

AFWAL-TR-80-2092 ESL-TR-80-46

AD A 0 9 5 0 5 7

EVALUATION OF FUEL CHARACTER EFFECTS ON J79 SMOKELESS COMBUSTOR

GENERAL ELECTRIC COMPANY
AIRCRAFT ENGINE **BUSINES**S GROUP
TECHNOLOGY PROGRAMS AND
PERFORMANCE TECHNOLOGY DEPARTMENT
CINCINNATI, OHIO 45215

November 1980

TECHNICAL REPORT AFWAL-TR-80-2092, ESL-TR-80-46

DTIC FEB 1 7 1981

Final Report for Period July 1979 - June 1980

Approved for public release; distribution unlimited.

-14

FILE COPY

AERO PROPULSION LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

JEFFREY S. STUTRUD

Fuels Branch

Fuels and Lubrication Division

ARTHUR V. CHURCHILL

Chief, Fuels Branch

Fuels and Lubrication Division

FOR THE COMMANDER

ROBERT D. SHERRILL, Chief Fuels and Lubrication Division Aero Propulsion Laboratory

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify $\underline{\text{AFWAL/POSF}}$, W-PAFB, OH 45433 to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AIR FORCE/56780/11 February 1981 - 230

	1911	(18) AFWAL
	$\frac{12}{11}$	AFFSCESL
1	SECURITY CLASSIFICATION OF THIS PAGE (Non Data Entered)	READ INSTRUCTIONS
	REPORT DOCUMENTATION PAGE 1. REPORT HUMBER APPLATE TR-80-2092, 2. GOVT ACCESSION NO.	BEFORE COMPLETING FORM 3. RECIPIENT'S CATALOG NUMBER
	ESL TR-80-46 AD- A09505	7
	A. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED Final Technical Report
(6	EVALUATION OF FUEL CHARACTER EFFECTS ON J79 SMOKELESS COMBUSTOR	7/1/79 through 6/1/80
	ON STY SHOKEHESS GOVERNOSTON:	REPORT NUMBER
7	7. AUTHORICA	CONTRACT OR GRANT NUMBER(a)
[10]	C.C./Gleason/T.L./Oller, M.W./Shayeson and M.J. Kenworthy	F33615-79-C-2033
	9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
	General Electric Company Aircraft Engine Group	62203F
	Cincinnati, Ohio 45215	3848-85-98 (17) 05
	11. CONTROLLING OFFICE NAME AND ADDRESS Aero Propulsion Laboratory (AFWAL/POSF)	AEPORT DATE
	Air Force Wright Aeronautical Laboratories (AFSC)	November 1980
	Wright-Patterson AFB, Ohio 45433	178
	14. MONITORING AGENCY NAME & ADDRESS(II dillerent from Controlling Office)	15. SECURITY CLASS. (of this report)
	9) Final technical rept.	Unclassified
	1 Jul 79-1 Jun 80,	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
	16. DISTRIBUTION STATEMENT (OF INTA ROPORT)	
	Approved for public release; distribution unlimit	ted.
		1
]
	17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from	m Report)
1	Partial funding and technical support in the area	of the meanument and
	analysis of gaseous emissions and smoke data were	provided by the Environ-
1	mental Sciences Branch of the Environics Division	in the Research and
1	Development Directorate of HQ Air Force Engineeri 19. KEY WORDS (Continue on reverse side if necessary and identity by block number)	ng and Services Center.
	n .1	1
	Fuels J79 Engine Com Alternate Fuels	nbustor
i	Gas Turbine Combustion	
	Exhaust Emissions	
-	20. ABSTRACT (Continue on reverse side if necessary and identify by block number)	
	Results of a program to determine the effects of	broad variations in fuel
	properties on the performance, emissions, and du turbojet engine combustion system are presented.	rability of the J79-17C
}	were tested, covering a range of hydrogen conter	
	ranges, and viscosities.	,, ,
-		1
Į		

DD 1 JAN 73 1473

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered) 403468

Block 20 (Continued)

At high power operating conditions, fuel hydrogen content was found to be a very significant fuel property with respect to liner temperature, flame radiation, smoke, and NO_X emission levels.

At idle and cruise operating conditions, CO and HC emission levels were found to be dependent on both fuel hydrogen content and relative spray droplet size.

At cold day ground start conditions lightoff correlated with the relative fuel droplet size.

Altitude relight limits at low flight Mach numbers were fuel dependent and also correlated with the relative fuel droplet size.

Combustor liner life analyses, based on the test data, yielded relative life predictions of 1.00, 0.93, 0.83, and 0.73 for fuel hydrogen contents of 14.5, 14.0, 13.0, and 12.0 percent, respectively.

High temperature cyclic fuel nozzle fouling tests revealed significant effects of fuel quality and operating temperature on nozzle life. The results correlated with laboratory thermal stability ratings of the fuels.

PREFACE

This final report is submitted by the General Electric Company, Aircraft Engine Group, Evendale, Ohio. The work was conducted under Contract No. F33615-79-C-2033. Dates of Research were November 26, 1979 through March 2, 1980. Author submittal date is November 1980. Program sponsorship and guidance were provided by the Aero Propulsion Laboratory (AFWAL/POSF), Air Force Wright Aeronautical Laboratories, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio under Project 3048, Task 05, and Work Unit 98. Jeffrey S. Stutrud was the government project engineer.

Supplemental funding and technical guidance were provided in the area of gaseous emissions and smoke measurement and analysis by the Environmental Sciences Branch of the Environics Division in the Research and Development Directorate of HQ Air Force Engineering and Services Center, located at Tyndall Air Force Base, Florida. This organization has been formerly referred to as CEEDO or the Civil Engineering Center.

Test fuel analysis was provided by APL, the Monsanto Research Laboratory (under contract to AFWAL), and the Air Force Logistics Command Aerospace Fuels Laboratory (SFQLA). The cooperation of these organizations is appreciated.

Key General Electric contributors to this program were: K.L. Murrell, Program Manager; D.W. Bahr, Technical Program Manager; C.C. Gleason, Principal Investigator; M.W. Shayeson, Fuels; T.L. Oller, High Pressure Combustor Tests; W.F. Menkhaus, Low Pressure Combustor and Fuel Nozzle Tests; and M.J. Kenworthy/H.L. Foltz, Combustor System Life Analyses.

Acception Total

NTIS C &I

DVIC T 8

I manned

Total Colors

District 101

Acception Total

RV

District 101

Acception Total

District 101

Acception Total

TABLE OF CONTENTS

Section		Pag
I.	SUMMARY	
II.	INTRODUCTION	
III.	TEST FUEL DESCRIPTION	
	A. General Description B. Physical and Chemical Prope	rtíes
IV.	J79 ENGINE COMBUSTION SYSTEM DES	CRIPTION
	A. Overall Engine DescriptionB. Combustion System DescriptiC. Combustor Operating Conditi	
v.	APPARATUS AND PROCEDURES	11
	A. Performance/Emission/Durabi	
	 High Pressure Test Rig High Pressure Test Rig High Pressure Test Pro 	Instrumentation 2
	B. Cold-Day Ground Start/Altit	ude Relight Tests 3
	 Low Pressure Test Rig Cold-Day Ground Start Altitude Relight Test 	Procedure 4
	C. Fuel Nozzle Fouling Tests D. Test Fuel Handling Procedur E. Data Analysis Procedures	es 4:
	 Fuel Property Correlat Combustor Life Predict Turbine Life Prediction 	ion Procedures 50
VI.	RESULTS AND DISCUSSION	5.5
	A. Experimental Test Results	5.5
	 CO and HC Emissions NO_X Emissions Smoke Emissions Carbon Deposition and Liner Temperature and 	
	6. Combustor Exit Profile	and Pattern Factor 87
	 Cold-Day Ground Starti Altitude Relight 	ng and Idle Stability 9:
	9. Fuel Nozzle Fouling	109

TABLE CF CONTENTS (Concluded)

Section		Page
	B. Engine System Life Predictions	111
	 Combustion System Life Predictions Turbine Life Predictions 	111 113
	C. Comparison of Results	113
VII.	CONCLUSIONS AND RECOMMENDATIONS	121
	A. Conclusions B. Recommendations	121 121
	APPENDIX A - Fuel Property Data	123
	APPENDIX B - High Pressure Test Data	132
	APPENDIX C - Carbon Deposition/Emission Data	153
	APPENDIX D - Low Pressure Test Data	160
	APPENDIX E - Fuel Nozzle Fouling Test Data	172
	APPENDIX F - Smoke Data Calculation	175
	REFERENCES	177

LIST OF ILLUSTRATIONS

Figure		Page
1.	General Electric J79 Turbojet Engine.	8
2.	J79 Engine Combustion System, Exploded Pictorial View.	9
3.	J79-17C Low Smoke, Long Life Combustor Assembly.	10
4.	J79-17C Combustor Flowpath.	11
5.	J79-17C Combustor Inner Liner Details.	12
6.	J79-17C Fuel Nozzle Tip Details.	14
7.	J79-17C Fuel Nozzle Flow Characteristics.	15
8.	J79 Engine Altitude Windmilling/Relight Requirement Map.	17
9.	Side View of High Pressure J79 Combustor Test Rig.	22
10.	Combustor Inscallation in High Pressure J79 Test Rig.	23
11.	Combustor Exit Instrumentation Rake.	24
12.	High Pressure Test Rig Exit Instrumentation.	26
13.	General Electric Smoke Measurement Console.	28
14.	General Electric Emissions Measurement Console (CAROL IV).	29
15.	Particle Fractionating Sample Details.	30
16.	Combustor Metal Temperature Measurement Locations and Typical Measured Temperature Levels.	32
17.	Inner Liner Instrumentation of 0° CWALF.	33
18.	Inner Liner Temperature Instrumentation at 180° CWALF.	34
19.	Dome Temperature Instrumentation.	35
20.	Rear Liner Temperature Instrumentation.	36
21.	Fuel Nozzle Temperature Instrumentation.	37
22.	Optical Pyrometer Setup in High Pressure Test Rig.	38

LIST OF ILLUSTRATIONS (Continued)

Figure		Page
23.	Low Pressure J79 Combustor Test Rig.	41
24.	Fuel Nozzle Fouling Test Rig - Overall Installation.	45
25.	Fuel Nozzle Fouling Test Rig - Details.	46
26.	Fuel Nozzle Fouling Test Cycle.	47
27.	Node Model for J79 Combustor Showing Heat Transfer Quantities.	51
28.	Fatigue Diagram for Hastelloy-X Sheet Stock.	53
29.	Turbine Nozzle Diaphragm and Instrumented Location View Factors.	54
30.	Effect of Operating Conditions on CO Emission Levels.	56
31.	Effect of Selected Fuel Properties on CO Emission Levels at Idle and Cruise Operating Conditions.	58
32.	Effect of Fuel Hydrogen Cortent and Spray Droplet Size on CO Emissions Levels.	60
33.	Variation of HC Emission Levels with CO Emission Levels, Idle and Cruise Operating Conditions.	61
34.	Effect of Fuel Hydrogen Content and Spray Droplet Size on Idle HC Emission Levels.	63
35.	Effect of Operating Conditions on $NO_{\mathbf{X}}$ Emission Levels.	64
36.	Effect of Fuel Hydrogen Content on $\mathrm{NO}_{\mathbf{X}}$ Emission Levels.	67
37.	Effect of Flame Temperature on NO _X Emission Levels.	68
38.	Effect of Operating Conditions on Smoke Emission Levels.	69
39.	Effect of Fuel Hydrogen Content on Smoke Emission Levels	72
40.	Effect of Fuel Naphthalene Content on Smoke Number Normal- ized for Hydrogen Content.	73
41.	Pattern Factor Variation During Carbon Endurance Test.	75

LIST OF ILLUSTRATIONS (Continued)

Figure		Page
42.	Effect of Fuel Hydrogen Content on Carbon Emission Levels at Cruise (Test Point 4).	78
43.	Carbon Particle Size Distribution at Cruise Measured by Cascade Impactor.	79
44.	Typical Effect of Operating Conditions on Liner Temperature Rise, Fuel 1A.	81
45.	Effect of Installation and Film Flow Mode on Liner Temperature Response.	83
46.	Rear Liner Hot Spot Caused by Thermocouple Leads.	84
47.	Spatial Variation in Rate of Change of Liner Temperature with Fuel Hydrogen Content.	85
48.	Effect of Operating Conditions on Rate of Change of Liner Temperature with Fuel Hydrogen Content.	86
49.	Effect of Fuel Naphthalenes Content on Liner Temperature Rise Normalized for Hydrogen Content.	88
50.	Effect of Combustor Operating Conditions on flame Radiation.	89
51.	Effect of Fuel Hydrogen Content on Flame Radiation.	90
52.	Effect of Fuel Naphthalenes Content on Radiant Heat Flux Normalized for Hydrogen Content.	91
53.	Effect of Operating Conditions on Pattern Factor.	92
54.	Variation in Pattern Factor with Test Sequence.	93
55.	Comparison of Combustor Exit Temperature Profiles.	94
56.	Typical Ground Start Characteristics.	97
57.	Effect of Fuel Atomization on Ground Start.	100
58.	Effect of Fuel Atomization on Altitude Relight Limits.	104
59.	Posttest Appearance of Fuel Nozzle Primary Slot Pieces, Fuel Nozzle Fouling Tests.	106

LIST OF ILLUSTRATIONS (Concluded)

Figure		Page
60.	Typical Effect of Time on Performance of J79-17C Fuel Nozzle with Heated Fuel.	108
61.	Correlation of J79-17C Fuel Nozzle Fouling Test Results.	110
62.	Typical Panel O Temperature Distribution.	112
A-1.	JFTOT Results on Retained Sample of Fuel No. 2Al, by USAF.	131
C-1.	Posttest Photograph of Liner After 24-Hour Test of Fuel 1A.	154
C-2.	Posttest Photograph of Liner After 24-Hour Test of Fuel 13A1.	155
C-3.	Posttest Photograph of Fuel Nozzle After 24-Hour Test of Fuel 1A.	156
C-4.	Posttest Photograph of Fuel Nozzle After 24-Hour Test of Fuel 13A1.	157
F-1.	Experimental Relationship Between Smoke Number and Exhaust Gas Carbon Concentration.	176

LIST OF TABLES

Table		Page
1.	Test Fuel Properties.	6
2.	J79-17C Engine Combustor Operating Conditions.	16
3.	J79-17C Engine Combustor Test Parts List.	19
4.	Combustor Pretest Flow Calibrations.	19
5.	Fuel Nozzle Pretest Flow Calibrations.	20
6	Summary of Measured and Calculated Combustor Parameters in High Pressure Combustor Tests.	25
7.	Combustor Metal Temperature Instrumentation, High Pressure Rig Tests.	31
8.	High Pressure Test Point Schedule.	40
9.	Low Pressure Test Point Schedule.	43
10.	Summary of CO Emission Test Results.	57
11.	Summary of HC Emission Test Results.	62
12.	Summary of NO_X Emission Test Results.	66
13.	Summary of Smoke Emission Test Results.	70
14.	Summary of Carbon Deposition After 24 Hour Tests.	74
15.	Summary of Total Carbon Emission Test Results.	76
16.	Summary of Peak Liner Temperature Results.	80
17.	Chronology of Hardware Changes During High Pressure Test Series.	96
18.	Summary of Ground Start Test Results.	99
19.	Summary of Idle Stability Test Results.	101
20.	Summary of Altitude Relight Limits.	102
21.	Summary of Altitude Pressure Blowout Limits.	103
22.	Summary of J79~17C Fuel Nozzle Fouling Test Results.	1.09

LIST OF TABLES (Continued)

Table		Page
23.	Comparison of Engine Combustor Design Features.	114
24.	Comparison of Operating Condition and Fuel Property Effects.	116
25.	Comparison of Fuel Effects on Exhaust Emission Characteristics.	117
26.	Comparison of Fuel Effects on Liner Durability Characteristics.	118
27.	Comparison of Hydrogen Content Effects on Predicted Combustor Liner Life.	120
A-1.	Detailed Test Fuel Property Data.	124
A-2.	Hydrocarbon Type Analysis Comparison.	125
A-3.	Test Fuel Combustion Properties.	126
A-4.	Thermal Stability Rating of Test Fuels.	130
B-1.	Basic High Pressure Test Data.	133
B-2.	Supplementary High Pressure Test Data.	135
в-3.	CO Emission Test Data Correlation.	137
B-4.	HC Emission Test Data Correlation.	138
B-5.	$\mathrm{NO}_{\mathbf{X}}$ Emission Test Data Correlation.	139
B-6.	Smoke Emission Test Data Correlation.	140
B-7.	Detailed Inner Liner Temperature Data.	141
в-8.	Detailed Rear Liner, Transition Duct and Fuel Nozzle Stem Temperature Data.	144
B-9.	Liner Temperature Data Correlation at Takeoff Point 7.	147
B-10.	Liner Temperature Correlation with Hydrogen Content.	148
B-11.	Flame Radiation Data Correlation.	149
B-12.	Combustor Exit Temperature Profile Data.	150
B-13.	Pattern Factor Test Data Correlation.	152

LIST OF TABLES (Concluded)

Table		Page
C-1.	Pattern Factor During 24 Hour Tests.	158
C-2.	Detailed Cascade Impactor Carbon Particle Size Data.	159
D-1.	Altitude Relight Test Results, Fuel Number 1A.	161
D-2.	Altitude Relight Test Results, Fuel Numbers 2Al and 3A.	162
D-3.	Altitude Relight Test Results, Fuel Numbers 4A and 5A.	163
D-4.	Altitude Relight Test Results, Fuel Numbers 6A and 7A.	164
D-5.	Altitude Relight Test Results, Fuel Numbers 8A and 9A.	165
D-6.	Altitude Relight Test Results, Fuel Numbers 10A and 11A.	166
D-7.	Altitude Relight Test Results, Fuel Numbers 12A and 13A1.	167
D-8.	Ground Start Test Results, Fuels 1A Through 3A.	168
D-9.	Ground Start Test Results, Fuels 4A Through 7A.	169
D-10.	Ground Start Test Results, Fuels 8A Through 11A.	170
D-11.	Ground Start Test Results, Fuels 12A and 13A1.	171
E-1.	Fuel Nozzle Fouling Test Results.	173

NOMENCLATURE

Symbol		Units
A	Area	cm ² , mm ²
CO	Carbon monoxide	
co ₂	Carbon dioxide	an
CWALF	Clockwise aft looking forward	an ne ve
EI	Pollutant emission index	g pollutant/kg fuel
н	Fuel hydrogen content (mass fraction)	%
НС	Hydrocarbon (calculated as CH ₄)	
N	Fuel naphthalene content (volume fraction)	%
JFTOT	Jet Fuel Thermal Oxidation Tester	 -
NOx	Total oxides of nitrogen (=NO+NO2, calculated as	NO ₂)
Q	Heat of combustion (net)	MJ/kg
S	Combustor operating severity parameter	
SMD	Sauter mean diameter	
SN	Smoke number (by ARP #1256)	
T	Temperature	К
v	Velocity	m/s
W	Mass flow rate	g/s, kg/s
x	Exhaust gas pollutant concentration	mg pollutant/kg air
b	Curve fit equation intercept	20 440 mg
f	Fuel/air ratio	g fuel/kg air
h	Absolute humidity	g H2O/kg air
k	Arbitrary constant	

NOMENCLATURE (Concluded)

Symbol		Units
m	Curve fit equation slope	
n	Hydrogen-to-carbon atom ratio	ush may sale
φ̈́	Heat flux	kW/m²
r	Curve fit correlation coefficient	
x	Independent variable	nap was main
у	Dependent variable	
ΔΡ	Pressure drop	mP a
ΔΤ	Temperature rise	К
η	Combustion efficiency	%
ν	Kinematic viscosity	mm^2/s
ρ	Density	kg/m^3
σ	Surface tension	mN/m
φ(f)	Fuel/air ratio function (Figure 35)	
Subscri	pts	
3 4 8 c e f m r st L gs TC s avg max OGV	Compressor exit station (Combustor inlet) Combustor exit station Combustor Effective Fuel Me_ered Reference Stoichiometric Liner (metal) Gas sample Thermal (Thermocouple) Sample Average Maximum Compressor outlet guide vane	
TND	Turbine nozzle diaphragm	

SECTION I

SUMMARY

The purpose of this program was to determine by combustor rig tests and data analyses, the effects of fuel property variations on the performance, exhaust emission and durability characteristics of the General Electric J79-17C (low smoke, long life) engine combustion system, and compare the results to those previously obtained in similar tests of the J79-17A (in use, high smoke) and F101 (advanced low smoke) combustion systems. Thirteen refined and blended fuels, which incorporated systematic variations in hydrogen content (11.9 to 14.5 weight percent) aromatic type (monocyclic or dicyclic), initial boiling point (298 to 409 K by gas chromatograph), final boiling point (554 to 646 K also by gas chromatograph), kinematic viscosity (0.90 to 3.27 mm²/s at 294.3 K) and thermal stability breakpoint (518 to 598 K by JFTOT), were evaluated in: (a) 14 high pressure/temperature combustor performance/emissions/durability tests; (b) 14 low pressure/temperature combustor cold-day ground start/altitude relight tests; and, (c) 7 high temperature cyclic fuel nozzle fouling tests.

At high engine power operating conditions, (takeoff and supersonic dash), fuel hydrogen content was found to be a very significant fuel property with respect to smoke, oxides of nitrogen (NO_X) , liner temperature, and flame radiation levels. Each of these parameters increased with decreasing fuel hydrogen content. Dicyclic aromatics tended to cause somewhat higher smoke levels, but no other discernable effect of any other fuel property was found. Carbon monoxide (CO) and unburned hydrocarbon (HC) emission levels were so low at these operating conditions that no trend with fuel properties could be detected.

At engine ground idle and subsonic cruise conditions, the same strong effects of fuel hydrogen content on smoke levels was evident, but NO_{X} levels became virtually independent of any fuel property. Emission levels of CO and HC were found to be jointly dependent on fuel hydrogen content and relative fuel spray droplet size calculated from fuel viscosity, density and surface tension.

Combustor exit temperature profile and pattern factor (in high pressure tests) were essentially independent of fuel type, but a sensitivity to liner thermocouple installations was found.

In cold day ground start tests (to 239 K), lightoff was obtained with all fuels. At standard day conditions, lightoff fuel/air ratio was independent of fuel type, but at lower temperatures, the lightoff fuel/air ratio increased with the less volatile more viscous fuels and correlated with the relative spray droplet size.

Altitude relight test results were similarly dependent upon ambient temperature and fuel properties. At low flight Mach numbers, where fuel and

air temperatures are low, relight altitude limits correlated with the relative spray droplet size. At high flight Mach numbers where fuel and air temperature are elevated, relight altitude limits were nearly independent of fuel type.

High temperature cyclic fuel nozzle tests with JP-8 and No. 2 diesel fuels revealed significant effects of fuel type and operating conditions on nozzle fouling rates. Nozzle life was correlated with fuel temperature and fuel breakpoint (by JFTOT).

Combustor liner life analyses, based on the test data, were conducted. These analyses resulted in relative life predictions of 1.00, 0.93, 0.83, and 0.74 for fuel hydrogen contents of 14.5, 14.0, 13.0 and 12.0, respectively. Turbine system life is not predicted to change for any fuels with properties within the matrix tested.

The fuel property effects observed in these tests of the J79-17C combustion system are generally similar to those previously determined for the J79-17A (in use, high smoke) and F101 (advanced, low smoke) combustion systems, except for relative combustor liner life predictions. Because of the high front end cooling effectiveness, the J79-17C combustor life is predicted to be significantly less sensitive to fuel hydrogen content than are the other two combustor designs.

SECTION II

INTRODUCTION

For more than 25 years, the primary fuel for USAF gas-turbine-powered aircraft has been JP-4, a wide-cut distillate with excellent combustion characteristics and low-temperature capability. Typically, its heating value has been over 43.5 MJ/kg (18,700 Btu/lb), its freezing point below 219 K (-65° F), and its aromatic content quite low, around 11 percent by volume. A prime consideration in the definition of JP-4 was that during wartime a large percentage of domestic crude oil could be converted into this product with minimum delay and minimum impact on other major users of petroleum products.

Conversion from high volatility JP-4 to lower voilatility JP-8, which is similar to commercial Jet A-1, as the primary USAF aircraft turbine fuel has been under consideration since 1968. The strong motives for the change are NATO standardization and reduced combat vulnerability.

Domestic crude oil production peaked in 1971 and has been steadily declining since that time, while demand has continued to increase. Thus, particularly since 1973, the cost and availability of high-grade aircraft turbine fuels have drastically changed. These considerations have spurred efforts to determine the extent to which current USAF fuel specifications can be broadened to increase the yield from available petroleum crudes and, ultimately, to permit production from other sources such as coal, oil shale, and tar sands.

As a result of the current and projected fuel situation, the USAF has established an aviation turbine fuel technology program to identify JP-4 and/or JP-8 fuel specifications which:

- Allow usage of key world-wide resources to assure availability
- 2. Minimize the total cost of aircraft system operation
- Avoid sacrifices of engine performance, flight safety, or environmental impact.

Engine, airframe, logistic, and fuel processing data are being acquired to establish these specifications. This report contributes to the needed data base by describing the effects of fuel property variations on the General Electric J79-17C engine main combustion system with respect to performance, exhaust emissions, and durability. Similar programs, based on the General Electric J79-17A and F101 engines and the Detroit Diesel Allison TF41 and high Mach engines have been previously conducted (References 1, 2, 3, and 4). Collectively, these programs provide representative data for the engine classes that are expected to be in substantial use by the USAF in the 1980's.

This report summarizes the results of a 9-month, 3-task program which was conducted to identify which fuel properties are important to J79-17C (low-smoke, long life) engine combustor operation and quantitatively relate fuel property variations to combustor performance, emission characteristics, and durability characteristics. Also, wherever possible, these results have been compared to those previously obtained for the JP79-17A (high smoke, in-use) and F101 (advanced, low smoke) engine combustion systems in order to illustrate how fuel property sensitivity is affected by combustor design features and/or engine cycles.

Thirteen test fuels provided by the USAF were utilized. Descriptions and properties of these fuels are presented in Section III. In Task I of the program, test planning and preparations were made, based on use of the J79 engine combustion system components and operating characteristics described in Section IV, and on the three test rigs and procedures described in Section V. In Task II of the program, 35 tests (14 high pressure/temperature combustor performance/emissions/durability tests, I4 low pressure/temperature combustor cold-day ground start/altitude relight tests, and 7 high temperature fuel nozzle fouling tests) were conducted. These are summarized in Section VI-A. In Task III of the program these test data were analyzed to establish the fuel property correlations also presented in Section VI-A and to establish the engine system life predictions presented in Section VI-B. Finally, these results are compared in Section VI-C to those previously obtained, and conclusions and recommendations drawn from these tests and analyses are summarized in Section VII.

SECTION III

TEST FUEL DESCRIPTION

A. General Description

Thirteen test fuels were supplied by the USAF for combustion system evaluation in this program. The fuels included a current JP-4, a current JP-8, and a No. 2 diesel. The blends were made up by the USAF to achieve three different levels of hydrogen content: 12, 13, and about 14 percent by weight. Two different types of aromatics were used to reduce the hydrogen content of the base fuels: a monocyclic aromatic (xylene bottoms), and a dicyclic aromatic described by the supplier as "2040 solvent" (a naphthalene concentrate). A third blend component, used to increase the final boiling point and the viscosity of two blends, is described as a Mineral Seal Oil, a predominantly (90 percent) paraffinic white oil.

The rationale for the selection of this test fuel matrix was to span systematically the possible future variations in key properties that might be dictated by availability, cost, the change from JP-4 to JP-8 as the prime USAF aviation turbine fuel, and the use of nonpetroleum sources for jet fuel production. The No. 2 diesel was selected to approximate the Experimental Referee Broad Specification (ERBS) aviation turbine fuel that evolved in the NASA-Lewis workshop on Jet Aircraft Hydrocarbon Fuel Technology (Reference 5).

B. Physical and Chemical Properties

As before, all fuel property data were provided to General Electric by the USAF from either their own in-house or contracted (Monsanto Research Corporation) laboratory tests. Key fuel properties are summarized in Table 1. and additional detailed data are presented in Appendix A.

Table 1. Summary of Test Ferl Properties.

	LL	Fuel Components	Hydrogen, (1)	Aromati Mess Spe	Aromatics, Volume X (Mass Spec D2789-71)	*2	Denaity he/m3	Kinematic Viscosity	Surface Tension,	Sign	Libred (K)	Simulated Distillation, Temp. (K) @ % Accovered (Gas Chrom, D2887)	llatic cover 2887)	•	Thermal Stabilaty, (1,2) Breakpoint, K
Number		Component	(NPG D370!)	Monocyclic	Dicyclic	Total	e 294.3 K	€ 294.3 K	@ 294.3 K	0.5	10	Š.	06	39.5	(JFTOT, N3241)
*	38-4	i	14.48	9.5	0.5	10.0	1.55.7	0.955	23.28	298	**	433	210	\$54	538
2 v 1	JP-8	1	13.94	11.3	1.9	13.2	9.608	2.230	27.08	107	463	š	245	579	865
34	8-42	Seal Oil	13.92	11.0	1.8	12.8	4.013	2.450	26.56	107	462	505	262	628	593
44	JP-8	Solvent	11.90	16.9	22.0	38.9	858.9	2.130	27.77	90,4	463	503	240	577	570
٧ς	JP-8	Xylene	13.02	29.7	1.6	31.3	821.9	1.690	27.80	603	438	987	536	575	583
۷,	JP-8	Xylene	12 04	51.4	8.0	52.2	831.4	1.240	27.82	353	429	450	527	574	573
7.5	3.8-8	Solvent	12.93	14.1	11.9	26.0	833.3	2.170	27.00	607	462	20	539	576	960
8₩	74	Solvent	11.94	17.2	24.	41.7	830.9	1.210	24.59	307	376	187	528	575	538
٧,	JP-4	Solvent	12.95	14.0	13.7	27.7	0.667	1.070	23.62	303	369	94	526	573	537
¥01	7-4r	Xylene	12.08	53.1	7.0	53.5	811.0	0.900	24.81	8	379	Ĩ	767	578	543
¥11	JP-4	Xylene	12.96	6.4.	7.0	35.3	787.8	0.910	24.73	305	374	439	\$0\$	\$62	576
12A	4-9-	Xylene & Seal Oil	13.99	14.9	0.5	15.4	711.2	1.110	24.20	<u>10</u>	37.1	157	574	619	553
1342	DF2		12.91	14.1	7.5	21.6	843.4	3.270	28.60	\$0%	470	529	35	979	533
		T			*		***************************************			1			١		

(1) Data determined by USAF, other listed data determined by Monsanto Research G. Porstion. (2) Data determined on retained samples, other data listed in Table A-4.

6

SECTION IV

J79 ENGINE AND COMBUSTION SYSTEM DESCRIPTION

A. Overall Engine Description

The J79 engine is a lightweight, high-thrust, axial-flow turbojet engine with variable afterburner thrust. This engine was originally qualified in 1956, and since that time various models with improved life and thrust have been developed. The model currently in use by the USAF, the J79-17A, was the reference engine for the previous fuel character effects program (Reference 1). A later model, the J79-17C, which incorporates a low-smoke long-life combustion system, is the reference engine for this fuel character effects program.

An overall view of the J79 engine is presented in Figure 1. The J79 has a 17-stage compressor in which the inlet guide vanes and the first six stator stages are variable. The compressor pressure ratio is approximately 13.4:1. The combustion system is cannular with ten individual combustion liner assemblies. The turbine has an air-cooled first-stage stator, and a three-stage uncooled rotor that is coupled directly to the compressor. The engine rotor is supported by three main bearings. The afterburner is fully modulating with a three-ring "V" gutter flameholder. Afterburner thrust modulation is accomplished by means of fuel flow scheduling and actuation of the variable area, converging-diverging type exhaust nozzle.

B. Combustion System Description

The J79 engine employs a cannular combustion system which consists of ten individual combustion liner assemblies located between inner and outer combustion casings forming an annular passage. An exploded view of the system with the various components, including the compressor rear frame and the turbine first stage nozzle is shown in Figure 2.

A pictorial view of a combustion liner assembly is shown in Figure 3, and a flowpath is shown in Figure 4. Each combustor (or "can") consists of three parts which are riveted together to form an assembly. The key feature of the tow-smoke long-life J79-17C combustor is a completely redesigned, shortened, inner liner shown in Figure 5. This part is a machined ring shell which has continuous film cooling slots in the cylindrical portion of the liner, and an impingement cooling manifold coupled with cooling slots in the dome transition section. Combustion air is introduced through a swirl cup, a secondary cowirler and bellmouthed thimbles (4 in ignition cans, 6 in non-ignition cans) in the dome transition region. The rear liner is a sheet metal shell having punched cooling louvers and dilution thimble holes. The outer liner is an airflow guide to assure proper flow distribution to the inner and aft liners. In an engine assembly, two of the combustors are provided with spark ignitors for starting. Adjacent combustors are joined near the forward ends by cross ignition tubes to allow propagation of the flame from the combustors with a spark ignitor to the other combustors. The liners are each positioned and held in

Figure 1. General Electric J79 Turbojet Engine,

Figure 2. J79 Engine Combustion System, Exploded Pictorial View.

Figure 3. J79-17C Low Smoke, Long Life Combustor Assembly.

digure 4. J79-17C Combustor Flowpath.

Figure 5. J79-17C Combustor Inner Liner Details.

place by mounting bolts at the forward ends. Axial stack-up and thermal growth are accomplished by a sliding seal between the combustors and the transition duct. The major liner material is Hastelloy X.

The transition duct provides a ring of ten oval inlet ports to accept the ten combustion liners, and the exit of the transition duct is annular to match up with the turbine flowpath. The transition section exit area is approximately one-half of the total exit area of the ten combustors providing an accelerating flow stream into the turbine. The transition duct is mounted by five radial support pins in the inner combustion casing. These pins have a sliding fit with the transition duct, allowing for differential thermal growth, but they maintain the axial location of the duct. Sliding seals are provided with both the combustors and turbine.

All of the earlier J79 models featured the use of dual-orifice, pressure-atomizing type fuel nozzles, with a single fuel inlet and a fuel-flow dividing valve external to the mounting flange. For the J79-17C model, the fuel nozzle is modified by replacement of the tip with one which has features to provide air-blast atomization, and improved fuel/air mixing. It also is longer to mate with the shortened inner liner. The J79-17C tip details are illustrated in Figure 6. The new tip has a central primary pressure atomizing fuel orifice and eight radial, low-pressure drop secondary fuel disributors on the fuel nozzle outside diameter. The fuel flow schedule for a single fuel nozzle is shown in Figure 7. The tip of each fuel nozzle is provided with an air shroud which directs cooling-air across the face and around the fuel orifices to reduce the tendency for carbon formation.

C. Combustor Operating Conditions

The combustor must operate over a wide range of fuel flow, inlet airflow, temperature and pressure. Table 2 presents the combustor operating parameters at four important steady-state engine conditions which are typically encountered. At each of these conditions, fuel effects on combustor performance, emissions and life are of particular interest.

In addition to steady-state operation, the combustion system must provide for starting over a wide range of conditions, ranging from cold day ground start to relight at high altitude. Figure 8 presents the altitude windmilling/relight conditions.

Figure 6. J79-17C Fuel Nozzle Tip Details.

Figure 7. J79-17C Fuel Nozzle Flow Characteristics.

Table 2. J79-17C Engine Combustor Operating Conditions.

	Ground Idle	Takeoff	Subsonic Cruise	Supersonic Dash	Ground Start(3)
Flight Altitude, km	0	0	10.7	10.7	0
Flight Mach Number	0	0	6.0	2.0	0
W ₃ (1), Total Airflow, kg/s	18.3	75.2	29.5	87.5	~3.18
W _c (1), Combustor Airflow, kg/s	15.3	62.7	24.6	73.3	~3.18
W _f (1), Fuel Flow, kg/s	0.144	1.259	0.335	1.173	0.0649(4)
T3, Inlet Total Temperature, K	421	799	559	781	>239
P3, Inlet Total Pressure, MPa	0.254	1.359	0.471	1.589	0.101
f4, Fuel/Air Ratio, g/kg	9.42	20.07	13.60	16.01	~20.4
$T_{\dot{\mathbf{q}}}$, Exit Total Temperature (Ideal), K	792	1064	1362	1335	
Vr(2), Reference Velocity, m/s	24.2	28.6	27.2	33.5	~7.1
(1) Engine flows indicated (ten combustor cans). (2) Based on W3 and Ar = 3684 cm^2 . (3) 1000 rpm, typical starting speed. (4) Minimum engine fuel flow schedule (normal).	combustor 2. peed. edule (no	cans). rmal).			

Figure 8, J79-17C Engine Altitude Windmilling/Relight Map.

SECTION V

APPARATUS AND PROCEDURES

All combustor and fuel nozzle testing in this program was conducted in specialized facilities at General Electric's Evendale, Ohio plant, using apparatus and procedures which are described in the following sections. Combustor performance/emissions/durability tests were conducted in a high pressure/temperature single-can combustor rig which is described in Section V-A. In parallel, combustor cold-day ground start/altitude relight tests were conducted in a low pressure/temperature single can rig which is described in Section V-B. Also in parallel, high temperature fuel nozzle fouling tests were conducted in a small specialized test rig described in Section V-C. Special fuel handling procedures used in all of these tests are described in Section V-D. Finally, procedures employed in analyses of these data are described in Section V-E.

New, engine-quality, current-model J79-17C engine combustion system components, listed in Table 3, were utilized in these tests. Pretest flow calibrations of the combustors and fuel nozzles are presented in Tables 4 and 5.

A. Performance/Emission/Durability Tests

High pressure/temperature single-can-combustor rig tests were conducted at simulated J79 engine idle, cruise, takeoff, and dash operating conditions with each of the fuels to determine the following characteristics:

- 1) Gaseous emissions (CO, HC, and NO_x).
- 2) Smoke emissions.
- 3) Carbon particle emissions.
- 4) Carbon deposition.
- 5) Liner temperatures.
- 6) Flame radiation.
- 7) Combustor exit temperature profile and pattern factor.
- 8) Idle stability (lean blowout and ignition) limits.

Thus, a large part of the total data was obtained in these tests using apparatus and procedures described in the following sections.

Table 3. J79-17C Engine Combustor Test Parts List.

Part Name	GE Part Number	National Stock Number
Ignition Combustor Liner Assembly	7012M89G05	2840-00-126-2856
Fuel Nozzle (Parker-Hannifin 1445-623386)	3031M36P02	2925-00-126-5730
Main Ignition Unit (Bendix 10-358765-1, 115 VAC, 400 cps)	106C5281P3	2925-00-992-7904L
Main Igniter Plug (Champion FHE 281-3	696D256P06	2925-00-126-2879
Main Ignition Lead (81482-59386)	106C5282P1	2925-00-065-0801

Table 4. Combustor Pretest Flow Calibrations.

	Combustor Effective	e Airflow Area, cm ²
Combustor	Low Pressure Test S/N 03623	High Pressure Test S/N 03551
Front Liner Assembly	30.02	30.20
Aft Thimbles and Trim Holes	29.75	29.41
Aft Cooling Louvers and Seal	9.97	10.83
Total	69.75	70.45

Table 5. Fuel Nozzle Pretest Flow Calibrations.

Fuel Nozzle			Wf, Flo	Wf, Flow Rate, g/s @ ∆Pf = MPa	8/8			Test
Serial Number	0.552	0.862		2.758	2.068 0.862 0.552	0.862	0.552	Use
180271	3.11	12.28	134.6	216.2	12.28 134.6 216.2 134.6 12.23 3.10	12.23	3.10	Fouling, Run 4
180272	3.26	12.41	135.8	211.3	135.8	12.42	3.10	Fouling, Run 6
180273	3.16	11.86	134.6	217.6	11.86 134.6 217.6 134.6 11.96	11.96	3.14	Fouling, Run 3
180274	3.35	12.30	135.2	216.2	134.6	12.15	3.12	Fouling, Run 7
180275	3.14	11.61	133.2	221.3	11.61 133.2 221.3 134.4 11.36 3.04	11.36	3.04	Fouling, Run 2
180276	3.21	12.23	132.0	216.3	132.5	11.86	3.16	Spare
180277	3.15	12.51	133.3 218.7	218.7	133.3 12.23 3.09	12.23	3.09	Fouling, Run 5
180278	3.20	12.49	138.3	222.6	138.3	12.28	3.04	Fouling, Run 1
180279	3.09	12.60	140.9	216.2	12.60 140.9 216.2 141.5 12.22 3.09	12.22	3.09	High Pressure Rig
180280	3.14	12.05	135.8	221.3	138.3	12.55	2.91	Low Pressure Rig
Mean	3.181	12.234	135.37	217.77	12.234 135.37 217.77 135.79 12.126 3.079	12.126	3.079	
Std Dev., %	2.44	2.55	1.92	1.92 1.53		2.03 2.76 2.20	2.20	

1. High Pressure Test Rig Description

These tests were conducted in the Small Combustor Test Facility, Cell A5, located in Building 304 of the Evendale Plant. This test cell is equipped with all of the ducting, fuel and air supplies, controls, and instrumentation required for conducting small combustor high pressure/temperature tests. High pressure air is obtained from a central air supply system, and a gas-fired indirect air heater is located adjacent to the test cell. For the single-can-combustor rig, J79 engine idle, cruise, and takeoff operating conditions can be exactly duplicated. Dash operating conditions can be exactly duplicated with respect to temperature, velocity, and fuel/air ratio, but pressure and flow rates must be reduced about 25 percent in order to be within the facility airflow capability.

The High Pressure Combustor Test Rig, shown in Figures 9 and 10, exactly duplicates a one-tenth sector of the engine flowpath from the compressor outlet guide vane (OGV) to the first-stage turbine nozzle diaphragm (TND). As shown in Figure 9, the test rig inlet flange which bolts up to a plenum chamber in the test cell, incorporates a bellmouth transition to the simulated OGV plane. The combustor housing is a ribbed, thick-walled vessel which forms the inner flowpath contour and side walls, covered by a thick lid that forms the outer flowpath contour. Figure 10 shows a combustor installed in the pressure vessel with the lid removed. The combustor exit engages an actual segment of an engine transition duct. Immediately downstream of the transition duct is an annular sector section which contains an array of water-cooled instrumentation rakes in the TND plane, indicated by an arrow in Figure 9. Additional details of the exit instrumentation rakes are shown in Figure 11. Downstream of the rakes the combustion gases are water-quenched and the sector flowpath transitions to circular, which is bolted up to a remote-operated backpressure valve in the test cell ducting. Two other features of the test rig can be seen in Figure 9: a flame radiation pyrometer, mounted to view the combustor primary zone through a crossfire duct window; and bleed air pipes to withdraw, collect, and meter simulated turbine cooling airflow.

2. High Pressure Test Rig Instrumentation

A summary of the important combustor operating, performance, and emission parameters which were measured or calculated in these tests is shown in Table 6. Airflow rates were measured with standard ASME orifices. Fuel flow rates were measured with calibrated turbine flowmeters corrected for the density and viscosity of each test fuel at the measured supply temperature. Combustor inlet temperature and pressure were measured with plenum chamber probes.

Combustor outlet temperature, pressure, and gas samples were measured with a fixed array of seven water-cooled rakes, arranged and hooked up as shown in Figure 12. Each rake contained five capped chromel-alumel thermocouple probes, located on radial centers of area, and four impact pressure/gas sample probes, located midway between thermocouple elements. As shown in Figure 12, eight of the impact probe elements were hooked up for total-pressure measurement, and the other 20 elements were manifolded to four heated gas sample transfer lines leading out of the test cell to the gas composition

of the state of the state of the transfer for Physics Programmed and the programme of the state of the state

Figure 10. Combustor Installation in High Pressure J79 Test Rig.

Figure 11. Combustor Exit Instrumentation Rake

Summary of Measured and Calculated Combustor Parameters in High Pressure Combustor Tests. Table 6.

F3	Parameter	Symbol Symbol	Units	Measurement/Calculation Method
# # # # # # # # # # # # # # # # # # #	Inlet Total Pressure	P3	MPa	Average of measurements from 3 impact probes
flow	Exit Total Pressure	4	HP.	Average of measurements from 8 impact probes
#1	Total Pressure Loss	ΔP _T /P ₃	×	100(P3-P4)/P3
W_C Kg/s W_C W_C W_C	Total Inlet Airflow	M	kg/s	ASME Crifice
# Ratio # # # # # # # # # # # # # # # # # # #	Turbine Cooling Airflow	, A	kg/s	ASME Orifice
F F S / S S / S S / S S S S S S S S S S	Combustor Airflow	>"	kg/e	13 -W.
f m 8 / kg h 3	Fuel Flow	, A	*/8	Turbine flowmeters corrected for density and viscosity
13 K K T T T K K K K T T T T K K K K K K	Metered Fuel/Air Ratio	' (" "	8/kg	n/3n
Tank K Tank K V Tank K V Tank K Ta	Inlet Air Humidity	h ₃	8/kg	Dewpoint hygrometer
The Reserve of the serve of the	Inlet Total Temperature	ц. Т	×	Average of measurements from 3 probes
PFF	Exit Total Temperature	H.	×	Average of measurements from 35 probes
V. T. Pad	Pattern Factor	P.P.	ı	(Teas, 4avg)/(Teav T)
V _Γ T _L F _B	Profile Factor	Pri	,	(T4Imm. maxT3)/(L4avrT3)
TL K Pad MPa PaL MPa Tf K APE	Reference Velocity	>"	8/1	$V_{\rm r} = W_3/\rho_3 A_{\rm r} = 0.0093297 \text{ W}_1^3/P_3$
Pad MPa Pal MPa Tf K APf MPa APf MPa APf MPa SN4 SN4 SN8 EIS SN8 EIS SN8 EIS SN8 The SP KS The SP	Combustor Metal Temperature	, L	×	35 Metal Thermocouples
P ₈ L MPa T _f MPa A _f e MPa A _f e MPa A _f e MA/a A _f e MA/a SN ₄ - SN ₄ EI _S S/kg EI _C S/kg EI _C S/kg EI _C S/kg EI _C S/kg T _G S/kg T _G S/kg	Combustor Dome Static Pressure	P.	HP.	Average of measurements from 2 wall taps
Tf K Afe MPa Afe MPa Afe MA/a GR KW/a SN4 EI S SN8 E SN8 E SN8 E SN8 E SN8 T SN8 T T SN8	Combustor Liner Static Pressure	P.	HP4	Average of measurements from 2 wall taps
ΔP _E A _E A _E A _R A _R A _R A _R A _R SN ₄ EI _S SN ₆ EI _S SN ₈ EI _{CO} EI _{CO} EI _{HC} EI _{HC} EI _{HC} EI _{NOx} A _{TC} A	Fuel Temperature	14 14	×	Thermocouple at fuel nozzle inlet
Are MH/m2 GR4 SN4 EI S SN8 SN8 F SN8 EI CO SK8 EI CO SK8 EI CO SK8 TOCS TO	Fuel Nozzle Pressure Drop	ΔPE	HP.	Pressure tap at fuel nozzle inlet (Pf-Pgd)
4R KW/m ² SN ₄ - SN ₄ - EI SN ₈ -	Fuel Nozzle Effective Area	۷. دو	~[Age " 4/280 tap
SN ₄ - SN ₈ S k8 S SN ₈ S S	Combustor Total Flame Radiation	φ.	kW/m²	Optical pyrometer at crossfire duct
EI _S SN ₈ SN ₈ F SN ₈ EI _{CO} S/k ₈ EI _{CO} S/k ₈ EI _{NOx} T _{CS} T _{TC} T _{TC} T _{TC} T _{TC} T _{TC} S/k ₈ S/k ₈ T _{TC} T _{TC} T _{TC} T _{TC} S/k ₈ T _{TC} T _{TC} T _{TC} T _{TC} S/k ₈ T _{TC} T _{TC} T _{TC} T _{TC} S/k ₈ T _{TC}	Combustor Exit Smoke Number	NS 4	,	Manifolded 12-point gas sample and ARP1179 (Ref. 6)
SN ₈ - 8/kg E ₁ 8/kg EI _{CO} 8/kg EI _{NOx} X 7 _{CS} X	Smoke Emission Index	EIS	8/k8	GE correlation at SN4 & fg (Appendix F)
EI _{CO} 8/k8 EI _{CO} 8/k8 EI _{HC} 8/k8 EI _{NOx} 8/k8	Engine Exit Smoke Number	SNS	ı	GE correlation at EI ₈ (Appendix I)
EI CO 8/kg EI HC 8/kg EI NO _X 8/kg 7GS 7	Gas Sample Fuel/Air Ratio	ر د د د د د د د د د د د د د د د د د د د	8/k8	Manifolded 12-point gas sample & equation in ARP1256 (Ref. 7)
EI HC 8/kg EI NO _X 8/kg 7GS 7	CO Emission Index	EICO	8/kg	Manifolded 12-point gas sample 6 equation in ARP1256 (Ref. 7)
PINOX X TOS X TOS X TOS X	HC Emission Index (as CH)	EIHC	8/kg	Manifolded 12-point gas sample & equation in ARP1256 (Ref. 7)
η _{GS} χ	NO _x Emission Index (as NO ₂)	EI NO.	8/kg	Manifolded 12-point gas sample & equation in ARP1256 (Ref. 7)
- A	Gas Sample Combustion Efficiency	n _{GS}	×	$\eta_{\rm GS} = 100 - (EI_{\rm HC}/10.0) + (EI_{\rm CO}/42.8)$
-	Thermocouple Combustion Efficiency	740	×	η_{TC} = 100 [Ideal Fuel/Air Ratio @ (T ₄ -T ₃)] /f
8/k8	Large Carbon Particle Emissions	×	8/kg	2 Manfild 4-point supls for mass rate/particle size analysis

Figure 12. High Pressure Test Rig Exit Instrumentation.

measurement instruments. Transfer Lines I and iI were connected through selector valves to a smoke measurement console (Figure 13) and a gas analysis console (Figure 14). Transfer lines III and IV were connected to heated, high-pressure, soot/particulate samplers located near the test rig. The lines then continued on to flow control/metering apparatus in the control room area. Line III was connected to the filter holder (Millipore, 47 mm diameter glass fiber filters) for total mass emission rate determination, and Line IV was connected to an 8-stage particle fractionating sampler (Anderson Sampler Inc. Mark III with glass fiber filters) for particle size determination. Details of the fractionating sampler are shown in Figure 15.

The General Electric smoke measurement console (Figure 13) contains standard test equipment which fully conforms to SAE ARP 1179 (Reference 6). Smoke spot samples are collected on standard filter paper at the prescribed gas flow rate and at four soiling rates spanning the specified quoted soiling rate. The spot samples are later delivered to the data processing area, where the reflectances are measured and the SAE Smoke Number is calculated.

The gaseous emission measurement console, shown in Figure 14, is one of several that were assembled to General Electric specifications for CAROL systems (Contaminants Analyzed and Recorded On-Line) and that conform, generally, to SAE ARP 1256 (Reference 7). This system consists of four basic instruments: a flame ionization detector (Beckman Model 402) to measure total hydrocarbon (HC) concentrations, two nondispersive infrared analyzers (Beckman Models 865 and 864) for measuring carbon monoxide (CO) and carbon dioxide (CO2) concentrations, and a heated chemiluminescent analyzer (Beckman Model 951) for measuring oxides of nitrogen (NO or $NO_x = NO + NO_2$) concentrations. Each of the instruments are fully calibrated with certified gases before and after each test run; and periodically during testing, zero and span checks are made. Readings from the instruments are continuously recorded on strip charts and hand-logged on test and calibration points for later calculation of concentration, fuel/air ratio, and emission indices, using a computer program which incorporates the equations contained in ARP 1256. Gas sample validity was checked by comparison of sample to metered fuel/air ratios.

Carbon deposition tendencies with JP-4 and Diesel No. 2 fuels were assessed by conducting 24 hour tests with each fuel, starting with a clean combustor and fuel nozzle. At the completion of these tests, the combustor and fuel nozzle was removed, visually inspected, and photographed to document the carbon deposition tendencies.

Combustor metal temperature was measured by an array of 35 thermocouples located on the assembly as listed in Table 7 and shown in Figures 16 through 21. The inner liner instrumentation pattern was selected to provide detailed data in the vicinity of the known hottest regions of the liner.

Flame radiation in the primary burning zone of the combustor was measured by a total-radiation pyrometer (Brown Radiamatic, Type R-12), which can be seen in Figure 9. A diagram of the optical view path is shown in Figure 22. The pyrometer sensing element is a thermopile which provides a direct current voltage output. The flame radiation is focused on the thermopile with a

Figure 13. General Electric Smoke Measurement Console

iss, and Work in our Console (CAROL IV) Other Per I been Block

Figure 15 Particle Fractionaling Sampler Details.

Table 7. Combustor Metal Temperature Instrumentation, High Pressure Rig Tests.

		Circumferential		
Thermoouple	1	Location,		Type
Number	Part	Degrees CWALF	Axial Location, millimeters	Thermocouple(1)
	Inner Liner	180	Panel Zero, 15.2 filom Trailing Edge (T.E.)	J
2	,_1	180	oling Ring Overhang, 1.5 from	Н
<u>س</u>	Inner Liner	0	.5 from T.E.	н
7	Inner Liner	0	2nd Cooling Ring Overhang, 2.4 from T.E.	H
~	Inner Liner	0		S
9	Inner Liner	0	3rd Cooling Ring Overhang, 2.2 from T.E.	м
7	Inner Liner	0	Panel Three, 12.7 from T.E.	S
80	Inner Liner	0	4th Cooling Ring Overhang, 2.0 from 1.E.	H
6	Inner Liner	0	11.4	S
10	Inner Liner	30	Panel Zero, 15.2 from T.E.	Ι
11	Inner Liner	30	1st Cooling Ring Overhang, 1.8 from T.E.	Н
12	Inner Liner	45	1.6 from T.E.	Н
13	Inner Liner	30	2nd Cooling Ring Overhang, 1.8 from T.E.	H
14	Inner Liner	30	Panel Two, 14.5 from T.E.	S
15	Inner Liner	30	3rd Cooling Ring Overhang, 2.2 from T.E.	ы
16	Inner Liner	30	Panel Three, 12.7 from T.E.	s
17	Inner Liner	30	4th Cooling Ring Overhang, 2.0 from T.E.	н
18	Inner Liner	30	Panel Four, 11.4 from T.E.	S
19	,	180	Panel One, 9.1 from T.E.	I
20	Inner Liner	180	Panel Two, 14.5 from T.E.	s
21	Inner Liner	180	Panel Three, 12.7 from T.E.	s
22	Inner Liner	180	Panel Four, 11.4 from T.E.	s
23	Inner Liner	108	Aft of Crossfire Port	s
24	Inner Liner	252	Aft of Crossfire Port	S
25	_	0		S
26		0	Aft of	S
27	Rear Liner		Aft of	s
28	Rear Liner		25.4 Fwd of Dilution Holes	S
29	Rear Liner	30	10.7 Aft of Dilution Holes	S
30	Rear Liner	30	12.7 Aft of Trim Holes	s
31	Transition Duct	06	38.1 from Combustor Axis	s
32	Transition Duct	180	38.1 from Combustor Axis	S
33	Fuel Nozzie	3 - 1	Stem Leading Edge, 34.3 from Flange	S
34		1	Edge,	S
35	Fuel Nozzle		Stem Leading Edge, 47.0 from Flange	တ
	(1) I = Hot Side	imbedded		
		e surface		
				£

Figure 16. Combustor Liner Temperature Measurement Locations and Typical Measured Temperature Levels.

(See Location Schematic Above)

Figure 17. Inner Liner Temperature Instrumentation at 0° CWALF.

Figure 18. Inner Liner Temperature Instrumentation at 180° CWALF.

Figure 19. Dome Temperature Instrumentation.

Figure 20. Rear Liner Te perature Instruction.

Figure 21. Fuel Nozzle Temperature Instrumentation.

Figure 22. Optical Pyrometer Setup in High Pressure Test Rig.

calcium fluoride lens which is transparent to radiation of wavelengths less than three microns. The pressure seal at the test rig wall is formed by a sapphire window which is transparent to radiation of even longer wavelengths. The sapphire window was swept clean by a small flow of filtered air. The pyrometer was calibrated by viewing a resistance-heated-carbon backbody furnace through the same optical system used in the combustor test. The furnace temperature was measured with a disappearing-filament optical pyrometer.

3. High Pressure Test Procedures

A total of 14 high pressure rig tests were run: one for each test fuel plus a repeat test with fuel No. 1 to establish test variability. The same fuel nozzle and combustor were utilized in all tests.

Each test was conducted to the 9-point test schedule shown in Table 8. On Point No. 1, minimum lightoff and lean blowout limits at idle inlet conditions were determined. On Points No. 2 through 9, steady-state operating, performance, and emissions measurements were obtained at simulated engine idle, cruise, takeoff, and dash operating conditions. At each of these simulated engine operating conditions, data were recorded at two nominal fuel/air ratios: 80 and 100 percent of the engine cycle value corrected for the test fuel heating value. However, if the data indicated that the 100 percent fuel/air ratio point would locally exceed the gas temperature limits of the exit thermocouple rakes, a lower fuel/air ratio point was substituted. This limit was usually exceeded at simulated takeoff and dash conditions, so lower fuel/air ratio points were substituted and a higher fuel/air ratio was run at cruise conditions.

B. Cold-Day Ground Start/Altitude Relight Tests

Low-pressure/temperature single can combustor rig tests were conducted at simulated J79 engine ground cranking and altitude windmilling operating conditions to determine the cold-day ground start and altitude relight characteristics of each of the test fuels. The apparatus and procedures which were utilized are described in the following sections.

1. Low Pressure Test Rig Description

These tests were conducted in the Building 301 Combustion Laboratory at the Evendale Plant. This facility has capabilities for testing small combustor rigs over a wide range of simulated ground start and altitude relight conditions. Liquid nitrogen heat exchangers are used to obtain low fuel and air temperatures, and steam ejectors in the exhaust ducting are used to obtain low combustor inlet pressures.

The low-pressure, single-can J79 combustor rig used in these tests is shown in Figure 23. The combustor housing is made from actual engine parts and the rig exactly duplicates a one-tenth segment of the engine combustion system flowpath. Combustor inlet temperatures and pressures are measured with probes in the plenum chamber. The combustor assembly is installed from the rear of the combustor housing which bolts up to a segment of an engine combustor transition duct. An array of thermocouples is located in the transition

Table 8. High Pressure Test Point Schedule.

r.	Fuel/Air Ratio %		90.08	0.001	100.0	140.0	68.0	100.0	75.0	100.0			
Engine Simulation	Inlet Pressure	100.0	100.0	100.0	100.0	100.0	100.0	100.0	75.0	75.0			
Engin	Operating Condition	Idle	Idle	Idle	Cruise	Cruíse	Takeoff	Takeoff	Dash	Dash			
£(1)	Fuel/Air Ratio g/kg	inition and Fuel Flow	7.5	9.6	13.6	19.0	13.6	20.0(2)	12.0	16.0(2)	911		e limit.
W _f (1)	Fuel Flow Rate, g/s	Determine ignition and Lean Blowout Fuel Flow	11.5	14.4	33.5	8.97	85.5	125.9(2)	62.9	87.8(2)	e Post		ak tempertur
۸۰	Reference Velocity m/s	24.2	24.2	24.2	26.0	26.0	28.6	28.6	33.5	33.5		יפין מין	exit rake pe
T3	Inlet Total Temperature, K	421	421	421	559	559	664	999	781	781	1	נסו סרוופו די	ecessary to
P ₂	Inlet Inlet Total Referenc Total Pressure, Temperature, Velocity MPa K m/s	0.254	0.254	0.254	0.47!	0.471	1.359	1.359	1.191	1.191	d as 10-7, find Eve ather finds adjust for heating using	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(2) Adjust (reduce) if necessary to exit rake peak temperture limit.
3	Combustor Airflow, kg/s	1.53	1.53	1.53	2.46	2.46	6.28	6.28	5.49	5.49	(1)	De por	(2) Adju
W3	Total Airflow kg/s	1.83	1.83	1.83	2.94	2.94	7.51	7.51	6.57	6.57			
	Test Point Number	-1	2	т	4	S	9	7	∞	6		•	

Figure 23. Low Pressure J79 Combustor Test Rig.

duct to sense ignition and blowout. This rig has no provisions for turbine cooling-air extraction.

Air obtained from the central supply system was dried at the facility to a dew point of about 240 K and metered with a standard ASME orifice. Fuel flow rates were measured with calibrated turbine meters corrected for the density and viscosity of each test fuel at the measured supply temperature. All temperature, pressure, and flow data were read on direct indicating instruments (manometers, potentiometers, etc.) and hand logged by the test operator.

2. Cold-Day Ground Start Procedure

The first part of the test with each fuel was structured to evaluate cold-day ground starting characteristics. The test point schedule is shown in Table 9. The airflow rate (0.318 kg/s) and combustor inlet pressure (ambient) were set to simulate typical engine ground starting conditions (1000 rpm). Fuel and air temperature were lowered from ambient to 239 K minimum (JP-8 freeze point) in steps to simulate progressively colder days. At each temperature step, minimum ignition and lean blowout fuel flow rates were determined. Maximum fuel flow rate was taken as 12.6 g/s/can, which is well above the current engine minimum fuel flow rate (6.49 g/s/can). The test sequence was as follows:

- With inlet conditions set, energize the igniter and slowly open the fuel control valve until lightoff is obtained. Record lightoff fuel flow rate. Deenergize igniter.
- Slowly decrease fuel flow rate to blowout. Record lean blowout fuel flow rate.
- 3) Decrease fuel and air inlet temperatures in 5 to 8 K increments and repeat Steps 1 and 2.

When the minimum temperature limit was established, the altitude relight portion of the test was initiated.

3. Altitude Relight Test Procedure

The second portion of the test with each fuel was structured to evaluate altitude relight and stability characteristics. The test schedule is also shown in Table 9. Investigations were carried out at four airflow rates (0.23, 0.41, 0.50, and 0.91 kg/s) selected to span the J79 engine altitude relight requirement map (Figure 8). Air temperature was selected from the windmilling data and ranged from 244 K to ambient. Fuel temperature was matched to the air temperature. The test sequence was structured to determine:

- 1) The maximum relight and blowout pressure altitudes with current engine minimum fuel flow rates (4.22 g/s/can).
- 2) The minimum relight and lean blowout fuel flow rates at the relight altitudes determined in (1).

Table 9. Low Pressure Test Point Schedule.

Comments(1)	Determine Wf at LO	Determine Wf at LBO	Determine Wf at LO	Determine Wf at LBO	Determine W _f at LO	Determine Wf at LBO	×	Starting point for Series	Determine P3 min. at LO	Determine P3 min. at PBO	Determine Wf min. at LO	Determine Wf min. at LBO	Same sequence as 2.1 to	determine altitude 10,	LBO, and PBO limits.			
Wf, Fuel Flow, g/s	0-12.60	0-12.60	0-12.60	0-12.60	0-12.60	0-12.60	or T ₃ = 239	67.9	67.9	67.9	0-12.60	0-12.60	67.9	6.49	67.9			
T _f Fuel Inlet Temperature, K	278	278	272	272	266	266	is determined,	244	244	244	244	244	278	Amb.	A ≡b.			
T3, Air Inlet Temperature, K	278	278	272	272	266	266	Start T3 Limit is determined, or T3 = 239 K	544	244	244	244	244	278	Amb.	Amb.	for P ₃)	ng W _E)	easing P3)
P3, Air Inlet Pressure, kPa	101	101	101	101	101	101	Ground	24.1	1	!	!	1	41.4	62.0	68.9	(1) LO = Lightoff (Increasing Wf or P3)	LBO = Lean Blowout (Decreasing Wf)	PBO = Pressure Blowout (Decreasing P3)
W _C , Combustor Airflow, kg/s	0.318	0.318	0.318	0.318	0.318	0.318	Sequence Until	0.227	0.227	0.227	0.227	0.227	0.408	0.499	0.907	Lightoff (1	Lean Blowou	Pressure Bl
Simulated Flight Mach Number	0	0	0	0	0	0	Continue 1.X.X.	0.89	1	1	1	1	1.08	1.14	1.22	(1) 10	LBO .	PBO -
Simulated Flight Altitude, km	0	0	0	0	0	0	Con	15.2	1	1	1	1	15.2	15.2	15.2			
Test Point Number	1.1.1	1.1.2	1.2.1	1.2.2	1.3.1	1.3.2		2.1.0	2.1.1	2.1.2	2.1.3	2.1.4	2.2.0	2.3.0	2.4.0			

The test sequence was as follows:

- 1) With 15.7 km altitude conditions set, energize the igniter, set fuel flow rate at 6.49 g/s, then increase combustor inlet pressure (reduce altitude and flight Mach number) until ignition occurs. Deenergize the igniter and record maximum relight altitude conditions.
- 2) With fuel flow rate at 6.49 g/s, slowly reduce combustor inlet pressure until blowout occurs. Record maximum pressure altitude blowout conditions.
- 3) Energize igniter and increase fuel flow until lightoff. Deenergize igniter and record minimum lightoff fuel flow rate at maximum relight altitude.
- 4) Slowly reduce fuel flow rate until blowout. Record lean blowout fuel flow rate at maximum relight altitude conditions.
- 5) Repeat Steps 1 through 4 at each airflow setting.

C. Fuel Nozzle Fouling Tests

Tests with the low and high thermal stability fuels (No. 2 Diesel and JP-8 respectively) were conducted to determine the relative tendency to cause fuel nozzle fouling, which might be in the form of valve sticking and/or orifice plugging. The J79 fuel nozzle is known to have a long troublefree service life and to be quite tolerant of fuel property variations. It was anticipated, therefore, that the test conditions would need to be far more severe than encountered in normal service to produce significant fouling in a reasonably short time.

The tests were conducted in the Building 304 1/2 Combustion Laboratory using a 7.62 by 12.7 cm flame tunnel setup shown in Figures 24 and 25. In this setup, hot fuel is pumped through the fuel nozzle which is immersed in a high velocity hot gas stream to simulate engine operations. Thermocouples welded to the upstream side of the nozzle stem (Figure 21) were used to monitor and control the nominal peak metal temperature at 672 K which usually required an inlet gas temperature of about 720 K. Two thermocouples immersed in the fuel line close to the nozzle were used to monitor and control fuel inlet temperatures. A cylindrical fitting was fabricated and attached to the nozzle tip to conduct spent fuel to a 3.785 m³ fuel cart.

Fuel from the supply system was heated to approximately 422 K by high pressure steam, then heated to the desired temperature using Therminol 55 heat transfer fluid. The latter was supplied by a Chromalox electric fluid heat transfer system, Model PFOV-650-9. Heat transfer from the Therminol to the fuel as well as from the steam to the fuel, were accomplished by Graham Heliflow heat exchangers.

In each test, one-hour simulated mission cycles were run, as indicated in Figure 26. For fifty-seven minutes of each hour, tests were run at a simulated steady-state cruise condition, but to reduce fuel requirements to

Figure 24. Fuel Nozzle Fouling Test Rig - Overall Installation.

Figure 25. Fuel Nozzle Fouling Test Rig - Details.

Figure 26. Fuel Nozzle Fouling Test Cycle.

a more manageable volume, the flow rate maintained was reduced to 13.4 g/s, which is only 40% of actual engine cruise flow rate. This is still high enough to assure flow through the secondary system. To add realism to the test, flow rates were increased and decreased (as shown in Figure 26) without changing heat inputs, to obtain flow divider valve action, short temperature excursions, and flushing action between the simulated cruise periods.

In order to avoid excessive temperatures in the fuel nozzle at startup and shutdown, the following procedures were followed:

For startup:

- 1) Establish desired fuel flow rate.
- 2) Set desired fuel temperature.
- 3) Establish airflow rate of 0.45 kg/s.
- 4) Start burner and set desired stem temperature

For shutdown:

- 1) Turn off preburner fuel supply.
- 2) Turn off steam supply and Chromalox power supply.
- 3) Open Therminol bypass around Graham heat exchanger.
- 4) Remove insulation from nozzle.
- 5) When nozzle temperatures drop to 394 K, shut off fuel and air supplies, remove nozzle and recalibrate.

Normally, calibration of the nozzle was accomplished at the start and after every six hours of operation on the test cycle. However, if it appeared that the calibration was, or might be, changing rapidly, recalibration was performed as frequently as every three hours. Under mild conditions which caused little or no change in calibration, the test was continued up to 75 hours. Under severe conditions, the test was terminated at around 20 hours, which was adequate to establish a trend.

D. Test Fuel Handling Procedures

The test fuels were delivered as needed by a USAF multicompartment tank trailer, and stored in General Electric multicompartment tank trailers and underground tanks, depending on the availability of storage and the volumes of fuel required. All of this tankage was used previously only in clean distillate service. Prior to loading with a test fuel, each tank was drained and visually examined to be sure it was empty. It was then rinsed with a small volume of test fuel and drained again before loading. In the case of of underground tanks, they could not be completely emptied by their installed pumps because their suction lines terminated several inches above the bottom.

In these cases, the manhole covers were removed and a portable pump was used to empty the tank. It was then rinsed with clean aviation kerosene and reemptied. This process was repeated as often as necessary until the rinsings appeared as clean as the clean kerosene.

The fuels for the low-pressure tests were handled in drums filled from the storage tanks. Before loading, the drums were examined to be sure they were empty and clean. They too, were rinsed with a small volume of test fuel before loading.

All the storage tanks and drums of test fuels were carefully marked with the appropriate fuel identification.

Before taking data on any test point, the fuel system connecting the test fuel supply tank with the test vehicle was flushed with a quantity of test fuel equal to at least twice the volume of the connecting system.

Each test site had a provision for taking a representative fuel sample from the fuel supply line as close as practical to the test vehicle. Duplicate 0.95 dm³ samples of each test fuel were taken during each run for all tests except the fuel nozzle fouling tests, in which case 3.8 dm³ samples were taken in epoxy-lined containers. Before taking any sample, the sampling line was first flushed, then the sample container was rinsed twice with the test fuel. All sample containers were labeled for complete identification, logged, and delivered to the USAF for analysis.

It should be noted that the 13 test fuels used in this program were blended anew to duplicate the 13 fuels used in the two preceding programs (References 1 and 2). Since it is likely that fuels of the same number, blended on two different occasions, will differ slightly in composition and analysis, those used in this program have been distinguished by adding the suffix "A" to their numerical designations.

Fuel No. 13 was delivered on two consecutive days, for a total quantity of 15.14 m^3 . This material was co-mingled and used in fouling tests Nos. 1, 2, and 3, and depleted after test No. 3. A third shipment of 7.57 m^3 of Fuel No. 13 was then received, and used in fouling tests Nos. 4 and 6.

Since gas chromotographic analyses performed by the Air Force on the comingled shipments and on the third shipment showed a slight difference in composition, it was believed that the two batches might have different thermal stability breakpoints. Therefore, they were treated as different fuels and tested separately on the JFTOT to determine their breakpoints.

E. Data Analysis Procedures

Generally standard data reduction and presentation techniques were employed. Key parameters and calculation procedures are indicated in Table 6 and Appendix B. Some additional special procedures are described in the following sections.

1. Fuel Property Correlation Procedures

Analyses of the experimental test results were conducted to: (1) correlate the performance and emission parameters with combustor operating conditions; (2) as appropriate, correct the measured rig data to true standard day engine operating conditions; and (3) correlate the corrected data with the appropriate fuel properties from Section III. Generally, these procedures were identical to those utilized in the previous J79 combustor evaluations and are described in Reference 1. In the few cases where new procedures have been utilized they are described in the Results Section, Section VI.

2. Combustor Life Prediction Procedures

The advanced low-smoke J79-17C combustor has a much improved life compared with the older design, J79-17A, which was the subject of Reference 1. The improved life is currently being demonstrated in U.S. Navy J79-10 service (Reference 8) and the time between replacements is being extended as experience with this combustor increases. The failure mode of most significance to this study is the development of low cycle fatigue cracks in the forward portion of the combustor due to thermal gradients. The cracks form in the vicinity of the cooling slots in the conical dome region and gradually propagate upstream. The conical shape of this structure, however, permits limited cracks to exist while still retaining the structural shape, thus resulting in a life significantly longer than the time to crack initiation.

A second life limitation feature occurs in the vicinity of crossfire elements. However, this limitation is thought to be vibration induced and not affected by fuel type.

The remainder of the liner, in general, lasts satisfactorily until hot section overhaul. However, since the cooling on these liners was not grossly over designed, if fuel type greatly increased the metal *emperatures, new life limiting regions could become important.

In its initial design and throughout its levelopmen, temperatures, stresses, and life have been calculated by data. ' computer analyses, with adjustments to the heat transfer inputs as tost ta identified the magnitude of specific contributors to the liner heating. were rring to Figure 27, the combustor is heated by convection and radiation from the hot combustion gases. These gases are hottest in the intro meand of the burner and drop toward the exit temperature as the air come at through the dilution holes mixes and cools the gas. The local gas velocities and temperatures are calculated by computer program based on the air distribution, and these values are then modified as indicated by subsequent combustor test data. The combustor liner is protected by the film air introduced through the film cooling slot. The rate at which the hot combustor gases mix through this protective film has been established from laboratory test data and combustor experience for the various specific film slots throughout the liner. Additional inputs to the heat transfer calculation include the flame radiation heating, metal radiation cooling, the convective cooling rates on the cold side of the

Figure 27. Node Model for J79 Combustor Showing Heat Transfer Quantities.

liner, and the impingement cooling rate on the cooling slot overhang. The flame radiation being the least well-defined from other data can be determined by back calculation from measured metal temperatures. With the aid of a computer program to calculate the thermal conduction through the metal structure, the above heat transfer inputs or correlations are used to calculate the detailed temperature distribution within the combustor liner. These temperatures are then used as input to a stress analysis program together with inputs for mechanical and aerodynamic loads, which then calculates the elastic stresses throughout the structure. These stresses are then used together with low cycle fatigue material properties (Figure 28) to predict life to first cracking, with an appropriate multiplier from experience to determine total life.

3. Turbine Life Prediction Procedures

If alternate fuels created substantial changes in temperature pattern factor or temperature profile in the combustor exit gases, changes in turbine component life would be predicted. However, as discussed in Section VI-A-6, no changes were found in these parameters.

The turbine vane heat load is made up of both convection and radiation and the relative levels vary around the perimeter of the vane. The leading edge of the vane has a view of the dome region and thus changes in flame luminosity due to fuel type would result in changes in the radiation load and corresponding changes in the vane leading edge temperature. The relative radiation load depends also on the view factor of the dome region. The rear liner and transition piece have small view factors of the dome and changes in these metal temperatures, due to changes in fuel type, provide an indication of the vane temperature changes. Figure 29 illustrates the very small view factor which the stator leading edge has of the luminous flame region and it also shows the similar view factor for the instrumented liner location. Temperatures were measured in the program on both the inner and rear liners as well as on the transition piece as discussed in Section V-A-2. As discussed in Section VI-A-6, the rear liner temperatures, which are well away from the high flame luminosity, were less affected by fuel changes than were the inner liner temperatures, and the effect decreased at locations farther downstream. A thermocouple was located on the transition piece such that the view factor of the dome region was very similar to that of the stator vanes. The temperature at this location was essentially unaffected by changes in fuel hydrogen content. Since the transition piece temperature was unaffected by fuel hydrogen content, negligible effects are predicted for the stator vane.

