Compute Lidar Point-Cloud from Range Image

Visualize range image channels (ID_S1_EX1)

Visualize point-cloud (ID_S1_EX2)

Following are the examples of vehicles as viewed in the plotted 3d point cloud

Example 1

Vehicle features identified include: - Front tires - Front left mirror - front windshield- bumper

The above image shows three cars with varying level of details. The associated intensity image corroborates the lidar. Front and Rear right tires - Passenger door/windows - Side mirrors

Example 2:

Identifiable vehicle feature in the above lidar : - Truck Front Bumper, Truck Roof - Front and Rear right tires - Truck rear, trailer

Example 3:

Identifiable vehicle feature in the above lidar : - SUV Side view, with side doors & windows - Front and Rear right tires - Rear bumper and taillights

Identifiable vehicle feature in the above lidar and associated intensity image : - Front and Rear right tires - Passenger door/windows - Side mirrors

Example 4:

Identifiable vehicle features: – Front windshield- Front bumper - Front and rear tires – Side mirrors

Example 5:

Identifiable vehicle feature in the above lidar : - Front windshields of multiple cars - rear window - Front and Rear right tires - Front and rear bumpers — Side mirrors

Example 6:

Identifiable vehicles traveling in multiple directions in the above lidar. Identifiable vehicle features: - Front windshields – Rear windows – side mirrors

Example 7:

Identifiable vehicle features: – Rear window- rear bumper - Front and rear tires – windows – doors

Example 8:

Identifiable vehicles traveling in multiple directions in the above lidar. Identifiable vehicle features: - Front windshields – Rear windows – side mirrors – Front and rear tires – windows – doors – Truck - trailer

Example 9:

Identifiable vehicle feature in the above lidar : - Front bumper - left mirrors — windows —front and rear left tires

Identifiable vehicle feature in the above lidar : - Front windshield — Rear window - Front and rear bumper - side mirrors — front and rear left tires

Create Birds-Eye View from Lidar PCL

Convert sensor coordinates to bev-map coordinates (ID S2 EX1)

In file loop_over_dataset.py, set the attributes for code execution in the following way:

- data_filename = 'training_segment-1005081002024129653_5313_150_5333_150_with_camera_labels.tfrecord
- show_only_frames = [50, 51]
- exec_data = ['pcl_from_rangeimage', 'load_image']
- exec_detection = ['bev_from_pcl', 'detect_objects']
- exec tracking = []
- exec_visualization = ['show_objects_in_bev_labels_in_camera']
- configs det = det.load configs(model name="fpn resnet")

Compute intensity layer of bev-map (ID_S2_EX2)

Compute height layer of bev-map (ID_S2_EX3)

Model-based Object Detection in BEV Image

Add a second model from a GitHub repo (ID_S3_EX1)

Extract 3D bounding boxes from model response (ID_S3_EX2)

Performance Evaluation for Object Detection

Compute intersection-over-union (IOU) between labels and detections (ID_S4_EX1)

```
student task ID_S4_EX1 [[0.7534597292477916, 0.21383110462556942, -0.007981947186635807, 0.9899635729132115]] student task ID_S4_EX1 [[0.8911657401184332, -0.09250301071915601, 0.04249685283502913, 0.8152483974641882]] student task ID_S4_EX1 [[0.7966816830741938, 0.11938241072857636, 0.04250280939049844, 0.8711946193956237]] student task ID_S4_EX2 reached end of selected frames
```

Compute false-negatives and false-positives (ID_S4_EX2)

Compute precision and recall (ID_S4_EX3)

configs_det.use_labels_as_objects = True

Ideal Precision/Recall using Groundtruths as labels

```
using groundtruth labels as objects
validating object labels
measuring detection performance
student task ID_S4_EX1
[[1.0, 0.0, 0.0, 0.0]]
student task ID_S4_EX1
[[1.0, 0.0, 0.0, 0.0]]
student task ID_S4_EX1
[[1.0, 0.0, 0.0, 0.0]]
student task ID_S4_EX1
```

```
student task ID_S4_EX2

3

false negatives 0

false_postives 0

reached end of selected frames

student task ID_S4_EX3

precision = 1.0, recall = 1.0
```

