Separable: M(x) dx = N(y) dy

Solution:
$$\int M(x) dx = \int N(y) dy$$

$$\underline{\mathbf{Linear:}} \qquad \mathbf{y'} + \mathbf{p}(\mathbf{x}) \, \mathbf{y} = \mathbf{g}(\mathbf{x})$$

Solution:
$$\mu y = \int \mu g(x) dx$$

Integrating Factor:
$$\mu = e^{\int p(x) dx}$$

$$\begin{array}{ll} \underline{Exact:} & M(x,y)\,dx + N(x,y)\,dy = 0 \\ \text{where} & \frac{\partial}{\partial y}M\,dy\,dx = \frac{\partial}{\partial x}N\,dx\,dy \end{array}$$

Solution:
$$\Psi(x,y) = c$$
 where $\frac{\partial}{\partial x}\Psi = M$
 $\frac{\partial}{\partial y}\Psi = N$

$$\Psi = \text{``least common sum''} \begin{cases} \int M(x,y) \, dx \\ \int N(x,y) \, dy \end{cases}$$

To make a non-exact equation become exact:
$$\mu M(x,y) dx + \mu N(x,y) dy = 0$$
 Integrating Factor:
$$\ln \mu = \int \frac{M_y - N_x}{N} dx$$
 or
$$\ln \mu = \int \frac{N_x - M_y}{M} dy$$
 (integrals above must be single variable)

Autonomous: y' = f(y)

$$f(y_0) = 0 \Longrightarrow$$
 equilibrium solution at $y = y_0$

$$f(y_0) < 0 \Longrightarrow$$
 solutions go down at $y = y_0$

$$f(y_0) > 0 \Longrightarrow$$
 solutions go up at $y = y_0$

"unstable equilibrium" = solutions go away

"stable equilibrium" = solutions go towards "semi-stable equilibrium" = solutions mixed

Homogeneous: $y' = \frac{P(x,y)}{Q(x,y)}$

P and Q are polynomials in x and yall $x^n y^m$ have total power (n+m) the same

Multiply:
$$y' = \frac{P(x,y)}{Q(x,y)} \cdot \frac{\frac{1}{x^{n+m}}}{\frac{1}{n+m}}$$

Substitute:
$$\left(\frac{y}{x}\right) = v$$
 and $y' = v + xv'$

(This converts equation to a separable DE.)

Bernoulli: $y' + p(x)y = q(x)y^n$

Rewrite:
$$y^{-n} y' + p(x) y^{1-n} = q(x)$$

Substitute: $y^{1-n} = v$ and $y^{-n} y' = \frac{1}{1-n} v'$

(This converts equation to a linear DE.)

Homogeneous Linear, Constant Coefficients: $\mathbf{a} \mathbf{y}'' + \mathbf{b} \mathbf{y}' + \mathbf{c} \mathbf{y} = \mathbf{0}$

Characteristic Eqn:
$$ar^2 + br + c = 0$$

Solution depends on the type of roots:

•
$$r = r_1, r_2$$
 (real, not repeated)
 $y = c_1 e^{r_1 x} + c_2 e^{r_2 x}$

•
$$r = \alpha \pm \beta i$$
 (complex conjugates)
 $y = c_1 e^{\alpha x} \cos(\beta x) + c_2 e^{\alpha x} \sin(\beta x)$

•
$$r = r_0, r_0$$
 (repeated root)
 $y = c_1 e^{r_0 x} + c_2 x e^{r_0 x}$

Reduction of Order:

$$\mathbf{y''} + \mathbf{p}(\mathbf{x}) \mathbf{y'} + \mathbf{q}(\mathbf{x}) \mathbf{y} = \mathbf{0}$$
 with one solution $\mathbf{y_1} = \mathbf{y_1}(\mathbf{x})$ known

