TD I : Révisions de Licence (exercices supplémentaires)

- \bullet 8 Septembre 2025-12 Septembre 2025
- Master I Isifar
- Probabilités

Pour aller plus loin

Exercice 1 (un (contre)-exemple à garder en tête)

On note C l'ensemble de Cantor, qui est obtenu, récursivement, en enlevant $I_1^{(1)} := (1/3, 2/3)$ à l'intervalle [0,1], puis en enlevant les tiers intermédiaires $I_2^{(1)} = (1/9, 2/9), I_2^{(2)} = (7/9, 8/9)$ des deux intervalles restants, et ainsi de suite, de sorte qu'à l'etape n on enlève 2^{n-1} intervalles tous de taille $1/3^n$, notés $I_n^{(j)}$, $j = 1...2^{n-1}$.

On définit la fonction croissante :

$$F(x) := \begin{cases} 0 & \text{si } x \leq 0 \\ 1 & \text{si } x \geq 1 \\ \frac{2j-1}{2n} \text{ si } x \in I_n^{(j)}. \end{cases}$$

- 1. La fonction F est-elle continue?
- 2. Dans quel ensemble la variable X, de fonction de répartition F—définie ci-dessus— prend elle ses valeurs? Que vaut $\mathbb{E}[X]$? Que vaut $\mathbb{P}(|X \mathbb{E}[X]| < 1/8)$? Pour $x \in C$, que vaut $\mathbb{P}(X = x)$?
- 3. Justifier que la variable X est uniforme sur C. Admet-elle une densité sur [0,1]?
- 4. Quelle est la loi de Y = F(X)?
- 5. Pourrait-on ainsi définir une variable aléatoire uniforme sur $\mathbb{Q} \cap [0,1]$?
- 6. Soient $\{X_j, j \in \mathbb{N}^*\}$ une famille de variables i.i.d., distribuées suivant la loi de Bernoulli de parmaètre 1/2. On définit $X = 2\sum_{j \geq 1} \frac{X_j}{3^j}$. Quelle est la loi de X?
- 7. Calculer Φ_X et montrer qu'elle est constante sur $\{3^k\pi, k \in \mathbb{N}^*\}$.

Exercice 2

Dans ce qui suit ||.|| désigne la norme euclidienne.

$$\begin{array}{l} \text{Pour } \varepsilon \in (0,1), \, n \in \mathbb{N} \\ \text{on note } A_{n,\varepsilon} := \{x \in \mathbb{R}^n : (1-\varepsilon)(n/3)^{1/2} \leq ||x|| \leq (1+\varepsilon)(n/3)^{1/2}\}, \, \text{et } C_n = [-1,1]^n. \end{array}$$

Montrer que pour tout $\varepsilon \in (0,1)$, la mesure de Lebesgue de $C_n \cap A_{n,\varepsilon}^c$ est négligeable, pour $n \to \infty$, devant celle de C_n .

Indication: On notera qu'un point générique dans C_n a pour coordonnées $(X_1,...,X_n)$, avec $\{X_i,i\geq 1\}$ une famille de variables aléatoires i.i.d, uniformes sur [-1,1].

Note: Ceci signifie que pour ε aussi petit qu'on souhaite le prendre, lorsque n est grand, la majeure partie du volume de l'hypercube C_n se trouve dans la couronne $A_{n,\varepsilon}$ (!)

Exercice 3

Soit $X \sim \Gamma(1, s)$. On définit $Y \sim \text{Poisson}(X)$, (c'est-à-dire que conditionnellement à $X = x, Y \sim \text{Poisson}(x)$).

- 1. Calculer Φ_{Y} .
- 2. Montrer que lorsque $s \to \infty$,

$$\frac{Y - E[Y]}{\sqrt{\operatorname{var}(Y)}} \stackrel{\text{(loi)}}{\longrightarrow} Z,$$

où $Z \sim \mathcal{N}(0,1)$. Y a-t-il un lien avec le théorème central limite?

Exercice 4

(Une remarque importante sur la convergence en loi.)

Soit, pour $n \ge 1$, X_n un variable aléatoire dont la fonction de répartition est définie par

$$F_n(x) = x - \frac{\sin(2n\pi x)}{2n\pi}, \ 0 \le x \le 1.$$

- 1. Montrer que X_n converge en loi vers une variable X (dont on décrira la loi).
- 2. Vérifier que X_n et X sont des variables à densité. On note $f_n := F'_n$ la densité de X_n , f celle de X. A-t-on $f_n \xrightarrow[n \to \infty]{} f$ simplement?

Exercice 5

(Le problème des anniversaires)

On cherche a approximer la probabilité que parmi N personnes, au moins deux (resp. trois) aient leur anniversaire le même jour.

