Name : Ayush Panchal Roll Number : P24DS013

Logistic Regression Analysis on Breast Cancer Dataset

This notebook performs a comprehensive analysis on the Breast Cancer dataset using Logistic Regression. The steps include:

- 1. Understanding the dataset with EDA
- 2. Data Preprocessing
- 3. Training the model
- 4. Evaluating the model
- 5. Hyperparameter tuning
- 6. Comparing the results with other models.

Let's dive in!

```
import pandas as pd
In [33]:
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         from sklearn.datasets import load breast cancer
         from sklearn.model selection import train test split, GridSearchCV
         from sklearn.linear model import LogisticRegression
         from sklearn.metrics import accuracy_score, confusion_matrix, classification_report, roc_curve, auc
         from sklearn.preprocessing import StandardScaler
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.neighbors import KNeighborsClassifier
         from sklearn.svm import SVC
In [34]: data = load breast cancer()
         df = pd.DataFrame(data.data, columns=data.feature names)
         df['target'] = data.target
```

In [35]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 31 columns):

#	Column		-Null Count	Dtype
0	mean radius		non-null	float64
1	mean texture	569	non-null	float64
2	mean perimeter	569	non-null	float64
3	mean area	569	non-null	float64
4	mean smoothness	569	non-null	float64
5	mean compactness	569	non-null	float64
6	mean concavity	569	non-null	float64
7	mean concave points	569	non-null	float64
8	mean symmetry	569	non-null	float64
9	mean fractal dimension	569	non-null	float64
10	radius error	569	non-null	float64
11	texture error	569	non-null	float64
12	perimeter error	569	non-null	float64
13	area error	569	non-null	float64
14	smoothness error	569	non-null	float64
15	compactness error	569	non-null	float64
16	concavity error	569	non-null	float64
17	concave points error	569	non-null	float64
18	symmetry error	569	non-null	float64
19	fractal dimension error	569	non-null	float64
20	worst radius	569	non-null	float64
21	worst texture	569	non-null	float64
22	worst perimeter	569	non-null	float64
23	worst area	569	non-null	float64
24	worst smoothness	569	non-null	float64
25	worst compactness	569	non-null	float64
26	worst concavity	569	non-null	float64
27	worst concave points	569	non-null	float64
28	worst symmetry	569	non-null	float64
29	worst fractal dimension	569	non-null	float64
30	target	569	non-null	int32
dtyn	$as \cdot float64(30) int32(1)$			

dtypes: float64(30), int32(1)

memory usage: 135.7 KB

```
In [36]: df.describe()
```

Out[36]:

•		mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension	•••	
	count	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000		56
	mean	14.127292	19.289649	91.969033	654.889104	0.096360	0.104341	0.088799	0.048919	0.181162	0.062798		2
	std	3.524049	4.301036	24.298981	351.914129	0.014064	0.052813	0.079720	0.038803	0.027414	0.007060		
	min	6.981000	9.710000	43.790000	143.500000	0.052630	0.019380	0.000000	0.000000	0.106000	0.049960		1
	25%	11.700000	16.170000	75.170000	420.300000	0.086370	0.064920	0.029560	0.020310	0.161900	0.057700		2
	50%	13.370000	18.840000	86.240000	551.100000	0.095870	0.092630	0.061540	0.033500	0.179200	0.061540		2
	75%	15.780000	21.800000	104.100000	782.700000	0.105300	0.130400	0.130700	0.074000	0.195700	0.066120		2
	max	28.110000	39.280000	188.500000	2501.000000	0.163400	0.345400	0.426800	0.201200	0.304000	0.097440		4

8 rows × 31 columns

```
In [37]: sns.pairplot(df, hue='target', vars=['mean radius', 'mean texture', 'mean smoothness', 'mean area'])
         plt.title("Pairplot of Key Features")
         plt.show()
```


