## Exercice 1.

Résoudre les équations et inéquations suivantes sur  $I=]-\pi\,;\,\pi]$  et sur  $J=[0\,;\,2\pi[$  :

1. 
$$2\sin(x) + \sqrt{2} = 0$$

3. 
$$2\sin(x) + 1 > 0$$

$$2. 4\cos^2(x) - 1 = 0$$

4. 
$$\sqrt{2}\cos(x) \geqslant 1$$

# Exercice 2.

Démontrer que T est une période de f dans les cas suivants :

1. 
$$f(x) = \sin(2\pi x)$$
 et  $T = 1$ .

2. 
$$f(x) = \cos(x)\sin(x)$$
 et  $T = \pi$ 

3. 
$$f(x) = \frac{1 + \cos(x)}{3 + \sin(x)}$$
 et  $T = 2\pi$ 

4. 
$$f(x) = 5\cos\left(\frac{x}{2}\right)$$
 et  $T = 4\pi$ .

# Exercice 3.

f est la fonction définie par :  $f(x) = \frac{2}{2 + \cos(x)}$  et on note  $\mathscr C$  sa courbe représentative.

- 1. Démontrer que f est définie sur  $\mathbb{R}$ .
- 2. Démontrer que f est paire.
- 3. Démontrer que f est  $2\pi$ -périodique. Sur quel intervalle suffit-il d'étudier f?
- 4. Calculer la fonction dérivée f' et déterminer son signe sur l'intervalle  $[0; \pi]$ .
- 5. Dresser le tableau de variation de f sur  $[-\pi; \pi]$ .
- 6. Tracer  $\mathscr{C}$  sur  $[-\pi; 3\pi]$ .

#### Exercice 4.

Soit la fonction définie sur  $\mathbb{R}$  par  $f(x) = \cos^2(2x) + \cos(2x) - 1$ .

- 1. Déterminer la période et la parité de la fonction f.
- 2. Déterminer l'intervalle d'étude de la fonction f.
- 3. Calculer la fonction dérivée f'et déterminer son signe sur l'intervalle  $\left[0; \frac{\pi}{2}\right]$ .
- 4. Dresser le tableau de variation de la fonction f sur  $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ .
- 5. Tracer la courbe représentative de la fonction f sur  $[-\pi; \pi]$ .

#### Exercice 5.

Un publicitaire souhaite imprimer le logo ci-dessous sur un T-shirt :



Il dessine ce logo à l'aide des courbes de deux fonctions f et g définies sur  $\mathbb{R}$  par :

$$f(x) = e^{-x}(-\cos x + \sin x + 1)$$
 et  $g(x) = -e^{-x}\cos x$ .

On admet que les fonctions f et g sont dérivables sur  $\mathbb{R}$ .

# Partie A : étude de la fonction f

- 1. Justifier que, pour tout  $x \in \mathbb{R} : -e^{-x} \leq f(x) \leq 3e^{-x}$ .
- 2. En déduire la limite de f en  $+\infty$ .
- 3. Démontrer que, pour tout  $x \in \mathbb{R}$ ,  $f'(x) = e^{-x}(2\cos x 1)$  où f' est la fonction dérivée de f.
- 4. Dans cette question, on étudie la fonction f sur l'intervalle  $[-\pi ; \pi]$ .
  - (a) Déterminer le signe de f'(x) pour x appartenant à l'intervalle  $[-\pi; \pi]$ .
  - (b) En déduire les variations de f sur  $[-\pi ; \pi]$ .

### Partie B: aire du logo

On note  $C_f$  et  $C_g$  les représentations graphiques des fonctions f et g dans un repère orthonormé. L'unité graphique est de 2 centimètres. Ces deux courbes sont tracées ci-dessous.

- 1. Étudier la position relative de la courbe  $\mathcal{C}_f$  par rapport à la courbe  $\mathcal{C}_q$  sur  $\mathbb{R}$ .
- 2. Soit H la fonction définie sur  $\mathbb{R}$  par :

$$H(x) = \left(-\frac{\cos x}{2} - \frac{\sin x}{2} - 1\right) e^{-x}.$$

On admet que H est une primitive de la fonction  $x \mapsto (\sin x + 1)e^{-x} \operatorname{sur} \mathbb{R}$ .

On note  $\mathcal{D}$  le domaine délimité par la courbe  $\mathcal{C}_f$ , la courbe  $\mathcal{C}_g$  est les droites d'équation  $x = -\frac{\pi}{2}$  et  $x = \frac{3\pi}{2}$ .

- (a) Hachurer le domaine  $\mathcal{D}$  sur le graphique ci-dessous.
- (b) Calculer, en unité d'aire, l'aire du domaine  $\mathcal{D}$ , puis en donner une valeur approchée à  $10^{-2}$  près en cm<sup>2</sup>.

