Data Structures I : O notation

Mauricio Toro
Deparment of Systems and Informatics
Universidad EAFIT

Cocktail of the day: Colombia

Disclaimer: Keep alcohol out of the hands of minors.

Cocktail of the day: Colombia

- 20 ml vodka
- 10 ml blue Curação
- 10 ml grenadine
- 10 ml lemon juice
- 60 ml orange juice

Logistic optimization uses trees

https://www.youtube.com/watch?v=rlC7hlORfxw

Complexity analysis

- **1** Number of instructions: T(n)
- Asymptotic analysis: O notation
- Rule of sums
- Rule of products

https://www.khanacademy.org/computing/ computer-science/cryptography/modern-crypt/p/ time-complexity-exploration

Sum the elements of an array

Figure: Array sum

Sum the elements of an array (2)

```
Proceso ArraySum
  Definir i, n, sum, A Como Entero;
  Leer n;
  sum <- 0;
  Dimension A[n]:
  Para i <- 0 hasta n-1 con paso 1 Hacer
    sum <- sum + A[i];
  FinPara
  Escribir sum;
FinProceso
```


Sum the elements of an array (3)

```
Proceso ArraySum
  Definir i, n, sum, A Como Entero;
  Leer n:
  sum <- 0;
  Dimension A[n]:
  Para i <- 0 hasta n-1 con paso 1 Hacer
    sum <- sum + A[i];
  FinPara
  Escribir sum;
FinProceso
```

Number of instructions T(n) = ?

Sum the elements of an array (4)

```
Proceso ArraySum
  Definir i, n, sum, A Como Entero; // C1
                                         // C2
  Leer n:
  sum <- 0;
                                         // C3
  Dimension A[n]:
                                         // C4
  Para i <- 0 hasta n-1 con paso 1 Hacer // C5*n
    sum <- sum + A[i];
                                         // C6*n
  FinPara
                                         // C7
  Escribir sum;
FinProceso
```

Sum the elements of an array (5)

```
Proceso ArraySum
  Definir i, n, sum, A Como Entero; // C1
                                         // C2
  Leer n:
  sum <- 0;
                                         // C3
  Dimension A[n]:
                                         // C4
  Para i <- 0 hasta n-1 con paso 1 Hacer // C5*n
    sum <- sum + A[i];
                                         // C6*n
  FinPara
                                         // C7
  Escribir sum;
FinProceso
```

 $T(n) = c \cdot n + c'$ is $O(n) \dots$ why?

O notation

- Big O notation describes the limiting behavior of a function when the argument tends towards a particular value or infinity.

O notation

- Big O notation describes the limiting behavior of a function when the argument tends towards a particular value or infinity.
- Big O notation is used to classify algorithms by how they respond to changes in input size.

O notation (2)

Figure: O notation plots

O cheat sheet

http://http://bigocheatsheet.com/

- Let T and f two functions. One writes T(n) = O(f(n)) as $n \to \infty$
- lacksquare if and only if, there is a constant M and a number n_0 such that

$$|T(n)| \leq M|f(n)|$$
 for all $n \geq n_0$

■ In Computer Science, we say T(n) is O(f(n)).

Sum the elements of an array (6)

```
// C1
Definir i, n, sum, A Como Entero;
Leer n:
                                       // C2
                                       // C3
sum <- 0:
Dimension A[n];
                                       // C4
Para i <- 0 hasta n-1 con paso 1 Hacer // C5*n
  sum <- sum + A[i];
                                       // C6*n
FinPara
Escribir sum;
                                       // C7
```

T(n) = c.n + c' is O(n)... why?

Sum the elements of an array (6)

```
// C1
Definir i, n, sum, A Como Entero;
Leer n:
                                       // C2
                                       // C3
sum <- 0:
Dimension A[n];
                                       // C4
Para i <- 0 hasta n-1 con paso 1 Hacer // C5*n
  sum <- sum + A[i];
                                       // C6*n
FinPara
Escribir sum;
                                       // C7
```

T(n) = c.n + c' is O(n)... why?