Figure 28. Fatigue Diagram for Hastelloy-X Sheet Stock.

Figure 29. Turbine Nozzle Diaphragm and Instrumented Location View Factors.

SECTION VI

RESULTS AND DISCUSSION

All planned test series (35 total) were completed and no major problems were encountered. In general, results were well ordered and consistent with published data insofar as comparisons could be made. Detailed test results, which are listed in Appendices B through E, are summarized and discussed in the following section. Engine system life prediction analyses based on these results are then presented in Section VI-B. Comparisons of these and previously obtained data are presented in Section VI-C.

A. Experimental Test Results

Fourteen high-pressure rig tests were conducted to obtain the performance/emission/durability data. These data are listed in Appendices B and C and summarized in Sections VI-A-1 through VI-A-7. Fourteen low pressure rig tests were conducted in parallel to obtain the ground start and altitude relight data. These data are listed in Appendix D and summarized in Sections VI-A-7 and 8. Also in parallel, seven fuel nozzle fouling tests were conducted to obtain the data listed in Appendix E and summarized in Section VI-A-9.

l. CO and HC Emissions

Carbon monoxide (CO) and unburned hydrocarbons (HC) are both products of incomplete combustion and are, therefore, generally highest at low power operating conditions (idle and cruise). Figure 30 shows the strong effect of combustor operating conditions on the CO emission levels with JP-4 fuel. At idle operating conditions, the CO emission index is about 66 g/kg which corresponds to a combustion inefficiency of about 1.5%, and is about the same level as that produced by the standard combustor (Reference 1).

At cruise, takeoff, and dash operating conditions, the CO emission levels are approximately 15, 2, and 1%, respectively, of the idle CO emission level, which indicates the strong effect of combustor inlet temperature and pressure on combustion reaction rates, and hence, on combustion efficiency and CO emission levels. In this correlation, the fuel/air ratio and temperature effects were determined by multiple regression curve-fit techniques of these data, and all are somewhat stronger than were found for the standard combustor (Reference 1).

Carbon monoxide emission trends like those shown in Figure 30 were obtained with each of the fuels, and a summary listing of the results is presented in Table 10. At takeoff and dash operating conditions, CO emission levels are low with all of the fuels, so no fuel property effect is evident. However, as shown in Figure 31, at both cruise and idle operating conditions, CO emission levels are clearly lowest with the baseline JP-4 fuel and up to 50% higher with those fuels having reduced hydrogen content, reduced vaporization properties (as indicated by both 10 and 90% recovery temperatures) and reduced atomization properties (as indicated by calculated relative spray droplet size, SMD/SMDJp-4, from Table A-3).

Figure 30. Effect of Operating Conditions on CO Emission Levels.

Table 10. Summary of CO Emission Test Results.

Fuel	со		Index, g/	
Number	Idle	Cruise	Takeoff	Dash
1A	63.3	8.5	1.1	0.6
1AR	71.0	7.8	1.0	0.5
2A1	85.2	9.0	1.1	0.6
3A	100.4	10.1	0.9	0.4
4A	110.5	10.9	1.3	0.6
5A	92.1	10.1	1.2	0.6
6A	90.2	9.7	1.3	0.6
7A	104.2	11.6	1.2	0.6
8A	80.4	11.7	1.5	0.6
9A	87.6	11.3	1.6	0.6
10A	96.1	9.2	1.3	0.6
11A	96.1	9.2	1.2	0.6
12A	94.3	9.9	1.2	0.6
13A1	100.9	12.9	1.5	0.7

Figure 31. Effect of Selected Fuel Properties on CO Emission Levels at Idle and Cruise Operating Conditions.

The atomization properties (viscosity, density, and surface tension) and vaporization properties (recovery temperatures) of these fuels turn out to be highly interrelated, so it is not possible to separate their effects on CO emission levels in these tests. The data do correlate somewhat better with relative droplet size than either of the recovery temperatures. The relative effects of atomization and hydrogen content were therefore, determined by multiple regression analyses which are illlustrated in Figure 32. At both idle and cruise operating conditions, statistically significant correlations were obtained showing CO emission indices to be approximately inversely proportional to hydrogen content and directly proportional to the square root of droplet size. A similar joint dependency on fuel chemical composition and physical properties was shown in References 1 and 9, but not in Reference 2. It, therefore, appears that the relative importance of the fuel chemical and physical properties are quite configuration dependent.

Hydrocarbon emission levels generally have been found to follow the same trends as do CO emissions, but to be more sensitive to combustor operating conditions and to exhibit more variability. Both of these trends were observed in the present tests and are illustrated in Figure 33, where HC emission levels are plotted against CO emission levels for the idle and cruise test points and all fuels. At idle the HC index is about 27 g/kg (2.3% inefficiency). At cruise the levels are about two orders of magnitude lower, and at takeoff and dash conditions the levels were very low. There is considerable scatter in the cruise and idle data, but the regression curve fit exponent (2.14) is in good agreement with past experience (about 1.5 to 3.0). Table 11 summarizes the HC results for all fuels and operating conditions. At idle operating conditions, the HC emission levels are clearly lowest with the baseline JP-4 fuel and up to 100% higher with those fuels having reduced hydrogen and/or reduced atomization evaporation properties. As with the CO data, a multiple regression analysis was made (Figure 34) to show the relative effects of atomization and hydrogen content, and the results are similar; the HC emission index is approximately inversely proportional to hydrogen content and directly proportional to the square root of the droplet size.

2. NO, Emissions

Oxides of nitrogen (NO_X) may form from oxidation of nitrogen which originated either in the air or in the fuel. Current jet engine fuels and all of the fuels used in this program contain negligible amounts of bound nitrogen, so the following discussion is applicable only to the "thermal" NO_X production characteristics of current and advanced fuels. Fuels containing significant quantities of bound nitrogen have been investigated in other programs, and typical results are contained in References 9, 10, and 11.

In contrast to CO and HC emission, which are products of incomplete combustion and are, therefore, generally significant only at low power conditions, "thermal" NO_X is an equilibrium product of high temperature combustion and is, therefore, highest at high power operating conditions. Figure 35 shows the strong effect of combustor operating conditions on NO_X emission levels with JP-4 fuel. In this correlation, the pressure, temperature, velocity, humidity effects were taken from previous studies (Reference 1) and the fuel/air ratio

Figure 32. Effect of Fuel Hydrogen Content and Spray Droplet Size on CO Emission Levels.

Figure 33. Variation of HC Emission Levels with CO Emission Levels, Idle and Cruise Operating Conditions.

Table 11. Summary of HC Emission Test Results.

Fuel			Index, g/l	
Number	Idle	Cruise	Takeoff	Dash
1A	26.6	0	0	0
1A (Repeat)	27.2	0	0	0
2A1	35.5	0.5	0.1	0
3A	48.7	0.4	.0.1	0.2
4A	50.7	0.7	0.2	0.1
5A	37.1	0.2	0	0
6A	34.5	0.6	0.2	0.1
7A	47.5	0.6	0.1	0
8A	35.4	0.4	0.1	0.1
9A	47.5	1.2	0.1	0.1
10A	50.2	1.2	0.4	0.2
11A	38.8	0.2	0.1	0
12A	46.9	0.5	0.2	0.1
13A1	44.9	1.0	0.2	0

Figure 34. Effect of Fuel Hydrogen Content and Spray Droplet Size on Idle HC Emission Levels.

Figure 35. Effect of Operating Conditions on NO_{X} Emission Levels.

effect was determined by curve fitting the new data. At takeoff operating conditions, the NO_X emission index is about 12 g/kg. At dash, cruise and idle operating conditions, the NO_X levels are approximately 180, 50 and 20%, respectively of the takeoff levels. These NO_X emission levels are about 20% higher than those produced by the standard high smoke combustor (Reference 1), but are also in good agreement with data from J79 engines equipped with low smoke combustion systems (Reference 12).

 NO_X results similar to those shown in Figure 35 were obtained in each of the tests. Emission indices for each fuel are listed in Table 12 and are plotted against fuel hydrogen content in Figure 36. At idle and cruise operating conditions, virtually no effect of fuel properties is evident, but at the high power operating conditions (takeoff and dash), NO_X levels decreased with fuel hydrogen content. This dependence on fuel hydrogen content is expected in diffusion flame processes such as these because of the stoichiometric flame temperature dependence on fuel hydrogen content and, in turn, the strong effect of flame temperature on NO_X formation rates. Figure 37 shows the effect of stoichiometric flame temperature (from Table A-3) on the NO_X emission levels at takeoff.

3. Smoke Emissions

Smoke, like CO and HC, is a product of incomplete combustion, but combustors with virtually 100% combustion efficiency can produce highly visible exhaust plumes, because the soot particle sizes are of the same order as the visible light wavelengths. The J79-17C combustion system produces nearly invisible exhaust plumes when fueled with current hydrogen content fuels (Reference 13).

The effect of combustor operating conditions on smoke levels with JP-4 fuel is shown in Figure 38. No simple operating parameter could be derived from the data, so smoke number is merely plotted against combustor fuel/air ratio and keyed as to inlet conditions. Within the test range, there is virtually no fuel/air ratio effect, and the repeatability and agreement with previous engine measurements is fair. At true idle, cruise and 75% density dash operating conditions, the smoke levels are approximately 18, 19, and 38%, respectively, of the smoke level at true takeoff operating conditions. At full density dash operating conditions, smoke levels might be expected to be somewhat higher at the combustor exit plane and then be partially consumed in the afterburning process. Because of the uncertainty of the extent of these two opposing processes, no corrections were made. However, in Figure 38 and Table 13, all of the data have been corrected to engine outlet fuel/air ratio according to the procedure outlined in Appendix F to account for turbine cooling air dilution of the main combustor products and allow comparisons to engine measurements. Also shown in Table 13 are corresponsing smoke emission indices, calculated from the smoke number by the procedure described in Appendix F.

Table 12. Summary of NO_X Emission Test Results.

Fuel	NO _x E	mission I	ndex, g/kg	3(1)			
Number	Idle	Cruise	Takeoff	Dash			
1A	1.8	5.8	11.6	23.3			
1A	1.9	6.6	12.0	23.7			
(Repeat) 2A1	3.7	6.3	11.7	23.6			
3A	1.9	6.2	11.9	23.1			
4 A	1.3	6.2	13.1	23.5			
5A	2.3	6.4	12.3	23.3			
6A	2.6		11.6	21.9			
7 A	1.8	6.4	12.0	23.3			
8A	2.2	6.2	12.3	25.3			
9A	2.0	5.6	12.9	27.2			
10A	1.8	6.2	13.0	26.1			
11A	2.9	6.2					
12A	2.1	6.0	11.8	23.7			
13A1	1.5	6.6	13.2	26.3			
(1)co	(1)Corrected to ambient humidity of 6 3						

⁽¹⁾Corrected to ambient humidity of 6.3 g/kg

Figure 36. Effect of Fuel Hydrogen Content on NO_{X} Emission Levels.

 $\mathbf{T_{st}}$, Stoichiometric Flame Temperature, K

Figure 37. Effect of Flame Temperature on NO_{X} Emission Levels.

fs, Sample Fuel/Air Ratio (At Combustor Exit)

Figure 38. Effect of Operating Conditions on Smoke Emission Levels.

Table 13. Summary of Smoke Emission Test Results.

Fuel	SN ₈ , Sm	oke Numbe	er at Engir	ne Exit	Εί _s , Sn	noke Emiss	ion Index,	g/kg
Number	Idle	Cruise	Takeoff	Dash	Idle	Cruise	Takeoff	Dash
1A	1.9	2.3	9.7	3.2	0.015	0.011	0.045	0.017
1AR	2.9	2.8	17.1	7.0	0.026	0.017	0.083	0.035
2A1	3.1	8.6	13.2	3.7	0.027	0.055	0.063	0.019
3A	2.8	11.5	18.3	4.2	0.024	0.075	0.090	0.022
4A	12.2	25.9	23.7	14.0	0.118	0.213	0.130	0.080
5A	3.0	14.4	22.3	7.4	0.025	0.096	0.118	0.041
6A	10.7	12.7	13.7	5.7	0.124	0.086	0.063	0.031
7A	6.9	19.5	27.7	8.8	0.062	0.143	0.168	0.049
8A	6.0	19.9	40.0	8.2	0.054	0.148	0.288	0.045
9A	8.4	11.3	24.0	7.6	0.077	0.075	0.137	0.041
10A	14.4	15.9	31.0	7.9	0.141	0.111	0.208	0.042
11A	7.1	5.1	20.2	10.8	0.067	0.031	0.102	0.060
12A	2.0	3.5	15.1	4.4	0.019	0.021	0.072	0.023
13A1	3.8	18.2	26.7	5.5	0.031	0.130	0.155	0.029

In Figure 39, the effect of fuel hydrogen content on engine smoke number is shown. At each power level, smoke number increases exponentially with decreasing hydrogen content, but there is considerable scatter in the data, particularly at takeoff operating conditions where the smoke levels are highest. The scatter does appear to be associated with fuel volatility or atomization characteristics, but there is some trend with aromatic type, or fuel naphthalene content.

In order to quantify the effect of aromatic type on smoke levels, the smoke numbers at each power level were normalized for hydrogen content, by use of the regression equations shown in Figure 39, and plotted against fuel naphthalene content as shown in Figure 40. Generally, the hydrogen normalized smoke numbers are seen to be within the range 0.5 to 1.5, but there is no clear trend with fuel naphthalene content. The line and equation shown in Figure 40 are the result of a second regression analysis of all of the normalized smoke numbers with fuel naphthalene content as the independent variable. The slope of the line (0.00711) is a measure of the average effect of fuel naphthalene content on smoke number of constant hydrogen content. A 10% by volume increase in fuel naphthalene content can be expected to produce a 7.1% increase in smoke number. For comparison, a 1% by weight increase in fuel hydrogen content can be expected to produce an 89, 96, 31 and 36% increase in smoke number at idle, cruise, takeoff and dash operating conditions, respectively.

4. Carbon Deposition and Emission

As discussed in Section V-A-2, two 24-hour high pressure combustor tests were conducted with procedures established to provide information on the relative carbon deposition tendencies of Fuel 1A (Repeat JP-4) and Fuel 13A1 (diesel). Both tests began with clean combustors and fuel nozzles. Inlet conditions were varied over the idle, cruise, takeoff, and dash operating conditions on an approximately equal time basis. At the completion of each test, visual assessments of the relative carboning tendencies were made which are summarized in Table 14. Photographs, which are included in Appendix C, were also made to fully document the carbon deposition tendencies.

As shown in Table 14 and the posttest photographs, some carbon deposition was found in both tests, with the greater accumulation occurring using Fuel 13A (diesel). It should be noted that carbon deposition was not considered excessive for either fuel and no adverse effects due to carboning are anticipated using either fuel. For example, Figure 41 shows no long term changes in pattern factor using either fuel. These detailed pattern factor data are presented in Table C-1 in the Appendices.

Also as discussed in Section V-A-3, carbon emission data were obtained on selected fuels using a millipore filter for total carbon collection, and a cascade impactor for total carbon collection and particle size distribution. For both measurements, samples were withdrawn through the exit emission rakes at isokinetic conditions for 40 minutes. Table 15 summarizes the total carbon emissions measured by the millipore filter and cascade impactor.

Fuel Hydrogen Content, Weight Percent

Figure 39. Effect of Fuel Hydrogen Content on Smoke Emission Levels.

Figure 40. Effect of Fuel Naphthalene Content on Smoke Number Normalized for Hydrogen Content.

Table 14. Summary of Carbon Deposition After 24 Hour Tests.

	Fuel 1A (Repeat)	Fuel 13A	
Fuel Nozzle	Irregular deposits to 0.1 mm high on face. Black stain around secondary fuel ports	Hard black, shiny, uniform deposit on face to 0.8 mm thick and to 0.3 mm around secondary ports	
Venturi	Soft, easily removed deposit to 1 mm thick	Hard black deposits to 6 mm thick	
Inner Liner	Very light discoloration easily wiped away	Dull to shiny black deposits up to 0.6 mm thick	
Aft Liner	Same as inner liner	Light dull to shiny black deposit less than 0.1 mm	

Figure 41. Pattern Factor Variation During Carbon Endurance Tests.

Table 15. Summary of Total Carbon Emission Test Results.

		Carbon Pa Emission, mg	
Fuel Number	Test Point Number	Millipore Filter	Cascade Impactor
1A	4	11.3	***
	7	9.7	400 400 MB
2A	4	6.4	
4A	4		19.3
6A	4	10.5	
10A	4	17.1	12.0
13A	4	5.4	
i [7	29.6	

Figure 42 presents this data versus fuel hydrogen content for the cruise test point (Point 4). A moderate trend of increased carbon emission with decreased hydrogen content is noted. However, considerable data scatter is present.

Figure 43 presents the particle mass distributions for two fuels as measured by the cascade impactor. The detailed impactor data are presented in Table C-2. Little difference in particle distribution is evident between these two fuels. In general, about 50% of the carbon emissions by weight are less than 1 micron in diameter and about 30% are greater than 10 microns in diameter. This constitutes basically a two tailed distribution with either extremely small particles (less than 1 micron) or relatively large particles (greater than 10 micron) present.

5. Liner Temperature and Flame Radiation

Liner temperature measurements were obtained in the high pressure combustor tests at the locations described in Section V-A-2. Detailed data are listed in Appendix B and peak data are summarized in Table 16. The data are presented as metal temperature rise above the inlet air temperature (T2-T3). Typical levels and spatial variations at takeoff operating conditions are shown in Figure 16, and effects of variations in operating conditions on selected typical thermocouples are shown in Figure 44.

Generally, as shown in Figure 16, the rear liner and transition metal temperatures are quite moderate and uniform. The highest measured metal temperatures are in the forward or inner liner. The hottest thermocouple (No. 11) is an imbedded installation in the conical dome section first cooling slot overhang. The internal swirling and burning flows emerge from the swirl cup as a separated flow, and create intense heat transfer to the conical dome surface, as they approach the wall and either reattach or create secondary flows. The film protection provided by the gill holes can be disrupted depending on the exact location of the reattachment process and result in effects that extend further downstream. There are non-axisymmetric circumferential geometry features such as dilution holes, the igniter, and the crossfire tube that result in circumferential variations in the flow reattachment process. This in turn results in extreme circumferential variations in metal temperature as seen in Figure 16. To counteract this intense heating, the conical dome region is provided with intense cooling mechanisms including impingement on the cold side, internal convective cooling and conduction from the film cooling or gill holes, as well as the film protection. These intense mechanisms provide adequate cooling to treat the hottest regions but result in much cooler metal temperature levels at locations that are not suffering the reattachment and film disruption.

As shown in Figure 44, inner liner temperature rises (both mid-panel surtace mounted and cooling ring overhang imbedded thermocouple installations) tended to be dependent upon operating pressure and temperature, but independent of operating fuel/air ratio. The absence of a fuel/air ratio effect in the dome may be associated with near stoichiometric hot gas flows scrubbing the conical dome walls. Variations in overall fuel/air ratio may be accompanied

Figure 42. Effect of Fuel Hydrogen Content on Carbon Emission Levels at Cruise (Test Point 4).

Cumulative Weight Percent Less Than Stated Size

Figure 43. Carbon Particle Size Distribution at Cruise Measured by Cascade Impactor.

Table 16. Summary of Peak Liner Temperature Results.

			T _I	T _L -T ₃ , I	Liner Temperature	empera		Rise, K			!	
FILE		Idle			Cruise			Takeof	£		Dash	
Number	71	112	Peak	7	11	Peak	7	11	Peak	7	11	Peak
2A1	72	141+/42	141	142	300	340	346	+105	519	310	502+	505
J A	68	262+	262	152	398	398	286	440	443	299	209	209
 6A	74	147+/58	147	200	380+	390	346	481	482	358	360	517
5.A	88	91	179	258	237	392	332	294	463	330	311	487
118	86	152+/68	244	197	230	359	322	274	767	349	311	498
148	79	42	173	108	224	397	295	259	411	300	261	454
1341	72	97	109	210	164	364	323	263	499	347	283	423
10A	104	56	167	170	380+	420	304	+667	511	363	586	595
12A	06	144+	163	164	392	395	293	483	487	323	561	267
46	112	78	152	179	398	420	296	4224	463	361	303	200
X X	134	167+	226	279	213	374	340	258	468	363	302	535
47 4	102	77	137	245	227	401	354	257	507	388	242	502
7.A	102	43	135	240	157	383	350	187	511	364	209	478
3A	88	40	95	212	224	301	344	164	677	343	193	483

Average of data points at two fuel/air ratios, thermocouple No. 7 (Surface mounted). 1:)

separated film. Where two values are given one fuel/air ratio had attached and one fuel/air ratio had separated film, thermocouple No. 11 (imbedded, Superscript + indicates Average of data points at two fuel/air ratios. overhang). 7:)

3.) Maximum value for either fuel/air ratio at test condition.

Effects of Installation and Film Flow Mode on Liner Temperature Response. Figure 14.

by burning rate differences and features in the separated and reattaching flow regions along the conical dome that permit these near stoichiometric flame temperatures to exist over a significant range of overall fuel/air ratios. This unusual flow phenomena is also thought to result in some randomness in the data in this dome reattachment region.

As further shown in Figure 44, rear liner and transition metal temperature rises, tended to be directly proportional to operating fuel/air ratio, but independent of operating pressure on temperature. This behavior is thought to indicate the absence of any significant radiant heat transfer to these regions, due to the small flame view factor.

Detailed analyses of the liner temperature data to identify fuel property effects was complicated by factors which are illustrated in Figures 45 and 46. Thermocouple attrition was such that, after reading number 56, the entire array was replaced for the final seven fuel test series (designated combustor installation No. 3). In spite of extreme care to attach the new thermocouples in the same spot, some thermocouples responded quite differently. As shown in Figure 45, thermcouple No. 12 consistantly responded lower and thermocouple No. 13 responded higher in the last installation. Other thermocouples, such as No. 11 also illustrated in Figure 45, exhibited two response levels associated with cooling film flow mode (attached or separated), but excellent reproducibility between installations. Also, as shown in Figure 46, the liner thermocouple leadout bundle created a blockage which disrupted the rear liner cooling flow thereby invalidating thermocouple No. 25 completely, and perhaps No. 26 and 27 partially. Because of these installation and metastable flow phenomena, fuel effect analyses were made for individual thermocouples, rather than for peak and average data as was done in References 1 and 2.

The effect of fuel hydrogen content on liner temperature rise was determined for each thermocouple and installation/film flow mode by regression analyses, as illustrated in Figure 45, for the takeoff operating conditions. These results are tabulated in Appendix B, Table B-9, and summarized in Figure 47, where the slope of the regression equation (Kelvin increase in liner temperature rise per percent decrease in fuel hydrogen content) is plotted against spatial location. Clearly, the forward panels of the inner liner are most sensitive (20 to 40 K/percent H) while the rear liner and transition are virtually independent of fuel hydrogen content.

The effect of engine operating conditions on sensitivity of liner temperature rise to fuel hydrogen content was also determined by regression analyses, for selected thermocouples. The trends are not easily generalized. One example is tabulated in Appendix B, Table B-10 and summarized in Figure 48. The thermocouple illustrated shows the largest sensitivity at cruise (35.2 K/percent H) and a relatively low sensitivity at takeoff (13.0 K/percent H), but other thermocouples respond differently. This thermocouple was selected for illustration to examine other fuel property effects, and make comparisons to previous studies (in a following section).

Figure 45. Effects of Installation and Film Flow Mode on Liner Temperature Response.

Figure 46. Rear Liner Hot Spot Caused by Thermocouple Leads.

Figure 47. Spatial Variation in Rate of Change of Liner Temperature with Fuel Hydrogen Content.

Figure 48. Effect of Operating Conditions on Rate of Change of Liner Temperature with Fuel Hydrogen Content.

As shown in both Figures 45 and 48, liner temperature rise does not appear to be dependent upon fuel atomization or vaporization properties, particularly at high temperature operating conditions. Also, the data do not appear to show sensitivity to aromatic structure, but this analysis is complicated because all of the 2040 solvent blends were tested in the third installation. However, to illustrate the effect of aromatic stuctures, the data for thermocouple No. 7 (Figure 48) were normalized for fuel hydrogen content and plotted against fuel naphthalene content in Figure 49 with the regression analysis line. As expected, this analysis shows a very low sensitivity of liner temperature rise to fuel naphthalene content at constant fuel hydrogen content.

Flame radiation measurements at the crossfire port plane were obtained with the apparatus and procedures described in Section VI-A-2; detailed results are listed in Appendix B. Due to an undetected noise source in the pyrometer signal, valid flame radiation measurements were not obtained for the first six fuels tested. For the last seven fuels, Figure 50 shows the effect of combustor operating conditions on flame radiation. The severity parameter shown was identified using regression analysis procedures. The parameter is similar to the one derived for the J79-17A (Reference 1) except no fuel/air ratio effect is evident in the current deta. Figure 51, which summarizes the data of Table B-10, illustrates the effect of fund hydrogen content on flame radiation. Unlike the J79-17A high smoke combustor, only a moderate fuel effect is observed. The absolute levels of flame radiation for the J79-17C combustor for all fuels are close to the leve! for J79-17A combustor with JP-4 fuel, except at dash where the J79-17C values are about 50% of the J79-17A levels. These relatively low and fuel insensitive levels may be due to the low smoke levels of the J79-17C combustor which would produce a nearly nonluminous flame for all fuels. In addition, the burning in the leaner dome J79-17C combustor may occur largely upscream of the crossfire port location and the pyrometer would, therefore, not view peak flame radiation but some lower radiation level from a cooler gas temperature. This latter possibility may also explain why some inner liner temperatures vary more with fuel hydrogen content than do the measured radiation.

Figure 52 presents radiant heat flux normalized for fuel hydrogen content plotted against fuel naphthalene content to examine the effect of fuel aromatic structure. The plot clearly shows that in this test series, dicyclic aromatics produce no greater radiant heat flux beyond that predicted by fuel hydrogen content.

6. Combustor Exit Profile and Pattern Factor

Combustor exit temperature distributions were measured in the high pressure tests using the fixed thermocouple rake array described in Section V-A-2. Detailed data are listed in Appendix B, and trends are illustrated in Figures 53, 54, and 50

Fuel Napthalenes Content, Volume Percent

Figure 49. Effect of Fuel Napthalenes Content on Liner Temperature Rise Normalized for Hydrogen Content.

a C. Crase S. Ce to S. Set of the S. Set o

Figure 50. Effect of Combustor Operating Conditions on Flame Radiation.

O JP-4 Based Fuels

☐ JP-8 Based Fuels

Tails: Monocyclic Aromatics

Fuel Hydrogen Centent, Weight percent

Figure 51. Effect of Fuel Hydrogen Content on Flame Radiation.

		<u> </u>	m
\Diamond	Idle	83.2	0.60
7	Cruise	94.8	1.32
	Takeoff	106.9	2.05
\Diamond	Dash	120.9	2.93

Figure 52. Effect of Fuel Napthalenes Content on Radiant Heat Flux Normalized for Hydrogen Content.

Figure 53. Effect of Operating Conditions on Pattern Factor.

Figure 54. Variation in Pattern Factor with Test Sequence.

Figure 55. Comparison of Combustor Exit Temperature Profiles.

It was anticipated from previous experience with this combustor model that exit temperature distributions would be relatively insensitive to combustor operating conditions and fuel type. As shown in Figure 53, both of these expected data trends were verified in the first two fuel evaluations, but the pattern factor levels were significantly higher than had been measured in previous tests of the same combustor model, in the same test rig, as part of a vendor substantiation program. The differences in pattern factor levels were too large to be attributed to either normal variations between combustor assemblies or test repeatabilities. But, at the time, no other obvious explanations could be found, so the test series were therefore continued as planned.

In subsequent fuel evaluations, exit temperature distributions varied considerably, as shown in Figures 54, and 55, and a probable reason for the variation was identified. In Figure 54, pattern factor (from Table B-12) for each operating condition and fuel type is plotted in chronological test order, separated by "installation number" which is defined in Table 17. It is seen that pattern factor levels were relatively constant within an installation, but varied significantly between installations. The pattern factor levels in installation No. 3 are in fair agreement with those expected from previous tests. As shown in Figure 55, detailed profiles also tend to display similar peak levels, but noticeable difference in profile shape.

In Table 17, all hardware changes in the test series which might have affected either combustor exit temperature distributions or temperature measurements are listed. The major changes in pattern factor levels (Figure 54) are associated with the two liner removals. Exit rake replacement and fuel nozzle seem to have had little effect on pattern factor levels.

A mechanism by which liner removal might affect pattern factor was identified in a posttest inspection of the outboard side of the rear liner. As shown in Figure 46, the liner thermocouple leadout blockage disrupted the airflow to the rear liner in this region, causing a hot spot. Very probably the dilution hole airflows were also reduced, which could very easily have increased pattern factor. The effective blockage of the thermocouple leadout wires probably varied between installations, thus introducing an extraneous variation in the test series. The most valid pattern factor measurements, therefore, would be obtained with a noninstrumented liner, as was used in the previous vendor substantiation program.

As noted above and shown in Figure 54, seven fuels were tested in installation No.3, and pattern factor levels were relatively constant. JP-4 and JP-8 based fuels with hydrogen contents of 12, 13, and 14 weight percent were included in this installation series, so pattern factor must be virtually independent of fuel type.

7. Cold-Day Ground Starting and Idle Stability

Fourteen cold-day ground start tests were conducted in the low pressure rig using procedures described in Section V-B-2. Detailed test results are listed in Appendix D and typical results are illustrated in Figure 56. In

Table 17. Chronology of Hardware Changes During Test Series.

			Har	dware Change N	lade After Ru	n
Installation No.	Run No .	Fuel No.	Exit Rakes	Fuel Nozzle Removed for Cleaning	Liner Removed for Photos	Liner Re- instrumented
1	1	2A,1A	2 rakes	No	No	No
	3	6A,5A,11A	No	No	No	No
la	4	1AR	No	Yes	Yes	No
2	5	13A	4 rakes	Yes	Yes	Yes
3	6	10A,12A, 9A,8A	No	No	No	No
	7	4A,7A,3A		· End of This Te !	I est Series I	

Simulated 1000 rpm Engine Cranking Conditions $P_3 \approx 101 \text{ kPa, W}_c = 3.18 \text{ kg/sec-Engine}$

Figure 56. Typical Ground Start Characteristics.

each test, 1000 rpm engine motoring conditions were simulated, and lean light-off and lean blowout limits were determined as a function of ambient (fuel and air) temperature in steps from test cell ambient down to 239 K (-30° F). As shown in Figure 56, even with the most viscous fuel (No. 13A1, Diesel Fuel) lightoffs were obtained down to 239 K, but the fuel/air ratios required were fuel-type and temperature dependent. Lean blowout fuel/air ratios were usually about half of those required for lightoff, with only minor fuel-type and temperature dependence. Results for all fuels are summarized in Table 18. Effects of fuel properties on lean lightoff fuel/air ratio at both standard and cold day start conditions are illustrated in Figure 57. The standard day data exhibit virtually no fuel dependence, but the cold day data are fuel dependent and correlate very well with the relative spray droplet size parameter (calculated from fuel viscosity, density and surface tension) which is derived and listed in Appendix A.

Lean lightoff and blowout limits were also measured at idle operating conditions for all of the test fuels, as part of the high pressure test series. These data are summarized in Table 19. Lean blowout fuel/air ratios were less than 2.5 g/kg with all fuels. Lightoff fuel/air ratios ranged from 5.1 to 13.7 g/kg. The variation is attributed to data scatter rather than to any fuel property effect. At these inlet conditions, both lightoff and blowout are probably more dependent on fuel spray geometry and dome airflow than upon any of the fuel properties.

8. Altitude Relight

Fourteen altitude relight tests were conducted in the low pressure rig using procedures described in Section V-B-2. Detailed results are listed in Appendix D and summarized in Tables 20 and 21. In each test, altitude relight/blowout limits and lean relight/blowout limits were determined at four airflow/temperature levels selected to span the engine windmilling/air start map (Figure 8).

Altitude relight limits (Table 20) agreed well with previous rig test results wherever comparison could be made, but tended to be pessimistic relative to engine results (Figure 8) with respect to both altitude and flight Mach number limits. Pressure blowout limits (Table 21) tended to be relatively close to relight limits in all cases.

Effects of fuel properties on altitude relight limits are illustrated in Figure 58. Like the ground start data, the altitude relight limits correlate well with the relative spray droplet size parameter when the air and fuel temperatures are low (low Mach number flight conditions). At higher Mach number conditions, where air and fuel temperatures are elevated, altitude relight limits become independent of fuel type. These fuel effect trends on both altitude relight and cold day ground start are very much like those found for the F101 combustor (Reference 2).

Table 18. Summary of Ground Start Test Results. (1)

		Fuel-Air F	Ratio, g/kg	
	Standard Da	у (288.2К)	Cold Day	²⁾ (239.0K)
Fuel Number	Lean Lightoff	Lean Blowout	Lean Lightoff	Lean Blowout
1A	6.7	2.4	7.0	3.6
1A	6.5	2.5	8.0	3.7
(Repeat) 2A	6.0	4.2	10.4	8.3
3 A	6.8	4.5	23.9	10.3
4 A	8.2	4.7	14.5	7.3
5 A	6.2	4.3	9.3	7.3
6A	6.0	3.5	8.6	6.9
7 A	7.5	5.0	11.9	8.8
8A	7.0	2.3	7.0	5.4
9A	6.5	2.0	9.2	5.4
10A	6.7	2.7	7.2	4.0
11A	6.2	2.5	6.5	4.1
12A	6.0	2.8	7.2	4.4
13A1	8.7	7.2	37.0	8.5

⁽¹⁾ Simulated 1000 rpm Cranking Conditions $P_3 = 101 \text{ kPa}$

 $W_c = 3.18 \text{ kg/s per engine}$

(2)
All fuels light-off to 239K (at least)

Figure 57. Effect of Fuel Atomization on Ground Start.

Table 19. Summary of Idle Stability Test Results.

 $P_3 = 0.254 \text{ MPa}$

 $T_3 = 421K$

 $v_{r} = 24.2 \text{ m/s}$

	Ligh	toff	Lean B	lowout
Fuel Number	W _f , Fuel Flow, g/s/can	f, Fuel-Air Ratio, g/kg	W _f , Fuel Flow, g/s/can	f, Fuel-Air Ratio, g/kg
1A	11.7	7.5	<2.3	<1.5
1A	11.6	7.4	<2.3	<1.5
(Repeat) 2A	12.1	8.0	<2.5	<1.7
3 A	10.0	6.0	2.3	1.4
4A	18.3	11.8	3.8	2.5
5 A	8.1	5.1	<2.5	<1.7
6A	10.8	7.1	<2.5	<1.7
7 A	13.1	8.4	2.8	1.8
8A	21.8	13.7	<1.3	<0.8
9A	16.8	10.2	11.6	7.7
10A	20.5	13.3	<1.3	<0.8
11A	11.7	7.6	<2.5	<1.7
12A	11.7	7.6	<1.3	<0.8
13A1	10.0	6.7	<2.5	<1.7

Table 20. Summary of Altitude Relight Limits.

			$W_f = 64$.9 g/s				
		.27 kg/s		08 kg/s		.99 kg/s	$W_c = 9.07$	kg/s
Fuel Number	Alt km	Mo	Alt km	Mo	Alt km	Mo	Alt km	Mo
1A	6.7	0.43	4.6	0.55	5.2	0.65	No L	ight
1A (Repeat)	7.3	0.46	6.1	0.62	6.1	0.69	No I	ight
2A	4.3	0.36	5.9	0.61	4.6	0.62	No I	ight.
3A	5.2	0.39	5.8	0.61	6.3	0.70	3.1(1)	0.78(1)
4A	2.4	0.33	5.3	0.58	4.5	0.62	No I	l .igh:
5A	6.4	0.42	5.8	0.60	4.6	0.62	No I	i ight
6A	6.0	0.41	5.6	0.60	4.0	0.60	No I	i .ight
7A	5.0	0.38	5.7	0.60	6.3	0.70	No I	ight.
8A	6.6	U.43	7.1	7د.0	5.7	0.67	No I	ight.
9A	6.6	0.43	7.9	0.70	6.3	0.70	No I	l ight
10A	6.2	0.42	6.4	0.62	5.3	0.70	3.6(1)	0.76(1)
11A	6.7	0.44	6.9	0.66	6.8	0.73	4.9	0.84
12A	6.4	0.43	7.0	0.66	6.3	0.70	No I	ight.
13A1	4.6	0.37	3.9	0.53	6.5	0.71	No I	 .ight

 $⁽¹⁾_{W_c} = 7.9 \text{ kg/s}$

Table 21. Summary of Altitude Pressure Blowout Limits.

	·		Wf	= 64.9 g	/s			
		.27 kg/s		.08 kg/s		.99 kg/s	$W_{c} = 9.07$	kg/s
Fuel Number	Alt km	Mo	Alt km	Mo	Alt km	Mo	Alt km	Mo
1A	7.8	0.48	8.7	0.74	6.7	0.72	Not Det	ermined
1A (Repeat)	8.4	0.51	8.4	0.73	8.0	0.78	Not Det	l ermined
2A	6.9	0.44	7.5	0.69	7.3	0.75	Not Det	rmined
3A	7.7	0.48	7.5	0.68	7.8	0.77	9.3(1)	1.00(1)
4A	7.3	0.46	7.6	0.69	7.6	0.76	Not Det	 ermined
5A	6.8	0.44	7.9	0.70	8.0	0.78	Not Det	 ermined
6A	8,3	0.51	7.2	0.67	7.1	0.74	Not Det	l ermined
7A	7.0	0.45	7.9	0.70	6.5	0.78	Not Det	 ermined
8A	9.1	0.55	8.0	0.71	7.8	0.77	Not Det	l ermined
9 A	8.3	0.50	8.9	0.75	7.5	0.75	Not Det	l ermined '
10A	8.2	0.50	8.1	0.71	8.6	0.81	8.8(1)	0.97(1)
11A	7.7	0.48	7.9	0.70	8.2	0.79	13.7	1.19
12A	7.8	0.48	8.4	0.73	7.5	0.76	Not Det	ermined
13A1	5.8	0.40	6.4	0.63	7.8	0.77	Not Det	ermined

 $⁽¹⁾_{W_C} = 7.9 \text{ kg/s}$

Figure 58. Effect of Fuel Atomization on Altitude Relight Limits.

