

Introduction/ Background

Electrical Vehicles (EVs) Development The EV market surged over the past decade

- - Nearly **14 millions** of sale
- Growth is expected to accelerate
- Expected to reach a revenue of \$156.3 billion by 2029
- **High demand** on battery-grade **lithium** compounds

Market Share Projection Graph

Dependency on other countries

- Limited local manufacturing
- Highly dependent on imports from foreign country

What drives to our scenario analysis?

- China being the top supplier in the past decade
- Concerns for growing geopolitical
 tension and trade restrictions

Lithium Compounds (tons)

Four Objectives

Objective 1:

Evaluate China's current impact on the U.S. regarding battery-grade lithium compounds.

- Consistently top 5 supplier
- Noticeable decline 2020-2022
 - Due to COVID-19
 pandemic
- Strong rebound in 2023
 - Climb from rank 7 to 2

	U.S. Imports of Lithi	um Hydroxide (HS	Code 2825.20) fro	om China – 2014 to 20	23
Period	Exported Country	Trade Value (US\$)	Net Weight(kg)	Price Per Unit (\$/kg)	Rank
2014	China	\$878,965	129,364	\$6.79	2
2015	China	\$1,855,760	242,100	\$7.67	2
2016	China	\$1,459,885	102,490	\$14.24	2
2017	China	\$8,716,624	528,208	\$16.50	2
2018	China	\$5,943,521	312,816	\$19.00	2
2019	China	\$2,122,764	122,800	\$17.29	2
2020	China	\$254,012	24,286	\$10.46	3
2021	China	\$226,130	22,977	\$9.84	5
2022	China	\$86,013	1,585	\$54.27	7
2023	China	\$722,336	17,662	\$40.90	2

Conclusion:

 China held key position in the U.S. lithium supply chain before COVID

MYU

2. **China** is **regaining the dominance** after economies are gradually recovering

Objective 2:

Evaluate the potential impact of a Chinese export ban on lithium price from Chile

- %P_us = 0.0753
 - Meaning that import price from Chile to the U.S would increase by 0.0753
- Taking year 2023 as an example
 - Chile: \$50.98/kg
 - China: \$45.81kg for 26,714kg
 - Total extra cost is \$3,474,045

$\%P_{US} = \frac{\%\Delta Q_{US}}{PES_{Chile} + |PED_{US}|}$

Partial Equilibrium Price Impact Model

 Estimates the percentage change in price required to rebalance the shock of supply or demand

- Using Chile as an alternative is feasible, but at a much higher cost
- 2. Only feasible as a **short-time strategy**

Objective 3: Identify mitigation strategies for supply chain resilience Customs Value (Carbonate)

Lithium Materials For EV Batteries

	Lithium Material	Primary Source Coun	Importance in EV Batteries
1	Lithium Carbonate (Li₂CO₃)	Chile, Argentina, China	Used in LFP and some NMC batteries
2	Lithium Hydroxide (LiOH)	China, Chile, Australia	Essential for high-nickel NMC/NCA batteries
3	Lithium Iron Phosphate (LiFePO ₄)	China	Main cathode material for LFP batteries
4	Lithium Hexafluorophosph ate (LiPF ₆)	China, Japan, South Korea	Key lithium salt in electrolytes
5	Lithium Metal (Li)	China, USA	Future solid-state battery material

Lithium materials for EV batteries and the source country

The customs value for the imported lithium carbonate from China,

Chile and Argentina (2016-2024)

both are processed heavily in China, Chile, and Argentina.

Objective 3:Identify mitigation strategies for supply chain resilience

Comparison of combining the customs value of Chile and Argentina & that of China

The custom value (**Chile & Argentina**) is **significantly higher** than that of **China** – two-sample t-test, p = 0.00098<0.05

Coupled with their strong and stable

Loupled with their strong and stable

export volumes,

→ Chile and Argentina are

well-positioned to **replace China** as

primary suppliers of lithium carbonate

(2016-2024)

Objective 3: Identify mitigation strategies for supply chain resilience

The customs value of imported lithium oxide and hydroxide

from China and Chile (2016-2024; data for Argentina is

Since 2019, the customs value of U.S. imports from Chile has **surpassed China's**,

→ Growing U.S. reliance on Chile for lithium oxide and hydroxide.

