

Machine Learning and Hard Constraints

Sometimes, you want a ML model to respect hard constraints

This happens for example:

- When there are physical laws that you know to be true
- In case of safety concerns
- When ethical aspects are involved

In principle, we could still use our max-based Lagrangian approach:

$$\operatorname{argmin}_{\omega} \{ L(y) + \lambda^T \max(0, g(y)) \} \text{ with: } y = f(\hat{x}; \omega)$$

Where g is the constrained quantity

- Intuitively, for a large enough λ ...
- ...It should be possible to reach approximate satisfaction on the training set

A Case Study: Fairness in ML Models

As a case study, say we want to estimate the risk of violent crimes

- This is obviously a very ethically sensitive (and questionable) task
- Our model may easily end up discriminating some social groups

Loading and Preparing the Dataset

We will start by loading the "crime" UCI dataset

We will use a pre-processed version:

```
In [2]: data = util.load communities data(data folder)
         attributes = data.columns[3:-1]
         target = data.columns[-1]
         data.head()
Out[2]:
                                                         pct12- pct12- pct16-
                                                                             pct65up pctUrban ... pctForeignBorn pctBornStateRe
                    communityname state fold
                                               pop race
           1008 EastLampetertownship PA
                                             11999 0
                                                        0.1203 0.2544 0.1208
                                                                             0.1302
                                                                                     0.5776
                                                                                              ... 0.0288
                                                                                                               0.8132
           1271 EastProvidencecity
                                             50380 0
                                                        0.1171 0.2459 0.1159
                                                                                     1.0000
                                                                                                 0.1474
                                        6
                                                                             0.1660
                                                                                                               0.6561
           1936 Betheltown
                                             17541 0
                                                        0.1356 0.2507 0.1138
                                                                                     0.8514
                                                                                                 0.0853
                                                                                                               0.4878
                                   CT
                                                                             0.0804
                                                                                     0.0000
           1601 Crowleycity
                                  LA
                                             13983 0
                                                        ... 0.0029
                                                                                                               0.9314
                Pawtucketcity
                                                        0.1230 0.2725 0.1276 0.1464
                                                                                              ... 0.1771
                                   RΙ
           293
                                             72644 0
                                                                                     1.0000
                                                                                                               0.6363
           5 rows × 101 columns
```

The target is "violentPerPop" (number of violent offenders per 100K people)

Loading and Preparing the Dataset

We prepare for normalizing all numeric attributes

- The only categorical input is "race" (0 = primarily "white", 1 = primarily "black")
- Incidentally, "race" is a natural focus to check for discrimination

We define the train-test divide and we identify the numerical inputs

```
In [3]: tr_frac = 0.8 # 80% data for training
    tr_sep = int(len(data) * tr_frac)
    nf = [a for a in attributes if a != 'race'] + [target]
```

We normalize the data and convert to float 32 (to make Tensor Flow happier)

```
In [4]: tmp = data.iloc[:tr_sep]
    scale = tmp[nf].max()
    sdata = data.copy()
    sdata[nf] /= scale[nf]

sdata[attributes] = sdata[attributes].astype(np.float32)
    sdata[target] = sdata[target].astype(np.float32)
```

Loading and Preparing the Dataset

Finally we can separate the training and test set

```
In [5]: tr = sdata.iloc[:tr_sep]
ts = sdata.iloc[tr_sep:]
tr.describe()
```

Out[5]:

	fold	рор	race	pct12-21	pct12-29	pct16-24	pct65up	pctUrban	medIncome
count	1594.000000	1594.000000	1594.000000	1594.000000	1594.000000	1594.000000	1594.000000	1594.000000	1594.000000
mean	5.515056	0.007309	0.031995	0.266962	0.398600	0.230577	0.226739	0.695383	0.272795
std	2.912637	0.030287	0.176042	0.084005	0.090329	0.098553	0.091256	0.445105	0.108972
min	1.000000	0.001368	0.000000	0.084191	0.134635	0.075644	0.031457	0.000000	0.104413
25%	3.000000	0.001943	0.000000	0.225230	0.350689	0.185238	0.167614	0.000000	0.190973
50%	5.000000	0.003035	0.000000	0.250919	0.385173	0.205575	0.223138	1.000000	0.249509
75%	8.000000	0.005922	0.000000	0.283824	0.419908	0.235735	0.275298	1.000000	0.334641
max	10.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000

8 rows × 99 columns

Baseline

Let's establish a baseline by tackling the task via Linear Regression

Model loss: 0.0053 (training)

Baseline Evaluation

...And let's check the results

```
In [7]: tr_pred = nn.predict(tr[attributes])
    r2_tr = r2_score(tr[target], tr_pred)

    ts_pred = nn.predict(ts[attributes])
    r2_ts = r2_score(ts[target], ts_pred)

    print(f'R2 score: {r2_tr:.2f} (training), {r2_ts:.2f} (test)')

R2 score: 0.66 (training), 0.60 (test)
```

- They are not super (definitely not <u>PreCrime</u> level), but not alwful either
- Some improvements (not much) can be obtained with a Deeper model

We will keep Linear Regression as a baseline

Discrimination Indexes

Discrimination can be linked to disparate treatment

- "race" may not be even among the input attributes
- ...And yet it may be taken into account implicitly (i.e. via correlates)

But we can check whether the model treats differently different groups:

Indeed, our model has a significant degree of discrimination

Discrimination Indexes

A number of discrimination indexes attempt to measure discrimination

- Whether ethics itself can be measured is highly debatable!
- ...But even if imperfect, this currently the best we can do

We will use the <u>Disparate Impact Discrimination Index</u>

- lacksquare Given a set of categorical protected attribute (indexes) J_p
- ...The regression for of the regression form of the index ($DIDI_r$) is given by:

$$\sum_{j \in J_p} \sum_{v \in D_j} \left| \frac{1}{m} \sum_{i=1}^m y_i - \frac{1}{|I_{j,v}|} \sum_{i \in I_{j,v}} y_i \right|$$

- lacksquare Where D_j is the domain of attribute j
- lacksquare ...And $I_{j,v}$ is the set of example such that attribute j has value v

DIDI

Let's make some intuitive sense of the DIDI_r formula

$$\sum_{j \in J_p} \sum_{v \in D_j} \left| \frac{1}{m} \sum_{i=1}^m y_i - \frac{1}{|I_{j,v}|} \sum_{i \in I_{j,v}} y_i \right|$$

- \blacksquare $\sum_{i=1}^{m} y_i$ is just the average predicted value
- The protected attribute defines social groups
- \blacksquare $\frac{1}{|I_{i,v}|} \sum_{i \in I_{j,v}} y_i$ is the average prediction for a social group

We penalize deviations from the global average

- Obviously this is not necessarily the best definition, but it is something
- In general, different tasks will call for different discrimination indexes

...And don't forget the whole "can we actually measure ethics" issue ;-)

DIDI

We can compute the DIDI via the following function

```
def DIDI_r(data, pred, protected):
    res, avg = 0, np.mean(pred)
    for aname, dom in protected.items():
        for val in dom:
            mask = (data[aname] == val)
            res += abs(avg - np.mean(pred[mask]))
    return res
```

protected contains the protected attribute names with their domain

For our original Linear Regression model, we get

```
In [9]: tr_DIDI = util.DIDI_r(tr, tr_pred, protected)
    ts_DIDI = util.DIDI_r(ts, ts_pred, protected)
    print(f'DIDI: {tr_DIDI:.2f} (training), {ts_DIDI:.2f} (test)')

DIDI: 0.26 (training), 0.28 (test)
```

Fairness Constraints

Discrimination indexes can be used to state fairness constraints

For example, we may require:

$$DIDI_r(y) \leq \theta$$

If the chosen index is differentiable...

...Then we may try to inject the constraint in a NN via a semantic regularizer

■ For example, we may use a loss function in the form:

$$L(y, \hat{y}) + \lambda \max(0, \text{DIDI}_r(y) - \theta)$$

For non-differentiable indexes (e.g. those found in classification), we can:

- Use a differentiable approximation (with some care!)
- Use an approach that does not require differentiability, e.g. this or that

Fairness as a Semantic Regularizer

We can once again use a custom Keras model

```
class CstDIDIRegressor(keras.Model):
    def __init__(self, base_pred, attributes, protected, alpha, thr): ...

def train_step(self, data): ...

@property
def metrics(self): ...
```

The full code can be found in the support module

- We subclass keras. Model and we provide a custom training step
- alpha is the regularizer weight
- thr is the DIDI threshold

In this case, we do not need a custom batch generator

Fairness as a Semantic Regularizer

The main logic is in the first half of the train_step method:

```
def train step(self, data):
    x, y true = data # unpacking the mini-batch
    with tf.GradientTape() as tape:
        y pred = self.based pred(x, training=True) # obtain predictions
        mse = self.compiled loss(y true, y pred) # base loss (kept external)
        ymean = k.mean(y pred) # avg prediction
        didi = 0 # DIDI computation
        for aidx, dom in self.protected.items():
            for val in dom:
                mask = (x[:, aidx] == val)
                didi += k.abs(ymean - k.mean(y pred[mask]))
        cst = k.maximum(0.0, didi - self.thr) # Regularizer
        loss = mse + self.alpha * cst
```

■ The main loss is defined when calling compile

Training the Constrained Model

Let's try and train the model, trying to roughly halve the DIDI

- Important: it will be a good idea to need to keep all examples in every batch
- Mini-batches can be used, but make constraint satisfaction (more) stochastic

```
In [10]: didi thr = 0.13
         base pred = util.build ml model(input size=len(attributes), output size=1, hidden=[])
         nn2 = util.CstDIDIModel(base pred, attributes, protected, alpha=5, thr=didi thr)
         history = util.train ml model(nn2, tr[attributes], tr[target], validation split=0., epochs=2000,
         util.plot training history(history, figsize=figsize)
                                                 Figure
                                                                                       loss
           1.0
           0.8
           0.6
           0.4
           0.2
           0.0
                         250
                                  500
                                          750
                                                           1250
                                                   1000
                                                                    1500
                                                                             1750
                                                                                      2000
                                                  epochs
```

Constrained Model Evaluation

Let's check both the prediction quality and the DIDI

```
In [11]: tr_pred2 = nn2.predict(tr[attributes])
    r2_tr2 = r2_score(tr[target], tr_pred2)
    ts_pred2 = nn2.predict(ts[attributes])
    r2_ts2 = r2_score(ts[target], ts_pred2)
    tr_DIDI2 = util.DIDI_r(tr, tr_pred2, protected)
    ts_DIDI2 = util.DIDI_r(ts, ts_pred2, protected)

print(f'R2 score: {r2_tr2:.2f} (training), {r2_ts2:.2f} (test)')
    print(f'DIDI: {tr_DIDI2:.2f} (training), {ts_DIDI2:.2f} (test)')

R2 score: 0.38 (training), 0.25 (test)
    DIDI: 0.12 (training), 0.11 (test)
```

The constraint is satisfied with some slack, leading to reduced performance

- lacktriangleright A large λ (what we have here) slows down training
- \blacksquare ...But a small λ may lead to significant constraint violation

Penalty Method

We can think of increasing λ gradually

...Which leads to the classical penalty method

- $\lambda^{(0)} = 1$
- $\bullet \omega^{(0)} = \arg\min_{\omega} \left\{ L(y) + \lambda^{(0)T} \max(0, g(y)) \right\} \text{ with: } y = f(\hat{x}; \omega)$
- For k = 1..n
 - \blacksquare If $g(y) \leq 0$, stop
 - Otherwise $\lambda^{(k)} = r\lambda^{(k)}$, with $r \in (1, \infty)$

This is a simple, but flexible approach for constrained (numeric) optimization

- It works even with non differentiable constraints
- ...If your training engine can handle them, that is

Drawbacks of the Penalty Method

The penalty method can be quite effective, but it has some drawbacks:

- 1. You need an optimal solver
 - Without one, you only get approximate results (no guarantees)
- 2. The max (or square) is important
 - Without that, penalties turn into rewards for satisfied constraints
- 3. You may need arbitrarily large weights (and there is no way around this)

Lagrangian Dual Approach

A nice compromise is provided by the Lagrangian Dual approach

We start from the fact that solving:

$$\min_{\omega} \left\{ L(y) + \lambda^T \max(0, g(y)) \right\} \text{ with: } y = f(\hat{x}; \omega)$$

...Always provides a lower bound on the true constrained optimum

- The reason is that on the original feasible space, all penalty terms are 0
- ...And therefore the minimum cannot be worse than the original one

Therefore, it makes sense to pick λ so as to maximize this bound

$$\underset{\omega}{\operatorname{argmax}} \min_{\lambda} \left\{ L(y) + \lambda^{T} \max(0, g(y)) \right\} \text{ with: } y = f(\hat{x}; \omega)$$

Solving this problem given the best possible lower bound

Lagrangian Dual Approach

Now, let's look more carefully at our problem:

$$\underset{\omega}{\operatorname{argmax}}_{\lambda} \min_{\omega} \mathcal{L}(\lambda, \omega)$$
where: $\mathcal{L}(\lambda, \omega) = L(y) + \lambda^{T} \max(0, g(y))$

with: $y = f(\hat{x}; \omega)$

This is a bi-level optimization problem

It can be proved that it is concave in λ

- Therefore, it can be solved via sub-gradient descent
- lacksquare ...Even for non-differentiable $oldsymbol{L},oldsymbol{g}$, and f

By doing so, we increase λ only when and where it is needed

■ It is a strong mitigation for the issues of the penalty method

Lagrangian Dual Approach

If additionally $\mathcal{L}(\lambda, \omega)$ is differentiable in ω

...Then we can solve the problem via alternate gradient descent/ascent:

- $\lambda^{(0)} = 0$
- $\bullet \omega^{(0)} = \arg\min_{\theta} \mathcal{L}(\lambda^{(0)}, \omega)$
- For k = 1..n (or until convergence):
 - Obtain $\lambda^{(k)}$ via an ascent step with sub-gradient $\nabla_{\lambda}\mathcal{L}(\lambda,\omega^{(k-1)})$
 - lacksquare Obtain $\omega^{(k)}$ via a descent step with sub-gradient $abla_{\omega}\mathcal{L}(\lambda^{(k)},\omega)$

The approach is easy to implement in tensorflow/PyTorch

We just need to use two optimization steps

- lacksquare It works since small changes to λ
- lacksquare ...Usually require small changes to $oldsymbol{\omega}$
- Hence, we can maintain the two vectors approximately optimal

Implementing the Lagrangian Dual Approach

We will implement the Lagrangian dual approach via another custom model

```
class LagDualDIDIRegressor(MLPRegressor):
    def __init__ (self, base_pred, attributes, protected, thr):
        super(LagDualDIDIRegressor, self).__init__ ()
        self.alpha = tf.Variable(0., name='alpha')
        ...

    def __custom_loss(self, x, y_true, sign=1): ...

    def train_step(self, data): ...

    def metrics(self): ...
```

- We no longer pass a fixed alpha weight/multiplier
- Instead we use a trainable variable

Implementing the Lagrangian Dual Approach

In the __custom_loss method we compute the Lagrangian/regularized loss

```
def custom loss(self, x, y true, sign=1):
    y pred = self.base pred(x, training=True) # obtain the predictions
    mse = self.compiled loss(y true, y pred) # main loss
    ymean = tf.math.reduce mean(y pred) # average prediction
    didi = 0 # DIDI computation
    for aidx, dom in self.protected.items():
        for val in dom:
            mask = (x[:, aidx] == val)
            didi += tf.math.abs(ymean - tf.math.reduce mean(y pred[mask]))
    cst = tf.math.maximum(0.0, didi - self.thr) # regularizer
    loss = mse + self.alpha * cst
    return sign*loss, mse, cst
```

- The code is the same as before
- ...Except that we can flip the loss sign via a function argument (i.e. sign)

Implementing the Lagrangian Dual Approach

In the training method, we make two distinct gradient steps:

```
def train step(self, data):
   x, y true = data # unpacking
   with tf.GradientTape() as tape: # first loss (minimization)
       loss, mse, cst = self. custom loss(x, y true, sign=1)
   tr vars = self.trainable variables
   wgt vars = tr vars[:-1] # network weights
   mul vars = tr vars[-1:] # multiplier
   grads = tape.gradient(loss, wgt vars) # adjust the network weights
    self.optimizer.apply gradients(zip(grads, wgt vars))
   with tf.GradientTape() as tape: # second loss (maximization)
        loss, mse, cst = self. custom loss(x, y true, sign=-1)
   grads = tape.gradient(loss, mul vars) # adjust lambda
    self.optimizer.apply gradients(zip(grads, mul vars))
```

- In principle, we could even have used two distinct optimizers
- That would allow to keep (e.g.) separate momentum vectors

Training the Lagrangian Dual Approach

The new approach leads less oscillations at training time

```
In [12]: base pred = util.build ml model(input size=len(attributes), output size=1, hidden=[])
          nn3 = util.LagDualDIDIModel(base pred, attributes, protected, thr=didi thr)
         history = util.train ml model(nn3, tr[attributes], tr[target], validation split=0.,
                                           epochs=2000, batch size=len(tr))
          util.plot training history(history, figsize=figsize)
                                                 Figure
            0.20
                                                                                       loss
            0.15
                                                                                       cst
            0.10
             0.05 -
             0.00 -
           -0.05
                           250
                                                             1250
                                    500
                                            750
                                                    1000
                                                                     1500
                                                                              1750
                                                                                      2000
                                                    epochs
          Model loss: -0.0058 (training)
```

Lagrangian Dual Evaluation

Let's check the new results

```
In [13]: tr_pred3 = nn3.predict(tr[attributes])
    r2_tr3 = r2_score(tr[target], tr_pred3)
    ts_pred3 = nn3.predict(ts[attributes])
    r2_ts3 = r2_score(ts[target], ts_pred3)
    tr_DIDI3 = util.DIDI_r(tr, tr_pred3, protected)
    ts_DIDI3 = util.DIDI_r(ts, ts_pred3, protected)

print(f'R2 score: {r2_tr3:.2f} (training), {r2_ts3:.2f} (test)')
    print(f'DIDI: {tr_DIDI3:.2f} (training), {ts_DIDI3:.2f} (test)')

R2 score: 0.62 (training), 0.55 (test)
    DIDI: 0.13 (training), 0.14 (test)
```

- The DIDI has the desired value (on the test set, this is only roughly true)
- ...And the prediction quality is much higher than before!

Some References

- Boyd, Stephen, Stephen P. Boyd, and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.
- Andrew Cotter, Heinrich Jiang, Maya R. Gupta, Serena Wang, Taman Narayan,
 Seungil You, Karthik Sridharan: Optimization with Non-Differentiable
 Constraints with Applications to Fairness, Recall, Churn, and Other Goals. J.
 Mach. Learn. Res. 20: 172:1-172:59 (2019)
- Ferdinando Fioretto, Pascal Van Hentenryck, Terrence W. K. Mak, Cuong Tran, Federico Baldo, Michele Lombardi: Lagrangian Duality for Constrained Deep Learning. ECML/PKDD (5) 2020: 118-135
- Berk, R.; Heidari, H.; Jabbari, S.; Joseph, M.; Kearns, M. J.; Morgenstern, J.; Neel, S.; and Roth, A. 2017. A Convex Framework for Fair Regression. CoRR abs/1706.02409. URL http://arxiv.org/abs/1706.02409