

REPORT DOCUMENTATION PAGE

*Form Approved
OMB No. 0704-01-0188*

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden to Department of Defense, Washington Headquarters Services Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 06-08-1999			2. REPORT TYPE Presentation		3. DATES COVERED (From - To)	
4. TITLE AND SUBTITLE Silicon-on-Sapphire			5a. CONTRACT NUMBER			
			5b. GRANT NUMBER			
			5c. PROGRAM ELEMENT NUMBER			
6. AUTHORS de la Houssaye, Paul Lagnado, Isaac			5d. PROJECT NUMBER			
			5e. TASK NUMBER			
			5f. WORK UNIT NUMBER			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Space and Naval Warfare Systems Center 53560 Hull Street San Diego, CA 92152-5001					8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)					10. SPONSOR/MONITOR'S ACRONYM(S)	
					11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited.						
13. SUPPLEMENTARY NOTES						
14. ABSTRACT In this presentation, the major issues, which confronted the formation of very thin layers of silicon (30-100 nm) on sapphire substrates for application to sub 100-nm device technology, will be reviewed. The focus of the investigation was, and still is, to achieve a structure in which the modern CMOS technology, the mainstay technology and workhorse of the electronic revolution, can be affordably implemented. In this context, one approach to the obtention of crystalline, device-quality thin film silicon-on-sapphire (TFSOS), namely the double Solid Phase Epitaxy (DSPE), has achieved truly outstanding results which are presently incorporated into high-performance products, such as phase-locked loop (PLL) ICs for wireless communication, and analog-to-digital converters for space application.						
Presented at the Lateral Epitaxial Overgrowth Workshop, Juneau, Alaska, August 2-6, 1999.						
15. SUBJECT TERMS thin film silicon-on-sapphire (TFSOS) chemical vapor deposition (CVD)						
16. SECURITY CLASSIFICATION OF: a. REPORT U b. ABSTRACT U c. THIS PAGE U			17. LIMITATION OF ABSTRACT UU	18. NUMBER OF PAGES 35.	19a. NAME OF RESPONSIBLE PERSON De la Houssaye, Paul R., D876 19B. TELEPHONE NUMBER (Include area code) (619) 553-3912	

Silicon-on-Sapphire

Abstract

The early sixties were at the beginning of the electronics revolution where silicon integrated circuits built their current dominance, fundamentally and pervasively on tailor-made materials, starting at the atomic level. Thin-film deposition techniques, particularly chemical vapor deposition (CVD) and molecular-beam epitaxy (MBE) were developed to provide control over material constituents "in atomic amounts", in order to form the active part of high-performance devices. Nonetheless, the CVD techniques failed to provide a crystalline silicon structure amenable to advanced devices on insulating substrates, particularly sapphire.

In this presentation, the major issues, which confronted the formation of very thin layers of silicon (30-100 nm) on sapphire substrates for application to sub 100-nm device technology, will be reviewed. The focus of the investigation was, and still is, to achieve a structure in which the modern CMOS technology, the mainstay technology and workhorse of the electronic revolution, can be affordably implemented. In this context, one approach to the obtention of crystalline, device-quality thin film silicon-on-sapphire (TFSOS), namely the double Solid Phase Epitaxy (DSPE), has achieved truly outstanding results which are presently incorporated into high-performance products, such as phase-locked loop (PLL) ICs for wireless communication, and analog-to-digital converters for space application.

Besides the materials properties, devices' performances ($f_t > 100\text{GHz}$) and circuits' applications (analog and mixed signals), present investigations aimed at producing stressed layers of $\text{Si}_{1-x}\text{Ge}_x$ ($x > 0.75$) grown on TFSOS will also be described. Based on the present results, TFSOS could become entrenched, as CMOS, as new materials and devices appear – witness the recent success in developing highly-engineered structures with SiGe on TFSOS (hole mobility, through Hall measurements, is in excess of $800\text{cm}^2/\text{V.sec}$) – using the established industrial infrastructure.

