

What is computer vision?

Capturing, processing, analysis and interpretation of images

- capturing
 - inherent properties of the imaging process
 - shutter (rolling/global)
 - noise
 - lens distortion
 - compression and color formats

What is computer vision?

Capturing, processing, analysis and interpretation of images

- processing
 - low level feature detection
 - contrast & color management
 - denoising

• Before After

What is computer vision?

Capturing, processing, analysis and interpretation of images

- analysis
 - higher-level structure
 - global image metrics
- interpretation
 - classification
 - object recognition
 - localisation

Applications of computer vision

- monitoring
- interfacing
- automation

• ...

What will you be doing

- 6 lab topics (6 weeks)
 - Standard computer vision concepts, some easy, some difficult
 - Assignments are on Ufora
 - In principle, these are made individually, but collaboration and communication are encouraged
 - Platform: Python, OpenCV, PyTorch
- 1 group project (6 weeks)
 - Assignment to be communicated later

Practical

What is expected of you for the lab sessions?

- Each student enters a report for every lab session via the Ufora exercise assignment
 - Follow the structure of the assignment
 - Write an answer to any questions in the assignment
 - Show an image of the solution of every assignment
 - Include the full source code of your solution at the end of the report (within the same file)
 - Also upload the python script separately so I can debug it if necessary
 - Tips for making my life easier (improves my mood while grading):
 - Use relative paths for source images (not "c:/Documents and Settings/Jantje/...")
 - Do not zip an entire visual studio project to send me 30 lines of code
 - Provide a few comments to clarify which block of code solves which assignment

Plagiarism on the lab reports

- You can work together and share code (how could we stop you?)
- If your solutions and reports are identical, please mark the names of the contributors
 - No more than five names per report please
- However, to make sure that everyone is at least in possession of a working solution
 - Print your name(s) onto the result images using opency code
 - Make a function for this in lab 1 and use it for every result
 - Every collaborator uploads a copy of this joint report from his own Ufora account
 - That way I am sure you can at least read it if you want to

Computer Vision Report: Lab 1

Example of a report

 This example can be found on Ufora John Doe & Jane Smith

Question 1

Why did the chicken cross the road? To get to the other side.

Exercise 1

Code

```
import cv2

def print_name(im, name):
    im = cv2.putText(im, name, (10, im.shape[0]-15), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
        (255,255,255), 1, cv2.LINE_AA)
    return im
```

Attendance

- Attendance to the lab sessions is not mandatory
- The assignments are intended to be self-explanatory and there will not be lectures preceding the lab unless explicitly announced on Ufora
- Anyone can ask questions via teams during the lab hours, but people physically in the lab get priority

Deadlines (tentative)

Item	Due date
Lab 1 report	Feb 17
Lab 2 report	Feb 24
Lab 3 report	Mar 3
Lab 4 report	Mar 10
Lab 5 report	Mar 17
Lab 6 report	Mar 24
Project	Theory exam date; tbd