Quantum Mechanics

Understand how charge moves in semiconductors

- on macroscopic scale, classical physics works just fine.
- on atomic scale, need QM to describe motion

Why?

DWave-Particle Duality

Classically, light behaves like waves

diffraction intensities in real space)

Atomically, light behaves like particles (called photon
Zhu se (# huminimum
Metal electrons hu
Photoemission electron kicked out only if E > hw minimum
Lots of little hus don't do it!
(Note: A. Einstein got a Nobel Prize forthis idea (1905))
So, light waves act as discrete units (particles

Electrons Can Diffract, Just Like Light Waves

Electrons -cl	lassically, electrons behave like	0-1:-1
- atomically, elec	trons behave like wave	rurticles S.
	(Note: L. German	. 10.

(Note: L. Germer got a Nobel Prize for observing this (1927))

Photons have particle momentum.

Particles have wavelength.

Photon:

= De Broglie wavelength

Quantum Roadmap

- Electrons can act as particles but also as waves
- Electrons: $p = mv = h/\lambda$, Photons: $E = hv = hc/\lambda$
- Quantum Mechanics can explain quantum wells
- Quantum Mechanics can explain electron tunneling
- Atoms in semiconductor lattices behave like quantum wells
- Electrons can tunnel through closely spaced quantum wells
- Energy bands form that include conduction & valence band

Example: Electron > for v= 107cm/sec (close to saturation velocity in a semiconductor)

$$\lambda = \frac{h}{P} = \frac{6.625 \times 10^{-27} \text{ erg-sec}}{9.11 \times 10^{-21} \text{ grange}}$$

(If semiconductor features are comparable or smaller in size, can have diffraction effects!)

$$\lambda = \frac{k}{\rho}$$

Small mass, smallp, "large" > quantum (e's)

Large mass, large p, small > classical (cars, trucks, prizzas)

Wave-Particle Duality - basis for using "wave theory" to describe motion / energy of electrons in crysta(

Uncertainty Principle (Heisenberg's)

(th = 1/2 TT)

The basicidea: Can't know X and P both exact at the same time. The act of measuring one will change the other.

7 also.

Everything has a Probability Multiply SP(x)Attimes a function toget the function's average (expectation) Value Average (Expectation) Value of a Function or Property

(PCX) dx - Normalization

D Schroedinger Wave Equation Apply quantum concepts to classical equations of mechanics — "quantum mechanics" Basic Postulates (1) Each particle described by a wave function &(X, Y, Z, t): Y and V4 continuous, finite, single - valued Classical Variable < -> Quantum "operator" F(x)

(3)
$$\int_{-\infty}^{\infty} P(x)dx = 1$$
 \longrightarrow $\int_{-\infty}^{\infty} \mu^{+} \mu dx dy dz = 1$
(4) $\int_{-\infty}^{\infty} Q(x)P(x)dx = (4) \longrightarrow$ $\int_{-\infty}^{\infty} \mu^{+} Q_{op} \mu dx dy dz = (4)$
 μ^{+} is complex conjugate of μ^{-} example: $(e^{ix})^{-} = e^{-ix}$

example:
$$(e^{jx})^{1/2}$$

$$= \frac{1}{2} = -1$$

$$(\frac{2}{2}x)^{2} = \frac{2}{2}x^{2}$$

Probability Density Function=4*4=1412 $\langle x \rangle = \int \mathcal{Y}^* \times \mathcal{Y} \, dx \, dy \, dz \, dt$ $\langle \rho(x) \rangle = \left(\mathcal{Y}^* + \frac{1}{2} \right) \mathcal{Y} \, dx \, dy \, dz \, dt$

 $\langle p(x) \rangle = \int \mathcal{Y}^* + \frac{1}{7} \stackrel{?}{\Rightarrow} \mathcal{Y}^{dx} dy dz dt$ $\langle E \rangle = \int \mathcal{Y}^* \left(-\frac{1}{7} \stackrel{?}{\Rightarrow} \right) \mathcal{Y}^{dx} dy dz dt$

$$\langle P(x)^{2} \rangle = \int \mathcal{V}^{*} \left(-\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} \right) \mathcal{V} dx dy dz dt$$

$$\langle V(x)^{2} \rangle = \int \mathcal{V}^{*} \left(-\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} \right) \mathcal{V} dx dy dz dt$$

$$\langle E_{K} \rangle = \int \mathcal{V}^{*} \left(\frac{1}{2} m V^{-2} \right) \mathcal{V} dx dy dz dt$$

$$= \int \mathcal{V}^{*} \left(-\frac{1}{2} m \left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} + \frac{\partial^{2}}{\partial z^{2}} \right) \mathcal{V} dx dy dz dt$$

$$= \int \mathcal{V}^{*} \left(-\frac{1}{2} m \left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} + \frac{\partial^{2}}{\partial z^{2}} \right) \mathcal{V} dx dy dz dt$$

$$= \int \mathcal{V}^{*} \left(-\frac{1}{2} m \left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} + \frac{\partial^{2}}{\partial z^{2}} \right) \mathcal{V} dx dy dz dt$$

Example: Particle in a Potential Well Accept: that \((x,t) = (sin(\frac{7}{2}) e 7\frac{7}{2} inside well (OEXEL) and $\mathcal{H}(x,t) = 0$ everywhere else. The particle must be in the well. So (4*4dx = [444dx=1 (TY Fdx = (c*sin (TX) sin (TX) dx=1

substitute variables to simplify: Y= TX

so C *CL (sin2 y dy = 1

So
$$C *CL \int_{0}^{\pi} \sin^{2}y \, dy = 1$$
 $\begin{cases} \sin^{2}y \, dy = \frac{\pi}{2} \\ \sin^{2}y \, dy = \frac{\pi}{2} \end{cases}$

So $C *C = \frac{2}{L}$ or $C = \sqrt{\frac{2}{L}}$

Maximum value of $y * y = \frac{2}{L}$
 $y * y = |y|^{2} = \sin^{2}(\frac{\pi x}{L})$ at position x

Since $\int |y|^{2} dx = 1$ over distance L , average value per unit distance $= \frac{1}{L}$.

Average Position: $\langle x \rangle = \int \sqrt{\frac{2}{L}} \sin(\frac{\pi x}{L}) \, x \sqrt{\frac{2}{L}} \sin(\frac{\pi x}{L}) \, dx$

Again simplify with $y = \frac{\pi L}{L}$.

Again simplify with $y = \frac{\pi L}{L}$.

 $\langle x \rangle = \frac{2}{L} \frac{1}{L} = \frac{1}{L}$

So average position is in center of well.

In one-dimension,

In three-dimensional case,

where
$$\nabla_{\vec{k}}^2 = \frac{\partial^2 F}{\partial x^2} + \frac{\partial^2 F}{\partial y^2} + \frac{\partial^2 F}{\partial z^2}$$

(*)

Separate time and space dependencies: F(x,t) = K(x) Ø(t)

Schroedinger equation in one dimension becomes:

Time -Independent Equation

Each side of (*) equation = constant All functions of x are on the left.

so can make z equations.

Note: 4(x) and E describe electron energy and motion.

V(x) describes the surroundings (lattice atoms..)
So for all GM problems, come up with reasonable V, then
solve for y and E.

Why Bother? QM determines properties of electrons in crystal lattice. Then can determine statistical characteristics of large numbers of electrons in the crystal.

Discrete Energies -> Bands -> Explains Semiconductor Behavior