Université Paris - Dauphine

Projet Monte - Carlo

Shana ZIRAH Eva ZAGURY

Tuteur: Julien Stoehr

Table des matières

1	Exercice 1	2
	1.1 Méthode n°1 - Estimation de a	4
	1.2 Méthode n°2 - Estimateur ponctuel	9
2	Exercice 2	11
3	Exercice 3	14

Note : Toutes les valeurs affichées dans ce projet sont implémentées avec une graine de 111.

1 Exercice 1

Simulation suivant la densité f

1. Pour simuler suivant la densité f, on utilise l'algorithme du rejet. L'algorithme du rejet nous indique qu'à partir d'une densité g de \mathbb{R}^d pour laquelle on sait simuler des variables aléatoires et d'une constante $M \geq 1$ satisfaisant :

$$f(x) \leq Mg(x)$$
, pour tout x dans \mathbb{R}^d

il est possible de simuler une variable aléatoire $X = (X_1, ..., X_d)$ de densité f de \mathbb{R}^d .

Ici, f est définie pour $(x,y) \in \mathbb{R}^d$ par $f(x,y) = a\psi(x,y)$ avec a > 0. D'où,

$$f(x,y) \le Mg(x,y), \forall (x,y) \in \mathbb{R}^2 \Leftrightarrow a\psi(x,y) \le Mg(x,y) \forall x \in \mathbb{R}^2$$

Or, a > 0, donc on peut poser $m := \frac{M}{a}$ afin d'obtenir

$$\forall (x,y) \in \mathbb{R}^2, \psi(x,y) \le mg(x,y)$$

Le temps d'attente T défini tel que Y_T suit la loi de densité f est

$$T := \inf\{n \ge 1 : U_n \le \rho(Y_{1,n}, Y_{2,n})\}\$$

où $(Y_{1,n},Y_{2,n})$ sont des réalisation suivant la densité g

Par conséquent, pour obtenir une réalisation suivant f, il suffit de simuler $U \sim \mathcal{U}(0,1)$ et (Y_1, Y_2) un vecteur aléatoire de densité g jusqu'à ce que $Umg(Y_1, Y_2) \leq \psi(Y_1, Y_2)$ ou encore $U \leq \rho(Y_1, Y_2)$.

2. Le choix de m et g n'étant pas unique, nous avons implémenté l'algorithme à partir de différents couples (m, g) que nous énonçons ci-dessous (cette liste n'est pas exhaustive).

Option n°1 : Lois exponentielles translatées

$$\forall (x,y) \in \mathbb{R}^2, \psi(x,y) \le \left(\frac{10 + \sqrt{2}}{8} e^{\pi + 2}\right) \times \left(2e^{-2\left(x + \frac{\pi}{2}\right)} \mathbb{1}_{x \ge -\frac{\pi}{2}}\right) \times \left(2e^{-2(y+1)} \mathbb{1}_{y \ge -1}\right)$$

Alors, on peut prendre g_1 la densité d'un vecteur aléatoire de loi $\mathcal{TE}(2, -\frac{\pi}{2}) \otimes \mathcal{TE}(2, -1)$ et une constante $m_1 := \frac{10+\sqrt{2}}{8} e^{\pi+2} \simeq 243,96$.

Le ratio d'acceptation associé est :

$$\rho(x,y) = \frac{\psi(x,y)}{mg(x,y)} = \frac{\left[\left|\sin\left(\frac{2}{\pi}x^2 - \frac{\pi}{4}\right)\right| + 4\cos\left(x\right)^2 + y^4\right] \times e^{-2(|y|-y)} \mathbb{1}_{x \le \frac{\pi}{2}} \mathbb{1}_{y \le 1}}{\frac{10 + \sqrt{2}}{2}}$$

Option n°2: Loi exponentielle translatée et loi de Laplace

$$\forall (x,y) \in \mathbb{R}^2, \psi(x,y) \le \left(\frac{10 + \sqrt{2}}{4} \times e^{\pi}\right) \times \left(2e^{-2\left(x + \frac{\pi}{2}\right)} \mathbb{1}_{x \ge -\frac{\pi}{2}}\right) \times \left(e^{-2|y|}\right)$$

Alors, on peut prendre g_2 la densité d'un vecteur aléatoire de loi $\mathcal{TE}(2, -\frac{\pi}{2}) \otimes Laplace\left(0, \frac{1}{2}\right)$ et une constante $m2 := \left(\frac{10+\sqrt{2}}{4} \times e^{\pi}\right) \simeq 66,03$

Le ratio d'acceptation associé est :

$$\rho(x,y) = \frac{\psi(x,y)}{mg(x,y)} = \frac{\left[\left|\sin\left(\frac{2}{\pi}x^2 - \frac{\pi}{4}\right)\right| + 4\cos(x)^2 + y^4\right] \mathbb{1}_{x \le \frac{\pi}{2}} \mathbb{1}_{|y| \le 1}}{\frac{10 + \sqrt{2}}{2}}$$

Le générateur de la loi de Laplace n'étant pas autorisé dans cet exercice, il nous a fallu le coder. Pour cela, on utilise la méthode de la fonction inverse. La fonction de répartition de la loi de Laplace de paramètres 0 et 1/2 est définie sur $\mathbb R$

$$F(x) = 0.5[1 + sgn(x)(1 - \exp(-2|x|))]$$

Donc sa fonction réciproque définie sur [0, 1] est

$$F^{-1}(p) = \frac{1}{2} sgn(p-0,5) \ln(1-2|p-0,5|)$$

Si $U \sim \mathcal{U}([0,1])$ alors $F^{-1}(U) \sim Laplace\left(0,\frac{1}{2}\right)$ donc par translation, si $U \sim \mathcal{U}(\left[-\frac{1}{2},\frac{1}{2}\right])$ alors $F^{-1}(U) = -\frac{1}{2}sgn(U)\ln(1-2|U|) \sim Laplace\left(0,\frac{1}{2}\right)$

