Projet 3 - Tache 2

Groupe 124.3

FRENYO Péter (6266-12-00)
GILLAIN Nathan (7879-12-00)
LAMINE Guillaume (7109-13-00)
PIRAUX Pauline (2520-13-00)
PARIS Antoine (3158-13-00)
QUIRINY Simon (4235-13-00)
SCHRURS Sébastien (7978-13-00)

14 janvier 2015

Table des matières

1	Intr	roduction
2	Visi	ite du plant de Yara à Tertre
	2.1	Introduction
	2.2	Réactifs et produits
		2.2.1 Azote
		2.2.2 Hydrogène
		2.2.3 Ammoniac
	2.3	Réaction
		2.3.1 Reformage primaire
		2.3.2 Reformage secondaire
		2.3.3 HTS & LTS : décompression
		2.3.4 Méthanateur
		2.3.5 Synthèse
	2.4	Aspect écologique
	4.1 4.2 4.3	Introduction
5	Lab	poratoire d'électrolyse
J	5.1	Découverte d'un autre procédé de fabrication du dihydrogène : l'électrolyse
	$5.1 \\ 5.2$	Explication de la réaction
	$\frac{5.2}{5.3}$	Discussion paramétrique et observations du laboratoire
	5.4	Conclusions
	0.4	Conclusions
6	\mathbf{Ate}	elier créatif (conduite de brainstorming)
	6.1	Introduction
	6.2	Processus régénératif
	6.3	Communication
	6.4	Mind mapping

6.5	Amélioration de son usine en terme de développement durable	7
6.6	Conclusion	8

1 Introduction

Dans le cadre du projet, vous avons eu l'opportunité de participer à diverses activités en lien avec la chimie ou le travail en équipe. Ce document présente les rapports, destinés aux membres du groupes, de ces différentes visites.

2 Visite du plant de Yara à Tertre

2.1 Introduction

L'usine de Tertre fait partie de l'entreprise YARA. L'entreprise norvégiene est l'un des plus grands producteurs mondiaux d'engrais azotés. Le site de Terte date de fin des années 60. L'usine a fait le choix de produire sur place l'ammoniac qui lui est nécessaire à la production d'engrais, 99 % de sa production est utilisé sur le site de l'usine. La production d'ammoniac dépendant de l'apport en méthane, l'usine s'est établie à Tertre pour sa bonne localisation géographique par rapport aux principaux transports de gaz en Belgique. L'usine qui fait partie des plants éfficaces malgré sa vétustée, permet de produire 1150 t/d d'amoniac en utilisant le désign de Kellogg. Toutefois, un plant moderne peut produire jusqu'à 3000 t/d de NH3.

2.2 Réactifs et produits

2.2.1 Azote

Pour obtenir de l'azote, l'usine fixe celui contenu dans l'air (946 kJ + $N_2 \longrightarrow 2N$). Il y a en moyenne 76 à 78% d'azote dans l'air extérieur. C'est un gaz asphyxiant inodore, incolore et volatile.

2.2.2 Hydrogène

Il est stocké sous haute pression : 200 bar et à une température de 500 - 600 °C. L'hydrogène est un produit très dangereux. Il peut se révéler explosif au contact de l'oxygène. Dans l'état de haute pression dans lequel il se trouve il peut donner lieu à une réaction :

$$Fe_3C(=acier) + 2H_2 \longrightarrow CH_4 + 3Fe$$

$$N_2(g) + 3H_2O(g) \longrightarrow 2NH_3(g)$$

C'est ce qui s'appelle une « hydrogen attack ». A haute pression, il va décomposer l'acier ce qui entraine une fragilisation des tuyaux et peut amener à une explosion. Une conséquence indispensable à la sécurité est qu'il faut choisir les bons matériaux de tuyauterie.

