Terms for Classical Sequents

Proof Invariants & Strong Normalisation

Greg Restall

GOTHENBURG LOGIC SEMINAR · 10 MAY 2016

Today's Plan

Background

Preterms

Derivations

Terms

Eliminating Cuts

Strong Normalisation

Further Work

Greg Restall Terms for Classical Sequents

When is π_1 the same proof as π_2 ?

$$\frac{p \succ p}{p \succ p \lor q} \lor R \qquad \frac{p \land q}{p} \land E$$

$$p \land q \succ p \lor q \qquad \frac{p}{p} \lor I$$

$$\frac{\frac{p \succ p}{p \land q \succ p} \land L}{p \land q \succ p \lor q} \lor R$$

$$\frac{q \succ q}{q \succ p \lor q} \lor R$$
$$p \land q \succ p \lor q \land L$$

$$\frac{\frac{\mathsf{q}}{\mathsf{q}} \wedge \mathsf{E}}{\frac{\mathsf{p} \vee \mathsf{q}}{\mathsf{p} \vee \mathsf{q}}} \wedge \mathsf{E}$$

$$\frac{\frac{q \succ q}{q \succ p \lor q} \lor_{R}}{\frac{p \land q}{p \land q \succ p \lor q} \land_{L}} \qquad \frac{\frac{p \land q}{q}}{\frac{q}{p \lor q}} \lor_{R} \qquad \frac{\frac{q \succ q}{p \land q \succ q} \land_{L}}{\frac{p \land q \succ p \lor q}{p \land q \succ p \lor q}} \lor_{R}$$

Greg Restall Terms for Classical Sequents 5 of 67

Girard, Lafont and Taylor: Proofs and Types, Chapter 2

Natural deduction is a slightly paradoxical system: it is limited to the intuitionistic case (in the classical case it has no particularly good properties) but it is only satisfactory for the $(\land,\Rightarrow,\forall)$ fragment of the language: we shall defer consideration of \vee and \exists until chapter 10. Yet disjunction and existence are the two most *typically* intuitionistic connectors!

The basic idea of natural deduction is an asymmetry: a proof is a vaguely rea-like structure (this view is more a graphical illusion than a mathematical reality, but it is a pleasant illusion) with one or more hypotheses (possibly none) but a single conclusion. The deep symmetry of the calculus is shown by the introduction and elimination rules which match each other exactly. Observe, incidentally, that with a tree-like structure, one can always decide uniquely what was the last rule used, which is something we could not say if there were several conclusions.

To introduce a new invariant for classical propositional proofs and to show how they can be used.

Terms for Classical Sequents

BACKGROUND

When is π_1 the same proof as π_2 ?

$$\frac{p \vee q \quad \frac{[p]^1}{q \vee p} \vee_I \quad \frac{[q]^1}{q \vee p} \vee_I}{\frac{q \vee p}{(q \vee p) \vee r} \vee_I} \quad \frac{\frac{[p]^1}{q \vee p} \vee_I \quad \frac{[q]^1}{q \vee p} \vee_I}{\frac{q \vee p}{(q \vee p) \vee r} \vee_I} \vee_I \quad \frac{[q]^1}{q \vee p} \vee_I}{\frac{q \vee p}{(q \vee p) \vee r} \vee_E} \vee_E$$

Are these different proofs, or different ways of presenting the same proof?

Greg Restall Terms for Classical Sequents

Lambda Terms and Proofs

$$\frac{[x:p\supset (q\supset r)]\quad [z:p]}{xz:q\supset r}\supset E\quad \frac{[y:p\supset q]\quad [z:p]}{yz:q}\supset E$$

$$\frac{(xz)(yz):r}{\lambda z\,(xz)(yz):p\supset r}\supset I$$

$$\lambda y\lambda z\,(xz)(yz):(p\supset q)\supset (p\supset r)$$

$$\lambda x\lambda y\lambda z\,(xz)(yz):(p\supset (q\supset r))\supset ((p\supset q)\supset (p\supset r))$$

Terms for Classical Sequents Terms for Classical Sequents

Contraction and weakening are managed by variables

$$\frac{\frac{[x:p]}{\lambda y \, x \colon q \supset p} \supset I}{\lambda x \lambda y \, x \colon p \supset (q \supset p)} \supset I \qquad \frac{\frac{x \colon p \supset (p \supset q) \quad [y \colon p]}{x y \colon p \supset q} \supset E}{\frac{(xy)y \colon q}{\lambda y \, (xy)y \colon p \supset q} \supset I} \supset E$$

Terms for Classical Sequents

Sequents and Terms

Greg Restall

$X \succ Y \qquad X \succ A, Y \qquad X, A \succ Y$

Where do you put the variables, and where do you put the terms?

