UNIVERSITY OF COPENHAGEN Department of Computer Science (DIKU)

PROJECT OUTSIDE THE COURSE SCOPE

CLOSURE PLOTS FOR BASIC ARITHMETICS

AMR EL SAYED KuID - vwj159

August 30, 2016

Closure Plots for Basic Arithmetics

DIKU - Project Outside the Course Scope

Students Names : Amr El Sayed - VWJ159

University : University of Copenhagen

Institution : Department of Computer Science (DIKU)

General Supervisor : Michael Kirkedal Thmosen

Practical Supervisor : Oleksandr Shturmov

Period : Block 5

Year : 2016

Pages :

Github : https://github.com/Amr116/ClosurePlots

Certificate

This is to certify that the work contained in the thesis entitled "Closure Plots for Basic Arithmetics" by Amr El Sayed has been carried out under our supervision and that this work has not been submitted elsewhere.

General Supervisor

Michael Kirkedal Thmosen m.kirkedal@di.ku.dk Department of Computer Science (DIKU) University of Copenhagen **Practical Supervisor**

Oleksandr Shturmov oleks@di.ku.dk Department of Computer Science (DIKU) University of Copenhagen

1 Abstract

As computer systems continue to grow rapidly in both complexity and scale, developers need tools to help them understand the behavior and performance of these systems. While information visualization is a promising technique, most existing computer systems visualizations have focused on very specific problems and data sources, limiting their applicability.

Resume

Contents

1	Abstract	3
2	Introduction2.1 Purpose	5 5 5 5
3	Overall Description3.1 Product Perspective	5 6 6
4	Analysis 4.1 What? 4.2 How? 4.3 Why?	6 6 6
5	Design	6
6	Implementation	7
7	Testing	7
8	Conclusion	7
ar	opendices	7

2 Introduction

I am a third year computer science student at the University of Copenhagen, I'm enrolled in the undergraduate (bachelor) part of the education. This report is the final product of a 1-block Project Outside the Course Scope. This paper covers the development process of Closure Plots for Basic Arithmetics on those aspects of floating-point that have a direct impact on designers of computer systems.

2.1 Purpose

This document will help the developers to further developing the application, and also it will help instructors and Computer Science students at Department of Computer Science - University of Copenhagen to understand the application and how to interact with e.g. by adding some variables in the mathematical operations or understand the data presented in the application.

2.2 Intended Audience and Reading Suggestions

This document is intended for readers who have studied Computer Science or similar, or are simply interested in the field of IT. Readers are assumed to have basic programming knowledge and some familiarity with web development.

2.3 Project Scope

The software is web-based a visualization tool for illustrating the behaviour of basic arithmetic operations (e.g., Addition, Subtraction, Multiplication, Division) in floating point arithmetic with different precision (e.g., Half, Single, Double, Quadruple).

3 Overall Description

Floating-point arithmetic is considered an esoteric subject by many people. This is rather surprising because floating-point is ubiquitous in computer systems. Almost every language has a floating-point datatype, computers from PCs to supercomputers have floating-point accelerators, most compilers will be called upon to compile floating-point algorithms from time to time, and virtually every operating system must respond to floating-point exceptions such as Overflow, Undeflow, Infinity and Inexpressible.

In computing¹, floating point is the formulaic representation that approximates a **real number**, that include all the rational numbers, such as the integer -5 and the fraction 4/3, and all the irrational numbers, such as $\sqrt{2}$ (1.41421356..., the square root of 2, an irrational algebraic number). Included within the irrationals are the transcendental numbers, such as π (3.14159265...), so as to support a trade-off between range and precision. A number is, in general, represented approximately to a fixed number of significant digits (the significand) and scaled using an exponent in some fixed base.

The most popular code for representing real numbers is called the IEEE Floating-Point Standard, that have three basic components: the sign, the exponent, and the mantissa. The mantissa is composed of the fraction and an implicit leading digit. The exponent base (2) is

¹Computing is any goal-oriented activity requiring, benefiting from, or creating a mathematical sequence of steps known as an algorithm — e.g. through computers. Computing includes designing, developing and building hardware and software systems, processing, structuring, and managing various kinds of information, doing scientific research on and with computers, making computer systems behave intelligently, and creating and using communications and entertainment media.

implicit and need not be stored.

3.1 Product Perspective

A simple way to illustrating the behaviour of basic arithmetic operations, that is by someone sitting physically at a computer or with paper and write down the numbers and finish this calculation process. There are tools available, commercial or open source that support arithmetic operations to digits or binary numbers. Many Operating Systems and applications themselves come with calculator support those basic arithmetic operations. But unfortunately, all these tools usually require a person sitting physically at a computer writing down the numbers one by one.

Thus the need for a web based application to be a visualization tool for illustrating the behaviour of basic arithmetic operations.

3.2 Product Features

The software is used mainly to illustrating the behaviour of basic arithmetic operations in floating point arithmetic with different precision of web based software so the user who is maintaining can access it from virtually any where.

This software is based on the principle of float in the floating point, which is derived from the fact that there is no fixed number of digits before and after the decimal point; that is, the decimal point can float, therefore the implementing of this project focuses on create a visualization tool for illustrating the behaviour of basic arithmetic operations (Addition, Subtraction, Multiplication, Division) to integer number with different precision (Half, Single, Double, Quadruple), and also create the infrastructure that will allow for future development to representing different code for floating point eg. IEEE Floating-Point Standard or something else on this approach.

4 Analysis

- 4.1 What?
- 4.2 How?
- 4.3 Why?

5 Design

To make this application easily accessible for the students, I decided that it should be web-based: meaning that it should be accessed via internet by using a standard web browser. This way there would be no need to distribute the program and all of the required packages for it to run, which we would need if we had to make a program that was not web-based. By making the application web-based, I ensure the accessibility of it for most, if not all, users. The solution will not target mobile/tablet users specifically, but they should be able to use the website nonetheless.

- 6 Implementation
- 7 Testing
- 8 Conclusion

Footnotes

• http://steve.hollasch.net/cgindex/coding/ieeefloat.html