Option n°3 : Loi de Laplace et loi exponentielle tronquées

$$\forall (x,y) \in \mathbb{R}^2, \psi(x,y) \le \left(\frac{10 + \sqrt{2}}{2} \sinh(\pi)(1 - e^{-2})\right) \times \left(\frac{1}{\sinh(\pi)} e^{-2(x)} \mathbf{1}_{|x| \le \frac{\pi}{2}}\right) \times \left(\frac{1}{(1 - e^{-2})} e^{-2|y|} \mathbf{1}_{|y| \le 1}\right)$$

Alors, on peut prendre g_3 la densité d'un vecteur aléatoire de loi $\mathcal{TE}(2, -\frac{\pi}{2}) \otimes Laplace\left(0, \frac{1}{2}\right)$ de supports respectifs $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, et [-1,1] et une constante $m_3 := \left(\frac{10+\sqrt{2}}{2}\right) sinh(\pi)(1-e^{-2}) \simeq 56,99$. Le ratio d'acceptation associé est :

$$\rho(x,y) = \frac{\psi(x,y)}{mg(x,y)} = \frac{\left[\left|\sin\left(\frac{2}{\pi}x^2 - \frac{\pi}{4}\right)\right| + 4\cos(x)^2 + y^4\right]}{\frac{10 + \sqrt{2}}{2}}$$

Ces lois n'étant pas présentes de façon générique sur R, il nous a fallu le coder. Pour cela, on utilise la méthode de la fonction inverse comme précedemment. La fonction fonction réciproque de la loi de Laplace concentrée définie sur [0,1] est

$$F^{-1}(p) = 0.5[\log(2(1 - e^{-2})p + e^{-2})\mathbf{1}_{n < 0.5} + \mathbf{1}_{n > 0.5} * \log(1 + 2(1 - e^{-2})p - (1 - e^{-2}))]$$

Tandis que la fonction réciproque de la loi exponentielle concentrée définie sur [0, 1] est

$$F^{-1}(p) = \frac{1}{2}\ln(e^{\pi} - 2\sinh(\pi)p)$$

Option n°4: Loi uniforme et loi de Laplace

$$\forall (x,y) \in \mathbb{R}^2, \psi(x,y) \le \left(\frac{10+\sqrt{2}}{2}\right) \pi e^{\pi} \times \left(\frac{1}{\pi} \mathbf{1}_{x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]}\right) \times \left(e^{-2|y|}\right)$$

Alors, on peut prendre g_4 la densité d'un vecteur aléatoire de loi $\mathcal{U}\left(\left[-\frac{\pi}{2},\frac{\pi}{2}\right]\right)\otimes Laplace\left(0,\frac{1}{2}\right)$ et une constante $m_4:=\left(\frac{10+\sqrt{2}}{2}\right)\pi e^{\pi}\simeq 414,9$

Le ratio d'acceptation associé est :

$$\rho(x,y) = \frac{\psi(x,y)}{mg(x,y)} = \frac{\left[\left|\sin\left(\frac{2}{\pi}x^2 - \frac{\pi}{4}\right)\right| + 4\cos(x)^2 + y^4\right] \times e^{-2x} \times \mathbb{1}_{y \in [-1,1]}}{\left(\frac{10 + \sqrt{2}}{2}\right)e^{\pi}}$$

Nous aurions également pu ajouter une cinquième option ici où g est la densité d'un vecteur aléatoire de loi $\mathcal{U}\left(\left[-\frac{\pi}{2},\frac{\pi}{2}\right]\right)\otimes\mathcal{U}\left(\left[-1,1\right]\right)$ mais nous ne la considérerons pas ici en raison de la pertinence de cette solution (la constante considérée était trop importante). On peut comparer ces différentes méthodes d'acceptation-rejet basées sur les densités instrumentales g_1,\ldots,g_4 au travers de leur bornes respectives m_1,\ldots,m_4 . La méthode la plus optimale est celle pour laquelle la borne m est la plus petite, soit la 3ème option ici.

Afin de ne pas alourdir le code et le rapport, nous considererons $m=m_3$ et $g=g_3$ dans la suite.

3. Option n°1 : Lois exponentielles translatées

Cette première option compte $n_t = 169900$ simulations suivant g_1 et $n_l = 3$ passages dans la boucle while en moyenne.

Option n°2 : Loi exponentielle translatée et loi de Laplace

Cette option compte $n_t = 44208$ simulations suivant g_2 et $n_l = 4$ passages dans la boucle while en moyenne.

Option n°3 : Loi de Laplace et loi exponentielle tronquées

Cette option compte $n_t = 39829$ simulations suivant g_3 et $n_l = 3$ passages dans la boucle while en moyenne.

Option n°4 : Loi uniforme et loi de Laplace

Cette dernière option compte $n_t = 285743$ simulations suivant g_4 et $n_l = 2$ passages dans la boucle while en moyenne. On remarque ici que cette option nécessite 7 fois plus de simulations suivant g_4 que l'option n°3 ce qui correspond au rapport $\frac{m_4}{m_3}$. Cela confirme notre choix de l'option 3 comme étant l'option la plus optimale.

