

Contrastive Learning

Pattern Analysis and Machine Intelligence

"Contrastive learning is a machine learning technique used to learn the general features of a dataset without labels by teaching the model which data points are similar or different"

Contrastive Learning

- Recognizing the similarities and differences between objects
- Leads to learning the high-level features

 $Tiu,\ 2021:\ https://towards datascience.com/understanding-contrastive-learning-d5b19fd96607$

Contrastive Learning

Bekuzarov, 2020: https://medium.com/@maksym.bekuzarov/losses-explained-contrastive-loss-f8f57fe32246

Contrastive Learning: 3 Challenges

1 How can we create similar or dissimilar samples?

2 How can we train a network to separate them?

How do we evaluate the success?

Contrastive Learning: 3 Challenges

1 How can we create similar or dissimilar samples?

How can we train a network to separate them?

3 How do we evaluate the success?

How can we create dissimilar or similar samples?

Augmentation

Positive / Negative Pairs

Triplets

Contrastive Learning: 3 Challenges

1 How can we create similar or dissimilar samples?

2 How can we train a network to separate them?

3 How do we evaluate the success?

Contrastive Learning

Data Data Augmentation Augmentation (T) **Original Image** Transformed Image **Encoding** Representation **Image**

Loss Minimization of Representations

Contrastive Loss: Cosine Embedding Loss

loss(x,y) =
$$\begin{cases} 1 - \cos(x_1, x_2), & \text{if } y = 1 \\ \max(0, \cos(x_1, x_2) - margin), & \text{if } y = -1 \end{cases}$$

Contrastive Loss: Triplet Margin Loss

$$L(a, p, n) = max\{d(a_ip_i) - d(a_in_i) + margin, 0\}$$

Where $d(x_iy_i) = ||x_i - y_i||_p$

Contrastive Learning: Margin

Bekuzarov, 2020: https://medium.com/@maksym.bekuzarov/losses-explained-contrastive-loss-f8f57fe32246

Contrastive learning: Siamese Network Architecture

Experimental Setup: Approach

Experimental Setup: Research Idea

The data set: MNIST

- 10 classes with each class containing
 6,000 images
- Classes are mutually exclusive
- 60,000 images for training, 10,000 for testing
- Images are sized 28x28px

The data set: CIFAR-10

- 10 classes with each class containing
 6,000 images
- Classes are mutually exclusive
- 50,000 for training, 10,000 for testing
- Image are sized 32x32px

Contrastive Learning: 3 Challenges

1 How can we create similar or dissimilar samples?

2 How can we train a network to separate them?

3 How do we evaluate the success?

Visualize embedding

Classifier on top of embedding

The Comparison: T-SNE

- Method to visualize high-dimensional data
- Creates intuition on data representation
- Calculates similarity measure between pairs of instances in each high and low dimensional space
- Tries to optimize similarity measures by using a cost function

The Comparison: Different Augmentations

1 None
Use as baseline for

comparing augmentations

 Normalize, conversion to tensor

2 Rotation

- Used in "Deep Neural Networks with Relativity Learning for Facial Expression Recognition"
- Pad, Rotate and Scale

3 SimCLR

- Used in network "SimCLR"
- Augmentation is stochastic
- Random: Crop + Resize,
 Color Distortion and
 Gaussian Blur

The Comparison: Different Augmentations

MNIST

The Comparison: Different Augmentations

CIFAR-10

Results: Classifier

Observations & Outlook

The augment does impact results, but not necessarily as expected (more is not always better!)

Comparing the data sets, the complexity of pictures seems to influence results

Triplet training led to clustering, whereas pairwise led to line-like structures

Outlook

- Triplet Mining
- Different loss functions
- Supervised contrastive learning

Lessons Learned

