Ciagi i granica ciagu

Wprowadzenie

- <u>Ciag liczbowy</u> w matematyce to jest ciąg liczb, na przykład;
- 1,2,3,4,5,6... ciąg kolejnych liczb naturalnych.
- 2,4,6,8,10,12,14, ciąg kolejnych liczb parzystych dodatnich.
- 1,-1,2,-2,3,-3,naprzemienny ciąg liczb dodatnich i ujemnych
- 3,9,27,81,243,... ciag kolejnych poteg liczby 3.
- 90,87,74,70,67,65,62,59,56,50,... ciag malejacy

Każdy z wyżej napisanych ciągów liczb powstawał zgodnie z pewną ustaloną regułą. Możemy do każdego z nich dopisać kolejne wyrazy.

<u>Wyraz ciągu liczbowego</u> jest to element tego ciągu, czyli po prostu jedna z liczb. Można je ponumerować, na przykład.: w ciągu kolejnych liczb naturalnych: 1, 2, 3, 4, 5, 6 ..., wyraz pierwszy

$$a_1 = 1, ..., a_3 = 3, ..., a_6 = 6$$
 itd.

- Można też tworzyć ciągi losowe, np
- 9, 6,7,1, 8, -5, 2,12,407,0,-1,..., ale nie będziemy się nimi zajmować, bo nie mają zastosowań.
 - <u>Ciagiem jest też dowolna funkcja</u>, której argumentami są liczby naturalne.

Czyli ciąg jest to pojęcie matematyczne, które określa ponumerowane elementy pewnego zbioru.

Jeśli jest to zbiór wszystkich liczb naturalnych dodatnich, to nazywamy go ciągiem <u>nieskończonym</u>.

Jeśli zdefiniowana jest funkcja dla kolejnych liczb mniejszych lub równych pewnej liczbie n, wówczas ciąg ten jest nazywany ciągiem skończonym.

<u>Definicje</u>

<u>Ciągiem nieskończonym</u> nazywamy funkcję określoną na zbiorze liczb naturalnych dodatnich i oznaczamy (a_n) lub (a₁,a₂,...).

<u>Ciągiem skończonym</u> nazywamy funkcję określoną na zbiorze {1,2,3,...,n} i oznaczamy (a_n) lub (a₁,a₂,...,a_n).

<u>Ciągiem liczbowym</u> nazywamy ciąg, którego wartościami są liczby rzeczywiste.

Dla ciągu f: $N+\rightarrow R$ wartość $f(n)=a_n$ nazywamy n-tym wyrazem ciągu.

Liczby (1,2,3,...,n) nazywamy wskaźnikami lub indeksami wyrazów.

Jeśli mamy na myśli ciąg zapisujemy go an zamiast a(n).

Monotoniczność ciągu

Dla każdego ciągu, który jest funkcją, można zdefiniować monotoniczność. Aby zbadać monotoniczność ciągu o danym wyrazie ogólnym, należy zbadać różnicę; a_{n+1} - a_n .

- Jeśli różnica jest dodatnia wtedy ciąg jest rosnący,
- jeśli ujemna ciąg jest malejący, a
- jeśli równa 0, to ciąg jest stały.

Ciąg (a_n) nazywamy <u>ciągiem rosnącym</u>, jeżeli każdego $n \in N^+$ jest spełniona nierówność $a_{n+1} > a_n$.

Ciąg (a_n) nazywamy <u>ciągiem malejącym</u>, jeżeli dla każdego $n \in N^+$ jest spełniona nierówność $a_{n+1} < a_n$.

Ciąg (a_n) nazywamy <u>ciągiem stałym</u>, wtedy i tylko wtedy, gdy $a_{n+1} = a_n$.

- Ciągi: malejące, rosnące, nierosnące, niemalejące noszą wspólną nazwę ciągów monotonicznych lub izotonicznych.
- Ciągi malejące lub rosnące nazywa się ściśle monotonicznymi.
- Ciągi niemalejące lub nierosnące nazywa się monotonicznymi w szerszym sensie.

Przykłady:

$$a_n = n^2$$
: 1, 4, 9, 16, 25, ... - ciąg rosnący $a_n = 3 - n$: 2, 1, 0, -1, -2, ... - ciąg malejący $a_n = \frac{1}{n}$: 1, $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, $\frac{1}{5}$, ... - ciąg malejący

Ciąg arytmetyczny

Ciąg liczbowy, w którym <u>różnica</u> dwóch kolejnych wyrazów jest <u>stała</u> nazywamy ciągiem arytmetycznym. Różnicę $r = a_{n+1} - a_n$ nazywamy <u>różnicą ciągu.</u>

Ciąg liczbowy (a_n) nazywamy arytmetycznym wtedy i tylko wtedy, gdy jest co najmniej trzywyrazowy, i którego każdy wyraz, począwszy od drugiego, powstaje przez dodanie do wyrazu poprzedniego stałej liczby r, zwanej różnicą ciągu.

$$\exists \forall a_{n+1} = a_n + r$$

$$r \in \mathbb{R} \ n \in \mathbb{N}$$

Przykłady ciągów arytmetycznych:

- $a_1 = 5$, r = 3; 5, 8, 11, 14, 17, 20, ...
- $a_1 = 6$, r = -2; 6, 4, 2, 0, -2, -4, ...

n-ty wyraz ciągu arytmetycznego

Każdy następny wyraz ciągu arytmetycznego powstaje poprzez dodanie do wyrazu poprzedzającego stałej wartości r, czyli dowolny wyraz ciągu wyraża się wzorem

$$a_n = a_1 + (n - 1) \cdot r$$

<u>Suma *n*-początkowych wyrazów ciągu arytmetycznego</u> jest równa średniej arytmetycznej wyrazów pierwszego i *n*-tego pomnożona przez liczbę wyrazów *n*.

$$S_n = a_1 + a_2 + \dots + a_n$$

 $S_n = \left[a_1 + \frac{(n-1)r}{2}\right]n$
 $S_n = \frac{2a_1 + (n-1)r}{2}n$

Monotoniczność ciągu arytmetycznego

Ciąg arytmetyczny jest zawsze ciągiem monotonicznym:

- rosnącym, gdy różnica ciągu jest dodatnia,
- malejącym, gdy różnica jest ujemna,
- stałym, gdy różnica równa jest 0.

Zadanie 1. Podaj 6 początkowych wyrazów ciągu: a) a_n =3n

Odp. 3, 6, 9, 12, 15, 18

b) $a_n = 5n - 1$

Odp. 4, 9, 14, 19, 24, 29,

Czy te ciągi są arytmetyczne?

Zadanie 2. Sprawdź, czy ciąg a_n = n^2 +1 jest arytmetyczny?

Odp. a_1 =2, a_2 =5, a_3 =10, a_4 =17 nie jest arytmetyczny, bo $r\neq const$

Zadanie 3. Ciąg jest arytmetyczny, dane a_1 = 10, r = 4, a_n = 158, znajdź $n,\,S_n.$

$$a_n = a_1 + (n-1) \cdot r$$

$$S_n = a_1 + \frac{(n-1)r}{2} n$$

Odp.

n=38, $S_n=2822$

Ciąg geometryczny

...jest to ciąg liczbowy, w którym iloraz dwóch kolejnych wyrazów jest stały.

Ciąg liczbowy (a_n) nazywamy geometrycznym wtedy i tylko wtedy, gdy jest co najmniej trzywyrazowy oraz którego każdy wyraz, począwszy od drugiego, powstaje z pomnożenia wyrazu poprzedniego przez stałą q zwaną ilorazem ciągu.

$$\exists_{q \in R} \ \forall_{n \in N} a_{n+1} = a_n q$$

Iloraz $q = \frac{a_{n+1}}{a_n}$ nazywamy ilorazem ciągu

Przykłady ciągów geometrycznych

1,2,4,8,16,32,... jest ciągiem geometrycznym o ilorazie 2.

4,12,36,108... jest ciągiem geometrycznym o ilorazie 3.

1,13,19,127,181,... jest ciągiem geometrycznym o ilorazie 13.

n-ty wyraz ciągu geometrycznego powstaje poprzez pomnożenie wyrazu poprzedniego przez stałą q. Zależność między pierwszym a dowolnym wyrazem ciągu wyraża się wzorem:

$$a_n = a_1 \cdot q^{n-1}$$
 dla $n \ge 2$

Suma n-początkowych wyrazów ciągu geometrycznego o wyrazie pierwszym a_1 i ilorazie q, wyraża się wzorem:

$$S_n = a_1 + a_2 + ... + a_n$$

$$S_n = \frac{a_1(1-q^n)}{1-q} \text{ dla } q \neq 1$$

$$S_n=a_1\cdot n$$
, dla $q=1$

Monotoniczność ciągu geometrycznego

- Ciag jest rosnacy wtedy, gdy q>1 i $a_1>0$ lub $q\in(0,1)$ i $a_1<0$
- Ciag jest *malejący* wtedy, gdy q>1 i $a_1<0$ lub $q\in(0,1)$ i $a_1>0$
- Ciąg jest stały wtedy, gdy q=1 lub $a_1=0$

Jeśli iloraz q jest ujemny to ciąg geometryczny jest <u>naprzemienny</u>.

Ciąg geometryczny jest zbieżny do zera, jeżeli jego iloraz jest ułamkiem właściwym tzn. należy do przedziału (-1;1).

Granica ciągu

Stałą liczbę g nazywamy granicą ciągu (a_n), jeżeli dla każdego dodatniego, dowolnie małego ε , istnieje taka liczba N, że wszystkie wartości a_n o wskaźniku n>N spełniają nierówność:

$$|a_n-g|<\varepsilon$$

Zadanie 1.

Oblicz granice ciągów:

a)
$$a_n = \frac{1}{n} + 5$$

$$czyli \underbrace{\lim_{n \to \infty} (\frac{1}{n} + 5)}_{n \to \infty} = 5$$

b)

$$b_n=17-3n$$
 $ext{czyli } \underbrace{lim}_{n\to\infty}(17-3n) = -\infty$

c)

$$c_n = \frac{1}{n+3} - 7$$
 $czyli \lim_{n \to \infty} (\frac{1}{n+3} - 7) = -7$

d)
$$d_n = \frac{(-1)^n}{n} \qquad \text{czyli } \lim_{n \to \infty} \frac{(-1)^n}{n} = 0$$

Przedział (x_0 - ε , x_0 + ε) nazywamy <u>otoczeniem</u> o promieniu ε > 0 punktu x_0 i oznaczamy symbolem $U(x_0, \varepsilon)$.

Sumę przedziałów (x_0 - ε , x_0) \cup (x_0 , x_0 + ε) nazywamy sąsiedztwem o promieniu ε > 0 punktu x_0 i oznaczamy symbolem $S(x_0, \varepsilon)$.

Ciąg (a_n) jest <u>zbieżny</u> do g (ma <u>granice</u> g), jeżeli dla każdego $\varepsilon > 0$ istnieje taka liczba $k \in \mathbb{N}^+$, że dla każdego n > k jest spełniona nierówność $|a_n - g| < \varepsilon$.

Inaczej mówiąc liczba g jest granicą ciągu (a_n) wtedy, gdy prawie wszystkie wyrazy tego ciągu należą do otoczenia $U(g, \varepsilon)$. Zdanie "Liczba g jest granicą ciągu (a_n) " zapisujemy $\lim_{n\to\infty}a_n=g$

Powyższa definicja w zapisie logicznym ma postać:

$$\lim_{n \to \infty} a_n = g \iff \bigvee_{\varepsilon > 0} \; \underset{k \in \mathbb{N}^+}{\exists} \; \bigvee_{n > k} \; |a_n - g| < \varepsilon$$

Granica niewłaściwa ciągu

Oprócz ciągów zbieżnych istnieją ciągi, które nie mają granicy. Takie ciągi nazywamy <u>rozbieżnymi.</u> Wśród ciągów rozbieżnych rozważymy ciągi rozbieżne do $-\infty$ lub $+\infty$.

Ciąg (a_n) jest <u>rozbieżny</u> do $+\infty$, wtedy i tylko wtedy, gdy dla każdej liczby M prawie wszystkie wyrazy ciągu są większe od M, co zapisujemy

$$\lim_{n\to\infty} a_n = +\infty \quad \text{lub} \quad \lim_{n\to\infty} a_n = +\infty \iff \bigvee_{M\in R} \biguplus_{k\in N^+} \bigvee_{n>k} a_n > M$$

Ciąg (a_n) jest **rozbieżny** do $-\infty$, wtedy i tylko wtedy, gdy dla każdej liczby M prawie wszystkie wyrazy ciągu są mniejsze od M, co zapisujemy

$$\lim_{n\to\infty}a_n=-\infty\qquad \text{lub}\qquad \lim_{n\to\infty}a_n=-\infty \Longleftrightarrow \biguplus_{M\in R}\biguplus_{k\in N^+}\biguplus_{n>k}a_n< M$$