PROPOSED MARKING GUIDE MATH 2 UMTA O LEVEL 2023

NO	SOLUTION	Mks	Comments
1	$=\left(\frac{13}{8} \div \frac{13}{4}\right) \div \left(\frac{11}{4} - \frac{15}{8}\right)$		
	$= \left(\frac{13}{8} \times \frac{4}{13}\right) \div \left(\frac{22-15}{8}\right)$		
	$=\frac{1}{2}\div\frac{7}{8}$		
	$=\frac{1}{2}\times\frac{8}{7}$		
	$=\frac{4}{7}$		
		04	
2	$P={3, 6, 9, 12}$		
	Q={1, 3, 6, 10, 15}		
	$P \cap Q = \{3, 6\}$		
	$\therefore n(P \cap Q) = 2 \text{ elements}$		
		04	
3	For perpendicular lines; $m_1 \times m_2 = -1$		
	$-\frac{2}{3} \times m_2 = -1 \qquad \qquad \therefore m_2 = \frac{3}{2}$		
	$\frac{3}{2} = \frac{h+4}{8-2}$		
	$2(h+4) = 3 \times 6$		
	2h + 8 = 18		
	$2h = 10 \qquad \qquad \therefore h = 5$		
		04	
4	$\frac{4\sqrt{3}}{2\sqrt{3}-\sqrt{6}} = \frac{4\sqrt{3}(2\sqrt{3}+\sqrt{6})}{(2\sqrt{3}-\sqrt{6})(2\sqrt{3}+\sqrt{6})}$		
	$=\frac{8\times 3+4\sqrt{18}}{(2\sqrt{3})^2-(\sqrt{6})^2}$		
ı			

	$=\frac{24+4\sqrt{9\times2}}{}$		
	$4 \times 3 - 6$		
	$=\frac{24+12\sqrt{2}}{6}$		
	$=4+2\sqrt{3}$		
		04	
5	$From A = P \left(1 + \frac{r}{100} \right)^n$		
	$2,850,000 = 2,420,000 \left(1 + \frac{805}{100}\right)^n$		
	$(1.085)^n = 1.17768565$		
	Taking log to base 10 on both sides		
	$\log_{10}(1.085)^n = \log_{10} 1.17768595$		
	$n = \frac{\log_{10} 1.17768595}{\log_{10} 1.085}$		
	n = 2 years		
		04	
6	$1 - \frac{1}{3}\log_{10} 64 + 2\log_{10} 20$		
	$= \log_{10} 10 - \log_{10} 64^{1/3} + \log_{10} 20^2$		
	$= \log_{10} 10 - \log_{10} 4 + \log_{10} 400$		
	$= \log_{10}(10 \times 400) - \log_{10} 4$		
	$= \log_{10} 4000 - \log_{10} 4$		
	$=\log_{10}\left(\frac{4000}{4}\right)$		
	$=\log_{10} 1000$		
	$=\log_{10}10^3$		
	$= 3 \log_{10} 10$		
	$= 3 \times 1$		
	= 3		

7	$l^{2} = 5^{2} + 12^{2}$ $l^{2} = 25 + 144$ $l^{2} = 169$ $\sqrt{l^{2}} = \sqrt{169}$ $l = 13 \text{ cm}$ $S.A = \pi r l$ $= 3.142 \times 5 \times 13$		
	$= 204.23 \ cm^2$		
		04	
8	From $AB = OB - OA$ OB = OA + AB		

		04	
10	102 km d km		
	$1\frac{2}{3}$ hours $2\frac{1}{3}$ hours		
	$\frac{1}{3}$ nours $\frac{2}{3}$ nours		
	7		
	$d = 54 \times \frac{7}{3} = 126 km$		
	Average speed = $\frac{Total \ distance}{total \ time \ taken}$		
	$=\frac{\frac{102+126}{\frac{5}{3}+\frac{7}{3}}}{\frac{1}{3}}$		
	$=\frac{228}{4}$		
	-		
	$=57 \ kmh^{-1}$		
		04	
11	(a) i) $f(-5) = \frac{5(-5)+1}{4}$		
	25+1		
	$=\frac{-25+1}{4}$		
	$=\frac{-24}{4}$		
	= -6		
	ii) let $f(x) = y$		
	$y = \frac{5x+1}{4}$		
	5x + 1 = 4y		
	5x = 4y - 1		
	$x = \frac{4y-1}{5}$		
	$f^{-1}(x) = \frac{4x - 1}{5}$		
	$\Rightarrow f^{-1}(4) = \frac{4(4)-1}{5}$		
	$=\frac{15}{5}$		

	2		
	= 3		
	(b) $gh(x) = g[h(x)]$		
	$=\frac{4(\frac{1+2x}{8})+3}{3}$		
	$=\frac{1}{3}$		
	$=\frac{\frac{1+2x}{2}+3}{3}$		
	3		
	$=\frac{1+2x+6}{6}$		
	$=\frac{2x+7}{6}$		
	O		
	$\Rightarrow \frac{2x+7}{6} = \frac{6-x^2}{4}$		
	$8x + 28 = 36 - 6x^2$		
	$6x^2 + 8x - 8 = 0$		
	$3x^2 + 4x - 4 = 0$		
	$3x^2 - 2x + 6x - 4 = 0$		
	x(3x-2) + 2(3x-2) = 0		
	(x+2)(3x-2) = 0		
	Either $x + 2 = 0$ or $3x - 2 = 0$		
	x = -2 or 3x = 2		
	$x = \frac{2}{3}$		
	x = /3		
		12	
12	(a)		

n(P) only;

$$a + 7 + x + 10 - x = 25$$

$$a + 17 = 25$$

$$a = 25 - 17 = 8$$

n(C) only;

$$b + 10 - x + x + 8 - x = 20$$

$$b + 18 - x = 20$$

$$b = 20 - 18 + x$$

$$b = 2 + x$$

n(B) only;

$$7 + x + 8 - x + c + 18$$

$$c + 15 = 18$$

$$c = 18 - 15 = 3$$

(b) i)
$$8+7+x+10-x+2+x+8-x+3+2x=42$$

$$25 + 13 + 2x = 42$$

$$2x + 38 = 42$$

$$2x = 42 - 38$$

$$2x = 4$$
 $\therefore x = 2$

$$\therefore x = 2$$

	ii) At least two = $7 + (10 - 2) + (8 - 2) + 2$		
	= 7 + 8 + 6 + 2		
	= 23 students		
	(c) Probability = $\frac{n(E)}{n(s)}$		
	$=\frac{8+3+4}{42}$		
	$=\frac{15}{42}$		
	$=\frac{5}{14}$ or 0.3571		
		12	
13	(a)		

				12	
14	(a) Allowances	000			
	Housing $=\frac{840}{1}$				
	Electricity	=5	Shs60,000		
	Medical	=5	Shs100,000		
	Children = 15,0	000 +	9,000		
	=Shs2	24,000			
	Total allowances	=Shs2	254,000		
		950,0	00 – 254,000		
	=	Shs69	6,000		
	(b) income tax				
	Taxable income	Rate	Income tax		
	01-100,000	5	$\frac{5}{100}(100,000-0)$		
	100,001-300,000	7	$= Shs5,000$ $\frac{7}{100}(300,000 - 100,000)$		
			=Shs14,000		
	300,001-450,000	10	$\frac{10}{100}(450,000 - 300,000)$ =Shs15,000		
	450,001-600,000	14	$\frac{\frac{14}{100}(600,000 - 450,000)}{=\text{Shs}21,000}$		
	600,001-696,000	25	$\frac{\frac{25}{100}(696,000 - 600,000)}{\text{=Shs24,000}}$		
	Total		=Shs79,000		
	∴Income tax =Shs79				
	Net income = Gross				
	= 950,000 - 79,000				
	=Shs871,000				
				12	
15	(a) i) $\mathbf{Q}\mathbf{R} = \frac{2}{3}\mathbf{Q}\mathbf{T}$				

but
$$QT = QO + OT$$

$$= -q + \frac{1}{2}p$$

$$= \frac{1}{2}(p - 2q)$$

$$\therefore QR = \frac{2}{3} \times \frac{1}{2}(p - 2q) = \frac{1}{3}(p - 2q)$$
ii) $OR = OQ + QR$

$$= q + \frac{1}{3}(p - 2q)$$

$$= \frac{3q + p - 2q}{3}$$

$$= \frac{1}{3}(p + q)$$
iii) $QS = \frac{1}{2}QP$
but $QP = OP - OQ$

$$= p - q$$

$$\therefore QS = \frac{1}{2}(p - q)$$
iv) $TS = TQ + QS$

$$= -\frac{1}{2}(p - 2q) + \frac{1}{2}(p - q)$$

$$= \frac{-p + 2q + p - q}{2}$$

$$= \frac{1}{2}q$$
(b) $OS = OQ + QS$

$$= q + \frac{1}{2}(p - q)$$

$$= \frac{2q + p - q}{2}$$

$$= \frac{1}{2}(p + q)$$

	1(-1-5)		
	$\Rightarrow OS: OR = \frac{\frac{1}{2}(p+q)}{\frac{1}{3}(p+q)}$		
	$=\frac{1}{2}\times\frac{3}{2}$		
	$= \frac{3}{2}$		
	∴ Since $2\mathbf{OS} = 3\mathbf{OR}$ and point O is common,		
	then the points lie on a straight line.		
		12	
16	(a) $C = k_1 + \frac{k_2}{N}$		
	When $N = 200$, $C = \text{shs}850$		
	$850 = k_1 + \frac{k_2}{200}$		
	$170,000 = 200k_1 + k_2 \dots (i)$		
	When $N = 400$, $C = \text{shs} 500$		
	$500 = k_1 + \frac{k_2}{400}$		
	$200,000 = 400k_1 + k_2$ (ii)		
	$(ii) - (i); 200k_1 = 30,000 \qquad \therefore k_1 = 150$		
	From (i); $200(150) + k_2 = 170,000$		
	$30,000 + k_2 = 170,000$		
	$k_2 = 170,000 - 30,000$		
	$k_2 = 140,000$		
	$\therefore C = 150 + \frac{140,000}{N}$		
	(b) i) When $N = 560, C = ?$		
	$C = 150 + \frac{140,000}{560}$		
	=shs400		
	ii) When $C = \text{shs}950$, $N = ?$		

	$950 = 150 + \frac{140,000}{N}$		
	$800 = \frac{140,000}{N}$		
	800N = 140,000		
	N = 175 copies		
		12	
17	i) VA		
	$ \begin{array}{c} B\\ 12 cm\\ \hline D $		
	$DB = \sqrt{10^{\circ} + 12^{\circ}}$ $= \sqrt{400}$		
	$= \sqrt{400}$ $= 20 cm$		
	- 20 cm		
	24 cm		
	O 10 cm A		
	$\overline{VA} = \sqrt{24^2 + 10^2}$		
	$=\sqrt{676}$		
	= 26 cm		
	ii)		

