Paradigmas de Lenguajes de Programación Handout Clase Práctica – Demostración en Lógica Proposicional

Ejercicio 2

Demostrar que cualquier fórmula de la lógica proposicional que utilice los conectivos \neg , \land , \lor , \rightarrow puede reescribirse a otra fórmula equivalente que usa sólo los conectivos \neg y \lor .

Demostración. Mediante inducción estructural.

Sea $\mathcal{P}(\varphi) := \text{Existe } \varphi^* \in \text{FORM tal que } \varphi^* \equiv \varphi \text{ donde } \varphi^* \text{ usa sólo los conectivos } \neg y \vee.$

 $\mathcal{P}(PROP)$

Sea φ una fórmula tal que $\varphi \in PROP$, entonces φ no contiene conectivos y por lo tanto trivialmente $\mathcal{P}(\varphi)$. \triangle

 $\mathcal{P}(\neg \psi)$ tal que por H.I. sabemos que $\mathcal{P}(\psi)$

Sea $\varphi = \neg \psi$, como $\mathcal{P}(\psi)$ existe $\psi^* \equiv \psi$ tal que ψ^* usa sólo los conectivos $\neg y \lor$.

Sea v una valuación

$$\begin{array}{ll} v \vDash \varphi \\ \Longleftrightarrow v \vDash \neg \psi \\ \Longleftrightarrow v \nvDash \psi \\ \Longleftrightarrow v \nvDash \psi^{\star} \\ \Longleftrightarrow v \nvDash \psi^{\star} \\ \Longleftrightarrow v \vDash \neg \psi^{\star} \end{array}$$
 Por definición de consecuencia semántica (¬). Ya que $\psi \equiv \psi^{\star}$. Por definición de consecuencia semántica (¬).

Luego sea $\varphi^* = \neg \psi^*$ entonces $\varphi^* \equiv \varphi$ donde φ^* us a sólo los conectivos \neg y \vee por lo tanto $\mathcal{P}(\varphi)$. \triangle

 $\mathcal{P}(\psi \wedge \rho)$ tal que por H.I. sabemos que $\mathcal{P}(\psi)$ y $\mathcal{P}(\rho)$

Sea $\varphi = \psi \land \rho$, como $\mathcal{P}(\psi)$ y $\mathcal{P}(\rho)$ existen $\psi^* \equiv \psi$ y $\rho^* \equiv \rho$ tal que ψ^* y ρ^* usan sólo los conectivos \neg y \lor .

Sea v una valuación

$$v \vDash \varphi$$

$$\iff v \vDash \psi \land \rho$$

$$\iff v \vDash \psi \text{ y } v \vDash \rho$$

$$\iff v \vDash \psi \text{ y } v \vDash \rho$$

$$\iff v \vDash \psi^* \text{ y } v \vDash \rho^*$$

$$\iff \text{no ocurre que } (v \nvDash \psi^* \land v \nvDash \rho^*)$$

$$\iff \text{no ocurre que } (v \vDash \neg \psi^* \land v \vDash \neg \rho^*)$$

$$\iff \text{no ocurre que } (v \vDash \neg \psi^* \land v \vDash \neg \rho^*)$$

$$\iff \text{no ocurre que } (v \vDash \neg \psi^* \land v \vDash \neg \rho^*)$$

$$\iff \text{por definición de consecuencia semántica } (\neg).$$

$$\iff v \nvDash \neg \psi^* \lor \neg \rho^*$$

$$\iff v \vDash \neg (\neg \psi^* \lor \neg \rho^*)$$

$$\iff v \vDash \neg (\neg \psi^* \lor \neg \rho^*)$$

$$\iff \text{Por definición de consecuencia semántica.}$$

$$\iff v \vDash \neg (\neg \psi^* \lor \neg \rho^*)$$

$$\iff \text{Por definición de consecuencia semántica.}$$

$$\iff v \vDash \neg (\neg \psi^* \lor \neg \rho^*)$$

$$\iff \text{Por definición de consecuencia semántica.}$$

Luego sea $\varphi^* = \neg(\neg \psi^* \lor \neg \rho^*)$ entonces $\varphi^* \equiv \varphi$ donde φ^* us a sólo los conectivos \neg y \lor por lo tanto $\mathcal{P}(\varphi)$. \triangle

El resto de los casos son análogos y quedan como ejercicio.

T.K. 1 | 3 2° Cuatrimestre del 2024

Equivalencia entre $\neg \neg_e$ LEM y PBC

En la teórica se demostró que $\neg \neg_e \iff LEM$, demostremos que $\neg \neg_e \iff PBC$.

$$\frac{\Gamma \vdash \neg \neg \tau}{\Gamma \vdash \tau} \, (\neg \neg_{e}) \qquad \frac{}{\Gamma \vdash \tau \vee \neg \tau} \, (\textbf{LEM}) \qquad \frac{\Gamma, \neg \tau \vdash \bot}{\Gamma \vdash \tau} \, (\textbf{PBC})$$

Demostración. $\neg \neg_e \iff \mathbf{PBC}$

• Demostración de $\neg \neg_e \Rightarrow PBC$.

$$\frac{\Gamma, \neg \tau \vdash \bot}{\Gamma \vdash \neg \neg \tau} (\neg_i) \atop (\neg \neg_e)$$

• Demostración de **PBC** ⇒ ¬¬e, en clase vimos **PBC** ⇒ **LEM**, usando weakening tenemos esta otra opción.

$$\frac{\Gamma, \neg \tau \vdash \neg \tau}{\Gamma, \neg \tau \vdash \neg \tau} (ax) \qquad \frac{\Gamma \vdash \neg \neg \tau}{\Gamma, \neg \tau \vdash \neg \neg \tau} (W)$$

$$\frac{\Gamma, \neg \tau \vdash \bot}{\Gamma \vdash \tau} (PBC)$$

Quedan demostrados ambos lados de la implicación y se establece la equivalencia.

Ejercicio 5

Demostrar en NI (lógica intuicionista) que las siguientes fórmulas son teoremas.

Inciso II

$$\frac{ \begin{array}{c|c} \hline \rho \to \bot, \rho \vdash \rho \to \bot & (ax) & \hline \rho \to \bot, \rho \vdash \rho & (ax) \\ \hline \underline{\begin{array}{c} \rho \to \bot, \rho \vdash \bot \\ \hline \rho \to \bot \vdash \neg \rho & (\neg_i) \\ \hline \end{array}} & (\rightarrow_e) \\ \hline \end{array}$$

Inciso VIII

De Morgan II $\neg(\rho \land \sigma) \leftrightarrow (\neg \rho \lor \neg \sigma)$ Para la dirección \rightarrow es necesario usar principios de razonamiento clásicos. Vamos a demostrar 1. $(\rho \land \sigma) \rightarrow (\neg \rho \lor \neg \sigma)$ y 2. $(\neg \rho \lor \neg \sigma) \rightarrow (\rho \land \sigma)$.

$$\begin{array}{c} \text{Vamos a demostrar 1. } (\rho \wedge \sigma) \rightarrow (\neg \rho \vee \neg \sigma) \text{ y 2. } (\neg \rho \vee \neg \sigma) \rightarrow (\rho \wedge \sigma). \\ \hline \frac{\varphi, \rho, \sigma \vdash \rho}{\varphi, \rho, \sigma \vdash \rho \wedge \sigma} (\text{ax}) & \frac{\varphi, \rho, \sigma \vdash \sigma}{\varphi, \rho, \sigma \vdash \rho \wedge \sigma} (\text{ax}) & \frac{\varphi, \rho, \sigma \vdash \neg \rho}{\varphi, \rho, \sigma \vdash \neg \sigma} (\text{ax}) & \frac{\varphi, \rho, \sigma \vdash \bot}{\varphi, \rho \vdash \neg \sigma} (\text{ax}) & \frac{\varphi, \rho, \sigma \vdash \bot}{\varphi, \rho \vdash \neg \rho \vee \neg \sigma} (\text{v}_{i_2}) & \frac{\varphi, \neg \rho \vdash \neg \rho}{\varphi, \neg \rho \vdash \neg \rho \vee \neg \sigma} (\text{ax}) & \frac{\varphi, \neg \rho \vdash \neg \rho}{\varphi, \neg \rho \vdash \neg \rho \vee \neg \sigma} (\text{v}_{i_1}) & \frac{\varphi}{\varphi, \neg \rho \vdash \neg \rho \vee \neg \sigma} (\text{v}_{i_2}) & \frac{\varphi}{\varphi, \neg \rho \vdash \neg \rho \vee \neg \sigma} (\text{v}_{i_1}) & \frac{\varphi}{\varphi, \neg \rho \vdash \neg \rho \vee \neg \sigma} (\text{v}_{i_2}) & \frac{\varphi}{\varphi, \neg \rho \vdash \neg \rho \vee \neg \sigma} (\text{ox}) & \frac{\varphi}{\varphi, \neg \rho \vdash \rho \wedge \sigma} (\text{ox}) & \frac{\varphi}{\varphi, \neg \rho \vdash \rho \wedge \sigma} (\text{ax}) & \frac{\varphi}{\varphi, \neg \rho \vdash \rho \wedge \sigma} (\text{ox}) & \frac{\varphi}{\varphi, \neg \rho \vdash \rho \wedge \sigma} (\text{ox}) & \frac{\varphi}{\varphi, \neg \sigma \vdash \neg \sigma} (\text{ox}) & \frac{\varphi}{\varphi, \neg \sigma \vdash \sigma} (\text{ox}) & \frac{\varphi}{\varphi, \neg \sigma} (\text{ox}) & \frac{\varphi}{$$

