Machine Learning (CE 40477) Fall 2024

Ali Sharifi-Zarchi

CE Department Sharif University of Technology

October 4, 2024

- 1 k-Nearest-Neighbor
- 2 Performance metrics
- **3** References

- 1 k-Nearest-Neighbor
- 2 Performance metrics

k-Nearest-Neighbor

k-Nearest-Neighbor

- K-NN classifier: k > 1 nearest neighbors
 - Label for x predicted by majority voting among its k - NN
- $k = 5, x = [x_1, x_2]$

kNN classifier

- Given
 - Training data $\{(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})\}$ are simply stored.
- To classify *x*:
 - Find k nearest training samples to x
 - Out of these k samples, identify the number of samples k_j belonging to class C_j (j = 1, ..., C).
 - Assign *x* to the class C_{j^*} where $j^* = \underset{j=1,...,c}{\operatorname{arg\,max}} k_j$
- It can be considered as a **discriminative** method.

kNN example

• We want to classify a new document and put it into one of three categories by studying its neighbor samples

- Sports
- Science
- Arts

- Sports
- Science
- Arts

- Sports
- Science
- Arts

Voronoi tessellation

- Voronoi tessellation:
 - Each cell consists of all points closer to a given training point than to any other training points
 - All points in a cell are labeled by the category of the corresponding training point

[Duda, Hurt, and Strok's Book]

Voronoi tessellation

• 1NN plot is a Voronoi tessellation

Effect of k

Effect of k cont.

• compare k = 1 with k = 15

k-Nearest-Neighbor

- As we further increase *k*, the model tends to be less complex.
- Compare 66*NN* with a linear model that uses only 3 parameters:

Parametric vs. non-parametric methods

- Parametric methods need to find parameters from data and then use the inferred parameters to decide on new data points
 - · Learning: finding parameters from data
- Non-parametric methods
 - Training examples are explicitly used
 - Training phase is not required
- Both supervised and unsupervised learning can be categorized into parametric and non-parametric methods

Non-parametric learners

- Memory-based or Instance-based learners
 - lazy learning: (almost) all the work at the test time
- Generic description:
 - Memorize training $(x^{(1)}, y^{(1)}), ..., (x^{(n)}, y^{(n)})$
 - Given test *x* predict: $\hat{y} = f(x; x^{(1)}, y^{(1)}, \dots, x^{(n)}, y^{(n)})$
- f is typically expressed in terms of the similarity of the test samples x to the training samples $x^{(1)}, \dots, x^{(n)}$

k-Nearest-Neighbor 0000000000000000000

- kNN is an instance-based learner
- Main things to construct an instance-based learner:
 - A distance metric.
 - Number of nearest neighbors of the test data that we look at
 - A weighting function (optional)
 - How to find the output based on neighbors?

Distance measures

Euclidean distance

$$d(x, x') = \sqrt{\|x - x'\|_2^2} = \sqrt{(x_1 - x_1')^2 + \dots + (x_d - x_d')^2}$$

- Distance learning methods for this purpose
 - Weighted Euclidean distance

$$d_w(x, x') = \sqrt{w_1(x_1 - x'_1)^2 + \dots + w_d(x_d - x'_d)^2}$$

- Other distances:
 - Hamming, angle, L-norm, Mahalanobis distance, ...

Effect of distance measure

$$d(\boldsymbol{x},\boldsymbol{x}') = \sqrt{(x_1 - x_1')^2 + (x_2 - x_2')^2}$$

$$d(\mathbf{x}, \mathbf{x}') = \sqrt{(x_1 - x_1')^2 + 3(x_2 - x_2')^2}$$

- 1 k-Nearest-Neighbor
- 2 Performance metrics
- 3 References

Performance metrics

	actually in the class	actually not in the class
predicted to be in the class	tp	fp
predicted not to be in the class	fn	tn

Precision P =
$$\frac{tp}{tp+fp}$$

Recall R = $\frac{tp}{tp+fn}$
Accuracy = $\frac{tp+tn}{tp+tn+fp+fn}$

gold negative

Precision/Recall/Accuracy

gold standard labels

gold positive

system output labels system positive system negative

$recall = \frac{tp}{tp+fn}$		$accuracy = \frac{tp+tn}{tp+fp+tn+fn}$
false negative		
true positive	false positive	$\mathbf{precision} = \frac{tp}{tp+fp}$
gold positive	gold negative	

A combined measure: F

- Combined measure: F measure
 - allows us to trade off precision and recall
 - · weighted harmonic mean of P and R

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$

You can see: $\beta^2 = \frac{1-\alpha}{\alpha}$

A combined measure: F cont.

• People usually use balanced $F(\beta = 1 \text{ or } \alpha = \frac{1}{2})$

$$F = F_{\beta=1}$$

$$F = \frac{2PR}{P+R}$$

• Harmonic mean of P and R:

$$\frac{1}{F} = \frac{1}{2}(\frac{1}{P} + \frac{1}{R})$$

Why harmonic mean?

- Why don't we use a different mean of P and R as a measure?
 - · e.g., the arithmetic mean
- The simple (arithmetic) mean is 50% for "return true for every thing", which is too high.
- Desideratum: Punch really bad performance either on precision or recall
 - · Taking the minimum achieves this.
 - F (harmonic mean) is a kind of **smooth minimum**.

F1 and other averages

 Harmonic mean is a conservative average. We can view the harmonic mean as a kind of soft minimum

Combined Measures

Confusion matrix

• This (i, j) entry means 53 of the samples actually in class i were put in class j by the classifier:

• In a perfect classification, only the diagonal has non-zero entries

28 / 35

Per class evaluation measures

• Recall: Fraction of the samples in class *i* classified correctly:

$$\frac{c_{ii}}{\sum_{j} c_{ij}}$$

• Precision: Fraction of the samples assigned class *i* that are actually about class *i*:

$$\frac{c_{ii}}{\sum_{j} c_{ji}}$$

Accuracy: Fraction of the samples classified correctly:

$$\frac{\sum_i c_{ii}}{\sum_j \sum_i c_{ij}}$$

Averaging: macro vs. micro

- We now have an evaluation measure (F1) for one class.
- But we also want a single number that shows aggregate performance over all classes

Micro- vs. Macro-Averaging

- If we have more than one class, how do we combine multiple performance measures into one quantity?
- Macroaveraging: Compute performance for each class, then average
 - Compute F1 for each of the *C* classes
 - Average these C numbers
- Microaveraging: Collect decisions for all classes, aggregate them and then compute measure.
 - Compute TP, FP, FN for each of the *C* classes.
 - Sum these *C* numbers(e.g, all TP to get aggregate TP)
 - Compute F1 for aggregate TP, FP, FN

Micro- vs. Macro-Averaging: example

Class 1

Class 2

Micro Ave. Table

	Truth: yes	Truth: no
Classifier: yes	10	10
Classifier: no	10	970

	Truth: yes	Truth:
Classifier: yes	90	10
Classifier:	10	890

	Truth: yes	Truth:
Classifier: yes	100	20
Classifier: no	20	1860

- Macroaveraged precision: (0.5 + 0.9)/2 = 0.7
- Microaveraged precision: 100/120 = 0.83
- Microaveraged score is dominated by score on common classes

- 1 k-Nearest-Neighbor
- 2 Performance metrics
- **3** References

Contributions

- These slides are authored by:
 - Danial Gharib
 - · Mahan Bayhaghi

- [1] C. M., *Pattern Recognition and Machine Learning*. Information Science and Statistics, New York, NY: Springer, 1 ed., Aug. 2006.
- [2] M. Soleymani Baghshah, "Machine learning." Lecture slides.
- [3] M. Soleymani Baghshah, "Modern information retrieval." Lecture slides.
- [4] T. Mitchell, Machine Learning. McGraw-Hill series in computer science, New York, NY: McGraw-Hill Professional, Mar. 1997.
- [5] R. Zhu, "Stat 542: Statistical learning k-nearest neighbor and the bias-variance trade-off." Lecture notes.
- [6] E. Xing, "Theory of classification and nonparametric classifier." Lecture notes.