Midterm Examination

October 23, 2013

- 1. (20pts) Let X have exponential distribution $f_X(x) = \frac{1}{\mu}e^{-x/\mu}(x)$ for $0 \le x < \infty$. Find the conditional density $f_X(x|\mu < X \le 2\mu)$.
- 2. (30pts) A call occurs at time T where T is a random point in the interval (0,10) and uniformly distributed over the interval.
 - **a.** (5pt) Find $P\{6 \le T \le 8\}$.
 - **b.** (5pt) Find $P\{6 \le T \le 8|T > 5\}$.
 - **c.** (5pt) Find the probability density function $f_T(t)$.
 - **d.** (5pt) Find the expectation of T E[T].
 - **e.** (5pt) Find the expectation of T^2 $E[T^2]$.
 - **f.** (5pt) Find the variance of T VarT.
- 3. (20pts) If f(x) = 0 for x < 0, then, for any $\alpha > 0$, prove

$$P\{X \ge \alpha\} \le \frac{E[X]}{\alpha}.$$

- 4. (30pts) Consider a random variable X with moment generating function $\Phi_X(\omega)$.
 - **a.** (10pt) Show that if X is a Gaussian RV with mean μ and variance σ^2 , then $\Phi_X(\omega) = e^{i\omega\mu \omega^2\sigma^2/2}$.
 - **b.** (10pt) Let X_1 and X_2 be independent and identically distributed Gaussian RVs with mean μ and variance σ^2 and $Z = X_1 + X_2$, then find characteristic function $\Phi_Z(\omega)$.
 - **c.** (10pt) Using the result of (a), find the mean and standard deviation of Z in (b).