MAT 201

Larson/Edwards – Section 3.2 Rolle's Theorem and the Mean Value Theorem

Recall the Extreme Value Theorem:

If f is continuous on a closed interval [a, b], then f has both a minimum and a maximum on the interval.

Both of these values could occur at the endpoints. Rolle's Theorem (named after Michel Rolle (1652-1719), gives conditions that guarantee existence of an extreme value in the *interior* of a closed interval.

Rolle's Theorem:

Let f be continuous on the closed interval [a, b] and differentiable on the open interval (a, b), if f(a) = f(b) then there is at least one number c in (a, b) such that f'(c) = 0.

Ex: Determine whether Rolle's Theorem can be applied to f on the closed interval [a, b]. If Rolle's Theorem can be applied, find all values of c in the open interval (a, b) such that f'(c) = 0. If Rolle's Theorem cannot be applied, explain why not.

a)
$$f(x) = x^2 - 5x + 4$$
, [1, 4]

Rolle's Theorem:

Let f be continuous on the closed interval [a, b] and differentiable on the open interval (a, b), if f(a) = f(b)

then there is at least one number c in (a, b) such

Ex: Determine whether Rolle's Theorem can be applied to f on the closed interval [a, b]. If Rolle's Theorem can be applied, find all values of c in the open interval (a, b) such that f'(c) = 0. If Rolle's Theorem cannot be applied, explain why not.

a)
$$f(x) = x^2 - 5x + 4$$
, [1,4]
Is f continuous on [1,4]? Yes
Is f differentiable on (1,4)? Yes
Does $f(1) = f(4)$? $f(1) = 0$ Yes
 $f(4) = 0$

There exists at least one C such that f(c)=0.

$$f'(x) = \lambda_{x-5}$$

$$0 = \lambda_{x-5}$$

$$\frac{5}{3} = x$$

b)
$$f(x) = \tan x$$
, $[0, \pi]$

Rolle's Theorem can be used to prove the Mean Value Theorem.

Mean Value Theorem:

If f is continuous on the closed interval [a, b] and differentiable on the open interval (a, b), then there exists a number c in (a, b) such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Note: "Mean" refers to average, as in average rate of change.

How do we illustrate the meaning of the mean value theorem?

b) $f(x) = \tan x$, $[0, \pi]$

Mean Value Theorem:

If f is continuous on the closed interval [a, b] and differentiable on the open interval (a, b), then there exists a number c in (a, b) such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Note: "Mean" refers to average, as in average rate of change.

How do we illustrate the meaning of the mean value theorem?

This says that in the interval (a, b), there exists a number c, such that the slope of the tangent line to the function f at c is equal to the slope of the secant line passing through the points (a, f(a)) and (b, f(b)).

Ex: Determine whether the Mean Value Theorem can be applied to f on the closed interval [a, b]. If the Mean Value Theorem can be applied, find all values of c in the open

interval (a, b) such that
$$f'(c) = \frac{f(b) - f(a)}{b - a}$$
. If the Mean

Value Theorem cannot be applied, explain why not.

a)
$$f(x) = x^3 + 2x$$
, $[-2, 0]$

b)
$$f(x) = |2x + 1|$$
, $[-1, 3]$

Ex: Determine whether the Mean Value Theorem can be applied to f on the closed interval [a, b]. If the Mean Value Theorem can be applied, find all values of c in the open interval (a, b) such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

If the Mean Value Theorem cannot be applied, explain why not.

If the Mean Value Theorem cannot be applied, explain why not.

a)
$$f(x) = x^3 + 2x$$
, $\begin{bmatrix} -2 & 6 \\ -2 & 0 \end{bmatrix}$

Is $f(x) = x^3 + 2x$, $\begin{bmatrix} -2 & 6 \\ -2 & 0 \end{bmatrix}$? Yes

Is $f(x) = x^3 + 2x$, $\begin{bmatrix} -2 & 6 \\ -2 & 0 \end{bmatrix}$? Yes

$$f(x) = f(x) = f($$

b)
$$f(x) = |2x + 1|$$
, $[-1, 3]$
Continuous on $[-1, 3]$? Yes
Differentiable on $(-1, 3)$? NO
 $f(x) = 2|x + \frac{1}{2}|$. Not differentiable Q
We can't use
Mean value theorem