L8 – The Natural Logarithm MHF4U

Part 1: What is 'e'?

Example 1: Suppose you invest \$1 at 100% interest for 1 year at various compounding levels. What is the highest amount of money you can have after 1 year?

Note: the formula used for compound interest of \$1 at 100% interest annually compounded n times during the year is:

$$A = 1\left(1 + \frac{1}{n}\right)^n$$

Compounding Level, $oldsymbol{n}$	Amount, A in dollars
Annualy (once a year)	$A = 1\left(1 + \frac{1}{1}\right)^1 = 2$
Semi-annually (2-times)	$A = 1\left(1 + \frac{1}{2}\right)^2 = 2.25$
Quarterly (4-times)	$A = 1\left(1 + \frac{1}{4}\right)^4 = 2.4414$
Monthly (12-times)	$A = 1\left(1 + \frac{1}{12}\right)^{12} = 2.61304$
Daily (365-times)	$A = 1\left(1 + \frac{1}{365}\right)^{365} = 2.71457$
Secondly (31 536 000-times)	$A = 1\left(1 + \frac{1}{31536000}\right)^{31536000} = 2.718281785$
Continuously (1 000 000 000-times)	$A = 1\left(1 + \frac{1}{1000000000}\right)^{10000000000} = 2.718281827$

Properties of e:

- $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n \approx 2.718\ 281\ 828\ 459$
- e is an <u>irrational</u> number, similar to π . They are non-terminating and non-repeating.
- $\log_e x$ is known as the <u>natural logarithm</u> and can be written as $\ln x$
- Many naturally occurring phenomena can be modelled using base-e exponential and logarithmic functions.
- $\log_e e = \ln e = 1$

Part 2: Reminder of Log Rules

Power Law of Logarithms	$\log_b x^n = n \log_b x \text{for } b > 0, b \neq 1, x > 0$
Product Law of Logarithms	$\log_b(mn) = \log_b m + \log_b n \text{for } b > 0, b \neq 1, m > 0, n > 0$
Quotient Law of Logarithms	$\log_b\left(\frac{m}{n}\right) = \log_b m - \log_b n \text{for } b > 0, b \neq 1, m > 0, n > 0$
Change of Base Formula	$\log_b m = \frac{\log m}{\log b}$, $m > 0$, $b > 0$, $b \neq 1$
Exponential to Logarithmic	$y = b^x \to x = \log_b y$
Logarithmic to Exponential	$y = \log_b x \Rightarrow x = b^y$
Other useful tips	$\log_a(a^b) = b \qquad \qquad \log_a = \log_{10} a \qquad \qquad \log_b b = 1$

Part 2: Solving Problems Involving e

Example 2: Evaluate each of the following

a)
$$e^3 \cong 20.086$$

b) $\ln 10 \cong 2.303$

c) $\ln e = 1$

Example 3: Solve each of the following equations

a)
$$20 = 3e^{x}$$

$$20 = 3e^{x}$$

$$\frac{20}{3} = e^{x}$$

$$\ln(\frac{20}{3}) = \ln(e^{x})$$

$$\ln(\frac{20}{3}) = x \cdot \ln(e)$$

b)
$$e^{1-2x} = 55$$
 $e^{1-2x} = 55$
 $\ln(e)^{1-2x} = \ln(55)$
 $(1-2x)(\ln(e)) = \ln(55)$
 $(1-2x)(1) = \ln(55)$
 $1-2x = \ln(55)$
 $1-\ln(55) = 2x$
 $\frac{1-\ln(55)}{2} = x$
 $\frac{1-\ln(55)}{2} = x$

c)
$$2 \ln(x-3) - 7 = 3$$

$$2\ln(x-3) - 7 = 3$$

 $2\ln(x-3) = 10$
 $\ln(x-3) = 5$
 $e^5 = x-3$
 $e^5 + 3 = x$
 $x = 151.413$

: Graphing Functions Involving e

Part 3 Example 4: Graph the functions $y = e^x$ and $y = \ln x$

$y = e^x$	
x	y
-1	0.37
0	1
1	2.72
НА	y = 0

$y = \ln x$	
x	y
0.37	-1
1	0
2.72	1
VA	x = 0

d) $\ln(4e^x) = 2$

$$\ln(4e^{x}) = 2$$
 $e^{2} = 4e^{x}$
 $e^{2} = e^{x}$
 $\ln(e^{2}) = \ln(e^{x})$
 $\ln(e^{2}) = x \cdot \ln(e)$
 $1 \cdot (e^{2}) = x \cdot \ln(e)$

Note: $y = \ln x$ is the inverse of $y = e^x$

