COMS 4771 Lecture 20

1. Maximum entropy

Probabilistic modeling

PROBABILISTIC MODELING

We've encountered many different probability models (e.g., Gaussian, Bernoulli, Binomial, Poisson, multinomial).

PROBABILISTIC MODELING

We've encountered many different probability models (e.g., Gaussian, Bernoulli, Binomial, Poisson, multinomial).

- ▶ Is there a general approach for
 - (i) picking a probability model, and
 - (ii) parameter estimation?

Probabilistic modeling

We've encountered many different probability models (e.g., Gaussian, Bernoulli, Binomial, Poisson, multinomial).

- ▶ Is there a general approach for
 - (i) picking a probability model, and
 - (ii) parameter estimation?
- ▶ How do familiar models (as above) fit into this approach?

Suppose you want to model a distribution over some discrete set $\mathcal X$ (e.g., $\mathcal X=$ all English words).

Suppose you want to model a distribution over some discrete set $\mathcal X$ (e.g., $\mathcal X=$ all English words).

What distribution over ${\mathcal X}$ should you pick?

Suppose you want to model a distribution over some discrete set $\mathcal X$ (e.g., $\mathcal X=$ all English words).

What distribution over ${\mathcal X}$ should you pick?

A default choice, before making any observations:

uniform distribution over $\mathcal X$ (assuming $\mathcal X$ is finite).

Suppose you want to model a distribution over some discrete set $\mathcal X$ (e.g., $\mathcal X=$ all English words).

What distribution over ${\mathcal X}$ should you pick?

A default choice, before making any observations:

uniform distribution over \mathcal{X} (assuming \mathcal{X} is finite).

Now you observe a random sample x_1,x_2,\ldots,x_n from \mathcal{X} , and record some features $T_1,T_2,\ldots,T_k\colon\mathcal{X}\to\mathbb{R}$: e.g.,

- $T_1(x) = \mathbb{1}\{x \text{ ends with an 'e'}\}$
- ▶ $T_2(x) = 1\{x \text{ has more than five characters}\}$
- **>** ...

Suppose you want to model a distribution over some discrete set $\mathcal X$ (e.g., $\mathcal X=$ all English words).

What distribution over \mathcal{X} should you pick?

A default choice, before making any observations:

uniform distribution over $\mathcal X$ (assuming $\mathcal X$ is finite).

Now you observe a random sample x_1, x_2, \ldots, x_n from \mathcal{X} , and record some features $T_1, T_2, \ldots, T_k \colon \mathcal{X} \to \mathbb{R}$: e.g.,

- $T_1(x) = \mathbb{1}\{x \text{ ends with an 'e'}\}$
- ▶ $T_2(x) = 1\{x \text{ has more than five characters}\}$

Say you observe

$$\frac{1}{n}\sum_{i=1}^{n}T_1(x_i)=0.22, \quad \frac{1}{n}\sum_{i=1}^{n}T_2(x_i)=0.32, \quad \dots$$

Now what distribution should you pick?

A NON-COMMITTAL ESTIMATION PRINCIPLE

Idea: Pick the distribution that agrees with the empirical observations, but otherwise is as non-committal as possible . . .

A NON-COMMITTAL ESTIMATION PRINCIPLE

Idea: Pick the distribution that agrees with the empirical observations, but otherwise is as non-committal as possible . . .

Distribution should only be pinned down by the observations, but otherwise should express as much "uncertainty" / be as "random" as possible.

A NON-COMMITTAL ESTIMATION PRINCIPLE

Idea: Pick the distribution that agrees with the empirical observations, but otherwise is as non-committal as possible . . .

Distribution should only be pinned down by the observations, but otherwise should express as much "uncertainty" / be as "random" as possible.

How do we measure how "random" a distribution is?

Let X be a discrete \mathcal{X} -valued random variable. How "random" is it?

▶ Fair coin toss: one unit of randomness (by definition).

- ▶ Fair coin toss: one unit of randomness (by definition).
 - ► Biased coin toss?

- **Fair coin toss**: one unit of randomness (by definition).
 - ▶ Biased coin toss? Less randomness.

- **Fair coin toss**: one unit of randomness (by definition).
 - ▶ Biased coin toss? Less randomness.
- ► Two independent fair coin tosses?

- **Fair coin toss**: one unit of randomness (by definition).
 - ▶ Biased coin toss? Less randomness.
- ▶ Two independent fair coin tosses? Two units of randomness.

- **Fair coin toss**: one unit of randomness (by definition).
 - ► Biased coin toss? Less randomness.
- ▶ Two independent fair coin tosses? Two units of randomness.
 - Two dependent fair coin tosses?

MEASURING RANDOMNESS

- ▶ Fair coin toss: one unit of randomness (by definition).
 - ▶ Biased coin toss? Less randomness.
- ▶ Two independent fair coin tosses? Two units of randomness.
 - ► Two dependent fair coin tosses? Less randomness.

- **Fair coin toss**: one unit of randomness (by definition).
 - Biased coin toss? Less randomness.
- ▶ Two independent fair coin tosses? Two units of randomness.
 - ► Two dependent fair coin tosses? Less randomness.
- ► Fair 32-sided die?

- **Fair coin toss**: one unit of randomness (by definition).
 - Biased coin toss? Less randomness.
- ▶ Two independent fair coin tosses? Two units of randomness.
 - ► Two dependent fair coin tosses? Less randomness.
- ► Fair 32-sided die? This is equivalent to five independent fair coin tosses, so five units of randomness.

Natural desiderata for a measure of randomness H:

Natural desiderata for a measure of randomness H:

$$H(X) = 1.$$

Natural desiderata for a measure of randomness H:

1. (Normalization) If X is a fair coin toss, then

$$H(X) = 1.$$

2. (Small for small probs.) If X is a p-biased coin toss with $p \to 1$, then $H(X) \to 0$.

MEASURING RANDOMNESS: DESIDERATA

Natural desiderata for a measure of randomness H:

$$H(X) = 1.$$

- 2. (Small for small probs.) If X is a p-biased coin toss with $p \to 1$, then $H(X) \to 0$.
- 3. (Additivity) If X and Y are independent RVs, and Z:=(X,Y), then H(Z)=H(X)+H(Y).

Natural desiderata for a measure of randomness H:

$$H(X) = 1.$$

- 2. (Small for small probs.) If X is a p-biased coin toss with $p \to 1$, then $H(X) \to 0$.
- 3. (Additivity) If X and Y are independent RVs, and Z:=(X,Y), then H(Z)=H(X)+H(Y).
- 4. (Subadditivity) If X and Y are RVs, and Z:=(X,Y), then $H(Z) \leq H(X) + H(Y).$

Natural desiderata for a measure of randomness H:

$$H(X) = 1.$$

- 2. (Small for small probs.) If X is a p-biased coin toss with $p \to 1$, then $H(X) \to 0$.
- 3. (Additivity) If X and Y are independent RVs, and Z:=(X,Y), then H(Z)=H(X)+H(Y).
- 4. (Subadditivity) If X and Y are RVs, and Z:=(X,Y), then $H(Z) \leq H(X) + H(Y).$
- 5. (Expansibility) If $X \sim (p_1, p_2, \dots, p_d)$ and $Y \sim (p_1, p_2, \dots, p_d, 0)$, then H(X) = H(Y).

Natural desiderata for a measure of randomness H:

$$H(X) = 1.$$

- 2. (Small for small probs.) If X is a p-biased coin toss with $p \to 1$, then $H(X) \to 0$.
- 3. (Additivity) If X and Y are independent RVs, and Z:=(X,Y), then H(Z)=H(X)+H(Y).
- 4. (Subadditivity) If X and Y are RVs, and Z:=(X,Y), then $H(Z) \leq H(X) + H(Y).$ never happen
- 5. (Expansibility) If $X \sim (p_1, p_2, \dots, p_d)$ and $Y \sim (p_1, p_2, \dots, p_d \mid 0)$, then H(X) = H(Y).
- 6. (Symmetry) If $X \sim (p_1, p_2, \dots, p_d)$ and $Y \sim (p_{\sigma(1)}, p_{\sigma(2)}, \dots, p_{\sigma(d)})$ for some permutation σ on $\{1, 2, \dots, d\}$, then

$$H(X) = H(Y).$$

The only measure of randomness that satisfies the desiderata is

$$H(X) = -\sum_{x \in \mathcal{X}} \Pr(X = x) \log_2 \Pr(X = x)$$

which is called (Shannon) entropy. (Note: $0 \log 0 = 0$ by convention.)

The only measure of randomness that satisfies the desiderata is

$$H(X) \ = \ -\sum_{x \in \mathcal{X}} \Pr(X = x) \log_2 \Pr(X = x)$$

which is called (Shannon) entropy. (Note: $0 \log 0 = 0$ by convention.)

We equivalently refer to the entropy of a discrete distribution P over \mathcal{X} :

$$H(P) \ = \ -\sum_{x \in \mathcal{X}} P(x) \log_2 P(x),$$

which is the entropy of a RV $X \sim P$.

MEASURING RANDOMNESS

The only measure of randomness that satisfies the desiderata is

$$H(X) = -\sum_{x \in \mathcal{X}} \Pr(X = x) \log_2 \Pr(X = x)$$

which is called (Shannon) entropy. (Note: $0 \log 0 = 0$ by convention.)

We equivalently refer to the entropy of a discrete distribution P over \mathcal{X} :

$$H(P) = -\sum_{x \in \mathcal{X}} P(x) \log_2 P(x),$$

which is the entropy of a RV $X \sim P$.

Also may write this as

$$H(P) = \mathbb{E}_{X \sim P} \left[-\log_2(P(X)) \right] = \mathbb{E}_{X \sim P} \left[\log_2 \frac{1}{P(X)} \right].$$

"Bits" = units of entropy with \log_2 . "Nats" = units of entropy with \ln . Different logarithm bases just change things by constant factors.

ENTROPY

Entropy H(P) is a concave function of P.

ENTROPY

Entropy H(P) is a concave function of P.

Distribution over \mathcal{X} with highest entropy: **uniform distribution**

$$H(\mathsf{uniform}) \ = \ -\sum_{x \in \mathcal{X}} \frac{1}{|\mathcal{X}|} \log \frac{1}{|\mathcal{X}|} \ = \ \log |\mathcal{X}|.$$

ENTROPY

Entropy H(P) is a concave function of P.

