W2 Version 3.71 Release Notes

July 15, 2014

The code, updates and further information on the W2 model are available from the following web page (subject to change):

http://www.ce.pdx.edu/w2

Please address questions about the code to

Scott Wells, Department of Civil and Environmental Engineering, Portland State University, P. O. Box 751, Portland, OR 97207-0751, (503) 725-4276 FAX (503) 725-5950, e-mail: wellss@pdx.edu

Table of Contents

W2 Version 3.71 Release Notes	1
W2 V3.7 Release Package	2
W2 Known Issues	3
W2 V3.7 Bug Fixes, Enhancements, and User Manual Changes	5
W2 Planned Enhancements	20
Differences between Version 3.71 and Version 3.7	20
Differences between Version 3.7 and Version 3.6	21
Differences between Version 3.6 and Version 3.5	30
Differences between Version 3.2 and Version 3.5	32
Differences between Version 3.1 and Version 3.2	43
BUG FIXES AND ENHANCEMENTS BETWEEN VERSIONS	47
W2 V3.6 Bug Fixes, Enhancements, and User Manual Changes	47
W2 V3.5 Bug Fixes, Enhancements, and User Manual Changes	60
W2 V3.2 Bug Fixes, Enhancements, and User Manual Changes	77

W2 V3.7 RELEASE PACKAGE

The current release of the model includes the w2 model and preprocessor executables, source codes, user manuals, and example applications.

The model files are in 1 zipped file: **v37.zip**. Contents of this file are organized in the following subdirectories and files:

- <u>Examples</u> Model application examples include DeGray Reservoir, Spokane River, and Columbia Slough estuary.
- <u>Executables</u> The executables for the preprocessor and the model in this directory were compiled using Intel Fortran 12.1 compiler and have both 32- and 64-bit versions.
- <u>W2ControlGUI</u> The W2Control GUI was compiled using Visual Basic 6. The GUI directory also has an installation routine for W2Control. There is a "setup.exe" routine that installs the Visual Basic W2 V3.7 Model Preprocessor called W2CONTROL. Once installed, the GUI preprocessor is able to aid the model user in setting up the Control File and in evaluating and changing the bathymetry of the system. This preprocessor does not automatically setup the bathymetry of the system, nor does it provide post-processing support. A lot of effort is required to properly set-up the model bathymetry prior to using the Bathymetry editor within W2Control. A user manual in pdf format is included in this directory. Also, a separate executable, W2Control, is provided in case an earlier version has already been installed. Note that this GUI is a part of the install routine for W2Tools now.
- <u>W2Tools</u> This is the new W2 post-processor by Dynamic Solutions-International, LLC (www.ds-international.biz). They have provided an installation routine that includes both the post-processor and the W2ControlGUI. When the user selects W2L output (the old VPL output), the resulting post-processing file is used by W2Tool for all post-processing tasks that include contour plots, animations, profile plots and time series plots. A brief user manual is included showing many of the features of this post-processor as well as a directory that shows how to take field data and plot field data and model results in the post-processor. There is a zip file with an example from DeGray reservoir on how to include model predictions versus field data for reservoir profiles.
- <u>Source</u> This directory contains the source code for the preprocessor and model written in Fortran. The compiler settings and files necessary to compile using the Intel compiler are also included using the Intel Fortran compiler. Generally, we use the following compiler settings: /O2 [maximum speed in Intel] and default real is double precision. Also, for the following subroutines we had to use /O1 optimization: init-cond.f90 and init-u-elws.f90. For the preprocessor, the windows source code is compiled using a QuickWin application rather than a console application. We use the debug version for the released executable. The generic preprocessor code should work compiled as a console application.

- <u>Waterbalance</u> This is the windows waterbalance utility that is described in the user manual. The purpose of this code is to approximate the waterbalance for a reservoir or lake by computing flows (positive and negative) that will allow the model predicted water level to agree to water level data for a reservoir.
- Excel macro utility for writing files in W2 format from Excel This directory contains an Excel macro that aids in writing our CE-QUAL-W2 compatible files from within Excel. There is a short user manual describing how to use the macro. This macro was developed by Jeffrey Gregory, Civil Engineer, USACE, Nashville District.
- <u>W2V3 manual371 revX.pdf</u> User Manual in searchable pdf format where X is the rev number.
- W2 Version 3.71 Release Notes.pdf Release notes in pdf format.

W2 Known Issues

The following list shows known bugs and issues with the current release of the code - these are being addressed in the next release:

#	Item	Description
1	Water levels in a "bowl"	If water levels decrease in a waterbody shaped like a "bowl", the removal of model layers as the water level decreases will cause the model to bomb if an upstream segment dries up.
2	Pipes under high head	The pipes algorithm does not handle well high-head, high-speed, dynamic flow conditions in a pipe.
3	Time step limitation in a complex system model	The time step for stability in a system model is governed by the lowest time step for numerical stability. If you have a very dynamic river with several reservoirs, the time step for the river will control. This can result in very long run times. One can still break apart the model and run the pieces separately using the WDOUT files to provide boundary conditions for downstream waterbodies.
4	Partitioning	The partitioning coefficient for sorption is currently constant for all organic and inorganic compartments
5	Internal weir at a Dam segment	Putting an internal weir at a Dam segment does not affect the outflow from the selective withdrawal structure. One must limit selective withdrawal rather than use an internal weir at the dam segment. Remember the internal weir works for the right-hand-face of a model layer.

#	Item	Description
6	W2 multiple file error check	If the model user accidentally enters duplicate file names for an input file, the w2 executable will "bomb" because it will try to read the file in more than once. The first use of the file will lock its availability for the second instance. The W2 error message that comes on the screen (traceback error) should mention the file name that has problems. The W2 preprocessor should catch this potential error.
7	Raising level of spillway/weir above grid	The preprocessor will say there is an error if the user raises the weir, spillway, gate, water level control or any other hydraulic element above the current top-of-the-grid. The w2 code will still run properly though. But more correctly, the model user should increase the DZ of the upper-most layer to a value that would eliminate this problem. But keep in mind that the segment widths from the top layer then extend upward at that same width.
8	Internal weirs	The internal weir algorithm does not work when all vertical layers of a segment are blocked by the weir.
9	Multiple dams into one downstream reach	Currently, the code will allow one dam inflow to a downstream branch by a user-specified outflow file. The code though does allow multiple dams inflowing to a common downstream branch if the outflow is specified as a hydraulic structure.
10	Problems reading file in GUI	Sometimes the control file or bathymetry file cannot be read properly by the GUI interface. This can be a result of the text editor used to produce the file. [You will find that the problem file(s) look all messed up in NOTEPAD but look OK in the PFE Editor or in WORD; and W2 usually can read them OK.] Sometimes the following will "fix" the formatting: Copy the file to a UNIX workstation and copy it back. Load the file in WORD as a Text file, add a space somewhere in the file (but don't mess up the file formatting), then save it as a Text file. Convert all tabs to 'spaces'
		Convert all tabs to 'spaces'

W2 V3.7 BUG FIXES, ENHANCEMENTS, AND USER MANUAL CHANGES

#	Code: W2 or PREW2 or GUI	Fix or Enhancement Type	Description of Bug/Enhancement	Date Bug Fixed or Enhancemen t added
1	W2	Fish habitat limits	Changed temperature and DO criteria from t2(k,i) <fishtemph(ii).and.t2(k,i)>fish templ(ii).and.o2(k,i)>fishdo(ii) to t2(k,i)<=fishtemph(ii).and.t2(k,i)>fishtempl(ii).and.o2(k,i)>=fishdo(ii) This update is reflected in the manual. Hence the high temperature limit and the dissolved oxygen minimum is less than or equal to given value rather than less than.</fishtemph(ii).and.t2(k,i)>	8/7/2012
2	W2	Structure, gate, pump, pipe, withdrawal output files	Added code to ensure that if flow is '0' in an outlet structure, that the corresponding temperature and concentration in the outlet file is written as '-99.0'. Previously this was not fully implemented in the code. Code such as this was inserted in several places in the subroutine outputa2.f90: IF(QGT(JS)==0.0)THEN TAVGW(JWD)=-99.0 CAVGW(JWD,:)=-99.0 CDAVGW(JWD,:)=-	8/13/2012
3	PREW2	Format updates	Several output updates were made for warnings and errors	8/16/2012
4	Resource files for W2	Compiling files	Updated some corrupted resource files that were used to compile the source code. Also, zipped up source code and compiler settings together so that file locations are correct for using the Intel compiler.	9/12/2012

#	Code: W2 or PREW2 or GUI	Fix or Enhancement Type	Description of Bug/Enhancement	Date Bug Fixed or Enhancemen t added
5	W2 and PREW2	Read csv files	By inserting the character '\$' as the first character of the first line, the following files can now be read in free-format or csv format: met, lpr, vpr, wsc, met, cin, ctr, cdtr, cpre, qot, and qwd. This is described in a Word document that accompanies the download package. The preprocessor has also been updated for file checks. This is part of the Version 3.71 update.	9/12/2012
6	W2	Read input file	An input format bug was fixed for a system with more than 9 waterbodies. DO JD=1,NDC !READ (CON,'(A8,(:9A8))') CDNAME2(JD),(CDWBC(JD,JW), JW=1,NWB) READ (CON,'(A8,(:9A8):/(8X,(:9A8)))') CDNAME2(JD),(CDWBC(JD,JW), JW=1,NWB) !cb 9/13/12 END DO READ (CON,'(/)') ! DO JF=1,NFL do jf=1,73 ! Fix this later !READ (CON,'(A8,(:9A8))') KFNAME2(JF),(KFWBC(JF,JW), JW=1,NWB) READ (CON,'(A8,(:9A8):/(8X,(:9A8)))') KFNAME2(JF),(KFWBC(JF,JW), JW=1,NWB) !cb 9/13/12 END DO This had the effect of turning OFF output for derived constituents for waterbody 10.	9/13/2012
7	GUI	Time series elevation	The GUI read in values of ETSR as integers rather than real numbers. This was fixed.	10/30/12
8	W2	Spillways Lateral	Lateral spillways when connected to other model segments were sometimes not connecting as a tributary to the downstream segment. This has been fixed.	10/30/12
9	W2	W2Tools output	In place of the Vector Plot Output (VPL), a new output was added that allows use of the W2Tools post-processing package. This is part of the Version 3.71 update.	10/30/12
10	W2	User Manual	The User Manual has been updated with the new model features as shown in 5 and 9 above. In addition a separate user manual file shows how to use the w2tools post-processor. This is in the directory for W2tools. This is the version 3.71 update.	10/30/12

#	Code: W2 or PREW2 or GUI	Fix or Enhancement Type	Description of Bug/Enhancement	Date Bug Fixed or Enhancemen t added
11	W2	Water quality and temperature	A new calculation technique was added that eliminates calling the Tri-diagonal subroutine. These were built into the temperature and water quality subroutines. This change results in improvements in computational speed of from less than 5% to over 20% for water quality models with lots of water quality state variables.	10/30/2012
12	PREW2	More checks	Added more error trapping for input files. This is an effort for the error trapping to occur before the code bombs. Fixed a couple of regression errors as a result of this fix.	11/2/2012, 11/5/2012
13	Excel macro utility		Added an Excel macro utility to aid in writing out input files to CE-QUAL-W2	11/5/2012

#	Code: W2 or PREW2 or GUI	Fix or Enhancement Type	Description of Bug/Enhancement	Date Bug Fixed or Enhancemen t added
14	W2	Withdrawal subroutine	Fixed an IF test that used the wrong variable in the dynamic port allocation algorithm. Also added code to allow the code to test for temperatures at the outlet levels specified. Deleted line of code is underlined followed by the fix. DO J=1,NUMTSPLT !REODERING OUTLETS SO THAT HIGHEST ELEVATION STRUCTURE ON TOP (ASSUMING 2 SPLIT OUTLETS) ! IF (TCNTR(J) == ' ST') THEN ! Cb 11/11/12 IF (ESTR(JSTSPLTT(J,1),TSPLTJB(J)) THEN ! Cb 11/11/12 IF (ESTR(JSTSPLTT(J,1)=JSTSPLTT(J,2) JSTSPLT(J,2)=JSTSPLTT(J,1) END IF ! ELSE IF (TCNTR(J) == ' WD') THEN ! Cb 11/11/12 IF (EWD (JSTSPLTT(J,1)) < WD') THEN ! Cb 11/11/12 IF (EWD (JSTSPLTT(J,1)) < WD') THEN ! Cb 11/11/12 IF (EWD (JSTSPLTT(J,1)) < WD') THEN IF (TSPLTJB(J) == JB .AND. TSPLTCNTR(J) == 'ST') THEN QALL=0.0 DO JJ=1,NOUTS(J) QALL=QALL+QSTR(JSTSPLT(J,JJ),TSPLTJB(J)) ! SUM UP ALL THE FLOWS ELR = SINA(JB)*DLX(DS(JB))*0.5 DO K=KTMB(JM),KB(DS(JB)) IF (EL(K,DS(JB))-ELR < ESTR(JSTSPLT(J,JJ),TSPLTJB(J)) ! END DO KSTR = K-1 KSTRSPLT(JJ) == END DO KSTR = K-1 KSTRSPLT(JJ) ==	t added 11/13/12
			MIN(KSTR,KB(DS(JB))) ENDDO DO JJ=1,NOUTS(J) ! cb 11/11/12 dividing total flow between outlets for temperature test QSTR(JSTSPLT(J,JJ),TSPLTJB(J)) = qall/real(nouts(j)) ENDDO	

#	Code: W2 or PREW2 or GUI	Fix or Enhancement Type	Description of Bug/Enhancement	Date Bug Fixed or Enhancemen
	or co.	.,,,,		t added
15	W2	Reading in names of WQ variables	In case a user does not enter the units in graph.npt, the code improperly parses the WQ variable name. In this case the output name is a blank. To avoid this issue, extra code was added to preserve the variable name even if no units were added to the graph.npt list. L1 = SCAN (CNAME(JC),',')+2	12/3/2012
16	PREW2	SEDS and SEDK	The variable names were switched in reading the control file in the preprocessor perhaps leading to incorrect warnings/errors being tagged. The proper order was restored: !READ (CON,'(/A8/(8X,2A8,6F8.0,A8))', ERR=400) AID, (SEDC(JW), PRNSC(JW), SEDCI(JW), seds(jw), SEDDK(JW), FSOD(JW), seds(jw), DYNSEDK(JW), JW=1,NWB) ! SW 6/1/07 READ (CON,'(/A8/(8X,2A8,6F8.0,A8))', ERR=400) AID, (SEDC(JW), PRNSC(JW), SEDCI(JW), S	12/30/12
17	Excel macro utility w2tool	Integer/Long variables	Some loose ends were corrected in the Visual Basic code built into the Excel macros.	1/2/2013

#	Code: W2	Fix or	Description of Bug/Enhancement	Date Bug
	or PREW2	Enhancement	_	Fixed or
	or GUI	Туре		Enhancemen
				t added
18	W2	TDG output	A series of code changes were made to fix some issues	1/23/2013
10	VVZ	1DG output	that arose for computing the impact of a structure on	1/23/2013
			downstream TDG. These fixes were made in	
			subroutines Withdrawal, outputa2w2tools,	
			w2modules, and hydroinout. These affected	
			calculation of output of dissolved gas concentration	
			for output files for spillways or gates that had	
			dissolved gas equation.	
19	W2	Reading in	For temperature only studies, the model did not	1/28/2013
		dynamic	update the dynamic light extinction coefficient	
		extinction	correctly. This has been fixed by the added code	
		coefficient	below:	
			DO JW=1,NWB IF	
			(READ_EXTINCTION(JW))GAMMA(:,US(BS(JW)):D	
			S(BE(JW))) = EXH2O(JW) ! SW 1/28/13 KT = KTWB(JW)	
			IF (.NOT. NO_HEAT(JW)) THEN	
20	W2	Input format	A specific input read error occurred when 9	2/18/13
		when 9 WBs	waterbodies were present as a result of an earlier	
			bug fix: The new read statements occur in 2 places:	
			READ (CON,'(A8,9A8,/(:8X,9A8)))')	
			CDNAME2(JD),(CDWBC(JD,JW), JW=1,NWB)	
			!cb 9/13/12 sw 2/18/13	
			READ (CON,'(A8,9A8,/(:8X,9A8)))')	
			KFNAME2(JF),(KFWBC(JF,JW), JW=1,NWB) !cb 9/13/12 sw2/18/13	
			, , , , ,	
21	PREW2	More checks	Additional checks were added to warn users of gaps in	2/20/2013
		added	meteorological data when interpolation may be	
			inappropriate.	0 /00 /05 : 5
22	W2 User	Updated	Updated User Manual – many small additions and edits – REV3.	2/20/2013
	Manual		euits – KEV3.	
23	PREW2	Improved an	Updated an error check for choosing inactive	3/21/2013
		error check	segments for ISNP output	-,, -010
		Circi circox		
24	PREW2	More checks	Added checks for inflow temperature and tributary	3/28/2013
		added	temperatures	

#	Code: W2 or PREW2 or GUI	Fix or Enhancement Type	Description of Bug/Enhancement	Date Bug Fixed or Enhancemen t added
25	W2	Initial WL Calculation	Changed SLOPE to SLOPEC in init—u-elws.f90 routine since the normal depth should be based on SLOPEC. END IF FUNCVALUE=FLOW- XAREA*HRAD**0.6667*SLOPEC(JB)**0.5/FMANN ! SW 4/5/2013 RETURN END SUBROUTINE MANNINGS_EQN Also changed KB(I)-1 to KB(I)+1 for ELWS: IF(ABS(DX).LT.XACC .OR. FMID.EQ.0.)THEN ELWS(I)=RTBIS+EL(KB(I)+1,I) ! SW 4/5/13 RETURN Also changed KTTOP from REAL to an INTEGER: REAL :: XAREA, WSURF ! 4/5/13 SW INTEGER :: KTTOP ! 4/5/13 SW	4/5/2013
25	W2	Output for pumps, spillways, gates	If the LAT option was chosen, the output files index for JWD was incorrect. This may have affected output temperatures and concentrations.	5/17/2013
26	PRE-W2	Mass loading calculation	There were cases where the preprocessor bombed while calculating the mass loading for output to the pre.opt file. This error has been fixed.	6/21./2013
27	W2	Assorted code updates	Minor format errors (that were ignored by compiler), update to code comments, and faster code initializations to speed up model performance were performed in several subroutines: input_PAR.f90, temperature_PAR.f90, transport_PAR.f90, update.f90, and w2_37_win.f90. An example of an initialization code speed up from temperature_PAR.f90: New code: DO K=KT,KB(I) AT(K,I) = 0.0D0; CT(K,I) = 0.0D0; VT(K,I) = 0.0D0 ! SW CODE SPEEDUP 6/15/13 ENDDO	6/21/2013
			Old code AT(:,I) = 0.0D0; CT(:,I) = 0.0D0; VT(:,I) = 0.0D0	

#	Code: W2 or PREW2 or GUI	Fix or Enhancement Type	Description of Bug/Enhancement	Date Bug Fixed or Enhancemen t added
28	W2 tools Excel macro	Update	More robust tools release	6/21/2013
29	PRE-W2	Label error	A label error for one spillway error was fixed. It mistakenly used 'gate'.	7/2/2013
30	W2	CPL output	A slight change in output format for the 'raw' cpl output file format was made. No change was made in the tecplot output format. DO I=CUS(JB), DS(JB) WRITE (CPL(JW),'(A38/(9(F10.3,2X)))') CDNAME(CDN(JD,JW)), (CD(K,I,CDN(JD,JW))*CDMULT(CDN(JD,JW)), KEKTWB(JW), KB(I)) ! cb 6/28/13 end do !WRITE (CPL(JW),'(A38/(9(F10.3,2X)))') CDNAME(CDN(JD,JW)), ((CD(K,I,CDN(JD,JW))*CDMULT(CDN(JD,JW)), & ! SW 8/12/06 !K=KTWB(JW),KB(I)),I=CUS(JB),DS(JB)) ! CB 1/03/05	7/31/13
31	W2	Read input file	A regression error that cropped up when there were 9 or greater than 10 waterbodies has been fixed. This had to do with reading in derived and flux variables in the control file. DO JD=1,NDC If (nwb < 10) READ (CON, '(A8, (:9A8))') CDNAME2(JD), (CDWBC(JD,JW), JW=1,NWB) If (nwb >= 10) READ (CON, '(A8,9A8,/(:8X,9A8))') CDNAME2(JD), (CDWBC(JD,JW), JW=1,NWB) !cb 9/13/12 sw 2/18/13 6/16/13 END DO READ (CON, '(/)') ! DO JF=1,NFL do jf=1,73 ! Fix this later If (nwb < 10) READ (CON, '(A8, (:9A8))') KFNAME2(JF), (KFWBC(JF,JW), JW=1,NWB) If (nwb >= 10) READ (CON, '(A8,9A8,/(:8X,9A8))') KFNAME2(JF), (KFWBC(JF,JW), JW=1,NWB) !cb 9/13/12 sw2/18/13 6/16/13	8/13/13
32	W2	New compiler	Upgraded to the Intel XE 13.1.3.198 compiler. New W2 executables for 32 bit and 64 bit.	8/13/13
33	W2	INIT WL	An error was fixed in the initial water level computation program for rivers. The code below should have the subscript JB instead of J. DO JJW=1,NWB DO JJB=BS(JJW),BE(JJW) IF(DHS(JB) > US(JJB) .AND. DHS(J) < DS(JJB))THEN JBD=JJB END IF END DO	8/20/13

#	Code: W2 or PREW2 or GUI	Fix or Enhancement Type	Description of Bug/Enhancement	Date Bug Fixed or Enhancemen t added
34	W2	INIT WL	There was an index error with gates in the initial water level computation. The old code is shown below: IF (ELWS(ID) < WSUP) THEN IF (ELWS(IDSP(JS)) > WSUP) WSUP = ELWS(IDSP(JS)) ! CHECKING TO SEE IF DOWNSTREAM WS ELEVATION ISN'T ALREADY 'HIGH' ELWS(ID)=WSUP The new code is IF (ELWS(IDGT(JG)) > WSUP) WSUP = ELWS(IDGT(JG)) ! CHECKING TO SEE IF DOWNSTREAM WS ELEVATION ISN'T ALREADY 'HIGH' WX 8/21/13	8/21/2013
35	W2	GATE	Cleaning up some code in the gate algorithm. Old code: IF (A2GT(JG) /= 0.0 .AND. IDGT(JG) /= 0.0) THEN New code: IF (A2GT(JG) /= 0.0 .AND. IDGT(JG) /= 0) THEN	8/21/2013
36	W2	TSS computation	Updated the computation for the derived variable TSS to include zooplankton and the particulate form of CBOD. A formula was added to the User Manual reflecting this change. New code includes IF (CBODS (IBOD) > 0.0) TOTSS (K, I) = TOTSS (K, I) + CBOD (K, I, IBOD) / O2OM (JW) ! SW 9/5/13 Added particulate CBOD to TSS computation TOTSS (K, I) = TOTSS (K, I) + ZOO (K, I, JZ) ! SW 9/5/13 Added zooplankton to TSS computation	9/6/2013

#	Code: W2 or PREW2 or GUI	Fix or Enhancement Type	Description of Bug/Enhancement	Date Bug Fixed or Enhancemen t added
37	W2	Spillway-LAT	When a spillway was defined with IDSP=0 and LAT, a tributary was defined incorrectly. The new code is shown below: IF (IDSP(JS) /= 0) then ! cb 9/11/13 JTT = JTT+1 QTR(JTT) = QSP(JS) ITR(JTT) = IDSP(JS) PLACE_QTR(JTT) = PDSPC(JS) == ' DENSITY' SPECIFY_QTR(JTT) = PDSPC(JS) == ' SPECIFY' IF (SPECIFY_QTR(JTT)) THEN ELTRT(JTT) = ETDSP(JS) ELTRB(JTT) = EDSP(JS) END IF JBTR(JTT) = JBD end if ! cb 9/11/13	9/11/2013
38	W2	32 bit exe on XP	Recompiled with new settings from Visual Studio 2012 to (hopefully) run on XP systems with 32 bit OS	9/11/2013
39	W2	End Simulation	Added new close open files in the end_simulation subroutine. This is merely cleaning up the code to be consistent in closing all open files when a 'Stop' is executed. This should have no effect on the end user. Part of this new code is shown below: IF(SELECTC == 'ON')then ! SW 9/25/13 New Section on closing files ifile=1949 do jb=1,nbr if(nstr(jb) > 0)then ifile=ifile+1 close(ifile) endif enddo if(nwd > 0)then ifile=ifile+1 close(ifile) endif endif IF (DOWNSTREAM_OUTFLOW) THEN JFILE=0 DO JWD=1,NIWDO CLOSE(WDO(JWD,1)) CLOSE(WDO(JWD,2)) IF (CONSTITUENTS) THEN CLOSE (WDO(JWD,3)) END IF IF (DERIVED_CALC) THEN CLOSE(WDO(JWD,4)) END IF	9/25/13

