

 T_{j}

 T_{JM}

 $\mathbf{T}_{\mathbf{L}}$

T_{sold}

Weight

Preliminary Technical Information

Trench HiperFET™ Power MOSFET

IXFH230N10T

-55 ... +175

-55 ... +175

175

300

260

 $V_{DSS} = 100V$ $I_{D25} = 230A$ $R_{DS(on)} \le 4.7m\Omega$

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Rectifier

Symbol	Test Conditions	Maximum Ratii	ngs
V _{DSS}	$T_J = 25$ °C to 175°C	100	V
V _{DGR}	$T_{_{\rm J}} = 25^{\circ}\text{C}$ to 175°C, $R_{_{\rm GS}} = 1\text{M}\Omega$	100	V
/ _{GSS}	Continuous	± 20	V
/ _{GSM}	Transient	±30	V
D25	T _C = 25°C	230	Α
_RMS	Lead Current Limit, RMS	160	Α
ОМ	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	500	Α
A	T _C = 25°C	115	Α
as	T _C = 25°C	1.5	J
)	T _C = 25°C	650	W

TO-247	
G D S	(TAB)

G	= Gate	D	=	Drain
S	= Source	TAB	=	Drain

Features

٥С

٥С

٥С

٥С

 $^{\circ}C$

g

- International Standard Package
- 175°C Operating Temperature
- High Current Handling Capability
- Avalanche Rated
- Fast Intrinsic Rectifier
- Low R_{DS(on)}

Advantages

- Easy to Mount
- Space Savings
- High Power Density

Symbol Test Conditions $(T_J = 25^{\circ}\text{C Unless Otherwise Specified})$		Cha Min.	Characteristic Value Min. Typ. Max.			
BV _{DSS}	$V_{GS} = 0V, I_D = 1mA$	100			V	
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 1 \text{mA}$	2.5		4.5	V	
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			±200	nA	
I _{DSS}	$V_{DS} = V_{DSS}$			50	μΑ	
	$V_{GS} = 0V$ $T_{J} = 150^{\circ}C$			3	mΑ	
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \bullet I_{D25}$ Notes 1, 2			4.7	mΩ	

1.6mm (0.062in.) from Case for 10s

Plastic Body for 10 Seconds

Applications

- DC-DC Converters
- Battery Chargers
- Switched-Mode and Resonant-Mode Power Supplies
- DC Choppers
- AC Motor Drives
- Uninterruptible Power Supplies
- High Speed Power Switching Applications

Symbol (T _J = 25°C, U	Test Conditions Inless Otherwise Specified)	Chara Min.	cteristic	Values Max.
g _{fs}	$V_{DS} = 10V, I_{D} = 60A, \text{ Note 1}$	80	135	S
C _{iss}			15.3	nF
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		1525	pF
C _{rss}			195	pF
t _{d(on)}	Positive O. Halita Theory		29	ns
t _r	Resistive Switching Times		40	ns
t _{d(off)}	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 100A$ $R_{G} = 1\Omega$ (External)		45	ns
t _f	Tig = TII (External)		15	ns
$\mathbf{Q}_{g(on)}$			250	nC
Q _{gs}	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 0.5 \cdot I_{D25}$		70	nC
Q_{gd}			65	nC
R _{thJC}				0.23 °C/W
R _{thCH}			0.21	°C/W

Source-Drain Diode

Symbol (T _J = 25°C, U		teristic Typ.	Values Max.	
I _s	V _{GS} = 0V		230	A
I _{sm}	Repetitive, Pulse Width Limited by T _{JM}		900	Α
V _{SD}	$I_F = 100A, V_{GS} = 0V, Note 1$		1.3	V
t _{rr}	$I_{\rm F} = 100 {\rm A}, \ V_{\rm GS} = 0 {\rm V}$	82		ns
I _{RM}	$-di/dt = 100A/\mu s$	4.8		Α
Q_{RM}	$V_{R} = 50V$	196		nC

Terminals: 1 - Gate 2 - Drain

Dim.	Milli	meter	Inc	hes
	Min.	Max.	Min.	Max.
Α	4.7	5.3	.185	.209
A ₁	2.2	2.54	.087	.102
A ₂	2.2	2.6	.059	.098
b	1.0	1.4	.040	.055
b ₁	1.65	2.13	.065	.084
b ₂	2.87	3.12	.113	.123
С	.4	.8	.016	.031
D	20.80	21.46	.819	.845
E	15.75	16.26	.610	.640
е	5.20	5.72	0.205	0.225
L	19.81	20.32	.780	.800
L1		4.50		.177
ØP	3.55	3.65	.140	.144
Q	5.89	6.40	0.232	0.252
R	4.32	5.49	.170	.216

Note 1: Pulse Test, $t \le 300\mu s$; Duty Cycle, $d \le 2\%$.

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a pre-production design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

Fig. 1. Output Characteristics @ 25°C

Fig. 3. Output Characteristics @ 150°C

Fig. 5. $R_{DS(on)}$ Normalized to $I_D = 115A$ Value vs. Drain Current

Fig. 2. Extended Output Characteristics
@ 25°C

Fig. 4. $R_{DS(on)}$ Normalized to $I_D = 115A$ Value vs. Junction Temperature

Fig. 6. Drain Current vs. Case Temperature

Fig. 7. Input Admittance 280 240 200 I_D - Amperes 160 $T_{\rm J} = 150^{\circ}{\rm C}$ 120 25°C 40°C 80 40 0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 3.0 V_{GS} - Volts

Fig. 8. Transconductance 280 $T_J = -40$ °C 240 200 200 160 160 120 25°C 80 40 0 0 40 80 120 160 200 240 280

I_D - Amperes

Fig. 10. Gate Charge

Fig. 9. Forward Voltage Drop of Intrinsic Diode

10 9 V_{DS} = 50V I_D = 115A 8 I_G = 10mA

3

2

1

0

0

25

50

75

100

Fig. 11. Capacitance

Fig. 12. Forward-Bias Safe Operating Area

125

Q_G - NanoCoulombs

150

175

200

225

250

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 13. Resistive Turn-on Rise Time vs. Junction Temperature

Fig. 15. Resistive Turn-on Switching Times vs. Gate Resistance

Fig. 17. Resistive Turn-off
Switching Times vs. Drain Current

Fig. 14. Resistive Turn-on Rise Time vs. Drain Current

Fig. 16. Resistive Turn-off Switching Times vs. Junction Temperature

Fig. 18. Resistive Turn-off Switching Times vs. Gate Resistance

Fig. 19. Maximum Transient Thermal Impedance

