MyungHoon Jin

I applied for Yonsei University's Business Big Data, Graduate School of Information. I would like to work with Professor Ha Young Kim's MLCF lab. My greatest strength is to think mathematically and logically, which enables me to analyzing various business problems. You can check out my projects on GitHub at Personal Info.

Education

GACHON UNIVERSITY MAR 2013 -

Major: Financial Mathematics (GPA: 3.93 / 4.5) present

Candidate for Bachelor's degree of Business College, February 2020

JUN 2019 -**Korean Standards Association**

AUG 2019 Machine Learning & Deep Learning, National Support

Research Interest

Machine Learning, Deep Learning, Mathematics Finance, Anomalous Detection, Custom Churn Prediction, Sentiment Analysis, Probability Theory, Derivatives

Experience

Persona-System SEP 2019-

Field Trip, R&D Center present

· Project, [Extract and Classify Multi Emotion from NSMC]

Gachon Convergence Research Center SEP 2017-

Research Assistant, College of Business and Economics MAY 2019

> Article (Conditionally Accept), [Convergence Analysis of the Sanitation Index for 158 Countries]

JUL 2017-**KR-Futures**

AUG 2017 Internship, Research Department

Extra Curriculum Activity

AUG 2019-Predict User Churn and Maximize Expected Returns; NCSOFT &

Big Contest 2019 present

International Quant Championship, Stage 2 Semi Award; World Quant MAR 2018-

JUL 2018

Projects

NCSOFT User Churn Prediction

Classify Default Credit Card

Lion/Tiger/Leopard Classifier

Stock recommend algorithm with precision

Airbnb New User Booking

Catch-up effect on EPI2016 Data Set

Option Pricing & Delta Hedging Portfolio

Portfolio Optimization with CAPM

Hedge Strategy by Derivative (Futures)

Personal Info

Address

Osan-si, Gyeonggi-do, Korea

Mobile

+82-4011-4990

E-mail

jinmang2@gmail.com

GitHub

https://github.com/jinmang2

Date of Birth

03 / OCT / 1994

Skills

Data driven decision-making

Communication

Experience Curve

Strategic Planning

Excellent

R / STATA

Python

Very Good

HTML, CSS, JavaScript

Good

C++

Good

Database (MySQL, MongoDB)

Good

AUG 2019-

#1 NCSOFT User Churn Prediction

present

GitHub: github.com/jinmang2/ncsoft_predict_churn

Summary

Team project (3)

- Champions League of Big Contest 2019
- Data: activity, pledge, trade, combat, payment data by characters of each user for 28 days
- Define Churn: users whose connection history has been lost for more than 7 consecutive days during 64 observation days
- · To maximize ncsoft's expected returns, forecast the followings;
 - \checkmark $\hat{T} = predicted survival time, 1~63: churn | 64: remain (fig1-1)$
 - \checkmark $\hat{R} = predicted daily amount spent, positive real number (fig 1-2)$
- Objective function: $\hat{E}(r) = \gamma \times \hat{T} \times \hat{R} C$, γ : conversion rate, C: cost
- Adjust 3 ideas as followings;
 - ✓ Flatten the weekly variable to make it a features (fig 1-3)
 - ✓ Calculate the count variable for each features to become robust over time (fig 1-4)
 - ✓ Change labels to form; yln(y) (fig 1-5)
- · Deriving the top 30 on the Leader Board with 14,000 points
- 1st pass on Big Contest 2019

Role within the Team

- · Build baseline by flatten data set
- Create unity and joyful atmosphere as a younger brother
- · Providing ideas, change labels

I felt these things

- · Not only sequential model, but also cross-sectional model is important
- · Importance of target distributions
- · Effect of team synergy
- Reducing user churn is important in business problems because it increases expected returns

Figure 1-1. User Churn ratio and frequency by survival time

Figure 1-2. amount spent by survival time

Figure 1-3. Flatten the weekly variable to make it a feature

Figure 1-4. Calculate count variable for each features

Figure 1-5. Equations of changing label

Survival Time Amount Spent $\hat{T} = \begin{cases} (\hat{T} - 32) \times \ln(32 - \hat{T}), & \text{if } \hat{T} < 32 \\ (\hat{T} - 32) \times \ln(\hat{T} - 31), & \text{if } \hat{T} \ge 32 \end{cases} \qquad \hat{R} = \hat{R} \times \ln(\hat{R} + 1)$

$$\hat{T} = \begin{cases} 64, & \text{if } \hat{T} \ge 64 \\ 1, & \text{if } \hat{T} \le 1 \\ \hat{T}, & \text{otherwise} \end{cases} \qquad \hat{R} = \begin{cases} \hat{R}, & \text{if } \hat{R} \ge 0 \\ 0, & \text{otherwise} \end{cases}$$