Substitute:
$$y = yy_1$$

$$y' = yy_1' + v'y_1$$

 $y'' = yy_1'' + 2v'y_1' + v''y_1$

DE becomes:
$$(2v'y'_1 + v''y_1) + pv'y_1 = 0$$

Separable:
$$\frac{1}{(v')}(v')' = -\left(p + \frac{2y_1'}{y_1}\right)$$

Undetermined Coefficients:

$$\mathbf{y}'' + \mathbf{p}(\mathbf{x})\,\mathbf{y}' + \mathbf{q}(\mathbf{x})\,\mathbf{y} = \mathbf{g}(\mathbf{x})$$

homogeneous solution $\mathbf{y} = \mathbf{c_1}\,\mathbf{y_1} + \mathbf{c_2}\,\mathbf{y_2}$ known

General solution is $y = c_1 y_1 + c_2 y_2 + Y_n$

 Y_n is a particular solution

Find Y_n by guessing a form and then plugging into DE:

•
$$g = a_0 x^n + a_1 x^{n-1} + \dots + a_n$$

$$Y_p = x^s (A_0 x^n + A_1 x^{n-1} + \dots + A_n)$$

•
$$g = (a_0 x^n + a_1 x^{n-1} + \dots + a_n) e^{\alpha x}$$

$$Y_p = x^s (A_0 x^n + A_1 x^{n-1} + \dots + A_n) e^{\alpha x}$$

•
$$g = (a_0 x^n + \dots + a_n) e^{\alpha x} \cos(\beta x)$$
 or $\sin(\beta x)$

$$Y_p = x^s (A_0 x^n + \dots + A_n) e^{\alpha x} \cos(\beta x) + x^s (B_0 x^n + \dots + B_n) e^{\alpha x} \sin(\beta x)$$

 $(x^s is chosen so that y_1 and y_2 are not terms of Y_n)$

Variation of Parameters:

$$\mathbf{y}'' + \mathbf{p}(\mathbf{x})\,\mathbf{y}' + \mathbf{q}(\mathbf{x})\,\mathbf{y} = \mathbf{g}(\mathbf{x})$$

homogeneous solution $\mathbf{y} = \mathbf{c_1} \, \mathbf{y_1} + \mathbf{c_2} \, \mathbf{y_2} \, \mathbf{known}$

General solution is:

$$y = -y_1 \int \frac{y_2 g}{W(y_1, y_2)} dx + y_2 \int \frac{y_1 g}{W(y_1, y_2)} dx$$

Wronskian: $W(y_1, y_2) = y_1 y_2' - y_1' y_2$

First Order, Linear Initial Value Problem:

$$\mathbf{y}' + \mathbf{p}(\mathbf{x}) \mathbf{y} = \mathbf{g}(\mathbf{x}), \quad \mathbf{y}(\mathbf{x}_0) = \mathbf{y}_0$$

- Solution exists and is unique if p and q are continuous at x_0 .
- Solution is defined on the entire interval containing x_0 where p and q are continuous.

Note: higher order linear is the same.

First Order, General Initial Value Problem: $\mathbf{v}' = \mathbf{f}(\mathbf{x}, \mathbf{v}), \quad \mathbf{v}(\mathbf{x}_0) = \mathbf{v}_0$

- Solution exists if f is continuous at (x_0, y_0) .
- It is unique if \$\frac{\partial}{\partial y} f\$ is continuous at \$(x_0, y_0)\$.
 Solutions are defined somewhere inside the rectangle containing (x_0, y_0) where f and $\frac{\partial}{\partial u} f$ are continuous.

Differential Equations as Vibrations

$$\mathbf{m} \mathbf{y}'' + \gamma \mathbf{y}' + \mathbf{k} \mathbf{y} = \mathbf{F}(\mathbf{x}) \quad \begin{cases} m & \text{mass} \\ \gamma & \text{dampening} \\ k & \text{spring constant} \\ F & \text{forcing function} \end{cases}$$

- (Undamped) natural freq. $\omega_0 = \sqrt{\frac{k}{m}}$
- (Damped) quasi-frequency $\mu = \sqrt{\frac{k}{m} \left(\frac{\gamma}{2m}\right)^2}$

Resonance occurs if forcing freq. \approx system freq.

Not pictured: **overdamped** $(\gamma^2 > 4mk)$ critically damped ($\gamma^2 = 4mk$)