

Winning Space Race with Data Science

Onur iŞCiL August 2024

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies
 - Data Collection
 - Data Wrangling
 - Exploratory Data Analysis with SQL and Python
 - Visual analysis with falloum
 - Dashboards with Plotly Dash
 - Predictive Analysis by Machine Learning
- Summary of all results
 - Sufficient information was gathered using the SpaceX API and web scraping techniques.
 - The relationship between successful and unsuccessful launches was revealed through Exploratory Data Analysis (EDA).
 - With the application of machine learning techniques, the probability of a launch's success or failure, and consequently the estimated cost of the launch, was predicted.

Introduction

Project background and context

• Space transportation is an extremely expensive and challenging endeavor. Rockets, in particular, account for a significant portion of the cost. While many companies estimate the cost of space transportation to be around 165 million, SpaceX offers this service for 62 million dollars. The reason for this difference is the reusability of their rockets. Therefore, whether the rockets successfully return to Earth or not is the main factor determining the cost

Problems you want to find answers

• The main factor in calculating the cost of a launch is predicting the success rate based on the launch site, payload amount, and the target orbit. If we develop an algorithm that calculates this, we can estimate the cost and identify the most successful launch conditions

Methodology

Executive Summary

- Data collection methodology:
 - The data collection method consists of two parts:
 - Data was obtained using the <u>SpaceX API</u>
 - Data was also gathered through web scraping from Wikipedia
- Perform data wrangling
 - Unwanted parts of the data were filtered out, and missing data was completed.
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - The data, after being split into training and test sets and standard scaled, was used to train various classification algorithms, and the best algorithm was selected.

Data Collection

- During the data collection phase, two main sources and various techniques were primarily focused on.
- These are the SpaceX API and Web Scraping, respectively.
- The data obtained from both approaches were subsequently transferred to dataframes and finally to CSV files.
- The details of the method can be seen in the following two slides.

Data Collection – SpaceX API

• The data retrieval process using the Space X-API, as shown in the flowchart above, involves obtaining the JSON data, filtering it, and then saving it

	FlightNumber	Date	BoosterVersion	PayloadMass	Orbit	LaunchSite	Outcome	Flights	GridFins	Reused	Legs	LandingPad	Block	ReusedCount	Serial	Longit
4	6	2010- 06-04	Falcon 9	NaN	LEO	CCSFS SLC 40	None None	1	False	False	False	None	1.0	0	B0003	-80.577
5	8	2012- 05-22	Falcon 9	525.0	LEO	CCSFS SLC 40	None None	1	False	False	False	None	1.0	0	B0005	-80.577
6	10	2013- 03-01	Falcon 9	677.0	ISS	CCSFS SLC 40	None None	1	False	False	False	None	1.0	0	B0007	-80.577
7	11	2013- 09-29	Falcon 9	500.0	РО	VAFB SLC 4E	False Ocean	1	False	False	False	None	1.0	0	B1003	-120.610
8	12	2013- 12-03	Falcon 9	3170.0	GTO	CCSFS SLC 40	None None	1	False	False	False	None	1.0	0	B1004	-80.577

Data Collection - Scraping

Connect to Website and Fetch Data:

Parse HTML Content:

Identify and Extract Table

Extract Data

Convert to
DataFrame and
Save to CSV

	Flight No.	Launch site	Payload	Payload mass	Orbit	Customer	Launch outcome	Version Booster	Booster landing	Date	Time
0	1	CCAFS	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success\n	F9 v1.07B0003.18	Failure	4 June 2010	18:45
1	2	CCAFS	Dragon	0	LEO	NASA	Success	F9 v1.07B0004.18	Failure	8 December 2010	15:43
2	3	CCAFS	Dragon	525 kg	LEO	NASA	Success	F9 v1.07B0005.18	No attempt\n	22 May 2012	07:44
3	4	CCAFS	SpaceX CRS-1	4,700 kg	LEO	NASA	Success\n	F9 v1.07B0006.18	No attempt	8 October 2012	00:35
4	5	CCAFS	SpaceX CRS-2	4,877 kg	LEO	NASA	Success\n	F9 v1.07B0007.18	No attempt\n	1 March 2013	15:10
222	117	CCSFS	Starlink	15,600 kg	LEO	SpaceX	Success\n	F9 B5B1051.10657	Success	9 May 2021	06:42
223	118	KSC	Starlink	~14,000 kg	LEO	SpaceX	Success\n	F9 B5B1058.8660	Success	15 May 2021	22:56
224	119	CCSFS	Starlink	15,600 kg	LEO	NASA	Success\n	F9 B5B1063.2665	Success	26 May 2021	18:59
225	120	KSC	SpaceX CRS-22	3,328 kg	LEO	Sirius XM	Success\n	F9 B5B1067.1668	Success	3 June 2021	17:29
226	121	CCSFS	SXM-8	7,000 kg	GTO	NaN	NaN	F9 B5	NaN	6 June 2021	04:26

The process of connecting to the web address, locating the data within the address, and subsequently retrieving and saving the data is shown step by step in the above flowchart.

