AMBASSADEUR SAFRAN ECL – EPSAC JUSTIFICATION SYSTEME

2019-05-14

INTRODUCTION

OBJECTIF – CONTEXTE

- Un besoin est identifié d'apporter des règles et Sommaire: compétences autour de la justification des systèmes et composants mécaniques.
- Le retour d'expérience observé en Top Copeau montre une amélioration qui peut/doit être renforcée par des formations dispensées par l'EPSAC.
- La formation est destinée aux élèves de 1ere année en fin d'année scolaire Mai/Juin en préparation de la phase de conception du 1er trimestre de la 2eme année.

- Introduction à l'architecture système et cycle en V.
- Processus de validation
- ➤ Conception préliminaire → livrables attendus:
 - Niveau système complet véhicule
 - Niveau sous système liaison sol; motorisation etc
 - Niveau composant aube, arbre, culasse etc
- ➤ Conception détaillée → livrables attendus:
 - Niveau système complet véhicule
 - Niveau sous système liaison sol; motorisation etc
 - Niveau composant aube, arbre, culasse etc

INTRODUCTION - ARCHITECTURE SYSTEME

INTRODUCTION - CYCLE EN V

DESIGN AND TEST RELATION

Test definition
Test matrix
Tests objectives
Pass/Fail Criteria
Assembly
Instrumentation

Design

Tests

Test set-up as manufactured; as assembled; as instrumented Calibration
Test Results
Test Correlation
Operating Range/Limitations

CONCEPTION PRELIMINAIRE

2018-12-05

CONCEPTION PRELIMINAIRE – SYSTÈME COMPLET EXEMPLES JUSTIFICATION CIRCUIT HUILE MOTEUR

Exigences et cas de charges Débits huile (cf tableau) Débit unitaire (L/min) Nb (#) Débit total (L/min) Palier vilebrequin 5.74 7 40.2 Jet piston 3.5 12 42.0 Jet cascade 1.5 2 3.0 Palier cascade 0.5 3 1.5 Jet accessoire 1.5 1 1.5 Palier AAC 0.5 14 7.0 Butée hydraulique 0.15 24 3.6

Tableaux justificatifs

Résultats de pression d'huile sur les paliers vilebrequin moteur 6 cylindres.

Safran Aircraft Engines / Formation EPSAC

CONCEPTION PRELIMINAIRE – SOUS SYSTEME

EXEMPLES JUSTIFICATION AERO CARTER TOURNANT

Exigences et cas de charges RQ-RF-PERF-42-Ed- P53Q52>0.989 CFD 0.983 Not OK* C §12.4.5 P511Q51>0.989 CFD 0.985 Not OK* §12.4.5 |FlowAng|<1° CFD 2.9° Not OK *Note; Spec Update DP/P total 7% - > 2.2 % (DP/P Now 3.2%) > Secondary flows specification > Station 51 1 % W25 spec RQ-RF-PERF-44-Ed-C > Station 52 0.8 % W25 spec ECM-SN-13-0223, RQ-RF-PERF-45-Ed-C

Conditions limites Chargements SAFRAN ACCIONI- 104 St op Ford 80 September 1 September 1

Tableaux	justificatifs
----------	---------------

	FRF	ARF	Units
Flow	characterst	ics	
ΔΡ0/q	4.171	6.143	- %
ΔP0/Pin	0.471	0.597	16
P0out/P0in	0.9953	0.9940	
Ma throat	0.53	0.51	- 2
Choke Margin	23.1	25.4	76
w51-511	1.1		- %
w52-53		2.3	- %
P511Q51	0.9988		
P53Q52		0.9979	
ANG51	-5.14		deg
ANG511	2.64		deg
ANG52	3	2.61	deg
ANG53		4.37	deg
Ps,throat	102788	102831	Pa
Ps,TE	108852	107972	Pa
Pt,throat	124076	121806	Pa
Pt,TE	123751	121600	Pa
Geomet	ric characte	ristics	
Area throat	0.4665	0.4708	mi
Area TE	0.5566	0.5469	mi
Axial Chord (midspan)	264.5	240.0	mm
Stagger (midspan)	7.50	-5.60	deg
Max thick (midspan)	68.0	68.0	mm
TE thick (midenan)	14.0	24.0	

