Redes Neuronales Convolucionales (Texto)

Orlando Ramos Flores

Contenido

- Introducción
- Convolución en 1D
 - o Ejemplo
- Convolución 1D para texto
 - Intuición Convolución 1D
 - Padding
 - Pooling
 - Stride
 - Pooling local (con stride)
- Arquitectura general CNN para texto
- Ejercicio

Introducción: N-gramas

- Un modelo de n-grama, es el modelo más simple que asigna probabilidades a secuencias de palabras sin considerar el orden de las palabras.
- Formulación intuitiva: P(w|h)
- La probabilidad de la palabra w, dada alguna historia h.

Dada la oración: Un acuerdo para mantener el gobierno abierto

$$w = el$$

h = un acuerdo para mantener

Introducción: N-gramas

$$w = el$$

 $h = un \ acuerdo \ para \ mantener$

De las veces que viste la historia h, ¿cuántas veces la siguió la palabra w?

$$P(el|un\ acuerdo\ para\ mantener) = rac{un\ acuerdo\ para\ mantener\ el}{un\ acuerdo\ para\ mantener}$$

$$P(w_n|w_{n-1}) = \frac{C(w_{n-1}w_n)}{C(w_{n-1})}$$

Introducción: N-gramas

```
unigramas = [un], [acuerdo], [para], [mantener], ...

bigramas = [un acuerdo], [acuerdo, para], [para mantener], ...

trigramas = [un acuerdo para], [acuerdo, para, mantener], ...
```

Convolución 1D

Convolución en 1D

Para la **convolución** entre dos funciones, se tiene $f, g: \mathbb{R}^D \to \mathbb{R}$, es definida como:

$$s(t) = \int x(a)w(t-a)da$$

En la terminología de red convoluciónal, el primer argumento (en este ejemplo, la función \mathbf{x}) de la convolución se suele denominar **entrada** y el segundo argumento (en este ejemplo, la función \mathbf{w}) como **kernel**. La salida a veces se denomina **mapa de características**. Esta operación es llamada convolución. Típicamente es denotada con un (*): s(t) = (x*w)(t)

Referencias:

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press. Murphy, K. P. (2022). Probabilistic machine learning: an introduction. MIT press. Ketkar, N., & Santana, E. (2017). Deep learning with Python (Vol. 1). Berkeley: Apress.

Convolución 1D

Por lo general, cuando trabajamos con datos en una computadora, el tiempo se discretiza y nuestro sensor proporcionará datos a intervalos regulares. Entonces:

$$s(t) = (x * w)(t) = \sum_a x(a) \cdot w(t - a)$$

Una forma equivalente de esta operación dada la conmutatividad de la operación de convolución es la siguiente:

$$(x*w)(t) = \sum_a x(t-a) \cdot w(a)$$

Referencias:

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press. Murphy, K. P. (2022). Probabilistic machine learning: an introduction. MIT press. Ketkar, N., & Santana, E. (2017). Deep learning with Python (Vol. 1). Berkeley: Apress.

Convolución 1D

En la literatura de aprendizaje profundo, el término "convolución" generalmente se usa para significar correlación cruzada; seguiremos esta convención:

$$(x*w)(t) = \sum_a x(t+a) \cdot w(a)$$

En general la operación de convolución se puede ver de la siguiente forma:

$$(w*x)(i) = \sum_{a=0} w_a \cdot x_{(i+a)}$$

Referencias:

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press. Murphy, K. P. (2022). Probabilistic machine learning: an introduction. MIT press. Ketkar, N., & Santana, E. (2017). Deep learning with Python (Vol. 1). Berkeley: Apress.

$$x = [0,1,2,3,4,5,6]$$
 $w = [1,2]$

$$(0 * 1) + (1 * 2) + (1 * 3) + (2 * 4) + (2 * -1) + (3 * -3) = 0 + 2 + 3 + 8 - 2 - 9 = 13 - 11 = 2$$

Implementar la operación convolución 1D

 $longitud\ salida = longitud\ entrada\ -\ longitud\ kernel\ +\ l$

Convolución 1D: Correlación cruzada unidimensional de múltiples canales de entrada

		En	trada					Kerne	el		Salida
2	3	4	5	6	7	8		-1	-3		
1	2	3	4	5	6	7	*	3	4	=	
0	1	2	3	4	5	6		1	2		

Convolución 1D: Correlación cruzada unidimensional de múltiples canales de entrada

Kernel Entrada Salida -3

$$(2 * -1) + (3 * -3) + (1 * 3) + (2 * 4) + (0 * 1) + (1 * 2) = -2 + -9 + 3 + 8 + 0 + 2$$

= -11 + 11 + 0 + 2 = 2

Modificar Implementación para la operación convolución 1D

Un acuerdo para mantener el gobierno abierto

Un	acuerdo	para	mantener	el	gobierno	abierto
0	1	2	3	4	5	6

(canales) vector de palabras denso (4D)

	(Un	0.2	0.1	-0.3	0.4
		acuerdo	0.5	0.2	-0.3	-0.1
Oración de entrada ${}_{ extstyle \wedge}$		para	-0.1	-0.3	-0.2	0.4
de el		mantener	0.3	-0.3	0.1	0.1
ración		el	0.2	-0.3	0.4	0.2
Ō		gobierno	0.1	0.2	-0.1	-0.1
		abierto	-0.4	-0.4	0.2	0.3

La dimensión de salida que obtendremos después de la convolución, será:

$$out = \left \lfloor rac{sentence \; length + 2 \cdot padding - kernel}{stride}
floor + 1$$

Un	0.2	0.1	-0.3	0.4
acuerdo	0.5	0.2	-0.3	-0.1
para	-0.1	-0.3	-0.2	0.4
mantener	0.3	-0.3	0.1	0.1
el	0.2	-0.3	0.4	0.2
gobierno	0.1	0.2	-0.1	-0.1
abierto	-0.4	-0.4	0.2	0.3

Calcular el producto punto

Kernel de tamaño 3

3	1	2	-3
-1	2	1	-3
1	1	-1	1

Un	0.2	0.1	-0.3	0.4
acuerdo	0.5	0.2	-0.3	-0.1
para	-0.1	-0.3	-0.2	0.4
mantener	0.3	-0.3	0.1	0.1
el	0.2	-0.3	0.4	0.2
gobierno	0.1	0.2	-0.1	-0.1
abierto	-0.4	-0.4	0.2	0.3

$$0.2*3 + 0.1*1 + -0.3*2 + 0.4*-3$$

 $0.6 + 0.1 + (-0.6) + (-1.2) = -1.1$
 $0.5*-1 + 0.2*2 + -0.3*1 + -0.1*-3$
 $-1.1 + -0.5 + 0.4 + (-0.3) + 0.3 = -1.2$
 $0.1*1 + -0.3*1 + -0.2*-1 + 0.4*1$
 $-1.2 + -0.1 + -0.3 + 0.2 + 0.4 = -1.0$

3	1	2	-3
-1	2	1	-3
1	1	-1	1

u,a,p	-1.0
-------	------

Un	0.2	0.1	-0.3	0.4
acuerdo	0.5	0.2	-0.3	-0.1
para	-0.1	-0.3	-0.2	0.4
mantener	0.3	-0.3	0.1	0.1
el	0.2	-0.3	0.4	0.2
gobierno	0.1	0.2	-0.1	-0.1
abierto	-0.4	-0.4	0.2	0.3

Calcular el resto

3	1	2	-3
-1	2	1	-3
1	1	-1	1

u,a,p	-1.0
a,p,m	
p,m,e	
m,e,g	
e,g,a	

Un	0.2	0.1	-0.3	0.4
acuerdo	0.5	0.2	-0.3	-0.1
para	-0.1	-0.3	-0.2	0.4
mantener	0.3	-0.3	0.1	0.1
el	0.2	-0.3	0.4	0.2
gobierno	0.1	0.2	-0.1	-0.1
abierto	-0.4	-0.4	0.2	0.3

¿Qué se puede observar?

