

Instituto Tecnológico Autónomo de México

Programación Lineal

Proyecto final (Parte II)

Formulación y solución de problemas de programación lineal

Integrantes del equipo	Clave única
Karen Arteaga Mendoza	190161
Federico Santacruz González	190438
Leopoldo Rodríguez Díaz Infante	189584
José Alberto Márquez Luján	187917
Santiago Fernández del Castillo Sodi	189210

Profesor:

Dr. Edgar Possani Espinosa

1. Reporte técnico - Caso 4.2

Para formular el problema de programación lineal en su forma estándar, pensemos que tenemos lo siguiente:

Entrevistados	18-25	26-40	41-50	51+
Silicon Valley	x_1	x_2	x_3	x_4
Big cities	x_5	x_6	x_7	x_8
Small towns	x_9	x_{10}	x_{11}	x_{12}

Así, podemos construir al vector $\mathbf{x} = (x_1, \dots, x_{12})$ con las variables de decisión del problema. Cada entrada x_i representa la cantidad de personas entrevistadas pertenecientes a un determinado grupo de edad y región. Análogamente tenemos al vector de costos $\mathbf{c}^T = (c_1, \dots, c_{12})$, en donde cada entrada está dada por el costo que tiene entrevistar a la persona asociada al mismo grupo de edad y región.

Costos	18-25	26-40	41-50	51+
Silicon Valley	c_1	c_2	c_3	c_4
Big cities	c_5	c_6	c_7	c_8
Small towns	c_9	c_{10}	c_{11}	c_{12}

Nótese que

$$\boldsymbol{c}^T \cdot \boldsymbol{x} = \sum_{i=1}^{12} c_i x_i$$

nos da el costo total que tendría Sophisticated Surveys por realizar la encuesta. Nos interesa minimizar este valor. El margen de la empresa Sophisticated Surveys no es de interés en este momento. Ahora bien, Rob nos impone ciertas restricciones. Para empezar, es necesario que la suma de los entrevistados sea exactamente 2000; esto es,

$$\sum_{i=1}^{n} x_i = 2000.$$

Además, hay ciertos porcentajes que hay que cumplir:

Grupo de edad	Porcentaje mínimo	Cantidad mínima
18-25	20.0%	400
26-40	27.5%	550
41-50	15.0%	300
51+	15.0%	300

Así pues, tenemos otras cuatro restricciones:

$$x_1 + x_5 + x_9 \ge 400$$

$$x_2 + x_6 + x_{10} \ge 350$$

$$x_3 + x_7 + x_{11} \ge 300$$

$$x_4 + x_8 + x_{12} \ge 300$$

En adición a estas restricciones, sabemos que Rob quiere que la encuesta cumpla ciertos requisitos sobre las regiones en las que se va a entrevistar, como podemos ver en la tabla (1).

Región	Porcentaje mínimo	Cantidad mínima
Silicon Valley	15.0%	300
Big cities	35.0%	700
Small towns	20.0%	400

Esto nos impone otras tres restricciones:

$$x_1 + x_2 + x_3 + x_4 \ge 300$$
$$x_5 + x_6 + x_7 + x_8 \ge 700$$
$$x_9 + x_{10} + x_{11} + x_{12} \ge 400$$

Hasta ahora todas las restricciones, a excepción de la primera, son de la forma "es mayor o igual que"; sin embargo, a nosotros nos interesa que las restricciones sean del tipo "es igual a". Para ello, agregamos variables de excedente a cada una de las 7 restricciones:

$$x_1 + x_5 + x_9 - e_1 = 400$$

$$x_2 + x_6 + x_{10} - e_2 = 350$$

$$x_3 + x_7 + x_{11} - e_3 = 300$$

$$x_4 + x_8 + x_{12} - e_4 = 300$$

$$x_1 + x_2 + x_3 + x_4 - e_5 = 300$$

$$x_5 + x_6 + x_7 + x_8 - e_6 = 700$$

$$x_9 + x_{10} + x_{11} + x_{12} - e_7 = 400$$

donde $e_i \geq 0$ para toda $i \in \{1, \dots, 7\}$. Como x_i denota al número de personas entrevistadas, entonces es natural suponer que $x_i \geq 0$ para cualquier $i \in \{1, \ldots, 12\}$. Así, pues, el problema de programación lineal en su forma estándar nos queda:

$$\min\left\{z = \sum_{i=1}^{12} c_i x_i\right\}$$

sujeto a

$$\sum_{i=1}^{12} x_i = 2000$$

$$x_1 + x_5 + x_9 - e_1 = 400$$

$$x_2 + x_6 + x_{10} - e_2 = 350$$

$$x_3 + x_7 + x_{11} - e_3 = 300$$

$$x_4 + x_8 + x_{12} - e_4 = 300$$

$$x_1 + x_2 + x_3 + x_4 - e_5 = 300$$

$$x_5 + x_6 + x_7 + x_8 - e_6 = 700$$

$$x_9 + x_{10} + x_{11} + x_{12} - e_7 = 400$$

$$x_i, e_j \ge 0 \quad \forall i \in \{1, \dots, 12\}, j \in \{1, \dots, 7\}.$$

3

Si queremos expresar el problema en su forma matricial, como ahora hemos agregado variables de excedente, tenemos que incrementar el tamaño de nuestros vectores \boldsymbol{x} y \boldsymbol{c}^T . Al primero hay que agregarle las variables de excedente como tal y al segundo asociarle costos de cero a cada variable de excedente, pues no nos importa el valor de dichas variables para el problema planteado. Entonces $\boldsymbol{x} = (x_1, \dots, x_{12}, e_1, \dots, e_7)$ y $\boldsymbol{c}^T = (c_1, \dots, c_{12}, 0, \dots, 0)$.

La matriz A estaría dada por

x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_{10}	x_{11}	x_{12}	e_1	e_2	e_3	e_4	e_5	e_6	e_7
1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	1	0	0	0	-1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	1	0	0	0	-1	0	0	0	0	0
0	0	1	0	0	0	1	0	0	0	1	0	0	0	-1	0	0	0	0
0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	-1	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	-1	0	0
0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	-1	0
0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	-1

y el vector $\mathbf{b} = (2000, 400, 350, 300, 300, 300, 700, 400).$

Así pues, el problema sería minimizar $z = \boldsymbol{c}^T \cdot \boldsymbol{x}$ sujeto a $A\boldsymbol{x} = b$, con $\boldsymbol{x} \geq 0$.

La solución al planteamiento inicial se muestra en la figura (1).

Si la muestra de población inicial no es lo suficientemente representativa y hay que agregar una restricción en la cual debe de haber, por lo menos, 50 personas de cada grupo de edad, entonces se agrega la restricción de que $x_i \ge 0$ para toda $i \in \{1, ..., 12\}$. El ajuste correspondiente se muestra en la figura (2).

Considerando que hay un exceso de muestras para la población de 18-25 años y la de Silicon Valley, y que Rob exige un máximo de 600 y 650 individuos respectivamente, se agregan dos restricciones más:

$$x_1 + x_2 + x_9 \le 600$$
$$x_1 + x_2 + x_3 + x_4 \le 650$$

El ajuste correspondiente se muestra en la figura (3).

El siguiente ajuste exige que cambien los costos; esto es, nuestro vector \mathbf{c}^T . Ahora $c_1 = 6.5, c_5 = 6.75$ y $c_9 = 7$. El ajuste correspondiente se muestra en la figura (4).

Costo	18 - 25	26 - 40)	41 - 50		51+					Con margen
Silicon Valley	\$ 4.7	\$	6.50	\$	6.50	\$	5.00		Costo total	\$ 11,200.00	\$ 12,880.00
Big city	\$ 5.2	\$	5.75	\$	6.25	\$	6.25				
Small Town	\$ 6.5	\$	7.50	\$	7.50	\$	7.25				
Entrevistados	18 - 25	26 - 40)	41 - 50		51+					
Silicon Valley	60	0	0		0		300	900	300		
Big city		0	550		150		0	700	700		
Small Town	25	0	0		150		0	400	400		
Total	85	0	550		300		300	2000			
Cota	40	0	550		300		300		2000		

Figura 1: Situación inicial.

