

CSC340/AI320 - Artificial Intelligence Fall 2022

Lab 6

INSTRUCTOR: DR. DIAA SALAMA ABDEL MONEIM ENG. NOHA EL MASRY ENG. NOUR ELHUDA ASHRAF

☑A* search: Minimizing the total estimated solution cost

The most widely known form of best-first search is called A* search.

It evaluates nodes by combining g(n), the cost to reach the node, and h(n), the cost to get from the node to the goal:

$$f(n) = g(n) + h(n)$$

Since g(n) gives the path cost from the start node to node n, and h(n) is the estimated cost of the cheapest path from n to the goal, we have

$$f(n) = estimated cost of the cheapest solution through n$$

Thus, if we are trying to find the cheapest solution, a reasonable thing to try first is the node with the lowest value of g(n) + h(n).

It turns out that this strategy is more than just reasonable: provided that the heuristic function h(n) satisfies certain conditions, A* search is both complete and optimal. The algorithm is identical to UNIFORM-COST-SEARCH except that A* uses g + h instead of g.

Conditions for optimality:

Admissibility: h(n) never overestimates the cost to reach the goal.

Consistency: A heuristic h(n) is consistent if, for every node n and every successor n' of n generated by any action a, the estimated cost of reaching the goal from n is no greater than the step cost of getting to n' plus the estimated cost of reaching the goal from n':

$$h(n) \le c(n, a, n') + h(n')$$

Example 1:

We use the straight-line distance heuristic, which we will call h_{SLD} .

If the goal is Bucharest, the straight-line distances to Bucharest is shown below:

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

For this problem, A^* search using h_{SLD} finds the optimal solution.

Example 2:

Example 3 (With code):

State	h(n)	
s	5	
A	3	
В	4	
С	3	
D	6	
G	0	