

درس المعادلات التفاضلية

y' = ay + b . I . I . I

01. تذكير:

الصفحة

- أدالة عددية نرمز لها ب: y.
- 'f الدالة المشتقة ل f نرمز ل 'f ب: 'y.
- الكتابة af(x)+b تكتبها على الشكل الآتي y'=ay+b و تسمى معادلة تفاضلية خطية من الرتبة الأولى ذات معاملات ثابتة .
 - كل دالة عددية g قابلة للاشتقاق و تحقق المعادلة السابقة (أي g'(x) = ag(x) + b) تسمى حلا للمعادلة التفاضلية y' = ay + b

y' = ay + b :حل المعادلة: 02

الحلول هي	مثال	حلول المعادلة هي الدوال $f(x)$ المعرفة على \mathbb{R} و التي هي على شكل	المعادلة التفاضلية على شكل
$c \in \mathbb{R}$ مع $f(x) = 7x + c$	y'=7	$(c \in \mathbb{R})$ مع $f(x) = bx + c$	$y' = b; b \neq 0$
$c \in \mathbb{R}$ مع $f(x) = c$	y'=0	$(c \in \mathbb{R})$ مع $f(x) = c$	حالة خاصة y'= 0
$c \in \mathbb{R}$ مع $f(x) = c \times e^{2x}$	y' = 2y	$(c \in \mathbb{R})$ مع $f(x) = c \times e^{ax}$	$y' = ay; a \neq 0$
$c \in \mathbb{R} \bowtie f(x) = c \times e^{4x} - \frac{5}{4}$	y' = 4y + 5	$(c \in \mathbb{R}) f(x) = c \times e^{ax} - \frac{b}{a}$	y'=ay+b ®و b من *a

y' = ay + b = b; a=0: برهان ل. 03.

 $c \in \mathbb{R}$ مع y = f(x) = bx + c) مع $y' = b; b \neq 0$

(1) y'=ay; a≠0 برهان ل 04. برهان ل

. $\forall x \in I : f'(x) = af(x)$. ومنه f . ومنه f . ومنه f . ومنه f . f . ومنه f . f . f .

 $\mathbf{c} = \mathbf{0}$ مالة: $\mathbf{c} = \mathbf{0}$. الدالة المنعدمة هي حل لهذه المعادلة التفاضلية $\forall \mathbf{x} \in \mathbf{I}$, $\mathbf{f}(\mathbf{x}) = \mathbf{0}$

 $\forall x \in I, f(x) \neq 0$:

. (درس الدوال الأصلية). \mathbb{R} مع 'c من $a = \frac{f'(x)}{f(x)}$ و بالتالي $a = \frac{f'(x)}{f(x)}$ عن $a = \frac{f'(x)}{f(x)}$

. \mathbb{R} من $\lambda = e^{c'} > 0$ مع $|f(x)| = e^{ax+c'} = e^{ax} \times e^{c'} = \lambda e^{ax}$:

. \mathbb{R} من $\lambda = e^{c'} > 0$ مع $\forall x \in I$, $f(x) = -\lambda e^{ax} < 0$ ومنه : $f(x) = \lambda e^{ax} > 0$

 $f(x_1) = -\lambda e^{ax_2} < 0$ و $f(x_1) = \lambda e^{ax_1} > 0$: حسب مبر هنة التزايدات المنتهية $f(x_2) = -\lambda e^{ax_2} < 0$ و $f(x_1) = \lambda e^{ax_1} > 0$: حسب مبر هنة التزايدات المنتهية $f(x_2) = -\lambda e^{ax_2} < 0$ و $f(x_1) = \lambda e^{ax_1} > 0$ و $f(x_1) = \lambda e^{ax_1$

 $(\forall x \in I, f(x) \neq 0)$ ا هذا غير ممكن لأن $f(c_0) = 0$ من c_0 من ا حيث $f(c_0) = 0$ من ا

 $\forall x \in I, f(x) = -\lambda e^{ax}$ أو $\forall x \in I, f(x) = \lambda e^{ax}$ إذن

. $c \in \mathbb{R}$ مع $\forall x \in I$, $f(x) = -ce^{ax}$: باختصار

درس رقم

درس المعادلات التفاضلية

: (2) y' = ay + b; $a \neq 0$ برهان ل 0.05

الصفحة

$$y' = ay + b \Leftrightarrow y' = a\left(y + \frac{b}{a}\right)$$

 $\Leftrightarrow y' = az , z = y + \frac{b}{a}$
 $\Leftrightarrow z' = az , z = y + \frac{b}{a} , z' = \left(y + \frac{b}{a}\right)' = y'$

. \mathbb{R} مع \mathbf{c} مع \mathbf{c} مع \mathbf{c} على الدوال المعادلة التفاضلية $\mathbf{c}' = \mathbf{a}$ هي الدوال التي على شكل $\mathbf{c}' = \mathbf{c}$ مع من \mathbf{c}

$$z = ce^{ax} \Leftrightarrow z = y + \frac{b}{a} = ce^{ax} \Leftrightarrow y = ce^{ax} - \frac{b}{a}$$
 : إذن

 $(c \in \mathbb{R}$ مع $f(x) = c \times e^{ax} - \frac{b}{a}$ الدوال التي على شكل $f(x) = c \times e^{ax} - \frac{b}{a}$ (مع a = b مع b = a) المع

06. خاصية:

 \mathbb{R} المعادلة التفاضلية $\mathbf{y}' = \mathbf{ay} + \mathbf{b}$ مع $\mathbf{y} \neq \mathbf{a}$ تقبل حلا وحيدا \mathbf{f} يحقق الشرط البدئي $\mathbf{y}_0 = \mathbf{y}_0$ مع $\mathbf{y}' = \mathbf{ay} + \mathbf{b}$ المعادلة التفاضلية

y''+ay'+by=0 المعادلة التفاضلية: . II

01. تعاریف:

a و b من a

- المعادلة y '+ ay '+ by = 0 حيث المجهول هو دالة y مع 'y مشتقتها الأولى مع '' y مشتقتها الثانية تسمى معادلة تفاضلية خطية من الرتبة الثانية ذات معاملات ثابتة.
 - كل دالة عددية f قابلة للاشتقاق مرتين و تحقق المعادلة التفاضلية (E) تسمى حل خاص للمعادلة التفاضلية (E)
 - . (E): y''+ay'+by=0 حيث $r^2+ar+b=0$ هو المجهول تسمى المعادلة المميزة للمعادلة التفاضلية $r^2+ar+b=0$

02. حل المعادلة التفاضلية: 0 + by + dy '+ ay '+ by - 0. مبرهنة مقبولة:

 \mathbb{R} نتكن المعادلة التفاضلية: $a = x^2 + ar + b = 0$ و معادلتها المميزة $a = x^2 + ar + b = 0$ من $a = x^2 + ar + b = 0$

و $\Delta = a^2 - 4b$ المميز للمعادلة المميزة

- $\mathbf{r}_{2}=\mathbf{r}_{1}$ فإن حلول المعادلة المميزة $\mathbf{r}_{2}=\mathbf{r}_{1}$ لها حلين حقيقيين \mathbf{r}_{1} و $\mathbf{r}_{2}=\mathbf{r}_{1}$ فإن حلول المعادلة التفاضلية $\mathbf{r}_{2}=\mathbf{r}_{1}$ لها حلين حقيقيين \mathbf{r}_{1} فإن حلول المعادلة التفاضلية $\mathbf{r}_{2}=\mathbf{r}_{1}$ في : . \mathbb{R} مع α و α من α الدوال المعرفة على α ب: α ب α ب α الدوال المعرفة على α الدوال المعرفة على α
 - : a(E) هي المعادلة المعادلة المميزة $a^2 + ar + b = 0$ هي المعادلة المعادلة التفاضلية $a^2 4b = 0$ \mathbb{R} الدوال المعرفة على \mathbb{R} ب $\mathbf{y}=\mathbf{f}(\mathbf{x})=(\alpha\mathbf{x}+\mathbf{\beta})\,\mathrm{e}^{r_1\mathbf{x}}$ بالدوال المعرفة على \mathbb{R}
- ن المعادلة المميزة $r^2 + ar + b = 0$ اذن المعادلة المميزة $\Delta = a^2 4b < 0$ r,=p-iq q r, ±+p فإن حلول المعادلة . \mathbb{R} مع α و α مع $y=f(x)=(\alpha\cos(qx)+\beta\sin(qx))e^{\mathbf{p}x}$ ب ب $y=f(x)=(\alpha\cos(qx)+\beta\sin(qx))e^{\mathbf{p}x}$ التفاضلية

درس رقم

درس المعادلات التفاضلية

03. ملحوظة:

الصفحة

 $(\alpha,\beta\in\mathbb{R})$; $y=f(x)=\alpha\cos(\omega x)+\beta\sin(\omega x)$ ب : $y=f(x)=\alpha\cos(\omega x)+\beta\sin(\omega x)$ المعادلة التفاضلية: $y=f(x)=\alpha\cos(\omega x)+\beta\sin(\omega x)$ على على الدوال المعرفة الدوال المعرفة الدوال المعرفة الدوال المعرفة الدوال المعرفة الدوال ال

04. أمثلة

عثال 1:

. (E): y''-5y'+6y=0: نعتبر المعادلة التفاضلية التالية التالية

- 1. اعط المعادلة المميزة ل (E).
 - 2. أعط حلول المعادلة المميزة.
- 3. استنتج حلول المعادلة (E).

1. المعادلة المميزة ل (E):

$$(C): r^2-5r+6=0:$$

2. حلول المعادلة هي:

$$r_2 = 3$$
 , $r_1 = 2$, $\Delta = 1$

3. نستنتج حلول المعادلة:

. \mathbb{R} مع α مع $y = f(x) = \alpha e^{2x} + \beta e^{3x}$ على شكل ولك العام ل α الحل العام ل

عثال 2 :

(E): y''+y'+y=0:نعتبر المعادلة التفاضلية التالية التالية التالية

- 1. اعط المعادلة المميزة ل (E) .
 - 2. أعط حلول المعادلة المميزة.
- 3. استنتج حلول المعادلة (E).

جواب:

المعادلة المميزة ل (E) :

$$(C): r^2+r+1=0:$$
 هي

2. حلول المعادلة هي:

$$r_2 = \overline{r_1} = -\frac{1}{2} - i\frac{\sqrt{3}}{2} = \overline{j}$$
 , $r_1 = -\frac{1}{2} + i\frac{\sqrt{3}}{2} = j$, $\Delta = -3$

3. نستنتج حلول المعادلة:

. \mathbb{R} مع α هي الدوال التالي على شكل : $e^{\frac{1}{2}x}$ $e^{\frac{1}{2}x}$ مع α ه و α من α الحل العام ل α

05. تمرین:

(E): y' + 2y = 0 : (1)

 $(E'): y'+2y=-e^{-3x}$ بين أن $y'=e^{-3x}: y'=0$ حل للمعادلة التفاضلية y'=0

g(0)=2 حدد الدالة g حل للمعادلة التفاضلية (E') التي تحقق g