Lernzettel

Pascal Diller

October 22, 2024

Contents

Logik		4
Mengen		4
Relationen		7
Äquivalenzrelationen	 	8
Zahlensysteme		8
Binärsystem	 	8
Carry-Flag		
Zweierkomplement		
Hexadezimalsystem		
Oktalsystem		
Festkommazahlen		
Gleitkommazahlen: IEEE 754		
Aufbau		
Dezimal zu IEEE 754		
IEEE 754 zu Dezimal		
Summenzeichen und Produktzeichen		12
Summenzeichen		
Produktzeichen	 	12
Rechenregeln		13
Bruchregeln	 	13
Potenzgesetze	 	13
Wurzelgesetze		
Logarithmengesetze		
Trigonometrie		14
Bogenmaß	 	14
Differentialrechnung		14
Ableitungsregeln	 	14
Natürliche Potenzen		
Summenregel		
Produktregel		

	Kettenregel		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	14
Ebenen																							15
Parar	neterform .																						15
Norm	alenform																						15
Koore	dinatenform											_											15

Logik

- "∧": Und
- "\": Oder
- "¬": Nicht (Verneinung)
- $A \implies B$: A impliziert B
- $A \iff B$: A wird durch B **impliziert**
- $A \iff B$: A ist äquivalent zu BEs gilt: $A \implies B$ und $A \iff B$
- ∀: Für alle
- ∃: Es existiert (mindestens) ein

Mengen

Eine **Menge** ist eine Zusammenfassung von (mathematischen) Objekten. Die Objekte in einer Menge werden als **Elemente** bezeichnet.

- $x \in M$: x in/Element M
- $x \notin M$: x nicht in/Element M

Defintion einer Menge:

• Aufzählung:

$$M_1 = \{0, 1, 2, 3, 5, 8, -1\}; \quad M_2 = \{1, 2, 3, 4, 5, \dots\}$$

Es kommt nicht auf die Reihenfolge und nicht auf Verdopplungen an: $\{1, 3, 2, 3\} = \{3, 2, 1\} = \{1, 2, 3\}$

• Beschreibung:

$$M_3 = \{x \in \mathbb{R} : x \ge -1 \land x \le 1\} = [-1, 1]$$

Menge B ist eine **Teilmenge** von Menge A, wenn für jedes $x \in A$ auch $x \in B$ gilt.

- $A \subset B$ ("A ist eine Teilmenge von B")
- $A \supset B$ ("B ist eine Teilmenge von A")

Mengenoperationen:

 \bullet Vereinigung der Mengen A und B

$$A \cup B = \{x : x \in A \lor x \in B\}$$
 ("A vereinigt B")

ullet Durchschnitt der Mengen A und B

$$A \cap B = \{x : x \in A \land x \in B\}$$
 ("A geschnitten B")

ullet Differenzmenge der Mengen A und B

$$A \setminus B = \{x : x \in A \land x \notin B\}$$
 ("A ohne B")

Kartesisches Produkt:

sei $n \in \mathbb{N}$ und seien X_1, \dots, X_n Mengen, dann ist

$$X_1 \times \cdots \times X_n = \{(x_1, \dots, x_n) : x_i \in X_i, \text{ für } i = 1, \dots, n\}$$

die Menge der n-**Tupel** mit *i*-ter Koordinate x_i in X_i für i = 1, ..., n.

Potenzmenge:

Die Menge aller Teilmengen einer Menge X heißt Potenzmenge von X und wird mit $\mathcal{P}(\mathcal{X})$ bezeichnet:

$$\mathcal{P}(X) = \{Y : Y \subset X\}$$

Es gilt immer: $\emptyset \in \mathcal{P}(X)$ und $X \in \mathcal{P}(X)$.

Beispiel: Sei $X = \{1, 2, 3\}$. Dann ist

$$\mathcal{P}(X) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2.3\}, \{1, 2, 3\}\}\$$

Sei P eine Menge bestehend aus Mengen. Dann steht

$$\bigcup_{Y \in P} Y = \{ y : \text{ es gibt } Y \in P \text{ so dass } y \in Y \}$$

für die (möglicherweise unendliche) Vereinigung aller Mengen in P.

