UNIT-III

PRACTICE QUESTIONS

- 1. Explain the Turing Machine model with the help of diagram.
- 2. Write a short note on Representation of a Turing Machine by Instantaneous Descriptions.
- 3. Write a short note on Representation of a Turing Machine by Transition Table.
- 4. Discuss the following construction techniques of Turing Machines
 - a. Turing machine with stationary head
 - b. Storage in the State
 - c. Multiple Track Turing Machine
 - d. Subroutines
- 5. Write a short note on Multitape Turing Machine.
- 6. Explain Linear Bound Automata with the help of diagram.
- 7. Write a short note on Church-Turing Thesis
- 8. Differentiate between Turing Machine and Universal Turing Machine.
- 9. Consider the Turing Machine represented by the following Transition Table. Show processing of the string 00.

Present State	Tape Symbols		
	0	1	b
$\rightarrow q_1$	$(0,q_1,R)$		$(1,q_2,L)$
q_2	$(0, q_2, L)$	$(1,q_2,L)$	(b,q_3,R)
q_3	(b,q_4,R)	(b,q_5,R)	
q_4	$(0,q_4,R)$	$(1,q_4,R)$	$(0,q_5,R)$
q_5			$(0, q_2, L)$

10. Consider a Turing Machine represented by the following Transition Diagram.

Obtain computing sequence of M for the input string 0011.

- 11. Consider the Turing Machine represented by the following Transition Table. Process the following strings using IDs. Also, mention whether the strings are accepted by M or not.
 - a. 011
 - b. 0011
 - c. 001

Present State	Tape Symbols		
	0	1	Ъ
$\rightarrow q_1$	$(0,q_1,R)$		$(1, q_2, L)$
q_2	$(0, q_2, L)$	$(1,q_2,L)$	(b,q_3,R)
q_3	(b,q_4,R)	(b,q_5,R)	
q_4	$(0,q_4,R)$	$(1,q_4,R)$	$(0, q_5, R)$
q_5			$(0, q_2, L)$

12. Design a Turing Machine to recognize all strings consisting of even number of 1's.

Answer:

The construction is made by defining the moves in the following manner:

- (a) q_1 is the initial state. M enters the state q_2 on scanning 1 and writes 'b'.
- (b) If M is in state q_2 and scans 1, it enters q_1 , and writes 'b'.
- (c) q_1 is the only accepting state.

So, M accepts a string if it exhausts all the inputs symbols and finally is in state q_1 .

Symbolically, $M = (\{q_1, q_2\}, \{1, b\}, \{1, b\}, \delta, q_1, b, \{q_1\})$ where δ is given by the following Transition Table.

	Present State	1	
-	q_1	(b,q_2,R)	
	q_2	(b,q_1,R)	
$(1,b,R) \qquad q_2$ $(1,b,R)$			

- 13. Design a Turing Machine which recognizes the language $\{0^n1^n|n \ge 1\}$. Also, show processing of the strings 0011 and 010.
- 14. Design a Turing Machine which recognizes the language $\{1^n 2^n 3^n | n \ge 1\}$.
- 15. Design a Turing Machine which accepts the set L of all strings over {0,1} ending with 010.

Dung and Otata	Tape Symbols		
Present State	0	1	b
$\rightarrow q_0$			(b,q_1,R)
q_1	$(0,q_2,R)$	$(1,q_1,R)$	
q_2	$(0,q_2,R)$	$(1,q_3,R)$	
q_3	$(0,q_4,R)$	$(1,q_1,R)$	
q_4	$(0,q_2,R)$	$(1,q_3,R)$	(b,q_5,R)
* q ₅			

16. Define:

- a. Procedure
- b. Algorithm
- c. Recursive Set
- d. Recursively Enumerable Set
- e. Recursively Enumerable Language

f. Decidable Problem/Language

g. Undecidable Problem/Language

17. Define: Turing Machine.

18. Define: Non Deterministic Turing Machines.

19. Define: Recursive Language

20. Write a short note on Representation of a Turing Machine by Transition Diagram.

21. What is Halting Problem?

22. Draw the Transition Diagram for the Turing Machine represented by the following Transition Table.

Present State	Tape Symbols		
	0	1	ъ
$\rightarrow q_1$	$(0,q_1,R)$		$(1,q_2,L)$
q_2	$(0, q_2, L)$	$(1,q_2,L)$	(b,q_3,R)
q_3	(b,q_4,R)	(b,q_5,R)	
q_4	$(0,q_4,R)$	$(1,q_4,R)$	$(0,q_5,R)$
q_5			$(0, q_2, L)$

23. Consider a Turing Machine represented by the following Transition Diagram.

Write the Transition Table for the Turing Machine.

