集成学习

高 阳,李文斌

http://cs.nju.edu.cn/rl, 2024.4.20

三个臭皮匠能不能顶个诸葛亮?

大纲

集成学习原理

Bagging和随机森林

Boosting和GBDT、XGboost

Adaboost

其他

大纲

集成学习原理

Bagging和随机森林

Boosting和GBDT、XGboost

Adaboost

其他

原理

- ✓三个臭皮匠,抵上诸葛亮
- ✓是一个预测模型的元方法

例子

- □ 回归树
 - 决策规则跟决策树一样
 - 每个叶子结点包含一个分数

Input: age, gender, occupation, ... Like the computer game X

例子

- □ 回归树集成
 - ○多棵树一起决策

Prediction of is sum of scores predicted by each of the tree

特点

- ✓ 多个分类器集成在一起,以提高分类准确率
- ✓ 由训练数据构建基分类器,然后根据预测结果进行投票
- ✓ 集成学习本身不是一种分类器,而是分类器结合方法
- ✓ 通常集成分类器性能会好于单个分类器

	准确度较高,差异度较高				准确度较高,差异度较低				准确度较低,差异度较高			
	测试例1	测试例2	测试例3	Ŋ	则试例1	测试例2	测试例3	I	间试例1	测试例2	测试例3	
h_1	. ✓	√	×	h_1	√	√	×	h_1	√	×	×	
h_2	×	\checkmark	\checkmark	h_2	\checkmark	√	×	h_2	×	\checkmark	×	
h_3	√	×	\checkmark	h_3	\checkmark	\checkmark	×	h_3	×	×	√	20
集后	₹ √	√	√	集成	√	√	×	集成	×	×	×	
(a) 集成提升性能				(b) 集成不起作用				heen. /	(c) 集成起负作用			

举例分析

- ✓ 例: 以多数投票法为结合方法
- ✓ 每个二分类器的分类精度为p
- ✓ 则集成T个分类器的分类精度为

(假设基学习器的的精度相互独立)

$$\sum_{k=\frac{T}{2}+1}^{T} {T \choose k} p^k (1-p)^{T-k}$$

p > 0.5且 $T \rightarrow \infty$,上式 $\rightarrow 1$

准确性、多样性之间的矛盾

Bias-Variance tradeoff

■ Bias

$$Bias = E\left[\hat{f}(x)\right] - f(x)$$

□ Variance

$$Variance = E\left[(\hat{f}(x) - E[\hat{f}(x)])^2 \right]$$

□ Total Error

$$E_{rr}(x) = Bias^2 + Variance + Irreducible Error$$

核心问题

- □ 序列集成(基学习器)法
 - ✓利用基学习器之间的依赖关系,依次生成
 - ✓减小偏差bias
- □ 并行集成(基学习器)法
 - ✓ 利用基学习器之间的独立关系,并行生成
 - ✓减小方差variance

Q1: 如何训练每个学习器;

Q2: 如何结合每个学习器。

结合策略

- □ 平均法(回归问题)
 - ✓ 简单平均
 - ✓ 加权平均
- □ 投票法(分类问题)
 - ✓ 绝对多数
 - ✓ 相对多数
 - ✓ 加权投票
- □ 学习法(Stacking): 本讲最后讨论

多样性策略(学习基学习器)

- □ 数据层面
 - ✓输入样本的扰动,构建基学习器
 - ✓输出样本的扰动,构建基学习器
- □ 属性层面
 - ✓随机选择部分属性,构建基学习器
- □ 参数层面
 - ✓ 算法模型参数的扰动,构建基学习器

