Luoghi critici per la ricostruzione di scene dinamiche una applicazione di geometria algebrica proiettiva alla computer vision

Tesi di laurea di: Luca Magri

Relatrice: Prof.ssa Marina Bertolini

13 Dicembre 2011

La computer vision

Estrarre informazioni da una serie di immagini (foto, video).

Problema della ricostruzione

A partire da una serie di immagini di una scena ricostruire la scena 3D a meno di una proiettività.

La computer vision

Estrarre informazioni da una serie di immagini (foto, video).

Problema della ricostruzione

A partire da una serie di immagini di una scena ricostruire la scena 3D a meno di una proiettività.

Modello proiettivo di un'immagine statica

Uno scatto fotografico una proiezione lineare $P: \mathbb{P}^3 \dashrightarrow \mathbb{P}^2$ di centro C_P .

È quindi rappresentato come una matrice 3×4 di rango massimo definita a meno di moltiplicazioni per matrici invertibili:

$$P = \begin{pmatrix} \mathbf{p}^1 \\ \mathbf{p}^2 \\ \mathbf{p}^3 \end{pmatrix}.$$

 $\mathbf{X} \in \mathbb{P}^3$ punto della $\mathit{scena}, \ \mathbf{x} \in \mathbb{P}^2$ punto della $\mathit{vista}, \ \mathit{vale}, \ \mathit{\lambda x} = \mathit{P}_{\mathtt{Z}} \mathbf{X}_{\mathtt{Z}}$

Modello proiettivo di un'immagine statica

Uno scatto fotografico una proiezione lineare $P \colon \mathbb{P}^3 \dashrightarrow \mathbb{P}^2$ di centro C_P .

È quindi rappresentato come una matrice 3×4 di rango massimo definita a meno di moltiplicazioni per matrici invertibili:

$$P = \begin{pmatrix} \mathbf{p}^1 \\ \mathbf{p}^2 \\ \mathbf{p}^3 \end{pmatrix}.$$

 $\mathbf{X} \in \mathbb{P}^3$ punto della *scena*, $\mathbf{x} \in \mathbb{P}^2$ punto della *vista*, vale $\lambda \mathbf{x} = P \mathbf{X}$

Più viste

Consideriamo n immagini della stessa scena: n proiezioni $P_i : \mathbb{P}^3 \dashrightarrow \mathbb{P}^2$.

I punti \mathbf{x}_i che sono proiezioni dello stesso punto \mathbf{X} della scena si dicono punti corrispondenti.

Ricostruzione per triangolazione.

Generalizzazione a proiezioni $\mathbb{P}^k \dashrightarrow \mathbb{P}^h$

Matrici: P una matrice (k+1) imes (h+1) di rango massimo;

Generalizzazione a proiezioni $\mathbb{P}^k \dashrightarrow \mathbb{P}^h$

Matrici: P una matrice $(k+1) \times (h+1)$ di rango massimo;

Generalizzazione a proiezioni $\mathbb{P}^k \dashrightarrow \mathbb{P}^h$

 ${\it Matrici:}\ P\ {\it una\ matrice}\ (k+1)\times (h+1)\ {\it di\ rango\ massimo;}$

Generalizzazione a proiezioni $\mathbb{P}^k \dashrightarrow \mathbb{P}^h$

 ${\it Matrici:}\ P\ {\it una\ matrice}\ (k+1)\times (h+1)\ {\it di\ rango\ massimo;}$

Generalizzazione a proiezioni $\mathbb{P}^k \dashrightarrow \mathbb{P}^h$

Matrici: P una matrice $(k+1) \times (h+1)$ di rango massimo;

Scene dinamiche

Una scena dinamica di \mathbb{P}^n è composta da punti $\{\mathbf{X}_{it}\}$ le cui coordinate variano in funzione del parametro t.

Possono essere interpretate come scene statiche in spazi di dimensione più alta.

La fotografia della scena dinamica è rappresentata con una proiezione $\mathbb{P}^6 \longrightarrow \mathbb{P}^2$ data dalla matrice 3×7 della forma $\widetilde{P} = [P_i|t\mathbf{p}_1|t\mathbf{p}_2|t\mathbf{p}_3]$

Scene non rigide

Un volto, così come viene modellizzato dalla *face recognition*, è un oggetto non rigido.

