Divide-&-Conquer – Symbolic Polynomial and Large Integer Multiplication

Textbook Reading:

- Section 7.1 Divide-and-Conquer Paradigm, pp. 284-286.
- Section 7.2 Symbolic Polynomial Multiplication, pp. 286-291.
- Section 7.3 Multiplication of Large Integers, pp. 291-292.

Divide-and-Conquer Paradigm

```
procedure Divide_and_Conquer(I,J) recursive
        I (an input to the given problem)
Output: J (a solution to the given problem corresponding to input I)
        if I \in Known then
                  assign the a priori or ad hoc solution for I to J
         else
                  Divide(I,I_1,...,I_m) //m may depend on the input I
                  for i \leftarrow 1 to m do
                           Divide\_and\_Conquer(I_i,J_i)
                  endfor
                  Combine(J_1,...,J_m,J)
         endif
end Divide_and_Conquer
```

Examples of Divide-&-Conquer Algorithms we've already seen

- Binary Search
- Interpolation Search
- Mergesort
- Quicksort

Symbolic Multiplication of Polynomials

$$\begin{split} P(x) &= a_{n-1}x^{n-1} + \dots + a_1x + a_0 \iff [a_0, a_1, \dots a_{n-1}] \\ Q(x) &= b_{n-1}x^{n-1} + \dots + b_1x + b_0 \iff [b_0, b_1, \dots b_{n-1}] \\ R(x) &= P(x)Q(x) = c_{2n-2}x^{2n-2} + \dots + c_1x + c_0 \iff [c_0, c_1, \dots c_{2n-2}] \\ R(x) &= (a_0 + a_1x + \dots + a_{n-1}x^{n-1}) \ (b_0 + b_1x + \dots + b_{n-1}x^{n-1}) \\ (a_0 * b_0) + (a_0 * b_1 + a_1 * b_0) x + (a_0 * b_2 + a_1 * b_1 + a_2 * b_0) x^2 \\ + (a_0 * b_3 + a_1 * b_2 + a_2 * b_1 + a_3 * b_0) x^3 + \dots \\ + (a_0 * b_{n-1} + a_1 * b_{n-2} + a_2 * b_{n-3} + \dots + a_{n-1}b_0) x^{n-1} \\ + (a_1 * b_{n-1} + a_2 * b_{n-2} + a_3 * b_{n-3} + \dots + a_{n-1}b_1) x^n \\ + \dots + (a_{n-2} * b_{n-1} + a_{n-1} * b_{n-2}) x^{2n-3} + (a_{n-1} * b_{n-1}) x^{2n-2} \end{split}$$

so that

$$c_{0} = a_{0} * b_{0}, c_{1} = a_{0} * b_{1} + a_{1} * b_{0}, c_{2} = a_{0} * b_{2} + a_{1} * b_{1} + a_{2} * b_{0},$$

$$c_{3} = a_{0} * b_{3} + a_{1} * b_{2} + a_{2} * b_{1} + a_{3} * b_{0}, c_{4} = \dots,$$

$$c_{n-1} = a_{0} * b_{n-1} + a_{1} * b_{n-2} + a_{2} * b_{n-3} + \dots + a_{n-1} b_{0},$$

$$c_{n} = a_{1} * b_{n-1} + a_{2} * b_{n-2} + a_{3} * b_{n-3} + \dots + a_{n-1} b_{1}, \dots,$$

$$c_{2n-3} = a_{n-2} * b_{n-1} + a_{n-1} * b_{n-2}, c_{2n-2} = a_{n-1} * b_{n-1}$$

Straightforward algorithm

The sum for c_i is called a *convolution*. The naïve algorithm is to simply compute all convolutions. The number of multiplications involved is

$$1 + 2 + ... + n - 2 + n - 1 + n + n - 1 + n - 2 + ... + 2 + 1$$

$$= 2*(1 + 2 + ... + n - 1) + n$$

$$= 2*((n-1)*n/2) + n = (n-1)n + n = n^{2}.$$

Thus, the worst-case, average, and best-case complexities are all given by

$$W(n) = A(n) = B(n) = n^2$$
.

Divide Step

Setting $d = \lceil n/2 \rceil$, we divide the set of coefficients of the polynomials in half

$$\begin{split} P_1(x) &= a_{d-1} x^{d-1} + a_{d-2} x^{d-2} + \ldots + a_1 x + a_0 \iff [a_0 \,, \, a_1 \,, \, \ldots \, a_{d-1}] \\ P_2(x) &= a_{n-1} x^{n-d-1} + a_{n-2} x^{n-d-2} + \ldots + a_{d+1} x + a_d \iff [a_d \,, \, a_{d+1} \,, \, \ldots \, a_{n-1}] \end{split}$$

$$\begin{aligned} Q_1(x) &= b_{d-1} x^{d-1} + b_{d-2} x^{d-2} + \dots + b_1 x + b_0 \iff [b_0, b_1, \dots b_{d-1}] \\ Q_2(x) &= b_{n-1} x^{n-d-1} + b_{n-2} x^{n-d-2} + \dots + b_{d+1} x + b_d \iff [b_d, b_{d+1}, \dots b_{n-1}] \end{aligned}$$

