

Ù&@^œ^¦ £ \$Q}&È		G€»Á/ājoÁ, EÐ, ÁÙ^ãr{ ã&ÁÖ^•ãt}
PÔX	Ùœ) 忦åÁÚXTæ¢ÁÜæ&∖ā),*ÁÛ^•c^{	
	Ü^]¦^•^} ææãç^ÁÔæk&` ææãi}•ÁËÆÆÜÒÒÁIËF€	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 20°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load, $P_g =$	30.00 psf	
Sloped Roof Snow Load, P _s =	20.62 psf	(ASCE 7-10, Eq. 7.4-1)
$I_s =$	1.00	
$C_s =$	0.91	
$C_e =$	0.90	

1.20

 $C_t =$

2.3 Wind Loads

Design Wind Speed, V =	150 mph	Exposure Category = C
Heiaht <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 35.33$ psf Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ _{TOP}	=	1.050	
Cf+ BOTTOM	=	1.050 1.650 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.400	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.840 (Suction)	applied away from the surface.
Cf- portou	_	-1 000	approd and, nom are contact.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
$T_a =$	0.00	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.0W + 0.5S $0.9D + 1.0W^{M}$ 1.54D + 1.3E + 0.2S R $0.56D + 1.3E^{R}$ 1.54D + 1.25E + 0.2S $^{\circ}$

(ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2)

0.56D + 1.25E O

1.2D + 1.6S + 0.5W

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S1.0D + 0.6W1.0D + 0.75L + 0.45W + 0.75S $0.6D + 0.6W^{M}$ (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E O 1.1785D + 0.65625E + 0.75S $^{\circ}$ 0.362D + 0.875E O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

[™] Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>1398.00</u>	<u>6833.10</u>	k
Compressive Load =	<u>4518.78</u>	<u>5281.16</u>	k
Lateral Load =	<u>10.36</u>	3094.41	k
Moment (Weak Axis) =	0.02	0.01	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Weight of Concrete = 145 pcf 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 165117.7 in-lbs Resisting Force Required = 2501.78 lbs A minimum 132in long x 36in wide x S.F. = 1.67 Weight Required = 4169.64 lbs to resist overturning. Minimum Width = <u>36 in</u> in Weight Provided = 7177.50 lbs Sliding Force = 713.84 lbs

Friction = 0.4 Weight Required = 1784.59 lbs Resisting Weight = 7177.50 lbs Additional Weight Required =

Cohesion 713.84 lbs Sliding Force =

Cohesion = 130 psf 33.00 ft² Area = Resisting = 3588.75 lbs Additional Weight Required = 0 lbs

Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft f'c = 2500 psi Length = 8 in

Footing Reinforcement

Use fiber reinforcing with (3) #5 rebar.

18in tall ballast foundation is required

Use a 132in long x 36in wide x 18in tall ballast foundation to resist sliding. Friction is OK.

Use a 132in long x 36in wide x 18in tall ballast foundation. Cohesion is OK.

Ballast Width

Shear key is not required.

Bearing Pressure

<u>36 in</u> 37 in 38 in 39 in $P_{ftg} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(3 \text{ ft}) =$

ASD LC		1.0D -	+ 1.0S			1.0D+	- 0.6W		1.0D + 0.75L + 0.45W + 0.75S			0.6D + 0.6W				
Width	36 in	37 in	38 in	39 in	36 in	37 in	38 in	39 in	36 in	37 in	38 in	39 in	36 in	37 in	38 in	39 in
FA	1437 lbs	1437 lbs	1437 lbs	1437 lbs	1768 lbs	1768 lbs	1768 lbs	1768 lbs	2284 lbs	2284 lbs	2284 lbs	2284 lbs	-636 lbs	-636 lbs	-636 lbs	-636 lbs
FB	1463 lbs	1463 lbs	1463 lbs	1463 lbs	2138 lbs	2138 lbs	2138 lbs	2138 lbs	2580 lbs	2580 lbs	2580 lbs	2580 lbs	-3145 lbs	-3145 lbs	-3145 lbs	-3145 lbs
F _V	160 lbs	160 lbs	160 lbs	160 lbs	1268 lbs	1268 lbs	1268 lbs	1268 lbs	1058 lbs	1058 lbs	1058 lbs	1058 lbs	-1428 lbs	-1428 lbs	-1428 lbs	-1428 lbs
P _{total}	10077 lbs	10276 lbs	10475 lbs	10675 lbs	11084 lbs	11284 lbs	11483 lbs	11682 lbs	12042 lbs	12241 lbs	12440 lbs	12640 lbs	525 lbs	645 lbs	765 lbs	884 lbs
M	3634 lbs-ft	3634 lbs-ft	3634 lbs-ft	3634 lbs-ft	5258 lbs-ft	5258 lbs-ft	5258 lbs-ft	5258 lbs-ft	6366 lbs-ft	6366 lbs-ft	6366 lbs-ft	6366 lbs-ft	2440 lbs-ft	2440 lbs-ft	2440 lbs-ft	2440 lbs-ft
е	0.36 ft	0.35 ft	0.35 ft	0.34 ft	0.47 ft	0.47 ft	0.46 ft	0.45 ft	0.53 ft	0.52 ft	0.51 ft	0.50 ft	4.65 ft	3.78 ft	3.19 ft	2.76 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft								
f _{min}	245.3 psf	244.5 psf	243.8 psf	243.1 psf	249.0 psf	248.1 psf	247.3 psf	246.6 psf	259.7 psf	258.5 psf	257.4 psf	256.4 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	365.4 psf	361.4 psf	357.6 psf	354.0 psf	422.8 psf	417.2 psf	412.0 psf	407.0 psf	470.1 psf	463.3 psf	456.8 psf	450.7 psf	136.6 psf	81.2 psf	69.7 psf	66.2 psf

Maximum Bearing Pressure = 470 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 36in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Weak Side Design

Overturning Check

 $M_0 = 1200.2 \text{ ft-lbs}$

Resisting Force Required = 800.16 lbs S.F. = 1.67

Weight Required = 1333.60 lbs Minimum Width = 36 in in Weight Provided = 7177.50 lbs A minimum 132in long x 36in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E				
Width		36 in			36 in			36 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	227 lbs	595 lbs	227 lbs	809 lbs	2381 lbs	809 lbs	66 lbs	174 lbs	66 lbs		
F _V	1 lbs	0 lbs	1 lbs	4 lbs	0 lbs	4 lbs	0 lbs	0 lbs	0 lbs		
P _{total}	9113 lbs	7178 lbs	9113 lbs	9267 lbs	7178 lbs	9267 lbs	2665 lbs	7178 lbs	2665 lbs		
M	3 lbs-ft	0 lbs-ft	3 lbs-ft	13 lbs-ft	0 lbs-ft	13 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft		
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft		
L/6	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft		
f _{min}	275.9 psf	217.5 psf	275.9 psf	280.0 psf	217.5 psf	280.0 psf	80.7 psf	217.5 psf	80.7 psf		
f _{max}	276.4 psf	217.5 psf	276.4 psf	281.6 psf	217.5 psf	281.6 psf	80.8 psf	217.5 psf	80.8 psf		

Maximum Bearing Pressure = 282 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 36in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 36in wide x 18in tall ballast foundation and fiber reinforcing with (3) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	3.476 k	Maximum Axial Load =	4.693 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity =	12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity =	7.421 k
Utilization =	<u>47%</u>	Utilization =	<u>63%</u>
Diagonal Strut			
Maximum Axial Load =	2.139 k		
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting for	r double shear.
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)	
Utilization =	<u>29%</u>		
	A . a	Strute under compression are	shown to doman

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, $h_{sx} =$ 40.12 in Allowable Story Drift for All Other Structures, Δ = { 0.020 h_{sx} 0.802 in Max Drift, $\Delta_{MAX} =$ 0.032 in

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_b = 111 \text{ in}$$

$$J = 0.432$$

$$307.078$$

$$1 - \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{\frac{\theta_y}{\theta_b} Fcy}\right)^{\frac{1}{2}}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})]}$$

$$\phi F_L = 27.6 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_{b} = 111$$

$$J = 0.432$$

$$195.283$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})]}$$

$$\phi F_1 = 28.8$$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

3.4.16

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 1.6Dp$$

 46.7

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

 $\phi F_L = 23.1 \text{ ksi}$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

38.9 ksi

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 37.0588$$

 $\phi F_L =$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr - mDbr^* h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 25.1 \text{ ksi}$$

$$lx = 897074 \text{ mm}^4$$

2.155 in⁴

$$y = 41.015 \text{ mm}$$

 $Sx = 1.335 \text{ in}^3$

$$M_{max}St = 2.788 \text{ k-ft}$$

3.4.18

$$h/t = 32.195$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k=$$
 23.1 ksi

$$ly = 446476 \text{ mm}^4$$

$$1.073 \text{ in}^4$$

$$x = 45.5 \text{ mm}$$

$$Sy = 0.599 \text{ in}^3$$

Compression

3.4.9

$$b/t = 32.195 \\ S1 = 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = \phi c [Bp-1.6Dp*b/t] \\ \phi F_L = 25.1 \text{ ksi} \\ b/t = 37.0588 \\ S1 = 12.21 \\ S2 = 32.70 \\ \phi F_L = (\phi c k2*\sqrt{(BpE))/(1.6b/t)} \\$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 21.94 \text{ ksi}$
 $\phi F_L = 1215.13 \text{ mm}^2$
 $\phi F_L = 1.88 \text{ in}^2$
 $\phi F_L = 41.32 \text{ kips}$

 $\phi F_L = 21.9 \text{ ksi}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: Weak Axis: 3.4.14 3.4.14 88.9 in 88.9 $L_b =$ J= 1.08 J= 1.08 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_1 = 29.4 \text{ ksi}$ $\phi F_1 = 29.2$

3.4.16

3.4.16 b/t = 16.2 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = \frac{12.2}{1.6Dp}$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y F cy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used
$$Rb/t = 18.1$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = \phi b[Bt-Dt^* \sqrt{(Rb/t)}]$$

31.1 ksi

N/A for Weak Direction

3.4.16.1

 $\phi F_L =$

h/t = 7.4

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\begin{array}{lll} \phi F_L = & 43.2 \text{ ksi} \\ \\ \phi F_L St = & 29.4 \text{ ksi} \\ \\ \text{lx} = & 984962 \text{ mm}^4 \\ \\ 2.366 \text{ in}^4 \\ \\ \text{y} = & 43.717 \text{ mm} \\ \\ \text{Sx} = & 1.375 \text{ in}^3 \\ \\ \text{M}_{\text{max}} \text{St} = & 3.363 \text{ k-ft} \\ \end{array}$$

3.4.18
$$h/t = 16.2$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 33.3 \text{ ksi} \\ ly = & 923544 \text{ mm}^4 \\ & 2.219 \text{ in}^4 \\ x = & 40 \text{ mm} \\ Sy = & 1.409 \text{ in}^3 \\ M_{max} W k = & 3.904 \text{ k-ft} \end{array}$$

Compression

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$ $\phi F_L =$ 33.3 ksi

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi c [Bt - Dt^* \sqrt{(Rb/t)}]$
 $\phi F_L = 31.09 \text{ ksi}$
 $\phi F_L = 31.09 \text{ ksi}$
A = 1215.13 mm²
1.88 in²

58.55 kips

 $P_{max} =$

Rev. 11.05.2015

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_{b} = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

 $\phi F_L = 31.4 \text{ ksi}$

3.4.16.1

4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

24.5

Weak Axis:

3.4.14

$$\begin{split} L_b &= & 24.8 \\ J &= & 0.942 \\ & 38.7028 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= & 1701.56 \\ \phi F_L &= & \phi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)})}] \\ \phi F_L &= & 31.4 \end{split}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18 h/t =

$$S1 = \frac{Bbr - \frac{\theta_{y}}{\theta_{b}} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_{0} = 27.5$$

$$C_{0} = 27.5$$

$$S2 = \frac{k_{1}Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_{L} = 1.3\phi y Fcy$$

$$\phi F_{L} = 43.2 \text{ ksi}$$

$$\phi F_{L} St = 28.2 \text{ ksi}$$

$$\Delta V = 279836 \text{ mm}^{4}$$

$$\Delta V = 27.5 \text{ mm}$$

$$\Delta V = 27.5 \text{ mm}$$

$$\Delta V = 0.621 \text{ in}^{3}$$

3.4.18

h/t =

$$\begin{array}{rcl} \text{S1} = & 36.9 \\ \text{m} = & 0.65 \\ \text{C}_0 = & 27.5 \\ \text{Cc} = & 27.5 \\ \text{S2} = & \frac{k_1 B b r}{m D b r} \\ \text{S2} = & 77.3 \\ \text{ϕF}_L = & 1.3 \text{ϕy$Fcy} \\ \text{$\phi$F}_L = & 43.2 \text{ ksi} \\ \\ \text{ϕF}_L \text{Wk} = & 28.2 \text{ ksi} \\ \text{$\text{Iy}} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{$\text{x}} = & 27.5 \text{ mm} \\ \text{$\text{Sy}} = & 0.621 \text{ in}^3 \\ \end{array}$$

 $M_{max}Wk = 1.460 \text{ k-ft}$

24.5

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{1.3Fcy}$ mDbr

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

0.0

28.85 kips

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

$Strut = \underline{55x55}$

 $P_{max} =$

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 86.60 in 86.6 0.942 0.942 J= J = 135.148 135.148 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_1 =$ 29.6 ksi $\phi F_1 =$ 29.6

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

4.16.1 Not Used Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

3.4.16.1

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.86047$$

$$\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$$

$$\varphi F_L = 7.50396 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y F c y$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L W k = 28.2 \text{ ksi}$$

$$\begin{array}{rcl} \text{VF}_{L}\text{VK} = & 28.2 \text{ ks} \\ \text{Iy} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{X} = & 27.5 \text{ mm} \\ \text{Sy} = & 0.621 \text{ in}^3 \\ \text{M}_{max}\text{Wk} = & 1.460 \text{ k-ft} \end{array}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S2 = 32.70$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 55.91 \text{ in}$$

$$J = 0.942$$

87.2529

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}}]$$

$$\phi F_L =$$

3.4.16

$$\varphi \Gamma_L = 30.4 \text{ KS}$$

S1 = 12.2 $S2 = \frac{k_1 Bp}{1.6Dp}$

 $\phi F_L = \phi b[Bp-1.6Dp*b/t]$

28.2 ksi

3.4.16

Weak Axis:

55.91

0.942

30.4

 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

$$b/t = 24.5$$

 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

 $\phi F_L =$

$$S1 = 12.$$

$$S2 = \frac{k_1 Bp}{1.6 Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

 $\phi F_L =$

3.4.16.1 Not Used

Rb/t = 0.0

$$Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \ ksi \\ lx = & 279836 \ mm^4 \\ & 0.672 \ in^4 \\ y = & 27.5 \ mm \\ Sx = & 0.621 \ in^3 \\ M_{max} St = & 1.460 \ k\text{-ft} \end{array}$$

 $\phi F_L = 43.2 \text{ ksi}$

$$\begin{array}{ccc} \phi F_L W k = & 28.2 \text{ ksi} \\ ly = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ Sy = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.29339 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.76107 \\ \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 15.9235 \text{ ksi} \end{array}$$

3.4.9

$$\begin{array}{lll} \textbf{9} \\ \text{b/t} = & 24.5 \\ \text{S1} = & 12.21 \text{ (See 3.4.16 above for formula)} \\ \text{S2} = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi \textbf{F}_{L} = & \phi \textbf{c} [\textbf{Bp-1.6Dp*b/t}] \\ \phi \textbf{F}_{L} = & 28.2 \text{ ksi} \\ \\ \textbf{b/t} = & 24.5 \\ \text{S1} = & 12.21 \\ \text{S2} = & 32.70 \\ \phi \textbf{F}_{L} = & \phi \textbf{c} [\textbf{Bp-1.6Dp*b/t}] \\ \phi \textbf{F}_{L} = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF$Cy} \\ \text{$\phi$F}_L &= & 33.25 \text{ ksi} \\ \text{ϕF}_L &= & 15.92 \text{ ksi} \\ \text{A} &= & 663.99 \text{ mm}^2 \\ & & 1.03 \text{ in}^2 \\ \text{P}_{\text{max}} &= & 16.39 \text{ kips} \end{aligned}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-54.031	-54.031	0	0
2	M14	Υ	-54.031	-54.031	0	0
3	M15	Υ	-54.031	-54.031	0	0
4	M16	V	-54 031	-54 031	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-103.443	-103.443	0	0
2	M14	٧	-103.443	-103.443	0	0
3	M15	V	-162.554	-162.554	0	0
4	M16	V	-162.554	-162.554	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	236.442	236.442	0	0
2	M14	V	181.272	181.272	0	0
3	M15	V	98.517	98.517	0	0
4	M16	V	98 517	98 517	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	. B	Fa	В	.Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Y		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25				1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Y		1	.56					6	1.25												

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Load Combinations (Continued)

