

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
30 August 2001 (30.08.2001)

PCT

(10) International Publication Number
WO 01/62905 A2

(51) International Patent Classification⁵: C12N 9/64, (74) Agent: SMITH, Julie, K.; 51 University Street, Seattle, WA 98101 (US).

(21) International Application Number: PCT/US01/05701

(22) International Filing Date: 23 February 2001 (23.02.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/184,865 25 February 2000 (25.02.2000) US

(71) Applicant (for all designated States except US): IMMUNEX CORPORATION [US/US]; 51 University Street, Seattle, WA 98101 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): FANSLOW, William, C., III [US/US]; 404 S.W. 197th Street, Normandy Park, WA 98166 (US). CERRETTI, Douglas, Pat [US/US]; 1607 North 197th Place, Seattle, WA 98133 (US). POINDEXTER, Kurt, Matthew [US/US]; 9247 Interlak Avenue North, Apt. 2, Seattle, WA 98103 (US). BLACK, Roy, A. [US/US]; 8062 30th Avenue Northeast, Seattle, WA 98115 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,

AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, PT, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TI, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SI, TR), OAPI patent (BF, BJ, CI, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/62905 A2

(54) Title: INTEGRIN ANTAGONISTS

(57) Abstract: The present invention provides methods and compositions for inhibiting the biological activity of integrins, for inhibiting endothelial cell migration, and for inhibiting angiogenesis. In particular, the invention provides compositions comprising ADAM disintegrin domains and methods for using said compositions. In preferred embodiments the methods and compositions of the invention are used to inhibit angiogenesis and to treat diseases or conditions mediated by angiogenesis.

TITLE
INTEGRIN ANTAGONISTS

CROSS REFERENCE TO RELATED APPLICATIONS

5 This application claims the benefit of pending U.S. provisional application Serial No. 60/184,865, filed 25 February 2000, the contents of which are incorporated herein by reference.

FIELD OF THE INVENTION

10 This invention relates to methods and compositions that are useful for antagonizing the interaction between integrins and their ligands. In particular, the invention relates to the use of ADAM disintegrin domains for antagonizing the interaction between integrins and their ligands.

BACKGROUND OF THE INVENTION

A. Integrins and Disintegrins

15 Integrins are a family of cell surface proteins that mediate adhesion between cells (cell-cell adhesion) and between cells and extracellular matrix proteins (cell-ECM adhesion). Integrins are heterodimeric structures composed of noncovalently bound α and β subunits. In humans, at least fifteen different α subunits and eight different β subunits combine to form integrins with diverse biological activities and ligand specificities. Integrins play important roles in biological processes 20 including embryonic development, platelet aggregation, immune reactions, tissue repair and remodeling, bone resorption, and tumor invasion and metastasis. Integrins are, therefore, important targets for therapeutic intervention in human disease.

The disintegrins are a family of low molecular weight, soluble, cysteine-rich peptides which have been isolated from snake venom (reviewed in Niewiarowski et al., Seminars in Hematology 25 31(4):289, 1994). The snake venom disintegrins typically contain an RGD (Arg-Gly-Asp, SEQ ID NO:19) motif. The RGD motif is recognized by many integrins, and is present in several integrin ligands including fibronectin, vitronectin, and von Willebrand factor. Disintegrins disrupt normal adhesion processes by inhibiting the binding of cell surface integrins to their ligands.

Disintegrin-like domains have been identified in cellular proteins from both invertebrates and 30 vertebrates (see, e.g., Westcamp and Blobel, Proc. Natl. Acad. Sci. USA 91:2748, 1994; Wolfsberg et al., Dev. Biol. 169:378, 1995; Alfandari et al., Dev. Biol. 182:314, 1997), including the ADAM family of transmembrane proteins.

