

CLAIMS

What is claimed is:

- 1 1. A circuit, comprising:
 - 2 a high side switch coupled between an input and a load; and
 - 3 a control circuit coupled to the high side switch, the control circuit adapted
 - 4 to control the high side switch as a function of a voltage across the high side
 - 5 switch.

- 1 2. The circuit of claim 1 wherein the control circuit is adapted to turn
- 2 the high side switch on for an on time period when the control circuit senses the
- 3 voltage across the high side switch crosses below a first threshold while the high
- 4 side switch is off.

- 1 3. The circuit of claim 2 wherein the on time period is substantially
- 2 fixed.

- 1 4. The circuit of claim 1 wherein the control circuit is adapted to turn
- 2 off the high side switch before an end of an on time period if the control circuit
- 3 senses that the voltage drop across the high side switch crosses above a second
- 4 threshold.

1 5. The circuit of claim 4 wherein the control circuit is adapted to turn
2 off the high side switch for a minimum off time period before the control circuit
3 turns the high side switch on again.

1 6. The circuit of claim 2 wherein the control circuit is adapted to
2 delay the high side switch from being turned on for a delay time after the voltage
3 across the high side switch crosses below the first threshold while the high side
4 switch is off.

1 7. The circuit of claim 1 wherein the load comprises a transformer.

1 8. The circuit of claim 7 wherein the transformer includes a winding,
2 wherein the control circuit is coupled to the winding of the transformer.

1 9. The circuit of claim 1 wherein the high side switch is included in
2 an integrated circuit.

1 10. The circuit of claim 9 wherein the integrated circuit comprises the
2 control circuit.

1 11. The circuit of claim 1 wherein the circuit is included in a power
2 conversion circuit.

1 12. The circuit of claim 1 wherein the high side switch is a metal oxide
2 semiconductor field effect transistor (MOSFET).

1 13. The circuit of claim 1 wherein the control circuit is adapted to turn
2 the high side switch on for an on time period when the control circuit senses a
3 change in a slope of the voltage across the high side switch over time while the
4 high side switch is off.

1 14. The circuit of claim 13 wherein the on time period is substantially
2 fixed.

1 15. The circuit of claim 14 wherein the change in the slope of the
2 voltage across the high side switch over time represents a change in a polarity of
3 the slope of the voltage across the high side switch over time.

1 16. The circuit of claim 13 wherein the control circuit is adapted to
2 turn off the high side switch before an end of an on time period if the control
3 circuit senses that the voltage drop across the high side switch crosses above a
4 second threshold.

1 17. The circuit of claim 1 wherein the control circuit is adapted to keep
2 the high side off switch for a minimum off time period following a turn off of the
3 high side switch.

1 18. The circuit of claim 13 wherein the control circuit is adapted to
2 delay the high side switch from being turned on for a delay time after the change
3 in the slope of the voltage across the high side switch over time while the high
4 side switch is off.

1 19. The circuit of claim 1 wherein the input comprises a positive input
2 terminal and a negative input terminal, wherein the high side switch is coupled
3 between the positive input terminal and the load, the circuit further comprising a
4 low side switch coupled between the negative input terminal and the load.

1 20. The circuit of claim 19 wherein the low side switch is coupled to a
2 second control circuit wherein the second control circuit is adapted to control the
3 low side switch as a function of a voltage across the low side switch.

1 21. The circuit of claim 20 wherein the low side switch is turned on
2 after a delay time for a low side on time period when the voltage across the low
3 side switch crosses below a low side threshold while the low side switch is off.

1 22. The circuit of claim 21 wherein the delay time is substantially zero.

1 23. The circuit of claim 21 further comprising a feedback circuit
2 coupled between the load and the second control circuit to provide a feedback
3 control loop, wherein the second control circuit is adapted to vary the delay time
4 to regulate power delivered to the load.

1 24. The circuit of claim 19 wherein the high side switch is turned on
2 for a high side on time period when a voltage across the high side switch crosses
3 below a high side threshold.

1 25. The circuit in claim 24 wherein the low side switch is turned on
2 after a delay time for a low side on time period when a voltage across the low side
3 switch crosses below a low side threshold.

1 26. The circuit of claim 25 wherein the high side on time period and
2 the low side on time period are substantially fixed.

1 27. The circuit of claim 25 wherein the high side on time period and
2 low side on time periods are substantially equal.

1 28. The circuit of claim 25 wherein the high side on time period is
2 adjusted to maintain a voltage across the load during the high side on time period
3 substantially equal to the voltage across the load during the low side on time
4 period.

1 29. The circuit of claim 25 wherein the delay time is substantially zero.

1 30. The circuit of claim 19 wherein the high side switch is turned on
2 for a high side on time period when a slope of a voltage across the high side
3 switch changes while the high side switch is off.

1 31. The circuit of claim 30 wherein the low side switch is turned on
2 after a delay time for a low side on time period when a slope of a voltage across
3 the low side switch changes while the low side switch is off.

1 32. The circuit of claim 31 wherein the high side on time period and
2 the low side on time period are substantially fixed.

1 33. The circuit of claim 31 wherein the change in the slope of the
2 voltage across the high side and low side switches is a change in a polarity of the
3 slope across the high side and low side switches.

1 34. The circuit of claim 31 wherein the high side on time period and
2 low side on time periods are substantially equal.

1 35. The circuit of claim 31 wherein the high side on time period is
2 adjusted to maintain a voltage across the load during the high side on time period
3 substantially equal to the voltage across the load during the low side on time
4 period.

1 36. The circuit of claim 35 wherein the voltage across the load during
2 the high side on time period is sensed after a delay from the start of the high side
3 on time period.

1 37. The circuit of claim 35 wherein the voltage across the load during
2 the low side on time period is sensed after a delay from the start of the low side on
3 time period.

1 38. The circuit of claim 31 wherein the delay time is substantially zero.

1 39. The circuit of claim 31 further comprising a feedback circuit
2 coupled between the load and the second control circuit to provide a feedback
3 control loop, wherein the second control circuit is adapted to vary the delay time
4 to regulate power delivered to the load.

1 40. The circuit of claim 31 wherein the low side switch is included in a
2 low side integrated circuit.

1 41. The circuit of claim 40 wherein the low side integrated circuit
2 further comprises the second control circuit to generate the low side on time
3 period.

1 42. The circuit of claim 40 wherein the low side integrated circuit also
2 comprises a sense circuit to sense a turn off of the high side switch.

1 43. The circuit of claim 42 wherein the sense circuit senses the turn off
2 of the high side switch by monitoring the voltage across the low side switch.

1 44. The circuit of claim 30 wherein the high side switch is included in
2 a high side integrated circuit.

1 45. The circuit of claim 44 wherein the high side integrated circuit
2 further comprises the control circuit to generate the high side on time period.

1 46. The circuit of claim 45 wherein the high side integrated circuit also
2 comprises a sense circuit to sense a turn off of the high side switch.

1 47. The circuit of claim 46 wherein the sense circuit senses the turn off
2 of the low side switch by monitoring the voltage across the high side switch.

1 48. A half bridge circuit, comprising:
2 a low side switch;
3 a high side switch coupled to the low side switch;
4 a low side capacitor coupled to the low side switch;
5 a high side capacitor coupled to the low side capacitor and the high side
6 switch; and
7 a load connected between a junction between the low side switch and high
8 side switch and a junction between the low side capacitor and the high side
9 capacitor, wherein the high side switch is adapted to be turned on for a high side
10 on time period as a function of a voltage across the high side switch in response
11 the low side switch turning off.

1 49. The half bridge circuit of claim 48 wherein the low side switch is
2 adapted to be turned on for a low side on time period following a delay time as a
3 function of a voltage across the low side switch in response to the high side switch
4 turning off.

