

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平10-319598

(43)公開日 平成10年(1998)12月4日

(51) Int. Cl.⁶
G03F 7/09
7/26
H01L 21/027

識別記号

F I
G03F 7/09
7/26
H01L 21/30

522 D

審査請求 未請求 請求項の数 5 O L (全 8 頁)

(21)出願番号 特願平9-130720

(22)出願日 平成9年(1997)5月21日

(71)出願人 000002185
ソニー株式会社
東京都品川区北品川6丁目7番35号

(72)発明者 石丸 敏之
東京都品川区北品川6丁目7番35号 ソニ
ー株式会社内

(54)【発明の名称】レジスト・パターンおよびその形成方法

(57)【要約】

【課題】 微細な線幅と高アスペクト比を有するレジス
ト・パターンの倒壊を防止する。

【解決手段】 フォーカス自動計測パターンMPの各ブ
ロックBを構成する互いに隣接したレジスト・パターン
R1を、その長手方向中央部に直交する1本の補助パタ
ーンA1で連結する。現像液やリンス液の表面張力によ
る隣接パターン同士の引寄せ合いや、これによるパタ
ーンの倒壊が防止されるので、測定用のビーム・スポット
BSで該レジスト・パターンR1をスキャンした場合に
も適正な回折光強度が得られる。補助パターンは、孤立
した長い配線パターンの加工マスク用レジスト・パター
ンにおいても、細線部の倒壊防止対策としても有効であ
る。

【特許請求の範囲】

【請求項1】 光化学反応により生じた現像液不溶部からなり、細線部を有するレジスト・パターンであって、前記細線部はその長手方向中途部に該長手方向に対して所定の角度で交わり、かつその長さよりも短いパターン倒壊防止用の補助パターンを少なくとも1個備えることを特徴とするレジスト・パターン。

【請求項2】 前記細線部が複数近接配置され、アライメント精度測定用の回折格子パターンを構成することを特徴とする請求項1記載のレジスト・パターン。

【請求項3】 前記回折パターンを構成する複数の細線部が前記補助パターンにより互いに連結されてなることを特徴とする請求項2記載のレジスト・パターン。

【請求項4】 前記細線部が配線パターンの加工マスクを構成することを特徴とする請求項1記載のレジスト・パターン。

【請求項5】 フォトリソグラフィと現像処理とを経てレジスト・パターンを形成するレジスト・パターンの形成方法であって、

前記レジスト・パターンの細線部の長手方向中途部に、該長手方向に対して所定の角度で交わり、かつその長さよりも短いパターン倒壊防止用の補助パターンを少なくとも1個形成することを特徴とするレジスト・パターンの形成方法。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】 本発明は半導体デバイス製造等の微細加工分野において、フォトリソグラフィのアライメント精度測定用の回折格子パターンや配線パターンの加工マスクを構成するレジスト・パターンに関し、特にその倒壊を防止可能な構造上の工夫と形成方法に関するものである。

【0002】

【従来の技術】 半導体デバイス製造や液晶デバイス製造等に代表される微細加工分野では、ステッパー（縮小投影露光装置）を用いてフォトリソグラフィを行い、統いて現像処理を経ることにより、様々なレジスト・パターンが形成される。このレジスト・パターンは、その下地の材料膜の加工マスクとして形成されるのみならず、フォトリソグラフィのアライメント精度測定用のマークとして利用されるものもある。アライメント精度測定の一方で、LSA（レーザ・ステップ・アライメント）法がある。これは、基板上に形成された回折格子パターンをスリット状のHe-Neレーザ・ビームでスキャンし、このときの回折光強度にもとづいてアライメント精度を評価する方法であり、そのためのLSA光学系が搭載されたステッパーも市販されている。

【0003】 また近年のフォトリソグラフィでは、露光に際して最適な焦点位置（以下、ベスト・フォーカス位置と称する。）を設定することも極めて重要である。こ

れは、半導体デバイスのデザイン・ルールの縮小に伴つて縮小投影露光装置の縮小投影光学系の開口数NAが増大される傾向にあり、この結果、焦点深度が浅くなっているにもかかわらず、多層配線構造の採用により基板の表面段差が増大し、この段差を覆うレジスト塗膜の厚みが増大しているからである。つまり、厚いレジスト塗膜のどの位置に焦点を設定するかで、形成されるレジスト・パターンの寸法精度や形状精度が大きな影響を受けるので、ベスト・フォーカス位置の設定にしたがって露光を行うことが、従来にも増して重要なである。

【0004】 このベスト・フォーカス位置を上述のLSA光学系を用いて自動計測する方法（SMP：Self Measurement Program）が知られている。この方法で用いられるフォーカス自動計測パターンとこれを用いた計測原理について、図4ないし図6を参照しながら説明する。

このフォーカス自動計測パターンmpは図4(a)に示されるように、Y方向に一例に並んだたとえば7個のブロックbからなり、各ブロックbは図4(b)に示されるように、平行に配された5本の楔（くさび）状のレジスト・パターンr1からなる。なお、図4(b)に示したものは設計上のパターンであり、設計値はたとえばレジスト・パターンr1の中央の最も太い部分の幅（ライン幅lw）=0.35μm、隣接するレジスト・パターンr1間の最小幅（スペースs）=0.35μm、レジスト・パターンr1の長手方向の長さ（パターン長p）=7μmのごとく設定される。