Una scena non rigida è una collezione di punti $\{X_i\}$ la cui forma può essere espressa come combinazione lineare di un insieme fissato di K punti presi sulle forme rigide base:

$$\mathbf{X}_i = \sum_{k=1}^K c_k \mathbf{B}_{ki}.$$

Una scena non rigida di \mathbb{P}^3 può essere rappresentata in modo statico utilizzando proiezioni $\mathbb{P}^{4K-1} \dashrightarrow \mathbb{P}^{3K-1}$.

Scene non rigide

Un volto, così come viene modellizzato dalla face recognition, è un oggetto non rigido.

Una scena non rigida è una collezione di punti $\{X_i\}$ la cui forma può essere espressa come combinazione lineare di un insieme fissato di K punti presi sulle forme rigide base:

$$\mathbf{X}_i = \sum_{k=1}^K c_k \mathbf{B}_{ki}.$$

Una scena non rigida di \mathbb{P}^3 può essere rappresentata in modo statico utilizzando proiezioni $\mathbb{P}^{4K-1} \dashrightarrow \mathbb{P}^{3K-1}$.

Scene non rigide

Un volto, così come viene modellizzato dalla face recognition, è un oggetto non rigido.

Una scena non rigida è una collezione di punti $\{X_i\}$ la cui forma può essere espressa come combinazione lineare di un insieme fissato di K punti presi sulle forme rigide base:

$$\mathbf{X}_i = \sum_{k=1}^K c_k \mathbf{B}_{ki}.$$

Una scena non rigida di \mathbb{P}^3 può essere rappresentata in modo statico utilizzando proiezioni $\mathbb{P}^{4K-1} \dashrightarrow \mathbb{P}^{3K-1}$.

Distorsione radiale

Fenomeno che riguarda le camere reali. La proiezione non è lineare.

Si dimostra che può essere corretta introducendo una proiezione $Q: \mathbb{P}^2 \dashrightarrow \mathbb{P}^1$ detta camera radiale 1D tale che $Q: \mathbf{x}_d \mapsto \ell_{\mathrm{rad}}$.

Distorsione radiale

Fenomeno che riguarda le camere reali. La proiezione non è lineare.

Si dimostra che può essere corretta introducendo una proiezione $Q \colon \mathbb{P}^2 \dashrightarrow \mathbb{P}^1$ detta camera radiale 1D tale che $Q \colon \mathbf{x}_d \mapsto \ell_{\mathrm{rad}}$.

Matching dei punti: Si individua nelle diverse immagini un numero sufficiente N di n-uple di punti corrispondenti;

Ricostruzione dei tensori: la corrispondenza tra i punti delle varie viste può essere espressa con degli strumenti di algebra multilineare: i tensori di grassmann n-focali. Si sostituiscono le coordinate dei punti corrispondenti nelle equazioni individuate dai tensori di Grassmann;

Calibrazione delle camere: dalle entrate dei tensori si ricavano le matrici di projezione P_i e i relativi centri:

Ricostruzione della scena: si ricostruisce la scena e la sua evoluzione temporale

Matching dei punti: Si individua nelle diverse immagini un numero sufficiente N di n-uple di punti corrispondenti;

Ricostruzione dei tensori: la corrispondenza tra i punti delle varie viste può essere espressa con degli strumenti di algebra multilineare: i tensori di grassmann n-focali. Si sostituiscono le coordinate dei punti corrispondenti nelle equazioni individuate dai tensori di Grassmann;

Calibrazione delle camere: dalle entrate dei tensori si ricavano le matrici di proiezione P_i e i relativi centri;

Ricostruzione della scena: si ricostruisce la scena e la sua evoluzione temporale

Matching dei punti: Si individua nelle diverse immagini un numero sufficiente N di n-uple di punti corrispondenti;

Ricostruzione dei tensori: la corrispondenza tra i punti delle varie viste può essere espressa con degli strumenti di algebra multilineare: i tensori di grassmann n-focali. Si sostituiscono le coordinate dei punti corrispondenti nelle equazioni individuate dai tensori di Grassmann;

