

U.F.R. BIOMEDICALE PCEM 1

Médecine Paris Descartes

Atomistique et liaison chimique : II- La liaison chimique

II- Assemblage des atomes: la liaison chimique

II.1- Modèle de Lewis

- II.1-1 Origine de la liaison covalente
- II.1-2 Description du modèle de Lewis
 - a) Liaison covalente
 - b) Liaison simple; règle de l'octet; théorie VSEPR
 - c) Liaison multiple
 - d) Liaison covalente délocalisée
 - e) Formes limites
 - f) Limites de l'approche de Lewis

II.2 – Notions d'orbitales moléculaires (OM)

- II.2.1 Généralités
- II.2.2 Molécules diatomiques
 - a) H₂, H₂⁺, He₂, He₂⁺
 - b) HF
 - c) Liaison covalente et liaison ionique
 - d) Orbitales π et π^* : cas du dioxygène (O₂)

II.2.3 Molécules polyatomiques

- a) Hybridation des OA sp, sp², sp³
- b) Liaisons σ , π , e^{-} non liants
- c) Molécules conjuguées; résonance
- d) Benzène et molécules aromatiques

II.3 – Polarisation des liaisons

- II.3.1 Degré d'oxydation do
- II.3.2 Moment dipolaire μ
- II.3.3 Effet inductif I
- II.3.4 Effet mésomère M
- II.3.5 Effet électronique global
- II.3.6 Applications des effets électroniques
 - a) Réactivité en chimie organique
 - b) Stabilité des carbocations
 - c) Comparaison de pKa

II-Assemblage des atomes: la liaison chimique

But : comprendre - la réactivité (formation / rupture de liaison) H_2 , CH_4 , C_6H_6 existent mais pas He_2

- la géométrie des molécules CH₄ tétraèdrique (autour de C), C₆H₆ plane

II.1 – Modèle de Lewis

II.1.1 Origine de la liaison covalente

Une liaison est possible si elle permet d'abaisser l'énergie du système

$$\begin{array}{c|c} E \\ (\Delta_r H^\circ) & \underline{A+B} \\ & \underline{A-B} \\ \end{array}$$

$$E_l(A-B) = E(A-B) - E(A) - E(B) < 0$$

II.1.2 <u>Description du modèle de Lewis</u>

- a) <u>Liaison covalente</u>
- Mise en commun d'une paire d'e (de valence)
- Origine du doublet de liaison:

B: donneur d'un doublet d'e -; BASE DE LEWIS

[] A : accepteur d'un doublet d'e -; ACIDE DE LEWIS

b) Liaison simple; règle de l'octet; théorie VSEPR

\triangleright Pour H:

atteint la configuration électronique de He $(1s^2) \Leftrightarrow$ couche de valence saturée \Rightarrow 1 liaison covalente

$$Ex: {}_{1}H (1s^{1}) \qquad \qquad H \stackrel{\bullet}{\longrightarrow} \qquad H \stackrel$$

➤ Pour un élément de la 2^{ème} période (C,N,O,F) :

atteint la configuration électronique du Ne $(2s^22p^6) \Leftrightarrow$ formation de liaisons covalentes de manière à saturer la couche de valence avec

8 e
$$\rightarrow$$
 REGLE DE L'OCTET

Ex: ${}_{9}F$ (1s²2s²2p⁵)

F. + F. \longrightarrow F. \longrightarrow 8 e \longrightarrow 8 e \longrightarrow 8 e \longrightarrow 1 H—F.

dichlorocarbène

(intermédiaire réactionnel très réactif)

4 e de valence de C participent à la formation de 4 liaisons covalentes

≻Pour un élément de la 3ème période (P, S par ex) : la règle de l'octet est

Rem:

Possibilité de participation des orbitales 3d (vides)

Couche de valence avec plus de 8 e

un maximum de liaisons dans un édifice \Rightarrow stabilisation $3^{\text{ème}}$ période : $18 \text{ e}^{\text{-}}$ possibles , mais en fait $12 \text{ e}^{\text{-}}$ maximum

➢ Pour un élément de la 4^{ème} période : tendance à une couche de valence à 18 e⁻

Théorie V.S.E.P.R (GILLESPIE) ⇒ GEOMETRIE

Valence Shell Electron Pair Repulsion

(Blocs p et s pas d ni f)

Organisation spatiale des paires d'électrons liantes et non liantes de la couche de valence de manière à minimiser leur répulsion électrostatique.

Pour un composé AL_nE_m

A: atome central

L: atome voisin (paire liante)

E: paire d'e-non liante

A est placé au centre d'une sphère, L et E sont disposés sur la sphère en les éloignant au maximum \Rightarrow Géométrie = f(n + m)

Doublet non liant plus « volumineux » que doublet liant

Une charge positive est portée « formellement » par N qui n'a plus que 4 e de valence. NH₄ + est isoélectronique avec CH₄

$$O(1s^2)2s^22p^4$$
:

AL₂E₂ TETRAEDRE

 $AL_3 \Rightarrow TRIGONALE PLANE$, avec des angles de valence de 120°

Rem: le 2^{ème} atome de C compte comme 1 atome voisin pour l'autre atome de C, quelque soit la multiplicité de la liaison.

Rem: plus les liaisons sont multiples, plus elles sont solides et courtes

Ex:		\mathbf{C}	C = C	C = C	
	d (nm)	0,154	0,134	0,120	
	$\Delta_{l}\mathbf{H}^{\circ}$ (kJ.mol ⁻¹)	- 347	- 615	- 811	
			\neq -2 \times 347	\neq -3 \times 347	

d) Liaison covalente délocalisée

Expérimentalement, les longueurs des deux liaisons CO sont identiques et comprises entre celle d'une liaison simple et celle d'une double. on ne peut pas localiser la double liaison!

⇒ L'écriture d'une seule forme de Lewis ne rend pas compte de la réalité moléculaire!

Les formes limites traduisent la polarisation des liaisons

Les deux formes limites permettent d'expliquer la réactivité de CO

Les formes limites avec un maximum d'atomes à octet ont une forte contribution dans la représentation de la molécule

f) Limites de l'approche de Lewis

 \rightarrow N'explique pas l'existence de H_2^+ (système à 1 e⁻)

$$H \cdot + \square H \stackrel{\oplus}{\longrightarrow} H_2^{\oplus}$$

 \rightarrow Ne décrit pas correctement certaines molécules : ex O_2

$$0:+:0$$
 \longrightarrow $0 \longrightarrow 0 \longrightarrow 0$ \longrightarrow $0 \longrightarrow 7 e^{-}$

Faits expérimentaux:

- Substance paramagnétique (possède 2 e⁻ célibataires)
- d_{OO} est en accord avec une liaison double

Aucune des 2 représentations ne permet de décrire les 2 données expérimentales à la fois!

- → Pas d'information sur les niveaux d'énergie
- → Pas d'information sur les orbitales contenant les e de la liaison

II.2 – Notions d'orbitales moléculaires (OM)

II.2.1 Généralités

ATOME:

e décrit par

OA ⇔ Energie

MOLECULE:

e décrit par

OM ⇔ Energie

Schrödinger pour les systèmes à $1e^-(H, H_2^+)$ puis extrapolation pour les atomes / molécules polyélectroniques

OM : - région de l'espace définissant une zone de probabilité de trouver l'e- de 95%

- + signe de la fonction d'onde associée à l'OM
- ⇔ combinaison linéaire d'OA de valence des atomes constitutifs

Ex: pour une molécule **A-B-C-D**

$$\Psi_{mol} = \mathbf{c_A} \Psi_A + \mathbf{c_B} \Psi_B + \mathbf{c_C} \Psi_C + \mathbf{c_D} \Psi_D$$
Coeff. de pondération f(électronégativité de A)

ightharpoonup Combinaison de n OA \Rightarrow n OM \Leftrightarrow n niveaux d'énergie

