Lojik Tasarım

Ders 5

Kaynak:

M.M. Mano, M.D. Ciletti, "Digital Design with An Introduction to Verilog HDL"

Boolean Fonksiyonlarının Basitleştirilmesi

- Diyagram Yöntemi (Karnough Diyagramı)
 - İki Değişkenli
 - ■Üç Değişkenli
 - Dört Değişkenli
 - Beş Değişkenli

Soru: f = x'y' + xy' + xy

lojik ifadesini Karnough haritası yöntemi kullanarak sadeleştiriniz.

Cevap: f = x + y'

Soru: f = xy' + x'y + x'y'

lojik ifadesini Karnough haritası yöntemi kullanarak sadeleştiriniz.

Cevap: f = x' + y'

Soru: f = x'y' + xy

lojik ifadesini Karnough haritası yöntemi kullanarak sadeleştiriniz.

Cevap: f = x'y' + xy

Soru: f = x + xy'

lojik ifadesini Karnough haritası yöntemi kullanarak sadeleştiriniz.

Cevap: f = x

(a)

Soru: f = x'yz' + xy'z + xyz + x'y'z'

lojik ifadesini Karnough haritası yöntemi kullanarak sadeleştiriniz.

x,y	00	01	11	10
0				
1				

Cevap: f = x'z' + xz

Soru: $f(x, y, z) = \sum (2, 3, 4, 5)$

lojik ifadesini Karnough haritası yöntemi kullanarak sadeleştiriniz.

<i>y,z</i>	00	01	11	10
0				
1				

Cevap: f = x'y + xy'

Soru: $f(x, y, z) = \sum (3, 4, 6, 7)$

lojik ifadesini Karnough haritası yöntemi kullanarak sadeleştiriniz.

<i>y,z</i>	00	01	11	10
0				
1				

Cevap: f = yz + xz'

Soru: f = x'y'z' + xy'z' + xy'z + x'y'z

lojik ifadesini Karnough haritası yöntemi kullanarak sadeleştiriniz.

<i>y,z</i>	00	01	11	10
0				
1				

Cevap: f = y'

Soru: f = xyz + xy + x + x'y'z'

lojik ifadesini Karnough haritası yöntemi kullanarak sadeleştiriniz.

x,y	00	01	11	10
0				
1				

Cevap: f = x + y'z'

Soru: $f(x, y, z) = \sum (0, 2, 4, 5, 6)$

lojik ifadesini Karnough haritası yöntemi kullanarak sadeleştiriniz.

<i>y,z</i>	00	01	11	10
0				
1				

Cevap: f = xy' + z'

Soru: f = A'C + A'B + AB'C + BC lojik ifadesini

- a) Mintermlerin toplamı biçiminde ifade edin
- b) En basit biçimi çarpımların toplamı şeklinde ifade edin

B,C	00	01	11	10
0				
1				

Cevap: $f(A, B, C) = \sum (1,2,3,5,7)$ f = A'B + C

f = a'bc'd + a'b'c'd + a'b'cd + a'bcd + a'bc'd' + a'bcd'lojik ifadesini Karnough haritası yöntemi kullanarak sadeleştiriniz.

c, d a, b	00	01	11	10
00				
01				
11				
10				

$$f = a'b + a'd$$

 $f(a,b,c,d) = \sum (0,2,3,5,7,8,9,10,11,13,15)$

lojik ifadesini Karnough haritası yöntemi kullanarak sadeleştiriniz.

	а	b	c	d	f
0	0	0	0	0	
1	0	0	0	1	
2	0	0	1	0	
3	0	0	1	1	
4	0	1	0	0	
5	0	1	0	1	
6	0	1	1	0	
7	0	1	1	1	
8	1	0	0	0	
9	1	0	0	1	
10	1	0	1	0	
11	1	0	1	1	
12	1	1	0	0	
13	1	1	0	1	
14	1	1	1	0	
15	1	1	1	1	

$$f(a,b,c,d) = b'd' + cd + ab' + bd$$

 $F(w, x, y, z) = \Sigma(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$

lojik ifadesini Karnough haritası yöntemi kullanarak sadeleştiriniz.

y, z w, x	00	01	11	10
00				
01				
11				
10				

$$F = y' + w'z' + xz'$$

$$F = A'B'C' + B'CD' + A'BCD' + AB'C'$$

lojik ifadesini Karnough haritası yöntemi kullanarak sadeleştiriniz.

