

Simple Expressions for the Heat Capacities of Gases

Bryce L. Crawford Jr. and Robert G. Parr

Citation: The Journal of Chemical Physics 16, 233 (1948); doi: 10.1063/1.1746847

View online: http://dx.doi.org/10.1063/1.1746847

View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/16/3?ver=pdfcov

Published by the AIP Publishing

Articles you may be interested in

Heat Capacity of Gases in the Critical Region

J. Chem. Phys. 42, 196 (1965); 10.1063/1.1695671

Temperature Dependence of the Heat Capacity of Gases

J. Chem. Phys. 25, 357 (1956); 10.1063/1.1742885

Power Series for the Temperature Dependence of the Heat Capacity of Gases

J. Chem. Phys. 24, 911 (1956); 10.1063/1.1742643

Constitutive Nature of the Heat Capacity of Gases

J. Chem. Phys. 24, 911 (1956); 10.1063/1.1742642

The Heat Capacity Curves of the Simpler Gases, VI. A Correction

J. Chem. Phys. 2, 710 (1934); 10.1063/1.1749378

Simple Expressions for the Heat Capacities of Gases

BRYCE L. CRAWFORD, JR., AND ROBERT G. PARR School of Chemistry, University of Minnesota, Minneapolis, Minnesota (Received December 12, 1947)

A table of constants is given whereby one may at once write down, knowing the vibrational frequencies, the best approximation of the form $C_p^{\circ} = A_0 + A_1 T + A_2 T^2$ to the heat capacity of a gas with translational, rotational, and vibrational (harmonic) degrees of freedom.

THE heat capacities of gases (in the limit of zero pressure) are now quite frequently calculated from a knowledge of the vibrational frequencies, and estimates of any restricting potentials. This calculation is scarcely a difficult one if one wishes to find the heat capacity at a single temperature. However, in several common types of thermodynamic problem it is convenient to have a simple algebraic expression for the heat capacity as a function of temperature; even though the simple expression is only approximate, its convenience in use compensates for its inaccuracy. Such simple expressions are often fitted to values calculated for a few temperatures from the exact expressions.

Having observed that the necessary "fitting" could be done once for all, we proceeded to carry this out for the Einstein functions. Table I presents constants with whose aid one can at once write down, for any rigid molecule, the expression

$$C_{p}^{\circ} = A_{0} + A_{1}T + A_{2}T^{2}$$
 (1)

which will give the best possible (least-square) approximation in this form over the temperature range from 250° to 1500°K.

It is clear that similar tables could be calculated to give the "best" constants for other approximating forms, such as $B_0+B_1T+B_2T^{-2}$; and, perhaps more valuable, similar tables for the contribution of hindered internal rotations.

USE OF THE TABLE

The table gives, for each frequency ω , the contributions a_0 , $a_1 \times 10^{-3}$, $a_2 \times 10^{-6}$ to the constants A_0 , A_1 , A_2 in Eq. (1). One must add up the contributions of the several vibrational frequencies, giving double or triple weight to doubly

or triply degenerate frequencies, and including a translational-rotational contribution $a_0 = 6.954$ for linear or $a_0 = 7.948$ for non-linear molecules. The constants used here give C_p° in cal./mole deg.; absolute temperatures (degrees Kelvin) should be used in (1).

In the first part of Table I (150 cm⁻¹ $\leq \omega \leq$ 600 cm⁻¹) and in the last ($\omega > 3000$ cm⁻¹), the values given for the a_i are accurate to the last place; in the middle part, the values may be in error by one or two units in the last place. The two needed universal constants were taken to be (hc/k)= 1.4385 cm deg. and R = 1.9869 cal./mole deg. Since the significant parameter in the calculation is not ω but $\alpha = (hc/k)(\omega/1500)$, any change in the accepted values of (hc/k) can be compensated by the use of an adjusted value of ω in entering the table; thus if (hc/k) should increase by 5 percent, one would adjust all frequencies of the molecule of interest by 5 percent upward, and use Table I as given. A change in the accepted value of R will affect the value of C_p ° from Eq. (1) directly; hence if R should increase 5 percent, one may compensate by increasing the final constants A_0 , A_1 , A_2 by 5 percent each.

It is unlikely that values of ω higher than those in Table I will be of interest. For ω less than 150 cm⁻¹, the a_i can be calculated from the series (20); a few terms will suffice.