1.1 Méthode n°1 - Estimation de a

4. a) D'une part,

$$\forall (x,y) \in \mathbb{R}^2, f(x,y) = a\psi(x,y), \quad a > 0 \Rightarrow \int_{\mathbb{R}^2} f(x,y) \, \mathrm{d}x \mathrm{d}y = \int_{\mathbb{R}^2} a\psi(x,y) \, \mathrm{d}x \mathrm{d}y$$

Or, f est une densité de probabilité donc cela équivaut à

$$1 = \int_{\mathbb{R}^2} a\psi(x, y) \, \mathrm{d}x \mathrm{d}y$$

Par ailleurs, par définition, on a

$$\forall (x,y) \in \mathbb{R}^2, m \times g(x,y) \times \rho(x,y) = \psi(x,y)$$

Donc, par intégration,

$$\int_{\mathbb{R}^2} m \times g(x, y) \times \rho(x, y) \, dx dy = \int_{\mathbb{R}^2} \psi(x, y) \, dx dy \neq 0$$

Ainsi,

$$a = \frac{1}{\int_{\mathbb{R}^2} \psi(x, y) \, \mathrm{d}x \mathrm{d}y} = \frac{1}{\int_{\mathbb{R}^2} m \times g(x, y) \times \rho(x, y) \, \mathrm{d}x \mathrm{d}y} = \frac{1}{m \times \mathbb{E}_g \left[\rho(X, Y) \right]}$$

où (X,Y) est un vecteur aléatoire de densité g.

On peut donc estimer $\mathbb{E}_{q}[\rho(X,Y)]$ à l'aide de l'estimateur de Monte-Carlo classique :

$$\bar{\rho}_n = \frac{1}{n} \sum_{i=1}^n \rho(X_k, Y_k)$$

où les vecteurs aléatoires (X_k, Y_k) sont i.i.d et de densité g. Il est possible de montrer que l'estimateur de a,

$$\hat{b}_n := \frac{1}{m\bar{\rho}_n}$$

est biaisé. En effet, la fonction f(x) = 1/x est strictement convexe sur \mathbb{R}_+^* , donc en utilisant l'inégalité de Jensen,

$$\mathbb{E}_g\left[\hat{b}_n\right] = \frac{n}{m} \mathbb{E}_g\left[\frac{1}{\sum_{i=1}^n \rho(X_k, Y_k)}\right] > \frac{n}{m \mathbb{E}_g\left[\sum_{i=1}^n \rho(X_k, Y_k)\right]} = a$$

De plus, les vecteurs aléatoires (X_k, Y_k) étant i.i.d et de même loi g et sachant que $\rho(X_1, Y_1)$ est intégrable sous g (car bornée par 1), on a, par la loi forte des grands nombres,

$$\bar{\rho}_n \xrightarrow[n \to +\infty]{} \rho(X,Y)$$
 p.s

donc, par continuité de la fonction $g(x) = \frac{1}{mx} \operatorname{sur} \mathbb{R}_+^*$ on obtient

$$\hat{b}_n \xrightarrow[n \to +\infty]{} a$$
 p.s

L'estimateur \hat{b}_n est donc consistant.

Les variables aléatoires $\rho(X_k, Y_k)$ sont i.i.d et de carré intégrable (car elles sont bornées par 1) donc en utilisant le Théorème Central limite,

$$\sqrt{n}\left(\bar{\rho}_n - \mathbb{E}_g\left[\rho(X,Y)\right]\right) \xrightarrow[n \to +\infty]{loi} \mathcal{N}(0,\sigma^2)$$
 où $\sigma^2 = \mathbb{V}ar_g[\rho(X,Y)]$

D'autre part, la fonction $g(x) = \frac{1}{mx}$ est de classe C^1 sur \mathbb{R}_+^* de dérivée $g'(x) = -\frac{1}{mx^2}$ définie sur \mathbb{R}_+^* . En utilisant la méthode delta, on a donc

$$\sqrt{n}\left(\hat{b}_n - a\right) \xrightarrow[n \to +\infty]{loi} \mathcal{N}\left(0, \sigma^2(a^2m)^2\right)$$

On introduit un estimateur sans biais de σ^2 : $\hat{\sigma}_{n-1}^2 := \frac{1}{n-1} \sum_{i=1}^n (\rho(X_k, Y_k) - \hat{\rho}_n)^2$ Or, le théorème de continuité permet d'écrire :

$$\sqrt{\frac{\sigma^2 a^4}{\hat{\sigma}_{n-1}^2 \hat{b}_n^4}} \xrightarrow[n \to +\infty]{loi} 1$$

Le théorème de Slutsky permet alors de conclure

$$\frac{1}{\hat{b}_n^2 m} \sqrt{\frac{n}{\hat{\sigma}_{n-1}^2}} \left(\hat{b}_n - a \right) \xrightarrow[n \to +\infty]{loi} \mathcal{N}(0, 1)$$