Greg Restall Terms for Classical Sequents 11 of 67

Example 1

PRETERMS

Classical Sequent Derivations

$$\frac{p \succ p}{\stackrel{\succ}{\succ} p, \neg p} \neg_{R} \qquad \frac{p \succ p}{p, \neg p \succ} \neg_{L} \\ \stackrel{\succ}{\succ} p \lor \neg p} \lor_{R} \qquad \frac{p \succ p}{p, \neg p \succ} \land_{L}$$

$$\frac{p \succ p \quad \frac{q \succ q \quad r \succ r}{q \lor r \succ q, r} \lor_{L}}{p, q \lor r \succ p \land q, r} \land_{R}} \xrightarrow{p \land (q \lor r) \succ p \land q, r} \land_{L}} \land_{L}$$

$$\frac{p \land (q \lor r) \succ p \land q, r}{p \land (q \lor r) \succ (p \land q) \lor r} \lor_{R}$$

Greg Restall Terms for Classical Sequents

Our Choice

$$\begin{matrix} \pi(x_1,\ldots,x_n)[y_1,\ldots,y_m] \\ x_1:A_1,\ldots,x_n:A_n\succ y_1:B_1,\ldots,y_m:B_m \end{matrix}$$

Each premise and conclusion is decorated with variables.

The sequent gets the term, showing how inputs & outputs are connected, with as much parallelism as possible.

Greg Restall Terms for Classical Sequents 12 of 67

Example 2

$$\frac{x \cap x \qquad x \cap x \qquad x \cap x}{x : p \succ x : p \qquad x : p \succ x : p} \land R \qquad \frac{z \cap z}{z : p \succ z : p} \land L$$

$$\frac{x \cap F_{y} \times \cap S_{y} \qquad x \cap p}{x \cap F_{y} \times y : p \land p} \land R \qquad \frac{z \cap z}{F_{y} \cap z} \land L$$

$$\frac{x \cap F_{y} \times \cap S_{y} \qquad x \cap p}{x \cap F_{y} \times x \cap S_{y} \qquad x \cap p} \land L$$

$$\frac{x \cap F_{y} \times \cap S_{y} \qquad x \cap p}{x \cap F_{y} \times x \cap S_{y} \qquad x \cap p} \land L$$

$$\frac{x \cap F_{y} \times \cap S_{y} \qquad x \cap p}{x \cap F_{y} \times x \cap S_{y} \qquad x \cap p} \land L$$

$$\frac{x \cap F_{y} \times \cap S_{y} \qquad x \cap p}{x \cap F_{y} \times x \cap S_{y} \qquad x \cap p} \land L$$

$$\frac{x \cap F_{y} \times \cap S_{y} \qquad x \cap S_{y} \qquad x \cap p}{x \cap F_{y} \times x \cap S_{y} \qquad x \cap p} \land L$$

$$\frac{x \cap F_{y} \times \cap S_{y} \qquad x \cap S_{y} \qquad x \cap p}{x \cap F_{y} \times x \cap S_{y} \qquad x \cap p} \land L$$

$$\frac{x \cap F_{y} \times \cap S_{y} \qquad x \cap S_{y} \qquad x \cap p}{x \cap F_{y} \times x \cap S_{y} \qquad x \cap p} \land L$$

$$\frac{x \cap F_{y} \times \cap S_{y} \qquad x \cap S_{y} \qquad x \cap p}{x \cap F_{y} \times x \cap S_{y} \qquad x \cap p} \land L$$

$$\frac{x \cap F_{y} \times \cap S_{y} \qquad x \cap S_{y} \qquad x \cap p}{x \cap F_{y} \times x \cap S_{y} \qquad x \cap p} \land L$$

