Lecture 1: Functions and Their Properties

Summary:

This lecture introduces the fundamental concept of functions and their key properties. We explore three essential types of functions:

- Injective (one-to-one) functions, where each element in the codomain has at most one pre-image
- Surjective (onto) functions, where each element in the codomain has at least one pre-image
- Bijective functions, which are both injective and surjective

Topics Covered: function, set, Identity function, inverse function, injectivity, surjectivity, bijectivity, cardinality, image, rationals, function composition

We also examine important properties of functions, including:

- Function composition and its properties
- The identity function and its role
- Inverse functions and their relationship to bijective functions
- The conditions under which a function has an inverse

These concepts form the foundation for understanding more complex mathematical structures and transformations that will be explored in later lectures.

Cardinality

• The cardinality of a (finite) set A, denoted |A| or #A is the number of elements in the set.

Note that

$$|A imes B| = |A| \cdot |B|$$

Functions

$$f:\mathbb{R} o\mathbb{R}$$

$$f(x) = x^2$$

The graph of the function is

$$\{(x,y) \in \mathbb{R}^2 : y = f(x)\}$$

Cartesian product

$$A imes B = \{(a,b): a \in A, b \in B\}$$

Note that

$$|A imes B| = |A| \cdot |B|$$

 $\left|A\right|$ is the number of elements in a set

Definition - function: Let S and T be two sets. A function from S to T is a subset $F \subseteq S \times T$ such that $\forall x \in S$. $\exists y \in T$. $(x,y) \in F$.

S is called the domain of F

T is the codomain, or range of F

$$(x,y) \in F \iff f(x) = y$$

Example:

$$f:\mathbb{Q} o\mathbb{Z}$$

$$f\left(\frac{m}{n}\right) = m$$

Note that this is not a function because a rational number can have multiple representations

$$f\left(rac{1}{3}
ight)=1,\ f\left(rac{2}{6}
ight)=2$$

And $\frac{1}{3}=\frac{2}{6}$, so, it is not the case that for any $r\in\mathbb{Q}.\ \exists !y\in\mathbb{Z}.\ f(r)=y.$

Definition: Let $A\subseteq S$. The inclusion function $\iota:A\to S$ is such that $\forall a\in A.\ \iota(a)=a.$

Definition: Let $f:S \to T$ and $g:T \to U$ be two functions. We define the composition

$$(g \circ f)(x) = g(f(x))$$

Try writing the composition of functions in cartesian product language.

Proposition: Let $f: S \rightarrow T, g: T \rightarrow U, R: U \rightarrow V$. Then,

$$h \circ (g \circ f) = (h \circ g) \circ f$$

In other words, function composition is associative.

This is easy to prove using the definition of composition.

Definition: The function $f: S \to T$ is **onto** means $\operatorname{im}(f) = T$. In other words, $\forall t \in T$. $\exists s \in S$. f(s) = t. This is also called a **surjection**.

Definition: The function $f:S \to T$ is **one-to-one** means $f(x_1) = f(x_2) \implies x_1 = x_2$. This is also called an injection.

Definition: The function $f: S \to T$ is a **one-to-one correspondence** means f is injective and surjective. This is also called a bijection.

Example:

$$f:\{1,2\} o \{3,4,5\}$$

Note that f cannot be a surjection.

f can be an injection, for example:

Consider the bijection

$$g:\{1,2,3\}
ightarrow \{3,4,5\}$$

$$2 \to 5$$

Note that on the left, each elements appears exactly once, and same on the right side.

Identity function:

$$1_S:S\to S$$

$$\forall x \in S. \ 1_S(x) = x$$

Note that for any function f, we have

$$1_S\circ f=f\circ 1_S=f$$

Inverse function:

Let $f: S \to T$ and let $g: T \to S$ be functions. The functions f and g are inverses of each other means

$$f\circ g=1_T$$

$$g\circ f=1_S$$

Proposition: If f has an inverse, then the inverse is unique.

Proof:

Suppose that $g, h: T \to S$ are inverses of f.

We want to show that g = h.

Note that

$$\underbrace{(h \circ f)}_{1_S} \circ g = h \circ \underbrace{(f \circ g)}_{1_T}$$
 $\Longrightarrow 1_S \circ g = h \circ 1_T$
 $\Longrightarrow g = h$
 QED

Proposition: $f: S \rightarrow T, g: T \rightarrow U$. Then,

- 1. f and g are onto $\implies g \circ f$ is onto
- 2. f and g are one-to-one $\implies g \circ f$ one-to-one

Proof of 1:

 $\forall z \in U. \ \exists t \in T. \ g(t) = u$, since g is onto.

 $\forall t \in T. \ \exists s \in S. \ f(s) = t$, since f is onto

Therefore.

$$(g\circ f)s(s)=g(f(s))=u\implies g\circ f$$
 is onto
$$QED$$

Proof of 2:

$$g(f(x_1)) = g(f(x_2),\ x_1, x_2 \in S$$

Since g is one-to-one $\implies f(x_1) = f(x_2)$

$$x_1 = x_2$$

QED

Corollary: If f, g are bijections $\implies g \circ f$ is a bijection.

Proposition: Let $f: S \rightarrow T$ be a function.

f has an inverse $\iff f$ is bijective.

 \implies proof:

Suppose that f has an inverse g:T o S such that

$$g\circ f=1_S,\ f\circ g=1_T$$

Let $y \in T$. Note that

$$y=1_T(y)=(f\circ g)(y)=f(g(y))$$
 $orall y\in T. \ f:g(y) o y$

So, f is onto

Let $x_1,x_2\in S$ and suppose

$$f(x_1) = f(x_2)$$
 $\implies g(f(x_1)) = g(f(x_2))$
 $\implies (g \circ f)(x_1) = (g \circ f)(x_2)$
 $\implies x_1 = x_2$

Since $(g \circ f)$ is the identity function

QED

 \longleftarrow proof:

Suppose that f is a bijection. We want to show that g has an inverse.

Define g:T o S as follows

$$\forall y \in T. \,\, \exists x \in S. \,\, f(x) = y$$

Define g(y) = x.

We propose that g is the inverse of f.

We must check that

$$f\circ g=1_T$$
 $g\circ f=1_S$