Logarithmic Differentiation Notes

Properties of Logs that one need to know in AP Calculus:

Differentiation Rules with Log

$\frac{d}{dx} \Big[\log_b (x) \Big] = \frac{1}{\ln(b)} \cdot \frac{1}{x}$	$\frac{d}{dx} \Big[\ln \big(x \big) \Big] = \frac{1}{x}$
$\frac{d}{dx} \left[\log_b(u) \right] = \frac{1}{\ln(b)} \cdot \frac{1}{u} \cdot u'$	$\left[\frac{d}{dx}\left[\ln\left(u\right)\right] = \frac{1}{u} \cdot u'$

Logarithmic Differentiation Example:

Find y'

$$y = \frac{x^2 \sqrt{3x - 2}}{(x - 1)^2}$$

$$\ln(y) = \ln\left[\frac{x^2 \sqrt{3x - 2}}{(x - 1)^2}\right]$$

$$\ln(y) = \ln(x^2) + \ln\left[\left[3x - 2\right]^{\frac{1}{2}}\right] - \ln\left[\left[x - 1\right]^2\right)$$

$$\ln(y) = 2\ln(x) + \frac{1}{2}\ln(3x - 2) - 2\ln(x - 1)$$

$$\downarrow$$

$$\frac{1}{y} \cdot y' = \frac{2}{x} + \frac{3}{2(3x - 2)} - \frac{2}{x - 1}$$

$$y' = y\left[\frac{2}{x} + \frac{3}{2(3x - 2)} - \frac{2}{x - 1}\right]$$

$$y' = \frac{x^2 \sqrt{3x - 2}}{(x - 1)^2} \left[\frac{2}{x} + \frac{3}{2(3x - 2)} - \frac{2}{x - 1}\right]$$

Derivative of Exponential Functions:

$\frac{d}{dx} \Big[e^x \Big] = e^x$	$\frac{d}{dx} \Big[a^x \Big] = \ln(a) \cdot a^x$
$\frac{d}{dx}\Big[e^u\Big] = e^u \cdot u'$	$\frac{d}{dx} \Big[a^u \Big] = \ln \big(a \big) \cdot a^u \cdot u'$

Functions similar to $\left[\cos(x)\right]^x$, x^{2x-1} , etc. cannot be handled by

using the power rule	using the exponential rule
$\frac{d}{dx} \left[u^n \right] = n \cdot u^{n-1} \cdot u'$	$\frac{d}{dx} \Big[a^u \Big] = \ln \big(a \big) \cdot a^u \cdot u'$
the exponent is not a constant	*the base is not a constant*

To differentiate functions of this form, <u>you need to use logarithmic differentiation combined with implicit differentiation</u>:

- I. Take the natural logarithm of both sides of the equation.
- II. Use the exponent properties of logarithms to bring the exponent down
- III. Use implicit differentiation to differentiate the new equation
- IV. Isolate y'
- V. Replace any y in the derivative with the expression that involves x only.
 - a. If y is defined explicitly in terms of x, then y' must be defined explicitly in terms of x.

Find y' given $y = x^x$	Find y' given $y = \left[\cos(x)\right]^x$
$y = x^x$	$y = \left[\cos\left(x\right)\right]^{x}$
$\ln\left(y\right) = \ln\left(x^{x}\right)$	$\ln(y) = \ln(\left[\cos(x)\right]^{x})$
$\ln(y) = x \ln(x)$	$\ln(y) = x \ln(\cos(x))$
$\frac{1}{y} \cdot y' = 1 \cdot \ln(x) + x \cdot \frac{1}{x}$	$\left[\frac{d}{dx} \left[\ln(y) \right] = \frac{d}{dx} \left[x \ln(\cos(x)) \right]$
$\frac{1}{y} \cdot y' = \ln(x) + 1$	$\frac{1}{y} \cdot y' = 1 \cdot \ln\left(\cos\left(x\right)\right) + x \cdot \frac{1}{\cos\left(x\right)} \cdot \left(-\sin\left(x\right)\right)$
$y' = y \Big[\ln \big(x \big) + 1 \Big]$	$y' = y \left(\ln(\cos(x)) + x \cdot \frac{1}{\cos(x)} \cdot (-\sin(x)) \right)$
$y' = x^x \left[\ln(x) + 1 \right]$	$y' = \left[\cos(x)\right]^{x} \left(\ln(\cos(x)) + x \cdot \frac{1}{\cos(x)} \cdot \left(-\sin(x)\right)\right)$