EXAMPLES

Thus, the equation for the heat capacity of ethylene may be found from the vibrational frequencies¹ as follows, using linear interpolation in Table I:

¹G. Herzberg, Infra-Red and Raman Spectra of Polyatomic Molecules (D. Van Nostrand Company, Inc., New York, 1945), p. 326.

ω (cm ⁻¹)	a_0	a_1	a_2
Transrotn.	7.948		
825	151	3.365	-1.391
943	402	3.620	-1.460
949.2	415	3.630	-1.462
995	492	3.690	-1.471
1050	579	3.741	-1.471
1342.4	816	3.573	-1.275
1443.5	834	3.400	-1.158
1623.3	815	3.009	922
2989.5	143	.181	.443
3019.3	132	.147	.454
3105.5	103	.057	.484
3272.3	05	10	.52

 $C_p^{\circ} = 3.016 + 28.313 \times 10^{-8}T - 8.709 \times 10^{-6}T^2$

The accuracy of this approximation is shown in Table II.

The accuracy will of course depend on the distribution of frequencies for the molecule concerned; in general, we may expect the approximation to err by less than 2 percent. As a relatively unfavorable example, we consider carbon dioxide:²

The accuracy is again shown in Table II.

CALCULATION OF THE TABLE

The Normal Equations

The true heat capacity of a perfect gas is given by

$$C_{p}(T) = \sum_{\omega} c(\omega, T), \qquad (2)$$

where the parameters ω may be regarded as generalized to include translation, rotation, etc., as well as the frequencies of vibration. We desired to approximate this in the range 250 deg. $\leq T$ ≤ 1500 deg. by a function

$$\Gamma(T) = A_0 + A_1 T + A_2 T^2;$$
 (3)

our criterion is that

$$I = \int_{250}^{1500} (C - \Gamma)^2 dT = \text{minimum}.$$
 (4)

It seems worth while to give the fundamental theorem we use: that if we have a set of functions

$$\gamma(\omega, T) = a_0(\omega) + a_1(\omega) \times 10^{-3}T + a_2(\omega) \times 10^{-6}T^2$$
 (5)

each approximate to one of the set $c(\omega, T)$, so that for each ω

$$i(\omega) = \int_{250}^{1500} (c - \gamma)^2 dT = \text{minimum},$$
 (6)

then the function Γ satisfying (4) is

$$\Gamma(T) = \sum_{\omega} \gamma(\omega, T). \tag{7}$$

The proof is easily written out.

We have for the vibrational contributions to (2)

$$c(\omega, T) = c(x) = Rx^2e^x(e^x - 1)^{-2},$$
 (8)

where R is the gas constant and

$$x = hc\omega/kT = 1.4385(\omega/T). \tag{9}$$

The requirement (6) on the approximate functions γ leads to the "normal equations" determining the a_k :

$$a_0(\omega)\Delta T^{(k+1)} + a_1(\omega)\Delta T^{(k+2)} + a_2(\omega)\Delta T^{(k+3)}$$

= $I_k(\omega)$; $k = 0, 1, 2.$ (10)

Here

$$\Delta T^{(k)} = (10^{-3k}/k)(1500^k - 250^k) \tag{11}$$

and

$$I_k(\omega) = 10^{-3(k+1)} \int_{250}^{1500} c(\omega, T) T^k dT.$$
 (12)

Equations (10) can be solved to give

$$a_{0}(\omega) = 29.3184I_{0}(\omega) -70.9632I_{1}(\omega) + 37.4784I_{2}(\omega),$$

$$a_{1}(\omega) = -70.9632I_{0}(\omega) +186.7776I_{1}(\omega) -103.2192I_{2}(\omega), \quad (13)$$

$$a_{2}(\omega) = 37.4784I_{0}(\omega) -103.2192I_{1}(\omega) +58.9824I_{2}(\omega),$$

so that we need only evaluate the $I_k(\omega)$.

