DCC638 - Introdução à Lógica Computacional 2024.1

Álgebra Booleana

Área de Teoria DCC/UFMG

Introdução

Álgebra Booleana 2 / 47

Álgebra Booleana: Introdução

- Circuitos operam com entradas e saídas binárias, i.e. com valores 0 e 1.
- Isto facilita a construção de circuitos
 - Qualquer dispositivo que diferencie dois estados (ligado/deligado, alta voltagem/baixa voltagem, etc.)
- Normalmente nos referimos a cada um dos estados binários como bits (do inglês "binary digits"), ou valores Booleanos.
- Em 1938 Claude Shannon demonstrou que as regras básicas da lógica, introduzidas por George Boole em 1854 no seu livro "The Laws of Thought", podem ser usadas para projetar circuitos.
- Estas regras formam a base da **lógica Booleana**, que é o que vamos estudar aqui.

Álgebra Booleana 3 / 47

Álgebra Booleana: Introdução

 Nesta parte do curso vamos fazer a conexão da lógica proposicional e álgebra Booleana com os circuitos de computação.

- Para isto, vamos estudar os fundamentos da álgebra Booleana, incluindo:
 - Como representar números em base binária.
 - Como representar funções Booleanas.
 - Como projetar circuitos que implementem funções.
 - Como minimizar circuitos para obter implementações eficientes.

Álgebra Booleana 4 / 47

Representação de Números em Base Binária

Álgebra Booleana 5 / 47

Representação de números em base decimal

- O nosso sistema numérico é um sistema baseado em potências de 10.
 - Números representados como somas ponderadas de potências de 10, usando dígitos decimais 0, 1, 2, ..., 9 como pesos.
- Exemplo 1 O número decimal 237 pode ser decomposto como:

$$237_{10} = 2 \cdot 10^2 + 3 \cdot 10^1 + 7 \cdot 10^0$$

- Não há nada de especial na escolha de potências de 10 para decompor números.
- Podemos usar qualquer inteiro positivo como uma base numérica.
- Notação: n_b indica que o número n está representado na base b.

Álgebra Booleana 6 / 47

Representação de números em base binária

- Podemos representar números naturais em potências de 2, por exemplo.
- Somas ponderadas de potências de 2, usando dígitos binários 0, 1 como pesos.
- Exemplo 2

$$11101101_{2} = 1 \cdot 2^{7} + 1 \cdot 2^{6} + 1 \cdot 2^{5} + 0 \cdot 2^{4} + 1 \cdot 2^{3} + 1 \cdot 2^{2} + 0 \cdot 2^{1} + 1 \cdot 2^{0}$$

$$= 1 \cdot 128 + 1 \cdot 64 + 1 \cdot 32 + 0 \cdot 16 + 1 \cdot 8 + 1 \cdot 4 + 0 \cdot 2 + 1 \cdot 1$$

$$= 237_{10}$$

Álgebra Booleana 7 / 47

Convertendo de base binária para decimal

ullet Formalmente, um número binário de k bits $(b_i \in \{0,1\}$, para $k-1 \geq i \geq 0)$

$$n_2 = b_{k-1} b_{k-2} \dots b_2 b_1 b_0$$

pode ser convertido para seu equivalente decimal m_{10} pela fórmula

$$m_{10} = \sum_{i=0}^{k-1} b_i \cdot 2^i .$$

Álgebra Booleana 8 / 47

Convertendo de base binária para decimal

 Um método rápido para converter um número binário para seu equivalente decimal é dado no exemplo a seguir.

Exemplo 3 Encontre o decimal equivalente a 110101₂.

Álgebra Booleana 9 / 47

Convertendo de base binária para decimal

- Um método rápido para converter um número binário para seu equivalente decimal é dado no exemplo a seguir.
- Exemplo 3 Encontre o decimal equivalente a 110101₂.

Solução. O equivalente ao binário pedido é o decimal 53, como mostra a tabela abaixo.

Posição i	5	4	3	2	1	0	
Dígito b _i	1	1	0	1	0	1	
Equivalente decimal: 2 ⁱ	32	16	8	4	2	1	
Contribuição $b_i \cdot 2^i$	32	16	0	4	0	1	53

Álgebra Booleana 9 / 47

- No caso geral, processo de conversão de um decimal m_{10} para seu equivalente binário n_2 se dá da seguinte forma:
 - Realize a divisão inteira do número decimal m_{10} por 2 repetidas vezes, guardando o resto r_i de cada passo i.
 - 2 Pare quando o resultado da divisão for 0.
 - **9** Produza como resultado n_2 a concatenação dos restos r_i na ordem contrária em que foram encontrados.

Álgebra Booleana 10 / 47

• Exemplo 4 Converta 77 de decimal para seu equivalente binário.

Álgebra Booleana 11 / 47

• Exemplo 4 Converta 77 de decimal para seu equivalente binário.

