
Nuclear Waste Policy Act
(Section 113)

*Site Characterization
Plan*

*Yucca Mountain Site, Nevada Research
and Development Area, Nevada*

Volume IX

Index

December 1988

U. S. Department of Energy
Office of Civilian Radioactive Waste Management

Available from:

**U.S. Department of Energy
Office of Scientific and Technical Information
Post Office Box 62
Oak Ridge, TN 37831**

Nuclear Waste Policy Act
(Section 113)

***Site Characterization
Plan***

***Yucca Mountain Site, Nevada Research
and Development Area, Nevada***

Volume IX

Index

December 1988

***U. S. Department of Energy
Office of Civilian Radioactive Waste Management***

CONTENTS

INTRODUCTION	i
PART A (Chapters 1-7)	Ind-1
PART B (Chapter 8)	Ind-89
ACRONYMS	Ind-299

Digitized by the Internet Archive
in 2012 with funding from
LYRASIS Members and Sloan Foundation

<http://archive.org/details/sitecharacteriza09usde>

SITE CHARACTERIZATION PLAN INDEX

This index is divided into two parts: The first part contains the index for Part A (Chapters 1 through 7), while the second part contains the index for Part B (Chapter 8).

A list of acronyms for both parts is provided at the end of the index for Part B.

Abandoned Wash fault, 1-122**
 location, 1-50**

ABAQUS
 finite-element method, 6-323--324
 verification and validation, 6-323--324

acceleration, see peak acceleration

access
 drift locations, 6-315**
 horizontal emplacement, 6-144, -146**
 repository considerations, 6-135--136
 vertical emplacement, 6-144, -145**

access routes
 highways, 6-82, -83**, -124, -126**
 rail, 6-82, -83**, -124, -126**
 Yucca Mountain site, 6-82, -83**

accessible environment
 and credible pathways, 3-197--199
 definition, A-5; 6-27
 and design requirements, 6-27
 and erosion, 1-325
 and ground-water flow from disturbed zone, 3-214
 and points of discharge, 3-29, -229
 and radionuclide transport, 4-4
 saturated-zone ground-water
 travel time, 3-219--221, -237
 saturated-zone pathways, 3-137, -214, -216, 219
 unsaturated-zone ground-water
 travel time, 3-5, -216--219, -237

accidental radiological releases (Issue 2.3)
 and climatology and meteorology, 5-1

accidents
 credible, 6-256--257
 operations analyses, 6-121
 probabilistic risk assessment, 6-257--261
 probabilities, 6-256--257
 radiological releases (Issue 2.3)
 analysis needs, 6-262
 computer codes used, 6-253, -254*
 information needs, 6-253
 issue statement, 6-252
 site data needs, 6-263
 work completed, 6-253--261
 scenarios, 6-256--257

ADINA
 drift thermal analysis, 6-318, -320
 shaft stability, 6-323

ADINAT
 drift thermal analysis, 6-310, -318

adsorption-dynamic processes coupling experiments, 4-60--62
 crushed-tuff columns, 4-61
 diffusion in solid tuff, 4-62
 fractured-tuff columns, 4-62
 recirculating columns, 4-61
 solid-tuff columns, 4-61
 solubility, 4-62
 advanced conceptual design, 6-1
 allowable areal power density, 6-229
 phase, definition, A-10

AEC, see U.S. Atomic Energy Commission

age, ground water, see ground water, age assignments
 data uncertainties, 5-8

air quality
 monitoring and permitting, 5-37
 underground facility requirements, 6-333
 and visibility, 5-27--28, -30, -31*, -32*

airflow
 requirements
 horizontal emplacement, 6-173--175, -175*, -334, -335*
 underground facility, 6-170--175
 vertical emplacement, 6-171--172, -173*, -334, -335*
 underground facility velocity constraints, 6-170, -170*
 and waste package environment model, 7-207

Alkali Flat-Furnace Creek Ranch
 ground-water basin, 6-66

Alkali Flat-Furnace Creek Ranch subbasin
 flux summary, 3-80*
 ground-water flow, 3-79, -80*, -207**
 and ground-water flow model, 3-204
 and hydrogeologic study area, 3-3**, -4, -50
 location, 3-3**, -117**
 and Pahrump Valley, 3-114
 perennial yield, appropriation, and use, 3-122*
 and recharge, 3-71
 springs, 3-36*--40*
 water use, 3-118--122

Alligator Rivers
 radionuclide transport studies, 4-134
 uranium and thorium deposits, 4-133--134
 allowable areal power density, 6-231
 and borehole spacing, 6-230--231
 lateral flexibility, 6-229
 underground facility, 6-227, -229

PART A INDEX (Chapters 1-7)

allowable areal power density, product
 1.11.6-1, -227, -229

alloy 825
 and corrosion, 7-102
 reference container, 7-25

Alluvial Basins Groundwater Region, 3-50

alluvium
 ages, 3-19
 conceptual moisture flow, 3-193**
 correlation with hydrogeologic unit,
 3-139**
 east-west cross section at Yucca Mountain,
 3-145**
 matrix-potential profiles, 3-161**, -162**
 Quaternary, 1-36**
 at site
 density and specific gravity, 2-97
 engineering properties, 2-101, -102*
 geologic log, 2-98**
 gradation curves, 2-99**
 lithologic description, 2-97
 physical properties, 2-98, -102*

alteration
 mineralogy, Yucca Mountain, 4-23

occurrences
 and metals, 1-280--284

phases
 Yucca Mountain, 1-276*

symbols, 4-17*

alternative alloy system
 and metal barriers, 7-103--104

alternative designs
 container
 alloy compositions, 7-35*
 copper-based materials, 7-34
 intact spent fuel package, 7-32, -33**
 properties of candidate materials,
 7-36*
 repository
 cost, 6-342, -343--344
 waste package, 7-32--34
 copper-based alloy, 7-227
 cost, 6-342, -343
 summary, 7-227

alternative emplacement orientation, 7-34,
 -36--37

alternative total system design
 cost, 6-342, -344--346

Amargosa Desert
 description, 1-15, -18
 discharge, 3-30*, -72*

Amargosa Desert (continued)
 dune and marsh chronology, 5-70
 evapotranspiration, 3-7, -29, -30*, -72*
 ground-water age, 3-72
 and ground-water dating, 5-70
 ground-water velocities, 3-72--73
 maps, 1-16**, -17**, -20**, 21**--22**,
 23**--24**
 perennial surface-water, 3-24
 potentiometric maps of, 3-132**
 and recharge, 3-71
 and Upper Amargosa hydrographic study
 area, 3-2**, -9*, -117**
 water data, 3-122*

water use, 3-121

wells, 3-118
 see also Goldfield block

Amargosa River
 chemical composition, 3-25, -27*
 drainage and prehistoric lakes, 5-70
 flooding, 3-15--16
 surface hydrology, 3-8
 and water use, 3-24

Amargosa Valley
 ground-water sample wells, 3-99**
 temperature data, 5-16
 water use, 3-118, -119*, -135*

Amendments Act, see Nuclear Waste Policy
 Amendments Act of 1987

American Borate Corporation
 water use, 3-118, -119*

American Society for Testing and Materials
 test procedures, 2-6, -8*
 and heated-block tests, 2-57
 and jointed-rock testing, 2-45
 and physical properties of alluvium, 2-97
 and rock sample size, 2-23
 and thermal expansion tests, 2-8*, -68

americium
 comparison of sorption procedures, 4-83*
 concentration profile
 and Los Alamos liquid waste disposal
 site, 4-141**

solubility
 literature summary, 4-96
 in well J-13 water, 4-94, -95*,
 -99, -100*

sorption ratios from batch desorption
 experiments, 4-74**--76*

sorption ratios from batch sorption
 experiments, 4-69**--71*

speciation, literature summary, 4-96

analytical techniques
 geochemical retardation, 4-59--65
 for geotechnical design, 6-72
 mineralogic, 4-8--9
 petrologic, 4-8--9
 sorption, 4-59--65

angle of internal friction
 intact rock, 6-50*
 reference values, 2-65*
 rock mass, 6-56*
 Yucca Mountain tuff, intact rock, 2-44*, -65*

anisotropy
 and compressive strength, 2-40
 and thermal conductivity, 2-73
 and thermal expansion, 2-77

anodic polarization curve
 austenitic materials, 7-86, -87**, -88

Antelope district, 1-285**

anticipated conditions
 and geochemical retardation in host rock, 4-109--115
 thermal, and waste emplacement, 4-117--119

aperture, unstressed, see unstressed aperture

Aqueduct Mesa
 in situ stress, 1-143**

aquifer modeling
 approaches, 3-5--6
 stochastic analyses, 3-6

aquifers, 1-42**
 carbonate, see carbonate aquifer; lower carbonate aquifer; and upper carbonate aquifer
 fractured rock, 3-5
 Oasis Valley, see Oasis Valley aquifer
 pumping test data, 3-64--67*
 recharge, see ground-water recharge
 transmissivity, 3-63, -64--67*, -68, -69
 tuff, see tuff aquifer
 valley fill, see valley-fill aquifer
 volcanic rock, see volcanic rock aquifers

aquitards, 1-42**
 lower clastic, see lower clastic aquitard
 transmissivity, 3-68
 tuff, see tuff aquitard
 upper clastic, see upper clastic aquitard
 volcanic rock, 3-58, -59**, -60, -68

arc magmatism, 1-88, -95--99

area-needed determination, product 1.11.3-1
 work completed, 6-221, -224

areal power density
 Bullfrog Member, 6-318
 Calico Hills unit, 6-318
 drift analysis, 6-309
 drift sensitivity studies, 6-318
 repository, 6-25
 Topopah Spring Member, 6-318
 Tram Member, 6-318
 and underground facility area, 6-224

ash flow tuff
 crystallization, 4-7
 mineralogy, 4-8
 petrology, 4-7
 post-Paintbrush, 1-70

ash flows and lithophysae, 2-16

Ash Meadows, 3-114, -118, -121
 and discharge, 3-71, -78
 dune and marsh chronology, 5-70
 existing and future water use, 3-135*
 springs, 3-35, -71, -92

Ash Meadows subbasin
 discharge, 3-71, -78
 ground-water flow paths, 3-77--78
 and hydrogeologic study area, 3-3**, -4, -50
 location, 3-3**, -117**
 perennial yields, appropriations, and use, 3-126*--127*
 spring discharge areas, 3-42*--47*
 water use, 3-123--127
 water wells, 3-124*

ASTM procedures, see American Society for Testing and Materials procedures

astronomical forcing
 and climate change simulation, 5-42
 atmospheric, general circulation models, 5-97--98
see also meteorological models

atmospheric carbon dioxide, 5-93

atmospheric moisture, 5-13*, -21, -22*

atmospheric stability
 Yucca Flat, 5-32, -33, -34---35**, -36*

Atomic Energy Commission, see U.S. Atomic Energy Commission

austenitic materials
 anodic polarization curve, 7-86, -87**, -88
 chromium carbide precipitation, 7-72
 container material, 7-65
 and corrosion, 7-66--69, -70*

austenitic materials (continued)
 degradation modes, 7-66--68, -83--85,
 -229--230
 evaluation for containers, 7-65
 high-nickel, iron based alloy, 7-25
 hydrogen embrittlement, 7-98--99
 intergranular corrosion attack, 7-71--83
 intergranular stress corrosion cracking,
 7-71--83
 and low-temperature sensitization,
 7-76--80
 metal barriers, 7-229--232
 and oxidation, 7-68--69
 phase stability, 7-97--100
 research and development summary,
 7-229--232
 sensitization, and thermal history of
 waste, 7-79**
 stainless steel reference container, 7-25
 time-temperature-sensitization curves,
 7-72, -73**
 and transgranular stress corrosion
 cracking, 7-71
 susceptibility, 7-94--96
 vadose water, 7-67
 welding considerations, 7-99--100
 and well J-13 water tests, 7-67, -69,
 -70*, -76, -77*, -78*
see also stainless steel

backfill
 at closure, 6-178--178
 description, 6-177--178
 and drift analysis, 6-242--245
 dust control, 6-178
 following emplacement, 6-177
 and hydrologic analysis, 6-242--245
 and information needs, 6-204
 and vadose water flow, 6-245--246
 water, 6-177
 background radioactivity
 well J-13 water, 4-46, -47*
 Yucca Mountain site ground water, 4-46
 Bacon Flat oil field, 1-317
 Bare Mountain
 base metal potential, 1-283
 description, 1-17**, -19, -20**
 earthquake densities and energy release,
 1-176*
 fluorspar, 1-293

Bare Mountain (continued)
 Holocene movement, 1-206
 piedmont slopes, 1-19
 pre-Cenozoic rocks, 1-39**--40**
 precious metal potential, 1-283
 Quaternary faulting, map, 1-131**
 Quaternary tectonic and volcanic
 processes, 1-30
 topography map description, 1-25
 uranium, 1-303
 Bare Mountain fault, 1-2**, -187
 and calcite deposits, 1-71
 description, 1-128, -129*, -132
 history, 1-128
 maximum earthquake, 1-173*, -193
 preliminary data, 1-129*
 Bare Mountain fault zone
 Quaternary faulting, 1-125*
 BARRIER
 waste package performance model,
 7-202--203
 barite
 Nevada deposits, 1-289**
 Nevada resources, 1-288--290
 Yucca Mountain potential, 1-290
 barium
 comparison of sorption procedures, 4-83*
 sorption rate constants, 4-104*
 sorption ratios, 4-84, -86
 distilled water, 4-90*
 UE-25p#1 water, 4-90*
 well J-13 water, 4-90*
 sorption ratios from batch desorption
 experiments, 4-72**--73*
 sorption ratios from batch sorption
 experiments, 4-67**--68*
 barometric pressure
 Yucca Flat, 5-13*
 barriers important to safety, 6-72--79
see also Q List
 barriers important to waste isolation,
 6-80--81
 basalt, Yucca Mountain, 1-70, -95--99
 basalt dikes
 age, magnetic polarity, and stratigraphy,
 1-56*
 basaltic volcanism
 nature, 1-202--204
 Nevada Test Site, 1-97*
 Pahute Ridge, 1-203
 probabilities, 1-204--206

basaltic volcanism (continued)
 repository effects, postclosure,
 1-204
 repository penetration probability,
 1-204--206
 summary results, 1-336--340
 Yucca Mountain, 1-97*--98*

base metal potential, 1-283
 Bare Mountain, 1-283--284
 Calico Hills, 1-283--284
 Nevada, 1-266--284
 Wahmonie District, 1-283--284
 Yucca Mountain, 1-283--284

baseline monitoring program
 hydrochemical data, 3-165--169

Basin and Range
 basin formation cross section, 1-104**
 province, A-1--2, -3**

batch desorption experiments
 sorption ratios, 4-66, -72*--76*

batch experiments
 desorption data, 4-66, -72*--76*
 sorption data, 4-66--71*, -83*, -84

batch sorption experiments
 description, 4-62--63
 sorption ratios, 4-66--71*

batch sorption ratios, 4-66--82
 compared with other sorption procedures,
 4-83*, -84

Battle Mountain high, 1-307**, -308, -309**
 (see also heat flow)

Beatty, 5-9
 existing and future water use, 3-135*
 precipitation data, 5-18*, -19**
 temperature data, 5-14, -15*, -16
 water supply problems, 3-136
 water use, 3-128

Beatty-Searchlight belt
 metallogenic, 1-266, -268

Beatty Wash
 description, 1-17**, 20***--24**
 physiographic subdivision, 1-26
 and surface hydrology, 3-8

bedrock and mines, map, 1-279*

BEIR III report, 6-256

Belted Range tuff
 correlation with hydrogeologic units,
 3-52*
 drift excavation, 2-102
 field studies in (G-Tunnel), 2-9, -10**, -11**, -12, -29, -30**, -31*, -32
 thermal-comparator measurements, 2-72

Belted Range tuff (continued)
 thermal expansion behavior, 2-77, -80, -82
 see also Grouse Canyon Member

benchmarking
 future work, 6-339

Bermuda High
 and thunderstorm activity, 5-10

Bettles Well fault, 1-113**, -114

Big Dune
 topography map description, 1-25

Big Pine fault, 1-113**, -153**
 location, 1-83**

Black Mountain
 caldera, 1-94**, -265**
 location, 1-9**

Black Mountain center
 silicic volcanism, 1-201

Blackburn oil field, 1-316, -317

blast damage
 and rock mass permeability, 6-241--242

block tests, see heated block test and Yucca Mountain block test

BMINES
 drift thermal analysis, 6-318

bomb tests, see weapons testing

Bonneville Basin, map, 1-8**

borehole, see boreholes

borehole jack tests, 2-13**, -59*, -60

borehole liners, emplacement hole
 and horizontal orientation, 7-34, -36
 material selection, 7-34, -36
 materials and performance, 7-105
 use, 7-34, -36
 and vertical orientation, 7-34, -36

borehole openings
 stability, research and development
 status, 7-39--40

borehole seals
 description, 6-183, -184**
 emplacement, 6-185

borehole spacing strategy, product 1.11.6-2
 work completed, 6-221, -230--231

boreholes
 completion records (unsaturated zone), 3-154*--155*
 environmental isotope data, 3-167*
 geochemical facies, 3-166**
 ground-water levels, 3-157*--159*
 history of, 3-5--6
 hydraulic characteristics, 3-169--179
 saturated zone, 3-179--192
 unsaturated zone, 3-169--179

boreholes (continued)
 hydrochemical information, 3-165--169
 instrumentation (USW UZ-1), 3-151**
 matric-potential profiles (USW UZ-1),
 3-161**, -162**
 potentiometric levels, 3-149, -160--164
 pumping test results, 3-188*--189*
 saturated zone, 3-153--160, -163--164
 unsaturated zone, 3-147--153, -160--163
 water-level monitoring, 3-146, -147,
 -148**, -160--164
see also emplacement boreholes, horizontal
 borehole, and vertical borehole

borosilicate glass, 7-173
 dissolution experiments, 4-94

Bottle Creek district, 1-285**

boundary conditions
 climate prediction, 5-95--96
 climate system, 5-93

boundary-element method, 6-332
 and emplacement drifts, 6-308--319
 future work, 6-339
 HEFF, 6-332
 verification and validation, 6-332

Bow Ridge fault, 1-108**
 and calcite deposits, 1-71, -73
 description, 1-129*, -133
 history, 1-128
 location, 1-50**
 preliminary data, 1-129*
 Quaternary faulting, 1-108**, -123*

Brazilian test, see tensile strength

Bruffey oil seep, 1-315

Buckboard Mesa
 erosion rates, 1-31*
 induced seismicity, 1-199
 weapons testing, 1-199, -209, -210**, -212
see also Fortymile Canyon-Buckboard Mesa
 hydrographic study area

bulk density
 intact rock, 6-48*
 test procedures, 2-8*

bulk properties, calculation of, 2-68--69

Bullfrog district
 uranium, 1-303

Bullfrog Hills
 mineralized district, 1-273**, -277

Bullfrog Member, 1-58--60; 3-185, -186, -219
 age, magnetic polarity, and stratigraphy,
 1-56*
 areal power density, 6-318
 clinoptilolite analyses, 4-30*--31*

Bullfrog Member (continued)
 comparison of geologic units, 6-225
 compressive tests, 2-27, -34
 core samples, 2-14
 correlation with hydrogeologic units,
 3-53*, -139**
 creep deformation, 2-38
 drift sensitivity analysis, 6-317
 fluid-induced fracturing, 2-90
 fracture potential, 6-323
 hydraulic conductivity, 3-188*, -190*
 hydrothermal alteration, 1-282
 permeable zones, 3-191**
 rock mass classification, 2-104
 sensitivity study, 6-233
 shear stress at failure, 2-36**
 simulated joint mechanical properties,
 2-46
 smectites, 4-35
 stratigraphy at Yucca Mountain, 3-138**
 temperatures, 2-74
 thermal conductivities, 2-71, -71*
 thermal expansion, 2-74--75, -76*
 thermal/mechanical stratigraphy, 2-17**
 transmissivity, 3-188, -189*
 and unit evaluation study, 2-105
 water production rate, 3-186**
 Young's modulus, 2-60

Bullfrog tuff
 and corrosion testing, 7-94

Busted Butte
 and calcite deposits, 1-71
 compressive strength, 2-40
 core samples, 2-14
 laboratory data source, 2-6, -12
 lithophysal samples, 2-14, -40, -73
 location, 2-7**
 recent Quaternary movement, 1-206
 stream incision, 1-34*
 topography map description, 1-25

Busted Butte Wash
 analysis for 100-yr flood, 6-68, -69**
 analysis for 500-yr flood, 6-68, -69**
 analysis for regional maximum flood, 3-19;
 6-68, -69**
 chemical composition, 3-25, -27*
 drainage basin, 3-19
 flood hazard, 3-19; 6-335--336
 and Fortymile Wash, 3-18
 location, 3-20**, -26**
 water depth, 6-336

calcic-clinoptilolite and heulandite, Yucca Mountain
 exchangeable-cation ratios, 4-33**
 silicon-to-aluminum ratios, 4-32**

calcic horizon and infiltration, 3-33--34

calcite deposits
 age, 1-71, -73
 along faults, fractures, and surfaces, 1-71--74
 fluid inclusion studies, 1-73--74
 paleontological studies, 1-74
 possible analogs, 1-74
 stable isotope studies, 1-73
 and waste isolation, 1-74

calcium-magnesium-bicarbonate facies, 3-95

calderas
 location, 6-39**
 southwest Nevada, 1-94**
 southwestern Nevada volcanic field, 1-265**

Calico Hills
 areal power density, 6-318
 base metal potential, 1-283
 drift sensitivity analysis, 6-317
 fracture potential, 6-323
 and mineralization, 1-264
 nonwelded vitric unit, 6-80--81
 nonwelded zeolithic unit, 6-80--81
 pre-Cenozoic rocks, 1-39***--40**
 precious metal potential, 1-283
 zeolitized tuff
 and exploratory shaft, 6-179
 and ground-water control, 6-164

Calico Hills nonwelded unit
 conceptual moisture flow, 3-194**, -215**
 east-west cross section at Yucca Mountain, 3-145**

Calico Hills tuff, see tuffaceous beds of Calico Hills

California Administrative Code
 air velocity, 6-333
 design and legal requirements, 6-8, -17*

caliper logs, geophysical logging, 1-249

Cambric nuclear explosion
 chlorine pulse, 4-135, -137**, -138
 and drillholes, 4-135, -136**, -138
 field tests, 4-134--138
 Nevada Test Site, 4-134--135
 radionuclide migration, 4-134--138
 TRACR3D, 4-134--135
 tritium pulse, 4-135, -137**, -138

Cameca electron microprobe
 mineralogic analytical technique, 4-9

candidate site
 definition, A-5
 geographic setting, A-1--2, A-3**

CANDU fuel
 characteristics, 7-116*
 and oxidation tests, 7-144, -145
 and spent fuel dissolution testing, 7-114, -136, -137--138

canister-scale heater test, 2-13**
 rock-mass response, 2-64
 thermal effects of waste emplacement, 2-110

capacitance, Topopah Spring welded unit, 3-179, -180**

carbon dioxide, atmospheric, 5-93

carbon solubility
 literature summary, 4-98
 in well J-13 water, 4-100*

carbonate aquifer isotope data, 3-100**, -101*, -102--103

carbonate-tuff (mixed) isotope data, 3-100**, -101*, -102--103

caretaker
 operations, 6-98
 schedule, 6-31**, -32

Carson River discharge
 and precipitation records, 5-49**

Carson Slough
 chemical composition, 3-25, -27*
 location, 3-2**, -26**

Case Spring fault zone, 1-178**

Castle Peak district, 1-285**

CD, see conceptual design

Cedar Mountain earthquake, 1-111, -113**, -330
 proposed model, 1-112**

Cenozoic rocks
 distribution, region, 1-48--49
 Yucca Mountain, 1-55--74

Cenozoic volcanic rocks, distribution, 1-90***--93**

central Great Basin
 description, 1-10*--11*, -13--14
 erosion rates, 1-31*
 morphometric characteristics, 1-10*--11*

cerium
 sorption ratios, 4-84
 sorption ratios from batch desorption experiments, 4-72*--73*
 sorption ratios from batch sorption experiments, 4-67*--68*

cesium,
 comparison of sorption procedures, 4-83*
 diffusion and slow sorption, 4-103**
 solubility
 literature summary, 4-98
 in well J-13 water, 4-100*
 sorption behavior
 and clinoptilolite abundance, 4-84,
 -85**
 and stratigraphic depth, 4-85**
 sorption rate constants, 4-104*
 sorption ratios, 4-84
 distilled water, 4-88, -89*
 UE-25p#1 water, 4-88, -89*
 well J-13 water, 4-88, -89*
 sorption ratios from batch desorption
 experiments, 4-72*--73*
 sorption ratios from batch sorption
 experiments, 4-67*--68*
 characterization programs, hydrology related,
 3-1
 Charleston Peak, location, 1-9**
 chemical composition
 ground water, 3-80, -82--103
 surface water, 3-25--28
 see also hydrochemistry
 chemical equilibrium modeling
 present state, 4-6
 see also EQ3/6
 China Lake
 location of, 5-44**
 and Owens River system, 5-64**, -65**
 chloride distribution
 change with time, thermal pulse, 4-127**
 chlorine pulse
 and Cambrian nuclear explosion, 4-135,
 -137**, -138
 chromium carbide precipitation
 austenitic materials, 7-72
 Cima volcanic field
 erosion rates, 1-31*
 location, 1-9**
 cinnabar, 1-284, 1-287
 circulating system
 compared with other sorption procedures,
 4-83
 description, 4-60--61, -64
 sorption data, 4-83
 circulation models, general, 5-97--98
 CIT, see computed impedance tomography
 cladding split
 and fuel oxidation tests, 7-146

Claim Canyon Caldera, 1-94**
 clay deposits, 1-297*--300*, -301
 CLIMAP Project
 and sea surface temperature modeling,
 5-41, -98
 climate
 existing
 summary, 5-102--103
 future, summary, 5-104--105
 future variations, 5-91--101
 and 10 CFR Part 60, 5-2, -6
 and 10 CFR Part 960, 5-2, -6
 prediction methods, 5-95--101
 system components, 5-92--93
 and geomorphic processes, 1-29
 information needs, identification of,
 5-105--106
 investigations
 identification of, 5-105--106
 work completed, summary, A-9
 and meteorology, 5-1--106
 data uncertainties, 5-8, -99--100,
 -104--105
 and issues, 5-1
 long-term climatic assessment,
 5-38--102
 recent, 5-8--37
 and Regulatory Guide 4.17, 5-106
 and repository surface facilities
 design, 5-105
 summary, 5-102--105
 work completed, summary, A-9
 models
 boundary conditions, 5-93, -95, -100
 classification, 5-95
 Community Climate Model, 5-41, -42,
 -98
 data uncertainties, 5-8, -90, -91,
 -99--100, -104--105
 fast response components, 5-97--98,
 -100
 generalized late Quaternary, 5-102
 global, 5-8, -97
 ice sheet geometry, 5-93, -97
 Imbrie and Imbrie, 5-96
 late Quaternary variations, 5-102
 slowly varying components, 5-93--97,
 -100, -105
 spatial disaggregation, 5-98--99
 validation, 5-8, -72, -87, -99--101
 prediction methods, 5-95

climate (continued)
 recent, 5-9--38
 atmospheric moisture, 5-13*, -21, -22*
 historical data, 5-47--54
 local and regional meteorology,
 5-10--11, -32--36
 precipitation, 5-16--20, -18**, -19**,
 -49**
 severe weather and obstructions to
 visibility, 5-27--28, -30, -31*,
 -32*
 site meteorological measurement
 program, 5-36--38
 temperature, 5-12*--13*, -14--16, -15*
 upper air data, 5-25, -26**, -27*,
 -28*, -29**
 wind speed and direction, 5-21--25,
 -22*, -24**, -26**, -27*, -28*,
 -29**, -31*
 synoptic characterization, 5-101
 and terrain, Yucca Mountain, 5-10--11
 and vegetation relationships, 5-71--89
 Yucca Mountain, 3-8--9
 climate assessment, long-term, 5-38--102
 future climate variation, 5-2, -6--8,
 -91--101
 paleoclimatology, 5-40--91
 site paleoclimate investigations,
 5-101--102
 summary, 5-103--104
 climate change simulations
 and astronomical forcing, 5-42
 climatic changes
 and geochemical stability, 4-144, -145
 climatological summary
 Yucca Flat, 1962--1971, 5-12*--13*
 climatological zones, 5-9
 climatology and meteorology, see climate, and
 meteorology
 Climax stock area
 in situ stress, 1-143**
 clinoptilolite
 exchangeable cations at Yucca Mountain,
 4-34**
 hydrothermal alteration, 4-120--121
 and silica activity, 4-38
 sorption, 4-27, -35, -84, -85**
 clinoptilolite analyses
 Topopah Spring Member, 4-30*--31*
 zeolitized intervals, 4-30*--31*

clinoptilolite-heulandites
 Yucca Mountain site, 4-27--35
see also sorptive zeolites
 closure
 borehole, 6-102**, -106**, -116**, -120**
 and decommissioning operations, 6-98
 and licensing, 1-3
 phase, 6-24*
 schedule, 6-31**, -32
 coal
 deposits, Coaldale, 1-314
 resources, 1-313, -311
 Coaldale
 coal deposits, 1-314
 Coaldale fault zone, 1-113**
 CODATA, see Committee on Data for Science and
 Technology
 Code of Federal Regulations
 design and legal considerations, 6-8,
 -9*--15*
 code validation, see validation and
 verification and validation
 coefficient of friction
 deformability property, 6-53*, -55
 plots, 2-53**, -55**
 reference values, 2-65*
 rock strength, 6-57
 coefficient of linear thermal expansion
 Topopah Spring and Grouse Canyon Member
 comparison, 2-103*
 coefficient of thermal expansion
 nonsite rocks, 2-80--81
 nonsite tuffs, 2-70*
 recommended values, 2-78*
 cohesion
 rock mass, 6-56*
 Yucca Mountain tuff, intact rock, 2-44*,
 -65*; 6-50*
see also joint cohesion
 colloids
 and radionuclide transport, 4-106--108
 well J-13 water, 4-46--48
 Yucca Mountain site ground water, 4-46--48
 Colorado Plateau, 1-8**, -9**, -16**
 Columbia Plateau, 1-8**
 Committee on Data for Science and Technology
 and thermodynamic data base, 7-192
 compliance analysis
 retrievability, 6-284--288
 compliant-joint constitutive models, 2-20--21;
 6-284

compliant joint model, 6-284, -327, -328**, -339
 compressive mechanical testing, Yucca Mountain Project, 2-26*
 compressive strength, 2-29--41
 anisotropy of, 2-40
 Bullfrog Member, 2-27, -34
 Busted Butte, 2-40
 and confining pressure, 2-32--35
 and fluid pressure, 2-32--35
 and functional porosity, 2-40--41
 Grouse Canyon Member, 2-30**, -31*, -38, -40
 and inhomogeneities, 2-40
 lithophysae effects, 2-38, -40
 and porosity, 2-41
 and rate-dependent behavior, 2-35, -37--38
 sample size effects, 2-40--41
 strain rate effects, 2-37*
 and temperature, 2-35
 Tiva Canyon Member, 2-34
 Tram Member, 2-27
 and water saturation, 2-29, -30**, -31*, -32
see also unconfined compressive strength
 computed impedance tomography
 and dehydration-rehydration effects, 7-46
 and fracture flow process, 7-48--49
 computer codes
 future verification, 6-338--339
 and Issue 1.11 (configuration of underground facilities), 6-213, -214**-217*
 and Issue 1.12 (seal characteristics), 6-237, -238*
 and Issue 2.3 (accidental radiological releases), 6-253, -254*
 and Issue 4.4 (preclosure design and technical feasibility), 6-296, -297**-300*
 thermal loading and thermomechanical rock response, 6-214**-217*
 concentration of leached elements
 glass waste form, 7-163
 conceptual design, 6-1
 advanced, definition, A-10
 description, 6-81--200
 work completed, 6-301--302
 functional requirements, 6-8, -18**-19*, -20**-23*, -24*
 geologic data, 6-35--72
 geotechnical data, 6-35--72

conceptual design (continued)
 legal requirements, 6-6--8, -9**-17*
 phase, definition, A-10
 postclosure aspects, 6-234
 reference designs, 6-302
 reference values and design assumptions, 6-301--302
 status, 6-82
 summary, 6-1, -81--200
 conceptual design report, A-11; 6-1
 design requirements, 6-6--35
 configuration of underground facilities (postclosure) (Issue 1.11)
 analysis needs, 6-234
 and climatology and meteorology, 5-1
 computer codes used, 6-213, -214**-217*
 development needs, 6-234
 future work, 6-234--235
 and hydrologic system, 3-240
 information needs description, 6-213, -218--221
 issue statement, 6-211
 regulatory basis, 6-212
 repository design, 6-205, -262
 site information needs, 6-235
 work completed, 6-221--234
 confining pressure
 and compressive strength, 2-32--35
 construction, repository
 effects on radionuclide transport, 4-144
 and information needs, 6-206--207
 and license application, 1-2--3
 materials
 deposits, 1-296, -298**-301*
 resource potential, 1-296--297
 -298**-301*, -302
 Yucca Mountain potential, 1-302
 schedule, 6-29, -31**
 stages, 6-29
 underground facility, 6-157--159
 container
 alloy compositions, 7-26*
 alternative, copper alloy, 7-34
 breach-time distribution, 7-150
 candidate materials, 7-65, -104
 containment enhancement, 6-235
 design requirements, 7-14
 fabrication and assembly processes, 7-29, -31
 materials
 long-term performance projections for, 7-102--103

container (continued)
 materials (continued)
 selection of, 7-102--103
 properties of candidate materials, 7-27*
 reference alloy system, 7-25
 welding considerations, 7-99--100
see also waste container

containment by waste package (Issue 1.4)
 and hydrologic system, 3-238

containment enhancement strategy, product 1.11.6-4
 work completed, 6-233--234

containment lifetimes
 projections, 7-100--103

containment, underground facility, 6-2

contamination
 ground water, 3-4, -29, -35, -49--50, -168
 surface water, 3-29, -35, -49--50

contingency plan, underground facility, 6-232

continuum approach, aquifer modeling, 3-6

continuum model, near field, 7-51

controlled area
 definition, A-5; 6-27
 faulting, 1-206
 fractures, 1-135
 geology, 1-1
 geothermal energy, 1-150
 resource potential, 1-287, -301
 uplift and subsidence, 1-147
 volcanism, 1-202, -203, -205, -337

controlling earthquake source
 underground facility design, 6-337

cooling requirements
 horizontal emplacement, 6-334, -335*
 vertical emplacement, 6-334, -335*

cooling unit petrology, 4-7--8, -10

copper alloy materials
 alternative container, 7-34
 alternative waste package, 7-227
 evaluation for containers, 7-65
 intergranular corrosion, 7-104, -231
 metal barriers, 7-229--231
 pitting corrosion, 7-104
 research and development summary,
 7-229--232

copper alloy system, container, 7-103--105
 candidate materials, 7-104--105
 degradation modes, 7-103, 104--105
 and test plan, 7-104

Cordilleran miogeosyncline
 cross section, 1-41**

core library, 2-14
 and preservation of stratigraphic contacts, 2-14

corehole sample locations, 2-7**

Corn Creek Flat and prehistoric lakes, 5-70

corrosion
 and alloy 825, 7-102
 austenitic materials, 7-66--68
 and sensitized microstructure, 7-67
 and well J-13 water, 7-67, -70*
 and vadose water, 7-67
 containment lifetimes, 7-100--103
 and copper alloy materials, 7-104--105
 forms
 and sensitized microstructure, 7-67
 and well J-13 water, 7-67
 intergranular, see intergranular corrosion
 and intergranular stress corrosion cracking
 localized, see localized corrosion
 and long-term container performance,
 7-102--103
 potential in irradiated well J-13 water,
 7-90
 rates
 and corrosion model, 7-208--209
 and stainless steels, 7-70*
 stainless steel, 316L, potential, 7-91**
 tests
 austenitic materials, 7-69, -70*
 Bullfrog tuff, 7-94
 transgranular, see transgranular stress corrosion cracking
 waste package performance, 7-201
 and welding considerations, 7-99--100

corrosion degradation modes
 and alloy composition, 7-85
 aqueous environment composition, 7-83
 austenitic materials, 7-83--85
 and chloride ion concentration, 7-83,
 -84**
 crevice corrosion, 7-83, -85
 pitting corrosion, 7-83--85
 research and development status, 7-83, -85
 transgranular stress corrosion cracking,
 7-83--85

corrosion model
 and corrosion modes, 7-208
 and corrosion rate, 7-208
 and cumulative barrier metal thickness,
 7-208
 and degradation modes, 7-208

corrosion model (continued)
 and gamma ray dose rate model, 7-208
 intergranular stress cracking, 7-208
 and mechanical model, 7-206--207
 and metal barrier thickness, 7-208
 and performance assessment model, 7-208
 and sensitization history, 7-208
 and thermal model, 7-208
 for waste package container, 7-102--103
 waste package postclosure performance
 assessment, 7-208
 and waste package system model, 7-203,
 -208, -218**--219**
 and water chemistry, 7-208

Coso volcanic field, 1-188
 cost, 6-340--346
 alternative repository, 6-342, -343--344
 alternative total system design, 6-344,
 -344--346
 alternative waste package, 6-342, -343
 future work, 6-346
 reference repository, 6-342, -343--344
 reference total system design, 6-344,
 -344--346
 reference waste package, 6-342, -343
 coulomb failure criteria parameters, 2-33*
 COYOTE
 finite-element method, 6-325--326
 verification and validation, 6-325--326

Crater Flat
 caldera, 1-94**, -265**
 description, 1-17**, -19, -20**--24**,
 -25
 earthquake densities and energy release,
 1-176*
 future silicic eruptions, 1-202
 future volcanism, 1-337
 hydrographic study area, 3-2**, -9*,
 -117**, -122*
 landforms, 1-27
 middle Tertiary volcanism, 1-95, -331
 Quaternary tectonic and volcanic
 processes, 1-30
 volcanic cinders and pumice, 1-301

Crater Flat tuff, 1-58--60
 age, magnetic polarity, and stratigraphy,
 1-56*
 correlation with hydrogeologic units,
 3-54*
 hydrothermal alteration, 1-282
 permeable zones, 3-191**
 potential flow path, 4-53

Crater Flat tuff (continued)
 stratigraphy, 3-138**
 test holes, 3-156
 thermal conductivities, 2-71
 thermal expansion, 2-75
 water production rate, 3-186**

Crater Flat undifferentiated unit
 conceptual moisture flow, 3-194**
 correlation with hydrogeologic unit,
 3-139**
 east-west cross section at Yucca Mountain,
 3-145**, -194**

credible repository accidents (Information
 Need 2.3.1), 6-253
 creep deformation
 Bullfrog Member, 2-38
 Grouse Canyon Member, 2-38

crest-stage sites
 gages, 3-15
 location of, 3-12**
 summary of streamflow data, 3-10*--11*

crevice corrosion, 7-83--85
 and copper materials, 7-104
 research and development status, 7-83--85,
 -86
 summary of testing, 7-97
see also corrosion degradation modes and
 localized corrosion

creviced specimens
 localized corrosion testing, 7-93--94
 and well J-13 water, 7-93

cristobalite transition, 7-40
 criteria for contingency plan, product
 1.11.3-5
 work completed, 6-232

criticality control (Information Need 2.7.3),
 6-271

cross sections
 aquifers and aquitards in the Southern
 Great Basin, 1-42**
 basin formation, modes of, 1-104**
 east-west stratigraphic, drillholes,
 1-53**
 geologic, Yucca Mountain, 1-106**
 Great Basin, 1-41**
 hydrogeologic
 conceptual moisture-flow system at
 Yucca Mountain, 3-194**
 Solitario Canyon to well J-13; 3-215**
 Yucca Mountain unsaturated zone,
 3-145**
 locations, 1-51

PART A INDEX (Chapters 1-7)

- cross sections (continued)
 - north-south stratigraphic, drillholes, 1-52**
- Protozoic and Paleozoic rocks of Cordilleran miogeosyncline, 1-41**
 - stratigraphic
 - Yucca Mountain, 3-138**
 - Yucca Mountain structural block, 1-126**
- crushed-tuff column
 - adsorption-dynamic process, 4-61
 - procedure, 4-60--61
 - sorption data, 4-82, -83*
 - sorption ratios compared with other sorption procedures, 4-82, -83*
- crustal deformation, 1-112**
 - crustal movement, 1-147
 - investigations summary, 1-350--351
 - lateral, vertical, 1-147
 - postclosure, 1-212--213
 - summary, 1-334, -338, -339--340
- Crystal, water use, 3-135*
- Crystal Reservoir, 3-2**, -13
 - water use, 3-24
- crystallization
 - ash-flow tuff, 4-7
- CSIR, see South African Council for Scientific and Industrial Research Classification System
- curium solubility
 - in well J-13 water, 4-100*
- currant oil field, 1-318

- dacitic lava
 - and flow breccia, 1-58
- Daisy Mine, 1-279**
 - fluorspar, 1-293
- data base
 - current, 2-16, -18
 - development
 - geoengineering (rock) properties, 2-6, -8, -12, -13**
 - history and strategy, 2-6
- data needs, 2-2--5, -112--113
- data requirements list, product 1.11.1-1
 - work completed, 6-231
- data uncertainties
 - climate and meteorology, 5-8, -103--105
 - climate models, 5-8, -99--100, -104--105
 - ecology, 5-8
- data uncertainties (continued)
 - geoengineering properties, 2-21--22, -113
 - geology, 1-5--6
 - glaciation, 5-90, -104
 - hydrologic, 3-6--8
 - lake core ages, 5-8, -56--57
 - lake cycle and precipitation relationship, 5-103--104
 - Lake Manly, 5-69
 - meteorological, 5-8, -103
 - pack rat midden ages, 5-8, -75
 - paleobotanic, 5-87, -105
 - paleolacustrine, 5-43, -56, -71, -103, -105
 - paleolimnological, 5-43
 - palynological, 5-75, -85
 - preliminary evaluation, 2-113
 - time series, vegetational, 5-71--72, -105
 - see also uncertainties in waste package development
- DATAO
 - thermodynamic data file, 7-192
- dating methods and paleolake size, 5-56
- Deaf Smith County site, I-1
- Death Valley
 - basaltic volcanism field characteristics, 1-97*
 - drainage system, 5-69--70
 - and ground-water discharge, 3-72*
 - location, 1-9**
 - perennial surface-water, 3-24
 - vegetation, 5-85
- Death Valley and Lower Amargosa hydrographic study area, 3-2**, -9*
- Death Valley fault zone, 1-2**, -83**, -113**, -153**
- Death Valley-Furnace Creek fault system
 - strike-slip faulting, 1-110, -114
- Death Valley ground-water basin
 - and hydrogeologic study areas, 3-4, -50
- Death Valley ground-water system, 6-66
 - and hydrogeologic and hydrographic study areas, 3-117**
- Death Valley Hydrographic Region of California and Nevada, 3-8
- Death Valley Junction
 - existing and future water use, 3-135*
- Death Valley National Monument
 - spring discharge areas, 3-35
 - water use, 3-120--121

Death Valley-Pancake Range
 basaltic flows, 1-327
 belt, 1-118**
 description, 1-48--49
 volcanic zone description, 1-95--96
 volcanism, 1-203
 debris hazard potential studies, 3-22
 decommissioning and licensing, I-3
 decrepitation of rock mass
 near-field, 2-90--91
 Topopah Spring Member, 2-111
 defense high-level waste
 package, 7-30**
 and radionuclide ratios to Environmental Protection Agency limits, 4-57*
 deformability properties
 design data, 6-54--55, -56*
 deformation mechanism
 fracture, 6-58--59
 deformation models
 data required, 2-5
 deformation modulus, see modulus of deformation
 degradation modes
 austenitic materials, 7-66--68, -229
 and chloride, 7-83
 and containment lifetimes, 7-100--102
 copper-alloy system, 7-103, -104--105
 and corrosion model, 7-208
 metallic containers, 7-238
 and microbiological organisms, 7-68
 degradation of rock mass
 and stratigraphic variations, 2-91
 thermally induced, 2-90--91
 dehydration-rehydration
 experiments, 7-46--48
 and fluid flow experiments, 7-46
 near-field environment, 7-38
 Topopah Spring tuff, 7-38
 demonstration breakout room testing, 2-13**
 dendroclimatology, 5-73
 density
 alluvium, 2-97
 Yucca Mountain tuffs, 2-77, -78*
see also bulk density and grain density
 density logs, geophysical logging, 1-241, -244
 Department of Energy, see U.S. Department of Energy
 Desert Rock
 precipitation, 5-18**, -19*
 design
 analyses, 6-290--292, -306--338

design (continued)
 basis, 6-6--81
 classification, 6-28
 constraints, 6-219
 criteria
 for geologic repository operations, 6-263**--270*
 for radiological safety, 6-262--273
 retrievability, 6-32--34, -283
 current, 6-82, -84**
 data
 deformability properties, 6-54--57
 discontinuities, 6-59--62
 dust, 6-72
 flood, 6-68, -69**, -70
 fracture, 6-52**--53*, -59, -60**--61*
 geology, 6-36--44
 geotechnical, 6-47, -62
 grain density, 6-54
 ground water, 6-66--68
 hydrologic considerations, 6-65--68
 lithology, 6-41, -42**
 mechanical properties, 6-49**--51*
 physical properties, 6-47--54
 porosity, 6-47, -48*, -54
 rock strength properties, 6-57--59
 seismic, 6-70--71
 soil and rock, near surface, 6-38, -41
 stratigraphy, 6-41, -42**
 strength properties, 6-57--59
 stress, 6-46--47
 surface water, 6-65--66
 temperature, 6-44, -46*
 terrain, 6-38, -39**, -40**
 thermal capacitance, 6-63**--64*, -65
 thermal conductivity, 6-62, -63**--64
 thermal expansion, 6-62, -63**--64*
 thermal properties, 6-62, -63**--64*, -65
 topography, 6-38, -39**, -40**
 data needs, 6-208--346
 earthquakes, 6-70--71, -71*
 elements, summary, A-11, -13
 emplacement panels, 6-147-153
 and geoengineering properties, 2-113--114
 and ground motion, 6-70--71
 hydrologic considerations, 6-65--68
 hydrology-related issues, 3-1, -240
 information cutoff, 6-4
 information needs assessment, 6-201--208
 in situ stress, 6-46*, -47
 in situ temperature, 6-44, -46*

PART A INDEX (Chapters 1-7)

design (continued)
 and issue resolution strategy, 6-209--211
 issues, 6-208--346 (see also specific issue)
 main entry drifts, 6-144, -145**, -146**, -147*
 maintenance shops, 6-153, -154**, -155**
 natural phenomena values, 6-26*
 peak accelerations, 6-70, -71*
 earthquake, 6-71*
 underground nuclear explosion, 6-71*
 perimeter drifts, 6-144, -145**, -146**, -147*
 phases, A-10; 6-1--2
 preclosure waste emplacement package
 constraints, 7-14
 and probable maximum flood, 6-26*, -68, -69**, -70, -134--135
 and public safety considerations, 6-26--27
 radiological, 6-27--28
 ramps, 6-124, -135--142
 reference, 6-302
 reference data base, 6-35--72
 repository, 6-6--35, -82, -84**
 requirements
 Code of Federal Regulations, 6-9**--15*
 container, 7-14
 critical, 6-2
 functional, 6-8, -20**--23*
 ground-water protection, 6-27
 ground-water travel time, 6-27
 interrelationships, 6-7**
 legal, 6-6, -8, -9**--17*
 Nuclear Waste Policy Act, 6-1, -6, -8
 primary, 6-7**
 repository, 6-6--35
 State of California, 6-16*
 State of Nevada, 6-16*
 subsystem, 6-7**
 summary, A-11, -13; 6-1, -6--35
 waste form, 7-14
 waste package, 7-12--17
 waste package-environment
 interactions, 7-15--16 (see also waste package design requirements)
 retrievability input, 6-283
 shaft, 6-124, -128, -135--142
 and site characteristics, A-10--11
 thermal expansion coefficient, 6-62, -63**--64*

design (continued)
 underground access, 6-124, -128
 underground facility, 6-142--175, -176**
 and underground nuclear explosions, 6-336--338
 underground openings, 6-202
 values
 natural phenomena, 6-26*
 waste handling building, 6-128, -131**--133**
 waste package, 7-19--37
 design analyses (Information Need 4.4.7), 6-295
 design constraints to limit excavation effects (Information Need 1.11.5), 6-219
 design constraints to limit water use (Information Need 1.11.4), 6-219
 design work, scope and status, A-10--14
 detachment faults, 1-105, -107**, -109
 location, southern Great Basin, 1-107**
 Yucca Mountain, 1-108**, -264
 see also faults
 Devils Hole
 past water table, 3-110, -113
 pupfish, 3-123
 water level, 3-123
 dewatering
 thermally induced, 2-89, -93--97
 Topopah Spring Member requirements, 2-107
 diagenetic zones
 Yucca Mountain site, 4-37
 diffusion
 into rock matrix, 4-101--102, -103**, -104
 in solid tuff
 adsorption-dynamic process, 4-61
 discharge, see ground-water discharge
 discontinuities
 geometric characteristics, 6-59--62
 and mechanical properties, 2-43--56, -64--66
 discrete discontinuities model, 6-339
 discrete fracture approach, aquifer modeling, 3-6
 discrete fracture model, 7-51
 dispersion
 characterization, 5-32
 data required, 5-37
 and permitting, 5-33
 temperature inversion effects, 5-10

PART A INDEX (Chapters 1-7)

displacement analyses needed, 2-3
 emplacement hole stability, 2-4
 far-field, 2-4

disposal
 schedule, 6-31**, -32

disposal system, see mined geologic disposal system

dissolution
 experiments
 borosilicate glass, 4-94
 high-level waste forms, 4-94
 spent fuel, 4-94

rate
 constants, 7-61
 spent fuel matrix, 7-150

reactions
 EQ3/6, 7-61
 spent fuel studies, 7-113--140

dissolved gas
 Yucca Mountain site ground water, 4-42*, -46

distribution coefficient
 adsorption, 4-59--60

distribution and age of paleolakes in Great Basin, 5-57--71
 see also paleolakes in Great Basin,
 distribution and age

disturbed zone
 ground-water flow to accessible environment, 3-214

diurnal variations, wind, 5-22

DOE, see U.S. Department of Energy

dollies, emplacement hole, 7-37

Dome Mountain
 earthquake densities and energy release, 1-176*
 seismicity and focal mechanisms, 1-178**
 seismicity of, 1-175, -178**, -179**, -180

doses
 worst-case releases, accidental, 6-256--257

DOT
 drift thermal analyses, 6-308--310
 elastic horizontal borehole calculations, 6-321
 finite-element code, 6-308, -310, -321

downwasting rates, 1-33

DP West site, see Los Alamos liquid waste disposal site

drainage and moisture control plan, product 1.11.3-4
 work completed, 6-232

drainage, subprovinces, 1-12

drainage control
 vertical emplacement, 6-167**

drift
 analysis
 areal power density, 6-309
 backfilling, 6-243--244
 and stress profile, 6-316**

backfill
 and hydrologic analysis, 6-243--244
 and vadose water, 6-245--246

bulkhead sealing, 6-189**

cooling
 calculations, 6-334, -335*
 horizontal emplacement, 6-334, -335*
 vertical emplacement, 6-334, -335*

drainage analysis and sealing, 6-240--241

excavation, 2-100--108

hydrologic analyses, 6-240--246

locations, 6-315**

monitoring, 2-13**

sensitivity studies, 6-317, -318

temperatures, 6-308--309, -318

thermal analyses, 6-308--310, -317, -318, -321

drifts and ramps
 ground support, 6-161--163, -163**

Drill Hole Wash 1-121**
 analysis for 100-yr flood, 6-68, 69**
 analysis for 500-yr flood, 6-68, -69**, -70
 analysis of regional maximum flood, 6-68, -69**
 chemical composition, 3-25, -27*
 flood hazard, 6-335--336
 and flood potential, 3-19
 and flood protection, 3-23
 hydrologic nature, 6-247
 location, 3-17**, -20**
 probable maximum flood, 6-135
 water depths, 6-336
 well, tritium in, 3-28
 well temperature profile, 3-28

Drill Hole Wash fault
 site boundary, 1-332

drillholes
 cross section, site, 1-52**--53**
 and exploration block, 4-43**
 and fracture data, 1-136
 and gold analyses, 1-282--283
 histories, 1-239--240
 and in situ stress, 1-140, -143**

PART A INDEX (Chapters 1-7)

drillholes (continued)

- location, Yucca Mountain, 1-50**--53**, -72**, -213--239
- mineral abundances, 4-77**--80*
- paleotemperatures, 1-279**
- petrologic characteristics, 4-77**--80*
- published reports, 1-252**--253*
- repository, facility, 1-254
- saturated zone, 3-156--160
- and site stratigraphy, 1-49
- status, 1-216--239
- testing in, 1-251--255
- UE-25a#1, see UE-25a#1 drillhole
- UE-25b#1, see UE-25b#1 drillhole
- UE-25p#1, see UE-25p#1 drillhole
- unsaturated zone, 3-147--153, 154**--155*
- USW G-1, see USW G-1 drillhole
- USW G-2, see USW G-2 drillhole
- USW G-3, see USW G-3 drillhole
- USW GU-3, see USW GU-3 drillhole
- water table, 1-251
- within 10 km, 1-215**, -222**--238*
- within perimeter drift, 1-213, -214**, -216, -217**--221**
- Yucca Mountain reports, 1-252**--253*
- Yucca Mountain site
 - locations, 4-43**
 - mineralogic compositions, 4-15
 - temperature, 4-49**

drilling

- history, 1-213--255
- investigations summary, 1-353
- summary results, 1-340--341

drilling activity

- summary, 1-213--216
- within 10 km, 1-213, 215**, -216, -222--238
- within perimeter drift, 1-213, -214**, -217--221*

drilling and blasting, 2-107

drilling fluids, 3-187, -199--200

- effects of use, 3-50

driver model

- combined processes flow, 7-220**
- data flow for waste form alteration and waste transport, 7-222**
- data flows, 7-212**--213**, -214**--215*, -216**, -218**--222**
- data flows for corrosion increment process, 7-219**
- data flows for corrosion rate processes, 7-218**

driver model (continued)

- data flows for radiation, thermal, and mechanical stress, 7-216**
- mechanical or corrosion failure modes, 7-221**
- and waste package performance assessment, 7-198
- waste package postclosure performance assessment, 7-211--223
- and waste package system model, 7-211--223
- waste transport, 7-222**

dual porosity approach, aquifer modeling, 3-6, -173

dune chronologies, 5-70

dust characteristics

- design data, 6-72

dust control

- backfilling water, 6-178

dust devils, 5-28

Eagle Mountain, location, 1-9**

Eagle Springs, oil, 1-316

earthquake, controlling source

- Paintbrush Canyon fault, 6-337

earthquake-induced phenomena

- and effect on site, 1-189

earthquakes

- completeness record, 1-164*
- density, 1-176*
- and design, 6-70--71
- deterministic estimates, 1-192--193
- energy release, 1-162**, -176*
- energy release map, 1-161**, -162**
- epicenters, 1-152**
- estimates, 6-337--338
- and faults, 1-173*
- focal depths, 1-169**
- focal mechanisms, 1-159--160
- and geologic structures, 1-171--187
- historical, 1-151--160, -164
- impounding Lake Mead, 1-161**
- magnitudes, 1-159
- Massachusetts Mountain, 1-171
- maximum, 1-192
- potential
 - and geologic structures, southern Great Basin, 1-187--189
 - and seismotectonic zones, southern Great Basin, 1-187--189
 - southern Great Basin, 1-186--189

earthquakes (continued)

- probabilistic assessment, 1-189
- probabilistic estimates, Yucca Mountain, 1-193--196
- recurrence model, 1-160--164
- recurrence rate models, 1-190, -191**, -192
- recurrence rates, 1-190, 1-191**, -192
- and seismotectonic zones, 1-171--187
- significant, southern Great Basin, 1-166**--167*
- southern Great Basin, 1-161**, -162**
- strike-slip faults, 1-153**
- and underground facility design, 6-337--338
- and weapons testing, Nevada Test Site, 1-161**
- see also ground motion and peak acceleration

East-West Seismic belt, 1-152**

Eastgate, zeolite deposits, 1-294

EBS, see engineered barrier system

ecology, modern

- data uncertainties, 5-8

elastic continuum model, 2-5, -19

elastic-plastic model, 2-19--20; 6-339

elastic properties

- data required, 2-5
- test procedures, 2-8*
- Yucca Mountain tuff, 2-24--29

electrical resistivity log

- geophysical logging, 1-247--248

electrochemical testing

- and localized corrosion occurrence, 7-85--88, -89**

embrittlement

- and metastable austenite, 7-68

Emigrant Valley hydrographic area

- water data, 3-126*

emplacement

- area exhaust shaft description, 6-86**, -139*, -140**, -141, -144**

boreholes

- normal retrieval conditions, 6-193, -194**, -279--280
- predicted temperatures, 6-194**, -279
- seals, 6-183, -184**, -185
- stability, 6-320--322
- stability research and development, 7-39--40
- stress gradient, 6-321--322
- see also emplacement hole

emplacement (continued)

drifts

- boundary-element analyses, 6-308--319
- finite analyses, 6-308--319
- stress analyses, 6-310--319
- temperatures, 6-308--310, -317--319

environment

- and reference repository horizon, 7-8--12
- source term release model, 7-8
- summary, 7-224--225
- Topopah Spring Member, 7-224--225
- vadose water, 7-9
- and waste package, 7-8--12
- water chemistry, 7-225
- well J-13 water, 7-225
- panel design, 6-147--153
- of waste package
- effects, 7-11--12

emplacement hole

components

- borehole liners, 7-34, -36
- dollies, 7-37
- shielding plugs, 7-36
- summary, 7-227
- stability, 2-3, -67
- thermomechanical analysis, 7-39

emplacement orientation decision, product 1.11.3-3

- work completed, 6-231

endangered species, 3-123

energy development, water use, 3-133

energy release, cumulative, 1-163**

energy release map

- southern Great Basin, 1-161**
- southwestern Great Basin, 1-162**

energy resource potential, 1-302--313

engineered barrier system design

- and thermally induced water migration, 2-111

engineered barrier system release rates (Issue 1.5)

- and hydrologic system, 3-239

engineering properties

- alluvium, 2-100, -101*

environmental impact statement

- and site characterization, 1-5--6

environmental monitoring and mitigation plan

- and dispersion model data, 5-33
- and permitting, 5-103
- and site characterization activities, 5-2, -38

PART A INDEX (Chapters 1-7)

Environmental Protection Agency, see U.S. Environmental Protection Agency

Environmental Regulatory Compliance Plan and permitting, 5-2, -103

environmental standards for mined geologic disposal system, 1-3--4; 6-17

Eocene Green River Formation oil shale, 1-315

Eocene-Oligocene Elko Formation oil shale, 1-315--316

eolian processes, 1-33

EPA, see U.S. Environmental Protection Agency

epicenters and major strike-slip faults, 1-153** patterns of, 1-152**, -153**, -154**, -156**, -157**, -174** and Yucca Mountain area, 1-176*

epithermal precious metal deposits generalized mineralogy, 1-275* model, 1-274**

epithermal volcanism and base metals, 1-277--280 and precious metals, 1-277--280

EQ3/6

chemical equilibrium model, 4-96 comparison with measured fluid compositions, 7-62***-63** dissolution reactions, 7-61 formation constants, 7-194 geochemical modeling code, 7-190--196, -235--236 hydrothermal reaction modeling, 4-123 laboratory experiments simulation, 7-195, -228 overview, 7-190--191 parametric analyses, 7-195 precipitation-kinetics option, 7-193, research and development summary, 7-235--236 rock-water interactions, 7-60--64, -195--196, -229 solid solutions, treatment, 7-192 solubility modeling, 4-96, -98, -99--100 spent fuel dissolution testing, 7-134 thermodynamic data, 4-96, -98 and thermodynamic data base, 7-192, -193--195 Topopah Spring tuff, 7-195 and water-rock interactions, 7-195--196, -229

EQ3NR

geochemical modeling, 7-190--191

EQ3NR (continued)

rock-water interactions, 7-60 and speciation-solubility calculations, 7-191 and thermodynamic data base, 7-192 thermodynamic state of aqueous solution, 7-190--191

EQ6

fixed-fugacity option, 7-193 geochemical modeling, 7-191--192 precipitation-kinetics option, 7-193 and reaction-path modeling, 7-191--192 rock-water interactions, 7-195--196 theory and code development, 7-192--193 and thermodynamic data base, 7-192 equipment development and demonstration, work completed, 6-286--288, -302--305 horizontal emplacement, 6-98, -103***-106**, -109*, -110, -111**, -166**, -304, -305 normal retrieval conditions, 6-193, -195, -280 retrieval, 6-200, -286--288, -304 vertical emplacement, 6-98, -99--102, -107*, -108**, -165**, -304, -305 waste emplacement, 6-98--110, -111** waste emplacement and retrieval, 6-304--305 waste receiving and preparation, 6-302--303 equipment development and demonstration (Information Need 4.4.6), 6-295

ERCP, see Environmental Regulatory Compliance Plan

erosion

Fortymile Wash, 1-325, -345 future rates, summary, 1-324, -325 potential from flooding, 3-14--15 and surface hydrology, 3-8 rates, 1-30, -31* and repository, summary, 1-325 surficial process, 1-31--35 threshold controlled, 1-34 uncertainty, 1-5

ESF, see exploratory shaft facility

Eureka low, 1-307**, -308, -309**, -310; 3-76

see also heat flow

europium

sorption ratios, 4-86 distilled water, 4-90*

euroium (continued)
 sorption ratios (continued)
 UE-25p#1 water, 4-90*
 well J-13 water, 4-90*
 sorption ratios from batch desorption
 experiments, 4-72**-73*
 sorption ratios from batch sorption
 experiments, 4-67**-68*

evaporation
 lake surfaces, 5-50--54
 potential, Yucca Mountain, 3-8
 and temperature, 5-52**

evapotranspiration
 Amargosa Desert, 3-7, -29, -30*
 governing equation, 3-32
 Oasis Valley subbasin, 3-76
 and phreatophytes, 3-32, -33, -34--35,
 -36**-47*, -71
 planned studies, 3-34
 and xerophytes, 3-32, -33

excavation characteristics of site rock,
 2-100--108
 G-Tunnel experience, 2-102--104
 other rocks, 2-101

excavation effects
 geoengineering properties, 2-107--108

excavation methods, 2-107

excavation methods criteria, product 1.11.5-1
 work completed, 6-232--233

Excelsior fault zone, 1-113**

exchangeable-cation ratios
 calcic-clinoptilolite and heulandite,
 Yucca Mountain, 4-33**
 clinoptilolites, Yucca Mountain, 4-34**

expansion areas, potential
 underground facility, 6-225, -226**,
 -227, -228**

exploration, definition, 1-257

exploration block
 ground-water chemistry, 4-39--51
 smectites, 4-35
 and well locations, 4-43**
 Yucca Mountain drillholes, 4-43**

exploratory shaft facilities, 1-5
 data base development, 2-13**
 and information needs, 6-201
 water use, 3-131*

exploratory shafts, 1-5
 Calico Hills zeolitized tuff, 6-179
 description, 6-86**, -137**, -138, -139*,
 -140**, -143**, -156
 stability, 6-323

extensional faults
 map, 1-81**

extensional tectonism, 1-85--86, -103--110,
 -328
 southern Great Basin, 1-103--110
 summary, 1-328

facility design
 overall, conceptual, 6-82--85

factor of safety
 panel access drifts, 6-320*

Fallon
 natural gas, 1-317, -318*
 precipitation records, 5-49**

far-field displacement
 analyses needed, 2-4

far-field unit evaluation, 6-233

Fatigue Wash fault, 1-122**

fault activity
 and striking orientation, 1-188

fault data, 1-129*

fault maps, 1-113**
 Nevada Test Site, Quaternary, 1-118**
 Southern Great Basin, 1-83**, -107**
 Southern Nevada, 1-101**
 Yucca Mountain, 1-50**
 Yucca Mountain, aeromagnetic data, 1-120**
 Yucca Mountain, electrical resistivity,
 1-121**
 Yucca Mountain, geologic mapping, 1-122**

fault movement
 Yucca Mountain history, 1-133, -135

fault-related deposits
 metals, 1-282

fault rupture
 repository, 1-212--213

fault zones, 1-2**
 Bare Mountain, 1-125*
 Case Spring, 1-178**
 Coaldale, 1-113**
 Death Valley, 1-2**, -83**, -113**, -153**
 Furnace Creek, 1-2**, -83**, -113**,
 -118**, -153**
 Owens Valley, 1-2**, -83**, -113*, -153**
 Solitario Canyon, 1-123*

faulting
 and controlled area, 1-206
 and earthquakes, 1-335
 history, Yucca Mountain, 1-128--135
 investigations summary, 1-349
 likelihood, postclosure, 1-207--209

PART A INDEX (Chapters 1-7)

faulting (continued)

- postclosure, 1-206--212
- Quaternary, Yucca Mountain, summary, 1-123*--125*
- repository effects, postclosure, 1-206--207
- styles, summary, 1-328--331
- summary results, 1-338
- vertical movements, 1-338
- and weapons testing, 1-209--212

faults

- Bare Mountain, 1-2**, -128, -129*, -130, -132
- Bettles Well, 1-113**, -114
- Big Pine, 1-83**, -113**, 1-153**
- Bow Ridge, 1-50**, -71, -73, -108**, -123*, -128, -129*, -133
- and calcite deposits, 1-71
- detachment, 1-105, -107**, -108**, -109, -264
- Drill Hole Wash, 1-332
- earthquake, controlling source, 6-338
- earthquakes, 1-173*, -192--193
- Fatique Wash, 1-122**
- Fran Ridge, 1-50**
- and G-Tunnel, 6-60
- Garlock, 1-2**, -9**, -83**, -110, -118**, -153**
- Ghost Dance, 1-50**, -128, -332; 3-146, -173, -193**, -194, -209; 6-248
- Late Pliocene, map, 1-118**
- Likely, 1-113**
- Mine Mountain, 1-110, -115
- Pahute Mesa, 1-189
- Paintbrush Canyon, 1-50**, -71, -108**, -122**, -123*, -128, -129*, -133, -206
- potential excavation hazard, 6-293
- Pyramid Lake, 1-113**
- San Andreas, 1-81**, -83**, -87**, -113**, -153**, -170, -309**
- Solitario Canyon, 1-50*, -71, -108**, -122**, -123*, -128, -129*, -332; 3-138**, -164, -175, -193, -194**
- Windy Wash, 1-71, -73, -108**, -122**, -124*, -128, -129*, -132--133, -206, -208
- Yucca Mountain, 1-128--135, -210**
- Yucca Wash, 1-50**

favorable conditions

- geochemistry, 4-2

field data sources, 2-13**

field tests

- Belted Range Tuff, 2-9, -12
- geoengineering, 2-9--12
- and model validation, 2-12
- and repository design, 2-12

final procurement and construction

- design, 6-2
- phase, definition, A-10

findings, see higher level findings entries

finite-element calculations

- stress at Rainier Mesa, 2-86
- stress at Yucca Mountain, 2-88--89

finite-element methods, 6-323--332

- ABAQUS, 6-323--324
- COYOTE, 6-325--326
- DOT, 6-308, -310, -321
- emplACEMENT drifts, 6-308--319
- future work, 6-339
- JAC, 6-325, -328**
- SANCHO, 6-324--325
- SPECTROM, 6-326--327, -328**
- verFICATION and validation, 6-323--332

Fish Lake district, 1-285**

Fish Lake Valley, 1-9**

flooding

- and geochemical stability, 4-144--145
- potential (Yucca Mountain area), 5-30
- and siting of surface facilities, 5-9
- by thunderstorm activity, 5-11, -16, -17, -27

floods, 3-13--23

- Amargosa River, 3-15
- analysis of Fortymile Wash and tributaries
 - 100- and 500-year floods, 3-16--21; 6-68, -69*, -335--336
- Busted Butte Wash, 3-19, -20**; 6-68, -69**, -335--336
- Drill Hole Wash, 3-19, -20**; 6-68, -69**, -335--336
- and erosion, 3-14--15
- flash, 3-14--15
- Fortymile Wash, 3-18--19, -20**; 6-68, -69**, -335--336
- hazards of, 6-335--336
 - Busted Butte Wash, 6-335--336
 - Fortymile Wash, 6-335--336
 - Yucca Wash, 6-335--336
- history of, 3-14--21; 6-135
- magnitude, 3-16--21
- monitoring network, 3-15

floods (continued)
 ongoing and future studies, 3-22
 paleoflood investigations, 3-16, -22
 potential for, 3-8, -14--21; 6-68, -69**, -135, -335--336
 predictions, difficulty of, 3-16
 protection from, 3-22--23
 surface facility design, 6-134--135
 Quaternary, 3-21
 recurrence intervals, 3-16--21
 regional maximum, 6-68, -69**
 samples, 3-27*
 summary, 3-232
 Yucca Wash, 3-19, -20**; 6-68, -69**, -335--336
 zones of, 6-68, -69**
see also probable maximum flood

flow breccia
 and dacitic lava, 1-58
 hydraulic conductivity, 3-188*, -189*, -190*
 transmissivity, 3-188*--189*

flow model
 unsaturated zone, 7-11

flow paths, potential
 Bullfrog Member, 4-53
 Crater Flat tuff, 4-53
 Prow Pass Member, 4-53
 Topopah Spring Member, 4-53
 Tram Member, 4-53
 tuffaceous beds of Calico Hills, 4-53

fluid compositions
 calculated and measured, 7-63**
 in rocking autoclave experiments, 7-56, -57**, -58**

fluid flow experiments
 and dehydration-rehydration, 7-46

fluid-induced fracturing, Bullfrog Member, 2-90

fluid pressure
 effects of, 2-32--35, -68

fluid temperature profile
 and heat load, 4-117, -118**

fluorine-bearing minerals
 deposits, Nevada, 1-292**

fluorite potential, Yucca Mountain, 1-293

fluorspar resources, Nevada, 1-290--291, -292**, -293

fluvial degradation, 1-35

flux, ground water
 Alkali Flat-Furnace Creek Ranch
 subbasin, 3-80*, -207**

flux, ground water (continued)
 through repository, 7-45
 Rock Valley, 3-79, -80*, -205
 Yucca Mountain, 3-29--30, -204

focal mechanisms
 and geologic structures, summary, 1-187
 Gold Mountain, 1-183**
 Mt. Dunfee, 1-183**
 North Pahroc Range, 1-186**
 northern Nevada Test Site, 1-179**
 Pahranagat shear zone, 1-185**
 Pahroc Valley, 1-186**
 Pahute Mesa, 1-179**
 Sarcobatus Flat, 1-183**
 southern Nevada Test Site, 1-178**

fog, Yucca Mountain area, 5-30

Fortymile Canyon
 and flow system modeling, 3-205
 and ground-water tritium, 3-96
 and ground-water velocity, 3-112, -224
 as important recharge area, 3-87
 radiocarbon dating, ground water, 3-96, -112
 wells in, 3-82
see also Fortymile Wash

Fortymile Canyon-Buckboard Mesa hydrographic study area, 3-2**, -9*, -122*

Fortymile Canyon-Jackass Flats hydrographic study area, 3-2**, -9*, -122*, -127*

Fortymile Wash
 analysis for 100-yr flood, 3-19; 6-68, -69**
 analysis for 500-yr flood, 3-19; 6-68, -69**
 analysis of regional maximum flood, 6-68, -69**
 bridges for highway and rail access to site, 6-82
 chemical composition, 3-25, -27*
 depth, 6-38
 description, 1-25--26
 erosion, 1-325, -345
 flood hazard, 6-335--336
 flooding, 3-14, -18--19**, -20**
 and ground-water recharge, 3-87
 map, 1-17**, -20**--24**
 physiographic subdivision, 1-25--26
 stream incision, 1-34*

foundations, surface facilities
 design, 6-128, -134

fracture density, unsaturated zone, 3-170*

PART A INDEX (Chapters 1-7)

fracture flow
retardation by matrix diffusion, 4-102,
-104--105

fracture flow process
experiments, 7-48--49

fracture frequency
and sealing, 6-240
thermal/mechanical units
design data, 6-60, -61*--62*

fracture mineralogy, host rock, 4-13,
-14**, -15

fracture properties, 2-5, -6, -8, -43--56
reference values, 2-65*

fractured rock
stress-strain relationship, 2-58**

fractured rock aquifers, hydraulic behavior,
3-5--6

fractured rock mass
heat transfer in, 7-53

fractured tuff columns
adsorption-dynamic process, 4-62

fractures
and calcite deposits, 1-71
characteristic curves, 7-51
and controlled area, 1-135
and deformation mechanism, 6-58
and design, 6-59, -60*--61*
and faults
interpreted from electrical
resistivity data, 1-121**
fluid induced, 2-90--91
frequency, 6-60*--61*
and heat transfer, 2-4, -92
host rock and Rainier Mesa, 2-102
and hydraulic conductivity,
saturated zone, 3-179, -181--185
hydraulic studies, 2-85--86
mechanical behavior, 2-5, -45--50
mechanical properties, 6-52*--53*
modeling parameters, 6-52*--53*
and tunnel boring machines, 2-108
and water migration, 2-92, -94
Yucca Mountain, 1-135--138

Fran Ridge
fluid flow experiments, 7-46
and Topopah Spring tuff, 7-54
tuff and well J-13 water reactions, 7-59
and tuff samples, 7-60

Fran Ridge fault, location, 1-50**

Franklin Lake playa, planned studies, 3-34

Frenchman Flat
earthquake densities and energy release,
1-176*
ground-water travel time, 3-73
water data, 3-126*

Frenchman Lake and aquifer recharge, 3-24

Freundlich isotherm
sorption-element concentration relation-
ship, 4-60

friction, coefficient of
mechanical property, 6-53*
plots, 2-53**, -55**

friction, residual angle, 6-53*

frit 165
compositions, 7-173, -174*, -175
leaching, 7-168**, -170**, -176**
Savannah River glass based waste form,
7-151--152

fuel dissolution tests, see spent fuel
dissolution testing

functional requirements
conceptual design, 6-8, -20*--23*, -24*
postclosure waste package, 7-14--15
preclosure waste emplacement package, 7-14

Funeral Mountains
earthquake densities and energy release,
1-176*
seismicity of, 1-178**, -180

Furnace Creek fault zone, 1-2**, -83**,
-113**, -118**, -153**

Furnace Creek Wash, 3-104**
and Death Valley resort water supply,
3-121
spring discharge areas, 3-35
and water-table related deposits, 3-104**,
-105

future climate variation, see climate, future
variations

G-Tunnel
borehole stability, 6-320--321
and code verification and validation,
6-327, -329
data base development, 2-13**
excavation experience, 2-102--104; 6-319
excavation-induced response near Grouse
Canyon, 6-284
and faults, 6-60
field data source, 2-12
ground-water flow, 6-67

G-Tunnel (continued)

- ground-water inflow estimates, 2-106, -107
- heated block experiment, 2-13**, -56, -57, -60, -61**, -62**, -96, -110; 6-56, -243
- heated-borehole experiments, 2-96
- laboratory data source, 2-6--12
- location, 2-7**
- mechanical property measurements, 2-60
- and mining of repository, 6-233
- overburden loadings, 2-102
- and potential excavation hazard, 6-291
- pressurized slot test, 2-13**, -56, -57, -60, -63**
- rock mechanics facility, 2-9, -10** -11**
- small-diameter heater tests, 2-94--95
- support requirements, 2-9, -106*
- tests for naturally occurring radiation sources, 6-286
- and validation, 6-339
- see also Rainier Mesa and specific experiment

gamma ray dose rate model

- and corrosion model, 7-208

gamma ray dose submodel

- description, 7-204--205

gamma ray logs, geophysical logging, 1-246

gangue mineralogy, 1-275**-276*, -278

Garlock fault, 1-2**, -83**, -113**, -118**, -153**

- location, 1-9**
- strike-slip fault, 1-110

gas

- fields, Nevada, 1-316--319
- potential, Yucca Mountain, 1-319--323

gas phase flow

- and waste package emplacement, 7-52

gaseous radionuclide retardation

- (Investigation 8.3.1.3.8) synopsis, 4-151--152

gaseous transport, 4-109

- data status, 4-6

general circulation models, 5-97--98

generic postclosure requirements

- waste package, 7-14--15

generic preclosure requirements

- waste package, 7-13--14

Generic Requirements for a Mined Geologic Disposal System

- and waste form, 7-17
- waste package design requirements, 7-12
- waste package performance, 7-2**, -3, -4*

geochemical data, 4-3

- status, 4-5--7

geochemical data collection

- conceptual influences, 4-3--45
- history, 4-3

geochemical effects

- and waste emplacement, 4-117--129

geochemical facies in Yucca Mountain tuff, 3-166**

geochemical flow model

- and code development, 7-192--193

geochemical investigations

- work completed, summary, A-9

geochemical modeling

- application, 7-195--196
- EQ3NR, 7-191
- EQ6, 7-191--192
- and release rates from glass, 7-188
- rock-water interactions, 7-38--39, -60--64
- and solution species, 7-194--195
- and spent fuel dissolution tests, 7-134
- theory and code development, 7-192--193
- thermodynamic data base, 7-192
- thermodynamic data base development, 7-193--195
- and water-rock interactions, 7-195--196

geochemical modeling code

- EQ3/6, 7-190--196, -235--236
- overview, 7-190--191
- see also EQ3/6

geochemical processes

- affecting radionuclide transport, 4-4

geochemical retardation

- analytical techniques, 4-59--65
- general description, 4-52--59
- in host rock
 - anticipated conditions, 4-109--115
 - unanticipated conditions, 4-115--116
- models, 4-109--110
- precipitation processes, 4-52--53
- processes, 4-51--116
 - analytical techniques, 4-59--65
 - description, 4-52--54
 - and design summary, 4-146--147
 - precipitation, 4-52--53
 - radionuclide transport, 4-52
 - sorption, 4-52--53
 - summary, 4-145--147
 - vapor-phase exchange, 4-52--53
- summary, 4-145--147

PART A INDEX (Chapters 1-7)

- geochemical site data
 - and higher level findings--postclosure (Issue 1.9), 4-2
 - and NRC siting criteria (Issue 1.8), 4-1--2
- geochemical stability, 4-143--145
 - and flooding, 4-144--145
 - ground-water pumping, 4-143--144
 - ground-water withdrawal, 4-143
 - man-induced effects, 4-143--144
 - and natural changes, 4-144--145
 - rock-water interactions, 4-145
 - and tectonic activity, 4-144
 - and volcanic activity, 4-144
- geochemical transport processes
 - effect on technetium, 4-111**--112**
 - effect on uranium, 4-113**--114**
- geochemistry
 - data and models, present state, 4-5--7
 - effects of waste emplacement, 4-116--129
 - favorable conditions, 4-2
 - ground-water chemistry, 4-39--51
 - host rock, 4-7--116
 - investigations identification, 4-147--152
 - potentially adverse conditions, 4-2
 - and Regulatory Guide 4.17, 4-152
 - stratigraphic units, 4-7--116
 - Yucca Mountain site, 4-1--152
- geochemistry program
 - geochemical information, 4-1
- geoengineering, 2-1--118
 - and design, 2-113--114
 - excavation characteristics of the rock mass, 2-100--108
 - existing stress regime, 2-82--89
 - field tests, 2-9--12
 - investigations
 - work completed, summary, A-8
 - mechanical properties of rock units
 - discontinuities, 2-43--56, -64--66
 - intact, 2-22--42, -64--66
 - large scale, 2-56--66, -64--66
 - special geoengineering properties, 2-89--100
 - summary, 2-109--118
 - thermal and thermomechanical properties
 - intact rock, 2-66--78, -82
 - large-scale, 2-79--82
 - nonsite rocks, 2-80
 - site rocks, 2-81--82
- geoengineering data
 - and issues and information needs, 2-114, -115--117*
- geoengineering data base
 - current, 2-16, -18
 - development, 2-6--12, -13**
- geoengineering initial conditions to be measured, 2-2--5
- geoengineering properties
 - alluvium, 2-100, -101*
 - data base development, 2-6--12, -13**
 - data uncertainties, 2-21--22, -113
 - and design, 2-113--114
 - excavation effects, 2-107--108
 - planned measurements, 2-4--5
 - and Regulatory Guide 4.17, 2-114, -118
 - summary, 2-109--111
 - surface materials at site, 2-96--100, -101*
- see also specific property
- geologic
 - characteristics, Yucca Mountain, 1-1--353
 - disposal, regulations, 1-3
 - drillholes, 1-251--255 (see also drillholes)
 - formations, 1-38**
 - framework, hydrologic conditions, 3-145**, -146
 - index map, 1-36**
 - information
 - sources of, 1-1, -3
 - uses of, 1-3--5
 - investigations
 - work completed, summary, A-5
 - maps, Yucca Mountain, 1-50**, -255
 - models, 1-264
 - processes
 - long-term regional stability, 1-200--213
 - repository, definition, A-2
 - stratigraphy
 - and thermal/mechanical stratigraphy, 6-43**
 - structures
 - and earthquake potential, 1-187--189
 - focal mechanisms, 1-187
 - summary, 1-331--333, -334
 - Yucca Mountain cross section, 1-106**
- geologic log, alluvium, 2-98**
- geologic time periods
 - and paleoclimatic reconstructions, 5-38, -39**

PART A INDEX (Chapters 1-7)

geology
and design, summary, 1-343--344
introduction, 1-1
and waste package design, summary, 1-344
Yucca Mountain, 1-1--353

geomorphic processes
and climate, 1-29
description, 1-27--35
determinants, 1-28--29
Quaternary, 1-30--35
tectonism, 1-28--29

geomorphic units
characteristics, 1-19--27

geomorphology, 1-6--35
investigations summary, 1-345--346
summary results, 1-324--325

Geophysical Fluid Dynamics Laboratory climate
model and sea surface temperatures, 5-41

geophysical characteristics
and mineralization potential, 1-262--266

geophysical logging, 1-241--250
caliper logs, 1-249
density logs, 1-244
electrical resistivity logs, 1-247--248
gamma ray logs, 1-246
gravimeter logs, 1-249--250
log types, 1-241, -244
magnetic logs, 1-250
neutron logs, 1-245--246
sonic velocity logs, 1-248--249
summary, 1-241
temperature logs, 1-246--247
tracer logs, 1-247
USW G-4, 1-242**--243**

geotechnical data
conceptual design, 6-35--72
design data, 6-47--72

geothermal energy .
and controlled area, 1-150
energy production, 1-150
heat flow, regional, 1-308, -310
heat flow, western United States, 1-149**
in situ temperature, Yucca Mountain, 1-148
Nevada, Yucca Mountain vicinity, 1-306,
-307**, -308
Nevada resources, 1-305--313
and performance assessment, 1-148, -150
regional patterns, 1-147--150
and repository design, 1-148, -150
and waste isolation, 1-150
wells, Nevada, 1-307**
Yucca Mountain potential, 1-310--313

geothermal regime
investigations summary, 1-351
summary, 1-333--334
Yucca Mountain, 1-147--150

geothermal reservoirs
heat flow and the thermal gradient,
1-308, -310

Ghost Dance fault
hydrologic nature, 6-247
and hydrologic properties, 3-146, -175,
-193, -194**
location, 1-50**
offset, 1-128
and site, 1-332

glaciation
data uncertainties, 5-90, -104
glacial and periglacial records and lake
levels, 5-89--90
Quaternary Period cycles, 5-38, -40

glass dissolution
and 304L stainless steel effects, 7-169,
-170**
model, 4-50
and tuff, 7-181

glass waste forms
description, 7-151--162
and general principles of glass
performance, 7-151--162
frit 165, 7-173, -174*
leaching, see leach rates, waste glass
form

Pacific Northwest Laboratory, 7-152*

performance research and testing,
7-151--189
release rates, 7-159--173, -188--189
research and development summary,
7-234--235

Savannah River Laboratory, 7-153*, -173,
-174*

source term release model, 7-187--189
testing in well J-13 water, 7-165, -169,
-175--187
uncertainties, 7-239--240

waste form alteration model, 7-209--210
West Valley, 7-154*

Yucca Mountain Project, 7-173, -174*

see also Yucca Mountain Project glass
waste forms and Savannah River
Laboratory waste glass

global climate
model, 5-8, -97

PART A INDEX (Chapters 1-7)

global climate (continued)
Quaternary paleoclimate, 5-40--42
see also climate

gold
Nevada production, 1-273**
Nevada resources, 1-269--284
production, 1-269--270

Gold Flat
ground water
sampling area, locations, 3-89**
sodium bicarbonate and chloride concentrations, 3-90**
hydrographic study area, 3-3**, -117**
water data, 3-122*

gold mines, water use, 3-128

Gold Mountain
earthquake densities and energy release, 1-176*
and focal mechanisms, 1-183**
seismicity of, 1-183**, -184

Goldbanks district, 1-285**

Goldfield
gold deposits, 1-273**, -277
mineralized district, 1-273**, -277

Goldfield block
characteristics, 1-10*--11*, -15, -16**, -18
erosion rates, 1-31*
morphometric characteristics, 1-10*--11*
see also Amargosa Desert

gradation curves, alluvium, 2-99**

grain density
design data, 6-54
intact rock, 6-48*
nonsite rocks, 2-70*
recommended values, 2-78*
test procedures, 2-8*
Topopah Spring and Grouse Canyon Member comparison, 2-103*

granitic intrusives, 1-36**

Grant Canyon oil field, 1-317

gravimeter logs, geophysical logging, 1-249--250

Great Basin
cross section, 1-41**
geologic index map, 1-36**
geology, A-2; 1-7, -12--13
map, A-3**; 1-8**
paleogeography, 1-45**, -47**
Proterozoic rocks and deposits, 1-44**
subprovince, A-1; 1-7, -8**, -9**, -12--13

Great Basin (continued)
uranium-series dated veins, 3-104**
see also southern Great Basin

Great Basin lakes of Pleistocene age
location of, 5-44**

Great Salt Lake
historical lake levels, 5-46**, -55**
location of, 5-44**, -58**
see also Lake Bonneville

Greenwater-Black Mountain
basaltic volcanism field characteristics, 1-97*--1-98*

ground mass analyses
Topopah Spring Member, 1-69*

ground motion
calculation of, 1-192--196
at depth evaluation, Yucca Mountain, 1-198--199
and design, 6-70--71
deterministic estimates, 1-192--193
earthquakes, Yucca Mountain, 1-192--196
probabilistic estimates, 1-172, -191**, -192, -193--196, -194**, -195*

Rainier Mesa, 1-199
and underground facility design, 6-336--338
vibratory, 1-192--196
and waste isolation, 1-150, -192--196
weapons testing, 1-199, -209--212
see also earthquakes and peak acceleration

ground water
age, 3-72--73, -79, -98, -102, -111--112, -223, -224
age dating, and prehistoric recharge, 5-70
background radioactivity, Nevada Test Site, 4-47*

baseline monitoring, 3-146--147, -165--169

chemical composition, 3-82--96
(see also ground-water chemistry, ground-water composition, and hydrochemistry)

contamination of, 3-4, -29, -35, -49--50, -168

control
Topopah Spring Member, 6-164
underground facility, 6-164, -167**
vertical emplacement, 6-164, -167**

design data, 6-66--68

discharge, see ground-water discharge

flow, see ground-water flow

hydrochemistry of, 3-80--103, -165--169, -222--224, -233

ground water (continued)

 injection wells, 1-256

 isotopic nature of, 3-80--103, -165--169

 levels, see ground-water levels and water table levels

 management, 3-133--136

 Nevada Department of Conservation and Natural resources studies, 3-4

 protection

 design requirements, 6-27

 pumping, 3-64*--67*

 and geochemical stability, 4-143

 Rainier Mesa, 4-50

 recharge, see ground-water recharge

 reference, see reference ground water

 residence times, 3-72--73

 samples, laboratory preparation, 4-62

 sampling, 3-87**, -97*, -99**

 travel time, see ground-water travel time

 and tritium, 3-28, -96, -167*, -168

 use, 3-113--136 (see also water use)

 velocities, 3-72--73, -112, -113, -214--222, -223, -224, -237 (see also ground-water travel time)

 withdrawal and geochemical stability, 4-143

Yucca Mountain site

 background radioactivity, 4-46, -47*

 chemistry, 4-41*, -42*

 colloids, 4-46--48

 dissolved gas, 4-42*, -46

 inorganic content, 4-40, -41*, -42*, -44**, -45

 organic content, 4-46

 particulates, 4-46--48

 pressure, 4-48

 sodium-potassium-calcium, 4-44**

 temperature, 4-48, -49**

 trace elements, 4-45

 see also flux

ground-water chemistry, 3-82--96

 anion concentrations, 4-42*

 element concentrations, 4-41*

 summary, 4-146

Yucca Mountain exploration block, 4-39--51

Yucca Mountain site, 4-41*, -42*

ground-water composition

 and dissolution of tuffs, 4-50

 mineralogical controls, 4-48, -50

 reference, 4-50--51

 and sorptive behavior of radionuclides, 4-87--88

ground-water composition (continued)

 and stratigraphic position, 4-50

ground-water discharge

 and accessible environment, 3-29, -229

 Amargosa Desert, 3-30*, -71, -72*, -233

 Ash Meadows, 3-71, -77, -78

 Death Valley, 3-35, -72*

 and ground-water travel-time calculations, 3-29

 and hydrologic budget, 3-28--34

 Indian Springs Valley, 3-70, -72*, -78

 and Key Issue 1, 3-29

 lower carbonate aquifer, 3-91--94

 Oasis Valley, 3-29, -30*, -35, -40*--42*

 points of, 3-28--35, -36*--47*

 and production wells, 3-72

 and recharge, 3-70--72, -201--214

 flow patterns, 3-202**

 summary, 3-233

 tuff aquifer, 3-91

 valley-fill aquifer, 3-94

ground-water flow

 and accessible environment, 3-214

 Alkali Flat-Furnace Creek Ranch subbasin, 3-79, -80*, -207**

 Ash Meadows subbasin, 3-77--78

 bulk rates, 3-74

 modeling, see ground-water flow modeling

 Oasis Valley, 3-77

 paths, 3-74--80, -75**, -107, -108**, -109

 and pluvial water-table rise, 3-108**

 Quaternary, 3-107--109, -112

 system, regional, 3-69--113

 valley-fill aquifer, 3-78

 volcanic rock aquifer, 3-78

ground-water flow modeling, 3-193--214, -206**

 and Alkali Flat-Furnace Creek Ranch subbasin, 3-204

 history of, 3-4--5

 and Pahrump Valley, 3-205

 summary, 3-233

ground-water inflow estimates

 G-Tunnel, 2-106--107

 Topopah Spring Member, 2-107

ground-water levels

 future, 3-110--111

 during the late Wisconsin, 3-109--110

 Quaternary Period, 3-103--107, -112, -227, -234

 summary, 3-236

Yucca Mountain, 3-157*--159*, -164, -233--234, -237

ground-water levels (continued)
see also water-table levels

ground-water protection (Issue 1.3)
and hydrologic system, 3-239

ground-water recharge
Alkali Flat-Furnace Creek Ranch subbasin, 3-71
areas, 3-69--70
carbon-14 data, 3-111--112
and discharge, 3-70--72, -201--207
Fortymile Wash, 3-87
and Frenchman Lake, 3-24
governing equation, 3-31
late Wisconsin, 3-111--112
and leakage, unsaturated zone, 3-201--207
lower carbonate aquifer, 3-91--92
Oasis Valley, 3-136
and precipitation, 3-201--203, -234
prehistoric, 5-70
rainfall-runoff relations, 3-9, -13
rates, 3-29--31
summary, 3-234
tuff aquifer, 3-87
and valley-fill aquifer, 3-24, -25, -28, -70--71, -94
and Yucca Lake, 3-24
at Yucca Mountain, 3-137

ground-water system
and repository design, 3-237--238

ground-water travel time, 3-214--222
design requirements, 6-27
and ground-water discharge data, 3-29
retardation and thermal effects, 3-221--222
saturated zone, 3-219--220, -220*
and stress, 2-4
summary, 3-237
and thermally induced water migration, 2-4
unsaturated zone, 3-5, -203, -209, -210, -216--219
and water-level measurements, 3-146--147
Yucca Flat, 3-73
see also ground water

ground-water travel time (Issue 1.6)
and climatology and meteorology, 5-1
and hydrologic system, 3-214, -239

Grouse Canyon Member
coefficient of friction plots, 2-53**, -55**
comparison with Topopah Spring Member, 2-9, -103*, -106*, -111

Grouse Canyon Member (continued)
compressive strength, 2-30**, -31*, -38, -40
creep deformation, 2-38
drift excavation, 2-102--104
excavation experience, 6-320
field studies in, 2-9, -12
heater tests, 2-79
modulus of deformation, 2-64
Poisson's ratio, 2-103*
potential excavation hazard, 6-291
and rock behavior model, 2-38
rock mass classifications, 2-105**
shear stress plots, 2-48**, -51**, -54**
simulated joint mechanical properties, 2-46--47
simulated joint samples, 2-109
support requirements, 2-106*
thermal-comparator measurements, 2-72--73
thermal expansion, 2-77, -79, -80--81
and unconfined compressive strength plot, 2-39**
and unit evaluation study, 2-104
see also heated-block test and G-Tunnel grouting
sealing, 6-189**

H.B. Robinson Unit 2 fuel
characteristics, 7-116*
and series 2 spent fuel dissolution testing, 7-114--136, -120**
hail (Yucca Mountain area), 5-30
see also precipitation

HANDLEY event
weapons testing, 1-146

Hanford site, 1-1

hazards to excavation workers
work completed, 6-291

heat, see thermal effects of waste emplacement and temperatures

heat capacity, 2-5
definition, 2-67
governing equations, 2-73--74

nonsite tuffs, 2-70*
and porosity and saturation, 2-74*
recommended values, 2-78*

heat flow
Battle Mountain high, 1-307*, -308, -309**
and energy resources, 1-150
Eureka low, 1-307**, -309**; 3-76

heat flow (continued)
 geothermal, regional, 1-308, -309**, -310
 -321**
 geothermal reservoirs, 1-308, -310
 Pahute Mesa, 3-76
 and performance assessment, 1-150
 and repository design, 1-148, -150
 and tectonics, Yucca Mountain, -150
 western United States contours, 1-149**
see also geothermal energy

heat transfer in fractured rock mass, 2-5, -92
 and waste package emplacement, 7-53

heated-block test, 2-13**, -60, -61**, -62**
 and large-scale rock-mass properties, 2-64

rock mass modulus of deformation, 2-110
 and rock mass properties, 2-56
 test procedures, 2-57
 thermal expansion coefficients, 2-82
 and water migration, 2-96

heated-borehole experiments
 and water migration, 2-96

HEFF
 boundary-element method, 6-332
 drift thermal analyses, 6-308, -317, -318
 ramp stresses, 6-322
 verification and validation, 6-332

heulandite, 4-27, -29, -35
see also sorptive zeolites

high-level waste
 dissolution experiments, 4-94
 and radionuclide ratios to Environmental Protection Agency limits, 4-56*
 reference waste form, 7-25
 reference waste package, 7-30**

high nickel, iron-based austenitic alloy
 reference container, 7-25

higher level findings--ease and cost of construction (Issue 4.1)
 and hydrologic system, 3-240

higher level findings--postclosure (Issue 1.9)
 and climatology and meteorology, 5-1
 and geochemical site data, 4-2
 and hydrologic system, 3-239
 physical/geochemical transport models, 4-109--110

higher level findings--preclosure radiological safety (Issue 2.5)
 and climatology and meteorology, 5-1

highways
 access routes, 6-82, -83**, -124, -126**

historical lake, climatic, and hydrologic data, see lake, climatic and hydrologic data, historical

Hoover Dam, 3-24

horizontal borehole, 6-159**

horizontal emplacement, 6-85, -88**
 access, 6-144, -146**
 airflow requirements, 6-173--175, -334, -335*
 alternative orientation, 6-4
 cooling requirements, 6-334, -335*
 drift cooling, 6-334--335*
 drift sensitivity analysis, 6-318
 drift temperatures, 6-309
 equipment, 6-98, -109*, -111**, -166**
 layout, 6-88**, -142, -144, -146**
 mining methods, 6-166**
 operations, 6-98, -103***--106**
 orientation decision, 6-231--232
 ramps and drifts, 6-144, -146**
 retrieval operations, 6-110, -117***--120**
 stress analyses, 6-310, -312**, -314**, -317
 thermal modeling, 6-309--310
 ventilation, 6-333--334
 waste retrieval operations, 6-110, -117***--120**

horizontal emplacement holes
 alternative orientation, 7-34, -36--37
 and borehole liners, 7-34, -36
 elastic model, 6-321--322
 inelastic model, 6-321--322

horizontal emplacement panel
 description, 6-148, -151***--152**

horizontal stress
 magnitude, 6-46--47
 orientation, 6-46--47

host rock, 1-55; 6-83
 analytical techniques, 4-8--9
 composition, 4-9--36
 dry out, 7-49
 effect of heated ground water, 4-129--131
 fracture mineralogy, 4-13, -14**, -15
 general description, 4-7--8
 geochemical retardation
 anticipated conditions, 4-109--115
 unanticipated conditions, 4-115--116

geochemistry, 4-7--116
 matrix mineralogy, 4-10, -13
 mineralogy, 4-7, -10, -13, -36
 partial saturation, 7-51

host rock (continued)
 petrology, 4-7
 phenocrysts, 4-10
 proposed, 1-35--78
 reference repository horizon, 7-10
 rehydration and gamma radiation, 7-45
 sequence of fracture coatings, 4-14**
 smectites, 4-35--36
 stress regime, 2-82--89
 temperature history and emplaced spent fuel container, 7-42**
 and thermal load from waste package, 7-44
 thermal modeling, 6-321
 and uncertainties in waste package environment, 7-237
 waste package emplacement effects, 7-11--12
 worker exposures resulting from natural radioactivity, 6-252
see also reference repository horizon, Topopah Spring Member, unsaturated zone, and Yucca Mountain tuffs
 hot springs, Nevada location, 1-307**
 hot springs in tuffaceous rocks
 repository analogs, 4-129--130
hydraulic characteristics
 fractured rock aquifers, 3-5
 principal hydrogeologic units, 3-63--69
 saturated zone, 3-179--192
 unsaturated zone, 3-169--179
 unsaturated-zone relationships, 3-208--214
hydraulic conductivity
 and fractures, 3-179, -181--185
 interstitial, 3-51--57*, -63, -68
 saturated zone, 3-179--185, -188--189*
 and sealing, 6-240--241
 summary, 3-233
 transmissivity, 3-185--192
hydraulic fracturing studies, 2-85--86
hydrocarbon resources, 1-256, -313--323
 investigations summary, 1-353
 summary results, 1-341--343
hydrocarbons
 potential and time-temperature, 1-321**, -323*
hydrochemistry, 3-146, -222--224
 baseline monitoring program, 3-165--169
hydrochemical facies, 3-94--95
 of region, 3-69, -80--96
 of site, 3-165--169; 4-39--40
 summary, 3-233
hydrogen embrittlement
 austenitic materials, 7-98--99
hydrogeologic data uncertainty, 3-6--8
hydrogeologic reconnaissance of site, 3-50--69
hydrogeologic study areas, A-5; 3-4, -50
 location map, A-6**; 3-3**, -48**, -117**
 magnitude of springs, 3-49*
 potentiometric surface map, 3-62**
 precipitation, recharge, and discharge areas, 3-48**
 regional reconnaissance, 3-50--69
 and U.S. Atomic Energy Commission, 3-4
hydrogeologic system at site, 3-136--231
hydrogeologic units, 1-38**
 cross sections, 3-145**, -194**, -215**
 definition of, 3-58
 distribution, 3-59**
 ground-water flow relationships, 3-61--63
 hydraulic characteristics of, 3-63--69
 lower carbonate aquifer, 3-58, -59**, -60
 lower clastic aquitard, 3-58, -59**, -60
 porosity, 3-51--57*
 selection of, 3-58
 spacial relationship, 3-61
 and stratigraphic units, 3-51--57*, -139**
 transmissivity, 3-51--57*
 unsaturated zone summary, 3-234
 upper carbonate aquifer, 3-58, -59**, -60
 upper clastic aquitard, 3-58, -59**, -60
 valley-fill aquifer, 3-58
 volcanic rock aquifers and aquitards, 3-58, -59**, -60
see also specific aquifer or aquitard
hydrogeology of unsaturated zone
 planned studies, 3-5
hydrographic study areas, A-5, -7**;
 3-2**, -9*
 water use, 3-122*
hydrologic analyses
 and sealing shafts and drifts, 6-242--244
 work completed, 6-335--336
hydrologic balance of lake systems
 governing equation, 5-45
 lake size effect, 5-54
hydrologic budget
 and ground-water discharge, 3-28--34
 for recharge, governing equations, 3-31--32
hydrologic calculations to evaluate shaft and drift backfill, product 1.12.4-3
 work completed, 6-242--244

hydrologic conditions, 3-1--241
 chemical composition
 ground water, 3-79
 surface water, 3-25--28
 floods, 3-14--23
 ground-water discharge, 3-28--50
 ground-water flow system, 3-69--113
 hydrogeologic
 site reconnaissance, 3-50--69
 system, 3-136--231
 summary, 3-231--237
 surface water, 3-8--13
 water use
 ground, 3-113--136, -225--227
 surface, 3-23--25

hydrologic considerations
 design data, 6-65--68

hydrologic data
 data uncertainty, 3-6--8

hydrologic drillholes, 1-251, -252*--253*, -253

hydrologic investigations
 work completed summary, A-8--9

hydrologic models
 aquifers, 3-5--6
 ground-water flow, 3-193--214
 summary, 3-233, -235--236
 water table levels (pluvial), 3-229--230

hydrologic system
 geologic framework of, 3-145**, -146
 ground-water flow, 3-69--113
 and related issues, 3-238--241

hydrologic test holes, history of, 3-5

hydrologic transport
 thermal perturbation of, 7-42

hydrologic units
 location of, 3-59**
see also hydrogeologic units

hydrology, regional isotope, 3-96--103

hydrothermal alteration
 Bullfrog Member, 1-282
 rhyolitic glasses, 4-122
 smectites, 4-121--122
 and thermal pulse, 4-119--122
 Tram Member, 1-282
 zeolites, 4-120--121

hydrothermal flow
 numerical modeling, 7-49, -51--53

hydrothermal fluid flow in fractured tuff
 warm and hot spring investigations,
 4-129--131

hydrothermal model
 WAFE, 7-206
see also thermal model and waste package

hydrothermal reaction modeling, 4-123

hydrothermal resource potential
 Yucca Mountain, 1-310, -311--313

hydrothermal systems, 1-309**
 Yucca Mountain, 1-310

hydrothermal transport
 numerical modeling, 7-49, -51--53

hydrovolcanic activity
 Lathrop Wells basalt center, 1-203
 Nye Canyon, 1-203

hypothetical resources
 definition, 1-260

ice-sheet geometry models, 5-97

Idaho batholith, 1-309**

identified resources
 definition, 1-258, -259**

IGIS, see Interactive Graphics Information System

igneous history
 southern Great Basin, 1-88--99
see also volcanic history

IGSCC, see intergranular stress corrosion cracking

Imbrie and Imbrie climate model, 5-96

Imlay district, 1-285**

important to safety, see items important to safety and Q List

India (tuff breccia), 2-25*

Indian Springs
 calcium-magnesium-bicarbonate facies, 3-95
 and discharge, 3-70, -72*, -78
 high-sodium water leakage, 3-91, -92
 marsh deposits, 3-109
 and prehistoric lakes, 5-70
 sodium bicarbonate and chloride
 concentrations, 3-90**
 water supply (Beatty), 3-128
 water supply and use, 3-123, -124*, -125, -126*, -135*

Indian Springs Air Force Base
 existing and future water use, 3-124*, -135*

Indian Springs Valley, 3-113
 earthquake densities and energy release,
 1-176*
 and ground-water discharge, 3-72*

hydrographic study area, 3-117**

Indian Springs Valley (continued)
 water data, 3-126*

water supply problems, 3-135--136

individual protection (Issue 1.2)
 and hydrologic system, 3-238

induced seismicity, potential effects
 and weapons testing, 1-199, -200
 and Yucca Mountain, 1-199, -200

industrial minerals
 potential at Yucca Mountain, 1-287--302

inert cover gas
 and spent fuel packages, 7-17, -29, -31

infiltration
 and calcic horizon, 3-33--34
 estimates, 3-29--32
 and surface hydrology, 3-8
 at Yucca Mountain, 3-137

Information Need 1.11.1, see site
 characteristics needed for design of
 underground facilities

Information Need 1.11.2, see waste package
 characteristics needed for design

Information Need 1.11.3, see underground
 facility orientation and layout

Information Need 1.11.4, see design
 constraints to limit water use

Information Need 1.11.5, see design
 constraints to limit excavation effects

Information Need 1.11.6, see thermal loading
 and thermomechanical rock response

Information Need 1.11.7, see reference
 postclosure underground designs

Information Need 1.12.1, see information
 needed for seal design and placement

Information Need 1.12.2, see seals, materials

Information Need 1.12.3, see placement methods

Information Need 1.12.4, see reference seal
 designs

Information Need 2.1.1, see site and design
 information needed to assess preclosure
 radiological safety

Information Need 2.2.1, see radiation
 environment

Information Need 2.2.2, see projected worker
 exposure

Information Need 2.3.1, see credible
 repository accidents

Information Need 2.3.2, see projected
 accidental releases

Information Need 2.7.1, see radiological
 protection

Information Need 2.7.2, see items important
 to safety

Information Need 2.7.3, see criticality
 control

Information Need 4.2.1, see site and
 performance information needed for design

Information Need 4.4.1, see site and
 performance information needed for
 preclosure design

Information Need 4.4.2, see waste package
 information needed for design

Information Need 4.4.3, see plans for
 repository operation

Information Need 4.4.4, see repository design
 requirements

Information Need 4.4.5, see reference
 preclosure repository design

Information Need 4.4.6, see equipment
 development and demonstration

Information Need 4.4.7, see design analyses

Information Need 4.4.8, see technology for
 surface facilities

Information Need 4.4.9, see technology for
 underground facilities

Information Need 4.4.10, see technology for
 seals emplacement

information needed for seal design and
 placement (Information Need 1.12.1), 6-236

information needs
 climate, 5-105--106
 geoengineering, 2-114, -115--117*, -118
 hydrology, 3-238--241
 and issues hierarchy, I-7
 see also specific information need

inhomogeneities
 and compressive strength, 2-40
 and mechanical response, 2-43, -45

initial conditions (geoengineering) to be
 measured, 2-4--5

inorganics
 in Yucca Mountain site ground water, 4-40,
 -41*, -42*, -44**, -45

in situ saturation, 6-48*

in situ stress, 1-140--146
 design data, 6-44, -46, -46*
 and drillholes, 1-140, -144**
 measurement of, 2-13**
 Nevada Test Site, 1-143**
 Yucca Mountain, 1-140

in situ temperature
 design data, 6-44, -46*

geothermal, southern Great Basin, 1-148

- in situ temperature (continued)
 - and performance assessment, 1-148, -150
 - and repository design, 1-148, -150
 - Yucca Mountain, 1-148
- intact rock
 - behavior analysis, 7-39
 - and large scale properties, 2-64--66, -82
 - stress-strain relationship, 2-58**
 - thermal and thermomechanical properties, 2-66--77, -78*
 - thermal expansion, 2-74--77
- Interactive Graphics Information System
 - and reference stratigraphy, 6-221--222
 - usable area, flexibility underground facility, 6-225
- intergranular corrosion
 - and copper materials, 7-104--105, -231
 - and sensitized microstructure, 7-67, -230
 - summary of testing, 7-82--83
- intergranular corrosion attack
 - and austenitic materials, 7-71--72
- intergranular corrosion cracking
 - and chromium, 7-80
- intergranular stress corrosion
 - and metal barriers, 7-230
- intergranular stress corrosion cracking
 - and 316L stainless steel, 7-78
 - alloying effects on, 7-82
 - and austenitic materials, 7-71--72, -74--76
 - and chemical environment, 7-80--81
 - and chromium, 7-80
 - and corrosion model, 7-208
 - environmental effects on, 7-80--81
 - and high nitrogen stainless steel, 7-78
 - ionic content of water, 7-81
 - irradiated well J-13 water, 7-94
 - and sensitized 304 stainless steel, 7-74, -75**
 - and sensitized microstructure, 7-67, -101, -230
 - stress effects on, 7-81--82
 - tests for susceptibility, 7-74--76
 - and welding processes, 7-82
- intermontane basins
 - characteristics, 1-12
- Intermountain Seismic belt, 1-152**
- International Society for Rock Mechanics
 - and jointed-rock testing, 2-45
 - and rock sample size, 2-23
 - test procedures, 2-6, -8*
- interstitial and fracture waters
 - Rainier Mesa, 4-44**, -51
- interstitial hydraulic conductivity, see hydraulic conductivity, interstitial
- interstitial porosity, see porosity
- investigation identification
 - and geochemistry program, 4-147--152
- investigations
 - climate, 5-105--106
 - and geoengineering data, 2-116--117*
 - summary
 - crustal movement, 1-350--351
 - drilling, 1-353
 - faulting, 1-349
 - geomorphology, 1-345
 - geothermal regime, 1-351
 - hydrocarbon resources, 1-353
 - lithology, 1-346--347
 - long-term regional stability, 1-352
 - mineral resources, 1-353
 - mining, 1-353
 - regional studies, 1-349--350
 - seismicity, 1-351--352
 - seismology, 1-351--352
 - site-specific studies, 1-349
 - stratigraphy, 1-346--347
 - stress regime, 1-350
 - structural, 1-348--349
 - structural geology, 1-347--351
 - structure, 1-348--350
 - tectonics, 1-347--351
 - volcanism, 1-347--348
- iodine solubility
 - literature summary, 4-98
 - and well J-13 water, 4-100*
- ion exchange
 - and retardation, 4-65
- irradiation and leach rates, 7-167
- isobaric thermal expansion
 - and rock volume change, 7-39--40
- isopach contour maps, repository block, 3-198**
- isotope data, ground water, 3-97*, -101*, -102, -165--169, -167*
- isotope hydrology of region, 3-96--103
- ISRM, see International Society for Rock Mechanics
- Issue 1.1, see total system performance (Issue 1.1)
- Issue 1.2, see individual protection (Issue 1.2)

Issue 1.3, see ground-water protection (Issue 1.3)
 Issue 1.4, see containment by waste package (Issue 1.4)
 Issue 1.5, see engineered barrier system release rates (Issue 1.5)
 Issue 1.6, see ground-water travel time (Issue 1.6)
 Issue 1.7, see performance confirmation (Issue 1.7)
 Issue 1.8, see NRC siting criteria (Issue 1.8)
 Issue 1.9, see higher level findings--postclosure (Issue 1.9)
 Issue 1.10, see waste package characteristics (postclosure) (Issue 1.10)
 Issue 1.11, see configuration of underground facilities (Issue 1.11)
 Issue 1.12, see seal characteristics (Issue 1.12)
 Issue 2.1, see public radiological exposure--normal conditions (Issue 2.1)
 Issue 2.2, see worker radiological safety--normal conditions (Issue 2.2)
 Issue 2.3, see accidental radiological releases (Issue 2.3)
 Issue 2.4, see waste retrievability (Issue 2.4)
 Issue 2.5, see higher level findings--preclosure radiological safety (Issue 2.5)
 Issue 2.7, see repository design criteria for radiological safety (Issue 2.7)
 Issue 4.1, see higher level findings--ease and cost of construction (Issue 4.1)
 Issue 4.2, see nonradiological health and safety (Issue 4.2)
 Issue 4.4, see preclosure design and technical feasibility (Issue 4.4)
 Issue 4.5, see repository system cost effectiveness (Issue 4.5)
 issue hierarchy, 1-6--8
 issue resolution strategy, 1-6--8
 for design issues, 6-209
 and future data gathering, 2-12
 issues
 geoengineering related, 2-114, -115*--117*, -118
 hierarchy, 3-1; 6-209, -210**
 hydrology related, 3-238--241
 items important to retrievability
 methodology, 6-281, -282**
 items important to safety
 methodology, 6-258**

items important to safety (continued)
 Q list, 6-72--79, -257--261
 see also Q List
 items important to safety (Information Need 2.7.2), 6-271
 Ivanhoe district, 1-285**

 J-12, see well J-12
 J-13, see well J-13
 JAC
 compliant-joint model, 6-325, -328**
 description, 6-325
 finite-element method, 6-325
 inelastic horizontal borehole calculations, 6-321
 stress predictions, 6-322
 verification and validation, 6-325
 Jackass Flats
 description, 1-17**, -20**--24**
 earthquake densities and energy release, 1-176*
 land forms, 1-27
 physiographic subdivision, 1-26
 regional maximum flood, 3-18
 seismicity of, 1-178**, -180
 see also Fortymile Canyon-Jackass Flats
 hydrographic study area
 Jersey Valley, zeolite deposits, 1-294
 Jiggs oil field, 1-317
 Johnnie, water use, 3-135*
 joint closure and overburden pressures, 2-81
 joint cohesion, 6-52*
 joint properties, 2-43--56
 Bullfrog Member, 2-46
 planned tests, 2-52, -56
 Prow Pass Member, 2-46, -110
 scale effects, 2-56
 and test procedures, 2-45
 joint samples, simulated, 2-47, -110
 joint strength
 time-dependent behavior and effects, 2-50, -52, -53**, -55**, -56
 joint wall
 compressive strength, 6-53*
 roughness coefficient, 6-53*

 Kawich Valley
 basaltic volcanism field characteristics, 1-98*
 hydrogeologic study area, 3-3**, -117**

Kawich Valley (continued)
 water use, 3-122*

Key Issue 1
 and geochemical information, 4-1
 and ground-water discharge, 3-29

key issues, I-7
 and geology, 1-3

Koeppen meteorological classification system,
 5-9--10

laboratory data (geoengineering) sources,
 2-13**
 Busted Butte, 2-6, -12, -14
 G-Tunnel (Rainier Mesa), 2-6--11
 Topopah Spring Member, 2-6
 Yucca Mountain, 2-6

lacustrine and marsh deposits analyses,
 5-101--102

LAD, see license application design

Lahontan, see Lake Lahontan

Lahontan Basin, 1-8**

lake, climatic and hydrologic data,
 historical, 5-43--54
 evaporation from lake surfaces, 5-50--51,
 -52**, -53--54

Lake Bonneville
 current precipitation, 5-47
 lake level (last cycle), 5-60**
 location of, 5-44**
 system, 5-57, -58**, -59, -60**
see also Great Salt Lake

Lake chronologies
 Lake Bonneville, 5-46**, -55**, -57, -60**
 Lake Lahontan, 5-63**
 Lake Mojave, 5-69--70
 Lake Russell, 5-66**, -67
 Owens Lake, 5-91
 Searles Lake, 5-66**, -67, -69

lake core age assignments
 data uncertainties, 5-8

Lake Lahontan
 current precipitation, 5-47
 lake-level chronology, 5-63**
 location of, 5-44**
 precipitation and temperature
 relationships, 5-91
 prehistoric surface extent and geography,
 5-61**
 system, -59, -62

lake levels
 historic, 5-54
 Great Salt Lake, 5-46**, -55**

prehistoric
 glacial and periglacial records,
 5-89--90
 paleolacustrine data summary, 5-71
 paleolake deposit dating, 5-56
 paleolakes in Great Basin,
 distribution and age, 5-57--71
 and regional paleoclimate, 5-43--71
see also paleolakes in Great Basin,
 distribution and age

Lake Manly, 3-106, -110
 data uncertainties, 5-69
 location of, 5-44**
 and Owens River system, 5-65**

Lake Mead
 induced seismicity, 1-199
 reservoir loading, 1-199

Lake Mead fault system, 1-83**, -113**, -153**
 strike-slip faulting, 1-110, -114--115

Lake Mojave chronology, 5-69--70

Lake Russell
 chronology, 5-66**, -67
 current precipitation, 5-47
 level and Pleistocene glaciation, 5-90
 location of, 5-44**
 and Owens River system, 5-64**

lake-surface evaporation, 5-51--54

lake systems, hydrologic balance, 5-45, -47

Lake Tecopa basin
 and lake sediment depth, 5-70

lakes
 late Wisconsin, 3-109, -110
 Quaternary, 5-42--71

Lakes Russell and Searles
 chronologies, 5-66**
 description, 5-62, -67, -69
 locations, 5-44**, -64**, -65**
see also Searles Lake

landforms description, Yucca Mountain,
 1-26--27

landscape degradation
 southwestern Basin and Range Province,
 1-32
 surficial process, 1-32

Langmuir isotherm
 sorption-element concentration relation-
 ship, 4-60

large-scale mechanical properties, 2-56--65
 and discontinuity relationships, 2-64--66
 heated-block test, 2-64
 and intact rock relationships, 2-64--66,
 -82,
 nonsite rocks, 2-57, -59*
 site rocks, 2-60--64
 thermal expansion, 2-82
Las Vegas Basin, 1-8**
Las Vegas shear zone, 1-2**, -83**, -113***,
 -153**
Las Vegas Valley
 seismicity of, 1-181, -182**
Las Vegas Valley shear zone
 strike-slip faulting, 1-110, -111, -114
late Wisconsin
 ground-water levels, 3-109, -111--112,
 -113
 hydrology, 3-109--111
 lakes, 3-109, -110
 long-term climatic assessment, 5-38, -39*,
 -40
 marsh deposits, 3-109--110
lateral crustal movement
 postclosure, 1-212--213
 summary results, 1-338, -340
 Yucca Mountain, 1-147
lateral flexibility
 and allowable areal power density, 6-231
Lathrop Wells
 topography map description, 1-25
Lathrop Wells basalt center
 hydrovolcanic activity, 1-203--204
 Strombolian eruptions, 1-203--204
Lathrop Wells basaltic cone, 1-279**, -301
lava, permeable zones, 3-191**
lava flow and tuff aquifer, transmissivity,
 3-51*
lava flow aquitard, transmissivity, 3-52*
leach rates, waste glass form, 7-159--173
 elements, 7-162--173
 factors affecting, 7-164--167
 and irradiation effects, 7-167
 and pH effects, 7-165, -166**
 and radiolytic production of nitric acid
 effects, 7-167
 and repository components effect, 7-169,
 -172**
 and self-irradiation effects,
 7-167
 and silica effects, 7-169
leach rates, waste glass form (continued)
 and surface area to solution volume
 effects, 7-167, -168**
 and temperature effects, 7-163**, -165
 and tuff effect, 7-169, -171**
 and water volume effects, 7-167
 and well J-13 water effect, 7-169, -170**
legal requirements
 conceptual design, 6-6, -8, -9*--15*,
 -16*, -17*
 design, 6-6, -8
license application design, 6-2
 phase, definition, A-10
lightning (Yucca Mountain area), 5-28
Likely fault, 1-113**
linear elastic model, 6-339
LINED
 shaft liner stresses, 6-322
liner loading and shaft design, 2-4
liquid flow
 and waste package emplacement, 7-52
liquid waste treatment, 6-94**
Lithic Ridge Tuff, 1-58; 3-197
 age, magnetic polarity, and stratigraphy,
 1-56*
 correlation with hydrogeologic units,
 3-54*
 hydraulic conductivity, 3-189*
 permeable zones, 3-191**
 stratigraphy at Yucca Mountain, 3-138**
 transmissivity, 3-189*
lithology
 alluvium, 2-97, -98**
 characteristic, 1-35--78
 description, 1-35--78
 design data, 6-41, -42**
 investigations summary, 1-346--347
 site, 1-35--78
 southern Great Basin, 1-37--49
 summary results, 1-325--327
 Yucca Mountain, 1-49--78
lithophysae
 and ash flows, 2-16
 Busted Butte, 2-40, -73
 and compressive strength, 2-38, -40
 effects of, 2-43, -67
 and sample size, 2-14
 and thermal and mechanical properties, 2-6
 and thermal conductivity, 2-67, -72--73
 and Topopah Spring porosity, 2-77, -111
lithophysal cores, problems, 2-14

lithophysal zones
 moisture content, 2-78
 stratigraphic description, 2-17**
 Little Skull Mountain
 earthquake densities and energy release,
 1-176*
 localized corrosion
 and electrochemical testing, 7-85--88,
 -89**
 environmental considerations, 7-96--97
 and gamma-irradiated environments,
 7-90--93
 models, 7-96--97
 susceptibility and alloy surface
 condition, 7-88
 testing with creviced specimens, 7-93--94
 and well J-13 water, 7-86
 long-term climatic assessment, see climate
 assessment, long-term
 long-term sensitization of austenitic
 materials and thermal history of waste,
 7-79**
 long-term subsidence control strategy, product
 1.11.5-2
 work completed, 6-233
 Lookout Peak
 earthquake densities and energy release,
 1-176*
 Lopatin's time-temperature index, 1-320--323
 Los Alamos DP site, see Los Alamos liquid
 waste disposal site
 Los Alamos liquid waste disposal site
 americium concentration profile, 4-141*
 field tests, 4-138--139, -140**--142**
 plutonium concentration profile, 4-140**
 radionuclide concentration profiles,
 4-140**--141**
 radionuclide distribution, 4-138--139,
 -140**--142**
 TRACR3D, 4-139
 low temperature sensitization
 austenitic materials, 7-76--80
 low temperature springs, 1-306
 lower carbonate aquifer, 1-42**; 3-58, -59**,
 -60
 Ash Meadows subbasin ground-water flow,
 3-75**, -77--78
 chemical composition, 3-83, -85
 discharge from, 3-92--94
 Piper diagram, 3-86**
 recharge to, 3-91--92
 transmissivities, 3-56**--57*, -68, -78
 lower clastic aquitard, 1-42**; 3-58, -59**,
 -60
 Ash Meadows subbasin ground-water
 flow, 3-77
 hydraulic conductivity, 3-57*, -68
 interstitial porosity, 3-57*, -68
 transmissivity, 3-57*, -68
 Lunar Crater
 basaltic volcanism field characteristics,
 1-98*
 Lunar Crater volcanic field
 erosion rates, 1-31*

 macrofossil analyses, 5-101
 see also pack rat midden studies
 magnetic logs, geophysical logging, 1-250
 main entry drifts
 design, 6-144, -145**, -146**, -147*,
 -147, -156
 maintenance shops
 design, 6-153, -154**, -155**
 Manix Basin, 1-9**
 mantle upwelling models, 1-86
 maps
 Alkali Flat-Furnace Creek Ranch
 ground-water flow, 3-207**
 Amargosa Valley ground-water sample wells,
 3-99**
 areas of heavy water withdrawal, 3-115**
 Basin and Range physiographic province
 boundaries, A-3**; 1-8**
 bedded barite deposits in Nevada, 1-289**
 bedrock map showing locations of gold,
 silver, and base-metal mines, 1-279**
 boreholes, unsaturated zone, 3-148**
 calderas of the southwest Nevada volcanic
 field, 1-94**
 calderas within the southwestern Nevada
 volcanic field, 1-265**
 candidate areas for surface facilities,
 6-127**
 Cenozoic extensional and strike-slip
 faults, distribution, 1-81**
 Cenozoic volcanic rock distribution in the
 southern Great Basin, 1-90**--93**
 central surface facilities, 6-125**
 corehole sampling locations, 2-7**
 crest-stage site locations, 3-12**
 Death Valley ground-water system, 3-117**
 deposits and occurrences of fluorine-
 bearing minerals in Nevada, 1-292**

maps (continued)

distribution of ore deposits dated by potassium-argon, methods, 1-273**
 distribution of Paleozoic rocks in Roberts Mountains thrust plate, 1-267**
 drillholes and trenches on Yucca Mountain, 1-72**
 drillholes and well locations, 4-43**
 drillholes located outside perimeter drift but within 10 km, 1-215**
 drillholes located within the perimeter drift, 1-214**
 drillholes near Yucca Mountain, location, 1-51**
 east-west stratigraphic correlation between selected drillholes, 1-53**
 energy release map of southern Great Basin earthquakes, 1-161**
 energy release map of southwestern Great Basin earthquakes, 1-162**
 faults and fractures at Yucca Mountain, electrical resistivity data, 1-121**
 faults at Yucca Mountain, geologic mapping, 1-122**
 faults at Yucca Mountain, low-altitude aeromagnetic data, 1-120**
 flood-prone areas near Fortymile Wash, 3-20**
 generalized geologic map of Yucca Mountain, 1-50**
 geochemical facies, Yucca Mountain area, 3-165**
 geologic index map of the southern Great Basin, 1-36**
 Great Basin lakes of Pleistocene age, 5-44**
 ground-water flow paths, 3-75**, -206**, -207**
 ground-water sampling areas, 3-89**
 heat-flow contours of western United States, 1-149**
 high-altitude oblique aerial photo of Yucca Mountain site, 1-23**-24**
 highway and rail access routes for Yucca Mountain site, 6-83**
 historical seismicity of the southern Great Basin, 1-156**-158**
 hot springs and geothermal wells in Nevada, 1-307**
 hydrogeologic study area, A-6**; 3-3**, -48**, -117**, -206**

maps (continued)

hydrogeologic units in saturated zone, 3-59**
 hydrographic study areas, A-7**; 3-2**, -117**
 idealized model of epithermal precious-metal deposits, 1-274**
 index map of areas near Yucca Mountain site, 1-177**
 in situ stress, drillholes USW G-1 and USW G-2, 1-144**
 in situ stress in Rainier Mesa-Aqueduct Mesa area, 1-143**
 isopach contours in repository block, 3-198**
 Lake Bonneville subbasins, 5-58**
 Lake Lahontan basin, 5-61**
 Landsat image of the Yucca Mountain area, 1-21**-22**
 Late Pliocene and Quaternary faults in Nevada Test Site, region, 1-118**
 major Mesozoic thrust faults in southern Nevada, 1-101**
 major strike-slip faults of the southern Great Basin vicinity, 1-83**
 meteorological monitoring stations, 5-3**
 Nevada mining districts producing mercury, 1-285**
 north-south stratigraphic correlation between selected drillholes, 1-52**
 overall site plan showing surface facilities, 6-86**
 Owens River system, 5-64**
 paleogeography of the Great Basin--through mid-Paleozoic, 1-45**
 paleogeography of the Great Basin--through Mississippian, 1-47**
 paleotemperatures for USW G-1, USW G-2, and USW G-3, 1-281**
 physiographic features in the site area, 1-17**
 physiographic features of Yucca Mountain, A-2**; 6-39**
 physiographic subdivisions, 1-9**
 physiographic subdivisions of west-central and southern Great Basin, 1-16**
 pollen and pack rat midden study sites, 5-76**
 postulated detachment faults in southern Great Basin, 1-107**
 potentiometric surface, 3-62**, -132**, -149**

maps (continued)

pre-Cenozoic, location and extent
outcrops, 1-39**

proposed highway and railroad access to
Yucca Mountain site, 6-126**

Proterozoic rocks and deposits in the
Great Basin, distribution, 1-44**

Quaternary faulting on east side of Bare
Mountain, 1-131**

Quaternary normal and postulated detach-
ment faults on Yucca Mountain, 1-108**

regional heat flow and distribution of
hydrothermal systems, 1-309**

regional physiographic features, 3-81**

rose diagram of strikes of fractures along
traverses, 1-137**

seismicity and focal mechanisms of the
North Pahroc Range area, 1-186**

seismicity and focal mechanisms of the
northern Nevada Test Site, 1-179**,
seismicity and focal mechanisms of the
Pahranagat shear zone area, 1-185**

seismicity and focal mechanisms of the
Pahroc Valley area, 1-186**

seismicity and focal mechanisms of the
Sarcobatus Flat, 1-183**

seismicity and focal mechanisms of the
southern Nevada Test Site, 1-178**

seismicity of southwestern United States,
1-152**

seismicity of southwestern United States
showing epicenters, 1-153**

seismicity of the Las Vegas Valley area,
1-182**

seismicity of the southern Great Basin,
1-154**

shaft and ramp locations, 6-137**

shot-induced scarplets along part of the
Yucca fault, 1-211**

significant tectonic features relative to
plate rotation, 1-87**

site topography, 6-40**

site topography and flood potential areas,
6-69**

Spotted Range-Mine Mountain structural
zone, 1-116**

state of stress in vicinity of Yucca
Mountain, 1-142**

states of stress in the Yucca Mountain
region, 1-141**

stratigraphic columns and cross section of
major aquifers, 1-42**

maps (continued)

streamflow and precipitation stations,
5-48**

streamflow measurement sites, 3-17**

surface facilities of shaft sites,
6-129**--130**

surface-water sample sites, 3-26**

surficial sedimentary and volcanic
deposits near Yucca Mountain, 1-76**

topography and physiographic subdivisions
of the site area, 1-20**

underground areas for the repository,
6-226**, -228**

underground facility area, 6-143**

underground nuclear explosion afterevent
activity, 1-174**

uranium-series dated veins (south central
Great Basin), 3-104**

valley-fill aquifer potentiometric map,
3-132**

Walker Lane and major associated faults,
1-113**

water well locations, 3-116**

weapons-testing areas on the Nevada Test
Site, 1-210**

zeolite locations (cross section), 4-22**

marsh deposits

- analyses, 5-101--102
- chronologies, 5-70
- data availability, 5-43
- late Wisconsin, 3-109--110
- and paleolakes, 5-70

mass wasting, 1-32

Massachusetts Mountain

- earthquake, 1-171
- earthquake densities and energy release,
1-176*

matrix potentials, unsaturated zone,
3-199--200

- profiles, 3-161**, -162**
- summary, 3-236

matrix compressive strength, 2-29--41, -42**

- see also compressive strength and tensile
strength

matrix conductivity of tuffs, 2-69--71

- see also thermal conductivity

matrix diffusion

- radionuclides, 4-101--105
- and retardation, 4-53

matrix flow, summary, 3-235

matrix porosity
 Topopah Spring and Grouse Canyon Member comparison, 2-103*
see also porosity

maximum earthquake
 Bare Mountain fault, 1-193
 on potentially active faults in the southern Great Basin, 1-173*
 Yucca Mountain, 1-173*, -193

McDermitt district, 1-285**

MCRT, thermodynamic data, 7-192

MDGS, see mined geologic disposal system

mean peak acceleration
 earthquake hazard, Yucca Mountain, 1-173*, -194**, -195*

mechanical analyses
 work completed, 6-306--333

mechanical mining
 as excavation method, 2-107--108

mechanical model
 and corrosion model, 7-206--207

waste package
 NIKE2D, 7-207
 waste package performance assessment, 7-206--207
 and waste package system model, 7-203, -206--207, -216**, -221**

mechanical properties
 discontinuity effects, 2-43--56, -64--66
 excavation effects, 2-107--108
 existing data, 2-24, -25*, -26--41, -42*
 host rock and Rainier Mesa, 2-102, -103*
 India (tuff breccia), 2-25*
 inhomogeneities effects, 2-40, -43
 intact rock, 2-22--42, -64--66; 6-49--51*
 jointed rock test procedures, 2-45
 large scale, 2-56--64
 and lithophysae, 2-6, -38, -40
 measurements at G-Tunnel, 2-62**--63**, -64
 natural joints, 2-47, -50
 nonsite rocks, 2-24, -57, -59*
 nonsite tuffs, 2-25*
 Oak Springs Formation, 2-25*
 Ohya, Japan tuff, 2-25*
 Rainier Mesa tuff units, 2-25*
 Red Hot Deep Well Experiment (tuff), 2-25*
 reference values, 2-65*
 relationships, 2-64--66
 rock mass of thermal/mechanical units, 6-56*

mechanical properties (continued)
 simulated fractures, 2-47
 site rock, 2-60--64
 and stratigraphic variations, 2-43
 USSR (tuff), 2-25*
 water saturation effects, 2-29--32, -50, -51**, -53**, -55**
 at Yucca Mountain, 2-23--43, -44*
 Yucca Mountain tuff, intact rock, 2-44*, -65*
see also specific property

mechanical response
 and inhomogeneities, 2-40, -43

men and materials shaft
 description, 6-85, -86**, -87**, -88**, -138, -139*, -140**, -141**, -142, -143**

Mendocino fracture zone, 1-81**

Mercury (city)
 and Ash Meadows subbasin, 3-123
 existing and future water use, 3-135*
 water supply, 3-123

mercury (metal)
 host rock, 1-284, -286
 mining districts, 1-285**
 Nevada production, 1-285**
 Nevada resources, 1-284--287
 potential for, 1-287

Mercury Valley
 earthquake densities and energy release, 1-176*
 hydrographic study area, 3-2**, -9*, -127*
 seismicity of, 1-178**, -180

mesoscale meteorological models, 5-99

Mesozoic
 rock distribution, region, 1-46
 southern Great Basin structures, 1-100--102

Mesquite Flat
 earthquake densities and energy release, 1-176*

metal barriers
 alternative alloy system, 7-103--104
 austenitic materials, 7-229--232
 copper alloy materials, 7-229--232
 functions, 7-64--65
 intergranular stress corrosion, 7-230
 research and development status, 7-64--105
 research and development summary, 7-229--232
 transgranular stress corrosion cracking, 7-230

metallic containers
 uncertainties, 7-237--238

metallogenic provinces
 western, eastern, 1-266

metals, alteration occurrences, 1-280--284

metastability
 austenite, 7-102

metastable austenite
 and corrosion, 7-68
 and embrittlement, 7-68

meteorological classification system, 5-9

meteorological data
 and Environmental Regulatory Compliance Plan, 5-2, -103

meteorological data needs, 5-2, -8, -103

meteorological investigations
 work completed, summary, A-9

meteorological models
 general circulation, 5-97--98
 mesoscale, 5-99
 see also climate models

meteorological monitoring program, 5-2
 plans for expanding, 5-36--38
 precipitation data, 5-19*
 and stability distributions, 5-33
 station elevation, record period, and parameters, 5-4*--6*
 station locations, 5-3**

meteorological parameter specifications, 5-37

meteorology, local and regional
 atmospheric stability, 5-32--36, -34**, -35**, -36*
 data uncertainties, 5-8
 measurement program, 5-36--38
 micrometeorological variations, Yucca Mountain, 5-10--11
 see also climate, and meteorology

Mexican Highlands, 1-8**, -9**

MGDS, see mined geologic disposal system

microcracking, effects of, 2-68

micrometeorological variations (see meteorology, local and regional)

Mine Mountain
 barite, 1-290
 fault, 1-110, -115
 pre-Cenozoic rocks, 1-39**--40**

Mine Safety and Health Administration
 ventilation criteria, 6-333

mine ventilation
 normal conditions, 6-333--334
 see also ventilation

mined geologic disposal system
 components of, 6-16--17
 critical design requirement, 6-2
 definition, A-2; 6-16
 environmental standards, 6-17
 and information needs, 6-208

mineral abundances
 tuff, 4-77*--80*

UE-25a#1 drillhole, 4-77*--80*

USW G-1, 4-77*--80*

USW G-2, 4-11**, -77*--80*

USW G-3, 4-12**

USW GU-3, 4-12**, -77*--80*

well J-13, 4-77*--80*

Yucca Mountain site, 4-11**, -12**, -77*--80*

mineral-energy-resource
 methods of assessment, 1-260--262

mineral evolution model
 data status, 4-5--7

mineral-resource classification, 1-259**

mineral stability
 and repository heating, 4-36--39
 Yucca Mountain site, 4-36--39

mineralization, potential
 regional and local, 1-262--266

mineralized districts, 1-273**, -277

mineralogic analytical techniques, 4-8--9

mineralogy
 fracture, 4-13, -14**, -15
 host rock, 4-7, -10, -13, -36
 Pah Canyon Member, 4-15
 Paintbrush Tuff, 4-15--36
 and radionuclide sorptive behavior, 4-84--87
 silicic volcanic units, 4-15--36
 Tiva Canyon Member, 4-15
 Topopah Spring Member, 4-7, -10--15
 Yucca Mountain Member, 4-15
 Yucca Mountain site, 4-7--39

mineralogy and petrology
 data status, 4-6

mineralogy, petrology, and rock chemistry (Investigation 8.3.1.3.2)
 synopsis, 4-148

minerals
 deposits, Yucca Mountain, 1-3
 exploration, 1-256--323
 and hydrocarbon resources, 1-256--323
 production
 nonfuel Nevada, 1-263*

minerals (continued)
resources
 definition, 1-258, -259*, -260
 investigations summary, 1-353
 summary results, 1-341--343
symbols, 4-18*
minerals/glass stability (Investigation 8.3.1.3.3)
 synopsis, 4-148--149
mining
 activities within 10 km, 1-255--256
 excavation evaluations, 2-102--108
 historical, 1-255--256
 investigations summary, 1-353
methods
 construction, 6-160
 horizontal emplacement, 6-166**
 vertical emplacement, 6-165**
 summary results, 1-340--341
 welded tuff evaluation, 2-13**
minor alteration phases
 Yucca Mountain, 1-276*
mission plan
 critical design requirement, 6-2
Mississippian Eleana Formation
 pre-Cenozoic rocks, 1-54
modeling
 aquifers, 3-5, -6, -123
 climate, see climate, models
 EQ3/6, 7-60--64 (see also geochemical modeling)
 geochemical retardation, 4-109--110
 geoengineering, 2-12, 2-18--21
 ground-water flow, 3-4, -193--214, -233, -235--236
 hydrothermal, 4-123; 7-206
 parameters, fractures, 6-52*--53*
 radionuclide transport, 4-53--54
 rock-water interactions, 4-48; 7-60--64, -228
 sea-surface temperature, 5-41, -98
 thermal, 6-309--311, -318, -322; 7-41
 thermal/mechanical stratigraphy, 6-41, -42**, -221--223
 thermal migration, 2-92, -94
 validation, 6-329, -330**, -331**, -332
 waste package, 7-202--203, -207, -209--210
modern plate tectonics setting,
see tectonic plates--modern
modern vegetation and climate, 5-72--73, -74**
 modification of rock mass permeability near shaft, product 1.12.4-2
 work completed, 6-241--242
modulus of deformation
 borehole jack measurements, 2-60
 cannister-scale heater test, 2-64
 field-to-laboratory ratios, 2-64
 and heated-block test, 2-64, -110
 nonsite rocks, 2-59*
 pressurized-slot test, 2-60, -64
 reference values, 2-65*
 and stress-strain relationship, 2-56--57, -58**
 thermal/mechanical units, rock mass, 6-56*
modulus of elasticity
 G-Tunnel, 2-60
 nonsite rocks, 2-59*
 stress-strain relationship, 2-56--57, -58**
Mohr-Coulomb criterion
 intact rock strength, 6-57
moisture, atmospheric, 5-13*, -21, -22*
moisture characteristic relations, unsaturated zone, 3-169--179, -236--237
moisture content
 and lithophysal zones, 2-79
moisture-flow system at Yucca Mountain
 east-west section, 3-194**
 summary of (unsaturated zone), 3-195--196
Mojave Desert
 erosion, 1-30
 erosion rates, 1-31*
Mojave River drainage
 and Death Valley drainage system, 5-69--70
Mojave-Sonoran Desert
 maps, 1-8**, -9**, -16**
 subprovince, 1-7, -12--13
monitoring
 air quality, 5-37--38
 baseline ground-water conditions (geochemical), 3-146--169
 borehole USW UZ-1 instrumentation, 3-151**
 and hydrologic conditions, 3-225--231
 National Weather Service, 5-2, -3**, -9
 precipitation monitoring network, 5-20
 saturated zone, 3-153--160
 site meteorological measurement program, 5-36--38
 unsaturated zone, 3-147--153
Mono-Inyo block
 erosion rates, 1-31*

Mono Lake
 historical lake levels, 5-55**
 location of, 5-44**
see also Lake Russell
 montmorillonite deposits, 1-300*
 mordenite
 sorption, 4-27, -29
 Yucca Mountain site, 4-29
see also sorptive zeolites
 morphometric characteristics
 Great Basin, 1-10*--11*
 MORSE-L
 and radiation model for waste package, 7-204--205
 Mount Tobin district, 1-285**
 MSHA, see Mine Safety and Health Administration
 Mt. Dunfee
 earthquake densities and energy release, 1-176*
 and focal mechanisms, 1-183**
 seismicity of, 1-183**, -184
 multiple-well tests, saturated zone, 3-6

National Center for Atmospheric Research (NCAR)
 Community Climate Model (CCM), 5-41, -42, -98
 National Weather Service
 and climatological zones, 5-9
 and meteorological monitoring, 5-2
 and meteorological monitoring stations, 5-3**, -9
 natural analogs
 for repository environment, 4-129--134
 natural analogs and related field tests
 and repository performance, 4-129--142
 natural barriers
 functional requirements, 6-17, -25
 natural phenomena
 design values, 6-26*
 Nature Conservancy, the, 3-123
 NCAR CCM, see National Center for Atmospheric Research (NCAR), Community Climate Model (CCM)
 NEA, see Nuclear Energy Agency
 near-field decrepitation, 2-90--91
 near-field environment
 and dehydration-rehydration, 7-38
 thermal evolution, 7-42, -41**
 waste package thermal load, 7-38

near-field hydrothermal response
 conceptual model, 7-52
 near-field rock
 temperature change effects, 7-39--40
 near-field thermal calculations, 7-42
 near-surface soil and rock
 design data, 6-38, -41
 neptunium
 solubility
 literature summary, 4-98
 in well J-13 water, 4-94, -95*, -100*
 sorption ratios from batch desorption experiments, 4-74*--76*
 sorption ratios from batch sorption experiments, 4-69*--71*
 speciation, literature summary, 4-98
 neutron logs, geophysical logging, 1-245--246
 Nevada
 barite resources, 1-288--290, -289**
 base metal resources, 1-266--284
 fluorspar resources, 1-290--291, -292**, -293
 gas fields, 1-316--319
 geothermal resources, 1-305--313, -307**
 gold, 1-269--284
 hot springs, 1-307**
 mercury resources, 1-284--287, -285**
 oil, 1-316--319
 ore deposits, 1-273**
 precious metals, 1-266--284
 silver, 1-269--284
see also State of Nevada
 uranium, 1-303--305
 zeolites, 1-293--296
 Nevada-California Seismic belt, 1-152**
 Nevada Department of Conservation and Natural Resources
 ground-water studies, 3-4
 Nevada Mining District
 mercury, 1-284--287, -285**
 Nevada seismogenic zone, 1-172, -174**
 Nevada Test Site
 basaltic volcanism field characteristics, 1-97*--98*
 Cambrian nuclear explosion, 4-134--138
 focal mechanisms, 1-178**, -179**
 and geomorphic studies, 3-19
 in situ stress, 1-143**
 location, 2-7**
 water use, 3-120, -120*, -122*, -124*
 water well locations, 3-116**

Nevada Test Site (continued)
 weapons testing, 1-161**, -196,
 -197, -198--200, -209, -210**, -212;
 3-4.
 zeolite deposits, 1-293--296

Nevada Water Laws, 3-133, -134

NGI, see Norwegian Geotechnical Institute

nickel (high), iron-based austenitic alloy
 reference container, 7-25

nickel solubility
 literature summary, 4-99
 and well J-13 water, 4-101*

NIKE2D
 mechanical model, waste package, 7-207

NNWSI Project core library, 2-14

NNWSI Project glass waste forms, see Yucca
 Mountain Project glass waste forms

nonlithophysal unsaturated zone
 and water transport, 7-45

nonlithophysal zone
 host rock, 1-66

nonradiological health and safety (Issue 4.2)
 information needs, 6-289--293
 issue statement, 6-289

nonsite rocks
 mechanical properties, 2-24, -25*, -57,
 -59*
 thermal and thermomechanical properties,
 2-80

nonsite tuffs
 mechanical properties, 2-25*
 thermal and thermomechanical properties,
 2-69, -70*

normal faults
 summary, 1-328
 Yucca Mountain, 1-108**, -110, -119,
 -127, -141**--142**, -328
 Yucca Mountain cross section, 1-126**

normal retrieval conditions, see retrieval,
 normal conditions

normalized elemental leaching
 glass waste form, 7-160--173
 temperature effect, 7-163**

North Pahroc Range
 and focal mechanisms, 1-186**
 seismicity of, 1-184, -186**

North Pahroc Valley
 seismicity of, 1-186**

northeast Mojave Desert
 characteristics, 1-10**--11*, -14--15
 morphometric characteristics, 1-10**--11*

northern Great Basin
 seismogenic zone, 1-174**

northern Nevada Test Site
 focal mechanisms, 1-179**

Norwegian Geotechnical Institute
 classification system, 2-104; 6-319,
 -320, -334
 Grouse Canyon Member, 2-105**, -106*
 Topopah Spring Member, 2-105**, -106*
 Tunnel bed 5, 2-105**, -106*
 and Yucca Mountain tuffs, 2-104--106

NRC, see U.S. Nuclear Regulatory Commission

NRC siting criteria (Issue 1.8)
 and climatology and meteorology, 5-1
 and geochemical site data, 4-1--2
 and hydrologic system, 3-239
 physical/geochemical transport models,
 4-109--110

NTS, see Nevada Test Site

Nuclear Energy Agency data
 and thermodynamic data base, 7-192

Nuclear Regulatory Commission, see U.S.
 Nuclear Regulatory Commission

nuclear tests, see weapons testing

Nuclear Waste Policy Act of 1982
 and design requirements, A-11; 6-1, -6, -8
 retrievability requirements, 6-186
 and scoping hearings, 1-8
 and site characterization, 1-4--5; A-5
 and site characterization plan, 1-6--8

Nuclear Waste Policy Amendments Act of 1987
 and site characterization, 1-1
 and Yucca Mountain site characterization,
 1-1, -4--5

numerical analysis to evaluate backfilling
 repository drifts, product 1.12.4-4
 work completed, 6-245

numerical modeling
 hydrothermal flow, 7-49, -51--53
 hydrothermal transport, 7-49, -51--53
 research and development summary,
 7-228

NWPA, see Nuclear Waste Policy Act of 1982

NWPAA, see Nuclear Waste Policy Amendments
 Act of 1987

NWS, see National Weather Service

Nye Canyon
 hydrovolcanic activity, 1-203--204
 Strombolian eruptions, 1-203--204

Oak Springs Formation
 mechanical properties, 2-25*

Oasis Valley
 aquifer, see Oasis Valley aquifer
 caldera, 1-94**, -265**
 ground-water discharge, 3-29, -30*, -72*
 ground-water sampling area, 3-89**
 hydrogeologic study area, 3-3**, -117**
 hydrographic study area, 3-2**, -9*, -117**, -122*
 perennial surface-water, 3-24
 recharge to ground-water subbasin, 3-134
 spring discharge areas, 3-35, -41**-43*
 subbasin, see Oasis Valley subbasin
 water supply problems, 3-136

Oasis Valley aquifer
 and Pahute Mesa recharge, 3-87
 sodium bicarbonate and chloride concentration trends, 3-90**

Oasis Valley subbasin
 evapotranspiration, 3-76
 flow paths, 3-75**, -76--77
 and hydrogeologic study area, 3-4, -50
 location of, 3-2**, -117**
 water use, 3-128, -129*, -130
 water yields, appropriations, and use, 3-129*

ocean temperature, see sea surface temperature modeling

Ohya tuff, Japan
 mechanical properties, 2-25*

oil
 Nevada resources, 1-316--319
 potential, 1-319--323
 shale resources, 1-315--316

Oklo
 and commercial reactors, 4-132*
 effect of uranium deposit, 4-131--133, -132*
 fission products, 4-132*
 natural reactor, 4-131--133, -132*

older flows and rocks
 stratigraphy at Yucca Mountain, 3-138**

older tuffs
 caldera, 1-94**
 conceptual moisture flow, 3-215**
 transmissivity, 3-188*

Opalite district, 1-285**
 opalite-type mercury deposits, 1-286
 opening stability, 2-3, -4, -111
 operational procedures
 work completed, 6-301

operations, repository
 accident analyses, 6-121
 caretaker, 6-98
 closure and decommissioning, 6-98
 description, 6-85, -89--121
 effects on radionuclide transport, 4-143--144
 horizontal emplacement, 6-98, -103**-106**
 and licensing, I-3
 plans for, 6-301
 schedule, 6-29, -30*, -31**, -32
 vertical emplacement, 6-98, -99**-102**
 waste retrieval, 6-110, -111**-120**

operations and functions
 repository, work completed, 6-301

Ordovician Vinini formation
 oil shale, 1-316

ore deposits, gold, 1-273**

Oregon (tuff)
 mechanical properties, 2-25*

organics
 well J-13 water, 4-46
 Yucca Mountain site ground water, 4-46

ORIGEN2
 and radiation model for waste package, 7-204

Oskarshamn I fuel
 characteristics, 7-114, -116*
 and spent fuel dissolution testing, 7-114

other rocks, see nonsite rocks and nonsite tuffs

overburden
 and vertical stress, 2-86

overburden loadings, G-Tunnel, 2-102

overburden pressures
 and joint closure, 2-81

overcoring measurements
 and stress regime, 2-85

Owens Lake
 chronology of, 5-91
 location of, 5-44**
 and Owens River system (Pleistocene), 5-64**, -65**

Owens River system, 5-62, -64**, -65**
 and Death Valley drainage system, 5-69

Owens Valley fault zone, 1-2**, -83**, -113**, -153**

oxidation
 austenitic materials, 7-68--69
 CANDU fuel, 7-144, -145
 spent fuel, 7-113, -140--146

Pacific Northwest Laboratory waste form
composition, 7-152*

pack rat middens

age assignment uncertainties, 5-8

and climate, 1-29

data summary, 5-77**-84*

locations of, 5-76**

macrofossil analyses, 5-101

studies, 5-75

summary, 5-104

and surficial processes, 1-32

Pah Canyon Member

age, magnetic polarity, and stratigraphy,
1-56*

clinoptilolite analyses, 4-30**-31*

correlation with hydrogeologic units,
3-139**

description, 1-68, -70

mineralogy, 4-15

and Paintbrush Tuff, 1-61--62

thermal/mechanical stratigraphy, 2-17**

Pahranagat shear zone, 1-83**, -153**

earthquake densities and energy release,
1-176*

focal mechanisms, 1-185**

seismicity of, 1-184, -185**

strike-slip faulting, 1-110, -115

Pahranagat Valley

and ground-water flow model, 3-205

location, 3-206*

Pahroc Valley

focal mechanisms, 1-186**

seismicity of, 1-184, -186**

Pahrump

Artesian Basin, 3-136

existing and future water use, 3-135*

and Nevada ground-water management, 3-134

water supply problems, 3-136

Pahrump Valley

and Alkali Flat-Furnace Creek Ranch
subbasin, 3-114

and Ash Meadows discharge, 3-77

and ground-water flow model, 3-205

marsh deposits, 3-109

and valley-fill aquifer, 3-114

Pahute Mesa

chemical composition (ground water), 3-83

faults, 1-189

ground-water sampling area, 3-89**

HANDLEY event, 1-146

and heat flow to land surface, 3-76

induced seismicity, 1-199

Pahute Mesa (continued)

location, 1-9**

recharge source for Oasis Valley tuff

aquifer, 3-87

seismicity and focal mechanisms, 1-179**

sodium bicarbonate and chloride concen-
tration trends, 3-83, -90**, -95

thermal gradient, 1-310--311

weapons testing, 1-146, -160, -171, -189,
-197, -199, -209, -210**

Pahute Ridge

and basaltic volcanism, 1-203

Paintbrush Canyon fault, 1-108**, -122**, -128

and calcite deposits, 1-71

controlling earthquake source, 6-338

description, 1-129*, -133

location, 1-50**

preliminary data, 1-129*

Quaternary fault, 1-108**

Quaternary faulting, 1-123*

Paintbrush nonwelded unit

correlation with hydrogeologic units,
3-139*

cross sections at Yucca Mountain, 3-145**,
-194**, -215**

matric-potential profiles, 3-161**, -162**

test holes, 3-156

Paintbrush tuff, 1-61--70

age, magnetic polarity, and stratigraphy,
1-56*

host rock, 1-35, -55

and hydrogeologic units, 3-52*

mineralogy, 4-15--36

moisture flow, 3-194**

and Pah Canyon Member, 1-61--62

and Tiva Canyon Member, 1-61--62

and Topopah Spring Member, 1-61--62

Yucca Mountain, 1-61--62

and Yucca Mountain Member, 1-61--62

see also host rock and Topopah Spring
Member

paleobotanical data

applications of, 5-7--8, -87--89

availability of, 5-43

and paleoclimate, 5-87--89

paleobotanical dating

and vegetation change, 5-71

paleoclimatic applications of paleobotanical
data, 5-87--89

qualitative relationships, 5-88

quantitative approaches, 5-88--89

paleoclimatic hypotheses, regional, 5-90--91

PART A INDEX (Chapters 1-7)

paleoclimatic investigations, site, 5-101--102
 lacustrine and marsh deposit analyses,
 5-101--102
 late-Quaternary climatic variation model,
 5-102
 pollen and pack rat midden collection and
 analysis, 5-101
 synoptic characterizations--regional
 climate, 5-101
 paleoclimatic proxy data
 data uncertainties, 5-8
 paleoclimatic reconstructions
 and geologic time periods, 5-38, -39**,
 -40
 and tree-ring chronologies, 5-73
 paleoclimatology, 5-40--91
 Quaternary global paleoclimate, 5-40--42
 Quaternary regional paleoclimate, 5-42--91
 Yucca Mountain investigations, 5-101--102
 paleoflood investigations, 3-16, -22
 paleogeography, Great Basin, 1-45**, -47**
 paleohydrologic proxy data
 use of, 5-7
 paleohydrology, 3-69, -103--113
 hydrologic conditions, 3-227, -229--231
 paleolacustrine data
 availability of, 5-43
 summary, 5-71
 paleolake deposit dating, 5-56--57
 paleolakes in Great Basin, distribution and
 age, 5-57--71
 Death Valley drainage system, 5-69--70
 ground water near Yucca Mountain, 5-70--71
 Lake Bonneville system, 5-57, -58**, -59,
 -60**
 Lake Lahontan system, 5-59, -61**, -62,
 -63**
 Lakes Russell and Searles, 5-62, -64**,
 -65**, -66**, -67, -68**, -69
 marsh deposits in southern Nevada, 5-70
 see also specific lakes
 paleolimnological data
 applications of, 5-7--8
 availability of, 5-43
 paleomarsh deposit data
 availability of, 5-43
 see also marsh deposits
 paleontological evidence
 and paleoclimates, 5-42
 paleotemperatures and drillholes, 1-281**
 paleovegetation changes, summary, 5-85

Paleozoic
 aquifers, 1-42**
 aquitards, 1-42**
 carbonate rocks, stratigraphy at
 Yucca Mountain, 3-138**
 rocks, 1-37, -41**, -43--46
 cross section, 1-41**
 distribution, region, 1-45**, -267**
 palynological studies, 5-75, -85
 data summary, 5-77--84*
 locations of, 5-76**
 summary, 5-104
 pan evaporation data, 3-34
 Panama-Stirling mine, water use, 3-121
 Panamint Lake
 and Owens River system, 5-64**, -65**
 Panamint Range, 1-9**
 Pancake Range, 1-9**
 panel access drifts
 stability, 6-319--320
 Part A (site characterization plan)
 introduction, A-1--14
 organization, A-1
 particulates
 and radionuclide transport, 4-106--109
 well J-13 water, 4-46--48
 Yucca Mountain site ground water,
 4-46--48
 Pasquill stability class distributions
 definitions, 5-32--33
 importance of, 5-33
 Yucca Flat, 5-33, -34**, -35**, -36*
 peak acceleration
 and design, 6-70, -71*
 earthquake, 1-193
 earthquakes, southern Great Basin, 1-173*,
 -191**, 194**
 estimates, 6-337--338
 models, 1-190, -191**, -192
 at Yucca Mountain, 1-195*
 see also earthquakes and ground motion
 peak runoff, characterization plans, 3-29
 peak vector acceleration
 weapons testing, 1-199
 perched springs, 3-34, -35, -230
 performance allocation, waste package
 components
 design, 7-225--226
 postclosure, 7-19
 preclosure, 7-17--19

PART A INDEX (Chapters 1-7)

performance and design issues
and climatology and meteorology,
5-1

performance assessment model
and corrosion model, 7-208--209

performance confirmation, functions and requirements, 6-24*

performance confirmation (Issue 1.7)
and hydrologic system, 3-239

performance criteria
postclosure waste package, 7-14--15,
-196--197

preclosure waste emplacement package, 7-13

performance issues, hydrology related, 3-1,
-238--239

performance objectives
and 10 CFR Part 60, 2-112, -113
and data needs, 2-112--113
and Q List, 6-80--81

performance requirements
system component, information needs, 6-209

perimeter drift
design, 6-144, -145**, -146**, -147*, -156
drillholes within, 1-213, -214**, -216,
-217**--221*

perlite
deposits, 1-301--302
resources, 1-298*, -302

permeability
change
heat decay period, 4-124, -128**,
-129

experiments, 7-46, -47*, -48--49
and experiment protocol, 7-47*

Topopah Spring tuff, 7-47*

permeable zones, 3-190, -191**, -192

permitting
and air quality monitoring, 5-37--38
and dispersion models, 5-33
and environmental monitoring and mitigation program, 5-2, -103

petrogenetic models of magma evolution, 1-269

petrographic percentages
Topopah Spring, 1-65**

petrography and petrology
Prow Pass Member, 4-15
Topopah Spring Member, 4-15

petrologic analytical techniques, 4-8--9

petrologic characteristics
drillholes, 4-77**--80*
tuff, 4-77**--80*
Yucca Mountain site, 4-77**--80*

petrologic units
symbols, 4-16**--18*

petrology
data status, 4-6
of host rock, 4-10, -13
and site stratigraphic units, 4-19**--20*
of Yucca Mountain site, 4-7--39

pH
and leach rates, 7-165, -166**
and Project glass waste forms, 7-178**

phase instability and embrittlement
work summary, 7-100

phase stability
austenitic materials, 7-97--100

phenocryst
composition
and host rock, 4-10
site stratigraphic units, 4-21*
Topopah Spring Member, 4-21*
content, 1-58, -61
Topopah Spring Member, 1-66, -67**

phreatophytes, 3-28, -34, -35, -71
area descriptions, 3-36**--47*
and evapotranspiration, 3-71

physical processes affecting transport
data status, 4-6

physical properties
alluvium, 2-97, -100, -101*
design data, 6-47, -48*, -54
intact rock, 6-48*

physiographic
areas
description, region, 1-10**--11*,
-13--18
Great Basin, 1-10**--11*

features
Nevada Test Site region, 3-81**
Yucca Mountain, 1-17**

subdivisions
description, 1-17**, -19--27
map, 1-9**, -16**

physiography, 1-7--18
Yucca Mountain, A-4**; 6-39**

piedmont slopes
and Bare Mountain, 1-19
and Yucca Mountain, 1-25

piedmonts
characteristics, 1-13

Pilot Mountains district, 1-285**

Pine Valley
zeolite deposits, 1-294

Pinnacles Ridge
 description, 1-17**, 20**--22
 physiographic subdivision, 1-26

Piper diagrams
 lower carbonate aquifer, 3-86**
 tuff aquifer, 3-84**
 valley-fill aquifer, 3-88**

pitting
 summary of testing, 7-97

pitting corrosion, 7-83--97
 copper alloy materials, 7-104--105
 research and development status, 7-85
see also corrosion degradation modes and localized corrosion

placement methods (Information Need 1.12.3), 6-236

plans for repository operation (Information Need 4.4.3), 6-294

plant distributions and prehistoric changes, 5-72--73

plastic-elastic models, 2-19

plate loading measuring test, 2-13**, -56

plate tectonics
 Yucca Mountain, 1-84--88

plates, see tectonic plates--modern

Pleistocene deposits
 surficial deposits, 1-75

Pleistocene lakes
 and glaciation, 5-89--90
 location of, 5-44**

pluton
 and Yucca Mountain site, 1-264

plutonium
 comparison of sorption procedures, 4-83*
 solubility
 literature summary, 4-96--97
 in well J-13 water, 4-94, -95*, -99, -100* .
 sorption ratios, 4-86
 sorption ratios from batch desorption experiments, 4-74**--76*
 sorption ratios from batch sorption experiments, 4-69**--71*
 speciation, literature summary, 4-96--97

plutonium-beryllium source
 neutron logs, 1-245--246

plutonium concentration profile
 and Los Alamos liquid waste disposal site, 4-140**

pluvial-related water levels, 3-229--230

PMF, see probable maximum flood

Poisson's ratio
 effect of strain rate change, 2-37*
 intact rock, 6-49**--51*
 nonsite rocks, 2-25*
 reference values, 2-65*
 rock mass, 6-55, -56*
 Topopah Spring and Grouse Canyon Member comparison, 2-103*
 Yucca Mountain tuff, intact rock, 2-44*, -65*

pollen studies, 5-101
 sample age assignment uncertainties, 5-8
 study sites, 5-76**
see also palynological studies

PORFLOW
 drift thermal analyses, 6-309

porosity
 and compressive strength, 2-41
 design data, 6-47, -54
 hydrogeologic units, 3-51**--57*, -63, -68
 nonsite tuffs, 2-70*
 recommended values, 2-78*
 saturated zone, 3-192
 and tensile strength, 2-41, -42**
 Topopah Spring and Grouse Canyon Member comparison, 2-103*
 unsaturated zone, 3-170*
 Yucca Mountain tuffs, 2-77, -78*

post-Paintbrush
 ash flow tuffs, 1-70

postclosure performance allocation, see performance allocation, waste package, postclosure

postclosure performance assessment
 waste package, 7-196--224

postclosure tectonics, 1-200--213

postclosure waste package
 design criteria and 10 CFR 60.135(a)(1), 7-196--197
 functional requirements, 7-14--15
 performance criteria
 and 10 CFR 60.113, 7-3, -15, -196
 and 10 CFR 60.135(a), 7-3, -196

potentially adverse conditions
 geochemistry, 4-2

potentiometric data collection plans, 3-63

potentiometric levels
 and ground-water flow, 3-75**
 hydrogeologic study area, 3-62**
 saturated zone, 3-149**, -163--164, -201
 unsaturated zone, 3-160--163
 valley fill aquifer, 3-132**

PART A INDEX (Chapters 1-7)

pre-Cenozoic rocks, 1-39**--40**
 southern Great Basin, 1-37--46
 Yucca Mountain, 1-54

pre-Lithic Ridge
 volcanic rocks, 1-57
 volcanogenic rocks, 1-57

pre-Tertiary sedimentary rocks, 1-36**

Precambrian rocks
 distribution, region, 1-43

precious metals
 deposits
 model, 1-274**
 and volcanic centers, 1-277

Nevada, 1-266--284
 potential, 1-283--284

precipitation, 5-16--20
 annual, 6-67

Beatty, 5-18*, -19**
 and Carson River discharge, 5-49**

collection station locations, 5-48**

data need, 5-17, -32

Desert Rock, 5-18*, -19**

extremes, in Yucca Mountain area, 5-30,
 -32*

Fallon, 5-49**

geochemical retardation, 4-52--53

Great Salt Lake, 5-47

Lake Lahontan, 5-47

Lake Russell, 5-47

late Wisconsin, 3-109

monitoring network expansion plans, 5-20

monthly and annual averages and maximum,
 5-15*

monthly averages, 5-18**
 and recharge, 3-201--204, -234
 and runoff, 5-50
 and streamflow data, historical, 5-47, -50
 summary, 3-231--232
 and surface hydrology, 3-8

Tahoe City, 5-49*
 and vegetation distribution, 5-74**

waste element concentrations, 4-92

Yucca Flat, 1962--1971, 5-12*--13*, -17*,
 -18*, -19**

preclosure design and technical feasibility
(Issue 4.4)
 computer codes used, 6-296, -297**--300*
 future work, 6-338--340
 and hydrologic system, 3-241
 information needs, 6-293--296
 issue statement, 6-293

preclosure design and technical feasibility
(Issue 4.4) (continued)
 repository design, 6-224, -271, -274
 work completed, 6-296--338

preclosure performance, waste package,
 7-17--19
 container handling and shipping, 7-18
 criteria, 7-13
 criticality control requirements, 7-18
 free liquids requirements, 7-18
 identification requirements, 7-18
 reactive materials requirements, 7-18
 reasonably available technologies, 7-18
 waste form release control, 7-18
 waste form temperature limitations, 7-19
 waste package handling requirements,
 7-17--18

preclosure performance allocation, see
 performance allocation, waste package,
 preclosure

preclosure waste emplacement package
 design constraints, 7-14
 functional requirements, 7-13

preclosure waste package criteria
 and 10 CFR 60.135(b) and (c), 7-3, -13

prediction of severe weather, 5-30

Preferred Equities Corporation
 water use, 3-123

preferred flow paths
 experiments, 7-46

prehistoric lake-level fluctuations, 5-54--71
 see also lake levels, prehistoric

preliminary reference waste description
 work completed, 6-301

pressure
 well J-13 water, 4-48
 Yucca Mountain site ground water, 4-48

pressurized-slot test, 2-13**, -57, -60, -64
 and rock-mass properties, 2-56
 schematic diagram, 2-63**

primary area
 underground facility, 6-226**, -227,
 -228**

probabilistic risk assessment
 accidental releases, 6-257--262

probable maximum flood, 3-16, -18, -23, -232
 and design, 6-68, -69**, -70
 design values for, 6-26*

Drill Hole Wash, 6-135
 surface facility design, 6-134--135

product 1.11.1-1, see data requirements list

product 1.11.1-2, see reference thermal/mechanical stratigraphy

product 1.11.1-3, see reference thermo-mechanical rock properties document

product 1.11.2-1, see waste package characteristics for design of underground facility

product 1.11.3-1, see area-needed determination

product 1.11.3-2, see usable area and flexibility evaluation

product 1.11.3-3, see emplacement orientation decision

product 1.11.3-4, see drainage and moisture control plan

product 1.11.3-5, see criteria for contingency plan

product 1.11.5-1, see excavation methods criteria

product 1.11.5-2, see long-term subsidence control strategy

product 1.11.6-1, see allowable areal power density

product 1.11.6-2, see borehole spacing strategy

product 1.11.6-3, see sensitivity studies

product 1.11.7-1, see reference postclosure repository design

product 1.12.2-1, see waste package characteristics for design of underground facility

product 1.12.4-1, see repository sealing concepts

product 1.12.4-2, see modification of rock mass permeability near shaft

product 1.12.4-3, see hydrologic calculations to evaluate shaft and drift backfill

product 1.12.4-4, see numerical analysis to evaluate backfilling repository drifts

product 1.12.4-5, see vadose water flow around a backfilled drift

product 2.1.2-1, see radioactive release--normal conditions

product 2.2.2-1, see worker exposure under normal conditions

production wells and discharge, 3-72
 see also water use, production wells near site

progress reports (site characterization), I-14

Project, see NNWSI Project and Yucca Mountain Project

projected accidental releases (Information Need 2.3.2), 6-253

projected releases--normal conditions products, 6-248--249

projected worker exposure (Information Need 2.2.2), 6-251

Proterozoic

- aquifers, 1-42**
- aquitards, 1-42**
- rocks, 1-37, -41**, -43--46

provinces and subprovinces, structural region, 1-82, -84

Prow Pass Member, 1-58--60

- age, magnetic polarity, and stratigraphy, 1-56*
- clinoptilolite analyses, 4-30*--31*
- correlation with hydrogeologic units, 3-54*, -139*
- hydraulic conductivity, 3-188*, -189*
- permeable zones, 3-191**
- petrography and petrology, 4-15
- potential flow path, 4-53
- shear strength, 2-47
- shear stress-to-normal stress relation, 2-49**
- simulated joint mechanical properties, 2-46, -109
- stratigraphy at Yucca Mountain, 3-138**
- thermal conductivities, 2-71*
- thermal/mechanical stratigraphy, 2-17**
- transmissivity, 3-188*
- water production rate, 3-186**

proxy data

- paleobotanic, 5-6--7
- paleohydrologic, 5-7
- steps in interpreting, 5-7

public radiological exposures--normal conditions (Issue 2.1)

- and climatology and meteorology, 5-1
- future work, 6-249--250
- information needs description, 6-248--249
- issue statement, 6-248
- work completed, 6-249

public safety

- design considerations, 6-26--27

pumice

- resources, 1-298*, -301--302

pumping test data, 3-64*--67*, -226*

Pyramid Lake

- fault, 1-113**
- historical lake levels, 5-55**

Pyramid Lake (continued)
 location of, 1-9**; 5-44**
 prehistoric surface extent, 5-61**

Q List

barriers important to waste isolation, 6-80--81
 items important to safety, 6-72--79, -260--261
 methodology, 6-73, -74**, -75--79, -257, -258**, -259--261
 performance objectives, 6-80--81
 preliminary, 6-78, -79*, -260, -261*
 reference accident scenarios, 6-75--77, -259

Q scenarios, 6-77--78, -260

Quaternary alluvium, 1-36**

Quaternary basaltic vents, 1-19

Quaternary (late) climate model
 and future climate prediction, 5-102

Quaternary climate variations

and 10 CFR Part 60, 5-6
 and 10 CFR Part 960, 5-6

Quaternary fault zones

Bare Mountain, 1-125*
 map, 1-116**

Quaternary faulting

Bare Mountain, 1-30, -125*, -131**
 Bow Ridge, 1-108**, -123*
 detachment faults, Yucca Mountain, 1-108**
 Paintbrush, 1-108**, -123*
 Yucca Mountain, summary, 1-123--125*

Quaternary lakes, 5-43--71

Quaternary paleoclimate, 5-40--42

glacial and periglacial records and lake levels, 5-89--90
 glacial cycles, 5-38--40
 global, 5-40--42
 lake, climatic, and hydrologic data, historical, 5-43, -45
 lake-level fluctuations, prehistoric, 5-54--71
 paleoclimatic hypotheses, regional, 5-90--91
 regional, 5-40--91
 temperatures, 5-41
 time series of prehistorical vegetation change, 5-71--89
 Yucca Mountain investigations, 5-101--102

Quaternary Period

and Ash Meadows springs, 3-92
 floods, 3-22
 ground-water flow paths, 3-107
 hydrologic conditions, 3-21
 and Oasis Valley springs, 3-35
 and valley-fill aquifer, 3-58
 water-table levels, 3-103--107, -110, -111, -227, -233

Quaternary structures

southern Great Basin, 1-115--117

Quaternary surficial deposits, 1-75--78

Quaternary tectonic processes, 1-30

Quaternary volcanism, 1-95--99

radiation effects

rock-water-vapor system, 7-43--45
 waste package environment, 7-43--45

radiation environment (Information Need 2.2.1), 6-250--251

radiation field effects

research and development summary, 7-227
 radiation model

and waste package system model, 7-203, -204--205, -216**

radiation model, waste package

gamma ray dose submodel, 7-204--205
 MORSE-L, 7-205
 ORIGEN2, 7-204
 source submodel, 7-204
 waste form dose model, 7-205

radiation protection

regulatory requirements, I-3--4

radioactive releases--normal conditions, product 2.1.2-1

work completed, 6-249

radioactive tracers, use of, 3-49

radioactive waste

key radionuclides, 4-54--59

radiological protection

design requirements, 6-28--29

retrieval, 6-285--286

radiological protection (Information Need 2.7.1), 6-271

radiological releases

design requirements, 6-27--28

limiting, 6-272--273

probabilistic risk assessment, 6-257--261

public exposure--normal conditions, 6-248--250

worst case, 6-257--258

radiolysis products
 in waste package environment, 7-44--45

radionuclide concentration profiles
 and Los Alamos liquid waste disposal site,
 4-140**--142**

radionuclide concentrations
 processes affecting, 4-91--101

radionuclide dispersion, diffusion, advection
 (Investigation 8.3.1.3.6)
 synopsis, 4-150--151

radionuclide migration
 and Cambrian site, 4-134--138
 field tests, 4-134--142
 thermal pulse effects, 4-123--129

radionuclide precipitation (Investigation
 8.3.1.3.5)
 synopsis, 4-150

radionuclide retardation
 data status, 4-6

radionuclide retardation (Investigation
 8.3.1.3.7)
 synopsis, 4-151

radionuclide solubility
 processes affecting, 4-91--101

radionuclide sorption (Investigation
 8.3.1.3.4)
 synopsis, 4-149

radionuclide sorption ratios, 4-65--90

radionuclide sorptive behavior
 and ground-water composition, 4-87--88
 and mineralogy, 4-84--87
 and stratigraphic position, 4-84--87

radionuclide speciation
 processes affecting, 4-91--101

radionuclide transport, 4-105--109
 and accessible transport, 4-4
 Alligator Rivers studies, 4-133--134
 and colloids, 4-106--109
 gaseous, 4-109
 geochemical processes affecting, 4-4
 and geochemical retardation processes,
 4-52--53
 modeling, 4-53--54
 and particulates, 4-106--109
 and repository construction and operation,
 4-143--144
 suspended solids, 4-106--109
 TRACR3D, 4-110

radium
 solubility
 literature summary, 4-98
 in well J-13 water, 4-99, -100*

radium (continued)
 sorption ratios from batch sorption
 experiments, 4-67**--68*

rail
 access routes, 6-82, -83**, -124, -126**

Railroad Valley, 3-117**
 hydrographic area, water data, 3-122*
 oil (Nye County), 1-317

rainfall-runoff-recharge relations, 3-9, -13

Rainier Mesa
 fracture comparison, 2-102
 ground motion, 1-199
 ground water, 4-50
 hydraulic fracturing studies, 2-85--86
 in situ stress, 1-143**
 interstitial and fracture waters, 4-51
 glass-dissolution model, 4-50
 inorganic concentrations, 4-44**, -50,
 -51
 laboratory data source, 2-6
 location, 2-7**
 mechanical property comparison, 2-103*
 rock mechanics facility, 2-9, -10**, -11**
 stress calculations, 2-86
 tuff mechanical properties, 2-25*
 water chemistry, 7-43*
 weapons testing, 1-209, -210**
 see also G-Tunnel

Rainier Mesa-Aqueduct Mesa area
 stress, 1-140

Rainier Mesa Member
 age, magnetic polarity, and stratigraphy,
 1-56*

ramp
 access considerations, 6-3, -136, -138
 analyses, 6-322--323
 construction, 6-142
 design, 6-3, -124, -135--142
 functions, 6-135--136
 seal description, 6-181, -182**

ramps and drifts
 ground support, 6-161--162, -163**
 horizontal emplacement, 6-146**
 normal retrieval conditions, 6-278--279
 vertical emplacement, 6-145**

range front faults
 Yucca Mountain, 1-110

Ranger Mountain
 earthquake densities and energy release,
 1-176*

RE/SPEC
 compliant-joint model, 6-327

reaction-path modeling
EQ6, 7-191--192

recent climate and meteorology, 5-1--38
see also climate, recent

recharge, see ground-water recharge

recirculating columns
adsorption-dynamic process, 4-61

Red Hot Deep Well Experiment (tuff)
mechanical properties, 2-25*

Reese River zeolite deposits, 1-294

reference accident scenarios
Q List, 6-75--78

reference alloy system
container, 7-25

reference container
and alloy 825, 7-25
austenitic stainless steel, 7-25
and current conceptual designs, 7-25
high nickel, iron-based austenitic alloy, 7-25
stainless steel, 304L, 7-25

reference costs
repository, 6-342, -343--344
total system design, 6-342, -344--346
waste package, 6-342, -343

reference designs
conceptual design, 6-303
data base, 6-35--72
postclosure underground
products, 6-220--221

preclosure repository
work completed, 6-303

seals
products, 6-236--237
waste package, 7-25, -27, -28**, -29, -30**, -226--227

reference emplacement orientation, 6-4

reference ground water, 4-39, -146
composition, 4-50--51
sample preparation, 4-62
see also well J-13 water

Reference Information Base, 6-35
postclosure design, 6-234
and reference rock properties, 6-223

reference nuclear waste description
work completed, 6-301

reference postclosure repository design,
product 1.11.7-1
work completed, 6-234

reference postclosure underground designs
(Information Need 1.11.7), 6-220--221

reference preclosure repository design
(Information Need 4.4.5), 6-295

reference repository horizon, 7-4, -8--12
unsaturated zone, 7-8
vadose water, 7-10
water chemistry, 7-10
see also host rock and Topopah Spring Member

reference seal designs (Information Need 1.12.4), 6-236--237

reference stratigraphy and Interactive Graphics Information System, 6-221

reference thermal/mechanical stratigraphy, product 1.11.1-2
work completed, 6-221, -222--223

reference thermomechanical rock properties document, product 1.11.1-3
work completed, 6-221, -223

reference values
mechanical properties, 2-65*
thermal and thermomechanical properties, 2-78*

reference waste form
descriptions, 7-20--25
high-level waste, 7-25
spent fuel, 7-20--25

reference waste package
designs, 7-25, -27, -28**, -29, -30**, -226--227
high-level waste, 7-30**

reference water
for experimental studies, 7-42, -43
well J-13 water, 7-10
see also well J-13 water

region and candidate area, 1-1

regional maximum flood, 6-336
analysis of Fortymile Wash and tributaries, 6-68, -69**

regional seismicity, summary, 1-170--171

regional stability, long-term
geologic processes, 1-200--213
investigations summary, 1-352
summary, 1-336--340
tectonic processes, 1-200--213

regional stress, 1-139--146

regulatory design and performance requirement, 7-3--15
Regulatory Guide 4.17
and climate and meteorology, 5-106
conformance to, 1-10; 3-241
and geochemistry, 4-152
and geoengineering properties, 2-114, -118

Regulatory Guide 4.17 (continued)
 and geology, Chapter 1, 1-353
 and issues resolution, 6-201--208

regulatory requirements, I-3--4
 waste package, 7-3, -4*
 see also U.S. Nuclear Regulatory Commission

relative humidity
 Yucca Flat, 1962--1971, 5-13*, -21

release model
 source term, 7-150--151

release rates, calculation
 glass waste forms, 7-188--189
 see also engineered barrier system release rates

releases, radiological, see radiological releases

reliability analysis
 waste package postclosure performance assessment, 7-223--224

reliability analysis, waste package, 7-223--224
 goals, 7-223
 probabilistic reliability, 7-223
 uncertainties, 7-223

repository
 access considerations, 6-136--142
 analog, 4-129--134
 construction and operation, radionuclide transport effect, 4-143--144
 decommissioning, I-3
 definition, A-2
 design
 and displacement analyses, 2-4
 and field tests, 2-12
 and ground-water system, 3-237--238
 see also design
 design concept, A-12**; 6-82, -84**
 design requirements, 6-6--35
 work completed, 6-301--302
 development, process, I-1--3
 development area, definition, A-2
 excavation methods, 2-107
 faulting effects, 1-206--207, -212--213
 geoengineering conditions to be evaluated 2-2--4
 heating and mineral stability, 4-36--39
 horizon
 ground-water pressure, 4-48
 potential, 6-67 (see also Topopah Spring Member)

repository (continued)
 importance of geoengineering phenomena, 2-1
 life cycle cost, 6-340, -341*, -342, -343--344
 future work, 6-346--347
 location, favorable attributes, A-2
 operations, see operations, repository performance and natural analogs and related field tests, 4-129--142
 siting, I-1--2
 support requirements, see support requirements, repository

repository design criteria for radiological safety (Issue 2.7)
 and climatology and meteorology, 5-1
 criteria list, 6-262, -263--270*
 future work, 6-273
 information needs, 6-271
 issue statement, 6-262
 work completed, 6-272--273

repository design requirements (Information Need 4.4.4), 6-294

repository-facility drillholes, 1-254

repository penetration
 basaltic volcanism, probability, 1-204--206

repository sealing concepts, product 1.12.4-1
 work completed, 6-240--241

repository surface facilities design
 and climate and meteorology, 5-105

repository system cost effectiveness (Issue 4.5)
 analysis needs, 6-346
 development needs, 6-346
 future work, 6-346
 information needs, 6-342--346
 issue statement, 6-340
 site information needs, 6-346
 work completed, 6-343--346

research and development summary (or status)
 borehole openings stability, 7-39--40
 copper-based alloys, 7-229, -231
 corrosion degradation modes, 7-83--85
 crevice corrosion, 7-83, -85, -86
 EQ3/6, 7-235--236
 glass waste forms, 7-234--235
 metal barriers, 7-64--105, -229--232
 numerical modeling, 7-228
 pitting corrosion, 7-85
 radiation field effects, 7-227

research and development summary (or status)
 (continued)

- rock-water interactions, 7-53--60,
 -228--229
- spent fuel dissolution and radionuclide
 release, 7-232
- spent fuel oxidation, 7-233
- spent fuel waste form performance,
 7-232--233
- transgranular stress corrosion cracking,
 7-94--96
- waste package, 7-37--224
- waste package environment modification
 due to emplacement, 7-37--64
- waste package performance assessment,
 7-236
- water flow, 7-228

Zircaloy corrosion, 7-233

research and testing

- glass waste forms performance, 7-151--189
- spent fuel performance, 7-109--151
- waste form performance, 7-105--189

resource assessment, 1-260--262
 planned, 1-284

resource potential, 1-256--323
 controlled area, 1-287, -301
 Yucca Mountain, 1-262, -264--266

retardation

- ion exchange, 4-65
- matrix diffusion, 4-53
 and fracture flow, 4-104--105

retardation, geochemical

- analytical techniques, 4-59--65
- description, 4-52--59
- in host rock, 4-109--116
- precipitation processes, 4-52--53
- summary, 4-145--147

retardation processes

- geochemical, 4-51--116, -145--147
- sorption, 4-65--88, -89*, -90*

retrievability

- design-related criteria, 6-33--34
- design requirements, 6-33
- geotechnical data required, 2-2--3
- Nuclear Waste Policy Act requirements,
 6-186
- and underground opening stability,
 2-67, -112

retrievability and design

- future work, 6-288

retrievability compliance analysis

- future work, 6-289

retrieval

- compliance analysis, 6-284--289
- equipment development, 6-287-288
- inputs to, 6-284--288
- radiological protection, 6-286
- underground opening input, 6-284
- ventilation system input, 6-285
- conditions, 6-191--200, -278--283,
 classification, 6-277**
 estimates, 6-278--283
 future work, 6-288--289
 normal, 6-191--195, -278--280
 off-normal, 6-195--200, -281--283
- design, 6-186--200
- equipment, 6-287--288, -304
 design, 6-200
 hole boring, 6-305
 horizontal emplacement, 6-110,
 -117**--120**
- items important to, 6-281, -282**
- normal conditions
 emplacement boreholes, 6-193,
 -194**, -279--280
 equipment, 6-193, -195, -280
 ramps and drifts, 6-278--279
 summary, 6-278--280
 underground access, 6-191--192,
 -278--289
 ventilation system, 6-193, -280
 waste container, 6-195, -280
- off-normal conditions, 6-195--200*,
 -281--283
 radiological protection, 6-286
 requirements, 6-186
 schedule, 6-31**, -32, -186, -190**
 underground opening design, 6-284
 ventilation requirements, 6-285
 vertical emplacement, 6-101, -113**--116**
- retrieval operations, see waste retrieval,
 operations
- retrieval planning and strategy
 future work, 6-288--289
- retrieval strategy and planning
 work completed, 6-276
- Reveille Range
 basaltic volcanism field characteristics,
 1-98*
- erosion rates, 1-31*
- location, 1-9**
- Rhyolite
 existing and future water use, 3-128,
 -135*

PART A INDEX (Chapters 1-7)

Rhyolite (continued)
gold mines, 3-128
rhyolite of Calico Hills, 1-60--61
Yucca Mountain, 1-60

rhyolitic glasses
hydrothermal alteration, 4-122

RIB, see Reference Information Base

Rio Grande Rift, 1-309**

RLCC, see repository life cycle cost

RNM-1 well
and Cambrian nuclear explosion, 4-135,
-136**, -138

RNM-2S well
and Cambrian nuclear explosion, 4-135,
-136**, -137**, -138

Roberts Mountain Formation
pre-Cenozoic rocks, 1-54

Roberts Mountains
thrust plate, 1-266, -267**

rock behavior models, 2-18--21, -38

rock characteristics
data uncertainties, 2-113
see also rock properties

rock mass
classification, 6-318
Bullfrog Member, 2-104
Calico Hills tuff, 2-104
selected tuff units, 2-105**
and support requirements, 2-104--106
Tram Member, 2-104
Yucca Mountain tuffs, 2-104--106

deformation modulus, see modulus of deformation

degradation, 2-90--91

excavation characteristics, 2-100--108

fracture properties, see fractures

mechanical properties, see mechanical properties

permeability
and blast damage, 6-241--242
and stress redistribution, 6-241--242

permeability modification
work completed, 6-241--242

Poisson's ratio, 6-55, -56*

strength
design data, assessment, 6-57
and information needs, 6-205

rock matrix
hydrologic nature, 6-247

rock mechanics facility, 2-9
elevation view, 2-11**
plan view, 2-10**

rock mechanics facility (continued)
see also G-Tunnel

rock mechanics models
compliant-joint, 2-19--21
conceptual, 2-18--21
elastic, 2-19
elastic-plastic, 2-19
initial conditions, 2-18

rock properties
data base development, 2-6--13
fracture properties, 2-65* (see also fractures)
intact rock, 2-5 (see also intact rock)
planned measurements, 2-4--5
see also geoengineering properties and mechanical properties

rock sample form
rock-water interaction studies, 7-53--60

rock strength properties
design data, 6-57--59
strain effects, 2-37*
see also compressive strength

rock temperature
Bullfrog Member, 2-74
Calico Hills tuff, 2-74
and compressive strength, 2-35
data needs, 2-3
and thermally induced water migration, 2-4
Tram Member, 2-74

rock types
symbols, 4-16*--18*

Rock Valley
earthquake densities and energy release, 1-176*
ground-water flow, 3-79, -80*, -205
seismicity of, 1-178**, -180

Rock Valley fault system
recent Quaternary movement, 1-206

Rock Valley hydrographic study area, 3-2*, -9*, -127*
water data, 3-127*

rock-water interactions, 4-48, -50
EQ3/6, 7-60--64, -195--196, -228--229
experimental methods, 7-53--60
geochemical modeling, 7-38--39, -60--64
and geochemical stability, 4-145
gold-bag autoclave tests, 7-53--60
modeling, 7-60--64, -229
models, 4-48
research and development summary, 7-53--60, -228--229

PART A INDEX (Chapters 1-7)

rock-water interactions (continued)
stainless steel vessel tests, 7-54
studies, 7-53--60
Teflon capsule tests, 7-54, -59
Topopah Spring tuff, 7-46, -53, -54, -55, -56
and vitric-rich units, 7-60
and vitrophyre-rich units, 7-60
and water chemistry, 7-53, -59

rock-water system
modeling long-term behavior, 7-61, -64

rod consolidation, 6-93**

Round Mountain
gold and silver district, 1-273**, -278
volcanic center, 1-277

runoff
characterization plans, 3-29
and precipitation, 5-50
rainfall-recharge relations, 3-9, -13
and surface hydrology, 3-8

Russell Lake, see Lake Russell

safety
design considerations, 6-28--29
worker, 6-203--204

SAGUARO
and backfilled drifts, 6-245--246
and vadose water flow, 6-245--246

samarium solubility
in well J-13 water, 4-101*

sample selection
limitations, 2-14
logic, 2-14--15

sample size
and American Society for Testing and Materials, 2-23
and compressive strength, 2-40
limitations, 2-14, -23
and lithophysae, 2-14

sampling, ground water, 3-89**, -97*, -99**

San Andreas fault, 1-81**, -83**, -113**, -153**, -309**
earthquakes, 1-170
location, 1-87**

SANCHO
finite-element method, 6-324--325
verification and validation, 6-324--325

sand and gravel
deposits, 1-298--299*, -302
resources, 1-297--300*, -302

sandstorms (Yucca Mountain area), 5-30

Sarcobatus Flat
earthquake densities and energy release, 1-176*
and focal mechanisms, 1-183**
seismicity of, 1-180, -183**, -184

saturated matrix hydraulic conductivity, unsaturated zone, 3-169--175

saturated thermal conductivity
Topopah Spring and Grouse Canyon Member, 2-103*

saturated zone
ground-water travel time, 3-219--221, -221*, -237
hydraulic characteristics, 3-179--192
hydrogeologic units, 3-59**
monitoring network, 3-153, -156--159*, -160
multiple-well tests, 3-6
pathways to accessible environment, 3-137, -214, -219
porosity, 3-192
potentiometric levels, 3-149**, -163--164, -201

saturation
Topopah Spring and Grouse Canyon Member
comparison, 2-102, -103*
see also water saturation

saturation, in situ, 6-48*

saturation design data, 6-54

Savannah River Laboratory waste form
compositions, 7-153*, -173, -174*
radionuclides that grow in, 7-159, -160*

Savannah River waste
radionuclide inventories, 7-155--156*, -152

scarplets
Yucca Mountain fault, 1-211**

SCC, see stress corrosion cracking

schedule, repository
caretaker, 6-31**, -32
closure, 6-31**, -32
construction, 6-29, -31**
disposal, 6-31**, -32
operations, 6-29, -30*, -31**, -32
retrieval, 6-31**, -32, -186, -190**
waste acceptance, 6-29, -30*
waste handling, 6-30*, -31**

scoping hearings, 1-8

SCP-CDR, see conceptual design report

PART A INDEX (Chapters 1-7)

sea surface temperature modeling
CLIMAP Project, 5-41, -98
and general circulation model, 5-41, -42, -98

seal characteristics (Issue 1.12)
and climatology and meteorology, 5-1
computer codes used, 6-237, -238*

developmental needs, 6-247
future work, 6-247
information needs description, 6-236--237
issue statement, 6-235
regulatory basis for, 6-235
repository design, 6-206, -213, -262
site information needs, 6-247
status of issue resolution, 6-237, -239
work completed, 6-239--246
work needed, 6-237, -239

seals
concepts
site conditions, 6-237
design, 6-178--186
emplacement
borehole, 6-185
shaft and ramp, 6-181
functional requirements, 6-178--179
hydrologic calculations, 6-242--244
and information needs, 6-206
materials (Information Need 1.12.2), 6-236
near waste package, 6-185
ramps, 6-181, -182**
vertical emplacement, 6-185--186

Searles Lake
carbon-14 dates, 5-68**
chronology of, 5-66**, -67, -69
description, 5-62, -67, -69
location of, 5-44**
and Owens River system, 5-64**, -65**
seeps, 3-28, -34--35, -79, -121, -230
locations and descriptions, 3-36*--47*

seismic analyses
work completed, 6-336--338

seismic considerations
design data, 6-70--71

seismic drillholes, 1-254

seismic hazard
estimates, Yucca Mountain, 1-194**, -195*
southern Great Basin, 1-189--192

seismic record
southern Great Basin, 1-151--160, -164

seismic source models, 1-171

seismic-wave transmission
Yucca Mountain, 1-196--199

seismicity, 1-151--200
Dome Mountain vicinity, 1-175, -176*, -178**, -179**, -180

Funeral Mountains, 1-178**, -180
and geologic characteristics, 1-171--187
and geologic structures, summary, 1-187
Gold Mountain vicinity, 1-183**, -184
historical, southern Great Basin, 1-154, 156**--158**

investigations summary, 1-351--352
Jackass Flats vicinity, 1-178**, -179, -180

Las Vegas Valley, 1-181, -182**
Mercury Valley, 1-178**, -180
Mt. Dunfee vicinity, -183**, -184
North Pahroc Range, 1-184, -186**
northern Nevada Test Site, 1-179**
Pahranagat shear zone, 1-184, -185**
Pahroc Valley, 1-184, -186**
Pahute Mesa, 1-179**
post-network (1978-1985), 1-168--170
pre-network (1868-1978), 1-165
Rock Valley, 1-178**, -180
Sarcobatus Flat vicinity, 1-181, -183**, -184

southern Great Basin, 1-164--171
southern Nevada Test Site, 1-178**
southwestern United States, 1-152*, -153**
summary results, 1-335--336
and tectonic characteristics, 1-171--187
Thirsty Canyon, 1-179**, -181
and weapons testing, 1-171--172, -175
Yucca Mountain vicinity, 1-175, -178**, -192--200

seismogenic zonation, 1-172

seismogenic zones, 1-174**

seismology
investigations summary, 1-351--352
southern Great Basin, 1-151--192
summary results, 1-335--336
Yucca Mountain, 1-192--200

seismotectonic zones and earthquake potential, 1-171--189

selenium
sorption ratios from batch sorption experiments, 4-69*--71*

sensitivity studies
Bullfrog Member, 6-233
drift analyses, 6-317--319
Topopah Spring Member, 6-233
Tram Member, 6-233
tuffaceous beds of Calico Hills, 6-233

sensitivity studies, product 1.11.6-3
 work completed, 6-233

sensitization
 and austenitic materials, 7-72, -76, -79**
 model, 7-83
 and carbon diffusion, 7-80
 in high-nickel materials, model, 7-83

sensitization (long-term) of austenitic materials
 and thermal history of waste, 7-79**

sensitization (low temperature) of austenitic materials, 7-76--80

sensitized microstructure
 detection of, 7-72
 and intergranular corrosion, 7-67, -230
 and intergranular stress corrosion cracking, 7-67, -101, -230

sensitized stainless steel
 mitigating environmental effects, 7-81

sequential drift mining evaluations, 2-100

sequential drift monitoring, 2-13**

series 1 spent fuel dissolution tests
 deionized water, ambient hot cell temperature, 7-111, -117

series 2 spent fuel dissolution testing
 cesium-137 activities in unfiltered solution samples, 7-127**
 fractional releases, 7-123, -124**--125*, -126, -128**--129*
 fuel structure changes, 7-132, -133**
 H.B. Robinson Unit 2 fuel, 7-117--134
 solids characterization, 7-132, -133**
 summary of fractional releases, 7-128**--129*
 Turkey Point Unit 3 fuel, 7-117--134, -121**--122*, -124**--125*, -128**--129*

uranium concentration in unfiltered solution samples, 7-117, -118**

uranium concentrations for bare fuels in well J-13 water, 7-117, -118**

uranium release data, 7-119, -121**--122*
 well J-13 water, ambient hot cell temperature, 7-111, -117--135

series 3 spent fuel dissolution tests, 7-111, -138

service areas
 design, 6-153, -154**--155**

severe weather
 and obstructions to visibility, 5-27--28, -30, -31*, -32*

Sevier orogenic belt thrust faults, 1-100

Sevier subbasin
 location of, 5-58**

SGBSN, see Southern Great Basin Seismic Network

shaft
 current design, 6-82, -86**
 design, 6-128, -129**--130**, -135--142
 hydrologic analysis, 6-242--244
 men and materials, 6-85, -139*, -140**, -141**, -142, -143**
 seal description, 6-179, -180**, -181

shaft and drift drainage
 and sealing, 6-240

shaft and drift sealing
 and hydrologic calculations, 6-242--244

shaft and ramp
 access considerations, 6-135, -138, -142
 construction, 6-142
 descriptions, 6-138--142
 functions, 6-135--136
 locations, 6-136, -137**
 seal emplacement, 6-181, -183
 stability, 6-322--323

shaft convergence measurements, 2-13**
 and rock mass properties, 2-56, -64

shear stiffness, 6-52*

shear stress at failure
 Bullfrog Member, 2-36**

shear stress plots, 2-48**, -49**, -51**, -54**

shear stress-to-normal stress relation
 Grouse Canyon Member welded tuff (air dried), 2-48**
 Grouse Canyon Member welded tuff (saturated), 2-51**
 Prow Pass Member partially welded tuff, 2-49**

shear zones, 1-2**
 potential excavation hazard, 6-291

shielding plugs, emplacement hole, 7-36

Shoshone Range
 barite production, 1-288, -289**

Sierra Nevada batholith, 1-83**, -113**

Silent Canyon caldera, 1-94**, -265**
 epicenters, 1-179**
 seismicity and focal mechanisms, 1-179**

silica activity
 and stability of clinoptilolite, 4-38

silica and leach rates, 7-167

silica resources, 1-297*, -302

silicic tuffs (Yucca Mountain), thermal expansion coefficients, 2-75*

PART A INDEX (Chapters 1-7)

- silicic volcanic units**
 - mineralogy, 4-15--36
- silicic volcanism**
 - likelihood, 1-202
 - postclosure, 1-202
 - repository effects, 1-201
 - summary results, 1-336--338, -339
- silicon dioxide**
 - change with time, thermal pulse, 4-125**, -126**
- Silicon Mine**, 1-279*, -297*, -302
- silicon-to-aluminum ratios**
 - site heulandites and calcic clinoptilolites, 4-32**
- silver resources**, Nevada, 1-269--284
- site**, see Yucca Mountain site
- site and design information needed to assess radiological safety (Information Need 2.1.1)**, 6-248
- site and performance information needed for preclosure design (Information Need 4.4.1)**, 6-293--294
- site characteristics**
 - influencing geochemical data collection, 4-4--5
- site characteristics needed for design of underground facilities (Information Need 1.11.1)**, 6-213, -218
- site characterization**, I-4--6
- site characterization plan**
 - content requirements, I-8--10, -11*--12*
 - issues hierarchy and issue resolution strategy, I-6--8
 - organization, I-10--13
 - progress reports, I-14
 - purpose and objectives, I-6
 - regulatory requirements, I-8--14
 - supporting documents, I-13--14
- site geological maps**, list, 1-3
- site performance information needed for design (Information Need 4.2.1)**, 6-289
- site programs**, hydrology related, 3-1
- site rock thermal and thermomechanical properties**
 - intact rock, 2-69--77, -78*
 - large scale, 2-79, -81--82
- site stratigraphic units**
 - mineralogy, 4-15--36
 - petrography of core samples, 4-19**--20*
 - phenocryst composition, 4-21*
- siting process**, I-1--2
- Skull Mountain**
 - earthquake densities and energy release, 1-176*
- Sleeping Butte caldera**, 1-94**
- slickensides**
 - Yucca Mountain faults, 1-134**
- slot strength test**, 2-13**
- slow sorption**
 - and cesium diffusion, 4-103**
- small dams**
 - water inflow control, 6-188**
- small-diameter heater tests**, 2-10**, -11**, -13**
 - and thermal and thermomechanical properties, 2-79
 - and water migration, 2-94
- small-scale heater tests**, 2-13**
- smectites**
 - Bullfrog Member, 4-35--36
 - exploration block, 4-35--36
 - and geologic history of site, 4-35--36
 - host rock, 4-35--36
 - hydrothermal alteration, 4-121--122
 - sorption, 4-35--36
 - Topopah Spring Member, 4-35--36
 - Tram Member, 4-35--36
- Snake River Plain**, regional hydrothermal heat flow, 1-309**
- snowfall (Yucca Mountain area)**, 5-20
- Soda Lake**, 1-9**
- sodium bicarbonate and chloride concentration trends**, 3-83, -90**, -95
- sodium-potassium-calcium concentrations in Yucca Mountain site ground water**, 4-44**
- sodium-sulfate-bicarbonate facies**, 3-95
- soil and rock, near surface design data**, 6-38, -41
- soil density**, test procedures, 2-8*
- soils, surficial deposits**, 1-78
- solid tuff columns**
 - adsorption-dynamic process, 4-61
- solid waste**
 - handling, 6-94**--96**
 - offsite shipment, 6-96**
 - packaging of spent filters, 6-95**
- Solitario Canyon fault**, 1-108**, -122**, -128
 - and calcite deposits, 1-71
 - and hydrologic properties, 3-175, -193, -194**
 - location, 1-50**
 - preliminary data, 1-129*
 - Quaternary fault, 1-108**

PART A INDEX (Chapters 1-7)

Solitario Canyon fault (continued)
 site boundary, 1-332
 stratigraphic section, 3-138**, -164

Solitario Canyon fault zone
 Quaternary faulting, 1-123*

solubility
 adsorption-dynamic process, 4-61--62
 data status, 4-6
 modeling, 4-96, -98, -99
 measurements, 4-64--65
 and well J-13 water, 4-64--65

sonic velocity logs, geophysical logging,
 1-248--249

Sonoran desert subprovince, 1-7, -8**, -9**,
 -12--13

sorption
 analytical techniques, 4-59--65
 batch, 4-60--61, -62--63
 circulating, 4-60, -64
 crushed-tuff column, 4-60, -64
 clinoptilolite, 4-27, -35, -84, -85**
 data
 batch experiments, 4-66--82, -83*
 circulating system experiments, 4-83
 crushed-tuff column experiments, 4-82,
 -83*
 status, 4-6
 tuff, 4-65--66
 geochemical retardation process, 4-52
 heulandite, 4-29
 laboratory controls, 4-61
 mordenite, 4-29
 of radionuclides
 and crushed-tuff column experi-
 ments, 4-82
 oxidation-reduction effect, 4-66, -81
 rate constants, 4-104*
 retardation processes, 4-65--88, -89*,
 -90*
 slow and cesium diffusion, 4-103**
 smectites, 4-35--36

sorption in tuff, temperature effect, 4-66

sorption isotherms
 linearity, 4-81--82
 sorption-element concentration relation-
 ship, 4-60

sorption rate constants
 tuff from USW G-1 drillhole, 4-104*

sorption ratios
 batch desorption experiments, 4-72*--76*
 batch sorption experiments, 4-67*--71*

sorption ratios (continued)
 comparison of sorption procedures, 4-83*,
 -84
 and mineralogy, 4-84--87
 radionuclides, 4-84--87, -89*--90*
 and stratigraphic position, 4-84--87
 and UE-25p#1 water, 4-88, -89*--90*
 sorptive behavior
 and ground-water composition, 4-87--88,
 -89*--90*
 and mineralogy, 4-84--87
 oxidation-reduction effect, 4-66, -81
 and stratigraphic position, 4-84--87
 temperature effect, 4-66
 and UE-25p#1 water, 4-88
 and USW H-3 water, 4-88
 and well J-13 water, 4-88

sorptive zeolites
 distributions, 4-23, -24**, -25**, -26**,
 -27
 summary, 4-146
 Yucca Mountain site, 4-27--35, -146

source term
 for failed fuel rods, 7-150
 release model, 7-150--151

source term estimates
 and container behavior, 7-97

source term model
 and emplacement environment, 7-8

source term release model
 glass waste forms, 7-187--189
 spent fuel waste form, 7-150--151

South African Council for Scientific and
 Industrial Research Classification System,
 6-318, -319, -333
 Grouse Canyon Member, 2-105**
 Topopah Spring Member, 2-105**
 Tunnel bed 5, 2-105**
 Yucca Mountain tuffs, 2-104

southeast Great Basin
 characteristics, 1-10*--11*, -14
 morphometric characteristics, 1-10*--11*

southern Basin and Range
 seismogenic zone, 1-174**

southern Great Basin
 aquifers, 1-42**
 aquitards, 1-42**
 Cenozoic volcanic rocks, 1-90**, -93**
 detachment faults, 1-107**
 earthquake potential, 1-187--189
 earthquakes, 1-161**, -162**, -166*--167*
 energy release map, 1-161**

PART A INDEX (Chapters 1-7)

- southern Great Basin (continued)
 - extensional tectonism, 1-103--110
 - geologic index map, 1-36**
 - igneous history, 1-95--99
 - lithology, 1-37--49
 - Mesozoic structures, 1-100--102
 - physiographic subdivisions, 1-16**
 - pre-Cenozoic rocks, 1-37--47
 - Quaternary structures, 1-115--117
 - seismic hazard, 1-189--192
 - seismic record, 1-151--160, -164
 - seismicity, 1-154**, -156**--158**
 - seismology, 1-151--192
 - stratigraphy, 1-37--49
 - strike-slip faulting, 1-81**, -83**, -110--115
 - structural history, 1-99--117
 - surficial deposits, 1-37--49
 - Tertiary structures, 1-102--103
 - see also Great Basin
- Southern Great Basin Seismic Network, 1-154**
- southern Nevada
 - major strike-slip Mesozoic thrust faults, 1-83**
 - seismogenic zone, 1-174**
- southern Nevada Test Site
 - focal mechanisms, 1-178**
- southwestern Basin and Range Province
 - erosion rates, 1-31*
 - landscape degradation, 1-32
- southwestern Great Basin
 - description, 1-10*--11*, -14
 - energy release map, 1-162**
 - morphometric characteristics, 1-10*--11*
- southwestern Nevada volcanic field, 1-265**
- spatial disaggregation of climate predictions, 5-98--99
- speciation-solubility calculations
 - EQ3NR, 7-191
- specific gravity, alluvium, 2-97
- Specter Range, ground-water velocity, 3-73
- SPECTROM
 - compliant-joint model, 6-326, -328**
 - finite-element method, 6-326--327
 - verification and validation, 6-326--327
- SPECTROM-11
 - drift thermal analysis, 6-317
- SPECTROM-41
 - drift thermal analysis, 6-310, -317
- speculative resources
 - definition, 1-260
- spent fuel
 - alternative container design, 7-33**
 - assemblies
 - radionuclide inventories at 1,000 years, 7-115*
 - typical characteristics, 7-21, -23*--24*
 - burnup and age, 7-21, -22*, -29
 - characteristics, 7-109--111
 - description, 7-109--111
 - dissolution experiments, 4-94
 - dissolution in well J-13 water, 4-94
 - dissolution studies, 7-114--140
 - dissolution testing program, samples, 7-114, -116*
 - enrichment, 7-21
 - inert cover gas, 7-17, -29, -31
 - matrix dissolution rate, 7-150
 - oxidation in air, 7-140--146
 - oxidation research and development
 - summary, 7-233
 - oxidation tests
 - cladding, split, 7-146
 - description, 7-140--146
 - parameters for thermogravimetric analyses, 7-142*
 - thermogravimetric analyses, 7-113, -143**, -144
 - packages
 - alternative designs, 7-32, -33**
 - and inert cover gas, 7-17
 - performance research and testing, 7-108--151
 - and radionuclide ratios to EPA limits, 4-55*--56*
 - receipt at repository, 7-21, -22*, -24
 - reference container, 7-28**
 - reference waste form, 7-20--25, -22*, -23*--24*
 - testing program
 - fuel dissolution tests, 7-111, -113--140
 - oxidation studies, 7-113, -140--146
 - Zircaloy corrosion, 7-109, -113, -146--149
 - waste form performance
 - research and development summary, 7-232--233
 - waste forms
 - source term release model, 7-150--151
 - uncertainties, 7-239

spent fuel (continued)

- Yucca Mountain Project spent fuel testing program, 7-109--113
- Zircaloy corrosion, 7-146--149

spent fuel dissolution and radionuclide release

- research and development summary, 7-232

spent fuel dissolution testing, 7-113--140

- CANDU fuel, 7-114, -136--138
- comparison, 7-135--138
- EQ3/6, 7-134
- experimental configuration, 7-112**
- geochemical modeling, 7-134
- and ground-water compositions, 7-114
- and laboratory testing, 7-114
- Osharsham I fuel, 7-114
- sample characteristics, 7-114, -116*
- series 1 tests, 7-111, -117
- series 2 tests, 7-111, -117--138
- series 3 tests, 7-111, -138
- test vessel, 7-112**
- see also series 1 spent fuel dissolution testing, series 2 spent fuel dissolution testing, and series 3 spent fuel dissolution testing

spent fuel dissolution tests, series 1, see series 1 spent fuel dissolution tests

spent fuel dissolution tests, series 2, see series 2 spent fuel dissolution tests

spent fuel dissolution tests, series 3, see series 3 spent fuel dissolution tests

Spotted Range-Mine Mountain

- structural zone, 1-116**

Spotted Range-Mine Mountain block

- characteristics, 1-10*--11*, -15, -16**
- morphometric characteristics, 1-10*--11*

Spring Mountain block

- characteristics, 1-10*--11*, -15, -16**
- morphometric characteristics, 1-10*--11*

Springdale

- sodium bicarbonate and chloride concentrations, 3-90**

springs, 3-34--35, -71

- Ash Meadows, 3-71, -92
- Death Valley, 3-35
- Furnace Creek Wash, 3-35
- locations and descriptions, 3-36*--47*
- magnitude of, 3-49*
- Oasis Valley, 3-35
- perched, 3-34, -35, -230

stability

- of clinoptilolite and silica activity, 4-38
- of openings
- data needs, 2-2--3
- and rock temperature, 2-3
- and shaft designs, 2-4
- regional, long-term, 1-336--340

stability distributions, see Pasquill

 stability class distributions

Stage 1

- surface facilities, 6-89

Stage 2

- consolidation of spent fuel assemblies, 6-93**
- surface facilities, 6-89

stainless steel

- and corrosion rates, 7-70*
- polarization curves, 7-86, -87**, -88, -90, -92**
- summary of testing and analysis, 7-82--83
- see also austenitic materials

stainless steel, 304L

- anodic polarization curve, 7-86, -87**, -88
- electrochemical parameters, 7-89**
- glass dissolution rates, 7-169, -172**
- intergranular stress corrosion cracking, 7-74, -75**
- reference container material, 7-25,
- strain rate tests, 7-77*, -78*
- transgranular stress corrosion cracking, 7-94

stainless steel, 316L

- corrosion potential, 7-91**
- intergranular stress corrosion cracking, 7-78
- polarization curves, 7-90, -92**

stainless steels in irradiated well J-13 water

- polarization curves, 7-90,

standard spent fuel

- and 10 CFR Part 961, 7-21

State of California

- design and legal requirements, 6-8, -17*

State of Nevada

- design and legal requirements, 6-8, -16*
- and drinking water standards, 3-128
- ground-water management, 3-133--134
- see also Nevada

static water level, 4-13

steam and waste package environment model, 7-207

PART A INDEX (Chapters 1-7)

Sterling-Panama Mines, 1-278, -279**
stochastic analyses, aquifer modeling, 3-6
Stonewall Mountain caldera, 1-265**
storage coefficient, saturated zone, 3-169,
-179, -192
strain
 and rock strength, 2-37*
 rate tests
 304 stainless steel, 7-77*, -78*
stratigraphic framework, 2-14--15, -22
 site, 1-35--78
 thermal/mechanical, 2-17**
 Yucca Mountain, 1-55--57
stratigraphic units
 cross section, Yucca Mountain, 3-138**
 geochemistry, 4-7--116
 and hydrogeologic units, 3-51--57*
 hydrologic characteristics, 3-51--57*,
 -64--67*
 phenocryst composition, 4-21*
 site, 1-50**
stratigraphic variations
 and mechanical properties, 2-43
 and rock mass degradation, 2-93
stratigraphy
 description, 1-35--78
 design data, 6-41, -42**
 generalized, 1-38**
 investigations summary, 1-346--347
 southern Great Basin, 1-37--49
 summary, 1-3
 summary results, 1-325--327
 Tertiary volcanic rocks, site, 1-56*
 thermal/mechanical, 6-42**, -44, -222
 thermal/mechanical units, 2-17**
 and thermal properties, 2-77, -78*, -79
 Yucca Mountain, 1-49--78
stream incision, 1-34*
streamflow
 crest-stage sites, 3-12**
 data summary, 3-10--11*, -232
 flow measurement sites, 3-17**
 historical data, 5-47, -50
 lack of data, 3-14, -18
 stream-gaging station network, 3-22
 see also runoff
streamflow-gaging stations
 location of, 5-48**
strength properties
 design data, 6-57--59

STRES3D
 drift thermal stress, 6-320
 stress analysis, 6-322
stress
 analyses
 emplacement drifts, 6-310--317
 horizontal emplacement, 6-310, -312**,
 -314**, -317
 JAC, 6-322
 needed, 2-3
 STRES3D, 6-322
 vertical emplacement, 6-310, -311**,
 -313**, -317
 data required, 2-5
 gradient
 emplacement borehole, 6-322
 and ground-water travel time, 2-4
 half closure, 6-52*
 horizontal, 6-46--47
 and overburden, 2-86
 panel access drifts, 6-320*
 profile
 drift analysis, 6-316**
 and rock mass permeability, 6-241--242
Yucca Mountain, 1-141**
Yucca Mountain, focal-plane solutions of
 earthquakes, 1-142**
see also in situ stress and regional
 stress
stress axes
 and geologic structures, summary, 1-187
stress corrosion cracking
 Zircaloy, 7-148--149
see also intergranular stress corrosion
 cracking and transgranular stress
 corrosion cracking
stress field
 Yucca Mountain, 1-139
stress measurements
 in situ, 2-13**
 methods, 2-82--84
 at drill holes USW G-1 and USW G-2,
 2-86--88
stress regime
 existing, 2-82--89
 existing, Yucca Mountain, 1-139--146
 field observations, 2-86--88
 finite-element calculations, 2-86,
 -88--89
 hydraulic fracturing studies, 2-85--86
 investigations summary, 1-350

stress regime (continued)

- overcoring measurements, 2-85
- at site, 2-86--89
- in site region, 2-84--86
- summary, 1-333, -334
- tectonic and geologic evidence, 2-84--85

stress-strain relationship

- and deformation modulus, 2-57
- fractured and intact rock, 2-58**

strike-slip faulting

- Las Vegas Valley shear zone, 1-110, -111, -114
- southern Great Basin, 1-110--115
- Yucca Mountain, 1-141**

strike-slip faults

- and earthquake epicenters, 1-153**
- map, 1-81**
- southern Great Basin, 1-82, -83**
- summary, 1-328--329

Stripped Hills

- earthquake densities and energy release, 1-176*

Strombolian eruptions

- Lathrop Wells basalt center, 1-203
- Nye Canyon, 1-203
- potential doses, 1-204

strontium

- solubility**
 - literature summary, 4-98
 - in well J-13 water, 4-100*
- sorption behavior**
 - and clinoptilolite abundance, 4-84, -85**, -86
 - and stratigraphic depth, 4-85**
- sorption rate constants**, 4-104*
- sorption ratios**, 4-84, -86
 - comparison of sorption procedures, 4-83*
 - distilled water, 4-88, -89*
 - UE-25p#1 water, 4-88, -89*
 - well J-13 water, 4-88, -89*
- sorption ratios from batch desorption experiments**, 4-72--73*
- sorption ratios from batch sorption experiments**, 4-67--68*

structural analyses

- work completed, 6-306--333

structural block

- Yucca mountain, cross section, 1-126**

structural geology

- investigations summary, 1-347--351
- summary results, 1-327--334

structural geology (continued)

- and tectonics, Yucca Mountain, 1-79--150

structural history

- southern Great Basin, 1-99--117
- Yucca Mountain, 1-117--138

structure

- design data, 6-44
- geologic summary, 1-328--333
- investigations summary, 1-348--350
- site, 1-3
- Yucca Mountain summary, 1-331--333

study areas, see hydrogeologic study areas and hydrographic study areas

subsurface design, see underground facility

sumps and drains

- diverting water inflow, 6-187**

SUPCRT

- rock-forming mineral data base, 7-192

support requirements, repository

- and excavation characteristics of rock mass, 2-100--108
- and G-Tunnel data, 2-9, -102--104
- and rock mass classification, 2-104--106
- and stress and displacement analyses needed, 2-4
- and water saturation, 2-50

surface facilities

- candidate areas, 6-121, -124, -127**
- central, 6-124, -125**
 - and climate and meteorology, 5-105
 - current design, 6-85, -86**
 - design, 6-121--135
 - and flooding potential, 5-9
 - and information needs, 6-207
 - of shaft sites, 6-129**--130**

surface hydrology

- description, 3-8--13
- design data, 6-65--66

surface materials

- engineering properties, 2-96--100, -101*, 6-43*
- physical properties, 6-43*
- soil and rock, 6-38, -41

surface water

- Amargosa Desert, 3-24
- chemical composition, 3-25--28, -27*
- contamination potential, 3-29, -49--50
- Death Valley, 3-24
- design data, 6-65--66
- flow study plans, 3-9, -13
- locations of, 3-13
- plans for characterization, 3-28

PART A INDEX (Chapters 1-7)

surface water (continued)
 present quantity and quality, 3-24
 projected uses, 3-24--25
 sample sites, 3-26**
 summary, 3-231--232
 surficial deposits
 late Pliocene, 1-75
 late Tertiary, 1-49
 map, 1-76**--77**
 Pleistocene, 1-75
 Quaternary, 1-49
 region, 1-49
 southern Great Basin, 1-37--49
 Yucca Mountain, 1-49--78
 surficial processes
 Quaternary, 1-31--35
 suspended solids
 and radionuclide transport, 4-106--109
 synoptic characterization of regional climate,
 5-101
 synoptic-scale climatic influences
 at Yucca Mountain, 5-9, -10

TAC02D
 and thermal model, waste package system,
 7-206
 tagged water use, 3-49
 Tahoe City
 precipitation records, 5-49**
 tar sand resources, 1-313, -314--315
 technetium
 and effect of geochemical transport
 process, 4-111** -112**
 solubility
 literature summary, 4-98
 in well J-13 water, 4-99, -100*
 sorption ratios, 4-86
 sorption ratios from batch desorption
 experiments, 4-74**--76*
 sorption ratios from batch sorption
 experiments, 4-69**--71*
 technical feasibility
 waste package design, 7-16
 technology for seals emplacement (Information
 Need 4.4.10), 6-296
 technology for surface facilities
 (Information Need 4.4.8), 6-295--296
 technology for underground facilities
 (Information Need 4.4.9), 6-296
 Tecopa Basin, 1-9**

tectonic and geologic evidence
 stress regime, 2-84--85
 tectonics
 analyses, work completed, 6-336--338
 framework, Yucca Mountain, 1-79--84
 and geochemical stability, 4-144
 and geomorphic processes, 1-28--29
 hazards, postclosure, 1-206--212
 history, western United States, 1-84--150
 investigations summary, 1-347--351
 model, future seismic activity, 1-171
 plates--modern
 map, 1-81**
 region, 1-79--80
 postclosure, 1-200-213
 processes
 long-term regional stability,
 1-200--213
 Yucca Mountain, Quaternary, 1-30
 and regional structural geology, 1-79--150
 setting, plate, 1-80
 summary results, 1-327--334
 Yucca Mountain, 1-79--150
 Telluride Mine, 1-279**
 TEMP3D, drift thermal analyses, 6-309
 temperature, 5-12**--13*, -14, -15*, -16
 Beatty, 5-15*
 borehole spacing criteria, 6-230--231
 Bullfrog Member, 2-74
 Calico Hills tuff, 2-74
 and compressive strength, 2-35
 drifts, 6-308--310
 and evaporation, 5-52**
 extreme (Yucca Mountain area), 5-30, -31*
 inversion effects and dispersion, 5-10
 and leach rates, 7-163**, -165
 panel access drifts, 6-320*
 Quaternary Period, 5-41
 sea surface, 5-41, -98
 and sorptive behavior, 4-66
 and thermally induced water migration, 2-3
 Tram Member, 2-74
 well J-13 water, 4-48, -49**
 Yucca Flat, 1962--1971, 5-12**--13*
 Yucca Mountain site ground water, 4-48,
 -49**
 temperature limitation criteria
 waste form, 7-16--17
 temperature logs, geophysical logging,
 1-246--247
 temperature profiles
 alteration, metals, 1-281**

tensile strength, 6-59
 existing data, 2-23
 intact rock, 6-50*
 and porosity, 2-22, -41, -42**
 reference values, 2-65*
 test procedures (Brazilian test), 2-8*
 Yucca Mountain tuffs, 2-42**, -44*, -65*

terrain
 design data, 6-38, -39**

terrain influences on climate and meteorology (Yucca Mountain area), 5-10--11

Tertiary deposits, surficial, 1-75

Tertiary rocks, 1-36**

Tertiary structures
 southern Great Basin, 1-102--103

Tertiary volcanic rocks
 age, 1-56*
 magnetic polarity, 1-56*
 stratigraphy, 1-56*

test holes, 3-153, -154--155*, -157--159*
 depth of, 3-6

test procedures, 2-6, -8*

TGSCC, see transgranular stress corrosion cracking

THERM3D, drift thermal analyses, 6-309

thermal analyses
 work completed, 6-306--333

thermal and thermomechanical properties--
 intact rock, 2-66--77, -78*, -83
 nonsite tuffs, 2-69, -70*
 site rock, 2-69, 71--77, -78*, -81--82
see also specific property

thermal and thermomechanical properties--large scale, 2-79--82
 nonsite tuffs, 2-80--81
 site rock, 2-81--82

thermal capacitance,
 design data, 6-63*-64*, -65

thermal-comparator measurements, 2-73

thermal conditions, anticipated
 and waste emplacement, 4-117--119

thermal conductivity, 2-71--73, -72*
 and anisotropy, 2-73
 Bullfrog Member, 2-71*, -71--72
 Crater Flat tuff, 2-71
 definition, 2-66
 design data, 6-62, -63--64*, -65
 and lithophysae, 2-73
 nonsite rocks, 2-80--81
 nonsite tuffs, 2-70*
 Prow Pass Member, 2-71*
 recommended values, 2-78*

thermal conductivity (continued)
 test procedures, 2-8*
 Topopah Spring Member, 2-71*
 Topopah Spring and Grouse Canyon Member comparison, 2-103*
 Tram Member, 2-71*, -72
 zero porosity, 2-71*, -72

thermal decrepitation, 2-90--91, -111

thermal degradation
 and Regulatory Guide 4.17, 2-118

thermal effects
 of waste emplacement, 2-3, -90--96, -111
 and waste package, 7-197
 on water flow, 2-91--96; 7-45--49

thermal expansion
 Bullfrog Member, 2-74--75, -76*
 Calico Hills, 2-74, -76*
 coefficient of, 2-70*, -78*, -82, -103*
 and design data, 6-62, -63--64*
 Crater Flat Tuff, 2-74, -76*
 definition, 2-67
 and fluid pressures, 2-68
 G-Tunnel measurements, 2-77, -79--80, -82
 intact rock, 2-74--77
 large scale, 2-79--80
 nonsite rocks, 2-80--81
 silicic tuffs summary, 2-76*
 site rocks, 2-82
 test procedures, 2-8*
 Topopah Spring Member, 2-76*, 103*
 Topopah Spring Member and Grouse Canyon comparison, 2-103*
 Tram Member, 2-74, -75, -76*

thermal gradient
 geothermal reservoirs, 1-308, -310

thermal history
 regional, hydrocarbon, 1-320

thermal history, waste package
 anticipated, 7-40--42
 typical, 7-40, -41**

thermal load
 and waste packages, 7-38

thermal loading and thermomechanical rock response
 computer codes, 6-214--217*

thermal loading and thermomechanical rock response (Information Need 1.11.6), 6-220

thermal/mechanical stratigraphy, 2-17**
 and geologic stratigraphy, 6-42**
 model, 6-44, -45**, -221--223
 of Yucca Mountain, 6-222

PART A INDEX (Chapters 1-7)

- thermal/mechanical units
 - depth of, 2-17**
 - fracture properties, 2-65*
 - and lithologic equivalent, 2-17**
 - recommended thermal and physical property values, 2-78*
 - reference fracture property values, 2-65*
 - reference mechanical property values, 2-65*
 - stratigraphy, 2-17**
- thermal migration modeling, 2-92 (*see also* thermally induced water migration)
- thermal model
 - and corrosion model, 7-208
 - and waste package system model, 7-203, -206, -216**
- thermal model, waste package
 - and TACO2D, 7-206
 - and TOUGH, 7-206
 - and WAFE, 7-206
 - and WAPPA, 7-206
- thermal modeling
 - horizontal emplacement, 6-308--310
 - host rock, 6-321
 - vertical emplacement, 6-308--310
- thermal perturbation on local hydrologic transport
 - modeling, 7-42
- thermal properties
 - design data, 6-62--65
 - host rock and Rainier Mesa, 2-102, -103*
 - and lithophysae, 2-6
 - and stratigraphy, 2-78*
 - see also* thermal and thermomechanical properties and specific property
- thermal pulse
 - effects of, 4-117--129
 - effects on radionuclide migration, 4-123--129
 - hydrothermal alteration, 4-120--122
 - water chemistry changes, 4-123
- thermal pulse effect on water chemistry
 - warm and hot spring investigations, 4-129--131
- thermal reservoir
 - chemical indicators, 1-311--313
- thermally induced degradation
 - geoengineering considerations, 2-90
 - potential, 2-90--91
- thermally induced dewatering, 2-89, -93, -97
- thermally induced loads
 - and elastic-plastic analyses, 2-20
- thermally induced stresses
 - calculation of, 2-66--67
 - and existing stress regime, 2-82
 - and thermal expansion, 2-82
- thermally induced water migration
 - analyses needed, 2-4
 - effects, 2-89, -91--96
 - and engineered barrier system design, 2-111
 - and ground-water travel time, 2-4
 - and initial condition measurements, 2-4--5
 - and rock temperatures, 2-3
 - and ventilation requirements, 2-4, -90, -94, -111
- thermodynamic data base, 7-192
 - development
 - and EQ3/6, 7-193--195
 - and geochemical modeling, 7-193--195
- thermomechanical analysis
 - emplacement hole, 7-39
- thermomechanical properties, *see* thermal and thermomechanical properties
- Thirsty Canyon
 - earthquake densities and energy release, 1-176*
 - seismicity and focal mechanisms, 1-179**
 - seismicity of, 1-179**, -181
- Thirsty Canyon-Oasis Valley
 - sodium bicarbonate and chloride concentrations, 3-90**
- Thompson Mine, 1-279**
- thorium
 - deposits
 - effects on host rock studies, 4-131--134
 - study of effects, 4-131--134
- solubility
 - literature summary, 4-98--99
 - in well J-13 water, 4-100*
 - sorption ratios, 4-86
- Three Lakes Valley hydrographic area
 - location, 3-117**
 - water data, 3-126*
- Threshold Test Ban Treaty, 1-209
- thrust faults
 - Mesozoic, 1-100--102
- thunderstorms, 5-20, -27, -28, -30, and Bermuda High, 5-10 and flooding, 5-11, -16, -17, -20
- Tikaboo North hydrographic area
 - location, 3-117**
 - water data, 3-126*

PART A INDEX (Chapters 1-7)

Timber Mountain caldera, 1-94**, -265**
 seismicity and focal mechanisms, 1-179**

Timber Mountain-Oasis Valley
 magmatic cycle, 1-201

Timber Mountain tuff
 age, magnetic polarity, and stratigraphy, 1-56*
 and Rainier Mesa Member, 1-70

time series of prehistorical vegetation change, 5-71--89
see also vegetation change (prehistorical), time series

time-temperature-sensitization curves
 austenitic materials, 7-72, -73**

tin
 solubility
 literature summary, 4-98--99
 in well J-13 water, 4-100*

sorption ratios, 4-86
 distilled water, 4-90*
 UE-25p#1 water, 4-90*
 well J-13 water, 4-90*

Tip Top Mine, 1-279**

Tiva Canyon Member
 age, magnetic polarity, and stratigraphy, 1-56*
 compressive tests, 2-34
 correlation with hydrogeologic units, 3-53*, -139*
 description, 1-68, -70
 mineralogy, 4-15
 and Paintbrush Tuff, 1-61--62
 stratigraphy at Yucca Mountain, 3-138**
 thermal/mechanical stratigraphy, 2-17**

Tiva Canyon welded unit, 3-195, -203
 conceptual moisture flow, 3-194**, -215**
 east-west cross section at Yucca Mountain, 3-145**
 and xerophytes, 3-202

topography
 design data, 6-38, -39**, -40**
 site, 6-40**
 Yucca Mountain, 1-20**
 topographic maps, USGS map descriptions, 1-25

Topopah district, uranium, 1-303

Topopah mineralized district, 1-273**, -277

Topopah Spring
 areal power density, 6-318
 drift sensitivity analysis, 6-317
 fracture potential, 6-323
 rock mass classification, 6-318

Topopah Spring drift
 stress analysis, 6-317

Topopah Spring Member
 age, magnetic polarity, and stratigraphy, 1-56*
 areal power density, 6-319
 basal vitrophyre zone, 1-62, -67**
 caprock zone, 1-64, -67**
 clinoptilolite analyses, 4-30--31*
 comparison with Grouse Canyon Member, 2-6, -9, -103*, -112
 comparisons of geologic units, 6-225
 composition, 4-9--36
 correlation with hydrogeologic units, 3-53*, -139*
 description, 1-62--64
 dewatering requirements, 2-107
 emplacement environment, 7-224--225
 general description, 4-7--8
 ground mass analyses, 1-69*
 ground support, 6-291
 ground-water control, 6-164
 ground-water inflow estimates, 2-107
 host rock, 1-35, -55; 6-85
 hydrologic analysis for sealing, 6-240--241
 hydrologic characterization, 6-247
 laboratory data source, 2-6
 lower lithophysal zone, 1-63, -66, -67**, -68
 lower nonlithophysal zone, 1-63, -66, -67*, -68
 lower nonwelded to moderately welded zone, 1-62, -67**
 middle nonlithophysal zone, 1-63, -66, -67**
 mineralogic compositions, 4-15
 mineralogy, 4-7, -10--13
 and Paintbrush Tuff, 1-61--62
 permeable zones, 3-191**
 petrographic percentages, 1-65**
 petrography and petrology, 4-15
 petrology, 1-64, -65**, -66--68
 phenocryst assemblages, 1-66, -67**
 phenocrysts, 4-10, -21*
 Poisson's ratio, 2-103*
 porosity and lithophysae, 2-77, -111
 potential flow path, 4-53
 potential repository, 4-4
 proposed location for the underground facilities, 6-144
 reference repository horizon, 7-4, -8

PART A INDEX (Chapters 1-7)

- Topopah Spring Member (continued)
 - repository horizon, 6-67; 7-4
 - rock mass classifications, 2-105**
 - sensitivity study, 6-233
 - sequence of fracture coatings, 4-14**
 - smectites, 4-35
 - stratigraphy, 1-325--326
 - stratigraphy at Yucca Mountain, 3-138**
 - support requirements, 2-106*
 - thermal expansion coefficients, 2-76*, -103*
 - thermal loading, 6-229
 - thermal/mechanical stratigraphy, 2-17**
 - thermally induced decrepitation, 2-111
 - topography map description, 1-25
 - trace elements, 1-270*--271*
 - and unit evaluation study, 2-104
 - upper lithophysal zone, 1-63--64, -67**
 - well J-13 main producing zone, 4-51
 - and well J-13 water, 7-10
 - zones, 1-62--64
 - see also host rock and Yucca Mountain tuffs
- Topopah Spring tuff
 - dehydration-rehydration, 7-38
 - and EQ3/6 results, 7-195
 - fluid permeability, 7-50**
 - Fran Ridge, 7-54
 - matric potential, 7-45
 - permeability, 7-47*
 - properties, 7-5
 - reference repository horizon, 7-8
 - and representative ground-water tests, 7-38--39
 - rock-water interactions, 7-46, -53, -54, -55, -56
 - and saturation conditions, 7-51
 - vadose water, 7-43
 - and water table, 7-42
 - and well J-13 water, 7-59, -193
 - see also Topopah Spring Member
- Topopah Spring welded unit
 - capacitance, 3-179, -180**
 - conceptual moisture flow, 3-194**, -215**
 - east-west cross section at Yucca Mountain, 3-145**
 - matric-potential profiles, 3-161**, -162**
- Topopah Wash flooding, 3-18
- Toquima Range
 - barite production, 1-288, -289**
- tornado frequency and severity (Yucca Mountain area), 5-28
- total system life cycle costs, 6-340, -344-346
 - future work, 6-346
- total system performance (Issue 1.1)
 - and climatology and meteorology, 5-1
 - and hydrologic system, 3-238
- TOUGH
 - and thermal model, 7-206
- trace elements, 1-270*--271*
 - Yucca Mountain site ground water, 4-45
- tracer logs, geophysical logging, 1-247
- tracers, radioactive, see radioactive tracers, use of
- TRACR3D
 - and Cambrian nuclear explosion data, 4-134--135
 - and Los Alamos liquid waste disposal site, 4-139
 - and radionuclide transport, 4-110
- tradeoff studies, 2-3
- Tram caldera, 1-94**
 - Tram Member, 1-58--60; 3-185, -187, -197, -201
 - age, magnetic polarity, and stratigraphy, 1-56*
 - areal power density, 6-318
 - clinoptilolite analyses, 4-30--31
 - compressive tests, 2-28
 - correlation with hydrogeologic units, 3-54*
 - drift sensitivity analysis, 6-317
 - fluid-induced fracturing, 2-90
 - fracture potential, 6-323
 - hydraulic conductivity, 3-188*, -190*
 - hydrothermal alteration, 1-282
 - permeable zones, 3-191**, -192
 - potential flow path, 4-53
 - rock mass classification, 2-104
 - sensitivity study, 6-234
 - smectites, 4-35
 - stratigraphy at Yucca Mountain, 3-138**
 - temperatures, 2-74
 - thermal conductivities, 2-71, -71*, -72
 - thermal expansion, 2-74--75, -76*
 - thermal/mechanical stratigraphy, 2-17**
 - transmissivity, 3-188*
 - and unit evaluation study, 2-104
 - water production rate, 3-186**
 - Young's modulus, 2-60
 - transgranular stress corrosion cracking, 7-83--85
 - activities to determine susceptibility, 7-94--96

transgranular stress corrosion cracking
 (continued)
 and austenitic materials, 7-71--72
 and chloride, 7-95
 containment lifetime, 7-102
 and metal barriers, 7-230
 model, 7-96--97
 research and development status, 7-95--96
 and sensitized 304 stainless steel, 7-94
 summary of testing, 7-97
 susceptibility of austenitic materials,
 7-94--96
see also corrosion degradation modes

transmissivity
 and hydraulic conductivity, 3-185--192
 lava flow aquifer, 3-51*
 lower carbonate aquifer, 3-56*, -68, -78
 lower clastic aquitard, 3-57*, -68
 and Nevada Test Site aquifers, 3-64--67*
 older tuffs, 3-189*
 saturated zone, 3-182*--183*
 stratigraphic units, 3-51*--57*, -64--67*
 tuff aquifers, 3-51*--54*
 tuff aquitard, 3-52*, -54*--55*
 upper carbonate aquifer, 3-55*
 upper clastic aquifer, 3-55*
 valley fill aquifer, 3-51*, -68
 volcanic rock aquitard, 3-68
 at well USW H-1, 3-188*

transpiration, see evapotranspiration

transport
 calculations, 4-109--115
 codes and concentration, 4-81
 and colloids, 4-106--109
 gaseous, 4-109
 modeling, 4-53--54
 and particulates, 4-107--109
 path, most likely, 4-4
 and suspended solids, 4-106--109

transverse ranges, map, 1-9**, -16**

Trap spring oil field, 1-317

travel time, see ground-water travel time

traverses
 strikes of fractures, Yucca Mountain,
 1-137**

travertine
 resources, 1-299*, -301
 deposits, 1-299*, -301

Treaty on Underground Nuclear Explosions for
 Peaceful Purposes, 1-209

tree-ring chronologies
 and paleoclimatic reconstructions, 5-73

trench locations
 Yucca Mountain, 1-72**, -122**

triaxial compressive strength
 test procedures, 2-8*

tritium
 drillhole UE-25a#7, 3-28
 in Fortymile Canyon ground water, 3-96
 in Yucca Mountain ground water, 3-165,
 -167*

tritium pulse
 and Cambrian nuclear explosion, 4-135,
 -137**

TRUST
 and drift analysis, 6-245
 and hydrologic calculations, 6-243
 and shaft and drift sealing, 6-243

TSLCC, see total system life cycle cost

tuff
 aquifer, see tuff aquifer
 aquitard, see tuff aquitard
 Calico Hills, see tuffaceous beds of
 Calico Hills
 clinoptilolite analyses, 4-30*--31*
 Crater Flat, see Crater Flat tuff
 and glass dissolution, 7-181
 and leach rates, 7-169, -171**
 mineral abundances, 4-77*--80*
 Paintbrush, see Paintbrush tuff
 petrologic characteristics, 4-77*--80*
 repository, perspective, A-12**
 sorption data, 4-66
 sorption rate constants, 4-104*
 and temperature effect on sorption, 4-66
 Topopah Spring, see Topopah Spring tuff
 Yucca Mountain Project glass waste form,
 7-180--184
see also nonsite tuffs and Yucca Mountain
 tuffs

tuff aquifer
 chemical composition, 3-82--83
 discharge from, 3-91
 isotope data, 3-97*
 isotope hydrology of, 3-96--102, -100**,
 -101*
 Piper diagram, 3-84**
 recharge to, 3-87, -91
 transmissivity, 3-51*--54*

tuff aquitard
 transmissivity, 3-52*, -54*--55*

tuff handling, 6-161

tuff ramp
 description, 6-86**, -138, -139*, -144**, -153, -156

tuff (welded) mining evaluation, 2-13**

tuff units
 trace elements, 1-270*--271*

tuffaceous aquifer, see tuff aquifer

tuffaceous beds of Calico Hills, 1-55, -56*
 age, magnetic polarity, and stratigraphy, 1-56*
 comparison of geologic units, 6-227
 correlation with hydrogeologic units, 3-139*
 permeable zones, 3-190, -191**
 potential flow path, 4-51
 rock mass classification, 2-104
 sensitivity study, 6-233
 stratigraphy at Yucca Mountain, 3-138**
 temperatures, 2-74
 thermal expansion coefficients, 2-75
 thermal/mechanical stratigraphy, 2-17**
 unit evaluation study, 2-104
 water production rate, 3-186**
 Yucca Mountain, 1-61
 see also Calico Hills and Calico Hills
 nonwelded unit

Tule Springs and prehistoric lakes, 5-70

Tunnel bed 5
 rock mass classifications, 2-105**
 support requirements, 2-106*

tunnel-boring
 repository excavation method, 2-107
 and rock fracturing, 2-108

tunnel index methods, 6-332--333
 future work, 6-338
 rock mass classification, 6-332--333
 verification and validation, 6-332--333

Turkey Point Unit 3 fuel
 characteristics, 7-116*
 and series 2 spent fuel dissolution
 testing, 7-117--134, -121*--122*, -124*--125*, -128*--129*

Ubehebe Crater
 earthquake densities and energy release, 1-176*

UE-25a#1 drillhole
 and geoengineering data, 2-6, -12, -13**, -14, -15, -26*
 mineral abundances, 4-77*--80*
 petrologic characteristics, 4-77*--80*

UE-25b#1
 and geoengineering data, 2-6

UE-25p#1 water
 and in situ stress, 2-88
 sorption ratios, 4-88, -89*--90*
 and sorptive behavior, 4-87--88

unanticipated conditions
 and geochemical retardation in host rock, 4-115--116

uncertainties in waste package development, 7-5--6, -236--240
 glass waste form, 7-239--240
 metallic containers, 7-238
 spent fuel waste form, 7-239
 waste form, 7-238--239
 waste package design, 7-237
 waste package environment, 7-237--238
 waste package performance assessment, 7-240

unconfined compressive strength
 Grouse Canyon Member, 2-39**
 intact rock, 6-49*

Ohya tuff, Japan, 2-24*

reference values, 2-65*

rock mass, 6-56*

Topopah Spring and Grouse Canyon Member
 comparison, 2-103*

Yucca Mountain tuff--intact rock, 2-44*, -65*

underground access
 design, 6-124, -128
 and information needs, 6-201--204
 normal retrieval conditions, 6-191--192, -278--279

underground facility
 access, 6-153, -156
 airflow requirements, 6-164--175
 airflow velocity constraints, 6-170, -171*
 allowable areal power density, 6-229
 area, 6-142, -143**
 area needed, 6-224
 areal power density, 6-224
 and borehole spacing, 6-230--231
 construction, 6-157, -158**, -159**
 concurrent development, emplacement, 6-157, -158**, -159**
 initial, 6-157
 construction equipment, 6-164, -164**--165**
 and containment and isolation, 6-2
 contingency plan, 6-232

underground facility (continued)
 critical design requirement, 6-2
 design, 6-142--175
 controlling earthquake source, 6-338
 and earthquakes, 6-336--338
 and ground motion, 6-336--338
 and peak accelerations, 6-336--338
 and underground nuclear explosions, 6-336--338
 drainage, 6-240
 excavations methods criteria, 6-232--233
 flexibility evaluation, 6-225--229
 ground-water control, 6-164, -168**
 and information needs, 6-201--204
 layout, 6-144--147
 potential expansion areas, 6-225, -226**, -227, -228**
 primary area, 6-225--227, -228**
 usable area, 6-225--227, -228**
 ventilation, 6-164, -168--170**
 and waste isolation, 6-2
 and waste retrieval, 6-2, -3
see also exploratory shaft facilities

underground facility orientation and layout (Information Need 1.11.3)
 products, 6-218--219

underground mining activities, 1-255--256

underground nuclear explosions
 and design, 6-70--71
 earthquake epicenters, 1-174**
 estimates, 6-336--338
 occurrence model, 6-337
 Pahute Mesa, 1-146
 and underground facility design, 6-337--338
see also weapons testing

underground opening stability
 data needs, 2-2, -3, -4
 future work, 6-292--293
 and retrievability, 2-111
 and shaft design, 2-4
 and waste heat, 2-67

underground openings
 design, 6-201--204
 work completed, 6-290--291

underground ventilation system
 future work, 6-293
 work completed, 6-292

undiscovered resources
 definition, 1-259*, -260

UNEs, see underground nuclear explosions

uniaxial compressive strength
 test procedures, 2-8*

Union district, 1-285**

unit evaluation study, 2-104

unsaturated zone, 6-66--67
 borehole completion records, 3-154--155*
 borehole locations, 3-148**
 capacitance, 3-178--179, -180**
 characteristics favorable for waste packages, 7-8--10
 conceptual models, 3-146
 and design and performance of waste package, 7-8--12
 flow model, 7-11
 fracture characteristics, 3-169
 fracture mineralogy, 4-14**
 ground-water travel time, 3-5, -203, -209, -214, -217--218*, -219, -220
 hydraulic characteristics, 3-169--179, -208--214
 hydrogeologic cross section, 3-145**
 hydrologic models, 3-146
 matric potentials, 3-160--163, -161**, -162**, -199--200, -236
 moisture characteristic relations, 3-169--179, -236--237
 monitoring networks, 3-147--153
 porosity, 3-170*
 potential repository, 4-4--5
 potentiometric levels, 3-160--163
 recharge and leakage, 3-201--205
 reference repository horizon, 7-8
 sequence of fracture coatings, 4-14**
 thickness of, 3-5
 and well J-13 water chemistry, 7-43*

unsaturated-zone neutron drillholes, 1-253--254

unstressed aperture, 6-52*

upper air data, 5-25, -26**, -27*, -28*, -29**

upper carbonate aquifer, 1-42**; 3-55*, -58, -60

upper clastic aquitard, 1-42**; 3-55*, -58, -59**, -60
 transmissivity, 3-68, -69

uranium
 deposits, 1-303--305
 Alligator Rivers, 4-133--134
 effects on host rock studies, 4-131--134
 study of effects, 4-131--134

and effect of geochemical transport processes, 4-113**--114**

uranium (continued)
 Nevada production, 1-303
 Nevada resources, 1-303-304
 potential, Yucca Mountain, 1-304--305
 solubility
 literature summary, 4-97--98
 in well J-13 water, 4-99, -100*
 sorption ratios
 batch desorption experiments,
 4-74*--76*
 batch sorption experiments, 4-69*--71*
 speciation, literature summary, 4-97--98
 uranium-series dated veins, south central
 Great Basin, 3-104**
 usable area and flexibility
 model, 6-225
 usable area and flexibility evaluation,
 product 1.11.3-2
 work completed, 6-225--227, -228**
 U.S. Atomic Energy Commission
 and hydrogeologic studies, 3-4
 and weapons testing, 3-4
 U.S. Department of Energy
 design and legal requirements, 6-8, -17,
 -18*--19*
 functional requirements, 6-8, -17,
 -18*--19*
 siting guidelines, I-4
 U.S. Environmental Protection Agency
 and Beatty Water supply, 3-128
 and Death Valley Junction water supply,
 3-135*
 and regulatory requirements, I-3--4
 U.S. Nuclear Regulatory Commission
 design and legal requirements, 6-8,
 -9*--15*
 and regulatory requirements, I-3--4,
 -9--10
 siting criteria, see NRC siting criteria
 (Issue 1.8)
 USSR (tuff)
 mechanical properties, 2-25*
 USW G-1 drillhole
 and geoengineering data, 2-6, -12, -13**,
 -15, -16, -26*, -35, -37*, -86, -87**,
 -88
 in situ stress, 1-144**
 location, 4-15, -22**
 mineral abundances, 4-77*--80*
 paleotemperatures, 1-281**
 petrography for core samples, 4-19*--20*

USW G-1 drillhole (continued)
 petrologic characteristics, 4-77*--80*
 tuff sorption rate constants, 4-104*
 USW G-2 drillhole
 and geoengineering data, 2-6, -86, -87**
 in situ stress, 1-144**
 mineral abundances, 4-11**, -77*--80*
 paleotemperatures, 1-281**
 petrologic characteristics, 4-77*--80*
 USW G-3 drillhole
 and geoengineering data, 2-6, -12, -13**,
 -15, -16, -88
 mineral abundances, 4-12**
 paleotemperatures, 1-281**
 USW G-4 drillhole
 fracture mineralogy, 4-14**
 and geoengineering data, 2-6, -12, -13**,
 -15, -16, -26*, -34
 geophysical logs, 1-241, -242*--243**
 lithology, 1-241, -242*--243**
 petrographic percentages, 1-65**
 phenocryst assemblages, 1-67**
 sequence of fracture coatings, 4-14**
 USW GU-3 drillhole
 and geoengineering data, 2-6, -13**, -15,
 -16, -26*, -28**, -88
 mineral abundances, 4-12**, -77*--80*
 petrologic characteristics, 4-77*--80*
 Utah Lake, 5-58**

V&V, see verification and validation
 vadose water
 and austenitic materials, 7-67
 changes from waste emplacement, 7-38
 and emplacement environment, 7-9
 flow uncertainties with respect to
 near-field environment, 7-237
 reference repository horizon, 7-10
 and silica, 7-169
 Topopah Spring tuff, 7-43
 and well J-13 water, 7-43
 vadose water flow around a backfilled drift,
 product 1.12.4-5
 work completed, 6-245--246
 validation
 future work, 6-339--340
 modeling, 6-329, -330**, -331**, -332
 of models
 climate, 5-7, -72, -87--88, -99--101
 geoengineering, 2-12
 see also verification and validation

PART A INDEX (Chapters 1-7)

- valley-fill aquifer, 3-58
- Ash Meadows subbasin ground-water flow, 3-78
- chemical composition, 3-85, -87
- discharge from, 3-94
- flow paths, 3-78
- ground-water travel time, 3-73
- isotope data, 3-88**
- origin, 3-58
- and Pahrump, 3-114
- permeability, 3-51*
- Piper diagram, 3-88**
- porosity, 3-51*
- potentiometric map, 3-132**
- recharge to, 3-24, -25, -28, -71, -94
- transmissivity, 3-51*, -68
- vapor flow
 - in fractures, 7-52
- vapor-phase exchange
 - geochemical retardation process, 4-52, -53
- variable fluid pressures
 - effects of, 2-68
- varnished talus, 1-32
 - northern Mojave Desert, 1-32
- vegetation and climate
 - modern, 5-72--73, -74**
 - relationships, 5-71--89
- vegetation change (prehistorical), time series, 5-71--89
 - dendroclimatology, 5-73
 - paleobotanic dating, 5-71--72
 - paleoclimatic applications of paleo-botanical data, 5-87--89
 - paleovegetation changes summary, 5-85
 - palynology and pack rat midden studies, 5-75, -77--84*
 - rationale, 5-72
 - summary, 5-85, -86*
- vegetation distribution
 - and altitude and precipitation, 5-74**
- ventilation, 2-95
 - and ground-water inflow, 2-106
 - horizontal emplacement, 6-333--334, -335*
- Mine Safety and Health Administration
 - criteria, 6-333
- retrieval, 6-285
 - and rock temperature analyses, 2-3
 - system, normal retrieval conditions, 6-193, -280
 - and thermally induced water migration, 2-4, -90, -94, -111
- ventilation (continued)
 - underground facility, 6-164, -168, -169**, -170*, -335*
 - vertical emplacement, 6-169**, -333--334, -335*
- ventilation analyses, 6-333--334, -335*
 - work completed, 6-333--334, -335*
- verification and validation
 - boundary-element method, 6-332
 - compliant-joint model, 6-327
 - description, 6-323--333
 - finite-element methods, 6-323--332
 - future work, 6-339--340
 - tunnel index methods, 6-332--333
 - see also validation
- verification of hydrologic conditions, 3-224--231
- vertical borehole, 6-158**
- vertical crustal movement
 - postclosure, 1-212--213
 - summary results, 1-338, -340
 - Yucca Mountain, 1-147
- vertical emplacement, 6-85, -87**
 - access, 6-144, -145**
 - airflow requirements, 6-171--172, -173*, -334, -335*
 - construction equipment, 6-165**
 - cooling requirements, 6-334, -335*
 - drainage control, 6-167**
 - drift cooling, 6-334
 - drift sensitivity analysis, 6-317--318
 - drift temperatures, 6-309
 - equipment, 6-98, -107*, -108**, -305
 - ground-water control, 6-167, -168**
 - layout, 6-87**, -148, -149**, -150**
 - mining methods, 6-165**
 - operations, 6-98, -99**--102**
 - orientation decision, 6-231--232
 - ramps and drifts, 6-144, -145**, -147
 - reference orientation, 6-4
 - retrieval, 6-110, -112**--116**
 - sealing options, 6-185--189
 - stress analyses, 6-310, -311**, -313**
 - thermal modeling, 6-309--310, -317
 - ventilation, 6-170**, -333--334
 - waste retrieval operations, 6-110, -112**--116**
- vertical emplacement holes
 - borehole liners, 7-34, -36
 - reference orientation, 7-34, -36--37
- vertical emplacement panel
 - description, 6-148, -149**--150**

- vertical stress
 - magnitude, 6-46
 - and overburden, 2-86
- VISCOT
 - drift stress analysis, 6-310
 - elastic horizontal borehole calculations, 6-321
- visibility, obstructions to, 5-27, -28, -30, -31*, -32*
- volcanic activity
 - and geochemical stability, 4-144
- volcanic cinders
 - and pumice, 1-298*, -301--302
 - resources, 1-298*, -301--302
- volcanic deposits
 - map, 1-76**--77**
- volcanic hazard
 - summary results, 1-336--338, -339
- volcanic history
 - southern Great Basin, 1-88--99
 - summary, 1-327--328
 - see also igneous history
- volcanic processes
 - Quaternary, 1-30
- volcanic rock aquifers
 - and aquitards, 3-58, -59**, -60, -68
 - ground-water flow paths, 3-78
- volcanic rock aquitard, 3-58, -59**, -60, -68
- volcanic rocks
 - late Eocene to late Miocene, 1-48
 - late Pliocene to Quaternary, 1-48--49
 - pre-Lithic Ridge, 1-57
- volcanic-type mercury deposits, 1-286
- volcanism
 - basaltic, see basaltic volcanism
 - and controlled area, 1-202, -203, -205, -337
 - Death Valley-Pancake Range, 1-203
 - hazard estimates, 1-202
 - investigations summary, 1-347--348
 - late Miocene to Holocene, 1-95--99
 - Middle Tertiary, 1-89--95
 - postclosure, 1-200--206
 - Quaternary, 1-95--99
 - silicic, see silicic volcanism
- volcanogenic rocks, pre-Lithic, 1-57

- WAFE
 - heat and mass transport, 4-124
 - permeability change, 4-124, -128**, -129
- WAFE (continued)
 - thermal conditions of waste emplacement, 4-117, -118**
 - and thermal model, 7-206
- Wahmonie
 - pluton, 1-264
 - precious metal potential, 1-283--284
- Wahmonie-Salyer volcanic center, 1-265**, -280
- Walker Lake
 - historical lake levels, 5-55**
 - location of, 5-44**
 - prehistoric surface extent, 5-61**
- Walker Lane, 1-83**, -113**, -153**
 - shear zone, 1-2**
 - strike-slip faulting, 1-110--115
- Walker Lane belt
 - characteristics, 1-10*--11*, -15, -18
 - historical seismicity, 1-208
 - map, 1-9**
 - morphometric characteristics, 1-10*--11*
- WAPPA
 - thermal modeling, 7-206
 - waste package performance model, 7-202--203
- warm and hot springs
 - Lava Creek Tuff, 4-130
 - repository analogs, 4-129--131
 - Yellowstone National Park, 4-130
- waste acceptance
 - schedule, 6-29, -30*
- waste container
 - normal retrieval conditions, 6-195, -280
 - see also container
- waste containment
 - design criteria, 6-34--35
 - functions, 6-34
- waste disposal
 - equipment, 6-98, -107*, -108**, -109*, -110, -111**
 - operations
 - description, 6-89, -97**, -98
 - flow diagram, 6-97**
- waste element concentrations
 - and natural-colloid formation, 4-92--93
 - and precipitation, 4-92
 - processes affecting, 4-91--93
 - and radiolysis, 4-93
 - and speciation, 4-91--92, -93--99
 - literature summary, 4-96--99
- waste element solubility, 4-93--99
 - in well J-13 water, 4-99, -100*
 - literature summary, 4-96--99

PART A INDEX (Chapters 1-7)

waste element transport
warm and hot spring investigations,
4-129--131

waste emplacement
anticipated thermal conditions, 4-117--119
construction for, 6-157--159
equipment, 6-98, -107*, -108**, -109*,
-110, -111**
geochemical effects, 4-117--129
hole boring equipment, 6-305
and retrieval equipment, 6-304

waste emplacement package (preclosure)
design constraints, 7-14

waste form
and container criteria, 7-14
design requirements, 7-14
and Generic Requirements for a Mined
Geologic Disposal System, 7-17
glass, see glass waste forms
performance research and testing,
A-13--14; 7-105--189
radiation field, 7-38
spent fuel, see spent fuel
temperature limitation criteria, 7-16--17
uncertainties, 7-238--239
see also reference waste form

waste form alteration
model
and cladding degradation, 7-209
and glass waste form, 7-210
and radionuclide mobilization, 7-209
and spent fuel degradation, 7-210
and waste package system model,
7-203, -209--210, -222**
and water chemistry, 7-202

waste form and waste container
characteristics and quantities, 6-301

waste handling
flow diagram, 6-90**
schedule, 6-30*, -31**, -32

waste-handling building
design, 6-128, -131**--133**
normal retrieval conditions, 6-193, -280

waste-handling operations
description, 6-89, -90**--96**

waste heat effects, see thermal effects of
waste emplacement

waste inspection, 6-92**, -93**

waste isolation
and calcite deposits, 1-74
design criteria, 6-34--35
functions, 6-34

waste isolation (continued)
geothermal energy, 1-150
and underground facility, 6-2

waste package
activity categories, A-13
alternative designs, see alternative
designs, waste package
anticipated thermal history, 7-40--42
components
overview, A-13; 7-1, -3
performance allocation, 7-17--19

containers
candidate materials, 7-65
corrosion model, 7-102--103

costs, future work, 6-346

description, 7-19--37

design
basis, 7-12--19, -225--226
containment enhancement, 6-233--334
description, 7-19--37, -226--227
mined geologic disposal system
requirements, 6-16--17
performance allocation, 7-226
technical feasibility, 7-16
uncertainties, 7-236--238
see also reference waste package,
designs

and design related documents, 7-2**

design requirements, 7-12--17
and 10 CFR Part 60, 7-12
and 10 CFR Part 960, 7-12
generic preclosure, 7-13--14
generic postclosure, 7-14--15
and Generic Requirements for Mined
Geologic Disposal System, 7-12
inert cover gas, 7-17
interaction with environment,
7-15--16
technical feasibility, 7-16
temperature limitation, 7-16--17

development uncertainties, 7-5--6,
-236--240

dried out region around, 7-53

emplacement
effects, 7-11--12, -53
environment, 7-8--12
gas phase flow, 7-52
liquid flow, 7-52

environment
and radiolysis products, 7-44--45
uncertainties, 7-237--238

generic postclosure requirements, 7-14--15

waste package (continued)
 generic preclosure requirements, 7-13--14
 geometry
 cylindrical symmetry, 7-204
 and waste package system model,
 7-204
 inert cover gas, 7-17, -29, -31
 introduction, 7-1--8
 mechanical effects, 7-197
 performance criteria, 7-13
 reference designs, 7-25, -27, -28**, -29,
 -30**, -226--227
 regulatory requirements, 7-4*
 reliability analysis, 7-223--224
 research and development
 history, 7-4--5
 status, 7-37--224
 summary, 7-227--236
 sealing in vicinity of, 6-185
 thermal effects, 7-197
 thermal load on near-field environment,
 7-38
 vertical emplacement thermal history,
 7-40, -41**
 waste package characteristics (postclosure)
 (Issue 1.10)
 and climatology and meteorology, 5-1
 and hydrologic system, 3-240
 waste package characteristics for design of
 underground facility, product 1.11.2-1
 work completed, 6-231
 waste package characteristics needed for
 design (Information Need 1.11.2), 6-218
 waste package-emplacement environment
 interaction
 design requirements, 7-15--16
 waste package environment model
 and air flow, 7-207
 and steam, 7-207
 and waste package system model, 7-203,
 -207, -218**
 and water flow, 7-207
 waste package environment modification
 and emplacement, research and development
 status, 7-37--64
 waste package information needed for design
 (Information Need 4.4.2), 6-294
 work completed, 6-296, -301
 waste package performance
 and 10 CFR Part 60, 7-2**, -3, -4*
 and 10 CFR Part 960, 7-2**, -3, -4*
 and 40 CFR Part 191, 7-2**, -3, -4*

waste package performance (continued)
 and corrosion, 7-201
 Generic Requirements for a Mined Geologic
 Disposal System, 7-2**, -3, -4*
 and ground-water movement and chemistry,
 7-201
 and mechanical loads, 7-201
 metal container penetration, 7-201
 processes affecting, 7-200--202
 and radiation, 7-200, -202
 and thermal effects, 7-200
 and transport of mobile waste, 7-201, -202
 and waste form alteration, 7-201, -202
 and yielding processes, 7-201
 waste package performance assessment
 research and development summary,
 7-236
 uncertainties, 7-240
 waste package performance model
 BARRIER, 7-202
 WAPPA, 7-202--203
 waste package postclosure performance
 assessment, 7-196--224
 corrosion model, 7-208--209
 driver model, 7-198, -211--223,
 -212**--213**, -214**--215*, -216**,
 -218**, -222**
 early models, 7-202--203
 introduction, 7-196--200
 mechanical model, 7-206--207
 model development, 7-198--199
 probability reliability analysis, 7-197
 processes affecting performance,
 7-200--202
 radiation model, 7-204--205
 reliability analysis, 7-223--224
 thermal model, 7-206
 waste form alteration model, 7-209--210
 waste package environment model, 7-207
 waste package geometry, 7-204
 waste package system model description,
 7-203
 waste transport model, 7-210--211
 waste package system model
 corrosion model, 7-203, -208--209,
 -217**--218**
 description, 7-203--223
 driver model, 7-211--223
 mechanical model, 7-203, -206--207,
 -216**, -221**
 radiation model, 7-203, -204--205, -216**
 summary, 7-224

PART A INDEX (Chapters 1-7)

waste package system model (continued)
 thermal model, 7-203, -206, -216**
waste form alteration model, 7-203,
 -209--210, -222**
waste package environment model, 7-203,
 -207, -218**
waste package geometry, 7-204
waste transport model, 7-203, -210--211,
 -222**
waste packaging, 6-92**, -93**, -95**
waste ramp, description, 6-84**, -136, -138,
 -139*, -143**, -153
waste receipt
 steps, 6-91**
waste receiving and preparation
 equipment, 6-302--303
waste retrievability
 and rock mass heat, 2-67
 and underground opening stability, 2-111
waste retrievability (Issue 2.4)
 future work, 6-288--289
 issue statement, 6-273
 strategy for evaluation, 6-274, -275**
 work completed, 6-276--288
waste retrieval
 operations
 description, 6-110, -112**, -120*
 flow diagram, 6-112**
 horizontal emplacement, 6-110,
 -117**--120**
 vertical emplacement, 6-110,
 -113**--116**
 requirement, 6-2, -3
 schedule, 6-31**, -32
 and underground facility, 6-2, -3
waste shipment, 6-94**, -96**
waste shipping operations
 description, 6-121, -122**--123**
 flow diagram, 6-122**
waste storage, 6-92**, -93**, -94**
waste transport model
 and gas phase transport, 7-211
 and radionuclide flux, 7-211
 and waste package system model, 7-203,
 -210--211, -222**
waste treatment, 6-94**
waste water disposal, 3-50
water chemistry
 changes and thermal pulse, 4-123
 and corrosion model, 7-208--209
 data status, 4-6
 emplacement environment, 7-224--225

water chemistry (continued)
 geothermal, 1-311, -312
 and grouting materials, 7-11
 predicted, 7-64
 and radiation from waste, 7-38
 Rainier Mesa, 7-43*
 reference repository horizon, 7-10
 and rock-water interactions, 7-53, -59
 summary, 7-225
 unsaturated zone, 7-43*
 and waste form alteration, 7-202
 well J-13, 7-43*
 and Zircaloy corrosion, 7-149
water chemistry (Investigation 8.3.1.3.1)
 synopsis, 4-147--148
water consumption, see water use
water flow
 research and development summary, 7-227
 thermal effects on, 7-45--49
 and waste package environment model, 7-207
water migration, 2-90, -112
 and fractures, 2-91--92
 and geoengineering data required, 2-5
 and ground-water travel time, 2-4
 and heated-block test, 2-96
 and heated-borehole experiment, 2-96
 and small diameter heater test, 2-94, -96
 thermally induced, 2-91--96, -111
 in tuff, 2-95*
water production rates
 Alkali Flat-Furnace Creek Ranch subbasin,
 3-122*
 Ash Meadows subbasin, 3-126*--127*
 Nevada Test Site wells, 3-120*, -122*,
 -124*
 Oasis Valley subbasin, 3-129*
 UE-25b#1, 3-186*
 wells J-12 and J-13, 3-226*
water-rock interactions
 and EQ3/6, 7-195--196, -229
 and geochemical modeling, 7-195--196
 see also rock-water interactions
water saturation, effects of, 2-29--32,
 -50, -51**, -53**, -55**
water supply, see water use
water table drillholes, 1-251
water-table levels, 3-105, -226*, -228**
 pluvial-related (modeling), 3-229--230
 and saturated-zone potentiometric levels,
 3-149**
 summary, 3-233--234

water-table levels (continued)

Yucca Mountain area, 3-153, -157*--159*,

-160

see also ground-water levels

water transport

and driver model, 7-222**

in unsaturated zone, 7-45

water use, 3-113--136

Alkali Flat-Furnace Creek Ranch subbasin, 3-118--123

Amargosa Desert, 3-121--123

Amargosa River, 3-24

Amargosa Valley, 3-118, -119*, -135*

American Borate Corporation, 3-118

Ash Meadows, 3-135*

Ash Meadows subbasin, 3-123--127, -126*--127*

Beatty, 3-128, -135*, -136

Crater Flat, 3-122*

Crystal Reservoir, 3-24

Death Valley Junction, 3-135*

Death Valley resorts, 3-120

Emigrant Valley, 3-126*

and energy development, 3-133

exploratory shaft facility, 3-130, -131*, -133

Fortymile Canyon, 3-122*, -124*

Frenchman Flat, 3-126*

Gold Flat, 3-122*, -129*

gold mines, 3-128

heavy withdrawals, location of, 3-115**

hydrographic areas, 3-122*, -126*, -127*, -129*

Indian Springs, 3-123, -124*, -125, -135*, -136

Indian Springs Air Force Base, 3-124*, -126*, -135*

Johnnie, 3-135*

Kawich Valley, 3-122*

Mercury, 3-123, -135*

Mercury Valley, 3-127*

Nevada Test Site, 3-120, -122*, -124*

Panama-Stirling Mine, 3-121

Oasis Valley, 3-136

Oasis Valley subbasin, 3-122*, -128, -129*

Pahrump, 3-135*, -136

Preferred Equities Corporation, 3-123

production wells near Yucca Mountain, 3-225, -226*, -227

Railroad Valley, 3-122*

repository, 6-134

Rhyolite, 3-128, -135*

water use (continued)

Rock Valley, 3-127*

summary, 3-234

surface water, 3-24--25

Three Lakes Valley, 3-126*

Tikaboo, 3-126*

Yucca Flat, 3-126*

water wells

Amargosa Desert, 3-119*

Nevada Test Site, 3-116**

pumping data, 3-64*--67*, -226*

see also well J-12 and well J-13

weapons testing, 3-4

areas, 1-210**

Buckboard Mesa, 1-199, -209, -210**, -212

earthquakes, 1-161**

after event activity, 1-174**

and faulting, 1-209--212

ground motion, Yucca Mountain, 1-199, -209--212

HANDLEY event, 1-146

induced seismicity, 1-199

Nevada Test Site, 1-161**, -196, -197, -198--199, -210**

Pahute Mesa, 1-146, -160, -164, -171, -189, -197, -199, -209, -210**

peak vector acceleration, 1-199

potential areas, 1-210**

Rainier Mesa, 1-209, -210**

seismicity, 1-171, -175

tritium, 3-28, -96, -168

Yucca Flat, 1-199, -209, -210**

weather, see hail; meteorology, regional and local; precipitation; snowfall; temperature; and wind

welded tuff mining evaluation, 2-13**

welding considerations

austenitic materials, 7-99--100

container, 7-99--100

and corrosion, 7-99--100

well J-12, 4-43**

location, 3-116**

use of, 3-130, -133

water production and levels, 3-226*

well J-13

and dehydration-rehydration experiments, 7-46

effects of use, 3-130, -133

location, 3-116; 4-43**, -50--51

mineral abundances, 4-77*--80*

mineralogic compositions, 4-15

reference water, 7-10, -42--43

PART A INDEX (Chapters 1-7)

well J-13 (continued)
 use of, 3-130--133
water chemistry, 7-43*
water levels, 3-226*, -228**
water production, 3-226*
well J-13 water
 anodic polarization curve, 7-86, -87**
 austenitic material tests, 7-69, -70*, -76, -77*, -79*, -90
 and austenitic materials, 7-65, -68, -70*
 background radioactivity, 4-46, -47*
 chemistry changes from thermal pulse, 4-123
 chlorine concentration, 7-84**
 colloids, 4-46--48
 composition, 4-50--51
 composition and EQ3NR, 7-60
 corrosion forms favored by, 7-67
 corrosion potential for 316L stainless steel, 7-91**
 and corrosion rates in austenitic materials, 7-70*
 and corrosion testing, 7-93, -94, -96
 emplacement environment, 7-225
 and glass waste form testing, 7-165, -169, -173--187
 and hydrothermal alteration of zeolites, 4-120
 and intergranular cracking, 7-101
 leach rates, 7-169, -170**
 localized corrosion, 7-86
 organic content, 4-46
 and oxidation and corrosion tests, 7-69
 particulates, 4-46--48
 pressure, 4-48
 reference ground water, 4-39, -50--51, -62, -146
 reference water, 7-10, -42--43
 and rock-water interaction chemistry, 7-59
 and rock-water interactions, 7-62**, -63**, -195--196, -228--229
 in rocking autoclave experiments, 7-57**, -58**
 sample preparation, 4-62
 and sensitized microstructure, 7-74--76
 solubility, 4-64--65
 sorption ratios, 4-88, -89*--90*
 sorptive behavior, 4-87--88
 spent fuel dissolution, 4-98, -99--100
 and spent fuel testing, 7-111, -113--140, -118**, -120**, -194
 and stainless steel tests, 7-89**, -90
well J-13 water (continued)
 temperature, 4-48, -49**
 and Topopah Spring tuff, 7-59, -193
 and transgranular stress corrosion cracking, 7-94
 vadose water, 7-43
 and waste element solubility, 4-94, -95*, -99, -100*
 water chemistry, 7-59
 Zircaloy corrosion, 7-149
well locations
 and exploration block, 4-43**
 Yucca Mountain site, 4-43**
West Valley waste
 radionuclide inventories, 7-152, -157*--158*
West Valley waste form
 composition, 7-154*
 radionuclides that grow in, 7-152, -164*
West Valley waste package, 7-30**
Western Great Basin
 seismogenic zone, 1-174**
wet-bulb depression
 definition, 5-21
 values, Yucca Flat, 5-22*
White Mountains
 erosion rates, 1-31*
 location, 1-9**
Wild Horse district, 1-285**
wind
 data
 diurnal variations, 5-22
 extrapolation to Yucca Mountain, 5-21
 speed and direction, 5-13*, -21--23, -24**, -25, -26**, -27*, -28*, -29**, -31*
 speeds, extreme
 Yucca Flat, 5-31*
 Yucca Mountain, 5-30
 wind roses--Yucca Flat
 328 m above ground level, 5-26**
 633 m above ground level, 5-29**
 ground level, 5-24**
Windy Wash fault, 1-108**, -122**, -128
 and calcite deposits, 1-71, -73
 description, 1-129*, -132--133
 effects of faulting, 1-206
 Holocene movement, 1-206
 preliminary data, 1-129*
 Quaternary fault, 1-108**
 Quaternary faulting, 1-124*
 recent Quaternary movement, 1-206

Windy Wash fault (continued)
 strike slip, 1-208

Winnemucca Dry Lake
 historical lake levels, 5-55**
 location of, 5-44**

Wisconsin, see late Wisconsin

worker exposure under normal conditions,
 product 2.2.2-1
 work completed, 6-251

worker radiological safety--normal conditions
 (Issue 2.2)
 analysis needs, 6-252
 and climatology and meteorology, 5-1
 future work, 6-252
 information needs, 6-250--251
 issue statement, 6-250
 regulatory basis, 6-250
 site data needs, 6-252

worker safety
 and information needs, 6-203--204

worst-case releases, accidental
 estimates, 6-255--257

x-ray technique of powder diffraction
 analytical technique, 4-8, -9

xerophytes
 and transpiration, 3-32, -33
 and Tiva Canyon welded unit outcrops,
 3-203

XRD, see x-ray technique of powder
 diffraction

Yellowstone National Park
 hydrothermal investigations, 4-130
 thermal area, 1-309**

Young's modulus
 Bullfrog Member, 2-60
 effect of strain rate change, 2-37*
 intact rock, 6-49*
 nonsite rocks, 2-25*
 reference values, 2-65*

Topopah Spring and Grouse Canyon Member
 comparison, 2-103*

Tram Member, 2-60

Yucca Mountain tuff--intact rock, 2-44*,
 -65*

Yucca Flat, 5-9
 atmospheric stability, 5-32, -33, -34**,
 -35**, -36*
 barometric pressure, 5-13*

Yucca Flat (continued)
 climatological summary, 5-12*--13*
 ground-water travel time, 3-73
 hydrographic area, 3-117**
 induced seismicity, 1-199
 Pasquill stability class distributions,
 5-32--33, -34**, -35**, -36*
 precipitation data, 5-12*--13*, -18*, -19*
 relative humidity data, 5-13*, -21
 snowfall amounts, 5-12*, -20
 temperature data, 5-12*--13*, -14, -15*,
 -16
 water data, 3-126*

weapons testing, 1-199, -209, -210**

wet-bulb depression values, 5-21*

wind speed and directions, 5-13*, -24**,
 -26**, -27*, -28*, -29**, -31*

Yucca Lake
 and aquifer recharge, 3-24

Yucca Mountain
 climate, 3-8
 climate and meteorology
 atmospheric stability, see Yucca Flat,
 atmospheric stability
 investigations and information needs,
 5-105--106
 evaporation, 3-8
 flooding, 3-14--23
 flooding potential, 5-30
 flux, 3-30, -233
 fog, 5-30
 geochemical facies, 3-166**
 ground-water isotope data, 3-96--103,
 -165, -167*
 ground-water levels, 3-157*--159*,
 -164, -233--234, -237
 ground-water recharge, 3-137
 hydrochemistry of, 3-165--169
 hydrogeologic cross sections, 3-145**,
 -194**, -215**
 hydrogeologic system, 3-136--231
 hydrology related programs, 3-1
 infiltration, 3-136
 laboratory data source, 2-6
 lightning, 5-28, -30
 meteorological measurement program,
 5-36--38
 paleoclimatic studies, 5-101--102
 potential evaporation, 3-8
 precipitation, 5-16 (see also Yucca
 Flat, precipitation data)
 production wells near, 3-225, -226*, -227

PART A INDEX (Chapters 1-7)

Yucca Mountain (continued)

- project, see Yucca Mountain Project
- proposed water use, 3-130, -133
- sandstorms, 5-30
- snowfall, 5-20
- stratigraphy, 3-138**
- synoptic-scale climatic influences, 5-10
- temperature, 5-14 (see also Yucca Flat, temperature data)
- thunderstorms, 5-27--28, -30
- tornados, 5-28
- winds, 5-21, -23, -25 (see also Yucca Flat, wind speed and directions)
- see also Yucca Mountain tuffs

Yucca Mountain block test, 2-13**

Yucca Mountain fault

- scarplets, 1-211**

Yucca Mountain heulandites and calcic clinoptilolites

- silicon-to-aluminum ratios, 4-32**

Yucca Mountain Member

- age, magnetic polarity, and stratigraphy, 1-56*
- correlation with hydrogeologic units, 3-139*
- description, 1-68
- mineralogy, 4-10--15
- and Paintbrush Tuff, 1-61--62
- thermal/mechanical stratigraphy, 2-17**

Yucca Mountain Project glass waste forms

- analog testing, 7-184--187, -185**
- compositions, 7-173, -174*
- and gamma radiation effects, 7-177, -180
- parametric testing, 7-175, -177
- pH, 7-178**, -180
- and sensitized 304 stainless steel, 7-186
- testing results, 7-173--187
- and tuff effects, 7-181--184
- unsaturated testing, 7-184--185, -186**

Yucca Mountain site

- access routes, 6-82, -83**, -126**
- alteration mineralogy, 4-23
- alteration phases, 1-276*
- barite potential, 1-290
- basalt, 1-70,-95--99
- basaltic volcanism, 1-97*--98*
- base metal potential, 1-283
- constraints, 6-26*, -29
- definition, A-5
- description, 4-4
- design values, 6-26*
- diagenic zones, 4-37

Yucca Mountain site (continued)

- drillhole locations, 1-51*--53**, -72**, -213--240; 4-43**
- earthquakes, 1-176*, -192--196
- faulting history, 1-128--135
- fluorspar potential, 1-293
- fractures, 1-135--138
- gas potential, 1-319--323
- general description, 4-7--8
- geochemistry, 4-1--153
- geologic cross section, 1-106**
- geologic map, 1-50**
- geology, 1-1--353
- geology design data, 6-36--44
- geothermal energy, 1-306--313
- geothermal regime, 1-147--150
- ground motion at depth, 1-198--199
- hydrochemistry, 4-39--40
- hydrothermal resources, 1-310--313
- industrial mineral potential, 1-287--302
- in situ stress, 1-140
- in situ temperature, 1-148
- lithology, 1-49--78
- location, 1-2**; 6-37**
- major faults, 1-128--135
- maps, 1-2**, -17**, -20**, -21*--22**, -23*--24**, -72**, -141**, -142**, -174**, -177**
- maximum earthquake, 1-192
- mercury potential, 1-287
- Mined Geologic Disposal System design requirements, 6-16*--17*
- mineral abundances, 4-11**, -12**, -77*--80*
- mineral deposits, 1-3
- mineral stability, 4-36--39
- mineralogy, 4-7--39
- minor alteration phases, 1-276*
- mordenite, 4-29
- normal faults, 1-108**, -110, -119, -127, -126**, -141*--142**, -332
- peak acceleration, 1-195*
- petrologic characteristics, 4-77*--80*
- petrology, 4-7--39
- physiography, 6-39**
- piedmont slopes, 1-25
- plate tectonics, 1-84--88
- pluton, 1-264
- potential flood areas, 6-69**
- pre-Cenozoic rocks, 1-54
- precious metal potential, 1-283
- resource potential, 1-260--262

Yucca Mountain site (continued)
 seismic hazard, 1-194**, -195*
 seismic-wave transmission, 1-196--198
 seismicity of, 1-175, -178**, -192--200
 seismology, 1-192--200
 site plan, 6-85, -86**
 smectites, 4-35--36
 sorptive zeolites, 4-29--35
 stratigraphic framework, 1-55
 stratigraphy, 1-49--78
 stream incision, 1-34*
 stress, 1-141**, -142**
 stress regime, 1-139--146
 strike-slip faulting, 1-141**
 structural block, cross section, 1-126**
 structural history, 1-117--138
 structures, summary, 1-331--333
 surficial deposits, 1-49, -75--78
 tectonic framework, 1-79--84
 tectonic processes, Quaternary, 1-30
 tectonics, 1-79--150
 thermal/mechanical stratigraphy, 6-222
 topography, 6-40**, -69**
 trench locations, 1-72**, -122**
 uranium potential, 1-304
 vertical crustal movement, 1-147
 volcanic deposits, 1-76**
 weapons testing, 1-199
 zeolite deposits, 1-293--296
 zeolitized intervals, 4-28*

Yucca Mountain tuffs
 angle of internal friction, 2-44*, -65*
 cohesion, 2-44*, -65*
 deformation, 2-65*
 density, 2-77, -78*
 elasticity, 2-24, -27--29
 grain density, 2-103*
 Grouse Canyon Member comparison, 2-102,
 -103*
 mechanical properties, 2-22--42, -44*,
 -65*, -103*
 Poisson's ratio, 2-44*, -65*, -103*
 porosity, 2-77, -78*, -103*
 rock mass classification, 2-104*, -105**,
 -106*
 saturation, 2-103*
 stress calculations, 2-88--89
 tensile strength, 2-41, -42**
 thermal and thermomechanical properties,
 2-69--77, -81--82
 thermal conductivities, 2-103*

Yucca Mountain tuffs (continued)
 thermal expansion coefficients, 2-75*,
 -103*
 thermal properties stratigraphy, 2-77--78
 unconfined compressive strength, 2-44*,
 -65*, -103*
 Young's modulus, 2-44*, -65*, -103*
see also Topopah Spring Member
Yucca Wash, 1-120**--122**
 analysis for 100-yr flood, 6-68, -69**
 analysis for 500-yr flood, 6-68, -69**
 analysis for regional maximum flood, 6-68,
 -69**
 flood hazard, 6-335--336
 flooding, 3-19, -20**
 location of, 3-17**, -20**
Yucca Wash, fault location, 1-50**

zeolite deposits
 Eastgate, 1-294
 Jersey Valley, 1-294
 Nevada, 1-294
 Nevada Test Site, 1-294--295
 Pine Valley, 1-294
 Reese River, 1-294
 Yucca Mountain, 1-294--296

zeolites
 devitrified ash flows, 4-8
 hydrothermal alteration, 4-120--121
 Nevada resources, 1-293--296
 resource, 1-262
 sorptive, see sorptive zeolites
 tuffaceous beds of Calico Hills, 1-60
 Yucca Mountain site potential, 1-296

zeolitized Interval I
 above lower Topopah Spring vitrophyre,
 4-23, -28*

zeolitized Interval II
 base Topopah Spring unit, tuff of Calico
 Hills, 4-23, -28*

zeolitized Interval III
 between Bullfrog and Tram units, 4-23,
 -27, -28*
 between Prow Pass and Bullfrog units,
 4-23, -27, -28*

zeolitized Interval IV
 base of Bullfrog and upper Tram cooling
 units, 4-27, -28*

zeolitized intervals
 compositions, 4-30**--31*

PART A INDEX (Chapters 1-7)

- zeolitized intervals (continued)
 - description, 4-23, -24**, -25**, -26**, -27
 - drillholes, 4-28*
 - silicon-to-aluminum ratios, 4-32**
 - weight percentages of zeolites, 4-27, -28*
 - Yucca Mountain site, 4-28*
- zeolitized tuff of Calico Hills
 - mineralogy, 4-8
- zero-porosity conductivities, 2-69, -71*, -72
- Zircaloy
 - corrosion
 - research and development summary, 7-233
 - and spent fuel testing, 7-109, -113, -146--149
 - and water chemistry, 7-149
 - delayed hydride cracking, 7-148
 - stress corrosion cracking, 7-148--149
 - stress rupture, 7-147--148
- zirconium solubility
 - in well J-13 water, 4-100*

10 CFR Part 20

- radiation protection requirements, I-4
- waste package performance criteria, I-4; 7-13

10 CFR Part 60

- and design phases, A-10
- and geochemistry, 4-1
- and geoengineering data, 2-111--112
- and geologic operations area requirements, 2-1
- and geology, 1-5
- and long-term climate variations, 5-2
- and Quaternary climate variations, 5-6
- resource potential, 1-256
- and U.S. Environmental Protection Agency standards, I-4
- and waste package design requirements, 7-12
- and waste package performance, 7-2**, -3, -4*

10 CFR 60.17

- and site characterization plan content, I-9--13

10 CFR 60.17(c)

- and design requirements, 6-1

10 CFR 60.21(c)(13)

- undiscovered resource deposits, 1-256

10 CFR 60.111(b)

- and geoengineering data, 2-111

10 CFR 60.113

- and postclosure waste package criteria, 7-3
- and postclosure waste package performance criteria, 2-112; 7-15, -196

10 CFR 60.133(a)(1)

- critical design requirements, 6-2

10 CFR 60.133(c)

- critical design requirements, 6-2

10 CFR 60.135(a)

- and postclosure waste package criteria, 7-3, -196--197

10 CFR 60.135(b) and (c)

- and preclosure waste package criteria, 7-3, -13, -14

10 CFR Part 960

- and geochemistry, 4-1
- and geology, 1-5
- and long-term climate variations, 5-2
- and Quaternary climate variations, 5-6
- resource potential, 1-256
- and siting guidelines, 1-4
- and waste package design requirements, 7-12
- and waste package performance, 7-2**, -3, -4*

10 CFR 960.5-1(a)(3)

- critical design requirement, 6-2

10 CFR Part 961

- and standard spent fuel, 7-21

40 CFR Part 191

- environmental standards, I-3--4; 6-17
- and geochemistry, 4-1
- and waste package performance, 7-2**, -3, -4*

40 CFR Part 191, Appendix B

- resource potential, 1-256

Abandoned Wash
 and perimeter drift, 8.3.1.4-29

ABTHERMO, 8.3.1.3-62

access and drift usability (Design Activity 4.2.1.1), 8.3.2.4-27--30

access construction, system element 1.2.1.1
 data needed for technology for underground facilities (Information Need 4.4.9), 8.3.2.5-88--89

functions and processes, 8.3.2.5-18*--21*

parameters for technology for underground facilities (Information Need 4.4.9), 8.3.2.5-89--91

performance measures and goals for nonradiological health and safety, 8.3.2.4-8*--11*

preliminary performance allocation, 8.3.2.5-18*--21*

underground facilities technology (4.4.9), 8.3.2.5-88--89

access to emplacement boreholes, see emplacement borehole access (Information Need 2.4.2)

access to waste packages, see waste package access (Information Need 2.4.3)

accessible environment
 boundaries for saturated zone flow models, 8.3.1.1-142, -435--436
 boundary preliminary definition, 8.3.1.1.29, -30**; 8.3.5.12-2**
 and C-hole complex, 8.3.1.2-370
 and colloid behavior, 8.3.1.3-93
 and controlled area, 8.3.5.12-2**
 and dissolved species concentration limits, 8.3.1.3-88
 and disturbed zone, 8.3.5.12-11, -16, -23, -49--52, -52--55
 DOE interpretation, 8.3.5.13-2
 and erosion, 8.3.1.6-27
 flow path/flux/velocity calculation, 8.3.1.2-441--443
 and flow path geometry, 8.3.1.3-42
 and gas flow in unsaturated zone, 8.3.1.2-91, -153
 and geohydrology program, 8.3.1.2-3
 and host rock, mineral distribution between, 8.3.1.3-41, -45--47
 and hydrologic boundary conditions, 8.3.1.2-142
 and hydrovolcanism, 8.3.1.8-26
 and radionuclide release calculations, 8.3.5.8-8

accessible environment (continued)
 and radionuclide sorption, 8.3.1.3-67
 and radionuclide transport, 8.3.1.3-38, -86, -134, -135--136
 and resource exploration, 8.3.1.9-21
 and rock characteristics program, 8.3.1.4-1
 and stability of minerals and glasses, 8.3.1.3-55--56
 and water-table changes, 8.3.1.8-28
 10 CFR Part 60 definition, 8.3.5.12-1

accident consequence analysis (Performance Assessment Activity 2.3.2.2), 8.3.5.5-27
 description, 8.3.5.5-27
 objectives, 8.3.5.5-27
 parameters, 8.3.5.5-27

accident (potential) data, 8.3.2.3-44

accident initiators (offsite), 8.3.1.13-1, -7, -8

accident sensitivity and importance analyses (Performance Assessment Activity 2.3.2.3), 8.3.5.5-28
 description, 8.3.5.5-28
 objectives, 8.3.5.5-28
 parameters, 8.3.5.5-28

accident sequence analysis and preclosure risk assessment methodology (PRAM) program, 8.3.5.1-11; 8.3.5.5-3
 and radiological risks, 8.3.5.1-2, -11, -19--21

accident sequences and frequencies (Performance Assessment Activity 2.3.1.2), 8.3.5.5-22
 description, 8.3.5.5-22
 objectives, 8.3.5.5-22
 parameters, 8.3.5.5-22

accidental radiological releases (Issue 2.3), 8.3.5.5-1--35
 approach, 8.3.5.5-3--18
 compliance with regulations, 8.3.2.3-12
 design criteria development, 8.3.5.5-11
 functional requirement identification, 8.3.5.5-4, -5**
 functions, performance measures/goals, 8.3.5.5-9*--10*

information needs, 8.3.5.5-19--35
 radiological releases (accidental) (2.3.1), 8.3.5.5-24--30
 repository accidents (credible) (2.3.2), 8.3.5.5-19--24
see specific information need for performance activity listings

accidental radiological releases (Issue 2.3)
 (continued)
 input item identification, 8.3.5.5-11
 interrelationships of information needs,
 8.3.5.5-18--19
 issue resolution strategy application,
 8.3.5.5-4--17
 and land ownership and mineral rights
 program, 8.3.1.11-1
 licensing strategy overview, 8.3.5.5-3
 logic diagram, 8.3.5.5-5***-6**
 major events and completion dates,
 8.3.5.5-31***-34*; 8.5-62, -63**, -64
 and meteorology program, 8.3.1.12-1,
 -2**, -4**, -5; 8.3.5.5-12***-14*, -20*
 and nonradiological health and safety
 (Issue 4.2), 8.3.5.5-12*, -20*
 and offsite installations program,
 8.3.1.13-1, -2; 8.3.5.5-13*, -20***-21*
 and other design and performance
 assessment issues, 8.3.2.1-2**,
 8.3.4.1-2**
 parameter calls, 8.3.5.5-12***-16*
 parameters provided by geohydrology
 program, 8.3.1.2-10***-11*
 performance allocation, 8.3.5.5-8--11,
 -9***-10*
 and performance assessments of repository
 design, 8.3.2.3-36, -42
 performance evaluation, 8.3.5.5-17--18
 and population centers and wind patterns
 investigation, 8.3.1.12-25--26
 and population density and distribution
 program, 8.3.1.10-1; 8.3.5.5-12*
 and preclosure design and technical
 feasibility (Issue 4.4), 8.3.5.5-1,
 -2**, -5**, -11
 and preclosure hydrology program,
 8.3.5.5-12*, -20*
 and preclosure risk assessment methodology
 (PRAM) program, 8.3.5.5-3, -13*, -19,
 -20*, -23, -29
 and preclosure tectonics program,
 8.3.1.17-1, -2**, -63, -86;
 8.3.5.5-12***-13*, -20*
 and public radiological exposures--normal
 conditions (Issue 2.1) parameter calls,
 8.3.5.3-1, -2**
 radiological safety assessment for
 accidents, 8.3.5.5-7**, -11, -17
 regulatory basis for, 8.3.5.5-1--2

accidental radiological releases (Issue 2.3)
 (continued)
 relationship with other issues and
 programs, 8.3.5.5-2**
 and repository design criteria for radio-
 logical safety (Issue 2.7), 8.3.2.3-1,
 -2**; 8.3.5.5-1, -2**, -5**, -11
 schedule, 8.3.5.5-29--35; 8.5-62, -63**
 and surface characteristics program,
 8.3.5.5-12*, -20*
 and worker radiological safety--normal
 conditions (Issue 2.2), 8.3.5.4-1, -2**
 accidental radiological releases safety
 analyses documentation (Performance
 Assessment Activity 2.3.2.4), 8.3.5.5-28--29
 description, 8.3.5.5-29
 objectives, 8.3.5.5-28
 parameters, 8.3.5.5-28
 accidental radiological releases site data
 refinement (accidental releases)
 (Performance Assessment Activity 2.3.2.1),
 8.3.5.5-26--27
 description, 8.3.5.5-27
 objectives, 8.3.5.5-26
 parameters, 8.3.5.5-27
 accidental radiological releases site data
 refinement (credible repository accidents)
 (Performance Assessment Activity 2.3.1.1),
 8.3.5.5-22
 description, 8.3.5.5-22
 objectives, 8.3.5.5-22
 parameters, 8.3.5.5-22
see also radiological releases (acci-
 dental) (Information Need 2.3.2)
 accidents
 and event tree development, 8.3.5.1-9
 identification of, 8.3.1.13-11
 and radiological risk, 8.3.5.1-7--12;
 8.3.5.5-11
 radiological safety assessment,
 8.3.5.5-7**, -11, -17, -18, -19
 repository, see repository accidents
 (credible) (Information Need 2.3.1)
see also radiological risk
 ACD, see advanced conceptual design
 ACM, see alternative conceptual models
 acoustic emission observation, technical
 procedures for, 8.3.1.15-64, -67
 acoustic emission measurements,
 technical procedures for, 8.3.1.15-70
 acoustic televiewer surveys and logging,
 technical procedures for, 8.3.1.4-74

acquire site-specific subsurface information study, see subsurface information (site specific) data acquisition study actinide solubility (spent fuel) performance measures, 8.3.5.9-21*-22*, -32, -34 actinides and containment period segments, 8.3.5.9-24 distribution in rock samples, 8.3.5.10-80 release limits, 8.3.5.9-27, -29 sorption by beakers, 8.3.1.3-112 and Topopah Spring tuff, 8.3.5.10-80 tracers, 8.3.1.3-73 transport through near-field environment, 8.3.5.10-38 and well J-13, 8.3.1.3-73 adequacy of existing site data (Design Activity 1.11.1.2), 8.3.2.2-39 objectives, 8.3.2.2-39 adequate water supply location study, 8.3.1.16-16--25 see also water supplies investigation, study ADINAT drift analysis, 8.3.2.5-72, -74, -76* and performance assessment, 8.3.5.19-1, -2*, -4* ventilation analysis, 8.3.2.5-73 advanced conceptual design and operations plan, 8.3.2.5-49 reference preclosure repository design (Information Need 4.4.5), 8.3.2.5-52--53 and seal design, 8.3.3.1-2**, -3, -8; 8.3.3.2-65--67 summary, 8.3.2.1-7--8 tradeoff studies, seals, 8.3.3.2-66--67 advanced conceptual design assessment of public radiological safety--normal operations (Performance Assessment Activity 2.1.1.3), 8.3.5.3-24--25 description, 8.3.5.3-25 objectives, 8.3.5.3-24 parameters, 8.3.5.3-25 advanced conceptual design assessment of worker radiological safety--normal operations (Activity 2.2.2.3), 8.3.5.4-24--25 description, 8.3.5.4-25 objectives, 8.3.5.4-24--25 parameters, 8.3.5.4-25

advanced conceptual design assessment of worker radiological safety--normal operations (site data refinement) (Activity 2.2.1.2), 8.3.5.4-20--21 description, 8.3.5.4-21 objectives, 8.3.5.4-20 parameters, 8.3.5.4-20--21 advanced conceptual design for sealing (Design Activity 1.12.4.1), 8.3.3.2-65--67 design subactivities, 8.3.3.2-65--67 advanced conceptual design for seals, 8.3.3.2-67 subsystem design requirements for advanced conceptual design, 8.3.3.2-65--66 tradeoffs for advanced conceptual design, 8.3.3.2-66--67 advanced conceptual design for seals (Design Subactivity 1.12.4.1.3) description, 8.3.3.2-67 objectives, 8.3.3.2-67 advanced conceptual design operations plan (Design Activity 4.4.3.1) description, 8.3.2.5-45 objectives, 8.3.2.5-45 adverse environmental impacts and plans for mitigation, 8.7-6 aerial photographs, mapping and interpretation, technical procedures for, 8.3.1.5-71 aeromagnetic anomalies, 8.3.1.8-52, -107, -108, -110 aeromagnetic survey (detailed) activity, 8.3.1.17-172 description, 8.3.1.17-172 methods and technical procedures, 8.3.1.17-172 objectives, 8.3.1.17-172 parameters, 8.3.1.17-172 age-dating of unsaturated-zone gases, 8.3.1.2-305, -335 agricultural and cultural data and radiological protection (Information Need 2.7.1), 8.3.2.3-40--41 agricultural data accidental radiological releases (Issue 2.3) parameter calls, 8.3.5.5-25**-26* and public radiological exposure, 8.3.1.13-1 public radiological exposure--normal conditions (Issue 2.1) parameter calls, 8.3.5.3-21*

- agricultural data (continued)
 - and radionuclide ingestion, 8.3.5.3-8, -23; 8.3.5.14-11
- air drilling
 - saturation effects, 8.4.3-21--22
- air flow
 - through backfill, and unsaturated zone, 8.4.3-21
 - in exploratory shaft, and barometric effects, 8.4.3-21
 - and water vapor flow in Yucca Mountain, 8.4.3-21
- air gap use
 - design consideration, 8.4.3-35
- air injection testing
 - bulk-permeability test, 8.3.1.2-273
 - technical procedures for, 8.3.1.2-275--277
- air quality, potential for degradation, 8.3.1.12-15--16
- air quality and ventilation (Design Activity 4.2.1.2), 8.3.2.4-30
- air quality and ventilation experiment
 - constraints and zones of influence, 8.4.2-131
 - purpose and operations, 8.4.2-131
- air quality and ventilation experiment activity, 8.3.1.15-74--76
 - description, 8.3.1.15-75
 - methods and technical procedures, 8.3.1.15-75--76
 - objectives, 8.3.1.15-74
 - parameters, 8.3.1.15-75
- AIRDOS-EPA
 - and carbon-14 gaseous pathway dose calculation, 8.3.5.14-13
 - and performance assessment, 8.3.5.19-1, -2*, -4*
 - and preclosure safety assessment, 8.3.5.19-9*--10*
- ALARA, see as low as reasonably achievable
- albite
 - end-member free energies, 8.3.1.3-61--63
 - solubilities, 8.3.1.3-61
- Alice Hill
 - and meteorological towers, 8.3.1.12-17--19, -18*
- allocation of performance
 - and issue resolution strategy for radiological safety design, 8.3.2.3-16
- allowable areal power density, Product 1.11.6-1
 - and thermal decay characteristics of waste, 8.3.2.2-44--45
 - thermal/thermomechanical modeling, 8.3.2.2-38
- alluvial fan and drainage basin mapping, technical procedures for, 8.3.1.17-190
- alluvial surface dating, technical procedures for, 8.3.1.5-95
- alluvium
 - borehole summary, 8.3.1.14-39**
 - determination of thickness, 8.3.1.2-161
 - dynamic properties, 8.3.1.14-61
 - prototype testing in, 8.3.1.2-161
 - surface test pits, 8.3.1.14-33, -34**
 - thickness, 8.3.1.17-33
- alteration
 - host rock, 8.3.1.3-43, -49, -50, -52
 - mineral assemblages, 8.3.1.3-56
 - percolation flux, 8.3.1.8-9*--12*
 - rock properties, 8.3.1.8-17*--18*
- alternating field demagnetization, 8.3.1.4-61
- alternative barrier designs, materials, and processes survey to determine fabrication feasibility (subactivity 1.4.1.2.1), 8.3.5.9-60--61
 - alternative barriers investigations
 - information integration (activity 1.4.1.2), 8.3.5.9-59--64
 - subactivities, 8.3.5.9-60--64
 - alternative barrier designs, materials, and processes survey to determine fabrication feasibility, 8.3.5.9-60--61
 - container mechanical properties, 8.3.5.9-61
 - container microstructural properties, 8.3.5.9-62--63
 - container nondestructive characterization, 8.3.5.9-63--64
 - container thermophysical properties, 8.3.5.9-63
- alternative conceptual models
 - climate program, 8.3.1.5-16--32
 - geochemistry program, 8.3.1.3-12--23
 - geohydrology program, 8.3.1.2-50--88
 - human interference program, 8.3.1.9-24--27
 - overview, 8.3.1.1-1--9
 - postclosure tectonics program, 8.3.1.8-30--46
 - preclosure tectonics program,

alternative conceptual models (continued)
 rock characteristics program,
 8.3.1.4-17--24
 and site program, 8.3.1.1-6--7
 thermal and mechanical properties program,
 8.3.1.15-18--22

alternative model hypotheses
 climate program, 8.3.1.5-18*-31*
 geochemistry program, 8.3.1.3-13*-20*
 geohydrology program, 8.3.1.2-52*-87*
 human interference program,
 8.3.1.9-25*-26*
 postclosure tectonics program,
 8.3.1.8-31*-45*
 preclosure tectonics program,
 8.3.1.17-38*-49*
 rock characteristics program,
 8.3.1.4-19*-23*
 thermal and mechanical properties program,
 8.3.1.15-19*-21*

alternative water supplies location activity,
 8.3.1.16-22
 description, 8.3.1.16-22
 methods and technical procedures,
 8.3.1.16-22-23
 objectives, 8.3.1.16-22
 parameters, 8.3.1.16-22

Amargosa Desert
 and commercial boreholes, 8.3.1.2-120
 and detachment faults, 8.3.1.17-147
 discharge area, 8.3.1.5-98
 evapotranspiration studies,
 8.3.1.2-134--137
 and fission-track dating, 8.3.1.17-152
 and hydraulic gradient, 8.3.1.2-115
 hydrogeologic data from drillholes,
 8.3.1.2-140
 location of hydrogeologic study area,
 8.3.1.2-94, -95**
 and magnetotelluric survey, 8.3.1.17-115
 and Rock Valley fault zone, 8.3.1.17-133,
 -134**
 and scarp map, 8.3.1.17-122
 and stress fields, 8.3.1.17-180
 and subsidence and uplift, 8.3.1.17-189

Amargosa drainage system--Quaternary history,
 8.3.1.17-189
 technical procedures for, 8.3.1.17-190

Amargosa Valley
 and aeromagnetic anomalies, 8.3.1.8-108,
 -109**

Amargosa Valley (continued)
 and low-level magnetic survey,
 8.3.1.17-118
 Quaternary fault displacement,
 8.3.1.17-135

ambient stress conditions (site) study,
 8.3.1.15-78--82
 activities
 anelastic strain recovery experiments,
 8.3.1.15-78--80
 overcore stress experiments in ESF,
 8.3.1.15-80--82

ambient thermal conditions (site) study,
 8.3.1.15-82--84
 activity
 surface evaluation of ambient thermal
 conditions, 8.3.1.15-82--83

Amendments Act, see Nuclear Waste Policy
 Amendments Act of 1987

americium
 batch sorption, 8.3.1.3-68, -72*
 colloids, 8.3.1.3-93--94
 sorption, 8.3.1.3-67

amino acids, dating, 8.3.1.5-52

analcime
 end-member free energies, 8.3.1.3-61--63
 solubilities, 8.3.1.3-61

analog recharge sites, 8.3.1.5-107
 selection, technical procedures for,
 8.3.1.5-108

analog recharge studies activity,
 8.3.1.5-106--110
 description, 8.3.1.5-107
 methods and technical procedures,
 8.3.1.5-107--110
 objectives, 8.3.1.5-106
 parameters, 8.3.1.5-106

ANALTHERMO, 8.3.1.3-61

analysis, general, technical procedures for,
 8.3.1.8-115

analytical structural design
 shafts and ramps, 8.3.2.5-69--70

analytical techniques
 significant development required,
 8.3.5.20-1-13
 substantially completed, 8.3.5.19-1-11
 thermal maturation, technical procedures
 for, 3.8.1.9-39

analytical tools
 geochemical analyses, 8.3.2.1-21--22
 mineralization potential, technical
 procedures for, 8.3.1.9-33

analytical tools (continued)

- geomechanical analyses, 8.3.2.1-21--22
- and nonradiological health and safety (Issue 4.2), 8.3.2.1-21--24
- and preclosure design and technical feasibility (Issue 4.4), 8.3.2.1-21--24
- rock mass thermal response, 8.3.2.1-23--24; 8.3.2.5-72

anelastic strain recovery, technical procedures for, 8.3.1.15-79

anelastic strain recovery experiments activity, 8.3.1.15-78--80

- description, 8.3.1.15-78--79
- methods and technical procedures, 8.3.1.15-79--80
- objectives, 8.3.1.15-78
- parameters, 8.3.1.15-78

anhydrous remanent magnetization, 8.3.1.4-61, -62

ANISN, and preclosure safety assessment, 8.3.5.19-9*--10*

ANSI/ASME QA program requirements for nuclear facilities and Yucca Mountain QA, 8.6-9

anthropogenic factors

- and human intrusion, 8.3.1.9-3

aquatic paleomorphs

- and paleontologic analyses, 8.3.1.5-45

aqueous corrosion, 8.3.5.9-44, -45, -68, -71--72, -75--76

aqueous (general) corrosion (austenitic) (Subactivity 1.4.3.2.3), 8.3.5.9-100--101

- description, 8.3.5.9-101
- objectives, 8.3.5.9-100
- parameters, 8.3.5.9-100

aqueous (general) corrosion (copper) (Subactivity 1.4.3.1.3), 8.3.5.9-91--92

- description, 8.3.5.9-92
- objectives, 8.3.5.9-91
- parameters, 8.3.5.9-91

aqueous (general) corrosion and oxidation, 8.3.5.9-41* -43*, -45

aqueous-phase chemical investigations activity, 8.3.1.2-337--341

- description, 8.3.1.2-338--339
- methods and technical procedures, 8.3.1.2-340--341
- objectives, 8.3.1.2-337--338
- parameters, 8.3.1.2-338

aqueous stock solutions and dilution preparation, technical procedures for, 8.3.1.2-422

aquifer properties, 8.3.1.2-369--371

- C-hole tracer testing, 8.3.1.2-400--408
- data uncertainties, 8.3.1.2-94
- and fracture networks, 8.3.1.2-369, -403--404
- and hydraulic stress tests, 8.3.1.2-383--393
- porous media techniques, 8.3.1.2-403
- summary of activities, 8.3.1.2-370--371

aquifer response (barometric pressure), 8.3.1.2-390, -392

aquifer tests

- and perched-water test in ESF, 8.3.1.2-301

archaeological studies

- and anthropogenic factors in human intrusion, 8.3.1.9-3

area needed determination, product 1.11.3-1

- information needed, 8.3.2.2-47*
- status, 8.3.2.2-37, -49

area needed determination (Design Activity 1.11.3.1)

- objective, 8.3.2.2-52

areal power density

- and borehole spacing, 8.3.2.2-70--71
- and impact on maintenance program, 8.3.2.4-24
- and near-field temperature changes, 8.3.2.2-19
- product 1.11.6-1
- information needed, 8.3.2.2-68*
- status, 8.3.2.2-70
- thermal loading of shafts and drifts, 8.4.3-27--28

argon-argon dating, technical procedures for, 8.3.1.8-112, -113

ARRAY F and performance assessment, 8.3.5.19-2*, -4*

artificial infiltration

- control-plot, technical procedures for, 8.3.1.2-171
- experiments, and potential surface disturbance, 8.4.2-55*--56*, -63--64
- and prototype geotomography testing, 8.3.1.2-162

artificial infiltration evaluation activity, 8.3.1.2-172--179

- description, 8.3.1.2-173--176
- methods and technical procedures, 8.3.1.2-176--179
- objectives, 8.3.1.2-172
- parameters, 8.3.1.2-173

as low as reasonably achievable (ALARA)
 design objective, 8.3.2.3-16, -36
 and public radiological exposures--normal
 conditions (Issue 2.1), 8.3.5.3-1, -3,
 -18
 and repository design, 8.3.5.4-5, -8
 technical guidance, 8.3.5.1-20--21
 and worker radiological safety, 8.3.5.4-1,
 -3, -17
 and 10 CFR Part 20, 8.3.1.13-10

ash-fall particle density and size assessment
 activity, 8.3.1.17-55--56
 description, 8.3.1.17-55
 methods and technical procedures,
 8.3.1.17-56
 objectives, 8.3.1.17-55
 parameters, 8.3.1.17-55

ash-fall potential at site study,
 8.3.1.17-54--56
 activities, 8.3.1.17-54--56
 ash-fall particle density and size
 assessment, 8.3.1.17-55--56
 ash-fall thickness (potential),
 8.3.1.17-54--55
 Quaternary silicic volcanism
 literature survey, 8.3.1.17-54

ash-fall thickness (potential) at site
 activity, 8.3.1.17-54--55
 description, 8.3.1.17-55
 methods and technical procedures,
 8.3.1.17-55
 objectives, 8.3.1.17-54
 parameters, 8.3.1.17-54--55

ash-flow tuffs, unsaturated zone, 8.3.1.2-152

atmospheric phenomena studies at site, see
 meteorology investigation (site)

atmospheric precipitation samples collection,
 technical procedures for, 8.3.1.5-41

Atterberg limits, technical procedures for,
 8.3.1.14-47

austenitic alloys, 8.3.5.9-66
 and container degradation model,
 8.3.5.9-36
 data requirements, 8.3.5.9-49
 degradation modes, 8.3.5.9-74--78
 embrittlement, 8.3.5.9-75, -76, -78, -98
 failure model inputs, 8.3.5.9-42*--44*
 performance parameters/goals,
 8.3.5.9-42*--44*

austenitic material degradation mode
 assessment (Subactivity 1.4.2.3.1),
 8.3.5.9-75--76
 description, 8.3.5.9-75--76
 objectives, 8.3.5.9-75
 parameters, 8.3.5.9-75

austenitic material degradation models
 (Activity 1.4.3.2), 8.3.5.9-97--106
 subactivities, 8.3.5.9-98--106
 aqueous (general) corrosion
 (austenitic), 8.3.5.9-100--101
 degradation modes (other austenitic),
 8.3.5.9-106
 hydrogen entry and embrittlement
 (austenitic), 8.3.5.9-103--104
 intergranular attack and cracking
 (austenitic) 8.3.5.9-101--103
 low temperature oxidation
 (austenitic), 8.3.5.9-99--100
 metallurgical aging and phase
 transformations (austenitic),
 8.3.5.9-98--99
 pitting, crevice, and other localized
 attack (austenitic),
 8.3.5.9-104--105
 transgranular stress corrosion
 cracking (austenitic),
 8.3.5.9-105--106

austenitic material degradation modes
 (candidate container) (Activity 1.4.2.3),
 8.3.5.9-74--78
 subactivities, 8.3.5.9-75--78
 austenitic material degradation mode
 assessment, 8.3.5.9-75--76
 austenitic material laboratory test
 plan, 8.3.5.9-76--78

austenitic material laboratory test plan,
 (Subactivities 1.4.2.3.2--1.4.2.3.9),
 8.3.5.9-76--78
 description, 8.3.5.9-77--78
 objectives, 8.3.5.9-77
 parameters, 8.3.5.9-77

available water-holding capacity, field
 measurements
 technical procedures for, 8.3.1.5-64

backfilling trenches
 and decommissioning for surface-based
 activities, 8.7-3

bacteria
 and sorption, 8.3.1.3-81

bias
 and feature and systematic sampling,
 8.4.2-26--28

balance calibration and use, technical procedures for, 8.3.1.2-422

Bare Mountain
 area mapping, technical procedures for,
 8.3.1.17-149
 and hydrocarbon assessment, 8.3.1.9-37,
 -38
 and stress field, 8.3.1.17-179

Bare Mountain fault, 8.3.1.17-29**, -30
 age evaluation, technical procedures for,
 8.3.1.17-119--130*

Bare Mountain fault zone, 8.3.1.17-103, -104**

Bare Mountain fault zone evaluation activity,
 8.3.1.17-128--130
 description, 8.3.1.17-129
 methods and technical procedures,
 8.3.1.17-130
 objectives, 8.3.1.17-128--129
 parameters, 8.3.1.17-129

Bare Mountain Range front fault
 and shallow seismic reflection,
 8.3.1.17-178

barometric and earth-tide analysis,
 8.3.1.2-384, -390, -391**, -392
 technical procedures for, 8.3.1.2-393

basalt, site
 geochemical studies, 8.3.1.8-121
 geochronological studies, 8.3.1.8-121

basaltic volcanism
 geochemical cycles activity,
 8.3.1.8-121--123
 release model, 8.3.5.13-132
 repository disruption probabilities,
 8.3.1.8-57--59
 structural controls of, 8.3.1.8-52--54
 and tectonic model, 8.3.1.8-52, -110,
 -119
 time-space patterns, 8.3.1.8-52

basaltic volcanism direct release (disturbed case scenario A-1), 8.3.5.13-80--81
 performance parameters and expected partial performance measures (EPPM),
 8.3.5.13-96*

basaltic volcanism release model development (Subactivity 1.1.3.1.3), 8.3.5.13-134
 description, 8.3.5.13-134
 objectives, 8.3.5.13-134
 parameters, 8.3.5.13-134

baseline compressive mechanical properties,
see compressive mechanical properties of intact rock activity

baseline mechanical properties of fractures activity, 8.3.1.15-43--44

Basin and Range
 morphologic and morphometric data,
 technical procedures for, 8.3.1.17-193
 published information synthesis,
 technical procedures for, 8.3.1.17-198

batch sorption, technical procedures for,
 8.3.1.2-421

batch sorption coefficient measurement test matrix, ground water, 8.3.1.3-77*

batch sorption measurements activity,
 8.3.1.3-69--73
 description, 8.3.1.3-70--71, -72--73*
 methods and technical procedures,
 8.3.1.3-71--72
 objectives, 8.3.1.3-69
 parameters, 8.3.1.3-69--70

batch sorption measurements testing matrix,
 8.3.1.3-72--73*

batch sorption method, technical procedures for, 8.3.1.3-71--72

batch sorption study, 8.3.1.3-68--79
 activities, 8.3.1.3-69--79
 batch sorption measurements,
 8.3.1.3-69--73
 sorption as function of ground-water composition, 8.3.1.3-76--77
 sorption data, statistical analysis,
 8.3.1.3-79
 sorption on particulates and colloids,
 8.3.1.3-77--79
 description, 8.3.1.3-68--69

Beatty
 planned stream gage, 8.3.1.2-105

Beatty-Bare Mountain area detachment fault evaluation activity, 8.3.1.17-147--149
 description, 8.3.1.17-147--148
 methods and technical procedures,
 8.3.1.17-148--149
 objectives, 8.3.1.17-147
 parameters, 8.3.1.17-147

Beatty-Bare Mountain area mapping, technical procedures for, 8.3.1.17-148

Beatty quadrangle
 geologic synthesis plans and technical procedures, 8.3.1.17-201
 and Landsat V thematic mapper data,
 8.3.1.17-132

Beatty scarp
 evaluation plans and technical procedures, 8.3.1.17-122, -125--126
 and shallow seismic reflection, 8.3.1.17-178

Becker penetration resistance method, 8.3.1.14-41, -55, -57, -58

bedrock depth, mapping of, 8.3.1.2-161

bedrock rotation analysis, technical procedures for, 8.3.1.17-123, -126--127

benchmarking
 analyses
 dissolution of spent fuel, 8.3.5.10-44--45
 leaching of spent fuel, 8.3.5.10-44--45
 COVE, 8.3.5.20-3--5
 global climate models, 8.3.1.5-82
 input by seal program, 8.3.5.11-4
 radiological protection, 8.3.2.3-16, -36
 transport and flow models, 8.3.1.3-125
 transport calculations, technical procedures for, 8.3.1.3-126

biaxial stress measurements, technical procedures for, 8.3.1.15-47

biaxial stress testing, field, 8.3.1.15-81

Big Pine volcanic field, 8.3.1.17-54

bimetallic/single metal laboratory test plan (Subactivity 1.4.2.4.4), 8.3.5.9-83--84
 description, 8.3.5.9-84
 objectives, 8.3.5.9-84
 parameters, 8.3.5.9-84

bimetallic/single metal systems degradation models (Subactivity 1.4.3.3.2), 8.3.5.9-107--108

bimetallic/single metal systems degradation modes (Subactivity 1.4.2.4.3), 8.3.5.9-81--83
 description, 8.3.5.9-81--83
 objectives, 8.3.5.9-81
 parameters, 8.3.5.9-81

biological degradation and transport of materials introduced in repository horizon, 8.4.3-24

biological sorption and transport study, 8.3.1.3-80--82
 description, 8.3.1.3-81
 methods and technical procedures, 8.3.1.3-81--82
 objectives, 8.3.1.3-80
 parameters, 8.3.1.3-80

biotic remains
 and paleontologic analyses, 8.3.1.5-45

Bishop ash
 and eolian history of site, 8.3.1.5-73
 and mapping, 8.3.1.17-94

Black Mountain caldera, dating, 8.3.1.8-112, -113

blast damage limitation
 design consideration, 8.4.3-35

blasted rock characterization, technical procedures for, 8.3.1.15-49, -52, -71

BLM, see Bureau of Land Management

block test, see heated block test

blow count data, Becker penetration resistance, 8.3.1.14-55

bomb tests, see weapons testing

borehole access, see emplacement borehole access

borehole collapse limitation
 design thermal loading, postclosure design function 4, 8.3.2.2-20

borehole construction, system element 1.2.1.3
 data needed for technology for underground facilities (Information Need 4.4.9), 8.3.2.5-90, -91
 and equipment demonstration, 8.3.2.5-59
 functions and processes, 8.3.2.5-24*
 parameters for technology for underground facilities (Information Need 4.4.9), 8.3.2.5-90
 performance measures and goals for nonradiological health and safety 8.3.2.4-15*
 preliminary performance allocation, 8.3.2.5-24*
 underground facilities technology, 8.3.2.5-88--89

borehole drilling
 and diffusion tests, 8.3.1.2-320--321
 drilling fluid migration, 8.4.3-15--16
 excavation effects test, 8.3.1.2-293--295
 fluid loss, 8.4.3-16--17
 for radial borehole tests, 8.3.1.2-282--285

borehole evaluation of faults and fractures
 activity, 8.3.1.4-70--74
 description, 8.3.1.4-71--73
 methods and technical procedures, 8.3.1.4-73--74
 objectives, 8.3.1.4-70--71
 parameters, 8.3.1.4-71

borehole extensometer measurements,
 technical procedures for, 8.3.1.15-74

borehole geophysical methods
 geophysical activities, 8.3.1.4-42*-45*

 preclosure and postclosure tectonics
 summary, 8.3.1.17-111*-112*

borehole geophysical surveys activity,
 8.3.1.4-57--59
 description, 8.3.1.4-58
 methods and technical procedures,
 8.3.1.4-58--59
 objectives, 8.3.1.4-57
 parameters, 8.3.1.4-57--58

borehole (shallow) hydrofrac and triaxial
 strain recovery activity, 8.3.1.17-182--183
 description, 8.3.1.17-182--183
 methods and technical procedures,
 8.3.1.17-183
 objectives, 8.3.1.17-182
 parameters, 8.3.1.17-182

borehole liner, design goal, 8.3.4.2-31--32

borehole location and number
 design consideration, 8.4.3-34

borehole locations, saturated zone,
 8.3.1.2-117**

borehole nuclear logging, 8.3.1.2-160

borehole plug test, 8.3.3.2-59**

borehole spacing, product 1.11.6-2
 and areal power density, 8.3.2.2-70--71
 information needed, 8.3.2.2-68*
 status, 8.3.2.2-70--71
 strategy, thermal/thermomechanical
 modeling, 8.3.2.2-38

borehole spacing strategy (Design Activity
 1.11.6.2), 8.3.2.2-74

borehole stability model, 8.3.5.2-40
 inputs, 8.3.4.2-7*-8*
 and waste package model hierarchy,
 8.3.5.9-7**; 8.3.5.10-3**

borehole technical procedures
 ambient temperature measurement,
 8.3.1.15-83
 deflectometer measurements, 8.3.1.15-51
 deformation gage measurements,
 8.3.1.15-47, -56, -58, -63, -81
 deviatometer surveys, 8.3.1.2-280, -296,
 -314
 dilatometer, 8.3.1.15-67, -81
 drilling, 8.3.1.2-131--132, -322
 drilling and coring, 8.3.1.2-211--212,
 -224, -258, -279, -285--286, -296, -314,
 -318; 8.3.1.4-39; 8.3.1.15-81, -83

borehole technical procedures (continued)
 drilling and coring for infiltration
 studies, 8.3.1.2-172, -179
 drilling in perched-water zones,
 8.3.1.2-316
 flow, temperature, and gas-composition
 profiles, 8.3.1.2-331--332
 fracture logging, 8.3.1.2-296
 geophysical surveys and logging,
 8.3.1.2-123, -260--261, -280, -287,
 -296--297, -315, -319, -373, -380;
 8.3.1.4-59
 in situ stress tests, 8.3.1.17-181
 instrumentation and monitoring,
 8.3.1.2-215--217, -227--228, -267--270,
 -289--290, -298--299, -320
 intraborehole flow interpretation,
 8.3.1.2-393
 lithologic logs, 8.3.1.5-71
 logging, 8.3.1.2-213--214, -225;
 8.3.1.14-43, -62, -63, -78
 magnetic surveys and logging, 8.3.1.4-63
 nuclear-geophysical logging, 8.3.1.2-163
 overcore deformation measurement,
 8.3.1.15-81
 overcoring, 8.3.1.2-322
 perched-water zones, 8.3.1.2-303
 stress meter measurements, 8.3.1.15-51
 testing, instrumentation, and monitoring,
 8.3.1.2-302
 thermal surveys, 8.3.1.2-316, -319
 total air circulation in open boreholes,
 8.3.1.2-331
 video surveys and logging, 8.3.1.2-260,
 -279, -287, -315, -319, -322
 8.3.1.4-40, -75; 8.3.1.15-81

borehole testing (multipurpose) near the
 exploratory shafts activity,
 8.3.1.2-308--316
 description, 8.3.1.2-310--314
 methods and technical procedures,
 8.3.1.2-314--316
 objectives, 8.3.1.2-308--309
 parameters, 8.3.1.2-309--310

borehole-to-borehole method, preclosure and
 postclosure tectonics, 8.3.1.17-113*

borehole-to-surface methods, preclosure and
 postclosure tectonics, 8.3.1.17-113*

boreholes
 geophysical survey activity,
 8.3.1.4-57--59

boreholes (continued)
 integrated drilling program,
 8.3.1.4-25--26
 location and number, design
 consideration, 8.4.3-34
 and permeability, 8.3.1.2-185*-186*
 and seal components, 8.3.3.1-5
 and seals, 8.3.3.2-24
 technical procedures, see borehole
 technical procedures
 and Topopah Spring Member, 8.3.3.2-24
 and vertical seismic profiling,
 8.3.1.2-201
see also emplacement borehole entries,
 vertical boreholes, Solitario Canyon
 horizontal borehole studies activity,
 radial borehole tests in ESF, and
 vertical boreholes

borescope observation, technical procedures
 for, 8.3.1.15-47, -49, -51, -53, -56, -63,
 -67, -69

boundary conditions, site saturated-zone
 hydrologic system, 8.3.1.2-366

boundary element techniques
 and geomechanical analyses, 8.3.2.1-22
 and structural-thermal analysis,
 8.3.2.5-68

boundary of disturbed zone (Information Need
 1.6.5), see disturbed zone boundary
 (Information Need 1.6.5)

Bow Ridge fault, 8.3.1.17-28, -29**, -30, -33,
 -34
 buried extensions and gamma-ray
 measurements, 8.3.1.17-175
 and Quaternary movement, 8.3.1.17-154
 and relevel network, 8.3.1.17-195

Bow Ridge fault system, Quaternary offset,
 technical procedures for, 8.3.1.17-160,
 -163--164

breached container and water flow (Subactivity
 1.5.3.5.3), 8.3.5.10-74--75
 description, 8.3.5.10-74--75
 objectives, 8.3.5.10-74
 parameters, 8.3.5.10-74

breakout zones, depth of, 8.3.1.2-293

breccia (Crater Flat) and detachment
 faulting activity, 8.3.1.17-149--150
 description, 8.3.1.17-149--150
 methods and technical procedures,
 8.3.1.17-150
 objectives, 8.3.1.17-149
 parameters, 8.3.1.17-149

brecciation, 8.3.1.8-96, -102

Buckboard Mesa
 and nuclear weapons testing, 8.3.1.17-75

buildings
 exploratory shaft facility, 8.4.2-158,
 -161

bulk density, technical procedures for,
 8.3.1.2-192--193

bulk-permeability tests in ESF
 constraints and zones of influence,
 8.4.2-136
 purpose and operations, 8.4.2-135--136
 test modeling technical procedures,
 8.3.1.2-280--281

bulk-permeability tests in ESF activity,
 8.3.1.2-271--281
 description, 8.3.1.2-272--275
 methods and technical procedures,
 8.3.1.2-275--281
 objectives, 8.3.1.2-271--272
 parameters, 8.3.1.2-272

bulk sediments, geochemical analyses,
 8.3.1.5-50

Bullfrog Hills
 and stress field, 8.3.1.17-179

Bullfrog Member
 and drift-pumpback tests, 8.3.1.2-402**
 and well configurations test,
 8.3.1.2-386***-388**, -391**
 and multiple-well interference testing,
 8.3.1.2-394
 stratigraphy, 8.3.1.4-36*
 tuff column experiments, 8.3.1.3-109

Bullfrog nonwelded unit
 GWTT confidence levels, 8.3.5.12-19
 GWTT estimate (matrix flow), 8.3.5.13-63*

hydrogeologic cross section at Yucca
 Mountain, 8.3.5.13-57**

hydrologic section showing pinchouts,
 8.3.5.12-15**

isopach contour map showing thickness,
 8.3.5.12-12**

performance parameters, 8.3.5.12-22*
 travel time plot, 8.3.5.12-14**
 and unsaturated zone, 8.3.5.12-11

Bullfrog welded unit
 GWTT confidence levels, 8.3.5.12-19
 GWTT estimate (matrix flow), 8.3.5.13-63*

hydrogeologic cross section at Yucca
 Mountain, 8.3.5.13-57**

hydrogeologic section showing pinchouts,
 8.3.5.12-15**

Bullfrog welded unit (continued)

- isopach contour map showing thickness, 8.3.5.12-12**
- performance parameters, 8.3.5.12-21*
- travel time plot, 8.3.5.12-14**
- and unsaturated zone, 8.3.5.12-11

Bureau of Economic Analysis

- and socioeconomic data for water-use assessment, 8.3.1.9-44

Bureau of Land Management, see U.S. Bureau of Land Management

Bureau of Reclamation, see U.S. Bureau of Reclamation

buried fault detection using gamma-ray measurements activity, 8.3.1.17-175--176

- description, 8.3.1.17-175
- methods and technical procedures, 8.3.1.17-176
- objectives, 8.3.1.17-175
- parameters, 8.3.1.17-175

Busted Butte

- and compression tests, 8.3.1.15-42
- continuously cored holes, 8.3.1.4-33
- and eolian deposits, 8.3.1.5-73
- and geologic investigations, 8.3.1.4-29
- and ground magnetic and gravity surveys, 8.3.1.4-52
- and mapping, 8.3.1.17-160

C-hole complex

- and accessible environment, 8.3.1.2-370
- constant-flux withdrawal test, 8.3.1.2-385
- drift-pumpback tests, 8.3.1.2-401, -402**, -403
 - hydraulic tests, 8.3.1.2-370, -383--392
 - location, 8.3.1.2-395**
 - multiple-well interference testing, 8.3.1.2-370, -393--400
 - test well configuration, 8.3.1.2-391**
 - tracer tests, 8.3.1.2-371, -400--408
 - two-well convergent tests, 8.3.1.2-401, -403

C-hole site testing with conservative tracers

- activity, 8.3.1.2-400--408
- description, 8.3.1.2-400--404
- methods and technical procedures, 8.3.1.2-404--408
- objectives, 8.3.1.2-400
- parameters, 8.3.1.2-400

C-hole site testing with reactive tracers

- activity, 8.3.1.2-417--423
- description, 8.3.1.2-417--420
- methods and technical procedures, 8.3.1.2-420--423
- objectives, 8.3.1.2-417
- parameters, 8.3.1.2-417

calcite and opaline silica vein deposits

- activity, 8.3.1.5-110--118
- description, 8.3.1.5-111--113
- methods and technical procedures, 8.3.1.5-113--118
- objectives, 8.3.1.5-110
- parameters, 8.3.1.5-110--111

calcite and silica geothermometry, technical procedures for, 8.3.1.8-129

calcite geothermometry

- and heat flow, 8.3.1.8-128

calculational models for release scenario classes (Information Need 1.1.3),

- 8.3.5.13-129--135
 - application of results, 8.3.5.13-135
 - link to supporting information, 8.3.5.13-129
 - logic, 8.3.5.13-130--132
 - parameters, 8.3.5.13-129--130
 - performance assessment activity, 8.3.5.13-133--135
 - scenario class model development, 8.3.5.13-133--135
 - performance assessment subactivities, 8.3.5.13-133--135
 - basaltic volcanism release model development, 8.3.5.13-134
 - gas-phase release model development, 8.3.5.13-134
 - human intrusion release model development, 8.3.5.13-135
 - water pathway release model development, 8.3.5.13-133
 - technical basis, 8.3.5.13-129--132

calculational models to predict travel time (Information Need 1.6.2), see GWTT prediction models (Information Need 1.6.2)

calderas

- Black Mountain, 8.3.1.8-113
- Claim Canyon, 8.3.1.4-29
- Goldfield, 8.3.1.9-41
- Jefferson, 8.3.1.9-41
- Long Valley, 8.3.1.17-54
- Round Valley, 8.3.1.9-41

calibrated regional ground-water flow model
 technical procedures for, 8.3.1.5-122

Calico Hills
 characterization, conditional activity, 8.4.2-32--35
 and detachment faulting activities, 8.3.1.17-145--146
 and heat flow, 8.3.1.8-128
 and hydrocarbon assessment, 8.3.1.9-37
 mapping and analysis, technical procedures for, 8.3.1.17-146
 nonwelded tuff fracture significance, 8.3.1.2-156
 tuff block, 8.3.1.3-114
 tuff slabs, 8.3.1.3-113

Calico Hills test (ESF), 8.3.1.2-233, -236
 overcore stress experiments, 8.3.1.15-80--82

Calico Hills test (ESF) activity, 8.3.1.2-300

Calico Hills tuff
 diffusion tests in, 8.3.1.2-321
 and drift-pumpback tests, 8.3.1.2-402**
 importance of hydrologic properties, 8.3.1.2-236
 mass transfer kinetics, 8.3.1.3-106
 and seal performance, 8.3.5.11-5
 tuff column experiments, 8.3.1.3-107
 and well configurations test, 8.3.1.2-386***-388**, -391**
 and zeolitic material occurrence, 8.3.5.17-92, -94

Calico Hills unit
 and ground-water flow path, 8.3.5.8-7, 8.3.5.17-95
 and perched water, 8.3.1.2-236
 and radionuclide retardation, 8.3.5.8-9
 and saturated void spaces, 8.3.5.17-96

Calico Hills vitric unit
 and disturbed-zone performance goals, 8.3.5.12-56
 GWTT confidence levels, 8.3.5.12-19
 GWTT estimate (matrix flow), 8.3.5.13-63*
 and GWTTs, 8.3.5.12-13
 hydrogeologic section, 8.3.5.12-4**
 hydrogeologic section showing pinchouts, 8.3.5.12-15**
 hydrogeologic section at Yucca Mountain, 8.3.5.13-57**
 isopach contour map showing thickness, 8.3.5.12-12**

Calico Hills vitric unit (continued)
 performance allocation for disturbed zone definition, 8.3.5.12-59*
 and performance parameters, 8.3.5.12-21*
 as primary barrier, 8.3.5.12-50
 thickness of, 8.3.5.12-16
 travel time plot, 8.3.5.12-14**
 and unsaturated zone, 8.3.5.12-11

Calico Hills zeolitic unit
 GWTT confidence levels, 8.3.5.12-19
 GWTT estimate (matrix flow), 8.3.5.13-63*
 GWTTs, 8.3.5.12-13
 hydrogeologic section, 8.3.5.12-4**
 hydrogeologic section showing pinchouts, 8.3.5.12-15**
 hydrogeologic section at Yucca Mountain, 8.3.5.13-57**
 isopach contour map showing thickness, 8.3.5.12-12**
 performance allocation for disturbed zone definition, 8.3.5.12-59*
 and performance goals, 8.3.5.12-56
 and performance parameters, 8.3.5.12-21*
 travel time plot, 8.3.5.12-14**
 and unsaturated zone, 8.3.5.12-11

Camp Desert Rock detachment faults, 8.3.1.17-150--151

Cane Spring fault system evaluation activity, 8.3.1.17-142--143
 description, 8.3.1.17-142
 methods and technical procedures, 8.3.1.17-143
 objectives, 8.3.1.17-142
 parameters, 8.3.1.17-142

Cane Spring fault zone, 8.3.1.17-133, -134**

canister-scale heater experiment
 conceptual view, 8.4.2-119**
 constraints and zones of influence, 8.4.2-117, -120
 purpose and operations, 8.4.2-117
 thermal analysis, 8.4.2-204**

canister-scale heater experiment activity, 8.3.1.15-54--56
 description, 8.3.1.15-55
 methods and technical procedures, 8.3.1.15-55--56
 objectives, 8.3.1.15-54
 parameters, 8.3.1.15-54--55

capillary-driven water flow
 and fractures, 8.4.3-14

carbon-14
 analyses
 dating, 8.3.1.5-52
 rapid release (spent fuel), performance
 parameters, 8.3.5.9-21*, -34;
 8.3.5.14-4--5
 release from Zircaloy cladding
 (Subactivity 1.5.2.1.5), 8.3.5.10-49--50
 release rates, 8.3.5.10-13

carbon-14 dioxide conceptual transport model, 8.3.5.13-76--80

carbon-14 dioxide transport calculation (Activity 1.2.2.1), 8.3.5.14-12
 description, 8.3.5.14-12
 objectives, 8.3.5.14-12
 parameters, 8.3.5.14-12

carbon-14 gaseous pathway land surface and public dose calculation (Activity 1.2.2.2), 8.3.5.14-12--13
 description, 8.3.5.14-12--13
 objectives, 8.3.5.14-12
 parameters, 8.3.5.14-12

carbon cycle during recharge to ground-water system, technical procedures for, 8.3.1.5-42

carbonate aquifer, 8.3.1.3-89; 8.3.1.5-93, -100

carbonate caverns, 8.3.1.5-93, -100

carbonate mineral analysis, technical procedures for, 8.3.1.5-51

carbonate mineralogy, geochemical analyses of sediments, 8.3.1.5-50

carbonate transport by ground-water computer model, technical procedures for, 8.3.1.5-64

Cascade Range (Oregon), curie temperature and magnetic data, 8.3.1.8-124

cation and anion exchange capacity, technical procedures for, 8.3.1.2-421

CAVS
 and excavation-induced effects on permeability, 8.4.3-26
 jointed rock constitutive model, 8.4.3-26

CCDF, see complementary cumulative distribution functions

CD, see conceptual design

Cedar Mountain, location of, 8.3.1.17-100**

Cedar Mountain earthquake, 8.3.1.17-101, -103
 focal mechanism determination, technical procedures for, 8.3.1.17-127, -128

Cedar Mountain earthquake and Walker Lane wrench tectonics activity, 8.3.1.17-127--128
 description, 8.3.1.17-127--128

Cedar Mountain earthquake and Walker Lane wrench tectonics activity (continued)
 methods and technical procedures, 8.3.1.17-128
 objectives, 8.3.1.17-127
 parameters, 8.3.1.17-127

Cedar Mountain earthquake and Walker Lane wrench tectonics activity (continued)
 objectives, 8.3.1.17-127
 parameters, 8.3.1.17-127

cementitious and earthen material properties (Activity 1.12.2.1.1)
 description, 8.3.3.2-39
 objectives, 8.3.3.2-39

cementitious materials, degradation model, 8.3.3.2-40

centrifuge calibration and use, technical procedures for, 8.3.1.2-422

ceramic-metal, bimetallic/single metal, and coatings and filler alternative systems degradation models (Activity 1.4.3.3), 8.3.5.9-106--108
 subactivities, 8.3.5.9-106--108
 bimetallic/single metal systems
 degradation models, 8.3.5.9-107--108

ceramic-metal systems degradation models, 8.3.5.9-107

coatings and filler systems
 degradation models, 8.3.5.9-108

ceramic-metal, bimetallic/single metal, or coatings and filler system, degradation modes, (Activity 1.4.2.4), 8.3.5.9-78--86
 subactivities, 8.3.5.9-79--86
 bimetallic/single metal systems
 degradation mode assessment, 8.3.5.9-81--83

bimetallic/single metal systems
 laboratory test plan, 8.3.5.9-83--84

ceramic-metal systems degradation mode assessment, 8.3.5.9-79--80

ceramic-metal systems of the alternate barriers investigations laboratory test plan, 8.3.5.9-80--81

coatings and filler systems
 degradation mode assessment, 8.3.5.9-84

coatings and filler systems of the alternate barriers investigations laboratory test plan, 8.3.5.9-85--86

ceramic metal system degradation mode
 assessment (Subactivity 1.4.2.4.1),
 8.3.5.9-79--80
 description, 8.3.5.9-79--80
 objectives, 8.3.5.9-79
 parameters, 8.3.5.9-79
 ceramic-metal system degradation models
 (Subactivity 1.4.3.3.1), 8.3.5.9-107
 ceramic-metal system of the alternate barriers
 investigation laboratory test plan
 (Subactivity 1.4.2.4.2), 8.3.5.9-80--81
 chapter 8
 content, 8.0-2--5
 organization, 8.0-2--5
 characterization of modern regional climate
 study, see modern regional climate
 characterization study
 characterization of site ambient thermal
 conditions study, see ambient thermal
 conditions (site) study
 chemical alteration
 potentially likely conditions, evaluation
 of, 8.4.3-61
 chemical analyses
 ESF gases and fluids, 8.3.1.2-305
 Fortymile Wash samples, 8.3.1.2-129
 and geothermal assessment, 8.3.1.9-35,
 -36
 ground water, technical procedures for,
 8.3.1.16-19, -21, -23
 marsh sediments, 8.3.1.5-50
 rock matrix pore and fracture fluids,
 8.3.1.2-337--341
 soil water, technical procedures for,
 8.3.1.5-64, -71
 technical procedures for, 8.3.1.2-133,
 -426, -431, -433
 see also geochemical entries
 chemical and physical changes around dikes
 activity, 8.3.1.8-125--127
 description, 8.3.1.8-125--126
 objectives, 8.3.1.8-125
 methods and technical procedures,
 8.3.1.8-126--127
 parameters, 8.3.1.8-125
 chemical change and water use limitation
 water use and chemical changes,
 postclosure design function 2,
 8.3.2.2-12
 chemical changes from construction materials
 (Design Activity 1.11.4.1), 8.3.2.2-59
 chemical factor, zone of influence
 and exploratory shaft facility tests,
 8.4.2-98, -102*--104*
 chemical reaction of waste packages with rock
 potentially likely conditions, evaluation
 of, 8.4.3-60--61
 CHEMTRAN modeling, technical procedures for,
 8.3.1.5-42
 chloride and Cl-36
 constraints and zones of influence,
 8.4.2-141
 purpose and operations, 8.4.2-141
 chloride and Cl-36 measurements of percolation
 activity, 8.3.1.2-180--181
 description, 8.3.1.2-180--181
 methods and technical procedures,
 8.3.1.2-181
 objectives, 8.3.1.2-180
 parameters, 8.3.1.2-180
 chloride deposition
 and analog recharge, 8.3.1.5-107
 chronologic analysis of lake, playa, and marsh
 deposits activity, 8.3.1.5-51--54
 chronological methods, 8.3.1.5-53
 description, 8.3.1.5-52--53
 methods and technical procedures,
 8.3.1.5-53--54
 objectives, 8.3.1.5-51
 parameters, 8.3.1.5-52
 cladding (spent fuel)
 performance measures, 8.3.5.9-20*, -32--33
 stress corrosion cracking, 8.3.5.10-47
 Claim Canyon caldera
 and geologic investigations, 8.3.1.4-29
 CLAMS, see common Los Alamos mathematical
 software
 Class I or special source criteria and
 aquifers (Analysis 1.3.1.1), 8.3.5.15-7--8
 activities, 8.3.5.15-7--8
 demographic and economic data for
 special sources, 8.3.5.15-8
 hydrologic and environmental
 information for special source/
 aquifer determination, 8.3.5.15-7--8
 Class I or special sources of ground water
 (Information Need 1.3.1), 8.3.5.15-4, -6--9
 activities
 demographic and economic data for
 special sources, 8.3.5.15-8--9

Class I or special sources of ground water
 (Information Need 1.3.1) (continued)
 activities (continued)
 hydrologic and environmental
 information for special source/
 aquifer determination,
 8.3.5.15-7-8

analysis
 Class I or special source criteria
 and aquifers, 8.3.5.15-7--8

application of results, 8.3.5.15-9

link to supporting information,
 8.3.5.15-4, -6

logic, 8.3.5.15-7

parameters, 8.3.5.15-6--7

technical basis, 8.3.5.15-4, -6--7

Class I source
 criteria for designation, 8.3.5.15-2

clay mineralogy, potassium-argon dating
 procedures, 8.3.1.3-51

climate
 and erosion rates, 8.3.1.6-15--19
 future regional, 8.3.1.5-78--88 (see also
 future regional climate and environ-
 mental study)
 and runoff, 8.3.1.5-3; 8.3.1.6-2
 and water chemistry, 8.3.1.5-46, -50

climate change
 and foreshortened saturated zone,
 8.3.5.13-88
 and foreshortened unsaturated zone,
 8.3.5.13-84, -86
 and future regional hydrology study,
 8.3.1.5-118--119
 and future unsaturated-zone hydrology
 study, 8.3.1.5-119--120
 and geohydrology investigations,
 8.3.1.2-88
 and hydraulic gradient change, 8.3.5.13-88
 and increased flux, 8.3.5.13-84
 nature and rates investigation,
 8.3.1.5-33--89
 potentially likely conditions, evaluation
 of, 8.4.3-58
 and recharge activity, 8.3.1.5-121--122
see also nature and rates of climate
 change investigation

climate changes qualifying condition,
 8.3.5.18-14, -15
 preliminary finding, 8.3.5.18-4*

statement of, 8.3.5.18-14--15
 and 10 CFR 960.4-2-4(a), 8.3.5.18-14, -16

climate changes technical guidelines
 and higher level findings (Issue 1.9(a)),
 8.3.5.18-14--15

climate control
 disruptive scenario classes, evaluation
 of, 8.4.3-66climate data (long term)
 and extreme weather phenomena,
 8.3.1.12-26--28

climate effects on erosion investigation,
 8.3.1.6-15--19

activity
 future climate and erosion synthesis,
 8.3.1.6-18--19

application of results, 8.3.1.6-19

interrelationships, 8.3.1.6-4, -5**

link to supporting information, 8.3.1.6-15

logic diagram, 8.3.1.6-17**

parameters, 8.3.1.6-15

purpose and objectives, 8.3.1.6-16

study
 future climate and erosion,
 8.3.1.6-18--19

technical basis for, 8.3.1.6-15--16

climate effects on hydrology investigation,
 8.3.1.5-89--123

activities
 analog recharge studies,
 8.3.1.5-106--110

calcite and opaline silica vein
 deposits studies, 8.3.1.5-110--118

evaluation of past discharge areas,
 8.3.1.5-98--106

future surface hydrology due to
 climate changes, 8.3.1.5-118--119

future unsaturated-zone hydrology due
 to climate changes, 8.3.1.5-119--120

Quaternary unsaturated-zone hydro-
 chemical analysis, 8.3.1.5-96--98

recharge due to climate changes,
 saturated zone, 8.3.1.5-121--122

regional paleoflood evaluation,
 8.3.1.5-94--96

application of results, 8.3.1.5-122--123

link to supporting information, 8.3.1.5-89

parameters, 8.3.1.5-89--90

purpose and objectives, 8.3.1.5-91

studies, 8.3.1.5-89--123
 future regional hydrology due to
 climate changes, 8.3.1.5-118--123

climate effects on hydrology investigation
 (continued)
 studies (continued)
 Quaternary regional hydrology,
 8.3.1.5-93--118
 technical basis for, 8.3.1.5-89--93
 technical rationale, 8.3.1.5-91--93
 climate modeling, 8.3.1.5-37, -77, -81--82
 alternative models, 8.3.1.5-16--32
 empirical activity, 8.3.1.5-86--88
 global, 8.3.1.5-79--83
 linked global-regional, 8.3.1.5-84--86
 and paleoclimatic changes, 8.3.1.5-37, -42
 technical procedures, 8.3.1.5-84
 testing and evaluation, 8.3.1.5-37, -39,
 -58, -77, -83
 and vegetation, 8.3.1.5-59
 climate program, 8.3.1.5-1--127
 activity parameters provided by,
 8.3.1.5-7*--12*
 alternative conceptual models,
 8.3.1.5-16--32
 approach, 8.3.1.5-3--16
 and configuration of underground
 facilities (postclosure) (Issue 1.11),
 8.3.1.5-1--3, -2**
 constituent studies, 8.3.1.5-37
 current representation and alternative
 hypotheses
 regional model, 8.3.1.5-18*--21*
 paleoclimate model, 8.3.1.5-22*--25*
 paleohydrology model, 8.3.1.5-26*--31*
 and erosion program, 8.3.1.5-1--3, -2**
 and geochemistry program, 8.3.1.5-1--3,
 -2**
 and geohydrology program, 8.3.1.2-444;
 8.3.1.5-1--3, -2**
 and higher level findings--postclosure
 (Issue 1.9), 8.3.1.5-1--3, -2**
 hypothesis testing table, 8.3.1.5-18*--21*
 initiating events, 8.3.1.5-4*--5*
 interrelationships, 8.3.1.5-32--33
 investigations, 8.3.1.5-33--123
 climate effects on hydrology,
 8.3.1.5-89--123
 nature and rates of climate change,
 8.3.1.5-33--89
see specific investigation for study
and activity listings
 logic diagram, 8.3.1.5-2**
 major events and completion dates,
 8.3.1.5-125*--127*; 8.5-13, -14**, -15
 climate program (continued)
 8.3.1.5-1--3, -2**
 and meteorology program, 8.3.1.12-5
 and NRC siting criteria (Issue 1.8),
 overview, 8.3.1.5-1--33
 parameter calls for, 8.3.1.5-7*--12*
 performance and design requirements,
 summary, 8.3.1.5-1--3
 performance measures, 8.3.1.5-4*--5*
 and preclosure hydrology program,
 8.3.1.5-1--3, -2**
 schedule, 8.3.1.5-123--127*; 8.5-13, -14**
 and total system performance (Issue 1.1),
 8.3.1.5-1--3, -2**
 climate-vegetation relationships activity,
 8.3.1.5-57--59
 climatic implications of terrestrial
 paleoecology study, 8.3.1.5-54--59
 activities, 8.3.1.5-54--59
 pack rat midden analysis,
 8.3.1.5-54--56
 pollen samples analysis,
 8.3.1.5-56--57
 vegetation-climate relationships,
 8.3.1.5-57--59
 CLIMSIM, ventilation analysis, 8.3.2.5-73
 clinoptilolite-heulandite
 end-member free energies, 8.3.1.3-60--63
 solid solution descriptions,
 8.3.1.3-63--64
 solubilities, 8.3.1.3-61
see also zeolites
 clinoptilolite-heulandite and analcime (solid
 solution descriptions) activity,
 8.3.1.3-63--64
 description, 8.3.1.3-63--64
 methods and technical procedures,
 8.3.1.3-64
 objectives, 8.3.1.3-63
 parameters, 8.3.1.3-63
 cluster analysis routines, technical
 procedures for, 8.3.1.8-54
 coal mines, and earthquake activity,
 8.3.1.17-93
 coatings and filler systems degradation models
 (Subactivity 1.4.3.3.3), 8.3.5.9-108
 coatings and filler systems degradation modes
 (Subactivity 1.4.2.4.5), 8.3.5.9-84
 coatings and filler systems laboratory test
 plan (Subactivity 1.4.2.4.6),
 8.3.5.9-85--86
 description, 8.3.5.9-85--86

coatings and filler systems laboratory test plan (Subactivity 1.4.2.4.6) (continued)
 objectives, 8.3.5.9-85
 parameters, 8.3.5.9-85

COCORP, see Consortium for Continental Reflection Profiling

CODATA, see Committee on Data for Science and Technology

code documentation and verification, technical procedures for, 8.3.1.2-355

code validation, see validation of

COHMAP, 8.3.1.5-78

COLLOID, 8.3.1.3-121, -122

colloid behavior study, 8.3.1.3-93--95
 activities, 8.3.1.3-93--95
 colloid formation characterization and stability, 8.3.1.3-93--94
 colloid modeling, 8.3.1.3-94--95

colloid formation characterization and stability activity, 8.3.1.3-93--94
 description, 8.3.1.3-93--94
 methods and technical procedures, 8.3.1.3-94
 objectives, 8.3.1.3-93
 parameters, 8.3.1.3-93

colloid modeling activity, 8.3.1.3-94--95
 description, 8.3.1.3-94
 methods and technical procedures, 8.3.1.3-94
 objectives, 8.3.1.3-94
 parameters, 8.3.1.3-94

colloids, sorption on, 8.3.1.3-77--78

comment response document and site characterization plan correlation, 8.2-18*--49*

Committee on Data for Science and Technology
 and thermodynamic data compatibility, 8.3.5.10-63

common cause failure analysis
 and preclosure risk assessment methodology (PRAM) program, 8.3.5.1-11
 and radiological risks, 8.3.5.1-11
 and repository system analysis, 8.3.5.1-9

common Los Alamos mathematical software, 8.3.1.3-61--62, -64

communications and data management system, ESF, 8.4.2-163

compaction moisture-density relationships, technical procedures for, 8.3.1.14-47

compile waste package information needed (Design Activity 1.11.2.1)
 objective, 8.3.2.2-46

complementary cumulative distribution function (CCDF)
 conceptual and mathematical background, 8.3.5.13-4--25
 construction, governing equations, 8.3.5.13-3--25
 evaluation parameters, 8.3.5.13-92
 example of, 8.3.5.13-6**
 expansion of, 8.3.5.13-14**--15**
 and low-probability event consequences, 8.3.5.13-72
 and nominal scenario class, 8.4.3-52--53
 probabilities of, 8.3.5.13-18--23
 and release scenario classes, 8.3.5.13-135, -136, -137
 screening for, 8.3.5.13-16--18
 significant processes and events
 definitions, 8.3.5.13-3--4
 and simplified model construction, 8.3.5.13-66, -130, -134
 step in issue resolution strategy, 8.3.5.13-116
 and total system performance (Issue 1.1), 8.3.5.13-3--25
 and total system releases, 8.4.3-50, -52--53
 and total system simulator, 8.3.5.13-139
 U.S. Department of Energy approach, 8.3.5.13-23--25

complementary cumulative distribution function (CCDF) calculation (Performance Assessment Activity 1.1.5.1), 8.3.5.13-140--142
 objectives, 8.3.5.13-140
 subactivities
 complementary cumulative distribution function (CCDF) construction, 8.3.5.13-141--142
 joint probability distribution construction, 8.3.5.13-141
 total system simulator construction, 8.3.5.13-140--141

complementary cumulative distribution function (CCDF) construction (Subactivity 1.1.5.1.3), 8.3.5.13-141--142
 description, 8.3.5.13-142
 objectives, 8.3.5.13-141
 parameters, 8.3.5.13-142

compliance documentation (Design Activity 1.11.7.2)
 objective, 8.3.2.2-77

compliance with mining regulations, function 4
 functional requirement for mined geologic disposal system, 8.3.2.3-16, -28*

compliance with mining regulations
 (Information Need 2.7.4), 8.3.2.3-37, -38

compliance with radiological safety design
 criteria and performance goals (Design Activity 2.7.1.1)
 description, 8.3.2.3-42
 objectives, 8.3.2.3-42
 parameters, 8.3.2.3-42

compliance with retrieval requirements, see retrieval requirement compliance (Information Need 2.4.6)

compliant joint model
 and G-Tunnel heated block experiment, 8.4.3-32

compliant-jointed media
 and structural-thermal analysis, 8.3.2.5-68

composite fracture matrix model
 effects of increased flux on saturation, 8.4.3-13
 effects of water table rise, 8.4.3-13--14

compressibility-swell test--soils, technical procedures for, 8.3.1.14-52

compression testing, technical procedures for, 8.3.1.15-41, -42

compressive mechanical properties--environmental conditions effects activity, 8.3.1.15-41--42
 description, 8.3.1.15-41--42
 methods and technical procedures, 8.3.1.15-42
 objectives, 8.3.1.15-41
 parameters, 8.3.1.15-41

compressive mechanical properties of intact rock activity, 8.3.1.15-40--41
 description, 8.3.1.15-40--41
 methods and technical procedures, 8.3.1.15-41
 objectives, 8.3.1.15-40
 parameters, 8.3.1.15-40

computed impedance tomography, fluid flow, 8.3.4.2-52

computer code assessment
 and preclosure risk assessment methodology (PRAM) program, 8.3.5.19-3
 hydrologic modeling, 8.3.1.2-353--355

computer software validation, technical procedures for, 8.3.1.8-110, -114, -117 -120, -122 (see also validation)

concentration (1,000-yr) in special sources (Analysis 1.3.2.1), 8.3.5.15-9--10
 activity
 releases (1,000-yr) to special sources, 8.3.5.15-10

concentration (1,000-yr) in special sources (Information Need 1.3.2), 8.3.5.15-9--12
 activity
 releases (1,000-yr) to special sources, 8.3.5.15-10

analysis
 concentration (1,000-yr) in special sources, 8.3.5.15-9

application of results, 8.3.5.15-10

link to supporting information, 8.3.5.15-9
 logic, 8.3.5.15-9
 parameters, 8.3.5.15-9
 technical basis, 8.3.5.15-9

concentration limits
 dissolved species study, 8.3.1.3-88--92
 and solubility measurements, 8.3.1.3-89

concentration parameters (X/Q), 8.3.1.12-22--24

conceptual controlled area boundary
 map, 8.4.2-37**, -41**
 and proposed activities, 8.4.2-41**, -43*, -49*
 and water use for planned activities, 8.4.2-82--84*

conceptual design
 overall site plan, 8.3.1.14-32**
 summary, 8.3.2.1-6

conceptual model of mineral evolutions study, 8.3.1.3-64--65
 description, 8.3.1.3-64
 objectives, 8.3.1.3-64
 parameters, 8.3.1.3-64

conceptual models
 site description, 8.3.1.1-3

conceptual perimeter drift boundary
 definition, 8.4.2-19, -36, -37**--38**, -41**
 and evaporation rate, 8.4.3-18
 and existing surface-based activities, 8.4.2-37**--38**, -43**--45*, -48**--49*
 map, 8.4.2-37**, -41**

conceptual perimeter drift boundary
 (continued)

- natural precipitation and induced water, 8.4.3-17--18
- potentially significant disturbance activities, 8.4.2-48*
- and proposed activities, 8.4.2-41**, -43**-49*
- and USW H-7, 8.4.3-42
- water use for planned activities, 8.4.2-82**-84*

conditional testing, 8.4.2-32--36

- Calico Hills characterization, 8.4.2-32--35
- in situ stress, 8.4.2-36
- multipurpose borehole testing, 8.4.2-74--75, -145--147
- other planned activities, 8.4.2-35--36
- perched water, 8.4.2-36
- saturated zone single-well tests, 8.4.2-36
- systematic drilling program, 8.4.2-36
- see also contingency test

conductivity (thermal) characterization activity, 8.3.1.15-36--38

confidence and performance allocation definitions, 8.1-5--8

configuration of underground facilities (Issue 1.11)

- analytical tools, 8.3.2.1-21--22
- approach to issue resolution, 8.3.2.2-2**-3**, -5--20
- and climate program, 8.3.1.5-1--3, -2**
- design tradeoff analyses, 8.3.2.1-20*
- function and performance goal, 8.3.2.2-25**-36*
- geochemistry parameter calls, 8.3.1.3-2**, -3, -4**-9*, -11**
- and geohydrology program parameter calls, 8.3.1.2-5**, -23* -42**-47*
- and goals on water flow, 8.3.4.2-25--26
- information needs, 8.3.2.2-23--78
 - design constraints to limit excavation effects (1.11.5), 8.3.2.2-60--64
 - design constraints to limit water use (1.11.4), 8.3.2.2-54--59
 - reference postclosure underground designs (1.11.7), 8.3.2.2-75--78
 - site characteristics for underground facility design (1.11.1), 8.3.2.2-23--40

configuration of underground facilities (Issue 1.11) (continued)

- information needs (continued)
 - thermal loading/thermomechanical rock response (1.11.6), 8.3.2.2-65--75
 - underground facility orientation and layout (1.11.3), 8.3.2.2-44--54
 - waste package characteristics needed for design (1.11.2), 8.3.2.2-41--44
- see specific information need for design activity listings
- information needs and design function relationships, 8.3.2.2-22**
- interrelationships of information needs, 8.3.2.2-20--23
- issue resolution strategy, 8.3.2.2-1--96
- and Key Issue 1, 8.3.2.2-1, -4, -41
- logic diagram, 8.3.2.2-2**-3**
- major events and completion dates, 8.3.2.2-84**-96*; 8.5-81**-83**, -84--86
- and modeling, 8.3.2.1-20
- and other performance assessment and design issues, 8.3.2.1-2**; 8.3.4.1-2**, -3
- overview, 8.3.2.2-1--4, -2**-3**
- performance parameters, 8.3.2.2-25**-36*
- and postclosure performance assessment strategy, 8.3.5.8-3*
- postclosure tectonics program parameter calls, 8.3.1.8-2**, -6*
- preclosure hydrology program parameter calls, 8.3.1.16-1--2, -3**-4*, -5**
- regulatory basis for, 8.3.2.2-4--5
- schedule, 8.3.2.2-78--96; 8.5-80, -81**-83**, -84
- and seal characteristics (Issue 1.12), 8.3.3.2-6
- sealing design constraints, 8.3.3.2-13**-15*
- seismic analyses, 8.3.2.1-24
- surface characteristics program parameter calls, 8.3.1.14-2*, -3*, -15, -20*, -25, -26
- tentative goals, 8.3.2.2-25**-36*
- thermal and mechanical rock properties program parameter calls, 8.3.1.15-1, -2**-13*, -15**
- ventilation analyses, 8.3.2.1-24--25

confirmatory testing

- and summary schedules, 8.5-2

conodont analyses
 and hydrocarbon assessment,
 8.3.1.9-37-39

sampling plan, technical procedures for,
 8.3.1.9-39

consequence analysis
 construction accidents and
 radiological risk, 8.3.5.1-4

credible accidents, 8.3.5.5-27

and data base development, 8.3.5.1-10

and design basis accidents, 8.3.5.1-11

and mitigative measures, 8.3.5.1-12

and preclosure risk assessment methodology
 (PRAM) program, 8.3.5.1-11

and radiological risks
 in-plant, 8.3.5.1-11
 offsite, 8.3.5.1-11

and radiological safety assessment,
 8.3.5.5-17

conservative tracers
 and ESF percolation tests, 8.3.1.2-256

ground-water dye, 8.3.1.2-174, -175

and ground-water flow rates, 8.3.1.2-97

intact-fracture test, 8.3.1.2-233
 -241--242

technical procedures for, 8.3.1.2-408

use at C-hole sites, 8.3.1.2-371,
 -400--408

use throughout site, 8.3.1.2-408--417
see also tracers

Consortium for Continental Reflection Profiling, 8.3.1.17-105, -107*, -117

constraints on ESF layout
 and air quality and ventilation equipment
 8.4.2-131

and bulk-permeability test, 8.4.2-136

and cannister heater experiment,
 8.4.2-117, -120

and chloride and Cl-36 tests, 8.4.2-141

and demonstration breakout rooms,
 8.4.2-111

and diffusion tests, 8.4.2-140

and drift stability, 8.4.2-131

and engineered barrier system field tests,
 8.4.2-141, -143

and equipment development and
 demonstration, 8.4.2-127

and excavation effects test, 8.4.2-137,
 -139

and fracture mineralogy studies, 8.4.2-108

and geologic mapping of exploratory shafts
 and layout, 8.4.2-107

constraints on ESF layout (continued)
 and ground-support systems, 8.4.2-130

and heated block experiment, 8.4.2-122

and heated room experiment, 8.4.2-126

and heater experiment, 8.4.2-117

and hydrochemistry tests, 8.4.2-140

and hydrological properties of major
 faults encountered, 8.4.2-144--145

and in situ testing of seal components,
 8.4.2-132

and intact-fracture test, 8.4.2-135

and matrix hydrologic properties testing,
 8.4.2-133

and mining methods evaluation, 8.4.2-130

and multipurpose borehole testing,
 8.4.2-147

and overcore stress experiments, 8.4.2-133

and perched water test, 8.4.2-139

and percolation tests, 8.4.2-135

and plate loading tests, 8.4.2-127, -129

and radial borehole tests, 8.4.2-137

and rock-mass strength experiment,
 8.4.2-129

and seismic tomography and vertical
 seismic profiling, 8.4.2-108--109

and sequential drift mining, 8.4.2-114

and shaft convergence, 8.4.2-109

and thermal and mechanical laboratory
 tests, 8.4.2-144

and thermal stress measurements,
 8.4.2-122, -124

construction, routine activities, 8.3.5.1-4

construction and operational constraints
 and exploratory shaft facility tests,
 8.4.2-98, -99*--101*

construction control
 basis
 surface-based testing, 8.4.2-80--87

dry drilling, 8.4.2-81

formation invasion by fluid, 8.4.2-86--87

unsaturated zone hydrologic data and
 sample requirements, 8.4.2-81, -86

construction schedule
 DOE Order 4700.1, 8.3.2.1-7

and license application design,
 8.3.2.1-7

container
 design basis, 8.3.5.9-15

and engineered barrier system release,
 8.4.3-84

container (continued)
 environment
 underground facility configuration
 selection, postclosure design
 function 1, 8.3.2.2-11
 material design goal, 8.3.4.2-29--30
 scale analyses
 parameters, 8.3.2.2-69*--70*
 summary, 8.3.2.2-72--73
 spent fuel and high-level waste glass,
 8.3.5.9-2*
 container and liner corrosion effect on water
 chemistry (Activity 1.10.4.1.6), 8.3.4.2-48
 description, 8.3.4.2-48
 objectives, 8.3.4.2-48
 parameters, 8.3.4.2-48
 container degradation (Information Need
 1.4.4), 8.3.5.9-109--112
 activity, 8.3.5.9-110--112
 container degradation rates and
 mechanisms, 8.3.5.9-110--112
 application of results, 8.3.5.9-112
 link to supporting information,
 8.3.5.9-109
 logic, 8.3.5.9-110
 parameters, 8.3.5.9-109
 subactivities
 container degradation and failure rate
 calculations, 8.3.5.9-110--111
 container degradation and release
 probabilistic calculations,
 8.3.5.9-111--112
 technical basis, 8.3.5.9-109--110
 container degradation and failure rate
 calculations (Subactivity 1.4.4.1.1),
 8.3.5.9-110--111
 description, 8.3.5.9-110--111
 objectives, 8.3.5.9-110
 parameters, 8.3.5.9-110
 container degradation and release probabil-
 istic calculation (Subactivity 1.4.4.1.2),
 8.3.5.9-111--112
 description, 8.3.5.9-111--112
 objectives, 8.3.5.9-111
 parameters, 8.3.5.9-111
 container degradation models
 and austenitic alloys, 8.3.5.9-36
 inputs, 8.3.5.9-41*--44*
 and waste package model hierarchy,
 8.3.5.9-7**; 8.3.5.10-3**
 container degradation rates and mechanisms
 (Activity 1.4.4.1), 8.3.5.9-110--112
 subactivities, 8.3.5.9-110--112
 container degradation and failure rate
 calculations, 8.3.5.9-110--111
 container degradation and release
 probabilistic calculations,
 8.3.5.9-111--112
 container design configurations, vertical and
 horizontal emplacement, 8.3.5.9-3**
 container material properties (Information
 Need 1.4.2), 8.3.5.9-66--86
 activities, 8.3.5.9-68--86
 container material selection for
 license application design,
 8.3.5.9-68--70
 degradation modes--austenitic
 container materials, 8.3.5.9-74--78
 degradation modes--ceramic-metal,
 bimetallic/single metal, or coating
 and filler systems, 8.3.5.9-78--86
 degradation modes--copper-based
 container materials, 8.3.5.9-70--74
 application of results, 8.3.5.9-86
 link to supporting information,
 8.3.5.9-66
 parameters, 8.3.5.9-67--68
 subactivities, 8.3.5.9-68--71
 austenitic material degradation mode
 assessment, 8.3.5.9-75--76
 austenitic material laboratory tests,
 8.3.5.9-76--78
 bimetallic/single metal systems
 degradation mode assessment,
 8.3.5.9-81--83
 bimetallic/single metal systems
 laboratory test plan, 8.3.5.9-83--84
 ceramic-metal system degradation mode
 assessment, 8.3.5.9-79--80
 ceramic-metal systems of the alternate
 barriers investigations laboratory
 test plan, 8.3.5.9-80--81
 coatings and filler systems
 degradation mode assessment,
 8.3.5.9-84
 coatings and filler systems of the
 alternate barriers investigations
 laboratory test plan, 8.3.5.9-85--86
 copper-based materials laboratory test
 plan, 8.3.5.9-72--74
 container material selection,
 8.3.5.9-70

container material properties (Information Need 1.4.2) (continued)
 subactivities (continued)
 container selection criteria
 establishment, 8.3.5.9-68--70
 degradation mode assessment--
 copper-based materials,
 8.3.5.9-71--72
 technical basis, 8.3.5.9-66

container material selection (Subactivity 1.4.2.1.2), 8.3.5.9-70

container material selection for license application design (Activity 1.4.2.1), 8.3.5.9-68--70
 subactivities, 8.3.5.9-68--70
 container material selection,
 8.3.5.9-70
 container selection criteria
 establishment, 8.3.5.9-68--70

container mechanical properties (alternative barrier) (Subactivity 1.4.1.2.1), 8.3.5.9-61
 objectives, 8.3.5.9-61
 parameters, 8.3.5.9-61

container mechanical properties (metal) (Subactivity 1.4.1.1.1), 8.3.5.9-51--52
 description, 8.3.5.9-51--52
 objectives, 8.3.5.9-51
 parameters, 8.3.5.9-51

container microstructural properties (alternative barrier) (Subactivity 1.4.1.2.3), 8.3.5.9-62--63
 description, 8.3.5.9-62--63
 objectives, 8.3.5.9-62
 parameters, 8.3.5.9-62

container microstructural properties (metal) (Subactivity 1.4.1.1.2), 8.3.5.9-52--54
 description, 8.3.5.9-53--54
 objectives, 8.3.5.9-52
 parameters, 8.3.5.9-52--53

container nondestructive characterization (alternative barrier) (Subactivity 1.4.1.2.5), 8.3.5.9-63--64
 description, 8.3.5.9-64
 objectives, 8.3.5.9-63
 parameters, 8.3.5.9-64

container performance allocation, 8.3.5.9-19--47

container performance parameters, 8.3.5.9-37**--40*

container physical properties (metal) (Subactivity 1.4.1.1.3), 8.3.5.9-54--55
 description, 8.3.5.9-55

container physical properties (metal)
 (Subactivity 1.4.1.1.3) (continued)
 objectives, 8.3.5.9-54
 parameters, 8.3.5.9-55

container selection criteria establishment (Subactivity 1.4.2.1.1), 8.3.5.9-68--70
 description, 8.3.5.9-70
 objectives, 8.3.5.9-68
 parameters, 8.3.5.9-68--70

container stress state (metal) (Subactivity 1.4.1.1.4), 8.3.5.9-55--56
 description, 8.3.5.9-55--56
 objectives, 8.3.5.9-55
 parameters, 8.3.5.9-55

container surface characterization (metal) (Subactivity 1.4.1.1.6), 8.3.5.9-58--59
 description, 8.3.5.9-59
 objectives, 8.3.5.9-58
 parameters, 8.3.5.9-58

container testing program, 8.3.5.9-15--16

container thermophysical properties (alternative barrier) (Subactivity 1.4.1.2.4), 8.3.5.9-63
 discussion, 8.3.5.9-63
 objectives, 8.3.5.9-63
 parameters, 8.3.5.9-63

container weld integrity (metal) (Subactivity 1.4.1.1.5), 8.3.5.9-56--58
 description, 8.3.5.9-57--58
 objectives, 8.3.5.9-56--57
 parameters, 8.3.5.9-57

containment
 barrier, sealed, 8.3.5.9-15
 barrier degradation, see container degradation entries
 barrier material properties, see container material properties (Information Need 1.4.2)
 requirements by EPA, 8.3.5.13-6**
 substantially complete, 8.3.4.3--4

containment by waste package (Issue 1.4), 8.3.5.9-1--119
 approach, 8.3.5.9-11--47
 assessment and reduction of uncertainties, 8.3.5.9-17--18
 and conceptual model of mineral evolution, 8.3.1.3-64

container performance parameter goals, 8.3.5.9-35--44

containment period performance parameter goals, 8.3.5.9-29

containment by waste package (Issue 1.4)
 (continued)
 containment period segment rationale,
 8.3.5.9-24--29
 and contingency plan, 8.3.2.2-38
 design consideration, 8.4.3-35
 design criteria, and effects of site
 characterization activities,
 8.4.3-75--79
 and drainage and moisture control plan,
 8.3.2.2-37
 and EBS release rates (Issue 1.5),
 8.3.5.10-1--2, -3**, -29, -34
 engineered environment performance
 parameter goals, 8.3.5.9-31--35
 and geochemical/geophysical model,
 8.3.1.3-123
 and hydrology of waste package
 environment, 8.3.4.2-25
 impacts on, 8.4.3-73--81
 of site characterization activities,
 8.4.3-73--81
 information needs, 8.3.5.9-47--114
 container degradation (1.4.4),
 8.3.5.9-109--112
 container material properties (1.4.2),
 8.3.5.9-66--86
 substantially complete containment of
 waste (1.4.5), 8.3.5.9-112--114
 waste package design features
 (affecting container performance)
 needed (1.4.1), 8.3.5.9-47--66
 waste package scenarios and models
 needed (1.4.3), 8.3.5.9-86--109
see specific information need for
activity and subactivity lists
 interrelationships of information needs,
 8.3.5.9-47
 issue resolution strategy, 8.3.5.9-1--47;
 8.4.3-73--75
 major events and completion dates,
 8.3.5.9-116**-118*; 8.5-65, -66**, -67
 model hierarchy, 8.3.5.9-7**
 models and model inputs, 8.3.5.9-41**-44*,
 -47
 and other design and performance
 assessment issues, 8.3.2.1-2**;
 8.3.4.1-1, -2**, -3
 parameter calls from Issue 1.10,
 8.3.4.2-11**-22*
 performance allocation, 8.3.5.9-19--47

containment by waste package (Issue 1.4)
 (continued)
 performance measures/goals,
 8.3.5.9-9**-10*
 postclosure guideline qualifying and
 disqualifying conditions,
 8.3.5.18-7--8
 and postclosure performance assessment,
 8.3.5.8-2, -3*, -4
 postclosure performance objectives,
 8.4.3-1, -2, -3
 reference approach, 8.3.5.9-8**
 and reference postclosure repository
 design (Information Need 1.11.7),
 8.3.2.2-75, -77
 regulatory basis for, 8.3.1.2-2;
 8.3.5.9-1--11
 schedule, 8.3.5.9-114--119; 8.5-65, -66**,
 -67
 and system guideline qualifying condition
 --postclosure, 8.3.5.18-7--8, -9
 testing programs, 8.3.5.9-5--11, -15--16
 and total system performance (Issue 1.1),
 8.3.5.9-7**
 waste form performance parameter goals,
 8.3.5.9-31--35
 water quality performance parameters
 and goals (Issue 1.4), 8.3.5.9-13**-14*

containment enhancement strategy (Design
 Activity 1.11.6.4), 8.3.2.2-74
 contamination
 by exploratory activities, 8.3.1.2-154
 of gas samples, 8.3.1.2-335
 contingency plan, product 1.11.3-5,
 8.3.2.2-49*, -51--52
 contingency plan criteria (Design Activity
 1.11.3.5), 8.3.2.2-54
 contingency test
 perched water test, 8.4.2-139
see also conditional testing
 continuously cored holes, proposed,
 8.3.1.4-33, -34**
 controlled area
 and accessible environment, 8.3.5.12-2**
 definition, 8.4.2-36, -39
 and discharge points, 8.3.1.5-13;
 8.3.1.8-88, -93, -94
 distribution coefficients, 8.3.1.8-99,
 -101, -103--104
 and disturbed zone (10 CFR 60.2),
 8.3.5.12-55, -57
 DOE interpretation, 8.3.5.13-2

controlled area (continued)

- and dose calculation, 8.3.5.14-2, -4, -9--10
- and drillholes, 8.3.1.9-32, -45
- and erosion, 8.3.1.6-27, -28; 8.3.1.9-15--19
- and faults, 8.3.1.8-68--69, -84--85, -86, -91, -93--94, -96, -97, -101, -103--105
- and geochemical processes, 8.3.5.17-52
- and human intrusion, 8.3.5.13-82, -83; 8.3.5.17-20
- and increased infiltration, 8.3.5.13-84
- and irrigation, 8.3.1.9-50
- and land ownership and mineral rights, 8.3.1.11-1, -2--3
- location, 8.3.5.12-2**
- and mineral change, 8.3.1.8-98--99
- mineral change from tectonically induced change in water table activity, 8.3.1.8-101, -104
- and NRC siting criteria favorable conditions, 8.3.5.17-2*
- and NRC siting criteria potentially adverse conditions, 8.3.5.17-7--8
- and perched aquifers, 8.3.1.8-88, -89, -90, -93--94
- potentially significant disturbance activities, 8.4.2-48*
- and Quaternary faults, 8.3.1.8-27, -64, -68--70, -74, -81, -86, -94, -96, -101
- and resource exploration, 8.3.1.9-21, -23
- and site ownership qualifying condition, 8.3.5.18-21
- and special sources of ground water, 8.3.5.15-2, -4, -6, -7--8
- and tectonic processes, 8.3.1.8-29
- uplift rates in, 8.3.1.8-87
- volcanic/igneous events probability, 8.3.1.8-26, -74, -75--83, -76**--78**, -89--90, -95, -100**, -102, -106, -107--113, -117
- and water table, 8.3.1.8-74, -79, -80, -88--94; 8.3.5.17-48
- 10 CFR Part 60 definition, 8.3.1.9-2
- 40 CFR Part 191 definition, 8.3.5.12-1
- see also conceptual controlled area boundary

controlled blasting

- design consideration, 8.4.3-35

cooperative testing with waste producers (Subactivity 1.5.2.2.3), 8.3.5.10-53--54

copper and copper alloy degradation models (Activity 1.4.3.1), 8.3.5.9-88--97

- subactivities, 8.3.5.9-89--97
 - aqueous (general) corrosion (copper), 8.3.5.9-91--92
 - degradation modes (other copper), 8.3.5.9-97
 - hydrogen entry and embrittlement (copper), 8.3.5.9-93
 - low temperature oxidation (copper), 8.3.5.9-90--91
 - metallurgical aging and phase stability (copper), 8.3.5.9-89--90
 - pitting, crevice, and other localized attack (copper), 8.3.5.9-94--95
 - stress corrosion cracking (copper), 8.3.5.9-95--97

copper-based alloys, 8.3.5.9-49

- and creep, 8.3.5.9-52
- and embrittlement, 8.3.5.9-44, -54, -57, -72, -89, -92, -93
- failure model inputs, 8.3.5.9-41*--42*
- performance parameters/goals, 8.3.5.9-37*--38*
- selective leaching, 8.3.5.9-94, -95
- and stress corrosion cracking, 8.3.5.9-71--72
- and yield strength comparison, 8.3.5.9-56

copper-based container materials (candidate)

- degradation modes (Activity 1.4.2.2), 8.3.5.9-70--74
 - subactivities, 8.3.5.9-71--74
 - copper-based materials degradation modes, 8.3.5.9-71--72
 - copper-based materials laboratory test plan, 8.3.5.9-72--74

copper-based materials degradation mode assessment (Subactivity 1.4.2.2.1), 8.3.5.9-71--72

- description, 8.3.5.9-71--72
- objectives, 8.3.5.9-71
- parameters, 8.3.5.9-71

copper-based materials laboratory tests (Subactivities 1.4.2.2.2--1.4.2.2.8), 8.3.5.9-72--74

- description, 8.3.5.9-73--74
- objectives, 8.3.5.9-73
- parameters, 8.3.5.9-73

core and rubble-core technical procedures

- sample collection and transportation, 8.3.1.2-307
- sample water extraction, 8.3.1.2-309, -340

core samples
 for matrix-hydrologic property tests,
 8.3.1.2-187*
 for permeability tests, 8.3.1.2-185*--186*

core technical procedures
 outcrop paleomagnetic testing,
 8.3.1.4-63--64
 outcrop petrographic analysis, 8.3.1.4-63
 outcrop sampling, 8.3.1.4-63, -64
 petrography, 8.3.1.3-51
 sampling, 8.3.1.2-319; 8.3.1.15-83
 sampling and fracture logging, 8.3.1.4-73
 wet and dry-lake sediments, 8.3.5.9-103

coreholes, geologic
 drilled with water, 8.4.3-42

Corn Creek Springs
 and relevel network, 8.3.1.17-195

corrosion, aqueous, see aqueous corrosion entries

corrosion, intergranular, see intergranular stress corrosion cracking

corrosion, potentially likely conditions, evaluation of, 8.4.3-60

corrosion, transgranular, see transgranular stress corrosion cracking

corrosion and release from spent fuel waste form (Subactivity 1.5.2.1.4), 8.3.5.10-49

corrosion and the Ross study, 8.3.5.13-39

corrosion of Zircaloy (Subactivity 1.5.2.1.3), 8.3.5.10-46--48

corrosive container environment limitation
 design thermal loading, postclosure design function 4, 8.3.2.2-20

Coso volcanic field, 8.3.1.17-54
 and stress field, 8.3.1.17-179

coupled behavior, relevance, 8.3.2.1-13--14

coupled hydraulic-mechanical finite element model validation, 8.3.1.2-293, -295

coupled interaction tests, 8.3.2.1-13--18
 studies and activities summary,
 8.3.2.1-15*--18*

coupled phenomena affecting transport, 8.3.1.3-119--122

COVE codes
 benchmarking codes, 8.3.5.20-3--5
 code verification, 8.3.5.20-3--5
 Environmental Consultants, Inc.,
 8.3.5.20-4*
 Lawrence Berkeley Laboratory, 8.3.5.20-4*, -5*
 Lawrence Livermore National Laboratory,
 8.3.5.20-5*

COVE codes (continued)
 Los Alamos National Laboratory,
 8.3.5.20-4*
 Pacific Northwest Laboratory, 8.3.5.20-4*
 participants and codes, 8.3.5.20-3, -4*, -5*
 Sandia National Laboratories, 8.3.5.20-3, -4*, -5*

COYOTE
 drift analysis, 8.3.2.5-73
 and performance assessment, 8.3.5.19-2*, -4*
 ventilation analysis, 8.3.2.5-73

Coyote Wash
 exploratory shaft facility location,
 8.4.2-155--156
 and meteorological towers,
 8.3.1.12-17--18, -18*

CPDB, see conceptual perimeter drift boundary

Crater Flat
 and aeromagnetic anomalies, 8.3.1.8-108
 breccia and detachment faulting,
 8.3.1.17-149, -150
 and geochemistry studies, 8.3.1.8-53
 geophysical data, 8.3.1.8-56
 hypersthene- to nepheline-normative basalt, 8.3.1.8-53
 megabreccia evaluation, technical procedures for, 8.3.1.17-150
 and paleomagnetic sampling, 8.3.1.17-123
 and shallow seismic reflection,
 8.3.1.17-178
 and water-table holes, 8.3.1.2-119

Crater Flat tuff
 and drift-pumpback tests, 8.3.1.2-402**
 surface outcrop mapping, technical procedures for, 8.3.1.4-40
 and well configurations test,
 8.3.1.2-386**--388**, -391**

Crater Flat unit
 and ground-water flow path, 8.3.5.8-7

credibility assessment of initiating events, 8.3.1.9-50

credible repository accidents information need surface characteristics program parameter calls, 8.3.1.14-19*, -21*, -64
 see also repository accidents (credible) (Information Need 2.3.1)

creep, 8.3.5.9-52

crest-stage gage network, 8.3.1.2-105--106

criteria for contingency plan, product
 1.11.3-5
 information needed, 8.3.2.2-49*
 status, 8.3.2.2-51--52

criteria for contingency plan (Design Activity
 1.11.3.5)
 objective, 8.3.2.2-54

criticality accidents
 technical guidance, 8.3.5.4-3

criticality control, function 3
 functional requirement for mined geologic
 disposal system, 8.3.2.3-15--16,
 -27*--28*

criticality control (Information Need 2.7.3),
 8.3.2.3-43--45
 application of results, 8.3.2.3-45
 and flooding data, 8.3.2.3-44
 interrelationships, 8.3.2.3-36--39
 link to the technical data, 8.3.2.3-43
 logic, 8.3.2.3-44--45
 and meteorological data, 8.3.2.3-43--44
 parameters, 8.3.2.3-43--44
 and potential accident data, 8.3.2.3-44
 and seismic concerns, 8.3.2.3-43
 technical basis for, 8.3.2.3-43

cross-contact testing, technical procedures
 for, 8.3.1.2-291--292

cross-hole technical procedures
 air-injection testing, 8.3.1.2-319
 pneumatic, 8.3.1.2-263--264
 water-injection testing, 8.3.1.2-319

cross-hole testing
 bulk-permeability test, 8.3.1.2-274
 and radial borehole tests, 8.3.1.2-285
 technical procedures for, 8.3.1.2-397--398

cross sections
 exploratory shafts, 8.4.2-168**
 geologic structure south of site,
 8.3.1.14-38**
 geologic structure through Exile Hill,
 8.3.1.14-37**
 hydrogeologic, 8.3.5.12-4**; 8.3.5.13-57**
 topographic, exploratory shafts,
 8.4.3-69**

CRRIS system
 and preclosure safety assessment,
 8.3.5.19-9*, -10*

crushed rock column method, technical
 procedures for, 8.3.1.3-82

crushed tuff column experiments activity,
 8.3.1.3-101--105
 description, 8.3.1.3-104

crushed tuff column experiments activity
 (continued)
 methods and technical procedures,
 8.3.1.3-104--105
 objectives, 8.3.1.3-101--103
 parameters, 8.3.1.3-103

crushed tuff column method, technical
 procedures for, 8.3.1.3-105

crustal magnetic sources, limiting depth of,
 8.3.1.8-124

crustal movement (lateral), regional
 characterization study, 8.3.1.17-198--199
 activity
 crustal movement (lateral) analysis,
 8.3.1.17-198--199

crustal movement (lateral) analysis activity,
 8.3.1.17-198--199
 description, 8.3.1.17-199
 methods and technical procedures,
 8.3.1.17-199
 objectives, 8.3.1.17-198
 parameters, 8.3.1.17-198

Crystal Springs Valley
 and relevel network, 8.3.1.17-195

CSIR, see South African Council for Scientific
 and Industrial Research

cultural and agricultural data
 and public radiological exposure,
 8.3.1.13-1, -2
 and radiological protection (Information
 Need 2.7.1), 8.3.2.3-39

cumulative distribution function
 calculation of, 8.3.5.13-8--11
 and complementary cumulative distribution
 function (CCDF), 8.3.5.13-5

and Environmental Protection Agency
 containment standard, 8.3.5.13-5

cumulative slip earthquake characterization
 activity, 8.3.1.17-72--74

curie temperature determination, 8.3.1.4-61,
 -62

curie temperature isotherm depth evaluation
 activity, 8.3.1.8-124--125
 description, 8.3.1.8-124
 methods and technical procedures,
 8.3.1.8-124--125
 objectives, 8.3.1.8-124
 parameters, 8.3.1.8-124

current confidence
 and performance allocation tables,
 8.1-9--10

current site conditions, potential impacts to
 from deep borings drilled dry,
 8.4.3-40--41
 from drilling activities, 8.4.3-38--43
 from exploratory shaft construction,
 8.4.3-43--46
 from exploratory shaft facility
 activities, 8.4.3-48--50
 from geochemical disturbances, 8.4.3-38
 from geologic coreholes drilled with
 water, 8.4.3-42
 from hydrologic disturbances, 8.4.3-37--38
 from saturated-zone boreholes,
 8.4.3-42--43
 from shallow borings drilled dry,
 8.4.3-39--40
 from surface-related activities,
 8.4.3-37--38
 from thermal/mechanical disturbance,
 8.4.3-38
 from underground construction,
 8.4.3-46--48

DACRIN

and performance assessment, 8.3.5.19-2*,
 -4*
 and preclosure safety assessment,
 8.3.5.19-9*, -10*

DAF, see U.S. Department of the Air Force
 data analysis, technical procedures for
 volcanic activity, 8.3.1.8-52, -54, -60,
 -61--62

data recording, processing, transmission, and
 archiving, technical procedures for,
 8.3.1.2-218--221, -229--232

data requirements list

site characteristics for underground
 facility design (Information Need
 1.11.1), 8.3.2.2-23

DATATRIEVE, 8.3.1.3-79

dating

basaltic volcanism, 8.3.1.8-112--115
 and climate program, 8.3.1.5-67, -68,
 73--74
 surficial deposits, 8.3.1.5-67, -68
 technical procedures
 aeromagnetic anomalies, 8.3.1.8-111*
 alluvial surfaces, 8.3.1.5-95
 eolian sands by identification of
 volcanic ash, 8.3.1.5-76

dating (continued)

technical procedures (continued)
 Fortymile Wash terraces,
 8.3.1.6-12--13
 geochemical cycles, 8.3.1.8-123
 geochronology studies, 8.3.1.8-114
 lake, playa, and marsh deposits,
 8.3.1.5-53--54
 Quaternary deposits, 8.3.1.17-97
 soils, 8.3.1.5-65
 unconsolidated stream-channel
 deposits, 8.3.1.5-95

DBA, see design basis accidents

DBR, see demonstration breakout rooms

Death Valley

discharge area, 8.3.1.5-98
 eruption trends, 8.3.1.8-121
 hydrogeologic study area locations,
 8.3.1.2-94, -95**
 and magma bodies, 8.3.1.8-55
 and relevel network, 8.3.1.17-195
 Death Valley-Furnace Creek fault zone,
 8.3.1.17-97, -100**, -103
 Quaternary recurrence rate, 8.3.1.17-123,
 -126

Death Valley-Pancake Range belt

detachment and wrench faults and volcanic
 rocks, 8.3.1.17-201
 and relevel network, 8.3.1.17-195

Death Valley-Pancake Range fault zone
 and volcanism, 8.3.1.17-204

debris deposits, technical procedures for,
 8.3.1.5-95

debris hazards

and flood activity, 8.3.1.16-10--14
 and regional paleoflood evaluation,
 8.3.1.5-94; 8.3.1.16-10

debris transport by runoff activity,
 8.3.1.2-112--114

description, 8.3.1.2-113

methods and technical procedures,
 8.3.1.2-113--114

objectives, 8.3.1.2-112

parameters, 8.3.1.2-112

debris transport characterization, technical
 procedures for, 8.3.1.16-13

debris transport quantity and characteristics
 determination, technical procedures for,
 8.3.1.2-113--114

decision aiding methodology study

and potentially significant scenarios,
 8.3.5.13-26

decision points
 logic diagram, 8.5-105, -106**
 site characterization program, 8.5-1--118,
 -107*--109*
 for Yucca Mountain Project, 8.5-105--109
see also schedule

decision tree analysis, and potential impacts
 of introduced materials, 8.4.3-23--24

decommissioning, 8.7-2--6
 backfilling, 8.7-2
 backfilling trenches, 8.7-3
 definition, 8.7-2
 ESF, 8.7-3--4
 and Federal and State agency
 evaluation, 8.7-3
 radiological risk, 8.3.5.1-6
 repository, 8.7-1
 sealing drillholes, 8.7-3

decommissioning accidents
 and radiological risk, 8.3.5.1-6

decontamination, 8.7-2

deep borings drilled dry
 potential impacts of geochemical
 disturbance, 8.4.3-41
 potential impacts of hydrologic
 disturbance, 8.4.3-41
 potential impacts of thermal/mechanical
 disturbance, 8.4.3-41

deformation measurements (laboratory),
 technical procedures for, 8.3.1.15-80

degradation of markers investigation,
 8.3.1.9-15--20
 activities
 erosion and deposition effects on
 marker survivability synthesis
 activity, 8.3.1.9-19--20
 tectonic/seismic/volcanic hazards
 data synthesis activity, 8.3.1.9-19

application of results, 8.3.1.9-20

link to supporting information,
 8.3.1.9-15--16

logic diagram, 8.3.1.9-17**

parameters, 8.3.1.9-16

purpose and objective of investigation,
 8.3.1.9-16

study
 natural processes and markers
 survivability, 8.3.1.9-18

technical basis for, 8.3.1.9-15--16

technical rationale, 8.3.1.9-18

degradation mode assessment--austenitic
 materials (Subactivity 1.4.2.3.1),
 8.3.5.9-75--76

degradation mode assessment--copper-based
 materials (Subactivity 1.4.2.2.1),
 8.3.5.9-71--72
 description, 8.3.5.9-71--72
 objectives, 8.3.5.9-71
 parameters, 8.3.5.9-71

degradation model for cementitious materials
 (Design Activity 1.12.2.2)
 description, 8.3.3.2-40
 objectives, 8.3.3.2-40

degradation models (waste containers),
 8.3.5.9-36, -41*--44*
 austenitic alloys (Activity 1.4.3.2),
 8.3.5.9-97--106
 ceramic-metal, bimetallic/single metal,
 and coatings and filler alternate
 systems (Activity 1.4.5.3),
 8.3.5.9-106--108
 copper and copper alloys (Activity
 1.4.3.1), 8.3.5.9-88--97
 inputs, 8.3.5.9-41*--44*

degradation modes (other austenitic)
 (Subactivity 1.4.3.2.8), 8.3.5.9-106

degradation modes (other copper) (Subactivity
 1.4.3.1.7), 8.3.5.9-97

degradation modes (waste container),
 8.3.5.9-37*--40*
 austenitic alloys (Activity 1.4.2.3),
 8.3.5.9-74--78
 ceramic-metal, bimetallic/single metal,
 and coatings, and filler alternate
 systems (Activity 1.4.2.4),
 8.3.5.9-78--86
 copper-based materials (Activity 1.4.2.2),
 8.3.5.9-70--74

dehydration/rehydration (minerals) activity,
 8.3.1.3-52--54

dehydration/rehydration processes
 hydrologic properties of near field,
 8.3.4.2-53

demagnetization, thermal, 8.3.1.4-61, -62

demographic and economic data for special
 sources (Activity 1.3.1.1.2), 8.3.5.15-8--9
 description, 8.3.5.15-8
 objectives, 8.3.5.15-8
 parameters, 8.3.5.15-8

demonstration breakout rooms
 analysis of stress-altered regions,
 8.4.2-205--207, -206**

demonstration breakout rooms (continued)
 constraints and zones of influence,
 8.4.2-111
 effects
 in situ experiment analyses,
 8.4.3-31--32
 thermal/mechanical analyses,
 8.4.3-31--32
 purpose and operations, 8.4.2-111
 stress analyses, 8.4.3-31--32
see also main test level demonstration
 breakout room and upper demonstration
 breakout room

demonstration breakout rooms activity,
 8.3.1.15-48--49
 description, 8.3.1.15-48
 methods and technical procedures,
 8.3.1.15-48--49
 objectives, 8.3.1.15-48
 parameters, 8.3.1.15-48

density, technical procedures for
 rock, 8.3.1.4-63
 soil, 8.3.1.14-47, -48
see also bulk density and grain density

density and porosity characterization
 activity, 8.3.1.15-31--34
 description, 8.3.1.15-31, -33
 methods and technical procedures,
 8.3.1.15-33--34
 objectives, 8.3.1.15-31
 parameters, 8.3.1.15-31

Department of the Air Force, see U.S.
 Department of the Air Force

Department of Commerce, see U.S. Department
 of Commerce

Department of Energy, see U.S. Department of
 Energy

Department of the Interior, see U.S.
 Department of the Interior

deposition
 and marker system, 8.3.1.9-19--20

desert geomorphic processes
 and erosion, 8.3.1.6-7

Desert Research Institute, 8.3.1.12-10

desert varnish dating
 technical procedures for,
 8.3.1.8-114--115
 and tectonically stable areas,
 8.3.1.17-187--188

design
 assessment
 and radiological safety design,
 8.3.2.3-16

criteria
 for geologic repository operations
 area, 8.3.2.3-3, -4*--11*

and International Committee on
 Radiation Protection, 8.3.2.3-16

and public radiological exposures
 (Issue 2.1), 8.3.5.3-9

and radiological safety design,
 8.3.2.3-1--39

for retrieval, 8.3.5.2-25--26

waste package features, 8.4.3-79--81

envelope, waste package
 emplacement hole and near-field
 hydrologic system, 8.3.4.2-25--26

emplacement hole configuration and
 stability, 8.3.4.2-27--28

emplacement hole drainage,
 8.3.4.2-26--27

emplacement hole geochemical system,
 8.3.4.2-23--24

environment alteration from nonwaste
 package components, 8.3.4.2-31--32

waste package container material
 8.3.4.2-29--30

waste package fabrication and handling
 before emplacement, 8.3.4.2-30--31

waste package thermal loading and
 repository layout, 8.3.4.2-28--29

see also waste package, design
 envelope

flexibility
 construction and operations plans,
 8.4.2-219

exploratory shaft facility layout,
 8.4.2-218

ground support, 8.4.2-219

operational schedule, 8.4.2-219

underground facility, 8.4.2-218--219

function 1 (postclosure), see underground
 facility configuration selection

function 2 (postclosure), see water use
 and chemical change limitation

function 3 (postclosure), see
 excavation-induced change limitation

function 4 (postclosure), see design
 thermal loading

interrelationships with performance
 assessment issues, 8.3.4.1-2**

design (continued)

issues

- interactions with postclosure
- performance issues, 8.3.5.8-3**
- interrelationships with performance
- assessment issues, 8.3.4.1-2**
- Key Issue 1, 8.2-2*, -3*-6*, -12**
- Key Issue 2, 8.2-2*, -7*-9*
- Key Issue 4, 8.2-2*, 10*-11*
- overview, 8.1-3-4
- and performance issue correlation, 8.2-12***-14**
- see also specific issue

long-term considerations, drift analyses, 8.3.2.5-71--73

objectives for radiological safety, 8.3.2.3-16, -17*-29*, -36

optimization, activities and tests

- summary, 8.3.2.1-18--19, -20*

phases

- repository, summary, 8.3.2.1-6--8
- Title I and II, 8.3.2.1-7--8

of seals, 8.3.3.2-1, -29--31

- reference, 8.3.3.2-64--69

techniques

- geochemical analysis, 8.3.2.1-21--24
- geomechanical analyses, 8.3.2.1-21--24

tradeoff studies, 8.3.2.1-19, -20*; 8.3.3.1-3

design analysis (Information Need 4.4.7), 8.3.2.5-61--84

- application of results, 8.3.2.5-84, -84*
- hydrologic parameters, 8.3.2.5-63, -65
- introduction, 8.3.2.5-61--62
- link to supporting information, 8.3.2.5-62
- logic, 8.3.2.5-67--75
- meteorological parameters, 8.3.2.5-65--66
- parameters, 8.3.2.5-63--67
- planned analyses summary, 8.3.2.5-76***-81*
- principal products and studies summary, 8.3.2.5-63*
- rock parameters, 8.3.2.5-63, -64--65
- soil parameters, 8.3.2.5-64
- technical basis for, 8.3.2.5-62--68
- tectonic parameters, 8.3.2.5-63, -66--67

design and operational safety

- background, 8.4.2-220
- discussion, 8.4.2-220--221
- and exploratory shaft facility, 8.4.2-220--221
- and surface facility, 8.4.2-220--221

design and operational safety (continued)

- and underground excavations, 8.4.2-220--221

design and performance issue requirements, see performance and design issue requirements and specific issue

design and technical feasibility, see preclosure design and technical feasibility (Issue 4.4)

design basis (seismic), 8.3.1.17-65

design basis accident development

- and licensing strategy, 8.3.5.5-3

design basis accident development (Performance Assessment Activity 2.3.1.3), 8.3.5.5-23

- description, 8.3.5.5-23
- objectives, 8.3.5.5-23
- parameters, 8.3.5.5-23

design basis accidents

- consequence analysis, 8.3.5.1-11
- development of, 8.3.5.1-9
- dose limits, 8.3.5.5-3
- establishment of, 8.3.5.5-3, -23
- limiting values for, 8.3.5.5-29

design basis release

- fuel reprocessing plant, 8.3.5.14-5

design basis retrievability period, 8.3.5.2-10

design constraints to limit excavation effects (Information Need 1.11.5), 8.3.2.2-60--64

- application of results, 8.3.2.2-64
- design activities, 8.3.2.2-64
- excavation methods criteria, 8.3.2.2-64
- long-term subsidence control, 8.3.2.2-64
- information required, 8.3.2.2-62*
- interrelationships, 8.3.2.2-20--23, -22**
- introduction, 8.3.2.2-60--61
- link to supporting information, 8.3.2.2-61
- logic, 8.3.2.2-62--64
- parameters and information required, 8.3.2.2-62*
- and processes associated with postclosure
- design function 3 (excavation-induced change limitation), 8.3.2.2-60***-61*
- products, 8.3.2.2-60***-61*
- technical basis for, 8.3.2.2-61--64

design constraints to limit water use (Information Need 1.11.4), 8.3.2.2-54--59

- application of results, 8.3.2.2-59

design constraints to limit water use
 (Information Need 1.11.4) (continued)
 design activities, 8.3.2.2-59
 chemical changes from construction
 material inventory criteria,
 8.3.2.2-59
 materials, 8.3.2.2-59
 water management criteria, 8.3.2.2-59
 interrelationships, 8.3.2.2-20--23, -22**
 introduction, 8.3.2.2-54--55
 link to supporting information,
 8.3.2.2-55--56
 logic, 8.3.2.2-57--59
 parameters and information needed,
 8.3.2.2-56*
 and processes of postclosure design
 function 2 (water use and chemical
 change limitation), 8.3.2.2-56*
 products, 8.3.2.2-56*
 technical basis for, 8.3.2.2-55--59
 design criteria for radiological safety, see
 repository design criteria for radiological
 safety (Issue 2.7)
 design features contributing to performance
 air gap use, 8.4.3-35
 avoidance of surface-water impoundment,
 8.4.3-35
 blast damage limitation, 8.4.3-35
 control of drainage direction, 8.4.3-34
 controlled blasting, 8.4.3-35
 exploratory shaft facility test location,
 8.4.3-34
 location and number of boreholes, 8.4.3-34
 low flood potential, 8.4.3-34
 removable shaft liner, 8.4.3-35
 seal use, 8.4.3-35
 separation of ESF tests and emplacement,
 8.4.3-34
 waste package containment, 8.4.3-35
 water removal by ventilation systems,
 8.4.3-35
 water use control, 8.4.3-34--35
 design of items important to safety,
 function 2
 functional requirement of mined geologic
 disposal system, 8.3.2.3-15, -24*--27*
 design or performance and fault displacement,
 see fault displacement investigation
 design thermal loading, postclosure design
 function 4, 8.3.2.2-16--20, -17*--18*
 borehole collapse limitation, 8.3.2.2-20

design thermal loading, postclosure design
 function 4 (continued)
 corrosive container environment
 limitation, 8.3.2.2-20
 near-field temperature change limitation,
 8.3.2.2-19--20
 needed confidence, 8.3.2.2-17*--18*
 performance goals, 8.3.2.2-17*--18*
 performance measures, 8.3.2.2-17*--18*
 rock movement and preferential pathways
 limitation, 8.3.2.2-19
 surface impact limitation, 8.3.2.2-19
 temperature change in adjacent strata
 limitation, 8.3.2.2-16, -19
 design verification (in situ) study,
 8.3.1.15-70--76
 see also in situ design verification
 detachment fault age evaluation (radiometric)
 activity, 8.3.1.17-151--153
 description, 8.3.1.17-152
 methods and technical procedures,
 8.3.1.17-153
 objectives, 8.3.1.17-151
 parameters, 8.3.1.17-152
 detachment fault on the Nevada Test Site,
 synthesis, technical procedures for,
 8.3.1.17-203
 detachment faulting and Miocene-Paleozoic
 contact activity, 8.3.1.17-145--146
 detachment faults at or proximal to Yucca
 Mountain study, 8.3.1.17-143--153
 activities, 8.3.1.17-145--153
 Beatty-Bare Mountain detachment fault
 evaluation, 8.3.1.17-147--149
 detachment fault age evaluation
 (radiometric), 8.3.1.17-151--153
 megabreccia (Crater Flat) and
 detachment faulting,
 8.3.1.17-149--150
 Miocene-Paleozoic contact and
 detachment faulting,
 8.3.1.17-145--146
 Specter Range and Camp Desert Rock
 detachment faults, 8.3.1.17-150--151
 objectives, 8.3.1.17-143--145
 detachment faults postulated in Specter Range
 and Camp Desert Rock areas evaluation
 activity, 8.3.1.17-150-151
 description, 8.3.1.17-150--151
 methods and technical procedures,
 8.3.1.17-151
 objectives, 8.3.1.17-150

etachment faults postulated in Specter Range and Camp Desert Rock areas evaluation activity (continued)
 parameters, 8.3.1.17-150

detailed exploration activity, 8.3.1.14-43--44
 description, 8.3.1.14-44
 methods and technical procedures,
 8.3.1.14-44

objectives, 8.3.1.14-43
 parameters, 8.3.1.14-44

development prototype boring machine
 consideration of results, 8.3.2.5-93
 and underground facility, 8.4.2-127

deviatometer surveys, technical procedures for, 8.3.1.2-280, -296, -314

diatom biology
 and paleontologic analyses, 8.3.1.5-44--45
 and past discharge areas, 8.3.1.5-100

differential elastic response to heating potentially likely conditions, evaluation of, 8.4.3-59--60

differential scanning calorimetry, technical procedures for, 8.3.1.3-53--54

diffusion study, 8.3.1.3-112--115
 activities, 8.3.1.3-112--115
 diffusion through saturated tuff slab, 8.3.1.3-113--114

diffusion through unsaturated tuff block, 8.3.1.3-114--115

radionuclide uptake on rock breakers, 8.3.1.3-112--113

test matrix, 8.3.1.3-98*

diffusion tests
 constraints and zones of influence, 8.4.2-140
 gaseous tracers, 8.4.2-74
 purpose and operations, 8.4.2-140

diffusion tests in ESF activity, 8.3.1.2-320--322
 description, 8.3.1.2-320--321
 methods and technical procedures, 8.3.1.2-321--322
 objectives, 8.3.1.2-320
 parameters, 8.3.1.2-320

diffusion tests in ESF study, 8.3.1.2-320--322
 activity
 diffusion tests in ESF, 8.3.1.2-320--322

diffusion through saturated tuff slab
 activity, 8.3.1.3-113--114
 description, 8.3.1.3-113--114

diffusion through saturated tuff slab activity (continued)
 methods and technical procedures,
 8.3.1.3-114

objectives, 8.3.1.3-113
 parameters, 8.3.1.3-113

diffusion through unsaturated tuff block activity, 8.3.1.3-114--115
 description, 8.3.1.3-114
 methods and technical procedures,
 8.3.1.3-115

objectives, 8.3.1.3-114
 parameters, 8.3.1.3-114

diffusivity analysis, technical procedures for, 8.3.1.2-322

dikes, 8.3.1.8-83
 chemical and physical changes around, 8.3.1.8-125--127
 and mineral changes, 8.3.1.8-102
 undetected, Ross study, 8.3.5.13-32

dip and altitude change models, 8.3.1.8-87--88

direct shear strength technical procedures
 rock discontinuities, 8.3.1.14-53
 soils, 8.3.1.14-52

discharge
 area evaluation (past) activity, 8.3.1.5-98--106
 carbonate aquifer, 8.3.1.5-100
 data needs, 8.3.1.2-89--90
 and evapotranspiration, 8.3.1.5-99
 Franklin Lake, 8.3.1.5-98
 ground water, technical procedures for, 8.3.1.5-102--105
 and ostracodes, 8.3.1.5-100
 and Quaternary ground-water conditions, 8.3.1.5-93
 subregional ground-water flow study area, 8.3.1.2-135**

discrete fault
 and sealing, 8.3.3.1-5

discrete fracture models
 and ground-water travel time, 8.3.5.12-42--43

dispersion modeling, 8.3.1.12-9, -14--15, -16, -22, -23--24
 parameters, 8.3.1.12-22
 technical procedures for, 8.3.1.12-14--15, -22, -23--24

disposal system
 design objectives, 8.0-8--9
 major elements, 8.0-6**

disposal system (continued)
 top-level strategy, 8.0-4--7
 see also mined geologic disposal
 system, Yucca Mountain

disruptive scenario class
 events and processes, 8.4.3-52--53,
 -62--72

disruptive scenario classes, evaluation of,
 8.4.3-62--72
 climate control, 8.4.3-66
 exploratory drilling, 8.4.3-65--66
 extreme climate change, 8.4.3-63--64
 extrusive magmatic activity, 8.4.3-65
 faulting and seismicity, 8.4.3-64
 folding, uplift, and subsidence,
 8.4.3-71
 intentional ground-water withdrawal,
 8.4.3-65
 irrigation, 8.4.3-65
 magmatic intrusion, 8.4.3-65
 regional changes in tectonic regimes,
 8.4.3-71
 resource mining, 8.4.3-66
 stream erosion, 8.4.3-64
 summary, 8.4.3-71--72
 surface flooding or impoundments,
 8.4.3-66--71

disruptive scenario survey, see Ross study

disruptive scenarios, major impacts summary,
 8.4.3-71--72

dissolution and leaching of spent fuel
 (Subactivity 1.5.2.1.1), 8.3.5.10-44--45

dissolution disqualifying condition,
 8.3.5.18-16
 preliminary finding, 8.3.5.18-4*
 statement of, 8.3.5.18-16
 and total system performance (Issue 1.1),
 8.3.5.18-7
 and 10 CFR 960.4-2-6(d), 8.3.5.18-16

dissolution evidence (Issue 1.8 potentially
 adverse condition 10)
 discussion, 8.3.5.17-55, -61
 text of condition, 8.3.5.17-5*

dissolution of phases (Activity 1.10.4.1.4),
 8.3.4.2-46--47
 description, 8.3.4.2-46--47
 objectives, 8.3.4.2-46
 parameters, 8.3.4.2-46

dissolution qualifying condition,
 8.3.5.18-17
 preliminary finding, 8.3.5.18-4*
 statement of, 8.3.5.18-17

dissolution qualifying condition (continued)
 and total system performance (Issue 1.1),
 8.3.5.18-7
 and 10 CFR 960.4-2-6(a), 8.3.5.18-16

dissolution rates
 higher level finding, 8.3.1.7-2
 waste form, 8.3.5.10-36--37

dissolution rates investigation, 8.3.1.7-1--2
 application of results, 8.3.1.7-2
 link to supporting information, 8.3.1.7-1
 technical basis for, 8.3.1.7-1--2
 technical rationale, 8.3.1.7-1--2

dissolution technical guidelines
 and higher level findings (Issue 1.9(a)),
 8.3.5.18-18

dissolved oxygen measurement, technical
 procedures for, 8.3.1.2-422

dissolved species concentration limits
 study, 8.3.1.3-88--92
 activities, 8.3.1.3-88--92
 solubility measurements,
 8.3.1.3-88--91
 solubility modeling, 8.3.1.3-92
 speciation measurements,
 8.3.1.3-91--92

DISSPLA, 8.3.1.3-62

distribution coefficients
 altered along fault lines, 8.3.1.8-102
 caused by igneous intrusions, 8.3.1.8-101
 changes resulting from tectonic processes,
 8.3.1.8-101--104, -105
 and travel pathways, 8.3.1.8-103--104

distribution of minerals, see mineralogy,
 petrology, rock characteristics investi-
 gation

disturbed zone
 accessible environment flow,
 8.3.5.12-10, -16, -23
 boundary, 8.3.5.12-23, -24
 assumption, 8.3.5.12-1

definition
 parameter needs, 8.3.5.12-61*--62*
 performance allocation summary,
 8.3.5.12-59*

fastest likely radionuclide travel to
 accessible environment, 8.3.5.12-49--52
 and fracture flow, 8.3.5.12-4

isopach contour map of distance to water
 table, 8.3.5.12-12**

pre-waste emplacement GWTT to accessible
 environment, 8.3.5.12-52--54

disturbed zone (continued)

- travel time to accessible environment
- models, 8.3.5.12-40--48
- water table pathway, 8.3.5.12-11, -18**
- 10 CFR Part 60 definition, 8.3.5.12-1, -55

disturbed zone boundary (Information Need 1.6.5), 8.3.5.12-55--63

- activities, 8.3.5.12-62--63
- disturbed zone definition, 8.3.5.12-63
- post-emplacement ground-water travel time, 8.3.5.12-62--63
- application of results, 8.3.5.12-63
- link to supporting information, 8.3.5.12-55
- logic, 8.3.5.12-55--59
- parameters, 8.3.5.12-60--62
- technical basis for, 8.3.5.12-55--62

disturbed zone definition (Activity 1.6.5.2), 8.3.5.12-63

- description, 8.3.5.12-63
- objectives, 8.3.5.12-63

DOC, see U.S. Department of Commerce

DOE, see U.S. Department of Energy

DOE Order 4700.1

- construction schedule, 8.3.2.1-7

DOI, see U.S. Department of the Interior

dose assessment meteorological data summary activity, 8.3.1.12-22--25

dose calculation--ground-water pathway (Activity 1.2.1.1), 8.3.5.14-10

double porosity model

- and ground-water travel time, 8.3.5.12-42

double-ring infiltrometer studies, 8.3.1.2-175

- and infiltration-runoff units, 8.3.1.2-159

down-dip fault geometries, 8.3.1.8-84

down-hole

- instrument cavities, 8.3.1.2-210
- seismic method, technical procedures for, 8.3.1.14-63

downcutting, Fortymile Wash, 8.3.1.6-11

- and erosion, 8.3.1.6-9

downcutting history of Fortymile Wash activity, 8.3.1.6-11--13

- description, 8.3.1.6-11--12
- methods and technical procedures, 8.3.1.6-12--13
- objectives, 8.3.1.6-11
- parameters, 8.3.1.6-11

DPBM, see development prototype boring machine

Draft Mission Plan Amendment, 8.3.1.9-51

drainage and moisture control plan, product 1.11.3-4

- information needed, 8.3.2.2-48*
- status, 8.3.2.2-37, -50

drainage and moisture control plan (Design Activity 1.11.3.4), 8.3.2.2-53

- objective, 8.3.2.2-53

drainage direction control, design consideration, 8.4.3-34

drained triaxial strength--soils, technical procedures for, 8.3.1.14-52

DRI, see Desert Research Institute

drift analyses

- codes, 8.3.2.5-73
- and ground support design, 8.3.2.5-71
- and horizontal emplacement, 8.4.3-28, -29
- long-term design considerations, 8.3.2.5-71--73
- ubiquitous joint model, 8.4.3-28
- vertical emplacement, 8.4.3-28, -29

drift collapse limitation

- excavation-induced change limitation, postclosure design function 3, 8.3.2.2-16

drift construction, system element 1.2.1.2

- data needed for technology for underground facilities (Information Need 4.4.9), 8.3.2.5-88--89
- functions and processes, 8.3.2.5-22*--23*
- parameters for technology for underground facilities (Information Need 4.4.9), 8.3.2.5-89--91
- performance measures and goals for monradiological health and safety, 8.3.2.4-12*--14*
- preliminary performance allocation, 8.3.2.5-22*--23*
- underground facilities technology, 8.3.2.5-88--89

drift-pumpback tests

- at C-hole sites, 8.3.1.2-401, -402**
- at selected wells, 8.3.1.2-409
- technical procedures for, 8.3.1.2-404--405, -421

drift scale analyses

- parameters, 8.3.2.2-69*
- summary, 8.3.2.2-73

drift shape

- effects on stability, 8.4.3-28
- shaft and drift analyses, 8.4.3-28
- thermal/mechanical analyses, 8.4.3-28

- drift stability
 - constraints and zones of influence, 8.4.2-131
 - purpose and operations, 8.4.2-130--131
- drift wall saturation, effects of ventilation, 8.4.3-22
- drifting, and southeastern repository block, 8.4.2-31--32
- drifts
 - conceptual layout, 8.3.1.4-76**
 - to Drill Hole Wash, 8.4.2-195
 - geologic mapping, 8.3.1.4-74--79
 - to Ghost Dance fault, 8.4.2-194--195
 - to imbricate normal fault zone, 8.4.2-176**, -195
 - sequential mining activity, 8.3.1.15-49--52
- stability monitoring activity, 8.3.1.15-73--74
 - description, 8.3.1.15-73--74
 - methods and technical procedures, 8.3.1.15-74
 - objectives, 8.3.1.15-73
 - parameters, 8.3.1.15-73
- unventilated
 - thermal stresses and displacement, 8.4.3-27--28
- drill-bit cuttings, technical procedures for, 8.3.1.2-258--260, -314
- drill core handling, technical procedures for, 8.3.1.2-430
- drill cutting, technical procedures for, 8.3.1.15-83
- Drill Hole Wash
 - drift to, 8.4.2-195
 - and perimeter drift, 8.3.1.4-29
 - and sealing, 8.3.3.1-4, -5
- drill pads, and potential surface disturbance, 8.4.2-48*, -59--60
- drillholes
 - decontamination and decommissioning, 8.7-2
 - density of, anticipated maximum, 8.3.1.9-48
 - existing and proposed (geologic), 8.3.1.2-378**
 - and heat flow, 8.3.1.8-128
 - sampling, technical procedures for, 8.3.1.4-100
 - systematic drilling program
 - areal coverage scheme, 8.3.1.4-90**--91**
- drillholes (continued)
 - systematic drilling program (continued)
 - small-scale variability test
 - locations, 8.3.1.4-94**--95**
 - volcanism, 8.3.1.8-108, -109**, -110**--111*
 - see also boreholes, geologic coreholes, geologic boreholes, and specific USW entries
- drilling
 - disturbance of rock mass, 8.3.1.2-210, -300
 - fluids and effects, 8.4.3-14--17
 - with gas
 - fracture and hydrologic conditions, 8.4.3-15
 - with water
 - fracture and hydrologic conditions, 8.4.3-14--15
 - hydrologic behavior of fracture matrix system, 8.4.3-14
- drilling activities
 - and ground-water travel time, 8.4.3-87
 - potential impact
 - deep borings drilled dry, 8.4.3-40--41
 - geologic coreholes drilled with water, 8.4.3-42
 - saturated zone boreholes, 8.4.3-42
 - shallow borings drilled dry, 8.4.3-39--40
- drilling and coring, technical procedures for, 8.3.1.2-314, -318, -322; 8.3.1.4-100
- drilling (exploratory) and probability of human interference, 8.3.1.9-48
- drilling and testing, water use estimates, 8.4.2-82**--84*
- drilling evidence (Issue 1.8 potentially adverse condition 19)
 - discussion, 8.3.5.17-78
 - text of condition, 8.3.5.17-6*
- drilling fluid
 - effects in fracture-matrix saturation, 8.4.3-15
 - and fracture-matrix saturation analysis, 8.4.3-14--15
 - loss and USW G-4, 8.4.3-16--17
 - migration
 - hydrological analyses and data, 8.4.3-15--16
 - USW UZ-1 and USW G-1, 8.4.3-15--16
 - and unsaturated zone flow, 8.4.3-14--17

drilling fluids
 G-Tunnel Rock Mechanics Facility,
 8.4.2-86
 and prototype test program, 8.4.2-86

drilling program, integrated, see integrated drilling program investigation

drilling program (systematic) activity,
 8.3.1.4-87--100
see also systematic drilling program investigation

drilling related activities, 8.4.2-64--80
 summary, 8.4.2-65**-72*

dry bulk measurement, technical procedures for, 8.3.1.15-33

dry drilling
 and construction control, 8.4.2-81
 G-Tunnel Rock Mechanics Facility,
 8.4.2-86
 and prototype test program, 8.4.2-86

dust control, underground support systems, 8.4.2-197

dust technical procedures
 measurements 8.3.1.15-76
 trap sampling, 8.3.1.5-64

Dutch cone test, 8.3.1.14-41, -57, -58

dynamic sounding, technical procedures for, 8.3.1.14-43

dynamic transport column experiments study, 8.3.1.3-100--111
 activities, 8.3.1.3-101--111
 crushed tuff column experiments, 8.3.1.3-100--105
 filtration, 8.3.1.3-110--111
 fractured tuff column studies, 8.3.1.3-109--110
 mass transfer kinetics, 8.3.1.3-105--107
 unsaturated tuff columns, 8.3.1.3-107--108

dynamic transport study, test matrix, 8.3.1.3-98*

earth-tide and barometric analysis, 8.3.1.2-384, -390
 test well configurations, 8.3.1.2-391**

earthquake ground motion models activity, 8.3.1.17-76
 description, 8.3.1.17-76
 objectives, 8.3.1.17-76
 parameters, 8.3.1.17-76

earthquake record compilation activity, 8.3.1.17-88--89
 description, 8.3.1.17-88--89
 objectives, 8.3.1.17-88
 parameters, 8.3.1.17-88

earthquake recurrence rates, 8.3.1.17-82
 and design, 8.3.1.17-65

earthquake source evaluation activity, 8.3.1.17-82--84
 description, 8.3.1.17-83
 methods and technical procedures, 8.3.1.17-84
 objectives, 8.3.1.17-82
 parameters, 8.3.1.17-82--83

earthquake (relevant) sources study, 8.3.1.17-69--74
 activities, 8.3.1.17-69--74
 earthquake (relevant) source identification, 8.3.1.17-69--70, -71**, -72
 seismogenic source cumulative slip earthquake, 8.3.1.17-72--74

earthquakes
 and water-table changes, 8.3.1.8-91

earthquakes (historical) (Issue 1.8
 potentially adverse condition 12)
 discussion, 8.3.5.17-61--62
 text of condition, 8.3.5.17-5*

earthquakes and geologic setting (Issue 1.8
 potentially adverse condition 14)
 discussion, 8.3.5.17-62--70
 text of condition, 8.3.5.17-5*

earthquakes and tectonic processes (Issue 1.8
 potentially adverse condition 13)
 discussion, 8.3.5.17-5*
 text of condition, 8.3.5.17-5*

ease and cost of construction
 qualifying and disqualifying conditions
 preliminary findings, 8.3.5.7-4*
see also higher level findings--ease and cost of construction (Issue 4.1)

EBS
 alternative designs, 8.3.5.9-15
 field tests
 constraints and zones of influence, 8.4.2-141, -143
 and performance confirmation testing, 8.3.5.16-2*
 purpose and operations, 8.4.2-141

general and performance objectives, 8.0-7--8
 and ground-water composition, 8.3.1.3-23

EBS (continued)

- performance requirements, 8.3.3.2-2
- and postclosure performance assessment, 8.5.64--65
- release rate, postclosure performance objectives, 8.4.3-1, -2, -3
- releases
 - and container, 8.4.3-84
 - and engineered environment, 8.4.3-83--84
 - evaluation of system elements, 8.4.3-83--85
 - impacts of site characterization activities, 8.4.3-81--85
 - issue resolution strategy, 8.4.3-81--82
 - and waste form, 8.4.3-84
- EBS field tests (Study 1.10.4.4)
 - activities, 8.3.4.2-57--58, -61--63
 - flow and transport analysis in near field, 8.3.4.2-61--63,
 - near-field hydrologic properties, 8.3.4.2-57--58
 - rock-water interaction in repository horizon, 8.3.4.2-58
 - description, 8.3.4.2-57
 - and G-Tunnel, 8.3.4.2-57
- EBS release rates (Issue 1.5), 8.3.5.10-1--93
 - alternative resolution approaches, 8.3.5.10-13**
 - approach, 8.3.5.10-2--38
 - barriers available for characterization if needed, 8.3.5.10-37--38
 - barriers not to be characterized, 8.3.5.10-38
 - chemistry of water that enters failed containers, 8.3.5.10-36
 - components dissolution rate and radionuclides solubility, 8.3.5.10-36--37
 - and containment by waste package (Issue 1.4), 8.3.5.9-6, -7**, -11, -32
 - environmental transport of radionuclides, 8.3.5.10-38
 - geochemistry program parameter calls, 8.3.1.3-1, -2**, -8*, -11**
 - and geohydrology program, 8.3.1.2-5**
 - and hydrology of the waste package environment, 8.3.4.2-25

EBS release rates (Issue 1.5) (continued)

- information needs, 8.3.5.10-39--82
- EBS scenarios and models (1.5.3), 8.3.5.10-55--76
- waste form material properties (1.5.2), 8.3.5.10-42--55
- waste package and EBS release rates (1.5.4), 8.3.5.10-76--79
- waste package design features
 - (affecting radionuclide releases) needed (1.5.1), 8.3.5.10-39--42
- waste-package near-field releases (1.5.5), 8.3.5.10-79--82
- see specific information need for activity and subactivity lists
- interrelationships, 8.3.5.10-38--39
- issue resolution strategy, 8.3.5.10-1--38
- major events and completion dates, 8.3.5.10-86*--93*; 8.5.68, -69**, -70
- model hierarchy, 8.3.5.10-3**
- model input, 8.3.5.10-4*--10*
- model scenarios, 8.3.5.10-4*
- and other design and performance assessment issues, 8.3.2.1-2**; 8.3.4.1-1, -2**, -3
- parameters calls from Issue 1.10 (waste package characteristics--postclosure), 8.3.4.2-11*--22*
- performance measures and goals, 8.3.5.10-17*--18*
- post-acceptance, preemplacement storage, handling of waste forms, 8.3.5.10-35--36
- postclosure guideline qualifying and disqualifying conditions, 8.3.5.18-7--8
- and postclosure performance assessment, 8.3.5.8-2, -3*, -4
- and preclosure tectonics program, 8.3.1.17-206
- and qualifying and disqualifying conditions of Issue 1.9(a), 8.3.5.18-7--8
- and reference postclosure repository design (Information Need 1.11.7), 8.3.2.2-75
- reference resolution approach, 8.3.5.10-12**
- and regulatory requirements, 8.3.1.2-2; 8.3.5.10-1--2
- spent fuel and glass waste performance parameters/goals, 8.3.5.10-20*--27*

EBS release rates (Issue 1.5) (continued)
 spent fuel waste component performance
 parameters/goals, 8.3.5.10-28*
 schedule, 8.3.5.10-82--93; 8.5-68, -69**
 and system guideline qualifying condition
 --postclosure, 8.3.5.18-7--8, -9--10
 and total system performance (Issue 1.1),
 8.3.5.10-1--2, -3**, -30
 waste form definition, 8.3.5.10-30,
 -34--35
 water composition performance
 parameters/goals, 8.3.5.10-19*
**EBS scenarios and models (Information
 Need 1.5.3),** 8.3.5.10-55--76
 activities, 8.3.5.10-58--75
 geochemical speciation and reaction
 model, 8.3.5.10-62--66
 glass waste form release model,
 8.3.5.10-68--70
 spent fuel release models,
 8.3.5.10-66--68
 Waste package performance assessment
 model, 8.3.5.10-70--75
 waste package release scenario
 integration, 8.3.5.10-58--62
 application of results, 8.3.5.10-75--76
 link to technical data, 8.3.5.10-55--56
 logic, 8.3.5.10-58
 parameters, 8.3.5.10-56--57
 subactivities
 breached container and water flow,
 8.3.5.10-74--75
 geochemical model code,
 8.3.5.10-64--66
 geochemical modeling data base,
 8.3.5.10-63--64
 glass waste form release model,
 8.3.5.10-68--70
 spent fuel release model,
 8.3.5.10-66--68
 system model development (waste
 package performance assessment),
 8.3.5.10-70--73
 uncertainty methodology development
 (waste package), 8.3.5.10-73--74
 waste package adequacy of design
 determination, 8.3.5.10-61--62
 waste package release scenario
 categories, 8.3.5.10-59--60
 waste package release scenario
 integration, 8.3.5.10-58--59

EBS scenarios and models (Information
 Need 1.5.3) (continued)
 subactivities (continued)
 waste package release scenario
 parameters, 8.3.5.10-60--61
 technical basis, 8.3.5.10-55--57
 effective permeability and GWTT, 8.3.1.4-17
 see also permeability
 effective porosity
 and faulting, 8.3.1.8-95--97
 and igneous intrusions, 8.3.1.8-95
 and tectonic effects study, 8.3.1.8-94--97
 see also porosity entries
 effects of human interference,
 investigation, 8.3.1.9-45--51
 activities
 human intrusion data compilation,
 8.3.1.9-48
 noncredible human intrusion initiating
 events, 8.3.1.9-50
 potential effects of future ground-
 water withdrawals, 8.3.1.9-49
 application of results, 8.3.1.9-51
 links to supporting information,
 8.3.1.9-45
 logic diagram, 8.3.1.9-47**
 parameters, 8.3.1.9-45
 purpose and objectives, 8.3.1.9-45--46
 studies
 human intrusion data requirements,
 8.3.1.9-46--48
 natural resource exploitation
 effects, 8.3.1.9-49--50
 technical basis for, 8.3.1.9-45--46
 technical rationale, 8.3.1.9-46
 elastic media
 and structural-thermal analysis,
 8.3.2.5-68
 elastic models
 analysis of drift shape and pillar width,
 8.4.3-28
 elastic-plastic media
 and structural-thermal analysis,
 8.3.2.5-68
 electrical conductivity, technical procedures
 for, 8.3.1.2-422
 electrical facilities, exploratory shaft
 facility, 8.4.2-161--162
 electrical methods
 geophysical activities, 8.3.1.4-50*
 preclosure and postclosure tectonics
 summary, 8.3.1.17-109*

- electrical methods (continued)
 - technical procedures for, 8.3.1.14-63
- electromagnetic surveys, technical procedures for, 8.3.1.4-57
- electron microprobe
 - analysis, technical procedures for, 8.3.1.3-44, -45, -46, -47, -48, -51, -58, -62
 - and rock-water interactions, 8.3.4.2-43
- element analyses of bulk sediments
 - and geochemical analyses, 8.3.1.5-50
- elution rate, radionuclides, 8.3.1.3-105--106
- embrittlement
 - austenitic materials, 8.3.5.9-75, -76, -78, -98
 - copper-based alloys, 8.3.5.9-44, -54, -57, -72, -89, -92, -93
 - hydrogen effects, 8.3.5.9-41*, -43*, -45, -65, -68, -72, -78, -93
 - microstructural changes, 8.3.5.9-53
- empirical climate modeling activity, 8.3.1.5-39, -86--88
 - description, 8.3.1.5-86--87
 - methods and technical procedures, 8.3.1.5-88
 - objectives, 8.3.1.5-86
 - parameters, 8.3.1.5-86
- empirical model testing, technical procedures for, 8.3.1.2-355
- empirical structural design
 - shafts and ramps, 8.3.2.5-69
- emplacement, system element 1.2.2.4
 - data needed for technology for underground facilities (Information Need 4.4.9), 8.3.2.5-91, -94
 - and equipment demonstration, 8.3.2.5-59
 - functions and processes, 8.3.2.5-29*
 - parameters for technology for underground facilities (Information Need 4.4.9), 8.3.2.5-89
 - preliminary performance allocation, 8.3.2.5-29*
 - underground facilities technology, 8.3.2.5-88--89
- emplacement borehole access function 1, 8.3.5.2-10, -14
 - performance measures and goals, 8.3.5.2-11--12*
- emplacement borehole access (Information Need 2.4.2), 8.3.5.2-30--36
 - application of results, 8.3.5.2-35--36
 - link to supporting information, 8.3.5.2-31
- emplacement borehole access (Information Need 2.4.2) (continued)
 - logic, 8.3.5.2-31--32
 - parameters, 8.3.5.2-31
 - preclosure design and technical feasibility (Issue 4.4) input items, 8.3.5.2-32--33*, -35
 - technical basis for, 8.3.5.2-31--35
- emplacement configuration and stability
 - description, 8.3.4.2-27--28
 - design envelope, waste package, 8.3.4.2-27--28
 - rock-induced load on waste package design goal, 8.3.4.2-28
- emplacement drifts
 - arched, and thermal stresses, 8.4.3-29
 - and effects of rock bolting, 8.4.3-29
 - and porosity, 8.4.3-28--29
 - and rock strength, 8.4.3-28--29
 - sensitivity study for drift failure, 8.4.3-29
 - and stresses, 8.4.3-29
 - at unventilated intersection, 8.4.3-29
- emplacement hole and near-field hydrologic system
 - description, 8.3.4.2-25--26
 - design envelope, waste package, 8.3.4.2-25--26
 - studies to characterize, 8.3.4.2-25--26
 - water flux control design goal, 8.3.4.2-26
- emplacement hole drainage
 - description, 8.3.4.2-26--27
 - design envelope, waste package, 8.3.4.2-26--27
 - design goal, 8.3.4.2-27
- emplacement hole geochemical system
 - description, 8.3.4.2-23--24
 - design envelope, waste package, 8.3.4.2-23--24
 - design goal, 8.3.4.2-27
 - and horizontal emplacement, 8.3.4.2-27
 - and water chemistry characterization goal, 8.3.4.2-23--24
- emplacement hole spacing
 - and waste package temperature limits, 8.3.2.2-43
- emplacement method (seals)
 - material effects, 8.3.3.2-63
- end-member free energies activity, 8.3.1.3-61--63
 - description, 8.3.1.3-61

end-member free energies activity
 (continued)
 methods and technical procedures,
 8.3.1.3-61--63
 objectives, 8.3.1.3-61
 parameters, 8.3.1.3-61
 energy consumption, ground water pumping,
 technical procedures for, 8.3.1.16-19,
 -21, -23
 energy resources, 8.3.1.9-20, -22**, -27--29
 engineered barrier system, see EBS
 engineered environment
 and EBS release, 8.4.3-83--85
 enhancement, 8.3.5.9-12
 impacts on, 8.4.3-75--79
 quality of liquid water contacting
 container, 8.4.3-77--78
 quantity of liquid water contacting
 container, 8.4.3-75--77
 rock-induced loads on waste package,
 8.4.3-78--79
 engineered system technical concern
 correlations, 8.2-50*--60*
 environment alteration from nonwaste packages
 components description, 8.3.4.2-31--32
 design envelope component, 8.3.4.2-31--32
 Environmental Consultants, Inc.
 and COVE 1, 8.3.5.20-4*
 environmental impact statement, 8.2-67**
 environmental impacts
 decontamination and decommissioning, 8.7-1
 plans for mitigation, 8.7-6
 environmental measurements, technical
 procedures for, 8.3.1.15-76
 Environmental Protection Agency, see U.S.
 Environmental Protection Agency
 Environmental Regulatory Compliance Plan,
 8.7-3
 environmental tracers, see tracers
 environmental transport
 and preclosure risk assessment methodology
 (PRAM) program, 8.3.5.1-11
 see also transport
 eolian deposits
 dating, 8.3.1.17-161
 and Quaternary fault movements, 8.3.1.5-73
 eolian history of the Yucca Mountain region
 activity, 8.3.1.5-72--76
 description, 8.3.1.5-73--75
 methods and technical procedures,
 8.3.1.5-75--76

eolian history of the Yucca Mountain region
 activity (continued)
 objectives, 8.3.1.5-72
 parameters, 8.3.1.5-73
 eolian sand technical procedures
 dating by identification of volcanic ash,
 8.3.1.5-76
 textural and mineralogic characteristics,
 8.3.1.5-76
 eolian sediments, immobile trace element,
 geochemistry of, 8.3.1.5-74, -76
 eolian silt technical procedures
 distribution and thickness, 8.3.1.5-76
 thermoluminescence dating, 8.3.1.5-76
 EPA, see U.S. Environmental Protection Agency
 episodic brecciation, 8.3.1.8-96
 EPPM, see expected partial performance
 measures
 EQ3/6, 8.3.1.3-56--57; 8.3.5.10-70
 code development, 8.3.5.10-62--66
 fluid models, 8.3.5.10-63
 geochemical modeling, 8.3.4.2-48
 glass models, 8.3.5.10-53, -54
 ground-water chemistry, 8.3.1.3-38--39
 mineral evolution modeling, 8.3.1.3-61
 model input and needed confidence,
 8.3.5.10-5*, -67
 and modeling of rock-water interactions,
 8.3.4.2-49
 and performance assessment, 8.3.5.19-2*,
 -4*
 solubility modeling, 8.3.1.3-92
 and waste package model hierarchy,
 8.3.5.9-7**; 8.3.5.10-3*
 equipment development and demonstration
 constraints and zones of influence,
 8.4.2-127
 purpose and operations, 8.4.2-126--127
 equipment development and demonstration
 (Information Need 4.4.6), 8.3.2.5-57--61
 application of results, 8.3.2.5-60--61
 introduction, 8.3.2.5-57
 link to supporting information, 8.3.2.5-57
 logic, 8.3.2.5-58--60
 parameters, 8.3.2.5-57--58
 technical basis for, 8.3.2.5-57
 equivalent porous medium model
 and ground-water travel time, 8.3.5.12-41
 erosion
 in controlled area, 8.3.1.6-27, -28;
 8.3.1.9-16, -17**, -18, -19
 and desert geomorphic processes, 8.3.1.6-7

erosion (continued)

- and dissection rates, technical procedures for, 8.3.1.17-191
- and extensional tectonism, 8.3.1.6-7, -20, -22
- and flow path geochemical characteristics, 8.3.1.6-27
- and GWTT, 8.3.1.6-4, -26
- landforms, and surficial deposits, 8.3.1.5-70
- and marker system, 8.3.1.9-19--20
- modern, locations, 8.3.1.6-7
- and paleoclimate-paleoenvironmental synthesis, 8.3.1.6-18--19
- present conditions, see present conditions (erosion) investigation
- Quaternary, 8.3.1.6-7, -19
- repository exhumation, 8.3.1.6-27
- and runoff, 8.3.1.6-4, -9
- scars, technical procedures for, 8.3.1.5-95
- and subsidence rates, 8.3.1.6-22, -23
- Tertiary, 8.3.1.6-7
 - and uplift, 8.3.1.6-22, -23
- erosion (Quaternary).(Issue 1.8 potentially adverse condition 16)
 - discussion, 8.3.5.17-76--77
 - text of condition, 8.3.5.17-5*
- erosion and deposition effects on marker survivability synthesis activity, 8.3.1.9-19--20
 - description, 8.3.1.9-19--20
 - methods and technical procedures, 8.3.1.9-20
 - objectives, 8.3.1.9-19
 - parameters, 8.3.1.9-19
- erosion disqualifying condition, 8.3.5.18-16
 - and postclosure performance issues, 8.3.5.18-7--8
 - preliminary finding, 8.3.5.18-4*
 - statement of, 8.3.5.18-16
 - and total system performance (Issue 1.1), 8.3.5.18-7
 - and 10 CFR 960.4-2-5(d), 8.3.5.18-16
- erosion distribution and characteristics study activities, 8.3.1.6-10--14
 - downcutting of Forty-mile Wash, 8.3.1.6-11--13
 - geomorphic map development, 8.3.1.6-10--11
 - hillslope erosion, 8.3.1.6-13--14
- erosion distribution and characteristics study (continued)
 - objectives, 8.3.1.6-10
 - erosion effects on hydrology investigation, 8.3.1.6-23--28
 - application of results, 8.3.1.6-28
 - interrelationships, 8.3.1.6-4, -5**
 - logic diagram, 8.3.1.6-24**
 - parameters, 8.3.1.6-25
 - purpose and objectives, 8.3.1.6-26
 - study
 - topical report, 8.3.1.6-27
 - technical basis for, 8.3.1.6-25
 - erosion program, 8.3.1.6-1--31
 - activity parameters provided by, 8.3.1.6-3*
 - approach, 8.3.1.6-1--4
 - and climate program, 8.3.1.5-1--3, -2**
 - and geohydrology program, 8.3.1.2-147
 - and human interference program, 8.3.1.6-1, -2
 - interrelationships, 8.3.1.6-4--6
 - investigations, 8.3.1.6-6--28
 - climate effects on erosion, 8.3.1.6-15--19
 - erosion effects on hydrology, 8.3.1.6-23--28
 - present conditions (erosion), 8.3.1.6-6--15
 - tectonic effects on erosion, 8.3.1.6-19--23
 - see specific investigations for study and activity listings
 - logic diagram, 8.3.1.6-5**
 - major events and completion dates, 8.3.1.6-30*--31*; 8.5-15, -16**, -17
 - overview, 8.3.1.6-1--6
 - parameter calls, 8.3.1.6-1, -3*, -5**
 - performance and design requirements, summary, 8.3.1.6-1
 - post-subsurface-excavation environment, 8.3.2.1-11-12
 - and post-waste-emplacement environment, 8.3.2.1-12--13
 - and preclosure tectonics program, 8.3.1.17-207
 - and pre-waste-emplacement environment, 8.3.2.1-9--11
 - schedule, 8.3.1.6-28--31; 8.5-15, -16*, -17
 - and seal characteristics (Issue 1.12), 8.3.1.6-1, -3*, -5**

erosion program (continued)
 summary schedule, 8.5-15, -16**
 surface characteristics program parameter
 calls, 8.3.1.14-23*, -26
 and total system performance (Issue 1.1),
 8.3.1.6-2, -3*, -5**

erosion qualifying condition, 8.3.5.18-15--16
 and postclosure performance issues,
 8.3.5.18-6--7
 preliminary finding, 8.3.5.18-4*
 statement of, 8.3.5.18-15
 and total system performance (Issue 1.1),
 8.3.5.18-7
 and 10 CFR 960.4-2-5(a), 8.3.5.18-15--16

erosion technical guideline
 and higher level findings (Issue 1.9(a)),
 8.3.5.18-16

ES-1, see exploratory shaft 1

ES-2, see exploratory shaft 2

ESF
 activities, see ESF activities
 buildings, 8.4.2-158, -161
 communications and data management
 system, 8.4.2-163
 conceptual illustration, 8.4.2-91**
 configuration screening, 8.4.2-154--156
 construction, see ESF construction
 construction method evaluation,
 8.4.2-154--156
 decommissioning, 8.7-3, -4--5
 description, 8.4.2-151--175
 design, and incorporation of regulations,
 8.4.2-152**
 design and operational safety,
 8.4.2--220--221
 design control, 8.4.2-151--154
 electrical facilities, 8.4.2-161--162
 general arrangement of surface facilities
 8.4.2-156, -157**, -158
 headframe foundation, 8.4.2-164**
 hoists and headframes, 8.4.2-164**, -165,
 -166**
 and introduced materials, 8.4.3-23--24
 layout and operations interferences,
 8.4.2-200--201
 location, Coyote Wash, 8.4.2-155--156
 location screening, 8.4.2-154--156
 logic diagram, 8.4.2-177**
 muck storage, 8.4.2-165, -167
 overview, 8.0-3--4

ESF (continued)
 pad
 blast damage, 8.4.3-30--31
 preparation, 8.4.3-30
 pads and roads, 8.4.2-158, -160*
 plant and support facilities,
 8.4.2-163, -165
 and potential effects of introduced
 materials, 8.4.3-23--24
 potential interference between tests,
 8.4.2-201--210
 and repository design integration,
 8.4.2-216--217
 representative location, 8.4.2-24--26
 representativeness of, 8.4.2-22-26
 shaft collars, 8.4.2-163, -164**
 site plan, 8.4.2-159**
 surface facility description,
 8.4.2-156--167
 test location, design consideration,
 8.4.3-34
 testing, see ESF testing
 waste water, 8.4.2-162--163
 water, 8.4.2-162

ESF activities
 potential impact of geochemical
 disturbance, 8.4.3-49
 potential impact of hydrologic
 disturbance, 8.4.3-48--49
 potential impact of thermal/mechanical
 disturbance, 8.4.3-49--50

ESF canister scale heater experiment,
 thermal zone influence, 8.4.3-33

ESF construction
 blast histories, 8.4.2-183, -184--185*
 description, 8.4.2-175, -177**--195
 drift to Drill Hole Wash structure,
 8.4.2-195
 drift to Ghost Dance fault, 8.4.2-194--195
 drift to imbricate normal fault zone,
 8.4.2-195

ES-1 to upper demonstration breakout
 room, 8.4.2-180, -183--188

ES-2, 8.4.2-191

ES-2 station and connecting drift,
 8.4.2-192

ES-2 to total depth, 8.4.2-191--192

estimating blast-damaged zone,
 8.4.2-183, -186**

exploratory drifts, 8.4.2-194--195
 logic diagram, 8.4.2-177**

ESF construction (continued)
 main test level, 8.4.2-192--194
 main test level demonstration breakout room, 8.4.2-192
 main test level objectives, 8.4.2-193--194
 main test level operations level, 8.4.2-192--194
 objectives, 8.4.2-193--194
 main test level station, 8.4.2-189, -191
 shaft collars, 8.4.2-179--180
 shaft stations (ES-1), 8.4.2-181**
 sinking deck, 8.4.2-182**
 site pad, 8.4.2-179
 stages, 8.4.2-175, -177**--195
 surface facilities and utilities, 8.4.2-179
 underground construction and operations, 8.4.2-180--195
 upper demonstration breakout room and station, 8.4.2-189, -190**

ESF testing
 bulk-permeability test, 8.3.1.2-271--281
 Calico Hills test, 8.3.1.2-300
 chemical analyses, gases and fluids, 8.3.1.2-305
 constraints on layout, 8.4.2-93, -97--98, -99**--101*
 diffusion tests, 8.3.1.2-320--322
 excavation effects test, 8.3.1.2-233, -236, -293--299
 fracture fluid extraction, 8.3.1.2-305
 and ground-water travel time, 8.4.3-87--88
 hydrochemistry tests, 8.3.1.2-233, -237, -304--308
 intact-fracture test, 8.3.1.2-233, -238--252
 perched water test, 8.3.1.2-233, -236, -300--304
 percolation tests, 8.3.1.2-233, -234, -252--271
 radial borehole tests, 8.3.1.2-233, -235, -281--292
 summary, 8.4.2-94**--96*, -147
 and zone of influence factors, 8.4.2-98, -102**--104*
see also specific study
 evaporation, and conceptual perimeter drift boundary, 8.4.3-18

evapotranspiration
 Franklin Lake, 8.3.1.2-134, -135**, -136, -141
 Furnace Creek Ranch, 8.3.1.2-134, -135** and infiltration, 8.3.1.2-169 and past discharge, 8.3.1.5-99 technical procedures, 8.3.1.2-102, -136--137
evapotranspiration studies activity, 8.3.1.2-134--137
 description, 8.3.1.2-134--136 methods and technical procedures, 8.3.1.2-136--137
 objectives, 8.3.1.2-134 parameters, 8.3.1.2-134
event tree development
 accident sequence analysis, 8.3.5.1-9 disruptive scenario identification, 8.3.5.13-25 and preclosure risk assessment methodology (PRAM) program, 8.3.5.1-9 radiological risks, 8.3.5.1-9
events and process sequence preliminary identification (Performance Subactivity 1.1.2.1.1), 8.3.5.13-126--127
 description, 8.3.5.13-127 objectives, 8.3.5.13-127 parameters, 8.3.5.13-127
excavation effects
 design constraints to limit (Information Need 1.1.5), 8.3.2.2-60--64 ESF test, 8.3.1.2-233, -236 test modeling, technical procedures for, 8.3.1.2-299
excavation effects test
 constraints and zones of influence, 8.4.2-137, -139 purpose and operations, 8.4.2-137 typical, 8.4.2-138**
excavation effects test in ESF activity, 8.3.1.2-293--299
 conceptual cross section, 8.3.1.2-294** description, 8.3.1.2-293--295 methods and technical procedures, 8.3.1.2-295--300 objectives, 8.3.1.2-293 parameters, 8.3.1.2-293
excavation-induced change limitation, postclosure design function 3, 8.3.2.2-14--16, -15*
 drift collapse, postclosure, 8.3.2.2-16 needed confidence, 8.3.2.2-15*

excavation-induced change limitation, post-closure design function 3 (continued)
 performance goals, 8.3.2.2-15*

permeability modification, 8.3.2.2-14

postclosure drift collapse limitation, 8.3.2.2-16

surface subsidence, 8.3.2.2-16

excavation-induced effects
 modified permeability zone, 8.4.3-25--26

rock mass permeability, 8.4.3-25--26

excavation investigations study, 8.3.1.15-45--52
 activities, 8.3.1.15-46--52
 demonstration breakout rooms, 8.3.1.15-48--49
 sequential drift mining, 8.3.1.15-49--52
 shaft convergence, 8.3.1.15-46--47

excavation methods criteria (Design Activity 1.11.5.1), 8.3.2.2-64
 information required, 8.3.2.2-62*

objective, 8.3.2.2-64
 status, 8.3.2.2-63

excavation technical procedures, 8.3.1.15-49, -52

Exile Hill
 alluvium thickness, 8.3.1.17-33
 map of surface geology and faults, 8.3.1.14-37**
 test pit location, 8.3.1.14-33, -35**

expected partial performance measures (EPPM)
 direct release via human intrusion model, 8.3.5.13-84, -97*
 estimates, 8.3.5.13-92
 exploratory drilling (human intrusion scenario A-2), 8.3.5.13-97*
 gas-phase release, 8.3.5.13-76, -93--95*
 gas-phase release model, 8.3.5.13-76, -133
 saturated-zone altered properties (disturbed case scenario D-2), 8.3.5.13-106--107*
 saturated-zone foreshortened flow paths (disturbed case scenario D-1), 8.3.5.13-104--105*
 unsaturated-zone altered rock properties and geochemistry (disturbed case scenario C-3), 8.3.5.13-102--103*
 unsaturated-zone foreshortened releases (disturbed case scenario C-2), 8.3.5.13-100--101*

expected partial performance measures (EPPM) (continued)
 unsaturated-zone increased flux release (disturbed case scenario C-1), 8.3.5.13-99--100*

exploration (detailed) activity, 8.3.1.14-43--44

exploration (preliminary) activity, 8.3.1.14-40--43

exploration and extraction of resources and accessible environment, 8.3.1.9-21
 and human intrusion, 8.3.1.9-46

exploration/extraction effects on hydrologic characteristics study, 8.3.1.9-49--50
 activities, 8.3.1.9-49--50
 hydrologic effects of future groundwater withdrawals, 8.3.1.9-49
 noncredible human interference initiating events, 8.3.1.9-50

exploration program study, 8.3.1.14-31--44
 activities, 8.3.1.14-33--44
 detailed exploration, 8.3.1.14-43--44
 preliminary exploration, 8.3.1.14-40--43
 site reconnaissance, 8.3.1.14-33--40

exploratory boreholes
 categories for sealing, 8.3.3.2-12*
 sealing components, 8.3.3.2-7, -8**, -11--12*, -24

exploratory drifts
 exploratory shaft facility construction, 8.4.2-194--195
 general arrangement, 8.4.2-173--175

exploratory drilling
 and decontamination, 8.7-2
 disruptive scenario classes, evaluation of, 8.4.3-65--66
 and human intrusion scenarios, 8.3.1.9-3, -11
 likelihood of, 8.3.1.9-45
 maximum radioactivity releases, 8.3.5.13-85*
 and radionuclide release, 8.3.1.9-21
 Ross study, 8.3.5.13-35
 within perimeter drift, 8.3.1.4-94**; 8.3.1.9-44

exploratory drilling (human intrusion scenario A-2)
 expected partial performance measures (EPPM), 8.3.5.13-97*
 performance parameters, 8.3.5.13-97*

exploratory shaft 1
 conceptual layout, 8.3.1.4-76**;
 8.4.2-91**, -92**
 decommissioning, 8.7-5
 general arrangement of internal
 structures, 8.4.2-170**
 general testing, 8.4.2-90, -93
 geologic mapping of, 8.3.1.4-74--79
 hydrologic and mechanical zones of
 influence, 8.4.2-214**
 schematic cross section, 8.4.2-168**
 topographic cross section, 8.4.3-69**
see also exploratory shafts

exploratory shaft 2
 conceptual illustration, 8.4.2-91**, -92**
 construction, 8.4.2-191--192
 decommissioning, 8.7-5
 general arrangement of internal
 structures, 8.4.2-171**
 general testing, 8.4.2-90, -93
 hydrologic and mechanical zones of
 influence, 8.4.2-214**
 schematic cross section, 8.4.2-168**
 station construction, 8.4.2-192
 topographic cross section, 8.4.3-69**
see also exploratory shafts

exploratory shaft construction
 and ground-water travel time, 8.4.3-87
 major milestones, 8.5-34, -36
 and matrix saturation, 8.4.3-19, -20**
 and modified permeability zone,
 8.4.3-18--19
 potential impact of geochemical
 disturbance, 8.4.3-44--45
 potential impact of hydrologic
 disturbance, 8.4.3-44
 potential impact of thermal/mechanical
 disturbance, 8.4.3-45--46
 potential impacts, 8.4.3-43--46
 water introduced, 8.4.3-17--19

exploratory shaft facility, see ESF

exploratory shaft liner, and ground-water
 chemistry, 8.4.3-24--25

exploratory shafts
 decommissioning, 8.7-5
 and flood peak discharges, 8.4.3-70*
 general arrangement, 8.4.2-167--173
 hydrologic and mechanical zones of
 influence, 8.4.2-214**
 industrial safety considerations,
 8.4.2-169

exploratory shafts (continued)
 major flooding, 8.4.3-10--11
 major milestones, 8.5-34, -36--39, -111**
 milestone descriptions, 8.5-115--116
 operational considerations,
 8.4.2-169, -172--173
 and probable maximum flood, 8.4.3-10
 schematic cross section, 8.4.2-168**
 sealing concepts, 8.4.3-67**
 summary schedule, 8.5-34, -35**
 sump silt accumulation, 8.4.3-10--11
 topographic cross section, 8.4.3-69**
 unlined, stability of, 8.4.3-26--27
see also exploratory shaft 1 and
 exploratory shaft 2

exploratory shafts and drifts, geologic
 mapping
 constraints and zones of influence,
 8.4.2-107
 purpose and operations, 8.4.2-107

exploratory shaft testing
 major milestones, 8.5-36--39

extensional tectonism
 and erosion, 8.3.1.6-7, -20, -22

extraction methods criteria, product 1.11.5-1
 status, 8.3.2.2-38

extraction of resources, see resource
 exploration and extraction

extreme climate change, disruptive scenario
 classes, evaluation of, 8.4.3-63--64

extreme climate scenarios, global climate
 modeling, 8.3.1.5-80

extreme weather characterization phenomena
 study, 8.3.1.12-27--28
 description, 8.3.1.12-27--28
 objectives, 8.3.1.12-27
 parameters, 8.3.1.12-27

extreme weather phenomena
 and long-term climatological data,
 8.3.1.12-26--27

extreme weather recurrence intervals
 investigation, 8.3.1.12-1, -3, -4**,
 -26--28
 application of results, 8.3.1.12-28
 link to supporting information,
 8.3.1.12-26

study
 extreme weather phenomena charac-
 terization, 8.3.1.12-27--28

technical basis for, 8.3.1.12-26

technical rationale, 8.3.1.12-26--27

extrusive magmatic activity, disruptive scenario classes, evaluation of, 8.4.3-65

fabrication, closure, inspection technology (Information Need 4.3.1), 8.3.4.4-3--9 application of results, 8.3.4.4-5 design activities, 8.3.4.4-3--5 waste package closure, 8.3.4.4-4--5 waste package closure inspection, 8.3.4.4-5 waste package fabrication, 8.3.4.4-3--4 link to supporting information, 8.3.4.4-3 logic, 8.3.4.4-3 parameters, 8.3.4.4-3 technical basis for, 8.3.4.4-3 facilities important to safety and fault displacement, 8.3.1.17-31, -32, -56--62, -96 and ground motion, 8.3.1.17-34, -72, -78 and hydrology, 8.3.1.16-1 and preclosure volcanic activity investigation, 8.3.1.17-3* and seismic-design basis, 8.3.1.17-65--69 and soil and rock structure, 8.3.1.14-61 and trench locations, 8.3.1.17-93 see also important to safety and Q list failure models austenitic alloys, 8.3.5.9-42*--44* copper-based alloys, 8.3.5.9-41*--42* falling-head injection test analysis, 8.3.1.2-389 far-field analyses parameters, 8.3.2.2-70* summary, 8.3.2.2-73 fault and fracture patterns and structural domain activity, 8.3.1.17-131--132 fault displacement investigation, 8.3.1.17-56--63 activities faults intersecting underground facilities assessment, 8.3.1.17-62--63 surface faulting potential at surface facilities important to safety, 8.3.1.17-60--61 application of results, 8.3.1.17-63 link to supporting information, 8.3.1.17-56 logic diagram, 8.3.1.17-59**

fault displacement investigation (continued) parameters, 8.3.1.17-56--57 purpose and objectives, 8.3.1.17-57 study faulting potential at repository, 8.3.1.17-60--63 technical basis, 8.3.1.17-56--60 technical rationale, 8.3.1.17-58--60 fault offset effect on travel pathway activity, 8.3.1.8-103--104 description, 8.3.1.8-103--104 methods and technical procedures, 8.3.1.8-104 objectives, 8.3.1.8-103 parameters, 8.3.1.8-103 fault systems, left lateral, 8.3.1.8-130 faulting and fracture permeability, and effective porosities 8.3.1.8-95--96 and Neogene strain, 8.3.1.8-130 see also faults faulting and seismicity, disruptive scenario classes, evaluation of, 8.4.3-64 faulting effects on average flux rates (modeling) activity, 8.3.1.8-85 description, 8.3.1.8-85 methods and technical procedures, 8.3.1.8-85 objectives, 8.3.1.8-85 parameters, 8.3.1.8-85 faulting effects on flux rates assessment activity, 8.3.1.8-85--86 description, 8.3.1.8-86 methods and technical procedures, 8.3.1.8-86 objectives, 8.3.1.8-85--86 parameters, 8.3.1.8-86 faulting effects on local fracture permeability and effective porosity activity, 8.3.1.8-95--96 description, 8.3.1.8-96 methods and technical procedures, 8.3.1.8-96 objectives, 8.3.1.8-95--96 parameters, 8.3.1.8-96 faulting effects on water-table elevation activity (assessment), 8.3.1.8-93--94 description, 8.3.1.8-94 methods and technical procedures, 8.3.1.8-94 objectives, 8.3.1.8-94 parameters, 8.3.1.8-93--94

faulting effects on water-table elevation
 (continued)
 activity (model), 8.3.1.8-93
 description, 8.3.1.8-93
 methods and technical procedures,
 8.3.1.8-93
 objectives, 8.3.1.8-93
 parameters, 8.3.1.8-93
faulting near surface facilities (location and recency) study, 8.3.1.17-93--97
 activities, 8.3.1.17-93--97
 Midway Valley exploratory trenching,
 8.3.1.17-95--97
 Midway Valley trench location
 identification, 8.3.1.17-93--95
faulting potential at repository study,
 8.3.1.17-60--63
 activities, 8.3.1.17-60--63
 faults intersecting underground
 facilities assessment,
 8.3.1.17-62--63
 surface faulting potential at surface
 facilities important to safety,
 8.3.1.17-60--61
faulting rates, recurrence intervals, and probable cumulative effect in 10,000 years
 activity, 8.3.1.8-84--85
 description, 8.3.1.8-84--85
 methods and technical procedures,
 8.3.1.8-85
 objectives, 8.3.1.8-84
 parameters, 8.3.1.8-84
faults
 Bare Mountain, 8.3.1.17-29**, -30, -103,
 -104**, -128--130
 borehole evaluation activity,
 8.3.1.4-70--74
 Bow Ridge zone, 8.3.1.17-28, -29**, -30,
 -33, -34, -154, -160, -163--164*,
 -175, -195
 and Cane Springs, 8.3.1.17-133, -134**,
 -142--143
 and controlled area, 8.3.1.8-68--69,
 -84--85, -86, -91, -93--94, -96, -97,
 -101, -103--105
 Death Valley-Furnace Creek zone,
 8.3.1.17-97, -100**, -103, -123, -126
 (see also Furnace Creek fault zone)
 Death Valley-Pancake Range belt,
 8.3.1.17-195, -201, -204
 displacement and preclosure tectonics
 program, 8.3.1.17-31--34

faults (continued)
 and facilities important to safety,
 8.3.1.17-31, -32, -56--63, -95
 Fortymile Wash, 8.3.1.17-28
 and fracture permeability/effective
 porosities, 8.3.1.8-95--96
 gamma ray measurements, 8.3.1.17-175--176
 Garlock, 8.3.1.17-100**, -133
 geohydrology program provided parameters,
 8.3.1.2-46*--47*
 geometry and property parameters,
 8.3.1.4-12*--13*, -16
 Ghost Dance, see Ghost Dance fault
 hydrologic properties, 8.3.1.2-233, -273,
 -316--320
 and local heat-flow anomalies, 8.3.1.8-128
 and marker system, 8.3.1.9-15, -18
 Midway Valley, 8.3.1.17-28, -30, -31,
 -32, -36, -96
 Mine Mountain, 8.3.1.8-130; 8.3.1.17-119,
 -132, -133, -134**, -138--139, -142
 mineral changes, 8.3.1.8-102--103
 mineral filling recementation, 8.3.1.8-96
 mineralogy studies, 8.4.2-108
 Neogene strain, 8.3.1.8-130
 Paintbrush Canyon, see Paintbrush Canyon
 fault
 and porosity, 8.3.1.8-95--96
Quaternary, see Quaternary fault entries
 recurrence of, 8.3.1.8-94
 right lateral, 8.3.1.8-130
 Rock Valley, 8.3.1.8-130; 8.3.1.17-28,
 -133, -134**, -135--137
 Solitario Canyon, see Solitario Canyon
 fault
 Stagecoach Road, see Stagecoach Road fault
 and waste package, 8.3.1.8-67--68
 and water-table elevation, 8.3.1.8-93--94,
 -104
 Yucca Wash, 8.3.1.17-28
 see also detachment faults entries
faults intersecting underground facilities
 activity, 8.3.1.17-62--63
 description, 8.3.1.17-62--63
 methods and technical procedures,
 8.3.1.17-63
 objectives, 8.3.1.17-62
 parameters, 8.3.1.17-62
faulty waste emplacement, potentially likely conditions, evaluation of, 8.4.3-59
favorable conditions
 and geohydrology program, 8.3.1.2-3

feasibility test, technical procedure,
 8.3.1.17-170

feasibility traverses for gamma-ray
 measurements, 8.3.1.17-176

feature sampling
 representative sampling approach,
 8.4.2-27
 and sampling bias in planned tests,
 8.4.2-26--28

Federal and State agencies
 and decontamination and decommissioning,
 8.7-1, -3, -4, -5, -6
 and plans and mitigation, 8.7-6

Federal Land Management Policy Act
 and Bureau of Land Management land access,
 8.7-1
 and mining rights at site, 8.3.1.11-2

FEHMS
 and particulate transport, 8.3.1.3-121,
 -122, -127

FEMOD
 and ground-water modeling, 8.3.1.2-141
 and ground-water withdrawal analysis,
 8.3.1.9-49

FEMWATER
 and COVE 2, 8.3.5.20-4*

field data collection, technical procedures
 for, 8.3.1.2-429--430, -432--433

field geologic studies activity,
 8.3.1.8-116--118
 description, 8.3.1.8-116--117
 methods and technical procedures,
 8.3.1.8-117--118
 objectives, 8.3.1.8-116
 parameters, 8.3.1.8-116

field mapping using 1:12,000-scale aerial
 photos, technical procedures for,
 8.3.1.4-68; 8.3.1.5-71

field plans, geochemical assessment of
 mineralization potential, 8.3.1.9-33*

field tests and characterization measurements
 study, 8.3.1.14-53--63
 activities, 8.3.1.14-54--63
 geophysical field measurements,
 8.3.1.14-59--63
 mechanical property field tests,
 8.3.1.14-57--59
 physical property field tests and
 characterization measurements,
 8.3.1.14-54--56

field verification, Quaternary scarps,
 technical procedures for, 8.3.1.17-124

Figure of Merit, and exploratory shaft
 facility location screening, 8.4.2-154

filtration activity, 8.3.1.3-110--112
 description, 8.3.1.3-111
 methods and technical procedures,
 8.3.1.3-111
 objectives, 8.3.1.3-110--111
 parameters, 8.3.1.3-111

final procurement and construction design
 summary, 8.3.2.1-7--8

findings for qualifying and disqualifying
 conditions
 definition, 8.3.5.7-2*; 8.3.5.18-2*, -3
 and 10 CFR Part 960, Appendix III,
 8.3.5.18-1, -2*
 see also higher level findings entries

finite-element method
 and geochemical analyses, 8.3.2.1-22, -23
 and geomechanical analyses, 8.3.2.1-22,
 -23
 modeling, technical procedures for,
 8.3.1.2-144
 and structural-thermal analysis,
 8.3.2.5-69

fire protection system, and underground
 support systems, 8.4.2-199

fission products
 and containment period segments,
 8.3.5.9-24
 distribution in rock samples, 8.3.5.10-80

fission-track dating, plans and technical
 procedures, 8.3.1.17-153

flatjack operation, technical procedures for,
 8.3.1.15-59, -61, -67, -70

flexibility
 design, see design, flexibility
 in selecting underground facility
 configuration, postclosure design
 function 1, 8.3.2.2-7, -11, -44

FLMPA, see Federal Land Management Policy Act

flood analyses
 and Fortymile Wash, 8.3.5.17-19--20

flood and debris hazards (site) activity,
 8.3.1.16-10--14
 description, 8.3.1.16-11--12
 methods and technical procedures,
 8.3.1.16-13
 objectives, 8.3.1.16-10
 parameters, 8.3.1.16-10--11

flood peak discharges, and exploratory shafts,
 8.4.3-70*

flood potential characterization study,
8.3.1.16-10--14
activity
flood and debris hazards (site),
8.3.1.16-10--14

flooding
and exploratory shaft, 8.4.3-10--11
potential, design consideration, 8.4.3-34
potentially likely conditions, evaluation
of, 8.4.3-58

flooding data
and criticality control (Information Need
2.7.3), 8.3.2.3-43
and items important to safety (Information
Need 2.7.2), 8.3.2.3-43

flooding potential (Issue 1.8 potentially
adverse condition 1)
discussion, 8.3.5.17-19--20
and probable maximum flood, 8.3.5.17-20
text of condition, 8.3.5.17-4*

flooding recurrence intervals investigation,
8.3.1.16-7--14
activity
flood and debris hazards activity,
8.3.1.16-10--14

application of results, 8.3.1.16-13--14
link to supporting information, 8.3.1.16-7
logic diagram, 8.3.1.16-9**
parameters, 8.3.1.16-7
purpose and objectives, 8.3.1.16-7--8
study
flood potential characterization,
8.3.1.16-10--14

summary, 8.3.1.16-2
technical basis for, 8.3.1.16-7--10
technical rationale, 8.3.1.16-8, -10

floods
characterization, technical procedures
for, 8.3.1.16-13
debris hazards for future floods,
technical procedures for, 8.3.1.16-13
hazard prediction data needs, 8.3.1.2-89
Nevada Department of Transportation study,
8.3.1.16-8
potential future, technical procedures
for, 8.3.1.16-13
regional hydrologic model data needs,
8.3.1.2-94
and regional paleoflood evaluation,
8.3.1.5-94
see also probable maximum flood

flow and transport, and postclosure
performance evaluations, 8.4.2-3, -4*--7*,
-8

flow and transport analysis in laboratory
systems (Activity 1.10.4.2.3),
8.3.4.2-55
description, 8.3.4.2-55
objectives, 8.3.4.2-55
parameters, 8.3.4.2-55

flow and transport analysis in near field
(Activity 1.10.4.4.3), 8.3.4.2-61--63
description, 8.3.4.2-62--63
objectives, 8.3.4.2-61
parameters, 8.3.4.2-61--62

flow channelization, 8.3.1.2-241
tests, technical procedures for,
8.3.1.2-250--251

flow conditions (potential)
and seals, 8.3.3.2-23**, -27

flow interference tests, technical procedures
for, 8.3.1.2-333

flow models
calibration, 8.3.1.2-156
and hydrologic properties, 8.3.4.2-51--52
need for, 8.3.1.2-154

flow path/flux/velocity calculation activity
(saturated zone), 8.3.1.2-441--444
description, 8.3.1.2-441--443
methods and technical procedures,
8.3.1.2-443
objectives, 8.3.1.2-441
parameters, 8.3.1.2-441

fluid flow
computer impedance tomography, 8.3.4.2-53

fluid flow in unsaturated, fractured rock
model development activity, 8.3.1.2-342--345
description, 8.3.1.2-342--343
methods and technical procedures,
8.3.1.2-343--345
objectives, 8.3.1.2-342
parameters, 8.3.1.2-342

fluid flow in unsaturated, fractured rock
model validation activity, 8.3.1.2-345--350
description, 8.3.1.2-346--347
methods and technical procedures,
8.3.1.2-347--350
objectives, 8.3.1.2-345
parameters, 8.3.1.2-346

fluid flow in unsaturated, fractured rock study, 8.3.1.2-341--350 activities, 8.3.1.2-342--350 fluid flow in unsaturated, fractured rock model development, 8.3.1.2-342--345 fluid flow in unsaturated, fractured rock model validation, 8.3.1.2-345--350

fluid inclusion methods, technical procedures for, 8.3.1.3-51; 8.3.1.5-115

fluid modeling and EQ3/6, 8.3.5.10-63 and sensitivity analyses, 8.3.5.10-63

fluid permeability tests, 8.3.1.2-190

fluvial deposit technical procedures mapping, 8.3.1.16-13

flux change, and unsaturated zone flow, 8.4.3-12--13 character at site, 8.3.1.2-150--151 and climatic change, 8.3.5.13-84 distribution, characterization of data needs, 8.3.1.2-90--91 determination of, 8.3.1.2-153

penetration into discrete fractures analysis, 8.4.3-14

rates faulting effects, 8.3.1.8-85--86 folding, uplift, and subsidence effects, 8.3.1.8-87--88 igneous intrusions and volcanic events effects, 8.3.1.8-83--84 tectonics effects, 8.3.1.8-82--88 (see also tectonic effect on flux rates study)

and saturation, 8.4.3-13 and travel time, 8.4.3-13 upper boundary conditions, determination of, 8.3.1.2-164, -173 and velocity calculation saturated zone, 8.3.1.2-441--443

folding effect on water-table elevation activity, 8.3.1.8-92 Neogene strain, 8.3.1.8-130

folding and deformation and waste package rupture, 8.3.1.8-72

folding and deformation in repository horizon activity, 8.3.1.8-71--72 description, 8.3.1.8-71 methods and technical procedures, 8.3.1.8-72 objectives, 8.3.1.8-71 parameters, 8.3.1.8-71 and rock characteristics program, 8.3.1.8-71

folding, uplift, and subsidence, disruptive scenario classes, evaluation of, 8.4.3-71

folding, uplift, and subsidence effects on flux rates, activity, 8.3.1.8-87--88 description, 8.3.1.8-87--88 methods and technical procedures, 8.3.1.8-87 objectives, 8.3.1.8-87 parameters, 8.3.1.8-87

folding, uplift, and subsidence effects on water table elevation activity, 8.3.1.8-92 description, 8.3.1.8-92 methods and technical procedures, 8.3.1.8-92 objectives, 8.3.1.8-92 parameters, 8.3.1.8-92

folds in Miocene and younger rocks of region, study, 8.3.1.8-129--131 activity folds in Neogene rocks, 8.3.1.8-131 application of results, 8.3.1.8-131 objectives, 8.3.1.8-131

folds in Neogene rocks evaluation activity, 8.3.1.8-130 description, 8.3.1.8-130 methods and technical procedures, 8.3.1.8-130 objectives, 8.3.1.8-130 parameters, 8.3.1.8-130

formation invasion by fluid, and construction control, 8.4.2-86--87

Fortymile Wash chemical analyses, 8.3.1.2-129 continuous stream stage gages, 8.3.1.2-104 dating major terraces, technical procedures for, 8.3.1.6-12--13 downcutting history, 8.3.1.6-11--13 drillholes, recharge study, 8.3.1.2-127, -128** and erosion, 8.3.1.6-9, -11--12

Fortymile Wash (continued)

- and flood analyses, 8.3.5.17-19--20
- and geologic investigations, 8.3.1.4-29
- and hydrogeologic section, 8.3.5.12-4**
- meteorological monitoring at,
 - 8.3.1.2-99**, -100*
- and meteorological towers, 8.3.1.12-17--19
- precipitation gages, 8.3.1.2-98, -129
- and Quaternary faulting study area,
 - 8.3.1.17-103
- and recharge, 8.3.1.2-97, -125--133, -146;
 - 8.3.1.5-122
- and site faulting study area,
 - 8.3.1.17-154
- and site precipitation activity,
 - 8.3.1.2-104--105
- streamflow, 8.3.1.2-98, -126--127

Fortymile Wash recharge activity,

- 8.3.1.2-125--133
- description, 8.3.1.2-126--129
- location of drillholes, 8.3.1.2-128**
- methods and technical procedures,
 - 8.3.1.2-129--133
- objectives, 8.3.1.2-125
- parameters, 8.3.1.2-126

Fortymile Wash subsurface data analysis to determine faults or fault zones

- technical procedures for, 8.3.1.6-13

fossils

- and chronologic analyses, 8.3.1.5-53

FPCD, see final procurement and construction design

fractal analysis

- of exposed pavements, 8.3.1.4-70

fracture and aperture size

- hydrological analyses and data, 8.4.3-12
- and unsaturated zone flow, 8.4.3-12

fracture and hydrologic conditions

- effects of drilling with gas, 8.4.3-15
- effects of drilling with water,
 - 8.4.3-14--15

fracture characterization

- borehole evaluation, 8.3.1.4-70--74
- and geotomography, 8.3.1.2-162
- parameters provided by geohydrology program, 8.3.1.2-44**-46*
- technical procedures for, 8.3.1.15-59

fracture depth evaluation, technical procedures for, 8.3.1.15-71

fracture-filling mineralogy, 8.3.1.4-77

- sampling and analysis technical procedures, 8.3.1.4-78

fracture flow

- and disturbed zone, 8.3.5.12-5
- and Ghost Dance fault, 8.3.5.12-16
- and ground-water pathways, 8.3.5.12-5
- and Tiva Canyon welded unit, 8.3.5.8-8

fracture fluid

- chemical analyses, 8.3.1.2-338
- extraction in ESF, 8.3.1.2-305

fracture geometry and property activity parameters, 8.3.1.4-10-12*, -16**

fracture hydraulic and pneumatic conductivities, technical procedures for, 8.3.1.2-343, -347--348

fracture hydrologic characteristics performance parameters, 8.3.5.12-32-33***

fracture logging of core, technical procedures for, 8.3.1.2-279, -287, -296, -315

fracture mapping

- and bulk-permeability test, 8.3.1.2-272--273
- technical procedures for, 8.3.1.2-243, -275, -319; 8.3.1.4-70

fracture mechanical properties (baseline) activity, 8.3.1.15-43--44

- description, 8.3.1.15-43
- methods and technical procedures, 8.3.1.15-43--44
- objectives, 8.3.1.15-43
- parameters, 8.3.1.15-43

fracture mechanical properties (environmental effects) activity, 8.3.1.15-44--45

- description, 8.3.1.15-44--45
- methods and technical procedures, 8.3.1.15-45
- objectives, 8.3.1.15-44
- parameters, 8.3.1.15-44

fracture mechanical properties (laboratory determination) study, 8.3.1.15-43--45 activities, 8.3.1.15-43--45

- fracture mechanical properties (baseline), 8.3.1.15-43--44
- fracture mechanical properties (environmental effects), 8.3.1.15-44--45

fracture mineralogy activity, 8.3.1.3-47--49

- description, 8.3.1.3-47--48
- methods and technical procedures, 8.3.1.3-48--49
- objectives, 8.3.1.3-47
- parameters, 8.3.1.3-47

fracture mineralogy studies
 constraints and zones of influence,
 8.4.2-108
mineralogy of fractures and faults,
 8.4.2-108
purpose and operations, 8.4.2-107--108
stratigraphy and variability of the devitrified Topopah Spring Member,
 8.4.2-108
fracture network model
 and tracer test results interpretation,
 8.3.1.2-403
fracture network model development activity,
 8.3.1.2-436--441
 description, 8.3.1.2-436--440
 methods and technical procedures,
 8.3.1.2-440--441
 objectives, 8.3.1.2-436
 parameters, 8.3.1.2-436
fracture network (surface) studies,
 8.3.1.4-68--70
fracture permeability and effective porosity
 and faulting, 8.3.1.8-95--96
 and igneous intrusions, 8.3.1.8-95
fracture sampling
 technical procedures for,
 8.3.1.2-243--244; 8.3.1.15-45
fracture studies, seismic, 8.3.1.2-161
fracture system flow channeling, 8.3.1.2-156
fracture (intact) test in ESF, 8.3.1.2-233,
 -238--252
fracture testing, technical procedures for,
 8.3.1.15-44, -45
fracture transport characteristics, technical
 procedures for, 8.3.1.2-343--344, -348
fracture zone
 width, 8.3.1.8-96
 and sealing, 8.3.3.1-5
fractured rock, prototype testing in,
 8.3.1.2-162
fractured rock mass hydraulic conductivities
 and transport characteristics,
 8.3.1.2-344, -348--349
fractured tuff column studies activity,
 8.3.1.3-109--110
 description, 8.3.1.3-110
 methods and technical procedures,
 8.3.1.3-110
 objectives, 8.3.1.3-109
 parameters, 8.3.1.3-109
fractures
 borehole evaluation, 8.3.1.4-70--74

fractures (continued)
 capillary-driven water flow,
 8.4.3-14
 hydraulic conductivity, 8.3.1.2-89
 mineralogy studies, 8.4.2-108
 and unsaturated zone flow, 8.4.3-12--17
fracturing and physical properties, technical
 procedures for, 8.3.1.8-126--127
fracturing, evaluating depth, technical
 procedures for, 8.3.1.15-71
Fran Ridge
 and eolian deposits, 8.3.1.5-73
 and shallow seismic reflection,
 8.3.1.17-178
Franklin Lake
 discharge areas, 8.3.1.5-98
 evapotranspiration studies,
 8.3.1.2-134, -135**, -136, -141
function 1, see radiological protection,
 function 1
function 2, see design of items important to
 safety, function 2
function 3, see criticality control,
 function 3
function 4, see compliance with mining
 regulations, function 4
function 5, see waste treatment, function 5
functional requirements
 identification, 8.3.2.3-12
 of seal program, 8.3.3.2-24--26
Funeral Mountains, detachment fault
 comparison, 8.3.1.17-150
Furnace Creek fault zone
 deep geophysical survey activity,
 8.3.1.17-105--106, -115, -116**,
 -117--119
 and Quaternary faulting, 8.3.1.17-155
 and relevel network, 8.3.1.17-194
 uplift and subsidence boundaries,
 8.3.1.17-194
Furnace Creek Ranch, evapotranspiration
 studies, 8.3.1.2-134, -135**
future climate and erosion study,
 8.3.1.6-18--19
 activity
 future climate and erosion
 synthesis, 8.3.1.6-18--19
 objectives, 8.3.1.6-18
future climate and erosion synthesis
 activity, 8.3.1.6-18--19
 description, 8.3.1.6-18--19

future climate and erosion synthesis activity (continued)
 methods and technical procedures, 8.3.1.6-19
 objectives, 8.3.1.6-18
 parameters, 8.3.1.6-18

future climate investigations, 8.3.1.5-39

future climate prediction, 8.3.1.5-80
see also climate modeling

future climate scenarios modeling, technical procedures for, 8.3.1.5-84

future ground-water conditions due to climatic changes, technical procedures for, 8.3.1.5-122

future nature and rates of climate change investigation, 8.3.1.5-33--89
see also nature and rates of climate change investigation

future regional climate and environments study, 8.3.1.5-78--88
 activities, 8.3.1.5-79--88
 empirical climate modeling, 8.3.1.5-86--88
 global climate modeling, 8.3.1.5-79--83
 linked global-regional climate modeling, 8.3.1.5-84--86
 regional climate modeling, 8.3.1.5-83--84
 objectives, 8.3.1.5-78--79

future regional hydrology due to climate changes study, 8.3.1.5-118--122
 activities, 8.3.1.5-118--122
 future surface hydrology due to climate changes, 8.3.1.5-118--119
 future unsaturated-zone hydrology due to climate changes, 8.3.1.5-119--120
 recharge due to climate changes, saturated-zone, 8.3.1.5-121--122
 objectives, 8.3.1.5-118

future resource values, investigation, 8.3.1.9-20--44
see also resource value investigation

future surface hydrology due to climate changes activity, 8.3.1.5-118--119
 description, 8.3.1.5-119
 methods and technical procedures, 8.3.1.5-119
 objectives, 8.3.1.5-118
 parameters, 8.3.1.5-119

future tectonic effects on erosion study activity
 impact of uplift and faulting on erosion, 8.3.1.6-22--23
 objectives, 8.3.1.6-22

future unsaturated zone hydrology, climate changes activity, 8.3.1.5-119--120
 description, 8.3.1.5-120
 methods and technical procedures, 8.3.1.5-120
 objectives, 8.3.1.5-119
 parameters, 8.3.1.5-120

G-Tunnel
 considerations of results from testing in, 8.3.2.5-90
 and EBS field tests, 8.3.4.2-57
 heated block experiment, 8.4.3-32
 mining demonstrations conducted in, 8.3.2.5-93
 planned analyses using experimental results, 8.3.2.5-76--81
 prototype tests, 8.3.4.2-57
 small diameter heater experiment, 8.4.3-32--33

G-Tunnel Rock Mechanics Facility
 and drilling fluids, 8.4.2-86
 and prototype test program, 8.4.2-86

GAMANAL, sorption, 8.3.1.3-73

gamma-ray measurements and fault detection activity, 8.3.1.17-175--176

gap and grain boundary inventory rapid release (spent fuel)
 performance parameters, 8.3.5.9-21*--22*, -33--34

Garlock fault, 8.3.1.17-100**, -133

gas age determination (unsaturated zone), 8.3.1.2-305, -335

gas flow
 modeling, technical procedures for, 8.3.1.2-334
 structural controls on, 8.3.1.2-330
 in unsaturated zone, 8.3.1.2-153

gas-phase release (nominal case scenario E)
 expected partial performance measures (EPPM), 8.3.5.13-76, -93*--95*
 performance parameters, 8.3.5.13-94*--95*
 technical discussion, 8.3.5.13-75--80

gas-phase release model development
 (Subactivity 1.1.3.1.2), 8.3.5.13-134
 description, 8.3.5.13-134
 objectives, 8.3.5.13-134
 parameters, 8.3.5.13-134

gas-phase releases, 8.3.5.10-14, -66;
 8.3.5.13-26; 8.3.5.14-2, -5, -12
 and geochemistry qualifying condition,
 8.3.5.18-9, -11
 models, 8.3.5.13-76--80, -130, -131--132,
 -134
 and NRC siting criteria potentially
 adverse conditions, 8.3.5.17-89

gas-phase test summary, 8.3.1.2-324**-326*

gas sample technical procedures, 8.3.1.2-316
 analysis, 8.3.1.2-306--307
 collection and transport,
 8.3.1.2-290--291, -306, -335, -429
 preparation, 8.3.1.2-306, -337

gas sampling
 and radial borehole tests, 8.3.1.2-284

gas tracer, and site vertical borehole
 studies, 8.4.2-73, -74

gas tracer diffusion studies, 8.3.1.2-207,
 -210; 8.4.2-74

gas tracer tests, technical procedures for,
 8.3.1.2-280, -333--334

gas transport
 use of hydrochemistry,
 8.3.1.2-91, -154

gas transport measurements activity,
 8.3.1.3-137--138
 description, 8.3.1.3-138
 methods and technical procedures,
 8.3.1.3-138
 objectives, 8.3.1.3-137
 parameters, 8.3.1.3-137

GASDOSE
 and preclosure safety assessment,
 8.3.5.19-9*, -10*

gaseous- and liquid-phase chemical sampling,
 locations, 8.3.1.2-336**

gaseous flux distribution
 activities, 8.3.1.2-153
 modeling, 8.3.1.2-156, -330

gaseous-phase chemical investigations
 activity, 8.3.1.2-334--337
 description, 8.3.1.2-335
 methods and technical procedures,
 8.3.1.2-335--337
 objectives, 8.3.1.2-334
 parameters, 8.3.1.2-334

gaseous-phase circulation activity,
 8.3.1.2-323--334
 description, 8.3.1.2-327--331
 methods and technical procedures,
 8.3.1.2-331--334
 objectives, 8.3.1.2-323, -327
 parameters, 8.3.1.2-327

gaseous-phase movement, as component of
 unsaturated-zone system, 8.3.1.2-151

gaseous-phase movement (unsaturated zone)
 study, 8.3.1.2-322--334
 activity
 gaseous-phase circulation,
 8.3.1.2-323--334
 objectives, 8.3.1.2-322--323

gaseous-phase sampling locations,
 8.3.1.2-328**, -336**

gaseous-phase test summary, 8.3.1.2-324**-326*

gaseous radionuclide retardation investigation
 activities
 gas transport measurements,
 8.3.1.3-137--138
 physical transport mechanisms and
 rates, 8.3.1.3-136--137
 application of results, 8.3.1.3-138
 interrelationships, 8.3.1.3-34, -35**
 link to supporting information,
 8.3.1.3-134
 logic diagram, 8.3.1.3-35**
 parameters, 8.3.1.3-134
 purpose and objectives, 8.3.1.3-134
 study
 gaseous radionuclide transport
 calculations and measurements,
 8.3.1.3-135--138
 summary, 8.3.1.3-31, -34
 technical basis for, 8.3.1.3-134--135
 technical rationale, 8.3.1.3-135

gaseous radionuclide transport calculations
 and measurements study, 8.3.1.3-135--138
 activities, 8.3.1.3-136--138
 gas transport measurements,
 8.3.1.3-137--138
 physical transport mechanisms and
 rates, 8.3.1.3-136--137

gaseous-tracer testing, technical procedures
 for, 8.3.1.2-280, -333--334

general circulation models (global climate),
 8.3.1.5-80, -81
see also global climate model

- generic requirements for mined geologic disposal system
 - and waste package, 8.3.4-1
- geochemical alteration
 - and the Ross study, 8.3.5.13-40--42
- geochemical analyses
 - analytical tools, 8.3.2.1-21--22
 - design techniques, 8.3.2.1-21--23
 - finite-element method, 8.3.2.1-22, -23
 - repository modeling, 8.3.2.1-19
 - technical procedures for, 8.3.1.5-115
- geochemical analyses and data
 - effects of biological degradation and transport, 8.4.3-24
 - effects of concrete shaft liner on ground-water chemistry, 8.4.3-24
 - effects of introduced material on repository horizon, 8.4.3-23--24
 - and potential impacts of site characterization, 8.4.3-23--25
- geochemical analysis of lake, marsh, and playa deposits activity, 8.3.1.5-49--51
 - description, 8.3.1.5-50
 - methods and technical procedures, 8.3.1.5-50--51
 - objectives, 8.3.1.5-49
 - parameters, 8.3.1.5-49
- geochemical analytical methods, 8.3.1.9-33
 - technical procedures for, 8.3.1.8-110, -111, -118, -120, -122
- geochemical and mineralization potential activity, 8.3.1.9-30--33
 - description, 8.3.1.9-31--33
 - methods and technical procedures, 8.3.1.9-33*
 - objectives, 8.3.1.9-30
 - parameters, 8.3.1.9-30--31
- geochemical assessment of mineralization potential, technical procedures for, 8.3.1.9-33
- geochemical changes
 - potentially likely conditions, evaluation of, 8.4.3-58
 - and Ross study, 8.3.5.13-31
- geochemical characteristics
 - resource exploitation effects, 8.3.1.9-45
- geochemical characteristics along flow paths
 - and erosion, 8.3.1.6-27
- geochemical conditions (Issue 1.8 favorable condition 3)
 - text of condition and discussion, 8.3.5.17-2*, -89, -91
- geochemical cycles of basaltic volcanic fields activity, 8.3.1.8-121--123
 - description, 8.3.1.8-121--122
 - methods and technical procedures, 8.3.1.8-122--123
 - objectives, 8.3.1.8-121
 - parameters, 8.3.1.8-121
- geochemical disturbance, potential effect from deep borings drilled dry, 8.4.3-41
 - exploratory shaft construction, 8.4.3-44--45
 - from exploratory shaft facilities activities, 8.4.3-49
 - from saturated-zone boreholes, 8.4.3-42--43
 - from shallow borings drilled dry, 8.4.3-39--40
 - from underground construction, 8.4.3-47
- geochemical field methods, technical procedures for, 8.3.1.9-33
- geochemical-geophysical model
 - radionuclide transport, 8.3.1.3-116
 - and water-table fluctuations, 8.3.1.8-104
 - and Yucca Mountain, 8.3.1.3-10, -116
- geochemical-geophysical model activity, 8.3.1.3-123--125
 - description, 8.3.1.3-124
 - methods and technical procedures, 8.3.1.3-125
 - objectives, 8.3.1.3-123
 - parameters, 8.3.1.3-123--124
- geochemical modeling
 - E03/6, 8.3.4.2-48
- geochemical modeling code (Subactivity 1.5.3.2.2), 8.3.5.10-64--66
 - description, 8.3.5.10-65--66
 - objectives, 8.3.5.10-64--65
- geochemical modeling data base (Subactivity 1.5.3.2.1), 8.3.5.10-63--64
 - description, 8.3.5.10-63--64
 - objectives, 8.3.5.10-63
- geochemical parameters
 - and three-dimensional rock characteristics model, 8.3.1.4-100--103
 - and EBS release rates (Issue 1.5), 8.3.1.3-1, -2**, -7*, -10**
- geochemical processes (Issue 1.8 potentially adverse condition 8)
 - and controlled area, 8.3.5.17-52, -55
 - discussion, 8.3.5.17-52, -55

geochemical processes (Issue 1.8 potentially adverse condition 8) (continued)
 performance parameters and goals,
 8.3.5.17-56*-60*
 related studies and activities,
 8.3.5.17-56*-60*
 scenario classes, 8.3.5.17-56*-60*
 text of condition, 8.3.5.17-5*
 geochemical processes affecting transport,
 8.3.1.3-119--122
 geochemical processes from mineralogy
 activity, 8.3.1.3-49--51
 description, 8.3.1.3-50--51
 methods and technical procedures,
 8.3.1.3-39--51
 objectives, 8.3.1.3-49--50
 parameters, 8.3.1.3-50
 geochemical properties (rock),
 8.3.1.8-19*-21*, -98--105
 geochemical sampling plan, technical
 procedures for, 8.3.1.9-33
 geochemical setting
 and 10 CFR 60.113, 8.3.5.18-8--11
 and 10 CFR 960.4-1, 8.3.5.18-8
 geochemical speciation and reaction model
 (Activity 1.5.3.2), 8.3.5.10-62--66
 objectives, 8.3.5.10-62--63
 subactivities, 8.3.5.10-63--66
 geochemical model code,
 8.3.5.10-64--66
 geochemical modeling data base,
 8.3.5.10-63--64
 geochemical transport calculations, see
geochemical-geophysical model activity
 geochemistry and tectonic effects
 investigation, 8.3.1.8-98--105
see also tectonic effects on geochemistry
 investigation
 geochemistry of immobile trace elements
 and eolian sediments, 8.3.1.5-74--75
 geochemistry of magma, 8.3.1.8-120
 geochemistry of scoria sequences activity,
 8.3.1.8-119--120
 description, 8.3.1.8-119--120
 methods and technical procedures,
 8.3.1.8-120
 objectives, 8.3.1.8-119
 parameters, 8.3.1.8-119
 geochemistry program, 8.3.1.3-1--158
 activity parameters provided by,
 8.3.1.3-4*-9*

geochemistry program (continued)
 alternative conceptual models,
 8.3.1.3-12--23
 approach, 8.3.1.3-3, -10, -12
 and climate program, 8.3.1.5-1--3, -2**
 and configuration of underground
 facilities (postclosure) (Issue 1.11),
 8.3.1.3-2**, -3, -9*, -11**
 current representation and alternative
 hypotheses, 8.3.1.3-13*-20*
 design issue calls, 8.3.1.3-2**, -4, -9*
 and EBS release rates (Issue 1.5),
 8.3.1.3-1, -2**, -7*-8*, -11**
 and geohydrology program, 8.3.1.2-5**,
 -444
 and ground-water protection (Issue 1.3),
 8.3.1.3-1, -2**, -7*, -11**
 and GWTT (Issue 1.6), 8.3.1.3-1, -2**,
 -6*, -11**
 and higher level findings--postclosure
 (Issue 1.9), 8.3.1.3-2**, -3, -8*, -11**
 hypothesis testing tables,
 8.3.1.3-13*-20*
 and individual protection (Issue 1.2),
 8.3.1.3-1, -2**, -7*, -11**
 interrelationships, 8.3.1.3-23--34
 investigations, 8.3.1.3-36--156
 gaseous radionuclide retardation,
 8.3.1.3-134--138
 mineralogy, petrology, and rock
 chemistry, 8.3.1.3-40--54
 minerals/glass stability,
 8.3.1.3-55--65
 radionuclide dispersion, diffusion,
 advection, 8.3.1.3-95--115
 radionuclide precipitation,
 8.3.1.3-85--95
 radionuclide retardation,
 8.3.1.3-116--134
 radionuclide sorption, 8.3.1.3-65--85
 water chemistry, 8.3.1.3-36--40
see specific investigation for study
and activity listings
 logic diagram, 8.3.1.3-11**
 major events and completion dates,
 8.3.1.3-143*-157*; 8.5-5, -6**--7**,
 -8--11
 models, 8.3.1.3-2**
 and NRC siting criteria (Issue 1.8),
 8.3.1.3-1, -2**, -8*, -11**
 objectives of, 8.3.1.3-1--12
 overview, 8.3.1.3-1--34

geochemistry program (continued)
 parameter calls, 8.3.1.3-1, -2**, -3,
 -4**-9*

performance and design requirement
 summary, 8.3.1.3-1-3

performance issue calls, 8.3.1.3-1, -2**,
 -3, -4**-9*

schedule, 8.3.1.3-138--158; 8.5-5,
 -6**-7**

and seal characteristics (Issue 1.12),
 8.3.1.3-2**, -3, -9*, -11**

and sorption model, 8.3.1.3-28

and total system performance (Issue 1.1),
 8.3.1.3-1, -2**, -4**-7*, -11**

and waste package characteristics
 (Issue 1.10), 8.3.1.3-2**, -3, -8*,
 -11**

worker radiological safety parameter
 calls, 8.3.5.4-13*

geochemistry qualifying condition,
 8.3.5.18-9, -11
 and containment by waste package (Issue
 1.4), 8.3.5.18-7, -11
 and EBS release rates (Issue 1.5),
 8.3.5.18-7, -11
 and ground-water protection (Issue 1.3),
 8.3.5.18-7*
 and GWTT (Issue 1.6), 8.3.5.18-7, -8
 and individual protection (Issue 1.2),
 8.3.5.18-8
 and postclosure performance issues,
 8.3.5.18-6--7
 preliminary finding, 8.3.5.18-4*
 statement of, 8.3.5.18-9, -11
 and total system performance (Issue 1.1),
 8.3.5.18-7
 and 10 CFR 960.4-2-2(a), 8.3.5.18-9

geochemistry studies
 and Crater Flat, 8.3.1.8-53

geochemistry technical guideline
 and higher level findings (Issue 1.9(a)),
 8.3.5.18-9--11

geochronological investigations, technical
 procedures for, 8.3.1.5-115--116

geochronology studies activity,
 8.3.1.8-112--115
 description, 8.3.1.8-113--114
 methods and technical procedures,
 8.3.1.8-114--115
 objectives, 8.3.1.8-112
 parameters, 8.3.1.8-112--113

geodetic leveling, 8.3.1.8-87
 technical procedures for,
 8.3.1.17-197*

geodetic leveling study, 8.3.1.17-194--198
 activities, 8.3.1.17-194--198
 global positioning satellite survey of
 Yucca Mountain vicinity,
 8.3.1.17-196--197
 relevel base-station network,
 8.3.1.17-194--196
 releveling data analysis,
 8.3.1.17-197--198

geoelectric method evaluation activity,
 8.3.1.17-173--174

geohydrologic setting
 and 10 CFR 60.113, 8.3.5.18-8

geohydrology disqualifying condition,
 8.3.5.18-9
 and postclosure performance issues,
 8.3.5.18-6--7
 preliminary finding, 8.3.5.18-4*
 statement of, 8.3.5.18-9
 and total system performance (Issue 1.1),
 8.3.5.18-7
 and 10 CFR 960.4-2-1(d), 8.3.5.18-9

geohydrology models, alternate conceptual,
 8.3.1.2-50--88
see also hydrologic flow models

geohydrology program, 8.3.1.2-1--459
 and accessible environment, 8.3.1.2-3
 and accidental radiological releases
 (Issue 2.3) parameter calls,
 8.3.1.2-10**--11*
 activity parameters provided by,
 8.3.1.2-10**--47*
 alternative conceptual models,
 8.3.1.2-50--88
 approach, 8.3.1.2-3--50
 and climate program, 8.3.1.5-1--3, -2**
 and configuration of underground
 facilities (postclosure) (Issue 1.11),
 8.3.1.2-5**, -23*, -42**-47*, -363
 current representation and alternative
 hypotheses, 8.3.1.2-52**--87*
 and design and performance issues,
 8.3.1.2-10**--47*, -48
 and EBS release rates (Issue 1.5),
 8.3.1.2-5**, -363
 and erosion program, 8.3.1.2-147
 general strategy of, 8.3.1.2-3
 and geochemistry program, 8.3.1.2-5**,
 -444

geohydrology program (continued)
 and ground-water protection (Issue 1.3),
 8.3.1.2-5**
 and GWTT (Issue 1.6), 8.3.1.2-5**, -13*--47*, -363
 and higher level findings (postclosure)
 (Issue 1.9), 8.3.1.2-5**, -363
 hypothesis testing tables,
 8.3.1.2-52*--87*
 interrelationships, 8.3.1.2-88--92
 investigations, 8.3.1.2-92--444
 hydrologic system (regional),
 8.3.1.2-92--147
 identification of, 8.3.1.2-88
 saturated-zone hydrologic system
 (site), 8.3.1.2-364--444
 summary of studies, 8.3.1.2-59--62
 unsaturated-zone hydrologic system
 (site), 8.3.1.2-148--364
see specific investigation for study
 and activity listings
 logic diagram, 8.3.1.2-5**, -6**, -7**, -8**
 major events and completion dates,
 8.3.1.2-449*--459*; 8.5-3, -4**, -5
 and meteorology program, 8.3.1.12-5--6
 and nonradiological health and safety
 (Issue 4.2), 8.3.1.2-5**, -363
 and NRC siting criteria (Issue 1.8),
 8.3.1.2-5**, -363, -444
 overview, 8.3.1.2-1--91
 parameters, 8.3.1.2-6**, -7**, -8**, -10*--47*
 and postclosure tectonics program,
 8.3.1.2-444
 and potentially adverse conditions,
 8.3.1.2-3
 and preclosure design and technical
 feasibility (Issue 4.4), 8.3.1.2-5**, -10*--11*, -13*--17*, -19*, -21*, -24*--27*, -42*--47*, -363
 and preclosure hydrology program,
 8.3.1.2-147, -364
 and public radiological exposures--normal
 conditions (Issue 2.1), 8.3.1.2-10*--11*
 and regulations, 8.3.1.2-1--4
 saturated-zone hydrology logic diagram,
 8.3.1.2-8**
 schedule, 8.3.1.2-445--459; 8.5-3, -4**
 and seal characteristics (Issue 1.12),
 8.3.1.2-5**, -10*--17*, 19*, -21*--23*, -25*--27*, -42*--47*, -363

geohydrology program (continued)
 and surface characteristics program,
 8.3.1.2-147, -364
 surface-water hydrology logic diagram,
 8.3.1.2-6**
 and total system performance (Issue 1.1),
 8.3.1.2-5**, -11*--47*, -362, -444
 unsaturated-zone hydrology logic diagram,
 8.3.1.2-7**
 and waste retrievability (Issue 2.4),
 8.3.1.2-363
 and worker radiological safety--normal
 conditions (Issue 2.2), 8.3.1.2-10*
 and 10 CFR Part 60, 8.3.1.2-2--3
 and 10 CFR Part 960, 8.3.1.2-3
 and 40 CFR Part 191, 8.3.1.2-1--2
 geohydrology qualifying condition
 and containment by waste package (Issue
 1.4), 8.3.5.18-7
 and EBS release rates (Issue 1.5),
 8.3.5.18-7
 and ground-water protection (Issue 1.3),
 8.3.5.18-7
 and GWTT (Issue 1.6), 8.3.5.12-26**;
 8.3.5.18-7
 and individual protection (Issue 1.2),
 8.3.5.18-7
 and postclosure performance issues,
 8.3.5.18-6--7
 preliminary finding, 8.3.5.18-4*
 statement of, 8.3.5.18-8--9
 and total system performance (Issue 1.1),
 8.3.5.18-6--7
 and 10 CFR 960.4-2-2(a), 8.3.5.18-9, -11
 geohydrology studies summary
 saturated zone, 8.3.1.2-89--90
 unsaturated zone, 8.3.1.2-90--92
 geohydrology technical guideline
 and higher level findings (Issue 1.9(a)),
 8.3.5.18-9, -10*, -10--11, -12*
 geologic coreholes, description, 8.4.2-76--77
 geologic cross sections, 8.3.1.14-37**, -38**
 geologic drillholes
 existing and proposed, 8.3.1.2-378**
see also drillholes
 geologic feature transfer to topographic base
 maps, technical procedures for, 8.3.1.4-68
 geologic framework
 activity parameters, 8.3.1.4-13*--14*, -16, -17
 rock characteristics parameters,
 8.3.1.4-13*--14*

- geologic framework investigation activities
 - borehole evaluations of faults and fractures, 8.3.1.4-70--74
 - borehole geophysical surveys, 8.3.1.4-57--59
 - geologic mapping of exploratory shaft and drifts, 8.3.1.4-74--79
 - geologic mapping of zonal features in Paintbrush Tuff, 8.3.1.4-66--68
 - magnetic properties and stratigraphic correlations, 8.3.1.4-60--64
 - petrophysical properties testing, 8.3.1.4-59--60
 - seismic tomography/vertical seismic profiling, 8.3.1.4-79--80
 - surface and subsurface stratigraphic studies, 8.3.1.4-32--41
 - surface-based geophysical surveys, 8.3.1.4-41--57
 - surface-fracture network studies, 8.3.1.4-68--70
 - application of results, 8.3.1.4-82--84
 - link to supporting information, 8.3.1.4-28
 - parameters, 8.3.1.4-28
 - purpose and objectives, 8.3.1.4-28
 - studies, 8.3.1.4-32--82
 - geologic model, 8.3.1.4-81--82
 - structural features within site area, 8.3.1.4-65--80
 - vertical/lateral stratigraphic units in site area, 8.3.1.4-32--64
 - technical basis for, 8.3.1.4-28--32
 - technical rationale, 8.3.1.4-29--32
- geologic mapping
 - index map, 8.3.1.17-98**
 - surficial materials, 8.3.1.2-158
- geologic mapping of exploratory shafts and drifts
 - constraints and zones of influence, 8.4.2-107
 - purpose and operations, 8.4.2-107
- geologic mapping of exploratory shafts and drifts activity, 8.3.1.4-74--79
 - description, 8.3.1.4-75--78
 - methods and technical procedures, 8.3.1.4-78--79
 - objectives, 8.3.1.4-74
 - parameters, 8.3.1.4-74--75
- geologic mapping of zonal features in Paintbrush Tuff activity, 8.3.1.4-66--68 areas, 8.3.1.4-67**
- geologic mapping of zonal features in Paintbrush Tuff activity (continued)
 - description, 8.3.1.4-66
 - methods and technical procedures, 8.3.1.4-66, -68
 - objectives, 8.3.1.4-66
 - parameters, 8.3.1.4-66
- geologic models
 - activity parameters, 8.3.1.4-14*--15*, -16, -17
 - and magnetic properties, 8.3.1.4-61
 - rock characteristics parameters, 8.3.1.4-14*--15*
 - and stratigraphic information, 8.3.1.4-56
 - and structural features, 8.3.1.4-65
 - three-dimensional, development of, 8.3.1.4-81--82
- geologic repository operations area
 - design criteria, 8.3.2.3-3, -4*--11*
 - and radiological safety design, 8.3.2.3-3
- geologic repository system performance, *see* mined geologic disposal system, Yucca Mountain
- geologic setting performance, 8.3.3.2-2; 8.5-65
- geologic structure, cross sections, 8.3.1.14--37**, -38**
- geologic studies (field) activity, 8.3.1.8-116--117
- geologic unit properties, scale of variation, 8.4.2-31*
- geology technical concerns
 - SCP section correlation, 8.2-28*--49*
- geomechanical analyses
 - analytical tools, 8.3.2.1-21--22
 - boundary element techniques, 8.3.2.1-21--22
 - finite element method, 8.3.2.1-22, -23
 - Rainier Mesa, 8.3.2.1-21
 - and repository models, 8.3.2.1-19
 - tunnel index methods, 8.3.2.1-22
- geomechanical properties and underground openings (Issue 1.8 potentially adverse condition 21)
 - discussion, 8.3.5.17-80
 - text of condition, 8.3.5.17-6*
- geomorphic indicator development, technical procedures for, 8.3.1.17-193
- geomorphic map development activity, 8.3.1.6-10--11
 - description, 8.3.1.6-10--11

geomorphic map development activity
 (continued)

- methods and technical procedures,
 8.3.1.6-11
- objectives, 8.3.1.6-10
- parameters, 8.3.1.6-10

geomorphic map preparation from surficial deposits, technical procedures for,
 8.3.1.6-11

geomorphic processes, and erosion, 8.3.1.6-20

geomorphology (tectonic) of Yucca Mountain region study, 8.3.1.17-186--193

- see also tectonic geomorphology of Yucca Mountain region study

geophysical activities integration activity, 8.3.1.4-26--27, -64

- description, 8.3.1.4-27, -64
- objectives, 8.3.1.4-26, -64
- parameters, 8.3.1.4-27, -64

geophysical field measurements activity, 8.3.1.14-59--63

- description, 8.3.1.14-61--63
- methods and technical procedures,
 8.3.1.14-63
- objectives, 8.3.1.14-59--60
- parameters, 8.3.1.14-60

geophysical-geologic appraisal and mineral resources activity, 8.3.1.9-33--34

- description, 8.3.1.9-34
- methods and technical procedures,
 8.3.1.9-34
- objectives, 8.3.1.9-33--34
- parameters, 8.3.1.9-34

geophysical logging, 8.3.1.2-207, -223

- methods, use of, 8.3.1.2-158--159
- technical procedures for, 8.3.1.2-430

geophysical models

- and mineral resources, 8.3.1.9-34

geophysical studies

- and rock characteristics program,
 8.3.1.4-42*--51*
- and two-dimensional hydrologic modeling,
 8.3.1.2-140

geophysical surveys

- borehole, 8.3.1.4-57--59
- and hydrocarbon assessment, 8.3.1.9-34
- preclosure and postclosure tectonics
 - summary, 8.3.1.17-107*--110*
- surface-based, 8.3.1.4-41--57
- technical procedures for, 8.3.1.2-280,
 -373

geophysical surveys in east-west transect crossing site activity, 8.3.1.17-105--119

- description, 8.3.1.17-106, -115, -117--118
- methods and technical procedures,
 8.3.1.17-118--119
- objectives, 8.3.1.17-105
- parameters, 8.3.1.17-106

geophysical technical procedures

- borehole logging, 8.3.1.14-43
- data analysis, 8.3.1.8-54
- logging, 8.3.1.2-430
- measurement methods, 8.3.1.14-61
- surveys, 8.3.1.2--280, -373

geophysical techniques

- for vertical and lateral continuity,
 8.3.1.4-41, -42*--51**, -52

geostatistical analyses

- of flow velocity data, 8.3.1.2-169
- for matrix hydrologic properties,
 8.3.1.2-183, -189
- and spatial variability at site,
 8.4.2-27--31
- and surficial unit boundaries,
 8.3.1.2-158--159
- systematic drilling program, 8.3.1.4-96**
 - technical procedures for, 8.3.1.2-217
 - and volcanic stratigraphy, 8.4.2-28--31

geothermal energy potential assessment activity, 8.3.1.9-34--36

- description, 8.3.1.9-36
- methods and technical procedures,
 8.3.1.9-36
- objectives, 8.3.1.9-35
- parameters, 8.3.1.9-35--36

geothermal regime and repository performance, 8.3.1.8-127--129

geotomography

- and fracture characterization,
 8.3.1.2-162
- technical procedures for, 8.3.1.2-164

Ghost Dance fault, 8.3.1.17-28, -29**

- drift to, 8.4.2-194--195
- fracture flow, 8.3.5.12-16
- and geologic mapping, 8.3.1.4-74
- hydrogeologic cross section at Yucca Mountain, 8.3.5.13-57**
- lateral infiltration barrier, 8.3.5.17-96
- and sealing 8.3.3.1-4, -5
- and vertical seismic profiling,
 8.3.1.2-207

zone, plans and technical procedures, 8.3.1.17-160, -165*--166*

glass leach testing (Subactivity 1.5.2.2.1),
 8.3.5.10-51--52
 description, 8.3.5.10-52
 objectives, 8.3.5.10-51
 parameters, 8.3.5.10-51

glass leaching and materials interactions
 (Subactivity 1.5.2.2.2), 8.3.5.10-52--53
 description, 8.3.5.10-53
 objectives, 8.3.5.10-52
 parameters, 8.3.5.10-52--53

glass models
 and EQ3/6, 8.3.5.10-53, -54

glass stability, *see* minerals/glass stability investigation

glass waste form
 container, 8.3.5.9-2**
 performance parameters, 8.3.5.9-20*, -31--32

release models
 input and needed confidence, 8.3.5.10-6*--7*
 and waste package model hierarchy, 8.3.5.9-7**; 8.3.5.10-3**

release rates
 performance parameters and goals, 8.3.5.10-22*--25*
 waste packages, 8.3.4.1-5

glass waste form characterization (Activity 1.5.2.2), 8.3.5.10-51--55

subactivities, 8.3.5.10-51--55
 glass leach testing, 8.3.5.10-51--52
 glass leaching and materials interactions, 8.3.5.10-52--53
 waste producer cooperative testing, 8.3.5.10-53--55

glass waste form information integration
 (Subactivity 1.5.1.1.2), 8.3.5.10-42

glass waste form release model (Activity 1.5.3.4), 8.3.5.10-68--70
 subactivity
 glass waste form release models, 8.3.5.10-68--70

glass waste form release models (Subactivity 1.5.3.4.1), 8.3.5.10-68--70
 description, 8.3.5.10-69--70
 objectives, 8.3.5.10-68
 parameters, 8.3.5.10-69

global climate model
 evaluation, 8.3.1.5-82
 extreme scenarios, 8.3.1.5-80
 and regional model, 8.3.1.5-78, -84--86

global climate model (continued)
 software development, 8.3.1.5-82--83
see also climate modeling

global climate modeling activity, 8.3.1.5-79--83
 description, 8.3.1.5-80--82
 objectives, 8.3.1.5-79
 parameters, 8.3.1.5-79--80
 scenarios, 8.3.1.5-80

global climate modeling software development, technical procedures for, 8.3.1.5-82--83

global positioning satellite survey activity, 8.3.1.17-196
 description, 8.3.1.17-196
 objectives, 8.3.1.17-196
 parameters, 8.3.1.17-196

global-regional (linked) climate modeling activity, 8.3.1.5-84--86
 descriptions, 8.3.1.5-85
 methods and technical procedures, 8.3.1.5-85--86
 objectives, 8.3.1.5-84--85
 parameters, 8.3.1.5-85

Goldfield Caldera
 and mineral and energy assessment, 8.3.1.9-41

grain density measurements, technical procedures for, 8.3.1.2-193--194; 8.3.1.15-34

Grant Canyon Field
 and hydrocarbon assessment, 8.3.1.9-38

graphic logging, technical procedures for, 8.3.1.4-100

gravimetric water content measurement, technical procedures for, 8.3.1.2-191--192

gravity
 data for volcanic activity evaluation, 8.3.1.8-52

investigations
 geophysical activities, 8.3.1.4-47*
 preclosure and postclosure tectonics summary, 8.3.1.17-107*--108*

and magnetic survey, proposed area, 8.3.1.4-52, -55**

surveys
 and mineral resources, 8.3.1.9-34
 plans and technical procedures, 8.3.1.17-118, -119
 technical procedures for, 8.3.1.4-57

synthesis (regional), plans and technical procedures, 8.3.1.17-202

gravity survey (detailed) activity,
 8.3.1.17-171
 description, 8.3.1.17-171
 methods and technical procedures,
 8.3.1.17-171
 objectives, 8.3.1.17-171
 parameters, 8.3.1.17-171

grazing rights, 8.3.1.11-2

Great Basin
 and earthquakes, 8.3.1.17-35, -92
 erosion, 8.3.1.6-7, -20
 and hydrocarbon assessment, 8.3.1.9-38
 and Quaternary tectonic processes,
 8.3.1.17-31

regional-aquifer system analysis,
 hydrogeologic data compilation,
 8.3.1.2-146
 and silicic volcanism, 8.3.1.17-31, -52,
 -54
 and stress field, 8.3.1.17-181
 volcanic center literature survey,
 8.3.1.17-54
 volcanic field data, 8.3.1.8-121

GROA, see geologic repository operations area

ground magnetic survey (detailed) activity,
 8.3.1.17-172--173
 description, 8.3.1.17-173
 methods and technical procedures,
 8.3.1.17-173
 objectives, 8.3.1.17-172--173
 parameters, 8.3.1.17-173

ground magnetic surveys
 and mineral resources, 8.3.1.9-34

ground motion, 8.3.1.17-34--37, -63--86
 calculation of, technical procedure
 for, 8.3.1.17-85
 from local site geology, study,
 8.3.1.17-77--79
 and marker system, 8.3.1.9-18
 monitoring, technical procedures
 for, 8.3.1.15-71
 from Nevada Test Site nuclear testing,
 evaluation activity, 8.3.1.13-11
 subsurface (postclosure), 8.3.1.8-70--71
 and weapons testing, 8.3.1.13-11
see also vibratory ground motion
 investigation

ground motion from earthquakes and
 underground nuclear explosion study,
 8.3.1.17-76--77
 activities, 8.3.1.17-76--77

ground motion from earthquakes and
 underground nuclear explosion study
 (continued)
 activities (continued)
 earthquake ground motion models,
 8.3.1.17-76
 underground nuclear explosion ground
 motion models, 8.3.1.17-77
 objectives, 8.3.1.17-76

ground motion from seismic event character-
 ization activity, 8.3.1.17-81
 description, 8.3.1.17-81
 objectives, 8.3.1.17-81
 parameters, 8.3.1.17-81

ground motion from seismic event (controlling)
 identification activity, 8.3.1.17-80
 description, 8.3.1.17-80
 objectives, 8.3.1.17-80
 parameters, 8.3.1.17-80

ground motion from seismic event study,
 8.3.1.17-80--81
 activities, 8.3.1.17-80--81
 ground motion from seismic event,
 characterization, 8.3.1.17-81
 seismic event (controlling)
 identification, 8.3.1.17-80

ground motion from site geology activity--
 recordings, 8.3.1.17-78
 description, 8.3.1.17-78
 objectives, 8.3.1.17-78
 parameters, 8.3.1.17-78

ground motion from site geology activity--wave
 properties, 8.3.1.17-79
 description, 8.3.1.17-79
 objectives, 8.3.1.17-79
 parameters, 8.3.1.17-79

ground motion probability evaluation activity,
 8.3.1.17-84--85
 description, 8.3.1.17-85
 methods and technical procedures,
 8.3.1.17-85
 objectives, 8.3.1.17-84
 parameters, 8.3.1.17-84--85

ground support design
 and drift analyses, 8.3.2.5-71
 flexibility, 8.4.2-219

ground support monitoring, technical
 procedures for, 8.3.1.15-73

ground support systems
 constraints and zones of influence,
 8.4.2-130
 purpose and operations, 8.4.2-130

ground support systems monitoring activity,
8.3.1.15-72--73
description, 8.3.1.15-72
methods and technical procedures,
8.3.1.15-72--73
objectives, 8.3.1.15-72
parameters, 8.3.1.15-72

ground water
basin, and Quaternary ground-water
conditions, 8.3.1.5-92--93

batch sorption coefficient measurement
test matrix, 8.3.1.3-77*

chemical analysis, technical procedures
for, 8.3.1.16-19, -21, -23

chemistry
and carbonate caverns, 8.3.1.5-100
current information, 8.3.1.3-38
and exploratory shaft liner,
8.4.3-24--25
and tectonic processes, 8.3.1.8-29

chemistry model
and aqueous-phase chemical
investigations, 8.3.1.2-339
development, 8.3.1.3-36
and EQ3/6, 8.3.1.3-38
and geochemistry investigations,
8.3.1.3-10, -12
and hydrochemistry tests, 8.3.1.2-306

composition
and EBS, 8.3.1.3-12
and geochemistry program, 8.3.1.3-10,
-12, -24, -26, -27
and mineralogy, 8.3.1.3-66
and sorption, 8.3.1.3-76--77, -79

computer model and carbonate transport,
technical procedures for, 8.3.1.5-64

conditions due to future climate changes,
technical procedures for, 8.3.1.5-122

contamination potential, 8.7-2

discharge, see discharge

flow
directions, 8.3.1.2-95**
and geohydrologic condition
investigations, 8.3.1.2-88
and local heat flow anomalies,
8.3.1.8-128
in matrix and fractures, analyses and
data, 8.4.3-11--17
velocity, geostatistical analyses,
8.3.1.2-169

vertical component, technical
procedure for, 8.3.1.2-125

ground water (continued)
flow models
ground-water flow path description,
objective of, 8.3.1.2-371
and hydrochemical studies, 8.3.1.2-141
location and geology of, 8.3.1.2-95**
parameter sensitivity, technical
procedures for, 8.3.1.2-118
regional, 8.3.1.2-94, -134, -145
sensitivity analyses, 8.3.1.2-115
three-dimensional, 8.3.1.2-144--147;
8.3.1.5-121
two-dimensional, 8.3.1.2-115, -134,
-139--141; 8.3.1.5-121
use of, 8.3.1.2-90

U.S. Geological Survey modular three-
dimensional finite difference,
8.3.1.2-145--146

flow paths
effects of ground-water withdrawals,
8.3.1.9-48
flux and velocity calculation,
8.3.1.2-441--443

flow system
boundary conditions, saturated zone,
8.3.1.2-89
effects of repository-related water
withdrawals, 8.3.1.16-24
see also saturated-zone ground-water
flow system (site) study

levels
and past discharge, 8.3.1.5-101
see also water-table elevation

models
governing equations, 8.3.5.12-27,
-34--35

movement
and regulatory requirements, 8.3.1.2-2

pathways
Calico Hills, 8.3.5.8-7; 8.3.5.17-92
Crater Flat, 8.3.5.8-7
fracture flow, 8.3.5.12-5
matrix flow, 8.3.5.12-5
Topopah Spring unit, 8.3.5.8-7--8

pumping
energy consumption, technical
procedures for, 8.3.1.16-19, -21,
-23

unit cost development, technical
procedures for, 8.3.1.16-19, -21,
-23

round water (continued)
 and repository rock data and radiological protection, 8.3.2.3-40

resources, 8.3.1.9-11--12, -20, -21, -22**, -23, -24

sampling, technical procedures for, 8.3.1.2-123, -133

special source, see Class I or special sources of ground water

transport, see transport and GWTT (Issue 1.6)

travel pathways
 conceptual models, 8.3.5.12-3--5
 fracture flow, 8.3.5.12-11
 matrix flow, 8.3.5.12-11

travel time, see GWTT

velocities, methods of determining, 8.3.1.2-154

withdrawals, hydrologic effects at Yucca Mountain, 8.3.1.9-49

and tectonic processes, 8.3.1.8-29

see also flux

round-water chemistry model study, 8.3.1.3-37--40

current water chemistry, 8.3.1.3-39

description, 8.3.1.3-38--39

objectives, 8.3.1.3-37--38

parameters, 8.3.1.3-38

round-water conditions (not reducing) (Issue 1.8 potentially adverse condition 9)
 discussion, 8.3.5.17-55

performance parameters and goals, 8.3.5.17-59**--60*

related studies and activities, 8.3.5.17-59**--60*

scenario classes, 8.3.5.17-59**--60*

text of condition, 8.3.5.17-5*

round-water conditions affecting EBS (Issue 1.8 potentially adverse condition 7)
 discussion, 8.3.5.17-48, -52

performance parameters and goals, 8.3.5.17-49**--51*

related studies and activities, 8.3.5.17-49**--51*

scenario classes, 8.3.5.17-49**--51*

text of condition, 8.3.5.17-5*

round-water conditions investigation, 8.3.1.16-25--28

activity
 unsaturated-zone hydrologic characteristics synthesis, 8.3.1.16-26

application of results, 8.3.1.16-28

ground-water conditions investigation (continued)
 link to supporting information, 8.3.1.16-25
 logic diagram, 8.3.1.16-27**
 parameters, 8.3.1.16-25
 purpose and objectives, 8.3.1.16-25
 study
 preclosure hydrologic conditions--unsaturated zone, 8.3.1.16-26

summary, 8.3.1.16-6

technical basis for, 8.3.1.16-25--26

technical rationale, 8.3.1.16-26

ground-water development trends and withdrawal rates activity, 8.3.1.9-43--44

description, 8.3.1.9-43

methods and technical procedures, 8.3.1.9-44

objectives, 8.3.1.9-43

parameters, 8.3.1.9-43

ground-water flow study area (subregional), 8.3.1.2-135**

ground-water flow system (regional) study, 8.3.1.2-114--137

activities, 8.3.1.2-114--137
 evapotranspiration studies, 8.3.1.2-134--137

Fortymile Wash recharge, 8.3.1.2-125--133

hydrogeologic data needs (regional)--saturated zone, 8.3.1.2-114--118

potentiometric level distribution studies (regional), 8.3.1.2-118--125

ground-water flow system (site) study, see saturated-zone ground-water flow system (site) study

ground-water pathway dose calculation (Activity 1.2.1.1), 8.3.5.14-10

description, 8.3.5.14-10
 objectives, 8.3.5.14-10
 parameters, 8.3.5.14-10

ground-water protection (Issue 1.3), 8.3.5.15-1--13

approach, 8.3.5.15-2, -3**, -4

geochemistry program parameter calls, 8.3.1.3-1, -2**, -4**--9*, -11**

geohydrology program parameter calls, 8.3.1.2-5**, -41*

information needs, 8.3.5.15-4--13, Class I or special sources of ground water (1.3.1), 8.3.5.15-4--9

ground-water protection (Issue 1.3)
 (continued)
 information needs (continued)
 concentrations (1,000-yr) in special
 sources of ground water (1.3.2),
 8.3.5.15-9--13
see specific information need for
analysis and activity listings
 interrelationships, 8.3.5.15-4
 issue resolution strategy,
 8.3.5.15-1--4
 logic diagram, 8.3.5.15-3**
 major events and completion dates,
 8.3.5.15-12*; 8.5-78, -79**
 and Nuclear Waste Policy Act, 8.3.5.15-2
 and other design and performance
 assessment issues, 8.3.2.1-2**;
 8.3.4.1-2**
 performance allocation, 8.3.5.15-4, -5*
 postclosure guideline qualifying and
 disqualifying conditions,
 8.3.5.18-7--8
 and postclosure performance assessment,
 8.3.5.8-2, -3*, -4
 and postclosure performance objectives,
 8.4.3-1, -2, -3
 and qualifying and disqualifying
 conditions of Issue 1.9(a),
 8.3.5.18-8
 and reference postclosure repository
 design (Information Need 1.11.7),
 8.3.2.2-75
 regulatory basis, 8.3.1.2-2;
 8.3.5.15-1--2
 schedule, 8.3.5.15-10--13; 8.5-78, -79**
 and system guideline qualifying condition
 --postclosure, 8.3.5.18-7--8, -9--10
 and 40 CFR 191, 8.3.5.15-1
 and 40 CFR 191.16, 8.3.5.18-8
 ground-water protection, postclosure
 performance objectives, 8.4.3-1, -2, -3
 ground-water resource and human interference,
 8.3.1.9-45
 ground-water travel path identification
 (Information Need 1.6.3), 8.3.5.12-49--52
 activity, 8.3.5.12-51
 unsaturated flow system analysis,
 8.3.5.12-51
 application of results, 8.3.5.12-52
 link to supporting information,
 8.3.5.12-49
 logic, 8.3.5.12-49--50

ground-water travel path identification
 (Information Need 1.6.3) (continued)
 parameters, 8.3.5.12-49
 subactivities, 8.3.5.12-51
 saturated-zone flow analysis,
 8.3.5.12-51
 unsaturated-zone flow analysis,
 8.3.5.12-51
 technical basis for, 8.3.5.12-49--50
 ground-water travel time, see GWTT
 Grouse Canyon Member
 and anelastic strain recovery experiments,
 8.3.1.15-79
 Topopah Spring tuff comparison, 8.3.5.2-35
 GWTT
 after repository construction and waste
 emplacement, see post-emplacement
 GWTT (Activity 1.6.5.1)
 Calico Hills, 8.3.5.12-16
 confidence levels, 8.3.5.12-19
 and diffusive processes, 8.3.5.12-11--12
 discrete fracture models, 8.3.5.12-42--43
 distributions, 8.3.5.12-18**
 and effective permeability, 8.3.1.4-17
 effects of flux change, 8.4.3-13, -17
 and erosion, 8.3.1.6-4, -26, -27
 from disturbed zone, 8.3.5.12-49--54
 double porosity model, 8.3.5.12-42
 equivalent porous medium model,
 8.3.5.12-41--42
 estimate, 8.3.5.13-63*; 8.3.5.14-2
 and hydrochemistry, 8.3.1.2-91
 and hydrogeologic condition investi-
 gations, 8.3.1.2-88
 and hydrologic modeling, 8.3.1.2-137,
 -142
 impacts on, 8.4.3-85--88
 drilling activities, 8.4.3-87
 ESF testing activities, 8.4.3-87--88
 exploratory shaft construction,
 8.4.3-87
 of site characterization activities,
 8.4.3-85--86
 surface-related activities, 8.4.3-86
 underground construction, 8.4.3-87
 underground support systems,
 8.4.2-199-200
 issue resolution strategy summary,
 8.4.3-85--86
 major schedule events, 8.5-71, -72**, -73
 matrix flow, 8.3.5.12-17; 8.3.5.13-63*

GWTT (continued)

model performance parameters
 saturated zone, 8.3.5.12-31*--32*
 unsaturated zone, 8.3.5.12-28*--30*

model verification
 and site information flow,
 8.3.5.12-26**

from percolation information,
 8.3.1.2-153--154

and performance assessment, 8.3.5.19-2*,
 -5*

plots, 8.3.5.12-14**

pre-waste emplacement parameters,
 8.3.1.2-155**

process for providing parameters,
 8.3.1.2-155**

and retardation tracers, 8.3.1.3-109

and rock characteristics program,
 8.3.1.4-1

and sensitivity analyses, 8.3.5.12-54

site information flow calculations,
 8.3.5.12-26**

summary schedule, 8.5-71, -72**

and Topopah Spring welded unit,
 8.3.5.12-13

and vapor flux, 8.3.5.12-5

see also ground water and other GWTT
entries following

GWTT (Issue 1.6), 8.3.5.12-1--69

approach, 8.3.5.12-5--23
 flow system identification (step 1),
 8.3.5.12-8--13

parameter needs (step 5),
 8.3.5.12-20--23

performance goals (step 4),
 8.3.5.12-17--19

performance measure (step 3),
 8.3.5.12-17

selection by hydrogeologic units and
 flow processes (step 2),
 8.3.5.12-13--17

background, 8.3.5.12-3--5

geochemistry program parameter calls,
 8.3.1.3-1, -2**, -8*, -11*

and geohydrology program, 8.3.5.12-26**
 parameter calls, 8.3.1.2-5**,
 -13--47*, -364

information needs, 8.3.5.12-25--69
 disturbed zone boundary (1.6.5),
 8.3.5.12-55--69

GWTT (Issue 1.6) (continued)
 information needs (continued)
 ground-water travel path
 identification (1.6.3),
 8.3.5.12-49--52

GWTT predictions models (1.6.2),
 8.3.5.12-40--48

pre-waste-emplacement ground-water
 travel time (1.6.4), 8.3.5.12-52--54

site and design information needed
 (GWTT) (1.6.1), 8.3.5.12-25--40

see specific information need for
activity and subactivity listings

interrelationships, 8.3.5.12-23--25

issue resolution strategy, 8.3.5.12-1--25

logic diagram, 8.3.5.12-7**

major events and completion dates,
 8.3.5.12-65*--68*; 8.5-71, -72**, -73

and other design and performance
 assessment issues, 8.3.2.1-2**;
 8.3.4.1-2**

performance allocation, 8.3.5.12-9*--10*

performance parameter confidence levels,
 8.3.5.12-20, -23, -21*--22*

performance parameters, 8.3.5.12-21*--22*

postclosure guideline qualifying and
 disqualifying conditions,
 8.3.5.18-7--8

and postclosure performance assessment,
 8.3.5.8-2, -3*, -4

and preclosure tectonics program,
 8.3.1.17-206

and qualifying and disqualifying
 conditions of Issue 1.9(a),
 8.3.5.18-6

and reference postclosure repository
 design (Information Need 1.11.7),
 8.3.2.2-76, -78

and regulatory basis, 8.3.1.2-2;
 8.3.5.12-1--3

and rock characteristics program,
 8.3.5.12-26**

schedule, 8.3.5.12-63--69; 8.5-71, -72**,
 -73

site data from other programs,
 8.3.5.12-26*

and system guideline qualifying condition
 --postclosure, 8.3.5.18-7--9

thermal and mechanical rock properties
 program parameter calls, 8.3.1.15-1,
 -2*, -4*--5*, -12*, -15**

GWTT calculation model development
 (Subactivity 1.6.2.1.2), 8.3.5.12-45
 objectives, 8.3.5.12-45
 description, 8.3.5.12-45

GWTT code verification (Subactivity 1.6.2.2.1), 8.3.5.12-46
 description, 8.3.5.12-46
 objectives, 8.3.5.12-46

GWTT model development (Activity 1.6.2.1), 8.3.5.12-44--45
 subactivities, 8.3.5.12-44--45
 GWTT calculation model development, 8.3.5.12-45
 GWTT models--theoretical framework, 8.3.5.12-45

GWTT model validation (Subactivity 1.6.2.2.2), 8.3.5.12-46--48
 description, 8.3.5.12-46--48
 methods and technical procedures, 8.3.5.12-48
 objectives, 8.3.5.12-46

GWTT model verification and validation (Activity 1.6.2.2), 8.3.5.12-45--48

GWTT model verification and validation (Activity 1.6.2.2) (continued)
 subactivities, 8.3.5.12-46--48
 GWTT code verification, 8.3.5.12-46
 GWTT model validation, 8.3.5.12-46--48

GWTT models, theoretical framework (Subactivity 1.6.2.1.1), 8.3.5.12-45
 description, 8.3.5.12-45
 objectives, 8.3.5.12-45

GWTT performance allocation (Subactivity 1.6.4.1.1), 8.3.5.12-53
 description, 8.3.5.12-53
 objectives, 8.3.5.12-53

GWTT prediction models (Information Need 1.6.2), 8.3.5.12-40--48
 activities, 8.3.5.12-44--48
 GWTT model development, 8.3.5.12-44--45
 GWTT model verification and validation, 8.3.5.12-45--48
 application of results, 8.3.5.12-48
 link to supporting information, 8.3.5.12-40
 logic, 8.3.5.12-41--44
 parameters, 8.3.5.12-40--41
 subactivities
 GWTT calculation model development, 8.3.5.12-45

GWTT prediction models (Information Need 1.6.2) (continued)
 subactivities (continued)
 GWTT code verification, 8.3.5.12-46
 GWTT model validation, 8.3.5.12-46--48
 GWTT models--theoretical framework, 8.3.5.12-45
 technical basis, 8.3.5.12-40--44

GWTT sensitivity and uncertainty analyses (Subactivity 1.6.4.1.2), 8.3.5.12-54
 description, 8.3.5.12-54
 objectives, 8.3.5.12-54

GWVIP
 and COVE 1, 8.3.5.20-3, -4*

hand-held magnetic susceptibility meter use, technical procedures for, 8.3.1.4-63

hardware and cladding release model
 input and needed confidence, 8.3.5.10-7**-8*
 and waste package model hierarchy, 8.3.5.9-7**; 8.3.5.10-3**

hazard calculations (probabilistic), seismic, 8.3.1.17-82--85

HDOC, 8.3.1.3-121, -122, -127
 and COVE 2, 8.3.5.20-4*
 and performance assessment, 8.3.5.19-2*, -5*

health and safety of repository workers, see nonradiological health and safety (Issue 4.2) and worker radiological safety--normal conditions (Issue 2.2)

health and safety systems
 underground support systems, 8.4.2-199--200

heat and moisture flow model, 8.3.1.2-156

heat capacity (volumetric) characterization activity, 8.3.1.15-34--36

heat capacity determination, technical procedures for, 8.3.1.15-36

heat flow and heat flow anomalies activity, 8.3.1.8-127--129
 description, 8.3.1.8-128
 methods and technical procedures, 8.3.1.8-129
 objectives, 8.3.1.8-127

heat flow and heat flow anomalies activity
(continued)
parameters, 8.3.1.8-128
see also geothermal potential assessment
activity

heat flow studies, technical procedures for,
8.3.1.8-129*

heat-load effects on transport,
8.3.1.3-119--122

heated block experiment
compliant joint model, 8.4.3-32
constraints and zones of influence,
8.4.2-122
design, 8.4.2-121**
in situ experiment analysis, 8.4.3-32
purpose and operations, 8.4.2-120
thermal/mechanical analyses, 8.4.3-32

heated room experiment (ESF)
and performance confirmation testing,
8.3.5.16-2*
conceptual layout, 8.4.2-125**
constraints and zones of influence,
8.4.2-126
purpose and operations, 8.4.2-124

heated room experiment activity,
8.3.1.15-62--65
description, 8.3.1.15-62--63
methods and technical procedures,
8.3.1.15-63--65
objectives, 8.3.1.15-62
parameters, 8.3.1.15-62

heater control, technical procedures for,
8.3.1.15-54, -56, -59, -61

heater experiment in unit TSW1 activity,
8.3.1.15-52--54
description, 8.3.1.15-53
methods and technical procedures,
8.3.1.15-53--54
objectives, 8.3.1.15-52
parameters, 8.3.1.15-53

heater experiment in unit TSW1
constraints and zones of influence,
8.4.2-117
elevation view, 8.4.2-118**
purpose and operations, 8.4.2-117

heater experiments, 8.3.1.15-52--65

heater operation, technical procedures for,
8.3.1.15-54, -56, -59, -61, -64

high-frequency ultrasonic pulse technique,
technical procedures for, 8.3.1.14-52

high-level radioactive materials
and decontamination, 8.7-2

high-precision photogrammetric techniques,
technical procedures for, 8.3.1.4-68

higher level findings--ease and cost of
construction (Issue 4.1), 8.3.5.7-1--16
approach to issue resolution,
8.3.5.7-3--16
hydrology technical guideline, 8.3.5.7-11,
-13, -14*

issue resolution strategy, 8.3.5.7-1--16,
-5**

and nonradiological health and safety
(Issue 4.2), 8.3.5.7-7*

and other design and performance
assessment issues, 8.3.2.1-5

and preclosure design and technical
feasibility (Issue 4.4), 8.3.5.5-1,
-2**, -5**, -11

regulatory basis, 8.3.5.7-1--3

rock characteristics technical guideline,
8.3.5.7-9--11, -12*

and surface characteristics program,
8.3.1.14-15

surface characteristics program parameter
calls, 8.3.1.14-19*, -26

surface characteristics technical
guideline, 8.3.5.7-8--9, -10*

system guideline qualifying condition
8.3.5.7-6--8

tectonics technical guideline,
8.3.5.7-13--14, -15--16*

and total system costs (Issue 4.5),
8.3.5.7-7*

and waste package production technologies,
8.3.5.7-7*

higher level findings--postclosure (Issue
1.9), 8.3.5.18-1--27
and climate program, 8.3.1.5-1--3, -2**

and containment by waste package (Issue
1.4), 8.3.5.9-7**

and EBS release rates (Issue 1.5),
8.3.5.10-1--2, -3**, -30

geochemistry program parameter calls,
8.3.1.3-2**, -3, -8*, -11**

and geohydrology program parameter calls,
8.3.1.2-5**, -363

and human interference program,
8.3.1.9-1--2, -15**

and other design and performance
assessment issues, 8.3.2.1-5

and overburden disqualifying condition,
8.3.1.14-27

higher level findings--postclosure (Issue 1.9) (continued)
 and postclosure performance assessment, 8.3.5.8-2, -3*, -4
 postclosure tectonics program parameter calls, 8.3.1.8-2**, -3*, -6*, -9*, -13*, -17*, -19*
 and reference postclosure repository design (Information Need 1.11.7), 8.3.2.2-75
 and regulatory basis, 8.3.1.2-3
 and rock dissolution program, 8.3.1.7-2
 and 10 CFR 960.4-2-1, 8.3.1.5-1
 and 10 CFR 960.4-2-4, 8.3.1.5-1

higher level findings--postclosure (Issue 1.9(a))
 approach, 8.3.5.18-3--21, -5**
 and climatic changes technical guideline, 8.3.5.18-14, -15*, -16
 and dissolution technical guidelines, 8.3.5.18-18
 and erosion technical guideline, 8.3.5.18-15--16
 future climate considerations, 8.3.5.18-15*
 future tectonic activity considered, 8.3.5.18-18*
 geochemical characteristics considered, 8.3.5.18-12*
 and geochemical technical guideline, 8.3.5.18-9, -11, -12*
 geohydrologic characteristics considered, 8.3.5.18-10*
 and geohydrology technical guideline, 8.3.5.18-8--9, -10*
 human activities considered, 8.3.5.18-20*
 human interference technical guideline, 8.3.5.18-19--21, -20*
 issue resolution strategy, 8.3.5.18-3, -5**, -6--21
 logic diagram, 8.3.5.18-5**
 performance issues and qualifying and disqualifying conditions, 8.3.5.18-6--7
 regulatory basis, 8.3.5.18-1--3
 rock characteristics considered, 8.3.5.18-12*
 and rock characteristics technical guideline, 8.3.5.18-11--13, -12*
 and system guideline qualifying condition--postclosure, 8.3.5.18-9

higher level findings--postclosure (Issue 1.9(a)) (continued)
 and tectonics technical guideline, 8.3.5.18-17, -18*
 and total system performance (Issue 1.1), 8.3.5.18-22, -24--25
 and 10 CFR Part 60, 8.3.5.18-3, -6
 and 10 CFR 960.3-1-5, 8.3.5.18-1

higher level findings--preclosure radiological safety (Issue 2.5), 8.3.5.6-1--13
 approach, 8.3.5.6-4--13
 issue resolution strategy, 8.3.5.6-1--13, -5*
 and land ownership and mineral rights program, 8.3.1.11-1
 meteorological data, 8.3.5.6-10*
 and meteorology program, 8.3.1.12-1, -2**, -4**, -5
 meteorology technical guideline, 8.3.5.6-11--12
 offsite installations and operations technical guideline, 8.3.5.6-12--13
 and offsite installations program, 8.3.1.13-1, -2, -7, -10, 11--12
 and population density and distribution program, 8.3.1.10-1
 population density and distribution technical guideline, 8.3.5.6-8--9
 qualifying and disqualifying conditions, 8.3.5.6-2
 regulatory basis, 8.3.5.6-1--4
 site ownership and control technical guideline, 8.3.5.6-11
 system guideline qualifying condition, 8.3.5.6-6*, -7--8

higher level findings--100,000-year releases (Issue 1.9(b))
 approach, 8.3.5.18-22, -23**, -24--25
 issue resolution strategy, 8.3.5.18-22, -23**, -24--25
 logic diagram, 8.3.5.18-23**
 nominal scenario class, 8.3.5.18-22, -24
 parameters, 8.3.5.18-26*--27*
 regulatory basis, 8.3.5.18-21
 scenario classes, 8.3.5.18-26*--27*
 and 10 CFR 960.3-1-5, 8.3.5.18-21, -25
 hillslope erosion, technical procedures for, 8.3.1.6-14
 hillslope erosion activity, 8.3.1.6-13--14
 description, 8.3.1.6-14
 methods and technical procedures, 8.3.1.6-14

hillslope erosion activity (continued)
 objectives, 8.3.1.6-13
 parameters, 8.3.1.6-13--14

historical and current seismicity study,
 8.3.1.17-87--93
 activities
 earthquake (historical) record
 compilation, 8.3.1.17-88--89
 seismicity (current) monitoring,
 8.3.1.17-89--91
 seismicity (induced) evaluation,
 8.3.1.17-91--93

historical climate data sets collection,
 technical procedures for, 8.3.1.5-41

hoists and headframes
 exploratory shaft facility, 8.4.2-164**,
 -165, -166**

Holocene deposits
 and erosion, 8.3.1.6-9

horizontal borehole, see Solitario Canyon
 horizontal borehole studies activity

horizontal drilling, technical procedures for,
 8.3.1.2-224

horizontal emplacement
 configuration and stability, 8.3.4.2-27
 container, 8.3.5.9-3**
 drift analyses, 8.4.3-28, -29
 and emplacement hole drainage,
 8.3.4.2-26--27
 and seals, 8.3.3.2-35

horizontal vs. vertical emplacement decision,
 product 1.11.3-3, 8.3.2.2-37, -48*, -50

Horse Spring, 8.3.1.8-130, 8.3.1.17-150, -151*

host rock
 and accessible environment, mineral
 distribution between, 8.3.1.3-45--47
 and alteration, 8.3.1.3-42, -49--51
 and ambient temperature, 8.3.1.15-82
 and boreholes, 8.3.1.2-200--211,
 -222--223, -281--285

environment
 conceptual models, 8.3.2.1-8--9
 data needed, summary, 8.3.2.1-8--13
 post-subsurface-excavation,
 8.3.2.1-11--12
 post-waste-emplacement, 8.3.2.1-12--13
 pre-waste-emplacement summary plans,
 8.3.2.1-9--11
 summary plans, 8.3.2.1-8--13
 and lithology, 8.3.1.4-75
 and mineralogy, 8.3.1.4-77--78

host rock (continued)
 and mineralogy, petrology, and rock
 chemistry, 8.3.1.3-25, -43
 and neutron surveys, 8.3.1.2-284
 and rock property data, 8.3.1.4-58
 and shielding, 8.3.2.3-1, -41
 and stratigraphic studies, 8.3.1.4-32--41
 and stress, 8.3.1.15-78, -80
 and vertical seismic profiling, 8.3.1.4-79
see also mined geologic disposal system,
 repository horizon, Topopah Spring
 Member, and Yucca Mountain

human activity
 and direct release scenarios, 8.3.5.13-128
 impacts of, 8.3.5.13-23, -24
see also human intrusion

human activity potential (Issue 1.8
 potentially adverse condition 2)
 discussion, 8.3.5.17-20--21, -27
 performance measures and goals,
 8.3.5.17-22**--26*

related studies and activities,
 8.3.5.17-22**--26*

scenario classes, 8.3.5.17-22**--26*
 text of condition, 8.3.5.17-4*

human interference effects, see effects of
 human interference investigation

human interference program, 8.3.1.9-1--55
 alternative conceptual models, 8.3.1.9-24,
 -25**--26*, -27
 approach, 8.3.1.9-2--11
 current representation and alternative
 hypotheses, 8.3.1.9-25**--26*

and erosion, 8.3.1.6-1, -2
 and geohydrology program, 8.3.1.2-88,
 -444
 and higher level findings--postclosure
 (Issue 1.9), 8.3.1.9-1--2, -13**

hypothesis-testing tables,
 8.3.1.9-25**--26*

initiating events, 8.3.1.9-4**--10*

interrelationships of investigations,
 8.3.1.9-11--12, -13**, -14**--15*

investigations, 8.3.1.9-14--51
 degradation of markers, 8.3.1.9-13**,
 -14**--15*, -15--21
 effects of human interference,
 8.3.1.9-45--51
 value of resources, 8.3.1.9-20--44
see specific investigation for study
and activity listings

logic diagram, 8.3.1.9-13**

human interference program (continued)
 major events and completion dates,
 8.3.1.9-53**-55*; 8.5-20**, -21
 and NRC siting criteria (Issue 1.8),
 8.3.1.9-1, -13**
 overview, 8.3.1.9-1--15*
 parameters, 8.3.1.9-4**-10*
 performance and design requirement
 summary, 8.3.1.9-1-2
 and preclosure design and technical
 feasibility (Issue 4.4), 8.3.1.9-10*,
 -13**, -16
 regulatory assumptions, 8.3.1.9-2--3
 schedule, 8.3.1.9-51--55; 8.5-19, -20**
 study and activity summary,
 8.3.1.9-14**-15*
 and total system performance (Issue 1.1),
 8.3.1.9-1, -4**-9*, -12, -13**, -16
 and 10 CFR Part 60, 8.3.1.9-1, -2
 and 40 CFR Part 191, 8.3.1.9-2-3
human interference technical guideline
 and higher level findings (Issue 1.9(a)),
 8.3.5.18-19--20, -20*
human intrusion
 and controlled area, 8.3.5.13-82, -83;
 8.3.5.17-20
 exploratory drilling, 8.3.1.9-3, -11, -45
 likelihood of, 8.3.1.9-49
 noncredible initiating events,
 8.3.1.9-50
 potential, 8.3.1.9-49
 probabilistic calculations and mineral and
 energy assessment, 8.3.1.9-40
 and release scenario classes,
 8.3.5.13-24
 release model, 8.3.5.13-132*
human intrusion data compilation activity,
 8.3.1.9-48
 description, 8.3.1.9-48
 methods and technical procedures,
 8.3.1.9-48
 objectives, 8.3.1.9-48
 parameters, 8.3.1.9-48
human intrusion data requirements study,
 8.3.1.9-46--48
 activity
 human intrusion data compilation,
 8.3.1.9-48
human intrusion direct release (disturbed case
 scenario A-2), 8.3.5.13-82--84
 expected partial performance measures
 (EPPM), 8.3.5.13-84

human intrusion direct release (disturbed case
 scenario A-2) (continued)
 performance parameters, 8.3.5.13-97*
 technical discussion, 8.3.5.13-82--84
human intrusion release model development
 (Subactivity 1.1.3.1.4), 8.3.5.13-135
 description, 8.3.5.13-135
 objectives, 8.3.5.13-135
 parameters, 8.3.5.13-135
human reliability analysis, 8.3.5.1-10, -12
 and preclosure risk assessment methodology
 (PRAM) program, 8.3.5.1-10
 and radiological risk, 8.3.5.1-10
hydraulic behavior of fracture-matrix system
 and drilling with water, 8.4.3-14
hydraulic conductivity
 data needs, 8.3.1.2-146
 and fracturing, 8.3.1.2-89
 and matric potential, 8.4.1-15--20
 technical procedures for, 8.3.1.2-343,
 -347--348
 and unsaturated zone, 8.4.1-15--20
hydraulic conductivity and consolidation of
 crushed tuff (Activity 1.12.2.1.2)
 description, 8.3.3.2-40
 objectives, 8.3.3.2-40
hydraulic conductivity/matric potential
 for fractures and rock matrix, 8.4.1-19**
hydraulic gradient
 analysis of, 8.3.1.2-120--121
 and climatic change, 8.3.5.13-88
hydraulic properties
 collection of data (unsaturated zone),
 8.3.1.2-90--92
 gradients, site saturated-zone
 hydraulic system, 8.3.1.2-120, -367,
 -369
 and ground-water movement along faults,
 8.3.1.2-146
 laboratory testing, technical procedures
 for, 8.3.1.2-278--279, -286, -315, -319
 onsite and offsite determinations,
 8.3.1.2-239--242
hydraulic stress tests activity,
 8.3.1.2-383--393
 description, 8.3.1.2-383--392
 methods and technical procedures,
 8.3.1.2-392--393
 objectives, 8.3.1.2-383
 parameters, 8.3.1.2-383
hydraulic tests, technical procedures for,
 8.3.1.2-125, -291--292, -304

hydraulic tests at C-hole complex,
8.3.1.2-385, -389--390, -391**

hydrocarbon resource assessment activity,
8.3.1.9-37--39
description, 8.3.1.9-38--39
methods and technical procedures,
8.3.1.9-39
objectives, 8.3.1.9-37
parameters, 8.3.1.9-37--38

hydrocarbon resource, thermal maturation
analytical methods, technical procedures
for, 8.3.1.9-39

hydrocarbons, introduced
and exploratory shaft facility,
8.4.3-23--24

hydrochemical analysis of Quaternary
unsaturated zone, 8.3.1.5-96--98

hydrochemical characterization (regional)
activity, 8.3.1.2-431--433
description, 8.3.1.2-431--432
methods and technical procedures,
8.3.1.2-432--433
objectives, 8.3.1.2-431
parameters, 8.3.1.2-431

hydrochemical characterization (unsaturated-
zone) study, 8.3.1.2-334--341
activities, 8.3.1.2-334--341
aqueous-phase chemical investigations,
8.3.1.2-337--341
gaseous-phase chemical investigations,
8.3.1.2-334--337
objectives, 8.3.1.2-334

hydrochemical data availability (site)
activity, 8.3.1.2-425--426
description, 8.3.1.2-425
methods and technical procedures,
8.3.1.2-425--426
objectives, 8.3.1.2-425
parameters, 8.3.1.2-425

hydrochemistry
as component of unsaturated zone system,
8.3.1.2-151
data needs, 8.3.1.2-91
and ground-water flow modeling,
8.3.1.2-141
and ground-water travel time, 8.3.1.2-91
and model validation, 8.3.1.2-156
and paleohydrologic characterization,
8.3.1.2-91
and perched water, 8.3.1.5-97
tests in ESF, 8.3.1.2-233, -237

hydrochemistry of site saturated zone study,
8.3.1.2-424--434
activities, 8.3.1.2-425--434
hydrochemical characterization
(regional), 8.3.1.2-431--433
hydrochemistry of upper site
saturated-zone water,
8.3.1.2-426--431
hydrochemistry synthesis (saturated
zone), 8.3.1.2-433--434
site hydrochemical data availability
assessment, 8.3.1.2-425--426
objectives, 8.3.1.2-424

hydrochemistry of upper site saturated-zone
water activity, 8.3.1.2-426--431
description, 8.3.1.2-427--429
methods and technical procedures,
8.3.1.2-429--431
objectives, 8.3.1.2-426--427
parameters, 8.3.1.2-427

hydrochemistry synthesis (saturated zone)
activity, 8.3.1.2-433--434
description, 8.3.1.2-433--434
methods and technical procedures,
8.3.1.2-434
objectives, 8.3.1.2-433
parameters, 8.3.1.2-433

hydrochemistry tests ESF activity,
8.3.1.2-304--308
description, 8.3.1.2-305--306
methods and technical procedures,
8.3.1.2-306--308
objectives, 8.3.1.2-304
parameters, 8.3.1.2-304--305

hydrochemistry tests in ESF
constraints and zones of influence,
8.4.2-140
purpose and operations, 8.4.2-139

HYDROCOIN, 8.3.5.20-5

hydrofrac and strain recovery methods
evaluation activity, 8.3.1.17-182--183

hydrofracturing (low volume), technical
procedures for, 8.3.1.15-82

hydrogen effects, see embrittlement and
hydrogen entry

hydrogen entry and embrittlement (austenitic)
(Subactivity 1.4.3.2.5), 8.3.5.9-103--104
description, 8.3.5.9-103--104
objectives, 8.3.5.9-103
parameters, 8.3.5.9-103

- hydrogen entry and embrittlement (copper)
 - (Subactivity 1.4.3.1.4), 8.3.5.9-93
 - objectives, 8.3.5.9-93
 - parameters, 8.3.5.9-93
- hydrogeologic conditions (saturated zone)
 - (Issue 1.8 favorable condition 2)
 - text of condition and description, 8.3.5.17-2*, -91
- hydrogeologic conditions (unsaturated zone)
 - (Issue 1.8 favorable condition 8)
 - text of condition and discussion, 8.3.5.17-3*, -95--97
- hydrogeologic cross section
 - Solitario Canyon to well J-13, 8.3.5.12-4**
 - Yucca Mountain, 8.3.5.13-57**
- hydrogeologic data
 - WATSOR data base, 8.3.1.2-146
- hydrogeologic data needs (regional)--
 - saturated-zone activity, 8.3.1.2-114--118
 - description, 8.3.1.2-115--116
 - methods and technical procedures, 8.3.1.2-118
 - objectives, 8.3.1.2-114
 - parameters, 8.3.1.2-115
- hydrogeologic parameters
 - and three-dimensional rock characteristics model, 8.3.1.4-100--103
- hydrogeologic study area, 8.3.1.2-95**
- hydrogeologic system (natural) simulation
 - activity, 8.3.1.2-356--359
 - description, 8.3.1.2-356--358
 - methods and technical procedures, 8.3.1.2-358--359
 - objective, 8.3.1.2-356
 - parameters, 8.3.1.2-356
- hydrogeologic unit (unsaturated) pinchouts, 8.3.5.12-15**
 - hydrogeologic units
 - modeling of, 8.3.1.2-145--147, -191
 - surficial, definition of, 8.3.1.2-158
- hydrologic analyses and data
 - air and water vapor flow, 8.4.3-21
 - air flow through backfill, 8.4.3-21
 - air drilling effects on saturation, 8.4.3-21--22
 - barometric effects on air flow in exploratory shaft, 8.4.3-21
 - drift ventilation effects, 8.4.3-22--23
 - drying of tuffaceous rock, 8.4.3-22
 - and potential impacts of activities, 8.4.3-8--23
- hydrologic analyses and data (continued)
 - ventilation and drift wall saturation, 8.4.3-22
 - water and modified permeability zone, 8.4.3-18--19
 - water from exploratory shaft construction, 8.4.3-18
 - water from surface activities, 8.4.3-17--18
 - water infiltration from the surface, 8.4.3-8--11
 - water in the unsaturated zone, 8.4.3-17--19
 - water vapor flow in open borehole, 8.4.3-19, -21
 - water vapor movement, 8.4.3-19, -21
- hydrologic analysis of underground repository facilities
 - summary, 8.3.2.5-74
- hydrologic and environmental information for special source/aquifer determination, (Activity 1.3.1.1), 8.3.5.15-7--8
 - description, 8.3.5.15-8
 - objectives, 8.3.5.15-7--8
 - parameters, 8.3.5.15-7
- hydrologic borehole USW H-7
 - and conceptual perimeter drift boundary, 8.4.3-42
 - and unsaturated zone exploration, 8.4.2-78
- hydrologic boundary condition definition, technical procedures for, 8.3.1.2-358
- hydrologic budget model recharge estimation, technical procedures for, 8.3.1.5-109
- hydrologic budget monitoring data collection, technical procedures for, 8.3.1.5-108--109
- hydrologic change and radionuclide migration (Issue 1.8 potentially adverse condition 5)
 - discussion, 8.3.5.17-30, -35
 - performance parameters and goals, 8.3.5.17-36*--47*
 - related studies and activities, 8.3.5.17-36*--47*
 - scenario classes, 8.3.5.17-36*--47*
 - text of condition, 8.3.5.17-4*
- hydrologic change from climatic change (Issue 1.8 potentially adverse condition 6)
 - discussion, 8.3.5.17-35, -48
 - performance parameters and goals, 8.3.5.17-49*--51*
 - related studies and activities, 8.3.5.17-49*--51*

hydrologic change from climatic change
 (Issue 1.8 potentially adverse condition 6)
 (continued)
 scenario classes, 8.3.5.17-49**-51*
 text of condition, 8.3.5.17-4*

hydrologic characteristics
 effects of resource exploitation,
 8.3.1.9-45, -49--51

Hydrologic Code Intercomparison (HYDROCOIN),
 8.3.5.20-5

hydrologic codes, validation of, 8.3.5.20-7--9

hydrologic disturbance, potential impact
 exploratory shaft construction, 8.4.3-44
 from deep borings drilled dry, 8.4.3-41
 from exploratory shaft facilities
 activities, 8.4.3-48--49
 from saturated zone boreholes, 8.4.3-42
 from shallow borings drilled dry, 8.4.3-39
 from underground construction,
 8.4.3-46--47
 to current site conditions, 8.4.3-37--38

hydrologic effects of future ground-water
 withdrawals activity, 8.3.1.9-49
 description, 8.3.1.9-49
 methods and technical procedures,
 8.3.1.9-49
 objectives, 8.3.1.9-49
 parameters, 8.3.1.9-49

hydrologic factor, zone of influence
 and exploratory shaft facility tests,
 8.4.3-98, -102**-104*

hydrologic flow models
 alternative, 8.3.1.2-52**-87*
 and ground-water travel time,
 8.3.1.2-137, -142
see also hydrologic models

hydrologic flow models (regional)
 activity, 8.3.1.2-137--139
 description, 8.3.1.2-138
 methods and technical procedures,
 8.3.1.2-138--139
 objectives, 8.3.1.2-137--138
 parameters, 8.3.1.2-138

hydrologic investigations and analysis,
 technical procedures for, 8.3.1.5-118

hydrologic modeling computer codes activity,
 8.3.1.2-353--355
 description, 8.3.1.2-354--355
 methods and technical procedures,
 8.3.1.2-355
 objectives, 8.3.1.2-353
 parameters, 8.3.1.2-354

hydrologic models
 boundary conditions and accessible
 environment, 8.3.1.2-142, -435--436

code development, 8.3.1.2-353--355

components of, 8.3.1.2-4

hypothesis-testing table,
 8.3.1.2-52**-87*

meteorological parameters, technical
 procedures, 8.3.1.5-86

and paleofloods, 8.3.1.2-96

regional three-dimensional,
 8.3.1.2-144--147

relationship to geohydrology program,
 8.3.1.2-6**, -7**, -8**

subregional two-dimensional areal,
 8.3.1.2-139--141

subregional two-dimensional cross-
 sectional, 8.3.1.2-142--144

surface water, 8.3.1.2-3

unsaturated zone sensitivity analysis,
 technical procedures for, 8.3.1.5-120
see also hydrologic flow models

hydrologic parameters, 8.3.1.2-10**-47*

use of, 8.3.1.2-48--49

hydrologic performance goals
 and seals, 8.3.3.2-23**, -27, -28*,

hydrologic properties
 flow models, 8.3.4.2-52
 near field, 8.3.4.2-57--58
 dehydration-rehydration processes,
 8.3.4.2-53

rock mass, effects of stress/strain,
 8.3.1.8-96--97

technical procedures for, 8.3.1.2-358,
 -360

Yucca Mountain, 8.4.1-14--21

hydrologic properties of faults encountered in
 ESF activity, 8.3.1.2-316--320
 description, 8.3.1.2-317--318
 methods and technical procedures,
 8.3.1.2-318--320
 objectives, 8.3.1.2-316
 parameters, 8.3.1.2-316--317

hydrologic properties of surficial materials
 activity, 8.3.1.2-157--164
 description, 8.3.1.2-158--164
 methods and technical procedures,
 8.3.1.2-162--164
 objectives, 8.3.1.2-157
 parameters, 8.3.1.2-157

hydrologic properties of waste package environment (Study 1.10.4.2)
 activities, 8.3.4.2-51--55
 flow and transport analysis in laboratory systems, 8.3.4.2-55
 single-phase fluid system properties, 8.3.4.2-52--54
 two-phase fluid system properties, 8.3.4.2-54--56
 objectives, 8.3.4.2-51--52

hydrologic property (matrix) testing, 8.3.1.2-182--200

hydrologic system
 effects of ground-water withdrawals, 8.3.1.9-49
 in situ disturbance, 8.3.1.2-210
 simulation activity, 8.3.1.2-356--359

hydrologic system (regional) investigation, 8.3.1.2-92--147
 activities
 debris transport by runoff, 8.3.1.2-112--114
 evapotranspiration studies, 8.3.1.2-134--137
 Fortymile Wash recharge, 8.3.1.2-125--133
 hydrogeologic data needs (regional)--saturated zone, 8.3.1.2-114--118
 hydrologic flow models (regional), 8.3.1.2-137--139
 potentiometric level distribution
 studies (regional), 8.3.1.2-118--125
 precipitation and meteorological monitoring, 8.3.1.2-97--102
 surface-water runoff monitoring, 8.3.1.2-103--112
 three-dimensional hydrologic modeling (regional), 8.3.1.2-144--147
 two-dimensional areal hydrologic model (subregional), 8.3.1.2-139--141
 two-dimensional cross-sectional model (subregional), 8.3.1.2-142--144
 application of results, 8.3.1.2-147
 link to supporting information, 8.3.1.2-92--93
 parameters, 8.3.1.2-93
 studies, 8.3.1.2-97--147
 ground-water flow system (regional)
 characterization, 8.3.1.2-114--137
 hydrologic system synthesis and modeling (regional), 8.3.1.2-137--147

hydrologic system (regional) investigation (continued)
 studies (continued)
 meteorological characterization (regional), 8.3.1.2-97--102
 runoff and stream flow characterization, 8.3.1.2-102--114
 technical basis for, 8.3.1.2-92--97
 technical rationale, 8.3.1.2-94--97

hydrologic system (site saturated zone) investigation, 8.3.1.2-364--445
see also saturated-zone hydrologic system (site) investigation

hydrologic system (site unsaturated zone) investigation, 8.3.1.2-148--364
see also unsaturated-zone hydrologic system (site) investigation

hydrologic system synthesis and modeling (regional) study, 8.3.1.2-137--147
 activities, 8.3.1.2-137--147
 hydrologic flow models (regional), 8.3.1.2-137--139
 three-dimensional hydrologic modeling (regional), 8.3.1.2-144--147
 two-dimensional areal hydrologic model (subregional), 8.3.1.2-139--141
 two-dimensional cross-sectional model (subregional), 8.3.1.2-142--144
 objective, 8.3.1.2-137
see also saturated-zone hydrologic synthesis and modeling

hydrologic, thermal, mechanical property compilation, technical procedures for, 8.3.1.2-358

hydrological analyses and data
 drilling fluid and fracture-matrix saturation, 8.4.3-14--15
 drilling fluid migration, 8.4.3-15--16
 fluid loss in borehole USW G-4, 8.4.3-16--17
 flux change and travel time, 8.4.3-13
 flux penetration into discrete fractures, 8.4.3-14
 fracture aperture size, 8.4.3-12
 ground-water flow in matrix and fractures, 8.4.3-11--17
 increased flux and saturation, 8.4.3-13
 major water table rise, 8.4.3-13--14
 matrix hydraulic conductivity, 8.4.3-12
 matrix response to increased flux, 8.4.3-12--13
 matrix wetting, 8.4.3-15

hydrological analyses and data (continued)
 net infiltration, 8.4.3-9
 surface ponding, 8.4.3-9--10
 water accumulation in exploratory shaft,
 8.4.3-10--11

hydrological properties of major faults
 encountered
 constraints and zones of influence,
 8.4.2-144--145
 purpose and operations, 8.4.2-144

hydrology
 future, 8.3.1.5-118--122 (*see also* future
 regional hydrology due to climate
 changes study)
 program (preclosure), *see* preclosure
 hydrology program
 Quaternary regional study,
 8.3.1.5-93--118 (*see also* Quaternary
 regional hydrology characterization
 study)
 and Ross study, 8.3.5.13-34

surface
 and climate changes, 8.3.1.5-118--119

technical concerns
 SCP section correlation, 8.2-19*--27*

technical guideline
 higher level finding--ease and cost
 of construction (Issue 4.1),
 8.3.5.7-11, -13, -14*
 and qualifying and disqualifying
 conditions, 8.3.5.7-7*, -11, -13

and tectonic effects investigation,
 8.3.1.8-73--98 (*see also* tectonic
 effects on hydrology investigation)

waste package environment
 characterization, 8.3.4.2-25
 containment by waste package,
 8.3.4.2-25

hydrostratigraphic characterization,
 8.3.1.2-89

hydrothermal
 flow model, 8.3.4.2-55
 systems
 natural analog of, 8.3.1.3-56--58
 rock alteration predictions,
 8.3.1.3-56

hydrothermal/diagenetic alteration,
 8.3.1.3-50

hydrovolcanic eruptions, 8.3.1.8-60--62
 and depth of water source, 8.3.1.8-61
 scenarios, 8.3.1.8-61

hydrovolcanic eruption effects activity,
 8.3.1.8-60--62
 description, 8.3.1.8-60
 methods and technical procedures,
 8.3.1.8-61--62
 objectives, 8.3.1.8-60
 parameters, 8.3.1.8-60

hypersthene- to nepheline-normative basalt,
 8.3.1.8-53

hypothesis testing, 8.3.1.2-353

hypothesis-testing tables
 climate program, 8.3.1.5-18*--31*
 geochemistry program, 8.3.1.3-13*--20*
 geohydrology program, 8.3.1.2-52*--87*
 human interference program,
 8.3.1.9-25*--26*
 postclosure tectonics program,
 8.3.1.8-31*--45*
 preclosure tectonics program,
 8.3.1.17-38*--49*
 rock characteristics program,
 8.3.1.4-19*--23*
 site program, 8.3.1.1-6--7
 thermal and mechanical properties program,
 8.3.1.15-19*--21*

hysteresis, investigation of, 8.3.1.2-179

IDAS, *see* integrated data acquisition system

identification of likely travel paths
 (Information Need 1.6.3), *see* ground-water
 travel path identification (Information
 Need 1.6.3)

IGIS, *see* interactive graphic information
 system

igneous activity (Quaternary) (Issue 1.8
 potentially adverse condition 15)
 discussion, 8.3.5.17-70
 performance parameters and goals,
 8.3.5.17-71*--75*
 related studies and activities,
 8.3.5.17-71*--75*
 scenario classes, 8.3.5.17-71*--75*
 text of condition, 8.3.5.17-5*

igneous intrusion and volcanic event effects
 on flux activity, 8.3.1.8-83--84
 description, 8.3.1.8-83
 methods and technical procedures,
 8.3.1.8-84
 objectives, 8.3.1.8-83
 parameters, 8.3.1.8-83

igneous intrusion effects on local fracture permeability and effective porosities activity, 8.3.1.8-95
description, 8.3.1.8-95
methods and technical procedures, 8.3.1.8-95
objectives, 8.3.1.8-95
parameters, 8.3.1.8-95

igneous intrusion effects on water-table elevations activity, 8.3.1.8-89-90
description, 8.3.1.8-90
methods and technical procedures, 8.3.1.8-90
objectives, 8.3.1.8-89
parameters, 8.3.1.8-89

igneous intrusions
and local fracture permeability and effective porosity, 8.3.1.8-95
and rock geochemical changes activity, 8.3.1.8-101-102
and waste package rupture, 8.3.1.8-76-77
and water-table elevations, 8.3.1.8-88-90

igneous intrusive features characterization study, 8.3.1.8-123-129
activities, 8.3.1.8-124-129
chemical and physical changes around dikes, 8.3.1.8-125-127
curie temperature isotherm depth evaluation, 8.3.1.8-124-125
heat flow and heat flow anomalies, 8.3.1.8-127-129
objectives, 8.3.1.8-123

IGSCC, see intergranular stress corrosion cracking (waste containers)

imagery analysis, technical procedures for, 8.3.1.16-21, -23

imbibition/drying characterization, technical procedures for, 8.3.5.12-48

imbricate normal fault zone, drift to exploratory shaft facility construction, 8.4.2-195

immobile trace elements
and eolian sediments, 8.3.1.5-74, -76
technical procedures for, 8.3.1.5-76

impacts of installations and operations, see installations and operations impacts investigation

impacts of uplift and faulting on erosion activity, 8.3.1.6-22-23

importance analyses
credible accidents, 8.3.5.5-22, -26, -28

importance analyses (continued)
preclosure performance assessment, 8.3.5.19-3
radiological risk assessment, 8.3.5.1-11-12; 8.3.5.5-17

important to safety
definition, 8.3.5.5-1-2**
fault identification, 8.3.5.7-15*
site system element components, 8.3.5.5-5, -8
see also facilities important to safety, importance analyses, items important to safety, and Q list

INAA, see instrumental neutron activation analysis

independent spent fuel storage installation (ISFSI)
allowable design-basis accident dose, 8.3.5.5-3

Indian Springs quadrangle
and Landsat V thematic mapper data, 8.3.1.17-132

indirect tensile strength--rock discontinuities, technical procedures for, 8.3.1.14-53

individual doses in accessible environment and 40 CFR 191.15, 8.3.5.18-8

individual protection (Issue 1.2), 8.3.5.14-1-15
approach, 8.3.5.14-2-6
geochemistry program parameter calls, 8.3.1.3-1, -2**, -7*, -11**
information needs, 8.3.5.14-6, -8-15
public doses--gaseous pathway (1.2.2), 8.3.5.14-10-13
public doses--liquid pathway (1.2.1), 8.3.5.14-9-10
see specific information need for activity listing

interrelationships, 8.3.5.14-6

issue resolution strategy, 8.3.5.14-1-6, -7*
logic diagram, 8.3.5.14-3**

major events and completion dates, 8.3.5.14-15*; 8.5-76, -77**, -78

and other design and performance assessment issues, 8.3.2.1-2**; 8.3.4.1-2**

performance allocation, 8.3.5.14-7*

performance parameters, 8.3.5.14-8*

individual protection (Issue 1.2) (continued)
 postclosure guideline qualifying
 and disqualifying conditions,
 8.3.5.18-7--8
 and postclosure performance assessment,
 8.3.5.8-2, -3*, -4
 and qualifying and disqualifying
 conditions of Issue 1.9(a),
 8.3.5.18-7--8
 regulatory basis, 8.3.5.14-1--2
 schedule, 8.3.5.14-13--15; 8.5-76, -77**
 and system guideline qualifying condition
 --postclosure, 8.3.5.18-7--8,
 and total system performance (Issue 1.1),
 8.3.5.14-9
 40 CFR 191 requirements, 8.3.5.14-1
 induced seismicity activity, 8.3.1.17-91--93
 industrial safety considerations
 exploratory shafts, 8.4.2-169
 inelastic model
 analysis of drift shape and pillar width,
 8.4.3-28
 inelastic response to heating
 potentially likely conditions, evaluation
 8.4.3-60
 infiltration
 arid-zone geochemistry, technical
 procedures for, 8.3.1.5-110
 artificial, 8.3.1.2-162, 170, 172--176
 barriers (lateral)
 and Ghost Dance fault, 8.3.5.17-96
 data uncertainties, 8.3.1.2-153
 estimation of, 8.3.1.2-169
 and evapotranspiration, 8.3.1.2-169
 infiltrometer technical procedures,
 8.3.1.2-176, -265--267
 natural, 8.3.1.2-164--172
 and precipitation, 8.3.1.2-169
 and probable maximum flood, 8.4.3-68--71
 prototype testing, 8.3.1.2-162
 rate and recharge, 8.3.1.5-107
 and runoff, 8.3.1.2-169
 studies, Fortymile Wash, 8.3.1.2-126
 unsaturated zone characterization study,
 8.3.1.2-157--179 (see also unsaturated
 zone infiltration characterization
 study)

infiltration-discharge characteristics
 and past discharge, 8.3.1.5-99
 infiltration-runoff units, 8.3.1.2-158, -159

infiltrometer installation and tests,
 technical procedures for, 8.3.1.2-176,
 -265--267
 infiltration, net
 hydrological analyses and data, 8.4.3-9
 Information Need 1.1.1, see site information
 needed for calculations
 Information Need 1.1.2, see potentially
 significant release scenario classes
 Information Need 1.1.3, see calculational
 models for release scenario classes
 Information Need 1.1.4, see radionuclide
 releases for scenario classes
 Information Need 1.1.5, see probabilistic
 release estimates
 Information Need 1.2.1, see public doses--
 liquid pathway
 Information Need 1.2.2, see public doses--
 gaseous pathway
 Information Need 1.3.1, see Class I or special
 sources of ground water
 Information Need 1.3.2, see concentrations
 (1,000 year) in special sources of ground
 water
 Information Need 1.4.1, see waste package
 design features (affecting container
 performance) needed
 Information Need 1.4.2, see container material
 properties
 Information Need 1.4.3, see waste package
 scenarios and models
 Information Need 1.4.4, see container
 degradation
 Information Need 1.4.5, see substantially
 complete containment of waste
 Information Need 1.5.1, see waste package
 design features (affecting radionuclide
 release) needed
 Information Need 1.5.2, see waste form
 material properties
 Information Need 1.5.3, see EBS scenarios and
 models
 Information Need 1.5.4, see waste package and
 EBS release rates
 Information Need 1.5.5, see waste package
 near-field releases
 Information Need 1.6.1, see site and design
 information needed (GWTT)
 Information Need 1.6.2, see GWTT prediction
 models
 Information Need 1.6.3, see ground-water
 travel path identification

Information Need 1.6.4, see pre-waste emplacement GWTT

Information Need 1.6.5, see disturbed zone boundary

Information Need 1.10.1, see waste package design information needed

Information Need 1.10.2, see reference waste package designs

Information Need 1.10.3, see reference emplacement configuration

Information Need 1.10.4, see near-field environment

Information Need 1.11.1, see site characteristics for underground facility design

Information Need 1.11.2, see waste package characteristics needed for design

Information Need 1.11.3, see underground facility orientation and layout

Information Need 1.11.4, see design constraints to limit water use

Information Need 1.11.5, see design constraints to limit excavation effects

Information Need 1.11.6, see thermal loading/thermomechanical rock response

Information Need 1.11.7, see reference postclosure underground designs

Information Need 1.12.1, see information needed for seal design and placement

Information Need 1.12.2, see seal materials

Information Need 1.12.3, see placement methods (seals)

Information Need 1.12.4, see reference seal designs

Information Need 2.1.1, see site and design information needed (preclosure radiological safety)

Information Need 2.2.1, see radiation environment

Information Need 2.2.2, see worker exposure (normal conditions)

Information Need 2.3.1, see radiological releases (accidental)

Information Need 2.3.2, see radiological releases (credible)

Information Need 2.4.1, see site and design information needed (retrieval)

Information Need 2.4.2, see emplacement borehole access

Information Need 2.4.3, see waste package access

Information Need 2.4.4, see waste removal from boreholes

Information Need 2.4.5, see waste delivery to surface

Information Need 2.4.6, see retrieval requirement compliance

Information Need 2.6.1, see waste package design information needed

Information Need 2.6.2, see waste form design information

Information Need 2.6.3, see waste acceptance specifications

Information Need 2.7.1, see radiological protection

Information Need 2.7.2, see items important to safety

Information Need 2.7.3, see criticality control

Information Need 4.2.1, see site and performance information needed for design (nonradiological health and safety)

Information Need 4.3.1, see fabrication, closure, and inspection technology

Information Need 4.4.1, see site and performance information needed for design (preclosure design and technical feasibility)

Information Need 4.4.2, see waste package information needed for design

Information Need 4.4.3, see plans for repository design

Information Need 4.4.4, see repository design requirements

Information Need 4.4.5, see reference repository preclosure design

Information Need 4.4.6, see equipment development and demonstration

Information Need 4.4.7, see design analysis

Information Need 4.4.8, see technology for surface facilities

Information Need 4.4.9, see technology for underground facilities

Information Need 4.4.10, see technology for seals emplacement

information needed for seal design and placement (Information Need 1.12.1), 8.3.3.2-32--36
 application of results, 8.3.3.2-36
 link to supporting information, 8.3.3.2-32
 logic, 8.3.3.2-35--36
 parameters, 8.3.3.2-32--35
 technical basis for, 8.3.3.2-32--36

- information needs
- Key Issue 1
 - design issues, 8.2-6*
 - performance issues, 8.2-3*-5*
- Key Issue 2
 - design issues, 8.2-9*
 - performance issues, 8.2-7*-8*
- Key Issue 4
 - design issues, 8.2-10*-11*
 - performance issues, 8.2-10*
- overview, 8.1-4
- site-specific, 8.2-3*-11*
- infrared (thermal) method evaluation, 8.3.1.17-176*-177*
- initiating events and associated performance measures (climate program), 8.3.1.5-4*-5*
- injection tests, plans and technical procedures for, 8.3.1.2-393, -421
- input items
 - definition of, 8.3.5.2-7
 - retrieval related, 8.3.5.2-25*-26*
- in situ design verification study, 8.3.1.15-70--76
 - activities, 8.3.1.15-71--76
 - air quality and ventilation experiment, 8.3.1.15-74--76
 - drift stability monitoring, 8.3.1.15-73--74
 - ground support system monitoring, 8.3.1.15-72--73
 - mining methods, 8.3.1.15-71
- in situ disturbance, hydrologic system, 8.3.1.2-210
- in situ experiment analyses
 - demonstration breakout room effects, 8.4.3-31--32
 - G-tunnel heated block experiment, 8.4.3-32
 - G-tunnel small-diameter heater experiment, 8.4.3-32--33
 - sequential drift mining experiments, 8.4.3-31--32
 - shaft convergence effects, 8.4.3-31--32
 - thermal zone influence, 8.4.3-33
- in situ experiments
 - thermal/mechanical analyses and data, 8.4.3-31--33
- in situ mechanical properties study, 8.3.1.15-65--70
 - activities, 8.3.1.15-65--70
 - plate loading tests, 8.3.1.15-65--67
 - rock-mass strength experiment, 8.3.1.15-68--70
- in situ measurement of geologic features, technical procedures for, 8.3.1.4-78
- in situ pneumatic testing, technical procedures for, 8.3.1.2-226--227, -261--262, -287--289
- in situ sealing tests, 8.3.3.2-41--62
- in situ stress
 - conditional site characterization activity, 8.4.2-36
 - and excavation effects test, 8.3.1.2-295
 - measurement methods evaluation activity, 8.3.1.17-182--183
 - and surface topography, 8.3.1.14-24
- in situ testing of seal components
 - constraints and zones of influence, 8.4.2-132
 - purpose and operations, 8.4.2-131--132
- in situ testing of seal components (study 1.12.2.3), 8.3.3.2-41--62
 - description, 8.3.3.2-41--62
 - objectives, 8.3.3.2-41
- in situ thermomechanical properties study, 8.3.1.15-52--65
 - activities, 8.3.1.15-52--65
 - canister-scale heater experiment, 8.3.1.15-54--56
 - heated room experiment, 8.3.1.15-62--65
 - heater experiment in unit TSW1, 8.3.1.15-52--54
 - thermal stress measurements, 8.3.1.15-60--62
 - Yucca Mountain heated block, 8.3.1.15-57--59
- installations and operations impacts
 - investigation, 8.3.1.13-6--12
 - activities
 - ground motion from Nevada Test Site nuclear testing evaluation, 8.3.1.13-11
 - near-site activities evaluation, 8.3.1.13-8--9
 - nuclear facilities (not nuclear fuel cycle) impacts, 8.3.1.13-10--11
 - nuclear fuel cycle operations impacts evaluation, 8.3.1.13-9--10
 - application of results, 8.3.1.13-11
 - link to supporting information, 8.3.1.13-6
 - parameters, 8.3.1.13-7
 - purpose and objectives, 8.3.1.13-7
 - technical basis for, 8.3.1.13-6
 - technical rationale, 8.3.1.13-7--8

instrument hole preparation, technical procedures for, 8.3.1.15-46, -47, -48, -51, -53, -55, -58, -60, -63, -67, -69, -74

instrumental neutron activation analysis (INAA), technical procedures for, 8.3.1.8-118, -122

intact fracture test in ESF, 8.3.1.2-233 constraints and zones of influence, 8.4.2-135 purpose and operations, 8.4.2-133, -135 test arrangement, 8.4.2-134**

intact fracture test in ESF activity, 8.3.1.2-238--252 description, 8.3.1.2-238--243 methods and technical procedures, 8.3.1.2-243--252 objectives, 8.3.1.2-238 parameters, 8.3.1.2-238

intact fracture test modeling, technical procedures for, 8.3.1.2-251--252

intact rock--baseline compressive mechanical properties, see compressive mechanical properties of intact rock activity

intact rock mechanical properties (laboratory determination) study, 8.3.1.15-40--42 activities, 8.3.1.15-40--42 compressive mechanical properties of intact rock, 8.3.1.15-40--41 compressive mechanical properties-- effects of environmental conditions, 8.3.1.15-41--42

integrated data aquisition system (IDAS), 8.3.1.2-210

integrated data system block diagram, 8.4.2-150** configuration, 8.4.2-149--151 description, 8.4.2-148--151 purpose, 8.4.2-148--149

integrated drilling program development activity, 8.3.1.4-24--26 description, 8.3.1.4-25--26 objectives, 8.3.1.4-24--26 parameters, 8.3.1.4-25

integrated drilling program investigation, 8.3.1.4-24--27 activities integrated drilling program development, 8.3.1.4-24--26 geophysical activities integration, 8.3.1.4-26--27

integration repository design and exploratory shaft facility, 8.4.2-216--217

intentional ground-water withdrawal disruptive scenario classes, evaluation of, 8.4.3-65

interactive graphic information system, 8.3.2.2-37 and three-dimensional thermal/mechanical stratigraphy, 8.3.2.2-40

interference exploratory shaft facility layout and operations, 8.4.2-200--201 surface based tests, 8.4.2-87--90

interference, potential, between tests approach to assessing, 8.4.2-202--208 background, 8.4.2-201--202 current assessment, 8.4.2-208--210 geochemical, 8.4.2-202--203 hydrological, 8.4.2-202--203 main test level experiments, 8.4.2-208--210 mechanical, 8.4.2-202--203, -205 thermal, 8.4.2-202--203

interference, potential, construction and operations approach to assessing, 8.4.2-211 background, 8.4.2-211 backward evaluation method, 8.4.2-211, -215--216 current assessment, 8.4.2-211--216 description, 8.4.2-211--216 flexibility for experiments, 8.4.2-215 forward evaluation method, 8.4.2-211, -213, -215 hydrologic and mechanical for shafts, 8.4.2-214** matrix flow of water, 8.4.2-212--213 mechanical interference between shafts, 8.4.2-213 shaft separation, 8.4.2--212

interference, test from hydrologic process disturbance, 8.4.2-88--90 from water use, 8.4.2-87--88

intergranular attack (waste containers), 8.3.5.9-45--46

intergranular attack and cracking (austenitic) (Subactivity 1.4.3.2.4), 8.3.5.9-101--103 description, 8.3.5.9-102--103 objectives, 8.3.5.9-101 parameters, 8.3.5.9-101--102

intergranular stress corrosion cracking (waste containers), 8.3.5.9-45--46

international code comparisons, 8.3.5.20-5

International Committee on Radiation Protection
and design criteria, 8.3.2.3-16, -36

International Nuclide Transportation Code Intercomparison (INTRACOIN), 8.3.5.20-5

intraborehole flow data analysis, 8.3.1.2-384
technical procedures for, 8.3.1.2-393

intracontinental shear zone, 8.3.1.17-204

introduced materials, potential impacts of
and decision tree analysis, 8.4.3-23--24

intrusion, see human intrusion

iodine-129, sorption of, 8.3.1.3-67

irrigation
and controlled area, 8.3.1.9-50
disruptive scenario classes, evaluation
of, 8.4.3-65
and the Ross study, 8.3.5.13-33

ISFSI, see independent spent fuel storage installation

isopach contour maps
hydrogeologic units used for performance allocation, 8.3.5.12-12**

ISOQUAD
and altered saturated-zone feature effects, 8.3.5.13-87
and performance assessment, 8.3.5.19-2*, -5*
and saturated-zone flow, 8.3.5.13-131, -133
and saturated-zone hydrodynamic response times, 8.3.5.13-73

isothermal remanent magnetization, 8.3.1.4-61, -62

isotherms
and sorption, 8.3.1.3-74--76
see also curie temperature isotherm depth evaluation activity

isotope analyses
dating of surficial deposits, technical procedures, 8.3.1.5-71
Fortymile Wash samples, 8.3.1.2-127
and geothermal assessment, 8.3.1.9-35, -36
and percolation, 8.3.1.2-179--181
pore fluids from ESF, 8.3.1.2-305
rock matrix pore and fracture fluids, 8.3.1.2-338
and sediments, 8.3.1.5-50
technical procedures, 8.3.1.4-40; 8.3.1.5-41, -71, -117; 8.3.1.8-122

isotope analyses (continued)
in unsaturated zone, 8.3.1.2-152

Issue 1.1, see total system performance (Issue 1.1)

Issue 1.2, see individual protection (Issue 1.2)

Issue 1.3, see ground-water protection (Issue 1.3)

Issue 1.4, see containment by waste package (Issue 1.4)

Issue 1.5, see EBS release rates (Issue 1.5)

Issue 1.6, see GWTT (Issue 1.6)

Issue 1.7, see performance confirmation (Issue 1.7)

Issue 1.8, see NRC siting criteria (Issue 1.8)

Issue 1.9, see higher level findings--postclosure (Issue 1.9)

Issue 1.9(a), see higher level findings--postclosure (Issue 1.9(a))

Issue 1.9(b), see higher level findings--100,000-year releases (Issue 1.9(b))

Issue 1.10, see waste package characteristics (postclosure) (Issue 1.10)

Issue 1.11, see configuration of underground facilities (postclosure) (Issue 1.11)

Issue 1.12, see seal characteristics (Issue 1.12)

Issue 2.1, see public radiological exposures--normal conditions (Issue 2.1)

Issue 2.2, see worker radiological safety--normal conditions (Issue 2.2)

Issue 2.3, see accidental radiological releases (Issue 2.3)

Issue 2.4, see waste retrievability (Issue 2.4)

Issue 2.5, see higher level findings--preclosure radiological safety (Issue 2.5)

Issue 2.6, see waste package characteristics (preclosure) (Issue 2.6)

Issue 2.7, see repository design criteria for radiological safety (Issue 2.7)

Issue 4.1, see higher level findings--ease and cost of construction (Issue 4.1)

Issue 4.2, see nonradiological health and safety (Issue 4.2)

Issue 4.3, see waste package production technologies (Issue 4.3)

Issue 4.4, see preclosure design and technical feasibility (Issue 4.4)

Issue 4.5, see total system costs (Issue 4.5)

issue resolution reports, 8.2-61, -67**
potential topics, 8.2-63--65*

issue resolution strategy

accidental radiological releases (Issue 2.3), 8.3.5.5-3--18
 application, 8.1-1711
 approach, 8.0-2; 8.2-61, -66
 configuration of underground facilities (Issue 1.11), 8.3.2.2-1--96, -2**--3**
 conceptual model uncertainties, 8.1-10
 containment by waste package (Issue 1.4), 8.3.5.9-1--47
 data collection and analysis, 8.1-11, -12**, -13--14
 documentation, 8.1-14, -15**, -16--17
 EBS release rates (Issue 1.5), 8.3.5.10-1--38; 8.4.3-81--82
 ground-water protection (Issue 1.3), 8.3.5.15-1--4, -3**
 GWTT (Issue 1.6), 8.3.5.12-1--25; 8.4.3-85--56
 higher level findings--ease and cost of construction (Issue 4.1), 8.3.5.7-1--16
 higher level findings--postclosure (Issue 1.9(a)), 8.3.5.18-4**, -6--20
 higher level findings--preclosure radiological safety (Issue 2.5), 8.3.5.6-1--13
 higher level findings--100,000-year releases (Issue 1.9(b)), 8.3.5.18-21--22, -23*, -24--25
 individual protection (Issue 1.2), 8.3.5.14-1--6, -7*
 information needs, 8.1-8--10
 issue identification, 8.1-5
 licensing strategy, 8.1-7
 overview, 8.0-2; 8.1-5--17
 performance allocation, 8.1-5, -7
 performance confirmation (Issue 1.7), 8.3.5.16-1
 performance measures and tentative goals, 8.1-7--8
 preclosure design and technical feasibility (Issue 4.4), 8.3.2.5-1--108, -2**--3**
 public radiological exposures (Issue 2.1), 8.3.5.3-1--20
 repository design criteria for radiological safety (Issue 2.7), 8.3.2.3-3, -13**--14**
 seal characteristics (Issue 1.12), 8.3.3.2-1--74, -4**--5**
 testing strategy, 8.1-10

issue resolution strategy (continued)

total system releases, 8.4.3-50--51
 waste package characteristics--postclosure (Issue 1.10), 8.3.4.2-2**--3**, -4--32
 waste package characteristics--preclosure (Issue 2.6), 8.3.4.3-3**--4**
 waste package containment, 8.4.3-73--75
 waste package production technologies (Issue 4.3), 8.3.4.4-2**
see also specific issues
issue tracking, 8.2-66--68
issues
 overview, 8.1-3--4
issues hierarchy, 8.1-1--17; 8.2-1
 application to site characterization plan, 8.1-4--5
 derivation, 8.1-1--4
Generic Requirements for a Mined Geologic Disposal System, 8.1-1
 key issue statements, 8.2-2*
 and regulatory requirements, 8.1-1--2
 scope, 8.1-1--4
 site-specific, 8.2-15
 structure, 8.1-1--4
Waste Management System Requirements and Descriptions, 8.1-1
items important to safety
 design, function 2
 functional requirements for mined geologic disposal system, 8.3.2.3-15, -24**--27*
 and Project quality assurance, 8.6-3--4
 and 10 CFR 60 Subpart G, 8.6-3--4
see also facilities important to safety, importance analyses, and Q list
items important to safety (Information Need 2.7.2), 8.3.2.3-43--45
 application of results, 8.3.2.3-45
 and flooding data, 8.3.2.3-44
 interrelationships, 8.3.2.3-36--39
 link to the technical data, 8.3.2.3-43
 logic, 8.3.2.3-44--45
 and meteorological data, 8.3.2.3-43--44
 parameters, 8.3.2.3-43--44
 and potential accident data, 8.3.2.3-44
 and seismic concerns, 8.3.2.3-43
 technical basis for, 8.3.2.3-43

J-12, see well J-12J-13, see well J-13

JAC2D

and performance assessment, 8.3.5.19-2*, -5*

Jackass Flats

and hydraulic gradients, 8.3.1.2-367
and meteorological towers, 8.3.1.17-18
and paleomagnetic sampling, 8.3.1.17-123
and shallow seismic reflection,
 8.3.1.17-178

Jefferson Caldera

and mineral and energy assessment,
 8.3.1.9-41

joint probability distribution construction
(Subactivity 1.1.5.1.2), 8.3.5.13-141

description, 8.3.5.13-141
objectives, 8.3.5.13-141
parameters, 8.3.5.13-141

joint properties definition, technical
procedures for, 8.3.1.15-47, -49, -51, -64,
-67, -70

Jubilee Pass

and relevel network, 8.3.1.17-195

K-Ar dating, see potassium-argon dating

KENO-IV

and preclosure safety assessment,
 8.3.5.19-9*, -10*

Key Issue 1, 8.2-1; 8.3.5.8-1

and configuration of underground
facilities (Issue 1.11), 8.3.2.2-1,
-4, -41
description, 8.1-2*
design issues, 8.2-6*
information needs, 8.2-3*-6*
performance and design issues, correlation
of, 8.2-12**
performance issues, 8.2-3*-5*

performance issues and regulatory
criteria, 8.3.5.8-1-2
statement of, 8.2-2*

Key Issue 2, 8.2-1

description, 8.1-2*
design issues, 8.2-9*
information needs, 8.2-7*-9*
and offsite installations program,
 8.3.1.13-7--8
performance and design issues, correlation
of, 8.2-13**
and preclosure safety assessment,
 8.3.5.1-1
statement of, 8.2-2*

Key Issue 3, 8.2-1

description, 8.1-2--3
and Nuclear Waste Policy Act, 8.2-1
statement of, 8.2-2*

Key Issue 4, 8.2-1

description, 8.1-3
design issues, 8.2-10*-11*
information needs, 8.2-10*-11*
performance and design issues, correlation
of, 8.2-14**

and preclosure safety assessment,
 8.3.5.1-1
statement of, 8.2-2*

and surface characteristics program,
 8.3.1.14-15

key issues overview, 8.1-2--3; 8.2-1--17
kinetic studies of zeolite activity,

8.3.1.3-60

description, 8.3.1.3-60
methods and technical procedures,
 8.3.1.3-60
objectives, 8.3.1.3-60
parameters, 8.3.1.3-60

kinetics (mass-transfer) activity,
 8.3.1.3-105--107

kinetics/thermodynamics of mineral evolution
study, 8.3.1.3-59--64
activities

clinoptilolite-heulandite and
analcime, solid solution
descriptions, 8.3.1.3-63--64
end-member free energies,
 8.3.1.3-61--63
kinetic studies of zeolite,
 8.3.1.3-60
summary, 8.3.1.3-59--60

LA, see license application entries

laboratory data applicability to transport
calculation study, 8.3.1.3-127--135
description, 8.3.1.3-128--132
field testing, 8.3.1.3-128--132
large scale laboratory experiments,
 8.3.1.3-128
modeling, 8.3.1.3-128
natural analogs, 8.3.1.3-131--132
objectives, 8.3.1.3-127
parameters, 8.3.1.3-127--128
peer review, 8.3.1.3-132
soil zone data, 8.3.1.3-132

- laboratory determination of fracture
 - mechanical properties, *see* fracture
 - mechanical properties (laboratory determination) study
- laboratory determination of intact rock
 - mechanical properties, *see* intact rock
 - mechanical properties (laboratory determination) study
- laboratory hydraulic properties
 - test core, technical procedures for, 8.3.1.2-244--245, -278--279, -286, -315, -319
- laboratory measurements of rock properties, technical procedures for, 8.3.1.4-60
- laboratory sample preparation, technical procedures for, 8.3.1.8-123
- laboratory rock-matrix
 - lithologic testing, technical procedures for, 8.3.1.2-277--278
- laboratory tests and material property measurements study, 8.3.1.14-45--53
 - activities
 - mechanical and dynamic laboratory property tests, 8.3.1.14-48--53
 - physical property and index laboratory tests, 8.3.1.14-45--48
- laboratory thermal expansion testing, *see* thermal expansion testing (laboratory) study
- laboratory thermal properties study, *see* thermal properties (laboratory) study
- laboratory tracer, concentration analysis of core, technical procedures for 8.3.1.2-322
- lacustrine deposits, stratigraphy-sedimentology, 8.3.1.5-47
- LAD, *see* license application design
- lake
 - deposits
 - chronologic analyses activity, 8.3.1.5-51--54
 - dating, technical procedures for, 8.3.1.5-54
 - geochemical analyses, 8.3.1.5-49--51
 - and organics, technical procedures for, 8.3.1.5-51
 - paleontologic analysis, 8.3.1.5-42--47
 - stratigraphy-sedimentology, 8.3.1.5-47--49
 - sediments
 - coring, trenching, and sampling, technical procedures for, 8.3.1.5-48--49
- lake (continued)
 - sediments (continued)
 - pollen deposits, technical procedures for, 8.3.1.5-57
- lake, playa, and marsh deposits
 - chronologic analysis, 8.3.1.5-51--54
 - coring, trenching, and sampling, technical procedures for, 8.3.1.5-48--49
 - dating, technical procedures for, 8.3.1.5-54
 - geochemical analysis, 8.3.1.5-49--51
 - organic analysis, technical procedures for, 8.3.1.5-51
 - paleoclimate study, 8.3.1.5-42--54
- Lake Mead
 - and induced seismicity, 8.3.1.17-91--92
- land
 - resources, 8.3.1.9-20, -23
 - withdrawal and controlled area, 8.3.1.11-2--3
- land ownership
 - and human interference program, 8.3.1.9-2
 - and mineral rights, 8.3.1.9-2
- land ownership and mineral rights program, 8.3.1.11-1--3
 - and accidental radiological releases (Issue 2.3), 8.3.1.11-1
 - grazing rights, 8.3.1.11-2
 - and higher level findings--preclosure radiological safety (Issue 2.5), 8.3.1.11-1
 - mineral rights, 8.3.1.11-2
 - and Nuclear Waste Policy Act, 8.3.1.11-1
 - and public radiological exposures--normal conditions (Issue 2.1), 8.3.1.11-1
 - and regulatory requirements, 8.3.1.11-1
 - and repository design criteria for radiological safety (Issue 2.7), 8.3.1.11-1
- water rights, 8.3.1.11-2
 - and worker radiological safety--normal conditions (Issue 2.2), 8.3.1.11-1
- land-surface dose
 - and carbon-14 gaseous pathways, 8.3.5.14-12--13
- Landsat V thematic mapper imagery of Nevada Test Site, plans and technical procedures, 8.3.1.17-131--132
- large-plot rainfall simulation studies, 8.3.1.2-162, -175--176
 - distribution of sites, 8.3.1.2-169
 - and natural infiltration, 8.3.1.2-169
 - technical procedures for, 8.3.1.2-178

large-scale pumping test, technical procedures for, 8.3.1.2-398--400

Las Vegas Valley shear zone, 8.3.1.8-130; 8.3.1.17-101, -132
and relevel network, 8.3.1.17-195

Las Vegas Valley Water District
and water supply information, 8.3.1.9-44

lateral crustal movement activity, 8.3.1.17-198--199
description, 8.3.1.17-199
methods and technical procedures, 8.3.1.17-199
objectives, 8.3.1.17-198
parameters, 8.3.1.17-198

lateral infiltration barrier
and Ghost Dance fault, 8.3.5.17-96

Lathrop Wells basaltic cone, 8.3.1.5-73

Lathrop Wells volcanic center, 8.3.1.8-113, -117, -119, -127
dating, 8.3.1.8-113
and eruptions, 8.3.1.8-119--120
and heat flow, 8.3.1.8-127

Lava Creek, volcanic ash, 8.3.1.5-73

Lawrence Berkeley Laboratory
and COVE 1, 8.3.5.20-4*
and COVE 2, 8.3.5.20-4*
and COVE 3, 8.3.5.20-5*

layout constraints
and exploratory shaft facility tests, 8.4.2-93, -97--98, -99, -99*--101*, -105

leach rates
and glass composition, 8.3.5.10-54
and uranium oxides, 8.3.5.10-68

leach testing of glass (Subactivity 1.5.2.2.1), 8.3.5.10-51--52

leaching, selective
copper-based alloys, 8.3.5.9-94, -95

left-lateral fault system, 8.3.1.8-130

left-lateral strike-slip fault synthesis, technical procedures for, 8.3.1.17-203

license application design
construction schedule, 8.3.2.1-7
and operations plan, 8.3.2.5-45--46
reference preclosure repository design, 8.3.2.5-52--53
and seal designs, 8.3.3.1-1, -2**, -3, -8
tradeoff studies, seals, 8.3.3.2-68--69
and 10 CFR 60.21, 8.3.2.1-7

license application design for sealing (Design Activity 1.12.4.2), 8.3.3.2-68--69
design subactivities, 8.3.3.2-68--69

license application design for sealing (Design Activity 1.12.4.2) (continued)
design subactivities (continued)
license application design for seals, 8.3.3.2-69
subsystem design requirements for license application design, 8.3.3.2-68
tradeoffs for license application design, 8.3.3.2-68--69

license application design for seals (Design Subactivity 1.12.4.2.3), 8.3.3.2-69

license application design operations plan (Design Activity 4.4.3.2), 8.3.2.5-45--46
description, 8.3.2.5-45--46
objectives, 8.3.2.5-45

licensing process
and quality assurance, 8.6-4

licensing strategy
design basis accident development, 8.3.5.5-3
overview, 8.1-7

life safety systems
underground support systems, 8.4.2-199

lineament analysis, technical procedures for, 8.3.1.2-125

linked global-regional climate modeling activity, 8.3.1.5-39, -84--86
description, 8.3.1.5-85
methods and technical procedures, 8.3.1.5-85--86
objectives, 8.3.1.5-84--85
parameters, 8.3.1.5-85

lithologic analysis, technical procedures for, compositions of stream gravel, 8.3.1.6-13

lithologic logs
borehole drilling use, 8.3.1.2-206

lithologic sampling, technical procedures for, 8.3.1.4-79

lithophysae
abundances, 8.3.1.4-85

lithophysae (continued)
and thermomechanical properties, 8.3.1.15-52
and underground room constructibility, 8.3.1.15-48

Little Skull Mountain
and in situ stress measurements, 8.3.1.17-182
and paleomagnetic sampling, 8.3.1.17-123
and stress field, 8.3.1.17-180

local fracture permeability
 and tectonic effects study, 8.3.1.8-95--96

local heat flow anomalies
 and faults, 8.3.1.8-128
 and ground-water flow, 8.3.1.8-128
 and shallow magma bodies, 8.3.1.8-128

local mechanical fracturing
 potentially likely conditions, evaluation,
 8.4.3-60

local structural controls, volcanic activity,
 8.3.1.8-54

localized attack (waste containers),
 8.3.5.9-46

logic diagrams
 accidental radiological releases
 (Issue 2.3), 8.3.5.5-5***-6**
 climate effects on erosion investigation,
 8.3.1.6-17**
 climate program, 8.3.1.5-2**, -6**, -15**
 configuration of underground facilities
 (Issue 1.11), 8.3.2.2-2***-3**
 decision points for Yucca Mountain
 Project, 8.5-105, -106**
 degradation of markers investigation,
 8.3.1.9-17**
 effects of human interference,
 investigation, 8.3.1.9-47**
 erosion program, 8.3.1.6-5**
 ESF construction, 8.4.2-177**
 fault displacement investigation,
 8.3.1.17-59**
 faulting effects on local fracture
 permeability and effective porosity
 study, 8.3.1.8-78**
 flooding recurrence intervals investi-
 gation, 8.3.1.16-9**
 geochemistry program, 8.3.1.3-11**
 geohydrology program, 8.3.1.2-5**, -6**,
 -7**, -8**
 ground-water conditions investigation,
 8.3.1.16-27**
 ground-water protection (Issue 1.3),
 8.3.5.15-3**
 GWTT (Issue 1.6), 8.3.5.12-7**
 higher level findings--postclosure (Issue
 1.9(a)), 8.3.5.18-5**
 higher level findings--100,000-year
 releases (Issue 1.9(b)), 8.3.5.18-23**
 human interference program, 8.3.1.9-13**
 individual protection (Issue 1.2),
 8.3.5.14-3**
 meteorology program, 8.3.1.12-4**

logic diagrams (continued)
 mineralogy, petrology, rock chemistry
 investigation, 8.3.1.3-24**
 minerals/glass stability investigation,
 8.3.1.3-27**
 NRC siting criteria (Issue 1.8), favorable
 condition resolution, 8.3.5.17-16**
 NRC siting criteria (Issue 1.8),
 potentially adverse condition
 resolution, 8.3.5.17-10**
 preclosure design and technical
 feasibility (Issue 4.4),
 8.3.2.5-2***-3**
 preclosure hydrology program, 8.3.1.16-5**
 preclosure tectonics program, 8.3.1.17-2**
 present conditions investigation
 (erosion), 8.3.1.6-8**
 program element interfaces, 8.5-105,
 -106**
 public radiological exposure--normal
 conditions (Issue 2.1), 8.3.5.3-6***-7**
 radionuclide dispersion, diffusion,
 advection investigation, 8.3.1.3-32**
 radionuclide precipitation investigation,
 8.3.1.3-30**
 radionuclide retardation investigation,
 8.3.1.3-33**
 radionuclide sorption investigation,
 8.3.1.3-29**
 repository design criteria for
 radiological safety (Issue 2.7),
 8.3.2.3-13***-14**
 saturated-zone hydrology component of
 geohydrology program, 8.3.1.2-8**
 seal characteristics (Issue 1.12),
 8.3.3.2-4***-5**
 soil and rock property investigation,
 8.3.1.14-17**
 spatial distribution ambient stress and
 temperature, conditions, 8.3.1.15-17**
 spatial distribution of thermal/mechanical
 rock properties, 8.3.1.15-16**
 surface characteristics program,
 8.3.1.14-2**
 surface-water hydrology component of
 geohydrology program, 8.3.1.2-6**
 tectonic effects on erosion investigation,
 8.3.1.6-21**
 tectonic effects on flux rates study,
 8.3.1.8-76**
 tectonic effects on rock geochemical
 properties study, 8.3.1.8-100**

logic diagrams (continued)

- tectonic effects on waste package,
8.3.1.8-65**
- tectonic effects on water-table elevation
study, 8.3.1.8-77**
- thermal and mechanical rock properties
program, 8.3.1.15-15**
- three-dimensional rock characteristics
model investigation, 8.3.1.4-3**
- total system performance (Issue 1.1),
8.3.5.13-117---123**
- unsaturated-zone hydrology component of
geohydrology program, 8.3.1.2-7**
- value of resources investigation,
8.3.1.9-22**
- vibratory ground motion investigation,
8.3.1.17-67**
- volcanic activity, 8.3.1.8-50**
- volcanic activity (preclosure)
investigation, 8.3.1.17-53**
- waste package characteristics--postclosure
(Issue 1.10), 8.3.4.2-2**--3**
- waste package characteristics--preclosure
(Issue 2.6), 8.3.4.3-3**--4**
- waste package production technologies
(Issue 4.3), 8.3.4.4-2**
- waste retrievability (Issue 2.4),
8.3.5.2-4**--5**
- water chemistry investigation,
8.3.1.3-24**
- water supplies investigation,
8.3.1.16-15**
- worker radiological safety--normal
conditions (Issue 2.2), 8.3.5.4-6**--7**

logs

- borehole nuclear, 8.3.1.2-160, -163
- borehole, technical procedures for,
8.3.1.4-63; 8.3.1.14-42, -43, -63
- drill-hole logging activity status,
8.3.1.2-208*
- fracture core, technical procedures for,
8.3.1.2-296
- geophysical, 8.3.1.2-158--159, -163, -207,
-223
- graphic, technical procedures for,
8.3.1.4-100
- lithologic, 8.3.1.2-206; 8.3.1.5-71
- neutron, 8.3.1.2-165, -236, -284, -372
- temperature, 8.3.1.2-385
- trench wall, technical procedures for,
8.3.1.17-96
- video, 8.3.1.2-295

long-gage extensometer measurements, technical
procedures for, 8.3.1.15-61, -64, -69

long-term subsidence control (Design Activity
1.11.5.2), 8.3.2.2-64

- objective, 8.3.2.2-63--64

long-term subsidence control strategy, product
1.11.5-2

- information required, 8.3.2.2-62*
- status, 8.3.2.2-38, -63--64

Long Valley caldera, 8.3.1.17-54

Los Alamos National Laboratory

- and COVE 1, 8.3.5.20-4*
- and COVE 2, 8.3.5.20-4*

low-frequency ultrasonic pulse technique--
rock, technical procedures for, 8.3.1.14-52

low-temperature heating of minerals and
glasses, technical procedures for,
8.3.1.3-53

low-temperature oxidation (austenitic)
(Subactivity 1.4.3.2.2), 8.3.5.9-99--100

- description, 8.3.5.9-100
- objectives, 8.3.5.9-99
- parameters, 8.3.5.9-99--100

low-temperature oxidation (copper)
(Subactivity 1.4.3.1.2), 8.3.5.9-90--91

- description, 8.3.5.9-90--91
- objectives, 8.3.5.9-90
- parameters, 8.3.5.9-90

low volume hydrofracturing, technical
procedures for, 8.3.1.15-82

Lunar Crater

- eruption trends, 8.3.1.8-53, -121

lysimeter studies of soil leachates,
technical procedures for, 8.3.1.5-64

magma

- bodies
 - Death Valley, 8.3.1.8-55
 - and heat flow anomalies, 8.3.1.8-128
- geochemistry, 8.3.1.8-120
- and repository disruption probabilities,
8.3.1.8-57--59
- volume versus time, 8.3.1.8-53
- and water interactions, 8.3.1.8-60--62

magma bodies in site vicinity activity,
8.3.1.8-55--57

- description, 8.3.1.8-55--57
- methods and technical procedures,
8.3.1.8-57
- objectives, 8.3.1.8-55
- parameters, 8.3.1.8-55

magma intrusion
 disruptive scenario classes, evaluation of, 8.4.3-65

magnetic and gravity survey, proposed area, 8.3.1.4-52, -55**

magnetic data, curie temperature isotherm anomalies, 8.3.1.8-124

magnetic methods
 geophysical activities, 8.3.1.4-48---49*
 preclosure and postclosure tectonics summary, 8.3.1.17-108---109*

magnetic properties and stratigraphic correlations activity, 8.3.1.4-60---64 description, 8.3.1.4-61---62 methods and technical procedures, 8.3.1.4-62---64 objectives, 8.3.1.4-60 parameters, 8.3.1.4-61

magnetic separation of impurities, technical procedures for, 8.3.1.2-422

magnetic surveys, technical procedures, 8.3.1.4-57
 low level, 8.3.1.17-118, -119
 polarity measurements, 8.3.1.8-111 synthesis, 8.3.1.17-200, -202

magnetic susceptibility, 8.3.1.4-61

magnetization, remanent, 8.3.1.4-61, -62

magnetotelluric surveys
 location map, 8.3.1.17-116**
 magma chamber detection, 8.3.1.8-56 and mineral resources, 8.3.1.9-34 plans and technical procedures, 8.3.1.17-118, -119

main test level
 exploratory shaft facility construction, 8.4.2-192--194 general arrangement, 8.4.2-173--175 plan view, 8.4.2-174**

main test level demonstration breakout room
 exploratory shaft facility construction, 8.4.2-192 plan view, 8.4.2-113**

main test level operations level
 exploratory shaft facility construction, 8.4.2-192--194

main test level station
 exploratory shaft facility construction, 8.4.2-189, -191

major decision points for Yucca Mountain Project, see decision points

mapping
 of bedrock depth, 8.3.1.2-161

mapping (continued)
 and geochemical assessment, 8.3.1.9-32
 technical procedures for
 aerial photograph interpretation, 8.3.1.5-71
 eolian silt, 8.3.1.5-76
 fracture, 8.3.1.4-70 photogeologic method, 8.3.1.4-70 satellite imagery, 8.3.1.5-71 stream-channel deposits, 8.3.1.5-95

maps
 approximate boundaries of Yucca Mountain surficial deposits, 8.3.1.5-68** c-hole complex, 8.3.1.2-395** conceptual controlled area boundary, 8.4.2-37**, -41** continuously cored holes, 8.3.1.4-34** existing and proposed geologic drillholes, 8.3.1.2-378** existing surface-based activities, 8.4.2-43---45* gas tracer diffusion testing program, 8.3.1.2-209** gaseous- and liquid-phase chemical sampling sites, 8.3.1.2-336** general physiographic features--site vicinity, 8.3.1.17-99** generalized Quaternary fault map showing trench locations, 8.3.1.17-104** geologic investigation areas, 8.3.1.4-30** geologic map coverage index map, 8.3.1.17-98** geologic mapping area, 8.3.1.4-67** gravity and magnetic surveys, 8.3.1.4-55** hydrogeologic study area, 8.3.1.2-95** magnetotelluric sounding traverse, 8.3.1.17-116** meteorological monitoring sites, 8.3.1.12-7** perimeter drift, 8.3.1.4-30** potentiometric-surface map--saturated zone, 8.3.1.2-368** preliminary accessible environment, 8.3.1.4-30** proposed site characterization activities, 8.4.2-41** Quaternary normal and detachment faults--Yucca Mountain, 8.3.1.17-29** Quaternary structural features (major), 8.3.1.17-100** repository area and area fault zones, 8.3.1.17-134**

maps (continued)
 sampling sites for paleoclimate studies,
 8.3.1.5-43**
 seismic refraction survey Yucca Mountain,
 8.3.1.4-54**
 seismic refraction survey Yucca Wash,
 8.3.1.4-53**
 seismic refraction traverse,
 8.3.1.17-116**
 site area boundary, preliminary,
 8.3.1.4-30**
 Solitario Canyon fault study drillholes,
 8.3.1.2-374**
 surface geology and faults--Exile Hill
 vicinity, 8.3.1.14-34**
 surface stratigraphic studies of Topopah
 Spring, 8.3.1.4-37**
 surface stratigraphic studies of Yucca
 Mountain area, 8.3.1.4-38**
 surface test pit location, 8.3.1.14-34**
 tracer tests in saturated-zone wells,
 8.3.1.2-410**
 unsaturated-zone borehole locations,
 8.3.1.2-202**
 vertical seismic profiling test program,
 8.3.1.2-209**
 water-table holes, 8.3.1.2-117**
 wells J-12 and J-13 location,
 8.3.1.16-17**
 marker and monument degradation investigation,
 8.3.1.9-15--20 (see also degradation of
 markers investigation)
 marker survivability, 8.3.1.9-18--20 (see
also natural processes and marker
 survivability study)
 marker system
 and deposition, 8.3.1.9-19--20
 and seismic activity, 8.3.1.9-14, -16,
 -18, -19
 and 10 CFR 60, 8.3.1.9-15
 and 40 CFR 191, 8.3.1.9-15
 marsh deposits
 chronologic analyses activity,
 8.3.1.5-51--54
 dating, 8.3.1.5-54
 geochemical analyses, 8.3.1.5-49--51
 organics analysis, 8.3.1.5-51
 paleoclimate study, 8.3.1.5-42--54
 paleontologic analysis, 8.3.1.5-42--47
 stratigraphy-sedimentology, 8.3.1.5-47--49
 trenching and sampling, 8.3.1.5-48--49

mass-balance methods
 difficulty of applying, 8.3.1.2-169
 water budget equation, 8.3.1.2-169
 mass transfer kinetics activity,
 8.3.1.3-105--107
 description, 8.3.1.3-106--107
 methods and technical procedures,
 8.3.1.3-107
 objectives, 8.3.1.3-105--106
 parameters, 8.3.1.3-106
 material abrasion determination, technical
 procedures for, 8.3.1.2-422
 material inventory criteria, product 1.11.4-1
 information required, 8.3.2.2-56*
 status, 8.3.2.2-38, -57--58
 material inventory criteria (Design Activity
 1.11.4.2), 8.3.2.2-59
 objective, 8.3.2.2-59
 material properties
 seal, 8.3.3.2-37, -38*, -46*, -47,
 -48*--56*
 material properties of container (Information
 Need 1.4.2), see container material
 properties (Information Need 1.4.2)
 material properties of waste form (Information
 Need 1.5.2), see waste form material
 properties (Information Need 1.5.2)
 materials interactions affecting glass
 leaching (Subactivity 1.5.2.2.2),
 8.3.5.10-52--53
 matric potential
 and hydraulic conductivity, 8.4.1-15--20
 and saturation, 8.4.1-15--20
 and unsaturated zone, 8.4.1-15--20
 matric potential/hydraulic conductivity
 for fractures and rock matrix, 8.4.1-19**
 matric potential/saturation
 for fractures and rock matrix, 8.4.1-17**
 matric potentials
 determination of, 8.3.1.2-189
 measurements, technical procedures for,
 8.3.1.2-196--197
 unsaturated zone, instrumentation for,
 8.3.1.2-210
 matrix
 and unsaturated zone flow, 8.4.3-12--17

matrix flow

- domination of in unsaturated zone, 8.3.5.12-13, -20, -42
- and ground-water pathways, 8.3.5.12-5
- GWTT estimates, 8.3.5.12-17; 8.3.5.13-63*
- and high fluxes, 8.3.5.17-95

matrix hydraulic conductivity

- hydrological analyses and data, 8.4.3-12
- and unsaturated zone flow, 8.4.3-12

matrix hydrologic properties testing,

- 8.3.1.2-182
- constraints and zones of influences, 8.4.2-133
- purpose and operations, 8.4.2-133

matrix hydrologic properties testing activity,

- 8.3.1.2-183--200
- description, 8.3.1.2-183--191
- methods and technical procedures, 8.3.1.2-191--200
- objectives, 8.3.1.2-183
- parameters, 8.3.1.2-183

matrix hydrologic property determination,

- technical procedures for, 8.3.1.2-199--200, 212--213, 224--225

matrix response to increased flux

- hydrological analyses and data, 8.4.3-12--13

matrix saturation

- and exploratory shaft construction, 8.4.3-19, -20**

matrix wetting

- and hydrologic conditions, 8.4.3-15
- hydrological analyses and data, 8.4.3-15
- and unsaturated zone flow, 8.4.3-15

mechanical and dynamic laboratory property tests activity, 8.3.1.14-48--53

- description, 8.3.1.14-50--51
- methods and technical procedures, 8.3.1.14-52--53
- objectives, 8.3.1.14-48
- parameters, 8.3.1.14-48--50

mechanical code validation

- for underground facility analysis, 8.3.2.5-82--83

mechanical factor, zone of influence

- and exploratory shaft facility tests, 8.4.2-98, -102--104*

mechanical model, waste package, see waste package mechanical model

mechanical properties

- of intact rock, 8.3.1.15-40--42 (see also intact rock mechanical properties (laboratory determination) study)
- near field, and waste package model hierarchy, 8.3.5.9-7**
- of rock, field methods, 8.3.1.14-41

mechanical properties of fractures study,

- 8.3.1.15-43--45 (see also fracture mechanical properties (laboratory determination) study)

mechanical properties (in situ) study,

- 8.3.1.15-65--70 (see also in situ mechanical properties study)

mechanical property field tests activity,

- 8.3.1.14-57--59
- description, 8.3.1.14-58
- methods and technical procedures, 8.3.1.14-59
- objectives, 8.3.1.14-57
- parameters, 8.3.1.14-57--58

megabreccia evaluation, technical procedure for, 8.3.1.17-150

metal

- resources, 8.3.1.9-20--21

metal container information integration (Activity 1.4.1.1), 8.3.5.9-51--59

- subactivities, 8.3.5.9-51--59
- container mechanical properties, 8.3.5.9-51--52
- container microstructural properties, 8.3.5.9-52--54
- container physical properties, 8.3.5.9-54--55
- container stress state, 8.3.5.9-55--56
- container surface, 8.3.5.9-58--59
- container weld integrity, 8.3.5.9-56--58

metallurgical aging and phase stability (copper) (Subactivity 1.4.3.1.1), 8.3.5.9-89--90

- description, 8.3.5.9-89--90
- objectives, 8.3.5.9-89
- parameters, 8.3.5.9-89

metallurgical aging and phase transformations (austenitic) (Subactivity 1.4.3.2.1), 8.3.5.9-98--99

- description, 8.3.5.9-98--99
- objectives, 8.3.5.9-98
- parameters, 8.3.5.9-98

metallurgical and mechanical effects (waste containers), 8.3.5.9-44--45

meteorological conditions (regional) characterization study, 8.3.1.12-10--13
description, 8.3.1.12-10--11
methods and technical procedures, 8.3.1.12-11
objectives, 8.3.1.12-9--10
parameters, 8.3.1.12-10

meteorological characterization (regional) study, 8.3.1.2-97--102
activity
 precipitation and meteorological monitoring, 8.3.1.2-97--102
objectives, 8.3.1.2-97

meteorological data
and criticality control (Information Need 2.7.3), 8.3.2.3-43
and Desert Research Institute, 8.3.1.12-10
and higher level findings--closure
 radiological safety (Issue 2.5), 8.3.5.6-10*
and items important to safety (Information Need 2.7.2), 8.3.2.3-43
and modern regional climate, 8.3.1.5-40
and radiological protection, 8.3.2.3-40
regulations, 8.3.1.12-15
reporting, 8.3.1.12-21
sources, 8.3.1.12-10
technical procedures for, 8.3.1.12-11

meteorological data collection at Yucca Mountain study, 8.3.1.12-16--24
activities
 meteorological data summary for input to dose assessments, 8.3.1.12-22--24
 site meteorological monitoring program, 8.3.1.12-16--22

meteorological data summary for dose assessment activity
description, 8.3.1.12-23--24
methods and technical procedures, 8.3.1.12-24
objectives, 8.3.1.12-22
parameters, 8.3.1.12-22

meteorological monitoring, 8.3.1.12-6
and other programs, 8.3.1.12-12
plan, 8.3.1.12-11--12, 14
precipitation, 8.3.1.2-97--102
sites, 8.3.1.2-99**, -100**--101*, -106, -107**, -108**--109*; 8.3.1.12-7**, -18*
synthesis study, 8.3.1.12-11--12

meteorological monitoring (continued)
 Yucca Mountain Project, 8.3.1.12-17--19, -18*

meteorological monitoring program (site) activity, 8.3.1.12-16--22
description, 8.3.1.12-17--20
methods and technical procedures, 8.3.1.12-21, -22
objectives, 8.3.1.12-16
parameters, 8.3.1.12-16--17

meteorological parameters
for hydrologic models, technical procedures for, 8.3.1.5-86
and offsite installations program, 8.3.1.13-3
measurement, technical procedures for, 8.3.1.2-110--111
for regional hydrology characterization, 8.3.1.2-97--98

meteorological stations, technical procedures for, 8.3.1.2-102

meteorological studies, summary of, 8.3.1.12-6

meteorological towers
description, 8.3.1.12-17--19, -18*
instrument specifications, 8.3.1.12-19--20
and regulations, 8.3.1.12-19

meteorology investigation (regional), 8.3.1.12-1, -3, -4**, -6--14
application of results, 8.3.1.12-13
link to supporting information, 8.3.1.12-8
parameters, 8.3.1.12-8
purpose and objectives, 8.3.1.12-9
studies
 meteorological conditions (regional) characterization, 8.3.1.12-10--11
 meteorological monitoring synthesis, 8.3.1.12-11--12
 technical basis for, 8.3.1.12-8
 technical rationale, 8.3.1.12-9

meteorology investigation (site), 8.3.1.12-1, -3, -4**, -14--25
activities, 8.3.1.12-16--24
 meteorological data summary for dose assessment, 8.3.1.12-22--25
 meteorological monitoring program (site) activity, 8.3.1.12-16--22
application of results, 8.3.1.12-24
link to supporting information, 8.3.1.12-14
parameters, 8.3.1.12-14
purpose and objectives, 8.3.1.12-15

meteorology investigation (site) (continued)
 study
 meteorological data collection at
 Yucca Mountain, 8.3.1.12-16--24
 technical basis for, 8.3.1.12-14
 technical rationale, 8.3.1.12-14--16
 meteorology program, 8.3.1.12-1--31
 and accidental radiological releases
 (Issue 2.3), 8.3.1.12-2*, -3, -4**, -5
 accidental radiological releases (Issue
 2.3), parameter calls, 8.3.5.5-12*--14*,
 -20*
 approach, 8.3.1.12-1--3
 characterization parameters provided by,
 8.3.1.12-2*
 and geohydrology program, 8.3.1.12-5
 and higher level findings--preclosure
 radiological safety (Issue 2.5),
 8.3.1.12-3, -4**, -5
 interrelationships, 8.3.1.12-5--6
 investigations, 8.3.1.12-6--31
 extreme weather recurrence intervals,
 8.3.1.12-26--31
 meteorology (regional), 8.3.1.12-6--13
 meteorology (site), 8.3.1.12-15--25
 population centers and wind patterns,
 8.3.1.12-25--26
 summary, 8.3.1.12-1
 see specific investigation for study
 and activity listings
 logic diagram, 8.3.1.12-4**
 major events and completion dates,
 8.3.1.12-30*--31*; 8.5-22, -23**
 and offsite installations program,
 8.3.1.12-5
 performance allocation table, 8.3.1.12-2*
 performance and design requirements,
 summary, 8.3.1.12-1
 and public radiological exposures--normal
 conditions (Issue 2.1), 8.3.1.12-1,
 -2*, -4**, -5
 and public radiological exposures--normal
 conditions (Issue 2.1) parameter calls,
 8.3.5.3-11*--14*, -21*
 and radiological releases, 8.3.1.12-3
 and repository design criteria for radi-
 ation safety (Issue 2.7), 8.3.1.12-3,
 -4**, -5
 schedule, 8.3.1.12-28--31; 8.5-22, -23**
 site characterization study plans
 and surface characteristics program,
 8.3.1.12-5

meteorology program (continued)
 and worker radiological safety--normal
 conditions (Issue 2.2), 8.3.1.12-2*,
 -3, -4**, -5
 worker radiological safety (Issue 2.2)
 parameter calls, 8.3.5.4-12*, -16, -22*
 meteorology technical guideline
 and higher level findings--preclosure
 radiological safety (Issue 2.5),
 8.3.5.6-11--12
 and qualifying condition, 8.3.5.6-6*, -11
 MGDS, see mined geologic disposal system,
 Yucca Mountain
 microbial activity
 potentially likely conditions, evaluation
 of, 8.4.3-61--62
 microorganisms, and sorption, 8.3.1.3-80
 Midway Valley
 dynamic properties of alluvium and
 bedrock, 8.3.1.14-61
 faulting considerations, 8.3.1.17-31, -32
 and Quaternary faulting, 8.3.1.17-28
 test pits, location of, 8.3.1.14-33, -34**
 Midway Valley exploratory trenching activity,
 8.3.1.17-95--97
 description, 8.3.1.17-96
 methods and technical procedures,
 8.3.1.17-96--97
 objectives, 8.3.1.17-95
 parameters, 8.3.1.17-95--96
 Midway Valley trench location identification
 activity, 8.3.1.17-93--95
 description, 8.3.1.17-94--95
 methods and technical procedures,
 8.3.1.17-95
 objectives, 8.3.1.17-93
 parameters, 8.3.1.17-94
 milestones
 performance assessment activities,
 8.5-55--79
 site characterization program, 8.5-1--118
 milestones, major
 exploratory shaft, 8.5-34, -36--39
 exploratory shaft construction, 8.5-34,
 -36
 exploratory shaft testing, 8.5-36--39
 Military Lands Withdrawal Act, 8.3.1.11-2
 Mine Mountain fault, 8.3.1.8-130
 and Cane Spring fault system, 8.3.1.17-142
 Mine Mountain fault system evaluation
 activity, 8.3.1.17-138--139
 description, 8.3.1.17-138--139

Mine Mountain fault system evaluation activity
(continued)

- methods and technical procedures, 8.3.1.17-139
- objectives, 8.3.1.17-138
- parameters, 8.3.1.17-138

Mine Mountain fault system synthesis,
technical procedure for, 8.3.1.7-139

Mine Mountain fault zone, 8.3.1.17-133, -134**

Mine Mountain-Spotted Range belt,
8.3.1.17-121, -123

Mine Mountain-Syncline Ridge

- and hydrocarbon assessment, 8.3.1.9-37

Mine Safety and Health Administration

- and radon monitoring, 8.3.5.4-4, -8
- and repository design requirements, 8.3.2.5-49--50
- and worker radiological safety, 8.3.5.4-4, -8

mine ventilation

- underground support systems, 8.4.2-195--197
- see also ventilation analyses

mined geologic disposal system, Yucca Mountain, 8.3.2.3-12

- functional requirements
 - and compliance with mining regulations, 8.3.2.3-16, -28*
 - and critical control, 8.3.2.3-15, -27*--28*
 - and design of items important to safety, 8.3.2.3-15--16, -24*--27*
 - and radiological protection, 8.3.2.3-12, -15--16, -17*--23*
 - and waste treatment, 8.3.2.3-16, -29*
- hierarchy of functions and components, 8.2-16**
- major elements, 8.0-6**
- and postclosure performance assessment, 8.5-64
- physical elements of, 8.2-15, -16**
- and seals, 8.3.3.1-4--5
- top level strategy for, 8.0-4--7
- see also repository entries

mineral and energy assessment

- and human intrusion probabilistic calculations, 8.3.1.9-41
- and 10 CFR Part 60, 8.3.1.9-40
- mineral and energy assessment of site, activity, 8.3.1.9-39--42
 - description, 8.3.1.9-40--42
 - methods and technical procedures, 8.3.1.9-42
 - objectives, 8.3.1.9-40
 - parameters, 8.3.1.9-40
- mineral and glass heating (low-temperature), technical procedures for, 8.3.1.3-53
- mineral assemblages (Issue 1.8 favorable condition 4)
 - discussion, 8.3.5.17-93--94
 - text of condition, 8.3.5.17-2*
- mineral change along fault zones activity, 8.3.1.8-102--103
 - description, 8.3.1.8-102--103
 - methods and technical procedures, 8.3.1.8-103
 - objectives, 8.3.1.8-102
 - parameters, 8.3.1.8-102
- mineral change in controlled area, 8.3.1.8-104
 - mineral change in controlled area from tectonically induced change in water-table environment activity, 8.3.1.8-104
 - description, 8.3.1.8-104
 - methods and technical procedures, 8.3.1.8-104
 - objectives, 8.3.1.8-104
 - parameters, 8.3.1.8-104
- mineral distribution model, 8.3.1.3-64
- mineral distributions between host rock and accessible environment activity, 8.3.1.3-45--47
 - description, 8.3.1.3-46
 - methods and technical procedures, 8.3.1.3-46--47
 - objectives, 8.3.1.3-45
 - parameters, 8.3.1.3-45--46
 - three-dimensional model, 8.3.1.3-46
- mineral evolution, 8.3.1.3-59--60
 - conceptual model development study, 8.3.1.3-64--65
 - kinetics and thermodynamics of, 8.3.1.3-59--60
 - thermodynamics of, 8.3.1.3-59--60
- mineral fillings
 - recementation of, 8.3.1.8-96
- mineral/glass dehydration/rehydration activity, 8.3.1.3-52--54

mineral resources, 8.3.1.9-20--34
 geochemical assessment, 8.3.1.9-30--33
 geophysical/geologic assessment,
 8.3.1.9-33--34
 mineral and resource models, alternate
 hypotheses for human interference program,
 8.3.1.9-25--26*

mineral rights, 8.3.1.11-2
 and land ownership program, 8.3.1.9-2;
 8.3.1.11-1--3

mineral stability, see minerals/glass
 stability investigation

mineralization potential, technical procedures
 analytical methods, 8.3.1.9-33
 field plans for geochemical assessment,
 8.3.1.9-33
 sampling plan, 8.3.1.9-33

mineralogic tests, technical procedures for,
 8.3.1.5-114

mineralogic/geochemical alteration history
 study, 8.3.1.3-49--54
 activities
 geochemical processes from mineralogy,
 8.3.1.3-49--51
 smectite, zeolite, manganese minerals,
 glass dehydration, and transforma-
 tion, 8.3.1.3-52--54

mineralogy, petrology, and chemistry of
 transport pathways study, 8.3.1.3-43--49
 activities
 fracture mineralogy, 8.3.1.3-47--49
 mineral distributions, 8.3.1.3-45--47
 petrologic stratigraphy of Topopah
 Spring Member, 8.3.1.3-43--45

mineralogy, petrology, rock chemistry
 investigation, 8.3.1.3-40--54
 activities
 fracture mineralogy, 8.3.1.3-47--49
 geochemical processes from mineralogy,
 8.3.1.3-49--51
 mineral distributions, 8.3.1.3-45--47
 petrologic stratigraphy of Topopah
 Spring Member, 8.3.1.3-43--45
 smectite, zeolite, manganese minerals,
 glass dehydration, and transforma-
 tion, 8.3.1.3-52--54

application of results, 8.3.1.3-54
 interrelationships, 8.3.1.3-25, -26**
 link to supporting information,
 8.3.1.3-40--41
 logic diagram, 8.3.1.3-26**
 parameters, 8.3.1.3-41

mineralogy, petrology, rock chemistry
 investigation (continued)
 purpose and objectives, 8.3.1.3-41--42
 studies, 8.3.1.3-43--54
 mineralogic and geochemical alteration
 history, 8.3.1.3-49--54
 mineralogy, petrology, and chemistry
 of transport pathways,
 8.3.1.3-43--49
 technical basis for, 8.3.1.3-40--43
 technical rationale, 8.3.1.3-42--43

mineralogy and chemistry model
 inputs, 8.3.4.2-7*

mineralogy technical concerns
 SCP section correlation, 8.2-35--49*

minerals/glass stability investigation,
 8.3.1.3-55--65
 activities
 clinoptilolite-heulandite and
 analcime, solid solution
 descriptions, 8.3.1.3-63--64
 end-member free energies,
 8.3.1.3-61--63
 kinetic studies of zeolite,
 8.3.1.3-60
 application of results, 8.3.1.3-65
 interrelationships, 8.3.1.3-25, -27**
 link to supporting information,
 8.3.1.3-55
 logic diagram, 8.3.1.3-27**
 parameters, 8.3.1.3-55--56
 purpose and objectives, 8.3.1.3-55--56
 studies, 8.3.1.3-56--64
 conceptual model of mineral evolution,
 8.3.1.3-64
 kinetics/thermodynamics of mineral
 evolution, 8.3.1.3-59--60
 natural analog of hydrothermal
 systems, 8.3.1.3-56--58
 technical basis for, 8.3.1.3-55--65
 technical rationale, 8.3.1.3-56

mini-sosie
 and Beatty scarp, 8.3.1.17-122
 evaluation, 8.3.1.17-177--178**
 and Quaternary faults, 8.3.1.17-169
 and Rock Valley fault system,
 8.3.1.17-135
 and Stagecoach Road fault, 8.3.1.17-140
 and surface based geophysical surveys,
 8.3.1.4-46

see also shallow seismic reflection
 entries

mining

- rights at site, 8.3.1.11-2
- sequential drift activity, 8.3.1.15-49--52

mining, system element 1.2.1

- and equipment demonstration, 8.3.2.5-59

mining company borehole completion, technical procedures for, 8.3.1.2-102

mining methods activity, 8.3.1.15-71

- description 8.3.1.15-71
- methods and technical procedures, 8.3.1.15-71
- objectives, 8.3.1.15-71
- parameters, 8.3.1.15-71

mining methods evaluation

- constraints and zones of influence, 8.4.2-130
- purpose and operations, 8.4.2-129--130

mining regulations compliance, function 4

- functional requirement for mined geologic disposal system, 8.3.2.3-16, -28*

mining regulations compliance (Information Need 2.7.4)

- interrelationships, 8.3.2.3-36--39

mining ventilation, system element 1.2.1.6

- functions and processes, 8.3.2.5-27*--28*
- performance measures and goals for nonradiological health and safety, 8.3.2.4-16*

preliminary performance allocation, 8.3.2.5-27*--28*

technology for underground facilities (Information Need 4.4.9), 8.3.2.5-88--89

underground facilities technology, 8.3.2.5-88--89

Miocene-Paleozoic contact and detachment

- faulting activity, 8.3.1.17-145--146
- description, 8.3.1.17-146
- methods and technical procedures, 8.3.1.17-146
- objectives, 8.3.1.17-145
- parameters, 8.3.1.17-145

Miocene rocks (folds) study, 8.3.1.8-129--130

Mission Plan, 8.2-1

- milestones, 8.5-105, -110
- and Office of Geologic Repository issue correlation, 8.2-15, -17**
- and schedule information, 8.5-1

mitigation plans

- site characterization environmental impacts, 8.7-3--6

Moapa Valley

- and ground-water use, 8.3.1.9-43

modal petrography, technical procedures for, 8.3.1.3-45

model development, technical procedures, 8.3.1.2-441, -443

model documentation, validation, and verification, 8.3.1.2-144

model hierarchy

- waste package characteristics--postclosure (Issue 1.10), 8.3.4.2-5**, -6*--8*

model testing (empirical), technical procedures for, 8.3.1.2-355

model validation

- and performance issue resolution, 8.3.5.8-5**, -6
- and performance reallocation, 8.3.5.8-9
- technical procedures for, 8.3.1.2-350

modeling

- host-rock environment, 8.3.2.1-8--9
- nonradiological health and safety (Issue 4.2), 8.3.2.1-20
- repository, summary, 8.3.2.1-19--21
- rock-water interaction
 - and numerical analysis, 8.3.4.2-49--51
- seals, 8.3.3.1-8--9
- waste package, 8.3.4.1-6--7

models

- alternative conceptual, see alternative conceptual models
- compliant joint model, 8.4.3-32
- composite fracture-matrix, 8.4.3-13
- computer
 - verification and validation, 8.3.2.1-19; 8.3.2.5-82

degradation

- austenitic alloys (Activity 1.4.3.2), 8.3.5.9-97--106
- ceramic-metal, bimetallic/single metal, and coatings and filler alternate systems (Activity 1.4.3.3), 8.3.5.9-106--108
- copper and copper alloys (Activity 1.4.3.1), 8.3.5.9-88--97
- for cementitious materials (Design Activity 1.12.2.2), 8.3.3.2-40
- for waste containers, 8.3.5.9-36, -41*--44*
- inputs, 8.3.5.9-41*--44*
- elastic, 8.4.3-28
- flow and transport, 8.3.4.2-52, -61

models (continued)

- fluid flow in unsaturated, fractured rock, 8.3.1.2-352--350
- gas phase releases, 8.3.5.13-75--80
- hydrothermal flow, 8.3.4.2-55
- inelastic, 8.4.3-28
- modified permeability zone, 8.4.3-25--26, -35
- mineralogy and chemistry, 8.3.4.2-7*
- near-field, 8.3.4.2-6*
 - flow and transport, 8.3.4.2-6*
 - hydrology, 8.3.4.2-7*
- performance assessment, 8.4.3-3--5
- repository
 - development and use summary, 8.3.2.1-19--24
 - geomechanical analyses summary, 8.3.2.1-19--24
- thermomechanical, 8.4.3-28
- ubiquitous joint model, 8.4.3-28
- unsaturated-zone, 8.3.1.2-350--362
- modern erosion locations, 8.3.1.6-7
- modern regional climate characterization study, 8.3.1.5-40--42
 - activity
 - synoptic characterization of regional climate, 8.3.1.5-40--42
 - objectives, 8.3.1.5-40
- modified permeability zone
 - and controlled blasting, 8.4.3-35
 - and effects of linear removal, 8.4.3-26
 - and excavation-induced effects, 8.4.3-25--26
 - and exploratory shaft construction, 8.4.3-18--19, -44, -45
 - models, 8.4.3-25--26, -35
 - and rock-mass permeability, 8.4.3-25--26
- moisture measurements
 - Fortymile Wash, 8.3.1.2-127
 - technical procedures for, 8.3.1.14-46, -48; 8.3.1.15-54, -56, -59
- moisture retention curves, 8.3.1.2-190
 - technical procedures for, 8.3.1.2-199
- monitoring
 - drift stability, 8.3.1.15-73--74
 - ground support systems, 8.3.1.15-72--73
 - meteorological, 8.3.1.12-6, -11--12, -17--25
- networks
 - meteorological, 8.3.1.12-15
 - water-table levels, 8.3.1.2-376, -377**

monitoring (continued)

- runoff, 8.3.1.2-103--112; 8.3.1.5-107; 8.3.1.16-8, -11
- precipitation (stations)
 - regional, 8.3.1.2-99**, -100--101*
 - site, 8.3.1.2-106, -107**, -108--109*
- seismicity, 8.3.1.17-89--91
- Mono-Inyo Dome chain, 8.3.1.17-54
- Monte Carlo simulation analysis
 - modified version, 8.3.5.13-10
 - technical procedures for, 8.3.1.2-366
- monument survivability, see degradation of markers investigation
- monuments, proposed location of, 8.3.5.12-2**
- morphometric and morphologic analysis, Quaternary faulting, 8.3.1.17-191--193*
- morphometry of Basin Range description, technical procedures for, 8.3.1.17-193
- MORSE-L
 - and performance assessment, 8.3.5.19-2*, -5*
- MPBH, see multipurpose-borehole entries
- MPBX, see multiple-point borehole extensometers measurements
- MPZ, see modified permeability zone
- MSHA, see Mine Safety and Health Administration
- muck storage
 - exploratory shaft facility, 8.4.2-165, -167
- multiple barrier philosophy
 - and site characterization, 8.4.3-2--3
- multiple fracture networks, 8.3.1.2-439
- multiple-point borehole extensometer measurements
 - technical procedures for, 8.3.1.15-47, -49, -51, -53, -55, -58, -61, -63, -67, -69
 - and shaft convergence test, 8.4.2-110**
- multiple-well interference testing
 - activity, 8.3.1.2-393--400
 - description, 8.3.1.2-393--396
 - methods and technical procedures, 8.3.1.2-396--400
 - objectives, 8.3.1.2-393
 - parameters, 8.3.1.2-393
- multiple-well tests
 - C-hole complex, 8.3.1.2-371
 - comparison with single well tests, 8.3.1.2-409
 - conservative tracers, technical procedures for, 8.3.1.2-411

- multiple-well tests (continued)
 - hydraulic stress activity,
8.3.1.2-383--392
 - and reactive tracers, 8.3.1.2-333
 - site, 8.3.1.2-409--412
 - technical procedures for, 8.3.1.2-400,
-414--416, -421
- multipurpose borehole
 - conditional site characterization
activity, 8.4.2-74--75, -145--147
- multipurpose borehole activity
 - description, 8.4.2-74--75
- multipurpose borehole testing, 8.3.1.2-233,
-237, -308--316
 - constraints and zones of influence,
8.4.2-147
 - location, 8.4.2-146**
 - purpose and operations, 8.4.2-145
- multivariable interaction, 8.3.2.1-13--14
- NAFB, see Nellis Air Force Base
- National Environmental Policy Act, 8.2-67**;
8.3.1.11-3
- National Geodetic Survey global position
satellite program, 8.3.1.17-196
- National Weather Service, see U.S. National
Weather Service
- natural analog of hydrothermal systems
 - study, 8.3.1.3-56--58
 - description, 8.3.1.3-57
 - methods and technical procedures,
8.3.1.3-58
 - objectives, 8.3.1.3-56--57
 - parameters, 8.3.1.3-57
- natural and engineered barriers
 - and performance objectives, 8.4.3-2--3
 - repository performance, 8.4.3-2--3
- natural barriers ability to isolate waste
 - quality activities, 8.6-22--23
- natural barriers, general objective, 8.0-8
- natural gas resources, 8.3.1.9-37--39
- natural infiltration evaluation
 - activity, 8.3.1.2-164--172
 - description, 8.3.1.2-164--170
 - methods and technical procedures,
8.3.1.2-170--172
 - objectives, 8.3.1.2-164
 - parameters, 8.3.1.2-164
- natural infiltration studies
 - and potential surface disturbance,
8.4.2-55*--56*, -61--63
- natural phenomena potential (Issue 1.8
potentially adverse condition 3)
 - discussion, 8.3.5.17-27
 - performance parameters and goals,
8.3.5.17-28*--29*
 - related studies and activities,
8.3.5.17-28*--29*
 - scenario classes, 8.3.5.17-28*--29*
 - text of condition, 8.3.5.17-4*
- natural precipitation
 - and conceptual perimeter drift boundary,
8.4.3-17--18
- natural processes and marker survivability
study, 8.3.1.9-18--20
 - activities
 - erosion and deposition effects on
marker survivability synthesis
activity, 8.3.1.9-19--20
 - tectonic/seismic/volcanic hazards data
synthesis activity, 8.3.1.9-19
- natural remanent magnetization, 8.3.1.4-61,
-62
- natural resource assessment of Yucca Mountain,
study, 8.3.1.9-27--42
 - activities
 - geochemical assessment and
mineralization potential,
8.3.1.9-30--33
 - geophysic/geologic appraisal and
mineral resources, 8.3.1.9-33--34
 - geothermal energy potential
assessment, 8.3.1.9-34--36
 - hydrocarbon resources assessment,
8.3.1.9-37--39
 - mineral and energy assessment,
8.3.1.9-39--42
- natural resource exploitation investigation,
see effects of human interference
investigation
- natural resource exploitation effects study,
8.3.1.9-49--50
 - activities, 8.3.1.9-49--50
 - noncredible human intrusion initiating
events, 8.3.1.9-50
 - potential effects of future ground-
water withdrawals, 8.3.1.9-49
- natural resource potential investigation,
8.3.1.9-20--44 (see also resource value
investigation)

natural resources disqualifying condition,
8.3.5.18-20--21
and postclosure performance issues,
8.3.5.18-7--8
preliminary finding, 8.3.5.18-4*
statement of, 8.3.5.18-20--21
and 10 CFR 960.4-2-8-1(d), 8.3.5.18-20--21

natural resources qualifying condition,
8.3.5.18-20--21
and postclosure performance issues,
8.3.5.18-7--8
preliminary finding, 8.3.5.18-4*
statement of, 8.3.5.18-19
and total system performance (Issue 1.1),
8.3.5.18-6--7
and 10 CFR 960.4-2-8-1(a), 8.3.5.18-19

naturally occurring materials (extraction)
(Issue 1.8 potentially adverse condition 17)
discussion, 8.3.5.17-76--77
performance parameters and goals,
8.3.5.17-79*
related studies and activities,
8.3.5.17-79*
scenario classes, 8.3.5.17-79*
text of condition, 8.3.5.17-6*

nature and rates of climate change
investigation, 8.3.1.5-33--89
activities
chronologic analyses of lake, playa,
and marsh deposits, 8.3.1.5-51--54
empirical climate modeling,
8.3.1.5-86--88
eolian history of the Yucca Mountain
region, 8.3.1.5-72--76
geochemical analyses of lake, marsh,
and playa deposits, 8.3.1.5-49--51
pack rat midden analysis,
8.3.1.5-54,-56
paleoclimate-paleoenvironmental
synthesis, 8.3.1.5-76--79
paleontologic analyses, 8.3.1.5-42--47
pollen samples analysis,
8.3.1.5-56--57
soil properties of Yucca Mountain
(modeling of), 8.3.1.5-61--65
stratigraphy-sedimentology of marsh,
lacustrine, and playa deposits,
8.3.1.5-47--49
surficial deposits mapping of Yucca
Mountain area, 8.3.1.5-66--72
synoptic characterization of regional
climate, 8.3.1.5-40--42

nature and rates of climate change
investigation (continued)
activities (continued)
vegetation-climate relationships,
8.3.1.5-57--59
application of results, 8.3.1.5-88--89
climatic scenarios of concern,
8.3.1.5-35--36
constituent studies, 8.3.1.5-37
future climate investigations,
8.3.1.5-39
paleoclimatic studies, 8.3.1.5-36--37
parameters, 8.3.1.5-34--35
purpose and objectives, 8.3.1.5-35
spatial scale, 8.3.1.5-38
studies, 8.3.1.5-40--88
climatic implications of terrestrial
paleoecology, 8.3.1.5-54--59
future regional climate and
environments, 8.3.1.5-78--88
modern regional climate characteriza-
tion, 8.3.1.5-40--42
paleoclimate study, lake, playa, marsh
deposits, 8.3.1.5-42--54
paleoclimate-paleoenvironmental
synthesis, 8.3.1.5-76--78
paleoenvironmental history, Yucca
Mountain region, 8.3.1.5-59--76
technical rationale, 8.3.1.5-35--39
temporal scale, 8.3.1.5-38--39

near-field analyses
for thermal and thermomechanical response,
8.3.2.2-71--72

near-field environment (Information Need
1.10.4)
activities
container and liner corrosion effects
on water chemistry, 8.3.4.2-48
dissolution of phases in waste package
environment, 8.3.4.2-46--47
flow and transport analysis in
laboratory systems, 8.3.4.2-55
flow and transport analysis in near
field, 8.3.4.2-61--64,
near-field hydrologic properties,
8.3.4.2-57--58
radiation effect on water chemistry,
8.3.4.2-47--48
repository material effect on water,
8.3.4.2-45
rock-water interaction analysis,
8.3.4.2-49--51

near-field environment (Information Need
 1.10.4) (continued)
 activities (continued)
 rock-water interaction in repository
 horizon, 8.3.4.2-58--61
 rock-water interactions,
 8.3.4.2-42--45
 single-phase fluid system properties,
 8.3.4.2-52--54
 technical summary of existing data,
 8.3.4.2-39
 two-phase fluid system properties,
 8.3.4.2-54--55
 vadose water composition,
 8.3.4.2-45--46
 waste package environment stress field
 analysis, 8.3.4.2-56
 application of results, 8.3.4.2-56
 link to supporting information, 8.3.4.2-39
 logic, 8.3.4.2-40--41
 parameters, 8.3.4.2-40
 schedule, 8.3.4.2-65--74
 studies, 8.3.4.2-42--65
 EBS field tests, 8.3.4.2-57--65
 hydrologic properties of waste package
 environment, 8.3.4.2-51--55
 mechanical properties of waste package
 environment, 8.3.4.2-56
 postemplacement chemical/mineralogical
 changes, 8.3.4.2-42--51
 technical basis for, 8.3.4.2-39--42
 near-field flow and transport model
 inputs, 8.3.4.2-6*
 and waste package model hierarchy,
 8.3.5.9-7**; 8.3.5.10-3**
 near-field hydrologic properties
 typical test arrangement, 8.4.2-142**
 near-field hydrologic properties (Activity
 1.10.4.4.1), 8.3.4.2-57--58
 description, 8.3.4.2-57--58
 objectives, 8.3.4.2-57
 parameters, 8.3.4.2-57
 near-field hydrologic system
 and emplacement hole, 8.3.4.2-25--26
 near-field hydrology model
 inputs, 8.3.4.2-7*
 and waste package model hierarchy,
 8.3.5.9-7**; 8.3.5.10-3**
 near-field mineralogy and chemistry model
 and waste package model hierarchy,
 8.3.5.9-7**; 8.3.5.10-3**
 near-field releases, 8.3.5.10-79--82 (see
 also waste package near-field releases
 Information Need 1.5.5)
 near-field sensitivity studies
 for thermal and thermomechanical modeling,
 8.3.2.2-38
 near-field temperature change limitation
 design thermal loading, postclosure design
 function 4, 8.3.2.2-19--20
 near-field transport model application
 (Subactivity 1.5.5.2.2), 8.3.5.10-82
 near-site activities evaluation activity,
 8.3.1.13-10--11
 description, 8.3.1.13-10--11
 methods and technical procedures,
 8.3.1.13-11
 objectives, 8.3.1.13-10
 parameters, 8.3.1.13-10
 near-site activities identification activity,
 8.3.1.13-3--5
 description, 8.3.1.13-3--5
 methods and technical procedures,
 8.3.1.13-5
 objectives, 8.3.1.13-5
 parameters, 8.3.1.13-5
 nearby installations and operations
 investigation, 8.3.1.13-2--6
 activities
 near-site activities identification,
 8.3.1.13-3--5
 nuclear facilities (not nuclear fuel
 cycle) identification, 8.3.1.13-5--6
 nuclear fuel cycle facilities
 identification, 8.3.1.13-4--5
 application of results, 8.3.1.13-6
 links to supporting information,
 8.3.1.13-2
 parameters, 8.3.1.13-3
 purpose and objectives, 8.3.1.13-3
 technical basis for, 8.3.1.13-2
 technical rationale, 8.3.1.13-3
 needed confidence
 and performance allocation, 8.1-9--10
 Nellis Air Force Base
 and land administration at site,
 8.3.1.11-2
 as source of meteorological data,
 8.3.1.12-10
 Neogene rocks, folds evaluation, activity,
 8.3.1.8-130--131
 Neogene rocks, structural attitude evaluation,
 technical procedure for, 8.3.1.8-131

Neogene strain, 8.3.1.8-130

neptunium

- batch sorption, 8.3.1.3-68, -70, -72*
- sorption, 8.3.1.3-67

net infiltration

- and site characterization activities, 8.4.3-9

neutron access hole studies

- locations, 8.3.1.2-166***-168**
- and natural infiltration, 8.3.1.2-164, -165, -169
- prototype testing, 8.3.1.2-165
- technical procedures for, 8.3.1.2-170--171

neutron logging

- and moisture content, 8.3.1.2-165, -236
- and prototype studies, 8.3.1.2-165
- radial borehole tests, 8.3.1.2-284
- and regional potentiometric studies, 8.3.1.2-119
- and Solitario Canyon fault, 8.3.1.2-372
- in water-table wells, 8.3.1.2-429

neutron-moisture tube, technical procedures for, 8.3.1.2-131

neutron probe use, technical procedures for, 8.3.1.15-65

Nevada, State of, see State of Nevada

Nevada Department of Natural Resources and Conservation

- and water supply information, 8.3.1.9-44

Nevada Department of Transportation, flood-study program, 8.3.1.16-8

Nevada Power Company

- and ground-water use, 8.3.1.9-43

Nevada Test Site

- and anelastic strain recovery experiments, 8.3.1.15-79
- core petrography, technical procedures for, 8.3.1.8-111
- and offsite operations, 8.3.1.13-4
- and past hydrogeologic investigations, 8.3.1.2-94
- and permanent streams, 8.3.1.2-96
- precipitation gage network, 8.3.1.2-98
- and radionuclide resuspension from past operations, 8.3.1.13-10
- stream gage network, 8.3.1.2-103
- tectonic process scenario analysis, technical procedures for, 8.3.1.17-206
- and tritium profiling studies, 8.3.1.2-164; 8.3.1.13-13
- and underground nuclear explosions, 8.3.1.17-35, -36

Nevada Test Site (continued)

- and water wells, 8.3.1.16-20
- 1:100,000 geologic synthesis, technical procedure for, 8.3.1.17-202

NGI, see Norwegian Geotechnical Institute

NIKE2D, and performance assessment, 8.3.5.19-2*, -5*

nitrogen pressure injection testing

- and long-term monitoring impacts, 8.3.1.2-210

nivation basins

- and surficial deposits, 8.3.1.5-70

noble gas isotopic measurements, technical procedures, 8.3.1.8-57

nominal scenario class

- complementary cumulative distribution function, 8.4.3-52--53
- potentially likely conditions, 8.4.3-57--62
- present site conditions, 8.4.3-56--57
- processes and events, 8.4.3-52, -56--62

noncarbonate mineralogy

- and geochemical analyses of sediments, 8.3.1.5-50

noncredible human intrusion initiating events activity, 8.3.1.9-50

- description, 8.3.1.9-50
- methods and technical procedures, 8.3.1.9-50
- objectives, 8.3.1.9-50
- parameters, 8.3.1.9-50

nondestructive testing

- container, alternate barrier, 8.3.5.9-63--64

nonradiological health and safety (Issue 4.2), 8.3.2.4-1--33

- accidental radiological releases (Issue 2.3) parameter calls, 8.3.5.5-12*, -20*
- analytical tools, 8.3.2.1-21--23
- application of results, 8.3.2.4-30
- approach, 8.3.2.4-4--7
- design tradeoff analyses, 8.3.2.1-20*
- and geohydrology program, 8.3.1.2-5**
- and higher level findings--ease and cost of construction (Issue 4.1), 8.3.5.7-7*
- information need

 - site and performance information needed for design (nonradiological health and safety) (4.2.1), 8.3.2.4-23--27
 - see specific information need for design activity listing

nonradiological health and safety (Issue 4.2)
 (continued)
 interrelationships, 8.3.2.4-7, -23
 logic diagram, 8.3.2.4-2-3
 major events and completion dates,
 8.3.2.4-33*; 8.5-88, -89**, -90
 and modeling, 8.3.2.1-20
 and other design and performance
 assessment issues, 8.3.2.1-2**;
 8.3.4.1-2**
 performance measures and goals,
 8.3.2.4-8*--21*
 access construction (system element
 1.2.1.1), 8.3.2.4-8*--11*
 borehole construction (system element
 1.2.1.3), 8.3.2.4-15*
 drift construction (system element
 1.2.1.2), 8.3.2.4-12*--14*
 maintenance (system element
 1.2.5.6), 8.3.2.4-21*
 mining ventilation (system element
 1.2.1.6), 8.3.2.4-16*
 nonradiological monitoring (system
 element 1.2.5.9.2), 8.3.2.4-22*
 retrieval (system element 1.2.1.5),
 8.3.2.4-17*--18*
 waste ventilation (system element
 1.2.2.7), 8.3.2.4-19*
 underground closure (system element
 1.2.4.1), 8.3.2.4-20*
 preclosure hydrology program parameter
 calls, 8.3.1.16-1, -3*, -5**
 regulatory basis, 8.3.2.4-1, -4
 safety analyses, 8.3.2.1-25
 schedule, 8.3.2.4-31--33; 8.5-88, -89**
 surface characteristics program parameter
 calls, 8.3.1.14-22*, -26, -64
 thermal and mechanical properties program
 parameter calls, 8.3.1.15-15**
 ventilation analyses, 8.3.2.1-24--25

NORIA
 and COVE 2, 8.3.5.20-4*
 and COVE 3, 8.3.5.20-5*
 and performance assessment, 8.3.5.19-2*,
 -5*

NORIA/FEMTRAN
 and performance assessment, 8.3.5.19-2*,
 -4*

Northern Amargosa core complex, dating,
 8.3.1.17-152, -153*

northern Mojave Desert, erosion, 8.3.1.6-7,
 -20

Norwegian Geotechnical Institute, rock mass
 classification, 8.3.1.14-54, -55
 NRC, see U.S. Nuclear Regulatory Commission
 NRC siting criteria (Issue 1.8),
 8.3.5.17-1--97
 approach, 8.3.5.17-7--18
 and climate program, 8.3.1.5-1--3, -2**
 demonstration strategy for potentially
 adverse conditions present at site,
 8.3.5.17-10**, -12--14
 and effects of human interference
 investigation, 8.3.1.9-51
 favorable condition discussions,
 8.3.5.17-89, -91--95
 geochemistry program parameter calls,
 8.3.1.3-1, -2**, -8*, -11**
 and geohydrology program parameter
 calls, 8.3.1.2-5**, -363, -444
 and human interference program,
 8.3.1.9-1, -13**
 interrelationships, 8.3.5.17-97
 logic diagram for favorable conditions,
 8.3.5.17-16**
 logic diagram for resolving potentially
 adverse conditions, 8.3.5.17-10**
 NRC requirements for favorable condition
 demonstrations, 8.3.5.17-7
 NRC requirements for potentially adverse
 condition demonstrations, 8.3.5.17-1
 and other design and performance
 assessment issues, 8.3.2.1-2**
 and postclosure performance assessment,
 8.3.5.8-2, -3*, -4
 and postclosure tectonics program
 parameter calls, 8.3.1.8-1, -2**,
 -3*, -6*, -9*--10*, -13*--14*, -17*,
 -19*
 potentially adverse conditions,
 8.3.5.17-4*--7*, -18--89
 and preclosure tectonics program,
 8.3.1.17-206
 and reference postclosure repository
 design (Information Need 1.11.7),
 8.3.2.2-75
 regulatory basis for, 8.3.1.2-3;
 8.3.5.17-1--7
 and rock dissolution program, 8.3.1.7-2
 strategy for addressing favorable
 conditions, 8.3.5.17-15--18
 strategy for addressing potentially
 adverse conditions, 8.3.5.17-9--15

NRC siting criteria (Issue 1.8) (continued)
 strategy for potentially adverse conditions not present at site (preliminary finding), 8.3.5.17-9, -10*, -11--12
 surface characteristics program parameter calls, 8.3.1.14-15, -27
 NRC siting criteria (Issue 1.8 favorable conditions)
 and controlled area (Issue 1.8 favorable condition 6), 8.3.5.17-2*--3*, -94
 geochemical conditions (Issue 1.8 favorable condition 3), 8.3.5.17-2*, -91--95
 hydrogeologic conditions--saturated zone (Issue 1.8 favorable condition 2), 8.3.5.17-2*, -91
 hydrogeologic conditions--unsaturated zone (Issue 1.8 favorable condition 8), 8.3.5.17-3*, -95--97
 mineral assemblages (Issue 1.8 favorable condition 4), 8.3.5.17-2*, -93--94
 population density and controlled area (Issue 1.8 favorable condition 6), 8.3.5.17-2*, -94--95
 pre-waste-emplacement travel time (Issue 1.8 favorable condition 7), 8.3.5.17-3*, -95
 Quaternary processes affecting isolation (Issue 1.8 favorable condition 1), 8.3.5.17-2*, -89, -91
 waste emplacement depth (Issue 1.8 favorable condition 5), 8.3.5.17-2*, -94
see also specific favorable conditions

NRC siting criteria (Issue 1.8 potentially adverse conditions)
 and controlled area, 8.3.5.17-9
 dissolution evidence (Issue 1.8 potentially adverse condition 10), 8.3.5.17-5*, -55, -61
 drilling evidence (Issue 1.8 potentially adverse condition 19), 8.3.5.17-6*, -78
 earthquakes (historical) (Issue 1.8 potentially adverse condition 12), 8.3.5.17-5*, -61--62, -70
 earthquakes and geologic setting (Issue 1.8 potentially adverse condition 14), 8.3.5.17-5*, -62--63, -70
 earthquakes and tectonic processes (Issue 1.8 potentially adverse condition 13), 8.3.5.17-5*, -62, -70

NRC siting criteria (Issue 1.8 potentially adverse conditions (continued)
 erosion (Quaternary) (Issue 1.8 potentially adverse condition 16), 8.3.5.17-5*, -76
 flooding potential (Issue 1.8 potentially adverse condition 1), 8.3.5.17-4*, -19--20
 gas-phase releases, 8.3.5.17-89
 geochemical processes (Issue 1.8 potentially adverse condition 8), 8.3.5.17-5*, -52, -55, -56*--58*
 geomechanical properties and underground openings (Issue 1.8 potentially adverse condition 21), 8.3.5.17-6*, -80
 ground-water conditions (not reducing) (Issue 1.8 potentially adverse condition 9), 8.3.5.17-5*, -55, -59*, -60*, -61
 ground-water conditions affecting EBS (Issue 1.8 potentially adverse condition 7), 8.3.5.17-5*, -48, -52
 human activity potential (Issue 1.8 potentially adverse condition 2), 8.3.5.17-4*, -20--21, -22*--26*, -27
 hydrologic change and radionuclide migration (Issue 1.8 potentially adverse condition 5), 8.3.5.17-4*, -30, -35 -36*--47*
 hydrologic change from climatic change (Issue 1.8 potentially adverse condition 6), 8.3.5.17-4*, -35, -48, -49*--51*
 igneous activity (Quaternary) (Issue 1.8 potentially adverse condition 15), 8.3.5.17-5*, -70, -71*--75*
 natural phenomena potential (Issue 1.8 potentially adverse condition 3), 8.3.5.17-4*, -21, -27, -28*--29*
 naturally occurring materials (extraction) (Issue 1.8 potentially adverse condition 17), 8.3.5.17-6*, -76--77, -79*
 perched water potential (Issue 1.8 potentially adverse condition 23), 8.3.5.17-6*, -81, -87*--88*
 radionuclide movement (gaseous) (Issue 1.8 potentially adverse condition 24), 8.3.5.17-7*, -89, -90*
 rock/ground-water conditions and technical feasibility (Issue 1.8 potentially adverse condition 20), 8.3.5.17-6*, -78, -80

NRC siting criteria (Issue 1.8 potentially adverse conditions) (continued)

- scenario classes, see release scenario classes
- structural deformation (Issue 1.8 potentially adverse condition 4), 8.3.5.17-4*, -27, -30, -31**-34*
- structural deformation (Quaternary) (Issue 1.8 potentially adverse condition 11), 8.3.5.17-5*, -59, -61, -63**-69*
- subsurface mining evidence (Issue 1.8 potentially adverse condition 18), 8.3.5.17-6*, -78
- water-table rise potential (Issue 1.8 potentially adverse condition 22), 8.3.5.17-6*, -80--81, -82**-86*
- see also specific potentially adverse condition

NTS, see Nevada Test Site

nuclear facilities (not nuclear fuel cycle)

- identification activity, 8.3.1.13-5--6
- description, 8.3.1.13-6
- methods and technical procedures, 8.3.1.13-6
- objectives, 8.3.1.13-5
- parameters, 8.3.1.13-5

nuclear facilities (not nuclear fuel cycle)

- impacts evaluation activity, 8.3.1.13-10
- description, 8.3.1.13-10
- methods and technical procedures, 8.3.1.13-11
- parameters, 8.3.1.13-10

nuclear fuel cycle facilities

- and offsite installations program, 8.3.1.13-4

nuclear fuel cycle facilities identification activity, 8.3.1.13-4--5

- description, 8.3.1.13-5
- methods and technical procedures, 8.3.1.13-5
- objective, 8.3.1.13-4
- parameters, 8.3.1.13-4

nuclear fuel cycle operations impacts evaluation activity, 8.3.1.13-10--11

- description, 8.3.1.13-10
- methods and technical procedures, 8.3.1.13-11
- objectives, 8.3.1.13-10
- parameters, 8.3.1.13-10

nuclear logging in boreholes, see neutron access hole studies and neutron logging

nuclear testing, see weapons testing

Nuclear Waste Policy Act of 1982

- and decontamination, 8.7-1, -2
- and ground-water protection (Issue 1.3), 8.3.5.15-2
- and Key Issue 3, 8.2-1
- and land ownership and mineral rights program, 8.3.1.11-1
- and offsite installations program, 8.3.1.13-2
- and population density and distribution program, 8.3.1.10-1
- and quality assurance program, 8.6-1
- and radiological releases, 8.3.1.12-14--15
- and repository design requirements, 8.3.2.5-49
- and waste package, 8.3.4-1
- and waste retrievability (Issue 2.4), 8.3.5.2-1, -2

Nuclear Waste Policy Amendments Act of 1987

- decontamination and decommissioning, 8.7-1
- and quality assurance program, 8.6-1

numerical dating, technical procedures for, 8.3.1.17-167--168

NWFT

- and performance assessment, 8.3.5.19-2*, -6*

NWPA, see Nuclear Waste Policy Act

NWPAA, see Nuclear Waste Policy Amendments Act of 1987

NWS, see U.S. National Weather Service

Nye County, 8.3.1-1

- and resource assessment, 8.3.1.9-27--42

ODEX drilling method, 8.3.1.2-206

Office of Civilian Radioactive Waste Management (OCRWM)

- and preclosure safety assessment, 8.3.5.1-2

Office of Geologic Repositories (OGR)

- issues hierarchy, 8.2-1, -2*
- and Mission Plan issues correlation, 8.2-15, -17**

Office of Nuclear Waste Isolation

- and general warning system design, 8.3.1.9-16

offsite accident initiators, 8.3.1.13-7

- data base for, 8.3.1.13-1, -2

offsite installations and operations data considered
 higher level findings--preclosure radiological safety (Issue 2.5), 8.3.5.6-10*

offsite installations and operations technical guideline
 and higher level findings--preclosure radiological safety (Issue 2.5), 8.3.5.6-12--13
 and qualifying and disqualifying guidelines, 8.3.5.6-6*, -12--13

offsite installations program, 8.3.1.13-1--15
 and accidental radiological releases (Issue 2.3), 8.3.1.13-1;
 8.3.5.5-13*, -20*--21*
 approach, 8.3.1.13-1
 and higher level findings--preclosure radiation safety (Issue 2.5), 8.3.1.13-1, -7, -8, -9
 interrelationships, 8.3.1.13-2
 investigations, 8.3.1.13-3--15
 installations and operations impacts, 8.3.1.13-6--15
 nearby installations and operations, 8.3.1.13-3--6
see also specific investigation for study and activity listings
 major events and completion dates, 8.3.1.13-14*--15*; 8.5-24, -25**
 and meteorology program, 8.3.1.12-5
 and Nuclear Waste Policy Act, 8.3.1.11-2
 overview, 8.3.1.13-1--2
 performance and design requirements, summary, 8.3.1.13-1
 and public radiological exposures--normal conditions (Issue 2.1), 8.3.1.13-1
 and public radiological exposures--normal conditions (Issue 2.1) parameter calls, 8.3.5.3-14*, -21*
 and Radiological Monitoring Plan, 8.3.1.13-2
 and repository design criteria for radiological safety (Issue 2.7), 8.3.1.13-1
 schedule, 8.3.1.13-11--15; 8.5-24, -25**
 and worker radiological safety--normal conditions (Issue 2.2), 8.3.1.13-1, -10

offsite nuclear fuel cycle facilities, 8.3.1.13-4
 identification, 8.3.1.13-5
 impacts, 8.3.1.13-9--10

OGR, see Office of Geologic Repositories oil and gas resources, 8.3.1.9-37--39
 Older tuff unit
 hydrogeologic cross section at Yucca Mountain, 8.3.5.13-57**
 hydrogeologic section, 8.3.5.12-4**
 opaline silica vein deposits, 8.3.1.5-110--118
 operation and construction constraints
 and exploratory shaft facility tests, 8.4.2-98, -99*--101*
 operation schedule
 design flexibility, 8.4.2-219
 operational considerations
 exploratory shafts, 8.4.2-169, -172--173
 operations
 plan
 for advanced conceptual design, 8.3.2.5-45
 for license application design, 8.3.2.5-45--46
 radiological risk, 8.3.5.1-6
 optical microscopy, technical procedures for, 8.3.1.3-48
 Oregon Cascade Range
 curie temperature depths, 8.3.1.8-124
 magnetic data, 8.3.1.8-124
 organic matter sampling
 and hydrocarbon resource assessment, 8.3.1.9-37, -39*
 organics, introduced
 and biological degradation and transport, 8.4.3-24
 repository horizon, 8.4.3-24
 organics in lake, playa, and marsh sediments, technical procedures for, 8.3.1.5-51
 organization of Section 8.3, 8.3.1--2, -3*
 ORIGEN
 and performance assessment, 8.3.5.19-2*, -6*
 and preclosure safety assessment, 8.3.5.19-9*, -10*
 validation and verification, 8.3.5.19-13
 ostracodes
 and paleontologic analyses, 8.3.1.5-44
 and past discharge, 8.3.1.5-100
 outcrop (uncleared) studies, technical procedures for, 8.3.1.4-70
 overall geologic repository system performance objective
 and 10 CFR 60.112, 8.3.5.18-7--8

overburden
 and higher level findings--postclosure
 (Issue 1.9), 8.3.1.14-27
 and 10 CFR Part 60, 8.3.1.14-24--26, -27
 and 10 CFR Part 960, 8.3.1.14-24, -26, -27

overcore stress experiments
 constraints and zones of influence,
 8.4.2-133
 purpose and operations, 8.4.2-132

overcore stress experiments in ESF
 activity, 8.3.1.15-80--82
 description, 8.3.1.15-80--81
 methods and technical procedures,
 8.3.1.15-81--82
 objectives, 8.3.1.15-80
 parameters, 8.3.1.15-80

overcoring (borehole), technical procedures for, 8.3.1.2-322

overcoring stress measurements; technical procedures for, 8.3.1.15-47

overview of guidelines
 and 10 CFR Part 60, 8.3.5.18-3

oxidation and aqueous corrosion (waste containers), 8.3.5.9-45

oxidation of spent fuel (Subactivity 1.5.2.1.2), 8.3.5.10-46

PABLW
 and performance assessment, 8.3.5.19-2*, -6*

Pacific Northwest Laboratory
 and COVE 1, 8.3.5.20-4*
 and COVE 2, 8.3.5.20-4*

pack rat middens analysis activity, 8.3.1.5-54--56
 description, 8.3.1.5-55
 methods and technical procedures,
 8.3.1.5-55--56
 objectives, 8.3.1.5-54
 parameters, 8.3.1.5-55

pack rat middens technical procedures, 8.3.1.5-56

packer-injection tests
 air, technical procedures for,
 8.3.1.2-275--277, -297--298, -316, -319
 nitrogen, and radial borehole tests,
 8.3.1.2-284
 test well configurations, 8.3.1.2-386**, -388**

pad preparation, ESF, 8.4.3-30

pads and roads, ESF, 8.4.2-158, -160**

Pah Canyon Member
 and intact-fracture test, 8.3.1.2-239
 stratigraphic studies, 8.3.1.4-35, -38**

Pahtanagat Range quadrangle
 and Landsat V thematic mapper data,
 8.3.1.17-132

Pahtanagat shear zone, 8.3.1.17-133
 location, 8.3.1.17-100**
 and relevev network, 8.3.1.17-195

Pahute Mesa
 climatic analog site, 8.3.1.5-61
 and geothermal energy assessment,
 8.3.1.9-36
 and hydrogeologic study area,
 8.3.1.2-94, -95**
 and Landsat V thematic mapper data,
 8.3.1.17-132
 precipitation and stream flow monitoring
 at, 8.3.1.2-98, -99**
 and recharge, 8.3.1.5-122
 and runoff, 8.3.1.2-105
 and seismicity evaluation, 8.3.1.17-92

Paintbrush Canyon fault, 8.3.1.8-69;
 8.3.1.17-28, -29**, -30, -32
 buried extensions and gamma-ray
 measurements, 8.3.1.17-175
 and detachment faults, 8.3.1.17-145
 and earthquakes, 8.3.1.17-36
 and ground motion, 8.3.1.17-30
 and Quaternary movement, 8.3.1.17-154,
 -160
 slip rate, 8.3.1.17-200
 and Stagecoach Road fault, 8.3.1.17-133,
 -139

Paintbrush Canyon fault zone
 and relevev network, 8.3.1.17-195

Paintbrush nonwelded unit
 fracture significance to infiltration,
 8.3.1.2-156
 hydrogeologic section, 8.3.5.12-4**
 hydrogeologic section at Yucca Mountain,
 8.3.5.13-57**
 hydrogeologic section showing
 pinchouts, 8.3.5.12-15**

Paintbrush tuff
 excavation effects tests, 8.3.1.2-236
 geologic mapping in, 8.3.1.4-66--68
 significant properties of, 8.3.1.2-150
 surface outcrop mapping, technical
 procedures for, 8.3.1.4-40

Paintbrush tuff (continued)
see also host rock and Topopah Spring
 Member

paleobotanic data
 technical procedures for, 8.3.1.5-59

paleoclimate
 and climate modeling, 8.3.1.5-86--87
 sampling sites, 8.3.1.5-43**
 time series, technical procedures for,
 8.3.1.5-88

paleoclimate modeling, current representation
 and alternative hypotheses, 8.3.1.5-22*--25*

paleoclimate-paleoenvironmental synthesis
 and erosion, 8.3.1.6-18--19

paleoclimate-paleoenvironmental synthesis
 study, 8.3.1.5-76--78
 activity
 paleoclimate-paleoenvironmental
 synthesis, 8.3.1.5-77--78

paleoclimate study: lake, playa, marsh
 deposits study, 8.3.1.5-42--54
 activities, 8.3.1.5-42--54
 chronologic analyses of lake, playa,
 and marsh deposits, 8.3.1.5-51--54
 geochemical analyses of lake, marsh,
 and playa deposits, 8.3.1.5-49--51
 paleontologic analyses, 8.3.1.5-42--47
 stratigraphy-sedimentology of marsh,
 lacustrine, and playa deposits,
 8.3.1.5-47--49
 objectives, 8.3.1.5-42

paleoclimatic interpretations of aquatic
 records
 and paleontologic analyses, 8.3.1.5-45--46

paleoclimatic studies
 and future climate, 8.3.1.5-36--37, -42

paleoecological analyses, 8.3.1.5-75
 technical procedures for, 8.3.1.5-46--47,
 -76

paleoenvironmental history, Yucca Mountain
 study, 8.3.1.5-59--76
 activities, 8.3.1.5-61--76
 eolian history of the Yucca Mountain
 region, 8.3.1.5-72--76
 soil properties of Yucca Mountain
 (modeling of), 8.3.1.5-61--65
 surficial deposits mapping of the
 Yucca Mountain area, 8.3.1.5-66--72
 objectives, 8.3.1.5-59--60

paleofloods, 8.3.1.5-92, -94--96
 and preclosure hydrology program,
 8.3.1.16-2, -10

paleofloods (continued)
 regional evacuation activity,
 8.3.1.5-94--96
 and regional hydrologic model, 8.3.1.2-96
 and runoff, 8.3.1.5-92, -94
 technical procedures for, 8.3.1.5-96

paleohydrology, and geohydrology
 investigations, 8.3.1.2-88

paleohydrology modeling, current
 representation and alternative hypotheses,
 8.3.1.5-26*--31*

paleomagnetism
 and chronologic analyses, 8.3.1.5-52
 geophysical activities, 8.3.1.4-42*, -52*
 sampling areas, 8.3.1.17-123
 summary, tectonics, 8.3.1.17-110*, -111*

paleontologic analyses activity,
 8.3.1.5-42--47
 aquatic polymorphs, 8.3.1.5-45
 biotic remains, 8.3.1.5-45
 description, 8.3.1.5-44--46
 diatoms, 8.3.1.5-44--45
 methods and technical procedures,
 8.3.1.5-46--47
 objective, 8.3.1.5-42, -44
 ostracodes, 8.3.1.5-44
 paleoclimatic interpretations of aquatic
 records, 8.3.1.5-45--46
 parameters, 8.3.1.5-44

paleontologic investigations, technical
 procedures for, 8.3.1.5-117

paleostress indicator evaluation, technical
 procedures for, 8.3.1.17-184

paleostress orientation data evaluation
 activity, 8.3.1.17-183--184
 description, 8.3.1.17-184
 methods and technical procedures,
 8.3.1.17-184
 objectives, 8.3.1.17-183
 parameters, 8.3.1.17-184

paleotemperatures, 8.3.1.3-50
 and surficial deposits, 8.3.1.5-70

paleowind velocity, technical procedures for,
 8.3.1.5-75

Paleozoic rocks
 and hydrocarbon assessment,
 8.3.1.9-29, -37

palynological and paleoecological analyses,
 technical procedures for, 8.3.1.5-46--47

PANDORA, PHR81
 and performance assessment,
 8.3.5.19-2*, -6*

panel access drifts stability, 8.4.3-29--30
parameters
 and information needs, 8.1-8--9
particle size technical procedures,
 8.3.1.2-422
particulates
 sorption on, 8.3.1.3-77--79
 and transport, 8.3.1.3-119--122
past discharge area evaluation activity,
 8.3.1.5-98--106
 description, 8.3.1.5-99--101
 methods and technical procedures,
 8.3.1.5-101--106
 objectives, 8.3.1.5-98
 parameters, 8.3.1.5-98
pavements
 definition, 8.4.2-60--61
 and potential surface disturbance,
 8.4.2-48*, -60--61
Pavits Spring, 8.3.1.8-130; 8.3.1.17-151*
peer review, 8.3.1.2-353, -362
perched aquifers
 and controlled area, 8.3.1.8-89, -90, -94
 and faulting, 8.3.1.8-80, -93
perched water
 conditional site characterization
 activity, 8.4.2-36
 and drillholes, 8.3.1.2-127
 ESF test, 8.3.1.2-233, -236, -300--301
 existence of, 8.3.1.2-183
 and fracture fluids, 8.3.1.2-338
 and hydrochemical analysis, 8.3.1.5-97
 location investigation, 8.3.1.16-25, -26
 in nonwelded units, 8.3.5.12-16
 observed, 8.3.1.2-183
 sampling, technical procedures for,
 8.3.1.2-302, -304, -316
 and drillhole USW UZ-1, 8.4.3-16
 zones, bore drilling technical procedures,
 8.3.1.2-302--303
perched water conditions, development of,
 8.3.1.2-172, -174--175
perched water potential (Issue 1.8 potentially
adverse condition 23)
 discussion, 8.3.5.17-81
 performance parameters and goals,
 8.3.5.17-87*--88*
related studies and activities,
 8.3.5.17-87*--88*
scenario classes, 8.3.5.17-87*--88*
text of condition, 8.3.5.17-6*

perched water test
 constraints and zones of influence,
 8.4.2-139
 contingency test, 8.4.2-139
 purpose and operations, 8.4.2-139
perched water test in ESF activity,
 8.3.1.2-300--304
 description, 8.3.1.2-300--301
 methods and technical procedures,
 8.3.1.2-301--304
 objectives, 8.3.1.2-300
 parameters, 8.3.1.2-300
perched-water zone drilling, technical
 procedures for, 8.3.1.2-316
percolation
 as component of unsaturated-zone system,
 8.3.1.2-151
 data needs, 8.3.1.2-150
 and GWTT, 8.3.1.2-153--154
 and postclosure tectonic studies,
 8.3.1.8-9*--12*
 surface ponding, 8.4.3-9
percolation in unsaturated zone--ESF
 study, 8.3.1.2-232--320
 activities, 8.3.1.2-238--320
 bulk-permeability test in ESF,
 8.3.1.2-271--281
 Calico Hills test in ESF,
 8.3.1.2-241--300
 excavation effects test in ESF,
 8.3.1.2-293--299
 hydrochemistry tests in ESF,
 8.3.1.2-304--308
 hydrologic properties of major faults
 encountered in the main test level
 of the ESF, 8.3.1.2-316--320
 intact-fracture test in ESF,
 8.3.1.2-238--252
 multipurpose-borehole testing near the
 exploratory shafts, 8.3.1.2-308--316
perched water test in ESF,
 8.3.1.2-301--304
percolation tests in ESF,
 8.3.1.2-252--271
radial borehole tests in ESF,
 8.3.1.2-281--292
 objective, 8.3.1.2-232--237
percolation in unsaturated zone--surface
 study, 8.3.1.2-181--232
 activities, 8.3.1.2-183--232
 matrix hydrologic properties testing,
 8.3.1.2-183--200

percolation in unsaturated zone--surface study (continued)
 activities (continued)
 Solitario Canyon horizontal borehole study, 8.3.1.2-221--232
 vertical borehole studies (site),
 8.3.1.2-200--221
 objectives, 8.3.1.2-181--183

percolation test method, technical procedures for, 8.3.1.2-271

percolation tests
 constraints and zones of influence,
 8.4.2-135
 purpose and operations, 8.4.2-135

percolation tests in ESF activity,
 8.3.1.2-252--271
 description, 8.3.1.2-252--257
 methods and technical procedures,
 8.3.1.2-257--271
 objectives, 8.3.1.2-252
 parameters, 8.3.1.2-252

performance allocation, 8.1-5--10
 and accidental radiological releases (Issue 2.3), 8.3.5.5-8-11, -9*-10*
 Calico Hills nonwelded vitric unit,
 8.3.5.12-59*
 Calico Hills nonwelded zeolitic unit,
 8.3.5.12-59*
 and conceptual model uncertainties,
 8.1-10
 and confidence, 8.1-9--10
 and containment by waste package (Issue 1.4), 8.3.5.9-7**, -8**, -19--47
 and design and performance assessment issues, 8.3.4.1-2**
 and disturbed zone definition,
 8.3.5.12-59*
 and goals, 8.1-9
 and ground-water protection (Issue 1.3),
 8.3.5.15-4, -5*
 and GWTT, 8.3.5.12-9*-10*
 hydrogeologic units used for,
 8.3.5.12-12**
 and individual protection (Issue 1.2),
 8.3.5.14-7*
 and information needs, 8.1-8--10
 and licensing strategy, 8.1-7
 model validation, 8.3.5.8-9
 and parameters, 8.1-8--9
 and performance measures, 8.1-7--8
 and public radiological exposures--normal conditions (Issue 2.1), 8.3.5.3-9

performance allocation (continued)
 radionuclide migration in near-field host rock, 8.3.5.10-31*
 relationship between performance assessment and design issues,
 8.3.2.1-2**
 and site program, 8.3.1.1-5--6
 and testing strategy, 8.1-10
 and Topopah Spring welded unit,
 8.3.5.12-59*
 for total system performance (Issue 1.1),
 8.3.5.13-89--114
 waste package, 8.3.4.3-5*
 and worker radiological safety--normal conditions (Issue 2.2), 8.3.5.4-9
see also performance measures and preliminary performance allocation

performance allocation process, seal characteristics (Issue 1.12)
 design requirements and constraints,
 8.3.3.2-6, -29--31
 functional requirements, 8.3.3.2-6,
 -24--26
 identify performance measure, 8.3.3.2-6,
 -26
 information needed, 8.3.3.2-6, -29
 performance goals, 8.3.3.2-6, -26--28
 performance parameters, 8.3.3.2-6, -28--29
 sealing components, 8.3.3.2-6, -7--24
 summary, 8.3.3.2-6

performance and design issue requirements (see also specific performance or design issue)
 climate program
 approach to satisfy, 8.3.1.5-3--16
 parameters, 8.3.1.5-7*-12*
 summary, 8.3.1.5-1--3
 erosion program
 approach to satisfy, 8.3.1.6-1--4
 parameters, 8.3.1.6-3*
 summary, 8.3.1.6-1
 geochemistry program
 approach to satisfy, 8.3.1.3-3, -10,
 -12
 parameters, 8.3.1.3-4*-9*
 summary, 8.3.1.3-1, -3
 geohydrology program
 approach to satisfy, 8.3.1.2-3--50
 parameters, 8.3.1.2-10**-47*
 summary, 8.3.1.2-1--3
 human interference program
 approach to satisfy, 8.3.1.9-2, -12
 parameters, 8.3.1.9-4*-10*

- performance and design issue requirements
 - (continued)
 - human interference program (continued)
 - summary, 8.3.1.9-1--2
 - meteorology program
 - approach to satisfy, 8.3.1.12-1--3
 - parameters, 8.3.1.12-2*
 - summary, 8.3.1.12-1
 - offsite installations program
 - approach to satisfy, 8.3.1.13-1
 - summary, 8.3.1.13-1
 - organization overview, 8.2-62*
 - postclosure tectonics program
 - alternative conceptual models, 8.3.1.8-30, -31*--45*, -46
 - approach to satisfy, 8.3.1.8-24--30
 - parameters, 8.3.1.8-3*--21*
 - summary, 8.3.1.8-1--24
 - preclosure hydrology program
 - approach to satisfy, 8.3.1.16-2
 - parameters, 8.3.1.16-3*--4*, -5**
 - summary, 8.3.1.16-1--2
 - preclosure tectonics program
 - approach to satisfy, 8.3.1.17-26--37
 - parameters, 8.3.1.17-3*--25*
 - summary, 8.3.1.17-1, -2**, -26
 - rock characteristics program
 - approach to satisfy, 8.3.1.4-1--2, -16--17
 - parameters, 8.3.1.4-4*--15*
 - summary, 8.3.1.4-1--18, -24
 - surface characteristics program
 - approach to satisfy, 8.3.1.14-16
 - parameters, 8.3.1.14-3*--14*
 - summary, 8.3.1.14-1--15
 - thermal and mechanical rock properties program
 - approach to satisfy, 8.3.1.15-14--22
 - parameters, 8.3.1.15-2*--13*
 - summary, 8.3.1.15-1--22
 - performance and design issues and site programs
 - section 8.3 organization overview, 8.2-62*
 - performance assessment
 - code description, 8.3.5.19-4*--8*
 - general approach to, 8.4.3-3--5
 - milestone descriptions, 8.5-112--113
 - models, 8.4.3-3--5
 - summary of, 8.3.5.8-7--10
 - validation of, 8.3.5.20-5--9
 - program overview, 8.3.5-1--2
 - performance assessment (continued)
 - strategy, see postclosure performance assessment, strategy
 - and unsaturated zone, 8.4.3-5--6
 - verification and validation techniques, 8.3.5.20-1--9
 - performance assessment activities
 - milestones, 8.5-55--79, -111**
 - summary schedules, 8.5-55--79
 - performance assessment activity development through PRAM program (Performance Assessment Activity 2.1.1.2), 8.3.5.3-24
 - description, 8.3.5.3-24
 - objectives, 8.3.5.3-24
 - parameters, 8.3.5.3-24
 - performance assessment development through PRAM program (Activity 2.2.2.2), 8.3.5.4-24
 - description, 8.3.5.4-24
 - objectives, 8.3.5.4-24
 - parameters, 8.3.5.4-24
 - performance assessment issues
 - and design issues, 8.3.2.1-1, -2**, -3; 8.3.4.1-2**
 - input and output items, 8.3.2.1-4**
 - performance confirmation (Issue 1.7), 8.3.5.16-1--2
 - confirmation phase testing initiated during site characterization, 8.3.5.16-2*
 - and contingency plan, product 1.11.3-5, 8.3.2.2-51--52
 - issue resolution strategy, 8.3.5.16-1
 - and other design and performance assessment issues, 8.3.2.1-5
 - and postclosure performance assessment, 8.3.5.8-2, -4
 - and summary schedules, 8.5-2
 - performance issues
 - and design issue correlation, 8.2-12*--14*
 - Key Issue 1, 8.2-3*--6*
 - Key Issue 2, 8.2-7*--9*
 - Key Issue 4, 8.2-10*
 - overview, 8.1-3--4
 - postclosure, interactions with design issues, 8.3.5.8-3**
 - and resolution steps, 8.3.5.8-5**
 - see also specific issue
 - performance measures
 - accidental radiological releases (Issue 2.3), 8.3.5.5-9*--10*

performance measures (continued)

- actinide solubility (spent fuel),
8.3.5.9-21*-22*
- austenitic alloys, 8.3.5.9-38*-40*
- basaltic volcanism, direct release,
8.3.5.13-96*
- cladding (spent fuel), 8.3.5.9-20*-21*
- climate effects, 8.3.1.5-9*-10*
- containment by waste package (Issue 1.4),
8.3.5.9-7*-8*
- design thermal loading, 8.3.2.2-17*-18*
- EBS release rates (Issue 1.5),
8.3.5.10-17*-18*
- emplacement borehole access,
8.3.5.2-11*-12*
- expected partial (EPPM), see expected
partial performance measures
- GWTT (Issue 1.6), 8.3.5.12-17
- human activity potential,
8.3.5.17-22*-26*
- individual protection (Issue 1.2), 8.3-69*
- and issue resolution strategy, 8.1-7--8
- public radiological exposures--normal
conditions (Issue 2.1), 8.3.5.3-10*
- radionuclide source term,
8.3.5.10-32*-33*
- repository design criteria for
radiological safety (Issue 2.7),
8.3.2.3-17*-29*
- seal characteristics (Issue 1.12),
8.3.3.2-9*-12*, -26
- underground facility configuration
selection, 8.3.2.2-8*-10*
- waste delivery to surface,
8.3.5.2-20*-21*
- waste form, gap and grain boundary
release, 8.3.5.9-21*, -22*, -33--34
- waste form cladding, 8.3.5.9-21*-22*,
-32--33
- waste package access, 8.3.5.2-15*-16*
- waste removal from boreholes,
8.3.5.2-17*-18*
- worker radiological safety--normal
conditions (Issue 2.2), 8.3.5.4-10*-11*
- see also performance allocation

performance objectives

- and blast damage, 8.4.3-35
- and control of drainage direction,
8.4.3-34
- and control of water use, 8.4.3-34--35
- and design considerations, 8.4.3-34--35
- and engineered barrier system, 8.3.3.2-2

performance objectives (continued)

- and ESF test location, 8.4.3-34
- and geologic setting, 8.3.3.2-2
- and location and number of boreholes,
8.4.3-34
- and low flood potential, 8.4.3-34
- and natural and engineered barriers,
8.4.3-2--3
- and removable shaft liner, 8.4.3-35
- and separation of ESF tests from
emplacement drifts, 8.4.3-34
- and surface water impoundment, 8.4.3-35
- and unsaturated zone, 8.4.3-3
- and use of air gaps, 8.4.3-35
- and use of controlled blasting, 8.4.3-35
- and use of seals, 8.4.3-35
- and waste package containment, 8.4.3-35
- and water removal by ventilation systems,
8.4.3-35

performance reallocation

- and model validation, 8.3.5.8-9--10
- and postclosure performance assessment
strategy, 8.3.5.8-9

perimeter drift

- definition, 8.3.1.4-29, -30**
- exploratory drilling within, 8.3.1.9-44
- and geologic investigations,
8.3.1.4-29--32
- and proposed drillholes (Solitario Canyon
fault study), 8.3.1.2-374**
- and surface sampling program, 8.3.1.9-32

permanent markers, see marker system

permeability

- borehole information, 8.3.1.2-185*-186*
- borehole instrumentation, 8.3.1.2-295
- determination of, 8.3.1.2-190
- ESF tests, 8.3.1.2-233, -235, -271--281
- fracture and faulting, 8.3.1.8-95--96
- igneous intrusions, 8.3.1.8-95
- measurement methods, 8.3.1.2-190
- stress or strain, 8.3.1.8-97
- technical procedures for, 8.3.1.2-197--199

permeability modification

- excavation-induced change limitation,
- postclosure design function 3,
8.3.2.2-14

petrologic examination of samples, technical
procedure for, 8.3.1.8-126

petrologic patterns

- and volcanic activity, 8.3.1.8-53

petrologic stratigraphy of Topopah Spring
 activity, 8.3.1.3-43--45
 description, 8.3.1.3-44
 methods and technical procedures,
 8.3.1.3-44
 objectives, 8.3.1.3-43
 parameters, 8.3.1.3-43--44
 petrophysical methods
 preclosure and postclosure tectonics,
 8.3.1.17-114*

petrophysical properties testing
 activity, 8.3.1.4-59--60
 description, 8.3.1.4-59--60
 methods and technical procedures,
 8.3.1.4-60
 objectives, 8.3.1.4-59
 parameters, 8.3.1.4-59

pH measurements and acid-base solution
 standardization, technical procedures for,
 8.3.1.2-422

pH of water, technical procedures for,
 8.3.1.3-62

phased approach
 and quality assurance program, 8.4.1.2--3
 site characterization, 8.4.1.1--3

photogeologic mapping method, technical
 procedures for, 8.3.1.4-70

photogeologic mapping of Quaternary scarps,
 plans and technical procedures,
 8.3.1.17-122, -124

phototachometer calibration and use, technical
 procedures for, 8.3.1.2-422

phreatophyle mapping, 8.3.1.2-134, -136

physical/chemical processes affecting
 transport activity, 8.3.1.3-119--122
 description, 8.3.1.3-121--122
 methods and technical procedures,
 8.3.1.3-122
 objectives, 8.3.1.3-119
 parameters, 8.3.1.3-120

physical location constraints
 and ESF tests, 8.4.2-98, -99--101*

physical model validation, 8.3.5.20-8--9

physical property and index laboratory tests
 activity, 8.3.1.14-45--48
 description, 8.3.1.14-46
 methods and technical procedures,
 8.3.1.14-46--48
 objectives, 8.3.1.14-45
 parameters, 8.3.1.14-45--46

physical property field tests and character-
 ization measurements activity,
 8.3.1.14-54--56
 description, 8.3.1.14-55--56
 methods and technical procedures,
 8.3.1.14-56
 objectives, 8.3.1.14-54
 parameters, 8.3.1.14-54--55

physical property model, logic diagram,
 8.3.1.4-3**

physical transport mechanisms and rates
 activity, 8.3.1.3-136--138
 description, 8.3.1.3-137
 methods and technical procedures,
 8.3.1.3-138
 objectives, 8.3.1.3-137
 parameters, 8.3.1.3-137

piezometers, sites, 8.3.1.2-136

pillar width
 effects on stability, 8.4.3-28
 shaft and drift analyses, 8.4.3-28
 thermal/mechanical analyses, 8.4.3-28

pitting, crevice, and other localized
 attack (austenitic) (Subactivity 1.4.3.2.6),
 8.3.5.9-104--105
 description, 8.3.5.9-104--105
 objectives, 8.3.5.9-104
 parameters, 8.3.5.9-104

pitting, crevice, and other localized attack
 (copper) (Subactivity 1.4.3.1.5),
 8.3.5.9-94--95
 description, 8.3.5.9-94--95
 objectives, 8.3.5.9-94
 parameters, 8.3.5.9-94

PIXE analysis, technical procedures for,
 8.3.1.5-100

placement methods (seals) (Information Need
 1.12.1), 8.3.3.2-32--36
 application of results, 8.3.3.2-36
 link to supporting information, 8.3.3.2-32
 logic, 8.3.3.2-35--36
 parameters, 8.3.3.2-32--35
 technical basis for, 8.3.3.2-32--36

planned site preparation activities
 and decontamination and decommissioning,
 8.7-2

plans for mitigation, 8.7-6

plans for repository operation (Information
 Need 4.4.3), 8.3.2.5-43--47
 application of results, 8.3.2.5-46
 design activities, 8.3.2.5-45

plans for repository operation (Information Need 4.4.3) (continued)

- design activities (continued)
 - advanced conceptual design operations plan, 8.3.2.5-45
 - license application design operations plan, 8.3.2.5-45
- introduction, 8.3.2.5-43--44
- link to supporting information, 8.3.2.5-43--44
- logic, 8.3.2.5-44
- parameters, 8.3.2.5-44
- technical basis for, 8.3.2.5-43--44

plate load settlement--soils and rock, technical procedures for, 8.3.1.14-59

plate loading tests

- constraints and zones of influence, 8.4.2-127, -129
- design, 8.4.2-128**
- purpose and operations, 8.4.2-127

plate loading tests activity, 8.3.1.15-65--67

- description, 8.3.1.15-66
- methods and technical procedures, 8.3.1.15-66--67
- objectives, 8.3.1.15-65
- parameters, 8.3.1.15-66

playa deposits

- chronologic analyses activity, 8.3.1.5-51--54
- dating, 8.3.1.5-54
- geochemical analyses, 8.3.1.5-49--51
- organics analysis, 8.3.1.5-51
- paleoclimate study, 8.3.1.5-42--54
- paleontologic analysis, 8.3.1.5-42--47
- stratigraphy-sedimentology, 8.3.1.5-47--49
- trenching and sampling, 8.3.1.5-48--49

plutonium

- batch sorption, 8.3.1.3-68, -70, -72*
- colloids, 8.3.1.3-93--94
- sorption, 8.3.1.3-67

pluvial conditions

- and recharge, 8.3.1.5-92

pluvio-glacial climate conditions

- and radionuclide transport, 8.3.1.5-91

PMF, see probable maximum flood

pneumatic testing

- Solitario Canyon borehole, 8.3.1.2-223
- technical procedures for, 8.3.1.2-226--227, -261--262, -263--264, -287--289, -291--292
- use of, 8.3.1.2-207

pollen deposited in lake sediment collection and analysis, technical procedures for, 8.3.1.5-57

pollen sample analysis activity, 8.3.1.5-56--57

- description, 8.3.1.5-56--57
- methods and technical procedures, 8.3.1.5-57
- objectives, 8.3.1.5-56
- parameters, 8.3.1.5-56

ponding studies, 8.3.1.2-162, -174--176

- technical procedures for, 8.3.1.2-133

ponding tests, technical procedures for, 8.3.1.2-176--177

population centers and wind patterns

- investigation, 8.3.1.12-3, -4**, -26--27
- and accidental radiological releases (Issue 2.3), 8.3.1.12-26
- application of results, 8.3.1.12-26
- link to supporting information, 8.3.1.12-25
- parameters, 8.3.1.12-25
- and population density and distribution program, 8.3.1.12-25--26
- and public radiological exposures--normal conditions (Issue 2.1), 8.3.1.12-26
- purpose and objectives, 8.3.1.12-25
- technical basis for, 8.3.1.12-25
- technical rationale, 8.3.1.12-25--26

population density and controlled area

- (Issue 1.8 favorable condition 6)
- discussion, 8.3.5.17-94--95
- text of condition, 8.3.5.17-2*

population density and distribution data considered

- higher level findings--closure radiological safety (Issue 2.5), 8.3.5.6-10*

population density and distribution program, 8.3.1.10-1

- and accidental radiological releases (Issue 2.3), 8.3.1.10-1
- and accidental radiological releases (Issue 2.3) parameter calls, 8.3.5.5-12*
- and higher level findings--closure radiological safety (Issue 2.5), 8.3.1.10-1
- and meteorology program, 8.3.1.12-5
- and public radiological exposures--normal conditions (Issue 2.1), 8.3.1.10-1; 8.3.5.3-4, -21*

population density and distribution program
 (continued)

- and Radiological Monitoring Plan,
 8.3.1.10-1
- and regulatory requirements, 8.3.1.10-1

population density and distribution technical guideline

- and higher level findings--preclosure radiological safety (Issue 2.5),
 8.3.5.6-8--9
- and qualifying and disqualifying conditions, 8.3.5.6-6*, -8--9

pore and fracture fluid chemical analyses,
 8.3.1.2-337--341

pore-water extraction, technical procedures for, 8.3.1.2-302

porosity

- and emplacement drifts, 8.4.3-28--29
- and rock strength, 8.4.3-28--29

porosity and characterization activity,
 8.3.1.15-31--34

porosity (fracture) and faulting,
 8.3.1.8-95--96

porosity and rock strength

- shaft and drift analyses, 8.4.3-28--29
- thermal/mechanical analyses, 8.4.3-28--29

porosity/density--rock, technical procedures for, 8.3.1.14-48

porosity determination, technical procedures for, 8.3.1.2-194--195

porosity measurements, and GWTT, 8.3.1.2-153, -155**

porous media model, technical procedures for, 8.3.1.2-358

position papers, 8.2-61, -67**; 8.5-116, -118

postclosure design function 1, see underground facility configuration selection

postclosure design function 2, see water use and chemical change limitation

postclosure design function 3, see excavation-induced change limitation

postclosure design function 4, see design thermal loading

postclosure drift collapse limitation

- excavation-induced change limitation,
 postclosure design function 3,
 8.3.2.2-16

postclosure ground motion in subsurface activity, 8.3.1.8-70--71

- and configuration of underground facilities (Issue 1.11), 8.3.1.8-70

description, 8.3.1.8-70--71

postclosure ground motion in subsurface activity (continued)

- methods and technical procedures,
 8.3.1.8-71
- objectives, 8.3.1.8-70
- parameters, 8.3.1.8-70

postclosure guideline qualifying and disqualifying conditions

- and containment by waste package (Issue 1.4), 8.3.5.18-7--8
- and EBS release rates (Issue 1.5),
 8.3.5.18-7
- and ground-water protection (Issue 1.3),
 8.3.5.18-7, -8
- and GWTT (Issue 1.6), 8.3.5.18-7--8
- and individual protection (Issue 1.2),
 8.3.5.18-8
- preliminary findings, 8.3.5.18-3
- and total system performance (Issue 1.1),
 8.3.5.18-7

postclosure information needs

- and planned testing, 8.4.2-18--21

postclosure performance

- potential impacts on site characterization activities, 8.4.3-50--88
- and waste package design features,
 8.4.3-79--81

postclosure performance assessment

- analytical techniques, substantially complete, 8.3.5.19-1--3, -2*, -11
- computer codes, 8.3.5.19-2*, -4*--10*
- and ground-water protection (Issue 1.3),
 8.3.5.8-2, -3*, -4
- and GWTT (Issue 1.6), 8.3.5.8-2, -3*, -4
- and NRC siting criteria (Issue 1.8),
 8.3.5.8-2, -3*, -4
- and performance confirmation (Issue 1.7),
 8.3.5.8-2, -4
- quality activities, 8.6-22
- and seal characteristics (Issue 1.2),
 8.3.5.8-3*
- strategy, 8.3.5.8-1--10
 - and configuration of underground facilities (Issue 1.10), 8.3.5.8-3*
 - overview, 8.3.5.8-1--7
 - performance assessment conceptual model summary, 8.3.5.8-7--10
 - performance reallocation, 8.3.5.8-9
 - and reference information base (RIB),
 8.3.5.8-4
- summary schedules, 8.5-64--79
- see also Key Issue 1

postclosure performance confirmation program
 testing and monitoring activities, see
 performance confirmation (Issue 1.7)
 postclosure performance evaluations
 and data needed, 8.4.2-3--9
 and flow and transport, 8.4.2-3,
 -4*--7*, -8
 and information needs, 8.4.2-4*--7*
 and information needs summary, 8.4.2-9
 and issues hierarchy, 8.4.2-4*--7*
 and postclosure tectonics,
 8.4.2-4*--7*, -8
 and resource evaluation, 8.4.2-4*--7*, -8
 and spatial variability, 8.4.2-4*--7*,
 -8--9
 and waste package environment,
 8.4.2-4*--7*, -8
 postclosure performance issues
 and design issues, 8.3.5.8-3**
 and qualifying and disqualifying
 conditions Issue 1.9(a) guidelines,
 8.3.5.18-7--8
 postclosure performance objectives
 and engineered barrier system release
 rate, 8.4.3-1, -2, -3
 and ground water protection, 8.4.3-1,
 -2, -3
 and potential impacts of site
 characterization activities, 8.4.3-1--88
 summary, 8.4.3-1--3
 and total system release, 8.4.3-1, -2, -3
 and waste package containment, 8.4.3-1,
 -2, -3
 and 10 CFR 60, 8.4.1-6, -7*--8*
 postclosure siting guidelines, see higher
 level findings--postclosure (Issue 1.9)
 postclosure tectonics
 and postclosure performance evaluations,
 8.4.2-8
 postclosure tectonics data collection and
 analysis investigation, 8.3.1.8-105--131
 activities
 chemical and physical changes around
 dikes, 8.3.1.8-125--127
 curie temperature isotherm depth
 evaluation, 8.3.1.8-124--125
 field geologic studies,
 8.3.1.8-116--118
 folds in Neogene rocks,
 8.3.1.8-130--131
 geochemical cycles of basaltic
 volcanic fields, 8.3.1.8-121--123

postclosure tectonics data collection and
 analysis investigation (continued)
 activities (continued)
 geochemistry of scoria sequences,
 8.3.1.8-119--120
 geochronology studies,
 8.3.1.8-112--115
 heat flow and heat flow anomalies,
 8.3.1.8-127--129
 volcanism drillholes, 8.3.1.8-108--111
 application of results, 8.3.1.8-131
 link to supporting information,
 8.3.1.8-105
 parameters, 8.3.1.8-105--106
 purpose and objectives, 8.3.1.8-106
 studies, 8.3.1.8-107--131
 folds in Miocene and younger rocks of
 region, 8.3.1.8-129--131
 igneous intrusive features
 characterization, 8.3.1.8-123--129
 and Nuclear Waste Policy Act,
 8.3.1.10-1
 volcanic features characterization,
 8.3.1.8-107--123
 technical basis for, 8.3.1.8-105
 technical rationale, 8.3.1.8-106--107
 postclosure tectonics program, 8.3.1.8-141
 alternative conceptual models,
 8.3.1.8-30--46
 approach, 8.3.1.8-24--30
 and configuration of underground
 facilities (postclosure) (Issue 1.11),
 8.3.1.8-2**, -6*
 current representation and alternative
 hypotheses, 8.3.1.8-31*--45*
 and geohydrology program, 8.3.1.2-444
 and higher level findings (postclosure)
 (Issue 1.9), 8.3.1.8-2**, -3*, -6*, -9*,
 -13*, -17*, -19*
 hypothesis-testing tables,
 8.3.1.8-31*--45*
 interrelationships, 8.3.1.8-1, -2**,
 -46--47
 investigations, 8.3.1.8-48--131
 postclosure tectonics data collection
 and analysis, 8.3.1.8-101--131
 tectonic effects on geochemistry,
 8.3.1.8-98--105
 tectonic effects on hydrology,
 8.3.1.8-73--98
 tectonic effects on waste package,
 8.3.1.8-63--73

postclosure tectonics program (continued)
 investigations (continued)
 volcanic activity, 8.3.1.8-48--63
see also specific investigation for study and activity listings
 major events and completion dates,
 8.3.1.8-134**-140*; 8.5-17, -18**, -19
 and NRC siting criteria (Issue 1.8),
 8.3.1.8-2**, -3*, -6*, -9*, -13*,
 -17*, -19*
 overview, 8.3.1.8-1--47
 parameter analysis, 8.3.1.8-25**
 parameter calls, 8.3.1.8-2**, -3**-21*
 percolation flux alteration studies,
 8.3.1.8-9**-12*
 performance and design requirements,
 8.3.1.8-1--24
 preclosure tectonics program parameter calls, 8.3.1.17-1, -2**, -6*, -207
 radiometric method summary,
 8.3.1.17-110*
 and rock property alteration studies,
 8.3.1.8-17**-18*
 schedule, 8.3.1.8-131--141; 8.5-17, -18**
 and total system performance (Issue 1.1),
 8.3.1.8-2**, -3*, -9*, -13*, -17*, -19*
 and 10 CFR 60.21(c)(1)(ii)(B), 8.3.1.8-24
 and 10 CFR 60.122, 8.3.1.8-24
 and 10 CFR 960.4-2-7, 8.3.1.8-24
 postcontainment period, 8.3.4-4
 postemplacement chemical/mineralogical changes (Study 1.10.4.1)
 activities, 8.3.4.2-42--51
 container and liner corrosion effects on water chemistry,
 8.3.4.2-48
 dissolution of phases in waste package environment, 8.3.4.2-46--47
 radiation effect on water chemistry,
 8.3.4.2-47--48
 repository material effect on water,
 8.3.4.2-45
 rock-water interaction analysis,
 8.3.4.2-49--50
 rock-water interactions,
 8.3.4.2-42--45
 vadose water composition,
 8.3.4.2-45--46
 description, 8.3.4.2-46
 postemplacement GWTT (Activity 1.6.5.1),
 8.3.5.12-62--63
 description, 8.3.5.12-62--63

postemplacement GWTT (Activity 1.6.5.1)
 (continued)
 objectives, 8.3.5.12-62
 post-subsurface-excavation environment,
 8.3.2.1-11--12
 post-waste-emplacement environment,
 8.3.2.1-12--13
 potassium-argon dating
 chronology of volcanic activity,
 8.3.1.8-112
 clays and zeolites, technical procedures for, 8.3.1.3-53--54
 plans and technical procedures,
 8.3.1.8-114--115; 8.3.1.17-153
 potential accident, data
 and criticality control (Information Need 2.7.3), 8.3.2.3-44
 and items important to safety (Information Need 2.7.2), 8.3.2.3-43--44
 potential ash fall study, 8.3.1.17-54--56
see also ash-fall potential at site study
 potential effects of water withdrawals
 activity, 8.3.1.16-24--25
 description, 8.3.1.16-24
 methods and technical procedures,
 8.3.1.16-24
 objectives, 8.3.1.16-24
 parameters, 8.3.1.16-24
 potential flow conditions
 and seals, 8.3.3.2-23**, -27--28
 potential hydrologic effects from exploration/extraction study,
 8.3.1.9-49--50
 potential impacts to current site conditions,
see current site conditions, potential impacts to
 potential impacts of exploratory shaft,
see exploratory shaft construction, potential impacts
 potential impacts of offsite operations, see installations and operations impacts investigation
 potential impacts of site characterization,
see site characterization impacts, potential
 potential offsite accident initiators,
 8.3.1.13-1, -7
 potentially adverse conditions
 and effects of human interference, investigation, 8.3.1.9-51
 and geohydrology program, 8.3.1.2-3
 potentially likely conditions, evaluation of chemical alteration, 8.4.3-61

potentially likely conditions, evaluation of
 (continued)
 chemical reaction of waste packages with
 rock, 8.4.3-60--61
 climate change, 8.4.3-58
 corrosion, 8.4.3-60
 differential elastic response to heating,
 8.4.3-59--60
 faulty waste emplacement, 8.4.3-59
 flooding, 8.4.3-58
 geochemical changes, 8.4.3-58
 inelastic response to heating, 8.4.3-60
 local mechanical fracturing, 8.4.3-60
 microbial activity, 8.4.3-61--62
 temperature driven fluid migration,
 8.4.3-60
 undetected dikes, 8.4.3-59
 undetected faults and shear zones,
 8.4.3-58--59
 undiscovered boreholes, 8.4.3-59
 undiscovered mineshafts, 8.4.3-59
potentially significant disturbance
 and artificial infiltration experiments,
 8.4.2-55*--56*, -63--64
 and drill pads, 8.4.2-48*, -59--60
 and natural infiltration studies,
 8.4.2-55*--56*, -61--63
 and pavements, 8.4.2-48*, -60--61
 and roads, 8.4.2-48*, -54, -59
 and seismic shotholes, 8.4.2-48*, -61
 summary, 8.4.2-55*--58*
 and trenches, 8.4.2-48*, -60
potentially significant release scenario
 classes (Information Need 1.1.2),
 8.3.5.13-124--128
 application of results, 8.3.5.13-128
 link to supporting information,
 8.3.5.13-124
 logic, 8.3.5.13-125--126
 parameters, 8.3.5.13-125
 performance assessment activities,
 8.3.5.13-126--128
 release scenario classes, final
 selection, 8.3.5.13-127--128
 release scenario classes, preliminary
 identification, 8.3.5.13-127
 performance assessment subactivities
 events and process sequence
 preliminary identification,
 8.3.5.13-126--127
 release scenario classes, preliminary
 identification, 8.3.5.13-127

potentially significant release scenario
 classes (Information Need 1.1.2) (continued)
 technical basis, 8.3.5.13-124--126
potentiometric data, use of, 8.3.1.2-139
potentiometric head (past), technical
 procedures for, 8.3.1.5-105--106
potentiometric-level distribution studies
 (regional) activity, 8.3.1.2-118--125
 description, 8.3.1.2-118--122
 methods and technical procedures,
 8.3.1.2-122--125
 objectives, 8.3.1.2-118
 parameters, 8.3.1.2-83--118
potentiometric-level drillholes, regional
 and unsaturated zone exploration, 8.4.2-79
potentiometric-level evaluation, location of
 proposed drillholes, 8.3.1.2-377**
potentiometric-level evaluation (site)
 activity, 8.3.1.2-375
 description, 8.3.1.2-376--380
 methods and procedures, 8.3.1.2-380--382
 objectives, 8.3.1.2-375
 parameters, 8.3.1.2-375
potentiometric surface map--saturated zone,
 8.3.1.2-368**
PRAM program, see preclosure risk assessment
 methodology program
precipitation
 data importance, 8.3.1.2-89
 Forty-mile Wash gages, 8.3.1.2-126
 and infiltration, 8.3.1.2-169
 monitoring stations (regional),
 8.3.1.2-99**, -100*--101*
 monitoring stations (site),
 8.3.1.2-106, -107**, -108*--109*
 and National Weather Service Network,
 8.3.1.2-98
 planned measurements, 8.3.1.2-97
precipitation and meteorological monitoring
 activity, 8.3.1.2-97--102
 description, 8.3.1.2-98--102
 methods and technical procedures,
 8.3.1.2-102
 objectives, 8.3.1.2-97
 parameters, 8.3.1.2-97--98
precipitation gages, technical procedures for,
 8.3.1.2-102
precipitation-runoff modeling of past and
 future surface water, technical procedures
 for, 8.3.1.5-119

preclosure design and technical feasibility
 (Issue 4.4)
 and accidental radiological releases
 (Issue 2.3), 8.3.5.5-1, -2**, -5**, -11
 analytical tools, 8.3.2.1-21--23
 approach to issue resolution, 8.3.2.5-4--5
 and ash-fall study, 8.3.1.17-56
 design criteria for the geologic
 repository operation area
 8.3.2.3-4**-11*
 design tradeoff analyses
 8.3.2.1-20*
 erosion program parameter calls,
 8.3.1.6-3*, -5**
 geohydrology program parameter calls,
 8.3.1.2-5*, -10**-11*, -13**-17*, -19*,
 -21*, -24**-27*, -42**-47*
 and higher level findings--ease and cost
 of construction (Issue 4.1),
 8.3.5.7-7*, -10*
 and human interference program parameter
 calls, 8.3.1.9-2, -10*, -13**, -16
 information needs, 8.3.2.5-35--108
 design analysis (4.4.7),
 8.3.2.5-61--85
 equipment development and demon-
 stration (4.4.6), 8.3.2.5-57--61
 plans for repository design (4.4.3),
 8.3.2.5-43--47
 reference preclosure repository
 design (4.4.5), 8.3.2.5-52--57
 repository design requirements
 (4.4.4), 8.3.2.5-47--52
 site and performance information
 needed for design (4.4.1),
 8.3.2.5-35--38
 technology for seals emplacement
 (4.4.10), 8.3.2.5-96--108
 technology for surface facilities
 (4.4.8), 8.3.2.5-85--88
 technology for underground facilities
 (4.4.9), 8.3.2.5-88--95
 waste package information needed for
 design (4.4.2), 8.3.2.5-38--43
see specific information need for
design activity listing
 interrelationships, 8.3.2.5-6, -35
 issue resolution strategy, 8.3.2.5-1--108,
 -2**--3**
 logic diagram, 8.3.2.5-2**--3**

preclosure design and technical feasibility
 (Issue 4.4) (continued)
 logic diagram for Issue 2.7 (repository
 design criteria for radiological
 safety), 8.3.2.3-13**--14**
 major events and completion dates,
 8.3.2.5-100**-107*; 8.5-90, -91**--93**,
 -94--95
 and modeling, 8.3.2.1-20
 and other performance assessment and
 design issues, 8.3.2.1-2**;
 8.3.4.1-2**, -3
 preclosure hydrology program parameter
 calls, 8.3.1.16-1, -3*, -4*, -5**,
 -13--14, -24, -26
 preclosure tectonics program parameter
 calls, 8.3.1.17-1, -2**, -3*, -5*,
 -7**-8*, -10**-11*, -13*, -15*,
 -19**-22*, -56, -63, -207
 and pre-waste-emplacement environment,
 8.3.2.1-10--11
 public radiological exposure--normal
 conditions (Issue 2.1) parameter calls,
 8.3.5.3-2**, -6**
 regulatory basis for, 8.3.2.5-1--4
 and repository design criteria for
 radiological safety (Issue 2.7),
 8.3.2.3-1, -2**, -36, -41--42
 schedule, 8.3.2.5-97--108; 8.5-90,
 -91**--93**
 seismic analyses, 8.3.2.1-24
 site data required, 8.3.2.1-10--11
 and soil and rock properties, 8.3.1.14-29,
 -30
 surface characteristics program parameter
 calls, 8.3.1.14-2**, -3**-13*, -15,
 -19*, -22*, -24, -26, -27, -45, -64
 and system elements, 8.3.2.5-5--6,
 -33**-34*
 thermal and mechanical rock properties
 program parameter calls, 8.3.1.15-1,
 -3*, -5**-13*, -15**
 ventilation analyses, 8.3.2.1-24--25
 and waste package characteristics--
 preclosure (Issue 2.6), 8.3.4.3-2
 and waste retrievability (Issue 2.4),
 8.3.5.2-6**, -22, -25**-28*
 waste retrievability (Issue 2.4), input
 item calls, 8.3.5.2-25*, -32**-33*,
 -37*, -41*, -45*, -48*

preclosure design and technical feasibility (Issue 4.4) (continued)
 and worker radiological safety--normal conditions (Issue 2.2), 8.3.5.4-1, -2**, -6**

preclosure hydrologic conditions--unsaturated zone study, 8.3.1.16-26
 activity, 8.3.1.16-26
 unsaturated-zone hydrologic characteristics synthesis, 8.3.1.16-26

preclosure hydrology
 and post-subsurface-excavation environment, 8.3.2.1-11--12
 and post-waste-emplacement environment, 8.3.2.1-12--13
 and pre-waste-emplacement environment, 8.3.2.1-9--11

preclosure hydrology program, 8.3.1.16-1--31
 accidental radiological releases (Issue 2.3) parameter calls, 8.3.5.5-12*, -20*
 approach, 8.3.1.16-2
 and climate program, 8.3.1.5-1--3, -2**
 and configuration of underground facilities (postclosure) (Issue 1.11), 8.3.1.16-1, -4*, -5**
 and geohydrology program, 8.3.1.2-147, -364
 geohydrology program parameter calls, 8.3.1.16-5**
 interrelationships, 8.3.1.16-2--6
 investigations, 8.3.1.16-7--31
 flooding recurrence intervals, 8.3.1.16-7--14
 ground-water conditions, 8.3.1.16-22--31
 water supplies, 8.3.1.16-14--25
 see specific investigation for study and activity listings
 logic diagram, 8.3.1.16-5**
 major events and completion dates, 8.3.1.16-30--31*; 8.5-30, -31**
 and meteorology program, 8.3.1.12-5
 and nonradiological health and safety (Issue 4.2), 8.3.1.16-1, -3*, -5**
 overview, 8.3.1.16-1--6
 and paleofloods, 8.3.1.16-2, -10
 performance and design requirements, summary, 8.3.1.16-1--2
 and preclosure design and technical feasibility (Issue 4.4), 8.3.1.16-1, -3*, -4*, -5**, -13--14, -25, -26

preclosure hydrology program (continued)
 schedule, 8.3.1.16-28--31; 8.5-30, -31**
 and seal characteristics (Issue 1.12), 8.3.1.16-1, -4*, -5**
 surface characteristics program parameter calls, 8.3.1.14-2**, -3*, -15, -24, -26
 worker radiological safety parameter calls, 8.3.5.4-13*

preclosure information needs, and planned testing, 8.4.2-20--23

preclosure issues
 and postclosure issues, 8.3.2.1-2**

preclosure performance assessment
 analytical techniques, 8.3.5.19-3, -9*, -10*
 strategy, 8.3.5.1-1--21
see also Key Issue 2

preclosure performance assessment activities
 milestones, 8.5-55--64
 summary schedules, 8.5-55--64

preclosure performance evaluations
 data needed, 8.4.2-9--15
 data needs summary, 8.4.2-15
 and information needs, 8.4.2-10*--13*
 and issues hierarchy, 8.4.2-10*--13*
 and preclosure tectonics, 8.4.2-10*--13*, -15
 and surface facilities design, 8.4.2-9, -10*--13*, -14
 and underground facility design, 8.4.2-10*--13*, -14

preclosure radiological health and safety
 and QA plan summary see higher level findings--preclosure radiological safety (Issue 2.5) and Key Issue 2

preclosure radiological safety qualifying and disqualifying conditions
 preliminary findings, 8.3.5.6-3*
 and public radiological exposures--normal conditions (Issue 2.1), 8.3.5.6-6*
 and worker radiological safety--normal conditions (Issue 2.2), 8.3.5.6-6*

preclosure repository-consequence analysis, 8.3.5.19-3

preclosure repository-systems analyses, 8.3.5.19-3

preclosure risk assessment methodology (PRAM) program, 8.3.2.3-43
 and accident sequence analysis, 8.3.5.1-9, -11; 8.3.5.5-3

preclosure risk assessment methodology (PRAM)
 program (continued)
 and accidental radiological releases
 (Issue 2.3), 8.3.5.5-3, -13*, -19, -20*,
 -23, -29
 and analytical techniques requiring
 development, 8.3.5.20-1
 and common cause failure analysis,
 8.3.5.1-10
 and computer code assessment, 8.3.5.19-3
 and consequence analysis, 8.3.5.1-11--12
 and credible accidents, 8.3.5.5-3, -20*,
 -27
 and data base development, 8.3.5.1-10
 and environmental transport, 8.3.5.1-11
 and event tree development, 8.3.5.1-9
 and human reliability analysis,
 8.3.5.1-10
 and performance assessment activities,
 8.3.5.4-24
 and preclosure performance assessment,
 8.3.5.19-3
 and preclosure radiological safety,
 8.3.5.20-1
 and preclosure safety assessment,
 8.3.5.1-1--2, -5
 and public radiological safety,
 8.3.5.3-9, -16, -23, -24
 and radiological protection, 8.3.2.3-39
 and repository systems analysis,
 8.3.5.1-9--10
 and safety assessment documentation,
 8.3.5.1-12; 8.3.5.5-29
 and sensitivity analysis, 8.3.5.5-28
 and worker radiological safety--normal
 conditions (Issue 2.2), 8.3.5.4-9, -15,
 -18, -20, -23, -24

preclosure safety assessment
 computer codes, 8.3.5.19-9*, -10*
 information need identification,
 8.3.5.1-7
 and key issues, 8.3.5.1-1
 and Office of Civilian Radioactive Waste
 Management, 8.3.5.1-2
 overview, 8.3.5.1-2--6
 overview diagram, 8.3.5.1-3**
 and preclosure performance assessment
 strategy, 8.3.5.1-1
 and preclosure risk assessment methodology
 (PRAM) program, 8.3.5.1-1--2, -5
 and Q-list methodology, 8.3.5.1-2,
 -3**, -5**

preclosure tectonics, preclosure performance
 evaluations, 8.4.2-10*-13*, -15
 preclosure tectonics data collection analysis
 investigation, 8.3.1.17-86--206
 activities
 aeromagnetic survey (detailed),
 8.3.1.17-172
 Bare Mountain fault zone evaluation,
 8.3.1.17-128--130
 Beatty-Bare Mountain detachment fault
 evaluation, 8.3.1.17-147--149
 borehole (shallow) hydrofracture and
 triaxial strain recovery methods,
 8.3.1.17-182--183
 breccia (Crater Flat) and detach-
 ment faulting, 8.3.1.17-149--150
 buried fault detection using gamma-ray
 measurements, 8.3.1.17-175--176
 Cane Spring fault system evaluation,
 8.3.1.17-142--143
 Cedar Mountain earthquake and Walker
 Lane wrench tectonics,
 8.3.1.17-127--128
 crustal movement (lateral) analysis,
 8.3.1.17-198--199
 detachment fault age evaluation
 (radiometric), 8.3.1.17-151--153
 earthquake (historical) record
 compilation, 8.3.1.17-88--89
 fault and fracture regional pattern
 evaluation, 8.3.1.17-131--132
 geophysical surveys in east-west
 transect crossing site,
 8.3.1.17-105--119
 global positioning satellite survey
 of Yucca Mountain vicinity,
 8.3.1.17-196--197
 gravity survey (detailed),
 8.3.1.17-171
 ground magnetic survey (detailed),
 8.3.1.17-172--173
 Midway Valley exploratory trenching,
 8.3.1.17-95--97
 Midway Valley trench location identi-
 fication, 8.3.1.17-93--95
 Mine Mountain fault system evaluation,
 8.3.1.17-138--141
 Miocene-Paleozoic contact and detach-
 ment faulting, 8.3.1.17-145--146
 paleostress orientation data
 evaluation, 8.3.1.17-183--184

preclosure tectonics data collection analysis investigation (continued) activities (continued) Quaternary fault movement age and recurrence, 8.3.1.17-157--168 Quaternary faulting within 100 km of Yucca Mountain, 8.3.1.17-119--127 Quaternary faulting within 100 km of Yucca Mountain--morphometric and morphologic analysis, 8.3.1.17-191--193 Quaternary geology and faults at Yucca Mountain, 8.3.1.17-155--157 Quaternary uplift and subsidence evaluation, 8.3.1.17-189--191 reflection and refraction (intermediate depth) methods, 8.3.1.17-169--171 relevel base-station network, 8.3.1.17-194--196 releveling data analysis, 8.3.1.17-197--198 Rock Valley fault system evaluation, 8.3.1.17-133--137 seismicity (current) monitoring, 8.3.1.17-89--91 seismicity (induced) evaluation, 8.3.1.17-91--93 shallow seismic reflection method evaluation, 8.3.1.17-177--178 Specter Range and Cam Desert Rock detachment faults, 8.3.1.17-150--151 Stagecoach Road fault zone evaluation, 8.3.1.17-139--141 stress distributions (theoretical) and tectonic setting, 8.3.1.17-185--186 stress field (present) evaluation, 8.3.1.17-180--181 surface geoelectric method evaluation, 8.3.1.17-173--174 tectonic disruption sequence evaluation, 8.3.1.17-205--206 tectonic model evaluation, 8.3.1.17-203--205 tectonic processes and stability at site, 8.3.1.17-200--203 tectonically stable area age and extent, 8.3.1.17-187--188 thermal infrared method evaluation, 8.3.1.17-176--177 application of results, 8.3.1.17-206--207

preclosure tectonics data collection analysis investigation (continued) link to supporting information, 8.3.1.17-86 parameters, 8.3.1.17-86--87 purpose and objectives, 8.3.1.17-87 studies, 8.3.1.17-87--206 crustal movement (lateral), regional characterization of, 8.3.1.17-198--199 detachment faults at Yucca Mountain, 8.3.1.17-143--154 faulting near surface facilities (location and recency), 8.3.1.17-93--97 geodetic leveling, 8.3.1.17-194--198 historical and current seismicity, 8.3.1.17-87--93 Quaternary faulting proximal to site, 8.3.1.17-132--143 Quaternary faulting within 100 km of Yucca Mountain, 8.3.1.17-97--132 Quaternary faulting within site area, 8.3.1.17-154--168 Quaternary faults at Yucca Mountain (geometry and extensions), 8.3.1.17-168--178 stress field within and proximal to site, 8.3.1.17-179--186 tectonic geomorphology of Yucca Mountain, region, 8.3.1.17-186--193 tectonic models and synthesis, 8.3.1.17-199--206 technical basis, 8.3.1.17-86--87 technical rationale, 8.3.1.17-87 preclosure tectonics program, 8.3.1.17-1--226 and accidental radiological releases (Issue 2.3), 8.3.1.17-1, -2*, -63, -86 accidental radiological releases (Issue 2.3) parameter calls, 8.3.5.5-12*--13*, -20* alternative conceptual models, 8.3.1.17-37--50 approach, 8.3.1.17-26--37 fault displacement considerations, 8.3.1.17-31--34 general methodology, 8.3.1.17-26--28 tectonic environment review, 8.3.1.17-28--30 vibratory ground motion considerations, 8.3.1.17-34--37

preclosure tectonics program (continued)
 approach (continued)
 volcanic activity considerations,
 8.3.1.17-30--31
 and configuration of underground
 facilities (postclosure) (Issue 1.11),
 8.3.1.17-206
 current representation and alternative
 hypotheses, 8.3.1.17-38*--49*
 and EBS release rates (Issue 1.5),
 8.3.1.17-206
 and erosion program, 8.3.1.17-207
 and geohydrology program,
 8.3.1.17-206--207
 and GWTT (Issue 1.6), 8.3.1.17-207
 hypothesis-testing tables,
 8.3.1.17-38*--49*
 interrelationships, 8.3.1.17-50
 investigations, 8.3.1.17-51--207
 fault displacement, 8.3.1.17-56--63
 preclosure tectonic data collection
 and analysis, 8.3.1.17-86--207
 vibratory ground motion,
 8.3.1.17-63--86
 volcanic activity (preclosure),
 8.3.1.17-51--56
see also specific investigation for
study and activity listings
 logic diagram, 8.3.1.17-2**
 major events and completion dates,
 8.3.1.17-211*--225*; 8.5-32, -33**, -34
 and NRC siting criteria (Issue 1.8),
 8.3.1.17-206
 overview, 8.3.1.17-1--50
 performance and design requirements
 summary, 8.3.1.17-1--26
 postclosure tectonics program parameter
 calls, 8.3.1.17-1, -2**, -6*, -206--207
 and preclosure design and technical
 feasibility (Issue 4.4), 8.3.1.17-1,
 -2**, -3*, -5*, -7*--8*, -10*--11*,
 -13*--15*, -19*--22*, -63, -85, -207
 radiometric methods summary,
 8.3.1.17-110*
 and repository design criteria for radio-
 logical safety (Issue 2.7), 8.3.1.17-1,
 -2**, -86
 and rock characteristics parameter calls,
 8.3.1.17-1, -2**, -206
 schedule, 8.3.1.17-207--226; 8.5-32, -33**
 and seal characteristics (Issue 1.12),
 8.3.1.17-1, -2**, -15*, -22*

preclosure tectonics program (continued)
 surface characteristics parameter calls,
 8.3.1.14-2**, -4*, -6*--7*, -8*, -10*,
 -12*--13*, -15, -22*, -64
 and total system performance (Issue 1.1),
 8.3.1.17-206
 and waste retrievability (Issue 2.4),
 8.3.1.17-1, -2**, -63, -86
 preferential pathways
 and excavation methods, 8.3.2.2-4, -14,
 -16
 preliminary exploration activity,
 8.3.1.14-40--43
 description, 8.3.1.14-41--42
 methods and technical procedures,
 8.3.1.14-42--43
 objectives, 8.3.1.14-40
 parameters, 8.3.1.14-40--41
 preliminary findings, 8.3.5.18-4*
 preliminary performance allocation
 access construction, system element
 1.2.1.1, 8.3.2.5-18*--21*
 borehole construction, system element
 1.2.1.3, 8.3.2.5-24*
 drift construction, system element
 1.2.1.2, 8.3.2.5-22*--23*
 emplacement, system element 1.2.2.4,
 8.3.2.5-29*
 mining ventilation, system element
 1.2.1.6, 8.3.5-27*--28*
 retrieval, system element 1.2.2.5,
 8.3.2.5-30*
 rock handling, system element 1.2.1.4,
 8.3.2.5-25*
 subsurface, system element 1.1.2,
 8.3.2.5-13*--17*
 surface, system element 1.1.1,
 8.3.2.5-7*--12*
 underground closure, system element
 1.2.4.1, 8.3.2.5-32*
 waste handling ventilation, system element
 1.2.2.7, 8.3.2.5-31*
 water removal, system element 1.2.1.5,
 8.3.2.5-26*
see also performance allocation
 present conditions (erosion) investigation,
 8.3.1.6-6--15
 activities
 downcutting of Fortymile Wash,
 8.3.1.6-11--13
 geomorphic map development,
 8.3.1.6-10--11

present conditions (erosion) investigation
 (continued)
 activities (continued)
 hillslope erosion, 8.3.1.6-13--14
 application of results, 8.3.1.6-14--15
 interrelationships, 8.3.1.6-4, -5**
 link to supporting information, 8.3.1.6-6
 logic diagram, 8.3.1.6-8**
 parameters, 8.3.1.6-6
 purpose and objectives, 8.3.1.6-6--9
 study, 8.3.1.6-10--14
 erosion distribution and characteristics, 8.3.1.6-10--14
 technical basis for, 8.3.1.6-6--9
 pre-site characterization activities,
 disturbance due to, 8.4.2-48*--49*
 pressure control system monitoring, technical procedures for, 8.3.1.15-47, -64, -67, -70
 Prevention of Significant Deterioration, 8.3.1.12-15
 pre-waste-emplacement environment, 8.3.2.1-9--11
 pre-waste-emplacement GWTT
 parameters for determining, 8.3.1.2-155**
see also GWTT (Issue 1.6)
 pre-waste-emplacement GWTT (Information Need 1.6.4), 8.3.5.12-52--54
 activity, 8.3.5.12-53--54
 pre-waste-emplacement GWTT
 calculation, 8.3.5.12-54
 application of results, 8.3.5.12-54
 link to supporting information, 8.3.5.12-52
 logic, 8.3.5.12-52--53
 parameters, 8.3.5.12-52
 subactivities, 8.3.5.12-53--54
 GWTT (Issue 1.6) performance allocation, 8.3.5.12-53
 GWTT sensitivity and uncertainty analyses, 8.3.5.12-54
 pre-waste-emplacement GWTT determination, 8.3.5.12-54
 technical basis, 8.3.5.12-52--53
 pre-waste-emplacement GWTT calculation (Activity 1.6.4.1), 8.3.5.12-53--54
 subactivities, 8.3.5.12-53--54
 GWTT (Issue 1.6) performance allocation, 8.3.5.12-53
 GWTT sensitivity and uncertainty analyses, 8.3.5.12-54
 pre-waste-emplacement GWTT determination, 8.3.5.12-54

pre-waste-emplacement GWTT determination (Subactivity 1.6.4.1.3), 8.3.5.12-54
 description, 8.3.5.12-54
 objectives, 8.3.5.12-54
 pre-waste-emplacement travel time (Issue 1.8 favorable condition 7)
 discussion, 8.3.5.17-95
 text of condition, 8.3.5.17-3*, -95
 primary information (QA), and licensing process, 8.6-4
 primary water supply location activity, 8.3.1.16-20
 description, 8.3.1.16-20
 methods and technical procedures, 8.3.1.16-20--21
 objectives, 8.3.1.16-20
 parameters, 8.3.1.16-20
 probabilistic hazard calculations, technical procedures for, 8.3.1.17-85
 probabilistic release estimates (Information Need 1.1.5), 8.3.5.13-139--142
 application of results, 8.3.5.13-142
 link to supporting information, 8.3.5.13-139
 logic, 8.3.5.13-140
 parameters, 8.3.5.13-139--140
 performance assessment activity
 complementary cumulative distribution function calculation, 8.3.5.13-140--141
 performance assessment subactivities, 8.3.5.13-141--142
 complementary cumulative distribution function construction, 8.3.5.13-141--142
 joint probability distribution construction, 8.3.5.13-141
 total system simulator construction, 8.3.5.13-140--141
 technical basis, 8.3.5.13-139--140
 probabilistic seismic hazards analyses study, 8.3.1.17-82--85
 probability and rate of faulting activity, 8.3.1.8-68--69
 description, 8.3.1.8-68--69
 methods and technical procedures, 8.3.1.8-69
 objectives, 8.3.1.8-68
 parameters, 8.3.1.8-68
 probability calculations and assessment (volcanic) activity, 8.3.1.8-57--59

probability modeling, volcanic hazard
 technical procedures for, 8.3.1.8-59

probability of volcanic/igneous events in
 controlled area, 8.3.1.8-26, -75, -82--83,
 -95, -106, -107

probable maximum flood (PMF)
 and exploratory shaft flooding, 8.4.3-10
 and flooding potential (Issue 1.8
 potentially adverse condition 1),
 8.3.5.17-19--20
 and infiltration, 8.4.3-68--71
 and U.S. National Weather Service,
 8.3.1.16-12
 and preclosure hydrology program,
 8.3.1.16-12
 and shaft locations, 8.4.3-68
 see also floods

procedures, QA, 8.6-23--47

product 1.11.3-1, *see* area needed
 determination

product 1.11.3-2, *see* usable area and
 flexibility evaluation

product 1.11.3-3, *see* vertical vs. horizontal
 emplACEMENT decision

product 1.11.3-4, *see* drainage and moisture
 control plan

product 1.11.3-5, *see* criteria for contingency
 plan

product 1.11.4-1, *see* material inventory
 criteria

product 1.11.4-2, *see* water usage criteria

product 1.11.5-1, *see* excavation methods
 criteria

product 1.11.5-2, *see* long-term subsidence
 control strategy

product 1.11.6-1, *see* areal power density

product 1.11.6-2, *see* borehole spacing

product 1.11.6-3, *see* sensitivity studies

product 1.11.6-4, *see* strategy for containment
 enhancement

product 1.11.6-5, *see* reference calculations

program element interfaces, logic diagram,
 8.5-105, -106**

programmatic method, general, technical
 procedures for, 8.3.1.8-110, -114, -117,
 -120, -122

Project, *see* Yucca Mountain Project

Project quality assurance plan
 functions, 8.6-2
 summary, 8.6-1--7

prototype boring machine, *see* development
 prototype boring machine

prototype test program, and drilling fluids,
 8.4.2-86

prototype testing
 artificial infiltration, 8.3.1.2-173
 borehole nuclear logging, 8.3.1.2-160
 bulk-permeability test, 8.3.1.2-235
 geotomography studies, 8.3.1.2-174
 intact-fracture test--ESF, 8.3.1.2-238
 and matrix hydrologic properties,
 8.3.1.2-182, -184
 neutron access hole studies, 8.3.1.2-165
 radial borehole tests, 8.3.1.2-235
 shallow surface seismic studies,
 8.3.1.2-161
 unsaturated-zone activities, 8.3.1.2-49,
 -150

prototype tests
 G-Tunnel, 8.3.4.2-57
 Rainier Mesa, 8.3.4.2-57

Prow Pass
 and geologic investigations areal extent,
 8.3.1.4-29
 and mapping, 8.3.1.4-66

Prow Pass Member
 and crushed column experiments,
 8.3.1.3-101--102
 and drift-pumpback tests, 8.3.1.2-402**
 mass transfer kinetics, 8.3.1.3-106
 stratigraphic studies, 8.3.1.4-35
 and test well configurations,
 8.3.1.2-386**, -388**, -391**
 volcanic stratigraphy, 8.3.1.4-36*

Prow Pass nonwelded unit
 GWTT confidence levels, 8.3.5.12-19
 GWTT estimate (matrix flow), 8.3.5.13-63*
 hydrogeologic section at Yucca Mountain,
 8.3.5.13-57**
 hydrogeologic section showing pinchouts,
 8.3.5.12-15**
 isopach contour map showing thickness,
 8.3.5.12-12**
 performance parameters, 8.3.5.12-21*
 travel time plot, 8.3.5.12-14**
 and unsaturated zone, 8.3.5.12-11

Prow Pass welded unit
 GWTT confidence levels, 8.3.5.12-19
 GWTT estimate (matrix flow), 8.3.5.13-63*
 hydrogeologic section at Yucca Mountain,
 8.3.5.13-57**
 hydrogeologic section showing pinchouts,
 8.3.5.12-15**

Prow Pass welded unit (continued)
 isopach contour map showing thickness,
 8.3.5.12-12**
 performance parameters, 8.3.5.12-21*
 travel time plot, 8.3.5.12-14**
 and unsaturated zone, 8.3.5.12-11

public and institutional technical concerns
 and site characterization plan
 correlation, 8.2-18*--49*

public doses--gaseous pathway (Information Need 1.2.2), 8.3.5.14-10--13
 activities, 8.3.5.14-12--13
 carbon-14 dioxide transport
 calculation, 8.3.5.14-12
 carbon-14 gaseous pathway land-surface
 and public dose calculation,
 8.3.5.14-12--13
 application of results, 8.3.5.14-13
 link to supporting information,
 8.3.5.14-10--11
 logic, 8.3.5.14-11--12
 parameters, 8.3.5.14-11
 technical basis, 8.3.5.14-10--11

public doses--liquid pathway (Information Need 1.2.1), 8.3.5.14-9--10
 activity, 8.3.5.14-10
 ground-water pathway dose calculation,
 8.3.5.14-10
 application of results, 8.3.5.14-10
 link to supporting information, 8.3.5.14-9
 logic, 8.3.5.14-9
 parameters, 8.3.5.14-9
 technical basis, 8.3.5.14-9

public radiological exposure
 and agricultural data, 8.3.1.13-1, -2
 and cultural data, 8.3.1.13-1, -2

public radiological exposures--normal
 conditions (Issue 2.1), 8.3.5.3-1--29
 and accidental radiological releases
 (Issue 2.3), 8.3.5.5-1, -2**
 application of results, 8.3.5.3-25
 approach, 8.3.5.3-4--18
 and as low as reasonably achievable
 (ALARA), 8.3.5.3-1, -3, -18
 and compliance with regulatory limits,
 8.3.2.3-11, -12, -15
 data requirements, 8.3.5.3-21*--22*
 design criteria development, 8.3.5.3-9
 and design performance assessment,
 8.3.2.3-36, -42
 functional requirement identification,
 8.3.5.3-8

public radiological exposures--normal
 conditions (Issue 2.1) (continued)
 functions, performance measures/goals,
 8.3.5.3-10*
 geohydrology program parameter calls,
 8.3.1.2-10*--11*
 information needs, 8.3.5.3-20--25
 site and design information needed
 (preclosure radiological safety)
 (2.2.1), 8.3.5.3-20--25
see specific information need for
 activity listings
 input item identification, 8.3.5.3-9
 interrelationships of information needs,
 8.3.5.3-19--20
 issue resolution strategy, 8.3.5.3-1--20
 and land ownership and mineral rights
 program, 8.3.1.11-1
 licensing strategy overview, 8.3.5.3-4--5
 logic diagram, 8.3.5.3-6**--7**
 logic diagram for repository design
 criteria for radiological safety
 (Issue 2.7), 8.3.2.3-13*--14**
 major events and completion dates,
 8.3.5.3-27*--28*; 8.5-58, -59**
 and meteorology program, 8.3.1.12-1, -2*,
 -4**, -5--6; 8.3.5.3-11*, -13*,
 -21*--22*
 and offsite installations program,
 8.3.1.13-1, -2; 8.3.5.13-61*
 and other design and performance
 assessment issues, 8.3.2.1-2**;
 8.3.4.1-2**; 8.3.5.3-2**
 performance allocation to system elements,
 8.3.5.3-9
 performance and design parameter calls,
 8.3.5.3-11*--14*
 performance evaluation, 8.3.5.3-18
 and population centers and wind patterns
 investigation, 8.3.1.12-25--26
 and population density and distribution
 program, 8.3.1.10-1; 8.3.5.3-4, -21*
 and preclosure design and technical feasibility
 (Issue 4.4), 8.3.5.3-2**, -6**
 and preclosure radiological safety qualifying
 and disqualifying conditions,
 8.3.5.6-6*
 and public radiological safety assessment
 package, 8.3.5.3-6**--7**
 and radiological safety (preclosure)
 qualifying and disqualifying conditions,
 8.3.5.6-6*

public radiological exposures--normal conditions (Issue 2.1) (continued)
 regulatory basis, 8.3.5.3-3--4
 and repository design criteria for radiological safety (Issue 2.7), 8.3.2.3-1, -2**; 8.3.5.3-2**, -6**
 schedule, 8.3.5.3-25--29; 8.5-58, -59**
 site data requests, 8.3.5.3-11*--14*
 and surface water data, 8.3.5.3-21*
 and thermal and mechanical properties program, 8.3.5.3-13*
 and worker radiological safety (Issue 2.2), 8.3.5.4-1, -2**

public radiological safety
 analytical approach, 8.3.5.1-13--17
 and design evaluation, 8.3.5.1-13
 and preclosure risk assessment methodology (PRAM) program, 8.3.5.3-9, -16, -23, -24
 and public radiation exposure, 8.3.5.1-15
 and radiation source characteristics, 8.3.5.1-14
 and radionuclide transport, 8.3.5.1-15

public radiological safety assessment package
 design evaluation, 8.3.5.3-9, -15
 public radiation exposure calculation, 8.3.5.3-17--18
 and public radiological exposures (Issue 2.1), 8.3.5.3-6**--7**
 radiation source characteristics, 8.3.5.3-15--16
 radionuclide transport evaluation, 8.3.5.3-16--17

public radiological safety--normal
 operations, advanced conceptual design assessment, see advanced conceptual design assessment
 public radiological safety--normal operations

public radiological safety site data parameter refinement (Performance Assessment Activity 2.1.1.1), 8.3.5.3-23--24
 description, 8.3.5.3-23--24
 objectives, 8.3.5.3-23
 parameters, 8.3.5.3-23

pumping tests
 large scale, technical procedures, 8.3.1.2-398--400
 technical procedures for, 8.3.1.2-373, -375, -398--400
 test well configurations, 8.3.1.2-386**, -388**, -391**

pumping tests (continued)
 and unsaturated-zone exploration, 8.4.2-78--79
 water use estimates, 8.4.2-85*
 at wells throughout site, 8.3.1.2-409

QA
 application, 8.6-19--23
 before site characterization, 8.6-19
 during site characterization, 8.6-19--23
 organization of project, 8.6-10--19
 organizational responsibilities, 8.6-10--19
 Contracts and Property Division, 8.6-16
 Department of Energy Headquarters, 8.6-10--12
 Department of Energy, Nevada Operations, 8.6-12
 Department of Energy, Project Office, 8.6-12, -13**; -14--16
 Health Physics and Environmental Division, 8.6-16
 Nevada Test Site support contractors, 8.6-17--18
 participating organizations, 8.6-17--19
 Project participants, 8.6-18--19
 Safety and Health Division, 8.6-16
 SAIC/T&MSS, 8.6-16--17
 Project approach, 8.6-2--7
 site characterization plan, 8.3.1.1-8

QA Level I
 application, 8.6-5--6
 description, 8.6-4--5

QA Level II
 application, 8.6-6--7
 description, 8.6-6

QA Level III
 description and application, 8.6-7

QA levels
 applications, 8.6-4--7
 assignment, 8.6-2--4
 description, 8.6-2--7

QA plan
 summary, 8.6-1--7
 and 10 CFR 60 Subpart G, 8.6-1

QA plan criterion 1, organization
 Project procedures, 8.6-25*

QA plan criterion 2, QA program
 Project procedures, 8.6-26**--27*

QA plan criterion 3, scientific investigations and design control
 Project procedures, 8.6-28*--30*

QA plan criterion 4, procurement document control
 Project procedures, 8.6-31*

QA plan criterion 5, instructions, procedures, plans, and drawings
 Project procedures, 8.6-32*--33*

QA plan criterion 6, document control
 Project procedures, 8.6-34*

QA plan criterion 7, control of prepurchased items and services
 Project procedures, 8.6-35*

QA plan criterion 8, identification and control of items
 Project procedures, 8.6-36*

QA plan criterion 9, control of processes
 Project procedures, 8.6-37*

QA plan criterion 10, inspection
 Project procedures, 8.6-38*

QA plan criterion 11, test control
 Project procedures, 8.6-39*

QA plan criterion 12, control of measuring and test equipment
 Project procedures, 8.6-40*

QA plan criterion 13, handling, shipping, and storing
 Project procedures, 8.6-41*

QA plan criterion 14, inspection, test, and operating status
 Project procedures, 8.6-42*

QA plan criterion 15, control of nonconforming items
 Project procedures, 8.6-43*

QA plan criterion 16, corrective action
 Project procedures, 8.6-44*

QA plan criterion 17, quality assurance records
 Project procedures, 8.6-45*

QA plan criterion 18, audits
 Project procedures, 8.6-46*

QA procedures, 8.6-23--47

QA program, 8.4.1-2--3; 8.6-1--47

QA program plan criteria, 8.6-24*

QA program plans
 functions, 8.6-2
 participating organizations, 8.6-2, -3*

QA requirements, 8.6-7--10
 sources of criteria, 8.6-8**

Q-list, 8.3.5.1-11, -12; 8.3.5.5-19, -28
 and preclosure safety assessment, 8.3.5.1-2, -3**, -5**
 and Project quality assurance, 8.6-3--4
 and 10 CFR 60 Subpart G, 8.6-3--4
 see also facilities important to safety, importance analyses, important to safety, and items important to safety

Q-list items, preliminary, 8.6-20

qualifying and disqualifying conditions-- findings, 8.3.5.6-2*

 definition, 8.3.5.7-2*; 8.3.5.18-2*, -3

quality activities
 definition, 8.6-21
 preliminary list, 8.6-21

quality assurance, see QA

quality of liquid water contacting containers, engineered environment, impacts on, 8.4.3-77--78

quantity of liquid water contacting containers, engineered environment, impacts on, 8.4.3-75--78

Quaternary datum offset, mapping and analysis, 8.3.1.17-159--161
 technical procedures for, 8.3.1.17-162--167

Quaternary deposit dating, technical procedures for, 8.3.1.17-97

Quaternary discharge areas, 8.3.1.5-100

Quaternary fault displacement and Rock Valley fault zone, 8.3.1.17-133--137

Quaternary fault movement age and recurrence activity, 8.3.1.17-157--168
 description, 8.3.1.17-158--161
 methods and technical procedures, 8.3.1.17-162--167
 objectives, 8.3.1.17-157
 parameters, 8.3.1.17-157--158

Quaternary fault offset
 and ground-water flow, 8.3.1.8-81

Quaternary faulting at Nevada Test Site, synthesis, technical procedure for, 8.3.1.17-203

Quaternary faulting proximal to site study, 8.3.1.17-132--143
 activities, 8.3.1.17-133--143
 Cane Spring fault system evaluation, 8.3.1.17-142--143
 Mine Mountain fault system evaluation, 8.3.1.17-138--139
 Rock Valley fault system evaluation, 8.3.1.17-133--136

Quaternary faulting proximal to site study
 (continued)
 activities (continued)
 Stagecoach Road fault zone evaluation,
 8.3.1.17-139--141
 objectives, 8.3.1.17-132--133

Quaternary faulting within 100 km of Yucca Mountain activity, 8.3.1.17-119--127
 description, 8.3.1.17-120--123
 methods and technical procedures,
 8.3.1.17-124--127
 objectives, 8.3.1.17-119--120
 parameters, 8.3.1.17-120

Quaternary faulting within 100 km of Yucca Mountain study, 8.3.1.17-97--132
 activities, 8.3.1.17-105--132
 Bare Mountain fault zone evaluation,
 8.3.1.17-128--130
 Cedar Mountain earthquake and Walker Lane wrench tectonics,
 8.3.1.17-127--128
 fault and fracture regional pattern evaluation, 8.3.1.17-131--132
 geophysical surveys in east-west transect crossing site,
 8.3.1.17-105--106, -115--119

Quaternary faulting within 100 km of Yucca Mountain, 8.3.1.17-119--127

Quaternary faulting within 100 km of Yucca Mountain--morphometric and morphologic analysis activity, 8.3.1.17-191--193
 description, 8.3.1.17-192
 methods and technical procedures,
 8.3.1.17-193
 objectives, 8.3.1.17-191
 parameters, 8.3.1.17-191

Quaternary faulting within site area study, 8.3.1.17-154--168
 activities, 8.3.1.17-155--168
 Quaternary fault age and movement-recurrence, 8.3.1.17-157--168
 Quaternary geology and faults at Yucca Mountain, 8.3.1.17-155--157

Quaternary faults, 8.3.1.8-68, -69
 and earthquake sources, 8.3.1.17-82
 mapping, plans and technical procedures for, 8.3.1.17-121, -122, -124--126, -156, -157, -160, -161, -162--167
 and Midway Valley, 8.3.1.17-28
 recurrence intervals, 8.3.1.8-94
 and rock geochemical properties,
 8.3.1.8-101

Quaternary faults (continued)
 and tectonic model, 8.3.1.8-52
 and Walker Lane, 8.3.1.17-97, -100**, -102, -103, -155
 and waste package, 8.3.1.8-27, -68, -69
 and waste package rupture, 8.3.1.8-69
 Yucca Mountain, 8.3.1.17-104**

Quaternary faults at Yucca Mountain, (subsurface geometry and extensions) study, 8.3.1.17-168--178
 activities, 8.3.1.17-169--178
 aeromagnetic survey (detailed), 8.3.1.17-172
 buried fault detection using gamma-ray measurements, 8.3.1.17-175--176
 gravity survey (detailed), 8.3.1.17-171
 ground magnetic survey (detailed), 8.3.1.17-172--173
 reflection and refraction (intermediate depth) methods, 8.3.1.17-169--171
 shallow seismic reflection method evaluation, 8.3.1.17-177--178
 surface geoelectric method evaluation, 8.3.1.17-173--174
 thermal infrared method evaluation, 8.3.1.17-176--177

Quaternary geology and faults at Yucca Mountain, activity, 8.3.1.17-155--157
 description, 8.3.1.17-156
 methods and technical procedures, 8.3.1.17-157
 objectives, 8.3.1.17-155
 parameters, 8.3.1.17-155--156

Quaternary ground-water conditions, 8.3.1.5-92--93
 levels and past discharge, 8.3.1.5-100

Quaternary igneous activity and heat flow, 8.3.1.8-128

Quaternary normal and detachment faults--Yucca Mountain, location map, 8.3.1.17-29**

Quaternary processes affecting isolation (Issue 1.8 favorable condition 1)
 text of condition and discussion, 8.3.5.17-2*, -89, -91

Quaternary regional hydrology characterization study, 8.3.1.5-93--118
 activities, 8.3.1.5-94--118
 analog recharge studies, 8.3.1.5-106--110

Quaternary regional hydrology characterization study (continued)
 activities (continued)
 calcite and opaline silica vein
 deposits studies, 8.3.1.5-110--118
 evaluation of past discharge areas,
 8.3.1.5-98--106
 Quaternary unsaturated-zone
 hydrochemical analysis,
 8.3.1.5-96--98
 regional paleoflood evaluation,
 8.3.1.5-94--96
 objectives, 8.3.1.5-93
 Quaternary scarps, plans and technical procedures, 8.3.1.17-121, -122, -124, -125--126
 Quaternary silicic volcanism literature survey activity, 8.3.1.17-54
 description, 8.3.1.17-54
 methods and technical procedures,
 8.3.1.17-54
 objectives, 8.3.1.17-54
 parameters, 8.3.1.17-54
 Quaternary slip rates, 8.3.1.8-84
 Quaternary (major) structural features,
 location of, 8.3.1.17-100**
 Quaternary subsidence, 8.3.1.8-87
 Quaternary tectonic activity
 and erosion, 8.3.1.6-23
 Quaternary uplift, 8.3.1.8-84
 Quaternary uplift and subsidence evaluation activity, 8.3.1.17-189--191
 description, 8.3.1.17-189--190
 methods and technical procedures,
 8.3.1.17-190--191
 objectives, 8.3.1.17-189--171
 parameters, 8.3.1.17-189
 Quaternary unsaturated-zone hydrochemical analysis activity, 8.3.1.5-96--98
 description, 8.3.1.5-96--97
 methods and technical procedures,
 8.3.1.5-97--98
 objectives, 8.3.1.5-96
 parameters, 8.3.1.5-96
 Quaternary wrench faulting--synthesis,
 technical procedures for, 8.3.1.17-202

radial borehole tests in ESF, 8.3.1.2-233, -235, -281--292
 constraints and zones of influence,
 8.4.2-137

radial borehole tests in ESF (continued)
 purpose and operations, 8.4.2-136
 schematic, 8.3.1.2-283**
 radial borehole tests in ESF activity,
 8.3.1.2-281--292
 description, 8.3.1.2-282--285
 methods and technical procedures,
 8.3.1.2-285--292
 objectives, 8.3.1.2-281
 parameters, 8.3.1.2-281--282
 radiation effect on water chemistry (Activity 1.10.4.1.5), 8.3.4.2-47--48
 description, 8.3.4.2-47--48
 objectives, 8.3.4.2-47
 parameters, 8.3.4.2-47
 radiation environment (worker) (Information Need 2.2.1), 8.3.5.4-18--21
 activities, 8.3.5.4-20--21
 advanced conceptual design assessment
 of radiation environment--normal
 operations, 8.3.5.4-20--21
 radiation environment site data
 refinement, 8.3.5.4-20
 application of results, 8.3.5.4-21
 link to supporting information,
 8.3.5.4-18--19
 logic, 8.3.5.4-19
 parameters, 8.3.5.4-19
 technical basis for, 8.3.5.4-18--19
 radiation environment site data refinement (Activity 2.2.1.1), 8.3.5.4-20
 description, 8.3.5.4-20
 objectives, 8.3.5.4-20
 parameters, 8.3.5.4-20
 radiation safety design, see repository design criteria for radiological safety (Issue 2.7)
 radioactive material decontamination, 8.7-2
 radiocarbon dating of pack rat midden macrofossils, technical procedures for,
 8.3.1.5-56
 radio-frequency ground-conductivity surveys,
 technical procedures for, 8.3.1.5-106
 radiological exposures
 and agricultural data, 8.3.1.13-1, -2
 assessment of, 8.3.1.13-11
 and cultural data, 8.3.1.13-1, -2
 and offsite installations program,
 8.3.1.13-7
 see also radiological protection
 Radiological Monitoring Plan, 8.3.1.13-6
 and offsite installations program,
 8.3.1.13-2

Radiological Monitoring Plan (continued)

- and population density and distribution program, 8.3.1.10-1
- and radiological safety design data, 8.3.2.3-40*-41*

radiological protection

- and ground-water and repository rock data, 8.3.2.3-40
- as low as reasonably achievable (ALARA), 8.3.2.3-36
- and meteorological data, 8.3.2.3-40
- surface characteristics program parameter calls, 8.3.1.14-19*, -21*, -64

radiological protection (Information Need 2.7.1), 8.3.2.3-39--45

- agricultural and cultural data, 8.3.2.3-41
- application of results, 8.3.2.3-42
- design activity**
 - compliance with radiological safety design criteria and performance goals, 8.3.2.3-42
- interrelationships, 8.3.2.3-36--39
- link to the technical data, 8.3.2.3-39
- logic, 8.3.2.3-41--42
- meteorological data, 8.3.2.3-40
- parameters, 8.3.2.3-39--41
- repository rock and ground-water data, 8.3.2.3-40
- technical basis for, 8.3.2.3-39

radiological protection, function 1

- functional requirements of mined geologic disposal system, 8.3.2.3-12, -15, -17*-23*

radiological releases

- and meteorology, 8.3.1.12-3
- from nuclear facilities (not nuclear fuel cycle), 8.3.1.13-10
- and Nuclear Waste Policy Act, 8.3.1.12-14
- offsite, 8.3.1.13-1
- and offsite installations, 8.3.1.13-3
- offsite nuclear fuel cycle facilities, 8.3.1.13-4
- regulatory limits, 8.3.1.2-1--2
- and resource extraction, 8.3.1.9-21
- and seal program, 8.3.3.2-24--25
- and Strombolian eruptions, 8.3.1.8-59

radiological releases (accidental) (Information Need 2.3.2), 8.3.5.5-24--29

- application of results, 8.3.5.5-29
- link to supporting information, 8.3.5.5-24
- logic, 8.3.5.5-26

radiological releases (accidental) (Information Need 2.3.2) (continued)

- parameters, 8.3.5.5-24--26
- performance assessment activities, 8.3.5.5-26--29
- accident consequence analyses, 8.3.5.5-27
- accident sensitivity and importance analyses, 8.3.5.5-28
- accidental radiological releases safety analyses, documentation, 8.3.5.5-28--29
- accidental radiological releases site data refinement, 8.3.5.5-26--27
- technical basis for, 8.3.5.5-24--26

radiological risk

- accident sequence analysis, 8.3.5.1-10--11
- accidents, 8.3.5.1-4--6, -7--12; 8.3.5.5-11
- assessment, general approach, 8.3.5.5-11, -17
- categories, 8.3.5.1-2, -3**, -5**
- common cause failure analysis, 8.3.5.1-10
- and consequence analysis, 8.3.5.1-11
- decommissioning accidents, 8.3.5.1-6
- event tree development, 8.3.5.1-9
- human reliability analysis, 8.3.5.1-10
- and importance analyses, 8.3.5.1-11--12; 8.3.5.5-17
- initiating events identification, 8.3.5.1-7--9
- in-plant consequence analysis, 8.3.5.1-11
- offsite consequence analysis, 8.3.5.1-11
- and preclosure risk assessment methodology (PRAM) program 8.3.5.1-2, -10--11, -19--20
- repository systems analysis, 8.3.5.1-9--10
- retrieval accidents, 8.3.5.1-6
- from routine operations, analytical approach, 8.3.5.1-12--21
- scenarios, 8.3.5.1-5--6
- uncertainty, sensitivity, and importance analysis, 8.3.5.1-11--12

radiological safety

- compliance (Design Activity 2.7.1.1), 8.3.2.3-42
- design assessment, 8.3.2.3-36
- design criteria, 8.3.2.3-1--39
- design objectives, 8.3.2.3-16, -17*-29*, -36
- and geologic repository operations area, 8.3.2.3-3

radiological safety (continued)
 identification of functional requirements
 for issue resolution strategy,
 8.3.2.3-12
 and land ownership and mineral rights
 program, 8.3.1.11-1
 and Radiological Monitoring Plan,
 8.3.2.3-40*-41*
 and radon, 8.3.2.3-41
see also repository design criteria for
 radiological safety (Issue 1.7); public
 radiological exposures--normal
 conditions (Issue 2.1); and worker
 radiological safety--normal conditions
 (Issue 2.2)
 radiological safety (preclosure), higher
 level findings, see higher level findings--
 preclosure radiological safety (Issue 2.5)
 radiological safety assessment of accidents
 analytical approach, 8.3.5.5-7**, -11,
 -17, -19, -20
 radiological safety (preclosure) qualifying
 and disqualifying conditions
 preliminary findings, 8.3.5.6-3*
 and public radiological exposures--normal
 conditions (Issue 2.1), 8.3.5.6-6*
 and worker radiological safety--normal
 conditions (Issue 2.2), 8.3.5.6-6*
 radiometric and remote sensing methods
 geophysical activities, 8.3.1.4-50*-51*
 preclosure and postclosure tectonics,
 8.3.1.17-110*
 radionuclide
 concentrations
 and airborne radioactive materials,
 8.3.5.1-15, -19; 8.3.5.3-16;
 8.3.5.4-15, -19
 data considered, higher level
 findings--preclosure radiological
 safety (Issue 2.5), 8.3.5.6-10*
 and glass performance modeling,
 8.3.5.10-69
 ground-water regulatory limits,
 8.3.5.3-4; 8.3.5.4-3; 8.3.5.15-1
 and near-field environment,
 8.3.5.10-79
 and sorption model, 8.3.5.10-66
 elution rate, 8.3.1.3-105--106
 inventory
 values used in system-level models,
 8.3.5.13-68*-69*

radionuclide (continued)
 migration
 and mineral assemblages,
 8.3.5.17-2*, -93
 in near-field host rock performance
 allocation, 8.3.5.10-31*
 releases
 and accessible environment, 8.3.5.8-8
 EBS, see EBS release rates (Issue 1.5)
 exploratory drilling, 8.3.5.13-85*
 and waste package design, see waste
 package design features (affecting
 radionuclide release) needed
 from waste package near-field
 environment, see waste package
 near-field releases (Information
 Need 1.5.5)
see also radiological releases
 retardation, Calico Hills, 8.3.5.8-9
 solubility, 8.3.5.10-36--37
 source term for near-field host rock
 performance measures/parameters/goals,
 8.3.5.10-32*-33*
 sources, natural, see radon
 transport evaluation
 worker radiological safety, 8.3.5.1-19
 travel, fastest path of
 determination of, 8.3.5.12-13
 radionuclide dispersion, diffusion, advection
 investigation, 8.3.1.3-95--115
 activities
 crushed tuff column experiments,
 8.3.1.3-101--105
 diffusion through saturated tuff slab,
 8.3.1.3-113--114
 diffusion through unsaturated tuff
 block, 8.3.1.3-114--115
 filtration, 8.3.1.3-110--111
 fractured tuff column studies,
 8.3.1.3-109--110
 mass transfer kinetics,
 8.3.1.3-105--107
 radiometric uptake on rock beakers,
 8.3.1.3-112--113
 unsaturated tuff columns,
 8.3.1.3-107--108
 application of results, 8.3.1.3-115
 interrelationships, 8.3.1.3-31, -32**
 link to supporting information, 8.3.1.3-95
 logic diagram, 8.3.1.3-32**
 parameters, 8.3.1.3-95--96
 purpose and objectives, 8.3.1.3-96--97

radionuclide dispersion, diffusion, advection investigation (continued)
 studies, 8.3.1.3-100--114
 diffusion, 8.3.1.3-112--114
 dynamic transport column experiments,
 8.3.1.3-100--111
 technical basis for, 8.3.1.3-95--114
 technical rationale, 8.3.1.3-97, -99--100

radionuclide distribution in tuff wafers
 (Subactivity 1.5.5.1.1), 8.3.5.10-80--81

radionuclide movement (gaseous) (Issue 1.8
 potentially adverse condition 24)
 discussion, 8.3.5.17-89
 performance parameters and goals,
 8.3.5.17-90*
 related studies and activities,
 8.3.5.17-90*
 scenario classes, 8.3.5.17-90*
 text of condition, 8.3.5.17-7*

radionuclide precipitation investigation,
 8.3.1.3-85--95
 activities
 colloid formation characterization
 and stability, 8.3.1.3-93--94
 colloid modeling, 8.3.1.3-94
 solubility measurements,
 8.3.1.3-88--91
 solubility modeling, 8.3.1.3-92
 speciation measurements,
 8.3.1.3-91--92

application of results, 8.3.1.3-94--95
 interrelationships, 8.3.1.3-28, -30**, -31
 link to supporting information,
 8.3.1.3-85
 logic diagram, 8.3.1.3-30**
 parameters, 8.3.1.3-85--86
 purpose and objectives, 8.3.1.3-86
 studies, 8.3.1.3-88--93
 colloid behavior, 8.3.1.3-93--95
 dissolved species concentration
 limits, 8.3.1.3-88--92
 technical basis for, 8.3.1.3-85--94
 technical rationale, 8.3.1.3-86--88

radionuclide releases for scenario classes
 (Information Need 1.1.4), 8.3.5.13-135--139
 application of results, 8.3.5.13-139
 link to supporting information,
 8.3.5.13-135
 logic, 8.3.5.13-136--137
 parameters, 8.3.5.13-136

radionuclide releases for scenario classes
 (Information Need 1.1.4) (continued)
 performance assessment activities,
 8.3.5.13-137--139
 scenario class vs. relative
 consequence screening,
 8.3.5.13-137--138
 scenario classes for significant
 processes and events,
 8.3.5.13-138--139

performance assessment subactivities
 scenario class final screening,
 8.3.5.13-137--138
 scenario-class model (final)
 development, 8.3.5.13-139
 scenario-class model (preliminary)
 development, 8.3.5.13-138
 scenario class preliminary screening,
 8.3.5.13-137

technical basis, 8.3.5.13-135--136

radionuclide retardation, gaseous investi-
 gation, 8.3.1.3-134--138 (see also gaseous
 radionuclide retardation investigation)

radionuclide retardation investigation,
 8.3.1.3-116--133
 activities
 geochemical/geophysical model,
 8.3.1.3-123--125
 physical/chemical processes affecting
 transport, 8.3.1.3-119--122
 transport models and related support,
 8.3.1.3-125--127

applicability of laboratory data,
 8.3.1.3-127--132

application of results, 8.3.1.3-133
 interrelationships, 8.3.1.3-31, -33**,
 -34

link to supporting information,
 8.3.1.3-116
 logic diagram, 8.3.1.3-33**
 parameters, 8.3.1.3-116
 purpose and objectives, 8.3.1.3-117
 studies, 8.3.1.3-118--138
 laboratory data applicability to
 transport calculation,
 8.3.1.3-127--128
 retardation sensitivity analysis,
 8.3.1.3-118--127

technical basis for, 8.3.1.3-116--133
 technical rationale, 8.3.1.3-117

radionuclide sorption investigation,
8.3.1.3-65--85
 activities
 batch sorption measurements,
 8.3.1.3-69--73, -73*
 sorption as function of ground-water
 composition, 8.3.1.3-76--77
 sorption as function of element
 concentrations, 8.3.1.3-74--76
 sorption data statistical analysis,
 8.3.1.3-79
 sorption on particulates and colloids,
 8.3.1.3-77--79
 application of results, 8.3.1.3-84--85
 interrelationships, 8.3.1.3-28, -29**
 link to supporting information,
 8.3.1.3-65--66
 logic diagram, 8.3.1.3-29**
 parameters, 8.3.1.3-66--67
 purpose and objectives, 8.3.1.3-67--68
 studies, 8.3.1.3-68--83
 batch sorption studies, 8.3.1.3-68--79
 biological sorption and transport,
 8.3.1.3-80--82
 sorption models development,
 8.3.1.3-83
 technical basis for, 8.3.1.3-65--83
 technical rationale, 8.3.1.3-67--68
 radionuclide transport, see transport
 radionuclide transport modeling--near-field
 waste package envelope (Activity 1.5.5.2),
 8.3.5.10-81
 subactivities, 8.3.5.10-81--82
 near-field transport model
 application, 8.3.5.10-82
 near-field transport model validation,
 8.3.5.10-81
 radionuclide transport parameter determination
 (Activity 1.5.5.1), 8.3.5.10-80--81
 subactivities, 8.3.5.10-80--81
 radionuclide distribution in tuff
 cores, 8.3.5.10-81
 radionuclide distribution in tuff
 wafers, 8.3.5.10-80--81
 radionuclide travel pathways
 and effects of fault offset,
 8.3.1.8-103--104
 see also GWTT (Issue 1.6)
 radionuclide uptake on rock breakers in
 saturated system activity, 8.3.1.3-112--113
 description, 8.3.1.3-112--113

radionuclide uptake on rock breakers in
 saturated system activity (continued)
 methods and technical procedures,
 8.3.1.3-113
 objectives, 8.3.1.3-112
 parameters, 8.3.1.3-112
 radium-226, sorption, 8.3.1.3-67
 radon, 8.3.5.3-5
 monitoring and Mine Safety and Health
 Administration, 8.3.5.4-4, -8
 and radiological safety design, 8.3.2.3-42
 radon emanation rate, 8.3.5.1-14; 8.3.5.3-16
 public radiological exposures--normal
 conditions (Issue 2.1) parameter calls,
 8.3.5.3-22*
 radon emission measurements
 and canister-scale experiment, 8.3.1.15-55
 technical procedures for, 8.3.1.15-56, -75
 Railroad Valley
 and hydrocarbon assessment, 8.3.1.9-38
 rainfall simulation studies, 8.3.1.2-164,
 -170, -175--196
 technical procedures for, 8.3.1.2-177--178
 Rainier Mesa
 and anelastic strain recovery experiments,
 8.3.1.15-79
 and current understanding of mechanical
 response of tuff, 8.3.2.5-68
 geomechanical analyses, 8.3.2.1-21
 prototype tests, 8.3.4.2-57
 and recharge, 8.3.1.5-122
 see also G-Tunnel
 RAYGUN, sorption, 8.3.1.3-65
 reactive tracer testing
 at C-hole sites, 8.3.1.2-400, -417--423
 models, 8.3.1.2-419, -423--424
 at wells throughout site, 8.3.1.2-423--424
 see also tracers
 reactive tracers, technical procedures for
 identification and characterization,
 8.3.1.2-421
 test modeling, 8.3.1.2-421
 receiving, system element 1.2.2.1
 and equipment demonstration, 8.3.2.5-59
 recharge
 data needs, 8.3.1.2-89--90
 estimation, technical procedures for,
 8.3.1.5-110

recharge (continued)
 and pluvial conditions, 8.3.1.5-92

recharge due to climate changes, saturated zone activity, 8.3.1.5-121--122
 description, 8.3.1.5-121--122
 methods and technical procedures, 8.3.1.5-122
 objectives, 8.3.1.5-121
 parameters, 8.3.1.5-121

recharge studies
 analog activity, 8.3.1.5-106--110
 analog sites, 8.3.1.5-107
 Fortymile Wash, 8.3.1.2-97, -125--133, -146
 ground-water level effects, 8.3.1.2-146--147

recreation, and human interference, 8.3.1.9-23

recurrence curve frequency calculation, technical procedures for, 8.3.1.17-84

recurrence intervals of extreme weather investigation, see extreme weather
 recurrence intervals investigation

reference calculations
 analysis of underground repository and reference information base, 8.3.2.5-75
 information needed, 8.3.2.2-68*
 product 1.11.6-5, thermal/thermomechanical modeling, 8.3.2.2-38
 rationale for analysis of underground repository facilities, 8.3.2.5-75, -81
 status, 8.3.2.2-71

reference calculations (Design Activity 1.11.6.5), 8.3.2.2-74
 objective, 8.3.2.2-74

reference information base (RIB)
 and credible accident sequences, 8.3.5.5-20
 and postclosure performance assessment strategy, 8.3.5.8-4
 and preclosure radiological safety, 8.3.5.3-20
 and reference calculations for analysis of underground repository, 8.3.2.5-75
 and reference preclosure repository design, 8.3.2.5-52--53
 and public radiological safety evaluation, 8.3.5.1-13; 8.3.5.3-9; 8.3.5.5-24
 and sealing performance goals, 8.3.3.2-6
 three-dimensional thermal/mechanical stratigraphy, 8.3.2.2-40
 and worker radiological safety evaluation 8.3.5.1-17; 8.3.5.4-14; 8.3.5.5-24

reference information base (RIB) (continued)
 and worker radiological safety--normal conditions (Issue 2.2), 8.3.5.4-14, -22

reference postclosure design (Design Activity 1.11.7.1), 8.3.2.2-77

reference postclosure underground designs (Information Need 1.11.7), 8.3.2.2-75--88
 application of results, 8.3.2.2-77--78
 and containment by waste package (Issue 1.4), 8.3.2.2-76, -78

design activities, 8.3.2.2-77
 documentation of compliance, 8.3.2.2-77
 reference postclosure repository design, 8.3.2.2-77

and EBS release rates (Issue 1.5), 8.3.2.2-76, -78

and ground-water protection (Issue 1.3), 8.3.2.2-76, -78

and GWT (Issue 1.6), 8.3.2.2-76, -78

and higher level findings--postclosure (Issue 1.9), 8.3.2.2-76, -78

interrelationships, 8.3.2.2-20--23, -22**

introduction, 8.3.2.2-75
 link to supporting information, 8.3.2.2-75--76
 logic, 8.3.2.2-76--77
 and NRC siting criteria (Issue 1.8), 8.3.2.2-76, -78
 parameters, 8.3.2.2-76
 technical basis for, 8.3.2.2-75--76
 and total system performance (Issue 1.1), 8.3.2.2-76, -78

reference postclosure underground facility design and postclosure design and technical feasibility (Issue 4.4), 8.3.2.2-76

reference preclosure repository design (Information Need 4.4.5), 8.3.2.5-52--56
 and advanced conceptual design, 8.3.2.5-52--53
 application of results, 8.3.2.5-56
 introduction, 8.3.2.5-52--53
 and license application design, 8.3.2.5-53
 link to supporting information, 8.3.2.5-53
 logic, 8.3.2.5-54
 parameters, 8.3.2.5-53
 reference information base, 8.3.2.5-53
 and site characterization plan-conceptual design report, 8.3.2.5-52

reference preclosure repository design
(Information Need 4.4.5) (continued)
 supporting activities not requiring site
 data, 8.3.2.5-54--55
 supporting activities requiring site data,
 8.3.2.5-55--56
 technical basis for, 8.3.2.5-53--56

reference properties for reference information
base (Design Activity 1.11.1.4), 8.3.2.2-40
 objectives, 8.3.2.2-40

reference seal designs (Information Need
1.12.4), 8.3.3.2-64--69
 application of results, 8.3.3.2-69
 design activities, 8.3.3.2-65--69
 advanced conceptual design for
 sealing, 8.3.3.2-65--67
 license application design for
 sealing, 8.3.3.2-67--69

design subactivities
 advanced conceptual design for seals,
 8.3.3.2-67
 license application design for seals,
 8.3.3.2-69

subsystem design requirements for
 advanced conceptual design,
 8.3.3.2-65--66

subsystem design requirements for
 license application design,
 8.3.3.2-68

tradeoffs for advanced conceptual
 design, 8.3.3.2-66--67

tradeoffs for license application
 design, 8.3.3.2-68--69

link to supporting information, 8.3.3.2-64
 logic, 8.3.3.2-65
 parameters, 8.3.3.2-65
 technical basis for, 8.3.3.2-64--69

reference thermal/mechanical stratigraphy,
 product site characteristics for underground
 facility design (Information Need 1.11.1),
 8.3.2.2-23

reference waste package designs (Information
Need 1.10.2), 8.3.4.2-35--36
 application of results, 8.3.4.2-36
 link to supporting information, 8.3.4.2-35
 logic, 8.3.4.2-36
 parameters, 8.3.4.2-35--36
 technical basis for, 8.3.4.2-35--36

reference waste package emplacement
configuration (Information Need 1.10.3),
 8.3.4.2-37--39
 application of results, 8.3.4.2-39

reference waste package emplacement
configuration (Information Need 1.10.3)
(continued)
 link to supporting information, 8.3.4.2-37
 logic, 8.3.4.2-38
 parameters, 8.3.4.2-37--38
 technical basis for, 8.3.4.2-37--39

reference water
 well J-13, 8.3.4.1-4; 8.3.4.2-23
 see also well J-13

reflection and refraction (intermediate
depth) method evaluation activity,
 8.3.1.17-169--171
 description, 8.3.1.17-170
 methods and technical procedures,
 8.3.1.17-170--171
 objectives, 8.3.1.17-169--170
 parameters, 8.3.1.17-170

reflection surveys, technical procedures for,
 8.3.1.17-171

regional carbonate aquifer
 and ground-water discharge, 8.3.1.5-100

regional changes in tectonic regimes
 disruptive scenario classes, evaluation
 of, 8.4.3-71

regional climate
 future, 8.3.1.5-78--88
 synoptic characterization, 8.3.1.5-40--42

regional climate modeling activity,
 8.3.1.5-83--84
 description, 8.3.1.5-83--84
 methods and technical procedures,
 8.3.1.5-84
 objective, 8.3.1.5-83
 parameters, 8.3.1.5-83

regional ground-water flow model, technical
procedures for, 8.3.1.5-122

regional ground-water flow system
 characterization study, 8.3.1.2-114--137
 (see also ground-water flow system
(regional)
 study)

regional hydrochemical characterization
activity, 8.3.1.2-431--433

regional hydrologic system investigation,
 8.3.1.2-92--147 (see also hydrologic system
(regional) investigation)

regional hydrologic system synthesis and
modeling study, 8.3.1.2-137--147 (see also
hydrologic system synthesis and modeling
(regional) study)

regional lateral crustal movement, see
 crustal movement (lateral), regional
 characterization study

regional meteorology investigation,
 8.3.1.12-1, -3, -4**, -6--13 (see also
 meteorology investigation (regional))

regional model, climate program
 current representation and alternative
 hypotheses, 8.3.1.5-18**-21*

regional paleoflood evaluation activity,
 8.3.1.5-94--96
 description, 8.3.1.5-94--95
 methods and technical procedures,
 8.3.1.5-95--96
 objectives, 8.3.1.5-94
 parameters, 8.3.1.5-94

regulations, and issues, 8.3.1.2-2--3

regulatory and institutional activities
 milestone descriptions, 8.5-112
 milestones, 8.5-111**

regulatory and technical positions, see issue
 resolution reports

regulatory documents
 preparation, 8.5-116, -117**

regulatory guides
 and atmospheric release evaluation,
 8.3.1.12-16

regulatory requirements
 and EBS release rates (Issue 1.5),
 8.3.1.2-2
 and ground-water movement, 8.3.1.2-2
 and ground-water protection (Issue 1.3),
 8.3.1.2-2
 and GWTT (Issue 1.6), 8.3.1.2-2
 and higher level findings (postclosure)
 (Issue 1.9), 8.3.1.2-3
 and human interference, 8.3.1.9-1--3
 and land ownership and mineral rights
 program, 8.3.1.11-1
 and NRC siting criteria (Issue 1.8),
 8.3.1.2-2
 and population density and distribution
 program, 8.3.1.10-1
 radioactive releases, 8.3.1.2-1--2
 and total system performance (Issue 1.1),
 8.3.1.2-2
 and waste package containment (Issue 1.4),
 8.3.1.2-2
see also U.S. Nuclear Regulatory
 Commission

relative density--soil, technical procedures
 for, 8.3.1.14-48

relative permeability
 determination of, 8.3.1.2-190
 technical procedures for, 8.3.1.2-198--199

release rates
 and 10 CFR 60.113, 8.3.5.18-21 (see also
 waste package and EBS release rates
 (Information Need 1.5.4))

release scenario classes
 calculational models, see calculational
 models for release scenario classes
 (Information Need 1.1.3)

and complementary cumulative distribution
 function (CCDF), 8.3.5.13-135, -136,
 -137

disturbed case (A-1): direct release in
 basaltic volcanism, 8.3.5.13-80--81

disturbed case (A-2): direct release via
 human intrusion, 8.3.5.13-82--84

disturbed case (C-1): increased flux
 through unsaturated zone,
 8.3.5.13-84--86

disturbed case (C-2): foreshortening of
 the unsaturated zone, 8.3.5.13-86--87

disturbed case (C-3): altered unsaturated-
 zone rock properties and geochemistry,
 8.3.5.13-87--88

disturbed case (D-1): foreshortening of
 flow paths in the saturated zone,
 8.3.5.13-88

disturbed case (D-2): altered saturated-
 zone properties, 8.3.5.13-88--89
see also NRC siting criteria (Issue 1.8)
 and Ross study

release scenario classes (final selection)
 (Performance Assessment Activity 1.1.2.2)
 description, 8.3.5.13-128
 objectives, 8.3.5.13-127--128
 parameters, 8.3.5.13-128

release scenario classes (preliminary
 identification) (Performance Assessment
 Activity 1.1.2.1), 8.3.5.13-126--127
 subactivities, 8.3.5.13-126--127
 events and process sequence
 preliminary identification,
 8.3.5.13-126--127

release scenario classes, preliminary
 identification, 8.3.5.13-127

release scenario classes (preliminary
 identification) (Subactivity 1.1.2.1.2),
 8.3.5.13-127
 description, 8.3.5.13-127
 objectives, 8.3.5.13-127

release scenario classes (preliminary identification) (Subactivity 1.1.2.1.2)
 (continued)
 parameters, 8.3.5.13-127

release scenario classes (preliminary selection)
 decision aiding methodology study,
 8.3.5.13-26

release scenario screening, 8.3.5.13-117**,
 -126--128
 and modeling, 8.3.5.13-132--135
 and relative consequences,
 8.3.5.13-137--138

releases to accessible environment
 information for calculations, see site
 information needed for calculations
 (Information Need 1.1.1)
 and 40 CFR 191.13, 8.3.5.18-8

releases (1,000-year) to special sources
 (Activity 1.3.2.1.1), 8.3.5.15-10
 description, 8.3.5.15-10
 objectives, 8.3.5.15-10
 parameters, 8.3.5.15-10

relevel base-station network activity,
 8.3.1.17-194--196
 description, 8.3.1.17-195
 methods and technical procedures,
 8.3.1.17-195--196
 objectives, 8.3.1.17-194
 parameters, 8.3.1.17-195

relevelling data analysis activity,
 8.3.1.17-197--198
 description, 8.3.1.17-197
 methods and technical procedures,
 8.3.1.17-197--198
 objectives, 8.3.1.17-197
 parameters, 8.3.1.17-197

remote sensing
 analysis
 geophysical activities,
 8.3.1.4-50**-51*
 technical procedures for,
 8.3.1.5-102

field verification, technical procedures
 for, 8.3.1.5-102

methods
 infiltration-runoff units,
 8.3.1.2-159
 technical procedures for, 8.3.1.2-171

tectonics, 8.3.1.17-110*

removable shaft liner, design consideration,
 8.4.3-35

removal of waste from boreholes, see
 waste removal from boreholes

repository
 and decommissioning, 8.7-3
 design, and ESF relationship, 8.7-3
 design criteria and design requirements,
 8.3.2.5-49--51
 design phases, summary, 8.3.2.1-6--8
 design plan, 8.3.2.1-1; 8.3.2.5-49--51
 considerations in generation of,
 8.3.2.5-47, -49, -50--51
 design requirements document,
 8.3.2.5-49--50, -50**-51*
 and Mine Safety and Health
 Administration, 8.3.2.5-49
 and repository design criteria,
 8.3.2.5-49
 disruption probabilities, basaltic
 magma, 8.3.1.8-57--58

and ESF use, 8.7-3

exhumation
 and erosion, 8.3.1.6-27
 folding and deformation,
 8.3.1.8-71--72

layout, 8.4.2-92**

modeling
 geochemical analyses, 8.3.2.1-20--23
 safety analyses, 8.3.2.1-25
 seismic analyses, 8.3.2.1-24
 summary, 8.3.2.1-19--24
 validation, 8.3.2.1-19--21
 ventilation analyses, 8.3.2.1-24--25

operations plan, see plans for
 repository operation (Information Need
 4.4.3)

penetration, volcanic eruption
 studies, 8.3.1.8-51--62

program overview, 8.3.2.1-1--25

and repository design criteria,
 8.3.2.5-49--50

rock and ground-water data
 and radiological protection,
 8.3.2.3-40

rock-water interactions, and seals,
 8.3.3.1-5

surface element analyses, summary,
 8.3.2.5-75

underground facility configuration
 selection, postclosure design
 function 1, 8.3.2.2-7, -11

repository access shafts, thermal effects on stability, 8.4.3-27
 repository accidents (credible) (Information Need 2.3.1), 8.3.5.5-19--23
 application of results, 8.3.5.5-23
 link to supporting information, 8.3.5.5-19
 logic, 8.3.5.5-21
 parameters, 8.3.5.5-19--21
 performance assessment activities, 8.3.5.5-22--23
 accident sequences and frequencies, 8.3.5.5-22
 accidental radiological releases site data refinement (Information Need 2.3.1), 8.3.5.5-22
 design-basis accident development, 8.3.5.5-23
 technical basis for, 8.3.5.5-19
 repository and waste package design
 milestone descriptions, 8.5-113
 milestones, 8.5-111**
 repository block, and drifting, 8.4.2-31--32
 repository design activities
 milestones, 8.5-80--98
 summary schedules, 8.5-80--98
 see also design entries
 repository design and ESF integration, compatibility concerns, 8.4.2-216--217
 repository design criteria for radiological safety (Issue 2.7), 8.3.2.3-47*
 accidental radiological releases (Issue 2.3), 8.3.2.3-1, -2**; 8.3.5.5-1, -2**, -5**, -11
 allocation of performance, 8.3.2.3-16
 application, 8.3.2.3-12, -15--16, -30*--35*
 approach, 8.3.2.3-3, -12, -15--36
 development of design criteria and constraints, 8.3.2.3-16--36
 functions and performance measures and functional requirements, 8.3.2.3-12, -15--16, -17*--29**
 and geologic repository operations area, 8.3.2.3-4*--11*
 goals, 8.3.2.3-17*--29*
 identification of functional requirements, 8.3.2.3-12
 information needs
 criticality control (2.7.3), 8.3.2.3-37, -38
 items important to safety (2.7.2), 8.3.2.3-37

repository design criteria for radiological safety (Issue 2.7) (continued)
 information needs (continued)
 radiological protection (2.7.1), 8.3.2.3-37
 interrelationships, 8.3.2.3-2**, -36--39
 issue resolution strategy, 8.3.2.3-3, -13*--14**
 and land ownership and mineral rights program, 8.3.1.11-1
 licensing strategy overview, 8.3.2.3-3
 logic diagram, 8.3.2.3-13**--14**
 major events and completion dates, 8.3.2.3-47*; 8.5-87**, -88
 and meteorology program, 8.3.1.12-1, -2*, -4**, -5
 and modeling, 8.3.2.1-20
 and offsite installations program, 8.3.1.13-1
 and other design and performance assessment issues, 8.3.2.1-2**
 parameters required, 8.3.2.3-30*--35*
 performance goals and measures, 8.3.2.3-17*--29*
 preclosure tectonics program parameter calls, 8.3.1.17-1, -2**, -63, -86
 public radiological exposures--normal conditions (Issue 2.1), 8.3.2.3-1, -2**; 8.3.5.3-2**, -6**
 regulatory basis for, 8.3.2.3-1
 safety analyses, 8.3.2.1-25
 schedule, 8.3.2.3-45--48; 8.5-86, -87**, -88
 test that all goals are met, 8.3.2.3-36
 thermal and mechanical rock properties program parameter calls, 8.3.1.15-1, -2*, -10*, -15**
 ventilation analyses, 8.3.2.1-24--25
 worker radiological safety--normal conditions (Issue 2.2), 8.3.2.3-1, -2**, -12, -36, -42; 8.3.5.4-1, -2**, -3, -5, -6**
 repository design requirements (Information Need 4.4.4), 8.3.2.5.-47--52
 application of results, 8.3.2.5-51--52
 design activity
 repository design requirements for license application design, 8.3.2.5-49--51
 introduction, 8.3.2.5-47
 link to supporting information, 8.3.2.5-47
 logic, 8.3.2.5-49--50

repository design requirements (Information Need 4.4.4) (continued)
 organization, 8.3.2.5-50*-51*
 parameters, 8.3.2.5-47, -49
 summary, 8.3.2.5-47
 technical basis for, 8.3.2.5-47--52

repository design requirements for license application design (Design Activity 4.4.4.1), 8.3.2.5-51
 description, 8.3.2.5-51
 objectives, 8.3.2.5-51

repository horizon
 and biological degradation and transport of induced materials, 8.4.3-24
 and introduced organic matter, 8.4.3-24
 potential impacts of introduced materials, 8.4.3-23--24
see also host rock and Topopah Spring Member

repository material effect on water (Activity 1.10.4.1.2), 8.3.4.2-45
 objectives, 8.3.4.2-45

repository operations plans, see plans for repository operation (Information Need 4.4.3)

repository performance
 and multiple barriers, 8.4.3-2--3
 and natural and engineered barriers, 8.4.3-2--3

repository program overview, 8.3.2.1-1--25

repository systems analysis
 and preclosure risk assessment methodology (PRAM) program, 8.3.5.1-9
 and radiological risk, 8.3.5.1-9

requirements documents, regulatory hierarchy of, 8.3.2.5-48**

research and development, technical procedures for, 8.3.1.2-322, -423

resonant column test--soils, technical procedures for, 8.3.1.14-52

resonant method test--rock, technical procedures for, 8.3.1.14-52

resource evaluation
 and postclosure performance evaluations, 8.4.2-4*--7*, -8

resource exploration and extraction
 and controlled area, 8.3.1.9-21, -23
 effects of, 8.3.1.9-41, -45, -49, -50
 and human interference program, 8.3.1.9-11
 and radionuclide release, 8.3.1.9-21

resource mining
 disruptive scenario classes, evaluation of, 8.4.3-66

resource potential assessment
 and human interference scenarios, 8.3.1.9-3

resource value investigation, 8.3.1.9-20--44 activities
 geochemical assessment and mineralization potential, 8.3.1.9-30--33
 geophysic/geologic appraisal and mineral resources, 8.3.1.9-33--34
 geothermal energy potential assessment, 8.3.1.9-34--36
 ground-water development trends and withdrawal rates, 8.3.1.9-43--44
 hydrocarbon resource assessment, 8.3.1.9-37--39
 mineral and energy assessment, 8.3.1.9-39--42
 application of results, 8.3.1.9-44

link to supporting information, 8.3.1.9-45
 logic diagram, 8.3.1.9-22**
 parameters, 8.3.1.9-20--21
 purpose and objectives, 8.3.1.9-21
 studies, 8.3.1.9-27--44
 natural resource assessment at Yucca Mountain, 8.3.1.9-27--42
 water resource assessment at Yucca Mountain, 8.3.1.9-42--44
 technical basis for, 8.3.1.9-20
 technical rationale, 8.3.1.9-21--24

resources
 energy, 8.3.1.9-20, -24
 ground water, 8.3.1.9-11--12, -21, -22**, -24
 hydrocarbon, 8.3.1.9-37--39
 land, 8.3.1.9-23
 metal, 8.3.1.9-21
 Nye County, 8.3.1.9-27, -38
see also mineral and energy assessment; resource value investigation; and natural resource assessment of Yucca Mountain study

resurvey of quadrilaterals, technical procedure for, 8.3.1.17-195*

retardation mechanism
 and transport, 8.3.1.3-34, -116, -135--136

retardation sensitivity analysis study, 8.3.1.3-118--127 activities, 8.3.1.3-119--127

retardation sensitivity analysis
 study (continued)
 activities (continued)
 geochemical/geophysical model,
 8.3.1.3-123--125
 physical/chemical processes affecting
 transport, 8.3.1.3-119--122
 transport models and related support,
 8.3.1.3-125--127
 retardation tracers, 8.3.1.3-109
 retrievability
 discussion directory, 8.3.5.2-8*--9*
 period of, 8.3.5.2-10
 potential abnormal conditions,
 8.3.5.2-29*--30*
 reasonably available technology,
 8.3.5.2-46--52
 site and design information needed, see
 site and design information needed
 (retrieval) (Information Need 2.4.1)
 of waste, see waste retrievability
 (Issue 2.4)
 retrieval
 abnormal conditions, 8.3.5.2-29*--30*
 accidents, radiological risk, 8.3.5.1-6
 design criteria, 8.3.5.2-27--28
 design purposes time frame, 8.3.5.2-13**
 function 1, see emplacement borehole
 access
 function 2, see waste package access
 (Information Need 2.4.3)
 function 3, see waste removal from
 boreholes
 function 4, see waste delivery to
 surface
 routine operations, radiological risk,
 8.3.5.1-6
 retrieval, system element 1.2.2.5
 data needed for technology for underground
 facilities (Information Need 4.4.9),
 8.3.2.5-91, -94
 and equipment demonstration, 8.3.2.5-59
 functions and processes, 8.3.2.5-30*
 parameters for technology for underground
 facilities (Information Need 4.4.9),
 8.3.2.5-89--90
 performance measures and goals for
 nonradiological health and safety,
 8.3.2.4-22*
 preliminary performance allocation,
 8.3.2.5-30*

retrieval, system element 1.2.2.5 (continued)
 underground facilities technology,
 8.3.2.5-91, -94
 retrieval requirement compliance (Information
 Need 2.4.6), 8.3.5.2-46--52
 application of results, 8.3.5.2-49
 link to supporting information, 8.3.5.2-47
 logic, 8.3.5.2-47, -49
 parameters, 8.3.5.2-47, -48*
 technical basis for, 8.3.5.2-46--47
 RIB, see reference information base
 right-lateral faults, 8.3.1.8-130
 right-of-way, 8.7-1, -2--3
 risk, see radiological risk
 risk assessment, see preclosure risk
 assessment methodology (PRAM) program
 roads, and potential surface disturbance,
 8.4.2-48*, -54, -59
 rock and matrix-hydrologic property
 determination, technical procedures for,
 8.3.1.2-212--213, -224--225
 rock breakers, uptake of radionuclides,
 8.3.1.3-112--113
 rock bolt technical procedures
 installation, 8.3.1.15-49, -51, -64
 load cell use, 8.3.1.15-49, -51, -67
 -70
 rock bolts
 near emplacement drifts, thermal/
 mechanical analyses, 8.4.3-29
 shaft and drift analyses, 8.4.3-29
 rock characteristics
 effects of tectonic stress or strain
 changes, 8.3.1.8-96, -97
 and higher level findings--ease and cost
 of construction (Issue 4.1), 8.3.5.7-12*
 and higher level findings--postclosure
 (Issue 1.9(a)), 8.3.5.18-13*
 modeling, 8.3.1.4-81, -84--103
 resource exploitation effects on,
 8.3.1.9-46
 and travel pathway, 8.3.1.8-28, -98
 and 10 CFR 60.113, 8.3.5.18-12
 see also rock properties
 rock characteristics model evaluation,
 technical procedures for, 8.3.1.4-102
 rock characteristics program, 8.3.1.4-1--108
 activity parameters provided by,
 8.3.1.4-2, -4*--15*, -16
 alternative conceptual models,
 8.3.1.4-17--24

rock characteristics program (continued)
 approach used, 8.3.1.4-1--2,
 -16--17
 current representation and alternative
 hypotheses, 8.3.1.4-19*--23*
 design issue calls, 8.3.1.4-4*--15*
 and GWTT (Issue 1.6), 8.3.5.12-26**
 hypothesis-testing table, 8.3.1.5-19*--23*
 interrelationships, 8.3.1.4-24
 investigations, 8.3.1.4-24--103
 geologic framework, 8.3.1.4-28--84
 integrated drilling program,
 8.3.1.4-24--27
 three-dimensional rock characteristics
 model, 8.3.1.4-84--103
see specific investigation for study
 and activity listings
 logic diagram, 8.3.1.4-3**
 major events and completion dates,
 8.3.1.4-106*--108*; 8.5-11, -12**, -13
 overview, 8.3.1.4-1--24
 parameter calls, 8.3.1.4-4*--15*
 performance and design requirements,
 summary, 8.3.1.4-1, -16--17
 performance issue calls, 8.3.1.4-4*--15*
 preclosure tectonics program parameter
 calls, 8.3.1.17-1, -2**, -206*--207*
 schedule, 8.3.1.4-103--108; 8.5-11, -12**
 surface characteristics program parameter
 calls, 8.3.1.14-2**, -3*, -15, -20*,
 -25, -26
 rock characteristics qualifying condition,
 8.3.5.18-12--13, -13*
 and containment by waste package
 (Issue 1.4), 8.3.5.18-7
 and EBS release rates (Issue 1.5),
 8.3.5.18-7
 and ground-water protection (Issue 1.3),
 8.3.5.18-7
 and GWTT (Issue 1.6), 8.3.5.18-7
 and individual protection (Issue 1.2),
 8.3.5.18-8
 and postclosure performance issues,
 8.3.5.18-7--8
 preliminary finding, 8.3.5.18-4*
 statement of, 8.3.5.18-11--12
 and total system performance (Issue 1.1),
 8.3.5.18-7
 and 10 CFR 960.4-2-3(a), 8.3.5.18-11

rock characteristics technical guideline
 and higher level findings--ease and cost
 of construction (Issue 4.1),
 8.3.5.7-9--11, -12*
 and higher level findings--postclosure
 (Issue 1.9(a)), 8.3.5.18-12--13, -13*
 and qualifying and disqualifying
 conditions, 8.3.5.7-7*, -9--11
 rock dissolution program, 8.3.1.7-1--2
 and higher level finding (postclosure)
 (Issue 1.9), 8.3.1.7-2
 investigation
 dissolution rates, 8.3.1.7-1--2
 and NRC siting criteria (Issue 1.8),
 8.3.1.7-2
 overview, 8.3.1.7-1
 and 10 CFR Part 60, 8.3.1.7-2
 rock fabric analysis, technical procedures
 for, 8.3.1.15-82
 rock geochemical changes from igneous
 intrusions activity, 8.3.1.8-101--102
 description, 8.3.1.8-102
 methods and technical procedures,
 8.3.1.8-102
 objectives, 8.3.1.8-101
 parameters, 8.3.1.8-102
 rock geochemical properties changes
 postclosure tectonic studies,
 8.3.1.8-19*--21*
 tectonic effects study, 8.3.1.8-101--105
 rock/ground-water conditions and technical
 feasibility (Issue 1.8 potentially adverse
 condition 20)
 discussion, 8.3.5.17-78, -80
 text of condition, 8.3.5.17-6*
 rock/ground-water data
 worker radiological safety parameter
 calls, 8.3.5.4-13*, -22*
 rock handling, system element 1.2.1.4
 data needed for technology for underground
 facilities (Information Need 4.4.9),
 8.3.2.5-91, -93
 functions and processes, 8.3.2.5-25*
 preliminary performance allocation,
 8.3.2.5-25*
 underground facilities technology,
 8.3.2.5-91, -94
 rock-induced load on waste package
 design goal, 8.3.4.2-28
 engineered environment, impacts on,
 8.4.3-78--79

rock mass classification data, 8.3.1.14-55, -58

rock mass classification technical procedures, 8.3.1.15-73
 rock mass rating, 8.3.1.14-56
 tunneling quality, 8.3.1.14-56

rock mass discontinuities technical procedures
 quantitative description, 8.3.1.14-56
 shear strength, 8.3.1.14-59

rock mass (fractured) hydraulic conductivity, technical procedures for, 8.3.1.2-344, -348--349

rock mass permeability, excavation-induced effects, 8.4.3-25--26

rock-mass strength experiment
 constraints and zones of influence, 8.4.2-129
 purpose and operations, 8.4.2-129

rock-mass strength experiment activity, 8.3.1.15-68--70
 description, 8.3.1.15-68
 methods and technical procedures, 8.3.1.15-68--70
 objectives, 8.3.1.15-68
 parameters, 8.3.1.15-68

rock mass thermal response
 analytical tools, 8.3.2.1-21--22; 8.3.2.5-72

rock-matrix lithologic testing, technical procedures for, 8.3.1.2-277--278

rock mechanical behavior, code validation, 8.3.1.15-45, -50

rock moisture content, technical procedures for, 8.3.1.14-48

rock movement and preferential pathways limitation
 design thermal loading, postclosure design function 4, 8.3.2.2-19

rock porosity/density, technical procedures for, 8.3.1.14-48

rock properties
 alteration along travel paths (postclosure tectonics) 8.3.1.8-17*--18*
 characterization experiments, 8.3.1.15-32*
 current representation and hypotheses for modeling, 8.3.1.15-19*--21*
 data acquisition, logic diagram, 8.3.1.15-15**
 and issues, data relationship, 8.3.1.15-15**

rock properties (continued)
 see also soil and rock properties investigation

rock saturation, effects of ventilation, 8.4.3-22--23

rock specific gravity, technical procedures for, 8.3.1.14-48

rock strength
 and emplacement drifts, 8.4.3-28--29
 and porosity, 8.4.3-28--29

rock support, underground support systems, 8.4.2-197--198

rock unit characteristics
 geohydrology program parameters, 8.3.1.2-42*--44*

rock characteristics parameters, 8.3.1.4-4*--9*, -16

Rock Valley fault, 8.3.1.8-130; 8.3.1.17-28
 displacement evaluation, technical procedures for, 8.3.1.17-136--137
 and shallow seismic reflection, 8.3.1.17-134**, -178

Rock Valley fault system evaluation activity, 8.3.1.17-133--137
 description, 8.3.1.17-135
 methods and technical procedures, 8.3.1.17-136--137
 objectives, 8.3.1.17-133
 parameters, 8.3.1.17-134

rock varnish
 dating, 8.3.1.6-14; 8.3.1.17-187--188
 studies, technical procedures for, 8.3.1.8-118*
 and tectonically stable areas, 8.3.1.17-187--188*

rock-water interaction analysis (Activity 1.10.4.1.7), 8.3.4.2-49--51
 description, 8.3.4.2-49
 methods and technical procedures, 8.3.4.2-49--51
 objectives, 8.3.4.2-49
 parameters, 8.3.4.2-49

rock-water interaction in repository horizon (Activity 1.10.4.4.2), 8.3.4.2-58--61
 description, 8.3.4.2-58
 methods and technical procedures, 8.3.4.2-58--61
 objectives, 8.3.4.2-58
 parameters, 8.3.4.2-58

- rock-water interactions
 - electron microprobe, 8.3.4.2-43
 - EQ3/6, 8.3.4.2-49
 - numerical analysis, 8.3.4.2-49
 - x-ray diffraction, 8.3.4.2-43
- rock-water interactions (Activity 1.10.4.1.1), 8.3.4.2-42--45
 - description, 8.3.4.2-43
 - methods and technical procedures, 8.3.4.2-44--45
 - objectives, 8.3.4.2-42
 - parameters, 8.3.4.2-42--43
- rod extensometer measurements, technical procedures for, 8.3.1.15-47, -49, -51, -63
- Ross study, 8.3.5.13-26--56
 - barrier impact on scenario classes, 8.3.5.13-55*
 - defined scenario classes, 8.3.5.13-44--45
 - potentially significant scenarios, 8.3.5.13-27*
 - sequences, 8.3.5.13-28--42, -51--53
 - chemical reaction of waste package with rock, 8.3.5.13-40
 - climate control, 8.3.5.13-36--37
 - corrosion, 8.3.5.13-39
 - differential elastic response to heating, 8.3.5.13-37
 - exploratory drilling, 8.3.5.13-35
 - extrusive magmatic activity, 8.3.5.13-32
 - faulting and seismicity, 8.3.5.13-30, -51
 - faulty waste emplacement, 8.3.5.13-32--33
 - flooding, 8.3.5.13-29
 - folding, uplift, and subsidence, 8.3.5.13-52--53
 - geochemical alteration, 8.3.5.13-41--42
 - geochemical changes, 8.3.5.13-31
 - ground-water recharge or withdrawal, 8.3.5.13-33--34
 - irrigation, 8.3.5.13-33
 - large-scale alterations of hydrology, 8.3.5.13-34
 - magmatic intrusion, 8.3.5.13-52
 - mechanical fracturing, 8.3.5.13-39
 - nonelastic responses to heating, 8.3.5.13-38
 - regional changes in the tectonic region, 8.3.5.13-52
 - resource mining, 8.3.5.13-36
 - sequences (continued)
 - stream erosion, 8.3.5.13-28--29
 - surface flooding or impoundments, 8.3.5.13-51
 - temperature-driven fluid migration, 8.3.5.13-38
 - undetected dikes, 8.3.5.13-32
 - undetected faults and shear zone, 8.3.5.13-31
 - undiscovered borehole, 8.3.5.13-34
 - undiscovered mine shafts, 8.3.5.13-35
 - sequences dismissed or not identified, 8.3.5.13-42--44
 - site-characterization program scenario classes, 8.3.5.13-46--56
 - disruptive scenario classes, 8.3.5.13-49--50*
 - 10 CFR 60.122 conditions, 8.3.5.13-45
- routine operations
 - and radiological risk, 8.3.5.1-12--20
- rubble coring, technical procedures for, 8.3.1.2-307
- runoff
 - and climate, 8.3.1.5-3
 - and climatic change, 8.3.1.6-2
 - data collection, 8.3.1.2-173--176
 - data needs, 8.3.1.2-96
 - and debris transport, 8.3.1.2-112--114
 - and erosion, 8.3.1.6-4, -9
 - and infiltration, 8.3.1.2-169
 - monitoring, 8.3.1.5-107; 8.3.1.16-8, -11
 - and paleoflooding, 8.3.1.5-92, -94
 - and precipitation model, technical procedures for, 8.3.1.5-119
 - recurrence, 8.3.1.16-6, -7
 - and surface hydrology, 8.3.1.5-119
- runoff and streamflow characterization study, 8.3.1.2-102--114
 - activities, 8.3.1.2-103--114
 - debris transport by runoff, 8.3.1.2-112--114
 - surface-water runoff monitoring, 8.3.1.2-102--112
- safety
 - analyses, repository modeling, 8.3.2.1-25
 - items important to, 8.3.2.3-43--45
 - (see also items important to safety (Information Need 2.7.2))

safety assessment (preclosure)
 overview, 8.3.5.1-2--6 (see also
 preclosure safety assessment)
 safety assessment documentation
 and preclosure risk assessment methodology
 (PRAM) program, 8.3.5.1-12; 8.3.5.5-29
SAGUARO
 and COVE 2, 8.3.5.20-4*
SAGUARO/FEMTRAN
 and COVE 1, 8.3.5.20-3, -4*
 and performance assessment, 8.3.5.19-2*,
 -4*, -6*
 sampling, technical procedures,
 analysis, 8.3.1.2-181
 collection and measurements,
 8.3.1.18-115, -118
 core and outcrop, 8.3.1.4-63
 drillbit cuttings and core, 8.3.1.4-39
 field geologic studies, 8.3.1.8-118
 for geochronology studies, 8.3.1.8-115
 fracture-filling materials, 8.3.1.4-78
 geochemical cycles, 8.3.1.8-123
 handling (solid and solutions),
 8.3.1.2-420
 identification, 8.3.1.2-421; 8.3.1.4-100
 methods, 8.3.1.15-70
 paleomagnetism, 8.3.1.4-64
 petrologic examination, 8.3.1.8-126
 preparation, 8.3.1.2-422; 8.3.1.8-111
 sampling, testing, and mapping technical
 procedures, 8.3.1.2-163
 sampling bias
 and feature sampling, 8.4.2-26--28
 and systematic sampling, 8.4.2-23, -26--27
 statistical representativeness, 8.4.2-26
 sampling program, systematic, 8.3.1.4-99**
 sand content test, technical procedures for,
 8.3.1.16-19, -21, -23
Sandia National Laboratories
 and COVE 1, 8.3.5.20-4*
 and COVE 2, 8.3.5.20-4*
 and COVE 3, 8.3.5.20-5*
 satellite mapping and interpretation,
 technical procedures for, 8.3.1.5-71
 saturated permeability, technical procedures
 for, 8.3.1.2-197--198
 saturated zone
 borehole locations, 8.3.1.2-117**
 diffusion activity, 8.3.1.3-113
 flow path, flux, velocity calculations,
 8.3.1.2-441--443

saturated zone (continued)
 hydrology
 logic diagram, 8.3.1.2-8**
 parameters provided by geohydrology
 program, 8.3.1.2-31*--42*
 synthesis and modeling study,
 8.3.1.2-434--443
 models
 hydrologic hypotheses,
 8.3.1.2-68*--87*
 parameters, 8.3.1.2-8**, 39*--42*
 potentiometric surface map, 8.3.1.2-368**
 regional hydrogeologic data needs,
 8.3.1.2-114--118
Solitario Canyon fault study,
 8.3.1.2-372--375
 summary of studies, 8.3.1.2-89--90
 water chemistry, 8.3.1.3-38
 wells and tracer tests, 8.3.1.2-410**
 saturated-zone altered properties (disturbed
 case scenario D-2), 8.3.5.13-88--89
 expected partial performance measures
 (EPPM), 8.3.5.13-106*--107*
 initiating events or processes,
 8.3.5.13-88--89
 performance parameters,
 8.3.5.13-106*--107*
 saturated-zone boreholes
 potential impact of geochemical
 disturbance, 8.4.3-42--43
 potential impact of hydrologic
 disturbance, 8.4.3-42
 potential impact of thermal/
 mechanical disturbance,
 8.4.3-43
 saturated-zone exploration
 boreholes, 8.4.2-80
 description, 8.4.2-77--79
 hydrologic borehole USW H-7, 8.4.2-78
 other testing, 8.4.2-78--79
 pumping tests, 8.4.2-78--79
 regional potentiometric-level
 drillholes, 8.4.2-79
 water table borehole sampling, 8.4.2-78
 water table boreholes, 8.4.2-77--78
 saturated-zone flow analysis (Subactivity
 I.6.3.1.2), 8.3.5.12-51
 description, 8.3.5.12-51
 objectives, 8.3.5.12-51
 saturated-zone flow models within accessible
 environment activity, 8.3.1.2-435--436
 description, 8.3.1.2-435

saturated-zone flow models within accessible environment activity (continued)
 methods and technical procedures,
 8.3.1.2-435--436
 objectives, 8.3.1.2-435
 parameters, 8.3.1.2-435

saturated-zone foreshortened flow paths
 (disturbed case scenario D-1), 8.3.5.13-88
 expected partial performance measures
 (EPPM), 8.3.5.13-104*--105*

initiating events or processes,
 8.3.5.13-88
 performance parameters and EPPM,
 8.3.5.13-104*--105*

saturated-zone ground-water flow system (site)
 study, 8.3.1.2-371--424
 activities, 8.3.1.2-372--424
 C-hole site testing with conservative tracers, 8.3.1.2-400--408
 C-hole site testing with reactive tracers, 8.3.1.2-417--423
 hydraulic-stress tests analysis, 8.3.1.2-383--393
 multiple-well interference testing, 8.3.1.2-393--400
 potentiometric-level evaluation (site), 8.3.1.2-375--382
 Solitario Canyon fault study--
 saturated zone, 8.3.1.2-372--375
 well testing with conservative tracers, 8.3.1.2-408--417
 well testing with reactive tracers, 8.3.1.2-423--424
 objectives, 8.3.1.2-371

saturated-zone hydrochemistry (site) study, 8.3.1.2-424--434
 activities, 8.3.1.2-425--434
 hydrochemical characterization (regional), 8.3.1.2-431--433
 hydrochemical data availability assessment (site), 8.3.1.2-425--426
 hydrochemistry of upper site
 saturated-zone water, 8.3.1.2-426--431
 hydrochemistry synthesis (saturated zone), 8.3.1.2-433--434

saturated-zone hydrochemistry synthesis, 8.3.1.2-433--434

saturated-zone hydrogeologic data needs (regional) activity, 8.3.1.2-114--116

saturated-zone hydrologic properties and conditions parameters provided by geohydrology program, 8.3.1.2-31*--42*

saturated-zone hydrologic system (site)
 investigation, 8.3.1.2-364--443
 activities
 C-hole site testing with conservative tracers, 8.3.1.2-400--408
 C-hole site testing with reactive tracers, 8.3.1.2-417--423
 flow path/flux/velocity calculations, 8.3.1.2-441--443
 fracture network model development, 8.3.1.2-436--441
 hydraulic-stress tests analysis, 8.3.1.2-383--393
 hydrochemical characterization (regional), 8.3.1.2-431--433
 hydrochemistry data availability assessment (site), 8.3.1.2-425--426
 hydrochemistry of upper site
 saturated-zone water, 8.3.1.2-426--431
 hydrochemistry synthesis (saturated zone), 8.3.1.2-433--434
 multiple-well interference testing, 8.3.1.2-393--400
 potentiometric-level evaluation (site), 8.3.1.2-375--382
 saturated-zone flow models within accessible environment, 8.3.1.2-435--436
 Solitario Canyon fault study--
 saturated zone, 8.3.1.2-372--375
 well testing with conservative tracers, 8.3.1.2-408--417
 well testing with reactive tracers, 8.3.1.2-423--424
 application of results, 8.3.1.2-444
 aquifer properties, 8.3.1.2-369--371
 boundary conditions, 8.3.1.2-366
 hydraulic gradients, 8.3.1.2-367--369
 link to supporting information, 8.3.1.2-364--365
 parameters, 8.3.1.2-365
 purpose and objective, 8.3.1.2-366
 studies, 8.3.1.2-371--443
 hydrochemistry of site saturated zone, 8.3.1.2-424--434
 saturated-zone ground-water flow system (site), 8.3.1.2-372--424

- saturated-zone hydrologic system (site)**
 - investigation (continued)
 - studies (continued)
 - saturated-zone hydrologic system**
 - synthesis and modeling,
 - 8.3.1.2-434--443
 - synthesis and modeling, 8.3.1.2-371
 - technical basis for, 8.3.1.2-364--371
 - technical rationale, 8.3.1.2-366
 - saturated-zone hydrologic system conceptual models**, current representation and alternative hypotheses, 8.3.1.2-68*--87*
 - saturated-zone hydrologic system synthesis and modeling study**, 8.3.1.2-434--443
 - activities, 8.3.1.2-435--443
 - flow path/flux/velocity calculations, 8.3.1.2-441--443
 - fracture network model development, 8.3.1.2-436--441
 - saturated zone flow models within accessible environment, 8.3.1.2-435--436
 - objectives, 8.3.1.2-434
 - saturated-zone single-well testing**, conditional site characterization activity, 8.4.2-36
 - saturation**
 - and matric potential, 8.4.1-15--20
 - and ventilation effects, 8.4.3-22--23
 - saturation magnetization**, 8.3.1.4-61, -62
 - saturation/matric potential for fractures and rock matrix**, 8.4.1-17**
 - scanning electron microscope**
 - and rock-water interactions, 8.3.4.2-46
 - technical procedures for, 8.3.1.3-48
 - scenario-class final screening**
 - (Subactivity 1.1.4.1.2), 8.3.5.13-137--138
 - description, 8.3.5.13-138
 - objectives, 8.3.5.13-137
 - parameters, 8.3.5.13-137
 - scenario-class model development**
 - (Performance Assessment Activity 1.1.3.1), 8.3.5.13-133--135
 - subactivities, 8.3.5.13-133--135
 - basaltic volcanism release model development, 8.3.5.13-134
 - gas-phase release model development, 8.3.5.13-134
 - human intrusion release model development, 8.3.5.13-135
 - water pathway release model development, 8.3.5.13-133
 - scenario-class model (final) development
 - (Subactivity 1.1.4.2.2), 8.3.5.13-139
 - description, 8.3.5.13-139
 - objectives, 8.3.5.13-139
 - parameters, 8.3.5.13-139
 - scenario-class model (preliminary) development
 - (Subactivity 1.1.4.2.1), 8.3.5.13-138
 - description, 8.3.5.13-138
 - objectives, 8.3.5.13-138
 - parameters, 8.3.5.13-138
 - scenario-class preliminary screening
 - (Subactivity 1.1.4.1.1), 8.3.5.13-137
 - description, 8.3.5.13-137
 - objectives, 8.3.5.13-137
 - parameters, 8.3.5.13-137
 - scenario-class vs. relative consequence screening (Performance Assessment Activity 1.1.4.1), 8.3.5.13-137--138
 - subactivities, 8.3.5.13-137--138
 - scenario-class final screening, 8.3.5.13-137--138
 - scenario-class preliminary screening, 8.3.5.13-137
 - scenario classes (Ross study)**
 - barrier impact on, 8.3.5.13-55*
 - defined, 8.3.5.13-44--45
 - disruptive, 8.3.5.13-49*--50**
 - for site characterization program, 8.3.5.13-46--56
 - see also release scenario classes and Ross study
 - scenario classes for significant processes and events (Performance Assessment Activity 1.1.4.2)**, 8.3.5.13-138--139
 - subactivities, 8.3.5.13-138--139
 - scenario-class model (final) development, 8.3.5.13-139
 - scenario-class model (preliminary) development, 8.3.5.13-138
 - scenario development**
 - and performance issue resolution, 8.3.5.8-4, -5**, -6
 - scenarios and models**, see EBS scenarios and models (Information Need 1.5.3) and waste package scenarios and models (Information Need 1.4.3)
 - schedule
 - accidental radiological releases (Issue 2.3), 8.3.5.5-29--35
 - climate program, 8.3.1.5-123--127

schedule (continued)

- configuration of underground facilities (postclosure) (Issue 1.11), 8.3.2.2-78--96
- containment by waste package (Issue 1.4), 8.3.5.9-114--119
- engineered barrier system release rates (Issue 1.5), 8.3.5.10-82--93
- erosion program, 8.3.1.6-28--31
- geochemistry program, 8.3.1.3-138--158
- geohydrology program, 8.3.2.4-445--459
- ground-water protection (Issue 1.3), 8.3.5.15-10--13
- ground-water travel time (Issue 1.11), 8.3.5.12-63--69
- human interference program, 8.3.1.9-51--55
- individual protection (Issue 1.2), 8.3.5.14-13--15
- meteorology program, 8.3.1.12-28--31
- nonradiological health and safety (Issue 4.2), 8.3.2.4-31--33
- offsite installations program, 8.3.1.13-11--15
- postclosure tectonics program, 8.3.1.8-131--141
- preclosure design and technical feasibility (Issue 4.4), 8.3.2.5-97--108
- preclosure hydrology program, 8.3.1.16-28--31
- preclosure tectonics program, 8.3.1.17-207--226
- public radiological exposures-normal conditions (Issue 2.1), 8.3.5.3-25--29
- repository design criteria for radiological safety (Issue 2.7), 8.3.2.3-45--48
- rock characteristics program, 8.3.1.4-103--108
- seal characteristics (Issue 1.12), 8.3.3.2-70--74
- surface characteristics program, 8.3.1.14-64--69
- thermal and mechanical properties program, 8.3.1.15-84--96
- total system performance (Issue 1.1), 8.3.5.13-142--148
- waste package characteristics (postclosure) (Issue 1.10), 8.3.4.2-65--74
- waste package characteristics (preclosure) (Issue 2.6), 8.3.4.3-9--12
- waste package production technologies (Issue 4.3), 8.3.4.4-6--9

schedule (continued)

- waste retrievability (Issue 2.4), 8.3.5.2-50--52
- worker radiological safety-normal conditions (Issue 2.2), 8.3.5.4-25--29
- schedule, construction
- and DOE Order 4700.1, 8.3.2.1-7
- and license application design, 8.3.2.1-7
- schedule, overall summary
- site characterization program, 8.5-110, -111**
- schedule events, major, and completion dates
- accidental radiological releases, 8.5-62, -63**, -64
- climate program, 8.5-13, -14**, -15
- configuration of underground facilities, 8.5-81---83**, -84--86
- containment by waste package, 8.5-65, -66**, -67
- engineered barrier system release rates, 8.5-68, -69**, -70
- erosion program, 8.5-15, -16**, -17
- geochemistry program, 8.5-5, -6---7**, -8-11
- geohydrology program, 8.5-3, -4**, -5
- ground-water protection, 8.5-78, -79**
- ground-water travel time, 8.5-71, -72**, -73
- human interference program, 8.5-20**, -21
- individual protection, 8.5-76, -77**, -78
- meteorology program, 8.5-22, -23**
- nonradiological health and safety, 8.5-88, -89**, -90
- offsite installations and operations program, 8.5-24, -25**
- postclosure tectonics program, 8.5-17, -18**, -19
- preclosure design and technical feasibility, 8.5-90, -91---93**, -94--95
- preclosure hydrology program, 8.5-30, -31**
- preclosure tectonics, 8.5-32, -33**, -34
- public radiological exposures-normal conditions, 8.5-58, -59**
- repository design criteria for radiological safety, 8.5-87**, -88
- rock characteristics program, 8.5-11, -12**, -13
- seal characteristics, 8.5-95, -96**, -97--98

schedule events, major, and completion dates
 (continued)
 site characterization program,
 8.5-112--116
 summary schedule, 8.5-11, -12**, -13
 surface-based drilling and testing,
 8.5-39, -40**--42**, -43**-47*
 surface characteristics program, 8.5-26,
 -27**
 thermal and mechanical rock properties
 program, 8.5-28, -29**
 total system performance, 8.5-74**,
 -75--76
 waste package characteristics
 (postclosure), 8.5-99**, .100--101
 waste package characteristics
 (preclosure), 8.5-101, -102**, -103
 waste package production technologies,
 8.5-103, -104**, -105
 waste retrievability, 8.5-56, -57**
 worker radiological safety-normal
 conditions, 8.5-60, -61**
 schedule summaries
 accidental radiological releases, 8.5-62,
 -63*
 climate program, 8.5-13, -14**
 configuration of underground facilities,
 8.5-80, -81**--83**, -84
 containment by waste package, 8.5-65,
 -66**
 engineered barrier system release rates,
 8.5-68, -69**
 erosion program, 8.5-15, -16**
 exploratory shaft, 8.5-34, -35**
 geochemistry program, 8.5-5, -6**--7**
 geohydrology program, 8.5-3, -4**
 ground-water protection, 8.5-78, -79**
 ground-water travel time, 8.5-71, -72**
 human interference program, 8.5-19, -20**
 individual protection, 8.5-76, -77**
 meteorology program, 8.5-22, -23**
 nonradiological health and safety, 8.5-88,
 -89**
 offsite installations and operations
 program, 8.5-24, -25**
 postclosure tectonics program, 8.5-17,
 -18**
 preclosure design and technical
 feasibility, 8.5-90, -91**--93**
 preclosure hydrology program, 8.5-30,
 -31**
 preclosure tectonics, 8.5-32, -33**

schedule summaries (continued)
 public radiological exposures-normal
 conditions, 8.5-58, -59**
 repository design criteria for
 radiological safety, 8.5-86, -87**
 rock characteristics program, 8.5-11,
 -12**
 seal characteristics, 8.5-95, -96**
 site characterization program, 8.5-1--118
 surface-based drilling and testing,
 8.5-39, -40**--42**
 surface characteristics program, 8.5-26,
 -27**
 thermal and mechanical rock properties
 program, 8.5-28, -29**
 total system performance, 8.5-73, -74**
 waste package characteristics
 (postclosure), 8.5-98, -99**, -100
 waste package characteristics
 (preclosure), 8.5-101, -102**
 waste package production technologies,
 8.5-103, -104**
 waste retrievability, 8.5-56, -57**
 worker radiological safety-normal
 conditions, 8.5-60, -61**
 scoria cone dating, 8.3.1.8-113
 scoria sequences
 and Crater Flat area, 8.3.1.8-116, -119
 geochemistry of, 8.3.1.8-116, -119--120
 and Lathrop Wells volcanic center,
 8.3.1.8-117, -119
 scour chains, 8.3.1.2-105
 SCOV, 8.3.1.3-62
 screening, ESF, 8.4.2-154--156
 seal characteristics (Issue 1.12),
 8.3.3.2-1--74
 approach, 8.3.3.2-3--31
 and configuration of underground
 facilities (Issue 1.11), 8.3.3.2-6
 design-basis performance goals,
 8.3.3.2-27, -28*
 design constraints, 8.3.3.2-29--30
 erosion program parameter calls,
 8.3.1.6-1, -3*, -5**
 geochemistry program parameter calls,
 8.3.1.3-2**, -3, -9*, -11**
 geohydrology program parameter calls,
 8.3.1.2-5**, -10**, -17*, 19**,
 -21**--23*, -25**--30*, -42**--47*, -363
 hydrologic-related site parameters,
 8.3.3.2-16*, -18*, 32--35

seal characteristics (Issue 1.12) (continued)
 information needs, 8.3.3.2-32--69
 information needed for seal design and placement (1.12.1), 8.3.3.2-32--36
 placement methods (1.12.3),
 8.3.3.2-62--64
 reference seal designs (1.12.4),
 8.3.3.2-64--69
 seal materials (1.12.2),
 8.3.3.2-36--62
see specific information need for study and activity listings
 interrelationships, 8.3.3.2-31
 issue resolution strategy, 8.3.3.2-1--74
 logic diagram, 8.3.3.2-4**--5**
 major events and completion dates,
 8.3.3.2-72**--74*; 8.5-95, -96**, -97--98
 nonhydrogeologic site parameters,
 8.3.3.2-19**--22*, -32--35
 and other design and performance assessment issues, 8.3.2.1-2**;
 8.3.4.1-2**
 performance allocation
 8.3.3.2-3, -4**--5**, -6--31
 and postclosure performance assessment strategy, 8.3.5.8-3*
 preclosure hydrology program parameter calls, 8.3.1.16-1, -4*, -5**
 preclosure tectonics program parameter calls, 8.3.1.17-1, -2**, -15*, -22*
 regulatory basis for, 8.3.3.2-1--3
 schedule, 8.3.3.2-70--74; 8.5-95, -96**
 thermal and mechanical rock properties program parameter calls, 8.3.1.15-1, -3**--4*, -6*, -9*, -11**--12*, -15**
 seal design approach steps, 8.3.5.11-1
 seal material properties development (Study 1.12.2.1), 8.3.3.2-39--40
 activities, 8.3.3.2-39--40
 hydraulic conductivity and consolidation of crushed tuff, 8.3.3.2-40
 cementitious and earthen material properties, 8.3.3.2-39
 seal materials (Information Need 1.12.2), 8.3.3.2-62
 activities, 8.3.3.2-39--40
 cementitious and earthen material properties, 8.3.3.2-39
 hydraulic conductivity and consolidation of crushed tuff, 8.3.3.2-40

seal materials (Information Need 1.12.2) (continued)
 application of results, 8.3.3.2-62
 design activity
 degradation model for cementitious materials, 8.3.3.2-40
 link to supporting information, 8.3.3.2-36--37
 logic, 8.3.3.2-37, -39
 parameters, 8.3.3.2-37, -38*
 studies, 8.3.3.2-39--62
 in situ testing of seal components, 8.3.3.2-41--62
 seal material properties development, 8.3.3.2-39--40
 technical basis for, 8.3.3.2-36--39
 seal performance
 Calico Hills tuff, 8.3.5.11-5
 seal program
 activities of, 8.3.3.1-3--4
 functional requirements, 8.3.3.2-24--26
 objective, 8.3.3.1-1
 options, 8.3.3.1-6
 overview, 8.3.3.1-1--6
 performance goal logic, 8.3.5.11-3**
 performance measures and goals, 8.3.3.2-26--28
 and radionuclide releases, 8.3.3.2-24--25
 sequencing of testing, 8.3.3.1-1, 2**
 strategy, 8.3.5.11-4
 seal system
 components, 8.3.5.11-1
 performance assessment
 approach, 8.3.5.11-2**
 plans, 8.3.5.11-1--5
 subtasks, 8.3.5.11-4--5
 seal use, design consideration, 8.4.3-35
 sealing concepts, exploratory shafts, 8.4.3-67**
 sealing drillholes
 and decommissioning for surface-based activities, 8.7-5
 sealing options
 preferred, 8.3.3.2-47, -48**--51*
 secondary, 8.3.3.2-47, -52**--56*
 seals
 characteristics
 and performance goals, 8.3.3.2-23**, -26--28, -28*

seals (continued)

- components, 8.3.3.2-7, -8**, -9---12*, -24
- and boreholes, 8.3.3.1-5
- exploratory boreholes, 8.3.3.2-7, -8**, -11---12*, -24
- and functions and processes, 8.3.3.2-9---12*
- identification of, 8.3.3.2-7--24
- information required, 8.3.3.2-42, -46*, -47, -48---56*, 57
- in situ testing, 8.3.3.2-41--62
- long-term capability, 8.3.3.1-5
- material properties, 8.3.3.2-9---12*, -37, -38*
- performance goals, 8.3.3.2-9---12*
- performance measures, 8.3.3.2-9---12*
- possible in situ tests, 8.3.3.2-61--62
- properties
 - information required, 8.3.3.2-41--61
- and shaft, 8.3.3.1-5
- shafts and ramps, 8.3.3.2-7, -8**, -9*
- and site, 8.3.3.1-4--6
- site properties, information required, 8.3.3.2-42, -43---45*, -45
- state-of-art consideration, 8.3.3.2-57--61
- summary, 8.3.3.1-4--7
- underground facility, 8.3.3.2-7, -8**, -10---11*

design constraints

- for configuration of underground facilities (Issue 1.11), 8.3.3.2-13---15*

designs

- advanced conceptual design, 8.3.3.1-2**, -3, -8
- and license application design, 8.3.3.1-1, -2*, -3, -4, -8
- and site characterization plan
 - conceptual design report, 8.3.3.1-2**, -8
- summary, 8.3.3.1-8

emplacement

- material effects, 8.3.3.2-63
- technology, 8.3.2.5-96--97

environment

- design information needed summary, 8.3.3.1-4
- and discrete fault, 8.3.3.1-5
- and fracture zone, 8.3.3.1-5
- summary, 8.3.3.1-4

seals (continued)

- environment (continued)
 - and Topopah Spring Member, 8.3.3.1-4
- and horizontal emplacement, 8.3.3.2-35
- and hydrologic performance goals, 8.3.3.2-23**, -27, -28*
- locations, 8.3.3.2-8**
- material properties, 8.3.3.2-37, -38*
- material tests, 8.3.5.11-4--5
- materials, 8.3.3.1-6---7
- modeling, 8.3.3.1-8--9
- post-license application tests, 8.3.3.1-3
- potential flow conditions, 8.3.3.2-23**, -27
- pre-license application tests, 8.3.3.1-3
- subsystem, 8.3.3.2-8**
- and Topopah Spring Member, 8.3.3.2-7, -24
- and vertical emplacement, 8.3.3.2-35
- use of, design consideration, 8.4.3-67**
- and waste emplacement mode, 8.3.3.2-35

sediment component of runoff determinations

- technical procedures for, 8.3.1.2-114

sedimentology, marsh, lacustrine, and playa deposits, 8.3.1.5-47--49

sediments, eolian, 8.3.1.5-72--26

sediments (bulk) element analyses, 8.3.1.5-50

seismic, tectonic, volcanic hazards data synthesis activity, 8.3.1.9-19

seismic activity, and marker system, 8.3.1.9-15, -16, -18, -19

seismic analyses

- repository modeling, 8.3.2.1-24
- of underground repository facilities, summary, 8.3.2.5-75

seismic and geologic data integration

- technical procedures for, 8.3.1.17-84

seismic code validation

- for underground facility analysis, 8.3.2.5-83

seismic data for volcanic activity evaluation, 8.3.1.8-52

seismic design basis, 8.3.1.17-65--69

seismic event caused ground motion, study, 8.3.1.17-80--82 (see also ground motion from seismic event study)

seismic fracture studies, 8.3.1.2-161

seismic hazards analyses study, 8.3.1.17-82--85

activities, 8.3.1.17-82--85

- seismic hazards analyses study (continued)
 - activities (continued)
 - earthquake source evaluation, 8.3.1.17-82--84
 - ground motion probabilities evaluation, 8.3.1.17-84--85
- seismic investigation summary, preclosure and postclosure tectonics, 8.3.1.17-107*, -111*
- seismic reflection surveys
 - Beatty scarp, 8.3.1.17-122, -176--178
 - plans and technical procedures for, 8.3.1.17-115, -117, -119
 - Yucca Mountain, 8.3.1.4-54**
- seismic refraction surveys, 8.3.1.17-115, -116**, -117, -119*
 - location map (traverses), 8.3.1.17-116**
 - profile area, 8.3.1.4-52, -53**
 - technical procedures for, 8.3.1.4-56--57; 8.3.1.17-119
 - Yucca Wash, 8.3.1.4-53**
- seismic shotholes, and potential surface disturbance, 8.4.2-48*, -61
- seismic tomography/vertical seismic profiling
 - constraints and zones of influence, 8.4.2-108--109
 - purpose and operations, 8.4.2-108
- seismic tomography/vertical seismic profiling activity, 8.3.1.4-79--80
 - description, 8.3.1.4-79--80
 - methods and technical procedures, 8.3.1.4-80
 - objectives, 8.3.1.4-79
 - parameters, 8.3.1.4-79
- seismic zoning, technical procedure for, 8.3.1.7-84
- seismicity
 - from coal mining, 8.3.1.17-93
 - and geophysical activities, 8.3.1.4-42*, -46*--47*
 - and Lake Mead (induced), 8.3.1.17-92
- seismicity (induced) evaluation activity, 8.3.1.17-91--93
 - description, 8.3.1.17-92--93
 - objectives, 8.3.1.17-91
 - parameters, 8.3.1.17-91--92
- seismicity (current) monitoring activity, 8.3.1.17-89--91
 - description, 8.3.1.17-90--91
 - objectives, 8.3.1.17-89
 - parameters, 8.3.1.17-89--90
- seismicity (historical and current) study, 8.3.1.17-87--93 (see also historical and current seismicity study)
- seismogenic source cumulative slip earthquake activity, 8.3.1.17-72--74
 - description, 8.3.1.17-72--74
 - objectives, 8.3.1.17-72
- seismograph network, southern Great Basin, 8.3.1.17-90--91
- sensitivity
 - analyses
 - and fluid modeling, 8.3.5.10-63
 - GWTT, 8.3.5.12-54
 - and preclosure risk assessment methodology (PRAM) program, 8.3.5.5-28
 - radiological risks from accidents, 8.3.5.1-11, -12
 - and release scenarios, 8.3.5.13-115--132
 - retardation, 8.3.1.3-118--127
 - technical procedures for, 8.3.1.2-144, -360
 - and transport models, 8.3.1.3-125--127
 - two-dimensional ground water flow model, 8.3.1.2-115
 - of transport times, 8.3.5.13-74
 - sensitivity analysis rationale, summary for underground facility analyses, 8.3.2.5-83--84
 - sensitivity studies, 8.3.2.2-74
 - emplACEMENT drifts, 8.4.3-29
 - information needed, 8.3.2.2-68*
 - shaft and drift analyses, 8.4.3-29
 - status, 8.3.2.2-71
 - thermal/mechanical analyses, 8.4.3-29
 - sensitivity studies (Design Activity 1.11.6.3), 8.3.2.2-74
 - sensitivity studies, product 1.11.6-3
 - thermal/thermomechanical modeling, 8.3.2.2-38
 - separation, ESF tests and potential emplacement drifts, 8.4.3-34
 - sequences, potentially disruptive, 8.3.5.13-28--42, -51--53 (see also Ross study)
 - sequencing constraints, and ESF tests, 8.4.2-98, -99*--101*
 - sequential drift mining
 - constraints and zones of influence, 8.4.2-114
 - drifts, 8.4.2-116**

sequential drift mining (continued)
 instrumentation drifts, 8.4.2-115**
 purpose and operations, 8.4.2-114

sequential drift mining activity,
 8.3.1.15-49--52
 description, 8.3.1.15-50
 methods and technical procedures,
 8.3.1.15-50--52
 objectives, 8.3.1.15-49--50
 parameters, 8.3.1.15-50

sequential drift mining experiments
 effects of, 8.4.3-32
 in situ experiment analyses, 8.4.3-31--32
 stress altered region, 8.4.3-32
 thermal/mechanical analyses, 8.4.3-31--32

SETS
 and preclosure safety assessment,
 8.3.5.19-9*, -10*

SGB, see southern Great Basin

shaft, analyses of stability of unlined,
 8.4.3-26--27

shaft and drift analyses
 blast damage to ESF pad, 8.4.3-30--31
 drift shape and pillar width and
 stability, 8.4.3-28
 excavation-induced effects on permeability, 8.4.3-25--26
 porosity and rock strength, 8.4.3-28--29
 rock bolts and stresses near emplacement
 drifts, 8.4.3-29
 sensitivity study for drift failure,
 8.4.3-29
 stability of panel access drifts,
 8.4.3-29--30
 stability of unlined shaft, 8.4.3-26--27
 stresses of unventilated drift intersection, 8.4.3-29
 thermal effects on stability, 8.4.3-27
 thermal stresses and displacements,
 8.4.3-27--28
 thermal stresses on arched emplacement
 drifts, 8.4.3-29

shaft collars
 ESF, 8.4.2-163, -164**
 ESF construction, 8.4.2-179--180

shaft convergence
 constraints and zones of influence,
 8.4.2-109
 purpose and operations, 8.4.2-109

shaft convergence activity, 8.3.1.15-46--47
 description, 8.3.1.15-46

shaft convergence activity (continued)
 methods and technical procedures,
 8.3.1.15-46--47
 objectives, 8.3.1.15-46
 parameters, 8.3.1.15-46

shaft convergence effects
 in situ experiment analyses, 8.4.3-31--32
 thermal/mechanical analyses, 8.4.3-31--32

shaft convergence experiments
 effects of, 8.4.3-31
 stress altered region, 8.4.3-31

shaft convergence test
 measurement details, 8.4.2-110**
 multiple point borehole extensometers,
 8.4.2-110**

shaft liner, removable
 design configuration, 8.4.3-35

shaft stations, ESF construction, 8.4.2-181**

shaft-wall seepage flow measurements,
 technical procedures for, 8.3.1.2-301--302

shafts and drifts
 thermal/mechanical analyses and data,
 8.4.3-25--31

shafts and ramps
 analytical structural design
 parameters, 8.3.2.5-69--70
 empirical structural design
 parameters, 8.3.2.5-69--70
 sealing components, 8.3.3.1-5;
 8.3.3.2-7, -8**, -9*

shallow borehole in situ hydrofracture tests,
 8.3.1.17-182--183
 technical procedures for, 8.3.1.17-183

shallow borings drilled dry
 potential impacts of geochemical
 disturbance, 8.4.3-39--40
 potential impacts of hydrologic
 disturbance, 8.4.3-39
 potential impacts of thermal/
 mechanical disturbance, 8.4.3-40

shallow seismic reflection method evaluation
 activity, 8.3.1.17-177--178
 description, 8.3.1.17-178
 methods and technical procedures,
 8.3.1.17-178
 objectives, 8.3.1.17-177
 parameters, 8.3.1.17-177

shallow seismic reflection surveys,
 8.3.1.17-122

shallow surface seismic surveys, technical
 procedures for, 8.3.1.2-164

shallow trench excavation at key sites, technical procedures for, 8.3.1.5-71

Sheep Mountains, detachment fault comparison, 8.3.1.17-150

shielding
host rock, 8.3.2.3-1, -41

significant processes and events
and complementary cumulative distribution functions (CCDFs), 8.3.5.13-3--4

DOE interpretation, 8.3.5.13-2

treatment of, 8.3.5.13-8--24

significant source of ground water
40 CFR Part 191 definition, 8.3.5.14-1

silica geothermometry, 8.3.1.8-128
technical procedures for, 8.3.1.8-129

silicic volcanism, and Great Basin, 8.3.1.17-52

sills, 8.3.1.8-83, -125

silt accumulation, exploratory shaft sump, 8.4.3-10--11

single-phase fluid system properties (Activity 1.10.4.2.1), 8.3.4.2-52--54
description, 8.3.4.2-52
methods and technical procedures, 8.3.4.2-53--54
objectives, 8.3.4.2-52
parameters, 8.3.4.2-52

single-phase permeability laboratory tests, 8.3.1.2-246--247

single-well tests (site), 8.3.1.2-383--392, -400, -409
hydraulic stress activity, 8.3.1.2-383--393
technical procedures for, 8.3.1.2-412--414

sinking deck, ESF construction, 8.4.2-182**

site ambient stress condition characterization study, 8.3.1.15-78--82

site and design information needed (GWTT) (Information Need 1.6.1), 8.3.5.12-25--40
application of results, 8.3.5.12-40
link to supporting information, 8.3.5.12-27
logic, 8.3.5.12-27, -34--39
parameters, 8.3.5.12-27--33*
technical basis for, 8.3.5.12-27--40

site and design information needed (preclosure radiological safety) (Information Need 2.1.1), 8.3.5.3-20--25
interrelationships of information need, 8.3.5.3-19
link to supporting information, 8.3.5.3-20
logic, 8.3.5.3-23

site and design information needed (preclosure radiological safety) (Information Need 2.1.1) (continued)
parameters, 8.3.5.3-20
performance assessment activities, 8.3.5.3-23--25
advanced conceptual design assessment of public radiological safety--normal operations, 8.3.5.3-24--25

performance assessment activity
development through preclosure risk assessment methodology (PRAM) program, 8.3.5.3-24

public radiological safety site data parameter refinement, 8.3.5.3-23--24

technical basis for, 8.3.5.3-20--23

site and design information needed (retrieval) (Information Need 2.4.1), 8.3.5.2-23--30
application of results, 8.3.5.2-24

design and performance goals, 8.3.5.2-27*--28*

link to supporting information, 8.3.5.2-23--24
parameters, 8.3.5.2-24, -25*--30*
technical basis for, 8.3.5.2-23--24

site and performance information needed for design (nonradiological health and safety) (Information Need 4.2.1), 8.3.2.4-23--32
application of results, 8.3.2.4-30
design activities, 8.3.2.4-27--30
access and drift usability, 8.3.2.4-27--30
air quality and ventilation, 8.3.2.4-30

link to supporting information, 8.3.2.4-24
logic, 8.3.2.4-26--27
parameters, 8.3.2.4-24--26
technical basis, 8.3.2.4-23--27

site and performance information needed for design (preclosure design and technical feasibility) (Information Need 4.4.1), 8.3.2.5-35--38
application of results, 8.3.2.5-38
link to supporting information, 8.3.2.5-36
logic, 8.3.2.5-36--38
objectives, 8.3.2.5-35--36
parameters, 8.3.2.5-36
technical basis for, 8.3.2.5-36--38

site area, preliminary
definition, 8.3.1.4-29, -30**

PART B INDEX (Chapter 8)

site area, preliminary (continued)
and geologic investigations,
8.3.1.4-29--32

site area structural features study,
8.3.1.4-65--80 (*see also* structural features
within the site area study)

Site Atlas, and planned activities, 8.4.2-39

site characteristics for underground facility
design (Information Need 1.11.1),
8.3.2.2-23--40
application of results, 8.3.2.2-40
data requirements list, 8.3.2.2-23
design activities, 8.3.2.2-39--40
adequacy of existing site data,
8.3.2.2-39
information required to resolve issue,
8.3.2.2-39
reference properties for reference
information base, 8.3.2.2-40
three-dimensional thermal/mechanical
stratigraphy, 8.3.2.2-40

interrelationships, 8.3.2.2-20--23, -22**

introduction, 8.3.2.2-23

link to supporting information, 8.3.2.2-24

logic, 8.3.2.2-24, -37--39

parameters, 8.3.2.2-24

products, 8.3.2.2-23, -37--39

technical basis for, 8.3.2.2-24--39

site characterization
and decontamination and decommissioning,
8.7-2

Department of Energy approach, 8.4.1-1--3

issue-based approach, 8.1-1--5

phased approach, 8.4.1-1--3

phenomenological focus, 8.3.1.1-7--8

study plans, 8.2-66, -67**
and 10 CFR 60, 8.4.1-3--12

site characterization activities
and data needs, 8.4.2-18--21

description and location, 8.4.2-1--221

effects on waste package containment
design criteria, 8.4.3-75--79

impacts on engineered barrier system,
8.4.3-81--85

impacts on ground-water travel time,
8.4.3-85--88

impacts on total system performance,
8.4.3-50--72

impacts on waste package containment,
8.4.3-73--81

and postclosure performance objectives,
8.4.3-1--8

site characterization activities (continued)
potential impacts, 8.4.1-1--2; 8.4.1-1--21;
8.4.2-1--221; 8.4.3-1--88

potential impacts on postclosure
performance, 8.4.3-50--88

quality activities, 8.6-21--22

rationale for, 8.4.2-1--36

and regulations, 8.4.3-1--3

representativeness of, 8.4.2-21--32

and unsaturated zone, 8.4.3-5

water introduced to unsaturated zone,
8.4.3-17--19

site characterization activities, conditional
Calico Hills characterization,
8.4.2-32--35

in situ stress, 8.4.2-36

perched water, 8.4.2-36

saturated-zone single-well testing,
8.4.2-36

systematic drilling program, 8.4.2-36

site characterization activities, planned
map, 8.4.2-41**

summary, 8.4.1-1--2; 8.4.1-1--21;
8.4.2-1--221; 8.4.3-1--88

site characterization effects, potential
on current conditions, 8.4.3-36--50

and design features, 8.4.3-34--35

geochemical analyses and data,
8.4.3-23--25

hydrologic analyses and data, 8.4.3-8--23

on postclosure performance, 8.4.3-50--88

thermal/mechanical analyses and data,
8.4.3-25--33

site characterization impacts, potential
approach to assessing, 8.4.3-5--8

geochemical analyses and data,
8.4.3-23--25

hydrologic analyses and data,
8.4.3-8--23

net infiltration, 8.4.3-9

summary technical analyses and data,
8.4.3-54--56

supporting technical analyses and
data, 8.4.3-8--50

surface ponding, 8.4.3-9--10

water accumulation in exploratory
shaft, 8.4.3-10--11

water infiltration from surface,
8.4.3-8--11

site characterization plan
conceptual design, 8.3.1.4-30**
and issues hierarchy, 8.1-4--5

site characterization plan (continued)
 Part B content and organization, 8.0-2--5,
 8.3-1, -2*
 and quality assurance, 8.3.1.1-8

site characterization plan-conceptual design report
 reference preclosure repository design,
 8.3.2.5-52
 and seal design, 8.3.3.1-8

site characterization program
 major events and completion dates,
 8.5-112--116
 organization, 8.2-62*
 overall summary schedule, 8.5-110, -111**
 and performance assessment and design
 data, 8.2-67**
 priorities, 8.0-9--10
 purposes, 8.0-2
 rationale, 8.1-1--17
 and regulatory documents, 8.2-67**
 scenario classes, 8.3.5.13-46--56
 and technical review, 8.3.1.1-8

site characterization testing, general
 description, 8.4.2-40

site data, methods for obtaining,
 8.4.2-15--18

site data use
 performance assessment and design,
 8.2-67**
 regulatory document preparation,
 8.2-67**

site flood and debris hazards activity,
 8.3.1.16-10--14

site geology effects on ground motion, study,
 8.3.1.17-77--79
 activities, 8.3.1.17-78--79
 ground motion site effects from
 recordings, 8.3.1.17-78--79
 ground motion site effects using wave
 properties, 8.3.1.17-79
 objectives, 8.3.1.17-77

site hydrochemical data availability
 activity, 8.3.1.2-425--426
 description, 8.3.1.2-425
 objectives, 8.3.1.2-425
 parameters, 8.3.1.2-425

site information
 acquisition of, 8.3.1.1-1--8
 and design, 8.3.1.1-3
 confidence in acquiring, 8.3.1.1-1--8
 sources of, 8.3.1.1-4
 uncertainties in, 8.3.1.1-4

site information needed for calculations
 (Information Need 1.1.1), 8.3.5.13-124
 application of results, 8.3.5.13-124
 link to supporting information,
 8.3.5.13-124
 logic diagrams, 8.3.5.13-117**--123**
 parameters, 8.3.5.13-124
 performance assessment activities,
 8.3.5.13-124
 technical basis for, 8.3.5.13-124

site meteorological monitoring program
 activity, 8.3.1.12-16--22
 description, 8.3.1.12-16--22
 methods and technical procedures,
 8.3.1.12-21--22
 objectives, 8.3.1.12-16
 parameters, 8.3.1.12-16--17

site meteorology investigation, 8.3.1.12-1,
 -3, -4**, -15--25 (see also meteorology
 investigation (site))

site ownership and control qualifying
 condition, 8.3.5.18-21
 and controlled area, 8.3.5.18-21
 and postclosure performance issues,
 8.3.5.18-7--8
 preliminary finding, 8.3.5.18-4*
 and qualifying condition, 8.3.5.6-6*, -11
 statement of, 8.3.5.18-21
 and 10 CFR 960.4-2-8-2(a), 8.3.5.18-21

site ownership and control technical guideline
 and higher level findings--preclosure
 radiological safety (Issue 2.5),
 8.3.5.6-11

site ownership program, see land
 ownership and mineral rights program

site pad, ESF construction, 8.4.2-179

site performance
 deterministic evaluations, 8.3.1.1-8
 and probabilistic evaluations, 8.3.1.1-8

site potentiometric level evaluation activity,
 8.3.1.2-375--382

site program
 and alternative conceptual models,
 8.3.1.1-6--7
 hypothesis testing, 8.3.1.1-6--7
 milestone descriptions, 8.5-113--115
 milestones, 8.5-111**
 organization of investigations, 8.3.1.1-9
 overview, 8.3.1.1-1--9
 performance allocation, 8.3.1.1-5--6
 structure, 8.3.1-1
 summary schedules, 8.5-1--34

site program (continued)
 testing strategy, 8.3.1.1-1, -2**, -5
 and uncertainties, 8.3.1.1-1-7

site properties
 and seals, 8.3.3.2-42, -43**-45*

site reconnaissance activity, 8.3.1.14-33--40
 description, 8.3.1.14-36
 methods and technical procedures,
 8.3.1.14-36, -40
 objectives, 8.3.1.14-33
 parameters, 8.3.1.14-33, -36

site-related technical concern correlations,
 8.2-18**-49*

site saturated-zone ground-water flow system
 study, see saturated-zone ground-water flow
 system (site) study

site saturated-zone hydrochemistry characteriza-
 tion study, see saturated-zone
 hydrochemistry (site) study

site-specific subsurface information
 acquisition study, 8.3.1.4-87--100
 activity
 systematic drilling program,
 8.3.1.4-87--100

site unsaturated zone, see unsaturated-zone
entries

site vertical borehole studies, see vertical
 borehole (site) studies

Skull Mountain
 and Cane Spring fault system, 8.3.1.17-142
 paleomagnetic sampling, 8.3.1.17-123
 and precipitation and streamflow station,
 8.3.1.2-100*

stratigraphy, 8.3.1.4-35

slip rates, 8.3.1.8-94, -96
 and mineral changes, 8.3.1.8-103
 Quaternary, 8.3.1.8-84

slot cutting, technical procedures for,
 8.3.1.15-58, -60, -69

small-diameter heater experiment
 in situ experiment analyses, 8.4.3-32--33
 thermal/mechanical analyses, 8.4.3-32--33

small-plot rainfall simulation studies,
 8.3.1.2-173, -175
 and artificial infiltration, 8.3.1.2-175
 and natural infiltration, 8.3.1.2-169
 site distribution, 8.3.1.2-169
 technical procedures for, 8.3.1.2-177--178

smectite, zeolite, manganese minerals, glass
 dehydration and transformation activity,
 8.3.1.3-52--54
 description, 8.3.1.3-52--53

smectite, zeolite, manganese minerals, glass
 dehydration and transformation activity
 (continued)
 methods and technical procedures,
 8.3.1.3-53
 objectives, 8.3.1.3-52
 parameters, 8.3.1.3-52

SNLS1E, 8.3.1.3-62

snow pillow data, 8.3.1.2-126--127

socioeconomic data sources--water use,
 8.3.1.9-44

socioeconomic planning process
 and population data, 8.3.1.10-1

software
 quality assurance, technical procedures
 for, 8.3.1.2-181, -322, -420
 technical procedures, 8.3.1.8-110, -114,
 -117, -120, -122

soil and rock properties investigation,
 8.3.1.14-27--64
 activities
 detailed exploration, 8.3.1.14-43--44
 geophysical field measurements,
 8.3.1.14-59--63

mechanical and dynamic laboratory
 property tests, 8.3.1.14-48--53

mechanical property field tests,
 8.3.1.14-57--59

physical property and index laboratory
 tests, 8.3.1.14-45--48

physical property field tests and
 characterization measurements,
 8.3.1.14-54--56

preliminary exploration,
 8.3.1.14-40--43

site reconnaissance, 8.3.1.14-33--40

application of results, 8.3.1.14-63--64

link to supporting information,
 8.3.1.14-27

logic diagram, 8.3.1.14-17**

parameters, 8.3.1.14-27--28
 and preclosure design and technical
 feasibility (Issue 4.4), 8.3.1.14-29,
 -30

purpose and objectives, 8.3.1.14-28--29
 studies, 8.3.1.14-31--63
 exploration program, 8.3.1.14-31--44
 field tests and characterization
 measurements, 8.3.1.14-53--63
 laboratory tests and material property
 measurements, 8.3.1.14-45--53

technical basis for, 8.3.1.14-27-31

soil and rock properties investigation
(continued)
 technical rationale, 8.3.1.14-29--31

soil and rock strata, three-dimensional
models, 8.3.1.14-60

soil moisture, technical procedures,
8.3.1.2-132

soil parameters, 8.3.1.14-45

soil properties, preliminary evaluations,
8.3.1.14-41

soil properties (modeling) activity,
8.3.1.5-61--65
 description, 8.3.1.5-62--63
 methods and technical procedures,
 8.3.1.5-64--65
 objectives, 8.3.1.5-61
 parameters, 8.3.1.5-61--62

soil technical procedures
 available water-holding capacity,
 8.3.1.5-64
 chemical properties, 8.3.1.5-64
 classification, 8.3.1.14-42, -43
 dating, 8.3.1.5-65
 density, 8.3.1.14-47, -48, -56
 development rates, 8.3.1.5-64
 gradation, 8.3.1.14-47
 lysimeter studies (leachates), 8.3.1.5-64
 pCO₂ field measurements, 8.3.1.5-64
 properties, 8.3.1.5-64
 sample preparation, 8.3.1.14-46
 specific gravity, 8.3.1.14-47
 trenching, sampling, description,
 8.3.1.5-64
 water samples, 8.3.1.5-64, -71

solid sample handling, technical procedures
 for, 8.3.1.2-420

solid solution description of clinoptilolite,
heulandite and analcime activity,
8.3.1.3-63--64
 description, 8.3.1.3-63--64
 methods and technical procedures,
 8.3.1.3-64
 objectives, 8.3.1.3-63
 parameters, 8.3.1.3-63

Solitario Canyon
 and faulting study area boundary,
 8.3.1.17-154
 gaseous-phase test location, 8.3.1.2-325*

horizontal borehole study,
8.3.1.2-221--232; 8.4.2-76

hydrogeologic section, 8.3.5.12-4**

Solitario Canyon (continued)
 and Quaternary fault study area,
 8.3.1.17-103, -104**

Solitario Canyon fault, 8.3.1.8-69;
8.3.1.17-28, -29*, -34
 and gaseous-phase test holes, 8.3.1.2-329
 as ground-water flow barrier, 8.3.1.2-373
 and neutron logging, 8.3.1.2-372
 and Quaternary movement, 8.3.1.17-154
 and relevel network, 8.3.1.17-195
 and repository boundary condition,
 8.3.1.2-366--367
 and water-table drillholes, 8.3.1.2-376

Solitario Canyon fault study (saturated zone)
activity, 8.3.1.2-372--375
 description, 8.3.1.2-372--373
 methods and procedures, 8.3.1.2-373, -375
 objectives, 8.3.1.2-372
 parameters, 8.3.1.2-372
 proposed drillholes, 8.3.1.2-374

Solitario Canyon fault zone
 and perimeter drift, 8.3.1.4-29
 Quaternary offset, plans and technical
 procedures, 8.3.1.17-161, -166--167

Solitario Canyon horizontal borehole studies
activity, 8.3.1.2-221--232
 description, 8.3.1.2-222--223
 methods and technical procedures,
 8.3.1.2-224--232
 objectives, 8.3.1.2-221--222
 parameters, 8.3.1.2-222

solubility measurements
 and concentration limits, 8.3.1.3-89

solubility measurements activity,
8.3.1.3-88--91
 description, 8.3.1.3-89--90
 methods and technical procedures,
 8.3.1.3-90--91
 objectives, 8.3.1.3-88
 parameters, 8.3.1.3-88--89
 test conditions, 8.3.1.3-89*

solubility modeling
 and EQ3/6, 8.3.1.3-92
 and waste elements, 8.3.1.3-88

solubility modeling activity, 8.3.1.3-92
 description, 8.3.1.3-92
 methods and technical procedures,
 8.3.1.3-92
 objectives, 8.3.1.3-92
 parameters, 8.3.1.3-92

solution sample handling, technical procedures
for, 8.3.1.2-420

solvents, introduced
and ESF, 8.4.3-23--24

sorption
and bacteria, 8.3.1.3-80--81
batch, 8.3.1.3-68--79 (see also batch sorption study)
coefficients, 8.3.1.3-75, -76, -77*
element concentrations, 8.3.1.3-74, -75*
and ground-water composition,
 8.3.1.3-76--77, 77*
investigation (see radionuclide sorption investigation)
iodine-129, 8.3.1.3-67
isotherms, 8.3.1.3-74--76
and particulates, 8.3.1.3-77--79
plutonium, 8.3.1.3-67
statistical analysis, 8.3.1.3-79
technetium-99, 8.3.1.3-67
uranium, 8.3.1.3-67
zirconium-99, 8.3.1.3-67

sorption (biological) and transport study,
8.3.1.3-80--82

sorption as function of element concentration activity, 8.3.1.3-74--76
description, 8.3.1.3-74--75, -75*
methods and technical procedures,
 8.3.1.3-75--76
objectives, 8.3.1.3-74
parameters, 8.3.1.3-74

sorption as function of ground-water composition activity, 8.3.1.3-76--77
description, 8.3.1.3-76--77
methods and technical procedures,
 8.3.1.3-77
objectives, 8.3.1.3-76
parameters, 8.3.1.3-76

sorption data statistical analysis activity, 8.3.1.3-79
description, 8.3.1.3-79
objectives, 8.3.1.3-79
parameters, 8.3.1.3-79

sorption model, 8.3.5.10-66
and geochemistry program, 8.3.1.3-28
and ground-water composition, 8.3.1.3-76

sorption model development study, 8.3.1.3-83
description, 8.3.1.3-83
objectives, 8.3.1.3-83
parameters, 8.3.1.3-83

sorption on particulates and colloids activity, 8.3.1.3-77--79
description, 8.3.1.3-78

sorption on particulates and colloids activity (continued)
methods and technical procedures,
 8.3.1.3-79
objectives, 8.3.1.3-77--78
parameters, 8.3.1.3-78

SOSI, 8.3.1.3-79

source term
near-field host rock, 8.3.5.10-32--33*

South African Council for Scientific and Industrial Research, rock mass classification, 8.3.1.14-54, -55

southern Death Valley
eruption trends, 8.3.1.8-121

southern Great Basin
earthquake catalog, 8.3.1.17-92
and erosion, 8.3.1.6-7, -20
seismograph network, 8.3.1.17-89--91
volcanic field data, 8.3.1.8-121
see also Great Basin

SPARTAN
and performance assessment, 8.3.5.19-2*, -7*

spatial correlation structure
performance parameters, 8.3.5.12-32*

spatial distribution ambient stress and thermal conditions investigation, 8.3.1.15-77--84
activities, 8.3.1.15-78--83
anelastic strain recovery experiments, 8.3.1.15-78--80
overcore stress experiments in ESF, 8.3.1.15-80--82
surface-based evaluation of ambient thermal conditions, 8.3.1.15-82--83

application of results, 8.3.1.15-83--84

link to supporting information, 8.3.1.15-77
logic diagram, 8.3.1.15-17**
parameters, 8.3.1.15-77
purpose and objectives, 8.3.1.15-77--78

study
ambient stress conditions (site), 8.3.1.15-78--82
technical basis for, 8.3.1.15-77--78
technical rationale, 8.3.1.15-78

spatial distribution thermal/mechanical properties investigation, 8.3.1.15-23--76
activities
air quality and ventilation experiment, 8.3.1.15-74--76

spatial distribution thermal/mechanical properties investigation (continued) activities (continued)
canister-scale heater experiment, 8.3.1.15-54--56
compressive mechanical properties-- environmental condition effects, 8.3.1.15-41--42
compressive mechanical properties of intact rock, 8.3.1.15-40--41
demonstration breakout rooms, 8.3.1.15-48--49
density and porosity characterization, 8.3.1.15-31--34
drift stability monitoring, 8.3.1.15-73--74
fracture mechanical properties-- baseline, 8.3.1.15-43--44
fracture mechanical properties-- environmental effects, 8.3.1.15-44--45
ground support monitoring, 8.3.1.15-72--73
heated room experiment, 8.3.1.15-62--65
heater experiment of unit TSW1, 8.3.1.15-52--54
mining methods, 8.3.1.15-71
plate loading tests, 8.3.1.15-65--67
rock-mass strength experiment, 8.3.1.15-68--70
sequential drift mining, 8.3.1.15-49--52
shaft convergence, 8.3.1.15-46--47
thermal conductivity characterization, 8.3.1.15-36--38
thermal expansion characterization, 8.3.1.15-38--39
thermal stress measurements, 8.3.1.15-60--62
volumetric heat capacity characterization, 8.3.1.15-34--36
Yucca Mountain heated block, 8.3.1.15-57--59
application of results, 8.3.1.15-76
link to supporting information, 8.3.1.15-23
logic diagram, 8.3.1.15-16**
other issue requirements, 8.3.1.15-24*
parameters, 8.3.1.15-23
purpose and objectives, 8.3.1.15-23

spatial distribution thermal/mechanical properties investigation (continued) studies, 8.3.1.15-31--76
excavation investigations, 8.3.1.15-45--52
fracture mechanical properties (laboratory determination), 8.3.1.15-43--45
in situ design verification, 8.3.1.15-70--76
in situ mechanical properties, 8.3.1.15-65--70
in situ thermomechanical properties, 8.3.1.15-52--65
intact rock mechanical properties (laboratory determination), 8.3.1.15-40--42
thermal expansion testing (laboratory), 8.3.1.15-38--39
thermal properties (laboratory), 8.3.1.15-31--38
technical basis for, 8.3.1.15-23--24
technical rationale, 8.3.1.15-24--31
spatial variability
and geostatistical methods, 8.4.2-27--31
and postclosure performance evaluations, 8.4.2-4*--7*, -8
spatial variability of thermal expansion behavior, *see* thermal expansion characterization activity
SPECANAL, 8.3.1.3-73
special source
criteria for designation, 8.3.5.15-2
speciation measurements activity, 8.3.1.3-91--92
description, 8.3.1.3-91
methods and technical procedures, 8.3.1.3-91--92
objectives, 8.3.1.3-91
parameters, 8.3.1.3-91
specific gravity, technical procedures
rock, 8.3.1.14-47
soil, 8.3.1.14-48
Specter Range and Camp Desert Rock detachment faults activity, 8.3.1.17-150--151*
description, 8.3.1.17-150--151
methods and technical procedures, 8.3.1.17-151
objectives, 8.3.1.17-150
parameters, 8.3.1.17-150

SPECTROM-31
and performance assessment,
8.3.5.19-2*, -7*

SPECTROM-41
drift analysis, 8.3.2.5-73
and performance assessment, 8.3.5.19-2*,
-7*
ventilation analysis, 8.3.2.5-73

spent fuel
gas release model
input and needed confidence,
8.3.5.10-8*-9*
and waste package model hierarchy,
8.3.5.9-7**
release model, 8.3.5.10-66--68
input and needed confidence,
8.3.5.10-5*-6*
and waste package model hierarchy,
8.3.5.9-7**; 8.3.5.10-3**
waste form
actinide solubility performance
measures, 8.3.5.9-21*-22*,
-32, -34
carbon-14 rapid release, 8.3.5.9-21*,
-34; 8.3.5.14-4--5
cladding performance measures,
8.3.5.9-20*-21*, -32-33
gap and grain boundary release
performance measures,
8.3.5.9-21*, -22*, -33-34
performance goals, 8.3.5.9-26,
-27, -29; 8.3.5.10-37
release rates, performance parameters
and goals, 8.3.5.9-20*-22*, -23,
-31, -32; 8.3.5.10-20*-27*
spent fuel container, 8.3.5.9-2**
spent fuel dissolution and leaching
(Subactivity 1.5.2.1.1), 8.3.5.10-44--45
description, 8.3.5.10-45
objectives, 8.3.5.10-44
parameters, 8.3.5.10-45
spent fuel information integration
(Subactivity 1.5.1.1.1), 8.3.5.10-41--42
spent fuel oxidation (Subactivity 1.5.2.1.2),
8.3.5.10-46
description, 8.3.5.10-46
objectives, 8.3.5.10-46
parameters, 8.3.5.10-46
spent fuel release model (Subactivity
1.5.3.3.1), 8.3.5.10-66--68
description, 8.3.5.10-67--68
objectives, 8.3.5.10-66
spent fuel release model (Subactivity
1.5.3.3.1) (continued)
parameters, 8.3.5.10-66--67
spent fuel release models (Activity 1.5.3.3),
8.3.5.10-66--68
subactivity, 8.3.5.10-66--68
spent fuel release model,
8.3.5.10-66--68
spent fuel waste form additional experiments
(Subactivity 1.5.2.1.6), 8.3.5.10-50--51
description, 8.3.5.10-51
objectives, 8.3.5.10-50--51
spent fuel waste form characterization
(Activity 1.5.2.1), 8.3.5.10-44--51
subactivities, 8.3.5.10-44--51
spent fuel dissolution and leaching,
8.3.5.10-44--45
spent fuel oxidation, 8.3.5.10-46
spent fuel waste form additional
experiments, 8.3.5.10-50--51
spent fuel waste form
materials--corrosion and release,
8.3.5.10-49
Zircaloy cladding carbon-14 release,
8.3.5.10-49--50
Zircaloy corrosion, 8.3.5.10-46--48
spent fuel waste form materials--corrosion
and releases (Subactivity 1.5.2.1.4),
8.3.5.10-49
description, 8.3.5.10-49
objectives, 8.3.5.10-49
parameters, 8.3.5.10-49
spent fuel waste packages, 8.3.4.1-5
Spotted Range-Mine Mountain fault zone,
8.3.1.17-100**
springs and seeps discharge, and past
discharge areas, 8.3.1.5-99--100
SPT, see Standard Penetration Test
stable isotopes
analyses, technical procedures for,
8.3.1.3-51; 8.3.1.5-72, -117
and geochemical analysis of sediments,
8.3.1.5-50
stability, panel access drifts, 8.4.3-29--30
shaft and drift analyses, 8.4.3-29--30
thermal/mechanical analyses, 8.4.3-29--30
stability, shaft
analysis of thermal effects on, 8.4.3-27
stability, thermal effects on
thermal mechanical analyses, 8.4.3-27

stability, unlined shaft
 shaft and drift analyses, 8.4.3-26--27
 thermal/mechanical analyses, 8.4.3-26--27

Stagecoach Road fault, 8.3.1.17-28, -29**, -133, -134**
 buried extensions and gamma-ray measurements, 8.3.1.17-175
 and faulting study area boundary, 8.3.1.17-154
 and Quaternary fault study area, 8.3.1.17-103, -104**

Stagecoach Road fault zone evaluation activity, 8.3.1.17-139--141
 description, 8.3.1.17-140
 methods and technical procedures, 8.3.1.17-141
 objectives, 8.3.1.17-139
 parameters, 8.3.1.17-139--140

Standard Penetration Test, blow count data, 8.3.1.14-41, -54, -55, -57

State of Nevada
 Employment Security Department
 and socioeconomic data for water-use assessment, 8.3.1.9-44
 and meteorological data reporting requirements, 8.3.1.12-21
 and mitigation plans, 8.7-6
 site characterization plan comments, 8.3.1-1
 as source of meteorological data, 8.3.1.12-10
 water permit for site characterization, 8.4.2-80

static sounding-penetration resistance methods, technical procedures for, 8.3.1.14-43

statistical analysis of data, including fractals, technical procedures for, 8.3.1.4-72

steady-state flow processes, approximation of, 8.3.1.2-165

STEALTH
 and excavation-induced effects on permeability, 8.4.3-25--26
 finite difference code, 8.4.3-25--26

stemming, technical procedures for, 8.3.1.2-215--217, -227--228

step drawdown test, technical procedures for, 8.3.1.16-19, -21, -23

stereophotographic recording of geologic features, technical procedures for, 8.3.1.4-78

stochastic modeling and uncertainty analysis activity, 8.3.1.2-359--360
 description, 8.3.1.2-359--360
 methods and technical procedures, 8.3.1.2-360
 objectives, 8.3.1.2-359
 parameters, 8.3.1.2-359

stochastic continuum modeling, technical procedures for, 8.3.1.2-345, -349--350

stone stripes, erosion scars, and other debris deposits, technical procedures for, 8.3.1.5-95

storage coefficient estimation, technical procedures for, 8.3.1.5-106

storm events
 and erosion, 8.3.1.6-9

strain change effects on water-table elevation activity, 8.3.1.8-91--92
 description, 8.3.1.8-91--92
 methods and technical procedures, 8.3.1.8-92
 objectives, 8.3.1.8-91
 parameters, 8.3.1.8-91

strain gage measurements, technical procedures for, 8.3.1.15-58

strategy, top level, 8.0-4--10

strategy for containment enhancement (Design Activity 1.11.6.4), 8.3.2.2-74
 objective, 8.3.2.2-74

strategy for containment enhancement, Product 1.11.6-4
 information needed, 8.3.2.2-68*
 status, 8.3.2.2-71
 thermal/thermomechanical modeling, 8.3.2.2-38

strategy for postclosure performance assessment, 8.3.5.8-1--10 (see also postclosure performance assessment, strategy)

strategy for preclosure performance assessment 8.3.5.1-1--21

stratigraphic correlations
 and magnetic properties, 8.3.1.4-60--64

stratigraphic locations, thermal and mechanical properties parameters, 8.3.1.15-2**--13*

stratigraphic modeling
 and geophysical constraints, 8.3.1.4-41
 parameter calls, 8.3.1.15-15**

stratigraphic studies, surface-based geophysical surveys, 8.3.1.4-41--57
 location, 8.3.1.4-35, -37**, -38**

stratigraphic studies, surface-based
 (continued)
 Pah Canyon Member, 8.3.1.4-35, -38**
 and Topopah Spring Member, 8.3.1.4-35,
 -37**
 Yucca Mountain Member, 8.3.1.4-35, -37**

stratigraphic studies (surface and subsurface)
 activity, 8.3.1.4-32--64

stratigraphic units
 vertical/lateral distribution,
 8.3.1.4-32--64

stratigraphy
 and geohydrology investigations,
 8.3.1.2-88
 Skull Mountain, 8.3.1.4-35
 volcanic, 8.3.1.4-39, -36*

stratigraphy-sedimentology of marsh,
 lacustrine, and playas activity,
 8.3.1.5-47--49
 description, 8.3.1.5-48
 methods and technical procedures,
 8.3.1.5-48--49
 objectives, 8.3.1.5-47
 parameters, 8.3.1.5-47--48

stream erosion disruptive scenario classes,
 evaluation of, 8.4.3-64

stream gaging measurements
 and analog recharge, 8.3.1.5-107
 Beatty, 8.3.1.2-105
 and storm events, 8.3.1.6-9

stream-incision rates
 and Fortymile Wash, 8.3.1.6-12

stream technical procedures
 channel deposit dating, 8.3.1.5-95
 gradients from terrace profiles,
 8.3.1.6-13
 gravel lithology, 8.3.1.6-13
 trench, map, and analyze channel deposits,
 8.3.1.5-95

streamflow
 crest-stage gage network, 8.3.1.2-105--106
 data, lack of, 8.3.1.2-96 (see also
 runoff)
 measurements and monitoring
 Fortymile Wash, 8.3.1.2-90, -126, -127
 and preclosure hydrology program,
 8.3.1.16-11
 station locations, 8.3.1.2-99**,
 -100**--101*, -107**, -108**--109*
 technical procedures for,
 8.3.1.2-111--112; 8.3.1.16-13

streamflow (continued)
 and runoff characterization study,
 8.3.1.2-102--114 (see also runoff and
 streamflow characterization study)
 streamflow and precipitation measurements,
 technical procedures for, 8.3.1.2-129--131
 strength testing of supports, technical
 procedures for, 8.3.1.15-73

stress altered region
 sequential drift mining experiment,
 8.4.3-32
 shaft convergence experiments, 8.4.3-31

stress analyses, demonstration breakout room,
 8.4.3-31--32

stress and thermal conditions, spatial
 distribution investigation, 8.3.1.15-77--84
 (see also spatial distribution ambient
 stress and thermal conditions investigation)

stress cancellation testing, technical
 procedures for, 8.3.1.15-62

stress (ambient) conditions at site study,
 8.3.1.15-78--82 (see also ambient stress
 conditions (site) study)

stress corrosion cracking
 copper-based alloys, 8.3.5.9-71
 as mode of cladding failure,
 8.3.5.10-47--48
 waste containers, 8.3.5.9-47
see also intergranular stress corrosion
 cracking (waste containers) and
 transgranular stress corrosion
 cracking (waste containers)

stress corrosion cracking (copper)
 (Subactivity 1.4.3.1.6), 8.3.5.9-95--97
 description, 8.3.5.9-96--97
 objectives, 8.3.5.9-95
 parameters, 8.3.5.9-96

stress distributions (theoretical) and
 tectonic setting activity, 8.3.1.17-185--186
 description, 8.3.1.17-185--186
 methods and technical procedures,
 8.3.1.17-186
 objectives, 8.3.1.17-185
 parameters, 8.3.1.17-185--186

stress field (present) evaluation activity,
 8.3.1.17-180--181
 description, 8.3.1.17-181
 methods and technical procedures,
 8.3.1.17-181
 objectives, 8.3.1.17-180
 parameters, 8.3.1.17-181

stress field within and proximal to site study, 8.3.1.17-179--186
 activities, 8.3.1.17-180--186
 borehole (shallow) hydrofracture and triaxial strain recovery methods, 8.3.1.17-182--183
 paleostress orientation data evaluation, 8.3.1.17-183--184
 stress distributions (theoretical) and tectonic setting, 8.3.1.17-185--186
 stress field (present) evaluation, 8.3.1.17-180--181
 objectives, 8.3.1.17-179--180

stress measurement
 in situ, methods evaluation activity, 8.3.1.17-182--183
 technical procedures for, 8.3.1.15-47, -82

stress (thermal) measurements activity, 8.3.1.15-60--62

stress/strain effects on hydrological rock mass properties activity, 8.3.1.8-96--97
 description, 8.3.1.8-97
 methods and technical procedures, 8.3.1.8-97
 models, 8.3.1.8-97
 objectives, 8.3.1.8-96--97
 parameters, 8.3.1.8-97

stress tests, at C-hole complex, 8.3.1.2-385

stress trajectories, mathematical modeling, technical procedures for, 8.3.1.17-186

stresses, and emplacement drifts, 8.4.3-29

stresses at unventilated drift intersection
 shaft and drift analyses, 8.4.3-29
 thermal/mechanical analyses, 8.4.3-29

stresses near emplacement drifts
 shaft and drift analyses, 8.4.3-29

stress trajectories, mathematical modeling procedure, 8.3.1.17-186*

Stripa Task Force on sealing materials and techniques, 8.3.3.1-6--7

Striped Hills
 and in situ stress measurements, 8.3.1.17-182

Strombolian eruption effects activity, 8.3.1.8-59--60
 description, 8.3.1.8-60
 methods and technical procedures, 8.3.1.8-60
 objectives, 8.3.1.8-59
 parameters, 8.3.1.8-59

Strombolian eruptions, 8.3.1.8-59--60, -62, -83

structural controls of basaltic volcanism
 activity, 8.3.1.8-52--54
 description, 8.3.1.8-53--54
 methods and technical procedures, 8.3.1.8-54
 objectives, 8.3.1.8-52
 parameters, 8.3.1.8-52--53

structural deformation
 and Issue 1.8 potentially adverse condition 22, 8.3.5.17-80--81

structural deformation (Issue 1.8 potentially adverse condition 4)
 discussion, 8.3.5.17-27, -30
 performance parameters and goals, 8.3.5.17-31*--34*
 related studies and activities, 8.3.5.17-31*--34*
 scenario classes, 8.3.5.17-31*--34*
 text of condition, 8.3.5.17-4*

structural deformation (Quaternary) (Issue 1.8 potentially adverse condition 11)
 discussion, 8.3.5.17-61
 performance parameters and goals, 8.3.5.17-63*--69*
 related studies and activities, 8.3.5.17-63*--69*
 scenario classes, 8.3.5.17-63*--69*
 text of condition, 8.3.5.17-5*

structural domain and fault and fracture patterns activity, 8.3.1.17-131--132
 description, 8.3.1.17-131--132
 methods and technical procedures, 8.3.1.17-132
 objectives, 8.3.1.17-131
 parameters, 8.3.1.17-131

structural features within the site area study, 8.3.1.4-65--80
 activities, 8.3.1.4-65--80
 borehole evaluation of faults and fractures, 8.3.1.4-70--74
 geologic mapping of exploratory shaft and drifts, 8.3.1.4-74--79
 geologic mapping zonal features in Paintbrush Tuff, 8.3.1.4-66--68
 seismic tomography/vertical seismic profiling, 8.3.1.4-79--80
 surface-fracture network studies, 8.3.1.4-68--70

structural-thermal analysis
 boreholes, summary, 8.3.2.5-73
 boundary element techniques, 8.3.2.5-69
 compliant-jointed media, 8.3.2.5-68

structural-thermal analysis (continued)
drifts, summary, 8.3.2.5-71--73
elastic media, 8.3.2.5-68
elastic-plastic media, 8.3.2.5-68
finite-element methods, 8.3.2.5-69
shafts and ramps, summary, 8.3.2.5-68--70
tunnel index methods, 8.3.2.5-69
of underground repository facilities,
summary, 8.3.2.5-68--75

structure of Section 8.3, 8.3-1--2, -3*

study plans
climate program, 8.5-50*
erosion program, 8.5-50*
geochemistry program, 8.5-48*--49*
geohydrology program, 8.5-48*
human interference program, 8.5-51*--52*
meteorological program, 8.5-52*
preclosure hydrology program, 8.5-53*
rock characteristics program, 8.5-49*--50*
shaft and borehole seal characteristics,
8.5-54*
site characterization, 8.5-39, -48*--54*
surface characteristics program, 8.5-52*
tectonics program (postclosure), 8.5-51*
tectonics program (preclosure),
8.5-53*--54*
waste package characteristics, 8.5-54*
see also site characterization, study
plans

subregional two-dimensional areal hydrologic
model activity, 8.3.1.2-139--141

subregional two-dimensional cross-sectional
model, 8.3.1.2-142--144
flow-line location, 8.3.1.2-143**

subsidence
control, see long-term subsidence control
effect on water-table elevation activity,
8.3.1.8-92
Quaternary, 8.3.1.8-87
rates, and erosion, 8.3.1.6-23

substantially complete containment, 8.3.4-3--4
design objectives, 8.3.5.9-1, -5
DOE interpretation, 8.3.5.9-1
EPA requirements, 8.3.5.13-6**
and testing program, 8.3.5.9-15

substantially complete containment determi-
nation (Activity 1.4.5.1), 8.3.5.9-113--114
description, 8.3.5.9-114
objectives, 8.3.5.9-113
parameters, 8.3.5.9-114

substantially complete containment of waste
(Information Need 1.4.5), 8.3.5.9-112--114
activity
substantially complete containment
determination, 8.3.5.9-113--114
application of results, 8.3.5.9-114
link to supporting information,
8.3.5.9-112
logic, 8.3.5.9-113
parameters, 8.3.5.9-112--113
technical basis, 8.3.5.9-112--113

subsurface, system element 1.1.2
data needed for technology for underground
facilities (Information Need 4.4.9),
8.3.2.5-90, -91, -92
functions and processes, 8.3.2.5-13*--17*
parameters for technology for underground
facilities (Information Need 4.4.9),
8.3.2.5-89--91
preliminary performance allocation,
8.3.2.5-13*--17*
underground facilities technology,
8.3.2.5-88--89

subsurface activities, general description,
8.3.2.90--221

subsurface data, obtaining, 8.4.2-16--18
and indirect methods, 8.4.2-17--18
and subsurface methods, 8.4.2-17
and surface-based methods, 8.4.2-16--17

subsurface excavations, 8.4-1
Calico Hills nonwelded unit, 8.4.2-32--35
conditionally planned, 8.4.2-32--36
representativeness of, 8.4.2-22--24

subsurface information (site-specific)
data acquisition study, 8.3.1.4-87--100
activity
systematic drilling program,
8.3.1.4-87--100

subsurface mining
and disturbed-case scenario classes,
8.3.5.13-86, -89
and Issue 1.8 potentially adverse
condition 2, 8.3.5.17-20--21, -27
and Issue 1.8 potentially adverse
condition 17, 8.3.5.17-76--77
subsurface mining evidence (Issue 1.8
potentially adverse condition 18)
discussion, 8.3.5.17-78
text of condition, 8.3.5.17-6*

subsurface strata properties
geophysical methods, 8.3.1.14-42

subsystem design requirements for advanced conceptual design (Design Subactivity 1.12.4.1.1), 8.3.3.2-65--66
 description, 8.3.3.2-66
 objectives, 8.3.3.2-65

subsystem design requirements for license application design (Design Subactivity 1.12.4.2.1), 8.3.3.2-68
 description, 8.3.3.2-68
 objectives, 8.3.3.2-68

support facilities, ESF, 8.4.2-163, -165

support strength testing, technical procedures for, 8.3.1.15-73

surface
 facilities technology, 8.3.2.5-84--88
 impact limitation
 design thermal loading, postclosure
 design function 4, 8.3.2.2-19
 subsidence limitation
 excavation-induced change limitation,
 postclosure design function 3,
 8.3.2.2-16
 surface, system element 1.1.1
 functions and processes, 8.3.2.5-7*--12*
 preliminary performance allocation,
 8.3.2.5-7*--12*
 surface and subsurface stratigraphic studies
 activity, 8.3.1.4-32--41
 description, 8.3.1.4-33--39
 methods and technical procedures,
 8.3.1.4-39--41
 objectives, 8.3.1.4-32
 parameters, 8.3.1.4-32--33

surface-area analysis, technical procedures for, 8.3.1.2-422

surface-based activities, 8.4-1;
 8.4.2-37--90
 and decommissioning for surface-based activities, 8.7-3--4
 existing, map, 8.4.2-37**--38**
 location, operation, and construction,
 8.4.2-40--87
 summary, 8.4.2-43*--45*

surface-based drilling
 milestone descriptions, 8.5-116
 milestones, 8.5-111**

surface-based drilling and testing
 major events and completion dates,
 8.5-39, -40**--42**, -43*--47*
 summary schedule, 8.5-39, -40**--42**

surface-based geophysical surveys
 activity, 8.3.1.4-41--57
 description, 8.3.1.4-41--56
 methods and technical procedures,
 8.3.1.4-56--57
 objectives, 8.3.1.4-41
 parameters, 8.3.1.4-41

Surface-Based Investigations Plan, and planned activities, 8.4.2-39

surface-based testing, representativeness of, 8.4.2-22--24

surface characteristics
 and accidental radiological releases
 (Issue 2.3) parameter calls,
 8.3.5.5-12*, -20*
 data
 and criticality control (Information Need 2.7.3), 8.3.2.3-45--48
 and items important to safety
 (Information Need 2.7.2),
 8.3.2.3-45--48
 and higher level findings--ease and cost of construction (Issue 4.1), 8.3.5.7-8--10*
 and post-waste-emplacement environment,
 8.3.2.1-12--13
 program, 8.3.1.14-1--69
 and post-subsurface-excavation environment, 8.3.2.1-11--12
 and pre-waste-emplacement environment,
 8.3.2.1-9--11
 see also surface characteristics
 program
 and technical guideline qualifying condition, 8.3.5.7-7*--9

surface characteristics program, 8.3.1.14-1--69
 approach, 8.3.1.14-16
 and configuration of underground facilities (postclosure) (Issue 1.11),
 8.3.1.14-2*, -3*, -20*, -25, -26
 erosion program parameter calls,
 8.3.1.6-1, -21**
 and geohydrology program, 8.3.1.2-147,
 -364
 and higher level findings--ease and cost of construction (Issue 4.1),
 8.3.1.14-15, -19*, -26
 interrelationships, 8.3.1.14-16--18,
 -19**--23*
 investigations, 8.3.1.14-18--64
 soil and rock properties,
 8.3.1.14-27--64

surface characteristics program (continued)
 investigations (continued)
 topography, 8.3.1.14-18--27
 see also specific investigation for study and activity listings
 logic diagram, 8.3.1.14-2**
 major events and completion dates,
 8.3.1.12-14--15*; 8.5-26, -27**
 and meteorology program, 8.3.1.12-5--6
 and nonradiological health and safety (Issue 4.2), 8.3.1.14-19*, -22*, -26, -64
 and NRC siting criteria (Issue 1.8),
 8.3.1.14-1, -15, -27
 overview, 8.3.1.14-1--18
 parameter calls, 8.3.1.14-23*
 performance allocation table,
 8.3.1.14-3--14*
 performance and design requirements,
 summary, 8.3.1.14-1--15
 and preclosure design and technical feasibility (Issue 4.4), 8.3.1.14-2**, -3*--14*, -15, -19*, -22*, -24, -26, -27, -29, -30, -33, -45, -64
 and preclosure hydrology program,
 8.3.1.14-2**, -3*, -15, -20, -24, -26
 and preclosure tectonics program,
 8.3.1.14-2*, -4*, -6*--7*, -8*, -10*, -12*--13*, -15, -22*, -64
 and radiological protection information need, 8.3.1.14-19*, -21*, -64
 schedule, 8.3.1.14-64--69; 8.5-26, -27**
 summary of studies, 8.3.1.14-18
 and 10 CFR Part 960, 8.3.1.14-15
 surface characteristics technical concerns
 SCP section correlations, 8.2-30*--34*
 surface data, methods for obtaining,
 8.4.2-15--16
 surface disturbance
 definition, 8.4.2-40
 pre-site characterization testing,
 8.4.2-45*--47*
 surface evaluation of ambient thermal conditions activity, 8.3.1.15-82--83
 description, 8.3.1.15-82--83
 methods and technical procedures,
 8.3.1.15-83
 objectives, 8.3.1.15-82
 parameters, 8.3.1.15-82
 surface facilities
 design, preclosure performance evaluations, 8.4.2-9, -10*--13*, -14
 surface facilities (continued)
 design and operational safety,
 8.4.2-220--221
 flooding (see flooding recurrence intervals investigation)
 and topography of potential locations,
 8.3.1.14-18--27
 and utilities, ESF construction,
 8.4.2-179
 surface facilities important to safety
 and preclosure volcanic activity investigation, 8.3.1.17-3*--4*
 see also facilities important to safety
 surface facility parameters
 and preclosure fault displacement investigation, 8.3.1.17-7*--9*
 and vibratory ground motion investigation,
 8.3.1.17-13--18*
 surface faulting potential at surface facilities important to safety activity,
 8.3.1.17-60--61
 description, 8.3.1.17-61
 methods and technical procedures,
 8.3.1.17-61
 objectives, 8.3.1.17-60
 parameters, 8.3.1.17-61
 surface flooding or impoundments disruptive scenario classes, evaluation of,
 8.4.3-66--71
 surface fracture network studies
 activity, 8.3.1.4-68--70
 description, 8.3.1.4-68--70
 methods and technical procedures,
 8.3.1.4-70
 objectives, 8.3.1.4-68
 parameters, 8.3.1.4-68
 surface geoelectric method evaluation
 activity, 8.3.1.17-173--174
 description, 8.3.1.17-174
 methods and technical procedures,
 8.3.1.17-174
 objectives, 8.3.1.17-173
 parameters, 8.3.1.17-173
 surface geologic feature evaluation, technical procedures for, 8.3.1.17-95
 surface geologic mapping, technical procedures for, 8.3.1.17-95, -96
 surface geology and faults, Exile Hill vicinity, 8.3.1.14-37**
 surface hydrology
 and climate changes, 8.3.1.5-118--119

surface marker warning system, see degradation of markers investigation

surface outcrop mapping, technical procedures for, 8.3.1.4-40

surface ponding

- deep percolation, 8.4.3-9
- hydrological analyses and data, 8.4.3-9--10
- and site characterization activities, 8.4.3-9--10

surface-related activities

- and ground-water travel time, 8.4.3-86
- minimal or no disturbance, 8.4.2-50--54, -51**-53*
- and potential disturbance, 8.4.2-50--64
- and potentially significant disturbance, 8.4.2-48*--49*, -54--64, -55*--58*
- surface strain gage use, technical procedures for, 8.3.1.15-69

surface test pits, location of, 8.3.1.14-33, -34**

surface topography at site, 8.3.1.14-18--27

surface water

- conditions, technical procedures for, 8.3.1.5-119
- hydrology
 - and geohydrology parameters, 8.3.1.2-11*--13*
 - logic diagram, 8.3.1.2-6**--8**
 - model, 8.3.1.2-3, -6**--8**

surface water data

- public radiological exposures--normal conditions (Issue 2.1) parameter calls, 8.3.5.3-21*

surface water impoundment, avoidance of design consideration, 8.4.3-35

surface water runoff monitoring activity, 8.3.1.2-103--112

- description, 8.3.1.2-103--110
- methods and technical procedures, 8.3.1.2-110--112
- objectives, 8.3.1.2-103
- parameters, 8.3.1.2-103

surficial deposits

- mapping boundaries, 8.3.1.5-68**
- and nivation basins, 8.3.1.5-70
- and paleotemperatures, 8.3.1.5-70
- and soil, technical procedures for
 - chemical properties analyses, 8.3.1.5-71
 - mineralogic properties, 8.3.1.5-71

surficial deposits (continued)

- and soil, technical procedures for (continued)
- physical properties analyses, 8.3.1.5-71

surficial deposits mapping of Yucca Mountain, 8.3.1.17-156

surficial deposits mapping of Yucca Mountain area activity, 8.3.1.5-66--72

- description, 8.3.1.5-66--70
- methods and technical procedures, 8.3.1.5-71--72
- objectives, 8.3.1.5-66
- parameters, 8.3.1.5-66

surficial hydrogeologic units

- definition of, 8.3.1.2-158
- geostatistical analyses, 8.3.1.2-158, -159

surficial materials activity, hydrologic properties of, 8.3.1.2-157--164

synoptic characterization of regional climate activity, 8.3.1.5-40--42

- description, 8.3.1.5-40--41
- methods and technical procedures, 8.3.1.5-41--42
- objectives, 8.3.1.5-40
- parameters, 8.3.1.5-40

synoptic snapshots of climate extremes, technical procedures for, 8.3.1.5-59

synthesis studies and activities

- erosion and deposition effects on marker survivability, 8.3.1.9-19--20
- future climate and erosion, 8.3.1.6-18--19
- meteorological monitoring, 8.3.1.12-11--12; 8.3.1.6-18--19
- paleoclimatic-paleoenvironment, 8.3.1.5-76--78
- regional hydrologic system, 8.3.1.2-137--147
- saturated-zone hydrochemistry, 8.3.1.2-433--434
- site saturated zone hydrologic system, 8.3.1.2-371, -434--443 (see also saturated-zone hydrologic system synthesis and modeling study)
- site unsaturated-zone hydrologic system, 8.3.1.2-350--362 (see also unsaturated-zone modeling and synthesis (site) study)
- tectonic models, 8.3.1.17-203--205
- tectonic/seismic/volcanic hazards data, 8.3.1.9-19

synthesis technical procedures

- Basin and Range published information, 8.3.1.17-199
- Beatty quadrangle geology, 8.3.1.17-202
- geologic and geophysical data, 8.3.1.4-82
- left-lateral strike-slip fault, 8.3.1.17-201
- Nevada Test Site detachment fault, 8.3.1.17-201
- Quaternary wrench faulting, 8.3.1.17-201
- regional gravity, 8.3.1.17-200
- regional magnetism, 8.3.1.17-200
- unsaturated-zone hydrologic system, 8.3.1.2-362
- Yucca Mountain Project meteorological monitoring, 8.3.1.12-11-12

system description

- elements of, 8.3.1.1-1, -3

system element 1.1.1 (surface) data

requirements

- preclosure hydrology program, 8.3.1.16-3*
- see also surface, system element 1.1.1

system element 1.1.2 (subsurface) data

requirements

- preclosure hydrology program, 8.3.1.16-4*
- see also subsurface, system element 1.1.2

system element 1.2.1.1, see access

- construction, system element 1.2.1.1

system element 1.2.1.2, see drift

- construction, system element 1.2.1.2

system element 1.2.1.3, see borehole

- construction, system element 1.2.1.3

system element 1.2.1.4, see rock handling,

- system element 1.2.1.4

system element 1.2.1.5, see water removal,

- system element 1.2.1.5

system element 1.2.1.6, see mining

- ventilation, system element 1.2.1.6

system element 1.2.2.1, see receiving, system element 1.2.2.1

system element 1.2.2.4, see emplacement,

- system element 1.2.2.4

system element 1.2.2.5, see retrieval, system element 1.2.2.5

system element 1.2.2.7, see waste-handling

- ventilation, system element 1.2.2.7

system element 1.2.4.1, see underground closure, system element 1.2.4.1

system elements

- addressed by each information need, 8.3.2.5-33*-34*
- preclosure design and technical feasibility, 8.3.2.5-4--6

system engineering development and management contractor

- and design phases, 8.3.2.1-7--8

system guideline qualifying condition

- ease and cost of construction, 8.3.5.7-6, -7*, -8
- preclosure radiological safety, 8.3.5.6-6*, -7--8

system guideline qualifying condition--postclosure, 8.3.5.18-7--8

- and containment by waste package (Issue 1.4), 8.3.5.18-7, -10*
- and EBS release rates (Issue 1.5), 8.3.5.18-7--8, -10*
- and GWT (Issue 1.6), 8.3.5.18-7--8, -9, -10*
- and ground-water protection (Issue 1.3), 8.3.5.18-7--8, -9, -10*
- and higher level findings--ease and cost of construction (Issue 4.1), 8.3.5.7-8
- and higher level findings--postclosure (Issue 1.9(a)), 8.3.5.18-9--10
- and individual protection (Issue 1.2), 8.3.5.18-7--8, -10*
- and postclosure performance issues, 8.3.5.18-7--8, -9--10
- preliminary finding, 8.3.5.18-4*
- statement of, 8.3.5.18-7--8
- and total system performance (Issue 1.1), 8.3.5.18-7--8, -9, -10*
- and 10 CFR Part 60, 8.3.5.18-7
- and 10 CFR Part 960.4-1(a), 8.3.5.18-7
- and 40 CFR Part 191, Subpart B, 8.3.5.18-7

system integration, and synthesis, technical procedures for, 8.3.1.2-362

system model development (waste package performance assessment) (Subactivity 1.5.3.5.1), 8.3.5.10-70--73

- description, 8.3.5.10-72--73
- objectives, 8.3.5.10-70--71
- parameters, 8.3.5.10-71--72

systematic drilling program

- as conditional site characterization activity, 8.4.2-36

systematic drilling program (continued)
 description, 8.4.2-75--77
 geologic coreholes, 8.4.2-76--77
 Solitario Canyon horizontal borehole study, 8.4.2-76

systematic drilling program activity, 8.3.1.4-87--100
 areal coverage scheme, 8.3.1.4-90**--91**
 description, 8.3.1.4-88--100;
 histogram of data pairs for geo-statistical analysis, 8.3.1.4-96**--97**
 methods and technical procedures, 8.3.1.4-100
 objectives, 8.3.1.4-87
 parameters, 8.3.1.4-87--88
 small-scale variability test drill hole location, 8.3.1.4-94**--95**

systematic sampling, and sampling bias in planned tests, 8.4.2-26--28

systematic sampling program, 8.3.1.4-99**

TACO2D, and performance assessment, 8.3.5.19-2*, -7*

tape extensometer measurements, technical procedures for, 8.3.1.15-74

technetium-99, sorption, 8.3.1.3-67

technical concern correlations
 engineered system-related, 8.2-50**--60*
 site-related, 8.2-18**--49*

Technical Data Base, three-dimensional rock characteristics model, 8.3.1.4-101

technical feasibility, see preclosure design and technical feasibility (Issue 4.4)

technology for fabrication, closure, and inspection (Information Need 4.3.1), see fabrication, closure, inspection technology (Information Need 4.3.1)

technology for seals emplacement (Information Need 4.4.10), 8.3.2.5-96--97
 application of results, 8.3.2.5-97
 introduction, 8.3.2.5-9
 link to supporting information, 8.3.2.5-96
 logic, 8.3.2.5-96--97
 parameters, 8.3.2.5-96
 technical basis for, 8.3.2.5-96--97

technology for surface facilities (Information Need 4.4.8), 8.3.2.5-85--88
 application of results, 8.3.2.5-88
 introduction, 8.3.2.5-85
 link to supporting information, 8.3.2.5-86--87
 logic, 8.3.2.5-87--88
 parameters, 8.3.2.5-86--87
 technical basis for, 8.3.2.5-86--88

technology for underground facilities (Information Need 4.4.9), 8.3.2.5-88--96
 access construction data needed, 8.3.2.5-92
 access construction parameters, 8.3.2.5-92
 application of results, 8.3.2.5-95
 borehole construction data needed, 8.3.2.5-90, -93
 borehole construction parameters, 8.3.2.5-93
 drift construction data needed, 8.3.2.5-90, -91, -93
 drift construction parameters, 8.3.2.5-93
 emplacement data needed, 8.3.2.5-91, -94
 emplacement parameters, 8.3.2.5-94
 introduction, 8.3.2.5-88--89
 link to supporting information, 8.3.2.5-89
 logic, 8.3.2.5-91--95
 mining ventilation data needed, 8.3.2.5-91, -94
 parameters, 8.3.2.5-94
 retrieval data needed, 8.3.2.5-91, -94
 retrieval parameters, 8.3.2.5-94
 rock handling data needed, 8.3.2.5-91, -93
 subsurface data needed, 8.3.2.5-91, -92
 subsurface parameters, 8.3.2.5-92
 technical basis for, 8.3.2.5-89--91
 underground closure data needed, 8.3.2.5-91, -94--95
 waste handling ventilation data needed, 8.3.2.5-91, -94
 and waste retrievability (Issue 2.4), 8.3.2.5-91, -94
 water removal data needed, 8.3.2.5-91, -94
 water removal parameters, 8.3.2.5-94

technical procedures
 and Project Quality Assurance Plan, 8.6-47

tectonic activity
 and geohydrology investigations, 8.3.1.2-88

tectonic activity (continued)
 and marker system, 8.3.1.9-19
 Walker Lane, 8.3.1.6-20

tectonic data
 and criticality control (Information Need 2.7.3), 8.3.2.3-45
 and items important to safety (Information Need 2.7.2), 8.3.2.3-46

tectonic disruption sequence evaluation activity, 8.3.1.17-205
 description, 8.3.1.17-205
 methods and technical procedures, 8.3.1.17-205
 objectives, 8.3.1.17-205
 parameters, 8.3.1.17-205

tectonic effects on erosion investigation, 8.3.1.6-19--23
 activity
 uplift and faulting impact on erosion, 8.3.1.6-22--23
 application of results, 8.3.1.6-23
 interrelationships, 8.3.1.6-4, -5**
 link to supporting information, 8.3.1.6-19
 logic diagram, 8.3.1.6-21**
 parameters, 8.3.1.6-19--20
 purpose and objectives, 8.3.1.6-20--22
 study
 future tectonic effects on erosion, 8.3.1.6-22--23
 technical basis for, 8.3.1.6-19--22

tectonic effects on flux rates study, 8.3.1.8-82--88
 activities, 8.3.1.8-82--88
 faulting effects on flux rates (modeling), 8.3.1.8-85
 faulting effects on flux rates assessment, 8.3.1.8-85--86
 faulting rates, recurrence intervals, probable, cumulative offset in 10,000 years, 8.3.1.8-84--85
 folding, uplift, and subsidence effects on flux rates, 8.3.1.8-87--88
 igneous/volcanic event effects on flux rates, 8.3.1.8-83--84
 uplift rates in controlled area, 8.3.1.8-87
 volcanic/igneous event probability in controlled area, 8.3.1.8-82--83

tectonic effects on flux rates study (continued)
 logic diagram, 8.3.1.8-76**

tectonic effects on geochemistry investigation, 8.3.1.8-98--105
 activities
 fault offset effects on travel pathway, 8.3.1.8-103--104
 mineral change along fault zones, 8.3.1.8-102--103
 mineral change from tectonic water-table changes, 8.3.1.8-104--105
 rock geochemical changes from igneous intrusion, 8.3.1.8-101--102
 application of results, 8.3.1.8-105
 approach used, 8.3.1.8-29
 interrelationships, 8.3.1.8-46
 parameters, 8.3.1.8-98
 purpose and objectives, 8.3.1.8-99
 study
 tectonic effects on rock geochemical properties, 8.3.1.8-101--105
 technical basis for, 8.3.1.8-98
 technical rationale, 8.3.1.8-99, -101

tectonic effects on hydrology investigation, 8.3.1.8-73--98
 activities
 faulting effects on flux rates (modeling), 8.3.1.8-85
 faulting effects on flux rates assessment, 8.3.1.8-85--86
 faulting effects on porosity and permeability, 8.3.1.8-94
 faulting effects on water-table elevation, 8.3.1.8-93
 faulting effects on water-table elevation assessment, 8.3.1.8-93--94
 faulting rates, recurrence intervals, probable cumulative offset in 10,000 years, 8.3.1.8-84--85
 folding, uplift, and subsidence effects on flux rates, 8.3.1.8-87--88
 folding, uplift, and subsidence effects on water-table elevation, 8.3.1.8-92
 igneous intrusion effects, 8.3.1.8-95
 igneous intrusion effects on water-table elevation, 8.3.1.8-89--90

tectonic effects on hydrology investigation
 (continued)

- activities (continued)
 - igneous/volcanic event effects on flux rates, 8.3.1.8-83--84
 - strain change effects on water-table elevation, 8.3.1.8-91--92
 - stress/strain effects on hydrologic properties, 8.3.1.8-96--97
 - thermal/barrier-to-flow effects of igneous intrusion, 8.3.1.8-88--89
 - uplift rates in controlled area, 8.3.1.8-87
 - volcanic/igneous event probability in controlled area, 8.3.1.8-82--83
- application of results, 8.3.1.8-97
- approach used, 8.3.1.8-28--29
- interrelationships, 8.3.1.8-46--47
- link to supporting information, 8.3.1.8-83
- logic diagrams, 8.3.1.8-76**--78**
- parameters, 8.3.1.8-73--74
- purpose and objectives, 8.3.1.8-75
- studies, 8.3.1.8-82--98
 - tectonic effects on flux rates, 8.3.1.8-82--88
 - tectonic effects on local fracture permeability, effective porosity, 8.3.1.8-94--98
 - tectonic effects on water-table elevation, 8.3.1.8-88--94
 - technical basis for, 8.3.1.8-73--82
 - technical rationale, 8.3.1.8-75, -79--82
- tectonic effects on local fracture permeability and effective porosity study, 8.3.1.8-94--97
 - activities, 8.3.1.8-95--97
 - igneous intrusion effects, 8.3.1.8-95
 - stress/strain effects on hydrologic properties, 8.3.1.8-96--97
 - faulting effects on permeability and porosity, 8.3.1.8-95--96
 - logic diagram, 8.3.1.8-78**
- tectonic effects on rock geochemical properties study, 8.3.1.8-101--105
 - activities, 8.3.1.8-101--105
 - fault offset effects on travel pathway, 8.3.1.8-103--104

- tectonic effects on rock geochemical properties study (continued)

- activities (continued)
 - mineral change along fault zones, 8.3.1.8-104--105
 - mineral change from tectonic water-table changes, 8.3.1.8-102
 - rock geochemical changes from igneous intrusion, 8.3.1.8-101--102
 - logic diagram, 8.3.1.8-100**
- tectonic effects on waste package, investigation, 8.3.1.8-63--73
 - activities
 - folding and deformation in repository horizon, 8.3.1.8-71--72
 - postclosure ground motion in the subsurface, 8.3.1.8-70--71
 - probability and rate of faulting, 8.3.1.8-68--69
 - waste package rupture due to folding and deformation, 8.3.1.8-72
 - waste package rupture due to igneous intrusion, 8.3.1.8-66--67
 - waste package rupture from faulting, 8.3.1.8-69--70
 - waste packages intersected by a fault, 8.3.1.8-67--68
 - application of results, 8.3.1.8-72--73
 - approach used, 8.3.1.8-27--28
 - interrelationships, 8.3.1.8-27
 - links to supporting information, 8.3.1.8-63
 - logic diagram, 8.3.1.8-65**
 - parameters, 8.3.1.8-63
 - purpose and objectives, 8.3.1.8-63--64
 - study
 - waste package rupture from tectonic events, 8.3.1.8-66--72
 - technical basis for, 8.3.1.8-63--66
 - technical rationale, 8.3.1.8-64, -66
- tectonic effects on water-table elevation study, 8.3.1.8-88--94
 - activities, 8.3.1.8-88--94
 - faulting effects on water-table elevation, 8.3.1.8-93
 - faulting effects on water-table elevation (assessment), 8.3.1.8-93--94
 - folding, uplift, and subsidence effects on water-table elevation, 8.3.1.8-92

- tectonic effects on water-table elevation
 - study (continued)
 - activities (continued)
 - igneous intrusion effects on water-table elevation, 8.3.1.8-89--90
 - strain change effects on water-table elevation, 8.3.1.8-91--92
 - thermal/barrier-to-flow effects of igneous intrusions, 8.3.1.8-88--89
 - logic diagram, 8.3.1.8-27**
 - technical rationale, 8.3.1.8-79--80
 - tectonic environment (local) review, 8.3.1.17-28--30
 - tectonic geomorphology of Yucca Mountain region study, 8.3.1.17-186--193
 - activities, 8.3.1.17-187--193
 - Quaternary faulting within 100 km of Yucca Mountain--morphometric and morphologic analysis, 8.3.1.17-191--193
 - Quaternary uplift and subsidence evaluation, 8.3.1.17-189--190
 - tectonically stable area age and extent, 8.3.1.17-187--188
 - objectives, 8.3.1.17-186--187
 - tectonic information
 - higher level finding--ease and cost of construction (Issue 4.1), 8.3.5.7-15*--16*
 - tectonic model
 - and basaltic volcanic activity, 8.3.1.8-52, -110, -119
 - and Neogene strain, 8.3.1.8-130
 - synthesis, 8.3.1.6-20, -22; 8.3.1.17-199--206
 - validation, geomorphology data, 8.3.1.17-187
 - tectonic model evaluation activity, 8.3.1.17-203--205
 - description, 8.3.1.17-204
 - methods and technical procedures, 8.3.1.17-205
 - objectives, 8.3.1.17-203--204
 - parameters, 8.3.1.17-204
 - tectonic models and synthesis study, 8.3.1.17-199--206
 - activities, 8.3.1.17-200--206
 - tectonic disruption sequence evaluation, 8.3.1.17-205--206
 - tectonic model evaluation, 8.3.1.17-203--205
 - tectonic models and synthesis study
 - (continued)
 - activities (continued)
 - tectonic processes and stability at site, 8.3.1.17-200--203
 - tectonic processes and controlled area, 8.3.1.8-29
 - tectonic processes and stability activity, 8.3.1.17-200--203
 - description, 8.3.1.17-201--202
 - methods and technical procedures, 8.3.1.17-202--203
 - objectives, 8.3.1.17-200--201
 - parameters, 8.3.1.17-201
 - tectonic region, regional changes in (Ross study), 8.3.5.13-52
 - tectonic/seismic/volcanic hazards data synthesis activity, 8.3.1.9-19
 - description, 8.3.1.9-19
 - methods and technical procedures, 8.3.1.9-19
 - objectives, 8.3.1.9-19
 - parameters, 8.3.1.9-19
 - tectonic setting and stress distribution activity, 8.3.1.17-185--186
 - tectonically stable area age and extent activity, 8.3.1.17-187--188
 - description, 8.3.1.17-187--188
 - methods and technical procedures, 8.3.1.17-188
 - objectives, 8.3.1.17-187
 - parameters, 8.3.1.17-187
 - tectonics disqualifying condition, 8.3.5.18-18
 - and postclosure performance issues, 8.3.5.18-7--8
 - preliminary finding, 8.3.5.18-4*
 - statement of, 8.3.5.18-18
 - and total system performance (Issue 1.1), 8.3.5.18-7
 - tectonics (postclosure) disqualifying condition
 - and 10 CFR 960.4-2-7(d), 8.3.5.18
 - tectonics programs, see preclosure tectonics program and postclosure tectonics program
 - tectonics qualifying condition--postclosure, 8.3.5.18-17
 - and postclosure performance issues, preliminary finding, 8.3.5.18-4*
 - statement of, 8.3.5.18-17
 - and total system performance (Issue 1.1), 8.3.5.18-7
 - and 10 CFR 960.4-2-7(a), 8.3.5.18-17

tectonics technical concerns
 SCP section correlation, 8.2-34*--49*

tectonics technical guidelines--postclosure
 and higher level findings (Issue 1.9(a)),
 8.3.5.18-17--18, -18*
 and higher level findings--ease and cost
 of construction (Issue 4.1),
 8.3.5.7-13--14, -15*--16*
 and qualifying and disqualifying
 conditions, 8.3.5.7-7*, -13--16

television camera logs, and excavation effects
 test, 8.3.1.2-295

temperature
 and geothermal assessment, 8.3.1.9-35
 logs, 8.3.1.2-385
 measurements, technical procedures for,
 8.3.1.15-53, -56, -59, -61

temperature change limitation in adjacent
 strata
 design thermal loading, postclosure design
 function 4, 8.3.2.2-16, -19

temperature control systems monitoring,
 technical procedures for, 8.3.1.15-64

temperature driven fluid migration
 potentially likely conditions, evaluation,
 8.4.3-60

temperature measurement control devices,
 technical procedures for, 8.3.1.2-422

tensile strength testing, technical procedures
 for, 8.3.1.15-42

tentative goals, 8.1-9

tephra deposits, 8.3.1.8-116, -117

tephrachronology
 and chronologic analyses, 8.3.1.5-52

terrestrial paleoecologic studies
 and paleoenvironmental conditions,
 8.3.1.5-75
 technical procedures for, 8.3.1.5-76

test block excavation and preparation,
 technical procedures for, 8.3.1.2-257--258

test hole instrumentation and monitoring,
 technical procedures for, 8.3.1.2-267--270

test holes
 and past discharge, 8.3.1.5-100

test matrix
 (dynamic and diffusion), 8.3.1.3-98*

test pits (surface), location of, 8.3.1.14-33,
 -34**

test plans
 and Project Quality Assurance Plan, 8.6-47

test room, technical procedures for
 location and excavation, 8.3.1.2-257
 preparation, 8.3.1.2-264--265

test well configurations, 8.3.1.2-386**--388*,
 -391**

testing, conditional, see conditional testing
 testing matrix
 batch sorption measurements, 8.3.1.3-69*

testing strategy, 8.1-10

textural and mineralogic analyses, technical
 procedures for, 8.3.1.5-51

TGSCC, see transgranular stress corrosion
 cracking

thermal and mechanical laboratory tests
 constraints and zones of influence,
 8.4.2-144
 purpose and operations, 8.4.2-143

thermal and mechanical properties
 data acquisition, technical procedures for
 8.3.1.15-47, -49, -51, -54, -56, -59,
 -61, -64, -67, -70, -73, -74, -76
 model inputs, 8.3.4.2-7*
 and post-waste-emplacement environment,
 8.3.2.1-12--13
 and waste package model hierarchy,
 8.3.5.9-7**; 8.3.5.10-3**
 see also spatial distribution thermal/
 mechanical properties investigation
 and thermal/mechanical entries

thermal and mechanical rock properties
 program, 8.3.1.15-1--96
 alternative conceptual models,
 8.3.1.15-18--22
 approach, 8.3.1.15-14--18
 characterization parameters,
 8.3.1.15-2*--13*
 and configuration of underground
 facilities (postclosure) (Issue 1.11),
 8.3.1.15-1, -2*--12*, -15**
 current representation and alternative
 hypotheses, 8.3.1.15-19*--21*
 and GWTT (Issue 1.6), 8.3.1.15-1, -2*,
 -4*--5*, -12*, -15**
 hypothesis-testing tables,
 8.3.1.15-19*--21*
 interrelationships, 8.3.1.15-22
 investigations, 8.3.1.15-23--96
 spatial distribution, ambient stress
 and thermal conditions,
 8.3.1.15-77--84

thermal and mechanical rock properties
 program (continued)
 investigations (continued)
 spatial distribution thermal/
 mechanical properties,
 8.3.1.15-23--76
see also specific investigation for
study and activity listings
 logic diagrams, 8.3.1.15-15**,
 -16**, -17**
 major events and completion dates,
 8.3.1.15-87*--96*; 8.5-28, -29**
 and nonradiological health and safety
 (Issue 4.2), 8.3.1.15-15**
 overview, 8.3.1.15-1--22
 parameter calls, 8.3.1.15-2*--13*, -15**,
 -23
 performance and design requirements
 summary, 8.3.1.15-1, -2*--13*, -14
 and post-subsurface-excavation
 environment, 8.3.2.1-11--12
 and preclosure design and technical
 feasibility (Issue 4.4), 8.3.1.15-1,
 -3*, -5*--13*, -15**
 and pre-waste-emplacement environment,
 8.3.2.1-9--11
 public radiological exposures--normal
 conditions (Issue 2.1) parameter calls,
 8.3.5.3-13*
 and repository design criteria for radio-
 logical safety (Issue 2.7), 8.3.1.15-1,
 -2*, -10*, -15**
 schedule, 8.3.1.15-84--96; 8.5-28, -29**
 and seal characteristics (Issue 1.12),
 8.3.1.15-1, -3*--4*, -6*, -9*,
 -11*--12*, -15**
 statistical approach, 8.3.1.15-27--31
 surface characteristics program parameter
 calls, 8.3.1.14-2**, -3*, -15, -20*,
 -25, -26
 tentative goals, 8.3.1.15-2*--13*
 and waste package characteristics (post-
 closure) (Issue 1.10), 8.3.1.15-1, -2*,
 -4*, -12*, -15**
 worker radiological safety (Issue 2.2)
 parameter calls, 8.3.1.15-1, -2*, -10*;
 8.3.5.4-13*

thermal and thermomechanical code validation
 and canister-scale heater experiment,
 8.3.1.15-54--56

thermal and thermomechanical model
 near-field sensitivity studies, 8.3.2.2-38

thermal and thermomechanical response
 analyses, 8.3.2.2-71--72
 parameters, 8.3.2.2-69*--70*
 thermal barrier-to-flow effects of igneous
 intrusions on water-table elevation
 activity, 8.3.1.8-88--89
 description, 8.3.1.8-89
 methods and technical procedures,
 8.3.1.8-89
 objectives, 8.3.1.8-88
 parameters, 8.3.1.8-88
 thermal code validation
 for underground facility analysis,
 8.3.2.5-82
 thermal conditions characterization (site
 ambient) study, 8.3.1.15-82--84 (see also
 ambient thermal conditions (site) study)
 thermal conductivity characterization
 activity, 8.3.1.15-36--38
 description, 8.3.1.15-36--37
 methods and technical procedures,
 8.3.1.15-37--38
 objectives, 8.3.1.15-36
 parameters, 8.3.1.15-36
 thermal conductivity technical procedures
 determination of, 8.3.1.15-38
 laboratory measurements, 8.3.1.15-83
 thermal decay characteristics of waste
 and allowed areal power density,
 8.3.2.2-42--43
 information needed, 8.3.2.2-43
 use of information, 8.3.2.5-40--41
 thermal demagnetization, 8.3.1.4-61, -62
 thermal expansion characterization
 activity, 8.3.1.15-38--39
 description, 8.3.1.15-38--39
 methods and technical procedures,
 8.3.1.15-39
 objectives, 8.3.1.15-38
 parameters, 8.3.1.15-38
 thermal expansion measurement, technical
 procedures for, 8.3.1.15-39
 thermal expansion testing (laboratory) study,
 8.3.1.15-38--39
 activity
 thermal expansion characterization,
 8.3.1.15-38--39
 thermal factor, zone of influence
 and ESF tests, 8.4.2-98, -102*--104*
 thermal history of Yucca Mountain
 and hydrocarbon assessment, 8.3.1.9-38

thermal infrared method evaluation activity,
 8.3.1.17-176--177
 description, 8.3.1.17-176--177
 methods and technical procedures,
 8.3.1.17-177
 objectives, 8.3.1.17-176
 parameters, 8.3.1.17-176
 thermal loading
 and model inputs for Issue 1.10 (waste
 package characteristics--postclosure),
 8.3.4.2-7*, -10
 waste package, design goal, 8.3.4.2-28--29
 of the waste package and repository
 layout, 8.3.4.2--28
 thermal loading for underground facility
 (Design Activity 1.11.6.1), 8.3.2.2-73--74
 thermal loading model
 and waste package model hierarchy,
 8.3.5.9-7**; 8.3.5.10-3**
 thermal loading/thermomechanical rock response
 (Information Need 1.11.6), 8.3.2.2-65--75
 application of results, 8.3.2.2-75
 design activities, 8.3.2.2-73--74
 borehole spacing strategy, 8.3.2.2-74
 reference calculations, 8.3.2.2-74
 sensitivity studies, 8.3.2.2-74
 strategy for containment enhancement,
 8.3.2.2-74
 thermal loading for underground
 facility, 8.3.2.2-73--74
 interrelationships, 8.3.2.2-20--23, -22**
 introduction, 8.3.2.2-65
 link to supporting information, 8.3.2.2-67
 logic, 8.3.2.2-67--73
 parameters and information needs,
 8.3.2.2-67--68*
 processes associated with postclosure
 design function 4 (design thermal
 loading), 8.3.2.2-66*
 products, 8.3.2.2-66*
 technical basis for, 8.3.2.2-65--73
 thermal maturation techniques
 and hydrocarbon assessment, 8.3.1.9-37
 technical procedures for, 8.3.1.9-39
 thermal/mechanical analyses and data
 blast damage to ESF pad, 8.4.3-30--31
 demonstration breakout room effects,
 8.4.3-31--32
 drift shape and pillar width and
 stability, 8.4.3-28
 excavation-induced effects on
 permeability, 8.4.3-25--26

thermal/mechanical analyses and data
 (continued)
 G-Tunnel heated block experiment,
 8.4.3-32
 G-Tunnel small-diameter heater experiment,
 8.4.3-32--33
 in situ experiments, 8.4.3-31--33
 porosity on rock strength, 8.4.3-28--29
 rock bolts and stresses near emplacement
 drifts, 8.4.3-29
 sensitivity study for drift failure,
 8.4.3-29
 sequential drift mining effects,
 8.4.3-31--32
 shaft convergence effects, 8.4.3-31--32
 shafts and drifts, 8.4.3-25--31
 stability of panel access drifts,
 8.4.3-29--30
 stability of unlined shaft, 8.4.3-26--27
 stresses at unventilated drift intersection, 8.4.3-29
 thermal effects on stability, 8.4.3-27
 thermal stresses and displacements,
 8.4.3-27--28
 thermal stresses on arched emplacement
 drifts, 8.4.3-27--28
 thermal zone influence, 8.4.3-33
 thermal/mechanical attributes of waste package
 environment (Study 1.10.4.3)
 activities, 8.3.4.2-56
 waste package environment stress field
 analysis, 8.3.4.2-56
 objectives, 8.3.4.2-56
 thermal/mechanical disturbance, potential
 impact
 from deep borings drilled dry, 8.4.3-41
 from ESF activities, 8.4.3-49--50
 from exploratory shaft construction,
 8.4.3-45--46
 from saturated-zone boreholes, 8.4.3-43
 from shallow borings drilled dry, 8.4.3-40
 from underground construction,
 8.4.3-47--48
 thermal/mechanical parameters
 and three-dimensional rock characteristics
 model, 8.3.1.4-101--102
 thermal/mechanical properties, spatial
 distribution, see spatial distribution
 thermal/mechanical properties investigation
 thermal potential, instrumentation for,
 8.3.1.2-210

thermal probe measurements, technical procedures for, 8.3.1.15-59

thermal properties (laboratory) study, 8.3.1.15-31--38 activities, 8.3.1.15-31--38 density and porosity characterization, 8.3.1.15-31--34 thermal conductivity characterization, 8.3.1.15-36--38 volumetric heat capacity characterization, 8.3.1.15-34--36

thermal stress measurements conceptual design, 8.4.2-123** constraints and zones of influence, 8.4.2-122, -124 purpose and operations, 8.4.2-122

thermal stress measurements activity, 8.3.1.15-60--62 description, 8.3.1.15-60 methods and technical procedures, 8.3.1.15-60--62 objectives, 8.3.1.15-60 parameters, 8.3.1.15-60

thermal stresses on arched emplacement drifts, thermal/mechanical analyses, 8.4.3-29 and emplacement drifts, 8.4.3-29

thermal stresses and displacements shaft and drift analyses, 8.4.3-27--28, -29 thermal/mechanical analyses, 8.4.3-27--28

thermal surveys, technical procedures for, 8.3.1.2-316, -319

thermal/thermomechanical analyses information required, 8.3.2.2-69*--70* parameters, 8.3.2.2-69*--70* products, 8.3.2.2-69*--70*

thermal/thermomechanical modeling allowable areal power density, 8.3.2.2-38 borehole spacing strategy, 8.3.2.2-38 products, 8.3.2.2-38

thermal zone influence analyses to establish, 8.4.3-33 and ESF canister scale heater experiment, 8.4.3-33 and heated room experiment, 8.4.3-33 and thermal stress test, 8.4.3-33 thermal/mechanical analyses, 8.4.3-33

thermocouples, technical procedures for, 8.3.1.15-64

thermodynamic models for waste element solubilities, 8.3.1.3-92

thermodynamics of mineral evolution, 8.3.1.3-59--60

thermogravimetric analysis, technical procedures for, 8.3.1.15-36

thermoluminescent dating and chronologic analyses, 8.3.1.5-52 fine eolian silt, technical procedures for, 8.3.1.5-76

thermomechanical model, and emplacement drifts, 8.4.3-28

thermomechanical properties and lithophysae, 8.3.1.15-52

thermomechanical properties (*in situ*) study, see *in situ* thermomechanical properties study

three-dimensional geologic model development activity, 8.3.1.4-81--82 description, 8.3.1.4-82 methods and technical procedures, 8.3.1.4-82 objectives, 8.3.1.4-81 parameters, 8.3.1.4-81--82

three-dimensional geologic model study, 8.3.1.4-81--84 activity three-dimensional geologic model development, 8.3.1.4-81--82 objective, 8.3.1.4-81

three-dimensional hydrologic model calibration, and refinement, technical procedures for, 8.3.1.2-147

three-dimensional hydrologic modeling (regional) activity, 8.3.1.2-144--147 description, 8.3.1.2-145--147 methods and technical procedures, 8.3.1.2-147 objectives, 8.3.1.2-144 parameters, 8.3.1.2-145

three-dimensional rock characteristics model development activity, 8.3.1.4-100--103 description, 8.3.1.4-100 methods and technical procedures, 8.3.1.4-102 objectives, 8.3.1.4-100

three-dimensional rock characteristics model investigation, 8.3.1.4-84--103 activities systematic drilling program, 8.3.1.4-87--100 three-dimensional rock characteristics model development, 8.3.1.4-100--103 application of results, 8.3.1.4-102--103

three-dimensional rock characteristics model investigation (continued)
 link to supporting information, 8.3.1.4-84
 logic diagram, 8.3.1.4-3**
 parameters, 8.3.1.4-85--86
 purpose and objectives, 8.3.1.4-86
 studies, 8.3.1.4-87--103
 subsurface information (site-specific) data acquisition, 8.3.1.4-87--100
 three-dimensional rock characteristics model, 8.3.1.4-100--103
 technical basis for, 8.3.1.4-84--86
 technical rationale, 8.3.1.4-86

three-dimensional rock characteristics model study, 8.3.1.4-100--103
 activity
 three-dimensional rock characteristics model development, 8.3.1.4-100--103

three-dimensional stratigraphic model
 parameter calls, 8.3.1.15-15**

three-dimensional thermal/mechanical model
 parameter calls, 8.3.1.15-15**

three-dimensional thermal/mechanical stratigraphy (Design Activity 1.11.1.3), 8.3.2.2-40
 and interactive graphic information system, 8.3.2.2-40
 objectives, 8.3.2.2-40

tiltmeter measurements, technical procedures for, 8.3.1.15-59, -64

Timber Mountain, and recharge, 8.3.1.5-122

time series of paleoclimate history, technical procedures for, 8.3.1.5-88

tin-126, sorption, 8.3.1.3-59

Title I and II
 and design phases, 8.3.2.1-7--8

Tiva Canyon Member
 gaseous-phase test location, 8.3.1.2-325*
 and intact-fracture test, 8.3.1.2-239
 and paleomagnetic sampling, 8.3.1.17-123

Tiva Canyon welded unit
 and fracture flow, 8.3.5.8-8
 fracture system flow channeling in, 8.3.1.2-156

hydrogeologic sections, 8.3.5.12-4**

hydrogeologic section at Yucca Mountain, 8.3.5.13-57**

hydrogeologic section showing pinchouts, 8.3.5.12-15**

tomography/vertical seismic profiling surveys, technical procedures for, 8.3.1.4-80

Tonopah climatic analog site, 8.3.1.5-61

top-level strategy, 8.0-4--10

topography investigation, 8.3.1.14-18--27
 application of results, 8.3.1.14-26--27
 link to supporting information, 8.3.1.14-18
 parameters, 8.3.1.14-24
 purpose and objectives, 8.3.1.14-24--25
 technical basis for, 8.3.1.14-18--25
 technical rationale, 8.3.1.14-25

topography of site, 8.3.1.14-18--27

Topopah Spring Member
 boreholes, 8.3.3.2-24
 and candidate disposal horizon, 8.3.2.4-25
 diffusion tests in, 8.3.1.2-320--321
 and disturbed-zone performance goals, 8.3.5.12-56

excavation effects tests, 8.3.1.2-236

fluid transport property assessment, 8.3.1.2-272

fracture mineralogy studies, 8.4.2-108

gaseous-phase test location, 8.3.1.2-325*

horizontal borehole penetration, 8.3.1.2-223

and intact-fracture test, 8.3.1.2-239

and long-term change in saturation, 8.3.2.2-58

mass transfer kinetics, 8.3.1.3-105

mineralogic/geochemical alteration, 8.3.1.3-49--51

petrologic stratigraphy, 8.3.1.3-43--45

rock breakers, 8.3.1.3-112
 and seal environment, 8.3.3.1-4
 and seal performance, 8.3.5.11-5
 and seals, 8.3.3.2-7, -25
 significant properties of, 8.3.1.2-150--151

stratigraphic studies, 8.3.1.4-35, -37**

tuff block, 8.3.1.3-114

tuff characteristics, 8.3.4.2-23

tuff column experiments, 8.3.1.3-101--105, -107--108

tuff slab, 8.3.1.3-113

see also host rock, repository horizon, and Yucca Mountain

Topopah Spring tuff
 actinides and fission product distribution measurements, 8.3.5.10-80
 core and wafer waste-form dissolution tests, 8.3.5.10-81
 excavation-induced response, 8.3.5.2-35
 Grouse Canyon comparison, 8.3.5.2-35

Topopah Spring tuff (continued)
 and radionuclide source term for
 near-field host rock, 8.3.5.10-32*--33*
 temperature and saturation profiles,
 8.3.5.20-4
see also Topopah Spring unit and Topopah
 Spring Member

Topopah Spring unit
 and ground-water flow path, 8.3.5.8-7--8
 ground-water percolation flux,
 8.3.5.12-62*
 and GWTT, 8.3.5.12-13
 GWTT confidence levels, 8.3.5.12-19
 GWTT estimate (matrix flow), 8.3.5.13-63*
 hydrogeologic section at Yucca Mountain,
 8.3.5.13-57**
 hydrogeologic section showing pinchouts,
 8.3.5.12-15**
 and hydrologic property changes,
 8.3.5.12-57, -58
 isopach contour map showing thickness,
 8.3.5.12-12**
 percolation flux, 8.3.5.13-22**
 performance allocation for disturbed zone
 definition, 8.3.5.12-59*
 performance parameters, 8.3.5.12-21*
 and permeability barrier, 8.3.5.17-96
 and radionuclide retardation, 8.3.5.8-9
 and repository location, 8.3.5.13-56
 travel time plot, 8.3.5.12-14**
 and unsaturated zone, 8.3.5.12-11, -13

TOSPAC, 8.3.1.3-96
 and COVE 2, 8.3.5.20-4*
 and performance assessment, 8.3.5.19-2*,
 -7*
 and water pathway models, 8.3.5.13-131

total system costs (Issue 4.5)
 and higher level findings--ease and cost
 of construction (Issue 4.1), 8.3.5.7-7*

total system performance (Issue 1.1),
 8.3.5.13-1--148
 and climate program, 8.3.1.5-1--3, -2**
 and containment by waste package
 (Issue 1.4), 8.3.5.9-7**
 and contingency plan, 8.3.2.2-38
 and drainage and moisture control plan,
 8.3.2.2-37
 and EBS release rates (Issue 1.5),
 8.3.5.10-1--2, -3**, -30
 and effects of human interference
 investigation, 8.3.1.9-45, -51

total system performance (Issue 1.1)
 (continued)
 erosion program parameter calls,
 8.3.1.6-2, -3*, -5**
 geochemistry program parameter calls,
 8.3.1.3-1, -2**, -4--9*, -10**
 and geohydrology program, 8.3.1.2-5**,
 -362, -444
 and higher level findings--100,000-year
 releases (Issue 1.9(b)),
 8.3.5.18-22, -23*, -24--25,
 and human interference program, 8.3.1.9-1,
 -4--9*, -12, -13**, -16
 and individual protection (Issue 1.2),
 8.3.5.14-9
 information needs, 8.3.5.13-124--142
 calculational models for release
 scenario classes (1.1.3),
 8.3.5.13-129--135
 potentially significant release
 scenario classes (1.1.2),
 8.3.5.13-124--128
 probabilistic release estimates
 (1.1.5), 8.3.5.13-139--142
 radionuclide releases for scenario
 classes (1.1.4), 8.3.5.13-135--139
 site information needed for
 calculations (1.1.1),
 8.3.5.13-124
 interrelationships, 8.3.5.13-116
 issue resolution strategy, 8.3.5.13-1--116
 licensing and issue-resolution strategy
 summary, 8.3.5.13-114--116
 major events and completion dates,
 8.3.5.13-144*--147*; 8.5-74**, -75--76
 and other design and performance
 assessment issues, 8.3.2.1-2**,
 8.3.4.1-2*
 overview of the performance assessments,
 8.3.5.13-2--116
 and postclosure performance assessment,
 8.3.5.8-1, -2, -3**, -4
 postclosure tectonics program parameter
 calls, 8.3.1.8-1, -2**, -3*, -9*, -13*,
 -17*, -19*, -22, -23
 and preclosure tectonics program,
 8.3.1.17-206*
 preliminary performance allocation,
 8.3.5.13-89--114
 preliminary performance allocation by
 release scenario class,
 8.3.5.13-90*--91*

total system performance (Issue 1.1)
 (continued)
 and qualifying and disqualifying
 conditions of Issue 1.9 (a),
 8.3.5.18-7-8
 and reference postclosure repository
 design (Information Need 1.11.7),
 8.3.2.2-78
 regulatory basis, 8.3.5.13-1--2
 release-scenario classes, preliminary
 selection, 8.3.5.13-25--26
 release-scenario classes, technical
 discussion, 8.3.5.13-56--89
 schedule, 8.3.5.13-142--148; 8.5-73, -74**
 site characterization activity impacts on,
 8.4.3-50--72
 supporting parameters, 8.3.5.13-108*--113*
 and system guideline qualifying
 condition--postclosure, 8.3.5.18-7--8
 and 10 CFR Part 60, 8.3.1.5-1
 and 40 CFR 191.13, 8.3.1.5-1

Total System Performance Assessment Code, see
 TOSPACE

total system releases,
 complementary cumulative distribution
 function, 8.4.3-50, -52--53
 impact evaluation, 8.4.3-51--72
 issue resolution strategy summary,
 8.4.3-50--51
 postclosure performance objectives,
 8.4.3-1, -2, -3

total system simulator construction
 (Subactivity 1.1.5.1.1), 8.3.5.13-140--141
 description, 8.3.5.13-141
 objectives, 8.3.5.13-140
 parameters, 8.3.5.13-141

TOUGH
 and COVE 2, 8.3.5.20-4*
 and COVE 3, 8.3.5.20-5*
 and performance assessment, 8.3.5.19-2*, -7*

trace elements technical procedures
 eolian sediments, 8.3.1.5-76
 water sample analysis, 8.3.1.3-62

tracejector, surveys, 8.3.1.2-384--385

tracer concentration analysis of core,
 technical procedures for, 8.3.1.2-322

tracer employment locations, 8.3.1.2-321

tracer injection tests
 technical procedures for,
 8.3.1.2-249--250, -322; 8.3.1.5-117

tracer tests
 at C-hole sites, 8.3.1.2-371, -400--408,
 -417--423
 and design and modeling, 8.3.1.2-385
 gas diffusion, 8.3.1.2-91, -153, -182,
 -207, -209*
 locations of possible saturated-zone
 wells, 8.3.1.2-410**
 technical procedures for,
 8.3.1.2-214--215, -333--334, -408
 water movement study, 8.3.1.2-179--181

tracers
 actinide, 8.3.1.3-73
 and aqueous-phase chemical investigations,
 8.3.1.2-338
 chemical
 borehole drilling, 8.4.2-87
 chloride, 8.3.1.3-94
 and dust suppression, 8.4.2-88
 and pumping tests, 8.4.2-79
 diffusion, 8.3.1.3-104
 and drilling, 8.4.2-87
 field tests, technical procedures for,
 8.3.1.2-214--215
 gaseous, 8.4.2-73, -74
 and diffusion studies, 8.4.2-74
 and gaseous-phase circulation study,
 8.3.1.2-329
 ground-water dye, 8.3.1.2-162, -174, -175,
 -233
 and hydrochemistry tests, 8.3.1.2-305
 and multiple-well tests, 8.3.1.2-424
 nonabsorbing, 8.3.1.2-320; 8.3.1.3-104
 nonradioactive, 8.3.1.3-102
 nonsorbing, 8.3.1.3-102
 particulate, 8.3.1.3-111
 and pumping tests, 8.3.1.2-409
 radioactive, 8.3.1.3-69
 saline, 8.3.1.2-162
 sorbing, 8.3.1.3-99
 velocity and effective porosity,
 8.3.1.2-234
 well testing with, 8.3.1.2-371, -420--423

TRACR3D, 8.3.1.3-121, -122, -127
 and COVE 1, 8.3.5.20-3, -4*
 and COVE 2, 8.3.5.20-4*
 radionuclide uptake, 8.3.1.3-112--113
 retardation, 8.3.1.3-110

tradeoff analyses
 design, 8.3.2.1-19, -20*; 8.3.3.1-3

- tradeoff analyses (continued)
 - seals, 8.3.3.1-3
 - advanced conceptual design, 8.3.3.2-66--67
 - license application design, 8.3.3.2-68--69
- tradeoffs for advanced conceptual design (Design Subactivity 1.12.4.1.2), 8.3.3.2-66--67
 - description, 8.3.3.2-66--67
 - objectives, 8.3.3.2-66
- tradeoffs for license application design (Design Subactivity 1.12.4.2.2), 8.3.3.2-68--69
 - description, 8.3.3.2-68--69
 - objectives, 8.3.3.2-68
- Tram Member
 - and drift-pumpback tests, 8.3.1.2-402**
 - and well configurations test, 8.3.1.2-386**--388**, -391**
- Tram welded unit
 - hydrogeologic section at Yucca Mountain, 8.3.5.13-57**
- TRANQL, 8.3.1.3-121, -122, -127
- transgranular stress corrosion cracking (austenitic) (Subactivity 1.4.3.2.7), 8.3.5.9-105--106
 - description, 8.3.5.9-105--106
 - objectives, 8.3.5.9-105
 - parameters, 8.3.5.9-105
- transgranular stress corrosion cracking (waste containers), 8.3.5.9-46
- transpiration, see evapotranspiration
- transport, 8.3.1.3-55
 - and accessible environment, 8.3.1.3-38, -86, -135, -136, -138
 - and biological sorption, 8.3.1.3-80--82
 - chemical processes, 8.3.1.3-119--122
 - codes, validation of, 8.3.5.20-7--9
 - and coupled phenomena, 8.3.1.3-119--122
 - debris, technical procedures for, 8.3.1.16-13
 - physical mechanisms, 8.3.1.3-119--122, -136--137
 - retardation mechanisms, 8.3.1.3-135--136
- transport analysis
 - in laboratory systems, 8.3.4.2-55
 - in near field, 8.3.4.2-61--64
- transport calculations
 - applicability of laboratory data, 8.3.1.3-127--132
 - benchmarking, 8.3.1.3-126
- transport calculations (continued)
 - gaseous, 8.3.1.3-136--138
 - geochemical, 8.3.1.3-123--125
 - heat load effects, 8.3.1.3-119--122
 - see also geochemical-geophysical model
- transport characteristics of a fracture, technical procedures for, 8.3.1.2-343--344, -348
- transport characteristics of fractured rock mass, technical procedures for, 8.3.1.2-344, -345
- transport models
 - and C-holes, 8.3.1.2-403
 - and fractured tuff column studies, 8.3.1.3-109
 - hydrothermal, 8.3.4.2-51, -61
 - and hydrologic properties of waste package, 8.3.4.2-51
 - validation and calibration of, 8.3.4.2-61
 - and retardation, 8.3.1.3-34, -117
 - sensitivity analysis, 8.3.1.3-125, -126
 - TOSPAC, 8.3.1.3-96
 - verification and validation, 8.3.1.3-126
- transport models and related support activity, 8.3.1.3-125--127
 - description, 8.3.1.3-126
 - methods and technical procedures, 8.3.1.3-126--127
 - objectives, 8.3.1.3-125
 - parameters, 8.3.1.3-125
- transport of debris by runoff activity, 8.3.1.2-112--114
- transport pathway mineralogy, petrology, and chemistry
 - fracture mineralogy, 8.3.1.3-47--49
 - mineral distributions, 8.3.1.3-45--47
 - petrologic stratigraphy of Topopah Spring Member, 8.3.1.3-43--45
- transportation impacts, 8.3.1.13-10
- travel pathways
 - alteration of rock properties (postclosure tectonic studies), 8.3.1.8-17*--18*
 - and rock characteristics, 8.3.1.8-28, -81
- travel time
 - and flux estimates, 8.3.1.2-153, -234
 - and fracture network, 8.3.1.2-369
 - gas parameters, 8.3.1.2-304, -305, -334, -338
- see also GWTT (Issue 1.6)

tree-ring data, and vegetation-climate relationships, 8.3.1.5-58

trenches, and potential surface disturbance, 8.4.2-48*, -60

trenching

- location map, 8.3.1.17-104**
- Midway Valley exploratory, 8.3.1.17-95--96
- Midway Valley location identification, 8.3.1.17-93--95
- and paleoflood evaluation, 8.3.1.5-82
- wall logging/mapping, technical procedure for, 8.3.1.17-96

triaxial compression testing, technical procedures for, 8.3.1.14-52, -53

triaxial strain recovery method evaluation activity, 8.3.1.17-182--183

triaxial strain recovery stress measurement, technical procedures for, 8.3.1.17-183

trilateration surveys, technical procedures for, 8.3.1.17-199

tritium profiling studies, technical procedures for, 8.3.1.2-171

TRUST

- and COVE 2, 8.3.5.20-4*

TRUST/TRUMP

- and COVE 1, 8.3.5.20-3, 4*
- and performance assessment, 8.3.5.19-2*, -7**--8*

TSW1 unit

- thermomechanical properties, 8.3.1.15-52--54

TSW2 unit

- mechanical properties, 8.3.1.15-65--70
- thermomechanical properties, 8.3.1.15-54--56

tuff

- Crater Flat**, see Crater Flat tuff
- crushed column experiments, 8.3.1.3-101--105
- diffusion studies, 8.3.1.3-112--115
- and filtration, 8.3.1.3-110--111
- fractured column, 8.3.1.3-109--110
- Paintbrush**, see Paintbrush tuff
- saturated, diffusion through slab, 8.3.1.3-113--114
- Tiva Canyon**, see Tiva Canyon welded unit
- Topopah Spring**, see Topopah Spring tuff unsaturated columns, 8.3.1.3-107--108
- tuff wafers**, radionuclide distributions (Subactivity 1.5.5.1.1), 8.3.5.10-80--81

tuffaceous beds of Calico Hills

- batch sorption, 8.3.1.3-69
- and seal performance, 8.3.5.11-5
- surface outcrop mapping, technical procedures for, 8.3.1.4-40
- see also Calico Hills tuff

tuffaceous rock, drying of and unsaturated zone, 8.4.3-22

tunnel index methods

- and geomechanical analyses, 8.3.2.1-21
- and structural-thermal analysis, 8.3.2.5-69

two- and three-well tests, technical procedures for, 8.3.1.2-421

two-dimensional areal hydrologic model

- (subregional) activity, 8.3.1.2-139--141
- description, 8.3.1.2-139--141
- methods and technical procedures, 8.3.1.2-141
- objectives, 8.3.1.2-139
- parameters, 8.3.1.2-139

two-dimensional cross-sectional hydrologic model (subregional) activity, 8.3.1.2-142--144

- description, 8.3.1.2-142--143
- methods and technical procedures, 8.3.1.2-144
- objectives, 8.3.1.2-142
- parameters, 8.3.1.2-142

two-dimensional ground-water flow model, sensitivity analyses, 8.3.1.2-115

two-dimensional ground-water system model

- and evapotranspiration studies, 8.3.1.2-134

two-dimensional, steady-state, cross-sectional model, technical procedures for, 8.3.1.2-144

two-layer model of Yucca Mountain saturated zone, technical procedures for, 8.3.1.2-147

two-phase fluid system properties

- (Activity 1.10.4.2.2), 8.3.4.2-54--55
- description, 8.3.4.2-55
- objectives, 8.3.4.2-54
- parameters, 8.3.4.2-54

two-phase permeability laboratory tests, technical procedures for, 8.3.1.2-247--249

two-well convergent tests, technical procedures for, 8.3.1.2-407--408

two-well recirculating tests

- at C-hole sites, 8.3.1.2-403
- technical procedures for, 8.3.1.2-405--407

- ubiquitous-joint model, drift analyses, 8.4.3-28
- UDBR, *see* upper demonstration breakout room
- ultrasonic pulse techniques--rock, technical procedures for, 8.3.1.14-52
- uncertainty
 - and accident risk assessment, 8.3.5.5-28
 - analyses
 - and analytical approach for radiological safety assessment, 8.3.5.5-17
 - and radiological risks, 8.3.5.1-11--12
 - stochastic modeling activity, 8.3.1.2-359--361
 - methodologies
 - and probabilistic analysis of waste package container performance, 8.3.5.9-17--18, -111--112; 8.3.5.10-78
 - and performance issue resolution, 8.3.5.8-5**, -6
 - and radiological risk, 8.3.5.1-11--12
 - and sensitivity analyses of ground-water travel time, 8.3.5.12-54
 - and stochastic modeling, 8.3.1.2-359--360
 - and strategy for assessing ground-water travel time, 8.3.5.12-13, -17, -24, -44, -52--53
 - uncertainty, assessment and reduction for containment, 8.3.5.9-17--18
 - uncertainty methodology development (waste package) (Subactivity 1.5.3.5.2), 8.3.5.10-73--74
 - description, 8.3.5.10-73--74
 - objectives, 8.3.5.10-73
 - parameters, 8.3.5.10-73
 - unconfined compressive deformability--rock core, technical procedures for, 8.3.1.14-53
 - unconfined compressive strength testing, technical procedures for, 8.3.1.14-52, -53
 - unconsolidated stream-channel deposits, dating, technical procedures for, 8.3.1.5-95
 - underground closure, system element 1.2.4.1
 - data needed for technology for underground facilities (Information Need 4.4.9), 8.3.2.5-91, -94--95
 - functions and processes, 8.3.2.5-32*
 - performance measures and goals for nonradiological health and safety, 8.3.2.4-20*
 - preliminary performance allocation, 8.3.2.5-32*
 - underground construction
 - ESF construction, 8.4.2-180--195
 - and ground-water travel time, 8.4.3-87
 - potential impacts, 8.4.3-46--48
 - of geochemical disturbance, 8.4.3-47
 - of hydrologic disturbance, 8.4.3-46--47
 - of thermal/mechanical disturbance, 8.4.3-47--48
 - underground excavations, design and operational safety, 8.4.2-220--221
 - underground facilities
 - analyses
 - hydrologic, 8.3.2.5-74
 - mechanical code validation, 8.3.2.5-82--83
 - seismic code validation, 8.3.2.5-83
 - and sensitivity analysis, 8.3.2.5-81--82
 - and thermal code validation, 8.3.2.5-82
 - underground ventilation code
 - validation, 8.3.2.5-83--84
 - validation of codes, 8.3.2.5-82
 - design and site characteristics, 8.3.2.2-23--40
 - sealing components, 8.3.3.2-7, -8**, -10**--11*
 - technology, 8.3.2.5-88--96
 - access construction, system element 1.2.1.1, 8.3.2.5-90, -91, -92
 - borehole construction, system element 1.2.1.3, 8.3.2.5-90, -91, -93
 - drift construction, system element 1.2.1.2, 8.3.2.5-90, -91, -93
 - emplacement, system element 1.2.2.4, 8.3.2.5-91, -94
 - mining ventilation, system element 1.2.1.6, 8.3.2.5-91, -94
 - retrieval, system element 1.2.2.5, 8.3.2.5-91, -94
 - rock handling, system element 1.2.1.4, 8.3.2.5-91, -93
 - subsurface, system element 1.1.2, 8.3.2.5-90, -91, -92
 - waste handling ventilation, system element 1.2.2.7, 8.3.2.5-91, -94
 - water removal, system element 1.2.1.5, 8.3.2.5-91, -94

underground facilities configuration (Issue 1.11), *see* configuration of underground facilities (Issue 1.11)

underground facility configuration selection, postclosure design function 1, 8.3.2.2-7--11, -8*--10* container environment, 8.3.2.2-11 flexibility, 8.3.2.2-7, -11, -44 needed confidence, 8.3.2.2-8*--10* performance goals, 8.3.2.2-8*--10* performance measures, 8.3.2.2-8*--10* repository configuration, 8.3.2.2-7, -11

underground facility design, preclosure performance evaluations, 8.4.2-10*--13*, -14

underground facility orientation and layout (Information Need 1.11.3), 8.3.2.2-44--54 application of results, 8.3.2.2-54

design activities, 8.3.2.2-52--54 area needed determination, 8.3.2.2-52--53 criteria for contingency plan, 8.3.2.2-54 drainage and moisture control plan, 8.3.2.2-53 usable area and flexibility evaluation, 8.3.2.2-53 vertical or horizontal orientation, 8.3.2.2-53

interrelationships, 8.3.2.2-20--23, -22** introduction, 8.3.2.2-44--45 link to supporting information, 8.3.2.2-46 logic, 8.3.2.2-46--52 parameters, 8.3.2.2-46 parameters required, 8.3.2.2-47*--49* and postclosure design function 1 (underground facility configuration selection), 8.3.2.2-45*

products and information required, 8.3.2.2-47*--49* products and parameters required, 8.3.2.2-47*--49* technical basis for, 8.3.2.2-45--52

underground facility parameters and preclosure fault displacement investigation, 8.3.1.17-10*--12* and preclosure volcanic activity (preclosure) investigation, 8.3.1.17-5*--6* and vibratory ground motion investigation, 8.3.1.17-19*--25*

underground nuclear explosion ground motion model activity, 8.3.1.17-77 description, 8.3.1.17-77 objectives, 8.3.1.17-77 parameters, 8.3.1.17-77

underground nuclear explosion ground motion study, 8.3.1.17-76--77

underground nuclear explosion maximum source activity, 8.3.1.17-75 description, 8.3.1.17-75 objectives, 8.3.1.17-75

underground nuclear explosion source range activity, 8.3.1.17-75 description, 8.3.1.17-75 objectives, 8.3.1.17-75

underground nuclear explosion sources study, 8.3.1.17-74--75 activities, 8.3.1.17-75 underground nuclear explosion maximum source, 8.3.1.17-75 underground nuclear explosion source range determination, 8.3.1.17-75

underground nuclear explosions and seismic design basis, 8.3.1.17-66, -69 and vibratory ground motion, 8.3.1.17-35, -36

underground room constructibility and lithophysae, 8.3.1.15-48

underground support systems airflow available for ventilation, 8.4.2-196 analytic analyses of rock support, 8.4.2-198 description, 8.4.2-195--200 dust control, 8.4.2-197 empirical analyses of rock support, 8.4.2-198 evacuation and rescue, 8.4.2-200 fire protection system, 8.4.2-199 health and safety systems, 8.4.2-199--200 life safety systems, 8.4.2-199 mine ventilation, 8.4.2-195--197 rock support, 8.4.2-197--198

underground ventilation code validation for underground facility analysis, 8.3.2.5-83--84

undetected dikes potentially likely conditions, evaluation, 8.4.3-59

undetected faults and shear zones potentially likely conditions, evaluation, 8.4.3-58--59

undiscovered boreholes
 potentially likely conditions,
 evaluation, 8.4.3-59

undiscovered mine shafts
 potentially likely conditions,
 evaluation, 8.4.3-59

unit cost development, ground-water pumping,
 technical procedures for, 8.3.1.16-19, -21,
 -23

unsaturated flow system analysis (Activity
 1.6.3.1), 8.3.5.12-51--52
 subactivities, 8.3.5.12-51
 saturated-zone flow analysis,
 8.3.5.12-51
 unsaturated-zone flow analysis,
 8.3.5.12-51

unsaturated tuff columns activity,
 8.3.1.3-107--108
 description, 8.3.1.3-108
 methods and technical procedures,
 8.3.1.3-108
 objectives, 8.3.1.3-107
 parameters, 8.3.1.3-108

unsaturated zone
 boreholes, location of, 8.3.1.2-202**
 diffusion activity, 8.3.1.3-114
 and engineered environment enhancement,
 8.3.5.9-12

flow
 behavior, data needs, 8.3.1.2-92
 concepts, 8.4.1-14--20
 description, 8.4.1-13--21
 drilling fluid and fracture-matrix
 saturation, 8.4.3-14--15
 drilling fluid migration, 8.4.3-15--16
 effects of flux change on travel time,
 8.4.3-13
 effects of increased flux on
 saturation, 8.4.3-13
 fluid loss in borehole USW G-4,
 8.4.3-16--17
 flux penetration into discrete
 fractures, 8.4.3-14
 fracture aperture size, 8.4.3-12
 and major water-table rise,
 8.4.3-13--14
 and matrix and fractures, 8.4.3-12--17
 matrix hydraulic conductivity,
 8.4.3-12
 matrix response to flux increases,
 8.4.3-12--13
 matrix wetting, 8.4.3-15

unsaturated zone (continued)
 flow (continued)
 modeling, 8.3.1.2-7***-8**, -341--362
 and site excavation impact, 8.4.1-14
 studies, and agricultural soil
 conditions, 8.3.1.2-151
 and Yucca Mountain, 8.4.1-13--21
 and fracture hydrology, 8.3.1.2-151
 gaseous-phase movement study,
 8.3.1.2-322--334
 gases, age determination of, 8.3.1.2-305,
 -335
 geohydrology activity parameters,
 8.3.1.2-13*-30*

hydrochemical characterization,
 8.3.1.2-334--341

hydrology, 8.3.1.5-96
 description, 8.4.1-14--20
 future, 8.3.1.5-119--120
 logic diagrams, 8.3.1.2-6***-8**

leakage layer (model), 8.3.1.2-145

model
 hydrologic hypotheses,
 8.3.1.2-52*-67*
 parameters, 8.3.1.2-7**
 purpose of, 8.3.1.2-152
 moisture flow, 8.4.1-13--14
 as natural barrier, 8.3.1.2-151

percolation
 ESF shaft study, 8.3.1.2-232--320
 surface-based study, 8.3.1.2-181--232
see also percolation in unsaturated
 zone--ESF study and percolation in
 unsaturated zone--surface study

performance assessment, 8.4.3-5, -6
 and performance objectives, 8.4.3-3
 quantity of water in, 8.4.3-17--19
 status of drillhole logging activities,
 8.3.1.2-207, -208*

summary of studies, 8.3.1.2-90--92

thickness of, 8.3.1.2-3--4

uncertainty as effective barrier,
 8.3.1.2-4

water, age dating of, 8.3.1.2-305, -339
 water chemistry, 8.3.1.2-154, -156;
 8.3.1.3-37--38, see also hydrochemistry
entries

water introduced, 8.4.3-17--19

unsaturated-zone altered rock properties and geochemistry (disturbed scenario C-3),
8.3.5.13-87--88

- expected partial performance measures,
8.3.5.13-102*--103*
- initiating events or processes,
8.3.5.13-87--88
- performance parameters,
8.3.5.13-102*--103*

unsaturated-zone drilling program description,
8.4.2-64--74

unsaturated-zone flow analysis (Subactivity 1.6.3.1.1), 8.3.5.12-51

- description, 8.3.5.12-51
- objectives, 8.3.5.12-51

unsaturated-zone foreshortening releases (disturbed case scenario C-2)

- expected partial performance measures (EPPM), 8.3.5.13-100*--101*
- initiating events or processes,
8.3.5.13-86--87
- performance parameters,
8.3.5.13-100*--101*

unsaturated-zone gaseous-phase movement study, 8.3.1.2-322--334 (*see also* gaseous-phase movement (unsaturated zone) study)

unsaturated-zone gases, age dating, 8.3.1.2-305, -335

unsaturated-zone ground-water travel model performance parameters, 8.3.5.12-28*--30*

unsaturated-zone hydrogeologic system conceptualization activity, 8.3.1.2-351--353

- description, 8.3.1.2-351--353
- methods and technical procedures,
8.3.1.2-353
- objectives, 8.3.1.2-351
- parameters, 8.3.1.2-351

unsaturated-zone hydrologic characteristics synthesis activity, 8.3.1.16-26

- description, 8.3.1.16-26
- methods and technical procedures,
8.3.1.16-26
- objectives, 8.3.1.16-26
- parameters, 8.3.1.16-26

unsaturated-zone hydrogeologic conceptualization activity, 8.3.1.2-351--353

- description, 8.3.1.2-351--353
- methods and technical procedures,
8.3.1.2-353
- objectives, 8.3.1.2-351
- parameters, 8.3.1.2-351

unsaturated-zone hydrologic data and sample requirements and construction control, 8.4.2-81, -86

unsaturated-zone hydrologic properties and conditions parameters provided by geohydrology program, 8.3.1.2-13*--30*

- site data needs, 8.3.1.2-148--157

unsaturated-zone hydrologic system (site) investigation, 8.3.1.2-148--364 activities

- aqueous phase chemical investigations, 8.3.1.2-337--341
- artificial infiltration evaluation, 8.3.1.2-172--179
- bulk permeability test in ESF, 8.3.1.2-271--281
- Calico Hills test in ESF, 8.3.1.2-300
- chloride and C1-36 percolation measurements, 8.3.1.2-180--181
- diffusion tests in ESF, 8.3.1.2-320--322
- excavation test in ESF, 8.3.1.2-293--299
- fluid flow in unsaturated, fractured rock model development, 8.3.1.2-342--345
- fluid flow in unsaturated, fractured rock model validation, 8.3.1.2-345--350
- gaseous-phase chemical investigations, 8.3.1.2-334--337
- gaseous-phase circulation, 8.3.1.2-323--334
- hydrochemistry tests in ESF, 8.3.1.2-304--308
- hydrogeologic system (natural) simulation, 8.3.1.2-356--359
- hydrologic-modeling computer codes, 8.3.1.2-353
- hydrologic properties of faults encountered in ESF, 8.3.1.2-316--320
- hydrologic properties of surficial materials, 8.3.1.2-157--164
- intact-fracture test in ESF, 8.3.1.2-238--252
- matrix hydrologic properties testing, 8.3.1.2-183--200
- multipurpose borehole testing near ESF, 8.3.1.2-308--316

unsaturated-zone hydrologic system (site)
 investigation (continued)
 activities (continued)
 natural infiltration evaluation,
 8.3.1.2-164--172
 perched water test in ESF,
 8.3.1.2-300--304
 percolation tests in ESF,
 8.3.1.2-252--271
 radial borehole tests in ESF,
 8.3.1.2-281--292
 Solitario Canyon horizontal borehole
 study, 8.3.1.2-221--232
 stochastic modeling and uncertainty
 analysis, 8.3.1.2-359--360
 unsaturated-zone hydrogeologic system
 conceptualization, 8.3.1.2-351--353
 unsaturated-zone integration and
 synthesis (site), 8.3.1.2-361--362
 vertical borehole studies (site),
 8.3.1.2-200--221
 application of results, 8.3.1.2-362--364
 link to supporting information,
 8.3.1.2-148
 parameters, 8.3.1.2-148--149
 purpose and objectives, 8.3.1.2-149--150
 studies, 8.3.1.2-157--362
 diffusion tests in ESF,
 8.3.1.2-320--322
 fluid flow in unsaturated, fractured
 rock, 8.3.1.2-341--350
 gaseous-phase movement (unsaturated
 zone), 8.3.1.2-322--334
 hydrochemical characterization
 (unsaturated zone),
 8.3.1.2-334--341
 percolation in unsaturated zone--ESF,
 8.3.1.2-232--320
 percolation in unsaturated zone--
 surface study, 8.3.1.2-181--232
 unsaturated-zone infiltration,
 8.3.1.2-157--179
 unsaturated-zone modeling and
 synthesis, 8.3.1.2-350--362
 water movement tracer tests (chloride
 and Cl-36), 8.3.1.2-172--181
 summary of major studies, 8.3.1.2-150--156
 technical basis for, 8.3.1.2-148--156
 technical rationale, 8.3.1.2-150--156
 unsaturated-zone hydrologic system conceptual
 models, current representation and
 alternative hypotheses, 8.3.1.2-52*--67*

unsaturated-zone hydrology model sensitivity
 analysis, technical procedures for,
 8.3.1.5-120
 unsaturated-zone increased flux release
 (disturbed case scenario C-1), 8.3.5.13-84,
 -86
 expected partial performance measures
 (EPPM), 8.3.5.13-98*--99*
 initiating events or processes,
 8.3.5.13-86
 performance parameters, 8.3.5.13-98*--99*
 unsaturated-zone infiltration
 characterization study, 8.3.1.2-157--179
 activities, 8.3.1.2-157--179
 artificial infiltration evaluation,
 8.3.1.2-172--179
 hydrologic properties of surficial
 materials, 8.3.1.2-157--164
 natural infiltration evaluation,
 8.3.1.2-164--172
 objective, 8.3.1.2-157
 unsaturated-zone integration and synthesis
 (site) activity, 8.3.1.2-361--362
 description, 8.3.1.2-361--362
 methods and technical procedures,
 8.3.1.2-362
 objectives, 8.3.1.2-361
 parameters, 8.3.1.2-361
 unsaturated-zone modeling and synthesis (site)
 study, 8.3.1.2-350--362
 activities, 8.3.1.2-351--362
 hydrogeologic system (natural)
 simulation, 8.3.1.2-356--359
 hydrologic modeling computer codes,
 8.3.1.2-353--355
 stochastic modeling and uncertainty
 analysis, 8.3.1.2-359--359
 unsaturated-zone hydrogeologic system
 conceptualization, 8.3.1.2-351--353
 unsaturated-zone integration and
 synthesis (site), 8.3.1.2-361--362
 up-hole seismic, technical procedures for,
 8.3.1.14-63
 uplift
 effect on water-table elevation activity,
 8.3.1.8-92
 and erosion, 8.3.1.6-22
 Quaternary, 8.3.1.8-87
see also folding, uplift, and subsidence
 effects on flux rates, activity

uplift and faulting impact on erosion activity, 8.3.1.6-22--23
description, 8.3.1.6-23
methods and technical procedures, 8.3.1.6-23
objectives, 8.3.1.6-22
parameters, 8.3.1.6-22--23

uplift and subsidence--Quaternary history, technical procedures for, 8.3.1.17-190

uplift and subsidence study boundaries, 8.3.1.17-190

uplift rate analysis, technical procedures for, 8.3.1.17-198

uplift rates in the controlled area activity, 8.3.1.8-87
description, 8.3.1.8-87
methods and technical procedures, 8.3.1.8-87
objectives, 8.3.1.8-87
parameters, 8.3.1.8-87

uplift/subsidence/folding/faulting and structural deformation (Issue 1.8 potentially adverse condition 4), 8.3.5.17-27, -30, -31*--34*

upper demonstration breakout room plan view, 8.4.2-112**
and station, ESF construction, 8.4.2-189, -190**

uranium batch sorption, 8.3.1.3-68, -70, -72*
sorption, 8.3.1.3-67

uranium-series dating and chronologic analyses, 8.3.1.5-52
and eolian deposits, 8.3.1.5-73
and surficial deposits, 8.3.1.5-69
technical procedures, 8.3.1.5-72, -76

uranium-thorium disequilibrium, technical procedures for, 8.3.1.8-115

uranium-trend and uranium-series dating and chronologic analyses, 8.3.1.5-52
plans and technical procedures, 8.3.1.5-69; 8.3.1.17-162, -163, -164, -165, -166, -167

U.S. Bureau of Land Management and land administration at site, 8.3.1.11-2
and plans for mitigation, 8.7-1
and Yucca Mountain site, 8.3.1-1

U.S. Bureau of Reclamation, and water supply information, 8.3.1.9-44

U.S. Department of the Air Force and land administration at site, 8.3.1.11-2
see also Nellis Air Force Base

U.S. Department of Commerce and socioeconomic data for water-use assessment, 8.3.1.9-44

U.S. Department of Energy approach to choosing scenario classes, 8.3.5.13-12--16
Mission Plan, 8.2-1, -15, -17** (see also Mission Plan)
Order 6430 and surface characteristics program, 8.3.1.14-16
and Yucca Mountain site, 8.3.1-1

U.S. Department of the Interior and land administration at site, 8.3.1.11-2

U.S. Environmental Protection Agency and dispersion parameters, 8.3.1.12-23--24
and meteorological data reporting requirements, 8.3.1.12-21
source of meteorological data, 8.3.1.12-10

U.S. Geological Survey and COVE 2, 8.3.5.20-4*
and water supply information, 8.3.1.9-44

U.S. National Weather Service precipitation gage network, 8.3.1.2-98
and probable maximum flood, 8.3.1.16-12
as source of meteorological data, 8.3.1.12-10

U.S. Nuclear Regulatory Commission and dispersion parameters, 8.3.1.12-22

U.S. Nuclear Regulatory Commission and meteorological data reporting requirements, 8.3.1.12-21
site characterization plan comments, 8.3.1-1
see also NRC entries

usable area and flexibility evaluation, product 1.11.3-2
status, 8.3.2.2-37, -50

usable area and flexibility evaluation (Design Activity 1.11.3.2), 8.3.2.2-53
information needed, 8.3.2.2-47*--48*
objective, 8.3.2.2-53

USW G-1, drilling fluid migration, 8.4.3-15--16

USW G-4 drilling fluid loss in, 8.4.3-16--17
and unsaturated zone flow, 8.4.3-16--17

USW H-7
 and conceptual perimeter drift boundary,
 8.4.3-42
 saturated-zone borehole, 8.4.3-42
 and saturated-zone exploration, 8.4.2-78

USW UZ-1
 drilling fluid migration, 8.4.3-15--16
 and perched water, 8.4.3-16

USW UZ-6, -6s
 and air exchange with atmosphere, 8.4.3-19

utilization of site data
 by performance assessment and design,
 8.2-67**

V-series drillholes, see volcanism drillholes
 activity

vadose water composition (Activity
 1.10.4.1.3), 8.3.4.2-45--46
 description, 8.3.4.2-46
 objectives, 8.3.4.2-45
 parameters, 8.3.4.2-46

vadose-zone water movement, and impact of
 exploration, 8.3.1.9-28

validation, 8.3.5.19-13
 of analytical techniques, plans,
 8.3.5.20-1--9
 codes for underground facility analysis,
 8.3.2.5-82--84
 computer models, 8.3.2.5-82
 coupled hydraulic-mechanical finite
 element model, 8.3.1.2-295
 hydrologic codes, 8.3.5.20-7--9
 information needs, 8.3.5.20-8--9
 performance assessment models,
 8.3.5.20-5--9
 information needs, 8.3.5.20-7
 plans, 8.3.5.20-6--7
 physical models, 8.3.5.20-8--9
 rock mechanical behavior, 8.3.1.15-45, -50
 software, technical procedures for,
 8.3.1.8-110, -114, -117, -120, -122
 transport codes, 8.3.5.20-7--9
 information needs, 8.3.5.20-8--9
 transport models, 8.3.1.3-125;
 8.3.4.2-61--64
see also verification
 value of resources investigation,
 8.3.1.9-20--44 (see also resource value
 investigation)

vegetation-climate relationships activity
 description, 8.3.1.5-57--59
 methods and technical procedures,
 8.3.1.5-59
 objectives, 8.3.1.5-57
 parameters, 8.3.1.5-58

ventilation analyses
 codes, 8.3.2.5-83--84
 effects on drift wall saturation,
 8.4.3-22
 effects on rock saturation, 8.4.3-22--23
 mining, summary, 8.3.2.5-73
 repository modeling, 8.3.2.1-24--25
 waste handling, summary, 8.3.2.5-74
 underground repository facilities
 summary, 8.3.2.5-74--75

ventilation experiment, see air quality and
 ventilation experiment activity

ventilation systems and water removal, design
 consideration, 8.4.3-35

verification, 8.3.5.19-13
 of analytical techniques, plans,
 8.3.5.20-1--9
 computer models, 8.3.2.5-82
 COVE, 8.3.5.20-3--5
 gas transport models, 8.3.1.3-137--138
 performance assessment techniques,
 8.3.5.20-2--3
 transport models, 8.3.1.3-125
see also validation

vertical borehole drilling and coring,
 technical procedures for, 8.3.1.2-211--212

vertical borehole (site) studies
 activity, 8.3.1.2-200--221
 description, 8.3.1.2-201--211;
 8.4.2-73--74
 methods and technical procedures,
 8.3.1.2-211--221
 objectives, 8.3.1.2-200
 parameters, 8.3.1.2-200--201

vertical boreholes
 construction detail summary,
 8.3.1.2-203*--205*
 instrumentation of, 8.3.1.2-210
 studies, description, 8.4.2-73--74

vertical emplacement
 container, 8.3.5.9-3**
 drift analyses, 8.4.3-28, -29
 and seals, 8.3.3.2-35

vertical/lateral stratigraphic units within site area study, 8.3.1.4-32--64 activities, 8.3.1.4-32--64 borehole geophysical surveys, 8.3.1.4-57--59 geophysical activities integration, 8.3.1.4-64 magnetic properties and stratigraphic correlations, 8.3.1.4-60--64 petrophysical properties testing, 8.3.1.4-59--60 surface and subsurface stratigraphic studies, 8.3.1.4-32--41 surface-based geophysical surveys, 8.3.1.4-41--57 objective, 8.3.1.4-32 vertical or horizontal orientation (Design Activity 1.11.3.3), 8.3.2.2-53 objective, 8.3.2.2-53 vertical seismic profiling activity, 8.3.1.4-79--80 boreholes required, 8.3.1.2-201, -209** technical procedures for, 8.3.1.2-215 vertical vs. horizontal orientation decision, product 1.11.3-3 information needed, 8.3.2.2-48* status, 8.3.2.2-37, -50 vibratory ground motion considerations preclosure tectonics program, 8.3.1.17-34--37 vibratory ground motion investigation, 8.3.1.17-63--86 activities earthquake ground motion models, 8.3.1.17-76 earthquake (relevant) sources identification, 8.3.1.17-69--72, -71** earthquake source evaluation, 8.3.1.17-82--84 ground motion from seismic events characterization, 8.3.1.17-81--82 ground motion probabilities evaluation, 8.3.1.17-84--85 ground motion site effects from recordings, 8.3.1.17-78--79 ground motion site effects using wave properties, 8.3.1.17-79 seismic event (controlling) identification, 8.3.1.17-80 seismogenic source cumulative slip earthquake, 8.3.1.17-72--74

vibratory ground motion investigation (continued) activities (continued) underground nuclear explosion ground motion models, 8.3.1.17-77 underground nuclear explosion maximum source, 8.3.1.17-75 underground nuclear explosion source range determination, 8.3.1.17-75 application of results, 8.3.1.17-85--86 link to supporting information, 8.3.1.17-63 logic diagram, 8.3.1.17-67** parameters, 8.3.1.17-63--64 purpose and objectives, 8.3.1.17-65 studies, 8.3.1.17-69--85 earthquake (relevant) sources, 8.3.1.17-69--74 ground motion--earthquakes/underground nuclear explosions, 8.3.1.17-76--77 ground motion from seismic events, 8.3.1.17-80--82 seismic hazards analysis (probabilistic), 8.3.1.17-82--85 site geology effects on ground motion, 8.3.1.17-77--79 underground nuclear explosion sources, 8.3.1.17-74--75 technical basis, 8.3.1.17-63--64 technical rationale, 8.3.1.17-66--69 video camera surveys, technical procedures for, 8.3.1.4-74 video logs inspection, technical procedures for, 8.3.1.16-19, -21, -23 video surveys, technical procedures for, 8.3.1.2-279, -315, -319, -322 VISCOT drift analysis, 8.3.2.5-72 ventilation analysis, 8.3.2.5-73 VNET, ventilation analysis, 8.3.2.5-73 volcanic activity basaltic, 8.3.1.8-52--54 causing chemical or physical changes, 8.3.1.8-125--127 decreased magma volume - increased eruptive frequency, 8.3.1.8-37 direct releases (postclosure tectonic studies), 8.3.1.8-3**-5* flux rate effects, 8.3.1.8-83--84 hypersthene- to nepheline-normative basalt, 8.3.1.8-53

volcanic activity (continued)
 and marker system, 8.3.1.9-15, -16, -18, -19
 and potassium-argon dating, 8.3.1.8-112--114, -115

volcanic activity (postclosure) investigation, 8.3.1.8-48--62
 activities
 basaltic volcanism structural controls, 8.3.1.8-52--54
 hydrovolcanic eruption effects, 8.3.1.8-60--62
 magma bodies in site vicinity, 8.3.1.8-55--57
 volcanic eruption probability calculations and assessment, 8.3.1.8-57--59
 volcanic event location and timing, 8.3.1.8-51, -52
 application of results, 8.3.1.8-62
 approach used, 8.3.1.8-26
 interrelationships, 8.3.1.8-46--47
 link to supporting information, 8.3.1.8-48
 logic diagram, 8.3.1.8-50**
 parameters, 8.3.1.8-48
 and preclosure tectonics program, 8.3.1.17-31
 purpose and objectives, 8.3.1.8-48
 studies, 8.3.1.8-51--62
 volcanic eruption penetrating repository effects, 8.3.1.8-59--62
 volcanic eruption penetrating repository probability, 8.3.1.8-51--59
 technical basis for, 8.3.1.8-48--49
 technical rationale, 8.3.1.8-48--49

volcanic activity (preclosure) investigation, 8.3.1.17-51--56
 activities
 ash-fall particle density and size assessment, 8.3.1.17-55--56
 ash-fall thickness (potential), 8.3.1.17-54--55
 Quaternary silicic volcanism literature survey, 8.3.1.17-54
 application of results, 8.3.1.17-56
 link to supporting information, 8.3.1.17-51
 logic diagram, 8.3.1.17-53**
 parameters, 8.3.1.17-51
 purpose and objectives, 8.3.1.17-51--52

volcanic activity (preclosure) investigation (continued)
 study
 ash-fall potential at site, 8.3.1.17-54--56
 technical basis, 8.3.1.17-51--52
 technical rationale, 8.3.1.17-52

volcanic ash
 and eolian sediments, 8.3.1.5-73
 Lava Creek, 8.3.1.5-73
 Quaternary correlation and dating, plans and technical procedures, 8.3.1.17-161, -168

volcanic centers
 geologic field studies, 8.3.1.8-52, -116--117
 Lathrop Wells, 8.3.1.8-113, -117, -119--120, -127

volcanic centers in the Western Great Basin (literature survey), 8.3.1.17-54

volcanic eruption probability calculations and assessment activity, 8.3.1.8-57--59
 description, 8.3.1.8-58
 methods and technical procedures, 8.3.1.8-59
 objectives, 8.3.1.8-57
 parameters, 8.3.1.8-57--58

volcanic eruptions penetrating repository effects study, 8.3.1.8-59--62
 activities, 8.3.1.8-59--62
 hydrovolcanic eruption effects, 8.3.1.8-60--62
 Strombolian eruptions effects, 8.3.1.8-59--62

volcanic eruptions penetrating repository probability study, 8.3.1.8-51--59
 activities, 8.3.1.8-52--59
 basaltic volcanism structural controls, 8.3.1.8-52--54
 magma bodies in site vicinity, 8.3.1.8-55--57
 volcanic eruption probability calculations and assessment, 8.3.1.8-57--59
 volcanic events location and timing, 8.3.1.8-51--52

volcanic event location and timing activity, 8.3.1.8-51--52
 description, 8.3.1.8-51
 methods and technical procedures, 8.3.1.8-51, -52
 objectives, 8.3.1.8-51

volcanic event location and timing activity
 (continued)
 parameters, 8.3.1.8-51

volcanic features characterization
 study, 8.3.1.8-107--123
 activities, 8.3.1.8-108--123
 field geologic studies,
 8.3.1.8-116--118
 geochemical cycles of basaltic
 volcanic fields, 8.3.1.8-121--123
 geochemistry of scoria sequences,
 8.3.1.8-119--120
 geochronology studies,
 8.3.1.8-112--115
 volcanism drillholes, 8.3.1.8-108--112
 objectives, 8.3.1.8-107

volcanic hazards investigations, technical
 procedures for, 8.3.1.8-110, -122

volcanic/igneous event probability in
 controlled area, 8.3.1.8-26, -75, -106, -107

volcanic/igneous event probability in
 controlled area activity, 8.3.1.8-82--83
 description, 8.3.1.8-82
 methods and technical procedures,
 8.3.1.8-83
 objectives, 8.3.1.8-82
 parameters, 8.3.1.8-82

volcanic stratigraphy, 8.3.1.4-36*, -39
 and geostatistical methods, 8.4.2-28--31

volcanic/tectonic model, 8.3.1.8-122
 geologic evidence, 8.3.1.8-52

volcanic/tectonic/seismic hazards data
 synthesis activity, 8.3.1.9-19--20

volcanism, basaltic, 8.3.5.13-132, -134

volcanism drillholes activity,
 8.3.1.8-108--111
 description, 8.3.1.8-108, -110
 methods and technical procedures,
 8.3.1.8-110--111
 objectives, 8.3.1.8-108
 parameters, 8.3.1.8-108

volcanism (basaltic) structural controls
 activity, 8.3.1.8-52--54
 description, 8.3.1.8-53--54
 methods and technical procedures,
 8.3.1.8-54
 objectives, 8.3.1.8-52
 parameters, 8.3.1.8-52--53

volumetric heat capacity characterization
 activity, 8.3.1.15-34--36
 description, 8.3.1.15-34--35

volumetric heat capacity characterization
 activity (continued)
 methods and technical procedures,
 8.3.1.15-35--36
 objectives, 8.3.1.15-34
 parameters, 8.3.1.15-34

volumetric water content, technical procedures
 for, 8.3.1.2-192

VSFAST
 and COVE 2, 8.3.5.20-4*
 and performance assessment, 8.3.5.19-2,
 -8*

WAFE, 8.3.1.3-121, -122, -124, -127
 and COVE 3, 8.3.5.20-5*

WAFE/TRACR3D
 and performance assessment, 8.3.5.19-2*,
 -7*--8*

Walker Lane, 8.3.1.17-121, -204
 and Cedar Mountain earthquake,
 8.3.1.17-127--128
 and deep geophysical survey activity,
 8.3.1.17-105--106, -115--119
 and Quaternary faulting, 8.3.1.17-97,
 -100**, -101, -103, -122, -155
 and relevel network, 8.3.1.17-195
 and stress field, 8.3.1.17-180
 and uplift and subsidence boundaries,
 8.3.1.17-194
 and vertical tectonic activity, 8.3.1.6-20
 and wrench faulting, 8.3.1.17-122, -201,
 -204

WAPPA
 and performance assessment, 8.3.5.19-2*,
 -8*

Warm Springs
 and relevel network, 8.3.1.17-195
 and uplift and subsidence boundary study
 region, 8.3.1.17-194

warning system, 8.3.1.9-16

Wasatch Plateau
 and coal mining seismicity, 8.3.1.17-93

waste acceptance specifications
 (Information Need 2.6.3), 8.3.4.3-8--12
 application of results, 8.3.4.3-9
 link to supporting information, 8.3.4.3-8
 logic, 8.3.4.3-8--9
 parameters, 8.3.4.3-8
 technical basis for, 8.3.4.3-8--9

waste containers
 degradation models, 8.3.5.9-36, -41*-44*
 degradation modes, 8.3.5.9-37*-40*
 environment, characterization of,
 8.3.1.2-154
 hydrogen effects, 8.3.5.9-45
 impacts on, 8.4.3-79
 intergranular attack, 8.3.5.9-45--46
 intergranular stress corrosion cracking,
 8.3.5.9-45--46
 localized attack, 8.3.5.9-46
 metallurgical and mechanical effects,
 8.3.5.9-44--45
 oxidation and aqueous corrosion,
 8.3.5.9-45
 performance parameter goals,
 8.3.5.9-35--44
 radiation level estimates, 8.3.5.2-39
 stress corrosion cracking, 8.3.5.9-47
 transgranular stress corrosion cracking,
 8.3.5.9-46
see also entries under container
 waste containment, substantially complete,
see substantially complete containment of
 waste (Information Need 1.4.5)
 waste delivery to surface
 performance measures and goals,
 8.3.5.2-20*-21*
 waste delivery to surface (Information
 Need 2.4.5), 8.3.5.2-43--46
 application of results, 8.3.5.2-46
 link to supporting information,
 8.3.5.2-43--44
 logic, 8.3.5.2-44, -46
 parameters, 8.3.5.2-44, -45*
 technical basis for, 8.3.5.2-43--44
 waste element solubility modeling,
 8.3.1.3-88, -92
 waste emplacement depth (Issue 1.8 favorable
 condition 5)
 text of condition and discussion,
 8.3.5.17-2*, -94
 waste emplacement mode
 and seals, 8.3.3.2-35
 waste form
 definition, 8.3.5.10-30, -34--35
 dissolution rates, 8.3.5.10-36--37
 glass, performance parameters,
 8.3.5.9-20*, -31--32 (see also
 glass waste form)
 and EBS release, 8.4.3-84--85
 waste form (continued)
 impacts on, 8.4.3-79
 release model
 input and needed confidence,
 8.3.5.10-5*
 and waste package model hierarchy,
 8.3.5.9-7**; 8.3.5.10-3**
 spent fuel, 8.3.5.9-20*-22*,
 -32 (see also spent fuel)
 storage and handling
 postacceptance/preemplacement,
 8.3.5.10-35--36
 waste form and waste package design data
 integration (Activity 1.5.1.1),
 8.3.5.10-41--42
 subactivities, 8.3.5.10-41--42
 glass waste form information
 integration, 8.3.5.10-42
 spent fuel information integration,
 8.3.5.10-41--42
 waste package and repository design
 information integration, 8.3.5.10-42
 waste-form design information (Information
 Need 2.6.2), 8.3.4.3-7--8
 application of results, 8.3.4.3-8
 link to supporting information, 8.3.4.3-7
 logic, 8.3.4.3-7--8
 parameters, 8.3.4.3-7
 technical basis for, 8.3.4.3-7--8
 waste form material properties (Information
 Need 1.5.2), 8.3.5.10-42--55
 activities, 8.3.5.10-44--54
 glass waste form characteristics,
 8.3.5.10-51--54
 spent fuel waste form charac-
 terization, 8.3.5.10-44--51
 application of results, 8.3.5.10-54--55
 link to supporting information,
 8.3.5.10-43
 logic, 8.3.5.10-43--44
 parameters, 8.3.5.10-43
 subactivities
 glass leach testing, 8.3.5.10-51--52
 glass leaching and materials
 interactions, 8.3.5.10-52--53
 spent fuel dissolution and leaching,
 8.3.5.10-44--45
 spent fuel oxidation, 8.3.5.10-46
 spent fuel waste form additional
 experiments, 8.3.5.10-50--51
 spent fuel waste form materials--
 corrosion and release, 8.3.5.10-49

waste form material properties (Information Need 1.5.2) (continued)

- subactivities (continued)
 - waste producer cooperative testing, 8.3.5.10-53--54
 - Zircaloy cladding carbon-14 release, 8.3.5.10-49--50
 - Zircaloy corrosion, 8.3.5.10-46--48
- technical basis for, 8.3.5.10-42--44
- waste-handling ventilation, system element 1.2.2.7
 - data needed for technology for underground facilities (Information Need 4.4.9), 8.3.2.5-88--91
 - functions and processes, 8.3.2.5-31*
 - preliminary performance allocation, 8.3.2.5-31*
 - underground facilities technology, 8.3.2.5-88--91
- waste isolation
 - and major system elements affecting, 8.0-6**
- waste package
 - access
 - performance measures and goals, 8.3.5.2-15*--16*
 - closure, design goal, 8.3.4.2--30
 - components, overview, 8.3.4.1-5--6
 - container material
 - description, 8.3.4.2-29
 - design envelope, 8.3.4.2-29
 - design goal, 8.3.4.2-29--30
 - design envelope
 - emplacement hole and near-field hydrologic system, 8.3.4.2-25--26
 - emplacement hole configuration and stability, 8.3.4.2-27--28
 - emplacement hole drainage, 8.3.4.2-26--27
 - emplacement hole geochemical system, 8.3.4.2-23--24
 - environment alteration from nonwaste package components, 8.3.4.2-31--32
 - waste package container material, 8.3.4.2-29--30
 - waste package fabrication and handling before emplacement, 8.3.4.2-30--31
 - waste package thermal loading and repository layout, 8.3.4.2-28--29
 - design features
 - and design criteria, 8.4.3-79--81
 - impacts on, 8.4.3-79--81
 - waste package (continued)
 - design features (continued)
 - and postclosure performance, 8.4.3-79--81
 - designs
 - overview, 8.3.4.1-5--6
 - postclosure performance objectives, 8.3.4.1-6
 - reference, 8.3.4.2-36
 - emplacement configuration
 - reference, 8.3.4.2-37--39
 - environment
 - hydrologic properties, 8.3.4.2-51--55
 - hydrology, 8.3.4.2-25
 - mechanical properties, 8.3.4.2-56
 - model inputs, 8.3.4.2-6*
 - overview, 8.3.4.1-4--5
 - and postclosure performance evaluations, 8.4.2-4*--7*, -8
 - fabrication
 - design activity, 8.3.4.4-3--4
 - design goal, 8.3.4.2-30
 - feasibility, alternative barrier designs (Subactivity 1.4.1.2.1), 8.3.5.9-60--61
 - and handling before emplacement
 - description, 8.3.4.2-30--31
 - generic requirements for mined geologic disposal system, 8.3.4.1-1
 - modeling, 8.3.4.1-7
 - and Nuclear Waste Policy Act, 8.3.4.1-1
 - performance allocation, 8.3.4.3-5*
 - performance assessment calculations and hydrologic properties, 8.3.4.2-51
 - postclosure compliance strategy, 8.3.4.1-, -2**, -3--4
 - preclosure functions and characteristics, 8.3.4.3-5*
 - temperature limits
 - and emplacement borehole spacing, 8.3.2.2-43
 - methods of determining, 8.3.2.2-43
 - thermal loading and repository layout
 - description, 8.3.4.2-28
 - design envelope, 8.3.4.2-28--29
 - thermal loading design goal, 8.3.4.2-28--29
 - and transport model, 8.3.4.2-52
 - waste package, containment, see containment by waste package (Issue 1.4)

waste package access (Information Need 2.4.3), 8.3.5.2-36--40
 application of results, 8.3.5.2-39--40
 link to supporting information, 8.3.5.2-36
 logic, 8.3.5.2-38--39
 parameters, 8.3.5.2-36, -37*, -38
 preclosure design and technical feasibility (Issue 4.4) input items, 8.3.5.2-37*
 technical basis for, 8.3.5.2-36--39

waste package adequacy of design determination (Subactivity 1.5.3.14), 8.3.5.10-61--62
 description, 8.3.5.10-62
 objectives, 8.3.5.10-61
 parameters, 8.3.5.10-61--62

waste package and EBS release rates (Information Need 1.5.4), 8.3.5.10-76--79
 activities, 8.3.5.10-77--78
 waste package releases--deterministic calculation, 8.3.5.10-77
 waste package releases--probabilistic calculation, 8.3.5.10-78
 application of results, 8.3.5.10-79
 link to supporting information, 8.3.5.10-76
 logic, 8.3.5.10-77
 parameters, 8.3.5.10-76
 technical basis, 8.3.5.10-76--77

waste package and repository design information integration (Subactivity 1.5.1.1.3), 8.3.5.10-42

waste package and tectonic effects investigation, 8.3.1.8-63--73 (see also tectonic effects on waste package investigation)

waste package characteristics--postclosure (Issue 1.10), 8.3.4.2-1--74
 approach, 8.3.4.2-4--33
 compliance strategy, 8.3.4.2**
 and EBS release rates (Issue 1.5), 8.3.5.10-24
 geochemistry program parameter calls, 8.3.1.3-2**, -3, -4**--9*

information needs, 8.3.4.2-33--74
 near-field environment (1.10.4), 8.3.4.2-39--74
 reference emplacement configuration (1.10.3), 8.3.4.2-37--39
 reference waste package designs (1.10.2), 8.3.4.2-35--36
 waste package design information needed (1.10.1), 8.3.4.2-33--35

waste package characteristics--postclosure (Issue 1.10) (continued)
 information needs (continued)
 see also specific information need for study and activity listings
 interrelationships, 8.3.4.2-33
 issue resolution strategy, 8.3.4.2-2**--3**, -4--33
 logic diagram, 8.3.4.2-2**--3**
 major events and completion dates, 8.3.4.2-68*--73*, 8.5-99**, -100--101
 model hierarchy, 8.3.4.2-5**--8*
 model inputs, 8.3.4.2-6**--8*
 and other design and performance assessment issues, 8.3.2.1-2**;
 8.3.4.1-1, -2**, -3, -4
 parameters called for, 8.3.4.2-11**--22*
 performance measures and goals, 8.3.4.2-9*, -10*
 planned completion dates, 8.3.4.2-68--73
 and postclosure performance assessment strategy, 8.3.5.8-3*
 regulatory basis, 8.3.4.2-1--4
 schedule, 8.3.4.2-65--74; 8.5-98, -99**, -100
 thermal and mechanical rock properties program parameter calls, 8.3.1.15-1, -2*, -4*, -12*, -15**
 and waste package characteristics--preclosure (Issue 2.6), 8.3.4.3-2
 waste package characteristics--preclosure (Issue 2.6), 8.3.4.3-1--12
 approach, 8.3.4.3-1--2, -3**--4**
 information needs, 8.3.4.3-2, -5--12
 waste acceptance specifications (2.6.3), 8.3.4.3-8--9
 waste package design information needed (2.6.1), 8.3.4.3-2, -5--7
 waste-form design information (2.6.2), 8.3.4.3-8--9
 issue resolution strategy, 8.3.4.3-3**--4**
 logic diagram, 8.3.4.3-3**--4**
 and other design and performance assessment issues, 8.3.2.1-2**, 8.3.4.1-2**, -3, -4
 major events and completion dates, 8.3.4.3-11*; 8.5-101, -102**, -103
 performance allocation, 8.3.4.3-5*
 and preclosure design and technical feasibility (Issue 4.4), 8.3.4.3-2
 regulatory basis, 8.3.4.3-1

waste package characteristics--preclosure (Issue 2.6) (continued)
 schedule, 8.3.4.3-9--12; 8.5-101, -102**
 and waste package characteristics--postclosure (Issue 1.10), 8.3.4.3-2
 and waste package production technologies (Issue 4.3), 8.3.4.3-2; 8.3.4.4-1, -5

waste package characteristics needed for design (Information Need 1.11.2), 8.3.2.2-41--44
 application of results, 8.3.2.2-44
 design activity
 compile waste package information needed, 8.3.2.2-44
 interrelationships, 8.3.2.2-20--23, -22**
 introduction, 8.3.2.2-41
 link to supporting information, 8.3.2.2-41--42
 logic, 8.3.2.2-42--43
 parameters, 8.3.2.2-42
 technical basis for, 8.3.2.2-43--46

waste package closure (Design Activity 4.3.1.2), 8.3.4.4-4--5
 description, 8.3.4.4-4--5
 objectives, 8.3.4.4-4
 parameters, 8.3.4.4-4

waste package closure inspection (Design Activity 4.3.1.3), 8.3.4.4-5
 description, 8.3.4.4-5
 objectives, 8.3.4.4-5
 parameters, 8.3.4.4-5

waste package containment
 design consideration, 8.4.3-35
 design criteria, effects of site characterization activities, 8.4.3-75--79
 impacts on, 8.4.3-73--81
 issue resolution strategy
 summary, 8.4.3-73--75
 postclosure performance objectives, 8.4.3-1, -2, -3
 site characterization activity
 impacts, 8.4.3-73--81

waste package design activities
 milestones, 8.5-98--105
 summary schedule, 8.5-98--105

waste package design and fabrication program, 8.3.5.9-16--17

waste package design features (affecting container performance) needed (Information Need 1.4.1), 8.3.5.9-47--66
 activities, 8.3.5.9-51--66
 metal/ceramic container information integration, 8.3.5.9-59--64
 metal container information integration, 8.3.5.9-51--59
 application of results, 8.3.5.9-65--66
 link to supporting information, 8.3.5.9-48
 logic, 8.3.5.9-50--51
 parameters, 8.3.5.9-48--49
 subactivities
 alternative barrier designs, materials, and processes, 8.3.5.9-60--61
 container mechanical properties (alternative barrier), 8.3.5.9-61
 container mechanical properties (metal), 8.3.5.9-51--52
 container microstructural properties (alternative barrier), 8.3.5.9-62--63
 container microstructural properties (metal), 8.3.5.9-52--54
 container physical properties (metal), 8.3.5.9-54--55
 container stress state (metal), 8.3.5.9-55--56
 container surface (metal), 8.3.5.9-58--59
 container thermophysical properties (alternative barrier), 8.3.5.9-63
 container weld integrity (metal), 8.3.5.9-56--58
 nondestructive characterization of alternate barrier, 8.3.5.9-63--64
 technical basis for, 8.3.5.9-47--51

waste package design features (affecting radionuclide release) needed (Information Need 1.5.1), 8.3.5.10-39--42
 activity, 8.3.5.10-41
 Waste form and waste package design data integration, 8.3.5.10-41
 application of results, 8.3.5.10-42
 link to supporting information, 8.3.5.10-39
 logic, 8.3.5.10-41
 parameters, 8.3.5.10-39--41

waste package design features (affecting radionuclide release) needed (Information Need 1.5.1) (continued)

- subactivities, 8.3.5.10-41--42
- glass waste form information integration, 8.3.5.10-42
- spent fuel information integration, 8.3.5.10-41--42
- waste package and repository design information integration, 8.3.5.10-42
- technical basis for, 8.3.5.10-39--41

waste package design information needed (postclosure) (Information Need 1.10.1), 8.3.4.2-33--35

- application of results, 8.3.4.2-33
- design activity

 - 10 CFR 60.135(a) factors, 8.3.4.2-34

- link to supporting information, 8.3.4.2-33--34
- logic, 8.3.4.2-34
- parameters, 8.3.4.2-34
- technical basis for, 8.3.4.2-34

waste package design information needed (preclosure) (Information Need 2.6.1), 8.3.4.3-2, -5--7

- application of results, 8.3.4.3-7
- link to supporting information, 8.3.4.3-5
- logic, 8.3.4.3-5--6
- parameters, 8.3.4.3-6
- technical basis for, 8.3.4.3-2, -5--7

waste package design objective, 8.3.5.9-5

waste package designs, alternative, 8.3.5.9-15

waste package environment model

- and waste package model hierarchy, 8.3.5.9-7**; 8.3.5.10-3**

waste package environment stress field analysis (Activity 1.10.4.3.1), 8.3.4.2-56

- description, 8.3.4.2-56
- objectives, 8.3.4.2-56
- parameters, 8.3.4.2-56

waste package fabrication (Design Activity 4.3.1.1), 8.3.4.4-3--4

- description, 8.3.4.4-4
- objectives, 8.3.4.4-3
- parameters, 8.3.4.4-4

waste package geometry and thermal/mechanical properties model

- input and needed confidence, 8.3.5.10-9--10*

waste package geometry and thermal/mechanical properties model (continued)

- and waste package model hierarchy, 8.3.5.9-7**; 8.3.5.10-3*

waste package information compilation (Design Activity 1.11.2.1), 8.3.2.2-44

waste package information needed for design (Information Need 4.4.2), 8.3.2.5-38--43

- application of results, 8.3.2.5-42--43
- design, 8.3.2.5-43*
- link to supporting information, 8.3.2.5-39
- logic, 8.3.2.5-39--42
- material, 8.3.2.5-41
- objectives, 8.3.2.5-38
- parameters, 8.3.2.5-39
- radiation output, 8.3.2.5-42
- size, 8.3.2.5-42
- technical basis for, 8.3.2.5-39--42
- temperature limits, 8.3.2.5-42
- thermal decay characteristics, 8.3.2.5-42
- thermal output, 8.3.2.5-42
- waste quantities, 8.3.2.5-42

waste package mechanical model

- input and needed confidence, 8.3.5.10-10*
- waste package model hierarchy, 8.3.5.9-7**; 8.3.5.10-3**

waste package near-field releases (Information Need 1.5.5), 8.3.5.10-79--82

- activities, 8.3.5.10-80--82
- radionuclide transport modeling--
- near-field waste package environment, 8.3.5.10-81
- radionuclide transport parameter determination, 8.3.5.10-80
- application of results, 8.3.5.10-82
- link to supporting information, 8.3.5.10-79
- logic, 8.3.5.10-79--80
- parameters, 8.3.5.10-79
- subactivities

 - near-field transport model application, 8.3.5.10-81
 - near-field transport model validation, 8.3.5.10-81--82
 - radionuclide distribution in tuff cores, 8.3.5.10-81
 - radionuclide distribution in tuff wafers, 8.3.5.10-80--81
 - technical basis for, 8.3.5.10-79--80

waste package performance
 deterministic calculations, 8.3.5.10-77
 and postclosure performance assessment,
 8.5-64--65
 probabilistic calculations, 8.3.5.10-78

waste package performance assessment model
 input and needed confidence, 8.3.5.10-4*
 and waste package model hierarchy,
 8.3.5.9-7**; 8.3.5.10-3**

waste package performance assessment model
 (Activity 1.5.3.5), 8.3.5.10-70--75
 subactivities, 8.3.5.10-70--75
 breached container and water flow,
 8.3.5.10-74--75
 system model development (waste
 package performance assessment),
 8.3.5.10-70--73
 uncertainty methodology development
 (waste package), 8.3.5.10-73--74

waste package production technologies (Issue
 4.3), 8.3.4.4-1--9
 approach, 8.3.4.4-1, -2**
 and higher level findings--ease and cost
 of construction (Issue 4.1), 8.3.5.7-7*
 information needs, 8.3.4.4-3--9
 fabrication, closure, inspection
 technology (4.3.1), 8.3.4.4-3--9
see also specific information need for
 design activity listings

issue resolution strategy, 8.3.4.4-2**
 logic diagram, 8.3.4.4-2**
 major events and completion dates,
 8.3.4.4-8*--9*; 8.5-103, -104**, -105
 and other performance assessment and
 design issues, 8.3.2.1-2**; 8.3.4.1-2**,
 -3, -4
 regulatory basis, 8.3.4.4-1--2*
 schedule, 8.3.4.4-6--9; 8.5-103, -104**
 and waste package characteristics
 --preclosure (Issue 2.6), 8.3.4.3-2;
 8.3.4.4-1, -5

waste package program
 introduction, 8.3.4.1--4
 issue interrelationships, 8.3.4.1-1, -2**,
 -3--4
 overview, 8.3.4.1-1--7
 strategy, 8.3.4.1, -2**, -3--4

waste package release models
 assumptions, 8.3.5.8-8
 hierarchy of, 8.3.5.9-7**; 8.3.5.10-3**

waste package release scenario integration
 (Activity 1.5.3.1), 8.3.5.10-58--62
 subactivities, 8.3.5.10-58--62
 waste package adequacy of design
 determination, 8.3.5.10-61--62

waste package release scenario
 categories, 8.3.5.10-59--60
 waste package release scenario
 identification, 8.3.5.10-58--59
 waste package release scenario
 parameters, 8.3.5.10-60--61

waste package releases--deterministic
 calculation (Activity 1.5.4.1),
 8.3.5.10-77
 description, 8.3.5.10-77
 objectives, 8.3.5.10-77
 parameters, 8.3.5.10-77

waste package releases, goals, 8.3.5.9-18--19

waste package releases--probabilistic
 calculation (Activity 1.5.4.2),
 8.3.5.10-78
 description, 8.3.5.10-78
 objectives, 8.3.5.10-78
 parameters, 8.3.5.10-78

waste package release scenario categories
 (Subactivity 1.5.3.1.2), 8.3.5.10-59--60
 description, 8.3.5.10-59--60
 objectives, 8.3.5.10-59
 parameters, 8.3.5.10-59

waste package release scenario identifications
 (Subactivity 1.5.3.1.1), 8.3.5.10-58--59
 description, 8.3.5.10-59
 objectives, 8.3.5.10-58
 parameters, 8.3.5.10-58

waste package release scenario parameters
 (Subactivity 1.5.3.1.3), 8.3.5.10-60--61
 description, 8.3.5.10-60--61
 objectives, 8.3.5.10-60
 parameters, 8.3.5.10-60

waste package rupture due to faulting
 activity, 8.3.1.8-69--70
 description, 8.3.1.8-69--70
 methods and technical procedures,
 8.3.1.8-70
 objectives, 8.3.1.8-69
 parameters, 8.3.1.8-69

waste package rupture due to folding and
 deformation activity, 8.3.1.8-72
 description, 8.3.1.8-72
 methods and technical procedures,
 8.3.1.8-72

waste package rupture due to folding and deformation activity (continued)
 objectives, 8.3.1.8-72
 parameters, 8.3.1.8-72

waste package rupture due to igneous intrusion activity, 8.3.1.8-66--67
 description, 8.3.1.8-67
 methods and technical procedures, 8.3.1.8-67
 objectives, 8.3.1.8-66--67
 parameters, 8.3.1.8-67

waste package rupture due to tectonic events parameter summary, 8.3.1.8-6*-8*
see also tectonic effects on waste package investigation

waste package rupture due to tectonic events study, 8.3.1.8-66--72
 activities, 8.3.1.8-66--72
 folding and deformation in repository horizon, 8.3.1.8-71--72
 postclosure ground motion in the subsurface, 8.3.1.8-70--71
 probability and rate of faulting, 8.3.1.8-68--69
 waste package rupture due to faulting, 8.3.1.8-69--70
 waste package rupture due to folding and deformation, 8.3.1.8-72
 waste package rupture due to igneous intrusion, 8.3.1.8-66--67
 waste packages intersected by a fault, 8.3.1.8-67--68
 completion dates, 8.3.1.8-135*--136*

waste package scenario model, and waste package model hierarchy, 8.3.5.9-7**

waste package scenarios and models needed (Information Need 1.4.3), 8.3.5.9-86--109
 activities, 8.3.5.9-88--109
 austenitic material degradation models, 8.3.5.9-97--106
 ceramic-metal, bimetallic/single metal, and coatings and fillers degradation models, 8.3.5.9-106--108
 copper and copper alloy degradation models, 8.3.5.9-88--97
 application of results, 8.3.5.9-108--109
 link to supporting information, 8.3.5.9-87 logic, 8.3.5.9-88
 parameters, 8.3.5.9-87--88
 subactivities
 aqueous (general) corrosion (austenitic), 8.3.5.9-100--101

waste package scenarios and models needed (Information Need 1.4.3) (continued)
 subactivities (continued)
 aqueous (general) corrosion (copper), 8.3.5.9-91--92
 bimetallic/single metal degradation models, 8.3.5.9-107--108
 ceramic-metal system degradation models, 8.3.5.9-107
 coatings and filler, systems degradation models, 8.3.5.9-108
 degradation modes (other austenitic), 8.3.5.9-106
 degradation modes (other copper), 8.3.5.9-97
 hydrogen entry and embrittlement (austenitic), 8.3.5.9-103--104
 hydrogen entry and embrittlement (copper), 8.3.5.9-93
 intergranular attack and cracking (austenitic), 8.3.5.9-101--103
 low temperature oxidation (austenitic), 8.3.5.9-99--100
 low temperature oxidation (copper), 8.3.5.9-90--91
 metallurgical aging and phase stability (copper), 8.3.5.9-89--90
 metallurgical aging and phase transformations (austenitic), 8.3.5.9-98--99
 pitting, crevice, and other localized attack (austenitic), 8.3.5.9-104--105
 pitting, crevice, and other localized attack (copper), 8.3.5.9-94--95
 stress corrosion cracking (copper), 8.3.5.9-95--97
 transgranular stress corrosion cracking (austenitic), 8.3.5.9-105--106
 technical basis, 8.3.5.9-86--88
 waste package testing program, 8.3.5.9-5--11
 waste packages intersected by a fault activity, 8.3.1.8-67
 description, 8.3.1.8-68
 methods and technical procedures, 8.3.1.8-68
 objectives, 8.3.1.8-67
 parameters, 8.3.1.8-67

waste producer cooperative testing (Subactivity 1.5.2.2.3), 8.3.5.10-53--54
 description, 8.3.5.10-54

waste producer cooperative testing
 (Subactivity 1.5.2.2.3) (continued)
 objectives, 8.3.5.10-53--54
 parameters, 8.3.5.10-54

waste removal from boreholes
 performance measures and goals,
 8.3.5.2-17*-18*

waste removal from boreholes (Information
 Need 2.4.4), 8.3.5.2-40--43
 application of results, 8.3.5.2-43
 link to supporting information, 8.3.5.2-40
 logic, 8.3.5.2-42--43
 parameters, 8.3.5.2-40, -41*, -42

preclosure design and technical
 feasibility (Issue 4.4) input items,
 8.3.5.2-41*
 technical basis for, 8.3.5.2-40--43

waste retrievability (Issue 2.4),
 8.3.5.2-1--52
 analytical tools, 8.3.2.1-21--22
 approach, 8.3.5.2-3--21
 and geohydrology program, 8.3.1.2-363
 information needs, 8.3.5.2-23--52
 emplacement borehole access (2.4.2),
 8.3.5.2-30--36
 retrieval requirement compliance,
 (2.4.6), 8.3.5.2-46--52
 site and design information needed
 (retrieval) (2.4.1), 8.3.5.2-23--30
 waste delivery to surface (2.4.5),
 8.3.5.2-43--46
 waste package access (2.4.3),
 8.3.5.2-36--40
 waste removal from boreholes (2.4.4),
 8.3.5.2-40--43

interrelationships, 8.3.5.2-22--23
 issue resolution strategy, 8.3.5.2-1--22
 logic diagram, 8.3.5.2-4**-5**
 major events and completion dates,
 8.3.5.2-51*; 8.5-56, -57**
 and Nuclear Waste Policy Act, 8.3.5.2-1,
 -2
 and other design and performance
 assessment issues, 8.3.2.1-2**;
 8.3.4.1-2**
 major events and completion dates,
 8.5-56, -57**
 and preclosure design and technical
 feasibility (Issue 4.4), 8.3.5.2-6**,
 -22, -25**-28*

preclosure tectonics program parameter
 calls, 8.3.1.17-1, -2**, -63, -86

waste retrievability (Issue 2.4)
 (continued)
 regulatory basis, 8.3.5.2-1--3
 schedule, 8.3.5.2-50--52; 8.5-56, -57**
 and technology for underground facilities
 (Information Need 4.4.9), 8.3.2.5-88

waste transport to surface facilities, see
 waste delivery to surface

waste treatment (Information Need 2.7.5)
 interrelationships, 8.3.2.3-37, -38

waste treatment, function 5
 functional requirements of mined geologic
 disposal system, 8.3.2.3-16, -29*

waste ventilation
 performance measures and goals for
 nonradiological health and safety,
 8.3.2.4-19*

waste water, ESF, 8.4.2-162--163

water
 appropriation for site characterization,
 8.4.2-80

budget studies
 mass-balance equation, 8.3.1.2-169
 net infiltration, 8.3.1.2-165, -176
 purpose of, 8.3.1.2-169
 technical procedures for, 8.3.1.2-171

chemistry
 alteration limits, 8.3.4.2-32
 attributes that affect, 8.3.4.2-41
 characterization goal, 8.3.4.2-23--24
 characterization parameters,
 8.3.4.2-11**-20*, -23--24, -32
 and climate, 8.3.1.5-46, -50
 and conservative tracers, 8.3.1.2-97
 and container and liner corrosion,
 8.3.4.2-48
 design goal, 8.3.4.2-31--32
 and emplacement hole geochemical
 system, 8.3.4.2-23--24
 and failed containers, 8.3.5.10-36
 and geochemical processes, 8.3.1.3-119
 and geohydrology investigations,
 8.3.1.2-88
 and hydrochemical analysis, 8.3.1.5-97
 investigation, 8.3.1.3-36--40
 radiation effect, 8.3.4.2-47--48
 test bases, 8.3.4.2-24
 and waste package performance,
 8.3.4.2-41
see also hydrochemistry entries

consumption, see water, use
 ESF, 8.4.2-162

water (continued)

- flux design goal, 8.3.4.2-26
- infiltration from surface
 - and net infiltration, 8.4.3-8--9
 - and site characterization activities, 8.4.3-8--11
 - and surface ponding, 8.4.3-9--10
- water accumulation in exploratory shaft, 8.4.3-10--11
- inflow and seals, 8.3.3.2-23*, -27--28
- ostracodes, 8.3.1.5-44
- permit for site characterization, 8.4.2-80
- potentials
 - determination of, 8.3.1.2-189
 - instrumentation for, 8.3.1.2-210
 - technical procedures for, 8.3.1.2-196
- removal by ventilation systems, design consideration, 8.4.3-35
- repository material effect, 8.3.4.2-45
- rights, 8.3.1.11-1, -2
- and rock interactions, 8.3.1.3-36, -90
- saturated zone, 8.3.1.3-38
- and soil, 8.3.1.5-63, -66
- and sorptive behavior, 8.3.1.3-86
- table, see water-table entries
- temperature, and geothermal assessment, 8.3.1.9-35
- in unsaturated zone
 - from ESF construction, 8.4.3-18
 - and modified permeability zone, 8.4.3-18--19
 - from surface activities, 8.4.3-17--18
- unsaturated zone flow paths, 8.3.1.2-154, -156; 8.3.1.3-38, -39
- use
 - control, design consideration, 8.4.3-34--35
 - design constraints to limit, 8.3.2.2-54--59
 - during site characterization, 8.4.2-80--81, -82*--85*
 - dust control, 8.4.2-81
 - estimates for planned surface-based drilling and testing, 8.4.2-82*--84*
 - estimates for planned surface-based pumping tests, 8.4.2-85*
- waste (ESF), 8.4.2-162--163
- wells, see well J-12 and well J-13
- water accumulation in exploratory shaft
 - hydrologic analyses and data, 8.4.3-10--11
- water accumulation in exploratory shaft (continued)
 - and site characterization activities, 8.4.3-10--11
- water chemistry investigation, 8.3.1.3-36--40
 - application of results, 8.3.1.3-39--40
- interrelationships, 8.3.1.3-23, -36
- link to supporting information, 8.3.1.3-24**, -36
- logic diagram, 8.3.1.3-24**
- parameters, 8.3.1.3-36
- purpose and objectives, 8.3.1.3-36--37
- study
 - ground-water chemistry model, 8.3.1.3-37--39
- summary, 8.3.1.3-23
- technical basis for, 8.3.1.3-36--39
- technical rationale, 8.3.1.3-37
- water composition performance parameters and goals, EBS release rates, 8.3.5.10-19*
- water extraction from core and rubble samples, technical procedures for, 8.3.1.2-307, -340
- water flow rate measurements and pumping tests, technical procedures for, 8.3.1.2-316
- water flow velocities
 - and tritium analyses, 8.3.1.2-165
 - measurement, technical procedures for, 8.3.1.2-303
- water-holding capacity, field measurements, technical procedures for, 8.3.1.5-64
- water injection test, technical procedures for, 8.3.1.2-214, -227
- water level measurement, technical procedures for, 8.3.1.2-123--124, -381--382; 8.3.1.16-19, -20, -23
- water management criteria (Design Activity 1.11.4.3), 8.3.2.2-59
 - objective, 8.3.2.2-59
- water management criteria, product 1.11.4-2
 - information required, 8.3.2.2-56*
 - status, 8.3.2.2-58
- water movement tracer tests (chloride and Cl-36) study, 8.3.1.2-179--181
 - activity
 - chloride and Cl-36 percolation measurements, 8.3.1.2-180--181
 - objective, 8.3.1.2-179
- water pathway models, 8.3.5.13-131

water pathway release model (nominal case scenario class), 8.3.5.13-56--75
 performance parameters and expected partial performance measures, 8.3.5.13-93*--95*
 system elements, 8.3.5.13-90*
 technical discussion, 8.3.5.13-56--75

water pathway release model development (Subactivity 1.1.3.1.1), 8.3.5.13-133
 description, 8.3.5.13-133
 objectives, 8.3.5.13-133
 parameters, 8.3.5.13-133

water permeability equipment use, technical procedures for, 8.3.1.15-51

water quality model
 and waste package model hierarchy, 8.3.5.9-7**; 8.3.5.10-3**

water quality performance parameters and goals
 and containment by waste package (Issue 1.4), 8.3.5.9-13*--14*
 and well J-13 water, 8.3.5.10-16, -19*

water quantity model
 and waste package model hierarchy, 8.3.5.9-7**; 8.3.5.10-3**

water removal, system element 1.2.1.5
 data needed for technology for underground facilities (Information Need 4.4.9), 8.3.2.5-88, -91
 functions and processes, 8.3.2.5-26*
 parameters for technology for underground facilities (Information Need 4.4.9), 8.3.2.5-89--91
 preliminary performance allocation, 8.3.2.5-26*
 underground facilities technology, 8.3.2.5-88--89

water resource assessment of Yucca Mountain study, 8.3.1.9-42--44
 activity
 ground-water development trends and withdrawal rates, 8.3.1.9-43--44

water resources, and water supply entries

water-rock interactions, see rock-water interactions

water sample analysis, technical procedures for, 8.3.1.5-97--98

water sampling
 and geothermal assessment, 8.3.1.9-35
 noble gas measurement, technical procedures for, 8.3.1.8-57

water sampling (continued)
 technical procedures for, 8.3.1.2-133, -307--308, -340--341, -373, -380, -429, -430, -432--433; 8.3.1.3-62

water supplies investigation, 8.3.1.16-14--25
 activities
 water supply location (alternative), 8.3.1.16-22--23
 water supply location (primary), 8.3.1.16-20--21
 water withdrawal effects, 8.3.1.16-24
 wells J-12 and J-13 assessment, 8.3.1.16-16--19

application of results, 8.3.1.16-25
 link to supporting information, 8.3.1.16-14
 logic diagram, 8.3.1.16-15**
 parameters, 8.3.1.16-14
 purpose and objectives, 8.3.1.16-14
 study
 water supply locations (adequate), 8.3.1.16-16--24
 summary, 8.3.1.16-6
 technical basis for, 8.3.1.16-14--16
 technical rationale, 8.3.1.16-14--16

water supply
 data compilation, 8.3.1.16-18, -21, -22
 data sources, 8.3.1.9-44

water supply location (alternative) activity, 8.3.1.16-22
 description, 8.3.1.16-22
 methods and technical procedures, 8.3.1.16-22--23
 objectives, 8.3.1.16-22
 parameters, 8.3.1.16-22

water supply location (primary) activity, 8.3.1.16-20
 description, 8.3.1.16-20
 methods and technical procedures, 8.3.1.16-20--21
 objectives, 8.3.1.16-20
 parameters, 8.3.1.16-20

water supply location (adequate) study activities, 8.3.1.16-16--24
 water supply location (alternative), 8.3.1.16-22--23
 water supply location (primary), 8.3.1.16-20--21
 water withdrawal effects, 8.3.1.16-24

water supply location (adequate) study
 (continued)
 activities (continued)
 wells J-12 and J-13 assessment,
 8.3.1.16-16--19

water table, 8.3.1.5-92
 and controlled area, 8.3.5.17-35
 depth of, 8.3.1.2-91, -150, -153
 isopach contour map of distance to
 disturbed zone, 8.3.5.12-12**
 and Issue 1.8 favorable condition 1
 (Quaternary processes affecting
 isolation), 8.3.5.17-89, -91
 pathway from disturbed zone, 8.3.5.12-11,
 -18**

water-table boreholes
 sampling and unsaturated-zone exploration,
 8.4.2-78
 and saturated-zone exploration,
 8.4.2-77--78

water-table drillholes
 drilling, technical procedures for,
 8.3.1.2-380
 existing and planned, 8.3.1.2-115--116,
 -117**
 and monitoring network, 8.3.1.2-376
 and site potentiometric-level evaluation,
 8.3.1.2-377**

water-table elevation
 effects of tectonics activity,
 8.3.1.8-28, -79--80
 and faulting, 8.3.1.8-93--94, -104
 and folding, uplift, or subsidence,
 8.3.1.8-92
 and igneous intrusions, 8.3.1.8-89--90
 and mineral changes, 8.3.1.8-101
 postclosure tectonic studies,
 8.3.1.8-13*--16*
 and strain changes, 8.3.1.8-91--92
 tectonic effects study, 8.3.1.8-88--94
 thermal/barrier-to-flow effects of igneous
 intrusions, 8.3.1.8-88--89

water-table holes, technical procedures for,
 8.3.1.2-122

water-table rise
 composite fracture-matrix model,
 8.4.3-13--14
 hydrologic analyses and data, 8.4.3-13--14
 and unsaturated-zone flow, 8.4.3-13--14

water-table rise potential (Issue 1.8
 potentially adverse condition 22)
 discussion, 8.3.5.17-80--81

water-table rise potential (Issue 1.8
 potentially adverse condition 22)
 (continued)
 performance parameters and goals,
 8.3.5.17-82*--86*
 related studies and activities,
 8.3.5.17-82*--86*
 scenario classes, 8.3.5.17-81, -82*--86*
 text of condition, 8.3.5.17-6*

water-table wells
 identification of, 8.3.1.2-428*
 sampling and logging in, 8.3.1.2-428--429

water usage criteria, product 1.11.4-2
 status, 8.3.2.2-38

water use and chemical change limitation,
 postclosure, design function 2,
 8.3.2.2-12--14, -13*
 adverse chemical changes limitation,
 8.3.2.2-12
 and control water use during construction,
 8.3.2.2-12, -14
 needed confidence, 8.3.2.2-13*
 performance goals, 8.3.2.2-13*

water vapor flow
 air and water vapor flow, 8.4.3-21
 air drilling effects on saturation,
 8.4.3-21--22
 air flow through backfill, 8.4.3-21
 barometric effects on air flow in
 exploratory shaft, 8.4.3-21
 drift ventilation effects, 8.4.3-22--23
 and drying of tuffaceous rock, 8.4.3-22
 effects of ventilation on drift
 saturation, 8.4.3-22
 in open borehole, 8.4.3-19, -21
 and unsaturated zone, 8.4.3-19, -21

water withdrawal potential effects activity,
 8.3.1.16-24
 description, 8.3.1.16-24
 methods and technical procedures,
 8.3.1.16-24
 objectives, 8.3.1.16-24
 parameters, 8.3.1.16-24
 see also potential effects of water
 withdrawals activity

water withdrawals
 and cost, 8.3.1.16-18
 and local water supplies, 8.3.1.16-14, -16

WATSORE data base
 compilation of hydrogeologic data,
 8.3.1.2-146

weapons testing,
 ground motion from, 8.3.1.13-11;
 8.3.1.17-35, -36, -64, -67**, -68,
 -74--76
 and hydrogeologic conditions, 8.3.5.17-21
 and seismic effects, 8.3.5.17-21
 and tritium concentrations, 8.3.1.2-164

weather, see extreme weather entries

weather stations, proposed, 8.3.1.2-107**

well hydraulic-stress tests (single and multiple well), 8.3.1.2-383--393

well interference testing (multiple),
 8.3.1.2-393--400

well J-12
 assessment activity, 8.3.1.16-16--19
 and Fortymile Wash recharge study,
 8.3.1.2-128**

well J-13, 8.3.1.2-128**
 and actinides, 8.3.1.3-75
 assessment activity, 8.3.1.16-16--19
 and precipitation and streamflow stations,
 8.3.1.2-100*
 reference water, 8.3.4.1-4; 8.3.4.2-23
 sampling, technical procedures for,
 8.3.1.16-19
 and site characterization, 8.4.2-80--81
 solubility measurements, 8.3.1.3-89
 and sorption, 8.3.1.3-75, -77*, -81
 and water quality performance goals,
 8.3.5.10-16, -19*

well sampling, technical procedures for,
 8.3.1.16-21, -23

well test analysis, technical procedures for,
 8.3.1.2-441

well testing with conservative tracers
 activity, 8.3.1.2-408--412
 description, 8.3.1.2-409--412
 methods and technical procedures,
 8.3.1.2-412--417
 objectives, 8.3.1.2-408
 parameters, 8.3.1.2-408

well testing with reactive tracers activity,
 8.3.1.2-423--424
 description, 8.3.1.2-423--424
 methods and technical procedures,
 8.3.1.2-424
 objectives, 8.3.1.2-423
 parameters, 8.3.1.2-423

well testing with tracers, 8.3.1.2-371

wells J-12 and J-13 assessment activity,
 8.3.1.16-16--19
 description, 8.3.1.16-18

wells J-12 and J-13 assessment activity
 (continued)
 location map, 8.3.1.16-17**
 methods and technical procedures,
 8.3.1.16-18, -19
 objectives, 8.3.1.16-16
 parameters, 8.3.1.16-16, -18

Whittemore pin measurements, technical
 procedures for, 8.3.1.15-58, -61

wind patterns, see population centers and wind
 patterns investigation

Windy Wash
 buried extensions and gamma-ray measure-
 ments, 8.3.1.17-175
 and geologic investigations, 8.3.1.4-29
 and mapping, 8.3.1.4-66
 and Quaternary deposits, 8.3.1.8-64

Windy Wash fault, 8.3.1.8-69; 8.3.1.17-28,
 -29**, -30
 age and recurrence of movement,
 8.3.1.17-157, -158
 and detachment faults, 8.3.1.17-145
 faulting sequences, 8.3.1.17-34
 and Quaternary movement, 8.3.1.17-154
 and releve network, 8.3.1.17-195

Windy Wash fault zone, Quaternary offset,
 plans and technical procedures,
 8.3.1.17-160, -164--165

withdrawal of land
 and controlled area, 8.3.1.11-2--3

worker exposure site data refinement
 (Activity 2.2.2.1), 8.3.5.4-23--24
 description, 8.3.5.4-23--24
 objectives, 8.3.5.4-23
 parameters, 8.3.5.4-23

worker exposures--normal conditions
 (Information Need 2.2.2), 8.3.5.4-21--25
 activities, 8.3.5.4-23--25
 advanced conceptual design assessment
 of worker exposures (normal
 operations), 8.3.5.4-24--25
 performance assessment activity
 development through preclosure risk
 assessment methodology (PRAM)
 program, 8.3.5.4-24
 worker exposure site data refinement,
 8.3.5.4-23--24

application of results, 8.3.5.4-25

link to supporting information, 8.3.5.4-21
 logic, 8.3.5.4-23

parameters, 8.3.5.4-21--22

technical basis for, 8.3.5.4-21--22

worker radiological safety
 analytical approach, 8.3.5.1-17--21
 and as low as reasonably achievable
 (ALARA), 8.3.5.4-1, -3, -17
 design evaluation, 8.3.5.1-17
 major events and completion dates, 8.5-60,
 -61**
 and Mine Safety and Health Administration,
 8.3.5.4-4, -8
 radiation source characteristics,
 8.3.5.1-18
 radionuclide transport, 8.3.5.1-19
 worker radiation exposure, 8.3.5.1-19

worker radiological safety assessment package
 design evaluation, 8.3.5.4-14--15
 radiation source characteristics
 identification, 8.3.5.4-15--16
 radionuclide transport evaluation,
 8.3.5.4-15--16
 worker radiation exposure calculation,
 8.3.5.4-16--17

worker radiological safety--normal conditions,
 advanced conceptual design assessment, see
 advanced conceptual design assessment of
 worker radiological safety--normal
 operations

worker radiological safety--normal conditions
 (Issue 2.2), 8.3.5.4-1--25
 and accidental radiological releases
 (Issue 2.3), 8.3.5.5-1, -2**
 approach, 8.3.5.4-5--17
 compliance with regulations, 8.3.2.3-3,
 -12
 design criteria development, 8.3.5.4-9
 and design performance assessment,
 8.3.2.3-36, -42
 functional requirement identification,
 8.3.5.4-8--14
 functions, performance measures/goal,
 8.3.5.4-10*--11*
 geohydrology program parameter calls,
 8.3.1.2-10*--11*
 and higher level findings--preclosure
 radiological safety (Issue 2.5),
 8.3.5.6-6*
 information needs, 8.3.5.4-18--25
 radiation environment (2.2.1),
 8.3.5.4-18--21
 worker exposure (normal conditions)
 (2.2.2), 8.3.5.4-21--25
see specific information need for
activity listing

worker radiological safety--normal conditions
 (Issue 2.2) (continued)
 input item identification, 8.3.5.4-9
 interrelationships, 8.3.5.4-18
 issue resolution strategy, 8.3.5.4-1--18
 issue resolution strategy application,
 8.3.5.4-5--17
 and land ownership and mineral rights
 program, 8.3.1.11-1
 licensing strategy overview, 8.3.5.4-5
 logic diagram, 8.3.5.4-6*--7**
 major events and completion dates,
 8.3.5.4-28*; 8.5-60, -61**
 and meteorology program, 8.3.1.12-1, -2*,
 -4**, -5
 and offsite installations program,
 8.3.1.13-1, -11--12
 and other performance assessment and
 design issues, 8.3.2.1-2**; 8.3.4.1-2**
 performance allocation to system elements,
 8.3.5.4-9
 performance evaluation, 8.3.5.4-17
 and preclosure design and technical
 feasibility (Issue 4.4), 8.3.5.4-1,
 -2**, -6**
 and preclosure radiological safety qual-
 ifying and disqualifying conditions,
 8.3.5.6-6*
 and preclosure risk assessment methodology
 (PRAM) program, 8.3.5.4-9, -15, -18,
 -20, -21, -24
 public radiological exposures--normal
 conditions (Issue 2.1) parameter calls,
 8.3.5.3-1, -2**
 and radiological safety (preclosure)
 qualifying and disqualifying conditions,
 8.3.5.6-6*
 and reference information base,
 8.3.5.4-14, -22
 regulatory basis for, 8.3.5.4-1--4
 relationships with other issues and
 programs, 8.3.5.4-2**
 and repository design criteria for radio-
 logical safety (Issue 2.7), 8.3.2.3-1,
 -2**, -12, -36, -42; 8.3.5.4-1, -2**,
 -3, -5, -6**
 schedule, 8.3.5.4-25--29; 8.5-60, -61**
 and thermal and mechanical properties
 program, 8.3.5.4-13*
 worker radiological safety assessment
 package, 8.3.5.4-9, -14--17

x-ray diffraction
 and rock-water interactions, 8.3.4.2-43
 technical procedures for, 8.3.1.3-45, -46, -47, -48, -50, -51

x-ray fluorescence analysis, technical procedures for, 8.3.1.3-45, -47; 8.3.1.8-110, -111, -122

Yucca Flats
 and seismicity evaluation, 8.3.1.17-92

Yucca Mountain
 area definition, 8.3.1.4-29, -30**
 and decontamination and decommissioning, 8.7-1, -3, -4
 eolian history, 8.3.1.5-72--76
 fault mapping, 8.3.1.17-104**, -122, -124, -157
 faulting studies, 8.3.1.17-154--168
 flux character, 8.3.1.2-151
 and geochemical-geophysical model, 8.3.1.3-10
 global positioning satellite survey, 8.3.1.17-196
 hydrocarbon assessment, 8.3.1.9-37--39
 land ownership, 8.3.1.11-2
 meteorological towers, 8.3.1.12-17--19
 mining rights, 8.3.1.11-2
 natural resource assessment study, 8.3.1.9-27--44
 paleoenvironmental history, 8.3.1.5-59--76
 precipitation stations, 8.3.1.2-106, -107**, -108**--109**
 quality assurance approach, 8.6-2--7
 Quaternary faults, 8.3.1.17-29**
 site boundaries, 8.3.1-1
 soil properties, 8.3.1.5-60, -61--65
 stress field study, 8.3.1.17-179--186
 surface deposits mapping, 8.3.1.5-66--72
 surface topography, 8.3.1.14-18--27
 tectonic geomorphology study, 8.3.1.17-186--193
 thermal history, 8.3.1.9-39
 water resource assessment, 8.3.1.9-42--44
 Water withdrawal effects, 8.3.1.9-50
see also host rock, mined geologic disposal system, repository, and Yucca Mountain

Yucca Mountain heated block activity, 8.3.1.15-57--59
 description, 8.3.1.15-57--58

Yucca Mountain heated block activity (continued)
 methods and technical procedures, 8.3.1.15-58--59
 objectives, 8.3.1.15-57
 parameters, 8.3.1.15-57

Yucca Mountain Member
 stratigraphic studies, 8.3.1.4-35, -38**

Yucca Mountain physical system
 elements of, 8.3.1.1-1, -3

Yucca Mountain Project
 organization 8.6-11**

Yucca Mountain Project Office
 organization, 8.6-13**

Yucca Wash, 8.3.1.2-104
 fault, 8.3.1.17-28
 and faulting study area boundary, 8.3.1.17-154
 proposed seismic refraction survey, 8.3.1.4-53**
 and Quaternary fault study area, 8.3.1.17-103

zeolites
 Calico Hills, 8.3.5.17-92, -93
 crystals, mass transfer kinetics, 8.3.1.3-107
 dehydration and transformation activity, 8.3.1.3-52--54
 kinetic studies, 8.3.1.3-60
 potassium-argon dating procedures, 8.3.1.3-51
 rehydration, 8.3.1.3-52
 stability, 8.3.1.3-59--60
 temperature-time behavior, 8.3.1.3-52

zero point of charge, technical procedures for, 8.3.1.2-421

Zircaloy cladding carbon-14 release (Subactivity 1.5.2.1.5), 8.3.5.10-49--50
 description, 8.3.5.10-50
 objectives, 8.3.5.10-49
 parameters, 8.3.5.10-49--50

Zircaloy corrosion (Subactivity 1.5.2.1.3), 8.3.5.10-46--48
 description, 8.3.5.10-47--48
 objectives, 8.3.5.10-46
 parameters, 8.3.5.10-47

zone of influence factors, and ESF tests, 8.4.2-98, -102**--104*, -105--107

zones of influence

- and air quality and ventilation experiment, 8.4.2-131
- and bulk-permeability test, 8.4.2-136
- and canister heater experiment, 8.4.2-117, -120
- and chloride and chlorine-36 tests, 8.4.2-141
- and demonstration breakout rooms, 8.4.2-111
- and diffusion tests, 8.4.2-140
- and drift stability, 8.4.2-131
- and engineered barrier system field tests, 8.4.2-141, -143
- and equipment development and demonstration, 8.4.2-127
- and excavation effects test, 8.4.2-137, -139
- and fracture mineralogy studies, 8.4.2-108
- and geologic mapping of exploratory shafts and drifts, 8.4.2-107
- and ground-support systems, 8.4.2-130
- and heated block experiment, 8.4.2-122
- and heated room experiment, 8.4.2-126
- and heater experiment, 8.4.2-117
- and hydrochemistry tests, 8.4.2-140
- hydrologic and mechanical, exploratory shafts, 8.4.2-214**
- and hydrologic properties of major faults encountered, 8.4.2-144--145
- and in situ testing of seal components, 8.4.2-132
- and intact-fracture test, 8.4.2-135
- and main test level experiments, 8.4.2-208--210, 209**
- and matrix hydrologic properties testing, 8.4.2-133
- and mining methods evaluation, 8.4.2-130
- and multipurpose borehole testing, 8.4.2-147
- and overcore stress experiments, 8.4.2-133
- and perched water test, 8.4.2-139
- and percolation tests, 8.4.2-135
- and plate loading tests, 8.4.2-127, -129
- and radial borehole tests, 8.4.2-137
- and rock-mass strength experiment, 8.4.2-129
- seismic tomography and vertical seismic profiling, 8.4.2-108--109
- and sequential drift mining, 8.4.2-114
- and shaft convergence, 8.4.2-109

zones of influence (continued)

- and thermal and mechanical laboratory tests, 8.4.2-144
- and thermal stress measurements, 8.4.2-122, -124

10 CFR Part 20

- and higher level findings--ease and cost of construction (Issue 4.1), 8.3.5.7-3
- and higher level findings--postclosure radiological safety (Issue 2.5), 8.3.5.6-7--8, -11
- and issues, 8.2-1, -2*
- and performance verification, 8.3.5.3-5
- and public radiological exposures--normal conditions (Issue 2.1), 8.3.5.3-1, -3--5, -20
- and repository design criteria for radiological safety (Issue 2.7), 8.3.2.3-1, -16, -17*
- and worker radiological safety--normal conditions (Issue 2.2), 8.3.5.4-1, -3--4, -5, -8, -18

10 CFR Part 60

- accessible environment definition, 8.3.5.12-1
- and accidental radiological releases (Issue 2.3), 8.3.5.5-1, -4
- and carbon-14 release rates, 8.3.5.10-14
- and containment by waste package (Issue 1.4), 8.3.5.9-4
- design criteria, 8.3.2.3-1, -3
- design requirements and performance objectives, 8.3.2.1-7
- disturbed zone definition, 8.3.5.12-1, -55
- and EBS rates (Issue 1.5), 8.3.5.10-1 and geohydrology program, 8.3.1.2-2
- and GWTT (Issue 1.6), 8.3.5.12-17
- and higher level findings--ease and cost of construction (Issue 4.1), 8.3.5.7-3
- and higher level findings--postclosure (Issue 1.9(a)), 8.3.5.18-3, -6
- and higher level findings--postclosure radiological safety (Issue 2.5), 8.3.5.6-4, -7--9, -11
- and human interference program, 8.3.1.9-1, -2
- and issues, 8.1-3--4; 8.2-1, -2*
- and marker system, 8.3.1.9-15

10 CFR Part 60 (continued)
 and meteorological data, 8.3.1.12-15
 and mineral and energy assessment of site,
 8.3.1.9-40
 and NRC siting criteria (Issue 1.8),
 8.3.1.5-1
 and NRC siting criteria (Issue 1.8,
 favorable condition resolution),
 8.3.5.17-7
 and NRC siting criteria (Issue 1.8,
 potentially adverse condition
 resolution), 8.3.5.17-1
 and overburden, 8.3.1.14-24, -26, -27
 overview of guidelines, 8.3.5.18-3
 performance objectives, 8.3.2.1-6
 and performance verification,
 8.3.5.3-5
 and population density and distribution
 program, 8.3.1.10-1
 and postclosure performance assessment,
 8.3.5.8-1--2, -6--7
 and postclosure performance objectives,
 8.4.1-6, -7*--8*
 and preclosure safety assessment,
 8.3.5.1-1
 and principal requirements, 8.4.1-4*--5*
 and public radiological exposure,
 8.3.5.3-1, -3, -4
 radionuclide release limits for cumulative
 release calculations, 8.3.5.13-1
 and radionuclide release rates, 8.3.5.10-1
 and repository design criteria for
 radiological safety (Issue 2.7),
 8.3.2.3-1, -16
 and retrievability requirements,
 8.3.5.2-46
 and retrieval compliance demonstrations,
 8.3.5.2-9
 and rock dissolution program,
 8.3.1.7-2
 and seal system performance, 8.3.5.11-1
 and sealing, 8.3.3.2-1--3
 and site characterization, 8.4.1-3--12
 and system guideline (postclosure)
 qualifying condition, 8.3.5.18-7--8
 technical criteria, 8.4.1-9, -10*--12*
 and total system performance (Issue 1.1),
 8.3.1.5-1; 8.3.5.13-1--5
 and use of backfill during retrievability,
 8.3.5.2-10
 and waste package, 8.3.4-1

10 CFR Part 60 (continued)
 and waste retrievability (Issue 2.4),
 8.3.5.2-1, -2, -3
 and worker radiological safety, 8.3.5.4-1,
 -3, -4, -5
 and 40 CFR Part 191, relationship, 8.2-1,
 -12**--14**

10 CFR Part 60 Subpart G
 and quality assurance plan, 8.6-1
 and site characterization, 8.6-19

10 CFR 60.15
 site characterization, 8.4.1-4*--5*, -6

10 CFR 60.17
 site characterization, 8.4.2-5*, -6

10 CFR 60.2, 8.3.1.9-2
 and containment by waste package (Issue
 1.4), 8.3.5.9-1

10 CFR 60.21
 license application requirements,
 8.3.2.1-7

10 CFR 60.21(c)(1)(ii)(B)
 and postclosure tectonics, 8.3.1.8-24

10 CFR 60.21(c)(1)(ii)(D), 8.3.5.9-15

10 CFR 60.111
 and repository design criteria for
 radiological safety (Issue 2.7),
 8.3.2.3-1, -3

10 CFR 60.112
 and overall system performance, 8.3.3.2-2;
 8.3.5.18-7--8
 site characterization, 8.4.2-6, -7*

10 CFR 60.113
 and geochemical setting, 8.3.5.18-11--12
 and geohydrologic setting, 8.3.5.18-9
 and release rates, 8.3.5.18-24
 and rock characteristics, 8.3.5.18-11--13,
 -13*
 and sealing requirements, 8.3.3.2-2
 site characterization, 8.4.2-6, -7*--8*

10 CFR 60.113(a)(1)(ii)
 and containment by waste package (Issue
 1.4), 8.3.5.9-1
 and site characterization, 8.4.1-9--12*

10 CFR 60.113(a)(1)(ii)(B)
 and release rates, 8.3.4.1-6

10 CFR 60.122
 and conditions for the Ross study,
 8.3.5.13-45
 and postclosure tectonics, 8.3.1.8-24

PART B INDEX (Chapter 8)

10 CFR 60.130
and repository design criteria for radiological safety (Issue 2.7), -137; 8.3.2.3-1, -3

10 CFR 60.131--133
and design criteria, 8.3.2.3-3, -4*-11*, -37--38
and functional requirements of mined geologic disposal system, 8.3.2.3-12--13, -15--16

10 CFR 60.133
and preclosure design and technical feasibility (Issue 4.4), 8.3.2.5-1, -4
site characterization, 8.4.1.9--12*

10 CFR 60.134
and seal design, 8.3.3.2-1
and site characterization, 8.4.1.9, -12*

10 CFR 60.135
waste package design criteria, 8.3.4.3-1

10 CFR 60.135(a) considerations (Design Activity 1.10.1.1)
application of results, 8.3.4.2-35
description, 8.3.4.2-34--35
objectives, 8.3.4.2-34
parameters, 8.3.4.2-34

10 CFR 60.137
site characterization, 8.4.1-12*

10 CFR 60.140
site characterization, 8.4.1-12*

10 CFR 60.142
seal performance, 8.3.3.2-2--3
and seal testing, 8.3.3.1-1

10 CFR Part 960
EBS release rates (Issue 1.5), 8.3.5.10-2
and geohydrology program, 8.3.1.2-3
higher level findings, 8.2-67; 8.3.2.1-5
and higher level findings--ease and cost of construction (Issue 4.1), 8.3.5.7-1, -3--4, -6, -8--11, -13--14
and higher level findings--preclosure radiological safety (Issue 2.5), 8.3.5.6-1, -3, -7--9, -11--12
and issues, 8.1-3--4; 8.2-1, -2*
and offsite installations program, 8.3.1.13-1
and overburden, 8.3.1.14-24, -26, -27
and overview of guidelines, 8.3.5.18-3
and population density and distribution program, 8.3.1.10-1
and postclosure performance assessment, 8.3.5.8-1--2

10 CFR Part 960 (continued)
and preclosure design and technical feasibility (Issue 4.4), 8.3.2.5-1, -4
and public radiological exposure, 8.3.5.3-1, -4
and retrievability compliance, 8.3.5.2-9, -46
and suitability assessment, 8.2-67**
and surface characteristics program, 8.3.1.14-15
and waste package, 8.3.4-1
and waste retrievability (Issue 2.4), 8.3.5.2-1, -2

10 CFR Part 960, Appendix III
and findings for qualifying and disqualifying conditions, 8.3.5.18-1, -2*

10 CFR 960.3-1-5
and higher level findings--postclosure (Issue 1.9(a)), 8.3.5.18-1
and higher level findings--100,000-year releases (Issue 1.9(b)), 8.3.5.18-24

10 CFR 960.4-1
and geochemical setting, 8.3.5.18-11

10 CFR 960.4-1(a)
and system guideline (postclosure) qualifying condition, 8.3.5.18-8--9

10 CFR 960.4-2-1
and higher level findings--postclosure (Issue 1.9), 8.3.1.5-1

10 CFR 960.4-2-1(a)
and geohydrology qualifying condition, 8.3.5.18-8, 10*

10 CFR 960.4-2-1(d)
and geohydrology disqualifying condition, 8.3.5.18-9

10 CFR 960.4-2-2(a)
and geochemistry qualifying condition, 8.3.5.18-9, -11

10 CFR 960.4-2-3(a)
and rock characteristics qualifying condition, 8.3.5.18-11--12

10 CFR 960.4-2-4
and higher level findings--postclosure (Issue 1.9), 8.3.1.5-1

10 CFR 960.4-2-4(a)
and climatic changes qualifying condition, 8.3.5.18-14--15

10 CFR 960.4-2-5(a)
and erosion qualifying condition, 8.3.5.18-15--16

10 CFR 960.4-2-5(d)
 and erosion disqualifying condition,
 8.3.5.18-16

10 CFR 960.4-2-6(a)
 and dissolution qualifying condition,
 8.3.5.18-16

10 CFR 960.4-2-6(d)
 and dissolution disqualifying condition,
 8.3.5.18-18

10 CFR 960.4-2-7
 and postclosure tectonics, 8.3.1.8-24

10 CFR 960.4-2-7(a)
 and tectonics (postclosure) qualifying
 condition, 8.3.5.18-17

10 CFR 960.4-2-7(d)
 and tectonics (postclosure) disqualifying
 condition, 8.3.5.18-18

10 CFR 960.4-2-8-1(a)
 and natural resources qualifying
 condition, 8.3.5.18-20

10 CFR 960.4-2-8-1(d)
 and natural resources disqualifying
 condition, 8.3.5.18-20

10 CFR 960.4-2-8-2(a)
 and site ownership and control qualifying
 condition, 8.3.5.18-21

10 CFR 960.5-1
 and waste package production technologies
 (Issue 4.3), 8.3.4.4-1

30 CFR Part 57
 and worker radiological safety--normal
 conditions (Issue 2.2), 8.3.5.4-4, -8

33 CFR 60.135(b)(1)--(4)
 waste package design criteria,
 8.3.4.3-5, -7

33 CFR 60.135(c)(1)--(3)
 high-level waste form design criteria,
 8.3.4.3-8

40 CFR Part 191, 8.2-1, -12**
 controlled area definition, 8.3.5.12-1
 and geohydrology program, 8.3.1.2-1--2
 and ground-water protection (Issue 1.3),
 8.3.5.15-1, -2, -4*, -10
 and higher level findings--ease and cost
 of construction (Issue 4.1), 8.3.5.7-3
 and higher level findings--preclosure
 radiological safety (Issue 2.5),
 8.3.5.6-7--8, -11
 and human interference program,
 8.3.1.9-2
 and individual protection requirements,
 8.3.5.14-1

40 CFR Part 191 (continued)
 and issues, 8.1-3
 and marker system, 8.3.1.9-15
 and population density and distribution
 program, 8.3.1.10-1
 and postclosure performance assessment,
 8.3.5.8-1-2
 and preclosure safety assessment,
 8.3.5.1-1
 and public radiological exposure,
 8.3.5.3-1, -3--5, -9, -19, -20
 significant source of ground water
 definition, 8.3.5.14-1
 and total system performance (Issue 1.1),
 8.3.5.13-1--3
 and waste package, 8.3.4-1
 and worker radiological safety, 8.3.5.4-1

40 CFR Part 191 Subpart B
 abnormal conditions for retrieval,
 8.3.5.2-29*--30*

40 CFR 191.13
 and releases to accessible environment,
 8.3.5.18-8
 and total system performance (Issue 1.1),
 8.3.1.5-1

40 CFR 191.15
 and individual doses in accessible
 environment, 8.3.5.18-8

40 CFR 191.16
 and ground-water protection (Issue 1.3),
 8.3.5.18-7--8

ACRONYMS

ACD	advanced conceptual design
ACM	alternative conceptual models
AEC	U.S. Atomic Energy Commission
ALARA	as low as reasonably achievable
ANSI	American National Standards Institute
ASTM	American Society of Testing Materials
BLM	Bureau of Land Management
CCDF	complementary cumulative distribution function
CCM	Community Climate Model
CD	conceptual design
CDF	cumulative distribution function
CDR	conceptual design report
CIT	computed impedance tomography
CLAMS	common Los Alamos mathematical software
COCORP	Consortium For Continental Reflection Profiling
CODATA	Committee on Data for Science and Technology
CPDB	conceptual perimeter drift boundary
CSIR	South African Council For Scientific and Industrial Research
DAF	U.S. Department of the Air Force
DBA	design basis accidents
DBR	demonstration breakout room
DOC	U.S. Department of Commerce
DOE	U.S. Department of Energy
DOI	U.S. Department of the Interior
DOT	U.S. Department of Transportation
DPBM	development prototype boring machine
DRI	Desert Research Institute
EBS	engineered barrier system
EPA	U.S. Environmental Protection Agency
EPPM	expected partial performance measure
ERCP	Environmental Regulatory Compliance Plan
ES	exploratory shaft
ESF	exploratory shaft facility
FLMPA	Federal Land Management Policy Act
FPCD	final procurement and construction design
GROA	geologic repository operations area
GWTT	ground-water travel time
IDAS	Integrated Data Acquisition System
IGIS	Interactive Graphic Information System
IGSCC	intergranular stress corrosion cracking
INAA	instrumental neutron activation analysis
ISFSI	independent spent fuel storage installation
LA	license application
LAD	license application design
MGDS	Mined Geologic Disposal System
MPBH	multipurpose boreholes
MPBX	multiple-point borehole extensometers
MPZ	modified permeability zone
MSHA	Mine Safety and Health Administration
NAFB	Nellis Air Force Base
NCAR	National Center for Atmospheric Research
NEA	Nuclear Energy Agency

NGI	Norwegian Geotechnical Institute
NRC	U.S. Nuclear Regulatory Commission
NTS	Nevada Test Site
NWPA	Nuclear Waste Policy Act of 1982
NWPAA	Nuclear Waste Policy Amendment Act of 1987
NWS	U.S. National Weather Service
OCRWM	Office of Civilian Radioactive Waste Management (DOE)
OGR	Office of Geologic Repositories (DOE)
PMF	probable maximum flood
PRAM	preclosure risk assessment methodology
QA	quality assurance
RIB	reference information base
RLCC	repository life cycle cost
SAIC/T&MSS	Science Applications International Corporation/Technical and Management Support Services
SCC	stress corrosion cracking
SCP	site characterization plan
SGB	southern Great Basin
TGSCC	transgranular stress corrosion cracking
TOSPAC	total system performance assessment code
TSLCC	total system life cycle costs
UDBR	Upper Demonstration Breakout Room
UNE	underground nuclear explosion
UZ	unsaturated zone
XRD	x-ray technique of powder diffraction

The following number is for OCRWM Records Management purposes only and should not be used when ordering this publication.

Accession Number: HQO.881201.0002