In [38]: print(df.isnull().sum())

```
mean radius
                                   0
        mean texture
        mean perimeter
                                   0
                                   0
        mean area
        mean smoothness
        mean compactness
                                   0
        mean concavity
        mean concave points
                                   0
        mean symmetry
                                   0
        mean fractal dimension
                                   0
        radius error
                                   0
                                   0
        texture error
        perimeter error
                                   0
                                   0
        area error
        smoothness error
        compactness error
        concavity error
                                   0
        concave points error
        symmetry error
                                   0
        fractal dimension error
        worst radius
        worst texture
                                   0
        worst perimeter
                                   0
        worst area
        worst smoothness
        worst compactness
                                   0
        worst concavity
                                   0
        worst concave points
        worst symmetry
                                   0
        worst fractal dimension
                                   0
        target
                                   0
        dtype: int64
In [39]: X = df.drop(columns=['target'])
         y = df['target']
In [40]: scaler = StandardScaler()
         X_scaled = scaler.fit_transform(X)
```

```
In [41]: X train, X test, y train, y test = train test split(X scaled, y, test size=0.2, random state=42)
In [42]: logreg = LogisticRegression(max iter=1000, random state=42)
         logreg.fit(X train, y train)
Out[42]:
                         LogisticRegression
         LogisticRegression(max iter=1000, random state=42)
In [43]: y pred = logreg.predict(X test)
In [44]: accuracy = accuracy score(y test, y pred)
         conf matrix = confusion matrix(y test, y pred)
         class report = classification report(y test, y pred)
        print(f"Accuracy: {accuracy}")
In [45]:
         print("Confusion Matrix:")
         print(conf_matrix)
         print("Classification Report:")
         print(class report)
        Accuracy: 0.9736842105263158
        Confusion Matrix:
        [[41 2]
        [ 1 70]]
        Classification Report:
                      precision
                                   recall f1-score support
                   0
                           0.98
                                     0.95
                                               0.96
                                                           43
                           0.97
                                     0.99
                                               0.98
                                                           71
                                               0.97
                                                          114
            accuracy
                           0.97
           macro avg
                                     0.97
                                               0.97
                                                          114
        weighted avg
                           0.97
                                     0.97
                                               0.97
                                                          114
In [46]: sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues')
         plt.title("Confusion Matrix - Logistic Regression")
```

```
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.show()
```



```
In [47]: param_grid = {
    'C': [0.1, 1, 10, 100],
    'solver': ['liblinear', 'lbfgs'],
    'penalty': ['l2']
}

In [48]: grid_search = GridSearchCV(LogisticRegression(max_iter=1000, random_state=42), param_grid, cv=5, scoring='accuracy')
    grid_search.fit(X_train, y_train)
```

```
Out[48]:
                      GridSearchCV
          ▶ best estimator : LogisticRegression
                  ► LogisticRegression
In [49]: print("Best Parameters from Grid Search:", grid search.best params )
         print("Best Cross-Validation Score:", grid search.best score )
        Best Parameters from Grid Search: {'C': 0.1, 'penalty': '12', 'solver': 'liblinear'}
        Best Cross-Validation Score: 0.9780219780219781
In [50]: best logreg = grid search.best estimator
         best logreg.fit(X train, y train)
         y pred best = best logreg.predict(X test)
In [51]: accuracy best = accuracy score(y test, y pred best)
         conf matrix best = confusion matrix(y test, y pred best)
         class report best = classification report(y test, y pred best)
        print(f"Accuracy after Hyperparameter Tuning: {accuracy best}")
In [52]:
         print("Confusion Matrix:")
         print(conf matrix best)
         print("Classification Report:")
         print(class report best)
```

```
Accuracy after Hyperparameter Tuning: 0.9912280701754386
        Confusion Matrix:
        [[42 1]
        [ 0 71]]
        Classification Report:
                      precision
                                   recall f1-score support
                   0
                           1.00
                                     0.98
                                               0.99
                                                           43
                   1
                           0.99
                                     1.00
                                               0.99
                                                           71
                                               0.99
                                                          114
            accuracy
           macro avg
                           0.99
                                     0.99
                                               0.99
                                                          114
        weighted avg
                           0.99
                                               0.99
                                                          114
                                     0.99
In [53]: models = {
             "DecisionTree": DecisionTreeClassifier(random state=42),
             "KNN": KNeighborsClassifier(),
             "SVM": SVC(random state=42)
In [54]: for name, model in models.items():
             model.fit(X train, y train)
             y pred model = model.predict(X test)
             acc = accuracy_score(y_test, y_pred_model)
             print(f"{name} Model Accuracy: {acc}")
        DecisionTree Model Accuracy: 0.9473684210526315
        KNN Model Accuracy: 0.9473684210526315
        SVM Model Accuracy: 0.9736842105263158
In [55]: results df = pd.DataFrame({
             "Model": ["Logistic Regression", "Decision Tree", "KNN", "SVM"],
             "Accuracy": [accuracy best, accuracy score(y test, models["DecisionTree"].predict(X test)),
                          accuracy score(y test, models["KNN"].predict(X test)),
                          accuracy score(y test, models["SVM"].predict(X test))]
         results df.to csv("model comparison results.csv", index=False)
```