

Multi-Band GNSS RTK Module TAU1312

Datasheet V1.3

Notice, Statement and Copyright

ALLYSTAR Technology offers this document as a service to its customers, to support application and engineering efforts that use the products designed by ALLYSTAR Technology. Products and specifications discussed herein are for reference purposes only. Performance characteristics listed in this document do not constitute a warranty or guarantee of product performance.

ALLYSTAR Technology assumes no liability or responsibility for any claims or damages arising out of the use of this document, or from the use of integrated circuits based on this document, including, but not limited to claims or damages based on infringement of patents, copyrights or other intellectual property rights.

This document contains proprietary technical information which is the property of ALLYSTAR Technology, copying of this document and giving it to others and using or communication of the contents thereof, are forbidden without express authority. Offenders are liable to the payment of damages. ALLYSTAR Technology reserves the right to make changes in its products, specifications and other information at any time without notice.

For more recent documents, please visit www.allystar.com.
Copyright © Allystar Technology (Shenzhen) Co., Ltd. 2021. All rights reserved.

About the Document

■ Basic info

Document applies to	TAU1312
Document type	Datasheet
Revision and date	V1.3/2021-11
Product status	Mass production

■ Product status description

In development	Objective specification. Revision may be released in later status.
Engineering sample	Product specifications tested on early. Revision may be released in later status.
Dualinsinom	Product specifications come from small production. Revision may be released in
Preliminary	later status.
Mass production	Final product specification to mass market.

TABLE OF CONTENT

1	SYS	STEM OVERVIEW	6
	1.1	Overview	6
	1.2	Features	6
	1.3	Module photo	6
	1.4	Block diagram	7
	1.5	Specifications	7
	1.6	GNSS Reception	8
2	PIN	DESCRIPTION	9
	2.1	Pin assignment	9
	2.2	Detailed pin descriptions	10
3	ELE	CTRICAL CHARACTERISTICS	11
	3.1	Absolute Maximum Rating	
	3.2	IO Characteristics	
		3.2.1 PRRSTX and PRTRG	
		3.2.2 USB I/O	
	2.2	3.2.3 Others	
	3.3	DC Characteristics	
		3.3.2 Power Consumption	
4	HAF	RDWARE DESCRIPTION	
	4.1	Connecting power	
	4.2	Power on/off Sequence	
		4.2.1 Initial system power on	
		4.2.2 Main power supply off/on in application	
	4.3	Antenna design	
	4.4	Reset and mode control	
	4.5	Default Serial interfaces	
5	MEC	CHANICAL SPECIFICATION	16
6	REF	ERENCE DESIGN	17
	6.1	Minimal design	17
	6.2	PCB Footprint Reference	18
	6.3	Layout Notes	
7	PRC	DUCT PACKAGING AND HANDLING	19
	7.1	Packaging	
		7.1.1 Packaging Notes	
		7.1.2 Tape and Reel	
	7.0	7.1.3 Shipment Packaging	
	7.2	Storage	
	7.3	ESD Handling Precautions	
	7.4 7.5	ESD protection measures	
0	7.5	Moisture sensitivity level	
8		ELING AND ORDERING INFORMATION	
	8.1	Labeling	
	8.2	Ordering info	22

9	RELATED DOCUMENTS	23
10	REVISION HISTORY	
l ist	of tables	
	Table 1 TAU1312	6
	Table 2 Specifications	
	Table 3 GNSS reception table	
	Table 4 Detailed pin descriptions	
	Table 5 Absolute rating	
	Table 6 PRRSTX and PRTRG	
	Table 7 USB signal	11
	Table 8 Others	
	Table 9 Operating conditions	12
	Table 10 Power consumption	12
	Table 11 Default message	15
	Table 12 Dimensions	16
	Table 13 Packing hierarchy	19
	Table 14 Labeling content	22
	Table 15 Ordering codes	22
List	of figures	
	Figure 1 TAU1312 module photo	6
	Figure 2 Block diagram	7
	Figure 3 Pin assignment (top view)	9
	Figure 4 Initial system power on sequence	13
	Figure 5 Main power on sequence	14
	Figure 6 Dimensions	16
	Figure 7 Minimal application diagram	17
	Figure 8 PCB Footprint Reference	18
	Figure 9 Tape dimensions	19
	Figure 10 Reel dimensions	20
	Figure 11 Packaging	20

1 SYSTEM OVERVIEW

1.1 Overview

TAU1312 is a high-performance dual-band RTK positioning module, which is based on the state of the art CYNOSURE III architecture. It supports GPS, BeiDou, GLONASS, Galileo, and QZSS. TAU1312 integrates efficient power management architecture, while providing high precision, high sensitivity and low power GNSS solutions which make it suitable for navigation applications on automotive and consumer electronics, as well as fleet management.

