R Textbook Companion for Concepts Of Modern Physics by Arthur Beiser¹

Created by
Vipul Shrikant Brahmankar
Bachelor of Technology
Computer Science and Engineering
Shri Vile Parle Kelawani Mandals Institute of Technology, Dhule
Cross-Checked by
R TBC Team

June 8, 2020

¹Funded by a grant from the National Mission on Education through ICT - http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and R codes written in it can be downloaded from the "Textbook Companion Project" section at the website - https://r.fossee.in.

Book Description

Title: Concepts Of Modern Physics

Author: Arthur Beiser

Publisher: Mcgraw-hill, New York

Edition: 6

Year: 2003

ISBN: ISBN: 0-07-004814-2

R numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means an R code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of R Codes	
1	Relativity	5
2	Particle Properties of Waves	10
3	Wave Properties of Particles	15
4	Atomic Structure	22
5	Quantum Mechanics	27
6	Quantum Theory of the Hydrogen Atom	30
7	Many Electron Atoms	32
8	Molecules	35
9	Statistical Mechanics	38
10	The Solid State	43
11	Nuclear Structure	45
12	Nuclear Transformations	50

List of R Codes

Exa 1.1	Time dilation
Exa 1.2	Longitudinal doppler effect in light
Exa 1.3	Doppler effect Hubbles law
Exa 1.4	Twin Paradox
Exa 1.6	Mass and Energy of Stationary body
Exa 1.7	Mass and Energy of Sun
Exa 1.8	Energy and momentum of Electron and Photon 8
Exa 1.11	Relativistic velocity transformation
Exa 2.1	Energy of tuning fork and atomic oscillator 10
Exa 2.2	Photoelectric effect
Exa 2.3	X ray production
Exa 2.4	Compton Effect
Exa 2.6	Pair Production
Exa 2.7	Photon Absorption and Radiation intensity 13
Exa 2.8	Energy of falling photon
Exa 3.1	De Broglie wavelengths
Exa 3.2	Kinetic Energy using De Broglie wavelengths 16
Exa 3.3	De Broglie phase and group velocities
Exa 3.4	Permitted Energies of a Particle in a Box 17
Exa 3.5	Permitted Energies of a Marble in a Box
Exa 3.6	Uncertainty in protons position
Exa 3.7	Energy of Nuclear electron by Uncertainty Principle . 19
Exa 3.8	Energy of Hydrogen electron by Uncertainty Principle 20
Exa 3.9	Uncertainty in Time and Energy
Exa 4.1	Electron orbits of Hydrogen atom
Exa 4.2	Energy level of Electron Hydrogen collision 23
Exa 4.3	Energy level of Rydberg atoms
Exa. 4.4	Balmer series of Hydrogen Spectrum 23

Exa 4.5	Frequency of revolution	24
Exa 4.7		25
Exa 4.8		26
Exa 5.4		27
Exa 5.6	Tunnel effect transmission probability	28
Exa 6.3		30
Exa 6.4		30
Exa 7.1		32
Exa 7.2		32
Exa 7.3	Magnetic energy for an electron	3
Exa 7.8		34
Exa 8.1		35
Exa 8.2		36
Exa 8.3	Force constant and vibrational levels in CO	36
Exa 9.1	Maxwell Boltzmann distribution function	8
Exa 9.4	Root mean square speed of oxygen molecule	39
Exa 9.5	Planck Radiation Law	39
Exa 9.6		10
Exa 9.7		11
Exa 9.8	Fermi energy in Copper	11
Exa 10.1		13
Exa 10.2		14
Exa 10.3	Mean free path of free electrons in Copper	14
Exa 11.1	Density of C12 Nucleus	15
Exa 11.2	Repulsive electric force on proton	15
Exa 11.3		16
Exa 11.4		16
Exa 11.5		17
Exa 11.6		17
Exa 11.7		18
Exa 12.2	Radioactive decay of Radon	60
Exa 12.3		60
Exa 12.4	· · · · · · · · · · · · · · · · · · ·	51
Exa 12.5	·	61
Exa 12.6		52
Exa 12.7	• · · · · · · · · · · · · · · · · · · ·	52
Exa 12.8		53
Exa 12.9		54

Exa 12.10	Cross Section of Gold	 54
Exa 12.11	Kinetic energies and Q value of Nuclear Reactions	 55

Relativity

R code Exa 1.1 Time dilation

R code Exa 1.2 Longitudinal doppler effect in light

```
1 #(Pg no. 13)
2
3 v = 5.6e+14
4 v0 = 4.8e+14
```

```
5  c = 3.0e+8
6
7  vu = c * ((v ^ 2 - v0 ^ 2) / (v ^ 2 + v0 ^ 2))
8  vu = vu * 3.6
9  vu = formatC(vu, format = "e", digits = 2)
10
11  R = 1.0
12  l = 80.0
13
14  fine = as.numeric(vu) - l
15
16  cat("Fine = $", fine)
```

R code Exa 1.3 Doppler effect Hubbles law

```
1 #(Pg no. 14)
2
3 v = 6.12e+7
4 c = 3.0e+8
5 wl_0 = 500.0
6
7 wl = wl_0 * sqrt(((1 + (v / c)) / (1 - (v / c))))
8 wl_s = wl - wl_0
9
10 cat("Lambda =", round(wl_s), "nm\n")
```

R code Exa 1.4 Twin Paradox

```
1 #(Pg no.19)
2
3 StartAge = 20
4 c = 3e+8
5 v = 0.8 * c
```

```
6 t0 = 1
8 T1 = t0 * (sqrt((1 + v / c) / (1 - v / c)))
9 T2 = t0 * (sqrt((1 - v / c) / (1 + v / c)))
10
11 \quad Dout = 15
12 Dret = 15
13 Dout_Signals = Dout / T1
14 Dret_Signals = Dret / T2
15 Total_DSignals = Dout_Signals + Dret_Signals
16 JaneAge = StartAge + Total_DSignals
17
18 L0 = 20
19 \text{ v0} = 0.8
20 Dout_acc_Jane = L0 / v0
21 Dret_acc_Jane = Total_DSignals - (Dout_acc_Jane + L0
     )
22 Dout_Signals_acc_Jane = (Dout_acc_Jane + L0) / T1
23 Dret_Signals_acc_Jane = Dret_acc_Jane / T2
24 Total_DSignals_acc_Jane = Dout_Signals_acc_Jane +
     Dret_Signals_acc_Jane
25 DickAge = StartAge + Total_DSignals_acc_Jane
26
27
28 cat("Age of Jan =", JaneAge, "y n")
29 cat("Age of Dic =", DickAge, "y \ n")
```

R code Exa 1.6 Mass and Energy of Stationary body

```
1 #(Pg no. 27)
2
3 m_frag = 1
4 c = 3e+8
5 v = 0.6 * c
```

R code Exa 1.7 Mass and Energy of Sun

```
1 #(Pg no. 28)
2
3 rate = 1.4
4 R = 1.5e+11
5
6 P = (rate * (10 ^ 3)) * (4 * pi * (R ^ 2))
7
8 C = 3e+8
9 E = P
10
11 m = E / (C ^ 2)
12 m = formatC(m, format = "e", digits = 1)
13
14 cat("m =", m, "kg\n")
```

R code Exa 1.8 Energy and momentum of Electron and Photon

```
1 #(Pg no. 32)
2
3 c = 3e+8
4 me = 0.511 / (c ^ 2)
5 mp = 0
6 p = 2.000 / c
```

R code Exa 1.11 Relativistic velocity transformation

```
1 #(Pg no. 44)
2
3 c = 3e+8
4 VaE = 0.90 * c
5 VbA = 0.50 * c
6
7 VbE = (VaE + VbA) / (1 + ((VaE * VbA) / (c^2)))
8 VbE = VbE / c
9
10 cat("V_x =", round(VbE, 2), "c\n")
```

Particle Properties of Waves

R code Exa 2.1 Energy of tuning fork and atomic oscillator

```
1 \# (Pg \text{ no. } 61)
3 F_tf = 660
4 h = 6.63e - 34
6 E_tf = h * F_tf
7 E_tf = formatC(E_tf, format = "e", digits = 2)
9 F_ao = 5.00e+14
10
11 E_{ao} = h * F_{ao}
12 E_ao_eV = E_ao / 1.60e-19
13
14 cat("hv_1 = ", E_tf, "J \setminus n")
15 cat("hv_2 =", E_ao, "J =", round(E_ao_eV, 3), "eV\n"
      )
16
17 #The answer may slightly vary due to rounding off
      values
```

R code Exa 2.2 Photoelectric effect

```
1 #(Pg no. 66)
3 \text{ wl} = 350
4 i = 1.00
5 \text{ wf} = 2.2
6 \text{ wl} = \text{wl} * (10 ^ -9)
7 \text{ Ep} = 1.24e-6 / wl
9 \text{ KEmax} = \text{Ep} - \text{wf}
10
11 A = 1.00
12 A = A * (10 ^ -4)
13 E = 5.68e-19
14
15 Np = i * A / E
16 \text{ Ne} = (0.0050) * \text{Np}
17 Ne = formatC(Ne, format = "e", digits = 1)
18
19 cat("a) KE_max =", round(KEmax, 1), "eV\n")
20 cat("b) ne =", Ne, "photoelectrons/s\n")
```

R code Exa 2.3 X ray production

```
1 #(Pg no.72)
2
3 AP = 50000
4
5 wl_min = 1.24e-6 / AP
6 wl_min_nm = wl_min * (10 ^ 9)
7
```

```
8 Freq_max = 3e+8 / wl_min
9 Freq_max = formatC(Freq_max, format = "e", digits = 2)
10
11 cat("Lambda_min =", wl_min_nm, "nm\n")
12 cat("V_max =", Freq_max, "Hz\n")
```

R code Exa 2.4 Compton Effect

```
1 \#(Pg \text{ no. } 78)
 2
 3 \text{ wl} = 10.0
4 \text{ phi} = 45.0
 5 phi_rad = (45.0 * (22 / 7)) / 180
 6 \text{ wlc} = 2.426e-12
 7 k = cos(phi_rad)
8 \text{ wlc} = \text{wlc} * 10.0 ^ 12
10 \text{ wl2} = \text{wl} + \text{wlc} * (1.0 - \text{k})
11
12 wl2_{max} = wl + (2 * wlc)
13 \text{ wl2}_{\text{max}} = \text{round}(\text{wl2}_{\text{max}}, 1)
14
15 h = 6.63e - 34
16 c = 3e + 8
17 c = c * (10 ^ 12)
18 KEmax = (h * c) * ((1 / wl) - (1 / wl2_max))
19 KEmax_KeV = KEmax / 1.6022e-16
20 KEmax = formatC(KEmax, format = "e", digits = 2)
21
22 cat("a) Lambda\' = ", round(wl2, 1), "pm\n")
23 cat("b) Lambda_max\' =", w12_max, "pm\n")
24 cat("c) KE_max =", KEmax, "J =", round(KEmax_KeV,
       1), "keV \setminus n")
```

R code Exa 2.6 Pair Production

```
1 #(Pg no. 82)
2
3 c = 3.0e+8
4 v = 0.5 * c
5 m = 0.511 / (c ^ 2)
6 y = 1 / sqrt(1 - (v / c) ^ 2)
7
8 p1_minus_p2 = (2 * y * m * v) * c
9
10 p1_plus_p2 = 2 * y * m * (c ^ 2)
11
12 p1 = (p1_minus_p2 + p1_plus_p2) / 2
13 p2 = p1_plus_p2 - p1
14 E1 = p1
15 E2 = p2
16
17 cat("E1 = ", round(E1, 3), "MeV\n")
18 cat("E2 = ", round(E2, 3), "MeV\n")
```

R code Exa 2.7 Photon Absorption and Radiation intensity

```
1 #(Pg no.85)
2
3 I = 2.0
4 mu = 4.9
5 x = 10.0
6 x = x / 100
7
8 I_rel_a = exp(-(mu * x))
```

```
10  I_rel_b = 0.01
11  I_rel_b_inv = 1 / I_rel_b
12
13  x2 = log(I_rel_b_inv) / mu
14
15  cat("a)  I/Io =", round(I_rel_a, 2), "\n")
16  cat("b)  x =", round(x2, 2), "m\n")
```

R code Exa 2.8 Energy of falling photon

```
1 #(Pg no. 86)
2
3 H = 22.5
4 vu = 7.3e+14
5 c = 3e+8
6 g = 9.8
7
8 Freq_change = (g * H / (c ^ 2)) * vu
9
10 cat("v\'-v =", round(Freq_change, 1), "Hz\n")
```

Wave Properties of Particles

R code Exa 3.1 De Broglie wavelengths

```
1 #(Pg no. 94)
3 h = 6.63e-34
4 m1 = 46
5 m1 = m1 / 1000
6 v1 = 30
7 y1 = 1
9 \text{ wl1} = h / (y1 * m1 * v1)
10 wl1 = formatC(wl1, format = "e", digits = 1)
12 \text{ m2} = 9.1 \text{e} - 31
13 \text{ v2} = 10 ^ 7
14 \ y2 = 1
15
16 \text{ wl2} = \text{h} / (\text{y2} * \text{m2} * \text{v2})
17 wl2 = formatC(wl2, format = "e", digits = 1)
18
19 cat("a) Lambda =", wl1, "m\n")
20 cat("b) Lambda =", w12, "m\n")
```

R code Exa 3.2 Kinetic Energy using De Broglie wavelengths

```
1 #(Pg no. 94)
2
3 wl = 1.0e-15
4 E0 = 0.938
5 h = 4.136e-15
6 c = 2.998e+8
7
8 pc = (h * c) / wl
9 pc = pc * (10 ^ -9)
10
11 E = sqrt((E0 ^ 2) + (pc ^ 2))
12 KE = E - E0
13 KE = KE * 1000
14
15 cat("KE =", round(KE), "MeV\n")
```

R code Exa 3.3 De Broglie phase and group velocities

```
1 #(Pg no. 103)
2
3 wl = 2.0e-12
4 h = 4.136e-15
5 c = 2.998e+8
6
7 pc = (h * c) / wl
8 pc = pc / 1000
9
10 E0 = 511
11
12 E = sqrt((E0 ^ 2) + (pc ^ 2))
```

```
13 KE = E - E0
14
15 v = c * sqrt(1 - (E0 ^ 2 / E ^ 2))
16 vp = (c ^ 2 / v) / c
17 vg = v / c
18
19 cat("a) KE = ", round(KE), "keV\n")
20 cat("b) vp = ", round(vp, 2), "c\n")
21 cat(" vg = ", round(vg, 4), "c\n")
```

R code Exa 3.4 Permitted Energies of a Particle in a Box

```
1 \# (Pg \text{ no. } 107)
3 library(RColorBrewer)
5 rm(list = ls())
7 m = 9.1e - 31
8 L = 1.0e-10
9 h = 6.63e - 34
10 \ n0 = 1
11
12 En = (h ^2) / (8 * m * (L ^2))
13 En = formatC(En, format = "e", digits = 2)
14 En_eV = round(as.numeric(En) * 6.242e+18)
15
            =", En, "n^2 J =", En_eV, "n^2 eV n")
16 cat ("En
17 E = c()
18
19 c = colors()
20 c = brewer.pal(4, "Set1")
21 plot(
22
     Ε,
     type = "l",
23
```

```
24
     xaxt = 'n',
25
     xlim = c(0, 10),
     xlab = "",
26
     ylab = "\operatorname{En}, \operatorname{eV}",
27
28
     yaxs = "i",
29
     ylim = c(0, 700),
     yaxp = c(0, 1000, 10)
30
31 )
32
33 labels = c("n=1", "n=2", "n=3", "n=4")
34
35 for (n in seq(1, 4))
36 {
     E[n] = En_eV * (n ^2)
37
     cat("\tn=", n, ":\tEn= ", E[n], "eV\n")
38
     abline(h = E[n], col = c[n], lwd = 4)
     text(5, E[n], labels[n], pos = 3, offset = 0.2)
40
41 }
```

R code Exa 3.5 Permitted Energies of a Marble in a Box

```
1 #(Pg no. 107)
2
3 m = 10.0
4 m = m / 1000
5 L = 10
6 L = L / 100
7 h = 6.63e-34
8
9 En = (h ^ 2) / (8 * m * (L ^ 2))
10 En = formatC(En, format = "e", digits = 1)
11
12 cat("\tEn =", En, "n^2 J\n")
13
14 E = c()
```

```
15 for (n in seq(1, 4))
16 {
17   E[n] = as.numeric(En) * (n ^ 2)
18   cat("\tn=", n, ":\tEn= ", E[n], "J\n")
19 }
```

