Knapsack

Shusen Wang

Knapsack Problem

• Inputs:

- A knapsack with capacity c.
- A set of m items; the i-th item has weight w_i and value v_i .

Knapsack Problem

• Inputs:

- A knapsack with capacity c.
- A set of m items; the i-th item has weight w_i and value v_i .
- Objective: Find the most valuable subset of items that fits in the knapsack.
- Constraint: Sum of weights does not exceed *c*.

Inputs

$$w_1 = 2$$

$$v_1 = 12$$

Item 1

$$w_2 = 1$$
$$v_2 = 10$$

$$= 20$$

$$w_4 = 2$$

$$v_4 = 15$$

$$w_3 = 3$$
$$v_3 = 20$$

Item 3 Item 4

Example 1

Knapsack

Total value: 12 + 10 + 15 = 37

$$w_3 = 3$$
$$v_3 = 20$$

Example 2

Total value:
$$12 + 20 = 32$$

$$w_2 = 1$$
$$v_2 = 10$$

$$w_4 = 2$$
$$v_4 = 15$$

Example 3

Total value: 10 + 20 = 30

$$w_1 = 2$$

$$v_1 = 12$$

Item 1 Item 4

 $w_4 = 2$

 $v_4 = 15$

Maximum Value

Maximum value: 12 + 10 + 15 = 37.

Maximum Value

- There are *m* items which have weights and values.
- The capacity of knapsack is c.
- Select a subset of items such that the total weight does not exceed c.
- Let F[m][c] be the total value of the most valuable subset.

Optimal Substructure

Original Problem

• F[m][c]: The maximum value of the subset of items that fit in the knapsack.

c = 5

$$w_1 = 2$$

$$v_1 = 12$$

$$w_2 = 1$$
$$v_2 = 10$$

$$w_3 = 3$$
$$v_3 = 20$$

 $w_4 = 2$ $v_4 = 15$

Knapsack

Item 1

Item 2

Item 3

Original Problem

- F[m][c]: The maximum value of the subset of items that fit in the knapsack.
- F[4][5] = 12 + 10 + 15 = 37.

• Item 1 does not fit in the small knapsack. $(w_1 > c.)$

•
$$F[1][1] = 0.$$

Knapsack

$$w_1 = 2$$
$$v_1 = 12$$

$$w_2 = 1$$
$$v_2 = 10$$

$$w_3 = 3$$
 $v_3 = 20$

$$w_4 = 2$$
 $v_4 = 15$

• Put Item 1 in the small knapsack. $(w_1 \le c.)$

•
$$F[1][2] = v_1 = 12.$$

$$w_1 = 2$$

$$v_1 = 12$$

 $w_2 = 1$ $v_2 = 10$

 $w_3 = 3$ $v_3 = 20$

 $w_4 = 2$ $v_4 = 15$

Item 1

Item 2

Item 3

• Put Item 1 in the small knapsack. $(w_1 \le c.)$

•
$$F[1][3] = v_1 = 12.$$

Knapsack

$$w_1 = 2$$

$$v_1 = 12$$

$$w_2 = 1$$
$$v_2 = 10$$

$$w_3 = 3$$

$$v_3 = 20$$

$$v_4 - 2$$
 $v_4 = 15$

- Put Item 1 in the small knapsack. $(w_1 \le c.)$
- $F[1][4] = v_1 = 12$.

$$c = 4$$

$$w_1 = 2$$

$$v_1 = 12$$

 $w_2 = 1$ $v_2 = 10$

 $v_3 = 20$

 $w_3 = 3$

 $w_4 = 2$ $v_4 = 15$

Knapsack

Item 1

Item 2

Item 3

• Put Item 1 in the small knapsack.
$$(w_1 \le c.)$$

•
$$F[1][5] = v_1 = 12.$$

$$c = 5$$

$$w_1 = 2$$

$$v_1 = 12$$

$$w_2 = 1$$
$$v_2 = 10$$

$$w_3 = 3$$
$$v_3 = 20$$

$$w_4 = 2$$

$$v_4 = 15$$

Knapsack

Item 1

Item 2

Item 3

• Put Item 2 in the knapsack. $(w_2 \le c.)$

•
$$F[2][1] = v_2 = 10.$$

$$c = 1$$

Knapsack

$$w_1 = 2$$
$$v_1 = 12$$

$$w_2 = 1$$
$$v_2 = 10$$

$$w_3 = 3$$
$$v_3 = 20$$

$$w_4 = 2$$

$$v_4 = 15$$

• Put Item 1 in the knapsack. $(w_1 \le c.)$

•
$$F[2][2] = v_1 = 12.$$

$$w_1 = 2$$

$$v_1 = 12$$

 $w_2 = 1$ $v_2 = 10$

 $w_3 = 3$ $v_3 = 20$

 $w_4 = 2$ $v_4 = 15$

Item 1

Item 2

Item 3

• Put both Items 1 and 2 in the knapsack. $(w_1 + w_2 \le c.)$

$$F[2][3] = v_1 + v_2 = 12 + 10 = 22.$$

$$c = 3$$

Knapsack

$$v_1 = 12$$

 $w_1 = 2$

$$w_2 = 1$$
$$v_2 = 10$$

$$w_3 = 3$$

$$v_3 = 20$$

$$w_4 = 2$$
 $v_4 = 15$

Item 1

Item 2

Item 3

• Put both Items 1 and 2 in the knapsack. $(w_1 + w_2 \le c.)$

•
$$F[2][4] = v_1 + v_2 = 12 + 10 = 22.$$

$$w_1 = 2$$

$$v_1 = 12$$

$$w_2 = 1$$
$$v_2 = 10$$

$$v_3 = 20$$

 $w_3 = 3$

$$w_4 = 2$$

$$v_4 = 15$$

Knapsack

Item 1

Item 2

Item 3

• Put both Items 1 and 2 in the knapsack.
$$(w_1 + w_2 \le c.)$$

$$F[2][5] = v_1 + v_2 = 12 + 10 = 22.$$

$$c = 5$$

$$w_1 = 2$$
$$v_1 = 12$$

$$w_2 = 1$$
$$v_2 = 10$$

 $w_3 = 3$

 $v_3 = 20$

$$w_4 = 2$$
$$v_4 = 15$$

Knapsack

Item 1

Item 2

Item 3

- There are m items and a knapsack of capacity c.
- F[m][c]: max value of the subset of items that fit in the knapsack.

- There are m items and a knapsack of capacity c.
- F[m][c]: max value of the subset of items that fit in the knapsack.

There are two decisions for the m-th item: selecting it or not.

- There are m items and a knapsack of capacity c.
- F[m][c]: max value of the subset of items that fit in the knapsack.

What if the m-th item is selected?

- Sub-problem:
 - The available capacity of the knapsack becomes $c w_m$.
 - Only the first m-1 items are available.
 - The sub-problem is to find $F[m-1][c-w_m]$.

- There are m items and a knapsack of capacity c.
- F[m][c]: max value of the subset of items that fit in the knapsack.

What if the m-th item is selected?

- Sub-problem:
 - The available capacity of the knapsack becomes $c w_m$.
 - Only the first m-1 items are available.
 - The sub-problem is to find $F[m-1][c-w_m]$.

The maximum total value is: $v_m + F[m-1][c-w_m]$.

- There are m items and a knapsack of capacity c.
- F[m][c]: max value of the subset of items that fit in the knapsack.

What if the m-th item is not selected?

- Sub-problem:
 - The available capacity of the knapsack is still c.
 - Only the first m-1 items are available.
 - The sub-problem is to find F[m-1][c].

- There are m items and a knapsack of capacity c.
- F[m][c]: max value of the subset of items that fit in the knapsack.

What if the m-th item is not selected?

- Sub-problem:
 - The available capacity of the knapsack is still c.
 - Only the first m-1 items are available.
 - The sub-problem is to find F[m-1][c].

The maximum total value is: F[m-1][c].

Case 1:
$$w_m \leq c$$

• There are two decisions: selecting the m-th item or not.

Case 1:
$$w_m \leq c$$

- There are two decisions: selecting the m-th item or not.
- If selected, then

$$F[m][c] = v_m + F[m-1][c - w_m].$$

• If not selected, then

$$F[m][c] = F[m-1][c].$$

Case 1:
$$w_m \leq c$$

- There are two decisions: selecting the m-th item or not.
- If selected, then

$$F[m][c] = v_m + F[m-1][c-w_m].$$

• If not selected, then

$$F[m][c] = F[m-1][c].$$

• In sum, $F[m][c] = \max \begin{cases} v_m + F[m-1][c-w_m] \\ F[m-1][c] \end{cases}$.

Case 2:
$$w_m > c$$

- The m-th item is too heavy to fit in the knapsack.
- The *m*-th item is not selected, and thus

$$F[m][c] = F[m-1][c].$$

Optimal Substructure

Case 1:
$$w_m \leq c$$

•
$$F[m][c] = \max \begin{cases} v_m + F[m-1][c-w_m] \\ F[m-1][c] \end{cases}$$
.

Case 2:
$$w_m > c$$

•
$$F[m][c] = F[m-1][c]$$
.

Dynamic Programming

Initialization

Item	Weight w_m	Value v_m		
1	2	12		
2	1	10		
3	3	20		
4	2	15		

Initialization

F[m][c] is the (m, c)-th entry in the right table.

Capacity c =

Item	Weight w_m	Value v_m		
1	2	12		
2	1	10		
3	3	20		
4	2	15		

		0	1	2	3	4	5
# of Items $m=$	0						
	1						
	2						
	3						
	4						

Base Case: m = 0

F[0][c] = 0, for all c, because no item can be selected.

1	2	12
2	1	10
3	3	20
4	2	15

Base Case: m = 0

F[0][c] = 0, for all c, because no item can be selected.

1	2	12
2	1	10
3	3	20
4	2	15

		0	1	2	3	4	5
П	0	0	0	0	0	0	0
m							
ems	2						
# of Items	3						
#							

Base Case: c = 0

F[m][0] = 0, for all m, because the knapsack is too small.

1	2	12
2	1	10
3	3	20
4	2	15

		0	1				
П	0	0	0	0	0	0	0
m	1						
ems	2						
# of Items m	3						
#	4						

Base Case: c = 0

F[m][0] = 0, for all m, because the knapsack is too small.

1	2	12
2	1	10
3	3	20
4	2	15

		0	1				
П	0	0	0	0	0	0	0
m	1	0					
ems	2	0					
# of Items	3	0					
#	4	0					

$$m = 1, c = 1$$

Item	Weight w _m	Value v_m
1	2	12
2	1	10
	2	15

		Capacity $c =$					
		0	1	2	3	4	5
	0	0	0	0	0	0	0
m	1	0					
# of Items	2	0					
of It							
#							

$$m = 1, c = 1$$

Item	Weight w_m	Value v_m
1	2	12
2	1	10
	2	15

		Capacity $c =$					
		0	1	2	3	4	5
П	0	0	0	0	0	0	0
m	1	0					
ems		0					
# of Items							
#							

$$m = 1, c = 1$$

$$w_m > c \implies F[m][c] = F[m-1][c].$$

Item	Weight w_m	Value v_m
1	2	12
2	1	10
	2	15

		Capacity $c =$					
		0	1	2	3	4	5
П	0	0	0	0	0	0	0
m	1	0	?				
ems		0					
of Items							
#							

$$m = 1, c = 1$$

$$F[1][1] = F[0][1].$$

Item	Weight w_m	Value v_m
1	2	12
2	1	10
	2	15

		0	1	2	3	4	5
П	0	0	0	0	0	0	0
m	1	0	0				
ems	2	0					
# of Items							
#							

$$m = 1, c = 4$$

Item	Weight w_m	Value v_m
1	2	12
2	1	10
	2	15

		Capacity $c =$					
		0	1	2	3	4	5
П	0	0	0	0	0	0	0
m	1	0	0			?	
ems	2	0					
# of Items							
#							

$$m = 1, c = 4$$

$$w_m \le c$$
 ==> $F[m][c] = \max \begin{cases} v_m + F[m-1][c-w_m] \\ F[m-1][c] \end{cases}$.