【0005】 ベスト・フォーカス位置の決定に際しては、図4(a)に示されるように、上記フォーカス自動計測パターンmpをスリット状のビーム・スポットbsで矢印q方向にスキャンし、その回折光強度からパターン長pを求める。このパターン長pは、フォーカス位置によって変化する。この変化の様子を図5に示す。ここに示される図5(a)～図5(f)の各図は、所定のピッチ、たとえば0.2μmでフォーカス位置を変化させた時に形成されるレジスト・パターンr1の走査型電子顕微鏡(SEM)観察像のスケッチである。図5(f)に示されるようにパターン長pが最大となるフォーカス位置がベスト・フォーカス位置であり、この位置よりプラス側、マイナス側のいずれの方向へデフォーカス量が増大しても、パターン長pは図5(e)→(d)→(c)→(b)と減少し、デフォーカス量が一定値を過ぎると図5(a)に示されるように解像不能となる。なお、デフォーカス方向の符号は任意であるが、ここではステッパーの縮小投影レンズに近づく方向をプラス側、縮小投影レンズから遠ざかる方向をマイナス側と定義する（以下同様。）。図5は、デフォーカスがマイナス側へ増大した場合のレジスト・パターンr1を示している。

【0006】 SMPでは、各フォーカス位置で得られた回折光強度を電気信号に変換してパターン長を求め、このパターン長をデフォーカス量に対してプロットした図

6に示されるようなデフォーカス量-パターン長変化曲線を作成し、さらに所定の演算プログラムにもとづいてベスト・フォーカス位置を算出する。実際には上記フォーカス自動計測パターンmpがX方向にも形成されており、これらX方向とY方向の両パターンについて得られた変化曲線からそれぞれ最大パターン長を与えるフォーカス位置を求め、これら両フォーカス位置の平均値をベスト・フォーカス位置としている。

【0007】

【発明が解決しようとする課題】ところで、前述したようにレジスト塗膜の厚みが増大する一方でデザイン・ルールが縮小することは、形成されるレジスト・パターンのアスペクト比が増大することを意味している。近年、特に細線部の幅が1μm未満の高アスペクト比のレジスト・パターンにおいて、パターンの倒壊が問題となっている。たとえば前述のフォーカス自動計測パターンの例では図5(c), (d), (e)に典型的なパターンの倒壊がみられる。これらの図の中で、レジスト・パターンr1が太く見えているのは、この部分の線幅が太っているからではなく、倒れたパターンの側壁面を上方から観察しているからである。このような倒壊が起こるのは、アスペクト比の高いレジスト・パターンr1が近接して配置されているために、現像後の rinsing 工程で使用される純水が毛管現象によりパターン間スペースに保持されやすくなり、その表面張力によりレジスト・パターンr1が互いに引き寄せられてしまうからである。

【0008】このような倒壊したレジスト・パターンr1を計測用のレーザ光でスキャンすると、パターン側壁面からの反射光に起因して回折光強度が増大し、パターン長が実際よりも大きく算出される傾向が生ずる。たとえば前掲の図6に示した例では、デオーカス量がマイナス0.4μmの地点でデフォーカス量-パターン長変化曲線に肩がみられるが、これはパターン倒壊による回折光強度の増大の影響である。

【0009】レジスト・パターンの倒壊は、上述のフォーカス自動計測パターンのような密集パターンのみならず、孤立パターンにおいても発生することがある。孤立パターンの倒壊例として、配線加工マスクとして用いられるレジスト・パターンを図7に示す。このレジスト・パターンr2は、直線状の細線部r22の両端に下層配線あるいは上層配線とコンタクトをとるためのパッド部r21が設けられたものである。この細線部r22の線幅が1μm未満、アスペクト比が2以上となると、該細線部r22と下地基板との密着性が低下し、現像工程あるいはrinse工程で加わる液圧や水圧により図示されるような倒壊部cが生じやすくなる。特に、ASICの配線の中には10μm以上の長さで引き回されるものもあり、これに対応するレジスト・パターンr2の細線部r22は極めて剥離や倒壊を起こし易くなる。このようなレジスト・パターンr2をマスクとしてたとえばドライ

エッチングによる配線材料膜の加工を行うと、配線パターンの寸法や形状の精度が低下して動作特性に悪影響が現れる他、場合によっては近傍の配線と短絡を起こす原因ともなる。

【0010】このように、従来のレジスト・パターンは線幅の微細化と厚膜化に伴って倒壊を生じやすく、これがフォトリソグラフィにおける光学計測の精度や、配線加工精度を劣化させる原因となっていた。そこで本発明は、高アスペクト比化された場合にも倒壊を効果的に防止することが可能なレジスト・パターンとその形成方法を提供することを目的とする。

【0011】

【課題を解決するための手段】本発明は、光化学反応により生じた現像液不溶部からなり、細線部の長手方向の中途部に該長手方向に対して所定の角度で交わり、かつその長さよりも短いパターン倒壊防止用の補助パターンを少なくとも1個備えるレジスト・パターンを形成することで上述の目的を達成しようとするものである。

