The Dictionary Problem: Randomized Approaches

Francesco De Felice Alessandro Lenzi

Cynny S.p.A

December 14, 2016

Outline

- Introduction
 - Dictionary Problem & common solutions
- 2 Hashing
 - A quick recap
 - Amortized analysis
 - Open Addressing
 - d-left hashing
 - Cuckoo hashing
- 3 Approximate Data Structures
 - Bloom Filters
 - Counting Bloom Filters
 - Count-Min Sketch

Outline

- Introduction
 - Dictionary Problem & common solutions
- 2 Hashing
 - A quick recap
 - Amortized analysis
 - Open Addressing
 - d-left hashing
 - Cuckoo hashing
- Approximate Data Structures
 - Bloom Filters
 - Counting Bloom Filters
 - Count-Min Sketch

Dictionary Problem

Problem

Given a set of n objects drawn from a universe \mathbf{U} that can be uniquely identified by a certain key k, we want to be able to:

- Search
- Insert
- Delete

elements from a data structure \mathbf{D} in a efficient manner. If only search is supported, the data structure \mathbf{D} is static, otherwise it is dynamic.

In the rest of the presentation we will refer only to the *keys* and consider them positive integers, without loss of generality.

Any Idea?

C++ Map

- Should *only* be used in case you need to store sorted elements.
- Usually implemented with a red-black tree [3]
- Insert: $O(log_2n)$; Search: $O(log_2n)$; Delete: $O(log_2n)$;
- Efficient for ordered traversal
- Pointers are not particularly cache friendly!

C++ Map

- Should only be used in case you need to store sorted elements.
- Usually implemented with a red-black tree [3]
- Insert: $O(log_2n)$; Search: $O(log_2n)$; Delete: $O(log_2n)$;
- Efficient for ordered traversal
- Pointers are not particularly cache friendly!

C++ Map

- Should *only* be used in case you need to store *sorted* elements.
- Usually implemented with a red-black tree [3]
- Insert: $O(log_2n)$; Search: $O(log_2n)$; Delete: $O(log_2n)$;
- Efficient for ordered traversal
- Pointers are not particularly cache friendly!

C++ Unordered Map

- Good to store elements when no ordering and no traversal is needed
- Rumours say that it is implemented using hash tables with chaining for conflict resolution

$\overline{\mathsf{C}{++}}$ Map

- Should *only* be used in case you need to store *sorted* elements.
- Usually implemented with a red-black tree [3]
- Insert: $O(log_2n)$; Search: $O(log_2n)$; Delete: $O(log_2n)$;
- Efficient for ordered traversal
- Pointers are not particularly cache friendly!

C++ Unordered Map

- Good to store elements when no ordering and no traversal is needed
- Rumours say that it is implemented using hash tables with chaining for conflict resolution
- Insert: O(1); Search: O(n); Delete: O(n)

$\overline{\mathsf{C}{++}}$ Map

- Should *only* be used in case you need to store *sorted* elements.
- Usually implemented with a red-black tree [3]
- Insert: $O(log_2n)$; Search: $O(log_2n)$; Delete: $O(log_2n)$;
- Efficient for ordered traversal
- Pointers are not particularly cache friendly!

C++ Unordered Map

- Good to store elements when no ordering and no traversal is needed
- Rumours say that it is implemented using hash tables with chaining for conflict resolution
- Insert: O(1); Search: O(n); Delete: O(n) worst case

Outline

- Introduction
 - Dictionary Problem & common solutions
- 2 Hashing
 - A quick recap
 - Amortized analysis
 - Open Addressing
 - d-left hashing
 - Cuckoo hashing
- Approximate Data Structures
 - Bloom Filters
 - Counting Bloom Filters
 - Count-Min Sketch

A quick recap on hash tables

Naive solution to the Dictionary Problem: Direct-Address tables

Given a set of K possible keys, allocate an array of size |K|. If an element with key x exists, it is in position x. Cost is always O(1) for any given operation; space is proportional to |K|, so is huge.

Hashing

- We start from a function $h: U \to H$, such that |H| << |U|; let m = |H|
- We create a table of m buckets. Bucket i will logically contain all elements $\{k_j: h(k_j) = i\}$
- It is not possible to grant that there are not two keys k, k' s.t. h(k) = h(k').
- Depending on the way in which we solve the collision we have different kinds of hash tables.

- Simplest collision resolution strategy
- Every bucket is a *list*
- Elements are added in O(1), but we use pointers to percolate the list in case of collisions

- Simplest collision resolution strategy
- Every bucket is a *list*
- Elements are added in O(1), but we use pointers to percolate the list in case of collisions

- Simplest collision resolution strategy
- Every bucket is a *list*
- Elements are added in O(1), but we use pointers to percolate the list in case of collisions

- Simplest collision resolution strategy
- Every bucket is a *list*
- Elements are added in O(1), but we use pointers to percolate the list in case of collisions

- Simplest collision resolution strategy
- Every bucket is a list
- Elements are added in O(1), but we use pointers to percolate the list in case of collisions

- In this case the worst-case cost for a search is O(n). Expected cost is $1 + \frac{n}{m}$ accesses, still constant as long as $m = \Theta(n)$
 - ◆□▶ ◆□▶ ◆글▶ ◆글▶ 글|= ♡Q♡

Lots of cache-misses

Problem

For any given h, there exists a sequence k_1, \ldots, k_n of keys s.t. $i, h(k_i) = z$ constant.

Solution

Problem

For any given h, there exists a sequence k_1, \ldots, k_n of keys s.t. $i, h(k_i) = z$ constant.

Solution

Problem

For any given h, there exists a sequence k_1, \ldots, k_n of keys s.t. $i, h(k_i) = z$ constant.

Solution

Problem

For any given h, there exists a sequence k_1, \ldots, k_n of keys s.t. $i, h(k_i) = z$ constant.

Solution

Problem

For any given h, there exists a sequence k_1, \ldots, k_n of keys s.t. $i, h(k_i) = z$ constant.

Solution

Problem

For any given h, there exists a sequence k_1, \ldots, k_n of keys s.t. $i, h(k_i) = z$ constant.

Solution

- Less costly search and delete operation (on average)
- More costly insert: in the worst case it becomes $\Theta(n)$.
- However, the probability of rehashing decreases exponentially
- With this solution, the amortized costs become:
 - Insert: O(1); Search: O(1); Delete: O(1)
- If we have a "good" hash function, by re-hashing we can find an hash table with O(n) space cost and constant time for all operations.
 - ullet C++'s unordered_map re-hashes once max_load_factor is >1
 - Try setting it to 64 and see how things go...;)

Amortized analysis

So, what is the cost of pushing back into a dynamic array (std::vector)?

Amortized analysis

$$\dots O(n)$$

Amortized analysis

Amortized Cost

- The amortized cost is O(1) because the periodic copy $(\Theta(n))$ is executed every n insertions.
- Think it like a factory buying a new, faster machine: in the long time, the higher cost is compensated by the benefits arising from its usage.
- Sometimes an algorithm incurs in large overheads in some operations in order to optimize the more frequent ones. [4]
- Re-hashing uses the same mechanisms: makes some insert operations more costly, with advantages for search and delete.
- Don't use this kind of reasoning if you need predictability in terms of single operation speed!

- Rather than storing pointers, we store directly the values in the bucket
- Conflicts are solved by probing the table for free positions
- Probing can be linear, quadratic or through double-hashing
- Insert: O(n); Search: O(n); Delete: O(n)
- Efficiency decreases dramatically with load factor!
- Also in this case, we use re-hashing to grant good amortized costs.

- Rather than storing pointers, we store directly the values in the bucket
- Conflicts are solved by probing the table for free positions
- Probing can be linear, quadratic or through double-hashing
- Insert: O(n); Search: O(n); Delete: O(n)
- Efficiency decreases dramatically with load factor!
- Also in this case, we use re-hashing to grant good amortized costs.

- Rather than storing pointers, we store directly the values in the bucket
- Conflicts are solved by probing the table for free positions
- Probing can be linear, quadratic or through double-hashing
- Insert: O(n); Search: O(n); Delete: O(n)
- Efficiency decreases dramatically with load factor!
- Also in this case, we use re-hashing to grant good amortized costs.

- Rather than storing pointers, we store directly the values in the bucket
- Conflicts are solved by probing the table for free positions
- Probing can be linear, quadratic or through double-hashing
- Insert: O(n); Search: O(n); Delete: O(n)
- Efficiency decreases dramatically with load factor!
- Also in this case, we use re-hashing to grant good amortized costs.

- Rather than storing pointers, we store directly the values in the bucket
- Conflicts are solved by probing the table for free positions
- Probing can be linear, quadratic or through double-hashing
- Insert: O(n); Search: O(n); Delete: O(n)
- Efficiency decreases dramatically with load factor!
- Also in this case, we use re-hashing to grant good amortized costs.

- Rather than storing pointers, we store directly the values in the bucket
- Conflicts are solved by probing the table for free positions
- Probing can be linear, quadratic or through double-hashing
- Insert: O(n); Search: O(n); Delete: O(n)
- Efficiency decreases dramatically with load factor!
- Also in this case, we use re-hashing to grant good amortized costs.

- Rather than storing pointers, we store directly the values in the bucket
- Conflicts are solved by probing the table for free positions
- Probing can be linear, quadratic or through double-hashing
- Insert: O(n); Search: O(n); Delete: O(n)
- Efficiency decreases dramatically with load factor!
- Also in this case, we use re-hashing to grant good amortized costs.

A simple benchmark

- Insert 2²⁰ random generated key-value pairs in a dictionary
- Search 2²¹ strings (about 50% belonging to the dictionary)
- Which one, between std::map, std::unordered_map and a custom open addressing will be faster?

A simple benchmark

- Insert 2²⁰ random generated key-value pairs in a dictionary
- Search 2²¹ strings (about 50% belonging to the dictionary)
- Which one, between std::map, std::unordered_map and a custom open addressing will be faster?
- map: 55,771s; 614.245.753 cache misses

A simple benchmark

- Insert 2²⁰ random generated key-value pairs in a dictionary
- Search 2²¹ strings (about 50% belonging to the dictionary)
- Which one, between std::map, std::unordered_map and a custom open addressing will be faster?
- map: 55,771s; 614.245.753 cache misses
- unordered map: 49,1442s; 291.645.582 cache misses

A simple benchmark

- Insert 2²⁰ random generated key-value pairs in a dictionary
- Search 2²¹ strings (about 50% belonging to the dictionary)
- Which one, between std::map, std::unordered_map and a custom open addressing will be faster?
- map: 55,771s; 614.245.753 cache misses
- unordered map: 49,1442s; 291.645.582 cache misses
- openaddressing map: 28,7577s; 272.400.800 cache misses

A simple benchmark

- Insert 2²⁰ random generated key-value pairs in a dictionary
- Search 2²¹ strings (about 50% belonging to the dictionary)
- Which one, between std::map, std::unordered_map and a custom open addressing will be faster?
- map: 55,771s; 614.245.753 cache misses
- unordered map: 49,1442s; 291.645.582 cache misses
- openaddressing map: 28,7577s; 272.400.800 cache misses
 - Open-addressing makes less cache faults, hence improving performances notably.

d-left Hashing

The power of d-choices [5]

- By having multiple choice we can improve balancing
- This will reduce the cost of searching, inserting and deleting even in case of collisions
- Multiple alternatives mean that we can select the best one

d-left hashing

- Use d hash functions, and d sub-tables of size $\frac{m}{d}$
- We define a different hash function h_i for each of the sub-tables
- To insert, each sub-table's load factor is tested and the elements are inserted in the sparsest one.
- In case of a tie between all elements, the one with lowest i is selected
- Every bucket can contain multiple element

d-left hashing example

d-left hashing example

Cuckoo hashing

Problem

Dynamic Dictionary Problem.

We may use **cuckoo hashing** with the following features:

- insert(x): O(1) amortized time;
- search(x) and delete(x): O(1) time, in the worst case;
- power of 2-choices combined with keys movement

Cuckoo hashing

Problem

Dynamic Dictionary Problem.

We may use **cuckoo hashing** with the following features:

- insert(x): O(1) amortized time;
- search(x) and delete(x): O(1) time, in the worst case;
- power of 2-choices combined with keys movement

Cycles in the Cuckoo Graph

Cuckoo Graph may contain cycles.

Cycles in the Cuckoo Graph

Cuckoo hashing may fail in case of **infinite loops** in the Cuckoo Graph.

In this case the insertion procedure fails and rehashing has to be performed with another pair of (hopefully better) hash functions.

Escaping from Cycles

The escaping condition to detect a cycle consists in approximately bounding the number of evictions...i.e. path-length in the graph.

Theoretical Solution

Loop $O(\log n)$ times (i.e. path-length) and *rehash* everything in case of failures.

Insertion cost

Fact

With a load less than 50% (i.e. $\frac{m}{2} > n$) the average failure rate is $\Theta(\frac{1}{n})$.

Given that rehashing time is O(n) (two hash values computation for every item) then the insertion amortized cost is O(1).

Outline

- Introduction
 - Dictionary Problem & common solutions
- 2 Hashing
 - A quick recap
 - Amortized analysis
 - Open Addressing
 - d-left hashing
 - Cuckoo hashing
- 3 Approximate Data Structures
 - Bloom Filters
 - Counting Bloom Filters
 - Count-Min Sketch

Motivation

Problem

We want to know if an element belongs or not to a certain dictionary

- Often a dictionary could not fit in memory
- Fetching pages from disk or from a remote location could be very costly
- We want a *succint* representation of the elements really contained in the set
- This allows to access a costly memory hierarchy only if needed.

As Bloom said

Wherever a list or set is used, and space is a consideration, a Bloom Filter should be considered. When using a Bloom Filter, consider the effects of false positives.

Bloom Filters: the idea

- We use a fingerprint to represent a key
- Rather than calculating it and storing it explicitly, we use k hash functions
- We use a vector of m bits (zeroed in the beginning) to store the fingerprints
- When an element with key x is inserted, we just calculate $h_1(x), \ldots, h_k(x)$ and set the bits in the corresponding positions to 1.

Bloom Filters: the idea

- We use a fingerprint to represent a key
- Rather than calculating it and storing it explicitly, we use k hash functions
- We use a vector of m bits (zeroed in the beginning) to store the fingerprints
- When an element with key x is inserted, we just calculate $h_1(x), \ldots, h_k(x)$ and set the bits in the corresponding positions to 1.

Bloom Filters: the idea

- We use a fingerprint to represent a key
- Rather than calculating it and storing it explicitly, we use k hash functions
- We use a vector of m bits (zeroed in the beginning) to store the fingerprints
- When an element with key x is inserted, we just calculate $h_1(x), \ldots, h_k(x)$ and set the bits in the corresponding positions to 1.

Bloom Filters: the idea

- We use a fingerprint to represent a key
- Rather than calculating it and storing it explicitly, we use k hash functions
- We use a vector of m bits (zeroed in the beginning) to store the fingerprints
- When an element with key x is inserted, we just calculate $h_1(x), \ldots, h_k(x)$ and set the bits in the corresponding positions to 1.

Bloom Filter operations

- **Insertion:** the cost is O(k); k is practically a constant, hence O(1)
- Membership:
 - y can be in the set if $i = 1, ..., k, BF[h_i(y)] = 1$
 - The cost of this operation is once again O(k)
- **Deletion:** is not possible, because of collisions.

False Positives

A false positive arises if, for a certain element y, $BF[h_1(y)] = 1 \dots BF[h_2(y)] = 1$ even though $y \notin S$

- After |S| is n, the probability that a given bit BF[i] is 0 can be approximated to $e^{-kn/m} = p$
- The overall probability of false positive is hence $(1-p)^k$
- Changing k and m we can make this probability albitrarily small.

