Serre duality

@unaoya

2018年2月22日

参考文献は Hartshorne

1 Sheaf

2 Cohomology

ここではコホモロジーの定義と、いくつかの性質を示す。

 $F:C \to D$ が適当な条件を満たす(左完全とか)アーベル圏の間の関手とする。これに対して以下の条件を満たす関手 $R^iF:C \to D$ を定める。

 $M \to I^{\bullet}$ が injective resolution であれば $R^iFM = H^i(F(I^{\bullet}))$ となる。

acyclic resolution による計算。A が acyclic とは $R^iFA=0$ となること。 $M\to A^{\bullet}$ を acyclic resolution とすると、 $R^iFM=H^i(F(A^{\bullet}))$ となる。

3 Sheaf cohomology

補題 1. 環付き空間 (X, O_X) 上の O_X -mod F が flasque なら Γ -acyclic である。

証明. まず O_X -mod I が injective なら flasque であることを示す。 $I(U) = Hom(O_X|_U, I|_U) = Hom(j_!(O_X|_U), I)$ が $V \subset U$ について関手的に成り立ち、 $(j_V)_!(O_X|_V) \to (j_U)_!(O_X|_U)$ が単射であり I が injective だからこれは全射。

F を injective I に埋め込み、その cokernel を G とする。F,I が flasque であることから G も flasque である。

0 o F o I o G o 0 の長完全列を考える。F が flasque なので $0 o H^0(X,F) o H^0(X,I) o H^0(X,G) o 0$ が完全であり、 $H^1(X,F) = 0$ となる。I についてのコホモロジーが消えることに注意すると 次数に関する帰納法から $H^i(X,F) = 0$ が言える。

4 Affine scheme Φ cohomology

この節では affine scheme の cohomology が消えることを証明する。Noether でない場合は?

定理 1. A を Noether 環、M を A-module とする。 $X=\operatorname{Spec} A$ と O_X -mod $\mathcal{F}=\tilde{M}$ について、i>0 に対し $H^i(X,\mathcal{F})=0$

 $0 \to M \to I^{\bullet}$ を injective resolution とする。これに対し $0 \to \tilde{M} \to \tilde{I}^{\bullet}$ が flasque resolution になることを示す。

補題 2. I が injective A-mod であるとき \tilde{I} は flasque O_X -mod

証明. まず

補題 3. A が noether で I が injective ならば $I \rightarrow I_f$ が全射である。

を示す。

証明. $x\in I_f$ は $y\in I, n>0$ を用いて $x=\frac{y}{f^n}$ とかける。 $y=f^nz$ とできればよい。

 $(f^n)\subset A$ について $(f^n)\to I$ を $af^n\mapsto \overset{\circ}{ay}$ と定めると、I が injective なので $A\to I$ が定まり、1 の像が x になる。

この写像が定義できるかはわからないが、A が Noether より f^r の annihilator b_r を考えると

 $Y = \overline{Supp(\tilde{I})}$ とする。Y についての Noetherian induction により証明する。

まずY が closed point 1 点からなる場合、 \tilde{I} は skyscraper sheaf なので flasque である。

 ${
m open}\; U\subset X\;$ に対して $\Gamma(X, ilde{I}) o \Gamma(U, ilde{I})\;$ が全射であることを証明する。 $D(f)\subset U\;$ となるような f をとる。このとき、上の補題から $\Gamma(X, ilde{I})=I o \Gamma(U, ilde{I}) o \Gamma(D(f), ilde{I})=I_f\;$ は全射。

Z=X-D(f) とし、 $\Gamma_Z(X,\tilde{I}) o \Gamma_Z(U,\tilde{I})$ を考える。 $J=\Gamma_a(I)$ にたいし $\Gamma_Z(U,\tilde{I})=\Gamma(U,\tilde{I})$ である。実際、 $\Gamma_a(I)=\Gamma(X,\mathcal{H}_Z^0(\mathcal{F}))$ であり、 $0 o \mathcal{H}_Z^0(\mathcal{F}) o \mathcal{F} o j_*(\mathcal{F}|_U)$ が完全だから $\mathcal{H}_Z^0(\mathcal{F})$ は q-coh なのでよい。

ここで J が injective であれば、Z について帰納法の仮定からこの射が全射である。J が injective であることは次のように示せる。イデアル $b\to A$ からの射 $\phi:b\to J$ が $A\to J$ に伸びればよい。A が Noether なのである n>0 があって $a^n\phi(b)=0$ である。よって Krull の定理からある n' があって $a^{n'}\cap b\subset a^nb$ となる。

I が injective だから $b/(b\cap a^n) o J o I$ は $A/a^{n'} o I$ に伸び、J の定義から $A/a^{n'} o J$ を定める。このことから前の全射が言える。

flasque なら Γ -acyclic なので、cohomology が計算できる。

5 Projective space の cohomology

S を graded ring とし M を graded S-mod とする。M(i) を M の次数シフト、つまり $M(i)_d=M_{i+d}$ で 定まる graded S-mod とする。

 $\mathbb{P}X$ 上の O_X - $\operatorname{mod} ilde{M}$ を $ilde{M}|_{D_+(f)}=(ilde{M_{(f)}})$ で定まる層とする。とくに $ilde{S(n)}=O_X(n)$ とかく。

 P^n の O(d) の cohomology $H^i(P^n,O(d))$ を計算する。次元 n と次数 d,i について帰納的に。完全列 $0 \to F(-1) \to F \to F|_H \to 0$ を使う。

Cech cohomology で計算する。

 $X=P^1$ について直接計算してみる。 $X=U_0\cup U_1, U_0=D_+(x_0), U_1=D_+(x_1)$ と affine open で被覆する。これに対して Cech 複体は $0\to\Gamma(U_0,\mathcal{F})\times\Gamma(U_1,\mathcal{F})\to\Gamma(U_0\cap U_1,\mathcal{F})\to 0$ である。これの cohomology を計算する。

6 Serre duality

adele での記述、相互法則、留数定理

7 Riemann-Roch