Losses are significantly lower at TO than TOC as expected

Residual swirl increases substantially at TOC - Due to matching

	cut ARF v7		
	FRF	ARF	Units
Flow	characters	tics	
ΔP0/q	12.699	10.365	36
ΔPO/Pin	2.136	1.587	76
POout/P0in	0.9786	0.9841	-
Ma throat	0.73	0.76	
Choke Margin	7.3	6.8	.76
(391-911	11.4	-	26
O52-53		10.3	26
P511Q51	0.9828	1	-
P53Q52		0.9845	141
ANG51	0.24		deg
ANG511	-3.28		deg
ANG52		-3.43	deg
ANG53		-2.72	deg
Ps,throat	25730	24436	Pa
Ps,TE	28650	27500	Pa
Pt,throat	36582	35537	Pa
Pt,TE	36419	35367	Pa
Geomet	ric characte	ristics	
Area throat	0.4665	0.4708	m ²
Area TE	0.5566	0.5469	m ²
Axial Chord (midspan)	264.5	240.0	mm
Stagger (midspan)	7.50	-5.60	deg
Max thick (midspan)	68.0	68.0	mm
TE thick (midspan)	14.9	24.8	mm

CONCEPTION PRELIMINAIRE – COMPOSANT

EXEMPLES PALE OPEN ROTOR MECANIQUE STATIQUE

10 Safran Aircraft Engines / Formation EPSAC

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

CONCEPTION PRELIMINAIRE – PERIMETRE TBD PROPOSITION PLANCHE STANDARD

Exigences et cas de charges

Performances attendues (vitesse; accélération; rayon braquage; score compétition; autonomie etc) - requis

Sollicitations (thermique; mécanique stat et dyn; aérodynamiques; électriques etc)

Cas normal - facultatif Cas limite - facultatif Cas ultime - requis

Architecture / sous systèmes

Architecture générale du véhicule (motorisation; refroidissement etc) - requis

Justification des choix de sous systèmes vs exigences véhicule - facultatif Fonctions et exigences des sous systèmes

Architecture retenue Fonctions du sous système

Procédé de réalisation et matériau - requis

Simulations:

Nature de modélisation (modèle 1D; modèle matlab; modèle CATIA etc) Niveau préliminaire - requis

Conditions limites Chargements

Maillage (si éléments finis) Post traitements réalisés

Illustration justification:

Image déplacement; contraintes; thermiques (en fonction de la pertinence)

Niveau préliminaire - requis

Image du cas de charge dimensionnant - requis Illustration du modèle de calcul dimensionnant - facultatif

Tableaux justificatifs

Tableau récapitulatif des cas de charges.

Résultats (notamment données d'entrée et charges pour sous systèmes)

Niveau préliminaire (cas ultime) - requis (déplacements; charges; contraintes; modes et fréquences; données d'entrée pour composants)

	Cas n	ormal	Cas	limite	Cas ultime			
	Valeur (unité physique)	Marge (vs admissible)	Valeur (unité physique)	Marge (vs admissible)	Valeur (unité physique)	Marge (vs admissible)		
Pièce 1 - Maxi								
Pièce 1 – Zone A								
Pièce 1 – Zone B								

CONCEPTION DETAILLEE

2018-12-05

CONCEPTION DETAILLEE – SYSTÈME COMPLET EXEMPLE PERFORMANCE MOTEUR

Exigences et cas de charges

Performances : Puissances maximales et/ou takeoff → Contrôle moteur

Opérabilité : Puissances mini (flameout) → carburant, pilotage

Domaine de vol: Plafond /

Température ambiante mini / temps

rallumage

Architecture; fonctions; procédés:

Analyse environnement et conditions de fonctionnement → spec essais sol / vol & Interfaces avionneurs
Qualification équipements (turbo, chambre, système d'injection,)
Calibration modèles moteur 1D / 0D

Modélisation 0D MatLab Simulink Objectif

Déterminer les quantités de carburant optimales en fonction des limites opérationnelles du moteur Approche semi-empirique (phéno)

Modèles physiques et lois mathématiques Optimisation multi critères

Modélisation 1D

Objectif:

études exploratoires par modèles prédictifs analyses détaillées

Approche multi physiques

- -Modèle de combustion et transferts thermiques prédictifs
- -Caractérisation extinction moteur
- -Analyse points de fonctionnement turbocompresseur (choc / pompage....)
- -Acoustique remplissage
- -Comportement systèmes d'injection ...

Illustration justification:

Limites opérationnelles (exemple Pression cylindre)

Conditions de fonctionnement sous-systèmes (exemple turbocompresseur) : Points stabilisés et limites de choc

Tableaux justificatifs

Puissances maximales dans le domaine de vol

Zp (ft) / CIT																		
(°C)	-40	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30	35	40	45	51
0				230	230	230	230	230	230	230	230	230	230	230	230	230	230	230
2500				230	230	230	230	230	230	230	230	230	230	230	230	230	230	
5000				230	230	230	230	230	230	230	230	230	230	230	230	230		
7500			230	230	230	230	230	230	230	230	230	230	230	230	230			
10000		230	230	230	230	230	230	228	227	226	225	223	222	220				
12500	218	218	218	218	218	218	217	216	215	213	212	210	208					
15000	205	205	205	205	205	203	202	200	198	197	195	193						
17500	192	192	192	192	191	189	187	184	181	179	177							
20000	180	180	180	180	178	175	170	167	165	163								

Régime turbocompresseur max en cas de panne électrique

	_	_	_			-			-		-	_				_	1-	
ZP [ft] / T1 [*C]	-35	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30	35	40	45	50
0				109	110	110	111	111	112	112	113	113	114	114	115	115	116	116
2500				113	114	114	115	116	116	117	117	118	118	119	119	120	120	
5000				117	118	119	119	120	120	121	122	122	123	123	124	124		
7500			121	122	123	123	124	124	125	125	126	127	127	128	128			
10000		125	126	127	127	128	129	129	130	130	131	132	132	133				
12500	127	129	130	131	132	133	134	134	135	136	136	137	137					
15000	130	131	132	134	135	136	137	138	139	140	141	142						
17500	132	134	135	136	138	139	140	142	143	144	146							
20000	146	145	142	143	141	142	144	145	146	148								

CONCEPTION DETAILLEE – SOUS-SYSTÈME EXEMPLE DYNAMIQUE ROTOR TURBO

	Calculation Point	Speed (RPM)	Temperature Value (°C)	Temperature Reference (%)	Nut Tightening (kN)	Aero Torque (Nm)	Friction Coeff (-)	Press Fit (%)
0	Setting of temperature	0	20	0	C	0	0.12	0
1	Setting of axial load	0	0	0	13	C	0.12	100
2	Bolt Node Fixed	0	0	0	NA	C	0.12	100
3	Frequency analysis							
4	Setting of torque load	0	0	0	NA	2	0.12	100
5	Mission point F	70000	0	60	NA	2	0.12	100
6	Frequency analysis							
7	Mission point A	95000	0	67	NA	2.5	0.12	100
8	Frequency analysis							
9	Mission point B	115000	0	100	NA	3.0	0.12	100
10	Frequency analysis							
11	Mission point C	120000	0	100	NA	3.0	0.12	100
12	Frequency analysis							
13	Mission point D	135000	0	100	NA	3.5	0.12	100
14	Frequency analysis							
15	Mission point E	155000	0	130	NA	4.0	0.12	100
16	Frequency analysis							
17	Return to 0	0	0	0	NA	C	0.12	100
18	Frequency analysis							

Architecture; fonctions; procédés:

Assemblage rotor; serrage en tension 13kN Marge croisement dyn >10% pour modes 1 à 10 et harmoniques 1 à 10.

