

Licenciatura em Engenharia de Sistemas de Telecomunicações e Electrónica

Teoria da Informação

- Componente Teórica
 - Exame
 - 3 Séries de Problemas
- Componente Laboratorial
 - 5 Trabalhos Práticos

- Projecto
 - Algoritmo de Codificação/Descodificação

Nota Final = 0.5 Exame + 0.1Séries + 0.2 C. Lab. + 0.2 Projecto

Teoria da Informação

Pedro Mendes Jorge

1

Instituto Superior de Engenharia de Lisboa Departamento de Engenharia da Electrónica e das Comunicações Secção de Comunicações e Processamento de Sinais

- 3 Séries de Problemas
 - Codificação de Forma de Onda
 - Probabilidades e Entropia
 - Codificação de Fonte
 - 5 Trabalhos Laboratoriais
 - Discrete Cosine Transform DCT (2 partes)
 - Telecópia
 - Norma JPEG
 - •Codificação Videotelefónica Norma ITU-T.H261

Trabalhos elaborados pelo Prof. Fernando Pereira (IST/IT)

Teoria da Informação

Pedro Mendes Jorge

Instituto Superior de Engenharia de Lisboa Departamento de Engenharia da Electrónica e das Comunicações Secção de Comunicações e Processamento de Sinais

Bibliografia

- A. Jain, Fundamentals of Digital Image Processing, Prentice-Hall, 1989
 - N. Jayant & P. Noll, Digital Coding of Waveforms, Prentice-Hall, 1984
- D. MacKay, Information Theory, Inference, and Learning Algorithms, 1998
 - S. Haykin, Communication Systems, John Wiley & Sons, 1994
- ➡ A. Tekalp, *Digital Video Processing*, Prentice-Hall, 1995
 - R. Clarke, Digital Compression of Still Images and Video, Academic Press, 1996

Amostragem $x(t) \qquad \qquad Filtro \\ Passa-Baixo \\ f_c = W \qquad \qquad \\ \bullet \text{ Teorema de Nyquist} \qquad \qquad III \qquad f_S \geq 2W$

Teoria da Informação

Pedro Mendes Jorge

5

Instituto Superior de Engenharia de Lisboa Departamento de Engenharia da Electrónica e das Comunicações Secção de Comunicações e Processamento de Sinais

Reconstrução

Teoria da Informação

Teoria da Informação

Pedro Mendes Jorge

7

Instituto Superior de Engenharia de Lisboa Departamento de Engenharia da Electrónica e das Comunicações Secção de Comunicações e Processamento de Sinais

1. Codificação de Forma de Onda

- 1.1 Quantificação Uniforme
- 1.2 Quantificação não-Uniforme
- 1.3 Quantificação Vectorial
- 1.4 Codificação Preditiva
- 1.5 Codificação Por Transformada
 - 1.5.1 Discrete Fourier Transform *DFT*
 - 1.5.2 Discrete Cosine Transform DCT
 - 1.5.3 Transformada de Karhunen-Loeve

1. Codificação de Forma de Onda

Objectivo

Transformar sinais discretos numa sequência de valores quantificados com vista à sua transmissão por um canal digital.

Teoria da Informação

Pedro Mendes Jorge

9

Instituto Superior de Engenharia de Lisboa Departamento de Engenharia da Electrónica e das Comunicações Secção de Comunicações e Processamento de Sinais

1.1 Quantificação Uniforme

• Quantificação em M níveis

A gama de variação é dividida em ${\cal M}$ intervalos de igual comprimento

A cada intervalo é atribuído um nível de reconstrução

A cada amostra é atribuído o nível de reconstrução do intervalo a que pertence

Teoria da Informação

Pedro Mendes Jorge

1.1 Quantificação Uniforme

Intervalo de quantificação:

$$\Delta = \frac{x_{\text{max}} - x_{\text{min}}}{M}$$

Níveis de decisão:

$$\{t_k : k = 1, ..., M + 1\}$$
 $t_k = x_{\min} + (k-1)\Delta$

Níveis de reconstrução:

$${\hat{x}_i : i = 1,...,M}$$
 $\hat{x}_i = \frac{t_i + t_{i+1}}{2}$

Teoria da Informação

Pedro Mendes Jorge

11

Instituto Superior de Engenharia de Lisboa Departamento de Engenharia da Electrónica e das Comunicações Secção de Comunicações e Processamento de Sinais

