Лабораторная работа №1 «Дискретизация аналоговых сигналов» Модуль 3. Эффект наложения спектров при дискретизации сигналов.

- Спектр дискретизованного сигнала
- Эффект наложения
- Теорема Котельникова во временной области
- Эффект наложения спектров при дискретизации синусоидальных сигналов
- Оценка спектра сигнала по последовательности его отсчетов
- Теорема отсчетов в частотной области

Спектр дискретизованного сигнала.

Способы описания дискретных сигналов

1) Функция дискретного времени k .

Это описание в виде последовательности отсчетов x[k] в заданные моменты времени $k\Delta t$, $k\in Z$, где Δt — шаг дискретизации:

$$x[k] = Tx(k\Delta t), T \in \{1; \Delta t\}$$

где T — константа с размерностью времени, равная единице или Δt .

k	-1	0	1	2	3
x[k]	x[-1]	x[0]	x[1]	x[2]	x[3]

2) Функция непрерывного времени t (континуальная запись).

$$x_{\mathrm{I}}(t) = \sum_{k=-\infty}^{\infty} x[k] \delta(t - k\Delta t).$$

В этой записи дискретный сигнал представляет собой последовательность дельта-функций с площадями x[k].

В такой форме сигнал можно подставить в преобразование Фурье.

Спектр дискретизованного сигнала.

Спектр дискретизованного сигнала $X_{\pi}(f)$

Континуальная форма записи дискретизованного сигнала

$$x_{\mathrm{II}}(t) = T \sum_{k=-\infty}^{\infty} x_{\mathrm{a}}(k\Delta t) \delta(t - k\Delta t) = D(t) x_{\mathrm{a}}(t)$$

Идеальная функция дискретизации

$$D(t) = T \sum_{n=-\infty}^{\infty} \delta(t - n\Delta t).$$

D(t) — периодическая последовательность дельта-функций с периодом Δt и весами T.

Ряд Фурье для D(t)

$$D(t) = C_m \sum_{m=-\infty}^{\infty} \exp\left(jm \frac{2\pi}{\Delta t}t\right),\,$$

коэффициенты Фурье

$$C_m = \frac{T}{\Delta t} \int_{-\Delta t/2}^{\Delta t/2} \delta(t) \exp\left(-jm \frac{2\pi}{\Delta t} t\right) dt = \frac{T}{\Delta t}.$$

В итоге

$$x_{_{\mathrm{II}}}(t) = \frac{\mathrm{T}}{\Delta t} \sum_{m=-\infty}^{\infty} x_{\mathrm{a}}(t) \exp(jm \frac{2\pi}{\Delta t} t).$$

По теореме смещения для преобразования Фурье если

$$x_{\mathrm{a}}(t) \overset{FT}{\longleftrightarrow} X_{\mathrm{a}}(f)$$
, to $x_{\mathrm{a}}(t) \exp(jm\frac{2\pi}{\Delta t}t) \overset{FT}{\longleftrightarrow} X_{\mathrm{a}} \left(f - mf_{\mathrm{A}}\right)$.

Тогда

$$X_{\mathrm{A}}(f) = \frac{\mathrm{T}}{\Delta t} \sum_{m=-\infty}^{\infty} X_{\mathrm{a}}(f - mf_{\mathrm{A}}).$$

Эффект наложения.

$$X_{_{\mathrm{I}}}(f) = \frac{\mathrm{T}}{\Delta t} \sum_{m=-\infty}^{\infty} X_{\mathrm{a}}(f - mf_{_{\mathrm{I}}}).$$

T=1	спектр перед периодическим повторением			
$x[k] = x(k\Delta t)$	масштабируется			
$T = \Delta t$	$X_{\Pi}(f) = \sum_{n=1}^{\infty} X_{\mathbf{a}}(f - mf_{\Pi})$			
$x[k] = \Delta t \ x(k\Delta t)$	$m=-\infty$ спектр периодически повторяется			

Эффект наложения

Если спектр аналогового сигнала до дискретизации не был ограничен интервалом $\left[-f_{_{\rm I\! I}}/2,f_{_{\rm I\! I\! I}}/2\right]$, то возникает эффект наложения (англ. aliasing): спектр аналогового и дискретизованного на этом интервале не совпадают.

Частично устранить этот эффект можно применением фильтра нижних частот с частотой среза $f_c = f_{\rm д} / 2$, при этом информация о высокочастотных спектральных компонентах $|f| > f_c$ не сохраняется.

Теорема Котельникова во временной области.

Теорема Котельникова во временной области.

Теорема отсчетов для сигнала с финитным спектром (Котельников 1933 г., Шеннон 1949 г.). Если сигнал x(t) имеет спектр, ограниченный интервалом $[-f_{_{\rm B}},f_{_{\rm B}}]$, и не содержит гармонических компонент на частотах $\pm f_{_{\rm B}}^{-1}$, то он представим с помощью своих дискретных отсчетов $x(k\Delta t)$, взятых с шагом $\Delta t = \frac{1}{2\,f}$:

взятых с шагом
$$\Delta t=rac{1}{2f_{_{
m B}}}$$
:
$$x(t)=\sum_{k=-\infty}^{\infty}x(k\Delta t)rac{\sin(2\pi f_{_{
m B}}(t-k\Delta t))}{2\pi f_{_{
m B}}(t-k\Delta t)}.$$

Интерпретация. Если сигнал x(t) дискретизован с частотой $f_{_{\rm I\! I}}$, а его спектр ограничен интервалом $\left[-f_{_{\rm I\! I}}/2,\,f_{_{\rm I\! I}}/2\right]$, его можно представить с помощью дискретных отсчетов $x(k\Delta t)$. Частота $f_{_{\rm I\! I\! I}}/2$, равная половине частоты дискретизации, называется частотой Найквиста.

В пространстве сигналов из $L_2(-\infty,\infty)$ с спектром, ограниченным интервалом $\left[-f_{_{\rm I\! I}}/2,\,f_{_{\rm I\! I\! I}}/2\right]$, система функций отсчетов $\{\phi_k(t)\}_{k\in Z}$, таких, что

$$\varphi_k(t) = \frac{\sin(2\pi f_{\rm B}(t - k\Delta t))}{2\pi f_{\rm B}(t - k\Delta t)}, \Delta t = \frac{1}{2f_{\rm B}},$$

полна и ортогональна.

 $^{1.5 -} x(-\Delta t) \frac{\sin 2\pi f_B(t + \Delta t)}{2\pi f_B(t + \Delta t)} \times (0) \frac{\sin 2\pi f_B t}{2\pi f_B t}$ $1.0 - x(\Delta t) \frac{\sin 2\pi f_B(t - \Delta t)}{2\pi f_B(t - \Delta t)}$ $0.5 - x(\Delta t) \frac{\sin 2\pi f_B(t - \Delta t)}{2\pi f_B(t - \Delta t)}$ $0.0 - x(\Delta t) \frac{\sin 2\pi f_B(t - \Delta t)}{2\pi f_B(t - \Delta t)}$ $0.0 - x(\Delta t) \frac{\sin 2\pi f_B(t - \Delta t)}{2\pi f_B(t - \Delta t)}$ $-1.0 - \Delta t \qquad 0 \qquad \Delta t \qquad 2\Delta t \qquad 3\Delta t \qquad 4\Delta t$ t, c

¹ Без этой оговорки теорема Котельникова не выполняется, например, для случая дискретизации сигнала $x(t) = \sin(2\pi f_{_{\rm B}} t)$ с шагом $\Delta t = \frac{1}{2^{-f}}$.

Теорема Котельникова во временной области.

Алгоритм передачи непрерывного сигнала с помощью его отсчетов.

- Взять отсчеты $x(k\Delta t)$, $k = 0, \pm 1, \pm 2,...$
- Передать величины этих отсчетов.
- На приемном конце сформировать короткие импульсы с площадями $\Delta t x(k \Delta t)$.
- Восстановить сообщение с помощью фильтра нижних частот с полосой пропускания $[-f_e,f_e]$, подавая на вход сформированные короткие импульсы

Недостатки подхода.