1.2 Features

- Supports GPS, BDS, GLONASS, Galileo, and QZSS
- · Compact size for high precision industry
- Integrated Real Time Kinematics (RTK)
- State-of-art low power consumption
- Supports multi-band multi-system high-precision raw data output, easy for 3rd party integration
- Highly integrated module, the best cost-effective high precision GNSS solution

Table 1 TAU1312

			GN	SS					Fe	atur	es			ı	nter	face	:	Ac	cura	су	G	rad	9
Product	Band (S/D/T)	GPS	BDS	GLONASS	Galileo	NaviC	Built-in LNA	Programmable (flash)	Data logging	D-GNSS	Oscillator	Raw Data	RTK	UART	12C	USB	SPI	Meter	Sub-meter	Centimeter	Standard	Professional	Automotive
TAU1312-1216A00	D	•	•	•	•			•	•	•	Т	•	•	•	0	0	0			•		•	

T= TCXO

 \circ =Supported upon request with special FW

1.3 Module photo

Figure 1 TAU1312 module photo

1.4 Block diagram

Figure 2 Block diagram

1.5 Specifications

Table 2 Specifications

Parameter		Specification						
GNSS Tracking channels	40	40						
	GPS/QZSS: L1C/A, L2C, L5							
CNCC Descrition	BDS: B1I, B2I, B2a							
GNSS Reception	GLONASS: L1, L2							
	Galileo: E1, E5a							
l la data vata	PVT	10Hz Max.						
Update rate	RTK	5 Hz Max.						
	GNSS	2.5 m CEP						
Desition accuracy [1]	D-GNSS	<1.0 m CEP						
Position accuracy [1]	DTI/	1.0 cm+1 ppm(H)						
	RTK	3.0 cm+1 ppm(V)						
Valacity 9 Time accuracy	GNSS	0.1 m/s CEP						
Velocity & Time accuracy	1PPS	20 ns						
	Hot start	2 secs						
Time to First Fix (TTFF)	Cold start	24 secs						
	RTK convergence	<10 s						
Sensitivity	Cold start	-148 dBm						

Parameter		Specification						
	Hot start	-158 dBm						
	Reacquisition	-160 dBm						
	Tracking & navigation	-162 dBm						
Operating limit	Velocity	515 m/s						
Operating infint	Altitude	18,000 m						
Safety supervision	Antenna short circuit prot	ection and open circuit detection.						
	UART	1						
	SPI ^[2]	1						
Serial interface	USB [2]	1						
	I2C ^[2]	1						
	CAN [2]	1						
	NMEA 0183 Protocol Ver. 4.00/4.10							
Protocol	RTCM 3.0/3.2/2.3/2.4x ^[3]							
	Cynosure GNSS Receiver	Cynosure GNSS Receiver Protocol						
	Main voltage	2.0-3.6V						
Operating condition	Digital I/O voltage	1.8-3.6V						
	Backup voltage	1.8-3.6V						
	GPS+QZSS, L1 band	22 mA ^[4]						
D	GNSS, L1+L5 band	34 mA ^[5]						
Power consumption	GNSS, L1+L2 band	34 mA ^[6]						
	Standby	12 uA ^[7]						
Operating temperature	-40°C ~ +85°C							
Storage temperature	-40°C ~ +85°C							
Package	12.2mm x 16.0mm x 2.4m	nm 24-pin stamp hole						
Certification	RoHS, REACH, FCC, CE							

^{* [1]} Demonstrated with a good external LNA

1.6 GNSS Reception

Table 3 GNSS reception table

P/N	RF mode	GPS/QZSS					BDS				GLONASS		Galileo			NavIC	
	Kr mode	L1C/A	L1C	L2C	L5	L6	B1I	в1С	B2I	B2a	взі	L1	L2	E1	E 5	E6	L5
TAU1312-	A (L1+ L5)	•	-	-	•	-	•	-	-	•	-	•	-	•	•[1]	-	-
1216A00	B (L1+ L2)	•	-	•[2]	-	_	•	-	•	-	-	•	•	•	-	-	-

^{* [1]} Supports E5a and Pilot channel only

^{* [2]} Supported upon request with special FW

^{* [3]} RTCM 2.3/2.4x are supported upon request with special FW.

