多目標遺傳演算法優化 S&P 500 股票 預測模型的特徵選擇

研究生:郭東輝 財金碩一

1 Introduction

Data and Basic Characteristics

Method

4 Main Result

Conclusion

Introduction

摘要

- 本研究主要基於多目標遺傳演算法,用於選擇最佳的股票特徵指標並應用於美國股市預測(Han 等人(2019))
- 同時最佳化股票波動度和報酬率的股票特徵,並將這些特徵應用於預測股票價格的波動性和報酬率
- 將適應度函數設定為機器學習模型均方誤差(mse)(Zhang 等人 (2019))
- 並篩選同時 排名波動度前 30%低和報酬率前 30%高股票作為投資 組合依據,並每四個月重新預測 一次波動率與報酬率並重新建立投 資組合(Guo 等人 (2019))

Data and Basic Characteristics

Data

• 標準普爾 500 指數資料來源: yahoo finance 股價資料庫

• 股票數量: 250支股票(標準普爾 500隨機篩選)

• 資料期間: 2019/01/01 至 2023/04/30 資料

資料類型	區間	
多目標演算法訓練	2019/01/01 至 2019/10/30	
建立投資組合	2019/10/30 至 2023/04/30	

Data

• 每一支股票都計算 174 種股票特徵,建構250隻股票特徵資料庫

資料類型	資料類型	
價量資料	統計函數	
週期指標	波動性指標	
數值變換	交易量指標	
動量指標	重疊研究指標	
圖表形態識別	價格變換	

Method

多目標基因演算法

- 本研究主要透過多目標基因演算法,用於解決特徵選擇的最佳化問題。該問題的目標為從一組股票特徵中選擇最佳的子集
- 本研究假設族群大小為20,代表隨機生成20個以二進制為基礎的向量,每個基因由二項分布獨立同分布生成,總共生成長度
 174,由0和1組成的基因序列

舉例:(以長度10為例,實際長度為174)

單一股票特徵資料

適應度函數

• 本研究將個體的適應度函數分為兩個部分

適應度1

機器學習模型在所有股票,共 250 支股票,對波動度預測訓練集上的均方誤差(Mean Squared Error)

適應度2

機器學習模型在所有股票,共 250 支股票,對報酬率預測訓練集上的均方誤差(Mean Squared Error)

投資組合建構

透過多目標演算法找到最佳的股票特徵後,透過這些特徵對每支股票進行波動與報酬預測,並透過篩選的方式,建立低波動高收益投資組合

預測波動度

預測報酬率

篩選	<30%	30%~70%	>70%
<30%			
30%~70%			
>70%			

Main Result

投資組合績效-未調整

篩選	報酬率	最大回落程度	Calmar ratio
投資組合	6.6%	3.71%	1.78
投資組合	10.54%	2.03%	5.2
投資組合	5.99%	5.37%	1.12
投資組合	5.12%	5.0%	1.02
投資組合	7.49%	11.91%	0.63
投資組合	-1.08%	18.35%	-0.06
投資組合	9.85%	8.66%	1.14

投資組合績效-經市場報酬調整

篩選	調整後報酬率	最大回落程度	Calmar ratio
投資組合	0.07%	3.71%	1.78
投資組合	4%	2.03%	5.2
投資組合	-3.63%	5.37%	1.12
投資組合	7.74%	5.0%	1.02
投資組合	3.66%	11.91%	0.63
投資組合	7.78%	18.35%	-0.06
投資組合	0.88%	8.66%	1.14

Conclusion

本篇研究的主要實證結果

- 在大多數測試期間,投資組合在報酬率和風險方面表現優於標準普爾 500 指數
- 投資組合能夠有效地過濾低報酬和高風險的股票,就使得整體投資組合的報酬率更高,風險水平更低。
- 七個投資組合的走勢與標準普爾 500 指數之間存在高度相關性, 這種相關性的存在使得本研究的股票選擇方法能夠更好地應對市場 波動 風險

Thank you!