全国青少年奥林匹克联赛(NOIP)复赛模拟

提高组

(请选手务必仔细阅读本页内容)

一、题目概览

· NZ II 1909U			
中文题目名称	拿出勇气吧	生死之对决	最后的胜利
英文题目名称	courage	match	ending
可执行文件名	courage.exe	match.exe	ending.exe
输入文件名	courage.in	match.in	ending.in
输出文件名	courage.out	match.out	ending.out
每个测试点时限	1秒	1秒	1秒
测试点数目	10	10	10
每个测试点分值	10	10	10
比较方式	全文比较	全文比较	全文比较
题目类型	传统	传统	传统

二、提交源程序文件名

对于 Pascal 语言	courage.pas	match.pas	ending.pas
对于 C 语言	courage.c	match.c	ending.c
对于 C++语言	courage.cpp	match.cpp	ending.cpp

三、编译命令(不包含任何优化开关)

对于 Pascal 语言	fpc courage.pas	fpc match.pas	fpc ending.pas
对于C语言	gcc courage.c –o	gcc match.c –o	gcc.c ending.c –
	courage.exe	match.exe	o ending.exe
对于 C++语言	g++	g++ match.cpp	g++ ending.cpp
	courage.cpp –o	–o match.exe	–o ending.exe
	courage.exe		

四、运行内存限制

<u> </u>	OF CN 4	OF CN 4	OF CN 4
运行内存上限	256IVI	l 256M	256IVI

注意事项:

- 1. 文件名 (程序名和输入输出文件名) 必须使用小写。
- 2. C/C++中函数 main()的返回值类型必须是 int, 程序正常结束时的返回值必须是 0。
- 3. 全国统一评测时采用的机器配置为: CPU P4 3.0GHz, 内存 1G, 上述时限以此配置为

准。各省在自测时可根据具体配置调整时限。

传说,在很远很远的地方,有一片森林,森林里住着许多快乐的孩纸。

一天,一切都发生了变化,恶魔占领了这片美丽的土地,大地一片沉寂,人们只能躲在 一个秘密的圣地。

正当人们陷入绝望之时,长老拿出了一本古老的魔法书。

"2011年的某一天,恶魔将会占领我们的村子,这时,将会出现英雄拯救我们的族人。"

长老看着 2000 年前的预言, 沉思许久。

"孩子们,你们谁愿意去打败恶魔,拯救我们的村子?"长老带着略微沉重的语气问道。 一阵寂静······

长老略微失望……

突然,人群一阵骚动,一个少年站了出来。

"长老,我愿意!"

长老目光放出光芒,颤抖的手握住少年,略微激动的说:"好,好!"

"我也愿意!"

人群中,走出一个少女。在众人的注视下,少女牵住少年的手,对长老说:"让我也一起去吧!"

长老握住两人的手,不禁热泪盈眶。

拿出勇气吧

Courage

长老翻开魔法书,喃喃说道:

"

少年获得的数字是'最小的合数',少女获得的数字是'第4小质数'。

,,

长老看着两人,缓慢说道:

"

对于你们来说,如果一个数它的每一位都是你们获得的数字,那么这就是一个幸运数字。 比如 4,477,74 是幸运数字,而 5,17,467 则不是。

,,

长老扶了扶眼镜,继续说:

"

现在我给你们一个任务。我给你们一个数字 n, 在 1 到 10^6 之间,你们需要找到最小的幸运数字,使得幸运数字每一位上数字的和等于 n。我会保证必然会存在这个幸运数字。

"

作为恶魔的派去的内奸, 你自然也要回答这个问题。

【输入描述】

一个数,为n

【输出描述】

一个数,为最小的满足条件的幸运数字

【样例输入】

11

【样例输出】

47

【数据范围】

30%数据满足: n<=1000

100%数据满足: 1<=n<=10^6

生死之对决

Match

解决了长老的任务,两人来到了村子。

在恶魔的授意下, 你已经暗中帮二人解决了一路上看护的守卫。

二人顺利的来到了村子的广场,少年发现有点不对:

"

你看,我们一路上如此顺利,似乎有点古怪。

,,

少女眨了眨眼睛,点了点头:

"

嗯,一切似乎有人安排好了。

"

"

哈哈,少年和少女,欢迎过来,我就是你们要找的恶魔。

"

