Исследование алгоритмов поиска на сжатом представлении данных

Алгоритм Лифшица

Плинер Юрий

11 июня 2014

С ростом размера входных данных для классических задач меняются алгоритмы, способные их эффективно решать.

Существует неколько подходов, например:

- Алгоритмы эффективного ввода вывода алгоритмы, минимизирующие чтение данных с жесткого диска.
- Сокращение размера входа за счет предварительной обработки.

С ростом размера входных данных для классических задач меняются алгоритмы, способные их эффективно решать.

Существует неколько подходов, например:

- Алгоритмы эффективного ввода вывода алгоритмы, минимизирующие чтение данных с жесткого диска.
- Сокращение размера входа за счет предварительной обработки.

Введение

Существует неколько подходов, например:

- Алгоритмы эффективного ввода вывода алгоритмы, минимизирующие чтение данных с жесткого диска.
- Сокращение размера входа за счет предварительной обработки.

Определение

Введение

Прямолинейная программа (ПП) \mathcal{X} размера n – это последовательность правил вывода

$$\mathcal{X}_1 = expr_1, \mathcal{X}_2 = expr_2, \dots, \mathcal{X}_n = expr_n,$$

Алгоритм Лифшица

где \mathcal{X}_i – это **переменные**, а *expr*_i – это **выражения** вида:

- $expr_i$ символ из алфавита Σ (терминальные правила).
- ullet $expr_i = \mathcal{X}_l \cdot \mathcal{X}_r \ (l, r < i) \ (нетерминальные правила).$

Определение

Введение

Прямолинейная программа (ПП) \mathcal{X} размера n – это последовательность правил вывода

$$\mathcal{X}_1 = expr_1, \mathcal{X}_2 = expr_2, \dots, \mathcal{X}_n = expr_n,$$

где \mathcal{X}_i – это **переменные**, а $expr_i$ – это **выражения** вида:

- $expr_i$ символ из алфавита Σ (терминальные правила).
- $expr_i = \mathcal{X}_l \cdot \mathcal{X}_r$ (1, r < i) (нетерминальные правила).

Прямолинейная программа — это грамматика, выводящая в точности одно слово.

$\Pi\Pi \mathcal{X}$, выводящая строку «abaababaabaab»

Пример

Введение

$$\mathcal{X}_{1} = b$$

$$\mathcal{X}_{2} = a$$

$$\mathcal{X}_{3} = \mathcal{X}_{2} \cdot \mathcal{X}_{1}$$

$$\mathcal{X}_{4} = \mathcal{X}_{3} \cdot \mathcal{X}_{2}$$

$$\mathcal{X}_{5} = \mathcal{X}_{4} \cdot \mathcal{X}_{3}$$

$$\mathcal{X}_{6} = \mathcal{X}_{5} \cdot \mathcal{X}_{4}$$

$$\mathcal{X}_{7} = \mathcal{X}_{6} \cdot \mathcal{X}_{5}$$

$oldsymbol{\mathcal{L}}$ ерево вывода $oldsymbol{\mathcal{X}}$

Введение

Преимущества ПП

- Хорошо структурированы
- Имеется связь с алгоритмами сжатия, использующимися на практике
- Полиномиально разрешимые классические строковые задачи, например:
 - Поиск сжатого образца в сжатом тексте
 - Поиск наибольшей общей подстроки двух сжатых строк
 - Поиск палиндромов в сжатой строке
 - Поиск квадратов в сжатой строке

Заключение

Преимущества ПП

• Хорошо структурированы

- Имеется связь с алгоритмами сжатия, использующимися
- - Поиск сжатого образца в сжатом тексте
 - Поиск наибольшей общей подстроки двух сжатых строк

 - Поиск квадратов в сжатой строке

Введение

Преимущества ПП

- Хорошо структурированы
- Имеется связь с алгоритмами сжатия, использующимися на практике
- Полиномиально разрешимые классические строковые задачи, например:
 - Поиск сжатого образца в сжатом тексте
 - Поиск наибольшей общей подстроки двух сжатых строк
 - Поиск палиндромов в сжатой строке
 - Поиск квадратов в сжатой строке

Введение

Преимущества ПП

- Хорошо структурированы
- Имеется связь с алгоритмами сжатия, использующимися на практике
- Полиномиально разрешимые классические строковые задачи, например:
 - Поиск сжатого образца в сжатом тексте
 - Поиск наибольшей общей подстроки двух сжатых строк
 - Поиск палиндромов в сжатой строке
 - Поиск квадратов в сжатой строке

Заключение

Введение Описание

На вход

 $\Pi\Pi$ размером n выводящая текст и $\Pi\Pi$ размером m выводящая шаблон.

На выход

Позиции вхождения шаблона в текст.

Алгоритмическая сложность

Алгоритм работает за $O(n^2 \cdot m)$ по времени и за $O(n \cdot m)$ по памяти.

Введение Описание

На вход

 $\Pi\Pi$ размером n выводящая текст и $\Pi\Pi$ размером m выводящая шаблон.

На выход

Позиции вхождения шаблона в текст.

На вход

 $\Pi\Pi$ размером n выводящая текст и $\Pi\Pi$ размером m выводящая шаблон.

На выход

Позиции вхождения шаблона в текст.

Алгоритмическая сложность

Алгоритм работает за $O(n^2 \cdot m)$ по времени и за $O(n \cdot m)$ по памяти.

Введение Замечания

Замечание 1

Если $T = a^{2^n}, P = a^{2^m}$, то алгоритм Лившица будет работать за время $O(n^2m)$ (при условии, что для этих текстов уже построены ПП), в то время как классический алгоритм КМП – за время $O(2^n + 2^m)$.

Замечение 2

Если ПП сбалансированны, то сложность работы алгоритма $O(n \cdot log(n) \cdot m)$.

- Реализация алгоритма Лифшица
- Оптимизация алгоритма и его параллельная версия
- Произведено сравнение с алгоритмом КМП

- Реализация алгоритма Лифшица
- Оптимизация алгоритма и его параллельная версия
- Произведено сравнение с алгоритмом КМП

- Реализация алгоритма Лифшица
- Оптимизация алгоритма и его параллельная версия
- Произведено сравнение с алгоритмом КМП

- Реализация алгоритма Лифшица
- Оптимизация алгоритма и его параллельная версия
- Произведено сравнение с алгоритмом КМП

Конец

Введение

Спасибо за внимание.