R code Exa 3.6 Uncertainty in protons position

```
1 #(Pg no. 112)
2
3 X0 = 1.00e-11
4 h_bar = 1.054e-34
5 t1 = 1.00
6 m = 1.672e-27
7
8 x1 = (h_bar * t1) / (2 * m * X0)
9 x1 = formatC(x1, format = "e", digits = 2)
10
11 cat("Delta_x >=", x1, "m\n")
```

R code Exa 3.7 Energy of Nuclear electron by Uncertainty Principle

```
1 #(Pg no. 114)
2
3 r = 5.00e-15
4 del_x = r
5 h_b = 1.054e-34
6
7 del_p = h_b / (2 * del_x)
8 del_p = formatC(del_p, format = "e", digits = 1)
9
10 p = as.numeric(del_p)
11 c = 3e+8
```

```
12
13 KE = p * c
14 KE_eV = KE / 1.602e-19
15 KE_eV = KE_eV / 10 ^ 6
16
17 cat("KE_min =", KE, "J =", KE_eV, "MeV\n")
```

R code Exa 3.8 Energy of Hydrogen electron by Uncertainty Principle

```
1 #(Pg no. 115)
2
3 r = 5.3e-11
4 del_x = r
5 h_bar = 1.054e-34
6
7 del_p = h_bar / (2 * del_x)
8
9 p = del_p
10 m = 9.1e-31
11
12 KE = (p ^ 2) / (2 * m)
13 KE = formatC(KE, format = "e", digits = 1)
14 KE_eV = as.numeric(KE) / 1.602e-19
15
16 cat("KE_min =", KE, "J =", round(KE_eV, 1), "eV\n")
```

R code Exa 3.9 Uncertainty in Time and Energy

```
1 #(Pg no. 116)
2
3 del_t = 1e-8
4 h_b = 1.054e-34
```

```
6 del_E = h_b / (2 * del_t)
7 del_E = formatC(del_E, format = "e", digits = 1)
8
9 h = 6.626e-34
10
11 del_nu = as.numeric(del_E) / h
12 del_nu = formatC(del_nu, format = "e", digits = 1)
13
14 cat("Delta_E >=", del_E, "J\n")
15 cat("Delta_nu >=", del_nu, "Hz\n")
```

Atomic Structure

R code Exa 4.1 Electron orbits of Hydrogen atom

```
1 \# (Pg \text{ no. } 125)
3 E = -13.6
4 e = 1.6e-19
5 E = E * e
6 E0 = 8.85e-12
7 \text{ pi} = 22 / 7
9 r = -(e^2 / (8 * pi * E0 * E))
10 r = as.numeric(formatC(r, format = "e", digits = 1))
11
12 m = 9.1e-31
13
14 v = e / sqrt(4 * pi * E0 * m * r)
15 v = formatC(v, format = "e", digits = 1)
16
17 \operatorname{\mathtt{cat}}("r =", r, "m \ ")
18 cat("v =", v, "m/s \ n")
```

R code Exa 4.2 Energy level of Electron Hydrogen collision

```
1 #(Pg no. 135)
2
3 ni = 1
4 nf = 3
5 E1 = -13.6
6
7 del_E = E1 * ((1 / nf ^ 2) - (1 / ni ^ 2))
8
9 cat("Delta_E =", round(del_E, 1), "eV\n")
```

R code Exa 4.3 Energy level of Rydberg atoms

```
1 #(Pg no. 135)
2
3 rn = 1.00e-5
4 a0 = 5.29e-11
5
6 n = sqrt(rn / a0)
7
8 E1 = -13.6
9 En = E1 / n ^ 2
10 En = formatC(En, format = "e", digits = 2)
11
12 cat("a) n = ", round(n), "\n")
13 cat("b) En = ", En, "eV")
```

R code Exa 4.4 Balmer series of Hydrogen Spectrum

```
1 \#(Pg \text{ no. } 138)
2
3 ni = 3.0
```

```
4    nf = 2.0
5    R = 1.097e+7
6
7    freq = (1 / nf ^ 2) - (1 / ni ^ 2)
8    wl = 1 / (freq * R)
9    wl = wl * (10 ^ 9)
10
11    cat("Lamda =", round(wl), "nm\n")
```

R code Exa 4.5 Frequency of revolution

```
1 #(Pg no. 139)
2
3 \text{ ni} = 1
4 \text{ nf} = 2
5 E1 = -2.18e-18
6 h = 6.63e - 34
8 \text{ foR1} = (-E1 / h) * (2 / ni ^ 3)
9 \text{ foR2} = (-E1 / h) * (2 / nf ^ 3)
10 foR1 = formatC(foR1, format = "e", digits = 2)
11 foR2 = formatC(foR2, format = "e", digits = 2)
12
13 ni = 2
14 \text{ nf} = 1
15
16 v = (-E1 / h) * ((1 / (nf ^ 3)) - (1 / ni ^ 3))
17 v = formatC(v, format = "e", digits = 2)
18
19 f = as.numeric(foR2)
20 \text{ del_t} = 1.00e-8
21
22 N = f * del_t
23 N = formatC(N, format = "e", digits = 2)
24
```

```
25  cat("a) f1 =", foR1, "rev/s\n")
26  cat(" f2 =", foR2, "rev/s\n")
27  cat("b) v =", v, "Hz\n")
28  cat("c) N =", N, "rev\n")
29
30  #The answer may slightly vary due to rounding off values
```