^{* [4]} Open sky conditions, GPS+QZSS, L1 band, 16 tracked Satellites

^{* [5]} Open sky conditions, GPS+BDS+GLONASS+Galileo, L1+L5 band, 32 tracked Satellites

^{* [6]} Open sky conditions, GPS+BDS+GLONASS+Galileo, L1+L2 band, 32 tracked Satellites

^{* [7]} Standby under RTC mode, wake up by PRTRG and RTC time-out

^{* [2]} Supports L2CM

2 PIN DESCRIPTION

2.1 Pin assignment

13	GND	GND	12
14	INT0	RF_IN	11
15	FWD/SPICK	GND	10
16	SPIDO/CAN_TX	ANT_BIAS	9
17	SPIDI/CAN_RX	PRRSTX	8
	TAU1312		
18	I2C_SDA	AVDUSB	7
19	I2C_SCL	USB_DP	6
20	UOUT0	USB_DN	5
21	UIN0	SPEED_CAR	4
22	AVDD_BAK	PPS	3
23	VDD	PRTRG	2
24	GND	SPICX	1*

^{*} Pin 1 aligns to the circular hole on module cover.

Figure 3 Pin assignment (top view)

2.2 Detailed pin descriptions

Table 4 Detailed pin descriptions

Function	Symbol	No.	1/0	Description
	VDD	23	Power	Main voltage supply.
Power	GND	10,12, 13,24	VSS	Assure a good GND connection to all GND pins of the module, preferably with a large ground plane.
rowei	AVDD_BAK	22	Power	Backup voltage supply.
	AVDUSB	7	Power	USB voltage supply. To use the USB interface, connect this pin to 3.0-3.6V.
	RF_IN	11	I	Use a controlled impedance of 50Ω for the routing from RF_IN pin to the antenna or the antenna connector.
Antenna	ANT_BIAS	9	0	RF section output voltage. The ANT_BIAS pin can be used to supply powers to an external active antenna.
LIADT	UOUT0	20	0	UARTO serial data output.
UART	UIN0	21	I	UARTO serial data input.
LIOD[1]	USB_DN	5	I/O	USB I/O line. USB bidirectional communication pin.
USB ^[1]	USB_DP	6	I/O	Leave it floating if not used.
	SPICX	1	0	SPI chip select
	FWD/SPICK	15	0	SPI clock
SPI ^[1]	SPIDO/CAN_TX	16	0	SPI data or CAN data output. Leave it floating if not used.
	SPIDI/CAN_RX	17	I	SPI data or CAN data input. Leave it floating if not used.
I2C ^[1]	I2C_SDA	18	I/O	I ² C data. Leave it floating if not used.
12Ctri	I2C_SCL	19	I/O	I ² C clock. Leave it floating if not used.
	PRTRG	2	l	Mode selection, or the trigger input in deep sleep mode to wake up the system
	PRRSTX	8	I	External reset, low active
	PPS	3	0	Time pulse output (PPS)
System	SPEED_CAR ^[1]	4	I	Speed pulse. Leave it floating if not used. Default GPIO.
	INT0	14	I	External interrupt. Leave it floating if not used. Default GPIO.

^{* [1]} Supported upon request with special FW.

3 ELECTRICAL CHARACTERISTICS

3.1 Absolute Maximum Rating

Table 5 Absolute rating

Symbol	Parameter	Min.	Max.	Unit
VDD	Power input for the main power domain	-0.5	3.63	V
AVDD_BAK	Power input for the backup power domain	-0.5	3.63	V
AVDUSB	USB supply voltage	-0.5	3.6	V
T _{storage}	Storage temperature	-40	85	°C
T_{solder}	Solder reflow temperature		260	°C

3.2 IO Characteristics

3.2.1 PRRSTX and PRTRG

Table 6 PRRSTX and PRTRG

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
I _{IZ}	Input leakage current				+/-1	uA
V _{IH}	Input high voltage		AVDD_BAK*0. 7		AVDD_BAK	V
V _{IL}	Input low voltage		0		AVDD_BAK*0.3	V
Ci	Input capacitance				10	pF
R _{PU}	Pull-up resistance		18		84	kOhm

