

1 Widerstandsmessung

Digital Multimeter DMM Model 177

Digital Mattimeter Divivi Model 177						
Function	Range (Ω)	Accuracy 18°C to 28°C				
	20	0,05% Rdg + 3D				
	200	0,05% Rdg + 2D				
Ω (Ohms)	2k					
	20k	0,04% Rdg + 1D				
	200k					
	2000k					
	20M	0,1% Rdg + 1D				

- a) Geben Sie die Messunsicherheiten einer Widerstandsbestimmung mit dem 5-stelligen DMM Model 177 an, wenn der angezeigte Wert $12,345\Omega$ beträgt. (Messung im günstigsten Messbereich)
- b) Für welche Widerstände ist eine relative Messunsicherheit im 20 M Ω -Bereich von mehr als \pm 0,2% zu erwarten?

[Lösung: a) 12,345 Ω ± 0,009 Ω , b) R_X ≤1,00 M Ω]

2 Indirekte Leistungsmessung

Es wurde der ohmsche Widerstand R sowie die an diesem abfallende Spannung U wie folgt gemessen:

- R = 1,44k Ω , 3-stellig digital, Meßbereich: 2k Ω , mit Garantiefehlergrenzen Δ R = (1%Rdg + 3D) und
- U = 12,0V (Meßbereich 30V, Güteklasse: $G_K = 1,5$).

Die Güteklasse gibt den prozentualen Fehler bei Vollausschlag des Meßinstrumentes an. Errechnen Sie daraus die in R umgesetzte Leistung P mit Messunsicherheit $\pm \Delta P$.

[Lösung: $0,10W \pm 0,01W$]

3 Fehlerfortpflanzung

In der Schaltung werden die beiden Spannungen mit einem 4-stelligen Voltmeter gemessen, dessen Messunsicherheit mit $\Delta U = 0.5\%$ Rdg + 5D (im Meßbereich 20V) angegeben ist:

•
$$U_1 = 12,45V$$

• $U_2 = 6,88V$

 $R_M = 20,0\Omega \pm 0,1\Omega$.

Der Eingangswiderstand des Voltmeters kann als groß gegen R_X und R_M vorausgesetzt werden.

- a) Wie groß ist der unbekannte Widerstand R_X ohne Berücksichtigung der Meßfehler?
- b) Wie groß sind die (absoluten) Messunsicherheiten ΔU_1 und ΔU_2 von U_1 und $U_2?$
- c) Die Messunsicherheit der Spannung U_X über R_X ist $\Delta U_X = \Delta U_1 + \Delta U_2$. Wie groß ist dann die <u>relative</u> Unsicherheit von $R_X = \frac{U_X}{U} R_M$

gemäß Fehlerfortpflanzung?

[Lösung: a) 16,19 Ω b) $\Delta U_1 = 0,112 \text{ V}$, $\Delta U_2 = 0,084 \text{ V}$ c) 16,19 $\Omega \cdot (1 \pm 5,3\%)$]

4 Logarithmische Darstellung von Messungen

Üben Sie den Umgang mit logarithmischen Papier. (selbst ausdrucken unter www.papersnake.de)

An einem nichtlinearen Verbraucher wurde die Spannung U als Funktion der Stromstärke I punktweise gemessen:

I/mA	0,35	0,55	0,75	1,70	3,0	7,50	13,0	25,0	40,0	75,0
U/V	1,5	2,5	2,5	3,5	5,5	7,5	11,0	12,0	16,0	20,0

- a) Stellen Sie U(I) graphisch im Ig-Ig-Diagramm dar.
- b) Legen Sie eine "beste Gerade" durch die Messpunkte. Die U-I-Kennlinie soll durch einen Ansatz der Form

$$\frac{U}{V} = K \left(\frac{I}{mA}\right)^q$$
 angepasst werden.

- c) Bestimmen Sie die Parameter "K" und "q" graphisch aus der "besten Geraden".
- d) Stellen Sie zusätzlich die Kennlinie R = 40 Ω im doppeltlogarithmischen Diagramm dar.

[Lösung: $K \cong 2.9$; $q \cong 0.46$, Lösung s. letzte Seite]

5 Lineare und nichtlineare Kennlinie im Ig-Ig-Diagramm

Stellen Sie die Kennlinien zwischen 1 und 100 mA für

a) $G_1 = 0.25 mS und$

b)
$$\frac{U}{V} = 0.2 \cdot \left(\frac{I}{mA}\right)^2$$
 im Ig-Ig-Diagramm dar.

Vergessen Sie nicht die Kurven mit a) und b) zu kennzeichnen. [Lösung siehe letzte Seite]

6 Wheatstone'sche Brücke (Klausur 2007)

Für die Messung der Raumtemperatur, die im Mittel bei 20°C liegt, wird ein Pt-100 Sensor, eine Wheatstone'sche Brücke und ein Voltmeter mit einem hohen Innenwiderstand verwendet. Die Brücke wird mit U = 10 V versorgt.

Das Temperaturverhalten des Pt-100

kann im Bereich von 0°C bis 100°C durch eine lineare Funktion mit dem Temperaturkoeffizienten α = 3.85·10⁻³ /K und dem Widerstan R₀ = 100 Ω bei 0°C beschrieben werden.

- a) Bestimmen Sie den Widerstand des Temperatursensors bei ϑ = 20° C.
- b) Welchen Wert würden Sie für die Widerstände R₂, R₃ und R₄ wählen? Begründen Sie.
- c) Sie wollen eine Temperaturscala an dem analogen Voltmeter anbringen. Nehmen Sie im folgenden an, dass Sie einen Satz identischer 100 Ω Widerstände für R₂, R₃ und R₄ haben. Erstellen Sie eine Tabelle, die einer Temperatur die jeweilige Spannung zuordnet. Die Tabelle soll Temperaturwerte zwischen 19°C und 21°C in Schritten von 1°C enthalten.
- d) Bestimmen Sie die Brückenempfindlichkeit bei $\vartheta = 0^{\circ}$ C für $R_2 = R_3 = R_4 = 100 \ \Omega$.

[Lösung auf Folgeseite]

ET1 – Aufgaben Messtechnik

[Lösung zu Aufgabe 6:

- a) $R(9=20^{\circ}C) = 107.7\Omega$
- b) alle identisch und gleich 107.7Ω weil:
- Brücke ist bei mittlerer Temperatur abgeglichen
- höchste Empfindlichkeit bei Brückenverhältnis a = 1
- c) Uab = U (R₃/(R₁+R₃) R₄/(R₂+R₄)) oder U_{ab}=U· Δ R/(4·R)= α U/4· Δ 9 (Näherung für Viertelbrücke)

Temperatur	Uab	Näherung	R
19°C	-176.4 mV	-182.9 mV	107.315Ω
20°C	-185.4 mV	-192.5 mV	107.7Ω
21°C	-194.3 mV	-202.1 mV	108.085Ω

d) $E_0 = U/R_1 \cdot (a/(1+a)^2) = 10V /100\Omega / 4 = 25 \text{ mV}/\Omega \text{ mit a=1}$

Messtechnik

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Lösung zu Aufgabe 4:

Lösung zu Aufgabe 5:

