

Master 1^{ère} année

Infrastructure Réseaux

TP n°1

Routage dynamique avec RIP

Routage à l'aide de RIP

But de la simulation

Mise en place de la simulation :

- * On utilisera le logiciel Quagga qui peut mettre en œuvre les protocoles BGP, OSPF, OSPF6 (en IPv6), RIP, RIPng (en IPv6) et IS-IS;
- * les routeurs rout1, rout2 et rout3 vont être simulés par des « netns » ;
- ⋆ la machine « Poste » va être simulée par un netns ;
- ★ les 3 réseaux resA, resB et resC vont être simulés par des switches (open-vSwitches sous Linux);
- ⋆ le VLAN correspondra uniquement à une interface du routeur rout1 sans connexion extérieure réelle;
- * le protocole de routage RIP va être mis en œuvre par Quagga (cf cours d'Infrastructure Réseaux).

Pour l'installation d'Open-vSwitch:

rezo@ishtar:~\$ sudo apt install openvswitch-switch

Pour l'installation de Quagga sur la VM :

rezo@ishtar:~\$ sudo apt install quagga

On aura également besoin de l'outil « telnet » pour la configuration de Quagga :

Attention

Une VM est mise à votre disposition sur http://p-fb.net/fileadmin/ishtar2.zip.

Elle propose la dernière version d'Ubuntu LTS et assure le passage vers systemd.

Configuration des trois netns, appelés « rout1 », « rout2 » et « rout3 » :

Chacun de ces netns va exécuter Quagga: il faut éviter des **collisions** au niveau des fichier de configuration et des fichiers temporaires, c-à-d que chaque netns disposera de répertoires particuliers:

- ▶ pour un netns appelé rout1, le répertoire « /etc/netns/rout1 » remplacera le répertoire « /etc » pour le netns.
- > pour chaque netns, un répertoire «/etc/quagga» va être créé: par exemple pour rout1, on va le créer dans «/etc/netns/rout1», ce qui donnera le répertoire «/etc/netns/rout1/quagga».

On va créer à la fois le répertoire « /etc/netns/rout; » et « /etc/netns/rout; /quagga »:

```
rezo@ishtar:~$ sudo mkdir -p /etc/netns/poste
rezo@ishtar:~$ sudo mkdir -p /etc/netns/rout1/quagga
rezo@ishtar:~$ sudo mkdir -p /etc/netns/rout2/quagga
rezo@ishtar:~$ sudo mkdir -p /etc/netns/rout4/quagga
```

- > on va installer les fichiers de configuration de quagga dans chaque répertoire créé plus haut :
 - □ le fichier « daemons » : il contient la liste des protocoles à activer :

```
rezo@ishtar:/etc/netns/rout1/quagga$ cat daemons
zebra=yes
bgpd=no
ospfd=no
ospf6d=no
ripd=yes
ripngd=no
isisd=no
```

Vous devez créer ce fichier et le copier dans chaque répertoire quagga associé à chaque netns.

□ le fichier «zebra.conf»: il peut être obtenu suivant la version du Linux de votre VM ou de votre machine dans le répertoire «/usr/share/doc/quagga-core/examples/» ou «/usr/share/doc/quagga/examples/»:

```
rezo@ishtar:~$ sudo cp /usr/share/doc/quagga/examples/zebra.conf.sample /etc/netns/rout1/quagga/zebra.conf

ou

rezo@ishtar:~$ sudo cp /usr/share/doc/quagga-core/examples/zebra.conf.sample /etc/netns/rout1/quagga/zebra.conf
```

□ le fichier « ripd.conf » :

__ xterm

```
rezo@ishtar:~$ sudo cp /usr/share/doc/quagga/examples/ripd.conf.sample /etc/netns/routl/quagga/ripd.conf

OU

rezo@ishtar:~$ sudo cp /usr/share/doc/quagga-core/examples/ripd.conf.sample /etc/netns/routl/quagga/ripd.conf
```

▶ On donne les droits sur le répertoire « quagga » et ses fichiers :

```
rezo@ishtar:~$ sudo chown -R quagga:quagga /etc/netns/rout1/quagga rezo@ishtar:~$ sudo chown -R quagga:quagga /etc/netns/rout2/quagga rezo@ishtar:~$ sudo chown -R quagga:quagga /etc/netns/rout4/quagga
```

▷ On vérifie que les différents fichiers existent bien pour chaque netns avec les bons droits :

```
pef@cube:/etc/netns/rout1/quagga$ ls -la
total 20
drwxr-xr-x 2 quagga quagga 4096 févr. 14 12:10 .
drwxr-xr-x 3 root root 4096 févr. 14 12:09 ..
-rw-r--r- 1 quagga quagga 65 févr. 14 12:08 daemons
-rw-r--r- 1 quagga quagga 406 févr. 14 12:10 ripd.conf
-rw-r--r- 1 quagga quagga 369 févr. 14 12:09 zebra.conf
```

On remarque que les droits du répertoire et des fichiers qu'il contient sont donnés à l'utilisateur «quagga» de groupe «quagga».

Récupération du fichier de création des différents netns, switches et poste

Vous pourrez récupérer le fichier de configuration :

```
rezo@ishtar:~$ git clone https://git.p-fb.net/pef/infrares_tp1_lab.git
```

▶ le script «build_architecture » permet de créer l'ensemble des netns, des liens, des switches et assure la configuration des interfaces;

```
rezo@ishtar:~$ sudo bash build_architecture
```

▷ le script « clean » permet de supprimer l'ensemble des éléments créés précédemment :

```
rezo@ishtar:~$ sudo bash clean
```

Cela vous permet de recréer entièrement le «netlab».

Rappel: pour accéder à un netns, vous pouvez exécuter un shell dedans:

```
rezo@ishtar:~$ sudo ip netns exec poste bash
```

Ici, j'accède au netns «poste»

■ ■ Configuration de Quagga

On peut vérifier que les démons s'exécutent en surveillant les ports de connexion associé (2601 pour zebra et 2602 pour RIPd):

```
rezo@ishtar:~$ sudo ip netns exec routl bash
rezo@ishtar:~# netstat -1
Connexions Internet actives (seulement serveurs)
Proto Recv-Q Send-Q Adresse locale Adresse distante Etat
tcp 0 0 localhost:zebra *:* LISTEN
tcp 0 0 localhost:ripd *:* LISTEN
```

Vous utiliserez la nouvelle commande:

- → pour plus de détails: « sudo ss -tlnp».

Configuration de RIP

La configuration du routeur pour le protocole RIP se fait par l'intermédiaire d'une connexion sur le port 2602 associé au démon « RIPd » :

```
rezo@ishtar:~# telnet 127.0.0.1 2602
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Hello, this is Quagga (version 0.99.18).
Copyright 1996-2005 Kunihiro Ishiguro, et al.
User Access Verification
Password:
ripd> enable
ripd#
```

Le **mot de passe** à entrer est celui par défaut, c-à-d « zebra ».

Une fois connecté, il faut activer le mode « privilégié » avec la commande enable.

À tout moment, l'utilisation de la touche « ? » permet l'affichage de l'aide.

La configuration du routeur est similaire à celle utilisée par des matériels fournis par la société CISCO tournant sous le système d'exploitation IOS.

Pour configurer RIP dans tout le réseau, il va falloir :

- I. activer le service quagga sur chaque netns concerné (rout1, rout2 et rout4);
- II. se connecter au démon ripd local avec telnet sur le port d'écoute 2602;
- III. configurer la liste des réseaux gérés par le routeur dans l'interface de configuration, par l'intermédiaire des commandes suivantes:

network 10.0.0.0/8	sert à demander la gestion par le démon du réseau indiqué
no network 10.0.0.0/8	sert à supprimer la gestion
	permet d'indiquer que le routeur effectuant cette commande devient la route par défaut du réseau (ici, ce sera rout2)
write file	permet de sauvegarder la configuration actuelle du routeur (si la commande ne fonctionne pas vérifiez les droits des fichiers qui doivent être donnés à l'utilisateur quagga)
show running-config	permet d'afficher la configuration courante
show ip rip	permet d'afficher la configuration du protocole RIP du routeur.

Pour la configuration de rout1:

```
rezo@ishtar:~$ sudo ip netns exec rout1 bash
rezo@ishtar:~# telnet 127.0.0.1 2602
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Hello, this is Quagga (version 0.99.18).
Copyright 1996-2005 Kunihiro Ishiguro, et al.
User Access Verification
Password:
ripd> enable
ripd# configure terminal
ripd(config) # router rip
ripd(config-router) # network 10.10.10.0/24
ripd(config-router) # network 10.10.20.0/24
ripd(config-router) # network 172.16.1.0/24
ripd(config-router) # show running-config
Current configuration:
hostname ripd
password zebra
log stdout
router rip
network 10.10.10.0/24
network 10.10.20.0/24
network 172.16.1.0/24
line vty
end
ripd(config-router) # write file
Configuration saved to /etc/quagga/ripd.conf
ripd(config-router) # exit
ripd(config) # exit
ripd# show ip rip
Codes: R - RIP, C - connected, S - Static, O - OSPF, B - BGP
     (n) - normal, (s) - static, (d) - default, (r) - redistribute,
     (i) - interface
    Network
                      Next Hop
                                        Metric From
                                                                Tag Time
                                            1 self
C(i) 10.10.10.0/24
                      0.0.0.0
                                                                  0
C(i) 10.10.20.0/24
                        0.0.0.0
                                              1 self
                                                                  0
C(i) 172.16.1.0/24
                       0.0.0.0
                                              1 self
                                                                  0
```