Si on note $q_{1-\frac{\alpha}{2}}$ le quantile d'ordre $1-\frac{\alpha}{2}$ de la loi normale $\mathcal{N}(0,1)$ l'intervalle de confiance asymptotique de niveau $1-\alpha$ est

$$IC_{1-\alpha} = \left[\hat{b}_n - \left(\hat{b}_n^2 m \right) \sqrt{\frac{\hat{\sigma}_{n-1}^2}{n}} q_{1-\frac{\alpha}{2}}, \hat{b}_n + \left(\hat{b}_n^2 m \right) \sqrt{\frac{\hat{\sigma}_{n-1}^2}{n}} q_{1-\frac{\alpha}{2}} \right]$$

b) On trouve en pratique $\hat{b}_n = 0,07$ et un intervalle de confiance :

$$IC_{95\%} = [0.06869079, 0.06987027]$$

- c) Afin de ne pas avoir à simuler des variables aléatoires supplémentaires, on utilise la méthode du bootstrap. Cette méthode utilise un ré-échantillonage de nos données afin d'estimer ici le biais de notre estimateur \hat{b}_n . Le biais observé, est en pratique de l'ordre de 10^{-5} .
- 5. (a) La variable aléatoire T représente le temps d'attente avant le premier succès dans une suite d'épreuves de Bernouilli indépendantes. C'est donc une loi géométrique de paramètre $\frac{1}{M}$. On en déduit en particulier que $\mathbb{E}[T] = M = am$ ou encore $a = \frac{\mathbb{E}[T]}{m}$.

A partir de l'estimateur de Monte-Carlo classique de $\mathbb{E}[T],$ on définit un autre estimateur de a

$$\hat{a}_n := \frac{1}{m} \left(\frac{1}{n} \sum_{k=1}^n T_k \right) \text{ où } \forall k \in \{1, ..., n\}, \quad T_k \sim \mathcal{G}\left(\frac{1}{M} \right)$$

Les variables aléatoires $(T_n)_{n\in\mathbb{N}}$ représentent le temps d'attente avant le n^{me} succès. Notons alors, $\bar{T}_n := \frac{1}{n} \sum_{k=1}^n T_k$

Tout d'abord, on remarque que \hat{a}_n est sans biais. En effet,

$$\mathbb{E}\left[\hat{a}_n\right] = \mathbb{E}\left[\frac{1}{mn}\sum_{k=1}^n T_k\right] = \frac{1}{m}\mathbb{E}[T_1] = a$$

De plus, les variables aléatoires $(T_n)_{n\in\mathbb{N}}$ sont i.i.d et de carré intégrables donc par la Loi Forte des Grands Nombres,

$$\bar{T}_n \xrightarrow[n \to +\infty]{} a$$
 p.s

On en déduit par le Théorème Central Limite,

$$\sqrt{n}\left(\bar{T}_n - am\right) \xrightarrow[n \to +\infty]{loi} \mathcal{N}(0, am(am-1))$$

La méthode delta appliquée à la fonction dérivable $h(x) := \frac{x}{m}$ de dérivée non nulle $h'(x) = \frac{1}{m}$, donne

$$\sqrt{n} (\hat{a}_n - a) \xrightarrow[n \to +\infty]{loi} \mathcal{N} \left(0, a(am - 1)) \times \frac{1}{m} \right)$$

D'où, par continuité de $x \to \frac{1}{\sqrt{x(xm-1)}}$ sur]1, $+\infty$ [et par le théorème de Slutsky, on en déduit que

$$\sqrt{\frac{nm}{\hat{a}_n(\hat{a}_nm-1)}} \left(\hat{a}_n-a\right) \xrightarrow[n \to +\infty]{loi} \mathcal{N}(0,1)$$

En notant $q_{1-\frac{\alpha}{2}}$ le quantile d'ordre $1-\frac{\alpha}{2}$ de la loi normale $\mathcal{N}(0,1)$ l'intervalle de confiance asymptotique de niveau $1-\alpha$ est

$$IC_{1-\alpha} = \left[\hat{a}_n - \sqrt{\frac{\hat{a}_n(\hat{a}_n m - 1)}{nm}} q_{1-\frac{\alpha}{2}}, \hat{a}_n + \sqrt{\frac{\hat{a}_n(\hat{a}_n m - 1)}{nm}} q_{1-\frac{\alpha}{2}} \right]$$

(b) On trouve en pratique $\hat{a}_n = 0,07$ et un intervalle de confiance :

$$IC_{95\%} = [0.06869028, 0.07106066]$$

6. On s'intéresse au rapport des coûts pour lesquels \hat{b}_n et \hat{a}_n atteignent la même précision. Pour cela, il nous faut calculer la variance de ces estimateurs. Tout d'abord,

$$\mathbb{V}ar[\hat{a}_n] = \frac{1}{m^2 n} \mathbb{V}ar[T] \simeq 3.66 \times 10^{-7}$$

D'autre part, pour n assez grand (on considère $n \geq 30$), $\frac{1}{\hat{b}_n^2 m} \sqrt{\frac{n}{\hat{\sigma}_{n-1}^2}} \left(\hat{b}_n - a \right)$ se comporte comme une loi $\mathcal{N}(0,1)$ donc

$$\mathbb{V}ar\left[\frac{1}{\hat{b}_n^2 m} \sqrt{\frac{n}{\hat{\sigma}_{n-1}^2}} \left(\hat{b}_n - a\right)\right] = 1 \Leftrightarrow \mathbb{V}ar[\hat{b}_n] = \left(\hat{b}_n m\right)^2 \times \frac{\hat{\sigma}_{n-1}}{n} \simeq 9.05 \times 10^{-8}$$

Le rapport des variances des 2 estimateurs nous indique que l'estimateur \hat{b}_n est 25 fois plus efficace que l'estimateur \hat{a}_n en terme de variance. En estimant le rapport des coûts, on obtient que l'estimateur \hat{b}_n est environ 16 fois plus efficace que l'estimateur \hat{a}_n en terme d'efficacité relative. Par ailleurs, si $\epsilon = 0.01$ alors le nombre de tirages suivant f et g nécessaire pour obtenir une précision à ϵ près pour un intervalle de confiance de \hat{a}_n et \hat{b}_n à 95% est respectivement de $n_f := 424$ et $n_g := 1$.

