GENERATING REALISTIC SYNTHETIC DATA FOR ML

CHALLENCE

Data Scarcity

Limited availability of real-world data makes it challenging to train machine learning models effectively.

Privacy Concerns

Using real data risks exposing sensitive information, especially in regulated industries like healthcare and finance.

Statistical Accuracy

Generating synthetic data that maintains the complex relationships and statistical properties of real data is difficult.

APPROACH

Data Scarcity

Generate synthetic data using TVAEs and SAGANs to fill gaps in real data.

Privacy Concerns

Use differential privacy to protect sensitive information in the generated data.

Statistical Accuracy

Validate synthetic data with real-time checks to ensure it matches real data patterns.

VALUE PROPOSITION

PROS

- Solves data scarcity by generating realistic synthetic data.
- Protects privacy with differential privacy techniques.
- Ensures statistical accuracy for reliable ML model training.

CONS

- Requires advanced AI expertise for implementation.
- High computational cost for training models.
- Quality depends on the real data used for training.

TECHNICAL STACK

Technical Stack	
Programming	Python
Frameworks	TensorFlow, PyTorch
Synthetic Data Tools	SDV, scikit-learn
Privacy Tools	TensorFlow Privacy, PySyft
Infrastructure	AWS/Google Cloud, Docker, Kubernetes
Visualization	Matplotlib, Seaborn
Validation	SciPy, MLFlow

WORKFLOW

IMPLEMENTATION PLAN

SyngenX

Data Preparation

This phase lays the groundwork for implementation. We organize datasets using pipelines, filters, and visualizations to ensure data is collected, cleaned, normalized, and enhanced through feature engineering, creating clarity in preprocessing.

Model development

SyngenX leverages cutting-edge symbols of AI and machine learning to advance model development. We focus on TVAEs and SAGANs, utilizing abstract encoders and self-attention grid patterns, resulting in sophisticated statistical modeling and optimized data generation processes.

Validation & Privacy Measures

We focus on Continuous Quality Validation (CQV), using icons to show scrutiny over documentation and performance metrics. Privacy is emphasized with shields and locks, showcasing innovative differential privacy techniques to protect data integrity.

Testing and Deployment

This phase features imagery of rocket launches for deployment, along with scalable cloud platforms. We include monitoring dashboards and feedback loops, highlighting the iterative testing and enhancement processes essential for success.

EXECUTION FLOW

Execution Drive Link

https://drive.google.com/file/d/1v3GuY_DR-HywatYUxn0sRx0_qSLCHy1b/view?usp=sharing

CSV Drive Link

https://drive.google.com/file/d/1dakfoFQmEFj6ULkRWVOakt_XpCF5CFWf/view?usp=drivesdk

VALIDATION

(1) Data Upload Process

(2) Real Data Uploaded

(3) Synthetic Data Generation Process

(4) Synthetic Data - Download Confirmation

COST ESTIMATE

ESTIMATION

Development C	osts
----------------------	------

Data Scientists & Engineers ₹4,150–₹12,450/hour

Team of 4 (3–6 months) ₹83,00,000–₹1,66,00,000

Infrastructure Costs

Cloud Computing (GPU) ₹4,15,000–₹12,45,000/month

6 months ₹25,00,000–₹75,00,000

Data Management Systems ₹4,15,000–₹8,30,000

Licensing and Software

Proprietary Tools ₹8,30,000–₹16,60,000

Validation and Testing

Quality Assurance ₹16,60,000–₹33,20,000

Operational Costs

Maintenance and Scaling ₹8,30,000–₹16,60,000 annually

Miscellaneous Costs

Legal Compliance ₹8,30,000–₹12,45,000

Training ₹8,30,000–₹12,45,000

 Initial Development Phase
 ₹1,50,00,000–₹3,12,00,000.

 Annual Ongoing Costs
 ₹16,60,000–₹41,50,000

ASSUMPTIONS

Availability of Real Data

Sufficient real-world data is available for training the models. Computational Resources: Adequate hardware or cloud infrastructure (e.g., GPUs) is available for model training.

Privacy Compliance

Differential privacy techniques will effectively safeguard sensitive data and comply with regulations like GDPR and HIPAA.

User Expertise

The team implementing and managing the system has the required expertise in AI, machine learning, and privacy techniques.

CONCLUSION

SynGenX provides a robust solution for generating high-quality, privacy-compliant synthetic data. It addresses data scarcity, ensures statistical accuracy, and protects privacy using advanced AI models like TVAEs and SAGANs. Despite the need for expertise and resources, it offers significant value for scalable and reliable AI-driven innovation.

REFERENCES

Kingma & Welling (2014) on Variational Autoencoders, Zhang et al. (2019) on Self-Attention GANs, and Patki et al. (2016) on Synthetic Data Vault. Abadi et al. (2016) on Deep Learning with Differential Privacy, TensorFlow Privacy GitHub.

THANK YOU!