9. Fuel Nozzle Fouling

Seven fuel nozzle fouling tests were conducted, for a total of 346 hours. The first four and the sixth used Fuel No. 13, the low thermal stability No. 2 diesel fuel. The fifth and seventh (Test No. 15) used Fuel No. 2, the high thermal stability JP-8.

The first test was run at 464 K, a temperature estimated to cause a moderate nozzle failure time, based on previous experience and knowledge of the fuel quality. However, the nozzle failed in only 14 hours and the test was terminated.

The second test was, therefore, run at a lower temperature of 450 K. At this condition, the nozzle showed only a small performance loss in 71 hours.

The third test was run at a higher temperature, 469 K, resulting in a moderate loss in performance in 54 hours.

The fourth test was run at a much higher temperature, 491 K, and a large loss in performance was observed in 30 hours, though not as large as the loss in the first test at a much lower temperature.

A review of the first four tests at this time indicated that the first test was inconsistent with the other three. The tip of the first nozzle was, therefore, opened for inspection. The interior was found to contain heavy "carbon" deposits which would explain its performance, but which would not be expected with the fuel temperature maintained. It was then observed that the nozzle stem was discolored, quite different from the other three, indicating it had reached temperatures much higher than the desired 672 K gas stream temperature. It was concluded that the first test was not run according to the prescribed conditions, and the results were invalid and would not be considered further.

Figure 59 shows photographs of the primary slot piece from the tip of the nozzle used in the first test, alongside comparable photographs of the primary slot piece used in the fourth test. In the latter case, the test was twice as long and the fuel temperature was 27 K higher, thus, reinforcing the suggestion that the rapid failure in the first test was caused by excessive nozzle stem temperature.

The fifth test was run with Fuel No. 2 at 491 K for 75 hours, and showed very little performance degradation, much less than with Fuel No. 13 at the same temperature.

A sixth test was then run for 40 hours at 478 K, a temperature between two previously run tests, and the results appeared quite consistent with the others.

A seventh and final test (No. 15) was then run for 62.5 hours at 505 K to validate the data previously obtained on Fuel No. 2. All of the periodic flow

Figure 59. Posttest Appearance of Fuel Nozzle Primary Slot Picces, Fuel Nozzle Fouling Tests.

calibration data acquired in these tests are listed in Appendix E. Because of the specific design characteristics of the J79-17C nozzle, it was decided to analyze three distinct aspects of its performance:

- 1. Frimary orifice metering performance (with flow divider valve closed).
- 2. Secondary orifice metering performance (with flow divider valve full open).
- 3. Flow hyteresis, caused by abnormal drag forces on the valve due to "gum" deposits.

It was also established, somewhat arbitrarily, that "failure" would be either a 10% reduction in primary flow, a 5% reduction in secondary flow, or a 10% increase in hysteresis. These values are considered to be high enough to cause significant degradation in nozzle performance, without requiring excessive test time or excessively severe test conditions.

The orifice performance data were reasonably well-ordered. However, the valve hysteresis data were quite erratic, which should not be surprising when considering the factors involved in gum formation and deposition. Curvefitting techniques were applied, examples of which are shown in Figure 60. However, it was concluded that these refinements were not warranted, particularly in the case of hysteresis data. It is believed that a single incident of high hysteresis can be just as damaging to an engine as a value obtained from a curve. In the top curve, Figure 60, for example, a failure point of 8 hours was considered just as valid as the value of 24 hours from the curve. Therefore, the failure times of the nozzles by the three performance criteria were established by visual inspection of the tabulated data, applying judgement and interpolation. In a few cases, the hysteresis data were considered invalid because the first value obtained was excessive. A summary of the data obtained is shown in Table 22.

"All of the data were analyzed by a stepwise multiple linear regression program. The correlation curves and equations are shown on Figure 61.

These fouling test data correlation equations can be utilized to estimate the fuel-limiting life expectancy of fuel nozzles. For example, consider a fuel with a breakpoint temperature, $T_{\rm BP}$, of 533K (by JFTOT visual rating), operating at a temperature, $T_{\rm F}$, of 408K. Using these data, the J79-17C fuel nozzle would be expected to last about 7500 hours before 'failure' by hysteresis. However, applying the same conditions to an F101 fuel nozzle (Reference 2), 'failure' by hysteresis would be expected in only 260 hours. The difference is attributed to the smaller clearances in the F101 flow divider valve as compared to the clearances in the J79-17C valve.

However, the J79-17C nozzle would probably 'fail' first by primary or secondary orifice plugging, at about 140 hours, under these same conditions. The F101 nozzle has very large discharge orifices, which would not be expected to plug for a very long time.

Figure 60. Typical Effect of Time on Performance of J79-17C Fuel Nozzle with Heated Fuel (Run 3, Diesel Fuel at 469 K).

Table 22. Summary of J79-17C Fuel Nozzle Fouling Test Results.

					Cyclic Test Indicated Level	Cyclic Test Time (hours) to Produce cated Levels of Performance Degrada	Cyclic Test Time (hours) to Produce Indicated Levels of Performance Degradation
					Primary Orifice,	Secondary Orifice,	Divider Valve,
			,	(TBP-TF),	10% Flow	5% Flow	10% Flow
Test Number	Fuei Number	TBP, Fuel Breakpoint, K	TF, Fuel Temperature, K	Temperature Difference, K	Reduction @ 0.55 MPa	Reduction @ 2.76 MPa	hysteresis @ 0.86 MPa
5	2A1	573	167	82	53	>75	20
15	2A2	593 ± 10	505	88 ± 10	>63	>63	17
7	13A1	523	450	73	55	99	
E	13A1	523	697	54	36	28	-
9	13A2	503	8478	25	26	31	9
7	13A2	503	491	12	19	18	1.5 ± 1.5

Figure 61. Correlation of J79-17C Fuel Nozzle Fouling Test Results.

The equations can also be used to estimate the effects of fuel quality and fuel temperature on nozzle 'life'. For example, a 10K increase in fuel temperature would reduce the life expectancy of the J79-17C fuel nozzle by about 16%, as a result of reduced primary flow, and a 10K reduction in fuel thermal stability breakpoint would reduce its life expectancy about 18% as a result of reduced secondary flow."

B. Engine Systems Life Predictions

1. Combustion System Life Predictions

The life analyses described in Section V-E-2 were conducted assuming a flame radiation level for Fuel 1 (current JP-4) and adjusting the hot gas temperature and film effectiveness level to achieve a match between the measured and calculated temperatures on the panels. Similar data match curves were prepared for other fuels by maintaining a constant film effectiveness level and by adjusting the flame radiation to achieve the data match. This detailed approach permits the metal temperature to be calculated with high accuracy providing the desired accurate input for the stress calculations. Although supersonic dash conditions involved the most severe temperature conditions, only a small portion of actual flights encounter this condition; the actual combustor life is controlled by the sea level static condition which is therefore the basis for the following life discussion. The maximum temperatures were measured on the overhang at the downstream end of panel zero (see Figure 16) and data match curves based on best fit data (liner temperature rise versus fuel hydrogen content) were prepared for this panel for fuels containing 14.5, 14.0, 13.0, and 12.0 weight percent hydrogen. A typical data match curve is shown in Figure 62 for simulated takeoff conditions.

The accual takeoff condition involves a higher fuel/air ratio than could be tested in the test rig. Fuel/air ratio trends are available in the data, including the data at cruise inlet conditions where both cruise fuel/air ratios as well as the higher takeoff fuel/air ratios were tested. However, for consistency between the fuels, the fuel/air extrapolation for life calculations was done using the methods in established design extrapolations. The resulting life effects between fuels that result, are very close to the same as for the initial lower fuel/air ratio data before extrapolation.

Temperature profiles were prepared for the four fuels mentioned above for true engine takeoff conditions. The temperature profiles were used as inputs to the SNAPTS II Computer Program and effective stress levels were calculated for the various fuels. The stress and temperature distributions were combined with available material property data (Figure 28) to predict cycles to crack initiation. The predicted cyclic life for the inner-liner for fuels containing 12.0 weight percent hydrogen is about 75 percent of the life predicted for the fuel containing 14.5 weight percent hydrogen. This decrease in life is due to two effects. The first and smaller effect is due to increases in effective stress levels because of increases in temperature gradients between the panel and the cooling slot. The second and more significant effect is due to the rapid decay in material properties due to increase in temperature. The specific predicted effects of fuel hydrogen content on combustor life are:

Figure 62. Typical Panel Zero Temperature Distribution.

Fuel Hydrogen Content,	Relative Inner
Weight Percent	Liner Life
i4.5	1.0
14.0	0.93
13.0	0.83
12.0	0.74

The life limiting region analyzed above at the panel zero overhang does not show as much response to fuel effects as some other locations which, however, are not life limiting regions. For example as indicated in Section VI-A-5, the change in metal temperature with respect to hydrogen content was only about 8 K/Z on the panel zero overhang, as compared to 20 to 30 K per percent hydrogen for instrumented locations further downstream, accounting for the small predicted change in life. A slope of 25 K per percent hydrogen content applied to the same absolute temperature level measured on the panel one overhang would have resulted in a predicted life for fuels containing 12.0 weight percent hydrogen of less than half of the predicted life for fuels containing 14.5 weight percent hydrogen. This would have agreed with the life decrement predicted for the F101 liner in Reference 2. The reduced effect for this J79-17C combustor liner is partly due to the more intense cooling mechanisms that exist in the hottest regions.

2. Turbine Life Predictions

As discussed in Section V-E-3, flame radiation changes are not predicted to affect turbine nozzle diaphragm temperatures because of the small viewing angle. Profile or pattern factor changes would be expected to directly affect turbine temperatures, but as was anticipated, no fuel effects on combustor outlet temperature distribution were observed. The J79-17C turbine life is therefore not expected to be affected by the fuel property changes investigated in this program.

C. Comparison of Results

Comparisons of the data acquired in this J79-17C engine combustor study to that previously acquired in the J79-17A and F101 engine combustor studies (References 1 and 2), have been made to identify common trends and/or key differences in fuel effects on the three combustion systems. Key design features of the three engine combustion systems are listed in Table 23, which shows:

- 1. The J79-17A and J79-17C engine combustors have several major differences in design features (such as cooling technique, primary zone airflow, fuel/air mixing technique, etc.) so comparisons of these data should provide an indication of the effects of combustor design features on the sensitivity to fuel property variations within the same envelope and operating conditions.
- 2. The J79-17C and F101 engine combustors have many of the same low-smoke long-life design features, so comparisons of these data should provide

Table 23. Comparison of Engine Combustor Design Features.

Design Characteristic	J79-17A (Reference 1)	Engine System J79-17G (This Study)	F101 (Reference 2)
Łngine Type	Augmented Tv~bojet	Augmented Turbojet	Augmented Turbofan
Compression Ratio	13.4	13.4	26.8
Combustor Type	Can-Annular	Can-Annular	Full Annular
Fuel Injector Type	Dual Orifice Pressure Atomizer (Primary and Secondary)	Dual Orifice Hybrid Atomizer (Pressure Atomizing Primary and Low ΔP_f Airblast Secondary)	Simplex Atomizer Low AP _E Airblast
Primary Zone Type	Rich, Liner Thimble Air Feed	Lean, Liner Thimble Plus Corotating Swirler Air Feed	Lean, Liner Thimble Plus Counterrotating Swirler Air Feed
Combustor Cooling Type	Punched Louvers Throughout	Dome Impingement + Film Inner Liner - Machined Ring Aft Liner - Punched Louvers	Dome Impingement + Film Liners - Machined Ring
Smoke Emission Level (Current Fuel)	High	Low	Very Low
Liner Life (Current Fuel)	Short	Long	Very Long

an indication of the effects of engine design features (such as pressure ratio and turbine inlet temperature) on the sensitivity to fuel property variations.

Comparisons which have been made are shown in Tables 24 through 27. Key findings from these comparisons are discussed below.

Table 24 is a verbal summary of the major effects of operating conditions and fuel property variations on each of the combustor parameters which were measured in the current and previous evaluations. The table shows that while each of the combustor parameter levels with the baseline JP-4 fuel are highly engine system and operating condition dependent, fuel property variation effects are very similar in each engine system. In particular, the following fuel property trends are indicated:

- 1. Fuel hydrogen content is the key fuel property at high pressure/ temperature operating conditions, with respect to smoke, NO_{X} , liner temperature and flame radiation levels and hence, combustor durability. Each of these parameters increased with decreasing fuel hydrogen content at takeoff and dash operating conditions.
- 2. Fuel aromatic structure, as indicated by fuel naphthalene content is a relatively less important fuel property. However, at high engine pressure/temperature conditions, some effects of fuel naphthalene content on flame radiation (J79-17A only) and smoke emission (J79-17C only) were observed, when the concentrations were high (12 25 volume percent). Peak liner temperature levels were virtually independent of naphthalene content in all cases.
- 3. Relative spray droplet size (calculated from fuel viscosity, density and surface tension) is a key fuel parameter at low pressure/temperature operating conditions. Low temperature relight capability (both cold day ground start and low Mach number altitude relight) decreased with this parameter. Idle and cruise CO and HC emission levels also increased with this parameter, alone in some cases, and jointly with decreasing fuel hydrogen content in others. In the one case where high temperature atmospheric pressure tests were conducted (F101), pattern factor increased with relative spray droplet size. However, in full density tests of the J79 combustors no fuel effects were found, and none are expected for the F101 at full density.
- 4. Fuel vaporization characteristics (as indicated by boiling range) of the fuels tested are highly confounded with the atomization characteristics, so some of the combustor parameters correlated by relative spray droplet size could be alternately attributed, at least partially, to vaporization properties.
- 5. Fuel breakpoint temperature (by JFTOT) is a key parameter with respect to fuel nozzle fouling, and hence, durability.

Table 25 presents a quantitative comparison of the effects of fuel property variations on exhaust emission characteristics. Coefficients (k_0 , k_1 , and k_2) determined by regression analyses are listed for each engine, operating

Comparison of Operating Condition and Fuel Property Effects(1). Table 24.

FIOI Observed facults (Reference 2)	a Levela Decreased With Engine Power (Ty, Py, fg) and Verr Maglishie Except at ldie. Laid Levela Correlated With 500 Which is Contounded With Volaritty, No Peel A or N Effect Evident. C. Compared to 179, Emissions Much Lower.	a. Lewis Increased With Engine Power (Ty. Py) b. Lewis Decreased Signify With Tuel H Only (No Hitogen in These Puels) at Higher Power Conditions	a. Levels Mere Low Mith all Puels at all Power Conditions (Invasble). b. Levels Decreased With Fuel M, Mearly Independent of M	a Degree of Carbon Buildup Cenerally Decreased With Fuel H, But Light in 4.5 Hour Test.	a. Rise Increased With Fuel/Air Batto, Mearly independent of Engine Power (Ty. Py). b. Peak Lavels Decreased With Fuel M, Awarly Independent of M.	Mot Measured	a. Levels Decreased With Engine Power. b. Effect of SMD Owsered in Assospheric Pressure Tests, but no Effect Expected at Full Density	a. No Fuel Effect Evident.	a Minimum Ambient Temperature for Mormal Start Increased Significantly with Lear Volatile/More Viacous Turls	a. Altitude Capability Reduction Correlated Mith Puel SMD, Particularly at Low Flight Math Mumbers.	a No Clear Effects Indicated in Short (5 Nout) but Severar Ensite, but In longer Term (6100 Nout) Cyclic Tests, crong Effects of Feel Inter Temperatury (Tg) and Fuel Thermal Stability Maring (17707 Break- point, Tgp) on Relative Life Observed.
379-17C Observed Results (file Study)	Levels Decreased With Engine Power (P., T.), (4) and Were Registable at Takeoff and Jah. (141e and Cruse Level Correlated Jointly With Twel B and SBD. (Compared to 179-17), Eassaion Righer at Compared to 179-17), Eassaion Righer at Illie, but Lower at Righer Power Conditions.	Levels Increased bith Engine Power (Ty. Py). Levels Decreased Slightly With Fuel H Only (No Mirrogen in These Puels) at Migher Power Conditions	Compared to 179-17A, Levels Much Reduced at all Power Conditions (Invisible With Current Buels) Levels Decreased With Fuel M, Mearly Lidependent of M	Degree of Garbon Buildup Significantly beavier With Drees Feel Than With 17-4, but Still no Froblem Inducated in 24 but Still no Froblem Inducated in 24	Rise Increased With Engine Pover (Py. Ty) Peak Levels Decreased With M. Mearly Independent of Cooperate Cooperated to 179-17A and F101, Life Limiting Regions Less Sensitive to M	Levels Increased Moderately With Engine Power (P. T.). Levels Correlated With Tuel H. With No Discernable Effect of H	Levels Decreased Sligh.ly With Eng No Fuel Effect Observed (Full Dens (Tests).	No Puel Effect Evident.	Starting Capability was Excellent (< 239 K. Ambient Temperature) With all Foels At 199 K Starting Fuel/Air Ratio Correlated With Foel 590.	Altitude Capability Reduction Correlated with fuel 580, Particularly at Low Flight Hach Musbers.	In Longer Term (27) Nour) Cyclic Tests, Significant Effects of Peel Inter Tempera- ture (Tg) and Thermal Stability Mating (JTTOT Breakpoint, Tgp) on Relative Life Observed
J79-17A Cheerved Results (Reference 1)	Levels Decreased With Engine Power (Tj. Pj). 4. Confounded With Volstility. No Fuel N or P. Confounded With Volstility. No Fuel N or P. Course Levels Correlated With Peel N. Course Levels Correlated With Peel N.	a. Levels Increased With Engine Power (Tj. P.). a b Levels Decreased Slightly With Fuel W Only (the Mittagen in Three Fuels) at Higher Power Conditions	a Levels Were Nigh With all Puris at all Poser Conditions (Highly Visible at Grusse and Takeoff) b. Levels Decreased With Fuel N. Wearly Linde pendent of N.	a Degree of Carbon Buildup Generally Decreased a With fuel H, but Light in 4.5 Hour Tests.	a. Rise increased With Engine Power (Tj. Pj). a. b. Pesh Levels Decreased With Puel R. Mearly D. Independent of W.	a. Levels Increased Significantly With Engine a. Power (P. T.) b. Levels Gorreland Math Pael M. Math Scoodary Effect of M.	a Levels Decreaced With Engine Power. b No Feel Effect Observed (Full Density b Texts)	a. No Fuel Effect Evident.	a. Starting Capability was Excellent (< 239 K a. Ambiert Temperature) With all Fuels b. At 239 K Starting Fuel/Air Ratio Correlated b. With Fuel Sto.	A Altitude Capability was Generally Excellent a. (215 2 km) With 3P-4 and 3P-5 Fuels, but was Reduced with Diesel Fuel	a No Significant Problem Indicated by Short a. (5 Hour) but Severe Tests
Combustor Farameter	(Table 2)	2 HOM Catasions (Table 25)	Sanke Lavestons (Table 25)	4 Carbo Deposition	S Liner Temperature Rise (TL - T3) (Table 26)	6 Pleme Radiation (Table 26)	Pattern Factor	8 Stability at Idle	9 Ground Start	10 Attitude Reiight	Il Fuel Mazie Foulvng

(1) H. H and SHD indicace fuel hydrogen content, naphthalene (dicyclic aromatic) content and relative apray droplet size.

Comparison of Fuel Effects on Exhaust Emission Characteristics. Table 25.

			CO Effects	•	НС	HC Effects	*ON	NO _x Effects	0.00	Smoke Effects	53
		E1co - ko ((14.5)*1	SPD JP-4	E146 - ko ($\left(\frac{EI_{CO}}{EI_{CO}, JP-4}\right)^{k_1}$	EIwox - k	$\left(\frac{14.5}{N}\right)^{k_1}$	SN8 - KO	14.5 K	$SN_8 = k_0 \left(\frac{14.5}{H}\right)^{k_1} (1 + k_2 N)$
Engine Combustion System	Engine Operating Condition	0 x	k ₁	k ₂	k k	k ₁	, k	k ₁	k ₀	7.	k ₂
J79-17A	Idie Cruise	65.9	0 1.38	17.0	23.1		2.6	-0.41	18.4	3.3	-0.6302 0.6088
	Takeoff Dash Overall	1 2 4.5	0.20	111		1.8	17.9	0.39	35.1	3.0	0.0062 0.0058 0.00316
J79-17C (This Study)	Idle Grusse Takeoff Dash Overall	74.8 8.5 1.0 0.5	0.98	0.48	26.9	11112	2.2 6.2 11.8 23.6	-0.67 -0.03 0.36	13.9 13.9 13.9	3.6 3.6 3.6 1.1	0.0103 0.0103 0.0144 0.0070
F101 (Reference 2)	Idle Gruise Takeoff Dash Overall	28.7	0	46.0	2.000	;	3.1 8.9 25.2 29.6	1.38 0.86 0.67 0.65	13362	9.7	0.0038 0.0035 0.0029 0.0038

Comparison of Fuel Effects on Liner Durability Characteristics. Table 26.

	0 C C	Flamo qr = ko	Flame Radiation Effects $k_0 \left[1+k_1(14.5-H)\right] (1+H)$	Flame Radiation Effects $q_r = k_0 \left[1 + k_1 (14.5 - H) \right] (1 + k_2 N)$	Peak Lind $(T_{LM}-T_3) = k_c$	er Tempera $\begin{bmatrix} 1 + k_1 \end{bmatrix}$	Peak Liner Temperature Effects $(T_{LM}-T_3) = k_0 \left[1 + k_1(14.5-H)\right](1 + k_2N)$
Combustion System	Operating	, k	kı	k ₂	ko	kı	k ₂
J79-17A (Reference 1)	Idle Cruise Takeoff Dash Overall	100.8 104.1 135.2 241.8	+0.250 +0.262 +0.418 +0.392	+0.0127 +0.0092 +0.0149 +0.0145 0.0138	196.5 326.8 433.5 463.7	+0.267 +0.129 +0.050 +0.051	+0.0003 +0.0004 +0.0001 +0.0004 +0.000097
J79-17 _G (1)(2) (This Study)	Idle Cruise Takeoff Dash Overall	83.2 94.8 106.9 120.9	+0.0072 +0.0139 +0.0192 +0.0240	+0.00011 +0.00103 +0.00106 +0.00266 +0.00137	80.5 147.8 304.9 306.6	+0.112 +0.350 +0.043 +0.084	+0.0085 +0.0065 +0.0008 +0.0013 +0.0043
Fl01(3)(4) (Reference 2)	Idle Cruise Takeoff Dash Overall				163.1 263.7 313.2 300.9	-0.0281 +0.0618 +0.1006 +0.0914	-0.0017 +0.0001 +0.0003 +0.0006 -0.00019
(1) Radiation Heat Flux correlation based on data from Fuels 3, 4, 7, 8, 9, 10 and 12.	Heat Flux cor	relation bas	sed on dat	Radiation Heat Flux correlation based on data from Fuels 3, 4, 7, 8, 9, 10 and 12.	4, 7, 8, 9, 10) and 12.	(4, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,

Peak Temperature correlation based on representative peak surface mounted thermocouple (No. 7).

(3) Radiant Heat Fiux not measured in this series.

condition and type of emission. In each case, the first constant (k_0) represents the emission level with current JP-4 fuel; the second constant (k_1) represents the sensitivity to the primary fuel property (generally hydrogen content); and the third constant (k_2) represents the sensitivity to any other property (relative spray droplet size or naphthalene content).

Comparison of the coefficients in Table 25 shows that, as noted previously, the emission levels (k_0) are highly engine system and operating condition dependent. However, the fuel effects $(k_1$ and $k_2)$ are relatively consistent both in their presence or absence in each case. The magnitudes of the fuel effects $(k_1$ and $k_2)$ are also fairly consistent, and the differences are probably related to basic engine combustor design features, such as pressure ratio, stoichiometry and residence time.

Table 26 presents a quantitative comparison of the effects of fuel property variations on parameters which influence combustor have durability. Again the listed coefficients were determined by regression analyses and have the same representation as those in the emission comparisons. In this table, however, the fuel coefficients $(k_1 \text{ and } k_2)$ always represent the linear slope of the normalized durability parameter $[q_r/k_0 \text{ or } (T_{\text{IM}} - T_3)/k_0]$ to a decrease in hydrogen content (k_1) , or an increase in naphthalene content (k_2) . In every case, k_2 is at least an order of magnitude less than k_1 , and generally they differ by two orders of magnitude. These comparisons quantitatively illustrate the general insensitivity of these combustion systems to fuel naphthalene content, at least within the ranges tested.

Table 27 presents a comparison of the effects of fuel hydrogen content on predicted relative combustor life. The relative lives of the J79-17A and F101 combustors are expected to be quite similar and sensitive to fuel hydrogen content, even though they incorporate vastly different cooling design technologies and hence, much different absolute lives. The relative life of the J79-17C combustor is predicted to be significantly less sensitive to fuel hydrogen content which, as described in Section VI-B-1, is attributed to the high front end cooling.

Table 27. Comparison of Hydrogen Content Effects on Predicted Combustor Liner Life.

	Rela	tive Combustor 1	Li fe
Fuel Hydrogen Content Weight Percent	J79-17A (Reference 1)	J79-17C (This Study)	F101 (Reference 2)
14.5 (Current JP-4)	1.00	1.00	1.00
14.0 (Current JP-8)	0.78	0.93	0.72
13.0 (ERBS Fuel, (DF2) Reference 5)	0.52	0.83	0.52
12.0 (Minimum, percent these Programs)	0.35	0.74	0.47

SECTION VII

CONCLUSION AND RECOMMENDATIONS

Based on the J79-17C combustion system experiments and analyses conducted in this program together with comparisons to previously conducted J79-17A and F101 experiments and analyses, the following conclusions and recommendations are made:

A. Conclusions

- Fuel hydrogen content strongly affects smoke emissions, liner temperature, flame radiation and NO_X emissions. Hydrogen content is, therefore, probably the most significant fuel property, particularly with respect to high pressure/temperature performance, emission characteristics, and combustor liner durability (life).
- 2. Fuel Vaporization and atomization properties become more significant at lower temperature/pressure conditions. Cold day starting and altitude relight capability are highly dependent upon these properties. At least for the fuels tested, these properties do not correlate with combustion results as well as the relative spray droplet size calculated from fuel viscosity, density, and surface tension.
- Within the range tested, fuel aromatic type (predominantly monocyclic xylenes or dicyclic naphthalenes) had relatively little effect on combustion characteristics.
- 4. Fuel breakpoint temperature (by JFTOT) is probably the most significant fuel property with respect to fuel nozzle fouling. In accelerated cyclic tests, fuel nozzle fouling rates were satisfactorily correlated by this fuel property.
- 5. Fuel property effects on combustion system performance and durability generally tend to be similar for the J79-17A, J79-17C and F101 engines, even though the design features, operating conditions and absolute performance and durability levels differ significantly. The most apparent exception is in respect to the decreased sensitivity of the J79-17C combustor life to fuel hydrogen content.

B. Recommendations

- 1. Selected engine tests are recommended to verify the trend established in these rig tests and analyses, particularly with respect to liner temperature, flame radiation, and hence, durability.
- 2. The fuel nozzle fouling testing in this program appears to have been successful in establishing accelerated test techniques and

data analysis methods. Additional tests with greater variations in fuel and air temperatures, fuel types and longer cyclic tests are recommended to validate the procedures and results.

APPENDIX A

FUEL PROPERTY DATA

A. Detailed Physical and Chemical Properties

Thirteen test fuels were supplied by AFWAL/POSF for evaluation in this program. Detailed physical and chemical properties of these fuels were determined from AFWAL/POSF retained samples and are listed in Tables A-1 and A-2. Selected data from this table together with a general description and rationale for selection of the fuels utilized in these evaluations are presented in Section III of this report.

It should be noted that as before (References 1 and 2) total aromatics determined by fluorescent indicator adsorption (ASTM Method D1319) were always significantly higher than the values obtained by spectrometry (ASTM Method D2789). ASTM Method D1319 is not recommended for fuels having end distillation temperatures over 587 K, but only the diesel fuel exceeded this value. ASTM Method D2789 is not recommended for fuels having 95% distillation temperatures over 484 K and all of the fuels exceeded this value. Recognizing this fact, Monsanto applied an alternative method (their No. 21-PQ-38-63) to five of the fuels shown in Table A-2. With the exception of a few of the components of Fuels 8A and 9A, the results by the two methods were not substantially different.

Samples returned to POSF were checked for any contamination that may have occurred through shipment, storage or handling, by glass capillary gas chromatography with each returned sample's retained counterpart. Some returned samples showed variation from their retained samples, but in all cases these differences were not significant, inasmuch as they did not adversely affect any test or related data analyses. Major differences were noted in returned samples of fuel 2Al, dated 15 Jan 80 and 8 Feb 80, from the Fuel Nozzle Fouling Test Rig. These samples, which differed in high boiling components, C15 and above, also had lower JFTOT breakpoint temperatures. The apparent cause and effect of these differences are explained below.

B. Computed Combustion Parameters

Table A-3 shows several fuel parameters which were computed from the physical and chemical properties for use in conducting the combustion tests and analyses of the results.

Fuel hydrogen-carbon atom ratio (n) was used in the exhaust gas sample calculation. It was calculated directly from the hydrogen weight percent (H) by the relationship:

$$n = \frac{11.915h}{100 - H} \tag{2}$$

Detailed Test Fuel Property Data. Table A-1.

Participant		ASTR							Fue	Fuel Blend M	Number					
10 10 10 10 10 10 10 10	Fuel Proporty	Method	ĵ.	*	241(2)	*	4	*	5	٧,	84	٧,	¥G!	411	ن2۸	1341(2)
11.1 11.2 11.2 11.2 11.3 11.4 11.5 11.4 11.5 11.4 11.5	Hvdrocarbon Type Analyses, Valume Percent By Mass Ductrokery	02789	I KC		,											
1.0 1.0	Parafins Monocolonaraffins			61 4	79.6	39.7	30.6	34.4	25.4	36.8	22.2		7 7 7	77 7	22.22	 2 - 2 2 - 4
1.0 1.0	Dicycloparaffina			~ «	2.7	5.0	2.6	3.3	9.1.9	3.2	12.9	12	52.7	<u> </u>	5.2	-: 20
13 14 15 15 15 15 15 15 15	Indans and Tetralina			0.1	6.6	8	*	1.		8.	7.7		7.0	40	:	6.0
STOLA 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 13	Dihydronaphthalones			;	:	'		- -	6	:	1 2			- 4	ĺ	; ~
13 11 11 11 11 11 11 11	Maphthalenes 8y Fluorescent Indicator			ŝ	·	•	0.77	-	•		<u> </u>	 :				
15 15 15 15 15 15 15 15	Absorption Total Accessics	913.19	SFQLA	12 3	•	6 9	42 \$	7 7	57.1	29 0	1 67	9 67	\$8 3	40.7	18 5	32 1
DIOI FOST 14.44 13.74 13.94 13.92 11.90 13.02 12.04 13.95	Olefins Total Paraffins			1 5	2 1	2.7	56.3 56.3	2,3	40 å	7 69 7 69	0 7 56.2	ຸ້າ ເວີຍ	1.2	0.8 0.8		2,4 65.0
STOCK 12.44 13.74 13.72 11.90 13.02 17.04 13.05 13.05 13.10 11.10 11.05 13.0	Hydrogen Content, Weight								-							
17.00 17.0	Pe cent									-						
Dixi) STOLA La & 13.78 12.71 11.90 13.02 13.70 13.10 11.71 12.95 14.20	Resonance	101101	POSF	14.48	13.94	13.92	11.90			12 93					13 99	15.91
STOTAL STOTAL C. 10004 C. 10001 C.	By Calculation	03%3	SFOLA	14 46	13.78	13 78	2 33			13.02					14.03	80
National Stript Stript C.0004 C.0004 C.0004 C.0006 C.0004 C	Percent															
The color The	Mercaptan Total	D1 219 D2622	20°C	0.000	0.0004	0.0002		0.0006	1000.0	00000	0000	0 0000	c.03	0.0001	70 0	0 20
STOCK STOC	Net Neat Combustion, MJ/kg	22,0	2	3, 5	1, 1,	71.17	91 57	\$4.67	62 03	42.70		42.78	42.35	42 93	73 46	42 58
STOCK STOC	By Coloniation	91116	SPOLA	3 5	63.24	13.23	62.61	69 63		75 80		75 06	11 25	42.63	43.38	42.95
STOLAN S	Lannometer Number	01740	SFOLA	"	9,	6,7	2	<u>ج</u> :	2	23		z :	24	5,	62	22.2
SFOLA SFOLA 133 4.56 4.44 4.61 4.62 4.04 4.05 4.06 4.05 4.06	Smoke Point, me	01322	SFOLA	22 05 27	9:	0 :	12.0	2 :	2 !	<u> </u>		7 79	06.9	02.00	14.48	2
STOLA 133 455 444 441 442 426 426 436 319 316 314 316 317 318 319 318 319 318 319 318 319 318 319 318 319 318 319 318 319 318 31	Flash Point, K	38	SPOLA	: 18	323	320(3)	88	323	299(3)	33	228	16	1 8	707	239	339
STOLA 133 4.56 4.44 4.61 4.62 4.95 4.36 339 336 344 336 337 331 335 331 335 331 335 331 335 331 335 331 335 331 335 331 335 331 335 331 335 331 335 331 335 331 335 331 335 331 335 331 335 331 33	Freezing Point, K			209	423	0,7		*		677	†			:		
No.	Actual Distribution, K	990	702S	333	456	777	197	777	707	857	339	336	344	38	333	997
Marcon M	101 Recovered			370	523	573	477	725	1,5	9,7	380	7.6	967	192	376	687
Chicago Chic	20% Recovered 50% Recovered			419	187	787	787	084		767	1 697	977	96,	. 6	£33	25,
SECOLATION STATE	901 Recovered			167	22	95	\$23	- 55	217	223	516	539	474	4.87	222	, d
STOLA 2.66 13.50 11.56 5.46 4.00 11.69 3.79 3.79 3.70 2.67 2.08 2.05 2.75 3.46	Kingle Bosting Point	3		125	9			ŝ	9	2		-	3	;	 !	}
MIC 129 1.51 1.51 1.05 1.52 1.24 1.24 1.51 1.69 1.46 1.20 1.27 1.51 MIC 1.29 1.51 1.51 1.69 1.24 1.24 1.11 1.07 0.900 0.910 1.11 MIC 0.786 1.657 1.607 1.591 1.104 1.24 2.17 1.11 1.07 0.951 0.900 0.910 1.11 MIC 23 0.28 0.28 1.607 2.24 2.9 0.2 2.9 2.	#238 7K		SFQIA		1	13.50	11.56	76 9	8:	67 17	3.79	25	2 32	2 53	3,50	: :
High column	#244 3K		S 5	2 21	2 5	3.94	66	2 20	78 -	7 67	÷ 59	97	5 2	1.22	1.52	5 77
RISE OF 18 OF 18 OF 15 O	02% 3K		HRC	0.955	2 23	2 45	513	1.69	1.24	2 : 7	1.21		0060	0 810	1 11	3 27
HICC 23 05 25 108 24.7 29 6 29-47 27 86 2 26 2 24.59 2 25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A310 9K	Capillary	Ž.	0 786	- 99 -	6	165.1	1. 304	286 0	079 1	66.0		;	76/ 6		800
HINC 23 05 28.7c 28.4c 27.9c 27.4c 27.8c 2		Rise	X C		;		1	1					1 :	28 60	1	2
Dilatometer MRC 21 73 25 69 25 05 26.05 26 46 20 25 30 23 03 22 10 23 03 22 10 23 30 22.43 22 86 2 20 25 20 25 20 25 20 25 20 26 26 26 26 26 26 26 26 26 26 26 26 26	#273.2K		X X		27.08		27.77	23.47					24 81	25 22	27.30	2 8 65 S
Dilatometer MRC 775 7 646 0 846 6 896.7 659 8 570 2 870 6 849 819.3 8315 6 878 1 810 0 848 8 84.7 8 815.6 870 9 810 0 848 8 84.7 8 815.6 870 9 870 0 840 8 84.7 8 815.6 870 9 870 0 840 84.0 9 799 0 811 0 70 70 70 70 70 70 70 70 70 70 70 70 7	#310 9K		T E		25 69		26.05	26 46					23 30	23.43	22 86	26 68
HEC 772 1 8125.2 612.5 614.6 618.0 64.0 64.8 8 84.7 5 819.6 628 1 804.9 777.2 HTC 755 7 8096 810.4 618.9 811 4 831.3 810.9 799.0 HTC 755 7 8096 810.4 846.9 809 7 818.8 812.8 812.3 785.8 1 799.0 HTC 75 7 798.6 846.9 809 7 818.8 812.3 812.3 785.8 1 799.0 HTC 7 7 7 7 7 7 7 7 809 809 7 1 1 0 7 1 9 7 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Density, kg/m2	Dilatometer	280		0 9 78	9 978		8 658	870 2	870 6		839.3	851 9		0 018	;
NUCE, MPs D2551 MRC 555 7 809 6 8104 858.9 8811 9 8114 851.1 810 7 795 0 11 0 7 705 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0	P273 2K		ARC		825.2	825.5	874 6	838.0	0 878	8 878		815.6	828 1		787.6	28.8
HRC 11 00 2 07 3.7 1 4.0 2 27 1 107 107 193 4.07 4.53 3 4.0 36 3 57 2 1 1.80 2 27 2.0 1.81 2 27 2.61 8 53 9 73 7 20 8 13 8 53 2 HRC 11 00 2 07 3.27 1 4.13 2 27 2 27 2.67 8 53 9 73 7 20 8 13 8 53 2 HRC 19 46 2 73 4.13 2 27 2 7 3 3 9 3 3 3 14 66 16 9 3 17 00 14 00 15 46 2	#294 3X		O D		797 7	3010 7	878.9	6 608		821 3		785 8 1	1980		. 28 2	831.9
HRC 1100 207 3.27 1 W 1.87 2.27 2.67 8.53 9.73 7.20 8.13 8.53 2 HRC 19.46 2.73 4.13 2.27 2.73 3.53 3.53 14.46 16.93 12.00 14.00 15.46 2	True Vapor Pressure, kPa	02551				;				-	- 20 7	5,	3 40	. 6.	3 63	
MRC 19 46 2 73 4 13 7 27 6 73 3 53 14 00 10 53 14 00 1	A205 JK		2 2	8 =		3.23		£.;	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.67		2 2 3	202	6 13	8 53	
	43.0 9K		E C	9, 6		-		;;	, ,	-	200		3	2	:	

ê 8**6**

HIC - Montanto Research, Gorpotation
Styla - WASB Quality Control Lab
Styla - WASB Guels and Lubrication Division Aero Propulation Lab
Tests A2 and LA2 used only in fuel notale foulting tests, detailed property data not obtained
by test method 050

Table A-2. Hydrocarbon Type Analysis Comparison.

