Теория групп. Лекция 8

Штепин Вадим Владимирович

24 октября 2019 г.

1 Основная теорема о коммутанте

Опр. Взаимный коммутант $[H,K] = \langle [h,k] \mid h \in H, k \in K \rangle, H, K \leq G.$

Замечание. Если $H, K \triangleleft G$, то $[H, K] \triangleleft G$.

Доказательство

 $\forall h \in H, k \in K, g \in G$ $g[h, k]g^{-1} = [ghg^{-1}, gkg^{-1}] \in [H, K]$ в силу нормальности H и K.

Утв. (критерий нормальности)

 $H \triangleleft G \Leftrightarrow [H,G] \subset H$

Доказательство

- 1. Пусть $H \triangleleft G$. Тогда $[h,x] = hxh^{-1}x^{-1} \in H$, так как $xh^{-1}x^{-1} \in H$. Значит, $[H,G] \subset H$
- 2. Пусть $[H,G] \in H$. Рассмотрим $a \in H, x \in G$. $a^x = x^{-1}ax = aa^{-1}x^{-1}ax = a[a^{-1}x^{-1}] \in H$. По критерию нормальности, $H \triangleleft G$

Теорема (основная теорема о коммутанте)

Пусть G — группа, G' — коммутант. Тогда:

- 1. G/G' абелева
- 2. $H \triangleleft G, G/H$ абелева $\Leftrightarrow G' \leq H \leq G$

Доказательство

- 1. $G' \triangleleft G$ по следствию. Пусть $p: G \to G/G'$ каноническая сюръекция. $\forall x,y \in G \ [p(x),p(y)] = p([x,y])$, так как p гомоморфизм. $[x,y] \in G' = Ker(p) \Rightarrow p([x,y]) = e \Rightarrow p(x)p(y) = p(y)p(x)$. По сюръективности: $\forall a,b \in G/G' \exists x,y \in G' \ p(x) = a,p(y) = b$ и ab = ba.
- 2. Пусть $H \triangleleft G$ и G/H абелева. $\forall x,y \in G$ верно $xHyH = yHxH \Leftrightarrow xyH = yxH \Leftrightarrow [x,y]H = H \Leftrightarrow [x,y] \in H$ и $G' \subset H$.

Пусть $G' \leq H \leq G$.

 $[H,G]\subset G'\leq H\Rightarrow H\lhd G$

 $G' \leq H \Rightarrow \forall x,y \in G \ [x,y] \in H \Rightarrow [x,y]H = H \to xyH = yxH \Rightarrow xHyH = yHxH$ и G/H-абелева.

Следствие

Коммутант — наименьшая нормальная подгруппа в G, что факторгруппа по ней абелева. Коммутант можно рассматривать как меру неабелевости. Чем больше в группе коммутаторов, отличных от e, тем больше она отлична от абелевой.

2 Нормальная подгруппа, порожденная множеством

Напоминание. Если $M \subset G$, то $\langle M \rangle = \cap_{H < G, M \subset H} H$

Опр. Нормальная подгруппа, порожденная множеством M — это группа $\langle M \rangle_n = \bigcap_{H \lhd G, M \subset H} H$

Замечание. $M \subset \langle M \rangle_n \triangleleft G$

Теорема (об описании нормальной подгруппы, порожденной множеством)

 $\langle M \rangle_n = \langle m^x \mid m \in M, x \in G \rangle$

Доказательство

Обозначим $\langle M^G \rangle = \langle m^x \mid m \in M, x \in G \rangle$.

Покажем, что $\langle M^G \rangle \subset \langle M \rangle_n$.

 $\forall m \in M \ m \in \langle M \rangle_n \Leftrightarrow \forall x \in Gm^x \in \langle M \rangle_n$. Значит, $\langle M^G \rangle \subset \langle M \rangle_n$.

Проверим, что $\langle M^G \rangle \triangleleft G$. Пусть $x \in G$. $\langle M^G \rangle^x = \langle m^{yx} \mid m \in M, y \in G \rangle \subset \langle M^G \rangle \Rightarrow \langle M^G \rangle \triangleleft G \Rightarrow \langle M^G \rangle = \langle M \rangle_n$

Теорема

Пусть $G = \langle M \rangle$. Тогда $G' = \langle [m_1, m_2] \mid m_1, m_2 \in M \rangle_n$

Доказательство

Обозначим $H = \langle [m_1, m_2] \mid m_1, m_2 \in M \rangle_n \subset G'$.

