h) \in G$ have the order divides m. But the elements with order 4 in G can't divides the orders of any of H, hence, G and H can't be isomorphic.

- 3)
- (a)
- (b)
- (c)
- 4)
- (a)
- (b)
- (c)