Ex: combinaison d'une O.A. de chacun des 4 atomes A, B, C, D

- \Rightarrow 4 OM: Ψ_{M1} , Ψ_{M2} , Ψ_{M3} et Ψ_{M4}
- \Rightarrow 4 niveaux d'énergie : $E(\Psi_{M1})$, $E(\Psi_{M2})$, $E(\Psi_{M3})$ et $E(\Psi_{M4})$
- > Seules sont combinées les O.A. de valence qui :
 - ont même symétrie
 - sont d'énergie voisine : $E(\Psi_A) \cong E(\Psi_B)$
- Une OM existe même si elle est vide d'e-
- Une OM ne peut contenir au plus que 2 e de spin anti-parallèles

II.2.2 Molécules diatomiques

Dans une molécule A-B les e^- de la liaison sont soumis aux champs des deux noyaux A^+ et B^+

$$A = B = H$$
 (ou He) \Rightarrow homodinucléaire

Combinaison linéaire de $1s_A$ et $1s_B \Rightarrow 2$ O.M. Ψ_1 et Ψ_2

$$\sigma_{1s} = \Psi_1 = 1s_A + 1s_B \rightarrow \text{interaction en phase des OA 1s}$$

$$\sigma^*_{1s} = \Psi_2 = 1s_A - 1s_B \rightarrow \text{interaction en opposition de phase des OA 1s}$$

$$\triangleright$$
 Orbitale σ_{1S} : $\sigma_{1s} = 1s_A + 1s_B$:

$$\sigma_{1s}^{2} = (1s_{A} + 1s_{B})^{2} \propto |1s_{A}|^{2} + |1s_{B}|^{2} + 2|1s_{A}| \cdot |1s_{B}|$$

Densité de probabilité de présence

> Densité de probabilité de présence autour de H⁺_A

Densité de probabilité de présence entre H⁺_A et H⁺_B, due à l'attraction de cet e par H_A^+ et H_B^+ .

Recouvrement AXIAL (LONGITUDINAL)

- Symétrie de révolution autour de l'axe internucléaire \Rightarrow OM σ
- Forte probabilité de présence entre les noyaux le long de l'axe \Rightarrow OM liante
- $E_{\sigma} < E_{1s}$

$$\triangleright$$
 Orbitale σ^*_{1s} :

$$\triangleright$$
 Orbitale σ^*_{1s} : $\sigma^*_{1s} = 1s_A - 1s_B$

$$(\sigma^*_{1s})^2 = (1s_A - 1s_B)^2 = |1s_A|^2 + |1s_B|^2 - 2|1s_A| \cdot |1s_B|$$

Plan nodal \perp à l'axe (probabilité de trouver $l'e^- = 0$

Recouvrement AXIAL (LONGITUDINAL) -

- Symétrie de révolution autour de l'axe internucléaire \Rightarrow OM de type σ
- Probabilité de présence entre les noyaux quasi nulle ⇒ OM antiliante *
- Forte probabilité de présence à l'extérieur de l'espace internucléaire

•
$$E_{\sigma*} > E_{1s}$$

➤ Diagramme énergétique

 $E_{\sigma^*} \cong -E_{\sigma}$ (molécules diatomiques homonucléaires)

- **⇒** Configuration électronique
 - par énergie croissante
 - principe de Pauli : au plus 2e de spin anti-parallèles par OM
 - règle de Hund : si plusieurs OM de même énergie

Ordre (indice) de liaison = (Nb d'e liants - Nb d'e antiliants) / 2

Indice de liaison = $1 \Leftrightarrow 2$ e liants

	H ₂ +	H_2	He ₂	He ₂	
	1s _A 1s _B 01s	1s _A 1s _B 1s _B	σ^*_{1s}	1s _A The state of the state o	
config. électronique	$\sigma_{1s}^{1}\sigma_{1s}^{*}$	$\sigma_{1s}^{2}\sigma_{1s}^{*}$	$\sigma_{1s}^{2}\sigma_{1s}^{*}$	$\sigma_{1s}^{2}\sigma_{1s}^{*2}$	
ordre de liaison	0,5	1	0,5	0	
d _{A-B} (nm)	0,106	0,074	0,108	pas de liaison	
$\Delta_{ m l} { m H}^{\circ}$ (kJ.mol ⁻¹)	- 255	- 435	- 297	pas de liaison	

