

1 de 15

Levantamento de Requisitos Técnicos - LRT

HISTÓRICO					
Revisão	Revisão Data Descrição				
1	22/03/2021 Versão inicial				
2	28/04/2021	Versão em desenvolvimento			

AUTOR		REVISOR	APROVADOR	
Nome	Felipe Bardella	Victor Gazolli	Vinicius Zancanari	
Data	22/03/2021	23/03/2021	23/03/2021	

SUMÁRIO

SI	UMÁRIO 1				
1	OBJ	ETIVO	3		
2	INTE	RODUÇÃO	4		
	2.1 2.2 2.3	DESCRIÇÃO GERAL MODELOS DISPONÍVEIS PRODUTOS SIMILARES	4 4 4		
<u>3</u>	usc	PRETENDIDO	<u>5</u>		
	3.1 3.2 3.3	APLICAÇÃO PRETENDIDA PERFIL DO USUÁRIO RESTRIÇÕES DE USO	5 5 6		
4	ARC	QUITETURA	7		
	4.3 4.4	VISÃO MACRO SOFTWARE HARDWARE MECÂNICA ITENS CRÍTICOS	7 7 7 7		
5	FUN	CIONALIDADE	8		
		MODOS DE OPERAÇÃO PERFORMANCE ALARMES E MENSAGENS	8 8 8		
6	USA	BILIDADE	9		
	6.1 6.2 6.3	FUNÇÕES PRIMÁRIAS FUNÇÕES SECUNDÁRIAS CASOS DE USO	9 9 9		
7	INTE	ERFACE COM USUÁRIO	10		
8	CON	IECTIVIDADE	11		
	8.1 8.2	CONECTORES CONEXÃO COM OUTROS DISPOSITIVOS	11 11		

2 de 15

Levantamento de Requisitos Técnicos - LRT

9 MÓ	DULOS E ACESSÓRIOS	12
10 RE	QUISITOS TÉCNICOS	13
10.2 10.3	FONTE DE ALIMENTAÇÃO CARACTERÍSTICA FÍSICAS CONDIÇÕES AMBIENTAIS RELAÇÃO DE NORMAS	13 13 13 13
11 ES	PECIFICAÇÃO DE LOCALIZAÇÃO	15
11.1 11.2	IDIOMAS REQUISITOS LOCAIS	15 15
12 SU	PORTE E MANUTENÇÃO	16
12.2	OPERAÇÃO ATUALIZAÇÃO CALIBRAÇÃO MANUTENÇÃO PREVENTIVA	16 16 16 16
13 RO	TULAGEM	17
14 EM	IBALAGEM / TRANSPORTE / ARMAZENAMENTO	18
14.2	CONDIÇÕES AMBIENTAIS ESPECIFICAÇÃO DE EMBALAGEM REQUISITOS DE TRANSPORTE	18 18 18
15 CIC	CLO DE VIDA DO PRODUTO	19
15. 15. 15.2	1.1 PROCEDIMENTO 1.2 EQUIPES DE DESENVOLVIMENTO 1.3 PROPRIEDADE INTELECTUAL	19 19 19 19 19 19

3 de 15

Levantamento de Requisitos Técnicos - LRT

1 OBJETIVO

Este documento descreve o produto e apresenta uma introdução da arquitetura, tecnologia e informações técnicas relevantes para o sistema de monitoramento de incêndios em áreas sensíveis.

O produto tem como objetivo fornecer um dispositivo de aviso de queimadas em áreas próximas a propriedades, cidades pequenas, vilas ribeirinhas, entre outros. Busca-se uma grande efetividade em diminuir os danos materiais e humanos causados por esses eventos que são muito comuns em parte de nosso país, como na região nordeste.

O sistema é composto de um dispositivo que mede os parâmetros que indicam uma queimada.

2 INTRODUÇÃO

2.1 DESCRIÇÃO GERAL

A importância da conscientização sobre incêndios naturais mostrou-se relevante nos últimos anos pela sua relação com a degradação da Caatinga, sendo um ecossistema próprio do clima semiárido (ALVARES et al., 2013).1 Antongiovanni et al. (2020) identificaram, através de fragmentos da caatinga, que devido a incêndios e ações antrópicas o ambiente sofreu danos significativos.

Uma estimativa de vulnerabilidade das populações brasileiras apontou o Nordeste como uma região mais sensível a mudanças climáticas devido a baixos índices de desenvolvimento social e econômico.