Thus, **Chile** appears **capable of replacing**China

However, there are **other key compounds** to consider (lithium iron phosphate (LFP), lithium hexafluorophosphate (LiPF₆), lithium metal)

Objective 3:Identify mitigation strategies for supply chain resilience

Predicted Using ARIMA (1,1,1)

- AR (1): uses one past value to predict the present,
- W NYU
- I (1): differences the data once to stabilize it,
- MA (1): includes one past forecast error to improve

- Lithium carbonate prices are expected to stabilize at around 74,800 CNY per ton over the next six months.
- This trend likely reflects a situation where supply and demand are balancing out.
- Inventory Management (Just-in-Time (JIT))
 - **Economic Order Quantity (EOQ)** model helps determine the optimal order quantity that minimizes both ordering and holding costs.

Objective 3: Identify mitigation strategies for supply chain resilience

- Using Just-in-Time (JIT) inventory strategies
- Forward contracts to manage price risks
- Establish long-term agreements with Chile, Argentina

Objective 4: Analyze alternative lithium supply sources

- 1) Establish long-term strategic partnership with Chile
 - **Joint Investment in Lithium Refining Facilities:** reduce transportation costs and improve processing efficiency.
 - U.S.-Chile Clean Energy Trade Partnership: fostering cooperation not only in lithium but also in battery manufacturing and recycling
 - Technology Transfer & Skills Development Program: help both countries improve lithium extraction and refine advanced compounds
 - Tax Incentives or Fast-Track Permits for U.S. Companies Investing in Chile

Objective 4: Analyze alternative lithium supply sources

2) Developing Local Lithium Refining 3) Investing in Battery Recycling Programs

- The U.S. government should implement incentive policies that encourage the growth of the refining sector.
- E.g. Tax reductions, startup grants,
 and support with financing and
 permitting.

- Retired EV batteries can be recycled to
 recover lithium and other valuable materials
- Expanding recycling infrastructure can reduce dependence on imports and help build a circular, long-term supply chain.

Objective 4: Analyze alternative lithium supply sources

- Establish long-term strategic partnership with Chile
- Developing Local Lithium Refining
- Investing in Battery Recycling Programs

Discussion

Relations with Current Studies

Our scenario analysis came true!

Based on current **tariff incidents**, two possible situations:

- 1. Chinese companies halt exports
- 2. The U.S. **stops importing** due to **high import tariffs**

Exclusive: Chinese lithium company halts tech exports as trade tensions build

China hits back at US tariffs with export controls on key rare earths

By Lewis Jackson, Amy Lv, Eric Onstad and Ernest Scheyder

April 4, 2025 3:40 P 1 EDT · Updated a month ago

Aa

Aa

- 1. **China has been a top supplier** of lithium to the U.S., especially in non-pandemic years.
- This study evaluates the impact of a potential Chinese export ban on EV battery-grade lithium compounds.
- 3. If imports from China were halted, the **U.S. could shift to Chile** as an alternative—but at a **much higher cost**.

- 4. Relying solely on expensive imports is **not sustainable**, prompting the need for additional mitigation strategies:
 - Building domestic refining capacity
 - Forming long-term trade agreements with Chile
 - Investing in battery recycling
- 5. A **balanced approach** is recommended:
 - **Short-term**: Source lithium from Chile
 - Long-term: Invest in U.S. infrastructure and deepen cooperation with Chile

Limitations

Limitations:

- Focuses on **battery-grade lithium carbonate and hydroxide** (≥99.5% purity).
- Raw lithium and other battery materials like cobalt and nickel not included.
- Data gaps: Some trade and price data are outdated or restricted.
- Assumes Chile can scale up, but logistics and politics may interfere.
- Geopolitical risks make outcomes uncertain.

