Topologie et Calcul différentiel – TD 4: Topologie : distance, norme, fermé, adhérence

Le but de ce TD est d'apprendre à manier les outils de topologie qui nous serviront plus tard.

Distances et normes

Exercice 1 : Des distances en vrac

Démontrer que chacune des applications suivantes est une distance.

1. Sur \mathbb{R} , l'application définie par :

$$\forall (x,y) \in \mathbb{R}^2, \ d_1(x,y) = \frac{|x-y|}{1+|x-y|}.$$

 $\triangleright d_1$ est clairement positive et :

$$\forall (x,y) \in \mathbb{R}^2, \ d_1(x,y) = 0 \Leftrightarrow |x-y| = 0 \Leftrightarrow x = y$$

⊳ On a

$$\forall (x,y) \in \mathbb{R}^{\cdot} \ d_1(x,y) = \frac{|x-y|}{1+|x-y|} = \frac{|y-x|}{1+|y-x|} = d_1(y,x)$$

 \triangleright Pour démontrer l'inégalité triangulaire, on introduit la fonction $f: x > 0 \mapsto \frac{x}{1+x}$. Sa dérivée f' est donnée par :

$$\forall x > 0, \ f'(x) = \frac{1}{(1+x)^2} > 0.$$

Donc f est croissante. On a donc :

$$\begin{split} \forall (x,y,z) \in \mathbb{R}^3, \ d(x,y) &= f\left(|x-y|\right) \leqslant f\left(|x-z| + |z-y|\right) \\ &\leqslant \frac{|x-z|}{1+|x-z| + |z-y|} + \frac{|z-y|}{1+|x-z| + |z-y|} \\ &\leqslant \frac{|x-z|}{1+|x-z|} + \frac{|z-y|}{1+|z-y|} \\ &\leqslant d(x,z) + d(z,y) \end{split}$$

 d_1 est une distance sur \mathbb{R} .

2. Sur $E = \{0,1\}^{\mathbb{N}}$ l'application définie par :

$$\forall (x,y) \in E^2, \ d_2(x,y) = \sum_{n=0}^{+\infty} \frac{|x_n - y_n|}{2^n}$$

L'application d_2 est définie comme la somme d'une série. Il faut d'abord vérifier que d_2 est bien définie. Ensuite, pour montrer que d_2 est une distance, on vérifie les propriétés sur les sommes partielles et on passe à la limite.

 \triangleright On commence d'abord par montrer que d_2 est bien définie :

$$\forall n \in \mathbb{N}, \ \frac{|x_n - y_n|}{2^n} \leqslant \frac{1}{2^n}$$

Comme $\frac{1}{2^n}$ est le terme d'une série convergente et que les termes $\frac{|x_n-y_n|}{2^n}$ sont positifs, on en déduit que d_2 est bien définie.

 \triangleright L'application d_2 est clairement positive. Comme d_2 est définie comme la somme d'une série à termes positifs, on a :

$$\forall (x,y) \in E^2, \ d_2(x,y) = 0 \Leftrightarrow \forall n \in \mathbb{N}, \frac{|x_n - y_n|}{2^n} = 0 \Leftrightarrow \forall n \in \mathbb{N}, \ x_n = y_n \Leftrightarrow x = y_n$$

 \triangleright On a :

$$\forall (x,y) \in E^2, \ \forall N \in \mathbb{N}, \ \sum_{n=0}^{N} \frac{|x_n - y_n|}{2^n} = \sum_{n=0}^{N} \frac{|y_n - x_n|}{2^n}$$

On passe à la limite $(N \to +\infty)$ dans l'égalité et on obtient :

$$\forall (x,y) \in E^2, \ d_2(x,y) = d_2(y,x)$$

⊳ Inégalité triangulaire :

$$\forall (x,y) \in E^2, \ \forall N \in \mathbb{N}, \ \sum_{n=0}^{N} \frac{|x_n - y_n|}{2^n} \leqslant \sum_{n=0}^{N} \frac{|x_n - z_n|}{2^n} + \sum_{n=0}^{N} \frac{|z_n - y_n|}{2^n}$$

On passe à la limite et on obtient :

$$\forall (x,y) \in E^2, \ d_2(x,y) \leqslant d_2(x,z) + d_2(z,y)$$

$$d_2$$
 est une distance sur E .

3. Sur \mathbb{R}^n l'application suivante :

$$\forall (x,y) \in (\mathbb{R}^n)^2, \ d_3(x,y) = \begin{cases} ||x-y|| \text{ si } x \text{ et } y \text{ sont colinéaires} \\ ||x|| + ||y|| \text{ sinon} \end{cases}$$

où $\|.\|$ est une norme sur \mathbb{R}^n .

 \triangleright L'application d_3 est clairement positive et on a :

$$\forall (x,y) \in (\mathbb{R}^n)^2, \ d_3(x,y) = 0 \Leftrightarrow \begin{cases} ||x-y|| = 0 \text{ si } x \text{ et } y \text{ sont colinéaires} \\ ||x|| + ||y|| = 0 \text{ sinon} \end{cases}$$
$$\Leftrightarrow \begin{cases} x = y \text{ si } x \text{ et } y \text{ sont colinéaires} \\ x = y = 0 \text{ sinon} \end{cases}$$
$$\Leftrightarrow x = y$$

⊳ On a

$$\forall (x,y) \in \left(\mathbb{R}^n\right)^2, \ d_3(x,y) = \begin{cases} \|x-y\| \text{ si } x \text{ et } y \text{ sont colinéaires} \\ \|x\| + \|y\| \text{ sinon} \end{cases} = \begin{cases} \|y-x\| \text{ si } x \text{ et } y \text{ sont colinéaires} \\ \|y\| + \|x\| \text{ sinon} \end{cases}$$
$$= d_3(y,x)$$

 \triangleright Pour démontrer l'inégalité triangulaire, on distingue les deux cas. Soient $(x,y,z)\in (\mathbb{R}^n)^3$.

• Si x et y sont colinéaires. Alors :

$$d(x,y) = ||x - y|| \le ||x - z|| + ||z - y||$$

Si x et z sont colinéaires, alors y et z sont colinéaires et on a donc :

$$d(x,y) \leqslant d(x,z) + d(z,y)$$

Sinon, x et z ne sont pas colinéaires et donc z et y ne sont pas colinéaires et on a :

$$d(x,y) = ||x - y|| \le ||x - z|| + ||z - y||$$

$$\le ||x|| + ||z|| + ||z|| + ||y||$$

$$\le d(x,z) + d(z,y)$$

 \bullet Si x et y ne sont pas colinéaires. On a : :

$$d(x,y) = ||x|| + ||y|| = ||x - z + z|| + ||y - z + z||$$

Et donc, en séparant les différents cas :

$$d(x,y) \leqslant \begin{cases} ||x-z|| + ||z|| + ||y|| \text{ si } x \text{ et } z \text{ sont colin\'eaires} \\ ||x|| + ||z|| + ||z-y|| \text{ si } y \text{ et } z \text{ sont colin\'eaires} \\ ||x|| + ||z|| + ||z|| + ||y|| \text{ si } z \text{ n\'est align\'e ni avec } y \text{ ni avec } z \end{cases}$$

Donc on a bien:

$$d(x,y) \leqslant d(x,z) + d(z,y)$$

 d_3 est une distance sur \mathbb{R}^n .

Exercice 2: Une norme sur $\mathscr{C}^1([0,1],\mathbb{C})$

Soit E l'ensemble des fonctions $\mathscr{C}^1([0,1],\mathbb{C})$. Montrer que :

$$f \mapsto ||f|| = \left(|f(0)|^2 + \int_0^1 |f'(t)|^2 dt\right)^{\frac{1}{2}},$$

est une norme sur E.

Posons:

$$\varphi: \left\{ \begin{array}{ccc} E \times E & \to & \mathbb{C} \\ (f,g) & \mapsto & \overline{f(0)} \times g(0) + \int_0^1 \overline{f'(t)} \times g'(t) \, \mathrm{d}t. \end{array} \right.$$

La fonction φ ainsi définie est une forme sesqui-linéaire hermitienne (voir le cours d'algèbre linéaire avancé). De plus, pour tout $f \in E$, $\varphi(f, f) \ge 0$. Supposons que $\varphi(f, f) = 0$. Alors, f(0) = 0 et

$$\int_{0}^{1} |f'(t)|^{2} dt = 0.$$

On en déduit donc que f' est nulle, donc f est constante. Comme f(0) = 0, on peut conclure que f est nulle. La fonction φ est donc un produit scalaire hermitien. Ainsi, pour tout $f \in E$, $\varphi(f, f) = ||f||^2$, ce qui montre que :

||f|| est une norme.

Exercice 3: Les normes ont des boules convexes

Soit E un \mathbb{R} -espace vectoriel et $N: E \to \mathbb{R}$ vérifiant :

1. $\forall x \in E, N(x) \ge 0$ et

$$N(x) = 0 \iff x = 0.$$

2. et

$$\forall x \in E, \, \forall \lambda \in \mathbb{R}, \, N(\lambda \cdot x) = |\lambda| \times N(x).$$

On note $B = \{x \in E, N(x) \leq 1\}.$

1. Montrer que B est convexe si, et seulement si, N vérifie l'inégalité triangulaire.

Montrons (\Leftarrow). Soit $(x,y) \in B$ et $\lambda \in [0,1]$. Montrons que $(1-\lambda).x + \lambda.y \in B$. Par hypothèse N vérifie l'inégalité triangulaire et la propriété d'homogénéité. Donc,

$$N((1-\lambda).x + \lambda.y) \leqslant (1-\lambda) \times N(x) + \lambda \times N(y) \leqslant 1 - \lambda + \lambda = 1.$$

D'où $(1 - \lambda).x + \lambda.y \in B$. Ainsi,

B est convexe

Montrons (\Rightarrow). Soit $(x,y) \in E^2$. Si x=0 ou y=0, alors d'après la première hypothèse, on a : N(x)=0 ou N(y)=0. Donc N(x+y)=N(x)+N(y). Supposons maintenant $x\neq 0$ et $y\neq 0$. Dans ce cas, $N(x)\neq 0$ et $N(y)\neq 0$. De plus,

$$\lambda = \frac{N(x)}{N(x) + N(y)} \in [0, 1], \quad \frac{N(y)}{N(x) + N(y)} \in [0, 1] \quad \text{ et } \quad \frac{N(y)}{N(x) + N(y)} = 1 - \frac{N(x)}{N(x) + N(y)} = 1 - \lambda.$$

D'où, comme B est convexe et que $\frac{1}{N(x)} \cdot x \in B$ et $\frac{1}{N(y)} \cdot y \in B$

$$\lambda \times \frac{1}{N(x)} \cdot x + (1 - \lambda) \times \frac{1}{N(y)} \cdot y \in B.$$

Donc,

$$N\left(\lambda \times \frac{1}{N(x)}.x + (1-\lambda) \times \frac{1}{N(y)}.y\right) \leqslant 1.$$

La propriété d'homogénéité permet alors d'obtenir :

$$N(x+y) \leqslant N(x) + N(y)$$
.

Ainsi,

 ${\cal N}$ vérifie la propriété d'homogénéité.