O sistema de detecção e aviso precoce de incêndios naturais representa não apenas cuidado, mas também respeito a esta região, e o povo que reside nele. Trata-se de um conjunto híbrido de sensores responsáveis por alertar previamente moradores de vilas e cidades dentro de zonas com Risco de Fogo Observado, do Instituto Nacional de Pesquisas Espaciais (INPE).

O produto conta com um site que é utilizado pela população e autoridades responsáveis, contendo dados sobre risco de incêndio natural em tempo real de onde estará instalado. Os dados coletados tem origem em sensores, que são transmitidos via sinal de rádio de baixo consumo de energia para uma central e será repassado para um servidor que disponibilizará ao site.

2.2 MODELOS DISPONÍVEIS

4 de 15

Levantamento de Requisitos Técnicos - LRT

Modelo / Variação	Configuração	Configurado pelo (Usuário, Representante Técnico, Produção e AT)	
Default	Configuração padrão	Representante Técnico	

2.3 PRODUTOS SIMILARES

PRODUTOS SIMILARES DA Fundamentos de Internet das coisas/PARCEIROS							
Fabricante	1.00000						
Não se aplica Não se aplica							
PRODUTOS SIMILARES DE CONCORRENTES							
Fabricante	Produto	Conteúdo de Referência					
LADSensors	Forest Supervisor	https://www.ladsensors.com/					

3 USO PRETENDIDO

3.1 APLICAÇÃO PRETENDIDA

Operação em modo desassistido	O Dispositivo funciona de forma desassistida 100% do tempo, enviando os dados para o Gateway quando detectado uma queimada.
Disponibilidade de operação	O dispositivo faz aferições de 2 em 2 minutos.
Frequência de uso	Dispositivo é utilizado pelo usuário somente quando tiver um indício de queimada, em que o usuário será avisado, junto de uma autoridade local responsável.
Características do ambiente	É utilizado em ambiente externo. Encapsulamento deve ser à prova d'água e contra calor.
Grandezas medidas e calculadas	São medidos os níveis de CO2, temperatura e umidade. Indicam se há uma queimada ou se há o risco do surgimento de uma.
Tipo de mobilidade Integração	Portátil. O dispositivo será colocado em um ponto estratégico e será deixado lá até uma futura manutenção ou se necessitar de troca de local devido a algum

3.2 PERFIL DO USUÁRIO

Usuários de Implantação				
Educação, conhecimento e experiência Médio conhecimento sobre o projeto e como implantar o dispositivo de forma eficiente				
Pré-requisitos e restrições Saber da importância do dispositivo para com a propriedade próxima				
Usuários de Operação				

5 de 15

Levantamento de Requisitos Técnicos - LRT	L	_evantamento	de	Reg	uisitos	Técnicos	- LRT	
---	---	--------------	----	-----	---------	----------	-------	--

Educação, conhecimento e Conhecimento baixo a médio com tecnologia experiência				
Pré-requisitos e restrições	Possuir um acesso à internet, como celular ou computador.			
Usuários de Manutenção				
Educação, conhecimento e Conhecimento prévio com eletrônica e comunicação experiência LoRaWAN				
Pré-requisitos e restrições	Conhecer previamente sobre o projeto e seu funcionamento			

3.3 RESTRIÇÕES DE USO

O manuseio do dispositivo está restrito a indivíduos com conhecimento necessário.

4 ARQUITETURA

4.1 VISÃO MACRO

O sistema IoT para detecção precoce de incêndios naturais é composto por uma rede de sensores sem fio, e um sistema Web para monitoramento. Foram definidas três fases para o bom funcionamento do protótipo: a coleta de dados, a transmissão e a apresentação.

Os nós da rede são responsáveis pela captação dos parâmetros ambientais, como temperatura, umidade e dióxido de carbono. A transmissão dos dados é feita após a coleta, e a informação é enviada para um gateway com conexão à internet.

O fluxo de dados segue um caminho único, da coleta para a transmissão, e da transmissão para o armazenamento e apresentação em um servidor Web. A arquitetura do sistema é apresentada na seguinte imagem:

Figura 2 - Fluxograma do projeto

O dispositivo utiliza um microcontrolador esp8266 com arquitetura RISC. Os sensores para aferição dos parâmetros que são medidos, são o DHT 11, que é utilizado na medição de temperatura e umidade, e o MQ 135 que é utilizado para aferição do dióxido de carbono.

6 de 15

Levantamento de Requisitos Técnicos - LRT

O dispositivo se comunica com um gateway LoRaWAN e, para isso, ele possui um módulo LoRaWAN junto ao dispositivo medidor dos parâmetros.

Ele possui uma placa fotovoltaica com especificações de 12V, 250 mA e 3W. Ele transmite dados dos sensores de 2 em 2 minutos e o servidor disponibiliza em um site para que a população e autoridades responsáveis monitorem e tenham ciência das ocorrências de incêndios.

Visando o baixo consumo de energia e a transmissão em longas distâncias, foi adotado a tecnologia LoRaWAN, que é responsável pela comunicação do dispositivo com uma estação de recepção (Gateway).

4.2 SOFTWARE

4.2.1 Firmware

Utilizando a linguagem de programação C++, o firmware é responsável em fazer medições em intervalos de tempos definidos e reportando ao gateway, LoraWan.

4.2.2 Servidor

Ele é responsável em receber o dado do gateway LoraWan, o mesmo faz uma conexão no banco de dados para salvar a informação.

O servidor conta com uma API REST, que disponibiliza um endpoint de busca dos dados. Para a comunicação em tempo real com as integrações existe uma comunicação via socket que será o canal de comunicação entre o website e o servidor nos casos que a informação recebida indique um incêndio em potencial.

4.2.3 Website

Responsável em demonstrar ao usuário em tempo real caso haja foco de incêndio. E também mostra um histórico de incêndios anteriores.

4.3 HARDWARE

4.3.1 MICROCONTROLADOR

O microcontrolador escolhido foi o Esp8266 onde tem a função de coletar os dados dos sensores de Temperatura, umidade e dióxido de carbono (CO2), analisar e enviar a informação para o servidor. Ele é alimentado por uma placa de energia fotovoltaica 12V, 250mA e 3W.

4.4 MECÂNICA

Os parâmetros ambientais necessários para determinar se existe risco de fogo é determinado pelos seguintes componentes:

- DHT 11 (temperatura e umidade)
- MQ 135 (dióxido de carbono)

4.4.1 SENSOR DE DIOXIDO DE CARBONO

O sensor detecta o gás dióxido de carbono (CO2) que é um dos pontos de confirmação para analisar se está ocorrendo um incêndio florestal ou apenas um falso positivo.

Funcionando em uma faixa de 0 V a 5 V, o sensor trabalha em um range de 10 a 1.000 ppm (partículas por milhão), temperatura de -10 a 70°C, consumindo uma corrente de 150 mA e podendo ser regulado por meio de parafuso philips que está ligado em um potenciômetro para ficar mais sensível.

Quando o MQ135 detecta os dados do gás CO2, a resistência dele abaixa e através de uma porta analógica do microcontrolador consegue-se transformar o dado em um informação para análise.

7 de 15

Levantamento de Requisitos Técnicos - LRT

4.4.2 SENSOR DE TEMPERATURA E UMIDADE

Esse sensor é responsável em medir dois parâmetros ambientais, que são a temperatura e a umidade.

O sensor deve trabalhar no range de 3 V até 5 V, corrente de 0,5 mA até 2.5 mA, porém quando está no modo sleep (dormindo) tem um consumo entre 100 μ A e 150 μ A. A precisão ao aferir a temperatura é de \pm 2 °C e a umidade é de \pm 5% UR.

4.4.3 Módulo LoraWan Módulo responsável pela comunicação com o gateway

4.5 ITENS CRÍTICOS

Componente	Função		
Esp8266	Captar dados dos sensores e comunicar com o módulo LoRaWAN		
Sensor MQ-135	Sensor responsável por medir o índice de CO2		
Sensor DHT-11	Sensor responsável por medir a temperatura e umidade no momento		
Módulo LoRaWAN	Comunicar com o gateway		
Placa fotovoltaica	Capta energia proveniente dos raios solares		
Bateria de Lítio	Armazena a energia captada pela placa solar		
Aplicação Web	Apresentar resultados das aferições dos sensores		

5 FUNCIONALIDADE

5.1 MODOS DE OPERAÇÃO

Modo de operação normal: O dispositivo permanece em modo sleep e, a cada 1 minuto, ele envia os parâmetros para o gateway, que envia para o servidor e o mesmo trata os dados, publicando-os na aplicação web.

5.2 PERFORMANCE

O sensor MQ 135 detecta o gás dióxido de carbono (CO2) que é um dos pontos de confirmação para analisar se está ocorrendo um incêndio florestal ou apenas um falso positivo. Funcionando em uma faixa de 0 V a 5 V, o sensor trabalha em um range de 10 a 1.000 ppm (partículas por milhão), temperatura de -10 a 70°C, consumindo uma corrente de 150 mA e podendo ser regulado por meio de parafuso philips que está ligado em um potenciômetro para ficar mais sensível.

Quando o MQ135 detecta os dados do gás CO2, a resistência dele abaixa e através de uma porta analógica do microcontrolador consegue-se transformar o dado em um informação para análise.

O sensor DHT-11 não identifica uma variável, mas sim, duas que são a temperatura e a umidade, trabalha em um range de 3 V até 5 V, corrente de 0,5 mA até 2.5 mA, porém quando está no modo sleep (dormindo) tem um consumo entre 100 μ A e 150 μ A. A precisão ao aferir a temperatura é de ± 2 °C e a umidade é de ± 5% UR.

8 de 15

Levantamento de Requisitos Técnicos - LRT

O módulo LoRaWan trabalha com uma tensão entre 1,8 V até 4 V, com um consumo de corrente para transmissão de 110 mA e para receptação de 20 mA, a taxa de dados tem um range de 180 bps até 21900 bps.

Em uma área aberta o LoRaWan tem alcance de até 15 km, porém dentro de uma floresta tem entre 1 a 3 km.

5.3 ALARMES E MENSAGENS

Alarmes funcionais							
Nome	Característic a	Categoria	Critério de ativação	Critério de desativação	Mensagem		
Dado coletado	Visual	Informativa	ativado assim que o backend recebe um novo pacote	não há como desativar	Demonstra os parâmetros ambientais e o risco de incêndio		

Alarmes técnicos					
Nome	Característic a	Categoria	Critério de ativação	Critério de desativação	Mensagem
Demora na comunicaç ão com dispositivo	Visual. Aparece na aplicação web	Informativa	Demora na comunicação	Comunicação bem sucedida	Demonstrado como um item de atenção no card

9 de 15

Levantamento de Requisitos Técnicos - LRT

6 USABILIDADE

6.1 FUNÇÕES PRIMÁRIAS

Função	Descrição		
Aviso de risco	Por meio da aplicação web, há um aviso caso na região de algum		
de queimada	dispositivo haja risco de queimada.		
Aviso de queimada ocorrendo	A aplicação web dá um aviso caso esteja havendo uma queimada em uma região. (Alto nível de CO2 e temperatura elevada)		

6.2 FUNÇÕES SECUNDÁRIAS

Função	Descrição	"How to"
Monitora mento de temperat ura	Monitoramento de temperatura em tempo real	Acompanhar a temperatura na aplicação web em diferentes regiões, em tempo real
Monitora mento de umidade relativa do ar	Monitoramento de umidade relativa do ar em tempo real	Acompanhar a umidade relativa do ar em cada região pela aplicação web, em tempo real.

6.3 CASOS DE USO

Por meio da aplicação web, são mostrados diferentes card's em que cada um representa uma cidade. Uma cidade com maior risco de incêndio será mostrada primeiro.

Agora, quando o dispositivo detectar um possível incêndio ocorrendo, o card do respectivo se tornará o primeiro a aparecer na aplicação web.

7 INTERFACE COM USUÁRIO

A interface com usuário é por meio de uma aplicação web, como demonstrado a seguir. Nela, há um mapa do Brasil em que o mesmo mostra as localizações de todos dispositivos de monitoramento de incêndios espalhados pelo país.

Abaixo do mapa, estão os cards que representam cada dispositivo em cada cidade, onde mostram os parâmetros ambientais e, abaixo, o risco de fogo observado que está sendo mostrado por meio de uma barra e porcentagem.

10 de 15

Levantamento de Requisitos Técnicos - LRT

Mapa do Brasil em que mostra os sensores espalhados pelo país.

Cards que representam os sensores.

8 CONECTIVIDADE

O dispositivo só funciona com o site: https://monitoramentodeincendios.ga/

8.1 CONECTORES

Tipo	Nome	Objetivo / Função
Módulo	LoraWan	Comunicação com o gateway
Módulo	ESP 8266	Microcontrolador responsável por ter controle do circuito.
Módulo	Placa Solar	Energia

8.2 CONEXÃO COM OUTROS DISPOSITIVOS

É feita a comunicação com gateway LoRa via um módulo LoRaWAN.

9 MÓDULOS E ACESSÓRIOS

Não possui.

11 de 15

Levantamento de Requisitos Técnicos - LRT

10 REQUISITOS TÉCNICOS

10.1 FONTE DE ALIMENTAÇÃO

Especificação		
Tensão de entrada	5V	
Frequência	915 a 928MHz	
Consumo		
Baterias	12V 250MAh 3W	
Isolação elétrica		
Corrente de fuga		

10.2 CARACTERÍSTICA FÍSICAS

Especificação	
Peso	
Dimensão	
Display/Monitor (tamanho e resolução)	Não tem display.

10.3 CONDIÇÕES AMBIENTAIS

Ambiente de operação		
Faixa de temperatura	-20° a 100°C	
Umidade, não condensação	20 a 90%RH	
Outras (altitude, pressão atmosférica)		

Resistência mecânica	
Resistência à vibração mecânica	Média
Explosão	Baixa
Impacto	Baixa

Outras condições ambientais		
Radiação		
Ambientes agressivos		

10.4 RELAÇÃO DE NORMAS

Norma	Descrição	Observação
IEC 61000-4-2	Descarga Eletrostática.	± 6 kV por contato ± 8 kV ar
IEC 61000-4-5	Surtos.	± 1 kV modo diferencial

12 de 15

Levantamento de Requisitos Técnicos - LRT

		± 2 kV modo comum
IEC 61000-4-11	Quedas de tensão, interrupções curtas e variações de tensão nas linhas de entrada de alimentação.	<5 % U _T (>95 % de queda de tensão em U _T) por 0,5 ciclo. 40 % U _T (60 % de queda de tensão em U _T) por 5 ciclos. 70 % UT (30 % de queda de tensão em U _T) por 25 ciclos. <5 % U _T (>95 % de queda de tensão em U _T) por 5 segundos.
IEC 61850-9-1	Sampled values sobre rede serial ponto-a-ponto.	

13 de 15

Levantamento de Requisitos Técnicos - LRT

11 ESPECIFICAÇÃO DE LOCALIZAÇÃO

N/A.

11.1 IDIOMAS

Documento	Idioma
Software do equipamento	Português-BR
Etiquetas e rótulos do equipamento	Português-BR
Manual de operação	Português-BR
Manuais internos (teste, manutenção)	Português-BR
Catálogos	Português-BR
Material de treinamento	Português-BR

11.2 REQUISITOS LOCAIS

N/A

12 SUPORTE E MANUTENÇÃO

12.1 OPERAÇÃO

A operação padrão é o módulo de comunicação via rádio, LoRaWan, mandar os dados para o gateway, mas se não chegar nenhum dado em um certo período de tempo, ocasionará um alerta de que há algo errado com o dispositivo.

12.2 ATUALIZAÇÃO

Não é necessário realizar atualizações.

12.3 CALIBRAÇÃO

Não é necessário calibrar o dispositivo.

12.4 MANUTENÇÃO PREVENTIVA

Verifique se há uma obstrução na placa solar, se ela estiver suja, pode diminuir a capacidade de captação de energia solar.

14 de 15

Levantamento de Requisitos Técnicos - LRT

13 ROTULAGEM

N/A.

14 EMBALAGEM / TRANSPORTE / ARMAZENAMENTO

14.1 CONDIÇÕES AMBIENTAIS

Transporte	Faixa de temparatura	
	Humidade, não condensação	
	Outras (altitude, pressão	
	atmosférica)	
Armazenamento	Faixa de temparatura	
	Humidade, não condensação	
	Outras (altitude, pressão	
	atmosférica)	

15 CICLO DE VIDA DO PRODUTO

15.1 CICLO DE VIDA DE DESENVOLVIMENTO

15.1.1 PROCEDIMENTO

O desenvolvimento do produto segue o modelo de procedimento interno 7.3-01 Projeto e desenvolvimento, contendo os estágios:

- Proposta de Desenvolvimento PD;
- Estudo e Planejamento EP;
- Desenvolvimento do Projeto DP;
- Verificação VR;
- Validação VL;
- Transferência TR.

15.1.2 EQUIPES DE DESENVOLVIMENTO

Equipes de desenvolvimento				
Site	Representantes	Responsabilidades		
São Paulo	Fulano	Interface alto nível.		
Recife	Ciclano	Hardware e drivers para Linux.		

15.1.3 PROPRIEDADE INTELECTUAL

Empresa / Pessoa	Título	Resumo	Comentário
N/A	N/A	N/A	N/A

15 de 15

Levantamento de Requisitos Técnicos - LRT

15.2 DESCARTE

O descarte deve ser feito em lugares especializados em lixos eletrônicos.

15.3 PLANO DE EVOLUÇÃO DO PRODUTO

Existe alguns pontos de melhoria no dispositivo como uma bateria para quando ficar de noite, diminuir o tamanho como um todo, aumentar a segurança de dados.

No caso do site, adicionar alertar individuais e coletivos nos eventos de fogo.