CHAPTER 8:

APPLICATION OF INTEGRALS

3 mark questions

Question 1:

Find the area of the region bounded by the curve $y^2 = x$ and the lines x = 1, x = 4 and the *x*-axis.

Answer:

The area of the region bounded by the curve, $y^2 = x$, the lines, x = 1 and x = 4, and the x-axis is the area ABCD.

Area of ABCD =
$$\int_{1}^{4} y \, dx$$

= $\int_{1}^{4} \sqrt{x} \, dx$
= $\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}} \right]_{1}^{4}$
= $\frac{2}{3} \left[(4)^{\frac{3}{2}} - (1)^{\frac{3}{2}} \right]$
= $\frac{2}{3} [8 - 1]$
= $\frac{14}{3}$ units

Question 2:

Find the area of the region bounded by $y^2 = 9x$, x = 2, x = 4 and the *x*-axis in the first quadrant.

Answer:

The area of the region bounded by the curve, $y^2 = 9x$, x = 2, and x = 4, and the *x*-axis is the area ABCD.

Area of ABCD =
$$\int_{2}^{4} y \, dx$$

= $\int_{2}^{4} 3\sqrt{x} \, dx$
= $3\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{2}^{4}$
= $2\left[x^{\frac{3}{2}}\right]_{2}^{4}$
= $2\left[(4)^{\frac{3}{2}} - (2)^{\frac{3}{2}}\right]$
= $2\left[8 - 2\sqrt{2}\right]$
= $\left(16 - 4\sqrt{2}\right)$ units

Question 3:

Find the area of the region bounded by $x^2 = 4y$, y = 2, y = 4 and the y-axis in the first quadrant.

Answer:

The area of the region bounded by the curve, $x^2 = 4y$, y = 2, and y = 4, and the y-axis is the area ABCD.

Area of ABCD =
$$\int_{2}^{4} x \, dy$$

= $\int_{2}^{4} 2\sqrt{y} \, dy$
= $2 \left[\frac{y^{\frac{3}{2}}}{\frac{3}{2}} \right]_{2}^{4}$
= $\frac{4}{3} \left[(4)^{\frac{3}{2}} - (2)^{\frac{3}{2}} \right]$
= $\frac{4}{3} \left[8 - 2\sqrt{2} \right]$
= $\left(\frac{32 - 8\sqrt{2}}{3} \right)$ units

Question 4:

Find the area of the region bounded by the curve $y^2 = 4x$, y-axis and the line y = 3 is

Answer:

The area bounded by the curve, $y^2 = 4x$, y-axis, and y = 3 is represented as

$$\therefore \text{ Area OAB} = \int_0^3 x \, dy$$

$$= \int_0^3 \frac{y^2}{4} \, dy$$

$$= \frac{1}{4} \left[\frac{y^3}{3} \right]_0^3$$

$$= \frac{1}{12} (27)$$

$$= \frac{9}{4} \text{ units}$$

Question 5:

Find the area lying between the curve $y^2 = 4x$ and y = 2x is

Answer:

The area lying between the curve, $y^2 = 4x$ and y = 2x, is represented by the shaded area OBAO as

The points of intersection of these curves are O(0, 0) and A(1, 2).

We draw AC perpendicular to x-axis such that the coordinates of C are (1, 0).

∴ Area OBAO = Area (OCABO) – Area (ΔOCA)

$$= \int_0^1 2\sqrt{x} \, dx - \int_0^1 2x \, dx$$

$$= 2\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_0^1 - 2\left[\frac{x^2}{2}\right]_0^1$$

$$= \left[\frac{4}{3} - 1\right]$$

$$= \frac{1}{3} \text{ square units}$$

Question 5.

Find area enclosed by the Parabola y^2 =4ax and its latus rectum by integration Solution: $y^2 = 4ax$ ---- (1) and the equation of the Latus rectum is given by x = a (2)

From (2) and (1) $y^2 = 4a^2 \implies y = \pm 2a$

Required area A = 2 [area of OSP = $2 \int_0^a y . dx = 2 \int_0^a 2\sqrt{a} . \sqrt{x} . dx$ = $4 \sqrt{a} \left(\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right)_0^a = \frac{8\sqrt{a}}{3} [a\sqrt{a}] = \frac{8a^2}{3}$ Sq. units

5 MARK QUESTIONS:

Question 1:

Find the area of the region bounded by the

ellipse
$$\frac{x^2}{16} + \frac{y^2}{9} = 1$$

Answer:

The given equation of the ellipse,

$$\frac{x^2}{16} + \frac{y^2}{9} = 1$$
, can be represented as

It can be observed that the ellipse is symmetrical about *x*-axis and *y*-axis.

 \therefore Area bounded by ellipse = $4 \times$ Area of OAB

Area of OAB =
$$\int_0^4 y \, dx$$

= $\int_0^4 3\sqrt{1 - \frac{x^2}{16}} dx$
= $\frac{3}{4} \int_0^4 \sqrt{16 - x^2} \, dx$
= $\frac{3}{4} \left[\frac{x}{2} \sqrt{16 - x^2} + \frac{16}{2} \sin^{-1} \frac{x}{4} \right]_0^4$
= $\frac{3}{4} \left[2\sqrt{16 - 16} + 8 \sin^{-1} (1) - 0 - 8 \sin^{-1} (0) \right]$
= $\frac{3}{4} \left[\frac{8\pi}{2} \right]$
= $\frac{3}{4} [4\pi]$
= 3π

Therefore, area bounded by the ellipse = $4 \times 3\pi = 12\pi$ units

Question 2:

Find the area of the region bounded by the

ellipse
$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$

Answer:

The given equation of the ellipse can be represented as

$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$

$$\Rightarrow y = 3\sqrt{1 - \frac{x^2}{4}} \qquad \dots (1)$$

It can be observed that the ellipse is symmetrical about *x*-axis and *y*-axis.

 \therefore Area bounded by ellipse = $4 \times$ Area OAB

∴ Area of OAB =
$$\int_0^2 y \, dx$$

= $\int_0^2 3\sqrt{1 - \frac{x^2}{4}} dx$ [Using (1)]
= $\frac{3}{2} \int_0^2 \sqrt{4 - x^2} \, dx$
= $\frac{3}{2} \left[\frac{x}{2} \sqrt{4 - x^2} + \frac{4}{2} \sin^{-1} \frac{x}{2} \right]_0^2$
= $\frac{3}{2} \left[\frac{2\pi}{2} \right]$
= $\frac{3\pi}{2}$

Therefore, area bounded by the ellipse = $\frac{3\pi}{2}$

$$4 \times \frac{3\pi}{2} = 6\pi$$
 units

Question 3:

Find the area of the region in the first quadrant enclosed by *x*-axis, line $x = \sqrt{3}y$ and the circle $x^2 + y^2 = 4$

Answer:

The area of the region bounded by the circle, $x^2 + y^2 = 4$, $x = \sqrt{3}y$, and the x-axis is the area OAB.

The point of intersection of the line and the

circle in the first quadrant is $(\sqrt{3},1)$ Area OAB = Area \triangle OCA + Area ACB Area of OAC

$$= \frac{1}{2} \times OC \times AC = \frac{1}{2} \times \sqrt{3} \times 1 = \frac{\sqrt{3}}{2} \qquad \dots (1)$$

Area of ABC
$$= \int_{\sqrt{3}}^{2} y \, dx$$

$$= \int_{\sqrt{3}}^{2} \sqrt{4 - x^{2}} \, dx$$

$$= \left[\frac{x}{2} \sqrt{4 - x^{2}} + \frac{4}{2} \sin^{-1} \frac{x}{2} \right]_{\sqrt{3}}^{2}$$

$$= \left[2 \times \frac{\pi}{2} - \frac{\sqrt{3}}{2} \sqrt{4 - 3} - 2 \sin^{-1} \left(\frac{\sqrt{3}}{2} \right) \right]$$

$$= \left[\pi - \frac{\sqrt{3}\pi}{2} - 2 \left(\frac{\pi}{3} \right) \right]$$

$$= \left[\pi - \frac{\sqrt{3}}{2} - \frac{2\pi}{3} \right]$$

$$= \left[\frac{\pi}{3} - \frac{\sqrt{3}}{2} \right] \qquad \dots(2)$$

Therefore, area enclosed by x-axis, the line $x = \sqrt{3}y$, and the circle $x^2 + y^2 = 4$ in the

first quadrant =
$$\frac{\sqrt{3}\pi}{2} + \frac{3\sqrt{\pi}}{3} = \frac{1}{3} \text{ units}$$

Question 7:

Find the area of the smaller part of the circle

$$x^2 + y^2 = a^2$$
 cut off by the line $x = \frac{a}{\sqrt{2}}$

Answer:

The area of the smaller part of the circle, x^2

 $y^2 + y^2 = a^2$, cut off by the line, $x = \frac{a}{\sqrt{2}}$, is the area ABCDA.

It can be observed that the area ABCD is symmetrical about x-axis.

 \therefore Area ABCD = 2 × Area ABC

Area ABCD =
$$2 \times \text{Area ABC}$$

$$Area of ABC = \int_{\frac{a}{\sqrt{2}}}^{a} y \, dx$$

$$= \int_{\frac{a}{\sqrt{2}}}^{a} \sqrt{a^{2} - x^{2}} \, dx$$

$$= \left[\frac{x}{2} \sqrt{a^{2} - x^{2}} + \frac{a^{2}}{2} \sin^{-1} \frac{x}{a} \right]_{\frac{a}{\sqrt{2}}}^{a}$$

$$= \left[\frac{a^{2}}{2} \left(\frac{\pi}{2} \right) - \frac{a}{2\sqrt{2}} \sqrt{a^{2} - \frac{a^{2}}{2}} - \frac{a^{2}}{2} \sin^{-1} \left(\frac{\pi}{2} \right) \right]$$

$$= \frac{a^{2}\pi}{4} - \frac{a}{2\sqrt{2}} \cdot \frac{a}{\sqrt{2}} - \frac{a^{2}}{2} \left(\frac{\pi}{4} \right)$$

$$= \frac{a^{2}\pi}{4} - \frac{a^{2}}{4} - \frac{a^{2}\pi}{8}$$

$$= \frac{a^{2}}{4} \left[\pi - 1 - \frac{\pi}{2} \right]$$

$$= \frac{a^{2}}{4} \left[\frac{\pi}{2} - 1 \right]$$

$$\Rightarrow Area \ ABCD = 2 \left[\frac{a^2}{4} \left(\frac{\pi}{2} - 1 \right) \right] = \frac{a^2}{2} \left(\frac{\pi}{2} - 1 \right)$$

Therefore, the area of smaller part of the circle, $x^2 + y^2 = a^2$, cut off by the line,

$$x = \frac{a}{\sqrt{2}}$$
, is $\frac{a^2}{2} \left(\frac{\pi}{2} - 1\right)$ units.

Question 8:

The area between $x = y^2$ and x = 4 is divided into two equal parts by the line x = a, find the value of a.

Answer:

The line, x = a, divides the area bounded by the parabola and x = 4 into two equal parts.

∴ Area OAD = Area ABCD

It can be observed that the given area is symmetrical about *x*-axis.

Area OED=
$$\int_0^a y dx$$

$$= \int_0^a\!\! \sqrt{x}\, dx$$

$$= \left[\frac{\frac{3}{x}}{\frac{3}{2}}\right]_0^a$$

$$=\frac{2}{3}(a)^{\frac{3}{2}}$$
 ...(1)

Area of EFCD=
$$\int_{a}^{4} \sqrt{x} dx$$

$$= \left[\frac{\frac{3}{2}}{\frac{3}{2}}\right]_{a}^{4}$$
$$= \frac{2}{3} \left[8 - a^{\frac{3}{2}}\right] \dots (2)$$

From (1) and (2), we obtain

$$\frac{2}{3}(a)^{\frac{3}{2}} = \frac{2}{3} \left[8 - (a)^{\frac{3}{2}} \right]$$

$$\Rightarrow 2 \cdot (a)^{\frac{3}{2}} = 8$$

$$\Rightarrow (a)^{\frac{3}{2}} = 4$$

$$\Rightarrow a = (4)^{\frac{2}{3}}$$

Therefore, the value of a is $(4)^{\frac{2}{3}}$

Question 9:

Find the area of the region bounded by the parabola $y = x^2$ and y = |x|

Answer:

The area bounded by the parabola, $x^2 = y$, and the line, y = |x|, can be represented as

The given area is symmetrical about y-axis.

∴ Area OACO = Area ODBO

The point of intersection of parabola, $x^2 = y$, and line, y = x, is A (1, 1).

Area of OACO = Area \triangle OAM - Area OMACO

Area of ΔOAM

$$= \frac{1}{2} \times OM \times AM = \frac{1}{2} \times 1 \times 1 = \frac{1}{2}$$

Area of OMACO

$$=\int_0^1 y \, dx = \int_0^1 x^2 \, dx = \left[\frac{x^3}{3}\right]_0^1 = \frac{1}{3}$$

 \Rightarrow Area of OACO = Area of \triangle OAM - Area of OMACO

$$=\frac{1}{2} - \frac{1}{3}$$
$$=\frac{1}{6}$$

Therefore, required area = $2\left[\frac{1}{6}\right] = \frac{1}{3}$ units

Question 10:

Find the area bounded by the curve $x^2 = 4y$ and the line x = 4y - 2

Answer:

The area bounded by the curve, $x^2 = 4y$, and line, x = 4y - 2, is represented by the shaded area OBAO.

Let A and B be the points of intersection of the line and parabola.

A are
$$\left(-1, \frac{1}{4}\right)$$

Coordinates of point

Coordinates of point B are (2, 1).

We draw AL and BM perpendicular to *x*-axis.

It can be observed that,

Area OBAO = Area OBCO + Area OACO

Then, Area OBCO = Area OMBC – Area OMBO

$$= \int_{0}^{2} \frac{x+2}{4} dx - \int_{0}^{2} \frac{x^{2}}{4} dx$$

$$= \frac{1}{4} \left[\frac{x^{2}}{2} + 2x \right]_{0}^{2} - \frac{1}{4} \left[\frac{x^{3}}{3} \right]_{0}^{2}$$

$$= \frac{1}{4} [2+4] - \frac{1}{4} \left[\frac{8}{3} \right]$$

$$= \frac{3}{2} - \frac{2}{3}$$

$$= \frac{5}{6}$$

Similarly, Area OACO = Area OLAC – Area OLAO

$$= \int_{1}^{0} \frac{x+2}{4} dx - \int_{1}^{0} \frac{x^{2}}{4} dx$$

$$= \frac{1}{4} \left[\frac{x^{2}}{2} + 2x \right]_{-1}^{0} - \frac{1}{4} \left[\frac{x^{3}}{3} \right]_{-1}^{0}$$

$$= -\frac{1}{4} \left[\frac{(-1)^{2}}{2} + 2(-1) \right] - \left[-\frac{1}{4} \left(\frac{(-1)^{3}}{3} \right) \right]$$

$$= -\frac{1}{4} \left[\frac{1}{2} - 2 \right] - \frac{1}{12}$$

$$= \frac{1}{2} - \frac{1}{8} - \frac{1}{12}$$

$$= \frac{7}{24}$$

Therefore, required area =

$$\left(\frac{5}{6} + \frac{7}{24}\right) = \frac{9}{8}$$
 units

Question 11:

Find the area of the region bounded by the curve $y^2 = 4x$ and the line x = 3

Answer:

The region bounded by the parabola, $y^2 = 4x$, and the line, x = 3, is the area OACO.

The area OACO is symmetrical about *x*-axis.

 \therefore Area of OACO = 2 (Area of OAB)

Area OACO =
$$2\left[\int_0^3 y \, dx\right]$$

= $2\int_0^3 2\sqrt{x} \, dx$
= $4\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_0^3$
= $\frac{8}{3}\left[(3)^{\frac{3}{2}}\right]$
= $8\sqrt{3}$

Therefore, the required area is $8\sqrt{3}$ units.

Question 12:

Find the area of the circle $4x^2 + 4y^2 = 9$ which is interior to the parabola $x^2 = 4y$

Answer:

The required area is represented by the shaded area OBCDO.

