USB to DVI converter

- Matthew Barga
- Alex Reyes
- Harsimranjit Singh

Overview

USB to DVI converter

- One end plugs into the USB port on a notebook or desktop computer, and the other end plugs into the DVI port on an external monitor
- Benefits:
 - Useful if one has no extra VGA/DVI ports
 - If your computer/laptop is old-school, you have a way to connect it to an external monitor
 - Expand your screen real estate, or add another screen to help with multitasking
- Why ASIC?
 - Reduced cost when mass-producing an ASIC design
 - High pin count (around 40)

System Level Diagram

System Design

Top Level Block Diagram

USB Top Level Block Diagram

SRAM Top Level Block Diagram

DVI Top Level Block Diagram

Top Level Signals

Signal Name	Туре	No. of Bits	Data Format or Active High/Low	Description, Timing Constraints
RST_N	In	1	Active Low	Asynchronous Reset
CLK	In	1	50% duty cycle	Chip Clock, 4ns period (250 MHz)
DP	In	1	-	USB Data + Line
DM	In	1	-	USB Data - Line
DP_Out	Out	1	-	USB Data + Line Out
DM_Out	Out	1	-	USB Data – Line Out
Sram_In	In	8	Binary Data	SRAM Data Port In
Sram_Out	Out	8	Binary Data	SRAM Data Port Out
Addr	Out	20	Unsigned Binary	SRAM Address
nWE	Out	1	Active Low	SRAM Write Enable

Top Level Signals (contd..)

Signal Name	Туре	No. of Bits	Data Format or Active High/Low	Description, Timing Constraints
R_Out	Out	1	Active High Serial Output re	
G_Out	Out	1		Serial Output registers in parallel
B_Out	Out	1		paranor
DVI_clk	Out	1	50% Duty Cycle	Output clock divided to 25 MHz

- Memory Interface
 - Use SRAM for frame repetition
- USB Protocol
 - Used 1.1 Protocol

Operational Characteristics

USB Core Main Loop

Setup Cycle USB

OUT Data Cycle USB

DVI

Results

USB Source Simulation

USB Source Simulation: Test 1

USB Source Simulation: Test 2

USB Source Simulation: Test 3

USB Mapped Simulation

SRAM Simulation: CTRL

SRAM Simulation: Interface

DVI Simulation: Periodic Cues

DVI Simulation: 8/10 encoding (TMDS)

8/10 Bit TMDS Encoding

```
DATA = 10101010 ... No. of 1's = 4 and D(0) = 0

q_m: q_m (0) = D (0) = 0

for 1 to 7

q_m (i) = q_m (i-1) x Nor D(i)

end i

q_m (8) = 0;

= 011001100
```

```
Cnt = 0

q_m(8) = 0

Q_0 = not q_m(8) & q_m(8) & q_m(7:0)'

= 1000110011
```

Summary and Conclusions

Chip Layout

Synthesis Results:

Block	Area
Top Level	1.316394 mm ²
USB	0.203760 mm ²
SRAM	0.475515 mm ²
DVI	0.840879 mm ²

Block	Timing
Top Level	3.75 ns
USB	4.60 ns
SRAM	3.75 ns
DVI	3.54 ns

Budget Estimates:

• Area: ~1.3mm²

Timing: 3.7ns

Total Pin Count: 39

Success Criteria

- Successfully receiving a packet of data from USB bus according to USB 1.1 protocol. (2) – DONE!
- Successful transmission of Handshake packets by device according to USB 1.1 protocol. (1.5) – DONE!
- Successful 8/10 bit encoding for TMDS transmission. (2) – DONE!
- Successful transmission of encoded data and intermittent control signals according to TMDS specifications. (1.5) – DONE!
- Successful management of SRAM to allow for simultaneous storage of data from USB and reading of data for DVI transmission. (1) – DONE!

Conclusions

Challenges:

- Timing Frequency rate of DVI and USB
 - 12 Mbps for USB, 600 Mbps for DVI
- Memory Interfacing Frame Repetition
 - SRAM choice: 2 Mb, 10 ns

Second Run and Improvements:

- Possibly USB 2.0
- Incorporate a more extensive SETUP and IN cycle for USB
- I2C Implementation in DVI

