ИТМО

РАБОЧИЙ ПРОТОКОЛ И ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №3.01

"Изучение электростатического поля методом моделирования"

Группа: 1.3.1

Студент: Стафеев И.А., Голованов Д.И., Да-

нилов Н.О., Игнатьев А.Ю. Преподаватель: Рудель А.Е. К работе допущен: Работа выполнена: Отчет принят:

1 Цель работы

- Построение сечений эквипотенциальных поверхностей и силовых линий электростатического поля на основе экспериментального моделирования распределения потенциала в слабопроводящей среде

2 Задачи, решаемые при выполнении работы

- Исследование конфигурации электростатического поля;
- Построение силовых линий поля;
- Определение напряжённости исследуемой точки;

3 Объект исследования

Электрическое поле в слабопроводящей среде, моделирующее электростатическое поле в вакууме.

4 Метод экспериментального исследования

Эмпирический. Сбор данных и их анализ.

5 Рабочие формулы и исходные данные

 \overrightarrow{E} (\overrightarrow{r})= $\frac{\overrightarrow{F(r)}}{q}$ -вектор напряженности электрического поля φ (\overrightarrow{r})= $\frac{W_n(r)}{q}$ -энергетическая характеристика электрического поля - потенциал A_{12} =q(φ_1 - φ_1)- работа по перемещению заряда q \overrightarrow{E} =-grad φ =- \overrightarrow{V} φ - значение напряжённости φ_2 - φ_1 = $\int_1^2 \overrightarrow{E}$ d \overrightarrow{l} - связь напряжённости и потенциала

 $\overrightarrow{\nabla}$ $\varphi=\widehat{e}$ х $\frac{\delta \varphi}{dx}+\widehat{e}$ $y^{\frac{\delta \varphi}{\sigma y}}+\widehat{e}_z$ $\frac{\delta \varphi}{\sigma z}$ - градиент потенциала $\langle \; E_{12} \; \rangle \cong \frac{\varphi_1-\varphi_2}{l_{12}}$ -среднее значение напряжённости между двумя точками $\mathbf{j}=\sigma$ E - закон Ома в дифференциальной форме $\varepsilon_x=\frac{\Delta x}{x}\cdot 100\%$ - формула относительной погрешности

6 Измерительные приборы:

№	Наименование	Предел измерений	$\Delta_{\scriptscriptstyle \mathrm{M}}$
1	Вольтметр	0-20 B	±0.1 B
2	Линейка	0-28 см	±0.1 см

Таблица 1 — Измерительные приборы

7 Схема установки

Рисунок 1 — Схема рабочей установки

Установка состоит из электролитической ванны, измерительного зонда, генератора напряжения, вольтметра и проводящего тела в виде кольца.

