EdX y sus Miembros usan cookies y otras tecnologías de seguimiento para fines de rendimiento, análisis y marketing. Al usar este sitio web, aceptas este uso. Obtén más información sobre estas tecnologías en la <u>Política de privacidad</u>.

<u>Curso</u> > <u>Quantum Systems</u> > <u>End of Unit Exam</u> > Quantum Systems - Exam

Quantum Systems - Exam

Numerical Input

1/1 point (graded)

Calculate the normalization factor to make the vector $\begin{vmatrix} 3 \\ 2 \end{vmatrix}$ a stochastic vector.

This is the value you have to divide the vector by to normalize it.

Enviar

✓ Correcto (1/1 punto)

Numerical Input

1/1 point (graded)

You are given a linear combination $a\begin{bmatrix}1\\0\end{bmatrix}+0.3\begin{bmatrix}0\\1\end{bmatrix}$. What choice of a would make this a stochastic vector?

✓ Correcto (1/1 punto)

Numerical Input

1/1 point (graded)

What's the entropy of the probability distribution described by the stochastic

vector
$$\begin{bmatrix} 0.2\\0.8 \end{bmatrix}$$
?

0.72

~

0.72

Enviar

✓ Correcto (1/1 punto)

Multiple Choice

1/1 point (graded)

Which state does the following point on the surface of the Bloch sphere correspond to?

- ullet $(|0
 angle |1
 angle)/\sqrt{2}$
- $|0\rangle$
- $|1\rangle$
- $(\ket{0}{+}\ket{1})/\sqrt{2}$

Enviar

✓ Correcto (1/1 punto)

Numerical Input

1/1 point (graded)

Calculate the probability amplitude a in the superposition $a|0\rangle-i/2|1\rangle$.

sqrt(3/4)

✓ Correcto (1/1 punto)

Multiple Choice

1/1 point (graded)

You are given a product state $0.5(|00\rangle+|01\rangle+|10\rangle+|11\rangle$). What is a possible formulation for this tensor product?

- $\bigcirc 0.5|0
 angle\otimes 0.5|1
 angle$
- $igotimes (1/\sqrt{2}(\ket{0}\!+\!\ket{1}))\otimes (1/\sqrt{2}(\ket{0}\!+\!\ket{1}))$
- $\bigcirc 0.5(|00\rangle + |01\rangle) \otimes 0.5(|10\rangle + |11\rangle)$
- ~

Enviar

✓ Correcto (1/1 punto)

Checkboxes

1/1 point (graded)

An entangled state...

- is not a product state.
- is a product state.
- can show strong correlations.
- has maximum entropy.

✓ Correcto (1/1 punto)

Checkboxes

1/1 point (graded)

The complex conjugate of the bra $\langle 0|$, that is, $\langle 0|^{\dagger}$, is

Enviar

✔ Correcto (1/1 punto)

Numerical Input

1/1 point (graded)

You are given a source of an unknown qubit state. You make measurements in the computational basis, that is, your measurement is $\{|0\rangle\langle 0|,|1\rangle\langle 1|\}.$ You observe that you see the outcome zero 30 times and the outcome one 70 times out of a hundred measurements. What is your estimate of the absolute value of the probability amplitude of $|0\rangle$ in the superposition?

sqrt(0.3)

5 de 10

. /	$\overline{\cap}$	<u></u>
V	U	.3

✓ Correcto (1/1 punto)

Numerical Input

1/1 point (graded)

What's the trace of a density matrix?

Enviar

✓ Correcto (1/1 punto)

Multiple Choice

1/1 point (graded)

You make a single-qubit measurement on the first qubit of the state $(|00\rangle-|11\rangle)/\sqrt{2}$. You get the output one. What's the state after the measurement?

$$(|00
angle - |11
angle)/\sqrt{2}$$
.

~

✓ Correcto (1/1 punto))		
Text Input			
1/1 point (graded) Reverse this unitary circu	iit: $X\!H$		
НХ	•		
Enviar			
✓ Correcto (1/1 punto))		
Multiple Choice 1/1 point (graded) Unitary operations also	preserve the l_1 -norn	ղ.	
True.			
• False.			
✓			
Enviar			

Numerical Input

1/1 point (graded)

A two-qubit pure state $(|00\rangle+|11\rangle)/\sqrt{2}$ is in an open system and we model

7 de 10 13/9/19 18:00

decoherence by mixing it with random noise $\mathbb{I}/4$ with a visibility parameter v. What's the top-right element of the density matrix at v=0.7?

0.35

Enviar

✓ Correcto (1/1 punto)

Numerical Input

1/1 point (graded)

A system is in equilibrium at zero temperature. What's the probability of observing the ground state energy?

1

Enviar

✓ Correcto (1/1 punto)

Numerical Input

1/1 point (graded)

What's the energy of the spin system given by the Hamiltonian

$$H=-0.5\sigma_1\sigma_2+\sigma_1+\sigma_2$$
 with $\sigma_1=1$ and $\sigma_2=-1$?

0.5

✓ Correcto (1/1 punto)

Numerical Input

1/1 point (graded)

What's the optimal value of this QUBO? $\min 5x_1x_2 + 6x_1 + 3x_2$

✓ Correcto (1/1 punto)

Numerical Input

1/1 point (graded)

A single-qubit system is described by a Hamiltonian $H=-\sigma^X$. What is the energy expectation value in the state $|0\rangle$?

0

Enviar

✓ Correcto (1/1 punto)

Numerical Input

1/1 point (graded)

Given the same Hamiltonian, what is the energy expectation value in the state $|0\rangle+|1\rangle)/\sqrt{2}$?

-1

-1

Enviar

✓ Correcto (1/1 punto)

Multiple Choice

1/1 point (graded)

Do the matrices $X=\begin{bmatrix}0&1\\1&0\end{bmatrix}$ and $H=\frac{1}{\sqrt{2}}\begin{bmatrix}1&1\\1&-1\end{bmatrix}$ commute?

Yes.

~

Enviar

✓ Correcto (1/1 punto)

© Todos los Derechos Reservados