Enrollment Analysis Group Project

IST 722 Spring Semester 2015

Group B

Sahil Baxi, Sam Edelstein, Garnette Pereira, Gaurav Shinde, Qiong Wu

Table of Contents

Overview Section	3
Project Charter	3
Define project background	3
Project Scope	3
Success Criteria	3
Business Justification	
Team Member Roles and Responsibilities	5
Key Stakeholders	6
Analysis Section	7
Business processes	7
Bus matrix	7
Bubble Chart	7
Attribute List	8
Issues list	10
Design Section	11
Detailed bus matrix	
Fact / Derived fact worksheet	
Detailed dimensional design worksheet	11
Dimensional Hierarchies	11
Snowflake model diagrams	13
ETL Specifications	13
Detailed ETL flow for each source to target	14
Team Contribution Report	21
Implementation	22
Rolap Schema in SQL Server	
SSIS ETL Code / Packages	22
Analysis Services MOLAP Database	
BI Front End	
Poster	23
Appendix - Attached Files	24

Overview Section

Project Charter

Define project background

The School of Information Studies at Syracuse University has a large amount of data that needs to be analyzed. Based on feedback from both end-users and staff in the school, people are disappointed with the enrollment process. Oftentimes, classes are filled immediately after the enrollment period opens, but by the time the first day of class comes, and again after the first couple of weeks of classes have passed, many students have dropped their respective classes, leaving empty spots where others might have enrolled, but now it is too late.

This project will use data from the School of Information Studies' database to increase the efficiency of the student enrollment processes. The project team will create dimensional models within a data warehouse to aid in making the final recommendations.

Project Scope

This project's scope will focus on several areas, including:

- Recommending, designing, building, and implementing a data warehouse for the School of Information Studies to help better plan their enrollment processes
- Analyze enrollment data for both online and in-person classes along with the respective drop rates and waitlist numbers for each class
- Create findings that include an overall documentation of each class that gets
 dropped by term (transactional), how many classes are dropped in online
 classes versus in person classes (periodic snapshot), and how many people
 that sit on a waitlist end up enrolling in a class (accumulating snapshot).
- No new attributes will be added to existing data. Only the real-time data that is currently collected will be used.
- Answer whether the School of Information Studies should purposely overenroll classes to protect against empty seats after people drop the class.
 Answer if online courses experience higher drop rates than in person courses.
- Only looking at solutions for the School of Information Studies
- Deliver the Business Intelligence tool using Excel or similar program
- Create a poster for presentation to be delivered to Professor Fudge

Success Criteria

A successful project will answer the following questions adequately:

Based on waitlist data, which iSchool courses warrant additional sections?

 Based on enrollment data, which iSchool course sections should be dropped in future semesters?

Business Justification

This project will benefit the School of Information Studies in several ways. When students are unable to enroll in a course because it is full, they may be frustrated and end up signing up for a class that was not their top choice. This dissatisfaction could result in lower grades due to a lack of motivation. It could also lead to a student feeling that the experience at the School of Information Studies was not good, potentially negatively affecting future recruitment efforts.

The School of Information Studies also wants to fill its classes as much as possible. If classes are experiencing high drop rates, seats that would have otherwise been filled may stay empty. This presents an inefficiency for the School of Information Studies. Even those students who choose to sit on a waitlist in hopes that other students drop, may end up enrolling in a different class, and ultimately will not accept their opportunity to join the class they originally wanted.

Team Member Roles and Responsibilities

Roles and responsibilities for the project were split up amongst the group members. Though each group member had specific tasks with which they were responsible, all group members weighed in on every aspect of the project and had a hand in the project's ultimate success. Work was well distributed, and each group member met deadlines. The work responsibilities were distributed as follows:

Business Lead: Sam Edelstein and Garnette Pereira

Project Manager: Sahil Baxi and Qiong Wu

Data Architect: All

ETL: Sahil Baxi and Gaurav Shinde

Business Analyst: Gaurav Shinde and Qiong Wu

Business Intelligence: Sam Edelstein and Garnette Pereira

Key Stakeholders

This project focused on enrollment analysis for the School of Information Studies at Syracuse University and was completed for Professor Michael Fudge. The key stakeholders for this project are:

- School of Information Studies Dean and other leadership –
 Analysis helps to answer how to dedicate limited faculty resources to class sections and which courses are over or under-enrolled. The leadership needs to know long term trends to help better plan for future courses and faculty workload.
- **School of Information Studies faculty** The faculty can track how their class enrollment numbers compare to other similar class sections and can see why they would be asked to teach different courses because of student demand.
- School of Information Studies enrollment management and counselors The analysis will give a better sense of the types of courses other students are taking and will result in better advice about the types of courses that will be available.
- School of Information Studies students Students are eager to enroll in the class sections they need to fill requirements and that are essential to their education to help with a future career. More course sections in classes that have consistently high demand and fewer course sections of course that have low demand will enable every student to enroll in the classes they need to graduate.
- Syracuse University administration Though this exact model
 would not apply to schools and colleges outside of the iSchool, similar
 models could be built across Syracuse University to ensure efficient
 allocation of resources when it comes to class sections. Particularly for
 undergraduate students who tend to take classes in many different
 schools, ensuring the appropriate number of seats, and professors, are
 available is critical to a well-functioning university.

Analysis Section

Business processes

The business process for this project focuses on enrollment analysis. All associated details are listed below. The files can also be found in the attached documents:

• Project-High-Level-Worksheet.xlsx

Bus matrix

The matrix shown above represents iSchool Enrollment business processes and its associated dimensions. This matrix is a blueprint for our Data Warehouse/Business Intelligence data organization. Each row in the matrix represents a business process, while each column corresponds to a dimension of the business. The matrix cells marked with an 'X' indicate which columns are associated with each row.

Business Fact Process Fact Grain		Consulation		erm	structor	lassSection	ayJunk		
Na	me	Table	Туре	Granulairty	Facts		느	ū	△
				One row means per class	CountCapacity, CountEnrolled,	Х	Х	Х	х
Er	nrollmentAnalysis	FactEnrollment	Transaction	section at one term	CountWaitlist, CountAvailable, CpuntKPIClass				

Bubble Chart

Above is an example of a high-level model diagram shown through the graphical design of a bubble chart. It shows the dimensional model relationship with fact table in the middle and other five dimensions surrounding. This particular

bubble chart shows the fact and dimension table applicable to the enrollment analysis business process.

Attribute List

The Attributes and Metrics List break down each dimension and fact into further detail. The dimensions contain descriptions of the attributes of each dimension to include: examples of the data found in those fields of information, and alternative names and/or descriptions in which the data may be seen. The fact tables contain attributes and foreign keys, which reference the primary keys in other dimensions. These primary and foreign keys are important to establish, as they will be referenced through the dimensional model. This list also allows the design team to further understand how the dimensions will work with one another in support of the business processes.

Dimension /	Attribute /	•	Alternate	Sample
Fact Table	Fact Name	Description	Names	Values
DimTerm	termKey	Primary Key		1
DimTerm	termId	Natural Key		1141
DimTerm	termName	Term Description		Spring 2015
DimTerm	TermAcademicYear	Term Acedemic Year		2014-2015
Dim_Instructor	InstructorKey	Primary Key		
Dim_Instructor	instld	instructor id /hashed_Suid		F201936345F8C3C2C39
Dim_Instructor	Name	firstName + ' ' + lastName		Michael A Fudge Jr
Dim_Instructor	instAffiliation	instructor primary affiliation		Adjunct Faculty
DimDayJunk	dayJunkKey	Primary Key		
DimDayJunk	MeetingDays	Class Meeting days		MW
DimDayJunk	OnMonday	Class on Monday or not		1
DimDayJunk	OnTuesday	Class on Tuesday or not		0
DimDayJunk	OnWednesday	Class on Wednesday or not		1
DimDayJunk	OnThursday	Class on Thursday or not		0
DimDayJunk	OnFriday	Class on Friday or not		0
DimDayJunk	OnSaturday	Class on Saturday or not		0
DimDayJunk	OnSunday	Class on Sunday or not		0
DimClassSections	classSectionKey	Primary Key		1
DimClassSections	id	Natural Key		1112.39757
DimClassSections	classNumber	5 digit class number		39757
DimClassSections	courseSubj	Course Subject		IST
DimClassSections	courseNum	Course Number		659
DimClassSections	courseTitle	Course Title		Data Admin Concepts
DimClassSections	classEnrollmentTotal	Total number of enrollment		15
DimClassSections	classAcadCareer	Undergrad or grad		GRAD
DimClassSections	COURSE_KEY	course key		10709
DimClassSections	classEnrollmentCapacit			40
DimClassSections	classSection	Class Section		M001
DimClassSections	TERM	Term		1112
FactEnrollment	classSectionKey	PK,FK		1
FactEnrollment	dayJunkKey	FK		1
FactEnrollment	instructorsKey	FK		1
FactEnrollment	termKey	PK, FK		1
FactEnrollment	CountCapacity	Capacity of a partcular class section		40
FactEnrollment	CountEnrolled	number of enrolled students		25
FactEnrollment	CountWaitlist	number of students on the waitlist		10
FactEnrollment	CountAvailable	the number of seats available		15
FactEnrollment	CountKPIClass	Capacity - Enrolled + Waitlist		