C, D A, B	00	01	11	10
00				
01				
11				
10				

$$F = B'D' + B'C' + A'CD'$$

Beş Değişkenli Karnough Diyagramı

Beş değişkenli çözümlemede 2⁵=32 durum bulunmaktadır.

d, e				
<i>b</i> , <i>c</i>	00	01	11	10
00	16	17	19	18
01	20	21	23	22
11	28	29	31	30
10	24	25	27	26

a=1

Beş Değişkenli Karnough Diyagramı

 $f(a,b,c,d,e) = \sum (0,2,4,6,9,13,21,23,25,29,31)$ lojik ifadesini Karnough haritası yöntemi ile sadeleştiriniz.

d, e	a=0			
b, c	00	01	11	10
00	0	1	3	2
01	4	5	7	6
11	12	13	15	14
10	8	9	11	10

d, e	a=1			
b, c	00	01	11	10
00	16	17	19	18
01	20	21	23	22
11	28	29	31	30
10	24	25	27	26

f = a'b'e' + ace + bd'e

Fazla değişkenli lojik fonksiyonlar

- 6 değişkenli bir fonksiyonda 2⁶=64 değişik durum bulunmaktadır
- 6 ve daha fazla değişkene sahip lojik fonksiyonların basitleştirilmesinde
 Karnough haritası yöntemini kullanmak zor ve karmaşık olabilir.
- Bu nedenle bu tür fonksiyonların sadeleştirilmesinde farklı yöntemler tercih edilir.
- İlerleyen derslerde farklı yöntemlere değinilecektir.

Farketmez (etkisiz) Koşullar (Don't Care)

Aşağıda verilen doğruluk tablosu verilen lojik fonksiyonu sadeleştiriniz

a	b	C	d	f
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0

$$f = bd' + b'd + cd$$

Farketmez (etkisiz) Koşullar (Don't Care)

Verilen her iki lojik ifade aynıdır

$$f(w, x, y, z) = \sum (1,3,7,11,15)$$
$$d(w, x, y, z) = \sum (0,2,5)$$

$$f(w, x, y, z) = \sum_{m} (1,3,7,11,15) + \sum_{d} (0,2,5)$$

$$f = yz + w'x'$$

Örnek:

- En anlamlı biti a en az anlamlı biti d olan ve girişleri abcd olarak isimlendirilmiş bir lojik sisteme BCD sayılar uygulanmaktadır. Sisteme Uygulanan sayı 4'den küçükse 0, diğer durumlarda ise 1 üretmektedir. İlgili lojik sistemin
 - a) Doğruluk tablosunu oluşturunuz
 - b) Karnough haritası yöntemi ile sadeleştiriniz
 - c) Sadeleştirilmiş ifadenin lojik devresini çiziniz

a	b	c	d	f
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	

c, d a, b	00	01	11	10
00				
01				
11				
10				

Faktorizasyon

- Bir lojik ifadede bir değişkenin, değişken grubunun ve bir grubun kısmi parantez dışına alınarak lojik ifadenin tamamının ya da bir kısmının çarpanlarına ayrılması işlemidir.
- Faktorizasyon genellikle minimumlaştırmadan sonra uygulanır.
- Bazı fonksiyonlar miimumlaştırılamaz haldeyken bile faktorizasyon uygulanabilir.

$$f = ab'c' + a'bc' + a'b'c + abc$$

$$f = a(b'c' + bc) + a'(bc' + b'c)$$

$$f = a(b \oplus c)' + a'(b \oplus c)$$

$$ax' + a'x = a \oplus x$$

$$f = a \oplus (b \oplus c)$$

Toplamların çarpımı ve Çarpımların toplamları biçimindeki ifadelerin sadeleştirilmesi

f = b'd' + b'c' + a'c'd lojik ifadesini doğruluk tablosunu oluşturunuz

а	b	c	d	$\int f$
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

Toplamların çarpımı ve Çarpımların toplamları biçimindeki ifadelerin sadeleştirilmesi

f = b'd' + b'c' + a'c'd

İfadenin değili yada tümleyeni (f') doğruluk tablosundaki 0 konumları değerlendirilerek bulunabilir

а	b	с	d	f
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

$$f' = ab + cd + bd'$$

Çarpımların toplamları biçimindeki ifadelerin sadeleştirilmesi

$$f' = ab + cd + bd'$$

Lojik ifadesinin tümleyenini hesaplarsak fonksiyonun kendisi elde edilir

DeMorgan kuralı uygulanırsa;

$$f = (a' + b')(c' + d')(b' + d)$$

şeklinde elde edilir

Toplamların çarpımı ve Çarpımların toplamları biçimindeki ifadelerin sadeleştirilmesi

Toplamların çarpımı ve Çarpımların toplamları biçimindeki ifadelerin sadeleştirilmesi

$$F(x, y, z) = \Sigma(1, 3, 4, 6)$$

$$F(x, y, z) = \Pi(0, 2, 5, 7)$$

Table 3.1 Truth Table of Function F

х	y	Z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

$$F = x'z + xz'$$

$$F' = xz + x'z'$$

$$F = (x' + z')(x + z)$$