Lecture 6Classification Analysis

Ashish Dandekar

Lecture Overview

Classification and its evaluation

Confusion Matrix ROC Curve

Linear Models

Linear Separator Logistic Regression

Classification Analysis

Classification

▶ Introduction

Confusion matrix
Popular metrics
ROC Curve
Multiclass evaluation

Classification is the task of learning a target function f that maps each datapoint x to a class label y.

- Binary classification.
- Multi-class classification
- Multi-label classification
- Outlier detection PPT回放, adverse?

Confusion Matrix

Introduction

Confusion matrix
Popular metrics
ROC Curve

Multiclass evaluation

ground truth label

pel		1	0
ted la	1	True Positives (TP)	False Positives (FP)
predicted labe	0	False Negatives (FN)	True Negatives (TN)

- True Positives (TP). The positive elements that are correctly classified.
- False Positives (FP). The negative elements that are incorrectly classified.
- True Negatives (TN). The negative elements that are correctly classified.
- False Negatives (FN). The positive elements that are incorrectly classified.

Classification Metrics

Introduction Confusion matrix

> Popular metrics ROC Curve Multiclass evaluation

Accuracy

$$\frac{\mathit{TP} + \mathit{TN}}{\mathit{TP} + \mathit{TN} + \mathit{FP} + \mathit{FN}}$$

Sensitivity

$$\frac{TP}{TP + FN}$$

Specificity

$$\frac{TN}{TN + FP}$$

Classification Metrics

Introduction Confusion matrix

> Popular metrics ROC Curve Multiclass evaluation

Precision

$$\frac{TP}{TP + FP}$$

y

1 0

1 TP FP

© 50 FN TN

Recall

$$\frac{TP}{TP + FN}$$

F1 Score

$$\frac{2 \cdot Precision \cdot Recall}{Precision + Recall}$$

Why do we have so many metrics?

Introduction
Confusion matrix
Popular metrics
ROC Curve

Multiclass evaluation

Class Imbalance

Many real-world datasets suffer from the class imbalance issue. For instance:

- In a dataset of infectious deceases, 1-5% of the data comprises of infected persons.
- \bullet In a dataset for predictive maintenance, less than 2% of the data consists of anomalies.

Consider an example of the covid test that **always** returns negative. There are 10% infected people in the population.

$$Accuracy = \frac{90}{100} = 90\%$$

Specificity =
$$\frac{90}{90}$$
 = 100%

Why do we have so many metrics?

Introduction
Confusion matrix
Popular metrics
ROC Curve
Multiclass evaluation

Qualitative analysis of FP and FN

Example 1. Consider a test to determine whether a person suffers from COVID. In this case, misclassifying a COVID positive person maybe considered worse than misclassifying a healthy person.

In this case, we need a classifier with *Recall* > *Precision*.

Example 2. Consider an image search engine where I search for the images with certain keywords. Let's say I am searching for images of cats. In this case, showing an image of a dog is worse that not showing all possible images of cats.

In this case, we need a classifier with *Precision* > *Recall*.

Thresholding

Introduction
Confusion matrix
Popular metrics
> ROC Curve
Multiclass evaluation

У	Scores	ý _{0.5}	$y_{0.43}$
1	0.45	0	1
0	0.30	0	0
0	0.55	1	1
0	0.25	0	0
1	0.35	0	0
1	0.55	1	1

Different thresholds yield different answers!

Which threshold should we use?

Threshold 0.5

	<i>y</i> = 1	y = 0
ŷ = 1	1	2
ŷ = 0	2	1

Threshold 0.43

	<i>y</i> = 1	y = 0
y = 1	2	2
y = 0	1	1

Receiver Operating Characteristics (ROC)

Introduction
Confusion matrix
Popular metrics
> ROC Curve
Multiclass evaluation

The curve is obtained by computing the metrics for various values of the thresholds for a classifier.

ROC Curve is a plot of True Positive Rate (Sensitivity) versus False Positive Rate (1-specificity).

Area under the Curve (AUC/AUROC)

Area under the ROC curve is used as the quantifier of the performance of the classifier.

• AUROC of a random classifier is 0.5.

Receiver Operating Characteristics (ROC)

Introduction Confusion matrix Popular metrics

> ROC Curve

Multiclass evaluation

Poor Classifier

Good Classifier

Perfect Classifier

How to do it in Python?

from sklearn.metrics import roc_curve

fpr, tpr, thresholds = roc_curve(y_true, y_score)

One-vs-Rest Confusion Matrices

Introduction Confusion matrix Popular metrics ROC Curve

> Multiclass evaluation *One-vs-Rest*

Micro-averaging Macro-averaging ground truth label $\,y\,$

$$Acc = \frac{8+12+14}{8+12+14+6+3+4+2+1}$$

One-vs-Rest Confusion Matrices

	2	2
2	8	6
2	7	29

	1	1
1	12	4
1	8	26

	0	Ō
0	14	6
0	1	29

Multiclass Evaluation

Introduction Confusion matrix Popular metrics ROC Curve

▶ Multiclass evaluation

One-vs-Rest

Micro-averaging

Macro-averaging

	2	2
2	8	6
2	7	29

	1	Ī
1	12	4
Ī	8	26

	0	$\bar{0}$
0	14	6
0	1	29

Micro-Averaging

- Average individual TP, FP, TN, FN!
- Compute the metric on the aggregated confusion matrix.

	С	Ē
С	11.33	5.33
Ī	7	28

Multiclass Evaluation

Introduction Confusion matrix Popular metrics ROC Curve

▶ Multiclass evaluation

One-vs-Rest Micro-averaging

Macro-averaging

	2	2
2	8	6
2	7	29

	1 1	
1	12	4
1	8	26

	0	$0 \overline{0}$	
0	14	6	
ō	1	29	

Macro-Averaging

- Compute the metric on the individual matrices.
- Average the metric to compute the global metric!

Question

What is better: macro-averaging or micro-averaging?

Linear Models

Can we use linear regression?

▶ Introduction

Perceptron SVM Logistic Regression

- Linear regression requires numerical output.
- It is equally sensitive to the unbalanced data.

Linear Separator

Introduction
> Perceptron
SVM
Logistic Regression

Given a labeled dataset $D = \{(x_i, y_i)\}$ of n points where $x_i \in \mathbb{R}^d$, $y_i \in \{-1, 1\}$.

We want to find a linear separator $w_i \in \mathbb{R}^{d+1}$ such that:

$$\hat{y} = sign(Xw)$$

Loss function (0-1 loss)

$$\ell_D(w) = \frac{1}{n} \sum_i \mathsf{I}(y_i \equiv \hat{y}_i)$$

Perceptron Learning

Introduction

➤ Perceptron SVM Logistic Regression

- 1. Randomly initialise W_0 .
- 2. For $t \in [1...T]$ and for each datapoint $i \in [1...n]$

$$W_{t+1} \leftarrow W_t + (y_i - sign(w^t x_i))x_i$$

Support Vector Machine (Just an idea!)

Introduction
Perceptron
> SVM
Logistic Regression

Which linear separator to choose? - One that maximises the margin!

Hard-Margin

$$\min_{\mathbf{w}} // \mathbf{w} //$$
, s.t. $\mathbf{y}_i(\mathbf{w}^t \mathbf{x}_i) \ge 1$

The separator must satisfy every constraints.

Soft-margin SVM

$$\min_{w} \frac{1}{n} \sum_{i} \max(0, 1 - y_{i}(w^{t}x_{i})) + \lambda // w //^{2}$$

Sigmoid Function

Introduction Perceptron SVM

> Logistic Regression Sigmoid Function

Formalism Likelihood Analysis Example Sigmoid is a *smooth* function defined as follows:

$$h_{w}(x) = \frac{1}{1 + e^{-w^{t}x}} = \frac{exp(w^{t}x)}{1 + exp(w^{t}x)}$$

Why to use Sigmoid?

- Differentiability and convexity properties
- Probabilistic interpretation of the

Binary Logistic Regression

Introduction Perceptron SVM

▶ Logistic Regression

Sigmoid Function

Formalism

Likelihood Analysis Example Given a labeled dataset $D = \{(x_i, y_i)\}$ of n points where $x_i \in \mathbb{R}^d$, $y_i \in \{0, 1\}$.

Let p_i denotes the proability of item i to be labeled as 1.

Hypothesis

Binary logistic regression works on the following hypothesis:

$$p = \sigma(X\mathbf{w}) = \frac{exp(X\mathbf{w})}{1 + exp(X\mathbf{w})}$$

where $X \in \mathbb{R}^{n \times (d+1)}$ is the data matrix and $\mathbf{w} \in \mathbb{R}^{d+1}$.

Thresholding

The actual labels can be assigned to the datapoints by tuning a threshold (α) for the probabilistic output:

$$y = \begin{cases} 0 & \sigma(w^t x) < \alpha \\ 1 & otherwise \end{cases}$$

Likelihood

Introduction Perceptron

SVM

> Logistic Regression

Sigmoid Function Formalism

Likelihood

Analysis Example Likelihood over the dataset (D) can be computed as follows:

$$L(y \mid X, \mathbf{w}) = \prod_{i=1}^{n} p^{y_i} (1-p)^{1-y_i}$$

Taking log on both sides:

$$\ell_D(\mathbf{w}) = \sum_{i=1}^n y_i \log p + (1 - y_i) \log (1 - p)$$

Thus the machine learning problems becomes to estimate **W** that maximises the likelihood. It is typically solved using optimisation technique such as *Gradient Descent*.

$$\hat{\mathbf{w}} = \arg\max_{\mathbf{w}} \ell_D(\mathbf{w})$$

Odds-Ratio

Introduction Perceptron SVM

→ Logistic Regression

Sigmoid Function Formalism Likelihood

Analysis

Example

Odds ratio for an event is defined as follows:

$$odds = \frac{\text{Probability that event happens}(p)}{\text{Probability that event does not happen}(1-p)}$$

- Odds of getting a head are 1:1
- Odds of getting a spade are 1:3
- Odds of finding an employee at work place are 5:2

Odds-Ratio

Introduction

Perceptron

SVM

> Logistic Regression

Sigmoid Function Formalism Likelihood

Analysis

Example

Rearranging the hypothesis for the logistic regression:

$$p = \frac{exp(Xw)}{1 + exp(Xw)}$$

$$exp(Xw) = \frac{p}{1 - p}$$

$$Xw = log(\frac{p}{1 - p})$$

Thus log-odds for a datapoint i are given as,

$$log(\frac{p_i}{1-p_i}) = w_0 + w_1x_1 + w_2x_2 + ... + w_dx_d$$

Interpreting Logistic Regression

Introduction Perceptron SVM

→ Logistic Regression

Sigmoid Function Formalism Likelihood

Analysis

Example

We train a logistic regression on the dataset of graduate program acceptance in a univeristy. We find that:

$$log(\frac{p}{1-p}) = -1.34 - 0.56(Gender) + 1.13(Score)$$

where \boldsymbol{p} is the probability of getting accepted in the program.

Predictor	Odds	Interpretation
Gender	$e^{-0.56} = 0.57$	Odds of men getting accepeted is 43% lower
Score	$e^{1.13} = 3.09$	Odds of getting accepted are 209% higher for every extra GPA

Interpreting Logistic Regression

Introduction Perceptron SVM

▶ Logistic Regression

Sigmoid Function Formalism Likelihood Analysis **Example** (5 points) Suppose we have a dataset of 10 patients with their blood pressure and a target variable that represents whether the patient has a heart disease or not (represented as 1 for disease and 0 for no disease). The dataset is as follows:

Blood Pressure	Heart Disease	Blood Pressure	Heart Disease
135	1	115	0
132	1	128	1
120	0	135	0
140	1	125	1
110	0	120	0

Any blood pressure that is higher than 130 is labeled as high and otherwise as normal. We fit a logistic regression model to classify whether a person has heart disease based on the blood pressure. It follows the following hypothesis:

$$p = \frac{1}{1 + e^{-(b_0 + b_1 x)}}$$

where p denotes the probability of having the heart disease. We encode the blood pressure variable as 1 when it is high and 0 if it is normal. Compute the values b_0 and b_1 by hand. You may keep the solutions in their transcendental forms. For instance: You may use e^0 .3 or $\log 0.6$ instead of computing their actual values.

```
Thank you!

Feel free to reach out to me at dcsashi (at) nus (dot) edu (dot) sg
```

