

TECNOLOGÍA Y ORGANIZACIÓN DE COMPUTADORES 1º Grado en Ingeniería Informática RELACIÓN DE PROBLEMAS

Departamento de Arquitectura y Tecnología de Computadores

Ejercicios del Tema 4 Análisis y diseño de sistemas secuenciales.

4.1.- Complete el siguiente diagrama de tiempos para el circuito de la figura.

4.2.- Dos flip-flops tipo JK que operan sincronizadamente están interconectados del siguiente modo: $J_0 = Q_1$, $K_0 = \overline{Q_1}$, $J_1 = Q_0$ y $K_1 = \overline{Q_0}$. Dibuje el circuito y analice su comportamiento mediante un cronograma, introduciendo por la señal de reloj tantos pulsos como sean necesarios hasta averiguar la función qué realiza.

4.3.- Diseñe un registro de desplazamiento de 4 bits con una señal de control "LD/R" y 4 entradas de datos " $D_3D_2D_1D_0$ " que tenga las características dadas por la siguiente tabla de funcionamiento simplificada:

Clk	Clr	LD/R	$Q_1(Q_3,,Q_0)$
-	1	-	Q=0
\uparrow	0	0	ROTACIÓN DERECHA
\uparrow	0	1	CARGA SÍNCRONA EN PARALELO DE $\mathrm{D_3D_0}$

4.4.- Diseñe un registro de desplazamiento de 4 bits que tenga las características dadas por la siguiente tabla de funcionamiento simplificada:

Clk	Clr	S_1	S_0	$Q(Q_3,,Q_0)$
-	1	-	-	$Q_i=0$
\uparrow	0	0	0	ROTACIÓN IZQUIERDA
1	0	0	1	ROTACIÓN DERECHA
1	0	1	0	$HOLD(Q_i=Q_i)$
↑	0	1	1	CARGA SÍNCRONA EN
	U	1	1	PARALELO (Q _i =D _i)

- 4.5.- Diseñe los siguientes contadores síncronos binarios:
 - 1. Contador ascendente módulo 8.
 - 2. Contador descendente módulo 8.
 - 3. Contador ascendente/descendente módulo 8.
- 4.6.- Diseñe los siguientes contadores síncronos:
 - 1. Contador ascendente módulo 5, que genere la secuencia $\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, 0, 1, \dots$
 - 2. Contador descendente módulo 5, que genere la secuencia 4, 3, 2, 1, 0, 4, 3,
 - Contador ascendente/descendente módulo 5 que reúna las características de los dos anteriores, controlado por una señal de modo de cuenta externa UP/DOWN.

- 4.7.- Diseñe los siguientes contadores síncronos:
 - 1. Contador ascendente, que genere la secuencia 10, 11, 12, 13, 14, 10, 11, ... ¿Cuál es su módulo?.
 - 2. Contador descendente, que genere la secuencia 14, 13, 12, 11, 10, 14, 13, ... ¿Cuál es su módulo?.
 - Contador ascendente/descendente que reúna las características de los dos anteriores, controlado por una señal de modo de cuenta externa UP/DOWN.
- 4.8.- Diseñe los siguientes generadores de secuencia síncronos:
 - 1. Que genere la secuencia 10, 13, 9, 13, 7, 10, 13, ¿Cuál es su módulo?.
 - 2. Que genere la secuencia **7**, **13**, **9**, **13**, **10**, **7**, **13**, ¿Cuál es su módulo?.
 - 3. Que genere dos secuencias que reúnan las características de las dos anteriores, controlado por una señal M.
- 4.9.- Diseñe los siguientes generadores de secuencia síncronos:
 - 1. Que genere la secuencia 10, 13, 9, 13, 7, 10, 13, ... ¿Cuál es su módulo?.
 - 2. Que genere la secuencia 9, 3, 4, 9, 3, ... ¿Cuál es su módulo?.
 - 3. Que genere dos secuencias que reúnan las características de las dos anteriores, controlado por una señal M.
- 4.10.- Diseñe un generador de secuencia síncronos que, en función de dos entradas de modo de cuenta (M_1M_0) , genere las siguientes secuencias de salidas:
 - 1. Si $M_1M_0 = 00$ genere la secuencia **10**, **13**, **9**, **13**, 10, 13, ...
 - 2. Si $M_1M_0 = 01$ genere la secuencia 4, 3, 7, 4, 3, ...
 - 3. Si $M_1M_0 = 10$ genere la secuencia 8, 7, 4, 8, 7, ...
 - 4. Si $M_1M_0 = 11$ genere la secuencia **2**, **3**, **7**, **6**, 2, 3, ...
- 4.11.- Dibuje el diagrama de estados de un generador de secuencia síncrono que, en función de una entrada M, genere las siguientes secuencias de salidas:

Si M = 0 ; Z = ... ,
$$\boldsymbol{3}$$
 , $\boldsymbol{0}$, $\boldsymbol{3}$, $\boldsymbol{4}$, $\boldsymbol{3}$, $\boldsymbol{0}$, $\boldsymbol{3}$, $\boldsymbol{4}$...

Si
$$M = 1$$
; $Z = \dots$, $\boldsymbol{0}$, $\boldsymbol{6}$, $\boldsymbol{1}$, 0 , 6 , 1 , \dots

A la vista del generador de secuencia diseñado, responda a las siguientes preguntas:

- a) ¿Cuántas salidas se requieren para implementar el sistema?
- b) ¿Cuántos biestables se requieren para implementar el sistema?
- 4.12.- Complete el siguiente diagrama de tiempos para el circuito de la figura.

4.13.- Complete el siguiente diagrama de tiempos para el circuito de la figura.

4.14.- Complete el siguiente diagrama de tiempos para el circuito de la figura. Dibuje el diagrama de estados del circuito y razone cuál puede ser su utilidad.

4.15.- Complete el siguiente diagrama de tiempos para el circuito de la figura. ¿Cuántos flancos de subida son necesarios para que el valor de X se propague hasta Q0?

4.16.- Complete el diagrama de tiempos para el circuito de la figura. Desprecie los retardos de propagación de las señales.

4.17.- Complete el siguiente diagrama de tiempos para el circuito de la figura. Dibuje el diagrama de estados del circuito y razone cuál puede ser su utilidad.

4.18.- Diseñe un circuito secuencial síncrono con dos entradas X_1, X_0 y una salida Z. La salida debe valer 1 durante el ciclo de reloj en el que $X_1=X_0$ si y sólo si también han sido iguales en el ciclo inmediatamente anterior. Una vez que Z=1, se mantiene a dicho valor hasta que X_1 sea distinto de X_0 . Emplee para el diseño flip-flops tipo T.

Ejemplo de funcionamiento (cronograma simplificado):

4.19.- Obtenga una realización del circuito secuencial síncrono especificado mediante la siguiente tabla de estados empleando flip-flops tipo T:

EP	Е	S	Z		
	x=0	x=1	x=0	x=1	
A	В	В	0	1	
В	F	D	0	1	
С	Е	G	1	1	
D	A	С	0	0	
Е	D	G	1	0	
F	F	A	0	0	
G	С	В	1	0	

4.20.- Se pretende diseñar un circuito secuencial síncrono que consta de una entrada de datos X y una salida Z. El circuito debe generar Z=1 salvo cuando se recibe el último

bit de una secuencia de tres bits iguales, en cuyo caso Z=0. Realice el diseño utilizando flip-flops tipo D. El siguiente ejemplo muestra el funcionamiento del sistema:

4.21.- Diseñe un sistema secuencial síncrono con una entrada x y una salida z de modo que z=1 si y sólo si aparece la secuencia 10 por la entrada tras la señal de Clear (primero el 1 y luego el 0). Tras esos dos primeros pulsos el circuito debe quedarse indefinidamente en el mismo estado, es decir, con z=1 si la combinación era 10 y con z=0 en cualquier otro caso. Realice el diseño completo del sistema empleando flip-flops tipo D.

4.22.- Un cierto dispositivo produce una salida codificada con los bits b_1,b_0 , cuyas combinaciones binarias (00,01,10,11) codifican respectivamente cuatro niveles de la temperatura del agua de un depósito ($T_0 < T_1 < T_2 < T_3$). Con la salida de dicho dispositivo y una señal de reloj se quiere controlar una alarma que cumpla con las siguientes especificaciones:

- La alarma se hallará necesariamente en situación de ACTIVADA o DESACTIVADA.
- Si la alarma se encuentra en situación DESACTIVADA se activará cuando durante dos o más de dos flancos ascendentes de la señal de reloj, el nivel de temperatura medido sea T₂, o cuando durante uno o más de uno, el nivel sea T₃.
- Si la alarma se encuentra en situación de ACTIVADA se desactivará cuando durante dos o más de dos flancos ascendentes de la señal de reloj, el nivel de temperatura medido sea T₁, o cuando durante uno o más de uno, el nivel sea T₀.

Diseñe el circuito secuencial síncrono que cumpla con las especificaciones anteriores utilizando para el diseño flip-flops tipo D.

4.23.- Obtenga el diagrama de estados, la tabla de estados para un sistema secuencial síncrono con una entrada X y una salida Z, que sea capaz de detectar continuamente la secuencia 0110 que le va llegando por su única línea de entrada X, generando la salida Z = 1 durante la recepción del último bit de esa secuencia de entrada Y = 0 en otro caso.

