Práctica: Expresiones Booleanas 1

October 3, 2024

- 1. Realizar las siguientes sustituciones textuales. Sea cuidadoso con la parentización. Remueva los paréntesis innecesarios.
 - (a) $p[p := p \vee q]$

Solución:

```
\langle Aplicando sustitución textual, manteniendo parentesis de la variable sustituida \rangle (p\vee q) \langle Eliminando paréntesis redundantes \rangle p\vee q
```

(b) $(p \lor q \Rightarrow q \lor p)[q := p \Rightarrow q]$

Solución:

```
\langle Sustitución textual de las ocurrencias de q \rangle (p \lor (p \Rightarrow q) \Rightarrow (p \Rightarrow q) \lor p) \langle Eliminando paréntesis externos redundantes \rangle p \lor (p \Rightarrow q) \Rightarrow (p \Rightarrow q) \lor p \langle Dado que la implicación es asociativa por la derecha el segundo p \Rightarrow q contiene paréntesis redundantes \rangle p \lor (p \Rightarrow q) \Rightarrow p \Rightarrow q \lor p
```

(c)
$$((s \land q \equiv \neg r[r := s \lor q]) \Rightarrow p)[q := p \lor s]$$

Solución:

```
 \langle \text{ Sustitución de todas las ocurrencias de r} \rangle   ((s \land q \equiv \neg(s \lor q)) \Rightarrow p)[q := p \lor s]   \langle \text{ Sustitución de todas las ocurrencias de q} \rangle   ((s \land (p \lor s) \equiv \neg(s \lor (p \lor s))) \Rightarrow p)   \langle \text{ Eliminando paréntesis externos } \rangle   (s \land (p \lor s) \equiv \neg(s \lor (p \lor s))) \Rightarrow p   \langle \text{ Dado que } \lor \text{ es asociativo: } a \lor b \lor c \equiv (a \lor b) \lor c \equiv a \lor (b \lor c) \rangle   (s \land (p \lor s) \equiv \neg(s \lor p \lor s)) \Rightarrow p
```

- (d) $(s[s := q \equiv w] \land true[p := w])[s := w \land x]$
- (e) $(s \equiv p \land q)[s := p \lor r]$
- 2. Realizar las siguientes sustituciones textuales simultáneas. Sea cuidadoso con la parentización. Remueva los paréntesis innecesarios.
 - (a) $p[p, q := p \lor q, q \land p]$
 - (b) $(p \lor q \Rightarrow q \lor p)[q, r := p \Rightarrow q, (p \land q) \lor (p \Rightarrow x \lor s)]$
 - (c) $((s \land q \equiv \neg r[r := s \lor q]) \Rightarrow p)[q, s := p \lor s, p \land q]$
 - (d) $(s[s := q \equiv w] \land true[p := w])[s, w := w \land x, s]$
 - (e) $(s \Rightarrow p \land q)[s, r := p \lor r, p \lor s]$
- 3. Realizar las siguientes sustituciones textuales. Sea cuidadoso con la parentización. Remueva los paréntesis innecesarios.

```
(a) p[p := p \lor q][q := q \land p]
```

(b)
$$(p \lor q \Rightarrow q \lor p)[q := p \Rightarrow q][r := (p \land q) \lor (p \Rightarrow x \lor s)]$$

(c)
$$((s \land q \equiv \neg r[r := s \lor q]) \Rightarrow p)[q := p \lor s][s := p \land q]$$

(d)
$$(s[s := q \equiv w] \land true[p := w])[s := w \land x][w := s]$$

(e)
$$(s \Rightarrow p \land q)[s := p \lor r][r := p \lor s][s := t][s := p \equiv v]$$

- 4. Para cada una de las expresiones E[z:=X] y "hints" X=Y, escriba la expresión resultante E[z:=Y]. Puede haber varias respuestas, hallarlas todas.
 - (a) E[z:=X]: trueX=Y: $true \equiv p \lor \neg p$

