COMP122/19 - Data Structures and Algorithms

22 Dijkstra's Shortest Path Algorithm

Instructor: Ke Wei (柯韋)

→ A319

© Ext. 6452

≥ wke@ipm.edu.mo

http://brouwer.ipm.edu.mo/COMP122/19/

Bachelor of Science in Computing, School of Public Administration, Macao Polytechnic Institute

April 24, 2019

Outline

- Edge-Weighted Graphs
- Shortest Paths
- 🚺 Dijkstra's Algorithm
- 4 Analysis

Edge-Weighted Graphs

- An edge-weighted graph is a graph having a weight, or number, associated with each edge.
- Some algorithms require all weights to be non-negative.
- Edge weights may represent distances, costs, delays, etc.

A flight route graph:

Shortest Paths

- Given an edge-weighted graph and two vertices u and v, we want to find a path with the minimum total weight between u and v. This is the *shortest path problem*.
- Some applications:
 - Flight reservations
 - Driving directions
 - Network packet routing

The shortest path from Providence to Honolulu:

Properties of Shortest Paths

- A sub-path of a shortest path is itself a shortest path.
- The shortest paths from a starting vertex s to all the other vertices form a tree rooted at s.

The tree of shortest paths from Providence:

Dijkstra (1930-2002)'s Algorithm

- The distance of a vertex v from a vertex s is the total weight of a path between s and v.
- Dijkstra's algorithm computes the shortest distances of all the vertices from a given starting vertex s.
- Assumptions:
 - The graph is connected. Edges of infinite weight can be introduced to apply the algorithm to a general graph.
 - The edge weights are *non-negative*. A path can not be shortened by appending more edges.

Dijkstra's Algorithm (2)

- We grow a set of "known" vertices,
 - whose shortest distances are already known and can not be shortened further,
 - beginning with s and eventually containing all the vertices.
- We store with each vertex v a field dist(v), called the distance of v, representing the shortest distance of v from s in the subgraph consisting of
 - the set of "known" vertices, often called the "cloud", and
 - their adjacent vertices, with only the edges from the "known" vertices (the cloud).
- At each step:
 - we add to the set the vertex *u* outside the set with the shortest distance field, then
 - we update the distance fields of the vertices adjacent to *u*, if the fields can be shortened

Edge Relaxation

- Consider an edge e = (u, z) such that
 - *u* is the vertex most recently added to the "known" set.
 - z is not in the "known" set.
- The relaxation of the edge e updates dist(z), the distance of z, as follows:

$$dist(z) \leftarrow \min(dist(z), dist(u) + weight(e)).$$

• We also record *u* as the parent of *z* in a field *parent*(*z*). We can then use the field to track back the path from *s* to *z*.

Dijkstra's Algorithm — Illustrated

Dijkstra's Algorithm — Illustrated (2)

Step	Next	Current Distance (Parent)						
	Vertex	а	b	С	d	e	f	g
_	_	0(-)	$\infty_{(-)}$	$\infty_{(-)}$	$\infty_{(-)}$	$\infty_{(-)}$	$\infty_{(-)}$	$\infty_{(-)}$
1.	а	~	2 _(a)		$1_{(a)}$			
2.	d			$3_{(d)}$	~	$3_{(d)}$	$9_{(d)}$	$5_{(d)}$
3.	b		~					
4.	e					~		
5.	С			~			8(c)	
6.	g						6 _(g)	~
7.	f						~	

Revisiting the Array-based Heap

- We store the vertices in a heap, and compare vertices based on their distances.
- There's a need to decrease a specified vertex in the heap during a distance update.
- In an array-based heap, an element can be sifted up and down. Therefore, modifying an element is possible.
- We need a vertex to have a place to store its position in the heap.
- When a vertex has been modified, we get its position and notify the heap to sift the vertex at that position up or down.
- When we move a vertex in the heap, we also update its position.

Analysis

- Each vertex is enqueued and dequeued once: $\mathcal{O}(|V|\log|V|)$.
- Each edge is visited once and each visit may call priorityDecreased on the destination vertex:

$$\mathcal{O}(|E|\log|V|).$$

- The total running time is $\mathcal{O}((|V| + |E|) \log |V|)$.
- or, since the graph is (weakly) connected ($|E| \ge |V| 1$), the overall running time is

$$\mathcal{O}(|E|\log|V|)$$
.

- If the graph is a DAG, we can select the vertices according to their topological order.
- This selection rule works because when a vertex v is selected, its distance, dist(v), can no longer be shortened, since by the topological order it has no incoming edges from unknown vertices.
- Since the selection takes constant time, the running time is $\mathcal{O}(|V| + |E|)$.