Pour la configuration de rout4:

```
rezo@ishtar:~$ sudo ip netns exec rout4 bash
rezo@ishtar:~# telnet 127.0.0.1 2602
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Hello, this is Quagga (version 0.99.18).
Copyright 1996-2005 Kunihiro Ishiguro, et al.
User Access Verification
Password:
ripd> enable
ripd# configure terminal
ripd(config) # router rip
ripd(config-router) # network 192.168.100.0/24
ripd(config-router) # write file
Configuration saved to /etc/quagga/ripd.conf
ripd(config-router) # show running-config
Current configuration:
hostname ripd
password zebra
log stdout
router rip
network 192.168.100.0/24
line vty
end
ripd(config-router) # exit
ripd(config) # exit
ripd# show ip rip
Codes: R - RIP, C - connected, S - Static, O - OSPF, B - BGP
     (n) - normal, (s) - static, (d) - default, (r) - redistribute,
     (i) - interface
                     Next Hop
                                                               Tag Time
    Network
                                      Metric From
C(i) 192.168.100.0/24 0.0.0.0
                                                                0
                                         1 self
ripd#
```

Pour la configuration du rout2:

```
rezo@ishtar:~$ sudo ip netns exec rout2 bash
rezo@ishtar:~# telnet 127.0.0.1 2602
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Hello, this is Quagga (version 0.99.18).
Copyright 1996-2005 Kunihiro Ishiguro, et al.
User Access Verification
Password:
ripd> enable
ripd# configure terminal
ripd(config) # router rip
ripd(config-router) # network 172.16.1.0/24
ripd(config-router)# network 192.168.100.0/24
ripd(config-router) # default-information originate
ripd(config-router) # show running-config
Current configuration:
hostname ripd
password zebra
log stdout
router rip
 default-information originate
 network 172.16.1.0/24
 network 192.168.100.0/24
line vty
end
ripd(config-router) # write file
Configuration saved to /etc/quagga/ripd.conf
ripd(config-router) # exit
ripd(config) # exit
ripd# show ip rip
Codes: R - RIP, C - connected, S - Static, O - OSPF, B - BGP
      (n) - normal, (s) - static, (d) - default, (r) - redistribute,
      (i) - interface

        Network
        Next Hop
        Metric From

        0.0.0.0/0
        0.0.0.0
        1 self

                                                                    Tag Time
R(n) 10.10.20.0/24 172.16.1.253 2 172.16.1
R(n) 10.10.20.0/24 172.16.1.253 2 172.16.1
C(i) 172.16.1.0/24 0.0.0.0 1 5016
                                                2 172.16.1.253 0 02:31
                                                2 172.16.1.253 0 02:31
C(i) 192.168.100.0/24 0.0.0.0
                                                  1 self
                                                                        0
```

Vous remarquez que dès la configuration de rout2, le protocole RIP s'active et construit la table de routage du réseau complet.

Travail

1. Sur chaque poste vérifiez les informations de routage construites :

```
rezo@ishtar:~# ip route
default via 172.16.1.254 dev eth0 proto zebra metric 2
10.10.10.0/24 dev eth2 proto kernel scope link src 10.10.10.254
10.10.20.0/24 dev eth1 proto kernel scope link src 10.10.20.254
172.16.1.0/24 dev eth0 proto kernel scope link src 172.16.1.253
192.168.100.0/24 via 172.16.1.254 dev eth0 proto zebra metric 2
192.168.127.0/24 via 172.16.1.254 dev eth0 proto zebra metric 2
```

- 2. à l'aide de tcpdump, *sniffez* et étudiez les paquets du protocole RIP sur les différentes interfaces des diférents routeurs: tcpdump -lnvv udp.
- 3. essayez une connexion entre le «rout1 » et «rout2 » avec la commande socat.
- 4. à l'aide de NetFilter donnez l'accès Internet (iptables, table « nat », chaîne POSTROUTING etc.)
 - pour les réseaux 172.16.1.0/24 et 192.168.100.0/24;
 - pour le réseau 10.10.10.0/24.

Quel est le routeur désigné comme « route par défaut » dans RIP ?

Vous:

- activerez l'interface de l'un des switches connecté à ce routeur sur le « netns root », c-à-d votre VM ou votre machine sous Linux;
- configurerez une adresse IP correcte pour cette interface;
- vous désignerez votre VM/machine Linux comme route par défaut pour le routeur choisi;
- vous activerez la fonction de routage sur votre VM/machine Linux;
- vous configurerez le firewall;
- ⋄ vous vérifierez que depuis « poste » vous accédez bien à Internet (ping sur 8.8.8.8).

Comment pouvez vous configurer le DNS sur le netns « poste » ?

Indice: pouvez vous lui configurer son propre fichier « /etc/resolv.conf » et que devrait-il contenir?