컴퓨터구조 Assignment-1 (Fall 2019)

- 1. 문제는 쓰지 말 것. **문제 쓰면 감점!**
- 2. 표지 만들지 말고, 맨 위에 수강반, 학번, 이름만 쓸 것.
- 3. Hand-written only.
- 4. Later submission is not allowed for any reason.
- 5. 9월 30일(월) 강의실에서 제출
- 6. 이 날 강의에 출석할 수 없는 사람은 사진 찍어서 e-mail로 보낼 것. 단 강의 시작 전까지 보내야 함.
- 1. \$s5의 값이 0xFA302E07 일 때, sw \$s5,0x54(\$zero) 명령어를 실행하면 memory 몇 번지의 내용이 얼마로 변하는지 모두 써라. 16진수 사용. (0x54는 16진수 54를 뜻한다.)
 - (1) Big-endian 일 때
 - (2) Little-endian 일 때
- 2. Memory k 번지의 값이 k+1 일 때, lw \$t2,0x30(\$zero) 명령어를 실행하면 \$t2의 값이 얼마가 되는지 16진수로 표시하라.
 - (1) Big-endian 일 때
 - (2) Little-endian 일 때
- 3. 다음 각 명령어의 기계어 표현을 16진수 8자리로 나타내라. 기계어로 나타낼 수 없다면 그 이유를 써라.
 - (1) add \$s7,\$t7,\$t9
 - (2) addi \$t1,\$s0,-1
 - (3) s1t \$t3,\$t0,\$s0
 - (4) sll \$s3,\$t0,11
 - (5) lw \$t1,3(\$zero)
 - (6) beq \$s7,\$t6,AA (이 명령어는 280ten 번지에 있고 AA는 316ten 번지이다.)
 - (7) j BB (이 명령어는 0xB5320F00 번지에 있고 BB는 0xB0000008 번지이다.)
 - (8) lui \$s1,0xFFFF

4. MIPS CPU를 갖는 컴퓨터에서 메모리 m 번지(0≤m<0xFF)의 값은 m+1이고, register \$r(0≤r<32)에는 r*2가 저장되어 있다고 하자. Bi-endian이라고 가정하고, 다음 각 기계어 의 어셈블리 명령어를 보이고, 실행 결과를 설명하되, "\$20이 (또는 PC가, 또는 memory 300 번지가) 171로 바뀐다."와 같이 표현하라. 만일 이 명령어를 실행할 수 없다면 그 이 유를 설명하라. 이 문제에서 0x가 붙지 않은 숫자는 모두 2진수이다. 답을 쓸 때 10진수는 그냥 쓰면 되지만, 16진수를 사용할 때는 0x를 붙일 것. (예) 0x3A2F

(1)	000000	00101	00100	00010	00000	100010
(2)	000000	10000	10110	00100	00000	101010
(3)	001111	00000	10011	1111	0000 0000	0011
(4)	000000	00000	11110	10010	00100	000010

(5) Big-endian을 가정하라.

100011	10000	01001	0000 0000 0000 0100

(6) Little-endian을 가정하라.

100011	01000	10001	0000 0000 0000 1100

(7) Big-endian을 가정하라.

101011	00100	00001	0000 0000 0000 1010

(8) 이 명령어는 0x2000ABC4 번지에 있다.

000010 10 0000 0000 0000 0000 0000 0011

(9) 이 명령어는 0x9800000C 번지에 있다.

000011 00 0000 0000 0000 0000 1000

(10) 이 명령어는 0x98000000 번지에 있다.

000101 01000 10001 0000 0000 0000 1100
--

- 5. In a Von Neumann architecture, groups of bits have no intrinsic meanings by themselves. What a bit pattern represents depends entirely on how it is used. X=0x8D100004 is a bit pattern expressed in hexadecimal notation.
 - (1) What decimal number does X represent if it is an unsigned integer?
 - (2) What decimal number does X represent if it is a signed magnitude integer?
 - (3) What decimal number does X represent if it is a signed one's-complement integer?
 - (4) What decimal number does X represent if it is a signed two's-complement integer?
 - (5) If X is placed in the code segment, what MIPS instruction will be executed? Give the corresponding assembly instruction.