Poročilo: Monte Carlo integracija, ocena ploščine elipse in volumna elipsoida ter integral standardne normalne porazdelitve

Gašper Harej

19. marec 2025

1 Uvod

V tem poročilu predstavljam rešitve nalog, ki sem jih izvedel z uporabo numeričnih metod. Posebno pozornost namenjam:

- Monte Carlo integraciji pri ocenjevanju ploščine elipse in volumna elipsoida,
- izračunu integrala standardne normalne (Gaussove) porazdelitve na različnih intervalih s tremi metodami (trapezna metoda, navadna MC integracija in prednostno vzorčenje),
- analizi konvergence Monte Carlo metode ter primerjavi napak in časov izvajanja.

2 Monte Carlo ocena ploščine elipse in volumna elipsoida

2.1 Elipsa

Elipso definiramo z enačbo

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1,$$

pri čemer sta a=2 in b=1. Prava ploščina elipse je torej

$$A = \pi ab$$
.

2.1.1 Vizualizacija Monte Carlo integracije za elipso

Na sliki 1 je prikazan Monte Carlo prikaz elipse. Zelene točke označujejo tiste, ki ležijo znotraj elipse, medtem ko so rdeče točke zunaj. Modra črta predstavlja analitično elipso.

Slika 1: Monte Carlo prikaz elipse.

2.2 Volumen elipsoida

Elipsoid definiramo z enačbo

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1,$$

pri čemer so parametri podani, npr., $a=2,\,b=1.5$ in c=1. Pravi volumen elipsoida je

$$V = \frac{4}{3}\pi abc.$$

Na sliki 2 je prikazan graf oziroma vizualizacija, kjer je ponazarjeno, kako se Monte Carlo metoda uporablja tudi za oceno volumna elipsoida.

Slika 2: Vizualizacija Monte Carlo integracije za volumen elipsoida.

2.3 Histogram in analiza porazdelitve ocenjenih plošččin

Za oceno zanesljivosti Monte Carlo metode sem izvedel 500 ponovitev ocene ploščine elipse (pri $N=10\,000$ točkah) in zgradil histogram dobljenih ocen.

(a) Histogram ocenjenih plošččin.

(b) Histogram z naneseno gausovo krivuljo.

Slika 3: Histogrami Monte Carlo ocen ploščine elipse.

Histogrami kažejo, da se dobljene ocene ploščine statistično porazdelijo okoli prave vrednosti πab . Pri histogramu z gausovim fitom (slika 3b) je vidna dobra ujemljivost med porazdelitvijo ocen in naneseno krivuljo.

2.4 Graf konvergence Monte Carlo metode

Za analizo konvergence Monte Carlo metode sem preučil, kako se absolutna napaka pri oceni ploščine elipse zmanjšuje s povečevanjem števila točk N. Teoretično naj bi napaka padala kot $1/\sqrt{N}$. Na log-log grafu, prikazanem na sliki 4, je ta trend lepo ujet.

Slika 4: Konvergenca Monte Carlo integracije za elipso: absolutna napaka v odvisnosti od števila točk N s fitom $1/\sqrt{N}$.

3 Integral standardne normalne porazdelitve

Nalogo sem rešil z uporabo treh metod za izračun integrala standardne normalne porazdelitve ($\mu = 0, \sigma = 1$) na intervalu:

$$[a,b] \in \{[-1,1], [-2,2], [-3,3]\}.$$

Uporabljene metode so:

- Trapezna metoda,
- Navadna Monte Carlo (MC) integracija,
- Prednostno vzorčenje (importance sampling), kjer se parameter srednje vrednosti μ pri vzorčenju postopoma oddaljuje od 0.

Rezultati (ocenjeni integral, absolutna napaka in čas izvajanja) so predstavljeni v stolpčnih diagramih.

3.1 Stolpčni diagrami za posamezne intervale

Na slikah 5, 6 in 7 so prikazani stolpčni diagrami, ki primerjajo rezultate integracije za intervale [-1, 1], [-2, 2] in [-3, 3].

Slika 5: Rezultati integracije standardne normalne porazdelitve na intervalu [-1, 1]: absolutna napaka in čas izvajanja.

Slika 6: Rezultati integracije standardne normalne porazdelitve na intervalu [-2, 2]: absolutna napaka in čas izvajanja.

Slika 7: Rezultati integracije standardne normalne porazdelitve na intervalu [-3,3]: absolutna napaka in čas izvajanja.

4 Zaključek

V poročilu sem predstavil rezultate dveh glavnih nalog:

- 1. Monte Carlo oceno ploščine elipse in volumna elipsoida, kjer sem vizualno prikazal naključno generirane točke, histogram porazdelitve ocen ter graf konvergence, ki potrjuje teoretični trend $1/\sqrt{N}$.
- 2. Izračun integrala standardne normalne porazdelitve na različnih intervalih s tremi metodami, pri čemer sem primerjal absolutne napake in čase izvajanja.

Rezultati jasno kažejo, da se natančnost Monte Carlo metod izboljšuje s povečevanjem števila točk in da je pri pravilni izbiri parametrov možno doseči zelo zadovoljive rezultate tako pri oceni geometrijskih količin kot tudi pri numerični integraciji.