Exercice 4: Une distance sur \mathbb{R}_+^*

Soit $E =]0, +\infty[$. On définit :

$$\forall (x,y) \in E^2, \ d(x,y) = \left| \frac{1}{x} - \frac{1}{y} \right|$$

1. Montrer que d est une distance sur E.

 \triangleright L'application d est clairement positive et on a :

$$\forall (x,y) \in \mathbb{R}^2, \ d(x,y) = 0 \Leftrightarrow \frac{1}{x} = \frac{1}{y} \Leftrightarrow x = y$$

 \rhd On a :

$$\forall (x,y) \in \mathbb{R}^2, \ d(x,y) = \left| \frac{1}{x} - \frac{1}{y} \right| = \left| \frac{1}{y} - \frac{1}{x} \right| = d(y,x)$$

$$\forall (x, y, z) \in \mathbb{R}^3, \ d(x, y) \leqslant \left| \frac{1}{x} - \frac{1}{z} \right| + \left| \frac{1}{z} - \frac{1}{y} \right|$$
$$\leqslant d(x, z) + d(z, y)$$

d est une distance sur \mathbb{R} .

2. Soit A = [0, 1], A est-elle bornée pour d?

Montrons que A n'est pas borné. Pour cela on pose, pour tout $n \in \mathbb{N}^*$, $x_n = \frac{1}{n}$. On a :

$$\forall y \in A, \ d(x_n, y) = \left| n - \frac{1}{y} \right| \underset{n \to +\infty}{\longrightarrow} +\infty$$

On en déduit que le diamètre de A est infini.

A n'est pas borné.

- 3. Calculer le diamètre de l'ensemble $B =]2, +\infty[$.
 - \triangleright Pour tout couple $(x,y) \in B^2$, on a :

$$d(x,y) = \left| \frac{1}{x} - \frac{1}{y} \right| = \frac{1}{\min(x,y)} - \frac{1}{\max(x,y)} \leqslant \frac{1}{\min(x,y)} \leqslant \frac{1}{2}$$

Donc diam $(B) \leqslant \frac{1}{2}$.

 \triangleright On définit les deux suites de B suivantes :

$$\forall n \in \mathbb{N}^*, \ u_n = 2 + \frac{1}{n} \text{ et } v_n = n$$

Il est clair que $u_n \to 2$ et $v_n \to +\infty$. De plus :

$$d(u_n, v_n) = \left| \frac{n}{1 + 2n} - \frac{1}{n} \right| \leqslant \operatorname{diam}(B)$$

Or $d(u_n, v_n) \to \frac{1}{2}$. Donc diam $(B) \geqslant \frac{1}{2}$.

$$diam(B) = \frac{1}{2}.$$

4. On définit, pour tout $x \in E$ et pour tout r > 0 l'ensemble $BO_d(x,r) = \{y \in E, d(x,y) < r\}$. Donner $BO_d(x,r)$ sous forme d'un intervalle.

Soit $x \in E$. On a :

$$y \in BO_d(x,r) \Leftrightarrow \left| \frac{1}{x} - \frac{1}{y} \right| < r$$

 $\Leftrightarrow -r + \frac{1}{x} < \frac{1}{y} < r + \frac{1}{x}$

Il y a deux cas à traiter : \triangleright Si $x \ge \frac{1}{r}$, on a :

$$y \in BO_d(x,r) \Leftrightarrow 0 < \frac{1}{y} < r + \frac{1}{x}$$

 $\Leftrightarrow y \in \left[\frac{1}{r + \frac{1}{x}}, +\infty \right[$

ightharpoonup Si $x < \frac{1}{r}$, on a :

$$y \in BO_d(x,r) \Leftrightarrow -r + \frac{1}{x} < \frac{1}{y} < r + \frac{1}{x}$$
$$\Leftrightarrow y \in \left[\frac{1}{r + \frac{1}{x}}, \frac{1}{-r + \frac{1}{x}} \right]$$

5. Pour $x \in E$ et r > 0 comparer $BO_d(x, r)$ à $BO(x, r) = \{y \in E, |x - y| < r\}$.

Il n'y a pas moyen de comparer les deux ensembles en général :

$$BO_d(1,1) =]\frac{1}{2}, +\infty[$$
 mais $BO(1,1) =]0, 2[$

Exercice 5 : La norme p "tend" vers la norme infinie

Dans \mathbb{R}^n , on note :

$$\forall x \in \mathbb{R}^n, \ \|x\|_p = (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{\frac{1}{p}} \text{ et } \|x\|_{\infty} = \max(|x_1|, |x_2|, \dots, |x_n|)$$

On rappelle que ces deux applications sont des normes sur \mathbb{R}^n .

1. Montrer que :

$$\forall x \in \mathbb{R}^n, \ \|x\|_p \xrightarrow[n \to +\infty]{} \|x\|_{\infty}$$

Le résultat est clairement vrai pour x=0. Soit $x\in\mathbb{R}^n$ non nul. Alors :

$$\forall p > 1, \ \|x\|_p = \|x\|_{\infty} \left(\left(\frac{|x_1|}{\|x\|_{\infty}} \right)^p + \left(\frac{|x_2|}{\|x\|_{\infty}} \right)^p + \dots + \left(\frac{|x_n|}{\|x\|_{\infty}} \right)^p \right)^{\frac{1}{p}}$$

Or, $\exists k \in [1, n]$ tel que $|x_k| = ||x||_{\infty}$ donc

$$1 \leqslant \left(\left(\frac{|x_1|}{\|x\|_{\infty}} \right)^p + \left(\frac{|x_2|}{\|x\|_{\infty}} \right)^p + \dots + \left(\frac{|x_n|}{\|x\|_{\infty}} \right)^p \right)^{\frac{1}{p}} \leqslant n^{\frac{1}{p}}$$

Et donc en passant à la limite dans l'inégalité $(p \to \infty)$, on obtient :

$$\left(\left(\frac{|x_1|}{\|x\|_{\infty}} \right)^p + \left(\frac{|x_2|}{\|x\|_{\infty}} \right)^p + \dots + \left(\frac{|x_n|}{\|x\|_{\infty}} \right)^p \right)^{\frac{1}{p}} \xrightarrow[p \to +\infty]{} 1$$

