

Distance Functions

Distance Function – Types

- Gives the distance of a point from a boundary
- Unsigned distance functions
 - Positive outside, 0 inside
- Signed distance functions
 - Decreases in value as point approaches the boundary

Circle/Sphere

$$\|\mathbf{P} - \mathbf{M}\| - r = dist_{signed}(\mathbf{P}) = dist_{s}(\mathbf{P}) = \begin{bmatrix} \mathbf{P} \\ \mathbf{P} \\ \mathbf{R} \end{bmatrix}$$

$$\max(0, \|\mathbf{P} - \mathbf{M}\| - r) = dist_{unsigned}(\mathbf{P}) = dist_{u}(\mathbf{P}) = \begin{bmatrix} \mathbf{P} \\ \mathbf{R} \end{bmatrix}$$

Rectangle/Box

• Unsigned distance function box – x-direction

 $dist_u(\mathbf{P}_x) = \max(abs(\mathbf{P}_x - \mathbf{C}_x) - \mathbf{\bar{b}}_x, 0)$ were $abs(\mathbf{\bar{x}})$ is the component-wise absolute value of $\mathbf{\bar{x}}$

Rectangle/Box

• Unsigned distance function box $dist_{u}(\mathbf{P}) = \left\| \max(abs(\mathbf{P} - \mathbf{C}) - \mathbf{\vec{b}}, \mathbf{\vec{0}}) \right\|$ were $\|\mathbf{\vec{x}}\|$ is the vector absolute value of $\mathbf{\vec{x}}$

Distance Fields

Distance Fields

$$\mathbb{R}^2 \to dist(\mathbb{R}^2)$$

$$\mathbb{R}^3 \to dist(\mathbb{R}^3)$$

Operations on Distance Fields

■ Given $dist_1(\mathbb{R}^2)$ and $dist_2(\mathbb{R}^2)$

• The union is $\min(dist_1(\mathbb{R}^2), dist_2(\mathbb{R}^2))$

• The intersection is $\max(dist_1(\mathbb{R}^2), dist_2(\mathbb{R}^2))$

Operations on Distance Fields

• Given $dist(\mathbb{R}^2) =$

$$= dist(repeat(\mathbb{R}^2))$$

■ Repeat is $mod(\mathbf{P}, \mathbf{b}) - \frac{1}{2}\mathbf{b}$ were $mod(\mathbf{a}, \mathbf{c})$ is component-wise \mathbf{a} modulo \mathbf{c}