Варианты заданий к расчетно-графической работе по дисциплине «ДМ для программистов» Часть 1. Булевы функции.

Для булевой функции, заданной картой Карно (Приложение А), выполнить следующие действия:

- 1. Определить номера наборов в двоичной и десятичной системах, на которых функция обращается в единицу;
 - 2. Построить СовДНФ и СовКНФ;
 - 3. Минимизировать логическую функцию*:
 - 3.1. для упрощенной функции построить комбинационную схему;
 - 3.2. минимизировать тремя способами (аналитический, графический, карты Карно).
- 4. Составить выражение для реализации логической функции в одном из базисов по варианту.

Таблица 1 – Варианты задания

№ Варианта	Карта Карно	Базис для реализации логической функции,	
1	26	Конъюнктивный Буля	
2	25	Дизъюнкивный Буля	
3	24	Базис Вебба	
4	23	Базис Шеффера	
5	22	Конъюнктивный Буля	
6	21	Дизъюнкивный Буля	
7	20	Базис Вебба	
8	19	Базис Шеффера	
9	18	Базис Вебба	
10	17	Конъюнктивный Буля	
11	16	Базис Вебба	
12	15	Дизъюнктивный Буля	
13	14	Конъюнктивный Буля	
14	13	Дизъюнкивный Буля	
15	1	Базис Вебба	
16	2	Базис Шеффера	
17	3	Дизъюнктивный Буля	
18	4	Конъюнктивный Буля	
19	5	Дизъюнкивный Буля	
20	6	Базис Вебба	
21	7	Базис Шеффера	
22	8	Дизъюнктивный Буля	
23	9	Конъюнктивный Буля	
24	10	Дизъюнкивный Буля	
25	11	Базис Вебба	
26	12	Базис Шеффера	

^{* –} задание по выбору

Часть 2. Теория графов.

1. Составить неориентированный граф G транспортной сети заданного участка местности, с количеством вершин не менее 10 (Таблица Б.1 – Приложение Б), файлы с фрагментами карт прилагаются в электронном виде.

У полученного графа определить:

- 1) Множества V и E.
- 2) Пары смежных вершин.
- 3) Наличие петель.
- 4) Наличие кратных дуг.
- 5) Пары смежных дуг.
- 6) Степени вершин графа.
- 2. В созданном графе G выбрать два подграфа G_1 и G_2 , содержащих не менее семи вершин.
 - 3. Построить объединение, пересечение и кольцевую сумму графов G_1 и G_2 .
 - 4. В графе G_I выполнить унарные операции:
 - 1) удаление любой вершины;
 - 2) удаление любого ребра;
 - 3) замыкание двух произвольных вершин;
 - 4) стягивание по одному произвольному ребру.
 - 5. Определить для графа G_I матрицу инцидентности и матрицу смежности.
- $6.\,\mathrm{B}$ созданном графе G выбрать подграф G_3 , содержащих не менее восьми вершин.
 - 1) выбрать две контрольные вершины графа (начальную V_0 и конечную V_n);
 - 2) выполнить в графе поиск в глубину и ширину из вершины V_0 результат изобразить в виде графа;
 - 3) граф G_3 сделать взвешенным, задав вес ребра равным длине ребра в см (мм);
 - 4) найти кратчайший путь из вершины v_0 в вершину V_n .

ПРИЛОЖЕНИЕ А Карты Карно

x_1x_2 x_3x_4	00	01	11	10
00	1	0	0	0
01	1	1	1	1
11	1	1	1	0
10	1	1	1	1

x_1x_2 x_3x_4	00	01	11	10
00	0	1	0	0
01	1	1	1	1
11	1	1	1	1
10	1	1	1	1

x_1 x_3 x_4	00	01	11	10
00	1	0	0	1
01	1	1	1	1
11	0	0	1	1
10	1	1	1	0

x_1x_2 x_3x_4	00	01	11	10
00	1	1	0	1
01	0	1	1	1
11	1	1	0	1
10	1	0	1	1

x_1x_2 x_3x_4	00	01	11	10
00	1	0	0	0
01	0	1	0	0
11	1	1	0	1
10	1	1	1	0

x_1x_2 x_3x_4	00	01	11	10
00	1	0	1	1
01	1	1	0	1
11	0	0	0	1
10	1	0	1	0

x_1x_2 x_3x_4	00	01	11	10
00	0	1	1	0
01	1	1	1	1
11	1	0	1	1
10	0	0	1	1

x_1x_2 x_3x_4	00	01	11	10
00	0	0	0	0
01	1	1	1	1
11	1	0	0	1
10	1	1	1	1

x_1x_2 x_3x_4	00	01	11	10
00	1	1	1	0
01	1	1	1	1
11	1	1	1	0
10	1	0	0	1

x_1x_2 x_3x_4	00	01	11	10
00	0	1	0	0
01	1	1	0	0
11	1	0	1	1
10	1	1	1	1

x_1x_2 x_3x_4	00	01	11	10
00	1	0	0	1
01	0	1	1	0
11	0	1	1	1
10	1	1	1	1

<i>x</i> ₁ <i>x</i> ₂ <i>x</i> ₃ <i>x</i> ₄	00	01	11	10
00	1	1	0	1
01	0	1	1	1
11	0	1	1	1
10	1	0	1	1

x_1x_2 x_3x_4	00	01	11	10
00	1	0	0	0
01	0	1	0	0
11	1	1	0	0
10	1	1	1	0

x_1x_2 x_3x_4	00	01	11	10
00	1	0	1	1
01	0	1	0	1
11	0	1	1	1
10	1	0	1	0

x_1x_2 x_3x_4	00	01	11	10
00	0	1	1	0
01	0	1	1	1
11	1	1	1	1
10	0	0	1	1

x_1x_2 x_3x_4	00	01	11	10
00	0	0	0	0
01	1	1	1	1
11	0	0	0	1
10	1	1	1	1

x_1x_2 x_3x_4	00	01	11	10
00	1	1	0	0
01	1	0	0	1
11	1	1	1	0
10	1	1	0	1

x_1x_2 x_3x_4	00	01	11	10
00	0	1	0	0
01	1	0	0	1
11	1	1	1	1
10	1	1	1	1

x_1x_2 x_3x_4	00	01	11	10
00	1	0	1	1
01	1	1	1	0
11	0	0	1	1
10	1	1	1	1

x_1x_2 x_3x_4	00	01	11	10
00	1	1	0	1
01	1	1	1	1
11	1	1	0	0
10	1	0	1	1

x_1x_2 x_3x_4	00	01	11	10
00	1	0	0	0
01	0	1	0	1
11	0	1	0	1
10	1	1	1	0

x_1x_2 x_3x_4	00	01	11	10
00	1	0	1	1
01	1	1	0	1
11	0	0	1	0
10	1	0	1	0

x_1x_2 x_3x_4	00	01	11	10
00	0	1	1	0
01	1	1	1	1
11	1	0	1	1
10	0	0	0	1

x_1x_2 x_3x_4	00	01	11	10
00	0	0	0	1
01	1	1	1	1
11	1	0	0	1
10	1	1	1	1

x_1x_2 x_3x_4	00	01	11	10
00	1	1	1	0
01	1	0	0	1
11	1	1	1	1
10	1	1	1	1

x_1x_2 x_3x_4	00	01	11	10
00	0	1	0	0
01	1	1	1	0
11	0	0	1	1
10	1	1	1	1

приложение б

Таблица Б.1 – Варианты задания

Вариант	Город	Квадраты
1.	Ялта	Б1 : Г2
2.	Севастополь	Б3 : В3
3.	Алушта	Г4 : Д6
4.	Судак	Е4: Ж6
5.	Новороссийск	Д8: Ж9
6.	Екатеринбург	В2 : Г4
7.	Киров	Д4:Е6
8.	Курск	M2 : H5
9.	Пятигорск	Ж4 : И5
10.	Калининград	Д11 : Е13
11.	Нальчик	Д3 : Е5
12.	Псков	Д5 : Е6
13.	Саранск	Е7 : Ж9
14.	Ставрополь	Д3 : Е5
15.	Элиста	В6 : Д7
16.	Абакан	Г2 : Е3
17.	Кисловодск	Г1 : Д3
18.	Красногорск	В3 : Г4
19.	Сергиев Посад	ЕЗ :Ж5
20.	Ялта	Б5 : Г6
21.	Калининград	Г8 : Д10
22.	Новороссийск	Г6 : Е7
23.	Нальчик	Д6 : Е8
24.	Екатеринбург	Г4 : Е5
25.	Севастополь	Γ2 : Γ3
26.	Псков	Д7 : Е8