

## Learn Git and GitHub without any code!

Using the Hello World guide, you'll start a branch, write comments, and open a pull request.

Read the guide



| clk | d | q(n) | q(n+1) | comments  |
|-----|---|------|--------|-----------|
| ٨   | 0 | 1    | 0      | Change    |
| ٨   | 1 | 0    | 1      | Change    |
| ٨   | 1 | 1    | 1      | No change |

| clk | j | k | q(n) | q(n+1) | comments  |
|-----|---|---|------|--------|-----------|
| ٨   | 0 | 0 | 0    | 0      | No change |
| ٨   | 0 | 0 | 1    | 1      | No change |
| ٨   | 0 | 1 | 0    | 0      | No change |
| ٨   | 0 | 1 | 1    | 0      | Change    |
| ٨   | 1 | 0 | 0    | 1      | Change    |
| ٨   | 1 | 0 | 1    | 1      | No change |
| ٨   | 1 | 1 | 0    | 1      | Change    |
| ٨   | 1 | 1 | 1    | 0      | Change    |

| clk | t | q(n) | q(n+1) | comments  |
|-----|---|------|--------|-----------|
| ٨   | 0 | 0    | 0      | No change |
| ٨   | 0 | 1    | 1      | No change |
| ٨   | 1 | 0    | 1      | Change    |
| ٨   | 1 | 1    | 0      | Change    |

## 2. D latch.

```
p_stimulus : process
begin
     report "Stimulus process started" severity note;
     anrst <= '0'; d <= '1'; en <= '1'; wait for 50 ns;
     assert (q = '0')
     report "Asynchronous reset is failing" severity error;
     anrst <= '1';
     en <= '1';
    d <= '0';
    wait for 50 ns;
     assert (q = '0')
     report "The enable does not work properly" severity error;
    anrst <= '1';
    en <= '1';
    d <= '1';
    wait for 50 ns;
     assert (q = '1')
     report "The output does not fit with the epected" severity error;
     report "Stimulus process finished" severity note;
    wait;
end process p_stimulus;
```



