TEMA 5

ГИЛЬБЕРТОВЫ ПРОСТРАНСТВА

Предгильбертовы пространства. Говорят, что в комплексном векторном пространстве E задано cкалярное nроизведение, если каждой паре элементов $x,y \in E$ поставлено в соответствие комплексное число (x,y) так, что выполнены следующие аксиомы:

- 1) $(x,x) \ge 0, (x,x) = 0$ в том и только в том случае, если $x = \Theta$;
- $2) (x,y) = \overline{(y,x)};$
- 3) $(\alpha x, y) = \alpha(x, y), \alpha \in \mathbb{C};$
- 4) (x + y, z) = (x, z) + (y, z).

В вещественном векторном пространстве скалярное произведение (x,y) — вещественное число, удовлетворяющее аксиомам 1-4, аксиома 2 в таком случае имеет вид (x,y)=(y,x).

Векторное пространство, снабженное скалярным произведением, называется *предгильбертовым* пространством.

Конечномерное вещественное предгильбертово пространство называют также евклидовым, а комплексное — унитарным.

Примеры пространств со скалярным произведением

1. Евклидово пространство \mathbb{R}^n и соответственно унитарное пространство \mathbb{C}^n со скалярными произведениями

$$(x,y)_{\mathbb{R}^n} = \sum_{i=1}^n x_i y_i, \quad (x,y)_{\mathbb{C}^n} = \sum_{i=1}^n x_i \overline{y_i}.$$

2. Пространство l_2 .

В векторном пространстве вещественных последовательностей $x==(x_i)_{i=1}^\infty,\ y=(y_i)_{i=1}^\infty$ таких, что $\sum\limits_{i=1}^\infty|x_i|^2<\infty,\ \sum\limits_{i=1}^\infty|y_i|^2<\infty,$ введем

скалярное произведение по формуле

$$(x,y) = \sum_{i=1}^{\infty} x_i y_i.$$

3. Пространство $\mathcal{L}_2[a,b]$.

В векторном пространстве комплекснозначных непрерывных на отрезке [a,b] функций зададим скалярное произведение

$$(x,y) = \int_{a}^{b} x(t)\overline{y(t)} dt.$$

Свойства скалярного произведения

- 1. Антилинейность по второму аргументу. Для любых $x, y_1, y_2 \in E$ и любых $\alpha, \beta \in C$ справедливо равенство $(x, \alpha y_1 + \beta y_2) = \bar{\alpha}(x, y_1) + \bar{\beta}(x, y_2)$. В вещественном предгильбертовом пространстве скалярное произведение линейно по второму аргументу.
- 2. Неравенство Коши Буняковского. Для любых векторов $x,y \in E$ справедливо неравенство

$$|(x,y)|^2 \le (x,x) \cdot (y,y).$$

- 3. Скалярное произведение в предгильбертовом пространстве является непрерывной функцией своих аргументов, т. е. если $x_n \to x$, $y_n \to y$ при $n \to \infty$, то $(x_n, y_n) \to (x, y)$.
- 4. Во всяком предгильбертовом пространстве справедливо тождество параллелограмма

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2).$$

Гильбертовы пространства. Поскольку предгильбертово пространство является нормированным векторным пространством с нормой $||x|| = (x,x)^{1/2}$, то в нем можно рассматривать понятие полноты.

Предгильбертово пространство называется $\mathit{гильбертовым}$, если оно полно по норме, порожденной скалярным произведением. Гильбертовы пространства обычно обозначаются буквой H.

Примеры гильбертовых пространств

1. Пространство $L_2[a,b]$.

В векторном пространстве интегрируемых по Лебегу со степенью p на отрезке [a,b] функций зададим отношение эквивалентности. Будем считать две функции $x(t),\ y(t)$ эквивалентными, если x(t)=y(t) почти всюду. Обозначим через $L_p[a,b]$ — пространство классов эквивалентных последовательностей, состоящих из интегрируемых со степенью p функций. Пространство $L_p[a,b]$ является банаховым относительно нормы

$$|x||_p = \left(\int_a^b |x(t)|^p dt\right)^{1/p}$$

и при p=2 гильбертовым со скалярным произведением

$$(x,y) = \int_{a}^{b} x(t)\overline{y(t)}dt.$$

2. Пространство Соболева $H^1[a,b]$.

Функция $y(t) \in L_2[a,b]$ называется обобщенной производной функции $x(t) \in L_2[a,b]$, если для любой финитной непрерывно дифференцируемой функции v(t) справедливо равенство

$$\int_{a}^{b} x(t)v'(t) dt = -\int_{a}^{b} y(t)v(t) dt.$$

Пространством Соболева $H^1[a,b]$ называется пространство интегрируемых по Лебегу с квадратом функций, имеющих обобщенную производную первого порядка, интегрируемую по Лебегу с квадратом.

Пространство $H^1[a,b]$ является гильбертовым пространством относительно скалярного произведения

$$(x,y) = \int_{a}^{b} x(t)\overline{y(t)}dt + \int_{a}^{b} x'(t)\overline{y'(t)}dt.$$

Теорема 1. Пространство Соболева $H^1[a,b]$ вложено в пространство C[a,b].

Два вектора $x,y \in H$ называются *ортогональными* в H, если (x,y)=0. Очевидно, что нуль пространства H ортогонален любому вектору пространства.

 $\mathit{Углом}$ между двумя ненулевыми векторами называется угол φ такой, что $0 \le \varphi \le \pi$ и $\cos \varphi = \frac{(x,y)}{\|x\| \cdot \|y\|}.$

Теорема 2. Пусть H — гильбертово пространство, $L \subset H$ — его замкнутое векторное подпространство. Тогда для любого элемента $x \in H$ существует единственный элемент $y \in L$, являющийся элементом наилучшей аппроксимации x по L, m. e. $\rho(x,L) = \|x-y\|$.

Теорема 1 остается справедливой и в том случае, когда вместо подпространства L рассматривается замкнутое выпуклое множество.

Пусть L — векторное подпространство в H. Проекцией вектора x на L называется вектор $y\in L$ такой, что $x-y\bot L$, т. е. (x-y,l)=0 для любого вектора $l\in L$.

Теорема 3. Пусть H-гильбертово пространство, $L \subset H$ - его замкнутое векторное подпространство. Тогда для любого элемента $x \in H$ существует единственная его проекция y на L, m. e. $y = P_L x$.

Ортонормированные системы. Ряды Фурье. Система элементов $\{x_{\alpha}\},\ \alpha\in\Gamma,\ x_{\alpha}\in H$ называется *ортогональной*, если каждые два ее различных элемента ортогональны.

Ортогональная система векторов называется *ортонормирован*ной, если $\|x_{\alpha}\| = 1$.

Система элементов $\{x_{\alpha}\},\ \alpha\in\Gamma,\ x_{\alpha}\in H$ называется линейно независимой, если любая ее конечная подсистема линейно независима.

Пемма 1. Ортонормированная система векторов в гильбертовом пространстве линейно независима.

Пемма 2. Пусть x_1, x_2, \ldots — линейно независимая система векторов в H. Тогда в H существует ортогональная система e_1, e_2, \ldots такая, что $e_k = a_{k1}x_1 + a_{k2}x_2 + \ldots + a_{kk}x_k + \ldots, k = 1, 2, \ldots$

Построение ортогональной системы по заданной линейно независимой системе называется *ортогонализацией*.

Пусть $x \in H$, $\{\varphi_k\}$ — ортонормированная система векторов, числа $C_k = (x, \varphi_k)$ называются коэффициентами Фурье элемента x по ортонормированной системе $\{\varphi_k\}$, а ряд $\sum\limits_{k=1}^{\infty} C_k \varphi_k - pядом Фурье эле-$

мента x. Многочлен $\sum_{k=1}^{n} C_k \varphi_k$ — частная сумма ряда Фурье — называется многочленом Фурье.

Теорема 4 (о разложении в ряд Фурье). Пусть $\{\varphi_k\}$ — ортонормированная система в гильбертовом пространстве H, x — произвольный элемент в H. Тогда:

- 1) числовой ряд $\sum\limits_{k=1}^{\infty}|C_k|^2$ сходится, причем справедливо неравенство Бесселя $\sum\limits_{k=1}^{\infty}|C_k|^2\leq \|x\|^2$;
 - 2) ряд Фурье $\sum_{k=1}^{\infty} C_k \varphi_k$ сходится;
- 3) сумма ряда Фурье есть проекция элемента x на подпространство L, порожденное системой $\{\varphi_k\}$;
- 4) элемент $x \in H$ равен сумме своего ряда Фурье тогда и только тогда, когда справедливо равенство Стеклова:

$$\sum_{k=1}^{\infty} |C_k|^2 = ||x||^2.$$

Следствие 1. Отрезок ряда Фурье обладает экстремальным свойством, т. е. $\|x - \sum_{k=1}^{n} C_k \varphi_k\| = \inf_{\ell \in L_n} \|x - \ell\|$, где L - noдпространство, порождённое $\{\varphi_k\}_{k=1}^n$.

Следствие 2. Если $\|\varphi_k\| \ge \alpha > 0, \ k=1,2,\ldots,$ то коэффициенты Фурье C_k любого элемента $x\in H$ стремятся к нулю при $k\to\infty.$

Ортонормированная система $\{\varphi_k\}$ называется *полной*, если из того, что $(x,\varphi_k)=0$ для любого k, следует что $x=\Theta$.

Теорема 5 (о полных ортонормированных системах). Пусть H — гильбертово пространство, $\{\varphi_k\}_{k=1}^{\infty}$ — ортонормированная система в H, L — подпространство, порожденное системой $\{\varphi_k\}$. Тогда следующие утверждения эквивалентны:

- 1) любой элемент $x \in H$ является суммой своего ряда Фурье;
- 2) система $\{\varphi_k\}$ полная;
- 3) для любого $x \in H$ выполняется равенство Стеклова:

$$||x||^2 = \sum_{k=1}^{\infty} |C_k|^2;$$

4) подпространство L, порожденное системой $\{\varphi_k\}$, совпадает с H.

Ортогональное разложение гильбертовых пространств. Пусть M — линейное многообразие в H. Совокупность всех элементов из H, ортогональных к M, называется *ортогональным дополнением* к M и обозначается M^{\perp} , т. е. $M^{\perp} = \{z \in H, z \bot M\}$.

Теорема 6. M^{\perp} – подпространство в H.

Теорема 7 (о всюду плотном множестве в H**).** Пусть M- линейное многообразие в гильбертовом пространстве H. M всюду плотно в H тогда и только тогда, когда $M^{\perp} = \{0\}$.

Теорема 8 (о разложении H **в прямую сумму).** Пусть H – гильбертово пространство, $L \subset H$ — его подпространство. Тогда $H = L \oplus L^{\perp}$.