有限アルファベットを Σ , その Kleene 閉包を Σ^* で表す. 文字列 $s \in \Sigma^*$ の長さを |s| で表す. また長さ 0 の空文字列を ε で表す.

非決定性オートマトン

Definition 1 (非決定性有限オートマトン nondeterministic finite automata, NFA). 非決定性有限オートマトン(NFA) $M=(\Sigma,Q,\delta,q_0,F)$ とは,....

文字列 $s\in\Sigma^*$ を受け取った NFA M が状態を (q_0,\ldots,q_n) ただし n=|S| と遷移するとき,この列を s に対する M の計算といい,特に最後の状態 q_n が $q_n\in F$ である計算を受理計算とよぶ.一般に,非決定性有限オートマトンは一つの文字列に対して複数の計算を持つ.ある $s\in\Sigma^*$ に対して M に受理計算が存在するとき,M は s を受理するといい,M が受理する文字列すべての集合 $L(M)=\{s\in\Sigma^*\mid M$ は s を受理する $\}$ を M が受理する言語という.

正規表現

NFA の計算

ある文字列 $s \in \Sigma^*$ を NFA $M = (\Sigma, Q, \delta, q, F)$ が受理するかどうかを決定的なアルゴリズムで求めるためには、以下のように行う.

まず、遷移関係 $\delta \subseteq Q \times \Sigma \times Q$ を状態と文字から状態への集合

$$\delta(q,a) = \{q' \in Q \mid (q,a,q') \in \delta \}$$

に拡張し、さらに状態の集合と文字から状態の集合への写像 $\tilde{\delta}: 2^Q \times \Sigma \to 2^Q$ に拡張する:

$$\tilde{\delta}(S, a) = \bigcup_{q \in S} \delta(q, a)$$

すると,有限オートマトン $\Sigma,2^Q,\tilde{\delta},\{q_0\},F')$ は決定性有限オートマトンである.ただし $F'=\{S\subseteq 2^Q\mid S\cap F\neq\emptyset\}.$

ドントケア * 記号(可変長ドントケア variable-length don't-care)と複数文字集合 (OR 記号, {a,b} または (a|b) 等と書く) を含む文字列を検索パターンとする NFA の

計算は、最初に受理状態に達した時点で受理計算としてよい.したがって、 $\tilde{\delta}$ をもちいた*と複数文字集合からなるパターン照合を行う NFA の計算アルゴリズムは、以下のようになる.

• $S \leftarrow \{q_0\}$.

• ...