

R Tutorial for Statistical Learning

Qidi Peng

7: Resampling by validation methods

Code	Comments	Results
#Validation set approach		
install.packages("ISLR");	Install training database "ISLR".	
library(ISLR);	Load the package.	
set.seed(1);	To "freeze" the random variable in the sequel, so that	
	one can obtain the same results when rerunning the	
	simulation following its.	
train=sample(392,196);	In validation set approach, we randomly equally likely	
	select half elements from the sample of size n=392.	
	We use sampling without replacement by default.	
$lm.fit = lm(mpg \sim horsepower, data = Auto, subset = train); \\$	Make a linear regression with Y=mpg, X=horsepower,	
	using half-size of the observed data (training set).	
lm.fit;	Print the least squares estimates.	Call:
		lm(formula = mpg ~
		horsepower, data =
		Auto, subset = train)
		Coefficients:
		(Intercept)
		horsepower
		40.4885
		-0.1609
$mean((Auto\$mpg\text{-predict}(lm.fit,Auto))[\text{-train }]^{\wedge}2);$	Determine the MSE of the 196 training data in the	[1] 22.50892
	validation set.	
set.seed(2);	If we choose a different training set, we will get a	
train=sample(392,196);	different MSE for validation set.	
$lm.fit = lm(mpg \sim horsepower, data = Auto, subset = train);\\$		
mean((Auto\$mpg-predict(lm.fit,Auto))[-train]^2);		[1] 23.29559

# K-fold cross-validation		
install.packages("boot");	Install the generalized linear regression function	
	package "boot".	
library(boot);	Load the package.	
set.seed(1);	To freeze the following random variable.	
fix(cv.error);	Create a K-fold cross-validation test MSE function.	
function (k,q)	k=the number of partitions; q denotes the polynomial	
{m=numeric(q);	order of the polynomial regression:	
for(i in	$Y = beta_0 + beta_1 X^1 + beta_2 X^2 + + beta_q X^q.$	
$1:q) \{glm.fit = glm(mpg \sim poly(horsepower, i), data = Auto);\\$		
$m[i] \hspace{-0.5em}=\hspace{-0.5em} ev.glm(Auto,glm.fit,\hspace{-0.5em}K\hspace{-0.5em}=\hspace{-0.5em}k) \hspace{-0.5em}\$ delta[1]\}; m$		
}		
cv.error(10,10);	Print the results of the 10-fold CV testing MSE	[1] 93.66531
	corresponding to the polynomial fits of orders 1 to 10.	97.71557 97.17491
		99.46710 99.87657
		100.68672 99.78368
		[8] 100.02531
		99.91709 101.65488
# Leave-one-out cross validation		
# One can use the function $cv.error(k,q)$ with $k=n$.		
#Another way is to use the delta statistics in the function		
#cv.glm().		
glm.fit=glm(mpg~horsepower,data=Auto);	Simple linear regression.	
cv.glm(Auto,glm.fit)\$delta;	Delta is a vector of length two. They correspond to the	[1] 24.23151 24.2311
	testing MSE of LOOCV. The first component is the	
	raw cross-validation estimate of prediction error. The	
	second component is the adjusted cross-validation	
	estimate. The adjustment is designed to compensate	
	for the bias introduced by not using leave-one-out	
	cross-validation. The 2 components are identical up to	
	2 decimal places.	

8: Bootstrap

Codes	Comments	Results
# The bootstrap method can be used to estimate the		

	T	
accuracy of #the "estimates".		
# In the first example, we do Exercise 2 in HW3. More		
#precisely, we use the bootstrap method to estimate alpha.		
fix(alpha.fn);	Create a function to calculate the estimate of alpha,	
function (data,index)	which maximizes Var(alpha X+(1-alpha)Y)). X,Y	
{X=data\$X[index];Y=data\$Y[index];	are observed values of 2 portfolios in the data set	
$(\operatorname{var}(Y)\operatorname{-cov}(X,Y))/(\operatorname{var}(X)\operatorname{+var}(Y)\operatorname{-2*cov}(X,Y))$	"data". Index is the subset we select from the	
}	original sample.	
set.seed(1);		
alpha.fn(Portfolio,1:100);		[1] 0.5758321
	Use the data set "Portfolio" in "ISLR". Take the first	
	100 training data (in fact we have taken all training	
# The bootstrap method can be applied as:	data) to estimate alpha.	
alpha.fn(Portfolio,sample(100,100,replace=T));		[1] 0.5313198
	Produce 1 bootstrap sample to estimate alpha.	
boot(Portfolio,alpha.fn,R=1000);		ORDINARY
	The boot() function estimates the returns of the	NONPARAMETRIC
	function alpha.fn, using the original sample	BOOTSTRAP
	"Portfolio" and produce R=1000 bootstrap samples.	Call:
	The final result shows the estimate of alpha is	boot(data = Portfolio,
	0.5758 and SE(alpha) is 0.0925.	statistic = alpha.fn, R =
		1000)
		Bootstrap Statistics :
		original
		bias std. error
		t1* 0.5758321
		0.001237822
		0.09252988
# Second example: estimating the accuracy of a linear		
#regression model. We use the bootstrap method to assess		
#the variability of the estimates $beta_0$ and $beta_1$ in a simple		
#linear regression. The SE of these 2 estimates will be		
#estimated by using bootstrap. As alpha.fn, we have to		
#create a function which returns the estimates of beta ₀ and		
#beta ₁ .		
fix(boot.fn);	Create a function which returns the least squares	
function (data,index)	estimates of beta ₀ and beta ₁ .	
{coef(lm(mpg~horsepower,data=data,subset=index))		
}		
boot.fn(Auto,1:392);	Test this function with all training data.	(Intercept)
I	1	horsepower

