- 1) (2 points) Let $X_1, X_2, ..., X_n$ be a random sample drawn from a discrete distribution with pdf $f(x;\theta) = C_5^x \theta^x (1-\theta)^{5-x}, \quad x = 0, 1, ..., 5$, with $\theta \in (0,1)$ unknown. Let $S = \sum_{i=1}^n X_i$. Is S a sufficient statistic for the estimation of θ ? Explain.
- 2) Let $X_1, X_2, ..., X_n$ be a random sample drawn from a distribution with pdf $f(x; \theta) = \frac{1}{\theta} e^{-\frac{x}{\theta}}$, for x > 0, $E(X) = \theta$, $V(X) = \theta^2$, with $\theta > 0$, unknown.
 - a) (1.5 points) Find the maximum likelihood estimator, $\bar{\theta}$, for θ .
 - b) (1 point) Is it an absolutely correct estimator? Explain.
 - c) (1.5 points) Find the efficiency of $\overline{\theta}$, $e(\overline{\theta})$.
 - d) (1 point) At the 1% significance level, find a most powerful test for testing $H_0: \theta = 1$ against $H_1: \theta = 2$.
- 3) (2 points) Let X be a discrete random variable with probability distribution $P(X=1) = \lambda, P(X=5) = 1 \lambda$, with $\lambda \in (0,1)$ unknown. The sample 1,1,5,5,5,5 is collected from this distribution. Find the method of moments estimator, $\hat{\lambda}$, for λ .