- La oración se redujo a un solo vector
- La oración se hizo más pequeña

 since nellabras
 - o cinco palabras

3	1	2	-3
-1	2	1	-3
1	1	-1	1

u,a,p	-1.0
a,p,m	-0.5
p,m,e	-3.6
m,e,g	-0.2
e,g,a	0.3

¿Cómo resolver esto?

Convolución en 1D para texto con padding=1

Ø	0.0	0.0	0.0	0.0
Un	0.2	0.1	-0.3	0.4
acuerdo	0.5	0.2	-0.3	-0.1
para	-0.1	-0.3	-0.2	0.4
mantener	0.3	-0.3	0.1	0.1
el	0.2	-0.3	0.4	0.2
gobierno	0.1	0.2	-0.1	-0.1
abierto	-0.4	-0.4	0.2	0.3
Ø	0.0	0.0	0.0	0.0

Calcular:

- Ø,u,a
- g,a,∅

3	1	2	-3
-1	2	1	-3
1	1	-1	1

-0.6
-1.0
-0.5
-3.6
-0.2
0.3
-0.5

Convolución en 1D para texto con 3 kernels

Ø	0.0	0.0	0.0	0.0
Un	0.2	0.1	-0.3	0.4
acuerdo	0.5	0.2	-0.3	-0.1
para	-0.1	-0.3	-0.2	0.4
mantener	0.3	-0.3	0.1	0.1
el	0.2	-0.3	0.4	0.2
gobierno	0.1	0.2	-0.1	-0.1
abierto	-0.4	-0.4	0.2	0.3
Ø	0.0	0.0	0.0	0.0

Calcular convolución para los filtros 2 y 3

∅,u,a	-0.6	
u,a,p	-1.0	
a,p,m	-0.5	
p,m,e	-3.6	
m,e,g	-0.2	
e,g,a	0.3	
g,a,Ø	-0.5	

3	1	2	-3
-1	2	1	-3
1	1	-1	1

1	0	0	1
1	0	-1	-1
0	1	0	1

1	-1	2	-1
1	0	-1	3
0	2	2	1

Ø	0.0	0.0	0.0	0.0
Un	0.2	0.1	-0.3	0.4
acuerdo	0.5	0.2	-0.3	-0.1
para	-0.1	-0.3	-0.2	0.4
mantener	0.3	-0.3	0.1	0.1
el	0.2	-0.3	0.4	0.2
gobierno	0.1	0.2	-0.1	-0.1
abierto	-0.4	-0.4	0.2	0.3
Ø	0.0	0.0	0.0	0.0

¿Como resumimos el texto respecto a esas características?

palabras sobre comida

Obtener diferentes características latentes en el texto

∅,u,a	-0.6	0.2	1.4
u,a,p	-1.0	1.6	-1.0
a,p,m	-0.5	-0.1	0.8
p,m,e	-3.6	0.3	0.3
m,e,g	-0.2	0.1	1.2
e,g,a	0.3	0.6	0.9
g,a,∅	-0.5	-0.9	0.1

palabras amables

3 1 2 -3 -1 2 1 -3 1 1 -1 1

Convolución en 1D para texto: max pooling

Ø	0.0	0.0	0.0	0.0
Un	0.2	0.1	-0.3	0.4
acuerdo	0.5	0.2	-0.3	-0.1
para	-0.1	-0.3	-0.2	0.4
mantener	0.3	-0.3	0.1	0.1
el	0.2	-0.3	0.4	0.2
gobierno	0.1	0.2	-0.1	-0.1
abierto	-0.4	-0.4	0.2	0.3
Ø	0.0	0.0	0.0	0.0

Al parecer existe un marcador en el texto que captura en cierto sentido "comida"

