Marriage and Divorce under Labor Market Uncertainty

Christian Holzner¹ and Bastian Schulz²

¹Hochschule München, CESifo ²Aarhus University, the Dale T. Mortensen Centre, CESifo

This Paper

- Idea: the marital and employment statuses of individuals are interrelated:
 - 1 Being married, and to whom, correlates with labor market outcomes.
 - 2 Labor market outcomes affect who marries whom.
 - 3 Important gender differences in these associations.
- Understanding this interaction is critical to learn more about:
 - Gender equality in labor market outcomes
 - Peedback effects of labor market reforms on the marriage market
- Both theoretical and empirical models mostly abstract from this interaction.

The Idea

- Consider the choices individuals make in marriage and labor markets:
 - 1. Marriage market: Do I marry? Who? Do I get a divorce?
 - ightarrow Marital stability, sorting, between-household inequality
 - 2. Labor market: Do I work? How many hours? How do I (we) organize my (our) time?
 - → Trade-off between labor supply and home production
 - → Household specialization, gender differences in outcomes

Evidence

- Interaction:
 - 1. My labor market status affects who I can marry.
 - 2. Changing labor market status affects marital stability.
- Choices include dynamic considerations, well suited for a search framework.
- Search naturally generates the sluggishness of labor and marriage markets.

Theoretical Contribution

- We develop a new model of simultaneous search and matching in both markets.
- Marriage market:
 - TU, random search, ex-ante heterogeneity (Shimer & Smith, 2000).
 - Match-specific "love shocks" (Goussé et al., 2017).
 - Men and women share resources by Nash bargaining.
- Labor market:
 - On-the-job search model (Burdett & Mortensen, 1998):
 - Endogenous search intensity depends on marital surplus (via reservation wage).
 - Employed workers lose their job at an exogenous rate.
- Marital surplus depends on love shock × public good (domestic work hours):
 - Domestic work hours choice, trade-off with leisure, employment status constraint.
 - Differences in returns to domestic work hours induce specialization.

Applied Research Agenda

- We confront the model with German household survey data.
- GSOEP and IAB-PASS. In total available from 1983–2019.
- Key advantage: detailed information on domestic work hours and labor supply.
- Four applications:
 - 1 Stylized facts, event study analysis of the interaction, support of modeling choices.
 - 2 Structural estimation of the model with different degrees of heterogeneity.
 - Employment status heterogeneity (Paper I, today)
 - Additional heterogeneity (age, education, children, Paper II)
 - 3 Application to the German "labor market miracle" in the 2000s. (Paper I, today)
 - 4 Application to marital sorting and inequality (Paper II).

Literature

- Unemployment, especially male unemployment, is associated with an increase in the divorce rate (e.g. Jensen and Smith, 1990; Hansen, 2005; Amato and Beattie, 2011).
- Marriage/divorce rates negatively correlated with unemployment over the business cycle (e.g. Schaller, 2013; González-Val and Marcén, 2017a/b).
- Does female labor market participation decrease or increase marital stability? (Newman and Olivetti, 2018 vs. Folke and Rickne, 2020).
- Marriage market matching models (with and without frictions, TU/NTU): Becker (1973/74), Burdett & Coles (1997), Shimer & Smith (2000), Jacquemet & Robin (2012), Choo & Siow (2006), Choo (2015), Chiappori et al. (2015).
- Most closely related: Goussé et al. (2017), Greenwood et al. (2016).
- Also related: models of joint search: Guler et al. (2012), Pilossoph & Wee (2021), Fang & Shephard (2019).

Outline

- ① Descriptive Evidence
- 2 Model
- 3 Estimation
- 4 Application

Descriptive Evidence

Shares of Married and Employed Population over Time

(b) Married and Single Employment

Domestic Work Hours over Time

(c) Married Males

(d) Married females

Event Study: Employment Rate around Marriage

• Relative to matched control group: no marriage, matched in t-3.

Marriage around EU Marriage around UE

Event Study: Employment Rate around Divorce

• Relative to matched control group: no divorce, matched in t-3.

Event Study: Work Hours around Divorce

• Relative to matched control group: no divorce, matched in t-3.

Work Hours around Marriage

Domestic Hours around Marriage

Domestic Hours around Divorce

Event Study: Life Satisfaction around Divorce

• Relative to matched control group: no divorce, matched in t-3.

Model

Utility

• We assume quasi-linear preferences in consumption c_f , leisure e_f , and a household public good y.

$$u\left(c_f,e_f,y\right)=c_f+\zeta_xe_f+y$$
 with $y=\begin{cases} \left(X_j^l\right)^{1-\alpha_x}(h_f)^{\alpha_x} & \text{if single female} \\ \left(zX_{ij}^{-ll}\right)^{(1-\gamma_y-\gamma_x)}(h_m)^{\gamma_y}\left(h_f\right)^{\gamma_x} & \text{if married.} \end{cases}$ (1)
$$c_f=I_j^l+t \text{ and } c_m=I_i^{-l}-t$$

$$\overline{h}=l_j^l+h_f+e_f \text{ and } \overline{h}=l_i^l+h_m+e_m$$

- Linearity in consumption implies that income changes affects the couples' joint utility in the same way as single utilities. ⇒ Surplus is independent of spouses' income.
- But changes in domestic hours affect the surplus and may lead to divorce.

Decisions

- Singles search for partners in the marriage market. The Value of Singlehood
- Upon meeting, potential couples draw match-specific ("love") shock.
- Couples bargain over transfers, hours, and search intensities, value functions depend on shock and labor market statuses.
- Surplus is invariant to EE transitions (linear utility assumption).
- While married, couples renegotiate when match-specific shock hits or in case of EU/UE-transitions.
- Specifically, taking up a job implies less hours for home production and leisure.
- No commitment, efficient divorce in case of negative surplus.

Flow Equation System

$$\begin{array}{lll} \text{ee:} & \lambda \alpha_{ij}^{ee} s_i^e s_j^e + \bar{\tau}_{i,j}^{u,e} m_{ij}^{ue} + \bar{\tau}_{j,i}^{u,e} m_{ij}^{eu} &= \left[\delta \left(1 - \alpha_{ij}^{ee} \right) + \underline{\tau}_{i,j}^{e,e} + \bar{\tau}_{i,j}^{e,e} + \underline{\tau}_{j,i}^{e,e} + \bar{\tau}_{j,i}^{e,e} \right] m_{ij}^{ee} \\ \text{eu:} & \lambda \alpha_{ij}^{eu} s_i^e s_j^u + \bar{\tau}_{i,j}^{u,u} m_{ij}^{uu} + \bar{\tau}_{j,i}^{e,e} m_{ij}^{ee} &= \left[\delta \left(1 - \alpha_{ij}^{eu} \right) + \underline{\tau}_{i,j}^{e,u} + \bar{\tau}_{i,j}^{e,u} + \underline{\tau}_{j,i}^{u,e} + \bar{\tau}_{j,i}^{u,e} \right] m_{ij}^{eu} \\ \text{ue:} & \lambda \alpha_{ij}^{ue} s_i^u s_j^e + \bar{\tau}_{i,j}^{e,e} m_{ij}^{ee} + \bar{\tau}_{j,i}^{u,u} m_{ij}^{uu} &= \left[\delta \left(1 - \alpha_{ij}^{ue} \right) + \underline{\tau}_{i,j}^{u,e} + \bar{\tau}_{i,j}^{u,e} + \underline{\tau}_{j,i}^{e,u} + \bar{\tau}_{j,i}^{e,u} \right] m_{ij}^{ue} \\ \text{uu:} & \lambda \alpha_{ij}^{uu} s_i^u s_j^u + \bar{\tau}_{i,j}^{e,u} m_{ij}^{eu} + \bar{\tau}_{j,i}^{e,u} m_{ij}^{ue} &= \left[\delta \left(1 - \alpha_{ij}^{uu} \right) + \underline{\tau}_{i,j}^{u,u} + \bar{\tau}_{i,j}^{u,u} + \underline{\tau}_{j,i}^{u,u} + \bar{\tau}_{j,i}^{u,u} \right] m_{ij}^{uu} \end{array}$$

Note: the outflow consists of divorces due to shocks, $\delta\left(1-\alpha_{ij}^{-ll}\right)$, and labor market transitions that lead to a divorce, $\underline{\tau}_{i,j}^{-l,l}+\underline{\tau}_{j,i}^{l,-l}$. Some labor market transitions don't lead to divorce but transform the couple into a different labor market type $\bar{\tau}_{i,j}^{-l,l}+\bar{\tau}_{j,i}^{l,-l}$.

Endogenous Search Intensity and Reservation Wages

Endogenous search intensity and reservation wages depend on

- employed married/single: current wage.
- unemployed single: UI, home production, marriage market option value.
- unemployed married:
 - UI,
 - labor market status and type of spouse,
 - match-specific shock,
 - household public good.

Reservation Wages: Singles

- While employed, the reservation wage is equal to the current wage irrespective of marital status, i.e., $R_{j}^{l,-l}\left(z,I_{i}^{-l},w_{j}\right)=R\left(w_{j}\right)=w_{j}$.
- The reservation wage of an unemployed single (defined by $V_{j}^{e}\left(R_{j}^{u}
 ight)=V_{j}^{u}\left(b_{j}
 ight)$), is

$$R_{j}^{u} = b_{j} - \zeta_{x} \left(l_{j}^{u} - l_{j}^{e} \right) + \xi_{y} \left(X_{j}^{u} - X_{j}^{e} \right) + \lambda \beta_{x} \int_{i} \sum_{-l} \left(\overline{S}_{z_{ij}^{-lu}}^{-lu} - \overline{S}_{z_{ij}^{-le}}^{-le} \right) s_{i}^{-l} di.$$

where
$$ar{S}_{z_{ij}^{-ll}}^{-ll} \equiv \int_{z_{ij}^{-ll}}^{\infty} S_{ij}^{-ll}(z) dG(z)$$
.

Reservation Wages: Married

- Unemployed married female j with a partner of type i and emp. status -l.
- Definition:

$$R_{j,i}^{u,-l}(z) = R_j^u + r \left(S_{ij}^{-lu}(z) - \max \left[0, S_{ij}^{-le}(z) \right] \right)$$

- A married individual faces on top of a single individual additional gains or losses associated with the effect of a changed labor market status on marital surplus.
 - If after a transition into employment the z is still high enough (above z_{ij}^{-le}), the couple will stay married and the marital surplus changes from $S_{ij}^{-lu}(z)$ to $S_{ij}^{-le}(z)$.
 - If z is too small (below z_{ij}^{-le}), the labor market transition will lead to a divorce and hence to a loss of the full marital surplus, i.e., $S_{ij}^{-lu}(z)$.

Interaction with Love Shock

- Consider what happens when the couple is hit by a negative love shock:
 - decrease the reservation wage (due to lower marital surplus) and
 - increase the labor market search intensity of the unemployed spouse.
 - make a transition into employment more likely.
 - make a divorce more likely.
- Note two things:
 - 1 The couple is currently married, so $S_{ij}^{-lu}(z) > 0$. Thus, reservation wage of unemployed married is (weakly) higher compared to unemployed single.
 - 2 But, the lower the love shock z, the lower is current marital surplus. Thus, the reservation wage is lower and search intensity higher ...

Search Equilibrium

- The equilibrium is characterized by:
 - a set of surplus functions $S_{ij}^{ll}(z)$,
 - search intensities for unemployed married and single individuals,

$$\{\widehat{\sigma}_{i}^{u,l}\left(z
ight),\widehat{\sigma}_{j}^{u,-l}\left(z
ight)\}\ ext{and}\ \left\{\widehat{\sigma}_{i}^{u},\widehat{\sigma}_{j}^{u}
ight\},$$

- love shock threshold values z_{ii}^{ll} ,
- the distributions of married couples m_{ij}^{ll} for each type ij and labor market status ll,
- and single distributions s_i^l , s_i^l .
- Solution algorithm: alternating fixed-point iterations, three model blocks, obtains

Estimation

Structural Estimation

- Multiple versions: employment status heterogeneity (today),
 + heterogeneous education, age, number of children (one or two-dim. het.).
- We target the following groups of moments:
 - 1 Yearly transition probabilities between:
 - married/single
 - employment/unemployment
 - EE-transition if employed
 - and combinations thereof
 - 2 domestic work hours of unemployed singles and couples.
 - 3 Wage-earnings distribution moments for males and females.
- ullet We have analytical expressions for all theoretical moments o GMM ${}_{ ext{identification}}$

Theoretical moments 1: yearly transition probabilities

• Unemployed single woman gets married and starts working:

$$\begin{split} \Pr\left[s_j^u \to \int_i \sum_{-l} m_{ij}^{-le} di\right] &= \int_0^1 \lambda_j^u e^{-\lambda_j^u t} dt \int_0^1 \tau_j^u e^{-\tau_j^u t} dt \\ &+ \int_0^1 \tau_j^u e^{-\tau_j^u t} \left(\int_t^1 \lambda_j^e e^{-\lambda_j^e x} dx - \int_t^1 \lambda_j^u e^{-\lambda_j^u x} dx\right) dt \\ &+ \int_0^1 \lambda_j^u e^{-\lambda_j^u t} \left(\int_t^1 \widehat{\tau}_{j,i}^{u,-l} e^{-\widehat{\tau}_{j,i}^{u,-l} x} dx - \int_t^1 \tau_j^u e^{-\tau_j^u x} dx\right) dt, \\ &= \frac{\tau_j^u}{\lambda_j^e + \tau_j^u} \left(1 - e^{-\left(\lambda_j^e + \tau_j^u\right)\right) - \left(1 - e^{-\tau_j^u}\right) e^{-\lambda_j^e} \\ &+ \frac{\lambda_j^u}{\lambda_j^u + \widehat{\tau}_{j,i}^{u,-l}} \left(1 - e^{-\left(\lambda_j^u + \widehat{\tau}_{j,i}^{u,-l}\right)\right) - \left(1 - e^{-\lambda_j^u}\right) e^{-\widehat{\tau}_{j,i}^{u,-l}}. \end{split}$$

Theoretical moments 2: domestic hours

Unemployed singles:

$$h_i^u = \left(\frac{\alpha_y}{\zeta_y}\right)^{1/(1-\alpha_y)} X_i^u \text{ and } h_j^u = \left(\frac{\alpha_x}{\zeta_x}\right)^{1/(1-\alpha_x)} X_j^u$$

Unemployed married women with unemployed husband.

$$h_{j,i}^{u,u} = \frac{\int\limits_{z_{ij}^{uu}}^{\infty} z'dG\left(z'\right)}{\int\limits_{z_{ij}^{uu}}^{\infty} dG\left(z'\right)} X_{ij}^{uu} \left(2\frac{\gamma_{y}}{\zeta_{y}}\right)^{\gamma_{y}/(1-\gamma_{y}-\gamma_{x})} \left(2\frac{\gamma_{x}}{\zeta_{x}}\right)^{(1-\gamma_{y})/(1-\gamma_{y}-\gamma_{x})}$$

Theoretical moments 3: wage earnings distribution

• Solving the following differential equation numerically with the boundary condition $H_j\left(\underline{w}_j\right)=0$ gives the wage earnings distribution $H_j\left(w_j\right)$.

$$1 - H_{j} + \frac{\int_{i} \sum_{\substack{l = l \\ z_{ij}^{-l}u}}^{\infty} \sigma_{j,i}^{u,-l}\left(R_{j,i}^{u,-l}(z')\right) \left[1 - F_{j}\left(R_{j,i}^{u,-l}(z')\right)\right] \left(I_{w_{j} > R_{j,i}^{u,-l}(z')} - 1\right) dG(z') m_{ij}^{-lu}}{\sigma_{j}^{e}\left(R_{j}^{u}\right) \left[1 - F_{j}\left(R_{j}^{u}\right)\right] s_{j}^{u} + \int_{i} \sum_{\substack{l = l \\ z_{ij}^{-l}u}}^{\infty} \sigma_{j,i}^{u,-l}\left(R_{j,i}^{u,-l}(z')\right) \left[1 - F_{j}\left(R_{j,i}^{u,-l}(z')\right)\right] dG(z') m_{ij}^{-lu}}{dw_{j}} - \frac{dH_{j}\left(w_{j}\right)}{dw_{j}} = q_{j}\vartheta_{j} - \frac{q_{j} + \mu_{j}\sigma_{j}^{e}\left(w_{j}\right) e^{-\vartheta_{j} \max\left[w_{j} - \underline{w}_{j}, 0\right]}}{q_{j} + \mu_{j}\sigma_{j}^{e}\left(w_{j}\right) e^{-\vartheta_{j} \max\left[w_{j} - \underline{w}_{j}, 0\right]}}.$$