7. (a) En effectuant des intégrations par parties successives, on remarque que

$$\int_{\mathbb{R}} \psi(x,y) \, \mathrm{d}y = \int_{\mathbb{R}} \left[\left| \sin \left(\frac{2}{\pi} x^2 - \frac{\pi}{4} \right) \right| + 4 \cos(x)^2 + y^4 \right] e^{-2(x+|y|)} \mathbb{1}_{|x| \le \frac{\pi}{2}} \mathbb{1}_{|y| \le 1} \, \mathrm{d}y$$

$$= \left[\left| \sin \left(\frac{2}{\pi} x^2 - \frac{\pi}{4} \right) \right| + 4 \cos(x)^2 \right] e^{-2x} \mathbb{1}_{|x| \le \frac{\pi}{2}} \left[\int_{\mathbb{R}} e^{-2|y|} \mathbb{1}_{|y| \le 1} \, \mathrm{d}y + \int_{\mathbb{R}} y^4 e^{-2|y|} \mathbb{1}_{|y| \le 1} \, \mathrm{d}y \right]$$

$$= \left[\left| \sin \left(\frac{2}{\pi} x^2 - \frac{\pi}{4} \right) \right| + 4 \cos(x)^2 \right] e^{-2x} \mathbb{1}_{|x| \le \frac{\pi}{2}} \left[2 \int_0^1 e^{-2y} \, \mathrm{d}y + 2 \int_0^1 y^4 e^{-2y} \, \mathrm{d}y \right]$$

$$= \left[\left| \sin \left(\frac{2}{\pi} x^2 - \frac{\pi}{4} \right) \right| + 4 \cos(x)^2 \right] e^{-2x} \mathbb{1}_{|x| \le \frac{\pi}{2}} \left[(1 - e^{-2}) + \left(\frac{3 - 21e^{-2}}{2} \right) \right]$$

On s'intéresse alors à l'estimateur $\hat{f}_{X,n}(x)$ de $f_X(x)$ défini ci-dessous à partir de \hat{a}_n défini en question 5 :

$$\forall x \in \mathbb{R} \quad \hat{f}_{X,n}(x) := \hat{a}_n \times \left(\left[\left| \sin \left(\frac{2}{\pi} x^2 - \frac{\pi}{4} \right) \right| + 4\cos(x)^2 \right] e^{-2x} \mathbb{1}_{|x| \le \frac{\pi}{2}} \left[(1 - e^{-2}) + \left(\frac{3 - 21e^{-2}}{2} \right) \right] \right)$$

Cet estimateur est bien consistant par consistance de \hat{a}_n .

(b) A partir de la densité marginale calculée dans la question précédente, on compare la distribution marginale de l'échantillon z représentée sous la forme d'un histogramme à l'estimateur $\hat{f}_{X,n}(x)$ représentée en rouge.

A l'aide de l'estimateur \hat{a}_n , on représente la densité théorique de f ci-dessous.

1.2 Méthode n°2 - Estimateur ponctuel

8. On note $\hat{W}^k(X_k, Y_k) := \frac{\psi(x, Y_k)\omega(X_k)}{\psi(X_k, Y_k)}$ pour $k \in \{1, ..., n\}$. Cet estimateur est intégrable. En effet,

$$\mathbb{E}[|\hat{W}^k(X_k, Y_k)|] = \mathbb{E}[\hat{W}^k(X_k, Y_k)] = \iint \frac{\psi(x, y)\omega(z)}{\psi(z, y)} f_{X,Y}(z, y) \, dz \, dy$$

$$= \iint \frac{a\psi(x, y)\omega(z)\psi(y, z)}{\psi(z, y)} \, dz \, dy$$

$$= \int a\psi(x, y) \, dy \int \omega(z) \, dz$$

$$= \int f_{X,Y}(x, y) \, dy$$

$$= f_X(x)$$

Ainsi, par la loi forte des grands nombres $\hat{\omega}_n(x) := \overline{\hat{W}^k(X_k, Y_k)} \xrightarrow[n \to +\infty]{p.s} f_X(x)$.

En prenant, ω t
q $\hat{W^k}$ soit de carré intégrable, on peut appliquer le TCL, pour
 $x \in \mathbb{R}$

$$\sqrt{n}(\hat{\omega}_n(x) - f_X(x)) \xrightarrow[n \to +\infty]{loi} \mathcal{N}(0, \mathbb{V}ar(\hat{W}^k))$$

On note $\hat{\sigma}_1^2 := \frac{1}{n-1} \sum_{k=1}^n (\omega_1 - \hat{\omega}_n(x))^2$ estimateur non biaisé de $\mathbb{V}ar(\omega_1)$ et p.s convergent vers $\mathbb{V}ar(W^k)$ (par la LGN).