$$\frac{x \cap F_{y} \times \cap S_{y} \qquad x \cap S_{y} \qquad x \cap p}{x \cap F_{y} \times x \cap S_{y} \qquad x \cap p} \land L$$

$$\frac{x \cap F_{y} \times \cap S_{y} \qquad x \cap S_{y} \qquad x \cap p}{x \cap F_{y} \times x \cap S_{y} \qquad x \cap p} \land L$$

$$\frac{x \cap F_{y} \times \cap S_{y} \qquad x \cap S_{y} \qquad x \cap p}{x \cap F_{y} \times x \cap S_{y} \qquad x \cap p} \land L$$

$$\frac{x \cap F_{y} \times \cap S_{y} \qquad x \cap S_{y} \qquad x \cap p}{x \cap F_{y} \times x \cap S_{y} \qquad x \cap p} \land L$$

$$\frac{x \cap F_{y} \times \cap S_{y} \qquad x \cap S_{y} \qquad x \cap p}{x \cap F_{y} \times x \cap S_{y} \qquad x \cap p} \land L$$

$$\frac{x \cap F_{y} \times \cap S_{y} \qquad x \cap S_{y} \qquad x \cap p}{x \cap F_{y} \times x \cap S_{y} \qquad x \cap p} \land L$$

Variables and Cut Points

Terms for Classical Sequents

14 of 67

► For each formula A, x_1^A , x_2^A , . . . are VARIABLES of type A.

Greg Restall

- ► For each formula A, \bullet_1^A , \bullet_2^A , ... are CUT POINTS of type A.
- We use x, y, z, u, v, w, \ldots ; •, *, *, \$, \beta as schematic letters for variables and cut points, ommitting type superscripts where possible.

Greg Restall Terms for Classical Sequents 16 of 67

Nodes and Subnodes

- ► A variable x of type A and a cut point of type A are both A NODES.
- ► If \mathbf{n} is an A \wedge B node, then $\mathbf{L}\mathbf{n}$ is an A node and $\mathbf{R}\mathbf{n}$ is a B node.
- ▶ If n is an $A \lor B$ node, then Fn is an A node and Sn is a B node.
- ► If n is an $A \supset B$ node, then An is an A node and Cn is a B node.
- ► If n is a \neg A node, then Nn is an A node.
- ► For each complex node Ln, Rn, Fn, Sn, An, Cn and Nn, n is its IMMEDIATE subnode, and the subnodes of n are also subnodes of the original node.

Greg Restall Terms for Classical Sequents 17 of 67

Example Linkings

$$\boldsymbol{x}$$
 of type $((\mathfrak{p}\supset\mathfrak{q})\supset\mathfrak{p})\supset\mathfrak{p}$

AAAx Cx

 CAx^Cx

Greg Restall Terms for Classical Sequents

DERIVATIONS

Annotating Derivations: Conjunction

$$\begin{array}{c|c} \pi(x,y) & \pi(x) \\ \hline \Sigma,x:A,y:B \succ \Delta \\ \hline \pi(Fz,Sz) & \Sigma,z:A \land B \succ \Delta \end{array} \land L \qquad \begin{array}{c|c} \pi(x) & \pi'(y) \\ \hline \Sigma \succ x:A,\Delta & \Sigma' \succ y:B,\Delta' \\ \hline \pi(Fz) & \pi'(Sz) \\ \hline \Sigma,\Sigma' \succ z:A \land B,\Delta,\Delta' \end{array}$$

Linkings, Inputs and Outputs

- ► A LINKING is a pair n m of nodes of the same type.
- ▶ In n^m , n is in input position, and m is in output position.
- ▶ Positions generalise to subnodes as follows:
 - ► If Ln, Rn, Fn, Sn or Cn are in input position, n is also in input position.
 - ► If Ln, Rn, Fn, Sn or Cn are in output position, n is also in output position.
 - L, R, F, S and C each preserve position.
 - ► If An or Nn is in input position, n is in output position.
 - ► If An or Nn is in output position, n is in input position.
 - A and N reverse position.
- ► The Inputs (Outputs) of a linking are the *variables* in Input (Output) position of that linking.

Restall Terms for Classical Sequents 18 of 67

Preterms

- ► DEFINITION: A PRETERM is a finite set of linkings.
- The inputs of a preterm are the inputs of its linkings.
- Its OUTPUTS are the outputs of its linkings.

Greg Restall Terms for Classical Sequents 20 of 67

Annotating Derivations: Identity

$$\Sigma, \mathbf{x} : \mathbf{A} \succ \mathbf{y} : \mathbf{A}, \Delta$$

Greg Restall Terms for Classical Sequents 22 of 67

Excursus on Weakening and Variables

$$\frac{\frac{[x:p]}{\lambda y x: q \supset p} \supset^{I}}{\lambda x \lambda y x: p \supset (q \supset p)} \supset^{I}$$

$$\begin{array}{c|c} \pi(x,y) & \pi(x) \\ \hline \Sigma, x: A, y: B \succ \Delta \\ \hline \pi(Fz, Sz) & \wedge L & can be & \hline \begin{array}{c} \pi(x) \\ \Sigma, x: A \succ \Delta \\ \hline \pi(Fz) & \\ \Sigma, z: A \wedge B \succ \Delta & \Sigma, z: A \wedge B \succ \Delta \end{array} \end{array} \wedge L$$

In a premise $\pi(x, y)$ the indicated x and y display all of the x and y inputs to the proof term.

There might be none.

Greg Restall Terms for Classical Sequents 23 of 67 Greg Restall Terms for Classical Sequents 24 of 67

19 of 67

Annotating Derivations: Negation

$$\frac{\sum \times x : A, \Delta}{\pi[Nz]} \neg L \qquad \frac{\pi(x)}{\sum, x : A \times \Delta} \neg R$$

$$\sum, z : \neg A \times \Delta \qquad \qquad \Sigma \times z : \neg A, \Delta$$

Gree Restall Terms for Classical Sequents 25 of 67

Annotating Derivations: Disjunction

$$\begin{array}{c|c} \frac{\pi(x)}{\Sigma, x : A \succ \Delta} & \frac{\pi'(y)}{\Sigma', y : B \succ \Delta'} \vee_{L} & \frac{\pi(x, y)}{\Sigma \succ x : A, y : B, \Delta} \vee_{R} \\ \hline \Sigma, \Sigma', z : A \vee B \succ \Delta, \Delta' & \frac{\pi(Lz, Rz)}{\Sigma \succ z : A \vee B, \Delta} \end{array}$$

Greg Restall Terms for Classical Sequents 26 of 67

Annotating Derivations: Conditional

$$\frac{\sum \boldsymbol{\times} \boldsymbol{x} : \boldsymbol{A}, \boldsymbol{\Delta} \qquad \boldsymbol{\Sigma}', \boldsymbol{y} : \boldsymbol{B} \boldsymbol{\succ} \boldsymbol{\Delta}'}{\boldsymbol{\pi}(Az)} \supset L \qquad \frac{\boldsymbol{\pi}(x)[y]}{\boldsymbol{\pi}(Az)[Cz]} \supset R$$

$$\boldsymbol{\Sigma}, \boldsymbol{\Sigma}', \boldsymbol{z} : \boldsymbol{A} \supset \boldsymbol{B} \boldsymbol{\succ} \boldsymbol{\Delta}, \boldsymbol{\Delta}' \qquad \qquad \boldsymbol{\Sigma}', \boldsymbol{x} : \boldsymbol{A} \boldsymbol{\succ} \boldsymbol{y} : \boldsymbol{B}, \boldsymbol{\Delta}$$

$$\boldsymbol{\Sigma}, \boldsymbol{\Sigma}', \boldsymbol{z} : \boldsymbol{A} \supset \boldsymbol{B} \boldsymbol{\succ} \boldsymbol{\Delta}, \boldsymbol{\Delta}' \qquad \qquad \boldsymbol{\Sigma} \boldsymbol{\Sigma} \boldsymbol{\succ} \boldsymbol{z} : \boldsymbol{A} \supset \boldsymbol{B}, \boldsymbol{\Delta}$$

Creg Restall Terms for Classical Sequents 27 of 67

Example Annotation

Annotating Derivations: Cut

Greg Restall

Identify Terms up to α equivalence

If π can be transformed into π' by relabelling cut points we treat them as identical (they are α equivalent).