 $\forall m_1, m_2 \in M \ [m_1, m_2]^x \in G'$, так как $[m_1, m_2] \in G' \triangleleft G$. Значит, $H \leq G'$ (по предыдущей теореме).

Пусть $p:G\to G/H$ — каноническая сюръекция. $G/H=\langle p(M)\rangle$. $\forall m_1,m_2\in M\ [p(m_1),p(m_2)]=p([m_1,m_2])=e$, так как $[m_1,m_2]\in H=Ker(p)$. Значит, G/H порождена взаимно коммутирующими элементами и G/H абелева. По основной теореме о коммутанте $G'\leq H$.

Пример.

 $S'_n = A_n$

Доказательство

 $S_n = \langle (i,j) \mid 1 \le i < j \le n \rangle.$

Значит, $S'_n = \langle [(i,j),(k,l)] \mid 1 \leq i < j \leq n, 1 \leq k < l \leq n \rangle_n$. Если i,j,k,l не содержат общих элементов, то [(i,j),(k,l)] = e. Так же, [(i,j),(i,k)] = (i,j)(i,k)(i,j)(i,k) = (i,j,k)

 $S_n' = \langle (i,j,k) \rangle_n = \langle (i,j,k) \rangle$, так как сопряженный к циклу длины 3— это цикл длины 3. Любую четную подстановку можно разложить в четное число транспозиций и (i,j)(k,l) = (i,j,k)(j,k,l), если транспозиции не пересекаются. Значит, $A_n = \langle (i,j,k) \rangle = A_n$.

3 Разрешимые и нильпотентные подгруппы

Обозначим $G^{(0)} = G, G^{(1)} = G' = [G, G], ..., G^{(k)} = [G^{(k-1)}, G^{(k-1)}].$

Замечание.

 $\forall n \ G^{(n)} \triangleleft G$

Доказательство $G' \triangleleft G$ — доказано. Пусть $G^{(n-1)} \triangleleft G$. Тогда $G^{(n)} = [G^{(n-1)}, G^{(n-1)}] \triangleleft G$.

Опр. $G = G^{(0)} \triangleright G^{(1)} \triangleright G^{(2)} ... -$ производный ряд группы G.

 $\overline{\text{Опр.}}$ Группа G разрешима, если $\exists n \in N \ G^{(n)} = \{e\}$, то есть ряд обрывается на единичной подгруппе.

Onp. $G_0 = G, G_1 = G' = [G, G_0], ..., G_k = [G, G_{k-1}],$

 $\overline{G_0 \triangleright G_1 \triangleright G_2 \triangleright \dots }$ нижний центральный ряд.

<u>Опр.</u> Группа G нильпотентна, если $\exists n \in N \ G_n = \{e\}$, то есть нижний центральный ряд обрывается на единичной подгруппе.

Опр. Наименьшее n в определениях—ступень разрешимости (нильпотентности).

Утв.

Всякая нильпотентная группа разрешима.

Доказательство

Покажем, что $\forall n \in N \ G^{(n)} \subset G_n$.

База индукции: $G_1 = G'$.

Переход индукции: Если $G^{(n-1)}\subset G_{n-1}$, то $G^{(n)}=[G^{(n-1)},G^{(n-1)}]\leq [G,G^{(n-1)}]\subset [G,G_{n-1}]=G_n$

Если группа нильпотентна, то $G_n = \{e\}$ для некоторого n и $G^{(n)} \leq \{e\}$. Значит, $G^{(n)} = \{e\}$.

Примеры

- 1. Разрешимая группа ступени 0 абелева.
 - Опр. Разрешимая группа степени 1 метабелева.
- 2. D_n метабелева. Напомним, что D_n это группа вращений правильного n-угольника (группа диэдра). $D_n = \langle S, R \rangle$, где S симметрия относительно оси, проходящей через центр многоугольника и некоторую его вершину, а R поворот на угол $\frac{2\pi}{n}$. Можно показать, что $SRS^{-1} = R^{n-1}$. Тогда $[S,R] \leq \langle R \rangle \Leftarrow D'_n \subset \langle R \rangle$ абелева, так как $D''_n = \{e\}$