Tendon Reflexes

Suriya Selvarajan (DTP) Varghese Reji (DAA)

TIFR Mumbai

February 4, 2021

Outline

- 1 Introduction
- 2 Principle
- 3 Observation
- 4 Modeling
 - Moment of Inertia and Damping Constant
 - Modeling Forces
- 5 Conclusion
 - Driving Signal
- 6 References

Modeling

The deep Tendon Reflex

- If you tap on the tendon of a muscle, it constracts. Its synergista contract and its antagonists are inhibited.polysynaptic reflex
- A tap on the patellar tendon stretches the extensor muccle and its spindles.

Introduction

000

Introduction 000

Materials Required

Introduction

000

- Person with an intact knee
- Knee Hammer
- Video from the side which measures theta change with time

Knee Jerk Reflex

- The reflex signal passes back to the quardriceps muscle via the alpha motor neuron to produce a sudden contraction and forces the leg to move forward with a jerk.
- As the muscle relaxes, the leg system acts as a Damped Compound Pendulum, swinging back and forth for a few oscillations.
- Eventually the leg returns to the normal position.
- Forward movement corresponds to contraction of tendon
- backward motion corresponds to stretch of tendon

Tracker output

Modeling

00

Assumptions:

- Small oscillations: $\sin \theta \sim \theta$ $\theta \sim \frac{x}{L}$
- Knee modelled to be a rod of uniform mass density
- No voluntary effort
- Mass: 3.5kg, L=0.5m, $I = \frac{ML^2}{3}$
- Underdamped Oscillator: EOM:

$$\ddot{\theta} = -\frac{b}{I}\dot{\theta} - \frac{mgI\lambda}{I}\theta$$

$$x(t) = e^{-\frac{bt}{2I}}\cos(\omega' t + \phi)$$
 $\frac{b}{2I} = \sigma$

$$\omega' = \sqrt{\frac{mgl}{2I} - \frac{b^2}{4I^2}} \qquad \omega^2 = \frac{mgl}{2I}$$

Moment of Inertia

For θ change using moment of inertia

Modeling .00

Moment of Inertia and Damping Constant

Moment of Inertia for the possible models

$$\ddot{\theta} = -\frac{b}{I}\dot{\theta} - \frac{mgI\lambda}{I}\theta$$

Predicted moment of inertia (kg m^2)	Computed moment inertia	Lambda
0.775	0.3	1/2
0.32	0.4	5/12
0.904	0.146	7/12

Moment of Inertia and Damping Constant

Prediction:1

$$x(t) = Ae^{-\sigma t}\cos(\omega t + \phi)$$

Moment of Inertia and Damping Constant

Abrration:

Prediction 2:

$$\sigma = 0.41s$$
 $T = 1.9s$

Modeling Forces

Modified Model

$$x(t) = \begin{cases} Ae^{-\sigma t}\cos(\omega t + \phi) & \text{for } x > 0\\ Ae^{-\sigma t}\cos(\omega t + \phi) + \frac{F}{k} & \text{for } x > 0 \end{cases}$$

Modeling Forces

Results Modified Model(Parameter F=0.15)

For future work

- It takes about 6s for complete return to equilibrium position
- Train of impulse response? Time interval 3s and 1s and see if the system response is a linear sum or not.

 $\delta_{T_0}(t) = \sum_{k=-\infty}^{k=\infty} \delta(t - kT_0)$

⇒Sum of Impulse Response

Principle Observation Modeling Conclusion References

○ ○ ○ ○ ○ ○ ○ ○ ○

Driving Signal

Driving Signal

References

- A modified dynamic modef of the human lower limb during complete gait cycle S M Nacy1*, S S Hassan1 and M Y Hanna1
- Nonlinear complexity of human biodynamics engine Vladimir G. Ivancevic
- Lagrangian Approach to Modeling the Biodynamics of the Upper Extremity: Applications to Collegiate Baseball Pitching
- H. Hong, S. Kim, C. Kim, S. Lee, and S. Park, "Spring-like gait mechanics observed during walking in both young and older adults," Journal of biomechanics, vol. 46, pp. 77-82, 2013.
- Stanley Dunn, Alkis Constantinides, Prabhas V. Moghe Numerical Methods in Biomedical Engineering (2005)
- Mechanical properties of human patellar tendon at the hierarchical levels of tendon and fibril