Отчёт по лабораторной работе №1. Установка и конфигурация операционной системы на виртуальную машину.

Предмет: информационная безопасность

Александр Сергеевич Баклашов

Содержание

1	Цель работы	4
2	Теоретическое введение	5
3	Выполнение лабораторной работы 3.1 Запуск VirtualBox	6 6 7
4	Домашнее задание	24
5	Вывод	27
6	Контрольные вопросы	28
7	Библиография	33

List of Figures

3.1	Запуск VirtualBox					7
3.2	Создание новой виртуальной машины					8
3.3	Оперативная память					9
3.4	Конфигурация жёсткого диска					10
3.5	Привод оптических дисков					11
3.6	Запуск виртуальной машины					12
3.7	English					13
3.8	Настройки ОС					14
3.9	Настройка окружения					15
3.10	KDUMP					16
3.11	Место установки ОС					17
	Сетевое соединение					18
3.13	Пароль для root					19
3.14	Администратор					20
	Перезапуск ВМ					21
	Образ диска дополнений гостевой ОС					22
3.17	Перезагрузка ВМ	•	•		•	23
4.1	Версия ядра Linux					24
4.2	Частота процессора					24
4.3	Модель процессора					24
4.4	Объем доступной оперативной памяти					25
4.5	Тип обнаруженного гипервизора					25
4.6	Тип файловой системы корневого раздела					25
4.7	Последовательность монтирования файловых систем					25
6.1	man ls					28
6.2	cd./Desktop					29
6.3	ls					29
6.4	sudo du -sh ./Desktop	•	•	•	•	29
6.5	touch Example / mkdir Example / rmdir Example	•	•	•	•	30
6.6	chmod 777 Example					30
6.7	history					31
6.8	mount					32
J.U	1110M11t	•	•	•	•	<i>5</i> 4

1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов. [1]

2 Теоретическое введение

Информационная безопасность – это защищенность информации и поддерживающей инфраструктуры от случайных или преднамеренных воздействий естественного или искусственного характера, чреватых нанесением ущерба владельцам или пользователям информации и поддерживающей инфраструктуры.

Rocky Linux - дистрибутив Linux, разработанный Rocky Enterprise Software Foundation. Предполагается, что это будет нисходящий, полный двоичносовместимый релиз с использованием исходного кода операционной системы Red Hat Enterprise Linux (RHEL). Целью проекта является создание поддерживаемой сообществом корпоративной операционной системы производственного уровня. Rocky Linux, наряду с Red Hat Enterprise Linux и SUSE Linux Enterprise, стала популярной для использования в корпоративных операционных системах. [2]

3 Выполнение лабораторной работы

3.1 Запуск VirtualBox

1. Запустим VirtualBox (рис. 3.1)

Figure 3.1: Запуск VirtualBox

3.2 Создание виртуальной машины

2. Создадим новую виртуальную машину. Укажем имя виртуальной машины (asbaklashov), тип операционной системы — Linux, RedHat (рис. 3.2)

Figure 3.2: Создание новой виртуальной машины

3. Укажем размер основной памяти виртуальной машины — 2048 Мб. (рис. 3.3)

Figure 3.3: Оперативная память

4. Зададим конфигурацию жёсткого диска— загрузочный, VDI (BirtualBox Disk Image), динамический виртуальный диск. Зададим размер диска— 50 ГБ и его расположение. (рис. 3.4)

Figure 3.4: Конфигурация жёсткого диска

5. Добавим новый привод оптических дисков и выберите образ операционной системы (рис. 3.5)

Figure 3.5: Привод оптических дисков

6. Запустим виртуальную машину (рис. 3.6)

Figure 3.6: Запуск виртуальной машины

7. Выберем English в качестве языка интерфейса (рис. 3.7)

Figure 3.7: English

8. Перейдём к настройкам установки операционной системы (рис. 3.8)

Figure 3.8: Настройки ОС

9. В разделе выбора программ укажем в качестве базового окружения Server with GUI, а в качестве дополнения — Development Tools (рис. 3.9)

Figure 3.9: Настройка окружения

10. Отключим КDUMP (рис. 3.10)

Figure 3.10: KDUMP

11. Место установки ОС оставим без изменения (рис. 3.11)

Figure 3.11: Место установки ОС

12. Включим сетевое соединение и в качестве имени узла укажите asbaklashov.localdomain (рис. 3.12)

Figure 3.12: Сетевое соединение

13. Установим пароль для root (рис. 3.13)

Figure 3.13: Пароль для root

14. Зададим пользователя с правами администратора (рис. 3.14)

Figure 3.14: Администратор

15. После завершения установки операционной системы корректно перезапустим виртуальную машину (рис. 3.15)

Figure 3.15: Перезапуск ВМ

16. Подключим образ диска дополнений гостевой ОС (рис. 3.16)

