Package 'NonCompart'

November 15, 2023

Version 0.7.0 **Date** 2023-11-15

Title Noncompartmental Analysis for Pharmacokinetic Data
Description Conduct a noncompartmental analysis with industrial strength. Some features are 1) Use of CDISC SDTM terms 2) Automatic or manual slope selection 3) Supporting both 'linear-up linear-down' and 'linear-up log-down' method 4) Interval(partial) AUCs with 'linear' or 'log' interpolation method * Reference: Gabrielsson J, Weiner D. Pharmacokinetic and Pharmacodynamic Data Analysis - Concepts and Applications. 5th ed. 2016. (ISBN:9198299107).
Author Kyun-Seop Bae [aut]
Maintainer Kyun-Seop Bae <k@acr.kr></k@acr.kr>
Copyright 2016-, Kyun-Seop Bae
License GPL-3
NeedsCompilation no
LazyLoad yes
Repository CRAN
<pre>URL https://cran.r-project.org/package=NonCompart</pre>
Date/Publication 2023-11-15 05:50:02 UTC
R topics documented:
NonCompart-package
AUC
BestSlope
DetSlope
gAUC
gIntAUC
gInterpol
IntAUC

2 NonCompart-package

ınaex																												23
Index																												22
	UnitUrine	•	•	•	•	•	 •	•	•	•	 •	•	•	 •	•	 •	•	•	•		•	•		 •	•	•	•	21
	Unit																											
	tblNCA .																											
	tblAUC .																											
	sNCA																											
	Slope																											
	LogAUC.															 												13
	LinAUC .															 												12
	Interpol .																											

Description

It conducts a noncompartmental analysis(NCA) with industrial strength.

Details

The main functions are

```
tblNCA
         to perform NCA for many subjects.
sNCA
         to perform NCA for one subject.
```

Author(s)

Kyun-Seop Bae <k@acr.kr>

References

- 1. Gabrielsson J, Weiner D. Pharmacokinetic and Pharmacodynamic Data Analysis Concepts and Applications. 5th ed. 2016.
- 2. Shargel L, Yu A. Applied Biopharmaceutics and Pharmacokinetics. 7th ed. 2015.
- 3. Rowland M, Tozer TN. Clinical Pharmacokinetics and Pharmacodynamics Concepts and Applications. 4th ed. 2011.
- 4. Gibaldi M, Perrier D. Pharmacokinetics. 2nd ed. revised and expanded. 1982.

```
# Theoph and Indometh data: dose in mg, conc in mg/L, time in h
tblNCA(Theoph, key="Subject", colTime="Time", colConc="conc", dose=320,
      adm="Extravascular", doseUnit="mg", concUnit="mg/L")
tblNCA(Indometh, key="Subject", colTime="time", colConc="conc", dose=25,
      adm="Infusion", dur=0.5, doseUnit="mg", concUnit="mg/L", R2ADJ=0.9)
```

AUC 3

```
# For individual NCA
iAUC = data.frame(Name=c("AUC[0-12h]","AUC[0-24h]"), Start=c(0,0), End=c(12,24)); iAUC
x = Theoph[Theoph$Subject=="1","Time"]
y = Theoph[Theoph$Subject=="1","conc"]
sNCA(x, y, dose=320, doseUnit="mg", concUnit="mg/L", timeUnit="h", iAUC=iAUC)
sNCA(x, y, dose=320, concUnit="mg/L", iAUC=iAUC)
```

AUC

Calculate Area Under the Curve (AUC) and Area Under the first Moment Curve (AUMC) in a table format

Description

Calculate Area Under the Curve(AUC) and the first Moment Curve(AUMC) in two ways; 'linear trapezoidal method' or 'linear-up and log-down' method. Return a table of cumulative values.

Usage

```
AUC(x, y, down = "Linear")
```

Arguments

vector values of independent variable, usually time
 vector values of dependent variable, usually concentration
 down
 either of "Linear" or "Log" to indicate the way to calculate AUC and AUMC

Details

down="Linear" means linear trapezoidal rule with linear interpolation. down="Log" means linear-up and log-down method.

Value

Table with two columns, AUC and AUMC; the first column values are cumulative AUCs and the second column values cumulative AUMCs.

Author(s)

Kyun-Seop Bae <k@acr.kr>

References

Rowland M, Tozer TN. Clinical Pharmacokinetics and Pharmacodynamics - Concepts and Applications. 4th ed. pp687-689. 2011.

4 BestSlope

See Also

```
LinAUC, LogAUC
```

Examples

```
 AUC(Theoph[Theoph$Subject==1, "Time"], Theoph[Theoph$Subject==1, "conc"]) \\ AUC(Theoph[Theoph$Subject==1, "Time"], Theoph[Theoph$Subject==1, "conc"], down="Log")
```

BestSlope

Choose the best-fit slope for the log(y) and x regression by the criteria of adjusted R-square.

Description

It sequentially fits $(\log(y) \sim x)$ from the last point of x to the previous points with at least 3 points. It chooses a slope the highest adjusted R-square. If the difference is less then 1e-4, it pickes longer slope.

Usage

```
BestSlope(x, y, adm = "Extravascular", TOL=1e-4, excludeDelta = 1)
```

Arguments

x vector values of x-axis, usually time

y vector values of y-axis, usually concentration

adm one of "Bolus" or "Infusion" or "Extravascular" to indicate drug adminis-

tration mode

TOL tolerance. See Phoneix WinNonlin 6.4 User's Guide p33 for the detail.

excludeDelta Improvement of R2ADJ larger than this value could exclude the last point. De-

fault value 1 is for the compatibility with other software.

Details

Choosing the best terminal slope (y in log scale) in pharmacokinetic analysis is somewhat challenging, and it could vary by analysis performer. Pheonix WinNonlin chooses a slope with highest adjusted R-squared and the longest one. The difference of adjusted R-Squared less than TOL considered to be 0. This function uses ordinary least square method (OLS). Author recommends to use excludeDelta option with about 0.3.

DetSlope 5

Value

R-squared

R2ADJ adjusted R-squared

LAMZNPT number of points used for slope
LAMZ negative of the slope, lambda_z
b0 intercept of the regression line
CORRXY correlation of log(y) and x
LAMZLL earliest x for lambda_z
LAMZUL last x for lambda_z

CLSTP predicted y value at the last point, predicted concentration for the last time point

Author(s)

Kyun-Seop Bae <k@acr.kr>

See Also

Slope

Examples

DetSlope

Determine slope for the log(y) and x regression manually

Description

You choose a slope for terminal half-life.

Usage

```
DetSlope(x, y, SubTitle="", sel.1=0, sel.2=0)
```

Arguments

y vector values of y-axis, usually concentration

SubTitle subtitle to be shown on the plot

sel.1 default index of the first element to use sel.2 default index of the last element to use 6 gAUC

Details

Sometimes BestSlope cannot find terminal slope satisfactorily. Then you can use this function to choose manually. It returns the same format result with BestSlope with an attribute indicating used points.

Value

R2	R-squared

R2ADJ adjusted R-squared

LAMZNPT number of points used for the slope

LAMZ negative of the slope, lambda_z

b0 intercept of the regression line

CORRXY correlation of log(y) and x

LAMZLL earliest x for lambda_z

LAMZUL last x for lambda_z

CLSTP predicted y value at the last point, predicted concentration for the last time point

Author(s)

Kyun-Seop Bae <k@acr.kr>

See Also

Slope

Examples

```
DetSlope(Theoph$Subject==1, "Time"], Theoph[Theoph$Subject==1, "conc"])
DetSlope(Indometh[Indometh$Subject==2, "time"], Indometh[Indometh$Subject==2, "conc"])
```

gAUC

General Area Under the Curve

Description

General AUC function for Emax, TEmax and AUCs

Usage

gAUC

Arguments

x usually time

y usually concentration or effect. This can be negative/

Ymax usually Cmax or Emax
XofYmax usually Tmax or TEmax

AUCname usually AUClast or AUEClast

iAUC a data.frame to calculate interval AUCs

Outer indicates how to do the out of x range point

Details

This is a general purpose AUC function. It calculates only Cmax(Emax), Tmax(TEmax) and AUCs(AUECs). This can be used for effect(pharmacodynamic) data which has negative values. For concentration data, use IntAUC.

Value

Column names can vary according to the options.