(Tomando E: z)

E:z

 $\langle \text{Con X} \rangle$

X: true

(Con Y)

 $Y: p \vee \neg p$

⟨ Finalmente se tiene aplicando Leibniz ⟩

$$E[z := Y] : p \vee \neg p$$

- (b) $E[z:=X]: false \lor p \equiv p$
 - $X=Y: false \equiv \neg p \land p$

Solución:

(La expresión E es de la forma)

 $E: z \vee p \equiv p$

⟨ Con X ⟩

X: false

(Con Y)

 $Y: \neg p \wedge p$

⟨ Finalmente se tiene aplicando Leibniz ⟩

$$E[z:=Y]: \neg p \wedge p \vee p \equiv p$$

- (c) $E[z:=X]: p \lor (q \equiv p \lor q)$
 - X=Y: $p \lor q \equiv q \lor p$

Solución:

(La expresión E es de la forma)

 $E: p \lor (q \equiv z)$

⟨ Con X ⟩

 $X: p \vee q$

(Con Y)

 $Y:q\vee p$

⟨ Finalmente se tiene aplicando Leibniz ⟩

$$E[z := Y] : p \lor (q \equiv q \lor p)$$

(d) E[z:=X]: $(p \land (q \lor r)) \lor ((p \lor q) \land (p \lor r))$

X=Y:
$$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$

```
\label{eq:energy_energy} \begin{split} & \langle \text{ La expresión E es de la forma } \rangle \\ & E: z \vee ((p \vee q) \wedge (p \vee r)) \\ & \langle \text{ Con X } \rangle \\ & X: p \wedge (q \vee r) \\ & \langle \text{ Con Y } \rangle \\ & Y: (p \wedge q) \vee (p \wedge r) \\ & \langle \text{ Finalmente se tiene aplicando Leibniz } \rangle \\ & E[z:=Y]: (p \wedge q) \vee (p \wedge r) \vee ((p \vee q) \wedge (p \vee r)) \end{split}
```

(e)
$$E[z:=X]: p \Rightarrow (p \lor q \equiv p \land q)$$

 $X=Y: p \equiv q \equiv p \lor q \equiv p \land q$

Solución:

Esta pregunta tiene 3 respuestas que se muestran a continuación.

```
i. \langle La expresión E es de la forma \rangle
E: z \Rightarrow (p \lor q \equiv p \land q)
\langle Con X \rangle
X: p
\langle Con Y \rangle
Y: q \equiv p \lor q \equiv p \land q
\langle Finalmente se tiene aplicando Leibniz \rangle
E[z:=Y]: q \equiv p \lor q \equiv p \land q \Rightarrow (p \lor q \equiv p \land q)
```

ii.
$$\langle$$
 La expresión E es de la forma \rangle

$$E: p \Rightarrow (z)$$

$$\langle$$
 Con X \rangle

$$X: p \vee q \equiv p \wedge q$$

$$\langle$$
 Con Y \rangle

$$Y: q \equiv p$$

$$\langle$$
 Finalmente se tiene aplicando Leibniz \rangle

$$E[z:=Y]: p \Rightarrow (q \equiv p)$$

iii.
$$\langle$$
 La expresión E es de la forma \rangle

$$E: p \Rightarrow (p \lor q \equiv z)$$

$$\langle$$
 Con X \rangle

$$X: p \land q$$

$$\langle$$
 Con Y \rangle

$$Y: p \equiv q \equiv p \lor q$$

$$\langle$$
 Finalmente se tiene aplicando Leibniz \rangle

$$E[z:=Y]: p \Rightarrow (p \lor q \equiv p \equiv q \equiv p \lor q)$$

(f) E[z:=X]:
$$p \land (q \Rightarrow r) \equiv p \Rightarrow (q \Rightarrow r)$$
 X=Y: $q \Rightarrow r \equiv p \lor q$