Item	Weight w_m	Value v_m
1	2	12
2	1	10
	2	15

		Capacity $c =$					
		0	1	2	3	4	5
П	0	0	0	0	0	0	0
m	1	0	0			٠٠	
ems		0					
of Items							
#							

$$m = 1, c = 4$$

$$F[1][4] = \max \begin{Bmatrix} v_1 + F[0][2] \\ F[0][4] \end{Bmatrix} = \max \begin{Bmatrix} 12 + 0 \\ 0 \end{Bmatrix} = 12.$$

Item	Weight w_m	Value v_m
1	2	12
2	1	10
	2	15

		0	1	2	3	4	5
Ш	0	0	0	0	0	0	0
m	1	0	0			12	
ems	2	0					
# of Items							
#							

$$m = 1$$

Item	Weight w_m	Value v_m
1	2	12
2	1	10
	2	15

		U	1	2	3	4	5
П	0	0	0	0	0	0	0
m	1	0	0	12	12	12	12
ems		0					
of Iter							
#							

$$m = 2$$

Item	Weight w_m	Value v_m
1	2	12
2	1	10
3	3	20
	2	15

		0	1	2	3	4	5
П	0	0	0	0	0	0	0
m	1	0	0	12	12	12	12
ems	2	0					
# of Items	3	0					
#							

$$m = 2$$

Item	Weight w _m	Value v_m
1	2	12
2	1	10
	2	15

		Capacity $c =$					
		0	1	2	3	4	5
П	0	0	0	0	0	0	0
m	1	0	0	12	12	12	12
# of Items	2	0					
of It	3	0					
#							

$$m = 2, c = 1$$

		Capacity	c =
•	4		

Item	Weight w_m	Value v_m
1	2	12
2	1	10
	2	15

	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	12	12	12	12
2	0					
3	0					
4						

$$m = 2, c = 1$$

$$w_m \le c$$
 ==> $F[m][c] = \max \begin{cases} v_m + F[m-1][c-w_m] \\ F[m-1][c] \end{cases}$.

Item	Weight w_m	Value v_m
1	2	12
2	1	10
	3	
	2	15

		Capacity $c =$					
		0	1	2	3	4	5
П	0	0	0	0	0	0	0
m	1	0	0	12	12	12	12
# of Items	2	0	?				
of It	3	0					
#							

$$m = 2, c = 1$$

$$F[2][1] = \max \begin{Bmatrix} v_2 + F[1][0] \\ F[1][1] \end{Bmatrix} = \max \begin{Bmatrix} 10 + 0 \\ 0 \end{Bmatrix} = 10.$$

Item	Weight w_m	Value v_m
1	2	12
2	1	10
	2	15

		0	1	2	3	4	5
П	0	0	0	0	0	0	0
m	1	0	0	12	12	12	12
ems	2	0	10				
# of Items	3	0					
#							

$$m = 2, c = 3$$

Capacity	c =
-----------------	-----

Item	Weight w _m	Value v_m
1	2	12
2	1	10
	2	15

		0	1	2	3	4	5
= 1	0	0	0	0	0	0	0
m	1	0	0	12	12	12	12
ems	2	0	10		5		
# of Items		0					
#							

$$m = 2, c = 3$$

$$w_m \le c$$
 ==> $F[m][c] = \max \begin{cases} v_m + F[m-1][c-w_m] \\ F[m-1][c] \end{cases}$.

Item	Weight w _m	Value v_m
1	2	12
2	1	10
	3	
	2	15

			Capacity $c =$				
		0	1	2	3	4	5
П	0	0	0	0	0	0	0
m	1	0	0	12	12	12	12
# of Items	2	0	10		?		
of It	3	0					
#							

$$m = 2, c = 3$$

$$F[2][3] = \max \begin{Bmatrix} v_2 + F[1][2] \\ F[1][3] \end{Bmatrix} = \max \begin{Bmatrix} 10 + 12 \\ 12 \end{Bmatrix} = 22.$$