3.2.2 USB I/O

Table 7 USB signal

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
I _{IZ}	Input leakage current				+/-10	uA
V _{IH}	Input high voltage		AVDUSB*0.9		AVDUSB	V
V_{IL}	Input low voltage		0		AVDUSB*0.1	V
V _{OH}	Output high voltage	I _{OH} =10 mA, AVDUSB =3.3 V	2.35			V
V _{OL}	Output low voltage	I _{OL} =10 mA, AVDUSB =3.3 V			0.5	V
R _{PUIDEL}	Pull-up resistance, idle state		0.9		1.575	kOhm
R _{PUACTIVE}	Pull-up resistance, active state		1.425		3.09	kOhm

3.2.3 Others

Table 8 Others

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
I _{IZ}	Input leakage current				+/-1	uA
V _{IH}	Input high voltage		VDD*0.7		VDD	٧
V_{IL}	Input low voltage		0		VDD*0.3	٧
V _{OH}	Output high voltage	I _{OH} =11.9 mA, VDD=3.3 V	2.64			٧
V _{OL}	Output low voltage	I _{OL} =7.9 mA, VDD=3.3 V			0.4	٧
Ci	Input capacitance				11	pF
R _{PU}	Pull-up resistance	-	35		84	kOhm

3.3 DC Characteristics

3.3.1 Operating Conditions

Table 9 Operating conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
VDD	Power input for the main power domain	2.0	3.3	3.6	٧
AVDD_BAK	Power input for the backup power domain	1.8	3.3	3.6	V
AVDUSB	USB power input	3.0	3.3	3.6	V
I _{ANT_BIAS}	ANT_BIAS output current	-	-	35	mA
V _{ANT_BIAS}	ANT_BIAS output voltage	-	VDD-0.2	-	V
ICC _{max}	Maximum operating current @ VDD			200	mA
T _{env}	Operating temperature	-40		85	°C
T _{storage}	Storage temperature	-40		85	°C

3.3.2 Power Consumption

Table 10 Power consumption

Symbol	Parameter	Measure Pin	Тур.	Unit
I _{CCRX1}	Average tracking current (GPS+QZSS, L1 only)	VDD ^[1]	22	mA
I _{CCRX2}	Average tracking current (GNSS, L1+L5)	VDD ^[1]	34	mA
Іссовм	Standby mode	AVDD_BAK [2]	12	uA

^{* [1]} Condition: VDD=3.3V@Room Temperature; All Pins Open.

^{* [2]} Condition: AVDD_BAK=3.3V@Room Temperature; All Pins Open.

4 HARDWARE DESCRIPTION

4.1 Connecting power

TAU1312 positioning module has two power supply pins: VDD and AVDD_BAK. The VDD pin provides the main supply voltage, and the AVDD_BAK pin provides the backup supply voltage. In order to ensure the positioning performance, please control the ripple of the module power supply. It is recommended to use the LDO above 100mA.

If the power for VDD pin is off, the real-time clock (RTC) and battery backed RAM (BBR) are supplied through the AVDD_BAK pin. Thus, orbit information and time can be maintained and will allow a Hot or Warm start. If no backup battery is connected, the module performs a cold start at every power up if not aiding data are sent to the receiver.

Note: If no backup supply is available, connect the AVDD_BAK pin to VDD or leave it floating.

4.2 Power on/off Sequence

The module has two independent power domains (backup and main domain). In data backup mode, main power supply can be completely shut down for further power reduction for ultra-low power application.

4.2.1 Initial system power on

When both backup and main supply power on from their off state, external reset (PRRSTX) must be active and hold more than 5ms after both backup supply and main supply reach the minimum operating voltage. Initial system power on sequence is illustrated in Figure 4.

Figure 4 Initial system power on sequence

4.2.2 Main power supply off/on in application

If application intends to shut down main power supply (VDD) while keep backup power supply (AVDD_BAK) alive to save backup data, the following rules should be applied:

External reset (PRRSTX) must be active when main power supply is under power off. In this case, external reset must be hold active more than 5ms after main power supply resumes to minimum operating voltage. Main power on sequence in application is illustrated in Figure 5.

Figure 5 Main power on sequence

4.3 Antenna design

There isn't built-in LNA and SAW in the GNSS module. It is recommended to use an active antenna with gain less than 50dB and the noise figure less than 1.5dB. The module has built-in short circuit detection and open circuit detection function, which can detect the status of normal connection, and send out antenna status prompt message in NMEA data.

- Short circuit protection
 - » The module includes internal short circuit antenna detection. Once an overcurrent is detected at the ANT_BIAS port, the module will restrict the current output automatically to protect from damage.
- Open circuit detection
 - » The module can detect an open circuit in the antenna. Users can judge it from antenna status messages.