JUL 2019-JUL 2019

#2 Classify Default Credit Card (UCI Data Set)

GitHub: github.com/jinmang2/KSA_Modules/tree/master/perform_eval/2nd Summary

Side project

(1)

- KSA 2nd performance test
- Data: personal information(gender, education,, age, etc.) and past 6 months consumption and default history
- Class imbalance problem: Trying SMOTE and stratified sampling (fig 2-1)
- Propose XGB(82.29%), CNN(81.57%), Voting Classifier(81.91%)

Do as Followings

- Do EDA for get feature vectors
- Perform test; SMOTE vs stratified sampling
- Feature selection with feature importance gained by XGB (fig 2-2)
- Solve classification problem with CNN by keras

I felt these things

- Use CNN, solve classification problem on cross-sectional data (fig 2-3)
- In order to solve the imbalance class problem, a strategy should be devised rather than simply applying SMOTE.

JUL 2019-

#3 Lion/Tiger/Leopard/etc. Classification

JUL 2019

GitHub: github.com/jinmang2/animal_classifier Summary

- Team project
- · CNN project, KSA module 6
- (3)
 - Data: Gather lion, tiger, and leopard image from google by web crawling
 - Train 1,500, valid 450, test 3,773 Image (300*300*3)
 - Only 10% Images are directly labeled and the rest of the labeling is automatically done with binary classification CNN
 - And then, quadruple classification of labeled data (fig 3-1) (Lion, Tiger, Leopard, etc.)
 - Propose test accuracy 85%, recall 88%

Role within the Team

- Conduct and plan roles for each team member as a leader
- Leopard data collection and binary classification
- Run and test final model

- As we gathered the data, we saw why the data collection and preprocessing took so long in machine learning projects.
- Visualize feature maps to see patterns for each animals (fig 3-2)

Figure 2-1. Ratio of Binary Target Variable

Figure 2-2. Feature Importance of XGB Classifier

Figure 2-3. CNN Structure by python-graphviz

Figure 3-1. CNN Structure on Binary & Quadruple model

Figure 3-2. Lion and 1st Conv layer Feature map image

JUN 2018-MAY 2019

#4 Stock recommend algorithm with precision

GitHub: github.com/jinmang2/stock_recommender *Summary*

Team project (2)

- Introduce stock recommend algorithm with precision
- Data: Top 16 stock by market category on KOSPI, '07.01.01~'18/06/30
- Price and technical indicator features such as MA, MACD, RSI, etc. were used.
- Set 300 target variable, (t: predict period, n: time window)

•
$$Y_{t,n} = Step\left(\ln\left(\frac{close_{i+t}^{s}}{\frac{1}{n}\sum_{k=0}^{n-1}close_{i-k}^{s}}\right)\right) for\begin{cases} t \in range(1,31,3)\\ n \in range(1,89,3) \end{cases}$$

- · Do these following steps;
- ✓ Calculates the time window of the technical indicators with the highest correlation for each target variable
- ✓ Select t* which has best performance on 70% train data
- ✓ For each n_1 , n_4 ~ n_{88} , the right to vote is forfeited if the precision of 90 days is smaller than 0.7 and the \hat{Y}_{t^*,n^*} is obtained by holding a vote.
- \checkmark If $\hat{Y}_{t^*,n^*}=1$, buy stocks with $\frac{1}{N}$ shares (N is number of stocks which rise)
- ✓ If not, unwinding position. (result; fig(4-1))

Role within the Team

- Calculate training features and target variables
- Test step 2~4 and modularize written code

I felt these things

- · Importance of sequence and time shift in time series data
- · Pricing data is not enough to predict stocks

APR 2018-JUN 2018

#5 Airbnb New User Bookings (Kaggle)

GitHub: github.com/jinmang2/airbnb_new_user_bookings

Summary

Team project (3)

- Multi-class problem that predicts which country the first user will travel based on data provided by Airbnb (fig 5-1)
- The random forest was used to provide 83% accuracy in predicting tests. (fig 5-2)

Role within the Team

- Tree-based ensemble model Hyper parameter tuning
- · Responsible for introduction and model building at the final PT

- · I have studied various kernels of Kaggle.
- As my first machine learning project, I built a baseline and went through the overall process.