Solução. Podemos seguir o seguinte processo:

77
$$\xrightarrow[resto=0]{\text{div2}}$$
 38 $\xrightarrow[resto=0]{\text{div2}}$ 19 $\xrightarrow[resto=1]{\text{div2}}$ 9 $\xrightarrow[resto=1]{\text{div2}}$ 4 $\xrightarrow[resto=0]{\text{div2}}$ 2 $\xrightarrow[resto=0]{\text{div2}}$ 1 $\xrightarrow[resto=1]{\text{div2}}$ 0

A representação binária é obtida invertendo-se a ordem dos restos produzidos:

$$77 = 1001101_2.$$

Álgebra Booleana 11 / 47

• Exemplo 5 Converta 237 de decimal para seu equivalente binário.

Solução. Podemos seguir o seguinte processo:

237
$$\xrightarrow[resto=1]{\text{div2}}$$
 118 $\xrightarrow[resto=0]{\text{div2}}$ 59 $\xrightarrow[resto=1]{\text{div2}}$ 29 $\xrightarrow[resto=1]{\text{div2}}$ 14 $\xrightarrow[resto=0]{\text{div2}}$ 7 $\xrightarrow[resto=1]{\text{div2}}$ 3 $\xrightarrow[resto=1]{\text{div2}}$ 1 $\xrightarrow[resto=1]{\text{div2}}$ 0

A representação binária é obtida invertendo-se a ordem dos restos produzidos:

$$237 = 11101101_2.$$

Álgebra Booleana 12 / 47

Somando dois números em base binária

- Podemos realizar operações usuais em números binários.
- Em particular, a adição binária é feita de forma análoga à decimal:
 - Nos decimais, ao somar o dígito 7 com o dígito 5, por exemplo, o resultado é o dígito 2, e sobra 1 como excedente para a próxima coluna de dígitos.
 - Isso ocorre sempre que o resultado ultrapassa o maior dígito decimal, que é 9.
 - Com os binários, isso ocorre quando o maior dígito binário, 1, é ultrapassado.
- ullet | Exemplo 6 | Compute o valor da soma $1101_2+100_2.$

Álgebra Booleana 13 / 47

Somando dois números em base binária

- Podemos realizar operações usuais em números binários.
- Em particular, a adição binária é feita de forma análoga à decimal:
 - Nos decimais, ao somar o dígito 7 com o dígito 5, por exemplo, o resultado é o dígito 2, e sobra 1 como excedente para a próxima coluna de dígitos.

Isso ocorre sempre que o resultado ultrapassa o maior dígito decimal, que é 9.

- Com os binários, isso ocorre quando o maior dígito binário, 1, é ultrapassado.
- Exemplo 6 Compute o valor da soma $1101_2 + 100_2$.

Solução. Realizando a soma abaixo, encontramos o valor 10101_2 .

Álgebra Booleana 13 / 47

Funções Booleanas

Álgebra Booleana 14 / 47

Funções Booleanas: Introdução

 A álgebra Booleana fornece as operações e as regras para trabalharmos com o conjunto {0,1}.

 Em particular, circuitos eletrônicos podem ser estudados usando este conjunto binário e as regras da álgebra Booleana.

Álgebra Booleana 15 / 47

Funções Booleanas: Operações Booleanas

- As três operações em álgebra Booleana que mais vamos usar são:
 - O complemento, denotada por uma barra , definido como $\bar{x} = 1 x$:

$$\overline{0}=1, \qquad \mathsf{e} \qquad \overline{1}=0 \; .$$

 O produto Booleano, denotado por · ou AND, e definido como x · y = min(x, y):

$$0 \cdot 0 = 0$$
, $0 \cdot 1 = 0$, $1 \cdot 0 = 0$, $1 \cdot 1 = 1$.

• A soma Booleana, denotada por + ou OR, e definida como x + y = max(x, y):

$$0+0=0$$
, $0+1=1$, $1+0=1$, $1+1=1$.

• Quando não há risco de ambiguidade, podemos omitir o símbolo \cdot de produto Booleano, escrevendo ab no lugar de $a \cdot b$.

Álgebra Booleana 16 / 47

Funções Booleanas: Operações Booleanas

- A ordem de precedência de operadores Booleanos é:
 - primeiro avaliam-se complementos;
 - em seguida avaliam-se produtos;
 - o por fim avaliam-se somas.
- Exemplo 7 Ache o valor de $1 \cdot 0 + \overline{(0+1)}$.

Álgebra Booleana 17 / 47

Funções Booleanas: Operações Booleanas

- A ordem de precedência de operadores Booleanos é:
 - primeiro avaliam-se complementos;
 - em seguida avaliam-se produtos;
 - por fim avaliam-se somas.
- Exemplo 7 Ache o valor de $1 \cdot 0 + \overline{(0+1)}$.

Solução.

$$1 \cdot 0 + \overline{(0+1)} = 1 \cdot 0 + \overline{1}$$

= $1 \cdot 0 + 0$
= $0 + 0$
= 0

Álgebra Booleana 17 / 47

- Existe uma correspondência entre a álgebra Booleana e a lógica proposional no seguinte sentido:
 - O complemento corresponde ao operador de negação ¬.
 - A soma Booleana + corresponde ao operador de disjunção ∨.
 - O produto Booleano · corresponde ao operador de conjunção ∧.
 - O <u>valor 0</u> corresponde ao valor de verdade *F* (falso).
 - O valor 1 corresponde ao valor de verdade T (verdadeiro).

• Por este motivo, igualdades em álgebra Booleana podem ser traduzidas imediatamente em equivalências proposicionais, e vice-versa.

Álgebra Booleana 18 / 47

• Exemplo 8 Converta a igualdade Booleana $1 \cdot 0 + \overline{(0+1)} = 0$ na equivalência proposicional correspondente.

Álgebra Booleana 19 / 47

• Exemplo 8 Converta a igualdade Booleana $1 \cdot 0 + \overline{(0+1)} = 0$ na equivalência proposicional correspondente.

Solução. A fórmula Booleana $1\cdot 0+\overline{(0+1)}=0$ corresponde à equivalência proposicional

$$T \wedge F \vee \neg (F \vee T) \equiv F$$
.

• Exemplo 9 Converta a equivalência proposicional $(T \land T) \lor \neg F \equiv T$ na igualdade Booleana correspondente.

Álgebra Booleana 19 / 47

• Exemplo 8 Converta a igualdade Booleana $1 \cdot 0 + \overline{(0+1)} = 0$ na equivalência proposicional correspondente.

Solução. A fórmula Booleana $1 \cdot 0 + \overline{(0+1)} = 0$ corresponde à equivalência proposicional

$$T \wedge F \vee \neg (F \vee T) \equiv F$$
.

• Exemplo 9 Converta a equivalência proposicional $(T \land T) \lor \neg F \equiv T$ na igualdade Booleana correspondente.

Solução. A equivalência proposicional $(T \wedge T) \vee \neg F \equiv T$ corresponde à fórmula Booleana

$$(1\cdot 1)+\overline{0}=1.$$

Álgebra Booleana 19 / 47

• Seja $B = \{0, 1\}$ o conjunto de valores Booleanos. Então

$$B^n = \{(x_1, x_2, \dots, x_n) \mid x_i \in B \text{ para } 1 \le i \le n\}$$

é o conjunto de todas as *n*-tuplas formadas por 0s e 1s.

- Uma variável x que assume um valor em B é chamada de variável Booleana.
- Uma função de B^n para B é chamada de **função Booleana de grau** n.
- Exemplo 10 A função Booleana $F(x,y) = x\overline{y}$ de tipo $B^2 \to B$ é representada na tabela abaixo.

X	у	$F(x,y)=x\overline{y}$
0	0	0
0	1	0
1	0	1
1	1	0

Álgebra Booleana 20 / 4

- Funções Booleanas podem ser representadas por expressões formadas por variáveis Booleanas e operações Booleanas.
- As **expressões Booleanas** sobre as variáveis x_1, x_2, \ldots, x_n são definidas recursivamente como:
 - 0, 1, x_1, x_2, \ldots, x_n são expressões Booleanas.
 - ${\color{red} \bullet}$ Se E_1 e E_2 são expressões Booleanas, então também são expressões Booleanas:
 - \bullet $\bar{E_1}$,

 $(E_1 + E_2),$

- Cada expressão Booleana representa uma função Booleana.
 - (Mais para frente vamos ver também a afirmação conversa: cada função Booleana pode ser representada por uma expressão Booleana.)
- Para calcular o valor da função, basta substituir cada variável pelo seu valor (0 ou 1).

Álgebra Booleana 21 / 47

• Exemplo 11 Determine os valores da função Booleana $F(x, y, z) = xy + \overline{z}$.

Solução. A tabela abaixo especifica o comportamento da função desejada.

X	у	Z	xy	Z	$F(x,y,z)=xy+\overline{z}$
0	0	0	0	1	1
0	0	1	0	0	0
0	1	0	0	1	1
0	1	1	0	0	0
1	0	0	0	1	1
1	0	1	0	0	0
1	1	0	1	1	1
1	1	1	1	0	1

Álgebra Booleana 22 / 47

• Duas funções Booleanas F e G de n variáveis são **iguais** se, e somente se:

$$F(b_1, b_2, \ldots, b_n) = G(b_1, b_2, \ldots, b_n)$$

para todos os valores $b_1, b_2, \ldots, b_n \in B$.

 Duas expressões Booleanas que representam a mesma função são chamadas de equivalentes.

