

Faculty of Mathematical & Physical Sciences Model Question paper – B. Tech.

Department: MathematicsProgramme: B. Tech.Semester/Batch: 3rd /2018Course Code: 19MHB201A

Course Title : Engineering Mathematics - 3

Model Question paper MATLAB

INSTRUCTIONS TO STUDENTS:

1. Answer all questions.

2. Missing data may be appropriately assumed.

3. Indicate the question numbers clearly against your answers.

Maximum Duration: 2 Hour Maximum Marks: 50

Question No. 1 (6+4=10 Marks)

a. Use MATLAB built-in function to determine the Laplace transform of

$$f(t) = \begin{cases} t^2 & 0 \le t < 3, \\ 2t - 1 & 3 \le t < 5, \\ 9 & t \ge 5. \end{cases}$$

b. Use MATLAB built-in function to determine the inverse Laplace transform of

$$F(s) = \frac{1}{s^2(s^2 + 1)}.$$

Question No. 2 (5+5=10 Marks)

a. Use MATLAB built-in function to determine the Fourier transform of the function

$$f(t) = \begin{cases} 2 & |t| \le 1 \\ 0 & |t| > 1. \end{cases}$$

b. Plot the vector field $\mathbf{F}(x, y, z) = (3x^2)\mathbf{i} + (2xz - y)\mathbf{j} + z\mathbf{k}$ in the interval $-3 \le x \le 3$, $-3 < y \le 3$ and $-3 \le z \le 3$.

Question No. 3: (5+5=10 Marks)

a. Use MATLAB built-in function to obtain quadratic fit of the given data and hence plot the given data and obtained quadratic curve in the same graph:

x	1.5	2.0	2.5	3.0	3.5	4.0
у	1.3	6.7	12.0	25.7	35.4	44.1

b. Plot the periodic function $f(x) = x^2$, $\forall x \in (-2,2)$, f(x+4) = f(x) in the interval (-6,6).

Question No. 4 (10 Marks)

In a machine the displacement of y of a point is given for a certain angle θ as follows:

$ heta^0$	30	60	90	120	150	180	210	240	270	300	330	360
у	2.34	3.01	3.68	4.15	3.69	2.20	0.83	0.51	0.88	1.09	1.19	1.64

- a. Write a MATLAB program to compute the Fourier series expansion of the displacement y, up to third harmonic.
- b. Plot the data point and the Fourier series expansion in the same graph, and record the output.

Question No. 5: [Manual calculation]

(10 Marks)

Using the method of least squares, fit a relation of the form $y = ae^{bx}$ to the following data:

х	2	3	4	5	6
у	144	172.8	207.5	250	298

Hence predict the value of y when x = 5.4.

0000000

Solution manual

1a. Use MATLAB built-in function to determine the Laplace transform of

$$f(t) = \begin{cases} t^2 & 0 \le t < 3, \\ 2t - 1 & 3 \le t < 5, \\ 9 & t \ge 5. \end{cases}$$

Soln.:- Express given f(t) in terms of Heaviside function.

$$f(t) = t^2 + (2t - 1 - t^2)H(t - 3) + (9 - (2t - 1))H(t - 5)$$

MATLAB code:

syms t s

$$f = t^2+(2*t-1-t^2)*heaviside(t-3)+(9-(2*t-1))*heaviside(t-5);$$

 $F = laplace(f,t,s);$
 $F = simplify(F)$
 $disp(F)$

Output:

$$-(2*exp(-3*s) + 4*s*exp(-3*s) + 2*s*exp(-5*s) + 4*s^2*exp(-3*s) - 2)/s^3$$

Exercise:

Determine Laplace transform for the following:

1.
$$f(t) = \begin{cases} t - 1, & 0 \le t < 4 \\ 2t, & t \ge 4 \end{cases}$$

2.
$$f(t) = e^{3t}\cos(2t) + t^2\sin(3t)$$

3.
$$f(t) = t^3 \cos(3t) H(t-3)$$

b. Use MATLAB built-in function to determine the inverse Laplace transform of

$$F(s) = \frac{1}{s^2(s^2+1)}.$$

MATLAB code:

syms s t

$$F = 1/(s^2*(s^2+1));$$

 $f = ilaplace(F, s, t);$
 $f = simplify(f);$
 $disp(f)$

Output:

$$t - \sin(t)$$

Exercise:

Determine inverse Laplace transform for the following:

1.
$$F(s) = \frac{(s+1)e^{-s}}{s(s^2+1)^2}$$

2.
$$F(s) = \frac{s+3}{(s-3)^2(s+4)}$$

3.
$$F(s) = \frac{s^2+2}{s^2+2s+9}$$

2a. Use MATLAB built-in function to determine the Fourier transform of the function

$$f(t) = \begin{cases} 2 & |t| \le 1 \\ 0 & |t| > 1. \end{cases}$$

Soln.:- Express given f(t) in terms of Heaviside function.

$$f(t) = 2(H(t+1) - H(t-1))$$

MATLAB code:

```
syms t w
f = 2*(heaviside(t+1)-heaviside(t-1));
F = fourier(f,t,w);
F = simplify(F);
disp(F)
```

Output:

$$(4*sin(w))/w$$

Exercise:

Determine Fourier transform for the following:

1.
$$f(t) = e^{-t}H(t)$$

2.
$$f(t) = \begin{cases} 2\sin t & |t| \le \pi \\ 0 & |t| > \pi \end{cases}$$

3.
$$f(t) = \cos(4t) (H(t+2) - H(t-2))$$

b. Plot the vector field $\mathbf{F}(x,y,z)=(3x^2)\mathbf{i}+(2xz-y)\mathbf{j}+z\mathbf{k}$ in the interval – $3\leq x\leq 3$, $-3\leq y\leq 3$, $-3\leq z\leq 3$.

Soln.:- Note the components of **F** are $f_1 = 3x^2$, $f_2 = 2xz - y$ and $f_3 = z$

Now use MATLAB editor and write a script file to perform following steps

Step 1: create set of x, y and z values using linspace

Step 2: generate mesh grid points for x, y and z using meshgrid (x, y, z)

Step 3: Enter given f_1 , f_2 and f_3

Step 4: use built-in function quiver3 (x, y, z, f1, f2, f3)

Step 5: label x, y, z axes

Step 6: Copy and paste graph

MATLAB code:

OUTPUT

>> vector_plot

Practice Problems

- 1. $\mathbf{F}(x, y, z) = -y\mathbf{i} + x\mathbf{j}$ in the interval $-1 \le x \le 1$, $-1 \le y \le 1$.
- 2. $\mathbf{F}(x, y, z) = x\mathbf{i} + ye^z\mathbf{j} + z^2\mathbf{k}$ in the interval $-1 \le x \le 1$, $-1 \le y \le 1$, $-1 \le z \le 1$
- 3. $\mathbf{F}(x, y, z) = \cos x \, \mathbf{i} + \sin y \, \mathbf{j} + (z y) \mathbf{k}$ in the interval $-3 \le x \le 3, -3 < y \le 3, -3 \le z \le 3$.
- 4. $\mathbf{F}(x, y, z) = (3x + 2y)\mathbf{i} + x^2y^3\mathbf{j} + 2xe^y\mathbf{k}$ in the interval $-4 \le x \le 4$, $-4 < y \le 4$, $-4 \le z \le 4$.
- 5. $\mathbf{F}(x, y, z) = xy\mathbf{i} + y^2z\mathbf{j}$, in the interval $-1 \le x \le 1, -1 \le y \le 1$

3a. Use MATLAB built-in function to obtain quadratic fit of the following data and hence plot the given data and obtained curve in same graph:

x	1.5	2.0	2.5	3.0	3.5	4.0
у	1.3	6.7	12.0	25.7	35.4	44.1

Solution.

MATLAB code:

```
x = [1.5 2 2.5 3 3.5 4];
y = [1.3 6.7 12 25.7 35.4 44.1];
p = polyfit(x,y,2);
syms t
yp = p(1)*t^2+p(2)*t+p(3);
fprintf('Quaratic fit for the given data is: y = ')
disp(vpa(yp,4))
plot(x,y,'*')
hold on
t=min(x):0.1:max(x);
z=eval(yp);
plot(t,z,'r')
```

Output:

Quaratic fit for the given data is: $y = 2.436*t^2 + 4.535*t - 11.8$

b. Plot the periodic function $f(x)=x^2, \forall x\in (-2,2), f(x+4)=f(x)$ in the interval (-6,6).