Estimated Parameter Values (1993–2017)

Parameter	Symbol	Value	Standard Error
Output elasticity male hours married	γ_y	0.061323	0.021414
Output elasticity female hours married	γ_x	0.294871	0.019642
HH public good EE	X_{ij}^{ee}	1.548974	0.068714
HH public good EU	X_{ij}^{eu}	1.350209	0.078273
HH public good UE	X_{ij}^{ue}	0.868113	0.015459
Wage offer dist shape female	$artheta_j$	0.624682	0.074795
Wage offer dist shape male	ϑ_i	0.329124	0.023045
HH public good single male E	X_i^e	0.939130	0.012839

Estimated Parameters Values (1993–2017)

Parameter	Symbol	Value	Standard Error
Output elasticity male hours single	α_y	0.213736	0.057096
Leisure coefficient male	ζ_y	0.100001	0.032220
HH public good single female E	X_i^e	1.682180	0.036696
Output elasticity female hours single	$lpha_x$	0.364880	0.032255
Leisure coefficient female	ζ_x	0.216164	0.024980
Quit rate female	q_{j}	0.095941	0.001725
Quit rate male	q_{i}	0.012372	0.000486
Love shock arrival rate	δ	0.078570	0.010320

Estimated Parameters Values (1993–2017)

Parameter	Symbol	Value	Standard Error
Marriage market matching efficiency	ϕ	0.036762	0.016128
Male bargaining power	eta_y	0.404279	0.248721
Labor market matching efficiency female	μ_j	0.219364	0.056159
Labor market matching efficiency male	μ_i	0.131590	0.023248
Love shock standard deviation	σ_z	0.568898	0.113556
Love shock mean	μ_z	0.792456	0.060588

Fit: Marriage Market

Fit: Labor Market Men

Fit: Labor Market Women

Application

What are the marriage market implications of this development?

Unemployment Rate and Major Labor Market Reforms

The German labor market miracle

- Comprehensive labor market reforms from 2003–2005 (Hartz reforms).
- Many simultaneous reforms (e.g., means-testing, UI, job search assistance, etc.).
- Favorable business cycle conditions during the 2000s, wage moderation.
- Female employment was relatively more affected by this development/the messreforms.
- Change in socially insured employment (Burda & Seele, 2020):
 - Women: **5.3**% in 2003–08 and **6.8**% in 2008–11.
 - Men: 2.7% in 2003–08 and 3.5% in 2008–11.
- What is the effect on the marriage market? More (labor market) divorces?

Flow Equation System

Equate inflows and outflows:

$$\lambda \alpha_{ij}^{-ll} s_i^{-l} s_j^l + \bar{\tau}_{i,j}^{-l',l} m_{ij}^{-l'l} + \bar{\tau}_{j,i}^{l',-l} m_{ij}^{-ll'} = \left[\delta \left(1 - \alpha_{ij}^{-ll} \right) + \underline{\tau}_{i,j}^{-l,l} + \bar{\tau}_{i,j}^{-l,l} + \underline{\tau}_{j,i}^{l,-l} + \bar{\tau}_{j,i}^{l,-l} \right] m_{ij}^{-ll}$$

The outflow consists of divorces driven by love shocks, $\delta\left(1-\alpha_{ij}^{-ll}\right)$ and labor market transitions that lead to a divorce, $\underline{\tau}_{i,j}^{-l,l}+\underline{\tau}_{i,i}^{l,-l}$, where

$$\underline{\tau_{j,i}^{u,-l}} = \begin{cases} 0 & \text{if } z_{ij}^{-le} \leq z_{ij}^{-lu} \\ \mu_{j} \int_{z_{ij}^{-lu}}^{z_{ij}^{-le}} \sigma_{j,i}^{u,-l} \left(R_{j,i}^{u,-l} \left(z' \right) \right) \left[1 - F_{j} \left(R_{j,i}^{u,-l} \left(z' \right) \right) \right] dG \left(z' \right) & \text{if } z_{ij}^{-le} > z_{ij}^{-lu} \end{cases}$$

Re-estimate Key Parameters

Table: Estimated Labor and Marriage Market Parameters Over Time

Parameter	Symbol	93–97	98–02	03–07	08–12	13–17
Wage offer dist shape female	ϑ_j	0.758	0.753	0.857	0.497	0.743
Wage offer dist shape male	ϑ_i	0.451	0.375	0.347	0.294	0.469
Quit rate female	q_{j}	0.103	0.105	0.085	0.090	0.090
Quit rate male	q_i	0.019	0.015	0.011	0.010	0.010
Matching efficiency female	μ_j	0.219	0.258	0.343	0.188	0.229
Matching efficiency male	μ_i	0.193	0.168	0.144	0.123	0.364
Love shock arrival rate	δ	0.109	0.117	0.088	0.070	0.062
Marriage market matching efficiency	ϕ	0.032	0.073	0.063	0.026	0.024

Source: Authors' calculations based on the SOEP.

Love Shock Divorce Share

• $\delta\left(1-\alpha_{ij}^{-ll}\right)$ divided by total divorces for couple type over time:

(f) Counterfactual (key parameters fixed 93-97)

Labor Market Divorce Share, Male Transition

• $\underline{\tau}_{i,j}^{-l,l}$ divided by total divorces for couple type over time:

(g) Labor Market Divorce Share Men

(h) Counterfactual (key parameters fixed 93–97)

Labor Market Divorce Share, Female Transition

• $\underline{\tau}_{j,i}^{l,-l}$ divided by total divorces for couple type over time:

(i) Labor Market Divorce Share Women

(j) Counterfactual (key parameters fixed 93–97)

Divorce Share by Transition Type

• $\underline{\tau}_{i,j}^{-l,l}\left(\underline{\tau}_{j,i}^{l,-l}\right)$ divided by $\underline{\tau}_{i,j}^{-l,l}+\bar{\tau}_{i,j}^{-l,l}\left(\underline{\tau}_{j,i}^{l,-l}+\bar{\tau}_{j,i}^{l,-l}\right)$ for transition type over time:

1.0

0.8

0.6

0.4

0.2

1993-1997

1998-2002

2008-2012

ee->eu

ee->ue eu->uu

He->HH

2013-2017

Mechanism

- Starting point: think of a low-surplus marriage.
- The unemployed household member(s) have relatively low reservation wages.
- Exogenous changes to the labor market, say, due to the reforms:
 - 1 Labor demand and matching efficiency improved.
 - 2 UI benefits decreased.
- $\rightarrow \mu_j$ and μ_i increase due to (1).
- \rightarrow Reservation wages decrease further due to (2) as b_i and b_j fall.
- → Transitions into employment become more likely.
- → Labor market divorce ("direct effect").
- → Conditional on survival of the marriage, domestic hours and surplus decrease.
- → Love shock divorce becomes more likely ("indirect effect").

Conclusions

- We present a novel structural model that highlights the interaction between decisions made in labor and marriage markets.
- In a first paper, we apply the model to the "German labor market miracle" and find significant feedback on the marriage market → more divorces, both directly (labor market divorces) and indirectly (more low-surplus couples).
- In a second paper, we study the effects of the interaction on marital sorting and income inequality (full heterogeneity).

Thank you for your attention.

Bastian Schulz

bastian.schulz@econ.au.dk

Event Study: Part-time to full-time transitions around Divorce

Household specialization - Time Inputs

Labor market work hours per day

	sin		married				
	U	Ε	UU	UE	EU	EE	
male female	0.57	9.68	0.25	0.66	10.23	10.32	
female	0.67	8.50	0.21	8.02	0.67	7.64	

• Domestic work hours per day (childcare, errands, repairs, routine chores):

	sin		married				
	U	Е	UU	UE	EU	EE	
male female	3.21	2.62	4.99	5.42	3.08	3.13	
female	6.00	3.97	7.39	4.57	9.89	5.90	

Bargaining - No Commitment

- Bargaining powers are (β_i, β_j) , with $\beta_i + \beta_j = 1$.
- Search intensities and transfers are chosen such that the Nash-Product,

$$\left[V_j^{l,-l}\left(z,I_i^{-l},I_j^l\right)-V_j^l\left(I_j^l\right)\right]^{\beta_j}\left[V_i^{-l,l}\left(z,I_i^{-l},I_j^l\right)-V_i^{-l}\left(I_i^{-l}\right)\right]^{\beta_i},$$

is maximized subject to participation and feasibility constraints.

- If a labor market transition or a love shock occurs, search intensities $(\sigma_{i,j}^{-l,l}(.), \sigma_{j,i}^{l,-l}(.))$ and transfers (t_i, t_j) are (re)negotiated.
- Marital Surplus is defined as the gain from marriage for both spouses:

$$\begin{split} S_{ij}^{-ll}\left(z,I_{i}^{-l},I_{j}^{l}\right) & \equiv \left[V_{j}^{l,-l}\left(z,I_{i}^{-l},I_{j}^{l}\right)-V_{j}^{l}\left(I_{j}^{l}\right)\right] \\ & + \left[V_{i}^{-l,l}\left(z,I_{i}^{-l},I_{j}^{l}\right)-V_{i}^{-l}\left(I_{i}^{-l}\right)\right] \end{split}$$

The Value of Singlehood

• The present value of being a single female with $l \in \{e, u\}$ satisfies:

$$rV_{j}^{l}\left(I_{j}^{l}\right) = \underbrace{u_{j}^{l}\left(I_{j}^{l}\right)}_{\text{Flow utility}} + \underbrace{q_{j}\left[V_{j}^{u}\left(b_{j}\right) - V_{j}^{l}\left(I_{j}^{l}\right)\right]\mathbbm{1}\left[l = e\right]}_{\text{Job separation if employed}}$$

$$+ \underbrace{\max_{\sigma_{j}}\left[\sigma_{j}\mu_{j}\int\max\left[V_{j}^{e}\left(w_{j}^{\prime}\right) - V_{j}^{l}\left(I_{j}^{l}\right),0\right]dF_{j}\left(w_{j}^{\prime}\right) - c\left(\sigma_{j}\right)\right]}_{\text{Search intensity choice}}$$

$$+ \underbrace{\lambda_{ij}\iiint\max\left[V_{j}^{l,-l}\left(z^{\prime},I_{i}^{-l},I_{j}^{l}\right) - V_{j}^{l}\left(I_{j}^{l}\right),0\right]dG\left(z^{\prime}\right)s_{i}d\widehat{H}_{i}^{s}\left(I_{i}\right)di}_{\text{Option value of finding a (male) partner}}$$

Option value of finding a (male) partner

• $\widehat{H}_{i}^{s}\left(I_{i}\right)$ is the income distribution for singles of type i, incorporating the wage earnings distribution $H_{i}^{s}\left(w_{i}\right)$ and the unemployment rate u_{i}^{s} .

The Value of Marriage

$$\begin{split} rV_{j}^{l,-l}\left(z,I_{i}^{-l},I_{j}^{l}\right) &= u_{j}^{l,-l}\left(z,I_{i}^{-l},I_{j}^{l}\right) \\ + & \delta \int \left[\max\left[V_{j}^{l}\left(I_{j}^{l}\right),V_{j}^{l,-l}\left(z',I_{i}^{-l},I_{j}^{l}\right)\right] - V_{j}^{l,-l}\left(z,I_{i}^{-l},I_{j}^{l}\right)\right] dG\left(z'\right) \\ + & \widehat{\sigma}_{j,i}^{l,-l}\mu_{j} \int \left[\max\left[V_{j}^{e}\left(w_{j}'\right),V_{j}^{e,-l}\left(z,I_{i}^{-l},w_{j}'\right)\right] \\ - & V_{j}^{l,-l}\left(z,I_{i}^{-l},I_{j}^{l}\right)\right] dF_{j}\left(w_{j}'\right) - c\left(\widehat{\sigma}_{j,i}^{l,-l}\right) \\ + & \widehat{\sigma}_{i,j}^{-l,l}\mu_{i} \int \left[\max\left[V_{j}^{l}\left(I_{j}^{l}\right),V_{j}^{l,e}\left(z,w_{i}',I_{j}^{l}\right)\right] - V_{j}^{l,-l}\left(z,I_{i}^{-l},I_{j}^{l}\right)\right] dF_{i}\left(w_{i}'\right) \\ + & q_{j}\left[\max\left[V_{j}^{u}\left(b_{j}\right),V_{j}^{u,-l}\left(z,I_{i}^{-l},b_{j}\right)\right] - V_{j}^{l,-l}\left(z,I_{i}^{-l},I_{j}^{l}\right)\right] \mathbbm{1}\left[l = e\right] \\ + & q_{i}\left[\max\left[V_{j}^{l}\left(I_{j}^{l}\right),V_{j}^{l,u}\left(z,b_{i},I_{j}^{l}\right)\right] - V_{j}^{l,-l}\left(z,I_{i}^{-l},I_{j}^{l}\right)\right] \mathbbm{1}\left[-l = e\right] \end{split}$$