1.1 Quantificação Uniforme

- Q? Que informação é necessário enviar para o receptor ?
 - níveis de reconstrução
 - para cada amostra é enviado o índice do nível de reconstrução
- Q? Quantos bits são necessários para enviar a informação desejada ?

 $H = \log_2 M$ bits/símbolo

r número médio de símbolos por segundo

R = rH bits/seg.

Exemplo: PCM Uniforme

Teoria da Informação

Pedro Mendes Jorge

13

Instituto Superior de Engenharia de Lisboa Departamento de Engenharia da Electrónica e das Comunicações Secção de Comunicações e Processamento de Sinais

Teoria da Informação

Pedro Mendes Jorge

1.1 Quantificação Uniforme - Erro de Quantificação

R! - Não, dado que quase sempre $\hat{x} \neq x$.

Teoria da Informação

Pedro Mendes Jorge

15

Instituto Superior de Engenharia de Lisboa Departamento de Engenharia da Electrónica e das Comunicações Secção de Comunicações e Processamento de Sinais

1.1 Quantificação Uniforme - Erro de Quantificação

• Variância do erro de quantificação

$$N_q = \sigma_q^2 = E[e^2]$$

• Relação Sinal/Ruído

$$\left(\frac{S}{N}\right)_D = \frac{S_x}{\sigma_q^2}$$

Teoria da Informação

1.1 Quantificação Uniforme - Erro de Quantificação

Teoria da Informação

Pedro Mendes Jorge

17

Instituto Superior de Engenharia de Lisboa Departamento de Engenharia da Electrónica e das Comunicações Secção de Comunicações e Processamento de Sinais

1.2 Quantificação não-Uniforme

Q? - Será que todos os sinais devem ter os mesmos intervalos de quantificação com vista a minimizar o erro de quantificação ?

Uma estratégia para encontrar os intervalos de quantificação e os níveis de reconstrução consiste em minimizar a variância do erro de quantificação (erro quadrático médio) - **Quantificador de Lloyd-Max**

$$E[e^{2}] = \int_{t_{1}}^{t_{M+1}} (x - x_{i})^{2} p_{X}(x) dx$$

$$\min \xi \Rightarrow \frac{\partial \xi}{\partial t_{i}} = 0, \frac{\partial \xi}{\partial x_{i}} = 0$$

Teoria da Informação

1.2 Quantificação não-Uniforme

Quantificador de Lloyd-Max

1. Inicialização

Exemplo: quantificador uniforme

2. Iteração

níveis de reconstrução $\int_{t_{i+1}}^{t_{i+1}} xp(x)dx$ $\hat{x}_i = \frac{t_i}{t_{i+1}}$

intervalos de quantificação

$$t_i = \frac{\hat{x}_{i-1} + \hat{x}_i}{2}$$

Teoria da Informação

Pedro Mendes Jorge

19

Instituto Superior de Engenharia de Lisboa Departamento de Engenharia da Electrónica e das Comunicações Secção de Comunicações e Processamento de Sinais

1.2 Quantificação não-Uniforme

Compressor-Expansor (Compandor)

Teoria da Informação

Pedro Mendes Jorge

1.2 Quantificação não-Uniforme y=f(x)

Compandor

Teoria da Informação

Pedro Mendes Jorge

21

Instituto Superior de Engenharia de Lisboa Departamento de Engenharia da Electrónica e das Comunicações Secção de Comunicações e Processamento de Sinais

1.2 Quantificação não-Uniforme

Compandor

A escolha das funções f e g deve ser feita de forma a que o quantificador não uniforme resultante seja aproximado do quantificador de Lloyd-Max.

$$f(x) = 2a \begin{cases} \int_{t_1}^{x} [p_U(u)]^{\frac{1}{3}} du \\ \int_{t_1}^{t_{L+1}} [p_U(u)]^{\frac{1}{3}} du \end{cases}$$
 Onde $[-a, a]$ define o intervalo de variação do quantificador uniforme e $p_U(u)$ define a f.d.p. de x .

1.2 Quantificação não-Uniforme

Compandor

Exemplos

• PCM Lei A

• PCM Lei µ

Teoria da Informação

Pedro Mendes Jorge

23

Instituto Superior de Engenharia de Lisboa Departamento de Engenharia da Electrónica e das Comunicações Secção de Comunicações e Processamento de Sinais

1.3 Quantificação Vectorial

Problema: Como quantificar dados N dimensionais?

Utilizar um conjunto de M vectores típicos - Livro de Código

$$L = \{\hat{x}_i, i = 1...M\} \quad \text{onde} \quad \hat{x}_i \in R^N$$

Codificação

Dado um conjunto de dados $X = \{x : x \in \mathbb{R}^N \}$, encontrar no livro de código o vector típico \hat{x}_i que melhor representa o dado x_i segundo um determinado critério.

Transmite-se o índice i.

Descodificação

O vector reconstruído é o elemento *i* do livro de código $L(i) = \hat{x}_i$

Teoria da Informação

1.3 Quantificação Vectorial

Questões por resolver:

Q1? - Qual o livro de código que minimiza o erro de representação dos dados ?

R1! - P. ex. C-médias.

Q2? - Qual o critério para escolher o vector do livro de código?

R2! - P. ex. Distância Euclidiana.

Q3? - Qual o algoritmo de pesquisa?

R3! - P. ex. Pesquisa exaustiva.

Desvantagem - Peso computacional.

Método suboptimo: Procura não exaustiva em árvore binária.

Teoria da Informação

Pedro Mendes Jorge

25

Instituto Superior de Engenharia de Lisboa Departamento de Engenharia da Electrónica e das Comunicações Secção de Comunicações e Processamento de Sinais

1.3 Quantificação Vectorial

Algoritmo de C-Médias

Inicialização do livro de código

Passo1

Quantificam-se os vectores de X

$$\hat{x} = \arg\min_{\hat{x}_c} ||x - \hat{x}_c||$$

Passo2

Define-se \hat{x}_c como o centro de massa (valor médio) dos padrões da classe c

$$\hat{x}_c = \frac{1}{N_C} \sum_{x \in X_C} x$$

Teoria da Informação

Instituto Superior de Engenharia de Lisboa Departamento de Engenharia da Electrónica e das Comunicações Secção de Comunicações e Processamento de Sinais

Teoria da Informação

Pedro Mendes Jorge

1.3 Quantificação Vectorial

Procura não exaustiva em árvore binária

Dividir o livro de código L numa sequência de L_i , $i = 1,..., log_2 M$ livros de código mais pequenos.

Os livros de código dos níveis inferiores são versões reduzidas de L.

Para j=1 o conjunto de todos os vectores do livro de código é dividido em duas regiões com $\frac{M}{2}$ elementos cada. Os centros de massa de cada região define o livro de código L_t

Quando é identificada a região correspondente ao vector de entrada *x*, a região escolhida é outra vez dividida.

$$\hat{oldsymbol{x}}_1 \quad \cdots \quad \hat{oldsymbol{x}}_{rac{M}{2}} \, | \, \hat{oldsymbol{x}}_{rac{M}{2}+1} \quad \cdots \quad \hat{oldsymbol{x}}_{M} \ \hat{oldsymbol{x}}_{rac{1}{2}}$$