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
	LATERAL - ASD 1.238D + 0.875E				1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65	Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	599.202	2	1258.242	2	.736	1	.004	1	Ó	1	Ó	1
2		min	-754.231	3	-1616.224	3	.031	15	0	15	0	1	0	1
3	N7	max	.031	9	1219.796	1	303	15	0	15	0	1	0	1
4		min	189	2	-310.397	3	-7.971	1	017	1	0	1	0	1
5	N15	max	.023	9	3475.985	1	0	2	0	2	0	1	0	1
6		min	-2.199	2	-1075.384	3	0	1	0	1	0	1	0	1
7	N16	max	2170.298	2	4062.432	2	0	2	0	2	0	1	0	1
8		min	-2380.316	3	-5256.231	3	0	9	0	9	0	1	0	1
9	N23	max	.031	9	1219.796	1	7.971	1	.017	1	0	1	0	1
10		min	189	2	-310.397	3	.303	15	0	15	0	1	0	1
11	N24	max	599.202	2	1258.242	2	031	15	0	15	0	1	0	1
12		min	-754.231	3	-1616.224	3	736	1	004	1	0	1	0	1
13	Totals:	max	3366.124	2	12264.724	2	0	11						
14		min	-3889.74	3	-10184.857	3	0	1						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	83.742	1_	493.154	1	-5.426	15	0	3	.199	1	0	1
2			min	3.077	15	-802.875	3	-148.79	1	016	2	.007	15	0	3
3		2	max	83.742	1	345.065	1	-4.17	15	0	3	.064	1	.703	3
4			min	3.077	15	-565.041	3	-114.238	1	016	2	.002	15	431	1
5		3	max	83.742	1	196.975	1	-2.914	15	0	3	.001	3	1.161	3
6			min	3.077	15	-327.206	3	-79.686	1	016	2	036	1	709	1
7		4	max	83.742	1	48.885	1	-1.658	15	0	3	003	12	1.376	3
8			min	3.077	15	-89.372	3	-45.133	1	016	2	1	1	836	1
9		5	max	83.742	1	148.463	3	402	15	0	3	004	12	1.345	3
10			min	3.077	15	-99.205	1	-10.581	1	016	2	128	1	81	1
11		6	max	83.742	1	386.297	3	23.971	1	0	3	004	15	1.07	3
12			min	3.077	15	-247.295	1	019	3	016	2	121	1	632	1
13		7	max	83.742	1	624.132	3	58.524	1	0	3	003	15	.551	3
14			min	3.077	15	-395.385	1	1.329	12	016	2	079	1	301	1
15		8	max	83.742	1	861.966	3	93.076	1	0	3	.002	2	.182	2
16			min	3.077	15	-543.475	1	2.584	12	016	2	004	3	213	3
17		9	max	83.742	1	1099.8	3	127.628	1	0	3	.112	1	.816	1
18			min	3.077	15	-691.564	1	3.84	12	016	2	.001	12	-1.221	3
19		10	max	83.742	1	1337.635	3	162.18	1	.016	2	.261	1	1.603	1
20			min	3.077	15	-839.654	1	5.096	12	0	3	.006	12	-2.473	3
21		11	max	83.742	1	691.564	1	-3.84	12	.016	2	.112	1	.816	1
22			min	3.077	15	-1099.8	3	-127.628	1	0	3	.001	12	-1.221	3
23		12	max	83.742	1	543.475	1	-2.584	12	.016	2	.002	2	.182	2
24			min	3.077	15	-861.966	3	-93.076	1	0	3	004	3	213	3
25		13	max	83.742	1	395.385	1	-1.329	12	.016	2	003	15	.551	3
26			min	3.077	15	-624.132	3	-58.524	1	0	3	079	1	301	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC		LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	
27		14	max	83.742	1_	247.295	1	.019	3	.016	2	004	15	1.07	3
28			min	3.077	15	-386.297	3	-23.971	1	0	3	121	1	632	1
29		15	max	83.742	1	99.205	1	10.581	1	.016	2	004	12	1.345	3
30			min	3.077	15	-148.463	3	.402	15	0	3	128	1	81	1
31		16	max	83.742	1	89.372	3	45.133	1	.016	2	003	12	1.376	3
32			min	3.077	15	-48.885	1	1.658	15	0	3	1	1	836	1
33		17	max	83.742	1	327.206	3	79.686	1	.016	2	.001	3	1.161	3
34			min	3.077	15	-196.975	1	2.914	15	0	3	036	1	709	1
35		18	max	83.742	1	565.041	3	114.238	1	.016	2	.064	1	.703	3
36			min	3.077	15	-345.065	1	4.17	15	0	3	.002	15	431	1
37		19	max	83.742	1	802.875	3	148.79	1	.016	2	.199	1	0	1
38			min	3.077	15	-493.154	1	5.426	15	0	3	.007	15	0	3
39	M14	1	max	40.86	1	529.204	1	-5.605	15	.011	3	.23	1	0	1
40	IVIIT	<u> </u>	min	1.502	15	-633.617	3	-153.704	1	013	2	.008	15	0	3
41		2	max	40.86	1	381.114	1	-4.349	15	.011	3	.089	1	.558	3
42			min	1.502	15	-452.485	3	-119.152	1	013	2	.003	15	468	1
43		3		40.86	1	233.024	1	-3.093	15	.011	3	.003	3	.93	3
44		3	max	1.502		-271.353	3	-84.599	1		2	015	1	783	1
		1	min		15					013					_
45		4	max	40.86	1_	84.942	2	-1.837	15	.011	3	002	12	1.116	3
46		-	min	1.502	15	-90.221	3	-50.047	1_	013	2	085	1	947	1
47		5	max	40.86	1	90.911	3	581	15	.011	3	004	12	1.116	3
48			min	1.502	15	-63.156	1	-15.495	1	013	2	118	1_	958	1
49		6	max	40.86	1	272.043	3	19.057	1	.011	3	004	15	.929	3
50			min	1.502	15	-211.245	1	282	3	013	2	116	1	817	1
51		7	max	40.86	1	453.175	3	53.61	1	.011	3	003	15	.556	3
52			min	1.502	15	-359.335	1	1.153	12	013	2	079	1	524	2
53		8	max	40.86	1_	634.307	3	88.162	1	.011	3	0	10	001	15
54			min	1.502	15	-507.425	1	2.409	12	013	2	006	1	094	2
55		9	max	40.86	1	815.438	3	122.714	1	.011	3	.102	1	.519	1
56			min	1.502	15	-655.515	1	3.665	12	013	2	0	3	747	3
57		10	max	40.86	1	996.57	3	157.267	1	.013	2	.246	1	1.269	1
58			min	1.502	15	-803.605	1	4.921	12	011	3	.005	12	-1.679	3
59		11	max	40.86	1	655.515	1	-3.665	12	.013	2	.102	1	.519	1
60			min	1.502	15	-815.438	3	-122.714	1	011	3	0	3	747	3
61		12	max	40.86	1	507.425	1	-2.409	12	.013	2	0	10	001	15
62			min	1.502	15	-634.307	3	-88.162	1	011	3	006	1	094	2
63		13	max	40.86	1	359.335	1	-1.153	12	.013	2	003	15	.556	3
64		1	min	1.502	15	-453.175	3	-53.61	1	011	3	079	1	524	2
65		14	max	40.86	1	211.245	1	.282	3	.013	2	004	15	.929	3
66			min	1.502	15	-272.043	3	-19.057	1	011	3	116	1	817	1
67		15	max	40.86	1	63.156	1	15.495	1	.013	2	004	12	1.116	3
68		'	min	1.502	15	-90.911	3	.581	15	011	3	118	1	958	1
69		16	max	40.86	1	90.221	3	50.047	1	.013	2	002	12	1.116	3
70		10	min	1.502	15	-84.942	2	1.837	15	011	3	085	1	947	1
71		17	max	40.86	1	271.353	3	84.599	1	.013	2	.003	3	.93	3
72		17	min	1.502	15	-233.024	1	3.093	15	011	3	015	1	783	1
		10													_
73 74		18	max min	40.86 1.502	15	452.485 -381.114	3	119.152 4.349	15	.013 011	3	.089	<u>1</u>	. <u>558</u> 468	3
		40													
75		19	max	40.86	1	633.617	3	153.704	1	.013	2	.23	1	0	1
76	N44.5	4	min	1.502	15	-529.204	1	5.605	15	011	3	.008	15	0	3
77	M15	1	max	-1.575	15	721.594	2	-5.603	15		2	.229	1_	0	2
78			min	-42.754	1_	-346.907	3	-153.694		009	3	.008	15	0	3
79		2	max	-1.575	15	516.994	2	-4.347	15	.013	2	.089	1	.307	3
80			min	-42.754	1	-250.829	3	-119.142	1_	009	3	.003	15	636	2
81		3	max	-1.575	15	312.394	2	-3.091	15	.013	2	.002	3	.516	3
82			min	-42.754	1	-154.75	3	-84.589	1	009	3	015	1	-1.063	2
83		4	max	-1.575	15	107.794	2	-1.835	15	.013	2	002	12	.625	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]	LC		LC		LC	z-z Mome	LC
84			min	-42.754	1	-58.672	3	-50.037	1	009	3	085	1	-1.279	2
85		5	max	-1.575	15	37.406	3	579	15	.013	2	004	12	.636	3
86			min	-42.754	1	-96.806	2	-15.485	1	009	3	118	1	-1.284	2
87		6	max	-1.575	15	133.484	3	19.068	1	.013	2	004	15	.548	3
88			min	-42.754	1	-301.406	2	182	3	009	3	117	1	-1.08	2
89		7	max	-1.575	15	229.562	3	53.62	1	.013	2	003	15	.362	3
90			min	-42.754	1	-506.006	2	1.214	12	009	3	079	1	665	2
91		8	max	-1.575	15	325.64	3	88.172	1	.013	2	0	10	.076	3
92			min	-42.754	1	-710.605	2	2.469	12	009	3	006	1	051	1
93		9	max	-1.575	15	421.718	3	122.724	1	.013	2	.102	1	.796	2
94			min	-42.754	1	-915.205	2	3.725	12	009	3	.001	12	308	3
95		10	max	-1. <u>575</u>	15	517.797	3	157.277	1	.009	3	.246	1	1.842	2
96			min	-42.754	1	-1119.805	2	4.981	12	013	2	.006	12	79	3
97		11	max	-1.575	15	915.205	2	-3.725	12	.009	3	.102	1	.796	2
98			min	-42.754	1	-421.718	3	-122.724	1	013	2	.001	12	308	3
99		12	max	-1.575	15	710.605	2	-2.469	12	.009	3	0	10	.076	3
100			min	-42.754	1	-325.64	3	-88.172	1	013	2	006	1	051	1
101		13	max	-1.575	15	506.006	2	-1.214	12	.009	3	003	15	.362	3
102			min	-42.754	1	-229.562	3	-53.62	1	013	2	079	1	665	2
103		14	max	-1.575	15	301.406	2	.182	3	.009	3	004	15	.548	3
104			min	-42.754	1	-133.484	3	-19.068	1	013	2	117	1	-1.08	2
105		15	max	-1.575	15	96.806	2	15.485	1	.009	3	004	12	.636	3
106			min	-42.754	1	-37.406	3	.579	15	013	2	118	1	-1.284	2
107		16	max	-1.575	15	58.672	3	50.037	1	.009	3	002	12	.625	3
108			min	-42.754	1	-107.794	2	1.835	15	013	2	085	1	-1.279	2
109		17	max	-1.575	15	154.75	3	84.589	1	.009	3	.002	3	.516	3
110			min	-42.754	1	-312.394	2	3.091	15	013	2	015	1	-1.063	2
111		18	max	-1.575	15	250.829	3	119.142	1	.009	3	.089	1	.307	3
112			min	-42.754	1	-516.994	2	4.347	15	013	2	.003	15	636	2
113		19	max	-1.575	15	346.907	3	153.694	1	.009	3	.229	1	0	2
114			min	-42.754	1	-721.594	2	5.603	15	013	2	.008	15	Ö	3
115	M16	1	max	-3.275	15	684.713	2	-5.432	15	.012	1	.201	1	0	2
116			min	-89.083	1	-318.094	3	-149.043	1	012	3	.007	15	0	3
117		2	max	-3.275	15	480.113	2	-4.176	15	.012	1	.065	1	.278	3
118			min	-89.083	1	-222.016	3	-114.491	1	012	3	.002	15	599	2
119		3	max	-3.275	15	275.514	2	-2.92	15	.012	1	0	3	.456	3
120			min	-89.083	1	-125.937	3	-79.939	1	012	3	035	1	987	2
121		4	max	-3.275	15	70.914	2	-1.664	15	.012	1	003	12	.536	3
122			min	-89.083	1	-29.859	3	-45.386	1	012	3	099	1	-1.165	2
123		5	max	-3.275	15	66.219	3	408	15	.012	1	004	12	.518	3
124			min		1	-133.686		-10.834	1	012	3	128	1	-1.133	2
125		6	max	-3.275	15	162.297	3	23.718	1	.012	1	004	15	.4	3
126			min	-89.083	1	-338.286	2	.275	12	012	3	121	1	89	2
127		7	max	-3.275	15	258.375	3	58.271	1	.012	1	003	15	.184	3
128			min	-89.083	1	-542.886	2	1.531	12	012	3	079	1	437	2
129		8	max	-3.275	15	354.453	3	92.823	1	.012	1	.001	2	.226	2
130			min	-89.083	1	-747.486	2	2.787	12	012	3	003	3	131	3
131		9	max	-3.275	15	450.531	3	127.375	1	.012	1	.112	1	1.099	2
132			min	-89.083	1	-952.086	2	4.043	12	012	3	.002	12	544	3
133		10	max	-3.275	15	546.61	3	161.927	1	.012	3	.26	1	2.183	2
134		10	min	-89.083	1	-1156.685	2	5.299	12	012	1	.007	12	-1.057	3
135		11		-3.275	15	952.086	2	-4.043	12	.012	3	.112	1	1.099	2
136		11	max	-89.083	1	-450.531	3	-127.375		012	1	.002	12	544	3
		12	min	- <u>69.063</u> -3.275							3				2
137		12	max		15	747.486	2	-2.787	12	.012		.001	2	.226	
138		12	min	<u>-89.083</u>	1_	-354.453	3	-92.823	12	012	1	003	3	131	3
139		13	max	-3.275	15	542.886	2	-1.531	12	.012	3	003	15	.184	3
140			min	-89.083	1	-258.375	3	-58.271	1	012	1	079	1	437	2

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]			LC			Torque[k-ft]	LC			z-z Mome	LC
141		14	max	-3.275	15	338.286	2	275	12	.012	3	004	15	.4	3
142			min	-89.083	_1_	-162.297	3	-23.718	1	012	_1_	121	1_	89	2
143		15	max	-3.275	<u> 15</u>	133.686	2	10.834	1	.012	3	004	12	.518	3
144			min	-89.083	1	-66.219	3	.408	15	012	1	128	1	-1.133	2
145		16	max	-3.275	15	29.859	3	45.386	1	.012	3	003	12	.536	3
146			min	-89.083	1	-70.914	2	1.664	15	012	1	099	1	-1.165	2
147		17	max	-3.275	15	125.937	3	79.939	1	.012	3	0	3	.456	3
148			min	-89.083	1	-275.514	2	2.92	15	012	1	035	1	987	2
149		18	max	-3.275	15	222.016	3	114.491	1	.012	3	.065	1	.278	3
150			min	-89.083	1	-480.113	2	4.176	15	012	1	.002	15	599	2
151		19	max	-3.275	15	318.094	3	149.043	1	.012	3	.201	1	0	2
152			min	-89.083	1	-684.713	2	5.432	15	012	1	.007	15	0	3
153	M2	1	max		1	2.027	4	.783	1	0	3	0	3	0	1
154			min	-1443.063	3	.478	15	.029	15	0	1	0	1	0	1
155		2		1103.306	1	1.994	4	.783	1	0	3	0	1	0	15
156			min	-1442.778	3	.47	15	.029	15	0	1	0	15	0	4
157		3	max		1	1.961	4	.783	1	0	3	0	1	0	15
158			min	-1442.494	3	.462	15	.029	15	0	1	0	15	001	4
159		4		1104.064	1	1.927	4	.783	1	0	3	0	1	0	15
160			min	-1442.209	3	.454	15	.029	15	0	1	0	15	002	4
161		5	max		<u> </u>	1.894	4	.783	1	0	3	0	1	0	15
162			min	-1441.925	3	.446	15	.029	15	0	1	0	15	002	4
163		6		1104.823		1.86	4	.783	1	0	3	0	1	0	15
164		-0	min	-1441.641	3	.438	15	.029	15	0	1	0	15	002	4
165		7		1105.202	<u>ა</u> 1	1.827		.783	1		_		1 <u>5</u>	002 0	
				-1441.356			4 15			0	<u>3</u>	.001	15	_	15
166		0	min		3	.43		.029	15	0	_	0		003	4
167		8	max		1_	1.794	4	.783	1	0	3	.001	1_	0	15
168			min	-1441.072	3	.423	15	.029	15	0	1_	0	15	003	4
169		9		1105.961	1_	1.76	4	.783	1	0	3	.002	1_	0	15
170		40	min	-1440.787	3	.415	15	.029	15	0	1_	0	15	004	4
171		10	max	1106.34	1_	1.727	4	.783	1	0	3	.002	1_	001	15
172		4.4	min	-1440.503	3	.407	15	.029	15	0	1_	0	15	004	4
173		11		1106.719	1_	1.693	4	.783	1	0	3	.002	1_	001	15
174		4.0	min	-1440.218	3	.399	15	.029	15	0	1	0	15	005	4
175		12		1107.098	1_	1.66	4	.783	1	0	3	.002	1_	001	15
176		4.0	min	-1439.934	3	.391	15	.029	15	0	1	0	15	005	4
177		13		1107.478	_1_	1.627	4	.783	1_	0	3	.002	_1_	001	15
178			min	-1439.649	3_	.383	15	.029	15	0	1	0	15	006	4
179		14		1107.857	1_	1.593	4	.783	1	0	3	.003	_1_	001	15
180			min	-1439.365	3	.372	12	.029	15	0	1_	0	15	006	4
181		15		1108.236	1_	1.56	4	.783	1	0	3	.003	_1_	002	15
182			min	-1439.081	3	.359	12	.029	15	0	1	0	15	006	4
183		16		1108.615	1_	1.526	4	.783	1	0	3	.003	1_	002	15
184			min		3	.346	12	.029	15	0	1	0	15	007	4
185		17		1108.995	_1_	1.493	4	.783	1	0	3	.003	_1_	002	15
186			min	-1438.512	3	.333	12	.029	15	0	1	0	15	007	4
187		18		1109.374	_1_	1.46	4	.783	1	0	3	.003	1_	002	15
188			min	-1438.227	3	.32	12	.029	15	0	1	0	15	008	4
189		19		1109.753	_1_	1.426	4	.783	1	0	3	.004	1_	002	15
190			min	-1437.943	3	.307	12	.029	15	0	1	0	15	008	4
191	M3	1	max		2	7.982	4	.073	1	0	3	0	_1_	.008	4
192			min	-680.637	3	1.877	15	.003	15	0	1	0	15	.002	15
193		2	max		2	7.212	4	.073	1	0	3	0	_1_	.005	2
194			min		3	1.696	15	.003	15	0	1	0	15	0	12
195		3	max		2	6.442	4	.073	1	0	3	0	_1_	.003	2
196			min		3	1.515	15	.003	15	0	1	0	15	0	3
197		4	max	544.139	2	5.672	4	.073	1	0	3	0	1_	0	2

Model Name

: Schletter, Inc. : HCV

....

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
198			min	-681.021	3	1.334	15	.003	15	0	1	0	15	002	3
199		5	max	543.969	2	4.902	4	.073	1	0	3	0	1	0	15
200			min	-681.148	3	1.153	15	.003	15	0	1	0	15	003	3
201		6	max	543.798	2	4.132	4	.073	1	0	3	0	1	001	15
202			min	-681.276	3	.972	15	.003	15	0	1	0	15	005	4
203		7	max	543.628	2	3.363	4	.073	1	0	3	0	1	001	15
204			min	-681.404	3	.791	15	.003	15	0	1	0	15	006	4
205		8	max	543.457	2	2.593	4	.073	1	0	3	0	1	002	15
206			min	-681.532	3	.61	15	.003	15	0	1	0	15	008	4
207		9	max	543.287	2	1.823	4	.073	1	0	3	0	1	002	15
208			min	-681.659	3	.429	15	.003	15	0	1	0	15	009	4
209		10	max	543.117	2	1.053	4	.073	1	0	3	0	1	002	15
210			min	-681.787	3	.248	15	.003	15	0	1	0	15	009	4
211		11	max	542.946	2	.406	2	.073	1	0	3	0	1	002	15
212			min	-681.915	3	088	3	.003	15	0	1	0	15	009	4
213		12	max	542.776	2	114	15	.073	1	0	3	0	1	002	15
214			min	-682.043	3	538	3	.003	15	0	1	0	15	009	4
215		13	max	542.606	2	295	15	.073	1	0	3	0	1	002	15
216			min	-682.17	3	-1.257	4	.003	15	0	1	0	15	009	4
217		14	max	542.435	2	476	15	.073	1	0	3	0	1	002	15
218			min	-682.298	3	-2.027	4	.003	15	0	1	0	15	008	4
219		15	max	542.265	2	657	15	.073	1	0	3	0	1	002	15
220			min	-682.426	3	-2.797	4	.003	15	0	1	0	15	007	4
221		16	max	542.095	2	838	15	.073	1	0	3	0	1	001	15
222			min	-682.554	3	-3.567	4	.003	15	0	1	0	15	006	4
223		17	max		2	-1.019	15	.073	1	0	3	0	1	001	15
224			min	-682.682	3	-4.337	4	.003	15	0	1	0	15	004	4
225		18	max		2	-1.2	15	.073	1	0	3	0	1	0	15
226			min	-682.809	3	-5.107	4	.003	15	0	1	0	15	002	4
227		19	max	541.584	2	-1.381	15	.073	1	0	3	0	1	0	1
228			min	-682.937	3	-5.877	4	.003	15	0	1	0	15	0	1
229	M4	1	max		1	0	1	303	15	0	1	0	1	0	1
230			min	-312.697	3	0	1	-8.275	1	0	1	0	15	0	1
231		2	max		1	0	1	303	15	0	1	0	12	0	1
232			min	-312.569	3	0	1	-8.275	1	0	1	0	1	0	1
233		3	max		1	0	1	303	15	0	1	0	15	0	1
234			min	-312.441	3	0	1	-8.275	1	0	1	001	1	0	1
235		4	max	1217.241	1	0	1	303	15	0	1	0	15	0	1
236			min	-312.314	3	0	1	-8.275	1	0	1	002	1	0	1
237		5	max	1217.411	1	0	1	303	15	0	1	0	15	0	1
238			min	-312.186	3	0	1	-8.275	1	0	1	003	1	0	1
239		6		1217.581	1	0	1	303	15	0	1	0	15	0	1
240			min		3	0	1	-8.275	1	0	1	004	1	0	1
241		7		1217.752	1	0	1	303	15	0	1	0	15	0	1
242			min	-311.93	3	0	1	-8.275	1	0	1	005	1	0	1
243		8		1217.922	1	0	1	303	15	0	1	0	15	0	1
244					3	0	1	-8.275	1	0	1	006	1	0	1
245		9		1218.092	1	0	1	303	15	0	1	0	15	0	1
246				-311.675		0	1	-8.275	1	0	1	007	1	0	1
247		10		1218.263	1	0	1	303	15	0	1	0	15	0	1
248			min		3	0	1	-8.275	1	0	1	008	1	0	1
249		11		1218.433	1	0	1	303	15	0	1	0	15	0	1
250				-311.419		0	1	-8.275	1	0	1	009	1	0	1
251		12		1218.604	1	0	1	303	15	0	1	0	15	0	1
252		12	min	-311.292	3	0	1	-8.275	1	0	1	01	1	0	1
253		13		1218.774	1	0	1	303	15	0	1	0	15	0	1
254		'		-311.164	_	0	1	-8.275	1	0	1	011	1	0	1
207			111011	011.104	<u> </u>			0.210				.011		<u> </u>	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

055	Member	Sec		Axial[lb]								y-y Mome			
255 256		14		1218.944	<u>1</u> 3	0	1	303 -8.275	<u>15</u> 1	0	<u>1</u> 1	012	15 1	0 0	1
257		15		-311.036 1219.115	<u> </u>	0	1	303	15	0	+	012	15	0	1
258		13		-310.908	3	0	1	-8.275	1	0	1	013	1	0	1
259		16		1219.285	1	0	1	303	15	0	1	0	15	0	1
260			min		3	0	1	-8.275	1	0	1	014	1	0	1
261		17		1219.455	1	0	1	303	15	0	1	0	15	0	1
262				-310.653	3	0	1	-8.275	1	0	1	015	1	0	1
263		18	max	1219.626	1	0	1	303	15	0	1	0	15	0	1
264			min	-310.525	3	0	1	-8.275	1	0	1	016	1	0	1
265		19	max	1219.796	1_	0	1	303	15	0	1	0	15	0	1
266			min	-310.397	3	0	1	-8.275	1	0	1	017	1	0	1
267	<u>M6</u>	1	max		_1_	2.658	2	0	1	0	1	0	1	0	1
268			min	-4692.816	3	142	3	0	1	0	1_	0	1	0	1
269		2		3525.579	1	2.632	2	0	1	0	1	0	1	0	3
270			min		3	161	3	0	1_	0	1	0	1	0	2
271		3		3525.958	1_	2.606	2	0	1	0	1	0	1	0	3
272		1		-4692.247	3	181	3	0	1_	0	1_	0	1	001	2
273		4		3526.337 -4691.963	<u>1</u> 3	2.58	2	0	1	0	1	0	1	0	3
274 275		5	min	3526.717	<u>ာ</u> 1	2 2.554	2	0	1	0	1	0	1	002 0	3
276		5	min	-4691.678	3	22	3	0	1	0	1	0	1	003	2
277		6		3527.096		2.528	2	0	1	0	1	0	1	- <u>003</u> 0	3
278				-4691.394	3	239	3	0	1	0	1	0	1	003	2
279		7		3527.475	1	2.502	2	0	1	0	1	0	1	0	3
280			min		3	259	3	0	1	0	1	0	1	004	2
281		8		3527.854	1	2.476	2	0	1	0	1	0	1	0	3
282				-4690.825	3	278	3	0	1	0	1	0	1	005	2
283		9	max	3528.234	1	2.45	2	0	1	0	1	0	1	0	3
284			min	-4690.54	3	298	3	0	1	0	1	0	1	005	2
285		10	max	3528.613	1_	2.424	2	0	1	0	1	0	1	0	3
286			min	-4690.256	3	318	3	0	1	0	1	0	1	006	2
287		11		3528.992	_1_	2.398	2	0	1_	0	_1_	0	1	0	3
288				-4689.972	3	337	3	0	1	0	1	0	1	006	2
289		12		3529.371	1_	2.372	2	0	1	0	1	0	1	0	3
290		40	min		3	357	3	0	1_	0	1_	0	1	007	2
291		13		3529.751 -4689.403	<u>1</u> 3	2.346 376	3	0	1	0	<u>1</u> 1	0	1	0 008	3
292 293		14	min		<u>ာ</u> 1	2.319	2	0	1	0	1	0	1	008	3
294		14	max min	-4689.118	3	396	3	0	1	0	1	0	1	008	2
295		15		3530.509	<u> </u>	2.293	2	0	1	0	1	0	1	<u>000</u>	3
296		13	min	-4688.834	3	415	3	0	1	0	1	0	1	009	2
297		16		3530.888	1	2.267	2	0	1	0	1	0	1	.001	3
298				-4688.549	3	435	3	0	1	0	1	0	1	009	2
299		17		3531.268	1	2.241	2	0	1	0	1	0	1	.001	3
300				-4688.265	3	454	3	0	1	0	1	0	1	01	2
301		18	max	3531.647	1	2.215	2	0	1	0	1	0	1	.001	3
302			min	-4687.98	3	474	3	0	1	0	1	0	1	011	2
303		19		3532.026	1_	2.189	2	0	1	0	1	0	1	.001	3
304				-4687.696	3	493	3	0	1	0	1	0	1	011	2
305	M7	1		2006.961	2	8.017	4	0	1	0	1	0	1	.011	2
306			min	-2136.488	3_	1.882	15	0	1_	0	1_	0	1	001	3
307		2		2006.791	2	7.247	4	0	1	0	1	0	1	.008	2
308				-2136.616	3	1.701	15	0	1_	0	1_	0	1	003	3
309		3		2006.621	2	6.477	4 1E	0	1	0	1	0	1	.006	2
310		1	min		3	1.52	15	0	1	0	1	0	1	<u>004</u>	3
311		4	max	2006.45	2	5.707	4	0	1_	0	_1_	0	1	.004	2

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
312			min	-2136.872	3	1.339	15	0	1	0	1	0	1	005	3
313		5	max		2	4.937	4	0	1	0	1	0	_1_	.002	2
314			min	-2136.999	3	1.158	15	0	1	0	1	0	1	006	3
315		6	max		2	4.167	4	0	1	0	1	0	1	0	2
316			min	-2137.127	3	.977	15	0	1	0	1	0	1	007	3
317		7	max	2005.939	2	3.397	4	0	1	0	1	0	1	001	15
318			min	-2137.255	3	.796	15	0	1	0	1	0	1	008	3
319		8	max	2005.769	2	2.677	2	0	1	0	1	0	_1_	002	15
320			min	-2137.383	3	.525	12	0	1	0	1	0	1	008	3
321		9	max	2005.599	2	2.077	2	0	1	0	1	0	1	002	15
322			min	-2137.51	3	.225	12	0	1	0	1	0	1	008	3
323		10	max	2005.428	2	1.477	2	0	1	0	1	0	_1_	002	15
324			min	-2137.638	3	194	3	0	1	0	1	0	1	009	4
325		11	max	2005.258	2	.877	2	0	1	0	1	0	1	002	15
326			min	-2137.766	3	644	3	0	1	0	1	0	1	009	4
327		12	max	2005.088	2	.277	2	0	1	0	1	0	1	002	15
328			min	-2137.894	3	-1.094	3	0	1	0	1	0	1	009	4
329		13	max	2004.917	2	29	15	0	1	0	1	0	1	002	15
330			min	-2138.021	3	-1.544	3	0	1	0	1	0	1	009	4
331		14	max	2004.747	2	471	15	0	1	0	1	0	1	002	15
332			min	-2138.149	3	-1.994	3	0	1	0	1	0	1	008	4
333		15	max	2004.577	2	652	15	0	1	0	1	0	1	002	15
334			min	-2138.277	3	-2.763	4	0	1	0	1	0	1	007	4
335		16	max	2004.406	2	833	15	0	1	0	1	0	1	001	15
336			min	-2138.405	3	-3.533	4	0	1	0	1	0	1	006	4
337		17	max	2004.236	2	-1.014	15	0	1	0	1	0	1	001	15
338			min	-2138.532	3	-4.303	4	0	1	0	1	0	1	004	4
339		18	max	2004.066	2	-1.195	15	0	1	0	1	0	1	0	15
340			min	-2138.66	3	-5.073	4	0	1	0	1	0	1	002	4
341		19	max	2003.895	2	-1.376	15	0	1	0	1	0	1	0	1
342			min	-2138.788	3	-5.843	4	0	1	0	1	0	1	0	1
343	M8	1	max	3472.919	1	0	1	0	1	0	1	0	1	0	1
344			min	-1077.683	3	0	1	0	1	0	1	0	1	0	1
345		2	max	3473.09	1	0	1	0	1	0	1	0	1	0	1
346			min	-1077.556	3	0	1	0	1	0	1	0	1	0	1
347		3	max	3473.26	1	0	1	0	1	0	1	0	1	0	1
348			min	-1077.428	3	0	1	0	1	0	1	0	1	0	1
349		4	max	3473.43	1	0	1	0	1	0	1	0	1	0	1
350			min	-1077.3	3	0	1	0	1	0	1	0	1	0	1
351		5		3473.601	_1_	0	1	0	1	0	1	0	1	0	1
352				-1077.172	3	0	1	0	1	0	1	0	1	0	1
353		6	max	3473.771	1	0	1	0	1	0	1	0	1	0	1
354			min		3	0	1	0	1	0	1	0	1	0	1
355		7		3473.941	1	0	1	0	1	0	1	0	1	0	1
356			min		3	0	1	0	1	0	1	0	1	0	1
357		8	max	3474.112	1	0	1	0	1	0	1	0	1	0	1
358			min		3	0	1	0	1	0	1	0	1	0	1
359		9		3474.282	1	0	1	0	1	0	1	0	1	0	1
360				-1076.661	3	0	1	0	1	0	1	0	1	0	1
361		10		3474.452	1_	0	1	0	1	0	1	0	1	0	1
362				-1076.533	3	0	1	0	1	0	1	0	1	0	1
363		11	max	3474.623	1	0	1	0	1	0	1	0	1	0	1
364			min		3	0	1	0	1	0	1	0	1	0	1
365		12		3474.793	1	0	1	0	1	0	1	0	1	0	1
366			min	-1076.278	3	0	1	0	1	0	1	0	1	0	1
367		13	max	3474.963	1	0	1	0	1	0	1	0	1	0	1
368			min	-1076.15	3	0	1	0	1	0	1	0	1	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
369		14	max	3475.134	1_	0	1	0	1	0	1	0	1_	0	1
370			min	-1076.022	3	0	1	0	1	0	1	0	1	0	1
371		15	max	3475.304	_1_	0	1	0	1	0	_1_	0	1_	0	1
372			min	-1075.895	3	0	1	0	1	0	1_	0	1	0	1
373		16		3475.474	1_	0	1	0	1	0	1	0	1	0	1
374		4-	min	-1075.767	3	0	1	0	1_	0	1	0	1	0	1
375		17	-	3475.645	1_	0	1	0	1	0	1	0	1	0	1
376		40		-1075.639	3	0	1	0	1_	0	1_	0	1_	0	1
377		18		3475.815	1	0	1	0	1	0	1	0	1	0	1
378		19		-1075.511 3475.985	3	0	1	0	<u>1</u> 1	0		0	1	0	1
379		19	min		<u>1</u> 3	0	1	0	1	0	<u>1</u> 1	0	1	0	1
381	M10	1		1102.926	<u>ာ</u> 1	2.027	4	029	15	0	1	0	1	0	1
382	IVITO		min	-1443.063	3	.478	15	783	1	0	3	0	3	0	1
383		2		1103.306		1.994	4	029	15	0	1	0	15	0	15
384				-1442.778	3	.47	15	783	1	0	3	0	1	0	4
385		3		1103.685	1	1.961	4	029	15	0	1	0	15	0	15
386			-	-1442.494	3	.462	15	783	1	0	3	0	1	001	4
387		4		1104.064	1	1.927	4	029	15	0	1	0	15	0	15
388				-1442.209	3	.454	15	783	1	0	3	0	1	002	4
389		5		1104.443	1	1.894	4	029	15	0	1	0	15	0	15
390			min	-1441.925	3	.446	15	783	1	0	3	0	1	002	4
391		6	max	1104.823	1	1.86	4	029	15	0	1	0	15	0	15
392			min	-1441.641	3	.438	15	783	1	0	3	0	1	002	4
393		7	max	1105.202	1	1.827	4	029	15	0	1	0	15	0	15
394			min	-1441.356	3	.43	15	783	1	0	3	001	1	003	4
395		8	-	1105.581	<u>1</u>	1.794	4	029	15	0	_1_	0	15	0	15
396				-1441.072	3	.423	15	783	1	0	3	001	1	003	4
397		9		1105.961	_1_	1.76	4	029	15	0	_1_	0	15	0	15
398				-1440.787	3	.415	15	783	1_	0	3	002	1	004	4
399		10	max		_1_	1.727	4	029	15	0	_1_	0	15	001	15
400			min	-1440.503	3_	.407	15	783	1_	0	3	002	1_	004	4
401		11		1106.719	1_	1.693	4	029	15	0	1	0	15	001	15
402		40	min	-1440.218	3_	.399	15	783	1_	0	3	002	1_	005	4
403		12		1107.098	<u>1</u> 3	1.66	4 15	029	<u>15</u>	0	<u>1</u> 3	002	1 <u>5</u>	001	15
404		12	min	1107.478		.391		783		_	<u>3</u> 1		_	005	4
405 406		13	min	-1439.649	<u>1</u> 3	1.627 .383	4 15	029 783	<u>15</u> 1	0	3	002	1 <u>5</u>	001 006	15
407		14		1107.857	<u> </u>	1.593	4	763 029	15	0	<u> </u>	002	15	006 001	15
408		14		-1439.365	3	.372	12	783	1	0	3	003	1	006	4
409		15		1108.236	1	1.56	4	029	15	0	1	0	15	002	15
410		10		-1439.081	3	.359	12	783	1	0	3	003	1	006	4
411		16		1108.615	1	1.526	4	029	15	0	1	0	15	002	15
412				-1438.796	3	.346	12	783	1	0	3	003	1	007	4
413		17		1108.995	1	1.493	4	029	15	0	1	0	15	002	15
414				-1438.512	3	.333	12	783	1	0	3	003	1	007	4
415		18		1109.374	1	1.46	4	029	15	0	1	0	15	002	15
416				-1438.227	3	.32	12	783	1	0	3	003	1	008	4
417		19	max	1109.753	1	1.426	4	029	15	0	1	0	15	002	15
418				-1437.943	3	.307	12	783	1	0	3	004	1	008	4
419	M11	1	max		2	7.982	4	003	15	0	1	0	15	.008	4
420			min	-680.637	3	1.877	15	073	1	0	3	0	1	.002	15
421		2	max		2	7.212	4	003	15	0	1	0	15	.005	2
422				-680.765	3	1.696	15	073	1	0	3	0	1	0	12
423		3	max		2	6.442	4	003	15	0	1	0	15	.003	2
424				-680.893	3	1.515	15	073	1_	0	3	0	1_	0	3
425		4	max	544.139	2	5.672	4	003	15	0	_1_	0	15	0	2

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

A27		Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
428	426			min	-681.021	3	1.334	15	073	1	0	3	0	1	002	3
A29	427		5	max	543.969	2	4.902	4	003	15	0	1	0	15	0	15
#30	428			min	-681.148	3	1.153	15	073	1	0	3	0	1	003	3
431	429		6	max	543.798	2	4.132	4	003	15	0	1	0	15	001	15
431				min				15			0	3	0	1	005	
A32			7							15			0	15		
A33								15				3	0		006	
434			8							15			0	15		
435												3				
436			9											15		
437																
438			10													_
449			10													
Head			11								_					
441																
MA42			12											_		
4444			12									_				
Math Math			12													
445			13													
446			4.4													
448			14													
448																-
449			15													
450											_					_
451			16													
452	450			min		3	-3.567		073		0	3	0		006	
453	451		17	max	541.924	2	-1.019	15	003	15	0	1	0	15	001	15
454	452			min	-682.682	3	-4.337		073	1	0	3	0		004	
455	453		18	max	541.754	2	-1.2	15	003	15	0	1	0	15	0	15
456	454			min	-682.809	3	-5.107	4	073	1	0	3	0	1	002	4
456	455		19	max	541.584	2	-1.381	15	003	15	0	1	0	15	0	1
457 M12				min		3		4			0	3	0		0	1
458		M12	1	max		1	_	1	8.275	1	0		0	15	0	1
459						3		1		15		1				1
460 min -312.569 3 0 1 .303 15 0 1 0 12 0 1 461 3 max 1217.07 1 0 1 8.275 1 0 1 .001 1 0 1 462 min -312.441 3 0 1 .303 15 0 1 0 15 0 1 463 4 max 1217.241 1 0 1 8.275 1 0 1 .002 1 0 1 464 min -312.314 3 0 1 .303 15 0 1 0 15 0 1 465 5 max 1217.411 1 0 1 8.275 1 0 1 .003 1 .003 1 .003 1 .003 1 .004 1 .004 1 .004 <td></td> <td></td> <td>2</td> <td></td> <td></td> <td>1</td> <td>0</td> <td>1</td> <td></td> <td></td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td>			2			1	0	1			0	1	0	1	0	1
461 3 max 1217.07 1 0 1 8.275 1 0 1 .001 1 0 1 .001 1 0 1 .001 1 0 1 .001 1 0 1 .002 1 0 1 .002 1 0 1 .002 1 0 1 .002 1 0 1 .002 1 0 1 .002 1 0 1 .002 1 0 1 .002 1 0 1 .002 1 0 1 .002 1 0 1 .002 1 0 1 .003 1 0 1 .003 1 .003 1 .003 1 .003 1 .003 1 .003 1 .003 1 .003 1 .003 1 .003 1 .003 1 .003 1 .003 1 .00								1				1		12		1
462 min -312.441 3 0 1 .303 15 0 1 0 1 0 1 463 4 max 1217.241 1 0 1 8.275 1 0 1 .002 1 0 1 464 min -312.314 3 0 1 .303 15 0 1 0 15 0 1 465 5 max 1217.411 1 0 1 8.275 1 0 1 .003 1 0 1 466 min -312.186 3 0 1 .303 15 0 1 .003 1 0 1 .004 1 0 1 .467 6 max 1217.752 1 0 1 8.275 1 0 1 .004 1 0 1 .469 7 max 1217.752 1 0 <td></td> <td></td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>_</td> <td></td>			3										_		_	
463 4 max 1217.241 1 0 1 8.275 1 0 1 .002 1 0 1 464 min -312.314 3 0 1 .303 15 0 1 0 15 0 1 465 5 max 1217.411 1 0 1 8.275 1 0 1 .003 1 0 1 466 min -312.186 3 0 1 .303 15 0 1 0 1 .467 6 max 1217.581 1 0 1 8.275 1 0 1 .004 1 0 1 .468 min -312.058 3 0 1 .303 15 0 1 .004 1 0 1 .469 7 max 1217.752 1 0 1 .8275 1 0 1 .005 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td>_</td><td></td><td></td><td></td><td>_</td><td></td><td></td></td<>								_		_				_		
464 min -312.314 3 0 1 .303 15 0 1 0 1 0 1 465 5 max 1217.411 1 0 1 8.275 1 0 1 .003 1 0 1 466 min -312.186 3 0 1 .303 15 0 1 0 1 0 1 467 6 max 1217.752 1 0 1 .004 1 0 1 468 min -312.058 3 0 1 .303 15 0 1 .004 1 0 1 469 7 max 1217.752 1 0 1 8.275 1 0 1 .005 1 0 1 470 min -311.803 3 0 1 8.275 1 0 1 .006 1			1										_			
465 5 max 1217.411 1 0 1 8.275 1 0 1 .003 1 0 1 466 min -312.186 3 0 1 .303 15 0 1 0 1 0 1 467 6 max 1217.581 1 0 1 8.275 1 0 1 .004 1 0 1 468 min -312.058 3 0 1 .303 15 0 1 0 1 469 7 max 1217.752 1 0 1 8.275 1 0 1 .005 1 0 1 470 min -311.93 3 0 1 .303 15 0 1 0 1 .005 1 0 1 .006 1 0 1 .006 1 .006 1 .006 1			 -	_			_			_				_		
466 min -312.186 3 0 1 .303 15 0 1 0 15 0 1 467 6 max 1217.581 1 0 1 8.275 1 0 1 .004 1 0 1 468 min -312.058 3 0 1 .303 15 0 1 0 15 0 1 469 7 max 1217.752 1 0 1 8.275 1 0 1 .005 1 0 1 470 min -311.93 3 0 1 .303 15 0 1 0 1 .005 1 0 1 471 8 max 1217.922 1 0 1 8.275 1 0 1 .006 1 0 1 472 min -311.803 3 0 1			5					•				-	_			
467 6 max 1217.581 1 0 1 8.275 1 0 1 .004 1 0 1 468 min -312.058 3 0 1 .303 15 0 1 0 15 0 1 469 7 max 1217.752 1 0 1 8.275 1 0 1 .005 1 0 1 470 min -311.93 3 0 1 .303 15 0 1 0 15 0 1 471 8 max 1217.922 1 0 1 8.275 1 0 1 .006 1 0 1 472 min -311.803 3 0 1 .303 15 0 1 0 1 .006 1 0 1 473 9 max 1218.092 1 0 1 8.275 1 0 1 .007			1					1		_		1				1
468 min -312.058 3 0 1 .303 15 0 1 0 15 0 1 469 7 max 1217.752 1 0 1 8.275 1 0 1 .005 1 0 1 470 min -311.93 3 0 1 .303 15 0 1 0 15 0 1 471 8 max 1217.922 1 0 1 8.275 1 0 1 .006 1 0 1 472 min -311.803 3 0 1 .303 15 0 1 0 1 .006 1 0 1 473 9 max 1218.092 1 0 1 8.275 1 0 1 .007 1 0 1 474 min -311.675 3 0 1			6					1				1				1
469 7 max 1217.752 1 0 1 8.275 1 0 1 .005 1 0 1 470 min -311.93 3 0 1 .303 15 0 1 0 15 0 1 471 8 max 1217.922 1 0 1 8.275 1 0 1 .006 1 0 1 472 min -311.803 3 0 1 .303 15 0 1 .006 1 0 1 473 9 max 1218.092 1 0 1 8.275 1 0 1 .007 1 0 1 474 min -311.675 3 0 1 .303 15 0 1 .007 1 0 1 475 10 max 1218.263 1 0 1 8.275 1 0 1 .008 1 0 <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td>			0									_				
470 min -311.93 3 0 1 .303 15 0 1 0 15 0 1 471 8 max 1217.922 1 0 1 8.275 1 0 1 .006 1 0 1 472 min -311.803 3 0 1 .303 15 0 1 0 15 0 1 473 9 max 1218.092 1 0 1 8.275 1 0 1 .007 1 0 1 474 min -311.675 3 0 1 .303 15 0 1 0 1 .007 1 0 1 475 10 max 1218.263 1 0 1 8.275 1 0 1 .008 1 0 1 476 min -311.547 3 0 1 .303 15 <t< td=""><td></td><td></td><td>7</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td>_</td><td></td><td></td><td></td></t<>			7								_		_			
471 8 max 1217.922 1 0 1 8.275 1 0 1 .006 1 0 1 472 min -311.803 3 0 1 .303 15 0 1 0 15 0 1 473 9 max 1218.092 1 0 1 8.275 1 0 1 .007 1 0 1 474 min -311.675 3 0 1 .303 15 0 1 0 1 0 1 475 10 max 1218.263 1 0 1 8.275 1 0 1 .008 1 0 1 476 min -311.547 3 0 1 .303 15 0 1 0 1 0 1 477 11 max 1218.433 1 0 1 8.275 1 0 1 .009 1 0 1 478 min												<u> </u>				
472 min -311.803 3 0 1 .303 15 0 1 0 15 0 1 473 9 max 1218.092 1 0 1 8.275 1 0 1 .007 1 0 1 474 min -311.675 3 0 1 .303 15 0 1 0 15 0 1 475 10 max 1218.263 1 0 1 8.275 1 0 1 .008 1 0 1 476 min -311.547 3 0 1 .303 15 0 1 0 15 0 1 477 11 max 1218.433 1 0 1 8.275 1 0 1 .009 1 0 1 478 min -311.419 3 0 1 .303 15 0 1 0 15 0 1 479 12 max 1218.604 1 0 1 8.275 1 0 1 .01 1 0 1 480 min -311.292 3 0 1 .303 15 0 1 .01 1 0 15 0 1 481 13 max 1218.774 1 0 1 8.275 1 0 1 .01 1 0 1																
473 9 max 1218.092 1 0 1 8.275 1 0 1 .007 1 0 1 474 min -311.675 3 0 1 .303 15 0 1 0 15 0 1 475 10 max 1218.263 1 0 1 8.275 1 0 1 .008 1 0 1 476 min -311.547 3 0 1 .303 15 0 1 0 15 0 1 477 11 max 1218.433 1 0 1 8.275 1 0 1 .009 1 0 1 478 min -311.419 3 0 1 .303 15 0 1 0 15 0 1 479 12 max 1218.604 1 0 1 8.275 1 0 1 .01 1 0 1 480 min -311.292 3 0 1 .303 15			8					_		_						
474 min -311.675 3 0 1 .303 15 0 1 0 15 0 1 475 10 max 1218.263 1 0 1 8.275 1 0 1 .008 1 0 1 476 min -311.547 3 0 1 .303 15 0 1 0 15 0 1 477 11 max 1218.433 1 0 1 8.275 1 0 1 .009 1 0 1 478 min -311.419 3 0 1 .303 15 0 1 0 15 0 1 479 12 max 1218.604 1 0 1 8.275 1 0 1 .01 1 0 1 480 min -311.292 3 0 1 .303 15 0 1 0 1 0 1 481 13 max													_			_
475 10 max 1218.263 1 0 1 8.275 1 0 1 .008 1 0 1 476 min -311.547 3 0 1 .303 15 0 1 0 15 0 1 477 11 max 1218.433 1 0 1 8.275 1 0 1 .009 1 0 1 478 min -311.419 3 0 1 .303 15 0 1 0 15 0 1 479 12 max 1218.604 1 0 1 8.275 1 0 1 .01 1 0 1 480 min -311.292 3 0 1 .303 15 0 1 0 15 0 1 481 13 max 1218.774 1 0 1 8.275 1 0 1 .011 1 0 1			9													
476 min -311.547 3 0 1 .303 15 0 1 0 15 0 1 477 11 max 1218.433 1 0 1 8.275 1 0 1 .009 1 0 1 478 min -311.419 3 0 1 .303 15 0 1 0 15 0 1 479 12 max 1218.604 1 0 1 8.275 1 0 1 .01 1 0 1 480 min -311.292 3 0 1 .303 15 0 1 0 1 0 1 481 13 max 1218.774 1 0 1 8.275 1 0 1 .011 1 0 1								•								
477 11 max 1218.433 1 0 1 8.275 1 0 1 .009 1 0 1 478 min -311.419 3 0 1 .303 15 0 1 0 15 0 1 479 12 max 1218.604 1 0 1 8.275 1 0 1 .01 1 0 1 480 min -311.292 3 0 1 .303 15 0 1 0 15 0 1 481 13 max 1218.774 1 0 1 8.275 1 0 1 .011 1 0 1			10					_				_				
478 min -311.419 3 0 1 .303 15 0 1 0 1 0 1 479 12 max 1218.604 1 0 1 8.275 1 0 1 .01 1 0 1 480 min -311.292 3 0 1 .303 15 0 1 0 1 0 1 481 13 max 1218.774 1 0 1 8.275 1 0 1 .011 1 0 1						3				15						-
479 12 max 1218.604 1 0 1 8.275 1 0 1 .01 1 0 1 480 min -311.292 3 0 1 .303 15 0 1 0 15 0 1 481 13 max 1218.774 1 0 1 8.275 1 0 1 .011 1 0 1			11	max								_	.009			
480 min -311.292 3 0 1 .303 15 0 1 0 15 0 1 481 13 max 1218.774 1 0 1 8.275 1 0 1 .011 1 0 1						3	0	1		15	0	1	-	15	0	1
480 min -311.292 3 0 1 .303 15 0 1 0 15 0 1 481 13 max 1218.774 1 0 1 8.275 1 0 1 .011 1 0 1	479		12	max		1	0	1	8.275	1	0	1	.01	1	0	1
481 13 max 1218.774 1 0 1 8.275 1 0 1 .011 1 0 1						3		1		15		1		15		1
			13					1				1				1
						3		1	.303	15		1		15		1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]			LC	Torque[k-ft]	LC	y-y Mome	LC		
483		14		1218.944	_1_	0	1	8.275	1	0	_1_	.012	_1_	0	1
484			min	-311.036	3	0	1	.303	15	0	1_	0	15	0	1
485		15	max	1219.115	<u>1</u>	0	1	8.275	1	0	<u>1</u>	.013	<u>1</u>	0	1_
486			min	-310.908	3	0	1	.303	15	0	1	0	15	0	1
487		16	max	1219.285	1	0	1	8.275	1	0	1	.014	1	0	1
488			min	-310.78	3	0	1	.303	15	0	1	0	15	0	1
489		17	max	1219.455	1	0	1	8.275	1	0	1	.015	1	0	1
490			min	-310.653	3	0	1	.303	15	0	1	0	15	0	1
491		18	max	1219.626	1	0	1	8.275	1	0	1	.016	1	0	1
492			min	-310.525	3	0	1	.303	15	0	1	0	15	0	1
493		19		1219.796	1	0	1	8.275	1	0	1	.017	1	0	1
494			min	-310.397	3	0	1	.303	15	0	1	0	15	0	1
495	M1	1	max	148.795	1	802.847	3	-3.077	15	0	1	.199	1	0	3
496			min	5.426	15	-491.813	1	-83.656	1	0	3	.007	15	016	2
497		2	max	149.285	1	801.838	3	-3.077	15	0	1	.155	1	.246	1
498			min	5.574	15	-493.159	1	-83.656	1	0	3	.006	15	423	3
499		3	max	410.244	3	573.134	2	-3.048	15	0	3	.111	1	.494	1
500			min	-243.61	2	-588.561	3	-83.057	1	0	1	.004	15	829	3
501		4	max		3	571.788	2	-3.048	15	0	3	.067	1	.197	1
502			min	-243.12	2	-589.571	3	-83.057	1	0	1	.002	15	518	3
503		5	max		3	570.442	2	-3.048	15	0	3	.023	1	004	15
504			min	-242.63	2	-590.58	3	-83.057	1	0	1	0	15	207	3
505		6	max	411.347	3	569.096	2	-3.048	15	0	3	0	15	.105	3
506		-	min	-242.14	2	-591.59	3	-83.057	1	0	1	02	1	427	2
507		7	max	411.714	3	567.749	2	-3.048	15	0	3	002	15	.417	3
508		-	min	-241.65	2	-592.599	3	-83.057	1	0	1	064	1	727	2
509		8		412.081	3	566.403		-3.048	15		3	004	15	.73	3
510		0	max	-241.16	2	-593.609	3	-83.057	1	0	<u> </u>	108	1	-1.026	2
511		9	min max		3	51.385	2	- 63.057	15	0	9	.065	1	.852	3
512		9	min	-180.677	2	.409	15	-123.947	1	0	3	.003	15	-1.174	2
513		10	max		3	50.038	2	-4.55	15	0	9	0	15	.831	3
514		10	min	-180.188	2	.003	15	-123.947	1	0	3	0	1	-1.201	2
515		11	max	422.884	3	48.692	2	-4.55	15	0	9	002	15	.809	3
516			min	-179.698	2	-1.662	4	-123.947	1	0	3	066	1	-1.227	2
517		12	max	432.851	3	389.045	3	-2.975	15	0	2	.107	1	.706	3
518		12	min	-119.179	2	-673.015	2	-81.224	1	0	3	.004	15	-1.088	2
519		13	max	433.219	3	388.035	3	-2.975	15	0	2	.064	1	.501	3
520		13	min	-118.689	2	-674.361	2	-81.224	1	0	3	.002	15	732	2
521		14			3	387.026	3	-2.975	15	0	2	.002	1 <u>15</u>	.296	3
522		14	max min	-118.199	2	-675.707	2	-81.224	1	0	3	0	15	376	2
		15							_						
523		15		433.954	3	386.016	3	-2.975	15	0	2	0	<u>15</u>	.093 044	3
524 525		16	min	<u>-117.709</u> 434.321	2	-677.053	2	-81.224 -2.975	15	0	2	022 002	<u>1</u> 15		_
		10			3	385.007	3		1	0	3		1	.338 111	2
526 527		17		-117.219 434.689	3	-678.399 383.997	3	-81.224 -2.975	15	0	2	065 004	15		2
		17								0				.697	3
528		10		-116.729	<u>2</u>	-679.745	2	-81.224	1_	0	3	107	1_	314	
529		18	max	-5.579 -149.529	<u>15</u>	686.558	2	-3.275	1 <u>5</u>	0	3	006	<u>15</u> 1	.351	2
530		40	min		1_	-317.144	3	-89.166		0	2	154		155	3
531		19	max		<u>15</u>	685.212	2	-3.275	15	0	3	007	<u>15</u>	.012	3
532	ME	1	min		1_1	-318.153 2675.195	3	-89.166	1	0	2	201	1	012	1
533	<u>M5</u>	1		324.351	1	-1671.825	3	0	1	0	1	0	1_1	.031	2
534		2	min	10.193	<u>12</u>		2	0	1	0	1	0	1_1	0	3
535		2	max		1	2674.185 -1673.171	3	0	1	0	1	0	<u>1</u> 1	.911	1
536		3	min	10.438 1312.53	12		1	0		0		0		-1.412	3
537 538		3		-839.731	<u>3</u> 2	1712.018 -1863.006	3	0	1	0	<u>1</u>	0	<u>1</u> 1	1.753	3
		1						0	-	0	1	0	•	-2.768	
539		4	шах	1312.897	3_	1710.672	2	0	1	0		0	_1_	.863	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
540			min	-839.241	2	-1864.015	3	0	1	0	1	0	1	-1.785	3
541		5	max	1313.265	3	1709.326	2	0	1	0	1	0	1	.015	9
542			min	-838.751	2	-1865.025	3	0	1	0	1	0	1	801	3
543		6	max	1313.632	3	1707.98	2	0	1	0	1	0	1	.183	3
544			min	-838.261	2	-1866.034	3	0	1	0	1	0	1	995	2
545		7	max	1314	3	1706.634	2	0	1_	0	_1_	0	1	1.168	3
546			min	-837.771	2	-1867.044	3	0	1	0	1	0	1	-1.895	2
547		8	max	1314.367	3	1705.288	2	0	1	0	_1_	0	1	2.154	3
548			min	-837.281	2	-1868.053	3	0	1	0	1	0	1	-2.796	2
549		9	max	1329.242	3_	172.259	2	0	1	0	_1_	0	1	2.479	3
550			min	-710.897	2	.406	15	0	1	0	1	0	1	-3.184	2
551		10	max	1329.609	3_	170.913	2	0	1_	0	<u>1</u>	0	1	2.4	3
552			min	-710.407	2	0	15	0	1	0	1_	0	1	-3.275	2
553		11	max	1329.977	3	169.567	2	0	1	0	_1_	0	1	2.322	3
554			min	-709.917	2	-1.558	4	0	1	0	1	0	1	-3.364	2
555		12	max	1345.05	3_	1211.135	3	0	1	0	_1_	0	1	2.038	3
556			min	-583.606	2	-2053.863	2	0	1	0	1_	0	1	-3.012	2
557		13	max	1345.417	3	1210.125	3	0	1	0	<u>1</u>	0	1	1.4	3
558			min	-583.116	2	-2055.209	2	0	1	0	1	0	1	-1.928	2
559		14	max	1345.785	3_	1209.115	3	0	1	0	1_	0	1	.761	3
560			min	-582.626	2	-2056.555	2	0	1	0	1_	0	1	843	2
561		15	max		3_	1208.106	3	0	1	0	_1_	0	1	.242	2
562			min	-582.136	2	-2057.901	2	0	1	0	1_	0	1	003	13
563		16	max	1346.52	3	1207.096	3	0	1	0	_1_	0	1	1.329	2
564			min	-581.646	2	-2059.247	2	0	1	0	1	0	1	514	3
565		17	max	1346.887	3_	1206.087	3	0	1	0	_1_	0	1	2.416	2
566			min	-581.156	2	-2060.593	2	0	1	0	1_	0	1	-1.15	3
567		18	max	-10.842	12	2317.392	2	0	1_	0	<u>1</u>	0	1	1.245	2
568			min	-324.352	1_	-1092.518	3	0	1	0	1_	0	1	602	3
569		19	max	-10.597	12	2316.046	2	0	1	0	_1_	0	1	.024	1
570			min	-323.862	1_	-1093.527	3	0	1	0	1_	0	1	025	3
571	<u>M9</u>	1	max	148.795	_1_	802.847	3	83.656	1	0	3	007	15	0	3
572			min	5.426	15	-491.813	1	3.077	15	0	1_	199	1	016	2
573		2	max	149.285	_1_	801.838	3	83.656	1_	0	3	006	15	.246	1
574			min	5.574	15	-493.159	1	3.077	15	0	1_	155	1	423	3
575		3	max		3_	573.134	2	83.057	1_	0	_1_	004	15	.494	1
576			min	-243.61	2	-588.561	3	3.048	15	0	3	111	1	829	3
577		4	max	410.612	3	571.788	2	83.057	1	0	_1_	002	15	.197	1
578			min	-243.12	2	-589.571	3	3.048	15	0	3	067	1	518	3
579		5	max		3_	570.442	2	83.057	1	0	_1_	0	15	004	15
580			min		2_	-590.58	3	3.048	15	0	3	023	1	207	3
581		6	max		3_	569.096	2	83.057	1	0	_1_	.02	1	.105	3
582			min		2	<u>-591.59</u>	3	3.048	15	0	3	0	15	427	2
583		7	max		3_	567.749	2	83.057	1_	0	1	.064	1	.417	3
584			min	-241.65	2	-592.599	3	3.048	15	0	3	.002	15	727	2
585		8	max		3_	566.403	2	83.057	1	0	1	.108	1	.73	3
586			min		2	-593.609	3	3.048	15	0	3	.004	15	-1.026	2
587		9	max		3_	51.385	2	123.947	1	0	3	002	15	.852	3
588			min	-180.677	2	.409	15	4.55	15	0	9	065	1	-1.174	2
589		10		422.516	3	50.038	2	123.947	1_	0	3	0	1	.831	3
590			min		2	.003	15	4.55	15	0	9	0	15	-1.201	2
591		11		422.884	3_	48.692	2	123.947	1_	0	3	.066	1	.809	3
592				-179.698	2	-1.662	4	4.55	15	0	9	.002	15	<u>-1.227</u>	2
593		12	max		3_	389.045	3	81.224	1	0	3	004	15	.706	3
594			min		2	-673.015	2	2.975	15	0	2	107	1	-1.088	2
595		13		433.219	3_	388.035	3	81.224	1	0	3	002	15	.501	3
596			min	-118.689	2	-674.361	2	2.975	15	0	2	064	1	732	2

