



Space Administration



# Space Exploration Medical Evacuation Risk Assessments: A Qualitative Investigation

Human Research Program  
Exploration Medical Capability Element  
February 7, 2023

Austin Almand, MS<sup>1</sup>

Samuel Ko, MD, MPH<sup>2</sup>

Arian Anderson, MD<sup>1</sup>

Ryan Keller<sup>3</sup>

Michael Zero, MS<sup>4</sup>

Allison Anderson, PhD<sup>4</sup>

Jonathan Laws, PhD, MS<sup>5</sup>

Benjamin Easter, MD, MBA<sup>1,6</sup>

Kris Lehnhardt, MD<sup>3,6</sup>

<sup>1</sup>University of Colorado School of Medicine; <sup>2</sup>US Navy Reserves; <sup>3</sup>Baylor College of Medicine; <sup>4</sup>University of Colorado Boulder;  
<sup>5</sup>Northumbria University UK

“Expanding the Boundaries of Space Medicine and Technology”

- Objective
- Background
- Approach
- Results
- Discussion
- Challenges & Limitations
- Lessons Learned

- Research Question: What unique risk assessment principles must be considered in space exploration medical evacuation (MEDEVAC) scenarios?
- Research Objectives:
  - 1: Identify common principles used to assess risks and benefits of MEDEVACs in extreme environments
  - 2: Identify common points of friction, complication, and challenges in extreme environment MEDEVACs

# Background

## Significant Incidents & Close Calls in Human Spaceflight

A product of the JSC SMA Flight Safety Office

FILTERS LESSONS LEARNED PROGRAMS HUMAN ERROR THE STORY THE TEAM ACRONYMS OTHER INTERACTIVE FSO TOOLS HELP

Loss of Crew

Crew Injury/Illness and/or Loss of Vehicle or Mission

Related/Recurring event



|                                                                                           |                  |
|-------------------------------------------------------------------------------------------|------------------|
| STS-108, 109, 110                                                                         | 12/5/01 - 4/8/02 |
| STS-91                                                                                    | 6/2/1998         |
| Soyuz TM-9                                                                                | 2/11/1990        |
| <b>SRB SEAL EVENTS 1981-96</b>                                                            |                  |
| <b>STS-51L (Challenger)</b>                                                               | <b>1/28/1986</b> |
| Other SRB gas seal anomalies:                                                             |                  |
| STS-2, 6, 41B, 41C, 41D, 51C, 51D, 51B, 51G, 51F, 51I, 51J, 61A, 61B, 61C, 42, 71, 70, 78 |                  |
| STS-51F                                                                                   | 7/29/1985        |
| Soyuz 18-1 (18a)                                                                          | 4/5/1975         |
| <b>POGO EVENTS 1962-70</b>                                                                |                  |
| Apollo 13                                                                                 | 4/11/1970        |
| Other significant pogo events:                                                            |                  |
| Apollo 4, 6, early Titan II                                                               |                  |
| Apollo 12                                                                                 | 11/14/1969       |
| Gemini 10                                                                                 | 7/18/1966        |

|                                                           |            |
|-----------------------------------------------------------|------------|
| Soyuz MS-10                                               | 10/11/2018 |
| <b>ISS CARGO MISSION FAILURES 2011-2016</b>               |            |
| Progress M-12M (44P)                                      | 8/24/2011  |
| Other ISS cargo mission failures:                         |            |
| Progress M-27M & M-04, Cygnus CRS Orb-3, Dragon CRS SpX-7 |            |

| EVA INCIDENTS SUMMARY 1965-2016                                                                                                               |           |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 12 EVAs resulted in crew injury:                                                                                                              |           |
| Gemini 10, Apollo 17, Salyut 7 PE-1, Salyut 7 VE-3, STS-61-B EVAs 1&2, STS-37, Mir PE-9, STS-63, STS-97/4A, STS-100/6A EVAs 1&2, STS-134/ULF6 |           |
| Apollo 14                                                                                                                                     | 1/31/1971 |
| Apollo 13                                                                                                                                     | 4/13/1970 |



|                 |                  |
|-----------------|------------------|
| Soyuz TM-5      | 9/6/1988         |
| Soyuz T-11      | 10/2/1984        |
| Soyuz 33        | 4/12/1979        |
| Skylab 4        | 2/8/1974         |
| <b>Soyuz 11</b> | <b>6/30/1971</b> |