Distribution over \mathcal{X} with highest entropy: uniform distribution

$$H(\mathsf{uniform}) \ = \ -\sum_{x \in \mathcal{X}} \frac{1}{|\mathcal{X}|} \log \frac{1}{|\mathcal{X}|} \ = \ \log |\mathcal{X}|.$$

Distribution over \mathcal{X} with least entropy: **point mass at any** $x^* \in \mathcal{X}$

$$H(\delta_{x^*}) = -\sum_{x \in \mathcal{X}} \mathbb{1}\{x = x^*\} \log \mathbb{1}\{x = x^*\} = 0.$$

Surprise: $\log \frac{1}{P(x)}$ measures the amount of *surprise* you should feel if you observe $x \in \mathcal{X}$, according to the distribution P.

Surprise: $\log \frac{1}{P(x)}$ measures the amount of *surprise* you should feel if you observe $x \in \mathcal{X}$, according to the distribution P.

 $H(P) = \mathbb{E}_{X \sim P}[\log \frac{1}{P(X)}]$ is the average surprise from a random draw from P.

Surprise: $\log \frac{1}{P(x)}$ measures the amount of *surprise* you should feel if you observe $x \in \mathcal{X}$, according to the distribution P.

 $H(P) = \mathbb{E}_{X \sim P}[\log \frac{1}{P(X)}]$ is the average surprise from a random draw from P.

Shannon's source coding theorem: Any lossless compression of an i.i.d. sample from P must use H(P) bits on average.

(This is essentially achieved via Huffman coding.)

Surprise: $\log \frac{1}{P(x)}$ measures the amount of *surprise* you should feel if you observe $x \in \mathcal{X}$, according to the distribution P.

 $H(P) = \mathbb{E}_{X \sim P}[\log \frac{1}{P(X)}]$ is the average surprise from a random draw from P.

Shannon's source coding theorem: Any lossless compression of an i.i.d. sample from P must use ${\cal H}(P)$ bits on average.

(This is essentially achieved via Huffman coding.)

Upshot: Entropy measures the average information content of a RV.

ASYMPTOTIC EQUIPARTITION PROPERTY

Let (X_1, X_2, \dots, X_n) be sequence of i.i.d. \mathcal{X} -valued RVs, with $X_i \sim P$.

١

Let (X_1, X_2, \dots, X_n) be sequence of i.i.d. \mathcal{X} -valued RVs, with $X_i \sim P$.

Asymptotic equipartition property:

For large n, we can divide all sequences in \mathcal{X}^n into two sets:

Let (X_1, X_2, \dots, X_n) be sequence of i.i.d. \mathcal{X} -valued RVs, with $X_i \sim P$.

Asymptotic equipartition property:

For large n, we can divide all sequences in \mathcal{X}^n into two sets:

1. "Typical sequences":

$$(x_1, x_2, \ldots, x_n) \in \mathcal{X}^n$$
 with

$$P(x_1, x_2, \dots, x_n) \approx 2^{-n(H(P) \pm \varepsilon)}$$
.

2. All other sequences.

Let (X_1, X_2, \dots, X_n) be sequence of i.i.d. \mathcal{X} -valued RVs, with $X_i \sim P$.

Asymptotic equipartition property:

For large n, we can divide all sequences in \mathcal{X}^n into two sets:

1. "Typical sequences":

$$(x_1, x_2, \ldots, x_n) \in \mathcal{X}^n$$
 with

$$P(x_1, x_2, \dots, x_n) \approx 2^{-n(H(P) \pm \varepsilon)}$$
.

- 2. All other sequences.
 - ► Typical sequences account for almost all the probability mass.

Let (X_1, X_2, \dots, X_n) be sequence of i.i.d. \mathcal{X} -valued RVs, with $X_i \sim P$.

Asymptotic equipartition property:

For large n, we can divide all sequences in \mathcal{X}^n into two sets:

1. "Typical sequences": ??? $(x_1,x_2,\ldots,x_n)\in\mathcal{X}^n \text{ with }$ $P(x_1,x_2,\ldots,x_n)\approx 2^{-n(H(P)\pm\varepsilon)}.$

- 2. All other sequences.
 - ► Typical sequences account for almost all the probability mass.
 - ► Number of typical sequences:

Between
$$(1-\varepsilon)2^{n(H(P)-\varepsilon)}$$
 and $2^{n(H(P)+\varepsilon)}$.

Far fewer than $|\mathcal{X}|^n$ when $H(P) \ll \log_2 |\mathcal{X}|$.

ASYMPTOTIC EQUIPARTITION PROPERTY

Let (X_1, X_2, \ldots, X_n) be sequence of i.i.d. \mathcal{X} -valued RVs, with $X_i \sim P$.

Asymptotic equipartition property:

For large n, we can divide all sequences in \mathcal{X}^n into two sets:

1. "Typical sequences":

$$(x_1, x_2, \ldots, x_n) \in \mathcal{X}^n$$
 with

$$P(x_1, x_2, \dots, x_n) \approx 2^{-n(H(P) \pm \varepsilon)}$$
.

2. All other sequences.

► Typical sequences account for almost all the probability mass.

the larger the Number of typical sequences: H(P), the extract typical Between $(1-\varepsilon)2^{n(H(P)-\varepsilon)}$ and $2^{n(H(P)+\varepsilon)}$. Sequence larger the set of typical Far fewer than $|\mathcal{X}|^n$ when $H(P) \ll \log_2 |\mathcal{X}|$. sequences

Upshot: H(P) characterizes the number of typical i.i.d. sequences from P.

ENTROPY: RECAP

- ▶ Entropy is a fundamental measure of the
 - randomness
 - uncertainty
 - ▶ information content

in a probability distribution.

- ▶ Quantifies achievable rates for data compression.
- ▶ Quantifies number of typical i.i.d. sequences.
- **.** . . .

Maximum entropy principle

MAXIMUM ENTROPY PRINCIPLE

Observe a random sample x_1, x_2, \ldots, x_n of words from \mathcal{X} , and record some features $T_1, T_2, \ldots, T_k \colon \mathcal{X} \to \mathbb{R}$: e.g.,

- $ightharpoonup T_1(x) = \mathbb{1}\{x \text{ ends with an 'e'}\}$
- ▶ $T_2(x) = 1{x \text{ has more than five characters}}$
- **.**...

Observations:

$$\frac{1}{n}\sum_{i=1}^{n}T_1(x_i)=0.22, \quad \frac{1}{n}\sum_{i=1}^{n}T_2(x_i)=0.32, \quad \dots$$

MAXIMUM ENTROPY PRINCIPLE

Observe a random sample x_1, x_2, \ldots, x_n of words from \mathcal{X} , and record some features $T_1, T_2, \ldots, T_k \colon \mathcal{X} \to \mathbb{R}$: e.g.,

- ▶ $T_1(x) = \mathbb{1}\{x \text{ ends with an 'e'}\}$
- ▶ $T_2(x) = 1\{x \text{ has more than five characters}\}$
- **.**..

more general way in depict whether a sample meets certain condition

Observations:

$$\frac{1}{n}\sum_{i=1}^{n}T_1(x_i)=0.22, \quad \frac{1}{n}\sum_{i=1}^{n}T_2(x_i)=0.32, \quad \dots$$

Maximum entropy principle (Jaynes, 1957):

Pick the distribution that agrees with the empirical observations, but is otherwise as "random" as possible.

Our empirical observations from sample $x_1, x_2, \ldots, x_n \in \mathcal{X}$:

Text

$$b_i := \frac{1}{n} \sum_{i=1}^n T_i(x_i) = \widehat{\mathbb{E}}[T_i(X)] \text{ for } i = 1, 2, \dots, k$$

where $\widehat{\mathbb{E}}[\,\cdot\,]$ is expectation w.r.t. empirical distribution based on the sample.

Our empirical observations from sample $x_1, x_2, \ldots, x_n \in \mathcal{X}$:

$$b_i := \frac{1}{n} \sum_{i=1}^n T_i(x_i) = \widehat{\mathbb{E}}[T_i(X)] \text{ for } i = 1, 2, \dots, k$$

where $\widehat{\mathbb{E}}[\,\cdot\,]$ is expectation w.r.t. *empirical distribution based on the sample*.

Maximum entropy optimization problem:

$$\label{eq:max} \max_{P \in \Delta(\mathcal{X})} \qquad H(P)$$
 s.t.
$$\mathbb{E}_{X \sim P}[T_i(X)] \ = \ b_i \quad \text{for all } i = 1, 2, \dots, k$$

(where $\Delta(\mathcal{X})$ is the space of probability distributions over \mathcal{X}).

just for constrain purpose, has nothing to do with entropy, which is the target!!

Our empirical observations from sample $x_1, x_2, \ldots, x_n \in \mathcal{X}$:

where $\widehat{\mathbb{E}}[\,\cdot\,]$ is expectation w.r.t. *empirical distribution based on the sample*. get the right P

Maximum entropy optimization problem: through all possible distributions

$$\max_{P \in \Delta(\mathcal{X})} \qquad H(P)$$
 s.t.
$$\mathbb{E}_{X \sim P}[T_i(X)] \ = \ b_i \quad \text{for all } i = 1, 2, \dots, k \quad \text{must meet}$$
 expirical

(where $\Delta(\mathcal{X})$ is the space of probability distributions over \mathcal{X} .

expirical distribution

Without the constraints (i.e., before observations are made), $\max_{P \in \Delta(\mathcal{X})} H(P)$ is achieved by the *uniform distribution* over \mathcal{X} .

Non-uniform base distributions

If $\mathcal X$ is discrete but infinite (e.g., $\mathcal X=\mathbb N$), no uniform distribution over $\mathcal X.$

NON-UNIFORM BASE DISTRIBUTIONS

If \mathcal{X} is discrete but infinite (e.g., $\mathcal{X} = \mathbb{N}$), no uniform distribution over \mathcal{X} .

Instead, consider different default (base) distribution π over $\mathcal X$ before making any observations.

NON-UNIFORM BASE DISTRIBUTIONS

If \mathcal{X} is discrete but infinite (e.g., $\mathcal{X} = \mathbb{N}$), no uniform distribution over \mathcal{X} .

Instead, consider different default (base) distribution π over $\mathcal X$ before making any observations.

Generalization of maximum entropy principle:

Pick the distribution that agrees with the empirical observations, but is otherwise as close to π as possible.

Want $\pi = \text{uniform} \Longrightarrow \text{maximum entropy}$.

NON-UNIFORM BASE DISTRIBUTIONS

If \mathcal{X} is discrete but infinite (e.g., $\mathcal{X} = \mathbb{N}$), no uniform distribution over \mathcal{X} .

Instead, consider different default (base) distribution π over $\mathcal X$ before making any observations.

Generalization of maximum entropy principle:

Pick the distribution that agrees with the empirical observations, but is otherwise as close to π as possible.

Want $\pi = \text{uniform} \implies \text{maximum entropy}$.

How do we measure how close two probability distributions are?

RELATIVE ENTROPY

Entropy: expected information content measured by P, where expectation is w.r.t. random draw from P.

$$H(P) = \mathbb{E}_{X \sim P} \left[\ln \frac{1}{P(X)} \right].$$

RELATIVE ENTROPY

Entropy: expected information content measured by P, where expectation is w.r.t. random draw from P.

$$H(P) = \mathbb{E}_{X \sim P} \left[\ln \frac{1}{P(X)} \right].$$

Relative entropy: expected information content measured by Q, where expectation is w.r.t. random draw from ${\it P}$

$$\operatorname{RE}(P||Q) := \mathbb{E}_{X \sim P} \left[\ln \frac{1}{Q(X)} \right] - H(P).$$

(and we subtract off H(P) so it is zero when P=Q).

Relative entropy

More typical form:

Entropy: expected information content measured by P, where expectation is w.r.t. random draw from P.

$$H(P) = \mathbb{E}_{X \sim P} \left[\ln \frac{1}{P(X)} \right].$$

Relative entropy: expected information content measured by Q, where expectation is w.r.t. random draw from P

$$\operatorname{RE}(P\|Q) := \mathbb{E}_{X\sim P}\left[\ln \frac{1}{Q(X)}\right] - H(P).$$
 use Q to measure(compare) with P. all random (and we subtract off $H(P)$ so it is zero when $P=Q$).

(and we subtract on 11(1) so it is zero wi

 $\operatorname{RE}(P\|Q) = \sum_{x \in \mathcal{X}} P(x) \ln \frac{P(x)}{Q(x)} \cdot \frac{\text{note the}}{\text{expansion}}$

PROPERTIES OF RELATIVE ENTROPY

$$RE(P||Q) = \sum_{x \in \mathcal{X}} P(x) \ln \frac{P(x)}{Q(x)}.$$

PROPERTIES OF RELATIVE ENTROPY

$$RE(P||Q) = \sum_{x \in \mathcal{X}} P(x) \ln \frac{P(x)}{Q(x)}.$$

► $RE(P||Q) \ge 0$ for all P and Q. RE(P||Q) = 0 if and only if P = Q.

$$RE(P||Q) = \sum_{x \in \mathcal{X}} P(x) \ln \frac{P(x)}{Q(x)}.$$

- ► $RE(P||Q) \ge 0$ for all P and Q. RE(P||Q) = 0 if and only if P = Q.
- ▶ $RE(Q||P) \neq RE(P||Q)$ in general, and triangle inequality does not hold. So RE is **not** a metric.

$$RE(P||Q) = \sum_{x \in \mathcal{X}} P(x) \ln \frac{P(x)}{Q(x)}.$$

- ► RE $(P||Q) \ge 0$ for all P and Q. RE(P||Q) = 0 if and only if P = Q.
- ▶ $RE(Q||P) \neq RE(P||Q)$ in general, and triangle inequality does not hold. So RE is **not** a metric.
- ▶ $RE(P||uniform) = ln |\mathcal{X}| H(P)$.

$$RE(P||Q) = \sum_{x \in \mathcal{X}} P(x) \ln \frac{P(x)}{Q(x)}.$$

- ► $RE(P||Q) \ge 0$ for all P and Q. RE(P||Q) = 0 if and only if P = Q.
- ▶ $RE(Q||P) \neq RE(P||Q)$ in general, and triangle inequality does not hold. So RE is **not** a metric.
- $RE(P||uniform) = \ln |\mathcal{X}| H(P).$
- ▶ RE(P||Q) is a convex function of (P,Q) (and hence also a convex function of P, by itself, and also of Q).

$$RE(P||Q) = \sum_{x \in \mathcal{X}} P(x) \ln \frac{P(x)}{Q(x)}.$$

- ► $RE(P||Q) \ge 0$ for all P and Q. RE(P||Q) = 0 if and only if P = Q.
- ▶ RE $(Q||P) \neq$ RE(P||Q) in general, and triangle inequality does not hold. So RE is **not** a metric. the larger the less randomness. we don't care about constrain at this time
- ▶ $RE(P||uniform) = ln |\mathcal{X}| H(P)$.
- ▶ RE(P||Q) is a *convex function* of (P,Q) (and hence also a convex function of P, by itself, and also of Q).
- Also called "Kullback-Leibler divergence".

Maximum entropy optimization problem with base distribution π :

$$\begin{aligned} & \min_{P \in \Delta(\mathcal{X})} & & \text{RE}(P \| \pi) \\ & \text{s.t.} & & \mathbb{E}_{X \sim P}[T_i(X)] \ = \ b_i & \text{for all} \ i = 1, 2, \dots, k. \end{aligned}$$

Maximum entropy optimization problem with base distribution π :

$$\begin{aligned} \min_{P \in \Delta(\mathcal{X})} & \operatorname{RE}(P \| \pi) \\ \text{s.t.} & \mathbb{E}_{X \sim P}[T_i(X)] &= b_i & \text{for all } i = 1, 2, \dots, k. \end{aligned}$$
 (If $\pi = \text{uniform}$, then objective is $\operatorname{RE}(P \| \pi) = \ln |\mathcal{X}| - H(P)$.)

Maximum entropy optimization problem

Maximum entropy optimization problem with base distribution π :

$$\min_{P \in \Delta(\mathcal{X})} \quad \operatorname{RE}(P \| \pi)$$
 s.t.
$$\mathbb{E}_{X \sim P}[T_i(X)] = b_i \quad \text{for all } i = 1, 2, \dots, k.$$
 (If $\pi = \text{uniform}$, then objective is $\operatorname{RE}(P \| \pi) = \ln |\mathcal{X}| - H(P)$.) More explicitly, with $\boldsymbol{T}(x) := (T_1(x), T_2(x), \dots, T_k(x))$ and $\boldsymbol{b} := (b_1, b_2, \dots, b_k)$,
$$\min_{P \in \mathbb{R}^{\mathcal{X}}} \quad \sum_{x \in \mathcal{X}} P(x) \ln \frac{P(x)}{\pi(x)}$$
 s.t.
$$\sum_{x \in \mathcal{X}} P(x) \boldsymbol{T}(x) = \boldsymbol{b}$$

$$P(x) \geq 0 \quad \text{for all } x \in \mathcal{X}$$

$$\sum_{x \in \mathcal{X}} P(x) = 1.$$

Maximum entropy optimization problem with base distribution π :

$$\min_{P \in \Delta(\mathcal{X})} \quad \text{RE}(P \| \pi) \quad \text{probability arragement(distribution)}$$
 s.t.
$$\mathbb{E}_{X \sim P}[T_i(X)] = b_i \quad \text{for all } i = 1, 2, \dots, k.$$
 (If $\pi = \text{uniform}$, then objective is $\text{RE}(P \| \pi) = \ln |\mathcal{X}| - H(P)$.) More explicitly, with $\mathbf{T}(x) := (T_1(x), T_2(x), \dots, T_k(x))$ and $\mathbf{b} := (b_1, b_2, \dots, b_k)$,
$$\min_{P \in \mathbb{R}^{\mathcal{X}}} \quad \sum_{x \in \mathcal{X}} P(x) \ln \frac{P(x)}{\pi(x)} \quad \text{for given x, each of its}$$
 T(x) is meet with related

both P(x) and Q(x) are kinds of

s.t.
$$\sum_{x \in \mathcal{X}} P(x)T(x) = \mathbf{b}$$
 b. (a list of b, with imposed feature requirement)
$$\sum_{x \in \mathcal{X}} P(x) = 1.$$

Convex objective function, with linear (in)equality constraints.

minimize

ENTROPY PROJECTION

Note that \emph{any} feasible solution P must satisfy

$$\sum_{x \in \mathcal{X}} P(x) T(x) = \mathbf{b}.$$

ENTROPY PROJECTION

Note that any feasible solution P must satisfy

$$\sum_{x \in \mathcal{X}} P(x) T(x) = b.$$

These constraints define an affine hyperplane in $\mathbb{R}^{\mathcal{X}}$.

$$\min_{P \in \Delta(\mathcal{X})} \quad \operatorname{RE}(P \| \pi)$$
 s.t.
$$\sum_{x \in \mathcal{X}} P(x) \mathbf{T}(x) = \mathbf{b}$$

$$\left\{ P : \sum_{x} P(x) \mathbf{T}(x) = \mathbf{b} \right\}$$

Entropy projection

Note that any feasible solution P must satisfy

$$\sum_{x \in \mathcal{X}} P(x) \boldsymbol{T}(x) \ = \ \boldsymbol{b}.$$

project the base into the constrain plane

These constraints define an affine hyperplane in $\mathbb{R}^{\mathcal{X}}$.

$$\min_{P \in \Delta(\mathcal{X})} \quad \text{RE}(P \| \pi)$$
 s.t.
$$\sum_{x \in \mathcal{X}} P(x) \mathbf{T}(x) = \mathbf{b}$$

$$\left\{ P : \sum_{x} P(x) \mathbf{T}(x) = \mathbf{b} \right\}$$

Similar to the Euclidean projection of π onto an affine hyperplane, except we use relative entropy instead of Euclidean distance: an entropy projection.

SOLUTION FORM

Maximum entropy optimization problem:

$$\begin{aligned} \min_{P \in \Delta(\mathcal{X})} & & \text{RE}(P \| \pi) \\ \text{s.t.} & & \sum_{x \in \mathcal{X}} P(x) \boldsymbol{T}(x) \ = \ \boldsymbol{b}. \end{aligned}$$

SOLUTION FORM

Maximum entropy optimization problem:

$$\begin{aligned} \min_{P \in \Delta(\mathcal{X})} & & \mathrm{RE}(P \| \pi) \\ \text{s.t.} & & \sum_{x \in \mathcal{X}} P(x) \boldsymbol{T}(x) \ = \ \boldsymbol{b}. \end{aligned}$$

Claim: A solution P_{\star} to the optimization problem must have the form

$$P_{\star}(x) = \frac{1}{Z(\eta)} \cdot \exp\{\langle \eta, T(x) \rangle\} \cdot \pi(x)$$

for some $\eta \in \mathbb{R}^k$, where

$$Z(\boldsymbol{\eta}) = \sum_{x \in \mathcal{X}} \exp \left\{ \langle \boldsymbol{\eta}, \boldsymbol{T}(x) \rangle \right\} \cdot \pi(x)$$

is the normalizing constant that makes P_{\star} a probability distribution.