Greg Restall Terms for Classical Sequents 30 of 67

Example Annotation, with Cut

$$\frac{x \cdot x}{x \cdot p \cdot x \cdot p} \quad x \cdot p \cdot x \cdot p}{\underbrace{y \cdot p \cdot p \cdot x \cdot p}_{Ly \cap \bullet} \quad x \cdot p}_{Ly \cap \bullet} \quad x \cdot p \cdot x \cdot p}_{X \cdot p \cdot x \cdot p} \quad x \cdot p \cdot x \cdot p}_{X \cdot p \cdot x \cdot p} \quad AR$$

$$\frac{y \cdot p \lor p \cdot x \cdot p}{Ly \cap \bullet} \quad x \cdot p \cdot x \cdot p}_{Ly \cap \bullet} \quad x \cdot p \cdot p \cdot p}_{Cut}$$

$$\frac{x \cdot x}{x \cdot p \cdot x \cdot p} \quad x \cdot p \cdot x \cdot p}_{X \cdot p \cdot x \cdot p} \quad AR$$

$$\frac{x \cdot p \cdot x \cdot p}{x \cdot p \cdot x \cdot p} \quad x \cdot p \cdot x \cdot p}_{Cut}$$

$$\frac{x \cdot x}{x \cdot p \cdot x \cdot p} \quad x \cdot p \cdot x \cdot p}_{Cut}$$

$$\frac{x \cdot p \cdot x \cdot p}{x \cdot p \cdot x \cdot p} \quad x \cdot p \cdot x \cdot p}_{Cut}$$

When is π_1 the same proof as π_2 (revisited)?

$$\frac{z \cdot z}{z \cdot p \times z \cdot p} \vee_{R} \qquad \frac{p \wedge q}{p} \wedge_{E} \qquad \frac{z \cdot z}{Fx \cdot z} \vee_{R}$$

$$\frac{z \cdot p \times y \cdot p \vee q}{Fx \cdot Ly} \wedge_{L} \qquad \frac{p \wedge q}{p \vee q} \vee_{I} \qquad \frac{z \cdot p \times z \cdot p}{Fx \cdot z} \vee_{R}$$

$$\frac{x \cdot p \wedge q \times y \cdot p \vee q}{x \cdot p \wedge q \times y \cdot p \vee q} \wedge_{L} \qquad \frac{x \cdot p \wedge q \times z \cdot p}{x \cdot p \wedge q \times y \cdot p \vee q} \wedge_{L}$$

$$\frac{w \cdot w}{w \cdot q \times w \cdot q} \vee_{R} \qquad \frac{p \wedge q}{q} \wedge_{E} \qquad \frac{w \cdot q \times w \cdot q}{Sx \cdot w} \vee_{R}$$

$$\frac{w \cdot q \times w \cdot q}{x \cdot p \wedge q \times y \cdot p \vee q} \wedge_{L} \qquad \frac{w \cdot q \times w \cdot q}{x \cdot p \wedge q \times w \cdot q} \wedge_{L}$$

$$x \cdot p \wedge q \times y \cdot p \vee q$$

$$x \cdot p \wedge q \times y \cdot p \vee q$$
Terms for Classical Sequents

 Greg Restall
 Terms for Classical Sequents
 31 of 67
 Creg Restall
 Terms for Classical Sequents
 32 of 67

When is π_1 the same proof as π_2 (revisited)?

$$\frac{p \vee q \quad \frac{[p]^1}{q \vee p} \vee I \quad \frac{[q]^1}{q \vee p} \vee I}{\frac{q \vee p}{(q \vee p) \vee r} \vee I} \vee E^1$$

$$\frac{x \cdot p \times x \cdot p}{x \cdot Rz} \vee R \qquad \frac{y \cdot y}{y \cdot q \times y \cdot q} \vee R$$

$$\frac{x \cdot p \times z \cdot q \vee p}{x \cdot Rz} \qquad y \cdot q \times z \cdot q \vee p$$

$$\frac{Lw \cdot Rz \quad Rw \cdot Lz}{w \cdot p \vee q \times z \cdot q \vee p} \vee R$$

$$\frac{w \cdot p \vee q \times z \cdot q \vee p}{Lw \cdot RLu \quad Rw \cdot LLu} \vee R \qquad VR$$

$$w \cdot p \vee q \times u \cdot (q \vee p) \vee r$$

Creg Restall Terms for Classical Sequents

When is π_1 the same proof as π_2 (revisited)?

