CS 97SI: INTRODUCTION TO PROGRAMMING CONTESTS

Today's Lecture

- Shortest Path Problem
- Floyd-Warshall Algorithm
- Dijkstra's Algorithm
- Bellman-Ford Algorithm
 - System of difference constraints

■ Maybe: Problem Discussion

Shortest Path Problem

- \square Input: a weighted graph G = (V, E)
 - The edges can be directed or not
 - Sometimes, we allow negative edge weights
- lacktriangle Output: the path between two given nodes u and v that minimizes the total weight (or cost, length)
 - Sometimes, we want to compute all-pair shortest paths
 - $lue{}$ Sometimes, we want to compute shortest paths from u to all other nodes

Floyd-Warshall Algorithm

- \square Given a directed weighted graph G
- lacksquare Outputs a matrix D where d_{ij} is the shortest distance from node i to j
- Can detect a negative-weight cycle
- \square Runs in $\Theta(n^3)$ time
- Extremely easy to code
 - Coding time less than a few minutes

Floyd-Warshall Pseudocode

- \square Initialize D to the given cost matrix
- \Box For k = 1 ... n:
 - \blacksquare For all i and j:
 - $d_{ij} = \min(d_{ij}, d_{ik} + d_{kj})$
- □ If $d_{ij} + d_{ji} < 0$ for some i and j, then the graph has a negative weight cycle
- Done!
 - But how does this work?

How does Floyd-Warshall work?

- □ Define f(i,j,k) as the shortest distance from i to j, using $1 \dots k$ as intermediate nodes
 - $\square f(i,j,n)$ is the shortest distance from i to j
 - f(i,j,0) = cost(i,j)
- lacksquare The optimal path for f(i,j,k) may or may not have k as an intermediate node
 - □ If it does, f(i, j, k) = f(i, k, k 1) + f(k, j, k 1)
 - \square Otherwise, f(i,j,k) = f(i,j,k-1)
- $\ \square$ Therefore, f(i,j,k) is the minimum of the two quantities above

How does Floyd-Warshall work?

- We have the following recurrences and base cases
 - f(i,j,0) = cost(i,j)
 - $f(i,j,k) = \min\{f(i,k,k-1) + f(k,j,k-1), f(i,j,k-1)\}$
- □ From the values of $f(\cdot,\cdot,k-1)$, we can calculate $f(\cdot,\cdot,k)$
 - $lue{}$ It turns out that we don't need a separate matrix for each k; overwriting the existing values is fine
- That's how we get Floyd-Warshall algorithm

Dijkstra's Algorithm

- \square Given a directed weighted graph G and a source S
 - Important: The edge weights have to be nonnegative!
- lacksquare Outputs a vector d where d_i is the shortest distance from s to node i
- □ Time complexity depends on the implementation:
 - \square Can be $O(n^2 + m)$, $O(m \log n)$, $O(n \log n)$
- Very similar to Prim's algorithm
- Intuition: Find the closest node to S, and then the second closest one, then the third, etc.

Dijkstra's Algorithm

- \square Maintain a set of nodes S, the shortest distances to which are decided
- \square Also maintain a vector d, the shortest distance estimate from S
- \square Initially, $S = \{s\}$, and $d_v = \cos t(s, v)$
- \square Repeat until S = V:
 - lacktriangle Find $v \notin S$ with the smallest d_v , and add it to S
 - For each edge $v \rightarrow u$ of cost c:
 - $d_u = \min(d_u, d_v + c)$

Bellman-Ford Algorithm

- \square Given a directed weighted graph G and a source S
- lacksquare Outputs a vector d where d_i is the shortest distance from s to node i
- Can detect a negative-weight cycle
- \square Runs in $\Theta(nm)$ time
- Extremely easy to code
 - Coding time less than a few minutes

Bellman-Ford Pseudocode

- \square Initialize $d_{\scriptscriptstyle S}=0$ and $d_{\scriptscriptstyle \mathcal{V}}=\infty$ for all $v\neq s$
- \Box For k = 1 ... n 1:
 - For each edge $u \rightarrow v$ of cost c:
 - $d_v = \min(d_v, d_u + c)$
- \square For each edge $u \rightarrow v$ of cost c:
 - \Box If $d_{v} > d_{u} + c$:
 - Then the graph contains a negative-weight cycle

Why does Bellman-Ford work?

- $lue{}$ A shortest path can have at most n-1 edges
- $lue{}$ At the kth iteration, all shortest paths of k or less edges are computed
- □ After n-1 iterations, all distances are final: for every edge $u \to v$ of cost c, $d_v \le d_u + c$ holds
 - Unless there is a negative-weight cycle
 - This is how the negative-weight cycle detection works

System of Difference Constraints

- \square Given m inequalities of the form $x_i x_j \le c$
- Want to find real numbers $x_1, ..., x_n$ that satisfy all the given inequalities

- Seemingly this has nothing to do with shortest paths
 - But it can be solved using Bellman-Ford

Graph Construction

- $lue{}$ Create node i for every variable x_i
- \square Make an imaginary source node S
- \square Create zero-weight edges from S to all other nodes
- \square Rewrite the given inequalities as $x_i \le x_j + c$
 - $lue{}$ For each of these constraint, make an edge from j to i with weight c

 \square Now we run Bellman-Ford using S as the source

What happens?

- □ For every edge $j \rightarrow i$ with cost c, the shortest distance d vector will satisfy $d_i \leq d_j + c$
 - lacksquare Setting $x_i = d_i$ gives a solution!
- What if there is a negative-weight cycle?
 - \blacksquare Assume that $1 \to 2 \to \cdots k \to 1$ is a negative-weight cycle
 - From our construction, the given constraints contain $x_2 \le x_1 + c_1$, $x_3 \le x_2 + c_2$, etc.
 - \square Adding all of them gives $0 \le (\text{something negative})$
 - i.e. the given constraints were impossible to satisfy

System of Difference Constraints

- □ It turns out that our solution minimizes the span of the variables: $\max x_i \min x_i$
 - We won't prove it
 - This is a big hint on POJ 3169!