

Спецкурс: системы и средства параллельного программирования.

Отчёт № 1. Анализ влияния кэша на операцию матричного умножения.

Работу выполнил **Плужников И.Р.**

Постановка задачи и формат данных.

Задача: Реализовать последовательный алгоритм матричного умножения и оценить влияние кэша на время выполнения программы.

Формат командной строки: <имя файла матрицы A > <имя файла матрицы B > <имя файла ответа> <порядок индексов>.

Формат файла-матрицы: Матрица представляются в виде бинарного файла следующего формата:

Тип	Значение	Описание
Символ типа char	T – f (float) или d (double)	Тип элементов
Число типа int	N – натуральное число	Число строк и столбцов матрицы
Массив чисел типа Т	NXN элементов	Массив элементов матрицы

Элементы матрицы хранятся построчно.

Описание алгоритма.

Математическая постановка: Алгоритм матричного умножения (A * B = C) можно

$$c_{ij} = \sum_{k} \left(a_{ik} \cdot b_{kj} \right),$$

представить в следующем виде:

для каждого элемента матрицы C.

Оценка влияния кэша на время выполнения программы осуществляется за счёт перестановки индексов суммирования.

Анализ времени выполнения: Для оценки времени выполнения программы использовалась функция: clock(). Для повышения надёжности экспериментов опыты проводились несколько раз (3).

Верификация: Для проверки корректности работы программы использовались тестовые данные.

Основные функции:

Разбор командной строки. В рамках функции осуществляется анализ и разбор командной строки.

Чтение файлов матриц. В рамках функции осуществляется чтение входных матриц.

Перемножение матриц. В рамках функции осуществляется перемножение матриц в соответствие с выбранным порядком индексов суммирования.

Результаты выполнения.

Результаты:

Проводилось перемножение двух матриц размерами $500 \, x500 \, u \, 500 \, x500$. Зависимость времени выполнения от порядка индексов суммирования представлена на графике (время в миллисекундах).

Основные выводы.

Исследования показывают, что изменения порядка индексов суммирование оказывает влияние на время выполнения программы. Наименьшее время выполнения при следующем порядке индексов - ikj. При таком порядке доступ к элементам обеих входных матриц осуществляется последовательно. Наихудшее время при порядке kji. При таком подходе доступ к памяти осуществляется максимально непоследовательно.