 \Rightarrow Edifice \exists si l'ordre de liaison > 0

⇒ + l'ordre de liaison est grand,

 $+ d_{A-B}$ est faible et + la liaison est forte

b) HF (hétérodinucléaire)

Recouvrement $2p_{y(F)}$ et $1s_H$:

▶ Diagramme énergétique et configuration électronique

7 +1 e à placer selon Hund et Pauli

- \Rightarrow 3 doublets d'e non liant
- \Rightarrow ordre de liaison = (2-0)/2=1

liaison σ plus développée vers F, liaison polarisée

c) Liaison covalente et liaison ionique

Composé A-B:
$$\sigma = c_A \Psi_A + c_B \Psi_B$$
 et $\sigma^* = c_A^* \Psi_A - c_B^* \Psi_B$

et
$$\sigma^* = c^*_A \Psi_A - c^*_B \Psi_B$$

$$E_{\Psi A} >> E_{\Psi B}$$

$$EN(Li) = 1,0$$
 $EN(Cl) = 3,0$

d) Orbitales π et π^* : cas du dioxygène (O_2)

Lewis: liaison double ou simple avec 2e- célibataires?

Recouvrements possibles?

Reste 2 OA (2p_x et 2p_z) pour chaque atome!

\triangleright Orbitales π

contenant l'axe internucléaire

xOy

xOy

Recouvrement-LATERAL • probabilité de présence nulle le long de l'axe \Rightarrow OM π

• probabilité de présence forte entre les noyaux ⇒ OM liante

 \bullet $E_{\pi} < E_{2p}$

Même recouvrement entre les $2p_x$ dans le plan $xOy \Rightarrow \pi_x$ Recouvrement moins efficace pour π que pour $\sigma \Rightarrow$ moins de densité électronique

Plan nodal

\triangleright Orbitales $\pi*$

Recouvrement LATERAL

- probabilité de présence nulle le long de l'axe \Rightarrow OM π
- probabilité de présence quasi-nulle entre les noyaux
- **⇒** OM antiliante

•
$$E_{\pi}^* > E_{2p}$$

Même recouvrement entre les $2p_x$ dans le plan $xOy \Rightarrow \pi_x^*$

Recouvrement latéral moins efficace que recouvrement longitudinal \Rightarrow liaison π moins forte que σ et σ^* plus énergétique que π^*

II.2.3 Molécules polyatomiques

a) <u>Hybridation des OA sp, sp², sp³</u>

Ex. CH_4 :

Expérimentalement : CH₄

- 4 liaisons C-H identiques (distance et énergie)
- géométrie tétraédrique

 \Rightarrow Combinaison linéaire de n OA de valence \rightarrow n OM de valence

$$C(2s^2, 2p^2) + 4H(1s^1)$$
 8 OM (4 liantes + 4 antiliantes)

8 OA de valence, 8 e de valence

> 3 liaisons σ_{CH} équivalentes \bot issues du recouvrement axial entre 1s(H) et 2p(C)

> 1 liaison σ_{CH} non orientée issue du recouvrement axial entre 1s(H) et 2s(C)

Pas en accord avec l'expérience

⇒ <u>Solution</u>: « Arranger » les OA du C en vue d'un recouvrement efficace selon les 4 sommets du tétraèdre

⇒ HYBRIDATION : combinaison linéaire des OA de valence

4 liaisons identiques

- ⇒ 4 O M liantes + 4 OM antiliantes
- \Rightarrow 8 OA à considérer : 4 OA 1s(H)

- 4 OA hybrides pour C

bonne orientation (celle des liaisons CH)

de même énergie (pour obtenir des liaisons CH équivalentes)

Généralisation;