The Surplus of Marriage

• independent of income due to quasi-linearity of utility, strictly increasing in z.

$$[r + \delta + q_{i} + q_{j}] S_{ij}^{-ll}(z) = v_{ij}^{-ll}(z) + \delta \int_{z_{ij}^{-ll}}^{\infty} S_{ij}^{-ll}(z') dG(z')$$

$$Gains from search for i \Leftarrow + \frac{c'(\widehat{\sigma}_{i,j}^{-l,l})^{1+\kappa}}{1+\kappa} - \frac{c'(\widehat{\sigma}_{i}^{-l})^{1+\kappa}}{1+\kappa}$$

$$Gains from search for j \Leftarrow + \frac{c'(\widehat{\sigma}_{j,i}^{l,-l})^{1+\kappa}}{1+\kappa} - \frac{c'(\widehat{\sigma}_{j}^{l})^{1+\kappa}}{1+\kappa}$$

$$+ q_{i} \max \left[0, S_{ij}^{ul}(z)\right] + q_{j} \max \left[0, S_{ij}^{-lu}(z)\right]$$

$$- \lambda_{ij}\beta_{i} \int_{l \in \{u,e\}} S_{i}^{l} \int_{z_{ij}^{-ll}}^{\infty} S_{ij}^{-ll}(z') dG(z') dj$$

$$- \lambda_{ij}\beta_{j} \int_{i} \sum_{-l \in \{u,e\}} S_{i}^{-l} \int_{z_{ij}^{-ll}}^{\infty} S_{ij}^{-ll}(z') dG(z') di$$

Solution Method

- Linear grids with, 1×1 , 4×4 , 5×5 , 20×20 nodes.
- Three fixed point systems, alternating solution algorithm.
 - 1 Initialize the model.
 - 2 Find fixed point of first system of equations:
 - 16 integrated surplus equations.
 - 3 Find fixed point of second system of equations:
 - Compute reservation wages and search intensities.
 - Find the z_{ij}^{ll} thresholds at the point where the surplus is zero.
 - **4** z_{ij}^{ll} determine $\alpha_{ij}^{ll} \equiv \left(1 G\left(z_{ij}^{ll}\right)\right)$, which determine m_{ij}^{ll} .
 - **5** Use flow equations and exog. distributions of i, j to find s_i^l , s_i^l .
 - 6 Go back to step 2. Repeat until convergence.

Event Study: Marriage Rate around EU Transition

• Relative to matched control group: no EU Transition, matched in t-3.

Event Study: Marriage Rate around UE Transition

• Relative to matched control group: no UE Transition, matched in t-3.

Event Study: Work Hours around Marriage

Event Study: Domestic Hours around Marriage

Event Study: Domestic Hours around Divorce

Event Study: EE Rate around Divorce

Identification

- Marriage market transitions identify the parameters $\{\lambda^{...}, \mu_z, \sigma_z, \delta\}$.
- Labor market transitions identify the parameters $\{\beta_{\mu...}\}$, $\{\beta_{\vartheta}...\}$, and $\{\beta_{q...}\}$.
- The reservation wage of unemployed individuals is a function of the difference in working hours and the household public good.
- The job finding probability linked to a certain reservation wage therefore identifies the preference parameters $\{\zeta_x, \zeta_y\}$ given the observed difference in working hours $l_j^u l_j^e$.
- Household public good production parameters $\{\alpha_x, \alpha_y\}$ cannot be directly identified, since we do not observe the difference in the household public good $X_i^u X_i^e$.
- To identify household public good parameters via job finding, we need to tie down the household public good for one labor market status.
- We use the time input into household production while being unemployed.

