

차량변호판분석

욜로졸로 | 김기훈, 지종훈, 손슬기

Group

Group Leader

- 데이터 정제
- 모델 설계 및 구축

지종훈

• 웹서비스 구축

Members

손슬기

• 데이터 수집 및 라벨링

01. 프로젝트 팀 구성 및 역할

과정	기간	활동	비고
사전 기획	7/29(월) ~ 7/31(수)	프로젝트 기획 및 주제 선정 & 기획안 작성	아이디어 선정
데이터 수집	8/1(목) ~ 8/4(일)	필요 데이터 및 수집 절차 정의 & 외부 데이터 수집	
데이터 전처리	8/5(월) ~ 8/7(수)	데이터 정제 및 정규화	
모델링	8/5(월) ~ 8/14(수)	모형 구현	팀별 중간보고 실시
서비스 구축	8/12(월) ~ 8/16(금)	웹 서비스 시스템 설계 & 웹 플랫폼 구현	최적화 & 오류수정
총 개발기간	7/29(월) ~ 8/16(금) / 총 3주		

1. 프로젝트 주제 선정 배경

현재 차량 번호판을 인식하여 데이터베이스와 대응하는 과정은 대부분 수동

-> 시간과 인력의 부담이 큼

CCTV 영상 속 차량의 번호판 이미지 자동 추출, 분석

-> 수배차량이나 긴급 상황에 빠르게 대응할 수 있는 시스템 개발

2. 프로젝트 수행 내용

데이터 수집 및 준비

YOLO 모델 Fine-tuning

PaddleOCR Fine-tuning

Prediction

서비스 구축

활용 기술

Languages

python 3.11

Framework

- Ngrok
- YOLO

Library

- PyTorch
- OpenCV
- PIL
- Numpy

개발환경

H/W

RTX 4070 Laptop

Tesla T4 (colab

S/W

• Windows 11 6

딥러닝 프레임워크

- Pytorch 2.4.0
- CUDA 11.8

개발도구

- Visual Studio Code
- Jupyter notebook

개발 주요 사항 Dataset

YOLO 학습 데이터

- Number Detection Dateset
 (RoboFlow)
- 국내 번호판 이미지 226장 추가 수집 후 LableMe를 활용해 라벨링 작업
- Train dataset 1653개
- Valid dataset 115개
- Test dataset 60개

Paddle OCR 학습데이터

- Al-hub
- Train dataset 300007H
- Valid dataset 3000개

개발 주요 사항 - 모델 선정 및 성능 테스트

YOLO (You Only Look Once)

- 전체 이미지를 한 번에 처리함으로써 빠른
 속도와 높은 정확도 제공
- 차량 번호판 인식과 같은 실시간 시스템에 서 매우 중요

개발 주요 사항 - 모델 선정 및 성능 테스트

Paddle OCR

- 아시아 언어에 대한 인식이 특화되어 국내 번호판 인식에 적합
- Easy OCR은 사용이 간편하지만, 아시아 언어
 인식 에서는 Paddle OCR에 비해 성능이 떨어짐
- Easy OCR은 직접 모델을 트레이닝하여 성능을 개선하는 것이 제한적이라는 단점 또한 고려하여 Paddle OCR모델로 선정

02. 프로젝트 개요

개발 주요 사항

프로젝트 모델

- YOLOv10s 와 Paddle OCR Fine-tuning
- 1차 : 번호판 검출 후 Crop
- 2차: Crop된 번호판에서 차량 번호 검출

02. 프로젝트 개요

개발 주요 사항 Ngrok을 이용한 웹서비스 구축

웹 환경에서 원하는 사진에 학습된 프로젝트 모델을 적용해 결과물을 시각화

Project Planning

- 1.데이터 수집 및 준비
- 2.YOLO 모델 Fine -tune
- 3.PaddleOCR Fine-tune
- 4.Prediction
- 5.서비스 구축
- 6. 배포

1. 데이터 수집 및 준비

- ① 데이터 수집
- ② 데이터 정제
- ③ 데이터 증강
- ④ 데이터 라벨링
- ⑤ 데이터셋 분리

데이터 수집 for YOLO

< Number Detection Dateset (RoboFlow)>

- Train set (1032 images)
- Valid set (99 images)
- Test set (50 images)
- Yolo label (.txt)

<구글, Naver를 통한 이미지 직접 수집>

- Train set (200 images)
- Valid set (16 images)
- Test set (10 images)

데이터 수집 for PaddleOCR

CCTV 기반 차량정보 및 교통정보 계측 데이터

(Al-Hub)

- Train set (30000 images)
- Valid set (3000 images)

데이터 형식	jpg	데이터 출처	CCTV 녹화 영상
		라벨링 형식	JSON

데이터 라벨링

모델 학습에 필요한 데이터를 직접 수집 후 번호판과 번호의 숫자를 바운딩 박스로 라벨링

데이터증강

<Train set 200장의 이미지를 랜덤적으로 3배 Agumentation>

- Rotation: Between -15º and 15º
- Shear: Between -10^o and 10^o
- Horizontally Flip and Vertically Flip

) 2. YOLO 모델 Fine -tune

- ① 모델 선정
- ②모델학습
- ③ 모델 검증
- ④ 모델 최적화

모델 선정, 학습, 검증

YOLO

- 모델 Yolov8s, Yolov8m, Yolov10s, Yolov10m 4가지 모델을 각 300
 - epochs 학습 후 검증 및 비교
- Yolov8m, Yolov10m: 중복 탐지 발생

03. 프로젝트 수행 경과

학습 후 YOLOv8s

학습 후 YOLOv10s

YOLOv8s YOLOv10s

YOLO 모델 최적화

AdamW

- 모델의 최적화를 위해 채택
- YOLO에서 공식적으로 제안된 알고리즘
- 학습률 적응과 모멘텀을 효과적으로 결합하여 빠르고 안정적인 학습을 가능하 게 함
- Weight Decay를 추가하여 과적합을 방지하고 모델의 일반화 성능을 향상

3. PaddleOCR Fine-tune

- ① 모델 선정
- ②모델학습
- ③ 모델 검증

Paddle OCR 모델 선정, 학습, 검정

PP-OCRv3

모델 선정

• PaddleOCR 모델의 최신버전인 PP-OCRv4는 한국어 지원을 안하는 이유로 PP-OCRv3를 선정

모델 학습

• Train 데이터 30,000개를 100 epochs로 학습

모델 검증

• 학습이 끝난 모델을 Test 데이터셋을 사용하여 모델 성능을 평가

4. Prediction

- •Fine-tuning 되어 있는 YOLOv10s와 PP-OCRv3을 활용하여 Test 데이터를 예측
- •이때 YOLOv10s는 1차적으로 번호판을 검출하고 Crop한 후 2차로 Crop된 번호판의 번호를 검출
- •검출된 번호와 검출되지 않은 한글을 PP-OCRv3가 인지하고 텍스트로 변환하여 출력

5. 서비스 구축

- 1. 번호판 인식 시스템 API 개발
 - 이 때 API는 입력 이미지에서 번호판을 검출 & 분석하는 기능 포함
- 2.사용자 인터페이스 설계 및 구현
 - 직관적이고 사용하기 쉬운 웹 인터페이스를 설계
- 3.성능 최적화 및 실시간 처리
 - 실시간 처리가 가능하도록 시스템의 추론 속도를 최적화

03. 프로젝트 수행 경과

6. 出포

- 시스템 배포: 개발된 시스템을 실제 운영 환경에 배포
- 시스템 개선 : 향후 사용자 피드백 수집 및 개선을 통한 사용자 기반 확대

YOLOv10s의 mAP 평가

Label	Map50	mAP50-95
0	0.993	0.822
1	0.922	0.813
2	0.994	0.81
3	0.995	0.83
4	0.995	0.83
5	0.995	0.825
6	0.994	0.87
7	0.993	0.82
8	0.995	0.842
9	0.988	0.817
License_Plate	0.991	0.8

Mean of mAP50 = 0.9932

Mean of mAP50-95 = 0.8253

결과물

결과물

차량 번호: 1234568

차량 종류: 승용차

Annotated Image.

Ngrok 을 이용해 웹 페이지를 개설한 뒤 사용자가 원하는 사진에 프로젝트 모델을 적용

결과 및 고찰사항

결과: PaddleOCR(Best epoch 기준)

• acc: 0.9375

CTCLoss: 0.2941

결과 분석

- YOLO 숫자 검출 -> 정확
- PaddleOCR 한글 검출 -> 다소 부정확
- 검증 단계 -> Accuracy는 0.9375
- Test 데이터 예측 -> 낮은 인식률

고찰 사항

- 이러한 결과를 나타낸 주된 원인으로는 **과적합**으로 보임
- Pre-trained 모델의 기본 시퀀스가 960인 것 반해 본 프로젝트의 모델의 필요 시퀀스는 8 이하였기 때문에 편향적인 학습이 이루어진 것으로 예측됨

활용 방안 및 기대 효과

교통 법규 위반 차량 감시의 효율화

- 교통단속 효율성 증가
- 단속 인력 절감

차량 대여 및 공유 서비스

차량 공유 서비스에서 차량의 대여 및 반납 시점을 자동으로 기록

05. 자체 평가 의견

- PaddleOCR의 Fine-Tuning은 기대에 미치지 못한 결과를 보여줌
- YOLO 모델 Fine-tuning 당시 번호판의 한글도 라벨링하여 학습했다면 매우 높은 인식률을 기대할 수 있다고 봄.
- 현재 다음과 같은 400 x 400, dpi 144 이하 수준의 이미지는 인식이 다소 어려움

감사합니다.

Q&A