Algèbre des polynômes à une indéterminée sur un corps.

Exercice 1. Soit K un corps.

- 1. Donner un exemple de polynôme irréductible de K[X] qui admet une racine dans K.
- **2.** Soit $P \in \mathbf{K}[X]$ un polynôme de degré 2 ou 3. Montrer que P est irréductible dans \mathbf{K} si et seulement si P n'admet pas de racine dans \mathbf{K} .
- 3. Soit $P \in \mathbf{K}[X]$ un polynôme de degré 4 ou 5. Montrer que P est irréductible dans \mathbf{K} si et seulement si P n'admet pas de racine dans \mathbf{K} et P n'est pas divisible par un polynôme irréductible de degré 2 de $\mathbf{K}[X]$.

Plus généralement, un polynôme de degré n de $\mathbf{K}[X]$ est irréductible dans $\mathbf{K}[X]$ si et seulement si il n'est divisible par aucun polynôme irréductible de degré $\leq E\left(\frac{n}{2}\right)$ de $\mathbf{K}[X]$.

Cet énoncé est l'équivalent pour les polynômes irréductibles du crible d'Eratosthène pour les nombres premiers.

Exercice 2. Soit p > 2 un nombre premier.

- 1. Montrer qu'un élément $d \in \mathbf{F}_p^*$ est un carré dans \mathbf{F}_p si et seulement si $d^{\frac{p-1}{2}} \equiv 1 \pmod{p}$.
- **2.** Soit $P = aX^2 + bX + c \in \mathbf{F}_p[X]$ un polynôme de degré 2. Donner une condition nécessaire et suffisante sur le discriminant $\Delta = b^2 4ac$ pour que le polynôme P soit réductible dans $\mathbf{F}_p[X]$. Que peut-on dire du cas p = 2?
- 3. Factoriser le polynôme $P = X^2 + 3X + 4$ dans $\mathbf{F}_3[X], \mathbf{F}_5[X]$ et $\mathbf{F}_{11}[X]$.

Exercice 3. Soient **K** un corps, $P \in \mathbf{K}[X]$ et $a, b \in \mathbf{K}$. Déterminer les restes respectifs de la division euclidienne de P par (X - a), $(X - a)^2$ et (X - a)(X - b).

Exercice 4. Soient P et $Q \in \mathbf{Q}[X]$. On suppose P irréductible. Montrer que s'il existe $a \in \mathbf{C}$ tel que P(a) = Q(a) = 0, alors P divise Q.

Exercice 5. Montrer que le polynôme $P = X^4 + 2X^2 - 4X + 1$ n'a pas de racine multiple dans $\mathbb{Q}[X]$. Qu'en est-il dans $\mathbb{F}_2[X]$?

Exercice 6. Soient m et n des entiers strictement positifs. Quel est le pgcd dans $\mathbf{R}[X]$ des polynômes $X^m - 1$ et $X^n - 1$?

Exercice 7. 1. Montrer que l'application $\mathbf{F}_p[X] \to \mathbf{F}_p[X]$, $Q \mapsto Q^p$ est un morphisme d'anneaux. Ce morphisme est appelé morphisme de Frobenius.

- **2.** Factoriser le polynôme $X^{15} 1$ dans $\mathbf{F}_5[X]$.
- **3.** Factoriser le polynôme $X^{16} 1$ dans $\mathbf{F}_2[X]$.

Exercice 8. Factoriser le polynôme $X^4 + 1$ dans $\mathbf{Z}[X]$, $\mathbf{C}[X]$, $\mathbf{R}[X]$, $\mathbf{F}_2[X]$, $\mathbf{F}_3[X]$ et $\mathbf{F}_7[X]$.

Exercice 9. Effectuer la division euclidienne de $X^3 + X^2 + 1$ par $X^2 + X + 1$ dans $\mathbf{F}_2[X]$. Ecrire une relation de Bézout entre ces deux polynômes.

Exercice 10. Soit p un nombre premier.

- 1. Combien existe-t-il de polynômes unitaires de degré 2 dans $\mathbf{F}_p[X]$?
- **2.** Montrer que si P est un polynôme unitaire réductible de degré 2 de $\mathbf{F}_p[X]$, alors :
 - ou bien $P=(X-\alpha)(X-\beta)$ vec $\alpha \neq \beta \in \mathbf{F}_p$; combien existe-t-il de tels polynômes?
 - ou bien $P=(X-\alpha)^2$ vec $\alpha\in \mathbf{F}_p$; combien existe-t-il de tels polynômes?
- 3. En déduire le nombre des polynômes unitaires irréductibles de degré 2 de $\mathbf{F}_p[X]$. Les lister pour p = 2 et p = 3.
- **4.** Montrer qu'il existe $\frac{1}{3}p(p^2-1)$ polynômes unitaires irréductibles de degré 3 dans $\mathbf{F}_p[X]$. Les lister pour p=2.

Exercice 11. Soient K un corps et p un nombre premier.

- 1. Quelles sont les racines du polynôme $P = X^p 1$ dans **K**?
- 2. Quelles sont les racines du polynôme $\sum_{i=0}^{p-1} X^i$ dans \mathbf{K} ?
 3. Factoriser le polynôme X^5-1 dans $\mathbf{F}_5[X]$ et dans $\mathbf{F}_{11}[X]$.
- 4. On suppose ici que K est de caractéristique distincte de 2 et 5. Soit $a \in K$. Montrer que a est d'ordre 10 dans \mathbf{K}^* si et seulement si a est racine du polynôme $Q = X^4 - X^3 + X^2 - X + 1 \in \mathbf{K}[X]$.