Isaac Lagnado
SPAWAR Systems Center San Diego
D805
San Diego, CA 92152

**COMMUNICATION and INFORMATION
SYSTEMS DEPARTMENT**

***Lateral Epitaxial Overgrowth Workshop
Silicon-on-Sapphire Technology***

Juneau, Alaska--August 2-6, 1999

I. Lagnado, P.
La Houssaye
SPAWAR Systems Center San Diego
(619) 553-2682 FAX: (619) 553-2924
email: lagnado@spawar.navy.mil
or : houssaye@spawar.navy.mil

*Systems Center
San Diego*

TFSOS

- **Introduction — A historical perspective**
- **The Vision: Thin Film Silicon on Sapphire**
- **Comparison with other SOI alternatives**
- **Recent results for SiGe – The march of Technology**
- **Prognosis-Trend**
- **Conclusion**

Collaborators

- Space and Naval Warfare Systems Center, San Diego
- University of California at San Diego (UCSD)
- International Business Machines (IBM)
- Auburn University
- Oklahoma State University
- Saphikon
- Lawrence Semiconductor
- Massachusetts Institute of Technology (MIT)
- Lincoln Laboratory
- University of Florida, Gainesville
- Peregrine Semiconductor Corporation
- Northup Grumman
- Rockwell International (Science Center)

Conventional Microelectronics

A Historical Perspective

Systems Center
San Diego

Bulk Silicon

Parasitic Capacitor

Sapphire

Parasitic Capacitor

Sapphire

H.M. Manasevit & W.S. Simpton. JAP, 35, pg 1349, 1964.

Thin Film Silicon on Sapphire TEM Images: Before & After Improvement Process

Before Improvement

After Improvement

Thin Film Silicon on Sapphire

The Vision

Systems Center
San Diego

Scaling Limits

Low-Field Hole Mobility
 $t_{Si} = 100\text{nm}$

G.A. Garcia, R.E. Reedy.
Elect. Let., 22(10), p. 537-
538, 8 May 1986.
G.A. Garcia, R.E. Reedy,
M.L. Burgener. *EDL*, 9(1),
p. 32-34, Jan. 1988

M. Roser, *et al.*. 50th Device
Research Conference,
June 22-24, 1992

Low-Field Electron Mobility
 $t_{Si} = 100\text{nm}$

ULTRATHIN SOS Improvement and Thinning Sequence

S.S. Lau *et al.*, *APL*, **34**(1), p. 76-78, 1 Jan. 1979.
T. Yoshii *et al.*, *JJAP*, Part 1, **21**(suppl.21-1), p.175-179, 1982.

Systems Center
San Diego

RBS Data, TFSOS

G.A. Garcia, R.E. Reedy. *Electronics Lett.*, **22**(10), p. 537-538, 8 May 1986.
R.E. Reedy, G.A. Garcia. MRS Symposium Proc. **107**, p. 365-376, 1988.

Systems Center
San Diego

Auger Analysis, TFSOS

R.E. Reedy, T.W. Sigmund, L.A. Christel, *APL*, 42(8), p. 707-709, 15 April 1983.

Thin Film CMOS/SOS vs. Other Silicon Implementations

Relative to Bulk CMOS

- Reduced parasitic capacitances
 - less junction capacitances and higher speed)
- Reduced short channel effects
- Better device isolation
 - Latchup suppression
 - Lower body effect
 - Wider operating temperature
- Simple mesa fabrication
- Radiation hardness

Relative to SiMOX/BESOI

- Lower loss dielectric substrate
 - Lower substrate capacitance
 - Higher Q passive elements
- Lower minority carrier lifetime
 - Parasitic bipolar suppressed
 - Higher S-D breakdown voltage
- Higher thermal conductivity than SiO_2
 - Reduced self-heating effects
- Enhanced hole transport properties
 - PMOS closer to NMOS in size, f_T , f_{Max}
 - Enhanced CMOS performance
- 6-in wafers available, 8-in also available
- Lower cost/Process Simplicity
- Much reduced Floating Body Effect
 - Low leakage Ioff (digital)
 - No Kink Effect in I-V (analog)
- No Transient Hysteresis (low frequencies)

Thermal Effects Thin Film Silicon on Sapphire vs. SIMOX

SIMOX

TFSOS

SOS Data:

M. Wetzel, UCSD Ph.D.
Thesis (to be published)

MIT data;

Courtesy Prof. D. Antoniadis

Systems Center
San Diego

Radiation data for TFSOS MOSFETs

n-MOSFET

p-MOSFET

Thin Film Silicon on Sapphire

Systems Center
San Diego

- T-Gate used to decrease R_g
- Record high f_t, f_{max} microwave transistor
- Record low noise microwave transistor

$$f_{max} = \frac{f_t}{2\sqrt{2\pi f_t R_g C_{gd} + G_o [R_g + R_s]}}$$
$$F_{min} = 1 + kL_f \sqrt{g_m [R_s + R_g]}$$

Device	$L_{g,drawn} (\mu m)$	w/wo T-Gate		@ 2GHz	
		f_t (GHz)	f_{max} (GHz)	F_{MIN} (dB)	G_a (dB)
NMOS	0.5	25	66/11	0.9	21
PMOS	0.5	14	41/7	0.9	13

NOISE COMPARISON

	2 GHz F_{min}	8 GHz G_a	8 GHz F_{min}	12 GHz G_a	$L_g(\mu m)$	Technology
TFSOS:						
NMOS[9]	0.9	21	1.4	11	1.8	MICROX
PMOS[9]	0.9	13	1.3	4.7	-	MICROX
Other Si:						TFSOS
NMOS [1]	1.5	18	3.25	8.5	-	TF SOS
PMOS [1]	2.7	15	-	-	-	TF SOS
NMOS [2]	0.8	17	1.6	9.8	2.2	MICROX
NMOS [3]	5.0	6.4	-	-	-	BESOI
Other:						
HBT [4]	0.5	12	0.8	-	1.0	SiGe
HBT [5]	0.46	11.6	1.4	-	2.0	InP/InGaAs
PHEMT [6]	0.2	-	.33	-	0.41	3.5 x 3.5
JFET [7]	0.4	-	1.6	-	-	0.15
MESFET [8]	0.4	23	0.5	15	0.5	0.5
					13	0.5
					13	0.11

1. EDL, May 1993, pg. 219, Hanes *et al.*
2. MTT-S Workshop, May 1995, Agarwal *et al.*
3. EDL, Jan 1991, pg. 26, Caviglia, *et al.*
4. MTT-S, 1994 pg 1167, H. Schumacher, *et al.*
5. EDL, Oct 1989, Y.K. Chen *et al.*
6. EDL, Aug 1983, pg. 406, M. Takikawa *et al.*
7. EDL, Sept. 1993, D. Scherrer *et al.*
8. TED, Feb 1999, pg. 310, Kimo *et al.*
9. TED, May 1998, pg. 1047-54, R. Johnson *et al.*

Noise Figure Results for Different Technologies: Transistors and LNAs

Noise figures of FET's based on GaAs and of Si CMOS transistors.
 After L.M. Franca-Neto *et al.*, IEDM, pg. 305-307, 1997.

Recent Results on Low Noise Amplifier Designs
 After L.M. Franca-Neto *et al.*, IEDM, pg. 305-307, 1997.

Technology	F (GHz)	NF (dB)	Author
1 micron GaAs FET	1	2.2	Cioffi, IMMMCS, 1992
1 micron GaAs FET	1.6	2.2	Cioffi, IMMMCS, 1992
0.3 micron GaAs FET	1.9	2.0	Nakatsugawa, GaAs-IC Symp, 1993
1 micron GaAs FET	1.9	1.5	Heaney, GaAs-IC Symp., 1993
0.3 micron GaAs FET	1.6	2.5	Imai, IEEE-Trans. MTT, 1991
0.5 micron CMOS	0.9	2.2	Karanicolas, ISSCC, 1996
1 micron CMOS	0.9	3.5	Rofougaran, IEEE-JSSC, 1996
0.6 micron CMOS	1.5	3.5	Shaeffer, IEEE-ISSC, 1997
0.5 micron CMOS/SOS	2.4	2.2	Johnson, R.A. <i>et al.</i> , IEEE-TED, 1998

Systems Center
San Diego

- Thin Film Silicon on Sapphire Wireless Communications Applications
- Demonstrate SOS technology application to L and S band Applications

- **Test Vehicle: 2.4 GHz transceiver**

- **Transmit / Receive Switch** R.A. Johnson et al., *IEEE Elect. Lett.*, 33(15), pg. 1324-1326, 17 July 1997.
- **Mixer** R.Johnson et al., TED, 45(5), pg. 1047-1054, May 1998.
- **Low Noise Amplifier** R.A. Johnson et al., *IEEE Microwave & Guided Wave Letters*, 7(10), pg. 350-352, Oct.1997.
- **Power Amplifier** M. Wetzel et al., 1st Annual UCSD Conference on Wireless Communications, March 8-10, 1998

Systems Center
San Diego

Why CMOS/SOS at Microwave/RF Frequencies

- Low power, high noise immunity
- Cost
 - High integration level (VLSI) / Mature technology
 - ➔ Competitive manufacturing cost (7-10% higher than CMOS bulk Si)
 - ➔ Complexity => Low cost per functional unit
 - ➔ 6" wafers available with low defect density
 - Reduced processing steps (mesa isolation)
 - ➔ Much lower cost than bipolar, HBTs (Si or III-V's)
 - Inexpensive material (except vs. bulk silicon)
 - Leverage off Si manufacturing base
- Mixed analog / digital integration
- Low loss dielectric substrate (isolation/ no latch up)
 - ➔ Low substrate capacitance
 - ➔ High Q passive elements
- $f_{\max} = 66 \text{ GHz}$ ($L_{\text{eff}} \sim .3 \mu\text{m}$), Noise Figure < 1 dB optically defined devices
- $f_t > 100 \text{ GHz}$ ($L_{\text{eff}} \sim .1 \mu\text{m}$) (x-ray)
- Very high linearity at low power (good IP3)
- Excellent ESD protection with low parasitics
- SiGe/SOS, $m_h > 800 \text{ cm}^2/\text{V.sec}$ (pMODFET, $L_g = 0.1 \mu\text{m}$, $g_m = 420 \text{ mS/mm}$)
-> much higher speed CMOS with lower power

Systems Center
San Diego

Why CMOS/SOS at Microwave/RF Frequencies

- Low power, high noise immunity
- Cost
 - High integration level (VLSI) / Mature technology
 - ➔ Competitive manufacturing cost (7-10% higher than CMOS bulk Si)
 - ➔ Complexity => Low cost per functional unit
 - ➔ 6" wafers available with low defect density
 - Reduced processing steps (mesa isolation)
 - ➔ Much lower cost than bipolar, HBTs (Si or III-V's)
 - Inexpensive material (except vs. bulk silicon)
 - Leverage off Si manufacturing base
 - Mixed analog / digital integration
 - Low loss dielectric substrate (isolation/ no latch up)
 - ➔ Low substrate capacitance
 - ➔ High Q passive elements
 - $f_{\max} = 66 \text{ GHz}$ ($L_{\text{eff}} \sim .3 \mu\text{m}$), Noise Figure < 1 dB optically defined devices
 - $f_t > 100 \text{ GHz}$ ($L_{\text{eff}} \sim .1 \mu\text{m}$) (x-ray)
 - Very high linearity at low power (good IP3)
 - Excellent ESD protection with low parasitics
 - SiGe/SOS, $m_h > 800 \text{ cm}^2/\text{V.sec}$ (pMODFET, $L_g = 0.1 \mu\text{m}$, fabricated; to be published)
 - > much higher speed CMOS with lower power

Circuit Level SOS rf Results

FY98 Circuits Test Results

LNA, MIXER and T/R Switch Fabricated in TFSOS

MEASURED	Operating Freq	Gain	NF (50 Ω)	IP3 (output)	Power@vdd
LNA	2.4 GHz	11 dB	2.2 dB	14 dBm	13.2mW@1.5V
Mixer	Center=2.4 GHz IF=250 MHz	-5 dB		5 dBm	8.4mW@1.5V

- Record high f_t (> 105 GHz)
- CMOS inverter delay < 8 psec at RT; 6 psec @ 77K, close to JJ speed;
- Record low noise (0.9 dB NF @ 2GHz), resulting in low noise front end

=> MAKES HIGH SPEED, HIGH RESOLUTION A/D/C possible

- Record BW (10 GHz) for distributed amplifier

F_t vs. I_{ds}

MEASURED	Operating Freq	Insertion Loss	Isolation	IP3
T/R Switch	1-5 GHz	1.7-2 dB	30 dB	8 dBm

TFSOS vs. TFSOI RF Data

C. Wann *et al.* ISSCC, Feb. 1998
C. Wann *et al.* EDL, 18(12), pg. 625-627, Dec. 1997

f_t vs. I_d

Delay per Stage vs. V_{dd}

Unloaded 3-way NAND Delay vs. V_{dd}

SPAWAR COMPARATIVE STUDY of CMOS on TFSOS vs. SIMOX vs. BULK SILICON

Accomplishment

**Systems Center
San Diego**

Objective:

- Determine the comparative CMOS-based alternatives (bulk Si, SIMOX, TFSOS) to implement low power, high frequency, cost-effective VLSIC technology at $\leq 100\text{nm}$ regime in an environment conducive to manufacturing.

Accomplishment:

- Test vehicle: 4-bit, 10 Gsp/s A/D C.

$f_{\max} = 10 \text{ GHz goal; } f_{\max} = 7.5\text{-}8 \text{ GHz experimental}$

Comparator Bank Delay = $t_d \ln 2^n \text{ (pS)}$	Bubble Detector Delay (pS)	Encoder Delay (pS)	Total Delay (pS)	Clock $f_{\max} \text{ (GHz)}$
CMOS/Si Bulk	108	47	76	4.1
CMOS/SIMOX	86	37	60	5.5
CMOS/TFSOS	56	29	46	7.5-8

13-GHz Tuned Amplifier

Systems Center
San Diego

- Demonstrated Functional Samples (Body-Tied and Floating Body) on Bulk, SOI, and SOS wafers.

- The Peak Gain is $\sim 15\text{dB}$ for SOS Samples.
- Amplifiers with Floating Body have $\sim 5\text{dB}$ Higher Gains.
- Bulk Samples Have Less than 0dB Gain
- SOS Samples Have Significantly Better Characteristics than SOI and Bulk Samples.

K.K. O *et al.* *GOMAC*, March 1998.

Yo-Chuol Ho, *et al.* Custom Integrated Circuits Conference, April 1998.

K.-H. Kim *et al.* *ISSCC*, Feb. 1998.

Systems Center
San Diego

Transducer Power Gain & Noise Figure PD Floating-Body SOS and SOI 13-GHz Tuned Amplifier

Distributed Amplifier

Systems Center
San Diego

**Broadest bandwidth ever
reported for any Si-FET
distributed amplifier
300 um gate width, 4 stages**

Photograph of Amplifier

NEAR FUTURE

Fabrication in Progress:

- LNAs, Mixers, VCOs for operation @18-40 GHz
 - System-on-a-Chip @18 GHz
- Single-chip GPS receivers (~80-100 dB isolation)-SBIR '99
 - SiGe p-FET (> 100 GHz) & Logic

SIMULATED	Operating Freq	Gain	NF (50 °K)	IP3 (output)	Power@vdd
LNA	18 GHz	15 db	3 dB	5dBm	22mW@1.5V
LNA/Differential	18 GHz	22 dB	3.7	10 dBm	60mW@1.5V
Mixer	Center=16-20GHz IF=0.5-4 GHz	7 db	10 dB	5dBm	40mW@1.5V

SPAWAR
Systems Center
San Diego

Thin-film Silicon-on-Sapphire Characteristics

- Lower capacitance --> higher speed at lower power
- Fully depleted operation --> improved low voltage performance (esp. w.r.t. bipolar)
- Lower minority carrier lifetime
 - Parasitic bipolar suppressed
 - Higher S-D breakdown voltage
- Enhanced PMOS --> higher hole mobility than bulk Si, due to compressive stress (valence band splitting); better design flexibility for low power CMOS over GaAs (no p-channel)
- Excellent rf performance
 - $f_t > 100$ GHz for $0.1 \mu\text{m} L_{\text{eff}}$ n-type transistors
 - $f_{\text{max}} > 66/45$ GHz for $.4 \mu\text{m}$ n/p-channel
 - Extremely low-loss substrate at rf (loss tangent $< .0001$)
- No parasitic coupling to substrate for passive components
 - Good thermal conductivity
 - Higher than SiO_2
 - Comparable to GaAs

UHV/CVD Grown FET Structures

Systems Center
San Diego

- SOS layer is compressively strained ~ 0.35%
 - Remains ~ 0.30% strained after UHV/CVD growth
 - Low density of misfit dislocation at the Si/Al₂O₃ interface
- P. Mooney *et al.*, Appl. Phys. Lett. 73, pg. 924 , 1998.
———Mat. Res. Soc. Symp. Proc., 533, pg. 55, 1998.
———To be published in Applied Physics Letters.