(g) E[z:=X]:
$$(p \lor q) \land r \equiv p \Rightarrow p \lor q$$

X=Y: $q \land r \equiv p \lor q$

(h) E[z:=X]:
$$p \lor (q \land r) \Rightarrow p \lor q$$

X=Y: $p \lor q \equiv \neg(\neg p \land q)$

(i) E[z:=X]:
$$(s \land \neg t) \lor (p \Rightarrow \neg t) \Rightarrow \neg t \equiv p \Rightarrow \neg t \lor q$$

X=Y: $p \Rightarrow \neg t \equiv \text{true}$

5. Para cada una de las siguiente expresiones E[z:=X] y E[z:=Y], identifíque un "hints" X=Y que muestre que ellas son iguales e indique la E original.

(a)
$$E[z:=X]: (p \lor q \Rightarrow q \lor r) \land (p \lor q)$$

 $E[z:=Y]: (p \Rightarrow (q \lor r)) \land p$

- (b) $E[z:=X]:((\neg p \lor p) \lor (\neg p \lor q)) \Rightarrow (q \lor \neg p)$ $E[z:=X]:((\neg p \lor p) \lor (p \Rightarrow q)) \Rightarrow (q \lor \neg p)$
- (c) $E[z:=X]:(p \Rightarrow q) \Rightarrow (s \land t) \lor \neg r$ $E[z:=X]:(p \Rightarrow q) \Rightarrow false \lor \neg r$
- (d) $E[z:=X]:r \equiv \neg s \equiv (\text{true} \lor p \Rightarrow q) \land (r \equiv \neg s)$ $E[z:=X]:r \equiv r \equiv \neg s \equiv (\text{true} \lor p \Rightarrow q) \land (r \equiv r \equiv \neg s)$

Esta pregunta tiene 2 respuestas que se muestran a continuación.

- i. \langle La expresión E es de la forma \rangle $E: r \equiv z \equiv (\text{true} \lor p \Rightarrow q) \land (r \equiv z)$ \langle Con X \rangle $X: \neg s$ \langle Con Y \rangle $Y: r \equiv \neg s$
- ii. \langle La expresión E es de la forma \rangle $E:z\equiv \neg s\equiv (\text{true}\vee p\Rightarrow q)\wedge (z\neg s)$ \langle Con X \rangle X:r \langle Con Y \rangle $Y:r\equiv r$
- 6. Elimine los paréntesis innecesarios de la siguientes expresiones.
 - (a) $((p \Rightarrow q) \equiv (p \land (q \lor r)) \Rightarrow (r \lor (s \land t))) \lor \neg s \Leftarrow u \equiv t$
 - (b) $(r \lor (s \lor (t \lor \neg \neg q) \Rightarrow s) \equiv u) \equiv (p \lor q) \Rightarrow (t \equiv \neg t)$
 - (c) $(\text{true} \equiv (\neg \text{false} \Rightarrow \text{false}) \land \neg \text{true}) \Leftarrow \text{false}) \lor (\text{true} \land \text{false})$
 - (d) $((p \Rightarrow (q \Leftarrow r)) \lor (s \equiv t)) \lor (t \Rightarrow (\neg t \Rightarrow q) \equiv r) \lor (p \land p)$
 - (e) $p \Rightarrow ((q \land ((r \equiv q) \equiv t)) \lor \neg q) \equiv s \equiv p \lor q \Rightarrow t$
- 7. Indique las todas las subexpresiones de la siguientes expresiones.
 - (a) $p \land q \lor r \equiv p \Rightarrow r \lor q \land \neg (q \Rightarrow r \equiv s) \equiv a \lor b \Leftarrow s \equiv c$

Solución:

⟨ Se definen las subexpresiones siguiendo la inducción estructural para las expresiones booleanas bien formadas, empezando por el caso base (constantes y variables), siguiendo con las expresiones negadas y finalmente las expresiones con operadores binarios en orden de precedencia ⟩