Partitionen:

Sei X eine Menge. Eine Partition von X ist eine Teilmenge $P \in \mathcal{P}(X) \setminus \{\emptyset\}$ sodass

- für alle $Y,Z\in P$ mit $Y\neq Z,Y\cap Z=\emptyset$ (Y und Z sind disjunkt).
- $\bullet \ \bigcup_{Y \in P} Y = X.$

Definierte Mengen:

- Leere Menge: $\emptyset = \{\}$
- Natürliche Zahlen: $\mathbb{N} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, \dots\} \ (0 \notin \mathbb{N})$
- Ganze Zahlen: $\mathbb{Z} = \{0, 1, -1, 2, -2, 3, -3, 4, -4, \dots\}$
- Rationale Zahlen: $\mathbb{Q} = \left\{ \frac{p}{q} : p, q \in \mathbb{Z}, q \neq 0 \right\}$
- \bullet Relle Zahlen: $\mathbb{R},$ Menge aller rellen Zahlen, die man nicht abzählen kann

Es gilt: $\mathbb{N} \in \mathbb{Z} \in \mathbb{Q} \in \mathbb{R}$

Relationen

Eine (binäre) Relation zwischen zwei Mengen X und Y ist eine Teilmenge

$$R \in X \times Y$$

Im Falle X=Y sprechen wir von einer Relation auf X. $x\in X$ steht in Relation zu $y\in Y$ genau dann wenn $(x,y)\in R$. Auch geschrieben: x R y oder $x\sim_R y$ für $(x,y)\in R$ und $x\not R y$ oder $x\not\sim_R y$ für $(x,y)\notin R$.

Seien X,Y und Z Mengen und $\mathcal{R}\subset X\times Y,\,\mathcal{S}\subset Y\times X$ Relationen.

• Die zu R inverse Relation ist

$$R^{-1} = \{(y, x) \in Y \times X : (x, y \in R)\}$$

• Die Verkettung von R und S ist

$$\mathbf{S} \circ \mathbf{R} = \{(x,z) \in X \times Z : \text{es gibt } y \in Y \text{ mit } (x,y) \in \ \mathbf{R} \text{ und } (x,y) \in \mathbf{S} \}$$

Eine binäre Relation R auf der Menger X heißt:

- relfexiv, wenn x R x für alle $x \in X$.
- symmetrisch, wenn für alle $x, y \in X$ aus x R y stets y R x folgt.

- antisymmetrische, wenn für alle $x, y \in X$ aus x R y und y R x stets x = y folgt.
- asymmetrisch, wenn für alle $x, y \in X$ aus x R y stets $y \not R x$ folgt.
- transitiv, wenn für alle $x, y, z \in X$ aus x R y und y R y stets x R z folgt.

Äquivalenzrelationen

Zahlensysteme

Binärsystem

Eine Binärzahl b mit n+1 Stellen hat die Form $b_n \dots b_1 b_2$ mit $b_i \in \{0,1\}$.

Sie entspricht der Dezimalzahl d mit $d = b_n \cdot 2^n + \dots + b_1 \cdot 2^1 + b_0 \cdot 2^0$

Beispiel:
$$1101_2 = 1 \cdot 2^3 + 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 13_{10}$$

Carry-Flag

Wenn bei einer Addition oder Subtraktion ein **Übertrag in der höchsten Stelle** auftritt, wird die Carry-Flag gesetzt. Dieser kann von nachfolgenden Befehlen aufgerufen werden.

Zweierkomplement

Um negative Zahlen darzustellen wird der entsprechende Wert des höchsten Bits negiert.

Beispiel bei 4 Bit:
$$1011_{2c} = 1 \cdot (-2^3) + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = -5$$

Um von einer positiven ganzen Zahl zur negativen Zahl (oder umgekehrt) gleichen Betrags zu gelangen werden alle Bits invertiert und 1 zum Ergebnis addiert.

Hexadezimalsystem

Eine Hexadezimalzahl h mit n+1 Stellen hat die Form $h_n \dots h_1 h_0$ mit $h_i \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A(=10), B(=11), C(=12), D(=13), E(=14), F(=15)\}.$

Sie entspricht der Dezimalzahl d mit $d = h_n \cdot 16^n + h_1 \cdot 16^1 + h_0 \cdot 16^0$.