Data Wrangling

• The dataset contains various types of information. For example, values of 1 or 0 represent successful or unsuccessful landing attempts, with 'True Ocean' indicating a successful landing in the ocean and 'False Ocean' indicating an unsuccessful landing in the ocean. Additionally, it includes extensive information about launch pads and details about which orbits the launches occurred. At this stage, the data has been processed to handle this information.

EDA with Data Visualization

 Various graphical techniques were used to explore the relationships between variables. For example, scatter plots were used to observe the correlation and relationship between two variables, bar charts to examine the relationship between categorical and numerical data, and line graphs to identify trends

Scatter Plot Graphs

- Flight Number X Payload Mass
- Flight Number X Launch Site
- Payload vs. Launch Site
- Orbit X Flight Number
- Payload vs. Orbit Type
- Orbit vs. Payload Mass
- Bar Graph
 - Success rate X Orbit
- Line Graph
 - Success rate vs. Year

EDA with SQL

- During this stage, Exploratory Data Analysis (EDA) was performed using SQLAlchemy to execute SQL commands within Python. The following questions were addressed:
 - Unwanted parts of the data were filtered out, and missing data was completed.
 - Display the names of the unique launch sites in the space missions.
 - Display the total payload mass carried by boosters launched by NASA (CRS).
 - Display the average payload mass carried by the booster version F9 v1.1.
 - List the date when the first successful landing outcome on a ground pad was achieved. List the total number of successful and failed mission outcomes.
 - List the names of the booster versions that have carried the maximum payload mass using a subquery.
 - Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the dates 2010-06-04 and 2017-03-20, in descending order.

Build an Interactive Map with Folium

- At this stage, a map was created using Folium to visualize the launch sites.
- The launch sites were then marked on the map.
- Information about successful and failed launches was added to these marked sites, and the markers were color-coded based on the number of launches and the success rate

Build a Dashboard with Plotly Dash

- At this stage, a dashboard was created using the data we obtained.
- DASH and Plotly libraries were used for this purpose.
- In the dashboard, pie charts and scatter plots were created based on launch sites, payload range, and success rate. The dashboard allows for the interactive selection and filtering of launch sites and payload range information

Predictive Analysis (Classification)

- At this stage, the data was subjected to the StandardScaler function, and after splitting it into test and training sets (with test_size=0.2), a technique was developed to predict the system's performance using;
 - logistic regression,
 - support vector machine,
 - decision tree,
 - and k-nearest neighbors methods.
- GridSearchCV was used to optimize different hyperparameters

Results

- At the conclusion of all analyses, we encounter three different categories of results:
 - Exploratory data analysis results
 - Interactive analytic results obtained through the dashboard
 - Predictive analysis results

Flight Number vs. Launch Site

 Specifically, at the launch sites 'KSC LC 39A' and 'VAFB SLC 4E,' it is observed that rockets with more than 20 flights are typically launched, and the overall success rate is higher compared to another launch site, 'CCAFS SLC 40

Payload vs. Launch Site

• Another observation is that the VAFB-SLC launch site is generally not used for heavy payloads (greater than 10,000 kg)

Success Rate vs. Orbit Type

 Various success rates have been observed across different orbits. Specifically, while the success rate in the SO orbit is O, the success rates in the ES-L1, GEO, HEO, and SSO orbits are at least 1. Additionally, the VLEO orbit has shown a success rate exceeding 0.8

Flight Number vs. Orbit Type

• When examining the Flight Count vs. Payload Mass graph, it is observed that even in launches with higher masses, rockets with a higher flight count have a higher rate of successful landings compared to rockets with a lower flight count

Payload vs. Orbit Type

With heavy payloads the successful landing or positive landing rate are more for Polar, LEO and ISS. However, for GTO, it's difficult to distinguish between successful and unsuccessful landings as both outcomes are present.

