Chapter 3: roadmap

- Transport-layer services
- Multiplexing and demultiplexing
- Connectionless transport: UDP
- Principles of reliable data transfer
- Connection-oriented transport: TCP
- Principles of congestion control
- TCP congestion control
- Evolution of transport-layer functionality

Principles of reliable data transfer

reliable service abstraction

27

Principles of reliable data transfer

reliable service implementation

Principles of reliable data transfer

Design (and complexity) of reliable data transfer protocol will depend strongly on characteristics of unreliable channel (corrupt, loss, reorder data?)

reliable service *implementation*

29

Principles of reliable data transfer

Sender and receiver do *not* know the "state" of each other, e.g., was a message received?

 unless communicated via a message

Reliable data transfer protocol (rdt): interfaces

31

Reliable data transfer: getting started

- We will incrementally develop sender and receiver sides of reliable data transfer protocol (rdt)
 - from simple to complex
- consider only unidirectional data transfer
 - · but control information will flow in both directions!
- use finite state machines (FSM) to specify sender and receiver

rdt1.0: reliable transfer over a reliable channel

- underlying (L3) channel is perfectly reliable
- no bit errors
- no loss of packets
- all packets will arrive in order
- separate FSMs for sender, receiver:
 - sender sends data into underlying channel
 - receiver reads data from underlying channel

33

rdt2.0: channel with forward bit errors (but w/o loss)

- underlying channel may flip bits in packet
 - checksum (e.g., Internet checksum) to detect bit errors
- *the* question: how to recover from errors?

How do humans recover from "errors" during conversation?

rdt2.0: channel with forward bit errors (but w/o loss)

- underlying channel may flip bits in packet
 - checksum to detect bit errors
- how to know whether bit errors occur and then get recovered?
 - acknowledgements (ACKs): receiver explicitly tells sender that pkt received OK
 - negative acknowledgements (NAKs): receiver explicitly tells sender that pkt had errors
 - sender retransmits pkt on receipt of NAK

stop and wait

sender sends one packet, then waits for receiver response

35

rdt2.0: FSM specifications

rdt2.0: operation with no errors

36

rdt2.0: corrupted packet scenario