#	Code: W2	Fix or	Description of Bug/Enhancement	Date Bug
	or PREW2	Enhancement		Fixed or
	or GUI	Туре		Enhancemen
		,		t added
40	W2	Pumps – Lateral	Fixed several sections of code in the PUMP algorithm in the hydroinout.f90 routine. Under some conditions	9/25/13
		2000.01	such as specifying "Lateral", the PUMP algorithm may	
			not have moved the water from the upstream to the	
			downstream segment correctly. This has been fixed	
			and tested. Part of the code changes are shown	
			below:	
			<pre>IF (LATERAL_PUMP(JP)) THEN ELW = EL(KTWB(JWU),IUPU(JP))-</pre>	
			Z(IUPU(JP))*COSA(JBU)	
			! JWW = JWW+1 ! SW 9/25/13 ! JBWD(JWW) = JBU	
			! IWD(JWW) = IUPU(JP)	
			ELSE ELW = EL(KTWB(JWU),IUPU(JP))-	
			Z(IUPU(JP))*COSA(JBU)-	
			SINA(JBU)*DLX(IUPU(JP))*0.5 ! JSS(JBU) =	
			JSS(JBU)+1 ! SW 9/25/13	
			END IF	
			<pre>IF (PUMPON(JP)) THEN IF (LATERAL_PUMP(JP)) THEN JLAT = 1</pre>	
			JWW = JWW+1	
			! SW 9/25/13 	
			CALL LATERAL_WITHDRAWAL ! (JWW) DO K=KTW(JWW),KBW(JWW) QSS(K,I) = QSS(K,I)-QSW(K,JWW) END DO	
			IF (IDPU(JP) /= 0) THEN	
			! MOVED CODE SW 9/25/13	
			ELSE	
			JSS(JBU) = JSS(JBU)+1 ! SW 9/25/13 KTSW(JSS(JBU), JBU) =	
			KTPU(JP)	

# Code: \of PRE\or GUI	W2 Fix or W2 Enhancement Type	Description of Bug/Enhancement	Date Bug Fixed or Enhancemen t added
41 W2	Clean up memory issues	A series of minor memory issues were cleaned up. This should have no impacts on current model runs. These were usually uninitialized memory. Code changes made include: READ (CON,'()') KFNAME2=' ' ! SW 9/27/13 INITIALIZE ENTIRE ARRAY KFWBC =' ' ! SW 9/27/13 INITIALIZE ENTIRE ARRAY KFWBC =' ' ! SW 9/27/13 INITIALIZE ENTIRE ARRAY READ (CON,'(/(:8X,918))') (KBWD(JW), JW=1,NWD); TRC=' ' ! SW 9/27/13 INITIALIZATION SINCE ALLOCATION IS TO NTRT READ (CON,'(/(:8X,948))') (TRC(JT), JT=1,NTR) EHSN(JE), EHSSI(JE), SW 9/27/13 READ (CON,'(/(8X,2F8.0,18,F8.0))') (ESAT(JE), EHS(JE), ENEQN(JE), ENPR(JE), ENJE), ENJE(JE), EX(JE), EX	9/27/13

# Code: Vor PRE	W2 Fix or W2 Enhancement Type	Description of Bug/Enhancement	Date Bug Fixed or Enhancemen t added		
42 W2	CPL output	Code was added to eliminate writing out the habitat index to the CPL file for Tecplot when HABITATC is OFF. IF(I /= DS(JB)+1)THEN	9/28/13		

#	Code: W2 or PREW2 or GUI	Fix or Enhancement Type	Description of Bug/Enhancement	Date Bug Fixed or Enhancemen t added
43	W2	SPECIFY TRIB	In specifying the elevation between top and bottom for an inflow tributary, the code put the inflow 1 layer below it should have been in many cases. This has been fixed by the additional code shown below: IF (SPECIFY_QTR(JT)) THEN KTTR(JT) = 2 DO WHILE (EL(KTTR(JT),I) > ELTRT(JT)) BUT DO WHILE (EL(KTTR(JT),I) > ELTRT(JT) .and. EL(KTTR(JT)+1,I) > ELTRT(JT)) ! SW 10/3/13 KTTR(JT) = KTTR(JT)+1 END DO	10/3/2013
44	W2	CWO or CWDO output	Fixed a format overflow in writing out concentrations in a withdrawal output file. IF (QWDO(J) /= 0.0) CWDO(CN(JC),J) = CWDO(CN(JC),J)/QWDO(J) WRITE (CWDOC(CN(JC)),'(F8.3)') CWDO(CN(JC),J) ! SW 9/23/13 Changed format from G8.3 to F8.3 to avoid format overflow CWDOC(CN(JC)) = ADJUSTR(CWDOC(CN(JC))) IF (QWDO(J) /= 0.0) CDWDO(CDN(JD,JW),J) = CDWDO(CDN(JD,JW),J)/QWDO(J) WRITE (CDWDOC(CDN(JD,JW)),'(F8.3)') CDWDO(CDN(JD,JW),J) ! SW 9/23/13 Changed format from G8.3 to F8.3 to avoid format overflow CDWDOC(CDN(JD,JW)) = ADJUSTR(CDWDOC(CDN(JD,JW)))	10/4/2013
45	W2 and PREW2	Inflow, Tributary, Distributary and Shade inputs	Added csv file format as a new file input format for flow and temperature files for inflows, tributaries and distributed tributaries. Also, the shade file is now in csv file format. This enhancement includes updates to the preprocessor and W2 codes. Also several minor bug fixes were made on the Preprocessor.	7/15/14
46	W2	Resuspension of inorganic solids	A resuspension formula was corrected. See the code change below: HS = 0.283 *U2/G*0.283*TANH (COEF1) *TANH (COEF2/TANH (COEF1)) !TS = 2.0*PI*U2/G*1.2* TANH (COEF3) *TANH (COEF4/TANH (COEF3)) TS = 2.0*PI*sqrt(U2)/G*1.2* TANH (COEF3) *TANH (COEF4/TANH (COEF3)) ! cb 5/9/14	7/15/14
47	W2	Tecplot output	When the user sets CPL output for Tecplot, the output format when HABITAC=OFF was incorrect. This has been fixed.	7/15/14

#	Code: W2	Fix or	Description of Bug/Enhancement	Date	Bug
	or PREW2	Enhancement		Fixed	or
	or GUI	Туре		Enhance	men
				t added	
48	PREW2	Warnings	Fixed a name inconsistency for developing warnings	7/15/14	
			for input concentrations		
			! IF (NAME /= 'Residence time' .AND. NAME /= 'Water age') THEN		
			IF (NAME /= 'Residence time' .AND. NAME /= 'AGE') THEN ! SW 7/15/14		
			CALL WARNINGS		

W2 PLANNED ENHANCEMENTS

The following list shows planned enhancements:

#	Item	Description
1	Sediment	Complex sediment diagenesis model
	Diagenesis	
2	Simultaneous	Currently, water surface is solved branch-by-branch.
	water level	The new technique will involve solving all water
	solution	surfaces for the system or waterbody simultaneously.
3	W3	3D version of W2
4	Hypoheric flow	Groundwater-surface water interaction
	algorithm	
5	Sediment channel	Dynamic heat transfer between channel bottom and
	bottom heating	stream
	algorithm	

Other items that have been explored but not implemented in the release version include:

- 1. A smarter fetch calculation algorithm
- 2. Updates to the selective withdrawal algorithm for multiple withdrawals
- 3. Particle transport algorithm
- 4. Fish bioenergetics model and fish volitional movement model

DIFFERENCES BETWEEN VERSION 3.71 AND VERSION 3.7

There is only one change in the control file between Version 3.7 and 3.71. There is a new option for outlet structures – dynamic centerline elevation. In the control file, there is an ON/OFF option after declaring the # of structures for each branch:

```
EDDY VISC AZC AZSLC AZMAX FBC E ARODI STRCKLR BOUNDFR TKECAL WB 1 TKE IMP 1.00000 3 9.53500 0.43100 0.00000 0.00000 IMP
```

N STRUC NSTR DYNELEV

```
BR1 17 ON
BR2 0 OFF
BR3 0 OFF
STR INT STRIC STRI
```

If these fields are missing the model will assume that DYNELEV=OFF.

DIFFERENCES BETWEEN VERSION 3.7 AND VERSION 3.6

Even though there are some cases where a Version 3.7 executable will run Version 3.6 and Version 3.5 files fine, there are updates required to the w2_con.npt file that need to be made. The preprocessor will catch these errors.

Control file changes: w2_con.npt

The main changes to the W2 control file are additional flags to turn ON/OFF new control file options and the addition of new state variables for water quality, BOD-N and BOD-P for each BOD group.

Below is a list of changes in the control file with the card image header for each line changed (highlighted options are new in V3.7). Descriptions of these new features are in the W2 User's Manual.

1. MISCELL

```
MISCELL NDAY SELECTC HABTATC ENVIRPC AERATEC INITUWL

100 OFF ON ON ON OFF
```

Five new variables, SELECTC, HABITATC, ENVIRPC, AERATEC, and INITUWL, are 5 new control variables that turn ON/OFF the use of automatic selective withdrawal, fish habitat volumes, environmental performance criteria, artificial aeration, and the initial water surface and velocity computations, respectively. If using an old Version 3.6 control file, all of these would default to 'OFF' if they were left blank. Also the model preprocessor would flag these are missing variables.

2. DLT CON

```
DLT CON NDT DLTMIN DLTINTR
1 1.00000 OFF
```

where DLTINTR is a control for interpolating the the time step DLTMAX and DLTF rather than use as a step function

3. BRANCH G

```
BRANCH G
                US
                          DS
                                  UHS
                                            DHS
                                                     UQB
                                                               DQB
                                                                      NLMIN
                                                                               SLOPE
Br 1
                 2
                          59
                                    0
                                              0
                                                       0
                                                                 0
                                                                           1
                                                                                  0.0
                                                                                           0.0
```

where SLOPEC is the hydraulic equivalent slope for a river channel that affects the momentum equation.

4. GATE WEIR

GATE WEI	R GTA1	GTB1	GTA2	GTB2	DYNVAR	GTIC
Gate1	1.00000	1.50000	1.00000	1.50000	FLOW	ON

where GTIC is an interpolation control for the specified DYNVAR for the GATE-WEIR.

5. Dynamic pipe

PIPES	IUPI	IDPI	EUPI	EDPI	WPI	DLXPI	FPI	FMINPI	LATPIC	DYNPIPE
Pi 1	24	28	28.0	27.0	0.5	230.0	0.065	0.1	DOWN	ON

where DYNPIPE controls whether the pipe is controlled by time series of an ON/OFF or partially open gate

6. Dynamic pump

PUMPS 1	IUPU	IDPU	EPU	STRTPU	ENDPU	EONPU	EOFFPU	QPU	WTHLC I	DYNPUMP
	111	0	440.	1.00	366.	441.0	435.0	1.0	DOWN	ON

where DYNPUMP controls the EPU, EONPU, EOFFPU, and QPU over time by reading in a time series file

7. INIT CND

```
INIT CND TEMPI ICEI WTYPEC GRIDC
WB 1 -1.0000 0.00000 FRESH RECT
```

where GRIDC controls whether the grid is interpreted as rectangular in depth or trapezoidal.

8. CST ACTIVE [Note that this change only appears if NBOD>0]

CST ACTIVE	CAC
TDS	ON
Gen1	ON
Gen2	OFF
Gen3	OFF
Gen4	OFF
Gen5	OFF
ISS1	ON
PO4	ON
NH4	ON
NO3	ON
DSI	OFF
PSI	OFF
FE	OFF
LDOM	ON
RDOM	ON
LPOM	ON
RPOM	ON
1CBOD	ON
2CBOD	ON
3CBOD	ON
4CBOD	ON
5CBOD	ON
6CBOD	ON
7CBOD	ON
8CBOD	ON
9CBOD	ON
10CBOD	ON
1CBODP	ON
2CBODP	ON

3CBODP	ON
4CBODP	ON
5CBODP	ON
6CBODP	ON
7CBODP	ON
8CBODP	ON
9CBODP	ON
10CBODP	ON
1CBODN	ON
2CBODN	ON
3CBODN	ON
4CBODN	ON
5CBODN	ON
6CBODN	ON
7CBODN	ON
8CBODN	ON
9CBODN	ON
10CBODN	ON
ALG1	ON
ALG2	ON
ALG3	ON
DO	ON
TIC	ON
ALK	ON
Z001	OFF
LDOM_P	ON
RDOM_P	ON
LPOM_P	ON
RPOM_P	ON
LDOM_N	ON
RDOM_N	ON
LPOM N	ON
TI OM_IN	
RPOM_N	ON

9. CST ICON, CST PRIN, CIN CON,CTR CON, CDT CON and CPR CON

CST ICON	C2IWB								
TDS	0.0								
AGE	0.0								
TRACER	0.0								
COL1	0.0								
Conduct	0.0								
Chlorine	0.0								
ISS1	0.0								
PO4	0.03								
NH4	0.01								
NOx	0.3								
DSi	0.0								
PSi	0.0								
TFe	0.0								
LDOM	0.1								
RDOM	0.1								
LPOM	0.1								
RPOM	0.1								
1CBOD	0.0								
2CBOD	0.0								
3CBOD	0.0								
4CBOD	0.0								
5CBOD	0.0								
6CBOD	0.0								
7CBOD	0.0								
8CBOD	0.0								

```
9CBOD
             0.0
10CBOD
             0.0
1CBODP
2CBODP
3CBODP
4CBODP
5CBODP
             0.0
6CBODP
             0.0
7CBODP
             0.0
8CBODP
             0.0
9CBODP
             0.0
10CBODP
             0.0
1CBODN
             0.0
2CBODN
             0.0
3CBODN
             0.0
4CBODN
             0.0
5CBODN
             0.0
6CBODN
             0.0
7CBODN
             0.0
8CBODN
             0.0
9CBODN
             0.0
10CBODN
             0.0
ALG1
             0.1
ALG2
             0.1
ALG3
             0.1
DO
            12.0
TIC
            5.0
ALK
            19.8
            0.0
Z001
LDOM P
          0.0005
RDOM P
          0.0005
LPOM P
          0.0005
          0.0005
RPOM P
LDOM N
          0.0080
RDOM N
          0.0080
LPOM N
          0.0080
RPOM N
          0.0080
CST PRIN CPRWBC CPRWBC CPRWBC CPRWBC CPRWBC CPRWBC CPRWBC CPRWBC
TDS
              ON
AGE
              ON
TRACER
              ON
COL1
              ON
Conduct
              ON
Chlorine
              ON
ISS1
              ON
PO4
              ON
NH4
              ON
NOx
              ON
             OFF
DSi
             OFF
PSi
TFe
             OFF
LDOM
              ON
RDOM
              ON
LPOM
              ON
RPOM
              ON
1CBOD
              ON
2CBOD
              ON
3CBOD
              ON
4CBOD
              ON
5CBOD
              ON
6CBOD
              ON
7CBOD
              ON
```

```
8CBOD
              ON
9CBOD
              ON
10CBOD
              ON
1CBODP
              ON
              ON
2CBODP
              ON
3CBODP
4CBODP
              ON
5CBODP
              ON
              ON
6CBODP
7CBODP
              ON
8CBODP
              ON
9CBODP
              ON
10CBODP
              ON
1CBODN
              ON
2CBODN
              ON
3CBODN
              ON
4CBODN
              ON
5CBODN
              ON
6CBODN
              ON
7CBODN
              ON
8CBODN
              ON
9CBODN
              ON
10CBODN
              ON
ALG1
              ON
ALG2
              ON
ALG3
              ON
DO
              ON
TIC
              ON
ALK
              ON
Z001
             OFF
LDOM P
              ON
RDOM P
              ON
LPOM P
              ON
RPOM_P
              ON
LDOM_N
              ON
RDOM_N
              ON
LPOM N
              ON
RPOM_N
              ON
CIN CON
          CINBRC
                  CINBRC
                          CINBRC CINBRC CINBRC CINBRC CINBRC CINBRC
TDS
              ON
                      ON
AGE
             OFF
                     OFF
TRACER
             OFF
                     OFF
COL1
             OFF
                     OFF
Conduct
              ON
Chlorine
             OFF
                     OFF
ISS1
              ON
                      ON
PO4
              ON
                      ON
NH4
              ON
                      ON
NOx
              ON
                      ON
DSi
             OFF
                     OFF
             OFF
PSi
                     OFF
TFe
             OFF
                     OFF
              ON
                      ON
LDOM
RDOM
              ON
                       ON
LPOM
              ON
                       ON
RPOM
              ON
                       ON
1CBOD
              ON
                       ON
2CBOD
              ON
                       ON
3CBOD
              ON
                       ON
4CBOD
              ON
                       ON
5CBOD
              ON
                       ON
6CBOD
              ON
```

7CBOD	ON	ON							
8CBOD	ON	ON							
9CBOD	ON	ON							
10CBOD	ON	ON							
1CBODP	ON	ON							
2CBODP	ON	ON							
3CBODP	ON	ON							
4CBODP	ON	ON							
5CBODP	ON	ON							
6CBODP	ON	ON							
7CBODP	ON	ON							
8CBODP	ON	ON							
9CBODP	ON	ON							
10CBODP	ON	ON							
1CBODN	ON	ON							
2CBODN	ON	ON							
3CBODN	ON	ON							
4CBODN	ON	ON							
5CBODN	ON	ON							
6CBODN	ON	ON							
		ON							
7CBODN	ON								
8CBODN	ON	ON							
9CBODN	ON	ON							
10CBODN	ON	ON							
ALG1	ON	ON							
ALG2	ON	ON							
ALG3	ON	ON							
DO	ON	ON							
TIC	ON	ON							
ALK	ON	ON							
Z001	OFF	OFF							
LDOM_P	ON	ON							
RDOM_P	ON	ON							
LPOM_P	ON	ON							
RPOM_P	ON	ON							
LDOM_N	ON	ON							
RDOM_N	ON	ON							
LPOM N	ON	ON							
RPOM N	ON	ON							
-									
CTR CON	CTRTRC	CTRTRC	CTRTRC	CTRTRC	CTRTRC	CTRTRC	CTRTRC	CTRTRC	CTRTRO
TDS	ON	ON							
AGE	OFF	OFF							
TRACER	ON	ON							
COL1	ON	ON							
Conduct	ON	ON							
Chlorine	ON	ON							
ISS1	ON	ON							
PO4	ON	ON							
NH4	ON	ON							
NOx	ON	ON							
DSi	OFF	OFF							
PSi	OFF	OFF							
TFe	OFF	OFF							
LDOM	ON	ON							
RDOM	ON	ON							
LPOM	ON	ON							
RPOM	ON	ON							
1CBOD	ON	ON							
2CBOD	ON	ON							
3CBOD	ON	ON							
4CBOD	ON	ON							
4CBOD 5CBOD	ON ON	ON ON							

6CBOD	ON	ON							
7CBOD	ON	ON							
8CBOD	ON	ON							
9CBOD	ON	ON							
10CBOD	ON	ON							
1CBODP	ON	ON							
2CBODP	ON	ON							
3CBODP	ON	ON							
4CBODP	ON	ON							
5CBODP	ON	ON							
6CBODP	ON	ON							
7CBODP	ON	ON							
8CBODP	ON	ON							
9CBODP	ON	ON							
10CBODP	ON	ON							
1CBODN	ON	ON							
2CBODN	ON	ON							
3CBODN	ON	ON							
4CBODN	ON	ON							
5CBODN									
	ON	ON							
6CBODN	ON	ON							
7CBODN	ON	ON							
8CBODN	ON	ON							
9CBODN	ON	ON							
10CBODN	ON	ON							
ALG1	ON	ON							
ALG2	ON	ON							
ALG3	ON	ON							
DO	ON	ON							
TIC	ON	ON							
ALK	ON	ON							
Z001	OFF	OFF							
LDOM P	ON	ON							
RDOM P	ON	ON							
LPOM P	ON	ON							
RPOM P	ON	ON							
LDOM N	ON	ON							
RDOM N	ON	ON							
LPOM N	ON	ON							
RPOM N	ON	ON							
112 021_11	011	011							
CDT CON	CDTBRC	CDTBRC	CDTBRC	CDTBRC	CDTBRC	CDTBRC	CDTBRC	CDTBRC	CDTBRC
TDS		ON	CDIDIC						
	ON								
AGE TRACER	OFF ON	OFF ON							
COL1									
	ON	ON							
Conduct Chlorine	ON	ON							
	ON	ON							
ISS1	ON	ON							
PO4	ON	ON							
NH4	ON	ON							
NOx	ON	ON							
DSi	OFF	OFF							
PSi	OFF	OFF							
TFe	OFF	OFF							
LDOM	ON	ON							
RDOM	ON	ON							
LPOM	ON	ON							
RPOM	ON	ON							
1CBOD	ON	ON							
2CBOD	ON	ON							
3CBOD	ON	ON							
4CBOD	ON	ON							

5CBOD	ON	ON							
6CBOD	ON	ON							
7CBOD	ON	ON							
8CBOD	ON	ON							
9CBOD	ON	ON							
10CBOD	ON	ON							
1CBODP	ON	ON							
2CBODP	ON	ON							
3CBODP	ON	ON							
4CBODP	ON	ON							
5CBODP	ON	ON							
6CBODP	ON	ON							
7CBODP	ON	ON							
8CBODP	ON	ON							
9CBODP	ON	ON							
10CBODP	ON	ON							
1CBODN	ON	ON							
2CBODN	ON	ON							
3CBODN	ON	ON							
4CBODN	ON	ON							
5CBODN	ON	ON							
6CBODN	ON	ON							
7CBODN	ON	ON							
8CBODN	ON	ON							
9CBODN	ON	ON							
10CBODN	ON	ON							
ALG1	ON	ON							
ALG2	ON	ON							
ALG3	ON	ON							
DO	ON	ON							
TIC	ON	ON							
ALK	ON	ON							
Z001	OFF	OFF							
LDOM P	ON	ON							
RDOM P	ON	ON							
LPOM P	ON	ON							
RPOM P	ON	ON							
LDOM N	ON	ON							
RDOM N	ON	ON							
LPOM N	ON	ON							
RPOM N	ON	ON							
1(1 011_1)	OIN	OIN							
CPR CON	CPRBRC	CPRBRC	CPRBRC	CPRBRC	CPRBRC	CPRBRC	CPRBRC	CPRBRC	CPRBRC
TDS	ON	ON	CITABILO	CITABIA	CITABILO	OTTENTO	OTTENTO	OTTEDICO	OTTO
AGE	OFF	OFF							
TRACER	ON	ON							
COL1	ON	ON							
Conduct	ON	ON							
Chlorine	ON	ON							
ISS1	ON	ON							
PO4	ON	ON							
NH4	ON	ON							
NOx	ON	ON							
DSi	OFF	OFF							
PSi	OFF	OFF							
TFe	OFF	OFF							
LDOM	ON	ON							
RDOM	ON	ON							
LPOM	ON	ON							
RPOM	ON	ON							
1CBOD	ON	ON							
2CBOD	ON	ON							
3CBOD	ON	ON							
00000	OIN	OIN							

4CBOD	ON	ON
5CBOD	ON	ON
6CBOD	ON	ON
7CBOD	ON	ON
8CBOD	ON	ON
9CBOD	ON	ON
10CBOD	ON	ON
1CBODP	ON	ON
2CBODP	ON	ON
3CBODP	ON	ON
4CBODP	ON	ON
5CBODP	ON	ON
6CBODP	ON	ON
7CBODP	ON	ON
8CBODP	ON	ON
9CBODP	ON	ON
10CBODP	ON	ON
1CBODN	ON	ON
2CBODN	ON	ON
3CBODN	ON	ON
4CBODN	ON	ON
5CBODN	ON	ON
6CBODN	ON	ON
7CBODN	ON	ON
8CBODN	ON	ON
9CBODN	ON	ON
10CBODN	ON	ON
ALG1	ON	ON
ALG2	ON	ON
ALG3	ON	ON
DO	ON	ON
TIC	ON	ON
ALK	ON	ON
Z001	OFF	OFF
LDOM_P	ON	ON
RDOM_P	ON	ON
LPOM_P	ON	ON
RPOM_P	ON	ON
LDOM_N	ON	ON
RDOM_N	ON	ON
LPOM_N	ON	ON
RPOM_N	ON	ON

New control files

Based on the options the user turns ON or OFF, new control files are required. These new control files are named:

- 1. w2_selective.npt new variables controlling the selective withdrawal algorithm to select temperature targets
- 2. w2_habitat.npt new variables controlling fish habitat limits for temperature and dissolved oxygen and surface and segment volume weighted eutrophication state variables
- 3. w2 envirpf.npt new variables controlling setting environmental performance criteria
- 4. w2_aerate.npt variables describing use of dissolved oxygen addition to enhance dissolved oxygen levels through diffusers

Details of these new control files are in the CE-QUAL-W2 User Manual.

DIFFERENCES BETWEEN VERSION 3.6 AND VERSION 3.5

Version 3.6 can be run without changing any of the input files, even though the preprocessor will identify errors in the control file because of missing variables. Below is a highlighted list of locations in the file w2_con.npt where additional variables have been added. There are no other changes in the input files for Version 3.6.

The TKE algorithm has been updated with new algorithms that match experimental tank data for kinetic energy and dissipation. This is based on a Master's degree project by Sam Gould at Portland State University. A new user option is the TKE1 algorithm, in add addition to the legacy algorithm TKE. This results in several new input variables on the following line of the w2_con.npt file that are only active if TKE1 is chosen for AZC:

EDDY VISC	AZC	AZSLC	AZMAX	FBC	E	ARODI	STRCKLR	BOUNDFR	TKECAL
WB 1	W2	IMP 1	1.00000	3	9.535	0.430	24.0	10.00	IMP

The roughness height of the water for correction of the vertical velocity wind profile is now a user-defined input, z_0 . Prior to this the model had hardwired the value of z_0 =0.003 m for wind speed correction at 2m (for evaporation where wind height at 2 m is typical) and z_0 =0.01 m for wind at 10 m (for shear stress calculations where wind height of 10 m is typical). For consistency, both conversions now use the same value of roughness height. If the user does not specify the value of z_0 (for example if he/she leaves the spaces blank for z_0 using a V3.5 control file), the code uses 0.001 m.

```
HYD COEF AX DX CBHE TSED FI TSEDF FRICC WB 1 1.00000 1.00000 0.30000 11.5000 0.01000 1.00000 MANN 0.000
```

A new option for output is in the format required for TECPLOT. For TECPLOT animation there is only a flag in the CPL output line. This allows for easy model animation of the variables U, W, T, RHO, and all active constituents at the frequency specified by the CPL file as a function of distance and elevation.

```
CPL PLOT CPLC NCPL TECPLOT WB 1 ON 1 ON
```

A new variable for determining the fraction of NO3-N that is diffused into the sediments that becomes organic matter, or SED-N was introduced. According to one study, only about 37% of NO₃-N that diffuses into the sediments becomes incorporated into organic matter in the sediments. The rest is denitrified.

NITRATE	NO3DK	NO3S	FN03SED
Wb 1	0.05	0.0	0.37
Wb 2	0.05	0.0	0.37

In V3.5 the model computed an average decay coefficient of the sediments based on what was deposited. The user now has the option to dynamically compute that decay rate or to have it fixed and controlled by the model user. A new variable was introduced called DYNSEDK which is either ON/OFF to allow or not allow dynamic computation of the sediment decay rate.

SEDIMENT	SEDC	PRNSC	SEDCI	SEDK	SEDS	FSOD	FSED	SEDBR	DYNSEDK
Wb 1									
Wb 2	ON	ON	0.0	0.1	0.0	1.0	1.0	0.001	OFF

The User can now specify the # of processors to use on the host computer. Most users find that setting NPROC=2 gets the best results. Sometimes setting this greater than 2 results in slower model performance. Also, the CLOSEC control closes the windows dialog box after the model completes its simulation. This is useful in using the windows version of the release code in batch simulations. These are specified in the control file as follows:

GRID	NWB	NBR	IMX	KMX	NPROC	CLOSEC
	1	4	66	117	2	ON

DIFFERENCES BETWEEN VERSION 3.2 AND VERSION 3.5

The differences in V3.5 and V3.2 input files are found in the control file: **w2_con.npt** and in the **graph.npt** file. All other files are the same between the 2 versions.

w2_con.npt

Below is an example of parts of the control file from V3.5 where all new variables are highlighted. Most of these changes have to do with the new zooplankton, macrophyte, and new state variables added to the model. See the User Manual for a list of changes between V3.2 and V 3.5 in the version history. Also there were some deletions from the V3.2 w2_con.npt file. These are shown below.

New variables added to the control file are highlighted

<u>New variable</u>	es added	to the co	ntroi file	are nigni	<u>igntea</u>			
•								
IN/OUTFL	NTR	NST	NIW	NWD	NGT	NSP	NPI	NPU
	1	1	0	0	0	0	0	0
CONSTITU	NGC	NSS	NAL	NEP	NBOD	NMC	NZP	
	5	1	1	1	5	0	1	
MISCELL	NDAY							
	100							
•								
•								
CST COMP	CCC	LIMC	CUF					
	ON	ON	10					
CST ACTIVE	CAC							
TDS	OFF							
Gen1	ON							
Gen2	OFF							
Gen3	OFF							
Gen4	OFF							
Gen5	OFF							
ISS1	OFF							
PO4	OFF							
NH4 NO3	OFF OFF							
DSI	OFF							
PSI	OFF							
FE	OFF							
LDOM	OFF							
RDOM	OFF							
LPOM	OFF							
RPOM	OFF							
BOD1	OFF							
BOD1 BOD2	OFF							
BOD3	OFF							
BOD4	OFF							
BOD5	OFF							
ALG1	OFF							
11101	011							

DO TIC ALK ZOO1 LDOM_P RDOM_P LPOM_P RPOM_P LDOM_N RDOM_N RDOM_N LPOM_N RPOM_N	OFF OFF OFF OFF OFF OFF OFF OFF OFF								
CST DERI DOC	CDWBC OFF	CDWBC	CDWBC	CDWBC	CDWBC	CDWBC	CDWBC	CDWBC	CDWBC
POC	OFF								
TOC	OFF								
DON	OFF								
PON	OFF								
TON	OFF								
TKN	OFF								
TN	OFF								
DOP	OFF								
POP	OFF								
TOP	OFF								
TP	OFF								
APR	OFF								
CHLA ATOT	OFF OFF								
%DO	OFF								
TSS	OFF								
TISS	OFF								
CBOD	OFF								
рН	OFF								
CO2	OFF								
HCO3	OFF								
CO3	OFF								
COM DITTY	CEMPC	CEMPC	CEMPC	CEMPC	CEMP C	CEMPC	CEMPC	CFWBC	CEMPC
CST FLUX TISSIN	CFWBC OFF	CFWBC	CFWBC	CFWBC	CFWBC	CFWBC	CFWBC	CFWBC	CFWBC
TISSOUT	OFF								
PO4AR	OFF								
PO4AG	OFF								
PO4AP	OFF								
PO4ER	OFF								
PO4EG	OFF								
PO4EP	OFF								
PO4POM	OFF								
PO4DOM	OFF								
PO4OM	OFF								
PO4SED	OFF								
PO4SOD	OFF								
PO4SET NH4NITR	OFF OFF								
NH4AR	OFF								
NH4AG	OFF								
NH4AP	OFF								
NH4ER	OFF								
NH4EG	OFF								
NH4EP	OFF								
NH4POM	OFF								
NH4DOM	OFF								
NH4OM	OFF								

```
NH4SED
             OFF
NH4SOD
             OFF
NO3DEN
             OFF
NO3AG
             OFF
NO3EG
             OFF
NO3SED
             OFF
DSIAG
             OFF
DSIEG
             OFF
DSIPIS
             OFF
DSISED
             OFF
             OFF
DSISOD
DSISET
             OFF
PSIAM
             OFF
             OFF
PSINET
             OFF
PSIDK
             OFF
FESET
FESED
             OFF
LDOMDK
             OFF
             OFF
LRDOM
             OFF
RDOMDK
LDOMAP
             OFF
LDOMEP
             OFF
LPOMDK
             OFF
LRPOM
             OFF
RPOMDK
             OFF
LPOMAP
             OFF
LPOMEP
             OFF
LPOMSET
             OFF
RPOMSET
             OFF
CBODDK
             OFF
DOAP
             OFF
DOAR
             OFF
             OFF
DOEP
DOER
             OFF
DOPOM
             OFF
DODOM
             OFF
DOOM
             OFF
DONITR
             OFF
DOCBOD
             OFF
DOREAR
             OFF
DOSED
             OFF
DOSOD
             OFF
TICAG
             OFF
TICEG
             OFF
SEDDK
             OFF
SEDAS
             OFF
SEDLPOM
             OFF
SEDSET
             OFF
SODDK
             OFF
CST ICON C2IWB
                   C2IWB
                           C2IWB
                                  C2IWB C2IWB
                                                   C2IWB
                                                          C2IWB C2IWB
                                                                           C2IWB
         0.00000
TDS
Gen1
         0.00000
         0.00000
Gen2
Gen3
         0.00000
Gen4
         0.00000
         0.00000
Gen5
ISS1
         0.00000
PO4
         0.03000
NH4
         0.01000
NO3
         0.30000
DSI
         0.00000
PSI
         0.00000
```

```
FΕ
        0.00000
LDOM
        0.10000
RDOM
        0.10000
LPOM
         0.10000
RPOM
         0.10000
BOD1
         0.00000
BOD2
         0.00000
BOD3
         0.00000
BOD4
         0.00000
BOD5
         0.00000
ALG1
         0.10000
DO
        12.0000
TIC
         5.00000
         19.8000
ALK
Z001 0.1000
LDOM_P
         0.0005
RDOM_P
         0.0005
LPOM_P
         0.0005
RPOM P
         0.0005
LDOM N
         0.0080
RDOM N
         0.0080
LPOM N 0.0080
RPOM N 0.0080
CST PRIN CPRWBC CPRWBC CPRWBC CPRWBC CPRWBC CPRWBC CPRWBC CPRWBC
TDS
           OFF
Gen1
             ON
Gen2
            OFF
Gen3
            OFF
            OFF
Gen4
            OFF
Gen5
ISS1
            OFF
PO4
            OFF
            OFF
NH4
NO3
            OFF
DSI
            OFF
PSI
            OFF
            OFF
FΕ
LDOM
            OFF
RDOM
            OFF
LPOM
            OFF
RPOM
            OFF
BOD1
            OFF
BOD2
            OFF
BOD3
            OFF
BOD4
            OFF
BOD5
            OFF
ALG1
            OFF
DO
            OFF
TIC
            OFF
ALK
            OFF
Z001
            OFF
LDOM_P
            OFF
RDOM_P
            OFF
LPOM_P
            OFF
RPOM_P
            OFF
LDOM_N
            OFF
RDOM N
            OFF
LPOM N
            OFF
RPOM N
            OFF
CIN CON
         CINBRC CINBRC CINBRC CINBRC CINBRC CINBRC CINBRC CINBRC
TDS
             ON
```

Gen1	OFF								
Gen2	ON								
Gen3	ON								
Gen4	ON								
Gen5	ON								
ISS1	ON								
PO4	ON								
NH4	ON								
NO3	ON								
DSI	OFF								
PSI	OFF								
FE	OFF								
LDOM	ON								
RDOM	ON								
LPOM	ON								
RPOM	ON								
BOD1	ON								
BOD2	ON								
BOD3	ON								
BOD4	ON								
BOD5	ON								
ALG1	ON								
DO	ON								
TIC	ON								
ALK	ON								
Z001	OFF								
LDOM P	OFF								
RDOM P	OFF								
LPOM P	OFF								
RPOM P	OFF								
LDOM N	OFF								
_									
RDOM N	OFF								
RDOM_N LPOM N	OFF OFF								
LPOM_N	OFF								
LPOM_N	OFF	CTRTRC	CTRTRC	CTRTRC	CTRTRC	CTRTRC	CTRTRC	CTRTRC	CTRTRC
LPOM_N RPOM_N	OFF OFF	CTRTRC ON	CTRTRC						
LPOM_N RPOM_N CTR CON	OFF OFF CTRTRC		CTRTRC						
LPOM_N RPOM_N CTR CON TDS	OFF OFF CTRTRC ON	ON	CTRTRC						
LPOM_N RPOM_N CTR CON TDS Gen1	OFF OFF CTRTRC ON OFF	ON OFF	CTRTRC						
LPOM_N RPOM_N CTR CON TDS Gen1 Gen2	OFF OFF CTRTRC ON OFF ON	ON OFF ON	CTRTRC						
LPOM_N RPOM_N CTR CON TDS Gen1 Gen2 Gen3	OFF OFF CTRTRC ON OFF ON ON	ON OFF ON ON	CTRTRC						
LPOM_N RPOM_N CTR CON TDS Gen1 Gen2 Gen3 Gen4	OFF OFF CTRTRC ON OFF ON ON ON	ON OFF ON ON	CTRTRC						
LPOM_N RPOM_N CTR CON TDS Gen1 Gen2 Gen3 Gen4 Gen5	OFF OFF CTRTRC ON OFF ON ON ON	ON OFF ON ON ON	CTRTRC						
LPOM_N RPOM_N CTR CON TDS Gen1 Gen2 Gen3 Gen4 Gen5 ISS1	OFF OFF CTRTRC ON OFF ON ON ON ON	ON OFF ON ON ON ON	CTRTRC						
LPOM_N RPOM_N CTR CON TDS Gen1 Gen2 Gen3 Gen4 Gen5 ISS1 PO4	OFF OFF CTRTRC ON OFF ON ON ON ON ON	ON OFF ON ON ON ON ON ON	CTRTRC						
LPOM_N RPOM_N CTR CON TDS Gen1 Gen2 Gen3 Gen4 Gen5 ISS1 PO4 NH4	OFF OFF CTRTRC ON OFF ON ON ON ON ON ON	ON OFF ON ON ON ON ON ON ON	CTRTRC						
LPOM_N RPOM_N CTR CON TDS Gen1 Gen2 Gen3 Gen4 Gen5 ISS1 PO4 NH4 NO3	OFF OFF CTRTRC ON OFF ON ON ON ON ON ON ON	ON OFF ON ON ON ON ON ON ON ON	CTRTRC						
LPOM_N RPOM_N CTR CON TDS Gen1 Gen2 Gen3 Gen4 Gen5 ISS1 PO4 NH4 NO3 DSI	OFF OFF CTRTRC ON OFF ON	ON OFF ON	CTRTRC						
LPOM_N RPOM_N CTR CON TDS Gen1 Gen2 Gen3 Gen4 Gen5 ISS1 PO4 NH4 NO3 DSI PSI	OFF OFF CTRTRC ON OFF ON	ON OFF ON	CTRTRC						
LPOM_N RPOM_N CTR CON TDS Gen1 Gen2 Gen3 Gen4 Gen5 ISS1 PO4 NH4 NO3 DSI PSI FE	OFF OFF CTRTRC ON OFF ON ON ON ON ON ON ON ON ON OFF OFF	ON OFF ON ON ON ON ON ON ON ON ON OFF OFF	CTRTRC						
LPOM_N RPOM_N CTR CON TDS Gen1 Gen2 Gen3 Gen4 Gen5 ISS1 PO4 NH4 NO3 DSI PSI FE LDOM	OFF OFF CTRTRC ON OFF ON ON ON ON ON ON ON ON ON OFF OFF	ON OFF ON ON ON ON ON ON ON ON OFF OFF O	CTRTRC						
LPOM_N RPOM_N CTR CON TDS Gen1 Gen2 Gen3 Gen4 Gen5 ISS1 PO4 NH4 NO3 DSI PSI FE LDOM RDOM	OFF OFF CTRTRC ON OFF ON ON ON ON ON ON ON OFF OFF OFF	ON OFF ON ON ON ON ON ON ON OFF OFF OFF	CTRTRC						
LPOM_N RPOM_N CTR CON TDS Gen1 Gen2 Gen3 Gen4 Gen5 ISS1 PO4 NH4 NO3 DSI PSI FE LDOM RDOM LPOM RPOM BOD1	OFF OFF ON ON ON ON ON ON OFF OFF OFF OF	ON OFF ON ON ON ON ON ON ON OFF OFF OFF	CTRTRC						
LPOM_N RPOM_N CTR CON TDS Gen1 Gen2 Gen3 Gen4 Gen5 ISS1 PO4 NH4 NO3 DSI PSI FE LDOM RDOM LPOM RPOM	OFF OFF ON ON ON ON ON ON OFF OFF OFF ON	ON OFF ON ON ON ON ON ON OFF OFF OFF ON ON ON	CTRTRC						
LPOM_N RPOM_N CTR CON TDS Gen1 Gen2 Gen3 Gen4 Gen5 ISS1 PO4 NH4 NO3 DSI PSI FE LDOM RDOM LPOM RPOM BOD1	OFF OFF ON ON ON ON ON OFF OFF OFF ON	ON OFF ON ON ON ON ON ON OFF OFF OFF ON ON ON ON	CTRTRC						
LPOM_N RPOM_N CTR CON TDS Gen1 Gen2 Gen3 Gen4 Gen5 ISS1 PO4 NH4 NO3 DSI PSI FE LDOM RPOM RPOM BOD1 BOD2 BOD3 BOD4	OFF OFF ON ON ON ON OFF OFF OFF ON	ON OFF ON ON ON ON ON OFF OFF ON	CTRTRC						
LPOM_N RPOM_N CTR CON TDS Gen1 Gen2 Gen3 Gen4 Gen5 ISS1 PO4 NH4 NO3 DSI PSI FE LDOM RDOM LPOM RPOM BOD1 BOD2 BOD3 BOD4 BOD5	OFF OFF ON ON ON ON OFF OFF OFF ON	ON OFF ON ON ON ON ON OFF OFF ON	CTRTRC						
LPOM_N RPOM_N CTR CON TDS Gen1 Gen2 Gen3 Gen4 Gen5 ISS1 PO4 NH4 NO3 DSI PSI FE LDOM RPOM RPOM BOD1 BOD2 BOD3 BOD4	OFF OFF ON ON ON OFF OFF OFF ON	ON OFF ON ON ON ON OFF OFF ON	CTRTRC						
LPOM_N RPOM_N CTR CON TDS Gen1 Gen2 Gen3 Gen4 Gen5 ISS1 PO4 NH4 NO3 DSI PSI FE LDOM RDOM LPOM RPOM BOD1 BOD2 BOD3 BOD4 BOD5 ALG1 DO	OFF OFF ON ON ON OFF OFF ON	ON OFF ON ON ON ON OFF OFF ON	CTRTRC						
LPOM_N RPOM_N CTR CON TDS Gen1 Gen2 Gen3 Gen4 Gen5 ISS1 PO4 NH4 NO3 DSI PSI FE LDOM RDOM LPOM RPOM BOD1 BOD2 BOD3 BOD4 BOD5 ALG1	OFF OFF ON ON ON OFF OFF OFF ON	ON OFF ON ON ON ON OFF OFF ON	CTRTRC						

LDOM P	OFF	OFF							
RDOM P	OFF	OFF							
LPOM P	OFF	OFF							
RPOM P	OFF	OFF							
LDOM_N	OFF	OFF							
RDOM_N	OFF	OFF							
LPOM_N	OFF	OFF							
RPOM_N	OFF	OFF							
CDT CON	CDTBRC	CDTBRC	CDTBRC	CDTBRC	CDTBRC	CDTBRC	CDTBRC	CDTBRC	CDTBRC
TDS	ON								
Gen1	OFF								
Gen2	ON								
Gen3	ON								
Gen4	ON								
Gen5	ON								
ISS1 PO4	ON ON								
NH4	ON								
NO3	ON								
DSI	OFF								
PSI	OFF								
FE	OFF								
LDOM	ON								
RDOM	ON								
LPOM	ON								
RPOM	ON								
BOD1	ON								
BOD2	ON								
BOD3	ON								
BOD4	ON								
BOD5	ON								
ALG1	ON								
DO	ON								
TIC	ON								
ALK	ON								
Z001	OFF								
LDOM_P	OFF								
RDOM_P	OFF								
LPOM_P	OFF								
RPOM_P LDOM N	OFF OFF								
RDOM_N	OFF								
LPOM N	OFF								
RPOM N	OFF								
CPR CON	CPRBRC	CPRBRC	CPRBRC	CPRBRC	CPRBRC	CPRBRC	CPRBRC	CPRBRC	CPRBRC
TDS	ON								
Gen1	OFF								
Gen2	ON								
Gen3	ON								
Gen4	ON								
Gen5	ON								
ISS1	ON								
PO4	ON								
NH4	ON								
NO3 DSI	ON								
PSI	OFF OFF								
FE	OFF								
LDOM	OPF								
RDOM	ON								
LPOM	ON								
	011								

RPOM BOD1 BOD2 BOD3 BOD4 BOD5 ALG1 DO TIC ALK ZOO1	ON								
LDOM_P RDOM P	OFF OFF								
LPOM P	OFF								
RPOM_P	OFF								
LDOM_N	OFF								
RDOM_N	OFF								
LPOM_N RPOM N	OFF OFF								
KPOM_N	Off								
EX COEF	EXH20	EXSS	EXOM	BETA	EXC	EXIC			
WB 1	0.45000	0.01000	0.40000	0.45000	OFF	OFF			
ALG EX	EXA 0.10000	EXA	EXA	EXA	EXA	EXA			
ZOO EX	EXZ	EXZ	EXZ	EXZ	EXZ	EXZ			
	0.2	0.2	0.2						
MACRO EX	EXM 0.0100	EXM	EXM	EXM	EXM	EXM			
GENERIC CG 1 CG 2 CG 3 CG 4 CG 5	0.00000 1.04000 0.00000	CG0DK -1.0000 0.00000 0.00000 0.00000	0.00000 0.00000 0.50000 0.00000	0.00000 0.00000 0.00000					
CG 1 CG 2 CG 3 CG 4	0.00000 0.00000 1.04000 0.00000	-1.0000 0.00000 0.00000 0.00000	0.00000 0.00000 0.50000 0.00000	0.00000 0.00000 0.00000 0.00000					
CG 1 CG 2 CG 3 CG 4 CG 5	0.00000 0.00000 1.04000 0.00000 0.00000 SSS 1.50000	-1.0000 0.00000 0.00000 0.00000 0.00000 SEDRC OFF	0.00000 0.00000 0.50000 0.00000 TAUCR 0.00	0.00000 0.00000 0.00000 0.00000 0.00000			AHSN 0.00500		ASAT 50.0000
CG 1 CG 2 CG 3 CG 4 CG 5 S SOLIDS SS1 ALGAL RA	0.00000 0.00000 1.04000 0.00000 SSS 1.50000 TE AG 2.00000	-1.0000 0.00000 0.00000 0.00000 0.00000 SEDRC OFF AR 0.12000	0.00000 0.00000 0.50000 0.00000 TAUCR 0.00 AE 0.02000	0.00000 0.00000 0.00000 0.00000 0.00000 AM 0.05000	0.04000 AK1	0.00500 AK2	0.00500 AK3	0.00000 AK4	
CG 1 CG 2 CG 3 CG 4 CG 5 S SOLIDS SS1 ALGAL RA' ALG1 ALGAL TE	0.00000 0.00000 1.04000 0.00000 SSS 1.50000 TE AG 2.00000 MP AT1 5.00000	-1.0000 0.00000 0.00000 0.00000 SEDRC OFF AR 0.12000 AT2 12.0000	0.00000 0.00000 0.50000 0.00000 TAUCR 0.00 AE 0.02000 AT3 20.0000	0.00000 0.00000 0.00000 0.00000 0.00000 AM 0.05000 AT4 30.0000	0.04000 AK1 0.10000 ACHLA	0.00500 AK2 0.99000 ALPOM	0.00500 AK3 0.99000 ANEQN	0.00000 AK4 0.10000 ANPR	
CG 1 CG 2 CG 3 CG 4 CG 5 S SOLIDS SS1 ALGAL RA ALG1 ALGAL TEL ALG1 ALGAL TEL ALG1	0.00000 0.00000 1.04000 0.00000 0.00000 SSS 1.50000 TE AG 2.00000 MP AT1 5.00000 ALGP 0.00500	-1.0000 0.00000 0.00000 0.00000 SEDRC OFF AR 0.12000 AT2 12.0000 ALGN 0.08000	0.00000 0.00000 0.50000 0.00000 TAUCR 0.00 AE 0.02000 AT3 20.0000 ALGC 0.45000	0.00000 0.00000 0.00000 0.00000 0.00000 AM 0.05000 AT4 30.0000 ALGSI 0.00000	0.04000 AK1 0.10000 ACHLA 65.0000	AK2 0.99000 ALPOM 0.80000	0.00500 AK3 0.99000 ANEQN 1	0.00000 AK4 0.10000 ANPR 0.00100	50.0000
CG 1 CG 2 CG 3 CG 4 CG 5 S SOLIDS SS1 ALGAL RA ALG1 ALGAL TEL ALG1 ALG STOI ALG1 EPIPHYTE	0.00000 0.00000 1.04000 0.00000 0.00000 SSS 1.50000 FE AG 2.00000 MP AT1 5.00000 ALGP 0.00500 EPIC OFF	-1.0000 0.00000 0.00000 0.00000 SEDRC OFF AR 0.12000 AT2 12.0000 ALGN 0.08000	0.00000 0.00000 0.50000 0.00000 TAUCR 0.00 AE 0.02000 AT3 20.0000 ALGC 0.45000	0.00000 0.00000 0.00000 0.00000 0.00000 AM 0.05000 AT4 30.0000 ALGSI 0.00000	0.04000 AK1 0.10000 ACHLA 65.0000 EPIC	0.00500 AK2 0.99000 ALPOM 0.80000 EPIC	0.00500 AK3 0.99000 ANEQN 1 EPIC	0.00000 AK4 0.10000 ANPR 0.00100 EPIC	50.0000 EPIC
CG 1 CG 2 CG 3 CG 4 CG 5 S SOLIDS SS1 ALGAL RA ALG1 ALGAL TEI ALG1 ALG STOI ALG1 EPIPHYTE EPI1 EPI PRIN	0.00000 0.00000 1.04000 0.00000 0.00000 SSS 1.50000 TE AG 2.00000 MP AT1 5.00000 ALGP 0.00500 EPIC OFF EPRC OFF	-1.0000 0.00000 0.00000 0.00000 SEDRC OFF AR 0.12000 AT2 12.0000 ALGN 0.08000 EPIC	0.00000 0.00000 0.50000 0.00000 TAUCR 0.00 AE 0.02000 AT3 20.0000 ALGC 0.45000 EPIC	0.00000 0.00000 0.00000 0.00000 0.00000 AM 0.05000 AT4 30.0000 ALGSI 0.00000 EPIC	0.04000 AK1 0.10000 ACHLA 65.0000 EPIC EPRC	0.00500 AK2 0.99000 ALPOM 0.80000 EPIC	0.00500 AK3 0.99000 ANEQN 1 EPIC	0.00000 AK4 0.10000 ANPR 0.00100 EPIC	50.0000 EPIC EPRC

EPI HALF EPI1		EHS 40.0000	~	ENPR 0.00200					
EPI TEMP EPI1		ET2 5.00000	ET3 20.0000						
EPI STOI EPI1	EP 0.00500	EN 0.08000	EC 0.45000	ESI 0.00000	ECHLA 65.0000	EPOM 0.80000			
ZOOP RATE		ZR	ZM	ZEFF	PREFP		ZS2P		
Z001	1.50	0.10	0.010	0.50	0.50	0.0100	0.30		
ZOOP ALGI			PREFA	PREFA	PREFA	PREFA	PREFA	PREFA	PREFA
Z001	1.00	0.50	0.50						
ZOOP ZOOF		PREFZ	PREFZ	PREFZ	PREFZ	PREFZ	PREFZ	PREFZ	PREFZ
<u>Zoo1</u>	0.00	0.00	0.00						
ZOOP TEM		ZT2	ZT3	ZT4	ZK1	ZK2	ZK3	ZK4	
	0.0	15.0	20.0	36.0	0.1	0.9	0.98	0.100	
ZOOP STO	I ZP	ZN	ZC						
	0.01500	0.08000	0.45000						
MACROPHYT	r MACWBC	MACWBC	MACWBC	MACWBC	MACWBC	MACWBC	MACWBC	MACWBC	MACWBC
Mac1	ON	OFF	OFF						
MAC PRINT	r MPRWBC	MPRWBC	MPRWBC	MPRWBC	MPRWBC	MPRWBC	MPRWBC	MPRWBC	MPRWBC
Mac1	ON	OFF	OFF						
MAC INI	MACWBCI	MACWBCI	MACWBCI	MACWBCI	MACWBCI	MACWBCI	MACWBCI	MACWBCI	MACWBCI
Mac1	0.00000	0	.1 0	.5					
Mac1 MAC RATE	0.00000 MG	0 MR	.1 0 MM	.5 MSAT	MHSP	MHSN	MHSC	MPOM	LRPMAC
			MM	MSAT	MHSP	MHSN 0.0		MPOM 0.9	LRPMAC 0.2
MAC RATE	MG	MR	MM	MSAT					
MAC RATE Mac 1	MG 0.30	MR 0.05	MM	MSAT					
MAC RATE Mac 1 MAC SED	MG 0.30 PSED	MR 0.05 NSED	MM	MSAT					
MAC RATE Mac 1 MAC SED MAC 1 MAC DIST	MG 0.30 PSED 0.5	MR 0.05 NSED 0.5	MM	MSAT					
MAC RATE MAC 1 MAC SED MAC 1 MAC DIST MAC 1	MG 0.30 PSED 0.5 MBMP 40.0	MR 0.05 NSED 0.5 MMAX 500.0	MM 0.05	MSAT 30.0					
MAC RATE Mac 1 MAC SED MAC 1 MAC DIST MAC 1 MAC DRAG	MG 0.30 PSED 0.5 MBMP 40.0 CDSTEM 2.0	MR 0.05 NSED 0.5 MMAX 500.0	MM 0.05	MSAT 30.0		0.0	0.0	0.9	
MAC RATE MAC 1 MAC SED MAC 1 MAC DIST MAC 1 MAC DRAG MAC 1	MG 0.30 PSED 0.5 MBMP 40.0 CDSTEM 2.0	MR 0.05 NSED 0.5 MMAX 500.0	MM 0.05 DMSA 8.00	MSAT 30.0	0.0	0.0 MK2	0.0 MK3	0.9	
MAC RATE MAC 1 MAC SED MAC 1 MAC DIST MAC 1 MAC DRAG MAC 1 MAC TEMP	MG 0.30 PSED 0.5 MBMP 40.0 CDSTEM 2.0 MT1 7.0	MR 0.05 NSED 0.5 MMAX 500.0 DWV 7e4	MM 0.05 DMSA 8.00	MSAT 30.0	0.0 MK1	0.0 MK2	0.0 MK3	0.9 MK4	
MAC RATE Mac 1 MAC SED MAC 1 MAC DIST MAC 1 MAC DRAG MAC 1 MAC TEMP MAC 1	MG 0.30 PSED 0.5 MBMP 40.0 CDSTEM 2.0 MT1 7.0	MR 0.05 NSED 0.5 MMAX 500.0 DWV 7e4 MT2 15.0	DMSA 8.00 MT3 24.0	MSAT 30.0	0.0 MK1	0.0 MK2	0.0 MK3	0.9 MK4	
MAC RATE MAC 1 MAC SED MAC 1 MAC DIST MAC 1 MAC DRAG MAC 1 MAC TEMP MAC 1	MG 0.30 PSED 0.5 MBMP 40.0 CDSTEM 2.0 MT1 7.0 CH MP 0.005	MR 0.05 NSED 0.5 MMAX 500.0 DWV 7e4 MT2 15.0	DMSA 8.00 MT3 24.0 MC 0.45	MSAT 30.0	0.0 MK1	0.0 MK2	0.0 MK3	0.9 MK4	
MAC RATE Mac 1 MAC SED MAC 1 MAC DIST Mac 1 MAC DRAG Mac 1 MAC TEMP Mac 1 MAC STOIC MAC 1	MG 0.30 PSED 0.5 MBMP 40.0 CDSTEM 2.0 MT1 7.0 CH MP 0.005 LDOMDK 0.10000	MR 0.05 NSED 0.5 MMAX 500.0 DWV 7e4 MT2 15.0 MN 0.08 RDOMDK	DMSA 8.00 MT3 24.0 MC 0.45 LRDDK 0.00100	MSAT 30.0 ANORM 0.80 MT4 34.0	0.0 MK1	0.0 MK2	0.0 MK3	0.9 MK4	
MAC RATE Mac 1 MAC SED MAC 1 MAC DIST Mac 1 MAC DRAG Mac 1 MAC TEMP Mac 1 MAC STOIC Mac 1 DOM WB 1 POM	MG 0.30 PSED 0.5 MBMP 40.0 CDSTEM 2.0 MT1 7.0 CH MP 0.005 LDOMDK 0.10000 LPOMDK 0.08000 ORGP	MR 0.05 NSED 0.5 MMAX 500.0 DWV 7e4 MT2 15.0 MN 0.08 RDOMDK 0.00100 RPOMDK 0.00100	DMSA 8.00 MT3 24.0 MC 0.45 LRDDK 0.00100 LRPDK 0.00100	MSAT 30.0 ANORM 0.80 MT4 34.0	0.0 MK1	0.0 MK2	0.0 MK3	0.9 MK4	

```
CBODS
CBOD
         KBOD TBOD RBOD
      0.04180 1.01470 1.00000
BOD 1
                                0.0
       0.13020 1.01470 1.00000
                                0.0
BOD 2
       0.04690 1.01470 1.00000
                                0.0
BOD 4
       0.08800 1.01470 1.00000
                                0.0
BOD 5
       0.05000 1.01470 1.00000
CBOD STOIC BODP
               BODN
BOD 1 0.00500 0.08000 0.45000
      0.00500 0.08000 0.45000
BOD 2
      0.00500 0.08000 0.45000
BOD 3
      0.00500 0.08000 0.45000
BOD 4
     0.00500 0.08000 0.45000
BOD 5
PHOSPHOR PO4R PARTP
WB 1 0.00100 0.00000
AMMONIUM NH4R NH4DK
      0.00100 0.50000
WB 1
NH4 RATE NH4T1 NH4T2 NH4K1 NH4K2
WB 1
       5.00000 25.0000 0.10000 0.99000
NITRATE NO3DK NO3S
WB 1
       0.05000 0.00000
NO3 RATE NO3T1 NO3T2 NO3K1 NO3K2
WB 1 5.00000 25.0000 0.10000 0.99000
SILICA
         DSIR PSIS PSIDK PARTSI
WB 1
       0.10000 0.00000 0.30000 0.20000
         FER
TRON
                  FES
WB 1
       0.10000 0.00000
SED CO2
         CO2R
WB 1 0.10000
STOICH 1 O2NH4
WB 1 4.57000 1.40000
STOICH 2 O2AR O2AG
    1.10000 1.40000
ALG1
STOICH 3 O2ER O2EG
      1.10000 1.40000
EPI1
STOICH 4 O2ZR
Z001 1.10000
STOICH 5 O2MR O2MG
MAC1 1.1 1.4
         KDO
O2 LIMIT
       0.10000
SEDIMENT
          SEDC SEDPRC SEDCI SEDK
                                      SEDS
                                           FSOD FSED
                                                          SEDBR
WB 1
          ON
               ON 0.00000 0.10000
                                       0.1 1.00000 1.00000
                                                            0.2
SOD RATE SODT1 SODT2 SODK1 SODK2
WB 1 4.00000 30.0000 0.10000 0.99000
S DEMAND
         SOD
                 SOD
                         SOD
                             SOD
                                       SOD
                                              SOD
                                                  SOD
                                                            SOD
                                                                   SOD
```

	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
	0.6								
REAERATION	TYPE	EQN#	COEF1	COEF2	COEF3	COEF4			
WB1	LAKE	6							

<u>Lines removed from the V3.2 control file:</u> These are a result of eliminating the pumpback and line printer settings.

Here is the part of the V3.2 control file that was deleted:

DST TRIB	DTRC								
Br 1	ON								
Br 2	ON								
Br 3	OFF								
Br 4	OFF								
Br 5	OFF								
PUMPBACK	JBG	KTG	KBG	JBP	KTP	KBP			
	0								
PRINTER	LJC								
	IV								
HYD PRINT I	HPRWBC	HPRWBC	HPRWBC	HPRWBC	HPRWBC	HPRWBC	HPRWBC	HPRWBC	HPRWBC
NVIOL	OFF	OFF							
U	ON	ON							

Graph.npt file changes. These changes are a result of the new state variables in W2 and are highlighted below.

Hydrodynamic, constituent, and derived constituent names, formats, multipliers, and array viewer controls

HNAME	. FMTH	HMULT	HMIN	HMAX	HPLTC	#
Timestep violations [NVIOL]	(I10)	1.0	-1.0	1.0	OFF	1
Horizontal velocity [U], m/s	(1PE10.1)	1.0	1000	0.15	OFF	2
Vertical velocity [W], m/s	(1PE10.1)	1.0	1E-6	-0.01	OFF	3
Temperature [T1], <o></o> C	(F10.2)	1.0	-10.0	-26.0	ON	4
Density [RHO], g/m^3	(F10.3)	1.0	997.0	1005.0	OFF	5
Vertical eddy viscosity [AZ], m^2/s	(F10.3)	1.0	-1E-08	0.01	OFF	6
Velocity shear stress [SHEAR], 1/s^2	(F10.3)	1.0	-1E-08	0.01	OFF	7
<pre>Internal shear [ST], m^3/s</pre>	(F10.3)	1.0	-1E-08	0.01	OFF	8
Bottom shear [SB], m^3/s	(F10.3)	1.0	-1E-08	0.01	OFF	9
Longitudinal momentum [ADMX], m^3/s	(F10.3)	1.0	-1E-08	0.01	OFF	10
Longitudinal momentum [DM], m^3/s	(F10.3)	1.0	-1E-08	0.01	OFF	11
Horizontal density gradient [HDG], m^3/s	(F10.3)	1.0	-1E-08	0.01	OFF	12
Vertical momentum [ADMZ], m^3/s	(F10.3)	1.0	-1E-08	0.01	OFF	13
Horizontal pressure gradient [HPG], m^3/s	(F10.3)	1.0	-1E-08	10.0	OFF	14
Gravity term channel slope [GRAV], m^3/s	(F10.3)	1.0	0.0	0.0	OFF	15
CNAME	FMTC	CMULT	CMIN	CMAX	CPLTC	#
TDS, q/m^3	(F10.3)	1.0		200.0	OFF	1
Age, days	(F10.3)		-1.0	-200.0	ON	2
Tracer, q/m^3	(F10.3)		-20.000		OFF	3
	,					
	. ,					
Bacteria, col/100ml Conductivity, mhos	(F10.3) (F10.3)		-20.000 -20.000	100.0 100.0	OFF OFF	4 5

Chloride, mg/l	(F10.3)	1.0	-20.000	100.0	OFF	6
ISS, g/m^3	(F10.3)	1.0	-20.000	100.0	OFF	7
Phosphate, g/m^3	(F10.3)	1000.0	-1.0	500.0	OFF	8
Ammonium, g/m^3	(F10.3)		-0.1000	300.0	OFF	9
Nitrate-Nitrite, g/m^3	(F10.3)	1.0	-0.1000	5.0	OFF	10
Dissolved silica, g/m^3	(F10.3)	1.0	-1.0	10.0	OFF	11
Particulate silica, g/m^3	(F10.3)	1.0	-0.2000	15.0	OFF	12
Total iron, g/m^3	(F10.3)	1.0	-0.1000	2.0	OFF	13
Labile DOM, g/m^3	(F10.3)	1.0	-0.1000	-3.0	OFF	14
Refractory DOM, g/m^3	(F10.3)	1.0	-0.1000	-4.0	OFF	15
Labile POM, g/m^3	(F10.3)	1.0	-0.1000	-3.0	OFF	16
Refractory POM, g/m^3	(F10.3)	1.0	-0.1000	-4.0	OFF	17
CBOD1, g/m^3	(F10.3)	1.0	-0.0100	3.0	OFF	18
CBOD2, g/m^3	(F10.3)	1.0	-0.0100	3.0	OFF	19
CBOD3, g/m^3	(F10.3)	1.0	-0.0100	3.0	OFF	20
CBOD4, g/m^3	(F10.3)	1.0	-0.0100	3.0	OFF	21
CBOD5, g/m^3	(F10.3)	1.0	-0.0100	3.0	OFF	22
Algae, g/m^3	(F10.3)	1.0	-0.0100	3.0	OFF	23
Dissolved oxygen, g/m^3	(F10.3)	1.0	-0.0100	-1.0	OFF	24
Inorganic carbon, g/m^3	(F10.3)	1.0	-0.0100	3.0	OFF	25
Alkalinity, g/m^3	(F10.3)	1.0	-0.0100	3.0	OFF	26
zooplankton1, mg/m^3	(g10.3)	1000.0	-0.0100	1.0	OFF	27
LDOM P, mg/m^3	(g10.3)	1000.0	0.0	1.0	OFF	28
RDOM P, mg/m^3	(g10.3)	1000.0	0.0	1.0	OFF	29
LPOM P, mg/m^3	(g10.3)	1000.0	0.0	1.0	OFF	30
RPOM P, mg/m^3	(g10.3)	1000.0	0.0	1.0	OFF	31
T DOM: 17 / 40	(-10 2)	1000.0	0.0	1.0	OFF	32
LDOM N, mg/m^3	(g10.3)	1000.0	0.0	1.0	011	
RDOM N, mg/m^3	(g10.3)	1000.0	0.0	1.0	OFF	33
						33 34
RDOM N, mg/m^3	(g10.3)	1000.0	0.0	1.0	OFF	33
RDOM N, mg/m^3 LPOM N, mg/m^3	(g10.3) (g10.3)	1000.0	0.0	1.0 1.0	OFF OFF	33 34
RDOM N, mg/m^3 LPOM N, mg/m^3	(g10.3) (g10.3)	1000.0 1000.0 1000.0 CDMULT	0.0 0.0 0.0	1.0 1.0 1.0	OFF OFF	33 34 35
RDOM N, mg/m^3 LPOM N, mg/m^3 RPOM N, mg/m^3 CDNAME Dissolved organic carbon, g/m^3	(g10.3) (g10.3) (g10.3)	1000.0 1000.0 1000.0	0.0 0.0 0.0	1.0 1.0 1.0	OFF OFF OFF	33 34 35 # 1
RDOM N, mg/m^3 LPOM N, mg/m^3 RPOM N, mg/m^3	(g10.3) (g10.3) (g10.3)	1000.0 1000.0 1000.0 CDMULT	0.0 0.0 0.0	1.0 1.0 1.0	OFF OFF CDPLTC	33 34 35 # 1 2
RDOM N, mg/m^3 LPOM N, mg/m^3 RPOM N, mg/m^3	(g10.3) (g10.3) (g10.3) FMTCD (F10.3)	1000.0 1000.0 1000.0 CDMULT 1.0 1.0	0.0 0.0 0.0 CDMIN -1.0 -1.0	1.0 1.0 1.0 CDMAX 25.0 50.0 25.0	OFF OFF CDPLTC OFF	33 34 35 # 1 2 3
RDOM N, mg/m^3 LPOM N, mg/m^3 RPOM N, mg/m^3	(g10.3) (g10.3) (g10.3) (g10.3) FMTCD (F10.3) (F10.3)	1000.0 1000.0 1000.0 CDMULT 1.0 1.0	0.0 0.0 0.0 CDMIN -1.0 -1.0	1.0 1.0 1.0 CDMAX 25.0 50.0	OFF OFF CDPLTC OFF OFF	33 34 35 # 1 2 3
RDOM N, mg/m^3 LPOM N, mg/m^3 RPOM N, mg/m^3	(g10.3) (g10.3) (g10.3) FMTCD (F10.3) (F10.3) (F10.3) (F10.3)	1000.0 1000.0 1000.0 CDMULT 1.0 1.0	0.0 0.0 0.0 CDMIN -1.0 -1.0	1.0 1.0 1.0 CDMAX 25.0 50.0 25.0	OFF OFF CDPLTC OFF OFF	33 34 35 # 1 2 3 4 5
RDOM N, mg/m^3 LPOM N, mg/m^3 RPOM N, mg/m^3	(g10.3) (g10.3) (g10.3) FMTCD (F10.3) (F10.3) (F10.3)	1000.0 1000.0 1000.0 CDMULT 1.0 1.0	0.0 0.0 0.0 CDMIN -1.0 -1.0 -1.0	1.0 1.0 1.0 CDMAX 25.0 50.0 25.0	OFF OFF CDPLTC OFF OFF OFF OFF	33 34 35 # 1 2 3
RDOM N, mg/m^3 LPOM N, mg/m^3 RPOM N, mg/m^3	(g10.3) (g10.3) (g10.3) FMTCD (F10.3) (F10.3) (F10.3) (F10.3)	1000.0 1000.0 1000.0 CDMULT 1.0 1.0 1.0	0.0 0.0 0.0 CDMIN -1.0 -1.0 -1.0	1.0 1.0 1.0 CDMAX 25.0 50.0 25.0 25.0 25.0 50.0	OFF OFF CDPLTC OFF OFF OFF OFF	33 34 35 # 1 2 3 4 5 6
RDOM N, mg/m^3 LPOM N, mg/m^3 RPOM N, mg/m^3	(g10.3) (g10.3) (g10.3) FMTCD (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3)	1000.0 1000.0 1000.0 CDMULT 1.0 1.0 1.0 1.0	0.0 0.0 0.0 CDMIN -1.0 -1.0 -1.0 -1.0 -1.0	1.0 1.0 1.0 CDMAX 25.0 50.0 25.0 25.0 25.0 50.0	OFF OFF CDPLTC OFF OFF OFF OFF OFF	33 34 35 # 1 2 3 4 5 6 7 8
RDOM N, mg/m^3 LPOM N, mg/m^3 RPOM N, mg/m^3	(g10.3) (g10.3) (g10.3) (g10.3) FMTCD (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3)	1000.0 1000.0 1000.0 CDMULT 1.0 1.0 1.0 1.0	0.0 0.0 0.0 CDMIN -1.0 -1.0 -1.0 -1.0 -1.0	1.0 1.0 1.0 CDMAX 25.0 50.0 25.0 25.0 25.0 50.0	OFF OFF CDPLTC OFF OFF OFF OFF OFF OFF OFF	33 34 35 # 1 2 3 4 5 6
RDOM N, mg/m^3 LPOM N, mg/m^3 RPOM N, mg/m^3	(g10.3) (g10.3) (g10.3) (g10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3)	1000.0 1000.0 1000.0 CDMULT 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 0.0 0.0 0.0 CDMIN -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0	1.0 1.0 1.0 25.0 50.0 25.0 25.0 50.0 15.0 25.0 -1.0	OFF	33 34 35 # 1 2 3 4 5 6 7 8 9
RDOM N, mg/m^3 LPOM N, mg/m^3 RPOM N, mg/m^3	(g10.3) (g10.3) (g10.3) (g10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3)	1000.0 1000.0 1000.0 CDMULT 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 0.0 0.0 0.0 CDMIN -1.0 -1.0 -1.0 -1.0 -1.0 -1.0	1.0 1.0 1.0 25.0 50.0 25.0 25.0 50.0 15.0 25.0 15.0	OFF	33 34 35 # 1 2 3 4 5 6 7 8 9 10
RDOM N, mg/m^3 LPOM N, mg/m^3 RPOM N, mg/m^3	(g10.3) (g10.3) (g10.3) (g10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3)	1000.0 1000.0 1000.0 CDMULT 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 0.0 0.0 CDMIN -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0	1.0 1.0 1.0 25.0 50.0 25.0 25.0 50.0 15.0 25.0 -1.0 50.0	OFF	33 34 35 # 1 2 3 4 5 6 7 8 9 10 11
RDOM N, mg/m^3 LPOM N, mg/m^3 RPOM N, mg/m^3	(g10.3) (g10.3) (g10.3) (g10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3)	1000.0 1000.0 1000.0 CDMULT 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 0.0 0.0 0.0 CDMIN -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0	1.0 1.0 1.0 25.0 50.0 25.0 25.0 50.0 15.0 25.0 15.0	OFF	33 34 35 # 1 2 3 4 5 6 7 8 9 10
RDOM N, mg/m^3 LPOM N, mg/m^3 RPOM N, mg/m^3	(g10.3) (g10.3) (g10.3) (g10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3)	1000.0 1000.0 1000.0 1000.0 CDMULT 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 0.0 0.0 CDMIN -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0	1.0 1.0 1.0 25.0 50.0 25.0 25.0 50.0 15.0 25.0 -1.0 50.0	OFF	33 34 35 # 1 2 3 4 5 6 7 8 9 10 11
RDOM N, mg/m^3 LPOM N, mg/m^3 RPOM N, mg/m^3	(g10.3) (g10.3) (g10.3) (g10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3)	1000.0 1000.0 1000.0 1000.0 CDMULT 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 0.0 0.0 0.0 CDMIN -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0	1.0 1.0 1.0 25.0 25.0 25.0 25.0 25.0 50.0 15.0 25.0 25.0 15.0 25.0 15.0	OFF	33 34 35 # 1 2 3 4 5 6 7 8 9 10 11 12 13
RDOM N, mg/m^3 LPOM N, mg/m^3 RPOM N, mg/m^3	(g10.3) (g10.3) (g10.3) (g10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3)	1000.0 1000.0 1000.0 1000.0 CDMULT 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 0.0 0.0 CDMIN -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0	1.0 1.0 1.0 25.0 25.0 25.0 25.0 25.0 50.0 15.0 25.0 25.0 25.0	OFF	33 34 35 # 1 2 3 4 5 6 7 8 9 10 11 12 13
RDOM N, mg/m^3 LPOM N, mg/m^3 RPOM N, mg/m^3	(g10.3) (g10.3) (g10.3) (g10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3)	1000.0 1000.0 1000.0 1000.0 CDMULT 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 0.0 0.0 0.0 CDMIN -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0	1.0 1.0 1.0 25.0 25.0 25.0 25.0 25.0 50.0 15.0 25.0 25.0 15.0 25.0 15.0	OFF	33 34 35 # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
RDOM N, mg/m^3 LPOM N, mg/m^3 RPOM N, mg/m^3 RPOM N, mg/m^3	(g10.3) (g10.3) (g10.3) (g10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3)	1000.0 1000.0 1000.0 1000.0 CDMULT 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 0.0 0.0 0.0 CDMIN -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0	1.0 1.0 1.0 1.0 1.0 1.0 25.0 25.0 25.0 25.0 15.0 25.0 -1.0 20.0 5.0 20.0 5.0 25.0	OFF	33 34 35 # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
RDOM N, mg/m^3 LPOM N, mg/m^3 RPOM N, mg/m^3	(g10.3) (g10.3) (g10.3) (g10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3)	1000.0 1000.0 1000.0 1000.0 CDMULT 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 0.0 0.0 0.0 CDMIN -1.0 -1.	1.0 1.0 1.0 1.0 1.0 1.0 25.0 25.0 25.0 25.0 15.0 25.0 -1.0 5.0 20.0 5.0 20.0 5.0 20.0	OFF	33 34 35 # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
RDOM N, mg/m^3 LPOM N, mg/m^3 RPOM N, mg/m^3 RPOM N, mg/m^3	(g10.3) (g10.3) (g10.3) (g10.3) (g10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3)	1000.0 1000.0 1000.0 1000.0 CDMULT 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 0.0 0.0 0.0 CDMIN -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0	1.0 1.0 1.0 1.0 1.0 1.0 25.0 25.0 25.0 25.0 15.0 25.0 -1.0 20.0 5.0 20.0 5.0 25.0	OFF	33 34 35 # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
RDOM N, mg/m^3 LPOM N, mg/m^3 RPOM N, mg/m^3 RPOM N, mg/m^3	(g10.3) (g10.3) (g10.3) (g10.3) (g10.3) (F10.3)	1000.0 1000.0 1000.0 1000.0 CDMULT 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 0.0 0.0 0.0 CDMIN -1.0 -1.	1.0 1.0 1.0 1.0 1.0 1.0 25.0 25.0 25.0 25.0 15.0 25.0 -1.0 5.0 20.0 5.0 20.0 5.0 20.0	OFF	33 34 35 # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
RDOM N, mg/m^3 LPOM N, mg/m^3 RPOM N, mg/m^3 RPOM N, mg/m^3	(g10.3) (g10.3) (g10.3) (g10.3) (g10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3)	1000.0 1000.0 1000.0 1000.0 CDMULT 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 0.0 0.0 0.0 CDMIN -1.0 -1.	1.0 1.0 1.0 1.0 1.0 1.0 25.0 25.0 25.0 25.0 15.0 25.0 -1.0 5.0 20.0 5.0 20.0 5.0 145.0 60.0 50.0	OFF	33 34 35 # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

DIFFERENCES BETWEEN VERSION 3.1 AND VERSION 3.2

There are minor differences in 2 input files between the 2 versions: **w2_con.npt** and the **graph.npt** file. All other files are the same between the 2 versions.

w2_con.npt

The only section where there is a slight difference in the control file is in the section where the inorganic suspended solids group settling velocities are entered. In Version 3.1, this section looks like this:

ALG EX	EXA	EXA	EXA	EXA	EXA	EXA			
	0.10000								
GENERIC	CG010	CG0DK	CG1DK	CGS					
GENERIC	CGQIU	CGUDA	CGIDK	CGS					
CG 1	0.00000	-1.0000	0.00000	0.00000					
CG 2	0.00000	0.00000	0.00000	0.00000					
CG 3	1.04000	0.00000	0.50000	0.00000					
CG 4	0.00000	0.00000	0.00000	0.00000					
CG 5	0.00000	0.00000	0.00000	0.00000					
S SOLIDS	SSS								
	1.50000								
ALGAL RA	TE AG	AR	AE	AM	AS	AHSP	AHSN	AHSSI	ASAT
ALG1	2.00000	0.12000	0.02000	0.05000	0.04000	0.00500	0.00500	0.00000	50.0000

In Version 3.2, there is now a sediment resuspension capability for wind driven resuspension along the shores of lakes and reservoirs. The Version 3.2 control file has the following lines in this same section of the control file:

ALG EX	EXA	EXA	EXA	EXA	EXA	EXA			
	0.10000								
GENERIC	CGQ10	CG0DK	CG1DK	CGS					
CG 1	0.00000	-1.0000	0.00000	0.00000					
CG 2	0.00000	0.00000	0.00000	0.00000					
CG 3	1.04000	0.00000	0.50000	0.00000					
CG 4	0.00000	0.00000	0.00000	0.00000					
CG 5	0.00000	0.00000	0.00000	0.00000					
S SOLIDS	SSS	SEDRC	TAUCR						
SS1	1.50000	OFF	0.00						
ALGAL RA	TE AG	AR	AE	AM	AS	AHSP	AHSN	AHSSI	ASAT
ALG1	2.00000	0.12000	0.02000	0.05000	0.04000	0.00500	0.00500	0.00000	50.0000

For Version 3.2, SSS is the settling velocity for particle group 1, SEDRC is the control which turns ON or OFF sediment resuspension, and TAUCR is the critical shear stress at which resuspension occurs. For Version 3.2, each line represents 1 SS group, while in Version 3.1, each group settling velocity is in the next 8 columns moving across the page.

graph.npt

The graph file controls output formatting and the graphing parameters used in Array Viewer (only for the PC platform). The files have been rearranged significantly. A Version 3.1 graph file is shown below:

Constituent, hydrodynamic, and derived constituent names, formats, multipliers, and array viewer controls

	CMULT	CMIN	CMAX	CPLTC	#
TDS g/m^3 or Salinity kg/m^3		-1.0000		OFF	1
Generic Constituent, g/m^3, #1 Generic Constituent, g/m^3, #2	1.00000	-1.0000	-200.00	ON	2
denerge conservation, at 12	1.00000	-1.0000	1000.00	OFF	3
Generic Constituent,g/m^3, #3	1.00000	-1.0000	5.00000	OFF	4
Generic Constituent,g/m^3, #4	1.00000	-1.0000	-300.00	OFF	5
Generic Constituent,g/m^3, #5	1.00000	-1.0000	-3.0000	OFF	6
Suspended solids, g/m^3, #1	1.00000	-1.0000	15.0000	OFF	7
Phosphate, g/m^3	1000.00	-1.0000	-50.000	OFF	8
Ammonium, g/m^3	1000.00	-0.1000	-300.00	OFF	9
Nitrate-Nitrite, g/m^3	1.00000	-0.1000	-5.0000	OFF	10
Dissolved silica, g/m^3	1.00000	-1.0000	10.0000	OFF	11
Particulate silica, g/m^3	1.00000	-0.2000	15.0000	OFF	12
Total iron, g/m^3	1.00000	-0.1000	2.00000	OFF	13
Labile DOM, g/m^3	1.00000	-0.1000	-3.0000	OFF	14
Refractory DOM, g/m^3	1.00000	-0.1000	4.00000	OFF	15
Labile POM, g/m^3		-0.1000		OFF	16
Refractory POM, g/m^3	1.00000	-0.1000	4.00000	OFF	17
CBOD, g/m^3, #1		-0.1000		OFF	18
CBOD, q/m^3, #2		-0.1000		OFF	19
CBOD, g/m^3, #3		-0.1000		OFF	20
CBOD, q/m^3, #4		-0.1000		OFF	21
CBOD, g/m^3, #5		-0.1000		OFF	22
Algae, g/m^3, #1		-0.0100		OFF	23
Dissolved oxygen, q/m^3		-2.0000		OFF	24
Inorganic carbon, g/m^3		-1.0000		OFF	25
Alkalinity, q/m ³		-1.0000		OFF	26
mmarimity, g/m o	1.00000	1.0000	200.000	011	20
HNAME	. HFMT	HMIN	HMAX	HPLTC	#
Timestep violations [NVIOL]	(F10.0)	-1.0000	100000	OFF	1
Horizontal velocity [U], m/s	(1PE10.1)	-0.0100	0.10000	ON	2
Vertical velocity [W], m/s	(1PE10.1)			OFF	3
Temperature [T1], <o></o> C	(F10.2)			ON	4
Density [RHO], g/m^3			1005.00	OFF	5
Vertical eddy viscosity [AZ], m^2/s	(1PE10.1)			OFF	6
Velocity shear stress [SHEAR], 1/s^2	(1PE10.1)			OFF	7
Internal shear [ST], m^3/s	(1PE10.1)			OFF	8
Bottom shear [SB], m^3/s	(1PE10.1)			OFF	9
Longitudinal momentum [ADMX], m^3/s	(1PE10.1)			OFF	10
Longitudinal momentum [DM], m^3/s Longitudinal momentum [DM], m^3/s					11
Horizontal density gradient [HDG], m^3/s	(1PE10.1) (1PE10.1)			OFF	12
	,			OFF	
Vertical momentum [ADMZ], m^3/s	(1PE10.1)		0.01000	OFF	13
Horizontal pressure gradient [HPG], m^3/s	(1PE10.1)		0.01000	OFF	14
Gravity term channel slope [GRAV], m^3/s	(1PE10.1)	-TE-08	10.0000	OFF	15
	CDMULT	CDMIN	CDMAX	CDPLTC	#
Dissolved organic carbon, q/m^3		-1.0000		OFF	1
Particulate organic carbon, g/m 3		-1.0000		OFF	2
Total organic carbon, g/m ³		-1.0000		OFF	3
Dissolved organic nitrogen, g/m^3		-1.0000			3 4
				OFF	
Particulate organic nitrogen, g/m^3		-1.0000		OFF	5
Total organic nitrogen, g/m^3 Total Kheldahl Nitrogen, g/m^3		-1.0000 -1.0000		OFF	6
iocai Alleidalli Nicrogell, g/m/3	1.00000	-I.0000	5.00000	OFF	7

Total nitrogen, g/m^3	1.00000 -1.0000 50	0.0000 OE	FF 8
Dissolved organic phosphorus, mg/m^3	1000.00 -1.0000 15	5.0000 OE	FF 9
Particulate organic phosphorus, mg/m^3	1000.00 -1.0000 15	5.0000 OE	FF 10
Total organic phosphorus, mg/m^3	1000.00 -1.0000 25	5.0000 OE	FF 11
Total phosphorus, mg/m^3	1000.00 -1.0000 -1	1.0000 OE	FF 12
Algal production, g/m^2/day	1.00000 -1.0000 5.	.00000 OE	FF 13
Chlorophyll a, mg/m^3	1000.00 -1.0000 -7	70.000 OE	FF 14
Total algae, g/m^3	1.00000 -1.0000 5.	.00000 OE	FF 15
Oxygen % Gas Saturation	1.00000 -5.0000 14	45.000 OE	FF 16
Total suspended Solids, g/m^3	1.00000 -1.0000 60	O.0000 OE	FF 17
Total Inorganic Suspended Solids, g/m^3	1.00000 -1.0000 50	O.0000 OE	FF 18
Carbonaceous Ultimate BOD, g/m^3	1.00000 -1.0000 20	O.0000 OE	FF 19
рН	1.00000 6.00000 9.	.00000 OE	FF 20
CO2	1.00000 -1.0000 10	O.0000 OE	FF 21
HCO3	1.00000 -1.0000 10	O.0000 OE	FF 22
CO3	1.00000 -1.0000 10	0.0000 OE	FF 23

An example of the same graph file but for Version 3.2 is shown below:

Hydrodynamic, constituent, and derived constituent names, formats, multipliers, and array viewer controls

	FMTH	HMULT	HMIN	HMAX	HPLTC	#
Timestep violations [NVIOL]	(I10)	1.0	-1.0	1.0	OFF	1
Horizontal velocity [U], m/s	(Z10.8)	1.0	1000	0.15	ON	2
Vertical velocity [W], m/s	(Z10.8)	1.0	1E-6	-0.01	OFF	3
Temperature [T1], <o></o> C	(Z10.8)	1.0	-10.0	-26.0	ON	4
Density [RHO], q/m^3	(Z10.8)	1.0	997.0	1005.0	OFF	5
Vertical eddy viscosity [AZ], m^2/s	(Z10.8)	1.0	-1E-08	0.01	OFF	6
Velocity shear stress [SHEAR], 1/s^2	(Z10.8)	1.0	-1E-08	0.01	OFF	7
Internal shear [ST], m^3/s	(Z10.8)	1.0	-1E-08	0.01	OFF	8
Bottom shear [SB], m^3/s	(Z10.8)	1.0	-1E-08	0.01	OFF	9
Longitudinal momentum [ADMX], m^3/s	(Z10.8)	1.0	-1E-08	0.01	OFF	10
Longitudinal momentum [DM], m^3/s	(Z10.8)	1.0	-1E-08	0.01	OFF	11
Horizontal density gradient [HDG], m^3/s	(Z10.8)	1.0	-1E-08	0.01	OFF	12
Vertical momentum [ADMZ], m^3/s	(Z10.8)	1.0	-1E-08	0.01	OFF	13
Horizontal pressure gradient [HPG], m^3/s	(Z10.8)	1.0	-1E-08	10.0	OFF	14
Gravity term channel slope [GRAV], m^3/s	(Z10.8)	1.0	0.0	0.0	OFF	15
	FMTC	CMULT	CMIN	CMAX	CPLTC	#
TDS, g/m ³	(Z10.8)	1.0	-1.0	200.0	OFF	1
Age, days	(Z10.8)	1.0	-1.0	-200.0	ON	2
Tracer, g/m^3	(Z10.8)	1.0	-20.000	100.0	OFF	3
Bacteria, col/100ml	(Z10.8)	1.0	-20.000	100.0	OFF	4
Conductivity, mhos	(Z10.8)	1.0	-20.000	100.0	OFF	5
Chloride, mg/l	(Z10.8)	1.0	-20.000	100.0	OFF	6
ISS, g/m^3	(Z10.8)	1.0	-20.000	100.0	OFF	7
Phosphate, g/m^3	(Z10.8)	1000.0	-1.0	500.0	OFF	8
Ammonium, g/m^3	(Z10.8)	1000.0	-0.1000	300.0	OFF	9
Nitrate-Nitrite, g/m^3	(Z10.8)	1.0	-0.1000	5.0	OFF	10
Dissolved silica, g/m^3	(Z10.8)	1.0	-1.0	10.0	OFF	11
Particulate silica, g/m^3	(Z10.8)	1.0	-0.2000	15.0	OFF	12
Total iron, g/m^3	(Z10.8)	1.0	-0.1000	2.0	OFF	13
Labile DOM, g/m^3	(Z10.8)	1.0	-0.1000	-3.0	OFF	14
Refractory DOM, g/m^3	(Z10.8)	1.0	-0.1000	-4.0	OFF	15
Labile POM, g/m^3	(Z10.8)	1.0	-0.1000	-3.0	OFF	16
Refractory POM, g/m^3	(Z10.8)	1.0	-0.1000	-4.0	OFF	17
CBOD1, g/m^3	(Z10.8)	1.0	-0.0100	3.0	OFF	18
CBOD2, g/m^3	(Z10.8)	1.0	-0.0100	3.0	OFF	19
CBOD3, g/m^3	(Z10.8)	1.0	-0.0100	3.0	OFF	20
CBOD4, g/m^3	(Z10.8)	1.0	-0.0100	3.0	OFF	21
CBOD5, g/m^3	(Z10.8)	1.0	-0.0100	3.0	OFF	22

Algae, g/m^3	(Z10.8)	1.0	-0.0100	3.0	OFF	23
Dissolved oxygen, g/m^3	(Z10.8)	1.0	-0.0100	-1.0	OFF	24
Inorganic carbon, g/m^3	(Z10.8)	1.0	-0.0100	3.0	OFF	25
Alkalinity, g/m^3	(Z10.8)	1.0	-0.0100	3.0	OFF	26
	FMTCD	CDMULT	CDMIN	CDMAX	CDPLTC	#
Dissolved organic carbon, g/m^3	(F10.3)	1.0	-1.0	25.0	OFF	1
Particulate organic carbon, g/m^3	(F10.3)	1.0	-1.0	50.0	OFF	2
Total organic carbon, g/m^3	(F10.3)	1.0	-1.0	25.0	OFF	3
Dissolved organic nitrogen, g/m^3	(F10.3)	1.0	-1.0	25.0	OFF	4
Particulate organic nitrogen, g/m^3	(F10.3)	1.0	-1.0	25.0	OFF	5
Total organic nitrogen, g/m^3	(F10.3)	1.0	-1.0	50.0	OFF	6
Total Kheldahl Nitrogen, g/m^3	(F10.3)	1.0	-1.0	15.0	OFF	7
Total nitrogen, g/m^3	(F10.3)	1.0	-1.0	15.0	OFF	8
Dissolved organic phosphorus, mg/m^3	(F10.3)	1000.0	-1.0	25.0	OFF	9
Particulate organic phosphorus, mg/m^3	(F10.3)	1000.0	-1.0	-1.0	OFF	10
Total organic phosphorus, mg/m^3	(F10.3)	1000.0	-1.0	5.0	OFF	11
Total phosphorus, mg/m^3	(F10.3)	1000.0	-1.0	20.0	OFF	12
Algal production, g/m^2/day	(F10.3)	1.0	-1.0	5.0	OFF	13
Chlorophyll a, mg/m^3	(F10.3)	1.0	-5.0	145.0	OFF	14
Total algae, g/m^3	(F10.3)	1.0	-1.0	60.0	OFF	15
Oxygen % Gas Saturation	(F10.3)	1.0	-1.0	50.0	OFF	16
Total suspended Solids, g/m^3	(F10.3)	1.0	-1.0	5.0	OFF	17
Total Inorganic Suspended Solids, g/m^3	(F10.3)	1.0	-1.0	20.0	OFF	18
Carbonaceous Ultimate BOD, g/m^3	(F10.3)	1.0	5.0	9.0	OFF	19
рН	(F10.3)	1.0	-1.0	10.0	OFF	20
CO2	(F10.3)	1.0	-1.0	10.0	OFF	21
HCO3	(F10.3)	1.0	-1.0	10.0	OFF	22
CO3	(F10.3)	0.0	0.0	0.0	OFF	23

In Version 3.2, the user has format control of all output variables, as well as MULT control (see User Manual). In Version 3.1, some groups had one but not the other. Also, in Version 3.2, the groups (HNAME, CNAME, CDNAME) were reordered.

BUG FIXES AND ENHANCEMENTS BETWEEN VERSIONS

There have been many updates and bug fixes between Version 3.6 and Version 3.7 that were part of the development of Version 3.7. These have not been documented. Since the release of the non-beta version of Version 3.7, we have kept a list of code fixes and enhancements. Also, we have included below a series of tables with code fixes for Version 3.6 and earlier versions as a reference to earlier versions.

W2 V3.6 Bug Fixes, Enhancements, and User Manual Changes

#	Code: W2 or PREW2 or GUI	Fix or Enhancement Type	Description of Bug/Enhancement	Date Bug Fixed or Enhancemen t added
1	W2	TKE1 model	The variable STRICK was incorrectly allocated as an INTEGER rather than REAL.	10/11/2008
2	W2	PIPE	Code was streamlined in the subroutine ZBRENT where calls were made directly to CDFUNC rather than through the dummy function FUNC	10/11/2008
3	W2 Manual	Z0	The User Manual had Z0 in an incorrect line in the control file (w2_con.npt). The write up and example control file in the User Manual were corrected.	10/28/2008
4	W2	Longitudinal profile input	The W2 program did not read initial constituent concentrations in the longitudinal profile file when CCC was 'OFF'. This has been fixed.	12/4/2008
5	W2	TECPLOT output	When using TECPLOT output for multiple waterbodies, the output format did not allow loading the information into TECPLOT. Fixed.	1/26/2009
6	W2	Epiphyton input	For entering vertical profile data for periphyton, there was an index error: OLD CODE: IF (VERT_EPIPHYTON(JW,JE)) EPD(:,I,JE) = EPIVP(K,JW,JE) NEW CODE: IF (VERT_EPIPHYTON(JW,JE)) EPD(:,I,JE) = EPIVP(:,JW,JE)	5/21/2009

#	Code: W2 or PREW2 or GUI	Fix or Enhancement Type	Description of Bug/Enhancement	Date Bug Fixed or Enhancemen t added
7	PreW2	Constituent loads	An enhancement was added to the Preprocessor to compute loads in kg/day for all inflow, tributary and distributed tributaries. Also, these are summed up for the model application. These are shown in the file "pre.opt". These are approximate loads since the concentration data are used to set the frequency of loading update. Flow rates at the time of the concentration input data are used to compute load.	5/21/2009
8	W2	Gas transfer at spillways	A couple code fixes in the hydroinout.f90 subroutine: (1) CGAS needed to be initialized in some cases to CGAS=C2(K,ID,CN(JC)) prior to calling the subroutine TOTAL_DISSOLVED_GAS for use in the Butts and Evans (1983) equation: NEW CODE: CGAS=C2 (K, ID, CN (JC)) ! MM 5/21/2009 (2) Change logic in several lines from IF(CAC(NDO) == ' ON' to IF(CAC(NDO) == ' ON' and. CN(JC)==NDO NEW CODE: IF (CN (JC) ==NDO .AND. CAC (NDO) == ' ON' .AND. GASSPC (JS) == ' ON' .AND. QSP (JS) > 0.0) THEN ! MM 5/21/2009	5/21/2009
9	W2	Reaeration from dams	An error was found in the formulae from Butts and Evans (1983). OLD CODE:	5/21/2009

#	Code: W2 or PREW2 or GUI	Fix or Enhancement Type	Description of Bug/Enhancement	Date Bug Fixed or Enhancemen t added
10	W2	Order of flux parameters	The order of flux parameters in the User Manual and output were incorrect. The control file has them in this order: RPOMSET CBODDK DOAP DOAR DOEP DOER DOPOM DODOM DOOM whereas the code assumed they were in this order: RPOMSET CBODDK DOAP DOEP DOEP DOAP DOEP DOAP DOEP DOAP DOEP DOAR DOEP DOAR DOEP DOAR DOEP DOAR DOEN DOOM This has been corrected. The User Manual and control file order is now reflected in the W2 code.	6/2/2009
11	Pre	False errors for inflow location	The preprocessor sometimes gave false errors in the pre.err for tributary, internal weirs, pipes, and other hydraulic features saying that the pipe or tributary was below the elevation of the bottom of the segment. The W2 model ran fine even with this error message given in the preprocessor. This has been fixed. Example of OLD CODE: IF (EBTR(JT) < EL(KB(ITR(JT)+1),ITR(JT))) THEN CALL ERRORS WRITE (ERR,FMTFI) 'Inflow placement bottom elevation [EBTR=',EBTR(JT),'] < bottom active cell elevation for tributary ',JT New CODE: IF (EBTR(JT) < EL(KB(ITR(JT))+1,ITR(JT))) THEN CALL ERRORS WRITE (ERR,FMTFI) 'Inflow placement bottom elevation [EBTR=',EBTR(JT),'] < bottom active cell elevation for tributary ',JT	6/18/09

12	Code: W2 or PREW2 or GUI	Fix or Enhancement Type Additional error checking	Additional error checking was added to help debug an error in the bathymetry file when the problem was in the branch connectivity specifically BS and BE. Also, a false error was given when the temperature had an isothermal initial condition, constituents were OFF, and an initial concentration was set to "-2". This was fixed.	Date Bug Fixed or Enhancemen t added
13	Pre	Command line processing and working directory displayed for windows	In the windows version of the preprocessor, the user can now supply a command line argument that sets the working directory of the code. Hence, one does not need to copy the preprocessor into every directory. In a batch file, for example, one can execute the following command: preW2_ivf.exe "C:\scott\w2workshop\2009 workshop\waterqual\problem3" The preprocessor now uses the supplied directory (in double quotes) as the working directory for all the files. The command line argument has one blank space between the end of the executable and the first quote. Also, the working directory is now displayed at the top of the window. Additional checks were also added for checking the grid linkage.	9/12/09
14	W2	# of processors	The model user can now control the # of physical processors the model uses. At this point, dual-processor model runs have shown an improvement of about 20% over a single processor. But, QUAD processors usually are slower. It is recommended that NPROC be set to 2 in the control file. The user can experiment on his/her own system. If this is not set by the user or is left blank, the model still runs but sets it to 2 processors. GRID NWB NBR IMX KMX NPROC CLOSEC 1 1 23 22 2 ON	9/12/09

#	Code: W2 or PREW2 or GUI	Fix or Enhancement Type	Description of Bug/Enhancement	Date Bug Fixed or Enhancemen t added
15	W2	Command line processing for windows	In the windows version of the w2 model, the user can now supply a command line argument that sets the working directory of the code. Hence, one does not need to copy the model executable into every directory. In a batch file, for example, one can execute the following command: W2_ivf.exe "C:\scott\w2workshop\2009 workshop\waterqual\problem3" The w2 model now uses the supplied directory (in double quotes) as the working directory for all the files. The command line argument has one blank space between the end of the executable and the first quote. The working directory is displayed in a text box in the window.	9/12/09
16	W2	W2 window closed at end of successful execution	At the end of a windows run, the windows dialog box waits for the user to press 'close' to exit the window. This allows the user to examine the final run parameters. In the w2_con.npt file there is now an option to close this window when the run has completed. If this option is not set, then the dialog box will stay until the user clicks 'close'. This allows for efficient batch processing of the model, especially if user in conjunction with command line processing mentioned in #15. GRID NWB NBR IMX KMX NPROC CLOSEC 1 1 23 22 0 ON When CLOSEC is set to ON, then the dialog box will disappear once the run finishes. If it is set to OFF, then the dialog box will remain until the user clicks 'close'.	9/12/09
17	User Manual	Updates	Updates and changes to the control file (#13-#16) were reflected in an updated User Manual.	9/12/09

#	Code: W2 or PREW2 or GUI	Fix or Enhancement Type	Description of Bug/Enhancement		ug or n
18	GUI	Updates	The GUI was updated with the following: (1) new control file parameters NPROC and CLOSEC were added (see #14 and 16). There is also a SELECTC that will be used in V3.7 that has been included – ignore it for now. (2) The GUI also can be controlled by command line passing of the working directory and file. In a batch program or from the command line in a DOS box you can execute the GUI as follows: "C:\scott\research\corps of engineers\tomcole\w2code\GUI36\w2control\w2control36.exe" C:\scott\w2workshop\2009 workshop\waterqual\problem1\w2_con.npt The first string in quotes executes the GUI. The command line argument is NOT in quotes. This program was developed in VB6 and does not take quotes around the command line. Note that this is different than the FORTRAN command line argument. So the above command will open the GUI and load the control file automatically. (3) A text box now shows the file path and name of the file that you are working on (4) In file open, earlier all *.npt files were shown. Since only "w2_con.npt" files are loaded into the GUI, only the "w2_con.npt" file was shown for opening.	9/12/09	

#	Code: W2 or PREW2 or GUI	Fix or Enhancement Type	Description of Bug/Enhancement	Date Fixed Enhancer t added	Bug or nen
19	W2	Gates, spillways, pipes	Whenever DOWN was specified for a gate, spillway or pump, the model estimated the water level at the end of the segment, rather than using the branch center water level. This is important in sloping river systems where a long segment may have a water surface elevation drop between the segment center and the edge. In the past this was computed assuming the slope of the channel. This was updated to estimate the water surface elevation using linear interpolation rather than the grid slope. Below is an example of the code fix – in this case for GATES: OLD CODE: ELIU=ELWS (IUGT (JG)) - SINA (JBUGT (JG)) *DLX (IUGT (JG)) *0.5 NEW CODE: ELIU= ELWS (IUGT (JG)) + (ELWS (IUGT (JG)) -	9/25/09	
			ELWS(IUGT(JG) - 1))/(0.5*(DLX(IUGT(JG))+DLX(IUGT(JG) - 1)))*DLX(IUGT(JG))*0.5		
20	W2	New executable	A new executable was made using a new release of Intel Version 11 compiler that corrected problems with Windows 7 applications.	9/25/09	

#	Code: W2 or PREW2 or GUI	Fix or Enhancement Type	Description of Bug/Enhancement	Date Bug Fixed or Enhancemen t added
21	W2	ICE cover	There were a couple logic errors in the ice cover	10/20/09
		algorithm	algorithm. These were corrected below:	
21	W2			10/20/09
			HIA = 0.2367*CSHE(I)/5.65E-8 ! JM 11/08 convert SI units of m/s to English (btu/ft2/d/F) and then back to SI W/m2/C ! ICETH(I) = MAX(0.0,ICETH(I)+DLT*((RIMT- ET(I))/(ICETH(I)/RK1+1.0/HIA)-(T2(KT,I)- RIMT))/RHOIRL1) ! OLD CODE	

#	Code: W2	Fix or	Description of Bug/Enhancement	Date B	Bug
"		Enhancement	Description of Bug/ Limancement		•
	or PREW2			Fixed	or
	or GUI	Туре		Enhancem	en
				t added	
22	W2	Gates output	The following bug was found in defining which branch	3/24/10	
		in QWD file	a gate was located. This affected the output for the		
		III QVVD IIIC	withdrawals at a location where there were gates that		
			were not tied to other branches.		
			were not tied to other branches.		
			Old and a		
			Old code:		
			JWUGT(JG) = JW IF (IDGT(JG) > 0) THEN		
			DO JB=1, NBR		
			<pre>IF (IDGT(JG) >= US(JB) .AND.</pre>		
			IDGT(JG) <= DS(JB)) EXIT		
			END DO		
			JBDGT (JG) = JB		
			DO JW=1,NWB IF (JB >= BS(JW) .AND. JB <=		
			BE(JW)) EXIT		
			END DO		
			JWDGT(JG) = JW		
			else ! BUG FIX 9/27/07		
			jbdgt(jp)=1		
			<pre>jwdgt(jp)=1 END IF</pre>		
			IND II		
			New code:		
			JWUGT(JG) = JW		
			IF (IDGT(JG) > 0) THEN		
			DO JB=1,NBR		
			<pre>IF (IDGT(JG) >= US(JB) .AND.</pre>		
			IDGT(JG) <= DS(JB)) EXIT		
			END DO		
			JBDGT(JG) = JB DO JW=1,NWB		
			IF (JB >= BS(JW) .AND. JB <=		
			BE(JW)) EXIT		
			END DO		
			JWDGT(JG) = JW		
			else ! BUG FIX 9/27/07		
			jbdgt(jg)=1 ! SW 3/24/10 jwdgt(jg)=1 ! SW 3/24/10		
]Wdgt(]g)=1 ! SW 3/24/10 END IF		
		1			

#	Code: W2	Fix or	Description of Bug/Enhancement	Date Bug
	or PREW2	Enhancement		Fixed or
	or GUI	Туре		Enhancemen
	0.00.	1,400		t added
				tuuucu
23	PreW2	Reading of	Reading in of the WSC file was limited to only 100	3/26/10
		WSC	dates in the preprocessor. This limitation was fixed by	
			the code shown below:	
			! DO J=1,100	
			28995 continue ! cb 3/26/10	
			(NPT, '(10F8.0:/(8X,9F8.0))', END=29000)	
			SDAY, (WSC(I), I=1, IMX)	
			IF (SDAY <= SDAYO) THEN CALL ERRORS	
			WRITE (ERR, '(3(A, F0.3))')	
			'Julian date ',SDAY,' <= previous date of	
			',SDAYO,' in '//WSCFN END IF	
			DO I=1, IMX	
			<pre>IF(WSC(I) <= 0.0)THEN CALL ERRORS</pre>	
			WRITE (ERR, '(A, F0.3, A, I4, A)')	
			'Julian date ',SDAY,': WSC AT	
			SEG(I)=',I,' <= 0.0 in '//WSCFN ENDIF	
			IF (WSC(I) > 2.0) THEN	
			CALL WARNINGS	
			WRITE (WRN,'(A,F0.3,A,I4,A)') 'Julian day ',SDAY,': WSC(I) AT	
			SEG(I)=',I,' > 2.0 in '//WSCFN	
			END IF	
			<pre>IF (WSC(I) > 0.0 .and. wsc(i) < 0.5) THEN</pre>	
			CALL WARNINGS	
			WRITE (WRN, '(A, F0.3, A, I4, A) ')	
			'Julian day ',SDAY,': WSC(I) AT SEG(I)=',I,' < 0.5 in '//WSCFN	
			END IF	
			ENDDO SDAYO=SDAY	
			! ENDDO	
			go to 28995 ! cb 3/26/10	<u> </u>
24	PreW2	Check on LAT	Added an enhancement to do a check in case a	3/26/10
		or DOWN	spillway, pipe, pump, or gate was specified as 'DOWN'.	
			In all cases where 'DOWN' is specified, the segment	
			that the hydraulic structure originates must be at the	
			end of a branch. Additional logic was added to check	
			for this in all the hydraulic structures.	
25	W2 Manual	Light	Added more text to the section on computation of	4/13/2010
		extinction, ice	light extinction and inserted a missing reference.	
			Revised an equation for clarity in ICE algorithm and	
			added more explanation on how to estimate HICE.	
26	W2 Manual	Precipitation	The units of precipitation are in m/s. The example	4/14/2010
		input file	precipitation input file was changed to more realistic	* -
		pac inc	values.	
L	1	1	<u>l</u>	

#	Code: W2	Fix or	Description of Bug/Enhancement	Date Bug
"	or PREW2	Enhancement	Description of Sug/ Elimandelinent	Fixed or
	or GUI	Туре		Enhancemen
	0.00.	Type		t added
				t added
27	W2	ICE	Added code to account for the need to compute long wave radiation in case user chose the equilibrium	4/19/10
			temperature approach. Fixed subscript error in ice	
			melt computation. Also, made the variable TICE	
			double precision since it is assumed double precision	
			in the call to Surface_terms.	
			New code:	
			IF (ICE(I)) THEN	
			TICE = TAIR(JW) DEL = 2.0	
			J = 1	
			<pre>if(tair(jw).ge.5.0)then ! SW 4/19/10 RANLW(JW) = 5.31E-</pre>	
			13*(273.15+TAIR(JW))**6*(1.0+0.0017*CLOUD (JW)**2)*0.97	
			else RANLW(JW) = 5.62E-	
			8*(273.15+TAIR(JW)) **4*(10.261*exp(-	
			7.77E- 4*TAIR(JW)**2))*(1.0+0.0017*CLOUD(JW)**2)	
			*0.97 endif	
			RN1=SRON(JW)/(REFL*RHOWCP)*SHADE(I)*(1.0-ALBEDO(JW))*BETAI(JW)+RANLW(JW) ! SW 4/19/10	
			DO WHILE (DEL > 1.0 .AND. J < 500)	
			CALL SURFACE_TERMS (TICE)	
			RN(I) = RN1-RB(I) - RE(I)-RC(I)	
			! RN(I) = SRON(JW)/(REFL*RHOWCP)*SHADE(I)*(1.0- ALBEDO(JW))*BETAI(JW)+RANLW(JW)-RB(I)-	
			RE(JW)-RC(I) ! OLD CODE DEL =	
			RN(I)+RK1*(RIMT-TICE)/ICETH(I) IF (ABS(DEL) > 1.0)	
			TICE = TICE+DEL/500.0 J = J+1	
			END DO	
28	W2	Evaporation	Units for EV in the SNP file were given in m/s but were	4/21/10
			actually m^3/s	

#	Code: W2 or PREW2 or GUI	Fix or Enhancement Type	Description of Bug/Enhancement	Date Bug Fixed or Enhancemen t added
29	W2	Ice	In the ice melt algorithm, SRON should not have been divided by RHOCP in computing RN1 and DEL in the DO WHILE loop should have been ABS(DEL) rather than DEL: RN1=SRON(JW)/REFL*SHADE(I)*(1.0-ALBEDO(JW))*BETAI(JW)+RANLW(JW) ! SW 4/19/10 eliminate spurious division of SRO by RHOCP DO WHILE (ABS(DEL) > 1.0 .AND. J < 500) ! SW 4/21/10 Should have been ABS of DEL CALL SURFACE_TERMS (TICE)	4/21/2010
30	PRE	Constituent loading	The output from the preprocessor in the pre.opt file for constituent loading was in kg rather than the output header of kg/day. The output was updated to kg/day by adding the following lines of code: cdtload(incdt(1:NACdt(Jb), Jb), jb)=cdtload (incdt(1:NACdt(Jb), Jb), jb)/(jday-tstart) ! CB 5/10/10 Change units to kg/day ctrload(trcn(1:NACtr(Jt), Jt), jt)=ctrload(trcn(1:NACtr(Jt), Jt), jt)/(JDAY-TSTART) !CB 5/11/10 convert to units of kg/day	5/10/10

#	Code: W2	Fix or	Description of Bug/Enhancement	Date	Bug
#	or PREW2	Enhancement	Description of Bug/Enflancement	Fixed	or
	or GUI			Enhancer	_
	or goi	Туре			iieii
				t added	
31	W2	Gate, spillways, pipes	In the case where the user has specified that the flow is DOWN, in the case of reverse flow, the model did not assign the flow correctly if the user had no other tributaries or withdrawals specified in the control file. For this rare event, additional code was written to account for this fact. Also, a logic error was discovered in reverse flow for spillways and gates. This was corrected. New code added to hydroinout.f90: JWW = NWD withdrawals = jww > 0 ! 6/4/10 SW JTT = NTR tributaries = jtt > 0 ! 6/4/10 SW JSS = NSTR IF (SPILLWAY) THEN END IF tributaries = jtt > 0 ! 6/4/10 SW withdrawals = jww > 0 ! 6/4/10 SW DO JW=1,NWB KT = KTWB (JW) DO JB=BS (JW),BE (JW) New code in gate-spill-pipe.f90: For spillway: IF (ISUB == 0) THEN DLEL = ELIU-ESP (JS) IF (ELID > ESP (JS)) DLEL = ELIU-ELID SW 6/7/10 IF (DLEL < 0.0) THEN DLEL = -DLEL For gates: IF (A2GT (JG) == 0.0 .AND. G2GT (JG) /= 0.0) DLEL = ELIU-G2CT (JG) IF (ELID > EGT (JG)) DLEL = ELIU-ELID	6/4/10	
			! SW 6/7/10 IF (DLEL < 0.0) THEN		

#	Code: W2 or PREW2 or GUI	Fix or Enhancement Type	Description of Bug/Enhancement	Date Bug Fixed or Enhancemen t added
32	W2	Branch intersections with multiple waterbodies	In cases where there are branch intersections between waterbodies, it was possible that the variable KBI and KB were incorrectly set. Here is the fix: Move the statement defining KBI in the subroutine init-geom.f90 to the place shown below (delete the earlier reference): IF (B(K,ID+1) == 0.0) B(K,ID+1) = B(K-1,ID+1) IF (IEXIT == 1) EXIT END IF END IF END IF END DO END DO ! SW 1/23/06 END DO ! SW 1/23/06 bnew=b ! SW 1/23/06 kBI = KB ! SW 10/30/2010 !**** Upstream active segment and single layer ! 1/23/06 entire section moved SW DO JW=1,NWB KT = KTWB(JW) DO JB=BS(JW),BE(JW)	10/30/2010
33	W2	ss resuspension	The code index was incorrect in the loop for computing resuspension. This led in some compilers to an infinite loop. The corrected code is shown below: SSSS(KT,I,J) = - SSS(J)*SS(KT,I,J)*BI(KT,I)/BH2(KT,I)+SSR ! DO K=KT-1,KB(I)-1 DO K=KT,KB(I)-1 ! JP 2/3/12 IF (SEDIMENT_RESUSPENSION(J)) THEN Thanks to James Pasley for this bug report/fix.	2/3/2012

W2 V3.5 Bug Fixes, Enhancements, and User Manual Changes

#	Code: W2	Fix or	Description of Bug/Enhancement	Date Bug Fixed
	or PREW2	Enhance-		or Enhance-
	or GUI	ment Type		ment Added
1	W2	Zooplank-ton-	Sign error in the zooplankton grazing on algae	8/23/06
		algae	term	
2	W2	Input/output	Format for I/O was changed to allow better	8/23/06
			decimal precision of output	

#	Code: W2	Fix or	Description of Bug/Enhancement	Date Bug Fixed
	or PREW2	Enhance-		or Enhance-
	or GUI	ment Type		ment Added
3	W2	Sediment	The sediment settling rate was accidentally	10/26/06
		settling rate	used for POM settling. This was fixed. The old	
		_	and new code lines are shown below:	
			OLD:	
			sedsum =	
			sedsum+seds(JW)*(LPOM(K,I)*lpomdk(jw)+	
			RPOM(K, I) *rpomdk(jw)) *BI(K, I) /BH2(K, I) *(1.0-BI(K+1, I) /BI(K, I))	
			NEW:	
			sedsum =	
			sedsum+poms(JW)*(LPOM(K,I)*lpomdk(jw)+	
			RPOM(K, I) *rpomdk(jw)) *BI(K, I) /BH2(K, I) *(1.0-BI(K+1, I) /BI(K, I)) ! cb	
			10/22/06	
			This was an issue in the SEDIMENT,	
			SEDIMENT C, SEDIMENT P, SEDIMENT	
			N, and SEDIMENT DECAY RATE	
			subroutines.	
4	W2	Sediment	An algorithm was added for sediment burial.	11/30/06
		burial	This is now a new parameter in the sediment	
			part of the control file. An updated user	
			manual description is forthcoming. The	
			sediment burial rate SEDB (day-1) can be	
			specified in the "SEDIMENT" card section of	
			the control file. A different burial rate can be	
			specified for each water body.	
			OLD/NEW line (example):	
			$! \qquad \qquad SED(K,I) \qquad = \qquad$	
			MAX(SED(K,I)+(LPOMEP(K,I)+SEDAS(K,I)+S	
			EDOMS(K,I)+SEDNS(K,I)- SEDD(K,I))*DLT,0.0)	
			SED(K,I) =	
			MAX(SED(K,I)+(sedem+SEDAS(K,I)+sedcb(k	
			<pre>,i)+SEDOMS(K,I)+SEDNS(K,I)-SEDD(K,I)- sedbr(k,i))*DLT,0.0) ! cb 11/30/06</pre>	
5	Control File	Add burial	This is the change in #4 above implemented	
		rate for	in the control file. The new variable SEDBR is	
		sediment	added in f8 format after the FSED variable.	
		model	SEDBR: sediment burial rate in units of per	
			day.	
			CENTMENT CENC CENTRO CENCT	
			SEDIMENT SEDC SEDPRC SEDCI SEDK SEDS FSOD FSED SEDBR	
			WB 1 ON ON 0.00000	
			0.10000 0.1 1.00000 1.00000	
			1.0	

#	Code: W2	Fix or	Description of Bug/Enhancement	Date Bug Fixed
	or PREW2	Enhance-		or Enhance-
	or GUI	ment Type		ment Added
6	W2	Sediment	If a model added and subtracted layers that	4/18/07
	**-	heating and	resulted in segment addition and subtraction,	., 10, 0,
		sediment	there was the possibility that sediment fluxes	
		processes	were incorrectly computed.	
		processes	In the NO3 subroutine:	
			Old code:	
			NO3SED(K,I) =	
			NO3(K,I) *NO3S(JW) *NO3TRM(K,I) * (BI(K,I) -BI(K+1,I))/BH2(K,I)	
			New code:	
			if(k == kb(i)) then	
			NO3SED(K,I) =	
			NO3(K,I)*NO3S(JW)*NO3TRM(K,I)*(BI(K,I))/BH2(K,I) else	
			NO3SED(K,I) =	
			NO3(K,I)*NO3S(JW)*NO3TRM(K,I)*(BI(K,I)-	
			BI(K+1,I))/BH2(K,I)	
			endif	
			New code added in sediment routine:	
			if(k == kb(i)) then ! SW 4/18/07	
			SODD (K, I) =	
			SOD(I)/BH2(K,I)*SODTRM(K,I)*BI(K,I) else	
			SODD(K,I) =	
			SOD(I)/BH2(K,I)*SODTRM(K,I)*(BI(K,I)-	
			BI(K+1,I)) Endif	
			New code added in suspended solids routine:	
			if(k == kb(i))then	
			SSR =	
			EPSILON*DLX(I)*BI(K,I)/VOL(K,I) else	
			SSR = EPSILON*DLX(I)*(BI(K,I)-	
			BI(K+1,I))/VOL(K,I)	
			Endif	

#	Code: W2	Fix or	Description of Bug/Enhancement	Date Bug Fixed
	or PREW2	Enhance-		or Enhance-
	or GUI	ment Type		ment Added
6	W2	(see above)	New code added for heat flux to channel	4/18/07
U	VVZ	(see above)	bottom:	4/10/07
			if(kt == kb(i))then ! SW 4/18/07 SROSED =	
			SROOUT*TSEDF(JW)	
			else	
			SROSED =	
			SROOUT* (1.0-	
			BI(KT+1,I)/BI(KT,I))*TSEDF(JW)	
			Endif	
			if(k==kb(i))then ! SW	
			4/18/07	
			TFLUX =	
			CBHE (JW) /RHOWCP* (TSED (JW) -	
			T2(K,I))*BI(K,I)*DLX(I)	
			else	
			TFLUX = CBHE (JW) /RHOWCP* (TSED (JW) -	
			T2 (K, I)) * (BI (K, I) -BI (K+1, I)) * DLX (I)	
			endif	
			New code added for sediment subroutine:	
			if(k == kb(i)) then ! SW 4/18/07	
			SEDAS(K,I) =	
			SEDAS(K,I)+MAX(AS(JA),0.0)*ALG(K,I,JA)	
			BI(K,I)/BH2(K,I)(1.0-	
			BI(K+1,I)/BI(K,I))	
			else SEDAS(K,I) =	
		*BI(K,I)	SEDAS (K, I) +MAX (AS (JA), 0.0) *ALG (K, I, JA)	
			BI(K,I)/BH2(K,I)(1.0-	
			BI(K+1,I)/BI(K,I))	
			endif	
			if $(k == kb(i))$ then ! SW 4/18/07	
			SEDOMS (K, I) = POMS (JW) * (LPOM (K, I) + RPOM (K, I)) *BI (K, I)	
			/BH2(K, I)	
			SEDSO =	
			POMS(JW)*SED(K,I)*BI(K+1,I)/BH2(K,I)	
			else	
			SEDOMS (K, I) =	
			POMS (JW) * (LPOM (K, I) + RPOM (K, I)) *BI (K, I)	
			/BH2(K,I)*(1.0-BI(K+1,I)/BI(K,I)) SEDSO =	
			POMS (JW) *SED (K, I) *BI (K+1, I) /BH2 (K, I) * (
			1.0-BI(K+1,I)/BI(K,I))	
			endif	

