Returns, Risk, and Risk Aversion

Returns and Risk

- People make decisions based on expected returns and risks every day.
 - Should I attend the investment management class today?
 - Return: Hour of leisure time.
 - Risk: You may miss an important topic for the exams.
- Different people have different perceptions of expected returns and risk.
 - Which activity would you prefer?
 - Shopping.
 - Golf.
 - Sky-Diving.

Returns and Risk in Finance

To assess returns and risks in finance we use objective measures:

Returns:
$$r_{0,1} = \left[\frac{DIV + (P_1 - P_0)}{P_0} \right]$$

- P₀ is the purchase price at time 0.
- P₁ is the sale price at time 1.
- DIV is the dividend income paid from the date of purchase to the date of sale.

Risk: Variance

- The average squared deviation of stock returns about the average return.

Returns, Variance and Standard Deviation

Average Return =
$$\overline{r} = \frac{\sum_{i=1}^{n} r_i}{n}$$

Variance =
$$\sigma^2 = \frac{\sum_{i=1}^{n} (r_i - \overline{r})^2}{(n)}$$

Standard Deviation =
$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (r_i - \overline{r})^2}{(n)}}$$

Simple Example

- Compute the standard deviation of the numbers 1, 2, 3, 4 and 5.
- The average value is 3.
- Compute the deviation and squared deviation from the average:

Value	Deviation	Squared Deviation
1	(1 - 3)	4
2	(2 - 3)	1
3	(3 - 3)	0
4	(4 - 3)	1
5	(5 - 3)	4

- The sum of the squared deviations is 10.
- This sum divided by 5 equals 2.
 - total variance = 2.
 - total standard deviation 1.41.

Calculating Stock Returns

Calculating Average Returns and Risk

Risk Aversion

 Even when expected returns and risk are known, people often make different choices about what to invest in.

Why?

Different people have different preferences for risk.

Risk Aversion

- Consider the following gamble:
 - - Flip a coin.
 - - If it is "Heads" you win \$10,000.
 - - If it is "Tails" you must pay \$10,000.

Would you take the gamble?

 How big a win would you require from "Heads" to take the gamble?

Risk Aversion

- If you took the original gamble, you are "risk neutral".
- If you required a payoff of less than \$10,000, you are "risk loving".
- If you required a payoff of more than \$10,000, you are risk averse".
- The larger the payoff you required, the more risk averse you are.
 - The vast majority of people are risk averse.

Utility Functions

 Is there a mathematical way to characterize different people's preferences using a simple mathematical function?

 Utility: a measure of satisfaction or desirability of a particular choice.

 Utility functions: functions that can represent a person's preferences.

A Simple Utility Function

Consider the utility function:

$$U(x) = E(r_x) - \lambda \sigma_x^2$$

• An investor's utility is a function of the expected returns, $E(r_x)$, on an investment, x, and the risk of the investment, σ_x^2 .

 λ is a measure of an investor's level of risk aversion.

A Simple Utility Function

• Consider the utility function: $U(x) = E(r_x) - \lambda \sigma_x^2$

- λ is a measure of an investor's level of risk aversion.
- If $\lambda > 0$ the investor is risk averse.
 - - Investor is more risk averse the higher the values of λ
 - The penalty he/she attaches to risk is higher.
- If $\lambda = 0$ the investor is risk neutral.
 - He/She only cares about expected returns.
- If λ < 0 the investor is risk loving.

Investing in the Stock Market vs T-Bills

The stock market is much riskier than investing in T-Bills

 If individuals are risk averse we should expect the stock market to have higher average returns.

Investing in the Stock Market vs T-Bills

- The risk premium for investing in the stock market is 7.83% per year over the last 80 years.
 - This is the premium necessary to compensate investors for bearing stock market risk.

You have two job offers:

1) Research Assistant to a Portfolio Manager.

Pay: \$50,000 per year.

2) Sales position in an Investment Bank.

Pay is dependent on your sales performance:
If the market is booming you will make \$85,000.
If the market is in recession you will make \$15,000.
When will you take the sales job?

- 1. Prob of Boom = 0.1
- 2. Prob of Boom = 0.5
- 3. Prob of Boom = 0.75
- 4. Prob of Boom = 0.9
- 5. Prob of Boom = 1

Expected Earnings and Risk Aversion

Are you risk seeking, risk neutral, or risk averse?

Prob of Boom	Prob of Recession	RA Wealth	Sales Job expected wealth	Behavior if you prefer Sales to RA
0.1	0.90	\$50,000	0.1 x 85 + 0.9 x 15 = \$22,000	Risk Seeking
0.50	0.50	\$50,000	0.5 x 85 + 0.5 x 15 = \$50,000	Risk Neutral
0.75	0.25	\$50,000	0.75 x 85 + 0.25 x 15 = \$67,500	Risk Averse
0.90	0.10	\$50,000	0.9 x 85 + 0.1 x 15 = \$78,000	Risk Averse

In reality, the majority of humans are risk averse.

You have two possible investment opportunities: 1) Risk Free T-Bills earn 5%.

2) High Tech Stocks. If the market is going up you earn 60%. If the market is falling you will earn -30%.

When will you invest in High Tech Stocks?

1.
$$Up = 0.25$$

2.
$$Up = 0.5$$

3.
$$Up = 0.75$$

4.
$$Up = 0.9$$

Expected returns and risk

$$\begin{split} E \big(\text{Ret}_{\text{i}} \big) &= \text{Pr} \big(B \big) \times \text{Ret}_{\text{i,Boom}} + \text{Pr} \big(R \big) \times \text{Ret}_{\text{i,Rec}} \\ \text{Risk (Variance)} &= \text{Pr} \big(B \big) \times \Big(\text{Ret}_{\text{i,Boom}} - E \big(\text{Ret}_{\text{i}} \big) \Big)^2 + \text{Pr} \big(R \big) \times \Big(\text{Ret}_{\text{i,Rec}} - E \big(\text{Ret}_{\text{i}} \big) \Big)^2 \end{split}$$

Prob of Boom	Prob of Recession	E(Ret _{T-Bill})	Risk _{T-Bill}	E(Ret _{High Tech})	Risk _{High Tech}
0.25	0.75	0.05	0.00	-0.08	0.15
0.50	0.50	0.05	0.00	0.15	0.20
0.75	0.25	0.05	0.00	0.38	0.15
0.90	0.10	0.05	0.00	0.51	0.07

 When deciding between T-Bills or High Tech Stocks you automatically made a trade-off between risk and return.

Applying the utility function

$$U(x) = E(r_x) - \lambda \sigma_x^2$$

Prob of Upmkt	Utility from T-Bill	Utility from Tech Stocks for different values of λ			
		-3	0	1	5
0.25	0.05	0.38	-0.08	-0.23	-0.83
0.50	0.05	0.76	0.15	-0.05	-0.86
0.75	0.05	0.83	0.38	0.22	-0.38
0.90	0.05	0.73	0.51	0.44	0.15

 Are your own preferences captured by one of the values for λ?

Back to utility functions

$$U(x) = E(r_x) - \lambda \sigma_x^2$$

- Investors are risk averse.
- Investors only consider expected returns and risk, as characterized by variance, when maximizing expected utility.
- Portfolio theory and the CAPM are based on this type of utility function.

S&P 500 Returns

 The average monthly returns on the S&P 500 index since 1996 are 0.70%. The risk (variance) is 0.18%².

٠

- What can we say about any given month's return?
 - - Is it equally likely to be above or below the average?
- Does the S&P 500 index experience large jumps in its price?

Skewness

- We have characterized the distribution of stock returns using:
- Mean (First Moment)
- Variance (Second Moment)
- Skewness is the third moment. It is a measure of the asymmetry of a probability distribution.

Skew =
$$\frac{n}{(n-1)(n-2)} \sum_{i=1}^{I} \left(\frac{x_i - \overline{x}}{s}\right)^3$$

where:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{I} x_i \text{ and } s = \sqrt{\frac{\sum_{i=1}^{I} (x_i - \bar{x})^2}{n-1}}$$

Skewness

Kurtosis

- Kurtosis is the fourth moment. It is a measure of the fatness of the tails of a probability distribution.
 - Higher kurtosis means more of the standard deviation is due to infrequent extreme deviations.

Kurt =
$$\frac{n(n+1)}{(n-1)(n-2)(n-3)} \sum_{i=1}^{I} \left(\frac{x_i - \overline{x}}{s}\right)^4$$

where:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{I} x_i \text{ and } s = \sqrt{\frac{\sum_{i=1}^{I} (x_i - \bar{x})^2}{n-1}}$$

 The probability distribution highlighted by the dashed lines has a higher level of kurtosis than the distribution highlighted by the continuous line.

The Normal Distribution

The normal distribution is characterized by two moments

- mean, μ.
- variance σ^2 .

The Normal Distribution

- The normal distribution is symmetric around the mean.
 - - Skewness = 0.
- The normal distributions has a kurtosis of 3.
 - Typically we compare distributions to the normal distribution.
 - Excess kurtosis is a measure of kurtosis relative to the normal distribution.
 - - Ex Kurt = Kurt 3.

Skewness and Kurtosis in Excel

Preferences for skewness and kurtosis?

$$U(x) = E(r_x) - \lambda \sigma_x^2$$

- If stock returns are normally distributed:
 - The standard utility function is appropriate.
 - · Investors only care about mean and variance.
- If stock returns are not normally distributed AND investors have preferences for skewness and/or kurtosis:
 - The standard utility function is not appropriate.

The Distribution of Stock Returns

- Fama (1965) conducts an extensive analysis of return distributions.
- He concludes that at a monthly horizon stock return distributions can be characterized well by a normal distribution.
- However, at a daily horizon, Fama argues the return distributions are definitely not normal, as they exhibit too many large deviations from the mean.

Mean-Variance is a good approximation

- Paul Samuelson (1970) showed that:
 - The importance of additional moments beyond the variance is much smaller than the importance of the expected returns and variance.
 - Variance is as important as expected returns to investors.
- Samuelson relied on the assumption of compactness.
 - The risk of a stock holding will decline if you hold it for a shorter period.
 - If you hold the stock for only an instant, the risk is zero.
- Samuelson, P., 1970, The Fundamental Approximation Theorem of Portfolio Analysis in Terms of Means, Variances, and Higher Moments, Review of Economic Studies 37

US Return horizons and risk

	Monthly	Weekly	Daily
Mean	0.0070	0.0017	0.0004
Variance	0.0018	0.0005	0.0001
Skewness	-0.5387	-0.3072	-0.0237
Ex Kurtosis	0.6867	2.1400	3.2328
Min	-0.1458	-0.1105	-0.0687
Max	0.0967	0.0778	0.0573

Chinese Return horizons and risk

 Let's investigate the monthly and daily return of Shanghai and Shenzhen Composite A-index.

- Summary
 Four moments provide an effective characterization of a stock return distribution.
- 1) Mean What is the average return?
- 2) Variance How large are average squared deviations from the mean?
- 3) Skewness Is the return distribution symmetric?
- 4) Kurtosis To what extent is the variance driven by large infrequent deviations?
- At a monthly return horizon return distributions are well approximated by the normal distribution.