Solution:

MATLAB code:

```
f=@(x) x.^2;

x=linspace(-2,2,100);

fx = repmat(f(x),1,3); %%%%% 3=(6-(-6))/4

x1 = linspace(-6,6,length(fx));

plot(x1,fx,'b')

grid on
```

Output:

Other example:

Plot the following periodic function in the interval [-14, 24]

$$f(x) = \begin{cases} 0 - 2 \le x \le 2 \\ 3 \quad 2 < x < 6 \\ x \quad 6 \le x < 10 \end{cases}$$
 $f(x + 12) = f(x)$

MATLAB code:

Output:

Exercise:

1. Plot the periodic function:

$$f(x) = x^2 + 1$$
 $0 \le x \le 2$, $f(x + 2) = f(x)$ in the interval [0,10].

2. Plot the periodic function:

$$f(x) = \begin{cases} \frac{3x}{4}, & 0 \le x \le 4\\ 7 - x, & 4 \le x \le 10, f(x + 13) = f(x) \text{ in the interval } [-26, 26] \\ -3, & 10 \le x \le 13 \end{cases}$$
Plot the periodic function in the interval $[-2\pi, 4\pi]$

3. Plot the periodic function in the interval $[-2\pi, 4\pi]$

$$f(x) = \begin{cases} 2\sin x & 0 \le x < \pi \\ x & \pi < x < 2\pi \end{cases}, \quad f(x + 2\pi) = f(x).$$

- $f(x) = \begin{cases} 2\sin x & 0 \le x < \pi \\ x & \pi \le x \le 2\pi \end{cases}, \quad f(x+2\pi) = f(x).$ 4. Plot the periodic function $f(x) = e^{3x}$, $0 \le x \le 2$ and f(x+2) = f(x) in the interval [0, 8].
- 5. Plot the periodic function $f(x) = \begin{cases} 1, & 0 \le x < 1 \\ x, & 1 \le x \le 2 \end{cases}$ and f(x+2) = f(x) in the interval [0, 6].

4. In a machine the displacement of y of a point is given for a certain angle θ as follows:

θ^0	30	60	90	120	150	180	210	240	270	300	330	360
у	2.34	3.01	3.68	4.15	3.69	2.20	0.83	0.51	0.88	1.09	1.19	1.64

- c. Write a MATLAB program to compute the Fourier series expansion of the displacement y, up to third harmonic.
- d. Plot the data point and the Fourier series expansion in the same graph, and record the output.

Solution:

MATLAB PROGRAM (Includes Plotting commands):

```
x=[30\ 60\ 90\ 120\ 150\ 180\ 210\ 240\ 270\ 300\ 330\ 360];
x=(pi/180)*x;% only if theta is in terms of degree, not
required otherwise
y=[2.34 3.01 3.68 4.15 3.69 2.20 0.83 0.51 0.88 1.09 1.19
1.641;
syms t
```

```
T=2*pi; % Period, change according to question
w=2*pi/T;
h=3; % number of hormonics, change according to question
a0=2*mean(y);
HS = a0/2;
for i=1:h
    a(i) = 2 * mean(y.*cos(i*w*x));
    b(i) = 2 * mean(y.*sin(i*w*x));
    HS=HS+a(i)*cos(i*w*t)+b(i)*sin(i*w*t);
end
HS=vpa(HS,3);
disp(HS)
%Plotting
t=linspace(min(x), max(x), 100);
y1=eval(HS);
plot(x,y,'*',t,y1,'r')
```

Above script is saved with a filename: HarmonicAnalysis.m

Output:

```
>> HarmonicAnalysis
```

```
4.2*\cos(36.0*t) - 1.31e-14*\sin(36.0*t) + 4.2*\cos(12.0*t) + 4.2*\cos(24.0*t) - 5.7e-15*\sin(12.0*t) - 1.14e-14*\sin(24.0*t) + 2.1
```

Plot:

Practice Problems:

1. The following values of y give the displacement in inches of a certain machine part for the rotation x of the flywheel.