		39.9358610
		-0.1578447
set.seed(1);		0.1370117
boot.fn(Auto,sample(392,392,replace=T));	A bootstrap estimate from 1 bootstrap sample.	(Intercept)
500t.m(7tato,3ampie(572,572,tepiaee 1)),	A bootstrap estimate from 1 bootstrap sample.	horsepower
		39.3809602
1		-0.1531129
boot(Auto,boot.fn,R=1000);	The estimation results by 1000 bootstrap samples.	ORDINARY
	We see SE(beta ₀)=0.8512 and SE(beta ₁)=0.0073.	NONPARAMETRIC
		BOOTSTRAP
		Call:
		boot(data = Auto,
		statistic = boot.fn, R =
		1000)
		Bootstrap Statistics :
		original
		bias std. error
		t1* 39.9358610
		0.0326353594
		0.851224457
		t2* -0.1578447
		-0.0002322221
		0.007347569
#Now we estimate the standard errors of the estimates	This method suggests SE(beta ₀)=0.7175 and	
using classical methods (introduced in CH1):	SE(beta ₁)=0.0064, which are different from the ones	
summary(lm(mpg~horsepower,data=Auto))\$coef;	from bootstrap.	Estimate Std. Error
		t value Pr(> t)
	We claim that the SE by bootstrap are more	(Intercept) 39.9358610
	accurate, since it does not rely on any extra	0.717498656
	assumptions (no need to be normal, no need to	55.65984
	estimate sigma,).	1.220362e-187
		horsepower
		-0.1578447
		0.006445501
		-24.48914
		7.031989e-81
		7.3317070 31
<u>[</u>		

9: Generalized linear regressions

Codes	Comments	Results
#Poisson model.		

#(https://onlinecourses.science.psu.edu/stat504/node/223)
#The study investigated factors that affect whether the
#female crab had any other males, called satellites,
#residing near her. Explanatory variables that are thought
#to affect this included the female crab's color (C), spine #condition
(S), weight (Wt), and carapace width (W). The #response outcome
for each female crab is her number
#of satellites (Sa). There are 173 females in this study.

 $Crab = read.table ("C:/Program\ Files/R/crab.txt");$

colnames(Crab)=c("Obs","C","S","W","Wt","Sa"); fix(Crab);

Expectation=glm(Crab\$Sa~1, family=poisson(link=log)); summary(Expectation);

model.1=glm(Crab\$Sa~1+Crab\$W,family=poisson(link=log)); summary(model.1);

data.frame(Crab,pred=model.1\$fitted);
plot(Crab\$W,Crab\$Sa);

model.disp=glm(Crab\$Sa~Crab\$W, family=quasipoisson(link=log), data=Crab); summary(model.disp);

#Logistic-binomial model

#In the "MASS" library there is a data set called "menarche" #(Milicer, H. and Szczotka, F., 1966, Age at Menarche in #Warsaw girls in 1965, Human Biology, 38, 199-203), in which #there are three variables: "Age" (average age of age #homogeneous groups of girls), "Total" (number of girls in #each group), and "Menarche" (number of girls in the group #who have reached menarche)

library(MASS); data("menarche"); glm.out=glm(cbind(Menarche, Total-Menarche) ~ Age,family=binomial(logit),data=menarche); Download the textfile "crab.txt" from Canvas. Save it to local disk. Load it and name this data set "Crab".

Name the columns.

One can manually edit the data frame using fix().

Poisson regression of Sa on intercept only (no predictors).

This model shows the mean of Sa: E(Sa)=exp(1.0713). Poisson regression of Sa on W.

Coefficients:

Estimate St Error z value Pr(>|z|) (Intercept) -3.30476 0.54224 -6.095 1.1e-09 Crab\$W 0.16405 0.01997 8.216 < 2e-1

Prediction formula, which forecasts Sa values.

Illustrate the relationship between Sa and W.

Fitting the overdispersed Poisson model. This is a generalized Poisson model Poisson(theta,omega), where omega is the dispersion parameter. The variance of the data is equal to omega times the data mean.

When omega=1, this model reduces to Poisson model.

Load package MASS.

Load data set "menarche".

Logistic-binomial regression of Menarche on age.

plot(Menarche/Total ~ Age, data=menarche);	Plot of the ratio Menarche/Total via Age in the data set	
	"menarche".	
lines(menarche\$Age, glm.out\$fitted, type="l", col="red");	Add fitted line.	
title(main="Menarche Data with Fitted Logistic Regression Line");	Add title.	
glm.disp=glm(cbind(Menarche, Total-Menarche) ~	This is the corresponding logistic-binomial	
Age,family=quasibinomial(logit),data=menarche);	overdispersion model.	
summary(glm.disp);		

10: Bass model

Code	Comments	Results
#We show a typical Bass curve of the yearly sales of		
#VCRs in the US home market between 1980 and 1989 using		
#the non-linear least squares function nls(). The variable T79 is		
the #year from 1979, and the variable Tdelt is the time from 1979		
at #a finer resolution of 0.1 year for plotting the Bass curves. The		
#cumulative sum function cumsum() is useful for monitoring		
#changes in the mean level of the process.		
T79=1:10;	Label the 10 years from 1980 to 1989.	
Tdelt =(1:100) / 10;	Set a mesh=1/10 year.	
Sales=c(840,1470,2110,4000, 7590, 10950, 10530, 9470, 7790,	Enter the sales data per year S(t).	
5890);		
Bass.nls= nls(Sales \sim M * (((P+Q)^2 / P) * exp(-(P+Q) * T79))	Use non-linear least squares to solve the parameters m,	
$/(1+(Q/P)*exp(-(P+Q)*T79))^2$, start = list(M=sum(Sales),	p, q. Note that the initial values P=0.03, Q=0.38 are	
P=0.03, Q=0.38));	values for a typical product (this often comes from	
	media published data for similar products).	Parameters:
summary(Bass.nls);	Print the results.	Estimate Std. Error t value
Cusales=cumsum(Sales);	Calculate the cumulative sum N _t .	Pr(> t)
		M 6.798e+04 3.128e+03
		21.74 1.10e-07 ***
		P 6.594e-03 1.430e-03
		4.61 0.00245 **
		Q 6.381e-01 4.140e-02
		15.41 1.17e-06 ***
I .	I and the second	1

Bcoef=coef(Bass.nls);	Extract the estimates m,p,q.	
m=Bcoef[1];		
p=Bcoef[2];		
q=Bcoef[3];		
ngete = exp(-(p+q) * Tdelt);		
Bpdf=m * ($(p+q)^2 / p$) * ngete / $(1 + (q/p) * ngete)^2$;	Calculate the estimated density function S(t);	
plot(Tdelt, Bpdf, xlab = "Year from 1979",ylab = "Sales per	Plot the estimated S(t);	
year", type='l');		
points(T79, Sales);	Add the observed S(t) to compare with the one from	
	fitted model.	
Bcdf= $m * (1 - ngete)/(1 + (q/p)*ngete);$	Calculate the estimated cumulative distribution	
	function N _t .	
plot(Tdelt, Bcdf, xlab = "Year from 1979",ylab = "Cumulative	Plot the estimated pdf.	
sales", type='l');		
points(T79, Cusales);	Join the observed N_t to the previous plot.	

11: Exponential smoothing

Code	Comments	Results
#The number of letters of complaint received each month by a motoring		
#organization over the four years 1996 to 1999 are available on the		
website. At #the beginning of the year 2000, the organization wishes to		
estimate the #current level of complaints and investigate any trend in the		
level of #complaints. We should first plot the data, and, even though there		
are only #four years of data, we should check for any marked systematic		
trend or #seasonal effects.		
Complaints= c(30, 15, 34, 21, 16, 33, 24, 29, 52, 41, 25, 36, 11, 33, 18, 14,		
25, 62, 41, 33, 26, 42, 33, 16, 25, 36, 25, 35, 52, 41, 52,	Load complaints data with respect to month (from Jan	
15, 42, 7, 12, 15, 28, 15, 30, 20, 20, 35, 17, 24, 33, 14, 30,	1996 to Dec 1999).	
22);		
Comp.ts \leftarrow ts(complaints, start = c(1996, 1), freq = 12);		
plot(Comp.ts, xlab = "Time / months", ylab = "Complaints");	Define a time series.	
	Plot it. From the picture, we see there is no seasonal	
	feature detected. Then one can use exponential	
Comp.hw1 = HoltWinters(Comp.ts, beta = 0, gamma = 0);	smoothing method to predict this time series.	
Comp.hw1;	The exponential smoothing estimates.	
	Print the estimates alpha and the coefficients of the	Smoothing
Comp.hw2 = HoltWinters(Comp.ts, alpha=0.2,beta = 0, gamma = 0);	time series.	parameters:
plot(Comp.hw2);	We compare the above results with the ones with	alpha: 0.1464355

	alpha=0.2. The 2 results are similar.	beta: 0
Comp.hw1\$SSE		gamma: 0
Comp.hw2\$SSE	Compare the SSE of the 2 models.	[1] 10004.98
		[1] 10077.95
#Now we consider a Holt-Winters seasonal model.	Consider the seasonals.	
Comp.hw3= HoltWinters (Comp.ts, seasonal = "mult");	Plot the estimates and observed data.	
plot(Comp.hw3);	Check its SSE. It is slightly less than the above 2	
Comp.hw3\$SSE;	models. We can claim that this model is slightly better	
	than the other 2. And the complaints data does have	[1] 9668.28
	minor seasonal feature.	