1.

a) We prove the following statement by induction on T, the root of a tree.

STATEMENT S(T): Calling preorder on a tree T prints the labels of T in preorder.

BASIS. The basis is where T is a single node. Then line (1) prints the label of T, line (2) gets the leftmost child which is NULL, and thus line (3) fails, stopping execution of preorder.

INDUCTION. Suppose T is not a leaf. Then T has at least one child. Assume by the inductive hypothesis that **preorder** prints the labels of the children of T in preorder. Clearly the label of the root of T is printed by line (1). This proves the inductive step. We conclude that S(T) is true for all labeled trees T. \blacklozenge

b) We prove the following statement by induction on T, the root of a tree.

STATEMENT S(T): Calling postorder on a tree T prints the labels of T in postorder.

BASIS. Consider when T is a leaf. Line (1) assigns c and line (2) fails. All that is left is for line (5) to print the label of T.

INDUCTION. Suppose T is not a leaf. Then T has at least one child. Assume by the inductive hypothesis that **postorder** prints the labels of the children of T in postorder. After the labels of the children of T have been printed, then lastly on line (5), the label of the root of T is printed. This is the correct behavior for postorder, and proves the inductive step. Therefore S(T) holds for all labeled trees T. \spadesuit

2. We prove the following statement by induction on n, the number of nodes a tree has.

STATEMENT S(n): If a tree T has n nodes with each having a branching factor b, then there are 1 + (b-1)n NULL pointers among its nodes.

BASIS. Suppose n = 1. Then T is a leaf. Thus there are 1 + (b - 1)1 = b NULL pointers in the root of T.

INDUCTION. Suppose $n \geq 1$. Consider that T has n+1 nodes. Thus T has at least one child. Assume by the inductive hypothesis that all but one leaf of T, that being n nodes, together have 1+(b-1)n NULL pointers among them. Therefore all the nodes of T have a total of 1+(b-1)(n+1)=b(n+1)-n NULL pointers. This proves the inductive step. We conclude that S(n) holds. \spadesuit

3. We prove the following statement by induction on T, the root of a tree.

STATEMENT S(T): For any tree T, the number of nodes is 1 more than the sum of the degrees of the nodes.

BASIS. Suppose T has only one node, the root. The degree of the root is 0. Thus the number of nodes in T is 1.

INDUCTION. Suppose the root of T has children. Assume by the inductive hypothesis that the number of nodes of the children of T is 1 more than the sum of the degrees of the children. Thus the number of nodes that T has is the degree of the root plus 1 including the root.