Calculation for $\omega \leq 600$ cm⁻¹

For small values of ω , it is convenient to calculate the $I_k(\omega)$ from their series expansions. Equations (8), (9), and (12) combine to give

$$I_k(\omega) = (1.5\alpha)^{k+1} \int_{-\pi}^{6\alpha} c(x) x^{-k-2} dx,$$
 (14)

where

$$\alpha = 1.4385(\omega/1500) = 1.4385\mu.$$
 (15)

Now expansion of (8) gives

$$c(x) = R \sum_{n=0}^{\infty} (1-n)(B_n/n!)x^n,$$
 (16)

² Frequencies from reference 1, p. 274.

where the B_n are the Bernoulli numbers: $B_0 = 1$, $B_1 = -\frac{1}{2}$, $B_2 = \frac{1}{6}$, $B_3 = 0$, $B_4 = -1/30$, \cdots . Substituting (16) in (14) and integrating term by term, one obtains

$$I_k(\omega) = R(1.5)^{k+1} \sum_{n=0}^{\infty} (1-n)(B_n/n!) C_{n-k-1} \alpha^n, \quad (17)$$

where

$$C_n = (1/n)(6^n - 1).$$
 (18)

Introduction of (15) and R=1.9869 cal./mole deg. into (17) yields

$$I_{0}(\omega) = 2.483625 - 2.569660\mu^{2} \\ + 3.81077\mu^{4} - 6.78961\mu^{6} \\ + 12.64625\mu^{8} - 23.78977\mu^{10} \\ + 44.8567\mu^{12} - 84.6271\mu^{14} + \cdots,$$

$$I_{1}(\omega) = 2.173172 - 1.381264\mu^{2} \\ + 1.39581\mu^{4} - 2.12039\mu^{6} \\ + 3.68842\mu^{8} - 6.69087\mu^{10} \\ + 12.3356\mu^{12} - 22.9198\mu^{14} + \cdots,$$

$$I_{2}(\omega) = 2.224914 - 0.963623\mu^{2} \\ + 0.59820\mu^{4} - 0.70407\mu^{6} \\ + 1.10641\mu^{8} - 1.91167\mu^{10} \\ + 3.42655\mu^{12} - 6.25086\mu^{14} + \cdots.$$

Values of the $I_k(\omega)$ calculated from (19) for $0.10 \le \mu \le 0.40$ are given in Table I, along with the $a_k(\omega)$ found from them.

For values of $\mu = \omega/1500$ less than 0.10, the $a_k(\omega)$ may be calculated from the series

$$a_{0}(\omega) = 1.9869 - 13.4345\mu^{2} + 35.0941\mu^{4} - 74.9783\mu^{6} + \cdots,$$

$$a_{1}(\omega) = 23.8265\mu^{2} - 71.4641\mu^{4} + 158.4446\mu^{6} - \cdots, \quad (20)$$

$$a_{2}(\omega) = -10.5706\mu^{2} + 34.0304\mu^{4} - 77.1265\mu^{6} + \cdots.$$

Calculation for $\omega > 3000 \text{ cm}^{-1}$

At the upper end, we may use

$$(1 - e^{-x})^{-2} = \sum_{n=0}^{\infty} (n+1)e^{-nx}$$
 (21)

to expand (8); then our integrals become, with a change of variable,

$$I_k(\omega) = R(1.5\alpha)^{k+1} \sum_{n=1}^{\infty} n^k \int_{-\infty}^{6n\alpha} y^{-k} e^{-y} dy.$$
 (22)

TABLE I.

μ	ω (cm ⁻¹)) I ₀	I1	I 2	a 0	<i>a</i> ₁	a ₂
		0.40262	0.17217	2 22404	1.007	000	
$0.00 \\ 0.10$	0 150	2.48362 2.45830	2.17317	2.22491	1.987 1.856	.000	.000 102
.11	165	2.45308	2.15950 2.15666	2.21534 2.21334	1.829	.231 .278	102
.12	180	2.44739	2.15357	2.21116	1.801	.329	145
.13	195	2.44125	2.15022	2.20880	1.770	.383	169
.14	210	2.43467	2.14662	2.20625	1.737 1.702	.441	195
.15	225	2.42766	2.14278	2.20353	1.702	.502	221
.16	240	2.42023	2.13869	2.20063	1.665	.566	249
.17	255	2.41239 2.40415	2.13437 2.12982	2.19755 2.19430	1.626 1.586	.633 .702	279 309
.18 .19	270 285	2.39553	2.12503	2.19430	1.544	.774	309 - 341
.2ó	300	2.38653	2.12003	2.18728	1.501	.848	341 373
.21	315	2.37717	2.11480	2.18352	1.457	.924	406
.22	330	2 36747	2.10937	2.17960	1.411	1.002	440
.23	345	2.35744	2.10372	2.17552 2.17127	1.364 1.317	1.082	474
.24 .25	360 375	2.34708 2.33642	2.09787 2.09183	2.17127 2.16687	1.317	1.163 1.244	509 544
.26	373 390	2.32547	2.08559	2.16231	1,218	1.327	580
.27	405	2.31423	2.07917	2.15760	1.169	1.411	616
.28	420	2.30273	2.07256	2.15724	1.118	1.495	652
.29	435	2.30273 2.29098	2.07256 2.06578	2.15724 2.14773	1.067	1.579	- 687
.30	450	2.27898	2.05883	2.14258	1.016	1.663	723
.31	465	2.26676	2.05171	2.13729	.964	1.747	759
.32	480	2.25432 2.24169	2.04443 2.03700	2.13186 2.12169	.912 .861	1.831 1.915	794
.33 .34	495 510	2.22886	2.03700	2.12109	.809	1.997	829 863
.35	525	2.21585	2.02169	2.11476	.757	2.079	897
.30	540	2.20268	2.01383	2.10880	.706	2.160	931
.37 .38	555 570	2.18935	2.00583	2.10271	.655	2.240	964
.38		2.17588	1.99770	2.09650	.604	2.319	996
.39	585	2.16228	1.98945	2.09018	.553	2.396 2.472	-1.027
40	600	2.14857	1.98108	2.08373	.503		-1.058
45 50	675 750	2.07852 2.00687	1.93761 1.89185	2.04980 2.01336	.263 +.044	2.824 3.124	-1.196
55	825	1.93457	1.84432	1.97472	151	3.365	-1.308 -1.391
60	900	1.86236	1.79545	1.93417	320	3 547	-1.445
65	975	1.79081	1,74561	1.89197	462	3.672 3.741 3.758 3.730	-1.471
.70	1050	1.72036	1.69513	1.84839	579	3.741	-1.471
.75	1125	1.65133	1.64428	1.80367	671	3.758	-1.448
.80	1200	1.58393	1.59331	1.75804	740 788	3.730	-1.404
.85 .90	1275 1350	1.51833 1.45462	1.54241 1.49176	1.71169 1.66481	819	3.563	-1.342 -1.267
.95	1425	1.39285	1.44152	1.61759	834	3.436	-1.181
.00	1500	1.39285 1.33307	1.39182	1.57019	836	3.288	-1.087
.05	1575	1.27528	1.34276	1.52275	827	3.123	988
.10	1650	1.21946	1.29444	1.47541	809	2.945 2.759	885
.15	1725	1.16559 1.11365	1.24694 1.20034	1.42829 1.38151	784 753	2.759	780
.20 .25	1800 1875	1.06362	1.15470	1.33519	733 717	2.377	675 572
.30	1950	1.01545	1.11007	1.28941	678	2.185	471
.35	2025	.96910	1.06649	1.24424	637	1.996	374
.40	2100	.92452	1.02398	1.19975	595	1.812	281
45	2175	.88168	.98257	1.15602	551	1.632	192
.50	2250 2325	.84052	.94229 .90315	1.11311	508 464	1.458 1.291	107 028
.55 .60	2400	.80101 .76310	.86517	1.07107 1.02995	421	1.132	+.046
.65	2475	.72674	.82835	.98977	380	.982	.114
.70	2550	.69188	.79268	.95056	341	.840	.177
.75	2625	.65848	.75816	.91236	302	.706	.235
.80	2700	.62649	.72479	.87518	265	.581	.288
.85	2775	.59586	.69256	.83904	231	.466	.335
.90 .95	2850 2925	.56655 .53853	.66146 .63147	.80395 .76991	198 167	.359 .2 5 9	.377 .415
.00	3000	.51173	.60257	.73692	139	.168	.447
2.1	3150	.4617	.5480	.6741	09	.01	.50
2.2	3300	.4158	.4973 .4508	.6152	04	12	.53
.3	3450	.3742	.4508	.5606	01 02	22	.56 .57
.4	3600 3750	.3366 .3023	.4082 .3690	.5102 .4633	$^{+.02}_{+.04}$	30 36	.57 .57
.5 .6	3750 3900	.3023	.3330	.4200	+.04 +.06	30 41	.57
.8	4200	.2177	.2702	.3438	+.09	46	.54
.0	4500	.1741	.2182	.2798	+.10	47	.50
.5	5250	.0983	.1258	.1639	+.10	39	.36
	6000	.0545	.0710	.0937	+.07	28	.24
0.	7500	.0161	.0215	.0286	+.02	08	.07

These can be integrated by parts and in terms of the exponential integral

$$-E_{i}(-x) = \int_{x}^{\infty} e^{-x} x^{-1} dx$$
 (23)

TABLE II. Accuracy of approximate formulas for ethylene and carbon dioxide.

