L6: SVM II

Shan Wang Lingnan College, Sun Yat-sen University

2020 Data Mining and Machine Learning LN3119 https://wangshan731.github.io/DM-ML/

Last and this lecture

- ✓ Linear SVM
 - ✓ Model
 - √ Strategy
 - ✓ Algorithm
- ✓ Regularization
- Kernels
- Application: diabetes care revisit

Reference: CS420, Weinan Zhang (SJTU)

Linear SVM

$$y = f_{\theta}(x) = \begin{cases} +1, & \text{if } \theta' x + \theta_0 \ge 0 \\ -1, & \text{if } \theta' x + \theta_0 < 0 \end{cases}$$

Prim

$$\min_{\boldsymbol{\theta}, \theta_0} \frac{1}{2} \|\boldsymbol{\theta}\|^2$$
 s.t. $y_i(\boldsymbol{\theta}' \boldsymbol{x}_i + \theta_0) \ge 1, i = 1, ..., N$

Dual

$$\max_{\alpha \ge 0} \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j x_j' x_i$$

$$s.t. \sum_{i=1}^{N} \alpha_i y_i = 0$$

Regularization: soft margin

$$\min_{\boldsymbol{\theta}, \theta_0} \frac{1}{2} \|\boldsymbol{\theta}\|^2 + C \sum_{i=1}^{N} \xi_i$$
s.t. $y_i(\boldsymbol{\theta}' \boldsymbol{x_i} + \theta_0) \ge 1 - \xi_i, i = 1, ..., N$

$$\xi_i \ge 0, \qquad i = 1, ..., N$$

Quadratic programming

$$\min_{\theta,\theta_0} \frac{1}{2} \|\theta\|^2 + C \sum_{i=1}^{N} \xi_i \qquad \max_{\alpha} \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j x_j' x_i$$

$$\theta'(x_i + \theta_0) \ge 1 - \xi_i, i = 1, ..., N$$

$$s.t. \sum_{i=1}^{N} \alpha_i y_i = 0$$

$$\xi_i \ge 0, \qquad i = 1, ..., N$$

$$0 \le \alpha_i \le C, \qquad i = 1, ..., N$$

SMO algorithm

Kernels

Non-separable Data

When soft margin does not work

May be solved by soft margin

Cannot be solved by soft margin

Non-separable Data (cont.)

- Mapping feature vectors to a different space
- For example

$$\phi(x) = x^2$$

Non-separable Data (cont.)

• More generally,

From linear SVM to kernel SVM

Linear SVM:

$$\sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \frac{\mathbf{x_i}' \mathbf{x_j}}{\mathbf{x_i}' \mathbf{x_j}}$$

- the inner product of $x_i, x_j : x_i'x_j$
- After feature mapping

$$\sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \frac{\phi(\mathbf{x_i})' \phi(\mathbf{x_j})}{\phi(\mathbf{x_i})}$$

- the inner product of $\phi(x_i)$, $\phi(x_i)$: $\phi(x_i)'\phi(x_i)$
- Kernel function: $K(x_i, x_j) = \phi(x_i)'\phi(x_j)$

Kernel trick

$$K(x_i, x_j) = \phi(x_i)'\phi(x_j)$$

With the example feature mapping function

$$\phi(x) = \begin{bmatrix} x \\ x^2 \\ x^3 \end{bmatrix}$$

The corresponding kernel is

$$K(x_i, x_j) = \phi(x_i)'\phi(x_j) = x_i x_j + x_i^2 x_j^2 + x_i^3 x_j^3$$
[Trick]

- For many cases, without defining $\phi(\cdot)$, we can directly define $K(x_i, x_j)$ for each pair of x_i, x_j
- For prediction, only need $K(x_i, x)$ on support vector x_i

Kernel matrix

- For a finite set of instances $\{x_1, x_2, ..., x_N\}$
- The kernel matrix K is defined as $\left[K_{ij}\right]_{i,j=1,2,...,N}$ where $K_{ij}=K(\pmb{x_i},\pmb{x_j})$
- If $K(\cdot,\cdot)$ is a valid kernel (that is, is defined by some feature mapping ϕ), then the corresponding kernel matrix $K = \begin{bmatrix} K_{ij} \end{bmatrix}_{ij} \in \mathbb{R}^{N*N}$ is symmetric positive semi-definite matrix
 - Symmetric: $K_{ij} = K_{ji}$
 - Positive semi-definite: for $\forall z \in \mathbb{R}^N$, we have $z'Kz \geq 0$

How to prove it?

