# Análise de uma Busca Local Iterada para o Problema do Roteamento de Veículos com Backhauls

Marcelo de Souza, Marcus R. P. Ritt

Instituto de Informática, Universidade Federal do Rio Grande do Sul, Porto Alegre - RS {mdesouza, marcus.ritt}@inf.ufrgs.br

#### Resumo

O problema do roteamento de veículos com backhauls (PRVB) é uma variante do problema do caixeiro viajante (PCV) que considera a determinação de rotas para o suprimento de uma cadeia de clientes. Neste contexto, alguns clientes recebem bens originados no depósito, ao passo que outros enviam bens ao depósito. As rotas devem ser criadas para o suprimento das demandas com o menor custo possível, sem violar a capacidade máxima dos veículos. Este trabalho apresenta a análise do algoritmo de busca local iterada para o PRVB. O objetivo é identificar os componentes principais da heurística e determinar a influência de cada um deles no desempenho da busca. Neste sentido, foram analisados o mecanismo de perturbação, a estratégia da busca local, a geração e a exploração da vizinhança. Testes estatísticos determinaram a superioridade da implementação segundo as especificações da fonte. A estratégia de perturbação total e diferentes formas de exploração da vizinhança conseguem manter a qualidade dos resultados, diminuindo o tempo gasto na execução.

#### Problema do Roteamento de Veículos com Backhauls

#### Problema do Roteamento de Veículos (PRV)

- Um depósito central;
- Um conjunto de clientes que requisitam bens;
- Um conjunto de veículos idênticos com uma capacidade fixa;
- Cada rota inicia e termina no depósito;
- Cada cliente é visitado uma única vez;
- A quantia de bens de cada rota não pode exceder a capacidade do veículo;
- Objetivo: Definir uma rota para cada veículo minimizando a distância total percorrida.

#### Problema do Roteamento de Veículos com Backhauls (PRVB)

- Consumidores (linehauls) requisitam bens do depósito;
- Supridores (backhauls) enviam bens de volta ao depósito;
- Os consumidores devem ser visitados antes dos supridores;
- Cada rota deve possuir ao menos um cliente linehaul.





Fig 1. Funcionamento do PRV

Fig 2. Funcionamento do PRVB

# Heurística Analisada

Consiste em uma Busca Local Iterada proposta por [1].

- Função Oscillated Local Search (OLS) com estratégia de Melhor Melhora;
- Permite soluções inviáveis mediante uma penalidade na função objetivo.

#### Função objetivo

 $cost(S) = distance(S) + \sum [lh\_excess\_load(r) + bh\_excess\_load(r)]$ 

#### Vizinhança

- Intra-route e inter-route relocation (shift);
- Intra-route e inter-route exchange (swap);
- Intra-route e intra-route 2-opt;
- Intra-route e inter-route crossover;

#### Perturbação

Realoca os clientes iterativamente, tanto os clientes como as posições são selecionadas aleatoriamente. O tamanho da perturbação (% dos clientes a serem realocados) é definido por um parâmetro.

# Algorithm OLS

Input  $S_0$ : solução inicial

Output A melhor solução viável encontrada.

while ¬stop\_criterion do

while neighbors\_with\_lower\_cost( $S_{act}$ ,  $\alpha$ )  $\neq \emptyset$  do  $S_{act} \leftarrow neighbor\_with\_lowest\_cost(S_{act}, \alpha)$ 

if  $is\_feasible(S_{act})$  then

if  $cost(S_{act}) < cost_{best\ feas}$  then

 $cost_{best\_feas} \leftarrow cost(S_{act})$ 

 $S_{best\_feas} \leftarrow S_{act}$ 

 $\alpha \leftarrow \alpha_0$ else

 $stop\_criterion \leftarrow true$ 

else  $\alpha \leftarrow \beta \cdot \alpha$ 

13 return  $S_{best\_feas}$ 

# Componentes Estudados

#### Perturbação

Nula (0%); Normal (40%); Semi-total (95%).

#### Estratégia de Busca Local

• Melhor Melhora (MM) e Primeira Melhora (PM).

#### Vizinhanças consideradas

• Somente relocation; Relocation e exchange; Completa (relocation, exchange, 2-opt, crossover).

## Exploração da vizinhança

Completa; Sequencial; Semi-sequencial.

#### Experimentos e Testes Estatísticos

Os experimentos foram executados sobre o benchmark GJB [2]. Foram considerados os grupos de instâncias A a L (total de 52 instâncias). Os experimentos foram conduzidos em um computador com processador Intel Core i7-3770 de 3.40GHz. Os resultados para um total de 10 replicações para cada experimento podem ser observados nas tabelas abaixo. Para um máximo de 1000 iterações, todos os ótimos conhecidos foram encontrados. No entanto, o máximo de iterações foi fixado em 400 por questões de tempo. O parâmetro  $\alpha$  foi fixado em 0.01, a perturbação em 40% e o valor de  $\beta$  em 5.

