RNA-MLP para interfaces cerebro-computadora

Arellano E. Nahuel nahuel.arellano@gmail.com

Este trabajo presenta una red neuronal artificial para resolver un problema complejo del que no se tiene conocimiento experto previo. El problema consistente en el desarrollo de una interfaz cerebro computadora (BCI – por sus siglas en inglés Brain Computer Interface). Para lograrlo, la actividad cerebral registrada a través de un electro-encefalograma (EEG) debe clasificarse para poder controlar un dispositivo externo.

Se propone utilizar el perceptron multicapa (Multilayer Perceptron, MLP) para abordar la problemática.

Los resultados obtenidos muestran que el MLP desarrollado consiguen errores en clasificación comparables con otros disponible en la bibliografía.

I. Introducción

Las interfaces cerebro-computadora (BCI) es una tecnología que se basa en la recopilación de ondas cerebrales para luego ser procesadas e interpretadas por una computadora.

La investigación en esta área ha crecido en los últimos años, centrándose principalmente en solucionar problemas en personas con graves dificultades motrices.

Las técnicas se basan en localizar la actividad cerebral para interactuar con dispositivos (puede ser el curso de un mouse, una prótesis, una silla de ruedas, etc.)

Existen muchas señales que pueden identificarse en el cerebro humano: químicas, eléctricas, magnéticas, mecánicas, metabólicas y térmicas. De entre los diferentes tipos de señales, se decidió utilizar las captadas mediante un casco de electroencefalograma (EEG), estas señales nos permiten detectar pequeños cambios en la corriente eléctrica (del orden de los microamperios) de ciertas áreas del cerebro cuando estás se activan. El EEG no percibe información de una neurona en particular, pero se puede obtener información de patrones y ritmos en la actividad de millones de ellas (zonas del cerebro).

Cuando una región del cerebro no está activa, existe una tendencia a sincronizar los patrones de activación con zonas vecinas, produciendo ritmos distinguibles en el EEG. Estas alteraciones en la medición relacionada con un evento es lo que el sistema BCI intentará detectar a partir de un EEG. Existen diferentes métodos utilizados para clasificar señales de EEG y realizar deducciones a partir de ellas. De entre estos métodos, destacan los algoritmos evolutivos (AE), modelos de Markov, redes neuronales artificiales, análisis lineales, métodos probabilísticos, filtrado espacial y Support Vector Machines. Cada uno de estos métodos presenta ciertas ventajas y desventajas.

En este trabajo se aborda uno de los problemas de la Competición BCI II, self-regulation of slow cotical potentials (SCPs). El problema consiste en mover un cursor arriba y abajo en una pantalla mientras que su actividad cerebral es registrada. El objetivo de estas competencias es validar sistemas de procesamiento y clasificación para BCI, comparando los resultados obtenidos contra otros métodos.

Se utilizará el método basado en redes neuronales artificiales de tipo perceptron multicapa (Multilayer Perceptron, MLP) para clasificar los datos.

II. SCP: Self-Regulation of Slow Cortical Potentials (Data set Ia)

El conjunto de datos (Ia) fue creado por Niels Birbaumer, del Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen. Los datos del conjunto Ia fueron tomados en personas sanas que debían mover un cursor arriba y abajo en la pantalla de un ordenador mientras que se grababan los valores de corriente correspondientes a sus SCPs. Los sujetos recibieron información visual de sus SCPs (Cz-Mastoids) para realizar correcciones. Corrientes positivas en el córtex corresponden a movimientos hacia abajo del cursor en la pantalla, mientras que corrientes negativas corresponden a movimientos hacia arriba del cursor. Cada ensayo duró un total de 6 segundos.

Durante cada ensayo, la tarea se presentaba visualmente como una meta resaltada al principio o al final de la pantalla para indicar signo negativo o positivo desde el segundo 0.5 hasta el final del ensayo. La información visual para corregir se presentaba desde el segundo 2.0 hasta el 5.5. Estos 3.5 segundos de intervalo se dan para entrenamiento y test.

La frecuencia de muestreo de 256 Hz y el tiempo de recogida de datos (3.5 segundos) dan como resultado 896 muestras por canal en cada ensayo. Puesto que en este problema tenemos 6 canales, la cantidad de datos en cada ensayo es de 5376.

El conjunto de entrenamiento está compuesto por 268 ensayos recogidos en dos días y mezclados aleatoriamente. Del total de 268 ensayos, 168 son del primer día y los 100 restantes del segundo día. De estos ensayos, 135 corresponden a clase 0 y 133 a clase 1.

El conjunto de test contiene 293 ensayos recogidos el segundo día. Para la Competición BCI II cada participante debe enviar la estimación de clases para el conjunto de test obtenida con su método. La medida de rendimiento es la tasa de respuesta correcta definida como el número de ensayos clasificados correctamente dividido por el número total de ensayos.

En el problema SCP el ganador fue Brett Mensh, del MIT, con un error de 11.3 % utilizando un método de análisis lineal. Otros autores obtuvieron buenos resultados utilizando clasificadores discriminantes lineales (Gido Dornhege, Fraunhofer FIRST, IDA, Berlin) o clasificadores basados en SVM (KaiMin Chung, National Taiwan University, Taipei).

Por otro lado, el mejor resultado utilizando redes neuronales de tipo MLP fue del 19.8 % (J. Sanchez, University of Florida).

III – Análisis de Componentes Independientes sobre el conjunto de datos (Ia)

El Análisis de Componentes Independientes (ICA) es una técnica de separación de información que se puede aplicar a los datos de un electroencefalograma (EEG). ICA realiza una transformación de la información recogida por los electrodos maximizando la independencia de su curso temporal. De esta forma, con ICA no solo se obtienen componentes relacionados con actividad cerebral, sino también componentes producidos por tensión muscular o parpadeos que normalmente están entremezclados con los voltajes registrados por los electrodos y que, por lo tanto, contaminan los datos.

Se utilizó la herramienta EEGLAB para realizar un análisis del conjunto de datos (Ia) con la finalidad de separar los componentes que la contaminan, se tuvo que transformar los datos en una matriz de tres dimensiones CH x (Hz*Seg) x Épocas (en este caso 6 x (256*3,5) x 268) para que puedan ser procesados.

#1: TRAIN3D		
Filename:data/dataset_train_ica.set		
Channels per frame	6	
Frames per epoch	896	
Epochs	268	
Events	none	
Sampling rate (Hz)	256	
Epoch start (sec)	0.000	
Epoch end (sec)	3.496	
Reference	unknown	
Channel locations	Yes	
ICA weights	Yes	
Dataset size (Mb)	5.8	

Ilustración 1- EEGLAB: Data set de entrenamiento

También se tuvo que configurar la ubicación de los canales, se dispusieron de la siguiente forma:

Descripción Data set la: ‹self-regulation of SCPs›	10/20 system
Channel 1: A1-Cz (10/20 system) (A1 = left mastoid)	A1
Channel 2: A2-Cz	A2
Channel 3: 2 cm frontal of C3	F3
Channel 4: 2 cm parietal of C3	P3
Channel 5: 2 cm frontal of C4	F4
Channel 6: 2 cm parietal of C4	P4

^{*} No se contaba con datos de electrocardiograma (ECG) o electrooculograma (EOG).

Ilustración 2- 10-20 system para EEG

Después de ejecutar ICA sobre el conjunto (Ia) se obtuvo el siguiente resultado de componentes:

Ilustración 3- Conjunto (Ia)

Realizando un análisis sobre la *ilustración* 3 – Conjunto (Ia) no se pudo determinar componentes que contaminen los datos (no se pudo distinguir parpadeos, movimientos musculares o alguna otra interferencia).

Ilustración 4 - En este ejemplo, como puede verse en la figura, el componente 6 es el que parece estar relacionado con parpadeos, mientras que el componente 16 lo está con movimientos oculares.

El conjunto (Ia) solo estaba constituido por datos de seis canales EEG y no se brindaba información sobre señales ECG o EOG, por este motivo se concluyó que por la escasa información disponible no se pudo identificar interferencias que contaminen los datos. Se decidió continuar con el trabajo sin la eliminación de interferencias.

IV - Resultados Experimentales del MLP

El método propuesto está basado en un perceptron multicapa (MLP) que resuelve un problema de clasificación concreto. En este caso, el MLP es una red feedforward de dos capas, con 5376 neuronas de entradas, una sola neurona en la capa de salida (ya que existen solo dos valores como resultado posible), y una capa oculta que será determinada en base a la experimentación.

CAPA DE ENTRADA	5376
CAPA DE SALIDA	1
CAPA OCULTA	N

Para poder determinar el número de neuronas en la capa oculta, se realizaron varias pruebas en el conjunto de entrenamiento variando la cantidad de neuronas de la capa oculta y las épocas.

Las pruebas que se presentan a continuación fueron realizadas sobre el conjunto de entrenamiento:

MATRIZ P[D1xD2]= P[5376x268]	
D1 = 5376	256Hz * 3.5 seg * 6CH
D2 = 268	Muestras

5 NEURONAS	
EPOCAS: 500	
PORCENTAJE CLASIFICADOS CORRECTAMENTE	19.40 %
PORCENTAJE CLASIFICADOS ERRONEAMENTE	80.60 %

20 NEURONAS	
EPOCAS: 500	
PORCENTAJE CLASIFICADOS CORRECTAMENTE	70.52 %
PORCENTAJE CLASIFICADOS ERRONEAMENTE	29.48 %

20 NEURONAS	
EPOCAS: 1000	
PORCENTAJE CLASIFICADOS CORRECTAMENTE	72.01 %
PORCENTAJE CLASIFICADOS ERRONEAMENTE	27.99 %

20 NEURONAS	
EPOCAS: 1500	
PORCENTAJE CLASIFICADOS CORRECTAMENTE	61.19 %
PORCENTAJE CLASIFICADOS ERRONEAMENTE	38.81 %

50 NEURONAS	
EPOCAS: 500	
PORCENTAJE CLASIFICADOS CORRECTAMENTE	88.81 %
PORCENTAJE CLASIFICADOS ERRONEAMENTE	11.19 %

50 NEURONAS	
EPOCAS: 1000	
PORCENTAJE CLASIFICADOS CORRECTAMENTE	90.67 %
PORCENTAJE CLASIFICADOS ERRONEAMENTE	9.33 %

Como se evidencia en las pruebas, existe una relación entre la cantidad de neuronas y la eficacia en la clasificación, a mayor cantidad de neuronas mejores resultados se obtiene.

No se pudo establecer la misma relación con el incremento de la variable épocas.

Para determinar el número de neuronas de la capa oculta que mejor se aplique a la solución del problema, sin perder la capacidad de generalización, se optó por utilizar la fórmula:

 $N1 = (M * N) ^ (1/2)$ * Raíz cuadrada del producto entre neuronas de salida y neuronas de entrada.

$$N1 = (1 * 5376) ^ (1/2) = 73,32$$

73 NEURONAS	
EPOCAS: 1000	
PORCENTAJE CLASIFICADOS CORRECTAMENTE	95.52 %
PORCENTAJE CLASIFICADOS ERRONEAMENTE	4.48 %

Ilustración 5- Mejor clasificación obtenida con N1 = 73

Ilustración 6 - Error cuadrático

Una vez que se determinó la cantidad de neuronas para la capa oculta en el conjunto de entrenamiento, se procedió a evaluar el comportamiento de la red en el conjunto de prueba:

MATRIZ P[D1xD2]= P[5376x293]	
D1 = 5376	256Hz * 3.5 seg * 6CH
D2 = 293	Muestras

Para el conjunto de prueba se obtuvo el siguiente resultado:

73 NEURONAS				
PORCENTAJE CLASIFICADOS CORRECTAMENTE	81.57 %			
PORCENTAJE CLASIFICADOS ERRONEAMENTE	18.43 %			

V - Resultado

El MLP desarrollado tuvo un buen rendimiento en comparación con otros métodos de clasificación, e incluso obtuvo mejores resultados que otras redes neuronales MLP citados en la bibliografía (la red neuronal con menor tasa de error encontrada en la bibliografía es de 19.8%, nuestra red obtuvo 18.43%).

#.	contributor	error	research lab	Classification
1.	Brett Mensh	11.3%	MIT	Discriminant analysis
2.	Guido Dornhege	11.6%	Fraunhofer FIRST (IDA), Berlin	regularized discriminant analysis
3.	Kai-Min Chung	11.9%	National Taiwan University, Taipei	support vector machine (SVM)
4.	Tzu-Kuo Huang	15.0%	National Taiwan University, Taipei	nonlinear SVM
5.	David Pinto	15.7%	University of Florida	Hidden Markov Model with 10 states
6.	Juma Mbwana	17.1%	Yale University	SVM
	Vladimir			
7.	Bostanov	17.4%	University of Tobingen	Linear Discriminant Analysis (LDA)
8.	Ulrich Hoffmann	17.8%		regularized linear fisher discriminant
*	Arellano Nahuel	18.43%	Universidad Nacional de Lujan	MLP neural network
9.	Deniz Erdogmus	19.1%	University of Florida	Majority vote of different 5 methods
10.	Justin Sanchez	19.8%	University of Florida	Recursive Multi-Layer Perceptron
11.	Amir Saffari	23.5%	Sahand University of Technology, Tabriz	Neural Network
12.	Michael Grabner	24.6%	Technical University of Graz	MLP neural network
13.	Yadu Rao	34.5%	University of Florida	Time-delay neural network predictor
14.	Kenneth Hild	46.8%	University of Florida	non-parametric Bayes classifier
15.	Fabien Torre	49.1%	University of Lille, GRAppA	stochastic algorithm (GloBo)

http://bbci.de/competition/ii/results/index.html

Bibliografía.

Competición BCI II, self-regulation of slow cotical potentials (SCPs), http://www.bbci.de/competition Limpiar parpadeos en eeglab usando ica, http://wdb.ugr.es/~molinae/

Diseño de redes neuronales Multicapa y entrenamiento, http://es.slideshare.net/mentelibre/diseo-de-redes-neuronales-multicapa-y-entrenamiento

Evolving artificial neural networks to design Brain-Computer Interfaces, http://mercurio.ugr.es/pedro/research/bci/listpapers/2012_EVOSTAR-bci.pdf

Cancelling ECG Artifacts in EEG Using a Modified Independent Component Analysis Approach