Launch Success Yearly Trend

• We can observe that the sucess rate since 2013 kept increasing till 2020

All Launch Site Names

 In this output, we retrieve information about the launch sites using SQL with the DISTINCT keyword

Launch Site Names Begin with 'CCA'

• With this query, we retrieved the first 5 launch pads whose names start with 'CCA

Task 2	Task 2										
Display 5 records where launch sites begin with the string 'CCA'											
%sql SELECT * FROM SPACEXTBL WHERE LAUNCH_SITE LIKE 'CCA%' LIMIT 5;											
* sqlite:///my_data1.db Done.											
Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASSKG_	Orbit	Customer	Mission_Outcome	Landing_Outcome		
2010- 06-04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)		
2010- 12-08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)		
2012- 05-22	7:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt		
2012- 10-08	0:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt		
2013- 03-01	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt		

Total Payload Mass

 We calculated the total payload carried by boosters from NASA, and as a result, we obtained a value of 45,596 from this query

```
Task 3
Display the total payload mass carried by boosters launched by NASA (CRS)

[16]: %sql SELECT SUM(PAYLOAD_MASS__KG_) AS TOTAL_PAYLOAD FROM SPACEXTBL WHERE customer = 'NASA (CRS)';

* sqlite:///my_data1.db
Done.

[16]: TOTAL_PAYLOAD

45596
```

Average Payload Mass by F9 v1.1

• In the analysis of the 'booster version F9 v1.1' that we will use in the machine learning section, we found the average payload mass to be 2928.4

```
Task 4

Display average payload mass carried by booster version F9 v1.1

[17]: %sql SELECT AVG(PAYLOAD_MASS__KG_) AS AVG_PAYLOAD FROM SPACEXTBL WHERE BOOSTER_VERSION = 'F9 v1.1';

* sqlite://my_data1.db
Done.

[17]: AVG_PAYLOAD

2928.4
```

First Successful Ground Landing Date

• As the output of the SQL command we used to discover the date of the first successful landing attempt, we obtained the date 2015-12-22

```
Task 5

List the date when the first successful landing outcome in ground pad was acheived.

Hint:Use min function

**sql SELECT MIN(DATE) AS FIRST_SUCCESS_GP FROM SPACEXTBL WHERE Landing_Outcome = 'Success (ground pad)';

* sqlite:///my_data1.db
Done.

**FIRST_SUCCESS_GP

2015-12-22
```

Successful Drone Ship Landing with Payload between 4000 and 6000

 List the names of boosters which have successfully landed on drone ship and had payload mass greater than 4000 but less than 6000

Task 6 List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000 **sql SELECT DISTINCT BOOSTER_VERSION FROM SPACEXTBL WHERE PAYLOAD_MASS__KG_ BETWEEN 4000 AND 6000 AND Landing_Outcome = 'Success (drone ship)'; * sqlite:///my_data1.db Done. **Booster_Version F9 FT B1022 F9 FT B1021.2 F9 FT B1021.2

Total Number of Successful and Failure Mission Outcomes

Calculation of the Total Number of Successful and Failed Mission Outcomes

Boosters Carried Maximum Payload

• List the names of the booster which have carried the maximum payload mass

2015 Launch Records

 List of the failed landing_outcomes in drone ship, their booster versions, and launch site names for in year 2015

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

 Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order

Folium Map

• In the generated Folium map, users can interactively navigate, and the launch sites along with the number of launches at each site can be viewed

Folium Launch Sites Map

 The colors of the launch sites vary based on the success rate, and when clicked, you can see which launches were successful and which were unsuccessful

Dashboard – Pie Chart of All launch Sites

• Through the dashboard, the overall success data by launch site revealed that 41.7% of successful launches occurred at the KSC LC launch pad

38

Dashboard - Pie Chart of KSC LC launch Site

• For a more detailed analysis, filtering based on the most successful launch pad shown in the previous slide reveals that the 'KSC LC' launch pad has a success rate of 76.9%.

Dashboard – Heavy weighted Launches

• It has been observed that the success rate is low in heavy-weighted launches

Dashboard - Light weighted Launches

• It has been observed that the success rate is high in low-weighted launches

Classification Accuracy

• When evaluating model accuracy, it is observed that the most successful model in predicting launch success is the one created using the Decision Tree approach, while the least successful model is the one created using Logistic Regression. However, even the least successful model has an accuracy score of 0.84643, indicating a good performance

Confusion Matrix

• Examining the performance of the model trained with the Decision Tree technique using the confusion matrix, the visual on the right appears. In the model, only 3 predictions show Type 1 errors, while the remaining 15 predictions are all correct

Conclusions

- Launches with low payloads (5000 kg and below) are more successful
- The KSC LC-39A launch site shows better performance compared to other launch sites.
- Launches to ES-L1, GEO, HEO, SSO, and VLEO orbits are nearly 100% successful.
- Rockets with higher numbers of launches have a higher success rate compared to other rockets.
- The Decision Tree algorithm is the most successful approach in predicting launch success.
- A prediction made using the Decision Tree method can provide necessary information on the cost of a launch with an accuracy of 0.87500.

Appendix

• Include any relevant assets like Python code snippets, SQL queries, charts, Notebook outputs, or data sets that you may have created during this project

