Análisis Numérico - Práctica 1

Errores de redondeo y propagación de errores

- 1. En nuestra máquina de 32 bits calcular el número de máquiena para x=2/3, calcular el error relativo.
- 2. En nuestra máquina de 32 bits calcular el número de máquiena para x = 4/5, calcular el error relativo.
- 3. Para $x = (0.111...11100...)_2 \times 2^{17}$ (26 unos) calcular el número de máquina y el error relativo.
- 4. Mostrar que $fl(x^k) = x^k(1+\delta)^{k-1}$ si x es un número de máquina.
- 5. c- Si quiero calcular $\sum_{n=1}^{\infty} x_n$ con un error menor a ϵ , dejo de sumar cuando $|x_n| < \epsilon$?. Ver con $\sum_{n=1}^{\infty} (0.99)^n$ y distintos valores de ϵ . Recordar que $\sum_{n=1}^{\infty} r^n = \frac{r}{1-r}$ si |r| < 1.
- 6. c- Escribir un programa para calcular

$$f(x) = \sqrt{x^2 + 1} - 1$$
$$g(x) = \frac{x^2}{\sqrt{x^2 + 1} + 1}$$

para la sucesión $8^{-1}, 8^{-2}, 8^{-3}, \dots, 8^{-10}$. Aunque f = g la computadora produce resultados distintos, cuál es más confiable?

- 7. c- Escribir un algoritmo para estimar el número de máquina.
- 8. c- Sean

$$x = [2.718281828, -3.141592654, 1.414213562, 0.5772156649, 0.3010299957]$$

$$y = [1486.2497, 878366.9879, -22.37429, 4773714.647, 0.000185049]$$

Calcular $\sum_{i=1}^{n} x_i y_i$ de la siguientes maneras

- (a) para adelante : $\sum_{i=1}^{n} x_i y_i$
- (b) para atrás : $\sum_{i=n}^{1} x_i y_i$
- (c) positivos de mayor a menor + negativos de menor a mayor
- (d) positivos de menor a mayor + negativos de mayor a menor

Cuál resultado es más confiable y por qué?

9. c- Considerar la sucesión

$$x_0 = 1, x_1 = \frac{1}{3},$$
$$x_{n+1} = \frac{13}{3}x_n - \frac{4}{3}x_{n-1}$$

Dar una fórmula cerrada para x_n . Escribir un programa que calcule x_n de ambas formas y comparar. Cuál es más confiable? Por qué?

10. c- Consideremos la siguiente modificación de la serie de Fibonacci:

$$r_0 = 1, r_1 = \frac{1 - \sqrt{5}}{2},$$

 $r_{n+1} = r_n + r_{n-1}$

Cuál es la fórmula cerrada r_n ? Es la fórmula recursiva una manera estable de calcular r_n ? Comparar con el ejercicio anterior.

$$11.\,$$
 c
- Sea

$$y_n = \int_0^1 x^n e^x dx$$

Integrar por partes para obtener una fórmula recurrente para y_n . Mostrar que $\lim_{n\to\infty}y_n=0$. Hacer un programa para calcular los primeros 30 términos de y_n y analizar los resultados.

- $12. \ {\rm Cu\'al}$ es el número de condición para cada una de las siguientes funciones :
 - (a) $(x-1)^{\alpha}$
 - (b) ln(x)
 - (c) sin(x)
 - (d) e^x
 - (e) $x^{-1}e^x$
 - (f) $cos^{-1}(x)$