Tipinių uždavinių pavyzdžiai

Pastabos.

- 1. Čia nepateikti trivialūs uždaviniai, pavyzdžiui, "Koks kodo $C = \{1010, 1101, 0011, 1001\}$ ilgis?". Tokie irgi gali būti įskaitoje/egzamine. Todėl reikia žinoti visus apibrėžimus, teoremas ir pan. ir mokėti juos taikyti.
- 2. Tai tipinių uždavinių pavyzdžiai. Įskaitos/egzamino uždaviniai paprastai yra jų kombinacijos (taip pat ir su trivialiais uždaviniais). Pavyzdžiui, 2c ir 8a uždavinių kombinacija galėtų būti tokia: "Rasti kodo $C = \{1010, 1101, 0011, 1001\}$ plėtinio minimalų atstumą." Jei pridėtume dar porą trivialių uždavinių ilgio bei dydžio radimą, sąlyga galėtų būti tokia: "Rasti kodo $C = \{1010, 1101, 0011, 1001\}$ plėtinio ilgi, dydį ir minimalų atstumą."
- 3. Įskaitoje/egzamine gali būti ir netipinių netrivialių uždavinių.

1. Paprasti kodų pavyzdžiai.

- a) Užkoduoti seką 1011 pakartojimo kodu R_3 .
- b) Dekoduoti seką 101001010111, užkoduotą pakartojimo kodu \mathbb{R}_3 ir persiųstą kanalu.
- c) Užkoduoti seką 1011 kontrolinio simbolio kodu.
- d) Dekoduoti seką 10111, užkoduotą kontrolinio simbolio kodu ir persiųstą kanalu.
- e) Užkoduoti seką 994054020 ISBN kodu.
- f) Dekoduoti seką 994054020X, užkoduotą ISBN kodu ir persiystą kanalu.
- g) Užkoduoti seką 3940501009 Lietuvos piliečių asmens kodu.
- h) Dekoduoti seką 39405010090, užkoduotą Lietuvos piliečių asmens kodu ir persiųstą kanalu.
- i) Užkoduoti seką 1101 $[t^2 + 2t, t^2]$ kodu.
- j) Dekoduoti seką 10001110, užkoduotą $[t^2 + 2t, t^2]$ kodu ir persiųstą kanalu.
- k) Užkoduoti seką 1000 [7,4] Hemingo kodu.
- 1) Dekoduoti seką 1000111, užkoduotą [7,4] Hemingo kodu ir persiųstą kanalu.

2. Bendrosios savokos.

- a) Rasti atstumą tarp vektorių 1101 ir 0111.
- b) Rasti vektoriaus 0101 svori.
- c) Rasti dvinario kodo $C = \{1010, 1101, 0011, 1001\}$ minimalų atstumą.
- d) Rasti dvinario kodo $C = \{1010, 1101, 0011, 1001\}$ minimalų svorį.
- e) Kiek klaidų gali ištaisyti dvinaris kodas $C = \{1010, 1101, 0011, 1001\}$?
- f) Kiek klaidų gali aptikti dvinaris kodas $C = \{1010, 1101, 0011, 1001\}$?

3. Ekvivalentūs kodai.

- a) Nustatyti, ar dvinariai kodai $C = \{1010, 1101, 0011, 1001\}$ ir $C' = \{1010, 1100, 0110, 1011\}$ yra ekvivalentūs. Jei taip, rasti bent vieną tokią perstatą σ , kad $C' = \sigma(C)$.
- b) Nustatyti, ar dvinariai tiesiniai kodai C ir C', generuoti atitinkamai matricų

$$G = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix} \quad \text{ir} \quad G' = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix},$$

yra ekvivalentūs. Jei taip, rasti bent vieną tokią perstatą σ , kad $C' = \sigma(C)$.

4. Tiesiniai kodai.

- a) Nustatyti, ar kodas $C = \{000, 101, 110, 011\}$ yra tiesinis virš \mathbb{F}_2 . Jei taip, rasti jo generuojančia matrica.
- b) Rasti visus dvinario tiesinio kodo, generuoto matricos

$$G = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 0 & 1 \end{array}\right),$$

žodžius.

c) Užkoduoti seką 110110100001 dvinariu tiesiniu kodu, generuotu matricos

$$G = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 0 & 1 \end{array}\right).$$

d) Nustatyti, ar dvinarių matricų

$$G = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix} \quad \text{ir} \quad G' = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

generuojami tiesiniai kodai yra lygūs.

e) Tegu C yra tiesinis kodas virš \mathbb{F}_5 , generuotas matricos

$$G = \begin{pmatrix} 4 & 3 & 1 & 4 & 3 \\ 3 & 1 & 2 & 0 & 4 \\ 4 & 1 & 4 & 2 & 4 \end{pmatrix}.$$

Rasti kodą, ekvivalentų kodui C, turintį standartinio pavidalo generuojančią matricą.

- f) Tarkime, turime dvinarį tiesinį kodą, kuris pranešimą $x=(x_1,x_2,\ldots,x_k)$ užkoduoja kodo žodžiu $c=(x_1,x_2,\ldots,x_k,x_{k+1})$, kur $x_{k+1}\equiv\sum_{i=1}^k x_i\pmod 2$. Rasti kodo generuojančią matricą.
- g) Rasti dvinario tiesinio kodo $C = \{000, 100\}$ dualų kodą.
- h) Nustatyti, ar vektorius (100) priklauso dvinariui tiesiniam kodui, kurio kontrolinė matrica yra

$$H = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 0 & 1 \end{array}\right).$$

i) Rasti dvinario tiesinio kodo, generuoto matricos

$$G = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 0 & 1 \end{array}\right),$$

kontrolinę matricą.

j) Rasti dvinario tiesinio kodo, kurio kontrolinė matrica yra

$$H = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 0 & 1 \end{array}\right),$$

generuojančią matricą.

k) Nustatyti, ar matricos

$$G = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \quad \text{ir} \quad H = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$$

yra to paties dvinario kodo atitinkamai generuojanti ir kontrolinė matricos.

l) Tegu C yra dvinaris tiesinis kodas, kurio kontrolinė matrica yra

$$H = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}.$$

Rasti kodo C minimalų atstumą, naudojantis teorema apie kontrolinės matricos ir minimalaus atstumo ryšį.

m) Nustatyti, ar tiesinis kodas virš \mathbb{F}_3 , generuotas matricos

$$G = \left(\begin{array}{rrr} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & 1 \end{array}\right),$$

yra savidualus.

n) Nustatyti, ar tiesinis kodas virš \mathbb{F}_3 , generuotas matricos

$$G = \left(\begin{array}{rrr} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & 1 \end{array}\right),$$

yra silpnai savidualus.

5. Tiesinių kodų dekodavimas.

- a) Tegu $C = \{000, 111\}$ yra dvinaris tiesinis kodas. Rasti visas klases kodo C atžvilgiu.
- b) Tegu $C = \{000, 111\}$ yra dvinaris tiesinis kodas. Rasti vektoriaus 011 klasę kodo C atžvilgiu. Rasti tos klasės lyderi.
- c) Tarkime, dvinario tiesinio kodo C kontrolinė matrica yra

$$H = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 0 & 1 \end{array}\right).$$

Nustatyti, ar vektoriai (100) ir (010) priklauso tai pačiai klasei a+C. Rasti vektoriaus (001) sindromą.

d) Sudaryti dvinario kodo, generuoto matricos

$$G = \left(\begin{array}{rrrr} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{array}\right),$$

standartinę lentelę. Dekoduoti seką 11001010111011001101100.

e) Sudaryti dvinario kodo, generuoto matricos

$$G = \left(\begin{array}{rrrr} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{array}\right),$$

sumažintą standartinę lentelę. Dekoduoti seką 11001010111011001101100.

f) Sudaryti dvinario kodo, generuoto matricos

$$G = \left(\begin{array}{rrrr} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{array}\right),$$

nepilną sumažintą standartinę lentelę, į kurią įeitų visi klasių lyderiai, kurių svoris neviršija 1. Dekoduoti seką 1100101011011011011001.

6. Hemingo kodas.

- a) Rasti Hemingo kodo $\mathbf{H}_2(3)$ kontroline matrica.
- b) Rasti Hemingo kodo $\mathbf{H}_2(3)$ generuojančią matricą.
- c) Nustatyti, ar dvinaris tiesinis kodas, generuotas matricos

$$G = (1 \ 1 \ 1),$$

yra Hemingo kodas.

d) Dekoduoti seka 000001011001100110100, naudojant Hemingo koda $\mathbf{H}_2(3)$.

7. Rydo-Miulerio kodas.

- a) Išvardinti visus Rydo-Miulerio kodo RM(1,3) žodžius.
- b) Užrašyti Rydo-Miulerio kodo RM(1,3) generuojančią matricą.
- c) Užkoduoti seką 10110101, naudojant Rydo-Miulerio kodą RM(1,3). Koduoti ne bendruoju būdu, tinkamu visiems tiesiniams kodams (dauginimas iš generuojančios matricos), o Rydo-Miulerio kodų būdu.
- d) Dekoduoti seką 10110101, naudojant Rydo-Miulerio kodą RM(1,3).
- e) Rasti Rydo-Miulerio kodo RM(1,3) minimalų atstumą.

8. Naujų kodų sudarymo būdai.

a) Rasti kodo $C = \{1200, 1001, 0112\}$ virš \mathbb{F}_3 plėtinį.

b) Tegu C yra dvinaris kodas, generuotas matricos

$$G = \left(\begin{array}{rrrr} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{array}\right).$$

Rasti jo plėtinio generuojančią matricą.

