Lovely Report

Patomporn (Jab)

CMS-DQM-WHATEVER4DC

Outline

- Similarity of bad and good LS (in 2018)
- Why our model is too aggressive
- Fundamental question
- Solution

Similarity of bad and good LS in 2018 datasets

Let's have a look

JetHT 2016 VS 2018

".. Toy's example vs real life scenario"

Preliminary Results

Model\Channel	ZeroBias	JetHT	EGamma	SingleMuon
One-Class SVM	74.2	74.8 (99.1)	16.4	52.9
Contractive AE	_	83.3 (99.1)	_	-
Vanilla AE	-	81.4 (99.2)	-	_
Sparse AE	-	74.6 (98.9)	_	-
Variational AE	-	74.4 (96.8)	-	_

Table of AUC (for convenient you could consider it as accuracy)

- 2018 datasets, 2016 datasets
- Exact same algorithm

Why it's aggressive

Semi-supervised model is aggressively marking bad LS

Consequence

- Our ML model determine something that it's not familiar with by marking as bad LS
- As the time evolving, configuration of CMS also evolve then it's quite dangerous

Fundamental question

But wait

- The accuracy has computed by reference from DCS bits then
- If we trust DCS bits to be a "ground truth":
 - why we need Autoencoder
- else:
 - Require datasets from simulation of known bad scenario that DCS bits couldn't do
 - If we could provide simulation of bad scenario data to model:
 - When it's disagree with DCS bits when we implemented, how could we trace back to prove

Solution?

Malfunction Spotter

- Objective
 - Inspect detector malfunction in lumisection granularity which shifter does inspect in run granularity
- Supervised
- Input (x):
 - Physics object
 - Occupancy of sub-detector
- Label (y): status of detector which we could get from RR

Malfunction Spotter

- Model Candidate
 - Decision Tree
 - Random Forest
 - Neural network with probabilistic output such as sigmoid to tell "level of confidence" for malfunction in each sub-detector
- And again!
- If model prediction and RR is disagree:
 - Of course we have to call the expert as shifter does