Then,

$$P(x) = P_1(x) + x^d P_2(x), Q(x) = Q_1(x) + x^d Q_2(x)$$
, so that

$$R(x) = P(x)Q(x) = (P_1(x) + x^d P_2(x)) (Q_1(x) + x^d Q_2(x))$$

$$= P_1(x) Q_1(x) + x^d (P_1(x)Q_2(x) + P_2(x)Q_1(x)) + x^{2d} P_2(x)Q_2(x)$$

Combine Step

$$R(x) = P(x)Q(x) = (P_1(x) + x^d P_2(x)) (Q_1(x) + x^d Q_2(x))$$

$$= P_1(x) Q_1(x) + x^d (P_1(x)Q_2(x) + P_2(x)Q_1(x)) + x^{2d}P_2(x)Q_2(x)$$

This involves 4 multiplications of polynomials of half the size. Note that multiplying by x^d and x^{2d} does not involve any coefficient multiplications.

Recursion Relation for Worst-Case Complexity

The combine involves 4 recursive calls with polynomials of half the size. The initial condition involves multiplying constant polynomials of size 1, i.e., $a_0 * b_0$. Thus, assuming $n = 2^k$

W(n) = 4W(n/2), initial condition W(1) = 1.

Using Repeated Substitution to Solve

$$W(n) = 4W(n/2) = 4(4W(n/4)) = 4^{2}W(n/4)$$

$$= 4^{2}(4W(n/8)) = 4^{3}W(n/8)$$

$$\vdots$$

$$\vdots$$

$$= 4^{k}W(n/2^{k})$$

$$= 4^{k}W(1)$$

$$= 4^{k} = (2^{k})^{2} = n^{2}$$

Bad Performance

Our Divide-and-Conquer has worst-case complexity

$$W(n) = n^2$$
.

But this is no better than the straightforward algorithm, and even worse because we have the overhead of recursion!

Solution: We need a better combine operation.

Improved Combine Operation

Observe that

$$P_1(x)Q_2(x) + P_2(x)Q_1(x) = (P_1(x) + P_2(x))(Q_1(x) + Q_2(x)) - P_1(x)Q_1(x) - P_2(x)Q_2(x),$$

Substituting we obtain

$$R(x) = P_1(x) Q_1(x) + x^d (P_1(x)Q_2(x) + P_2(x)Q_1(x)) + x^{2d}P_2(x)Q_2(x)$$

$$= P_1(x) Q_1(x) + x^d ((P_1(x) + P_2(x))(Q_1(x) + Q_2(x)) - P_1(x)Q_1(x) - P_2(x)Q_2(x)) + x^{2d}P_2(x)Q_2(x)$$

which involves 5 multiplications instead of 4, but only 3 distinct multiplications.

Using this formula, R(x) can be computed using only 3 **distinct** multiplications of polynomials of half the size, i.e., only 3 recursive calls in the Divide-and-Conquer algorithm based on this combine operations.

Pseudocode for Divide-&-Conquer Algorithm

function *PolyMult1(P,Q,n)* recursive

return (a_0b_0)

Input:
$$P(x) = a_{n-1}x^{n-1} + ... + a_1x + a_0$$
, $Q(x) = b_{n-1}x^{n-1} + ... + b_1x + b_0$ (polynomials) n (a positive integer)

Output: $P(x)Q(x)$ (the product polynomial) if $n = 1$ then

else

$$\begin{aligned} d &\leftarrow \lceil n/2 \rceil \\ Split(P(x), P_1(x), P_2(x)) \\ Split(Q(x), Q_1(x), Q_2(x)) \\ R(x) &\leftarrow PolyMult1(P_2(x), Q_2(x), d) \\ S(x) &\leftarrow PolyMult1(P_1(x) + P_2(x), Q_1(x) + Q_2(x), d) \\ T(x) &\leftarrow PolyMult1(P_1(x), Q_1(x), d) \\ return(x^{2d}R(x) + x^d(S(x) - R(x) - T(x)) + T(x)) \end{aligned}$$

endif

Recursion Relation for Worst-Case Complexity

Algorithm involves 3 recursive calls with polynomials of half the size. The initial condition involves multiplying constant polynomials of size 1, i.e., $a_0 * b_0$. Thus, assuming $n = 2^k$

W(n) = 3W(n/2), initial condition W(1) = 1.

Using Repeated Substitution to Solve

$$W(n) = 3W(n/2) = 3(3W(n/4)) = 3^{2}W(n/4)$$

$$= 3^{2}(3W(n/8) = 3^{3}W(n/8)$$

$$\vdots$$

$$\vdots$$

$$= 3^{k}W(n/2^{k})$$

$$= 3^{k}W(1)$$

$$= 3^{k}$$

$$= ((2^{\log_{2}3})^{k})$$

$$= (2^{k})^{\log_{2}3} = n^{\log_{2}3}$$

Complexity of Improved Divide-&-Conquer Algorithm

The worst-case complexity is

$$W(n) = n^{\log_2 3} \approx n^{1.5849}$$

This is a significant improvement over quadratic complexity of the straightforward algorithm.

Multiplication of Polynomials of Different Input Sizes

In practice, we often encounter the problem of multiplying two polynomials P(x) and Q(x) of different input sizes m and n, respectively.

If m < n, then the straightforward solution is to augment P(x) with n - m leading zeros.

This would be quite inefficient if n is significantly larger than m.

Better solution

Partition Q(x) into blocks of size m. For convenience, we assume n is a multiple of m, that is, n = km for some positive integer k. We let $Q_i(x)$ be the polynomial of degree m given by

$$Q_i(x) = b_{im-1}x^{m-1} + b_{im-2}x^{m-2} + \dots + b_{(i-1)m+1}x + b_{(i-1)m}, i \in \{1, \dots, k\}.$$

Then

$$Q(x) = Q_k(x)x^{m(k-1)} + Q_{k-1}(x)x^{m(k-2)} + \dots + Q_2(x)x^m + Q_1(x).$$

so that

$$P(x)Q(x) = P(x)Q_k(x)x^{m(k-1)} + P(x)Q_{k-1}(x)x^{m(k-2)} + \dots + P(x)Q_1(x).$$

Pseudocode for efficient algorithms for multiplying polynomial of possibly different sizes

```
function PolyMult2(P(x),Q(x),m,n)
        P(x) = a_{m-1}x^{m-1} + ... + a_1x + a_0, Q(x) = b_{m-1}x^{m-1} + ... + b_1x + b_0
          n, m (positive integers) //n = km for some integer k
Output: P(x)Q(x) (the product polynomial)
          ProdPoly(x) \leftarrow 0 {initialize all coefficients of ProdPoly(x) to be 0}
          for i \leftarrow 1 to k do
                  Q_i(x) \leftarrow b_{im-1}x^{m-1} + b_{im-2}x^{m-2} + \dots + b_{im-m+1}x + b_{im-m}
          endfor
          for i \leftarrow 1 to k do
                 ProdPoly(x) \leftarrow ProdPoly(x) + x^{(i-1)m}PolyMult1(P(x),Q_i(x),m)
          endfor
          return(ProdPoly(x))
```

end PolyMult2

Complexity Analysis

The complexity of PolyMult1 for multiplying two polynomials of size m is $\Theta((m^{\log_2 3}))$. Since PolyMult2 invokes PolyMult1 a total of k = n/m times, each time with input polynomials of size m, it follows that the complexity of PolyMult2 is

$$\Theta(km^{\log_2 3}) = \Theta\left(\frac{nm^{\log_2 3}}{m}\right) = \Theta\left(nm^{\log_2 (3/2)}\right)$$

Large Integer Multiplication

Consider two n-digit decimal integers

$$U = u_{n-1}u_{n-2} \dots u_1u_0, V = v_{n-1}v_{n-2} \dots v_1v_0$$

The algorithm you learned in school for multiplying these integers involves n^2 digit multiplications.

Large Integer Multiplication cont'd

Observe that for x = 10

$$U = u_{n-1}x^{n-1} + \dots + u_1x + u_0,$$

$$V = v_{n-1}x^{n-1} + \dots + v_1x + v_0$$

Thus, integer multiplication can be implemented in an analogous way to polynomial multiplication, yielding an algorithm for integer multiplication that has worst-case complexity

$$W(n) = n^{\log_2 3} \approx n^{1.5849}$$

Pseudocode for Large Integer Multiplication

function *PolyMult1(P,Q,n)* recursive **Input:** $U = u_{n-1}u_{n-2} \dots u_1u_0$, $V = v_{n-1}v_{n-2} \dots v_1v_0$ (*n*-digit decimal integers) n (a positive integer) **Output:** *UV* (the product) if n = 1 then $return(u_0 * v_0)$ else $d \leftarrow |n/2|$ $Split(U,U_1,U_2)$ $Split(V,V_1,V_2)$ $R(x) \leftarrow PolyMult1(U_2, V_2, d)$ $S(x) \leftarrow PolyMult1(U_1 + U_2, V_1 + V_2, d)$ $T(x) \leftarrow PolyMult1(U_1,V_1,d)$ return $(10^{2d}R(x) + 10^d(S(x) - R(x) - T(x)) + T(x))$ endif end PolyMult1

An Even Faster Algorithm

- We presented an $O(n^{\log_2 3})$ algorithm for symbolic polynomial multiplication and large integer multiplication.
- When we cover the Discrete Fourier Transform, we will see that the Fast-Fourier Transform (FFT), another Divide-&-Conquer algorithm, can be applied to solve both of these important problems in time O(n log n), an amazing result!

Teacher: Why are you doing your multiplication on the floor?

Student: You told me not to use tables.