Beispiel:
$$5F_{16} = 5 \cdot 16^1 + 15 \cdot 16^0 = 95_{10}$$

4 Binärziffern lassen sich zu einer Hexadezimalzahl zusammenfassen:

$$\underbrace{1101}_{13_{10}=D_{16}}\underbrace{0011_2}_{3_{16}}=\mathrm{D3_{16}}$$

Oktalsystem

Eine Oktalzahl o mit n+1 Stellen hat die Form $o_n \dots o_1 o_0$ mit $o_i \in \{0,1,2,3,4,5,6,7\}$

Sie entspricht der Dezimalzahl d mit $d = o_n \cdot 8^n + \dots + o_1 \cdot 8^1 + o_0 \cdot 8^0$.

Beispiel:
$$36_8 = 3 \cdot 8^1 + 6 \cdot 8^0 = 30_{10}$$

3 Binärziffern lassen sich zu einer Oktalzahl zusammenfassen:

$$\underbrace{11}_{3_8}\underbrace{010}_{2_8}\underbrace{011_2}_{3_8} = 323_8$$

Festkommazahlen

Eine Festkommazahl besteht aus einer festen Anzahl von Ziffern vor und nach dem Komma.

Gleitkommazahlen: IEEE 754

3 Formate:

• Single Precision: 32 Bit

• Double Precision: 64 Bit

• Extended Precision: 80 Bit

Basiert auf der wissenschaftlichen Notation.

Aufbau

Single Precision: 1 Bit Vorzeichen 8 Bit Exponent 23 Bit normalisierte Mantisse

Double Precision: 1 Bit Vorzeichen 11 Bit Exponent 52 Bit normalisierte Mantisse

Vorzeichen: 0 = +; 1 = -

Exponent: wird gespeichert, indem man den festen Biaswert (127:SP, 1023:DP) addiert.

Die Mantisse beginnt mit einem "Hidden Bit" (immer 1).

Dezimal zu IEEE 754

Beispiel: -62.058

1. Vorzeichen Bit bestimmen

Vorzeichen Bit = 1

2. Zu pur Binär umwandeln

 $62.058_{10} = 111110.10010100_2$

- 3. Normalisieren für Mantisse und Exponent (ohne Bias) $111110.10010100_2=1.1111010010100_2\cdot 2^5$
- 4. Exponent mit Bias bestimmen

$$5 + 127 = 132_{10} = 10000100_2$$

5. Führende 1 der Mantisse abschneiden

$$1.1111010010100_2 \rightarrow 1111010010100_2$$

6. Zusammenfügen

$$-62.058_{10} = \underbrace{1}_{\substack{\text{Vorzeichen} \\ \text{Bit}}} \underbrace{10000100}_{\substack{\text{Exponent}}} \underbrace{1111010010100}_{\substack{\text{Mantisse}}}$$

IEEE 754 zu Dezimal

1. Vorzeichen bestimmen

2. Exponent bestimmen (Bias muss abgezogen werden)

$$10000100_2 - 127_{10} = 132_{10} - 127_{10} = 5_{10}$$

3. Mantisse bestimmen

$$\begin{vmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{8} & \frac{1}{16} & \frac{1}{32} & \frac{1}{64} \\ 1 & 1 & 0 & 1 & 0 & 1 \end{vmatrix}$$

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{16} + \frac{1}{64} = \frac{53}{64} = 0.828125$$

- 4. 1 zur Mantisse addieren (Hidden Bit) und Vorzeichen einrechnen 1.828125
- 5. Ergebnis berechnen

$$1.828125 \cdot 2^5 = 58.5_{10}$$

Summenzeichen und Produktzeichen

Summenzeichen

Seien $m, n \in \mathbb{Z}$ mit $m \leq n$. Die Summen der Zahlen $a_m, a_{m+1}, \ldots, a_n$ wird folgendermaßen bezeichnet:

$$\sum_{i=m}^{n} a_i = a_m + a_{m+1} + \dots + a_n$$

Dabei gilt: i = Summationsindex; m/n = untere/obere Summationsgrenze. Rechenregeln:

$$\sum_{i=m}^{n} c \cdot a_i = c \cdot \sum_{i=m}^{n} a_i$$

$$\sum_{i=m}^{n} (a_i + b_1) = \sum_{i=m}^{n} a_i + \sum_{i=m}^{n} b_i$$

Produktzeichen

Seien $m, n \in \mathbb{Z}$ mit $m \leq n$. Das Produkt der Zahlen $a_m, a_{m+1}, \ldots, a_n$ wird folgendermaßen bezeichnet:

$$\prod_{i=m}^{n} a_i = a_m \cdot a_{m+1} \cdot \ldots \cdot a_n$$

Dabei gilt: i = Laufindex; m/n = untere/obere Grenze.