$$\frac{\psi \vdash \neg \rho \lor \neg \sigma}{(ax)} (ax) = \frac{\frac{\overline{\psi}, \neg \rho \vdash \rho \land \sigma}{\psi, \neg \rho \vdash \rho} (ax)}{\psi, \neg \rho \vdash \rho} (ax) = \frac{\overline{\psi}, \neg \rho \vdash \rho \land \sigma}{\psi, \neg \sigma \vdash \sigma} (\land e_2) = \frac{\overline{\psi}, \neg \sigma \vdash \neg \sigma}{\psi, \neg \sigma \vdash \neg \sigma} (ax) = \frac{(ax)}{\psi, \neg \sigma \vdash \sigma} (\land e_2) = \frac{(ax)}{\psi, \neg \sigma \vdash \neg \sigma} (\land e_2) = \frac{(ax)}{\psi, \neg \sigma} (\land e_2) = \frac{(ax)}{\psi$$

Ejercicio 7

Demostrar las siguientes propiedades.

Inciso I

Si existe una derivación de $\Gamma \vdash \sigma$ entonces existe una derivación de $\Gamma, \tau \vdash \sigma$.

Demostración. Por inducción global en la altura de la derivación de $\Gamma \vdash \sigma$.

Sea

 $\mathcal{P}(n) := \text{Si existe una derivación de } \Gamma \vdash \sigma \text{ de tamaño } n \text{ entonces existe una derivación de } \Gamma, \tau \vdash \sigma.$

Por inducción global en la altura del árbol de derivación de $\Gamma \vdash \sigma$.

 $\mathcal{P}(1)$ Si el árbol de derivación de $\Gamma \vdash \sigma$ tiene altura 1 entonces necesariamente se trata de un árbol de la forma

$$\frac{\sigma \in \Gamma}{\Gamma \vdash \sigma}.$$

Por lo tanto $\sigma \in \Gamma$ sigue que $\sigma \in \Gamma \cup \{\tau\}$ y entonces

$$\overline{\Gamma, \tau \vdash \sigma}$$
 (ax).

 $\mathcal{P}(n+1)$ Sabiendo que $\mathcal{P}(i)$ para todo $1 \leq i \leq n$.

Si el árbol de derivación de $\Gamma \vdash \sigma$ tiene altura n+1 entonces nos encontramos en uno de doce casos

• Caso ∧_i

Tenemos que $\sigma = \varphi \wedge \psi$ para algún par de fórmulas φ y ψ .

Como las demostraciones de $\Gamma \vdash \varphi$ y $\Gamma \vdash \psi$ son de altura menor o igual a n por H.I. existen derivaciones de $\Gamma, \tau \vdash \varphi$ y $\Gamma, \tau \vdash \psi$ luego

$$\frac{\frac{\dots}{\Gamma,\tau\vdash\varphi}\text{ (H.I.)}\quad \frac{\dots}{\Gamma,\tau\vdash\psi}\text{ (H.I.)}}{\frac{\Gamma,\tau\vdash\varphi\land\psi}{\Gamma,\tau\vdash\varphi\land\psi}\text{ (\wedge_i)}}.$$

Caso ∨_e

$$\begin{array}{cccc} & & & & & & & \\ \hline \Gamma \vdash \varphi \lor \psi & & \overline{\Gamma, \varphi \vdash \sigma} & & \overline{\Gamma, \psi \vdash \sigma} \\ & & & \hline \Gamma \vdash \sigma & & \\ \end{array} (\lor_{e}) \, .$$

Como las demostraciones de $\Gamma \vdash \varphi \lor \psi$ de $\Gamma, \varphi \vdash \sigma$ y de $\Gamma, \psi \vdash \sigma$ son de altura menor o igual a n por H.I. existen derivaciones de $\Gamma, \tau \vdash \varphi \lor \psi$ de $\Gamma, \varphi, \tau \vdash \sigma$ y de $\Gamma, \psi, \tau \vdash \sigma$ luego

$$\frac{\frac{\dots}{\Gamma,\tau \vdash \varphi \lor \psi} \text{ (H.I.)} \quad \frac{\dots}{\Gamma,\varphi,\tau \vdash \sigma} \text{ (H.I.)} \quad \frac{\dots}{\Gamma,\psi,\tau \vdash \sigma} \text{ (H.I.)}}{\Gamma,\psi,\tau \vdash \sigma} \frac{(\text{H.I.})}{(\vee_{\text{e}})}.$$

El resto de los casos son análogos y quedan como ejercicio.