Calibrazione delle camere: dalle entrate dei tensori si ricavano le matrici di proiezione P_i e i relativi centri;

Ricostruzione della scena: si ricostruisce la scena e la sua evoluzione temporale

Matching dei punti: Si individua nelle diverse immagini un numero sufficiente N di n-uple di punti corrispondenti;

Ricostruzione dei tensori: la corrispondenza tra i punti delle varie viste può essere espressa con degli strumenti di algebra multilineare: i tensori di grassmann n-focali. Si sostituiscono le coordinate dei punti corrispondenti nelle equazioni individuate dai tensori di Grassmann;

Calibrazione delle camere: dalle entrate dei tensori si ricavano le matrici di proiezione P_i e i relativi centri;

Ricostruzione della scena: si ricostruisce la scena e la sua evoluzione temporale.

Minimo numero di viste

Per proiezioni $\mathbb{P}^k \dashrightarrow \mathbb{P}^h$ la ricostruzione della scena è possibile solo se si dispone di un numero n sufficiente di immagini.

Numero minimo di viste per la calibrazione delle camere

$$\omega_{k,h} = s + 1$$

se

$$k = sh + l \text{ con } 0 \le l < k.$$

Se $n \geq \omega_{k,h}$ si possono stimare i tensori di Grassmann, le matrici di proiezione, i centri e quindi ricostruire la scena...

A meno che i punti corrispondenti scelti nella fase di matching non provengano da punti della scena che determinano una configurazione critica

Minimo numero di viste

Per proiezioni $\mathbb{P}^k \dashrightarrow \mathbb{P}^h$ la ricostruzione della scena è possibile solo se si dispone di un numero n sufficiente di immagini.

Numero minimo di viste per la calibrazione delle camere

$$\omega_{k,h} = s + 1$$

se

$$k = sh + l \text{ con } 0 \le l < k.$$

Se $n \geq \omega_{k,h}$ si possono stimare i tensori di Grassmann, le matrici di proiezione, i centri e quindi ricostruire la scena. . .

A meno che i punti corrispondenti scelti nella fase di matching non provengano da punti della scena che determinano una configurazione critica.

Un insieme di punti $\{\mathbf X_i\}$ con $i=1,\dots,N$, di $\mathbb P^k$ è una configurazione critica per n viste, se esistono

- un insieme di N punti $\{\mathbf{Y}_i\}$ di \mathbb{P}^k non proiettivamente equivalente a $\{\mathbf{X}_i\}$;
- due collezioni di matrici $\{P_j\}_{j=1}^n$ e $\{Q_j\}_{j=1}^n$ di dimensioni $(h+1)\times(k+1)$ e di rango massimo tali che, a meno di una proiettività dei \mathbb{P}^h immagine, si abbia:

$$P_j \mathbf{X}_i = \lambda_{i,j} Q_j \mathbf{Y}_i.$$

Gli insiemi $\{X_i\}$ e $\{Y_i\}$ si dicono configurazioni critiche associate e le matrici $\{P_j\}$ e $\{Q_j\}$ sono dette matrici coniugate associate.

Un insieme di punti $\{\mathbf X_i\}$ con $i=1,\dots,N$, di $\mathbb P^k$ è una configurazione critica per n viste, se esistono

- un insieme di N punti $\{\mathbf{Y}_i\}$ di \mathbb{P}^k non proiettivamente equivalente a $\{\mathbf{X}_i\}$;
- due collezioni di matrici $\{P_j\}_{j=1}^n$ e $\{Q_j\}_{j=1}^n$ di dimensioni $(h+1)\times (k+1)$ e di rango massimo tali che, a meno di una proiettività dei \mathbb{P}^h immagine, si abbia:

$$P_j \mathbf{X}_i = \lambda_{i,j} Q_j \mathbf{Y}_i.$$

Gli insiemi $\{X_i\}$ e $\{Y_i\}$ si dicono configurazioni critiche associate e le matrici $\{P_i\}$ e $\{Q_i\}$ sono dette matrici coniugate associate.

