Grundlagen der Biologie 1B

Überblick

Bestandteile der Nahrung

- Energieproduktion und Aufbau k\u00f6rpereigener Substanzen
- essentielle Aminosäuren, Fettsäuren und Vitamine

Aufbau und Funktion des Verdauungsystem

- der Verdauungsapparat des Menschen
- Steuerung von Appetit und Nahrungsaufnahme
- Anpassungen bei Herbivoren, Carnivoren und Omnivoren

Der Mensch benötigt im Ruhezustand täglich ca. 1500 kcal, die der Nahrung entnommen werden

= GRUNDUMSATZ

1 kcal =
$$4218 J$$

1 d = $24 \times 60 \times 60 = 86400 sec$

$$\frac{1500 \times 4218}{86400} = 73 \text{ J/s}$$

Energieproduktion in den Zellen

Essentielle Nahrungsbestandteile

Einige Stoffwechselwege fehlen in vielen Tieren um überlebenswichtige Substanzen herzustellen:

- Essentielle Aminosäuren (8 von 20)
- Essentielle ungesättigte Fettsäuren
- Vitamine (grossteils als Coenzyme für enzymatische Reaktionen benötigt)
- Mineralien müssen aus der Umgebung aufgenomen werden, zB Salzlecken bei Wildtieren zu beobachten

Essentielle Nahrungsbestandteile

- Aminosäuren werden aus Proteinen, die mit der Nahrung aufgenommen werden gewonnen. Tiere benötigen 20 Aminosäuren um körpereigene Proteine herzustellen.
- Biosynthesewege sind für einige Aminosäuren vorhanden, die restlichen müssen mit der Nahrung aufgenommen werden:

Leucin, Isoleucin, Valin, Phenylalanin, Threonin, Methionin, Lysin, Tryptophan

Essentielle Aminosäuren

für Erwachsene essenzielle Aminosäuren

Fehlernährung tritt auf, wenn bei generell ausreichender Nahrungszufuhr essentielle Nährstoffe nur ungenügend zur Verfügung stehen. Vor allem bei Vitaminen und Mineralstoffen, aber auch bei sehr einseitiger und Proteinarmer Kost bei Aminosäuren zu beobachten.

Vitamin B12 - Cobalamin

$$H_2N$$
 H_2N
 H_3C
 H_3C

wird zur Übertragung von C1
(methyl) Gruppen benötigt
beim Menschen für 2 Reaktionen benötigt:
Homocystein -> Methionin
Methylmevalonat abbau

Bei Mangel akkumulieren
Homocystein und Methylmevalonat
im Gewebe und können toxisch
wirken, da sie Reaktionen inhibieren
Perniziöse Anämie und Nervenschäden
können auftreten.

Cobalamine werden von wenigen bakterien produziert und sind oxidationsempfindlich. Sie werden bei Licht oder Hitze zerstört

Vitamin B12 - Cobalamin

Speichel und Darm enthalten B12 bindende Proteine. Zur Aufnahme wird ein Glykoprotein (der Intrinsischer-Faktor) benötigt, der bei Nahrungsaufnahme von den Belegzellen im Magen produziert wird. Die B12 Aufnahme erfolgt grossteils im Ileum (Dünndarmabschnitt). Alkohol und Mutationen können die Aufnahme beeinträchtigen. Darüber hinaus können auch Stress oder geringe B12 Reserven die weitere Aufnahme verhindern.

Ein Mangel kann erst verzögert (nach Jahren) sichtbar werden und evtl. schwer nachgewiesen werden, da oxidierte Formen von B12 nicht vom menschlichen Körper verwertet werden können. Homocystein und Methylmevalonatwerte werden als Indikatoren für B12 Verfügbarkeit im Gewebe herangezogen. Niedrige B12 Werte werden im Alter und bei gewissen Neurologischen Erkrankungen im Gewebe vermutet.

Typische B12 Quellen werden oft zu stark gekocht (Fastfood), wodurch ein Mangel auch in Industrieländern auftreten kann.

Vitamin C – L-Ascorbinsäure

Wirkt als Antioxidans und wird in der Lebensmittelindustrie zur Stabilisierung von Produkten zugesetzt. Daher ist ein Mangel bei normaler Ernährung ausgeschlossen. Vitamin C ist auch in sehr hoher Dosierung verträglich und wurde unter anderem zur Therapie von Krebs und Infekten vorgeschlagen.

Vitamin C regeneriert Fe²⁺ von Eisen und α-Ketoglutarat abhängigen Dioxygenasen, die zB die Vernetzung von Kollagenfasern im Bindegewebe vermitteln. Bei Mangel tritt Skorbut (Zahnfleischbluten) auf. Bildung von Botenstoffen im Nervensystem und Reaktionen in der Genregulation benötigen auch Dioxygenasen, sodass ein Vitamin C Mangel zu vielseitigen Ausfällen führen kann.

Ascorbinsäure wird auch in Tieren aus Gulonsäure hergestellt. Mensch, Fledermaus und Meerschwein HO tragen Mutationen im Gen, das für das relevante Enzym kodiert.

Table 41.1 Vitamin Requirements of Humans					
Vitamin	Major Dietary Sources	Major Functions in the Body	Symptoms of Deficiency		
Water-Soluble Vitamii	ns				
B ₁ (thiamine)	Pork, legumes, peanuts, whole grains	Coenzyme used in removing CO ₂ from organic compounds	Beriberi (tingling, poor coordination, reduced heart function)		
B ₂ (riboflavin)	Dairy products, meats, enriched grains, vegetables	Component of coenzymes FAD and FMN	Skin lesions, such as cracks at corners of mouth		
B ₃ (niacin)	Nuts, meats, grains	Component of coenzymes NAD ⁺ and NADP ⁺	Skin and gastrointestinal lesions, delusions, confusion		
B ₅ (pantothenic acid)	Meats, dairy products, whole grains, fruits, vegetables	Component of coenzyme A	Fatigue, numbness, tingling of hands and feet		
B ₆ (pyridoxine)	Meats, vegetables, whole grains	Coenzyme used in amino acid metabolism	Irritability, convulsions, muscular twitching, anemia		
B ₇ (biotin)	Legumes, other vegetables, meats	Coenzyme in synthesis of fat, glycogen, and amino acids	Scaly skin inflammation, neuromuscular disorders		
B ₉ (folic acid)	Green vegetables, oranges, nuts, legumes, whole grains	Coenzyme in nucleic acid and amino acid metabolism	Anemia, birth defects		
B ₁₂ (cobalamin)	Meats, eggs, dairy products	Production of nucleic acids and red blood cells	Anemia, numbness, loss of balance		
C (ascorbic acid)	Citrus fruits, broccoli, tomatoes	Used in collagen synthesis; antioxidant	Scurvy (degeneration of skin and teeth), delayed wound healing		
Fat-Soluble Vitamins					
A (retinol)	Dark green and orange vegetables and fruits, dairy products	Component of visual pigments; maintenance of epithelial tissues	Blindness, skin disorders, impaired immunity		
D	Dairy products, egg yolk	Aids in absorption and use of calcium and phosphorus	Rickets (bone deformities) in children, bone softening in adults		
E (tocopherol)	Vegetable oils, nuts, seeds	Antioxidant; helps prevent damage to cell membranes	Nervous system degeneration		
K (phylloquinone)	Green vegetables, tea; also made by colon bacteria	Important in blood clotting	Defective blood clotting		

Table 41.2 Mineral Requirements of Humans*						
	Mineral	Major Dietary Sources	Major Functions in the Body	Symptoms of Deficiency		
Greater than 200 mg per day required	Calcium (Ca)	Dairy products, dark green vegetables, legumes	Bone and tooth formation, blood clotting, nerve and muscle function	Impaired growth, loss of bone mass		
	Phosphorus (P)	Dairy products, meats, grains	Bone and tooth formation, acid-base balance, nucleotide synthesis	Weakness, loss of minerals from bone, calcium loss		
	Sulfur (S)	Proteins from many sources	Component of certain amino acids	Impaired growth, fatigue, swelling		
	Potassium (K)	Meats, dairy products, many fruits and vegetables, grains	Acid-base balance, water balance, nerve function	Muscular weakness, paralysis, nausea heart failure		
	Chlorine (Cl)	Table salt	Acid-base balance, formation of gastric juice, nerve function, osmotic balance	Muscle cramps, reduced appetite		
	Sodium (Na)	Table salt	Acid-base balance, water balance, nerve function	Muscle cramps, reduced appetite		
	Magnesium (Mg)	Whole grains, green leafy vegetables	Enzyme cofactor; ATP bioenergetics	Nervous system disturbances		
Iron (Fe)		Meats, eggs, legumes, whole grains, green leafy vegetables	Component of hemoglobin and of electron carriers; enzyme cofactor	Iron-deficiency anemia, weakness, impaired immunity		
Fluorine (F)		Drinking water, tea, seafood	Maintenance of tooth structure	Higher frequency of tooth decay		
odine (I)		Seafood, iodized salt	Component of thyroid hormones	Goiter (enlarged thyroid gland)		

Verdauungssystem

Verdauungssystem

- Bei sehr einfachen Tieren findet man Gastralräume mit einer Öffnung die sowohl zur Aufnahme von Nahrung sowie zur Abgabe von unverdaulichen Resten verwendet wird.
- Komplexere Tiere besitzen einen vollständigen Verdauungstrakt (Verdauungskanal), der durchgängig ist und eine Mundöffnung sowie eine Ausscheidungsöffnung besitzt.
- Vorteil: Nahrung kann wieder aufgenommen werden, bevor die Verdauung vollständig abgeschlossen ist.

Verschiedene Verdauungssysteme

Anpassung an die Art der Nahrung.

Mikroben können
Nahrungsbestandteile umbauen und
sind bei Pflanzenfressern ein wichtiger
Teil des

Verdauungsapparates, zB Pansen, Netzmagen, Blattermagen, und Labmagen bei Kühen.

Verdauungssystem beim Menschen

Besiedelung der Magenwand mit dem Bakterium Helicobacter pylori steht mit der Bildung von Magengeschwüren in Verbindung und kann mittels Antibiotila bekämpft werden.

Das saure Milieu im Magen tötet die meisten Bakterien ab. pH tollerante Mikroorganismen können aber überleben und Infektionen des Magen-Darmtrakts hervorrufen.

Magensäure ist auch ein Schutzmechanismus.

VERDAUUNGSTRAKT SCHEMATISCH

VERDAUUNGSPROZESSE SCHEMATISCH

Dünndarm

Duodenum: produziert Verdauungsenzyme

Jejunum

Resorption, Oberfläche durch

Ileum

Darmzotten stark vergrössert (300m2)

Der saure Nahrungsbrei löst im Duodenum die Sekretion von Sekretin aus, dass die Ausschüttung von Bikarbonat aus der Bauchspeicheldrüse stimuliert. Cholestokinin (CCK) bewirkt die Ausschüttung von Verdauungsenzymen. Sekretin und CCK wirken der Ausschüttung von Magensäften entgegen.

Das Peptidhormon PYY agiert als Sättigungssignal, wird bei Erreichen des sauren Nahrungsbreies im Dünndarm produziert und als Hormon in das Blut abgegeben.

Regulation der Ausschüttung von Verdauungssäften

Resorption im Dünndarm

- Das Dünndarmepithel hat durch Faltungen und Darmzotten eine grosse Oberfläche für Stoffaustausch. Darmzotten (Villi) and Mikrovilli sind in Kontakt mit dem Darmlumen.
- Der durch Mikrovilli erzeugte Bürstensaum ist der Bereich der Resorption
- Der Transport von Nährstoffen durch die Epithelgewebe des Verdauungstraktes kann aktiv oder passiv erfolgen.

- Nährstoffe werden über das Blut vom Kapillarsystem des Dünndarmes zur Pfortader (Vena portae) geleitet, die zur Leber führt.
- Die Leber stellet einen relativ konstanten N\u00e4hrstoffgehalt des Blutes sicher.
- Glykogen wird als Speicher für Zucker in der Leber und im Muskel verwendet
- Überschüssiger Zucker wird zu Fett umgebaut und dann im Fettgewebe gespeichert
- Die Leber hat auch Funktionen zum Entgiften und Entfernen von Abfallprodukten, zB Abbauprodulte des Hämoglobin (roter Blutfarbstoff) werden in in die Galle abgegeben – bei Leberschäden wird oft Gelbsucht beobachtet.
- Einnahme von Giften (zB Knollenblätterpilz) führt zu schweren Leberschäden und muss evtl. durch Organtransplantation behandelt werden.
- Fette werden nicht über das Blut transportiert, sondern von den Epithelzellen als Chylomikronen in das zentrale Lymphgefäss abegeben. Chylomikronen bestehen aus Proteinen und Lipiden.

Dünndarmlumen

Triglyceride Monoglyceride **Fettsäuren Triglyceride** Phospholipide, Cholesterin, und Proteine Chylomikron

Spaltung von Fetten durch Lipasen

Aufnahme durch Vesikel

Neusynthese von Triglyceriden

Darmepithel

zentrales Lymphgefäss

© 2011 Pearson Education, Inc.

Wasserresorption im Dickdarm

Im Dickdarm befinden sich Bakterien die unverdaute Nahrung aufschliessen können. Beim Menschen ungenutzt, doch Koprophagie im Tierreich.

Der Blinddarm ist bei Pflanzenfressern oft vergrössert um Zellulose durch Microben aufzuschliessen.

Nahrungsaufnahme im Überblick

© 2011 Pearson Education, Inc.

Evolutionäre Anpassungen des Gebiss

Ampassangen des magens per Micaernadern

Regulation des Energiestoffwechsels

Glykogen dient in der Leber und im Muskelgewebe als rasch verfügbarer Speicherstoff, der in Glukose abgebaut werden kann.

 Die Leber hält den Blutglukosespiegel zwischen 70 und 110 Milligram pro Milliliter Blut (5 mM; 5 mmol/Liter)

Die Bauchspeicheldrüse besitzt eine zentrale Funktion bei der Regulation des Zuckerspiegels.

In den Langerhans'schen Inseln sitzen Zellen die den Blutzuckerspiegel messen und Hormone zur Zuckeraufnahme oder Abgabe produzieren:

- Alpha-Zellen produzieren bei zu geringem Blutzuckerspiegel Glukagon, das die Freisetzung von Glukose durch die Leber ins Blut anregt
- Beta-Zellen produzieren bei hohem Blutglukosespiegel Insulin, wodurch Glukoseaufnahme aus dem Blut in die Leber und Muskel gefördert wird.

Fehler bei der Insulinproduktion oder Reaktion können zu Diabetes führen. Wird langfristig mehr Nahrung zugeführt als benötigt wird, wird Zucker in Fett umgewandelt und es werden Fettreserven angelegt.

Regulation des Energiestoffwechsels

Regulation der Nahrungsaufnahme

Ghrelin wird bei leerem Magen produziert und erzeugt ein Hungergefühl.

Nach der Nahrungsaufnahme werden verschiedene Hormone im Verdauungssystem ausgeschüttet, die lokal auf die Drüsen wirken und über das Blut auch im Sättigungszentrum das Hungergefühl verringern (Insulin und PYY).

Fettgewebe produziert Leptin, dass volle Fettspeicher signalisiert und auch dem Hungergefühl entgegenwirkt.

Die Ob (Obese) Mutation in Mäusen führt zu einem Verlust von Leptin und löst starke Gewichtszunahme und Fettleibigkeit

Mutation

Maus