BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE PILANI (RAJASTHAN)

A Study into the Deviation in Actual Printer Usage from the Expected and Deriving the Ideal Coverage for a Device

(CSI ZG628T: Dissertation)

by **Stephen Mathew**

Dissertation work carried out at Xerox Technology Services India LLP, Kochi, Kerala November 2019

Submitted in partial fulfillment of M.Tech. Computing Systems and Infrastructure degree programme

Scope of Work

- Study the actual printer usage over the past year for Xerox's customer's devices and compare this with the calculated usage which was expected.
- Based on the comparison of actual and expected, come up with a data model to track the ideal coverage
- Implement this data model in a programming language to find the Ideal Coverage specific for a device based on its usage comparison

Approach

Formulae used

- Calculate the Calculated Used and Actual Usage for toners
- Comparing Calculated Used and Actual Usage
- $f(x) = x \cdot b_1 + b_0$
- x = Usage Ratio based on Counters since last Swapout
- y = 100 PMS
- Ideal Coverage (for a consumable) = $b_1 * Rated Coverage$

Approach

Data collection and preprocessing

- Data collection using SQL was challenging
- One customer's data used for analysis
- Data cleaning in Excel:
- cases where printers had meter reads and supply levels for one or more consumables, but either meter reads or supply levels for a specific date missing
 - Data from multiple reference points were considered
- Pandas DataFrames were used for some data preprocessing

Approach

Approaches to compare the actual and calculated usages

- Single model to all printers (simple linear, quadratic and cubic models)
- Single model for each consumable type for all printers (simple linear, quadratic)
- Single model for each consumable type for each printer (simple linear)

1. Single model to all printers

2. Single model for each consumable type for all printers

2. Single model for each consumable type for all printers

3. Single model for each consumable type for each printer

Summary

Regression Model	Categories	Negative Mean Square (Training Set)	Negative Mean Square (Test Set)	R^2 (Trainin g Set)	R^2 (Test Set)
Simple Linear	All printers data - all toners	252.848	259.666	0.539	0.508
Simple Linear	All printers data - Black Toner	226.093	237.786	0.587	0.519
Simple Linear	All printers data - Cyan Toner	168.136	173.31	0.729	0.681
Simple Linear	All printers data - Yellow Toner	227.165	244.384	0.55	0.407
Simple Linear	All printers data - Magenta Toner	128.1	143.65	0.747	0.699
Simple Linear	Single printer data - Black Toner	0.098	0.777	0.995	-0.11
Simple Linear	Single printer data - Cyan Toner	2.617	15.234	0.988	0.16
Simple Linear	Single printer data - Yellow Toner	2.763	6.987	0.984	0.577
Simple Linear	Single printer data - Magenta Toner	0.653	1.185	0.974	0.438
Polynomial (Quadratic)	All printers data - all toners	211.038	214.815	0.616	0.594
Polynomial (Quadratic)	All printers data - Black Toner	195.963	211.652	0.642	0.569
Polynomial (Quadratic)	All printers data - Cyan Toner	154.69	161.872	0.75	0.705
Polynomial (Quadratic)	All printers data - Yellow Toner	191.866	204.603	0.619	0.48
Polynomial (Quadratic)	All printers data - Magenta Toner	120.854	133.323	0.761	0.72
Polynomial (Cubic)	All printers data - all toners	207.67	210.464	0.622	0.602

Summary

Regression Model	Categories	Intercept B0	Coefficients B1	Ideal Asset Coverage
Simple Linear	All printers data - all toners	16.255	0.503	2.51
Simple Linear	All printers data - Black Toner	13.895	0.825	4.13
Simple Linear	All printers data - Cyan Toner	6.22	0.658	3.29
Simple Linear	All printers data - Yellow Toner	17.252	0.39	1.94
Simple Linear	All printers data - Magenta Toner	9.298	0.581	2.903
Simple Linear	Single printer data - Black Toner	-0.461	1.336	6.68
Simple Linear	Single printer data - Cyan Toner	-0.324	2.32	11.6
Simple Linear	Single printer data - Yellow Toner	3.228	2.606	13.03
Simple Linear	Single printer data - Magenta Toner	0.653	1.185	14.959

Conclusions and Recommendations

- Best to use a single simple linear regression model for each printer per consumable. This approach can help predict with a much higher accuracy the Actual usage values.
- Implementing this is easier since it already has a common data connector to all the sources of data needed to provide and calculated the daily Actual and Calculated usage levels for each printer
- It is not recommended though to use a single model for all consumables since the performance of this case is not good for all the models we tried

Thank you!!!