

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA ESTATÍTICA

Prof.^a Rajana Roland Seixas

Aluno: Pedro henrique Silva Santana Matrícula: 12011BSI218

Lista 03 – Probabilidade

- 1. Defina um espaço amostral para o seguinte experimento:
- a. Lançamento de uma moeda e um dado.

$$K = cara;$$

C = coroa;

$$S = \{K1, K2, K3, K4, K5, K6, C1, C2, C3, C4, C5, C6\}.$$

2. As probabilidades de 3 jogadores A, B e C marcarem um gol quando cobram um pênalti são 2/3, 4/5 e 7/10, respectivamente. Se cada um cobrar uma única vez, qual a probabilidade de que pelo menos um marque um gol?

$$1 - \left(\frac{1}{3} * \frac{1}{5} * \frac{3}{10}\right) = 1 - \frac{3}{150} = 98\%$$

3. Durante o mês de dezembro, a probabilidade de chover é de 10%. Um time ganha um jogo em um dia chuvoso, com 40% de probabilidade e, em um dia sem chuva, com 60% de probabilidade. Tendo esse time ganho um jogo em um dia de dezembro, qual a probabilidade de ter chovido nesse dia?

$$\frac{10*40}{10*40+90*60} = \frac{4}{58} = 6.8\%$$

4. Para selecionar seus funcionários uma empresa oferece aos candidatos um curso de treinamento durante uma semana. No final do curso eles são submetidos a uma prova e 25% são classificados como bons (B), 50% como médios (M) e os restantes 25% como fracos (F). Para facilitar a seleção, a empresa pretende substituir o treinamento por um teste contendo questões referentes a conhecimentos gerais e específicos. Para isso, gostaria de conhecer qual a probabilidade de um indivíduo aprovado no teste ser considerado fraco, caso fizesse o curso. Assim, neste ano, antes do início do curso, os candidatos foram submetidos ao teste e receberam o conceito aprovado (A) ou reprovado (R). No final do curso, obtiveram-se as seguintes informações: i) Dentre os Bons 80% foram aprovados; ii) dentre os médios a aprovação foi de 50% e iii) dos fracos 20% foram aprovados. Determine a probabilidade de ser classificado como fraco sabendo que é aprovado usando as fórmulas.

$$\frac{25*20}{25*80+2*25*50+25*20} = \frac{2}{20} = 10\%$$

5. Suponha que o seguinte quadro represente uma possível divisão de alunos matriculados na UFU em um determinado semestre.

	Sexo		
Cursos	Masculino (M)	Feminino (F)	Total
Engenharias (ENG)	70	40	110
Ciência da Computação (CC)	15	15	30
Ciências Biológicas (CB)	10	20	30
Administração (ADM)	20	10	30
Total	115	85	200

Calcular a probabilidade de uma pessoa selecionada aleatoriamente:

a) Estar matriculada em Engenharia;

$$\frac{110}{200} = 55\%$$

b) Ser do sexo masculino?

$$\frac{115}{200} = 57\%$$

c) Estar matriculada em ciência da computação ou ser do sexo masculino?

$$\frac{115+15}{200} = 65\%$$

d) Estar matriculada em Engenharia e ser do sexo feminino?

$$\frac{40}{200} = 20\%$$

e) Não estar matriculada em ciências biológicas? P(CB^C)?

$$\frac{170}{200} = 85\%$$

6. O seguinte grupo de pessoas está em uma sala: 5 rapazes com mais de 21 anos, 4 rapazes com menos de 21 anos, 6 moças com mais de 21 anos e 3 moças com menos de 21 anos. Os seguintes eventos são definidos:

A: a pessoa tem mais de 21 anos;

B: a pessoa tem menos de 21 anos;

C: a pessoa é do sexo masculino;

D: a pessoa é do sexo feminino

Calcular:

$$P(B \cup D)$$

< 21 anos = 7 pessoas

Feminino = 9 pessoas

$$\frac{7+6}{18} = 72\%$$

$$P(A^{C})$$

$$>$$
21 anos = 11 pessoas

$$\frac{7}{18} = 39\%$$

7. Em certa linha de montagem, três máquinas B₁, B₂ e B₃ produzem 30%, 45% e 25% dos produtos respectivamente, sendo que, dos produtos feitos por cada máquina, 2%, 3% e 2%, respectivamente, são defeituosos. Se um produto é selecionado aleatoriamente: Qual a probabilidade que apresente algum defeito?

$$2\% * 30\% + 3\% * 45\% + 2\% * 25\% = 0.0245 = 2.45\%$$

Se ele apresenta defeito, qual a probabilidade que tenha sido produzido pela máquina B₃?

$$\frac{0,005}{0,0245}=0,2040=20,40\%$$

- 8. A probabilidade de um vôo regular partir no horário é P (D) = 0,83 ; a probabilidade desse vôo chegar no horário é P (A) = 0,82; a probabilidade de que parta e chegue no horário P (D∩A) = 0,78. Calcule:
 - a) A probabilidade do vôo chegar no horário tendo saído no horário e

$$\frac{P(D \cap A)}{P(D)} = \frac{0.78}{0.83} = 94\%$$

b) A probabilidade do vôo ter saído no horário dado que chegou no horário.

$$\frac{P(D \cap A)}{P(A)} = \frac{0.78}{0.82} = 95\%$$

9. Em um lote de 12 peças, 4 são defeituosas. Duas peças são retiradas, uma após a outra, sem reposição. Qual a probabilidade de que ambas sejam boas?

$$\frac{8}{12} * \frac{7}{11} = 0.4242 = 42,42\%$$

- 10. Uma caixa contém 7 laranjas, 6 maçãs e 5 bananas. Calcule:
 - a) A probabilidade de se retirar uma laranja e numa segunda retirada uma maça (sem reposição).

$$\frac{7}{18} * \frac{6}{17} = 0,1372 = 13,72\%$$

b) A probabilidade de se retirar uma laranja e numa segunda retirada uma maça (**com reposição**).

$$\frac{7}{18} * \frac{6}{18} = 0,1296 = 13,96\%$$

11. Três estudantes de uma escola, João, Hugo e Raquel, recebem um mesmo problema para resolver (individualmente). Suponha que suas probabilidades individuais e independentes de conseguir resolver o problema sejam 0,6; 0,7 e 0,8, respectivamente. Qual a probabilidade de que nenhum deles consiga resolver o problema?

$$0,4*0,3*0,2=0,024=2,4\%$$