Issues list

	Task /	,		1	Identified	Reported	Respon-	•	,	Date
Issue #	Topic	~	Issue	*	Date	Ву	sible	Status T	Priority <u></u>	Closed <u></u>
	1 Topic		Bus Matrix Design		27-Feb	Team	Team	Resolved		
	2 Task		verify data available from External Source in five dimensions		8-Apı	Team	Team	Resolved		
	3 Task		Detailed Dimensional Modeling * Revised with day junk		10-Apr	Team	Team	Resolved		
	4 Task	•	Load data from stage to datawarehouse		15-Apı	Team	Team	Resolved		
	5 Topic		Identify expected findings and data visualization		20-Apı	Team	Team	Resolved		

Design Section

Detailed bus matrix

Find full file attached: Project-High-Level-Worksheet.xlsx

Business Process Name	Fact Table	Fact Grain Type	Granulairty	Facts		nstructor	ClassSection	DayJunk
EnrollmentAnalysis	FactEnrollment	Transaction	One row means per class section at one term	CountCapacity, CountEnrolled, CountWaitlist, CountAvailable, CpuntKPIClass	Х	Х	х	x

Fact / Derived fact worksheet

Detailed dimensional design worksheet

Dimensional Hierarchies

Class section dimension hierarchy:

Term dimension hierarchy:

Snowflake model diagrams

See SSAS Attachment for more details

ETL Specifications

See SSIS Attachment for more details From Source to Stage overview:

From Stage to Data Warehouse Overview:

Detailed ETL flow for each source to target

See SSIS Attachment for more details

Class Section Dimension:

Stage to Data Warehouse

Term Dimension:

Source to Stage

Stage to Data Warehouse

Day Junk Dimension:

Stage to Data Warehouse

Instructor Dimension:

Stage to Data Warehouse

Fact Enrollment Dimension:

Team Contribution Report

For this project, each team member had specific responsibilities, but all team members also worked collaboratively and stepped in to help in all aspects of the project when needed. The team held, at minimum, weekly meetings outside of class time to discuss the project and stay on task. At these meetings, work was completed and expectations were set for future meetings. All group members came to every meeting as long as they were available, and everyone played a part in ensuring project success.

Implementation

Rolap Schema in SQL Server

For this project, all data loaded into SQL Server can be found in the siedelst_stg and siedelst_dw databases.

SSIS ETL Code / Packages

All files related to SSIS ETL Code and packages can be found in the attached files: Group B Project.sln

Analysis Services MOLAP Database

All files related to Analysis Service and the MOLAP database can be found us the ist722_siedelst database.

BI Front End

Excel 2013 was used, along with PowerPivot and Power View to serve as front end Business Intelligence. The Excel file is attached, and titled Visualize.xlsx.

Poster

See "Group B Poster-Sahil.pdf" for a more detailed version of the poster

Appendix – Attached Files

- Project-High-Level-Worksheet.xlsx
- Detailed-Dimensional-Modeling-V6.xlsm
- Visualize.xlsx
- Group B Poster.pdf
- DimensionQueries.sql
- Group B Project.sln
- SSAS found in IST722_siedelst database