大纲

集成学习原理

Bagging和随机森林

Boosting和GBDT、XGboost

Adaboost

其他

Bagging

□ 基本原理

✓ 有放回采样方法。统计上的目的是得到统计量分布以及置信区间。

Bagging

□ Bagging集成学习框架

代表性算法: 随机森林RF

✓ 用N来表示训练用例(样本)的个数, M表示特征数目; 输入特征数目m, 用于确定决策树上一个结点的决策结果; 其中m应远小于M。

- ✓ 从N个训练用例(样本)中以有放回抽样的方式,取样N次,形成一个训练集 (即bagging取样),并用未抽到的用例(样本)作预测,评估其误差。
- ✓ 对于每一个结点,随机选择m个特征(通常为M的均方根 $log_2 N$),根据这m个特征,计算其最佳的分裂方式。
- ✓ 每棵树都会完整成长而不会剪枝,这有可能在建完一棵正常树状分类器后会被采用。
- ✓ 以上过程做充分多次,以产生足够多的随机树。

Bagging集成学习理论分析

让我们考虑一个回归问题 并且设计每个基算法为 $b_1(x), b_2(x), \ldots, b_n(x)$ 。假设存在为所有输入 定义的一个真实答案 y(x) ,也就是我们的目标函数,并且数据的分布为 p(x) 。那么我们可以表达每个回归函数的误差如下所示:

$$\epsilon_i(x) = b_i(x) - y(x), i = 1, \ldots, n$$

并且均方误差的预期值为:

$$E_x[(b_i(x) - y(x))^2] = E_x[\epsilon_i^2(x)]$$

然后,所有回归函数的平均误差如下:

$$E_1 = \frac{1}{n} E_x \left[\sum \epsilon_i^2(x)\right]$$

我们假设误差是无偏差的,并且不相关的,即:

$$E_x[\boldsymbol{\epsilon}_i(x)] = 0$$

$$E_x[\epsilon_i(x)\epsilon_j(x)] = 0, i \neq j$$

Bagging集成学习理论分析

现在,让我们构建一个新的回归函数,它将对各个函数的值进行平均计算:

$$a(x) = \frac{1}{n} \sum_{i=1}^{n} b_i(x)$$

让我们找到他的均方误差:

$$\mathbb{E}_{n} = \mathbb{E}_{x} \left[\frac{1}{n} \sum_{i=1}^{n} b_{i}(x) - y(x) \right]^{2}$$

$$= \mathbb{E}_{x} \left[\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \right]^{2}$$

$$= \frac{1}{n^{2}} \mathbb{E}_{x} \left[\sum_{i=1}^{n} \varepsilon_{i}^{2}(x) + \sum_{i \neq j} \varepsilon_{i}(x) \varepsilon_{j}(x) \right]$$

$$= \frac{1}{n} \mathbb{E}_{1}$$

Bagging集成学习优点

- □降低分类器方差,改善泛化
 - ✓ 其性能依赖于基分类器的稳定性。如果基分类器稳定,则 其误差主要由基分类器的bias决定;
 - ✓由于采样概率相同, bagging方法并不侧重于任何特定实例;
 - ✓ 代表性算法: 随机森林

大纲

集成学习原理

Bagging和随机森林

Boosting和GBDT、XGboost

Adaboost

其他

Boosting

- □ PAC学习理论
 - \checkmark 能否从假设空间H中学习到一个好的假设h
 - ✓ 近似正确: 泛化误差E(h)足够小
 - ✓ 可能正确: 以多大概率达到近似正确
- □强学习器&弱学习器(Kearns&Valiant, 1984)
 - ✓强学习器与弱学习器等价(略好于随机猜测)。
 - ✓ 可通过提升方法(Boosting)将弱学习器转为强学习器。

Boosting集成学习框架

提升树(Boosting Tree)

- **口** 初始化 $f_0(x) = 0$
- \square 对 $m=1,2,\cdots M$
 - ✓ 计算残差 $r_{m_i} = y_i f_{m-1}(x), i = 1, 2, \dots, N$
 - ✓ 拟合残差 r_{m_i} 学习一个回归树,得到 $h_m(x)$
 - ✓ 更新 $f_m(x) = f_{m-1}(x) + h_m(x)$
- □ 得到回归问题提升树
 - $\checkmark f_M(x) = \sum_{m=1}^M h_m(x)$

