

Centro Universitário de Brasília - CEUB

Curso: Ciência da Computação

Disciplina: Cálculo Diferencial e Integral

Professor: João Marcos Costa

Atividade em Equipe 01 - AEQ 01 (1°/2025)

Tema:

- Regras de derivação
- Estudo de extremos
- Regra de L'Hôpital

Questão 01.

Umas das várias aplicações do conceito de derivada é no estudo de extremos de uma função onde buscamos otimizar desempenhos a partir de certas condições. Utilize a derivada de segunda ordem para classificar os extremos da função $f(x) = x^3 - 7x^2 + 12x$

Roteiro:

- 1. Encontrar a derivada f'(x)
- 2. Determinar os pontos críticos x_i da função f
- 3. Calcular as imagens $f(x_i)$ de cada ponto crítico
- 4. Encontrar a derivada de segunda ordem f''(x)
- 5. Calcular as imagens $f''(x_i)$ de cada ponto crítico
- 6. Classificar os extremos $P_i(x_i, f(x_i))$ utilizando o seguinte critério:

Se
$$f''(x_i) > 0$$
 então $P_i(x_i, f(x_i))$ é ponto de mínimo local

Se
$$f''(x_i) < 0$$
 então $P_i(x_i, f(x_i))$ é ponto de máximo local

Esquema:

1.
$$f(x) \rightarrow f'(x)$$

2.
$$f'(x) = 0 \implies x_i$$
 são os pontos críticos de f

3.
$$f(x_i) \rightarrow P_i(x_i, f(x_i))$$

$$4. f'(x) \rightarrow f''(x)$$

5.
$$f''(x_i)$$

6. Aplicar o critério:

$$f''(x_i) > 0 \implies P_i(x_i, f(x_i))$$
 é ponto de mínimo local $f''(x_i) < 0 \implies P_i(x_i, f(x_i))$ é ponto de máximo local

Questão 02.

Utilize a derivada de primeira ordem para identificar o intervalo de pontos do domínio no qual a função $f(x) = x^3 - 7x^2 + 12x$ é crescente.

Roteiro:

- 1. Encontrar a derivada f'(x)
- 2. Fazer o Estudo de Sinal da função derivada de f
 - 2.1. Determinar os zeros da função (ou raízes da equação) da derivada f'(x)
 - 2.2. Identificar o intervalo de domínio no qual a derivada possui imagens positivas/negativas
- 3. Aplicar o critério de classificação:

Se
$$f'(x) > 0$$
 em $[a, b]$ então $f(x)$ é crescente em $[a, b]$
Se $f'(x) < 0$ em $[a, b]$ então $f(x)$ é decrescente em $[a, b]$

Esquema:

- 1. $f(x) \rightarrow f'(x)$
- 2. $f'(x) = 0 \implies x_i$ são as raízes da equação ou zeros da função derivada
- 3. Identificar [a, b] tal que f'(x) > 0
- 4. Aplicar o critério de classificação:

$$f'(x) > 0$$
 em $[a,b] \implies$ então $f(x)$ é crescente em $[a,b]$ $f'(x) < 0$ em $[a,b] \implies$ então $f(x)$ é decrescente em $[a,b]$

Questão 03.

Encontre a derivada solicitada em cada item

a.
$$f(x) = \frac{2x^3+1}{4x+6} \rightarrow f'(x)$$
 e $f'(1)$

b.
$$g(x) = sen(x)cos(x) \rightarrow g'(x) e g'(\frac{\pi}{3})$$

c.
$$h(x) = \frac{1}{\cos(x)} \longrightarrow h'(x)$$
 e $h'\left(\frac{\pi}{4}\right)$

d.
$$y(x) = \frac{1}{x} + \sqrt[3]{x} \rightarrow y'(x) \ e \ y''(x)$$

e.
$$m(x) = \frac{1}{5x+4} \rightarrow m'\left(\frac{4}{5}\right)$$

Questão 04

Encontre a derivada solicitada em cada item

a.
$$f(x) = e^{2x^5 + x} \rightarrow f'(x)$$
, $f''(x)$ e $f'(0)$

b.
$$f(x) = e^{4\sqrt{x}} \rightarrow f'(x)$$

c.
$$g(x) = ln(cos(x)) \rightarrow g'(x)$$
 e $g'(\frac{\pi}{6})$

d.
$$h(x) = ln(x+2) \rightarrow h'(x)$$

$$e. \quad y(x) = x^2 e^{3x} \quad \to \quad y'(x)$$

f.
$$m(x) = 4sen(x)e^{x+1} \rightarrow m'(x)$$

g.
$$n(x) = ln(x) \rightarrow n'(x)$$

$$h. \ p(x) = x ln(x) \longrightarrow p'(x)$$

Questão 05

Utilize a Regra de L'Hôpital para avaliar a existência dos limites que se seguem.

a.
$$\lim_{x \to \infty} f(x)$$
 onde $f(x) = \frac{e^{2x^3}}{x^2+4}$

b.
$$\lim_{x \to -2} f(x)$$
 onde $f(x) = \frac{x^3 + 8}{x^2 - 4}$

c.
$$\lim_{x \to 0} f(x)$$
 onde $f(x) = \frac{\sqrt{16+x} - 4}{e^{3x} - 1}$

d.
$$\lim_{x \to \infty} f(x)$$
 onde $f(x) = \frac{\ln(2x+3)}{x^2-4}$

e.
$$\lim_{x \to 0} f(x)$$
 onde $f(x) = \frac{sen(x)}{x}$

f.
$$\lim_{x \to 0} f(x)$$
 onde $f(x) = \frac{\cos(x) - 1}{x}$

g.
$$\lim_{x \to 0} f(x)$$
 onde $f(x) = \frac{sen(2x)}{5x}$

h.
$$\lim_{x \to 0} f(x)$$
 onde $f(x) = \frac{tg(x)}{x}$

i.
$$\lim_{x \to \pi} f(x)$$
 onde $f(x) = \frac{sen(x)}{x - \pi}$

j.
$$\lim_{x \to \frac{\pi}{3}} f(x)$$
 onde $f(x) = \frac{\cos(x + \frac{\pi}{6})}{x - \frac{\pi}{3}}$

k.
$$\lim_{x \to -\infty} f(x)$$
 onde $f(x) = \frac{5x^4 + 4x^2}{x^2 - 3x}$

I.
$$\lim_{x \to 9} f(x)$$
 onde $f(x) = \frac{x-9}{\sqrt{x}-3}$

m.
$$\lim_{x \to 0^+} f(x)$$
 onde $f(x) = \frac{-\frac{1}{x}}{\ln(x)}$

n.
$$\lim_{x \to \infty} f(x)$$
 onde $f(x) = e^{-x}(x^3 + x^2)$