- c) Rasti kodo $C = \{120020, 100121, 011201\}$ virš \mathbb{F}_3 aibėje $\{2, 4, 6\}$ sutrumpintą kodą.
- d) Rasti kodo $C = \{120020, 100121, 011201\}$ virš \mathbb{F}_3 sutrumpintą kodą.
- e) Tegu C yra dvinaris kodas, generuotas matricos

$$G = \left(\begin{array}{rrrr} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{array}\right).$$

Rasti kodo C aibėje $\{2,3\}$ sutrumpinto kodo generuojančią matricą.

f) Tegu C yra dvinaris kodas, generuotas matricos

$$G = \left(\begin{array}{rrrr} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{array}\right).$$

Rasti kodo C sutrumpinto kodo generuojančią matricą.

- g) Rasti kodo $C = \{120020, 100121, 011201\}$ virš \mathbb{F}_3 aibėje $\{2, 3\}$ sumažintą kodą.
- h) Rasti kodo $C = \{120020, 100121, 011201\}$ virš \mathbb{F}_3 sumažintą kodą.
- i) Tegu C yra dvinaris kodas, kurio kontrolinė matrica yra

$$H = \left(\begin{array}{rrrr} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{array}\right).$$

Rasti kodo C aibėje $\{2,3\}$ sumažinto kodo kontrolinę matricą.

j) Tegu C yra dvinaris kodas, kurio kontrolinė matrica yra

$$H = \left(\begin{array}{rrrr} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{array}\right).$$

Rasti kodo C sumažinto kodo kontrolinę matricą.

9. Cikliniai kodai.

- a) Ilgio 4 dvinario ciklinio kodo C generuojantis polinomas yra g(x) = 1 + x. Rasti:
 - i) visus kodo C žodžius,
 - ii) kodo dimensiją,
 - iii) kodo generuojančia matrica.
 - iv) kodo kontrolinį polinomą.
- b) Nustatyti, ar polinomas $g(x) = x^3 + 2x^2 + 2 \in \mathbb{F}_3[x]$ yra kurio nors ilgio 8 ciklinio kodo virš \mathbb{F}_3 generuojantis polinomas.
- c) Rasti visų ilgio 4 ciklinių kodų virš \mathbb{F}_3 generuojančius polinomus.

- d) Nustatyti, kiek yra ilgio 12 ciklinių kodų virš $\mathbb{F}_3.$
- e) Rasti ciklinio kodo virš \mathbb{F}_3 , kurį generuoja žodis c=112110, generuojantį polinomą.
- f) Tegu $S=\{1010,0101,1111\}$ yra aibė dvinarių vektorių. Rasti ciklinio kodo $\langle S \rangle$ generuojantį polinomą.
- g) Ilgio 4 dvinario ciklinio kodo C kontrolinis polinomas yra h(x) = 1 + x. Patikrinti, ar polinomas $y(x) = 1 + x + x^2$ priklauso kodui C.
- h) Ilgio 4 dvinario ciklinio kodo C kontrolinis polinomas yra h(x) = 1 + x. Rasti dualaus kodo C^{\perp} :
 - i) generuojančią matricą,
 - ii) generuojantį polinomą.

10. Tobulieji kodai.

- a) Išrašyti rutulio $B_2(0000, 1)$ elementus.
- b) Rasti rutulio $B_3(00000, 2)$ tūrį.
- c) Rasti dvinario kodo $C = \{000, 111\}$ pakavimo spindulį $r_p(C)$.
- d) Rasti dvinario kodo $C = \{000, 111\}$ dengimo spindulį $r_d(C)$.
- e) Nustatyti, ar (4, 9, 3) kodas virš \mathbb{F}_3 yra tobulas.
- f) Nustatyti, ar [4, 2, 3] tiesinis kodas virš \mathbb{F}_3 yra tobulas.
- g) Nustatyti, ar tiesinis kodas virš \mathbb{F}_3 , generuotas matricos

$$G = \left(\begin{array}{rrr} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & 1 \end{array}\right),$$

yra tobulas.

11. Bendrieji kodų konstravimo uždaviniai.

- a) Rasti $A_2(3, 2)$.
- b) Įvertinti $A_3(4,3)$ kaip galima tiksliau iš viršaus ir apačios.
- c) Irodyti, kad $3 \leqslant A_3(4,3) \leqslant 9$.
- d) Irodyti, kad $A_3(4,3) \ge 4$.

12. Kodo svorių skirstinys.

- a) Tegu $C = \{000, 110, 101, 011\}$ yra kodas virš \mathbb{F}_2 . Rasti:
 - i) kodo C svorių skirstinį,
 - ii) kodo C svorių (pasiskirstymo) funkciją.
- b) Tegu C yra tiesinis kodas virš \mathbb{F}_2 , generuotas matricos

$$G = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 0 & 1 \end{array}\right).$$

Pasinaudojus MacWilliams tapatybe, rasti:

- i) dualaus kodo C^{\perp} svorių (pasiskirstymo) funkciją,
- ii) dualaus kodo C^{\perp} svorių skirstinį.