- Спектры реальных сигналов ограничены по частоте приближено.
- Невозможно измерить отсчеты сигнала за бесконечно малый промежуток времени.
- Реальные фильтры восстановления отличаются от идеального фильтра нижних частот.
- Короткие импульсы отличны от дельта-функций.

Особенности дискретизации синусоидальных сигналов.

Особенности дискретизации синусоидальных сигналов.

Пусть сигнал $x(t)=\sin\left(2\pi f_0 t\right)$ дискретизуется с частотой дискретизации $f_\pi=1/\Delta t$.

Тогда

$$x[k] = \sin\left(2\pi f_0 k \Delta t\right) = \sin\left(2\pi \left(f_0 + \frac{n}{\Delta t}\right) k \Delta t\right) =$$
$$= \sin\left(2\pi \left(f_0 + n f_{\Pi}\right) k \Delta t\right).$$

Следовательно, гармонические сигналы с частотами f_0 $f_0 + n f_{\scriptscriptstyle
m II}$ дают одинаковый результат.

Последовательность цифровых отсчетов x[k], представляющая синусоиду с частотой f_0 , точно так же представляет синусоиды с другими частотами $f_0 + nf_\pi$.

Причина заключается в эффекте наложения спектров.

Пример. Дискретизованные косинусоиды с частотами $f_1=2,25\,$ Гц и $f_2=1,75\,$ Гц не различимы при частоте дискретизации $f_{\pi}=4\,$ Гц.

Оценка спектра сигнала по последовательности его отсчетов

Оценка спектра сигнала по последовательности его отсчетов

Пусть есть последовательность выборок $x(k\Delta t)$, некоторого аналогового сигнала x(t), где Δt — шаг дискретизации — интервал времени между каждой парой соседних эквидистантных отсчетов, $k \in \mathbb{Z}$ — номер отсчета.

 $f_{_{
m I}}=1/\Delta t$ — частота дискретизации — величина, обратная шагу дискретизации (размерность [Гц]=[c^{-1}]). Будем считать, что спектр исходного аналогового сигнала ограничен интервалом $\left[-f_{_{
m I}}/2;\,f_{_{
m I}}/2
ight]$, а соответственно при

дискретизации не наблюдается эффект наложения спектров ($f_{_{\rm I\!I}} > 2 f_{_{\rm B}}$).

Рассмотрим последовательность отсчетов (дискретный сигнал) x[k], которую будем определять через выборки следующим образом

$$x[k] = Tx(k\Delta t),$$

где $T=\Delta t$. Как ранее было установлено, при $T=\Delta t$ спектр дискретизованного сигнала x[k] представляет собой периодическое повторение исходного спектра $X_{\rm a}(f)$ аналогового сигнала x(t) с периодом, равным частоте дискретизации f_{π} :

$$X_{\mathrm{I}}(f) = \sum_{n=-\infty}^{\infty} X_{\mathrm{a}}(f - nf_{\mathrm{I}}).$$

Необходимая спектральная информация будет содержаться в полосе $\left[-f_{_{\rm I\! I}}/2; f_{_{\rm I\! I}}/2\right]$. Теперь оценим спектр исходного сигнала по его выборкам в этой полосе.

Оценка спектра сигнала по последовательности его отсчетов

Континуальная запись дискретного сигнала x[k] в данном случае

$$x_{\pi}(t) = \sum_{k=-\infty}^{\infty} x[k] \delta(t - k\Delta t).$$

Вычислим его спектр (преобразование Фурье)

$$X_{\mathrm{I}}(f) = \int_{-\infty}^{\infty} x_{\mathrm{I}}(t) \exp(-j2\pi f t) dt =$$

$$= \int_{-\infty}^{\infty} \sum_{k=-\infty}^{\infty} x[k] \delta(t - k\Delta t) \exp(-j2\pi f t) dt =$$

$$= \sum_{k=-\infty}^{\infty} x[k] \int_{-\infty}^{\infty} \delta(t - k\Delta t) \exp(-j2\pi f t) dt = \sum_{k=-\infty}^{\infty} x[k] \exp(-j2\pi f k\Delta t),$$

Таким образом, спектр дискретного сигнала определяется через его отсчёты по формуле

$$X_{\pi}(f) = \sum_{k=-\infty}^{\infty} x[k] \exp(-j2\pi f k \Delta t).$$
 (1)

