Problems

- 1. **Divergence theorem:** By using the divergence theorem evaluate the following integrals:
 - (a) (5 pts)

$$\oint \vec{r} (\vec{a} \cdot \vec{n}) dA, \tag{1}$$

(b) (5 pts)

$$\oint (\vec{a} \cdot \vec{r}) \, \vec{n} \, dA, \tag{2}$$

where \vec{a} is a constant vector and \vec{n} is a vector normal to the surface element dA.

- 2. Charged rod: A uniformly charged rod with the total charge Q is placed along the z axis so that its ends are at z = -a and z = a.
 - (a) (15 pts) Find the potential $\phi(\vec{r})$ at an arbitrary point $\vec{r} = (x, y, z)$.
 - (b) (15 pts) Find the electric field $\vec{E}(\vec{r})$.
 - (c) (10 pts) Find the dipole and quadrupole moments of this system.
- 3. Cartesian multipole moments of a charged ring: A thin circular ring of radius R located in the xy-plane and centered at the z-axis has line charge density $+\lambda_0$ for $0 \le \varphi < \pi$ and line charge density $-\lambda_0$ for $\pi \le \varphi < 2\pi$, where φ is the azimuthal angle around the z-axis.
 - (a) (15 pts) Calculate the components of the dipole moment of the ring.
 - (b) (15 pts) Calculate the components of the quadrupole tensor of the ring. (Hint: exploit the symmetries of the tensor and the ring.)
 - (c) (10 pts) Do your results depend on the choice of the origin of the coordinate frame?
 - (d) (10 pts) Another point-like dipole $\vec{p_2}$ is located on the z-axis at a large distance $z \gg R$. Calculate the torque acting on this dipole.