Teoria da Informação

Pedro Mendes Jorge

29

Instituto Superior de Engenharia de Lisboa Departamento de Engenharia da Electrónica e das Comunicações Secção de Comunicações e Processamento de Sinais

1.4 Codificação Preditiva

As amostras de sinais reais derivam de processos físicos que exibem por vezes redundância. Nestes casos é possíveis tirar partido da sequências de amostras e predizer uma amostra com base nas anteriores.

$$\widetilde{x}[n] = \sum_{k} a_k x[n-k]$$

Erro de predição : $e[n] = x[n] - \tilde{x}[n]$

$$x[n] = \sum_{k} a_k x[n-k] + e[n]$$

<u>Vantagem</u>: A gama dinâmica do erro de predição é menor que a do sinal, permitindo diminuir o erro de quantificação ou o número de bits para enviar o sinal com a mesma relação sinal/ruído.

Teoria da Informação

1.4 Codificação Preditiva

Análise/Síntese com predição

Problema - Não se envia e[n] mas o seu valor quantificado!

Teoria da Informação

Pedro Mendes Jorge

31

Instituto Superior de Engenharia de Lisboa Departamento de Engenharia da Electrónica e das Comunicações Secção de Comunicações e Processamento de Sinais

1.4 Codificação Preditiva

Análise/Síntese com quantificação

Não funciona - $\hat{x}[n] \neq \tilde{x}[n]$ $\hat{x}[n]$ vai acumulando os erros de quantificação!

Teoria da Informação

Teoria da Informação

Pedro Mendes Jorge

33

Instituto Superior de Engenharia de Lisboa Departamento de Engenharia da Electrónica e das Comunicações Secção de Comunicações e Processamento de Sinais

Teoria da Informação

1.4 Codificação Preditiva

$$x[n] - \hat{x}[n] = e[n] - \hat{e}[n]$$

Nota - O emissor contém uma réplica do receptor.

Teoria da Informação

Pedro Mendes Jorge

35

Instituto Superior de Engenharia de Lisboa Departamento de Engenharia da Electrónica e das Comunicações Secção de Comunicações e Processamento de Sinais

Teoria da Informação

Pedro Mendes Jorge

1.4 Codificação Preditiva

Ganho de Predição

$$G_p = 10 \log_{10} \left(\frac{\sigma_x^2}{\sigma_e^2} \right)$$

Exemplo de aplicações

Delta Modulation - DM $\hat{e}[n] = \pm \Delta$

Differencial PCM - DPCM

GSM FR e GSM EFR

Teoria da Informação

Pedro Mendes Jorge

37

Instituto Superior de Engenharia de Lisboa Departamento de Engenharia da Electrónica e das Comunicações Secção de Comunicações e Processamento de Sinais

Teoria da Informação

Pedro Mendes Jorge

1.5 Codificação por Transformada

Transformação de N amostras do sinal x em N coeficientes da transformação.

A transformação linear pode ser interpretada como uma decomposição do sinal *x* numa combinação linear de vectores que formam uma outra base.

Teoria da Informação

Pedro Mendes Jorge

39

Instituto Superior de Engenharia de Lisboa Departamento de Engenharia da Electrónica e das Comunicações Secção de Comunicações e Processamento de Sinais

1.5 Codificação por Transformada

Transformações Ortogonais

•
$$A^{-1} = A^T \Rightarrow B = A^T$$

Para a reconstrução do sinal não é necessário inverter a matriz de transformação

•
$$b_i^T b_i = b_i b_i^T = 1 \Leftrightarrow ||b_i|| = 1$$
 e $b_i^T b_j = 0$ $i \neq j \Leftrightarrow \langle b_i, b_j \rangle = 0$

A base da transformação é ortonormada (componentes não correlacionadas)

•
$$\sigma_e^2 = \sigma_q^2$$

A variância do erro de reconstrução é igual à introduzida pelo processo de quantificação dos coeficientes

Teoria da Informação

1.5 Codificação por Transformada

Transformação Óptima (Transformação de Karhunen-Loeve)

Corresponde à descorrelação das amostras do sinal de entrada

$$R_X = \{R_X(k,l): k, l = 0,1,...,N-1\}$$
 Matriz de covariância da entrada

$$L_X = \{L_X(k,l): k, l = 0,1,..., N-1\}$$
 Matriz dos vectores próprios de R_X

$$D_X = \{D_X(k): k = 0,1,...,N-1\}$$
 Matriz diagonal dos valores próprios de R_X

$$\begin{vmatrix} \theta = L_X^T x \\ \hat{x} = L_X \hat{\theta} = \sum_{k=0}^{N-1} \hat{\theta}(k) l_k \end{vmatrix} \quad L_X = \begin{bmatrix} \uparrow & & \uparrow \\ l_0 & \cdots & l_{N-1} \\ \downarrow & & \downarrow \end{bmatrix} \qquad R_\theta = L_X^T R_X L_X = D_X$$

Teoria da Informação

Pedro Mendes Jorge

41

Instituto Superior de Engenharia de Lisboa Departamento de Engenharia da Electrónica e das Comunicações Secção de Comunicações e Processamento de Sinais

1.5 Codificação por Transformada

A transformação de KL envolve um peso computacional muito grande.

É melhor do ponto de vista prático utilizar métodos suboptimos que têm menor peso computacional mas que no entanto produzem bons resultados.

- Discrete Fourier Transform DFT
- Discrete Cosine Transform DCT

1.5 Codificação por Transformada

Discrete Fourier Transform - DFT

$$\theta = Fx \quad x = F^*\theta$$

$$F = \left\{ \frac{1}{\sqrt{N}} e^{-j2\pi kn/N} \right\}_{k,n=0,1,...,N-1}$$

$$\theta(k) = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) e^{-j2\pi kn/N}, \quad k = 0,1,...,N-1$$

$$x(n) = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \theta(k) e^{-j2\pi kn/N}, \quad n = 0,1,...,N-1$$

A DFT também descorrelaciona os dados da entrada

Teoria da Informação

Pedro Mendes Jorge

43

Instituto Superior de Engenharia de Lisboa Departamento de Engenharia da Electrónica e das Comunicações Secção de Comunicações e Processamento de Sinais

1.5 Codificação por Transformada

Discrete Fourier Transform - DFT

Poderemos interpretar os vectores da base da seguinte forma

$$b_{k} = \left\{ \frac{1}{\sqrt{N}} e^{-j2\pi kl/N} \right\}_{l=0,1,...,N-1}$$

$$\operatorname{Re}\{b_{k}\} = \frac{1}{\sqrt{N}} \cos\left(2\pi \frac{kl}{N}\right), l = 0,1,...,N-1$$

$$\operatorname{Im}\{b_{k}\} = \frac{1}{\sqrt{N}} \sin\left(2\pi \frac{kl}{N}\right), l = 0,1,...,N-1$$

Teoria da Informação

1.5 Codificação por Transformada

Discrete Cosine Transform - DCT

$$\theta = Cx \quad x = C^{T}\theta$$

$$C = \left\{ \sqrt{\frac{2}{N}} \alpha(k) \cos \frac{(2n+1)k\pi}{2N} \right\}_{k,n=0,1,...,N-1}$$

$$\alpha(0) = \frac{1}{\sqrt{2}} \quad \alpha(k) = 1, k \neq 0$$

$$\theta(k) = \sqrt{\frac{2}{N}} \alpha(k) \sum_{n=0}^{N-1} x(n) \cos \frac{(2n+1)k\pi}{2N}, \quad k = 0,1,...,N-1$$

$$x(n) = \sqrt{\frac{2}{N}} \sum_{k=0}^{N-1} \alpha(k) \theta(k) \cos \frac{(2n+1)k\pi}{2N}, \quad n = 0,1,...,N-1$$

Teoria da Informação

Pedro Mendes Jorge

45

Instituto Superior de Engenharia de Lisboa Departamento de Engenharia da Electrónica e das Comunicações Secção de Comunicações e Processamento de Sinais

1.5 Codificação por Transformada

Discrete Cosine Transform - DCT

$$N=8$$

Vectores da base

$$b_k = \left\{ \sqrt{\frac{2}{N}} \alpha(k) \cos \frac{(2n+1)k\pi}{2N} \right\}_{n=0,1,\dots,N-1}$$

A DCT também descorrelaciona os dados da entrada

Teoria da Informação

Instituto Superior de Engenharia de Lisboa Departamento de Engenharia da Electrónica e das Comunicações Secção de Comunicações e Processamento de Sinais

 $\theta = \begin{bmatrix} 0.8485 \\ -0.1281 \\ -0.3154 \\ 0.0450 \\ 0.0000 \\ -0.0301 \\ -0.0224 \\ 0.0255 \end{bmatrix}$

Teoria da Informação

Pedro Mendes Jorge

1.5 Codificação por Transformada

Transformada Bidimensionais

$$\theta(k,l) = \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} x(m,n)a(k,l,m,n)$$

$$x(m,n) = \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} \hat{\theta}(k,l)b(k,l,m,n)$$

Transformada Bidimensionais Separáveis

$$a(k,l,m,n) = a_{v}(k,m)a_{h}(l,n)$$

$$A_{h} = \{a_{v}(i,j)\}_{i,j=0,1,\dots,N-1}$$

$$A_{v} = \{a_{h}(i,j)\}_{i,j=0,1,\dots,N-1}$$

$$b(k,l,m,n) = b_{v}(k,m)b_{h}(l,n)$$

$$B_{h} = \{b_{v}(i,j)\}_{i,j=0,1,...,N-1}$$

$$B_{v} = \{b_{h}(i,j)\}_{i,j=0,1,...,N-1}$$

Teoria da Informação

Pedro Mendes Jorge

49

Instituto Superior de Engenharia de Lisboa Departamento de Engenharia da Electrónica e das Comunicações Secção de Comunicações e Processamento de Sinais

1.5 Codificação por Transformada

Transformada Bidimensionais Separáveis

$$\theta(k,l) = \sum_{m=0}^{N-1} a_v(k,m) \sum_{n=0}^{N-1} x(m,n) a_h(l,n)$$

$$\theta = A_{v} X A_{h}^{T}$$

$$x(m,n) = \sum_{k=0}^{N-1} b_{\nu}(k,m) \sum_{l=0}^{N-1} \theta(k,l) b_{h}(l,n)$$

$$X = B_v^T \theta B_h$$

$$A_v = A_b = A$$
$$B_v = B_b = B$$

$$X = \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} \theta(k, l) B_{kl}$$

$$B_{kl} = b_k b_l^T$$

O sinal reconstruído (imagem) é uma combinação linear das imagens de base B_{kl} pesadas pelos parâmetros $\theta(k,l)$

Teoria da Informação

Pedro Mendes Jorge

1.5 Codificação por Transformada

DCT Bidimensional

$$\theta(k,l) = \frac{2}{N} \alpha(k) \alpha(l) \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} x(m,n) \cos \frac{(2m+1)k\pi}{2N} \cos \frac{(2n+1)l\pi}{2N}, \quad k,l = 0,1,...,N-1$$

$$x(m,n) = \frac{2}{N} \sum_{k=0}^{N-1} \alpha(k) \alpha(l) \theta(k,l) \cos \frac{(2m+1)k\pi}{2N} \cos \frac{(2n+1)l\pi}{2N}, \quad m,n = 0,1,...,N-1$$

$$X = \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} \theta(k, l) B_{kl} \qquad B_{kl} = b_k b_l^T \qquad b_k = \left\{ \sqrt{\frac{2}{N}} \alpha(k) \cos \frac{(2n+1)k\pi}{2N} \right\}_{n=0,1,...,N}$$

