Задание I: Поиск обратной матрицы

Константинов Остап Б8203а

31 декабря 2013

Аннотация

Данный отчет был подготовлен в качестве задания по предмету "Численные методы". И призван описать используемые мною способы решения поставленных преподавателем задач. А также сравнить результаты моих "решений"с эталонными результатами. Стоит также отметить, что сама реализация методов не включена в данный отчет.

Содержание

1	Вве	едение	2
2	Поиск обратной матрицы Методом Гаусса		
	2.1	Постановка задачи	2
	2.2	Алгоритм решения	2
	2.3	Пример решения	3
	2.4	Pemeниe MATLAB	4
	2.5	Подсчёт невязки	5
3	Поиск обратной матрицы Метод окаймления		
	3.1	Постановка задачи	5
	3.2	Алгоритм решения	6
	3.3	Peшение MATLAB	6
	3.4	Подсчёт невязки	6

1 Введение

Дисциплина "Численные методы" относится к профессиональному циклу и имеет своей целью ознакомление студентов с основными численными методами, этапами их реализации на современных компьютерах и вычислительных системах [2].

2 Поиск обратной матрицы Методом Гаусса

2.1 Постановка задачи

Дана матрица квадратная невырожденная матрица² вида:

$$\left(\begin{array}{ccc}
a_{11} & \dots & a_{1n} \\
\vdots & \ddots & \vdots \\
a_{n1} & \dots & a_{nn}
\right).$$

Требуется найти обратную ей матрицу 3 , используя метод Гаусса.

2.2 Алгоритм решения

Напишем расширенную матрицу, в левой части которой находится исходная матрица A, а в правой единичная. Применяя метод Гаусса, последовательно будем приводить матрицу A (левую часть расширенной матрицы) к единичной матрице. Причем совершенные преобразование мы будем применять ко всей расширенной матрице. Приведя левую часть расширенной матрицы к единичной, правая часть будет являться обратной матрицей к исходной.

 $^{^{1}}$ Численные методы — методы решения математических задач в численном виде [1].

²Квадратная матрица обратима тогда и только тогда, когда она невырожденная, то есть её определитель не равен нулю. Для неквадратных матриц и вырожденных матриц обратных матриц не существует.

 $^{^3}$ Обратная матрица — такая матрица ${\rm A}^{-1}$, при умножении на которую, исходная матрица ${\rm A}$ даёт в результате единичную матрицу ${\rm E}$.

2.3 Пример решения

Найти обратную матрицу A^{-1} методом Гаусса, если

$$A = \left(\begin{array}{ccc} 3 & 5 & 7 \\ 9 & 11 & 13 \\ 17 & 19 & 23 \end{array}\right).$$

Сначала проверим не является ли матрица А вырожденной (сингулярной), для чего вычислим её определить:

$$\det A = \begin{vmatrix} 3 & 5 & 7 \\ 9 & 11 & 13 \\ 17 & 19 & 23 \end{vmatrix} =$$

$$= 3 \times 11 \times 23 + 5 \times 13 \times 17 + 7 \times 9 \times 19 -$$

$$- (7 \times 11 \times 17 + 5 \times 9 \times 23 + 3 \times 13 \times 19) =$$

$$= 759 + 1105 + 1197 - (1309 + 1035 + 741) =$$

$$= 3061 - 3085 = -24.$$

Так как определитель не равен нулю, то, следовательно, матрица A невырожденная (регулярная) и существует ей обратная матрица A^{-1} .

Далее, по вышеописанному алгоритму, найдём единичную матрицу:

$$\begin{pmatrix} 3 & 5 & 7 & 1 & 0 & 0 \\ 9 & 11 & 13 & 0 & 1 & 0 \\ 17 & 19 & 23 & 0 & 0 & 1 \end{pmatrix} \Rightarrow \\ \Rightarrow \begin{pmatrix} 3 & 5 & 7 & 1 & 0 & 0 \\ 0 & -4 & -8 & -3 & 1 & 0 \\ 17 & 19 & 23 & 0 & 0 & 1 \end{pmatrix} \Rightarrow \\ \Rightarrow \begin{pmatrix} 3 & 5 & 7 & 1 & 0 & 0 \\ 0 & -4 & -8 & -3 & 1 & 0 \\ 0 & -\frac{28}{3} & -\frac{50}{3} & -\frac{17}{3} & 0 & 1 \\ 3 & 0 & -3 & -\frac{11}{4} & \frac{5}{4} & 0 \\ 0 & -\frac{28}{3} & -\frac{50}{3} & -\frac{17}{3} & 0 & 1 \\ 3 & 0 & -3 & -\frac{11}{4} & \frac{5}{4} & 0 \\ 0 & -2\frac{8}{3} & -\frac{50}{3} & -\frac{17}{3} & 0 & 1 \\ 3 & 0 & -3 & -\frac{11}{4} & \frac{5}{4} & 0 \\ 0 & -2\frac{8}{3} & -\frac{50}{3} & -\frac{17}{3} & 0 & 1 \\ 3 & 0 & 0 & 2 & \frac{4}{3} & -\frac{7}{3} & 1 \\ 3 & 0 & 0 & 2 & \frac{4}{3} & -\frac{7}{3} & 1 \\ \Rightarrow \begin{pmatrix} 3 & 0 & 0 & -\frac{3}{4} & -\frac{9}{4} & \frac{3}{2} \\ 0 & -4 & -8 & -3 & 1 & 0 \\ 0 & 0 & 2 & \frac{4}{3} & -\frac{7}{3} & 1 \\ 0 & 0 & 2 & \frac{4}{3} & -\frac{7}{3} & 1 \\ \Rightarrow \begin{pmatrix} 3 & 0 & 0 & -\frac{3}{4} & -\frac{9}{4} & \frac{3}{2} \\ 0 & -4 & 0 & \frac{7}{3} & -\frac{25}{3} & 4 \\ 0 & 0 & 2 & \frac{4}{3} & -\frac{7}{3} & 1 \\ 0 & 0 & 1 & -\frac{1}{4} & -\frac{3}{4} & \frac{1}{2} \\ 0 & 1 & 0 & -\frac{7}{12} & \frac{25}{12} & -1 \\ 0 & 0 & 1 & \frac{2}{3} & -\frac{7}{6} & \frac{1}{2} \end{pmatrix}.$$