C.L. de n OA de valence $\Rightarrow n OA$ hybrides équivalentes

Volumes de haute probabilité de présence des e

Pour les molécules organiques à base de : H, C, N, O

- H = une seule O.A. 1s (pas d'hybridation)
- C, N et O: seules les OA 2s et 2p seront concernées par l'hybridation (de type sp, sp², sp³)

Hybridation SP

CL de l'OA 2s et 1 seule OA 2p

Atome hybridé sp:

2 OA hybrides sp (de même énergie)

il reste 2 OA p_x et p_z « intactes » \perp aux OA sp

Hybridation sp²

Hybridation sp³

CL de l'OA 2s et des 3 OA 2p

Atome hybridé sp³:

4 OA hybrides sp³ (de même énergie)

il ne reste pas d'OA « intacte »

Les orbitales atomiques hybrides sont un artifice qui facilite le traitement mathématique de leurs combinaisons linéaires. En aucun cas elles ne représentent la réalité!

b) Liaisons σ , π et e non liants

$$n + m = 2$$
 linéaire sp
$$n + m = 3$$
 trigonale plane sp^2
$$n + m = 4$$
 tétraédrique sp^3

Formation d'OM entre 2 atomes pris deux à deux, par recouvrement maximal des OA concernées.

Puis remplissage des OM par énergie croissante

sp³_C

2) Remplissage par E 🗷

 $5 + 3 \times 1$ e⁻ de valence

$$3 H (1s) + N (sp^3)$$

 $3 \text{ OM } \sigma \text{ (liantes)}$ $1 \text{ OM sp}^3 \text{ (non liante)}$ $3 \text{ OM } \sigma^* \text{ (antiliantes)}$ non représentées

\triangleright Hybridation sp²:

 C_2H_4 (éthylène) \implies AL_3 trigonale plane \implies hybridation sp^2

Expérimentalement:

 $d_{(C=C)} = 0.135 \text{ nm} < d_{(C-C)} = 0.154 \text{ nm}$

$$\Delta_{l}H^{\circ}_{C=C} = -719 \text{ kJ.mol}^{-1} < \Delta_{l}H^{\circ}_{C-C}$$

2 OA (pures) $p_z \Rightarrow$ Recouvrement latéral entre elles

3 OA hybrides $sp^2 \Rightarrow$ recouvrement axial avec les 1s(H) ou sp² du 2nd C

Construction des OM, puis remplissage par $E \nearrow avec 2 \times 4 + 4 \times 1 e^{-}$

Verrouillage de la rotation autour de la liaison carbone-carbone

Configuration électronique de l'éthylène

Ordre de liaison (C/C):
$$(4-0)/2=2$$

Ordre de liaison (C/C):
$$(3-1)/2=1$$

> Isomérisation photochimique d'une double liaison

> Hybridation sp:

2) Remplissage par E \nearrow avec 2 \times 4 + 2 \times 1 e^-

$$\sigma_{\text{C-H}}^2 \sigma_{\text{C-H}}^2 \sigma_{\text{C-C}}^2 \pi_x^2 \pi_z^2$$

MOLECULES CONJUGUEES

Squelette σ : plan (atomes hybridés sp² ou sp)

Système π : - ensemble des e⁻ π ou p en interaction latérale \Rightarrow e⁻ décrits par des OM délocalisées sur l'ensemble de la molécule

- \perp au squelette σ

$$H_2C = CH - CH = CH_2$$
 $H_2C = CH - CH_2$
 $H_2C = CH - CH_2$

Exemple: buta-1,3-diène

- * Tous les atomes se trouvent dans le même plan
- * Angles de valence = 120°

*
$$C=C < C_2-C_3 < C_{sp3}-C_{sp3}$$

0,134 0,148 0,155 nm

* Les 4 C sont de type $AL_3 \Rightarrow hybridés sp^2$

 $1^{\text{ère}}$ approche du système π : OM localisées + résonance

- Les deux atomes de C en bout de chaîne sont équivalents
- Molécule réelle : ensemble des formes limites, la seconde étant plus représentative (maximum de liaisons π)

