Exercice 1 - Diagramme de Bode*

C2-02

Question 1 Tracer le diagramme de Bode de la fonction de transfert suivante : $F_1(p) = \frac{15}{1+10p}$.

Tracer asymptotique

	$\omega \to 0$	$\omega = \frac{1}{10} \text{ rad/s}$	$\omega o \infty$	
$H(p) = \frac{15}{1 + 10p}$	0 dB/déc 0°		−20 dB/décade −90°	

Positionnement du diagramme de gain Lorsque que ω tend vers 0, le gain tend vers 20 log 15 = 23,5 dB.

Question 2 Le système est sollicité par une entrée sinusoïdale de période 6 s et d'amplitude 10. Quel est le signal de sortie?

Pour une période de 60 s, la pulsation est de $\frac{2\pi}{T}$ soit $\omega = 0,1$ rad s⁻¹. Pour cette pulsation le gain est de 20 dB est le déphasage de $-\frac{\pi}{-}$.

déphasage de $-\frac{\pi}{4}$.

On a donc $20\log(S/E) = 20$ soit S = 10E. Le signal d'entrée est donc $e(t) = 10\sin(0,1t)$ et le signal de sortie $s(t) = 100\sin\left(0,1t - \frac{\pi}{4}\right)$.