Counting Bloom Filters

Overcoming the limitations of Bloom Filters

- The main limitation of Bloom Filters is that no elements can be deleted from the set it represents
- In case of deletion, we must accept to look up (even in case of failure) or rebuild the Bloom Filter

Counting Bloom Filters

- ullet A slight variation of Bloom Filters, where we use c bits rather than 1
- When an element is inserted, we *increment* the c bits corresponding to the positions of the k hashes
- When we want to remove an element, we decrement the bits
- At the cost of a factor c in space, we can operate on dynamic sets

A real application

Doormat's Cache

- Doormat's cache must store order of millions of elements and reply in a very fast manner
- Elements' keys are URIs, strings whose size is in the order of 1000 chars
- Values are stored on disk, keys are kept in main memory

Performance gain from using Counting Bloom Filters

Benchmark executed using real URLs as collected from our balancers. p is the probability that an element is found in cache. On *has* operation:

- With p = 1, CBF increases time 97%
- With p = 0.5, CBF gives about 15% gain
- With p = 0.2, CBF gives about 22% gain
- With p = 0, CBF gives about 42% gain

Count-Min Sketch: the Count Tracking problem

Problem

Count Tracking problem: given a set with a large number of items and a frequency estimate associated to each one of them, when a query for item x arrives, the answer to the query is the current frequency of x.

Examples:

- a search engine could be interested in queries statistics (e.g. *top-k* list of more frequent queries)
- in network security we could be interested in finding the IP addresses, whose contribution to the network traffic exceeds a given threshold (so called **Heavy-Hitters**).

A bit more formally...

Given:

ullet a vector $A_t[1,n]$ whose state changes with time t (with $A_0={f 0}$)

Then, the updates of an individual entry of A at time t consists of a pair (i_t, c_t) of numbers, so that:

- $A_{t+1}[i_t] = A_t[i] + c_t$ (in the basic case $c_t = 1$)
- $A_{t+1}[i'] = A_t[i']$, if $i' \neq i_t$.

At any time t, a given query(i) may arrive asking for $A_t[i]$.

Goal

achieve sub-linear space in n, fast update and query but with frequency estimates that are inevitably (ϵ, δ) -approximated, i.e. error is within a factor ϵ with probability δ .

The Count-Min Sketch Data Structure

The (ϵ, δ) -Count-Min sketch data structure consists of:

- a matrix CM[d][w] of counters with $d = \lceil \log \frac{1}{\delta} \rceil$ and $w = \lceil \frac{e}{\epsilon} \rceil$
- a set of hash functions $h_1, ..., h_d$ hashing over [1, w], chosen from a pairwise independent set, i.e.: $P(h_i(x) = h_j(x)) = \frac{1}{w}$.

Space Occupancy

 $O(dw) = O(\frac{e}{\epsilon} \log \frac{1}{\delta})$ which is sub-linear in n.

CM Sketch: Updates and Point Queries

- **Update** (i_t, c_t) : for j = 1, ..., d do $CM[j][h_j(i_t)] + = c_t$
- Query(x): return $\hat{A}[x] = min_j CM[j][h_j(x)]$

CM-Sketch vs Bloom Filters: Error value is bounded not only its probability of occurrence!

Point Queries on positive updates

Theorem,

The estimate for item i, where i = 1, 2, ..., n is such that:

- $\hat{A}[i] \geq A[i]$;
- with probability at least 1δ , it is $\hat{A}[i] \leq A[i] + \epsilon ||A||_1$

with: $||A||_1 = \sum_{i=1}^{n} A[i]$

Time Complexity

Point queries and Updates take $O(d) = O(\log \frac{1}{\delta})$ time.

Thank you! Questions?

For Further Reading I

P. Ferragina.

Chapter 13: The Dictionary Problem
Teaching material of Algorithm Engineering course.

G. Gormode, S. Muthukrishnan An improved data stream summary: the count-min sketch and its applications in Journal of Algorithms, Volume 55 Issue 1, Pages 58-75, April 2005.

cppreference - map cppreference.com page dedicated to std::map

R. E. Tarjan Amortized computational complexity SIAM Journal on Algebraic Discrete Methods 6.2 (1985): 306-318

For Further Reading II

MitzenMacher, Richa, Sitaraman The power of two random choices: a survey of techniques and results Combinatorial Optimization 9 (2001): 255-304

Broder, Andrei, Mitzenmacher Network applications of bloom filters: A survey. Internet mathematics 1.4 (2004): 485-509