Emax maximum y value

TEmax x value at the maximum y value

AUEClast Area under the y versus x curve

i AUCs Columns from i AUC input

Author(s)

Kyun-Seop Bae <k@acr.kr>

```
# For one subject
x = Theoph[Theoph$Subject=="1", "Time"]
y = Theoph[Theoph$Subject=="1", "conc"]
gAUC(x, y)

iAUC = data.frame(Name=c("AUC[0-12h]","AUC[0-24h]"), Start=c(0,0), End=c(12,24))
gAUC(x, y, iAUC=iAUC)
```

8 gIntAUC

gΙι		

Calculate interval AUC of general form

Description

It calculates interval AUC of general form. This is useful for pharmacodynamic data.

Usage

```
gIntAUC(x, y, t1, t2, Outer = "NEAREST")
```

Arguments

x	vector values of independent variable, usually time
У	vector values of dependent variable, usually concentration
t1	start time for AUC
t2	end time for AUC

Outer indicates how to do the out of x range point

Details

This calculates an interval (partial) AUC (from t1 to t2) with the given series of x and y. If t1 and/or t2 cannot be found within x vector, it interpolates. If t1 and/or t2 are out of x range, it uses the nearest value. For concentration data, use IntAUC.

Value

```
return interval AUC value (scalar)
```

Author(s)

Kyun-Seop Bae <k@acr.kr>

See Also

```
gAUC, gInterpol, tblAUC
```

```
gIntAUC(Theoph[Theoph$Subject==1, "Time"], Theoph[Theoph$Subject==1, "conc"], t1=0.5, t2=11)
```

gInterpol 9

-	
gInterpol	Interpolate y value for general y value not for concentration
•	1 2 3 6 2 3

Description

It interpolates y value when a corresponding x value (xnew) does not exist within x vector

Usage

```
gInterpol(x, y, xnew, Outer="NEAREST")
```

Arguments

X	vector values of x-axis, usually time
У	vector values of y-axis, usually concentration
xnew	new x point to be interpolated, usually new time point
Outer	indicates how to do the out of x range point

Details

This function interpolate y value, if xnew is not in x vector. If xnew is in the x vector, it just returns the given x and y vector. This function usually is called by gIntAUC function Returned vector is sorted in the order of increasing x values.

Value

new x and y vector containing xnew and ynew point

Author(s)

```
Kyun-Seop Bae <k@acr.kr>
```

See Also

```
gIntAUC
```

```
x = 1:10 + 0.1

y = -2*x + 40.2

gInterpol(x, y, 1.5)

gInterpol(x, y, 0.5) # Out of range, Left

gInterpol(x, y, 11) # Out of range, Left
```

10 IntAUC

IntAUC Calculate interval AUC	IntAUC	Calculate interval AUC
-------------------------------	--------	------------------------

Description

It calculates interval AUC

Usage

```
IntAUC(x, y, t1, t2, Res, down = "Linear")
```

Arguments

X	vector values of independent variable, usually time
У	vector values of dependent variable, usually concentration
t1	start time for AUC
t2	end time for AUC
Res	result from sNCA function
down	either of "Linear" or "Log" to indicate the way to calculate AUC

Details

This calculates an interval (partial) AUC (from t1 to t2) with the given series of x and y. If t1 and/or t2 cannot be found within x vector, it interpolates according to the down option.

Value

return interval AUC value (scalar)

Author(s)

Kyun-Seop Bae <k@acr.kr>

References

- Gabrielsson J, Weiner D. Pharmacokinetic and Pharmacodynamic Data Analysis Concepts and Applications. 5th ed. 2016.
- 2. Shargel L, Yu A. Applied Biopharmaceutics and Pharmacokinetics. 7th ed. 2015.
- 3. Rowland M, Tozer TN. Clinical Pharmacokinetics and Pharmacodynamics Concepts and Applications. 4th ed. 2011.
- 4. Gibaldi M, Perrier D. Pharmacokinetics. 2nd ed. revised and expanded. 1982.

See Also

AUC, Interpol

Interpol 11

Examples

Interpol

Interpolate y value

Description

It interpolates y value when a corresponding x value (xnew) does not exist within x vector

Usage

```
Interpol(x, y, xnew, Slope, b0, down = "Linear")
```

Arguments

Х	vector values of x-axis, usually time
У	vector values of y-axis, usually concentration
xnew	new x point to be interpolated, usually new time point
Slope	slope of regression $log(y) \sim x$
b0	y value of just left point of xnew
down	either of "Linear" or "Log" to indicate the way to interpolate

Details

This function interpolate y value, if xnew is not in x vector. If xnew is in x vector, it just returns the given x and y vector. This function usually is called by IntAUC function Returned vector is sorted in the order of increasing x values.