#	Code: W2	Fix or	Description of Bug/Enhancement	Date Bug Fixed
	or PREW2	Enhance-		or Enhance-
	or GUI	ment Type		ment Added
7			Several fixes in the zooplankton routine were made. Many thanks to Dr. Kellie Vache, Institute for Landscape Ecology and Resources Management (ILR) Justus-Liebig-University Giessen Heinrich-Buff-Ring 26 35392 Giessen, Germany, for finding these which are documented below: DO K=KT,KB(I) do jz = 1, nzp zgztot=0.0 !kv 5/9/2007 do jjz = 1,nzp ! zooss(k,i,jz) = (zmu(k,i,jz)*zeff(jz)-zrt(k,i,jz) - zmt(k,i,jz)*zoo(k,i,jz) - zgz(k,i,jz,jjz)*zoo(k,i,jz) ! omnivorous zooplankton zgztot=zgztot+zgz(k,i,jz,jjz)*zoo(k,i,jz) end do zooss(k,i,jz) = (zmu(k,i,jz)*zeff(jz)-zrt(k,i,jz) - zmt(k,i,jz)*zeff(jz)-zrt(k,i,jz) - zmt(k,i,jz)*zoo(k,i,jz) - zgztot ! kv 5/9/2007 end do do jjz = 1, nzp ! tgraze(k,i,jz) prefz(jz,jjz)*zoo(k,i,jjz) tgraze(k,i,jz) + prefz(jjz,jz)*zoo(k,i,jjz) !cb 5/17/2007 end do do jjz = 1,nzp ! omnivorous zooplankton ! ZGZ(k,i,jjz,jz)	
			<pre>! ZGZ(k,i,jjz,jz) = Zmu(K,I,jz)*ZOO(K,I,jz)*prefZ(jz,jjz)/ tgraze(K,I,jz)</pre>	
			tgraze(K,I,jz) !kv 5/9/2007 end do	
8	PRE	More checks	Added checks for Sediment burial rate and some further checks on grid geometry; added output on SEDS and SEDBR to the pre.opt file; fixed condition where NZP had to equal 1 to work.	6/2/2007

#	Code: W2	Fix or	Description of Bug/Enhancement	Date Bug Fixed
	or PREW2	Enhance-		or Enhance-
	or GUI	ment Type		ment Added
9	W2	Array	The deallocate command on line 7557 was	6/4/2007
		deallocation	commented out to avoid a deallocation error	
			when the 'STOP' button is pushed during	
			execution on a PC.	
			! deallocate	
			(sedbr,sedbrp,sedbrn,sedbrc) ! SW 6/4/07 No need to deallocate pointers	
10	W2	Initialization	For code setting up an external head BC, the	6/17/2007
		of IUT	variable IUT was not initialized before it was	
			used. This was fixed below:	
			!**** Boundary bottom layers	
			! IF (UH_EXTERNAL(JB)) KB(IUT-1)	
			= KB(IUT)	
			<pre>IF (UH_EXTERNAL(JB)) KB(IU-1) = KB(IU) !cb</pre>	
			6/12/07	
			IF (UH INTERNAL(JB)) THEN	
			JBUH(JB) <= BE(JW)) THEN	
			! KB(IUT-1) = MIN(KB(UHS(JB)), KB(IUT))	
			KB(IU-1) =	
			MIN(KB(UHS(JB)), KB(IU))	
			!cb 6/12/07 ELSE	
			! IF (EL(KB(IUT), IUT) >=	
			EL(KB(UHS(JB)),UHS(JB))) THEN	
			IF (EL(KB(IU), IU) >= EL(KB(UHS(JB)), UHS(JB))) THEN !cb	
			6/12/07	
			$\begin{array}{ccc} & & & & \text{KB}(\text{IUT-1}) & = & \text{KB}(\text{IUT}) \\ & & & & \text{KB}(\text{IU-1}) & = & \text{KB}(\text{IU}) \end{array}$	
			ELSE	
			! DO K=KT,KB(IUT)	
			! IF (EL(KB(UHS(JB)), UHS(JB)) >= EL(K, IUT))	
			THEN	
			! KB(IUT-1) = K; EXIT DO K=KT, KB(IU)	
			DO K=KT, KB(IU)	
			IF	
			(EL(KB(UHS(JB)), UHS(JB)) >= EL(K, IU))	
			THEN !cb $6/12/07$ KB(IU-1) = K; EXIT	
			!cb 6/12/07	
			END IF	

#	Code: W2	Fix or	Description of Bug/Enhancement	Date Bug Fixed
	or PREW2	Enhance-		or Enhance-
	or GUI	ment Type		ment Added
11	W2	CBOD settling	The CBOD settling rate earlier was not	7/23/07
			converted from m/d in the control file to m/s	
			in the code.	
			Added code:	
			cbods = cbods/day !cb 7/23/07	
12	W2	TSR output	The surface width was not correctly being	7/26/07
			output. Changed BI(KT) to BI(KTWB(JW)).	
			FIX:	
			BI(KTWB(JW),I),SHADE(I),ICETH(I),(ADJU STR(C2CH(JAC)),JAC=1,NAC),	
			& ! CB 7/26/07	
13	PREW2	Pumps	The pump control for DOWN or LAT was not	8/14/07
			being checked properly, also a check on	
			IUPUC was incorrect. Fixed.	
14	W2	Algae	The logic for negative settling velocities for	8/27/07
			algae had an error.	
			Old code:	
			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
			*H2(K,I))-	
			ALG(K,I,JA))*BI(K,I)/BH2(K,I)	
			New code:	
			ASR(K,I,JA) = -	
			AS(JA)*(ALG(K+1,I,JA)*BI(K+1,I)/BH2(K,	
			I)-ALG(K,I,JA)*BI(K,I)/BH2(K,I))	
			!SP 8/27/07	
15	GUI	NZOOP	Shwet Prakash When # of zooplankton was set equal to zero,	9/17/07
15	GOI	INZUUP	there was an array dimensioning error that	3/1//0/
			caused the writing of the control file to only	
			proceed part way. Fixed.	
			proceed part way. I fixed.	

#	Code: W2	Fix or	Description of Bug/Enhancement	Date Bug Fixed
	or PREW2 or GUI	Enhance- ment Type		or Enhance- ment Added
16	W2	Open channel	Variable passed between subroutines had	10/4/07
10	WZ	flow	inconsistent declaration between routines. ! REAL, ALLOCATABLE, DIMENSION(:) :: Y, D, B, V, CAREA, TOPW, BELEV, Q, VOLD, YOLD	10/4/07
			REAL, ALLOCATABLE, DIMENSION(:) :: Y, B, V, CAREA, TOPW, BELEV, Q, VOLD, YOLD ! cb 10/1/07	
			! ALLOCATE (Y(NN), V(NN), CAREA(NN), TOPW(NN), BELEV(NN), Q(NN), VOLD(NN), YOLD(NN), D(NN), B(NN))	
			ALLOCATE (Y(NN), V(NN), CAREA(NN), TOPW(NN), BELEV(NN), Q(NN), VOLD(NN), YOLD(NN), B(NN)) ! cb 10/1/07	
			! DEALLOCATE (Y, V, CAREA, TOPW, BELEV, Q, VOLD, YOLD, D, B, YT, VT, VPR, YPR, TAREA, TOPWT, RT, INDX, AL, DAA)	
			DEALLOCATE (Y, V, CAREA, TOPW, BELEV, Q, VOLD, YOLD, B, YT, VT, VPR, YPR, TAREA, TOPWT, RT, INDX, AL, DAA) ! cb 10/1/07	
17	W2	TKE model	The TKE algorithm had several bugs that have	10/4/07
			been fixed, these included making the loop	
			over layers go to KBMIN (rather than KB), the	
			original code overwrote the boundary	
			conditions when using the Thomas algorithm,	
			the original code overwrote vertical eddy	
			viscosity at the bed during the averaging	
			process, Δz_k changed to $\Delta z_{k+1/2}$, TKE array	
			was initialized to zero, TKE was implemented	
			in add/sub layers like AZ. Many of these fixes are a result of the work of Sam Gould (Gould,	
			2006) who wrote an MS project report at PSU	
			entitled "k-e Turbulence Model." Further	
			recommendations by Gould (2006) will be	
			incorporated into the next version of CE-QUAL-W2.	
			The old code is shown below as a reference to the new code in the release version.	
			OLD CODE	

#	Code: W2 or PREW2 or GUI	Fix or Enhance- ment Type	Description of Bug/Enhancement	Date Bug Fixed or Enhance-ment Added
#	or PREW2	Enhance-	ENTRY CALCULATE_TKE USTAR SQRT(1.25*CZ(I)*WIND10(I)**2/RHO(KT,I)) IF (MANNINGS_N(JW)) THEN HRAD = BHR1(KT,I)/(BR(KTI(I),I)-BR(KT+1,I)+2.*AVH1(KT,I)) if (macrophyte_on.and.mannings_n(jw))th en call macrophyte_friction(hrad,fric(i),effric,kt,i) gc2=g*effric*effric/hrad**0.33333333 else if (.not.macrophyte_on.and.mannings_n(jw))th en gc2=g*fric(i)*fric(i)/hrad**0.33333333 end if ELSE GC2 = 0.0 IF (FRIC(I) /= 0.0) GC2 = G/(FRIC(I)*FRIC(I)) END IF USTARB = SQRT(GC2)*ABS(0.5*(U(KT,I)+U(KT,I-1))) TKE(KT,I,1) TKE(KT,I,1) * (BH2(KT,I)/BH1(KT,I)) TKE(KT,I,2) = 0.5*(3.33*(USTAR*USTAR+USTARB*USTARB+USTARB+USTARB+USTARB+S-0/HI(KT,I)+TKE(KT,I,2))*(BH2(KT,I)/BH1(KT,I)) DO K=KT+1,KB(I)-1 BOUK = MAX(AZ(K,I)*G*(RHO(K+1,I)-RHO(K,I))/(H(K,JW)*RHOW),0.0) PROK = AZ(K,I)*(0.5*(U(K,I)+U(K,I-1)-U(K+1,I)-U(K+1,I)-U(K+1,I)-U(K+1,I)-U(K+1,I)-U(K+1,I)-U(K+1,I)-U(K+1,I)-U(K+1,I)-U(K+1,I)-U(K+1,I)-U(K+1,I)-U(K+1,I)-U(K,I-1))/H(K,JW))**2.0 PRHE = 10.0*GC2**1.25*ABS(0.5*(U(K,I)+U(K,I-1)))**4.0/(0.5*B(K,I))**2.0 IF (MANNINGS_N(JW)) THEN ! v3.5 start HRAD = BHR(K,I)/(BR(K,I)-BR(K+1,I)+2.0*H(K,JW)) ! v3.5 start HRAD = BHR(K,I)/(BR(K,I)-BR(K+1,I)+BR(K+1,I)+2.0*H(K,JW)) ! v3.5 start HRAD = BHR(K,I)/(BR(K,I)-BR(K+1,I)+BR(K+1,I)+BR(K+1,I)+2.0*H(K,JW)) ! v3.5 start HRAD = BHR(K,I)/(BR(K,I)-BR(K+1,I)+BR(K+1,I	or Enhance-
			<pre>else</pre>	

#	Code: W2	Fix or	Description of Bug/Enhancement	Date Bug Fixed
	or PREW2	Enhance-		or Enhance-
	or GUI	ment Type		ment Added
			end if	
			! v3.5 end	
			END IF PRHK =	
			GC2/(0.5*B(K,I))*ABS(0.5*(U(K,I)+U(K,I	
			-1)))**3.0	
			UNST = PRDK-TKE(K,I,2) UNSE =	
			UNSE = 1.44*TKE(K,I,2)/TKE(K,I,1)*PRDK-	
			1.92*(TKE(K,I,2)/TKE(K,I,1)*TKE(K,I,2)	
)	
			TKE (K, I, 1) = $TKE (K, I, 1) + DLT* (UNST+PRHK-BOUK)$	
			TKE(K,I,2) =	
			TKE(K,I,2)+DLT*(UNSE+PRHE)	
			END DO	
			USTARB = SQRT (GC2) *ABS (0.5* (U(KB(I), I)+U(KB(I),	
			SQR1 (GC2) "ABS (0.5" (0 (RB(1), 1) +0 (RB(1), 1) + 0 (RB(1), 1) +	
			TKE (KB(I),I,1) =	
			0.5*(3.33*USTARB*USTARB+TKE(KB(I),I,1)	
			TKE (KB(I), I, 2) =	
			0.5*(USTARB*USTARB*USTARB*5.0/H(KB(I),	
			JW) +TKE (KB(I), I, 2))	
			AT = 0.0; CT = 0.0; VT = 0.0; DT = 0.0	
			DO J=1,2	
			DO K=KT, KB(I)	
			AT(K, I) = -DLT/BH1(K, I)*BB(K-1, I)*DI(K, I, I)*DI(K, I, I, I, I)*DI(K, I,	
			1,I)/SIG(J)*AZ(K-1,I)/AVH1(K-1,I) CT(K,I) = -	
			DLT/BH1(K,I)*BB(K,I)/SIG(J)*AZ(K,I)/AV	
			H1(K,I)	
			VT(K,I) = 1.0-AT(K,I)-CT(K,I) $DT(K,I) = TKE(K,I,J)$	
			END DO	
			CALL	
			TRIDIAG(AT(:,I),VT(:,I),CT(:,I),DT(:,I	
), KT, KB(I), KMX, TKE(:,I,J)) END DO	
			DO K=KT, KB(I)	
			TKE (K, I, 1) =	
			$ \begin{array}{ll} \text{MAX} (\text{TKE} (K, I, 1), \text{TKEMIN1}) \\ \text{TKE} (K, I, 2) &= \\ \end{array} $	
			MAX (TKE (K, I, 2), TKEMIN2)	
			AZ (K, I) =	
			0.09*TKE(K,I,1)*TKE(K,I,1)/TKE(K,I,2)	
			END DO ! Center at cell faces	
			DO K=KT, KB(I)-1	
			AZ(K,I) = 0.5*(AZ(K,I)+AZ(K+1,I))	
			AZ(K,I) = MAX(AZMIN,AZ(K,I)) $AZ(K,I) = MIN(AZMAY(IM),AZ(K,I))$	
			AZ(K,I) = MIN(AZMAX(JW),AZ(K,I)) $DZ(K,I) =$	
			MAX (DZMIN, FRAZDZ*AZ (K, I))	
			END DO	

#	Code: W2	Fix c	Description of Bug/Enhancement	Date Bug Fixed
	or PREW2	Enhance-		or Enhance-
	or GUI	ment Type		ment Added
18	W2	Restart	Added TKE to restart variables written out and read in.	10/5/07
19	GUI	ET	The equilibrium temperature option in the drop down menu was 'EQT' rather than 'ET'. Fixed.	10/9/07
20	W2	Sediment	The SEDIMENT subroutine did not have any computational mistakes, just an error in assigning all array variables to the value at K,I. This resulted in excessive computational time. The fix is shown below: OLD sedbr = sedb(jw)*sed(k,i) NEW sedbr(K,I) = sedb(jw)*sed(k,i)	10/15/07
21	W2	TKE	Turbulence model had an improper averaging between layers. A new temporary variable was defined to temporarily store the values for AZ prior to averaging to the bottom/top of the layers and the horizontal layers. This also affected the computation of DZ. Fixed. New code defined AZT and allocated memory for it, such that AZT (K, I) = 0.09*TKE (K, I, 1)*TKE (K, I, 1)/TKE (K, I, 2) and AZ (K, I) = 0.5* (AZT (K, I) +AZT (K+1, I)) Similarly for the horizontal averaging and for DZ. Also, the values of DZ were fixed to be at the bottom of a cell and AZ was fixed to be at the bottom right-hand edge of a cell as shown below: CE-QUAL-W2 coordinate system * p,p-p,B	12/17/07

#	Code: W2	Fix or	Description of Bug/Enhancement	Date Bug Fixed
	or PREW2 or GUI	Enhance- ment Type		or Enhance- ment Added
		71		
22	W2	SS settling	The incorrect cell width was used for SSSO.	12/17/07
			BI(KT,I) was changed to BI(K,I).	
			OLD CODE:	
			SSSO(K,I) =	
			(TOTSSO+FES(JW)*FPFE(K,I))*BI(K	
			T,I)/BH2(K,I)*DO1(K,I)	
			FPSS(K, I) =	
			FPSS(K,I)*TISS(K,I)	
			NEW CODE: SSSO(K,I) =	
			(TOTSS0+FES(JW)*FPFE(K,I))*BI(K	
			,I)/BH2(K,I)*DO1(K,I)	
			FPSS(K,I) =	
			FPSS(K,I)*TISS(K,I)	
23	W2	Initial-ization	The definition of KBMIN was not updated if	12/17/07
		of one-layer	the model started out in some segments with	
			only one_layer. This has been fixed.	
			Added code highlighted:	
			DO I=IU, ID	
			IF (KB(I)-KT < NL(JB)-	
			1) IUT = I+1 ONE LAYER(I) = KT ==	
			ONE_LAYER(I) = KT == KB(I)	
			END DO	
			CUS(JB) = IUT	
			! reinitialize KBMIN	
			DO I=IU-1, ID	
			KBMIN(I) =	
			MIN (KB(I), KB(I+1))	
			END DO	
			KBMIN(ID+1) = KBMIN(ID)	
			!**** Areas and bottom widths	
			IF (.NOT.	
			TRAPEZOIDAL(JW)) THEN	

#	Code: W2	Fix or	Description of Bug/Enhancement	Date Bug Fixed
	or PREW2	Enhance-		or Enhance-
	or GUI	ment Type		ment Added
24	W2	Bottom	This is a couple more fixes related to bug fix	12/17/2007
24	VVZ		#6 above. The Denitrification rate and	12/17/2007
		processes		
			epiphyton burial rates could be affected	
			based on unique combinations of	
			adding/subtracting segments that left the	
			value of BI in an inactive layer below KB	
			defined incorrectly. In order to prevent the	
			possibility of problems, the following fixes	
			were made:	
			Old Code:	
			sedNO3(K,I) =	
			NO3(K,I)*NO3S(JW)*NO3TRM(K,I)*(BI(K,I)	
			-BI(K+1,I))/BH2(K,I)	
			EPM(K,I,J) = EPD(K,I,J) * (BI(K,I) -	
			BI(K+1,I)+2.0*H1(K,I))*DLX(I)	
			New code:	
			if(k == kb(i)) then ! SW 12/16/07	
			sedNO3(K,I) =	
			NO3(K,I)*NO3S(JW)*NO3TRM(K,I)*(BI(K,I)	
)/BH2(K,I) else	
			sedNO3(K,I) =	
			NO3(K,I)*NO3S(JW)*NO3TRM(K,I)*(BI(K,I)	
			-BI(K+1,I))/BH2(K,I)	
			endif	
			if(k == kb(i)) then ! SW	
			12/16/07	
			EPM(K, I, J) =	
			EPD(K,I,J)*(BI(K,I)+2.0*H1(K,I))*DLX(I)	
			else	
			EPM(K, I, J) =	
			EPD(K,I,J)*(BI(K,I)-	
			BI(K+1,I)+2.0*H1(K,I))*DLX(I) endif	
			GHATT	

#	Code: W2	Fix or	Description of Bug/Enhancement	Date Bug Fixed
	or PREW2	Enhance-		or Enhance-
	or GUI	ment Type		ment Added
25	W2	CBODS	If the user defined particulate CBOD that settles to the bottom and had SED turned ON, the conversion from oxygen to organic matter was missing in the accumulation on the channel bottom or sides.	1/18/08
			OLD do jd=1,nbod SEDcb(K,I) = SEDcb(K,I)+MAX(cbods(jd),0.0)*cbod (K,I,Jd)*BI(K,I)/BH2(K,I)*(1.0- BI(K+1,I)/BI(K,I)) end do NEW do jd=1,nbod SEDcb(K,I) = SEDcb(K,I)+MAX(cbods(jd),0.0)*(cbo	
			d(K,I,Jd)/O2OM(JW))*BI(K,I)/BH2(K, I)*(1.0-BI(K+1,I)/BI(K,I)) ! 1/16/08 end do	
26	W2	SEDBR	Eliminated a redundant definition of SEDBR in the Sediment routine since it is already defined in the Kinetic rates subroutine.	1/18/08
27	W2	SEDDK	The first order sediment decay rate is an average of the decay rates of all the influxes of organic matter and their respective decay rates. There was an error in computing this average decay rate for CBOD treated as particulate. Code fix is shown below:	1/18/08
			<pre>OLD do jd=1,nbod</pre>	
			<pre>NEW do jd=1,nbod</pre>	

#	Code: W2	Fix or	Description of Bug/Enhancement	Date Bug Fixed
	or PREW2	Enhance-		or Enhance-
	or GUI	ment Type		ment Added
28	W2	SRO	There are some cases when segments	1/18/2008
			were added/subtracted that the value of	
			BI was not correctly initialized. This code	
			is a fix to prevent such occurrences:	
			OLD CODE: SRONET = SROIN-SROOUT SROSED = SROOUT*(1.0-BI(K+1,I)/BI(K,I))*TSEDF(JW)	
			<pre>NEW CODE: SRONET = SROIN-SROOUT if(k /= kb(i)) then ! SW 1/18/08 SROSED = SROOUT*(1.0-BI(K+1,I)/BI(K,I))*TSEDF(JW) else SROSED = SROOUT*TSEDF(JW) endif</pre>	

#	Code: W2	Fix or	Description of Bug/Enhancement	Date Bug Fixed
	or PREW2	Enhance-		or Enhance-
	or GUI	ment Type		ment Added
29	W2	Water Quality	Added several calls to prevent	1/18/2008
			computation of kinetic variables if	
			epiphyton are defined in the control file	
			with NEP=1 or more but is not ACTIVE or	
			turned ON. If the kinetic expressions are	
			non-zero and the initial concentration is	
			given, then this could add source/sink	
			terms to the oxygen balance.	
			This is typical of the code changes – since	
			several of this type were made:	
			OLD CODE:	
			OLD CODE:	
			DO JE=1,NEP	
			PO4EG(K,I) = PO4EG(K,I)+EGR(K,I,JE)*EPC(K,I,JE)*EP(JE)	
			PO4EG(K,I)+EGK(K,I,JE) EFC(K,I,JE) EF(JE)	
			PO4ER(K,I)+ERR(K,I,JE)*EPC(K,I,JE)*EP(JE)	
			END DO	
			NEW CODE:	
			IF (EPIPHYTON_CALC(JW,JE))then !	
			SW 1/18/2008	
			PO4EG(K,I) =	
			PO4EG(K,I)+EGR(K,I,JE)*EPC(K,I,JE)*EP(JE)	
			PO4ER(K,I) =	
			PO4ER(K,I)+ERR(K,I,JE)*EPC(K,I,JE)*EP(JE)	
			endif	

#	Code: W2	Fix or	Description of Bug/Enhancement	Date Bug Fixed
"	or PREW2	Enhance-	bescription of bug, Emiditeement	or Enhance-
	or GUI	ment Type		ment Added
30	W2	Bottom	Continuation of bug fix #24 in such places	1/18/2008
	W 2	processes		1, 10, 2000
		processes	as	
			New code:	
			<pre>IF(K == KB(I))THEN xdum=BI(K,I)/BH2(K,I)</pre>	
			1/18/08	
			ELSE	
			xdum=BI(K,I)/BH2(K,I)*(1.0- BI(K+1,I)/BI(K,I))	
			ENDIF	
			07772 (T. T.)	
			SEDAS(K,I) = SEDAS(K,I) = SEDAS(K,I)+MAX(AS(JA),0.0)*ALG(K,I,JA)	
			*xdum ! SW 1/18/08	
			SEDOMS(K, I) = pomS(JW)*(LPOM(K, I)+RPOM(K, I))*xdum	
			!sw 1/18/08 cb 10/22/06	
			IF(K==KB(I))THEN ! SW 1/18/08	
			SEDSO = 0.0 ELSE	
			SEDSO =	
			sedS(JW)*SED(K,I)*BI(K+1,I)/BH2(K,I)*(
			1.0-BI(K+1,I)/BI(K,I))	
			Endif	
			DO K=KT, KB(I)	
			IF (K == KB(I)) THEN	
			xdum=BI(K,I)/BH2(K,I) ! SW 1/18/08	
			ELSE	
			xdum=BI(K,I)/BH2(K,I)*(1.0-	
			BI(K+1,I)/BI(K,I)) ENDIF	
			DO JA=1,NAL	
			SEDASp(K, I) =	
			SEDASp(K,I)+MAX(AS(JA),0.0)*ap(ja)*ALG (K,I,JA)*xdum ! SW 1/18/08	
			END DO	
			DO JE=1,NEP	
			IF (EPIPHYTON CALC(JW, JE))LPOMEPp(K, I) =	
			LPOMEPp(K,I) +EPOM(JE) *ep(je) * (EMR(K,I,	
			JE) *EPC(K,I,JE))	
			END DO do jd=1,nbod	
			۳۰ مر مین است. مارکتاب است.	
			This code is repeated similarly in many of	
			the sediment routines.	
		1		<u> </u>

