Decision Trees

Introduction

- Perform supervised learning
- Classifiers
 - Training
 - Testing
- Interpretability
- Tree size
- Creating decision trees. (ID3, C4.5, C5)
- Can be classification, regression trees or hybrid.

Example

Example Dataset

Day	Outlook	Temperature	Humidity	Wind	Play Netball?
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

Inducing a Decision Tree -ID3

- 1. Use **Information Gain**Attribute with the highest **Gain** is the root node
- 2. Calculate the Information Gain
- 3. First calculate the **Entropy** measures uncertainty, chaos

$$E(D) = \sum_{i=1}^{n} -p(i)log_2p(i)$$

Creating The Decision Tree

- 1.COMPUTE THE ENTROPY FOR DATA-SET ENTROPY(S)
- 2.FOR EVERY ATTRIBUTE/FEATURE:
 - 1. CALCULATE ENTROPY FOR ALL OTHER VALUES ENTROPY(A)
 - 2. TAKE AVERAGE INFORMATION ENTROPY FOR THE CURRENT ATTRIBUTE
 - 3. CALCULATE GAIN FOR THE CURRENT ATTRIBUTE
 - 13
- 3. PICK THE HIGHEST GAIN ATTRIBUTE.
- 4. **Repeat** until we get the tree we desired.

• Calculate **Entropy** (Amount of uncertainity in dataset):

$$Entropy = rac{-p}{p+n}log_2(rac{p}{p+n}) - rac{n}{p+n}log_2(rac{n}{p+n})$$

• Calculate Average Information:

$$I(Attribute) = \sum \frac{p_i + n_i}{p + n} Entropy(A)$$

p = +ve class n = -ve class

 Calculate Information Gain: (Difference in Entropy before and after splitting dataset on attribute A)

$$Gain = Entropy(S) - I(Attribute)$$
 S = dataset

Dataset Entropy

• Calculate Entropy(S):

$$Entropy = rac{-p}{p+n}log_2(rac{p}{p+n}) - rac{n}{p+n}log_2(rac{n}{p+n})$$

$$Entropy(S) = rac{-9}{9+5}log_2(rac{9}{9+5}) - rac{5}{9+5}log_2(rac{5}{9+5})$$

$$Entropy(S) = \frac{-9}{14}log_2(\frac{9}{14}) - \frac{5}{14}log_2(\frac{5}{14}) = 0.940$$

Example Dataset

[Day	Outlook	Temperature	Humidity	Wind	Play Netball?
ĺ	1	Sunny	Hot	High	Weak	No
ĺ	2 /	Sunny	Hot	High	Strong	No
Ì	3//	Overcast	Hot	High	Weak	Yes
ĺ	/4	Rain	Mild	High	Weak	Yes
	5	Rain	Cool	Normal	Weak	Yes
	6	Rain	Cool	Normal	Strong	No
Ì	7	Overcast	Cool	Normal	Strong	Yes
$\overline{}$	8	Sunny	Mild	High	Weak	No
\mathcal{A}	9	Sunny	Cool	Normal	Weak	Yes
Ì	10	Rain	Mild	Normal	Weak	Yes
Ì	11	Sunny	Mild	Normal	Strong	Yes
Ì	12	Overcast	Mild	High	Strong	Yes
Ì	13	Overcast	Hot	Normal	Weak	Yes
Ì	14	Rain	Mild	High	Strong	No

Attribute Entropy

Outlook	Temperature	Humidity	Windy	Play7
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Sunny	Mild	Normal	Strong	Yes

$$p = 2, n = 3, total = 5$$

• ENTROPY:

calc entropy of Outlook when it is sunny only

$$Entropy = rac{-p}{p+n}log_2(rac{p}{p+n}) - rac{n}{p+n}log_2(rac{n}{p+n})$$

$$Entropy(S_{sunny}) = \frac{-2}{2+3}log_2(\frac{2}{2+3}) - \frac{3}{2+3}log_2(\frac{3}{2+3}) = 0.971$$

Attribute Entropy

- For each Attribute: (let say Outlook)
 - Calculate Entropy for each Values, i.e for 'Sunny', 'Rainy','Overcast'

Outlook	Play
Sunny	No
Sunny	No
Sunny	No
Sunny	Yes
Sunny	Yes
1	

Outlook	Play
Rainy	Yes
Rainy	Yes
Rainy	No
Rainy	Yes
Rainy	No
2	

Outlook	Play
Overcast	Yes

Outlook	р	n	Entropy
Sunny	2	3	0.971
Rainy	3	2	0.971
Overcast	4	0	0

$$E(D) = \sum_{i=1}^{n} -p(i)log_2p(i)$$

• Calculate Average Information Entropy:

$$I(Outlook) = rac{p_{sunny} + n_{sunny}}{p+n} Entropy(Outlook = Sunny) + \ rac{p_{rainy} + n_{rainy}}{p+n} Entropy(Outlook = Rainy) + \ rac{p_{Overcast} + n_{Overcast}}{p+n} Entropy(Outlook = Overcast)$$

$$I(Outlook) = \frac{3+2}{9+5} * 0.971 + \frac{2+3}{9+5} * 0.971 + \frac{4+0}{9+5} * 0 = 0.693$$

Calculate Gain: attribute is Outlook

$$Gain = Entropy(S) - I(Attribute)$$

$$Entropy(S) = 0.940$$

$$Gain(Outlook) = 0.940 - 0.693 = 0.247$$

Temperature Entropy

Calculate Average Information Entropy:

$$I(Temperature) = rac{p_{hot} + n_{hot}}{p + n_{b}} Entropy(Temperature = Hot) +$$

$$rac{p_{mild} + n_{mild}}{p + n} Entropy(Temperature = Mild) +$$

$$rac{p_{Cool} + n_{Cool}}{p + n} Entropy(Temperature = Cool)$$

$$I(Temperature) = \frac{2+2}{9+5} * 1 + \frac{4+2}{9+5} * 0.918 + \frac{3+1}{9+5} * 0.811 => 0.911$$

Temperature Gain

Calculate Gain: attribute is Temperature

$$Gain = Entropy(S) - I(Attribute)$$

$$Entropy(S) = 0.940$$

Gain(Temperature) = 0.940 - 0.911 = 0.029

Information Gain

Attribute	IG Value
Outlook	0.247
Temperature	0.029
Humidity	0.152
Wind	0.048

Root Node = Outlook

How Do We Building the DT

Example Dataset

Day	Outlook	Temperature	Humidity	Wind	Play Netball?
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

IG wrt Sunny

- For each Attribute: (let say Humidity):
 - Calculate Entropy for each Humidity, i.e for 'High' and 'Normal'

nidity Play
igh No
igh No
igh No
rmal Yes
rmal Yes

Humidity	р	n	Entropy
high	0	3	0
normal	2	0	0

• Calculate **Average Information Entropy**: I(Humidity) = 0

• Calculate Gain: = Sunny - Humidity = 0.971 -0 Gain = 0.971

IG wrt Sunny

- For each Attribute: (let say Windy):
 - Calculate Entropy for each Windy, i.e for 'Strong' and 'Weak'

Outlook	Windy	Play
Sunny	Strong	No
Sunny	Strong	Yes
Sunny	Weak	No
Sunny	Weak	No
Sunny	Weak	Yes

Windy	р	n	Entropy
Strong	1	1	1
Weak	1	2	0.918

Avg =
$$%*1 + %*0.918 = 0.951$$

- Calculate Average Information Entropy: I(Windy) = 0.951
- Calculate **Gain**: = **0.971 0.951** = Gain = 0.020

- For each Attribute: (let say **Temperature**):
 - Calculate Entropy for each Windy, i.e for 'Cool', 'Hot' and 'Mild'

Outlook	Temperature	Play ⁷
Sunny	Cool	Yes
Sunny	Hot	No
Sunny	Hot	No
Sunny	Mild	No
Sunny	Mild	Yes

Temperature	p	n	Entropy
Cool	1	0	0
Hot	0	2	0
Mild	1	1	1

• Calculate **Average Information Entropy**: I(Temp) = 0.4

• Calculate **Gain**: = 0.971 - 0.571 = Gain = 0.571

Information Gain wrt Sunny

Attribute	IG Value
Temperature	0.571
Humidity	0.971
Wind	0.02

Next Node = Humidity

Algorithm

```
Algorithm 1 ID3 Algorithm
 1: procedure ID3(S, A)
       if all labels in S are 1 then
          return a leaf node of 1
 3:
       end if
 4:
       if all labels in S are 0 then
 5:
          return a leaf node of 0
 6:
       end if
 7:
       if A is empty then
 8:
          return a node with the most frequently occurring label in S
 9:
10:
       else
          maxAttr = be the attribute with the maximum gain (equation 4)
11:
          if all the instances in S have the same label then
12:
              return a leaf node with the majority label in S
13:
          else
14:
              Make the root of the decision tree max Attr
15:
              A' = A/\max Attr
16:
              for v \leftarrow 1, number of values for j do
17:
18:
                 S'= instances in S containing value c_v of A
19:
                 if S' is empty then
20:
                     return a leaf node with the most frequently occurring label S
21:
                 else
22:
                     Add ID3(S',A') as a subtree
23:
                 end if
24:
              end for
25:
          end if
26:
       end if
27:
28: end procedure
```


Example Induced DTree

Disadvantages of DTree

- Overfitting particularly for high dimensional datasets.
- Tree becomes overly complex and captures noise or specific patterns in the training data that might not generalize well to unseen examples.
 - Pruning.
 - Tree depth limit.
- Sensitive to changes -ensemble methods like Random Forests
- **Bias** towards training data, data balancing (oversampling or undersampling).
- Difficulty continuous features: more suitable for discrete.

Random Forests

- Is an ensemble of decision trees.
- Performs classification
- Process
 - Choosing a subset
 - Creating a decision tree
 - Majority voting
- Overcomes overfitting

Questions

