64. Klasifikace Petriho sítí.

Obsahuje: místa, přechody, hrany, tokeny

Síť

Síť je trojice N = (P, T, F), jestliže

- 1. P a T jsou disjunktní množiny
- 2. $F \subseteq (P \times T) \cup (T \times P)$ je binární relace
- P je množina míst (places)
- *T* je **množina přechodů** (transitions)
- F je **toková relace** (flow relation)
- Graf sítě je grafová reprezentace relace F, je to bipartitní orientovaný graf s množinou uzlů $P \cup T$
- Pro všechny prvky $x \in (P \cup T)$
 - $_{\circ}$ $^{ullet}x=\{y\mid yFx\}$ se nazývá **vstupní množinou (preset)** prvku x
 - $x^{\bullet} = \{y \mid xFy\}$ se nazývá **výstupní množinou (postset)** prvku x

C/E síť

- prvky z množiny P označují booleovské podmínky (conditions)
- prvky z množiny *T* označují **události** (events)

Nechť N = (B, E, F) je C/E síť.

- Podmožina $c \subseteq B$ se nazývá **případ** (case). *Jsou to místa, která mají token.*
- Nechť $e \in E$ a $c \subseteq B$. Událost e je **c-proveditelná**, jestliže $^{\bullet}e \subseteq c \land e^{\bullet} \cap c = \varnothing$
- Nechť $e \in E, c \subseteq B$ a nechť e je c-proveditelná. Případ $c' = (c \setminus {}^{\bullet} e) \cup e^{\bullet}$ se nazývá **následným případem** c (následníkem k c) při události e. Píšeme c[e > c'].
- síť je jednoduchá, pokud neobsahuje přechody, které mají stejný efekt (tzn. pro každé přechody t a t' platí, že pokud jsou jejich presety a posety shodné, jde o tentýž přechod)

C/E systém

- Čtveřice $\Sigma = (B, E, F, C)$ se nazývá C/E systém, jestliže:
- 1. (B,E,F) je jednoduchá síť bez izolovaných prvku, $B\cap E=\varnothing$
- 2. $C \subseteq 2^B$ je ekvivalenční třídou vzhledem k relaci dosažitelnosti $R_{\Sigma} = (r_{\Sigma} \cup r_{\Sigma}^{-1})^*$, kde $r_{\Sigma} \subseteq 2^B \times 2^B$ je dána vztahem:

$$c_1r_{\Sigma}c_2 \Leftrightarrow \exists G \subseteq E : c_1[G > c_2]$$

C se nazývá případová třída sítě Σ

3. $\forall e \in E \exists c \in C$ tak, že e je c-proveditelná

P/T síť

- Šestici $N = (P, T, F, W, K, M_0)$ nazýváme P/T Petriho sítí (Place/Transition Petri Net), jestliže:
- 1. (P,T,F) je konečná síť
- 2. $W: F \to N \setminus \{0\}$ je ohodnocení hran grafu určující kladnou váhu každé hrany síte
- 3. $K:P \rightarrow N \cup \{\omega\}$ je zobrazení určující kapacitu každého místa
- 4. $M_0:P\to N\cup\{\omega\}$ je počáteční značení míst Petriho sítě takové, že $\forall p\in P:M_0(p)\leq K(p)$