UBA – CBC		FINAL REGULAR										23/7/10		
Apellido:		1	2	3	4	5	6	7	8	9	10	11	12	
Nombre :														
DNI:		Nota:				C	orrec	tor:	l	l	T	EMA	A	
Por favor, lea esto antes de comenzar. El examen consta de preguntas de opción múltiple, con una sola respuesta correcta que debe elegir marcando una X en el recuadro correspondiente. No se aceptan respuestas en lápiz. Si tiene dudas sobre la interpretación de cualquiera de los ejercicios, agradeceremos que explique su interpretación. Algunas opciones de resultado pueden estar aproximadas.								etación						
1) Para detener en 20 metros cierto objeto que se desplaza a 50km/h, es posible aplicarle una fuerza constante de 400kgf que lo frene. Si el mismo objeto se moviera a 100km/h y se lo quisiera detener en la misma distancia anterior, la fuerza a aplicar sería:														
□ 566kgf	□ 800kgf	□ 100	00kgf		600kg	gf	□ 1	500kg	gf C	□ 120	0kgf			
2) Un aparato de refrig encuentra a 22°C y entre por ciclo, que emplea el	ega calor al exte		-									_		
□ 150J	□ 20J	□ 10	OJ		295.	Г		220J		□ 11	80J			
3) El interior de un freezer que se encuentra a -18°C está separado del exterior, que está a 24°C, por dos capas de material aislante del calor del mismo espesor. La capa A, en contacto con el interior, tiene una conductividad térmica que es la sexta parte de la conductividad térmica de la capa B, en contacto con el exterior. Si se alcanzó el estado estacionario, la temperatura de la unión entre ambas capas es:														
□ 3°C	□ -12°C	□ -4	·°C		⊃ 18°(С		8°C		□ 13	3°C			
4) El tubo de la figura está cerrado por un extremo y abierto por el otro, y tiene mercurio en equilibrio alojado en las dos asas inferiores. Los números indican las alturas en milímetros. Si la presión atmosférica es de 760 mm de mercurio y en el medio gaseoso se desprecia la variación de la presión con la altura ¿cuánto vale, en esas mismas unidades, la presión en el interior de la ampolla del extremo cerrado?								200 100						
☐ Prácticamente cero, p	orque se forma	vacío y	sólo l	nay ga	ises d	e mer	curio		£.	<u> </u>	<u></u>]	0	
5) Tres resistencias tales que $R_1 = R_2 = R_3/4$ se conectan como indica la figura con una fuente de tensión continua. ¿Cuál de las siguientes afirmaciones es la única correcta?														
 □ La diferencia de pot diferencia de potenci □ La intensidad de la contra de corriente que circo □ La potencia disipada □ La potencia disipada □ La potencia que entre □ La potencia que entre 	al eléctrico entre corriente que circ ula por R ₁ . por R ₂ es la mita por cada resisten ega la fuente es ig	e los exteula por ad de la acia es l gual a la	remon R ₃ est potent a mista a pote	s de F s el de ncia di ma. encia d	k ₃ . oble d sipad lisipa	le la i a por da po	ntens R ₃ . r la re	idad esisten		R ₁	₩₩	$ m R_2$	M —	

6) Se carga un capacitor plano cuyas láminas están separadas por un plástico cuya constante dieléctrica relativa es igual a 10 conectándolo a una fuente de tensión continua. Se desconecta luego el capacitor de la fuente y se saca el plástico quedando solo aire ($\epsilon_r = 1$). Si llamamos, en la situación inicial, Q_1 a la carga del capacitor, C_1 a su capacidad y Ep_1 a la energía potencial electrostática almacenada y designamos Q_2 , C_2 , Ep_2 a las mismas magnitudes en la segunda situación se verifica:
7) Considerando que la potencia de un corazón es de 1,2W, si la viscosidad de la sangre disminuye un 10%, indique cual debería ser la potencia en este caso si se quiere mantener el mismo caudal.
