Linear Optics Interferometry

Si-Hui Tan^{1, *} and Peter P. Rohde^{2, †}

¹Singapore University of Technology and Design, 8 Somapah Road, Singapore

²Centre for Quantum Computation and Intelligent Systems (QCIS), Faculty of Engineering & Information Technology, University of Technology Sydney, NSW 2007, Australia

1

1

1 1

1

1

1

1

1

1

1

1

2

2

2

(Dated: September 26, 2016)

Contents

1.	Introduction	
II.	Mathematical background	
II.	Optical encoding of quantum information	
	A.	Single-photons
		1. Polarisation
		2. Dual-rail
		3. Time-bins
	В.	Continuous-variables
		1. Coherent states

IV. Efficient circuit decompositions of linear optics networks

V. Experimental implementation

2. Squeezed states

- A. State preparation
 - 1. Single-photons
 - 2. Bell pairs
 - 3. Coherent states
 - 4. Squeezed states
- B. Linear optics networks
 - 1. Bulk-optics
 - 2. Waveguides
 - 3. Time-bins
- C. Measurement 1. Photodetection
 - 2. Homodyning

VI. Applications for linear optics interferometry

- A. Linear optics quantum computation
- B. Boson-sampling
- C. Quantum metrology
- D. Encrypted quantum computation

VII. State of the art

VIII. Conclusion

Acknowledgments

I. INTRODUCTION

Si-Hui can colour code things she adds like this And Peter can do it like this

Let's add comments and questions like this

II. MATHEMATICAL BACKGROUND

Mathematical representation for LO networks, and very basic background on quantum optics

III. OPTICAL ENCODING OF QUANTUM INFORMATION

- A. Single-photons
- 1. Polarisation
- 2. Dual-rail
- 3. Time-bins
- B. Continuous-variables
- 1. Coherent states
- 2. Squeezed states

IV. EFFICIENT CIRCUIT DECOMPOSITIONS OF LINEAR OPTICS NETWORKS

Discuss the Reck et al. decomposition

- V. EXPERIMENTAL IMPLEMENTATION
- ² A. State preparation
- 2 1. Single-photons
- 2 2. Bell pairs
- Coherent states
 - 4. Squeezed states
 - B. Linear optics networks
 - 1. Bulk-optics
 - 2. Waveguides
 - 3. Time-bins

Discuss fibre-loop architecture

 $[*]sihui_tan@sutd.edu.sg$

[†]dr.rohde@gmail.com; URL: http://www.peterrohde.org

C. Measurement

1. Photodetection

Discuss number-resolved and bucket detectors, multiplexed detection, APDs, current micropillar detectors

2. Homodyning

VI. APPLICATIONS FOR LINEAR OPTICS INTERFEROMETRY

A. Linear optics quantum computation

B. Boson-sampling

C. Quantum metrology

Discuss NOON states - Heisenberg limited Discuss MORDOR scheme

D. Encrypted quantum computation

VII. STATE OF THE ART

Discuss where experiments are at at the moment

VIII. CONCLUSION

Acknowledgments