广场的地面突然沉陷,恶魔缓缓升起。

恶魔念起咒语,一个数字 P 出现。

少年不紧不慢,嘴里振振有词,一个数字 V 出现。

少女念起魔咒,广场周围出现 k 条巨大光束。

你瞬间看出,这是幸运魔咒,如果在区间[min(v,p),max(v,p)]中存在且仅存在 k 个幸运数字(数字的每一位为 4 或者 7),那么恶魔将输掉对抗。

你希望知道恶魔输掉对抗的几率是多少,以确定要不要倒戈。

【输入描述】

- 一行 5 个数: pl, pr, vl, vr, k, 表示 P 的取值区间是[pl, pr], V 的取值区间是[vl, vr] 【输出描述】
- 一个数,表示恶魔输掉的几率。为了精确,请保留 12 位小数。建议使用 double 计算。

【输入样例】

1 10 1 10 2

【输出样例】

0.320000000000

【样例解释】

符合条件的 P 和 V 共 32 对:

(1, 7), (1, 8), (1, 9), (1, 10), (2, 7), (2, 8), (2, 9), (2, 10), (3, 7), (3, 8), (3, 9), (3, 10), (4, 7), (4, 8), (4, 9), (4, 10), (7, 1), (7, 2), (7, 3), (7, 4), (8, 1), (8, 2), (8, 3), (8, 4), (9, 1), (9, 2), (9, 3), (9, 4), (10, 1), (10, 2), (10, 3), (10, 4)

可能的 P 和 V 共 100 对, 所以几率为 32/100

【输入样例】

5 6 8 10 1

【输出样例】

1.000000000000

【样例解释】

无论 P 和 V 取值如何,一定存在一个幸运数字 7, 所以几率为 1

【数据范围】

40%数据保证: 1<=pl<=pr<=100,1<=vl<=vr<=100,1<=k<=20

100%数据保证: 1<=pl<=pr<=10^9, 1<=vl<=vr<=10^9, 1<=k<=1000

最后的结局

Ending

少年和少女打败了恶魔。 恶魔临死前,仰天长叹:

"

为什么! 为什么!

,,

恶魔转过头对着少年和少女,大笑道:

"

你们不要得意,既然我不能得到这片土地,那我们就同归于尽。哈哈!哈哈!

恶魔消失了, 而天也变得愈发黑暗。

这时候,你偷了一张地图出来,走到少年面前,说:

"

这是一份先祖留下来的神秘之图。这个图施了魔法,如果可以破解魔法,村子就可以恢复原状。里面是一个 n 个点 n-1 条边的无环图,每条边都有一个权值。如果可以算出,有多少组(i,j,k),i,j,k 各不相同,满足从 i 到 j,从 i 到 k 都满足路径上至少存在一条边的权值是幸运数字,那么就可以破解魔法。上面说,i,j,k 就算一样,但顺序不同就不是一组,比如说(2,1,3)与(1,2,3)或者(3,1,2)等等都是不同的组。而这个幸运数字要求是每一位为 4 或者 7。

,,

你为什么会知道这些?你是内奸,当然从恶魔口中知道啦。

快点,如果 1s 内不能算出结果,村子就会灭亡。

【输入描述】

第一行: n

第 2-n 行: u,v,w, 描述了一条边, 边的 2 端是 u,v, 权值为 w

【输出描述】

一行表示组数

【输入样例】

4

124

3 1 2

147

【输出样例】

16

【样例解释】

这 16 组分别是:

(1, 2, 4), (1, 4, 2), (2, 1, 3), (2, 1, 4), (2, 3, 1), (2, 3, 4), (2, 4, 1), (2, 4, 3), (3, 2, 4), (3, 4, 2), (4, 1, 2), (4, 1, 3), (4, 2, 1), (4, 2, 3), (4, 3, 1), (4, 3, 2).

【样例输入】

4

124

1 3 47

1 4 7447

【样例输出】

24

【数据范围】

40%数据保证: n<=1000

100%数据保证: 1<=n<=10^5, 1<=u,v<=n, 1<=w<=10^9

最终,少年和少女拯救了整个村子,成为了村子的英雄。森林从此开始了几百年的和平。

而少年和少女,也因为这次经历,走到了一起。

虽然没有你的帮助,村子不可能躲过一劫。但是你心中充满了愧疚,带着一条拐杖,一 只狗狗,开始了浪迹天涯的旅程。

终。