

Epreuve de Mathématiques B

Durée 4 h

Si, au cours de l'épreuve, un candidat repère ce qui lui semble être une erreur d'énoncé, d'une part il le signale au chef de salle, d'autre part il le signale sur sa copie et poursuit sa composition en indiquant les raisons des initiatives qu'il est amené à prendre.

L'usage de calculatrices est interdit.

AVERTISSEMENT

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies. En particulier, les résultats non justifiés ne seront pas pris en compte. Les candidats sont invités à encadrer les résultats de leurs calculs.

Dans ce sujet, les candidats sont invités à illustrer, s'ils le jugent nécessaire, leurs réponses avec un dessin.

Les parties I et V sont indépendantes entres elles et indépendantes des parties II, III et IV.

À rendre en fin d'épreuve avec la copie une feuille de papier millimétré

Tournez la page S.V.P.

Définitions et notations.

Dans ce problème, n désigne un entier naturel supérieur ou égal à 2 fixé et $\mathbb{R}_n[X]$, l'espace vectoriel des polynômes à coefficients réels et de degré inférieur ou égal à n.

On rappelle que pour tout entier k tel que $0 \le k \le n$, $\binom{n}{k}$ désigne le coefficient binomial $\ll k$ parmi $n \gg n$.

Pour tout entier k tel que $0 \le k \le n$, on note $\mathcal{B}_{k,n}(X)$ le polynôme

$$\mathcal{B}_{k,n}(X) = \binom{n}{k} X^k (1 - X)^{n-k}.$$

Pour p=2 ou 3, \mathbb{R}^p est muni de sa structure euclidienne usuelle et d'un repère orthonormé d'origine O.

Si A_0 , A_1 ,..., A_n , sont (n + 1) points de \mathbb{R}^p , on appelle courbe de Bézier associée aux points de contrôle A_0 , A_1 ,..., A_n , la courbe paramétrée définie **sur** [0,1] par :

$$\forall t \in [0, 1], \overrightarrow{OM(t)} = \sum_{k=0}^{n} \mathcal{B}_{k,n}(t) \overrightarrow{OA_k}.$$

Enfin, on note [0; n] l'ensemble des entiers compris entre 0 et n.

Questions de cours.

- 1. Calculer $\sum_{k=0}^{n} \mathcal{B}_{k,n}(X)$.
- 2. Soient $t \in [0; 1]$ et X_n une variable aléatoire réelle à valeurs dans [0; n] telle que pour tout k dans [0; n], $P(X_n = k) = \mathcal{B}_{k,n}(t)$.
 - (a) Donner le nom et le(s) paramètre(s) de la loi de probabilité suivie par X_n .
 - (b) Préciser l'espérance et la variance de X_n .
 - (c) Donner un exemple d'une telle variable aléatoire X_n .
- 3. Rappeler quelle est la dimension de $\mathbb{R}_n[X]$.
- 4. Donner la définition de deux espaces vectoriels orthogonaux pour un produit scalaire noté φ .
- 5. Donner la définition d'une surface de révolution ayant pour axe une droite Δ .

Préliminaires.

- 1. Développer les polynômes $\mathcal{B}_{k,2}(X)$ pour $0 \leq k \leq 2$, et les polynômes $\mathcal{B}_{k,3}(X)$ pour $0 \leq k \leq 3$.
- 2. Démontrer que $(\mathcal{B}_{k,2}(X))_{0 \leq k \leq 2}$ est une base de $\mathbb{R}_2[X]$.
- 3. Démontrer que $(\mathcal{B}_{k,n}(X))_{0 \leq k \leq n}$ est une base de $\mathbb{R}_n[X]$.

Partie I: Un produit scalaire.

On considère la fonction φ définie pour tous polynômes P et Q de $\mathbb{R}_2[X]$ par :

$$\varphi(P,Q) = P(0)Q(0) + P(1)Q(1) + \frac{1}{4}\left(4P\left(\frac{1}{2}\right) - P(1) - P(0)\right)\left(4Q\left(\frac{1}{2}\right) - Q(1) - Q(0)\right)$$

- 1. (a) Démontrer que φ est un produit scalaire sur $\mathbb{R}_2[X]$.
 - (b) Orthonormaliser, pour le produit scalaire φ , la base $(X^2, X, 1)$ de $\mathbb{R}_2[X]$. On exprimera cette nouvelle base orthonormée à l'aide des polynômes $(\mathcal{B}_{k,2}(X))_{0 \leq k \leq 2}$.
- 2. On considère l'endomorphisme f de $\mathbb{R}_2[X]$ dont la matrice dans la base $(\mathcal{B}_{2-k,2}(X))_{0 \leqslant k \leqslant 2}$ est :

$$M = \begin{pmatrix} -1 & 2 & 1 \\ 2 & 2 & 2 \\ 1 & 2 & -1 \end{pmatrix}.$$

- (a) Justifier sans calcul que la matrice M est diagonalisable.
- (b) Diagonaliser M. On prendra, si possible, une base orthonormée de \mathbb{R}^3 constituée de vecteurs propres de M et on précisera la matrice diagonale D, la matrice de passage Q, son inverse Q^{-1} ainsi que la relation liant ces matrices.
- (c) En déduire les valeurs propres et les sous-espaces propres de f.
- (d) Démontrer que les sous-espaces propres de f sont orthogonaux pour φ .
- 3. On suppose dans cette question que n est à nouveau quelconque. Démontrer qu'il existe un produit scalaire Ψ sur $\mathbb{R}_n[X]$ pour lequel la base $(\mathcal{B}_{k,n}(X))_{0 \leq k \leq n}$ est orthonormée. On pourra exprimer ce produit scalaire à l'aide des coordonnées des polynômes dans la base $(\mathcal{B}_{k,n}(X))_{0 \leq k \leq n}$.

Partie II : Une première courbe de Bézier dans le plan.

Dans cette partie et les deux suivantes, on se place dans \mathbb{R}^2 muni d'un repère orthonormé $(O; \vec{i}, \vec{j})$. On considère la courbe de Bézier Γ_1 associée aux points de contrôle A_0 , A_1 , A_2 et A_3 de coordonnées respectives (0, 0), (2, 2), (1, 3) et (1, -1). On considère également la courbe Γ_2 dont une représentation paramétrique est :

$$\begin{cases} x_2(t) = 6t - 9t^2 + 4t^3 \\ y_2(t) = 6t - 3t^2 - 4t^3 \end{cases}, t \in \mathbb{R}.$$

- 1. (a) Donner une représentation paramétrique de Γ_1 .
 - (b) Quelle remarque peut-on faire concernant les courbes Γ_1 et Γ_2 ?
- 2. Etude de Γ_2 .
 - (a) Construire les tableaux de variations des fonctions x_2 et y_2 .
 - (b) Déterminer les points réguliers de Γ_2 dont la tangente à Γ_2 est horizontale ou verticale.

- (c) Déterminer une équation cartésienne de la tangente à Γ_2 au point de paramètre t=0.
- (d) Déterminer le point singulier de Γ_2 . Préciser sa nature ainsi que la tangente à Γ_2 en ce point.
- (e) Donner la nature des branches infinies de Γ_2 . Illustrer la réponse par un schéma sur la copie.
- 3. Tracer dans le repère $(O; \vec{i}, \vec{j})$, la courbe Γ_1 , les points A_0 , A_1 , A_2 et A_3 ainsi que les tangentes à Γ_1 obtenues aux questions précédentes. On utilisera la feuille de papier millimétrée fournie. Le tracé de Γ_2 n'est pas demandé. Il est conseillé de prendre une unité de 6 cm.

Partie III: Un détour par le cas général

Dans cette partie, on se place encore dans le plan mais n est désormais quelconque. On considère (n+1) points de \mathbb{R}^2 , A_0 , A_1 ,..., A_n , et on note Γ la courbe de Bézier associée aux points de contrôle A_0 , A_1 ,..., A_n .

