# Conditional Random Fields

Jacob Andreas / MIT 6.864 / Spring 2020

#### Review: Hidden Markov Models

# Part-of-speech tagging

Noun Verb Noun Noun Num Noun

Fed raises interest rates 0.5 percent

"The Fed has caused interest rates to get .5% bigger"

# Part-of-speech tagging

Noun Noun Verb Noun Num Noun

Fed raises interest rates 0.5 percent

"Rates are interested (but only 0.5%) in Fed raises" (???)

# Part-of-speech tagging

Noun Noun Verb Noun Num Noun

Fed raises interest rates 0.5 percent

We can't just guess labels in isolation—need to model sentence context!

## Named entity recognition

#### Grammar Induction

```
1 2 3 2 3 1 1 3 4 2 5

f84hh4-<u>18da4d</u>-wr-<u>o40hi</u>-<u>eb3</u>-m8bb-9e8d-<u>i74</u>-1e0h3-0i-<u>0</u>
```

# HMMs as generative models



#### HMMs as generative models



HMMs define a joint distribution p(O, Q) over hidden states and observations.

#### Queries

If we're given the parameters A, B and  $\pi$ , what questions can we answer?

# Queries: joint probability

Q1: what is the joint probability of a pair of (observation, tag) sequences?



## Queries: marginal probability

$$p(O) = \sum_{Q} p(O, Q)$$

(num tags)(sequence length) of these!

#### Queries: marginal probability

Q2: what is the **marginal** probability of an observation?

# Forward algorithm: notice that

$$p(O_{:t}, q_t = j) = p(o_t \mid q_t = j) \sum_{i} p(O_{:t-1}, q_{t-1} = i) p(q_t = j \mid q_{t-1} = i)$$

$$p(O_{:t},q_t=j) = p(O_{:t-1},q_t=j) \ p(o_t \mid q_t=j)$$
 HMM definition



$$= \left(\sum_{i} p(O_{:t-1}, q_{t-1} = i, q_t = j)\right) p(o_t \mid q_t = j)$$
marginalizing over q<sub>t-1</sub>

$$= \left(\sum_{i} p(O_{:t-1}, q_{t-1} = i)p(q_t = j \mid q_{t-1} = i)\right) p(o_t \mid q_t = j)$$
HMM definition



#### The forward algorithm

$$p(O_{:t}, q_t = j) = p(o_t \mid q_t = j) \sum_{i} p(O_{:t-1}, q_{t-1} = i) p(q_t = j \mid q_{t-1} = i)$$

$$\alpha(t,j) = b_j(o_t) \sum_i \alpha(t-1,i) \ a_{ij}$$

$$\alpha(1,j) = \pi_j \ b_j(o_1)$$



# The forward algorithm

Forward algorithm: 
$$\alpha(t,j) = b_j(o_t) \sum_i \alpha(t-1,i) \ a_{ij}$$

Noun  $\pi_{\text{Noun}}b_{\text{Noun}}(\text{Fed})$   $\alpha(1,\text{Noun}) \longrightarrow \alpha(2,\text{Noun})$ 

Verb  $\pi_{\text{Verb}}b_{\text{Verb}}(\text{Fed})$   $\alpha(1,\text{Verb})$ 

Fed raises interest

## The forward algorithm

$$p(O) = \sum_{i} p(O_{:T}, q_{T} = i) = \sum_{i} \alpha(T, i)$$

$$\uparrow \qquad \uparrow \qquad i$$

$$T := \text{sequence length}$$

#### The backward algorithm

Q2: what is the **marginal** probability of an observation?

$$p(O_{t+1:} \mid q_t = i) = \sum_{j} p(q_{t+1} = j \mid q_t = i) \ p(o_{t+1} \mid q_{t+1} = j) \ p(O_{t+2:} \mid q_{t+1} = j)$$

$$\beta(t,i) = \sum_{j} a_{ij} b_{j}(o_{t+1}) \beta(t+1,j)$$

$$\beta(T, i) = 1$$

Same trick!