Figure 3.16: Образ диска дополнений гостевой ОС

17. После загрузки дополнений нажмём Enter и корректно перезагрузим виртуальную машину. (рис. 3.17)

Figure 3.17: Перезагрузка ВМ

4 Домашнее задание

Путём ввода команды "dmesg | grep -i"то, что ищем"" получим следующую информацию: 1. Версия ядра Linux (Linux version). (рис. 4.1)

```
[asbaklashov@asbaklashov ~]$ dmesg | grep -i "version"
[ 0.0000000] Linux version 5.14.0-70.13.1.e!9_0.x86_64 (mockbuild@dal1-prod-builder001.bld.equ
.rockylinux.org) (gcc (GCC) 11.2.1 20220127 (Red Hat 11.2.1-9), GNU ld version 2.35.2-17.el9) #1
SMP PREEMPT Wed May 25 21:01:57 UTC 2022
```

Figure 4.1: Версия ядра Linux

```
5.14.0-70.13.1.el9 0.x86 64
```

2. Частота процессора (Detected Mhz processor). (рис. 4.2)

```
[asbaklashov@asbaklashov ~]$ dmesg | grep -i "processor"
[ 0.000007] tsc: Detected 2904.008 MHz processor
```

Figure 4.2: Частота процессора

2904.008 MHz

3. Модель процессора (CPU0). (рис. 4.3)

```
[asbaklashov@asbaklashov ~]$ dmesg | grep -i "cpu0"
[ 0.152058] smpboot: CPU0: Intel(R) Core(TM) i5-9400 CPU @ 2.90GHz (family: 0x6, model: 0x9e,
stepping: 0xc)
```

Figure 4.3: Модель процессора

4. Объем доступной оперативной памяти (Memory available). (рис. 4.4)

```
asbaklashov@asbaklashov ~]$ dmesg | grep
0.001140] ACPI: Reserving FACP table
                                               at [mem 0x7fff00f0-0x7fff01e3]
   0.001142] ACPI: Reserving DSDT table
                                               at [mem 0x7fff0470-0x7fff2794]
   0.001142] ACPI: Reserving FACS table
                                               at [mem 0x7fff0200-0x7fff023f]
                                               at [mem 0x7fff0200-0x7fff023f]
   0.001143] ACPI: Reserving FACS table
   0.001144] ACPI: Reserving APIC table
                                               at [mem 0x7fff0240-0x7fff0293]
   0.001145] ACPI: Reserving SSDT table
                                               at [mem 0x7fff02a0-0x7fff046b]
   0.001643] Early
                          node ranges
                                                memory: [mem 0x0000000-0x00000fff
memory: [mem 0x00000000-0x00000ffff
                                                 nemory: [mem 0x00000000-0x000000fff]
   0.002579] PM: hibernation: Registered nosave
   0.002581] PM: hibernation: Registered nosave
   0.002582] PM: hibernation: Registered nosave
                                                        [mem 0x000a0000-0x000effff]
   0.002583] PM: hibernation: Registered nosave
                                                       [mem 0x000f0000-0x000fffff]
```

Figure 4.4: Объем доступной оперативной памяти

260860K

5. Тип обнаруженного гипервизора (Hypervisor detected). (рис. 4.5)

```
[asbaklashov@asbaklashov ~]$ dmesg | grep -i "hypervisor"
[    0.000000] Hypervisor detected: KVM
```

Figure 4.5: Тип обнаруженного гипервизора

KVM

6. Тип файловой системы корневого раздела. (рис. 4.6)

```
[asbaklashov@asbaklashov ~]$ dmesg | grep -i "file"
[     1.064513] systemd[1]: Reached target Initrd /usr File System.
[     3.069112] XFS (dm-0): Mounting V5 Filesystem
```

Figure 4.6: Тип файловой системы корневого раздела

XFS

7. Последовательность монтирования файловых систем. (рис. 4.7)

```
[asbaklashov@asbaklashov ~]$ dmesg | grep -i "mounting"
[    3.069112] XFS (dm-0): Mounting V5 Filesystem
[    4.039673] systemd[1]: Mounting Huge Pages File System...
[    4.041192] systemd[1]: Mounting POSIX Message Queue File System...
[    4.047432] systemd[1]: Mounting Kernel Debug File System...
[    4.052618] systemd[1]: Mounting Kernel Trace File System...
[    5.681465] XFS (sda1): Mounting V5 Filesystem
```

Figure 4.7: Последовательность монтирования файловых систем

XFS (dm-0), Huge Pages File System, POSIX Message Queue File System, Kernel Debug File System, Kernel Trace File System, XFS (sda1)

5 Вывод

В ходе данной лабораторной работы я приобрёл практические навыки установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

6 Контрольные вопросы

1. Какую информацию содержит учётная запись пользователя?

Учётная запись содержит данные о пользователе, необходимые для регистрации в системе и дальнейшей работы с ней.

