Алгоритмы и структуры данных

Сергей Григорян

2 октября 2024 г.

Содержание

1		кция 4			
	1.1	Кучи			
		1.1.1	Бинарная (двоичная) куча		
		1.1.2	HeapSort		
		1.1.3	Удаление из кучи		
2	Лекция 5				
	2.1	Бином	миальная куча		
	2.2	Аморт	тизационный анализ		
		2.2.1	Динамический массив		
			(std::vector)		

1 Лекция 4

1.1 Кучи

Определение 1.1. Куча - СД, умеющая:

- ullet Хранить мультимн-во эл-ов S
- insert(x) добавить x в S
- getMin() вернуть min(S)
- \bullet extractMin() найти min(S) и удалить его
- $decreaseKey(ptr, \triangle), \triangle > 0$ уменьшить число по адресу ptr на \triangle

Применения: алгоритмы Дейкстры, Прима

1.1.1 Бинарная (двоичная) куча

Храним S в массиве a_1, a_2, \ldots, a_n Picture(1)

Требование кучи: эл-т, записанный в каждой вершине, \leq всех эл-ов своего поддерева

Тогда getMin(): return a_1 ;

```
siftUp(u):
    if (v == 1) return
    p = (v / 2)
    if (a[p] > a[v]) {
        swap(a[p], a[v])
        siftUp(p)
    }

siftDwon(v)
    if (2 * v > n) return
    u = 2v
    if (2 * v + 1 <= n && a[2 * v + 1] < a[u]): u = 2
        * v + 1
    if (a[u] < a[v])</pre>
```

```
siftDown(u)
6 }
```

Листинг 1: siftUp and siftDown

Остальные методы в heap.cpp

Асимптотика всего: $O(\log n)$

Корректность

<u>Лемма</u> 1.1. Пусть a_1, \ldots, a_n - корректная куча Пусть $a_v \leftarrow x$

- 1) Если a_v уменьшилось, то после siftUp(v) куча вновь станет корректной
- 2) Если a_v увеличилось, то после siftDown(v) куча вновь станет корректной

Доказательство. 1) Индукция по v:

База: v=1: куча остаётся корректной, siftUp при уменьшении корня ничего не делает

Переход: $a_v \leftarrow x$

- а) $x \geq a_p$ родитель; нер-во сохраняется, siftUp ничего не делает, куча остаётся корректной
- b) $x < a_p$. Тогда сделаем $swap(a_p, a_v)$, тогда нер-во снова сохр., и, по предположению индукции, после siftUp(p) куча становится корректной. Picture(2)
- 2) Индукция от листьев к корню

База: v - лист, куча корректна, siftDown ничего не делает

Переход: Пусть a_u - наименьший из детей v Picture(3)

1.1.2 HeapSort

Алгоритм:

$$a_1, a_2, \ldots, a_n$$

- 1) $inserta_1, \ldots, a_n$
- 2) extractMin n pas

Асимптотика: $O(n \log n)$

Замечание. Heapsort основан на сравнениях

Следствие. $\neg \exists$ реализации кучи осн. на сравнениях, в кот. insert и $\overline{extractMin}$ работают за O(n)

Процедура heapify: строит корректную кучу по n эл-ам без доп. памяти за O(n)

```
for i = n...1:
siftDown(i)
```

Листинг 2: Heapify

Корректность? Индукцией по i: после вызова siftDown(i), поддерево с корнем i станет корректной кучей.

Переход: Picture(4)

Асимптотика: O(n)

Время работы:

- \bullet $\frac{n}{2}$ вершин обраб. за 1 оп.
- $\frac{n}{4}$ вершин обраб. за 2 оп.

$$Sum = \frac{n}{2} \cdot 1 + \frac{n}{4} \cdot 2 + \dots = \frac{n}{2} + \frac{n}{4} + \dots + (\frac{n}{4} \cdot 1 + \frac{n}{8} \cdot 2 + \frac{n}{16} \cdot 3 + \dots) =$$
$$= n + \frac{n}{2} + (\frac{n}{8} + \frac{n}{16} \cdot 2 + \frac{n}{32} \cdot 3 + \dots) \le 2 \cdot n$$

1.1.3 Удаление из кучи

erasex:

- а) По указателю на x
 - 1) $a_v \leftarrow -\infty$
 - 2) siftUp(v)
 - 3) extractMin()
- b) По значению x

У нас нет способа найти x в куче, поэтому:

- 1) Заведём кучи A то, что добавили, D то, что хотим удалить. При запросе удаления x, добавляем его в D
- 2) Если при запросе getMin(), A.getMin() == D.getMin(), то удаляем min в обоих кучах и смотрим далее.