Rule of sums

- \blacksquare f_1 is $O(g_1)$ and f_2 is $O(g_2) \Rightarrow f_1 + f_2$ is $O(g_1 + g_2)$

- \blacksquare f_1 is $O(g_1)$ and f_2 is $O(g_2) \Rightarrow f_1 + f_2$ is $O(g_1 + g_2)$
- lacksquare Corollary O(f+g)=O(f)+O(g)

- \blacksquare f_1 is $O(g_1)$ and f_2 is $O(g_2) \Rightarrow f_1 + f_2$ is $O(g_1 + g_2)$
- lacksquare Corollary O(f+g)=O(f)+O(g)
- lacksquare Corollary $O(f+g)=O(\max(f,g))$

- \blacksquare f_1 is $O(g_1)$ and f_2 is $O(g_2) \Rightarrow f_1 + f_2$ is $O(g_1 + g_2)$
- lacksquare Corollary O(f+g)=O(f)+O(g)
- lacksquare Corollary $O(f+g)=O(\max(f,g))$
- Example O(c.n + c') = O(c.n) + O(c')

- \blacksquare f_1 is $O(g_1)$ and f_2 is $O(g_2) \Rightarrow f_1 + f_2$ is $O(g_1 + g_2)$
- lacksquare Corollary O(f+g)=O(f)+O(g)
- lacksquare Corollary $O(f+g)=O(\max(f,g))$
- Example O(c.n + c') = O(c.n) + O(c')
- Example O(c.n + c') = O(n)

Figure: O notation plots

Rule of Products

- \blacksquare f_1 is $O(g_1)$ and f_2 is $O(g_2) \Rightarrow f_1 f_2$ is $O(f_1 f_2)$

Vigilada Mineducación

Rule of Products

- \blacksquare f_1 is $O(g_1)$ and f_2 is $O(g_2) \Rightarrow f_1 f_2$ is $O(f_1 f_2)$
- lacktriangle Corollary O(fg) = O(f)O(g)

UNIVERSIDAD

- \blacksquare f_1 is $O(g_1)$ and f_2 is $O(g_2) \Rightarrow f_1 f_2$ is $O(f_1 f_2)$
- lacktriangle Corollary O(fg) = O(f)O(g)
- lacksquare Corollary O(c.g) = c.O(g) = O(g)

- \blacksquare f_1 is $O(g_1)$ and f_2 is $O(g_2) \Rightarrow f_1 f_2$ is $O(f_1 f_2)$
- lacktriangle Corollary O(fg) = O(f)O(g)
- lacksquare Corollary O(c.g) = c.O(g) = O(g)
- \blacksquare Example O(c.n) = (n)

- \blacksquare f_1 is $O(g_1)$ and f_2 is $O(g_2) \Rightarrow f_1 f_2$ is $O(f_1 f_2)$
- lacktriangle Corollary O(fg) = O(f)O(g)
- lacksquare Corollary O(c.g) = c.O(g) = O(g)
- \blacksquare Example O(c.n) = (n)
- Example O(c.n) = C.O(n) = O(n)

1
$$T(n) = c.n + c'$$

$$c.n + c'$$
 is $O(c.n + c')$, by Definition of O

$$O(c.n + c') = O(c.n)$$
, by Rule of Sums

4
$$O(c.n) = O(n)$$
, by Rule of Products

5 Therefore,
$$T(n) = c.n + c'$$
 is $O(n)$

$$T(n) = c.n + c'$$

2
$$c.n + c'$$
 is $O(c.n + c')$, by Definition of O

$$O(c.n + c') = O(c.n)$$
, by Rule of Sums

4
$$O(c.n) = O(n)$$
, by Rule of Products

Therefore,
$$T(n) = c.n + c'$$
 is $O(n)$

1
$$T(n) = c.n + c'$$

2
$$c.n + c'$$
 is $O(c.n + c')$, by Definition of O

$$O(c.n + c') = O(c.n)$$
, by Rule of Sums

4
$$O(c.n) = O(n)$$
, by Rule of Products

Therefore,
$$T(n) = c.n + c'$$
 is $O(n)$

$$T(n) = c.n + c'$$

2
$$c.n + c'$$
 is $O(c.n + c')$, by Definition of O

$$O(c.n + c') = O(c.n)$$
, by Rule of Sums

4
$$O(c.n) = O(n)$$
, by Rule of Products

5 Therefore,
$$T(n) = c.n + c'$$
 is $O(n)$

1
$$T(n) = c.n + c'$$

2
$$c.n + c'$$
 is $O(c.n + c')$, by Definition of O

$$O(c.n + c') = O(c.n)$$
, by Rule of Sums

4
$$O(c.n) = O(n)$$
, by Rule of Products

Therefore,
$$T(n) = c.n + c'$$
 is $O(n)$.

Max element of an array

```
Proceso MaxElement
  \max \leftarrow A[0];
  Para i <- 1 hasta n-1 con paso 1 Hacer
    Si A[i] > max Entonces
      max \leftarrow A[i];
    FinSi
  FinPara
  Escribir sum;
FinProceso
```

T(n) = ?

Max element of an array (2)

```
Proceso MaxElement
  \max \leftarrow A[0]:
                                               // c1
  Para i \leftarrow 1 hasta n-1 con paso 1 Hacer // c2*n + c3
    Si A[i] > max Entonces
                                               // c4*n
      \max \leftarrow A[i];
                                              // c5*n
    FinSi
  FinPara
  Escribir sum:
                                               // c6
FinProceso
```

T(n) = c.n + c'

Max element of an array (3)

```
Proceso MaxElement
  \max <- A[0];
                                           // c1
  Para i \leftarrow 1 hasta n-1 con paso 1 Hacer // c2*n + c3
    Si A[i] > max Entonces
                                           // c4*n
      max <- A[i];
                                         // c5*n
    FinSi
  FinPara
  Escribir sum:
                                           // c6
FinProceso
```

T(n) = c.n + c' is O(n)... why?

$$T(n) = c.n + c'$$

$$\mathbb{Z}$$
 $c.n + c'$ is $O(c.n + c')$, by Definition of O

$$O(c.n + c') = O(c.n)$$
, by Rule of Sums

4
$$O(c.n) = O(n)$$
, by Rule of Products

5 Therefore,
$$T(n) = c.n + c'$$
 is $O(n)$

$$T(n) = c.n + c'$$

2
$$c.n + c'$$
 is $O(c.n + c')$, by Definition of O

$$O(c.n + c') = O(c.n)$$
, by Rule of Sums

4
$$O(c.n) = O(n)$$
, by Rule of Products

Therefore,
$$T(n) = c.n + c'$$
 is $O(n)$

$$T(n) = c.n + c'$$

2
$$c.n + c'$$
 is $O(c.n + c')$, by Definition of O

$$O(c.n + c') = O(c.n)$$
, by Rule of Sums

$$O(c.n) = O(n)$$
, by Rule of Products

Therefore,
$$T(n) = c.n + c'$$
 is $O(n)$

$$T(n) = c.n + c'$$

2
$$c.n + c'$$
 is $O(c.n + c')$, by Definition of O

$$O(c.n + c') = O(c.n)$$
, by Rule of Sums

4
$$O(c.n) = O(n)$$
, by Rule of Products

5 Therefore,
$$T(n) = c.n + c'$$
 is $O(n)$

$$T(n) = c.n + c'$$

2
$$c.n + c'$$
 is $O(c.n + c')$, by Definition of O

$$O(c.n + c') = O(c.n)$$
, by Rule of Sums

4
$$O(c.n) = O(n)$$
, by Rule of Products

5 Therefore,
$$T(n) = c.n + c'$$
 is $O(n)$.

Multiplication tables

```
for (int i = 1; i <= n; i++)
    for (int j = 1; j <= n; j++)
        print(i+"*"+j+"="+i*j);

T(n) =?</pre>
```

