Computación Cuántica Facultad de Ingeniería Universidad de Antioquia 2025-1

Práctica No. 2 Aplicación en la Bioinformática

Realización: En parejas.

Fecha de Entrega: Miércoles 30 de abril del 2025.

Valor: 10%

Introducción: Una de las mayores aplicaciones en la bioinformática es la comparación de cadenas de strings provenientes de secuencias genéticas de DNA y RNA. Dicha comparación corresponde a un caso particular del reconocimiento de una secuencia de caracteres ASCII en un determinado alfabeto, según la Teoría de Lenguajes¹.

En esta práctica de laboratorio utilizaremos las bondades de la superposición, la reversibilidad cuántica y operaciones con observables cuánticos, para comparar múltiples secuencias de caracteres provenientes de la secuenciación genética de diferentes microorganismos y especies biológicas.

1. Análisis de un ejemplo de comparación de cadenas genéticas en Qiskit

1.1. Analice el Tutorial de Qiskit denominado "Comparing Strings with Quantum Superposition", compartido en el siguiente enlace de Github:

https://github.com/gpatigno/QC_2025/blob/main/LAB/PR2/String_Comparison_Qiskit2.0.ipynb

- 1.2. Explique el modo utilizado en este tutorial para representar cuánticamente las tres secuencias de strings asociadas a los códigos genéticos del Yeast, Protozoan y Bacterial.
 - Explique de qué manera se usa la <u>superposición cuántica</u> para representar dichos *strings*.
- 1.3. En sus propias palabras explique la función **encode_bitstring()**, así como las instrucciones más relevantes de esta función.
- 1.4. Explique la necesidad de invertir cada uno de los tres circuitos cuánticos creados para las tres secuencias de strings que son comparadas en este tutorial.

¹ https://courses.engr.illinois.edu/cs373/sp2009/lectures/lect 02.pdf

- Presente un ejemplo matemático del <u>proceso de inversión</u> utilizado en este código para comparar las secuencias de *strings*.
- ¿De qué manera se evidencia la **reversibilidad cuántica** en la comparación entre las secuencias de *strings* dadas? **Explique.**

2. Fidelidad Cuántica

2.1. Realice el estudio del concepto de fidelidad cuántica descrito en el siguiente documento disponible en Microsoft Teams, a fin de entender qué componentes intervienen en la medición de esta fidelidad, cómo se realiza su cálculo, y cuáles son los operadores cuánticos requeridos:

https://surl.ms/K7d

2.2. Estudie el código presentado en **Github** con la implementación de los ejemplos indicados, a fin de identificar el **observable cuántico** requerido para calcular dicha fidelidad cuántica:

https://github.com/gpatigno/QC 2025/blob/main/LAB/PR2/Fidelidad Cuantica 2025.ipynb

3. Comparación de secuencias genéticas de diversos animales

Modifique el código en Python del Tutorial analizado en la **Sección 1** de la página anterior, a fin de <u>comparar cuatro de las secuencias genéticas</u> dadas en la siguiente página, referentes a múltiples especies biológicas (humano, chimpancé, ratón, conejo, cerdo, oveja, vaca, entre otros):

https://old-ib.bioninja.com.au/standard-level/topic-3-genetics/31-genes/sequences.txt

- 3.1. Como parte de esta modificación, elabore un programa en Qiskit que analice y compare entre sí, cuatro secuencias genéticas diferentes escogidas por usted entre aquellas mostradas en dicha página. Observe que, a diferencia del tutorial analizado en la Sección 1, las secuencias genéticas ahora indicadas corresponden a strings compuestos por los nucleótidos² "A", "C", "G", y "T"³.
 - Dado su entendimiento de la función **encode_bitstring()** estudiada en el **ítem 1.3** de esta guía, ¿cuántos *qubits* requiere ahora para representar sus cuatro secuencias genéticas escogidas?

² https://www.genome.gov/es/genetics-glossary/Nucleotido

³ A: Adenina, C: Citosina, G: Guanina, T: Timina.

- o De estos *qubits*, ¿cuántos se requieren para el direccionamiento o posición de cada carácter alfanumérico, y cuántos para representar cada carácter almacenado? **Explique.**
- Presente y explique su representación de <u>cada secuencia genética escogida</u>, como un **estado cuántico** de *n qubits*.
- 3.2. En su nuevo código desarrollado, modifique el ciclo **For** del **bloque 13** del código original compartido, e implemente el cálculo de la similaridad entre secuencias genéticas como un <u>cálculo de la fidelidad</u> entre los estados cuánticos de cada secuencia genética, según lo estudiado en la **Sección 2** de esta guía.
 - Dado el número de *qubits* de su circuito cuántico, indique la expresión matemática del observable cuántico requerido para implementar el cálculo de la fidelidad cuántica entre las diferentes secuencias genéticas.
 - Para su implementación en **Qiskit** de la medida de fidelidad cuántica, considere el uso de la instrucción **SparsePauliOp**(), y de la primitiva **StatevectorEstimator**() a fin de definir y medir el <u>observable requerido</u>, siguiendo la estructura lógica del código compartido en la **Sección 2** de esta guía⁴.
- 3.3. Como una prueba del buen funcionamiento de su nuevo programa, presente el resultado de similaridad de una de las secuencias genéticas consigo misma.
 - Luego modifique sólo uno de los nucleótidos de la cadena genética dada, y realice su
 comparación con la secuencia genética original. Determine la similaridad entre ambas
 cadenas genéticas.
- 3.4. Obtenga una <u>representación a nivel de compuertas cuánticas</u>, de sus circuitos cuánticos de comparación de secuencias genéticas.
 - Explique los componentes de cada circuito.
- 3.5. Presente los resultados de las <u>cuatro comparaciones escogidas por usted</u>, y determine el grado de similaridad genética entre las diferencias especies biológicas.
- 3.6. <u>Personalice su código</u> tanto como le sea posible, y agregue comentarios y explicaciones propios en **español**.

⁴ En caso de requerir, solicité asesoría del profesor del curso para llevar a cabo esta implementación en **Qiskit**.

4. Informe

- 4.1. Presente una sustentación en persona de todo el trabajo llevado a cabo en esta práctica de laboratorio.
- 4.2. Realice su informe con su respuesta a las preguntas indicadas en la presente guía de laboratorio.
 - Presente los detalles de ejecución de su código desarrollado para comparar las secuencias genéticas escogidas de diferentes animales.
 - Indique su análisis e interpretación de cada resultado obtenido en el presente laboratorio.
 - Dentro de este análisis, evalúe la diferencia entre la ejecución del ejemplo dado en el Tutorial del **Qiskit**, y <u>su nuevo programa</u> realizado para sus secuencias genéticas escogidas.
 - Adjunte a este informe un archivo **zip** con los códigos escritos y "pantallazos" de cada ejecución realizada.
 - Presente conclusiones, y bibliografía utilizada para realizar este informe.