

Licenciatura em Engenharia Informática FSIAP – 2023/2024

Relatório Resumo

Reflexão e Refração

Autores:

[1191478] [Artur Brito] [1060090] [Ângela Cardoso] [1040523] [Filipe Conceição] [1221967] [Paulo Pereira]

Turma: Grupo:

Data: [23/11/23]

Docente: [Miguel Neto]

O procedimento realizado foi uma atividade de laboratório que envolveu o levantamento de valores correspondentes aos ângulos de reflexão, ângulos de refração e o ângulo critico de um laser num material acrílico.

Para este efeito foram utilizados um laser, uma base em papel com uma circunferência e os seus ângulos, um semicírculo em acrílico e um trapézio com o mesmo material.

Os dois primeiros processos consistiram em apontar o laser em direção ao centro do semicírculo e apontar os seus ângulos.

No terceiro processo o laser foi rodando sobre a peça acrílica até o ângulo critico ser encontrado.

Por fim, no último processo o laser também foi rodado, mas desta vez até aos dois ângulos de reflexão formarem duas linhas paralelas com uma distancia de 1cm entre elas.

Foram levantados os seguintes valores:

• Incidência do laser na parte plana do semicírculo

Ângulo de incidência (º)	Ângulo de reflexão (º)	Ângulo de refração (º)
45 ± 1/√3	$45 \pm 1/\sqrt{3}$	$28.5 \pm 1/\sqrt{3}$
35 ± 1/√3	35 ± 1/√3	22 ± 1/√3
25 ± 1/√3	25 ± 1/√3	16 ± 1/√3

Incidência do laser na parte curva do semicírculo

Ângulo de incidência (°)	Ângulo de reflexão (°)	Ângulo de refração (º)
$40 \pm 1/\sqrt{3}$	40 ± 1/√3	72 ± 1/√3
35 ± 1/√3	35 ± 1/√3	58.5 ± 1/√3
$30 \pm 1/\sqrt{3}$	30 ± 1/√3	48 ± 1/√3
25 ± 1/√3	25 ± 1/√3	39 ± 1/√3
20 ± 1/√3	20 ± 1/√3	30 ± 1/√3
15 ± 1/√3	15 ± 1/√3	22.5 ± 1/√3
10 ± 1/√3	10 ± 1/√3	15 ± 1/√3

• Identificação do ângulo critico

Ângulo critico (°)		
85/2 ± 1/√3		
85/2 ± 1/√3		
85/2 ± 1/√3		

Incidência do laser no trapézio

Ângulo de incidência (°)	Ângulo de reflexão 1 (º)	Ângulo de reflexão 2 (°)	Ângulo de refração (°)
$9 \pm 1/\sqrt{3}$	8.5 ± 1/√3	12 ± 1/√3	$7 \pm 1/\sqrt{3}$

40% - Resultados e Representação gráfica

Lei da reflexão

Procedimento 1:

Em todos os procedimentos a lei da reflexão é verificada, pois todos os ângulos de incidência são iguais aos ângulos de reflexão.

No caso do trapézio considera-se o primeiro ângulo de reflexão, que dista do ângulo de incidência 0.5°. Esta diferença estará provavelmente atribuída ao erro de leitura.

Procedimento 2:

A linearização dos dados foi feita a partir da equação de Snell-Descartes, transformando-a numa equação do tipo y = mx+b

$$n1 * \sin(\theta 1) = n2 * \sin(\theta 2)$$

$$\sin(\theta 2) = \frac{n1}{n2} * \sin(\theta 1)$$

Aplicando esta equação a todos os pontos, obtemos o gráfico acima representado (Dados linearizados) e a respetiva equação da reta y = 1.4852x – 0.0013.

Seguindo a mesma lei temos que a razão entre n1 e n2 vai ser igual ao declive da nossa reta, logo (aproximando o índice de refração do ar a 1)

$$n1 = \frac{1.4852}{1} \approx 0.67$$

Ângulo Critico

Procedimento 3:

Usando o valor obtido no procedimento anterior e aproximando novamente o índice de refração do ar a 1, segundo a seguinte equação:

$$n1 * \sin(\theta c) = n2 * \sin(90^{\circ})$$

Temos que o ângulo critico é aproximadamente 42.07°. Ao realizarmos o procedimento 3 em laboratório obtivemos uma média de 42.5° para o valor do ângulo critico, o que podemos verificar que se aproxima do valor teórico com uma margem de erro mínima.

Procedimento 4:

Com os dados obtidos do ângulo incidência, a partir de cálculos trigonométricos, conseguimos obter o valor da base do triangulo, 5.052mm, o valor de $\theta 2$ (o ângulo de reflexão na parte superior da peça) 9° , e com isso obter a altura da mesma. Feitos os cálculos o valor obtido foi aproximadamente 5cm.

$$h = \frac{10}{2 * \cos\left(9^{\circ}\right)} \approx 5.052mm$$

$$1 * \sin(9^{\underline{o}}) = n2 * \sin(\theta 2)$$

$$\sin(\theta 2) = \frac{\sin(9^{\circ})}{1.4852}$$

$$\arcsin\left(\frac{\sin(9^{\circ})}{1.4852}\right) \approx 47.8mm$$

25% - Resposta às questões (colocadas no guião)

Questão 1:

Não. Para calcularmos o ângulo critico necessitamos que o laser atravesse o material até alcançar o centro da reta normal sem sofrer alterações devido à refração, o que só é possível se o laser incidir de forma perpendicular à face da estrutura. E isto só acontece quando incidimos o laser na face redonda do semicírculo.

Questão 2:

Mantendo a altura da placa e trocando os índices de refração, o ângulo de incidência na parte superior da peça iria se afastar da normal, o que levaria a que a distancia entre os dois feches de reflexão aumentassem. Assim, para mantermos a distância entre estes de 10mm, a peça teria que diminuir a sua altura

10% - Comentários ou observações

A única dificuldade sentida pelo grupo no decorrer desta experiência prendeu-se ao facto de a sala ser bastante iluminada, o que dificultou a leitura dos ângulos onde o laser esta a incidir.