L	$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\sigma_{1}^{\#2}_{+}$	$\tau_{1}^{\#1}_{\alpha\beta}$	$\sigma_{1^{-}lpha}^{\#1}$	$\sigma_{1}^{\#2}$	$t_{1^{-}}^{\#1}$	$ au_1^{\#2} lpha$
$\sigma_1^{\#1} + \alpha \beta$	0	$\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+k^2)}$	$\frac{2 i \sqrt{2} k}{(\alpha_0 - 4 \beta_1) (1 + k^2)}$	0	0	0	0
$\sigma_1^{\#2} + \alpha \beta$	$\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+k^2)}$	$-\frac{2}{(\alpha_0-4\beta_1)(1+k^2)^2}$	$-\frac{2ik}{(\alpha_0-4\beta_1)(1+k^2)^2}$	0	0	0	0
$\tau_1^{\#1} + \alpha \beta$	$-\frac{2 i \sqrt{2} k}{(\alpha_0 - 4 \beta_1) (1 + k^2)}$	•	$-\frac{2k^2}{(\alpha_0\!-\!4\beta_1)(1\!+\!k^2)^2}$	0	0	0	0
$\sigma_{1}^{\#1} +^{\alpha}$	0	0	0	0	$-\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+2k^2)}$	0	$-\frac{4ik}{(\alpha_0-4\beta_1)(1+2k^2)}$
$\sigma_{1}^{\#2} +^{lpha}$	0	0	0	$-\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+2k^2)}$	$-\frac{2}{(\alpha_0-4\beta_1)(1+2k^2)^2}$	0	$-\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+2k^2)^2}$
$\tau_1^{\#_1} +^\alpha$	0	0	0	0	0	0	0
$\tau_{1}^{\#2} +^{\alpha}$	0	0	0	$\frac{4ik}{(\alpha_0-4\beta_1)(1+2k^2)}$	$\frac{2i\sqrt{2}k}{(\alpha_04\beta_1)(1+2k^2)^2}$	0	$-\frac{4k^2}{(\alpha_{0}-4\beta_{1})(1+2k^2)^2}$

	$\omega_{2^{+}lphaeta}^{\sharp1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_2^{\#1}_{\alpha\beta\chi}$
$\omega_{2^{+}}^{\sharp 1}\dagger^{lphaeta}$	$-\frac{\alpha_0}{4}+\beta_1$	$\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0
$f_{2+}^{#1} \dagger^{\alpha\beta}$	$-\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	$2 \beta_1 k^2$	0
$\omega_2^{\sharp 1} \dagger^{lphaeta\chi}$	0	0	$-\frac{\alpha_0}{4} + \beta_1$

	$\sigma^{\#1}_{2^+lphaeta}$	$ au_2^{\#1}{}_{lphaeta}$	$\sigma_{2^{-}\alpha\beta\chi}^{\#1}$
$\sigma_{2}^{\#1}\dagger^{lphaeta}$	$-\frac{16\beta_1}{\alpha_0^2-4\alpha_0\beta_1}$	$\frac{2i\sqrt{2}}{\alpha_0 k}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$-\frac{2i\sqrt{2}}{\alpha_0 k}$	$\frac{2}{\alpha_0 k^2}$	0
$\sigma_2^{\sharp 1} \dagger^{lphaeta\chi}$	0	0	$\frac{1}{-\frac{\alpha_0}{4} + \beta_1}$
		·	

	$\sigma_{0}^{\#1}$	$\tau_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$\frac{8\beta_1}{\alpha_0^2 - 4\alpha_0\beta_1}$	$-\frac{i\sqrt{2}}{\alpha_0 k}$	0	0
$\tau_{0}^{\#1}$ †	$\frac{i}{\alpha_0} \frac{\sqrt{2}}{k}$	$-\frac{1}{\alpha_0 k^2}$	0	0
$\tau_{0}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\sharp 1}$ †	0	0	0	$\frac{2}{\alpha_0-4\beta_1+2\alpha_3 k^2}$

$f_{1^-}^{\#2} \alpha$	0	0	0	$-\frac{1}{2}$ if $(\alpha_0-4\ \beta_1)\ k$	0	0	0
$f_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\omega_{1^-}^{\#2}{}_{lpha}$ $f_{1^-}^{\#1}{}_{lpha}$	0	0	0	$-\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	0	0	0
$\omega_{1^{^{-}}\alpha}^{\#1}$	0	0	0	$rac{1}{4}\left(lpha_0$ - 4 $eta_1 ight)$	$-\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	0	$\frac{1}{2}$ \bar{l} (α_0 - 4 β_1) k
$\omega_1^{\#2}{}_+^2 \alpha_eta f_1^{\#1}{}_+^2 lpha$	$\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#2}{}_+\alpha\beta$	$\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#1}{}_+\alpha\beta$	_	$\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	$-\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0	0	0	0
	β	$+^{\alpha\beta}$	$f_{1}^{#1} + \alpha \beta$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_{1}^{\#2} +^{lpha}$	$f_{1}^{\#1} +^{\alpha}$	$f_1^{\#2} +^{\alpha}$

SO(3) irreps # $\tau_{0^{+}}^{\#2} == 0 $	Source constraints		
$\tau_{1-}^{\#2\alpha} + 2 i k \sigma_{1-}^{\#2\alpha} == 0 3$ $\tau_{1-}^{\#1\alpha} == 0 \qquad 3$ $\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0 3$	SO(3) irreps #		
$\tau_{1}^{\#1\alpha} = 0 \qquad 3$ $\tau_{1}^{\#1\alpha\beta} + i k \sigma_{1}^{\#2\alpha\beta} = 0 \qquad 3$	$\tau_{0+}^{\#2} == 0$	1	
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0 \ 3$	$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3	
- -	$\tau_{1}^{\#1\alpha} == 0$	3	
Total #: 10	$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3	
	Total #:	10	

$\omega_{0}^{\#1}$	0	0	0	$\frac{\alpha_0}{2} - 2\beta_1 + \alpha_3 k^2$
$f_{0}^{\#2}$	0	0	0	0
$f_{0}^{\#1}$	$-\frac{i(\alpha_0-4\beta_1)k}{\sqrt{2}}$	$-4 eta_1 k^2$	0	0
$\omega_{0}^{\#1}$	$\frac{1}{2}(\alpha_0-4\beta_1)$	$\frac{i(\alpha_0-4\beta_1)k}{\sqrt{2}}$	0	0
	$\omega_{0}^{\#1}$ †	$f_{0}^{\#1}$ †	$f_{0}^{#2}$ \dagger	$\omega_{0}^{\#1}\dagger$

Lagrangian density

Massive particle				
Pole residue:	$-\frac{1}{\alpha_3} > 0$			
Polarisations:	1			
Square mass:	$-\frac{\alpha_0-4\beta_1}{2\alpha_3}>0$			
Spin:	0			
Parity:	Odd			

Quadratic pole			
Pole residue: $\frac{1}{\alpha_0} > 0$			
Polarisations:	2		