$$\frac{\frac{[p]^{1}}{q \vee p} \vee I}{(q \vee p) \vee r} \vee I \frac{\frac{[q]^{1}}{q \vee p} \vee I}{(q \vee p) \vee r} \vee I$$

$$\frac{x \wedge x}{(q \vee p) \vee r} \vee I \frac{y \wedge y}{(q \vee p) \vee r} \vee I$$

$$\frac{x \wedge x}{(q \vee p) \vee r} \vee I \frac{y \wedge y}{(q \vee p) \vee r} \vee I$$

$$\frac{x \wedge x}{(q \vee p) \vee r} \vee I \frac{y \wedge y \wedge y}{(q \vee p) \vee r} \vee I \frac{y \wedge y \wedge y \wedge y}{(q \vee p) \vee r} \vee I$$

$$\frac{x \wedge x \wedge y \wedge y \wedge y}{(q \vee p) \vee r} \vee I \frac{y \wedge y \wedge y}{(q \vee p) \vee r} \vee I$$

$$\frac{x \wedge x \wedge y \wedge y}{(q \vee p) \vee r} \vee I \frac{y \wedge y \wedge y}{(q \vee p) \vee r} \vee I$$

$$\frac{x \wedge x \wedge y \wedge y}{(q \vee p) \vee r} \vee I \frac{y \wedge y \wedge y}{(q \vee p) \vee r} \vee I$$

$$\frac{x \wedge x \wedge y \wedge y}{(q \vee p) \vee r} \vee I \frac{y \wedge y \wedge y}{(q \vee p) \vee r} \vee I$$

$$\frac{x \wedge x \wedge y \wedge y}{(q \vee p) \vee r} \vee I \frac{y \wedge y}{(q \vee p) \vee r} \vee I$$

$$\frac{x \wedge x \wedge y \wedge y}{(q \vee p) \vee r} \vee I \frac{y \wedge y}{(q \vee p) \vee r} \vee I$$

Gree Restall Terms for Classical Sequents 34 of 6

Sequentialisable Preterms

DEFINITION: A preterm is SEQUENTIALISABLE iff it is the conclusion of some derivation.

Greg Restall Terms for Classical Sequents 35 of 67

TERMS

Nonsequentialisable Preterms

$$\begin{array}{ccc} & Lx ^Fy & Rx ^Sy \\ \mathbf{x} \colon \mathbf{p} \bigvee \mathbf{q} \succ \mathbf{y} \colon \mathbf{p} \bigwedge \mathbf{q} \end{array}$$

This is connected, but it is not connected *enough*.

Greg Restall Terms for Classical Sequents 37 of 67

Switching Example

$$x: p \lor q \succ y: p \land q$$

$$x: p \lor - \succ y: p \land -$$

$$x: p \lor - \succ y: - \land q$$

$$\begin{array}{ccc} & \text{Jx} & \text{Fy} & \text{Rx} & \text{Sy} \\ x : - & y : p \land - \end{array}$$

$$x: - \bigvee q \succ y: - \bigwedge q$$

Greg Restall Terms for Classical Sequents 38 of 67

Switchings

- The switchings of a preterm π are found by selecting for each pair of subterms Ln and Rn in input position; Fn and Sn in output position, An in output position and Cn in input position; or the cut point (in both input and output position), one item of the pair to keep, and the other to DELETE.
- A LINKING in a switching of a preterm π survives if and only if neither side of the link involves a deletion.
- ► A preterm is SPANNED if every switching has at least one surviving linking.

Example

Fu FLt LSu SLt RSu Rt

This has two pairs for switching:

LSu/RSu in input position. FLt/SLt in output position.