Figure 4-1. Returns and Accuracy for 16 stocks

丑 3.16	개 주식에	대한 수익	률과 평가지	引丑
	수익룔	보유 수익률	정밀도	정확도
KB 금 8	-0.48%	-8.87%	33.33%	56.85%
LG	-4.39%	-6.96%	88.57%	56.43%
LG 생활건강	23.37%	33.96%	84.62%	45.64%
LG 화학	44.45%	13.63%	70.00%	68.46%
NAVER	4.30%	-9.38%	28.00%	52.28%
SK	-3.29%	-7.08%	28.57%	51.04%
SK 이노베이션	21.66%	24.25%	85.71%	65.56%
SK 텔레콤	5.17%	-13.25%	60.47%	56.85%
SK 하이닉스	27.77%	24.02%	54.12%	48.55%
삼성생명	20.42%	-17.31%	47.73%	68.88%
삼성전자	18.70%	-1.89%	61.25%	63.45%
삼성중공업	26.33%	-44.27%	61.76%	66.39%
셀트리온	109.21%	98.94%	79.05%	64.32%
신한지주	11.24%	-12.98%	70.37%	69.71%
현대건설	51.65%	22.21%	25.64%	48.96%
현대글로비스	18.58%	-30.70%	56.25%	63.49%

Figure 5-1. Training Destination Distribution by Gender

Figure 5-2. Confusion Matrix of Final Model

predict actual	AU	CA	DE	ES	FR	GB	IT	NDF	NL	PT	US	other
AU	488	0	0	0	2	0	0	41	0	0	8	0
CA	0	1211	0	2	4	1	1	176	1	1	27	4
DE	0	1	933	0	0	0	2	98	0	0	25	2
ES	0	1	0	1926	1	0	1	266	0	0	51	3
FR	1	1	0	5	4294	1	2	590	3	0	116	10
GB	0	2	1	0	0	1972	0	287	0	0	56	6
IT	0	1	0	2	2	4	2347	395	1	0	75	8
NDF	7	17	6	28	68	33	47	122574	10	3	1579	171
NL	0	0	0	0	2	0	0	88	653	0	16	3
PT	0	0	0	0	0	2	0	23	0	186	5	1
US	6	7	9	24	43	24	27	6303	8	2	55816	107
other	1	2	3	6	15	2	7	1353	3	0	274	8428

SEP 2017-

#6 Catch-up effect on EPI2016 Data Set

DEC 2017

GitHub: github.com/jinmang2/gachon_research

Summary

Side project

(1)

- Projects conducted by Gachon Convergence Research Center
- Studying whether developing countries catch up with developed countries on the environmental indexes provided by Environmental Performance Index 2016. (fig 6-1)
- Do convergence analysis with sigma ang gamma Indexes (fig 6-2, 6-3)

Do as Followings

- Subgroup analysis by income and region
- · Create figure and table for article
- · T-test and chi-squared statistical tests.

I felt these things

- Not only big-data but also small data on data analysis
- · Importance of organize results into table and presentation

OCT 2017-

#7 Option Pricing & Delta Hedging Portfolio

DEC 2017

GitHub: github.com/jinmang2/option_valuation

Summary

Team project (2)

- Build a delta hedging portfolio by KOSPI200 (Nov 17) call / put index option & futures and analyzes P&L with Greeks
- Since we predicted a low volatility market, we configured our portfolio as follows: (fig 7-1)
 - ✓ Short C330, C340, P322.5, P330; 676:1692:676:676 contracts
 - ✓ Long C335, C345; 1692:676 contracts
- Since gamma<0, portfolio is showed overall short gamma position.
- In addition, long positions were taken to compensate for fluctuations in the market.
- But geopolitical risks, such as washing machine tubes raising base rate, have maximized market volatility and loss on 11/27, 11/30, 12/4, 12/6.
- Fortunately, nothing happened on Quadruple Witching Day, so we benefited from theta's time value, totaling ₩ 11,125,000 (fig 7-2)

Role within the Team

- Calculate daily P&L and Greeks change
- Analyze causes of portfolio's P&L by Greeks (Use taylor expansion)

- · Impact of geopolitical risks on portfolio
- · Importance of unit. For instance, vega and theta (adjust business day)
- P&L analysis by applying Black-Scholes formula

Figure 6-1. Averaged Sanitation Indexes

Figure 6-2. Normalized Sigma Indexes on Sanitation

Figure 6-3. Normalized Gamma Indexes on Sanitation

Figure 7-1. Pay-off graph for our option portfolio

Table 7-1. Cumulative P&L our portfolio

Date	Daily P&L	Cumulative P&L	Greeks P&L
2017.11.10	₩ -	₩ -	₩ -
2017.11.13	-₩ 14,765,000	-₩ 14,765,000	-₩ 34,608,194
2017.11.14	₩ 81,245,000	₩ 66,480,000	₩ 26,019,513
2017.11.15	-₩ 80,402,500	-₩ 13,922,500	-₩ 31,046,395
2017.11.16	₩ 70,465,000	₩ 56,542,500	₩ 67,685,166
2017.11.17	₩ 15,345,000	₩ 71,887,500	₩ 16,564,104
2017.11.20	₩ 5,055,000	₩ 76,942,500	-₩ 24,045,784
2017.11.21	₩ 38,090,000	₩ 115,032,500	₩ 33,704,130
2017.11.22	₩ 1,260,000	₩ 116,292,500	-₩ 34,860
2017.11.23	-₩ 9,725,000	₩ 106,567,500	₩ 6,713,021
2017.11.24	₩ 1,490,000	₩ 108,057,500	₩ 19,131,648
2017.11.27	-₩ 161,100,000	-₩ 53,042,500	-₩ 153,700,556
2017.11.28	₩ 23,350,000	-₩ 29,692,500	₩ 39,512,040
2017.11.29	₩ 9,290,000	-₩ 20,402,500	-₩ 972,604
2017.11.30	-₩ 228,332,500	-₩ 247,372,500	-₩ 212,058,608
2017.12.01	₩ 73,240,000	-₩ 174,132,500	₩ 36,710,446
2017.12.04	-₩ 72,145,000	-₩ 246,277,500	-₩ 91,702,825
2017.12.05	₩ 17,240,000	-₩ 229,037,500	₩ 35,155,877
2017.12.06	-₩ 151,307,500	-₩ 380,345,000	-₩ 193,376,626
2017.12.07	₩ 44,430,000	-₩ 335,915,000	₩ 44,407,402
2017.12.08	₩ 90,250,000	-₩ 245,665,000	₩ 83,326,125
2017.12.11	₩ 72,375,000	-₩ 173,290,000	₩ 73,917,259
2017.12.12	₩ 57,725,000	-₩ 115,565,000	₩ 37,645,121
2017.12.13	₩ 45,220,000	-₩ 70,345,000	-₩ 6,910,066
2017.12.14	₩ 81,470,000	₩ 11,125,000	₩ 13,545,040

OCT 2017-

#8 Portfolio Optimization with CAPM

DEC 2017

 ${\it GitHub}: github.com/jinmang2/portfolio_optimization$

Summary

Team project (4)

- Use Markowitz's portfolio optimization theory and CAPM to build a portfolio that maximizes CAL slope as a KOSPI stock and provide quantitative and qualitative reasons
- Proposal Portfolio: Foosung (093370), Asiana airline (020560), S-Oil Corp (010950) (fig 8-1, fig 8-2)
- Expected returns: 20.7% / yr
- Operating income: 3.5% / 22 Days = 40.15% / yr (fig 8-3)

Role within the Team

- build an overall process as a leader
- Validate number of various cases with excel to find argmax_s CAL

I felt these things

- I was fascinated by the way the portfolio was optimized through statistical methods such as standard deviation, expected value, etc.
- Felt limited in finding argmax_s CAL with excel and the needs to learn other programming languages

OCT 2017-

#9 Hedge Strategy by Derivative (Futures)

DEC 2017

GitHub: github.com/jinmang2/portfolio_optimization *Summary*

Team project (4)

- Set a strategy to maximize return on risk by composing a portfolio of stocks that have a negative correlation with foreign commodity futures
- Proposal portfolio (take long position on futures): (fig 9-1)
 - 1. 25%; Carbon Emission Futures (CFI2Z9) in ICE
 - 2. 40%; Yanzhou Coal Mining Co Ltd (600188, SH)
 - 3. 35%; Vestas Wind Systems A/S (VWS)
- Carbon emission is negative correlated with two stocks.
- Propose expected return: 6.0% / 1yr
- Team project 1st on 6 teams

Role within the Team

- Propose carbon emission futures and investigate price variables
- Suggest qualitative content to explain quantitative figures of selected portfolio and test case study. (fig 9-2)
- · Investigate relation of carbon emission, fossil and renewable energy

- Improving the quality of the content and presenting it to the client
- See how mathematics is used in risk management

Figure 8-1. Optima Portfolio

Figure 8-2. Efficient Frontier of 3 stocks and 6 weights point

Figure 8-3. Cumulative Returns for 6 portfolio weights

Figure 9-1. Bar Chart of portfolio weight ratio

Figure 9-2. Analyze Case study of tail risk

<u> </u>	브렉시트(2016/6/23	3~7/22)
베스타스	연주석탄	탄소
-1%	16%	-14%
헤지된 수익률		
3%		
베스	타스 급락시(2016/9)/18~12/8)
베스타스	연주석탄	탄소
-24%	-5%	40%
해지된 수익률		
-1%		
연	주 급락시 (2015/8/	19-8/24)
베스타스	연주석탄	탄소
-16%	-20%	3%
헤지된 수익률		
-13%		

Figure 1-1. User Churn ratio and frequency by survival time

Figure 1-2. amount spent by survival time

Figure 1-3. Flatten the weekly variable to make it a feature

Figure 1-4. Calculate count variable for each features

acc_id	day	Х	Υ]					
	1	0.0011	0.0023						
	2	NaN or 0	0.4591						
	3	0.0320	0.3336						
	5	0.0220	NaN or 0		acc_id	Avg(X)	Avg(Y)	Count(X)	Count(Y)
	7	0.1400	NaN or 0		а	0.3936	0.3932	8 / 10	5 / 10
а	9	1.2780	0.4802						
	16	NaN or 0	0.6911						
	21	0.9000	NaN or 0						
	26	0.5000	NaN or 0						
	28	0.2760	NaN or 0						

Figure 2-2. Feature Importance of XGB Classifier

Figure 2-3. CNN Structure by python-graphviz

Figure 3-1. CNN Structure on Binary & Quadruple model

Binary

(is animal or not)

Quadruple

(is lion/tiger/leopard/etc.)

Figure 3-2. Origin Lion and 1st , 4th , 6th Conv layer Feature map image

Figure 5-1. Training Destination Distribution by Gender

Figure 5-2. Confusion Matrix of Baseline(Decision Tree) and Final Model(Random Forest)

(2)	(h)	(6)	(4)	(0)	(f)	(a)	(b)	(4)	(4) (14)	(1)		classifi	ind as
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j) (k)	(1)	<-	CTASSTI	reu as
1 1 1	9 1 1 1 2 2	13 1 1 2 3	25 1 4 2 2 1 5	44 11 3 8 1 9	12 1 2 6	5	219 619 466 1021 2214 1022 1281 86150 342 4558 105 25855	1	2 2 1 2 4 12 1 93 2 24	210 513 367 750 1756 819 950 13451 260 3400 66 23993	(b) (c) (d) (e) (f) (g) (h) (i) (j)	(): class (): class (): class (): class (): class (): class (): class (): class (): class (): class	S CA DE S ES S FR S GB S IT S NDF S NL S other
										J \	•		
pred	lict	ΑU	CA	DE	ES	FR	GB	IT	NDF	NL	PT	us	other
pred		AU	CA	DE	ES	FR	GB	ІТ	NDF	NL	PT	us	other
act	ual	AU 488	CA 0	DE 0	ES	FR 2	GB 0	0	NDF	N L	PT 0	us 8	other 0
act	ual	488										1	
act	ual AU CA DE	488	0 1211	0	0 2 0	2 4 0	0 1 0	0 1 2	41	0	0	8	0 4 2
act	ual AU CA DE ES	488 0 0 0	0 1211 1	0 0 933	0 2 0 1926	2 4 0 1	0 1 0	0 1 2	41 176 98 266	0 1 0	0	8 27 25 51	0
act	DE FR	488 0 0 0 0	0 1211 1 1	0 0 933 0	0 2 0 1926	2 4 0 1 4294	0 1 0 0	0 1 2 1	41 176 98 266 590	0 1 0 0 3	0 1 0 0	8 27 25 51 116	0 4 2 3
act	DE FR	488 0 0 0 1	0 1211 1 1 1 2	0 0 933 0 0	0 2 0 1926 5	2 4 0 1 4294	0 1 0 0 1 1972	0 1 2 1 2	41 176 98 266 590 287	0 1 0 0 3	0 1 0 0	8 27 25 51 116 56	0 4 2 3 10 6
act	AU CA DE ES FR GB	488 0 0 0 1 0	0 1211 1 1 1 2	0 0 933 0 0 1	0 2 0 1926 5 0 2	2 4 0 1 4294 0	0 1 0 0 1 1972	0 1 2 1 2 0 2347	41 176 98 266 590 287 395	0 1 0 0 3 0	0 1 0 0 0	8 27 25 51 116 56 75	0 4 2 3 10 6
act	DE ES GB IT DF	488 0 0 0 1 0 0 7	0 1211 1 1 1 2 1 17	0 0 933 0 1 0 6	0 2 0 1926 5 0 2	2 4 0 1 4294 9 2 68	0 1 0 0 1 1972	0 1 2 1 2 0 2347	41 176 98 266 590 287 395 122574	0 1 0 0 3 0 1	0 1 0 0 0 0 0	8 27 25 51 116 56 75 1579	0 4 2 3 10 6 8
act	DE ES FR GB IT DF NL	488 0 0 0 1 0 0 7	0 1211 1 1 1 2 1 17 0	0 0 933 0 0 1 0 6	0 2 0 1926 5 0 2 28 0	2 4 0 1 4294 2 68 2	0 1 0 0 1 1972 4 33	0 1 2 1 2 0 2347 47	41 176 98 266 590 287 395 122574	0 1 0 0 3 0 1 10 653	0 1 0 0 0 0 0 3	8 27 25 51 116 56 75 1579	0 4 2 3 10 6 8 171 3
act	DE ES FR GB IT DF NL PT	488 0 0 0 1 0 0 7 0	0 1211 1 1 2 1 17 0	0 0 933 0 1 0 6 0	0 2 0 1926 5 0 2 28 0	2 4 0 1 4294 8 2 68 2	0 1 0 0 1 1972 4 33 0 2	0 1 2 1 2 0 2347 47 0	41 176 98 266 590 287 395 122574	0 1 0 0 3 0 1 10 653	0 1 0 0 0 0 0 3	8 27 25 51 116 56 75 1579 16	0 4 2 3 10 6 8 171 3
acti	DE ES FR GB IT DF NL	488 0 0 0 1 0 0 7	0 1211 1 1 1 2 1 17 0	0 933 0 0 1 0 6	0 2 0 1926 5 0 2 28 0	2 4 0 1 4294 2 68 2	0 1 0 0 1 1972 4 33	0 1 2 1 2 0 2347 47	41 176 98 266 590 287 395 122574	0 1 0 0 3 0 1 10 653	0 1 0 0 0 0 0 3	8 27 25 51 116 56 75 1579	0 4 2 3 10 6 8 171 3

Figure 6-1. Averaged Sanitation Indexes for Total and Four Income Subgroups of 158 Countries (1990-2015)

Figure 6-2. Equation of Sigma and Normalized Sigma Indexes for Four Income Subgroups (1990-2015)

Figure 6-3. Equation of Gamma and Normalized Gamma Indexes for Four Income Subgroups (1990-2015)

Appendix

Table 6-1. Normalized Sigma and Gamma Sanitation Indexes of Total and Four Income Subgroups (1990-2015)

	All Count	tries (158)	High	n (58)	Upper M	iddle (43)	Lower M	Iiddle (34)	Lov	v (23)
Year	Sigma	Gamma	Sigma	Gamma	Sigma	Gamma	Sigma	Gamma	Sigma	Gamma
1990	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
1991	0.9901	0.9997***	0.9834	1.0000***	0.9732	0.9998***	0.9900	0.9997***	0.9815	1.0000***
1992	0.9806	0.9990***	0.9672	0.9996***	0.9500	0.9975***	0.9794	0.9956***	0.9635	0.9851***
1993	0.9693	0.9988***	0.9503	0.9996***	0.9276	0.9962***	0.9610	0.9972***	0.9470	0.9677***
1994	0.9568	0.9989***	0.9359	0.9979***	0.9042	0.9971***	0.9378	0.9934***	0.9315	0.9671***
1995	0.9444	0.9991***	0.9191	0.9980***	0.8792	1.0001***	0.9183	0.9953***	0.9155	0.9671***
1996	0.9324	0.9988***	0.9034	0.9979***	0.8564	0.9939***	0.8991	0.9937***	0.9013	0.9595***
1997	0.9199	0.9983***	0.8877	0.9966***	0.8343	0.9960***	0.8814	0.9917***	0.8787	0.9426***
1998	0.9082	0.9989***	0.8728	0.9950***	0.8135	0.9895***	0.8649	0.9904***	0.8597	0.9432***
1999	0.8966	0.9977***	0.8584	0.9955***	0.7933	0.9830***	0.8489	0.9878***	0.8410	0.9345***
2000	0.8855	0.9968***	0.8443	0.9918***	0.7757	0.9789***	0.8341	0.9858***	0.8243	0.9167***
2001	0.8747	0.9971***	0.8322	0.9935***	0.7587*	0.9713***	0.8203	0.9862***	0.8097	0.8990***
2002	0.8643	0.9970***	0.8194	0.9928***	0.7438*	0.9688***	0.8067	0.9763***	0.7961	0.9012***
2003	0.8543*	0.9954***	0.8076	0.9885***	0.7302*	0.9574***	0.7944	0.9719***	0.7828	0.8864***
2004	0.8446*	0.9922***	0.7960*	0.9838***	0.7180**	0.9312***	0.7830	0.9667***	0.7707	0.8673***
2005	0.8354*	0.9910***	0.7861*	0.9822***	0.7060**	0.9176***	0.7729	0.9650***	0.7599	0.8706***
2006	0.8263**	0.9892***	0.7761*	0.9774***	0.6939**	0.9094***	0.7631	0.9583***	0.7507	0.8594***
2007	0.8175**	0.9859***	0.7677**	0.9760***	0.6822**	0.8994***	0.7542	0.9502***	0.7410	0.8379***
2008	0.8086**	0.9864***	0.7590**	0.9720***	0.6696**	0.8929***	0.7446	0.9481***	0.7329	0.8436***
2009	0.8001**	0.9848***	0.7511**	0.9691***	0.6584**	0.8858***	0.7354	0.9406***	0.7254	0.8439***
2010	0.7918**	0.9827***	0.7443**	0.9662***	0.6476***	0.8682***	0.7264	0.9365***	0.7175	0.8315***
2011	0.7838***	0.9835***	0.7377**	0.9691***	0.6364***	0.8572***	0.7181	0.9259***	0.7117	0.8080***
2012	0.7757***	0.9824***	0.7318**	0.9633***	0.6251***	0.8559***	0.7094	0.9199***	0.7064	0.8083***
2013	0.7686***	0.9812***	0.7298**	0.9620***	0.6137***	0.8532***	0.7027	0.9173***	0.7021	0.7991***
2014	0.7628***	0.9804***	0.7280**	0.9608***	0.6070***	0.8450***	0.6979*	0.9110***	0.6992	0.8034***
2015	0.7586***	0.9802***	0.7270**	0.9583***	0.6007***	0.8437***	0.6947*	0.9112***	0.6991	0.7917***
CAGR (%)	-1.10%	-0.08%	-1.27%	-0.17%	-2.02%	-0.68%	-1.45%	-0.37%	-1.42%	-0.93%