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
597		14	max	433.586	3	387.026	3	81.224	1	0	3	0	15	.296	3
598			min	-118.199	2	-675.707	2	2.975	15	0	2	021	1	376	2
599		15	max	433.954	3	386.016	3	81.224	1	0	3	.022	1	.093	3
600			min	-117.709	2	-677.053	2	2.975	15	0	2	0	15	044	1
601		16	max	434.321	3	385.007	3	81.224	1	0	3	.065	1	.338	2
602			min	-117.219	2	-678.399	2	2.975	15	0	2	.002	15	111	3
603		17	max	434.689	3	383.997	3	81.224	1	0	3	.107	1	.697	2
604			min	-116.729	2	-679.745	2	2.975	15	0	2	.004	15	314	3
605		18	max	-5.579	15	686.558	2	89.166	1	0	2	.154	1	.351	2
606			min	-149.529	1	-317.144	3	3.275	15	0	3	.006	15	155	3
607		19	max	-5.432	15	685.212	2	89.166	1	0	2	.201	1	.012	3
608			min	-149.039	1	-318.153	3	3.275	15	0	3	.007	15	012	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	0	1	.125	2	.007	3	1.018e-2	2	NC	1_	NC	1
2			min	0	15	025	3	004	2	-2.07e-3	3	NC	1	NC	1
3		2	max	0	1	.275	3	.028	1	1.16e-2	2	NC	5	NC	2
4			min	0	15	048	1	0	10	-2.095e-3	3	738.879	3	8220.151	1
5		3	max	0	1	.518	3	.066	1	1.301e-2	2	NC	5	NC	3
6			min	0	15	176	1	.003	15	-2.12e-3	3	408.318	3	3398.79	1
7		4	max	0	1	.666	3	.099	1	1.443e-2	2	NC	5	NC	3
8			min	0	15	247	1	.004	15	-2.145e-3	3	321.143	3	2261.92	1
9		5	max	0	1	.7	3	.115	1	1.584e-2	2	NC	5	NC	3
10			min	0	15	248	1	.004	15	-2.169e-3	3	306.092	3	1935.633	1
11		6	max	0	1	.623	3	.111	1	1.726e-2	2	NC	5	NC	3
12			min	0	15	182	1	.004	15	-2.194e-3	3	342.48	3	2015.829	1
13		7	max	0	1	.458	3	.086	1	1.867e-2	2	NC	5	NC	3
14			min	0	15	064	1	.001	10	-2.219e-3	3	459.494	3	2592.932	1
15		8	max	0	1	.248	3	.049	1	2.009e-2	2	NC	2	NC	2
16			min	0	15	.002	15	003	10	-2.244e-3	3	811.472	3	4596.429	1
17		9	max	0	1	.229	2	.023	3	2.15e-2	2	NC	4	NC	1
18			min	0	15	.005	15	008	2	-2.269e-3	3	2148.082	2	NC	1
19		10	max	0	1	.283	2	.023	3	2.292e-2	2	NC	3	NC	1
20			min	0	1	028	3	015	2	-2.293e-3	3	1403.509	2	NC	1
21		11	max	0	15	.229	2	.023	3	2.15e-2	2	NC	4	NC	1
22			min	0	1	.005	15	008	2	-2.269e-3	3	2148.082	2	NC	1
23		12	max	0	15	.248	3	.049	1	2.009e-2	2	NC	2	NC	2
24			min	0	1	.002	15	003	10	-2.244e-3	3	811.472	3	4596.429	1
25		13	max	0	15	.458	3	.086	1	1.867e-2	2	NC	5	NC	3
26			min	0	1	064	1	.001	10	-2.219e-3	3	459.494	3	2592.932	1
27		14	max	0	15	.623	3	.111	1	1.726e-2	2	NC	5	NC	3
28			min	0	1	182	1	.004	15	-2.194e-3	3	342.48	3	2015.829	1
29		15	max	0	15	.7	3	.115	1	1.584e-2	2	NC	5	NC	3
30			min	0	1	248	1	.004	15	-2.169e-3	3	306.092	3	1935.633	1
31		16	max	0	15	.666	3	.099	1	1.443e-2	2	NC	5	NC	3
32			min	0	1	247	1	.004	15	-2.145e-3	3	321.143	3	2261.92	1
33		17	max	0	15	.518	3	.066	1	1.301e-2	2	NC	5	NC	3
34			min	0	1	176	1	.003	15	-2.12e-3	3	408.318	3	3398.79	1
35		18	max	0	15	.275	3	.028	1	1.16e-2	2	NC	5	NC	2
36			min	0	1	048	1	0	10	-2.095e-3	3	738.879	3	8220.151	1
37		19	max	0	15	.125	2	.007	3	1.018e-2	2	NC	1	NC	1
38			min	0	1	025	3	004	2	-2.07e-3	3	NC	1	NC	1
39	M14	1	max	0	1	.254	3	.007	3	5.958e-3	2	NC	1	NC	1
40			min	0	15	392	2	003	2	-4.539e-3	3	NC	1	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/v Ratio	LC	(n) L/z Ratio	LC
41		2	max	0	1	.56	3	.019	1 7.099e-3	2	NC	5	NC	1
42			min	0	15	681	2	0	10 -5.49e-3	3	725.791	3	NC	1
43		3	max	0	1	.82	3	.053	1 8.241e-3	2	NC	5	NC	2
44			min	0	15	933	2	.002	10 -6.442e-3	3	392.044	3	4293.04	1
45		4	max	0	1	1.004	3	.084	1 9.382e-3	2	NC	15	NC	3
46			min	0	15	-1.122	2	.003	15 -7.393e-3	3	296.005	3	2666.906	1
47		5	max	0	1	1.095	3	.102	1 1.052e-2	2	NC	15	NC	3
48			min	0	15	-1.234	2	.004	15 -8.345e-3	3	263.747	2	2197.497	1
49		6	max	0	1	1.095	3	.1	1 1.167e-2	2	NC	15	NC	3
50			min	0	15	-1.268	2	.004	15 -9.296e-3	3	253.449	2	2233.779	1
51		7	max	0	1	1.017	3	.08	1 1.281e-2	2	NC	15	NC	3
52			min	0	15	-1.235	2	.001	10 -1.025e-2	3	263.166	2	2823.413	1
53		8	max	0	1	.895	3	.046	1 1.395e-2	2	NC	15	NC	2
54			min	0	15	-1.16	2	003	10 -1.12e-2	3	288.929	2	4927.967	1
55		9	max	0	1	.774	3	.021	3 1.509e-2	2	NC	5	NC	1
56			min	0	15	-1.078	2	007	2 -1.215e-2	3	323.464	2	NC	1
57		10	max	0	1	.716	3	.021	3 1.623e-2	2	NC	5	NC	1
58			min	0	1	-1.038	2	014	2 -1.31e-2	3	343.698	2	NC	1
59		11	max	0	15	.774	3	.021	3 1.509e-2	2	NC	5	NC	1
60			min	0	1	-1.078	2	007	2 -1.215e-2	3	323.464	2	NC	1
61		12	max	0	15	.895	3	.046	1 1.395e-2	2	NC	<u> 15</u>	NC	2
62			min	0	1	-1.16	2	003	10 -1.12e-2	3	288.929	2	4927.967	1
63		13	max	0	15	1.017	3	.08	1 1.281e-2	2	NC	15	NC	3
64			min	0	1	-1.235	2	.001	10 -1.025e-2	3	263.166	2	2823.413	1
65		14	max	0	15	1.095	3	1	1 1.167e-2	2	NC	15	NC	3
66			min	0	1	-1.268	2	.004	15 -9.296e-3	3	253.449	2	2233.779	1
67		15	max	0	15	1.095	3	.102	1 1.052e-2	2	NC	<u>15</u>	NC	3
68			min	0	1	-1.234	2	.004	15 -8.345e-3	3	263.747	2	2197.497	1
69		16	max	0	15	1.004	3	.084	1 9.382e-3	2	NC	15	NC	3
70			min	0	1	-1.122	2	.003	15 -7.393e-3	3	296.005	3	2666.906	1
71		17	max	0	15	.82	3	.053	1 8.241e-3	2	NC	5	NC	2
72			min	0	1	<u>933</u>	2	.002	10 -6.442e-3	3	392.044	3	4293.04	1
73		18	max	0	15	.56	3	.019	1 7.099e-3	2	NC	5	NC	1
74			min	0	1	681	2	0	10 -5.49e-3	3	725.791	3	NC	1
75		19	max	0	15	.254	3	.007	3 5.958e-3	2	NC	_1_	NC	1
76			min	0	1	392	2	003	2 -4.539e-3	3	NC	1	NC	1
77	<u>M15</u>	1	max	0	15	.26	3	.006	3 3.854e-3	3	NC	_1_	NC	1
78			min	0	1	391	2	003	2 -6.172e-3	2	NC	1_	NC	1
79		2	max	0	15	.459	3	.019	1 4.664e-3	3	NC	_5_	NC	1
80			min	0	1	757	2	0	10 -7.357e-3	2	606.617	2	NC	1
81		3_	max	0	15	.634	3	.053	1 5.473e-3	3	NC	<u>5</u>	NC	2
82			min	0	1	<u>-1.071</u>	2	.002	15 -8.542e-3		326.449	2	4279.025	
83		4	max	0	15	<u>.767</u>	3	.084	1 6.283e-3	3	NC	<u>15</u>	NC	3
84			min	0	1	-1.298	2	.003	15 -9.728e-3	2	244.895	2	2659.573	
85		5	max	0	15	.847	3	.102	1 7.093e-3	3	NC	<u>15</u>	NC	3
86			min	0	1	-1.418	2	.004	15 -1.091e-2	2	216.107	2	2191.518	
87		6	max	0	15	.875	3	.101	1 7.903e-3	3	NC	<u>15</u>	NC	3
88		_	min	0	1	<u>-1.433</u>	2	.004	15 -1.21e-2	2	213.085		2226.846	
89		7	max	0	15	.858	3	.08	1 8.712e-3	3	NC 200 400	15	NC	3
90			min	0	1	<u>-1.359</u>	2	.002	10 -1.328e-2	2	229.486	2	2811.517	1
91		8	max	0	15	.811	3	.046	1 9.522e-3	3	NC 224.722	<u>15</u>	NC 1000 000	2
92			min	0	1	<u>-1.23</u>	2	003	10 -1.447e-2	2	264.706	2	4890.282	
93		9	max	0	15	.758	3	.02	3 1.033e-2	3	NC NC	_5_	NC	1
94			min	0	1	<u>-1.099</u>	2	006	10 -1.565e-2	2	313.51	2	NC	1
95		10	max	0	1	.732	3	.019	3 1.114e-2	3	NC 0.10 Too	5_	NC	1
96			min	0	1	-1.037	2	<u>013</u>	2 -1.684e-2	2	343.788	2	NC	1
97		11	max	0	1	.758	3	.02	3 1.033e-2	3	NC	5	NC	1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					LC
98			min	0	15	-1.099	2	006	10 -1.565e-2	2	313.51	2	NC	1
99		12	max	0	1	<u>.811</u>	3	.046	1 9.522e-3	3	NC	15	NC	2
100			min	0	15	-1.23	2	003	10 -1.447e-2	2	264.706	2	4890.282	
101		13	max	0	1	.858	3	.08	1 8.712e-3	3	NC	15	NC	3
102			min	0	15	<u>-1.359</u>	2	.002	10 -1.328e-2	2	229.486	2	2811.517	1
103		14	max	0	1	.875	3	.101	1 7.903e-3	3	NC	<u>15</u>	NC	3
104		45	min	0	15	-1.433	2	.004	15 -1.21e-2	2	213.085	2	2226.846	
105		15	max	0	1	.847	3	.102	1 7.093e-3	3_	NC 046.407	15	NC	3
106		40	min	0	15	<u>-1.418</u>	2	.004	15 -1.091e-2	2	216.107	2	2191.518	
107		16	max	0	15	.767	3	.084	1 6.283e-3	3	NC 244 805	<u>15</u>	NC OCEO EZO	3
108 109		17	min	0	1	-1.298 .634	2	.003	15 -9.728e-3	2	244.895 NC	<u>2</u> 5	2659.573 NC	2
110		11/	max	<u>0</u> 	15	-1.071	3	.053 .002	1 5.473e-3 15 -8.542e-3	2	326.449	2	4279.025	
111		18		0	1		3	.002	1 4.664e-3	3	NC	5		1
112		10	max min	0	15	.459 757	2	<u>019</u>	10 -7.357e-3	2	606.617	2	NC NC	1
113		19	max	0	1	.26	3	.006	3 3.854e-3	3	NC	1	NC	1
114		13	min	0	15	391	2	003	2 -6.172e-3	2	NC	1	NC	1
115	M16	1	max	0	15	.11	2	.005	3 6.891e-3	3	NC	1	NC	1
116	IVIIO		min	0	1	087	3	003	2 -8.525e-3	2	NC	1	NC	1
117		2	max	0	15	.013	3	.028	1 8.021e-3	3	NC	5	NC	2
118		_	min	0	1	127	2	0	10 -9.556e-3	1	933.9	2	8262.846	
119		3	max	0	15	.09	3	.066	1 9.151e-3	3	NC	5	NC	3
120			min	0	1	316	2	.003	15 -1.063e-2	1	520.249	2	3403.928	
121		4	max	0	15	.129	3	.099	1 1.028e-2	3	NC	5	NC	3
122			min	0	1	424	2	.004	15 -1.171e-2	1	415.366	2	2260.099	1
123		5	max	0	15	.125	3	.116	1 1.141e-2	3	NC	5	NC	3
124			min	0	1	436	2	.004	15 -1.279e-2	1	406.565	2	1929.75	1
125		6	max	0	15	.077	3	.112	1 1.254e-2	3	NC	5	NC	3
126			min	0	1	354	2	.004	15 -1.386e-2	1	478.312	2	2003.651	1
127		7	max	0	15	0	12	.087	1 1.367e-2	3	NC	5	NC	3
128			min	0	1	199	2	.003	10 -1.494e-2	1_	718.258	2	2563.162	1
129		8	max	0	15	.026	1	.05	1 1.48e-2	3	NC	3	NC	2
130			min	0	1	098	3	002	10 -1.602e-2	1_	1867.993	2	4477.671	1
131		9	max	0	15	.175	1	.017	3 1.593e-2	3_	NC	4_	NC	1
132			min	0	1	182	3	006	10 -1.709e-2	_1_	2342.48	3	NC	1
133		10	max	0	1	.242	1	.017	3 1.706e-2	3	NC	5	NC	1
134			min	0	1	<u>219</u>	3	012	2 -1.817e-2	1_	1680.369	1_	NC	1
135		11	max	0	1	<u>.175</u>	1	.017	3 1.593e-2	3	NC	4	NC NC	1
136		40	min	0	15	182	3	006	10 -1.709e-2	1_	2342.48	3	NC NC	1
137		12	max	0	1	.026	1	.05	1 1.48e-2	3	NC 4007.000	3	NC	2
138		40	min	0	15	098	3	002	10 -1.602e-2				4477.671	
139		13	max	0	1	0	12	.087	1 1.367e-2	3	NC 710.250	5	NC	3
140		1.1	min	0	15	199 077	3	.003	10 -1.494e-2	1	718.258	2	2563.162	
141 142		14	max	0 0		.077		.112	1 1.254e-2	<u>3</u> 1	NC 478.312	5	NC 2003.651	3
143		15	min max	0	15	354 .125	3	<u>.004</u> .116	15 -1.386e-2 1 1.141e-2	3	NC	<u>2</u> 5	NC	3
144		10	min	0	15	436	2	.004	15 -1.279e-2	1	406.565	2	1929.75	1
145		16	max	0	1	436 .129	3	.004	1 1.028e-2	3	NC	5	NC	3
146		10	min	0	15	424	2	.004	15 -1.171e-2	1	415.366	2	2260.099	
147		17	max	0	1	.09	3	.066	1 9.151e-3	3	NC	5	NC	3
148		11/	min	0	15	316	2	.003	15 -1.063e-2	1	520.249	2	3403.928	
149		18	max	0	1	.013	3	.028	1 8.021e-3	3	NC	5	NC	2
150		10	min	0	15	127	2	0	10 -9.556e-3	1	933.9	2	8262.846	
151		19	max	0	1	.11	2	.005	3 6.891e-3	3	NC	1	NC	1
152		1.5	min	0	15	087	3	003	2 -8.525e-3	2	NC	1	NC	1
153	M2	1	max	.006	1	.006	2	.006	1 -6.221e-6		NC	1	NC	2
154			min	008	3	01	3	0	15 -1.695e-4	1	9721.297		8551.434	
					_		_					-	300 11 10 1	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

455	Member	Sec		x [in]	LC	y [in]	LC	z [in]						(n) L/z Ratio	
155 156		2	max	.006 007	3	.005 009	3	<u>.006</u>	15	-5.806e-6 -1.582e-4	<u>15</u> 1	NC NC	<u>1</u> 1	NC 9327.861	1
157		3	max	.005	1	.004	2	.005	1	-5.39e-6	15	NC	1	NC	1
158			min	007	3	009	3	<u>.005</u>		-1.469e-4	1	NC NC	1	NC	1
159		4	max	.005	1	.004	2	.005	1	-4.975e-6	15	NC	1	NC	1
160			min	006	3	009	3	0	15	-1.355e-4	1	NC	1	NC	1
161		5	max	.005	1	.003	2	.004	1	-4.559e-6	15	NC	1	NC	1
162			min	006	3	008	3	0	15	-1.242e-4	1	NC	1	NC	1
163		6	max	.004	1	.002	2	.004	1	-4.144e-6	15	NC	1	NC	1
164			min	006	3	008	3	0	15	-1.128e-4	1	NC	1	NC	1
165		7	max	.004	1	.002	2	.003	1	-3.728e-6	15	NC	1	NC	1
166			min	005	3	007	3	0	15	-1.015e-4	1	NC	1	NC	1
167		8	max	.004	1	.001	2	.003	1	-3.313e-6	<u>15</u>	NC	_1_	NC	1
168			min	005	3	007	3	0	15	-9.016e-5	1	NC	1	NC	1
169		9	max	.003	1	00	2	.002	1	-2.897e-6	<u>15</u>	NC	_1_	NC	1_
170			min	004	3	006	3	0	15	-7.882e-5	_1_	NC	1_	NC	1
171		10	max	.003	1	0	2	.002	1	-2.481e-6	<u>15</u>	NC	_1_	NC	1
172			min	004	3	006	3	0	15	-6.748e-5	_1_	NC	1_	NC	1
173		11	max	.003	1	0	2	.002	1	-2.066e-6		NC	1_	NC	1
174		40	min	003	3	005	3	0	15	-5.615e-5	1_	NC NC	1_	NC NC	1
175		12	max	.002	1	0	2	001	1	-1.65e-6 -4.481e-5	<u>15</u>	NC NC	1	NC NC	1
176		13	min	003 .002	3	005 0	3 15	0	1 <u>5</u>		1_	NC NC	1	NC NC	1
177 178		13	max	002	3	004	3	0	15	-1.235e-6 -3.347e-5	<u>15</u> 1	NC NC	1	NC NC	1
179		14	max	.002	1	004 0	15	0	1	-8.192e-7	15	NC NC	1	NC NC	1
180		14	min	002	3	004	3	0	15	-2.213e-5	1	NC NC	1	NC	1
181		15	max	.002	1	0	15	0	1	-4.036e-7	15	NC	1	NC	1
182		10	min	002	3	003	3	0	15	-1.079e-5	1	NC	1	NC	1
183		16	max	0	1	0	15	0	1	5.505e-7	1	NC	1	NC	1
184			min	001	3	002	3	0	15	-6.05e-7	3	NC	1	NC	1
185		17	max	0	1	0	15	0	1	1.189e-5	1	NC	1	NC	1
186			min	0	3	002	3	0	15	2.599e-7	12	NC	1	NC	1
187		18	max	0	1	0	15	0	1	2.323e-5	1	NC	1	NC	1
188			min	0	3	0	3	0	15	8.43e-7	15	NC	1	NC	1
189		19	max	0	1	0	1	0	1	3.457e-5	_1_	NC	1_	NC	1
190			min	0	1	0	1	0	1	1.259e-6	15	NC	1_	NC	1
191	<u>M3</u>	1	max	0	1	0	1	0	1	-3.991e-7	<u>15</u>	NC	_1_	NC	1_
192			min	0	1	0	1	0	1	-1.095e-5	_1_	NC	1_	NC	1
193		2	max	0	3	0	15	0	1_	8.709e-6	_1_	NC	1_	NC	1
194			min	0	2	002	4	0	15	3.194e-7	<u>15</u>	NC NC	1_	NC NC	1
195		3	max	0	3	0	15	0	1	2.837e-5	1_	NC	1	NC	1
196		4	min	0	2	003	15	0	15	1.038e-6		NC NC	1	NC NC	1
197 198		4	max	0	3	001 005	4	0	15	4.803e-5 1.757e-6	1_	NC NC	1	NC NC	1
199		5	min max	.001	3	005 002	15	0	1	6.769e-5	1 <u>5</u>	NC NC	1	NC NC	1
200		5	min	001	2	002	4	0	15	2.475e-6		NC	1	NC	1
201		6	max	.002	3	007	15	.001	1	8.735e-5	1	NC	1	NC	1
202			min	001	2	009	4	0	15	3.194e-6		NC	1	NC	1
203		7	max	.002	3	002	15	.001	1	1.07e-4	1	NC	1	NC	1
204			min	002	2	01	4	0	15	3.912e-6		8930.104	4	NC	1
205		8	max	.002	3	003	15	.002	1	1.267e-4	1	NC	1	NC	1
206		Ĭ	min	002	2	012	4	0	15	4.631e-6	15	7989.695	4	NC	1
207		9	max	.003	3	003	15	.002	1	1.463e-4	1	NC	1	NC	1
208			min	002	2	013	4	0	15	5.349e-6		7430.556	4	NC	1
209		10	max	.003	3	003	15	.002	1	1.66e-4	1	NC	2	NC	1
210			min	002	2	013	4	0	15	6.068e-6	15	7154.402	4	NC	1
211		11	max	.003	3	003	15	.002	1	1.856e-4	1	NC	2	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio	LC		LC
212			min	003	2	013	4	0	15	6.786e-6	15	7120.236	4	NC	1
213		12	max	.004	3	003	15	.003	1	2.053e-4	_1_	NC	2	NC	1
214			min	003	2	013	4	0	15	7.505e-6	15	7328.582	4	NC	1
215		13	max	.004	3	003	15	.003	1	2.25e-4	_1_	NC	_1_	NC	1
216			min	003	2	012	4	0	15	8.223e-6	15	7823.67	4_	NC	1
217		14	max	.004	3	003	15	.004	1	2.446e-4	1_	NC 0740,000	1	NC NC	1
218		4.5	min	003	2	011	4	0	15	8.942e-6		8716.666	4	NC NC	1
219		15	max	.005	3	002	15	.004	1	2.643e-4	1_	NC NC	1_	NC	1
220		4.0	min	004	2	009	4	0	15	9.66e-6	<u>15</u>	NC NC	1_	NC NC	1
221		16	max	.005	3	002 008	15	.005	15	2.839e-4 1.038e-5	1_	NC NC	<u>1</u> 1	NC NC	1
223		17	min	004 .005	3	008 001	15	<u> </u>			<u>15</u>	NC NC	1	NC NC	1
224		17	max	005 004	2	001 006	1	<u>.005</u>	15	3.036e-4 1.11e-5	<u>1</u> 15	NC NC	1	NC NC	1
225		18	min max	.006	3	<u>006</u> 0	15	.006	1	3.233e-4	1 <u>1</u>	NC NC	1	NC NC	1
226		10	min	004	2	004	1	<u>.000</u>	15	1.182e-5	15	NC	1	NC	1
227		19	max	.006	3	004 0	15	.006	1	3.429e-4	1 <u>5</u>	NC	1	NC	1
228		13	min	005	2	003	1	0	15	1.253e-5	15	NC	1	NC	1
229	M4	1	max	.003	1	.003	2	0	15	2.022e-5	1	NC	1	NC	2
230	IVIT		min	0	3	006	3	006	1	7.503e-7	15	NC	1	4005.701	1
231		2	max	.003	1	.004	2	<u>.000</u>	15	2.022e-5	1	NC	1	NC	2
232			min	0	3	006	3	006	1	7.503e-7	15	NC	1	4359.361	1
233		3	max	.003	1	.004	2	0	15	2.022e-5	1	NC	1	NC	2
234			min	0	3	005	3	005	1	7.503e-7	15	NC	1	4780.076	1
235		4	max	.002	1	.003	2	0	15	2.022e-5	1	NC	1	NC	2
236			min	0	3	005	3	005	1	7.503e-7	15	NC	1	5285.299	1
237		5	max	.002	1	.003	2	0	15	2.022e-5	1	NC	1	NC	2
238			min	0	3	005	3	004	1	7.503e-7	15	NC	1	5898.75	1
239		6	max	.002	1	.003	2	0	15	2.022e-5	1	NC	1	NC	2
240			min	0	3	004	3	004	1	7.503e-7	15	NC	1	6653.321	1
241		7	max	.002	1	.003	2	0	15	2.022e-5	1_	NC	1_	NC	2
242			min	0	3	004	3	003	1	7.503e-7	15	NC	1	7595.706	
243		8	max	.002	1	.003	2	0	15	2.022e-5	_1_	NC	_1_	NC	2
244			min	0	3	004	3	003	1	7.503e-7	15	NC	1_	8794.006	1
245		9	max	.002	1	.002	2	0	15	2.022e-5	_1_	NC	_1_	NC	1
246			min	0	3	003	3	002	1	7.503e-7	15	NC	_1_	NC	1
247		10	max	.001	1	.002	2	0	15	2.022e-5	_1_	NC	_1_	NC	1
248			min	0	3	003	3	002	1	7.503e-7	<u>15</u>	NC	1_	NC	1
249		11	max	.001	1	.002	2	0	15	2.022e-5	_1_	NC	1_	NC NC	1
250		40	min	0	3	003	3	002	1_	7.503e-7	15	NC	_1_	NC NC	1
251		12	max	.001	1	.002	2	0	15	2.022e-5	1_	NC NC	1_	NC NC	1
252		40	min	0	3	002	3	001		7.503e-7			1	NC NC	1
253		13	max	0	3	.001	2	0		2.022e-5	1_	NC NC	1	NC	1
254		1.1	min	0	1	002	2	0	1 1 5	7.503e-7	<u>15</u>	NC NC	<u>1</u> 1	NC NC	1
255		14	max	<u> </u>	3	.001	3	0	15		15		1	NC NC	1
256 257		15	min max	0	1	002 0	2	<u> </u>	15	7.503e-7 2.022e-5	<u>15</u> 1	NC NC	1	NC NC	1
258		10	min	0	3	001	3	0	1	7.503e-7	15	NC	1	NC	1
259		16	max	0	1	0	2	0	15	2.022e-5	1	NC	1	NC	1
260		10	min	0	3	0	3	0	1	7.503e-7	15	NC	1	NC	1
261		17	max	0	1	0	2	0	15	2.022e-5	1 <u>5</u>	NC NC	1	NC NC	1
262		17	min	0	3	0	3	0	1	7.503e-7	15	NC	1	NC	1
263		18	max	0	1	0	2	0	15	2.022e-5	1	NC	1	NC	1
264		10	min	0	3	0	3	0	1	7.503e-7	15	NC	1	NC	1
265		19	max	0	1	0	1	0	1	2.022e-5	1	NC	1	NC	1
266			min	0	1	0	1	0	1	7.503e-7	15	NC	1	NC	1
267	M6	1	max	.019	1	.021	2	0	1	0	1	NC	4	NC	1
268			min	025	3	031	3	0	1	0	1	1783.778	3	NC	1
					Ŭ	.001	·	•		•	_		_		