残差

$$f_{t-1}(x) \longrightarrow L(y, f_{t-1}(x)) \longrightarrow h_t(x)$$

$$L(y, f_t(x)) = L(y, f_{t-1}(x) + h_t(x))$$

当采用平方误差损失函数

$$L(y, f_{t-1}(x) + h_t(x)) = (y - f_{t-1}(x) - h_t(x))^2 = (r - h_t(x))^2$$

推广到一般损失:第t轮第i个样本的负梯度

$$-\left[\frac{\partial L(y, f(x_i))}{\partial f(x_i)}\right]_{f(x)=f_{t-1}(x)}$$

梯度提升树GBDT

- ■Gradient Boosting Decision Tree算法流程
 - ✓ 初始化弱分类器
 - ✓ 循环
 - ✓ 对每个样本计算负梯度
 - ✓ 构建新的样本集合
 - ✓ 根据对树的约束,构建CART树
 - ✓ 计算叶子区域最佳拟合值
 - ✓ 更新得到强学习器
 - ✓ 得到最终的强学习器

Decision Tree, Boosting, Gradient Boosting 以CART为基学习器

□输入样本

- ✓ <样本0: 年龄5岁, 体重20KG, 身高(预测标签值)1.1米>
- ✓ <样本1: 年龄7岁, 体重30KG, 身高(预测标签值)1.3米>
- ✓ <样本2: 年龄21岁, 体重70KG, 身高(预测标签值)1.7米>
- ✓ <样本3: 年龄30岁, 体重60KG, 身高(预测标签值)1.8米>

□预测样本

✓ <样本4: 年龄52岁, 体重65KG, 身高(预测标签值)? 米>

□学习参数

✓ 学习率0.1, 迭代次数5, 树深度=3

□第一步:初始化弱分类器

$$\sum_{i=1}^{N} \frac{\partial \left(\frac{1}{2}(y_i - c)^2\right)}{\partial c} = \sum_{i=0}^{N} (c - y_i)$$

最小化,即是样本均值 c=1.475

- □ 第二步:根据残差构造新的样本集合
 - ✓ <样本0': 年龄5岁,体重20KG,身高(预测标签值)-0.375米>
 - ✓ <样本1': 年龄7岁,体重30KG,身高(预测标签值)-0.175米>
 - ✓ <样本2': 年龄21岁,体重70KG,身高(预测标签值)0.225米>
 - ✓ <样本3': 年龄30岁,体重60KG,身高(预测标签值)0.325米>

□ 第三步:构建CART树

拟合残差

$$Y_{j1} = \underbrace{argmin}_{X_i \in R_{j1}} L(y_i, f_0(x_i) + Y)$$

□ 第四步: 更新强学习器

$$f_1(x) = f_0(x) + \alpha \sum_{j=1}^4 \Upsilon_{j1} I(x \in R_{j1})$$

□ 最后一步:

$$f_5(x) = f_0(x) + \sum_{m=1}^5 \sum_{j=1}^4 \Upsilon_{jm} I(x \in R_{jm})$$

XGBoost

- ☐ Extreme Gradient Boosting(XGBoost)
 - ✓是GBDT的一种高效实现
 - ✓ 目标函数通过二阶泰勒展开式做近似
 - ✓ 定义了树的复杂度,并应用到目标函数中
 - ✓ 分裂结点处通过结构打分和分割损失动态生长
 - ✓ 分裂结点的候选集合通过一种分布式Quantile Sketch得到
 - ✓可以处理稀疏、缺失数据
 - ✓可以通过特征的列采样防止过拟合

树的复杂度

□优化树的定义

- $\circ w \in R^T$ 为叶子结点分数构成的向量,其中T为叶子的个数
- 。 *q*将每个数据样本点指定到相应的叶子结点

树的复杂度

$$\Omega(f_t) = \gamma T + \frac{1}{2}\lambda \sum_{j=1}^T w_j^2$$
 Number of leaves L2 norm of leaf scores

目标函数

$$Obj^{(t)} = \sum_{i=1}^{n} l\left(y_i, \hat{y}_i^{(t-1)} + f_t(x_i)\right) + \Omega(f_t) + constant$$

泰勒一阶项、二阶项展开

$$Obj^{(t)} \simeq \sum_{i=1}^{n} \left[l(y_i, \hat{y}_i^{(t-1)}) + g_i f_t(x_i) + \frac{1}{2} h_i f_t^2(x_i) \right] + \Omega(f_t) + constant$$

$$Obj^{(t)} \simeq \sum_{i=1}^{n} \left[g_{i} f_{t}(x_{i}) + \frac{1}{2} h_{i} f_{t}^{2}(x_{i}) \right] + \Omega(f_{t})$$

$$= \sum_{i=1}^{n} \left[g_{i} w_{q(x_{i})} + \frac{1}{2} h_{i} w_{q(x_{i})}^{2} \right] + \gamma T + \lambda \frac{1}{2} \sum_{j=1}^{T} w_{j}^{2}$$

$$= \sum_{j=1}^{T} \left[(\sum_{i \in I_{j}} g_{i}) w_{j} + \frac{1}{2} (\sum_{i \in I_{j}} h_{i} + \lambda) w_{j}^{2} \right] + \gamma T$$

$$w_j^* = -\frac{G_j}{H_j + \lambda}$$
 $Obj = -\frac{1}{2} \sum_{j=1}^T \frac{G_j^2}{H_j + \lambda} + \gamma T$

树的打分和分裂

g1, h1

g2, h2

g3, h3

g4, h4

g5, h5

一阶、二阶梯度值

$$Obj = -\sum_{j} \frac{G_{j}^{2}}{H_{j} + \lambda} + 3\gamma$$
 当前树的打分

加入新叶子节点引入的复杂度代价 $Gain = \frac{1}{2} \left[\frac{G_L^2}{H_L + \lambda} + \frac{G_R^2}{H_R + \lambda} - \frac{(G_L + G_R)^2}{H_L + H_R + \lambda} \right] - \gamma$ 右子树分数

大纲

集成学习原理

Bagging和随机森林

Boosting和GBDT、XGboost

Adaboost

其他

Boosting

- 概率近似正确(Probably approximately correct, PAC)学习理论 (Kearns&Valiant, 1984):
 - ✓ 强可学习(strongly learnable): 在PAC框架中,一个概念(类),如果存在一个多项式的学习算法能够学习它,并且正确率很高,那么就称这个概念是强可学习的;
 - ✓ **弱可学习(weakly learnable)**: 在PAC框架中,一个概念(类),如果存在一个多项式的学习算法能够学习它,学习的正确率仅比随机猜测略好,那么就称这个概念是弱可学习的;

Boosting

- □ PAC学习理论(Kearns&Valiant, 1984):
 - ✓ 强学习器与弱学习器是等价的 (Robert E. Schapire, 1990)
 - ✓ 一个概念是强可学习的充分必要条件是这个概念是弱可学习的
 - ✓ 可通过提升方法(Boosting)将弱学习器转为强学习器。

☐ Adaptive Boost

- ✓如何计算学习误差率?
- ✓如何更新样本权重?
- ✓如何得到弱学习器权重?
- ✓ 使用何种结合策略?