Value

new x and y vector containing xnew and ynew point

Author(s)

Kyun-Seop Bae <k@acr.kr>

See Also

IntAUC

```
x = 10:1 + 0.1

y = -2*x + 40.2

Interpol(x, y, 1.5)

Interpol(x, y, 1.5, down="Log")
```

12 LinAUC

LinAUC

Area Under the Curve(AUC) and Area Under the first Moment Curve(AUMC) by linear trapezoidal method

Description

It calculates AUC and AUMC using the linear trapezoidal method

Usage

```
LinAUC(x, y)
```

Arguments

x vector values of the independent variable, usually time

y vector values of the dependent variable, usually concentration

Details

This function returns AUC and AUMC by the linear trapezoidal method.

Value

AUC area under the curve

AUMC area under the first moment curve

Author(s)

Kyun-Seop Bae <k@acr.kr>

References

- 1. Gabrielsson J, Weiner D. Pharmacokinetic and Pharmacodynamic Data Analysis Concepts and Applications. 5th ed. 2016.
- 2. Shargel L, Yu A. Applied Biopharmaceutics and Pharmacokinetics. 7th ed. 2015.
- 3. Rowland M, Tozer TN. Clinical Pharmacokinetics and Pharmacodynamics Concepts and Applications. 4th ed. 2011.
- 4. Gibaldi M, Perrier D. Pharmacokinetics. 2nd ed. revised and expanded. 1982.

See Also

```
LogAUC, AUC
```

```
LinAUC(Theoph[Theoph$Subject==1, "Time"], Theoph[Theoph$Subject==1, "conc"])
AUC(Theoph[Theoph$Subject==1, "Time"], Theoph[Theoph$Subject==1, "conc"]) # compare the last line
```

LogAUC 13

LogAUC

Area Under the Curve(AUC) and Area Under the first Moment Curve(AUMC) by linear-up log-down method

Description

It calculates AUC and AUMC using the linear-up log-down method

Usage

```
LogAUC(x, y)
```

Arguments

x vector values of the independent variable, usually time

y vector values of the dependent variable, usually concentration

Details

This function returns AUC and AUMC by the linear-up log-down method.

Value

AUC area under the curve

AUMC area under the first moment curve

Author(s)

Kyun-Seop Bae <k@acr.kr>

References

- 1. Gabrielsson J, Weiner D. Pharmacokinetic and Pharmacodynamic Data Analysis Concepts and Applications. 5th ed. 2016.
- 2. Shargel L, Yu A. Applied Biopharmaceutics and Pharmacokinetics. 7th ed. 2015.
- 3. Rowland M, Tozer TN. Clinical Pharmacokinetics and Pharmacodynamics Concepts and Applications. 4th ed. 2011.
- 4. Gibaldi M, Perrier D. Pharmacokinetics. 2nd ed. revised and expanded. 1982.

See Also

```
LinAUC,AUC
```

```
LogAUC(Theoph[Theoph$Subject==1, "Time"], Theoph[Theoph$Subject==1, "conc"])
# Compare the last line with the above
AUC(Theoph[Theoph$Subject==1, "Time"], Theoph[Theoph$Subject==1, "conc"], down="Log")
```

Slope Slope

Get the Slope of regression $log(y) \sim x$

Description

It calculates the slope with linear regression of $log(y) \sim x$

Usage

```
Slope(x, y)
```

Arguments

x vector values of the independent variable, usually timey vector values of the dependent variable, usually concentration

Details

With time-concentration curve, you frequently need to estimate slope in log(concentration) ~ time. This function is usually called by BestSlope function, and you seldom need to call this function directly.

Value

R2

R2ADJ	adjusted R-squared
LAMZNPT	number of points used for slope
LAMZ	negative of the slope, lambda_z
b0	intercept of the regression line
CORRXY	correlation of log(y) and x
LAMZLL	earliest x for lambda_z
LAMZUL	last x for lambda_z

R-squared

Author(s)

Kyun-Seop Bae <k@acr.kr>

See Also

```
BestSlope
```

```
Slope(Indometh[Indometh$Subject==1, "time"], Indometh[Indometh$Subject==1, "conc"])
```

sNCA 15

|--|

Description

This is the work-horse function for NCA.