 $\{ \mathbf{p}, \, \mathbf{q}, \, \mathbf{r}, \, \mathbf{s}, \, \mathbf{a}, \, \mathbf{b}, \, \mathbf{c}, \, \neg (q \Rightarrow r \equiv s), \, p \land q, \, p \land q \lor r, \, r \lor q, \, r \lor q \land \neg (q \Rightarrow r \equiv s), \, a \lor b, \, p \Rightarrow r \lor q \land \neg (q \Rightarrow r \equiv s), \, q \Rightarrow r, \, a \lor b \Leftarrow s, \, p \land q \lor r \equiv p \Rightarrow r \lor q \land \neg (q \Rightarrow r \equiv s), \, q \Rightarrow r \equiv s, \, p \land q \lor r \equiv p \Rightarrow r \lor q \land \neg (q \Rightarrow r \equiv s) \equiv a \lor b \Leftarrow s, \, p \land q \lor r \equiv p \Rightarrow r \lor q \land \neg (q \Rightarrow r \equiv s) \equiv a \lor b \Leftarrow s \equiv c \}$

(b)
$$\neg a \land \neg b \equiv \neg (a \land b \equiv a \equiv b) \equiv c \lor d \Rightarrow e \land f \Leftarrow a \land b$$

Solución:

\(\) Se definen las subexpresiones siguiendo la inducci\(\) estructural para las expresiones booleanas bien formadas, empezando por el caso base (constantes y variables), siguiendo con las expresiones negadas y finalmente las expresiones con operadores binarios en orden de precedencia \(\)

 $\{ a, b, c, e, f, \neg a, \neg b, \neg (a \land b \equiv a \equiv b), \neg a \land \neg b, a \land b, c \lor d, e \land f, c \lor d \Rightarrow e \land f, c \lor d \Rightarrow e \land f \Leftarrow a \land b, a \land b \equiv a, a \land b \equiv a \equiv b, \neg a \land \neg b \equiv \neg (a \land b \equiv a \equiv b), \neg a \land \neg b \equiv \neg (a \land b \equiv a \equiv b) \equiv c \lor d \Rightarrow e \land f \Leftarrow a \land b \}$

(c)
$$a \Rightarrow b \Rightarrow c \Rightarrow d \lor e \equiv f \land q \equiv h \Leftarrow i \lor j \lor k \lor \neg l \equiv m$$

 \langle Se definen las subexpresiones siguiendo la inducción estructural para las expresiones booleanas bien formadas, empezando por el caso base (constantes y variables), siguiendo con las expresiones negadas y finalmente las expresiones con operadores binarios en orden de precedencia. Para este ejercicio que tiene 3 implicaciones consecutivas hay que tomar en cuenta que la implicación es asociativa por la derecha por lo tanto se debe proceder de derecha a izquierda \rangle

 $\{ \text{ a, b, c, e, f, g, h, i, j, k, l, m, } \neg l, \ d \lor e, \ f \land g, \ i \lor j, \ i \lor j \lor k, \ i \lor j \lor k \lor \neg l, \ c \Rightarrow d \lor e, \ b \Rightarrow c \Rightarrow d \lor e, \\ a \Rightarrow b \Rightarrow c \Rightarrow d \lor e, \ h \Leftarrow i \lor j \lor k \lor \neg l, \ a \Rightarrow b \Rightarrow c \Rightarrow d \lor e \equiv f \land g \equiv h \Leftarrow i \lor j \lor k \lor \neg l, \\ a \Rightarrow b \Rightarrow c \Rightarrow d \lor e \equiv f \land g \equiv h \Leftarrow i \lor j \lor k \lor \neg l, \\ a \Rightarrow b \Rightarrow c \Rightarrow d \lor e \equiv f \land g \equiv h \Leftarrow i \lor j \lor k \lor \neg l \equiv m \}$

