Notes de Révision Chimie NM

ImmortalPharaoh7

Mai 2020

Résumé

Les notes de révision pour la chimie niveau moyen du BI, pour le curriculum qui commence dès 2016. Attention, ces notes ne sont pas à être utilisées indépendamment; ils servent comme des astuces ou bien les définitions qui peuvent être oubliées.

Si vous avez des informations à ajouter ou bien des corrections, veuillez envoyer un email à pharaoh.immortal7@gmail.com ou messager ImmortalPharaoh7#7811 sur Discord.

Table des matières

1	Relations Stæchiométriques	1
2	Structure Atomique	2
3	Périodicité	3
4	Liaison et Structure Chimique	4
5	Thermochimie	5
6	Cinétique Chimique	7
7	Équilibre	8
8	Acides et Bases	9
9	Processus Redox	10
10	Chimie Organique	11
11	Mesure et Traitement des Données	12

1 Relations Stœchiométriques

2 Structure Atomique

3 Périodicité

4 Liaison et Structure Chimique

5 Thermochimie

Définitions:

- Enthalpie : Énergie emmagasinée dans un matériel.
- Endothermique : Une réaction qui absorbe de l'enthalpie $\Delta H > 0$.
- Exothermique : Une réaction qui libère de l'enthalpie $\Delta H < 0$.
- Conditions standards : Température de 298 K et pression de 100 kPa.
- Calorimètre : Appareil qui permet de crée un système isolé au niveau de la température, mais il n'est jamais parfait.

Formules:

- $Q = mc\Delta T : Q$ est l'énergie, m la masse, c est une constante et ΔT est la différence de température.
- $\Delta H = -Q/n$: ΔH est l'enthalpie en kJ mol⁻¹, Q est l'énergie et n est le nombre de mols.

Enthalpie moyenne des liaisons (section 11):

$$\Delta H = \text{liaisons détruites} - \text{liaisons formées}$$

= $H_{initiale} - H_{finale}$

Attention : Ces valeurs sont des valeurs moyennes et *tous* les composants doivent être en état gazeux.

Loi de Hess:

Si une réaction chimique est la somme algébrique de plusieurs réactions, la chaleur de cette réaction est égale à la somme algébrique des chaleurs des réactions qui ont servi à établir cette somme. Il est possible d'inverser ou de multiplier les réactions pour enfin faire la somme algébrique.

Exemple: Trouver l'enthalpie dans la réaction suivante:

$$2\,C_2H_6(g) + 7\,O_2(g) \longrightarrow 4\,CO_2(g) + 6\,H_2O(g)$$

Avec les equations réactions suivantes :

$$\begin{cases}
2 C(s) + 3 H_2(g) \longrightarrow C_2 H_6(g) & \Delta H = +84.7 \\
C(s) + O_2(g) \longrightarrow CO_2(g) & \Delta H = +393.5 \\
H_2(g) + \frac{1}{2} O_2(g) \longrightarrow H_2 O(g) & \Delta H = +241.8
\end{cases}$$

Donc il faut

Inverser:
$$\begin{cases} C_2H_6(g) \longrightarrow 2C(s) + 3H_2(g) & \Delta H = -84.7 \\ C(s) + O_2(g) \longrightarrow CO_2(g) & \Delta H = +393.5 \\ H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(g) & \Delta H = +241.8 \end{cases}$$

Ensuite

$$\text{Multiplier}: \left\{ \begin{array}{l} 2(C_2H_6(g) \longrightarrow 2\,C(s) + 3\,H_2(g) \quad \Delta H = -84.7) \\ 4(C(s) + O_2(g) \longrightarrow CO_2(g) \quad \Delta H = 393.5) \\ 6(H_2(g) + \frac{1}{2}\,O_2(g) \longrightarrow H_2O(g) \quad \Delta H = 241.8) \end{array} \right.$$

Et enfin additionner les réactions avec leurs enthalpies pour donc avoir une enthalpie $\Delta H = 2855.4\,\mathrm{kJ}$.

Chaleur de la formation standard (section 12) : La variation d'enthalpie lors de la formation d'une mole du composé à partir de ses éléments à l'état standard, ex :

$$H_2(g) + \frac{1}{2} O_2(g) \longrightarrow H_2O(l)$$

Chaleur de la combustion standard (section 13) : La variation d'enthalpie lors de la combustion complète d'une mole de la matière dans les conditions standards, ex :

$$CO(g) + \frac{1}{2}O_2(g) \longrightarrow CO_2(g)$$

Enthalpie de neutralisation: La variation d'enthalpie durant la formation d'une mole de H2O lors de la neutralisation de l'acide avec la base.

$$\Delta H = \frac{-Q}{n_{limitant}}$$

Attention : La combustion est incomplète et une partie de la chaleur s'échappe dans le milieu (calorimètre n'est jamais parfait).

6 Cinétique Chimique

7 Équilibre

8 Acides et Bases

9 Processus Redox

10 Chimie Organique

11 Mesure et Traitement des Données