Finalement:

$$||x||_p \xrightarrow[n \to +\infty]{} ||x||_{\infty}.$$

$$\forall x \in \mathbb{R}^n, \ \|x\|_p \xrightarrow[p \to +\infty]{} \|x\|_{\infty}.$$

Dans $E = \mathscr{C}^0([0,1],\mathbb{R})$, on note:

$$\forall f \in E, \ \|f\|_p = \left(\int_0^1 |f(t)|^p dt\right)^{\frac{1}{p}} \text{ et } \|f\|_{\infty} = \sup_{t \in [0,1]} |f(t)|$$

2. Montrer que :

$$\forall f \in E, \ \|f\|_p \underset{p \to +\infty}{\longrightarrow} \|f\|_{\infty}$$

Le résultat est clairement vrai lorsque f=0. Soit donc $f\in E$ non nulle. On a :

$$\forall p > 1, \ \|f\|_p = \|f\|_{\infty} \left(\int_0^1 \left(\frac{|f(t)|}{\|f\|_{\infty}} \right)^p dt \right)^{\frac{1}{p}}$$

Soit $\varepsilon > 0$. Une fonction continue sur un intervalle fermé et borné atteint ses bornes, donc il existe $t_0 \in [0,1]$ tel que $f(t_0) = ||f||_{\infty}$. Comme |f| est continue en t_0 , on a :

Il existe
$$\eta > 0$$
 tel que $|t - t_0| < \eta \Rightarrow ||f(t)| - |f(t_0)|| < \varepsilon$

Et donc:

$$|t - t_0| < \eta \Rightarrow |f(t)| > |f(t_0)| - \varepsilon$$

On en déduit :

$$(2\eta)^{\frac{1}{p}} \left(1 - \frac{\varepsilon}{\|f\|_{\infty}} \right) \leqslant \left(\int_0^1 \left(\frac{|f(t)|}{\|f\|_{\infty}} \right)^p dt \right)^{\frac{1}{p}} \leqslant 1$$

De plus, il est clair que $(2\eta)^{\frac{1}{p}} \to 1$ donc :

Il existe
$$P \in \mathbb{N}$$
 tel que $p \geqslant P \Rightarrow |(2\eta)^{\frac{1}{p}} - 1| < \varepsilon$

On a donc:

$$\forall p \geqslant P, \ (1 - \varepsilon) \left(1 - \frac{\varepsilon}{\|f\|_{\infty}} \right) \leqslant \left(\int_{0}^{1} \left(\frac{|f(t)|}{\|f\|_{\infty}} \right)^{p} dt \right)^{\frac{1}{p}} \leqslant 1$$

Ce qui donne :

$$\forall p \geqslant P, \ 1 - \varepsilon \left(1 + \frac{1}{\|f\|_{\infty}} \right) \leqslant \left(\int_0^1 \left(\frac{|f(t)|}{\|f\|_{\infty}} \right)^p dt \right)^{\frac{1}{p}} \leqslant 1$$

Donc:

$$\left(\int_0^1 \left(\frac{|f(t)|}{\|f\|_{\infty}}\right)^p dt\right)^{\frac{1}{p}} \xrightarrow[p \to +\infty]{} 1$$

Et donc on en conclut que :

$$||f||_p \xrightarrow[n \to +\infty]{} ||f||_\infty$$

$$\forall p > 1, \ \|f\|_p = \|f\|_{\infty} \left(\int_0^1 \left(\frac{|f(t)|}{\|f\|_{\infty}} \right)^p dt \right)^{\frac{1}{p}}.$$

Exercice 6 : La "norme p" n'est PAS une norme si p < 1

Soit $p \in]0,1[$. On suppose que $E = \mathbb{R}^n \ (n \geqslant 2)$.

1. Montrer que l'application $||\cdot||_p:(x_1,\ldots,x_n)\mapsto (\sum_{l=1}^n|x_l|^p)^{\frac{1}{p}}$ n'est pas une norme.

Posons x = (1, 0, 0, ..., 0) et y = (0, 1, 0, ..., 0). Comme $p \in]0, 1[$, on a : $||x + y||_p = 2^{\frac{1}{p}} > 2 = ||x||_p + ||y||_p$ Donc,

$$||\cdot||_p$$
 n'est pas une norme.

- 2. Dessiner l'ensemble $S = \{x \in \mathbb{R}^2, ||x||_p = 1\}$ lorsque p = 1/2 et p = 1/4.
- 3. Vers quel ensemble $S = \{x \in \mathbb{R}^2, ||x||_p = 1\}$ converge-t-il lorsque p tend vers 0?

Exercice 7: Une norme bizarre

On considère la fonction définie sur \mathbb{R}^2 par :

$$\forall (x,y) \in \mathbb{R}^2, \ N(x,y) = \int_0^1 |x + t \times y| \ \mathrm{d}t.$$

1. Montrer que N est une norme.

Elle vérifie:

- (a) Elle est bien définie, car $f: t \mapsto |x+t \times y|$ est continue sur [0,1], donc intégrable sur [0,1]. Cette fonction étant positive, l'intégrale l'est aussi.
- (b) Elle est définie, car si N(x,y) = 0, alors f étant continue, positive, on en déduit que :

$$\forall t \in [0, 1], \ x + t \times y = 0, \ \text{donc} \ x = y = 0.$$

- (c) Elle est clairement homogène.
- (d) Elle vérifie l'inégalité triangulaire, car :

$$\forall (x_1, x_2, y_1, y_2) \in \mathbb{R}^4, \ \forall t \in [0, 1], \ |(x_1 + x_2) + t \times (y_1 + y_2)| \le |x_1 + t \times y_1| + |x_2 + t \times y_2|.$$

La croissance de l'intégrale permet alors de conclure.

