STEREO VISION

SUBMITTED BY:

Shivangi

Ruturaj Hagawane

APPROACH - 1

SSD SUM OF SQUARE DIFFERENCES

Algorithm:

- Input Left image
- Input Right image
- Take a pixel in left image
- Create a window around that pixel
- Find corresponding pixel in right image with window match technique
- Choose the best pixel using SSD

$$\sum_{(i,j)\in W} (I_1(i,j) - I_2(x+i,y+j))^2$$

$$\sum_{(i,j)\in W} (I_1(i,j) - I_2(x+i,y+j))^2$$

MAP

Left Image

Right Image

Left image **Ground Truth**

Color SSD

Left image **Ground Truth**

SAWTOOTH

Left Image

Right Image

Ground Truth

Color SSD

Ground Truth

Color SSD

VENUS

Left Image

Right Image

Ground Truth

B/W SSD

Color SSD

Ground Truth

Color SSD

BULL

Left Image

Right Image

Ground Truth

B/W SSD

Color SSD

POSTER

Left Image

Right Image

Ground Truth

Color SSD

Ground Truth

Color SSD

BARN 1

Left Image

Right Image

Ground Truth

B/W SSD

Color SSD

Ground Truth

Color SSD

BARN 2

Left Image

Right Image

Ground Truth

Color SSD

Ground Truth

Color SSD

TSUKUBA

Left Image

Right Image

Ground Truth

B/W SSD

Color SSD

Ground Truth

B/W SSD

Color SSD

Approach - 2

BELIEF PROPAGATION (MARKOV RANDOM FIELD)

TERMS:

- Data Cost: Cost of matching pixel yi to xi.
- Smoothness Cost: Cost of matching disparities to neighboring disparities.

$$energy(Y,X) = \sum_{i} DataCost\left(y_{i},x_{i}\right) + \sum_{j=\text{neighbours of i}} SmoothnessCost\left(x_{i},x_{j}\right)$$

Hidden node (disparity) receives message from neighboring nodes which contains probabilities of different disparities.

Example: For disparities 1-5, x1 will receive probability of disparity = 1 from C probability of disparity = 2 from C probability of disparity = 3 from C probability of disparity = 4 from C probability of disparity = 5 from C

BELIEF PROPAGATION

- Send message in 'X' direction of operation of belief propagation.
- Get belief propagation from all directions except 'X'.
- Add them up with data and smoothness cost
- Send them in 'X' direction

ALGORITHM :

For each iteration

do belief propagation on right.

do belief propagation on left.

do belief propagation on up.

do belief propagation on down.

Calculate MAP (Maximum a posteriori)

REFERENCES:-

- A taxonomy and evaluation of dense two-frame stereo correspondence algorithms.
- Markov Random Fields with efficient approximations.
- http://vision.middlebury.edu/stereo/data/
- http://nghiaho.com/?page_id=1366