UE Algèbre 2

Térence Bayen ¹

Université d'Avignon - Laboratoire de Mathématiques d'Avignon

L1S2 MI/MP Janvier - Mai 2022

^{1.} terence.bayen@univ-avignon.fr

UE algèbre 2

4 ECTS

Evaluation: 2 CC coefficients ² 1: 7 mars 2022, 25 avril 2022

PROGRAMME DES CC

- CC1 : 7 mars 2022 (10h-11h30) : systèmes linéaire ; calcul matriciel
- CC2 : 25 avril 2022 (8h30-10h) : systèmes linéaire ; calcul matriciel ; sous-espaces vectoriels ; applications linéaires ; déterminants (pas le chapitre 6).

^{2.} Certaines preuves dans le poly. ne sont pas exigibles (par exemple, le lemme de Steinitz). Mais il faut savoir les résultats.

Organisation

- Vous serez interrogé sur ce qui a été vu en CM et TD.
- Consignes pour les CC: pour réviser le cours, bien connaître en priorité les transparents suffit. Le polycopié est à consulter en complément: il contient moins d'exemples mais quelques preuves en plus. En conclusion: bien maîtriser les transparents (qui contiennent exemples + quelques exercices de base). Il faut impérativement savoir faire les exercices standards des feuilles de TD pour bien réussir les CC.
- Organisation des CM: 24/01: CM systèmes linéaires; 31/01 et 07/02: matrices; 21/02 et 28/02 et 14/03: sous-espaces vectoriels; 21/03, 28/03, 04/04: applications linéaires et déterminants; 11/04: révisions (applications linéaires, déterminants).

Corrections des exercices (en plus des corrections vues en TD)

Les corrections de chaque feuille seront mises en ligne grosso-modo après avoir terminé (plus ou moins) chaque feuille en TD.

- Il est utile de chercher les exercices avant de regarder une solution.
- Toutes les ressources du cours sont sur l'ENT

$$\Rightarrow$$
 ENT

Objectifs du cours d'algèbre 2

Plan du cours: 10 cours (1h30) lundi matin: 10h-11h30

- 1. Systèmes linéaires : pivot de Gauss
- 2. Matrices (opérations)
- 3. Sous-espaces vectoriels de \mathbb{K}^n
- 4. Applications linéaires
- 5. Déterminant d'une matrice carrée
- 6. Introduction à la diagonalisation (si le temps le permet)

Conseils

- Savoir son cours : les propriétés; savoir énoncer un théorème ou une proposition (exemple : théorème du rang; formule de Grassmann; formule de changement de base); connaitre les hypothèses des théorèmes et propositions; savoir les définitions (exemples : famille libre ou famille génératrice dans Rⁿ).
- Préparer et CHERCHER les exercices

 \Rightarrow

recopier la correction sans avoir cherché ne sert pas beaucoup...

savoir faire les exercices de base.

Motivations : intérêt de l'algèbre linéaire!

- 1. Calcul de la température dans un four : $-\Delta y(x) = f(x)$, $x \in \Omega$
- 2. Problèmes d'optimisation (Ex : fabrication optimale de vaccins) : $\max_{Ax \le b} f(x)$
- 3. Problèmes de contrôle (Stabilisation : gyropode) $\dot{y} = A(t)y + B(t)u(t)$; Linéarisation
- 4. Trajectoires optimales (chemin le plus court)
- 5. Traitement du signal (compression son; images jpg)

$$Ax = b$$

- 1. Intelligence artificielle
- 2. Grande dimension
- 3. Compression image (optimiser la mémoire)

Références bibliographiques

François Liret et Dominique Martinais, Algèbre 1ère année 2ème édition Licence 1ère année MIAS - MASS - SM - Cours et exercices avec solutions.

Arnaud Bodin, Cours de Mathématiques Première Année, Exo7. http://exo7.emath.fr/

Chapitre 1 : systèmes linéaires

Généralités

Dans tout le chapitre : $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$.

Définition

On appelle système linéaire de m équations à n inconnues toute famille d'équations de la forme

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 & (L_1) \\
a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2 & (L_2) \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m & (L_m)
\end{cases}$$
(1)

Les $a_{ij} \in \mathbb{K}$ sont les coefficients du système. Les $b_i \in \mathbb{K}$ sont les coefficients du second membre. Les $x_j \in \mathbb{K}$ sont les inconnues du système.

Interprétation géométrique

1. Plan: Intersections de droites

$$\begin{cases} x + 3y = 0 \\ 7x + 25y = 8 \\ -x - 2y = 1 \end{cases}$$

2. Espace : Intersections de plans

$$\begin{cases} x - 3y - z = 2 \\ 7x + 25y + 43z = 8 \end{cases}$$

3. Dans \mathbb{R}^n : intersections de m hyperplans (voir système ci-dessus).

Représentation matricielle (par une matrice)

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 & (L_1) \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2 & (L_2) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m & (L_m) \end{cases}$$

Remarque

Lien avec les matrices \rightarrow prochain chapitre.

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} b = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$$

$$\Rightarrow Ax = b$$

Définition

Une solution du système (1) est un n-uplet $(x_1, ..., x_n)$ qui vérifie chacune des m équations $L_1, ..., L_m$.

Définition

Si les b_i sont tous nuls le système est dit homogène.

Définition

Le système est dit compatible (ou possible) s'il admet au moins une solution. Sinon il est dit incompatible (ou impossible).

Remarque

Tout système homogène est compatible car (0,...,0) est solution.

Définition

Deux systèmes sont dits équivalents s'ils ont même ensemble de solutions.

Opérations élémentaires

Proposition

Les opérations suivantes, dites élémentaires, transforment un système en un système équivalent :

- 1. permuter des lignes L_i et L_k , noté $L_i \leftrightarrow L_k$,
- 2. multiplier une ligne L_i par $\alpha \neq 0$, noté $L_i \leftarrow \alpha L_i$,
- 3. remplacer une ligne L_i par $L_i + \beta L_j$, $j \neq i$, noté $L_i \leftarrow L_i + \beta L_j$.

TRES IMPORTANT : cela va garantir que l'on garde les mêmes solutions lors de la méthode du pivot de Gauss.

Systèmes échelonnés

Définition

Un pivot d'une ligne d'un système est sa première entrée non nulle.

Définition

- (i) Un système est dit échelonné si
 - 1. les lignes ne contenant que des zéros sont sous les autres lignes;
 - chaque pivot d'une ligne est à droite du pivot de la ligne précédente;
 - 3. tous les éléments (de la colonne) sous un pivot sont nuls.
- (ii) On dit qu'un système est sous forme échelonné réduit :
 - 1. le système est sous forme échelonné;
 - 2. tous les pivots valent 1;
 - 3. tous les éléments (de la colonne sauf le pivot) au-dessus et en-dessous d'un pivot sont nuls.

Exemples : laquelle n'est pas échelonnée?

$$E = \begin{pmatrix} 0 & 1 & 0 & 3 & 4 \\ 0 & 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \; ; \; F = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \; ; \; G = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Systèmes échelonnés : remarque

Il y a deux types de systèmes échelonnés :

1. la dernière ligne non identiquement nulle est de la forme

$$\alpha_r x_r + ... + \alpha_n x_n = \beta \qquad (\alpha_r \neq 0),$$

2. la dernière ligne non identiquement nulle est de la forme

$$0 = \beta$$
 $(\beta \neq 0)$.

Le système est compatible dans le cas 1, incompatible dans le cas 2.

Méthode de Gauss (ou méthode du pivot)

Objectif: transformer un système en un système équivalent échelonné par des opérations élémentaires.

On procède par étapes.

Décrivons l'étape 1, qui se fait elle-même en deux temps.

