

STAT 4224/5224

Bayesian Statistics

Dobrin Marchev

Recall: Metropolis-Hastings Algorithm

- Very general method for constructing a Markov chain with a specific invariant density f(x), which is the target for the simulation.
- Suppose that q(y|x) is any conditional density, called proposal density.
- Algorithm:
 - \circ Step 0: Start at any $X = x_0$
 - Step 1: Generate $Y_i \sim q(y|x_{i-1})$
 - o Step 2: Set $X_i = \begin{cases} Y_i \text{ with probability } \alpha(x_{i-1}, y_i) \\ x_{i-1}, \text{ o/w} \end{cases}$

where
$$\alpha(x, y) = \min \left\{ \frac{f(y)}{f(x)} \frac{q(x|y)}{q(y|x)}, 1 \right\}$$
 is called the acceptance probability

o Go to Step 1 and repeat

Notes:

- \circ When q(y|x) is symmetric, the algorithm is known as Metropolis.
- O When q(y|x) does not depend on x, the algorithm is known as Independent Metropolis-Hastings.
- O When q(y|x) = g(y-x), the algorithm is known as Random Walk Metropolis-Hastings (see next slide)

Hamiltonian Monte Carlo

- Hamiltonian Monte Carlo improves the efficiency of MH by employing a guided proposal generation scheme.
- More specifically, HMC uses the gradient of the log posterior to direct the Markov chain towards regions of higher posterior density.
- As a result, a well-tuned HMC chain will accept proposals at a much higher rate than the traditional MH algorithm.
- While both MH and HMC produce ergodic Markov chains, the mathematics of HMC is substantially more complex than that of MH.

- Suppose $f(\theta)$ is a onedimensional posterior density function, and $-\log[f(\theta)]$ assumes the shape of an inverse bell-shaped curve.
- To generate θ in a region of high posterior density, one needs to sample θ in the region corresponding to the lower values of $-\log f(\theta)$; the region can be reached with the guidance of the gradient of $-\log f(\theta)$.

Hamiltonian Dynamics

- In a sense, the approach is analogous to the movement of a hypothetical object on a frictionless curve, where the object traverses and lingers at the bottom of the valley while occasionally visiting the higher grounds on both sides.
- In classical mechanics, such movements are described by the Hamiltonian equations, where the exchanges of kinetic and potential energy dictate the object's location at any given moment.

The Hamiltonian Equations

In a Hamiltonian system, the horizontal and vertical positions are given by (θ, p) . In MCMC, we are interested in $\theta \sim f(\theta)$. The parameter p, which is often referred to as the momentum, is an auxiliary quantity that we use to simulate θ under the Hamiltonian equations. The momentum matches the dimensionality of θ as a vector of length k.

We write the Hamiltonian function as $H(\theta, \mathbf{p})$, which consists of *potential* energy $U(\theta)$ and *kinetic* energy $K(\mathbf{p})$:

$$H(\boldsymbol{\theta}, \boldsymbol{p}) = U(\boldsymbol{\theta}) + K(\boldsymbol{p}), \boldsymbol{p}, \boldsymbol{\theta} \in \mathbb{R}^k$$

In statistical applications of MCMC, we are primarily interested in generating $\boldsymbol{\theta}$ from a given distribution $f(\boldsymbol{\theta})$. To do so, we let $U(\boldsymbol{\theta}) = -\log f(\boldsymbol{\theta})$. For momentum, we typically assume $\mathbf{p} \sim N_k(0, \boldsymbol{M})$, where \boldsymbol{M} is a user-specified covariance matrix.

Hamiltonian Equations

Under the above formulation, we have that:

$$H(\boldsymbol{\theta}, \boldsymbol{p}) = -\log f(\theta) + \frac{1}{2}p'Mp$$

Over time, HMC travels on trajectories that are governed by the following first-order differential equations, known as the Hamiltonian equations:

$$\frac{\partial p}{\partial t} = -\frac{\partial H(\boldsymbol{\theta}, \boldsymbol{p})}{\partial \theta} = -\frac{\partial U(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \nabla_{\boldsymbol{\theta}} \log f(\boldsymbol{\theta})$$
$$\frac{\partial \boldsymbol{\theta}}{\partial t} = -\frac{\partial H(\boldsymbol{\theta}, \boldsymbol{p})}{\partial p} = -\frac{\partial K(\boldsymbol{p})}{\partial p} = \boldsymbol{M}^{-1}\boldsymbol{p}$$

where $\nabla_{\theta} \log f(\theta)$ is the gradient of the log posterior. A solution to the Hamiltonian equations is a function that defines the path of (θ, p) from which specific values of θ could be sampled.

Solving the Hamiltonian Differential Equations

- Solving the Hamiltonian equations is a critical step in HMC simulation.
- A standard approach for solving differential equations is Euler's method, which produces a discrete function that approximates the solution at each time *t*.
- Errors tend to accumulate in Euler's method, especially after a larger number of steps.
- In HMC, one often has to take a larger number of steps to ensure the new proposal is sufficiently far from the location of the previous sample.

Leapfrog method

The leapfrog method is a good alternative to the standard Euler's method for approximating the solutions to Hamiltonian equations (Ruth 1983).

The leapfrog algorithm modifies Euler's method by using a discrete step size ϵ individually for p and θ , with a full step ϵ in θ sandwiched between two half-steps ϵ /2 for p:

$$p\left(t + \frac{\epsilon}{2}\right) = p(t) + \left(\frac{\epsilon}{2}\right) \nabla_{\theta} \log f(\theta(t))$$
$$\theta(t + \epsilon) = \theta(t) + \epsilon M^{-1} p\left(t + \frac{\epsilon}{2}\right)$$
$$p(t + \epsilon) = p\left(t + \frac{\epsilon}{2}\right) + \left(\frac{\epsilon}{2}\right) \nabla_{\theta} \log f(\theta(t + \epsilon))$$

Hamiltonian Monte Carlo

- Why does HMC work much better?
- Doesn't get stuck follows gradient
- Extra variables (momentum, energy) provide diagnostics
- But also requires more
 - Gradients curvature of log-posterior
 - "Mass" of particle
 - Number of leaps in a single trajectory
 - Size of individual leaps
- These need to be tuned right
- Gradients are unique to each model

The U-Turn Problem

Figure 9.6

- mc-stan.org
- Install RStan
 - 1. Get C++ compiler
 - 2. ???
 - 3. Profit

Stanislaw Ulam (1909–1984)

ways to run Stan

Stan Interfaces

The Stan modeling language and statistical algorithms are exposed through interfaces into many popular computing environments.

- RStan (R)
 - · PyStan (Python)
 - CmdStan (shell, command-line terminal)
 - MatlabStan (MATLAB)
 - Stan.jl (Julia)
 - StataStan (Stata)
 - · MathematicaStan (Mathematica)

Programs written in the Stan modeling language are portable across interfaces.

- No U-Turn Sampler (NUTS2): Adaptive Hamiltonian Monte Carlo
- Implemented in Stan (rstan: mc-stan.org)

https://chi-feng.github.io/mcmc-demo/