Set

Jake Henderson

January 18, 2025

Contents

1	$\mathbf{A} \mathbf{s}$	A set is an unordered collection of elements.															1					
	1.1	Opera	tions include:																			1
	1.2	Comm	non laws:																			1
		1.2.1	Demorgan:																			1
		1.2.2	Cardinality																			2

1 A set is an unordered collection of elements.

1.1 Operations include:

Membership: $x \in S$ and $x \notin S$ Set inclusion: $s \subset S$ and $s \subseteq S$

> Union: $A \cap B$ Intersection: $A \cup B$

Compliment: $B^c \equiv \{s \mid s \notin B\}$ or \overline{B} Subtraction: $A - B \equiv \{a \mid a \in A \land a \notin B\}$

Universal set: Univ $\equiv A \cap A^c$

Cardinality (number of elements in set): |A|

Equality: $A = B \equiv A \subseteq B \land B \subseteq A$

Cartesian product: $A \times B \equiv \{(a,b) \mid a \in A \land b \in B\}$ Collective intersection: $\bigcup_n S_n \equiv S_0 \cup S_1 \cup \cdots \cup S_n$ Collective union: $\bigcap_n S_n \equiv S_0 \cap S_1 \cap \cdots \cap S_n$

1.2 Common laws:

1.2.1 Demorgan:

$$\overline{A \cap B} = \bar{A} \cup \bar{B}$$

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$
In general,
$$\overline{\bigcap S_n} = \bigcup \overline{S_n}$$
and
$$\overline{\bigcup S_n} = \bigcap \overline{S_n}$$

1.2.2 Cardinality

$$\begin{split} |A \cap B| &= |A| + |B| - |A \cup B| \\ |A \cup B| &= |A| + |B| - |A \cap B| \\ |A \times B| &= |A| \times |B| \\ \text{With the Powerset:} \\ |\mathcal{P}(S)| &= 2^{|S|} \end{split}$$