Un insieme di punti $\{\mathbf X_i\}$ con $i=1,\dots,N$, di $\mathbb P^k$ è una configurazione critica per n viste, se esistono

- un insieme di N punti $\{\mathbf{Y}_i\}$ di \mathbb{P}^k non proiettivamente equivalente a $\{\mathbf{X}_i\}$;
- due collezioni di matrici $\{P_j\}_{j=1}^n$ e $\{Q_j\}_{j=1}^n$ di dimensioni $(h+1)\times (k+1)$ e di rango massimo tali che, a meno di una proiettività dei \mathbb{P}^h immagine, si abbia:

$$P_j \mathbf{X}_i = \lambda_{i,j} Q_j \mathbf{Y}_i.$$

Gli insiemi $\{X_i\}$ e $\{Y_i\}$ si dicono configurazioni critiche associate e le matrici $\{P_i\}$ e $\{Q_i\}$ sono dette matrici coniugate associate.

Un insieme di punti $\{\mathbf X_i\}$ con $i=1,\dots,N$, di $\mathbb P^k$ è una configurazione critica per n viste, se esistono

- un insieme di N punti $\{\mathbf{Y}_i\}$ di \mathbb{P}^k non proiettivamente equivalente a $\{\mathbf{X}_i\}$;
- due collezioni di matrici $\{P_j\}_{j=1}^n$ e $\{Q_j\}_{j=1}^n$ di dimensioni $(h+1)\times (k+1)$ e di rango massimo tali che, a meno di una proiettività dei \mathbb{P}^h immagine, si abbia:

$$P_j \mathbf{X}_i = \lambda_{i,j} Q_j \mathbf{Y}_i.$$

Gli insiemi $\{X_i\}$ e $\{Y_i\}$ si dicono configurazioni critiche associate e le matrici $\{P_j\}$ e $\{Q_j\}$ sono dette matrici coniugate associate.

Luoghi critici

La condizione di proporzionalità tra i punti $P_j\mathbf{X}_i$ e $Q_j\mathbf{Y}_i$ può essere espressa utilizzando $\binom{h+1}{2}$ opportune matrici $E_{u,v}$ che confrontano tra loro coppie di coordinate di questi punti, ottenendo

$$(P_j \mathbf{X})^{\top} E_{u,v} Q_j \mathbf{Y} = 0.$$

Il luogo critico \mathcal{X}_h^k per la ricostruzione da n viste da \mathbb{P}^k à \mathbb{P}^h è dato dai punti \mathbf{X} per i quali esiste un punto \mathbf{Y} che soddisfa le equazioni precedenti. Siamo quindi portati a considerare il sistema di $\binom{h+1}{2}n$ equazioni del tipo precedente e chiedere che abbia soluzioni \mathbf{Y} non banali.

Luoghi critici

La condizione di proporzionalità tra i punti $P_j\mathbf{X}_i$ e $Q_j\mathbf{Y}_i$ può essere espressa utilizzando $\binom{h+1}{2}$ opportune matrici $E_{u,v}$ che confrontano tra loro coppie di coordinate di questi punti, ottenendo

$$(P_j \mathbf{X})^{\top} E_{u,v} Q_j \mathbf{Y} = 0.$$

Il luogo critico \mathcal{X}_h^k per la ricostruzione da n viste da \mathbb{P}^k a \mathbb{P}^h è dato dai punti \mathbf{X} per i quali esiste un punto \mathbf{Y} che soddisfa le equazioni precedenti. Siamo quindi portati a considerare il sistema di $\binom{h+1}{2}n$ equazioni del tipo precedente e chiedere che abbia soluzioni \mathbf{Y} non banali.

