

Andrew Spann, Dan Gulotta, Daniel Kane

Presented July 9, 2008

Outline

- 1. Introduction
- 2. Motivation
- 3. Simplifying Assumptions
- 4. Moment of Inertia Method
- 5. Diminishing Halves Methods
- 6. Quantitative Compactness Analysis
- 7. Conclusion

Problem Statement: Congressional Apportionment

- We wish to draw congressional districts for a state.
- Goal: Algorithm that avoids Gerrymandering.
- Want to create "simplest" shapes.
- Definition of "simple" left to problem solvers.
- Only rule is that districts have equal population.

Gerrymandering Examples

Adapted from National Atlas of the United States.

Motivation

Many possible criteria suggested in literature.

- Equality of district size
- Compactness
- Contiguity
- Similarity to existing borders
- Targeted homogeneity/heterogeneity

Instead of specifying many properties, we wish to explicitly specify as few as possible. Additional properties become an **emergent behavior**.

Motivation

Our algorithms will use only the criteria of

- 1. Equal population districts
- 2. Compactness

Examine map afterwards to determine emergent properties.

Simplifying Assumptions

We make the following simplifying assumptions in our model:

- A 2% error tolerance from the mean in size of district population is acceptable.
- Euclidean geometry: variations in longitudinal spacing negligible.
- County borders not sacred (ratio of counties:districts in many states necessitates cutting between borders).

Extracting test data

- Perl script extracts US Census data at the census tract level.
- Discretizes problem into points with a latitude, longitude, and population.
- For New York, 6398 tracts of nonzero population, median 2518 people.

Test Data

State	Population	Districts	Non-empty Census Tracts
TX	20,851,820	32	7530
NY	18,976,457	29	6398
IL	12,419,293	19	8078
AZ	5,130,632	8	1934

Algorithms for Fair Apportionment

We will now compare two methods for apportioning districts

- 1. Moment of Inertia Method
- 2. Diminishing Halves Method (Recursive Splitting)

Moment of Inertia Method

Intuition: Minimize the expected squared distance between all pairs of people in a district.

- Equivalent to physics concept of moment of inertia.
- One of the first methods to appear in literature (*Hess* 1965)
- Results in districts that are not only connected, but also convex, which limits the possibilities of oddly shaped districts

Moment of Inertia Method

- Moment of Inertia given by $\sum_i P_i(X_i \bar{X})^2$.
- Equals $\min_{Y} \sum_{i} P_{i}(X_{i} Y)^{2}$.
- Define districts and centers.
- Given centers optimize districts by computing "size" parameters.
- Given districts optimize centers as centers of mass.
- Gives iterative method to converge to near optimal solution.

Diminishing Halves Methods

Intuition: Divide the state into two halves of equal population. Then divide those halves recursively.

- Suggested by Forrest 1964.
- Many different ways to divide state in half.
- After experimentation, we choose the following:
 - 1. Treat the population data as regression coordinates.
 - 2. Compute the best fit squared distance (bfsd) line to the data.
 - 3. Use a line with slope perpendicular to this bfsd line to divide the state.

Diminishing Halves Methods

Compute best fit squared distance line based on orthogonal distance to data.

- Best fit line for given slope contains center of mass.
- Line of form $(X \overline{X}) \sin \theta + (Y \overline{Y}) \cos \theta = 0$.
- Line minimizes $\mathbb{E}\left[\left((X \overline{X})\sin\theta + (Y \overline{Y})\cos\theta\right)^{2}\right] = \\
 \sin^{2}\theta \operatorname{Var}\left[X\right] + 2\sin\theta\cos\theta \operatorname{Cov}\left(X, Y\right) + \cos^{2}\theta \operatorname{Var}\left[Y\right].$
- Optimal angle satisfies $\tan(2\theta) = \frac{-2\text{Cov}(X,Y)}{\text{Var}[X] \text{Var}[Y]}$.

Quantitative Measures of Compactness

- Inverse Roeck Test. Let C be the smallest circle containing the region, R. Measure $\frac{Area(C)}{Area(R)}$.
- Schwartzberg Test. Compute $\frac{Perimeter}{\sqrt{4\pi Area}}$.
- Length-Width Test. Inscribe the region in the rectangle with largest length-to-width ratio.

 Calculate $\frac{Length\ of\ Rectangle}{Width\ of\ Rectangle}$.

Smaller numbers are better. Circles give optimal value 1.

See Young 1988 for a review.

Compactness Results

Districts	Inv. Roeck	Schwartzberg	Length-Width
NY (MoI)	2.29 ± 0.66	1.64 ± 0.62	1.91 ± 0.61
NY (DH)	2.50 ± 0.87	1.74 ± 0.69	1.91 ± 0.77
TX (MoI)	2.04 ± 0.64	1.14 ± 0.09	1.72 ± 0.57
TX (DH)	2.76 ± 1.66	1.27 ± 0.20	2.30 ± 1.73
IL (MoI)	1.90 ± 0.36	1.28 ± 0.26	1.55 ± 0.39
IL (DH)	2.49 ± 0.99	1.35 ± 0.24	2.01 ± 0.96
AZ (MoI)	2.18 ± 0.56	1.17 ± 0.08	1.77 ± 0.51
AZ (DH)	2.69 ± 0.91	1.29 ± 0.15	2.07 ± 0.79

MoI = Moment of Inertia, DH = Diminishing Halves.

Smaller numbers correspond to more compact districts.

Conclusion

- Obtain nice districts despite few specified criteria.
- Both methods give regions that are not only connected but also **convex**.
- Processing data at the census tract level is feasible.
- Moment of Inertia method gives better results than our Diminishing Halves.
- Moment of Inertia derived from physics intuition.