	77		4 2		₹		6	,		1-
Component	Method 1	Method 2	Method 1	Method 1 Method 2 Method 1 Method 2	Method !	Method 2	Method 1	Method 1 Method 2	Method 1 Method 2	Method 2
								3 07		0 77
Paraffins	30.6	29.6	36.8	36.0	36.3	32.5	7.	6.24	40.7	0.0
Monocycloperaffins	27.9	30.1	34.0	37.1	22.2	17.9	27.4	22.7	30.4	31.2
Dicycloparaffins	2.6		3.2		,		ı		2.3	,
Alkylbenzenes	11.11	13.7	9.3	11.2	12.9	17.8	11.3	15.9	8.1	٠.٠ د.٠
Indans/Tetralins	5.8	4.6	8.4	3.9	4.3	3.8	2.7	5.6	6.0	4.7
Indenes/Dihydro-		0.4		0.1		7.0		0.2		9.0
naphthalenes Napthalenes	22.0	21.6	11.9	11.7	24.5	27.6	13.7	16.1	7.5	9.5
				-		1				

Method 1. Modified ASTM D2789-71.
Method 2 Monsanto 21-PQ-38-63.
This method combines mono- and dicycloparaffins into a single value.
-Dash indicates none found.

Table A-3. Test Fuel Combustion Parameters.

(SMD)/(SMD)JP-4 Relative Fuel Spray Droplet Size	1.000	1.381	1.431	1.383	1.260	1.153	1.375	1.104	1.046	1.022	1.017	1.056	1.662
(W _f)/(W _f)JP-4 (S Relative Required Relative Fuel Flow Rate	1.0000	1.0103	1.0118	1.0347	1.0236	1.0375	1.0223	1.0318	1.0205	1.0306	1.0169	1.0044	1.0251
Tst, Stoichiometric Flame Temperature at Takeoff, K	2494	2498	2498	2516	2506	2515	2507	2516	2507	2514	2506	2498	2507
fgt, Stoichlometric Fuel/Air Ratio, g/kg	67.52	80.89	68.10	70.31	69.07	70.15	69.17	70.26	69.14	70.10	69.13	68.03	69.19
n, Hydrogen-to-Carbon Atom. Ratio	2.017	1.930	1.927	1.609	1.784	1.631	1.769	1.616	1.773	1.637	1.774	1.938	1.766
Fuel Number	18	2A1	ЭА	44	SA	V 9	7.A	8A	ν6	104	118	12A	134)

and ranged from 1.616 to 2.017 as hydrogen content increases.

Stoichiometric fuel/air ratio (f_{st}) was used to calculate comparative adiabatic flame temperature. It was calculated from the fuel hydrogen-to-carbon ratio (n) by the relationship:

$$f_{st} = \frac{0.0072324}{(1 + 0.25 \text{ n})} \frac{(1.008 \text{ n} + 12.01)}{(3)}$$

which assumes that the fuel is $\mathrm{CH_{n}}$, that the air is 20.9495 volume-percent oxygen, and that the air has a molecular weight of 28.9666. For the test fuels the stoichiometric fuel/air ratio ranged from 67.52 to 70.31 g-fuel/kg-air as hydrogen content decreased.

Stoichiometric flame temperature was used in analyses of NO_X emissions. It was calculated at takeoff operating conditions (T3 = 664 K, P3 = 1.359 MPa) using a standard equilibrium-thermodynamics computer program (Reference 14) and ranged from 2494 to 2516 K as hydrogen content decreased.

Relative required fuel flow rate was used in all combination tests to adjust the JP-4 fueled engine cycle operating fuel flow rates for the reduced heating values of the other fuels. The factor is merely the ratio (Q_{JP-4}/Q) and ranged from 1.00 to 1.0375.

Relative fuel spray droplet size was used in analyses of the low-power emissions and relight performance. The J79-17C combustion system employs hybrid pressure-airblast atomizing fuel nozzles, but even at relight fuel flow rates, the bulk of the fuel is injected through the secondary airblast atomizers. Therefore, El-Shanawany and Lefebvre's correlation parameter for pure air atomizing nozzles (Reference 15) was used to estimate the relative fuel spray droplet Sauter Mean Diameter (SMD) from the test density (ρ) , surface tension (σ) , and viscosity (ν) by the relationship:

$$\frac{\text{SMD}}{\text{SMD}_{JP-4}} = \left(\frac{\sigma}{\sigma_{JP-4}}\right)^{0.6} \left(\frac{\rho}{\rho_{JP-4}}\right)^{0.1} \left[\frac{1 + c_2 \left(\frac{\nu\rho}{\sigma^{1.1}}\right)^{0.4}\right)}{1 + c_2 \left(\frac{\nu_{JP-4} + \rho_{JP-4}}{\sigma_{JP-4} + 1.1}\right)}\right]$$

where:

$$C2 = \left(\frac{0.015}{0.073}\right) \left(D_{P}^{0.1} U_{A}^{1.2} \rho_{A}^{0.7}\right)$$

and D_p , $U_{A \rho A}$ are atomizer diameter, air velocity and air density and all parameters are expressed in basic kg-m-s units. For these relative spray droplet diameter comparisons, J79 idle operating conditions were assumed for which C_2 = 381.8.

As shown in Table A-2, none of the blending agents appreciably changed the predicted relative droplet size of the base fuel. However, the JP-8 based fuels are predicted to produce mean droplet sizes about 38% larger than those of the JP-4 fuel. Further, the diesel fuel is expected to produce mean droplet sizes about 66% larger than those of the JP-4 fuel.

C. Thermal Stability Characteristics

When performing hot fuel tests in nozzles (or other fuel system components) it is essential to know the actual thermal stability of the test fuels. This is not done in routine fuel analyses, since the fuel specifications require only that the fuels pass the thermal stability requirement at 533 K when using ASTM procedure D3241 (JFTOT). In order to determine the actual thermal stability, it is necessary to run additional tests at higher temperatures until a temperature is reached at which the fuel forms heater tube deposits of Code 3 or darker, and/or a filter pressure drop of 25 mm Hg or more in less than 150 minutes. The highest temperature that can be run without reaching these values is known as the thermal stability "breakpoint" temperature. It is not uncommon for aviation fuels to have breakpoints that exceed the specification value by 50 to 75 K.

When selecting fuels for studying the effect of fuel thermal stability on component performance, it is desirable to select two or more fuels that differ significantly in breakpoint temperatures. The precision of the JFTOT procedure has not been established, but experience indicates that repeatability of the breakpoint determination is probably no better than 5 to 10 K. Therefore, fuels differing in breakpoint by at least 20 K are desired.

It is also desirable to show thermal stability effects in a reasonable period of time, without applying unrealistically high temperatures. This requires using at least one fuel with a marginally acceptable, or even a failing thermal stability. Such fuels are extremely difficult to find.

It was originally proposed to use a JP-4 from a refinery which has occasionally produced low thermal stability fuel by a copper-sweetening process. However, when a sample was checked in June, 1979, it was found to have a breakpoint of 573 K (40 K above the specification requirement).

Another candidate, low thermal stability fuel was located at a west coast refinery newly engaged in jet fuel production. This one has a breakpoint of about 511 K, and was of sufficient interest that the Air Force planned to secure and store a quantity for future testing. However, before this could be accomplished, the refiner changed his processing and improved the fuel quality substantially.

It was ultimately agreed that a satisfactory low-quality fuel would be a No. 2 diesel available locally. This was estimated to have a breakpoint of approximately 513 K. The higher quality fuel proposed for comparison was a JP-8 with an estimated breakpoint of approximately 598 K.

Emphasis was placed on determining the breakpoints of the two fuels used in the nozzle fouling tests. When it was determined that the breakpoint temperatures of the returned samples of fuel 2Al were about 25 degrees less than their retained counterpart, samples of fuel 2Al were sent to two outside laboratories, Alcor and Exxon. Their results, as well as POSF data, are shown in Table A-4. Acknowledging the differences in the returned fuel's breakpoint, it was decided to use the returned samples' breakpoint temperatures in any of the required data analyses. It was later ascertained that another JP-8 fuel, 2B, was used instead of the supplied fuel 2A which was, at that time, nearly exhausted. The reported breakpoint temperature of fuel 2B is 573 Kelvin which matches the returned samples of fuel 2Al. Later, a second quantity of JP-8 was requested from POSF for delivery in early April 1980. This fuel, drawn from the 2Al source tank, was designated as fuel 2A2. Returned samples of this fuel have the same breakpoint, within the accepted limits of repeatability, as its retained sample. Fuel 13Al breakpoint temperatures also match their retained counterparts, within repeatability limits. Fuel 13A2 represents a second quantity of fuel 13A which came from a different source than 13A1 and was not expected to have the same breakpoint temperature.

It should be noted that, in every case, breakpoints were based on preheater tube deposits since filter pressure drop did not reach the failure level until after the tube deposit reached a visual rating of 3.

Table A-4. Thermal Stability Rating of Test Fuels. (ASTM Method D3241)

Fuel	JFT	OT Breakpoint ⁽¹⁾), K	
Number		Retained Sample	es	Returned
	USAF	ALCOR	EXXON	Samples USAF
1A	538			
2A1	593	$653^{(2)},553$	603	573,573
2A2		~	_	603,603
į				583,583
3A	593	~	-	_
4A	578,563	-	_	_
5A	583	-	-	-
6A	573	-	–	-
7A	560	-	_	-
8A	538	••	<u> </u>	_
9A	541,533	-	-	-
10A	543	-) -	-
11A	576	-	-	-
12A	553	-	-	_
13A1	533	523,523	523	523,523
13A2	-			503,503

⁽¹⁾ Defined as the highest temperature at which a maximum visual rating of the heater tube deposits is less than a code 3.

 $⁽²⁾_{\mbox{Sample}}$ contaminated by red gasket material.

Figure A-1. JFTOT Results on Retained Sample of Fuel No. 2Al, by USAF.

APPENDIX B

HIGH PRESSURE TEST DATA

Table B-1 presents a summary of the key reduced data from the high pressure performance and emission tests. Table B-2 presents additional measured and calculated parameters for these tests.

Table B-3 presents the measured and corrected CO emission test data at the four engine operating conditions. The procedure for correcting the measured data to engine conditions by the ratio of the severity parameters is also shown. As can be seen, the corrections are all relatively small except at dash operating conditions were the test pressure was reduced. Measured and corrected hydrocarbon emission data are similarly presented in Table B-4. NO_X data are similarly presented in Table B-5. Small differences in measured and corrected NO_X emission indices are primarily due to the humidity correction.

Table B-6 presents the smoke data analysis. As described in Section VI-A3, no operating condition severity parameter could be readily found, so the data are presented as they have been corrected to engine Station 8 fuel/air ratio conditions, described in Appendix F, and averaged at each simulated engine power level.

Detailed liner temperature measurements are listed in Table B-7 (inner liner) and Table B-8 (rear liner) for the high pressure performance tests. The data are presented as liner temperature rise ($T_{liner} - T_3$). The indicated thermocouple locations correspond to those shown in Figure 16 and Table 7. Correlations of the liner temperature rise data with operating conditions and fuel hydrogen content are summarized in Tables B-9 and B-10.

Table B-11 presents a summary of the flame radiation data analysis. Linear regression curve fits of the data (see Figure 50) were made and from these the quoted engine flame radiation levels were calculated.

Detailed combustor exit temperature profile and pattern factor data are listed in Table B-12. Linear regression curve fits of these data (see Figure 53) were made and are summarized in Table B-1, and are the quoted engine pattern factor levels in Figure 54.

Table B-1. Basic High Pressure Test Data.

Fuel Hamber	Reading Number	Test Puint Humber	H3, Potal Ateflor, bg/a	Mc, Combustor Atrillor, 2g/s	P3, lalet Total Pressure, Ma	T ₂ , Inlet Total Tesperature, K	in, Melezed Fuel'Alf Ently, g'Ag	hy, falet Air Munidity, gring	UPr'Py, Total Pressure Loss, S.	og, Flame Radiant Meat Flun, AW/n2	Office. Arerage Temperature H.se, K	'He, Thermal Combustica Efficiency, S	Prf, Profile Pactor	Ff. Suttern Factor	(TL, max - Tg), Peak Liner Temperature Piss, K	U(g). (1) Enterior Index, 8 tq	E)HC HC Empatich Index 6'kg	Flug, tu, knission loden, a he	fs, Staple Puel Att Masso, g'Mg	'Eg, Gas sample Combustion Efficienty, :	384, Combustor East Smoke Number
241	3 4 5 6 7 8	2456789	1 794 1.785 2.950 2.981 7.596 7.539 6.487 6.580	1.538 1.519 2.527 2.559 6.475 6.364 5.548 5.637	0.253 0.254 0.468 0.466 1.366 1.372 1.198 1.197	422 423 560 557 656 658 770 370	9.0 7.9 13.8 19.2 13.3 17.1 13.0 14.0	1 3 1.2 1.0 0.9 1.3 1.3	3.31 3.27 3.65 3.73 3.14 3.11 3.91		389 299 521 695 529 615 438 496	102.0 95.3 101.4 99.6 108.7 100.0 99.0 99.9	1.158 1.178 1.158 1.109 1.137 1.120 1.150 1.156	0 395 0 415 0 340 0 330 0 156 0 349 0 351 0 157	141 111 340 337 480 519 505 497	40 9 9 5 8.1 1.3 0 8 1 0	11 9 41 - 0 6 0 3 0 2 0 1	3 5 3 7 6 6 5.4 13 8 13 5 42 6 22 6	17 5 10 0 16.9 23 3 16 6 19 1 15.2 16 1	95 34 94 26 99 29 99 29 99 95 99 96 99 98 99 98	3.6 5 1 12 2 16 2 11 1 17 6 3.6 5.1
14	10 11 12 13 14 15 16	# 9 6 7 4 5 3 2	6.572 6.605 7.503 7.452 2.870 2.866 1.837 1.819	5.634 5.682 6.398 6.325 2,454 2,442 1.601 1.560	1.191 1.189 1.369 1.365 0.464 0.469 0.249	769 771 664 663 360 361 427 432	12.6 13.6 13.5 15.6 13.7 19.2 9.3 7.7	1.3 1.4 1.3 1.7 1.4 1.2 1.1	4.00 4.01 3.27 3.31 3.54 3.52 4.26 3.25		446 480 505 576 471 656 348 282	99.9 98.5 101.9 100.9 91.2 93.1 94.2 92.2	1.150 1.154 1.150 1.144 1.226 1.154 1.174 1.180	0 365 0.362 0 341 0.349 0 418 0 339 0.534 0.422	309 508 435 443 394 398 261 261	1 0 0.9 1 3 1 3 8.5 7.3 ,0.9 68.4	0 0 0 0 0 0 19 2 35.9	23.2 22 0 14 6 13 9 6 1 5.8 1.2 2 1	14.3 15.4 15.5 18.0 15.2 21.4 10.8 9.0	99.98 99.98 99.97 99.97 99.80 99.83 96.91 95.27	2.6 3.6 8.1 12-2 2.8 2.8 1.2 3.2
64	17 18 19 20 21 22 73 24	2 3 4 5 6 7 8	1.821 1.819 2.909 2.938 7.436 7.459 6.556 6.562	1.570 1.555 2.486 2.512 6.304 6.339 5.639 5.639	0.256 0.253 0.467 0.474 1.384 1.375 1.198 1.200	417 418 560 557 667 672 775 775	7.8 9.9 14.0 19.0 14.0 15.5 12.9	0.4 0.3 0.5 0.7 0.7 0.7 0.7	3.80 3.66 3.67 3.62 3.13 3.32 3.79		287 365 316 690 322 386 471 534	92.5 93.4 98.9 99.9 102.5 105.1 102.8 101.7	1.118 1.107 1.097 1.082 1.105 1.099 1.108	0.337 0.324 0.282 0.262 0.318 0.311 0.311	107 147 368 35- 480 482 517 460	100.1 89.5 10.2 7.5 1.5 1.4 1.0 0.9	45.5 32.1 0.8 0.4 0.2 0.3 0.4 0.2	2.5 2.5 16.0 13.8	9.2 11.6 16.5 23.4 17.1 19.4 14.0	93 74 95 13 99,69 99,76 99 95 99,94 99,95	19.0 6.2 14.5 25.7 14.5 15 2 3.4 11.1
3A ,	25 26 27 28 29 30 31	9 8 6 7 4 5 2 3	6.531 6.557 7.504 7.447 2.846 2.865 1.826	5.601 5.631 6.368 6.307 2.420 2.435 1.575 1.560	1.201 1.198 1.373 1.365 0.468 0.472 0.252 0.251	768 772 663 663 569 574 425 423	13.9 12.7 13.6 15.8 19.4 14.1 8.0 9.8	0.6 0.6 0.8 0.8 0.9 0.8 0.9	3.99 3.91 3.22 3.39 3.61 3.57 6.04 3.97		354 448 512 577 635 488 277 344	100.2 100.3 104.6 102.5 94.2 94.6 88.2 90.4	1.109 1.121 1.130 1.135 1.145 1.164 1.208 1.212	0.329 0.345 0.101 0.301 0.284 0.321 0.334 0.442	451 450 463 408 321 392 179 152	0.9 0.9 1.3 1.5 8.1 8.9 92.5	0 0 0 0.1 0 1 42.0	25.6 15.2 15.2 15.7 7.2 2.4 2.2	17.3 13.8 15.1 17.1 20.4 14.8 8.8 19.8	99.98 99.98 99.97 99.97 99.80 99.78 94.20 94.36	15-3 2-4 22-6 20-4 23-2 16-8 3-6
114	33 34 35 36 37 38 39 40	8 9 6 7 4 5 2	6.568 6.277 7.486 7.497 2.959 2.913 1.750 1.786	3.636 3.340 6.363 6.362 2.536 2.482 1.513 1.525	1.202 1.196 1.364 1.369 0.467 0.474 0.235 0.252	783 780 656 654 354 550 429 429	12.7 15.6 13.7 14.9 13.4 20.6 8.2 9.9	0 7 0.7 0.1 0.1 0.1 0.1 0.1	3.96 3.64 3.36 3.11 3.86 3.69 3.68 3.53		454 552 517 564 481 720 281 354	101.2 111.6 104.2 105.2 96 9 97.3 86.9 91.6	1.103 1.098 1.117 1.107 1.173 1.127 1.225 1.172	0.331 0.312 0.267 0.282 0.355 0.241 0.380 0.341	498 453 494 487 359 293 176 243	0.9 1 0 1.5 1.6 9.4 8.4 110 7 76.8	0 0 1 0.1 0.1 0.2 0 2 50 6 24 2	- - - 6 5 5.8 3.2 3.1	14.0 17.0 15.0 16.6 14.9 22 8 9 1 11.0	99.98 99.97 99.96 99.95 99.76 99.79 93.04 96.10	8.6 16.7 19 0 19 4 3.6 13 6 13 6 3.5
1At	41 42 43 44 45 46 47	2 3 4 5 7 6 8 9	1.828 1.808 . 181 2 936 7, 80 7,? 6,589 6,550	1 579 1.573 2.443 2.505 6.258 6.286 5.664 5.628	0.255 0.252 0.478 0.476 1.378 1.368 1.178 1.200	475 425 562 555 662 663 777 776	7 3 9.1 13.4 17 4 15.0 13.4 12.3 14.2	4.8 4.8 4.8 4.9 5.1 5.5	3.78 3.55 3.20 3.51 2.99 3.11 4.04 3.94		298 375 536 678 591 524 452 523	100.7 103.6 105.6 105.3 107.8 105.8 101.8 102.9	1.118 1.101 1.095 1 079 1 093 1.110 1.111 1.099	0.303 0.320 0.319 0.336 0.353 0.366 0.353 0.351	163 173 397 353 400 410 447 453	75.5 75.2 7.6 0.0 1.2 1.2 0.9	34.5 27.8 0 0 0	1.7 1.4 6.6 6.4 13 7 14.4 22 0 21.5	8 8 10.8 16.0 20 3 17 0 15.0 13 5 13.6	95 23 95.82 99.83 99.84 99.97 99.97 99.98	4 4 2 8 3 6 5 1 17 3 15.7 3.9 8 1
1341	49 50 51 52 53 54 55 56	3 2 4 5 6 7 8	1.790 1.814 2.923 2.935 7.657 7.543 6.464 6.450	1.543 1.564 2.493 2.504 6.499 6.411 5.544 5.536	C,258 0,255 0,475 0,475 1,377 1,371 1,186 1,188	417 619 556 558 658 660 775 776	10.0 8.0 13.5 17.2 13.1 14.8 12.3 12.6	4.9 4.9 4.8 4.9 5.1 5.1	3.46 3.55 3.62 3.67 3.27 3.30 4.01 4.01		358 276 513 636 510 566 436 444	92 4 87.5 103.0 102.5 108.2 107.0 100 7	1.115 1.105 1.090 1.137 1.094 1.104 1.113 1.109	0.291 0.297 0.242 0.300 0.288 0.265 0.265 0.284 0.294	101 108 364 348 499 428 378 404	99.4 103 0 14 0 10 - 1 R 1.9 1 2	49 5 38.2 1 1 0 7 0 4 0 2 0 1 0 1	1 4 1.5 - 6.2 15.9 14.0 21 8 25.4	11.9 8.7 15.1 19.8 14.3 15.8 13.1 13.5	97 65 94.28 99 57 99 69 99 92 99 94 99 96 99 96	3.4 4.0 20.3 28.0 25.8 21.4 4.7 6.1

Table B-1. Basic High Pressure Test Data (Concluded).

							y		,	2 10 10 10 10 10 10 10 10 10 10 10 10 10		racy, 's			reture Aise, K			y		lciency, S	ı.
.1 Kumber	aling Hamber	it Ditt Hunder	, Tutal Atriline, Ng/s	Commetter Ayeritors, hg/h	, Inlet Tutal Pressure, Wes	falet Total Tomperature, E.	Metered Parl/Air Batto, g/	inlet hir Hunsdity, g/kg	r'P3, Total Pressure Luss, S	Flace Radiant Seet Plut, hit	ug, Average Temperature Ala	, Thermal Combustion Effici-	, Profile Factor	Pattern Factor	man - T3), Duak Liner Toupe	00. Co Estation Index, g/kg	MC, MC Emission Index, g/kg	Elyo,' NO, Entation [peek, g/1	, Sasple Fuel 'Air Betto, 6/46	y is Semple Combustion Eff	4. Combustor Fast Smoke Numb
104	37 38 39 60	27 4 5	1.810 1.792 2.858 2.849	1.960 1.533 2.427 2.454	0.261 0.261 0.478 0.478	418 418 557 550	7,8 9,9 13,9 19,6	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 80 3.57 3.69 4 00	85.7 85.7 96.5 96.1	275 339 530 699	90.8 88.9 104.2 100.9	1 133 1.110 1 191 1.112	0.447 0.319 0.243 0.300	167 136 340 420	98.3 88.2 9.8 8.4	51.0 43.0 1.4 0,6	1.9 1.7 6.5 6.2	8.9 11.1 16.4 22.2	9, 30 94 23 99 65 97 75	17 9 16 4 22 1 24 5
	61 62 63 64	, , ,	7,457 7 189 4 355 6,430	6.427 6.205 5.484 5.566	1 384 1 376 1 221 1 219	655 766 765	13.6 16.6 12.3 13.7	1.7 1.9 1.8	3 31 2 78 3 59 3.65	122.9 117.8 132.3 135.5	532 620 448 490	109.0 105.5 103.5 102.5	1 095 1.098 1 076 1 078	0 263 0.259 0.223 0.248	487 511 576 595	1.6 1.5 1.1 1.0	0,6 0.5 0,6 0,6	16.2 15.0 26.6 25.3	19.3 14.3 16.0	99 91 99 92 99.93 99 94	27 L 37 O 6.5 11.L
124	65 66 67 68 69 70 71 72	67 45 27	6.359 6.468 7.298 7.476 2.858 2.771 1.778	5.470 5.661 6.296 6.264 2.431 2.386 1.567 1.488	1.219 1.227 1.376 1.381 0.478 0.479 0.236 0.238	764 756 653 656 564 566 432 431	12.3 13.3 13.8 16.4 13.9 20.0 9.4	1.5 1.4 1.4 1.7 1.3 1.3	3 43 3 10 2.83 3 36 2.47 4.05 5 08 4.91	126.0 126.0 115.0 110.3 92.0 90.7 85.7 83.8	442 487 523 614 306 691 340 270	99.8 102.2 103.5 103.5 97.2 95.0 91.2 83,4	1.085 1 085 1 089 1.090 1.089 1.097 1.118	0.231 0.246 0.225 0.227 0.258 0.228 0.362 0.363	554 567 478 487 388 395 163 149	0.9 1.0 1.3 1.3 9.6 6.9 82.6 93.7	0.4 0.6 0.3 0.3 0.5 0.2 34.2 47.2	24.5 22.3 14.2 13.8 4.5 6.6 2.4	13.9 15.4 15.4 18.4 16.2 21.6 10.2	99 94 99 94 99.94 99.95 99.74 99.82 95.10 93.71	3,2 6,5 13,2 17,5 3,6 8,3 2,6 2,6
94	73 74 75 76 77 78 79	72454789	1 737 1-796 2.735 2.903 8.092 7.454 6.414 6.323	1.306 1.331 2.486 2.304 7.122 6.468 3.393 5.493	0.236 0.256 0.477 0.486 1.335 1.389 1.206	413 413 364 364 659 660 771 774	9.8 7.9 13.4 18.8 11.9 15.8 12.0 13.8	1.2 1.7 1.6 3.4 5.2 8.7 7.2	4 52 3.39 3 50 3 59 4.43 3.28 3.85 3.65	83.8 83.8 85.7 88.2 102.4 112.8 120.3	324 268 476 660 454 612 438 498	84.5 86.0 96.3 97.7 105.0 108.5 102.5	1.09: 1.088 1.093 1.109 1.094 1.097 1.078	0.311 0.276 0.264 0.276 0.276 0.213 0.213 0.213	150 152 375 420 463 439 500 479	86.2 94.5 11.1 8.7 2.5 1.7 1.1	44.1 43.8 1.6 0.4 0.1 0.2	2.0 1.9 6.2 5 8 13.8 14 0 24.7 24.6	10 1 8.7 14.2 20.3 14.3 18.9 14.2	94.17 98.83 99.61 99.76 99.95 99.96	5.7 13 1 14.1 18.0 16.7 31.0 6.1 11.6
8A	81 82 83 84 85 86 87 88	8 9 6 7 4 4 3 7	6.391 6.369 7.376 7.344 2.858 2.830 1.760 1.823	3.57* 3.579 6.382 6.323 2.481 2.386 1.547 1.569	1.205 1.209 1.390 1.395 0.477 0.476 0.259	775 778 959 661 560 557 433	12.1 13.6 13.9 16.3 19.3 14.4 9.7	3.8 1.6 1.3 1.3 1.9 1.6	3.89 3.65 2.97 3.41 3.35 3.73 3.49 3.26	129.5 122.9 112.8 12.8 98.3 98.3 98.3 88.2 85.7	434 495 524 603 692 515 349 276	102.4 103.6 105.8 104.9 100.8 98.4 93.7 89.8	1 072 2 069 1.082 1 085 1 086 1.085 1 086	0.263 0.278 0.197 0.220 0.194 0.221 0.237 0.246	535 510 468 462 338 374 226	1.0 0 9 1.6 1.8 8.5 12.3 73.8 78.8	0.2 0.1 0.2 0.1 0.2 0.5 28,4	25.6 25.1 15.2 14.9 6.3 6.7 2.4	14.8 17.6 16.6 19.8 23.0 16.3 11.2	99 94 99 97 99.95 99.78 99.67 95.82	7.6 12.4 36.0 40.7 28.9 27.2 9.3
40	89 90 91 92 93 94 95	2 3 4 5 6 7 8 8	1.805 1,797 1.873 2.891 7.331 7.450 6.382 6.291	1.494 1.474 2.494 2.495 6.301 6.427 5.496 3.448	0 257 0.254 0 477 0.486 1 385 1.410 1.219	421 418 555 555 662 634 771 773	8 5 10.5 13.9 19.6 13 8 15.9 12 3	1.0 1.0 2.1 2.6 2.3 1.8 1.7	4 00 3 92 3.65 4 06 3.12 3 17	83.8 96.1 96.1 105.2 110.3 120.3	296 373 536 723 538 636 459 515	90.3 88.6 105.7 104.3 109.4 113.6 106.9	1.073 7 074 1.068 1.068 1.066 1.066 1.064 1.062	0.214 0 234 0 186 0.187 0 219 0.196 0.280 0.279	134 143 389 567 475 507 502 475	102.3 102.7 12.2 7.8 1 7 1 4 1 0	49 2 38.1 0.8 0.4 0.3 0.1 0.2	1 6 1.5 6 3 6.2 16.2 15.4 24 5 23.8	9.8 tl 9 16.1 23 0 17 4 20.9 15 9 18.2	93 36 94 30 99 64 99 78 99 94 99 96 99 96	15 2 17.2 28.7 39.1 23 8 27 6 15 3 18.5
7A	97 98 99 100 101 102 103 104	8 9 6 7 4 5 3	6.357 6.394 7.203 7.257 2.871 2.808 1.846 1.846	5.377 5.361 6.164 6.219 2.495 2.381 1.601 1.583	1 220 1 215 1 395 1 391 0 476 0 477 0 256 0 257	777 7°8 671 664 552 563 426 423	12.0 13.7 14.0 16.5 13.7 20.2 9.4 7.8	1.3 1.2 1.1 1.1 1.1 1.0	3 52 3.48 3 17	122.9 170.3 112.8 110.3 102.4 98.3 85.7	445 507 536 676 504 707 334 258	105.3 105.8 106.7 106.8 99.2 98.2 90.9 84.3	1 06# 1 070 1 069 1 065 1 105 1 077 1 104	0 2'2 0.293 9 243 0.240 0 195 0 205 0.226 0.489	478 476 522 433 383 413 140 118	1 0 1.0 1.3 1 2 13 9 7.3 101.4	0.1 0.1 0.1 0.1 0.2 0.2 42 0	25.0 23.9 15.8 15.0 6.6 6.7 7.0 1.5	15 2 17 c 17.6 20 2 15 9 23 4 10 7 8 5	99.97 99.97 99.96 99.96 99.61 99.81 93.99 92.18	7.2 14 i 31 3 27 7 23 0 32.1 7.9 7 9
34	.05 10* 16* 198 109 110	8 9 6 7 4 5 3 2	5 241 6 368 7 357 7 371 2 908 2 862 1 928 1 896	3.488 3.502 8.146 6.368 2.468 2.468 1.669 1.637	1 216 1-214 1-379 1-391 0 473 C 478 U 262 0 265	793 795 869 670 564 563 418 421	12 0 13.6 13.4 15.6 13.2 19.1 9.1 7.5	1.0 1.1 1.2 1.3 1.6 1.4 1.1	3.04	112.8 115.0 112.8 110.3 98.3 94.5 65.7 83.8	452 504 540 616 495 697 337 282	105.4 105.2 110.4 109.6 100.8 100.9 94.1 94.0	1 062 1 062 1 072 1 066 1.092 1 077 1 115 1 136	0.246 0.270 0.223 0.224 0.179 0.157 0.330 0.536	483 +57 423 449 289 301 115 100	0.6 0.6 1.1 1.0 11 0 7 2 102.2 106.6	0 5 0.3 0.2 0 1 0.5 0.2 46 5 59.7	26.4 26.0 14.7 15.4 6.5 6.4 1.9	15.0 17 1 14 8 19.0 15.2 22.2 10 4 8 6	99 94 99.96 99 96 99.97 99 70 99 81 93 57 92 32	4 3 5.7 18 4 20 0 14 7 19.6 3 5 3 2

Table B-2. Supplementary High Pressure Test Data.

Fuel Number	Reading Number	V _r , Reference Velocity, m/s	fs/fm, Ratio of Sample to Metered Fuel-Air Ratio	Tf. Fuel Temperature, K	Wf. Fuel Flow Rate, g/s	$\Delta P_{ m f}$, Fuel Nozzle Pressure Drop, MPa	A _E e, Fuel Nozzle Effective Area, mm ²	X _{C8} , Engine Exit Gas Carbon Concentration, mg/kg	SNg, Engine Ext: Smoke Number	Els, Smoke Emission Index, g/kg	S _{CO} , CO Emissions Severity Parameter	$s_{N_{O}}$, NG Emissions Severity Parameter $x_{N_{O}}$	Spr. Pattern Factor Severity Parameter	S _R , Flame Radiation Severity Parameter
2A	1 2 3 4 5 6 7 8	23.9 23.6 28.2 28.5 29.0 28.5 33.2 33.9	1.30 1.27 1.22 1.21 1.23 1.11 1 17	288 289 288 289 287 286 288 288	14.8 12.0 34.8 49.1 86.1 100.8 71.9	0.920 0.862 1.118 1.229 1.526 1.649 1.359 1.428	0.383 0.319 0.815 1.098 1.725 1.944 1.529 1.640	0.144 0.277 0.610 0.624 0.838 1.236 0.212 0.293	2.0 4.1 8.4 8.7 10.3 16.0 3.1 4.3	0.018 0.035 0.054 0.055 0.051 0.075 0.016 0.022	0.976 1.049 0.158 0.139 0.0210 0.0179 0.0122 0.0120	0.192 0.153 0.502 0.436 1.201 1.143 1.817	1.125 1.210 1.034 0.955 1.056 1.028 1.064 1.033	-
1A	9 10 11 12 13 14 15	33.9 34.4 28.9 28.6 27.6 27.2 25.6 25.6	1.14 1.14 1.15 1.15 1.11 1.12 1.16 1.26	288 288 287 287 288 287 289 290	70.9 77.0 86.1 98.9 33.6 46.9 14.9	1.389 1.450 1.551 1.663 1.081 1.235 0.858 0.796	1.544 1.639 1.772 1.967 0.830 1.082 0.412 0.326	0.225 0.210 0.629 0.848 0.136 0.097 0.081 0.160	3.3 3.0 8.8 10.5 1.8 0.8 0.7 2.2	0.017 0.016 0.038 0.051 0.012 0.009 0.010 0.020	0.0128 0.0124 0.0195 0.0182 0.157 0.128 1.043 1.003	1.784 1.736 1.252 1.205 0.505 0.463 0.176 0.136	1.060 1.035 1.073 1.043 1.071 0.993 1.121 1.186	-
6A	17 18 19 20 21 22 23 24	23.9 24.0 27.8 27.5 28.3 28.9 34.0 33.9	1.18 1.17 1.18 1.23 1.22 1.25 1.24 1.22	288 286 285 285 284 284 285 285	12.2 15.5 34.9 47.8 88.5 98.3 72.6 84.0	0.828 0.871 1.123 1.228 1.576 1.660 1.394 1.502	0.328 0.407 0.807 1.056 1.726 1.869 1.506 1.680	1.340 0.300 0.750 1.183 1.063 1.008 0.193 0.603	17.0 4.4 10.2 15.2 13.9 13.5 3.0 8.3	0.171 0.038 0.067 0.105 0.064 0.061 0.015 0.046	1.108 0.994 0.155 0.132 0.0181 0.0171 0.0121	0.147 0.198 0.511 0.458 1.306 1.270 1.849 1.782	1.212 1.139 1.043 0.974 1.077 1.038 1.047	-
5A	25 26 27 28 29 30 31 32	33.4 33.8 28.6 28.5 27.4 27.6 24.8 24.5	1.08 1.09 1.11 1.08 1.05 1.05 1.10	285 285 285 284 285 286 286 286	89.3 71.4 86.6 100.3 47.1 34.3 12.6 15.2	1.540 1.376 1.537 1.660 1.206 1.069 0.826 0.856	1.773 1.500 1.720 1.917 1.057 0.816 0.342 0.406	0.919 0.165 2.202 1.702 1.139 1.020 0.215 0.176	12.5 2.3 24.2 20.3 14.9 13.6 3.2 2.7	0.069 0.012 0.133 0.103 0.101 0.091 0.028 0.022	0.0112 0.0124 0.0193 0.0180 0.121 0.136 1.090 0.992	1.711 1.842 1.270 1.215 0.481 0.552 0.150 0.195	1.012 1.062 1.074 1.044 0.993 1.068 1.205	-
11A	33 34 35 36 37 38 39 40	34.2 32.6 28.5 28.3 28.0 26.9 24.4	1.10 1.09 1.10 1.12 1.12 1.10	285 285 285 285 286 285 288	71.6 83.5 87.1 94.5 33.9 51.2 12.3	1.403 1.529 1.577 1.640 1.086 1.282 0.822	1.520 1.699 1.744 1.857 0.818 1.137 0.342 0.410	0.585 1.006 1.746 1.621 0.184 0.516 0.885 0.165	8.0 13.5 20.7 19.6 2.9 7.2 11.9	0.044 0.076 0.106 0.098 0.016 0.046 0.113 0.021	0.0115 0.0102 0.0204 0.0196 0.167 0.131 1.013 0.928	1.926 1.872 1.239 1.207 0.502 0.440 0.164 0.209	1.056 1.029 1.071 1.051 1.054 0.972 1.230	-
lAR	41 42 43 44 45 46 47 48	24.2 24.5 24.7 26.8 27.2 28.0 28.4 34.8 33.9	1.11 1.20 1.19 1.19 1.17 1.13 1.12 1.10	287 293 292 290 290 289 290 289 289 289	11.6 14.2 32.8 43.6 93.9 94.4 69.7 80.0	0.859 0.865 1.078 1.208 1.658 1.580 1.410	0.327 0.392 0.809 1.017 1.868 1.721 1.505 1.669	0.269 0.132 0.172 0.198 1.361 1.354 0.408 0.500	2.3 4.0 1.8 2.6 3.0 17.1 17.0 5.9 7.0	0.021 0.034 0.017 0.015 0.018 0.083 0.082 0.031 0.038	1.110 1.018 0.146 0.138 0.0181 0.0194 0.0127 0.0114	0.126 0.165 0.505 0.440 1.162 1.182 1.674 1.660	1.149 1.189 1.118 1.054 0.982 1.047 1.072 1.046	-
134	49 50 51 52 53 54 55 56	23.3 24.0 27.2 27.6 28.9 28.8 33.8 33.7	1.10 1.19 1.09 1.12 1.15 1.09 1.07 1.06 1.08	288 288 287 287 287 288 288 288	15.4 12.6 33.6 43.0 84.8 95.0 68.2 69.4	0.883 0.849 1.100 1.193 1.543 1.621 1.352 1.371	0.397 0.332 0.779 0.955 1.658 1.812 1.423	0.246 0.245 1.311 1.626 2.839 2.265 0.328 0.427	3.8 3.8 16.6 19.8 28.5 24.8 4.8 6.2	0.031 0.031 0.116 0.144 0.172 0.137 0.025 0.032	0.930 1.087 0.156 0.139 0.0206 0.0191 0.0124 0.0121	0.192 0.140 0.479 0.441 1.146 1.117 1.726	1.021 1.160 1.222 1.054 0.993' 1.067 1.044 1.071 1.067	-

Table B-2. Supplementary High Pressure Test Data (Concluded).