2.2.3 Ammoniac

Ce composé incolore est plus léger que l'air et est assez facile à liquéfier. Sa température critique (température à laquelle on ne peut dissocier le composé sous sa forme liquide et gazeuse) est de 132.4 °C, sa pression critique est de 113 bar. Point de vue sécurité, le contact chimique avec les muqueuses peut se révéler dangereux. On parle de 5ppm d'exposition pour permettre une durée d'exposition illimitée.

2.3 Réaction

2.3.1 Reformage primaire

Une désulfurisation est d'abord effectuée pour éviter toute une série de problème dans la suite du processus, par exemple l'empoisonnement des catalyseurs. Lors du reformage primaire, le méthane est « craqué » en dihydrogène. A la fin de cette étape il ne reste plus que 12 % de méthane qui n'a pas été dissocié. Il est indispensable d'avoir un excès de vapeur sinon on aura une formation de coke c'est-à-dire du carbone pur ou charbon. Cela entraine un encrassement de toute l'installation et un arrêt du processus obligatoire. Le catalyseur utilisé pour cette réaction est le nickel. Pour la sécurité, il y a présence d'un « safety manager » qui est une installation automatique reliée à des détecteurs de fuites. De plus, l'installation est arrêtée tous les quatre ans pour maintenance. A part ça, l'usine marche 24h/24 7j/7. Après un arrêt, il faut 3-4 jours pour lancer le processus.

2.3.2 Reformage secondaire

Le procédé est identique à celui que nous effectuons dans notre projet. Le méthane qui n'avait pas réagi est presque entièrement dissocié. Etant donné que la température est beaucoup plus haute, il faut une protection réfractaire et une « chemise d'eau » pour éviter les chocs thermiques. A part cela, le réacteur a douze ans de vie. A la suite du reformage, ils réutilisent la chaleur des gaz qui sortent pour chauffer toutes sortes de sous-installations dans le but d'avoir le moins de perte d'énergie possible. Les deux étapes qui vont suivre consistent à purifier les deux réactifs que l'on a déjà obtenus.

2.3.3 HTS & LTS: décompression

Le monoxyde de Carbonne est transformé en dioxyde de Carbonne car ce dernier est plus facile à éliminer. On va baisser la pression pour « flasher » le dioxyde de Carbonne de la même manière qu'on secoue une bouteille de coca pour en extraire le gaz. Ensuite on élimine le dioxyde de Carbonne obtenu en le rejetant tout simplement dans l'air ce qui est évidemment très polluant.

2.3.4 Méthanateur

On purifie le flux de gaz en faisant la réaction inverse. Cela va produire du méthane qu'on va récolter et renvoyer au début du cycle. On élimine également les derniers composés oxygénés résiduels qui sont dangereux pour la synthèse proprement dite de l'ammoniac.

2.3.5 Synthèse

Le gaz est à 128 bars à l'entrée du réacteur. Après notre tri il n'y a théoriquement plus que de l'azote, de l'hydrogène, de l'ammoniac à l'équilibre ainsi que les gaz inertes (Argon principalement). Lors de la réaction, après une première augmentation de la température on refroidit le mélange pour ensuite le réchauffer. En fait, La réaction se fait en plusieurs plateaux successifs pour augmenter le rendement en ammoniac. La réaction est également favorisée par des catalyseurs au fer. Grace à leurs micropores, ils possèdent de grandes surfaces de contact pour que les molécules réagissent entre elles. L'énergie d'activation diminue sans changer le chemin réactionnel. Ils supportent et favorisent la rencontre des molécules en créant des sites de rencontres. Malgré toute ces opérations on obtient que 14% d'ammoniac c'est pourquoi on recycle les composants qui n'ont pas réagis. Les composants étant réintroduis dans le réacteur, la pression va augmenter et les résidus de gaz comme l'argon et l'hélium vont augmenter. Il y a à Tertre 12 à 14% de gaz inertes à purger grâce à une vanne. Il faut procéder à une purge automatique. On peut enfin stocker l'ammoniac par procédé cryogénique ou bien sous haute pression.

2.4 Aspect écologique

L'usine est assez polluante. Elle rejette beaucoup de monoxyde de Carbonne, la solution de Lumine utilisée pour l'absorption du monoxyde de Carbonne n'est pas très écologique ainsi que les hydrocarbures que les machines utilisent. L'usine n'est également pas tout à fait optimisée, il y a notamment des pertes au niveau des bruleurs.

3 Visite du centre Total Research Technology Feluy

Chaque année, Total investit plus de 8 milliards de dollars dans des centres de recherches comme celui de Feluy. Dans ce centre, les recherches effectuées portent sur les conditions d'opérations et les catalyseurs utilisés lors de la fabrication de polymères. Lorsque les ingénieurs de chez Total veulent tester de nouvelles conditions d'opérations (température, pression, etc) ou tester un nouveau catalyseur, ils le font d'abord sur des petites unités, qu'on appelle unités pilotes. Ces unités permettent de produire une petite quantité de polymère (de l'ordre de quelques centaines de grammes). Si ces premiers tests sont concluants, ils passent ensuite sur une plus grosse unité pilote capable de produire 50 kg/d. La taille d'une telle unité pilote est vraiment impressionnante. On pourrait s'attendre à un petit réacteur situé dans un laboratoire, mais en réalité l'unité pilote mesure une dizaine de mètre de hauteur et s'étale sur au moins 40 m². On imagine à peine la taille de l'unité de production qui produit des tonnes de polymères par jour.

Cette visite, bien que très intéressante et très instructive, n'était malheureusement pas en lien avec notre projet.

4 Visite de la station de biométhanisation de l'AIVE à Tennevile

4.1 Introduction

Le centre de gestion des déchets de Tenneville a pour but de valoriser les déchets verts et organiques qu'il recueille des ménages wallons des provinces de Liège, Namur et Luxembourg. La population concernée est alors conviée à trier ses déchets au préalable afin d'optimiser le processus de valorisation au maximum. Ainsi, ce sont environs 240000 t de déchets (verts et PMC) qui sont récoltés au centre chaque année, dont 30000 t de déchets ménagers. De l'énergie est alors produite, d'abord sous forme de biogaz, et ensuite sous forme de chaleur et d'électricité exploitables dans d'autres applications du site.

4.2 Production de biogaz

Toute la masse de déchets ménagers est alors d'abord entreposée dans de grands hangars, pour assurer une première phase de décomposition. On estime alors la proportion de plastique à environ 0.1-0.5% de la masse totale. Afin d'accélérer le processus sans devoir retourner les tas de déchets mécaniquement, on souffle de l'air par en-dessous dans le but qu'un maximum de matière soit en contact constant avec de l'air. Après 2-3 semaines d'entreposage sur les « dalles », le digestat est filtré par un procédé de tamisage destiné à se séparer d'un maximum de déchets plastiques.

Par la suite, ces déchets sont alors traités de sorte à produire environs $3.6 \cdot 10^6$ m³ de biogaz par an, composé à 55% de méthane. Moyennant un certain investissement, il serait possible d'augmenter la teneur en méthane du biogaz, et d'ainsi le rendre utilisable pour une plus grande série d'applications. Or en réalité, le gaz produit ici étant ici destiné à faire fonctionner des moteurs à gaz prévus à cet effet, une meilleure qualité n'est donc pas nécessaire. Dans le cas du centre à Tenneville, les moteurs à gaz sont destinés à produire de l'électricité (7000 MW par année) et de la chaleur à partir de biogaz contenant cette proportion-là de méthane. Aucun besoin d'en améliorer la qualité.

Cependant, à sa sortie, le biogaz est très chargé en humidité (environ 100% d'humidité relative) ce qui n'est pas enviable compte tenu des moteurs utilisés. Afin d'enlever une bonne partie d'eau contenue dans le gaz, on le refroidit brusquement. L'eau va ainsi condenser, et il suffira alors de récupérer le gaz, alors moins humide. Le gaz ainsi produit est ensuite utilisé pour produire de l'énergie, qui est alors réinjectée dans le reste du centre pour par exemple chauffer les bureaux, fournir les ordinateurs en électricité ou encore alimenter diverses autres productions présentes sur le sites (séchage des boues, production de compost, etc).

4.3 Conclusion

Cette visite nous aura au moins permis de prendre connaissance d'une façon plutôt économique de produire du méthane. En effet, moyennant un traitement décrit plus haut, il est possible d'obtenir du biogaz à partir de déchets organiques ménagers. Nul besoin donc d'investir dans des matières premières coûteuses, d'autant

qu'une certaine aide de la part des autorités est envisageable, compte tenu du fait que ce sont des déchets publics qui sont pris en charge.

5 Laboratoire d'électrolyse

5.1 Découverte d'un autre procédé de fabrication du dihydrogène : l'électrolyse

Le but du laboratoire était de découvrir un nouveau procédé de fabrication du dihydrogène autre que le vaporéformage, de le caractériser et de le comparer avec le procédé utilisé dans la méthode de production Haber-Bosch en terme de consommation, de pollution et de coût de production.

5.2 Explication de la réaction

L'électrolyse de l'eau consiste à briser les liaisons entre l'oxygène et l'hydrogène de l'eau à l'aide d'un courant électrique. Ensuite, les deux composés prennent part à une réaction d'oxydo-réduction. Ce qui donne, à température ambiante, de l'hydrogène sous forme de dihydrogène gazeux (tout comme l'oxygène qui devient du dioxygène gazeux), un des produits souhaités. Le réaction suivante est la réaction bilan du procédé en question.

$$2H_2O(l) \rightleftharpoons 2H_2(g) + O_2(g)$$

En décomposant la réaction selon ce qui passe à l'anode et à la cathode, on obtient :

$$2H^{+}(aq) + 2e^{-} \rightleftharpoons H_{2}(g)$$

à la cathode et

$$2H_2O(1) \rightleftharpoons O_2(g) + 4e^- + 4H^+$$

à l'anode. On observe que le pH peut jouer un rôle favorable ou défavorable à l'obtention du dihydrogène. Idem pour le courant.

5.3 Discussion paramétrique et observations du laboratoire

Lors de la première expérience, tout les groupes avaient les même paramètres, à savoir un courant de 1 A, une température ambiante(approx. 20 °C), un pH de 1 (obtenu avec une solution d'acide sulfurique 5 mol/L) et le milieu de la réaction était continuellement agité afin de pourvoir supposé que la concentration en acide était identique partout dans le bécher. Nous déduisons pour la première expérience que la production de dihydrogène gazeux est linéaire par rapport au temps.

Lors des expériences suivantes, nous avons modifié les paramètres un à un afin de déterminer l'impact de ceux-ci sur la réaction et donc la production du dihydrogène. Dans la deuxième expérience, la température a été augmentée. Dans la troisième expérience, le courant était diminué et dans les deux dernières expériences, le pH a été modifié.

Toutes ces expériences nous donnent également une relation linéaire entre le volume de H_2 produit et le temps. De la deuxième expérience, on retient qu'une augmentation de température diminue le temps nécessaire à l'obtention d'un même volume de dihydrogène. De la troisième expérience, nous retenons également que le courant influence de manière proportionnelle la production de H_2 : à temps égaux, si le courant est divisé par deux, alors le volume produit de dihydrogène est divisé par deux également. Enfin des deux dernières expériences, nous apprenons que un pH acide favorise la production de dihydrogène tandis qu'un pH plus basique inhibe cette production (l'imprécision des mesures prises ne permet pas de distinguer correctement quel pH (basique ou acide) favorise la production de dihydrogène).

Ce qui ressort de ces expériences :

- La production de dihydrogène en fonction du temps est linéaire

Nous pouvons jouer sur certains paramètres afin d'obtenir un débit massique suffisant que pour alimenter notre chaîne de production.