I	х	0	$\pi/6$	$2\pi/6$	$3\pi/6$	$4\pi/6$	$5\pi/6$
	f(x)	0	9.2	14.4	17.8	17.3	11.7

- a. Write a MATLAB program to compute the Fourier series expansion of the displacement y, up to 20^{th} harmonic.
- b. Plot the data point and the Fourier series expansion in the same graph, and record the output.
- 2. In a machine the displacement of y of a given point is given for a certain angle θ as follows.

θ^o	0	30	60	90	120	150	180	210	240	270	300	330
y	7.9	8.0	7.2	5.6	3.6	1.7	0.5	0.2	0.9	2.5	4.7	6.8

- a. Write a MATLAB program to compute the Fourier series expansion of the displacement y, up to 10^{th} harmonic.
- b. Plot the data point and the Fourier series expansion in the same graph, and record the output.

3. For the given data

<u> </u>						
x	0	1	2	3	4	5
f(x)	4	8	15	7	6	2

- a. Write a MATLAB program to compute the Fourier series expansion of the displacement y, up to 25^{th} harmonic.
- b. Plot the data point and the Fourier series expansion in the same graph, and record the output.

4. For the given data

\boldsymbol{x}	0	2	4	6	8	10	12
f(x)	9.0	18.2	24.4	27.8	27.5	22.0	9.0

- a. Write a MATLAB program to compute the Fourier series expansion of the displacement y, up to 10^{th} harmonic.
- b. Plot the data point and the Fourier series expansion in the same graph, and record the output.
- 5. Using the method of least squares, fit a relation of the form $y=ae^{bx}$ to the following data:

x	2	3	4	5	6
y	144	172.8	207.5	250	298

Hence predict the value of y when x = 5.4.

Soln: To fit a curve

$$y = ae^{bx} \dots (1)$$

By taking log to both sides of the above equation,

$$log y = log a + bx \dots (2)$$

Put,

$$Y := log y$$
, $A = log a \dots \dots (3)$

With this (2) implies

$$Y = A + bx (4)$$

Now fit a curve (4) for the data:

x	2	3	4	5	6
$Y \coloneqq \log y$	4.9698	5.1521	5.3351	5.5215	5.6971

We use the method of least squares to find the best fit. Using this method we obtain two normal equations to find A and b in (4).

Normal equations for Y = A + bx are:

$$\sum_{i} Y_{i} = An + b \sum_{i} x_{i}$$

$$\sum_{i} Y_{i}x_{i} = A \sum_{i} x_{i} + b \sum_{i} x_{i}^{2}$$

Or

$$\begin{pmatrix} \sum Y \\ \sum Y x \end{pmatrix} = \begin{pmatrix} n & \sum x \\ \sum x & \sum x^2 \end{pmatrix} \begin{pmatrix} A \\ b \end{pmatrix} \dots \dots (5)$$

Where

$$\sum x = sum(x) = 20$$

$$\sum x^2 = sum(x.*x) = 20$$

$$\Sigma Y = sum(Y) = 26.6756$$

$$\sum Yx = sum(x.*Y) = 108.5264$$
, (Find using MATLAB)

n = 5 (number of terms)

Substituting in (5), we get

$$\binom{26.6756}{108.5264} = \binom{5}{20} \quad \binom{20}{90} \binom{A}{b} \dots \dots (5)$$

If
$$N = \begin{pmatrix} 26.6756 \\ 108.5264 \end{pmatrix}$$
 and $M = \begin{pmatrix} 5 & 20 \\ 20 & 90 \end{pmatrix}$, then

$$\binom{A}{h} = M \setminus N = \binom{4.6055}{0.1824}$$
 (find using MATLAB)

But,

$$A = log \ a \Rightarrow a = e^A = \exp(4.6055) = 100.0330.$$

Hence, required curve is

$$y = 100.033e^{0.1824x}.$$

Exercise:

1. Find a least square cure $y=ax^b$ to the following data:

X	1	2	3	4	5
Y	0.5	2	4.5	8	12.5

2. Using a method of least square fit a relation of the form $y=ab^x$ to the following data:

X	2	4	6	8	10
Y	25	38	56	84	122

3. Fit a parabola $y = a + bx + cx^2$ to the following data:

X	2	4	6	8	10
Y	3.07	12.85	31.47	57.38	91.29