【0012】

【発明の実施の形態】本発明のレジスト・パターンの細線部とはいかなるものであっても良いが、典型的にはアライメント精度測定用の回折格子パターン、あるいは配線パターンの加工マスクを構成するものである。細線部の寸法は特に限定されるものではないが、パターンの倒壊が線幅1μm未満、アスペクト比2以上、孤立パターンについては長さが10μm以上である場合に生じやすいことから、これらの寸法を有する細線部を本発明の倒壊防止対策の対象とすることが、特に有効である。上記補助パターンが上記細線部の長手方向に対してなす所定の角度は、90°とすることが理想的であり、この時に最も短い補助パターン長にて最大の倒壊防止効果を得ることができる。しかし、基板上におけるパターンのレイアウトによっては、直交以外の角度であっても良く、また異なる角度で細線部に交わる補助パターンが複数配されていても良い。

【0013】補助パターンの形状、大きさ、配設数は特に限定されるものではなく、細線部のアスペクト比、フォトリジスト材料の基板密着性、パターン密度、現像液やrinse液の表面張力により変化する。おおよその目安としては、細線部の線幅の1~5倍の長さの補助パターンを数μm以上の間隔を空けて形成すれば良い。ただし、レジスト・パターン本来の目的、またはレジスト・パターンをマスクとして加工される配線パターンの性能を損なわないような考慮は必要である。

【0014】たとえば、上記補助パターンをアライメント精度測定用の回折格子パターンに形成する場合は、回折光強度分布に悪影響を及ぼさないよう、必要最小限の補助パターンをなるべく高い対称性をもって配することが重要である。また、回折格子パターンを構成する個々の細線部は互いに近接しているので、これらを補助パタ

ーンで連結することは、極めて侵された倒壊防止対策となる。一方、配線パターンの加工マスクとしてレジスト・パターンを形成する場合は、補助パターンに対応する部分が加工後の配線パターンに付け加わることになる。補助パターンのレイアウトによっては、配線パターンの断面積の増加による配線抵抗の低下も期待できるが、逆に配線間容量の増大に伴う伝搬遅延も予想される。したがって、補助パターンの形成はやはり必要最小限とすることが望ましい。

【0015】上述のような本発明のレジスト・パターンは、通常のフォトリソグラフィと現像処理とを経て形成されるが、従来プロセスと異なる点はレチクル上のパターンに補助パターンが追加されることである。しかし、従来プロセスに比べて工程数が何ら増加するものではない。なお、本発明のレジスト・パターンを用いたアライメント精度測定やフォーカス自動計測、あるいはドライエッキング等の加工も、すべて従来と同様に行なうことができる。

【0016】

【実施例】以下、本発明の具体的な実施例について説明する。

【0017】実施例1

ここでは、近接配置される各レジスト・パターンの中央部が1本の補助パターンで連結されたフォーカス自動計測パターンと、これを用いたフォーカス自動計測について、図1および図2を参考しながら説明する。このフォーカス自動計測パターンMPは、図1(a)に示されるように、Y方向に一例に並んだ7個のブロックBからなり、各ブロックBは図1(b)に示されるように、平行に配された5本の楔状のレジスト・パターンR1からなる。さらに、上記レジスト・パターンR1の各々はその中央部において直交する1本の補助パターンA1で連結されている。なお図1(b)に示したものは設計上のパターンであり、設計値はレジスト・パターンR1のライン幅LW=0.35μm、隣接するレジスト・パターンR1間のスペースS=0.35μm、レジスト・パターンR1のパターン長P=7μm、補助パターンA1の線幅W=0.35μmである。

【0018】上記フォーカス自動計測パターンMPの形成プロセスは、一例として次のとおりである。まず、6インチ径のベアSiウェハに200°Cの脱水ペーク、HMDS(ヘキサメチルジシラザン)を用いた疎水化処理を行った後、クレゾール樹脂系ポジ型フォトレジスト材料(東京応化工業社製;商品名THMR-iP3300)を1.20μmの厚さに塗布した。90°C、120秒間のプリペークを行った後、i線ステッパー(ニコン社製;商品名NSR-2205i11D)を用いて450ミリ秒間のi線露光を行った。110°C、60秒間のPEB(露光後ペーク)を経て、市販のアルカリ現像液(2.38%テトラメチルアンモニウムヒドロキシド溶液)を

用いて23°C、60秒間のパドル現像を行い、さらに純水を用いてリノスを行った。

【0019】上記のi線露光では、デフォーカス量を+1.4μmから-1.4μmまで0.2μmピッチで変化させながら、形成されるパターンの状態を観察した。図2(a)~図2(f)には、この観察結果の一部としてデフォーカス量-1.0μm、-0.8μm、-0.6μm、-0.4μm、-0.2μm、±0μmの場合のパターンのSEM観察像のスケッチを示す。従来のフォーカス自動計測パターンと異なり、本発明ではデフォーカス時のレジスト・パターンR1の倒壊がみられなかった。この実験例におけるベスト・フォーカス位置は、+0.1μmであった。

【0020】フォーカス自動計測にあたっては、図1(a)に示されるように、上記フォーカス自動計測パターンMPをスリット状のビーム・スポットBSで矢印Q方向にスキャンし、その回折光強度からパターン長Pを求めた。このとき、従来のようなパターン倒壊に起因する回折光強度の不規則な増大がみられないため、所定のピッチで設定された各デフォーカス量においてパターン長Pを正確に求めることができた。このようにして求めたパターン長Pをデフォーカス量に対してプロットした変化曲線からベスト・フォーカス位置を求めたところ、SEM観察像から求めたベスト・フォーカス位置とよく一致した。なお、上記のフォーカス自動計測パターンMPは、上述のようなフォーカス自動計測のみならず、通常のアライメント精度測定に用いても好適なことはもちろんである。

【0021】実施例2

ここでは、配線加工マスクとして用いられるレジスト・パターンの細線部に補助パターンを設けた例について、図3を参考しながら説明する。図3(a)は、両端のパッド部R21をつなぐ細線部R22の長手方向中央部に、該細線部R22と直交する補助パターンA2を該細線部R22に対して左右対称に配したレジスト・パターンR2を示す。図3(b)は、両端のパッド部R31をつなぐ細線部R32の長手方向中央部に、該細線部R32と直交する補助パターンA3を該細線部R32の片側にのみ配したレジスト・パターンR3を示す。さらに図3(c)は、両端のパッド部R41をつなぐ細線部R42の長手方向の3等分位置において、該細線部R42と直交する補助パターンA4を該細線部R42に対して左右非対称に配したレジスト・パターンR4を示す。

【0022】上記細線部R22、R32、R42はいずれも一例として線幅0.35μm、アスペクト比2、長さ10μmであり、また上記補助パターンA2、A3、A4はいずれも一例として線幅0.35μm、細線部R22、R32、R42からの突出長さ0.5μmとした。いずれのレジスト・パターンR2、R3、R4も、現像やリノスの工程において倒壊することはなかった。

これらレジスト・パターンR2, R3, R4をマスクとして下地の配線材料膜のドライエッティングを行ったところ、配線パターンを精度良く形成することができ、半導体デバイスの歩留りを大幅に向上させることができた。

【0023】以上、本発明の具体的な実施例を2例挙げたが、本発明はこれらの実施例に何ら限定されるものではなく、レジスト・パターンの形状、寸法、プロセス条件等の細部については、適宜変更、選択、組み合わせが可能である。

【0024】

【発明の効果】以上の説明からも明らかなように、本發明によれば高アスペクト比を有する微細なレジスト・パターンの倒壊を防止することができ、これにより該レジスト・パターンを用いたアライメント精度測定やフォーカス位置の自動計測、あるいは下地材料膜の加工精度を従来より著しく改善することができる。本發明はあらゆる微細加工に適用して好適であるが、特に微細なデザイン・ルールにもとづく半導体デバイス製造に適用した場合には、半導体デバイスの性能や歩留りの向上において多大な貢献をなしえるものである。

【図面の簡単な説明】

【図1】本発明を適用したフォーカス自動計測パターンを示す図であり、(a)はパターン全体の平面図と計測原理を示す説明図、(b)はこのパターンを形成するブロックのひとつを示す拡大平面図である。

【図2】図1のフォーカス自動計測パターンを用いた計

測において、フォーカス位置の変動による各ブロックの形状および寸法の変化を示すSEM観察像のスケッチである。

【図3】本発明を適用した配線加工マスク用レジスト・パターンを示す斜視図であり、補助パターンを(a)は細線部の中央両側、(b)は中央片側、(c)は左右交互に配した例をそれぞれ表す。

【図4】従来のフォーカス自動計測パターンを示す図であり、(a)はパターン全体の平面図と計測原理を示す

10 説明図、(b)はこのパターンを形成するブロックのひとつを示す拡大平面図である。

【図5】図4のフォーカス自動計測パターンを用いた計測において、フォーカス位置の変動による各ブロックの形状および寸法の変化を示すSEM観察像のスケッチである。

【図6】図4の従来のフォーカス自動計測パターンの計測で得られたデフォーカス量-パターン長変化曲線である。

20 【図7】従来の配線加工マスク用レジスト・パターンにおいて、細線部が倒壊した状態を示す斜視図である。

【符号の説明】

MP…フォーカス自動計測パターン R1, R2, R3, R4…レジスト・パターン B…ブロック BS…ビーム・スポット A1, A2, A3, A4…補助パターン R21, R31, R41…パッド部 R22, R32, R42…細線部

【図1】

【図 2】

フォーカス位置の変動による本発明のフォーカス自動計測パターン
の各ブロックの形状および寸法の変化

【図 3】

補助パターンを備えた
レジスト・パターン(本発明) 配線加工マスク用

【図 7】

【図 4】

【図 5】

フォーカス位置の変動による従来のフォーカス自動計測パターンの各ブロックの形状および寸法の変化

【図 6】

従来のフォーカス自動計測パターンにおけるデフォーカス量-パターン長変化曲線

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 10-319598
 (43)Date of publication of application : 04.12.1998

(51)Int.Cl. G03F 7/09
 G03F 7/26
 H01L 21/027

(21)Application number : 09-130720 (71)Applicant : SONY CORP
 (22)Date of filing : 21.05.1997 (72)Inventor : ISHIMARU TOSHIYUKI

(54) RESIST PATTERN AND ITS FORMING METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To prevent a resist pattern from being destroyed having a fine line width and a high aspect ratio.

