Multimodale Mensch-Maschine-Interaktion

Prof. Dr. Jan-Torsten Milde SoSe 2025

Multimodale Mensch-Maschine-Interaktion

- Dauer: 12/10 Wochen, Format: 1.5 Stunden Vorlesung + 1.5 Stunden praktische Übungen pro Woche
 - Vorlesung: Montag, 15.30-17.00 Uhr in 46.012
 - Übung: Dienstag, 15.30-17.00 Uhr in 46.012
- Ziele: Die Studierenden sollen
 - die Grundlagen und aktuellen Entwicklungen der multimodalen Mensch-Maschine-Interaktion verstehen,
 - relevante KI-Technologien kennenlernen und ein
 - eigenes prototypisches System entwickeln und implementieren, das multimodale Interaktion ermöglicht.
- Bewertungskriterien:
 - Regelmäßige Teilnahme und aktive Mitarbeit (Diskussionen und Übungen)
 - Zwischenpräsentationen/Berichte zu Experimenten mit KI-Anwendungen
 - Abschließende Präsentation und Demonstration des Prototyps
 - Dokumentation des Prototyps (Konzept, Design, Implementierung, Evaluation)

Semesterplan

	7 17 18		THE RESERVE OF STREET		
Datum	Mo (WP)	Mo (MMHCI)	Fr (BegS)	Anmerkung	
14.4.	+	+	-	Karfreitag	
21.4.	-	-	+	Ostermontag	
28.4.	+	+	-	Kommission	
05.5.	+	+	+	Kommission, ab	
				9.50	
12.5.	+	+	+	-	
19.5.	+ (MR)	-	+	ACHI, Nizza	
26.5.	+	+	+	_	
02.6.	+	+	+	Präsentation FE	
				bis 8.6.	
09.6.	-	-	+	Pfingstmontag,	
				Erfindermesse	
16.6.	+	+	+	_	
23.6.	+	+	+	Live-Coding	
30.6.	+	+	+	-	
07.7.	+ (MR)	-	-	SMC, Graz	
14.7.	+	+	+	_	

Themenüberblick

- Woche 1: Einführung und Grundlagen
- Woche 1/2: Sprachverarbeitung (Natural Language Processing – NLP) und LLMs
- Woche 3: Computer Vision
- Woche 4: Sprachsynthese (Text-to-Speech - TTS) und Auditive Interaktion
- Woche 5: Gestenerkennung und Haptische Interaktion
- Woche 6: Multimodale Fusion und Fission

- Woche 7: Kontextbewusstsein und Personalisierung
- Woche 8: Architekturen multimodaler Systeme und User Interface Design
- Woche 9: Aktuelle KI-Anwendungen in der MMI (Teil 1)
- Woche 10: Aktuelle KI-Anwendungen in der MMI (Teil 2)
- Woche 11: Prototypenentwicklung (Fokus Implementierung)
- Woche 12: Prototypenentwicklung und Abschluss

Woche 1

Einführung und Grundlagen

- Multimodale Mensch-Maschine-Interaktion
 - Definition nach Gemini: "Unter multimodaler Mensch-Maschine-Interaktion (MMI) versteht man die Interaktion zwischen Mensch und Computer, bei der mehrere verschiedene Eingabe- und/oder Ausgabemodalitäten gleichzeitig genutzt werden, um die Kommunikation natürlicher, effizienter und intuitiver zu gestalten"
 - Der Mensch verwendet eine Vielzahl von Modalitäten zur **Wahrnehmung** und **Kommunikation**.
 - Im Kontext der **multimodalen** Mensch-Maschine-Interaktion liegt der Fokus oft auf Modalitäten, die sich gut für die **Interaktion mit technischen Systemen eignen**, wie z.B. Sprache, Sehen (Gesten- und Objekterkennung), Tasten (Touchscreens, haptisches Feedback) und in Zukunft möglicherweise verstärkt auch andere sensorische Eingaben.
- Was ist KI?
 - Siehe Foliensatz "Schüler Tag"
- Sprache und Computer
 - Das heutige Thema

Modalitäten des Menschen

- Wahrnehmung (Sinne):
 - Visuell: Sehen (über die Augen)
 - **Auditiv**: Hören (über die Ohren)
 - Taktil/Haptisch: Tasten, Berührung, Druck, Vibration (über die Haut)
 - Olfaktorisch: Riechen (über die Nase)
 - **Gustatorisch**: Schmecken (über die Zunge)
 - Propriozeptiv: Körpergefühl, Wahrnehmung der eigenen Körperhaltung und Bewegung (über Rezeptoren in Muskeln, Gelenken und Sehnen)
 - Vestibulär: Gleichgewichtssinn (im Innenohr)
 - **Thermozeption**: Temperaturwahrnehmung (über die Haut)
 - Nozizeption: Schmerzempfindung (über Nervenendigungen im ganzen Körper)