8 Прямые измерения

Рисунок 2 — Измерения для первого задания

Рисунок 3 — Измерения для второго задания

9 Косвенные измерения

$$\begin{split} E_{\text{центра}} &= \frac{7.44 - 5.44 \text{ B}}{0.159 - 0.118 \text{ M}} = 48.78 \text{ B/M} \\ E_{\text{электрода}} &= \frac{14.02 - 12.44 \text{ B}}{0.036 \text{ M}} = 43.89 \text{ B/M} \\ \Delta_{\Delta\varphi} &= \sqrt{\left(\frac{\delta\Delta\varphi}{\delta\varphi_1}\Delta_\varphi\right)^2 + \left(\frac{\delta\Delta\varphi}{\delta\varphi_2}\Delta_\varphi\right)^2} = \sqrt{(1\cdot\Delta_\varphi)^2 + (-1\cdot\Delta_\varrho)^2} = \Delta_\varphi\sqrt{2} \\ \Delta_{\Delta l} &= \sqrt{\left(\frac{\delta\Delta l}{\delta l_1}\Delta_l\right)^2 + \left(\frac{\delta\Delta l}{\delta l_2}\Delta_l\right)^2} = \sqrt{(1\cdot\Delta_l)^2 + (-1\cdot\Delta_l)^2} = \Delta_l\sqrt{2} \\ \Delta_E &= \sqrt{\left(\frac{\delta E}{\delta\Delta\varphi}\Delta_{\Delta\varphi}\right)^2 + \left(\frac{\delta E}{\delta\Delta l}\Delta_{\Delta l}\right)^2} = \sqrt{\left(\frac{\Delta_{\Delta\varphi}}{\Delta l}\right)^2 + \left(-\frac{\Delta\varphi\Delta_{\Delta l}}{\Delta l^2}\right)^2} = \sqrt{\left(\frac{\Delta_\varphi\sqrt{2}}{\Delta l^2}\right)^2 + \left(\frac{\Delta\varphi\Delta_l\sqrt{2}}{\Delta l^2}\right)^2} \\ \Delta_{E_{\text{центра}}} &= 0.38 \text{ B/M} \\ \Delta_{E_{\text{электрода}}} &= 1.75 \text{ B/M} \\ \sigma'_{\text{пол.}} &= -8.85 \cdot 10^{-12} \Phi/\text{M} \cdot \frac{12.44 - 14.02 \text{ B}}{0.036 \text{ M}} = 3.89 \cdot 10^{-10} \text{ KJ/M}^2 \\ \sigma'_{\text{отр.}} &= -8.85 \cdot 10^{-12} \Phi/\text{M} \cdot \frac{0 - 1.44 \text{ B}}{0.036 \text{ M}} = 3.54 \cdot 10^{-10} \text{ KJ/M}^2 \\ E_{\text{min}} &= 0 \text{ B/M} - \text{ напряженность минимальная и равна нулю внутри проводника} \end{split}$$

 $E_{\rm min} = 0$ В/м - напряженность минимальнах и разна нулю внутри проводника $E_{\rm max} = \frac{7.73 - 6.63}{0.0055} \, {\rm B} = 181.82 \, {\rm B/m}$ - напряженность максимальна там, где расстояние между эквипотенциаль-

10 Графики

ными поверхностями минимальна (около кольца)

Рисунок 4 — Картина силовых линий для первого задания

Рисунок 5 — Картина силовых линий для второго задания

Рисунок $6-\Gamma$ рафик зависимости $\varphi(x)$ для первой и второй конфигурации

11 Окончательные результаты

```
\begin{split} E_{\text{центра}} &= (48.78 \pm 0.38) \text{ B/m}; \ \varepsilon_{E_{\text{центра}}} = 0.78\% \\ E_{\text{электрода}} &= (43.89 \pm 1.75) \text{ B/m}; \ \varepsilon_{E_{\text{электрода}}} = 3.98\% \\ \Delta_{E_{\text{центра}}} &= 0.38 \text{ B/m} \\ \Delta_{E_{\text{электрода}}} &= 1.75 \text{ B/m} \\ \sigma'_{\text{пол.}} &= 3.89 \cdot 10^{-10} \text{ KJ/m}^2 \\ \sigma'_{\text{отр.}} &= 3.54 \cdot 10^{-10} \text{ KJ/m}^2 \end{split}
```

 $E_{
m min} = 0~{
m B/m}$ - напряженность минимальная и равна нулю внутри проводника

 $E_{\rm max}=181.82~{\rm B/m}$ - напряженность максимальна там, где расстояние между эквипотенциальными поверхностями минимальна (около кольца)

12 Выводы и анализ результатов работы

В ходе выполнения лабораторной работы были рассчитаны значения напряжённости для центра электролитической ванны и для окрестности положительного электрода, а также вычислены плотности зарядов на обоих электродах. Значений напряжённости рассчитана абсолютная и относительная погрешность. Для модели электрического поля с проводящим кольцом были найдены наибольшее и наименьшее значения напряжённости. Наименьшее оказалось внутри кольца, наибольшее — рядом с ним. Построен график зависимости потенциала от координаты для обеих моделей поля. По графику можно сделать вывод, что потенциал возрастает вдоль оси абсцисс от отрицательного электрода к положительному, потенциал любой точки внутри проводящего кольца равен

потенциалу на его поверхности. Для первой конфигурации (плоский конденсатор) потенциал линейно зависим от координаты, для второй конфигурации (с проводящим кольцом) - нет (зависимость похожа на гиперболу).