AI新手村攻略

探險技能--影像視覺

隨堂複習

DNN with cifar10

Cifar10 ?哪位?

cifar10

airplane automobile bird cat deer dog frog horse ship truck

這個 Alex 也是大有來頭的

- 由 Alex Krizhevsky,
 Geoffrey Hinton 收集的
- 有 10 個類別,每個類別有 6,000 張,總共有60,000 張 影像

train 一發吧!!!

不好 train 齁~~

Convolutional Neural Network (CNN)

視覺神經網絡

複習一下 DNN

複習一下 DNN

Forward 計算 - 第一個人拿到訊息, 往後傳, 傳到最後對答案

Backward 計算 - 最後一個人對完答案, 請前面的人修正訊息

Backward 計算 - Gradient Descent

Q: 找到 w* 很難嗎??

因為....

L之於w就像是....凹曲面 目標找到最好的 w* 使得 loss 最小

長.....

加分密技請看 Appendix A

為什麼更新的數學式長這樣?

Q: 怎麼找到最低點 w*?

A: 沿著""切線""方向找, 就不會錯

切線就要先算, 切線斜率, 要算 Gradient

Q: 沿著切線走, 那一步要走多遠??

A: 設定 lr 決定, 一步距離

 $W_{11}^3 - Ir \times \nabla_{W_{11}^3} - L$

終極目標

更新 w, 找到可以使得答對最多的傳遞過程

Backward 計算 - 最後一個人對完答案, 請前面的人修正訊息

Backward 計算 - Backward + Chain Rule = Backpropagation

什麼年代, 微分用 limit 算

$$\lim_{h\to 0} \frac{\left((\mathbf{W}+h)x+b\right) - (\mathbf{W}x+b)}{h}$$

Backward

叫什麼 Chain Rule 老掉牙了~~ 現在要叫 Backpropagation

當然是 Chain Rule 呀!!!

$$\frac{\partial L(\mathbf{W})}{\partial \mathbf{W}} = \frac{\partial L(\sigma(\mathbf{W}x + \mathbf{b}))}{\partial \mathbf{W}}$$
$$= \frac{\partial L}{\partial \sigma} \frac{\partial \sigma(z)}{\partial z} \frac{\partial (\mathbf{W}x + \mathbf{b})}{\partial \mathbf{W}}$$

$$W_{11}^3 - Ir \times \nabla_{W_{11}^3} L$$

$$\nabla_{w_{31}} L = \nabla_{\hat{y}} L \times \nabla_{z_{31}} \hat{y} \times \nabla_{w_{31}} z_{31}$$

= -2(y-\hat{y}) \times z_{31}(1-z_{31}) \times z_{21}

回憶過去....cifar10

回憶過去....cifar10

Convolution Operation - 讓每個鄰居都很有關係

What is convolution?

Image

0	0	0	0	0
0	0	1	1	0
1	1	1	1	1
0	1	0	1	1
0	0	1	0	1

Filter

0	1	0
1	1	1
0	1	0

Convolution Operation - 讓每個鄰居都很有關係

What is convolution?

Feature Map

Convolution Operation - 讓每個鄰居都很有關係

What is convolution?

2 3

Feature Map

 $0 \times 0 + 0 \times 1 + 0 \times 0 + 0 \times 1 + 1 \times 1 + 1 \times 1 + 1 \times 0 + 1 \times 1 + 1 \times 0 = 3$

Convolution 卷積

Functional API

Conv2D

- input channel = 1
- filters = 1
- kernel_size = (3, 3)
- strides = (1, 1)

動手算算看....

看看你的學習有沒有 Overfitting??

Image

0	0	0	0	0	0
0	0	3	3	3	0
0	0	1	1	3	0
0	0	1	1	3	0
0	0	0	0	0	0
0	0	0	0	0	0

Filter 的古老密技

說說 Smoothing - 說說哪裡不一樣

Original Image

Average Filter

說說 Smoothing - 去去雜訊走

Original Image

Gaussian Filter

Median Filter

Average Filter

Bilteral Filter

Average Filter

	1	1	1
(1	1	1
	1	1	1

Gaussian Filter

0.045	0.122	0.045
0.122	0.332	0.122
0.045	0.122	0.045

說說 Sharpening - 就是能摸得著邊

CNN - convolution 和 NN 有什麼關係

CNN - convolution 和 NN 有什麼關係

Convolutional Neuron

很多個 Neuron 決定很多個影像的特徵

怎麼樣決定特徵的?

A Convolutional Neural Network

Convolution with Multi-Channel

Convolution with Multi-Channel

Functional API

Conv2D

- input_channel = 3
- filters = 1
- kernel_size = (3, 3)
- strides = (1, 1)

MaxPooling

Functional API

MaxPooling

- window_size = (2, 2)
- strides = (2, 2)

Flatten

Functional API

Flatten

• input_channel = 3

動手刻一個 CNN Model

Data Preprocessing

資料前處理

不急 train 一發 要先做前處理....

為什麼要做前處理?

影像大小不同

我是柴柴

我變秋田了

我變成科基了

方式之一....

我是柴柴

我也是柴柴

我還是柴柴

Data Augmentation

資料增強

ImageGenerator

```
keras.preprocessing.image.ImageDataGenerator(featurewise center=False,
                                          samplewise center=False,
                                          featurewise std normalization=False,
                                          samplewise std normalization=False,
                                          zca whitening=False,
                                          zca epsilon=1e-06,
                                          rotation range=0,
                                          width shift range=0.0,
                                          height shift range=0.0,
                                          brightness range=None,
                                          shear range=0.0,
                                          zoom range=0.0,
                                          channel shift range=0.0,
                                          fill mode='nearest',
                                          cval=0.0,
                                          horizontal flip=False,
                                          vertical flip=False.
                                          rescale=None,
                                          preprocessing function=None,
                                          data format=None,
                                          validation split=0.0,
                                          dtype=None)
```

Transfer Learning

遷移式學習

一張影像的點線面

Transfer Learning 的概念

唯一不同的是....