Эта формула определяет прямое дискретное во времени преобразование Фурье (ДВПФ). Учитывая, что (1) представляет собой ряд Фурье для периодической функции

 $X_{\rm I}(f)^2$, получаем, что отсчётные значения дискретного сигнала соответствуют коэффициентам Фурье в этом ряде:

$$x[k] = c_{-k} = \frac{1}{f_{\pi}} \int_{-f_{\pi}/2}^{f_{\pi}/2} X(f) \exp(j2\pi f k \Delta t) df.$$
 (2)

В итоге получаем пару формул (1) и (2), определяющих прямое и обратное дискретное во времени преобразование Фурье (ДВПФ). ДВПФ в свою очередь показывает, каким является спектр дискретного сигнала x[k], который на отрезке оси частот $\left[-f_{_{\rm I\! I}}/2;f_{_{\rm I\! I}}/2\right]$ в отсутствии наложения совпадает со спектром исходного аналогового сигнала. При этом важно помнить, что в данном случае выборки аналогового сигнала связаны с дискретной последовательностью как $x[k] = \Delta t x (k \Delta t)$.

 $^{^2}$ Напоминание. Для 2l - периодической функции f(x), абсолютно интегрируемой на интервале (-l;l) ряд Фурье по системе функций $\phi_m(x) = \exp(jm\frac{\pi}{l}x)$, $m \in Z$: $f(x) = \sum_{m=0}^{+\infty} c_m \exp(jm\frac{\pi}{l}x)$, где коэффициенты Фурье $c_m = \frac{1}{2l} \int_{-l}^{l} f(x) \exp(-jm\frac{\pi}{l}x) dx$.

Теорема отсчетов в частотной области

Теорема отсчетов в частотной области

Реально все сигналы наблюдаются в течение конечного интервала времени, например, $[-T,\,T]$. Поэтому можно считать, что x(t) является финитной функцией. Спектр такого сигнала имеет бесконечную протяжённость и записывается в виде

$$X(f) = \int_{-T}^{T} x(t)e^{-j2\pi f t} dt.$$

Для периодического продолжения x(t) с периодом 2T (без наложения) справедливо представление рядом Фурье:

$$x_{\Pi}(t) = \sum_{n} c_{n} \exp(j2\pi n\Delta f t),$$

где $\Delta f = 1/2T$ и коэффициенты Фурье

$$c_n = (1/2T) \int_{-T}^{T} x(t) \exp(-j2\pi n\Delta f t) dt = \Delta f X(n\Delta f).$$

Для спектральной функции можем записать

$$X(f) = \int_{-T}^{T} \left[\sum_{n} \Delta f X(n\Delta f) \exp(j2\pi n\Delta f t) \right] \exp(-j2\pi f t) dt =$$

$$= \Delta f \sum_{n} X(n\Delta f) \int_{-T}^{T} \exp(j2\pi (n\Delta f - f)t) dt.$$

$$\int_{-T}^{T} \exp(j2\pi(n\Delta f - f)t)dt = \frac{1}{j2\pi(n\Delta f - f)} \exp(j2\pi(n\Delta f - f)t)\Big|_{-T}^{T} = \frac{2\sin 2\pi T(n\Delta f - f)}{2\pi(n\Delta f - f)}.$$

Для X(f)окончательно получаем

$$X(f) = \sum_{n=-\infty}^{\infty} X(n\Delta f) \frac{\sin 2\pi T (f - n\Delta f)}{2\pi T (f - n\Delta f)}; \ \Delta f = 1/2T.$$

Это интерполяционная формула Котельникова (теорема отсчётов) в частотной области. Функция X(f) на любой частоте f однозначно представляется последовательностью своих отсчётов, взятых через равные интервалы $\Delta f = 1/2T$.

Дискретизация спектральной функции с шагом $\Delta f = 1/2T$ приводит к периодическому повторению сигнала по оси времени с периодом 2T. При этом эффекта наложения отдельных периодов друг на друга не будет, поскольку шаг дискретизации по частоте выбран в соответствии с теоремой отсчётов в спектральной области.