Phys 772: Week 13 Tuesday * Standard Model: SU(3), x SU(7), x U(1), 2 sn = - 1 G 6 G MV - 1 W W W - 1 B BMV + - (2H) + - + + 2H2 - 2VH3 - 2 H4 + M2 W+ WT (1+ H)2+ 1 M2 7 7/(1+ H)2 + [4 / i] - m, (/+ H) / 1 - 9 (7 W + Jr + W +) - 9 7/2 7 252 (W r + Jw W) - 2000 W 72 m - e 7 / A. - e J/ A -> renormalizable theory (Higgs mechanism) 5M agrees with all experimental observations But: considered to be an effective low-energy that has an underlying more fundamental description.

Parameter counting:
12 fermion Yukawa Couplings -> masses
69,3l,3v
6 micuia angles
3 - 1 V
6 mixuig angles 3 in VCKM, 3 in VPMNS 2 (P-violating phases 1 in VPMNS 2 Majorana phoses in VPMNS 3 coupling constants:
La Valla Va
9 Mai CKM / PMNS
2 Majorana Moses in NPMNS
5 coupling constant:
9, s, 9, g, t
Z Higgs pokential paramelly
$M, \lambda \rightarrow M_{H}, S'$
2 fliggs robential parameters 1 0 MH, 5
2 Mpeanch, cosmological combant (ike tern
- Planck /
28 parameters
+ assignmente of YT be all leaving.
+ assignments of Y, Tz for all fermions
+ 7 and the
+ 3 generations
=> 100 P.
-) seems tike a lor of predom to choose
parameter with "periodic table" like
=) seems like a lot of freedom to choose parameters with "periodic table" like repetition
<u> </u>

Gauge group structure
Junge grays stresses
$SU(3)_{t} \times SU(2)_{L} \times U(1)_{Y}$
30(3/7 / 00(2)[1 0(1)9
g g'ambrine to form electricanage coupling, e
coupling, e
- guartization of e/
seems arlitrary without
an underlying group
seems arbitrary without an underlying group that breaks (Into SU(2), XU)
- some underlying symmetry group would
explain combition tokerous quark electric
-> some underlying symmetry group would explain consection tretween quark electric charges and lepton electric charges
charges and copion exercise charges
Some granuality are attacked in the charge
some agament are anniopric , if the charges
were different, alons would not be nettral
Some arguments are autropric: if the charges were different, alons would not be neutral and we would not be here to ask the
quertion
-> most physicists still meles a more
minimalist explanation involving
most physicists still prefer a more numeralist explanation involving a simpler theory

	- Fermion mas hierarchy:
	me = 10-5 m t and mutype > m d-type
	Glarge range of man scales for fermions, even larger if my included (10-11)
	=> are the generations of fermions consentive excitations or power terms of undelying physics?
	Similar to see saw to suppress m ? me
	Similar to see saw to suppress $m \gtrsim me$ (or $m_s = 10^{-6} m_D = m_D \frac{m_D}{m_S}$ E.g. $m_e \propto \left(\frac{m_i}{m_S}\right)^3$, $m_e \propto \left(\frac{m_i}{m_S}\right)^2$, $\mu_e \propto \left(\frac{m_s}{m_S}\right)$
_	Higgs man hierarchy:
	$m_H = \sqrt{-2\mu^2} = \sqrt{2\lambda} \text{ of } $ $m_W = 2 \text{ for messes that are of } $ $m_W = 2 \text{ for messes that are of } $
	Theoretical arguments limit my to bound between 100 GeV CMH < 700 GeV

- Strong CP problem: SU(2) L breaks CP explicibly - phases in VCKM nature does not muid a lit of CP violation In SU(3), sector -> O QCD Gir G/i - but DQCD < 10" instead of natural size On)

- what suppresses DQCD to such small values? Possible explanations: - Oacs turns out to be unobservable for some reason (phases can be rotated away) -> Oacs = O(1) but zero in experiments - On there is an underlying symmetry group (1)

which undergoes spontaneous symmetry breaking,

and Occo acts as first order derivative

at the equilibrium -> zero by definition - Alsence of gravity in Standard Model

- general relativity is a classical (non quantum)

field theory - meeds quantum gravity, string

theory, or similar

	,
	helaked: cosmological constant, Higgs held potential energy expectation value at the equilibrium:
	notential energy expectation value of the
	equilibrum.
	(0/V(p)/0) = - /11
	4)
	generales cosmological constant due la gravitational
	generales cosmological constant due le gravitational pull from energy density:
	, ,
	1 com = 1 55B = 8 TGN/(0/ V(4)/0)
	but this is 1056 times larger than the observed cosmological constant, and has the wrong sign as well!
	the man of an all the man has
	the wrong sign as well.
	Gagain fine-tuning, at 0(1056)
	regard face facility, or
_	- Dork matter, dark energy
	robation of galaxies energy that constitutes
	- require O(TeV) 3 of converse
	robation of galaxies energy that constitutes
	expansion i acceleration

4	Possible solutions to these problems:
_	rentrino masses < scesair mechanism large (P violation) -> sterile neutrino decays, intial condition dark matter could by hightest supersymmetric particle, which can't decay into SM particles (neutralino) higher gauge groups: SV(S) (J. SV(3) includes SU(2)
	sterile neutrino decays, intial condition
	dark matter could by lightest supersymmetric
	(neutralino)
	- higher gauge groups: SV(S) (J. SV(3) includes