Por exemplo, as três expressões abaixo são todas equivalentes:

2
$$xy + 0$$

Álgebra Booleana 23 / 47

- Sejam F e G funções Booleanas de grau n. Podemos definir:
 - O complemento de F é a função \overline{F} , definida como

$$\overline{F}(b_1, b_2, \ldots, b_n) = \overline{F(b_1, b_2, \ldots, b_n)}$$

• A soma Booleana de F e G é a função F + G, definida como

$$(F+G)(b_1,b_2,\ldots,b_n) = F(b_1,b_2,\ldots,b_n) + G(b_1,b_2,\ldots,b_n)$$

• O produto Booleano de F e G é a função $F \cdot G$, definida como

$$(F \cdot G)(b_1, b_2, \ldots, b_n) = F(b_1, b_2, \ldots, b_n) \cdot G(b_1, b_2, \ldots, b_n)$$

Álgebra Booleana 24 / 47

- Note que uma função Booleana de grau 2 possui
 - como domínio: um conjunto de quatro elementos:

$$\{(0,0), (0,1), (1,0), (1,1)\},\$$

• como contra-domínio: um conjunto de dois elementos:

$$\{0,1\}$$
 .

ullet Portanto, o número de funções Booleanas distintas de grau 2 é $2^4=16$.

Álgebra Booleana 25 / 47

- Note que uma função Booleana de grau 2 possui
 - como domínio: um conjunto de quatro elementos:

$$\{(0,0), (0,1), (1,0), (1,1)\},\$$

• como contra-domínio: um conjunto de dois elementos:

$$\{0,1\}$$
 .

- ullet Portanto, o número de funções Booleanas distintas de grau 2 é $2^4=16$.
 - 2 saídas possíveis pra cada entrada

Álgebra Booleana 25 / 47

Exemplo 12 Enumere todas as 16 possíveis funções Booleanas de grau 2.

Solução. Todas as possíveis funções Booleanas F_0, F_1, \ldots, F_{15} de grau 2 estão representadas na tabela baixo.

X	y	$ F_0 $	F_1	F_2	F_3	F_4	F_5	F_6	<i>F</i> ₇
0	0	0	1	0	1	0	1	0	1
0	1	0	0	1	1	0	0	1	1
1	0	0	0	0	0	1	1	1	1
1	1	0	0	0	0	0	0	0	0

X	у	F ₈	F_9	F ₁₀	F_{11}	F_{12}	F ₁₃	F ₁₄	F ₁₅
0	0	0	1	0	1	0	1	0	1
0	1	0	0	1	1	0	0	1	1
1	0	0	0	0	0	1	1	1	1
1	1	1	1	1	1	1	1	1	1

Álgebra Booleana 26 / 4

- Note que no caso geral, uma função Booleana de grau n possui
 - como domínio: um conjunto de 2ⁿ elementos,
 - como contra-domínio: um conjunto de dois elementos: $\{0,1\}$.

Portanto, o número de funções Booleanas distintas de grau $n \in 2^{2^n}$.

Exemplo 13 Número de funções Booleanas de grau n:

Grau = n	Número de funções = 2^{2^n}			
1	4			
2	16			
3	256			
4	65 536			
5	4 294 967 296			
6	18 446 744 073 709 551 616			

Álgebra Booleana 27 / 4

Identidades Booleanas

Existem muitas identidades na álgebra Booleana.
 Essas identidades são úteis na simplificação do projeto de circuitos.

• Identidades Booleanas podem ser verificadas usando tabelas de valores.

Exemplo 14 Verifique a identidade Booleana de que x(y+z) = xy + xz.

Álgebra Booleana 28 / 47

Identidades Booleanas

- Existem muitas identidades na álgebra Booleana.
 Essas identidades são úteis na simplificação do projeto de circuitos.
- Identidades Booleanas podem ser verificadas usando tabelas de valores.
- Exemplo 14 Verifique a identidade Booleana de que x(y+z) = xy + xz.

Solução. Podemos verificar a identidade usando a tabela abaixo.

X	у	Z	y+z	x(y+z)	xy	XZ	xy + xz
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

Note que esta identidade Booleana corresponde à equivalência lógica

$$x \wedge (y \vee z) \equiv (x \wedge y) \vee (x \wedge z) ,$$

que é uma das leis de distributividade.

