Volatility Trading using Machine Learning

Amrit Prasad, Nathan Johnson, Salman Khan Pathan, Saurabh Kelkar

Problem Statement

- Predict the volatility of the S&P 500 index
- Compare predicted volatility levels over a specified time horizon with market implied volatility and select a portfolio of options + index to capture movements in the premium

Benchmark: GARCH (1,1)

- Use GARCH(1,1)
 estimates of
 realized volatility
- Backtest trading strategy as benchmark return

ML Application for Volatility Prediction

 Multiple neural networks (e.g., Jordan Neural Network) demonstrate superiority to GARCH(1,1) models

Trading Strategy

- Trade S&P options based on forecast volatility
- Ex: Expected premium contraction, short option and delta-hedge with daily rebalancing

Data Sets: Stock Domain and Features

- S&P 500 Index realized volatility
- Set of traded options' implied volatilities
- Date: 1st Jan 2008 31st Dec 2017

Technical/Price data

- Source: Bloomberg
- Usage: Technical Indicators based on OHLC Data.

Google Trends

- Source: Google Trends API
- Usage: Word count occurance in searches

Implied Volatility

- Source: Option Metrics
- **Usage: Trading** Backtester

Historical Volatility	Implied Volatility
Look back in time to	Traders view of expected
show where volatility has	future volatility based on
been in the past.	current option prices.
******	*********
Shows expected trading	Indicator of the current

News Headlines

- Source: Scraping
- Usage: NLP

Benchmark

- Volatility has various characteristics:
 - Clustering
 - Asymmetry
 - Regimes Behaviour
 - Long-Term Memory
- GARCH(1,1) model is parsimonious and captures the clustering pretty well. However the asymmetric and regimes behaviour isn't described desirably. The decay of the coefficient on older lags also leads to a loss of long-term memory.
- Neural Networks and other ML algorithms have the ability to capture the missing aspects. They are particularly flexible as information apart from price returns can also be incorporated.