Programming for Data Analytics CISA4313

Linear Regression

Dr. Mohammad Abdel-Rahman

Data mining problems

Prediction (Supervised learning)

- Classification
- Regression

Pattern discovery (Unsupervised learning)

- Clustering

Classification

- Classification
- Supervised learning
- The variable of interest (i.e., output or dependent variable) is categorical.
- Case: Drop out(Y, N)

Regression

- Regression
 - Supervised learning ("right answers" given)
 - The variable of interest (output or dependent variable) is continuous.
- Case: House price prediction.

Summary of Supervised Learning

- Goal: To infer a function from supervised (labeled) training data.
- The training data consist of a set of training examples.
- In supervised learning, each example includes some input features values, and a desired output value
- A supervised learning algorithm analyzes the training data and produces an inferred function, which is called a classifier (if the output is discrete) or a regression function (if the output is continuous). The inferred function should predict the correct output value for any valid input object.

Supervised learning

Training Data

Unsupervised learning

Exercise

You're running a company, and you want to develop learning algorithms to address each of two problems.

Problem 1: You have a large inventory of identical items. You want to predict how many of these items will sell over the next 3 months.

Problem 2: You'd like software to examine individual customer accounts, and for each account decide if it has been hacked/compromised.

Should you treat these as classification or as regression problems?

Treat both as classification problems.

Treat problem 1 as a classification problem, problem 2 as a regression problem.

Treat problem 1 as a regression problem, problem 2 as a classification problem.

Treat both as regression problems.

Clustering

- Unsupervised learning (e.g., the examples are unlabeled)
- E.g., Clustering of customers, symptoms, product brands, etc.

Examples of clustering

Linear regression

Linear regression

Given the "right answer" for each example in the data. Regression Problem

Predict real-valued output

Notation

Training set of housing prices

Size in feet ² (x)	Price (\$) in 1000's (y)
2104	460
1416	232
1534	315
852	178
•••	•••

Notation:

 $\mathbf{m} = \text{Number of training examples}$

 \mathbf{x} 's = "input" variable / features. x can be written as $\mathbf{x}_1 \dots \mathbf{x}_n$

y's = "output" variable / "target" variable

(x, y) represents a training example

 $(x^{(i)}, y^{(i)})$ represent *i*th training example E.g., $x^{(i)} = 2104$, $y^{(i)} = 460$

How a supervised learning algorithm works

How do we represent h?

Training Set

m = 47

Size in feet ² (x)	Price (\$) in 1000's (y)
2104	460
1416	232
1534	315
852	178
•••	

Linear regression with one variable. Univariate linear regression.

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

E.g.
$$h_{\odot}(x) = -42.8 + 0.23 x$$

We can have multiple features.

$$h_{\Theta}(x) = \theta_0 + \theta_1 x_1 + \dots + \theta_n x_n$$

O: parameters

How can we find parameter Θ that corresponds to a good fit to the training data?

How to find the best Θ?

Idea: Choose Θ so that $h_{\Theta}(x)$ is close to y for our training examples

Evaluation measure for linear regression

- The RMSE and R-2 metrics, two metrics commonly used to evaluate linear regression
- RMSE (Root Mean Squared Error)
 - the lower that value is, the better the fit
- R-squared: (The closer towards 1, the better the fit)

$$R^{2} = \frac{SSR}{SST} = \frac{\sum (\hat{y}_{i} - \bar{y})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$