SOLUTION FORM

Maximum entropy optimization problem:

$$\begin{aligned} \min_{P \in \Delta(\mathcal{X})} & & \mathrm{RE}(P \| \pi) \\ \text{s.t.} & & \sum_{x \in \mathcal{X}} P(x) \boldsymbol{T}(x) \ = \ \boldsymbol{b}. \end{aligned}$$

Claim: A solution P_{\star} to the optimization problem must have the form

$$P_{\star}(x) = \exp\{\langle \boldsymbol{\eta}, \boldsymbol{T}(x) \rangle - \ln Z(\boldsymbol{\eta})\} \cdot \pi(x)$$

for some $\boldsymbol{\eta} \in \mathbb{R}^k$, where

$$Z(\boldsymbol{\eta}) = \sum_{x \in \mathcal{X}} \exp \left\{ \langle \boldsymbol{\eta}, \boldsymbol{T}(x) \rangle \right\} \cdot \pi(x)$$

is the normalizing constant that makes P_{\star} a probability distribution.

$$\sum_{x} P(x) T(x) = b.$$

$$\sum_{x} P(x) T(x) = b.$$

$$RE(P||\pi) - RE(P_{\star}||\pi)$$

$$\sum_{x} P(x) T(x) = b.$$

$$RE(P||\pi) - RE(P_{\star}||\pi)$$

$$= \sum_{x} P(x) \ln \frac{P(x)}{\pi(x)} - \sum_{x} P_{\star}(x) \ln \frac{P_{\star}(x)}{\pi(x)}$$

$$\sum_{x} P(x) T(x) = b.$$

$$RE(P||\pi) - RE(P_{\star}||\pi)$$

$$= \sum_{x} P(x) \ln \frac{P(x)}{\pi(x)} - \sum_{x} P_{\star}(x) \ln \frac{P_{\star}(x)}{\pi(x)}$$

$$= \sum_{x} P(x) \ln \frac{P(x)}{\pi(x)} - \sum_{x} P_{\star}(x) \left\{ \langle \boldsymbol{\eta}, \boldsymbol{T}(x) \rangle - \ln Z(\boldsymbol{\eta}) \right\}$$

$$\sum_{x} P(x) T(x) = b.$$

$$RE(P||\pi) - RE(P_{\star}||\pi)$$

$$= \sum_{x} P(x) \ln \frac{P(x)}{\pi(x)} - \sum_{x} P_{\star}(x) \ln \frac{P_{\star}(x)}{\pi(x)}$$

$$= \sum_{x} P(x) \ln \frac{P(x)}{\pi(x)} - \sum_{x} P_{\star}(x) \left\{ \langle \boldsymbol{\eta}, \boldsymbol{T}(x) \rangle - \ln Z(\boldsymbol{\eta}) \right\}$$

$$= \sum_{x} P(x) \ln \frac{P(x)}{\pi(x)} - \sum_{x} P(x) \left\{ \langle \boldsymbol{\eta}, \boldsymbol{T}(x) \rangle - \ln Z(\boldsymbol{\eta}) \right\}$$

Proof

$$\sum_{x} P(x) T(x) = b.$$

$$RE(P||\pi) - RE(P_{\star}||\pi)$$

$$= \sum_{x} P(x) \ln \frac{P(x)}{\pi(x)} - \sum_{x} P_{\star}(x) \ln \frac{P_{\star}(x)}{\pi(x)}$$

$$= \sum_{x} P(x) \ln \frac{P(x)}{\pi(x)} - \sum_{x} P_{\star}(x) \left\{ \langle \boldsymbol{\eta}, \boldsymbol{T}(x) \rangle - \ln Z(\boldsymbol{\eta}) \right\}$$

$$= \sum_{x} P(x) \ln \frac{P(x)}{\pi(x)} - \sum_{x} P(x) \left\{ \langle \boldsymbol{\eta}, \boldsymbol{T}(x) \rangle - \ln Z(\boldsymbol{\eta}) \right\}$$

$$= \sum_{x} P(x) \ln \frac{P(x)}{\pi(x)} - \sum_{x} P(x) \ln \frac{P_{\star}(x)}{\pi(x)}$$

Proof

$$\sum_{x} P(x) T(x) = b.$$

$$RE(P||\pi) - RE(P_{\star}||\pi)$$

$$= \sum_{x} P(x) \ln \frac{P(x)}{\pi(x)} - \sum_{x} P_{\star}(x) \ln \frac{P_{\star}(x)}{\pi(x)}$$

$$= \sum_{x} P(x) \ln \frac{P(x)}{\pi(x)} - \sum_{x} P_{\star}(x) \left\{ \langle \boldsymbol{\eta}, \boldsymbol{T}(x) \rangle - \ln Z(\boldsymbol{\eta}) \right\}$$

$$= \sum_{x} P(x) \ln \frac{P(x)}{\pi(x)} - \sum_{x} P(x) \left\{ \langle \boldsymbol{\eta}, \boldsymbol{T}(x) \rangle - \ln Z(\boldsymbol{\eta}) \right\}$$

$$= \sum_{x} P(x) \ln \frac{P(x)}{\pi(x)} - \sum_{x} P(x) \ln \frac{P_{\star}(x)}{\pi(x)}$$