SERVICE/DESCENT MODULE SEPARATION FAILURES 1961-2008

|                    |            |
|--------------------|------------|
| Soyuz TMA-11 (15S) | 4/9/2008   |
| Soyuz TMA-10 (14S) | 10/21/2007 |
| Soyuz 5            | 1/18/1969  |
| Voskhod 2          | 3/19/1965  |
| Vostok 5           | 6/19/1963  |
| Vostok 2           | 8/7/1961   |
| Vostok 1           | 4/12/1961  |

TPS ENTRY EVENTS 1981-2003

|                    |           |
|--------------------|-----------|
| STS-107 (Columbia) | 2/1/2003  |
| STS-51D            | 4/19/1985 |
| STS-1              | 4/14/1981 |

Other significant STS TPS anomalies:  
STS-6, 41B, 51G, 27\*, 28, 40, 42, 45  
\* Most severe tile damage to date

|                                       |            |
|---------------------------------------|------------|
| STS-134                               | 6/1/2011   |
| STS-108                               | 12/7/2001  |
| <b>SOYUZ LANDING EVENTS 1967-1993</b> |            |
| STS-97                                | 11/30/2000 |
| STS-90                                | 5/3/1998   |

|            |            |
|------------|------------|
| STS-37     | 4/11/1991  |
| STS-51D    | 4/19/1985  |
| Soyuz TM-7 | 4/27/1989  |
| STS-9      | 12/8/1983  |
| Soyuz T-7  | 12/10/1982 |

|           |            |
|-----------|------------|
| STS-3     | 3/30/1982  |
| Soyuz 15  | 8/28/1974  |
| Soyuz 23  | 10/16/1976 |
| Apollo 15 | 8/7/1971   |
| Apollo 12 | 11/24/1969 |

|                  |                  |
|------------------|------------------|
| Soyuz MR-4       | 7/21/1969        |
| Soyuz 18-1 (18a) | 4/5/1975         |
| Soyuz 5          | 1/18/1969        |
| <b>Soyuz 1</b>   | <b>4/24/1967</b> |

# Background

- LEO medical care includes:
  - Crew Medical Officer (CMO) with medical kits
  - Ground based consultation
  - MEDEVAC to Definitive Medical Care Facility (DMCF) within 24-48 hours
- Missions beyond LEO face:
  - Limited/No re-supply
  - Extended communication delays
  - Extended mission durations
  - Long MEDEVAC times

*“How long should...a CMO...care for an acutely ill crewmember on orbit before calling for a MEDEVAC to a DMCF?”<sup>2</sup>*

*“It will be a weighty responsibility for a flight surgeon and flight director to determine...the need for a MEDEVAC.”<sup>2</sup>*

*“...MEDEVAC scenarios turn even more complex in a mission beyond LEO.”<sup>2</sup>*



National Aeronautics and Space Administration



# MEDEVAC Decision Space



## ARTEMIS III

Landing on the Moon in 2024

- 1 LAUNCH SLS and Orion lift off from Kennedy Space Center
- 2 JETTISON ROCKET BOOSTERS Solid rocket boosters separate
- 3 JETTISON LAUNCH ABORT SYSTEM (LAS) The LAS is no longer needed, Orion could safety abort
- 4 CORE STAGE MAIN ENGINE CUT OFF With separation
- 5 ENTER EARTH ORBIT Perform the perigee raise maneuver
- 6 EARTH ORBIT Systems check and solar panel adjustments
- 7 TRANS LUNAR INJECTION BURN Burn lasts for approximately 20 minutes
- 8 ORION OUTBOUND TRANSIT TO MOON Requires several attitude maneuvers
- 9 ORION OUTBOUND POWERED FLYBY
- 10 GATEWAY ORBIT INSERTION BURN Orion performs burn and rendezvous to dock to the Gateway
- 11 HUMAN LANDING SYSTEM (HLS) Undocks from Gateway
- 12 HLS ENTERS LOW LUNAR ORBIT Descends to lunar touchdown
- 13 GATEWAY/ORION REMAIN IN LUNAR GATEWAY ORBIT During lunar surface mission
- 14 HLS ASCENDS LOW LUNAR ORBIT Then to Gateway Orbit to dock with Gateway
- 15 CREW RETURNS TO ORION Undocks from Gateway, and departs Gateway Orbit
- 16 ORION RETURN POWERED FLYBY
- 17 ORION TRANSITS TO EARTH
- 18 ENTRY INTERFACE Enter Earth's atmosphere
- 19 SPLASHDOWN Pacific Ocean landing within view of U.S. Navy recovery ships



