ΕΡΓΑΣΙΑ 1 – ΤΕΧΝΙΚΕΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ

ΑΣΚΗΣΗ 1 - ΜΕΘΟΔΟΣ ΤΗΣ ΔΙΧΟΤΟΜΟΥ

- **Τ**ριν κάνω οτιδήποτε , ελέγχω κατά πόσο είναι κυρτές οι τρείς συναρτήσεις $f_1(x)$, $f_2(x)$ και $f_3(x)$,δηλαδή να έχουν τη δεύτερη τους παράγωγο μεγαλύτερη ή ίση με μηδέν.
- Αν ισχύει τότε μπορώ να χρησιμοποιήσω τον αλγόριθμο.
- **Γ**ραφική παράσταση ελαχίστου για τη πρώτη συνάρτηση:

Γραφική παράσταση ελαχίστου για τη δεύτερη συνάρτηση:

Γραφική παράσταση ελαχίστου για τη τρίτη συνάρτηση:

- Κρατώντας το εύρος σταθερό και ίσο με 0.01 και μεταβάλλοντας την απόσταση από τη διχοτόμο έχουμε:
 - Ο Για την $f_1(x)$:

ο Για την $f_2(x)$:

How many times a function is called		
f1	f2	f3
0	0	0
56	56	56
42	42	42
22	22	22
18	18	18
18		18
18	18	18
	f1 0 56 42 22 18	called f1 f2 0 0 56 56 42 42 22 22 18 18 18 18

- Κρατώντας την απόσταση από τη διχοτόμο σταθερή και ίση με 0.001 και μεταβάλλοντας το εύρος θα έχουμε:
 - ο Για την $f_1(x)$:

Για την f₂(x) :

Tolarance	How many	times a function	is called
 1	f1	f2	f3
 0.00210000	30	30	30
0.03500000	14	14	14
0.05000000	12	12	12
 0.15000000	10	10	10
 0.03500000	14	14	14

lacktriangle Γραφικές παραστάσεις των άκρων του διαστήματος [a,b] συναρτήσει του δείκτη βήματος k, δηλαδή (k,a_k) και (k,b_k) , για διάφορες τιμές του τελικού εύρους αναζήτησης l.

ο Για την $f_1(x)$:

ΑΣΚΗΣΗ 2 - ΜΕΘΟΔΟΣ ΤΟΥ ΧΡΥΣΟΥ ΤΟΜΕΑ

- Μεταβολή των υπολογισμών της αντικειμενικής συνάρτησης $f_1(x)$, $f_2(x)$, $f_3(x)$ 3, καθώς μεταβάλλουμε το τελικό εύρος αναζήτησης l.
 - ο Για την $f_1(x)$:

Για την f₂(x) :

Για την f₃(x) :

- lacktriangle Γραφικές παραστάσεις των άκρων του διαστήματος $[a_k,b_k]$ συναρτήσει του δείκτη βήματος k, δηλαδή (k,a_k) και (k,b_k) , για διάφορες τιμές του τελικού εύρους αναζήτησης I.
 - ο Για την $f_1(x)$:

ο Για την $f_2(x)$:

ΑΣΚΗΣΗ 3 - ΜΕΘΟΔΟΣ FIBONACCI

- Μεταβολή των υπολογισμών της αντικειμενικής συνάρτησης $f_1(x)$, $f_2(x)$, $f_3(x)$ 3, καθώς μεταβάλλουμε το τελικό εύρος αναζήτησης l.
 - ο Για την $f_1(x)$:

ο Για την $f_2(x)$:

- lacktriangle Γραφικές παραστάσεις των άκρων του διαστήματος $[a_k,b_k]$ συναρτήσει του δείκτη βήματος k, δηλαδή (k,a_k) και (k,b_k) , για διάφορες τιμές του τελικού εύρους αναζήτησης I.
 - ο Για την $f_1(x)$:

ο Για την $f_2(x)$:

ΑΣΚΗΣΗ 4 - ΜΕΘΟΔΟΣ ΤΗΣ ΔΙΧΟΤΟΜΟΥ ΜΕ ΧΡΗΣΗ ΠΑΡΑΓΩΓΟΥ

- Μεταβολή των υπολογισμών της αντικειμενικής συνάρτησης $f_1(x)$, $f_2(x)$, $f_3(x)$ 3, καθώς μεταβάλλουμε το τελικό εύρος αναζήτησης I.
 - ο Για την $f_1(x)$:

 \circ Για την $f_2(x)$:

- lacktriangle Γραφικές παραστάσεις των άκρων του διαστήματος $[a_k,b_k]$ συναρτήσει του δείκτη βήματος k, δηλαδή (k,a_k) και (k,b_k) , για διάφορες τιμές του τελικού εύρους αναζήτησης \mathbf{I} .
 - ο Για την $f_1(x)$:

ο Για την $f_2(x)$:

ΣΧΟΛΙΑΣΜΟΣ

Βλέποντας πόσες φορές καλείτε η κάθε συνάρτηση καταλήγουμε στη μέθοδο της διχοτόμου με τη χρήση παραγώγου ως την αποδοτικότερη αφού χρειάζεται μια φορά κάθε επανάληψη. Επόμενη πιο αποδοτική είναι η μέθοδος διχοτόμου και ακολουθούν η μέθοδος Fibonacci και μετά η μέθοδος του χρυσού τομέα.