$$= \sum_{x} P(x) \ln \frac{P(x)}{\pi(x)}$$

Proof

Consider any other feasible solution P—i.e., P is a valid probability distribution and (like P_{\star}) satisfies

$$\sum_{x} P(x) T(x) = b.$$

$$\begin{split} \operatorname{RE}(P\|\pi) - \operatorname{RE}(P_{\star}\|\pi) \\ &= \sum_{x} P(x) \ln \frac{P(x)}{\pi(x)} - \sum_{x} P_{\star}(x) \ln \frac{P_{\star}(x)}{\pi(x)} \\ &= \sum_{x} P(x) \ln \frac{P(x)}{\pi(x)} - \sum_{x} P_{\star}(x) \Big\{ \langle \boldsymbol{\eta}, \boldsymbol{T}(x) \rangle - \ln Z(\boldsymbol{\eta}) \Big\} \\ &= \sum_{x} P(x) \ln \frac{P(x)}{\pi(x)} - \sum_{x} P(x) \Big\{ \langle \boldsymbol{\eta}, \boldsymbol{T}(x) \rangle - \ln Z(\boldsymbol{\eta}) \Big\} & \text{the minimization is} \\ &= \sum_{x} P(x) \ln \frac{P(x)}{\pi(x)} - \sum_{x} P(x) \ln \frac{P_{\star}(x)}{\pi(x)} & \text{sachieved when} \\ &= \sum_{x} P(x) \ln \frac{P(x)}{\pi(x)} = \operatorname{RE}(P\|P_{\star}) \geq 0 & \text{with equality iff } P = P_{\star}. \end{split}$$

23 / 2

Interpretation of the solution form

From our earlier example:

- $ightharpoonup T_1(x) = \mathbb{1}\{x \text{ ends with an 'e'}\}$
- ▶ $T_2(x) = 1\{x \text{ has more than five characters}\}$

Maximum entropy solution is of the form

$$P_{\star}(x) = \frac{1}{Z(\eta)} \cdot \exp\left\{\eta_1 T_1(x) + \eta_2 T_2(x) + \cdots\right\} \cdot \pi(x).$$

Interpretation of the solution form

From our earlier example:

- $ightharpoonup T_1(x) = \mathbb{1}\{x \text{ ends with an 'e'}\}$
- ▶ $T_2(x) = 1\{x \text{ has more than five characters}\}$
- **>** . . .

Maximum entropy solution is of the form

$$P_{\star}(x) = \frac{1}{Z(\eta)} \cdot \exp\left\{\eta_1 T_1(x) + \eta_2 T_2(x) + \cdots\right\} \cdot \pi(x).$$

Under P_{\star} , a word that ends with an 'e' is e^{η_1} times more likely than a word that doesn't end with an 'e'.

Interpretation of the solution form

From our earlier example:

- $ightharpoonup T_1(x) = \mathbb{1}\{x \text{ ends with an 'e'}\}$
- ▶ $T_2(x) = 1\{x \text{ has more than five characters}\}$
- **>** . . .

Maximum entropy solution is of the form

$$P_{\star}(x) = \frac{1}{Z(\eta)} \cdot \exp\left\{\eta_1 T_1(x) + \eta_2 T_2(x) + \cdots\right\} \cdot \pi(x).$$

Under P_{\star} , a word that ends with an 'e' is e^{η_1} times more likely than a word that doesn't end with an 'e'.

How do we get these η parameters?

EXPONENTIAL FAMILIES

The η parameters for distributions of the form

$$P_{\eta}(x) = \frac{1}{Z(\eta)} \cdot \exp\{\langle \eta, T(x) \rangle\} \cdot \pi(x)$$

are strongly related to a different parameterization of the distributions called the **expectation parameters**, which are easily estimated.

EXPONENTIAL FAMILIES

The η parameters for distributions of the form

$$P_{\eta}(x) = \frac{1}{Z(\eta)} \cdot \exp\left\{\langle \eta, T(x) \rangle\right\} \cdot \pi(x)$$

are strongly related to a different parameterization of the distributions called the **expectation parameters**, which are easily estimated.

This relationship is revealed through the study of these distribution families, called **exponential families**.

EXPONENTIAL FAMILIES

The η parameters for distributions of the form

Zn is the normalizer!

$$P_{\boldsymbol{\eta}}(x) = \frac{1}{Z(\boldsymbol{\eta})} \cdot \exp\left\{ \langle \boldsymbol{\eta}, \boldsymbol{T}(x) \rangle \right\} \cdot \pi(x)$$

are strongly related to a different parameterization of the distributions called the **expectation parameters**, which are easily estimated.

This relationship is revealed through the study of these distribution families, called **exponential families**.

Many familiar probability models are exponential families:

Bernoulli, binomial, Poisson, exponential, Gaussian, gamma, categorical, multinomial, Dirichlet, . . .

RECAP

- Maximum entropy approach to probabilistic modeling: choose the most non-committal distribution that agrees with the empirical observation.
- Solution must have the form

$$P_{\eta}(x) = \frac{1}{Z(\eta)} \cdot \exp\{\langle \eta, T(x) \rangle\} \cdot \pi(x),$$

corresponds to the entropy projection of the base distribution π onto an affine hyperplane.

ightharpoonup Extracting the η parameters: next time, via study of exponential families.