TP2 Multi - Audiffren	Pt		A	3 C	D	Note	
Régulation de température simple boucle (10 pts)							
1 Donner le schéma électrique correspondant au cahier des charges.	1	Α				1	
2 Programmer votre T2550 afin de réaliser la régulation représentée ci-dessus.	1	Α				1	
3 Régler votre maquette pour avoir une mesure de 40% pour une commande de 50%.	1	Α				1	
Relever l'évolution de la mesure X en réponse à un échelon de commande Y. En déduire le sens de fonctionnement du régulateur (inverse ou direct).	1	Α				1	
5 Régler la boucle de régulation utilisant la méthode par approches successives.	4	В				3	
6 Enregistrer l'influence d'une perturbation du débit d'eau chaude sur la température, en fermant V6.	2	С				0,7	Votre réglage n'est pas d'assez bonne qualité pour pouvoir obtenir des courbes intéressantes.
II. Régulation cascade (10 pts)							
1 Rappeler le fonctionnement d'une boucle de régulation cascade.	1	В				0,75	
2 Programmer le regulateur pour obtenir le fonctionnement en regulation cascade conformement au schema 11 ci-	3	В				2,25	
Régler la boucle de régulation esclave en utilisant la méthode par approches successives. On ne changera pas le réglage de la boucle maître.	2	D				0,1	
4 Enregistrer l'influence d'une perturbation du débit d'eau chaude sur la température, en fermant V6.	2	D				0,1	
5 Expliquez l'intérêt d'une régulation cascade en vous aidant de vos enregistrements. Citez un autre exemple pratique.	2	D				0,1	
		No	ote :	11/	20		

I. Régulation de température simple boucle (10 pts)

<u>Cahier des charges</u>: On se propose de réaliser une régulation de température. L'organe de réglage sera la vanne FV2. La vanne FV1 sera contrôlée par le T2550.

1. Donner le schéma électrique correspondant au cahier des charges.

P01 un réglage interne et P est commandée par TT1

2) Programmer votre T2550 afin de réaliser la régulation représentée ci-dessus.

Entrée :

1	TagName	01M01_04		LIN Name	01M01_04	
1	Туре	AI_UIO		DBase	<local></local>	
1	Task	3 (110ms)		Rate	0	
	MODE	AUTO		Alarms		
F	Fallback	AUTO		Node	>00	
				Sitello	1	
F	PV	0.0	%	Channel	1	
	HR	100.0	%	InType	mA	
ı	LR	0.0	%	HR_in	20.00	mΑ
				LR_in	4.00	mΑ
H	HiHi	100.0	%	AI	0.00	mΑ
F	Hi	100.0	%	Res	0.000	Ohms
L	Lo	0.0	%			
L	LoLo	0.0	%	CJ_type	Auto	
H	Hyst	0.5000	%	CJ_temp	0.000	
				LeadRes	0.000	Ohms
F	Filter	0.000	Secs	Emissiv	1.000	
	Char	Linear		Delay	0.000	Secs
Į	UserChar					
				SBreak	Up	
F	PVoffset	0.000	%	PVErrAct	Up	
	Alm0nTim	0.000	Secs	Options	>0000	
	Alm0fTim	0.000	Secs	Status	>0000	

pid:

TagName	pid		LIN Name	pid	
Гуре	PID		DBase	<local></local>	
Task .	3 (110ms)		Rate	0	
Mode	AUTO		Alarms		
FallBack	AUTO				
			HAA	100.0	%
PV	0.0 AUTO	%	LAA	0.0	%
SP	0.0	%	HDA	100.0	%
OP	0.0	%	LDA	100.0	%
SL	0.0	%			
TrimSP	0.0	%	TimeBase	Secs	
RemoteSP	0.0	%	XP	100.0	%
Track	0.0	%	TI	0.00	
			TD	0.00	
HR_SP	100.0	%			
LR_SP	0.0	%	Options	00101100	
HL_SP	100.0	%	SelMode	00000000	
LL_SP	0.0	%			
			ModeSel	00000000	
HR_OP	100.0	%	ModeAct	00000000	
_R_OP	0.0	%			
HL_OP	100.0	%	FF_PID	0.0	%
LL_OP	0.0	%	FB_OP	0.0	%

sorties:

TagName	02P02_04		LIN Name	02P02_04	
Туре	AO_UIO		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
MODE	AUTO		Alarms		
Fallback	AUTO		Node	>00	
			Sitello	2	
→OP	0.0	%	Channel	2	
HR	100.0	%	OutType	mA	
LR	0.0	%	HR_out	20.00	mA
			LR_out	4.00	mA
Out	0.0	%	AO	0.00	mA
Track	0.0	%			
Trim	0.000	mA	Options	>0000	
			Status	>0000	

TagName	02P01_04		LIN Name	02P01_04	
Туре	AO_UIO		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
MODE	MANUAL		Alarms		
Fallback	MANUAL		Node	>00	
			Sitello	2	
OP	0.0	%	Channel	1	
HR	100.0	%	OutType	mA	
LR	0.0	%	HR_out	20.00	mΑ
			LR_out	4.00	mΑ
Out	50.0	%	AO	0.00	mΑ
Track	0.0	%			
Trim	0.000	mΑ	Options	>0000	
			Status	>0000	

3)Régler votre maquette pour avoir une mesure de 40% pour une commande de 50%.

TagName	pid		LIN Name	pid	
Туре	PID		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
Mode	MANUAL		Alarms		
FallBack	MANUAL				
			HAA	100.0	%
PV	28.1	%	LAA	0.0	%
SP	40.0	%	HDA	100.0	%
OP	50.0	%	LDA	100.0	%
SL	40.0	%			
TrimSP	0.0	%	TimeBase	Secs	
RemoteSP	0.0	%	XP	100.0	%
Track	0.0	%	TI	0.00	
			TD	0.00	
HR_SP	100.0	%			
LR_SP	0.0	%	Options	00101100	
HL_SP	100.0	%	SelMode	00000000	
LL_SP	0.0	%			
			ModeSel	00100000	
HR_OP	100.0	%	ModeAct	00100001	
LR_OP	0.0	%			
HL_OP	100.0	%	FF_PID	0.0	%
LL_OP	0.0	%	FB_OP	50.0	%

4)Relever l'évolution de la mesure X en réponse à un échelon de commande Y. En déduire le sens de fonctionnement du régulateur (inverse ou direct).

5) Régler la boucle de régulation utilisant la méthode par approches successives.

20.00

TD

II. Régulation cascade (10 pts)

1)Rappeler le fonctionnement d'une boucle de régulation cascade.

Une boucle de régulation cascade est un régulation avec 2 régulateur, il vas y avoir 1 régulateur maître (il commande) et 1 régulateur esclave (qui vas être commander par le régulateur maître.

2) Programmer le régulateur pour obtenir le fonctionnement en régulation cascade conformément au schéma TI ci-dessus.

- 3) je ne sais pas4) je ne sais pas5) je ne sais pas