Ejemplo:

- 4.24.- Se desea diseñar un circuito secuencial síncrono con dos entradas "x" e "y" y tres salidas " $z_2z_1z_0$ " que funcione como un sumador serie de números de dos bits. El circuito debe operar de la siguiente forma:
- Durante la recepción del primer bit de "x" e "y" (el bit más significativo de $X \equiv \mathbf{x}_1 \mathbf{x}_0$ e $Y \equiv \mathbf{y}_1 \mathbf{y}_0$) las tres salidas deben estar a cero: $Z \equiv \mathbf{z}_2 \mathbf{z}_1 \mathbf{z}_0 = 000$.
- Durante la recepción del segundo bit de "x" e "y" (el bit menos significativo de X≡ x_1x_0 e Y≡ y_1y_0) la salida debe expresar el resultado de sumar aritméticamente X + Y, es decir, $z_2z_1z_0 = x_1x_0 + y_1y_0$ (ya que se necesitan 3 bits para codificar esa suma).
- El circuito secuencial síncrono deberá repetir indefinidamente estas operaciones, es decir, después de recibir el bit menos significativo de X e Y se volverá a recibir el bit más significativo de los dos números de dos bits siguientes que se han de sumar. Un ejemplo del funcionamiento de este sistema es el siguiente:

Aquí se está recibiendo el bit más significativo de X e Y. Por el momento se tiene que $x_1 = 0$, $y_1 = 1$. Durante este ciclo se mantienen las tres salidas a 0: $z_2z_1z_0 = 000$

Dibuje el diagrama de estados de este circuito secuencial síncrono. Finalmente, implemente el circuito usando flip-flops tipo D.

4.25.- A partir de la siguiente Tabla de Estados, y con la codificación de estados dada junto a dicha tabla, finalice el diseño del sistema secuencial síncrono que estaría

representado por dicha tabla e implemente el circuito secuencial síncrono utilizando flipflops tipo D.

Tabla

EP		Е	S		Salida (Z)			
Li		x_1x	$L_0 =$		$x_1 x_0 =$			
	00	01	10	11	00	01	10	11
Α	A	В	С	A	0	1	1	0
В	С	В	A	В	0	0	1	0
С	A	С	В	A	1	0	0	0

Codificación

Estado	$Q_1 Q_0$
A	0.0
В	10
C	1 1

- 4.26.- Se desea diseñar un circuito secuencial síncrono con dos entradas "x" e "y" y tres salidas "M,I,N" que funcione como un comparador serie de números de dos bits. El circuito debe operar de la siguiente forma:
- Durante la recepción del primer bit de "x" e "y" (el bit más significativo de $X \equiv \mathbf{x}_1 \mathbf{x}_0$ e $Y \equiv \mathbf{y}_1 \mathbf{y}_0$) las tres salidas deben estar a cero: MIN = 000.
- Durante la recepción del segundo bit de "x" e "y" (el bit menos significativo de $X \equiv x_1 x_0$ e $Y \equiv y_1 y_0$) las salidas deben tomar los valores:

$$M = 1 \text{ si } X > Y$$

$$I = 1$$
 si $X = Y$

$$N = 1 \text{ si } X < Y$$

- El circuito secuencial síncrono deberá repetir indefinidamente estas operaciones, es decir, después de recibir el bit menos significativo de X e Y se volverá a recibir el bit más significativo de los dos números de dos bits siguientes que se han de comparar.

Un ejemplo del funcionamiento de este sistema es el siguiente:

Aquí se vuelve a recibir el bit más significativo de los dos siguientes números de dos bits que se van a recibir por las entradas x e y. Por el momento se tiene que $x_1 = 1$, $y_1 = 1$. Durante este ciclo se mantienen las tres salidas a 0: MIN = 000

Aquí se recibe el bit menos significativo de X e Y. En este caso se han recibido X=01, Y=11 \rightarrow X<Y \rightarrow MIN = 001

Aquí se está recibiendo el bit más significativo de X e Y. Por el momento se tiene que $x_1 = 0$, $y_1 = 1$. Durante este ciclo se mantienen las tres salidas a 0: MIN = 000

Dibuje el diagrama de estados de este circuito secuencial síncrono. Finalmente, implemente el circuito usando flip-flops tipo D.

4.27.- A partir de la siguiente Tabla de Estados, y con la codificación de estados dada junto a dicha tabla, finalice el diseño del sistema secuencial síncrono que estaría representado por dicha tabla e implemente el circuito secuencial síncrono utilizando flipflops tipo D.

Tabla

EP		Е	S		Salida (Z)			
		x_1x	$x_0 =$		$x_1 x_0 =$			
	00	01	10	11	00	01	10	11
A	A	A	В	С	0	0	0	1
В	С	В	A	В	0	0	1	0
С	A	С	В	В	1	1	0	0

Codificación

Estado	$Q_1 Q_0$
A	0 0
В	0 1
C	1 1

4.28.- Un sistema secuencial síncrono tiene dos entradas (X1 y X0), y una salida (Z). Su función es comparar las secuencias que recibe por ambas entradas. Si X1=X0 durante al menos cuatro ciclos de reloj consecutivos, el circuito genera Z=1 a partir del cuarto ciclo (mientras X1 = X0); en cualquier otro caso, produce Z=0, tal como se refleja en el siguiente ejemplo:

X1 = 0 1 1 0 1 1 1 0 0 0 1 1 0 ... X0 = 1 1 1 0 1 0 1 0 0 0 1 1 1 ... Z = 0 0 0 0 1 0 0 0 0 1 1 1 0 ...

Obtenga el diagrama de estados, la tabla de estados del circuito secuencial síncrono. Finalmente, implemente el circuito usando flip-flops tipo D.