

10/589594

IAP11 Rec'd PCT/PTO 15 AUG 2006

PCT/JP2004/002145

WO 2005/080597

1 / 20

SEQUENCE LISTING

<110> ONCOTHERAPY SCIENCE, INC.

JAPAN AS REPRESENTED BY THE PRESIDENT OF THE UNIVERSITY OF TOKYO

<120> METHOD FOR DIAGNOSING COLORECTAL CANCERS

<130> ONC-X0309P

<160> 23

<170> PatentIn version 3.1

<210> 1

<211> 2624

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (294)..(1688)

<223>

<400> 1

ggcacgaggg gccgacgcga gcgcgcgcgt tcgcttcagc tgctagctgg cccaaggagg	60
gcgaccgcgg agggtggcga gggcgccca ggacccgcag ccccggggcc gggccgggtcc	120
ggaccgcag ggagggcagg tcagtggca gatcgctcc gcgggattca atctctgcc	180
gctctgataa cagtccttt ccctggcgct cactcgtgc ctggcacccg gctgggcgcc	240
tcaagaccgt tgtctttcg atcgcttctt tggacttgc gaccattca gag atg	296

Met

1

2 / 20

tct tcc aga agt acc aaa gat tta att aaa agt aag tgg gga tcg aag			344
Ser Ser Arg Ser Thr Lys Asp Leu Ile Lys Ser Lys Trp Gly Ser Lys			
5	10	15	
cct agt aac tcc aaa tcc gaa act aca tta gaa aaa tta aag gga gaa			392
Pro Ser Asn Ser Lys Ser Glu Thr Thr Leu Glu Lys Leu Lys Gly Glu			
20	25	30	
att gca cac tta aag aca tca gtg gat gaa atc aca agt ggg aaa gga			440
Ile Ala His Leu Lys Thr Ser Val Asp Glu Ile Thr Ser Gly Lys Gly			
35	40	45	
aag ctg act gat aaa gag aga cac aga ctt ttg gag aaa att cga gtc			488
Lys Leu Thr Asp Lys Glu Arg His Arg Leu Leu Glu Lys Ile Arg Val			
50	55	60	65
ctt gag gct gag aag gag aag aat gct tat caa ctc aca gag aag gac			536
Leu Glu Ala Glu Lys Glu Lys Asn Ala Tyr Gln Leu Thr Glu Lys Asp			
70	75	80	
aaa gaa ata cag cga ctg aga gac caa ctg aag gcc aga tat agt act			584
Lys Glu Ile Gln Arg Leu Arg Asp Gln Leu Lys Ala Arg Tyr Ser Thr			
85	90	95	
acc gca ttg ctt gaa cag ctg gaa gag aca acg aga gaa gga gaa agg			632
Thr Ala Leu Leu Glu Gln Leu Glu Glu Thr Thr Arg Glu Gly Glu Arg			
100	105	110	
agg gag cag gtg ttg aaa gcc tta tct gaa gag aaa gac gta ttg aaa			680
Arg Glu Gln Val Leu Lys Ala Leu Ser Glu Glu Lys Asp Val Leu Lys			

3 / 20

115	120	125	
caa cag ttg tct gct gca acc tca cga att gct gaa ctt gaa agc aaa 728 Gln Gln Leu Ser Ala Ala Thr Ser Arg Ile Ala Glu Leu Glu Ser Lys			
130	135	140	145
acc aat aca ctc cgt tta tca cag act gtg gct cca aac tgc ttc aac 776 Thr Asn Thr Leu Arg Leu Ser Gln Thr Val Ala Pro Asn Cys Phe Asn			
150	155	160	
tca tca ata aat aat att cat gaa atg gaa ata cag ctg aaa gat gct 824 Ser Ser Ile Asn Asn Ile His Glu Met Glu Ile Gln Leu Lys Asp Ala			
165	170	175	
ctg gag aaa aat cag cag tgg ctc gtg tat gat cag cag cgg gaa gtc 872 Leu Glu Lys Asn Gln Gln Trp Leu Val Tyr Asp Gln Gln Arg Glu Val			
180	185	190	
tat gta aaa gga ctt tta gca aag atc ttt gag ttg gaa aag aaa acg 920 Tyr Val Lys Gly Leu Leu Ala Lys Ile Phe Glu Leu Glu Lys Lys Thr			
195	200	205	
gaa aca gct gct cat tca ctc cca cag cag aca aaa aag cct gaa tca 968 Glu Thr Ala Ala His Ser Leu Pro Gln Gln Thr Lys Lys Pro Glu Ser			
210	215	220	225
gaa ggt tat ctt caa gaa gag aag cag aaa tgt tac aac gat ctc ttg 1016 Glu Gly Tyr Leu Gln Glu Glu Lys Gln Lys Cys Tyr Asn Asp Leu Leu			
230	235	240	
gca agt gca aaa aaa gat ctt gag gtt gaa cga caa acc ata act cag 1064			

4 / 20

Ala Ser Ala Lys Lys Asp Leu Glu Val Glu Arg Gln Thr Ile Thr Gln			
245	250	255	
ctg agt ttt gaa ctg agt gaa ttt cga aga aaa tat gaa gaa acc caa			1112
Leu Ser Phe Glu Leu Ser Glu Phe Arg Arg Lys Tyr Glu Glu Thr Gln			
260	265	270	
aaa gaa gtt cac aat tta aat cag ctg ttg tat tca caa aga agg gca			1160
Lys Glu Val His Asn Leu Asn Gln Leu Leu Tyr Ser Gln Arg Arg Ala			
275	280	285	
gat gtg caa cat ctg gaa gat gat agg cat aaa aca gag aag ata caa			1208
Asp Val Gln His Leu Glu Asp Asp Arg His Lys Thr Glu Lys Ile Gln			
290	295	300	305
aaa ctc agg gaa gag aat gat att gct agg gga aaa ctt gaa gaa gag			1256
Lys Leu Arg Glu Glu Asn Asp Ile Ala Arg Gly Lys Leu Glu Glu			
310	315	320	
aag aag aga tcc gaa gag ctc tta tct cag gtc cag ttt ctt tac aca			1304
Lys Lys Arg Ser Glu Glu Leu Leu Ser Gln Val Gln Phe Leu Tyr Thr			
325	330	335	
tct ctg cta aag cag caa gaa caa aca agg gta gct ctg ttg gaa			1352
Ser Leu Leu Lys Gln Gln Glu Glu Gln Thr Arg Val Ala Leu Leu Glu			
340	345	350	
caa cag atg cag gca tgt act tta gac ttt gaa aat gaa aaa ctc gac			1400
Gln Gln Met Gln Ala Cys Thr Leu Asp Phe Glu Asn Glu Lys Leu Asp			
355	360	365	

5 / 20

cgt caa cat gtg cag cat caa ttg cat gta att ctt aag gag ctc cga		1448
Arg Gln His Val Gln His Gln Leu His Val Ile Leu Lys Glu Leu Arg		
370	375	380
		385
aaa gca aga aat caa ata aca cag ttg gaa tcc ttg aaa cag ctt cat		1496
Lys Ala Arg Asn Gln Ile Thr Gln Leu Glu Ser Leu Lys Gln Leu His		
390	395	400
gag ttt gcc atc aca gag cca tta gtc act ttc caa gga gag act gaa		1544
Glu Phe Ala Ile Thr Glu Pro Leu Val Thr Phe Gln Gly Glu Thr Glu		
405	410	415
aac aga gaa aaa gtt gcc gcc tca cca aaa agt ccc act gct gca ctc		1592
Asn Arg Glu Lys Val Ala Ala Ser Pro Lys Ser Pro Thr Ala Ala Leu		
420	425	430
aat gaa agc ctg gtg gaa tgt ccc aag tgc aat ata cag tat cca gcc		1640
Asn Glu Ser Leu Val Glu Cys Pro Lys Cys Asn Ile Gln Tyr Pro Ala		
435	440	445
act gag cat cgc gat ctg ctt gtc cat gtg gaa tac tgt tca aag tag		1688
Thr Glu His Arg Asp Leu Leu Val His Val Glu Tyr Cys Ser Lys		
450	455	460
caaaaataagt atttgttttg atattaaaag attcaataact gtatttctg ttagcttgt		1748
ggcattttga attatatatt tcacattttg cataaaactg cctatctacc tttgacactc		1808
cagcatgta gtgaatcatg tatcttttag gctgctgtgc atttctttg gcagtgatac		1868
ctccctgaca tggttcatca tcaggctgca atgacagaat gtggtgagca gcgtctactg		1928
agactactaa catttgcac tgtaaaaata cttggtgagg aaaagatagc tcaggttatt		1988
gctaatgggt taatgcacca gcaagaaaa tattttatgt tttgggggtt taaaaatca		2048
aagataatta accaaggatc ttaactgtgt tcgcatttt tatccaagca cttagaaaac		2108

6 / 20

ctacaatcct aattttgatg tccattgtta agaggtggtg atagatacta tt	2168
catattgtat agcggttatt agaaaagttg gggatttct tgatcttat tgctgcttac	2228
cattgaaact taaccagct gtgtccccca actctgttct gcgcacgaaa cagtatctgt	2288
ttgaggcata atcttaagtg gccacacaca atgtttctc ttatgttac tggcagtaac	2348
tgttaacttga attacattag cacattctgc ttagctaaaa ttgttaaaat aaactttaaat	2408
aaacccatgt agccctctca tttgattgac agtattttag ttatTTTgg cattttttaa	2468
gctgggcaat gtaatgatca gatcttgtt tgtctgaaca ggtatTTta tacatgttt	2528
ttgttaaacca aaaactttta aatttcttca ggTTTctaa catgttacc actgggctac	2588
tgttaatgag aaaagaataa aattatTTaa tgTTT	2624

<210> 2

<211> 464

<212> PRT

<213> Homo sapiens

<400> 2

Met Ser Ser Arg Ser Thr Lys Asp Leu Ile Lys Ser Lys Trp Gly Ser			
1	5	10	15

Lys Pro Ser Asn Ser Lys Ser Glu Thr Thr Leu Glu Lys Leu Lys Gly		
20	25	30

Glu Ile Ala His Leu Lys Thr Ser Val Asp Glu Ile Thr Ser Gly Lys		
35	40	45

Gly Lys Leu Thr Asp Lys Glu Arg His Arg Leu Leu Glu Lys Ile Arg		
50	55	60

Val Leu Glu Ala Glu Lys Glu Lys Asn Ala Tyr Gln Leu Thr Glu Lys	
---	--

7 / 2 0

65

70

75

80

Asp Lys Glu Ile Gln Arg Leu Arg Asp Gln Leu Lys Ala Arg Tyr Ser

85

90

95

Thr Thr Ala Leu Leu Glu Gln Leu Glu Glu Thr Thr Arg Glu Gly Glu

100

105

110

Arg Arg Glu Gln Val Leu Lys Ala Leu Ser Glu Glu Lys Asp Val Leu

115

120

125

Lys Gln Gln Leu Ser Ala Ala Thr Ser Arg Ile Ala Glu Leu Glu Ser

130

135

140

Lys Thr Asn Thr Leu Arg Leu Ser Gln Thr Val Ala Pro Asn Cys Phe

145

150

155

160

Asn Ser Ser Ile Asn Asn Ile His Glu Met Glu Ile Gln Leu Lys Asp

165

170

175

Ala Leu Glu Lys Asn Gln Gln Trp Leu Val Tyr Asp Gln Gln Arg Glu

180

185

190

Val Tyr Val Lys Gly Leu Leu Ala Lys Ile Phe Glu Leu Glu Lys Lys

195

200

205

Thr Glu Thr Ala Ala His Ser Leu Pro Gln Gln Thr Lys Lys Pro Glu

210

215

220

Ser Glu Gly Tyr Leu Gln Glu Glu Lys Gln Lys Cys Tyr Asn Asp Leu

225

230

235

240

8 / 20

Leu Ala Ser Ala Lys Lys Asp Leu Glu Val Glu Arg Gln Thr Ile Thr

245

250

255

Gln Leu Ser Phe Glu Leu Ser Glu Phe Arg Arg Lys Tyr Glu Glu Thr

260

265

270

Gln Lys Glu Val His Asn Leu Asn Gln Leu Leu Tyr Ser Gln Arg Arg

275

280

285

Ala Asp Val Gln His Leu Glu Asp Asp Arg His Lys Thr Glu Lys Ile

290

295

300

Gln Lys Leu Arg Glu Glu Asn Asp Ile Ala Arg Gly Lys Leu Glu Glu

305

310

315

320

Glu Lys Lys Arg Ser Glu Glu Leu Leu Ser Gln Val Gln Phe Leu Tyr

325

330

335

Thr Ser Leu Leu Lys Gln Gln Glu Glu Gln Thr Arg Val Ala Leu Leu

340

345

350

Glu Gln Gln Met Gln Ala Cys Thr Leu Asp Phe Glu Asn Glu Lys Leu

355

360

365

Asp Arg Gln His Val Gln His Gln Leu His Val Ile Leu Lys Glu Leu

370

375

380

Arg Lys Ala Arg Asn Gln Ile Thr Gln Leu Glu Ser Leu Lys Gln Leu

385

390

395

400

9 / 2 0

His Glu Phe Ala Ile Thr Glu Pro Leu Val Thr Phe Gln Gly Glu Thr

405

410

415

Glu Asn Arg Glu Lys Val Ala Ala Ser Pro Lys Ser Pro Thr Ala Ala

420

425

430

Leu Asn Glu Ser Leu Val Glu Cys Pro Lys Cys Asn Ile Gln Tyr Pro

435

440

445

Ala Thr Glu His Arg Asp Leu Leu Val His Val Glu Tyr Cys Ser Lys

450

455

460

<210> 3

<211> 22

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for RT-PCR

<400> 3

acaacagcct caagatcatc ag

22

<210> 4

<211> 20

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for RT-PCR

1 0 / 2 0

<400> 4

ggtccaccac tgacacgttg

20

<210> 5

<211> 23

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for RT-PCR

<400> 5

agagatccga agagcttta tct

23

<210> 6

<211> 21

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for RT-PCR

<400> 6

gatgctcagt ggctggatac t

21

<210> 7

<211> 24

1 1 / 2 0

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for RT-PCR

<400> 7

cgaaaagcttc agagatgtct tccca

24

<210> 8

<211> 27

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for RT-PCR

<400> 8

aatggatccc tttgaacagt attccac

27

<210> 9

<211> 26

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for RT-PCR

<400> 9

1 2 / 2 0

atagaattca tgtcttccag aagtac

26

<210> 10

<211> 22

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for RT-PCR

<400> 10

tatctcgagc tttgaacagt at

22

<210> 11

<211> 22

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for siRNA vector

<400> 11

tggttagccaa gtgcaggta ta

22

<210> 12

<211> 22

<212> DNA

<213> Artificial

1 3 / 2 0

<220>

<223> An artificially synthesized primer sequence for siRNA vector

<400> 12

ccaaagggtt tctgcagttt ca

22

<210> 13

<211> 30

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for siRNA vector

<400> 13

tgcggatcca gagcagattg tactgagagt

30

<210> 14

<211> 29

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for siRNA vector

<400> 14

ctctatctcg agtgaggcgg aaagaacca

29

1 4 / 2 0

<210> 15

<211> 47

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for siRNA vector

<400> 15

tttaagcttg aagaccattt ttggaaaaaaaaaaaaaaa aaaaaaac

47

<210> 16

<211> 34

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for siRNA vector

<400> 16

tttaagcttg aagacatggg aaagagtggc ctca

34

<210> 17

<211> 51

<212> DNA

<213> Artificial

<220>

15 / 20

<223> An artificially synthesized oligonucleotide sequence for siRNA

<400> 17

caccgaagca gcacgacttc ttcttcaaga gagaagaagt cgtgctgctt c 51

<210> 18

<211> 51

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized oligonucleotide sequence for siRNA

<400> 18

aaaagaagca gcacgacttc ttctctcttg aagaagaagt cgtgctgctt c 51

<210> 19

<211> 51

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized oligonucleotide sequence for siRNA

<400> 19

tcccgagag actgaaaaaca gagttcaaga gactctgttt tcagtctc c 51

<210> 20

1 6 / 2 0

<211> 51

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized oligonucleotide sequence for siRNA

<400> 20

aaaaggagag actgaaaaca gagtcttttg aactctgttt tcagtcttc c

51

<210> 21

<211> 19

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized oligonucleotide sequence for siRNA target

<400> 21

ggagagactg aaaacagag

19

<210> 22

<211> 47

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized sequence of hairpin loop structure of

17 / 20

siRNA

<400> 22

ggagagactg aaaacagagt tcaagagact ctgtttcag tctctcc

47

<210> 23

<211> 5089

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized vector sequence.

<220>

<221> misc_feature

<222> (489)..(492)

<223> "n" indicates GAP.

<400> 23

gacggatcg	gagatctccc	gatcccstat	ggtgca	cact	cataatc	tgc	tctggat	60
ccactagtaa	cggccgccag	tgtgctggaa	ttcggcttgg	tagcca	aggta	tg	aggttatag	120
ggagctgaag	ggaagggggt	cacagtaggt	ggcatcg	ttc	cttctgact	gccc	ggcccccc	180
cgc	atgc	cccgat	at	tgc	tcga	ac	tctcgcc	240
tcg	ccgc	ccatgg	aatt	tcg	acgt	caac	ccgtc	300
cgg	ccc	agt	gtc	actaggc	ggaa	acac	cg	360
tgt	gagg	gac	agg	gagtgg	cgc	cgt	ggca	420
tcaccataaa	cgt	aaaatgt	ttt	ggat	ttt	tttctgt	atg	480
tcttccnn	nnt	tttggg	aaaa	aaaa	aaaa	aaatcta	aac	540
gg	ttc	ac	cc	tataatc	ca	ggggccga	ggcggg	600

1 8 / 2 0

aggaggtcga gaccatccag gctaacaacgg tgaaacccccc ccccatctct actaaaaaaaaa	660
aaaaatacaa aaaattagcc attagccggg cgtggtggcg ggcgcctata atcccagcta	720
cttgggagggc tgaagcagaa tggcgtgaac ccgggaggcg gacgttgcag tgagccgaga	780
tcgcgcgcac tgcattccag cctgggcgac agagcgagtc tcaaaaaaaaaa aaccgagtgg	840
aatgtgaaaaa gctccgtaaa actgcagaaaa cccaagccga attctgcaga tatccatcac	900
actggcggcc gctcgagtga ggccggaaaga accagctggg gctctagggg gtatccccac	960
gcccctgtta gcggcgcatt aagcgcggcg ggtgtggg ttacgcgcag cgtgaccgct	1020
acacttgcca gcgccttagc gcccgcctt ttcgccttct tcccttcctt tctcgccacg	1080
ttcgccggct ttcccggtca agctctaaat cgggggctcc cttagggtt ccgatttagt	1140
gcttacggc acctcgaccc caaaaaactt gattagggtg atggttcacg tagtggccca	1200
tcgcctgtat agacggttt tcgcctttg acgttggagt ccacgttctt taatagtggaa	1260
ctcttgttcc aaactggaac aacactcaac cctatctgg tctattcttt tgatttataa	1320
gggattttgc cgatttcggc ctattggta aaaaatgagc tgatttaaca aaaatttaac	1380
gcgaattaat tctgtgaat gtgtgtcagt tagggtgtgg aaagtccccca ggctccccag	1440
caggcagaag tatgcaaagc atgcatctca attagtcaac aaccagggtgt ggaaagtccc	1500
caggctcccc agcaggcaga agtatgcaaa gcatgcac tcaattgtca gcaaccatag	1560
tcccgcctt aactccgcctt atcccccccc taactccgcc cagttccgcc cattctccgc	1620
cccatggctg actaattttt tttatattatg cagaggccga ggccgcctct gcctctgagc	1680
tattccagaa gtatgtgagga ggcttttttgg gaggcctagg ctttgaaaa aagctccgg	1740
gagcttgtat atccattttc ggatctgatc aagagacagg atgaggatcg ttgcgcata	1800
ttgaacaaga tggattgcac gcaggttctc cggccgcctt ggtggagagg ctattcggt	1860
atgactgggc acaacagaca atcggctgtct ctgatgcgc cgtttccgg ctgtcagcgc	1920
aggggcgcctt gttctttttt gtcaagacccg acctgtccgg tgccctgaat gaactgcagg	1980
acgaggcagc gcggctatcg tggctggcca cgacggcgct tcctgcgc gctgtgcgt	2040
acgttgtcac tgaagcggga agggactggc tgctattggg cgaagtgcgc gggcaggatc	2100
tcctgtcata tcaccttgct cctgcgcgaga aagtatccat catggctgat gcaatgcggc	2160
ggctgcatac gcttgatccg gctacctgcc cattgcacca ccaagcgaaa catgcacatcg	2220
agcgagcact tactcggatg gaagccggc ttgtcgatca ggatgatctg gacgaagagc	2280
atcaggggct cgcgcctagcc gaactgttcg ccaggctaa ggcgcgcatt cccgacggcg	2340
aggatctgt cgtgaccat ggcgcattgcct gcttgccgaa tatcatggtg gaaaatggcc	2400
gctttctgg attcatcgac tgtggccggc tgggtgtggc ggaccgctat caggacatag	2460

19 / 20

cgttggctac ccgtgatatt gctgaagagc ttggccgcga atggctgac cgttcctcg	2520
tgctttacgg tatcgccgct cccgattcgc agcgcatcgc cttctatcgc cttcttgacg	2580
agttcttctg agcgggactc tggggttcga aatgaccgac caagcgacgc ccaacctgcc	2640
atcacgagat ttcgattcca ccgcccctt ctatgaaagg ttgggcttcg gaatcgttt	2700
ccgggacgccc ggctggatga tcctccagcg cggggatctc atgctggagt tttcgcccc	2760
ccccaaacttgc tttattgcag cttataatgg ttacaaataa agcaatagca tcacaaattt	2820
cacaaataaa gcattttttt cactgcattc tagttgttgt ttgtccaaac tcatcaatgt	2880
atcttatcat gtctgtatac cgtcgacctc tagcttagagc ttggcgtaat catggtcata	2940
gctgttcctt gtgtgaaatt gttatccgct cacaattcca cacaacatac gagccggaag	3000
cataaaagtgt aaaggctggg gtgcctaattt agtgagctaa ctcacattaa ttgcgttgcg	3060
ctcaactgccc gctttccagt cggaaaacct gtcgtgccag ctgcattaat gaatcgccca	3120
acgcgcgggg agaggcgggt tgctgtatgg ggcgtcttcc gcttcctcgc tcactgactc	3180
gctgcgctcg gtcgttcggc tgccgcgagc ggtatcagct cactcaaagg cgtaatacg	3240
gttatccaca gaatcaggggg ataacgcagg aaagaacatg tgagcaaaag gccagcaaaa	3300
ggccaggaac cgtaaaaagg ccgcgttgct ggcgttttc cataggctcc gccccctga	3360
cgagcatcac aaaaatcgac gctcaagtca gaggtggcga aaccgcacag gactataaag	3420
ataccaggcg ttccccctg gaagctccct cgtgcgtct cctgtccga ccctgcccgt	3480
taccggatac ctgtccgcct ttctccctc gggaaagcgtg ggcgtttctc atagctcacg	3540
ctgttaggtat ctcagttcgg tgttagtcgt tcgcgttcaag ctggcgtgtg tgcacgaacc	3600
ccccgttcag cccgaccgct ggcgttatac cgtaactat cgtcttgagt ccaacccgg	3660
aagacacgac ttatcgccac tggcagcagc cactggtaac aggattagca gagcgaggta	3720
tgtaggcgggt gctacagagt tcttgaagtgt gtggcctaacc tacggctaca ctagaagaac	3780
agtatttttgtt atctgcgttc tgctgaagcc agttaccttc ggaaaaagag ttggtagctc	3840
ttgatccggc aaacaaacca ccgctggtag cggtttttt gtttgcagc agcagattac	3900
gcfgcagaaaa aaaggatctc aagaagatcc ttgatcttt tctacggggt ctgacgctca	3960
gtggAACGAA aactcacgtt aagggtttt ggtcatgaga ttatcaaaaa ggatcttcac	4020
ctagatcctt ttaaataaa aatgaagttt taaatcaatc taaagtatat atgagtaaac	4080
ttggtctgac agttaccaat gcttaatcag tgaggcacct atctcagcga tctgtctatt	4140
tcgttcatcc atagttgcct gactccccgt cgttagata actacgatac gggagggctt	4200
accatctggc cccagtgctg caatgatacc gcgagaccca cgctcaccgg ctccagattt	4260
atcagcaata aaccagccag ccggaaaggc cgagcgacgaa agtggcctcg caactttatc	4320

20 / 20

cgcctccatc cagtctatta attgttgccg ggaagctaga gtaagttagtt cgccagttaa	4380
tagttgcgc aacgttggccg ccattgtac aggcatcggt gtgtcacgct cgtcggttgg	4440
tatggcttca ttcagctccg gttcccaacg atcaaggcga gttacatgtat cccccatgtt	4500
gtgcaaaaaa gcggtagtgcgtt cccatcggtt gtcagaagta agttggccgc	4560
agtgttatca ctcatggta tggcagcaact gcataattct cttactgtca tgccatccgt	4620
aagatgcttt tctgtgactg gtgagttactc aaccaagtca ttctgagaat agtgtatgcg	4680
gcgaccgagt tgctctgcc cggcgtaat acgggataat accgcgccac atagcagaac	4740
ttaaaaagtg ctcatcattt gaaaacgttc ttccggcgaa aactctcaa ggatcttacc	4800
gctgttggaa tccagttcga tggtaaccac tcgtgcaccc aactgatctt cagcatctt	4860
tactttcacc agcggttctg ggtgagcaaa aacaggaagg caaaatgcgg caaaaaagg	4920
aataagggcg acacggaaat gttgaatact catactttc cttttcaat attattgaag	4980
catttatcag gtttattgtc tcatgagcgg atacatattt gaatgtattt agaaaaataa	5040
acaaataggg gttccgcgca cattttcccg aaaagtgcgc cctgacgatc	5089