The MileStone of the ILSVRC

Available models

Model	Size	Top-1 Accuracy	Top-5 Accuracy	Parameters	Depth
Xception	88 MB	0.790	0.945	22,910,480	126
VGG16	528 MB	0.713	0.901	138,357,544	23
VGG19	549 MB	0.713	0.900	143,667,240	26
ResNet50	98 MB	0.749	0.921	25,636,712	-
ResNet101	171 MB	0.764	0.928	44,707,176	-
ResNet152	232 MB	0.766	0.931	60,419,944	-
ResNet50V2	98 MB	0.760	0.930	25,613,800	-
ResNet101V2	171 MB	0.772	0.938	44,675,560	-
ResNet152V2	232 MB	0.780	0.942	60,380,648	-
InceptionV3	92 MB	0.779	0.937	23,851,784	159
InceptionResNetV2	215 MB	0.803	0.953	55,873,736	572
MobileNet	16 MB	0.704	0.895	4,253,864	88
MobileNetV2	14 MB	0.713	0.901	3,538,984	88
DenseNet121	33 MB	0.750	0.923	8,062,504	121
DenseNet169	57 MB	0.762	0.932	14,307,880	169
DenseNet201	80 MB	0.773	0.936	20,242,984	201
NASNetMobile	23 MB	0.744	0.919	5,326,716	-
NASNetLarge	343 MB	0.825	0.960	88,949,818	-
EfficientNetB0	29 MB	-	-	5,330,571	-
EfficientNetB1	31 MB		-	7,856,239	-
EfficientNetB2	36 MB	-	-	9,177,569	-
EfficientNetB3	48 MB	-	-	12,320,535	-
EfficientNetB4	75 MB	-	-	19,466,823	-
EfficientNetB5	118 MB		-	30,562,527	-
EfficientNetB6	166 MB	-	-	43,265,143	-
EfficientNetB7	256 MB	15	7	66,658,687	-

GlobalAveragePooling

Functional API

GlobalAveragePooling

Appendix A optimizer

Optimizer 優化器

- Gradient Descent (GD)
 - 模型看完一輪所有資料, 更新一次權重
 - 優點
 - 根據所有資料的訊息, 更新模型
 - 缺點
 - 結果好壞很依賴起始點
 - 很容易掉進去 Local Minimum 就限制住 找 Global Minimum 的可能

- Stochastic Gradient Descent (SGD)
 - 模型看完一小堆(batch)資料, 更新權重一次
 - 優點
 - 收斂速度上, 比 GD 快
 - 缺點
 - o 可能會抽到極端的擾動值資料, 偏離了 Global Minimum 的收斂方向

Optimizer 優化器

RMSProp

- 模型看完一小堆(batch)資料, 更新權重一次
- 優點
 - 不僅有依照當次計算的梯度做更新,還 有參考過去的梯度做更新依據
- 缺點
 - o 還是有掉進去 Local Minimum 的可能

$$\begin{split} w^{1} &\leftarrow w^{0} - \frac{\eta}{\sigma^{0}} g^{0} \qquad \sigma^{0} = g^{0} \\ w^{2} &\leftarrow w^{1} - \frac{\eta}{\sigma^{1}} g^{1} \qquad \sigma^{1} = \sqrt{\alpha(\sigma^{0})^{2} + (1 - \alpha)(g^{1})^{2}} \\ w^{3} &\leftarrow w^{2} - \frac{\eta}{\sigma^{2}} g^{2} \qquad \sigma^{2} = \sqrt{\alpha(\sigma^{1})^{2} + (1 - \alpha)(g^{2})^{2}} \\ &\vdots \\ w^{t+1} &\leftarrow w^{t} - \frac{\eta}{\sigma^{t}} g^{t} \qquad \sigma^{t} = \sqrt{\alpha(\sigma^{t-1})^{2} + (1 - \alpha)(g^{t})^{2}} \end{split}$$

ADAM

- ▶ 模型看完一小堆(batch)資料, 更新權重一次
- 加了 Momentum 的 RMSProp
- 優點
 - 給予一點點小小的擾動 (Momentum),協助翻出 Local Minimum 的小峽谷, 找到 Global Minimum 的可能
 - 適合大部分的優化狀況使用

```
Require: \theta_0: Initial parameter vector m_0 \leftarrow 0 (Initialize 1st moment vector) v_0 \leftarrow 0 (Initialize 2nd moment vector) t \leftarrow 0 (Initialize timestep) while \theta_t not converged do t \leftarrow t+1 g_t \leftarrow \nabla_\theta f_t(\theta_{t-1}) (Get gradients w.r.t. stochastic objective at timestep t) m_t \leftarrow \beta_1 \cdot m_{t-1} + (1-\beta_1) \cdot g_t (Update biased first moment estimate) v_t \leftarrow \beta_2 \cdot v_{t-1} + (1-\beta_2) \cdot g_t^2 (Update biased second raw moment estimate) \widehat{m}_t \leftarrow m_t/(1-\beta_t^1) (Compute bias-corrected first moment estimate) \widehat{v}_t \leftarrow v_t/(1-\beta_t^2) (Compute bias-corrected second raw moment estimate) \theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t/(\sqrt{\widehat{v}_t} + \epsilon) (Update parameters) end while return \theta_t (Resulting parameters)
```