Le langage algébrique

HLIN511

Pascal Poncelet

Pascal.Poncelet@umontpellier.fr http://www.lirmm.fr/~poncelet

Introduction

- Introduit par CODD en 1970
- Traitement de requêtes de lecture et écriture
- Deux types d'opérateurs
 - Opérateurs ensemblistes : UNION, INTERSECTION, DIFFERENCE, PRODUIT CARTESIEN
 - Opérateurs relationnels : SELECTION, PROJECTION, JOINTURE et DIVISION
- Notation : t un tuple d'une relation et t(A) dans R, le sous tuple de R relatif à A

Opérateurs ensemblistes

- Pour l'union, l'intersection, la différence les relations doivent être unicompatibles :
 - les relations doivent avoir même degré
 - les attributs associés deux à deux doivent être du même type syntaxique

UNION

UNION

 $R \cup S$: ensemble des tuples qui appartiennent soit à R, soit à S, soit à R et S:

$$R \cup S = \{t/t \subseteq R \text{ OU } t \subseteq S\}$$

• Opérateur commutatif (R \cup S = S \cup R)

Exemple

Pilote1: ensemble des pilotes habitant PARIS

PILOTE1

PLNUM	ADR
100	PARIS
101	PARIS
120	PARIS
110	PARIS

Pilote2 : ensemble des pilotes assurant un vol au départ de PARIS de TOULOUSE

PILOTE2

PLNUM	VD
130	TOUL
140	TOUL
150	TOUL
100	TOUL
120	TOUL
130	PARIS
101	PARIS
140	PARIS
110	PARIS

Pilote1 UNION pilote 2

PILOTE1 UNION PILOTE2

Ensemble des pilotes habitant PARIS ou assurant un vol au départ de PARIS ou TOULOUSE

	VILLE	PLNUM
Pilote1	PARIS	100
	PARIS	101
	PARIS	120
J	PARIS	110
\rightarrow	TOUL	130
	TOUL	140
	TOUL	150
	TOUL	100
Pilote2	TOUL	120
	TOUL	130
	PARIS	130
)	PARIS	140

Les duplicats sont éliminés L'Union permet de faire de l'ajout de tuples

INTERSECTION

• $R \cap S$: ensemble des tuples qui appartiennent à R et à S:

$$R \cap S = \{t / t \subseteq R \text{ et } t \subseteq S\}$$

• Opérateur commutatif : $R \cap S = S \cap R$

Avec Pilote1 INTERSECTION Pilote2

PILOTE1 INTERSECTION PILOTE2

PLNUM	VILLE
101	PARIS
110	PARIS

DIFFERENCE

 R - S : ensemble des tuples qui appartiennent à R sans appartenir à S. Complémentaire de

l'intersection:

$$R - S = \{t / t \subseteq R ET t \notin S\}$$

C = A - B

• Opérateur non commutatif : R - S ≠ S - R

PILO	TE1	– PIL	OTE2
-------------	-----	-------	------

PLNUM	ADR
100	PARIS
120	PARIS

PILOTE 1 – PILOTE 2 : ensemble des pilotes habitant PARIS et n'assurant pas de vol au départ de PARIS ou TOULOUSE

PRODUIT CARTESIEN

$$R \otimes S = \{(t (r), t(s)) \text{ avec } t(r) \subseteq R \text{ et } t(s) \subseteq S\}$$

Opérateur commutatif : R ⊗ S = S ⊗ R

PILOTE3

PLNUM	ADR
103	NICE
106	NICE

AVION

AVNOM	CAP
AIRBUS	350
CARAV	250

Produit Cartésien

PLNUM	ADR	AVNOM	CAP
103	NICE	AIRBUS	350
103	NICE	CARAV	250
106	NICE	AIRBUS	350
106	NICE	CARAV	250

Opérateurs relationnels

- Deux catégories
 - unaires de restriction
 - binaires d'extension
- Les opérateurs de restrictions permettent :
 - soit un découpage horizontal d'une relation (SELECTION)
 - soit un découpage vertical d'une relation (PROJECTION)

SELECTION

- Soit θ un comparateur binaire $\theta = \{<, <=,>, >=, <>\}$ applicable à l'attribut (ou à l'ensemble d'attributs) A et au tuple c (de la relation R)
- La sélection R(A θ c) est l'ensemble des tuples de R pour lesquels θ est vérifié entre la (les) composante(s) A et le tuple c :

$$R(A \theta c)=\{t/t \in R ET tA \theta c\}$$

SELECTION

PILOTE4

PLNUM	PLNOM	ADR
100	JEAN	PARIS
101	PIERRE	PARIS
120	PAUL	PARIS
130	SERGE	TOUL
140	MICHEL	TOUL

R

PLNUM	PLNOM	ADR
130	SERGE	TOUL
140	MICHEL	TOUL

SELECTION - Notations

Notation sigma : $\sigma_Q(R)$ où Q est le critère de la forme : Ai θ Valeur

$$R = \sigma_{ADR= \ll TOUL \gg}(PILOTE4)$$

 Toutes les notations sont équivalentes mais il ne faut pas les mélanger

SELECTION - remarques

Il est possible d'utiliser des opérateurs logiques :
 ET, OU, NON

R = PILOTE4(ADR=« TOUL » ET NOM=« MICHEL »)
$$R = \sigma_{\text{(ADR=« TOUL » ET NOM=« MICHEL)}}(\text{PILOTE4})$$

Pas indispensable pour le moment

PROJECTION

- Soit R(A) une relation et un ensemble d'attributs $A_1, ... A_n$ de R tels que $(A_1, A_2, ..., A_n) \subseteq A$
- La projection R' (A₁, A₂, ..., A_n) est la relation obtenue à partir de R (A) en éliminant de R(A) les attributs autres que ceux spécifiés par A₁, A₂, ... A_n

$$R(A_1, ..., A_n) = \{t(a_1, ..., a_n)\}$$

Suppression des tuples dupliqués

PROJECTION

Avion1

AVNUM	AVNOM	CAP	LOC
100	AIRBUS	350	TOUL
101	AIRBUS	350	TOUL
104	AIRBUS	150	PARIS
105	CARAV	250	PARIS

R

AVNOM	CAP
AIRBUS	350
AIRBUS	350
AIRBUS	150
CARAV	250

R = AVION1 (AVNOM, CAP)

PROJECTION - Notations

Notation sigma :
$$\pi_{A1,A2,...Ap}(R)$$

 $R = : \pi_{AVNOM,CAP}(AVION1)$

 Toutes les notations sont équivalentes mais il ne faut pas les mélanger

Opérateurs binaires d'extension

- L'opérateur JOIN et DIVISION
- JOIN : permettre de pouvoir relier des relations entre elles – Attention à la sémantique des requêtes
- DIVISION: Opérateur qui permet de sélectionner les tuples d'une relation (dividende) qui satisfont un critère de couverture énoncé via le contenu d'une autre relation (diviseur). Le résultat est une troisième relation, appelée le quotient. Exprime le « tous les »

JOIN

- Soient les relations R(A, B_1) et S(B_2 , C) avec B_1 et B_2 attributs définis sur le même domaine, soit $\theta = \{=, >, >=, <, <=, <>\}$ applicables aux valeurs des attributs B_1 et B_2
- Le JOIN de R sur B_1 avec S sur B_2 est la relation dont les tuples sont ceux obtenus par concaténation des tuples de R avec ceux de S pour lesquels la relation θ entre les composantes B_1 et B_2 est vérifiée :

$$R (B_1 \theta B_2) S = \{t/t \subseteq R \otimes S ET t(B_1) \theta(B_2)\}$$

 L'opérateur JOIN est équivalent à un produit cartésien suivi d'une sélection

JOIN - Vocabulaire

$$R (B_1 \theta B_2) S = \{t/t \subseteq R \otimes S ET t(B_1) \theta(B_2)\}$$

• Lorsque θ = {=} on parle d'équijointure autrement de thétajointure

$$R (B_1 = B_2) S = \{t/t \subseteq R \otimes S ET t(B_1) \theta(B_2)\}$$

• Il est possible d'avoir des autojointures

$$R (B_1 \boldsymbol{\theta} B_2) R = \{t/t \subseteq R \otimes R ET t(B_1) \boldsymbol{\theta}(B_2)\}$$

JOIN - Exemple

PILOTE1

PLNUM	PLNOM	ADR
100	JEAN	PARIS
101	PIERRE	PARIS
120	PAUL	PARIS

VOL1

VOLNUM	AVNUM	PLNUM
IT500	110	100
IT501	130	100
IT503	110	100
IT504	110	120
IT506	120	120
IT507	130	110

JOIN

PILOTE1 (PLNUM=PLNUM) VOL1

• Ensemble des pilotes habitant PARIS en service avec les numéros des vols et des avions correspondants

PLNUM	PLNOM	ADR	VOLNUM	AVNUM	PLNUM
100	JEAN	PARIS	IT500	110	100
100	JEAN	PARIS	IT501	130	100
100	JEAN	PARIS	IT503	110	100
120	PAUL	PARIS	IT504	110	120
120	PAUL	PARIS	IT506	120	120
			•	•	

JOIN

PILOTE1 (PLNUM>PLNUM) VOL1

 Quels sont les pilotes les pilotes dont le numéro est supérieur à au moins un numéro de pilote dans vol (qui effectue un vol)

PLNUM	PLNOM	ADR	VOLNUM	AVNUM	PLNUM	Ţ
101	PIERRE	PARIS	IT500	110	100	101>100
101	PIERRE	PARIS	IT501	130	100	101/100
101	PIERRE	PARIS	IT503	110	100	J
120	PAUL	PARIS	IT500	110	100)
120	PAUL	PARIS	IT501	130	100	120>100
120	PAUL	PARIS	IT503	110	100)
120	PAUL	PARIS	IT507	130	110	120 > 110

JOIN - Notations

RES = PILOTE1 (PLNUM=PLNUM) VOL1 RES = JOINTURE (PILOTE1, VOL1 / PLNUM = PLNUM)

Notation sigma : RES = R
$$\searrow$$
 S

JOINTURE LEFT - RIGHT

Cette partie sera vue lors du cours sur SQL

- Ce qu'il faut retenir surtout c'est que la jointure est l'un des opérateurs les plus important
- Il faut bien comprendre ce qu'est la jointure

- Utiliser souvent pour exprimer le « tous les »
- Division d'une relation binaire par une relation unaire

$$R(A_1 \div A_2) S = \{t/t \subseteq R[B] ET (\{t\} \otimes S) \subseteq R\}$$

avec $R(B,A_1)$ et $S(A_2)$

 La division de R par S est le sous-ensemble des éléments de R(B) dont le produit cartésien avec S est inclus dans R

Avions conduits par tous les pilotes :

VOL1 (PLNUM ÷PLNUM) PIL?

VOL1

Dividende

AVNUM	PLNUM
30	100
30	101
30	102
30	103
31	100
31	102
32	102
32	103
33	102

Diviseur PIL1

PLNUM 100 AVNUM 30 31

Quotient

Diviseur PIL2

Quotient

 Chaque fois que l'on aura « pour tous les x », il suffira de mettre l'attribut x dans le diviseur. Le dividende binaire doit contenir alors le même attribut (sur lequel porte la division) et l'attribut du résultat recherché

 Quels sont les noms des pilotes qui conduisent tous les avions de la compagnie ?

VOL1 = VOL (AVNUM, PLNUM)

AV1 = AVION (AVNUM)

PILOTE1 = PILOTE (PLNUM, PLNOM)

PILOTE2 = VOL1 (AVNUM ÷ AVNUM) AV1 <division pour avoir les numéros des pilotes qui conduisent tous les avions>

PILOTE3 = PILOTE1 (PLNUM=PLNUM)PILOTE2 < join pour avoir les noms>

CE QU'IL FAUT RETENIR

- L'ALGEBRE RELATIONNELLE EST COMPLETE
 - Les cinq (sept) opérations de base permettent de formaliser sous forme d'expressions toutes les questions que l'on peut poser avec la logique du premier ordre (sans fonction)
 - Le résultat de l'application d'un opérateur donne une relation
 - Possibilité d'impliquer les opérateurs directement
- NOM ET PRENOM DES BUVEURS DE VOLNAY 1988

PROJECTION (NOM, PRENOM, SELECTION (CRU="VOLNAY" ET MILL = 1988, JOIN (VINS, ABUS, BUVEURS)))

ARBRE DE REQUETES

 Pour chaque requête un arbre de requête est créé. Il permet notamment de faire de l'optimisation de requêtes

Liste des noms des pilotes Parisiens :

$$m{\pi}_{\substack{\mathsf{PInom} \ \mathsf{PInom} \$$

Arbre de requête correspondant

ARBRE DE REQUETES

• Intuitivement une requête est coûteuse : remonter les opérations de sélection et de sélection

• Une jointure est un produit cartésien suivi d'une sélection!

• Des questions ?