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio LC		
269		2	max	.018	1	.02	2	0	1	0	_1_	NC 4	NC	1
270			min	024	3	029	3	0	1	0	<u>1</u>	1892.14 3	NC	1
271		3	max	.017	1	.018	2	0	1	0	1	NC 4	NC	1
272			min	022	3	027	3	0	1	0	1	2014.472 3	NC	1
273		4	max	.016	1	.016	2	0	1	0	_1_	NC 4	NC	1
274			min	021	3	026	3	0	1	0	1_	2153.598 3	NC	1
275		5	max	.015	1	.014	2	0	1	0	1	NC 4	NC	1
276			min	019	3	024	3	0	1	0	_1_	2313.153 3	NC	1
277		6	max	.014	1	.013	2	0	1	0	_1_	NC 4	NC	1
278			min	018	3	022	3	0	1	0	1_	2497.89 3	NC	1
279		7	max	.013	1	.011	2	0	1	0	_1_	NC 1	NC	1
280			min	017	3	02	3	0	1	0	1	2714.15 3	NC	1
281		8	max	.011	1	.01	2	00	1	0	_1_	NC 1	NC	1
282			min	015	3	019	3	0	1	0	1	2970.581 3	NC	1
283		9	max	.01	1	.008	2	0	1	0	_1_	NC 1	NC	1_
284			min	014	3	017	3	0	1	0	1	3279.292 3	NC	1
285		10	max	.009	1	.007	2	0	1	0	1	NC 1	NC	1
286			min	012	3	015	3	0	1	0	1	3657.778 3	NC	1
287		11	max	.008	1	.006	2	0	1	0	1	NC 1	NC	1
288			min	011	3	013	3	0	1	0	1	4132.286 3	NC	1
289		12	max	.007	1	.004	2	0	1	0	1	NC 1	NC	1
290			min	01	3	012	3	0	1	0	1	4744.068 3	NC	1
291		13	max	.006	1	.003	2	0	1	0	1	NC 1	NC	1
292			min	008	3	01	3	0	1	0	1	5561.881 3	NC	1
293		14	max	.005	1	.002	2	0	1	0	1	NC 1	NC	1
294			min	007	3	008	3	0	1	0	1	6709.5 3	NC	1
295		15	max	.004	1	.002	2	0	1	0	1	NC 1	NC	1
296			min	006	3	007	3	0	1	0	1	8434.488 3	NC	1
297		16	max	.003	1	0	2	0	1	0	1	NC 1	NC	1
298			min	004	3	005	3	0	1	0	1	NC 1	NC	1
299		17	max	.002	1	0	2	0	1	Ö	1	NC 1	NC	1
300			min	003	3	003	3	0	1	0	1	NC 1	NC	1
301		18	max	.001	1	0	2	0	1	0	1	NC 1	NC	1
302		10	min	001	3	002	3	0	1	0	1	NC 1	NC	1
303		19	max	0	1	0	1	0	1	0	1	NC 1	NC	1
304		13	min	0	1	0	1	0	1	0	1	NC 1	NC	1
305	M7	1	max	0	1	0	1	0	1	0	1	NC 1	NC	1
306	IVII		min	0	1	0	1	0	1	0	1	NC 1	NC NC	1
307		2	max	.001	3	0	2	0	1	0	1	NC 1	NC NC	1
308			min		2	003	3	0	1	0	1	NC 1	NC NC	1
		2		0		<u>003</u> 0			1		+			1
309		3	max	.002 002	3	005	3	<u> </u>	1	0	1	NC 1 NC 1	NC NC	1
310		4	min	.002	3		15		1	0	1	NC 1	NC NC	1
311		4	max		2	001		0	1		1	NC 1		1
312		_	min	003		007	3	0	· ·	0	•		NC NC	
313		5	max	.004	3	002 009	15	0	1	0	1	NC 1	NC NC	1
314			min	004			3	0	•	0	1_	110	NC NC	-
315		6	max	.005	3	002	15	0	1	0	1	NC 1	NC NC	1
316		-	min	005	2	011	3	0	1	0	1_	8876.547 3	NC NC	1
317		7	max	.006	3	002	15	0	1	0	1	NC 1	NC NC	1
318		_	min	006	2	012	3	0	1	0	1_	7919.026 3	NC NC	1
319		8	max	.007	3	003	15	0	1	0		NC 1	NC NC	1
320			min	007	2	013	3	0	1	0	_1_	7350.941 3	NC	1
321		9	max	.008	3	003	15	0	1	0	_1_	NC 1	NC	1
322			min	008	2	014	3	0	1	0	1	7055.256 3	NC	1
323		10	max	.009	3	003	15	0	1	0	1	NC 1	NC	1
324			min	009	2	014	3	0	1	0	1_	6979.271 3	NC	1
325		11	max	.01	3	003	15	0	1	0	_1_	NC 1	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			LC
326			min	01	2	014	3	0	1	0	1	7109.351	3	NC	1
327		12	max	.011	3	003	15	0	1	0	1	NC	1	NC	1
328			min	011	2	014	3	0	1	0	1	7456.162	4	NC	1
329		13	max	.012	3	003	15	0	1	0	1	NC	1	NC	1
330			min	012	2	013	3	0	1	0	1	7954.095	4	NC	1
331		14	max	.013	3	003	15	0	1	0	1	NC	1	NC	1
332			min	013	2	012	3	0	1	0	1	8856.649	4	NC	1
333		15	max	.015	3	002	15	0	1	0	1	NC	1	NC	1
334		10	min	014	2	01	3	0	1	0	1	NC	1	NC	1
335		16	max	.016	3	002	15	0	1	0	1	NC	1	NC	1
336		10		015	2	002	1	0	1	0	1	NC	1	NC	1
		47	min		_		_		•				•		
337		17	max	.017	3	001	15	0	1	0	1	NC NC	1	NC	1
338		1.0	min	<u>016</u>	2	008	1	0	1	0	1	NC	1	NC	1
339		18	max	.018	3	0	15	0	1	0	_1_	NC	1_	NC	1
340			min	017	2	007	1	0	1	0	1_	NC	1_	NC	1
341		19	max	.019	3	0	15	0	1	0	_1_	NC	_1_	NC	1
342			min	018	2	006	1	0	1	0	1_	NC	1	NC	1
343	M8	1	max	.008	1	.016	2	0	1	0	1	NC	1	NC	1
344			min	003	3	019	3	0	1	0	1	NC	1	NC	1
345		2	max	.008	1	.015	2	0	1	0	1	NC	1	NC	1
346			min	002	3	018	3	0	1	0	1	NC	1	NC	1
347		3	max	.007	1	.014	2	0	1	0	1	NC	1	NC	1
348			min	002	3	017	3	0	1	0	1	NC	1	NC	1
349		4	max	.007	1	.013	2	0	1	0	1	NC	1	NC	1
350		-	min	002	3	016	3	0	1	0	1	NC	1	NC	1
351		5		.006	1	.012	2	0	1	0	1	NC	1	NC	1
		5	max		3		3		1				1		1
352			min	002		015		0		0	1	NC NC	•	NC NC	
353		6	max	.006	1	.011	2	0	1	0	1	NC	1	NC	1
354		_	min	002	3	013	3	0	1	0	1	NC	1	NC	1
355		7	max	.006	1	.011	2	0	1	0	_1_	NC	1	NC	1
356			min	002	3	012	3	0	1	0	1_	NC	1_	NC	1
357		8	max	.005	1	.01	2	0	1	0	_1_	NC	_1_	NC	1
358			min	002	3	011	3	0	1	0	1_	NC	1	NC	1
359		9	max	.005	1	.009	2	0	1	0	1	NC	1	NC	1
360			min	001	3	01	3	0	1	0	1	NC	1	NC	1
361		10	max	.004	1	.008	2	0	1	0	1	NC	1	NC	1
362			min	001	3	009	3	0	1	0	1	NC	1	NC	1
363		11	max	.004	1	.007	2	0	1	0	1	NC	1	NC	1
364			min	001	3	008	3	0	1	0	1	NC	1	NC	1
365		12	max	.003	1	.006	2	0	1	0	1	NC	1	NC	1
366		12	min	0	3	007	3	0	1	0	1	NC	1	NC	1
367		13		.003	1	.005	2	0	1	0	1	NC	1	NC	1
		13	max		3				1				1		1
368		11	min	0		006	3	0	1	0	<u>1</u> 1	NC NC	1	NC NC	1
369		14	max	.002	1	.004	2	0		0					
370		4.5	min	0	3	005	3	0	1	0	1	NC	1	NC	1
371		15	max	.002	1	.004	2	0	1	0	1	NC	1	NC	1
372			min	0	3	004	3	0	1	0	_1_	NC	<u>1</u>	NC	1
373		16	max	.001	1	.003	2	0	1	0	_1_	NC	_1_	NC	1
374			min	0	3	003	3	0	1	0	1	NC	1	NC	1
375		17	max	0	1	.002	2	0	1	0	1_	NC	1_	NC	1
376			min	0	3	002	3	0	1	0	1	NC	1	NC	1
377		18	max	0	1	0	2	0	1	0	1	NC	1	NC	1
378			min	0	3	001	3	0	1	0	1	NC	1	NC	1
379		19	max	0	1	0	1	0	1	0	1	NC	1	NC	1
380			min	0	1	0	1	0	1	0	1	NC	1	NC	1
381	M10	1	max	.006	1	.006	2	0	15	1.695e-4	1	NC	1	NC	2
382	IVITO		min	008	3	01	3	006	1	6.221e-6		9721.297	2	8551.434	
302			HIIII	008	J	01	J	006		0.2216-0	10	3121.291		10001.404	

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC		$\overline{}$
383		2	max	.006	1	.005	2	0	15	1.582e-4	1_	NC	1	NC	2
384			min	007	3	009	3	006	1	5.806e-6	15	NC	1	9327.861	1
385		3	max	.005	1	.004	2	0	15	1.469e-4	1	NC	1	NC	1
386			min	007	3	009	3	005	1	5.39e-6	15	NC	1	NC	1
387		4	max	.005	1	.004	2	0	15		1	NC	1	NC	1
388			min	006	3	009	3	005	1	4.975e-6	15	NC	1	NC	1
389		5	max	.005	1	.003	2	0	15		1	NC	1	NC	1
390			min	006	3	008	3	004	1	4.559e-6	15	NC	1	NC	1
391		6	max	.004	1	.002	2	<u>.004</u>	15	1.128e-4	1	NC	1	NC	1
392			min	006	3	008	3	004	1	4.144e-6	15	NC	1	NC	1
393		7		.004	1	.002	2	004 0	15	1.015e-4	1	NC NC	1	NC	1
			max		3		3								
394			min	005		007		003	1	3.728e-6	<u>15</u>	NC NC	1_	NC NC	1
395		8	max	.004	1	.001	2	0	15	9.016e-5	1_	NC	1	NC NC	1
396			min	005	3	007	3	003	1	3.313e-6	15	NC	1_	NC	1
397		9	max	.003	1	0	2	0	15	7.882e-5	_1_	NC	_1_	NC	1
398			min	004	3	006	3	002	1	2.897e-6	15	NC	1_	NC	1
399		10	max	.003	1	0	2	0	15		_1_	NC	_1_	NC	1
400			min	004	3	006	3	002	1	2.481e-6	15	NC	1_	NC	1
401		11	max	.003	1	0	2	0	15	5.615e-5	1	NC	1	NC	1
402			min	003	3	005	3	002	1	2.066e-6	15	NC	1	NC	1
403		12	max	.002	1	0	2	0	15	4.481e-5	1	NC	1	NC	1
404			min	003	3	005	3	001	1	1.65e-6	15	NC	1	NC	1
405		13	max	.002	1	0	15	0	15	3.347e-5	1	NC	1	NC	1
406			min	003	3	004	3	0	1	1.235e-6	15	NC	1	NC	1
407		14	max	.002	1	0	15	0	15	2.213e-5	1	NC	1	NC	1
408			min	002	3	004	3	0	1	8.192e-7	15	NC	1	NC	1
409		15	max	.001	1	<u></u> 0	15	0	15	1.079e-5	1	NC	1	NC	1
410		10	min	002	3	003	3	0	1	4.036e-7	15	NC	1	NC	1
411		16		0	1	003	15	0	15	6.05e-7	3	NC	1	NC	1
412		10	max	•	3	002	3	0			1	NC NC	1	NC NC	1
		17	min	001	1				1 1 5	-5.505e-7	•	NC NC			1
413		17	max	0		0	15	0	15	-2.599e-7	12		1_	NC NC	
414		4.0	min	0	3	002	3	0	1_	-1.189e-5	1_	NC NC	1_	NC NC	1
415		18	max	0	1	0	15	0	15	-8.43e-7	<u>15</u>	NC		NC NC	1
416			min	0	3	0	3	0	1	-2.323e-5	1_	NC	1_	NC	1
417		19	max	0	1	00	1	0	1	-1.259e-6	<u>15</u>	NC	_1_	NC	1
418			min	0	1	0	1	0	1	-3.457e-5	1_	NC	1_	NC	1
419	M11	1	max	0	1	0	1	0	1	1.095e-5	<u>1</u>	NC	<u>1</u>	NC	1
420			min	0	1	0	1	0	1	3.991e-7	15	NC	1_	NC	1
421		2	max	0	3	0	15	0	15	-3.194e-7	15	NC	1	NC	1
422			min	0	2	002	4	0	1	-8.709e-6	1	NC	1	NC	1
423		3	max	0	3	0	15	0	15	-1.038e-6	15	NC	1	NC	1
424			min	0	2	003	4	0	1	-2.837e-5	1	NC	1	NC	1
425		4	max	0	3	001	15	0		-1.757e-6		NC	1	NC	1
426			min	0	2	005	4	0	1	-4.803e-5	1	NC	1	NC	1
427		5	max	.001	3	002	15	0	15			NC	1	NC	1
428		Ť	min	001	2	007	4	0	1	-6.769e-5	1	NC	1	NC	1
429		6	max	.002	3	002	15	0	15			NC	1	NC	1
430			min	001	2	002	4	001	1	-8.735e-5	1	NC	1	NC	1
431		7		.002	3	009	15	<u>001</u> 0	15	-3.912e-6		NC	1	NC	1
432			max		2			-		-3.912e-6	1	8930.104	4	NC NC	1
		0	min	002		01	4	001	1 1 5		_				•
433		8	max	.002	3	003	15	0	15	-4.631e-6	<u>15</u>	NC 7000 COF	1_1	NC	1
434			min	002	2	012	4	002	1	-1.267e-4	1_	7989.695	4_	NC NC	1
435		9	max	.003	3	003	15	0	15		<u>15</u>	NC	1	NC NC	1
436			min	002	2	013	4	002	1	-1.463e-4	1_	7430.556	4_	NC	1
437		10	max	.003	3	003	15	0	15		15	NC	2	NC	1
438			min	002	2	013	4	002	1	-1.66e-4	1_	7154.402	4	NC	1
439		11	max	.003	3	003	15	0	15	-6.786e-6	<u>15</u>	NC	2	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		LC
440			min	003	2	013	4	002	1	-1.856e-4	1	7120.236	4	NC	1
441		12	max	.004	3	003	15	0	15		15	NC	2	NC	1
442			min	003	2	013	4	003	1	-2.053e-4	1_	7328.582	4	NC	1
443		13	max	.004	3	003	15	0	15	-8.223e-6	15	NC	1	NC	1
444			min	003	2	012	4	003	1	-2.25e-4	1	7823.67	4	NC	1
445		14	max	.004	3	003	15	0	15	-8.942e-6	15	NC	1	NC	1
446			min	003	2	011	4	004	1	-2.446e-4	1	8716.666	4	NC	1
447		15	max	.005	3	002	15	0	15	-9.66e-6	15	NC	1_	NC	1
448			min	004	2	009	4	004	1	-2.643e-4	1	NC	1	NC	1
449		16	max	.005	3	002	15	0	15	-1.038e-5	15	NC	1	NC	1
450			min	004	2	008	4	005	1	-2.839e-4	1	NC	1	NC	1
451		17	max	.005	3	001	15	0	15	-1.11e-5	15	NC	1	NC	1
452			min	004	2	006	1	005	1	-3.036e-4	1	NC	1	NC	1
453		18	max	.006	3	0	15	0	15	-1.182e-5	15	NC	1	NC	1
454			min	004	2	004	1	006	1	-3.233e-4	1	NC	1	NC	1
455		19	max	.006	3	0	15	0	15	-1.253e-5	15	NC	1	NC	1
456			min	005	2	003	1	006	1	-3.429e-4	1	NC	1	NC	1
457	M12	1	max	.003	1	.004	2	.006	1	-7.503e-7	15	NC	1	NC	2
458			min	0	3	006	3	0	15		1	NC	1	4005.701	1
459		2	max	.003	1	.004	2	.006	1	-7.503e-7	15	NC	1	NC	2
460			min	0	3	006	3	0	15	-2.022e-5	1	NC	1	4359.361	1
461		3	max	.003	1	.004	2	.005	1	-7.503e-7	15	NC	1	NC	2
462			min	0	3	005	3	0	15	-2.022e-5	1	NC	1	4780.076	1
463		4	max	.002	1	.003	2	.005	1	-7.503e-7	15	NC	1	NC	2
464			min	0	3	005	3	0	15	-2.022e-5	1	NC	1	5285.299	1
465		5	max	.002	1	.003	2	.004	1	-7.503e-7	15	NC	1	NC	2
466			min	0	3	005	3	0	15	-2.022e-5	1	NC	1	5898.75	1
467		6	max	.002	1	.003	2	.004	1	-7.503e-7	15	NC	1	NC	2
468			min	0	3	004	3	0	15	-2.022e-5	1	NC	1	6653.321	1
469		7	max	.002	1	.003	2	.003	1	-7.503e-7	15	NC	1	NC	2
470			min	0	3	004	3	0	15	-2.022e-5	1	NC	1	7595.706	
471		8	max	.002	1	.003	2	.003	1	-7.503e-7	15	NC	1	NC	2
472			min	0	3	004	3	0	15	-2.022e-5	1	NC	1	8794.006	1
473		9	max	.002	1	.002	2	.002	1	-7.503e-7	15	NC	1	NC	1
474			min	0	3	003	3	0	15	-2.022e-5	1	NC	1	NC	1
475		10	max	.001	1	.002	2	.002	1	-7.503e-7	15	NC	1	NC	1
476			min	0	3	003	3	0	15	-2.022e-5	1	NC	1	NC	1
477		11	max	.001	1	.002	2	.002	1	-7.503e-7	15	NC	1	NC	1
478			min	0	3	003	3	0	15	-2.022e-5	1	NC	1	NC	1
479		12	max	.001	1	.002	2	.001	1	-7.503e-7	15	NC	1	NC	1
480			min		3	002	3	0	15	-2.022e-5	1	NC	1	NC	1
481		13	max	0	1	.001	2	0	1	-7.503e-7		NC	1	NC	1
482			min	0	3	002	3	0	15	-2.022e-5	1	NC	1	NC	1
483		14	max	0	1	.001	2	0	1	-7.503e-7	15	NC	1	NC	1
484			min	0	3	002	3	0	15	-2.022e-5	1	NC	1	NC	1
485		15	max	0	1	0	2	0	1	-7.503e-7	15	NC	1	NC	1
486			min	0	3	001	3	0	15		1	NC	1	NC	1
487		16	max	0	1	0	2	0	1	-7.503e-7		NC	1	NC	1
488			min	0	3	0	3	0		-2.022e-5	1	NC	1	NC	1
489		17	max	0	1	0	2	0	1	-7.503e-7	15	NC	1	NC	1
490			min	0	3	0	3	0	15		1	NC	1	NC	1
491		18	max	0	1	0	2	0	1	-7.503e-7	•	NC	1	NC	1
492			min	0	3	0	3	0	15		1	NC	1	NC	1
493		19	max	0	1	0	1	0	1	-7.503e-7		NC	1	NC	1
494		<u>.</u>	min	0	1	0	1	0	1	-2.022e-5	1	NC	1	NC	1
495	M1	1	max	.007	3	.125	2	0	1	1.383e-2	1	NC	1	NC	1
496			min	004	2	025	3	0		-2.528e-2	3	NC	1	NC	1
700			111011	.00+		.020	J	<u> </u>	10	2.0200 Z	0	110		110	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio L	_C_(LC
497		2	max	.007	3	.061	2	0	15	6.726e-3	_1_		4	NC	1
498			min	004	2	011	3	005	1	-1.251e-2	3		2	NC	1
499		3	max	.007	3	.011	3	0	15	3.351e-5	10		5	NC	1
500			min	004	2	009	2	006	1	-1.263e-4	3		2	NC	1
501		4	max	.007	3	.049	3	0	15	4.468e-3	2		5	NC	1_
502			min	004	2	087	2	006	1	-4.83e-3	3		2	NC	1
503		5	max	.007	3	.097	3	0	15	8.915e-3	2	NC :	5	NC	1
504			min	004	2	169	2	004	1	-9.535e-3	3	391.889	2	NC	1
505		6	max	.007	3	.149	3	0	15	1.336e-2	2	NC 1	15	NC	1
506			min	004	2	248	2	002	1	-1.424e-2	3	308.719	2	NC	1
507		7	max	.007	3	.199	3	0	1	1.781e-2	2	NC 1	15	NC	1
508			min	004	2	319	2	0	3	-1.894e-2	3	259.618	2	NC	1
509		8	max	.007	3	.241	3	0	1	2.226e-2	2	9263.806 1	15	NC	1
510			min	003	2	375	2	0	15	-2.365e-2	3		2	NC	1
511		9	max	.007	3	.268	3	0	15	2.524e-2	2	8661.636 1	15	NC	1
512			min	003	2	41	2	0	1	-2.385e-2	3		2	NC	1
513		10	max	.006	3	.278	3	0	1	2.726e-2	2		15	NC	1
514			min	003	2	422	2	0	15	-2.106e-2	3		2	NC	1
515		11	max	.006	3	.271	3	0	1	2.928e-2	2		15	NC	1
516			min	003	2	41	2	0	15	-1.827e-2	3		2	NC	1
517		12	max	.006	3	.248	3	0	15	2.826e-2	2		15	NC	1
518			min	003	2	373	2	0	1	-1.538e-2	3		2	NC	1
519		13	max	.006	3	.211	3	0	15	2.266e-2	2		15	NC	1
520			min	003	2	315	2	0	1	-1.231e-2	3		2	NC	1
521		14	max	.006	3	.164	3	.002	1	1.706e-2	2		15	NC	1
522		1-7	min	003	2	242	2	0	15	-9.243e-3	3		2	NC	1
523		15	max	.006	3	.111	3	.004	1	1.146e-2	2		5	NC	1
524		10	min	003	2	161	2	0	15	-6.177e-3	3		2	NC	1
525		16	max	.006	3	.057	3	.006	1	5.861e-3	2		5	NC	1
526		10	min	003	2	08	2	.000	15	-3.11e-3	3		2	NC	1
527		17	max	.005	3	.004	3	.006	1	4.604e-4	1		5	NC	1
528		17	min	003	2	006	2	0	15	-4.41e-5	3		2	NC NC	1
529		18	max	.005	3	.056	2	.004	1	9.982e-3	2		4	NC	1
530		10	min	003	2	043	3	0	15	-4.162e-3	3		2	NC NC	1
531		19	max	.005	3	<u>043 </u>	2	0	15	2.006e-2	2		1	NC NC	1
532		19	min	003	2	087	3	0	1	-8.447e-3	3		1	NC NC	1
533	M5	1	max	.023	3	.283	2	0	1	0	<u> </u>		1	NC NC	1
534	IVIO	_		025	2	028	3	0	1	0	1		1	NC NC	1
		2	min						1		1				
535		2	max	.023	3	.137	2	0	1	0	1		5 2	NC NC	1
536		2	min	015		011	3	0	1	0	•			NC NC	1
537		3	max	.023	3	.034	3	0	1	0	1		5	NC NC	1
538		1	min	015	2	028	2	0		0	1		2	NC NC	1
539		4	max	.022	3	.131	3	0	1	0	1		15	NC NC	1
540		_	min	015	2	224	2	0	1	0	1_		2	NC NC	1
541		5	max	.022	3	.264	3	0	1	0	1		15	NC NC	1
542		_	min	015	2	437	2	0	1	0	1_		2	NC NC	1
543		6	max	.022	3	.412	3	0	1	0	1		15	NC NC	1
544			min	015	2	<u>648</u>	2	0	1	0	1_		2	NC NC	1
545		7	max	.021	3	.557	3	0	1	0	1_		15	NC_	1
546			min	014	2	838	2	0	1	0	1_		2	NC NC	1
547		8	max	.021	3	.679	3	0	1	0	1_		15	NC_	1
548			min	014	2	991	2	0	1	0	1_		2	NC	1
549		9	max	.02	3	.757	3	0	1	0	_1_		15	NC	1_
550			min	014	2	-1.088	2	0	1	0	1_		2	NC	1
551		10	max	.02	3	.785	3	0	1	0	1_		15	NC	1
552			min	014	2	-1.121	2	0	1	0	1		2	NC	1
553		11	max	.019	3	.766	3	0	1	0	1	3812.994 1	15	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC_
554			min	013	2	-1.089	2	0	1	0	1	84.632	2	NC	1
555		12	max	.019	3	.7	3	0	1	0	1_	4104.04	15	NC	1
556			min	013	2	988	2	0	1	0	1	91.627	2	NC	1
557		13	max	.018	3	.592	3	0	1	0	1_	4671.75	15	NC	1
558			min	013	2	828	2	0	1	0	1	105.463	2	NC	1
559		14	max	.018	3	.457	3	0	1	0	_1_	5648.614	15	NC	1
560			min	013	2	629	2	0	1	0	1	129.662	2	NC	1
561		15	max	.018	3	.307	3	0	1	0	1_	7341.328	15	NC	1
562			min	013	2	413	2	0	1	0	1	172.564	2	NC	1
563		16	max	.017	3	.154	3	0	1	0	1_	NC	15	NC	1
564			min	012	2	201	2	0	1	0	1_	255.102	2	NC	1
565		17	max	.017	3	.012	3	0	1	0	_1_	NC	5	NC	1
566			min	012	2	017	2	0	1	0	1	438.968	2	NC	1
567		18	max	.017	3	.125	1	0	1	0	1_	NC	5	NC	1
568			min	012	2	109	3	0	1	0	1	966.025	1	NC	1
569		19	max	.017	3	.242	1	0	1	0	1_	NC	1	NC	1
570			min	012	2	219	3	0	1	0	1	NC	1	NC	1
571	M9	1	max	.007	3	.125	2	0	15	2.528e-2	3	NC	1	NC	1
572			min	004	2	025	3	0	1	-1.383e-2	1	NC	1	NC	1
573		2	max	.007	3	.061	2	.005	1	1.251e-2	3	NC	4	NC	1
574			min	004	2	011	3	0	15	-6.726e-3	1	1783.195	2	NC	1
575		3	max	.007	3	.011	3	.006	1	1.263e-4	3	NC	5	NC	1
576			min	004	2	009	2	0	15	-3.351e-5	10	859.632	2	NC	1
577		4	max	.007	3	.049	3	.006	1	4.83e-3	3	NC	5	NC	1
578			min	004	2	087	2	0	15	-4.468e-3	2	542.84	2	NC	1
579		5	max	.007	3	.097	3	.004	1	9.535e-3	3	NC	5	NC	1
580			min	004	2	169	2	0	15	-8.915e-3	2	391.889	2	NC	1
581		6	max	.007	3	.149	3	.002	1	1.424e-2	3	NC	15	NC	1
582			min	004	2	248	2	0	15	-1.336e-2	2	308.719	2	NC	1
583		7	max	.007	3	.199	3	0	3	1.894e-2	3	NC	15	NC	1
584			min	004	2	319	2	0	1	-1.781e-2	2	259.618	2	NC	1
585		8	max	.007	3	.241	3	0	15	2.365e-2	3	9263.806	15	NC	1
586			min	003	2	375	2	0	1	-2.226e-2	2	230.572	2	NC	1
587		9	max	.007	3	.268	3	0	1	2.385e-2	3	8661.636	15	NC	1
588			min	003	2	41	2	0	15	-2.524e-2	2	215.451	2	NC	1
589		10	max	.006	3	.278	3	0	15	2.106e-2	3		15	NC	1
590			min	003	2	422	2	0	1	-2.726e-2	2	211.013	2	NC	1
591		11	max	.006	3	.271	3	0	15	1.827e-2	3	8661.37	15	NC	1
592			min	003	2	41	2	0	1	-2.928e-2	2	216.163	2	NC	1
593		12	max	.006	3	.248	3	0	1	1.538e-2	3	9263.242	15	NC	1
594			min		2	373	2	0	15	-2.826e-2			2	NC	1
595		13	max	.006	3	.211	3	0	1	1.231e-2	3	NC	15	NC	1
596			min	003	2	315	2	0	15	-2.266e-2	2	264.867	2	NC	1
597		14	max	.006	3	.164	3	0	15		3	NC	15	NC	1
598			min	003	2	242	2	002	1	-1.706e-2	2	319.912	2	NC	1
599		15	max	.006	3	.111	3	0	15	6.177e-3	3	NC	5	NC	1
600			min	003	2	161	2	004	1	-1.146e-2	2	414.88	2	NC	1
601		16	max	.006	3	.057	3	0	15	3.11e-3	3	NC	5	NC	1
602			min	003	2	08	2	006	1	-5.861e-3	2	591.211	2	NC	1
603		17	max	.005	3	.004	3	0	15	4.41e-5	3	NC	5	NC	1
604			min	003	2	006	2	006	1	-4.604e-4	1	969.077	2	NC	1
605		18	max	.005	3	.056	2	0	15	4.162e-3	3	NC	4	NC	1
606			min	003	2	043	3	004	1	-9.982e-3	2	2061.473	2	NC	1
607		19	max	.005	3	.11	2	0	1	8.447e-3	3	NC	1	NC	1
608			min	003	2	087	3	0	15		2	NC	1	NC	1
					_	.001	_			Z	_		-		

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,l}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015			
Engineer:	HCV	Page:	4/5			
Project:	Standard PVMax - Worst Case, 14-42 Inch Width					
Address:						
Phone:						
E-mail:						

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 36	Inch Wic	lth
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2 Load combination: not set

Seismic design: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 36	Inch Wic	lth
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 36	Inch Wid	lth
Address:		•	
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	2718.0	1678.0	0.0	1678.0	
2	2718.0	1678.0	0.0	1678.0	
Sum	5436.0	3356.0	0.0	3356.0	_

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5436 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	ř _c (psi)	n _{ef} (in)	N_b (ID)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_I)$	Nc / A_{Nco}) $\Psi_{ec,N}$ Ψ_{ec}	$_{d,N} arPsi_{c,N} arPsi_{cp,N} N_b$ (S	Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ec,N}$	$\mathscr{V}_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
408.24	324.00	1.000	1.000	1.00	1.000	12492	0.65	10231

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_N$	a / A_{Na0}) $\Psi_{\sf ed,Na}$ $\Psi_{\sf g}$	$_{ extstyle I,Na}arPsi_{ extstyle ec,Na}arPsi_{ extstyle p,Na} \Lambda$	I _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 36	Inch Wic	lth
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d$	a) ^{0.2} √ d aλ√ f ′c C a1 ^{1.9}	⁵ (Eq. D-24)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	vc/Avco) Yec, v Ye	$_{\text{ed,V}} \varPsi_{\text{c,V}} \varPsi_{\text{h,V}} V_{\text{bx}}$	(Sec. D.4.1 & Ed	դ. D-22)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (lb)
648.00	648.00	1.000	0.961	1.000	1.000	15593	0.70	10490

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$(a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	15.66	23247		
$\phi V_{cbx} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V} \Psi_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
845.64	1103.56	1.000	1.000	1.000	23247	0.70	24939

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n kcpNag; kcpN	$_{cbg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$\varPsi_{ ho,Na}$	N _{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	Ncb (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2718	6071	0.45	Pass
Concrete breakout	5436	10231	0.53	Pass
Adhesive	5436	8093	0.67	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1678	3156	0.53	Pass (Governs)
T Concrete breakout x+	3356	10490	0.32	Pass
Concrete breakout y-	1678	24939	0.07	Pass
Pryout	3356	20601	0.16	Pass
Interaction check Nua	/φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 36 Inch Width				
Address:					
Phone:					
E-mail:					

	Sec. D.7.3	0.67	0.53	120.3 %	1.2	Pass
--	------------	------	------	---------	-----	------

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.