Contagion in Motion:

Unraveling Emergent Behaviours of Pathogen Mutation in Mobility Networks

27 Apr 2023

Gabriel Cowley Khôi Minh Trương Professor Chad Westphal
CSC-288: Network Modeling & Diseases

Disease Simulation

Not another COVID work surely

Math Models

- Classic SIR
- ODE vs. Stochastic Simulation

Graphs for Mobility Structures

- Hub-and-spoke architecture
- Power-law distribution

Adding Mutations

Dynamic infectivity & mortality

Results

Disease Modelling

Simple SIR Model

Ordinary Differential Equations & Stochastic Simulation

- SIR Model → "Susceptible, Infected, Recovered"
- Total population n = S + I + R remains constant
- Each person interacts with 3 other people per day
- Each S-I interaction results in $S \rightarrow I$ with probability 0.25

How many new infections from S should we expect per day?

- SIR Model → "Susceptible, Infected, Recovered"
- Total population n = S + I + R remains constant
- Each person interacts with 3 other people per day
- Each S-I interaction results in $S \rightarrow I$ with probability 0.25

How many new infections from S should we expect per day?

$$\Delta S = -\underbrace{3S}_{\text{\#int.}/day} \times \underbrace{\left(\frac{I}{n}\right)}_{\text{prob. of int with } I} \times \underbrace{0.25}_{\text{prob. of infect } \mid S\text{-}I} = -0.75 \; SI/n$$

Each infected person remains sick for an average of 8 days.

How many recoveries would we expect from *I* every day?

• Each infected person remains sick for an average of 8 days.

How many recoveries would we expect from I every day?

$$\Delta R = \underbrace{\frac{1}{8}}_{\text{(prob of rec)/day}} \times I$$

$$\begin{cases} \frac{dS}{dt} = -0.75 \ SI/n \\ \\ \frac{dI}{dt} = 0.75 \ SI/n - 0.125I \\ \\ \frac{dR}{dt} = 0.125I \end{cases}$$

Initial conditions $S(0) = s_0$, $I(0) = i_0$, and $R(0) = r_0$

ODE Model: Different Parameters, Different Outcomes!

ODE Model vs Stochastic Simulation

Let U be a **unif**(0,1) Random Variable

ODE: Populations are continuous, parameters are rates, and the solution is deterministic (i.e. there is *the* solution)

Stochastic: As a Markov Chain Monte Carlo simulation, populations are discrete, parameters are probabilities, and we have a distribution of solutions.

```
Initialize: day=1, S=99, I=1, R=0
```

```
for( day = 1, 2, ..., finalDay )
   for(s = 1, 2, ..., S)
      if(\beta*I*/n < U)
           S=S-1
           T=T+1
      end if
   end for
   for(i = 1, 2, ..., I)
      if(\gamma < U)
           I=I-1
          R=R+1
      end if
   end for
end for
```


Disease Modelling

Differential Systems

Mobility Networks

Graphs, Graphs, and more Graphs

Graphs Objects

Nodes, Edges, and all the fun stuff and spherical cows

Grid network

Simply perfect

Grid network illustration

Topologically it's a doughnut

Grid is unrealistic

Spherical cows are cute

Can we do better?

How to modify the connectivity?

Rewiring...

Regular

Small-world

Random

Hub-and-Spoke Structure

Power-law distribution

- → Most will have few connections
- → Superspreaders few & far between
- \rightarrow Minimum degree of connectivity m
- \rightarrow Decay exponent γ

Hub-and-Spoke Structure

Random

Average distributions.

No structural or hierarchical patterns.

Small-world

High **local clustering** and short average path lengths. **Hub-and-spoke** architecture.

Scale-free

Hub-and-spoke architecture preserved at multiple scales. High **power-law distribution**

Disease Modelling

Differential Systems

Expanding our Model

Making it more exciting...

Now Four Categories:

- S → "Susceptible"
- I → "Infected"
- $R \rightarrow$ "Recovered"
- $D \rightarrow$ "Dead"

(Notice the Waning Immunity)

Infectious Disease Dynamics: Ordinary Differential Equations Model

$$\begin{cases} \frac{dS}{dt} = -\frac{\beta}{n} SI + \gamma R \\ \frac{dI}{dt} = \frac{\beta}{n} SI - \rho I - \delta I \\ \frac{dR}{dt} = \rho I - \gamma R \\ \frac{dD}{dt} = \delta I \end{cases}$$

Mutations: Hypothesis

Letting Our Disease Develop...

What if we allow our disease's infectivity and death rate to mutate unbiasedly on a local scale? Will there be an emergent bias on a global scale?

What might we expect to happen?

Intuitively, we may expect more infectivity...

 Think about how a more infectious disease would spread to more people, becoming more "dominant" than a less infectious one.

Intuition might also suggest less mortality...

 If a disease has too high of a mortality rate, the infected would die before having an opportunity to pass on their strain of the disease.

Edge Attributes ← Individual Quirks

Node Attributes ← Individual Quirks

Emergence?

Individual Quirks

Illustrative Case:

Scale-free graph with an average degree of 6.124, β = 0.04 (infectivity), δ = 0.01 (death rate)

Beta: 5% chance of mutating between 0 and 5% of original amount

Delta: 5% chance of mutating between 0 and 1% of original amount

Beta's Mutation Slope: 8.18×10^{-7}

Mutations: Results

Run the simulation, get a Gaussian distribution...

(These example results for initial parameters of beta = 0.030, delta=0.005)

(Consistent results with other initial probabilities)

Beta: $(1.73 +- 0.73) \times 10^{-8}$ (95% CI, Gaussian Distribution)

Delta: $(1.44 +- 7.48) \times 10^{-10}$ (95% CI, Gaussian Distribution)

Future Directions and Remaining Questions...

- Why didn't delta's slope didn't have any trends?
- What if we let a community's connections change with time?
- What if we let two diseases of different parameters "compete?" Would *that* then show some preference for less deadly diseases?

Thank you!

Q & A session

27 Apr 2023

Gabriel Cowley Khôi Minh Trương Professor Chad Westphal
CSC-288: Network Modeling & Diseases