≈,u,a	-0.0	0.2
u,a,p	-1.0	1.6
a,p,m	-0.5	-0.1
p,m,e	-3.6	0.3
	0.0	0.4

convolucional

-			
a,p,m	-0.5	-0.1	0.8
p,m,e	-3.6	0.3	0.3
m,e,g	-0.2	0.1	1.2
e,g,a	0.3	0.6	0.9
g,a,Ø	-0.5	-0.9	0.1

resumir la salida de una red

-0.6

1.4

3	1	2	-3
-1	2	1	-3
1	1	-1	1

1	0	0	1
1	0	-1	-1
0	1	0	1

1	-1	2	-1
1	0	-1	3
0	2	2	1

0.3 1.6 1.4 max pool

Convolución en 1D para texto: average pooling

Ø	0.0	0.0	0.0	0.0
Un	0.2	0.1	-0.3	0.4
acuerdo	0.5	0.2	-0.3	-0.1
para	-0.1	-0.3	-0.2	0.4
mantener	0.3	-0.3	0.1	0.1
el	0.2	-0.3	0.4	0.2
gobierno	0.1	0.2	-0.1	-0.1
abierto	-0.4	-0.4	0.2	0.3
Ø	0.0	0.0	0.0	0.0

El resultado es una semántica diferente.

¿Que porcentaje es sobre amabilidad, comida o negatividad?

∅,u,a	-0.6	0.2	1.4
u,a,p	-1.0	1.6	-1.0
a,p,m	-0.5	-0.1	0.8
p,m,e	-3.6	0.3	0.3
m,e,g	-0.2	0.1	1.2
e,g,a	0.3	0.6	0.9
g,a,∅	-0.5	-0.9	0.1

3	1	2	-3
-1	2	1	-3
1	1	-1	1

1	0	0	1
1	0	-1	-1
0	1	0	1

1	-1	2	-1
1	0	-1	3
0	2	2	1

avg pool	-0.87	0.26	0.53
----------	-------	------	------

Convolución en 1D para texto: stride=2

Ø	0.0	0.0	0.0	0.0
Un	0.2	0.1	-0.3	0.4
acuerdo	0.5	0.2	-0.3	-0.1
para	-0.1	-0.3	-0.2	0.4
mantener	0.3	-0.3	0.1	0.1
el	0.2	-0.3	0.4	0.2
gobierno	0.1	0.2	-0.1	-0.1
abierto	-0.4	-0.4	0.2	0.3
Ø	0.0	0.0	0.0	0.0

Mover la convolución con stride = 2

Calcular la convolución

∅,u,a	-0.6	0.2	1.4
a,p,m	-0.5	-0.1	0.8
m,e,g	-0.2	0.1	1.2
g,a,∅	-0.5	-0.9	0.1

3	1	2	-3
-1	2	1	-3
1	1	-1	1

1	0	0	1
1	0	-1	-1
0	1	0	1

1	-1	2	-1
1	0	-1	3
0	2	2	1

Convolución en 1D para texto: stride=2

Ø	0.0	0.0	0.0	0.0
Un	0.2	0.1	-0.3	0.4
acuerdo	0.5	0.2	-0.3	-0.1
para	-0.1	-0.3	-0.2	0.4
mantener	0.3	-0.3	0.1	0.1
el	0.2	-0.3	0.4	0.2
gobierno	0.1	0.2	-0.1	-0.1
abierto	-0.4	-0.4	0.2	0.3
Ø	0.0	0.0	0.0	0.0

Mover la convolución con stride = 2

Calcular la convolución

∅,u,a	-0.6	0.2	1.4
a,p,m	-0.5	-0.1	0.8
m,e,g	-0.2	0.1	1.2
g,a,∅	-0.5	-0.9	0.1

3	1	2	-3
-1	2	1	-3
1	1	-1	1

1	0	0	1
1	0	-1	-1
0	1	0	1

1	-1	2	-1
1	0	-1	3
0	2	2	1

Convolución en 1D para texto: stride=2

Ø	0.0	0.0	0.0	0.0
Un	0.2	0.1	-0.3	0.4
acuerdo	0.5	0.2	-0.3	-0.1
para	-0.1	-0.3	-0.2	0.4
mantener	0.3	-0.3	0.1	0.1
el	0.2	-0.3	0.4	0.2
gobierno	0.1	0.2	-0.1	-0.1
abierto	-0.4	-0.4	0.2	0.3
Ø	0.0	0.0	0.0	0.0

