Green

1. A 5.0-kg mass is attached to a massless string which is accelerated downwards at $2.5 \, m/s^2$. What is the tension in the string?

2. A $M_1 = 6.5 \, kg$ mass is placed on a 40° incline and then connected by a massless string and over a perfect pulley to another mass, $M_2 = 5.0 \, kg$, that is hanging vertically. The coefficient of static friction between M_1 and the incline is $\mu_s = 0.76$. If when released the two masses remain at rest, how much static friction is acting on M_1 ?

FRICTION FOR MZ: ZIFZ, y=Mzazy. No motion = 1 az, y=0 => T-Wz=0 => T=Wz=(SK)(9.8mb) = 49N

FORM,: ZIF, = TM, Qu. Qu=0 too => T-W11-FS=0 => FE=T-W11

FS=49N-(6.518)19.8m/s) S.NYO = 49N-40.95N = 8.05N & F.IN

3. One day finds your physics instructor moving a box, M_1 , of old books.

On the way to the recycling bin, he finds a box, M_2 , of old physics demos, so he places it on top of the first. By exerting a force, \overrightarrow{F} at 37° above the horizontal, to the upper box, he gets the combination to slide to the right.

Which of the following is the correct free-body diagram for M_1 ? Assume the following definitions.

Forly Applied to Mz, so Not on Mi's Flod =>
Not (c) or (d). THE Force Between M. ANDMZ
1S A NORMAL FORCE (AND NOTERNAL to WZ!) SO (a)
1S CORRECT

4. An 80-kg man is riding in an elevator that is accelerating upwards at $1.75 \, m/s^2$. What is the reaction to his apparent weight?

(a) The downward 784 N force on the man

(b) The upward 924 N force on the man

(c) The upward 784 N force on the earth

(d) The downward 924 N force on the elevator

Zify = May + n-w=my

=> N=WHY = Mg+MGY

=> N=M(g+gy)

= 80kg(9.8mk+1.75mb2)

=80kg (11.55mli)=924N

7 = 924N ISTHE FORCE ON THE MAN. THE PEACTION

ISA DOWNWARD 924N FORCE ON THE

5. A $3.0\,kg$ crate is being pushed across a horizontal floor by applying a force F, 35° below the horizontal. If the coefficient of kinetic friction is $\mu_k = 0.25$, what force F is needed to accelerate the crate at $2.0 \, m/s^2$?

 f_{x} f_{x} f_{x} = Max, f_{y} = May. f_{x} f_{y} = 0 f_{x} f_{y} = 0 f_{y} f_{y} f_{y} = 0 f_{y} $f_$ n=(3k)(9.8m/c)+F===350=29.4N+F==350

FR=MEN=.25(29.4N+FSin35°)= 7.35N+F(.255,-35°)

IFX = Max -> Fosso-fx = Ma -> Fosso- (7.35N+F(25=-359)] = Ma === (0,350-. 255m350) = 7.35N+(316)(2m6) = 13.35N == 13.35N = 13.35N = 19.8N

6. Sitting on a horizontal surface sits two crates, one $5.0 \, kg$, the other $3.0 \, kg$. A $75 \, N$, horizontal force is exerted on the crate to the left making the two masses accelerate. Ignoring friction, how large is the horizontal normal force that the one mass exerts on the other?

7. A man who weighs 720 N on earth, surprisingly finds himself in the middle of outer space. Luckily, he is in a spacesuit and, even better, there is a rocket next to him. What force must the rocket exert on the man in order to give him an acceleration of $9.8 \, m/s^2$?

<u> </u>			
(a) $720 N$	(b) 0 N	(c) 1440 N	(d) 360 N

Proceed Proceed

Fracket is only Force => IF = Ma

8. One day finds you and your physics instructor going on a drive in his orange-colored, 1973 Gremlin. Hanging from the rear-view mirror, by a massless string, is a 0.65-kg mass pair of pink, fuzzy dice (schematically shown as a sphere in the picture below). At one point during your drive, the dice are hanging at an angle $\phi=12^{\circ}$, what is the acceleration of the car at this instant? Also, given the direction of the car's velocity, is the car accelerating or decelerating?

SO EITHER USE NOW-SHANDARD &

OR USE SEMI-Standard 0 = 90-0 $T_X = -T\cos Q$ $T_Y = T\sin Q$

CAR IS ETHER ACCELERATING OR DECELERATING = a ETHER Parelle | OR 180° to Voar

$$\Rightarrow ax = a = ?, ay = 0$$

Tx to Left only Force in x => Decelerating

$$= \frac{1}{1} = \frac{(.65 \text{Kg})(9.8 \text{m/s}^2)}{\cos 12^\circ} = \frac{(6.37 \text{N})}{\cos 12^\circ} = 6.5123 \text{N}$$

FOR YOU MATH-LOWERS:
$$T = \frac{Mg}{\cos \varphi} \Rightarrow Q = \frac{-Mg}{\cos \varphi} = \frac{Mg}{M}$$