(a) On commence par éventuellement permuter la ligne L_1 avec une ligne L_k telle que $a_{k1} \neq 0$ (pivotage). On obtient un système équivalent de la forme

$$\begin{cases}
a'_{11}x_1 + a'_{12}x_2 + \cdots + a'_{1n}x_n = b'_1 & (L'_1) \\
a'_{21}x_1 + a'_{22}x_2 + \cdots + a'_{2n}x_n = b'_2 & (L'_2) \\
\vdots & \vdots & \vdots & \vdots \\
a'_{m1}x_1 + a'_{m2}x_2 + \cdots + a'_{mn}x_n = b'_m & (L'_m)
\end{cases}$$
(2)

avec $a'_{11} \neq 0$. Ce a'_{11} sera le premier pivot (en pratique, on aime bien $a'_{11} = 1!$)

(b) Ensuite, on remplace chaque ligne L_p , $p \ge 2$, par $L_p - \frac{a_{p1}}{a_{11}'}L_1$ (élimination). Cela conduit à un système équivalent de la forme

$$\begin{cases}
a_{11}^{(1)}x_1 + a_{12}^{(1)}x_2 + \cdots + a_{1n}^{(1)}x_n = b_1^{(1)} & (L_1^{(1)}) \\
a_{22}^{(1)}x_2 + \cdots + a_{2n}^{(1)}x_n = b_2^{(1)} & (L_2^{(1)}) \\
\vdots & \vdots & \vdots & \vdots \\
a_{m2}^{(1)}x_2 + \cdots + a_{mn}^{(1)}x_n = b_m^{(1)} & (L_m^{(1)})
\end{cases}$$
(3)

L'étape 2 consiste à appliquer la procédure ci-dessus aux lignes $L_2^{(1)},...,L_m^{(1)}$. On continue ainsi de suite jusqu'à obtenir un système échelonné.

Si on se trouve dans le cas 1 (système compatible), on exprime $x_1,...,x_r$ en fonction des autres x_j , en remontant de la dernière à la première ligne.

Remarque

Pour économiser des calculs, on a aussi parfois intérêt à permuter des colonnes. La permutation des colonnes j et p est notée $C_j \leftrightarrow C_p$.

Rang d'un système, dimension de l'ensemble des solutions

Définition

Si l'ensemble des solutions d'un système linéaire compatible est tel que r inconnues sont déterminées de manière unique à partir de la connaissance des n-r autres choisies arbitrairement, on dit que

- r est le rang du système;
- ightharpoonup n-r est la dimension de l'ensemble des solutions.

Proposition

Soit (S) un système linéaire compatible et (S') le système homogène associé. Alors le rang de (S) est égal au rang de (S'). De plus, si $x^0 := (x_1^0, ..., x_n^0)$ est une solution particulière de (S), alors $x := (x_1, ..., x_n)$ est solution de (S) si et seulement si $(x_1 - x_1^0, ..., x_n - x_n^0)$ est solution de (S').

En effet, matriciellement, si $Ax^0 = b$ alors :

$$Ax = b \iff A(x^0 - x) = 0$$

Systèmes de Cramer

Définition

Un système linéaire avec n équations et n inconnues

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 & (L_1) \\
a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2 & (L_2) \\
\vdots & \vdots & \vdots & \vdots \\
a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n & (L_n)
\end{cases}$$

est dit système de Cramer si sous forme échelonnée, il admet n pivots non nuls.

Proposition

Tout système de Cramer admet une seule et unique solution et son rang vaut n.

Remarques de conclusion

Propriété

- (i) L'ensemble des solutions d'un système linéaire est soit vide, soit fini, soit infini.
- (ii) En terme de complexité (nombre d'opérations), pour un système carré, le nombre d'opérations est

$$O(n^3)$$

On verra que le calcul de l'inverse A^{-1} d'une matrice carré A revient à effectuer la résolution du système linéaire

$$Ax = b$$

et donc l'inversion d'une matrice est en $O(n^3)$ opérations. Il existe des méthodes plus rapides (décomposition LU, Cholesky...).

Exemple 1 (exo 2b du TD1)

$$\begin{cases} 2x & -2y & +z & -t & +u & = 1\\ x & +2y & -z & +t & -2u & = 1\\ 4x & -10y & +5z & -5t & +7u & = 1\\ 2x & -14y & +7z & -7t & +11u & = -1 \end{cases}$$

Exemple 1 (exo 2b du TD1)

$$\begin{cases} x & +2y & -z & +t & -2u & = 1 \\ 2x & -2y & +z & -t & +u & = 1 \\ 4x & -10y & +5z & -5t & +7u & = 1 \\ 2x & -14y & +7z & -7t & +11u & = -1 \end{cases}$$

$$\iff$$

$$\begin{cases} x & +2y & -z & +t & -2u & = 1\\ -6y & +3z & -3t & +5u & = -1\\ -18y & +9z & -9t & +15u & = -3\\ -18y & +9z & -9t & +15u & = -3 \end{cases}$$