Frequency = 3874.6 Hz 2nd bending (XZ plane)

CONCEPTION DETAILLEE – COMPOSANT EXEMPLES CAPOT TOURNANT

Chargements: vitesse rotation; thermique; masse visserie Maillage: 3 éléments dans épaisseurs Post traitements réalisés: Cas de charges statiques; dynamiques; rétention

ROBUSTESSE, CAS PWT ULTIMATE Pas de dépassement de la marge à la rupture > OK. Marge à rupture Min = 88% Marge à rupture Min = 88% Avec 30% d'abatement soudure sur Rm. 10/ CONTIGNITE, IT13-211/AIMO SAFRAN

15 Safran Aircraft Engines / Formation EPSAC

JA

CONCEPTION DETAILLEE – PERIMETRE TBD PROPOSITION PLANCHE STANDARD

Exigences et cas de charges

Performances attendues (vitesse; accélération; rayon braquage; score compétition; autonomie etc) - requis

Sollicitations (thermique; mécanique stat et dyn; aérodynamiques; électriques etc)

Cas normal - requis Cas limite - requis Cas ultime - requis

Simulations:

Nature de modélisation (modèle 1D; modèle matlab; modèle CATIA etc) Niveau préliminaire - requis

Conditions limites - requis Chargements - requis

Maillage (si éléments finis) - requis Post traitements réalisés - requis

Architecture / sous systèmes

Architecture générale du véhicule (motorisation; refroidissement etc) - requis

Justification des choix de sous systèmes vs exigences véhicule - requis Fonctions et exigences des sous systèmes

Architecture retenue Fonctions du sous système - requis Procédé de réalisation et matériau - requis

Résultats:

Expérience véhicule antérieur - requis Essais de démonstrations – requis Validation des admissibles matériaux – requis Données entrée modèle ensemble - requis

Illustration justification:

Image déplacement; contraintes; thermiques (en fonction de la pertinence)

Niveau préliminaire - requis

Image du cas de charge dimensionnant - requis Illustration du modèle de calcul dimensionnant - requis

Tableaux justificatifs

Tableau récapitulatif des cas de charges.

Résultats (notamment données d'entrée et charges pour sous systèmes)

Niveau préliminaire (cas ultime) - requis (déplacements; charges; contraintes; modes et fréquences; données d'entrée pour composants)

	Cas n	ormal	Cas	limite	Cas ultime			
	Valeur (unité physique)	Marge (vs admissible)	Valeur (unité physique)	Marge (vs admissible)	Valeur (unité physique)	Marge (vs admissible)		
Pièce 1 - Maxi								
Pièce 1 – Zone A								
Pièce 1 – Zone B								

EXEMPLES EPSA

2018-12-05

BON EXEMPLE – TOP COPEAU OPTIMUS – NOVEMBRE 2018

- Matériau décrit.
- Admissible matériau à préciser.
- Cas de charge décrit.
- Cas de charge non décrit: normal/limite/ultime; valeur des charges.
- Environnement non précisé: température; vibration; fatigue
- Calculs éléments finis: conditions limites, chargement, maillage non précisés.
- Résultats donnés pour contrainte; déplacements et poids.
- Conclusion sur réponses aux exigences. SAFRAN

EXEMPLE AMELIORABLE – TOP COPEAU OPTIMUS – NOVEMBRE 2018

- Matériau décrit.
- Admissible matériau à préciser.
- Cas de charge décrit.
- Cas de charge non décrit: normal/limite/ultime; valeur des charges.
- Environnement non précisé: température; vibration; fatigue
- Calculs éléments finis: conditions limites, chargement, maillage non précisés.
- Résultats donnés pour contrainte; déplacements et poids.
- Pas de conclusion sur réponses aux exigences.

EXEMPLE INSUFFISANT – TOP COPEAU OPTIMUS – NOVEMBRE 2018

- Matériau décrit.
- Admissible matériau à préciser.
- Cas de charge décrit.
- Cas de charge non décrit: normal/limite/ultime; valeur des charges.
- Environnement non précisé: température; vibration; fatigue
- Calculs éléments finis: conditions limites, chargement, maillage non précisés.
- Résultats donnés pour contrainte; déplacements et poids.
- Pas de conclusion sur réponses aux exigences.

CONCLUSION

2018-12-05

CONCLUSIONS

■ La maitrise de la justification:

- Les hypothèses : les exigences supérieures et les sollicitations sont clefs pour assurer la justification des systèmes et composants.
- > La maitrise des charges et sollicitations des composants par un modèle système/voiture est indispensable.

■ La culture du juste besoin:

- Un bon calcul analytique vaut mieux qu'un calcul 3D incomplet.
- Une optimisation ou un calcul avancé ne donnera pas plus que les éléments d'entrée.
- Un tableau de synthèse complet vaut mieux qu'une illustration non pertinente.