\square 1,21W \square 1,08W \square 2,12W \square 1,31W \square 1,54W \square 1,72W
8) Por un caño horizontal de diámetro constante circula un fluido viscoso, incompresible y en régimen estacionario. Comparando valores de caudal, velocidad y de presión, se verifica que:
$\begin{array}{ll} \hfill Q_1 = Q_2 \ ; \ v_1 = v_2 \ ; \ P_1 < P_2 \\ \hfill Q_1 = Q_2 \ ; \ v_1 > v_2 \ ; \ P_1 > P_2 \\ \hfill Q_1 = Q_2 \ ; \ v_1 = v_2 \ ; \ P_1 > P_2 \\ \hfill Q_1 = Q_2 \ ; \ v_1 = v_2 \ ; \ P_1 = P_2 \\ \hfill Q_1 > Q_2 \ ; \ v_1 = v_2 \ ; \ P_1 < P_2 \\ \hfill Q_1 > Q_2 \ ; \ v_1 = v_2 \ ; \ P_1 < P_2 \\ \hfill Q_1 > Q_2 \ ; \ v_1 = v_2 \ ; \ P_1 < P_2 \\ \hfill Q_1 > Q_2 \ ; \ v_1 = v_2 \ ; \ P_1 < P_2 \\ \hfill Q_1 > Q_2 \ ; \ v_1 = v_2 \ ; \ P_1 < P_2 \\ \hfill Q_1 > Q_2 \ ; \ v_1 = v_2 \ ; \ P_1 < P_2 \\ \hfill Q_1 > Q_2 \ ; \ v_1 = v_2 \ ; \ P_1 < P_2 \\ \hfill Q_1 > Q_2 \ ; \ v_1 = v_2 \ ; \ P_1 < P_2 \\ \hfill Q_1 > Q_2 \ ; \ v_1 = v_2 \ ; \ P_1 < P_2 \\ \hfill Q_1 > Q_2 \ ; \ v_1 = v_2 \ ; \ P_1 < P_2 \\ \hfill Q_1 > Q_2 \ ; \ v_1 = v_2 \ ; \ P_1 < P_2 \\ \hfill Q_1 > Q_2 \ ; \ v_1 = v_2 \ ; \ P_1 < P_2 \\ \hfill Q_1 > Q_2 \ ; \ v_1 = v_2 \ ; \ P_1 < P_2 \\ \hfill Q_1 > Q_2 \ ; \ v_1 = v_2 \ ; \ P_1 < P_2 \\ \hfill Q_1 > Q_2 \ ; \ v_1 = v_2 \ ; \ P_1 < P_2 \\ \hfill Q_1 > Q_2 \ ; \ v_1 = v_2 \ ; \ P_1 < P_2 \\ \hfill Q_1 > Q_2 \ ; \ v_1 = v_2 \ ; \ P_1 < P_2 \\ \hfill Q_1 > Q_2 \ ; \ v_1 = v_2 \ ; \ P_1 < P_2 \\ \hfill Q_1 > Q_2 \ ; \ v_1 = v_2 \ ; \ P_1 < P_2 \\ \hfill Q_1 > Q_2 \ ; \ v_1 = v_2 \ ; \ P_1 < P_2 \\ \hfill Q_1 > Q_2 \ ; \ v_1 = v_2 \ ; \ P_1 < P_2 \\ \hfill Q_1 > Q_2 \ ; \ v_1 = v_2 \ ; \ P_1 < P_2 \\ \hfill Q_1 > Q_2 \ ; \ v_1 = v_2 \ ; \ P_1 < P_2 \\ \hfill Q_1 > Q_2 \ ; \ v_1 = v_2 \ ; \ P_1 < P_2 \\ \hfill Q_1 > Q_2 \ ; \ v_1 = v_2 \ ; \ P_1 < P_2 \\ \hfill Q_1 > Q_2 \ ; \ v_1 = v_2 \ ; \ P_1 < P_2 \\ \hfill Q_1 > Q_2 \ ; \ v_1 = v_2 \ ; \ P_1 < P_2 \\ \hfill Q_1 > Q_2 \ ; \ v_1 = v_2 \ ; \ P_1 < P_2 \\ \hfill Q_1 > Q_2 \ ; \ v_1 = v_2 \ ; \ P_1 < P_2 \\ \hfill Q_1 > Q_2 \ ; \ v_1 = v_2 \ ; \ P_1 < P_2 \\ \hfill Q_1 > Q_2 \ ; \ v_1 = v_2 \ ; \ P_1 < P_2 \\ \hfill Q_1 > Q_2 \ ; \ v_1 = v_2 \ ; \ P_1 < P_2 \\ \hfill Q_1 > Q_2 \ ; \ v_1 = v_2 \ ; \ P_1 < P_2 \\ \hfill Q_1 > Q_2 \ ; \ v_1 = v_2 \ ; \ P_1 < P_2 \\ \hfill Q_1 > Q_2 \ ; \ v_1 = v_2 \ ; \ P_1 < P_2 \\ \hfill Q_1 > Q_2 \ ; \ v_1 = v_2 \ ; \ P_1 < P_2 $
9) Sobre un cuerpo de masa 2500kg se aplica una única fuerza constante de 3N, cual de las siguientes afirmaciones es la única correcta:
 □ Si el cuerpo se movía con v constante aumentará su velocidad y se mantendrá con MRU con una velocidad mayor. □ Si el cuerpo estaba en reposo permanecerá así. □ Como la fuerza es muy pequeña comparada con la masa, no afectará el estado del cuerpo. □ Primero aumentará su velocidad y luego se frenará hasta detenerse. □ El cuerpo adquiere una aceleración directamente proporcional a su masa. □ El cuerpo aumentará su velocidad indefinidamente pudiendo alcanzar velocidades enormes.
10) En una montaña rusa una vagoneta, al pasar por una posición A posee una energía potencial de 10.000J y una energía cinética de 4.000J. Al pasar por una posición B, a la mitad de altura de A, posee una energía cinética de 8.000J. El trabajo realizado por la fuerza peso (L _P) para ir desde A hacia B es:
□ 1.000J □ -1.000J □ -500J □ 4.500J □ 5.000J □ -5.000J
11) Se tiene un tubo de vidrio de sección circular como se muestra en la figura, se llena con mercurio ($\rho_{\rm Hg}=95\ 10^{-8}\Omega m$), si $L=1m$, $S_1=10^{-6}m^2$, $S_2=S_1/2$ entonces la resistencia eléctrica entre los extremos del tubo será: $\Box 0.95\Omega$ $\Box 1.90\Omega$ $\Box 1.90\Omega$ $\Box 0\Omega$ porque el mercurio es un metal. $\Box 2.85\Omega$ $\Box 95\ 10^{-8}\Omega$
12) Si el calor latente de evaporación del agua a 1atm es de 540cal/gr, ¿Cuál es la masa máxima de agua a 100°C que podemos evaporar durante 3min con un calefactor de 900W?
\square 2,32gr \square 0,13gr \square 20,9gr \square 300gr \square 71,7 gr \square 5,02gr