SOLUTION: Resist patterns R1 adjacent to each other constituting respective blocks B of an automatic focus measuring pattern MP are connected by a piece of an auxiliary pattern A1 orthogonally crossing the resist patterns R1 on the central part in the longitudinal direction. Since the drawing near of the adjacent patterns each other due to the surface tension of a developer and a rinse liquid and the destroying of the patterns due to the drawing are prevented, proper diffracted light intensity is obtained even when the resist patterns R1 are scanned by a measuring beam spot BS. The auxiliary pattern is effective even in the resist pattern for a processing mask of an isolated long wiring pattern and even as a destroying preventive measure of a fine line part.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

*** NOTICES ***

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1.This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] It is the resist pattern characterized by being the resist pattern which consists of the developer insoluble section produced by the photochemical reaction, and has the thin line section, and said thin line section equipping the longitudinal direction halfway section with at least one auxiliary pattern shorter than an intersection and its die length for pattern collapse prevention at an angle of predetermined to this longitudinal direction.

[Claim 2] The resist pattern according to claim 1 which two or more contiguity arrangement of said thin line section is carried out, and is characterized by constituting the diffraction-grating pattern for alignment precision measurement.

[Claim 3] The resist pattern according to claim 2 characterized by coming mutually to connect two or more thin line sections which constitute said diffraction pattern with said auxiliary pattern.

[Claim 4] The resist pattern according to claim 1 characterized by said thin line section constituting the processing mask of a circuit pattern.

[Claim 5] The formation approach of the resist pattern which is the formation approach of the resist pattern which forms a resist pattern through a photolithography and a development, and is characterized by forming at least one auxiliary pattern shorter than an intersection and its die length for pattern collapse prevention in the longitudinal direction halfway section of the thin line section of said resist pattern at an angle of predetermined to this longitudinal direction.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.
2. **** shows the word which can not be translated.
3. In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Field of the Invention] This invention relates to the device and the formation approach on the structure where the collapse can be prevented especially, in the micro-processing fields, such as semiconductor device manufacture, about the resist pattern which constitutes the processing mask of the diffraction-grating pattern for alignment precision measurement of a photolithography, or a circuit pattern.

[0002]

[Description of the Prior Art] In the micro-processing field represented by semiconductor device manufacture, liquid crystal device manufacture, etc., a photolithography is performed using a stepper (cutback projection aligner), and various resist patterns are formed by passing through a development continuously. If this resist pattern is not only formed as a processing mask of the ingredient film of that substrate, but has some which are used as a mark for alignment precision measurement of a photolithography, alignment precision measurement -- on the other hand -- law -- LSA (laser step alignment) -- there is law. This scans the diffraction-grating pattern formed on the substrate by the slit-like helium-Ne laser beam, it is the approach of evaluating alignment precision based on the diffracted-light reinforcement at this time, and the stepper in which the LSA optical system for it was carried is also marketed.

[0003] Moreover, in a photolithography in recent years, it is also very important to set up the optimal focal location (for the Best Focas location to be called hereafter.) on the occasion of exposure. This is because the surface level difference of a substrate increases by adoption of multilayer-interconnection structure and the thickness of a wrap resist paint film is increasing this level difference, although it is in the inclination for the numerical aperture NA of the cutback projection optical system of a cutback projection aligner to increase with the cutback of the design rule of a semiconductor device, consequently the depth of focus is shallow. That is, since it is influenced with big dimensional accuracy and configuration precision of a resist pattern which are whether to set up a focus and are formed in which location of a thick resist paint film, it is important to expose according to setting out of the Best Focas location also compared with the former.

[0004] The approach (SMP:Self Measurement Program) of carrying out automatic meter reading of this Best Focas location using above-mentioned LSA optical system is learned. The measurement principle using the focal automatic-meter-reading pattern and this which are used by this approach is explained referring to drawing 4 thru/or drawing 6. This focal automatic-meter-reading pattern mp consists of a resist pattern r1 of the five shape of a wedge (wedge) allotted to parallel as it consisted of seven blocks b, for example and each block b was shown in drawing 4 (b) located in a line in the direction of Y at an example, as shown in drawing 4 (a). in addition, it is the pattern on a design which was shown in drawing 4 (b), and a design value is set up like minimum width-of-face (tooth space s) = 0.35micrometer between the width-of-face (line width of face lw) = resist patterns r1 which adjoin 0.35 micrometers of the thickest part of the center of a resist pattern r1, and die-length (pattern length p) = 7micrometer of the longitudinal direction of a resist pattern r1.

[0005] On the occasion of the decision of the Best Focas location, as shown in drawing 4 (a), the above-mentioned focal automatic-meter-reading pattern mp is scanned in the direction of arrow-head q in the slit-like beam spot bs, and it asks for the pattern length p from the diffracted-light reinforcement. This pattern length p changes with focal locations. The situation of this change is shown in drawing 5 . Each drawing of drawing 5 (a) – drawing 5 (f) shown here is sketch drawing of the scanning electron microscope (SEM) observation image of the resist pattern r1 formed when changing a focal location in a predetermined pitch, for example, 0.2 micrometers. As shown in drawing 5 (f), the focal location where the pattern length p serves as max is the Best Focas location, and even if the amount of defocusing increases in which direction of a plus side and a minus side from this location, the pattern length p decreases in number with drawing 5 (e) ->(d) ->(c) -> (b), and if the amount of defocusing passes over constant value, it will become impossible resolving it, as shown in drawing 5 (a). in addition, although the sign of the defocusing direction is arbitrary, it is defined as a minus-direction which keeps away from cutback projection lens side a plus-direction which approaches cutback projection lens of stepper here side (the following -- the same.). Drawing 5 shows the resist pattern r1 when defocusing increases to a minus side.

[0006] In SMP, the diffracted-light reinforcement obtained in each focal location is changed into an electrical signal, it asks for pattern length, an amount of defocusing-pattern length change curve as shown in drawing 6 which plotted this pattern length to the amount of defocusing is created, and the Best Focas location is computed based on a further predetermined operation program. The above-mentioned focal automatic-meter-reading pattern mp is actually formed also in the direction of X, it asks for the focal location which gives the maximum pattern length, respectively from the change curve obtained about both the patterns of the direction of these X, and the direction of Y, and the average value of both [these] the focus location is made into the Best Focas location.

[0007]

[Problem(s) to be Solved by the Invention] By the way, that a design rule contracts while the thickness of a resist paint film increases, as mentioned above means that the aspect ratio of the resist pattern formed increases. In recent years, in the resist pattern of a less than 1-micrometer high aspect ratio, collapse of a pattern poses [the width of face of the thin line section] a problem especially. For example, collapse of a typical pattern is seen by drawing 5 (c), (d), and (e) in the example of the above-mentioned focal automatic-meter-reading pattern. In these drawings, the resist pattern r1 looks thick not because the line breadth of this part is fat, but because it is observing the side-attachment-wall side of the fallen pattern from the upper part. It is because the pure water used at the rinse process after development will become is easy to be held to the tooth space between patterns according to capillarity since the high resist pattern r1 of an aspect ratio approaches and is arranged as for such collapse taking place and a resist pattern r1 will be able to draw near mutually with the surface tension.

[0008] If such a resist pattern r1 that collapsed is scanned by the laser beam for measurement, it will originate in the reflected light from a pattern side-attachment-wall side, diffracted-light reinforcement will increase, and the inclination for a actual twist to also be greatly computed for pattern length will arise. For example, although a shoulder is seen by the amount of defocusing-pattern length change curve in the example shown in drawing 6 shown above at the point whose amount of DEOKASU is minus 0.4micrometer, this is the effect of buildup of the diffracted-light reinforcement by pattern collapse.

[0009] Collapse of a resist pattern may be generated also not only in a high density pattern like an above-mentioned focal automatic-meter-reading pattern but in an isolated pattern. As an example of collapse of an isolated pattern, the resist pattern used as a wiring processing mask is shown in drawing 7 . The pad section r21 for this resist pattern r2 to take lower layer wiring or the upper wiring, and contact to the ends of the straight-line-like thin line section r22 is formed. If the line breadth of this thin line section r22 is set to less than 1 micrometer and an aspect ratio sets it two or more, the adhesion of this thin line section r22 and a substrate substrate will fall, and it will become easy to produce the collapse section c which is illustrated with the fluid pressure added at a development process or a rinse process, or water pressure. There is some

wiring of ASIC taken about by die length of 10 micrometers or more especially, and the thin line section r22 of the resist pattern r2 corresponding to this lifting-comes to be extremely easy of exfoliation and collapse. If the wiring material film by dry etching is processed by using such a resist pattern r2 as a mask, the dimension of a circuit pattern and the precision of a configuration will fall and an adverse effect will appear in an operating characteristic, and also it becomes the cause of causing nearby wiring and a nearby short circuit depending on the case. [0010] Thus, the conventional resist pattern tended to produce collapse with detailed-sizing and thick-film-sizing of line breadth, and had become the cause by which this degraded the precision and wiring process tolerance of the optical measurement in a photolithography. Then, this invention aims at offering the resist pattern which can prevent collapse effectively, and its formation approach, also when a high aspect ratio is formed.

[0011]

[Means for Solving the Problem] This invention tends to consist of the developer insoluble section produced by photochemical reaction, and it is going to attain the above-mentioned object by forming the resist pattern which equips the halfway section of the longitudinal direction of the thin line section with at least one auxiliary pattern shorter than an intersection and its die length for pattern collapse prevention at an angle of predetermined to this longitudinal direction.

[0012]

[Embodiment of the Invention] Although the thin line section of the resist pattern of this invention may be what kind of thing, the processing mask of the diffraction-grating pattern for alignment precision measurement or a circuit pattern is constituted typically. Although especially the dimension of the thin line section is not limited, it is especially effective that collapse of a pattern sets the thin line section in which it has these dimensions about the line breadth of less than 1 micrometer, two or more aspect ratios, and an isolated pattern since it is easy to produce it when die length is 10 micrometers or more as the object of the collapse preventive measures of this invention. As for the predetermined include angle which the above-mentioned auxiliary pattern makes to the longitudinal direction of the above-mentioned thin line section, considering as 90 degrees is ideal, and it can acquire the greatest collapse prevention effectiveness with the shortest auxiliary pattern length at this time. However, two or more auxiliary patterns which may be include angles other than a rectangular cross, and cross the thin line section at a different include angle depending on the layout of the pattern on a substrate may be arranged.