Rechenregeln

Bruchregeln

$$\frac{a}{b} = \frac{a \cdot c}{b \cdot c} \qquad \frac{a}{b} + \frac{c}{b} = \frac{a + c}{b}$$
$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd} \quad \frac{a}{b} : \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{ad}{bc}$$

Potenzgesetze

$$a^{n} \cdot a^{m} = a^{n+m} \qquad a^{n} \cdot b^{n} = (a \cdot b)^{n}$$
$$(a^{n})^{m} = (a^{m})^{n} = a^{n \cdot m} \qquad a^{-n} = \frac{1}{a^{n}}, a \neq 0$$
$$a^{0} = 1, a \in \mathbb{R}$$

Wurzelgesetze

$$\sqrt[n]{a^n} = a \qquad (\sqrt[n]{a})^n = a$$

$$\sqrt[n]{a \cdot b} = \sqrt[n]{a} \cdot \sqrt[n]{b} \qquad \sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}, \ b \neq 0$$

$$a^{\frac{1}{n}} = \sqrt[n]{a} \qquad a^{-\frac{1}{n}} = \frac{1}{\sqrt[n]{a}}, a > 0$$

Logarithmengesetze

$$\log 1 = 0 \qquad \qquad \log e = 1$$

$$a^x = b \Leftrightarrow x = \log_a(b) \qquad \log(a^x) = x \log a$$

$$\log(x \cdot y) = \log x + \log y \quad \log\left(\frac{x}{y}\right) = \log x - \log y$$

Trigonometrie

Bogenmaß

Der Bogenmaß ist die Länge des Kreisbogens des Einheitskreises und gibt den Betrag des Winkels an. Der Umfang des Einheitskreises beträgt 2π .

Bogenmaß
 0

$$\frac{\pi}{6}$$
 $\frac{\pi}{4}$
 $\frac{\pi}{3}$
 $\frac{\pi}{2}$
 π
 $\frac{3\pi}{2}$
 2π

 Gradmaß
 0°
 30°
 45°
 60°
 90°
 180°
 270°
 360°

Umwandlung von Winkel α von Gradmaß zu Bogenmaß: Bogenmaß = $\alpha \frac{\pi}{180^{\circ}}$ Umwandlung von Winkel α von Bogenmaß zu Gradmaß: Gradmaß = $\alpha \frac{180^{\circ}}{\pi}$

Differentialrechnung

Ableitungsregeln

Natürliche Potenzen

$$\frac{d}{dx}x^n = nx^{x-1}$$

Summenregel

$$\frac{d}{dx}(u(x) + v(x)) = \frac{d}{dx}u(x) + \frac{d}{dx}v(x)$$

Produktregel

$$\frac{d}{dx}(u(x)\cdot v(x)) = \frac{d}{dx}u(x)\cdot v(x) + u(x)\cdot \frac{d}{dx}v(x)$$

Kettenregel

$$\frac{d}{dx}u(v(x)) = \frac{d}{dv}u(v) \cdot \frac{d}{dx}v(x)$$

Ebenen

Parameterform

$$E: \vec{x} = \vec{p} + r \cdot \vec{u} + s \cdot \vec{v}$$

$$\vec{p} \, \widehat{=} \,$$
 Stützvektor
 $\vec{u}, \vec{v} \, \widehat{=} \,$ Spannvektoren

Normalenform

$$E: (\vec{x} - \vec{p}) \cdot \vec{n} = 0$$

 $\vec{x} \stackrel{\frown}{=} \text{Ortsvektor}$ $\vec{p} \stackrel{\frown}{=} \text{Stützvektor}$

 $\vec{n} = \text{Normalenvektor}$, orthogonal zu Spannvektoren

Koordinatenform

$$ax_1 + bx_2 + cx_3 = d = \vec{n} \cdot \vec{p}$$

Umwandlung von Koordinatenform in Normalenform: