Vzorové řešení zadání **A**

- 1) U každého z následujících výroků rozhodněte, zda je pravdivý nebo nepravdivý. Je-li nepravdivý, uveďte protipříklad. U každého z následujících výroků rozhodněte, zda je pravdivý nebo nepravdivý. Je-li nepravdivý, uveďte protipříklad.
- a) $(\exists x \in \mathbb{R} : \sin x \ge \frac{\pi}{2}) \implies (\exists y \in \mathbb{R} : |\cos y| < -1)$ pravdivý nepravdivý protipříklad:
- pravdivý nepravdivý protipříklad: $f(x) = \frac{\sin x}{x}, a = 0$ b) Má-li funkce f v bodě a vlastní limitu, je v a spojitá.
- $\frac{pravdiv\acute{y}}{nepravdiv\acute{y}}$ protipříklad: $\sum_{n=1}^{\infty} \frac{1}{n}$ c) Platí-li $\lim_{n\to\infty} a_n = 0$, potom $\sum_{n=1}^{\infty} a_n$ konverguje.
- 2) Nakreslete graf funkce f , pro kterou platí:

Je spojitá na $\mathbb{R} - \{-1\}$, pro x = -1 má nespojitost 2. druhu přičemž je zde spojitá zprava,

$$f(-1) = f(1) = 0$$
, $f(2) = 1$, $\lim_{x \to \infty} f(x) = 2$,

$$\lim_{x \to -1^+} f'(x) = -\infty, \lim_{x \to 1} f'(x) = \infty, \lim_{x \to 2^-} f'(x) = 0, \lim_{x \to 2^+} f'(x) = 1$$

 $\lim_{x \to -1^{+}} f'(x) = -\infty, \lim_{x \to 1} f'(x) = \infty, \lim_{x \to 2^{-}} f'(x) = 0, \lim_{x \to 2^{+}} f'(x) = 1,$ $f''(x) > 0 \text{ pro } x \in (-\infty, -1) \text{ a } x \in (-1, 1), \quad f''(x) < 0 \text{ pro } x \in (1, 2) \text{ a } x \in (2, \infty),$

přímka y = x + 2 je asymptota grafu funkce pro $x \rightarrow -\infty$

3) Najděte lokální extrémy funkce $\sqrt[3]{(x-5)^2(x+1)}$

$$f'(x) = \frac{2(x-5)(x+1) + (x-5)^2}{3 \cdot \sqrt[3]{(x-5)^4 (x+1)^2}} = \frac{\cancel{(x-5)} (2x+2+x-5)}{3 \cancel{(x-5)} \sqrt[3]{(x-5)(x+1)^2}} = \frac{x-1}{\sqrt[3]{(x-5)(x+1)^2}}$$

f'(x) = 0 pro x = 1, $f'(x) \not\equiv 1$ pro $x = -1 \lor x = 5$.

Znaménko 1. derivace:

$$\underline{\underline{f_{\text{max}}} = f(1)} = \sqrt[3]{16 \cdot 2} = \underline{\underline{2\sqrt[3]{4}}}, \qquad \underline{\underline{f_{\text{min}}} = f(5) = 0}.$$

4) Zjistěte, je-li řada $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{2\sqrt{n}}$ konvergentní nebo divergentní. V případě konvergence zjistěte, kolik členů je třeba sečíst, aby platilo $|s-s_n| < 10^{-3}$.

Řada je alternující, použijeme Leibnizovo kriterium: má platit $|a_n| > |a_{n+1}| \wedge \lim_{n \to \infty} |a_n| = 0$:

$$\sqrt{n} < \sqrt{n+1} \Rightarrow \frac{1}{2\sqrt{n}} > \frac{1}{2\sqrt{n+1}} \wedge \lim_{n \to \infty} \frac{1}{2\sqrt{n}} = 0 \Rightarrow \underline{\text{rada je konvergentn\'e}}.$$

V konvergentní alternující řadě platí $\left|s-s_n\right|<\left|a_{n+1}\right|$ - hledáme n, pro které je $\frac{1}{2\sqrt{n+1}}<10^{-3}$.

$$\frac{1}{2\sqrt{n+1}} < 10^{-3} \iff 2\sqrt{n+1} > 10^{3} \iff \sqrt{n+1} > 5 \cdot 10^{2} \iff n+1 > 25 \cdot 10^{4}$$

Pro požadovanou přesnost je třeba sečíst alespoň 250 000 členů řady.

5) Je dána funkce
$$f(x, y) = \sqrt{4x^2 - y^2}$$
 a bod $A = [4; 4\sqrt{3}]$.

- a) Najděte a nakreslete definiční obor funkce f.
- b) Najděte rovnici vrstevnice funkce f procházející bodem A a tuto vrstevnici nakreslete do předchozího obrázku.
- c) Vypočítejte a do stejného obrázku zakreslete $\operatorname{grad} f(A)$.

a)
$$4x^2 - y^2 \ge 0 \Leftrightarrow y^2 \le 4x^2 \Leftrightarrow |y| \le 2|x|$$

$$D_f = \left\{ (x, y) \in \mathbb{R}^2 \middle| |y| \le 2|x| \right\}$$

b) Funkční hodnota v bodě A:
$$f(A) = \sqrt{4 \cdot 16 - 16 \cdot 3} = 4$$

Rovnice vistevnice
$$\sqrt{4x^2 - y^2} = 4 \Rightarrow 4x^2 - y^2 = 16 \Rightarrow \frac{x^2}{4} - \frac{y^2}{16} = 1$$

- hyperbola s poloosami a = 2, b = 4.

c) grad
$$f(x, y) = \left(\frac{4x}{\sqrt{4x^2 - y^2}}, -\frac{y}{\sqrt{4x^2 - y^2}}\right)$$
, grad $f(A) = \left(4; -\sqrt{3}\right)$

6) Vypočítejte dvojný integrál $I = \int_{M} xy \, dx \, dy$, kde M je množina ohraničená křivkami o rovnicích $y = \frac{1}{x}$, $y = \sqrt{x}$ a

x = 2. Množinu M nakreslete.

Průsečíky paraboly a hyperboly:
$$\frac{1}{x} = \sqrt{x} \implies x^3 = 1$$
, tj. $x = 1$, tedy
$$M = \left\{ (x, y) \middle| 1 \le x \le 2 \land \frac{1}{x} \le y \le \sqrt{x} \right\}$$

$$I = \int_{-1}^{2} dx \int_{-1}^{\sqrt{x}} xy \, dy = \int_{-1}^{2} dx \left[\frac{1}{2} xy^2 \right]_{-1}^{\sqrt{x}} = \frac{1}{2} \int_{-1}^{2} \left(x^2 - \frac{1}{x} \right) dx = 1$$

$$= \frac{1}{2} \left[\frac{x^3}{3} - \ln x \right]_1^2 = \frac{1}{2} \left(\frac{8}{3} - \ln 2 - \frac{1}{3} \right) = \frac{7}{6} - \frac{1}{2} \ln 2$$

