STA 371G: Statistics and Modeling

Decision Making Under Uncertainty: Decision Criteria and Utility Functions

Mingyuan Zhou McCombs School of Business The University of Texas at Austin

http://mingyuanzhou.github.io/STA371G

The consequence of a decision can be expressed in terms of either payoffs or losses:

- A payoff, or reward, represents the net change in your total wealth as a result of your decision and the actual state of the world. This can be either positive or negative.
- ▶ A loss is the nonnegative difference between the given payoff and the highest possible payoff under that state of the world. It is intepretated in terms of "opportunity loss."
- ▶ $L(\text{action } i, \text{ state } j) = \max_k R(\text{action } k, \text{ state } j) R(\text{action } i, \text{ state } j)$

- ► State of the world: Rain or No Rain
- ► Action: Carry umbrella or Do not carry umbrella
- Payoff Table:

	Rain	No Rain
Carry umbrella	-\$3	-\$3
Do not carry umbrella	-\$90	\$0

► Loss Table

	Rain	No Rain
Carry umbrella		
Do not carry umbrella		

- ► State of the world: Rain or No Rain
- ► Action: Carry umbrella or Do not carry umbrella
- Payoff Table:

	Rain	No Rain
Carry umbrella	-\$3	-\$3
Do not carry umbrella	-\$90	\$0

Loss Table

	Rain	No Rain
Carry umbrella	\$0	
Do not carry umbrella	\$87	

- ► State of the world: Rain or No Rain
- ► Action: Carry umbrella or Do not carry umbrella
- Payoff Table:

	Rain	No Rain
Carry umbrella	-\$3	-\$3
Do not carry umbrella	-\$90	\$0

► Loss Table

	Rain	No Rain
Carry umbrella	\$0	\$3
Do not carry umbrella	\$87	\$0

▶ State of the world: Oil or No Oil

Action: Drill or Do not drill

Payoff Table:

	Oil	No Oil
Drill	\$1,000,000	-\$300,000
Do not drill	\$200,000	\$100,000

Loss Table:

	Oil	No Oil
Drill		
Do not drill		

▶ State of the world: Oil or No Oil

Action: Drill or Do not drill

Payoff Table:

	Oil	No Oil
Drill	\$1,000,000	-\$300,000
Do not drill	\$200,000	\$100,000

► Loss Table:

	Oil	No Oil
Drill	\$0	\$400,000
Do not drill	\$800,000	\$0

► Payoff Table:

	Competitor	Competitor
	introduces	introduces
	new product	no new product
No advertising	\$100,000	\$700,000
Minor ad campaign	\$300,000	\$600,000
Major ad campaign	\$400,000	\$500,000

► Loss Table:

	Competitor	Competitor
	introduces	introduces
	new product	no new product
No advertising		
Minor ad campaign		
Major ad campaign		

► Payoff Table:

	Competitor introduces	Competitor introduces
	new product	no new product
No advertising	\$100,000	\$700,000
Minor ad campaign	\$300,000	\$600,000
Major ad campaign	\$400,000	\$500,000

Loss Table:

	Competitor	Competitor
	introduces	introduces
	new product	no new product
No advertising	\$300,000	\$0
Minor ad campaign	\$100,000	\$100,000
Major ad campaign	\$0	\$200,000

Converting Payoffs to Losses

$$L(\text{action } i, \text{ state } j) = \max_k R(\text{action } k, \text{ state } j) - R(\text{action } i, \text{ state } j)$$

Tree Diagram

A tree diagram is a common way to present the payoffs or losses in a decision-making problem.

Tree Diagram

Tree Diagram

Admissible and Inadmissible Actions

Admissible and inadmissible actions (decisions):

- ▶ An action is said to *dominate* a second action if for *each* possible state of the world, the first action leads to at least as high a payoff (or at least as small a loss) as the second action, and if for at least one state of the world, the first action leads to a higher payoff than the second action.
- If an action dominates the second option, then the second action is said to be *inadmissible*.
- ▶ A decision maker need to consider only admissible actions.
- Which action is inadmissible?

	State I	State II	State III	State IV
Buy Stock A	\$2,000	\$6,000	-\$6,000	\$2,000
Buy Stock B	\$0	\$2,000	-\$2,000	\$2,000
Buy Stock C	-\$2000	-\$4,000	-\$8000	\$2,000

maximin rule: for each action, find the smallest possible payoff, and then choose the action for which the smallest payoff is largest.

- Maximize the minimum payoff
- Assume the worst would happen
- Conservative
- ► A potential problem of the *maximin* rule:

	State I	State II
Action 1	\$100,000	-\$1
Action 2	\$0	\$0

maximax rule: for each action, find the largest possible payoff, and then choose the action for which the largest payoff is largest.

- Maximize the maximum payoff
- Assume the best would happen
- Risky
- ▶ A potential problem of the *maximax* rule:

	State I	State II
Action 1	\$100,000	\$99,999
Action 2	\$100,001	\$0

The *minimax loss*, or *minimax regret*, criterion: for each action, find the largest possible loss, and then choose the action for which the largest loss is smallest.

- ▶ Minimize the maximum possible loss
- ▶ Not as conservative as the *maximum* rule
- Not as risky as the maximax rule
- Loss tables (converted from the payoff tables from the previous two slides):

	State I	State II
Action 1	\$0	1
Action 2	\$100,000	\$0

	State I	State II
Action 1	\$1	\$0
Action 2	\$0	\$99,000

▶ Which action to choose based on the *minimax loss* criterion?

Which action to take?

- maximin:
- maximax:
- minimax loss:
- ► Payoff table

	State I	State II	State III	State IV
Buy Stock A	\$2,000	\$6,000	-\$6,000	\$2,000
Buy Stock B	\$0	\$2,000	-\$2,000	\$2,000
Buy Stock C	-\$2000	-\$4,000	\$0	\$2,000

Which action to take?

- maximin: Buy Stock B
- maximax:
- minimax loss:
- Payoff table

	State I	State II	State III	State IV
Buy Stock A	\$2,000	\$6,000	-\$6,000	\$2,000
Buy Stock B	\$0	\$2,000	-\$2,000	\$2,000
Buy Stock C	-\$2000	-\$4,000	\$0	\$2,000

Which action to take?

maximin: Buy Stock B

maximax: Buy Stock A

minimax loss:

Payoff table

	State I	State II	State III	State IV
Buy Stock A	\$2,000	\$6,000	-\$6,000	\$2,000
Buy Stock B	\$0	\$2,000	-\$2,000	\$2,000
Buy Stock C	-\$2000	-\$4,000	\$0	\$2,000

Which action to take?

maximin: Buy Stock B

maximax: Buy Stock A

minimax loss: Buy Stock B

Payoff table

	State I	State II	State III	State IV
Buy Stock A	\$2,000	\$6,000	-\$6,000	\$2,000
Buy Stock B	\$0	\$2,000	-\$2,000	\$2,000
Buy Stock C	-\$2000	-\$4,000	\$0	\$2,000

	State I	State II	State III	State IV
Buy Stock A	\$0	\$0	\$6,000	\$0
Buy Stock B	\$2000	\$4,000	\$2,000	\$0
Buy Stock C	\$4000	-\$10,000	\$0	\$0

Probabilistic Criteria:

- Expected Payoff (ER) criterion: choose the act with the highest expected payoff.
- Expected Loss (EL) criterion: choose the act with the smallest expected loss.
- ► $ER(action \ i) = \sum_{i} R(action \ i, state \ j) P(state \ j)$
- ► $EL(action \ i) = \sum_{i} L(action \ i, state \ j) P(state \ j)$
- ▶ The ER and EL criteria yield identical decisions:

$$EL(action \ i) = \sum_{j} L(action \ i, state \ j) P(state \ j)$$

$$= \sum_{j} (\max_{k} R(action \ k, state \ j) - R(action \ i, state \ j)) P(state \ j)$$

$$= \left(\sum_{i} \max_{k} R(action \ k, state \ j) P(state \ j)\right) - ER(action \ i)$$

Which action to take?

- maximin: Buy B, maximax: Buy A, minimax loss: Buy B
- ► ER or EL criteria:
- \triangleright ER + EL =
- Payoff table

Probability:	0.1	0.4	0.3	0.2	
State:	State I	State II	State III	State IV	ER
Buy Stock A	\$2,000	\$6,000	-\$6,000	\$2,000	
Buy Stock B	\$0	\$2,000	-\$2,000	\$2,000	
Buy Stock C	-\$2000	-\$4,000	\$0	\$2,000	

Loss table

Probability:	0.1	0.4	0.3	0.2	
State:	State I	State II	State III	State IV	EL
Buy Stock A	\$0	\$0	\$6,000	\$0	
Buy Stock B	\$2000	\$4,000	\$2,000	\$0	
Buy Stock C	\$4000	-\$10,000	\$0	\$0	22

23

Which action to take?

maximin: Buy B, maximax: Buy A, minimax loss: Buy B

▶ ER or EL criteria: Buy Stock A

 \triangleright ER + EL = \$3000

► Payoff table

Probability:	0.1	0.4	0.3	0.2	
State:	State I	State II	State III	State IV	ER
Buy Stock A	\$2,000	\$6,000	-\$6,000	\$2,000	\$1,200
Buy Stock B	\$0	\$2,000	-\$2,000	\$2,000	\$600
Buy Stock C	-\$2000	-\$4,000	\$0	\$2,000	-\$1,400

Probability:	0.1	0.4	0.3	0.2	
State:	State I	State II	State III	State IV	EL
Buy Stock A	\$0	\$0	\$6,000	\$0	\$1,800
Buy Stock B	\$2000	\$4,000	\$2,000	\$0	\$2,400
Buy Stock C	\$4000	-\$10,000	\$0	\$0	\$4,400

Will you take the bet?

► Toss a coin once, you win \$1 if the coin comes up heads, and you loose \$0.75 if the coin comes up tails.

Will you take the bet?

- ▶ Toss a coin once, you win \$1 if the coin comes up heads, and you loose \$0.75 if the coin comes up tails.
- ➤ Toss a coin once, you win \$1000 if the coin comes up heads, and you loose \$750 if the coin comes up tails.

Will you take the bet?

- ▶ Toss a coin once, you win \$1 if the coin comes up heads, and you loose \$0.75 if the coin comes up tails.
- ➤ Toss a coin once, you win \$1000 if the coin comes up heads, and you loose \$750 if the coin comes up tails.
- ► Toss a coin once, you win \$1,000,000 if the coin comes up heads, and you loose \$750,000 if the coin comes up tails.

Will you take the bet?

- ▶ Toss a coin once, you win \$1 if the coin comes up heads, and you loose \$0.75 if the coin comes up tails.
- ➤ Toss a coin once, you win \$1000 if the coin comes up heads, and you loose \$750 if the coin comes up tails.
- ► Toss a coin once, you win \$1,000,000 if the coin comes up heads, and you loose \$750,000 if the coin comes up tails.

Based on the ER criterion, you should take the bet, but...

Will you take the bet?

- ► Toss a coin once, you win \$1 if the coin comes up heads, and you loose \$0.75 if the coin comes up tails.
- ➤ Toss a coin once, you win \$1000 if the coin comes up heads, and you loose \$750 if the coin comes up tails.
- ► Toss a coin once, you win \$1,000,000 if the coin comes up heads, and you loose \$750,000 if the coin comes up tails.

Based on the ER criterion, you should take the bet, but...

- ➤ You win \$10 million if a coin comes up heads and win \$10 million if the conn comes up tails.
- You win \$100 million if a coin comes up heads and win 0 if the conn comes up tails.

St. Petersburg Paradox

Will you take the bet?

- You win $2^0 = 1$ dollar if heads appear on the first toss.
- You win 2¹ = 2 dollar if the first heads appear on the second toss.
- **.**..
- ▶ You win 2^k dollar if the first heads appear on the kth toss.
- **...**

$$ER(gamble) = \sum_{k=1}^{\infty} 2^{k-1} \left(\frac{1}{2}\right)^k = \sum_{k=1}^{\infty} \frac{1}{2} = \infty$$

Again, based on the ER criterion, you should take the bet, but...

Axioms of Utility

A utility function can be interpreted in terms of a preference relationship. The two basic axioms of utility are:

- ▶ If payoff R_1 is preferred to payoff R_2 , then $U(R_1) > U(R_2)$; if R_2 is preferred to R_1 , then $U(R_2) > U(R_1)$; and if neither is preferred to the other, then $U(R_1) = U(R_2)$.
- ▶ If you are indifferent between (a) receiving payoff R_1 for certain and (b) taking a bet or lottery in which you receive payoff R_2 with probability p and payoff R_3 with probability 1-p, then

$$U(R_1) = pU(R_2) + (1-p)U(R_3).$$

Assessment of Utility Functions

Denote the most preferable payoff as R^* and the least preferable payoff as R_* . Suppose that you let $U(R_*)=0$ and $U(R^*)=1$, then $0 \le U(R) \le 1$ for for any payoff R.

Consider the following choice of lotteries:

- ▶ Lottery I: Receive *R* for certain
- ▶ Lottery II: Receive R^* with probability p and R_* with probability 1 p.

If U(R) > p, then choose Lottery I; if U(R) < p, then choose Lottery II; and if U(R) = p, then you are indifferent between the two lotteries.

With $U(R_*) = 0$ and $U(R^*) = 1$, your utility for a payoff can be interpreted in terms of an indifference probability.

Example: Oil Drilling

	Oil	No Oil
Drill	\$1,000,000	-\$300,000
Do not drill	\$200,000	\$100,000

- Utility:
 - ▶ The utility of \$200,000 is p_1 if you are indifferent between:
 - ▶ Lottery I: Receive \$200,000 for certain
 - ▶ Lottery II: Receive \$1,000,000 with probability p_1 and -\$300,000 with probability $1 p_1$.
 - ▶ The utility of \$100,000 is p_2 if you are indifferent between:
 - ▶ Lottery I: Receive \$100,000 for certain
 - Lottery II: Receive \$1,000,000 with probability p_2 and -\$300,000 with probability $1-p_2$.
 - Utility table:

	Oil	No Oil
Drill		
Do not drill		

Example: Oil Drilling

	Oil	No Oil
Drill	\$1,000,000	-\$300,000
Do not drill	\$200,000	\$100,000

- Utility:
 - ▶ The utility of \$200,000 is p_1 if you are indifferent between:
 - ▶ Lottery I: Receive \$200,000 for certain
 - ▶ Lottery II: Receive \$1,000,000 with probability p_1 and -\$300,000 with probability $1 p_1$.
 - ▶ The utility of \$100,000 is p_2 if you are indifferent between:
 - ▶ Lottery I: Receive \$100,000 for certain
 - Lottery II: Receive \$1,000,000 with probability p_2 and -\$300,000 with probability $1-p_2$.
 - Utility table:

	Oil	No Oil
Drill	1	0
Do not drill	p_1	p_2

Example: Oil Drilling

Suppose P(Oil) = 0.3 and the utility table is

	Oil	No Oil
Drill	1	0
Do not drill	0.45	0.35

then

$$EU(Drill) = 0.3 * 1 + 0.7 * 0 = 0.30,$$

 $EU(Do\ Not\ Drill) = 0.3 * 0.45 + 0.7 * 0.35 = 0.38.$

The decision maker should not drill according to the EU criterion.

Utility and Money

- A Risk Avoider would be willing to pay a risk premium to avoid a fair bet.
- Risk Neutral: indifferent about a fair bet.
- A Risk Taker would be willing to pay money to take a fair bet.

When you are shopping for car insurance, are you a Risk Avoider or Taker?

When you are buying a lottery ticket, are you a Risk Avoider or Taker?

Exponential Utility

$$U(x) = 1 - e^{-x/R}$$

- x is the payoff
- R > 0 is the risk tolerance that specifies an individual's aversion to risk
- ► The risk tolerance *R* can be assessed as the amount that makes the decision maker indifferent between the following two lotteries:
 - Lottery I: obtain zero payoff;
 - ▶ Lottery II: win *R* dollars with probability 1/2 or loose *R*/2 with probability 1/2.
- ▶ Approximate values of *R* for a company: 6.4% of net sales, 124% of net income, and 15.7% of equality

Example: Exponential Utility

Venture Limited, with net sales of \$30,000,000, need to decide:

- ▶ Invest in a sure thing with a return of \$125,000;
- ▶ Invest in a low risky venture that returns \$−500,000, \$100,000, or \$1,000,000 with probabilities 0.25, 0.50, and 0.25, respectively;
- ▶ Invest in a high risky venture that returns \$−1,000,000, \$1,000,000, or \$3,000,000 with probabilities 0.35, 0.60, and 0.05, respectively;

Your job is to:

- find the best decision in terms of expected payoff
- find the best decision in terms of expected utility