Homework 6 Honors Analysis I

Homework 6

ALECK ZHAO

October 25, 2017

Chapter 6: Connectedness

5. If E and F are connected subsets of M with $E \cap F \neq \emptyset$, show that $E \cup F$ is connected.

Proof. Suppose $E \cup F$ was disconnected. Then write $E \cup F = A \cup B$ where $A \cap B = \emptyset$ and $A, B \neq \emptyset$. Since $E \cap F \neq \emptyset$, take $x \in E \cap F$, and WLOG $x \in A$. Then since $B \neq \emptyset$, take $y \in B$. Then either $y \in E$ or $y \in F$, so WLOG $y \in E$, and thus $y \in B \cap E$. Now, $x \in E$ as well so $x \in A \cap E$. Thus we have $A \cap E \neq \emptyset$ and $B \cap E \neq \emptyset$, but $(A \cap E) \cup (B \cap E) = E$ is a disconnection for E. Contradiction, since E was assumed to be connected, and thus $E \cup F$ is connected.

12. If M is connected and has at least two points, show that M is uncountable. (Hint: Find a non-constant, continuous, real-valued function on M.)

Proof. Let $x, y \in M$, then d(x, y) > 0. Consider $d(x, \cdot) : M \to \mathbb{R}$. If d takes on every value from 0 to d(x, y), then M must be uncountable. If not, then suppose $d(x, a) \neq d_0$ for any $a \in M$. Then we have

$$M = \{a : d(x, a) < d_0\} \cup \{a : d(x, a) > d_0\}$$

is a disjoint union of open sets in M, which contradicts that M is connected. Thus, it follows that M is uncountable.

15. If $f: \mathbb{R} \to \mathbb{R}$ is continuous and open, show that f is strictly monotone.

Proof. Suppose f was not strictly monotonic. Then there exists a < c < b, where either

$$f(a) \le f(c) \ge f(b)$$

or

$$f(a) \ge f(c) \le f(b)$$

If the first condition is true, then f attains a maximum value over [a, b] that is a least as large as f(c), which means f attains a maximum value m over (a, b) as well since f(a) and f(b) are not unique maxima. Then the image of (a, b) contains its maximum, contradicting the fact that f is an open map.

If the second condition is true, then f attains a minimum value of [a, b] that is at most as large as f(c), which means f attains a minimum value n over (a, b) as well since f(a) and f(b) are not unique minima. Then the image of (a, b) contains its minimum, contradicting the fact that f is an open map. Thus, f must be strictly monotonic.

26. Let $f:[0,1] \to \mathbb{R}$ be defined by $f(x) = \sin(1/x)$ for $x \neq 0$ and f(0) = 0. Show that although f is not continuous, the graph of f is a connected subset of \mathbb{R}^2 . (Hint: Use exercise 9.)

Proof. Let $A = \{(x, \sin(1/x)) : x \in (0, 1]\}$. Then $\overline{A} = A \cup \{(0, 0)\}$. Since A is connected, it follows that \overline{A} is also connected, which is the graph of f in \mathbb{R}^2 .

Homework 6 Honors Analysis I

Chapter 7: Completeness

5. Prove that A is totally bounded if and only if \overline{A} is totally bounded.

Proof. (\Longrightarrow): Since A is totally bounded, for any $\varepsilon > 0$, we have $A \subset \bigcup_{i=1}^n B_{\varepsilon/2}(x_i)$ for $x_i \in M$. Take $y \in \overline{A}$. Then there must exist some $x \in A$ such that $d(y,x) < \varepsilon/2$ since y is a limit point of A. Then we also have $d(x,x_i) < \varepsilon/1$ for some i, so

$$d(y, x_i) \le d(y, x) + d(x, x_i) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

so y is within ε of some x_i . Thus $\overline{A} \subset \bigcup_{i=1}^n B_{\varepsilon}(x_i)$, so \overline{A} is totally bounded.

 (\Leftarrow) : Since $A \subset \overline{A}$, it follows that A is totally bounded.

9. Give an example of a closed bounded subset of ℓ_{∞} that is not totally bounded.

Solution. Let $S = \{e^{(n)} : n \ge 1\}$ where $e^{(i)}$ is the sequence of 0s with a 1 in the *i*th position. Then clearly S is closed and bounded since d(x,y) = 1 for $x \ne y$. However, if $\varepsilon < 1$, then S cannot be covered by finitely many ε -balls since each ball could only cover a single element in S, so S is not totally bounded.

10. Prove that a totally bounded metric space M is separable. (Hint: For each n, let D_n be a finite (1/n)-net for M. Show that $D = \bigcup_{n=1}^{\infty} D_n$ is a countable dense set.)

Proof. For $n \ge 1$, let D_n be a finite (1/n)-net for M, which must exist because M is totally bounded. Then since D_i is finite for all i, their union is countable.

Now, suppose $x \in M$ but $B_{\varepsilon}(x) \cap D = \emptyset$ for some $\varepsilon > 0$. Then that means $B_{\varepsilon}(x) \cap D_k = \emptyset$ for all k. However, if $k > 1/\varepsilon$ then since $B_{\varepsilon}(x) \cap D_k = \emptyset$, it follows that x is not within 1/k of any element in the net, which is a contradiction. Thus D is dense in M, so M is separable.

18. Fill in the details of the proofs that ℓ_1 and ℓ_∞ are complete.

Proof. (ℓ_1) : Let (f_n) be a sequence in ℓ_1 , where $f_n = (f_n(k))_{k=1}^{\infty}$, and suppose (f_n) is Cauchy in ℓ_1 .

$$|f_n(k) - f_m(k)| \le \sum_{i=1}^{\infty} |f_n(i) - f_m(i)| = ||f_n - f_m||_1$$

for any k, so $(f_n(k))_{n=1}^{\infty}$ is Cauchy for any k. Then set $f(k) := \lim_{n \to \infty} f_n(k)$ for each k.

Now, (f_n) is bounded in ℓ_1 since it is Cauchy, so suppose $||f_n||_2 \leq B$ for all n. Then

$$\sum_{k=1}^{N} |f(k)| = \lim_{n \to \infty} \sum_{k=1}^{N} |f_n(k)| \le B$$

Since this holds for arbitrary N, it follows that $||f||_1 \leq B$.

Given $\varepsilon > 0$, choose n_0 such that $||f_n - f_m||_1 < \varepsilon$ whenever $m, n \ge n_0$. Then for any N and any $n \ge n_0$,

$$\sum_{i=k}^{N} |f(k) - f_n(k)| = \lim_{m \to \infty} \sum_{k=1}^{N} |f_m(k) - f_n(k)| < \varepsilon$$

and thus $||f - f_n||_1 < \varepsilon$ for all $n \ge n_0$, so $f_n \to f$.

Homework 6 Honors Analysis I

 (ℓ_{∞}) : Let (f_n) be a sequence in ℓ_{∞} , where $f_n = (f_n(k))_{k=1}^{\infty}$, and suppose (f_n) is Cauchy in ℓ_{∞} .

$$|f_n(k) - f_m(k)| \le \sup_{j} |f_n(j) - f_m(j)| = ||f_n - f_m||_{\infty}$$

for any k, so $(f_n(k))_{n=1}^{\infty}$ is Cauchy for any k. Then set $f(k) := \lim_{n \to \infty} f_n(k)$ for each k.

Now, (f_n) is bounded in ℓ_{∞} since it is Cauchy, so suppose $||f_n||_{\infty} \leq B$ for all n. Then

$$\sup_{1 \le i \le N} |f(i)| = \lim_{n \to \infty} \sup_{1 \le i \le N} |f_n(i)| \le B$$

Since this holds for arbitrary N, it follows that $||f||_1 \leq B$.

Given $\varepsilon > 0$, choose n_0 such that $||f_n - f_m||_{\infty} < \varepsilon$ whenever $m, n \ge n_0$. Then for any N and any $n \ge n_0$,

$$\sup_{1 \le i \le N} |f(i) - f_n(i)| = \lim_{m \to \infty} \sup_{1 \le i \le N} |f_m(i) - f_n(i)| < \varepsilon$$

and thus $||f - f_n||_{\infty} < \varepsilon$ for all $n \ge n_0$, so $f_n \to f$.