BẤT ĐẳNG THỰC De Chuyên đề 6:

A. PHƯƠNG PHÁP GIẢI

I. Một số ghi nhớ:

- $a^2 \ge 0$, $(a \pm b)^2 \ge 4ab$; $\forall a, b$ $a^2 \pm ab + b^2 > 0$; $\forall a, b$ $|a| \ge \pm a$; $\forall a$ $|a + b| \le |a| + |b|$; $\forall a, b$ $|a b| \ge |a| |b|$; $\forall a, b$
- $-1 \le \sin x \le 1; -1 \le \cos x \le 1$

II. Bất đẳng thức Cauchy

Cho hai số a, b không âm

- 1. Ta có: $a + b \ge 2\sqrt{a.b}$ dấu "=" xảy ra khi a = b
- 2. Nếu a + b = const thì tích a.b lớn nhất khi a = b
- 3. Nếu a.b = const thì tổng a + b nhỏ nhất khi <math>a = b

B. ĐỀ THI

Bài 1: ĐẠI HỌC KHỐI A NĂM 2011

Cho x, y, z là ba số thực thuộc đoạn [1; 4] và $x \ge y$, $x \ge z$.

Tìm giá trị nhỏ nhất của biểu thức $P = \frac{x}{2x + 3y} + \frac{y}{y + z} + \frac{z}{z + x}$.

Áp dụng bất đẳng thức $\frac{1}{1+a} + \frac{1}{1+b} \ge \frac{2}{1+\sqrt{ab}}$ với a, b dương và $ab \ge 1$.

Ta có:
$$P = \frac{x}{2x + 3y} + \frac{y}{y + z} + \frac{z}{z + x} = \frac{1}{2 + 3\frac{y}{x}} + \frac{1}{1 + \frac{z}{y}} + \frac{1}{1 + \frac{x}{z}}$$

$$\ge \frac{1}{2 + 3\frac{y}{x}} + \frac{2}{1 + \sqrt{\frac{z}{x}}} = \frac{1}{2 + 3\frac{y}{x}} + \frac{2}{1 + \sqrt{\frac{x}{y}}}$$

Dấu "=" xảy ra khi và chỉ khi
$$\frac{z}{y} = \frac{x}{z}$$
 hoặc $\frac{x}{y} = 1$.

Đặt
$$t = \sqrt{\frac{x}{y}}$$
. Với x, y thuộc đoạn [1; 4] và $x \ge y$ thì $t \in [1; 2]$.

Khi đó:
$$P \ge \frac{1}{2+3\frac{1}{t^2}} + \frac{2}{1+t} = \frac{t^2}{2t^2+3} + \frac{2}{1+t}$$

Xét hàm số
$$f(t) = \frac{t^2}{2t^2 + 3} + \frac{2}{1+t} \text{ trên } [1; 2]$$
.

Ta có: f'(t) =
$$\frac{-2[4t^3(t-1) + 3(2t^2 - t + 3)]}{(2t^2 + 3)^2(t+1)^2} < 0, \ \forall x \in [1; 2].$$

Suy ra hàm số f nghịch biến trên [1; 2]. Do đó: $f(t) \le f(2) = \frac{34}{33}$

Dấu "=" xảy ra khi và chỉ khi :
$$\begin{cases} \frac{z}{x} = \frac{x}{z} \text{ hoặc} = \frac{x}{y} = 1\\ t = \sqrt{\frac{x}{y}} = 2 \end{cases}$$
 (*).

Dễ thấy x = 4, y = 1, z = 2 thỏa (*).

Vậy giá trị nhỏ nhất của P bằng $\frac{34}{33}$ khi x = 4, y = 1, z = 2.

Cách 2:

Lấy đạo hàm theo biến z ta được:

P'(z) =
$$0 - \frac{y}{(y+z)^2} + \frac{x}{(z+x)^2} = \frac{(x-y)(z^2 - xy)}{(y+z)^2(z+x)^2}$$

• Nếu x = y thì
$$P = \frac{x}{2x + 3x} + \frac{x}{x + z} + \frac{z}{z + x} = \frac{6}{5}$$
.

• Nếu x > y thì P'(z) =
$$0 \Leftrightarrow z^2 - xy = 0 \Leftrightarrow z = \sqrt{xy}$$
.

$$\begin{array}{c|cccc}
z & & \sqrt{xy} \\
\hline
P'(z) & - & 0 & + \\
\hline
P & & & \\
\hline
P(\sqrt{xy}) & & & \\
\end{array}$$

$$V\hat{a}y P \ge P\left(\sqrt{xy}\right) = \frac{x}{2x + 3y} + \frac{y}{y + \sqrt{xy}} + \frac{\sqrt{xy}}{\sqrt{xy} + x} = \frac{x}{2x + 3y} + \frac{2\sqrt{y}}{\sqrt{y} + \sqrt{x}}$$

$$=\frac{\frac{x}{y}}{2\frac{x}{y}+3}+\frac{2}{1+\sqrt{\frac{x}{y}}}.$$

Đặt:
$$t = \sqrt{\frac{x}{y}}$$
, $(t \in (1; 2])$ thì $P \ge \frac{t^2}{2t^2 + 3} + \frac{2}{1+t}$

Đặt:
$$f(t) = \frac{t^2}{2t^2 + 3} + \frac{2}{1 + t}$$
. Tương tự như trên ta có minP = $\frac{34}{33}$.

Cách 3: Ta có:
$$P = \frac{x}{2x+3y} + \frac{y}{y+z} + \frac{z}{z+x} = \frac{1}{2+3\frac{y}{x}} + \frac{\frac{y}{x}}{\frac{y}{x} + \frac{z}{x}} + \frac{\frac{z}{x}}{\frac{z}{x}+1}$$

Đặt $a = \frac{y}{x}$ và $b = \frac{z}{x}$. Vì $x, y, z \in [1; 4]$ và $x \ge y, x \ge z$ nên $a, b \in \left[\frac{1}{4}; 1\right]$.

Khi đó:
$$P = \frac{1}{2+3a} + \frac{a}{a+b} + \frac{b}{b+1}$$
.

Lấy đạo hàm theo biến b ta được:

$$P'(b) = 0 - \frac{a}{(a+b)^2} + \frac{1}{(b+1)^2} = \frac{(1-a)(b^2-a)}{(a+b)^2(b+1)^2}.$$

• Nếu a = 1 thì
$$P = \frac{1}{2+3} + \frac{1}{1+b} + \frac{b}{b+1} = \frac{6}{5}$$
.

• Nếu a < 1 thì P'(b) =
$$0 \Leftrightarrow b^2 - a = 0 \Leftrightarrow b = \sqrt{a}$$
.

$$\begin{array}{c|cccc}
b & \frac{1}{4} & \sqrt{a} & 1 \\
\hline
P'(b) & - & 0 & + \\
\hline
P & & & \\
\hline
P(\sqrt{a}) & & & \\
\end{array}$$

$$V_{ay} P \ge P(\sqrt{a}) = \frac{1}{2+3a} + \frac{a}{a+\sqrt{a}} + \frac{\sqrt{a}}{\sqrt{a}+1}.$$

$$\text{D} \breve{a} t \colon t = \sqrt{a} \left(t \in \left[\frac{1}{2}; \ 1 \right] \right) \text{ thì } P \geq \frac{1}{2+3t^2} + \frac{t^2}{t^2+t} + \frac{t}{t+1} \, .$$

$$\text{D} \sharp t \text{: } f(t) = \frac{1}{2+3t^2} + \frac{t^2}{t^2+t} + \frac{t}{t+1} = \frac{1}{2+3t^2} + \frac{t}{t+1} + \frac{t}{t+1} = \frac{1}{2+3t^2} + \frac{2t}{t+1}.$$

Ta có: f'(t) =
$$-\frac{6t}{(2+3t^2)^2} + \frac{2}{(t+1)^2} \ge 0$$
, $\forall t \in \left[\frac{1}{2}; 1\right]$.

Suy ra:
$$f(t)$$
 đồng biến trên $\left[\frac{1}{2}; 1\right] \Rightarrow f(t) \ge f\left(\frac{1}{2}\right) = \frac{34}{33}$.

Dấu "=" xảy ra
$$\Leftrightarrow$$

$$\begin{cases} t = \frac{1}{2} \\ b = \sqrt{a} \end{cases} \Leftrightarrow \begin{cases} a = \frac{1}{4} \\ b = \frac{1}{2} \end{cases} \Leftrightarrow \begin{cases} \frac{y}{x} = \frac{1}{4} \\ \frac{z}{x} = \frac{1}{2} \end{cases}$$
 (*).

Dễ thấy x = 4, y = 1, z = 2 thỏa (*). Ta lại có:
$$\frac{34}{33} < \frac{6}{5}$$
 nên minP = $\frac{34}{33}$.

Cách 4:
$$P = \frac{1}{2+3\frac{y}{x}} + \frac{1}{1+\frac{z}{y}} + \frac{1}{1+\frac{x}{z}}$$

Đặt
$$a = \frac{z}{y}$$
, $b = \frac{x}{z}$. Ta có $a > 0$, $b > 0$; $ab = \frac{x}{y} \ge 1$.

P thành
$$\frac{1}{2 + \frac{3}{ab}} + \frac{1}{1+a} + \frac{1}{1+b}$$

Mà
$$\frac{1}{1+a} + \frac{1}{1+b} \ge \frac{2}{1+\sqrt{ab}}$$
 và khi a = b thì dấu "=" xảy ra.

Nên P =
$$\frac{ab}{2ab+3} + \frac{1}{1+a} + \frac{1}{1+b} \ge \frac{ab}{2ab+3} + \frac{2}{1+\sqrt{ab}}$$
.

Đặt
$$t = \sqrt{ab}$$
, vì $1 \le ab = \frac{x}{y} \le 4$ nên $1 \le t \le 2$

Suy ra P
$$\geq \frac{t^2}{2t^2+3} + \frac{2}{1+t} = \frac{t^2}{2t^2+3} - \frac{4}{11} + \frac{2}{1+t} - \frac{2}{3} + \frac{34}{33}$$

$$=\frac{3t^2-12}{11(2t^2+3)}+\frac{2(2-t)}{3(1+t)}+\frac{34}{33}$$

$$= (2-t) \left[\frac{-3(t+2)}{11(2t^2+3)} + \frac{2}{3(1+t)} \right] + \frac{34}{33}$$

$$=(2-t)\left[\frac{35t^2-27t+48}{33(2t^2+3)(1+t)}\right]+\frac{34}{33}=$$

$$= (2-t) \left\lceil \frac{8t^2 + 27(t-1) + 48}{33(2t^2 + 3)(1+t)} \right\rceil + \frac{34}{33} \ge \frac{34}{33}, \forall t \in [1,2]$$

Khi a = b và t = 2 thì P =
$$\frac{34}{33}$$
.

Do đó
$$P \ge \frac{34}{33}$$
 và $P = \frac{34}{33}$ khi $x = 4$, $y = 1$ và $z = 2$

Vậy ta có minP =
$$\frac{34}{33}$$
.

(Ghi chú: $35t^2 - 27t + 48$ là 1 tam thức bậc 2 có a > 0 và Δ < 0 nên luôn luôn dương)

Bài 2: ĐẠI HỌC KHỐI B NĂM 2011

Cho a, b là các số thực dương thỏa mãn $2(a^2 + b^2) + ab = (a + b)(ab + 2)$.

Tìm giá trị nhỏ nhất của biểu thức
$$P=4\left(\frac{a^3}{b^3}+\frac{b^3}{a^3}\right)-9\left(\frac{a^2}{b^2}+\frac{b^2}{a^2}\right)$$
 .

Giải

■ Đặt
$$t = \frac{a}{b} + \frac{b}{a}$$
 (t > 0) thì :

•
$$\frac{a^2}{b^2} + \frac{b^2}{a^2} = \left(\frac{a}{b} + \frac{b}{a}\right)^2 - 2\frac{a}{b} \cdot \frac{b}{a} = t^2 - 2$$

•
$$\frac{a^3}{b^3} + \frac{b^3}{a^3} = \left(\frac{a}{b} + \frac{b}{a}\right)^3 - 3\frac{a}{b} \cdot \frac{b}{a} \left(\frac{a}{b} + \frac{b}{a}\right) = t^3 - 3t$$

Suy ra:
$$P = 4(t^3 - 3t) - 9(t^2 - 2) = 4t^3 - 9t^2 - 12t + 18$$

■ Theo giả thiết ta có: $2(a^2 + b^2) + ab = (a + b)(ab + 2)$

$$\Leftrightarrow 2\left(\frac{a}{b} + \frac{b}{a}\right) + 1 = \left(\frac{1}{b} + \frac{1}{a}\right)(ab + 2) \quad \text{(Chia hai v\'e cho ab } \neq 0\text{)}$$

$$\Leftrightarrow 2\left(\frac{a}{b} + \frac{b}{a}\right) + 1 = (a + b) + 2\left(\frac{1}{a} + \frac{1}{b}\right) \tag{1}$$

Ta có:
$$(a+b)+2(\frac{1}{a}+\frac{1}{b}) \ge 2\sqrt{(a+b).2(\frac{1}{a}+\frac{1}{b})} = 2\sqrt{2(\frac{a}{b}+\frac{b}{a}+2)}$$
 (2)

Dấu "=" xảy ra khi và chỉ khi
$$a + b = 2\left(\frac{1}{a} + \frac{1}{b}\right)$$

Với
$$t = \frac{a}{b} + \frac{b}{a}$$
 ($t > 0$) và kết hợp với (1) và (2) ta được:

$$2t+1 \ge 2\sqrt{2(t+2)} \iff 4t^2+4t+1 \ge 4\left[2(t+2)\right]$$

$$\iff 4t^2-4t-15 \ge 0 \iff t \ge \frac{5}{2} \text{ (vi } t > 0).$$

•
$$X \text{\'et } P(t) = 4t^3 - 9t^2 - 12t + 18, \text{ v\'et } t \ge \frac{5}{2}.$$

Ta có: P'(t) =
$$12t^2 - 18t - 12 > 0$$
, $\forall t \ge \frac{5}{2}$.

Do đó: Hàm số P(t) đồng biến trên
$$\left[\frac{5}{2}; +\infty\right]$$

Suy ra:
$$P(t) \ge P\left(\frac{5}{2}\right) = -\frac{23}{4}$$
. Dấu "=" xảy ra khi và chỉ khi:

$$\begin{cases} a+b=2\left(\frac{1}{a}+\frac{1}{b}\right) \\ t=\frac{a}{b}+\frac{b}{a}=\frac{5}{2} \end{cases} \Leftrightarrow \begin{cases} a+b=2\left(\frac{a+b}{ab}\right) \\ \frac{a^2+b^2}{ab}=\frac{5}{2} \end{cases} \Leftrightarrow \begin{cases} ab=2 \\ a^2+b^2=5 \end{cases}$$

$$\Leftrightarrow \begin{cases} ab = 2 \\ (a+b)^2 - 2ab = 5 \end{cases} \Leftrightarrow \begin{cases} ab = 2 \\ a+b = 3 \end{cases} \Leftrightarrow \begin{cases} a = 1 \\ b = 2 \end{cases} \lor \begin{cases} a = 2 \\ b = 1 \end{cases}.$$

Vậy minP =
$$-\frac{23}{4}$$
 khi
$$\begin{cases} a=1\\b=2 \end{cases} \lor \begin{cases} a=2\\b=1 \end{cases}$$
.

Bài 3: ĐẠI HỌC KHỐI B NĂM 2010

Cho các số thực không âm a, b, c thỏa mãn: a+b+c=1. Tìm giá trị nhỏ nhất của biểu thức $M=3(a^2b^2+b^2c^2+c^2a^2)+3(ab+bc+ca)+2\sqrt{a^2+b^2+c^2}$.

Giải

Đặt
$$t = ab + bc + ca$$
, ta có: $a^2 + b^2 + c^2 \ge ab + bc + ca$
⇒ $1 = (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca) \ge 3(ab + bc + ca)$
⇒ $a^2 + b^2 + c^2 = 1 - 2t$ và $0 \le t \le \frac{1}{3}$
Theo B.C.S ta có: $t^2 = (ab + bc + ca)^2 \le 3(a^2b^2 + b^2c^2 + c^2a^2)$
⇒ $M \ge t^2 + 3t + 2\sqrt{1 - 2t} = f(t)$

$$f'(t) = 2t + 3 - \frac{2}{\sqrt{1 - 2t}}$$

$$f''(t) = 2 - \frac{2}{\sqrt{(1-2t)^3}} < 0, \ \forall t \in \left[0; \frac{1}{3}\right] \Rightarrow f'(t) \ là hàm giảm$$

$$f'(t) \ge f'(\frac{1}{3}) = \frac{11}{3} - 2\sqrt{3} > 0 \Rightarrow f \text{ tăng} \Rightarrow f(t) \ge f(0) = 2, \ \forall t \in \left[0; \ \frac{1}{3}\right]$$

 \Rightarrow M \geq 2, \forall a, b, c không âm thỏa a + b + c = 1

Khi a = b = 0 và c = 1 thì M = 2. Vậy min M = 2.

Bài 4: CAO ĐẮNG KHỐI A, B, D NĂM 2010

Cho hai số thực dương thay đổi x, y thỏa mãn điều kiện $3x + y \le 1$. Tìm giá trị nhỏ nhất của biểu thức $A = \frac{1}{x} + \frac{1}{\sqrt{xy}}$.

Giải

$$C\acute{a}ch \ 1: \ 1 \geq 3x + y = x + x + x + y \geq 4\sqrt[4]{x^3y} \ \Rightarrow \frac{1}{\sqrt[4]{x^3y}} \geq 4$$

$$A = \frac{1}{x} + \frac{1}{\sqrt{xy}} \ge \frac{2}{\sqrt{x\sqrt{xy}}} = \frac{2}{\sqrt[4]{x^3y}} \ge 8$$

Khi x = y = $\frac{1}{4}$ ta có A = 8. Vậy min A = 8.

Cách 2: Áp dụng:
$$\forall a, b > 0$$
: $\frac{1}{a} + \frac{1}{b} \ge \frac{4}{a+b}$

$$A = \frac{1}{x} + \frac{1}{\sqrt{xy}} \ge \frac{1}{x} + \frac{2}{x+y} = \frac{1}{x} + \frac{1}{\frac{x}{2} + \frac{y}{2}} \ge \frac{4}{x + \frac{x}{2} + \frac{y}{2}} = \frac{8}{3x+y} \ge 8$$

Khi x = y = $\frac{1}{4}$ ta có A = 8. Vậy min A = 8.

Bài 5: ĐAI HOC KHỐI A NĂM 2009

Chứng minh rằng với mọi số thực dương x, y, z thỏa mãn x(x + y + z) = 3yz, ta có $(x + y)^3 + (x + z)^3 + 3(x + y)(x + z)(y + z) \le 5(y + z)^3$.

Giải

$$x(x + y + z) = 3yz \iff 1 + \frac{y}{x} + \frac{z}{x} = 3\frac{y}{x}\frac{z}{x}$$

Đặt
$$u = \frac{y}{x} > 0, v = \frac{z}{x} > 0, t = u + v > 0$$
. Ta có:

$$1+t=3uv\leq 3\left(\frac{u+v}{2}\right)^2=3\frac{t^2}{4} \Leftrightarrow 3t^2-4t-4\geq 0 \Leftrightarrow \big(t-2\big)\big(3t+2\big)\geq 0 \Leftrightarrow t\geq 2$$

Chia hai vế cho x³ bất đẳng thức cần chứng minh đưa về

$$(1+u)^3 + (1+v)^3 + 3(1+u)(1+v)(u+v) \le 5(u+v)^3$$

Đúng do t ≥ 2.

Bài 6: ĐAI HỌC KHỐI B NĂM 2009

Cho các số thực x, y thay đổi và thỏa mãn $(x+y)^3+4xy\geq 2$. Tìm giá trị nhỏ nhất của biểu thức $A=3(x^4+y^4+x^2y^2)-2(x^2+y^2)+1$.

Giải

$$\begin{cases} (x+y)^3 + 4xy \ge 2 \\ (x+y)^2 - 4xy \ge 0 \end{cases} \Rightarrow (x+y)^3 + (x+y)^2 - 2 \ge 0 \Rightarrow x+y \ge 1$$

$$\Rightarrow x^2 + y^2 \ge \frac{(x+y)^2}{2} \ge \frac{1}{2} dau \text{ "=" xåy ra khi : } x = y = \frac{1}{2}$$

$$\text{Ta có: } x^2y^2 \le \frac{(x^2+y^2)^2}{4}$$

$$A = 3\left(x^4 + y^4 + x^2y^2\right) - 2(x^2 + y^2) + 1 = 3\left[(x^2 + y^2)^2 - x^2y^2\right] - 2(x^2 + y^2) + 1$$

$$\ge 3\left[(x^2 + y^2)^2 - \frac{(x^2 + y^2)^2}{4}\right] - 2(x^2 + y^2) + 1$$

$$= \frac{9}{4}(x^2 + y^2)^2 - 2(x^2 + y^2) + 1$$

$$\text{Dặt } = x^2 + y^2, \text{ dk } t \ge \frac{1}{2}$$

$$f(t) = \frac{9}{4}t^2 - 2t + 1 \Rightarrow f'(t) = \frac{9}{2}t - 2 > 0, \forall t \ge \frac{1}{2} \Rightarrow f(t) \ge f(\frac{1}{2}) = \frac{9}{16}$$

$$\text{Vậy: } A_{\text{min}} = \frac{9}{16} \text{ khi } x = y = \frac{1}{2}$$

Bài 7: ĐẠI HỌC KHỐI D NĂM 2008

Cho x, y là hai số thực không âm thay đổi. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức $P = \frac{(x-y)(1-xy)}{(1+x)^2(1+y)^2}$

Giải

Cách 1:

Ta có:
$$|p| = \left| \frac{(x-y)(1-xy)}{(1+x)^2(1+y)^2} \right| \le \frac{(x+y)(1+xy)}{\left[(1+x)+(1+xy)\right]^2} \le \frac{1}{4} \Leftrightarrow -\frac{1}{4} \le p \le \frac{1}{4}$$

• Khi x = 0, y = 1 thì p =
$$-\frac{1}{4}$$
 là GTNN

• Khi x = 1, y = 0 thì p =
$$\frac{1}{4}$$
 là GTLN

Cách 2:
$$p = \frac{x - x^2y - y + xy^2}{(1+x)^2(1+y)^2} = \frac{x(1+y^2) - y(1+x^2)}{(1+x)^2(1+y)^2}$$

= $\frac{x(1+2y+y^2) - y(1+2x+x^2)}{(1+x)^2(1+y)^2} = \frac{x}{(1+x)^2} - \frac{y}{(1+y)^2}$

Ta luôn có:
$$0 \le \frac{a}{(1+a)^2} \le \frac{1}{4}$$
; $\forall a \ge 0$

Nên
$$p_{max} = \frac{1}{4}$$
 khi $x = 1$, $y = 0$ và $p_{min} = -\frac{1}{4}$ khi $x = 0$, $y = 1$.

Bài 8: ĐẠI HỌC KHỐI A NĂM 2007

Cho x, y, z là các số thực dương thay đổi và thỏa mãn điều kiện xyz = 1.

Tìm giá trị nhỏ nhất của biểu thức:

$$P = \frac{x^{2}(y+z)}{y\sqrt{y} + 2z\sqrt{z}} + \frac{y^{2}(z+x)}{z\sqrt{z} + 2x\sqrt{x}} + \frac{z^{2}(x+y)}{x\sqrt{x} + 2y\sqrt{y}}$$

Giải

Ta có: $x^2(y+z) \ge 2x\sqrt{x}$. Tương tự $y^2(z+x) \ge 2y\sqrt{y}$, $z^2(x+y) \ge 2z\sqrt{z}$

$$\Rightarrow P \ge \frac{2x\sqrt{x}}{y\sqrt{y} + 2z\sqrt{z}} + \frac{2y\sqrt{y}}{z\sqrt{z} + 2x\sqrt{x}} + \frac{2z\sqrt{z}}{x\sqrt{x} + 2y\sqrt{y}}$$

Đặt
$$a = x\sqrt{x} + 2y\sqrt{y}$$
, $b = y\sqrt{y} + 2z\sqrt{z}$, $c = z\sqrt{z} + 2x\sqrt{x}$

Suy ra:
$$x\sqrt{x} = \frac{4c + a - 2b}{9}$$
, $y\sqrt{y} = \frac{4a + b - 2c}{9}$, $z\sqrt{z} = \frac{4b + c - 2a}{9}$

Do đó
$$P \ge \frac{2}{9} \left(\frac{4c + a - 2b}{b} + \frac{4a + b - 2c}{c} + \frac{4b + c - 2a}{a} \right)$$

= $\frac{2}{9} \left[4 \left(\frac{c}{b} + \frac{a}{c} + \frac{b}{a} \right) + \left(\frac{a}{b} + \frac{b}{c} + \frac{c}{a} \right) - 6 \right] \ge \frac{2}{9} (4.3 + 3 - 6) = 2$

Dấu "=" xảy ra \Leftrightarrow x = y = z = 1. Vậy giá trị nhỏ nhất của P là 2.

Bài 9: ĐẠI HỌC KHỐI B NĂM 2007

Cho x, y, z là ba số thực dương thay đổi. Tìm giá trị nhỏ nhất của biểu thức:

$$P = x \left(\frac{x}{2} + \frac{1}{yz}\right) + y \left(\frac{y}{2} + \frac{1}{zx}\right) + z \left(\frac{z}{2} + \frac{1}{xy}\right)$$

Giải

Ta có:
$$P = \frac{x^2}{2} + \frac{y^2}{2} + \frac{z^2}{2} + \frac{x^2 + y^2 + z^2}{xyz}$$

Do
$$x^2 + y^2 + z^2 = \frac{x^2 + y^2}{2} + \frac{y^2 + z^2}{2} + \frac{z^2 + x^2}{2} \ge xy + yz + zx$$

$$N \hat{e} n \quad P \ge \left(\frac{x^2}{2} + \frac{1}{x}\right) + \left(\frac{y^2}{2} + \frac{1}{y}\right) + \left(\frac{z^2}{2} + \frac{1}{z}\right)$$

Xét hàm số $f(t) = \frac{t^2}{2} + \frac{1}{t}$ với t > 0. Lập bảng biến thiên của f(t) ta suy ra

$$f(t) \ge \frac{3}{2}$$
, $\forall t > 0$. Suy ra: $P \ge \frac{9}{2}$. Dấu bằng xảy ra $\Leftrightarrow x = y = z = 1$

Vậy giá trị nhỏ nhất của P là $\frac{9}{2}$.

Bài 10: ĐẠI HỌC KHỐI A NĂM 2006

Cho hai số thực $x \neq 0$ và $y \neq 0$ thay đổi và thỏa mãn điều kiện:

$$(x + y)xy = x^2 + y^2 - xy.$$

Tìm giá trị lớn nhất của biểu thức $A = \frac{1}{x^3} + \frac{1}{y^3}$.

Giả

Từ giả thiết ta suy ra:
$$\frac{1}{x} + \frac{1}{y} = \frac{1}{x^2} + \frac{1}{y^2} - \frac{1}{xy}$$

Đặt
$$\frac{1}{x} = a$$
, $\frac{1}{y} = b$ ta có: $a + b = a^2 + b^2 - ab$ (1)

$$A = a^3 + b^3 = (a + b)(a^2 + b^2 - ab) = (a + b)^2$$
.

 $T\mathring{u}(1)$ suy ra: $a + b = (a + b)^2 - 3ab$.

Vì
$$ab \le \left(\frac{a+b}{2}\right)^2$$
 nên $a+b \ge (a+b)^2 - \frac{3}{4}(a+b)^2$

$$\Rightarrow$$
 $(a + b)^2 - 4(a + b) \le 0 \Rightarrow 0 \le a + b \le 4$. Suy ra: $A = (a + b)^2 \le 16$

Với
$$x = y = \frac{1}{2}$$
 thì $A = 16$. Vậy giá trị lớn nhất của A là 16.

Bài 11: ĐẠI HỌC KHỐI B NĂM 2006

Cho x,y là các số thực thay đổi. Tìm giá trị nhỏ nhất của biểu thức:

$$A = \sqrt{(x-1)^2 + y^2} + \sqrt{(x+1)^2 + y^2} + |y-2|$$

Giải

Trong mặt phẳng với hệ tọa độ Oxy xét M(x - 1; -y), N(x + 1; y).

Do OM + ON ≥ MN nên

$$\sqrt{(x-1)^2 + y^2} + \sqrt{(x+1)^2 + y^2} \ge \sqrt{4 + 4y^2} = 2\sqrt{1 + y^2}$$
Do đó: $A \ge 2\sqrt{1 + y^2} + |y - 2| = f(y)$.

• V ới $y \le 2 \Rightarrow f(y) = 2\sqrt{1 + y^2} + 2 - y$

$$\Rightarrow f'(y) = \frac{2y}{\sqrt{y^2 + 1}} - 1$$

$$f'(y) = 0 \Leftrightarrow 2y = \sqrt{1 + y^2} \Leftrightarrow \begin{cases} y \ge 0 \\ 4y^2 = 1 + y^2 \end{cases} \Leftrightarrow y = \frac{1}{\sqrt{3}}$$

Do đó ta có bảng biến thiên như hình bên:

• Với $y \ge 2 \Rightarrow f(y) \ge 2\sqrt{1+y^2} \ge 2\sqrt{5} > 2+\sqrt{3}$. Vậy $A \ge 2+\sqrt{3}$ với mọi số thực x, y. Khi x=0 và $y=\frac{1}{\sqrt{3}}$ thì $A=2+\sqrt{3}$ nên giá trị nhỏ nhất của A là $2+\sqrt{3}$.

Bài 12: ĐAI HỌC KHỐI A NĂM 2005

Cho x, y, z là các số dương thỏa mãn
$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 4$$
.

Chứng minh rằng:
$$\frac{1}{2x+y+z} + \frac{1}{x+2y+z} + \frac{1}{x+y+2z} \le 1$$
.

Giải

Với a, b > 0 ta có:
$$4ab \le (a+b)^2 \Leftrightarrow \frac{1}{a+b} \le \frac{a+b}{4ab} \Leftrightarrow \frac{1}{a+b} \le \frac{1}{4} \left(\frac{1}{a} + \frac{1}{b}\right)$$

Dấu "=" xảy ra khi và chỉ khi a = b.

Áp dụng kết quả trên ta có:

$$\frac{1}{2x+y+z} \le \frac{1}{4} \left(\frac{1}{2x} + \frac{1}{y+z} \right) \le \frac{1}{16} \left[\frac{1}{x} + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \right] \tag{1}$$

Tương tự:

$$\frac{1}{x+2y+z} \le \frac{1}{4} \left(\frac{1}{2y} + \frac{1}{x+z} \right) \le \frac{1}{16} \left[\frac{1}{y} + \frac{1}{y} + \frac{1}{x} + \frac{1}{z} \right]$$
 (2)

$$\frac{1}{x+y+2z} \le \frac{1}{4} \left(\frac{1}{2z} + \frac{1}{x+y} \right) \le \frac{1}{16} \left[\frac{1}{z} + \frac{1}{z} + \frac{1}{x} + \frac{1}{y} \right]$$
(3)

$$V\hat{a}y: \frac{1}{2x+y+z} + \frac{1}{x+2y+z} + \frac{1}{x+y+2z} \le \frac{1}{4} \left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \right) = 1$$

Ta thấy trong các bất đẳng thức (1), (2), (3) thì dấu "=" xảy ra khi và chỉ khi:

$$x = y = z$$
. Vậy đẳng thức xảy ra khi và chỉ khi $x = y = z = \frac{3}{4}$.

Bài 13: ĐẠI HỌC KHỐI B NĂM 2005

Chứng minh rằng với mọi
$$x \in R$$
, ta có: $\left(\frac{12}{5}\right)^x + \left(\frac{15}{4}\right)^x + \left(\frac{20}{3}\right)^x \ge 3^x + 4^x + 5^x$.

Khi nào đẳng thức xảy ra?

Giải

Áp dung bất đẳng thức Cauchy cho hai số dương ta có:

$$\left(\frac{12}{5}\right)^{x} + \left(\frac{15}{4}\right)^{x} \ge 2\sqrt{\left(\frac{12}{5}\right)^{x} \cdot \left(\frac{15}{4}\right)^{x}} \implies \left(\frac{12}{5}\right)^{x} + \left(\frac{15}{4}\right)^{x} \ge 2.3^{x} \tag{1}$$

Tương tự ta có:
$$\left(\frac{12}{5}\right)^x + \left(\frac{20}{3}\right)^x \ge 2.4^x$$
 (2)

$$\left(\frac{15}{4}\right)^{x} + \left(\frac{20}{3}\right)^{x} \ge 2.5^{x} \tag{3}$$

Cộng các bất đẳng thức (1), (2), (3), chia hai vế của bất đẳng thức nhận được cho 2, ta có điều phải chứng minh.

Đẳng thức xảy ra \Leftrightarrow (1), (2), (3) là các đẳng thức \Leftrightarrow x = 0.

Bài 14: ĐẠI HỌC KHỐI D NĂM 2005

Cho các số dương x, y, z thỏa mãn xyz = 1. Chứng minh rằng:

$$\frac{\sqrt{1+x^3+y^3}}{xy} + \frac{\sqrt{1+y^3+z^3}}{yz} + \frac{\sqrt{1+z^3+x^3}}{zx} \ge 3\sqrt{3}.$$

Khi nào đẳng thức xảy ra?

Giải

Áp dụng bất đẳng thức Côsi cho ba số dương ta có

$$1 + x^{3} + y^{3} \ge 3\sqrt[3]{1.x^{3}.y^{3}} = 3xy \Leftrightarrow \frac{\sqrt{1 + x^{3} + y^{3}}}{xy} \ge \frac{\sqrt{3}}{\sqrt{xy}}$$
Turong tự:
$$\frac{\sqrt{1 + y^{3} + z^{3}}}{yz} \ge \frac{\sqrt{3}}{\sqrt{yz}}; \quad \frac{\sqrt{1 + z^{3} + x^{3}}}{zx} \ge \frac{\sqrt{3}}{\sqrt{zx}}$$
Suy ra
$$VT \ge \frac{\sqrt{3}}{\sqrt{xy}} + \frac{\sqrt{3}}{\sqrt{yz}} + \frac{\sqrt{3}}{\sqrt{xy}} \ge 3.3\sqrt[3]{\frac{\sqrt{3}}{\sqrt{xy}}} \frac{\sqrt{3}}{\sqrt{yz}} \frac{\sqrt{3}}{\sqrt{xy}}$$

Hay
$$VT \ge \frac{\sqrt{3}}{\sqrt{xy}} + \frac{\sqrt{3}}{\sqrt{yz}} + \frac{\sqrt{3}}{\sqrt{zx}} \ge 3\sqrt{3}$$

Đẳng thức xảy ra khi x = y = z = 1.

Bài 15:

Cho x, y, z là ba số dương $x + y + z \le 1$.

$$\text{Chứng minh rằng: } \sqrt{x^2 + \frac{1}{x^2}} + \sqrt{y^2 + \frac{1}{y^2}} + \sqrt{z^2 + \frac{1}{z^2}} \geq \sqrt{82} \; .$$

Giả

Cách 1: Xem
$$\vec{u} = \left(\frac{1}{x} - x, \sqrt{2}\right); \ \vec{v} = \left(\frac{1}{y} - y, \sqrt{2}\right); \ \vec{w} = \left(\frac{1}{z} - z, \sqrt{2}\right)$$

Ta có $\sqrt{x^2 + \frac{1}{x^2}} + \sqrt{y^2 + \frac{1}{y^2}} + \sqrt{z^2 + \frac{1}{z^2}} \ge \sqrt{\left[\frac{1}{x} + \frac{1}{y} + \frac{1}{z} - (x + y + z)\right]^2 + 18}$

Mặt khác: $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} - x + y + z = \left(\frac{1}{x} + 9x\right) + \left(\frac{1}{y} + 9y\right) + \left(\frac{1}{z} + 9z\right) - 10(x + y + z)$

$$\ge 18 - 10 = 8 \text{ (do BDT Cauchy và } x + y + z \le 1)$$

Do đó: Vế trái
$$\geq \sqrt{8^2 + 18} = \sqrt{82}$$
. Dấu "=" xảy ra khi x = y = z = $\frac{1}{3}$ (đpcm).

Cách 2: Áp dụng BĐT Bunhia... ta có: 1 . x + 9 .
$$\frac{1}{x} \le \sqrt{1^2 + 9^2}$$
. $\sqrt{x^2 + \frac{1}{x^2}}$ (1)

Bất đẳng thức Cauchy
$$x + \frac{9}{x} = 9\left(\frac{1}{x} + 9x\right) - 80x \ge 9.6 - 80x$$
 (2)

$$T \mathring{\text{w}} (1) \ \text{và} (2) \Rightarrow \sqrt{x^2 + \frac{1}{x^2}} \ge \frac{1}{\sqrt{82}} (54 - 80x)$$

$$T \mathring{\text{wong tw}} \qquad \sqrt{y^2 + \frac{1}{y^2}} \ge \frac{1}{\sqrt{82}} (54 - 80y) \quad \text{và} \quad \sqrt{z^2 + \frac{1}{z^2}} \ge \frac{1}{\sqrt{82}} (54 - 80z)$$

$$\Rightarrow VT \ge \frac{1}{\sqrt{82}} (162 - 80(x + y + z)) \ge \sqrt{82}$$

Xảy ra dấu "=" khi x = y = z = $\frac{1}{3}$. (đpcm).

Bài 16:

Cho x, y, z là ba số dương và xyz = 1.

Chứng minh rằng:
$$\frac{x^2}{1+y} + \frac{y^2}{1+z} + \frac{z^2}{1+x} \ge \frac{3}{2}$$

Giải

Ta có:
$$\frac{x^2}{1+y} + \frac{1+y}{4} \ge 2\sqrt{\frac{x^2}{1+y} \cdot \frac{1+y}{4}} = x$$

$$\frac{y^2}{1+z} + \frac{1+z}{4} \ge 2\sqrt{\frac{y^2}{1+z} \cdot \frac{1+z}{4}} = y ; \quad \frac{z^2}{1+x} + \frac{1+x}{4} \ge 2\sqrt{\frac{z^2}{1+x} \cdot \frac{1+x}{4}} = z$$

Công vế theo vế ta được:

$$\frac{x^{2}}{1+y} + \frac{y^{2}}{1+z} + \frac{z^{2}}{1+x} + \frac{1+y}{4} + \frac{1+z}{4} + \frac{1+x}{4} \ge x + y + z$$

$$\Leftrightarrow \frac{x^{2}}{1+y} + \frac{y^{2}}{1+z} + \frac{z^{2}}{1+x} \ge \frac{3}{4}(x+y+z) - \frac{3}{4} \ge \frac{3}{4}.3\sqrt[3]{xyz} - \frac{3}{4} \ge \frac{3}{2} \text{ (dpcm)}$$