Fuel Number	Reading Number	V _r , Reference Velocity, m/s	fs/fm, Ratio of Sample to Metered Fuel-Air Ratio	T _f , Fuel Temperature, K	Wf. Fuel Flow Rate, 8/s	ΔP _f , Fuel Nozzle Prcssure Drop, MPa	Afe, Fuel Nozzle Effective Area, ma	X.8' Engine Exit Gas Larbon C8 Concentration, mg/kg	SN ₈ , Engine Exit Smoke Number	EI _S , Smoke Emission Index, g/ks	S _{CO} , CO Emissions Severity Parameter	$S_{ m NO}$, NO Emissions Severity Parameter	Spr, Pattern Factor Severity Parameter	S _R , Flame Radiation Severity Parameter
10A	57 58 59 60 61 62 63 64	22.8 23.0 27.0 26.5 28.7 27.7 32.2 32.7	1.146 1.122 1.178 1.140 1.203 1.162 1.160 1.167	289 294 294 291 293 289 288 293	12.1 15.2 34.3 47.7 87.7 103.3 67.7 76.3	0.878 1.136 1.281 1.663 1.780 1.430	0.402 0.800 1.045 1.687 1.917 1.401 1.539	1.29 0.91 1.33 1.17 2.71 4.14 0.43 0.68	16.5 12.3 16.8 15.0 27.6 34.4 6.2 9.5	0.164 0.117 0.118 0.104 0.164 0.251 0.033 0.051	1.024 0.917 0.150 0.131 0.0198 0.0180 0.0122 0.0119	0.154 0.206 0.518 0.450 1.234 1.163 1.856 1.770	1.240 1.187 1.053 0.989 1.065 1.041 1.088 1.055	0.693 0.693 0.843 0.835 0.994 0.988 1.144 1.143
12A	65 66 67 68 69 70 71	32.2 32.7 28.0 27.9 26.8 26.5 24.4 23.4	1.134 1.157 1.121 1.123 1.171 1.076 1.085	292 289 292 293 290 290 294 292	67.2 75.2 86.5 102.5 33.8 47.8 14.6 12.0	1.442 1.511 1.656 1.793 1.153 1.291 1.082 0.912	1.424 1.554 1.711 1.949 0.799 1.069 0.357 0.321	0.20 0.40 1.07 1.28 0.16 0.31 0.13	3.0 5.7 14.0 16.2 2.3 4.7 1.7	0.015 0.030 0.065 0.078 0.014 0.028 0.017 0.020	0.0128 0.0202 0.0180 0.141 0.114 0.920 0.948	1.720 1.213 1.173 0.535 0.483 0.194 0.167	1.055 1.079 1.040 1.071 1.000 1.160 1.258	1.129 0.986 0.990 0.851 0.853 0.706 0.706
94	73 74 75 76 77 78 79	22.9 23.3 27.4 27.2 32.9 28.8 33.6 32.6	1.030 1.105 1.061 1.077 1.202 1.199 1.176 1.192	293 288 287 287 288 293 289 294	14.8 12.3 33.2 47.1 84.5 102.2 67.4 75.9	0.900 0.853 1.100 1.253 1.604 1.771 1.429	0.389 0.331 0.790 1.049 1.664 1.920 1.406 1.539	0.31 0.89 0.85 0.83 1.52 2.98 0.41 0.68	4.7 12.0 11.5 11.0 18.6 29.3 5.8 9.3	0.040 0.114 0.076 0.073 0.092 0.181 0.031 0.051	0.961 1.106 0.147 0.121 0.0254 0.0182 0.0126 0.0110	0.200 0.148 0.528 0.479 1.054 1.097 1.609 1.680	1.201 1.243 1.074 0.995 1.033 1.026 1.075	0.688 0.851 0.851 0.993 0.995 1.152 1.157
8A	80 81 82 83 84 85 86 87	33.7 33.7 28.3 28.1 27.3 26.2 24.3	1.227 1.260 1.197 1.212 1.191 1.134 1.155	289 292 295 292 293 292 292	67.5 76.9 88.6 103.2 47.9 34.3 15.0	1.422 1.520 1.638 1.766 1.264 1.116 0.894 0.854	1.385 1.529 1.699 1.904 1.045 0.795 0.288 0.329	0.48 0.71 4.54 4.92 1.48 1.86 0.47 0.37	6.3 9.6 36.0 37.6 18.2 21.6 6.6 5.3	0.036 0.054 0.276 0.299 0.131 0.165 0.061	0.0123 0.0112 0.0192 0.0173 0.126 0.144 0.882 1.022	1.792 1.836 1.243 1.205 0.456 0.523 0.205 0.153	1.077 1.043 1.074 1.043 0.981 1.077 1.158	0.843 0.707 0.708
4A	88 89 90 91 92 93 94 95	25.1 22.8 22.3 27.1 26.7 28.2 28.0 32.6 32.6	1.133 1.159 1.132 1.160 1.178 1.261 1.316 1.291	294 287 289 288 288 289 288 289 288	12.4 12.6 15.5 34.7 48.8 87.1 102.0 67.5 77.2	0.856 0.896 1.125 1.269 1.610 1.722 1.392 1.492	0.328 0.395 0.788 1.043 1.653 1.871 1.378 1.521	0.93 0.91 2.10 2.71 2.10 2.17 1.00	12.4 12.0 24.2 27.5 23.5 23.8 13.4 14.5	0.120 0.116 0.186 0.240 0.128 0.132 0.075 0.084	0.977 0.884 0.153 0.124 0.0189 0.0119	0.174 0.227 0.501 0.448 1.244 1.170 1.888 1.838	1.232 1.170 1.045 0.979 1 071 1.029 1 077 1.047	0.696 0.693 0.840 0.841 0.998 0.988 1.152
7A	97 98 99 100 101 102 103 104	33.3 33.4 27.8 28.0 27.1 26.2 25.0 24.3	1.274 1.287 1.261 1.224 1.155 1.161 1.129	289 288 288 288 287 288 280 289	66.7 76.1 86.2 102.7 34.3 48.1 15.1 12.3	1.385 1.471 1.585 1.734 1 127 1.261 0.900 0.852	1.384 1.535 1.672 1.905 0.788 1.045 0.390 0.326	0.46 0.82 3.24 2.29 1.48 1.75 0.43 0.54	6.5 11.0 30.5 24.8 18.3 20.7 6.2 7.5	0.035 0.062 0.197 0.139 0.131 0.155 0.055	0.115 0.986 1.071	1.874 1.351 1.223 0.504 0.481 0.185 0.147	1.076 1.041 1.084 1.036 1.061 0.994 1.149	1.163 1.011 1.001 0.837 0.850 0.701 0.698
3A	105 106 107 108 109 110 111	33.6 33.8 28.9 28.7 27.6 27.2 24.8 24.0	1.248 1.262 1.247 1.219 1.159 1.163 1.152	289 289 288 285 292 289 294 294	66.1 .4.8 .85.3 .99.5 .32.5 .47.1 .15.1 .12.3	1.382 1.467 1.554 1.711 1.117 1.260 0.903 0.858	1.394 1.530 1.679 1.881 0.762 1.040 0.396 0.331	0.26 0.31 1.50 1.47 0.84 0.17 0.20	3.8 4.5 18.5 18.0 11.5 11.5 2.5 3.0	0.075	0.0099 0.018 0.016 0.151 0.123 1.026	9 2.030 7 1.294	1.042 1.06 1.029 1.06 0.98 1.14	2 1.190 1 1.007 9 1.009 3 0.851 1 0.850 1 0.693

Table B-3. CO Emission Test Data Correlation.

(a) Data Correction to Engine Conditions:

$$EI_{CO}$$
, engine = $\left(EI_{CO}, \text{ test}\right) \left(\frac{S_{CO}, \text{engine}}{S_{CO}, \text{ test}}\right)$

where:

$$s_{CO} = \left(\frac{v_r}{24.2}\right) \left(\frac{0.254}{P_3}\right)^{1.25} \left(\frac{9.42}{f}\right)^{0.5} \left[exp\left(\frac{421-T_3}{133}\right)\right]$$

			Eico: s measu test po	•	able B				EI _{CO} , engine, g/kg corrected to S _{CO} = 1.000, 0.153, 0.0160 and 0.0072					
Fuel	Id	le	Cruise		Takeoff		Dash		Idle	Cruise	Takeoff	Dash		
Number	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(1.000)	(0.153)	(0.0160)	(0.0072)		
1A	68.4	60.9	8.5	7.3	1.3	1.3	1.0	0.9	63.3	8.5	1.1	0.6		
1AR	75.5	75.2	7.4	7.0	1.2	1.2	0.9	0.9	71.0	7.8	1.0	0.5		
2A1	91.8	80.9	9.5	8.1	1.3	1.3	0.8	1.0	85.2	9.0	1.1	0.6		
3A	106.6	102.2	11.0	7.2	1.1	1.0	0.6	0.6	100.4	10.1	0.9	0.4		
4 A	102.3	102.7	12.2	7.8	1.7	1.4	1.0	1.0	110.5	10.9	1.3	0.6		
5 A	92.5	98.5	8.9	8.1	1.3	1.5	0.9	0.9	92.1	10.1	1.2	0.6		
6A	100.1	89.5	10.2	7.9	1.5	1.4	1.0	0.9	90.2	9.7	1.3	0.6		
7A	113.1	101.4	13.9	7.3	1.3	1.2	1.0	1.0	104.2	11.6	1.2	0.6		
8A	78.8	73.8	12.3	8.5	1.6	1.8	1.0	0.9	80.4	11.7	1.5	0.6		
9A	94.5	86.2	11.1	8.7	2.5	1.7	1.1	0.9	87.6	11.3	1.6	0.6		
10A	98.3	88.2	9.8	8.4	1.6	1.5	1.1	1.0	96.1	9.2	1.3	0.6		
11A	110.7	76.8	9.4	8.4	1.5	1.6	0.9	1.0	96.1	9.2	1.2	0.6		
12A	93.7	82.6	9.6	6.9	1.5	1.3	0.9	1.0	94.3	9.9	1.2	0.6		
13A1	103.0	99.4	14.0	10.9	1.8	1.9	1.2	1.1	100.9	12.9	1.5	0.7		

(b) Data Correlation with Fuel Hydrogen Content and Spray Droplet Size.

$$EI_{CO} = b \left(\frac{H}{14.5}\right)^m \left(\frac{SMD}{SMDJP-4}\right)^n$$

Engine Power Level	Idle	Cruise
b, Intercept m, Hydrogen Slope n, Droplet Size Slope r, Correlation Coefficient	74.79 -0.977 +0.482 0.740	8.45 -0.922 +0.446 0.756

Table B-4. HC Emission Test Data Correlation.

(a) Data Correction to Engine Conditions:

EI_{HC}, engine = (EI_{HC} test)
$$\left(\frac{S_{CO}, engine}{S_{CO}, test}\right)^{2.14}$$

where:

$$s_{\infty} = \left(\frac{v_r}{24.2}\right) \left(\frac{0.254}{P_3}\right)^{1.25} \left(\frac{9.42}{f}\right)^{0.5} \left[\exp\left(\frac{421-T_3}{133}\right)\right]$$

			EI _{HC} ; is measu		able B				EI _{HC} , engine, g/kg corrected to S _{CO} = (1.000, 0.153, 0.0160 and 0.0072)					
Fuel	Idl	e	Cruise		Takeoff		Dash		Idle	Cruise	Takeoff	Dash		
Number	(2)	(3)	(4)	(5)	(6)	(7) -	(8)	(9)	(1.000)	(0.153)	(0.0160)	(0.0072)		
1A	35.9	19.2	0	0	0	0	0	0	26.6	0	0	0		
1AR	34.5	27.8	O	0	0	0	0	0	27.2	0	0	0		
2A1	41.4	31.9	0.6	0.3	0.2	0.1	0	0	35.5	0.5	0.1) 0		
3 A	59.7	46.5	0.5	0.2	0.2	0.1	0.5	0.3	48.7	0.4	0.1	0.2		
4 A	49.2	38.1	0.8	0.4	0.3	0.1	0.2	0.1	50.7	0.7	0.2	0.1		
5A	42.0	38.6	0.1	0.1	0	0	0	0	37.1	0.2	0	0		
6A	45.5	32.1	0.8	0.4	0.2	0.3	0.4	0.2	34.5	0.6	0.2	0.1		
7A	59.9	42.0	0.7	0.2	0.1	0.1	0.1	0.1	47.5	0.6	0.1	0		
8A	35.1	28.4	0.5	0.2	0.2	0.1	0.2	0.1	35.4	6.4	0.1	0.1		
9A	45.8	44.1	1.6	0.4	0.4	0.1	0.2	0.1	42.5	1.2	0.1	0.1		
10A	51.0	43.0	1.4	0.6	0.6	0.5	0.6	0.4	50.2	1.2	0.4	0.2		
1 1 A	50.6	24.2	0.2	0.2	0.1	0.1	0	0.1	38.8	0.2	0.1	0		
12A	47.2	34.2	0.5	0.2	0.3	0.3	0.4	0.4	46.9	0.5	0.2	0.1		
13A1	38.2	49.5	1.1	0.7	0.4	0.2	0.1	0.1	44.9	1.0	0.2	0		

(b) Data Correlation with Fuel Hydrogen Content and Spray Droplet Size.

$$EI_{HC} = b \left(\frac{H}{14.5}\right)^m \left(\frac{SMD}{SMD_Jp-4}\right)^n$$

Engine Power Level	Idle	Cruise
b, Intercept	32.05	0.0426
m, Hydrogen Slope	-1.19	-13.2
n, Droplet Size Slope	+0.517	+3.44
r, Correlation Coefficient	0.597	0.744

Table B-5. NO_X Emission Test Data Correlation.

(a) Data correction to Engine Conditions:

$$\text{EI}_{\text{NO}_{X}}$$
, engine - $\left(\text{EI}_{\text{NO}_{X}}, \text{ test}\right)\left(\frac{S_{\text{NO}_{X}}, \text{ engine}}{S_{\text{NO}_{X}}, \text{ test}}\right)$

where:

$$s_{NO_X} = \left(\frac{28.6}{v_r}\right) \left(\frac{P_3}{1.359}\right)^{0.37} \left[\phi(f)\right]^{*} \left\{ exp\left[\left(\frac{T_3 - 664}{192}\right) + \left(\frac{6.29 - h_3}{53.2}\right)\right] \right\}$$

and:

$$\phi[f] = 0.1243 \text{ f} - 0.233, \text{ when } f \le 11.5$$

= 1.461 - 0.0231 f, when f \ge 11.5

		ı	16 MC4	ured,	t, g/kg Table i indica	1			Ei _{NO_X} , engine, g/kg corrected to S _{NO_X} (0.168, 0.472, 1.000 and 1.816)					
Fuel	Id	le	Cr	uise	Tak	eoff		Dash	Idle	Cruise	Takeoff	Dash		
Number	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(0.168)	(0.472)	(1.000)	(1.816)		
1A	2.1	1.2	6.1	5.8	14.6	13.9	23.2	22.0	1.8	5.8	11.6	23.3		
1AR	1.7	1.4	6.6	6.4	14.4	13.7	22.0	21.5	1.9	6.6	12.0	23.7		
2A1	3.7	3.6	6.6	5.9	13.8	13.5	22.6	22.6	3.7	6.3	11.7	23.6		
3A	1.6	1.9	6.5	6.4	14.7	15.4	26.4	26.0	1.9	6.2	11.9	23.1		
4A	1.6	1.5	6.3	6.2	16.2	15.4	24.5	23.8	1.3	6.2	13.1	23.5		
5A	2.4	2.2	6.7	7.2	15.2	15.2	23.6		2.3	6.4	12.3	23.3		
6A	2.6	2.5			16.0	13.8		21.5	2.6		11.6	21.9		
7A	1.6	2.0	6.6	6.7	15.8	15.0	25.0	23.9	1.8	6.4	12.0	23.3		
8A	2.1	2.4	6.7	6.3	15.2	14.9	25.6	25.1	2.2	6.2	12.3	25.3		
9A	1.9	2.0	6.2	5.8	13.8	14.0	24.7	24.6	2.0	5.6	12.9	27.2		
10A	1.9	1.7	6.5	6.2	16.2	15.0	26.8	25.3	1.8	6.2	13.0	26.1		
11A	3.2	3.1	6.5	5.8					2.9	6.2				
12A	2.1	2.4	6.5	6.6	14.2	13.8	24.5	27.3	2.1	6.0	11.8	23.7		
13A1	1.5	1.4		6.2	15.9	14.0	21.8	25.4	1.5	6.6	13.2	26.3		

(b) Data Correlation with Fuel Hydrogen Content:

$$EI_{NO_{x}} = b \left(\frac{H}{14.5}\right)^{m}$$

Engine Power Level	Idle	Gruise	Takeoff	Dash
b, Intercept m, Slope r, Correlation Coefficient	2.220 +0.670 +0.178			23.65 -0.195 -0.228

Table B-6. Smoke Emission Test Data Correlation.

(a) Data Correction to Engine Conditions:

			From Tal	, test ble B-2 ts indic					SNg, engine (Average of two SNg test at each engine condition)					
Fuel	Id	le	Cruise		Takeoff		Da	e#h			Takeoff	Dash 75% P3		
Number	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	Idle	Cruise	(dry)	dry		
1A	3.0	0.7	1.8	0.8	8.8	10.5	3.3	3.0	1.9	2.3	9.7	3.2		
1 AR	4.0	1.8	2.6	3.0	17.0	17.1	5.9	8.0	2.9	2.8	17.1	7.0		
2A1	4.1	2.0	8.4	8.7	10.3	16.0	3.1	4.3	3.1	8.6	13.2	3.7		
3A	3.0	2.5	11.5	11.5	18.5	18.0	3.8	4.5	2.8	11.5	18.3	4.2		
48	12.4	12.0	24.2	27.5	23.5	23.8	13.4	14.5	12.2	25.9	23.7	14.0		
5A	3.2	2.7	14.9	13.6	24.2	20.3	2.3	12.5	3.0	14.4	22.3	7.4		
6A	17.0	4.4	10.2	15.2	13.9	13.5	3.0	8.3	10.7	12.7	13.7	5.7		
7A	7.5	6.2	18.3	20.7	30.5	24.8	6.5	11.0	6.9	19.5	27.7	8.8		
88	5.3	6.6	18.2	21.6	36.0	44.0	6.8	9.6	6.0	19.9	40.0	8.2		
9A	12.0	4.7	11.5	11.0	18.6	29.3	5.8	9.3	8.4	11.3	24.0	7.6		
10A	16.5	12.3	16.8	15.0	27.6	34.4	6.2	9.5	14.4	15.9	31.0	7.9		
11A	11.9	2.3	2.9	7.2	20.7	19.6	8.0	13.5	7.1	5.1	20.2	10.8		
1 2A	1.7	2.2	2.3	4.7	14.0	16.2	3.0	5.7	2,0	3.5	15.1	4.4		
13A1	3.8	3.8	16.6	19.8	28.5	24.8	4.8	6.2	3.8	18.2	26.7	5.5		

(b) Data Correlation with Fuel Hydrogen Content:

$$sn_8 = b \left(\frac{H}{14.5}\right)^m$$

Engine Power Level	Idle	Cruise	Takeoff	Dash
b, Intercept	2.08	3.88	13.92	4.27
m, Slope	-8.37	-8.93	-3.64	-4.06
r. Correlation Coefficient	-0.865	-0.800	-0.671	-0.680

Table B-7. Detailed Inner Liner Temperature Data.

	24	34	å	67	7	78	83	92	100	87	5	111	711	9.	95	39	38	45	67	109	137	011	116	61	127	120	60	126	5	136	57	67.7	123	771	136	143	88	122	51
	23								- {				1	28	22	36	33	38	46	83										201	6	3 8	89	115	76	102	99	8	31
	22	77	23	55	ż	73	88	79	ž	73	82	8	\$	48	27	19	18	33	37	104	143	121	137	102	126	126	8	71	871	91 I	,		16	137	111	121	69	92	30
	21																	ļ															ļ						5. 5. 5.
	20	8	78	152	121	121	22.1	508	912	102	802	981	681	3	78	97	19	28	47	512	147	672	243	092	226	529	220	961	*	 A :	3:	20	543	. 58	902	- 607	93	_	
	19								ĺ																														22
	18]]							1						23 32
	17							_									- 1									ί.							1						57
	91				_			_	ᅱ	-	_		_	_			-	⊢		_		_	-		_						_		╀						57 66
ber	15																	ľ								ľ													98
e Number	14								ļ																														28 S
Thermocouple	13																	1															1						38
F E	12			_		_			-	_				_	_	_	-	⊢		_						-			_	-	_		╁						112
K er	11								-									l						•	•	1	_						1						68 1 152 16
e,	10									213 5						7	2(-								221 3				7	7	≒ ~	1				126 2		~ <u>11</u>
ure Ri	6		,	*	2	52	5	77	2.3	2	22	×	22	2						22	7	2	7	75	77	22	5	× ;	×				20	22	*	=	=	=	
Temperature	8	- 7	9	<u> </u>	٠,	4		4	12	368	<u></u>	- 2	 9	نة 	 80		-	-	_		_					13	=	7	<u> </u>	4	4		-	و.	55		4		
1	7					Ī	•	•				•	•	•	•	9	0	4	e,	5	Š	4	œ	œ.		5 393	•	•					Γ	•	` '	•	1 134	••	٠. ك
Liner												•								•		.,			•								1						2 0 10 10 2
Inner	9	ĺ																								Į							1						9 142 2 140
T3,	_ ~				_					-			-				-	-								-	_						╁	_				_	109
Tr -	4	132	76	340	337	361	343	347	366	359	7,	363	387	326	267	247	240	87	\$	368	383	453	440	517	461	452	450	\$ 5	45	322	26.	152	897	435	677	442	8	252	177
	e	132	111	260	258	362	368	381	374	366	362	328	335	255	7	188	188	107	117	314	317	379	379	359	339	8	401	387	2 2	292	329	135	17	299	377	372	286	273	166 198
	2	101	81	248	217	299	299	340	345	472	451	310	58 2	344	278	216	176	78	19	262	241	3%	344	424	391	352	422	261	7	239	*	2 %	458	380	295	286	35	286	57 176
	~	47	47	86	91	148	156	172	173	179	171	141	140	:55	135	3	58	62	67	1117	124	167	168	186	186	159	170	745	149	121	071	Ç 8	182	171	148	147	162	138	6.3
	Av 8 .	69	3	149	138	246	249	263	264	264	264	240	247	691	150	8	100	89	2	761	199	276	272	280	287	997	282	270	257	175	717	£ 2	283	290	259	263	175	172	77 102
	Reading Number					_										_													_				1						
		7	7	<u>س</u>	4	^	9	^	80	6	2	=	22	=	*	_ 2	16	17	18	2	20	21	22	23	77	25	2	27	78	23	3 :	3 2	3	*	35	36	37	38	6 9
	Fuel Number	*								YI								V9								ΥS							¥						
<u></u>					_	_				_				_		-	_	_		_		_	_		_	Ь.	_			-			٠	_		_			

Table B-7. Detailed Inner Liner Temperature Data (Continued).

Inner Liner Temperature Rise, K at Thermocouple Mumber	6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	82 88 66 42 114 63 80 60 60 28 88 67 57 29	36 70 35 42 128 61 80 59 62 29 73 54 64 35	43 123 160 232 264 130 149 112 116 59 167 146 110 65	4 92 153 216 266 122 129 146 114 116 61 148 130 116 59 74	316 290 398 180 264 362 174 233 277 188 227 110 185 213 184 104 93	342 299 411 183 254 355 168 230 275 177 218 101 193 202 164 87 82	410 296 367 183 253 393 167 233 272 168 200 92 198 192 142 67 72	369 303 444 212 269 352 190 270 257 202 212 113 210 216 171 88 89	58 75 71 45 95 101 77 85 51 43 63 97 50	61 69 65 46 89 91 67 71 41 36 76 81 35	71 227 159 172 209 228 206 207 129 239 253 215 117	40 192 149 155 159 226 213 216 139 215 234 236 137	214 324 323 195 263 266 309 217 262 134 262 251 203 109	348 321 415 209 262 269 311 215 258 131 248 237 220 124	263 340 378 221 290 330 376 244 295 140 209 209 155 81	300 354 404 227 275 343 423 256 321 144 194 213 159 82	148 109 109 30 49 64 83 144 73 90 75 73 50 137 79 36	93 98 102 25 43 48 49 136 58 78 54 63 39 108 77 29	162 185 260 86 189 340 128 288 138 16, 143 128 106 194 137 71	26 155 193 84 217 420 140 297 150 175 149 141 107 170 178 102	351 309 439 105 191 487 209 374 242 309 210 228 140 223 191 96	264 299 433 101 213 511 223 387 255 306 217 230 142 198 221 118	-	318 362 412 146 326 595 338 397 279 332 249 263 178 241 201 112	479 339 397 112 230 554 312 312 312 48 221 127 140 00	10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	261 283 407 152 212 487 212 341 240 240 203 221 132	312 172 177 54 164 388 168 270 135 149 105 106 64 120 58	126 155 217 66 169 395 147 241 137 170 118 123 75 122 71	128 95 89 25 70 162 118 152 80 89 59 55 31 51 29	125 84 80 21 60 125 104 143 75 80 51 51 26 56 21	105 110 110 42 47 72 81 150 90 102 76 76 52 72 46	117 114 108 43 54 83 99 152 98 108 79 79 53 87 64 38	225 196 233 97 224 375 144 291 159 177 148 145 107 225 145 78	34 161 223 92 252 420 134 298 153 204 159 166 115 190 205 119	463 289 361 149 252 404 246 355 236 236 185 213 120 224 143 72	303 303 437 156 317 439 218 350 245 236 205 227 148 284 219 118	500 350 425 197 238 311 288 391 277 259 226 248 149 158 88	100 100 100 100 100 100 100 100 100 100
umber	53												-		•									-																
		83	51								6	509	199	266	269	330	- 1	1															1							
Thermo		-	_	_	_			_	-	-					_		-	┝		_		_			+		_					_	ļ							
	11			•	•	٠,	٠,	٠,	ľ		94	172	155	263	262	280				•		••	``	• • •			•	• • •									•••	•••	•	
Z.	101					180	183	183	212	17	65	159	149	195	509	221	227	67	43	189	217	191	213	225	326	230	207	212	164	169	2	\$	47	ĸ	224	252	252	317	238	
rature	6						_			_								30	. 25	8	<u>ತ</u>	105	101	147	140	22	3 8	152	*	99	25	21	42	43	97	35	149	156	197	
l l	∞	99	35	160	153	398	411	367	777					323	415	378	707	109	102	260	193	439	433	427	417	397	385	707	17.7	217	83	8	21	108	233	223	361	437	425	
Liner																									ļ															
Inner	9							-						•	•	•	`					•	• •	-		•	•										Ī			
T3. 1	2	 				_	_				_			_			_	-		_			_	482	+			_				-	⊢			_		-	_	_
	4						-			1														90%	- 1								l							
	6									1					-			l	86	31.	29.	376	300	381	25	37.	3.5	265	305	14.	16.	71	8	9	32	281	410	30	45(•
	7							14 447		Ì	7	24	23	64	94	23			6(õ	80	2	35	12	2	15.	ų <u>s</u>	3 5	6	9	其	9	2	12	35	56	11	z.	53	•
	88	-			_			2 174		├	~		_	 •	_	œ		-			-			9 332	1								-				_			-
ļ	8 8 8	<u> </u>		. 2	=	231	23	24:	25.		<u>ټ</u>	61	<u>§</u>	- 5 <u>6</u>	78	24	25	5	_	2	<u>8</u>	27	56	309	52	28	7 .	7 7 7	, ≊	<u>~</u>	• ŏ	^	8	*	2	<u> </u>	76	79	- 29	-
	Reading Number	1.5	42	; Ç	77	57	94	4.7	87	63	8	51	22	53	ĸ	55	\$ 6	23	58	29	8	19	62	٦	\$	\$ \$	8 3	3 %	6	2	7.1	72	23	7.	75	76	77	78	79	é
	Fuel	148	i							134								104								124							46							_

Table B-7. Detailed Inner Liner Temperature Data (Concluded).

L				1	-	1, - 13	T3, Inner	er Liner		Temperature Rise	ture 1	Rise,	X Ac	Thermocouple Munber	coupl	, M.	ber									
P G	Reading Number	N.		2	e	4	\$		_	60	•	g	=	n	81	71	15	9	12	92	19 2	20	21,	22 2	23 2	77
=		287	192		1	255		l	ľ	┝	•		[-	1	1	1	├		8		-		8	2	4
8		299	189			320	_		-					—						2		_		61	=	-
S	_	786	196			438	-											_		73		7		91	71	89
Ż.	_	284	211			433			•									_		99		7		28	12	~
53		212	217			301						_								57		~		82	9	-
×		245	251			348									-					57		7		30	=	6
80	~	70	6		226	222	156	159	146 1	142	78	189	1 691	123 2	217 1	140 1	123 1	511	108	23			63	87		5
2011		2	28		-1	198	Ţ	1	1	+	- [- [[┪	1	1	ļ	+	- [1		1	-	2		<u> </u>
	2. 9	8 7	18			£ 3															9 9	_		9 9	v	<u>, , , , , , , , , , , , , , , , , , , </u>
	2 ==	237	248			37.0															<u>, </u>			8 %	يو ه	2 9
	~	233	233			387															2	7		9 9	2	23.
	۵ 	270	239			444	-		-			_	•	_							7	7		39	91	ŭ
•	4	245	279			418				_			•								4	7		53	2	_
ò	<u> </u>	297	251			418			-						-						99			17	=	4
æ.≀	2	270	253		- 1	363		ļ		\dashv	1	ı		-						i	17	2		23	2	9
•	_	275	253			478				-				┝		1	i	١		29		17		93	2	.3
œ	•	277	267			413	-			_			•							25		7		7.	2	٥
	₽	270	278			403									-			_		64		- 2		37	23	4
	۰	75	285			386	•		•	_				_	•					29		~		53	7	80
	= :	516	224			32.									-					34		<u> </u>		24	2	80
	2	3	111			28				_								_		24		- 5		19	2	_
	Ξ:	2;	26 3			6														42				38	•	·
	1	٥	26		-	2 5		- 1		+	- (1	- 1	+	- [-1	J	+	ĺ	07		- - -	ł	62		وا
	-	797	167			ê			Ī	_				_						£ ;		≍ `		<u>د</u>	3 9	9
	9	569	298			382	-						•	•••					_	35		=		2	2	8
	~	7,0	222			746	-												_	29		7		14	22	7
	<u> </u>	22	237			341	•		•	_				_						34				37	77	-
	<u> </u>	172	177			766	. •					_								92				97	2	4
	<u> </u>	691	184			277								_						80		<u>-</u>		17	7.	~
		25	2			7.						_								56				27	4	و
	12	3	81	į		74				_										31		_		54	4	Q

Table B-8. Detailed Rear Liner, Transition Duct and Fuel Nozzle Stem Temperature Data.

				(T-T ₃), Tem	peratu	re Ris	e, K,	at The	rmocoup	le Nun	nber
Fuel	Reading			Rear	Liner				sition			e Stem
Number	Number	Avg.	26	27	28	29	30	31	32	33	34	35
2A	1	105	121	103	56	66	99	154	136	-44	-41	-39
!	2	86	85	91	50	61	92	122	105	-43	-39	-37
	3	186	229	182	171	132	163	227	200	-74	~67	-65
	4	242	329	234	189	186	207	301	254	-80	-72	-70
	5	187	215	208	173	131	173	215	200	-69	-56	-58
	6	219	268	237	218	154	189	241	227	-70	~58	-60
	7	170	192	192	135	125	157	187	204	-101	-83	-87
	8	189	221	207	162	139	174	200	221	-102	-84	-89
1A	9	162	193	182	114	111	157	177	204	-111	-93	-100
	10	177	212	191	139	124	165	194	216	-114	-95	-102
į	11	169	187	186	139	110	168	189	208	-79	-66	-70
- {	12	198	235	213	176	134	181	221	230	-78	-65	-69
	13	146	147	151	91	102	145	182	206	-82	-73	-74
(14	195	210	196	129	152	175	254	252	-87	-78	-80
1	15	98	95	103	47	68	100	132	142	-52	-47	-60 -47
	16	77	86	91	37	57		1	116	-52	-46	-45
6A	17	83	83	95	58	55	77	110	103	-44	-39	-38
	18	102	106	109	68	67	87	144	133	-48	-42	
- [19	194	222	187	223	152	155	219	205	-84		-42
1	20	287	382	269	311	259	212	300	277	-86	-73	-74
1	21	196	232	224	199	135	164	212	208	-73	-75	-77
l	22	220	267	238	229	162	191	230	229	-76	-60	-64
1	23	181	217	204	172	127	165	179	206		-63	-67
	24	211	262	236	215	148	188	201	232	-109	-90	-95
5A	25	214	258	227	219	154	189	211	244	-110 -104	~92	-97
Ì	26	170	198	194	135	121	155	187	201	-104	-86	-90
1	27	180	207	194	171	121	167	200	202		-84	-87
1	28	210	243	230	202	143	197	226	232	-71	-58	-60
	29	241	275	234	260	199	186	262	273	-72	-59	-62
	30	173	130	169	184	133	151	189	209	-89 -87	-79	-80
)	31	77	74	86	43	66	251	109	118	-87 -47	-76	-77
\	32	88	82	95	52	77	1				-42	~41
llA	33	170	200	188	135	123	152	181	137	-49	-43	-43
	34	219	257	238	221	158	190	215	211	-114	-94	-99
1	35	174	192	181	168	121	162	187	255	-118	-99	-104
1	36	195	225	203	197	139	178	207	209	-75	-62	~65
}	37	148	147	147	119	116	135		222	~76	-63	-66
	38	235	255	222	223	204	192	171	206	-85	- 75	~75
)	39	75	70	81	37	62	,	272	283	-85	-77	-79
	40	96	90	102	37	83	76 90	85	119	~52	-47	-46
				102	<i>J1</i>	0.5	90	117	138	-54	-48	-48

Table B-8. Detailed Rear Liner, Transition Duct and Fuel Nozzle Stem Temperature Data (Continued).

