

Fakultät Umweltwissenschaften | Professur für Geodätische Erdsystemforschung

Session 1.2a Strength, Weakness, Modeling Standards and Processing Strategies of Space Geodetic Techniques

Impact of GLONASS in a rigorous combination with GPS

M. Fritsche⁽¹⁾, C. Rodriguez-Solano⁽²⁾, P. Steigenberger⁽²⁾, K. Sosnica⁽³⁾, K. Wang⁽⁴⁾, R. Dietrich⁽¹⁾, U. Hugentobler⁽²⁾, R. Dach⁽³⁾, M. Rothacher⁽⁴⁾

- (1) Technische Universität Dresden, Germany
- (2) Technische Universität München, Germany
- (3) AIUB, Universität Bern, Switzerland
- (4) Eidgenössische Technische Hochschule Zürich, Switzerland

IAG Scientific Assembly 2013, Potsdam 01-06.09.2013

Outline

Observation data, modeling, processing scheme

Results from a combined GNSS processing

- Station coordinates/velocities
- Orbit validation
- Satellite clocks

Conclusions

Observation data and modeling

- Reprocessing starting on observation level: 1994 2011
- 340 GNSS stations in total (140 with GLONASS observation), 70 SLR stations
- GLONASS included since 01. January 2002
- GPS-only, GLONASS-only and GPS+GLONASS-combined solutions
- SLR: range residuals w.r.t. to microwave-based GNSS satellite orbits
- Processing of 24-hour epoch for clock solutions
- Major modelling aspects

Terrestrial reference frame: ITRF2008/IGS08

GNSS antenna phase center: IGS08.atx

Atmospheric tidal loading: S_1+S_2 tides (Ray and Ponte, 2003)

Atmospheric+oceanic non-tidal loading: GRACE AOD1B (RL04)

Radiation pressure for GNSS satellites: Earth albedo included

Station network

Number of processed stations and satellites

System-specific number of observation days

Relative contribution in terms of time series length

Terrestrial Reference Frame (TRF)

TRF from GPS-only

TRF from GPS+GLONASS

	Translation [mm] /			Scale [ppb]/
IGS08 w.r.t.	Translation rates [mm/y]		Scale rate [ppb/y]	
	X	Y	Z	
GPS-only	-4.3	-7.0	-2.8	-0.41
	-1.1	+1.3	+0.7	-0.02
GPS+GLONASS	-4.1	-6.7	-2.6	-0.42
	-1.0	+1.2	+0.7	-0.02

TRF: Time series analysis

Input: daily position time series

Functional model: annual, semi-annual, draconitic harmonics

Stochastic model: combined white + flicker noise model

ORB: Transformation of satellite positions

ORB: Overlaps from 1-day arcs

GPS:

GPS-only

GPS+GLONASS

GLONASS:

GLONASS-only

GPS+GLONASS

ORB: Overlaps from 3-day arcs

GPS:

GPS-only

GPS+GLONASS

GLONASS:

GLONASS-only

GPS+GLONASS

ORB: SLR range residuals

GNSS satellite clocks (30sec)

Modified Allan Deviation (MDEV) from a 5-day interval in 2008

PPP Phase Residuals

Conclusions

- Impact of including GLONASS on TRF parameters
 - no systematic effect for linear TRF parameters
 - slight reduction of daily position repeatabilities
- Combination with GPS and 3-day arc length significantly improves GLONASS orbits
- Conventional consideration of albedo modeling required
- Study of remaining model errors based on precise clocks products (yaw maneuvers modeling for both GNSS)

Acknowledgement

The authors acknowledge the support provided by the German Research Foundation (DFG) and the Swiss National Science Foundation (SNSF).