Usage

```
sNCA(x, y, dose = 0, adm = "Extravascular", dur = 0, doseUnit = "mg", timeUnit = "h",
concUnit = "ug/L", iAUC = "", down = "Linear", R2ADJ = 0.7, MW = 0, SS = FALSE,
    Keystring="", excludeDelta = 1)
```

Arguments

Х	usually time
у	usually concentration
dose	given amount, not amount per body weight
adm	one of "Bolus" or "Infusion" or "Extravascular" to indicate drug administration mode $% \left(1\right) =\left(1\right) \left($
dur	duration of infusion
doseUnit	unit of dose
timeUnit	unit of time
concUnit	unit of concentration
iAUC	interval AUCs to calculate
down	either of "Linear" or "Log" to indicate the way to calculate AUC and AUMC
R2ADJ	Minimum adjusted R-square value to determine terminal slope automatically
MW	molecular weight of the drug
SS	if steady-state, this should be TRUE. AUCLST (AUClast) is used instead of AUCIFO (AUCinf) for the calculation of Vz (VZFO, VZO), CL (CLFO, CLO), and Vdss (VSSO).
Keystring	a text string to be shown at the plot in case of manual selection of terminal slope
excludeDelta	Improvement of R2ADJ larger than this value could exclude the last point. Default value 1 is for the compatibility with other software.

Details

This replaced previous IndiNCA. Author recommends to use excludeDelta option with about 0.3.

sNCA

Value

CMAX maximum concentration, Cmax

CMAXD dose normalized Cmax, CMAX / Dose, Cmax / Dose

TMAX time of maximum concentration, Tmax

TLAG time to observe the first non-zero concentration, for extravascular administration

only

CLST last positive concentration observed, Clast

CLSTP last positive concentration predicted, Clast_pred

TLST time of last positive concentration, Tlast half-life by lambda z, ln(2)/LAMZ

LAMZ lambda_z negative of the best-fit terminal slope

LAMZLL earliest time for LAMZ
LAMZUL last time for LAMZ

LAMZNPT number of points for LAMZ

CORRXY correlation of log(concentration) and time

R2 R-squared

R2ADJ R-squared adjusted

C0 back extrapolated concentration at time 0, for intravascular bolus administration

only

AUCLST AUC from 0 to TLST

AUCALL AUC using all the given points, including trailing zero concentrations

AUCIFO AUC infinity observed

AUCIFOD AUCIFO / Dose

AUCIFP AUC infinity predicted using CLSTP instead of CLST

AUCIFPD AUCIFP / Dose

AUCPEO AUC % extrapolation observed
AUCPEP AUC % extrapolated for AUCIFP

AUC % back extrapolation observed, for bolus IV administration only

AUCPBEP AUC % back extrapolation predicted with AUCIFP, for bolus IV administration

only

AUMCLST AUMC to the TLST

AUMCIFO AUMC infinity observed using CLST

AUMCIFP AUMC infinity determined by CLSTP

AUMCPEO AUMC % extrapolated observed

AUMCPEP AUMC % extrapolated predicted

MRTIVLST mean residence time (MRT) to TLST, for intravascular administration

MRTIVIFO mean residence time (MRT) infinity using CLST, for intravascular administra-

tion

sNCA 17

MRTIVIFP	mean residence time (MRT) infinity using CLSTP, for intravascular administration
MRTEVLST	mean residence time (MRT) to TLST, for extravascular administration
MRTEVIFO	mean residence time (MRT) infinity using CLST, for extravascular administration
MRTEVIFP	mean residence time (MRT) infinity using CLSTP, for extravascular administration
VZO	volume of distribution determined by LAMZ and AUCIFO, for intravascular administration
VZP	volume of distribution determined by LAMZ and AUCIFP, for intravascular administration
VZFO	VZO for extravascular administration, VZO/F, F is bioavailability
VZFP	VZP for extravascular administration, VZP/F, F is bioavailability
CLO	clearance using AUCIFO, for intravascular administration
CLP	clearance using AUCIFP, for intravascular administration
CLFO	CLO for extravascular administration, CLO/F, F is bioavailability
CLFP	CLP for extravascular administration, CLP/F, F is bioavailability
VSS0	volume of distribution at steady state using CLST, for intravascular administration only
VSSP	volume of distribution at steady state using CLSTP, for intravascular administration only

Author(s)

Kyun-Seop Bae <k@acr.kr>

References

Gabrielsson J, Weiner D. Pharmacokinetic and Pharmacodynamic Data Analysis - Concepts and Applications. 5th ed. 2016.

See Also

```
help, tblNCA
```

```
# For one subject
x = Theoph[Theoph$Subject=="1","Time"]
y = Theoph[Theoph$Subject=="1","conc"]

sNCA(x, y, dose=320, doseUnit="mg", concUnit="mg/L", timeUnit="h")
sNCA(x, y, dose=320, concUnit="mg/L")

iAUC = data.frame(Name=c("AUC[0-12h]","AUC[0-24h]"), Start=c(0,0), End=c(12,24))
sNCA(x, y, dose=320, doseUnit="mg", concUnit="mg/L", timeUnit="h", iAUC=iAUC)
```

tblAUC

```
MW = 180.164 # Molecular weight of theophylline
sNCA(x, y/MW, dose=320, doseUnit="mg", concUnit="mmol/L", timeUnit="h")
sNCA(x, y/MW, dose=320, doseUnit="mg", concUnit="mmol/L", timeUnit="h", MW=MW)
sNCA(x, y, dose=320/MW, doseUnit="mmol", concUnit="mg/L", timeUnit="h", MW=MW)
sNCA(x, y/MW, dose=320/MW, doseUnit="mmol", concUnit="mmol/L", timeUnit="h", MW=MW)
sNCA(x, y/MW, dose=320/MW, doseUnit="mmol", concUnit="mmol/L", timeUnit="h", MW=MW)
sNCA(x, y/MW, doseUnit="mmol", concUnit="mmol/L", timeUnit="h", MW=MW)
sNCA(x, y/MW, dose=as.numeric(NA), doseUnit="mmol", concUnit="mmol/L", timeUnit="h", MW=MW)
sNCA(x, y, dose=320, concUnit="mg/L", timeUnit="hr")
sNCA(x*60, y, dose=320, concUnit="mg/L", timeUnit="min")
```

tblAUC

Table output of gAUCs

Description

Do multiple AUCs and returns a result table. See gNCA for more detail i.e. iAUC

Usage

Arguments

Data	data table name
key	column names of Data to be shown in the output table
colX	column name for x axis
colY	column name for y axis
iAUC	a data.frame to calculate interval AUCs
Ymax	usually Cmax or Emax
XofYmax	usually Tmax or TEmax
AUCname	usually AUClast or AUEClast
Outer	indicates how to do the out of x range point

Details

Tabular output of AUC with many subjects. This calculates only Cmax(Emax), Tmax(TEmax), AUCs

tblNCA

Value

Basically same with gAUC

Author(s)

Kyun-Seop Bae <k@acr.kr>

See Also

help, gAUC

Examples

```
tblAUC(Theoph, key="Subject", colX="Time", colY="conc")
iAUC = data.frame(Name=c("AUC[0-12h]","AUC[0-24h]"), Start=c(0,0), End=c(12,24))
tblAUC(Indometh, key="Subject", colX="time", colY="conc", iAUC=iAUC)
```

tblNCA

Table output NCA

Description

Do multiple NCA and returns a result table. See sNCA for more detail i.e. iAUC

Usage

```
tblNCA(concData, key = "Subject", colTime = "Time", colConc = "conc", dose = 0,
    adm = "Extravascular", dur = 0, doseUnit = "mg", timeUnit = "h",
    concUnit = "ug/L", down = "Linear", R2ADJ = 0, MW = 0, SS = FALSE,
    iAUC = "", excludeDelta = 1)
```

Arguments

concData	concentration data table
key	column names of concData to be shown in the output table
colTime	column name for time
colConc	column name for concentration
dose	administered dose
adm	one of "Bolus" or "Infusion" or "Extravascular" to indicate drug administration mode $\parbox{\ensuremath{\square}}$
dur	duration of infusion
doseUnit	unit of dose
timeUnit	unit of time
concUnit	unit of concentration

20 Unit

down	method to calculate AUC, "Linear" or "Log"
R2ADJ	Lowest threshold of adjusted R-square value to do manual slope determination
MW	molecular weight of drug
SS	if steady-state, this should be TRUE. AUCLST (AUClast) is used instead of AUCIFO (AUCinf) for the calculation of Vz ($VZFO$, VZO), CL ($CLFO$, CLO), and $Vdss$ ($VSSO$).
iAUC	data.frame for interval AUC
excludeDelta	Improvement of R2ADJ larger than this value could exclude the last point. Default value 1 is for the compatibility with other software.

