CS 471/571 (Fall 2023): Introduction to Artificial Intelligence

Lecture 19: Bayes Nets - Independence

Thanh H. Nguyen

Source: http://ai.berkeley.edu/home.html

Announcement and Reminder

- •Project 3:
 - Deadline: November 20th, 2023

- No class this Friday
 - Veterans Day

Thanh H. Nguyen 11/8/23

Bayes' Nets

• A Bayes' net is an efficient encoding of a probabilistic model of a domain

- Questions we can ask:
 - Inference: given a fixed BN, what is $P(X \mid e)$?
 - Representation: given a BN graph, what kinds of distributions can it encode?
 - Modeling: what BN is most appropriate for a given domain?

Bayes' Net Semantics

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents' values $P(X|a_1 \dots a_n)$

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Example: Alarm Network

В	P(B)
+b	0.001
<u>b</u>	0.999

		_
Α	J	P(J A)
+a	+j	0.9
+a	-j	0.1
-a	+j	0.05
-a	-j	0.95

E	P(E)
+e	0.002
-е	0.998

Α	M	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-e	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-e	+a	0.001
-b	-е	-a	0.999

Example: Alarm Network

В	P(B)
+b	0.001
-b	0.999

Α	J	P(J A)
+a	+j	0.9
+a	ij	0.1
-a	+j	0.05
	:	0.05

Е	P(E)
+e	0.002
-е	0.998

Α	M	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

В	ш	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-e	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-e	+a	0.001
-b	-e	-a	0.999

Bayes' Nets

- Representation
 - Conditional Independences
 - Probabilistic Inference
 - Learning Bayes' Nets from Data

Conditional Independence

X and Y are independent if

$$\forall x, y \ P(x, y) = P(x)P(y) - - - \rightarrow X \perp \!\!\!\perp Y$$

X and Y are conditionally independent given Z

$$\forall x, y, z \ P(x, y|z) = P(x|z)P(y|z) --- \rightarrow X \perp \perp Y|Z$$

(Conditional) independence is a property of a distribution

• Example: $Alarm \perp Fire | Smoke$

Bayes Nets: Assumptions

• Assumptions we are required to make to define the Bayes net when given the graph:

$$P(x_i|x_1\cdots x_{i-1}) = P(x_i|parents(X_i))$$

- Beyond above "chain rule → Bayes net" conditional independence assumptions
 - Often additional conditional independences
 - They can be read off the graph
- Important for modeling: understand assumptions made when choosing a Bayes net graph

• Conditional independence assumptions directly from simplifications in chain rule:

• Additional implied conditional independence assumptions?

Independence in a BN

- Important question about a BN:
 - Are two nodes independent given certain evidence?
 - If yes, can prove using algebra (tedious in general)
 - If no, can prove with a counter example
 - Example:

- Question: are X and Z necessarily independent?
 - Answer: no. Example: low pressure causes rain, which causes traffic.
 - X can influence Z, Z can influence X (via Y)
 - Addendum: they *could* be independent: how?

D-separation: Outline

D-separation: Outline

Study independence properties for triples

Analyze complex cases in terms of member triples

•D-separation: a condition / algorithm for answering such queries

Causal Chains

This configuration is a "causal chain"

X: Low pressure

Y: Rain

Z: Traffic

$$P(x, y, z) = P(x)P(y|x)P(z|y)$$

- Guaranteed X independent of Z? No!
 - One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.
 - Example:
 - Low pressure causes rain causes traffic,
 high pressure causes no rain causes no traffic
 - In numbers:

$$P(+y \mid +x) = 1, P(-y \mid -x) = 1,$$

 $P(+z \mid +y) = 1, P(-z \mid -y) = 1$

Causal Chains

This configuration is a "causal chain"

X: Low pressure

Y: Rain

Z: Traffic

$$P(x, y, z) = P(x)P(y|x)P(z|y)$$

• Guaranteed X independent of Z given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$

$$= \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)}$$

$$= P(z|y)$$
Yes!

 Evidence along the chain "blocks" the influence

Common Cause

■ This configuration is a "common cause" ■ Guaranteed X independent of Z? No.

- Z: Lab full
- P(x, y, z) = P(y)P(x|y)P(z|y)

- One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.
- Example:
 - Project due causes both forums busy and lab full
 - In numbers:

$$P(+x | +y) = 1, P(-x | -y) = 1,$$

 $P(+z | +y) = 1, P(-z | -y) = 1$

Common Cause

This configuration is a "common cause"

Z: Lab full

$$P(x, y, z) = P(y)P(x|y)P(z|y)$$

Guaranteed X and Z independent given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$

$$= \frac{P(y)P(x|y)P(z|y)}{P(y)P(x|y)}$$

$$= P(z|y)$$

Yes!

 Observing the cause blocks influence between effects.

Common Effect

 Last configuration: two causes of one effect (v-structures)

- Are X and Y independent?
 - *Yes*: the ballgame and the rain cause traffic, but they are not correlated
 - Still need to prove they must be (try it!)
- Are X and Y independent given Z?
 - *No*: seeing traffic puts the rain and the ballgame in competition as explanation.
- This is backwards from the other cases
 - Observing an effect activates influence between possible causes.

The General Case

The General Case

• General question: in a given BN, are two variables independent (given evidence)?

Solution: analyze the graph

• Any complex example can be broken into repetitions of the three canonical cases

Active / Inactive Paths

- Question: Are X and Y conditionally independent given evidence variables {Z}?
 - Yes, if X and Y "d-separated" by Z
 - Consider all (undirected) paths from X to Y
 - No active paths = independence!
- A path is active if each triple is active:
 - Causal chain $A \to B \to C$ where B is unobserved (either direction)
 - Common cause $A \leftarrow B \rightarrow C$ where B is unobserved
 - Common effect (aka v-structure) $A \rightarrow B \leftarrow C$ where B or one of its descendents is observed
- All it takes to block a path is a single inactive segment

D-Separation

- Query: $X_i \perp \!\!\!\perp X_j | \{X_{k_1}, ..., X_{k_n}\}$?
- Check all (undirected!) paths between X_i and X_j
 - If one or more active, then independence not guaranteed

$$X_i \bowtie X_j | \{X_{k_1}, ..., X_{k_n}\}$$

• Otherwise (i.e. if all paths are inactive), then independence is guaranteed

$$X_i \perp \!\!\! \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$

$$L \! \perp \! \! \perp \! \! T' | T$$
 Yes

$$L \! \perp \! \! \! \perp \! \! B$$
 Yes

$$L \bot\!\!\!\bot B | T$$

$$L \! \perp \! \! \perp \! \! B | T'$$

$$L \perp \!\!\! \perp B | T, R$$
 Yes

- Variables:
 - R: Raining
 - T: Traffic
 - D: Roof drips
 - S: I'm sad
- Questions:

