

Overview

Study of red and and white wine from northern portugal

The dataset:

- Over 6000 records
- 12 attributes (type, quality, acidity, sugar content, etc ...)
- overall quality of the data is very good. Plenty of predictors, no missing value, in a good structured format

Overview

Origin:portugal

color · red

Domain overview:

- Wine is one of the oldest and well studied beverage
- major characteristic of a wine include: Acidity, sugar content, sulfur content and Alcohol level
- Acidity is the most important attribute. It determines many of the other characteristics of a wine
- Alcohol content is closely related with the brewing process. Red wine generally has more alcohol than white

Research Objectives

1. Classification model for wine type. Predict the type of a wine base on other attributes within 95% CI

2. Build a linear and logistic model for Quality of wine. Compare the two models

3. Build a model to predict alcohol content based on other attributes of a wine

Reds

Whites

Analysis: Red vs. White

- Real world value
- Test, Train split
- Fitting the logistic binomial model
 - Step 1: Naive Model predicting wine type with all 13 predictors.
 - Step 2: Perform ΔG^2 test to see if we can drop multiple predictors from the model all together: null hypothesis: $\beta_{\text{sulphates}} = \beta_{\text{pH}} = \beta_{\text{citric acid}} = \beta_{\text{quality level}} = 0$
 - ullet ΔG^2 test statistic was 8.86, which corresponds to a p value of .0674

Analysis: Red vs. White

- Validation:
 - ROC Curve
 - Concerns?
 - > AOC
 - **.**99
 - Confusion Matrix

False True White 1453 3 Red 3 491

Analysis: Red vs. White

Real world value

- coefficients of the predictors alcohol, density, free sulfur dioxide, chlorides, and volatile acidity are positive
- o coefficients of total sulfur dioxide, residual sugar, and fixed acidity are negative

$$log(\frac{\pi}{1-\pi}) = -2149.61 + 2.36* alcohol + 2142.71* density + \\ (-0.05)* total. sulfur. dioxide + 0.06* free. sulfur. dioxide + \\ 20.45* chlorides + (-0.87)* residual. sugar + 6.66* volatile. acidity + (-0.68)* fixed. acidity$$

- Real world value
- Fitting the multiple linear regression model
 - Step 1: Naive Model predicting alcohol with all 13 predictors.
 - Make sure assumptions met, transform as necessary
 - Remove unuseful predictors
 - Sulfur dioxide

Transformations:

$$\circ$$
 y' = y^{-.5}

- Residual Analysis
- Influential points
 - Cook's Distance

Real world value

- o density, free sulfur dioxide, chlorides, have positive coefficients
- sulphates, pH, residual sugar, citric acid, volatile acidity, and fixed acidity have negative coefficients
- VIF Test supports that there is not substantial multicollinearity

```
y^{-0.5} = -9.10693 + (-0.013993)*sulphates + (-0.038745)*pH + 9.685613*density + \\ (3e - 05)*free.sulfur.dioxide + 0.006607*chlorides + -0.003213*residual.sugar + \\ -0.004648*citric.acid + -0.008759*volatile.acidity + -0.008135*fixed.acidity + \\ -0.002327*qualityHigh + -0.016947*typered
```

Analysis: Wine Quality

- Can you predict wine quality?
- Response variable is discrete and numerical
- Transform quality into a categorical variable
 - Scores of 0-5 is "low"
 - Scores of 6-10 is "high"
- Models
 - Multiple Linear Regression
 - Logistic Regression

First Order Linear Regression Model

12 Predictors

"citric acid" is insignificant

```
call:
lm(formula = quality ~ .. data = data)
Residuals:
   Min
            10 Median
-3.7796 -0.4671 -0.0444 0.4561 3.0211
Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
(Intercept)
                     1.044e+02 1.410e+01
                                           7.401 1.52e-13 ***
fixed.acidity
                     8.507e-02 1.576e-02
                                           5.396 7.05e-08 ***
volatile.acidity
                               8.135e-02 -18.345 < 2e-16 ***
                    -1.492e+00
citric.acid
                    -6.262e-02 7.972e-02 -0.786
                                                   0.4322
residual.sugar
                     6.244e-02 5.934e-03 10.522 < 2e-16 ***
chlorides
                    -7.573e-01 3.344e-01 -2.264
                                                   0.0236 *
free.sulfur.dioxide
                    4.937e-03 7.662e-04
                                           6.443 1.25e-10 ***
total.sulfur.dioxide -1.403e-03
                               3.237e-04 -4.333 1.49e-05 ***
density
                               1.434e+01 -7.248 4.71e-13 ***
                    -1.039e+02
                     4.988e-01 9.058e-02
                                           5.506 3.81e-08 ***
sulphates
                     7.217e-01 7.624e-02
                                            9.466 < 2e-16 ***
alcohol
                     2.227e-01 1.807e-02 12.320 < 2e-16 ***
                     3.613e-01 5.675e-02
                                          6.367 2.06e-10 ***
typered
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.7331 on 6484 degrees of freedom
Multiple R-squared: 0.2965, Adjusted R-squared: 0.2952
F-statistic: 227.8 on 12 and 6484 DF, p-value: < 2.2e-16
```

First Order Linear Regression Model

Box Cox:

95% CI of λ [0.66, 0.89]

Reduced Transformed First Order Model

8 Predictors

Dropped:

"citric acid"
"total.sulfur.dioxide"
"density"
"pH"

```
Call:
lm(formula = quality \land (3/4) \sim fixed.acidity + volatile.acidity +
   residual.sugar + chlorides + free.sulfur.dioxide + sulphates +
   alcohol + type, data = shuff data)
Residuals:
     Min
              10 Median
                               30
                                       Max
-1.89069 -0.22707 -0.00912 0.22158 1.43068
Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
                   (Intercept)
                   -0.0078603 0.0040167 -1.957 0.050400 .
fixed.acidity
volatile.acidity
                   -0.7860577 0.0366113 -21.470 < 2e-16 ***
residual.sugar
                   0.0099061 0.0011164 8.874 < 2e-16 ***
                   -0.5478856 0.1577648 -3.473 0.000518 ***
chlorides
free.sulfur.dioxide 0.0015044 0.0003013 4.992 6.13e-07 ***
                   0.2598770 0.0353589 7.350 2.23e-13 ***
sulphates
alcohol
                   0.1671651 0.0042606 39.235 < 2e-16 ***
typered
                   0.1533765 0.0181954 8.429 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.3568 on 6488 degrees of freedom
Multiple R-squared: 0.2861, Adjusted R-squared: 0.2853
F-statistic: 325.1 on 8 and 6488 DF, p-value: < 2.2e-16
```

Reduced Transformed First Order Model

8 Predictors

Assumptions for Linear Regression seem to be met

Coefficients:

Reduced Transformed Interaction Model

25 Predictors (includes interactions)

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
                                     2.983e+00 2.182e-01 13.673 < 2e-16 ***
fixed.acidity
                                    -6.951e-02 1.340e-02 -5.188 2.19e-07 ***
volatile.acidity
                                    -3.068e+00 3.349e-01 -9.160 < 2e-16 ***
residual.sugar
                                     5.509e-02 1.405e-02
                                                           3.920 8.96e-05 ***
chlorides
                                     1.270e+01 1.991e+00
                                                           6.379 1.91e-10 ***
free.sulfur.dioxide
                                    -2.685e-02 3.824e-03 -7.020 2.44e-12 ***
sulphates
                                     4.542e-01 7.011e-02
                                                           6.478 9.98e-11 ***
alcohol
                                     1.152e-01 1.694e-02
                                                           6.801 1.13e-11 ***
typered
                                    -7.161e-01 1.186e-01 -6.037 1.65e-09 ***
fixed.acidity:residual.sugar
                                     2.888e-03 1.205e-03
                                                           2.398 0.01652 *
fixed.acidity:chlorides
                                    -3.051e-01 1.604e-01 -1.902 0.05725
fixed.acidity:free.sulfur.dioxide
                                     1.219e-03 3.039e-04 4.013 6.06e-05 ***
fixed.acidity:typered
                                     8.463e-02 1.191e-02
                                                          7.106 1.33e-12 ***
volatile.acidity:free.sulfur.dioxide 7.121e-03 2.574e-03
                                                           2.766 0.00569 **
                                     1.792e-01 2.931e-02
volatile.acidity:alcohol
                                                           6.114 1.03e-09 ***
volatile.acidity:typered
                                     5.261e-01 8.514e-02
                                                           6.179 6.86e-10 ***
residual.sugar:chlorides
                                    -1.046e-01 4.774e-02 -2.192 0.02841
residual.sugar:free.sulfur.dioxide
                                    -2.109e-04 6.654e-05 -3.170 0.00153 **
                                    -2.643e-02 8.779e-03 -3.011 0.00261 **
residual.sugar:sulphates
residual.sugar:alcohol
                                    -3.810e-03 9.632e-04 -3.956 7.71e-05 ***
chlorides:sulphates
                                    -2.147e+00 5.062e-01 -4.242 2.25e-05 ***
chlorides:alcohol
                                    -9.723e-01 1.591e-01 -6.113 1.04e-09 ***
                                                          1.987 0.04698 *
chlorides:typered
                                     1.012e+00 5.094e-01
                                                           6.806 1.09e-11 ***
free.sulfur.dioxide:alcohol
                                     1.894e-03 2.783e-04
free.sulfur.dioxide:typered
                                    -6.844e-03 1.232e-03 -5.555 2.89e-08 ***
sulphates:typered
                                     2.033e-01 8.727e-02
                                                          2.330 0.01985 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.3498 on 6471 degrees of freedom
Multiple R-squared: 0.3155,
                               Adjusted R-squared: 0.3129
F-statistic: 119.3 on 25 and 6471 DF, p-value: < 2.2e-16
```

Reduced Transformed Interaction Model

25 Predictors (includes interactions)

Assumptions for Linear Regression seem to be met

ACF of Residuals

Result Summary: Wine Quality

Performance of Linear Regression Models:

Average RMSE per Linear Model (Quality) for 10-Fold Cross-Validation		
First Order Linear Regression Model	0.73309	
Reduced Linear Regression Model	0.73727	
Reduced Transformed Linear Regression Model	0.73733	
Complete Interaction Linear Regression Model	0.72641	
Transformed Interaction Linear Regression Model	0.7265	
Reduced Transformed Interaction Linear Regression Model	0.72515	

Logistic Model for Wine Quality

Reduced Logistic Regression Model

Confusion Matrix

	False	True
Low	396	303
High	203	1048

FP: 0.43 FN: 0.16

ACC: 0.74 AUC: 0.806

Conclusion

Thank you