Pre-Program Exercises for PACE 2023 Participants

April 26, 2023

1 The symmetric group and the Bruhat orders

Definition 1.1. A permutation is a bijection from $[n] := \{1, 2, ..., n\}$ to [n].

We typically write a permutation via one-line notation. For example, w = 3142 means w(1) = 3, w(2) = 1, w(3) = 4 and w(4) = 2.

Definition 1.2. The symmetric group S_n is the group of all permutations on [n] with the group operation being composition of maps. Let $s_i = (i \ i+1)$ be the permutation that swaps i and i+1, called a simple transposition or a simple generator, for $i = 1, \ldots, n-1$.

It is clear that $\{s_1, \ldots, s_{n-1}\}$ generates S_n . For example, the permutation 3142 can be written as $s_2s_1s_3$.

Exercise 1.3. Show that $S_n = \langle s_1, \dots, s_{n-1} \rangle / \mathfrak{I}$ where \mathfrak{I} is generated by three types of relations:

- $s_i^2 = 1$ for $i = 1, \dots, n-1$;
- $s_i s_j = s_j s_i$ for $|i j| \ge 2$;
- $s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}$ for $i = 1, \dots, n-2$.

Definition 1.4. The *length* of a permutation w is defined to be the smallest ℓ such that $w = s_{i_1} s_{i_2} \cdots s_{i_\ell}$ for some simple generators $s_{i_1}, \ldots, s_{i_\ell}$. Denote the length by $\ell(w)$.

For example, the permutation 3142 has length 3 as $3142 = s_2 s_1 s_3$.

Exercise 1.5. Let $I(w) = \{(i,j) \mid i < j, \ w(i) > w(j)\}$ be the set of *inversions* of w. Show that $\ell(w) = |I(w)|$.

For example, $I(3142) = \{(1,2), (1,4), (3,4)\}$ has size 3, which equals $\ell(3142)$.

Exercise 1.6. Show that there exists a unique permutation with maximal length, which we denote as w_0 . Show that $\ell(w_0w) = \ell(ww_0) = \ell(w_0) - \ell(w)$ for any $w \in S_n$.

Figure 1: The weak and strong order on S_3 .

Definition 1.7. The (right) weak Bruhat order is a partial order defined on S_n such that $w \leq_R w s_i$ if $\ell(w) < \ell(w s_i)$ for some i. The left weak Bruhat order is defined by $w \leq_L s_i w$ if $\ell(w) < \ell(s_i w)$.

Exercise 1.8. Show that $u \leq_L w$ in the left weak Bruhat order if and only if $I(u) \subset I(w)$.

Exercise 1.9. Show that the weak Bruhat order is a graded lattice graded by length ℓ .

Now define the transpositions T to be all the conjugates of $\{s_1, \ldots, s_{n-1}\}$. In other words, $T = \{(i \ j) \mid 1 \le i < j \le n\}$ contains all the 2-cycles. Write $t_{ij} := (i \ j)$.

Definition 1.10. The (strong) Bruhat order is defined by $w < wt_{ij}$ if $\ell(w) < \ell(wt_{ij})$.

Exercise 1.11. Why do we not define a left version of the strong Bruhat order?

We are now going to discuss criteria characterizing the strong Bruhat order.

Exercise 1.12. For a permutation $w \in S_n$, write $w[i,j] = \#\{k \mid k \leq i, \ w(k) \leq j\}$ for all $i,j \in [n]$. This is called the *rank-matrix* associated with w. See Figure 2 for an example. Show that $x \leq y$ in

	•				
		•			
					•
				•	
•					
			•		

0	1	1	1	1	1
0	1	2	2	2	2
0	1	2	2	2	3
0	1	2	2	3	4
1	2	3	3	4	5
1	2	3	4	5	6

Figure 2: A rank matrix for permutation w = 236514

the (strong) Bruhat order if and only if $x[i,j] \ge y[i,j]$ for all $i,j \in [n]$.

Exercise 1.13. For two subsets A and B of the same size, we say that $A \leq B$ in the Gale order if $a_i \leq b_i$ for all i where $A = \{a_1 < \cdots < a_k\}$, $B = \{b_1 < \cdots < b_k\}$. Show that $x \leq y$ in the (strong) Bruhat order if $\{x(1), \ldots, x(i)\} \leq \{y(1), \ldots, y(i)\}$ in the Gale order for all $i = 1, \ldots, n$. This is called the tableaux criterion.

Exercise 1.14. Fix a reduced word for some $w = s_{i_1} \cdots s_{i_\ell}$. Show that if $u \leq w$ in the (strong) Bruhat order, then there exists a subword of i_1, \ldots, i_ℓ which is a reduced word for u. This is called the *subword property*. For example, fix $3241 = s_1 s_2 s_3 s_1$. Then 3214 = 321 < 3241 and we can choose $s_1 s_2 s_1 = 321$ as a subword for 321.

Exercise 1.15. Is it true that for any reduced word $u = s_{j_1} \cdots s_{j_k}$ and $w \ge u$, there is a reduced word for w that contains j_1, \ldots, j_k as a subword?

Exercise 1.16. Show that the strong Bruhat order is a graded poset. Furthermore, show that any length 2 interval [u, v] in the strong Bruhat order is isomorphic to a diamond. This is called the diamond rule.

Exercise 1.17. Show that if $u \leq v$ in the strong Bruhat order, and simple reflection s_i satisfies $\ell(u) < \ell(us_i)$ and $\ell(v) > \ell(vs_i)$, then $u \leq vs_i$ and $us_i \leq v$. This is called the *lifting property*.

Exercise 1.18. Show that the strong Bruhat order is *top-heavy*, meaning that for any $w \in S_n$ and any $k \leq \ell(w)/2$,

$$|\{u \in S_n \mid u \le w, \ \ell(u) = k\}| \le \{u \in S_n \mid u \le w, \ \ell(u) = \ell(w) - k\}.$$

For example, when w = 3412 and k = 1, we have 2134, 1324, 1243 on the left hand side and 1432, 2413, 3142, 3214 on the right hand side, and indeed $3 \le 4$.

2 Matroids

Definition 2.1. A matroid M is a pair (E, \mathfrak{B}) , where E is a finite set (called the ground set of M) and \mathfrak{B} is a collection of subsets of E (called bases of M), such that

- (B1) $\mathfrak{B} \neq \emptyset$;
- (B1) If $B_1, B_2 \in \mathfrak{B}$, and $x \in B_1 \setminus B_2$, then there exists $y \in B_2 \setminus B_1$ such that $(B_1 \setminus \{x\}) \cup \{y\} \in \mathfrak{B}$. This is called the *basis exchange property*.

Exercise 2.2. Show that any two bases of M have the same carndinality, called the rank of M.

Exercise 2.3. Let $E = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ be a collection of vectors in \mathbb{R}^k that spans \mathbb{R}^k . Let \mathfrak{B} be the collection of subsets in E that form a basis of \mathbb{R}^k . Show that $M = (E, \mathfrak{B})$ is a matroid. This is called a *realizable matroid (over* \mathbb{R}).

Exercise 2.4. Let G = (V, E) be a finite connected graph, and \mathfrak{B} be the collection of spanning trees in G. Show that $M_G = (E, \mathfrak{B})$ is a matroid. This is called a *graphical matroid*.

Exercise 2.5. Let $M = (E, \mathfrak{B})$ be a matroid. Define $\mathfrak{B}^* = \{E \setminus B : B \in \mathfrak{B}\}$. Show that $M^* = (E, \mathfrak{B}^*)$ is also a matroid, called the *dual matroid* of M.

Definition 2.6. A set $A \subset E$ is an *independent set* if A is contained in some basis $B \in \mathfrak{B}$. A circuit $C \subset E$ is a minimal dependent set. The rank function $r: 2^E \to \mathbb{N}$ is a function that assigns every subset $A \subset E$ a number r(A) = the maximal number of elements in an independent subset of E contained in E. A flat is a subset E is a subset E which is maximal for its rank, meaning that the addition of any other element to the set would increase the rank.

Exercise 2.7. What are the independent sets, circuits, rank functions, and flats in a realizable matroid/graphical matroid?