1 50. The circuit of 49 wherein the high side on time period and the low
2 side on time period are substantially fixed.

1 51. The circuit of claim 48 wherein the high side switch is adapted to
2 be turned on for the high side on time period as a function of a slope of the
3 voltage across the high side switch over time.

1 52. The circuit of claim 48 wherein the high side switch is adapted to
2 be turned on for the high side on time period when the voltage across the high side
3 switch crosses below a first threshold while the high side switch is off.

1 53. The half bridge circuit of claim 49 wherein one of the high side on
2 time period or the low side on time period is adapted to be adjusted to maintain a
3 voltage across the load during the high side on time period substantially equal to
4 the voltage across the load during the low side on time period.

1 54. The half bridge circuit of claim 48 wherein the voltage across the
2 load is sensed for a fixed period during the high side on time period.

1 55. The half bridge circuit of claim 49 wherein the voltage across the
2 load is sensed for a fixed period during the low side on time period.

1 56. The half bridge circuit of claim 49 wherein the delay time is
2 substantially zero.

1 57. The half bridge circuit of claim 49 further comprising a feedback
2 circuit coupled between the load and the low side switch to vary the delay time to
3 regulate power delivered to the load.

1 58. The half bridge circuit of claim 49 wherein the low side switch is
2 included in a low side integrated circuit of the half bridge circuit.

1 59. The half bridge circuit of claim 58 wherein the low side integrated
2 circuit also comprises a low side control circuit coupled to the low side switch to
3 generate the low side on time period.

1 60. The half bridge circuit of claim 59 where the low side control
2 circuit is coupled to sense a turn off of the high side switch

1 61. The half bridge circuit of claim 60 wherein the low side control
2 circuit is adapted to sense the turn off of the high-side switch by monitoring the
3 voltage across the low side switch

1 62. The half bridge circuit of claim 48 wherein the high side switch is
2 included in a high side integrated circuit of the half bridge circuit.

1 63. The half bridge circuit of claim 62 wherein the high side integrated
2 circuit also comprises a high side control circuit coupled to the high side switch to
3 generate the high side on time period.

1 64. The half bridge circuit of claim 63 wherein the high side control
2 circuit is coupled to sense a turn off of the low side switch.

1 65. The half bridge circuit of claim 64 wherein the high side control
2 circuit is adapted to sense the turn off of the low side switch by monitoring the
3 voltage across the high-side switch.

1 66. The half bridge circuit of claim 49 wherein the half bridge circuit is
2 included in a switched mode power supply.

1 67. The half bridge circuit of claim 49 wherein the half bridge circuit is
2 included in a power conversion circuit.

1 68. The half bridge circuit of claim 49 wherein the low side switch and
2 the high side switch each comprise a metal oxide field effect transistor
3 (MOSFET).

1 69. A circuit, comprising:
2 switching means coupled to a load for applying a voltage of a first polarity
3 across the load during a first on time period and applying a voltage of the opposite
4 polarity during a second on time period; and
5 sensing means coupled to the load for sensing the voltage across the load
6 for a first sense period during the first on period and for a second sense period
7 during the second on period, wherein the switching means is controlled to
8 maintain a magnitude of the voltage across the load during the first on period
9 substantially equal to the voltage across the load during the second on period.

1 70. The circuit of claim 69 wherein the sensing means is adapted to
2 generate a sense signal for a duration of the first and second sense periods.

1 71. The circuit of claim 70 wherein a magnitude of the sense signal is
2 adapted to be adjusted according to a magnitude of the voltage across the load
3 during the first and second sense periods.

1 72. The circuit of claim 71 wherein the sensing means comprises a
2 capacitor and current charging means coupled to the capacitor for charging and
3 discharging the capacitor.

1 73. The circuit of claim 72 wherein the current charging means is
2 adapted to adjust a current for charging and discharging the capacitor in response
3 to the magnitude of the voltage across the load during the first and second sense
4 periods.