

Modélisation qualitative et réseaux bayésiens de la dynamique des récifs d'hermelles

Sous la supervision de:

Dr. Martin P. Marzloff Dr. Aurélien Boyé Dr. Stanislas Dubois

Changements d'états écologique et espèces ingénieures

Etat dominé kelps

- Espèces ingénieurs = Biodiversité
- **Bioconstructions**
- **Perturbations**
- **Etats alternatifs**
- Boucles de rétroaction (Dakos et al., 2019)

Modèle biologique

Sabellaria alveolata (Linnaeus, 1767)

- Annélide polychète tubicole
- Zone intertidale
- Très dynamique
- Bioconstructions augmentent localement la richesse spécifique (Lecornu et al., 2016)
- Protection contre l'érosion côtière

- → Implication dans les changements d'états ?
- → Quels paramètres à prendre en compte dans la dynamique ?

Janvier 2019

Février 2020

Niche écologique de l'hermelle

→ Paramètres environnementaux (niche de Grinnell, 1917)

- Vent
- Courant
- Type de substrat
- Matière Inorganique Particulaire en Suspension (SPIM)

- Températures

- → Paramètres biotiques (niche d'Elton, 1927)
 - Mytilus edulis
 - Crassostrea gigas
 - Ulva sp.
 - Algues brunes

Objectifs

Quels sont les influences relatives des paramètres biotiques et abiotiques dans la dynamique des récifs d'hermelles ?

- Caractérisation des états alternatifs
- Identification des processus biotiques et abiotiques sous-jacents
- Réponses des modèles à différents scénarios

Objectifs

Quels sont les influences relatives des paramètres biotiques et abiotiques dans la dynamique des récifs d'hermelles ?

- Caractérisation des états alternatifs
- Identification des processus biotiques et abiotiques sous-jacents
- Réponses des modèles à différents scénarios

Approches complémentaires

- → Modélisation qualitative
 - Dires d'experts
 - Compétition inter-spécifique

- → Réseaux Bayésiens
 - Basé sur des données
 - Filtres environnementaux

Modélisation qualitative

- → Approche qualitative = généraliste et réaliste
- → Synthèse des connaissances = dires d'experts + littérature
- → Signe des interactions (pas de leur magnitude)

- → Construction de modèles alternatifs
- → Effets de scénarios long-termes

→ Groupés par modèles: variations non significatives

Single Press Perturbation

Single Press Perturbation

Single Press Perturbation

Modélisation qualitative

<u>Bilan</u>

- → Interactions biotiques
- → 2 états alternatifs :
 - 1. Dominé Récif
 - 2. Dominé Algues + Moules
- → Réponse intermédiaire des huîtres

Limites

- → Ambiguïté au scénario 'changement climatique'
- → Validation de la topologie
- → Quantifier les interactions

→ Inférence à partir de données:

- Dépendances conditionnelles

Données REEHAB

- \rightarrow 12 sites
- → Hiver 2016 Hiver 2018
- → 2 fois par an (hiver/été)

Données biotiques

- Abondance de moules
- Couverture algale
- Etat du récif (clustering sur couverture et épaisseur du récif)

Données abiotiques

- Courant **≥**
- Vent ⊸
- Coups de froid 🔓
- Coups de chaud 🕼
- Matière Inorganique Particulaire en suspension (SPIM)

Réseau Bayésien

Réseau Bayésien

Réseau Bayésien

Réseau Bayésien

Décomposition temporelle des dépendances conditionnelles

Modified from Benito et al. 2020

Reef State_t1 Mussel Abundance_t1 Oyster Abundance_t1 Algae Cover_t1 Wind_t1 [Heatwave_t1] Cold Event_t1 Current_t1 [SPIM_t1]

Reef State_t1 Mussel Abundance_t1 Oyster Abundance_t1 Algae Cover_t1 Wind_t1 Heatwave_t1 Algae Cover_t2 Oyster Abundance_t2 Cold Event_t1 Mussel Abundance_t2 Current_t1 SPIM_t1 [Reef State_t2]

▓ Reef State_t1 SPIM_t2 Mussel Abundance_t1 Current_t2 Oyster Abundance_t1 Cold Event_t2 Heatwave_t2 Algae Cover_t1 Wind_t1 Wind_t2 [Heatwave_t1] [Algae Cover_t2] Cold Event_t1 Oyster Abundance_t2 Current_t1 [Mussel Abundance_t2] [SPIM_t1] [Reef State_t2]

• Mémoire écologique de l'écosystème

• Courant impact le cycle de vie (dispersion larvaire, recrutement...)?

