2IL50 Data Structures

2019-20 Q3

Lecture 3: Heaps

Solving recurrences

one more time ...

Solving recurrences

Easiest: Master theorem

caveat: not always applicable

Alternatively: Guess the solution and use the substitution method

to prove that your guess is correct.

How to guess:

- 1. expand the recursion
- 2. draw a recursion tree

Example

```
Example(A)

ightharpoonup A is an array of length n
    n = A. length
2. if n == 1
       then return A[1]
3.
       else begin
4.
5.
                Copy A[1 \dots [n/2]] to auxiliary array B[1 \dots [n/2]]
                Copy A[1 \dots [n/2]] to auxiliary array C[1 \dots [n/2]]
6.
                b = Example(B); c = Example(C)
7.
                for i = 1 to n
8.
9.
                     do for j = 1 to i
                              \operatorname{do} A[i] = A[j]
10.
11.
                 return 43
12.
             end
```

Let T(n) be the worst case running time of Example on an array of length n.

Lines 1,2,3,4,11, and 12 take $\Theta(1)$ time. Lines 5 and 6 take $\Theta(n)$ time.

Line 7 takes $\Theta(1) + 2T(\lceil n/2 \rceil)$ time.

Lines 8 until 10 take $\sum_{i=1}^{n} \sum_{j=1}^{i} \Theta(1) = \sum_{i=1}^{n} \Theta(i) = \Theta(n^2) \text{ time.}$

If
$$n = 1$$
 lines 12 and 2 are executed electrical

If n = 1 Lines 1,2, and 3 are executed, else Lines 1,2, and 4 until 12 are executed.

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ 2T(n/2) + \Theta(n^2) & \text{if } n > 1 \end{cases}$$

→ use master theorem ...

The master theorem

Let a and b be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n)$$

Then we have:

- 1. If $f(n) = O(n^{(\log_b a) \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$
- 3. If $f(n) = \Omega(n^{(\log_b a) + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$

Quiz

Recurrence

Master theorem?

1.
$$T(n) = 4T\left(\frac{n}{2}\right) + \Theta(n^3)$$

$$T(n) = \Theta(n^3)$$

$$2. \quad T(n) = 4T\left(\frac{n}{2}\right) + \Theta(n)$$

$$T(n) = \Theta(n^2)$$

$$3. \quad T(n) = T\left(\frac{n}{2}\right) + 1$$

$$T(n) = \Theta(\log n)$$

4.
$$T(n) = T\left(\frac{n}{3}\right) + T\left(\frac{2n}{3}\right) + n$$

$$T(n) = \Theta(n \log n)$$

5.
$$T(n) = 9T\left(\frac{n}{3}\right) + \Theta(n^2)$$

$$T(n) = \Theta(n^2 \log n)$$

6.
$$T(n) = \sqrt{n}T(\sqrt{n}) + n$$

Substitution

$$T(n) = \begin{cases} 1 & \text{if } n=1 \text{ or } n=2 \\ 7T(\lfloor n/3 \rfloor) + n^2 & \text{if } n>2 \end{cases} \qquad \begin{array}{l} \text{Claim: } T(n) = O(n^2) \\ \text{(To show: exist constants } c \text{ and } n_0 \text{ such that } \\ T(n) \leq cn^2 \text{ for all } n \geq n_0) \end{array}$$
 Proof: by induction on n

Base case (n = 2): $1 \le c \cdot n^2 = c \cdot 2^2 = 4c$ for $c \ge 0.25$

IH: Assume that for all $1 \le k < n$ it holds that $T(k) \le ck^2$.

Then
$$T(n) = 7T(\lfloor n/3 \rfloor) + n^2$$

 $\leq 7 \cdot c \cdot (\lfloor n/3 \rfloor)^2 + n^2$ (by IH)
 $\leq 7/9 \cdot cn^2 + n^2$
 $= cn^2 - 2/9 \cdot cn^2 + n^2$
 $\leq cn^2$ (for $c \geq 9/2$ we have $-2/9 \cdot cn^2 + n^2 \leq 0$)

Substitution

$$T(n) = \begin{cases} 1 & \text{if } n = 1 \text{ or } n = 2 \\ 7T(\lfloor n/3 \rfloor) + n^2 & \text{if } n > 2 \end{cases}$$

Base case (n = 1): [...]

Base case (n = 2): [...]

Inductive step: [...]

Let $n_0 = 1$ and c = 9/2.

By induction it holds that $T(n) = O(n^2)$.

Claim: $T(n) = O(n^2)$

(To show: exist constants c and n_0 such that $T(n) \le cn^2$ for all $n \ge n_0$)

Proof: by induction on n

Tips

Analysis of recursive algorithms: find the recursion and solve with master theorem if possible

Analysis of loops: summations

Some standard recurrences and sums:

$$T(n) = 2T(n/2) + \Theta(n)$$
 \Rightarrow $T(n) = \Theta(n \log n)$

$$\sum_{i=1}^{n} i = \frac{1}{2}n(n+1) = \Theta(n^2)$$

$$\sum_{i=1}^{n} i^2 = \frac{1}{6}n(n+1)(2n+1) = \Theta(n^3)$$

Heaps

Event-driven simulation

Stores a set of events, processes first event (highest priority)

Supporting data structure:

- insert event
- find (and extract) event with highest priority
- change the priority of an event

Priority queue

Max-priority queue

```
abstract data type (ADT) that stores a set S of elements, each with an associated key (integer value).
```

Operations

```
Insert(S, x): inserts element x into S, that is, S \leftarrow S \cup \{x\}

Maximum(S): returns the element of S with the largest key

Extract-Max(S): removes and returns the element of S with the largest key

Increase-Key(S, x, k): give key[x] the value k

condition: k is larger than the current value of key[x]
```

Min-priority queue ...

	Insert	Maximum	Extract-Max	Increase-Key
sorted list				
sorted array				

(Doubly) linked list

Linked list collection of objects stored in linear order, with objects pointing to their predecessor and successor

L. head points to the first object

Object x:

- \blacksquare x. prev points to the predecessor
- \blacksquare x. next points to the successor
- \blacksquare x key, x data

Operations

- Search(L, key) O(n)
- Insert(L, x) O(1)
- Delete(L, x) O(1)

$$L.$$
 head = NIL if L is empty

$$x$$
. prev = NIL if x is first

$$x$$
. next = NIL if x is last

	Insert	Maximum	Extract-Max	Increase-Key
sorted list	$\Theta(n)$	$\Theta(1)$	$\Theta(1)$	$\Theta(n)$
sorted array	$\Theta(n)$	Θ(1)	$\Theta(n)$?	$\Theta(n)$

Today

	Insert	Maximum	Extract-Max	Increase-Key
heap	$\Theta(\log n)$	Θ(1)	$\Theta(\log n)$	$\Theta(\log n)$

Max-heap

Heap

nearly complete binary tree, filled on all levels except possibly the lowest. (lowest level is filled from left to right)

Max-heap property: for every node i other than the root $key[Parent(i)] \ge key[i]$

Tree terminology

Binary tree: every node has 0, 1, or 2 children

Root: top node (no parent)

Leaf: node without children

Subtree rooted at node x: all nodes below and including x

Depth of node x: length of path from root to x

Depth of tree: max. depth over all nodes

Height of node x: length of longest path from x to leaf

Height of tree: height of root

Level: set of nodes with same depth

Family tree terminology

Left/right child

Parent

Grandparent ...

Max-heap

Heap

nearly complete binary tree, filled on all levels except possibly the lowest. (lowest level is filled from left to right)

Max-heap property: for every node i other than the root $key[Parent(i)] \ge key[i]$

Properties of a max-heap

Lemma

The largest element in a max-heap is stored at the root.

Proof:

Properties of a max-heap

Lemma

The largest element in a max-heap is stored at the root.

Proof: x root

y arbitrary node

 z_1 , z_2 , ..., z_k nodes on path between x and y

max-heap property

- \Rightarrow key[x] \geq key[z_1] \geq \cdots \geq key[z_k] \geq key[y]
- \Rightarrow the largest element is stored at x

Storing a heap

How to store a heap?

- Tree structure?
- In an array?

Implementing a heap with an array

A. length = length of array A
heap-size[A] = number of elements in the heap

Implementing a heap with an array

 k^{th} node on level j is stored at position $A[2^j + k - 1]$ left child of node at position i = Left(i) = 2i right child of node at position i = Right(i) = 2i + 1 parent of node at position $i = \text{Parent}(i) = \lfloor i/2 \rfloor$

Priority queue

Max-priority queue

```
abstract data type (ADT) that stores a set S of elements, each with an associated key (integer value).
```

Operations

```
Insert(S, x): inserts element x into S, that is, S \leftarrow S \cup \{x\}

Maximum(S): returns the element of S with the largest key

Extract-Max(S): removes and returns the element of S with the largest key

Increase-Key(S, x, k): give key[x] the value k condition: k is larger than the current value of key[x]
```

Set *S* is stored as a heap in an array *A*.

Operations: Maximum, Extract-Max, Insert, Increase-Key.

Set *S* is stored as a heap in an array *A*.

Operations: Maximum, Extract-Max, Insert, Increase-Key.

Maximum(*A*)

- 1. **if** heap-size [A] < 1
- 2. **then** error
- 3. **else return** A[1]

running time: O(1)

Set *S* is stored as a heap in an array *A*.

Operations: Maximum, Extract-Max, Insert, Increase-Key.

Set *S* is stored as a heap in an array *A*.

Operations: Maximum, Extract-Max, Insert, Increase-Key.

Set *S* is stored as a heap in an array *A*.

Operations: Maximum, Extract-Max, Insert, Increase-Key.