La matrice associata

Questo avviene se la matrice dei coefficienti del sistema M di ordine $\binom{h+1}{2}n \times (k+1)$ non ha rango massimo.

$$M(\mathbf{X}) = \begin{pmatrix} (\mathbf{p_1}^1 \cdot \mathbf{X}) \mathbf{q_1}^2 - (\mathbf{p_1}^2 \cdot \mathbf{X}) \mathbf{q_1}^1 \\ \vdots \\ (\mathbf{p_j}^u \cdot \mathbf{X}) \mathbf{q_j}^v - (\mathbf{p_j}^v \cdot \mathbf{X}) \mathbf{q_j}^u \\ \vdots \\ (\mathbf{p_n}^h \cdot \mathbf{X}) \mathbf{q_n}^{h+1} - (\mathbf{p_n}^{h+1} \cdot \mathbf{X}) \mathbf{q_n}^h \end{pmatrix},$$

Un punto $\mathbf X$ della scena appartiene a $\mathcal X_h^k$ se e solo se $\mathrm{rk}(M(\mathbf X)) \leq k.$

 \mathcal{X}_h^k è una varietà determinantale lineare.

La matrice associata

Questo avviene se la matrice dei coefficienti del sistema M di ordine $\binom{h+1}{2}n \times (k+1)$ non ha rango massimo.

$$M(\mathbf{X}) = \begin{pmatrix} (\mathbf{p_1}^1 \cdot \mathbf{X}) \mathbf{q_1}^2 - (\mathbf{p_1}^2 \cdot \mathbf{X}) \mathbf{q_1}^1 \\ \vdots \\ (\mathbf{p_j}^u \cdot \mathbf{X}) \mathbf{q_j}^v - (\mathbf{p_j}^v \cdot \mathbf{X}) \mathbf{q_j}^u \\ \vdots \\ (\mathbf{p_n}^h \cdot \mathbf{X}) \mathbf{q_n}^{h+1} - (\mathbf{p_n}^{h+1} \cdot \mathbf{X}) \mathbf{q_n}^h \end{pmatrix},$$

Un punto ${\bf X}$ della scena appartiene a ${\cal X}_h^k$ se e solo se ${\rm rk}(M({\bf X})) \le k.$

 \mathcal{X}_{h}^{k} è una varietà determinantale lineare.

In letteratura sono stati studiati i luoghi ciritici per proiezioni

- da \mathbb{P}^3 a \mathbb{P}^2 (caso classico)
- da \mathbb{P}^k a \mathbb{P}^2 (foto di scene dinamiche)

In questo elaborato vengono considerate proiezioni $\mathbb{P}^k \dashrightarrow \mathbb{P}^h$ ir particolare sono studiate alcune proiezioni su \mathbb{P}^3 :

- **1** \mathcal{X}_3^4 ;
- $2 \lambda_3^5$;
- \mathcal{X}_h^k quando $k \equiv h-1$ modulo h.

In letteratura sono stati studiati i luoghi ciritici per proiezioni

- da \mathbb{P}^3 a \mathbb{P}^2 (caso classico)
- da \mathbb{P}^k a \mathbb{P}^2 (foto di scene dinamiche)

In questo elaborato vengono considerate proiezioni $\mathbb{P}^k \dashrightarrow \mathbb{P}^h$ ir particolare sono studiate alcune proiezioni su \mathbb{P}^3 :

- $0 \mathcal{X}_{3}^{4};$
- $2 X_3^5$;
- $\otimes \mathcal{X}_h^k$ quando $k \equiv h-1$ modulo h.

In letteratura sono stati studiati i luoghi ciritici per proiezioni

- da \mathbb{P}^3 a \mathbb{P}^2 (caso classico)
- da \mathbb{P}^k a \mathbb{P}^2 (foto di scene dinamiche)

In questo elaborato vengono considerate proiezioni $\mathbb{P}^k \dashrightarrow \mathbb{P}^h$ ir particolare sono studiate alcune proiezioni su \mathbb{P}^3 :

- $0 \mathcal{X}_{3}^{4};$
- $2 X_3^5$;
- $\otimes \mathcal{X}_h^k$ quando $k \equiv h-1$ modulo h.

In letteratura sono stati studiati i luoghi ciritici per proiezioni

- da \mathbb{P}^3 a \mathbb{P}^2 (caso classico)
- da \mathbb{P}^k a \mathbb{P}^2 (foto di scene dinamiche)

In questo elaborato vengono considerate proiezioni $\mathbb{P}^k \dashrightarrow \mathbb{P}^h$ in particolare sono studiate alcune proiezioni su \mathbb{P}^3 :

- $\mathbf{0} \ \mathcal{X}_{3}^{4};$
- 2 X3
- \mathcal{X}_h^k quando $k \equiv h-1$ modulo h.