Implementação da especificação de [1]

|           |          |           | _      |
|-----------|----------|-----------|--------|
| Instância | Tempo    | Iterações | Desvio |
| A         | 0.301    | 55.5      | 0.0004 |
| В         | 1.201    | 55.9      | 0.0001 |
| C         | 9.406    | 131.1     | 0.0020 |
| D         | 1.989    | 35.1      | 0.0000 |
| E         | 3.602    | 58.6      | 0.0002 |
| F         | 37.570   | 221.9     | 0.0033 |
| G         | 24.871   | 175.1     | 0.0015 |
| Н         | 153.094  | 354.3     | 0.0137 |
| I         | 671.593  | 400.0     | 0.0238 |
| J         | 809.252  | 400.0     | 0.0067 |
| K         | 930.640  | 400.0     | 0.0152 |
| L         | 1181.100 | 400.0     | 0.0277 |
| Média     | 318.718  | 224.0     | 0.0079 |

Na execução do algoritmo de acordo com as especificações apresentadas em [1], a qualidade das soluções foi bastante similar aos resultados produzidos no artigo original. O tempo gasto pela implementação foi consideravelmente maior. Este comportamento era esperado, uma vez que o objetivo consistiu em replicar a qualidade das soluções encontradas para futura análise dos componentes selecionados para estudo. Os resultados das alterações nos componentes podem ser observados na tabela a seguir.

#### Variações implementadas para análise dos componentes

| Implementação              | Tempo   | Iterações | Desvio |
|----------------------------|---------|-----------|--------|
| Sem perturbação            | 33.717  | 379.1     | 0.1268 |
| Máxima perturbação         | 261.526 | 234.5     | 0.0236 |
| Primeira melhora           | 276.662 | 249.9     | 0.0150 |
| Exploração sequencial      | 119.503 | 234.2     | 0.0327 |
| Exploração semi-sequencial | 112.203 | 230.6     | 0.0092 |
| Vizinhança shift           | 11.961  | 400.0     | 1.2438 |
| Vizinhança shift + swap    | 162.651 | 380.3     | 0.2179 |

Para confirmar algumas hipóteses, alguns testes estatísticos foram conduzidos sobre a qualidade das soluções encontradas. Pelo teste de Friedman, constatou-se que não existe diferença significativa entre as distintas formas de exploração da vizinhança. Para os demais casos (com diferença), foram realizados testes de Wilcoxon de postos com sinais, os quais são sumarizados abaixo.

| Hipótese alternativa (H <sub>1</sub> )  | p-value               | Resultado                                      |
|-----------------------------------------|-----------------------|------------------------------------------------|
| Pert. normal melhor que sem pert.       | $2.2 \times 10^{-16}$ | - Critici i i cara cara cara cara cara cara ca |
| Pert. normal melhor que pert. semi-tota |                       | Estratégias são iguais.                        |
| Pert. semi-total melhor que pert. norma |                       | Estratégias são iguais.                        |
| Pert. semi-total melhor que sem pert.   | $2.2 \times 10^{-16}$ | Pert. semi-total é superior em qualidade.      |
| MM melhor que PM.                       | $3.21 \times 10^{-5}$ | MM é superior em qualidade.                    |
| Ger. completa melhor que shift.         | $2.2 \times 10^{-16}$ | Ger. Completa é superior em qualidade.         |
| Ger. completa melhor que shift+swap.    | $2.2 \times 10^{-16}$ | Ger. Completa é superior em qualidade.         |
| Ger. shift+swap melhor que shift.       |                       | Ger. shift+swap é superior em qualidade.       |

Para os casos em que não há diferença significativa em relação à qualidade, testes foram conduzidos com relação ao tempo gasto por cada implementação.

| Hipótese alternativa (H <sub>1</sub> )    | p-value                | Resultado                                |
|-------------------------------------------|------------------------|------------------------------------------|
| Pert. semi-total melhor que pert. normal  | $2.2 \times 10^{-8}$   | Pert. semi-total é melhor no tempo.      |
| Expl. sequencial melhor que completa      | $1.581 \times 10^{-7}$ | Expl. sequencial é melhor no tempo.      |
| Expl. semi-sequencial melhor que completa | $1.623 \times 10^{-7}$ | Expl. semi-sequencial é melhor no tempo. |

# Conclusões

A qualidade da solução inicial gerada não produz influência direta sobre a qualidade final da busca. Com relação às instâncias, percebeu-se que quanto maior o número de clientes, maior a complexidade da busca. Além disso, a complexidade aumenta com o crescimento do número de clientes do tipo backhaul, bem como quando a capacidade dos veículos diminui (ou a demanda dos clientes aumenta). As modificações implementadas permitiram identificar a contribuição de cada componente no desempenho da busca. Os testes estatísticos realizados permitiram confirmar algumas hipóteses e serviram de base para as conclusões.

#### Para a perturbação

- Perturbação semi-total mantém a qualidade dos resultados e melhora o tempo;
- A perturbação não se mostra fundamental para a heurística. A aplicação de um algoritmo GRASP sugere bons resultados.

#### Para a geração da vizinhança

- Somente a geração completa garante a qualidade das soluções encontradas;
- Evolução: + shift  $\rightarrow +$  swap  $\rightarrow$  completa.

#### Para a exploração da vizinhança

• Apesar de não apresentar diferença significa na qualidade, diminui o tempo.

### Referências

[1] D. P. Cuervo, P. Goos, K. Sörensen, and A. Arráiz. An iterated local search algorithm for the vehicle routing problem with backhauls. European Journal of Operational Research, 237:454–464, 2014.

[2] M. Goetschalckx and C. Jacobs-Blecha. The vehicle routing problem with backhauls. *European Journal* of Operational Research, 42:39–51, 1989.

XLVI Simpósio Brasileiro de Pesquisa Operacional - 2014, Salvador / BA - Brasil