

4 de mayo de 2025

Universidad Nacional de Colombia

Oscar Guillermo Riaño Castañeda

Andrés David Cadena Simons acadenas@unal.edu.co

Problema 1:

Sea $(E, \|\cdot\|)$ un espacio vectorial normado. Dado r > 0, considere $C = B(0, r) = \{y \in E : \|y\| < r\}$. Determine el funcional de Minkowski¹ de C.

Solución:

Recuerde que dado C abierto, convexo con $0 \in C$, el funcional de Minkowski se define como $p(x) = \inf\{\alpha > 0 : \alpha^{-1}x \in C\}, x \in E$.

Problema 2:

Sea E espacio vectorial normado.

- (I) Sea $W \subset E$ un subespacio propio de E y $x_0 \in E \setminus W$, tal que $d := d(x_0, W) > 0$. Demuestre que existe $f \in E^*$ tal que f = 0 restricto a W, $f(x_0) = d$ y $||f||_{E^*} = 1$.
- (II) Sea $W \subset E$ un subespacio propio cerrado de E y $x_0 \in E \setminus W$. Demuestre que existe $f \in E^*$ tal que f = 0 restricto a W y $f(x_0) \neq 0$.

Solución:

Problema 3:

Sea $(E, \left\| \cdot \right\|_E)$ y $(F, \left\| \cdot \right\|_F)$ espacios de Banach.

- (I) Sea $K \subset E$ un subespacio cerrado de E. Definimos la relación sobre E dada por $x \sim_K y$ si y solo si $x y \in K$.
 - (a) Muestre que \sim_K es una relación de equivalencia sobre E.
 - (b) Muestre que el espacio cociente E/K es un espacio de Banach con la norma

$$\|x+K\|_{E/K} = \inf_{k \in K} \|x-k\|\,, \quad x \in E.$$

Es decir, debe verificar que el espacio cociente es un espacio vectorial normado, cuya norma lo hace completo.

(II) Sea $T \in L(E, W)$ tal que existe c > 0 para el cual

$$||Tx||_F \ge c \, ||x||_E \,,$$

para todo $x \in E$. Si K denota el espacio nulo de T y R(T) el rango de T, muestre que $\overline{T}: E/K \to R(T)$ dada por $\widetilde{T}(x+K) = T(x), x \in E$, está bien definida y es un isomorfismo. Esto es $\widetilde{T} \in L(E/K, R(T))$ y $\widetilde{T}^{-1} \in L(R(T), E/K)$.

Solución:

Problema 4:

Considere los espacios C([0,1]) y $C^1([0,1])$ ambos equipados con la norma del supremo $\|f\|_{L^\infty}=\sup_{x\in[0,1]}|f(x)|$. Definimos el operador derivada $D:C^1([0,1])\to C([0,1])$ dado por $f\to f'$. Muestre que D es un operador no acotado, pero su gráfico G(D) es cerrado.

Solución: