DAAQuiz#2-Chap2-24Sep2022

p22cs004@coed.svnit.ac.in Switch account

Your email will be recorded when you submit this form

DAAQuiz#2-Chap2-24Sep2022

Quiz#1.1-Chap1-10thAug2020

Note: The "_" symbol denotes subscript whereas ^ symbol depicts the superscript.

Assuming that You-tube pushes the choice of the songs liked by a person, 2 points with the choices of the songs between you and me as shown, for songs B, C, and D there are ______, _____ mismatches respectively between our choices.

Songs

	Α	В	С	D	Е
Me	1	2	3	4	5
You	1	3	4	2	5

- 1, 0, 0
- 0 1, 1, 0
- 0 1, 1, 1
- 0, 1, 0

Consider a binary tree that represents sorting of 9 elements. Then it can have at least number of leaves. And the depth of this binary tree must be at least	2 points
362880, 18	
0 1024, 19	
362881, 19	
512, 12	

The number of inversions between the two sorted subhalves in the figure is $\ \ 2 \ points$

- **O** 20
- O 3
- 30
- O 29

Consider the figure shown here that models an effort to solve the closest pairs of points problem. The partial recurrence relation after the following two steps is _______. (a) Divide: Draw a vertical line L so that roughly \$(1/2)n\$ points are there on each side. (b) Conquer: Find the closest pair in each side recursively.

- T(n) = O(1)
- T(n) = T(n/2) + T(n/2)
- T(n) = O(n)
- $T(n) = O(n \lg n)$

Consider the code shown in the figure. The complexity of this code given the 2 points combined size of A and B vectors is n, is ______

```
Algorithm Merge-and-count(A, B)
Maintain a Current pointer into each list,
                initialized to point to the front elements
Maintain a variable Count for the number of inversions,
                initialized to 0
While both lists are nonempty {
        Let a and b be the elements pointed to
                by the Current pointer
        Append the smaller of these two to the output list
        If b_i < a_i then
                increment Count by the number of
                        elements remaining in A
                Advance the Current pointer in the list from
                        which the smaller element
                        was selected.
}
```

- O(n lg n)
- O(n^2)
- O(n)
- O(lg n)

Given the interger array as in the figure here, applying the Merge-and-Count 2 points algorithm discussed in the class, the number of inversions in the left half is ______ whereas that in the right half is ______.

1 5 4 8 10 2 6 9 12 11 3 7

- 6,8
- 7,6
- 5,8
- 5,9

Given the following instance in the execution of the Hoare PArtition routine 2 points (i.e. the naive partition routine discussed in the class) of the Quick sort, in the next iteration, when the loop stops ______.

- the iteration would terminate now.
- the items pointed to be left and right pointers would be swapped with each other.
- the left and right pointers would simply be incremented.
- none of these

The complexity of the Divide routine is ______that of the Combine routine 2 points is _____, whereas that of the Conquer routine is _____in the Mergesort.

- O(1), 2T(n/2), O(n)
- \bigcirc O(n), 2T(n/2), O(1)
- 2T(n/2), O(1), O(n)
- O(1), 2T(n/2), O(1)

Given n points in the plane, finding a pair with the Euclidean distance between points p1(x1, y1) and p2(x2, y2) is given by ______.

2 points

- $((x1-x2)^2 + (y1+y2)^2)^(1/2)$
- $((x1+x2)^2 + (y1+y2)^2)^(1/2)$
- $((x1-x2)^2 + (y1-y2)^2)^(1/2)$
- $((x1+x2)^2 + (y1-y2)^2)^(1/2)$

Given the following integer array, the total number of inversions in the array 2 points is

- **O** 20
- \bigcirc 5
- **1**3
- O 22

Given the following instance in the execution of the Hoare PArtition routine 2 points (i.e. the naive partition routine discussed in the class) of the Quick sort, in the next iteration, ______.

- the iteration would terminate now.
- items pointed to be left and right pointers would be swapped with each other.
- the left and right pointers would simply be incremented.
- none of these

Having designed the Mergesort routine to sort the input integer array in the 2 points ascending order, if given an array sorted already in the ascending order as input, the Mergesort complexity would be _____.

- O(lg n)
- O(n^2)
- O(n)
- O(n lg n)

Consider the Quicksort algorithm in which the Partitioning is done using the algorithm as shown in the figure. Then, the running time of the Quicksort is given by	2 points
Quicksort - Partitioning routine Algorithm ChoosePivot(A[], n, left, right)	
<pre>1. median = find_median(A[left], A[left+1],A[right]) 2. return median.</pre>	
//Assume that complexity of find_median is $\theta(n)$	
Θ (n)	
Θ (n log n)	
Insufficient information to answer	
Ο Θ(n^2)	
Merge sort a sorting algorithm because	2 points
is in place, it requires an auxiliary array	
is stable, it requires an auxiliary array	
is not in place, it requires an auxiliary array	
is not stable, it requires an auxiliary array	

Consider a run of Quicksort in which after the first call of partitioning, the 2 points input integer array to be sorted takes the form as shown in the table here. Then the pivot element used in the first run must have been _____ 12 2 5 1 9 11 10

- 9 or 12
- 1 or 7
- 12 or 11
- 7 or 9

Assuming that You-tube pushes the choice of the songs liked by a person, 2 points with the choices of the songs between you and me as shown in the figure here, there are _____ mismatches between our choices.

	Α	В	С	D	Е	F	G
Me	1	2	3	4	5	6	7
You	1	6	7	5	2	3	4

Songs

- none of these

The procedure Merge shown here requires _____ comparisons. 2 points

```
Algorithm MERGE (A, p, q, r)
        let i = p and j = q+1 and k = 1 while (i <= q) and (j <= r)
1
2
3
                          if A[i] <= A[j]
                 do
                          then B[k] = A[i]
5
                                    i = i + 1, k = k + 1
6
                                B[k] = A[j]
                                   j = j + 1, k = k + 1
   here one f the subarrays is in B
8
         if i > q then
9
         for index = j to r
10
                  do B[k] = A[index]
                          k = k + 1
11
                  else for index = i to q
12
13
                  do B[k] = A[index]
14
15
         for index = p to r
16
                  do A[index] = B[index]
         return
```

- 3n-1
- 3n+1
- 3n+2
- 3n-1+1

The given array is arr = { 2,6,1 }, then _____are the pivots that are 2 points returned as a result of the first and the subsequent partitioning, in Quicksort.

- 2 and 1
- none of these
- 6 and 1
- 2 and 6

Consider the figure shown here that models an effort to solve the closest 2 points pairs of points problem that shows a vertical line L drawn to divide the plane into two sections so that roughly (1/2)n\$ points are there on each side. The time required for this operation is _____.

- 0(1)
- O(n)
- O(n lg n)
- O(lg n)

In Quick-sort the _____ phase is trivial, with actual sorting occurring during the _____ phase, whereas in the Merge-sort ____ phase is trivial, with actual sorting occurring during the ____ phase.

2 points

- Combine, Divide, Divide, Combine
- Divide, Combine, Divide, Combine
- O Divide, Combine, Combine, Divide
- Combine, Divide, Combine, Divide

The correct recurrence relation of the Merge-sort procedure without any assumption on how division is done - is _____

2 points

- neither of these
- T(n) = 0, if n=1; T(n) = floor(n/2) + ceiling(n/2) + n otherwise
- T(n) = 0, if n = 1, T(n) = 2T(n/2) + n otherwise

IF $f(n)=O(\lg n)$ and g(n)=O(1), then g(n) is _____.

2 points

- slower than f(n)
- faster than f(n)
- grows at the same rate as f(n)
- one of these options

Given the following integer array, the total number of inversions in the array 2 points is

- **1**9
- O 20
- $\bigcirc 13$
- **1**6

D&C algorithms have typically running times as compared to brute 2 points force and their running time can be determined by
greater, recursion
lesser, recursion
greater, the standard tech to solve recurrences.
lesser, the standard tech to solve recurrences.
The number of inversions between the two sorted subhalves in the figure is 2 points
·
3 7 10 14 18 19 2 11 16 17 23 25

- O 13
- O 10
- O 12
- O 14

The running time of naive PARTITION routine (one discussed in the class) of 2 points Quicksort is of the order of ______. $\bigcirc \theta(n)$ $\bigcirc \theta(\lg n)$ $\bigcirc \theta(n^2)$ $\bigcirc \theta(n \lg n)$

В

Given two arrays to be sorted using the Quick-sort as shown in the table 2 points here, let n1 and n2 be the number of comparisons Quicksort would require in sorting A and B in ascending order and let the partition routine choose the first element as the pivot then ______

A	2	5	11	18	19	121	1111	2120
В	2901	2526	2100	700	690	512	411	10

- n1> n2
- n1!= n2
- n1 = n2
- n1 < n2

Given two integer arrays: one sorted and the other reverse sorted, a brute force algorithm to compute the number of inversions between the two integer arrays requires ______.

2 points

- **O**(n)
- Θ(n²)
- Θ(2n)
- Θ(lg n)

Given an array of n elements, that is reverse sorted. The complexity of merge sort to sort it is	2 points
O(lg n)	
O(n lg n)	
O(n^2 lg n)	
O(n^2)	
The avacute the came query on many different coarch angines	O mainta
The execute the same query on many different search engines and then try to synthesize the results by looking for similarities.	2 points
query processing systems	
meta-search engines	
search engines	
ocollaborative filtering systems	
Let f and g be non-decreasing real-valued functions defined on the positive integers, with $f(n)$ and $g(n)$ at least 2 for all $n \ge 1$. Assume that $f(n) = O(g(n))$, and let c be a positive constant. Then, is $f(n) \times g(f(n)^c) = O(g(n)) \times g(g(n))$?	2 points
O Sometimes yes, sometimes no, depending on the functions f and g	
O Sometimes yes, sometimes no, depending on the constant c	
Yes, for all such f, g, and c	
Never, no matter what f, g, and c are	

!

Page 2 of 2	
Insertionsort, MErgesort	
Mergesort, Quicksort	
Quicksort, Mergesort	
one of these	
always produces the two partitions which are of almost equal size in the divide phase, whereas does not guarantee so.	2 points
Ο 8, δ	
Ο 8, δ+1	
Ο 7, δ+1	
Ο 7, δ	
Let s_i be the point in the 2δ -strip with the i^{th} smallest y-coordinate then, if $ i-j \ge $; the distance between the distinct points s_i and s_j is at least	2 points
O 2	
O 100	
O 20	
O 10	
Assume that the Quicksort is given as input an array $A = \{2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,$	2 points

Back

Submit

Clear form

Never submit passwords through Google Forms.

This form was created inside of Sardar Vallabhbhai National Institute of Technology, Surat. Report Abuse

Google Forms