Ainsi, par le théorème de Slutsky, et continuité de $(x,y) \longmapsto \frac{x}{y}$, on a

$$\sqrt{n} \frac{(\hat{\omega_n}(x) - f_X(x))}{\hat{\sigma}_1^2} \xrightarrow[n \to +\infty]{loi} \mathcal{N}(0,1).$$

En notant $q_{1-\frac{\alpha}{2}}$ le quantile d'ordre $1-\frac{\alpha}{2}$ d'une $\mathcal{N}(0,1)$, on retrouve un IC asymptotique bilatéral symétrique pour $f_X(x)$:

$$f_X(x) \in \left[\hat{\omega_n}(x) - \sqrt{\frac{\hat{\sigma}_1^2}{n}} q_{1-\frac{\alpha}{2}}; \hat{\omega_n}(x) + \sqrt{\frac{\hat{\sigma}_1^2}{n}} q_{1-\frac{\alpha}{2}}\right]$$

9. Calculons la variance de l'estimateur pour trouver un critère de minimisation.

$$var(\hat{\omega_n}(x)) = \frac{1}{n} var(\hat{W}^1)$$
(1)

$$= \frac{1}{n} \left[\mathbb{E}[(\hat{W}^1)^2] - f_X(x)^2 \right] \tag{2}$$

$$= \frac{1}{n} \iint \frac{(a\psi(x,y)\omega(z) - af_X(x)\psi(z,y))^2}{a\psi(z,y)} dz dy$$
 (3)

L'intégrande étant toujours positive, il faut et suffit que celle-ci soit nulle pp.(z,y) pour que la variance soit nulle. On cherche donc ω densité tel que pour (presque tout) $z \in \left[\frac{-\pi}{2}; \frac{\pi}{2}\right]$:

$$a\psi(x,y)\omega(z)-af_X(x)\psi(z,y)=0$$
 i.e
$$\omega(z)=\frac{f_X(x)f_{X,Y}(z,y)}{f_{X,Y}(x,y)}\quad\text{car }f_{X,Y}(x,y)\neq0\text{ pour tout }(\mathbf{x},\mathbf{y})$$

Dans le cas où X et Y sont indépendants, ω est bien une densité (d'intégrale 1). Dans ce même cas, on a alors $\omega(z) = \frac{f_X(x)f_X(z)f_Y(y)}{f_X(x)f_Y(y)} = f_X(z)$. En pratique, ce choix n'est pas exploitable, car dépend de la quantité à estimer. Cependant, cela donne une idée sur le choix de ω : on le choisit tel que $\frac{\omega(z)}{f_X(z)} \approx constante$ et de variance finie.

- 10. En prenant $\omega(x) := \frac{1}{\sinh(\pi)} \mathrm{e}^{-2x} \mathbf{1}_{|x| \leq \frac{\pi}{2}}$, on obtient un rapport de $\frac{\omega(z)}{f_X(z)} = (|\sin(\frac{2}{\pi}z^2 \frac{\pi}{4})| + 4 \times \cos(z)^2) \times c \times \sinh(\pi) \times \hat{a_n}$ pour $z \in [\frac{-\pi}{2}; \frac{\pi}{2}]$, et $c = 1 e^{-2} + 3 21\frac{e^{-2}}{2}$. Ce rapport est compris entre 0.5 et 3.5, on peut donc le considérer comme étant à peu près constant. On obtient alors $\hat{\omega_n}(-1) \approx 0.60$ et un $IC_{95\%}$ de [0.594, 0.612].
- 11. On s'intéresse au rapport des coûts pour lesquels $\hat{\omega_n}(-1)$ et $\hat{f}_{X,n}(x)$ atteignent la même erreur quadratique. Si mse=2.85e-05, alors le nombre de tirages suivant \hat{f}_X et \hat{W} nécessaire est $n_{estimateur} = \frac{var(estimateur)}{mse}$, soit $n_{f_X} := 10000$ et $n_{\hat{W}} := 7583$.

Par ailleurs, pour obtenir n=10000 simulations suivant f_X , il nous faut 10000 simulations de \hat{a}_n , donc le coût de \hat{f}_X est $C_1:=C_{\hat{a}_1}=\frac{n_t\times n_l}{n}\approx 13.262$.

Le coût de simulation de \hat{W} est $C_2 := \frac{n_t \times n_l}{n} \approx 13.262$. Ainsi, le rapport des coûts entre les 2 méthodes est de $R = \frac{C_2 n_{f_X}}{C_1 n_{\hat{W}}} = 1.31$. La méthode par estimation ponctuelle est donc légèrement plus efficace que celle de Monte-Carlo classique.

2 Exercice 2

1. L'objectif de cet exercice est d'estimer la valeur de

$$\delta = \mathbb{E}[min(3, \frac{1}{3} \sum_{k=1}^{3} e^{-X_k})]$$

où $\mathbf{X} = (X_1, X_2, X_3)$ est distribué suivant la loi $\mathcal{N}(\mu, \Sigma)$.

La première problématique est d'abord la simulation de ces variables aléatoires. Pour générer un vecteur suivant cette loi, on s'appuie sur la proposition 2.2 du cours : la matrice de covariance Σ étant symétrique définie positive (ses valeurs propres sont toutes strictement positives), on note L une matrice triangulaire inférieure tel que $\Sigma = LL^t$. On simule Z un vecteur aléatoire de loi $\mathcal{N}(\mathbf{0}_d, \mathbf{I}_d)$, alors le vecteur $\mathbf{X} = \mu + L\Sigma$ est une réalisation suivant la loi normale multivariée $\mathcal{N}(\mu, \Sigma)$.

2. (a) δ étant déjà donné sous la forme d'une espérance, on définit

$$h: \left| \begin{array}{ccc} \mathbb{R}^3 & \longrightarrow & \mathbb{R} \\ (X_1, X_2, X_3) & \longmapsto & \min(3, \frac{1}{3} \sum_{k=1}^3 e^{-X_k}) \end{array} \right|$$

où $\mathbf{X}=(X_1,X_2,X_3)$ suit la loi $\mathcal{N}(\mu,\Sigma)$.

L'estimateur de Monte-Carlo s'écrit alors $\bar{\delta_n} = \frac{1}{n} \sum_{i=1}^n h(X_1^i, X_2^i, X_3^i)$ où les \mathbf{X}^i suivent la même loi que \mathbf{X} .

- (b) L'erreur quadratique moyenne associée à cet estimateur est de $1.68*10^{-6}$
- 3. (a) On pose

$$A: \begin{array}{c|c} \mathbb{R}^3 & \mathbb{R} \\ X & \longmapsto & 2\mu - X \end{array}$$

Alors pour $\mathbf{X} \sim \mathcal{N}(\mu, \Sigma)$, $\mathbf{A}(\mathbf{X}) \sim \mathcal{N}(\mu, \Sigma)$. En effet, il s'agit d'une combinaison linéaire du vecteur gaussien (μ, \mathbf{X}) de moyenne $2\mu - \mu = \mu$ et de matrice de variance $\mathbf{0}_d + \Sigma = \Sigma$. Par ailleurs, la transformation \mathbf{A} est décroissante tandis que \mathbf{h} est monotone (décroissante non constante) en chacunes de ses coordonnées, donc Cov[h(X), A(h(X))] < 0 et ainsi $\mathbb{V}ar\left[\hat{\delta}_n\right] \leq \mathbb{V}ar\left[\bar{\delta}_n\right]/2$.

- (b) L'erreur quadratique moyenne associée à cet estimateur est de l'ordre de 3.4e-8 et $R_1 \approx 48.25$. La réduction est significative : à coûts de calcul équivalents et même nombre de simulations, l'estimateur $\bar{\delta}_n$ est 50 fois plus efficace que $\hat{\delta}_n$.
- 4. En utilisant le fait que le vecteur \mathbf{X} est centré autour de $\mathbf{0}_3$, on effectue un DL de l'exponentielle autour de 0 à l'ordre 2 :

$$e^{-X_k} = 1 + X_k + \frac{X_k^2}{2} + o(X_k^3)$$
 pour $k \in \{1, 2, 3\}$

On pose alors:

$$h_0(\mathbf{X}) = \frac{1}{3} \sum_{i=1}^{3} 1 + X_k + \frac{X_k^2}{2}$$

Alors,

$$\mathbb{E}[h_0(\mathbf{X})] = \frac{1}{3} \sum_{i=1}^{3} \mathbb{E}\left[1 + X_k + \frac{X_k^2}{2}\right]$$
$$= \frac{1}{3} \sum_{i=1}^{3} 1 + \mathbb{E}[X_k] + \mathbb{E}\left[\frac{X_k^2}{2}\right]$$
$$= \frac{2.8805}{3}$$

Par ailleurs, h_0 est bien de carré intégrable. En effet,

$$\mathbb{E}[(h_0(\mathbf{X}^2))] = \frac{1}{9} \mathbb{E} \left[\sum_{k=1}^3 \left(1 + X_k + \frac{X_k^2}{2} \right)^2 \right]$$

$$= \frac{1}{9} \sum_{k=1}^3 \sum_{j=1}^3 \mathbb{E} \left[(1 + X_k + \frac{X_k^2}{2})(1 + X_j + \frac{X_j^2}{2}) \right]$$

$$\leq \frac{1}{9} \sum_{k=1}^3 \sum_{j=1}^3 \mathbb{E} \left[\left(1 + X_k + \frac{X_k^2}{2} \right)^2 \right] \mathbb{E} \left[\left(1 + X_j + \frac{X_j^2}{2} \right)^2 \right]$$

où $\mathbb{E}\left[\left(1+X_k+\frac{X_k^2}{2}\right)^2\right]$ est une fonction linéaires des moments d'ordre 1 ,2, 3 et 4 d'une loi normale, donc bien définie. h_0 ainsi défini, on trouve une corrélation ≈ 0.99 . Ainsi, l'estimateur par la méthode de la variable de contrôle simple est donné par :

$$\hat{\delta}_n(b) = \frac{1}{n} \sum_{k=1}^n (\mathbf{X}_k) - b * (h_0(\mathbf{X}_k) - \mathbb{E}[h_0(\mathbf{X}_k)])$$

5. L'idée ici est d'utiliser la méthode burn-in pour évaluer le b_{opt} qui minimisera au plus la variance, puis $\hat{\delta}_n(b_{opt})$ pour éviter l'apparition d'un biais dans l'estimation. Afin de trancher \mathbf{z} au bon endroit, On compare la variance évolutive de $\hat{\delta}_n(b)$ en fonction de n avec celle de l'estimateur final. On coupera au premier indice à partir duquel la différence entre les 2 valeurs est plus petite qu'un certain epsilon (que l'on fixe à 5×10^-6 dans le code).

Erreur de la variance "évolutive"

On détermine graphiquement $nbsimu \approx 300$.

On estime ensuite graphiquement la valeur de b pour laquelle la variance de $\hat{\delta}_{n-nbsimu}(b)$ est minimale.

Variance de delta_hat en fonction de b

On trouve alors $b_{opt}=1.03$, $\hat{\delta}_n(b_{opt})\approx 0.95$ et $mse(\hat{\delta}_n(b_{opt})\approx 8.75\times 10^{-10}$. Cet estimateur fait donc 40 fois mieux que celui de la variable antithétique, et 1900 fois mieux que l'estimateur de Monte-Carlo classique!

3 Exercice 3

1. L'objectif de cet exercice est d'estimer la valeur de

$$\delta = \mathbb{E}[S]$$
 avec $S = \sum_{i=1}^{Y} \log(X_i + 1)$

où Y est distribué suivant la loi géométrique de paramètre p=0.2 et $(X_n)_{n\geq 1}$ est une suite de variables aléatoires i.i.d suivant la loi gamma $\Gamma(2,2)$.

