Durée: 1 heures 45 minutes

APPLICATION DES MATHEMATIQUES : Contrôle N° 1

NOM:	GROUPE	
PRENOM:	GROOTE	

Barème sur 20 points

1. Une distribution statistique d'un échantillon de taille N=100 d'un caractère X continue, est représentée dans le tableau suivant :

Classes de X	Effectifs n_i		Fréquences cumulées	Classes de Y	c_i centre de classes de Y	$n_i c_i$
[5660, 5680[16					
[5680, 5700[28					
[5700, 5710[16					
[5710, 5730[7					
[5730, 5770[33					
Total	100					

- a) Déterminer la classe \mathbf{modale} de X (justifier votre réponse). Indication. Vous pouvez remplir convenablement les 2 premières colonnes vides.
- b) Utiliser le changement de variable $Y = \frac{X 5700}{10}$ pour compléter le tableau.
- c) Déterminer la moyenne \overline{X} de X. Rappel: La variable statistique Y=aX+b a pour moyenne $\overline{Y}=a\overline{X}+b$.
- d) Déterminer la médiane \widetilde{X} de X.
- e) Tracer le "Box-plots" de X en admettant que le premier quartile $Q_{0,25}=5686.43$ et le troisième quartile $Q_{0,75}=5739.70$ (on peut prendre 2 carreaux pour 10 unités). **6 pts**

- 2. Les question a) et b) sont indépendantes.
 - a) Pour tout $n \in \mathbb{N}^*$, on pose $S_n = \sum_{k=1}^n \frac{1}{(2k-1)(2k+1)}$. Montrer, à l'aide d'un raisonnement par récurrence, que $S_n = \frac{n}{2n+1}$, $\forall n \geq 1$.
 - b) On pose $\sigma_n = 2\sin\left(\frac{x}{2}\right)\sum_{k=1}^n\cos(kx)$.

 Montrer que, pour tout $n \ge 1$, $\sigma_n = 2\sin\left(\frac{nx}{2}\right)\cos\left(\frac{(n+1)x}{2}\right)$,

 en utilisant les propriétés de \sum et un changement d'indice approprié. $Rappels: \begin{cases} 2\sin\alpha\cos\beta = \sin(\alpha+\beta) \sin(\beta-\alpha) & \text{et} \\ \sin p \sin q = 2\sin\left(\frac{p-q}{2}\right)\cos\left(\frac{p+q}{2}\right) \end{cases}$ 5 pts
- **3.** a) Pour chacun des 2 ensembles suivants, montrer s'il est minoré, majoré, s'il possède une borne inféreure, une borne supérieure, un minimum, un maximum.

i)
$$E = \{ y \in \mathbb{R} \mid y = x^2 + 2, x \in]-1, 2] \}$$
 ii) $F = \{ x \in \mathbb{R}_+ \mid \sin x = \frac{\sqrt{2}}{2} \}$

b) Montrer que 2 est un majorant de
$$G = \left\{ v_n = \frac{2n(-1)^n}{n+1}, n \in \mathbb{N} \right\}$$
 et que $\sup(G) = 2$. G a-t-il un maximum ? 5 **pts**

- **4.** Le code d'entrée d'un immeuble est un nombre de 4 chiffres, chaque chiffre pouvant prendre l'une des 9 valeurs 1, 2, ..., 9.
 - a) Déterminer le nombre de codes différents qu'on peut former.
 - b) Combien y a-t-il de codes ne comportant que des chiffres distincts?
 - c) Combien y a-t-il de codes comportant au moins 2 chiffres identiques?
 - d) Combien y a-t-il de codes comportant deux 5 et deux seulement?
 - e) Combien y a-t-il de codes comportant 2 chiffres distincts et 2 seulement?

4 pts

Question bonus (1 pt):

Critiquez l'histogramme suivant qui représente les données de l'exercice 1.

Représentation des données de l'exercice 1

