Tema 3: Elementos de Probabilidad

Silvia Gago

EEBE QT 16-17

Contenidos

- 1. Espacio muestral de un experimento aleatorio.
- 2. Suceso. Tipos de sucesos. Operaciones con sucesos.
- 3. Definición de Probabilidad.
- 4. Cálculo de probabilidades.
- 5. Probabilidad condicionada.
- 6. Sucesos independientes.
- 7. Teorema de la probabilidad total. Teorema de Bayes.
- 8. Nociones de combinatoria: Permutaciones, Variaciones, Combinaciones.

Dedicación: Teoría: 6h + Aprendizaje autónomo: 10h

Conceptos básicos de probabilidad

Experimentos

Experimento determinista

Es aquel que en igualdad de condiciones da siempre el mismo resultado. Normalmente están condicionados por una ley física.

Ejemplo

Medir la intensidad de corriente de un circuito eléctrico con una resistencia y una pila: I=V/R

Experimento aleatorio

Es aquel en el que no se puede predecir el resultado. Podemos conocer todos los posibles resultados, pero no el resultado concreto del experimento.

Ejemplo

Lanzamiento de un dado, de una moneda, resultado de una quiniela, etc.

Espacio muestral de un experimento aleatorio

Espacio muestral

Es el conjunto de todos los posibles resultados de un experimento aleatorio.

Ejemplo

En el lanzamiento de un dado no trucado el espacio muestral es

$$\Omega = \{1, 2, 3, 4, 5, 6\}.$$

Ejemplo

Si tiramos dos monedas al aire el espacio muestral es

$$\Omega = \{CC, CX, XC, XX\}.$$

Ejemplo

Si medimos el diámetro de los tornillos producidos por una máquina industrial, $\Omega = [1.3, 1.7]$ cm.

Suceso aleatorio. Tipos de sucesos.

Suceso aleatorio

Es cada uno de los posibles subconjuntos del espacio muestral Ω . Se representan por letras mayúsculas.

- un suceso elemental A es aquel que contiene un solo punto del espacio muestral.
- un suceso compuesto A es aquel que contiene más de un punto del espacio muestral.
- un suceso imposible es aquel que no puede suceder nunca. $(A=\emptyset)$
- un suceso seguro es que siempre sucede. $(A = \Omega)$

Suceso aleatorio. Tipos de sucesos.

Ejemplo

En el lanzamiento de un dado no trucado,

$$\Omega = \{1, 2, 3, 4, 5, 6\}.$$

- un suceso elemental es que salga un 5.
 - $A = \{5\}$
- un suceso compuesto es que salga un número par.
 A = {2, 4, 6}
- un suceso imposible es que salga un 7. $A = \emptyset$
- un suceso seguro es que salga un número comprendido entre 1 y 6.

$$A = \{1, 2, 3, 4, 5, 6\} = \Omega$$

Operaciones con sucesos aleatorios

Recordemos las operaciones básicas que se pueden hacer con conjuntos:

- La unión de dos conjuntos $A \cup B = \{ \omega \in \Omega : \omega \in A \quad o \quad \omega \in B \}.$
- La intersección de dos conjuntos $A \cap B = \{ \omega \in \Omega : \omega \in A \quad y \quad \omega \in B \}.$
- El complementario de un conjunto $A^C = \{\omega \in \Omega : \omega \notin A\}.$
- La diferencia de conjuntos $B A = \{ \omega \in \Omega : \omega \in B \ / \ \omega \notin A \}.$
- La diferencia simétrica de conjuntos $A\Delta B = (A \cup B) (A \cap B)$.

Operaciones con sucesos aleatorios

Propiedades:

- $A \cup A^C = \Omega$
- $B A = A^C \cap B$.
- Si $A \subset B$ entonces $B = A \cup (B A)$.

Dos sucesos son incompatibles o disjuntos si $A \cap B = \emptyset$.