Multiplication tables (2)

```
for (int i = 1; i \le n; i++) // C1*n
     for (int j = 1; j <= n; j++) //C2*n^2
          print(i+"*"+j+"="+i*j); //C3*n^2
```

$$T(n) = (c_2 + c_3)n^2 + c_1.n$$
 is $O(n^2)$

- $T(n) = (c_2 + c_3)n^2 + c_1n$

$$T(n) = (c_2 + c_3)n^2 + c_1n$$

2
$$(c_2+c_3)n^2+c_1n$$
 is $O((c_2+c_3)n^2+c_1n)$, by Definition of O

$$O((c_2+c_3)n^2+c_1n)=O((c_2+c_3)n^2)$$
, by Rule of Sums

$$O((c_2+c_3)n^2)=O(n^2)$$
, by Rule of Products

5 Therefore,
$$T(n) = (c_2 + c_3)n^2 + c_1n$$
 is $O(n^2)$

- $T(n) = (c_2 + c_3)n^2 + c_1n$
- $(c_2 + c_3)n^2 + c_1n$ is $O((c_2 + c_3)n^2 + c_1n)$, by Definition of
- 3 $O((c_2+c_3)n^2+c_1n)=O((c_2+c_3)n^2)$, by Rule of Sums

- $T(n) = (c_2 + c_3)n^2 + c_1n$
- $(c_2 + c_3)n^2 + c_1n$ is $O((c_2 + c_3)n^2 + c_1n)$, by Definition of O
- $O((c_2+c_3)n^2+c_1n)=O((c_2+c_3)n^2)$, by Rule of Sums
- 4 $O((c_2+c_3)n^2) = O(n^2)$, by Rule of Products
- **5** Therefore, $T(n) = (c_2 + c_3)n^2 + c_1n$ is $O(n^2)$

- $T(n) = (c_2 + c_3)n^2 + c_1n_1$
- $(c_2 + c_3)n^2 + c_1n$ is $O((c_2 + c_3)n^2 + c_1n)$, by Definition of
- 3 $O((c_2+c_3)n^2+c_1n)=O((c_2+c_3)n^2)$, by Rule of Sums
- 4 $O((c_2+c_3)n^2)=O(n^2)$, by Rule of Products
- Therefore, $T(n) = (c_2 + c_3)n^2 + c_1 n$ is $O(n^2)$.

Figure: Insertion sort

Figure: Mauricio Toro, "Insertion Sort". In collection "Neoplasticistic sorting algorithms" (2015).

https://www.youtube.com/watch?v=8oJS1BMKE64


```
Proceso InsertionSort
  Para i < 0 hasta n-1 Hacer
   i < -i;
    Mientras j > 0 && A[j-1] > A[j] Hacer
      temp <- A[j];
     A[i] < -A[i-1];
     A[i-1] < - temp;
     i < -i - 1;
    Fin Mientras
  FinPara
FinProceso
T(n) = ?
```


Insertion sort (2)

```
Proceso InsertionSort
  Para i < 0 hasta n-1 Hacer // c1*n + c2
    i < -i: // n
    Mientras j > 0 && A[j-1] > A[j] Hacer // c3*n
      temp <- A[j]; // c4 * \sum_{i=1}^{n} i
      A[j] < -A[j-1]; // c5 * \sum_{i=1}^{n} i
      A[j-1] < - \text{ temp}; // c6 * \sum_{i=1}^{n} i
      j < -j - 1; // c7 * \sum_{i=1}^{n} i
    FinMientras
  FinPara
FinProceso
T(n) = c.n^2 + c'.n + c''
```


How do we compute $\sum_{i=1}^{n} i$?