Pour cela, la première étape est la simulation de ces variables aléatoires. La loi géométrique définie dans l'exercice que sur \mathbb{N}^* ne correspond pas à la loi géométrique définie sur R. C'est pourquoi, nous avons utilisé la méthode de la fonction inverse (que l'on notera F^{\leftarrow}) pour simuler cette variable aléatoire. D'après l'exemple 2.1 du cours, on a $\forall u \in [0, 1]$,

$$F^{\leftarrow}(u) := \left\{ n \in \mathbb{N}^* : \sum_{i=1}^{n-1} p(1-p)^{i-1} < u \le \sum_{i=1}^n p(1-p)^{i-1} \right\}$$

$$= \left\{ n \in \mathbb{N}^* : 1 - (1-p)^{n-1} < u \le 1 - (1-p)^n \right\}$$

$$= \in \mathbb{N}^* : (1-p)^n \le 1 - u < (1-p)^{n-1} \right\}$$

$$= \left\{ n \in \mathbb{N}^* : n \ln(1-p) \le \ln(1-u) < (n-1)\ln(1-p) \right\}$$

$$= \left\{ n \in \mathbb{N}^* : n - 1 < \frac{\ln(1-u)}{\ln(1-p)} \le n \right\}$$

$$= \left\{ \frac{\ln(1-u)}{\ln(1-p)} \right\}$$

Alors, d'après le lemme 2.1 du cours, si $U \sim \mathcal{U}([0,1])$ alors $F^{\leftarrow}(U) \sim \mathcal{G}(p)$. On définit l'estimateur de Monte-Carlo classique tel que :

$$\bar{\delta}_n := \frac{1}{n} \sum_{i=1}^n S_i$$
 où les S_i suivent la même loi que S

L'erreur quadratique moyenne associée à cet estimateur est :

$$\mathbb{V}ar\left[\bar{\delta}_n\right] = \frac{1}{n} \mathbb{V}ar\left[S\right] \simeq 8, 5 \times 10^{-4}$$

- 2. (a) On choisit
 - Y comme variable de stratification
 - On partitionne [0,1] de la façon suivante :

$$\forall k \in \{1, ..., L-1\} \quad D_k = \{k\} = F^{\leftarrow} (] 1 - (1-p)^{k-1}, 1 - (1-p)^k])$$
$$D_L = F^{\leftarrow} (] 1 - (1-p)^{L-1}, 1])$$

de sorte que $\mathcal{D} = (D_1, ..., D_L)$ forme une partition de \mathbb{N}^* .

On a alors

$$\forall k \in \{1, ..., L-1\} \quad p_k := \mathbb{P}(Y \in (D_k)) = \mathbb{P}(Y = k) = p(1-p)^{k-1}$$
$$p_L := \mathbb{P}(Y \in (D_L)) = \mathbb{P}(Y \ge L) = (1-p)^{L-1}$$

Par ailleurs, on choisit l'allocation proportionnelle des n tirages c'est à dire que pour chaque strate D_k , on prend

$$\forall k \in \{1, ..., L-1\} \quad n_k = n\mathbb{P}(Y \in (D_k)) = np(1-p)^{k-1}$$
$$n_L = n\mathbb{P}(Y \in (D_L)) = n(1-p)^{L-1}$$

Puis, pour chaque strate D_k , on considère $(S_n^{(k)})_{n\in\mathbb{N}}$ une suite de variables aléatoires i.i.d suivant la loi conditionnelle $\mathcal{L}(S|Y\in(D_k))$. Pour $k\in\{1,...,L-1\}$, cela correspond à la simulation d'une somme déterministe. En revanche, pour k=L, cette simulation n'est plus aussi évidente. Il s'agit, en effet, de simuler des variables aléatoires suivant la loi conditionnelle $\mathcal{L}(S|Y\geq L)$. L'estimateur stratifié s'écrit donc

$$\hat{\delta}_n(n_1, ..., n_L) := \sum_{k=1}^L \frac{1}{n} \sum_{i=1}^{n_k} S_i^k$$

$$= \sum_{k=1}^{L-1} p_k \left(\frac{1}{n_k} \sum_{i=1}^{n_k} S_i^k \right) + p_L \left(\frac{1}{n_L} \sum_{i=1}^{n_L} S_i^L \right)$$

On remarque les moyennes empiriques $\bar{S}_{n_k}^k$ pour $k = 1, \dots, L$.

(b) On a par indépendance des strates

$$\mathbb{V}ar[\hat{b}_{n}] = \sum_{k=1}^{L-1} p_{k}^{2} \left(\frac{1}{n_{k}} \mathbb{V}ar[S_{n_{k}}^{(k)}] \right) + p_{L}^{2} \left(\frac{1}{n_{L}} \mathbb{V}ar[S_{n_{L}}^{(L)}] \right)$$

L'erreur quadratique moyenne associée à cet estimateur est donc d'environ $1, 1 \times 10^{-4}$ soit environ 7,5 fois moins que l'estimateur de Monte-Carlo classique. Ainsi, l'estimateur stratifié est presque 8 fois plus efficace en terme de variance que l'estimateur classique.

En théorie, l'estimateur stratifié avec allocation proportionnelle est au moins aussi efficace que l'estimateur de Monte-Carlo classique. A l'aide de la librairie *microbenchmark*, nous avons calculé les coûts de calcul des 2 estimateurs. On obtient ainsi que l'estimateur stratifié est environ 10 fois plus performant que l'estimateur de Monte-Carlo classique.