Leyes de Morgan

- 1. $(A \cap B)^C = A^C \cup B^C$
- 2. $(A \cup B)^{C} = A^{C} \cap B^{C}$

Definición de probabilidad y cálculo de probabilidades

Fórmula de Laplace

Si el espacio muestral está formado por N posibles resultados y todos ellos tienen la misma probabilidad (equiprobables) podemos decir que la probabilidad de que ocurra el suceso A es

$$p(A) = \frac{N_A}{N} = \frac{\text{número de casos favorables a A}}{\text{número de casos posibles}}.$$

Ejemplo

Si lanzamos un dado no trucado, la probabilidad de sacar un número par es

$$p(A) = \frac{\text{número de número pares}}{\text{número de casos posibles}} = \frac{3}{6} = \frac{1}{2} = 50\%.$$

8

Supongamos que el dado está trucado hemos observado empíricamente que los números 2, 4, 5 y 6 solo aparecen un 10% de las veces, mientras que tanto el 1 como el 3 aparecen el 30% de las veces. Las probabilidades en este caso serían:

$$p(2) = p(4) = p(5) = p(6) = \frac{10}{100}, \quad p(1) = p(3) = \frac{30}{100}.$$

Entonces, en este caso como calcularíamos la probabilidad de que salga un número par?

$$p(A) = ?$$

9

Supongamos que el dado está trucado hemos observado empíricamente que los números 2, 4, 5 y 6 solo aparecen un 10% de las veces, mientras que tanto el 1 como el 3 aparecen el 30% de las veces. Las probabilidades en este caso serían:

$$p(2) = p(4) = p(5) = p(6) = \frac{10}{100}, \quad p(1) = p(3) = \frac{30}{100}.$$

Entonces, en este caso como calcularíamos la probabilidad de que salga un número par?

$$p(A) = ?$$

No podemos aplicar la definición de Laplace.

Definición axiomática

Una aplicación $p:\Omega\longrightarrow\mathbb{R}$ es una probabilidad si cumple

- i) $0 \le p(A) \le 1$
- ii) $p(\Omega) = 1$
- iii) Si A_1, \ldots, A_n, \ldots son sucesos disjuntos dos a dos, es decir, $A_i \cap A_j = \emptyset$ para todos i, j, entonces

$$p\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}p\left(A_{i}\right).$$

La definición de Laplace también cumple estos tres axiomas.

Propiedades

Las siguientes propiedades se deducen fácilmente de la definición axiomática:

- i) $p(\emptyset) = 0$
- ii) $p(A^C) = 1 p(A)$
- iii) Si $A \subset B$, entonces $p(A) \leq p(B)$
- iv) $p(A \cup B) = p(A) + p(B) p(A \cap B)$
- v) Si A y B son incompatibles, $p(A \cup B) = p(A) + p(B)$

Demostraciones

i)
$$\rho(\emptyset) = 0$$

$$\Omega = \Omega \cup \emptyset \Rightarrow p(\Omega) = p(\Omega) + p(\emptyset) \Rightarrow 1 = 1 + p(\emptyset) \Rightarrow p(\emptyset) = 0.$$

ii)
$$p(A^C) = 1 - p(A)$$

$$\Omega = A \cup A^{\mathcal{C}} \Rightarrow p(\Omega) = p(A) + p(A^{\mathcal{C}}) \Rightarrow 1 = p(A) + p(A^{\mathcal{C}}).$$

iii) Si
$$A \subset B$$
, entonces $p(A) \leq p(B)$

$$B = A \cup (B - A) \Rightarrow p(B) = p(A) + p(B - A) y p(B - A) \ge 0.$$

Demostraciones

iv)
$$\boxed{ p(A \cup B) = p(A) + p(B) - p(A \cap B) }$$

$$A \cup B = A \cup (B - (A \cap B)) \Rightarrow p(A \cup B) = p(A) + p(B - (A \cap B))$$

$$\text{Además } B = (B - (A \cap B)) \cup (A \cap B)$$

$$p(B) = p(B - (A \cap B)) + p(A \cap B) \Rightarrow p(B - (A \cap B)) = p(B) - p(A \cap B),$$
 por lo que
$$p(A \cup B) = p(A) + p(B - (A \cap B)) = p(A) + p(B) - p(A \cap B).$$

Si A y B son incompatibles $A \cap B = \emptyset$ y sabemos que $p(\emptyset) = 0$, por lo que aplicando la propiedad (iv) se obtiene el resultado.

v) Si A y B son incompatibles, $p(A \cup B) = p(A) + p(B)$

Ejemplo 1

En una carrera con tres caballos A, B, C, el caballo A tiene el doble de probabilidades de ganar que el B, y este tiene el doble de probabilidades de ganar que el caballo C. Calcula la probabilidad de ganar de cada caballo.