Итого: n запросов = $O(n \log n)$

2 Лекция 5

2.1 Биномиальная куча

Хотим следующие операции:

- getMin()
- extractMin()
- insert(x)
- decrease Key(ptr, \triangle)
- merge(heap1, heap2) обЪединение куч.

Определение 2.1. Биномиальное дерево ранга k:

 ${f k}=0)$ T_0 - одна вершина

 $\mathbf{k}=1)\ T_1$ - вершина с одним ребёнком

 ${\bf k}=2) \ T_2$ - Дерево T_1 , к корню кот. ещё подвешено T_1

 $\mathbf{k}=\mathbf{n}$) T_n - Дерево T_{n-1} , к корню кот. ещё подвешено T_{n-1}

Кроме того, в вершинах дерева, есть числа, удовл. усл. обыкновенной кучи (значение в родителе ≤ значения в сыновьях)

<u>Определение</u> **2.2.** Биномиальная куча - это набор биномиальных деревьев, попарно различных рангов.

Пример.

 $\overline{T_0, T_1, T_5} - OK$ $T_3, T_5, T_5 - NOT OK$

<u>Замечание</u>. 1) Если в куче всего n - эл-ов, то в ней не более $\log_2 n$ - деревьев, m. κ . в T_k ровно 2^k вершин.

Пример.
$$n = 11 = 1011_2 \Rightarrow T_0 + T_1 + T_3$$

2) Дерево ранга k имеет глубину k

$$k \le \log_2 n$$

Реализация:

- getMin(): Храним указатель на корень с наим. значением. $\Rightarrow O(1)$
- $merge(H_1, H_2)$:
 - 1) Если в H_1 и H_2 не содержатся деревья одинаковых рангов, то просто объединяем.
 - 2) Иначе пусть есть дерево L_k , R_k два дерева одинакового ранга. Сделаем из них T_{k+1} . Повторяем процедуру, пока у нас есть деревья равных рангов. $(O(\log_2 n))$
- insert(x): Заводим биномиальную кучу из одной вершины с значением x, затем merge новой и старой кучи $\Rightarrow O(\log_2 n)$

- extractMin():
 - Пусть min вершина в H_2 . На самом деле дерево H_2 тоже корректная куча. Оставшуюся кучу обозначим за H_1 . Удалим из H_2 min, из оставшихся деревьев составим новую кучу H_2' и смёрджим его с H_1
- decrease Key(ptr, \triangle): Как в бинарной. $(O(\log_2 n)) + \Pi$ роверить, не изменился ли min корень

2.2 Амортизационный анализ

Определение 2.3. Пусть S - какая-то СД, способная обрабатывать m типов запросов. Тогда ф-ции $a_1(n), a_2(n), \ldots, a_m(n)$ наз-ся учётными (амортизационными) асимптотиками ответов на запросы, если $\forall n \forall$ п-ть из n запросов с типами i_1, i_2, \ldots, i_n суммарное время их обработки $= O(\sum_{i=1}^n a_{i_j}(n))$

Пример. B бинарной куче:

- $insert: O(\log n)$
- $extractMin: O^*(\log n)$
- $getMin(): O^*(\log n)$
- erase: аморт. $O(\log n)$

 C л-но, любые n запросов работают за $O(n \log n)$

Замечание. Можно даже считать так:

- $insert: O^*(\log n)$
- $extractMin: O^*(1) \le k$
- $getMin: O^*(1)$
- erase: $O^*(1) \le k$

 $Ha\ n\ запросов.$

Из них k - insert. Тогда реальное время работы: $O(k \log k + n - k)$

2.2.1 Динамический массив (std::vector)

Хранит массив: a_0, a_1, \dots, a_{n-1} Отвечает на запросы:

- []: по i вернуть a_i O(1)
- ullet push-back х: добавить x в конец массива.
- pop-back: удалить последний эл-т.