Teoria da Informação

Pedro Mendes Jorge

51

Instituto Superior de Engenharia de Lisboa Departamento de Engenharia da Electrónica e das Comunicações Secção de Comunicações e Processamento de Sinais

Exemplo: Matrizes de base para a DCT de 8x8

Teoria da Informação

Pedro Mendes Jorge

Exemplo: Decomposição de uma imagem

 $\ell(k,l) = \begin{bmatrix} 6.56 & 0.12 & 0.96 & -0.05 & 0.19 & -0.15 & 0.01 & 0.0\vec{6} \\ -0.07 & 0.01 & 0.66 & -0.12 & -0.76 & 0.12 & -0.07 & 0.17 \\ 0.63 & -0.06 & -0.46 & 0.01 & -0.40 & 0.17 & 0.69 & -0.23 \\ -0.34 & 0.02 & -0.02 & 0.07 & 0.31 & 0.03 & 0.09 & -0.48 \\ 0.09 & 0.02 & 0.23 & -0.17 & -0.06 & 0.22 & -0.60 & 0.01 \\ 0.26 & 0.03 & -0.63 & -0.06 & 0.45 & 0.02 & 0.21 & 0.05 \\ 0.26 & 0.00 & -0.16 & 0.09 & 0.05 & -0.12 & -0.20 & -0.06 \\ -0.33 & -0.01 & 0.34 & -0.05 & -0.17 & 0.05 & 0.10 & 0.13 \end{bmatrix}$

Teoria da Informação

Pedro Mendes Jorge

53

Instituto Superior de Engenharia de Lisboa Departamento de Engenharia da Electrónica e das Comunicações Secção de Comunicações e Processamento de Sinais

1.5 Codificação por Transformada

Atribuição de bits

Q? - Devemos distribuir o número de bits uniformemente pelos N coeficientes ?

R! - Devemos atribuir mais bits aos parâmetros com maior variância.

Condição

Devemos distribuir o número de bits de acordo com

$$R = \frac{1}{N} \sum_{k=0}^{N-1} R_k = \text{constante}$$

Teoria da Informação

1.5 Codificação por Transformada

Atribuição de bits

Os intervalo de quantificação são iguais para todos os coeficientes

$$R_k = R + \frac{1}{2}\log_2 \frac{\sigma_k^2}{\left[\prod_{j=0}^{N-1} \sigma_j^2\right]^{\frac{1}{N}}}$$

em que $\sigma_k^2, k = 0,1,...,N-1$ Definem as variâncias dos coeficientes da transformação

Teoria da Informação

Pedro Mendes Jorge

55

Instituto Superior de Engenharia de Lisboa Departamento de Engenharia da Electrónica e das Comunicações Secção de Comunicações e Processamento de Sinais

Teoria da Informação

1.5 Codificação por Transformada

Em vez de se transmitir todos os N coeficientes poderemos transmitir somente P coeficientes menor que N

$$\hat{x} = \sum_{k=0}^{P-1} \hat{\theta}(k) b_k$$

Vantagem - Diminui o débito binário

Desvantagem - Aumenta o erro de quantificação

$$e = x - \hat{x} = e_q + \sum_{k=P}^{N-1} \theta(k) b_k$$

A escolha dos coeficientes a enviar poderá ser realizada com base nas suas amplitudes

Teoria da Informação

Pedro Mendes Jorge

57

Instituto Superior de Engenharia de Lisboa Departamento de Engenharia da Electrónica e das Comunicações Secção de Comunicações e Processamento de Sinais

Considerando somente os 4 primeiros coeficientes (menor frequência).

$$e^2 = \sum_{i=0}^{N-1} (x[n] - \hat{x}[n])^2$$

$$e^2 = 0.0021$$

Teoria da Informação

1.5 Codificação por Transformada

DCT Bidimensional

Imagens reconstruídas com 1/2 dos coeficientes

Teoria da Informação

Pedro Mendes Jorge