• Class B Push-Pull Output Stage: BJT Implementation:

- ➤ Also known as *Comple-mentary Output Stage*
- ➤ Uses dual symmetric power supplies
- ➤ Typical values used:
 ±3 V, ±5 V, ±12 V, ±15 V
- ightharpoonup Q-point: $V_i = V_o = 0$ $\Rightarrow V_{be1} = V_{eb2} = 0$

Circuit Schematic

- \triangleright Both Q_1 and Q_2 cutoff
 - ⇒ Zero standby power
- \triangleright Note: $V_{be1} + V_{eb2} = 0$ (always)
- > As $V_i \uparrow beyond zero$, $V_{be1} \uparrow and V_{eb2} \downarrow$
 - \Rightarrow Q_1 moves towards turning on and Q_2 is pushed deeper into cutoff
- $\succ V_i$ has to be at least equal to V_{γ} for Q_1 to conduct till then, V_o remains zero
- \triangleright Once V_i becomes greater than V_{γ} , Q_1 turns on, supplies current to the load (R_L) , and V_o starts to increase

- \triangleright Similarly, as $V_i \checkmark below zero$, $V_{be1} \checkmark and V_{eb2} \uparrow$
 - \Rightarrow Q_2 moves towards turning on and Q_1 is pushed deeper into cutoff
- Again, V_i has to be at least equal to $-V_{\gamma}$ for Q_2 to conduct till then, V_o remains zero
- \succ Once V_i becomes less than $-V_{\gamma}$, Q_2 turns on, pulls current away from the load (R_L), and V_o starts to decrease (remains negative)
- > Thus, the name *Push-Pull*
 - Each transistor remains on for little less than half a cycle

The Voltage Transfer Characteristic (VTC)

- \triangleright Note the **deadband** $(V_o = 0)$ **between** $\pm V_{\gamma}$
- \triangleright Consider *positive* V_i :
 - For $V_i > V_{\gamma}$, V_o follows V_i with a slope of almost unity and without any phase shift (CC stage)
 - $As V_o \uparrow$, $V_{ce1} \checkmark$, and Q_1 starts to move towards saturation
 - \Rightarrow Positive $V_{o,max} = V_{CC} V_{CEI}(HS)$
 - However, for this to happen, V_i has to be greater than V_{CC} (since there is an extra drop of V_{bel})
 - ⇒ This point can never be reached
- \triangleright The characteristic for negative V_i can be similarly understood

Crossover Distortion