Solución:

$$p(A) = 2p(B), \quad p(B) = 2p(C) \Rightarrow p(A) = 4p(C).$$

Como sabemos que seguro que un caballo gana $A \cup B \cup C = \Omega$, y además son incompatibles dos a dos

$$1 = p(A) + p(B) + p(C) \Rightarrow 1 = 4p(C) + 2p(C) + p(C) \Rightarrow 1 = 7p(C)$$
$$\Rightarrow p(C) = \frac{1}{7}, \quad p(A) = \frac{4}{7}, \quad p(B) = \frac{2}{7}.$$

Ejercicio

En un cierto espacio de probabilidad hay dos sucesos A y B de los cuales se sabe que p(A) = 0.4, $p(A \cup B) = 0.7$ y $p(B^C) = 0.55$. Calcular $p(A \cap B)$.

Solución:

Sabemos que
$$p(B^C) = 0.55 \Rightarrow p(B) = 1 - p(B^C) = 0.45$$
.
Además $p(A \cup B) = p(A) + p(B) - p(A \cap B) \Rightarrow p(A \cap B) = p(A) + p(B) - p(A \cup B)$ $p(A \cap B) = 0.4 + 0.45 - 0.7 = 0.15$.

Ejercicio

Se sabe que entre los 120 estudiantes de un colegio mayor hay 60 que estudian Biología, 50 que estudian Farmacia y 20 que estudian las dos cosas simultáneamente. Escogiendo un estudiante al azar, calcula la probabilidad de que estudie Biología o Farmacia, y la probabilidad de que estudie Biología o Farmacia pero que no estudie las dos cosas simultáneamente.

Solución:

Si llamamos B="estudia Biología", y F="estudia Farmacia", tenemos que calcular

$$p(B \cup F) = p(B) + p(F) - p(B \cap F) = \frac{60}{120} + \frac{50}{120} - \frac{20}{120} = \frac{90}{120} = \frac{3}{4}.$$

$$p((B \cup F) - (B \cap F)) = \frac{90}{120} - \frac{20}{120} = \frac{70}{120} = \frac{7}{12}.$$

Probabilidad Condicionada

Probabilidad Condicionada

Definición

Sea Ω el espacio muestral de un experimento aleatorio, y A, B dos sucesos tales que p(B) > 0, entonces se define como probabilidad condicionada del suceso A sabiendo que ha ocurrido el suceso B a

$$p(A/B) = \frac{p(A \cap B)}{p(B)}.$$

Esta definición cumple los axiomas de probabilidad y además sus propiedades, es decir,

- $p(A^C/B) = 1 p(A/B)$
- $p((A_1 \cup A_2)/B) = p(A_1/B) + p(A_1/B) p((A_1 \cap A_2)/B)$
- ...

Probabilidad Condicionada

Ejemplo

En el lanzamiento de un dado calculemos la probabilidad de que salga un "5" sabiendo que ha salido un número impar.

Si llamamos A="sale un 5" y B="sale un número impar"

$$p(A) = \frac{1}{6}, \quad p(B) = \frac{3}{6} \ p(A \cap B) = p(A) = \frac{1}{6}.$$
$$p(A/B) = \frac{p(A \cap B)}{p(B)} = \frac{1/6}{3/6} = \frac{1}{3}.$$

Si ahora queremos calcular la probabilidad de que no salga un "5" sabiendo que ha salido un número impar

$$p(A^C/B) = 1 - p(A/B) = 1 - \frac{1}{3} = \frac{2}{3}.$$

Sucesos independientes

Observemos que de la definición de probabilidad condicionada se deduce

$$p(A \cap B) = p(A/B)p(B).$$

Definición

Dos sucesos A y B son independientes si p(A) > 0, p(B) > 0 y

$$p(A/B) = p(A)$$
.

Esta definición cumple los axiomas de probabilidad.