Fu FLt LSú SLt RSu Rt

Fu^FLt LSú^SŁť RSu^Rt

Fu Ftt LSu SLt RSt Rt

Fu FLt LSu Stt RSu Rt

reg Restall Terms for Classical Sequents 39 of 67 Greg Restall Terms for Classical Sequents

Terms	Theorem: Sequentialisable Preterms are Terms
DEFINITION: A preterm π is a TERM when it is SPANNED.	By induction on the derivation sequentialising π .
Creg Restall Terms for Classical Sequents 41 of 67	Creg Restall Terms for Classical Sequents 42 of 6
Sequentialisable Preterms are Terms: Identity	Sequentialisable Preterms are Terms: Conjunction
$\Sigma, x: A \succ y: A, \Delta$	$\frac{\sum, x : A, y : B \succ \Delta}{\sum, z : A \land B \succ \Delta} \land L \qquad \frac{\sum x : A, \Delta \qquad \sum' x' : y : B, \Delta'}{\sum x : A, \Delta \qquad \sum' x' : z : A \land B} \land R$
Creg Restall Terms for Classical Sequents 43 of 67	Creg Restall Terms for Classical Sequents 44 of 6
Sequentialisable Preterms are Terms: Negation	Sequentialisable Preterms are Terms: Disjunction
$ \frac{\sum \times \mathbf{x}: \mathbf{A}, \Delta}{\pi_{1}(Nz)} \neg L \qquad \frac{\sum \mathbf{x}: \mathbf{x} \times \mathbf{A} \times \Delta}{\pi_{1}(Nz)} \neg R $ $ \sum \mathbf{x}: \mathbf{A} \times \Delta \qquad \frac{\mathbf{x}(Nz)}{\pi_{1}(Nz)} \nabla R $ $ \sum \mathbf{x}: \mathbf{x} \times \mathbf{A} \times \Delta \qquad \sum \mathbf{x} \times \mathbf{x} \times \mathbf{A} \times \Delta $	$\frac{\sum_{, \mathbf{x}: \mathbf{A} \succeq \Delta} \sum_{z', \mathbf{y}: \mathbf{B} \succeq \Delta'}^{\pi'(\mathbf{y})}}{\sum_{, \mathbf{x}', \mathbf{z}: \mathbf{A} \lor \mathbf{B} \succeq \Delta, \Delta'} \vee_{\mathbf{L}} \frac{\sum_{x \in \mathbf{X}: \mathbf{A}, \mathbf{y}: \mathbf{B}, \Delta}^{\pi[\mathbf{x}, \mathbf{y}]}}{\sum_{x \in \mathbf{X}: \mathbf{A}, \mathbf{y}: \mathbf{B}, \Delta}} \vee_{\mathbf{R}}$
Creg Restall Terms for Classical Sequents 45 of 67	Greg Restall Terms for Classical Sequents 46 of 67
Sequentialisable Preterms are Terms: Conditional	Sequentialisable Preterms are Terms: Cut
$\frac{\sum \succ x : A, \Delta \qquad \sum', y : B \succ \Delta'}{\sum \prod_{\substack{\pi[Az] \\ \Sigma, \Sigma', z : A \supset B \succ \Delta, \Delta'}} \supset L} \xrightarrow{\sum \prod_{\substack{\pi(x)[y] \\ \pi(Az)[Cz] \\ \Sigma, \Sigma', z : A \supset B, \Delta}} \supset R$	$\frac{\sum x: A, \Delta \qquad \sum', y: A \succ \Delta'}{\sum x: A, \Delta \qquad \sum', y: A \succ \Delta'} Cut$ $\sum, \sum' \succ \Delta, \Delta'$

Greg Restall Terms for Classical Sequents 47 of 67 Greg Restall Terms for Classical Sequents 48 of 67

By induction on the number of pairs for switching in π . Except ...

Terms for Classical Sequents

ELIMINATING CUTS

Conjunction Cut Reduction $\begin{array}{ccc} \pi[\mathsf{F}\bullet] & \pi'[\mathsf{S}\bullet] & \pi''(\mathsf{F}\bullet,\mathsf{S}\bullet) \\ \Sigma,\Sigma',\Sigma'' \succ \Delta,\Delta',\Delta'' \end{array}$ reduces to $\pi''(\mathfrak{u},\mathfrak{v})$ $\Sigma' \succeq \underline{y} : B, \Delta \qquad \Sigma'', \underline{u} : A, \underline{v} : B \succeq \Delta''$ Cut $\Sigma', \Sigma'', \mathbf{u} : A \succ \Delta', \Delta''$ $\pi[*]$ $\pi'[\star]$ $\pi''(*,\star)$ $\Sigma, \Sigma', \Sigma'' \succ \Delta, \Delta', \Delta''$ Terms for Classical Sequents

51 of 67

Greg Restall

Terms with Switchings

Terms for Classical Sequents

Greg Restall

By induction on the number of switched pairs.

