Машинное обучение Методы восстановления регрессии

Содержание лекции

- Метод наименьших квадратов
- Геометрический смысл
- Регуляризация
- Сингулярное разложение
- Непараметрическая регрессия

Метод наименьших квадратов

- X = Rⁿ, Y = R
- Модель: $a(x) = f(x, \alpha)$
- Метод наименьших квадратов (МНК):

$$Q(\alpha, X^{\ell}) = \sum_{i=1}^{\ell} w_i (f(x_i, \alpha) - y_i)^2 \to \min_{\alpha}$$

• w_і — вес, степень важности і-го объекта

Многомерная линейная регрессия

- f₁ (x), . . . , f_n (x) числовые признаки;
- Модель:

$$f(x,\alpha) = \sum_{j=1}^{n} \alpha_j f_j(x), \qquad \alpha \in \mathbb{R}^n$$

• Матричная форма:

$$F_{\ell \times n} = \begin{pmatrix} f_1(x_1) & \dots & f_n(x_1) \\ \dots & \dots & \dots \\ f_1(x_\ell) & \dots & f_n(x_\ell) \end{pmatrix}, \quad y_{\ell \times 1} = \begin{pmatrix} y_1 \\ \dots \\ y_\ell \end{pmatrix}, \quad \alpha_{n \times 1} = \begin{pmatrix} \alpha_1 \\ \dots \\ \alpha_n \end{pmatrix}$$

$$Q(\alpha, X^{\ell}) = \sum_{i=1}^{\ell} (f(x_i, \alpha) - y_i)^2 = ||F\alpha - y||^2 \to \min_{\alpha}$$

Нормальная система уравнений

• Необходимое условие минимума

$$\frac{\partial Q}{\partial \alpha}(\alpha) = 2F^{\mathsf{T}}(F\alpha - y) = 0$$

$$F^{\mathsf{T}}F\alpha = F^{\mathsf{T}}y$$

- где F^тF ковариационная матрица n×n набора признаков f₁, . . . , f_n
- Решение системы: $\alpha^* = (F^{\mathsf{T}}F)^{-1}F^{\mathsf{T}}y = F^+y$
- Значение функционала: $Q(\alpha^*) = \|P_{FY} y\|^2$ где P_F проекционная матрица

$$P_F = FF^+ = F(F^{\mathsf{T}}F)^{-1}F^{\mathsf{T}}$$

Геометрический смысл

• Любой вектор вида $y = F\alpha$ – линейная комбинация признаков

$$\|F\alpha - y\|^2 \to \min_{\alpha}$$

• $F\alpha^*$ – аппроксимация вектора у с наименьшим квадратом тогда и только тогда, когда

Fα* - проекция у на подпространство признаков

Вероятностный подход

 Модель данных с некоррелированным гауссовским шумом:

$$y(x_i) = f(x_i, \alpha) + \varepsilon_i, \quad \varepsilon_i \sim \mathcal{N}(0, \sigma_i^2), \quad i = 1, \dots, \ell$$

• Принцип максимума правдоподобия:

$$L(\varepsilon_1, \dots, \varepsilon_\ell | \alpha) = \prod_{i=1}^\ell \frac{1}{\sigma_i \sqrt{2\pi}} \exp\left(-\frac{1}{2\sigma_i^2} \varepsilon_i^2\right) \to \max_{\alpha}$$

$$-\ln L(\varepsilon_1,\ldots,\varepsilon_\ell|\alpha) = \operatorname{const}(\alpha) + \frac{1}{2}\sum_{i=1}^\ell \frac{1}{\sigma_i^2} (f(x_i,\alpha) - y_i)^2 \to \min_{\alpha}$$

• В итоге пришли к МНК

Пример – приближение многочленами

Данные: sin(x) + случайный шум

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

Многочлен степени 0

Многочлен степени 3

Многочлен степени 9

Коэффициенты многочленов

	M = 0	M = 1	M = 3	M = 9
w_0^\star	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
$-w_2^\star$			-25.43	-5321.83
w_3^\star			17.37	48568.31
w_4^\star				-231639.30
w_5^\star				640042.26
w_6^\star				-1061800.52
w_7^\star				1042400.18
w_8^\star				-557682.99
w_9^{\star}				125201.43

В переобученном случае наблюдаются аномально большие коэффициенты многочлена. Выход - регуляризация

Гребневая регрессия

 Штраф за увеличение нормы вектора весов ||α|| :

$$Q_{\tau}(\alpha) = \|F\alpha - y\|^2 + \frac{1}{\sigma} \|\alpha\|^2$$

$$\tau = \frac{1}{\sigma}$$

 Модифицированное МНК-решение (τI_n — «гребень»):

$$\alpha_{\tau}^* = (F^{\mathsf{T}}F + \tau I_n)^{-1}F^{\mathsf{T}}y$$

Многочлен степени 9 с регуляризацией

Гребневая регрессия

Сингулярное разложение

Произвольная $\ell \times n$ -матрица представима в виде сингулярного разложения (singular value decomposition, SVD):

$$F = VDU^{\mathsf{T}}$$
.

Основные свойства сингулярного разложения:

- $\ell \times n$ -матрица $V = (v_1, \dots, v_n)$ ортогональна, $V^{\mathsf{T}}V = I_n$, столбцы v_i собственные векторы матрицы FF^{T} ;
- $n \times n$ -матрица $U = (u_1, \dots, u_n)$ ортогональна, $U^{\mathsf{T}}U = I_n$, столбцы u_j собственные векторы матрицы $F^{\mathsf{T}}F$;
- $0 = n \times n$ -матрица D диагональна, $D = \operatorname{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n})$, $\lambda_j \geqslant 0$ собственные значения матриц $F^{\mathsf{T}}F$ и FF^{T} .

Решение МНК через сингулярное разложение

$$\alpha^* = (F^\mathsf{T} F)^{-1} F^\mathsf{T} y = F^+ y$$

$$F^{+} = (UDV^{\mathsf{T}}VDU^{\mathsf{T}})^{-1}UDV^{\mathsf{T}} = UD^{-1}V^{\mathsf{T}} = \sum_{j=1}^{n} \frac{1}{\sqrt{\lambda_{j}}} u_{j} v_{j}^{\mathsf{T}}$$

$$\alpha^* = F^+ y = UD^{-1}V^{\mathsf{T}}y = \sum_{j=1}^n \frac{1}{\sqrt{\lambda_j}} u_j(v_j^{\mathsf{T}}y)$$

$$F\alpha^* = P_F y = (VDU^{\mathsf{T}})UD^{-1}V^{\mathsf{T}}y = VV^{\mathsf{T}}y = \sum_{i=1} v_i(v_i^{\mathsf{T}}y)$$

$$\|\alpha^*\|^2 = \|D^{-1}V^{\mathsf{T}}y\|^2 = \sum_{j=1}^n \frac{1}{\lambda_j} (v_j^{\mathsf{T}}y)^2$$

Проблема мультиколлинеарности

• Число обусловленности n×n-матрицы Σ:

$$\mu(\Sigma) = \|\Sigma\| \|\Sigma^{-1}\| = \frac{\max\limits_{u: \|u\| = 1} \|\Sigma u\|}{\min\limits_{u: \|u\| = 1} \|\Sigma u\|} = \frac{\lambda_{\max}}{\lambda_{\min}}$$

 При умножении обратной матрицы на вектор, z = Σ⁻¹ u, относительная погрешность усиливается в µ(Σ) раз:

$$\frac{\|\delta z\|}{\|z\|} \leqslant \mu(\Sigma) \frac{\|\delta u\|}{\|u\|}$$

Проблема мультиколлинеарности

- Если матрица Σ = F[⊤]F плохо обусловлена, то:
 - решение становится неустойчивым и неинтерпретируемым, ||α*|| велико;
 - возникает переобучение: на обучении $Q(\alpha^*, X^\ell) = \|F\alpha^* - y\|^2$ мало на контроле $Q(\alpha^*, X^k) = \|F'\alpha^* - y'\|^2$ велико
- Стратегии устранения мультиколлинеарности и переобучения:
 - регуляризация
 - отбор признаков
 - преобразование признаков

Регуляризация с точки зрения SVD-разложения

$$\alpha_{\tau}^* = (F^{\mathsf{T}}F + \tau I_n)^{-1}F^{\mathsf{T}}y$$

$$\alpha_{\tau}^* = U(D^2 + \tau I_n)^{-1}DV^{\mathsf{T}}y = \sum_{j=1}^n \frac{\sqrt{\lambda_j}}{\lambda_j + \tau} u_j(v_j^{\mathsf{T}}y)$$

Без регуляризации:

$$\alpha^* = F^+ y = UD^{-1}V^{\mathsf{T}}y = \sum_{j=1}^n \frac{1}{\sqrt{\lambda_j}} u_j(v_j^{\mathsf{T}}y)$$

Отбор признаков

 LASSO — Least Absolute Shrinkage and Selection Operator

$$\begin{cases} Q(\alpha) = \|F\alpha - y\|^2 \to \min_{\alpha}; \\ \sum_{j=1}^{n} |\alpha_j| \leq \varkappa; \end{cases}$$

Чем меньше к, тем больше нулевых α;

Метод главных компонент (РСА)

- f₁(x), . . ., f_n(x) исходные числовые признаки;
- g₁(x), . . ., g_m(x) новые числовые признаки, m<n;
- Требование: старые признаки должны линейно восстанавливаться по новым:

$$\hat{f}_j(x) = \sum_{s=1}^m g_s(x)u_{js}, \quad j = 1, \dots, n, \quad \forall x \in X$$

как можно точнее на обучающей выборке:

$$\sum_{i=1}^{\ell} \sum_{j=1}^{n} (\hat{f}_{j}(x_{i}) - f_{j}(x_{i}))^{2} \to \min_{\{g_{s}(x_{i})\},\{u_{js}\}}$$

Постановка задачи РСА в матричной форме

$$\hat{F} = GU^{\mathsf{T}} \stackrel{\mathsf{XOTUM}}{pprox} F$$

Найти: и новые признаки G , и преобразование U:

$$\sum_{i=1}^{\ell} \sum_{j=1}^{n} (\hat{f}_{j}(x_{i}) - f_{j}(x_{i}))^{2} = \|GU^{\mathsf{T}} - F\|^{2} \to \min_{G,U}$$

Теорема

Если $m \leqslant \operatorname{rk} F$, то минимум $\|GU^{\mathsf{T}} - F\|^2$ достигается, когда столбцы $U - \operatorname{это} c.\mathrm{B}$. матрицы $F^{\mathsf{T}}F$, соответствующие m максимальным $c.\mathrm{S}$. $\lambda_1,\ldots,\lambda_m$, а матрица G = FU.

При этом:

- $oldsymbol{0}$ матрица U ортонормирована: $U^{\mathsf{T}}U = I_m$;
- $oldsymbol{Q}$ матрица G ортогональна: $G^{\mathsf{T}}G = \Lambda = \mathrm{diag}(\lambda_1, \ldots, \lambda_m)$;

Применение SVD к сжатию изображений

Сколько главных компонент брать?

• Критерий "крутого склона":

Непараметрическая регрессия

• Обычная задача МНК:

$$Q(\alpha, X^{\ell}) = \sum_{i=1}^{\ell} w_i (f(x_i, \alpha) - y_i)^2 \to \min_{\alpha}$$

 Приближение константой f (x, α) = α в окрестности x ∈ X

$$Q(\alpha; X^{\ell}) = \sum_{i=1}^{\ell} w_i(x) (\alpha - y_i)^2 \to \min_{\alpha \in \mathbb{R}}$$

$$w_i(x) = K\left(\frac{\rho(x,x_i)}{h}\right)$$
 - веса объектов x_i относительно x_i

Формула ядерного сглаживания Надарая–Ватсона

$$a_h(x; X^{\ell}) = \frac{\sum_{i=1}^{\ell} y_i w_i(x)}{\sum_{i=1}^{\ell} w_i(x)} = \frac{\sum_{i=1}^{\ell} y_i K\left(\frac{\rho(x, x_i)}{h}\right)}{\sum_{i=1}^{\ell} K\left(\frac{\rho(x, x_i)}{h}\right)}$$

Выбор ширины окна и ядра

h ∈ {0.1, 1.0, 3.0}, гауссовское ядро

Выбор ширины окна и ядра

h ∈ {0.1, 1.0, 3.0}, прямоугольное ядро

Проблема выбросов

- l = 100, h = 1.0, гауссовское ядро $K(r) = \exp(-2r^2)$
- Две точки выбросы с ординатами 40 и -40
- Синяя кривая выбросов нет

Локально взвешенное сглаживание

- Основная идея: чем больше величина ошибки $\varepsilon_i = \left| a_h(x_i; X^\ell \setminus \{x_i\}) y_i \right|$ тем больше прецедент (x_i, y_i) похож на выброс, тем меньше должен быть его вес $w_i(x)$.
- <u>Эвристика:</u> домножить веса $w_i(x)$ на коэффициенты $\gamma_i = \tilde{K}(\varepsilon_i)$ где \tilde{K} ещё одно ядро
- Рекомендация: квартическое ядро

$$\tilde{K}(\varepsilon) = K_Q(\frac{\varepsilon}{6 \operatorname{med}\{\varepsilon_i\}})$$

где $med\{\epsilon_i\}$ — медиана вариационного ряда ошибок.

Алгоритм LOWESS (LOcally WEighted Scatter plot Smoothing)

Вход: X^{ℓ} — обучающая выборка;

Выход: коэффициенты γ_i , $i=1,\ldots,\ell$;

- 1: инициализация: $\gamma_i := 1, i = 1, \ldots, \ell$;
- 2: повторять
- 3: для всех объектов $i = 1, ..., \ell$
- 4: вычислить оценки скользящего контроля:

$$a_{i} := a_{h}(x_{i}; X^{\ell} \setminus \{x_{i}\}) = \frac{\sum_{j=1, j \neq i}^{\ell} y_{j} \gamma_{j} K(\frac{\rho(x_{i}, x_{j})}{h(x_{i})})}{\sum_{j=1, j \neq i}^{\ell} \gamma_{j} K(\frac{\rho(x_{i}, x_{j})}{h(x_{i})})}$$

- 5: для всех объектов $i = 1, ..., \ell$
- 6: $\gamma_i := \tilde{K}(|a_i y_i|);$
- 7: **пока** коэффициенты γ_i не стабилизируются;

Пример работы LOWESS