<sup>3</sup>Image courtesy of NASA

# Approach

- Methodology and Execution
  - In-depth semi-structured interviews
  - Qualitative *Thematic Analysis* using *Consensus, Co-occurrence and Comparison*
  - Analogs determined by mission, MEDEVAC complexity, and limited local medical capability
  - Audio anonymized, transcribed, and analyzed for emerging themes

| Domain of Expertise (domain code) |    |
|-----------------------------------|----|
| Wilderness (W)                    | 2  |
| Polar (P)                         | 5  |
| Combat (C)                        | 4  |
| Undersea (U)                      | 2  |
| Submarine (S)                     | 3  |
| Space (X)                         | 4  |
| Profession                        |    |
| Physician (MD/DO)                 | 13 |
| Medical Provider (non-physician)  | 1  |
| Military Officer                  | 9  |
| Flight Surgeon (NASA/Military)    | 5  |
| Dive Medical Officer              | 1  |
| Logistics Operations              | 1  |
| Spaceflight Flight Director       | 1  |
| Astronaut (NASA/ESA)              | 2  |

Images (L-to-R) courtesy NASA, US Air Force, US DoE, US Navy, NASA, and Lloyd Smith via the public domain and Creative Commons



# Results

- Data Collected:
  - 20 Semi-Structured SME Interviews 2020-2022
  - 22 hours of audio, 250,000+ words of transcription
- Results:
  - 18 themes
  - 2 Main Categories
    - Primary Risk Considerations
    - Contributing Factors
  - 1 Stand-Alone Theme: Decision Making

| Categories                         | Themes                                                                                                                                                                 |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Primary Risk Considerations</b> | Crew<br>Environment<br>Execution<br>Experience<br>Mission<br>Patient(s)<br>Provider<br>Resources<br>Time                                                               |
| <b>Contributing Factors</b>        | Communication<br>Crew Cohesion<br>MEDEVAC Preparation<br>Medical Support Planning<br>Offsite Support<br>Philosophy<br>Political Considerations<br>Psych Considerations |
| <b>Other</b>                       | Decision Making                                                                                                                                                        |

- Primary Risk Considerations
  - Nine themes described by SMEs and assessed by research team to be of primary importance when making a MEDEVAC decision
  - Mostly static values or concepts
  - The “MEDEVAC math” evaluated **during the mission**

# Results

| Themes             | Description                                                                                                   | Representative Statements (Alpha-numeric code denotes domain and participant number per Table I)                          |                                                                                                                  |                                                                                                                              |
|--------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| <b>Crew</b>        | Mission members immediately impacted by MEDEVAC, not including those injured or sick                          | <i>Don't create more people needing to be evacuated -W2</i>                                                               | <i>The needs of the many outweigh the needs of the few. -C3</i>                                                  | <i>The rest of the crew covers down for as long as they can on the taskings at hand -X4</i>                                  |
| <b>Environment</b> | The natural & constructed surroundings & how they impact the crew, patients, medical care, & modes of MEDEVAC | <i>Don't poke the bear. They're not deteriorating, just let them float there with no stress and get treated -X4</i>       | <i>You may not be able to help anybody...you're just trying to survive... -X4</i>                                | <i>About 30 minutes after they left, they hit [a mine], and we saw all of them again...the risk is just ever present -C1</i> |
| <b>Execution</b>   | The steps, settings, & processes required to transport a patient from the POI to a DMCF                       | <i>[You] try not to have the level of medical care or conditions deteriorate while...evacuating -X1</i>                   | <i>The stresses of entry and landing...then they're hours away from care...what can we treat [in space]? -X1</i> | <i>Can you get them in a suit, strapped down...maybe? I can't provide any care...maybe talk to them, that's it -X3</i>       |
| <b>Experience</b>  | Training and exposure of medical provider(s) & crew to medical skills, MEDEVACs, & risk trade-offs            | <i>Here, I've got no shortage of help. I don't have to ask the janitor to scrub in, but...that may be the case -C4</i>    | <i>We were less willing to tolerate medical risks with more advanced [MEDEVAC] capabilities. -P2</i>             | <i>You need real experience of doing trade-offs of sick people...and balancing impact versus patient outcome -W2</i>         |
| <b>Mission</b>     | The explicit or implied purposes for the undertaking and the things required to achieve those purposes        | <i>How do you evaluate the importance...a mix of how hard it was to get there and how likely we are to come back? -W1</i> | <i>We're going to shut down most of the station to make sure this person gets on a plane to safety. -P5</i>      | <i>Once you launch to Mars, you've already made that decision...the mission is more important than the people -X3</i>        |
| <b>Patient(s)</b>  | The person(s) who have become sick or injured for whom a MEDEVAC is being considered                          | <i>Casualty status dictates everything. -C4</i>                                                                           | <i>The [first patient] was getting better...now we have two patients, do we take two? -P1</i>                    | <i>If it could go either way, what does the patient want to do? -P5</i>                                                      |
| <b>Provider</b>    | The person(s) providing medical care to the patient(s) regardless of training                                 | <i>We make recommendations, but they're going to listen. -X2</i>                                                          | <i>You've got to preserve your provider at all times... -P5</i>                                                  | <i>They're the eyes and ears on the ground, but ultimately the decision isn't for the doctor on the ground. -P5</i>          |
| <b>Resources</b>   | Local & remote workforce, consumable, & durable goods for the mission or providing medical care               | <i>The crew will have to decide: do you use all your consumables on one person? -X4</i>                                   | <i>OK, so we do this Hail Mary surgery...what do we do now? -P2</i>                                              | <i>We'll modify the standard treatment so we don't use as many resources or people -C1</i>                                   |
| <b>Time</b>        | Duration of medical stability, procedures, MEDEVAC, resources, and decision space                             | <i>Most of the time you don't have to make a split-second decision...now you've got to talk to people -X1</i>             | <i>Could I wait 24-48 hours to spin up my nominal landing site? -X1</i>                                          | <i>If you put a [patient] in the back of an open-bed truck for a four-hour drive, they're going to die. -C1</i>              |

- Contributing Factors
  - Eight themes described by SMEs and assessed by research team to not be of primary importance when making a MEDEVAC decision
  - Can reduce risk and shape environment for a MEDEVAC
  - Adjusted pre-mission to influence the Primary Risk Considerations

# Results

| Themes                              | Description                                                                                                                      | Representative Statements (Alpha-numeric code denotes domain and participant number per Table I)                          |                                                                                                                               |                                                                                                                                            |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Communication</b>                | Transmission, receipt, and understanding of information regarding medical issues, assessments, treatments, & MEDEVAC execution   | <i>It really degrades communication. It takes longer. It increases frustration. It makes everything harder.</i> -X4       | <i>And I had to explain why, because these are engineers and they [don't] understand ...the medical issues</i> -X2            | <i>With every handoff, there's some deterioration, and it's just like playing telephone.</i> -C1                                           |
| <b>Crew Cohesion</b>                | The level of camaraderie, bonding, & integration the crew has achieved before the mission begins                                 | <i>I think crews on a deep space mission will be very, very close...they're not all good friends...like siblings.</i> -X5 | <i>As a crew medical officer, that's your main goal is do the people trust you.</i> -X5                                       | <i>We've established that trust and we were able to communicate with them.</i> -X2                                                         |
| <b>MEDEVAC Preparation</b>          | Prior considerations, planning & rehearsals for MEDEVACs through both training and mission/vehicle design                        | <i>You won't get more training hours.</i> -X4                                                                             | <i>[MEDEVAC] is not a pickup game.</i> -C3                                                                                    | <i>That's why we train for the things that we do...hoping that the scenario we meet on the real day is not nearly as tough...</i> -X1      |
| <b>Medical Support Preparation</b>  | Prior consideration, planning & rehearsals for medical scenarios through both training and mission/vehicle design                | <i>I will tell you the medical team, the hours we get for medical training are few and far between.</i> -X4               | <i>It's about \$6k a year to support...We just made the call like we're not going to do it.</i> -W2                           | <i>Common things happen commonly...you have to think about high consequence, low incidence...as well</i> -W2                               |
| <b>Offsite Support</b>              | The availability for remote resources, consultation, & guidance to be provided to the crew                                       | <i>Whoever the lead surgeon is in Houston, it's that chief physician who makes the recommendation.</i> -X2                | <i>...my team has been activated and they are available to provide full support...</i> -P3                                    | <i>...if you're having a bad day... talk to your buddy...call your wife...if you're calling NASA...there's something weird</i> -X5         |
| <b>Philosophy</b>                   | The underlying culture, approach, and acceptability for risk, casualties, and MEDEVAC planning                                   | <i>...we're smart enough to figure it out</i> -X4                                                                         | <i>Prepare them to be autonomous or just ask them to be careful and accept that they might die.</i> -X5                       | <i>...it all goes back to that priority scheme of crew safety, vehicle safety, mission.</i> -X1                                            |
| <b>Political Considerations</b>     | Broad organizational, national, and international impacts from the success or failure of a mission, crew injury, or loss of life | <i>...paratroopers die in a helicopter crash...and we almost shrug...we don't think like that for astronauts...</i> -X5   | <i>...we don't want any narcotics because of the risk of diversion...that seems very shortsighted...</i> -W2                  | <i>...if an astronaut dies, it's bad for the astronaut...and national prestige...that drives the resources put into saving someone</i> -X5 |
| <b>Psychological Considerations</b> | The mental health support, training, and assets provided in case of injury or the death of a crewmember                          | <i>...human spaceflight has to be the strongest link of the operation...resiliency, even for the most dedicated</i> -W2   | <i>When you put people in those amounts of pressure...it's impossible to predict...the ones who are going to fold up.</i> -P5 | <i>...being in the same camp where now there's people missing from seats, that's a different experience.</i> -C2                           |

# Results

- Decision Making
  - **How** MEDEVAC decisions are made, by **whom**, at **what level** of an organization, and with **what information**
  - Impacts both **during the mission and pre-mission**

| Theme           | Description                                                                     | Representative Statements                                             |                                                                                              |                                                                                                                    |
|-----------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Decision Making | How a MEDEVAC decision is made, by whom, at what level, & with what information | <i>Make your recommendations, but it's up to the commander</i><br>-C1 | <i>You never tell the pilot it's a 3-year-old who's going to die if you don't go out</i> -P2 | <i>You need roles, responsibilities, &amp; decisions made at the right places...the lowest possible level</i> - X2 |



# Mission CONOP MEDEVAC Risk Analysis

National Aeronautics and Space Administration



## MEDEVAC Risk Analysis

Artemis III Mission Phase 12/13: Lunar EVA Ops

MEDEVAC Concept: Lunar Surface -> Gateway

Medical Incident Level: II

Overall Score: High (Resources)

| Category    | Score |
|-------------|-------|
| Crew        | +     |
| Environment | +     |
| Execution   | 0     |
| Experience  | 0     |
| Mission     | ++    |
| Patient(s)  | +     |
| Provider    | 0     |
| Resources   | +++   |
| Time        | ++    |



<sup>3</sup>Image courtesy of NASA

# Discussion

## Inter-Category Connections



# Contributing Factors Intra-Category Connections



# Challenges & Limitations

- Challenges
  - Operational constraints on several SME Interviews
  - Several conflicting or opposing opinions
- Limitations
  - Qualitative nature of data and analysis
  - Research team familiar with MEDEVACs and spaceflight

- Lessons Learned
  - MEDEVAC decision space is broad and complicated
  - Exploration vs LEO missions bring new aspects into consideration (e.g. mission, politics, psych, philosophy)
- Forward Work
  - Work submitted for publication
  - NASA Earth Independent Medical Operations Working Group
  - Define objective criteria within risk categories/themes
  - Pair with IMPACT tool to ID phases with high-probability for medical event/MEDEVAC for risk assessments

# References

1. Packham, N., & Ali, F. (2020). Significant incidents & close calls in human spaceflight. NASA JSC S&MA Flight Safety Office, JS-2015-004 NNJ13RA01B.
2. Johnston, S. L., Smart, K. T., & Patarini, J. M. (2019). Medical Evacuation Risk and Crew Transport. In Principles of Clinical Medicine for Space Flight (pp. 327–353). Springer.
3. Artemis III: NASA's First Human Mission to the Lunar South Pole | NASA. (n.d.). Retrieved January 17, 2023, from <https://www.nasa.gov/feature/artemis-iii>



space administration



# Questions?

**“Expanding the Boundaries of Space Medicine and Technology”**