2)
$$E6\pi\omega f = [1, +\infty.) \rightarrow 1R$$
 pre $f(x) = \frac{1}{x}$. Fix $xxyyz = 1$ $f(x) = \frac{1}{x}$. Fix $xyyz = 1$ $f(x) = \frac{1}{x}$. Fix $xyz = 1$ $f(x) = 1$

37 'E6w
$$f = (0,1] \rightarrow \mathbb{R}$$
 $\mu \varepsilon f(x) = \ln x$ [Ser $\varepsilon i v \alpha i$ ($f \alpha x \mu \varepsilon v \gamma i$).

Fix $\kappa \alpha \theta \varepsilon x \in (0,1)$ $\varepsilon x \circ \mu \varepsilon$ ($x \ln x - x$)' = $\ln x$ $\kappa \alpha i$

$$\int_{X}^{1} \ln t \, dt = \left[t \ln t - t \right]_{X}^{1} = -1 - x \ln x + x \xrightarrow{X \to 0^{+}} -1$$

L'Hospital $\lim_{X \to 0} x \ln x = \lim_{X \to 0} \lim_{X \to 0} \frac{1}{x} = \lim_{X \to 0} -x = 0$

[L'Hospital lim
$$x \ln x = \lim_{x\to 0^+} \frac{\ln x}{\frac{1}{x}} = \lim_{x\to 0^+} \frac{\frac{7}{x}}{\frac{1}{x}} = \lim_{x\to 0^+} -x = 0$$
].

4) 'E GTW
$$f = [0,1) \rightarrow 1R$$
 ME $f(x) = \frac{1}{\sqrt{1-x}}$. Fix with $x \in (0,1)$ Express $\int_{0}^{x} \frac{dt}{\sqrt{1-t}} = -\int_{0}^{x} \frac{q^{4}|t|dt}{\sqrt{q(t)}} = -\int_{1}^{1-x} \frac{ds}{\sqrt{s}} = \left[2\sqrt{s}\right]_{1-x}^{1} = 2(1-\sqrt{1-x})$ $q(t) = 1-t$, $q(t) = 1$, $q(x) = 1-x$

'Apr
$$\int_{0}^{1} \frac{dt}{\sqrt{1-t}} = \lim_{x \to 1^{-}} \int_{0}^{x} \frac{dt}{\sqrt{1-t}} = \lim_{x \to 1^{-}} \left(2 \left(1 - \sqrt{1-x} \right) \right) = 2$$

* $\frac{3\eta}{1}$ repintusen: $\frac{1}{2}$ $\frac{1}{2}$

Av Éva anó ta Fúo o Lou Appúpata 6 to (*) Fer unapper, tôte lépe ou to $\int_{a}^{b} f(x) dx$ Fer opijetal. Av éva anó ta Fúo o lou dypúpata 6 to (*) unapper kal to à Mo envar ± 100 ý kal ta Fúo enai eite ± 100 eite -100, tôte to $\int_{a}^{b} f(x) dx = \pm 100$

Λαρατήρη 6η: 6 προηγούμενος ορισμός δεν εξαρτάται από την επιδορή του $C \in (a_1b)$. Πράγματι, $dv = d \leq c_1 \leq c_2 \leq b$, τότε $\int_{a}^{c_1} f(x) dx + \int_{c_1}^{b} f(x) dx = \int_{a}^{c_2} f(x) dx + \int_{c_2}^{c_2} f(x) dx + \int_{c_2}^{b} f(x) dx + \int_$

Napadéixporta: 1) 'Ester $f = 1R \rightarrow 1R$ ME $f(x) = \frac{x}{x^2+1} - Exorps$

 $\int_{0}^{+\infty} f(t)dt = \lim_{X \to +\infty} \int_{0}^{X} \frac{tdt}{t^{2}+1} = \lim_{X \to +\infty} \left[\frac{1}{2} \ln (t^{2}+1) \right]_{0}^{X} = \lim_{X \to +\infty} \frac{1}{2} \ln (X^{2}+1) = +\infty$

Openius Beieren per $\int_{-\infty}^{0} f(t) dt = -\infty$. $|Apd to \int_{-\infty}^{+\infty} f(t) dt = \int_{-\infty}^{+$

2) E6TW $f = IR \rightarrow IR$ ME $f(X) = \frac{1}{X^2 + 1}$. Total $\int_0^{+\infty} f(H) dt = \lim_{X \to +\infty} \int_0^X \frac{dt}{t^2 + 1} = \lim_{X \to +\infty} \operatorname{azckan} X = \frac{\eta}{Z}.$

Openius Beignanus $\int_{-\infty}^{0} f(t) dt = \frac{\pi}{2} i d\rho d$ $\int_{-\infty}^{+\infty} f(t) dt = \pi$.

3) E67W $f=IR \rightarrow IR$ $\mu\epsilon f(x)=e^{x}$. Total $\int_{0}^{+\infty} f(t)dt = \lim_{X \to +\infty} \int_{0}^{x} e^{t}dt = \lim_{X \to +\infty} \left(e^{x}-1\right) = +\infty$

$$\begin{array}{ll} x \neq 1 & \int_{-\infty}^{0} f(t) dt = \lim_{\chi \to -\infty} \int_{\chi}^{0} e^{t} dt = \lim_{\chi \to -\infty} (1 - e^{\chi}) = 1. \\ \ \, ' \text{Apd} \int_{-\infty}^{+\infty} f(t) dt = +\infty. \end{array}$$

4)
$$|E_{67}w| f = |R| \rightarrow |R| \mu_{E} f(x) = |x|e^{-x^{2}}$$
. Tore

$$\int_{0}^{+\infty} f(t)dt = \lim_{X \to +\infty} \int_{0}^{X} te^{-t^{2}}dt = \lim_{X \to +\infty} \left[\frac{-1}{2}e^{-t^{2}}\right]_{0}^{X} = \lim_{X \to +\infty} \left[\frac{1}{2} - \frac{e^{-x^{2}}}{2}\right] = \frac{1}{2}$$

Opoing Beignary $\int_{-\infty}^{0} f(t)dt = \frac{1}{2} \cdot Apx \int_{-\infty}^{+\infty} |x|e^{-x^{2}}dx = 1$.

- ο Λαρατήρηση; Έστω $f = [a_1 + \infty) \rightarrow \mathbb{R}$ με $f(x) \ge 0$, $\forall x \ge a$ και f ολοκληρώσιμη στο $[a_1 \times]$, $\forall x > a$. Έστω επίσης $F(x) = \int_a^x f(t)dt$. Τότε η F είναι δύξουσα στο $(\alpha_1 + \infty)$. Αρα $\int_a^\infty f(t)dt = \lim_{x \to \infty} F(x)$ υπάρχει α νη F είναι ψραγμένη, αλδιώς $\int_a^\infty f(t)dt = +\infty$.
- ο θεωρημα: Έστω $f = [1, +\infty) \rightarrow \mathbb{R}$ μη αρνητική και Ψθίνουδα.

 Τότε η σειρά $\overset{\infty}{\underset{K=1}{\mathbb{Z}}} f(K)$ συγκαίνει ανν το γενικευμένο ολοκαίμρωμα $\int_{1}^{\infty} f(K) f(K)$ υπαρχει.
- O Πλραξείγματα: 1) Η 6ειρά $\frac{\infty}{2}$ $\frac{1}{k \ln k}$ αποκαίνει. Πρέγματι, ξότω $f(x) = \frac{1}{x \ln x}$, $\forall x \ge 2$. Τότε η f είναι μη αρνητική και 4θίνου6α με $\int_{2}^{\infty} f(t)dt = \lim_{x \to \infty} \int_{2}^{x} \frac{dt}{t \ln t} = \lim_{x \to \infty} \int_{2}^{x} \frac{\psi(t)}{\psi(t)} dt = \lim_{x \to \infty} \left[\ln \psi(t) \right]_{2}^{x}$

$$\Rightarrow \int_{2}^{\infty} f(t)dt = \lim_{X \to \infty} \left(\ln(\ln x) - \ln(\ln 2) \right) = +\infty$$

2) H 6 élpá
$$\stackrel{\infty}{\underset{K=2}{\stackrel{}{\sim}}} \frac{1}{K (\ln K)^2}$$
 ovykdíver. $\stackrel{1}{\underset{E \in Tw}{\sim}} f(x) = \frac{1}{x (\ln x)^2}$ $i \ \forall x \geq 2$.

Tota y f Eiral My Levytiký kali Geroved př

$$\int_{2}^{+\infty} f(t) dt = \lim_{X \to \infty} \int_{2}^{X} \frac{1}{t (\ln t)^{2}} dt = \lim_{X \to \infty} \int_{2}^{X} \frac{q'(t)}{(q(t))^{2}} dt = \lim_{X \to \infty} \left[\frac{1}{q(t)} \right]_{2}^{X}$$

$$Q(t) = \ln t$$

$$=\lim_{X\to\infty}\left(\frac{1}{\ln 2}-\frac{1}{\ln X}\right)=\frac{1}{\ln 2}<\infty.$$

Diddinatery march, and well as &

propertions of the second prints of steel, for the residence of the second seco

anderson An emperaturation of the second control of the first control of the second of

A TO THE RESERVE OF THE PARTY O

F 20-5

 $A = E_{61} \times f = [1, 60] \rightarrow \mathbb{R}$ pre aprecisé xa l'évouse. $N \cdot \delta - 0 - \eta$ $6 = \int_{K=1}^{\infty} f(K) \int_{K} f(K) \int_{K=1}^{\infty} f(K$

Núcy: Anó to perpons ou η favou aprivous neuximus ou η favou otokhypusing se káte sixen pus [K,K+1] kai $f(K+1) \leq \int_{K}^{K+1} f(Y) dY \leq f(K)$, $Y K \in \mathbb{N}$ As unotesoupe ou η serpa $\sum_{K=1}^{\infty} f(K)$ superdiver, the χ and χ and χ and χ soupe χ superdiver, χ and χ superdiver χ superdiversity χ superdiver

Energy doings on to $\int_{1}^{\infty} f(t) dt = \lim_{x \to \infty} \int_{1}^{x} f(t) dt$ underso. Average yet , as to $\int_{1}^{\infty} f(t) dt$ underso, $\int_{1}^{\infty} f(t) dt = \lim_{x \to \infty} \int_{1}^{x} f(t) dt = \int_{1}^{\infty} f(t) dt$ $S_{n} = f(1) + f(2) + \cdots + f(n) \leq f(1) + \sum_{k=1}^{\infty} \int_{1}^{k+1} f(t) dt = f(1) + \int_{1}^{n} f(t) dt$

 \Rightarrow $s_n \leq f(1) + \int_1^\infty f(1) dt \ \ \angle \infty$. Also η and for θ $(s_n)_n$ the prepiration deposition and fine apparatus ξ $f(\kappa)$ or preliver.

KEG. 6 TEXVIXÉS OLOKLÍPOWERS

§1 nivakas Basikur odokdypwydrur

- σς Sf(x)dx
- Ballika olokanpinpata: $\forall \alpha \neq -1$: $\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C$ $\int e^{x} dx = e^{x} + C, \quad (\alpha = -1) \quad \int \frac{1}{x} dx = \ln|x| + C$ $\int \cos x dx = \sin x + C \quad \int \sin x dx = -\cos x + C$ $\int \frac{dx}{\cos^{2}x} = \tan x + C \quad \int \frac{1}{\sin^{2}x} dx = -\omega t \quad x + C$ $\int \frac{dx}{\sqrt{1-x^{2}}} = \arcsin x + C \quad \int \frac{dx}{1+x^{2}} = \operatorname{azckan} x + C$