Álgebra Booleana 28 / 47

• Algumas identidades Booleanas importantes:

Nome	Identidade
Lei da dupla complementação	$\overline{\overline{x}} = x$
Leis de idempotência	$ \begin{aligned} x + x &= x \\ x \cdot x &= x \end{aligned} $
Leis de identidade	$ \begin{aligned} x + 0 &= x \\ x \cdot 1 &= x \end{aligned} $
Leis de dominância	$ \begin{aligned} x + 1 &= 1 \\ x \cdot 0 &= 0 \end{aligned} $
Leis de comutatividade	$ \begin{aligned} x + y &= y + x \\ xy &= yx \end{aligned} $
Leis de associatividade	x + (y + z) = (x + y) + z $x(yz) = (xy)z$
Leis de distributividade	x + yz = (x + y)(x + z) $x(y + z) = xy + xz$
Leis de De Morgan	$\frac{\overline{x}\overline{y} = \overline{x} + \overline{y}}{x + y} = \overline{x}\overline{y}$
Leis de absorção	$ \begin{aligned} x + xy &= x \\ x(x + y) &= x \end{aligned} $
Propriedade da unidade	$x + \overline{x} = 1$
Propriedade do zero	$x \cdot \overline{x} = 0$

- É possível verificar identidades Booleanas usando identidades já verificadas.
- Exemplo 15 Verifique a lei de absorção x(x + y) = x usando identidades Booleanas dadas na tabela anterior.

- É possível verificar identidades Booleanas usando identidades já verificadas.
- Exemplo 15 Verifique a lei de absorção x(x + y) = x usando identidades Booleanas dadas na tabela anterior.

Solução.

$$x(x+y) \equiv$$

- É possível verificar identidades Booleanas usando identidades já verificadas.
- Exemplo 15 Verifique a lei de absorção x(x + y) = x usando identidades Booleanas dadas na tabela anterior.

Solução.

$$x(x+y) \equiv (x+0)(x+y)$$

(lei de identidade para a soma)

- É possível verificar identidades Booleanas usando identidades já verificadas.
- Exemplo 15 Verifique a lei de absorção x(x + y) = x usando identidades Booleanas dadas na tabela anterior.

Solução.

$$x(x+y) \equiv (x+0)(x+y)$$
 (lei de identidade para a soma)
 $\equiv x+(0\cdot y)$ (distributividade da soma sobre o produto)

- É possível verificar identidades Booleanas usando identidades já verificadas.
- Exemplo 15 Verifique a lei de absorção x(x + y) = x usando identidades Booleanas dadas na tabela anterior.

Solução.

$$x(x+y) \equiv (x+0)(x+y)$$
 (lei de identidade para a soma)
 $\equiv x+(0\cdot y)$ (distributividade da soma sobre o produto)
 $\equiv x+y\cdot 0$ (comutatividade do produto)

- É possível verificar identidades Booleanas usando identidades já verificadas.
- Exemplo 15 Verifique a lei de absorção x(x + y) = x usando identidades Booleanas dadas na tabela anterior.

Solução.

$$x(x+y) \equiv (x+0)(x+y)$$
 (lei de identidade para a soma)
 $\equiv x+(0\cdot y)$ (distributividade da soma sobre o produto)
 $\equiv x+y\cdot 0$ (comutatividade do produto)
 $\equiv x+0$ (lei de dominância para o produto)

- É possível verificar identidades Booleanas usando identidades já verificadas.
- Exemplo 15 Verifique a lei de absorção x(x + y) = x usando identidades Booleanas dadas na tabela anterior.

Solução.

$$x(x+y) \equiv (x+0)(x+y)$$
 (lei de identidade para a soma)
 $\equiv x+(0\cdot y)$ (distributividade da soma sobre o produto)
 $\equiv x+y\cdot 0$ (comutatividade do produto)
 $\equiv x+0$ (lei de dominância para o produto)
 $\equiv x$ (lei de identidade para a soma)

Dualidade

- As identidades da tabela anterior vêm em pares (exceto pelas leis da dupla complementação, da unidade, e do zero).
- Para explicar a relação entre as duas identidades em cada par nós usamos o conceito dualidade.
- O dual de uma expressão Booleana é obtido pelo intercâmbio entre:
 - somas Booleanas e produtos Booleanos,
 - valores 0 e valores 1.
- Exemplo 16 Encontre os duais das expressões abaixo.
 - O dual de x(y+0) é: $x+(y\cdot 1)$.
 - O dual de $\overline{x} \cdot 1 + (\overline{y} + z)$ é: $(\overline{x} + 0)(\overline{y}z)$

Dualidade: O princípio da dualidade

 O dual de uma função Booleana F representada por uma expressão Booleana é a função F^d representada pelo dual desta expressão correspondente.

A função dual F^d não depende da expressão Booleana particular usada para representar F.

• Um resultado importante é o princípio da dualidade:

"Uma identidade entre funções representadas por expressões Booleanas permanece válida quando ambos os lados da igualdade são substituídos por seus duais."

- O princípio da dualidade é particularmente útil para derivar novas identidades.
- Exemplo 17 Construa uma identidade a partir de x(x + y) = x (uma das leis de absorção) usando o princípio da dualidade.

Dualidade: O princípio da dualidade

 O dual de uma função Booleana F representada por uma expressão Booleana é a função F^d representada pelo dual desta expressão correspondente.

A função dual F^d não depende da expressão Booleana particular usada para representar F.

• Um resultado importante é o princípio da dualidade:

"Uma identidade entre funções representadas por expressões Booleanas permanece válida quando ambos os lados da igualdade são substituídos por seus duais."

- O princípio da dualidade é particularmente útil para derivar novas identidades.
- Exemplo 17 Construa uma identidade a partir de x(x + y) = x (uma das leis de absorção) usando o princípio da dualidade.

Solução. Tomando duais em ambos lados da identidade, chegamos à nova identidade x + xy = x (que é a outra lei de absorção).

Definição abstrata de álgebra Booleana

- Note que os resultados que estabelecemos podem ser traduzidos:
 - em resultados sobre lógica proposicional (onde complemento, +, ·, 0, 1, correspondem a, respectivamente, a negação, ∨, ∧, F, T);
 - em resultados sobre teoria de conjuntos (onde complemento, +, \cdot , 0, 1, correspondem a, respectivamente, a complemento de conjuntos, \cup , \cap , \emptyset , conjunto universo U).

(Verifique você mesmo(a) que as identidades Booleanas correspondem às identidades de conjuntos!)

- Formalizamos estes princípios como uma álgebra Booleana abstrata.
- Ao mostrar que uma estrutura (e.g., lógica proposicional, teoria de conjuntos, etc.) é uma álgebra Booleana, então os resultados estabelecidos sobre álgebras Booleanas em geral podem ser aplicados a esta estrutura particular!

Definição abstrata de álgebra Booleana

• Uma álgebra Booleana é um conjunto B com duas operações binárias ∧ e
 √, elementos 0 e 1, e uma operação unária tais que as seguintes
 propriedades sejam válidas para todo x, y, e z em B:

Leis de identidade :
$$\begin{cases} x \vee 0 = x \\ x \wedge 1 = x \end{cases}$$
 Leis de complemento :
$$\begin{cases} x \vee \overline{x} = 1 \\ x \wedge \overline{x} = 0 \end{cases}$$
 Leis de associatividade :
$$\begin{cases} (x \vee y) \vee z = x \vee (y \vee z) \\ (x \wedge y) \wedge z = x \wedge (y \wedge z) \end{cases}$$
 Leis de comutatividade :
$$\begin{cases} x \vee y = y \vee x \\ x \wedge y = y \wedge x \end{cases}$$
 Leis de distributividade :
$$\begin{cases} x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z) \\ x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z) \end{cases}$$

Representação de Funções Booleanas

Representação de Funções Booleanas: Introdução

- Aqui vamos atacar dois problemas importantes da álgebra Booleana:
 - Como encontrar uma expressão Booleana que represente uma função pretendida?
 - Veremos como qualquer função Booleana pode ser representada por expressões apenas com soma, produto, complemento, variáveis e valores Booleanos.
 - Existe um conjunto menor de operadores que pode ser usado para representar todas as funções Booleanas?
 - Veremos que todas as funções Booleanas podem ser representadas usando apenas um operador!

• Ambos os problemas têm enorme importância prática no design de circuitos.

- Uma maneira de representar qualquer função Booleana
- Facilmente computável a partir da tabela de valores da função
- Exemplo 18 Encontre uma expressão Booleana para a função F dada na tabela abaixo.

X	$x \mid y \mid z \mid$		F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

• Exemplo 18 (Continuação)

Solução. Primeiramente, note que para representar a função F precisamos de uma expressão Booleana que:

- assuma o valor 1 quando x = 1, y = 0, e z = 1, e
- assuma o valor 0 em caso contrário.

Esta expressão pode ser formada tomando o produto Booleano de x, \overline{y} e z, pois

$$x\overline{y}z = \begin{cases} 1, & \text{se } x = 1, \ y = 0 \ \text{e } z = 1 \\ 0, & \text{em caso contrário} \end{cases}$$

Assim, chegamos à conclusão de que uma expressão para F é

$$F = x\overline{y}z$$
.

• Exemplo 19 Encontre uma expressão Booleana para as a função *G* dada na tabela abaixo.

X	$x \mid y \mid z \mid$		G
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

• Exemplo 19 Encontre uma expressão Booleana para as a função *G* dada na tabela abaixo.

X	У	Z	G
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Solução. Primeiramente, note que para representar a função G precisamos de uma expressão Booleana que:

- assuma o valor 1 quando: x = 0, y = 1 e z = 0, ou x = 1, y = 1 e z = 0.
- assuma o valor 0 em caso contrário.

• Exemplo 19 (Continuação)

Esta expressão pode ser formada tomando a soma Booleana de dois produtos Booleanos, pois

$$\overline{x}y\overline{z} = \begin{cases} 1, & \text{se } x = z = 1 \text{ e } y = 0 \\ 0, & \text{em caso contrário} \end{cases}$$

е

$$xy\overline{z} = \begin{cases} 1, & \text{se } x = z = 1 \text{ e } y = 0 \\ 0, & \text{em caso contrário} \end{cases}$$

Assim, chegamos à conclusão de que uma expressão para G é

$$G = \overline{x}y\overline{z} + xy\overline{z}$$

- Cada combinação de valores das variáveis para as quais a função tem o valor
 1 leva a um produto Booleano das variáveis ou seus complementos.
 - Como generalizar?
- Um literal é uma variável Booleana ou seu complemento.
- Um mintermo das variáveis Booleanas x₁, x₂,...,x_n é um produto Booleano y₁, y₂,...,y_n em que para cada i temos y_i = x_i ou y_i = x̄_i.
 (Um mintermo é um produto de n literais, com um literal para cada variável.)
- Exemplo 20 Encontre um mintermo que seja igual a 1 se $x_1 = x_3 = 0$ e $x_2 = x_4 = x_5 = 1$.

- Cada combinação de valores das variáveis para as quais a função tem o valor
 1 leva a um produto Booleano das variáveis ou seus complementos.
 - Como generalizar?
- Um literal é uma variável Booleana ou seu complemento.
- Um **mintermo** das variáveis Booleanas x_1, x_2, \ldots, x_n é um produto Booleano y_1, y_2, \ldots, y_n em que para cada i temos $y_i = x_i$ ou $y_i = \overline{x_i}$. (Um mintermo é um produto de n literais, com um literal para cada variável.)
- Exemplo 20 Encontre um mintermo que seja igual a 1 se $x_1 = x_3 = 0$ e $x_2 = x_4 = x_5 = 1$.

Solução. O mintermo é $\overline{x_1}x_2\overline{x_3}x_4x_5$.

- Dada uma tabela de valores para uma função Booleana F de grau n:
 - Tome o mintermo de cada combinação de variáveis que fazem F igual a 1.
 - Defina F como a soma Booleana destes mintermos.

Esta soma dos mintermos é a **forma normal disjuntiva** ou **expansão em soma de produtos** da função Booleana.

Exemplo 21 Encontre a forma normal disjuntiva da função Booleana \oplus (XOR) definida na tabela abaixo.

<i>x</i> ₁	<i>x</i> ₂	$x_1 \oplus x_2$
0	0	0
0	1	1
1	0	1
1	1	0

- Dada uma tabela de valores para uma função Booleana F de grau n:
 - Tome o mintermo de cada combinação de variáveis que fazem F igual a 1.
 - Defina F como a soma Booleana destes mintermos.

Esta soma dos mintermos é a **forma normal disjuntiva** ou **expansão em soma de produtos** da função Booleana.

Exemplo 21 Encontre a forma normal disjuntiva da função Booleana \oplus (XOR) definida na tabela abaixo.

<i>x</i> ₁	<i>x</i> ₂	$x_1 \oplus x_2$
0	0	0
0	1	1
1	0	1
1	1	0

Solução. A função $x_1 \oplus x_2$ assume valor 1 quando:

•
$$x_1 = 0$$
 e $x_2 = 1$ (mintermo $\overline{x_1}x_2$); ou

•
$$x_1 = 1$$
 e $x_2 = 0$ (mintermo $x_1\overline{x_2}$).

$$\mathsf{Logo}\ x_1 \oplus x_2 = \overline{x_1}x_2 + x_1\overline{x_2}.$$

• Exemplo 22 Encontre a forma normal disjuntiva da função $F(x,y,z)=(x+y)\overline{z}$.

• Exemplo 22 Encontre a forma normal disjuntiva da função $F(x,y,z)=(x+y)\overline{z}$.

Solução. Vamos resolver esta questão de duas maneiras.

A primeira maneira é construir a tabela do comportamento de F e derivar dela a forma normal conjuntiva.

X	У	Z	x + y	Z	$(x+y)\overline{z}$
0	0	0	0	1	0
0	0	1	0	0	0
0	1	0	1	1	1
0	1	1	1	0	0
1	0	0	1	1	1
1	0	1	1	0	0
1	1	0	1	1	1
1	1	1	1	0	0

• Exemplo 22 Encontre a forma normal disjuntiva da função $F(x,y,z)=(x+y)\overline{z}$.

Solução. Vamos resolver esta questão de duas maneiras.

A primeira maneira é construir a tabela do comportamento de ${\cal F}$ e derivar dela a forma normal conjuntiva.

X	у	Z	x + y	Z	$(x+y)\overline{z}$
0	0	0	0	1	0
0	0	1	0	0	0
0	1	0	1	1	1
0	1	1	1	0	0
1	0	0	1	1	1
1	0	1	1	0	0
1	1	0	1	1	1
1	1	1	1	0	0

A função F assume valor 1 quando:

- x = z = 0 e y = 1 (mintermo \overline{x} y \overline{z}); ou
- x = 1 e y = z = 0(mintermo $x \overline{y} \overline{z}$); ou
- x = y = 1 e z = 0 (mintermo $x y \overline{z}$).

