

National University of Computer & Emerging Sciences, Karachi

Fall-2018 CS-Department **CS211-Discrete Structures Practice Assignment-II**

Note:

- 1- This is hand written assignment.
- 2- Just write the question number instead of writing the whole question.

Submission date: Tuesday, 13th November, 2018 by 01 pm

1. Let R be the following relation defined on the set {a, b, c, d}:

 $R = \{(a, a), (a, c), (a, d), (b, a), (b, b), (b, c), (b, d), (c, b), (c, c), (d, b), (d, d)\}.$

Determine whether R is:

- (a) Reflexive
- (b) Symmetric
- (c) Antisymmetric
- (d) Transitive

2. Let *R* be the following relation on the set of real numbers:

 $aRb \leftrightarrow |a| = |b|$, where |x| is the floor of x.

Determine whether R is:

- (a) Reflexive
- (b) Symmetric
- (c) Antisymmetric
- (d) Transitive

3.

Let
$$f(x) = \lfloor x^2/3 \rfloor$$
. Find $f(S)$ if

- a) $S = \{-2, -1, 0, 1, 2, 3\}.$
- **b**) $S = \{0, 1, 2, 3, 4, 5\}.$
- c) $S = \{1, 5, 7, 11\}.$
- **d**) $S = \{2, 6, 10, 14\}.$

4.

Why is f not a function from \mathbf{R} to \mathbf{R} if

- a) f(x) = 1/x?
- **b)** $f(x) = \sqrt{x}$?
- c) $f(x) = \pm \sqrt{(x^2 + 1)}$?

5.

Determine whether f is a function from \mathbf{Z} to \mathbf{R} if

- a) $f(n) = \pm n$.
- **b)** $f(n) = \sqrt{n^2 + 1}$.
- c) $f(n) = 1/(n^2 4)$.

6.

Find these values.

a) $\lceil \frac{3}{4} \rceil$

- c) $[-\frac{3}{4}]$ e) [3]g) $[\frac{1}{2} + [\frac{3}{2}]]$

Determine whether each of these functions from $\{a, b, c, d\}$ to itself is one-to-one.

a)
$$f(a) = b$$
, $f(b) = a$, $f(c) = c$, $f(d) = d$

b)
$$f(a) = b$$
, $f(b) = b$, $f(c) = d$, $f(d) = c$

c)
$$f(a) = d$$
, $f(b) = b$, $f(c) = c$, $f(d) = d$

8.

Determine whether each of these functions is a bijection from R to R.

a)
$$f(x) = 2x + 1$$

b)
$$f(x) = x^2 + 1$$

c)
$$f(x) = x^3$$

d)
$$f(x) = (x^2 + 1)/(x^2 + 2)$$

9.

Let $f: \mathbb{R} \to \mathbb{R}$ and let f(x) > 0 for all $x \in \mathbb{R}$. Show that f(x) is strictly decreasing if and only if the function g(x) = 1/f(x) is strictly increasing.

10.

Find $f \circ g$ and $g \circ f$, where $f(x) = x^2 + 1$ and g(x) = x + 2, are functions from R to R.

11.

Prove that if x is a real number, then $\lfloor -x \rfloor = -\lceil x \rceil$ and $\lceil -x \rceil = -\lfloor x \rfloor$.

12. For each of these relations on the set {1, 2, 3, 4}, decide whether it is reflexive, whether it is symmetric, whether it is antisymmetric, and whether it is transitive.

13. Determine whether the relation R on the set of all people is reflexive, symmetric, antisymmetric, and/or transitive, where (a, b) ∈ R if and only if

a) a is taller than b.

- b) a and b were born on the same day.
- c) a has the same first name as b.
- d) a and b have a common grandparent.

14. Give an example of a relation on a set that is

- a) both symmetric and antisymmetric.
- b) neither symmetric nor antisymmetric.

15. Consider these relations on the set of real numbers:

$$R1 = \{(a, b) \in R^2 \mid a > b\}$$
, the "greater than" relation,

R2 =
$$\{(a, b) \in \mathbb{R}^2 \mid a \ge b\}$$
, the "greater than or equal to "relation,

$$R3 = \{(a, b) \in R^2 \mid a < b\}, \text{ the "less than" relation,}$$

$$R4 = \{(a, b) \in R^2 \mid a \le b\}$$
, the "less than or equal to "relation,

$$R5 = \{(a, b) \in \mathbb{R}^2 \mid a = b\}, \text{ the "equal to" relation,}$$

R6 =
$$\{(a, b) \in \mathbb{R}^2 \mid a \neq b\}$$
, the "unequal to" relation.

	i) Find:						
	a) R2 ∪ R4.	b) R3 ∪ R6.	c) R3 ∩ R6.	d) R	R4 ∩ R6 .		
	e) R3 - R6.	f) R6 – R3.	g) R2 ⊕ R6.	•	R3 ⊕ R5.		
	0,110	.,	g/	,	(1101		
	ii) Find:						
	Find						
	a) R2 ∘ R1.	b) R2 ∘ R2.	c) R3 ∘ R5.	d) R	R4 ∘ R1.		
	e) R5 ∘ R3.	f) R3 ∘ R6.	g) R4 ∘ R6.	•	R6 ∘ R6.		
	0,110 1101	1,110 1101	9) 111 1101	,	10		
16.	What are the quotient and remainder when						
	a) 19 is divided by 7?		b) -111 is divided by 1	12			
	c) 789 is divided by 23?		•	d) 1001 is divided by 13?			
	e) 0 is divided by 19?		•	f) 3 is divided by 5?			
	g) -1 is divided by 3?		h) 4 is divided by 1?				
	g, Tio divided by	0.	ii) + io divided by 1.				
17.	Let m be a positive integer. Show that $a \equiv b \pmod{m}$ if a mod m = b mod m.						
•••							
18.	Find a div m and a mod m when						
	a) a = -111, m = 99		b) a = -9999, m = 101.				
	c) a = 10299, m = 999.		d) a = 123456, m = 1001.				
	$\alpha_j \alpha_j = 10000$, III = 1001.						
19	Decide whether each of these integers is congruent to 5 modulo 17.						
	a) 80	b) 103	c) -29	d) –	122		
	u, 00	b) 100	0, 20	u,	122		
20.	Determine whether	r the integers in each o	of these sets are pairwise	relatively prime	<u>.</u>		
	a) 11, 15, 19	b) 14, 15, 21	c) 12, 17, 31, 3		, 8, 9, 11		
	a,, .o, .o	5, 11, 10, 21	0, 12, 11, 01, 0	, .	, 0, 0, 11		
21.	Find the prime factorization of each of these integers.						
	-	b) 126 c) 729	<u> </u>	e) 1111	f) 909,090		
	, , , ,	-,	,	-,	, ,		
22.	What are the GCD & LCM of these pairs of integers?						
	a) 37 · 53 · 73, 211 · 35 · 59 b) 11 · 13 · 17, 29 · 37 · 55 · 73						
	c) 2331, 2317		d) 41 · 43 · 53, 41 · 43 · 53				
	e) 313 · 517, 212 · 721		f) 1111, 0				
	·,···,·						
23.	Use the extended I	Euclidean algorithm to	express gcd (144, 89) and	d acd (1001, 10	0001) as a linear comb	ination.	
			3 3 3 3 3 3 3 3 3 3				
24.	Solve each of thes	e congruences using t	he modular inverses.				
) 55x ≡ 34 (mod 89) b) 89x ≡ 2 (mod 232)					
25.	Jse the construction in the proof of the Chinese remainder theorem to find all solutions to the system of						
	congruences.						
	a) $x \equiv 5 \pmod{6}$, $x \equiv 3 \pmod{10}$, and $x \equiv 8 \pmod{15}$.						
	b) $x \equiv 7 \pmod{9}$, $x \equiv 4 \pmod{12}$, and $x \equiv 16 \pmod{21}$.						
	c) $x \equiv 1 \pmod{2}$, $x \equiv 2 \pmod{3}$, $x \equiv 3 \pmod{5}$, and $x \equiv 4 \pmod{11}$.						
	-, (···········-), ·	_ (5), 5 (,				
26	. Find an inverse of	f a modulo m for each	of these pairs of relatively	prime integers	3.		
	a) a = 2, m = 17		34, m = 89		-		
	c) a = 144, m = 23		200, m = 1001				
	-,	,	,				

- 27. Use Fermat's little theorem to compute 5²⁰⁰³ mod 7, 5²⁰⁰³ mod 11, and 5²⁰⁰³ mod 13.
- 28. Encrypt the message STOP POLLUTION by translating the letters into numbers, applying the given encryption function, and then translating the numbers back into letters.

a)
$$f(p) = (p + 4) \mod 26$$

b)
$$f(p) = (p + 21) \mod 26$$

29. Decrypt these messages encrypted using the shift cipher

$$f(p) = (p + 10) \mod 26$$
.

- a) CEBBOXNOB XYG
- b) LO WI PBSOXN
- c) DSWO PYB PEX
- 30. What is the original message encrypted using the RSA system with $n = 53 \cdot 61$ and e = 17 if the encrypted message is 3185 2038 2460 2550? (To decrypt, first find the decryption exponent d, which is the inverse of e = 17 modulo 52 · 60.)
- 31. Prove that for all integers a, b and c, if a|b and b|c then a|c.
- 32. Prove that for all integers a, b and c if a|b and a|c then a|(b+c)
- 33. Prove that the sum of any three consecutive integers is divisible by 3.
- 34. Prove the statement: There is an integer n > 5 such that 2n 1 is prime.
- 35. Prove the statement: There are real numbers a and b such that $\sqrt{a+b} = \sqrt{a} + \sqrt{b}$.
- 36. Prove or disprove that the product of any two irrational numbers is an irrational number.
- 37. Find a counter example to the proposition: For every prime number n, n + 2 is prime.
- 38. Prove by contradiction method, the statement: If n and m are odd integers, then n + m is an even integer.
- 39. Prove that the sum of any rational number and any irrational number is irrational.
- 40. Prove by contradiction that $6-7\sqrt{2}$ is irrational.
- 41. Prove by contradiction that $\sqrt{2} + \sqrt{3}$ is irrational.
- 42. Prove that for any integer a and any prime number p, if p | a, then P (a + 1).
- 43. Show that the set of prime numbers is infinite.
- 44. Prove that if |x| > 1 then x > 1 or x < -1 for all $x \in \mathbb{R}$.
- 45. Prove the statement by contraposition: For all integers m and n, if m + n is even then m and n are both even or m and n are both odd.