Item	Weight w_m	Value v_m
1	2	12
2	1	10
	2	15

		0	1	2	3	4	5
Ш	0	0	0	0	0	0	0
m	1	0	0	12	12	12	12
ems	2	0	10		22		
of Items		0					
#							

$$m = 2$$

Item	Weight w_m	Value v_m
1	2	12
2	1	10
	2	15

		0	1	2	3	4	5
П	0	0	0	0	0	0	0
m	1	0	0	12	12	12	12
ems	2	0	10	12	22	22	22
of Ite		0					
#							

$$m = 3$$

Item	Weight w_m	Value v_m
1	2	12
2	1	10
3	3	20
4	2	15

		0	1	2	3	4	5
= u	0	0	0	0	0	0	0
m	1	0	0	12	12	12	12
ems	2	0	10	12	22	22	22
# of Items	3	0					
#	4	0					

$$m = 3$$

Item	Weight w_m	Value v_m
1	2	12
2	1	10
3	3	20
4	2	15

		0	1	2	3	4	5
Ш	0	0	0	0	0	0	0
m	1	0	0	12	12	12	12
sma	2	0	10	12	22	22	22
of Items	3	0					
#	4	0					

$$m = 3, c = 2$$

Item	Weight w_m	Value v_m
1	2	12
2	1	10
3	3	20
4	2	15

		Capacity $c =$						
		0	1	2	3	4	5	
П	0	0	0	0	0	0	0	
# of Items $m=$	1	0	0	12	12	12	12	
	2	0	10	12	22	22	22	
	3	0		?				
#	4	0						

$$m = 3, c = 2$$

$$w_m > c$$
 ==> $F[m][c] = F[m-1][c]$.

Item	Weight w_m	Value v_m
1	2	12
2	1	10
3	3	20
4	2	15

			Capacity $c =$						
		0	1	2	3	4	5		
П	0	0	0	0	0	0	0		
m	1	0	0	12	12	12	12		
ems	2	0	10	12	22	22	22		
of Items	3	0		?					
#		0							

$$m = 3, c = 2$$

$$F[3][2] = F[2][2].$$

Item	Weight w_m	Value v_m
1	2	12
2	1	10
3	3	20
4	2	15

		0	1	2	3	4	5
# of Items $m=$	0	0	0	0	0	0	0
	1	0	0	12	12	12	12
	2	0	10	12	22	22	22
	3	0		12			
#	4	0					

$$m = 3, c = 4$$

Item	Weight w_m	Value v_m
1	2	12
2	1	10
3	3	20
4	2	15

		Capacity $c =$						
		0	1	2	3	4	5	
of Items $m=$	0	0	0	0	0	0	0	
	1	0	0	12	12	12	12	
	2	0	10	12	22	22	22	
	3	0		12		?		
#	4	0						

$$m = 3, c = 4$$

$$w_m \le c$$
 ==> $F[m][c] = \max \begin{cases} v_m + F[m-1][c-w_m] \\ F[m-1][c] \end{cases}$.

ItemWeight w_m Value v_m 121221103320

		0	1	2	3	4	5
Ш	0	0	0	0	0	0	0
m	1	0	0	12	12	12	12
ems	2	0	10	12	22	22	22
of Items	3	0		12		?	
#		0					

$$m = 3, c = 4$$

$$F[3][4] = \max \begin{Bmatrix} v_3 + F[2][1] \\ F[2][4] \end{Bmatrix} = \max \begin{Bmatrix} 20 + 10 \\ 22 \end{Bmatrix} = 30.$$

Item	Weight w_m	Value v_m
1	2	12
2	1	10
3	3	20
4	2	15

		0	1	2	3	4	5
П	0	0	0	0	0	0	0
of Items $m =$	1	0	0	12	12	12	12
	2	0	10	12	22	22	22
	3	0		12		30	
#	4	0					

$$m = 3$$

Item	Weight w_m	Value v_m
1	2	12
2	1	10
3	3	20
4	2	15

	0	1	2	3	4	5
0	0	0	0	0	0	0
1 1	0	0	12	12	12	12
E 2	0	10	12	22	22	22

$$m = 4$$

Item	Weight w_m	Value v_m
1	2	12
2	1	10
3	3	20
4	2	15

		0	1	2	3	4	5
Ш	0	0	0	0	0	0	0
m	1	0	0	12	12	12	12
sma	2	0	10	12	22	22	22
# of Items	3	0	10	12	22	30	32
#	4	0					

$$m = 4, c = 5$$

Item	Weight w_m	Value v_m	
1	2	12	
2	1	10	
3	3	20	
4	2	15	

		0	1	2	3	4	5
of Items $m=$	0	0	0	0	0	0	0
	1	0	0	12	12	12	12
	2	0	10	12	22	22	22
	3	0	10	12	22	30	32
#	4	0					?

$$m = 4, c = 5$$

$$w_m \le c$$
 ==> $F[m][c] = \max \begin{cases} v_m + F[m-1][c-w_m] \\ F[m-1][c] \end{cases}$.

Item	Weight w _m	Value v_m
1	2	12
2	1	10
3	3	20
4	2	15

		0	1	2	3	4	5
П	0	0	0	0	0	0	0
m	1	0	0	12	12	12	12
ems	2	0	10	12	22	22	22
of Ite	3	0	10	12	22	30	32
#	4	0					?

$$m = 4, c = 5$$

$$F[4][5] = \max \begin{Bmatrix} v_4 + F[3][3] \\ F[3][5] \end{Bmatrix} = \max \begin{Bmatrix} 15 + 22 \\ 32 \end{Bmatrix} = 37.$$

Item	Weight w_m	Value v_m
1	2	12
2	1	10
3	3	20
4	2	15

		0	1	2	3	4	5
П	0	0	0	0	0	0	0
m	1	0	0	12	12	12	12
ems	2	0	10	12	22	22	22
# of Items	3	0	10	12	22	30	32
#	4	0					37

Find the selected items

Find the selected items

Item	Weight w _m	Value v_m
1	2	12
2	1	10
3	3	20
4	2	15

		0	1	2	3	4	5
of Items $m =$	0	0	0	0	0	0	0
	1	0	0	12	12	12	12
	2	0	10	12	22	22	22
	3	0	10	12	22	30	32
#	4	0					37

Is the 4th item selected?

• $37 \neq 32 = >$ Item 4 is selected.

	Capacity				
0	1	2	2		

Item	Weight w_m	Value v_m
1	2	12
2	1	10
3	3	20
4	2	15

		0	1	2	3	4	5
П	0	0	0	0	0	0	0
m	1	0	0	12	12	12	12
ems	2	0	10	12	22	22	22
of Items	3	0	10	12	22	30	32
#	4	0					37

The 4th item is selected!

- $37 \neq 32 ==>$ Item 4 is selected.
- The remaining capacity is 5 2 = 3.

Item	Weight w_m	Value v_m
1	2	12
2	1	10
3	3	20
4	2	15

		0	1	2	3	4	5
П	0	0	0	0	0	0	0
m	1	0	0	12	12	12	12
ems	2	0	10	12	22	22	22
# of Items	3	0	10	12	22	30	32
#	4	0					37

The 4th item is selected!

- $37 \neq 32 = >$ Item 4 is selected.
- The remaining capacity is 5 2 = 3.

Item	Weight w_m	Value v_m
1	2	12
2	1	10
3	3	20
4	2	15

Is the 3rd item selected?

Item	Weight w _m	Value v_m
1	2	12
2	1	10
3	3	20
4	2	15

		0	1	2	3	4	
П	0	0	0	0	0	0	
of Items $m=$	1	0	0	12	12	12	
	2	0	10	12	22	22	22
	3	0	10	12	22	30	

Is the 3rd item selected?

• 22 = 22 ==> Item 3 is not selected.

Item	Weight w_m	Value v_m
1	2	12
2	1	10
3	3	20
4	2	15

				•			
		0	1	2	3	4	
П	0	0	0	0	0	0	
of Items $m=$	1	0	0	12	12	12	
	2	0	10	12	22	22	22
	3	0	10	12	22	30	
#							

The 3rd item is not selected!

- 22 = 22 ==> Item 3 is not selected.
- The remaining capacity is still 3.

Item	Weight w_m	Value v_m
1	2	12
2	1	10
	2	15

		Capacity $c =$						
		0	1	2	3			
П	0	0	0	0	0			
m	1	0	0	12	12			
ems	2	0	10	12	22	22	22	
# of Items								
#								

Is the 2nd item selected?

Item	Weight w _m	Value v_m
1	2	12
2	1	10
	2	15

		0	1	2	3		
П	0	0	0	0	0	0	
m	1	0	0	12	12	12	
ems	2	0	10	12	22	22	22
of Items							
#							

Is the 2nd item selected?

• $22 \neq 12 ==>$ Item 2 is selected.

Item	Weight w _m	Value v_m
1	2	12
2	1	10
3	3	20
	2	15

			Capacity $c =$				
		0	1	2	3	4	
П	0	0	0	0	0	0	
m	1	0	0	12	12	12	
ems	2	0	10	12	22	22	22
of Items							
#							

The 2nd item is selected!

- $22 \neq 12 ==>$ Item 2 is selected.
- The remaining capacity is 3 1 = 2.

Item	Weight w_m	Value v_m
1	2	12
2	1	10
3	3	20
	2	15

The 2nd item is selected!

- $22 \neq 12 ==>$ Item 2 is selected.
- The remaining capacity is 3 1 = 2.

Item	Weight w_m	Value v_m
1	2	12
2	1	10
3	3	20
	2	15

Is the 1st item selected?

Item	Weight w _m	Value v_m
_1	2	12
2	1	10
3	3	20
	2	15

		0	1	2	3		
п	0	0	0	0	0		
m	1	0	0	12	12		
ems		0	10	12	22	22	22
# of Items							
#							

Is the 1st item selected?

• $12 \neq 0$ ==> Item 1 is selected.

Item	Weight w_m	Value v_m
1	2	12
2	1	10
3	3	20
	2	15

Is the 1st item selected?

• $12 \neq 0$ ==> Item 1 is selected.

ltem	Weight w_m	Value v_m
1	2	12
2	1	10
3	3	20
	2	15

Found the selected items!

Items 1, 2, and 4 are selected.

Item	Weight w _m	Value v_m
1	2	12
2	1	10
3	3	20
4	2	15

- Select from m items to fit in a knapsack of capacity c.
- The size of table is $(m+1)\times(c+1)$.
- O(1) time for filling one entry of the table.
- Thus, O(mc) time for filling the entire table.

- Properties of the items can be represented by 2m integers.
 - Let $x = \max\{w_1, \dots, w_m, v_1, \dots, v_m\}$.
 - Each integer is represented by $\log_2 x$ bits.
 - Number of bits: $b = 2m \cdot \log_2 x$.

- Properties of the items can be represented by 2m integers.
 - Let $x = \max\{w_1, \dots, w_m, v_1, \dots, v_m\}$.
 - Each integer is represented by $\log_2 x$ bits.
 - Number of bits: $b = 2m \cdot \log_2 x$.
- Capacity of the knapsack can be represented by $k = \log_2 c$ bits.
- The time complexity is

$$O(mc) = O\left(\frac{b}{2 \cdot \log_2 x} \cdot 2^k\right) = O(b \cdot 2^k).$$

Questions

Q1: Fill the table

Item	Weight w_m	Value v_m
1	5	50
2	4	40
3	4	30
4	3	45

Q2: Fill the table

Item	Weight w_m	Value v_m		
1	1	5		
2	3	35		
3	4	38		
4	5	60		
5	2	20		

Q3: What are the selected items?

Item	Weight w_m	Value v_m			
1	1				
2	3				
3	4				
4	5				
5	2				

	_	0	1	2	3	4	5	6	7	8	9	10
# of Items $m=$	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	5	5	5	5	5	5	5	5	5	5
	2	0	5	5	35	40	40	40	40	40	40	40
	3	0	5	5	35	40	40	40	65	70	70	70
	4	0	5	5	35	40	55	60	65	90	95	95
	5	0	5	22	35	40	57	62	77	90	95	112

Thank You!