				(T-T ₃)	, Temp	eratu	re Rise	, K, a	t Then	nocoup	le Numb	er
	; 			Rear L	iner			Trans	sition	Fuel	Nozzle	Stem
Fuel Number	Reading Number	Avg.	26	27	28	29	30	31	32	33	34	35
1AR	41	69	75	94	45	65				-48	-43	-42
	42	82	91	106	52	80]		-50	-45	-44
	43	160	169	175	112	133	131	223	181	-87	-77	-77
	44	201	225	209	134	179	161	283	220	-88	-79	-79
	45	205	241	241	182	150	178	239	210	-75	-64	-65
	46	181	201	214	161	125	158	217	194	-74	-62	-63
	47	164	187	196	119	119	147	187	193	-112	95 95	-96 -96
13A	48 49	195 107	231 108	220 115	167	146	172 104	216	218	-111	-38	-40
LDM	50	83	81	96		68	87	ļ		1	-36	-37
	51	167	0,	191		159	152	}		1	-63	-64
	52	213		239		215	187			1	-66	-67
	53	159	<u>{</u>	217		147	164	İ		Ì	-53	-53
	54	170		239		187	179				-54	-54
	55	158	ĺ	197		127	152	ĺ		1	-75	-77
	56	164	<u> </u>	198		133	161				-75	-77
10A	57	34	88	99	88	60	70	103				-34
	58	88	94	104	88	60	69	113				-45
	59	185	249	208	232	124	120	181				-69
	60	251	371	286	253	188	178	231				-72
	61	203	304	237	270	119	114	117				-55 50
	62	247	383	284	288	170	151	207		1		-52 -81
	63 64	171 199	241 265	207 225	217 270	99 127	107 130	160 182				-79
12A	65	162	227	208	170	99	108	160				-74
124	66	177	243	214	204	109	115	180		ļ		-77
	67	179	243	211	223	115	116	169				-58
	68	218	322	260	236	151	151	193				-56
	69	138	154	157	120	97	120	181				-69
	70	196	241	222	155	156	180	226				-75
	71	82	90	100	56	54	80	114				-46
	72	67	75	84	45	42	65	95		<u> </u>		-44
9A	73	94	100	109	86	55	81	134		1		-33
	74	86	93	102	79	54	74	117		1		-27
	75	169	206	187	196	122	135	169		1		-62
	76	236	309	261	227	190	205	227				-68
	77	151	196	185	175	96	128	130				-46 -55
	78	241	332 201	264 192	274 182	189 96	194 134	194				-55 -87
	79 80	159 201	265	223	260	122	160	179		1		-89
	80	201	200		200	142	100	1 .,,		<u> </u>		

Table B-8. Detailed Rear Liner, Transition Duct and Fuel Nozzle Stem Temperature Data (Concluded).

				(T-T ₃)	, Temp	eratur	e Rise	, K, a	t Ther	nocoup	le Numb	er
				Rear I	iner			Trans	ition	Fuel	Nozzle	Stem
Fuel Number	Reading Number	Avg.	26	27	28	29	30	31	32	33	34	35
8A	81	164	231	202	163	103	139	149			-82	-85
	82	192	266	222	219	114	157	179			-84	-89
	83	209	256	214	304	139	167	177			-56	-59
	84	246	335	254	307	180	193	212			-57	-58
	85	264	321	261	317	232	213	241			-70	-70
	86	198	222	196	294	142	148	191			-65	-63
	87	101	111	116	118	62	82	117			-42	-41
	88	77	88	98	77	43	63	93			-43	-42_
4A	89	100	119	134	94	57	87	111				-35
	90	115	127	143	118	69	99	137				-73
	91	242	321	280	303	162	186	204				-60
	92	354	567	412	345	255	265	285			-70	-68
	93	222	287	252	262	144	188	201		İ	-53	-53
	94	260	360	299	293	186	204	218			-56	~55
	95	165	250	231	179	113	159	178		1	-71	~74
	96	205	270	251	224	133	167	189			-78	-84
7A	97	167	215	215	149	111	144	172			-78	-82
	98	199	265	255	202	126	160	189		1	-79	-80
	99	216	292	262	245	131	164	202			- 56	-58
	100	245	328	281	271	163	194	238		Ì	-55	-55
	101	197	224	219	242	133	153	214		ĺ	-59	-63
	102	294	413	332	295	227	221	281			-71	-72
	103	94	103	126	72	52	76	140			-36	-37
	104	79	88	108	58	40	70	113		<u> </u>	-36	-36
3A	105	167	225	231	139	106	136	168			-77	-81
	106	190	244	244	186	121	157	192		ł	-82	-86
	107	190	221	223	222	122	160	100			- 53	-56
	108	227	303	275	241	153	180	213		Ì	-56	-55
	109	166	190	195	172	109	129	201			-68	-67
	110	233	292	273	216	192	188	241		[-71	-70
	111	80	85	110	55	46	71	115			-39	-40
	112	71	79	100	51	40	64	95]	-35	-38

Table B-9. Liner Temperature Data Correlation at Takeoff (Point 7).

Thermo-	Hyd	rogen	relation Content m (14.5		1		
couple	Instal	latio	n 1 & 2	Insta	llati	on 3	
Number	•	Ь	r	270	ь	r	Comments
1	6.81	144	0.706	16.98	249	0.236	
2	16.36	276	0.527				Fuel LAR and L3A excluded
3	16.65	357	0.577				"natable film in Installation 3
4	25.15	400	G.841	41.09	321	0.976	Unat*ached only (1A,1AR,5A, 11A,6A,3A,4A,7A,8A)
5							Unstable film
6							Unstable film
7	15.44	309	0.491	6.38	319	0.168	
8	-3.70	404	0.102	22.73	410	0.633	
9				2.23	162	0.060	No Inst. 162 data
10	5.6	197	0.293	33.32	196	0.570	
11	7.58	471	0.238	7.58	471	0.238	Unattached both Installations (1A,2A,6A,9A,10A,12A)
12	12.35	359	0.810	11.08	183	0.383	
13	13.59	173	0.811	28.41	325	0.903	
14	40.17	205	0.868	18.00	221	0.863	Fuel 2A excluded
15	27.12	268	0.793	20.86	220	0.697	
16	21.71	180	0.851	13.13	189	0.884	
17	26.31	221	0.779	11.48	226	0.474	
18	16.40	101	0.756	12.10	129	0.792	
19	15 12	158	0.368				Insufficient Inst. 3 data
20	12.77	201	0.584				No Inst. 3 data
21	17.31	182	0.927	17.26	201	0.478	
22	16.56	96	0.872	0.72	137	0.028	
23	6.00	93					Fuels IAR and IIA only
24	9.44	109	0.438	14.33	131	0.931	
26	5.43	241	0.309	22.56	300	0.769	
27	1.54	227	0.097	5.92	264	0.339	
28	15.84	184	0.770	28.84	224	0.978	
29	8,40	143	0.439	12.86	149	0.749	
30	3.37	181	0.413	9.09	166	0.376	
31	3.59	127	0.284	5.09	202	0.297	
32	3.50	221	0.429				Fuel 13A excluded, No Inst. 3 data
				<u> </u>		<u> </u>	

Table B-10. Liner Temperature Correlation with Hydrogen Content (Thermocouple No. 7).

(a) Data Correction and Engine Conditions.

			Inner 1 le B-7								Liner Tem	
Fuel	Id	le	Cru	ise	Take	eoff	Da	sh	Idle	Cruise	Takeoff	Dash
Number	2	3	4	5	6	7	8	9				
2A1	78	56	154	130	317	374	302	317	72	142	346	310
1A	90	88	155	148	278	294	295	303	89	152	286	299
6A	84	63	205	195	344	348	359	357	74	200	346	358
5A	78	98	276	239	336	328	335	325	88	258	332	330
11A	91	105	191	203	317	327	339	358	98	197	322	349
1AR	88	70	123	92	299	290	296	303	79	108	295	300
13A1	69	75	227	192	324	321	340	354	72	210	323	347
10A	109	98	185	155	309	299	363	362	194	170	304	363
12A	84	95	172	155	303	283	339	307	90	164	293	323
9A	114	110	196	161	289	303	350	372	112	179	296	361
8A	121	146	289	269	333	346	371	354	134	279	340	363
4 A	106	98	270	220	352	356	386	390	102	245	354	388
7A	98	106	283	197	348	351	350	377	102	240	350	364
3A	89	86	232	192	316	371	344	342	88	212	344	343

(b) Data Correlation With Fuel Hydrogen Content.

 $(T_L-T_3) = b + m (14.5-H)$

Engine Power Level	Idle	Cruise	Takeoff	Dash
b, Intercept	80.5	147.8	304.9	306.6
m, Slope	9.0	35.2	13.0	25.9
r, Correlation Coefficient	0.481	0.674	0.491	0.892

Table B-11. Flame Radiation Data Correlation.

(a) Correlation with Combustor Operating Conditions:

where

$$s_R = \exp \left[\left(\frac{P_3 - 1.359}{34.6} \right) + \left(\frac{T_3 - 664}{735} \right) \right]$$

er	er of Points	Slope,	b, Intercept, kW/m ²	Correlation fficient	/ Calcu Condit	lated From	Flux, kW Operatinelation at 2000 and 1.	g _{Sr} =)
Fuel Numb	Numbe Data	R, S KW/m	b, I kW/m	r, C	Idle (0.696)	Cruise (0.845)	Takeoff (1.000)	Dash (1.180)
10A	8	113	5	0.984	83.9	100.7	118.2	138.6
12A	8	102	10	0.977	80.9	96.0	111.8	130.1
9A	7	83	23	0.931	80.8	93.1	105.9	120.8
8A	8	87	25	0.992	85.9	98.9	112.4	128.2
4A	8	79	29	0.994	84.3	96.0	108.3	122.5
7A	8	76	34	0.988	87.1	98.5	110.3	124.0
3A	8	62	44	0.953	86.8	96.0	105.6	116.8

(b) Data Correlation with Fuel Hydrogen Content:

$$\dot{q}_{R} = b + m (14.5 - H)$$

Engine Power Level	Idle	Cruise	Takeoff	Dash
b, Intercept	83.2	94.8	106.9	120.9
m, slope	0.60	1.32	2.05	2.93
r, correlation coefficient	0.208	0.470	0.421	0.366

Table B-12. Combustor Exit Temperature Profile Data.

			To	mperatur	e Rise	Ratio, A	Local/41	Avg			
				age Prof					k Profil		
Fuel	Reading	1	2	3	4	. 5	1 , 1	2	3	4	. 5
Number	Number	(Outer)				(Inner)	(Outer)	·			(Inner)
2A	1	0.698	0.929	1.093	1.158	1.122	0.949	1.143	1.253	1.395	1.331
	2	0.682	0.929	1.066	1.178	1.145	0.942	1.168	1.189	1.415	1.353
	3	0.703	0.947	1.091	1.158	1.101	0.940	1.107	1.219	1.340	1.241
	4	0.735	1.003	1.083	1.109	1.070	0.989	1.283	1.303	1.330	1.229
	5	0.736	0.945	1.100	1.137	1.082	0.933	1. 174	1.304	1.356	1.286
	6	0.764	0.959	1.091	1.120	1.068	0.934	1. 399	1.314	1.349	1.270
	7 8	0.758 0.778	0.910 0.922	1.087 1.034	1.150 1.156	1.093	0.900 0.907	1.099 1.109	1.361	1.351	1.323
								~			
1A	9 10	0.757 0.770	0.913 0.941	1.063	1.160 1.154	1.107 1.108	0.881 0.892	1.099		1.365	1.336
	ii	0.749	0.917	1.075	1.150	1.109	0.915	1.094		1.341	1.302
	12	0.761	0.960	1.037	1.144	1.099	0.898	1.076		1.349	1.292
	13	0.640	0.865	1.078	1.192	1.226	0.953	1.213		1.352	1.418
	14	0.712	0.959	1.033	1.142	1.154	0.977	1.199		1.339	1.300
	15	0.675	0.939	1.041	1.174	1.173	0.963	1.534		1.343	1.351
	16	0.696	0.925	1.022	1.180	1.177	0.928	1.422		1.388	1.365
6A	17	0.794	0.928	1.060	1.100	1.118	1.052	1.181	1.337	1.317	1.312
	18	0.803	0.930	1.063	1.097	1.107	1.111	1.190	1.318	1.287	1.324
	19	0.811	0.960	1.064	1.097	1.079	1.083	1.167	1.282	1.266	1.238
	20	0.830	0.981	1.072	1.082	1.034	1.098	1.180	1.262	1.226	1.171
	21	0.802	0.956	1.069	1.105	1.068	1.077	1.206	1.318	1.265	1.275
	22	0.809	0.966	1.066	1.099	1.060	1.101	1.210	1.311	1.296	1.245
i	23	0.800	0.953	1.065	1.108	1.073	1.070	1.168	1.283	1.301	1.311
	24	0.811	0.964	1.044	1.106	1.075	1.100	1.192	1.300	1.316	1.305
5A	25	0.778	0.956	1.044	1.109	1.106	0.926	1.190	1.293	1.289	1.329
	26	0.770	0.937	1.070	1.121	1.109	1.074	1.191	1.307	1.275	1.345
	27	0.769	0.942	1.062	1.130	1.105	1.049	1.199	1.301	1.264	1.279
	28	0.807	0.967	0.980	1.135	1.111	1.056	1.203	1.301	1.291	1.298
	29	0.750	0.956	1.059	1.091	1.145	1.031	1.173	1.269	1.248	1.284
	30	0.764	0.934	1.062	1.075	1.164	1.012	1.153	1.277	1.257	1.321
	31 32	0.744	0.934 0.907	1.060 1.049	1.055	1.208	0.980	1.213	1.243	1.311 1.324	1.334
114	33	0.792	0.972	1.033	1.103	1.093	1.086	1.186	1.294	1.285	1.331
	34	0.803	0.972	1.046	1.098	1.080	1.087	1.204	1.296	1.277	1.312
	35	0.781	0.941	1.057	1.117	1.105	1.006	1.147	1.267	1.244	1.261
	36 37	0.789	0.948	1.060	1.107	1.100	0.943	1.174	1.282 .210	1.263	1.271
	38	0.742	0.922 0.938	1.053 1.049	1.109	1.173	1.000	1.124	218	1.241	1.241
1	39	0.716	0.909	1.054	1.097	1.225	0.927	1.071	1.222	1.339	1.380
	40	0.750	0.931	1.068	1.079	1.172	0.959	1.203	1.230	1.310	1.341
1AR	41	0.796	0.961	1.025	1.101	1,118	1.029	1.168	1.303	1.293	1.298
*****	42	0.796	0.966	1.023	1.100	1.101	1.073	1.200	1.300	1.296	1.307
	43	0.872	0.972	1.053	1.095	1.059	1.117	1.222	1.319	1.278	1.290
	44	0.838	0.992	1.064	1.079	1.026	1.164	1.262	1.336	1.266	1.243
	45	0.833	0.964	1.076	1.093	1.043	1.136	1.267	1.353	1.297	1.267
	46	0.748	0.965	1.074	1.110	1.052	1.139	1.261	1.366	1.311	1.285
	47	0.785	0.960	1.085	1.111	1.059	1.119	1.237	1.353	1.334	1.332
	48	0.810	0.964	1.083	1.099	1.043	1.133	1.253	1.351	1.317	1.312
13A1	49	0.791	0.934	1.066	1.115	1.095	0.996	1.219	1.226	1.291	1.265
	50	0.787	0.941	1.062	1.105	1.104	0.999	1.216	1.226	1.297	1.290
	51	0.869	0.924	1.084	1.090	1.033	1.125		1.241	1.242	1.153
	52	0.785	0.969	1.137	1.086	1.022	1.107	1.212	1.300	1.237	1.154
	53	0.853	0.930	1.094	1.091	1.033	1.031	1.143	1.288	1.262	1.188
	54	0.859	0.931	1.104	1.086	1.020	1.059	1.133	1.265	1.237	1.146
	55	0.812	0.928	1.076	1.113	1.071	0.973	1.120	1.273	1.284	1.267
	56	0.827	0.927	1.073	1.109	1.064	0.986	1.079	1.280	1.294	1.266

Table B-12. Combustor Exit Temperature Profile Data (Concluded).

			Te	emperatu	e Rise	Ratio, A	Local/47	Avg		····	
				rage Pro					k Profil		_
Fuel Number	Reading Number	l (Outer)	2	3	4	5 (Inner)	l (Outer)	2	3	4	5 (Inner)
WONDE!	Mander	(outer)	·			(Inner)	(outer)				(Linie ()
10A	57	0.810	0.990	1.042	1.133	1.026	1.040	1.351	1.447	1.283	1.140
	58	0.784	0.981	1.094	1.110	1.031	0.959	1.219	1.319	1.277	1.219
	59 60	0.866	0.995 1.023	1.101	1.070	0.968 0.940	0.935	1.180 1.201	1.243	1.196 1.187	1.110
	61	0.874	1.002	1.095	1.067	0.963	1.020	1.127	1.206	1.263	1.177
	62	0.885	1.013	1.098	1.057	0.947	1.034	1.125	1.211	1.259	1.160
	63	0.913	0.974	1.076	1.064	0.972	0.983	1.108	1.159	1.223	1.168
	64	0.866	0.981	1.078	1.078	0.998	0.985	1.119	1.060	1.248	1.205
12A	65	0.860	0.986	1.085	1.076	0.993	0.978	1.118	1.161	1.231	1.186
	66	0.867	0.993	1.085	1.071	0.985	0.981	1.120	1.185	1.246	1.194
	67	0.850	0.995	1.089	1.077	0.989	0.932	1.135	1.165	1.225	1.166
	68	0.868	1.013	1.090	1.065	0.963	0.964	1.157	1.181	1.227	1.138
	69	0.793	1.003	1.063	1.089	1.053	0.937	1.189	1.258	1.221	1.202
	70	0.830	0.993	1.092	1.073	1.013	0.958	1.173	1.228	1.179	1.111
	71 72	0.767	0.956	1.077 1.088	1.118	1.082 1.082	0.904	1.267 1.236	1.362 1.363	1.322	1.359
	14	0.748	0.961	1.000	1.122	1.002	0.300	1.230	1.303	1,200	1.294
9A	73	0.791	0.969	1.077	1.097	1.066	0.866	1.181	1.311	1.223	1.201
ļ	74	0.819	0.983	1.067	1.088	1.044	0.940	1.276	1.256	1.202	1.131
	75 76	0.856	1.033	1.094	1.058	0.958	0.959	1.244	1.264	1.181	1.089
İ	76	0.910	1.015	1.109	1.041	0.926 0.963	1.120	1.276 1.099	1.276 1.208	1.188	1.035
j	77 78	0.857 0.884	1.019	1.094	1.048	0.935	1.031	1.075	1.213	1.210 1.210	1.132
	79	0.861	1.012	1.078	1.068	0.982	0.957	1.074	1.181	1.213	1.130
	80	0.874	1.018	1.076	1.058	0.975	0.981	1.088	1.182	1.215	1.151
8A	81	0.871 0.880	1.013	1.072	1.063	0.981 0.973	1.016	1.170	1.262 1.277	1.263 1.278	1.171 1.190
	82 83	0.859	1.019	1.082	1.062	0.977	0.975	1.091	1.185	1.197	1.118
	84	0.858	1.017	1.083	1.063	0.979	0.986	1.092	1.186	1.208	1.128
	85	0.834	1.011	1.080	1.064	1.011	0.969	1.155	1.194	1.138	1.108
	86	0.805	0.994	1.080	1.085	1.036	0.927	1.162	1.221	1.155	1.144
	87	0.821	1.010	1.084	1.073	1.012	0.914	1.184	1.237	1.176	1.117
į.	88	0.821	1.003	1.093	1.071	1.012	0.887	1.185	1.246	1.183	1.088
44	89	0.844	1,005	1.063	1,073	1.016	0.945	1.151	1.214	1.182	1.136
	90	0.836	0.999	1.069	1.074	1.024	0.909	1.173	1.234	1.171	1.136
	91	0.907	1.027	1.068	1.041	0.957	0.994	1.186	1.186	1.170	1.059
	92	0.911	1.031	1.068	1.034	0.956	1.054	1.173	1.187	1.142	1.076
	93	0.879	1.025	1.080	1.084	1.022	0.983	1.179	1.228	1.237	1.217
	94	0.862	1.016	1.065	1.064	0.994	0.958	1.129	1.180	1.197	1.160
	95 96	0.855 0.861	1.017 1.015	1.062	1.062	1.004 0.999	1.052	1.230	1.280 1.279	1.280 1.276	1.223
7A	97	0.844	1.006	1.063	1.062	1.002	1.029	1.206	1.277	1.288	1.238
	98	0.839	1.011	1.066	1.070	1.014	1.045	1.242	1.285	1.293	1.232
	100	0.863	1.011	1.069	1.062	0.994	1.029	1.162	1.222	1.243	1.210
	100 101	0.862	1.008 0.924	1.065	1.063	1.005	0.892	1.171	1.221	1.240	1.208
	101	0.863	0.924	1.077	1.064	1.026	0.940	1.092	1.145	1.176	1.205
	103	0.803	0.909	1.102	1 104	1.082	0.872	1.096	1.224	1.193	1.226
	104	0.785	0.932	1.124	1.086	1.073	0.910	1.141	1.489	1.183	1.274
24	105	0.883	1.014	1.062	1.053	0.987	1.024	1.193	1.246	1.245	1.221
3A	105 106	0.862	1.021	1.062	1.053	0.994	1.050	1.215	1.260	1.270	1.221
	107	0.853	0.999	1.068	1.072	1.010	0.958	1.165	1.214	1.223	1.194
ļ	108	0.862	1.012	1.066	1.066	0.994	0.996	1.157	1.208	1.224	1.191
Í	109	0.779	0.980	1.089	1.092	1.059	0.843	1.020	1.179	1.166	1.178
	110	0.843	1.019	1.077	1.060	1.001	0.901	1.122	1.157	1.157	1.119
-	111	0.789	0.973	1.115	1.083	1.041	0.897	1.188	1.330	1.173	1.159
	112	0.801	0.978	1 136	1.073	1.012	0.881	1.187	1.536	1.151	1.133

Table B-13. Pattern Factor Test Data Correlation.

			ing Spr =	Dash (1.005)	0.343	0.350	0.341	0.162	0.218	0.305	0.292	0.190	0.221	0.228	0.233	0.281	0.209	0.281
			om Operatilation at	Takeoff (1.000)	0.339	0.352	0.339	0.154	0.217	0.303	0.291	0.185	0.221	0.226	0.230	0.279	0.206	0.281
			PF Calculated from Operating Conditions Correlation at Sp	Cruise (1.053)	0.377	0.340	0.358	0.236	0.222	0.323	0.304	0.236	0.228	0.240	0.264	0.303	0.240	0.281
ns			Conditi	Idle (1.178)	0.467	0.314	0.403	0.431	0.233	0.372	0.335	0.356	0.245	0.272	0.345	0.359	0.322	0.281
lation with Combustor Operating Conditions		$\frac{3/P_3}{89}$ $\rightarrow 0.50$		r, Correlation Coefficient	0.634	0.608	0.958	0.918	0.183	0.552	0.775	0.773	0.327	0.592	0.748	0.752	0.879	0.296
oustor Opera		$\begin{pmatrix} W_{c} & \sqrt{13}/P_{3} \\ 118.89 \end{pmatrix}$		ئر Intercept	-0.377	+0.561	-0.024	-1.402	+0.132	480.0	+0.041	-0.776	+0.083	-0.029	-0.417	-0.171	977.0-	+0.281
with Com	Spr + b	$ \left(\frac{\Delta T}{686} \right)^{-0.25} $		m, Slope	0.7159	-0.2099	0.3630	1.5554	0.0848	0.3873	0.2492	0.9615	0.1376	0.2556	0.6470	0.4498	0.6522	0.000
Correlation	# FIG.	where: Spr =		Number of Data Points	80	∞	80	∞	∞	&	∞	∞	∞	80	∞	∞	80	∞
8		ğ		Fuel Number	14	IAR	2 A	3A	44	5A	49	7.4	\$	9.A	10A	11A	12A	13A

APPENDIX C

CARBON DEPOSITION/EMISSION DATA

Two 24 hours tests were conducted to establish the carbon deposition tendencies of the J79-17C combustor. Fuels 1A (Repeat JP-4) and 13A1 (diesel) were used in these tests to represent the range of expected carbon deposition severity. Both tests were begun with clean combustors and fuel nozzles. After each test, the combustor and fuel nozzles were visually inspected and the fuel nozzle was flow calibrated. No changes in the fuel nozzle flow characteristics were detected after either test. The visual assessments of the combustor after each test are presented in Table 14. Figures C-1 through C-4 present the posttest photos of the combustor liner and fuel nozzle. Limited repeat performance data was obtained during the endurance portion of these tests and a summary of pattern factor during this testing is presented in Table C-1.

Table C-2 presents the detailed results from the cascade impactor measurements on Fuels 4A and 10A.

The Care State of the rest of the rest of the rest of Fort 1%.

Figure C+2. Positest Phytograph of Liner Miter-21 Hour Test of Fuel 13 AL,

The C-S. There's Protestann of Fact Nozzle Atter 21-Hour Rest of Fuel LA.

Table C-1. Pattern Factor During 24 Hour Tests.

	Test	Test Time,	ΔТ,	$\frac{W_C}{T_3}$	
Fuel	Point	hr	K	P ₃	PF
1A	2	2.2	298	128	0.303
(Repeat)		2.9	375	129	0.320
	4	4.2	536	121	0.319
	5	5.7	678	124	0.336
1	7	7.8	591	117	0.353
	6	8.8	524	118	0.366
	8	10.8	452	134	0.353
	9	11.3	523	131	0.351
	8	12.0	434	132	0.376
i '	8	13.0	438	132	0.356
	8	14.0	420	132	0.409
	7	15.0	539	118	0.371
	7	16.0	542	117	0.387
	6	17.0	512	117	0.372
	6	18.0	508	118	0.378
	5	19.0	644	123	0.292
	5	20.0	641	122	0.317
	4	21.5	487	126	0.288
	3	23.0	344	126	0.355
13A	3	3.4	358	122	0.291
	2	4.0	276	126	0.297
	4	5.2	513	124	0.242
	5	6.8	636	125	0.300
	6	8.6	510	121	0.288
	7	9.5	566	120	0.265
	8	11.6	436	130	0.284
	9	11.9	444	130	0.294
	9	12.9	452	130	0.266
	9	13.8	468	129	0.317
	7	15.2	566	120	0.292
	5	16.0	727	122	0.173
	5	17.6	686	123	0.225
	4	18.1	496	127	0.212
	4	19.3	501	127	0.202
	3	22.6	291	129	0.349
	2	22.8	222	132	0.251
		<u></u>		<u> </u>	<u> </u>

Table C-2. Detailed Cascade Impactor Carbon Particle Size Data.

n, Cumulative X Unuersize		81.2	70.9	66.3	62.9	61.4	56.4	18.8	13.6	•	•	-	83.2	7.79	54.5	47.3	39.3	39.3	39.3	39.3	1	
Absolute Emission, mg carbon	2.16	1.04	1.71	0.78	90.0	0.76	0.84	1.28	0.89	7.35	16.87	1.94	0	2.17	1.14	0.83	0.93	0	0	0	4.53	11.54
Particle 50% Cut Diameter, microns	>19.00	13.00	12.50	07.8	5.70	3.70	1.80	1.20	0.78	<0.78	1	>19.00	19.00	12.50	8.40	5.70	3.70	1.80	1.20	0.78	<0.78	-
Stage	Pre- Impactor	0	,-4	7	m	4	'n	9	7	80	Total	Pre- Impactor	. 0	-	7	m	7	'n	9	7	œ	Total
Total Gas Flow Through Impactor, kg	0.874											0.958										
Test	4											7										
Test Reading	16											59										
Fuel	¥7											104										

APPENDIX D

LOW PRESSURE TEST DATA

Two types of tests were conducted in the low pressure combustor test rig: altitude relight tests and cold-day ground start tests. Apparatus and procedures which were used are described in Section V-B.

Detailed results for the altitude relight tests are presented in Tables D-1 through D-7. The combustor operating conditions are listed from which the simulated flight conditions were determined, and in the remarks column, the type of data point is indicated (LIGHT = maximum altitude relight capability at normal minimum fuel flow rate, PBO = pressure blowout, LLO = lean lightoff, LBO = lean blowout).

Detailed results of the cold-day ground start tests are listed in Tables D-8 through D-11. At each combustor operating condition shown, lean lightoff and lean blowout fuel/air ratios were determined which are listed. All lightoff attempts were successful, so each test was terminated only after the planned minimum temperature (239 K) was reached.

Table D-1. Altitude Relight Test Results, Fuel No. 1A.

			LBO				×				×				×					×				×				×	
			110			×				×				×					×				×				×		
Remarks			PBO		;∢				×		-		×			_		×				×				×			·
28			Light	Yes				Yes				Yes				윤	Yes				Yes				Xes.				£
		ا بنا	8/kg	28.60	28.60	14.20	6.70	15.90	15.90	10.00	5.12	13.00	13.00	10.30	6.01	7.15	28.60	28.60	12.10	6.62	15.90	15.90	11.20	5.02	13.00	13.00	6.95	2.95	14.90
	S.M.	(engine)	8/8	6.49	6.49	32.3	15.2	6.49	6.49	40.7	20.9	6.49	6.49	51.3	30.0	6.4.9	64.9	6.49	27.5	15.0	6.49	6.3	45.9	20.5	6.49	6.49	34.7	26.8	135.0
ions	Vr	s/m		9.2	10.6	9.5	9.5	13.3	18.9	13.3	13.3	13.4	15.0	13.4	13.4	19.5	9.6	11.3	6.6	6.6	15.3	18.5	15.3	15.3	17.5	20.0	17.5	17.5	19.9
Condit	ΔP	ρ. :	×	3.53	4.06	3.53	3.53	6.51	9.25	6.51	6.51	5.62	6.28	5.62	5.62	13.30	3.41	3.89	3.41	3.41	5.43	6.58	5.43	5.43	4.92	5.61	4.92	4.92	13.40
Combustor Operating Conditions	"M	(engine)	kg/s	2.267	2.267	2.267	2.267	4.082	4.082	4.082	4.082	4.990	4.990	4.990	4.990	9.072	2.267	2.267	2.267	2.267	4.082	4.082	4.082	4.082	4.990	066.7	4.990	4.990	9.072
Combusto		P3	kPa	6.97	8.04	6.97	6.94	66.2	9.97	66.2	66.2	67.4	60.3	67.4	67.4	102.0	43.5	38.1	43.5	43.5	57.7	47.6	57.7	57.7	63.2	55.4	63.2	63.2	100.1
		T3	×	244.3	244.3	244.3	244.3	277.6	277.6	277.6	277.6	283.7	283.7	283.7	283.7	281.5	244.3	244.3	244.3	244.3	277.6	277.6	277.6	277.6	284.3	284.3	284.3	284.3	281.5
		T	×	244.3	244.3	244.3	244.3	277.6	277.6	277.6	277.6	288.7	288.7	288.7	288.7	287.6	244.3	244.3	244.3	244.3	277.6	277.6	277.6	277.6	282.0	282.0	282.0	282.0	282.6
ated	tion	æ	1	0.43	0.48	0.43	0.43	0.55	0.74	0.55	0.55	0.65	0.72	0.65	0.65	0.84	0.46	0.51	97.0	0.46	0.62	0.73	0.62	0.62	0.69	3.78	0.69	0.69	0.86
Simulated	Condition	Alt	£	6.7	7.8	6.7	6.7	4.6	8.7	4.6	4.6	5.2	6.7	5.2	5.2	4.8	7.3	8.4	7.3	7.3	6.1	8.4	6.1	6.1	6.1	8.0	6.1	6.1	5.1
		Fue 1	Number	14													1A (R)												

Table D-2. Altitude Relight Test Results, Fuel No. 2A and 3A.

		9	2				.×				×				×					×				×			×		•				×
		21.	NIA.			×				×				×					×				×			>	<					Blowout	
Remarks		Ond	287		×				×				×					×				×			,	۲				×		Velocity B	
ă ă		1 10 1	הנצוור	Yes				Yes				Yes				%	Yes				Yes			;	res			Ş	Yes		Yes	Velo	
		ب د د	8/ 1/8	28.60	28.60	15.70	12.70	15.90	15.90	14.10	6.60	13.00	13.00	9.90	7.50	14.90	28.60	28.60	18.30	14.50	15.90	15.90	11.70	4.38	13.00	00.01	3 80	8. 8	8.18	61.0	10.60	7.71	5.18
	H.	(engine)	8/8	6.49	6.49	35.5	28.7	6.49	6.49	57.7	26.8	64.9	6.49	49.4	37.5	135.0	64.9	6.49	41.6	32.8	6.49	6.49	6.74	17.9	6.50	7.4.0	7 61	6.79	6.49	6.49	83.9	6.49	47.0
ions	۸	s/E		7.0	7.6	7.0	7.0	15.0	17.3	15.0	15.0	15.5	19.0	15.5	15.5	20.1	7.8	10.3	7.8	7.8	15.1	17.4	15.1	15.1	8.7.	17.1	17.7	13.2	11.0	13.8	11.0	22.7	20.1
g Conditions	AP	<u>р</u> , }	•	2.40	3.23	2.40	2.40	5.42	6.25	5.42	5.42	5.69	96.9	5.69	5.69	13.40	3.24	4.33	3.24	3.24	5.75	6.62	5.75	5.75	5.3	2.73	2.3	70.7	4.54	5.68	4.54		7.02
ombustor Operating	25.	(engine)	K8/8	2.267	2.267	2.267	2.267	4.082	4.082	4.082	4.082	4.990	4.990	4.990	4.990	9.072	2.267	2.267	2.267	2.267	4.082	4.082	4.382	4.082	4.990	4.330	066.7	7 938	7.938	7.938	7.938	8.414	9.072
ombusto.		P .	Kra	61.6	45.7	61.6	61.6	58.7	50.9	58.7	58.7	71.2	58.0	71.2	71.2	100.0	55.4	41.6	55.4	55.4	58.8	51.0	58.8	58.8	62.2	1.6	7.70	83.0	6.86	78.9	6.86	87.7	98.9
		T3	4	244.3	244.3	244.3	244.3	277.6	277.6	277.6	277.6	283.7	283.7	283.7	283.7	283.7	244.3	243.7	243.7	243.7	278.2	278.7	278.7	279.3	284.6	0.407	783.7	281.5	280.9	280.4	280.4	282.0	280.9
		T.	Y	244.3	244.3			277.6					288.2	288.2	288.2	287.0	245.9	245.4	245.4	244.3	277.6	276.5	276.5	277.6	281.5	200.9	280.9	285.4	284.8	284.3	284.3	283.2	283.7
ated	tion	æ.	•	0.36	0.44	0.36	0.36	0.61	0.69	0.61	0.61	0.62	0.75	0.62	0.62	0.86	0.39	0.48	0.39	0.39	0.61	0.68	0.61	0.61	0.70		2 6	0 0	0.78	1.00	0.78	1.05	0.87
Simulated	Condition	Alt	Ē	4.3	6.9	4.3	4.3	5.9	7.5	5.9	5.9	4.6	7.3	4.6	4.6	5.1	5.2	7.7	5.2	5.2	5.8	7.5	8.8	8.	. o) r	9		9.3	3.1	8.7	5.3
		Fuel	Number	2A													3A																

Table D-3. Altitude Relight Test Results, Fuel No. 4A and 5A.

		LBO				×				×				×					×				×				×	-
		rro			×				×				×					×				×				×		
Remarks		PBO		×				×				×					×				×				×			
ž		Light	Yes				Yes				Yes				£	.'es				Yes				Yes				£
	,	f 8/k8	28.60	28.60	22.70	12.80	15.90	15.90	15.50	7.91	13.00	13.00	11.90	6.31	13.90	28.60	28.60	24.40	10.30	15.90	15.90	15.50	6.08	13.00	13.00	9.30	5.25	14.90
	ăM	(engine) g/s	67.5	6.49	51.4	29.0	6.49	6.49	63.3	32.3	6.49	6.49	59.2	31.5	12.6	64.9	6.49	55.3	23.3	6.49	6.49	63.1	24.8	6.49	6.49	46.4	26.2	135.0
ions	V	s/m	5.7	6.6	5.7	7.7	14.2	17.4	14.2	14.2	15.7	19.9	15.7	15.7	20.5	8.9	9.6	8.9	8.9	14.9	17.8	14.9	14.9	16.0	20.6	16.0	16.0	20.8
S Condit	₽₽	P 14	2.18	3.77	2.18	2.18	5.54	92.9	5.54	5.54	4.49	5.71	4.49	67.7	8.40	2.95	3.11	2.95	2.95	4.96	5.94	4.96	4.96	4.15	5.34	4.15	4.15	13.70
Combustor Operating Conditions	Z.	(engine) kg/s	2.267	2.267	2.267	2.267	4.082	4.082	4.082	4.082	4.990	4.990	4.990	4.990	9.072	2.267	2.267	2.267	2.267	4.082	4.082	4.082	4.082	4.990	4.990	4.990	4.990	9.072
Combusto		P3 KPa	75.3	43.5	75.3	75.3	61.8	50.6	61.8	61.8	72.0	56.7	72.0	72.0	100.7	48.5	46.1	48.5	48.5	59.3	49.5	59.3	59.3	71.0	55.3	71.0	71.0	9:86
		T3 K3	243.7	243.7	243.7	243.7	276.5	276.5	276.5	276.5	240.9	290.9	290.9	290.9	292.0	244.3	244.3	244.3	244.3	277.6	277.6	277.6	277.6	292.6	292.6	292.6	292.6	289.8
		ᄄᅑ	243.7	243.7	243.7	243.7	277.5	277.5	277.5	277.5	290.4	290.4	290.4		288.7	244.3	244.3	244.3	244.3	•	•		•		287.0	•	•	288.1
ited	ion	یج ا	0.33	0.46	0.33	0.33	0.58	0.69	0.58	0.58	0.62	0.76	0.62	0.62	0.85	0.42	0.44	0.42	0.42	09.0	0.70	09.0	09.0	0.62	0.78	0.62	0.62	0.87
Simulated	Condition	A);	2.4	7.3	2.4	2.4	5.3	7.6	5.3	5.3	4.5	7.6	4.5	4.5	5.0	4.9	6.8	6.4	6.4	5.8	7.9	5.8	5.8	4.6	8.0	9.4	4.6	5.4
		Fuel Number	44								•			•		5.4												

Table D-4. Altitude Relight Test Results, Fuel No. 6A and 7A.