- 1. Pour $1 \leq i < j \leq N$, on note E_{ij} l'événement que les personnes i,j aient le même anniversaire. Quelle est la probabilité de E_{ij} ? Dans la suite de l'exercice on omet de considérer le cas des 29 février. Que vaut alors $P(E_{ij})$? Montrer que les événements E_{12}, E_{23}, E_{13} sont indépendants deux à deux, mais pas mutuellement indépendants. Exprimer la probabilité qu'il y ait au moins deux personnes qui aient leur anniversaire le même jour.
- 2. Le but de cette question n'est pas d'obtenir un résultat exact, mais de faire une approximation assez bonne de la probabilité que parmi N personnes, il v en ait au moins deux qui partagent le même anniversaire. On admettra donc que dans la suite on fait l'approximation que les $\{E_{ij}, 1 \leq i < j \leq N\}$ sont mutuellement indépendants. Quelle est alors la loi du nombre de couples ayant le même anniversaire? Approximer le résultat pour N=30, N=60.
- 3. Par une méthode similaire, approximer la probabilité que parmi 60 personnes, il y en ait au moins trois qui ont leur anniversaire le même jour. Finalement, approximer la probabilité de cet événement lorsque N = 90.

Exercice 6

(Quelques variantes du modèle de branchement aléatoire)

On considère le modèle de branchement aléatoire qui est un modèle pour l'évolution d'une population haploïde.

On part initialement de Z_0 ancêtres, et on note Z_n le nombre total d'individus de la génération n.

On fait l'hypothèse (pas très réaliste) que tous les individus ont exactement le même temps de vie (disons 1), et que de plus deux générations distinctes ne cohabitent pas. Ainsi chacun des ancêtre meurt au temps 1, et donne naissance à un nombre aléatoire d'individus, de façon indépendante de ses contemporains. Tous les individus qui sont nés au temps 1 forment la génération 1. La génération 1 meurt au temps 2 en donnant naissance à la génération 2, etc...

Formellement, on se donne une loi de branchement ν sur les entiers positifs, telle que $\nu(1) < 1$ et $\sum_{k>0} k\nu(k) = \mu \in [0,\infty)$ On introduit alors une famille $(X,X_{i,k}, i \geq 0, k \geq 1)$ de variables aléatoires i.i.d, toutes de loi μ . Si jamais la génération i possède un k-ième individu, $X_{i,k}$ désigne le nombre de ses descendants.

- 1. Pour $n \ge 1$, exprimer Z_n en fonction de Z_{n-1} et des $(X_{n-1,k}, k \ge 1)$.
- 2. On note $G_X(t)=E[t^X]$, $G_{Z_n}(t)=E[t^{Z_n}]$ (qui ne sont autres, modulo un simple changement de variable, que les fonctions génératrice des moments de X, Z_n). Exprimer G_{Z_n} en fonction de
- 3. On note ζ le probabilité d'extinction. A quelle condition sur μ a-t-on $\zeta = 1$ p.s.? $\begin{array}{l} Indication: \text{On pourra considérer la suite } \zeta_n = \mathbb{P}(Z_n = 0) \\ \text{4. Une première } martingale, \text{ Calculer } \mathbb{E}[Z_{n-1}|Z_n]. \text{ On pose } M_n = Z_n/\mu^n. \text{ Calculer } \mathbb{E}[M_{n+1}|M_n]. \end{array}$

Pour plus de détails, on pourra voir l'introduction du livre de D.WILLIAMS, Probability with martingales, Cambridge University Press, 1991.

- 1. On considère (dans cette question uniquement) un processus de branchement avec immigration. On garde la même dynamique : à sa mort, un individu donne naissance à un nombre al'atoire de descendants suivant la loi μ . De plus, chaque génération voit maintenant arriver un nombre aléatoire d'immigrants, indistinguables des individus déjà présents. Formellement, on se donne une loi ν sur $\mathbb N$ et on introduit $Y,Y_1,...Y_n$ des variables i.i.d. de loi ν . La génération n reçoit Y_n individus au temps n. On note $G_Y(t)=E[t^Y]$. Trouver une relation entre G_{Z_n},G_Y et G_{Z_0} .
- 2. Enfin, on considère un processus de branchement dont les individus n'ont pas tous un temps de vie égal à 1. Pour simplifier un peu, on va seulement considérer la descendance d'un unique ancêtre, i.e. on pose $Z_0=1$. \ Formellement, on se donne une loi P_T sur \mathbb{R}_+ , dont la densité est notée f_T . On définit famille de variables aléatoires $(T_i, i \in \mathbb{N})$ i.i.d, de loi P_T . On peut numéroter les individus en les classant suivant leur date de naissance. On définit alors T_i comme le temps de vie du i-ième individu.

Pour $t \ge 0$, on note Z_t le nombre total d'individus qui sont en vie au temps t. On note enfin $G_t(s) = E[s^{Z_t}]$.

- Montrer que $G_t(s) = \int_0^\infty E[s^{Z_t}|T_0=u] f_T\!(u) du$
- En déduire

$$G_t(s) = \int_0^t G_X(G_{t-u}(s)) f_T(u) du + \int_t^\infty s f_T(u) du.$$

- Dans le cas où $f_T(s) = \lambda \exp(-\lambda s)$, montrer alors que

$$\frac{\partial t}{\partial t}G_t(s) = \lambda \left[G_X(G_t(s)) - G_t(s)\right]$$