- 1. Que peut-on dire des points de Γ de paramètre t=0 et t=1?
- 2. On suppose dans cette question que les points A_0 et A_1 sont distincts. Démontrer que la tangente à Γ en A_0 et la droite (A_0A_1) sont confondues. On admettra que si les points A_n et A_{n-1} sont distincts, alors la tangente à Γ en A_n et la droite $(A_{n-1}A_n)$ sont confondues.
- 3. Soient P et Q deux polynômes de $\mathbb{R}_n[X]$. On considère la courbe Λ dont une représentation paramétrique est $\left\{ \begin{array}{l} x(t)=P(t) \\ y(t)=Q(t) \end{array} \right.$, $t\in [0,1]$. Est-il possible de trouver (n+1) points $A_0,\,A_1,\ldots,\,A_n$ tels que Λ soit la courbe de Bézier associée aux points de contrôle $A_0,\,A_1,\ldots,\,A_n$?

Partie IV : Une deuxième courbe de Bézier.

Dans cette partie, on se place toujours dans le plan \mathbb{R}^2 , les points A_0 et A_3 sont ceux définis dans la partie II. On souhaite refermer la courbe Γ_1 de la partie II par une courbe de Bézier Γ_3 associée à trois points de contrôle $C_0 = A_0$, C_1 et $C_2 = A_3$, et telle que les tangentes à Γ_1 et Γ_3 au point A_0 soient confondues ainsi que les deux tangentes à Γ_1 et Γ_3 au point A_3 .

- 1. (a) En utilisant la partie III, déterminer les coordonnées du point C_1 .
 - (b) Vérifier qu'un paramétrage de Γ_3 est $\left\{\begin{array}{l} x_3(t)=2t-t^2\\ y_3(t)=2t-3t^2 \end{array},\ t\in[0,1].\right.$
- 2. Faire l'étude de la courbe Γ_3 .
- 3. Compléter le graphe de la partie II en y rajoutant Γ_3 , le point C_1 ainsi que toute autre information vous paraissant pertinente.

Partie V : Une surface de révolution.

On se place désormais dans l'espace \mathbb{R}^3 muni d'un repère orthonormé direct $(O; \vec{i}, \vec{j}, \vec{k})$ et on considère la courbe de Bézier Γ_4 associée aux points de contrôle D_0 , D_1 , D_2 et D_3 de coordonnées respectives (-3, 0, 0), (-1, 1, 0), (1, 1, 0) et (3, 0, 0).

- 1. Vérifier qu'un paramétrage de Γ_4 est $\left\{\begin{array}{l} x_4(t)=6t-3\\ y_4(t)=3(t-t^2)\\ z_4(t)=0 \end{array}\right.,\ t\in[0,1].$
- 2. Donner un vecteur directeur ainsi qu'un système d'équations cartésiennes de la tangente à Γ_4 au point de paramètre $t = \frac{1}{3}$.
- 3. Déterminer une équation cartésienne de la surface de révolution obtenue en faisant tourner Γ_4 autour de l'axe $(O; \vec{i})$.

Pierre Bézier (1910 - 1999) est un ingénieur (Arts et Métiers et Supélec) et un docteur en mathématiques français. Il est le père fondateur de la CAO. Il fit carrière chez Renault où il mit au point les premières machines transfert.

Les courbes qui portent son nom, décrites en 1962, sont utilisées pour concevoir des pièces pour automobiles à l'aide d'ordinateurs. Elles sont également utilisées dans de nombreux logiciels de dessin et pour certaines polices de caractères.

Les polynômes $B_{k,n}$ sont appelés polynômes de Bernstein.

Sergei Bernstein (1880 - 1968) est un mathématicien ukrainien dont les travaux ont porté sur les équations différentielles, l'analyse fonctionnelle et les probabilités.