Introdução a Ciências de Dados

Aula 6: Classificação

Francisco A. Rodrigues ICMC/USP francisco@icmc.usp.br

Aula 6: Classificação

- k-vizinhos mais próximos
- Regressão Logística
- Naive Bayes

k-vizinhos mais próximos

 Uma maneira simples de definimos a classificação de objetos é através de distância entre eles:

Classe: Cachorros

Como definir a distância entre objetos?

- Precisamos definir uma medida de proximidade.
 - Medida de similaridade: d(Xi, Xi) é máxima.
 - Exemplo: Número de amigos compartilhados em uma rede social.
 - Medida de dissimilaridade: d(Xi,Xi) = 0.
 - Exemplo: distância entre cidades (distância Euclidiana).

Medida de dissimilaridade:

- $d(p, q) \ge 0$ para todo p e q, e d(p, q) = 0 se, e somente se, p = q,
- d(p, q) = d(q, p) para todo p e q,
- d(p, r) ≤ d(p, q) + d(q, r) para todo p, q, e r, onde d(p, q) é a distância de dissimilaridade entre os pontos (objetos) p e q.

Medida de similaridade:

- s(p, q) = 1 (ou máximo de similaridade) se p = q,
- s(p, q) = s(q, p) para todo p e q, onde s(p, q) é a similaridade entre os objetos p e q.

Métricas de distância:

• Euclidiana
$$D(X,Y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$
 $[0,\infty)$

• Minkowski
$$D(X,Y) = \left(\sum_{i=1}^{n} |x_i - y_i|^p\right)^{\frac{1}{p}}$$
 $[0,\infty)$

• Cosseno
$$D(X,Y) = \frac{\sum_{i=1}^{n} x_i y_i}{\sqrt{\sum_{i=1}^{n} (x_i)^2} \sqrt{\sum_{i=1}^{n} (y_i)^2}}$$
 [0,1]

• Pearson
$$D(X,Y) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \cdot \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$
 [-1,1]

Métricas de distância:

Métricas de distância:

Similaridade

Dissimilaridade

• Dados nominais

$$\mathbf{s} = \begin{cases} 1 & \text{if } p = q \\ 0 & \text{if } p \neq q \end{cases}$$

$$s = \begin{cases} 1 & \text{if } p = q \\ 0 & \text{if } p \neq q \end{cases} \qquad d = \begin{cases} 0 & \text{if } p = q \\ 1 & \text{if } p \neq q \end{cases}$$

Dados ordinais

Similaridade

$$s = 1 - \frac{\|p - q\|}{n - 1}$$

Dissimilaridade

$$d = \frac{\|p - q\|}{n - 1}$$

Algoritmo:

- 1. Identifique os k-vizinhos mais próximos do vetor de atributos **X** que se quer classificar.
- 2. Determine o número de vizinhos em cada classe.
- Classifique X com pertencente à classe que resultou em um maior número de vizinhos (a moda entre o número de classes).

$$p(y=j|\mathbf{x}_{\star}) = \frac{1}{k} \sum_{i \in R_{\star}} \mathbb{I}\{y_i = j\}$$

Regiões de separação formam telhas de Voronoi.

Exemplo:

Observação: $\mathbf{x}_* = [1 \ 2]^T$

i	x_1	x_2	y
1	-1	3	Red
2	2	1	Blue
3	-2	2	Red
4	-1	2	Blue
5	-1	0	Blue
6	1	1	Red

Distâncias

i	$\ \mathbf{x}_i - \mathbf{x}_\star\ $	y_i
6	$\sqrt{1}$	Red
2	$\sqrt{2}$	Blue
4	$\sqrt{4}$	Blue
1	$\sqrt{5}$	Red
5	$\sqrt{8}$	Blue
3	$\sqrt{9}$	Red

A região de decisão pode depender de k.

- Para k=1, vemos que a região de decisão se "**ajusta muito**" ao dados, ocorrendo overfitting.
- Para k = 11, vemos que região é bastante suave, o que sugere underfitting.

Qual o melhor valor de k?

A melhor maneira de encontrar o melhor valor de k é usar validação cruzada e uma medida para avaliar o resultado da classificação, como a acurácia.

K=1

 x_1

Propriedades:

- O algoritmo não "aprende" um modelo, apenas memoriza objetos de treinamento
- Adia computação para a fase de classificação
- O algoritmo pode ser entendido como n\u00e3o param\u00e9trico, dependendo apenas do n\u00e9mero de vizinhos k.
- É um classificador não-linear, não sendo restrito a regiões de separação lineares.
- Como geralmente a distância Euclidiana é considerada, é necessário normalizar ou padronizar os dados.
- Dado que o conjunto de treinamento seja relativamente grande, pode-se provar que o erro cometido na classificação é no máximo duas vezes maior do que o classificador Bayesiano, que é ótimo.

Copyright © 2019. Todos os direitos reservados ao CeMEAI-USP. Proibida a cópia e reprodução sem autorização

Vimos que modelos de regressão linear são dados por:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_d X_d = \beta^T \mathbf{x}$$

onde
$$\mathbf{x}^T = [1, x_1, x_2, ..., x_d]$$

- Se considerarmos a saída Y como um valor inteiro, podemos usar o modelo de regressão para realizarmos a classificação de dados.
- Vamos definir as probabilidade para o caso de duas classes:

$$p(y=1|x) = p(y=0|x)$$

Vamos considerar a função logística:

$$h(z) = \frac{e^z}{1 + e^z}$$

• Essa função retorna valores no intervalo [0,1].

Usando a função logística, temos:

$$p(y = 1 \mid \mathbf{x}) = \frac{e^{\beta^T \mathbf{x}}}{1 + e^{\beta^T \mathbf{x}}} \qquad p(y = 0 \mid \mathbf{x}) = 1 - p(y = 1\mathbf{x}) = \frac{1}{1 + e^{\beta^T \mathbf{x}}}$$

- O aprendizado se resume a estimar o vetor de parâmetros β .
- Esse método é chamado regressão logística.

Para estimar os parâmetros do modelo, usamos o conjunto de treinamento $T = \{(x_i, y_i)\}_{i=1}^N$.

Usando estimação por máxima verossimilhança:

$$\hat{\beta} = \operatorname{argmax}_{\beta} p(\mathbf{y} \mid \mathbf{X}; \beta) .$$

Assim, a máxima verossimilhança:

$$\mathcal{E}(\beta) = p(\mathbf{y} \mid \mathbf{X}; \beta) = \prod_{i=1}^{N} p(y_i \mid x_i; \beta) = \prod_{i:y_i=1} p(y = 1 \mid \mathbf{x_i}; \beta) \prod_{i:y_i=0} p(y = 0 \mid \mathbf{x_i}; \beta)$$

$$\mathscr{E}(\beta) = \prod_{i: \mathbf{v} = 1} \frac{e^{\beta^T \mathbf{x}_i}}{1 + e^{\beta^T \mathbf{x}_i}} \prod_{i: \mathbf{v} = 0} \frac{1}{1 + e^{\beta^T \mathbf{x}_i}}$$

 Para estimar os parâmetros, precisamos otimizar essa função em relação à beta.

$$\mathscr{E}(\beta) = \prod_{i:y_i=1} \frac{e^{\beta^T \mathbf{x}_i}}{1 + e^{\beta^T \mathbf{x}_i}} \prod_{i:y_i=0} \frac{1}{1 + e^{\beta^T \mathbf{x}_i}}$$

 Para facilitar os cálculos, podemos a função logaritmo, que é uma função monotônica e logo, o máximo é o mesmo que o da verossimilhança:

$$\log \mathcal{E}(\beta) = \sum_{i: \mathbf{y}_i = 1} \left(\beta^T \mathbf{x}_i - \log(1 + e^{\beta^T \mathbf{x}_i}) - \sum_{i: \mathbf{y}_i = 0} \log(1 + e^{\beta^T \mathbf{x}_i}) \right)$$

Calculando a derivada e igualando a zero:

$$\nabla_{\beta} \log \mathcal{E}(\beta) = \sum_{i=1}^{n} \mathbf{x}_{i} \left(y_{i} - \frac{e^{\beta^{T} \mathbf{x}_{i}}}{1 + e^{\beta^{T} \mathbf{x}_{i}}} \right) = 0$$

- Como essa equação é não-linear, devemos resolvê-la numericamente, por exemplo, usando o método de Newton-Raphson.
- Com isso, determinamos os parâmetros do modelo e realizamos a classificação em uma das duas classes.

A superfície de decisão pode ser calculada usando:

$$p(y = 1 \mid \mathbf{x}) = p(y = 0 \mid \mathbf{x})$$
$$\frac{e^{\beta^T \mathbf{x}}}{1 + e^{\beta^T \mathbf{x}}} = \frac{1}{1 + e^{\beta^T \mathbf{x}}}$$

Ou seja, basta resolvermos: $\boldsymbol{\beta}^T \mathbf{x} = \mathbf{0}$

$$\beta^T \mathbf{x} = 0$$

A solução são hiperplanos. Logo, a superfície de separação são hiperplanos (lineares).

- Para mais de duas classes, usamos one-hot-encoding e repetimos o mesmo procedimento.
 - http://www.it.uu.se/edu/course/homepage/sml/literature/lecture_notes.pdf

Copyright © 2019. Todos os direitos reservados ao CeMEAI-USP. Proibida a cópia e reprodução sem autorização

Teoria da decisão Bayesiana:

• Dada **M** classes ω_1 , ω_2 , ..., ω_M e um padrão desconhecido **x**, determinar a probabilidade condicional $\mathbf{p}(\omega_i|\mathbf{x})$ do padrão pertencer a cada classe **i**.

$$P(\omega_i|\mathbf{x}) = \frac{p(\mathbf{x}|\omega_i)P(\omega_i)}{p(\mathbf{x})}$$

Classificar de acordo com a classe mais provável.

$$\hat{y} = \underset{i \in \{1, ..., M\}}{\operatorname{argmax}} p(\omega_i | \mathbf{x})$$

Teoria da decisão Bayesiana:

 Se a probabilidade condicional for conhecida para cada classe, o erro obtido é o menor possível (classificador ótimo).

Teoria da decisão Bayesiana:

 Problema: na maioria das vezes, não sabemos a distribuição de probabilidade conjunta e sua estimação é bastante complicada.

Teoria da decisão Bayesiana:

• **Solução simples:** assumir que as variáveis que descreve os atributos são independentes.

$$P(\omega_i|\mathbf{x}) = \frac{p(\mathbf{x}|\omega_i)P(\omega_i)}{p(\mathbf{x})}$$

$$p(\mathbf{x} | \omega_i) = \prod_{j=1}^{d} p(x_j | \omega_i) \quad i = 1, 2, ..., M$$

 Lembrem-se: Se duas variáveis X e Y aleatórias são independentes, então :

$$P(X|Y) = P(X) \longrightarrow P(X|Y) = \frac{P(X,Y)}{P(Y)} = P(X)$$

$$P(X, Y) = P(X)P(Y)$$

 Para variáveis aleatórias independentes, a distribuição de probabilidade conjunto é igual ao produto de suas marginais.

$$P(X_1, X_2, ..., X_n) = \prod_{i=1}^{N} P(X_i) = P(X_1)P(X_2)...P(X_n)$$

• Dada **M** classes ω_1 , ω_2 , ..., ω_M e um padrão desconhecido **x**, determinar a probabilidade condicional $\mathbf{p}(\omega_i|\mathbf{x})$ do padrão pertencer a cada classe **i**.

$$P(\omega_i|\mathbf{x}) = \frac{p(\mathbf{x}|\omega_i)P(\omega_i)}{p(\mathbf{x})}$$

Classificar de acordo com a classe mais provável.

$$\hat{y} = \underset{i \in \{1, ..., M\}}{\operatorname{argmax}} p(\omega_i | \mathbf{x})$$

$$\hat{y} = \underset{i \in \{1, ..., M\}}{\operatorname{argmax}} p(\omega_i) \prod_{j=1}^{d} p(x_j | \omega_i)$$

Exemplo:

Classifique:

x = (Arrepios = Sim,Nariz escorrendo = Não,Dor de cabeça = média,febre = Não)

Arrepios	Nariz escorrendo	Dor de cabeça	febre	Gripe
Sim	Não	Média	Sim	Não
Sim	Sim	Não	Não	Sim
Sim	Não	Forte	Sim	Sim
Não	Sim	Média	Sim	Sim
Não	Não	Não	Não	Não
Não	Sim	Forte	Sim	Sim
Não	Sim	Forte	Não	Não
Sim	Sim	Média	Sim	Sim

Exemplo:

	Arrepios	
	Gripe = Sim	Gripe = Não
Arrepios = Sim	3/4	1/4
Arrepios = Não	2/4	2/4

	Nariz	
		Gripe = Não
Escorrendo = Sim	4/5	1/5
Escorrendo = Não	1/3	2/3

	Cabeça	
	Gripe = Sim	Gripe = Não
Dor = Forte	2/3	1/3
Dor = Média	2/3	1/3
Dor = Não	1/2	1/2

	Febre	
	Gripe =Sim	Gripe = Não
Sim	4/5	1/5
Não	1/3	2/3

Podemos calcular todas as probabilidades conjuntas:

P(Dor=Forte, Gripe = Sim) =
$$2/3$$

Exemplo:

Vamos classificar os dados:

Usando probabilidade condicional: P(A|B)=P(B|A)P(A)

$$P(Gripe=Sim|x) = P(x|Gripe=Sim)P(Gripe=Sim)$$

Exemplo:

- A probabilidade do paciente estar com gripe dados os sintomas:
 x = (Arrepios = Sim, Nariz escorrendo = Não, Dor de cabeça = média, febre = Não)
- P(Gripe=Sim) = 5/8
- P(Arrepios=Sim|Gripe=Sim) = 3/5
- P(Nariz escorrendo=Não|Gripe=Sim) = 1/5
- P(Dor de cabeça=Média|Gripe=Sim) = 2/5
- P(febre=Não|Gripe=Sim) = ½
- P(Gripe=Sim|x) = P(x|Gripe=sim)P(Gripe=Sim) =
- P(Arrepios=Sim|Gripe=Sim)*P(Escorrendo=Não|Gripe=Sim)*P(Dor=média|Gripe=Sim)P(Febre=Sim|Gripe=Sim)P(Gripe=Sim)= (3/5)*(1/5)*(2/5)*(1/5)*(5/8) = 0,006

P(Gripe=Sim|x) = 0,006

Exemplo:

- A probabilidade do paciente não estar com gripe dados os sintomas:
 - x = (Arrepios = Sim, Nariz escorrendo = Não, Dor de cabeça = média, febre = Não)
- P(Gripe=Não) = 3/8
- P(Arrepios=Sim|Gripe=Não) = 1/4
- P(Nariz escorrendo=Não|Gripe=Não) = 2/3
- P(Dor de cabeça=Média|Gripe=Não) = 1/3
- P(febre=Não|Gripe=Não) = ²/₃
- P(Gripe=Não|x) = P(x|Gripe=Não)P(Gripe=Não) =
 P(Arrepios=Não|Gripe=Sim)*P(Escorrendo=Não|Gripe=Não)*P(Dor=média|Gripe=Não)*
 P(Febre=Não|Gripe=Não)*P(Gripe=Não)=(1/4)*(2/3)*(1/3)*(2/3)*(3/8) = 0,013

 $P(Gripe=N\tilde{a}o|x) = 0.013$

Exemplo:

Assim, temos:

Classificando de acordo com a classe mais provável.

$$\hat{y} = \underset{i \in \{1, ..., M\}}{\operatorname{argmax}} p(\omega_i | \mathbf{X})$$

• Concluímos que o paciente não está gripado.

x = (Arrepios = Sim, Nariz escorrendo = Não, Dor de cabeça = média, febre = Sim)

Caso os atributos sejam contínuos, podemos assumir uma distribuição de probabilidade (geralmente Normal) e realizar a classificação maximizando a verossimilhança.

$$p(x_j \mid \omega_i) = \frac{1}{\sqrt{2\pi\sigma_{\omega_i}}} \exp\left(-\frac{(x_j - \mu_{\omega_i})^2}{2\sigma_{\omega_i}}\right)$$

Algoritmo (para atributos continuos):

- Calcule a média e variância de cada atributo para cada classe.
- Calcule a verossimilhança para cada atributo dentro de cada classe.

$$p(x_j \mid \omega_i) = \frac{1}{\sqrt{2\pi\sigma_{\omega_i}}} \exp\left(-\frac{(x_j - \mu_{\omega_i})^2}{2\sigma_{\omega_i}}\right)$$

Assuma independência e calcule a distribuição conjunta.

$$[OB] p(\mathbf{x} \mid \omega_i) = \prod_{i=1}^d p(x_i \mid \omega_i) i = 1, 2, ..., M$$

Classifique de acordo com a classe mais provável.

$$[\widetilde{OBJ}] \quad \omega_m = \arg \max_{\omega_i} \prod_{j=1}^d p(x_j | \omega_i), \quad i = 1, 2, \dots, M$$

Propriedades:

- Apesar da limitação em assumir independência dos atributos, o classificador Naive Bayes é robusto e apresenta boa performance para muitos dados reais.
- Todas as probabilidades exigidas podem ser calculadas dos dados de treinamento em uma passagem.
- Construção do modelo é bastante eficiente.
- Fácil de estender para incremental.
- Robusto a ruídos e atributos irrelevantes.

Sumário

- k-vizinhos mais próximos,
- Regressão Logística,
- Naive Bayes.

Leitura adicional

- Lindholm et al., Supervised Machine Learning, 2019.
 http://www.it.uu.se/edu/course/homepage/sml/literature/lecture_not_es.pdf
- James et al., Introduction to statistical learning with applications in R, 2014.

https://www.ime.unicamp.br/~dias/Intoduction%20to%20Statistical%20Learning.pdf