• Courant impact le cycle de vie (dispersion larvaire, recrutement...)?

• Effet bénéfique des coups de chaud sur les algues

• Effet bénéfique des coups de chaud sur les algues

Bilan Réseaux Bayésiens

- Réseau bayésien (dépendances à long terme):
 - → Gammes de paramètres environnementaux

- → 2 états alternatifs
- → Coups de chaud délétères pour le récif

- Réseau bayésien dynamique (dépendances sur 6 mois/1 an):
 - → Mémoire écologique des espèces
 - → Impact du courant sur cycle de vie ?
 - → Coups de chaud favorisent la transition vers beaucoup d'algues

Probabilités conditionnelles et états alternatifs

- Récif en bon état
- Faible couverture algale

- Récif en mauvais état
- Forte couverture algale

Etats alternatifs

- → Confirmation de l'alternance de 2 états
 - 1. Dominé récif

- → Déterminé par:
 - 1. Relations inter-spécifiques (modèle qualitatif)
 - 2. Conditions environnementales (réseaux bayésiens)

Scénario Changement Climatique

→ Ambiguïté au scénario Changement Climatique

Paramètres environnementaux aident à l'interprétation

Scénario Changement Climatique

→ Ambiguïté au scénario Changement Climatique

Paramètres environnementaux aident à l'interprétation

→ Augmentation des coups de chaud

- Bénéfique pour les algues

- Délétère pour les récifs

Scénario Changement Climatique

→ Ambiguïté au scénario Changement Climatique

Paramètres environnementaux aident à l'interprétation

→ Augmentation des coups de chaud

- Bénéfique pour les algues

- Délétère pour les récifs

Single Press Perturbation Multiple Press Perturbation

Reef
Oyster

Mussel

HardSubstrate

Algae

Magae

Algae

Algae

Algae

Algae

Currange

Cur

Sign of response

Changement climatique bénéfique pour le récif?

(Hiscock et al., 2004)

Merci de votre attention

Annexes

5000 MC simulations

	GA+	$_{\mathrm{HS}+}$	MU+	OA+	OY+	POM+	FI+	REEF+
GreenAlgae	0.9408	0.3752	-0.1676	-0.8352	-0.7796	-0.3500	-0.6668	0.6668
HardSubstrate	-0.5952	0.9920	-0.4620	-0.5128	0.2636	-0.8436	0.7172	-0.7172
Mussel	0.2492	0.8332	0.8640	0.1608	-0.1764	0.3776	0.9712	-0.9712
OtherAlgae	-0.5952	0.9920	-0.4620	0.9476	0.2636	-0.8436	0.7172	-0.7172
Oyster	-0.4332	0.1504	-0.9052	-0.4152	0.9596	0.7636	-0.2808	0.2808
POM	0.7984	-0.3176	-0.8084	0.7780	-0.3856	0.9012	0.5420	-0.5420
RecreationalFishing	-0.4332	0.1504	-0.9052	-0.4152	0.9596	0.7636	0.9488	0.2808
Reef	-0.5052	-0.7836	0.2808	-0.4208	-0.7980	0.4832	-0.9932	0.9932

Single Press Perturbation

Annexes

$$\hat{p}\left(X_i = x_k \,|\, p\alpha(X_i) = x_j\right) = \hat{\theta}_{i,j,k}^{MV} = \frac{N_{i,j,k}}{\sum_k N_{i,j,k}}$$

Probabilités d'observer le récif/ les algues dans 3 états:

→ High → Medium → Null

Impact délétère des coups de chaud sur l'état du récif

Impact bénéfique des coups de chaud sur la couverture algale

Vagues de chaleur

- →Coups de chaud diminuent les probabilités d'observer le récif en bon état
- → Augmentation des évènements extrêmes délétère pour le récif
- → Et bénéfique pour les algues

Vagues de chaleur

- →Coups de chaud diminuent les probabilités d'observer le récif en bon état
- → Augmentation des évènements extrêmes délétère pour le récif
- → Et bénéfique pour les algues

- → Conditions de SPIM favorisant les récifs
- → Et défavorisant la prolifération algale

Mémoire écologique