Exemple 1 (exo 2b du TD1)

$$\begin{cases} x +2y -z +t -2u = 1 \\ -6y +3z -3t +5u = -1 \end{cases}$$

- 3 inconnues secondaires z, t, u.
- $n-r=5-r=3 \Rightarrow r=2$: rang du système = 2
- Solutions du système : (après calcul)

$$(x, y, z, t, u) = (\frac{2}{3}, \frac{1}{6}, 0, 0, 0) + \underbrace{z(0, \frac{1}{2}, 1, 0, 0) + t(0, -\frac{1}{2}, 0, 1, 0) + u(\frac{1}{3}, \frac{5}{6}, 0, 0, 1)}_{}$$

dimension des solutions=3

Exemple 2:

$$\begin{cases} x & +2y & -z & = 5 \\ 2x & +y & +z & = 10 \\ x & & +2z & = 0 \end{cases} \qquad \begin{cases} x & +2y & -z & = 5 \\ -3y & +3z & = 0 \\ -2y & +3z & = -5 \end{cases}$$
$$\begin{cases} x & +2y & -z & = 5 \\ y & -z & = 0 \\ -2y & +3z & = -5 \end{cases} \qquad \begin{cases} x & +2y & -z & = 5 \\ y & -z & = 0 \\ z & = -5 \end{cases}$$

 $S = \{(10, -5, -5)\}\$ et rang =?

Exemple 3

$$\begin{cases} 2x + 3y - 4z = 7 \\ 4x + 6y - 8z = -1 \end{cases} \begin{cases} 2x + 3y - 4z = 7 \\ 2x + 3y - 4z = -1/2 \end{cases} \mathcal{S} = \emptyset$$

$$\begin{cases} x + y - z + t = 1 \\ x + 2y + 3z + 4t = 0 \\ x + 2y - 3z + t = 0 \end{cases} \begin{cases} x + y - z + t = 1 \\ y + 4z + 3t = -1 \\ y - 2z = -1 \end{cases}$$

$$\begin{cases} x + y - z + t = 1 \\ y + 4z + 3t = -1 \\ -6z - 3t = 0 \end{cases} \begin{cases} x + y - z + t = 1 \\ y + 4z + 3t = -1 \\ z + \frac{t}{2} = 0 \end{cases}$$

$$\mathcal{S} = \left\{ \left(2 - \frac{t}{2}, -1 - t, -\frac{t}{2}, t\right) ; t \in \mathbb{R} \right\} \text{ et rang } = ?$$

Exercice : système linéaire à paramètres

$$\begin{cases} x + y + z + t &= 1 \\ x + ay + z + bt &= c \\ x + by + z + at &= c \end{cases} \begin{cases} x + y + z + t &= 1 \\ (a-1)y + (b-1)t &= c-1 \\ (b-1)y + (a-1)t &= c-1 \end{cases}$$

$$\begin{aligned} &\text{Cas } \mathbf{1}(A). \ a = 1, \ b = 1, \ c = 1 \\ \mathcal{S} &= \left\{ (1 - y - z - t, y, z, t); \ (y, z, t) \in \mathbb{R}^3 \right\} \ rang = 4 - 3 = 1 \end{aligned}$$

$$\begin{aligned} &\text{Cas } \mathbf{1}(B). \ a = 1, \ b = 1, \ c \neq 1 \Rightarrow \mathcal{S} &= \emptyset. \end{cases}$$

$$\begin{aligned} &\text{Cas } \mathbf{1}(C). \ a = 1, \ b \neq 1 \Rightarrow \\ &\mathcal{S} &= \left\{ (1 - 2\frac{c-1}{a-1} - z, \frac{c-1}{b-1}, z, \frac{c-1}{b-1}); \ z \in \mathbb{R} \right\} \ rang = 4 - 1 = 3 \end{aligned}$$

En faisant $L_3 \leftarrow L_3 - \frac{b-1}{a-1}L_2$:

$$\begin{cases} x+y+z+t &= 1\\ (a-1)y+(b-1)t &= c-1\\ (a-1-\frac{(b-1)^2}{a-1})t &= (c-1)(1-\frac{b-1}{a-1}) \end{cases}$$

La 3ème ligne : $\frac{(a-b)(a+b-2)}{(a-1)}t = \frac{(c-1)(a-b)}{a-1}$

Cas 2 (A).
$$a \neq 1$$
, $a = b$
 $S = \{(1 - (\frac{c-1}{a-1} - t) - z - t, \frac{c-1}{a-1} - t, z, t) ; (z, t) \in \mathbb{R}^3\}$
 $rang = 4 - 2 = 2$

Cas 2 (B).
$$a \ne 1$$
, $a \ne b$, $a + b - 2 = 0$, $c = 1 \Rightarrow idem$

Cas 2 (C).
$$a \neq 1$$
, $a \neq b$, $a + b - 2 = 0$, $c \neq 1 \Rightarrow S = \emptyset$

Cas 2 (D).
$$a \neq 1$$
, $a \neq b$, $a + b - 2 \neq 0 \Rightarrow \text{rang}=1$ et

$$\mathcal{S} = \left\{ (1 - \frac{(c-1)(a-1)}{a+b-2} - z - \frac{c-1}{a+b-2}, \frac{(c-1)(a-1)}{a+b-2}, z, \frac{c-1}{a+b-2}) \right\}$$

- 1. PENSEZ A LA DISJONCTION DE CAS DANS LES SYSTEMES A PARAMETRE.
 - 2. ATTENTION AUX ERREURS DE CALCUL LE JOUR DU CC!!!!

Résolution de l'exercice à paramètre

Exercice : donner le rang du système en fonction de m :

$$\begin{cases} 2x & +3y & +z & = 4 \\ -x & +my & +2z & = 5 \\ 7x & +3y & +(m-5)z & = 7 \end{cases}$$

Mise sous forme échelonnée

On fait $L_1 \leftrightarrow L_2$

$$\begin{cases} x - my -2z = -5 \\ 2x + 3y +z = 4 \\ 7x + 3y +(m-5)z = 7 \end{cases}$$

puis
$$L_2 \leftarrow L_2 - 2L_1$$
; $L_3 \leftarrow L_3 - 7L_1$

$$\begin{cases} x & -my & -2z & = -5 \\ (3+2m)y & +5z & = 14 \\ (3+7m)y & +(m+9)z & = 42 \end{cases}$$

puis on élimine y (contrairement aux habitudes) puisque z a un pivot non nul en 2ème ligne

Mise sous forme échelonnée (suite)

On fait
$$L_2 \leftarrow (m+9)L_2$$
; $L_3 \leftarrow 5L_3$ puis $L_3 \leftarrow L_3 - L_2$

$$\begin{cases}
x & -my & -2z & = -5 \\
(3+2m)(m+9)y & +5(m+9)z & = 14(m+9) \\
5(3+7m)y & +5(m+9)z & = 210
\end{cases}$$
On fait $L_3 \leftarrow L_3 - L_2$

$$\begin{cases}
x & -2z & -my & = -5 \\
5z + & (3+2m)y & = 14 \\
-2(m-1)(m-6)y & = 14(6-m)
\end{cases}$$

Mise sous forme échelonnée (suite)

On fait
$$L_2 \leftarrow (m+9)L_2$$
; $L_3 \leftarrow 5L_3$ puis $L_3 \leftarrow L_3 - L_2$

$$\begin{cases}
x & -my & -2z & = -5 \\
(3+2m)(m+9)y & +5(m+9)z & = 14(m+9) \\
5(3+7m)y & +5(m+9)z & = 210
\end{cases}$$

On fait
$$L_3 \leftarrow L_3 - L_2$$

$$\begin{cases} x & -2z & -my & = -5 \\ 5z + & (3+2m)y & = 14 \\ & -2(m-1)(m-6)y & = 14(6-m) \end{cases}$$

Conclusion:

- (i) m = 1: pas de solution
- (ii) m = 6: rang= 2; dimension des solutions = 1
- (iii) $m \notin \{1,6\}$: solution unique (3 pivots non nuls); système de Cramer.