Costo	18 - 25		26 - 40		41 - 50		51+					Con margen
Silicon Valley	\$	4.75	\$	6.50	\$	6.50	\$	5.00		Costo total	\$ 11,387.50	\$ 13,095.63
Big city	\$	5.25	\$	5.75	\$	6.25	\$	6.25				
Small Town	\$	6.50	\$	7.50	\$	7.50	\$	7.25				
Entrevistados	18 - 25		26 - 40		41 - 50		51+		Total	Cota		
Silicon Valley		600		50		50		200	900	300		
Big city		50		450		150		50	700	700		
Small Town		200		50		100		50	400	400		
Total		850		550		300		300	2000			
Cota		400		550		300		300		2000		

Figura 2: Primer ajuste.

Costo	18 - 25		26 - 40		41 - 50		51+					Con margen
Silicon Valley	\$	4.75	\$	6.50	\$	6.50	\$ 5	.00		Costo total	\$ 11,575.00	\$ 13,311.25
Big city	\$	5.25	\$	5.75	\$	6.25	\$ 6	5.25				
Small Town	\$	6.50	\$	7.50	\$	7.50	\$ 7	.25				
Entrevistados	18 - 25		26 - 40		41 - 50		51+		Total	Cota inf	Cota sup	
Silicon Valley		100		50		50		450	650	300	650	
Big city		250		450		200		50	950	700		
Small Town		250		50		50		50	400	400		
Total		600		550		300		550	2000			
Cota inf		400		550		300		300		2000		
Cota sup		600										

Figura 3: Segundo ajuste.

Costo	18 - 25	26 - 40	41 - 50	51+				Con margen
Silicon Valley	\$ 6.50	\$ 6.50	\$ 6.50	\$ 5.00		Costo total	\$ 12,025.00	\$ 13,828.75
Big city	\$ 6.75	\$ 5.75	\$ 6.25	\$ 6.25				
Small Town	\$ 7.00	\$ 7.50	\$ 7.50	\$ 7.25				
Entrevistados	18 - 25	26 - 40	41 - 50	51 +	Total	Cota inf	Cota sup	
Silicon Valley	5	0 50	50	500	650	300	650	
Big city	10	0 600	200	50	950	700		
Small Town	25	0 50	50	50	400	400		
Total	40	700	300	600	2000			
Cota inf	40	0 550	300	300		2000		
Cota sup	60	0						

Figura 4: Tercer ajuste.

5

Costo	18 - 25		26 - 40		41 - 50		51+					Con margen
Silicon Valley	\$	6.50	\$	6.50	\$	6.50	\$	5.00		Costo total	\$ 12,475.00	\$ 14,346.25
Big city	\$	6.75	\$	5.75	\$	6.25	\$	6.25				
Small Town	\$	7.00	\$	7.50	\$	7.50	\$	7.25				
Entrevistados	18 - 25		26 - 40		41 - 50		51+		Total	Objetivo	Porcentaje	
Silicon Valley		50		50		50		250	400	400	20%	
Big city		50		600		300		50	1000	1000	50%	
Small Town		400		50		50		100	600	600	30%	
Total		500		700		400		400	2000			
Objetivo		500		700		400		400		2000		
Porcentaje		25%		35%		20%		20%				

Figura 5: Cuarto ajuste.

Finalmente, ante los requisitos más estrictos que solicitó Rob al fijar los porcentajes de gente encuestada para cada población, tenemos que eliminar nuestras variables de excedente (las e_i 's) y cambiar el vector \boldsymbol{b} de manera que se cumpla lo que Rob solicita. El ajuste correspondiente se muestra en la figura (5).