Details

Tabular output of NCA with many subjects. Author recommends to use excludeDelta option with about 0.3.

Value

Basically same with sNCA

Author(s)

Kyun-Seop Bae <k@acr.kr>

See Also

help, sNCA

Examples

Unit

Display CDISC standard units and multiplied factor of NCA results

Description

It displays CDISC PP output units and multiplication factor for them.

Usage

```
Unit(code = "", timeUnit = "h", concUnit = "ng/mL", doseUnit = "mg", MW = 0)
```

UnitUrine 21

Arguments

code vector of PPTESTCD

timeUnit unit of time

concUnit unit of concentration

doseUnit unit of dose

MW molecular weight of drug

Value

row names PPTESTCD

Unit unit

Factor internal mulitplication factor

Author(s)

Kyun-Seop Bae <k@acr.kr>

Examples

```
Unit(concUnit="ug/L", doseUnit="mg")
Unit(concUnit="ng/L", doseUnit="mg")
Unit(concUnit="umol/L", doseUnit="mmol")
Unit(concUnit="nmol/L", doseUnit="mmol")
Unit(concUnit="mmol/L", doseUnit="mg", MW=500)
Unit(concUnit="umol/L", doseUnit="mg", MW=500)
Unit(concUnit="nmol/L", doseUnit="mg", MW=500)
Unit(concUnit="nmol/L", doseUnit="mg", MW=500)
Unit(concUnit="nmol/mL", doseUnit="mg", MW=500)
Unit(concUnit="ug/L", doseUnit="mmol", MW=500)
Unit(concUnit="ug/L", doseUnit="mmol", MW=500)
Unit(concUnit="ng/L", doseUnit="mmol", MW=500)
Unit(concUnit="ng/mL", doseUnit="mmol", MW=500)
Unit(concUnit="ng/mL", doseUnit="mmol", MW=500)
Unit(concUnit="ng/mL", doseUnit="mmol")
Unit(concUnit="nmol/L", doseUnit="mmol")
```

UnitUrine

Retuns a conversion factor for the amount calculation from urine concentration and volume

Description

You can get a conversion factor for the multiplication: conc * vol * factor = amount in the given unit.

22 UnitUrine

Usage

```
UnitUrine(conU = "ng/mL", volU = "mL", amtU = "mg", MW = \emptyset)
```

Arguments

conU concentration unit
volU volume unit
amtU amount unit
MW molecular weight

Value

Factor conversion factor for multiplication with the unit in name

Author(s)

Kyun-Seop Bae <k@acr.kr>

```
UnitUrine()
UnitUrine("ng/mL", "mL", "mg")
UnitUrine("ug/L", "mL", "mg")
UnitUrine("ug/L", "L", "mg")

UnitUrine("ng/mL", "mL", "g")

UnitUrine("ng/mL", "mL", "mol", MW=500)
UnitUrine("ng/mL", "mL", "mmol", MW=500)
UnitUrine("ng/mL", "mL", "umol", MW=500)
```

Index

* AUC	LinAUC, 4, 12, 13
AUC, 3	LogAUC, 4, 12, 13
gIntAUC, 8	
IntAUC, 10	NonCompart (NonCompart-package), 2
LinAUC, 12	NonCompart-package, 2
LogAUC, 13	Slope, 5, 6, 14
* Output Form	sNCA, 15, 20
sNCA, 15	SNCA, 13, 20
tblNCA, 19	tblAUC, 8, 18
* interpolation	tblNCA, <i>17</i> , 19
gInterpol, 9	0.2.10,1,17,15
Interpol, 11	Unit, 20
* interval AUC	UnitUrine, 21
gIntAUC, 8	
gInterpol, 9	
IntAUC, 10	
Interpol, 11	
* partial AUC	
gIntAUC, 8	
gInterpol, 9	
IntAUC, 10	
Interpol, 11	
* slope	
BestSlope, 4	
DetSlope, 5	
Slope, 14	
AUC, 3, 10, 12, 13	
, , , ,	
BestSlope, 4, 14	
DetSlope, 5	
gAUC, 6, 8, 19	
gIntAUC, 8, 9	
gInterpol, 8, 9	
ginterpot, 0, 9	
help, 17, 19, 20	
IntAUC, 10, 11	
Interpol, 10, 11	