训练样本集合

$$T = \{(x_1, y_1), (x_1, y_2), \dots, (x_m, y_m)\}\$$

第k个弱分类器的输出样本权重

$$D_k = (w_{k,1}, w_{k,2}, \dots, w_{k,m})$$
 $w_{1,i} = \frac{1}{m}$ $i = 1, \dots, m$

□ 以分类问题为例:分类器的误差率和权重系数

第k个弱分类器 $G_k(x)$ 在训练集上的加权分类误差率为

$$e_k = \sum_{i=1}^m w_{k,i} I(G_k(x_i) \neq y_i)$$

第k个弱分类器 $G_k(x)$ 的权重系数为

$$\alpha_k = \frac{1}{2} \log \frac{1 - e_k}{e_k}$$

分类误差率越小, 权重系数越大

□ 以分类问题为例: 样本的权重和集合策略

第k+1个弱分类器 $G_{k+1}(x)$ 的样本权重为

更新训练数据集的权值分布

$$D_{k+1} = (w_{k+1,1}, w_{k+1,2}, \cdots, w_{k+1,m})$$

$$Z_K = \sum_{i=1}^m w_{k,i} exp(-\alpha_k y_i G_k(x_i))$$

□ 以分类问题为例: 样本的权重和集合策略

构建基分类器的线性组合

$$f(x) = \sum_{k=1}^{K} \alpha_k G_k(x_i)$$

Adaboost采用加权表决

$$f(x_i) = sign\left(\sum_{k=1}^K \alpha_k G_k(x_i)\right)$$

回归问题的Adaboost算法请各位自行查阅文献

□ 示意图

Box1~Box3为按顺序执行的3个Learner, D1~D3分别为各个Box的决策 边界, "+-"表示正负样本, Box4综合了基学习器的决策边界

大纲

集成学习原理

Bagging和随机森林

Boosting和GBDT、XGboost

Adaboost

其他

其他

口学习法: Stacking算法

Stacking先从初始数据集训练出初始学习器,然后"生成"一个新数据集用于训练次级学习器(元学习器)。在这个新的数据集中,初始学习器的输出被当作样例输入特征,而初始样本的标记仍被当作样例标记。

其他

- □学习法: Stacking算法原理
 - ✓ 对于Model1,将训练集D分为k份,对于每一份,用剩余数据集训练模型,然后预测出这一份的结果
 - ✓ 重复上面步骤,直到每一份都预测出来。得到次级模型的训练集
 - ✓ 得到k份测试集,平均后得到次级模型的测试集

- ✓ 对于Model2、Model3....重复以上情况,得到M维数据
- ✓ 选定次级模型,进行训练预测,一般这最后一层用的是LR。

Stacking

stacking

Stacking

- □Stacking或者Stacked Generalization堆栈泛化模型的特点
- ✓ 集成学习中异源集成(Heterogenous ensembles)的典型代表
- ✓ 通过使用第一阶段(level 0)的预测作为下一层预测的特征,比起相互 独立的预测模型能够有更强的非线性表述能力,降低泛化误差。
- ✓ 它的目标是同时降低机器学习模型的Bias-Variance。

堆栈泛化中的元学习器

- □统计方法类:投票、平均
- □易解释的学习方法类: LR, C45/CART
- □非线性学习算法类: XGBoost, NN, K-NN, RF
- □加权一次/二次线性模型类: Weighted Linear/Quadrtic
- □其他复杂类: 在线学习、深度学习、群体智能

□三种集成方法的对比

Stacking

□三种集成方法的对比

Bagging

□三种集成方法的对比

Boosting

□三种集成方法的对比

Stacking

□三种集成方法的对比

	Target	Data	Classifier	Aggregation
Bagging	mainly variance	replacement resampling (bootstrap) based randomization (parallel)	homogeneous uncorrelated (sub)-learner	voting for classification
				averaging for regression
Boosting	mainly bias	stepwise misclassification based decorrelation (sequential)	homogeneous weak learner	weighted majority voting
Stacking	both bias and variance	various	heterogeneous strong learner	meta-learner

扩展阅读

Zhi-Hua Zhou. Ensemble Methods: Foundations and Algorithms, 2012.

XGBoost: https://xgboost.readthedocs.io/en/latest/index.html

周志华: Boosting学习理论的探索 —— 一个跨越30年的故事:

https://mp.weixin.qq.com/s/Jnh7yIOmzbTvWk77zh2-lA

谢 谢!