Optimization in Machine Learning

Optimization Problems Constrained problems

Learning goals

- Definition
- LP, QP, CP
- Ridge and Lasso
- Soft-margin SVM

CONSTRAINED OPTIMIZATION PROBLEM

$$\min_{\mathbf{x} \in \mathcal{S}} f(\mathbf{x})$$
, with $f: \mathcal{S} \to \mathbb{R}$

- Convex if f convex function and S convex set
- ullet Typically, ${\cal S}$ defined via ineq. and eq. constraint functions

min
$$f(\mathbf{x})$$

such that $g_i(\mathbf{x}) \leq 0$ for $i = 1, ..., k$
 $h_j(\mathbf{x}) = 0$ for $j = 1, ..., l$.

LINEAR PROGRAM (LP)

• f linear s.t. linear constraints. Standard form:

× 0 × ×

for $\mathbf{c} \in \mathbb{R}^d$, $\mathbf{A} \in \mathbb{R}^{k \times d}$ and $\mathbf{b} \in \mathbb{R}^k$.

Visualization of constraints of 2D and 3D linear program.

QUADRATIC PROGRAM (QP)

• f quadratic form s.t. linear constraints. Standard form:

$$\min_{\mathbf{x} \in \mathbb{R}^d} \frac{1}{2} \mathbf{x}^\top \mathbf{A} \mathbf{x} + \mathbf{b}^\top \mathbf{x} + \mathbf{c}$$

s.t. $\mathbf{E} \mathbf{x} \le \mathbf{f}$
 $\mathbf{G} \mathbf{x} = \mathbf{h}$

 $\mathbf{A} \in \mathbb{R}^{d \times d}, \mathbf{b} \in \mathbb{R}^{d}, \mathbf{c} \in \mathbb{R}, \mathbf{E} \in \mathbb{R}^{k \times d}, \mathbf{f} \in \mathbb{R}^{k}, \mathbf{G} \in \mathbb{R}^{l \times d}, \mathbf{h} \in \mathbb{R}^{l}.$

Visualization of quadratic objective (dashed) over linear constraints (grey). Source: Ma, Signal Processing Optimization Techniques, 2015.

CONVEX PROGRAM (CP)

• *f* convex, convex inequality constraints, linear equality constraints. Standard form:

$$\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x})$$
exts.t. $g_i(\mathbf{x}) \le 0, i = 1, ..., k$

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

for $\mathbf{A} \in \mathbb{R}^{l \times d}$ and $\mathbf{b} \in \mathbb{R}^{l}$.

▶ Click for source

Convex program (left) vs. nonconvex program (right).

FURTHER TYPES

Quadratically constrained linear program (QCLP) and quadratically constrained quadratic program (QCQP).

EXAMPLE 1: UNIT CIRCLE

min
$$f(x_1, x_2) = x_1 + x_2$$

exts.t. $h(x_1, x_2) = x_1^2 + x_2^2 - 1 = 0$

f, h smooth. Problem **not convex** (S is not a convex set).

Note: If the constraint is replaced by $g(x_1, x_2) = x_1^2 + x_2^2 - 1 \le 0$, the problem is a convex program, even a quadratically constrained linear program (QCLP).

EXAMPLE 2: MAXIMUM LIKELIHOOD

Experiment: Draw m balls from a bag with balls of k different colors. Color j has a probability of p_j of being drawn.

Probability to get outcome $\mathbf{x} = (x_1, ..., x_k)$, with x_j = number of balls drawn in color j:

$$f(\mathbf{x}, m, \mathbf{p}) = \begin{cases} \frac{m!}{x_1! \cdots x_k!} \cdot p_1^{x_1} \cdots p_k^{x_k} & \text{if } \sum_{i=1}^k x_i = m \\ 0 & \text{otherwise} \end{cases}$$

The parameters p_i are subject to the following constraints:

$$0 \le p_j \le 1$$
 for all i

$$\sum_{j=1}^{m} p_j = 1$$

EXAMPLE 2: MAXIMUM LIKELIHOOD

For a fixed m and a sample $\mathcal{D} = (\mathbf{x}^{(1)}, ..., \mathbf{x}^{(n)})$, where $\sum_{j=1}^k \mathbf{x}_j^{(i)} = m$ for all i = 1, ..., n, the negative log-likelihood is:

$$-\ell(\boldsymbol{p}) = -\log\left(\prod_{i=1}^{n} \frac{m!}{\mathbf{x}_{1}^{(i)}! \cdots \mathbf{x}_{k}^{(i)}!} \cdot \boldsymbol{p}_{1}^{\mathbf{x}_{1}^{(i)}} \cdots \boldsymbol{p}_{k}^{\mathbf{x}_{k}^{(i)}}\right)$$

$$= \sum_{i=1}^{n} \left[-\log(m!) + \sum_{j=1}^{k} \log(\mathbf{x}_{j}^{(i)}!) - \sum_{j=1}^{k} \mathbf{x}_{j}^{(i)} \log(\boldsymbol{p}_{j})\right]$$

$$\propto -\sum_{i=1}^{n} \sum_{j=1}^{k} \mathbf{x}_{j}^{(i)} \log(\boldsymbol{p}_{j})$$

Convex program: convex^(*) objective + box/linear constraints

(*): log is concave, $-\log$ is convex, and the sum of convex functions is convex

EXAMPLE 3: RIDGE REGRESSION

Ridge regression can be formulated as regularized ERM:

$$\hat{\theta}_{\mathsf{Ridge}} = \operatorname*{arg\,min}_{\boldsymbol{\theta}} \left\{ \sum_{i=1}^{n} \left(y^{(i)} - \boldsymbol{\theta}^{\top} \mathbf{x} \right)^{2} + \lambda ||\boldsymbol{\theta}||_{2}^{2} \right\}$$

Equivalently it can be written as constrained optimization problem:

$$\min_{\boldsymbol{\theta}} \quad \sum_{i=1}^{n} \left(\boldsymbol{\theta}^{\top} \mathbf{x}^{(i)} - y^{(i)} \right)^{2}$$
exts.t. $\|\boldsymbol{\theta}\|_{2} \leq t$

f, g smooth. **Convex program** (convex objective, quadratic constraint).

EXAMPLE 4: LASSO REGRESSION

Lasso regression can be formulated as regularized ERM:

$$\hat{\theta}_{\mathsf{Lasso}} = \operatorname*{arg\,min}_{\boldsymbol{\theta}} \left\{ \sum_{i=1}^{n} \left(y^{(i)} - \boldsymbol{\theta}^{\top} \mathbf{x} \right)^{2} + \lambda ||\boldsymbol{\theta}||_{1} \right\}$$

Equivalently it can be written as constrained optimization problem:

$$\min_{\boldsymbol{\theta}} \quad \sum_{i=1}^{n} \left(\boldsymbol{\theta}^{\top} \mathbf{x}^{(i)} - y^{(i)} \right)^{2}$$
s.t. $\|\boldsymbol{\theta}\|_{1} < t$

f smooth, g not smooth. Still convex program.

The SVM problem can be formulated in 3 equivalent ways: two primal, and one dual one (we will see later what "dual" means). Here, we only discuss the nature of the optimization problems. A more thorough statistical derivation of SVMs is given in "Supervised learning".

Formulation 1 (primal): ERM with Hinge loss

$$\sum_{i=1}^{n} \max \left(1 - y^{(i)} f^{(i)}, 0\right) + \lambda \|\boldsymbol{\theta}\|_{2}^{2}, \quad f^{(i)} := \boldsymbol{\theta}^{\top} \mathbf{x}^{(i)}$$

V1

Unconstrained, convex problem with nonsmooth objective

Formulation 2 (primal): Geometric formulation

- Find decision boundary which separates classes with maximum safety distance
- Distance to points closest to decision boundary ("safety margin γ ") should be **maximized**

Formulation 2 (primal): Geometric formulation

$$\begin{aligned} & \min_{\boldsymbol{\theta}, \theta_0} & \frac{1}{2} \|\boldsymbol{\theta}\|^2 \\ & \text{s.t.} & & y^{(i)} \left(\left\langle \boldsymbol{\theta}, \mathbf{x}^{(i)} \right\rangle + \theta_0 \right) \geq 1 & \forall i \in \{1, \dots, n\} \end{aligned}$$

Maximize safety margin γ . No point is allowed to violate safety margin constraint.

Formulation 2 (primal): Geometric formulation (soft constraints)

$$\begin{split} & \min_{\boldsymbol{\theta}, \theta_0, \zeta^{(i)}} & \frac{1}{2} \|\boldsymbol{\theta}\|^2 + C \sum_{i=1}^n \zeta^{(i)} \\ & \text{s.t.} & \quad \boldsymbol{y}^{(i)} \left(\left\langle \boldsymbol{\theta}, \boldsymbol{x}^{(i)} \right\rangle + \theta_0 \right) \geq 1 - \zeta^{(i)} \quad \forall \, i \in \{1, \dots, n\}, \\ & \text{and} & \quad \zeta^{(i)} \geq 0 \quad \forall \, i \in \{1, \dots, n\}. \end{split}$$

Maximize safety margin γ . Margin violations are allowed, but are minimized.

The problem is a **QP**: Quadratic objective with linear constraints.

Formulation 3 (dual): Dualizing the primal formulation

$$\max_{\boldsymbol{\alpha} \in \mathbb{R}^n} \quad \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y^{(i)} y^{(j)} \left\langle \mathbf{x}^{(i)}, \mathbf{x}^{(j)} \right\rangle$$

s.t.
$$0 \le \alpha_i \le C \quad \forall i \in \{1, \ldots, n\}, \quad \sum_{i=1}^n \alpha_i y^{(i)} = 0$$

Matrix notation:

$$\max_{\boldsymbol{\alpha} \in \mathbb{R}^n} \ \boldsymbol{\alpha}^{\top} \mathbf{1} - \frac{1}{2} \boldsymbol{\alpha}^{\top} \operatorname{diag}(\boldsymbol{y}) \mathbf{X}^{\top} \mathbf{X} \operatorname{diag}(\boldsymbol{y}) \boldsymbol{\alpha}$$

s.t. $0 < \alpha_i < C \ \forall i \in \{1, \dots, n\}, \ \boldsymbol{\alpha}^{\top} \boldsymbol{y} = 0$

Kernelization: Replace dot product between **x**'s with $K_{ij} = k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$, where $k(\cdot, \cdot)$ is

a positive definite kernel function ($\Rightarrow K$ positive semi-definite).

$$\max_{\alpha \in \mathbb{R}^n} \alpha^\top \mathbf{1} - \frac{1}{2} \alpha^\top \operatorname{diag}(\mathbf{y}) \mathbf{K} \operatorname{diag}(\mathbf{y}) \alpha$$

s.t. $0 \le \alpha_i \le C \quad \forall i \in \{1, ..., n\}, \quad \alpha^\top \mathbf{y} = 0$

This is QP with a single affine equality constraint and *n* box constraints.