Logo
$$F(x, y, z) = \overline{x} y \overline{z} + x \overline{y} \overline{z} + x y \overline{z}$$
.

• Exemplo 22 (Continuação)

A segunda maneira é usar identidades Booleanas para expandir o produto que representa a função F, e depois simplificá-lo.

$$F(x,y,z) = (x+y)\overline{z}$$

$$= x\overline{z} + y\overline{z}$$

$$= x 1\overline{z} + 1y\overline{z}$$

$$= x (y + \overline{y})\overline{z} + (x + \overline{x})y\overline{z}$$

$$= x y \overline{z} + x \overline{y} \overline{z} + x y \overline{z}$$
(Lei da distributividade)
$$= x y \overline{z} + x \overline{y} \overline{z} + x y \overline{z}$$
(Lei da distributividade)
$$= x y \overline{z} + x \overline{y} \overline{z} + x y \overline{z}$$
(Lei de idempotência)

- Toda função Booleana pode ser expressa em forma normal disjuntiva
 - (Como você demonstraria isso?)
- Na forma normal disjuntiva utilizamos os operadores Booleanos de:
 - complemento , soma + , e

produto · .

- Logo o conjunto $\{\overline{}, +, \cdot\}$ é funcionalmente completo.
- Isto leva à pergunta:

"É possível encontrar um conjunto menor de operadores que seja funcionalmente completo?"

- Podemos eliminar um dos operadores se ele poder ser expresso por outros.
- Em particular, podemos eliminar a soma Booleana, notando que:

$$x + y =$$

- Podemos eliminar um dos operadores se ele poder ser expresso por outros.
- Em particular, podemos eliminar a soma Booleana, notando que:

$$x + y = \overline{\overline{x + y}}$$
 (Lei da dupla complementação)

- Podemos eliminar um dos operadores se ele poder ser expresso por outros.
- Em particular, podemos eliminar a soma Booleana, notando que:

$$x+y=\overline{\overline{x+y}}$$
 (Lei da dupla complementação)
= $\overline{\overline{x}}\,\overline{\overline{y}}$ (De Morgan)

Isso significa que $\{-,\cdot\}$ também é funcionalmente completo.

- Podemos eliminar um dos operadores se ele poder ser expresso por outros.
- Em particular, podemos eliminar a soma Booleana, notando que:

$$x+y=\overline{\overline{x+y}}$$
 (Lei da dupla complementação)
$$=\overline{\overline{x}\,\overline{y}}$$
 (De Morgan)

Isso significa que $\{-,\cdot\}$ também é funcionalmente completo.

• De forma similar, podemos eliminar o produto Booleana, notando que:

$$xy =$$

- Podemos eliminar um dos operadores se ele poder ser expresso por outros.
- Em particular, podemos eliminar a soma Booleana, notando que:

$$x+y=\overline{\overline{x+y}}$$
 (Lei da dupla complementação)
$$=\overline{\overline{x}\,\overline{y}}$$
 (De Morgan)

Isso significa que $\{-,\cdot\}$ também é funcionalmente completo.

• De forma similar, podemos eliminar o produto Booleana, notando que:

$$xy = \overline{\overline{xy}}$$
 (Lei da dupla complementação)

- Podemos eliminar um dos operadores se ele poder ser expresso por outros.
- Em particular, podemos eliminar a soma Booleana, notando que:

$$x+y=\overline{\overline{x+y}}$$
 (Lei da dupla complementação)
$$=\overline{\overline{x}\,\overline{y}}$$
 (De Morgan)

Isso significa que $\{-,\cdot\}$ também é funcionalmente completo.

• De forma similar, podemos eliminar o produto Booleana, notando que:

$$xy = \overline{\overline{xy}}$$
 (Lei da dupla complementação)
= $\overline{\overline{x} + \overline{y}}$ (De Morgan)

Isso significa que $\{-,+\}$ também é funcionalmente completo.

• O operador **NAND**, denotado por |, é definido como

$$0 \mid 0 = 1, \qquad 0 \mid 1 = 1, \qquad 1 \mid 0 = 1, \qquad 1 \mid 1 = 0 \ .$$

- O conjunto $\{|\}$ é funcionalmente completo pois $\{\overline{\ },\cdot\}$ também o é e *NAND* pode representar complemento e produtos Booleanos.
 - Primeiro, note que $\overline{x} = x \mid x$, como mostra a tabela abaixo.

X	\overline{X}	X	X
0	1		1
1	0	()

• Segundo, note que $xy = (x \mid y) \mid (x \mid y)$, como mostra a tabela abaixo.

X	y	xy	$x \mid y$	$(x \mid y) \mid (x \mid y)$
0	0	0	1	0
0	1	0	1	0
1	0	0	1	0
1	1	1	0	1