Willy Xiao and Kevin Eskici STAT 221

Pset 4

Nov 4, 2014

question 1. 1 $p(\lambda, \theta) \propto \lambda^{-1}$ $\begin{bmatrix} N \\ \theta \end{bmatrix} = f \begin{pmatrix} \lambda \\ \theta \end{pmatrix}$ $p(N, \theta) = p(\lambda, \theta) * \begin{vmatrix} \frac{\partial \lambda}{\partial N} & \frac{\partial \theta}{\partial N} \\ \frac{\partial \lambda}{\partial \theta} & \frac{\partial \theta}{\partial \theta} \end{vmatrix}$ Our Jacobian is $\begin{vmatrix} \theta & -\lambda N^{-2} \\ N & 1 \end{vmatrix}$ and its determinant is $\theta + \frac{\lambda}{N}$

$$p(N,\theta) \propto \frac{1}{\theta N} * (\theta + \frac{\lambda}{N})$$

$$= \frac{1}{\theta N} * (\theta + \frac{\theta N}{N})$$

$$= \frac{2}{N}$$

$$\propto \frac{1}{N}$$

This prior favors smaller values of N.

- 2 It is an improper prior: $\int_0^\infty \int_0^1 \lambda^{-1} d\theta d\lambda \to \ln(\infty) \ln(0)$. This cannot integrate to 1 with any constant factor.
- 3 No $p(\lambda, \theta)$ is not a non-informative prior in the sense of Jeffreys.

$$p(y_i|\theta,\mu) = \frac{(\theta\mu)^{y_i}}{y_i!}e^{-\theta\mu}$$

$$y_i log(\theta|\mu) - log(y_i!) - \frac{\theta}{\mu}$$

$$\frac{\partial I}{\partial \theta} = y_i(\theta\mu)^{-1}\mu - \frac{1}{\mu} = y_i(\theta)^{-1} - \frac{1}{\mu}$$

$$\frac{\partial I}{\partial \mu} = y_i\mu + \theta\mu^{-2}$$

$$\frac{\partial^2 I}{\partial \theta^2} = -y_i\theta^{-2}$$

$$\frac{\partial^2 I}{\partial \mu^2} = y_i - 2\theta\mu^{-3}$$

$$\frac{\partial^2 I}{\partial \mu \partial \theta} = \mu^{-2}$$

$$\frac{\partial^2 I}{\partial \theta \partial \mu} = \mu^{-2}$$

This gives us the fisher's information matrix $\begin{pmatrix} -y_i\theta^{-2} & \mu^{-2} \\ \mu^{-2} & y_i - 2\theta\mu^{-3} \end{pmatrix}$, which has determinant $(y_i\theta^{-2})^2 - 2\theta\mu^{-3}y_i - \mu^{-4}$, the square root of which is not proportional to $\frac{(\theta\mu)^{y_i}}{y_i!}e^{-\theta\mu}$.

- 4 See R code and MCMC design note.
- 5 Posterior for N $\int_{0}^{1} \left(\prod_{i=1}^{n} \binom{N}{x_{i}} \theta^{x_{i}} (1-\theta)^{N-x_{i}} \right) * \frac{1}{N} d\theta$ $= \int_{0}^{1} \left(\prod_{i=1}^{n} \binom{N}{x_{i}} \right) \theta^{\Sigma x_{i}} (1-\theta)^{nN-\Sigma x_{i}} * \frac{1}{N} d\theta$ $= \frac{1}{N} \int_{0}^{1} \theta^{\Sigma x_{i}} (1-\theta)^{nN-\Sigma x_{i}} \prod_{i=1}^{n} \binom{N}{x_{i}} d\theta$ $= \frac{1}{N} \prod_{i=1}^{n} \binom{N}{x_{i}} \int_{0}^{1} \theta^{\Sigma x_{i}} (1-\theta)^{nN-\Sigma x_{i}} d\theta$

If we define $S = \Sigma x_i$, the integral above has the form of a $\mathrm{Beta}(\alpha = S + 1, \beta = nN - S + 1)$ pdf Using this we get, $\frac{(nN-S)!}{(nN+1)!N)}$, which when $n = 1, \rightarrow \frac{x_i}{N(N+1)}$

Using our function find.norm.log.const defined in $keskici_wxiao_ps4_post.R$, we found that the normalizing constant for the impala dataset was $e^{15.63617}$ and the normalizing constant for the waterbuck dataset was $e^{16.83744}$.

6