Solving the given equation of circle, $4x^2 + 4y^2 = 9$, and parabola, $x^2 = 4y$, we obtain the point of intersection as

B
$$\left(\sqrt{2}, \frac{1}{2}\right)$$
 and D $\left(-\sqrt{2}, \frac{1}{2}\right)$

It can be observed that the required area is symmetrical about *y*-axis.

∴ Area OBCDO = $2 \times$ Area OBCO We draw BM perpendicular to OA.

Therefore, the coordinates of M are $(\sqrt{2},0)$. Therefore, Area OBCO = Area OMBCO – Area OMBO

Therefore, the required area OBCDO is

$$\left(2 \times \frac{1}{2} \left[\frac{\sqrt{2}}{6} + \frac{9}{4} \sin^{-1} \frac{2\sqrt{2}}{3} \right] \right) = \left[\frac{\sqrt{2}}{6} + \frac{9}{4} \sin^{-1} \frac{2\sqrt{2}}{3} \right]$$

units

Question:13

Using integration finds the area of the region bounded by the triangle whose vertices are (-1, 0), (1, 3) and (3, 2).

Answer:

BL and CM are drawn perpendicular to *x*-axis

It can be observed in the following figure that,

Area (
$$\triangle$$
ACB) = Area (ALBA) + Area (BLMCB) - Area (AMCA) ... (1)

Equation of line segment AB is

$$y - 0 = \frac{3 - 0}{1 + 1}(x + 1)$$

$$y = \frac{3}{2}(x + 1)$$

$$\therefore \text{Area}(ALBA) = \int_{-1}^{1} \frac{3}{2}(x + 1) dx = \frac{3}{2} \left[\frac{x^{2}}{2} + x\right]^{1} = \frac{3$$

Equation of line segment BC is

$$y-3 = \frac{2-3}{3-1}(x-1)$$

$$y = \frac{1}{2}(-x+7)$$

$$\therefore \text{ Area (BLMCB)} = \int_{1}^{3} \frac{1}{2}(-x+7) dx = \frac{1}{2} \left[-\frac{x^{2}}{2} + 7x \right]^{3} = 0$$

Equation of line segment AC is

$$y - 0 = \frac{2 - 0}{3 + 1} (x + 1)$$
$$y = \frac{1}{2} (x + 1)$$

:. Area (AMCA) =
$$\frac{1}{2} \int_{1}^{3} (x+1) dx = \frac{1}{2} \left[\frac{x^{2}}{2} + x \right]_{1}^{3} = \frac{1}{2} \left[\frac{1}{2} + \frac{1}{2} \right]_{1}^{3}$$

Therefore, from equation (1), we obtain Area (\triangle ABC) = (3 + 5 - 4) = 4 units

Question 14:

Using integration find the area of the triangular region whose sides have the equations y = 2x + 1, y = 3x + 1 and x = 4.

Answer:

The equations of sides of the triangle are y = 2x + 1, y = 3x + 1, and x = 4.

On solving these equations, we obtain the vertices of triangle as A(0, 1), B(4, 13), and C(4, 9).

It can be observed that,

Area (\triangle ACB) = Area (OLBAO) - Area (OLCAO)

$$= \int_0^4 (3x+1) dx - \int_0^4 (2x+1) dx$$

$$= \left[\frac{3x^2}{2} + x \right]_0^4 - \left[\frac{2x^2}{2} + x \right]_0^4$$

$$= (24+4) - (16+4)$$

$$= 28 - 20$$

$$= 8 \text{ units}$$

Question 15:

Find the smaller area enclosed by the circle $x^2 + y^2 = 4$ and the line x + y = 2 is

Answer:

The smaller area enclosed by the circle, $x^2 + y^2 = 4$, and the line, x + y = 2, is represented by the shaded area ACBA as

It can be observed that, Area ACBA = Area OACBO – Area (ΔOAB)

$$= \int_0^2 \sqrt{4 - x^2} \, dx - \int_0^2 (2 - x) \, dx$$

$$= \left[\frac{x}{2} \sqrt{4 - x^2} + \frac{4}{2} \sin^{-1} \frac{x}{2} \right]_0^2 - \left[2x - \frac{x^2}{2} \right]_0^2$$

$$= \left[2 \cdot \frac{\pi}{2} \right] - \left[4 - 2 \right]$$

$$= (\pi - 2) \text{ units}$$