	$T({}^{\circ}{ m K})$	250	500	750	1000	1250	1500
Ethylene	C_p° true ^a C_p° calc. ^b	9.346 9.550	15.165 14.995	19.471 19.352	22.501 22.620	24.691 24.763	26.276 25.890
Carbon D	ioxide C_p° true C_p° calc.	8.325 8.637	10.664 10.553		12.938 13.016	13.493 13.564	13.854 13.656

 [&]quot;True" values are calculated from Eq. (2).
 "Calc." values are computed from equations of the form (5).

to give

$$I_0(\omega) = R(1.5\alpha)[(e^{\alpha} - 1)^{-1} - (e^{6\alpha} - 1)^{-1}],$$
 (24)

$$I_{1}(\omega) = R(1.5\alpha)^{2} \sum_{n=1}^{\infty} n \left[-E_{i}(-n\alpha) + E_{i}(-6n\alpha) \right], \quad (25)$$

$$\begin{split} I_{2}(\omega) &= R(1.5\alpha)^{3} \{e^{-\alpha}\alpha^{-1}(1-e^{-\alpha})^{-2} \\ &- e^{-6\alpha}(6\alpha)^{-1}(1-e^{-6\alpha})^{-2} \\ &- \sum_{n=1}^{\infty} n^{2} \left[-E_{i}(-n\alpha) + E_{i}(-6n\alpha) \right] \}. \end{split} \tag{26}$$

For $\omega > 3000$ cm⁻¹, it is sufficient to take

$$I_0 \cong R(1.5\alpha)(e^{\alpha} - 1)^{-1},$$
 (27)

$$I_1 \cong R(1.5\alpha)^2 \sum_{n=1}^5 n[-E_i(-n\alpha)], \qquad (28)$$

$$I_2 \cong 1.5R^{-1}e^{\alpha}(I_0)^2 - R(1.5\alpha)^3$$

$$\times \sum_{n=1}^{5} n^{2} \left[-E_{i}(-n\alpha) \right]. \quad (29)$$

These equations were used to calculate the I_k and a_k in the last part of Table I.

Calculation for Intermediate ω

As always, there is the intermediate range $(600 \text{ cm}^{-1} < \omega \leq 3000 \text{ cm}^{-1})$ where neither series is convenient; we evaluated these $I_k(\omega)$ by numerical integration. It is convenient to calculate by Gregory's formula³ a set of integrals

$$J_k(\omega_i, \, \omega_{i+1}) = \int_{\alpha_i}^{\alpha_{i+1}} c(x) x^{-k-2} dx; \quad i = 1, 2, \, \cdots.$$
(30)

The α_i are an appropriate sequence of values of α . The $I_k(\omega)$ then follow from relations of the form

$$I_k(\omega) = (1.5\alpha)^{k+1} \sum_{\omega_i = \alpha}^{\omega_{i+1} = 6\alpha} J_k(\omega_i, \omega_{i+1}). \tag{31}$$

Values of the $I_k(\omega)$ for $0.40 < \mu \le 2.00$ computed in this manner, using the table of Einstein functions given by Taylor and Glasstone,4 are given in Table I, with the corresponding a_k .

Accuracy

The series expansions at either end were carried out far enough so that the last digit in the I_k should be off not more than 1; the a_k should be good to the last digit given. In the intermediate range the last digit given for the I_k is not significant, and the a_k may be off 1 or 2 in the last place.

The I_0 can of course be evaluated in closed form in terms of the heat-content function. We evaluated it by the same methods used for I_1 and I_2 chiefly to provide a check.

ACKNOWLEDGMENTS

Mr. T. Yamada helped with the calculations. We are also grateful to the Graduate School of the University of Minnesota for a grant in support of these calculations.

1942), p. 655.

³ Cf. for example, Margenau and Murphy, The Mathematics of Physics and Chemistry (D. Van Nostrand Company, Inc., New York, 1943), p. 459.

⁴ Taylor and Glasstone, Treatise on Physical Chemistry, Volume I (D. Van Nostrand Company, Inc., New York, 1942).