#### The forward-backward algorithm

#### Now we know how to compute:

$$\alpha(t, i) = p(O_{:t}, q_t = i)$$

$$\beta(t, i) = p(O_{t+1}; | q_t = i)$$

$$\alpha(t, i) \beta(t, i) = p(O, q_t = i)$$

$$\alpha(t, i) \ a_{i,j} \ b_j(o_{t+1}) \ \beta(t+1, j) = p(O, q_t = i, q_{t+1} = j)$$

Q3: what is the **most probable** assignment of tags to observations?

$$\operatorname{argmax}_{Q} p(O, Q)$$

$$\max_{Q_{t-1:}} p(O_{:t}, Q_{:t-1}, q_t = j) = \max_{i} \left( \max_{Q_{t-2:}} p(O_{:t-1}, Q_{t-2:}, q_{t-1} = i) \right)$$

$$\cdot p(q_t = j \mid q_{t-1} = i) \cdot p(o_t \mid q_t = j)$$

$$\max_{Q_{t-1:}} p(O_{:t}, Q_{:t-1}, q_t = j) = \max_{Q_{t-1:}} p(O_{:t-1}, Q_{:t-1}, q_t = j) \ p(o_t \mid q_t = j)$$

$$+ MMM definition$$

$$= \max_{Q_{t-2:}, i} p(O_{:t-1}, Q_{:t-2}, q_{t-1} = i, q_t = j) p(o_t | q_t = j)$$

$$\text{separating } Q_{t-2:} \text{ and } q_{t-1}$$

$$= \max_{Q_{t-2:}, i} p(O_{:t-1}, Q_{:t-2}, q_{t-1} = i) p(q_t = j \mid q_{t-1} = i) p(o_t \mid q_t = j)$$
HMM definition

$$= \max_{i} \left( \max_{Q_{t-2:}} p(O_{:t-1}, Q_{t-2:}, q_{t-1} = i) \right) p(q_t = j \mid q_{t-1} = i) p(o_t \mid q_t = j)$$
separating args to max

Q3: what is the **most probable** assignment of tags to observations?

 $\operatorname{argmax}_{Q} p(O, Q)$ 

$$\max_{Q_{t-1:}} p(O_{:t}, Q_{:t-1}, q_t = j) = \max_{i} \left( \max_{Q_{t-2:}} p(O_{:t-1}, Q_{t-2:}, q_{t-1} = i) \right)$$

$$\cdot p(q_t = j \mid q_{t-1} = i) \cdot p(o_t \mid q_t = j)$$

Q3: what is the most probable assignment of tags to observations?

$$\operatorname{argmax}_{Q} p(O, Q)$$

 $\max_{Q_{t-1}} p(Q_{:t}, Q_{:t-1}, q_t = j) = \max_{i} \max_{Q_{t-2}} p(Q_{:t-1}, Q_{t-2}, q_{t-1} = i)$ 

best length-t tag seq. ending in /

best length-t-1 tag seq. ending in i

$$\max_{Q_{t-2:}} p(O_{:t-1}, Q_{t-2:}, q_{t-1} = i)$$

$$p(q_t = j \mid q_{t-1} = i) \cdot p(o_t \mid q_t = j)$$

Q3: what is the **most probable** assignment of tags to observations?

$$\operatorname{argmax}_{Q} p(O, Q)$$

$$\max_{Q_{t-1:}} p(O_{:t}, Q_{:t-1}, q_t = j) = \max_{i} \left( \max_{Q_{t-2:}} p(O_{:t-1}, Q_{t-2:}, q_{t-1} = i) \right)$$

$$\cdot p(q_t = j \mid q_{t-1} = i) \cdot p(o_t \mid q_t = j)$$

$$\delta(t,j) = b_j(o_t) \max_i \delta(t-1,i) \ a_{ij} \qquad \delta(1,j) = \pi(j) \ b_j(o_1)$$

# Supervised training

Where do  $\pi$ , A and B come from?