- Kommunikation:
 - Sprache (verbal): Gesprochene Worte, Tonfall,
 Sprachmelodie
 - Schrift (textuell): Geschriebene Buchstaben, Symbole, Zeichen
 - **Gestik**: Handbewegungen, Armbewegungen
 - **Mimik**: Gesichtsausdrücke
 - Körpersprache: Körperhaltung, Blickkontakt, räumliches Verhalten
 - **Prosodie** (paraverbal): Sprechtempo, Lautstärke, Pausen
 - Haptische Kommunikation: Berührungen zur nonverbalen Übermittlung von Botschaften
 - Piktogramme und Symbole: Visuelle Zeichen zur Informationsübertragung

Praktische Übung: Technik/Wordle

Themen

- Diskussion über Beispiele für multimodale Interaktionen im Alltag.
- Kennenlernen der Kursumgebung und relevanter Software-Tools
 - python mit virtual environment
 - pip
 - bash
 - git
- Wortverarbeitung mit regulären Ausdrücken

Technik

- Wir wollen Bilder generieren
 - Dazu verwenden wir Fooocus
 - https://github.com/lllyasviel/Fooocus.git
- Aufgabe:
 - Installieren Sie Fooocus und generieren Sie ein Bild von einem Avatar mit pinken Haaren.

Computerlinguistische Grundlagen

Sprachverarbeitung

Übung: Wortanalyse

- Agenda
 - Das Wordle Problem
 - Wortbildung im Deutschen
 - Erzeugung eines Lexikon
 - Reguläre Ausdrücke
 - Größenabschätzung
 - Häufigkeitsverteilungen
 - Endliche Automaten
 - Klassifikator auf Basis der Daten

Wordle

- Einfaches Spiel, bei dem ein (englisches) Wort mit 5 Buchstaben erraten werden muss
 - Farbkodierung markiert
 Buchstaben

Wordle

Erste Fragen

- Wieviele deutsche Worte mit 5 Buchstaben existieren ?
- Wie kann man ein korrektes deutsches Wort erkennen und somit von einem "fehlerhaften" Wort untercheiden?
- Wie kann man (schnell) ein Lexikon mit deutschen Worten erstellen?

Kombinationen

- Um die Anzahl der Worte abzuschätzen betrachten wir die Gesamtzahl aller Buchstabenkombinationen für ein Wort der Länge 5
 - Beobachtung: es existieren 26 + 4 Buchstaben im Deutschen (Groß-Kleinschreibung werden ignoriert)
 - Das Wort hat eine Länge von 5
 - Zeicheninventar (30) und Wortlänge (5) sind endlich
 - Hieraus folgt: es kann auch nur endlich viele Buchstabenkombinationen geben

Kombinationen

- Das Wort XXXX der Länge 5 hat dann
 - X = 30 * X = 30 * X = 30 * X = 30
 mögliche Kombinationen
 - Also 30^5 Kombinationen
 - Das schätzen wir ab mit
 - 30^5 < 32^5
 - $32^5 = 2^5 = 2^2 = 2^1 = 2^1 = 2^5$
 - = (1024 * 1024) * 32
 - Also ungefähr 32.000.000 (32 Millionen) Buchstabenkombinationen
 - Aber: davon sind die allermeisten Kombinationen kein deutsches Wort
 - Fragt sich nur: welche davon?

Übung: Lexikon

Ausfgabe

- Erstellen Sie ein Lexikon mit deutschen Wörtern mit 5 Buchstaben
- Nutzen Sie dazu VSCode und reguläre Ausdrücke
 - Wo bekommen Sie die Daten her ?
 - Welche Vorverarbeitung ist notwendig?
 - Wie groß muss ein Lexikon sein ?
 - Was, außer der Wortform, könnte noch im Lexikon stehen?
- Arbeiten mit dem Lexikon
 - Woran erkenne ich ein Wort des Deutschen ?
 - Wie kann ich Eigenschaften von deutschen Wörtern algorithmisch/regelbasiert erkennen?
 - Wodurch unterscheidet sich ein Wort einer anderen Sprache vom Deutschen?

Woche 2

Sprachverarbeitung (Natural Language Processing – NLP) und LLMs

Computer Vision

Sprachsynthese (Text-to-Speech - TTS) und Auditive Interaktion

Gestenerkennung und Haptische Interaktion

Multimodale Fusion und Fission

Kontextbewusstsein und Personalisierung

Architekturen multimodaler Systeme und User Interface Design

Aktuelle KI-Anwendungen in der MMI (Teil 1)

Aktuelle KI-Anwendungen in der MMI (Teil 2)

Prototypenentwicklung (Fokus Implementierung)

Prototypenentwicklung und Abschluss