Examenul de bacalaureat național 2020 Proba E. c)

Matematică *M_şt-nat* BAREM DE EVALUARE ŞI DE NOTARE

Test 17

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$a_5 = a_1 + 4r = 1 - 3\sqrt{3} + 4\sqrt{3} = 1 + \sqrt{3}$	2p
	Cum $1 < \sqrt{3} < 2 \Rightarrow 2 < 1 + \sqrt{3} < 3$, obținem că $\{a_5\} = a_5 - [a_5] = 1 + \sqrt{3} - 2 = \sqrt{3} - 1$	3 p
2.	$f(-2) = f(2) = \sqrt{5}$, $f(-1) = f(1) = \sqrt{2}$, $f(0) = 1$	3 p
	$f(-2) \cdot f(-1) \cdot f(0) \cdot f(1) \cdot f(2) = \sqrt{5}^2 \cdot \sqrt{2}^2 \cdot 1 = 10 \in \mathbb{N}$	2p
3.	$\log_3(5x-1) = \log_3(x+1)^2 \Rightarrow 5x-1 = x^2 + 2x + 1 \Rightarrow x^2 - 3x + 2 = 0$	3 p
	x=1 sau $x=2$, care convin	2 p
4.	$\{1,2,3\} \subset X \Rightarrow 1,2,3 \in X$	2 p
	$X \subset \{1,2,3,4,5\} \Rightarrow X = \{1,2,3\}, X = \{1,2,3,4\}, X = \{1,2,3,5\} \text{sau} X = \{1,2,3,4,5\}, \text{deci}$	2
	există 4 mulțimi X astfel încât $\{1,2,3\} \subset X \subset \{1,2,3,4,5\}$	3 p
5.	$2\vec{u} + 3\vec{v} = 2(a\vec{i} + 3\vec{j}) + 3(2\vec{i} + b\vec{j}) = (2a + 6)\vec{i} + (6 + 3b)\vec{j}$	2p
	$(2a+6)\vec{i} + (6+3b)\vec{j} = \vec{0}$, deci $a = -3$ și $b = -2$	3 p
6.	ΔABC este dreptunghic isoscel, cu ipotenuza $BC = 8\sqrt{2}$, deci $AB = AC = 8$	2p
	$r = \frac{S}{p} = \frac{32}{4(2+\sqrt{2})} = 4(2-\sqrt{2})$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det(A(a)) = \begin{vmatrix} 1 & a \\ a^2 & a^3 \end{vmatrix} = 1 \cdot a^3 - a \cdot a^2 =$	3 p
	$=a^3-a^3=0$, pentru orice număr real a	2p
b)	$A(2) + xI_2 = \begin{pmatrix} 1+x & 2 \\ 4 & 8+x \end{pmatrix} \Rightarrow \det(A(2) + xI_2) = x^2 + 9x, \det x^2 + 9x = 0$	3 p
	x = -9 sau $x = 0$	2p
c)	$\begin{vmatrix} A(a) \cdot A(b) = \begin{pmatrix} 1 & a \\ a^2 & a^3 \end{pmatrix} \begin{pmatrix} 1 & b \\ b^2 & b^3 \end{pmatrix} = \begin{pmatrix} 1 + ab & b + ab \\ a^2 + a^3b^2 & a^2b + a^3b^3 \end{pmatrix}, A(b) \cdot A(a) = \begin{pmatrix} 1 + ba & a + ba \\ b^2 + b^3a^2 & b^2a + b^3a^3 \end{pmatrix},$	3 p
	pentru orice numere reale a și b	
	$ \begin{pmatrix} 1+ab^2 & b+ab^3 \\ a^2+a^3b^2 & a^2b+a^3b^3 \end{pmatrix} = \begin{pmatrix} 1+ba^2 & a+ba^3 \\ b^2+b^3a^2 & b^2a+b^3a^3 \end{pmatrix}, \text{ de unde obţinem } a=b $	2 p
2.a)	$0 * 8 = \sqrt[3]{0^2 + 8^2} =$ $= \sqrt[3]{64} = 4$	3 p
	$=\sqrt[3]{64}=4$	2p

b)	Dacă e este elementul neutru al legii de compoziție "*", atunci $e*x=x$, pentru orice număr real x , deci $e*0=0 \Rightarrow \sqrt[3]{e^2}=0$ și obținem $e=0$	3p
	Cum $0*8=4\neq 8$, $e=0$ nu este element neutru al legii de compoziție "*", deci legea de compoziție "*" nu are element neutru	2p
c)	De exemplu, pentru $m = 2k^3$ și $n = 2k^3$, unde $k \in \mathbb{N}^* \Rightarrow m*n = \sqrt[3]{m^2 + n^2} = \sqrt[3]{\left(2k^3\right)^2 + \left(2k^3\right)^2} =$	3 p
	$=\sqrt[3]{8k^6} = 2k^2 \in \mathbb{N}^*$, deci există o infinitate de perechi (m,n) de numere naturale nenule pentru care numărul $m*n$ este natural nenul	2 p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = x' - \left(\sqrt{x+1}\right)' =$	2p
	$=1-\frac{1}{2\sqrt{x+1}} = \frac{2\sqrt{x+1}-1}{2\sqrt{x+1}}, \ x \in (-1, +\infty)$	3 p
b)	$f'(x) = 0 \Leftrightarrow 2\sqrt{x+1} = 1 \Leftrightarrow x+1 = \frac{1}{4} \Leftrightarrow x = -\frac{3}{4}$	2p
	Pentru $x \in \left[-1, -\frac{3}{4}\right]$, $f'(x) \le 0$, deci f este descrescătoare pe $\left[-1, -\frac{3}{4}\right]$ și, pentru $x \in \left[-\frac{3}{4}, +\infty\right)$	3 p
	$f'(x) \ge 0$, deci f este crescătoare pe $\left[-\frac{3}{4}, +\infty\right]$	
c)	$\ln x \ge 1$, pentru orice $x \in [e, +\infty)$ și f este crescătoare pe $[1, +\infty)$	2 p
	$f(\ln x) \ge f(1) \Rightarrow \ln x - \sqrt{\ln x + 1} \ge 1 - \sqrt{2} \Rightarrow \ln x \ge \sqrt{\ln x + 1} + 1 - \sqrt{2}$, pentru orice $x \in [e, +\infty)$	3 p
2.a)	$\int_{0}^{1} \frac{f(x)}{e^{x}} dx = \int_{0}^{1} \frac{e^{x} \left(x^{2} - 4x + 5\right)}{e^{x}} dx = \int_{0}^{1} \left(x^{2} - 4x + 5\right) dx = \left(\frac{x^{3}}{3} - \frac{4x^{2}}{2} + 5x\right) \Big _{0}^{1} =$	3 p
	$= \frac{1}{3} - 2 + 5 = \frac{10}{3}$	2 p
b)	$F'(x) = f(x) \text{ si } F''(x) = e^x (x^2 - 4x + 5) + e^x (2x - 4) = e^x (x^2 - 2x + 1) = e^x (x - 1)^2, x \in \mathbb{R}$	3 p
	$e^{x}(x-1)^{2} \ge 0$, pentru orice număr real x , deci, pentru orice primitivă F a lui f , obținem $F''(x) \ge 0$, pentru orice număr real x , deci F este convexă	2 p
c)	$F'(x) = e^x \left(ax^2 + bx + c\right) + e^x \left(2ax + b\right) = e^x \left(ax^2 + \left(b + 2a\right)x + c + b\right), \text{ pentru orice } x \in \mathbb{R}$	3 p
	$ax^2 + (b+2a)x + c + b = x^2 - 4x + 5$, pentru orice $x \in \mathbb{R}$, de unde obținem $a = 1$, $b = -6$ și $c = 11$	2 p