Heap-Extract-Max(A)

- 1. **if** heap-size [A] < 1
- 2. **then** error
- 3. $\max = A[1]$
- 4. A[1] = A[heap-size[A]]
- 5. heap-size[A] = heap-size[A] 1
- 6. Max-Heapify(A,1)
- 7. **return** max

restore heap property

Max-Heapify

Max-Heapify(A, i)

- \triangleright ensures that the heap whose root is stored at position *i* has the max-heap property
- \blacktriangleright assumes that the binary subtrees rooted at Left(i) and Right(i) are max-heaps

Max-Heapify

Max-Heapify(A, i)

- \triangleright ensures that the heap whose root is stored at position *i* has the max-heap property
- \blacktriangleright assumes that the binary subtrees rooted at Left(i) and Right(i) are max-heaps

Max-Heapify(A,1)

exchange A[1] with largest child

Max-Heapify(A,2)

exchange A[2] with largest child

Max-Heapify(A,5)

A[5] larger than its children \Rightarrow done.

Max-Heapify

```
Max-Heapify(A, i)
```

- \blacktriangleright ensures that the heap whose root is stored at position *i* has the max-heap property
- \blacktriangleright assumes that the binary subtrees rooted at Left(i) and Right(i) are max-heaps

```
    if Left(i) ≤ heap-size[A] and A[Left(i)] > A[i]
    then largest = Left(i)
    else largest = i
    if Right(i) ≤ heap-size[A] and A[Right(i)] > A[largest]
    then largest = Right(i)
    if largest ≠ i
    then exchange A[i] and A[largest]
    Max-Heapify(A, largest)

running time? O(height of the subtree rooted at i) = O(log n)
```

Set *S* is stored as a heap in an array *A*.

Operations: Maximum, Extract-Max, Insert, Increase-Key.

Insert (A, key)

- 1. heap-size[A] = heap-size[A] + 1
- 2. $A[\text{heap-size}[A]] = -\infty$
- 3. Increase-Key(A, heap-size[A], key)

Set *S* is stored as a heap in an array *A*.

Operations: Maximum, Extract-Max, Insert, Increase-Key.

Set *S* is stored as a heap in an array *A*.

Operations: Maximum, Extract-Max, Insert, Increase-Key.

```
Increase-Key(A, i, key)

1. if key < A[i]
2. then error
3. A[i] = \text{key}
4. while i > 1 and A[Parent(i)] < A[i]
5. do exchange A[Parent(i)] and A[i]
6. i = Parent(i)
```

running time: $O(\log n)$

Building a heap

Build-Max-Heap(A)

- lnput: array A[1 ... n] of numbers
- ightharpoonup Output: array A[1 ... n] with the same numbers, but rearranged, such that the max-heap property holds

starting at |A. length/2| is sufficient

- 1. heap-size = A. length
- 2. **for** i = A. length **downto** 1
- 3. **do** Max-Heapify(A,i)

Loop Invariant

P(i): nodes i + 1, ..., n are each the root of a max-heap

Maintenance

P(i) holds before line 3 is executed, P(i-1) holds afterwards

Building a heap

Build-Max-Heap(A)

- 1. heap-size = A. length
- 2. **for** i = A. length **downto** 1
- 3. **do** Max-Heapify(A,i)

 \longrightarrow O(height of node i)

height of node *i*# edges longest simple downward
path from *i* to a leaf.

$$\sum_{i} O(1 + \text{height of } i)$$

$$= \sum_{0 \le h \le \log n} (\# \text{ nodes of height } h) \cdot O(1 + h)$$

$$= \sum_{0 \le h \le \log n} \left(\frac{n}{2^{h+1}}\right) \cdot O(1 + h)$$

$$= O(n) \cdot \sum_{0 \le h \le \log n} \left(\frac{h}{2^{h+1}}\right)$$

$$= O(n)$$

The sorting problem

Input: a sequence of n numbers $\langle a_1, a_2, ..., a_n \rangle$ Output: a permutation of the input such that $\langle a_{i1} \rangle \langle a_{in} \rangle$

Important properties of sorting algorithms:

running time: how fast is the algorithm in the worst case

in place: only a constant number of input elements are

ever stored outside the input array

Sorting with a heap: Heapsort

Running time: $O(n \log n)$

```
HeapSort(A)
    Build-Max-Heap(A)
    for i = A. length downto 2
       do exchange A[1] and A[i]
3.
          heap-size[A] = heap-size[A] - 1
4.
          Max-Heapify(A,1)
Loop invariant
   P(i): A[i+1...n] is sorted and contains the n-i largest elements,
         A[1 ... i] is a max-heap on the remaining elements
Maintenance
   P(i) holds before lines 3-5 are executed,
   P(i-1) holds afterwards
```

Sorting algorithms

	worst case running time	in place
InsertionSort	$\Theta(n^2)$	yes
MergeSort	$\Theta(n \log n)$	no
HeapSort	$\Theta(n \log n)$	yes