CS 70 Discrete Mathematics and Probability Theory Summer 2020 Course Notes

DIS 1D

Set Operations

- \mathbb{R} , the set of real numbers
- \mathbb{Q} , the set of rational numbers: $\{a/b: a,b \in \mathbb{Z} \land b \neq 0\}$
- \mathbb{Z} , the set of integers: $\{..., -2, -1, 0, 1, 2, ...\}$
- \mathbb{N} , the set of natural numbers: $\{0, 1, 2, 3, \ldots\}$

{1,2} = {2,1}

(a) Given a set $A = \{1, 2, 3, 4\}$, what is $\mathscr{P}(A)$ (Power Set)?

4) (Power Set)? $\{1, 2, 3\}, \{1, 2, 4\}, \{1, 2\}, \{1, 2\}, \{1, 2\}, \{1, 3\}, \{1, 2, 3\}, \{1,$

- (b) Given a generic set B, how do you describe $\mathcal{P}(B)$ using set comprehension notation? (Set Comprehension is $\{x \mid x \in A\}$.) $\mathcal{R}(\mathcal{B}) = \{x \mid x \in \mathcal{B}\}$
- (c) What is $\mathbb{R} \cap \mathscr{P}(A)$?

R: set < f64) P(A): Set < Set < f64)

- (d) What is $\mathbb{R} \cap \mathbb{Z}$?
- (e) What is $\mathbb{N} \cup \mathbb{Q}$?

(f) What kind of numbers are in $\mathbb{R} \setminus \mathbb{Q}$?

Irrational

(g) If $S \subseteq T$, what is $S \setminus T$?

 $S \cap T^{C} = D$

Image and Preimage

Let X and Y be sets, and $f: X \to Y$ be a function. For a subset, $A \subseteq X$, define it's image to be $f(A) = \{f(x) \mid x \in A\}$. For a subset $B \subseteq Y$, define it's preimage $f^{-1}(B) = \{x \mid f(x) \in B\}$. Note that in this context f^{-1} does not refer to an inverse function, as f may not have an inverse.

- (a) Let $B \subseteq F(X)$. Prove that $f(f^{-1}(B)) = B$
- (b) Let $A \subseteq X$. Prove that $A \subseteq f^{-1}(f(A))$

CS 70, Summer 2020, DIS 1D

 $f(x) = x^2 \quad f: \mathbb{R} \to \mathbb{R}$

(a)
$$B \subseteq f(X) \Rightarrow f^{-1}(B) \subseteq X$$
. Consider $x \in f^{-1}(B)$. $f(x) \in B$ $f(f^{-1}(x)) \in B \Rightarrow f(f^{-1}(B)) \subseteq B - (D)$

$$B \subseteq f(f^{-1}(B)) - (Z)$$

 $B = f(f^{-1}(B))$

y EB

$$\exists x \in X : f(\pi) = y$$

Lie also in $f'(B)$
 $y \in f(f'(B))$
 $B \subseteq f(f'(B))$

- (c) Give an example of when $A \neq f^{-1}(f(A))$
- (d) Suppose f is injective. Is it true that $A = f^{-1}(f(A))$? Prove or provide a counter-example.

3 Bijections

Consider the function

$$f(x) = \begin{cases} x, & \text{if } x \ge 1; \\ x^2, & \text{if } -1 \le x < 1; \\ 2x + 3, & \text{if } x < -1. \end{cases}$$

- (a) If the domain and range of f are \mathbb{N} , is f injective (one-to-one), surjective (onto), bijective?
- (b) If the domain and range of f are \mathbb{Z} , is f injective (one-to-one), surjective (onto), bijective?
- (c) If the domain and range of f are \mathbb{R} , is f injective (one-to-one), surjective (onto), bijective?