De esta definición se deduce que $p(A \cap B) = p(A)p(B)$, y que por lo tanto también

$$p(B/A) = \frac{p(A \cap B)}{p(A)} = \frac{p(A)p(B)}{p(A)} = p(B).$$

Sucesos independientes

Ejercicio

La probabilidad de que un cazador A acierte en el blanco es 1/4, mientras que la probabilidad de que acierte el cazador B es 2/5. Si tiran los dos a la vez al mismo objetivo, calcula la probabilidad de que alguno de ellos de en el blanco.

Solución:

El hecho de que acierte el cazador A no depende del hecho que acierte el cazador B, es decir, son independientes, por lo que

$$p(A \cap B) = p(A)p(B) = \frac{1}{4} \cdot \frac{2}{5} = \frac{2}{20}.$$

Para calcular $p(A \cup B)$ aplicaremos la fórmula

$$p(A \cup B) = p(A) + p(B) - p(A \cap B) = \frac{1}{4} + \frac{2}{5} - \frac{2}{20} = \frac{11}{20}.$$

Sucesos independientes

Ejercicio

Una urna contiene 5 bolas blancas y 4 negras. Se extraen dos bolas al azar. Calcula la probabilidad de que las dos bolas sean blancas, en los siguientes casos:

- a) la primera bola ha sido devuelta a la urna (hay reemplazamiento)
- b) la primera bola no ha sido devuelta a la urna (no hay reemplazamiento)

Solución:

Sean los sucesos B_1 ="sacar bola blanca en la primera extracción" y B_2 ="sacar bola blanca en la segunda extracción"

a)
$$p(B_1 \cap B2) = p(B_1)p(B_2) = \frac{5}{9} \cdot \frac{5}{9} = \frac{25}{81}$$
.

b)
$$p(B_1 \cap B2) = p(B_1)p(B_2/B_1) = \frac{5}{9} \cdot \frac{4}{8} = \frac{20}{72} = \frac{5}{18}$$
.

Teorema de probabilidad total.

Teorema de Bayes

Teorema de probabilidad total.

Definición

Los sucesos A_1, A_2, \ldots, A_n forman una partición de Ω si son disjuntos dos a dos y además

$$\Omega = A_1 \cup A_2 \cup \cdots \cup A_n = \bigcup_{i=1}^n A_i.$$

Teorema de probabilidad total

Sea B un suceso aleatorio y A_1, A_2, \ldots, A_n una partición de Ω , entonces

$$p(B) = \sum_{i=1}^{n} p(B/A_i)p(A_i).$$

Demostración

$$p(B) = p(B \cap \Omega) = p(B \cap (\bigcup_{i=1}^{n} A_i)) = p(\bigcup_{i=1}^{n} (B \cap A_i)) =$$

$$= \sum_{i=1}^{n} p(B \cap A_i) = \sum_{i=1}^{n} p(B/A_i)p(A_i).$$

Teorema de probabilidad total

Ejemplo

Tenemos tres urnas con bolas blancas y negras, de forma que la U_1 tiene 2 blancas y 3 negras, la U_2 tiene 1 blanca y 4 negras y la U_3 tiene 4 blancas y 1 negra. Se extrae una bola al azar, cuál es la probabilidad de extraer una bola blanca?

Solución:

Sea B= "extraer una bola blanca", $A_1=$ "extraer una bola de U_1 ", $A_2=$ "extraer una bola de U_2 " y $A_3=$ "extraer una bola de U_3 ". Comprobamos que $\Omega=A_1\cup A_2\cup A_3$, y que además $A_i\cap A_j=\emptyset$ para todo i,j=1,2,3, por lo que aplicando el teorema de la probabilidad total

$$p(B) = p(B/A_1)p(A_1) + p(B/A_2)p(A_2) + p(B/A_3)p(A_3)$$
$$= \frac{2}{5} \cdot \frac{1}{3} + \frac{1}{5} \cdot \frac{1}{3} + \frac{4}{5} \cdot \frac{1}{3} = \frac{7}{15}.$$

Teorema de Bayes

Teorema de Bayes

Sea A_1, A_2, \ldots, A_n una partición de Ω , entonces

$$p(A_j/B) = \frac{p(B/A_j)p(A_j)}{\sum_{i=1}^n p(B/A_i)p(A_i)}.$$

Demostración:

Aplicamos el teorema de la probabilidad total en el denominador

$$p(A_j/B) = \frac{p(A_j \cap B)}{p(B)} = \frac{p(B/A_j)p(A_j)}{p(B)} = \frac{p(B/A_j)p(A_j)}{\sum_{i=1}^n p(B/A_i)p(A_i)}.$$

Teorema de probabilidad total

Ejemplo

Una fábrica utiliza dos máquinas A y B para producir piezas. La probabilidad de que una pieza de la máquina A sea defectuosa es 5%, mientras que si la produce la máquina B es 7%. La producción de la máquina A es 4 veces la de la máquina B. Si se coge una pieza de la producción total y resulta defectuosa, calcula la probabilidad de que haya sido producida por la máquina A

Solución:

Sabemos que
$$p(D/A) = 0.05$$
 y $p(D/B) = 0.07$. Además $p(A) = 4/5 = 0.8$ y $p(B) = 0.2$, por lo tanto
$$p(A/D) = \frac{p(A \cap D)}{p(D)} = \frac{p(A \cap D)}{p(A \cap D) + p(B \cap D)} = \frac{p(A)p(D/A)}{p(A)p(D/A) + p(B)p(D/B)} = \frac{0.8 \cdot 0.05}{0.8 \cdot 0.05 + 0.2 \cdot 0.07} = \frac{20}{27}.$$

Nociones de Combinatoria:

Permutaciones, Variaciones,

Combinaciones

Factorial de un número natural

Dado un número natural n se define como factorial de n al número

$$n! = n \cdot (n-1) \cdot \cdots \cdot 1.$$

Por convenio, 0! = 1.

Número combinatorio

El número combinatorio n sobre k se define como

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

Propiedades:

i)
$$\binom{n}{k} = \binom{n}{n-k}$$
,

de la que se deduce que

•
$$\binom{n}{0} = \binom{n}{n} = 1$$
,

$$\bullet \ \binom{n}{1} = \binom{n}{n-1} = n,$$

ii)
$$\binom{n-1}{k-1} + \binom{n-1}{k} = \binom{n}{n-k}$$
.

Los número combinatorios son útiles para calcular las potencias de un binomio

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k \cdot b^{n-k}.$$

Estas propiedades se pueden deducir del triángulo de Pascal

Estas propiedades se pueden deducir del triángulo de Pascal

Permutaciones

Permutaciones

Dado un conjunto de n elementos, cada variación del orden de sus elementos se llama permutación. Por ejemplo, si $A = \{x_1, x_2, x_3\}$, los subconjuntos

$$(x_1, x_2, x_3), (x_2, x_1, x_3), (x_3, x_2, x_1), \dots$$

son algunas de las posibles permutaciones de los elementos de A.

Número de permutaciones

El número de permutaciones que puede haber en un conjunto de n elementos viene dado por la fórmula

$$P_n = n!$$

Variaciones

Variaciones

Dado un conjunto de n elementos, una variación de orden $m \le n$ de sus elementos es todo subconjunto ordenado de m elementos del conjunto total. Por ejemplo, si $A = \{x_1, x_2, x_3, x_4, x_5\}$, los subconjuntos (x_1, x_2, x_3) , (x_1, x_3, x_2) , (x_4, x_5, x_2) , ... son algunas de las posibles variaciones de orden 3 del conjunto A.

Si n = m, las variaciones son permutaciones.

Número de variaciones

El número de variaciones que puede haber en un conjunto de n elementos cogidos de m en m viene dado por la fórmula

$$V_n^m = \frac{n!}{(n-m)!} = n \cdot (n-1) \cdot \cdots \cdot (n-m+1)$$

Combinaciones

Combinaciones

Dado un conjunto de n elementos, una combinación de orden m de sus elementos es todo subconjunto m elementos del conjunto inicial. Por ejemplo, si $A = \{x_1, x_2, x_3, x_4, x_5\}$, los subconjuntos $\{x_1, x_2, x_3\}$, $\{x_2, x_4, x_5\}$, ... son algunas de las posibles combinaciones de orden 3.

A diferencia de las variaciones, en las combinaciones NO importa el orden de los elementos.

Número de combinaciones

El número de combinaciones de orden m que puede haber en un conjunto de n elementos viene dado por la fórmula

$$C_n^m = \binom{n}{m} = \frac{n!}{m!(n-m)!}$$