Kernels

Example valid kernels

- Gaussian kernel
 - $K(\boldsymbol{x}, \boldsymbol{z}) = \exp(-\frac{\|\boldsymbol{x} \boldsymbol{z}\|^2}{2\sigma^2})$
 - Radial basis function (RBF) kernel
- Simple polynomial kernel
 - $K(\mathbf{x}, \mathbf{z}) = (\mathbf{x}'\mathbf{z})^d$
- Cosine similarity kernel
 - $K(\mathbf{x}, \mathbf{z}) = \frac{x'z}{\|\mathbf{x}\| \|\mathbf{z}\|}$
- Sigmoid kernel
 - $K(\mathbf{x}, \mathbf{z}) = \tanh(\alpha \mathbf{x}' \mathbf{z} + c)$
 - $\bullet \tanh(b) = \frac{1 \exp(-2b)}{1 + \exp(-2b)}$

Pros and cons of SVM

Advantages:

- The solution is globally optimal
 - Based on convex optimization
- Can be applied to both linear/non-linear classification problems
- Can be applied to high-dimensional data
 - The complexity of the data set mainly depends on the support vectors
- Complete theoretical guarantee
 - Compared with deep learning

Disadvantages:

- The number of parameters α is number of samples, thus hard to apply to large-scale problems
 - SMO can ease the problem a bit
- Mainly applies to binary classification problems
 - For multi-classification problems, can solve several binary classification problems, but might face the problem of imbalanced data

Application

Application: Diabetes Care Revisit

Claims Data

Predict poor quality care or not

Medical Claims

Diagnosis, Procedures, Doctor/Hospital, Cost

Pharmacy Claims

Drug, Quantity, Doctor, Medication Cost

- Electronically available
- Standardized

- Not 100% accurate
- Under-reporting is common
- Claims for hospital visits can be vague

Application: Diabetes Care Revisit

Building a model

- We use a SVM
 - Predicts an outcome variable, or *dependent/response variable*
 - Using a set of independent/explanatory variables
- Dependent variable: Poor care or not
 - is equal to 1 if the patient had poor care, and equal to -1 if the patient had good care
- Independent variables:
 - Number of Office Visits (OfficeVisits)
 - Number of Narcotics Prescribed (Narcotics)
 - Etc.

Model for Healthcare Quality

- Plot of the independent variables
 - Number of Office Visits (OfficeVisits)
 - Number of Narcotics Prescribed (Narcotics)
- Red are poor care
- Green are good care
- Are these variables predictive of good care or poor care?

Application: Diabetes Care Revisit

Let's get our hands dirty!

Data Analysis

Let's do some basic data analysis using our WHO data.

60000

Linear SVM

SVM with RBF kernel

K-fold cross validation and testing

- Best model after tuning
 - Sigmoid kernel
- In-sample accuracy
 - 82.16%
- Out-of-sample
 - 79.49%

Lecture 6 wrap-up

- ✓ Linear SVM
 - ✓ Model
 - √ Strategy
 - ✓ Algorithm
- ✓ Regularization
- ✓ Kernels
- ✓ Application: diabetes care revisit

Next lecture

- Supervised learning
 - Linear regression
 - Logistic regression
 - SVM and kernel
 - Tree models
- Deep learning
 - Neural networks
 - Convolutional NN
 - Recurrent NN

- Unsupervised learning
 - Clustering
 - PCA
 - EM

- Reinforcement learning
 - MDP
 - ADP
 - Deep Q-Network

2020 Data Mining and Machine Learning LN3119 https://wangshan731.github.io/DM-ML/

Questions?

Shan Wang (王杉)

https://wangshan731.github.io/