How is it stored in memory?

- One contiguous block in memory
- When array is initialize, the JVM allocate memory for that array (that's why it's size can't be changed)
- Every element occupies the same amout of space in memory (same amout of bytes)

Primitive Type Keyword

Туре	Size in bytes	Range	Default Value
byte	1 byte	-128 to 127	0
short	2 bytes	-32,768 to 32,767	0
int	4 bytes	-2,147,483,648 to 2,147,483, 647	0
long	8 bytes	-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807	0
float	4 bytes	approximately ±3.40282347E+38F (6-7 significant decimal digits) Java implements IEEE 754 standard	0.0f
double	8 bytes	approximately ±1.79769313486231570E+308 (15 significant decimal digits)	0.0d
char	2 bytes	0 to 65,536 (unsigned)	'\u0000'
boolean	Not precisely defined*	true or false	false

- When we create array of Objects we store the **reference** to this objects (objects references are always of the same size)
- We cant easily calculate the memory address of and array element based on its index:
 - x array starts memory
 - y size of each element in memory
 - I ith element

$$x + i * y$$

- If we know the index of an element, the time to retrieve the element will be the same, no matter where it is in the array

Retrieve an Element from an Array

- 1. Multiply the size of the element by its index
- 2. Get start address of the array
- 3. Add the start address to the result of the multiplication

No matter how many elements array store it takes only 3 steps to retrieve the desired item

When we know index of element in array, retrieving desired item has constant time complexity, O(1)