In letteratura sono stati studiati i luoghi ciritici per proiezioni

- da \mathbb{P}^3 a \mathbb{P}^2 (caso classico)
- da \mathbb{P}^k a \mathbb{P}^2 (foto di scene dinamiche)

In questo elaborato vengono considerate proiezioni $\mathbb{P}^k \dashrightarrow \mathbb{P}^h$ in particolare sono studiate alcune proiezioni su \mathbb{P}^3 :

- **1** \mathcal{X}_{3}^{4} ;
- **2** \mathcal{X}_{3}^{5} ;
- 3 \mathcal{X}_h^k quando $k \equiv h 1$ modulo h.

Risultati

In letteratura sono stati studiati i luoghi ciritici per proiezioni

- da \mathbb{P}^3 a \mathbb{P}^2 (caso classico)
- da \mathbb{P}^k a \mathbb{P}^2 (foto di scene dinamiche)

In questo elaborato vengono considerate proiezioni $\mathbb{P}^k \dashrightarrow \mathbb{P}^h$ in particolare sono studiate alcune proiezioni su \mathbb{P}^3 :

- **1** \mathcal{X}_3^4 ;
- **2** \mathcal{X}_{3}^{5} ;

Risultati

In letteratura sono stati studiati i luoghi ciritici per proiezioni

- da \mathbb{P}^3 a \mathbb{P}^2 (caso classico)
- da \mathbb{P}^k a \mathbb{P}^2 (foto di scene dinamiche)

In questo elaborato vengono considerate proiezioni $\mathbb{P}^k \dashrightarrow \mathbb{P}^h$ in particolare sono studiate alcune proiezioni su \mathbb{P}^3 :

- **1** \mathcal{X}_{3}^{4} ;
- **2** \mathcal{X}_{3}^{5} ;

Proiezioni da $\mathbb{P}^4 \longrightarrow \mathbb{P}^3$, siamo nel caso di 2 viste e M ha dimensioni 12×5 . Studio in alcuni casi numerici utilizzando Macaulay2.

- la componente di dimensione massima è una superficie di grado 3 di \mathbb{P}^4 non singolare ;
- X₃⁴ è una varietà determinantale propria, il generico luogo critico ha dimensione 2 e grado 3.

Proiezioni da $\mathbb{P}^4 \dashrightarrow \mathbb{P}^3$, siamo nel caso di 2 viste e M ha dimensioni 12×5 . Studio in alcuni casi numerici utilizzando Macaulay2.

- la componente di dimensione massima è una superficie di grado 3 di \mathbb{P}^4 non singolare ;
- \mathcal{X}_3^4 è una varietà determinantale propria, il generico luogo critico ha dimensione 2 e grado 3.

Proiezioni da $\mathbb{P}^4 \longrightarrow \mathbb{P}^3$, siamo nel caso di 2 viste e M ha dimensioni 12×5 . Studio in alcuni casi numerici utilizzando Macaulay2.

- la componente di dimensione massima è una superficie di grado 3 di \mathbb{P}^4 non singolare ;
- \mathcal{X}_3^4 è una varietà determinantale propria, il generico luogo critico ha dimensione 2 e grado 3.

Proiezioni $\mathbb{P}^4 \dashrightarrow \mathbb{P}^3$

Queste proiezioni si incontrano ad esempio nello studio di una scena non rigida i cui punti sono descritti da:

$$\mathbf{X}_{it} = \mathbf{Q}_i + a_i \cos \phi(t) \mathbf{E}_1 + a_i \sin \phi(t) \mathbf{E}_2.$$

Questa scena può interpretarsi, in una opportuna carta affine, come composta da punti che si muovono di moto circolare.

Per proiezioni $\mathbb{P}^5 \dashrightarrow \mathbb{P}^3$ il numero minimo di viste è 2. M è una matrice 12×6 per determinare \mathcal{X}_3^5 , dobbiamo annullare i minori di ordine 6×6 .