Mover la convolución con stride = 2

Calcular la convolución

∅,u,a	-0.6	0.2	1.4
a,p,m	-0.5	-0.1	0.8
m,e,g	-0.2	0.1	1.2
g,a,∅	-0.5	-0.9	0.1

3	1	2	-3
-1	2	1	-3
1	1	-1	1

1	0	0	1
1	0	-1	-1
0	1	0	1

1	-1	2	-1
1	0	-1	3
0	2	2	1

Convolución en 1D para texto: stride=2

Ø	0.0	0.0	0.0	0.0
Un	0.2	0.1	-0.3	0.4
acuerdo	0.5	0.2	-0.3	-0.1
para	-0.1	-0.3	-0.2	0.4
mantener	0.3	-0.3	0.1	0.1
el	0.2	-0.3	0.4	0.2
gobierno	0.1	0.2	-0.1	-0.1
abierto	-0.4	-0.4	0.2	0.3
Ø	0.0	0.0	0.0	0.0

Mover la convolución con stride = 2

Calcular la convolución

∅,u,a	-0.6	0.2	1.4
a,p,m	-0.5	-0.1	0.8
m,e,g	-0.2	0.1	1.2
g,a,∅	-0.5	-0.9	0.1

3	1	2	-3
-1	2	1	-3
1	1	-1	1

1	0	0	1
1	0	-1	-1
0	1	0	1

1	-1	2	-1
1	0	-1	3
0	2	2	1

Ø	0.0	0.0	0.0	0.0
Un	0.2	0.1	-0.3	0.4
acuerdo	0.5	0.2	-0.3	-0.1
para	-0.1	-0.3	-0.2	0.4
mantener	0.3	-0.3	0.1	0.1
el	0.2	-0.3	0.4	0.2
gobierno	0.1	0.2	-0.1	-0.1
abierto	-0.4	-0.4	0.2	0.3
Ø	0.0	0.0	0.0	0.0

Se toman las dos (stride) primeras filas y se aplica el max pooling

∅,u,a	-0.6	0.2	1.4
u,a,p	-1.0	1.6	-1.0
a,p,m	-0.5	-0.1	0.8
p,m,e	-3.6	0.3	0.3
m,e,g	-0.2	0.1	1.2
e,g,a	0.3	0.6	0.9
g,a,Ø	-0.5	-0.9	0.1

3	1	2	-3
-1	2	1	-3
1	1	-1	1

1	0	0	1
1	0	-1	-1
0	1	0	1

1	-1	2	-1
1	0	-1	3
0	2	2	1

∅,u,a,p	-1.0	1.6	1.4
---------	------	-----	-----

Ø	0.0	0.0	0.0	0.0
Un	0.2	0.1	-0.3	0.4
acuerdo	0.5	0.2	-0.3	-0.1
para	-0.1	-0.3	-0.2	0.4
mantener	0.3	-0.3	0.1	0.1
el	0.2	-0.3	0.4	0.2
gobierno	0.1	0.2	-0.1	-0.1
abierto	-0.4	-0.4	0.2	0.3
Ø	0.0	0.0	0.0	0.0

Se aplica nuevamente el stride=2 y se aplica el max pooling

∅,u,a	-0.6	0.2	1.4
u,a,p	-1.0	1.6	-1.0
a,p,m	-0.5	-0.1	0.8
p,m,e	-3.6	0.3	0.3
m,e,g	-0.2	0.1	1.2
e,g,a	0.3	0.6	0.9
g,a,Ø	-0.5	-0.9	0.1

3	1	2	-3
-1	2	1	-3
1	1	-1	1

1	0	0	1
1	0	-1	-1
0	1	0	1

1	-1	2	-1
1	0	-1	3
0	2	2	1

∅,u,a,p	-1.0	1.6	1.4
a,p,m,e	-0.5	0.3	0.8

Ø	0.0	0.0	0.0	0.0
Un	0.2	0.1	-0.3	0.4
acuerdo	0.5	0.2	-0.3	-0.1
para	-0.1	-0.3	-0.2	0.4
mantener	0.3	-0.3	0.1	0.1
el	0.2	-0.3	0.4	0.2
gobierno	0.1	0.2	-0.1	-0.1
abierto	-0.4	-0.4	0.2	0.3
Ø	0.0	0.0	0.0	0.0

, ,	0.0	U.	
u,a,p	-1.0	1.6	-1.0
a,p,m	-0.5	-0.1	0.8
p,m,e	-3.6	0.3	0.3
m,e,g	-0.2	0.1	1.2
e,g,a	0.3	0.6	0.9
g,a,Ø	-0.5	-0.9	0.1

-0.6

∅ua

3	1	2	-3
-1	2	1	-3
1	1	-1	1

1	0	0	1
1	0	-1	-1
0	1	0	1

1	-1	2	-1
1	0	-1	3
0	2	2	1

∅,u,a,p	-1.0	1.6	1.4
a,p,m,e	-0.5	0.3	0.8
m,e,g,a	0.3	0.6	1.2

Ø	0.0	0.0	0.0	0.0
Un	0.2	0.1	-0.3	0.4
acuerdo	0.5	0.2	-0.3	-0.1
para	-0.1	-0.3	-0.2	0.4
mantener	0.3	-0.3	0.1	0.1
el	0.2	-0.3	0.4	0.2
gobierno	0.1	0.2	-0.1	-0.1
abierto	-0.4	-0.4	0.2	0.3
Ø	0.0	0.0	0.0	0.0

Se toman las últimas dos primeras filas y se aplica el max pooling

∅,u,a	-0.6	0.2	1.4
u,a,p	-1.0	1.6	-1.0
a,p,m	-0.5	-0.1	0.8
p,m,e	-3.6	0.3	0.3
m,e,g	-0.2	0.1	1.2
e,g,a	0.3	0.6	0.9
g,a,ø	-0.5	-0.9	0.1
Ø	-Inf	-Inf	-Inf

3	1	2	-3
-1	2	1	-3
1	1	-1	1

1	0	0	1
1	0	-1	-1
0	1	0	1

1	-1	2	-1
1	0	-1	3
0	2	2	1

∅,u,a,p	-1.0	1.6	1.4
a,p,m,e	-0.5	0.3	0.8
m,e,g,a	0.3	0.6	1.2
g,a,ø,ø	-0.5	-0.9	0.1

Arquitectura general CNN para texto

Arquitectura General

Chen, Y. (2015). Convolutional neural network for sentence classification (Master's thesis, University of Waterloo).

Arquitectura General

- Función de activación: ReLU
- kernels: 3, 4 y 5
- Filtros: 100 (mapas de características)
- Dropout: 0.5
- Tamaño de mini-batch: 50
- Embeddings: word2vec de tamaño 300

Arquitectura General

Zhang, Y., & Wallace, B. (2015). A sensitivity analysis of (and practitioners' guide to) convolutional neural networks for sentence classification. arXiv preprint arXiv:1510.03820.

Ejercicio

Ejercicio

0.0, 0.0, 0.0, 0.0, 0.0 0.4, 0.1, 0.5, 0.8, -0.10.0, 0.2, -0.8, 0.3, -0.20.1, 0.7, 0.6, 0.5, -0.4-0.2, -0.3, 0.1, -0.6, 0.7-0.8, -0.9, 0.7, 0.9, -0.20.3, 0.9, 0.2, 0.9, 0.5 -0.1, 0.6, -0.1, -0.7, 0.30.5, 0.1, 0.2, 0.7, 0.4 0.0, 0.0, 0.0, 0.0, 0.0

misma longitud que la entrada

Ejercicio

```
1.6, 2.9, 2.4

0.2, 3.6, -1.8

3.1, 3.3, -4.4

-5.6, 4.5, 4.8

1.3, 2.1, 3.5

0.1, 7.9, -7.2

6.2, 0.8, 4.8

2.6, 2.22045E-16, 9.2
```