It has been proven that

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

http://www.math.com/tables/expansion/power.htm

Use this tool

https://www.wolframalpha.com/


```
Proceso InsertionSort
  Para i < 0 hasta n-1 Hacer // c1*n + c2
    i < -i: // n
    Mientras j > 0 && A[j-1] > A[j] Hacer // c3*n
      temp <- A[j]; // c4 * \sum_{i=1}^{n} i
      A[j] < -A[j-1]; // c5 * \sum_{i=1}^{n} i
      A[j-1] < -\text{ temp}; // c6 * \sum_{i=1}^{n} i
      j < -j - 1; // c7 * \sum_{i=1}^{n} i
    Fin Mientras
  FinPara
FinProceso
T(n) = c.n^2 + c'.n + c'' is O(n^2)... why?
```


Insertion sort: Proof

$$T(n) = c.n^2 + c'.n + c''$$

$$c.n^2 + c'.n + c''$$
 is $O(c.n^2 + c.n + c'')$, by Def. of $O(c.n^2 + c.n + c'')$

$$O(c.n^2 + c'.n + c'') = O(c.n^2)$$
, by Rule of Sums

4
$$O(c.n^2) = O(n^2)$$
, by Rule of Products

Therefore,
$$T(n) = c \cdot n^2 + c' \cdot n + c''$$
 is $O(n^2)$

Insertion sort: Proof

$$T(n) = c.n^2 + c'.n + c''$$

$$2 c.n^2 + c'.n + c''$$
 is $O(c.n^2 + c.n + c'')$, by Def. of O

$$O(c.n^2 + c'.n + c'') = O(c.n^2)$$
, by Rule of Sums

$$O(c.n^2) = O(n^2)$$
, by Rule of Products

5 Therefore,
$$T(n) = c \cdot n^2 + c' \cdot n + c''$$
 is $O(n^2)$

$$T(n) = c.n^2 + c'.n + c''$$

$$2 c.n^2 + c'.n + c''$$
 is $O(c.n^2 + c.n + c'')$, by Def. of O

$$O(c.n^2 + c'.n + c'') = O(c.n^2)$$
, by Rule of Sums

$$O(c.n^2) = O(n^2)$$
, by Rule of Products

Therefore,
$$T(n) = c \cdot n^2 + c' \cdot n + c''$$
 is $O(n^2)$

$$T(n) = c.n^2 + c'.n + c''$$

$$2 c.n^2 + c'.n + c''$$
 is $O(c.n^2 + c.n + c'')$, by Def. of O

$$O(c.n^2 + c'.n + c'') = O(c.n^2)$$
, by Rule of Sums

4
$$O(c.n^2) = O(n^2)$$
, by Rule of Products

5 Therefore,
$$T(n) = c \cdot n^2 + c' \cdot n + c''$$
 is $O(n^2)$

$$T(n) = c.n^2 + c'.n + c''$$

$$2 c.n^2 + c'.n + c''$$
 is $O(c.n^2 + c.n + c'')$, by Def. of O

$$O(c.n^2 + c'.n + c'') = O(c.n^2)$$
, by Rule of Sums

4
$$O(c.n^2) = O(n^2)$$
, by Rule of Products

5 Therefore,
$$T(n) = c.n^2 + c'.n + c''$$
 is $O(n^2)$

Quiz questions

- \blacksquare Compute the sum of the elements of an array is O(n)
- Compute the maximum element of an array is O(n)
- Insertion sort is $O(n^2)$

- Please learn how to reference images, trademarks, videos and fragments of code.
- Avoid plagiarism

Figure: Figure about plagiarism, University of Malta [Uni09]

University of Malta.

Plagarism — The act of presenting another's work or ideas as your own, 2009.

[Online; accessed 29-November-2013].

- Complexity of algorithms
 - Brassard y Bratley, Fundamentos de Algoritmia. Capítulo 3: Notación asintótica. Páginas 98 - 106.

