Ćwiczenia z ANALIZY NUMERYCZNEJ (M)

Blok 2: lista M 9 12 grudnia 2019 r.

M9.1. 1 punkt Niech $\{P_k(x)\}$ będzie ciągiem wielomianów ortogonalnych w przedziale [-a, a], z wagą p(x) o własności p(-x) = p(x). Wykazać, że wówczas

$$P_{2m}(x) = S_m(x^2), \qquad P_{2m+1}(x) = x R_m(x^2) \qquad (m = 0, 1, ...),$$

gdzie S_m , R_m są wielomianami stopnia m.

- **M9.2.** I punkt Wykazać, że wielomiany $\{S_m(t)\}$ z poprzedniego zadania są ortogonalne w przedziale $[0,a^2]$ z wagą $v(t)=p(\sqrt{t})/\sqrt{t}$, a wielomiany $\{R_m(t)\}$ są ortogonalne w przedziale $[0,a^2]$ z wagą $w(t)=\sqrt{t}\,p(\sqrt{t})$.
- **M9.3.** 1 punkt Wykazać, że wielomian $\tilde{T}_n := 2^{1-n}T_n$ ma najmniejszą normę w przedziale [-1, 1] spośród wszystkich wielomianów stopnia $\leq n$, o współczynniku wiodącym rownym 1.
- **M9.4.** 2 punkty Niech dla $f \in C[a, b]$ istnieją wszystkie pochodne i niech $|f^{(k)}(x)| > 0$ dla każdego $x \in [a, b]$ (k = 1, 2, ...). Wykazać, że dla każdego $n \ge 0$ zachodzi wówczas nierówność $E_n(f) > E_{n+1}(f)$.
- **M9.5.** 1 punkt Wyznaczyć trzeci wielomian optymalny w sensie normy jednostajnej na zbiorze $\{0,1,2,4,6\}$ dla funkcji o wartościach

- **M9.6.** 2 punkty Wyznaczyć z dokładnością do 6 miejsc po przecinku współczynniki wielomianu $w_2(x) = ax^2 + bx + c$, będącego drugim wielomianem optymalnym w sensie normy jednostajnej dla funkcji $\sin(x)$ w przedziale $[0, 2\pi]$. Wskazówka: $a + b + c \approx 0.465...$
- **M9.7.** I punkt, Włącz komputer! Niech $w_5^* \in \Pi_5$ będzie piątym wielomianem optymalnym (w sensie normy jednostajnej) dla funkcji $f(x) = \ln(1 + x + x^2)$ na zbiorze [-1,1]. Wykazać, że zachodzą nierówności:

$$0.002 < \sup_{-1 \le x \le 1} |f(x) - w_5^*(x)| < 0.009.$$

- **M9.8.** 2 punkty, Włącz komputer! Rozważyć aproksymację fukncji Rungego $f(x) = \frac{1}{25x^2+1}$ w przedziale [-1,1] za pomocą wielomianu $w \in \Pi_9$. Dla każdego z poniższych wielomianów podać wartość błędu $\max_{x \in [-1,1]} |f(x) w(x)|$ (wartość tę można przybliżyć obliczając $|f(x_k) w(x_k)|$ dla $x_k = -1 + 2k/N$, gdzie N jest bardzo duże, np. N = 1000). Rozważyć następujące wielomiany:
 - a) wielomian interpolujący funkcję f w węzłach równoodległych,
 - b) wielomian interpolujący funkcję f w zerach wielomianu T_{10} ,
 - c) wielomian interpolujący funkcję f w punktach ekstremalnych wielomianu T_9 ,
 - d) 9-ty wielomian optymalny w sensie normy średniokwadratowej z funkcją wagową $p(x) \equiv 1$,
 - e) 9-ty wielomian optymalny w sensie normy średniokwadratowej z funkcją wagową Czebyszewa.