## 3. Flip-flops

```
d_ff_arst : process ( clk , d, arst )
  begin
      if(arst = '1') then
         q <= '0';
      elsif rising_edge(clk) then
         q \leftarrow d;
         q_bar <= not d ;</pre>
      end if;
  end process d_ff_arst ;
  -- Clock generation process
  ______
  p_clk_gen : process
  begin
      while now < 750 ns loop -- 75 periods of 100MHz clock
         clk <= '0';
         wait for c_CLK_100MHZ_PERIOD / 2;
         clk <= '1';
         wait for c_CLK_100MHZ_PERIOD / 2;
      end loop;
      wait;
```

```
end process p_clk_gen;
p_stimulus : process
begin
    report "Stimulus process started" severity note;
    arst <= '1'; d <= '1'; wait for 50 ns;
    assert (q = '0')
    report "Asynchronous reset is failing" severity error;
    arst <= '0';
    d <= '0';
    wait for 50 ns;
    assert (q = '0')
    report "The enable does not work properly" severity error;
    d <= '1';</pre>
    wait for 50 ns;
    assert (q = '1')
    report "The output does not fit with the epected" severity error;
    report "Stimulus process finished" severity note;
    wait;
end process p_stimulus;
p_d_ff : process ( clk , d, rst )
begin
    if rising_edge(clk) then
                if(rst = '1') then
                            q <= '0';
                    else
                             q \leftarrow d;
                             q bar <= not d ;
                    end if;
    end if;
end process p_d_ff ;
```



```
p_clk_gen : process
begin
    while now < 750 ns loop -- 75 periods of 100MHz clock
        clk <= '0';
        wait for c_CLK_100MHZ_PERIOD / 2;
        clk <= '1';
        wait for c_CLK_100MHZ_PERIOD / 2;
   end loop;
   wait;
end process p_clk_gen;
p_stimulus : process
begin
    report "Stimulus process started" severity note;
    rst <= '1'; d <= '1'; wait for 50 ns;
    assert (q = '0')
    report "Asynchronous reset is failing" severity error;
    rst <= '0';
    d <= '0';
    wait for 50 ns;
    assert (q = '0')
    report "The enable does not work properly" severity error;
    d <= '1';</pre>
   wait for 50 ns;
    assert (q = '1')
    report "The output does not fit with the epected" severity error;
    report "Stimulus process finished" severity note;
    wait;
end process p_stimulus;
```



```
p_jk_ff_rst : process ( clk ,rst )
   begin
       if rising_edge(clk) then
        if (rst = '1') then
          q_i <= '0';
        elsif (j = '0') and k = '0') then
          q_i <= q_i ;
        elsif (j = '0') and k = '1') then
          q_i <= '0';
        elsif (j = '1') and k = '0') then
          q_i <= '1';
        elsif (j = '1') and k = '1') then
          q_i <= not q_i;</pre>
        end if;
      end if;
   end process p_jk_ff_rst ;
 q <= q_i;
 q_bar <= not q_i;</pre>
        ______
   -- Clock generation process
   ______
   p_clk_gen : process
   begin
      while now < 750 ns loop -- 75 periods of 100MHz clock
          clk <= '0';
          wait for c_CLK_100MHZ_PERIOD / 2;
          clk <= '1';
          wait for c_CLK_100MHZ_PERIOD / 2;
      end loop;
      wait;
   end process p_clk_gen;
```

```
p stimulus : process
    begin
        report "Stimulus process started" severity note;
        rst <= '1'; j <= '0'; k <= '0'; wait for 10 ns;
        rst <= '0'; wait for 10 ns;
        j <= '0'; k <= '1'; wait for 10 ns;</pre>
        j <= '1'; k <= '0'; wait for 10 ns;</pre>
        j <= '1'; k <= '1'; wait for 10 ns;</pre>
        j <= '0'; k <= '0'; wait for 10 ns;</pre>
        j <= '0'; k <= '1'; wait for 10 ns;</pre>
        j <= '1'; k <= '0'; wait for 10 ns;</pre>
        j <= '1'; k <= '1'; wait for 10 ns;</pre>
        report "Stimulus process finished" severity note;
        wait;
    end process p_stimulus;
![JK](https://github.com/FranciscaCampos/Digital-electronics-1/blob/main/Labs/07-
```vhdl
library ieee ;
use ieee.std_logic_1164.all;
_____
entity t_ff_rst is
port( clk : in std_logic ;
      rst : in std logic;
      t : in std_logic ;
      q : buffer std logic ;
      q_bar : buffer std_logic );
end entity t_ff_rst;
architecture Behavioral of t_ff_rst is
signal q_i : std_logic;
begin
    p_t_ff : process ( clk , rst )
    begin
        if rising edge(clk) then
            if(rst = '1') then
                q <= '0';
            elsif t = '1' then
            q \leftarrow not q;
            q_bar <= not q ;</pre>
            end if;
        end if;
```

```
end process p t ff;
end architecture Behavioral ;
      ______
   -- Clock generation process
   _____
   p_clk_gen : process
   begin
       while now < 750 ns loop -- 75 periods of 100MHz clock
          clk <= '0':
          wait for c_CLK_100MHZ_PERIOD / 2;
          clk <= '1';
          wait for c_CLK_100MHZ_PERIOD / 2;
       end loop;
       wait;
   end process p_clk_gen;
   p_stimulus : process
   begin
       report "Stimulus process started" severity note;
       rst <= '1'; t <= '1'; wait for 50 ns;
       assert (q = '0')
       report "Asynchronous reset is failing" severity error;
       rst <= '0';
       t <= '1';
       wait for 50 ns;
       assert (q = not q)
       report "The output does not fit with the epected" severity error;
        t <= '0';
       wait for 50 ns;
       assert (q = not q)
       report "The output does not fit with the epected" severity error;
        t <= '1';
       wait for 50 ns;
       assert (q = not q)
       report "The output does not fit with the epected" severity error;
       report "Stimulus process finished" severity note;
       wait;
   end process p_stimulus;
```



## 4. Shift Register

