Example 8

(1995 AMC) In the figure, AB and CD are diameters of the circle with center $O, AB \perp CD$, and chord DF intersects AB at E. If DE = 6 and EF = 2, then the area of the circle is

- (A) 23π (B) $\frac{47}{2}\pi$ (C) 24π

- (D) $\frac{49}{2}\pi$ (E) 25π

Solution: (C).

Draw segment FC. Angle CFD is a right angle since arc CFD is a semicircle. Then right triangles DOE and DFC are similar to each other, so the following

$$\frac{DO}{DF} = \frac{DE}{DC}$$

equality holds true: $\frac{DO}{DF} = \frac{DE}{DC}.$ Let DO = r and DC = 2r. Substituting this into the equality above, we have $\frac{r}{8} = \frac{6}{2r} \quad \Rightarrow \quad 2r^2 = 48 \quad \Rightarrow$

 $r^2 = 24.$

The area of the circle is $\pi r^2 = 24\pi$.