Papers written by Australian Maths Software

REVISION 3

2016

MATHEMATICS METHODS

Units 1 & 2

Semester 2 SOLUTIONS

SECTION 1 – Calculator-free

Question 1 (3 marks)

A x intercept ✓

B y intercept; local maximum point; turning point ✓

C Local minimum point; turning point ✓

Question 2 (29 marks)

(a)
$$81^{\frac{3}{4}} + 10\left(0.001^{\frac{1}{3}}\right) - \sqrt{\frac{1}{16^{-1}} + \frac{1}{9^{-1}}}$$

 $= \left(3^4\right)^{\frac{3}{4}} + 10\left(10^{-3\times\frac{1}{3}}\right) - \sqrt{16+9}$
 $= 3^3 + 10^{1-1} - \sqrt{25}$ $\checkmark\checkmark\checkmark$
 $= 27 + 1 - 5$
 $= 23$ \checkmark

(b) (i)
$$\left(\frac{1}{3}\right)^{2x+1} = 9^3$$

$$3^{-(2x+1)} = \left(3^2\right)^3 \quad \checkmark$$

$$-2x - 1 = 6 \quad \checkmark$$

$$2x = -7$$

$$x = -3.5 \quad \checkmark$$

(ii)
$$25^{x} + 5^{3} = 6 \times 5^{x+1}$$

 $5^{2x} + 125 = 6 \times 5 \times 5^{x}$
Let $y = 5^{x}$
 $y^{2} - 30y + 125 = 0$ \checkmark
 $(y-25)(y-5) = 0$
 $y = 25$ or $y = 5$
 $5^{x} = 5^{2}$ or $5^{x} = 5$
 $x = 2$ or $x = 1$

(iii)
$$x^3 + 1 = x^2 + x$$

 $x^3 - x^2 + 1 - x = 0$
 $x^2(x-1) - 1(x-1) = 0$ \checkmark
 $(x-1)(x^2 - 1) = 0$
 $(x-1)^2(x+1) = 0$
 $x = 1$ (twice) or $x = -1$

(b)
$$C = 100(0.7)^t$$

 $35 = 100(0.7)^t$ \checkmark
 $t = 2.94$ \checkmark
Relief of 2 hours 57 minutes \checkmark

Question 3 (6 marks)

(a)
$$A_n = \frac{1+n}{2}$$

 $A_1 = \frac{1+1}{2} = 1$, $A_2 = \frac{1+2}{2} = 1.5$, $A_3 = \frac{1+3}{2} = 2$
 AP
 $A_{n+1} = A_n + 0.5$, $A_1 = 1$

(b) (i)
$$T_{n+1} = 2T_n \text{ with } T_1 = 6$$

6,12,24,48 \checkmark

(ii) GP a = 6, r = 2

$$T_n = ar^{n-1}$$

 $T_n = 6 \times 2^{n-1} = 3 \times 2 \times 2^{n-1}$ \checkmark
 $T_n = 3 \times 2^n$ \checkmark

Question 4 (4 marks)

$$f(x) = 1 - 4x$$

$$f(x+h) = 1 - 4(x+h) \qquad \checkmark$$

By definition

$$f'(x) = \lim_{h \to 0} \left(\frac{f(x+h) - f(x)}{(x+h) - x} \right)$$

and

$$f(x+h) - f(x) = (1 - 4(x+h) - (1 - 4x))$$

$$\frac{f(x+h)-f(x)}{h} = \frac{-4h}{h} \qquad \checkmark$$

Therefore

$$f'(x) = \lim_{h \to 0} \left(-4 \right) \qquad \checkmark$$

$$\therefore f'(x) = \underline{-4}$$

Question 5 (10 marks)

(a) (i)

(ii)
$$y = x^3 \checkmark \checkmark$$

(b) (i)
$$m = 0$$
 $P(0,-1)$

(iii) B is an x intercept. ✓

Question 6 (13 marks)

(a)
$$y = (x-1)^2(x+1)$$

(b)
$$f(x) = -2(x-2)^2 + 5$$

(c)
$$g(x) = 1 - 2^x$$

(d)
$$y = 3^{x+1} \checkmark \checkmark \checkmark$$

SECTION 2 – Calculator-assumed

Question 7 (10 marks)

(a)
$$2017$$
 $$35000 \times 1.05 = $36750 \checkmark$
 2018 $$35000 \times 1.05^2 = $38587.50 \checkmark$

(b) A GP with a = 35 000,
$$r = 1.05$$

(c)
$$35000 + 35000(1.05) + 35000(1.05)^2 + \dots + 35000(1.05)^{10}$$
 \checkmark

$$= 35000 \left(\frac{(1 - 1.05 ^10)}{1 - 1.05} \right) \checkmark$$

$$= $440226.24 \checkmark$$

(d)
$$401235.78 = 35000 \left(\frac{\left(1 - (1+r)^{10}\right)}{1 - (1+r)} \right) \checkmark \checkmark$$

$$r = 3\% \checkmark$$

Question 8 (13 marks)

(a) (i)
$$S_n = \frac{n}{2} (2a + (n-1)d)$$

 $S_{52} = \frac{52}{2} (2 \times 10 + 51 \times 0.5)$ \checkmark
 $S_{52} = \$1183$ \checkmark

(ii)
$$n = 7 \times 52 + 1$$

 $n = 365$ \checkmark
 $T_{365} = 10 + 364 \times 0.5$ \checkmark
 $T_{365} = 192$ \checkmark

(iii)
$$a = \$192, d = 0.50, n = 52$$

 $S_n = \frac{n}{2} (2a + (n-1)d)$

$$S_{52} = \frac{52}{2} (2 \times 192 + 51 \times 0.5)$$

$$S_{52} = \$10645$$

(b)
$$1 - \frac{1}{\sqrt{2}} + \frac{1}{2} - \frac{1}{2\sqrt{2}} + \dots$$

 $S_{\infty} = \frac{a}{1-r}, \quad a = 1, \quad r = -\frac{1}{\sqrt{2}} \quad \checkmark$
 $S_{\infty} = \frac{1}{1 - \left(-\frac{1}{\sqrt{2}}\right)} \quad \checkmark$
 $= \frac{1}{\sqrt{2} + 1} \quad \checkmark$
 $= \frac{\sqrt{2}}{\sqrt{2} + 1} \times \frac{\sqrt{2} - 1}{\sqrt{2} - 1} \quad \checkmark$
 $= \sqrt{2} \frac{\left(\sqrt{2} - 1\right)}{2 - 1} \quad \checkmark$
 $S_{\infty} = \sqrt{2} \left(\sqrt{2} - 1\right) \quad \checkmark$

Question 9 (7 marks)

$$m_{AB} = \frac{3}{3} = 1$$

$$m_{DC} = \frac{3}{4} \qquad \checkmark$$

 \therefore AB is not parallel to DC, so ABCD is not a parallelogram, i.e. not a square, rectangle or rhombus.

∴ AB is not parallel to BC, so P

$$AB = \sqrt{(-3)^2 + (-3)^2} = \sqrt{18}$$

$$AD = \sqrt{(-3)^2 + 3^2} = \sqrt{18}$$
∴ $AB = AD$ ✓
$$BC = \sqrt{(-4)^2 + 3^2} = 5$$

$$DC = \sqrt{(-4)^2 + (-3)^2} = 5$$
∴ $BC = DC$ ✓

∴ ABCD is a kite. ✓

Question 10 (8 marks)

(a)
$$y = x^4 - 16x^2$$
.
 $\frac{dy}{dx} = 4x^3 - 32x$
If $\frac{dy}{dx} = 0$, $0 = 4x^3 - 32x$
 $0 = 4x(x^2 - 8)$
 $x = 0$, $x = \pm 2\sqrt{2}$
 $(0,0), (2\sqrt{2}, -64), (-2\sqrt{2}, 64)$

(b)
$$At \quad x = 2, \quad \frac{dy}{dx} = 4x^3 - 32x$$
$$\frac{dy}{dx} = -32$$
$$y = -32x + c$$
$$(2, -48) \quad -48 = -64 + c$$
$$c = 16$$
$$y = -32x + 16$$

(c)
$$(0.83.-10.51)$$
, $(-4.83.170.51)$

Question 11 (14 marks)

(a) (i)
$$x = t^2 - 4t + 4$$
 for $t \ge 0$
At $t = 0$, $x = 4$ \checkmark
(ii) $\frac{dx}{dt} = 2t - 4$ \checkmark

(iii)
$$64 = t^2 - 4t + 4$$

 $t^2 - 4t - 60 = 0$
 $(t - 10)(t + 6) = 0$ \checkmark
 $t = 10 \text{ or } t = -6 \text{ but } t \ge 0$ \checkmark
 $At t = 10, v = 16 \text{ ms}^{-1}$ \checkmark

(iv) At
$$v = 2$$
, $2 = 2t - 4$ $t = 3$ \checkmark
At $t = 3$, $x = 9 - 12 + 4 = 1$ \checkmark

(b) (i)

(ii) There is a turning point on f where f '(x) = 0, i.e. there are two turning points. If f' > 0 just before f '(x) = 0, followed by f ' < 0, then there is a maximum turning point.

If f' < 0 just before f'(x) = 0, followed by f' > 0, then there is a minimum turning point.

If f' > 0, the gradient of f is positive.

If f '< 0, the gradient of f is negative. $\checkmark\checkmark\checkmark$

Question 12 (13 marks)

(a)

The sector has the bigger area. ✓

(b)
$$y = \tan\left(x - \frac{\pi}{3}\right)$$

(c)

$$b^{2} = a^{2} + c^{2} - 2ac\cos(ABC)$$

$$b^{2} = 13^{2} + 12^{2} - 2 \times 13 \times 12\cos(25^{\circ}) \qquad \checkmark \qquad (= 30.23197)$$

$$b \approx 5.5 cm \qquad \checkmark$$

(d)
$$sin\left(2x - \frac{\pi}{4}\right) = -\frac{1}{\sqrt{2}}$$
 for $0 \le x \le \pi$

$$\left(2x - \frac{\pi}{4}\right) = -\frac{\pi}{4} + n2\pi$$
 or $\left(2x - \frac{\pi}{4}\right) = -\frac{3\pi}{4} + n2\pi$

$$2x = n2\pi$$

$$2x = -\frac{\pi}{2} + n2\pi$$

$$x = n\pi$$

$$x = -\frac{\pi}{4} + n\pi$$

$$x = 0, \pi$$

$$x = \frac{3\pi}{4}$$

(e)
$$sin(x+y) = sin(x)cos(y) + cos(x)sin(y)$$

Put $y = \frac{\pi}{2}$ \checkmark
 $sin(x+\frac{\pi}{2}) = sin(x)cos(\frac{\pi}{2}) + cos(x)sin(\frac{\pi}{2})$
but $sin(\frac{\pi}{2}) = 1$ \checkmark
 $\therefore sin(x+\frac{\pi}{2}) = cos(x)$

Question 13 (12 marks)

(a)
$$y = 2 + 10x - x^2$$

(i)
$$f'(x) = 10 - 2x \quad \checkmark$$
$$f'(2) = 6 \quad \checkmark$$

(ii)
$$\frac{f(2.01) - f(2)}{0.01} = \frac{18.0599 - 18}{0.01} = \frac{0.0599}{0.01} = 5.99 \quad \checkmark$$

(ii) The answers are similar because $\frac{f(x+h)-f(x)}{h}$ approximates the slope at a point by using the gradient of a very small interval close to the given x value. $\checkmark\checkmark$

(b) (i)
$$g'(y) = 20y - 9y^2$$

(ii)
$$g'(x) = \frac{1}{5} - \frac{12x}{5}$$

Question 14 (17 marks)

(a)
$$(1+2x)^4 = 1+8x+24x^2+32x^3+16x^4$$

The coefficient of x^3 is 32. \checkmark

(b) (i) A and Q
$$\checkmark$$

$$P(A \cap Q) = 0.10$$

$$P(A) = 0.5 \qquad P(Q) = 0.2 \qquad \checkmark$$

$$P(A) \times P(Q) = 0.5 \times 0.2 = 0.10 \qquad \checkmark$$

$$= P(A \cap Q)$$

Therefore the events are independent.

(ii) B and R because
$$P(B \cap R) = 0$$
 \checkmark

(iii)
$$P((A \cup Q) \cap \overline{R}) = 0.3 \quad \checkmark \checkmark$$

(c)
$$\overline{(A \cap B) \cup C}$$

✓✓✓ -1/error

(d) (i)
$$0.32 \quad 0.08 \quad 0.02$$

$$0.42$$

$$P(N) = 0.02 + 0.08$$

$$P(N) = 0.10 \quad \checkmark$$

(ii)
$$P(M | \overline{N}) = \frac{0.32}{0.42 + 0.32} = \frac{0.32}{0.74} = \frac{32}{74}$$

Question 15 (6 marks)

$$A = (4-x)y$$

$$A = (4-x)x^{2}$$

$$A = 4x^{2} - x^{3} \quad \checkmark$$

For maximum area $\frac{dA}{dx} = 0$

$$\frac{dA}{dx} = 8x - 3x^{2}$$
If $\frac{dA}{dx} = 0$, $0 = 8x - 3x^{2}$

$$= x(8 - 3x)$$

$$x \neq 0$$
 $x = \frac{8}{3}$

Test for maximum

$$x 1 \frac{8}{3} 3$$

$$\frac{dA}{dx} + 0 - \checkmark$$

Therefore maximum

If
$$x = \frac{8}{3}$$
, $y = ?$

$$y = \left(\frac{8}{3}\right)^2 = \frac{64}{9} = 7\frac{1}{9}$$

$$\therefore P\left(2\frac{2}{3}, 7\frac{1}{9}\right)$$

Therefore the dimensions of the maximum sized rectangle are $2\frac{2}{3} \times 7\frac{1}{9}$.

End of solutions