Question 1. Application scenario:

My example is an application that detects tax fraud. The data that would be input into the application, would a dataset of businesses and their reported profits/losses in each quarter, along with other key data such as the size of the company, the location, the sector it is operating in, how old the company is, and so on.

It is possible for businesses to be clustered by a clustering function, to place similar performing companies together in the same cluster. After this, an outlier detection function can be run on the new dataset of clusters. If there was a sharp drop in sales revenue in one company from that cluster, but not any of the others, it can be detected as an outlier. This outlier could have occurred for a number of reasons, such as human error, deliberate falsification of data for fraud, etc. It may be true that this company is under-reporting its sales to hide its taxable profits, moreover, if the rest of the metrics seem to remain unchanged, this becomes more likely. Another case could be that the company is over-reporting its profits, in order to secure more funding from investors. This is another fraudulent behaviour that can be detected by an anomaly detection function. Additionally, if there were a change to the industry that caused a drop in sales, this change would have to have been recorded amongst all the other companies in that cluster and so the precision with which the clusters are made is very important.

The next step would be to investigate this and maybe uncover whether it is tax fraud or not. In this way, the output of running a clustering function on the data, is used as an input for the outlier detection function, to detect outliers within each cluster. The program will only successfully function, if both of them are adequate and if the clusters formed by the first function are accurate enough to run a successful outlier detection function on.

Question 2.

2.1:

Dist P	J.7	1 04:				-
0-3	166	B£:	•	321		
3-10	(0)	93	1			
10-16	14			94		
16-311	8	45	-	28		
3Pt	711			318		
	1000	- 687	-			
	1000	1000	.1 3	200 C	,	
Expec	ted value	2.4				
	V					
Dist 1	P.J. T	B.L	1	Dist	PJ.T	B. L
0-3	160.5	160.5		0-3	5.52	5 .5
34.3-10	97	97	1.	3-10		43
10-16	29.5	29.5	1		415.5 ²	(5.5
16-3pt	1 4	14		16-3,1	62	62
3 pt	699	699		3pt.	122	122
	1000	1 1000		1		1
	V4					
Dist	PJ.T	B.L				
0-3	0.1885	0.1885	add	ing up a	ll value	25-
3-10	0.1649	0-1649	Chi	-square	1: 22.	5499
10-16	8. 1441	86 8.1441		•		-
16-3pt	2:5714	2-5714	Degr	ers of fr	ecdom (D 2-1) = 1	· Ŧ)=
3pt	0.2060	0.2060		(5-1) x (2-1) =	4

Chi- square = 22.5499

P [obtained from tables] = 0.000155733.

Datasets are not independent and so the players follow the same distribution (p<0.05 significance level).

2.2:

kL- Divergence:

$$\int_{-\infty}^{\infty} p(t) \cdot \log \left(\frac{p(t)}{q(t)} \right) dt$$

Using Brook Lopez as base and by using python for calculations.

KL-divergence = 0.0929 diverging from Brook Lopez.

2.3:

KL divergence of 0.0929 tells us how much PJ Tucker diverges from Brook Lopez in shooting frequency. Chi-square tells us that the two datasets are not independent and shows how similar the two datasets are. Both values being small shows us that the two datasets are almost the same in terms of their distribution. The two players are very alike when it comes to their shooting.

Question 3:

3.1:

3231 unique words – D1

1889 unique words – D2

3.2:

D1	Token	Token	D2	Token	Token
		Frequency			Frequency
	people	0.142		covid-19	0.255
	black	0.1		people	0.04
	like	0.065		pandemic	0.04
	police	0.062		deaths	0.036
	trump	0.048		covid	0.035
	shot	0.043		cases	0.031
	way	0.042		19	0.028
	know	0.041		trump	0.026
	white	0.041		death	0.025
	day	0.039		americans	0.024
	need	0.038		patients	0.023
	love	0.038		new	0.021
	time	0.037		need	0.02
	good	0.035		world	0.02
	#NAME?	0.033		nursing	0.02
	cops	0.033		health	0.02
	think	0.032		died	0.019
	new	0.031		crisis	0.019
	man	0.031		like	0.019
	right	0.031		asian	0.018
	change	0.03		social	0.017
	twitter	0.029		cuomo	0.017
	killed	0.028		U	0.017
	want	0.028		24	0.016
	today	0.028		hours	0.016
	president	0.027		got	0.016
	shit	0.026		spread	0.016
	got	0.026		covid19	0.016
	fact	0.025		homes	0.016
	let	0.025		democrat	0.015
		0.025		real	0.015
	going	0.025		virus	0.015
	floyd	0.025		positive	0.015

social	0.024	attacks	0.015
times	0.024	beginning	0.015
person	0.023	george	0.015
stop	0.023	floyd	0.015
check	0.022	murder	0.015
bad	0.022	hospital	0.015
george	0.022	S	0.015
lives	0.022	good	0.014
2	0.021	okay	0.014
men	0.021	black	0.014
video	0.021	vaccine	0.013
media	0.021	passionately	0.013
country	0.02	speaking	0.013
able	0.02	xenophobic	0.013
needs	0.02	suddenly	0.013
years	0.02	public	0.013
feel	0.02	twitter	0.012
fuck	0.02	president	0.012
mail	0.019	want	0.012
y'	0.019	country	0.012
riots	0.019	house	0.012
work	0.019	workers	0.012
old	0.019	better	0.011
minneapolis	0.019	state	0.011
said	0.018	masks	0.011
сор	0.018	look	0.011
<u></u>	0.018	acted	0.011
justice	0.017	covid_19	0.011
car	0.017	wear	0.011
nt	0.017	record	0.01
different	0.017	economy	0.01
thought	0.017	patient	0.01
fight	0.017	single	0.01
thing	0.017	work	0.01
look	0.016	coronavirus	0.01
women	0.016	quickly	0.01
best	0.016	broke	0.01
seeing	0.016	tweets	0.01
rioting	0.016	face	0.01
care	0.016	order	0.01
u	0.016	government	0.01
violence	0.016	help	0.01
©	0.016	needs	0.01

house	0.016	elderly	0.01
history	0.015	watch	0.009
federal	0.015	sharing	0.009
10	0.015	dead	0.009
thank	0.015	lockdowns	0.009
free	0.015	recorded	0.009
support	0.015	spike	0.009
end	0.015	blame	0.009
help	0.015	case	0.009
life	0.015	viruses	0.009
things	0.015	months	0.009
•	0.015	racism	0.009
family	0.014	tested	0.009
brother	0.014	today	0.009
killing	0.014	fact	0.009
maybe	0.014	lives	0.009
use	0.014	individuals	0.009
protest	0.014	testing	0.009
murdered	0.014	unable	0.009
matter	0.014	texas	0.009
kill	0.014	data	0.009
state	0.014	continues	0.009
<u> </u>	0.014	states	0.009
	0.014	florida	0.009

I made the cloud words using the online tool: https://www.wordclouds.com I imported a .csv file to the website containing the tokens and the frequency of the tokens. The size of the words is based on the how frequently the word has been used in my data set. The image on the left is from dataset D1, and the one on the right is of D2.

3.4:

The method I have used to compare the two data sets, is to make filtered data sets of my data, with a new D1 and D2 that do not contain any of the overlapping words in them. The third new data set is of all the overlapping words in D1 and D2. I gave these words a token frequency that is an average of their frequencies in their original respective datasets (for ex: 'trump' in D1= 0.5 and 'trump' in D2= 0.8; then token frequency in the overlapping dataset would be 0.65). Compared with the baseline, my method helps you to visualize what the common words are, making it more introspective. It does more than just putting two datasets together, as it also shows us the unique words in each dataset.