^{***} Significant at 1% level, ** Significant at 5% level, * Significant at 10% level

Table 7-1. Book of delta hedging portfolio P&L with daily, cumulative, Greeks

	실제 손익							Greeks Profit & Loss								
					판	i				I	Greeks Pro	ofit &	X Loss			
날짜				DAILY				누적 손익 Daily Greeks Gamma 손익 Thet		heta 손익 Vega 손익						
		옵션 손익		선물 손익		손익										
2017.11.10	₩	-	₩	-	₩	-	₩	-	₩	-	₩	-	₩	-	₩	-
2017.11.13	-₩	82,940,000	₩	68,175,000	-₩	14,765,000	-₩	14,765,000	-₩	34,608,194	-₩	10,229,487	₩	35,068,449	-₩	59,447,157
2017.11.14	₩	65,870,000	₩	15,375,000	₩	81,245,000	₩	66,480,000	₩	26,019,513	-₩	2,227,956	₩	13,241,956	₩	15,005,514
2017.11.15	-₩	224,990,000	₩	144,587,500	-₩	80,402,500	-₩	13,922,500	-₩	31,046,395	-₩	9,826,873	₩	13,966,703	-₩	35,186,225
2017.11.16	₩	243,540,000	-₩	173,075,000	₩	70,465,000	₩	56,542,500	₩	67,685,166	-₩	24,871,429	₩	25,399,807	₩	67,156,789
2017.11.17	-₩	5,130,000	₩	20,475,000	₩	15,345,000	₩	71,887,500	₩	16,564,104	-₩	144,184	₩	13,473,300	₩	3,234,988
2017.11.20	-₩	83,820,000	₩	88,875,000	₩	5,055,000	₩	76,942,500	-₩	24,045,784	-₩	7,188,146	₩	22,784,125	-₩	39,641,763
2017.11.21	₩	133,640,000	-₩	95,550,000	₩	38,090,000	₩	115,032,500	₩	33,704,130	-₩	1,755,314	₩	15,095,750	₩	20,363,694
2017.11.22	₩	105,810,000	-₩	104,550,000	₩	1,260,000	₩	116,292,500	-₩	34,860	-₩	18,887,586	₩	14,527,200	₩	4,325,526
2017.11.23	-₩	56,750,000	₩	47,025,000	-₩	9,725,000	₩	106,567,500	₩	6,713,021	-₩	3,858,558	₩	12,314,900	-₩	1,743,321
2017.11.24	₩	41,490,000	-₩	40,000,000	₩	1,490,000	₩	108,057,500	₩	19,131,648	-₩	3,799,212	₩	22,324,708	₩	606,152
2017.11.27	-₩	421,450,000	₩	260,350,000	-₩	161,100,000	-₩	53,042,500	-₩	153,700,556	-₩	139,253,702	₩	36,625,950	-₩	51,072,804
2017.11.28	₩	202,900,000	-₩	179,550,000	₩	23,350,000	-₩	29,692,500	₩	39,512,040	-₩	14,529,471	₩	19,754,675	₩	34,286,836
2017.11.29	₩	9,290,000	₩	-	₩	9,290,000	-₩	20,402,500	-₩	972,604	-₩	613,317	₩	20,142,500	-₩	17,261,190
2017.11.30	-₩	684,770,000	₩	457,800,000	-₩	228,332,500	-₩	247,372,500	-₩	212,058,608	-₩	183,640,077	₩	32,800,667	-₩	61,219,198
2017.12.01	₩	6,740,000	₩	66,500,000	₩	73,240,000	-₩	174,132,500	₩	36,710,446	-₩	1,939,969	₩	43,488,542	-₩	4,838,127
2017.12.04	₩	477,530,000	-₩	549,675,000	-₩	72,145,000	-₩	246,277,500	-₩	91,702,825	-₩	140,606,447	₩	46,562,375	₩	2,341,246
2017.12.05	₩	180,040,000	-₩	162,800,000	₩	17,240,000	-₩	229,037,500	₩	35,155,877	-₩	5,624,660	₩	26,602,550	₩	14,177,988
2017.12.06	-₩	580,720,000	₩	429,412,500	-₩	151,307,500	-₩	380,345,000	-₩	193,376,626	-₩	189,778,591	₩	25,339,125	-₩	28,937,160
2017.12.07	-₩	128,470,000	₩	172,900,000	₩	44,430,000	-₩	335,915,000	₩	44,407,402	-₩	9,294,440	₩	58,640,000	-₩	4,938,158
2017.12.08	₩	232,350,000	-₩	142,100,000	₩	90,250,000	-₩	245,665,000	₩	83,326,125	-₩	12,808,564	₩	61,312,792	₩	34,821,897
2017.12.11	₩	90,400,000	-₩	18,025,000	₩	72,375,000	-₩	173,290,000	₩	73,917,259	-₩	1,978,877	₩	68,083,250	₩	7,812,886
2017.12.12	-₩	127,600,000	₩	185,325,000	₩	57,725,000	-₩	115,565,000	₩	37,645,121	-₩	14,591,962	₩	49,476,450	₩	2,760,634
2017.12.13	₩	545,020,000	-₩	499,800,000	₩	45,220,000	-₩	70,345,000	-₩	6,910,066	-₩	58,916,714	₩	45,670,550	₩	6,336,098
2017.12.14	₩	309,270,000	-₩	227,650,000	₩	81,470,000	₩	11,125,000	₩	13,545,040	-₩	28,369,291	₩	44,419,300	-₩	2,504,969

Figure 7-2. Comparison for Greeks and Daily P&L by time

Figure: Greeks, Daily P&L 차트 Greeks P&L Daily P&L

Figure 7-3. Equation of Greeks and Taylor Expansion

Greeks

• Delta $\Delta_c = N(d_1) > 0, \quad \Delta_p = -N(-d_1) < 0$

• Gamma

$$\Gamma_c = \frac{\partial^2 C}{\partial S^2} = N'(d_1) \frac{\partial d_1}{\partial S} = \frac{N'(d_1)}{S\sigma\sqrt{T-t}} = \frac{\partial^2 P}{\partial S^2} = \Gamma_p$$

Theta

$$\Theta_c = \frac{\partial C}{\partial t} = -\frac{S\sigma N'(d_1)}{2\sqrt{T-t}} - r \cdot Ke^{-r(T-t)}N(d_2) < 0$$

$$\Theta_p = \frac{\partial P}{\partial t} = -\frac{S\sigma N'(d_1)}{2\sqrt{T-t}} + r \cdot Ke^{-r(T-t)}N(-d_2)$$

Vega

$$\nu_c = \frac{\partial C}{\partial \sigma} = S\sqrt{T - t}N(d_1) = \frac{\partial P}{\partial \sigma} = \nu_p > 0$$

• Rho

$$\rho_c = \frac{\partial C}{\partial r} = (T - t)K^{-r(T-t)}N(d_2) > 0$$

$$\rho_p = \frac{\partial P}{\partial r} = -(T - t)K^{-r(T-t)}N(-d_2) < 0$$

Taylor Expansion

$$\Delta f = \Theta \Delta t + \frac{1}{2} \Gamma(\Delta S)^2 + \nu \Delta \sigma$$

Figure 8-1. Optima Portfolio

Figure 8-2. Efficient Frontier of 3 stocks and 6 weights point

Figure 8-3. Cumulative Returns for 6 portfolio weights

Figure 9-1. Bar Chart of portfolio weight ratio

Figure 9-2. Analyze Case study of tail risk

<u> </u>	브렉시트(2016/6/23	3~7/22)
베스타스	연주석탄	탄소
-1%	16%	-14%
제지된 수익률		
3%		
베스	타스 급락시(2016/9)/18~12/8)
베스타스	연주석탄	탄소
-24%	-5%	40%
제지된 수익률		
-1%		
연	주 급락시 (2015/8/	19-8/24)
베스타스	연주석탄	탄소
-16%	-20%	3%
헤지된 수익률		
-13%		