Take a switched pair at the *adjacent to variables* or *cut points* (peel away unswitched steps if there aren't any).

$$\frac{\sum_{\boldsymbol{\lambda}}^{\pi[\boldsymbol{x}](-)} \qquad \pi[-](\boldsymbol{y})}{\sum_{\boldsymbol{\lambda}} \boldsymbol{x} : \boldsymbol{A}, \boldsymbol{\Delta} \qquad \sum_{\boldsymbol{\lambda}}^{\prime}, \boldsymbol{y} : \boldsymbol{B} \succ \boldsymbol{\Delta}^{\prime}} \supset L}{\sum_{\boldsymbol{\lambda}} \sum_{\boldsymbol{\lambda}}^{\pi[\boldsymbol{Az}](Lz)}} \supset L$$

Greg Restall Terms for Classical Sequents 59 of 67

Cut Reductions

Given a term $\pi(\bullet)[\bullet]$ and a cut-point \bullet , the \bullet -REDUCTION of π is found by:

- ► *atomic*: replace each pair n and m by n m.
- conjunction: for each F•/S•, add new cut points * and *. For any n add l(n) for each link l(•) with n as input. For any n add l[n] for each link l[•] with n as output.

$$Sz \cap F \bullet Fz \cap S \bullet F \bullet \cap Sx \quad S \bullet \cap Fx \quad Ny \cap \bullet \bullet \cap v$$
 $Sz \cap \star Fz \cap \star \star \cap Sx \quad \star \cap Fx \quad Fy \cap Sx \quad SNy \cap Fx \quad Ny \cap v \quad Sz \cap Fv \quad Fz \cap Sv$

Greg Restall Terms for Classical Sequents 61 of 67

STRONG NORMALISATION

Terms with No Switchings: Example

Back to Eliminating Cuts: Cuts can be Complicated

Cut Reductions

Given a term $\pi(\bullet)[\bullet]$ and a cut-point \bullet , the \bullet -REDUCTION of π is found by:

- ► *atomic*: replace each pair n and m by n m.
- conjunction: for each F•/S•, add new cut points * and *. For any n add l(n) for each link l(•) with n as input. For any n add l[n] for each link l[•] with n as output.
- negation: for each N•, add a new cut point *. For any n add l(n) for each link l(•) with n as input. For any n add l(n) for each link l[•] with n as output.
- disjunction: for each Le/Re, add new cut points * and *. For any n add l(n) for each link l(•) with n as input. For any n add l[n] for each link l[•] with n as output.
- conditional: for each A•/C•, add new cut points * and *. For any n add l(n) for each link l(•) with n as input. For any n add l[n] for each link l[•] with n as output.

Greg Restall Terms for Classical Sequents 62 of 67

Any reduction for π terminates in a unique* term π^*

- ► There is *some* terminating reduction process.
- ► Proof reduction is confluent.
- If $\pi \leadsto_{\bullet} \pi'$ and $\pi \leadsto_{\star} \pi''$ then there is a π''' where $\pi' \leadsto_{\star} \pi'''$ and $\pi'' \leadsto_{\bullet} \pi'''$. (This is where α equivalence is required.)

Greg Restall Terms for Classical Sequents 64 of 67

FURTHER WORK

THANK YOU!

https://consequently.org/presentation/2016/ terms-for-classical-sequents-gothenburg/

@consequently on Twitter

To Do List

- ► Are these genuine *invariants*? (Can we show that if two derivations have the same term, some set of permutations permute one to the other?)
- ► Apply these terms to other kinds of proofs (Fitch, Lemmon, tableaux, Hilbert, resolution...)
- ► Categories (The class of single input, single output terms with composition by defined by Cut + reduction is a category. What are its properties?)
- ► Apply terms to theories of warrants.
- ► Extend beyond propositional logic.

Creg Restall Terms for Classical Sequents 66 of 67