R code Exa 4.7 Reduced Mass of Moun

```
1 \# (Pg \text{ no. } 142)
 3 \text{ me} = 9.1095e-31
4 \text{ m} = 207 * \text{me}
 5 M = 1836 * me
7 \text{ M\_red} = (m * M) / (m + M)
9 \ a0 = 5.29e-11
10 \text{ r1} = a0
11
12 r1_red = (me / (M_red)) * r1
13 r1_red = formatC(r1_red, format = "e", digits = 3)
14
15 \, n = 1
16 E1 = -13.6
17
18 E1_red = (M_red / me) * (E1 / n ^ 2)
19 E1_{red} = E1_{red} / (10^3)
20
21 \operatorname{cat}("a) \operatorname{r1}\' = ", \operatorname{r1\_red}, \operatorname{"m}\")
22 cat("b) E1\' =", round(E1_red, 2), "KeV\n")
```

R code Exa 4.8 Rutherford Scattering Formula

```
1 #(Pg no. 156)
2
3 I = 7.7
4 D_{gold} = 1.93e+4
5 u = 1.66e-27
6 M_{gold} = 197 * u
8 n = D_gold / M_gold
9 n = as.numeric(formatC(n, format = "e", digits = 2))
10
11 Z_gold = 79
12 e = 1.6e-19
13 KE = (I * e) / (10 ^ -6)
14 Theta = 45
15 Theta = 45 * (pi / 180)
16 p = 1 / tan(Theta / 2)
17 E0 = 8.85e-12
18 \ t = 3e-7
19
20 f = pi * n * t * (((Z_gold * (e ^2)) / (4 * pi * E0)
      * KE)) ^ 2) * (p ^ 2)
21 f = as.numeric(formatC(f, format = "e", digits = 0))
22
23 \mbox{\ensuremath{\text{cat}}} (" f =" , f , " \ensuremath{\text{n}}")
24 cat("Fraction =", f * 100, "\%\n")
```

Quantum Mechanics

R code Exa 5.4 Wave function of Particle in a Box

```
1 \# (Pg \text{ no. } 180)
3 L = 1
4 \times 1 = 0.45
5 \times 2 = 0.55
7 f = function(x)
     y = \sin(n * pi * x) ^2
10
     return(y)
11 }
12
13 \, n = 1
14 I1 = integrate(f, x1, x2)
15 P1 = (2 / L * as.numeric(I1[1]))
16 P1 = round(P1, 3)
17
18 n = 2
19 I2 = integrate(f, x1, x2)
20 P2 = (2 / L * as.numeric(I2[1]))
21 P2 = round(P2, 4)
```

```
22
23 cat("P_g =", P1, "=", P1 * 100, "percent\n")
24 cat("P_1e =", P2, "=", P2 * 100, "percent\n")
```

R code Exa 5.6 Tunnel effect transmission probability

```
1 #(Pg no. 186)
3 \text{ rm}(\text{list} = \text{ls}())
4
5 E1 = 1.0
6 E2 = 2.0
7 U = 10.0
8 L1 = 0.50
9 L1 = L1 * 10 ^ -9
10 h_bar = 1.054e-34
11 Me = 9.1e-31
12 e = 1.6e-19
13
14 k2 = sqrt(2 * Me * (U - E1) * e) / h_bar
15 k1 = sqrt(2 * Me * (U - E2) * e) / h_bar
16
17 T1 = \exp(-2 * k2 * L1)
18 T1 = formatC(T1, format = "e", digits = 1)
19 T2 = exp(-2 * k1 * L1)
20 T2 = formatC(T2, format = "e", digits = 1)
21
22
23 L2 = L1 * 2
24 \text{ T11} = \exp(-2 * k2 * L2)
25 T11 = formatC(T11, format = "e", digits = 1)
26 	ext{ T22} = \exp(-2 * k1 * L2)
27 T22 = formatC(T22, format = "e", digits = 1)
28
29
```

```
30 cat("a) T1 =", T1, "\n")
31 cat(" T2 =", T2, "\n")
32 cat("b) T1\' =", T11, "\n")
33 cat(" T2\' =", T22, "\n")
34
35 #The answer may slightly vary due to rounding off values.
```

Quantum Theory of the Hydrogen Atom

R code Exa 6.3 Probability of Finding Electron

```
1 #(Pg no. 215)
2
3 max_prob = 1
4
5 Pro_Ratio = 4 * exp(-1)
6 Prezense_precent = (Pro_Ratio - max_prob) * 100
7
8 cat("Prez_perce =", round(Prezense_precent))
```

R code Exa 6.4 Normal Zeeman Effect

```
1 #(Pg no. 226)
2
3 B = 0.300
4 wl = 450
5 wl = wl * (10 ^ -9)
```

```
6 e = 1.6e-19
7 m = 9.1e-31
8 c = 3e+8
9
10 del_wl = (e * B * (wl ^ 2)) / (4 * pi * m * c)
11 del_wl = del_wl * (10 ^ 9)
12 del_wl = round(del_wl, 5)
13
14 cat("Delta_Lamda =", del_wl, "nm\n")
```

Many Electron Atoms

R code Exa 7.1 Equatorial velocity of an electron

```
1 #(Pg no. 230)
2
3 r = 5.00e-17
4 m = 9.1e-31
5 h_bar = 1.055e-34
6
7 v = ((5 * sqrt(3)) / 4) * (h_bar / (m * r))
8
9 c = 3e+8
10
11 v = v / c
12 v = formatC(v, format = "e", digits = 2)
13
14 cat("v =", v, "c\n")
```

R code Exa 7.2 Effective charge on electron of lithium atom

```
1 #(Pg no. 241)
```

```
2
3 n = 2
4 E2 = -5.39
5 E1 = -13.6
6
7 Z = n * (sqrt(E2 / E1))
8 Z = round(Z, 2)
9
10 e = 1.6e-19
11
12 C_effective = Z * e
13 C_effective = formatC(C_effective, format = "e", digits = 3)
14
15 cat("En =", Z, "e =", C_effective, "C\n")
```