- ullet Studio dei minori di ordine massimo di M:
 - * minori 3 + 3 contribuiscono a determinare l'ideale $I(X_3^2)$
- $I(\mathcal{X}_3^5) = \langle \sum p^{\alpha} p^{\beta} r^{\gamma} r^{\delta} f \rangle$ dove $f = \sum_{i,j=1}^4 a_{i,j} p^i r^j$
- $\mathcal{X}_3^5 = V(f)$
- Singolarità: si dimostra che il generico luogo critico \mathcal{X}_3^5 è non singolare.

Per proiezioni $\mathbb{P}^5 \dashrightarrow \mathbb{P}^3$ il numero minimo di viste è 2.

- ullet Studio dei minori di ordine massimo di M:
 - non più di 4 righe da una vista;
 - minori 4+3 tutti nulli;
 - minori 3+3 contribuiscono a determinare l'ideale $I(\mathcal{X}_3^5)$

•
$$I(\mathcal{X}_3^5)=\langle\sum p^{\alpha}p^{\beta}r^{\gamma}r^{\delta}f\rangle$$
 dove $f=\sum_{i,j=1}^4a_{i,j}p^ir^j$

- $\mathcal{X}_3^5 = V(f)$.
- Singolarità: si dimostra che il generico luogo critico \mathcal{X}_3^5 è non singolare.

Per proiezioni $\mathbb{P}^5 \dashrightarrow \mathbb{P}^3$ il numero minimo di viste è 2.

- Studio dei minori di ordine massimo di M:
 - non più di 4 righe da una vista;
 - minori 4+3 tutti nulli;
 - minori 3+3 contribuiscono a determinare l'ideale $I(\mathcal{X}_3^5)$

•
$$I(\mathcal{X}^5_3)=\langle\sum p^{\alpha}p^{\beta}r^{\gamma}r^{\delta}f\rangle$$
 dove $f=\sum_{i,j=1}^4a_{i,j}p^ir^j$

- $\mathcal{X}_3^5 = V(f)$.
- Singolarità: si dimostra che il generico luogo critico \mathcal{X}_3^5 è non singolare.

Per proiezioni $\mathbb{P}^5 \dashrightarrow \mathbb{P}^3$ il numero minimo di viste è 2.

- Studio dei minori di ordine massimo di *M*:
 - non più di 4 righe da una vista;
 - minori 4 + 3 tutti nulli;
 - minori 3+3 contribuiscono a determinare l'ideale $I(\mathcal{X}_3^5)$

•
$$I(\mathcal{X}_3^5)=\langle\sum p^{\alpha}p^{\beta}r^{\gamma}r^{\delta}f\rangle$$
 dove $f=\sum_{i,j=1}^4a_{i,j}p^ir^j$

- $\mathcal{X}_3^5 = V(f)$.
- Singolarità: si dimostra che il generico luogo critico \mathcal{X}_3^5 è non singolare.

Per proiezioni $\mathbb{P}^5 \dashrightarrow \mathbb{P}^3$ il numero minimo di viste è 2.

- Studio dei minori di ordine massimo di M:
 - non più di 4 righe da una vista;
 - minori 4 + 3 tutti nulli;
 - minori 3+3 contribuiscono a determinare l'ideale $I(\mathcal{X}_3^5)$

•
$$I(\mathcal{X}^5_3)=\langle\sum p^{\alpha}p^{\beta}r^{\gamma}r^{\delta}f\rangle$$
 dove $f=\sum_{i,j=1}^4a_{i,j}p^ir^j$

- $\mathcal{X}_3^5 = V(f)$.
- Singolarità: si dimostra che il generico luogo critico \mathcal{X}_3^5 è non singolare.

Per proiezioni $\mathbb{P}^5 \dashrightarrow \mathbb{P}^3$ il numero minimo di viste è 2.

- Studio dei minori di ordine massimo di M:
 - non più di 4 righe da una vista;
 - minori 4 + 3 tutti nulli;
 - minori 3+3 contribuiscono a determinare l'ideale $I(\mathcal{X}_3^5)$

•
$$I(\mathcal{X}^5_3)=\langle\sum p^{\alpha}p^{\beta}r^{\gamma}r^{\delta}f\rangle$$
 dove $f=\sum_{i,j=1}^4a_{i,j}p^ir^j$

- $\mathcal{X}_3^5 = V(f)$.
- Singolarità: si dimostra che il generico luogo critico \mathcal{X}_3^5 è non singolare.

Per proiezioni $\mathbb{P}^5 \dashrightarrow \mathbb{P}^3$ il numero minimo di viste è 2.

- Studio dei minori di ordine massimo di M:
 - non più di 4 righe da una vista;
 - minori 4 + 3 tutti nulli;
 - minori 3+3 contribuiscono a determinare l'ideale $I(\mathcal{X}_3^5)$
- $I(\mathcal{X}^5_3)=\langle\sum p^{\alpha}p^{\beta}r^{\gamma}r^{\delta}f\rangle$ dove $f=\sum_{i,j=1}^4a_{i,j}p^ir^j$
- $\mathcal{X}_3^5 = V(f)$.
- Singolarità: si dimostra che il generico luogo critico \mathcal{X}_3^5 è non singolare.

Per proiezioni $\mathbb{P}^5 \dashrightarrow \mathbb{P}^3$ il numero minimo di viste è 2.

- Studio dei minori di ordine massimo di M:
 - non più di 4 righe da una vista;
 - minori 4 + 3 tutti nulli;
 - minori 3+3 contribuiscono a determinare l'ideale $I(\mathcal{X}_3^5)$
- $I(\mathcal{X}^5_3)=\langle\sum p^{\alpha}p^{\beta}r^{\gamma}r^{\delta}f\rangle$ dove $f=\sum_{i,j=1}^4a_{i,j}p^ir^j$
- $\mathcal{X}_3^5 = V(f)$.
- Singolarità: si dimostra che il generico luogo critico \mathcal{X}_3^5 è non singolare.

$\mathsf{Proiezioni} \ \mathbb{P}^5 \dashrightarrow \mathbb{P}^3$

Queste proiezioni si incontrano ad esempio nello studio di un video distorto radialmente della scena non rigida:

$$\mathbf{X}_i = t_1 \mathbf{A}_i + t_2 \mathbf{B}_i$$

che rappresenta dei punti che si muovono di moto rettilineo uniforme.

Studio di \mathcal{X}_h^k se $k \equiv h - 1$ modulo h

- ullet Un minore costruito estraendo h+1 righe da una stessa vista è nullo
- ullet i minori non nulli sono costruiti prendendo h righe da ogni vistz
- \mathcal{X}_h^k è un'ipersuperficie di grado $\omega_{k,h}$;
- si determina il polinomio f che la definisce.

Studio di \mathcal{X}_h^k se $k \equiv h - 1$ modulo h

- Un minore costruito estraendo h+1 righe da una stessa vista è nullo;
- i minori non nulli sono costruiti prendendo h righe da ogni vista;
- \mathcal{X}_h^k è un'ipersuperficie di grado $\omega_{k,h}$;
- ullet si determina il polinomio f che la definisce.

Studio di \mathcal{X}_h^k se $k \equiv h-1$ modulo h

- Un minore costruito estraendo h+1 righe da una stessa vista è nullo;
- i minori non nulli sono costruiti prendendo h righe da ogni vista;
- \mathcal{X}_h^k è un'ipersuperficie di grado $\omega_{k,h}$;
- si determina il polinomio f che la definisce.

Studio di \mathcal{X}_h^k se $k \equiv h-1$ modulo h

- Un minore costruito estraendo h+1 righe da una stessa vista è nullo;
- ullet i minori non nulli sono costruiti prendendo h righe da ogni vista;
- \mathcal{X}_h^k è un'ipersuperficie di grado $\omega_{k,h}$;
- si determina il polinomio f che la definisce.

Studio di \mathcal{X}_h^k se $k \equiv h-1$ modulo h

- Un minore costruito estraendo h+1 righe da una stessa vista è nullo;
- ullet i minori non nulli sono costruiti prendendo h righe da ogni vista;
- \mathcal{X}_h^k è un'ipersuperficie di grado $\omega_{k,h}$;
- ullet si determina il polinomio f che la definisce.

Grazie per l'attenzione!