Zajęcia 8: (rozszerzony) algorytm Euklidesa

Jedną z operacji używanych w kryptografii jest tzw. odwracanie modulo, czyli znajdywanie x takiego, że (a * x) mod n = 1, gdzie znamy a i n. Robi się to przez tzw. rozszerzony algorytm Euklidesa.

Podstawowy algorytm Euklidesa (szkolny) służy do znajdywania największego wspólnego dzielnika przez odejmowanie większej od mniejszej liczby

Przykład: 20 i 8

Zamiast odejmowania lepiej uzyć dzielenia modulo:

Rozszerzony algorytm Euklidesa pozwala nam znaleźć dodatkowo liczby s i t, takie, że dla danych a i b (a>b) spełnione jest równanie: s a + t b = NWD(a,b),

algorytm polega na wyliczeniu kolejnych q_i , r_i , s_i i t_i , gdzie algorytm zaczynamy liczbami:

$$r_1=a$$
, $r_2=b$, $s_1=1$, $s_2=0$, $t_1=0$, $t_2=1$

Proszę zwrócić uwagę że q_1 i q_2 nie są w ogóle zdefiniowane/potrzebne, r_1 musi być większe od r_2 (bo założyliśmy że a>b) a s i t mają wartość 1 wtedy gdy r =a, bo w równaniu wyżej s jest mnożone przez a (i tak samo t=1 gdy r=b bo mnożone jest t*b)

kolejne kroki liczymy według wzorów:

 $q_i=r_{i-2}/r_{i-1}$; (czyli dzielenie bez reszty)

 $r_i=r_{i-2} \mod r_{i-1}=r_{i-2}-q_i*r_{i-1};$ (druga część równania to naprawdę definicja dzielenia modulo, dokładnie to samo co się dzieje w podstawowym algorytmie Euklidesa)

 $s_i = s_{i-2} - q_i * s_{i-1}$; (to wygląda jak dzielenie modulo ale q_i pochodzi z dzielenia r_i wyżej)

 $t_i = t_{i-2} - q_i * t_{i-1}$ (symetrycznie jak dla s_i)

Jak robimy to na kartce to dobrze sobie umieścić wyniki w tabelce

Przykład1 20 i 8:

\mathbf{q}_{i}	r _i	Si	$t_{\rm i}$
	20	1	0
	8	0	1
2	4	1	-2
2	0		

W momencie kiedy dostaniemy r_i=0, to wyniki dostajemy w wierszu wyżej:

 $NWD(a,b)=r_{i-1}, s=s_{i-1}, t=t_{i-1}$

czyli dostaliśmy s=1, t=2, NWD(20,8)=4

sprawdzenie: 1*20 - 2 *8 = 4, wszystko się zgadza

Żeby wykonać odwracanie modulo przez rozszerzony algorytm Euklidesa, a i n muszą być względnie pierwsze, tj. NWD(a,n) = 1, czyli nasze równanie wygląda

a*s + n*t = NWD(a,n)=1 // dzielimy modulo prze n

 $(a*s + n*t) \mod n = 1 \mod n$

n*t mod n = 0, bo n*t się dzieli przez n, a 1 mod n to jest zawsze 1 (jeżeli n>1), czyli dostajemy równanie od którego zaczeliśmy:

a*s mod n =1

UWAGA: 't' nam się skróciło, więc nie potrzebujemy go teraz w tabelce i liczymy tylko q_i, r_i, s_i.

 $Przykład2: (7 * s) \mod 10 = 1, s=?$

	` '	,
\mathbf{q}_{i}	r_{i}	S_{i}

	10	0
	7	1
1	3	-1
2	1	3

W momencie kiedy dostaniemy r_i =1, to następne r_i musi być równe 0, czyli możemy przerwać algorytm na tym kroku i odpowiedź to odpowiednie s_i .

NWD(7,10)=1, s=3.

Sprawdzenie 7*3 mod 10 = 21 mod 10 = 1

 $Przykład3: (5 * s) \mod 11 = 1, s=?$

$q_{\rm i}$	r_{i}	Si
	11	0
	5	1
2	1	-2

Dostaliśmy odpowiedź -2, teoretycznie spełnia ono równanie, bo 5* -2 mod 11 = -10 mod 11 = 1 (-10 to -1 * 11 + 1, dlatego reszta z dzielenia przez -1 to 1)

Ale zwykle chcemy żeby rozwiązanie naszego równania było dodatnie, możemy wtedy dodać do naszego 's' 'a', czyli w tym przypadku

s=-2 + 11 = 9 też spełnia: 5 * 9 mod 11 = 45 mod 11 = 1

Uwaga, równania 5s mod 11 = 1 i 11s mod 5 = 1 będą się zaczynały tak samo w kolumnie r: $r_1=11$, $r_2=5$, ale różnią się tym czy $s_1=1$ (w drugim przypadku), czy $s_2=1$ (w pierwszym przypadku), czyli s=1 przy tej liczbie przez którą jest mnożony.

Przykład4, jeżeli np. spróbujemy rozwiązać równanie 20*x mod 8 =1 to w powyższej metodzie w r₁ nigdy nie dostaniemy 1 (w tabelce dostaniemy 4, i zaraz potem 0). I faktycznie wtedy równianie nie ma rozwiązania (proszę zwrócić uwagę, ze 20*x jest zawsze parzyste, jak podzielimy modulo przez 8 to wciąż będzie parzyste, a po lewej stronie mamy 1, liczbę nie parzystą).

Podsumowując algorytm wygląda tak:

- liczymy kolejne kroki algorytmu i sprawdzamy na każdym kroku r_i
- jeżeli r_i=1 i s_i>0, to rozwiązanie to s
- jeżeli r_i=1 i s_i<0, to rozwiązanie to s+a
- jeżeli r_i=0 (i nie mielismy na poprzednim kroku r_i=1) równanie nie ma rozwiązań (można zwrócić np. -1)

Zadanie dla państwa:

zrobić funkcję invmod(a, n), która zwraca rozwiązanie x równania (a x) mod n =1 jeżeli są rozwiązania, a -1 jeżeli rozwiązanie nie istnieje

Proszę przysłać kod oraz rozwiązania równań (jeśli istnieją) na mój adres e-mail:

 $(337*x) \mod 123=1$

(4321*x) mod 1234=1

 $(432 *x) \mod 321 = 1$