偏振

2024年6月12日

摘要

本实验实际观察了光的偏振特性,并通过相关测量,学习了如何确定偏振片轴的方向,验证了透射光强与透射轴夹角的关系,并研究了 1/4 玻片, 1/2 玻片和全玻片的特性。

1 观测布儒斯特角和偏振器的特性

1.1 原理

将电磁波分解为两个正交的矢量 P, S。P 代表平行于入射面,S 垂直于入射面。根据菲涅耳公式,在特定的角度,可以使 P 光的反射率为 0,这样放射光就变成了完全线偏光。这个特定的角度就是布儒斯特角。由菲涅耳公式可知:此时 $\theta_i + \theta_t = \frac{\pi}{5}$,故有 $\theta_B = \arctan n$ 。

为了检验偏振光,我们必须知道偏振光通过偏振片后的光强规律,即马吕斯定律。设光场振动方向和透射轴方向成 θ ,有: $T_{\theta} = (T_1 - T_2)\cos^2\theta + T_2$ 。

1.2 实验过程及数据分析

首先我们测定布儒斯特角和起偏器 B 的透射轴夹角,我们先读出正入射时的方位角,转动平台,找到反射光能完全被偏振片消光的位置,这就是布氏角的位置,对应的起偏器角度就是透射轴在水平方向上的角度。(因为我们通过光路确保入射面水平,处于布氏角时透射轴水平能实现完全消光)为了减少误差,在扰动后重复上述过程,测量三次取平均。结果如下表:

开始时平台方位角	354°05′
α_{B_i}	P_{para_i}
297.5°25′	89.2°
297.5°28′	89.0°
297.5°13′	89.5°

表 1: 布氏角与起偏器透射轴

得到平均值 $\alpha_B=297.5^{\circ}22'$,故而布氏角测量值 $\theta_B=56.5^{\circ}17'$,折射率 n=1.532。同时,取平均,起偏器的透射轴在水平方位的方位角为 $P_{para_i}=89.23^{\circ}$ 。

进一步,来验证马吕斯定律。使用光强探测器,调整两偏振片(起偏器 P 和检偏器 A)的夹角,在不同夹角下,测定光强 I_m ,结果如下表:

$\theta(^{\circ})$	0.0	15.0	30.0	45.0	60.0	75.0	80.0	84.0	87.0	90.0
$I_m(mV)$	6.247	5.821	4.672	3.117	1.561	0.429	0.197	0.078	0.023	0.006

表 2: 马吕斯定律

测量中, $R = 100\Omega$, 偏正器 P 透射轴在水平方向的方位角同上。为验证马吕斯定律, 将数据归一化, 并做出图, 如下图:

图 1: 马吕斯定律验证

残差平均值为: -0.004, 很接近 0。图中实验所测点几乎都落在了虚线上。说明理论与实验符合良好, 马吕斯定律得到了验证。

2 波片的特性研究

2.1 原理

除了常规的某个轴透光的偏振片,还有"推迟器"。其作用是利用快轴与慢轴的折射率不同,使快慢轴之间的电场产生相位差。而这一相位差又会改变偏振光的偏振态。通过测定这样的偏振态我们就可以知道待测推迟器的性质。

2.2 实验过程及数据分析

首先我们有两个 1/4 玻片,其中之一已知快轴的大致方向,我们需要知道其轴方向。将待测波片 C 放在已正交消光的偏振器 P 和 A 之间,旋转 C,三者仍消光时,C 的轴方向便平行于 P 的透射轴方向。这是由于对于线偏光而言,若光与轴之间有夹角,经过 1/4 玻片后变为圆或者椭圆偏光,无法完全消光,故保证完全消光可保证快慢轴方向与透射轴方向相同。通过光强探测器来观测消光情况,尽量调整到完全消光。偏振片 P,A 的配置与第一部分实验相同。最终结果如下:

 C_0 快轴在竖直方向(快轴大致沿偏振片的白点方向,由此可区分快慢轴),示数为 $C_0 = 65.3^{\circ}$ 。 C_x 的某个轴在竖直方向时,示数为 $C_x = 222^{\circ}$ 。

下面探究将两个 1/4 玻片组合会等效得到什么。通过偏振片的矩阵表达推导可知,当两玻片轴平行或者正交的时候,要么等效于全玻片(快轴正交),要么等效于 1/2 玻片(快轴平行)。

先使 C_0 快轴与上面测定的 C_x 的轴平行(都在竖直方向),改变起偏器产生的偏振光的水平夹角,通过调整检偏器使其消光,得到消光时检偏器的竖直夹角,结果如下表:

起偏与水平夹角 β(°)	15.0	30.0	45.0
检偏与竖直夹角 α(°)	12.5	27.4	43.2

表 3: 双 1/4 玻片组合 1

在这一情况下,消光方向与竖直方向的夹角近似相当于偏振方向与水平方向的夹角。如下图:

图 2: 情况一示意图

消光垂直于起偏,线偏振的特性几乎不变,也就是这相当于全玻片。进一步,前述 C_x 的轴指的是其慢轴。

类似的,使 C_0 快轴与上面测定的 C_x 的轴垂直。也就是将 C_0 的快轴调整到水平方向 ($C_0 = 155.3^{\circ}$)。在此基础上改变起偏器产生的偏振光的水平夹角,通过调整检偏器使其消光,得到消光时检偏器的竖直夹角,结果如下表:

起偏与水平夹角 β(°)	15.0	30.0	45.0
检偏与竖直夹角 α(°)	165.5	149.2	130.1

表 4: 双 1/4 玻片组合 2

在这一情况下, α 与 β 近似互补, 如下图:

图 3: 情况二示意图

此时,起偏方向与消光方向近似对称。这就是半波片的效果。

综合以上, C_x 的快轴与位置轴方向应垂直,即位于读数为 132° 处。

线偏光经过 1/4 玻片时,会变为椭圆偏振光(圆偏光也是特殊的椭圆偏振,只是长短轴相等)。让线偏光经过 C_0 ,观察其通过 1/4 玻片时的特性。只用一个 1/4 玻片,快轴置于竖

直方向,起偏器和检偏器按前面的方式设置,与上面调整起偏器与检偏器的位置的做法相同, 只不过要寻找检偏器的最大值(即长轴方向),得到下述结果:

起偏与水平夹角 β(°)	22.5	45.0	67.5
长轴与竖直夹角 α(°)	92.9	72.7	4.0
$I_{max}(mV)$	4.175	2.433	2.553
$I_{min}(mV)$	0.583	2.065	0.505

表 5: 一个 1/4 玻片的情况

当然,为了消除误差影响,完全挡住光源时, $I_0=0.005mV$,用该数据修正 I_{min} 和 I_{max} 进行下面的计算。由上述数据,可计算玻片的相延。由理论推导知,相位差 δ 满足 $|\sin \delta_r| = \frac{2\sqrt{I_{min}/I_{max}}}{\sin{(2\beta)(1+I_{min}/I_{max})}}$, $delta_r$ 的符号有旋向和波的具体表达式(delta 加在 x 方向还是 y 方向)决定,不过对椭圆长轴方位角的计算无影响,结果如下:

$$\beta = 22.5^{\circ}, \quad \sin \delta_r = 0.9248, \quad \delta_r = 67.64^{\circ}$$

 $\beta=45.0^{\circ}, \quad \sin\delta_r=0.9966, \quad \delta_r=85.2^{\circ}$

 $\beta = 67.5^{\circ}$, $\sin \delta_r = 1.047$, 由于误差,取 $\sin \delta_r = 1.0$ 以进行下面的计算, $\delta_r = 90^{\circ}$

最后计算长轴方位角,有两种算法,一是 $90^{\circ} - \alpha$,二是 $\Psi = \frac{1}{2}\arctan\left(\tan\left(2\beta\right) \cdot \cos(\delta)\right)$,计算结果如下表:

β(°)	22.5	45.0	67.5
用 α 计算 (°)	-2.9	17.3	86
用δ计算 (°)	-10.41	45	90

表 6: 椭圆方位角

注意:在第一个结果中,由于转向规定以及超过 90 度带来的问题,故对最终结果取负。在 $\beta=45^{\circ}$ 时,接近圆偏光,所以 Ψ 为任何值都是合理的,也可以看到较大的差距(这也是圆偏光带来的差距);针对最后结果,由于两倍的 67.5° 超过了 tan 的第一个分支,故而应该取 tan 的第二个分支,得到 $arctan(0)=180^{\circ}$ 。虽然存在误差,但是在可接受的范围内。

3 讨论

在前述实验中,所谓消光,实际上是取光强探测器的读数最小值。不同设备的消光的数值不同,有 0,有正,有负。这是由于光强探测器本身就有轻微的电流,在不加负载光电流的情况下就可能出现 0,正,负。而实验空间本身就有光强。种种因素叠加,便使得该读数的绝对值意义不大,真正有用的是相对值。因此确保读数最小即可认为是消光。

另外,实际偏振片是不能得到完美的线偏光的。所以在最后的实验中,即便设置为 45° 我们仍能看到最大值和最小值,只不过差距较小。还是一个椭圆偏振光。

A 附录

原始数据见下表:

