Dynamic Strategies for T_CT₁

Manuel Schneckenreither

Department of Computer Science, Computational Logic Group, University of Innsbruck, Austria email: manuel.schneckenreither@uibk.ac.at

The Twenty First International Workshop on Logic and Computational Complexity Summer 2020

Motivation

The Tyrolean Complexity Tool, i.e. T_CT

- Automatic tool to infer runtime (and derivational) complexity
- Allows (first or higher-order) functional programs as generalised form of term rewrite systems as input
- In case of success: T_CT outputs an asymptotic complexity and corresponding proof

Motivation

The Tyrolean Complexity Tool, i.e. T_CT

- Automatic tool to infer runtime (and derivational) complexity
- Allows (first or higher-order) functional programs as generalised form of term rewrite systems as input
- In case of success: T_CT outputs an asymptotic complexity and corresponding proof

Static Analyses

- Static analyses are undecidable [1]
- Thus: Some sort of creativity is required

In T_CT

- T_CT uses Strategies to define:
 - what methods (e.g. poly./matrix interpretations) to use and
 - in which sequence these are used.
- Currently strategies are predetermined and fixed in T_CT
- Idea: Reinforcement learning for dynamic strategies
 - No training data needed (no predetermined strategies)
 - Provides a much larger solution space
 - Unexpected good behaviour might be discovered

Dynamic Strategies for T_CT

Table of Contents

- 1. Motivation
- 2. Reinforcement Learning
 - Discounted Reinforcement Learning (Discounted RL)
 - Average Reward Adjusted Discounted RL
- 3. Proposed Implementation in T_CT

Reinforcement Learning Processes [2]

Based on dynamic programming: states, actions, rewards

[2] Miller and Veinott, "Discrete Dynamic Programming with a Small Interest Rate", 1969

Reinforcement Learning Processes [2]

- Agent iteratively assesses state values $V^{\pi}_{\gamma}(s)$, where
- $0 < \gamma < 1$ is the discount factor, π the policy function, and
- for two consecutive observed states s_t, s_{t+1} with reward r_t

$$V_{\gamma}^{\pi}(s_t) \stackrel{\alpha}{\leftarrow} r_t + \gamma V_{\gamma}^{\pi}(s_{t+1})$$

 $(\stackrel{\alpha}{\leftarrow}$ is exp. smoothed updating with rate α)

[2] Miller and Veinott, "Discrete Dynamic Programming with a Small Interest Rate" 1969

Reinforcement Learning Processes [2]

• Thus, state values $V^\pi_\gamma(s)$ are

$$V^\pi_\gamma(s) = \lim_{N o \infty} E[\sum_{t=0}^{N-1} \gamma^t R^\pi_t(s)]$$

where $R_t^{\pi}(s)$ the reward received at time t upon starting in state s by following policy π .

[2] Miller and Veinott, "Discrete Dynamic Programming with a Small Interest Rate", 1969

Aim of Discount Reinforcement Learning

- Finding an optimal policy π^*
- π^* maximises the state value for all states s as compared to any other policy π :

$$V_{\gamma}^{\pi^{\star}}(s) - V_{\gamma}^{\pi}(s) \geqslant 0$$

Aim of Discount Reinforcement Learning

- Finding an optimal policy π^*
- π^* maximises the state value for all states s as compared to any other policy π :

$$V_{\gamma}^{\pi^{\star}}(s) - V_{\gamma}^{\pi}(s) \geqslant 0$$

ullet This criteria: discounted-optimality as γ is fixed

Aim of Discount Reinforcement Learning

- Finding an optimal policy π^*
- π^* maximises the state value for all states s as compared to any other policy π :

$$V_{\gamma}^{\pi^{\star}}(s) - V_{\gamma}^{\pi}(s) \geqslant 0$$

ullet This criteria: discounted-optimality as γ is fixed

The higher γ the more optimal are the solutions.

Aim of Discount Reinforcement Learning

- Finding an optimal policy π^*
- π^* maximises the state value for all states s as compared to any other policy π :

$$V_{\gamma}^{\pi^{\star}}(s) - V_{\gamma}^{\pi}(s) \geqslant 0$$

ullet This criteria: discounted-optimality as γ is fixed

The higher γ the more optimal are the solutions.

Usual values: $\gamma \geqslant 0.99$

11 2 11 SI TIME

Laurent Series Expansion of Discounted State Values^[3]

The Laurent series expansion of $V^{\pi}_{\gamma}(s)$ of discounted state values:

$$V^\pi_\gamma(s) = rac{
ho^\pi}{1-\gamma} + V^\pi(s) + e^\pi_\gamma(s)$$

Average Reward ρ^{π} (simplified for unichain Processes)

The average reward is defined as

$$\rho^{\pi} = \lim_{N \to \infty} \frac{\mathbb{E}\left[\sum_{t=0}^{N-1} R_t^{\pi}\right]}{N}$$

where R_t^{π} is the reward received at time t.

[3] Miller and Veinott, "Discrete Dynamic Programming with a Small Interest Rate". 1969

Laurent Series Expansion of Discounted State Values^[3]

The Laurent series expansion of $V^\pi_\gamma(s)$ of discounted state values:

$$V^\pi_\gamma(s) = rac{
ho^\pi}{1-\gamma} + rac{oldsymbol{V}^\pi(s)}{1+e^\pi_\gamma(s)}$$

Bias value $V^{\pi}(s)$

The bias value is defined as

$$V^{\pi}(s) = \lim_{N o \infty} \mathbb{E}[\sum_{t=0}^{N-1} (R_t^{\pi}(s) -
ho^{\pi})]$$

It is the additional reward that sums up when starting in state s.

[3] Miller and Veinott, "Discrete Dynamic Programming with a Small Interest Rate" 1969

Laurent Series Expansion of Discounted State Values^[3]

The Laurent series expansion of $V_{\gamma}^{\pi}(s)$ of discounted state values:

$$V^\pi_\gamma(s) = rac{
ho^\pi}{1-\gamma} + V^\pi(s) + rac{e^\pi_\gamma(s)}{s}$$

Error term of e_{γ}^{π} [4]

Error term $e^{\pi}_{\gamma}(s)$ consists of infinitely many terms, but

$$\lim_{\gamma \to 1} e_{\gamma}^{\pi}(s) = 0$$

If $\gamma < 1$ it takes number of steps and reward values into account.

[4] Puterman, "Markov Decision Processes: Discrete Stochastic Dynamic Programming", 1994

Laurent Series Expansion of Discounted State Values^[3]

The Laurent series expansion of $V_{\gamma}^{\pi}(s)$ of discounted state values:

$$V^\pi_\gamma(s) = rac{
ho^\pi}{1-\gamma} + V^\pi(s) + e^\pi_\gamma(s)$$

[3] Miller and Veinott, "Discrete Dynamic Programming with a Small Interest Rate", 1969

Laurent Series Expansion of Discounted State Values^[3]

The Laurent series expansion of $V_{\gamma}^{\pi}(s)$ of discounted state values:

$$V^\pi_\gamma(s) = rac{
ho^\pi}{1-\gamma} + V^\pi(s) + e^\pi_\gamma(s)$$

Note

- Recall: High $\gamma \approx 1$ values required for optimal policies
- First term converges to ∞ as $\gamma \to 1$
- Recall: RL is an iterative method

[3] Miller and Veinott, "Discrete Dynamic Programming with a Small Interest Rate", 1969

7/18

So What?

$$V^\pi_\gamma(s) = rac{
ho^\pi}{1-\gamma} + V^\pi(s) + e^\pi_\gamma(s)$$

So What?

$$V^\pi_\gamma(s) = rac{
ho^\pi}{1-\gamma} + V^\pi(s) + e^\pi_\gamma(s)$$

Consider this simple gridworld problem [4]

	ир	
(0,0)	불 (0,1) 분	
	down	
up	up	
<u>ਵ</u> (1,0) ਵੂੰ	불 (1,1) 불	
down	down	

State/Action Space

(0,0)	$\mathcal{U}_{(0,8)}^{(0,8)} \mathcal{U}_{(0,8)}^{(0,8)}$
$\mathcal{U}^{(0,8)}_{(0,8)}$	$\mathcal{U}_{(0,8)}^{(0,8)} = \mathcal{U}_{(0,8)}^{(0,8)}$

Reward Function

[4] Manuel Schneckenreither, "Average Reward Adjusted Discounted Reinforcement Learning: Near-Blackwell-Optimal Policies for Real-World Applications", 2020

So What?

$$V^\pi_\gamma(s) = rac{
ho^\pi}{1-\gamma} + V^\pi(s) + e^\pi_\gamma(s)$$

Same problem as 5x5 grid

	23.113	162.243	354.839	398.391
(0,0)	67.160	49.812 349.515	399.560	399.376 (0,4) 888.444
	37.331	153.653	351.907	399.539

- All states values completely assessed independently
- For $\gamma \approx 1$: $\rho^{\pi}/(1-\gamma) \gg V^{\pi}(s) + e^{\pi}_{\gamma}(s)$
- Thus, all values need to increase to $\approx \rho^{\pi}/(1-\gamma)$
- BUT: Greater $V_{\gamma}^{\pi}(s)$, then more likely to be picked

Average Reward Adjusted Reinforcement Learning [4]

Basic Idea

Separately assessing

- average reward ρ^{π}
- bias value $V^{\pi}(s)$

[4] Manuel Schneckenreither, "Average Reward Adjusted Discounted Reinforcement Learning: Near-Blackwell-Optimal Policies for Real-World Applications", 2020

9/18

Average Reward Adjusted Reinforcement Learning [4]

Basic Idea

Separately assessing

- average reward ρ^{π}
- bias value $V^{\pi}(s)$

Algorithm

$$\rho^{\pi} \stackrel{\alpha}{\leftarrow} r_t + V^{\pi}(s_{t+1}) - V^{\pi}(s_t)$$
$$V^{\pi}(s_t) \stackrel{\beta}{\leftarrow} r_t + \gamma V^{\pi}(s_{t+1}) - \rho^{\pi}$$

Note: We can set $\gamma = 1$ here, as the subtraction of the average reward bounds the state values.

4 Manuel Schneckenreither, "Average Reward Adjusted Discounted Reinforcement Learning: Near-Blackwell-Optimal Policies for Real-World Applications", 2020

LCC 2020

Discounted vs. Average Reward Adjusted RL

Reconsider	the	5x5	Gridworld	[4]

Algorithm	Sum Reward	Avg. Steps
Avg. Rew. Adjusted $\gamma = 0.99$	51894.094	5.039
Avg. Rew. Adjusted $\gamma = 0.999$	51878.069	5.063
Avg. Rew. Adjusted $\gamma=1.00$	51856.529	5.055
Standard Discounted $\gamma = 0.99$	34409.464	7661.833
Standard Discounted $\gamma = 0.999$	33931.917	7379.155
Standard Discounted $\gamma = 0.50$	30171.837	9999.000

(500k learning steps, 40 \times 10k greedy evaluation steps)

^[4] Manuel Schneckenreither, "Average Reward Adjusted Discounted Reinforcement Learning: Near-Blackwell-Optimal Policies for Real-World Applications", 2020

Average Reward Adjusted Reinforcement Learning

More Insights

Average Reward Adjusted Reinforcement Learning ...

- 1. requires fewer number of learning steps
- 2. allows specifying continuous feedback

- Starting strategy: identity
- Strategy combinators: Alternative and Sequence

Process Schema Progress reward strat: identity Seq Concrete s .>>> s .>>> t Method Alt End Final reward

Note: Continuous feedback (Progress reward)

s < |> identity

 Required: Exponential growth of solution space (continuous and faster learning)

Binary Strategy Tree

- No ambiguity by enforcing right-associativity of .<|>
- Sorting of leaves on change of strategy:

$$(s.>>> t).<|>(u.>>> v) \equiv (u.>>> v).<|>(s.>>> t)$$

Implementation in T_CT

State Space

- · Characteristics of input problem, e.g.
 - number of rules
 - number of (root) symbols
 - · left-linearity, right-linearity
 - SCC (recursion and size of argument in recursive call)
 - branching degree
 - ...
- Representation of current strategy
 - Counter specifying steps until last occurrence of concrete method

Reward Function

Assume current strategy s_t at step t, a timeout of T seconds, a measured execution time of $t' \leqslant T$ seconds and resulting polynomial complexity C:

$$r(s_t) = egin{cases} cT + t' & ext{if } C ext{ is } O(n^c) ext{ and } c < P_{ ext{max}} \ P_{ ext{max}} T & ext{otherwise} \end{cases}$$

where P_{max} is the maximum polynomial degree being considered.

Outlook

Reality everything is more complex

- Algorithm is more complex, e.g. incorporates the error term
- Artificial Neural Network (ANN) to approximate value function
- More strategy combinators than just .<|> and .>>>

• . .

Outlook

Reality everything is more complex

- Algorithm is more complex, e.g. incorporates the error term
- Artificial Neural Network (ANN) to approximate value function
- More strategy combinators than just .<|> and .>>>
- . . .

Current State (+ Expert info)

- Implemented to work with ANN (critic-only, experience replay memory, target+worker ANN, ...)
- We aim for an actor-critic approach (policy and value iteration)
- We plan to use a DB for caching (certain) I/O tuples
- · Many open questions, as we are coding it right now

Outlook

Reality everything is more complex

- Algorithm is more complex, e.g. incorporates the error term
- Artificial Neural Network (ANN) to approximate value function
- More strategy combinators than just .<|> and .>>>
- . . .

Current State (+ Expert info)

- Implemented to work with ANN (critic-only, experience replay memory, target+worker ANN, ...)
- We aim for an actor-critic approach (policy and value iteration)
- We plan to use a DB for caching (certain) I/O tuples
- · Many open questions, as we are coding it right now

Thank you for your attention.

Let's discuss.

I am glad for any feedback, ideas or issues you have or see!

The issue of discounted-optimality illustrated [5]

- Average reward received is
 - 1 for the printer-loop
 - 2 for the mail-loop

[5] Adapted from Mahadevan, "Optimality criteria in reinforcement learning", 1996

The issue of discounted-optimality illustrated [5]

- Average reward received is
 - 1 for the printer-loop
 - 2 for the mail-loop
- BUT: if $\gamma < 3^{-\frac{1}{5}} \approx 0.8027$ the agent prefers the printer loop

[5] Adapted from Mahadevan, "Optimality criteria in reinforcement learning", 1996

Markov Decision Processes [6]

- Based on dynamic programming: states, actions, rewards
- Markov Prop.: transitions with probability $p(s_{t+1}, r_t \mid s_t, a_t)$
- RL processes: Markov decision processes (MDPs)

[6] Miller and Veinott, "Discrete Dynamic Programming with a Small Interest Rate" 1969

3/5

Motivation: More Applications

- WIP, Holding and Backorder costs ⇒ Aim: min. Costs
- A3C Reinforcement Learning variant (= highly sophisticated):
 Results were OK, but by far not optimal

M. Schneckenreither and Haeussler, "RL Methods for OR Applications", 2019

Add: Normed state values have a higher spread (Slide 13)

Reconsider the Example

- Both policies are have an average reward of 1 (gain-optimal).
- But only π_A is bias-optimal: $V^{\pi^*}(s) V^{\pi}(s) \geqslant 0$.

5	$V^{\pi_A}(s)$	$V^{\pi_B}(s)$	$V_{0.99}^{\pi_A}$	$V_{0.99}^{\pi_B}$
0	-0.5	-1.5	99.4975	98.5025
1	0.5	-0.5	100.5025	99.4975
2	1.5	0.5	101.4975	100.5025

