School of Computing and Information Systems The University of Melbourne COMP30027 Machine Learning (Semester 1, 2021)

Tutorial: Week 12

1. [OPTIONAL] Consider the following dataset:

id	apple	ibm	lemon	sun	label		
Α	4	0	1	1	fruit		
В	5	0	5	2	fruit		
С	2	5	0	0	comp		
D	1	2	1	7	comp		
E	2	0	3	1	?		
F	1	0	1	0	?		

Treat the problem as an unsupervised machine learning problem (excluding the id and label attributes) and calculate the clusters according to (hard) k-means with k = 2, using the Manhattan distance, and instances A and F as the seeds.

- 2. Repeat the previous question using "soft" k-means, and the "stiffness" $\beta = 1$.
- 3. What is logic behind the EM algorithm, when used for clustering?
 - (i) Explain the significance of the "E" step, and the "M" step.
 - (ii) Identify the "E" and "M" steps in GMM methods.
- 4. Revise the concept of Unsupervised and Supervised evaluation for clustering evaluation
 - (i) Explain the two main concepts that we use to measures the goodness of a clustering structure without respect to external information.
 - (ii) Explain the two main concepts that we use to measure the how well do cluster labels match externally supplied class labels.
- 5. Revise the difference between **supervised**, **semi-supervised** and **unsupervised** machine learning. When do we use semi-supervised learning?
 - (i) What is self-training?
 - (ii) What is the logic behind active learning, and what are some methods to choose instances for the oracle?
- 6. One of the strategies for Query sampling was query-by-committee (QBC). Using the equation below, which captures vote entropy, determine the instance that our active learner would select first.

$$x_{VE}^* = \underset{x}{\operatorname{argmax}} \left(-\sum_{y_i} \frac{V(y_i)}{C} \log_2 \frac{V(y_i)}{C}\right)$$

Respectively y_i , $V(y_i)$, and C are the possible labels, the number of "votes" that a label receives from the classifiers, and the total number of classifiers.

	Instance 1			Instance 2			Instance 3		
classifier	y_1	y_2	y_3	y_1	y_2	y_3	y_1	y_2	y_3
C_1	0.2	0.7	0.1	0.2	0.7	0.1	0.6	0.1	0.3
C_2	0.1	0.3	0.6	0.2	0.6	0.2	0.21	0.21	0.58
C_3	0.8	0.1	0.1	0.05	0.9	0.05	0.75	0.01	0.24
C_4	0.3	0.5	0.2	0.1	0.8	0.1	0.1	0.28	0.62