

Multilayer Perceptron para regressão e classificação Profa. Dra. Roseli Aparecida Francelin Romero Disciplina: SCC 0270 - Redes Neurais

Introdução

O algoritmo de aprendizado supervisionado Multilayer Perceptron (MLP) é uma evolução do perceptron por permitir que haja múltiplas camadas escondidas, cada uma delas podendo ter um número variado de neurônios. Tal evolução viabiliza a resolução de problemas que sejam não linearmente separáveis.

Assim, dada a possibilidade de haver várias camadas e neurônios diferentes, a grande dificuldade da utilização do MLP é por conta de ajustar esses valores(parâmetros) para obter uma melhor classificação/regressão na base de dados.

Tendo isso em mente e sabendo que existem outros valores a serem ajustados no algoritmo como velocidade de aprendizado, momentum e ciclos de treinamento, iremos realizar uma análise em duas bases de dados para compreender um pouco melhor como é o seu processo de escolha e ajuste.

Objetivos

Utilizar o algoritmo MLP nas bases de dados:

- https://archive.ics.uci.edu/ml/datasets/Wine
- https://archive.ics.uci.edu/ml/datasets/Geographical+Original+of+Music

Realizando classificação na primeira e regressão na última, com o intuito de estudar os seguintes parâmetros:

- Número de camadas intermediárias
- Ciclos usados no treinamento
- Velocidade de aprendizado e momentum
- Proporção de dados para treinamento e teste

Desenvolvimento

Inicialmente para que houvesse um melhor aprendizado por parte do algoritmo, foi necessário realizar um pré-processamento dos dados. Este por sua vez foi obtido utilizando a biblioteca pandas do python e o pré-processamento gerado foi a normalização dos dados para ambos os dataset's assim como a construção das classes:

 Wine: Neste dataset como possuímos as classes categóricas 1,2 e 3 gerou-se três variáveis binárias para representar cada uma: 1(0 0 1), 2(0 1 0)

- e 3(1 0 0). Assim, é possível obter a ideia de que para uma determinada classe apenas um neurônio é ativado e o resto não.
- Default features 1059 tracks: Neste dataset como desejamos realizar uma regressão, utilizou-se novamente uma normalização (a mesma para os dados) com a seguinte equação: X = (X-MIN) / (MIN-MAX).

Toda esta etapa consta no arquivo *pre_processing.py*. Após esse pré-processamento podemos descrever sobre o desenvolvimento do MLP, este por sua vez, foi divido em três principais funções:

- Architecture: Nesta função é realizada a etapa de criação da arquitetura do MLP. Então, por exemplo, supondo que temos uma camada intermediária e seja fornecido 3 características, 4 neurônios e 2 classes, esta função irá criar 2 matrizes (uma para hidden layer e outra para a output layer) contendo as seguintes dimensões: (4x3) e (2x4).
- Forward: Nesta função é realizado o que é conhecido como forward em uma rede neural, i.e, ocorre a multiplicação das matrizes (representante dos pesos) pelos valores de entrada. Portanto, aqui ocorre a geração dos net's e f(net)'s de cada neurônio.
- Backward: Nesta função é onde realmente ocorre o aprendizado. Aqui são calculadas todas as derivadas necessárias para realizar o ajuste dos pesos.

Importante salientar que as funções acima são as principais do algoritmo e foram descritas de forma superficial pois não é objetivo deste documento entrar em detalhes específicos de implementação. Caso o leitor deseje entender melhor o seu funcionamento é aconselhável que o mesmo analise os códigos escritos em python dispostos no mesmo diretório deste documento.

Além disso, é importante notar que por questões de facilidade o algoritmo MLP foi divido em dois arquivos:

- mlp 1 layer: Contém o MLP para uma camada escondida.
- mlp_2_layer: Contém o MLP para duas ou mais camadas escondidas.

Pastas e arquivos

Iremos descrever como está organizado o projeto em pastas e arquivos:

- data: Pasta contendo os dataset's.
 - default_features_1059_tracks.txt: Dataset utilizado para regressão.
 - o wine.data: Dataset utilizado para classficação.
- data_pre: Pasta contendo os dataset's pré-processados.

- default_features_1059_tracks_pre.txt:
 Dataset pré-processado utilizado para regressão.
- o wine pre.data: Dataset pré-processado utilizado para classficação.
- src: Pasta contendo todos os arquivos fontes em python.
 - o pre processing.py: Realização do pré-processamento.
 - o mlp_1_layer: MLP para uma camada escondida.
 - o mlp 2 layer: MLP para várias camadas escondidas.
- Makefile: Automatização do algoritmo usando makefile.
- input.txt: Entradas necessárias para o algoritmo.

Entrada do algoritmo

O algoritmo utiliza o arquivo input.txt que contém as entradas necessárias para um teste. Caso o leitor deseje testar o MLP de outras maneiras ele deve alterar este arquivo seguindo esta ordem:

- mlp 1 layer: Temos as seguintes entradas:
 - o Caminho para o dataset.
 - Número de variáveis do dataset (mesmo número de neurônios na camada de entrada).
 - Número de neurônios na camada escondida.
 - Número de classes (mesmo número de neurônios na camada de saída).
 - Número de iterações.
 - Velocidade de aprendizado (eta).
 - Momentum.
 - Proporção de dados para o conjunto de treinamento.
 - Classificação(C) ou regressão(R) a ser realizado no dataset.
- mlp_2_layer: Temos as seguintes entradas:
 - Caminho para o dataset.
 - Número de variáveis do dataset (mesmo número de neurônios na camada de entrada).
 - Número de neurônios na primeira camada escondida.
 - Número de neurônios na segunda camada escondida.
 - Número de classes (mesmo número de neurônios na camada de saída).
 - Número de iterações.
 - Velocidade de aprendizado (eta).
 - o Momentum.
 - Proporção de dados para o conjunto de treinamento.
 - Classificação(C) ou regressão(R) a ser realizado no dataset.

Geração do conjunto de treinamento e teste

Um dos pontos importantes a serem abordados é quanto a geração do conjunto de treinamento e teste. Ambos são gerados de forma totalmente aleatória segundo as proporções passadas para o algoritmo.

Assim, é importante salientar que nesta geração não há uma verificação quanto a sobreposição de classes de um conjunto sobre o outro. Acredita-se, no entanto, que pelo fato da geração ser totalmente aleatória e tendo vários amostras aleatórias não haverá uma interferência significativa desta sobreposição. Obviamente devemos realizar um número considerável de amostras para que a premissa seja aceita.

Ademais a geração dos conjuntos ocorre no próprio algoritmo de MLP.

Teste

Nesta etapa de teste nós avaliamos a acurácia e o erro médio quadrático paras os problemas de classificação e regressão, respectivamente. Essa avaliação foi realizada em torno de 20 vezes variando os parâmetros descritos na seção de objetivos.

Assim, o teste foi realizado da seguinte maneira: para cada dataset testamos primeiro o MLP com uma camada escondida e depois com duas, sempre permutando os parâmetros.

Desse modo, a seguinte lógica foi seguida: para um determinado número de ciclos baixo (alto) a tupla velocidade de aprendizado e momentum eram altas (baixa) e para cada uma delas testou-se diferentes valores de treinamento/teste.

Importante notar que valores fixos de parâmetros foram escolhidos para facilitar o teste. Abaixo estão as tabelas com os valores amostrados:

Classificação(wine)

N° camadas intermediárias	Ciclos treinamento	Velocidade de aprendizado e momemtum	Proporção treinamento/ teste	Ácurácia
1	50	(0.2,0.7)	(0.7,0.3)	0.981
1	50	(0.2,0.7)	(0.5,0.5)	0.955
1	25	(0.4,0.6)	(0.7,0.3)	0.982
1	25	(0.4,0.6)	(0.5,0.5)	0.932

2	150	(0.2,0.7)	(0.7,0.3)	0.996
2	150	(0.2,0.7)	(0.5,0.5)	0.988
2	100	(0.4,0.6)	(0.7,0.3)	0.962
2	100	(0.4,0.6)	(0.5,0.5)	0.925

Tabela 1: Medição de acurácia para os parâmetros.

Classificação(default_feature_1059_tracks)

N° camadas intermediárias	Ciclos treinamento	Velocidade de aprendizado e momemtum	Proporção treinamento/ teste	Ácurácia
1	500	(0.2,0.7)	(0.7,0.3)	0.0821
1	500	(0.2,0.7)	(0.5,0.5)	0.0848
1	250	(0.4,0.6)	(0.7,0.3)	0.0716
1	250	(0.4,0.6)	(0.5,0.5)	0.0802
2	300	(0.2,0.7)	(0.7,0.3)	0.0615
2	300	(0.2,0.7)	(0.5,0.5)	0.0530
2	150	(0.4,0.6)	(0.7,0.3)	0.0561
2	150	(0.4,0.6)	(0.5,0.5)	0.0554

Tabela 2: Medição do erro quadrático médio para os parâmetros.

Devemos salientar que para o dataset wine foi utilizado 4 neurônios na mlp_1_layer e 2 em cada camada no mlp_2_layer. Com relação ao default_feature_1059_tracks temos 10 neurônios no mlp_1_layer e 7 em cada camada no mlp_2_layer.

Conclusão

Após analisar as tabelas 1 e 2 da seção de testes, podemos realizar certas conclusões que serão feitas em separado para cada base de dados.

Wine

Note que em geral temos uma pequena piora quando utilizamos menos dados para o treinamento, apesar da diferença ser bem pequena. Também é interessante observar que para menores (maiores) números de ciclo com maiores (menores) velocidades de aprendizado e momentum obtemos um resultado satisfatório. Certamente se usássemos o número de ciclos, velocidade de aprendizado e momentum altos, teríamos uma conversão mais rápida e com bons resultados.

Outro ponto interessante é com relação ao número de camadas. Note que temos uma pequena melhora na acurácia quando se usa duas camadas intermediárias mas a mesma não é tão relevante assim.

Desse modo, para o dataset wine podemos concluir que o melhor seria utilizar apenas uma camada intermediária (diminuindo a complexidade do algoritmo), pois lembre-se que se um problema pode ser resolvido da maneira mais simples não há razão em se utilizar algo mais complexo. Com relação aos outros parâmetros o ideal seria utilizá-los com menor número de ciclos e velocidade de aprendizado e momentum mais altos, diminuindo a complexidade. A proporção do conjunto de treinamento não parece afetar tanto a acurácia e ficaria a critério do usuário.

Default_feature_1059_tracks

Neste dataset temos que a proporção treinamento/teste afeta um pouco o erro médio quadrático mas nada de tão relevante. O mais interessante a se observar na tabela é que quando aumentamos o número de camadas e deixamos os ciclos mais baixos com velocidade de aprendizado e momentum altos, é quando o erro médio quadrático tende a ser o menor de todos.

O que pode ser observado de um modo geral é que quando tentou-se treinar mais o algoritmo os resultados acabaram não sendo tão bons. Isso está diretamente relacionado com o que é chamado de overfitting. Como estamos trabalhando com um problema de regressão é mais interessante não treinar tanta a MLP para que ela seja capaz de possuir bons resultados no conjunto de teste.

Certamente isso faz total sentido, pois caso "aprendemos" muito no treinamento o algoritmo não será capaz de generalizar os novos pontos que encontrar. Observe, contudo, que quando aumentamos o número de camadas intermediárias obtemos um melhor resultado. Isso se deve pelo fato do problema ser mais "difícil" com o comparado ao wine, por exemplo. Isto é, seu espaço de dados necessita de uma complexidade maior.

Assim, podemos concluir que o MLP deveria ser utilizado neste dataset de forma a não causar muito overfitting (usar poucos ciclos com os parâmetros velocidade de aprendizado e momentum altos) e mais camadas intermediárias devido a complexidade do problema.

Conclusão final

Ao final destas duas conclusões fica evidente que não existe uma fórmula mágica de definição dos parâmetros. Para cada dataset que o MLP for utilizado é necessário realizar um estudo comparando os diversos valores na tentativa de encontrar aquele que satisfaça os objetivos definidos pelo usuário.

Além disso, conforme dito anteriormente caso o problema seja solucionado da maneira mais simples não há o porquê de aumentar a complexidade do algoritmo demorando mais tempo para conversão, gastando mais memória, etc.

Concluímos, portanto que sempre é necessário realizar testes a fim de verificar qual caminho satisfaz melhor os objetivos do usuário.