Conséquence de la délocalisation des e⁻: stabilisation de l'édifice ⇒ énergie de résonance

$$E_{r} = E (CH_{2}=CH-CH=CH_{2}) - E (.... \longleftrightarrow)$$

$$= 14.7 \text{ kJ.mol}^{-1}$$

Les énergies de résonance peuvent être évaluées à partir d'enthalpies d'hydrogénation (accessibles expérimentalement)

 \underline{Rem} : $E_r \cong \underline{dizaine \ de \ kJ.mol^{-1}}$ pour une stabilisation uniquement due à la résonance

$2^{\text{ème}}$ approche du système π : OM délocalisées

squelette σ = atomes C (sp²) et H (1S)

Densité électronique

- \Rightarrow OM du système π délocalisées sur l'ensemble de la molécule
- ⇒ Gain de stabilité ≅ énergie de résonance (= de délocalisation)

⇒ Interactions latérales supplémentaires dues à la conjugaison

OM délocalisées occupées par les électrons π

= combinaison linéaire des 4 OA p:

* l'ion acétate

OM délocalisées

OM localisées + résonance

Interaction latérale supplémentaire

* carbocation allylique

* le penta-1,4-diène n'est pas conjugué

*

*

H \rightarrow Molécule conjuguée, plane \Rightarrow hybridation sp² pour l'azote, le doublet étant dans une orbitale p \perp au squelette o

*

 \rightarrow Molécule conjuguée, plane \Rightarrow hybridation sp² pour l'azote, le doublet ne participant pas à la délocalisation car il est dans une OM sp² appartenant au squelette σ

Règles de la mésomérie (résonance)

- La délocalisation des $e^-\pi$ et p (résonance) se traduit dans le formalisme de Lewis par l'écriture de différentes formes mésomères.
- Chaque forme mésomère représente la même molécule, leur contribution à la description de la structure réelle n'est pas toujours équivalente.
 - Position des atomes inchangée
 - Répartition électronique différente des $e^-\pi$ et / ou p

- Seules les structures de Lewis « correctes » sont permises

1 – Les formes neutres sont plus représentatives que les formes à séparation de charge

2 – Des formes mésomères équivalentes traduisent une stabilité accrue

3 – La forme mésomère la plus représentative d'une molécule est celle qui correspond à la plus grande délocalisation d'un doublet et donc qui traduit le mieux la stabilisation par résonance:

Forme mésomère traduisant le mieux la grande délocalisation de la densité électronique

d) Benzène et molécules aromatiques

* Molécule plane = les 12 atomes dans le même plan

* 6 liaisons CC identiques $d_{CC} = 0.139$ nm

$$m d_{C=C} < d_{CC(benz\`{e}ne)} < d_{C-C} \ (0,134 < 0,139 < 0,154 nm)$$

* Angles de valence = $120^{\circ} \Rightarrow C(sp^2)$

Cette seule représentation de Lewis ne reflète pas toutes ces caractéristiques

i) Description par des O.M. délocalisées :

Chaque atome de C (AL₃) est hybridé sp²:
4 e⁻ dans la couche de valence

OM σ localisées entre les atomes concernés résultant d'interaction axiale entre 2 OA sp_C^2 ou 1 OA sp_C^2 et $1s_H$

Reste : **6 O.A. 2p**_z

↓ C.L.

3 OM liantes + 3 OM antiliantes DELOCALISEES sur les 6 atomes de carbone

BENZENE

 π_5

Orbitales atomiques

energy

H Orbitales moléculaires

Document Médecine Paris Descartes -Toute utilisation nécessite l'autorisation des auteurs.

ii) Description par des O.M. π localisées + mésomérie :

E_R trop importante pour ne résulter que de la conjugaison

⇒ Aromaticité

Règle de Hückel

Un composé (molécule ou ion) est aromatique s'il présente :

- * un (mono)cycle
- * un squelette σ plan
- * un système conjugué comportant (4n + 2) e avec $n = 0, 1, 2 \dots$ délocalisables \equiv recouvrement des orbitales π et p sans discontinuité

Propriétés des composés aromatiques

- * Energie de résonance importante (souvent de l'ordre de la centaine de kJ.mol⁻¹) ⇒ grande stabilité
- * Relativement faible réactivité chimique

Exemples: HETEROAROMATIQUES

1 - Pyridine

Cycle plan à 6 e $^{-}$ π délocalisables

3 - Imidazole

Cycle plan à 6 e π / p délocalisables

COMPOSES AROMATIQUES (Energie de résonance en kJ.mol⁻¹)

CYTOSINE (171)

THYMINE (154)

II.3 – Polarisation des liaisons

Résulte d'une différence d'électronégativité entre 2 atomes liés

liaison covalente non polarisée liaison covalente polarisée (ex H-Cl) cas limite: liaison ionique (ex LiCl)

Caractère ionique partiel $(0 < \delta < 1)$

II.3.1 Degré d'oxydation do

<u>Atomes et ions</u> : entier relatif représentant la charge réelle portée

Edifices moléculaires

: entier relatif représentant la charge fictive portée par un atome dans l'édifice

On compare les EN des atomes de chaque liaison (une double étant considérée comme 2 simples), on attribue un do partiel de -1 à l'atome le plus électronégatif de la liaison et de +1 à celui le moins électronégatif.

Le do de l'atome est la somme de ses do partiels

$$H = \begin{array}{c} -1 \\ H = \begin{array}{c} -1 \\ H = \end{array} \\ H = \begin{array}{$$

<u>Rem</u>: la somme des do des atomes est égale à la charge globale de l'édifice

Degré d'oxydation du carbone pour quelques molécules organiques :

$$H_{3}C$$
 — $H_{3}C$ —

II.3.2 Moment dipolaire µ

• Polarité d'une liaison covalente

Différence d'électronégativité entre atomes liés

- ⇒ Déformation du nuage électronique de liaison
- **⇒** Moment dipolaire électrique permanent

$$\frac{Ex:}{\mu = 0} \qquad \text{mo}$$

$$\frac{d}{\vec{\mu}}$$

molécule apolaire

liaison polarisée

 $\vec{\mu} \Rightarrow$ direction: celle de la liaison

sens : de $+\delta$ e vers $-\delta$ e (pour chimistes)

norme : $\mu = \delta e \times d$

$$0 < \delta < 1$$
 1,6.10⁻¹⁹C

(Caractère ionique)

C.m peu adaptée

$$\Rightarrow$$
 Debye D

$$\Rightarrow$$
1D = 3,33.10⁻³⁰ C.m

\underline{Rem} : liaison ionique = cas limite où $\delta = 1$

Na : Cl:
$$\mu = e.d$$

$$0,1 \text{ nm}$$

$$\mu = 4.8 D$$

Ex: la série des halogénures d'hydrogène

• Polarité d'une molécule

$$\overrightarrow{\mu}_{mol\acute{e}cule} = \sum \overrightarrow{\mu}_{liaison}$$

Il faut tenir compte de la structure spatiale de l'édifice

Ex de molécules apolaires

Ex de molécules polaires

$$\delta_{+} H \stackrel{2\delta_{-}}{\stackrel{}{\mu_{mol}}} \mu_{mol} = 1,85 D$$

$$\mu_{mol} = 1,47 D$$

• Polarité d'un groupement au sein d'une molécule

II.3.3 Effet inductif: I

- → Effet de polarisation des liaisons σ par un atome ou groupe d'atomes (noté Z)
- → Symbolisé par la pointe d'une flèche orientée vers l'atome le + électronégatif

$$\frac{\delta_{+}|}{-C} Z Z EN(Z) > EN(C)$$

→ Se transmet de proche en proche, mais s'atténue rapidement (amorti au delà de 3 liaisons)

$$\xrightarrow{2\delta}$$
 $C \rightarrow Z^{\delta}$

$$\xrightarrow{\delta_+} \stackrel{\Gamma}{C} > Z^{\delta_-}$$

$$\frac{\delta}{C} \subset Z^{\delta}$$

Inductif donneur +I

Groupes inductifs attracteurs

Groupes inductifs donneurs

Effet plus important dans le cas d'une déficience électronique :

