

Quantum Generative Adversarial Network with Noise

Project Name: Quantum Generative Adversarial Network with Noise

Project member:

YmHuang WhRen ZlChen

Dodument Type: Report

Project Start Time: 3/01/2020

Sourcecode Version: 0.0.1

Keywords: Variational Quantum Circuit, Machine Learning

Modify April 12, 2020

Submitted by:

WH REN

Contents

1	Experiment	2
2	Results	2
3	Next Plan	3
4	Reference	3
	Appendix A Source Code	4

1 Experiment

In oreder to reproduce the article adversarial quantum circuit learning for pure state approximation [1],I write some code to simulate quantum circuits. The author only use a layout as a building block for generator and discriminator by two-qubits unitaries. In this layout every two-qubits unitaries can be efficiently implemented with three CNOT gate and fifteen parametrized single-qubit rotations.

when I use single-qubit gate and two-qubits gate,I had some trouble in how to build a quantum circuit by two-qubits gate [2].A quantum circuit only use single-qubit gate $R_n(\theta)$ and two-qubits gate CNOT. Every single-qubit gate is one-parametrized gate which have a formula like $R_n(\theta) = e^{-i\sigma_n\theta/2}$. Each single-qubit gate place in a line of qubit and have a parameter θ . But CNOT gate don't need a parameter. In my mind, to complete a quantum circuit, I need a list to save every single-qubit gate's parameter. And the sequence of parameter should be a fixed sequence. CNOT gate don't need a parameter. So I don't know how to code CNOT gate into quantum circuit. Because CNOT gate don't have a parameter in parameter's list when I need a matrix representation by parameter's list. In this context, I choose a way to compromise. I fixed the generator and discriminator's quantum circuit in only one condition that the system number was fixed.

By using section A's method, the minimax game can be written as minmax
$$V(\theta, \phi)$$
 with loss function
$$V(\theta, \phi) = tr[E_0 D(|\psi_t><\psi_t|\otimes |0><0|)]P(t) - tr[E_0 D(G|0><0|G^{\dagger}\otimes |0><0|)]P(g)$$

and the partial derivatives and $\frac{\partial V}{\partial \theta_l}$ and $\frac{\partial V}{\partial \phi_k}$. The result is not good.

2 Results

3 Next Plan

- P: 1 finished quantum circuit code
 - 2 checking gate gradient descent

4 Reference

References

- [1] Benedetti, M., Grant, E., Wossnig, L., and Severini, S. Adversarial quantum circuit learning for pure state approximation. *New Journal of Physics 21*, 4 (2019), 043023.
- [2] Shende, V. V., Markov, I. L., and Bullock, S. S. Minimal universal two-qubit controlled-not-based circuits. *Physical Review A* 69, 6 (2004), 062321.

5 Appendix

A Source Code

just add core codes