2. Tracer la sphère unité.

Il suffit de calculer la norme pour $(x,y)\in\mathbb{R}^2.$ On a plusieurs cas :

(a) f ne s'annule pas sur]0,1[, alors $t\mapsto x+t\times y$ garde un signe constant $((x\geq 0 \text{ et } x+y\geq 0) \text{ ou } (x\leq 0 \text{ et } x+y\leq 0))$ et :

$$N(x,y) = \left| x + \frac{y}{2} \right|.$$

(b) f s'annule en $t_0 = -x/y \in]0,1[$, alors :

$$N(x,y) = \left| \frac{y^2 + 2x \times y + 2x^2}{2y} \right|.$$

On obtient alors facilement:

3. Chercher les constantes α maximale et β minimale telles que

$$BF_2(0,1/\beta) \subseteq BF_N(0,1) \subseteq BF_2(0,1/\alpha)$$

Ils s'observent sur le dessin!

Pour trouver le petit cercle, on pose β tel que :

$$\forall (x,y) \in \mathbb{R}^2, \ \beta^2 \times (x^2 + y^2) \ge \left(x + \frac{y}{2}\right)^2.$$

L'équation du second degré (en y/x) doit avoir un discriminant nul (négatif pour qu'il y ait inégalité, nul pour qu'il y ait un cas d'égalité). Soit :

$$1 - 4(1 - \beta^2) \times \left(\frac{1}{4} - \beta^2\right) = 0.$$

Finalement:

$$\beta = \frac{\sqrt{5}}{2}.$$

On retrouve ce que l'on a observé sur le dessin : $1/\beta$ est la distance de O à la droite x+y/2=1.

Pour trouver le grand cercle, on pose α tel que :

$$\forall (x,y) \in \mathbb{R} \times \mathbb{R}^* \left(\frac{y^2 + 2x \times y + 2x^2}{2y} \right)^2 \ge \alpha^2 \times (x^2 + y^2).$$

L'équation du quatrième degré (toujours en y/x) doit avoir une solution double, donc α doit vérifier :

$$\exists t \in \mathbb{R}, \begin{cases} \left(4\alpha^2 - 1\right) t^4 - 4t^3 + \left(4\alpha^2 - 8\right) t^2 - 8t - 4 &= 0\\ \left(4\alpha^2 - 1\right) t^3 - 3t^2 + \left(2\alpha^2 - 4\right) t - 2 &= 0. \end{cases}$$

Finalement:

$$\alpha = 0.221 \pm 10^{-3}.$$

On peut aussi trouver cette valeur, en exprimant que le rayon vecteur reliant O au point de contact, doit être orthogonal à l'ellipse trouvée, il est donc colinéaire au gradient. Le système devient alors :

$$\begin{cases} y^2 + 2x \times y + 2x^2 - 2y = 0 \\ \begin{vmatrix} x & 2y + 4x \\ y & 2y + 2x - 2 \end{vmatrix} = 0. \end{cases}$$

Fermés et adhérence

Exercice 8:

Soit E l'ensemble des suites $(a_n) \in \mathbb{C}^{\mathbb{N}}$ telles que $\sum |a_n|$ converge. On définit une norme sur E par :

$$||a|| = \sum_{n=0}^{+\infty} |a_n|$$

- 1. Montrer que c'est une norme.
- 2. Soit

$$F = \left\{ a \in E, \ \sum_{n=0}^{+\infty} a_n = 1 \right\}$$

F est-il ouvert? fermé? borné?

- 1. Montrons que $||\cdot||$ est une norme que E.
 - $||\cdot||$ est définie positive : Soit $a \in E$, alors

$$||a|| = \sum_{n=0}^{\infty} |a_n| \geqslant \sum_{n=0}^{\infty} \infty 0 = 0$$

avec égalité ssi $\forall n \in \mathbb{N}, a_n = 0$ ssi a = 0.

— $||\cdot||$ est homogène : Soit $\lambda \in \mathbb{C}$ et soit $a \in E$. Alors

$$||\lambda a|| = \sum_{n=0}^{\infty} |\lambda a_n| = \sum_{n=0}^{\infty} |\lambda| \cdot |a_n| = |\lambda| \cdot \sum_{n=0}^{\infty} |a_n| = |\lambda| \cdot ||a||$$

— ||·|| vérifie l'inégalité triangulaire :

Soit $(a,b) \in E^2$. Alors:

$$||a+b|| = \sum_{n=0}^{\infty} |a_n + b_n| \leqslant \sum_{n=0}^{\infty} (|a_n| + |b_n|) = \sum_{n=0}^{\infty} |a_n| + \sum_{n=0}^{\infty} |b_n| = ||a|| + ||b||$$

- 2. F est fermé, non ouvert et non borné.
 - Montrons que F est fermé.

Soit $(a^N)_{N\in\mathbb{N}}\in F^{\mathbb{N}}$ une suite qui converge vers $a\in\mathbb{C}^N$.

Montrons que $a \in F$. Tout d'abord, $||a|| \le ||a - a^N|| + ||a^N|| < +\infty$, donc $a \in E$.

Soit $\varepsilon > 0$, alors $\exists N \in \mathbb{N}, \forall n \geqslant N, ||a - a^N|| < \varepsilon$. Alors,

$$\left|1 - \sum_{n=0}^{\infty} a_n\right| \leqslant \left|1 - \sum_{n=0}^{\infty} a_n^N\right| + \left|\sum_{n=0}^{\infty} (a_n^N - a_n)\right| < 0 + \varepsilon$$

car $a^N \in F$, et donc $\sum_{n=0}^{\infty} a_n^N = 1$. Comme $\varepsilon > 0$ est arbitraire, alors $|1 - \sum_{n=0}^{\infty} a_n| = 0$, donc $\sum_{n=0}^{\infty} a_n = 1$, et par conséquent $a \in F$. Donc F est fermé.