X-ray diffraction

Planar-view TEM

Arrows point to Si/Al₂O₃ interface where misfit dislocations end

Systems Center
San Diego

Triple-Axis X-Ray Diffraction Measurements

- Measured thickness and strain of Si layer, thickness and alloy composition of SiGe layer, and thickness of Si cap layer
- Showed that interdiffusion of Si and Ge at Si/SiGe interfaces occurs during thermal annealing at 850°C
- Demonstrated that SiGe layer structures were degraded by device fabrication processes at $T > 800^\circ\text{C}$
 - Low temperature processing required

Ge concentration in strained SiGe Layer over time at 850°C

SiGe strained layer thickness over time at 850°C

Systems Center
San Diego

SiGe FETs on Silicon-on-Sapphire Substrates

- **SiGe p-MOSFET Devices (Ge 20-30%)**
 - Hole mobilities 30 to 50% higher, up to 200 cm²/V-s (S.J. Mathew *et al.*, Tech. Dig. 1997 Device Research Conf. and Electron Device Letters 20, 173 (1999))
- **New Approach: p-MODFET Devices**
 - Room temperature hole mobilities up to 1050 cm²/Vs in modulation doped structures on bulk Si (K. Ismail *et al.*, Appl./ Phys. Lett. 64, 3124 (1994))
 - $f_t = 70$ GHz for p-MODFETs on bulk Si (M. Arafa *et al.*, Electron Devices Lett. 17, 586 (1996))

Modulation-doped p-FET layers on SOS

Systems Center
San Diego

- Strained $\text{Si}_{1-x}\text{Ge}_x$ device layer
with unique profile, $x > 0.75$

Mobility and Sheet Hole Density vs. T

Hole mobility (300K): $804 \text{ cm}^2/\text{V sec}$
Sheet hole density: $2.5 \times 10^{12} \text{ cm}^{-2}$

Active device layers are grown on top of a strain-relaxed SiGe buffer layer: total epi thickness approx. 1 micron

Systems Center
San Diego

Nomarski image of p-MODFET wafer surface

Gov32.6: 4" Union Carbide SOS substrate

Gov32.8: 4" bulk silicon

- If not well-improved, large pits occur after SiGe growth at macro-twin defects in original SOS layer;
- Low defect density in SOS substrate required
- Wafer bonding methods have the potential to produce SOS substrates with
 - zero microtwin defects;
 - threading defect densities reduced by many orders of magnitude;
 - thin relaxed SiGe buffer layers on sapphire (required for fully depleted FETs)

Closing Thoughts

- TFSOS addresses present and long-term issues and needs in battery-operated wireless communication and S to K-band (~40 GHz) applications providing unique solutions for low power System-on-a-Single-Chip, integrating analog and digital functions
- Focus of present and near-term
 - Strained SiGe (>75% Ge) on SOS to achieve high μ_h
 - $1/f_{p-SiGe/SOS} < 1/f_{p-SiGe/Si}$
 \Rightarrow Mixers with lower phase noise
 - f_t, f_{max} highest ever, for low power CMOS and high performance A/DCs
- SiGe p-FETs with greater or similar n-FET mobility will significantly reduce device size/chip area
 - higher CMOS performance products ($f_t, f_{max} > 100\text{-}200 \text{ GHz}$), for reduced system cost, using industrial IC infrastructure
- QHD simulation predicts similar device transconductance for SiGe on SOS FETs and AlGaAs/GaAs HEMTs (Prof. David Ferry, ASU, Seminar UCSD, May 26, 1998)
- World highest hole mobility ($804 \text{ cm}^2/\text{V}\cdot\text{sec}$ @300 K) measured on modulation-doped p-FET structure on TFSOS substrate
- MOSIS accepts TFSOS designs

The Future

- Extend performance of silicon technology to K-band, benefiting from established industrial infrastructure resulting in lower cost
- TFSOS technology for digital and analog devices
 - 10 times lower power x delay product than conventional bulk technologies benefits in, e.g.,
 - Real-time sensor information processing
 - Radar image processing
 - Digital communication
 - Another factor of 5 reduction with low V_{dd}
 - Deployable/Unattended situation awareness systems
 - Extended operation of all battery-powered systems
 - 10x greater immunity to SEU which benefits
 - All space based electronics
- TFSOS, a technology to implement advanced components, such as A/D converters, and single chip wireless communication systems

Systems Center
San Diego

The Future

- Extend performance of silicon technology with SiGe/TFSOS CMOS to K-band, benefiting from established industrial infrastructure resulting in lower cost, advanced components, such as A/DCs and wireless communication functions
- TFSOS, implementing a low power, lower cost, high performance technology for application to:
 - Space based electronics
 - Image processing
 - Digital communication
 - Extended operation battery-powered systems
 - Other commercial/military systems

*What all the wise promised
has not happened,
and what all the damned fools said
would happen has come to pass*

William Lamb
Second Viscount Melbourne
(from Lord Melbourne, 1834)

Systems Center
San Diego