

Foundations of Machine Learning in Python

Moritz Wolter

July 7, 2022

High Performance Computing and Analytics Lab, Uni Bonn

Overview

Derivatives and Gradients

Optimization

Optimization

Traditionally, optimization means minimizing using a cost function f(x). Given the cost, we must find the cheapest point x^* on the function, or in other words,

$$x^* = \min_{x \in \mathbb{R}} f(x) \tag{1}$$

Functions

Functions are mathematical mappings. Consider for example the quadratic funtion, $f(x) : \mathbb{R} \to \mathbb{R}$:

$$f(x) = x^2 \tag{2}$$

Where is the minimum?

In this case we immediately see it's at zero. Finding it algorithmically requires derivate information.

Derivatives and Gradients

The derivative

$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \tag{3}$$

Derivation of the parabola derivative

TODO

Steepest descent on the parabola

$$x_n = x_{n-1} - \alpha \cdot \frac{df}{dx} \tag{4}$$

Working with $x_0 = 5$ and $\alpha = 0.1$ for 25 steps leads to:

Multidimensional problems

$$f(x,y) = (a-x)^2 + b(y-x^2)^2$$
 (5)

The gradient

 $\nabla \mathbf{x}$ (6)

Gradient descent

TODO

Optimization

Frame 2

TODO