- (d) $p \land q \lor r \Rightarrow \neg p \land q \lor r \lor s \equiv t \lor u \equiv \neg v \lor w \Leftarrow x \land y \land z \lor \neg (a \equiv b)$
- (e) $\neg (a \lor b \equiv c \land d \Rightarrow \neg (e \Leftarrow f \equiv g)) \land r \lor s \equiv t \land v \lor \neg (a \equiv \neg b \land c \Rightarrow a)$
- 8. Clasifíque las siguientes expresiones entre válidas, satisfacibles, contingencias e insatisfacibles. Justifíque su respuesta a través de una tabla de verdad.
 - (a) $p \lor \neg q \Rightarrow q \land p \land \neg (q \land p)$
 - (b) $\neg(\neg(p \Rightarrow q)) \Rightarrow (p \not\cong q)$
 - (c) $p \lor q \Rightarrow p \lor (q \equiv r) \land (p \lor r)$
 - (d) $p \Rightarrow (p \Rightarrow (q \equiv \text{true}) \Rightarrow r) \Rightarrow (p \lor \neg q)$
 - (e) $(p \not\cong q) \land \neg r \Leftarrow \neg p \equiv p \lor (q \land \neg r)$
- 9. Clasifíque las siguientes expresiones entre válidas, satisfacibles, contingencias e insatisfacibles. Justifíque su respuesta a través de una tabla de verdad.
 - (a) $p \vee \neg q \equiv p \vee q \equiv p$
 - (b) $p \lor q \equiv \neg p \equiv q \equiv p \land q$
 - (c) $p \land (q \lor p) \equiv \neg q$
 - (d) $p \Rightarrow (q \Rightarrow p) \equiv p \Rightarrow q \Rightarrow p$
- 10. Clasifíque las expresiones duales de las siguientes expresiones Booleanas en válidas, satis- facibles, contingencias e insatisfacibles. Justi?que en base a la clasi?cación dada para cada expresión dual, qué se puede decir de la expresión original.
 - (a) $q \Rightarrow \neg p \equiv p \equiv q \equiv p \vee q$
 - (b) $q \lor p \equiv p \lor \neg q \equiv \neg p$
 - (c) $p \land (p \lor q) \equiv \neg p$
 - (d) $(p \vee \neg p) \wedge q \equiv \neg$
- 11. Considere las siguiente expresiones Booleanas:
 - (a) $(p \cdot q) * (q \oplus p)$
 - (b) $p \cdot q \equiv p \oplus \neg q \equiv \neg p$
 - (c) $(p \cdot (q \otimes r)) \oplus (q \odot p) * r$

Sustituya los símbolos \land , \lor , \oplus , \neg , \leftrightarrow por conectores del lenguaje de las expresiones Booleanas de manera que en cada sustitución cada expresión cumpla una de las siguientes condiciones:

- La expresión es una tautología.
- La expresión tiene al menos una valuación que la satisface y una que no.
- La expresión no tiene valuación alguna que la satisfaga.
- El negado de la expresión dual es una tautología.

Haga la tabla de la verdad para cada expresión obtenida.

12. Sustituya los símbolos \land , \oplus , \odot y \otimes por conectores del lenguaje de las expresiones Booleanas de manera que la expresión resultante sea una tautología. ¿Qué puede decir sobre la validez de la expresión dual? Justifique su respuesta.

$$p \wedge q \oplus \neg (q \otimes \neg p) \wedge \neg t \odot t$$

- 13. ¿Son las siguientes expresiones Booleanas tautologías, contingencias o expresiones no satisfecibles? Justifíque su respuesta.
 - (a) $((p \land q) \land (r \lor s)) \lor (t \land x) \Rightarrow (q \land p \leftrightarrow k)$
 - (b) $(p \land q) \lor (q \land p) \Leftarrow p \lor (t \land x) \lor (u \Leftrightarrow v)$