Remarque : on verra plus tard qu'on peut prouver que F est fermé comme image réciproque de $\{1\}$ par la fonction continue $f(a) = \sum_{n=0}^{\infty} a_n$.

— F n'est pas ouvert.

Soir $\varepsilon > 0$. Alors $(1, 0, \ldots) \in F$ mais $(1 + \varepsilon, 0, \ldots) \notin F$.

— F n'est pas borné. En effet, $e_n=(n,-1,\ldots,-1,0,\ldots)\in F$ et $||e||=2n-1\to+\infty$.

Exercice 9:

Soit E un espace vectoriel normé et $A \subset E$.

1. Montrer que $\operatorname{Vect}(\bar{A}) \subset \overline{\operatorname{Vect}(A)}$.

 $A \subset \operatorname{Vect}(A)$ donc $\bar{A} \subset \overline{\operatorname{Vect}(A)}$. Or $\operatorname{Vect}(\bar{A})$ est le plus petit sous-espace vectoriel de E contenant \bar{A} . Pour conclure, il suffit donc de montrer que $\overline{\operatorname{Vect}(A)}$ est un sous-espace vectoriel de E.

Soit $\lambda \in \mathbb{R}$ et $(u, v) \in \overline{\operatorname{Vect}(A)}^2$. Il existe deux suites $(u_n, v_n) \in (\operatorname{Vect}(A))^{\mathbb{N}})^2$ tels que $||u_n - u|| \to 0$ et $||v_n - v|| \to 0$. Alors $\lambda u_n + v_n \in \operatorname{Vect}(A)$. Donc $\lambda u + v = \lim_n \lambda u_n + v_n \in \overline{\operatorname{Vect}(A)}$. D'où $\overline{\operatorname{Vect}(A)}$ est un sous-espace vectoriel de E.

- 2. Dans cette question nous allons montrer que l'inclusion réciproque n'est pas vraie en général. On considère ici que E est l'ensemble des suites réelles bornées muni de la norme $\|.\|_{\infty}$.
 - (a) Soit $A = \{u \in E, \lim_{n \to +\infty} u_n = 0\}$. Montrer que A est fermé dans E.

Soit $(v^N)_{N\in\mathbb{N}}\in A^{\mathbb{N}}$ une suite de suites appartenant à A qui converge vers $v\in\mathbb{R}^{\mathbb{N}}$. Montrons que $v\in A$.

Tout d'abord on remarque que $||v|| \le ||v^N - v|| + ||v^N|| < \infty$ donc $v \in E$.

Soit $\varepsilon > 0$, soit $n \in \mathbb{N}$ et soit $N \in \mathbb{N}$. Par inégalité triangulaire,

$$|v_n| \leqslant |v_n^N - v_n| + |v_n^N|$$

Comme $v^N \in A$, il existe $N_1 \in \mathbb{N}$ (qui dépend de N) tel que pour tout $n \geqslant N_1$, $|v_n^N| \leqslant \frac{\varepsilon}{2}$. Comme $||v^N - v|| \to 0$, il existe $N_2 \in \mathbb{N}$, pour tout $N \geqslant N_2$, $||v^N - v|| \leqslant \frac{\varepsilon}{2}$. Par définition de la norme sur E, cela implique que pour tout $N \geqslant N_2$, pour tout $n \in \mathbb{N}$, $|v_n^N - v_n| \leqslant \frac{\varepsilon}{2}$. En posant $N_3 = \max(N_1, N_2)$, pour tout $n \geqslant N_3$, $|v_n| \leqslant \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. Donc $v_n \to 0$ quand $n \to +\infty$ et $v \in A$.

Donc A est fermé.

(b) Soit $B = \{u \in E, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq N \Rightarrow u_n = 0\}$. Quelle est l'adhérence de B?

Montrer que $\bar{B} = A$. Comme $B \subset A$ et que A est fermé, alors $\bar{B} \subset A$.

Montrons que $A \subset \bar{B}$. Soit $u \in A$. Pour tout $N \in \mathbb{N}$, on pose $(u_n^N)_{n \in \mathbb{N}}$ une suite de réels définie par

$$\forall n \in \mathbb{N}, \ u_n^N = \left\{ \begin{array}{ll} u_n & \text{si } n \leqslant N, \\ 0 & \text{sinon} \end{array} \right.$$

Alors $\forall N \in \mathbb{N}, u^N \in B$ et $||u - u^N||_{\infty} = \sup_{n > N} |u_n| \to 0$ quand N tend vers l'infini, car $u \in A$. Donc $u^N \to u$. Donc $u \in \bar{B}$. Ainsi, $\bar{B} = A$.

(c) Conclure.

Pour tout $p \in \mathbb{N}$ on définit $e^{(p)} \in E$ par :

$$\forall n \in \mathbb{N}, \ e_n^{(p)} = \begin{cases} 1 \text{ si } p = n \\ 0 \text{ sinon} \end{cases}$$

Soit

$$G = \{e^{(p)}, \ p \in \mathbb{N}\}\$$

Alors G est fermé car lorsque $i \neq j$ on a $||e^{(i)} - e^{(j)}||_{\infty} = 1$.

Comme, par défnition, $\operatorname{Vect}(G)$ est l'ensemble des combinaisons linéaires finies d'éléments de G, on voit que $B = \operatorname{Vect}(G) = \operatorname{Vect}(\bar{G})$.

Donc $\overline{\mathrm{Vect}(G)} = \overline{B} = A \neq B = \mathrm{Vect}(G) = \mathrm{Vect}(\overline{G}).$

Exercice 10:

Soit (E, d) un espace métrique. Soit A un ouvert de E et B une partie de E.

1. Montrer que : $A \cap \overline{B} \subset \overline{A \cap B}$.

Soit $\lambda \in A \cap \overline{B}$.

On a $\lambda \in A$ et A est ouvert, donc il existe r > 0 tel que $BO(\lambda, r) \subset A$.

On a $\lambda \in \overline{B}$, donc il existe une suite $(x_n)_{n \in \mathbb{N}} \in B^{\mathbb{N}}$ qui converge vers λ dans E. D'après la définition de la convergence :

$$\exists N \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ n \geqslant N \Longrightarrow x_n \in BO(\lambda, r).$$

On a donc $(x_n)_{n\geqslant N}\in A\cap B$, donc $\lambda\in\overline{A\cap B}$. Ce qui prouve :

$$A \cap \overline{B} \subset \overline{A \cap B}.$$

2. Montrer que $A \cap B = \emptyset \implies A \cap \overline{B} = \emptyset$.

Supposons $A \cap B = \emptyset$. Alors $A \cap \overline{B} \subset \overline{A \cap B} = \emptyset$. Donc $A \cap \overline{B} = \emptyset$. Finalement

$$A \cap B = \emptyset \implies A \cap \overline{B} = \emptyset.$$

Exercice 11:

 \mathbb{R} est muni de la norme usuelle et \mathbb{R}^2 est muni de la norme euclidienne usuelle. Pour chacun des ensembles suivants, déterminer s'il est fermé ou non.

1.
$$F_1 = \{(x, y) \in \mathbb{R}^2, x^2 + y \leq 2\}$$
;

L'application

$$f: \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R} \\ (x,y) & \mapsto & x^2 + y \end{array}$$

est continue (car polynomiale), et $]-\infty,2]$ est un fermé de \mathbb{R} , donc

$$F_1 = f^{-1}(]-\infty,2])$$
 est un fermé de \mathbb{R}^2 .

2.
$$F_2 = \{(x, y) \in \mathbb{R}^2, x^2 + y < 2\};$$

Pour $n \in \mathbb{N}^*$, on pose $x_n = 0$ et $y_n = 2 - \frac{1}{n}$. On a alors $(x_n, y_n) \in F_2$ et

$$(x_n, y_n) \xrightarrow[n \to +\infty]{} (0, 2) \notin F_2.$$

Donc

 F_2 n'est pas fermé dans \mathbb{R}^2 .

3.
$$F_3 = \{x \in \mathbb{R}, |x| \le 1 - x\}.$$

Sur le graphique, il semble que $F_3 =]-\infty, 1[$.

Pour $n \in \mathbb{N}^*$, on pose $x_n = 1 - \frac{1}{n}$. On a

$$\lfloor x_n \rfloor = 0 \text{ et } 1 - x_n = \frac{1}{n}$$

donc $x_n \in F_3$.

Puisque

$$x_n \xrightarrow[n \to +\infty]{} 1 \notin F_3,$$

on en déduit que

 F_3 n'est pas fermé dans $\mathbb R$

Exercice 12:

Soit $E = \mathscr{C}([0,1],\mathbb{R})$ muni de la norme $\|.\|_{\infty,[0,1]}$. Soit

$$A = \left\{ f \in E, \ f(0) = 0 \quad \text{ et } \quad \int_0^1 f(t) \, \mathrm{d}t \geqslant 1 \right\}.$$

1. Montrer que A est fermé dans E.

Soit $(g_n)_{n\in\mathbb{N}}\in A^{\mathbb{N}}$ une suite de fonctions de A qui converge vers une fonction g dans E pour la norme $\|.\|_{\infty}$. Pour tout $n\in\mathbb{N}$, on a

$$|g(0)| = |g(0) - g_n(0)| \le ||g - g_n||_{\infty, [0,1]} \xrightarrow[n \to +\infty]{} 0$$

Donc g(0) = 0. Soit maintenant $\epsilon > 0$. Il existe $n \in \mathbb{N}$ tel que $||g - g_n||_{\infty, [0,1]} \leqslant \epsilon$. On a donc

$$\int_{0}^{1} g(t) dt = \int_{0}^{1} (g(t) - g_{n}(t)) dt + \int_{0}^{1} g_{n}(t) dt$$

$$\geqslant -\left| \int_{0}^{1} (g(t) - g_{n}(t)) dt \right| + \int_{0}^{1} g_{n}(t) dt$$

$$\geqslant -\int_{0}^{1} |g(t) - g_{n}(t)| dt + \int_{0}^{1} g_{n}(t) dt$$

$$\geqslant -\int_{0}^{1} |g - g_{n}|_{\infty,[0,1]} dt + 1$$

$$\geqslant -\epsilon + 1$$

Ceci étant vrai pour tout $\epsilon > 0$ on a

$$\int_0^1 g(t) \, \mathrm{d}t \geqslant 1.$$

Finalement $g \in A$ ce qui prouve que A est fermé.

2. Montrer que : $\forall f \in A, ||f||_{\infty,[0,1]} > 1.$

Supposons par l'absurde qu'il existe $f \in A$ telle que $||f||_{\infty,[0,1]} \leq 1$. Alors

$$1 \leqslant \int_0^1 f(t) \, \mathrm{d}t \leqslant \int_0^1 |f(t)| \, \mathrm{d}t \leqslant \int_0^1 ||f||_{\infty, [0, 1]} ||f||_{\infty, [0, 1]} \leqslant 1.$$

D'où $\int_0^1 f(t) dt = 1$. Et donc

$$\int_0^1 (f(t) - 1) \, \mathrm{d}t = 0.$$

Or la fonction $t\mapsto f(t)-1$ est continue et positive. C'est donc la fonction nulle. Donc pour tout $t\in[0,1],\ f(t)=1.$ Cela contredit f(0)=0.

3. Calculer la distance de la fonction nulle à la partie A. Cette distance est définie par :

$$d(0_E, A) = \inf\{d(0_E, f), f \in A\} = \inf\{\|f - 0_E\|_{\infty, [0, 1]}, f \in A\}.$$

D'après la question précédente on a $d(0_E, A) \ge 1$. Pour tout $n \in \mathbb{N}^*$ on définit la fonction f_n par :

$$f_n(t) = \begin{cases} \frac{t}{n} + \frac{t}{n^2} & \text{si } t \leq \frac{1}{n} \\ 1 + \frac{1}{n} & \text{sinon} \end{cases}$$

On vérifie que $f_n \in A$. On a $||f_n||_{\infty,[0,1]} = 1 + \frac{1}{n} \xrightarrow[n \to +\infty]{} 1$. Donc

$$d(0_E, A) = 1.$$

Exercice 13:

Soit (E, d) un espace métrique.

1. Soit F un fermé non vide de E. Montrer que :

$$x \in F \iff d(x, F) \stackrel{\text{Déf}}{=} \inf\{d(x, y), y \in F\} = 0.$$

Montrons (\Rightarrow). Soit $x \in F$. On a alors $0 = N(x - x) \ge \inf\{N(x - y), y \in F\}$. Or, N est à valeurs positives, donc $d(x, F) \ge 0$. Ainsi,

$$d(x,F) = 0.$$

Montrons (\Leftarrow). Soit $x \in E$ tel que $d(x, F) = \inf\{N(x - y), y \in F\} = 0$. Par propriété de la borne inférieure, pour tout $n \in \mathbb{N}$, il existe $y_n \in F$ tel que :

$$N(y_n - x) \leqslant \frac{1}{n}.$$

Ainsi, $N(y_n - x) \xrightarrow[n \to +\infty]{} 0$. De plus, pour tout $n \in \mathbb{N}$, $y_n \in F$ et F est fermé, donc, par définition,

$$x \in F$$
.

2. On considère F et G deux fermés, non vides et disjoints de E. Montrer qu'il existe deux ouverts U et V de E tels que :

$$F \subset U$$
. $G \subset V$ et $U \cap V = \emptyset$.

Posons:

$$U = \bigcup_{x \in F} BO\left(x, \frac{d(x, G)}{2}\right), \quad \text{ et } \quad V = \bigcup_{y \in G} BO\left(y, \frac{d(y, F)}{2}\right).$$

D'après la question 1., comme F et G sont disjoints, pour tout $x \in F$, on a d(x,G) > 0 et donc $x \in U$. De même, pour tout $y \in G$, on a $y \in V$.

$$F \subset U$$
 et $G \subset V$.

De plus, les boules ouvertes de E sont des ouverts de E. Donc,

U et V sont des ouverts,

car ce sont des unions quelconques d'ouverts.

Il reste donc à montrer que $U\cap V=\emptyset$. Procédons par l'absurde. Soit $z\in U\cap V$, il existe donc $x\in F$ et $y\in G$ tel que

$$z \in BO\left(x, \frac{d(x, G)}{2}\right)$$
 et $z \in BO\left(y, \frac{d(y, F)}{2}\right)$.

D'après l'inégalité triangulaire, on en déduit que :

$$N(x-y) \leqslant N(x-z) + N(z-y) < \frac{d(x,G)}{2} + \frac{d(y,F)}{2} \leqslant \frac{N(x-y)}{2} + \frac{N(x-y)}{2} \leqslant N(x-y).$$

ou, de façon équivalente,

$$d(x,y) \leqslant d(x,z) + d(z,y) < \frac{d(x,G)}{2} + \frac{d(y,F)}{2} \leqslant \frac{d(x,y)}{2} + \frac{d(y,x)}{2} \leqslant d(x,y)$$

C'est absurde. Ainsi,

$$U \cap V = \emptyset.$$

Ainsi,

U et V répondent à la question.

Voici une autre démonstration intéressante de ce même résultat. On définit l'application f par :

$$f: \left\{ \begin{array}{ccc} (E,d) & \to & (\mathbb{R},|\cdot|) \\ x & \mapsto & \frac{d(x,G)}{d(x,F)+d(x,G)}. \end{array} \right.$$

L'application f est bien définie, car si d(x,F)+d(x,G)=0, alors d(x,F)=d(x,G)=0. D'après la question 1, on en déduit que $x\in F\cap G$, ce qui est impossible car F et G sont disjoints.

De plus, on sait que les applications $x \mapsto d(x, F)$ et $y \mapsto d(x, G)$ sont lipschitziennes (donc continues sur E).

Donc,

f est continue sur E

en tant que quotient d'applications continues dont le dénominateur ne s'annule pas.

Par ailleurs on a

$$\forall x \in F, \ f(x) = 1$$
 et $\forall x \in G, \ f(x) = 0.$

f est une fonction continue, donc l'image réciproque par f de tout ouvert de $(\mathbb{R}, | |)$ est un ouvert de (E, d). Posons donc :

$$U = f^{-1} \left(\frac{1}{2}, +\infty \right) \quad \text{et} \quad V = f^{-1} \left(-\infty, \frac{1}{2} \right).$$

On sait que $]-\infty, \frac{1}{2}[$ et $]-\infty, \frac{1}{2}[$ sont des ouverts de $(\mathbb{R}, | |)$, donc U et V sont des ouverts de (E, d). De plus, par construction,

$$F \subset U$$
 et $G \subset V$.

Enfin,

$$\begin{split} V \cap U &= f^{-1} \left(\left] - \infty, \frac{1}{2} \right[\right) \cap f^{-1} \left(\left] \frac{1}{2}, + \infty \right[\right) \\ &= f^{-1} \left(\left] - \infty, \frac{1}{2} \right[\cap \left] \frac{1}{2}, + \infty \right[\right) = f^{-1}(\emptyset). \end{split}$$

Donc

$$V\cap U=\emptyset.$$

Ainsi

U et V répondent à la question.