II.3.4 Effet mésomère : M

- \rightarrow Effet de polarisation d'un système π par un atome ou groupe d'atomes ⇒ Nécessairement systèmes CONJUGUES
- → Symbolisé par une flèche de déplacement d'un doublet d'e ·

- → Peut se transmettre à l'ensemble d'une molécule
- → Se réfère à
- → 2 types d'effet mésomère imposant le sens de la polarisation

Effet mésomère – M du groupement NO₂

Effet mésomère – M du groupement NO_2 et + M pour le groupement NH_2

Groupes mésomères accepteurs

II.3.5 Effet électronique global

- → Résultante des effets I et M
- \rightarrow Généralement l'effet M l'emporte (e⁻ π plus mobiles que les e⁻ σ) sur l'effet I

$$C = C + M$$

$$Y: -I$$

$$(Y = O, N)$$

- **→** Effet **I** : courte distance; effet **M** : longue distance
- → Pour un halogène l'effet I l'emporte sur l'effet +M

II.3.6 Applications des effets électroniques

a) Réactivité en chimie organique

b) Stabilité des carbocations

Stabilité 7 par effet + **I** additif des groupements alkyles

* Les carbocations conjugués sont stabilisés par effet mésomère

Carbocation allylique : 2 formes limites équivalentes

Carbocation benzylique

c) Comparaison de pKa

A—H + H₂O — A: + H₃O + H₃O
$$\Delta_r$$
G° = -RTLnKa = 2,3 RTpKa Acide de Bronsted = 5,7 pKa à 298K

Pour un acide faible AH:

En particulier

d'autant plus fort que la liaison est polarisée

d'autant plus faible que A est stabilisé, que la charge est diffuse (délocalisée)

pKa est petit

⇒ Groupements électroattracteurs sur A

Ex 1: comparaison des pKa de RH, ROH, RCO₂H

pKa (RH/R
$$^{\odot}$$
) = 40
pKa (ROH/RO $^{\odot}$) = 16-19
pKa (RCO₂H/RCO₂ $^{\odot}$) = 4-5

• R-H | ⇒ liaison quasiment pas polarisée, pas d'effet électronique

Chaîne alkyle (ex: CH₃)

AH très faible, A⁻ très fort ⇒ pKa très élevé

$$R - \ddot{O} \leftarrow H$$

R—Q'H

liaison O-H polarisée

pas d'effet mésomère

pas d'effet mésomère

• RCO₂H / RCO₂-

liaison O-H polarisée

$$\rightarrow R \stackrel{\delta}{\bigvee} \stackrel{\delta}{\circ} \stackrel{\delta}{\leftarrow} H$$

$$:O:$$

$$\begin{array}{c|cccc}
\hline
\mathbf{R} & \ddot{\mathbf{O}} - \mathbf{H} \\
\vdots \mathbf{O} & \vdots \\
\hline
\vdots \mathbf{O} & \vdots \\
\vdots \mathbf{O} & \vdots \\
\hline
\vdots \mathbf{O} & \vdots \\
\vdots \mathbf{O}$$

effet –I du C=O renforce cette polarisation intrinsèque

effet mésomère -M du C=O faible car forme limite peu contributive

⇒ Acide déstabilisé, pKa faible

⇒ Base fortement stabilisée, pKa faible

Ex 2: carbanion en α d'un carbonyle

liaison C-H polarisée (effet – I du C=O)

$$pKa (RH / R^{-}) = 40$$

forte stabilisation par effet mésomère −M du C=O ⇒ stabilisation de la base

Ex 3: pK_{a1} des acides α -aminés

$$H_{3}C - C + H_{2}O \longrightarrow H_{3}C - C + H_{3}O + DK_{a} = 4.8$$
 $H_{3}C - C + H_{2}O \longrightarrow H_{3}C - C + H_{3}O + DK_{a} = 2.35$

 NH_3^+ polarise la liaison $O-H \Rightarrow$ il déstabilise la forme acide