- Office hours friday moved to 2 to 3
- HW #1 due tomooorrooooow
- HW2 posted tomorrow too, due in one weeeek
- And now for the important stuff
- Is it possible for there to be a uniformly best estimator? Not really, no. Unbiased vs smallest MSE matters. Uniformly best would pick the parameter with probability 1 but that is rather pointless
- Defn:

Let T be an unbiased estimator of θ . If, for every unbiased estimator S of θ ,

$$V(T) \leq V(S)$$
, and $V(T) < V(S)$ for some θ ,

then T is the uniformly minimum variance unbiased estimator.

- UMVUEs exist, but some biased estimators have a smaller MSE, and there is no good algorithm to find them
- So, what happens to estimator as sample size $n \to \infty$?
- Defn:

Let
$$X_1, \ldots, X_n$$
 be IID. For each n , let $\hat{\theta}_n(X_1, \ldots, X_n)$ be an estimator of θ . Then, $\hat{\theta}_1, \hat{\theta}_2, \ldots$, is a sequence of estimators for θ .

- Ex for \bar{x} : $X_1, \frac{X_1+X_2}{2}, \dots, \frac{X_1+\dots+X_n}{n}$
- Defn:

Let
$$X_1, \ldots, X_n$$
 be IID. Let $\hat{\theta}_n$ be a sequence of estimators.

The estimator sequence $\hat{\theta}_n$ is consistent for θ if \forall_{θ} in the parameter space $,\hat{\theta}_n \to \theta.$

- Imagine there's a p over that arrow, that is there sometimes
- Another way to put it:

$$\forall \epsilon > 0, \lim_{n \to \infty} P\left(\left|\hat{\theta}_n\right| > \epsilon\right) = 0$$
$$\lim_{n \to \infty} P\left(\left|\hat{\theta}_n\right| < \epsilon\right) = 1$$

- In english: For any number ϵ , no matter how small, if you go far enough down the $\hat{\theta}_n$ sequence you'll find some $\hat{\theta}_n$ s that are guaranteed to be within ϵ -distance of θ . Even if ϵ is $\frac{1}{TREE(G(64))}$ or something crazy
- Can biased estimators be consistent? Yep! But most consistent estimators we will use are unbiased
- Some examples!!!!!!!!!!!

Let
$$Z_1, ..., be IID, U(0,1)$$
. For each $n, y_{(n)} = \max(Z_1, ..., Z_n)$.

Show $y_{(n)}$ is consistent for 1.

Proof: Show:

$$\lim_{n \to \infty} P\left(\left|y_{(n)} - 1\right|\right) = 1$$

Let $\epsilon = 0$, fix n.

$$P(|y_{(n)} - 1| < \epsilon) = P(1 - y_{(n)} < \epsilon)$$

$$= P(y_{(n)} > 1 - \epsilon)$$

$$= 1 - P(y_{(n)} < 1 - \epsilon)$$

$$= 1 - \prod_{i=1}^{n} P(Z_i < 1 - \epsilon)$$

$$= 1 - \prod_{i=1}^{n} (1 - \epsilon) = 1 - (1 - \epsilon)^n$$

Now let's do the limit.

$$\lim_{n \to \infty} 1 - (1 - \epsilon)^n = 1 - 0 = 1$$

That's what was wanted! Yay! Happy check mark! (how do i write a check mark in LaTeX? lol)

- That's brute force consistency. But there's better ways
- Theorem:

The Weak Law of Large Numbers (WLLNS):

Let
$$X_1, \ldots$$
, be IID, with $E(X_i) = \mu$.
For each positive integer n , let $\bar{x} = \frac{X_1 + \cdots + X_n}{n}$

Then
$$\bar{x} \to \mu$$
, that is, $\lim_{n \to \infty} P(|\bar{x}_n - \mu| > \epsilon) = 0$

• Another one:

Markov's Inequality:

If X is a nonnegative RV, then

$$\forall A > 0, P(X \ge A) \le \frac{E(x)}{a}.$$

- That one puts a bound on our expectation value. We learned that one a while ago, I've got the proof in here somewhere
- Proof of WLLNs:

$$\forall \epsilon > 0, P(|\bar{x}_n - \mu| > \epsilon)$$

We shall now drop the n from \bar{x}_n for expediency but assume it's there

$$= P((\bar{x} - \mu)^2 > \epsilon^2)$$

which, by Markov's Inequality,

$$\leq \frac{E((\bar{x}-\mu)^2)}{\epsilon^2}$$

Hey the numerator is $V(\bar{x})!$ And $V(\bar{x}) = \frac{\sigma^2}{n}$ So we have:

$$\frac{\sigma^2}{n\epsilon^2}$$

And now evaluate the limit:

$$\lim_{n \to \infty} \frac{\sigma^2}{n\epsilon^2} = 0$$

Therefore, \bar{x} is consistent for μ .

- But what about mean squared error?
- A theorem!!!!

Let $\hat{\theta}_n$ be a sequence of estimators of parameter θ .

If $\forall_{\theta} \lim_{n \to \infty} MSE(\hat{\theta}_n) = 0$, then $\hat{\theta}_n$ is consistent for θ .

Proof

Let
$$\epsilon > 0.P\left(\left|\hat{\theta}_n - \theta\right| > \epsilon\right)$$

= $P((\hat{\theta}_n - \theta)^2 > \epsilon^2)$

Dropping the ns from that $\hat{\theta}$ s now

$$\leq \frac{E((\hat{\theta}-\theta)^2)}{\epsilon^2} = \frac{MSE(\hat{\theta})}{\epsilon^2}$$

Now take limit:

$$\lim_{n \to \infty} \frac{MSE(\hat{\theta})}{\epsilon^2} = \frac{0}{\epsilon^2} = 0$$

- Use the above for consistency proofs most of the time. It's easier
- Now another theorem

Let $\hat{\theta}$ be a consistent estimator of θ .

Let g be a continuous function. Then, $g(\hat{\theta})$ is consistent for $g(\theta)$.

Proof is in the class notes

• Another one!

Let $\hat{\theta}$ be consistent for $\theta, \hat{\tau}$ be consistent for τ .

Let g be a continuous function of two variables. Then, $g(\hat{\theta}, \hat{\tau})$ is consistent for $g(\theta, \tau)$.

Special case: $\hat{\theta} + \hat{\tau}$ is consistent for $\theta + \tau$

Also $\hat{\theta} \times \hat{\tau}$ consistent for $\theta \times \tau$, $\frac{\hat{\theta}}{\hat{\tau}}$ consistent for $\frac{\theta}{\tau}$

• Mead! Another!

Let x_1, \ldots , be IID, mean μ , variance σ^2 .

Let
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{x})^2$$

Then S^2 is consistent for σ^2 .

$$S^{2} = \frac{\sum_{i=1}^{n} X_{i}^{2}}{n-1} - \frac{n\bar{x}^{2}}{n-1}$$
$$= \frac{n}{n-1} \frac{\sum_{i=1}^{n} x_{i}^{2}}{n} - \frac{n}{n-1}\bar{x}^{2}$$

Since $\bar{x} \to \mu$ by WLLN, $\bar{x}^2 \to \mu^2$. So:

 $\lim_{n\to\infty} \frac{n}{n-1} \bar{x}^2 = \mu^2 \text{ (solve the ns and it goes to 1)}$

Now: $\frac{\sum_{i=1}^{n} X_i^2}{n}$, which is an ugly sample mean. It's not \bar{x} .

But it is an average of the squares. Like Silence of the Lambs, but Average of the Squares

It converges to
$$E(X^2)$$

$$= V(X) + E(X)^2$$

$$= \sigma^2 + \mu^2$$

$$\Rightarrow \lim_{n \to \infty} \frac{n}{n-1} \frac{\sum_{i=1}^n X_i^2}{n} = \sigma^2 + \mu^2$$

Thus we have:

$$\sigma^2 + \mu^2 - \mu^2 = \sigma^2$$

This concludes the proof. We now have $S^2 \to \sigma^2$. \square