변수 전처리 + 파생변수(성능 중심)

전처리

- 변수 전처리 진행 + 파생변수(성능중심)
- 전처리 Kaggle 참조

Bank Churn LightGBM and CatBoost (0.8945)

Explore and run machine learning code with Kaggle Notebooks | Using data from multiple data sources

k https://www.kaggle.com/code/abdmental01/bank-ch urn-lightgbm-and-catboost-0-8945

1. 이상치

- 의미
 - 。 의미상 존재할 수 없는 이상치 존재하지 않음
- 시각화
 - BoxPlot을 통한 이상치 Age, CreditScore 존재
 - 의미상 제거하기엔 무리가 있으므로 데이터 보존

2. 로그변환 & 스케일링

- 연속형 변수 대상으로 진행
 - Age, Balance, CreditScore, EstimatedSalary
- 로그 변환
 - Age, Balance
- 스케일링
 - Age, CreditScore
 - Robust Scailing

- Balance
 - MinMax Scaling
- EstimatedSalary
 - Standard Scaling

3. **파생변수**

- TF-IDF, SVD를 통한 파생변수
 - TF-IDF
 - 상위 1000개 주요 단어 벡터화 사용
 - TF-IDF 계산 및 변환
 - SVD
 - TF-IDF 행렬 3개 주요 성분으로 압축
 - SVD 학습 및 변환
 - 。 대상
 - Surname
 - Sur_Geo_Gend_Sal
 - CustomerId + Surname + Geography + Gender + EstimatedSalary
- 단일 범주 파생변수
 - 。 Senior : 고령층
 - Age ≥ 60:1
 - Age < 60:0
 - 。 AgeCat : 연령대
 - 연령 20살 단위로 분해
 - 0-9:0
 - 10-29:1

• 30-49:2

• 50-69:3

• 70-89:4

• 90-109:5

• 변수 조합

- Active_By_CreditCard : 신용카드 보유 여부와 활성화 멤버 관계
 - HasCrCard * IsActiveMember
- Products_Per_Tenure : 이용 상품 대비 은행 이용 기간
 - Tenure / NumOfProducts

4. 인코딩

- OneHot Encoding
 - AgeCat
 - Geography
 - Gender
 - NumOfProducts

다중공선성

: VIF 값 10 이상 다중공선성 문제 판단

Feature	VIF	
Tenure	9.336355	
HasCrCard	2.043815	
IsActiveMember	4.08547	
CreditScore_Scaled	1.001171	
EstimatedSalary_Scaled	1.001988	
Age_Scaled	3.398987	

Feature	VIF	
Products_Per_Tenure	12.44187	
Geography_France	inf	
Geography_Germany	inf	
Geography_Spain	inf	
Gender_Female	inf	
Gender_Male	inf	

Feature	VIF
Balance_Scaled	1.793245
Surname_tfidf_0	1.014683
Surname_tfidf_1	1.001599
Surname_tfidf_2	1.019276
Sur_Geo_Gend_Sal_tfidf_0	1.011713
Sur_Geo_Gend_Sal_tfidf_1	1.004023
Sur_Geo_Gend_Sal_tfidf_2	1.007042
Senior	1.675373
Active_by_CreditCard	5.035984

Feature	VIF
NumOfProducts_1	inf
NumOfProducts_2	inf
NumOfProducts_3	inf
NumOfProducts_4	inf
AgeCat_1	inf
AgeCat_2	inf
AgeCat_3	inf
AgeCat_4	inf
AgeCat_5	inf

• 5 - 10

• Tenure: 9.336355

Active_by_CreditCard: 5.035984

• > 10

Products_Per_Tenure: 12.44187

- 의미적으로 유의할 수 있는 가능성이 있으므로 유지하고 분석 진행
 - 최종 모델에서의 feature_importance, permutation_importance를 통해 제거 여부 재차 확인

추가 시각화

: 더미변수끼리의 상관계수 비교 제외

[Correlation Heatmap]

Exited

。 양

- Age_Scaled(0.34)
 - 연령이 높을수록 이탈 가능성이 다소 증가
- NumOfProducts_1(0.31)
 - 이용중인 상품이 1개일 경우 이탈 가능성 다소 증가
- AgeCat_2(0.26)
 - 30세에서 49세 사이의 고객의 이탈 가능성 다소 증가

- NumOfProducts_2(-0.38)
 - 이용중인 상품이 2개일 경우 이탈 가능성이 다소 감소
- IsActiveMember(-0.21)
 - 활성 멤버일 수록 이탈 가능성이 다소 감소
- Active_By_CreditCard(-0.18)
 - 신용카드를 보유한 고객 중 활성 고객은 이탈 가능성이 다소 낮음

• 전체 상관계수

- 다수의 파생변수 생성으로 변수간 상관관계가 복잡해지고 중복성이 높아짐
- 。 수치의 신뢰성과 해석력 저하
- 전체 상관계수 분석은 참고용으로 활용

분석 모델링

1. 데이터 분리

- train = 70%
- test = 30%

2. 사용 모델 결정

- AutoML Top 5(AUC 기준)
 - CatBoost : CatBoost Classifier
 - LightGBM: Light Gradient Boosting Machine
 - GBC: Gradient Boosting Classifier
 - XGBoost: Extreme Gradient Boosting
 - AdaBoost: Ada Boost Classifier

3. 하이퍼 파라미터 최적화

• Optuna + StratifiedKFold : AWS에서 제공하는 모델 별 하이퍼 파라미터 목록 사용

CatBoost Hyper Parameters

Best AUC: 0.8929926718960395

Best hyperparameters:

iterations: 567

learning_rate: 0.02900858676615259

depth: 7

I2_leaf_reg: 1.2647515608981543

random_strength: 0.23498389010132387

bagging_temperature: 0.024432250592590334

grow_policy: Depthwise

border_count: 174

od_wait: 50

LightGBM Hyper Parameters

Best AUC: 0.8932907005145936

Best hyperparameters: num_boost_round: 633

learning_rate: 0.03342462805497592

num_leaves: 56
max_depth: 14

min_data_in_leaf: 52

feature_fraction: 0.6364882192462488 bagging_fraction: 0.8584003437311537

bagging_freq: 2

min_gain_to_split: 0.14446805858185238

lambda_l1: 0.07945719422821337 lambda_l2: 0.09228860158082569

tree_learner: feature

max_bin: 277

early_stopping_rounds: 15

num_threads: 8

scale_pos_weight: 4.955235602871113

GBC Hyper Parameters

Best AUC: 0.8872064342320748

Best hyperparameters:

n_estimators: 473

learning_rate: 0.021945351322294467

max_depth: 10

min_samples_split: 2 min_samples_leaf: 3

subsample: 0.9750612643600708

max_features: sqrt loss: exponential

ccp_alpha: 0.00015702247402449507 validation fraction: 0.2984753709846782

n_iter_no_change: 15

tol: 0.005547267099418254

min_impurity_decrease: 0.09411712873217182

max_leaf_nodes: 86

XGBoost Hyper Parameters

Best AUC: 0.8862153263809549

Best hyperparameters:

num_round: 360

alpha: 0.7558611471242505

base_score: 0.5566055700158926

booster: gbtree

colsample_bylevel: 0.652980718854562 colsample_bynode: 0.6207456906259616 colsample_bytree: 0.7084669537044522

eta: 0.2931701770417505

eval_metric: auc

gamma: 0.38038567264515777

grow_policy: lossguide

lambda: 7.6102845156108465

max_bin: 142

max_delta_step: 7 max_depth: 11 max_leaves: 33

min_child_weight: 3.6279534873415384

objective: binary:logistic

scale_pos_weight: 4.199769049496863

seed: 675

subsample: 0.7974634701882836

verbosity: 1

early_stopping_rounds: 100

AdaBoost Hyper Parameters

Best AUC: 0.8885549835886202

Best hyperparameters:

n_estimators: 339

learning_rate: 0.028444996574740207

algorithm: SAMME.R random_state: 582

max_depth: 5

min_samples_split: 8 min_samples_leaf: 3 max_features: sqrt max_leaf_nodes: 12

min_impurity_decrease: 0.00011591970091207504

4. 보팅

- 4_1: 조합 생성
 - 사용 모델
 - CatBoost, LightGBM, GBC, XGBoost, AdaBoost
 - 단일 모델부터 최대 5개 모델의 조합까지, 모든 경우의 수를 생성
 - 총 31개의 조합에 대해 소프트 보팅 방식으로 평가 진행
- 4_2: 가중치 생성
 - 。 각 모델의 ROC AUC 점수 기반 가중치 생성
 - 가중치 계산
 - 전체 모델 ROC AUC 점수 합산하여 전체 점수 계산
 - 각 모델의 가중치

○ 해당 모델 ROC AUC score / 전체 모델 ROC AUC 점수 합산

。 단일 모델 점수

■ LightGBM: 0.8932907005145936

CatBoost: 0.8929926718960395

AdaBoost: 0.8885549835886202

■ GBC: 0.8872064342320748

XGBoost: 0.8862153263809549

○ 생성된 가중치

LightGBM: 0.20081800009368792

CatBoost: 0.20075100117484296

AdaBoost: 0.1997533777915236

■ GBC: 0.19945021445997535

XGBoost: 0.1992274064799702

5. 보팅 최적 모델

- 모델
 - LightGBM + CatBoost + AdaBoost
- 성능
 - Best AUC: 0.8938
- Fold AUCs
 - 0.8934978365688402
 - 0.8938326442565854
 - 0.8955069275443579
 - o 0.894669072207884
 - 0.8917147260538993

가중치

- 0.20081800009368792
- 0.20075100117484296
- 0.1997533777915236

• Feature Importance & Permutation Importance

• Feature Importance

Top 5

- · EstimatedSalary_Scaled
- CreditScore_Scaled
- Surname_tfidf_0
- · Balance_Scaled
- Surname_tfidf_1

Permutation importance

■ Top 5

- NumOfProducts_2
- Age_Scaled
- Balance_Scaled
- IsActiveMember
- Geography_Germany

。 결론

- Balance_Scaled가 공통적으로 포함
- 제거 할 변수
 - Products_Per_Tenure

• Feature importance: 568.14

Permutation importance : 0.0001

VIF: 12.44187

6. 중요도 기반 추가 모델링

6_1. 사용모델

AutoML

- CatBoost
- LightGBM
- GBC
- XGBoost
- AdaBoost

• 6_2. 하이퍼 파라미터 최적화

GBC Hyper Parameters

Best AUC: 0.8873325360161234

Best hyperparameters:

n estimators: 473

learning_rate: 0.021945351322294467

max_depth: 10

min_samples_split: 2 min_samples_leaf: 3

subsample: 0.9750612643600708

max_features: sqrt loss: exponential

ccp_alpha: 0.00015702247402449507 validation_fraction: 0.2984753709846782

n_iter_no_change: 15

tol: 0.005547267099418254

min_impurity_decrease: 0.09411712873217182

max_leaf_nodes: 86

LightGBM Hyper Parameters

Best AUC: 0.8927221334546112

Best hyperparameters: num_boost_round: 500

learning_rate: 0.029888796349948284

num_leaves: 65

max_depth: 9

min_data_in_leaf: 32

feature_fraction: 0.6358713698824439 bagging_fraction: 0.8661769682816917

bagging_freq: 9

min_gain_to_split: 0.045680108972356276

lambda_l1: 0.04081755440857283 lambda_l2: 0.026788484813059954

tree_learner: data max_bin: 268

early_stopping_rounds: 23

num_threads: 4

scale_pos_weight: 3.4872207884352115

XGBoost Hyper Parameters

Best AUC: 0.8882229217305595

Best hyperparameters:

num_round: 106

alpha: 0.6330437539243525

base_score: 0.39870903675669067

booster: gbtree

colsample_bylevel: 0.9923227855716938 colsample_bynode: 0.4151277034733893 colsample_bytree: 0.997498141356141

eta: 0.27192150582147717

eval_metric: auc

gamma: 0.04712099219003624

grow_policy: lossguide

lambda: 2.852528179903329

max_bin: 341

max_delta_step: 4

max_depth: 7 max_leaves: 0

min_child_weight: 4.542860426764745

objective: binary:logistic

scale_pos_weight: 1.6658131783101051

seed: 141

subsample: 0.6819570352186918

verbosity: 3

early_stopping_rounds: 24

AdaBoost Hyper Parameters

Best AUC: 0.8886618978806397

Best hyperparameters:

n_estimators: 266

learning_rate: 0.09909004448349125

algorithm: SAMME.R random_state: 519

max_depth: 5

min_samples_split: 9 min_samples_leaf: 6 max_features: sqrt max_leaf_nodes: 41

min_impurity_decrease: 0.00015191581774246914

CatBoost Hyper Parameters

Best AUC: 0.8930844927272021

Best hyperparameters:

iterations: 535

learning_rate: 0.06964529408502032

depth: 6

I2_leaf_reg: 0.027235876696900984 random_strength: 4.836212370043395

bagging_temperature: 1.9799984680862954

grow_policy: Lossguide

border_count: 166

od_wait: 28

6_3. 보팅

○ 6_3_1. 조합 생성

■ 사용 모델

CatBoost, LightGBM, GBC, XGBoost, AdaBoost

- 단일 모델부터 최대 5개 모델의 조합까지, 모든 경우의 수를 생성
 - 총 31개의 조합에 대해 소프트 보팅 방식으로 평가 진행

○ 6_3_2. 가중치 생성

- 각 모델의 ROC AUC 점수 기반 가중치 생성
 - 가중치 계산
 - 。 전체 모델 ROC AUC 점수 합산하여 전체 점수 계산
 - 각 모델의 가중치
 - 해당 모델 ROC AUC score / 전체 모델 ROC AUC 점수 합
 산

■ 단일 모델 점수

CatBoost: 0.8930844927272021

LightGBM: 0.8927221334546112

• AdaBoost: 0.8886618978806397

XGBoost: 0.8882229217305595

• GBC: 0.8873325360161234

■ 생성된 가중치

CatBoost: 0.2006920628693158

LightGBM: 0.20061063425812803

AdaBoost: 0.19969822668671516

XGBoost: 0.19959958089247345

• GBC: 0.1993994952933675

• 6_4. 보팅 최적 모델

- 。 모델
 - LightGBM + AdaBoost + CatBoost
- 。 성능

Best AUC: 0.8937

Fold AUCs

- **0.89347933808576**
- **0.8939094168129269**
- **0.8958242243985506**
- **0.8955682948083079**
- **0.8919839217903821**

○ 가중치

- **0.20061063425812803**
- **0.19969822668671516**
- **0.2006920628693158**

7. 최종 모델 선정

• Kaggle 점수 기반 판단

	중요도 반영 전 🗸	중요도 반영 후
Colab ROC Score	0.8936	0.8939
Kaggle Roc Score_Private	0.89251	0.89219
Kaggle Roc Score_Public	0.88890	0.88868