[0013] The configuration of an auxiliary pattern, magnitude, and especially the number of arrangement are not limited, and change with the surface tension of the aspect ratio of the thin line section, the substrate adhesion of a photoresist ingredient, a pattern consistency, a developer, or a rinse. What is necessary is to vacate spacing of several micrometers or more and just to form an auxiliary pattern 1 to 5 times the die length of the line breadth of the thin line section as a near rule of thumb. However, consideration which does not spoil the object of resist pattern original or the engine performance of the circuit pattern processed considering a resist pattern as a mask is required.

[0014] For example, when forming the above-mentioned auxiliary pattern in the diffraction-grating pattern for alignment precision measurement, it is important to arrange a necessary minimum auxiliary pattern with as high symmetric property as possible so that it may not have an adverse effect on diffracted-light intensity distribution. Moreover, since each thin line section which constitutes a diffraction-grating pattern is mutually close, it becomes extremely excellent collapse preventive measures to connect these by the auxiliary pattern. On the other hand, when forming a resist pattern as a processing mask of a circuit pattern, it will be added to the circuit pattern after the part corresponding to an auxiliary pattern processing it. Depending on the layout of an auxiliary pattern, lowering of the wiring resistance by the increment in the cross section of a circuit pattern is expectable, and the propagation delay accompanying buildup of the capacity between wiring is also expected by reverse. Therefore, as for formation of an auxiliary pattern, considering as necessary minimum too is desirable.

[0015] Although the resist pattern of above this inventions is formed through a usual photolithography and a usual development, a conventionally different point from a process is that an auxiliary pattern is added to the pattern on reticle. However, compared with a process, a

routing counter does not increase at all conventionally. In addition, all processings of the alignment precision measurement using the resist pattern of this invention, focal automatic meter reading or dry etching, etc., etc. can also be performed as usual.

[0016]

[Example] Hereafter, the concrete example of this invention is explained.

[0017] an example 1 -- here, focal automatic meter reading using this is explained to be the focal automatic-meter-reading pattern with which the center section of each resist pattern by which contiguity arrangement is carried out was connected by one auxiliary pattern, referring to drawing 1 and drawing 2 . This focal automatic-meter-reading pattern MP consists of seven blocks B located in a line in the direction of Y at an example as shown in drawing 1 (a), and each block B consists of five wedge-shaped resist patterns R1 arranged on parallel, as shown in drawing 1 (b). Furthermore, each of the above-mentioned resist pattern R1 is connected by one auxiliary pattern A1 which intersects perpendicularly in the center section. In addition, it is the pattern on a design which was shown in drawing 1 (b), and a design value is W= 0.35 micrometers in S= 0.35 micrometers of tooth spaces between the line width-of-face LW= resist patterns R1 which adjoin 0.35 micrometers of a resist pattern R1, P= 7 micrometers of pattern length of a resist pattern R1, and line breadth of the auxiliary pattern A1.

[0018] The formation process of the above-mentioned focal automatic-meter-reading pattern MP is as follows as an example. First, the cresol resin system positive type photoresist ingredient after performing hydrophobing processing which used 200-degree C dehydration bake and HMDS (hexamethyldisilazane) for the raise in basic wages Si wafer of the diameter of 6 inch (TOKYO OHKA KOGYO CO., LTD. make; trade name THMR-iP3300 was applied to the thickness of 1.20 micrometers.) After performing 90 degrees C and prebaking for 120 seconds, i line exposure between 450 mses was performed using i line stepper (NIKON CORP. make; trade name NSR-2205i11D). pass 110 degrees C and PEB for 60 seconds (after [exposure] BEKU) -- 23 degrees C and paddle development for 60 seconds were performed using the commercial alkali developer (2.38% tetramethylammonium hydroxide solution), and the rinse was further performed using pure water.

[0019] The condition of the pattern formed was observed in the above-mentioned i line exposure, changing the amount of defocusing in 0.2-micrometer pitch from +1.4 micrometers to -1.4 micrometers. Sketch drawing of the SEM observation image of the pattern in - with an amount [of defocusing] of -1.0 micrometers 0.8 micrometers - 0.6 micrometers - 0.4 micrometers - 0.2 micrometers and **0micrometer is shown in drawing 2 (a) - drawing 2 (f) as a part of this observation result. Unlike the conventional focal automatic-meter-reading pattern, by this invention, collapse of the resist pattern R1 at the time of defocusing was not seen. The Best Focas location in this example of an experiment was +0.1 micrometers.

