

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE/GRAAD 12

MATHEMATICS P1/WISKUNDE V1

FEBRUARY/MARCH/FEBRUARIE/MAART 2015

MEMORANDUM

MARKS: 150 *PUNTE: 150*

This memorandum consists of 18 pages. *Hierdie memorandum bestaan uit 18 bladsye.*

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- Consistent accuracy applies in all aspects of the marking memorandum.

LET WEL:

- Indien 'n kandidaat 'n vraag TWEE keer beantwoord, merk slegs die EERSTE poging.
- Volgehoue akkuraatheid is DEURGAANS op ALLE aspekte van die memorandum van toepassing.

QUES	TION/VRAAG 1	
1.1.1	(x+4)(x-5) = 0	✓ factors/faktore
	$\therefore x = -4 \text{ or } x = 5$	✓answers/antwoorde
		(2)
1.1.2	$2x^2 - 11x + 7 = 0$	
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	✓ substitution into correct formula/substitusie in
	$-(-11)\pm\sqrt{(-11)^2-4(2)(7)}$	korrekte formule
	$=\frac{-(-11)\pm\sqrt{(-11)^2-4(2)(7)}}{2(2)}$	√4,77
	= 4,77 or 0,73	√0.73
	1,77 01 0,75	(3)
	OR/OF	
	$2x^2 - 11x + 7 = 0$	
	$x^2 - \frac{11}{2}x + \frac{7}{2} = 0$	
	$x^{2} - \frac{11}{2}x + \left(\frac{1}{2} \cdot \frac{11}{2}\right)^{2} + \frac{7}{2} - \left(\frac{1}{2} \cdot \frac{11}{2}\right)^{2} = 0$	✓ correct completion of the square/korrekte voltooiing van die
	$\left(x - \frac{11}{4}\right)^2 + \frac{7}{2} - \frac{121}{16} = 0$	vierkant
	$\left(x - \frac{11}{4}\right)^2 = \frac{121 - 56}{16}$	
	$x - \frac{11}{4} = \pm \sqrt{\frac{65}{16}}$	
	$\therefore x = \frac{11}{4} + \frac{\sqrt{65}}{4} \qquad \text{or} \qquad x = \frac{11}{4} - \frac{\sqrt{65}}{4}$	
	x = 4,77 $x = 0,73$	√ 4,77
		√ 0,73
		(3)

NSC/*NSS* – Memorandum

1.1.3	$5x^{2} - 21x + 4 > 0$ $(5x - 1)(x - 4) > 0$ $x < \frac{1}{5} \text{ or/of } x > 4$ $+ \frac{1}{5} - 4 +$	 ✓ standard form/ standaardvorm ✓ factors/faktore ✓ x < 1/5 ✓ x > 4 ✓ of
		(5)
1.1.4	$2^{2x} - 6.2^{x} = 16$ $2^{2x} - 6.2^{x} - 16 = 0$ $(2^{x} - 8)(2^{x} + 2) = 0$ $2^{x} = 2^{3} \text{or/of} 2^{x} = -2$ $x = 3 \text{or/of} \text{No Solution} \text{or} 2^{x} \neq -2$	✓ factors/faktore ✓ no solution to/ geen oplossing $2^{x} = -2$ ✓ $2^{x} = 2^{3}$ ✓ answer/antw. (4)

