HW5

Y. Konpaku

1. QUESTION

- 1. We say two calculi \mathbf{C} and \mathbf{D} are equivalent, denoted as $\mathbf{C} \simeq \mathbf{D}$, iff they derive the same set of strings. Prove that $\mathbf{G1s4} \simeq \mathbf{G1s4}'$ where $\mathbf{G1s4}' := \mathbf{G1t} \oplus (\mathbb{R}\square) = \mathbf{G1s4} \oplus (\mathbb{K}\square)$ and $\mathbf{G1s4} \simeq \mathbf{G1s4}''$ where $\mathbf{G1s4}'' := \mathbf{G1k4} \oplus (\mathbb{L}\square)$ if it holds or give a counterexample if not.
- 2. Prove that $\mathbf{G1k4} \vdash \Rightarrow \Box \neg (\varphi \rightarrow \Box \varphi) \rightarrow \Box \bot$ and give a countermodel of $\neg \Box \neg (\varphi \rightarrow \Box \varphi) = \Diamond (\varphi \rightarrow \Box \varphi)$ in $\mathbf{K4}$.

2. ANSWER

- 1. **Proof.** We simply show that $(K\square)$ is derivable from $(L\square)$ and $(R\square)$ to prove $\mathbf{G1s4} \simeq \mathbf{G1s4}'$. Similarly, we show that $(4\square)$ is derivable from $(L\square)$ and $(R\square)$ then $(R\square)$ from $(L\square)$ and $(4\square)$ to prove $\mathbf{G1s4} \simeq \mathbf{G1s4}''$.
 - For any sequent with the form $\Theta \Rightarrow \eta$, we can derive $\square \Theta \Rightarrow \square \eta$ by following derivation, where $L^{\square |\Theta|}$ means applying $(L\square)$ on every formula in Θ . This operation can always be finished since Θ must be finitely many. Other similar notations below have the same meaning.

$$\frac{\begin{array}{c}\Theta \Rightarrow \eta\\ \hline \square\Theta \Rightarrow \eta\end{array}}{\begin{array}{c}\square\Theta \Rightarrow \Pi} R\square$$

• Similarly, we derive $(4\square)$ by applying following rules on any sequent with the form $\Theta, \square\Theta \Rightarrow \eta$.

$$\frac{\begin{array}{c} \Theta, \Box \Theta \Rightarrow \eta \\ \hline \Box \Theta, \Box \Theta \Rightarrow \eta \end{array}}{\begin{array}{c} \Box \Theta, \Box \Theta \Rightarrow \eta \\ \hline \Box \Theta \Rightarrow \Box \eta \end{array}} \begin{array}{c} L\Box^{|\Theta|} \\ LC^{|\Box \Theta|} \\ \hline \Box \Theta \Rightarrow \Box \eta \end{array}$$

• We only need $(4\square)$ to derive $(R\square)$.

$$\frac{ \begin{array}{c} \Box\Theta\Rightarrow\eta\\ \hline \Theta,\Box\Theta\Rightarrow\eta\\ \hline \Box\Theta\Rightarrow\Box\eta \end{array}} LW^{|\Theta|} 4\Box$$

2.

•

$$\frac{\varphi \Rightarrow \varphi}{\varphi \Rightarrow \Box \varphi, \varphi} \xrightarrow{RW} \xrightarrow{\bot \Rightarrow \varphi} \xrightarrow{RW} \xrightarrow{L \to} \xrightarrow{L \to} \xrightarrow{L \to} \xrightarrow{RW} \xrightarrow{\neg(\varphi \to \Box \varphi) \Rightarrow \varphi} \xrightarrow{L \to} \xrightarrow{L \to} \xrightarrow{L \to} \xrightarrow{\square \neg(\varphi \to \Box \varphi) \Rightarrow \varphi} \xrightarrow{LW} \xrightarrow{\Box \neg(\varphi \to \Box \varphi), \neg(\varphi \to \Box \varphi) \Rightarrow \varphi} \xrightarrow{LW} \xrightarrow{\Box \neg(\varphi \to \Box \varphi), \varphi \Rightarrow \Box \varphi} \xrightarrow{R \to} \xrightarrow{L \to \bot} \xrightarrow{L \to \bot} \xrightarrow{Ax} \xrightarrow{\Box \neg(\varphi \to \Box \varphi) \Rightarrow \varphi \to \Box \varphi} \xrightarrow{RW} \xrightarrow{L \to \bot} \xrightarrow{L \to \bot} \xrightarrow{L \to \bot} \xrightarrow{LW} \xrightarrow{\Box \neg(\varphi \to \Box \varphi), \neg(\varphi \to \Box \varphi) \Rightarrow \bot} \xrightarrow{LW} \xrightarrow{L \to \bot} \xrightarrow{L \to \bot} \xrightarrow{LW} \xrightarrow{L \to \bot} \xrightarrow{L \to$$

• Consider a model contains only one point w and an empty relation \prec , i.e., $w \not\prec w$. Since $\Box \neg (\varphi \rightarrow \Box \varphi)$ holds vacuously and its negation is false in this model.	w has no successor,
	Created with Madoko.net.