5.4 Conclusions

Maintenant, cherchons les conditions idéales pour obtenir du dihydrogène. Il faut que le courant soit le plus grand possible et que la température soit la plus haute (voir section au-dessus). Dans ces conditions-là, nous obtenons un plus grand débit massique de dihydrogène.

Pour produire le H_2 nécessaire à notre chaîne de production (soit 266.32 t/d à 1000 K), nous avons besoin d'une certaines puissance qu'il va falloir déterminer. Tout d'abord transformons le débit massique en débit volumique :

$$266.32 \text{ t/d} = 3.082 \text{ kg/s} \approx 3.1 \text{ kg/s}$$

Dans le document cité dans la biblographie[1], une étude sur la production de dihydrogène par électrolyse provenant de panneaux photovoltaïque nous donne une formule qui lie le courant à la masse d'eau utilisée pour l'électrolyse et le rendement faradique (qui est de 90% dans la plupart des cas). Le rendement faradique est Le courant nécessaire pour produire cette quantité vaut donc :

$$I = \frac{96487000 \cdot \dot{m}_{H_2}}{\eta_f} = \frac{96487000 \cdot 3.1}{0.9} = 3.32 \cdot 10^8 \text{ A}$$

avec η_f le rendement faradique et m_{H_2} , le débit massique de H_2 à produire. La puissance est le produit entre le courant et la tension. Le puissance nécessaire est donc :

$$P = V \cdot I = 1.5 \cdot 3.32 * 10^8 \approx 5 \cdot 10^8 \text{ W}$$

ce qui est très important (méthode assez énergivore).

Pour finir, nous comparerons les deux méthodes de production de dihydrogène vues, à savoir le vaporéformage et l'électrolyse.

En terme de pollution, il est clair que l'électrolyse ne produit pas ou peu de pollution de par sa consommation en électricité (si on suppose que l'électricité peut être obtenue grâce à des énergies renouvelables) tandis que le vaporéformage est très polluant : il libère quasiment une mole de ${\rm CO_2}$ pour deux mole de ${\rm NH_3}$ produites. Pour le rendement et le coût de production, le vaporéformage est malheureusement plus pratique. En effet, l'achat et le stockage de gaz naturel et d'eau est sans doute moins cher (et plus facile d'accès) que de consommer beaucoup de puissance électrique pour obtenir du dihydrogène à partir de l'eau. C'est pourquoi il est le procédé choisis industriellement pour la production de dihydrogène.

6 Atelier créatif (conduite de brainstorming)

6.1 Introduction

- Dessiner son voisin : a pour but de voir qu'il faut éliminer toute gêne en créativité, ne pas avoir peur de notre imagination. La gêne est nocive en créativité.
- Lister ce qu'on possédait dans notre chambre d'enfant : a pour but de générer plein d'idées (ici d'objets).
 C'est une phase de divergence : chacun amène toutes ses idées, en plus grand nombre possible.
- Avec ces listes, choisir un nom d'équipe qui représente aux mieux ses membres : a pour but de sélectionner les meilleures idées. C'est une phase de convergence : tout le monde doit se mettre d'accord.

Au terme de cette introduction, on remarque qu'il y a 4 profils différents que l'on peut extraire dans la réalisation d'un processus créatif :

- 1. Le clarificateur : il a pour but d'approfondir le problème pour la compréhension de tous. Il cherche à trouver la bonne *question* à poser.
- 2. L'idéateur : il génère le plus d'idées possibles.
- 3. Le développeur : il développe les idées, les structure. Il rebondit sur les idées farfeules de l'idéateur pour les rendre possible.

4. Le réalisateur : c'est lui qui réalise les idées, il les met en place de manière concrète. Il s'occupe également d'évincer les idées trop farfelues de l'idéateur.

On remarque que ces 4 profils correspondent aussi aux 4 étapes du processus de créativité (clarification du problème, génération d'idées ...).