§ 2 Vnodo 816 μος του S flux1) 41/x) dx

Osupoù pe tov avenuatástason $u = \mathcal{C}(x)$, $du = \mathcal{C}'(x)dx$ Tote $\int fle(x)) \mathcal{C}'(x)dx = \int flu)du$

$$\frac{\text{Napa Suxyud:}}{2\sqrt{x}} \int \frac{e^{\sqrt{x}}}{2\sqrt{x}} = \int e^{u} du = e^{u} + C = e^{\sqrt{x}} + C$$

$$u = \sqrt{x}, du = \frac{dx}{2\sqrt{x}}$$

ξ3 Τριγωνομετρικά ολοκληρώματα: Χρησιμοποιούμε τους τύπους $\sin^2 x + \cos^2 x = 1$, $1 + \tan^2 x = \frac{1}{\cos^2 x}$, $1 + \cot^2 x = \frac{1}{\sin^2 x}$ $los^2 x = \frac{1 + los 2x}{2}$, $sin^2 x = \frac{1 - los 2x}{2}$, sin 2x = 2 sin x cos xSmdx. Sm Bx = 1/2 [cos((2-B)x) - cos((d+B)x)] Smdx. is Bx = 1 [sm(12+B)x)+sm(12-B)x)] 65 d X . 605 /3 X = 1 [605 ((d+B) X) + 605 ((d-13) X] $\operatorname{NaPaSeignata}:1) \int \sin^2 x \, dx = \int \frac{1 - \log 2x}{2} \, dx = \frac{1}{2} \int dx - \frac{1}{2} \int \omega s 2x \, dx$ $=\frac{x}{2}-\frac{1}{4}\int \cos(2x) 2dx = \frac{x}{2}-\frac{1}{4}\int \cos u du$ u=2x, du=2dx $=\frac{X}{7}-\frac{1}{4}\sin u+C=\frac{X}{7}-\frac{1}{4}\sin 2X+C$ 2) EGTW m = 2K+1, n = 2f ME K, l E IN U gog. Ynodogi Joupe (cos x sin x dx = sin x dx = sin x cos x dx = sin x cos x dx $= \int (1 - \sin^2 x)^k \sin^2 x \cos x \, dx = \int (1 - u^2)^k u^{2\ell} \, du = \int \sum_{k=0}^{k} {k \choose k} (-u^2)^k u^{2\ell} \, du$ u= sinx, du = cos x dx $= \sum_{j=0}^{K} {K \choose j} {(-1)^{j}} \int u^{2(j+\ell)} du = \sum_{j=0}^{K} {K \choose j} {(-1)^{j}} \frac{u^{2(j+\ell)+1}}{2(j+\ell)+1} + C$ $= \sum_{j=0}^{\infty} (-1)^{j} \frac{\binom{n}{j}}{2j+l+1} + 1 \times + C$

$$\int \sin^2 x \, \cos^3 x \, dx = \int \sin^2 x \, (1 - \sin^2 x) \cos x \, dx = \int u^2 (1 - u^2) du$$

$$= \int (u^2 - u^4) du = \frac{u^3}{3} - \frac{u^5}{5} + C = \frac{\sin^3 x}{3} - \frac{\sin^5 x}{5} + C$$

Me avalogy Sidsikabid modoxisora to olokalypupata Sosmx. sunx dx yid m=2K kai n=2l+1, min ENUgog.

3)
$$\int \tan^2 x \, dx = \int \frac{\sin^2 x}{\cos^2 x} \, dx = \int \left(\frac{1}{\cos^2 x} - 1\right) dx = \tan x - x + C$$

 $\int \cot^2 x \, dx = \int \frac{\cos^2 x}{\sin^2 x} \, dx = \int \left(\frac{1}{\sin^2 x} - 1\right) dx = -\cot x - x + C$

§4 Ynodogiópos Sfix)dx

HE antikatácidey $x = \varphi(t)$, $dx = \varphi'(t) dt$. Tota $\int f(x) dx = \int f(\varphi(t)) \cdot \varphi'(t) dt$

$$= -\frac{1}{9} \frac{\cos t}{\sin t} + C = -\frac{1}{9} \frac{\sqrt{1-\sin^2 t}}{\sin t} + C = -\frac{1}{9} \frac{\sqrt{1-\frac{x^2}{9}}}{x/3} + C = -\frac{\sqrt{9-x^2}}{9x} + C$$