#	Code: W2	Fix or	Description of Bug/Enhancement	Date Bug Fixed
	or PREW2	Enhance-		or Enhance-
	or GUI	ment Type		ment Added
31	W2	Add segment	The DEPTHM and DEPTHB were not	1/27/08
		initial-ization	initialized correctly when a segment was	
			added – this does not affect internal	
			computations, just output for SPR and	
			SNP files.	
			OLD CODE:	
			BKT(I) = BH1(KT,I)/H1(KT,I)	
			DEPTHB(K,I) = H1(KT,I) !	
			DEPTHM(K,I) = H1(KT,I)*0.5	
			NEW CODE:	
			BKT(I) = BH1(KT,I)/H1(KT,I)	
			DEPTHB(KT,I) = H1(KT,I) !	
			SW 1/27/08	
			DEPTHM(KT,I) = H1(KT,I)*0.5	
			! SW 1/27/08	

W2 V3.2 Bug Fixes, Enhancements, and User Manual Changes

#	Code: W2	Fix or	Description of Bug/Enhancement	Date Bug Fixed
	or PREW2	Enhance-		or Enhance-
	or GUI	ment Type		ment Added
1	W2	Waterbody-	When there was negative velocities at a	8/31/04
		waterbody	waterbody-waterbody connection, there was	
		connection	a possibility (dependent on the bathymetry of	
			the connection at the waterbody-waterbody	
			intersection) that there could be temperature	
			or concentration anomalies.	
2	W2	Lateral_	Added limit to the DLRHOMAX function:	1/25/05
		withdrawal	Old code:	
			DLRHOMAX=MAX(DLRHOT,DLRHOB)	
			New code:	
			DLRHOMAX=MAX(DLRHOT,DLRHOB,1.	
			0E-10)	
3	W2	Branch	Logic in branch connectivity set-up was fixed	1/25/05
		connectivity	Old code:	
			IF(UHS(JB) == DS(JJJB))EXIT	
			New code:	
			IF(abs(UHS(JB)) == DS(JJJB))EXIT	

#	Code: W2	Fix or	Description of Bug/Enhancement	Date Bug Fixed
	or PREW2	Enhance-		or Enhance-
	or GUI	ment Type		ment Added
4	W2	Pumpback	Pumpback logic was corrected – this is legacy	1/25/05
			code that will probably be removed from	
			later versions of W2	
			Old code:	
			DO JB=1,NBR	
			IF (JB == JBP) JWBP = JW	
			END DO	
			New code:	
			DO JW=1,NWB	
			DO JB=BS(JW),BE(JW)	
			IF(JB == JBP) JWBP = JW	
			END DO	
			END DO	
5	W2	CPL write	Switched order of implied DO loop on CPL	1/25/05
			write statement for output of constituents	
6	W2	PRF write	Changed output format for PRF output for	1/25/05
			constituents from f10.2 to e13.6	

1.			Description of Bug/Enhancement	Date Bug Fixed
	or PREW2 Enh	hance-		or Enhance-
(or GUI me	ent Type		ment Added
	or GUI me		Added the Idso and Jackson long wave radiation equation when air temperatures are below 5C. The Swinbank model underpredicts long wave incoming radiation at low air temperatures by as much as 10%. The computation of long wave atmospheric radiation is done using the approach of Swinbank (1963) unless air temperatures are less than 5°C, when the Idso and Jackson (1969) formula is used (Wells, et al., 1982). The Swingbank formula for clear sky long wave atmospheric radiation is	

#	Code: W2	Fix or	Description of Bug/Enhancement	Date Bug Fixed
	or PREW2	Enhance-	bescription of bugy Emiditeement	or Enhance-
	or GUI	ment Type		ment Added
-			Mistrus and a changing I/ in standard of L	
7	W2	Layer addition	Mistyped subscript K instead of I:	3/2/05
		algorithm	Old code:	
			IF $(KB(I) > KBI(I))$ THEN $B(KB(K),I) = 0.0$	
			DX(KB(I),I) = 0.0	
			KB(I) = KB(I)-1	
			IF (I /= DS(JB)+1)	
			KBMIN(I) = MIN(KB(K), KB(I+1)) $IF (I /= US(JB)-1)$	
			KBMIN(I-1) = MIN(KB(I-1), KB(I))	
			New Code:	
			IF (KB(I) > KBI(I)) THEN	
			B(KB(I),I) = 0.0 ! SW 3/2/05	
			DX(KB(I),I) = 0.0	
			KB(I) = KB(I)-1	
			IF (I /= DS(JB)+1) $ = MIN(VD(T) VD(T+1)$	
			KBMIN(I) = MIN(KB(I), KB(I+1)) ! SW 3/2/05	
			$IF \qquad (I \qquad /= US(JB)-1)$	
			KBMIN(I-1) = MIN(KB(I-1), KB(I))	
8	W2	Variable	In some cases when there was a layer	3/9/05
		initialize-tion	subtraction and a time step violation	
			immediately afterward, the variable SW was	
			not initialized properly. This caused problems	
			in the Tomas Algorithm for the water surface	
			computation. The following line of code was	
			added to the SUB layer algorithm:	
			SW(KT-1,IU-1:ID+1) = 0.0	
			!TC 3/9/05	
			Also, the variable AVHR was defined in the	
			Update variables for DS+1. The following new	
			code was added:	
			AVHR(KT,DS(JB)+1)=H1(KT,DS(JB)+1) !SW 03/08/05	

#	Code: W2	Fix or	Description of Bug/Enhancement	Date Bug Fixed
	or PREW2	Enhance-		or Enhance-
	or GUI	ment Type		ment Added
9	W2	Interpola-tion	Possible index error if there are multiple	5/10/05
		multipliers	waterbodies.	
			Old code:	
			RATZ(K,JW) = AVH2(K-	
			1, I) /AVH2 (K, I) CURZ1 (K, JW) =	
			2.0*H(K,JW)**2/(AVH2(K-	
			1, I) +AVH2 (K, I)) /AVH2 (K-1, I)	
			CURZ2(K,JW) = - 2.0*H(K,JW)**2/(AVH2(K-1,I)*AVH2(K,I))	
			CURZ3(K,JW) =	
			2.0*H(K,JW)**2/(AVH2(K-	
			1,I)+AVH2(K,I))/AVH2(K,I) END DO	
			New code:	
			RATZ(K,JW) = AVH2(K-	
			1, DS (BE (JW))) / AVH2 (K, DS (BE (JW))) CURZ1 (K, JW) =	
			2.0*H(K,JW)**2/(AVH2(K-	
			1, DS (BE (JW))) +AVH2 (K, DS (BE (JW))))/AVH2	
			(K-1, DS (BE (JW))) CURZ2 (K, JW) = -	
			2.0*H(K,JW)**2/(AVH2(K-	
			1, DS(BE(JW)))*AVH2(K, DS(BE(JW)))) CURZ3(K, JW) =	
			CURZ3(K, JW) = 2.0*H(K, JW) **2/(AVH2(K-	
			1,DS(BE(JW)))+AVH2(K,DS(BE(JW))))/AVH2	
			(K,DS(BE(JW)))	
10	W2	Spillway and	Older code in order to check if it was	5/10/05
		Gates	submerged or not used the elevation	
			difference relative to the channel bed on	
			either side of the weir, rather than the weir	
			crest. Also removed code line:	
			IF (ELDN>ESP(JS)) DH+ELUP-ELDN	
11	W2	Reaeration	Corrected formula errors in Thackston and	5/10/05
			Krenkel formula:	
			Old code:	
			USTAR=SQRT (ADEPTH*SLOPE (JB) *32.2) **0.5 REAER(I) =	
			24.88*(1.0+SQRT(0.176*UAVG/SQRT(ADEPTH	
)))*USTAR	
			New code:	
			USTAR=SQRT (ADEPTH*SLOPE (JB) *32.2) REAER(I) =	
			24.88*(1.0+SQRT(0.176*UAVG/SQRT(ADEPTH	
)))*USTAR/ADEPTH	
			Similar changes were made to the updated	
12	\\/2	Violations NV	Thackston model (Eqn 10)	0/25/05
12	W2	Violations NV	The variable BI and VOL was not initialized	8/25/05
			properly during a time-step violation.	

#	Code: W2	Fix or	Description of Bug/Enhancement	Date Bug Fixed
	or PREW2	Enhance-		or Enhance-
	or GUI	ment Type		ment Added
13	W2	ADD a layer	The variable BI was not initialized properly	8/25/05
13	VVZ	ADD a layer	during an ADD layer.	0/23/03
4.4	14/2	TDIDIAC		40/47/05
14	W2	TRIDIAG	Insert Deallocate Statement in Tridiag	10/17/05
		subroutine	SUBROUTINE TRIDIAG(A, V, C, D, S, E, N, U) USE PREC	
			INTEGER, IN	
			TENT(IN) :: S, E, N	
			REAL(R8), DIMENSION(:),	
			INTENT(IN) :: A(E), V(E), C(E), D(E) REAL, DIMENSION(:),	
			INTENT (OUT) :: U(N)	
			REAL (R8), ALLOCATABLE,	
			DIMENSION(:) :: BTA, GMA ALLOCATE (BTA(N),GMA(N))	
			(=(, / (= ., /	
			BTA(S) = V(S)	
			GMA(S) = D(S)	
			DO I=S+1,E BTA(I) = V(I)-A(I)/BTA(I-1)*C(I-1)	
			GMA(I) = D(I)-A(I)/BTA(I-I)*GMA(I-I)	
			END DO	
			U(E) = GMA(E)/BTA(E) DO I=E-1,S,-1	
			DO $I=E-1, S, -1$ U(I) = (GMA(I)-C(I)*U(I+1))/BTA(I)	
			END DO	
			Deallocate (BTA, GMA) < ! SW 10/17/05	
			END SUBROUTINE TRIDIAG	
15	W2	SUB layer	In SUB Layer/Sub Seg - eliminate	10/17/05
			parentheses which caused a sign error	
			IF (.NOT. TRAPEZOIDAL(JW))	
			THEN	
			BI(KT, IU-1) = B(KTI(IU-1), I)	
			H1(KT, IU-1) = H(KT, JW) -	
			Z(IU-1)	
			BH1(KT,IU-1) = B(KTI(IU-	
			1), IU-1) * (EL (KT, IU-1) - EL (KTI (IU-1) + 1, IU-1) - Z (IU-1) * COSA (JB)) / COSA (JB) <	
			! SR 10/17/05	
			IF (KT >= KB(IU-1))	
			BH1(KT,IU-1) = B(KT,IU-1)*H1(KT,IU-1) DO K=KTI(IU-1)+1,KT	
			BH1 (KT, IU-1) = BH1 (KT, IU-	
			1)+BH1(K,IU-1)	
			END DO	
			ELSE	

#	Code: W2	Fix or	Description of Bug/Enhancement	Date Bug Fixed
п	or PREW2	Enhance-	bescription of bug/ Limancement	or Enhance-
	or GUI	ment Type		ment Added
1.0			Lover CLID improve model rupping in	
16	W2		Layer SUB - improve model running in	10/17/05
		shallow	shallow segments	
		systems	!** Water surface minimum thickness	
			DO JW=1, NWB	
			KT = KTWB (JW)	
			ZMIN (JW) = -1000.0 KTMAX = 2 <!	
			SR 10/17/05	
			DO JB=BS (JW) , BE (JW)	
			DO I=CUS(JB), DS(JB) IF(KB(I) > KTMAX) KTMAX =	
			KB(I) < ! SR 10/17/05	
			IZMIN(JW) = I JBIZ = JB	
			END IF	
			ZMIN(JW) = MAX(ZMIN(JW), Z(I)) END DO	
			END DO	
			ADD_LAYER = ZMIN(JW) < -0.85*H(KT-	
			1, JW) .AND. KT /= 2 SUB LAYER = ZMIN(JW)	
			> 0.60*H(KT,JW) .AND. KT < KTMAX <	
			! SR 10/17/05	
			 !****** Upstream active segment	
			IUT = US(JB)	
			IF (SLOPE(JB) /= 0.0) THEN	
			DO I=US(JB)-1,DS(JB)+1 IF (KB(I) < KT)THEN <	
			! SR 10/17/05	
			KB(I) =	
			B(KB(I),I) =	
			0.000001	
			DX(KB(I),I) = DXI(JW)	
			!***** Additional layer subtractions	
			ZMIN(JW) = -1000.0 DO JB=BS(JW), BE(JW)	
			DO I=CUS(JB), DS(JB)	
			ZMIN(JW) = MAX(ZMIN(JW),Z(I)) END DO	
			END DO	
			SUB_LAYER = ZMIN(JW) >	
			0.60*H(KT,JW) .AND. KT < KTMAX < ! SR 10/17/05	
			END DO	
			END DO	
			Also done for the initial set-up of the branch	
			geometry:	
			!**** Upstream active segment and single layer	
			IF (SLOPE(JB) /= 0.0) THEN DO I=US(JB)-1,DS(JB)+1 IF (KB(I) < KT)	
			THEN < ! .AND. I /= IZMIN(JW) SW 10/17/05	
			B(KT,I) = 0.000001	
W2 V	ersion 3.71 Rele	ase Notes		

#	Code: W2	Fix or	Description of Bug/Enhancement	Date Bug Fixed
	or PREW2	Enhance-	_	or Enhance-
	or GUI	ment Type		ment Added
17	W2	Shade	No errors just an improvement in	10/17/05
1/	VVZ	algorithm	computational efficiency.	10/17/03
		aigoritiiii	Delete this from the SHADING subroutine:	
			!** Set the angles for which topographic	
			shade data are available	
			DO II=1, IANG ANG(II)=((II-	
			1)*(360.0/FLOAT(IANG)))*PI/180.0	
			END DO	
			GAMMA = (2*PI)/IANG	
			and change the 2 occurrences of gamma to gama (only in shading subroutine):	
			ANG2 = (TOPO(I, J+1) -	
			TOPO(I,J))/GAMA < ! SW 10/17/05	
			TOPOANG = TOPO(I,J)+ANG2*ANG1	
			ENDIF END DO	
			IF (AZ00 > ANG(IANG) .AND. AZ00 <=	
			2*PI) THEN ANG1 = AZ00-ANG(IANG)	
			ANG2 = (TOPO(I, 1) -	
			TOPO(I, IANG))/GAMA SW 10/17/05</th <th></th>	
			ADD a line to the module SHADEC:	
			MODULE SHADEC PARAMETER (IANG=18)	
			REAL, PARAMETER ::	
			GAMA=(3.1415926*2.)/REAL(IANG) < ! SW	
			10/17/05 REAL, DIMENSI	
			ON(IANG):: ANG SW 10/17/05</th <th></th>	
			REAL, ALLOCATABLE,	
			DIMENSION(:) :: A00, DECL, HH, TTLB, TTRB, C	
			LLB, CLRB SW 10/17/05</th <th></th>	
			REAL, ALLOCATABLE, DIMENSION(:) ::	
			SRLB1, SRRB1, SRLB2, SRRB2, SRFJD1,	
			SRFJD2,SHADEI	
			REAL, ALLOCATABLE, DIMENSION(:,:) ::	
			TOPO LOGICAL, ALLOCATABLE, DIMENSION(:) ::	
			DYNAMIC_SHADE	
			DATA ANG /0.00000, 0.34907, 0.69813,	
			1.04720, 1.39626, 1.74533, 2.09440, 2.44346,&	
			2.79253, 3.14159, 3.49066, 3.83972,	
			4.18879, 4.53786, 4.88692, 5.23599, 5.58505, 5.93412/ < ! SW10/17/05	
			END MODULE SHADEC	
			Delete allocation statement for ang:	
			ALLOCATE	
			(SRLB1(IMX), SRRB1(IMX), SRLB2(IMX), S RRB2(IMX), SRFJD1(IMX), SHADEI(IMX),	
			SRFJD2(IMX))	
			ALLOCATE (TOPO(IMX, IANG)) <	
			!SW10/17/05 ALLOCATE (QSW(KMX,NWDT), CTR(NCT,NTRT),	
			HPRWBC (NHY, NWB))	
			Delete ang from the deallocate statement:	
			DEALLOCATE(TTLB, TTRB, CLLB, SRLB1, SRRB1, SRLB2, SRRB2, SRFJD1,	
			SHADEI, SRFJD2, TOPO, QSW, CTR) <-	
L,,,,,,	lorgion 3 77 Dele	Notes	! SW 10/17/05	
WZ V	ersion 3.71 Rele	ease Notes		

#	Code: W2	Fix or	Description of Bug/Enhancement	Date Bug Fixed
	or PREW2	Enhance-		or Enhance-
	or GUI	ment Type		ment Added
18	W2	Epiphyton	Several changes were made that corrected	5/26/06
		algorithm	errors in shallow systems where adding and	
			subtracting layers did not reinitialize	
			macrophyte layers when the current KT was	
			below KB; the epiphyton burial rate was	
			greater than specified in the control file;	
			epiphyton that are buried become part of the	
			1 st order organic sediment (as before);	
			epiphyton mortality now becomes part of the	
			LPOM pool (based on the EPOM fraction) and	
			is settled and transported downstream rather	
			than going into the organic 1 st order sediment	
			model directly. Currently this is non-	
			photosynthesizing – but we will change in the	
			next version.	
19	W2	ADD/SUB	There was a bug in addition and subtraction	5/26/06
		layers	of layers that led to water quality variables	
			not being initialized correctly during riverine	
			shallow flow	
20	User	Typos	The manual had a few typos that were	6/11/2006
	Manual	corrected	corrected.	
21	W2	Waterbody-	The subroutine Upstream_velocity under	6/29/2006
		waterbody	specific conditions did not maintain flwo	
		connection	continuity across a waterbody-waterbody	
			connection	
22	W2	SNP output	The algal limiting nutrient SNP output had a	6/30/2006
			bug under specific conditions in writing out	
			the information.	

or PREW2 or GUI ment Type Sediment heating and sediment processes If a model added and subtracted layers that heating and sediment processes In the NO3 subroutine: Old code: NO3SED(K, I) NO3(K, I) *NO3S(M) *NO3TRM(K, I) * (BI (K, I) -BI (K+1, I) / BH2 (K, I) RO3(K, I) *NO3SCI(M, I) * (BI (K, I) / BH2(K, I) else NO3SED(K, I) RO3(K, I) *NO3TRM(K, I) * (BI(K, I) / BH2(K, I) else NO3SED(K, I) NO3(K, I) *NO3TRM(K, I) * (BI(K, I) / BH2(K, I) else NO3SED(K, I) NO3(K, I) *NO3S(M) *NO3TRM(K, I) * (BI(K, I) / BI(K, I) else NO3SED(K, I) NO3(K, I) *NO3S(M) *NO3TRM(K, I) * (BI(K, I) / BI(K, I) / BI(K, I) / BI(K, I) NO3(K, I) *NO3S(M) *NO3TRM(K, I) * (BI(K, I) / BI(K, I)
Sediment heating and sediment processes If a model added and subtracted layers that resulted in segment addition and subtraction, there was the possibility that sediment fluxes were incorrectly computed. In the NO3 subroutine: Old code: NO3SED(K, I) NO3(K, I) *NO3S(JW) *NO3TRM(K, I) * (BI (K, I) -BI (K+1, I) / BH2 (K, I) New code: if(k == kb(i)) then NO3SED(K,I) else NO3SED(K,I) else NO3SED(K,I) NO3SED(K,I) else NO3K,I)*NO3TRM(K,I)*(BI(K,I))/BH2(K,I) else NO3K,I)*NO3TRM(K,I)*(BI(K,I)-BI(K,I)-BI(K+1,I))/BH2(K,I) endif New code added in sediment routine:
heating and sediment processes resulted in segment addition and subtraction, there was the possibility that sediment fluxes were incorrectly computed. In the NO3 subroutine: Old code: NO3 (K, I) * NO3 (JW) * NO3TRM (K, I) * (BI (K, I) - BI (K+1, I)) / BH2 (K, I) New code: if(k == kb(i)) then NO3SED(K,I) else NO3(K,I) * NO3S(JW) * NO3TRM(K,I) * (BI(K,I))/BH2(K,I) else NO3SED(K,I) NO3(K,I) * NO3S(JW) * NO3TRM(K,I) * (BI(K,I) - BI(K+1,I))/BH2(K,I) endif New code added in sediment routine:
<pre>if (k == kb(i)) then ! SW 4/18/07</pre>

#	Code: W2	Fix or	Description of Bug/Enhancement	Date Bug Fixed
"	or PREW2	Enhance-	Description of Sug, Limitation	or Enhance-
	or GUI	ment Type		ment Added
23	W2	(see above)	New code added for heat flux to channel	4/18/07
23	VVZ	(see above)		4/10/07
			bottom:	
			if(kt == kb(i))then ! SW 4/18/07 SROSED =	
			SROOUT*TSEDF(JW)	
			else	
			SROSED =	
			SROOUT* (1.0-	
			BI(KT+1,I)/BI(KT,I))*TSEDF(JW) Endif	
			BIIGIT	
			if(k==kb(i))then! SW	
			4/18/07	
			TFLUX =	
			CBHE (JW) / RHOWCP* (TSED (JW) -	
			T2(K,I))*BI(K,I)*DLX(I) else	
			TFLUX =	
			CBHE (JW) /RHOWCP* (TSED (JW) -	
			T2(K,I))*(BI(K,I)-BI(K+1,I))*DLX(I)	
			endif	
			New code added for sediment subroutine:	
			if(k == kb(i)) then ! SW 4/18/07	
			SEDAS (K, I) =	
			SEDAS(K,I)+MAX(AS(JA),0.0)*ALG(K,I,JA) *BI(K,I)/BH2(K,I)*(1.0-	
			BI (K+1, I) /BI (K, I))	
			else	
			SEDAS(K,I) =	
			SEDAS(K,I)+MAX(AS(JA),0.0)*ALG(K,I,JA)	
			BI(K,I)/BH2(K,I)(1.0-	
			BI(K+1,I)/BI(K,I)) endif	
			if $(k == kb(i))$ then ! SW 4/18/07	
			SEDOMS(K,I) =	
			POMS(JW)*(LPOM(K,I)+RPOM(K,I))*BI(K,I)	
			/BH2(K,I)	
			SEDSO =	
			POMS(JW)*SED(K,I)*BI(K+1,I)/BH2(K,I) else	
			SEDOMS(K,I) =	
			POMS(JW)*(LPOM(K,I)+RPOM(K,I))*BI(K,I)	
			/BH2(K,I)*(1.0-BI(K+1,I)/BI(K,I))	
			SEDSO =	
			POMS (JW) *SED (K, I) *BI (K+1, I) /BH2 (K, I) * (
			1.0-BI(K+1,I)/BI(K,I)) endif	
	<u> </u>		GUATT	

#	Code: W2	Fix or	Description of Bug/Enhancement	Date Bug Fixed
	or PREW2	Enhance-		or Enhance-
	or GUI	ment Type		ment Added
24	W2	Algae	The logic for negative settling velocities for	8/27/07
			algae had an error.	
			Old code:	
			$! \qquad \qquad ASR(K,I,JA) = -$	
			AS(JA)*(ALG(K+1,I,JA)*B(K+1,I)/(B(K,I)	
			*H2(K,I))-	
			ALG(K,I,JA))*BI(K,I)/BH2(K,I)	
			New code:	
			ASR(K,I,JA) = -	
			AS(JA)*(ALG(K+1,I,JA)*BI(K+1,I)/BH2(K,	
			I)-ALG(K,I,JA)*BI(K,I)/BH2(K,I))	
			!SP 8/27/07	
			Shwet Prakash	