			LBO				×			_	×				×					×				×				×	
			TTO			×				×				×					×				×				×		
Remarks			PBO		×				×				×					×				×				×			
ž			Light	Yes				Yes		-	_/	Yes				No	Yes			_	ري دور				Yes	-			No
		#	8/kg	28.60	28.60	13.80	8.20	15.90	15.90	15.80	6.03	13.00	13.00	11.00	7.27	14.96	28.60	28.60	16.10	15.10	15.90	15.90	13.20	4.90	13.00	13.00	12.80	5.25	13.90
	W.	(engine)	8/8	6.49	6.49	31.2	18.6	6.49	6.43	64.3	24.6	6.49	6.49	54.9	36.3	135.0	6.49	6.49	36.4	34.2	6.49	6.49	53.7	20.0	6.49	6.49	64.0	26.2	126.0
suoi	Λ	•	s/w	8.6	11.2	9.8	9.8	14.7	16.9	14.7	14.7	14.9	19.1	14.9	14.9	20.1	7.6	9.5	7.5	7.5	14.8	17.9	14.9	14.9	17.9	20.1	17.9	17.9	20.5
Condit	ΔF	ام	x	2.87	3.75	2.87	2.87	5.17	5.94	5.17	5.17	5.56	7.11	5.56	5.56	13.50	2.19	2.17	2.19	2.19	4.99	6.02	4.99	4.99	4.86	5.45	4.86	4.86	19.20
Combustor Operating Conditions	33	(engine)	kg/s	2.267	2.267	2.267	2.267	4.082	4.082	4.082	4.082	4.990	7.990	766.4	4.990	9.072	2.267	2.267	2.267	2.267	4.082	4.082	4.082	4.082	7.990	066.4	4.990	7.990	9.072
Compusto		P3	kPa	50.45	38.60	50.45	50.45	59.9	52.2	59.9	59.9	74.8	58.5	74.8	74.8	100.5	57.2	45.3	57.2	57.2	59.6	49.4	9.69	9.65	62.3	55.5	62.3	62.3	97.2
		T3	אנ	244.3	244.3	244.3	244.3	277.6	277.6	277.6	277.6	287.0	287.0	287.0	287.0	285.4	244.8	244.8	243.7	243.7	277.6	278.7	278.7	279.3	287.0	287.0	287.6	287.0	281.5
		TE	**	244.3	244.3	244.3	244.3	277.6	277.6	277.6	277.6	285.4	285.4	285.4	285.4	285.4	245.4	245.4	245.4	244.8	277.6	278.7	278.7	278.7	284.8	284.8	284.8	285.4	285.4
ated	tion	Æ	7·1	0.41	0.51	0.41	0.41	09.0	0.67	09.0	09.0	09.0	0.74	09.0	09.0	0.86	0.38	0.45	0.38	0.38	09.0	0.70	09.0	09.0	0.70	0.78	0.70	0.70	0.89
Simulated	Condition	Alt	k	6.0	8.3	0.9	0.9	5.6	7.2	5.6	5.6	0.4	7.1	4.0	7.0	5.0	5.0	7.0	5.0	5.0	5.7	7.9	5.7	5.7	6.3	6.5	6.3	6.3	5.6
		Fuel	Number	6A	_												7.8	_		-									

Table D-5. Altitude Relight Test Results, Fuel No. 8A and 9A.

	·	1.80				×				×	_			×					×				×				×	
		110			×				×	_			×					×			1	×				×		
Remarks		PBO		×				×				×					×				×				×			
, w		Light	Yes				;es				Yes				No	Yes				Yes				Yes				Se
	,	1 8/k8	28.60	28.60	11.60	7.72	15.90	15.90	10.70	4.95	13.00	13.00	9.34	4.55	13.90	28.60	28.60	11.10	7.45	15.90	15.90	10.50	6.17	13.00	13.00	9.16	5.05	13.90
	3	(engine) g/s	64.9	6.49	26.2	17.5	6.49	64.9	43.8	20.2	6.49	6.49	9.97	22.7	126.0	6.49	6.49	25.2	16.9	6.49	6.49	42.8	25.2	6.49	6.49	45.7	25.2	126.0
ons	٧r	s/m	9.1	12.1	9.1	9.5	16.7	18.0	16.7	16.8	17.0	19.7	17.0	17.0	20.6	9.1	11.1	9.1	9.1	17.9	19.3	17.9	17.8	1.8.1	19.4	18.1	18.1	20.4
Conditi	ΔP	P. 94	3.36	4.50	3.36	3.36	5.87	6.32	5.87	5.87	4.34	5.05	4.34	4.34	14.40	3.37	4.10	3.37	3.37	6.49	7.02	67.9	67.9	5.07	5.42	5.07	5.07	13.80
Combustor Operating Conditions	M	(engine) kg/s	2.267	2.267	2.267	2.267	4.082	4.082	4.082	4.082	4.990	4.990	4.990	4.990	9.072	2.267	2.267	2.267	2.267	4.082	4.082	4.082	4.082	4.990	4.990	4.990	4.990	9.072
ombusto		P3 KPa	47.2	35.3	47.2	47.2	52.6	43.9	52.6	52.6	65.1	56.0	65.1	65.1	97.6	47.3	38.8	47.3	47.3	9.67	45.9	9.67	49.6	62.2	58.1	62.6	62.6	8.66
		EX	243.7	242.6	243.7	244.8	276.5	277.0	277.0	278.2	284.8	284.3	284.3	284.8	284.8	7.83.7	243.7	243.7	243.7	278.7	278.7	278.7	278.2	289.8	290.4	289.8	289.8	288.7
		E X	242.6	244.8	243.7	243.7	276.5	277.5	278.2	278.2	278.2	278.7	279.3	278.2	279.8	745.4	244.8	243.7	243.7	278.7	278.2	278.2	279.3	285.9	285.9	285.4	285.9	287.6
ated	rion	æ. I	64.0	0.55	0.43	0.43	0.67	0.71	0.67	0.67	0.67	0.77	0:67	0.67	0.88	0 43	0.50	0.43	0.43	0.70	0.75	0.70	0.70	0.70	0.75	0.70	0.70	98.0
Simulated	Flight	Altkm	6 6	? -	9.9	9.9	7.1	8.0	7.1	7.1	5.7	7.8	5.7	5.7	5.6	4		9.9	9.9	7.9	8.9	7.9	7.9	6.3	7.5	6.3	6.3	5.2
		Fuel Number	48	5												•	5											

Table D-6. Altitude Relight Test Results, Fuel No. 10A and 11A.

		LBO				×			;	<			×				×			×					×			×				×				×
		93			×				×			×												×			>	4			×					×
Remarks		PBO		×				×			×							×			×		×			;	<			×				,	×	
Re		Light	Yes				Yes			Yes	2			SN N	S.	Yes			S			Yes				Yes			Yes				ž	Yes		Yes
		f g/kg	28.6	28.6	10.7	6.67	15.9	15.9	8.12	13.0	13.0	7.83	4.85	8.18	15.9	8.18	2.40	8.18	13.9	3.92	7.15	28.6	28.6	11.3	7.20	15.9	7.5	5.56	13.0	13.0	10.4	5.83	7.15	7.7	γ.'.	
	åм	(engine) 8/8	6.49	6.43	24.3	15.1	64.9	6.3	33.1	. o	3	39.1	24.2	6.3	126.0	6. \$	42.8	6.49	126.0	35.5	6.49	6.49	\$	25.6	16.3	\$:	3.0	22.7	64.9	6.3	51.7	29.1	6.3	7.89	7.89	\$8.4 50.6
ons	٧٠	s/m	8.8	11.0	8.7	8.7	15.5	18.2	15.5	7. či	21.0	18.0	18.0	14.0	14.0	11.7	11.6	14.1	20.3	22.6	23.8	9.3	10.4	9.3	9.3	16.5	8.71	16.5	19.8	21.3	19.8	8.61	20.9	20.9	25.7	20.9
S Conditi	ΔP	E 14	3.06	3.85	3.06	3.06	5.65	6.	5.65	5.65 5.55	7.75	6.51	6.51	10.6	10.6	6.45	6.45	7.82	19.4	11.3	11.9	3.26	3.66	3.26	3.26	5.85	6.3	 	5.51	5.74	5.31	5.31	13.3	13.3	16.4	: : : : : :
Combustor Operating Conditions	3 3	(engine) kg/s	2.267	2.267	2.267	2.267	4.082	4.082	4.082	4.082	066.7	4.990	4.990	7.938	7.938	7.938	7.938	7.938	9.072	9.072	9.072	2.267	2.267	2.267	2.267	4.082	4.082	4.082	4.990	4.990	7.990	4.990	9.072	9.072	9.072	9.072
Combusto		P3 kPa	49.67	39.2	49.4	49.4	56.9	48.4	56.9	56.9	53.5	62.3	62.3	81.2	81.2	97.1	97.1	80.2	98.8	91.3	9.98	46.5	41.4	46.5	46.5	53.6	49.5	53.6	59.0	54.6	59.0	59.0	101.7	101.7	82.7	101.7
		T3 K3	244.8	244.8	243.7	243.7	277.0	277.0	277.0	278.2	280.3	289.3	289.3	29:.5	291.5	291.5	290.9	290.9	284.3	291.5	291.5	244.3	244.3	244.3	244.3	277.6	277.6	211.6	299.8	299.8	299.8	299.8	300.4	300.4	300.4	300.4
		T,	243.2	243.7	242.6	243.7	278.2	278.7	278.7	278.7	288.2	287.6	288.2	282.6	282.6	282.6	283.7	284.3	288.7	282.6	282.6	244.3	244.3	244.3	244.3	277.6	277.6	277.6	295.4	295.4	295.4	295.4	295.9	295.9	295.9	295.9
ated	nt tion	z ≙.1	0.42	0.50	0.42	0.42	0.62	0.71	0.62	0.62	2 2	0.2	0.70	0.93	0.93	0.76	0.76	0.97	0.87	1.14	1.17	3.44	0.48	9.44	77.0	99.0	0.70	0.00	2.5	0.79	0.73	0.73	28.0	38.0	1.19	2 2 3 3
Simulated	Flight	Alt F	6.2	8.2	6.2	6.2	4.9	 	4.9	7.0) «	9	6.3	7.5	7.6	3.6	3.6	8.8	5.3	7.8	12.9	6.7	7.7	6.7	6.7	6.9	6.	. o	6.9	8.2	6.9	6.9	6.4	6.4	13.7	6.4
		7uel Number	10A																			114														

Table D-7. Altitude Relight Test Results, Fuel No. 12A and 13A.

		130				×				<u>~</u>				۔۔۔			_		<u> </u>						_			<u> </u>
		1	+											×					× —				× 				× _	-
		91			×				×				×				-	× 				×				×		
Remarks		PBO		>	•			×				×					×				×				×			
88		Light	, ,	9			Yes				Yes				N _o	Yes				Yes				Yes				
		f g/kg	7 80	2.8.5	12.3	7.72	28.6	28.6	8.70	5.49	28.6	28.6	10.5	6.73	14.9	28.6	28.6	21.6	14.1	15.9	15.9	14.5	8.43	13.0	13.0	12.0	10.9	
	(24) (38)	(engine) g/s	67, 9	3	27.8	17.5	6.3	6.43	35.5	22.4	6.43	6.3	52.3	33.6	135.0	6.19	6.3	6.87	32.0	\$.0	6.49	59.2	34.4	6.3	o. 3	0.09	54.3	
suo	^	r m/s	a	, 9	6.8	8.9	16.6	18.5	9.91	16.6	18.0	19.6	18.0	18.0	0.0	7.2	8.3	7.2	7.2	12.6	15.8	12.6	12.6	18.6	20.3	18.6	18.6	
Conditi	ΔP	P1 94	3 10	3.50	3.10	3.10	5.81	6.49	5.81	5.81	69.9	7.28	69.9	69.9	13.4	2.99	3.44	2.99	2.99	4.97	6.24	4.97	4.97	6.83	7.44	6.83	6.83	
Combustor Operating Conditions	3€	(engine) kg/s	7 26.7	2.267	2.267	2.267	4.082	4.082	4.082	4.082	7.990	4.990	4.990	4.990	9.072	2.267	2.267	2.267	7.267	4.082	082	4.082	4.082	4.990	4.990	4.990	066.1	
Combusto		P3	y 87	8 07	9.87	9.87	53.2	9 / 4	53.2	53.2	62.2	57.1	62.2	\$2.2	100.8	59.6	51.8	59.6	29.6	70.1	55.8	70.1	70.1	61.3	56.2	61.3	61.3	
		EX	34.6. 3	244.3	244.3	244.3	277.6	277.5	277.6	277.6	287.6	287.6	287.6	287.6	284.8	244.3	244.3	244.3	244.3	277.6	277.6	277.6	277.6	293.7	293.7	293.7	293.7	
		Fr ×	2,4%	244.3	244.3	244.3	277.6	277.6	277.6	277.6	287.0	287.0	287.0	287.0	285.9	244.3	244.3	244.3	244.3	277.6	277.6	277.6	277.6	292.6	292.6	292.6	292.6	
ated	tion	z ₽ 1	0.43	87.0	0.43	0.43	99.0	0.73	99.0	99.0	0.70	0.76	0.70	0.70	0.85	0.37	0.40	0.37	0.37	0.53	0.63	0.53	0.53	0.71	0.77	0.71	0.71	
Simulated Flight	Condition	Ař.	4 4	. 20	4.9	7.9	7.0	4.8	7.0	7.0	6.3	7.5	6.3	6.3	5.0	4.6	5.8	4.6	4.6	3.9	4.9	3.9	3.9	6.5	7.8	6.5	6.3	
	,	Fue! Number	124	:												13A												

Table D-8. Ground Start Test Results, Fuel Numbers 1A Through 3A.

	Comb	oustor O	erating	Conditions		Lean Bl	owout	Lean Lig	htoff
Fuel No.	т _ғ к	Т ₃ К	P3 kPa	W _C (engine) kg/s	ΔP P Z	Wf (engine) g/s	f g/kg	W _f (engine) g/s	f g/kg
1A	227.5 272.0 266.4 260.8	227.5 272.0 266.4 260.8	101.8 101.8 101.7 101.7	3.175 3.175 3.175 3.175 3.175	0.90 0.90 0.88 0.88	8.8 9.5 10.5 10.5	2.77 2.99 3.30 3.30	21.2 22.4 21.2 19.5	6.67 7.04 6.67 6.13
	255.3 249.7 244.2 238.6	255.3 249.7 244.2 238.6	101.7 101.6 101.5 101.5	3.175 3.175 3.175 3.175	0.84 0.80 0.77 0.72	10.5 11.1 11.1 11.6	3.30 3.49 3.49 3.65	22.9 21.7 21.7 22.4	7.20 6.82 6.82 7.04
lA(R)	277.5 272.0 266.4 260.8 255.3 249.7 244.2 238.6	277.5 272.0 266.4 260.8 255.3 249.7 244.2 238.6	102.1 102.1 102.1 102.0 102.0 101.9 101.9	3.175 3.175 3.175 3.175 3.175 3.175 3.175 3.175	0.66 0.65 0.63 0.60 0.57 0.52 0.50 0.45	8.6 9.2 9.8 10.1 10.2 10.8 11.5	2.70 2.89 3.08 3.18 3.21 3.40 3.62 3.68	20.9 21.4 20.9 19.2 22.4 23.1 24.1 25.3	6.57 6.73 6.57 6.04 7.04 7.26 7.58 7.96
2A	277.5 272.0 266.4 260.8 255.3 249.7 244.2 238.6	277.5 272.0 266.4 260.8 255.3 249.7 244.2 238.6	103.2 103.2 103.2 103.2 103.1 103.1 103.1	3.175 3.175 3.175 3.175 3.175 3.175 3.175 3.175	0.63 0.62 0.62 0.55 0.57 0.53 0.60 0.54	17.1 18.3 19.4 21.2 24.3 25.6 28.5 26.5	5.38 5.75 6.10 6.67 7.64 8.05 8.96 8.33	24.2 23.3 27.7 25.2 29.4 33.1 35.5 33.1	7.61 7.33 8.71 7.92 9.25 10.41 11.16 10.41
ЗА	277.5 270.4 265.9 261.5 257.0 249.7 245.4 239.8	278.2 272.0 267.6 261.5 256.5 249.7 245.4 237.6	101.8 101.8 101.8 101.7 101.7 101.7 101.7	3.175 3.175 3.175 3.175 3.175 3.175 3.175 3.175	0.68 0.64 0.62 0.61 0.60 0.59 0.55	15.6 22.4 22.1 23.1 27.3 27.6 32.8 39.6	4.91 7.05 6.93 7.25 8.60 8.68 10.30 12.40	24.3 25.0 25.2 26.5 32.8 33.6 45.4 75.9	7.65 7.86 7.92 8.32 10.30 10.60 14.30 23.90

Table D-9. Ground Start Test Results, Fuel Numbers 4A Through 7A.

	Comi	oustor Op	erating	Conditions	·	Lean Bl	owout	Lean Li	htoff
Fuel No.	T _F K	т ₃ к	P ₃ kPa	W _C (engine) kg/s	AP P Z	Wf (engine) g/s	f g/kg	W _f (engine) g/s	f g/kg
4A	277.5	277.0	101.1	3.175	0.68	18.3	5.75	29.9	9.40
ł	272.6	271.5	101.1	3.175	0.65	17.3	5.44	27.6	8.68
	266.4	266.4	101.1	3.175	0.62	19.0	5.97	29.2	9.18
[260,4	260.8	101.0	3.175	0.62	21.0	6.60	31.1	9.78
!	254.8	255.3	101.0	3.175	0.60	23.3	7.33	30.5	9.59
1	249.6	249.7	101.0	3.175	0.59	29.5	9.28	41.8	13,14
[244.8	244.2	101.0	3.175	0.57	28.7	9.03	33.5	10.53
	239.3	239.3	101.0	3.175	0.51	32.8	10.31	46.0	14.47
5A	277.5	277.5	101.8	3.175	0.63	15.8	4.97	23.3	7.33
[272.0	272.0	101.8	3.175	0.61	17.6	5.53	23.1	7.26
l	266.4	266.4	101.8	3.175	0.60	18.3	5.75	23.3	7.33
- 1	260.8	260.8	101.7	3.175	0.60	20.2	6.35	23.4	7.36
	255.3	255.3	101.7	3.175	0.58	20.8	6.54	24.3	7.64
ŧ	249.7	249.7	101.6	3.175	0.49	21.2	6.67	26.7	8.40
İ	244.2	244.2	101.6	3.175	0.59	22.4	7.04	28.4	8.93
!	238.6	238.6	101.6	3.175	0.56	23.2	7.30	29.7	9.34
6A	277.5	277.5	101.4	3.175	0.62	13.7	4.31	20.9	6.57
}	272.0	272.0	101.4	3.175	0.60	14.5	4.56	20.8	6.54
j	266.4	266.4	101.4	3.175	0.59	14.9	4.69	22.3	7.01
]	260.8	260.8	101.4	3.175	0.59	15.4	4.84	22.6	7.11
}	255.3	255.3	101.4	3.175	0.58	17.4	5.47	22.8	7.17
Ì	249.7	249.7	101.4	3.175	0.58	18.3	5.75	25.3	7.96
l	244.2	244.2	101.3	3.175	0.62	20.4	6.42	26.3	8.27
	238.6	238.6	101.3	3.175	0.48	21.8	6.86	27.2	8.55
7A	277.5	279.3	101.0	3,175	0.63	20.2	6.35	26.6	8.36
}	270.4	273.2	100.9	3,175	0.60	18.3	5.75	27.3	8.58
i	266.4	266.4	100.9	3.175	0.58	20.9	6.57	26.7	8.40
{	260.8	262.0	100.9	3.175	0.58	22.7	7.14	27.8	8.74
ĺ	254.8	254.3	100.9	3.175	0.57	25.2	7.92	29.0	9.12
ĺ	249.7	248.7	100.9	3.175	0.57	25.2	7.92	36.4	11.40
ĺ	244.8	243.7	100.8	3.175	0.54	27.7	8.71	37.0	11.60
1	239.8	237.6	100.8	3.175	0.52	28.0	8.81	37.8	11.90

Table D-10. Ground Start Test Results, Fuel Numbers 8A Through 11A.

	Comi	bustor Op	erating	Conditions	· · · · · · · · · · · · · · · · · · ·	Lean Blo	owout	Lean Li	ghtoff
Fuel No.	T _F	Т ₃ К	P ₃ kPa	W _c (engine) kg/s	ΔP P %	W _f (engine) g/s	f g/kg	Wf (engine) g/s	f g/kg
8A	278.8 272.6 266.7 260.3 254.8 249.7 243.7 238.1	277.5 272.6 265.9 261.7 255.3 250.0 243.2 237.6	101.1 101.1 101.0 101.0 101.0 101.0 101.0	3.175 3.175 3.175 3.175 3.175 3.175 3.175 3.175	0.66 0.65 0.63 0.62 0.61 0.57 0.55	9.8 8.1 10.7 10.1 13.4 13.9 16.4	3.08 2.55 3.36 3.18 4.21 4.37 5.16 5.35	22.7 23.6 22.7 22.7 21.4 21.5 21.7 22.1	7.14 7.42 7.14 7.14 6.73 6.76 6.82 6.95
9A	276.8 271.0 266.8 261.2 254.8 249.2 245.4 238.4	277.3 272.1 267.1 261.2 254.8 248.8 243.7 238.4	101.0 101.0 101.0 101.0 101.0 100.9 100.9	3.175 3.175 3.175 3.175 3.175 3.175 3.175 3.175	0.66 0.65 0.63 0.61 0.60 0.60 0.57	9.8 8.1 10.7 10.1 13.4 13.9 16.4 17.0	3.08 2.55 3.36 3.18 4.21 4.37 5.16 5.35	21.7 21.4 22.2 23.7 29.0 27.7 28.7 29.4	6.82 6.73 6.98 7.45 9.12 8.71 9.03 9.25
10A	277.5 271.5 266.4 261.5 255.3 249.7 243.7 237.0	279.3 270.9 268.2 262.6 253.7 248.7 243.2 237.6	99.9 99.9 99.9 99.8 99.8 99.8 99.7	3.175 3.175 3.175 3.175 3.175 3.175 3.175 3.175	0.69 0.67 0.65 0.63 0.62 0.59 0.57	8.9 9.2 10.2 11.0 11.8 12.2 12.5 12.6	2.81 2.89 3.21 3.45 3.72 3.84 3.92 3.96	21.9 22.8 21.3 23.9 22.8 22.3 21.4 22.0	6.89 7.17 6.70 7.53 7.17 7.01 6.74 7.17
11A	277.5 272.0 24 260.8 255.3 249.7 244.2 238.6	277.5 272.0 266.4 260.8 255.3 249.7 244.2 238.6	101.7 101.7 101.6 102.8 102.8 102.8 102.7	3.175 3.175 3.175 3.175 3.175 3.175 3.175 3.175	0.66 0.64 0.63 0.61 0.59 0.59 0.58 0.54	8.9 9.1 9.8 10.1 10.1 12.0 12.3 13.1	2.79 2.86 3.08 3.18 3.18 3.77 3.87 4.12	19.0 20.3 22.4 23.7 22.3 23.3 21.8 20.8	5.97 6.38 7.04 7.45 7.01 7.33 6.86 6.54

Table D-11. Ground Start Test Results, Fuel Numbers 12A Through 13A.

	Com	bustor Op	perating	Combustor Operating Conditions		Lean Blowout	owout	Lean Lightoff	htoff
Fuel No.	T.X	T3 K	P ₃ kPa	W _c (engine) kg/s	$\frac{d}{d}$	W _f (engine) 8/8	f 8/kg	Wf (engine) g/s	f 8/kg
12 A	277.5 272.0 266.4 260.8 255.3 249.7 244.2 238.6	277.5 272.0 266.4 260.8 255.3 249.7 244.2 238.6	101.7 101.7 101.6 101.6 101.6 101.6 101.5	3.175 3.175 3.175 3.175 3.175 3.175 3.175	0.67 0.63 0.65 0.60 0.63 0.57	9.8 10.2 10.2 10.5 11.2 12.0 13.1	3.08 3.21 3.21 3.30 3.52 3.77 4.12	19.7 18.9 20.3 21.4 21.0 21.4 22.4	6.19 5.94 6.38 6.73 6.60 7.04
13A	277.5 272.0 266.4 260.8 255.3 249.7 244.2 238.6	277.5 272.0 266.4 260.8 255.3 249.7 244.2 238.6	102.5 102.5 102.5 102.5 102.5 102.5 102.4	3.175 3.175 3.175 3.175 3.175 3.175 3.175	0.73 0.63 0.60 0.60 0.61 0.57 0.54	21.3 25.6 27.1 27.0 29.4 24.6 25.8	6.70 8.05 8.52 8.49 9.25 7.74 8.11	31.0 31.2 31.9 41.3 56.8 66.4 59.1	9.75 9.81 10.00 13.00 17.90 20.90 18.60

APPENDIX E

FUEL NOZZLE FOULING TEST DATA

Fuel nozzle fouling tests were conducted in a small flame tunnel rig using apparatus and procedures described in Section V-C. Primary results were periodic bench flow calibrations of the fuel nozzles to detect orifice plugging and/or flow divider valve seizure. These periodic flow calibration data, ordered by fuel type, nozzle inlet fuel temperature and accrued time are presented in Table E-1.

Table E-1. J79-17C Fuel Nozzle Fouling Test Results.

100	######################################	**********	0.000 000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.
	1.000 1.000 1.000 1.000 1.000 0.975 0.670 1.000 0.729 1.000 0.899 0.899 0.899	1.902 0.996 0.996 0.996 1.000 1.000 1.000 1.009 1.009	
centing Flow conding Flow or aPr (MPs)	0.945 0.943 0.943 0.943 0.943 0.941 0.941 0.941 0.943 0.943 0.943 0.774	# # # # # # # # # # # # # # # # # # #	0.960 0.952 0.952 0.957 0.971 0.971 0.971 0.972 1.005
Ascen Descen	0.0000000000000000000000000000000000000	1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006	1.005 1.005
-			
2 0.532	1.000 1.017 7 0.988 2 0.998 6 0.998 1 0.998 1 0.998 9 0.998 9 0.997 9 0.892 5 0.892	449999 99	-0000000000
() () () () () () () () () () () () () (1.000 0.346 0.946 1.045 0.949 0.972 0.814 0.814	0.942 0.942 0.942 0.942 0.942 0.942 0.801 0.762 0.772
1	0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99	1.006 1.006 1.006 1.006 0.987 0.982	
900	1.000 1.001 1.002 1.003 1.003 1.003 1.100 1.110 1.110	1.000 0.992 1.000 1.001 1.014 1.014 1.004 1.006	0.94 1.000 1.000 1.000 1.000 1.000 1.000
8	1.000 1.002 1.002 1.004 1.019 1.019 1.019 1.020	1.000 0.998 0.999 1.003 1.005 0.992 0.901	1000 1001 1001 0.997 0.998 0.998 0.998 0.998
Pretest	1000 1000 1000 1000 1000 1000 1000 100	1.000 0.995 1.013 1.019 1.015 1.015	0.956 0.997 0.997 1.037 1.027 1.055 1.055
	1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	1.000 1.000 1.001 1.001 1.004 0.959 0.959	
11.0	85 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3	0.933 0.933 0.933 0.835 0.735 0.735 0.735	1.000 0.974 0.775 0.775 0.775 0.775 0.775 0.775
0 (6)	8124222228	0.992	22422222
88.0	20000000000000000000000000000000000000	26.21.00	\$22.55.55.55.55.55.55.55.55.55.55.55.55.5
	2.2.2.1.1.1.1.1.1.0.2.2.2.2.2.2.2.2.2.2.	40002.00	111.0 101.0 100.3 9.60.2 2.60.2 2.76.
78 0.062	20,000,000,000,000,000,000,000,000,000,	25.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	 		<u> </u>
(0.00	22.4.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	**************************************	10.00 mm mm mm mm mm mm mm mm mm mm mm mm m
7) v Este 3/s st APs	221.9 221.5 221.6 221.6 221.6 222.6 222.6 221.9 221.9	222.9 222.9 223.2 223.2 223.2 204.3 204.3	222.22.22.23.23.23.23.23.23.23.23.23.23.
7 0 0 0	133.3 134.2 135.2 136.3 146.5 146.5 146.5 156.5	######################################	133.3 133.3 134.1 144.1 145.0 146.0 146.0 146.0 146.0 146.0
36	22222222222222222222222222222222222222	2 2 2 2 2 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4	
0 642	11.11 11.12 11.13 11.14	4.11.15 4.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
635 0	22.23	212222	44544884444 4454888444
ž	==4885583 8 8	0~555333	00254848222
2 10 2	180277	180274	180275
1	·	2	~
Puel Temperature.	· •	50	95
Ĭ,	ž	7 47	N. C. C. C. C. C. C. C. C. C. C. C. C. C.

Table E-1. J79-17C Fuel Nozzle Fouling Test Results (Concluded).

_	_			
Este	2.068	0.991 1.000 1.000 1.000 1.010 1.010 1.010 1.010	0.966 1.009 1.003 1.017 0.996 0.996	1.000 1.000 1.012 1.001 1.001 0.993
7102 E	1.378	1.005 1.003 1.003 1.003 1.012 1.041 1.007 0.993 0.993	0.994 0.987 1.013 0.969 0.952 0.953	0.830 0.837 0.937 0.937 0.952 0.953
	ã	0.934 0.952 1.016 0.925 0.925 0.961 1.010 0.293 0.293	1.001 0.81 0.917 0.867 0.750 0.538	0.991
2 4	0.552	1.036 0.967 0.967 1.035 1.035 1.035 1.035 1.036 1.036	1.036 1.034 1.024 0.971 0.929 0.929	1.058 1.039 0.970 0.845 0.894
	0.552	1.000 0.983 1.008 0.979 0.929 0.929 0.928 0.928 1.728	1.000 0.968 0.988 0.972 0.972 0.972	0.959 0.959 0.959 0.971 0.972
2	0.862	0.909 1.000 0.926 0.943 0.722 0.613 0.613 0.950 0.950	1.000 0.972 0.855 0.762 0.656 0.519	0.900 0.734 0.734 0.509 0.429
140	1.376	0.994 0.994 0.994 0.994 0.994 0.994 0.994 0.994 0.994 0.994 0.994	1.000 0.996 0.981 0.981 0.991 1.002	2000000
1	2.068	0.496 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1.000 0.900 1.051 1.060 1.060 1.060	0.97 0.94 0.94 1.015 1.043
1 2	2.750	1.000 0.994 0.997 0.997 0.978 0.978 0.978 0.978 0.931 0.938	1.000 1.000 1.020 1.000 0.967 0.964	0.930
Freter	2 04.0	0.949 1.000 1.000 1.000 1.012 1.012 1.012 1.013 1.000	. 300 1.013 1.093 1.090 1.090	1.000 1.000
Flow Rate/Fretest Flow Late at Mg (Mts)	1.378	000.00000000000000000000000000000000000	1.000 0.936 0.936 0.939 0.930	1.000 0.852 0.938 0.943 0.643
Į ž	0.862	0.500	1.000 0.865 0.784 0.660 0.491 0.279	1,000 0,697 0,538 0,519 0,271 0,271
	0.352	00.932	0.977	1,000 1,035 0,923 0,910 0,910
	255 0	244288822882	2269892	284288
	0.062	11.5 7.42 7.42 7.42 7.43 7.43 7.44 7.45 7.45	8.55 9.75 8.65 8.75 8.65 8.75	12 0 11.0 10.5 5.07 5.14 5.14
	1376	288888888888888888888888888888888888888	\$5.52.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	22.22.22.2
(Hgs)	2.068	20000000000000000000000000000000000000	136.2 146.6 146.6 146.5 145.8 145.8	133.3 136.6 135.8 138.7 142.5 142.5
flow Rate g/sec at AP _f (HPa)	2.758	220.0 2120.0 2120.0 220.0 220.0 210.4 200.9 200.9 200.9	213.2 213.8 217.5 215.0 206.1 206.1	211.3 215.6 215.3 215.6 206.8 196.3
8 8/8	2.068	133.3 137.2 137.2 139.3 139.1 139.1 139.1 140.6	135.7	135.5 135.8 135.8 140.4 141.1
rlow Ra	1.378	\$35.535.535.55 \$35.535.535.55 \$35.535.535 \$35.	88.88.88 88.88.88 88.88.88	25.7.5 25.7.5 25.0.7.1
	0.862	100 100 100 100 100 100 100 100 100 100	9.20.00	7.69 8.23 8.23 8.23 3.21 3.21
	1	######################################	22.22.22.22.22.22.22.22.22.22.22.22.22.	22.5.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.
	Bours 0.55	000000000000000000000000000000000000000	0 - 2 2 2 2 3	0~07#28
100		180273	:#0272	1.00271
	į			-
Fue!	<u> </u>	694	\$ 7.\$	5
	ž	1461	1342	1342

APPENDIX F

SMOKE DATA CALCULATION

In this program, combustor component rig tests were conducted in which smoke emission levels were measured at the combustor exit plane by the method specified in Reference 6. The result is a Smoke Number (SN) which expresses the opacity of filter paper that has been stained by the exhaust gases. SN is therefore, not a true thermodynamic property of the exhaust gas. A relationship between SN and carbon weight fraction (X_c) , which is a thermodynamic property, is presented in Reference 16. This relationship is reproduced in Figure F-1.

When combustor exhaust gases are diluted by turbine cooling air as they are in the J79 engine, both SN and Xc are reduced. Smoke emission index (EI $_{\rm S}$) g carbon/kg fuel, however, remains constant. EI $_{\rm S}$ is calculated by the relationship:

$$EI_8 = (x_{ci}) \left(\frac{1000 + f_i}{f_i} \right) (10^{-3})$$

where:

- i = engine station where sample is taken
- f = fuel/air weight ratio (g fuel/kg air)

Therefore, engine smoke level, which would be measured at engine Plane 8, can be calculated from combustor rig measurements, taken at simulated engine Plane 4, by the following procedure:

- 1. Measured (SN4) and (f4) at simulated engine test conditions
- 2. $SN_4 + (X_{c4})$ (from Figure F-1)

3.
$$EI_s = (x_{c4}) \left(\frac{1000 + f_4}{f_4} \right) (10^{-3})$$

4. Cycle data + fg at simulated engine test condition

5.
$$x_{c8} = EI_s \left(\frac{f_8}{1000 + f_8} \right) (10^{-3})$$

6. $X_{c8} + SN_8$ (from Figure F-1)

For the J79-17C engine, f8/f4 = 0.838 at non-afterburning operating conditions. In the test data summary, SN_4 , X_{C8} , EI_8 , and SN_8 are all tabulted in Tables B-1 and B-2 for possible future use.

Figure F-1. Experimental Relationship Between Smoke Number and Exhaust Gas Carbon Concentration.

REFERENCES

- 1. Gleason, C.C., et al, "Evaluation of Fuel Character Effects on J79 Engine Combustion System," AFAPL-TR-79-2015, GE79AEG321, June 1979.
- 2. Gleason, C.C., et al, "Evaluation of Fuel Character Effects on F101 Engine Combustion System," AFAPL-TR-79-2018, GE79AEG405, June 1979.
- 3. Verdouw, A.J., "Fuel Character Effects on the Stoichiometric Combustor," AFAPL-TR-78-12, DDA EDR9356, October 1978, Confidential.
- 4. Jackson, T.A., "Fuel Character Effects on the J79 and F101 Engine Combustion Systems," NASA Symposium on <u>Aircraft Research and Technology for Future Fuels</u>, Cleveland, Ohio, April 16-17, 1980, Paper No. 12, CP2146, July 1980.
- 5. Longwell, J.P., Ed., "Jet Aircraft Hydrocarbon Fuels Technology," NASA CP-2033, January 1978.
- 6. "Aircraft Gas Turbine Engine Exhaust Smoke Measurement," Aerospace Recommended Practice 1179, SAE, 1970.
- 7. "Procedure for the Continuous Sampling and Measurement of Gaseous Emissions from Aircraft Turbine Engines," Aerospace Recommended Practice 1256, SAE, 1971.
- 8. Covey, M.W., "Final Report on Phase II of the Model J79-GE-10 Smoke Reduction/Improved Life Engine Flight Evaluation," NATC SA-44R-79, August 1979.
- 9. Gleason, C.C., and Bahr, D.W., "Experimental Clean Combustor Program Alternate Fuels Addendum, Phase II Final Report," NASA CR-134972, January 1976.
- 10. Moses, C.A., and Naegeli, D.W., "Effects of High Availability Fuels on Combustor Properties," AFAPL-101, January 1978.
- 11. Blazowski, W.S., and Jackson, T.A., "Evaluation of Future Jet Fuel Combustion Characteristics," AFAPL-TR-77-93, July 1978.
- 12. "Aircraft Engine Emissions Catalog," Naval Environmental Protection Support Service Report No. AESO101-Revision 4, July 1975.
- 13. Topicz, A., "Low Smoke Long Life Combustion System," General Electric Engineering Change Proposal No. 79U190, August 1974.
- 14. Colley, W.D., et al, "Development of Emissions Measurement Technique for Afterburning Turbine Engines: Supplement 2 Afterburner Plume Computer Program User's Manual," AFAPL-TR-75-52, Supplement 2, October 1975.

- 15. El-Shanawany, M.S., and Lefebvre, A.H., "Airblast Atomization: The Effect of Linear Scale on Mean Droplet Size," ASME paper No. 80-GT-74, March 1980.
- 16. Shaffernocker, W.M., and Stanforth, C.M., "Smoke Measurement Techniques," SAE Paper No. 680346, April 1968.