4.4 Reset and mode control

The operation mode of GNSS module is controlled by PRRSTX (nRESET) and PRTRG (BOOT) pin. While the module works in normal operation, leave PRRSTX and PRTRG pins floating if there is no upgrading or reset demands, or others.

- Keep PRTRG pin floating during system power-up or the external reset (PRRSTX from low to high), and the module will enter **User Normal Mode**.
- When the module powers up or PRRSTX from low to high, the module will execute an external

reset. (If the power for AVDD_BAK is always on, the external reset will not affect the ephemeris data in the backup domain)

- Drive PRTRG pin to low or connect PRTRG to GND directly (not by pull-down resistance) during system power-up or the external reset (PRRSTX from low to high), and the system enters
 BootROM Command Mode at PRTRG pin being released from low to floating state, and ready for firmware upgrading command.
- When connecting PRRSTX and PRTRG to any host IO, DO NOT use the pull-up or pull-down resistance.

4.5 Default Serial interfaces

Table 11 Default message

Interface	Settings
	115200 baud, 8 data bits, no parity bit, 1 stop bit
UART output	Configured to transmit both NMEA and HD Binary protocols, but only the
OANT Output	following NMEA (and no HD Binary sentence) messages have been activated at
	start-up: GGA, GSA, GSV, RMC, ZDA, TXT-ANT
	115200 baud, 8 data bits, no parity bit, 1 stop bit, autobauding disabled
LIADT input	Automatically accepts following protocols without need of explicit configuration:
UART input	HD binary sentence, NMEA, RTCM
	The GNSS receiver supports interleaved HD binary and NMEA messages.
Timepulse	1 pulse per second, synchronized at rising edge, pulse length 100ms
(1Hz Nav)	r paide per decoria, dynomonized at homy eage, paide length rooms

^{*} Refer to GNSS_Protocol_Specification for information about other settings.

When the module is applied to the specific application where the main supply needs to be cut, in this case, it is recommended to cut the serial interface connection at the same time or set the serial port to input mode or high impedance state.

5 MECHANICAL SPECIFICATION

Figure 6 Dimensions

Table 12 Dimensions

Symbol	bol Min.(mm) Typ.(mm)		Max.(mm)
Α	12.0	12.2	12.4
В	15.8	16.0	16.2
С	2.2	2.4	2.6
D	0.9	1.0	1.3
Е	1.0	1.1	1.2
F 2.9		3.0	3.1
н		0.8	
K	K 0.4		0.6
М	M 0.8		1.0
N 0.7		0.8	0.9

6 REFERENCE DESIGN

6.1 Minimal design

This is a minimal design for TAU1312 GNSS module. The 82nH inductor is used only when an active antenna is connected, and no need with a passive antenna. The characteristic impedance from RF_IN pin to the antenna connector should be 50Ω .

Figure 7 Minimal application diagram

6.2 PCB Footprint Reference

Figure 8 PCB Footprint Reference

6.3 Layout Notes

- (1) A decoupling capacitor should be placed close to VDD pin of the module, and the width of power routing should be more than 0.5mm.
- (2) The width of RF routing between RF port to antenna interface should be wider than 0.2mm. The characteristic impedance of RF routing between RF port to antenna interface should be controlled to 50Ω .
- (3) It is recommended that the routing from RF port to antenna interface refers to the second layer, and no routing are recommended on the layer.
- (4) Do not place the module close to any EMI source, like antenna, RF routing, DC/DC or power conductor, clock signal or other high-frequency switching signal, etc.

7 PRODUCT PACKAGING AND HANDLING

7.1 Packaging

7.1.1 Packaging Notes

TAU1312 is a Moisture Sensitive Device (MSD) and Electrostatic Sensitive Device (ESD). During the packing and shipping, it is strictly required to take appropriate MSD handling instructions and precautions. The table below shows the general packing hierarchy for the standard shipment.

Table 13 Packing hierarchy

Module	Reel	Sealed bag	Shipping carton
And the second			

7.1.2 Tape and Reel

TAU1312 is delivered as hermetically sealed, reeled tapes in order to enable efficient production, production lot set-up and tear-down. The figure below shows the tape dimensions.

Figure 9 Tape dimensions

TAU1312 is deliverable in quantities of 1000pcs on a reel. The figure below shows the dimensions of reel for TAU1312.

Figure 10 Reel dimensions

7.1.3 Shipment Packaging

The reels of TAU1312 are packed in the sealed bags and shipped by shipping cartons. Up to five sealed bags (5000pcs in total) can be packed in one shipping carton.

Figure 11 Packaging

7.2 Storage

In order to prevent moisture intake and protect against electrostatic discharge, TAU1312 is packaged together with a humidity indicator card and desiccant to absorb humidity.

7.3 ESD Handling Precautions

TAU1312 module which contains highly sensitive electronic circuitry is an Electrostatic-sensitive Device (ESD). Observe precautions for handling! Failure to observe these precautions can result in severe damage to the GNSS module!

- Unless there is a galvanic coupling between the local GND (i.e. the workbench) and the PCB GND, then the first point of contact when handling the PCB must always be between the local GND and PCB GND.
- Before mounting an antenna patch, connect ground of the device.
- When handling the RF pin, do not come into contact with any charged capacitors and be careful when contacting materials that can develop charges (e.g. patch antenna ~10 pF, coax cable ~50 80 pF/m, soldering iron, ...)
- To prevent electrostatic discharge through the RF input, do not touch any exposed antenna area.
 If there is any risk that such exposed antenna area is touched in non ESD protected work area, implement proper ESD protection measures in the design.
- When soldering RF connectors and patch antennas to the receiver's RF pin, make sure to use an ESD safe soldering iron (tip).

7.4 ESD protection measures

TAU1312 GNSS positioning module is sensitive to static electricity. Whenever handling it, particular care must be exercised to reduce the risk of electrostatic charges. In addition to standard ESD safety practices, the following measures should be taken into account.

- Add ESD Diodes to the RF input part to prevent electrostatics discharge.
- Do not touch any exposed antenna area.
- Add ESD Diodes to the UART interface.

7.5 Moisture sensitivity level

The Moisture Sensitivity Level (MSL) of the GNSS module is MSL4.

8 LABELING AND ORDERING INFORMATION

Labeling and ordering information help customers get more about Allystar products.

8.1 Labeling

Table 14 Labeling content

Symbol	Explanation	Instance	
TAUXXXX	Product model	TAU1312	
	1216 represents the product size.	1216A00	
1216A00A	A00 means the product type.		
TZTOAUUA	Second A refers to sales area code. Different code	C (for Curana manusat)	
	for different sales area.	E (for Europe market)	
aaayybbbssss	Serial number	375190010001	

8.2 Ordering info

Table 15 Ordering codes

Ordering No.	Product
TAU1312-1216A00E	Concurrent GNSS LCC Module, TCXO, ROM, 12.2*16mm, 1000 pieces/reel,
1AU1312-1210AUUE	Europe market.
TAU1312-1216A00H	Concurrent GNSS LCC Module, TCXO, ROM, 12.2*16mm, 1000 pieces/reel,
1AU1312-1210AUUH	India market.
TAU1312-1216A00R	Concurrent GNSS LCC Module, TCXO, ROM, 12.2*16mm, 1000 pieces/reel,
1AU1312-1210AUUK	Russia market.

9 RELATED DOCUMENTS

- [1] Satrack User Manual
- [2] Allystar Common Commands
- [3] Recommended Reflow Profile
- [4] GNSS_Protocol_Specification

10 REVISION HISTORY

Revision	Date	Reviser	Status / Comments
V1.0	2020-06	Vita Wu	First release
V1.1	2020-12	Vita Wu	 Updates MSL. Fixes I/O type of I2C pin to be I/O. Fixes I/O type of INTO pin to be I. Deletes SBAS support. Updates the AVDD_BAK pin connectivity description in Section 4.1. Clarifies power on/off sequence in Section 4.2. Updates inductor value to be 82nH in minimal design. Deletes 1K resistor in the minimal design diagram. Deletes L6 band support. Improves mechanical specification. Updates description about short circuit protection. Improves wording. Localization.
V1.2	2021-07	Vita Wu	Adds labeling and ordering info. Details default settings. Adds related document list. Adds document info section. Adds packaging info. Updates operative VDD to 2.0~3.6V. Adds ANT_BIAS values.
V1.3	2021-11	Vita Wu	Fixed RTK accuracy in Table 2. Updated headquarters' address.

www.allystar.com

info.gnss@allystar.com

Headquarters

Allystar Technology (Shenzhen) Co., Ltd.

Address: 201-2, 2F, Tower F, Xinghe World, No.1, Yabao Road, LongGang District, Shenzhen City, Guangdong Province, China.

Calgary Office

Allystar Technology (Canada) Ltd.

Address: Unit 288, 3553 31 Street NW Calgary, Alberta, Canada T2L 2K7

