COL 362 & COL 632

Query Optimization 01 Apr 2023

Statistical Information for Cost Estimation

- n_r : number of tuples in a relation r.
- **b**_r: number of blocks containing tuples of r.
- I_r: size (length) of a tuple of r.
- $\checkmark f_r$: blocking factor of r i.e., the number of tuples of r that fit into one block.
- If tuples of *r* are stored together physically in a file, then:

$$b_r = \left\lceil \frac{n_r}{f_r} \right\rceil$$

• V(A, r): number of distinct values that appear in r for attribute A; same as the size of $\Pi_A(r)$

Histograms

frequent optimal Instogram

Histogram on attribute age of relation person

- Equi-width histograms
- Equi-depth histograms break up range such that each range has (approximately) the same number of tuples
- Many databases also store **n** most-frequent values and their counts
- Histogram is built on remaining values only

Selection Size Estimation

- $\sigma_{A=v}(r)$ $\frac{n_r}{V(A,r)}$: number of records that will satisfy the selection
- $\sigma_{A \leq v}(r)$

Let c denote the estimated number of tuples satisfying the condition V(A,r):

• If $\min(A,r)$ and $\max(A,r)$ are available in catalog

(0.

•
$$c = \begin{cases} 0, & v < \min(A, r) \\ n_r \left(\frac{v - \min(A, r)}{\max(A, r) - \min(A, r)} \right) \end{cases}$$

If histograms available, we can refine above estimate

• In absence of statistical information c is assumed to e^{n_r}

(case of $\sigma_{A \ge v}(r)$ is symmetric)

Size Estimation of Complex Selections

- The **selectivity of a condition** θ_i is the probability that a tuple in the relation r satisfies θ_i . If s_i is the number of satisfying tuples in r, the selectivity of θ_i is given by s_i/n_r .

• Conjunction:
$$\sigma_{\theta_1 \wedge \theta_2 \wedge \cdots \wedge \theta_n}(r)$$
 Assuming independence, estimate of tuples in the result is:
$$\underbrace{n_r(s_1 \times s_2 \times \cdots \times s_n)}_{n_r^n} \qquad \underbrace{n_r(s_1 \times s_2 \times \cdots \times s_n)}_{n_r^n}$$

• Disjunction: $\sigma_{\theta_1 \vee \theta_2 \vee \cdots \vee \theta_n}(r)$ Estimated number of tuples (again assuming independence):

$$n_r \left(1 - \left(\left(1 - \frac{s_1}{n_r} \right) \times \left(1 - \frac{s_2}{n_r} \right) \times \dots \times \left(1 - \frac{s_n}{n_r} \right) \right) \right)$$

• Negation: $\sigma_{-}(r)$

Estimation of the Size of Joins

- The Cartesian product $r \times s$ contains $n_r \cdot n_s$ tuples; each tuple occupies $s_r + ss$ bytes.
- If $R \cap S = \emptyset$, then $r \bowtie s$ is the same as $r \times s$
- If R ∩ S is a key for R, then a tuple of s will join with at most one tuple from r
 - the number of tuples in $r \bowtie s$ is no greater than the number of tuples in s
- If $R \cap S$ in S is a foreign key in S referencing R, then the number of tuples in $r \bowtie s$ is the same as the number of tuples in s.
 - The case for $R \cap S$ being a foreign key referencing S is symmetric.

Estimation of the Size of Joins (A,s) # district A in s

• If $R \cap S = \{A\}$ is not a key for R or S

If we assume that every tuple t in r produces tuples in $r \bowtie s$, the number of tuples in $r \bowtie s$ is estimated to be: $\frac{n_r \cdot n_s}{V(A,s)}$

If the reverse is true, the estimate obtained will be: $\frac{n_r \cdot n_s}{V(A|r)}$

The lower of these two estimates is probably the more accurate one.

- Can improve on above if histograms are available
 - Use formula similar to above, for each cell of histograms on the two relations

Size Estimation for Other Operations

- Projection: estimated size of $\prod_{A}(r) = V(A,r)$
- Aggregation : estimated size of $G_{VA}(r) = V(A, r)$
- Set operations
 - For unions/intersections of selections on the same relation: rewrite and use size estimate for selections
 - E.g. $\sigma_{\theta 1}$ (r) \cup $\sigma_{\theta 2}$ (r) can be rewritten as $\sigma_{\theta 1}$ v $\theta 2$ (r)
 - For operations on different relations:
 - estimated size of $r \cup s$ = size of r + size of s.
 - estimated size of $r \cap s$ = minimum size of r and size of s.
 - estimated size of r s = r.
 - All the three estimates may be quite inaccurate, but provide upper bounds on the sizes.

Optimization of Updates

Halloween problem (https://en.wikipedia.org/wiki/Halloween_Problem)

```
update R set A = 5 * A where A > 10
```

- If index on A is used to find tuples satisfying A > 10, and tuples updated immediately, same tuple may be found (and updated) multiple times
- Solution 1: Always defer updates
 - collect the updates (old and new values of tuples) and update relation and indices in second pass
 - Drawback: extra overhead even if e.g. update is only on R.B, not on attributes in selection condition
- Solution 2: Defer only if required
 - Perform immediate update if update does not affect attributes in where clause, and deferred updates otherwise.