智能数据挖掘作业7

1920030004 黄铭瑞

实验目的

理解 DBSCAN 聚类算法的原理,并使用 DBSCAN 聚类算法对 2d4c、long、moon、sizes5、smile、spiral、square1、square4 数据集进行聚类。

实验原理

DBSCAN 聚类

定义

DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的聚类方法)是一种基于密度的空间聚类算法。该算法将具有足够密度的区域划分为簇,并在具有噪声的空间数据库中发现任意形状的簇,DBSCAN 算法将"簇"定义为密度相连的点的最大集合。

三类数据点

- **核心点 (core point):** 若样本 x_i 的 epsilon 邻域内至少包含了 MinPts 个样本,则称 x_i 为核心点。
- **边界点(border point):** 若样本 x_i 的 epsilon 邻域内包含的样本数目小于 MinPts,但他在其他核心点的邻域内,则称 x_i 为边界点。
- **噪声点 (noise):** 既不是核心点也不是边界点的点。噪声点是不被聚类纳入的点。

密度相关

- **密度直达(directly density reachable):** 如果满足 $p \in N_{eps}(q)$, and $|N_{eps}(q)| \ge MinPts$,那么样本点p是由样本点q对于参数{eps, MinPts}密度直达。
- **密度可达 (density reachable):** 如果存在一系列样本点, $q \rightarrow a \rightarrow b \rightarrow c \rightarrow d \rightarrow p$,任意两个相邻对象之间是直接密度可达,则p是q关于参数 {eps, MinPts}密度可达。

• **密度相连**(density connected): 如果在样本集D中存在一个样本点o,使得p和q均由样本点o密度可达,那么称p与q对于参数 $\{eps, MinPts\}$ 密度相连。

算法步骤

Step1: 任选一个点q,找到和它距离小于等于eps的所有点。如果找到的点数小于MinPts,标记q为噪声点;如果点的个数大于MinPts,这个点q被标为核心样本,并分配新的簇标签。

Step2:访问点q的所有邻居点,如果他们还未被分配到一个簇,那么将刚创建的 簇标签分配给他们,如果他们是核心点,就依次访问他们的邻居,以此进 行簇扩张,直到*eps*内没有更多核心样本。

Step3: 重复 step1、step2, 直到没有新的簇添加,结束。

DBSCAN 参数选择

eps 选择

eps参数设置过小,大部分数据不能聚类; eps参数设置过大,多个簇会归到一个大簇中。

可以通过绘制 k-distance 曲线的方法寻找eps合适值。给定K邻域参数k,对于数据中的每个点,计算对应的第k个最近邻域距离,并将数据集所有点对应的最近邻域距离进行从大到小排序后绘图,称这幅图为排序的k距离图,该图中明显拐点位置对应的k距离值设定为Eps。

MinPts 选择

MinPts的选择由指导性原则, $MinPts \ge dim + 1$,dim表示数据的维度。如果MinPts设为 1,则每个点各自成簇,如果MinPts设为 2,则与层次聚类最近邻与结果相同。因此 $MinPts \ge 3$ 。若该值选取过小,则稀疏簇中结果由于密度小于MinPts,从而被认为是边界点儿不被用于在类的进一步扩展;若该值过大,则密度较大的两个邻近簇可能被合并为同一簇。因此,该值是否设置适当会对聚类结果造成较大影响。

实验过程

读取数据

定义 loadDataSet(),用于数据集的载入。因为给的数据文件是.mat 文件,使

用 scipy.io.loadmat 导入数据文件,但是要读取里面的数据,需要找到对应的 key。如 2d4c 里, key 有'a', 'moon', 'smile', 'b', 而'a'才是对应需要的数据。

DBSCAN 算法部分

找出 epslion 范围内的点

定义 dist(), 计算欧氏距离。

定义 eps neighbor(),判断两个数据点之间的距离是否在 eps 范围内。

定义 region query(), 遍历数据集里所有点, 把在 eps 范围内的点找出。

判断是否进行簇扩张

定义 expand_cluster(), dbscan(), 不满足 MinPts 条件的列为噪声点,满足的点划分到该簇,如果是核心点,继续访问他们的邻居进行扩张。遍历所有的点,重复操作,返回聚类簇 id 和聚类簇数目。

eps 选择

定义 $select_eps()$ 用于找出最适 eps。对于每个数据点,计算其中某个点与其他数据点的欧氏距离之和,按距离进行排序,找出第 k 个近邻到该数据点的距离,添加到 k dist 序列中,之后 k-distance 图需要。

绘图部分

定义 plotFeature(),用于对就聚类结果的绘图。每个独特的簇 id 用同一种颜色标出。有几个不同的聚类簇,就有多少种颜色显示。

依次对 '2d4c', 'long', 'moon', 'sizes5', 'smile', 'spiral', 'square1', 'square4',数据集进行数据读取,DBSCAN 聚类,绘制 k-distance 图,绘制聚类图。

实验结果与分析

2d4c

Long

Moon

Sizes5

Smile

Spiral

Square1

Square4

结果分析

1. 对于'moon','smile','spiral'这三个分离明显,聚类间差距较大的数据集,不管添不添加噪声,所得到的聚类结果都很好。但是对于'2d4c','long','sizes5','square1','square4'这五个数据点分布较复杂,密度不均匀的数据集,不添加噪声点的情况下,会遗留有有未归类的噪点,但是对原始数据加了0.1的噪声后,反而聚类结果变得更好。

- 2. 对于 2d4c', 'sizes5', 'square1', 'square4'这四个密度分布不均匀, 簇间界限模糊的数据集, eps 与 MinPts 的微调都会对聚类结果造成较大的影响, 尤其是未加噪声的原始数据集。
- 3. 比较奇怪的是,几乎所有的聚类图里,都会有本不属于这一簇的点出现在该 簇中,而且是仅有一个点,如月亮的月牙尖角处,笑脸的嘴角处,螺旋曲线 最内部,都发现有突兀点,暂时找不到是哪出了问题。

附录

DBSCAN.html