R code Exa 7.3 Magnetic energy for an electron

```
1 \# (Pg \text{ no. } 248)
 2
 3 n = 2
 4 \text{ Ao} = 5.29e-11
5 r = (n ^2) * Ao
 6 	 f = 8.4e + 14
 7 \text{ Mu}_0 = 4 * pi * (10 ^ -7)
 8 e = 1.6e-19
10 B = (Mu_0 * f * e) / (2 * r)
11
12 \text{ Mu\_b} = 9.27 \text{ e} - 24
13
14 \text{ Um} = \text{Mu}_b * \text{B}
15 \text{ Um} = \text{Um} / \text{e}
16 Um = as.numeric(formatC(Um, format = "e", digits =
        1))
```

```
17  
18   cat(" Um =", Um, "eV\n")  
19   cat(" 2 x Um =", (2 * Um), "eV\n")
```

R code Exa 7.8 K alpha X rays

```
1 #(Pg no. 257)
2
3 wl = 0.180
4 wl = wl * (10 ^ -9)
5 c = 3e+8
6
7 f = c / wl
8
9 R = 1.097e+7
10
11 Z = 1 + (sqrt((4 * f) / (3 * c * R)))
12
13 cat("Z =", round(Z), "\n")
```

Molecules

R code Exa 8.1 Energy and angular velocity of the CO

```
1 #(Pg no. 283)
 2
3 R = 0.113
4 \text{ Mc} = 1.99e-26
5 \text{ Mo} = 2.66 e - 26
7 \text{ Mco\_red} = (Mc * Mo) / (Mc + Mo)
8 I = Mco_red * ((R * (10 ^ -9)) ^ 2)
9 J = 1
10 h_bar = 1.054e-34
11 E_J1 = (J * (J + 1) * (h_bar ^ 2)) / (2 * I)
12 e = 1.6e-19
13 E_J1_eV = E_J1 / e
14 E_J1_eV = formatC(E_J1_eV, format = "e", digits = 2)
15
16 \ W_J1 = sqrt(2 * E_J1 / I)
17 W_J1 = formatC(W_J1, format = "e", digits = 2)
18
19 cat("a) E_J1 = ", E_J1_eV, "eV\n")
20 cat("b) W_J1 = ", W_J1, "rad/sec\n")
21
```

R code Exa 8.2 Bond length of CO molecule

```
1 #(Pg no. 285)
2
3 Ji = 0
4 Jf = 1
5 v = 1.15e+11
6 h_bar = 1.054e-34
7
8 Ico = (h_bar / (2 * pi * v)) * (Ji + 1)
9
10 Mco_red = 1.14e-26
11
12 r = sqrt(Ico / Mco_red)
13 r = r * (10 ^ 9)
14
15 cat("R_co =", round(r, 3), "nm\n")
```

R code Exa 8.3 Force constant and vibrational levels in CO

```
1 #(Pg no. 288)
2
3 Vo = 6.42e+13
4 Mco_red = 1.14e-26
5 h = 6.63e-34
6 pi=22/7
7
8 k = 4 * (pi ^ 2) * (Vo ^ 2) * Mco_red
9 k = formatC(k, format = "e", digits = 2)
10
11 del_E = h * Vo
```

```
12 del_E = del_E * 6.24e+18

13

14 cat("a) k =", k, "N/m\n")

15 cat("b) Delta_E =", round(del_E, 3), "eV\n")
```

Statistical Mechanics

R code Exa 9.1 Maxwell Boltzmann distribution function

```
1 #(Pg no. 299)
3 E1 = -13.6
4 E2 = -3.4
5 g1 = 2
6 g2 = 8
7 k = 8.617e-5
9 T0 = 0
10 \text{ TO} = \text{TO} + 273
12 \times 0 = (E2 - E1) / (k * T0)
13 \times 0 = round(x0)
14
15 n_{ratio1} = (g2 / g1) * exp(-x0)
16 n_ratio1 = formatC(n_ratio1, format = "e", digits =
       1)
17
18 \text{ T1} = 10000
19 \text{ T1} = \text{T1} + 273
20
```

R code Exa 9.4 Root mean square speed of oxygen molecule

```
1 #(Pg no. 305)
2
3 M_o = 16.0
4 M_o2 = M_o * 2
5 u = 1.66e-27
6 m = M_o2 * u
7 T = 273
8 k = 1.38e-23
9
10 Vrms = sqrt(3 * k * T / m)
11 Vrms_miles = (Vrms / 1609.34) * 3600
12
13 cat("Vrms =", round(Vrms), "m/s =", round(Vrms_miles), "mi/h\n")
```

R code Exa 9.5 Planck Radiation Law

```
1 #(Pg no. 314)
2 3 V = 1.00
4 V = V * 10^{-6}
```

```
5 \text{ dI} = 2.404
6 k = 8.617e-5
 7 h = 4.135e-15
8 T = 1000
9 c = 3e + 8
10
11 N = 8 * pi * V * (((k * T) / (h * c)) ^ 3) * dI
12 N = formatC(N, format = "e", digits = 2)
13
14 \text{ Sigma} = 5.670e-8
15 e = 6.24e + 18
17 E_photon = (Sigma * (c^2) * (h^3) * T) / (2.405)
       * (2 * pi * (k ^ 3)))
18 E_{photon_eV} = E_{photon} * e
19 E_photon = formatC(E_photon, format = "e", digits =
       2)
20
21 cat("a) N =", N, "photons\n")
22 \operatorname{\mathtt{cat}}("b) \operatorname{E}\setminus"=", \operatorname{\mathtt{E\_photon}}, "J=", \operatorname{\mathtt{round}}(\operatorname{\mathtt{E\_photon\_eV}},
         3), "eV \setminus n")
```

R code Exa 9.6 Wiens displacement law

```
1 #(Pg no. 317)
2
3 T = 2.7
4
5 wl_max = 2.898e-3 / T
6 wl_max = wl_max * 10 ^ 3
7
8 cat("Lambda_max =", round(wl_max, 1), "mm\n")
```

R code Exa 9.7 Surface temperature of the Sun

```
1 \# (Pg \text{ no. } 317)
2
3 R_earth = 1.5e+11
4 \text{ rate} = 1.4
5 \text{ rate} = 1.4 * 10 ^ 3
7 P = rate * (4 * pi * (R_earth ^ 2))
9 R_sun = 7e+8
11 R = P / (4 * pi * (R_sun^2))
12
13 e = 1
14 \text{ Sig} = 5.670e-8
15
16 T = (R / (e * Sig)) ^ (1 / 4)
17 T = formatC(T, format = "e", digits = 1)
18
19 cat("T =", T, "K \setminus n")
```

R code Exa 9.8 Fermi energy in Copper

```
1 #(Pg no. 325)
2
3 u = 1.66e-27
4 Den_c = 8.94e+3
5 M_c = 63.5
6
7 Den_e = Den_c / (M_c * u)
8
9 h = 6.63e-34
10 M_e = 9.1e-31
11 e = 6.23e+18
```

The Solid State

R code Exa 10.1 Cohesive energy in NaCl

```
1 \# (Pg \text{ no. } 342)
3 \text{ r0} = 2.81 \text{e} - 10
4 a = 1.748
5 n = 9
 6 e = 1.6e-19
7 e0 = 8.85e-12
9 \ UO = -(a * (e ^ 2) / (4 * pi * e0 * r0)) * (1 - (1 / e))
        n))
10 \text{ UO} = \text{UO} / \text{e}
11 \ UO = UO / 2
12
13 E1 = 5.14
14 E2 = -3.61
15 E = E1 + E2
16 E = E / 2
17 Ecohesive = (U0 + E)
18
19 cat("E\_cohesive =", round(Ecohesive, 2), "eV\n")
```

R code Exa 10.2 Drift velocity of free electrons in Copper

```
1 #(Pg no. 350)
2
3 A = 1.0
4 A = A * (10 ^ -6)
5 I = 1.0
6 n = 8.5e+28
7 e = 1.6e-19
8
9 Vdrift = I / (n * A * e)
10 Vdrift = formatC(Vdrift, format = "e", digits = 1)
11
12 cat("V_drift =", Vdrift, "m/s\n")
13
14 #The answer provided in the textbook is wrong
```

R code Exa 10.3 Mean free path of free electrons in Copper

```
1 #(Pg no. 353)
2
3 n = 8.48e+28
4 V_fermi = 1.57e+6
5 rho = 1.72e-8
6 e = 1.6e-19
7 M_e = 9.1e-31
8
9 lamda = (M_e * V_fermi) / (n * (e ^ 2) * rho)
10 lamda = lamda * (10 ^ 9)
11
12 cat("Lambda =", round(lamda, 1), "nm\n")
```

Nuclear Structure

R code Exa 11.1 Density of C12 Nucleus

```
1 #(Pg no. 393)
2
3 u = 1.66e-27
4 M_c = 12 * u
5 R = 2.7e-15
6
7 Den_cn = M_c / ((4 / 3) * pi * (R ^ 3))
8 Den_cn = formatC(Den_cn, format = "e", digits = 1)
9
10 cat("rho =", Den_cn, "kg/m^3\n")
```

R code Exa 11.2 Repulsive electric force on proton

```
1 #(Pg no. 393)
2
3 r = 2.4
4 r = r * (10 ^ -15)
5 e = 1.6e-19
```

```
6 Po = 8.85e-12
7
8 F = (1 / (4 * pi * Po)) * ((e ^ 2) / (r ^ 2))
9
10 cat("F =", round(F), "N\n")
```

R code Exa 11.3 Magnetic energy and Larmor frequency of proton

```
1 #(Pg no. 395)
2
3 B = 1.000
4 Mu_n = 3.152e-8
5 Mu_p = 2.793 * Mu_n
6
7 del_E = 2 * Mu_p * B
8 del_E = formatC(del_E, format = "e", digits = 3)
9
10 h = 4.136e-15
11
12 F_larmor = as.numeric(del_E) / h
13 F_larmor = F_larmor / (10 ^ 6)
14
15 cat("a) Delta_E = ", del_E, "eV\n")
16 cat("b) V_L = ", round(F_larmor, 2), "MHz\n")
```

R code Exa 11.4 Binding energy of Neon isotope

```
1 #(Pg no. 401)
2
3 Z = 10
4 N = 10
5 E_b = 160.647
6 Mh = 1.007825
```

```
7 Mn = 1.008665
8
9 M_neon = ((Z * Mh) + (N * Mn)) - (E_b / 931.49)
10
11 cat("M_Ne10 =", round(M_neon, 3), "u\n")
```

R code Exa 11.5 Binding energy of Calcium isotope

R code Exa 11.6 Binding energy of Zinc isotope

```
\frac{1}{2} #(Pg no. 407)
```

```
3 Z = 30
4 N = 34
6 \text{ Mh} = 1.007825
7 \text{ Mn} = 1.008665
8 \text{ M_zinc} = 63.929
10 E_b1 = ((Z * Mh) + (N * Mn) - M_zinc) * 931.49
11
12 \text{ a1} = 14.1
13 \ a2 = 13.0
14 \quad a3 = 0.595
15 \quad a4 = 19.0
16 	 a5 = 33.5
17 \quad A = Z + N
18
19 E_b2 = ((a1 * A) - (a2 * (A ^ (2 / 3))) - (a3 * Z * (a2 / 3)))
       (Z - 1) / (A ^ (1 / 3))) -
               (a4 * ((A - 2 * Z) ^ 2) / A) + (a5 / (A ^
20
                   (3 / 4)))
21
22 cat("E_b =", round(E_b1, 1), "MeV n")
23 cat("E_b_sb =", round(E_b2, 1), "MeV\n")
```

R code Exa 11.7 Most stable isobar of given atomic number

```
1 #(Pg no. 408)
2
3 A = 25
4
5 Z = (0.595 * A ^ (-1 / 3) + 76) / (1.19 * A ^ (-1 / 3) + (152 * A ^ -1))
6
7 cat("A = 25,    Z =", round(Z, 2), "=", round(Z), "\n
")
```

Nuclear Transformations

R code Exa 12.2 Radioactive decay of Radon

```
1 #(Pg no. 425)
2
3 T_half = 3.82
4 Lambda = 0.693 / T_half
5
6 p = 0.6
7 N = (1 - p)
8
9 t = (1 / Lambda) * (log(1 / N))
10
11 cat("t =", round(t, 2), "d\n")
```

R code Exa 12.3 Activity of Radon

```
1 #(Pg no. 427)
2
3 T_half = 3.8
4 Lambda = 0.693 / (T_half * 86400)
```

```
5
6 W_radon = 1
7 M_Radon = 222
8
9 N = (W_radon * (10 ^ -6)) / (M_Radon * (1.66e-27))
10 N = formatC(N, format = "e", digits = 2)
11
12 R = Lambda * as.numeric(N)
13 R = formatC(R, format = "e", digits = 2)
14
15 R_TBq = round(as.numeric(R) / 10 ^ 12, 2)
16 R_Ci = R_TBq * 27.15
17
18 cat("R =", R, "decays/sec =", R_TBq, "TBq =", round(R_Ci), "Ci\n")
```

R code Exa 12.4 Activity of Radon one week later

```
1 #(Pg no. 427)
2
3 R0 = 155
4 Lambda = 2.11e-6
5 t = 7
6 t = t * 86400
7
8 Lambda_t = Lambda * t
9 R = R0 * exp(-Lambda_t)
10
11 cat("R =", round(R), "Ci\n")
```

R code Exa 12.5 Death date of tree by Radiometric Dating

```
1 \# (Pg \text{ no. } 428)
```

```
2
3 R = 13
4 R0 = 16
5 T_half = 5760
6
7 Lambda = 0.693 / T_half
8 t = (1 / Lambda) * (log(R0 / R))
9 t = formatC(t, format = "e", digits = 1)
10
11 cat("t =", t, "y\n")
```

R code Exa 12.6 Radioactive equilibrium for half life of U238

R code Exa 12.7 Alpha Decay in polonium isotope

```
1 #(Pg no. 433)
2
3 Z_Po = 84
4 Z_He = 2
5 Z_nuc = Z_Po - Z_He
6
7 A_Po = 210
```

```
8 A_He = 4
9 A_nuc = A_Po - A_He
10
11 M_Po = 209.9829
12 M_He = 4.0026
13 E_He = 5.3
14
15 Q = (A_Po / A_nuc) * E_He
16 M_Q = Q / 931
17 M_nuc = M_Po - M_He - M_Q
18
19 cat("a) Z =", Z_nuc, "\n")
20 cat(" A =", A_nuc, "\n")
21 cat("b) M =", round(M_nuc, 4), "u\n")
```

R code Exa 12.8 Cross Section of Cadmium

```
1 #(Pg no. 444)
2
3 X_sec = 2e+4
4 X_sec = X_sec * (10 ^ -28)
5 M_cad = 112
6 density = 8.64e+3
7 x = 0.1
8 x = x * (10 ^ -3)
9 p = 12
10 u = 1.66e-27
11
12 n = (p / 100.0) * density / (M_cad * u)
13 Frac_absr = 1 - exp(-n * X_sec * x)
14
15 x2 = (-log(0.01)) / (n * X_sec)
16 x2 = x2 * 10 ^ 3
17
18 cat("a) f =", round(Frac_absr, 2), "\n")
```

```
19 \operatorname{cat}("b) = ", \operatorname{round}(x2, 2), \operatorname{mm}(n")
```

R code Exa 12.9 Mean free path in Cadmium

```
1 #(Pg no. 445)
2
3 n_sigma = 1.12e+4
4 Lambda = 1 / n_sigma
5 Lambda = Lambda * (10 ^ 3)
6
7 cat("Lambda =", round(Lambda, 4), "mm\n")
```

R code Exa 12.10 Cross Section of Gold

```
1 \# (Pg \text{ no. } 446)
 2
 3 T_half = 2.69
4 \text{ Lambda} = 0.693 / (T_half * 86400)
6 R = 200.0
7 R = R * (10 ^-6)
9 \text{ del_N} = (R * 3.70e+10) / Lambda
10
11 W_gold = 10
12 u = 1.66e - 27
13 \text{ M\_gold} = 197
14
15 n2 = (W_gold * (10 ^ -6)) / (M_gold * u)
17 \text{ flux} = 2e+16
18 \ X_{sec} = 99e-28
19 N = del_N
```

R code Exa 12.11 Kinetic energies and Q value of Nuclear Reactions

```
1 #(Pg no. 450)
2
3 mB = 14.00307
4 mA = 4.00260
5 mC = 1.00783
6 mD = 16.99913
7
8 Q = (mB + mA - mC - mD) * 931.5
9 KE_cm = -Q
10 KE_lab = ((mA + mB) / mB) * KE_cm
11
12 cat("KE_lab =", round(KE_lab, 3), "MeV\n")
```