#### Supervised training

#### Where do $\pi$ , A and B come from?



If we have labeled sequences, just count.

## Supervised training

#### Where do $\pi$ , A and B come from?

$$\pi_i = p(q_1 = i) = \frac{\#(q_1 = i)}{\#\text{sequences}}$$

$$a_{ij} = p(q_t = j \mid q_{t-1} = i) = \frac{\#(q_{t-1} = i, q_t = j)}{\#(q_{t-1} = i, q_t = *)}$$

$$b_i(w) = p(o_t = w \mid q_t = i) = \frac{\#(q_t = i, o_t = w)}{\#(q_t = i)}$$

If we have labeled sequences, just count.

#### Unsupervised training

$$a_{ij} = p(q_t = j \mid q_{t-1} = i) = \frac{\#(q_{t-1} = i, q_t = j)}{\#(q_{t-1} = i, q_t = *)}$$

$$a_{ij} = p(q_t = j \mid q_{t-1} = i) = \frac{\sum_{O} \sum_{t} p(q_{t-1} = i, q_t = j \mid O)}{\sum_{O} \sum_{t} p(q_{t-1} = i, q_t = * \mid O)}$$

If we don't have labeled sequences, compute expected labelings under current parameters, then re-estimate parameters.

# Conditional Random Fields

Noun Modal Verb

People can fish



Noun Verb Noun

People can fish



# Modal Verb On my boat, people can fish

# In my factory, people can fish

While aboard my floating tuna

cannery, people can fish.

# Modal Verb On my boat, people can fish

HMMs make it very hard to model this kind of long-distance dependency.

# Tagging as classification?

Modal

On my boat, people can fish

 $p(\mathsf{Modal} \mid \mathsf{can}, O) \propto \exp\{w_{\mathsf{Modal}}^{\mathsf{T}}f(\mathsf{can}, O)\}$ 

## Tagging as classification?

Modal

On my boat, people can fish

 $p(\mathsf{Modal} \mid \mathsf{can}, O) \propto \exp\{w_{\mathsf{Modal}}^{\mathsf{T}} f(\mathsf{can}, O)\}$ 

Training a discriminative classifier would let us incorporate lots of long-range context features.

#### Uncertainty and context

```
Noun 0.5
```

Verb 0.5

# on my floating cannery, people can fish

```
0.5 Modal
```

0.5 Verb

but no way to tell that p(Modal, Noun) = o!

#### Uncertainty and context

How do we simultaneously support:

structured queries about relationships between tags? (like an HMM)

rich context features?
(like a discriminative classifier)

#### Conditional random fields

Define:

$$p(Q \mid O) = \frac{\exp\{\sum_{t} a^{\mathsf{T}} \phi_{a}(q_{t-1}, q_{t}) + b^{\mathsf{T}} \phi_{b}(q_{t}, O)\}}{Z(O)}$$

#### Conditional random fields

Define:  $p(Q \mid O) = \frac{\exp\{\sum_{t} a^{\mathsf{T}} \phi_{a}(q_{t-1}, q_{t}) + b^{\mathsf{T}} \phi_{b}(q_{t}, O)\}}{Z(O)}$ 

Looks like a classifier! Scores are log-proportional to a sum of dot products between feature vectors and weights.

#### Conditional random fields

Define:

Looks like an HMM! Probability of a sequence factors along (state, state) and (state, obs) pairs.

$$p(Q \mid O) = \frac{\exp\{\sum_{t} a^{\mathsf{T}} \phi_{a}(q_{t-1}, q_{t}) + b^{\mathsf{T}} \phi_{b}(q_{t}, O)\}}{Z(O)}$$

(but now we can use the whole context, not just ot)

### Normalizing the model

$$p(Q \mid O) = \frac{\exp\{\sum_{t} a^{\mathsf{T}} \phi_{a}(q_{t-1}, q_{t}) + b^{\mathsf{T}} \phi_{b}(q_{t}, O)\}}{Z(O)}$$

What is *Z*? For this to be a proper distribution, needs to sum to 1 over all *Q*, *i.e.*:

$$Z(O) = \sum_{Q'} \exp \left\{ \sum_{t} a^{\mathsf{T}} \phi_a(q'_{t-1}, q'_t) + b^{\mathsf{T}} \phi_b(q'_t, O) \right\}$$
 "partition function"

#### Queries

If we're given the parameters A, B and  $\pi$ , what questions can we answer?

## Queries: joint probability?

Q1: what is the joint probability of a pair of (observation, tag) sequences?

p(O, Q)

In HMMs, this is easy (but P(0) and P(Q|0) are harder)

In CRFs, there is no generative model of 0 and no joint probability!

#### Queries: conditional probability

Q2: what is the conditional probability of tags Q given observations 0?

$$p(Q \mid O)$$

$$p(Q \mid O) = \frac{\exp\{\sum_{t} a^{\mathsf{T}} \phi_{a}(q_{t-1}, q_{t}) + b^{\mathsf{T}} \phi_{b}(q_{t}, O)\}}{Z}$$

Just need to compute Z!

### Computing the partition function

$$Z(T, j, O) = \sum_{Q: |Q| = T, q_T = j} \exp \left\{ \sum_{t=1}^{T} a^{\mathsf{T}} \phi_a(q_{t-1}, q_t) + b^{\mathsf{T}} \phi_b(q_t, O) \right\}$$



length-T sequences that end in i

#### Claim:

$$Z(T, j, O) = \sum_{i} Z(T - 1, i) \cdot \exp\{a^{\mathsf{T}} \phi_{a}(i, j) + b^{\mathsf{T}} \phi_{b}(j, O)\}\$$

$$Z(T, j, O) = \sum_{Q: |Q| = T, |q_T| = j} \exp\left\{\sum_{t=1}^{T} a^{\mathsf{T}} \phi_a(q_{t-1}, q_t) + b^{\mathsf{T}} \phi_b(q_t, O)\right\}$$
by definition

$$= \sum_{i} \sum_{\substack{Q': |Q'|=T-1\\ q_{T-1}=i, q_T=j}} \exp \left\{ \sum_{t=1}^{I} a^{\mathsf{T}} \phi_a(q_{t-1}, q_t) + b^{\mathsf{T}} \phi_b(q_t, O) \right\}$$
rewrite Q as concat. of Q' (ending in i) and  $q_T = j$ 

$$= \sum_{i} \sum_{\substack{Q': |Q'|=T-1\\q_{T-1}=i, q_T=j}} \exp \left\{ a^{\mathsf{T}} \phi_a(i,j) + b^{\mathsf{T}} \phi_b(j,O) + \sum_{t=1}^{T-1} a^{\mathsf{T}} \phi_a(q_{t-1}, q_t) + b^{\mathsf{T}} \phi_b(q_t,O) \right\}$$

pull timestep T for inner sum to the front

$$Z(T,j,O) = \sum_{i} \left[ \exp\left\{a^{\top}\phi_{a}(i,j) + b^{\top}\phi_{b}(j,O)\right\} \right.$$

$$\times \sum_{\substack{Q': \ |Q'| = T-1 \\ q_{T-1} = i}} \exp\left[\sum_{t=1}^{T-1} \left\{a^{\top}\phi_{a}(q_{t-1},q_{t}) + b^{\top}\phi_{b}(q_{t},O)\right\}\right]$$
and then factor it out

$$\sum_{i} \exp \left\{ a^{\mathsf{T}} \phi_a(i,j) + b^{\mathsf{T}} \phi_b(j,O) \right\} \cdot Z(T-1,i,O)$$
 by definition

#### The forward recurrence

#### Same recurrence relation!

$$Z(T, j, O) = \sum_{i} Z(T - 1, i) \cdot \exp\{a^{\mathsf{T}} \phi_{a}(i, j) + b^{\mathsf{T}} \phi_{b}(j, O)\}$$

$$= \exp\{b^{\mathsf{T}} \phi_{b}(j, O)\} \sum_{i} Z(T - 1, i) \cdot \exp\{a^{\mathsf{T}} \phi_{a}(i, j)\}$$

$$\alpha(t, j) = b_{j}(o_{t}) \sum_{i} \alpha(t - 1, i) \ a_{ij}$$

## The forward algorithm (CRF-style)

Q2: what is the partition function for tag sequences of length *T* and obs. O?

$$\alpha(t,j) = \exp\{b^{\mathsf{T}}\phi_b(j,O)\} \sum_i \alpha(t-1,i) \exp\{a^{\mathsf{T}}\phi_a(i,j)\}$$
  
$$\alpha(1,j) = \exp\{b^{\mathsf{T}}\phi_b(j,O)\}$$

$$Z(O) = \sum_{j} Z(T, j, O)$$

## The Viterbi Algorithm (CRF-style)

Q2: what is the highest-scoring tag sequence?

$$\max_{Q} p(Q \mid O)$$

$$\delta(t,j) = \exp\{b^{\mathsf{T}}\phi_b(j,O)\} \max_i \delta(t-1,i) \exp\{a^{\mathsf{T}}\phi_a(i,j)\}$$

$$\delta(1,j) = \exp\{b^{\mathsf{T}}\phi_b(j,O)\}\$$

## Supervised training

This looks exactly like text classification.

But, by designing our features carefully, we can do "classification" with an  $O(|Q|^T)$ -sized output space in  $O(|Q|^2T)$  time!

Maximum likelihood estimation:  $\min_{a,b} - \sum_{(Q,O)} \log p(Q \mid O; a, b)$ 

SGD:  $a^{(t+1)} = a^{(t)} + \nabla_a \log P(Q \mid O; a, b)$  (just use autograd!)

### Unsupervised training

Q1: what is the joint probability of a pair of (observation, tag) sequences?

In CRFs, there is no generative model of 0 and no joint probability.

Nothing to optimize!

# Actually, what is $\nabla_a \log P(Q \mid O; a, b)$ ?

$$\nabla_a \log p(Q \mid O; a, b) = \nabla_a \log \frac{\exp\{a^\top \Phi(Q) + \ldots\}}{\sum_{Q'} \exp\{a^\top \Phi(Q') + \ldots\}}$$

$$\nabla_a \log p(Q \mid O; a, b) = \nabla_a \log \frac{\exp\{a^{\mathsf{T}}\Phi(Q) + \dots\}}{\sum_{Q'} \exp\{a^{\mathsf{T}}\Phi(Q') + \dots\}}$$

$$= \nabla_a(a^{\mathsf{T}}\Phi(Q) + \dots) - \nabla_a \log \sum_{Q'} \exp\{a^{\mathsf{T}}\Phi(Q') + \dots\}$$

$$= \Phi(Q) - \frac{\nabla_{a} \sum_{Q'} \exp\{a^{\mathsf{T}} \Phi(Q) + ...\}}{\sum_{Q'} \exp\{a^{\mathsf{T}} \Phi(Q') + ...\}}$$

$$= \Phi(Q) - \frac{\sum_{Q'} \Phi(Q') \exp\{a^{\mathsf{T}} \Phi(Q') + \dots\}}{\sum_{Q'} \exp\{a^{\mathsf{T}} \Phi(Q') + \dots\}} = \Phi(Q) - \mathbf{E}_{p(Q'|O;a,b)} \Phi(Q')$$

# Actually, what is $\nabla_a \log P(Q \mid O; a, b)$ ?

$$\nabla_a \log p(Q \mid O; a, b) = \nabla_a \log \frac{\exp\{a^{\mathsf{T}}\Phi(Q) + \dots\}}{\sum_{Q'} \exp\{a^{\mathsf{T}}\Phi(Q) + \dots\}}$$

$$= \Phi(Q) - \mathbf{E}_{p(Q'|O;a,b)} \Phi(Q')$$

The gradient of the log-partition function is the expected feature vector under the current predictive distribution (!)

#### Next class: recurrent neural networks