ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Алгоритмы и модели вычислений.

Домашняя работа 9.

Задача 1.

Докажите, что класс P/poly не изменится, если в качестве размера схемы вместо числа вершин брать число рёбер.

Решение.

Пусть в схеме n вершин, тогда количество ребер в ней $O(n^2)$, тогда "реберная" схемная сложность также будет полиномом от числа ребер.

Задача 2.

Докажите, что класс P/poly не зависит от того, какая входящая степень разрешена для вершин типов \vee и \wedge .

Решение.

Рассмотрим самые худший случай. Пусть в первом случае \vee и \wedge принимают на вход только два аргумента, а во втором - неограниченное число аргументов. Тогда в первом случае \vee и \wedge занимают $O(\log_2 n)$, тогда если глубина схемы есть полином p(n) от числа вершин, то число \vee и \wedge в этой схеме не превосходят p(n), следовательно, глубина схемы даже в таком случае будет $O(p(n) \cdot (\log_2 n))$ (оценили сверху добавочную глубину от \vee и \wedge), что не превосходит некоторого полинома q(n), таким образом класс не меняется, если ввести ограничение на степени входящих вершин.

Задача 3.

- а) Докажите, что любой унарный язык принадлежит классу DTIME(n)/1.
- b) Приведите пример неразрешимого языка, лежащего в DTIME(n)/1.

Решение.

- а) Возьмем произвольный унарный язык $L \subset \{1\}^*$, подсказкой для распознающей МТ будет 1, если слово x длины |x| принадлежит L, и ноль иначе. Машина Тьюринга получит на вход слово х и подсказку для слов длины |x|, тогда, если слово не лежит в L, то выведем 0, иначе значение подсказки. Тогда в силу произвольности L, утверждение доказано.
- b) Воспользуемся результатом, полученным в предыдущем пункте. Возьмем произволььный неразрешимый язык $L \subset \{0;1\}^*$. Построим по этому языку L унарный язык L' следующим образом: $L' = \{1^n | n_2 \in L\}$, тогда согласно промежуточному пункту $L' \in DTIME(n)/1$, но он, очевидно, неразрешим, тк иначе разрешим был бы L.

Задача 4.

Докажите, что $NC^d \subset AC^d \subset NC^{d+1}$.

Решение.

Первое включение очевидно. Докажем второе, аналогично задаче 2 оценим глубину схемы, если входная степень \vee и \wedge -k . Из тех же соображений, можно заменить \vee и \wedge в схеме двоичным деревом глубины $O(\log_2 k) = O(\log n)$. Таким образом такая замена на двоичные деревья увеличит глубину изначальной схемы в $O(\log n)$ раз, после чего, ее еглубина станет $O(\log^{d+1})$, тогда получаем, что $AC^d \subset NC^{d+1}$.

Задача 5.

Язык палиндромов лежит в AC^0 .

Решение.

Возьмем хог от элементов расположенных симметрично относительно середины слова, после чего возьмем \vee от результата, тогда глубина схемы очевидно не превосходит константы.