Neural Networks and the XOR problem $X = [x_1, x_2]$ input T = True = 1 $W = [w_1, w_2]$ $W = [w_1, w_2]$ $W = [w_1, w_2]$

Yes! Anything above the line is true and below the line is false.

Can we find a line to separate true and false? Yes! Just like the AND

Can we draw a single line to separate the two classes?

Although XOR doesn't seem so different from AND/OR, it's suprisingly more computationally complex. We need two lines, or at least two neurons, to define the decision boundary.

Neural network for AND/OR

The XOR function can logically be rewritten in terms of AND, OR, and NOT. The NOT function is just what it sounds like, NOT true = false, NOT false = true.

(x1 OR x2) AND (NOT(x1 AND x2)

Imagine the graph for XOR is a square piece of paper. How can we use a single line to separate the two classes?