6.2 Processus régénératif

Un membre de la Maison du Développement Durable est venu nous faire une petite conférence sur les systèmes industriels qui sont en place aujourd'hui et ce qui devrait changer pour éviter les catastrophes écologiques. En effet, les systèmes industriels d'aujourd'hui sont pour la plupart des systèmes linéaires de progrès, de roissance, avec toujours plus de production, ce qui a des impacts sur toutes choses et est source de crises en ce moment.

Cependant, la crise peut être considérée comme un moment de mutation, une opporunité. En effet, à cause des besoins en matières premières limitées et des conséquences écologiques des systèmes actuels, il y a une nécessité de passer de ce système linéaire et mécanique à un système circulaire et organique. Nous ne pouvons plus nous permettre de créer seulement en quantité, il nous faut un système qui régénère (appelé "Culture du Care" ou "prendre soin" en anglais), passer d'une compétition avec la nature à une collaboration avec cele-ci. Une culture régénérative emmène de la nouvelle vie via ce que certains considèrent comme des déchets.

Il est indispensable de penser à la manière dont nous allons disposer ou réutiliser nos lors de la création de notre entreprise de production d'ammoniac.

6.3 Communication

La communication des idées et de la production de notre entreprise avec la clientèle peut se résumer en 4 étapes qui sont les suivantes :

- 1. "L'insight" : la mise en évidence des attentes de la clientèle.
- 2. La promesse : la réponse de l'entreprise à cette attente.
- 3. La raison d'y croire : une démonstration technique de ce que l'entreprise a mis en place, ayant pour but de convaincre de l'efficacité de ce que nous avons.
- 4. "Le claim" : c'est la "base line" de notre méthode, qui a pour but de faire mémoriser ce que nous avons.

6.4 Mind mapping

Il nous a été demandé de faire une mindmap (graphique représentant des idées, des tâches, des mots, des concepts liés autour d'un sujet central) de notre de production d'ammoniac. Le usjet central était donc l'usine avec autour 4 thèmes principaux : les services, les fonctions, les proximités géographiques (ce qu'il y a autour de l'usine) et les différentes parties de l'usine (en termes de bâtiments, constructions).

But : rassembler ses idées et apprendre à les structurer.

6.5 Amélioration de son usine en terme de développement durable

- Choisir un thème : par exeple : l'énergie, le bien être au travail, la mobilité,...
- Etablir des questions précises à propos du thème à améliorer : par exemple, au lieu de se demander comment améliorer le bine être au travail, se demander comment améliorer la flexibilité des horaires au travail, ce qui contribuera au bien être des employés.
- Etablir des réponses aux questions trouvées ci-dessus -phase de divergence) puis choisir la/les meilleures réponses (phase de convergence).

But : pratiquer le processus de créativité en groupe, de l'élaboration de la problématique jusqu'au choix des solutions.

6.6 Conclusion

Voici les choses importantes à retenir de cet atelier créativité :

- Il y a 4 grandes étapes et donc 4 profils différents dans le processus de créativité de l'idéateur, le clarificateur, le développeur et le réalisateur.
- Il y a 2 grandes phases dans le processus de créativité : la phase de divergence, dont le but est de génénrer le plus d'idées possible sans se préoccuper de leur qualité, et la phase de convergence, où l'on doit se mettre d'accord sur les meilleures idées.
- Pour faire avancer le processus de créativité, il faut d'abord se poser des questions précises sur ce qu'on veut créer/améliorer et ensuite établir des réponses. D'abord générer le plus de réponses possibles individuellement (phase de divergence), puis sélectionner les meilleures ensemble (phase de convergence).
- Il faut impérativement éviter l'utilisation du système linéaire classique et pencher vers un système circulaire organique, régénératif.

Références

[1] Nasreddine CHENNOUF et Boubekeur DOKKAR Belkhir NEGROU, Noureddine SETTOU. Etude d'une installation de production d'hydrogène solaire par l'électrolise de l'eau. Université Kasdi Merbah Ouargla, Algérie, 2009.