Итак, окончательно имеем:

$$A^{-1} = \begin{pmatrix} -\frac{1}{4} & -\frac{3}{4} & \frac{1}{2} \\ -\frac{7}{12} & \frac{25}{12} & -1 \\ \frac{2}{3} & -\frac{7}{6} & \frac{1}{2} \end{pmatrix}.$$

2.4 Решение МАТLAВ

Порядок решения задачи в MATLAB следующий:

• сформировать матрицу коэффициентов А и вектор свободных членов В заданной системы;

- количество формирований вектора В происходит в соответствии размерности матрицы А;
- с каждым формированием В формировать расширенную матрицу системы, А объединив и В;
- решить полученную систему линейных уравнений методом Гаусса;
- \bullet полученный вектор будет являться столбцом матрицы A^{-1} ;

2.5 Подсчёт невязки

Невязка — это ошибка (погрешность) в результате вычислений.

```
Размерность матрицы n = 5; Генерация исходной матрицы A = rand(n); Обратная матрица B = rinv(A); Подсчёт невязки Discrepancy norm = (A * B - eye(n));
```

3 Поиск обратной матрицы Метод окаймления

3.1 Постановка задачи

Дана матрица квадратная невырожденная матрица⁴ вида:

$$\left(\begin{array}{ccc}
a_{11} & \dots & a_{1n} \\
\vdots & \ddots & \vdots \\
a_{n1} & \dots & a_{nn}
\right).$$

Требуется найти обратную ей матрицу 5 , используя метод окаймления.

 $^{^4}$ Квадратная матрица обратима тогда и только тогда, когда она невырожденная, то есть её определитель не равен нулю. Для неквадратных матриц и вырожденных матриц обратных матриц не существует.

 $^{^{5}}$ Обратная матрица — такая матрица A^{-1} , при умножении на которую, исходная матрица A даёт в результате единичную матрицу E.

3.2 Алгоритм решения

Пусть матрица $A = \|a_{ij}\|, i, j = 1, 2, ..., n$, невырожденная. Обозначим через A_k ее левую верхнюю часть, т. е. $A_k = \|a_{ij}\|, i, j = 1, 2, ..., k$. Матрицы $A_k, k = 1, 2, ..., n$, невырожденные. Метод окаймления состоит в следующем: ищется матрица, обратная к

$$\mathbf{A}_{k} = \left\| \begin{array}{cc} \mathbf{A}_{k-1} & u_{k} \\ v_{k}^{T} & a_{k} \end{array} \right\|, k > 1, \mathbf{A}_{1} = a_{1} = a_{11}, u_{1} = 0, v_{1}^{T} = 0,$$

в форме

$$\mathbf{A}_{k}^{-1} = \left\| \begin{array}{c} \mathbf{P}_{k-1} & r_{k} \\ q_{k}^{T} & b_{k} \end{array} \right\|.$$

$$b_{k} = \left(a_{k} - v_{k}^{T} \mathbf{A}_{k-1}^{-1} u_{k}\right)^{-1}, r_{k} = -b_{k} \mathbf{A}_{k-1}^{-1} u_{k}, q_{k}^{T} = -b_{k} v_{k}^{T} \mathbf{A}_{k-1}^{-1},$$

$$\mathbf{P}_{k-1} = \mathbf{A}_{k-1}^{-1} + b_{k} \mathbf{A}_{k-1}^{-1} u_{k} v_{k}^{T} \mathbf{A}_{k-1}^{-1}.$$

3.3 Решение МАТLAВ

Порядок решения задачи в MATLAB следующий:

- количество шагов будет совпадать с размерностью матрицы А;
- формировать на каждом шаге рабочую матрицу В;
- с каждым формированием B, совершать действия в соответствии с текущим шагом;
- если шаг является последним, то формирование обратной матрицы завершено;
- иначе, выполнять действия над матрицей, по формулам окаймления;

3.4 Подсчёт невязки

Невязка — это ошибка (погрешность) в результате вычислений.

```
Размерность матрицы n = 5; Генерация исходной матрицы A = rand(n); Обратная матрица B = edging(A); Подсчёт невязки Discrepancy norm = (A * B - eye(n));
```

Список литературы

- [1] А. А. Самарский, А. В. Гулин *Численные методы*. Москва "Наука"1989.
- [2] А. Г. Колобов, Л. А. Молчанова Численные методы линейной алгебры. Владивосток "ДВФУ"2008.