2. Укажите команды терминала и приведите примеры: – для получения справки по команде;

Koмaндa man (man ls) (рис. 6.1)

```
∄
                          asbaklashov@asbaklashov:~ — man ls
                                                                    Q
                                                                         LS(1)
                                 User Commands
                                                                         LS(1)
NAME
       ls - list directory contents
SYNOPSIS
       ls [OPTION]... [FILE]...
DESCRIPTION
       List information about the FILEs (the current directory by default).
       Sort entries alphabetically if none of -cftuvSUX nor --sort is speci-
       fied.
       Mandatory arguments to long options are mandatory for short options
       too.
       -a, --all
             do not ignore entries starting with .
       -A, --almost-all
              do not list implied . and ..
Manual page ls(1) line 1 (press h for help or q to quit)
```

Figure 6.1: man ls

- для перемещения по файловой системе;

Koмaндa cd (cd ./Desktop) (рис. 6.2)

Figure 6.2: cd ./Desktop

– для просмотра содержимого каталога; ls (рис. 6.3)

Figure 6.3: ls

– для определения объёма каталога; sudo du -sh "путь к каталогу" (sudo du -sh ./Desktop) (рис. 6.4)

Figure 6.4: sudo du -sh ./Desktop

– для создания / удаления каталогов / файлов; touch "Имя_файла" / mkdir "Имя_каталога" / rmdir "Имя_каталога" / rm "Имя_файла" (touch Example / mkdir Example / rmdir Example / rm Example) (рис. 6.5)

```
asbaklashov@asbaklashov:~/Desktop

[asbaklashov@asbaklashov ~]$ cd ./Desktop

[asbaklashov@asbaklashov Desktop]$ mkdir Example

[asbaklashov@asbaklashov Desktop]$ cd Example/

[asbaklashov@asbaklashov Example]$ touch Example

[asbaklashov@asbaklashov Example]$ rm Example

[asbaklashov@asbaklashov Example]$ cd ..

[asbaklashov@asbaklashov Desktop]$ rmdir Example/

[asbaklashov@asbaklashov Desktop]$ sudo du -sh

[sudo] password for asbaklashov:

0 .

[asbaklashov@asbaklashov Desktop]$
```

Figure 6.5: touch Example / mkdir Example / rmdir Example / rm Example

– для задания определённых прав на файл / каталог; chmod (chmod 777 Example) (рис. 6.6)

Figure 6.6: chmod 777 Example

– для просмотра истории команд. (рис. 6.7) history

```
74 cd ./Desktop/
75 mkdir Example
76 ls -l
77 chmod 777 Example/
78 ls -l
79 ршыещкн
80 history
[asbaklashov@asbaklashov Desktop]$
```

Figure 6.7: history

3. Что такое файловая система? Приведите примеры с краткой характеристикой.

Файловая система — порядок, определяющий способ организации, хранения и именования данных на носителях информации в компьютерах, а также в других типах электронного оборудования. Файловая система определяет формат содержимого и способ физического хранения информации, которую принято группировать в виде файлов. Конкретная файловая система определяет размер имен файлов (и каталогов), максимальный возможный размер файла и раздела, набор атрибутов файла. Некоторые файловые системы предоставляют сервисные возможности, например, разграничение доступа или шифрование файлов. [3]

Примеры файловых систем:

- NTFS (new technology file system «файловая система новой технологии»)
 стандартная файловая система для семейства операционных систем
 Windows NT фирмы Microsoft.
- FAT32 (от англ. File Allocation Table «таблица размещения файлов») это файловая система, разработанная компанией Microsoft, разновидность FAT. FAT32 предпоследняя (перед FAT64, также известной как

exFAT) версия файловой системы FAT и улучшение предыдущей версии, известной как FAT16.

- XFS высокопроизводительная 64-битная журналируемая файловая система, созданная компанией Silicon Graphics для собственной операционной системы IRIX. Поддержка XFS была включена в основное ядро Linux версии 2.4 и 2.6, и, таким образом, она стала довольно универсальной для Linux-систем.
- ext4 (fourth extended file system, ext4fs) журналируемая файловая система, используемая преимущественно в операционных системах с ядром Linux, созданная на базе ext3 в 2006 году.
- 4. Как посмотреть, какие файловые системы подмонтированы в ОС?

С помощью команды mount (рис. 6.8)

Figure 6.8: mount

5. Как удалить зависший процесс?

Найти PID процесса с помощью команды pidof "Имя процесса", а затем для его удаления прописать команду kill "PID".

7 Библиография

- 1. Лабораторная работа №1. Установка и конфигурация операционной системы на виртуальную машину. 14 с. [Электронный ресурс]. М. URL: Лабораторная работа №1 (Дата обращения: 06.09.2022).
- 2. Rocky Linux Documentation. [Электронный ресурс]. M. URL: Rocky Linux Documentation (Дата обращения: 06.09.2022).
- 3. Файловая система. [Электронный ресурс]. М. URL: Файловая система (Дата обращения: 06.09.2022).