[0020] In focal automatic meter reading, as shown in drawing 1 (a), the above-mentioned focal automatic-meter-reading pattern MP was scanned in the direction of arrow-head Q in the slit-like beam spot BS, and it asked for the pattern length P from the diffracted-light reinforcement. Since irregular buildup of the diffracted-light reinforcement resulting from pattern collapse like before was not seen at this time, accuracy was able to be asked for the pattern length P in each amount of defocusing set up in the predetermined pitch. Thus, when asked for the Best Focas location from the change curve which plotted the pattern length P which asked to the amount of defocusing, it was well in agreement with the Best Focas location for which it asked from the SEM observation image. In addition, even if it uses the above-mentioned focal automatic-meter-reading pattern MP not only for the above focal automatic meter reading but for the usual alignment precision measurement, it is natural. [of a suitable thing]

[0021] an example 2 -- here, the example which prepared the auxiliary pattern in the thin line section of the resist pattern used as a wiring processing mask is explained, referring to drawing 3 . Drawing 3 (a) shows the resist pattern R2 which arranged the auxiliary pattern A2 which intersects perpendicularly with this thin line section R22 on bilateral symmetry to this thin line section R22 in the longitudinal direction center section of the thin line section R22 which connects the pad section R21 of ends. Drawing 3 (b) shows the resist pattern R3 which allotted auxiliary pattern A3 which intersects perpendicularly with the longitudinal direction center

section of the thin line section R32 which connects the pad section R31 of ends with this thin line section R32 only to one side of this thin line section R32. Furthermore, drawing 3 (c) shows the resist pattern R4 which allotted auxiliary pattern A4 which intersects perpendicularly with this thin line section R42 to right-and-left asymmetry to this thin line section R42 in 3 division-into-equal-parts location of the longitudinal direction of the thin line section R42 which connects the pad section R41 of ends.

[0022] The above-mentioned thin line sections R22, R32, and R42 are all 10 micrometers in the line breadth of 0.35 micrometers, an aspect ratio 2, and die length as an example, and made each of above-mentioned auxiliary patterns A2, A3, and A4 as an example 0.5 micrometers of wire extensions from the line breadth of 0.35 micrometers, and the thin line sections R22, R32, and R42. Neither of the resist patterns, R2, R3, nor R4, collapsed in the process of development or a rinse. When dry etching of the wiring material film of a substrate was performed by using these resist patterns R2, R3, and R4 as a mask, the circuit pattern could be formed with a sufficient precision and the yield of a semiconductor device was able to be raised substantially.

[0023] As mentioned above, although two concrete examples of this invention were given, this invention is not limited to these examples at all, and modification, selection, and combination are possible for it suitably about details, such as a configuration of a resist pattern, a dimension, and process conditions.

[0024]

[Effect of the Invention] According to this invention, the collapse of a detailed resist pattern which has a high aspect ratio can be prevented, and, thereby, the alignment precision measurement using this resist pattern, automatic meter reading of a focal location, or the process tolerance of the furring film can be improved more remarkably than before so that clearly also from the above explanation. Although this invention applies and is suitable for all micro processing, when it applies to the semiconductor device manufacture based on a detailed design rule especially, a great contribution can be made in the engine performance of a semiconductor device, or improvement in the yield.

[Translation done.]

*** NOTICES ***

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1.This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1] It is drawing showing the focal automatic-meter-reading pattern which applied this invention, and the explanatory view in which (a) shows the top view and measurement principle of the whole pattern, and (b) are the amplification top views showing one of the blocks which form this pattern.

[Drawing 2] In the measurement using the focal automatic-meter-reading pattern of drawing 1 , it is sketch drawing of the SEM observation image in which change of the configuration of each block by fluctuation of a focal location and a dimension is shown.

[Drawing 3] It is the perspective view showing the resist pattern for wiring processing masks which applied this invention, and the example on which the central both sides of the thin line section and (b) were arranged to central one side, and, as for (a), (c) arranged the auxiliary pattern alternately with right and left is expressed, respectively.

[Drawing 4] It is drawing showing the conventional focal automatic-meter-reading pattern, and the explanatory view in which (a) shows the top view and measurement principle of the whole pattern, and (b) are the amplification top views showing one of the blocks which form this pattern.

[Drawing 5] In the measurement using the focal automatic-meter-reading pattern of drawing 4 , it is sketch drawing of the SEM observation image in which change of the configuration of each block by fluctuation of a focal location and a dimension is shown.

[Drawing 6] It is the amount of defocusing-pattern length change curve obtained by measurement of the conventional focal automatic-meter-reading pattern of drawing 4 .

[Drawing 7] In the conventional resist pattern for wiring processing masks, it is the perspective view showing the condition that the thin line section collapsed.

[Description of Notations]

MP -- Focal automatic-meter-reading pattern R1, R2, R3, R4 -- Resist pattern B -- Block BS -- Beam spot A1, A2, A3, A4 -- Auxiliary pattern R21, R31, R41 -- Pad section R22, R32, R42 -- Thin line section

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
3. In the drawings, any words are not translated.

DRAWINGS

[Drawing 1]

(a)

[Drawing 2]

(a) (b) (c) (d) (e) (f)

フォーカス位置の変動による本発明のフォーカス自動計測パターン
の各ブロックの形状および寸法の変化

[Drawing 3]

補助パターンを備えた
レジスト・パターン（本発明） 配線加工マスク用

[Drawing 7]

従来の配線加工マスク用レジスト・パターンにおいて
細線部が倒壊した状態

[Drawing 4]

[Drawing 5]

フォーカス位置の変動による従来のフォーカス自動計測パターンの各ブロックの形状および寸法の変化

[Drawing 6]

従来のフォーカス自動計測パターンにおけるデフォーカス量-パターン長変化曲線

[Translation done.]