NSC/*NSS* – Memorandum

1.2	$y = 2x - 1$ $x^{2} - x(2x - 1) + (2x - 1)^{2} = 7$ $x^{2} - 2x^{2} + x + 4x^{2} - 4x + 1 = 7$ $3x^{2} - 3x - 6 = 0$ $x^{2} - x - 2 = 0$	✓y the subject/ die onderwerp ✓ substitution/substitusie ✓ simplification/vereenv.
	(x-2)(x+1) = 0 $x = 2 or/of x = -1$ $y = 3 or/of y = -3$ OR/OF	✓ factors/faktore ✓ x-values/waardes ✓ y-values/waardes (6)
	$x = \frac{y}{2} + \frac{1}{2}$ $\left(\frac{y}{2} + \frac{1}{2}\right)^2 - \left(\frac{y}{2} + \frac{1}{2}\right)y + y^2 = 7$	✓ x the subject/ die onderwerp ✓ substitution/substitusie
	$\frac{y^2}{4} + \frac{y}{2} + \frac{1}{4} - \frac{y^2}{2} - \frac{y}{2} + y^2 = 7$ $\times 4: y^2 + 2y + 1 - 2y^2 - 2y + 4y^2 - 28 = 0$ $3y^2 - 27 = 0$ $y^2 - 9 = 0$	✓ simplification/vereenv.
	$(y-3)(y+3) = 0$ $\therefore y = 3 \text{or} y = -3$ $\therefore x = \frac{3}{2} + \frac{1}{2} \qquad x = \frac{-3}{2} + \frac{1}{2}$	✓ factors/faktore ✓ y-values/waardes
	x = 2 $x = 2$ $x = -1$	✓x-values/waardes (6)
1.3.1	k = -2 or/of $k = 2$	✓✓ answer/antw. (2)
1.3.2	k = -3	✓ -3 (1)

1.4
$$\sqrt{\frac{7^{2014} - 7^{2012}}{12}}$$

$$= \sqrt{\frac{7^{2012}(7^2 - 1)}{12}}$$

$$= \sqrt{\frac{7^{2012} \cdot 48}{12}}$$

$$= \sqrt{7^{2012} \cdot 4}$$

$$= \sqrt{7^{2012} \cdot 4}$$

$$= 2.7^{1006}$$

$$a = 2; b = 1006$$

$$\sqrt{7^{2012} \cdot 4}$$

$$\sqrt{7^{2012} \cdot 4}$$

$$\sqrt{7^{2012} \cdot 4}$$

$$\sqrt{9R/0F}$$

$$\sqrt{a} = 2$$

$$\sqrt{b} = 1006$$
(4)
[27]

2.1	$S_n = a + (a+d) + (a+2d) + \dots + a + (n-1)d$ $S_n = a + (n-1)d + a + (n-2)d + a + (n-3)d + \dots + a$ $2S_n = n(2a + (n-1)d)$ $S_n = \frac{n}{2}[2a + (n-1)d]$	 ✓ first series/eerste reeks ✓ series reversed/reeks omgekeer ✓ sum/som ✓ division/deling (4)
2.2	$\sum_{k=1}^{50} (100 - 3k) = 97 + 94 + 91 + \dots$ $T_1 = a = 97$ $d = -3$ $n = 50 - 1 + 1 = 50$ $S_n = \frac{n}{2} [2a + (n - 1)d]$ $= \frac{50}{2} [2(97) + 49(-3)]$ $= 1175$ \mathbf{OR}/\mathbf{OF}	√a = 97 $ √d = -3 $ $ √n = 50 $ $ √ answer/antwoord $ (4)
	$T_{1} = a = 97$ $l = 100 - 3(50) = -50$ $n = 50 - 1 + 1 = 50$ $S_{n} = \frac{n}{2}[a + l]$ $= \frac{50}{2}[97 - 50]$ $= 1175$	√a = 97 $ √l = -50 $ $ √n = 50 $ $ √ answer/antwoord $ (4)

2 2 1 (a)	T T Ar	✓ answer/antwoord
2.3.1 (a)	$T_5 - T_4 = 25$	(1)
2.3.1 (b)	$T_{70} - T_{69} = 7 + (69 - 1)(6)$	✓n = 69
	= 415	$\checkmark 7 + (69 - 1)(6)$
		✓ answer/antw. (3)
2.3.2	$T_{89} - T_{69} = (T_{70} - T_{69}) + (T_{71} - T_{70}) + + (T_{89} - T_{88})$ $= 415 + 421 + \text{to 20 terms}$ $= \frac{20}{2} [2(415) + 19(6)]$ $= 9440$ $T_{69} = T_{89} - (\text{sum of the differences from/som van die verskille van } T_{69} \text{ to } T_{89})$ $T_{69} = 23594 - 9440$ $= 14154$	✓ expansion/uitbreiding $\checkmark n = 20$ ✓ method/metode $\checkmark a = 415$ ✓ answer/antwoord (5)
	OR/OF $ \begin{array}{cccccccccccccccccccccccccccccccccc$	
	$3a + b = 7$ $b = -2$ $T_{89} = 3(89)^{2} - 2(89) + c = 23594$	✓ $a \text{ and/} en b$ ✓ $T_{89} \text{ (subst } n = 89)$
	$\therefore c = 9$ $\therefore T_n = 3n^2 - 2n + 9$	$\checkmark T_n$
	$T_{69} = 3(69)^2 - 2(69) + 9$ $T_{69} = 14154$	✓ substitution/substitusie ✓ answer/antwoord (5)

$$\begin{array}{c|ccccc}
7 & 13 & 19 & 25 \\
6 & 6 & 6
\end{array}$$

$$\therefore 2a = 6$$

$$a = 3$$

$$7 - 6 = 1$$

$$T_1 - T_0 = 1$$

$$a + b + c - c = 1$$

$$3 + b = 1$$

$$b = -2$$

$$T_{89} = 3(89)^2 - 2(89) + c = 23594$$

$$\therefore c = 9$$

$$\therefore T_n = 3n^2 - 2n + 9$$

$$\therefore T_{69} = 3(69)^2 - 2(69) + 9$$

$$\therefore T_{69} = 14154$$

 \checkmark a and/en b

✓ T_{89} (subst n = 89)

 $\checkmark T_n$

✓ substitution/substitusie

✓ answer/antwoord

(5) [**17**]

OR/OF

$$T_{n+1} - T_n = 7 + 6(n-1)$$

$$\therefore T_{89} - T_1 = \sum_{n=1}^{88} (T_{n+1} - T_n)$$

$$= \frac{n}{2} [2a + (n-1)d]$$

$$= \frac{88}{2} [14 + 87 \times 6]$$

$$= 23584$$

$$\therefore T_1 = 23594 - 23584 = 10$$

$$\therefore T_{69} - 10 = \sum_{n=1}^{68} (T_{n+1} - T_n)$$

 $= 34(15 + 67 \times 6) = 14144$

✓ formula/formule

✓ value of/waarde van S_{88}

✓ first term value/ eerste term waarde

✓ substitution/substitusie

✓answer/antwoord

(5) [**17**]

 $T_{69} = 14154$

QUESTION 3

3.1 4	0.5	$\checkmark r = 0.9$
r = -	$\frac{0.5}{45} = 0.9$	- 9-
	15	✓ substitution into
$T_{12} =$	$45(0.9)^{12-1}$	correct formula/substitusie in
=	14,12147682	korrekte formule
	14,12	✓ answer/antwoord
		(3)
3.2 $r = 0$,	9	, ,
-1<	0,9<1	✓answer/antwoord
		(1)
3.3	45	
$S_{\infty} = $	$\frac{45}{1-0.9}$	✓ substitution/substitusie
	·	substitution/substituste
$S_{\infty} =$	450	√ 450
		(2)
3.4 S -	$S_n < 1$	
~ ∞		$\checkmark 450 - \frac{45(1-(0.9)^n)}{1-0.9}$
S_{-}	$S_n = 450 - \frac{45(1 - (0.9)^n)}{1 - 0.9}$	1-0,9
S_{∞} –	$S_n = 450 - 450(1 - (0.9)^n)$	
450(0	$(0.9)^n < 1$	
$(\alpha, \alpha)^n$	1	$\checkmark (0.9)^n = \frac{1}{450}$
(0,9)	$<\frac{1}{450}$	450
$\log(0)$	$(9)^n < \log \frac{1}{450}$	
	(0.0) (10.0)	
$n.\log$	$(0.9) < \log \frac{1}{450}$	✓ introducing/gebruik logs
1.	1	
	$99\frac{1}{450}$	
$ n > \frac{1}{10}$	$\frac{\log \frac{1}{450}}{\log(0.9)}$	✓ making n the subject/maak n
	7,98	die onderwerp
	est value/ <i>Kleinste waarde:</i> $n = 58$	
Sillali	est value/Rieinsie waarae. II – 30	$\checkmark_{n=58} \tag{5}$
		[11]

4.1	x = -2	$\checkmark x = -2$
4.1		$\checkmark x = -2$ $\checkmark y = -1 \tag{2}$
	y = -1	y = -1 (2)
4.2.1	$g(0) = \frac{6}{0+2} - 1$ = 2	✓ answer/antwoord (1)
	y-intercept/afsnit (0; 2)	· ·
4.2.2	$0 = \frac{6}{x+2} - 1$ $1 = \frac{6}{x+2}$ $x+2 = 6$	✓ equating to/stel gelyk aan 0
	x = 4 x-intercept/afsnit (4; 0)	✓ answer/antwoord (2)
4.3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	 ✓ asymptotes/asimptote ✓ intercepts/afsnitte ✓ shape/vorm
		(3)
4.4	y+1=-(x+2) $y=-x-3$	$\checkmark m = -1$ \checkmark substitution of (-2; -1) \checkmark answer
	OR/OF	(3)
	Using general formula/Gebruik algemene formule: y = -(x+p)+q y = -(x+2)-1 y = -x-3	✓ formula/formule ✓ substitution of p and q values/substitusie van p- en q-waardes ✓ answer/antwoord (3)
4.5	x > -2	$\checkmark \checkmark \text{ answer} (2)$ [13]
		[13]

5.1	$9=a^2$	$\checkmark 9 = a^2$	
	a=3	$\checkmark a = 3 \tag{2}$	
	OR/OF		
	$f^{-1}(x) = \log_a x$		
	$2 = \log_a 9$	/O 2	
	$a^2 = 9 = 3^2$	$\checkmark 9 = a^2$ $\checkmark a = 3 \tag{2}$	
	$\therefore a = 3$	` '	
5.2	$g(x) = 3^{-x}$	✓ answer/antwoord	(1)
			(1)
	OR/OF		
	$\left(\frac{1}{x} \right)^{x}$		
	$g(x) = \left(\frac{1}{3}\right)^x$	✓ answer/antwoord	(1)
5.3	$x \ge 9$	✓✓ answer/antwoord	(1)
	OD/OF		(2)
	OR/OF		
	$\int_{0}^{1} f^{-1}(x) = \log_3 x$		
	$\log_3 x = 2$		
	$x = 3^2 = 9$		
	$\therefore x \ge 9$	✓✓ answer/antwoord	
			(2)
	OR/OF		
	$\log_3 x \ge 2$		
	$x \ge 3^2$		
	$\therefore x \ge 9$	✓✓ answer/antwoord	(2)
5.4	Vos/Ia For every y volue there is only one y such that/Vi-	✓ Yes/Ja	(2)
3.4	Yes/Ja. For every y-value there is only one x such that/Vir elke y-waarde is daar slegs een x sodanig dat $y = f(x)$.	$\checkmark \text{ Reason/Rede}$ (2)	
	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty$	(-)	
	OR/OF	Vac/Ia	
	Vos/Is f is a one to one relation/is he can tot asset to the	✓ Yes/Ja ✓ Reason/Rede (2)	
	Yes/ Ja . f is a one-to-one relation/is 'n een-tot-een-relasie.	[7]	

6.1	$-3 \le x \le 2$	✓ critical values/
		kritiese waardes
		✓ notation/notasie (2)
6.2	$f: y = a(x-x_1)(x-x_2)$	(2)
	y = a(x+3)(x-2)	
	-8 = a(1+3)(1-2)	\checkmark y = a(x+3)(x-2) \checkmark substitute/vervang (1; -8)
	-8 = -4a	\checkmark substitute/vervang $(1, -8)$
	2 = a	$\checkmark a = 2$
	y = 2(x+3)(x-2)	
	$y = 2x^2 + 2x - 12$	
	$b = 2 \text{ and/} en \ c = -12$	
	OR/OF	$\checkmark b = 2 \text{ and/} en$ $\checkmark c = -12$
	ONO	(5)
	$y = a\left(x + \frac{1}{2}\right)^2 + q$	
	$0 = a\left(2 + \frac{1}{2}\right)^2 + q \qquad \to \qquad 0 = \frac{25}{4}a + q \qquad(1)$	✓ equation/vergelyking 1
	$-8 = a\left(1 + \frac{1}{2}\right)^2 + q \to -8 = \frac{9}{4}a + q \dots (2)$	✓ equation/vergelyking 2
	(1) - (2): 8 = 4a $a = 2$	$\checkmark a = 2$
	$q = 0 - \frac{25}{4}(2) = -\frac{25}{2} = -12,5$	
	$y = 2\left(x + \frac{1}{2}\right)^2 - 12\frac{1}{2}$	✓ substitution/substitusie
	$y = 2\left(x^2 + x + \frac{1}{4}\right) - 12\frac{1}{2}$	
	$y = 2x^2 + 2x + \frac{1}{2} - 12\frac{1}{2}$	
	$y = 2x^2 + 2x - 12$	
	$\therefore b = 2 \text{ and } c = -12$	$\checkmark b = 2 \text{ and/} en$ $\checkmark c = -12$ (5)
	OR/OF	
		1

	$f'(x) = 2ax + b$ $f'\left(-\frac{1}{2}\right) = 2a\left(-\frac{1}{2}\right) + b = 0$ $\therefore a = b$	
	(-3;0): 9a - 3b + c = 0 $\therefore 6a + c = 0$ (1)	✓equation/vergelyking 1
	$(1;-8): a+b+c=-8$ $\therefore 2a+c=-8(2)$ $(1)-(2): 4a=8$	✓equation/vergelyking 2
	$\therefore a = 2$ $\Rightarrow b = 2$ $\therefore c = -12$	$\checkmark a = 2$ $\checkmark b = 2$ $\checkmark c = -12$
6.3	$x = -\frac{b}{2a}$ 2 1	$\checkmark c = -12 \tag{5}$ $\checkmark x = -\frac{1}{2}$
	$x = -\frac{2}{2(2)} = -\frac{1}{2}$ $y = \frac{1}{2} - 1 - 12$	$\sqrt{x^2 - \frac{1}{2}}$ ✓ substitution/substitusie
	$y = -12\frac{1}{2}$ $TP\left(-\frac{1}{2}; -12\frac{1}{2}\right)$	✓y-value/waarde
	OR/OF	(3)

the matter 1 1, 11 to the 11	13
	NSC/NSS – Memorandu:

	$y = 2[x^2 + x - 6]$		
	$y = 2\left[x^2 + x + \left(\frac{1}{2}.1\right)^2 - 6 - \left(\frac{1}{2}.1\right)^2\right]$	✓ method/ <i>metode</i>	
	$=2\left[\left(x+\frac{1}{2}\right)^2-6{,}25\right]$		
	$= 2\left(x + \frac{1}{2}\right)^2 - 12,5$	✓x-value/ <i>waarde</i>	
	$TP\left(-\frac{1}{2};-12,5\right)$	✓ y-value/waarde	(3)
	OR/OF		(3)
	$x = \frac{-3+2}{2} = -\frac{1}{2}$		
	$y = 2\left(-\frac{1}{2}\right) + 2\left(-\frac{1}{2}\right) - 12$	✓ method/ <i>metode</i> ✓ <i>x</i> -value/ <i>waarde</i>	
	$y = -12\frac{1}{2}$		
	$TP\left(-\frac{1}{2};-12,5\right)$	✓y-value/waarde	(3)
	OR/OF		
	$f(x) = y = 2x^2 + 2x - 12$		
	f'(x) = 4x + 2 $4x + 2 = 0$		
	4x = -2	✓ method/ <i>metode</i>	
	$x = -\frac{1}{2}$		
	<u>~</u>	✓x-value/waarde	
	$\therefore y = 2\left(-\frac{1}{2}\right)^2 + 2\left(-\frac{1}{2}\right) - 12 = -\frac{25}{2}$		
	$TP\left(-\frac{1}{2}; -\frac{25}{2}\right)$	\checkmark y-value/waarde (3)	
6.4	$x = \frac{13}{2}$	✓✓ answer/i	
	2	v v answer/1	(2)
6.5	f'(x) = 4x + 2	$\checkmark y' = 4x + 2$	
	m = f'(1) = 4(1) + 2	✓ subst. $x = 1$ ✓ answer/antwoord	
	m = 6		(3) [15]

7.1.1	$R400 \times (44 \times 12)$	✓ R400×(44×12)	
	= R211200	✓R211200	
		11211200	(2)
7.1.2	$F = \frac{x[(1+i)^n - 1]}{i}$ $= \frac{400\left[\left(1 + \frac{0,08}{12}\right)^{528} - 1\right]}{\frac{0,08}{12}}$	$\checkmark x = 400$	
	$F = \frac{i}{i}$	$\checkmark n = 528$	
	$\begin{bmatrix} (0.08)^{528} \end{bmatrix}$	$\checkmark i = \frac{0.08}{12}$	
	$400 \left \left(1 + \frac{3,35}{12} \right) - 1 \right $	12 ✓ substitution into correct	
	$=\frac{1}{2}$	formula/substitusie in	
	12	korrekte formule	
	= R1 943 524,42	✓answer/antwoord	
	,		(5)
7.1.3	$P = \frac{x[1 - (1+i)^{-n}]}{i}$	✓ P = 2000000	
	ι 	$\checkmark n = 300 \text{ and/} en \ i = \frac{0.1}{12}$	
	$2000000 = \frac{x \left[1 - \left(1 + \frac{0.1}{12} \right)^{-300} \right]}{0.1}$	✓ substituting into correct	
	$2000000 = \frac{12}{0.1}$	formula/substitusie in	
	$\frac{0,1}{12}$	korrekte formule	
	x = R18 174,01	✓ answer/antwoord	
			(4)
	OR/OF		
	$\left(\left(1, 0, 1 \right)^{300} \right)$		
	$2000000\left(1 + \frac{0,1}{12}\right)^{300} = \frac{x\left(\left(1 + \frac{0,1}{12}\right)^{300} - 1\right)}{0,1}$	$\checkmark_{P=2000000}$	
	$2000000\left(1+\frac{37}{12}\right) = \frac{3}{0.1}$	r = 2000000 . 0.1	
	$\frac{12}{12}$	$\checkmark n = 300 \text{ and/} en \ i = \frac{0.1}{12}$	
	x = R18174,01	✓equating/stel gelyk	
		✓ answer/antwoord	
		answer/antwoora	(4)
7.2	Let P _X and P _Y be the populations of the two towns at the		
	beginning of 2010./Laat P _X en P _Y die bevolkings wees		
	van die twee dorpe aan die begin van 2010.	✓ equating/stel gelyk	
	$A_{\scriptscriptstyle X}=A_{\scriptscriptstyle Y}$	$\checkmark A_{} = P_{} (1 - 0.08)^3$	
	$P_{x}(1-0.08)^{3} = P_{y}(1+0.12)^{3}$	$\checkmark A_X = P_X (1-0.08)^3$ $\checkmark A_Y = P_Y (1+0.12)^3$	
		$I_{iy} = I_{y} (1 + 0,12)$	
	$\frac{P_X}{P_Y} = \frac{(1+0.12)^3}{(1-0.08)^3}$		
	$=\frac{1,404}{0,778}$		(4)
	=1,8:1		[15]
1	- 1,0 . 1		

8.1	$f(x+h) = 2(x+h)^2 + 4$	
	$=2x^2+4xh+2h^2+4$	$\checkmark 2x^2 + 4xh + 2h^2 + 4$
	$f(x+h) - f(x) = 2x^2 + 4xh + 2h^2 + 4 - 2x^2 - 4$	
	$=4xh+2h^2$	$\checkmark 4xh + 2h^2$
	$4xh+2h^2$	
	$f'(x) = \lim_{h \to 0} \frac{4xh + 2h^2}{h}$	
	$=\lim_{h\to 0}\frac{h(4x+2h)}{h}$	$\sqrt{\lim_{h\to 0}} \frac{h(4x+2h)}{h}$
	$= \lim_{h \to 0} h$ $= \lim_{h \to 0} (4x + 2h)$	$h \to 0$ h
	$h\rightarrow 0$	
0.2.1	=4x	$\checkmark 4x$ (4)
8.2.1	$f(x) = -3x^2 + 5\sqrt{x}$	$\checkmark 4x \qquad (4)$ $\checkmark 5x^{\frac{1}{2}}$ $\checkmark -6x$ $\checkmark \frac{5}{2}x^{-\frac{1}{2}}$
	$f(x) = -3x^{2} + 5x^{\frac{1}{2}}$ $f'(x) = -6x + \frac{5}{2}x^{-\frac{1}{2}}$	$\checkmark -6x$
	$5 - \frac{1}{2}$	$\sqrt{\frac{5}{2}x^{-\frac{1}{2}}}$
	$f'(x) = -6x + \frac{1}{2}x^{-2}$	(3)
8.2.2	$p(x) = \left(\frac{1}{x^3} + 4x\right)^2$	
	$=\frac{1}{r^6}+\frac{8}{r^2}+16x^2$	$\sqrt{\frac{1}{x^6} + \frac{8}{x^2} + 16x^2}$
	$= x^{-6} + 8x^{-2} + 16x^{2}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	$p'(x) = -6x^{-7} - 16x^{-3} + 32x$	\checkmark answer/antwoord (4)
	OR/OF	
	$p(x) = (x^{-3} + 4x)^2$	
	by making use of the chain rule:	
	$p'(x) = 2(x^{-3} + 4x)(-3x^{-4} + 4)$	$\checkmark \checkmark 2(x^{-3} + 4x)$ $\checkmark \checkmark (-3x^{-4} + 4)$
	$p'(x) = -6x^{-7} - 16x^{-3} + 32x$	
8.3.1	$h'(x) = 3x^2 - 14x + 14$	(4)
8.3.2	$h'(x) = 3x^{2} - 14x + 14$ At/By B: $h'(x) = 0$	✓ finding/kry $h'(x)$ (1) ✓ derivative equal to/
0.0.2		afgeleide gelyk aan 0
		✓ substitution into
	$x = \frac{14 \pm \sqrt{(-14)^2 - 4(3)(14)}}{2(3)}$	correct formula/substitusie
	= 1,45 or 3,22	in korrekte formule
	n/a	✓ x -value of/ x -waarde
		van 1,45 (3)

8.3.3	$x^3 - 7x^2 + 14x - 8 = (x - 1)(x^2 - 6x + 8)$	\checkmark $(x-1)$
	=(x-1)(x-2)(x-4)	$\checkmark x^2 - 6x + 8$
	-(x-1)(x-2)(x-1)	$\checkmark (x-2)(x-4)$
		(** =)(** -)
	C(4;0)	✓ coordinates of/koördinate
		van C (4)
	OR/OF	van C
	$x_c > 3,22$	
		$\checkmark x_c > 3,22$
	$h(4) = (4)^3 - 7(4)^2 + 14(4) - 8 = 0$	\checkmark substitution of/
	$\therefore x_c = 4$	substitusie van 4
		substituste van 4 $\checkmark h(4) = 0$
		$\checkmark x_c$ (4)
8.3.4	$h'(x) = 3x^2 - 14x + 14$	
	h''(x) = 6x - 14	$\checkmark h''(x) = 6x - 14$
		\checkmark 6 <i>x</i> −14 < 0
	6x - 14 < 0	
	6 <i>x</i> < 14	
	7	
	$\therefore x < \frac{7}{2}$	
	3 7	$\checkmark k = \frac{7}{3}$
	$\therefore x < \frac{7}{3}$ $\therefore k = \frac{7}{3}$	$\mathbf{v} \kappa = \frac{3}{3}$
	3	(3)
		[22]

9.1	21	
9.1	$\pi r^2 h = 6$. 6
	$h = \frac{6}{\pi r^2}$	$\checkmark h = \frac{6}{\pi r^2} \tag{1}$
9.2	$S = 10(2\pi r^2 + 2\pi rh + 4\pi r^2)$	$\checkmark 10(2\pi r^2 + 2\pi rh + 4\pi r^2)$
	$=10[2\pi rh + 6\pi r^2]$	$\checkmark 20\pi rh + 60\pi r^2$
	$=20\pi rh+60\pi r^2$	$\sqrt{20\pi rn + 60\pi r}$
	$=20\pi r \left(\frac{6}{\pi r^2}\right) + 60\pi r^2$	✓ substitution/substitusie
	$=60\pi r^2 + \frac{120}{r}$	(4)
	OR/OF	
	Area of/van 10 spheres/sfere = $10 \times 4 \times \pi \times r^2 = 40 \pi r^2$ Area of/van 10 cylinders/silinders = $10(2 \pi r^2 + 2 \pi r h)$ = $10(2 \pi r^2 + 2 \pi r \frac{6}{\pi r^2})$ = $20 \pi r^2 + \frac{120}{\pi r^2}$	✓ area of 10 spheres/ area van 10 sfere ✓ area of 10 cylinders/ area van 10 silinders ✓ substitution/substitusie
	Total area/Totale area = $40 \pi r^2 + 20 \pi r^2 + \frac{120}{r}$ = $60 \pi r^2 + \frac{120}{r}$ $S' = 120 \pi r - 120 r^{-2} = 0$	✓ simplification/vereen- voudiging (4)
9.3	$S' = 120\pi r - 120r^{-2} = 0$	$\checkmark 120\pi r - 120r^{-2}$
	$120\pi r - \frac{120}{2} = 0$	√ = 0
	$\begin{vmatrix} r^2 \\ 120\pi r^3 - 120 = 0 \end{vmatrix}$	
		100
	$r^3 = \frac{120}{120\pi}$	$\checkmark r^3 = \frac{120}{120\pi}$
		120//
	$r = \frac{1}{\pi^{\frac{1}{3}}} = 0,68 \text{ cm}$	
	, t	✓answer/antwoord
		(4) [9]

10.1.1	d=5	✓ d = 5	
	e = 4	$\checkmark e = 4$	
	f = 7	$ \begin{array}{l} \checkmark f = 7 \\ \checkmark g = 5 \end{array} $	
	g = 5	$\sqrt{g} = 5$	
		O	(4)
10.1.2a	4 2	. 4 2	. ,
	P(A and/en B and/en C) = $\frac{4}{54} = \frac{2}{27}$	$\checkmark \frac{4}{54} = \frac{2}{27}$	
	J+ 21	J+ 21	(1)
10.1.2b	18 8	18 8	(1)
10.1.20	$P(A \text{ or/}of B \text{ or/}of C) = \frac{48}{54} = \frac{8}{9}$	$\sqrt{\frac{48}{54}} = \frac{8}{9}$	
	54 9	54 9	(1)
10.1.2		7	(1)
10.1.2c	$P(\text{only/slegs C}) = \frac{7}{54}$	$\sqrt{\frac{7}{54}}$	
	54	54	
			(1)
10.1.2d	P(that a country uses exactly two methods/dat 'n land	$\checkmark \frac{17}{}$	
	presies twee metodes gebruik) = $\frac{5+4+8}{54} = \frac{17}{54}$	54	
	presies twee metodes georatic) = $\frac{-54}{54}$		(1)
10.2.1	D(1 (101) 1 (10) 1 (10) 1	✓✓ answer/antwoord	,
	P(selects <i>Midnight</i> as drama/kies <i>Midnight</i> as drama) = $\frac{1}{5}$		(2)
10.2.2	Number of different selections of drama, romance and	✓ product/produk	
	comedy/Aantal verskillende keuses van drama,	✓answer/antwoord	(2)
	liefdesverhale en komedie = $5 \times 4 \times 3 = 60$		` '
10.2.3	P(select Last Hero and Laughing Dragon/kies Last Hero en	✓ product/produk	
		✓answer/antwoord	
	Laughing Dragon) = $\frac{1}{5} \times \frac{1}{3} = \frac{1}{15}$		(2)
	OR/OF		
	P(select Last Hero and Laughing Dragon/kies Last Hero en	✓ product/produk	
		✓ answer/antwoord	
	$Laughing Dragon) = \frac{1 \times 4 \times 1}{60} = \frac{1}{15}$		(2)
			[14]
	TOTAL/TOTAAL:		150