B. ADAMs

35 The ADAMs, which have also been called MDCCs, are a family of type I transmembrane cysteine-rich glycoproteins (Westcamp et al., Proc. Natl. Acad. Sci. USA, 91:2748, 1994; Wolfsberg et al., Dev. Biol. 169:378, 1995). The multidomain structure of the ADAMs typically includes an amino-terminal metalloprotease domain, a disintegrin domain, a cysteine-rich region (the region between the

disintegrin domain and the transmembrane domain), a transmembrane region, and a cytoplasmic domain. At least 30 ADAM family members have been identified, in a variety of animal species. The structure of the ADAMs suggests that they may be involved in a variety of biological processes, including cell adhesion, cell fusion, signal transduction, and proteolysis. Members of the ADAM family have, in fact, been shown to play roles in sperm-egg binding and fusion, myotube formation, neurogenesis, and proteolysis.

ADAM-15, also called MDC-15 or metargin, is the only ADAM identified to date which contains an RGD motif within its disintegrin domain. Zhang et al. (*J. Biol. Chem.* 273(13):7345, 1998) have reported that the isolated disintegrin domain of ADAM-15, expressed in *E. coli* as a glutathione S-transferase fusion protein, specifically interacts with $\alpha_5\beta_1$ integrin and that the interaction is mediated by the RGD tripeptide sequence. The recombinant fusion protein did not interact with other integrins tested, including $\alpha_6\beta_1$ and $\alpha_4\beta_1$. Nath et al. (*J. Cell Science* 112:579, 1999) have reported that the entire ADAM-15 extracellular domain, expressed as an Fc fusion protein in COS cells, interacts with $\alpha_5\beta_1$ and $\alpha_6\beta_1$ integrins on hematopoietic cells and that the interaction is mediated by the RGD tripeptide sequence. Zhang et al. and Nath et al. commented that the RGD-dependent interaction between ADAM-15 and $\alpha_5\beta_1$ integrin suggests a role in processes such as malignancy and angiogenesis.

C. Angiogenesis

Angiogenesis, the generation of new blood vessels, is a spatially and temporally regulated process in which endothelial and smooth muscle cells proliferate, migrate, and assemble into tubes, in response to endogenous positive and negative regulatory molecules. Angiogenesis plays important roles in both normal and pathological physiology.

Under normal physiological conditions, angiogenesis is involved in fetal and embryonic development, wound healing, organ regeneration, and female reproductive remodeling processes including formation of the endometrium, corpus luteum, and placenta. Angiogenesis is stringently regulated under normal conditions, especially in adult animals, and perturbation of the regulatory controls can lead to pathological angiogenesis.

Pathological angiogenesis has been implicated in the manifestation and/or progression of inflammatory diseases, certain eye disorders, and cancer. In particular, several lines of evidence support the concept that angiogenesis is essential for the growth and persistence of solid tumors and their metastases (see, e.g., Folkman, *N. Engl. J. Med.* 285:1182, 1971; Folkman et al., *Nature* 339:58, 1989; Kim et al., *Nature* 362:841, 1993; Hori et al., *Cancer Res.*, 51:6180, 1991; Zetter, *Annu. Rev. Med.* 49:407, 1998). The formation of new blood vessels provides a growing tumor with oxygen, nutrients, waste removal, and a conduit by which invasive cells can enter the circulatory system and establish distant metastases. Various classes of angiogenesis inhibitors are presently being developed and tested for the prevention (e.g., treatment of premalignant conditions), intervention (e.g., treatment of small tumors), and regression (e.g., treatment of large tumors) of cancers (see, e.g., Bergers et al.,

Science 284:808, 1999) and other forms of pathological angiogenesis. Because many steps in the angiogenic process, including endothelial cell migration, proliferation, and morphogenesis require vascular cell adhesion, certain integrin antagonists have been tested as anti-angiogenic agents.

- Several integrins are expressed on the surface of cultured endothelial and smooth muscle cells, including $\alpha_5\beta_1$ integrin. The $\alpha_5\beta_1$ integrin is an endothelial cell receptor for von Willebrand factor, fibrin, fibrinogen, and fibronectin, and a marker of angiogenic vascular tissue. Brooks et al. have reported that monoclonal antibodies to $\alpha_5\beta_1$ integrin, as well as cyclic peptide inhibitors, disrupt angiogenesis and that $\alpha_5\beta_1$ antibodies promote tumor regression (Science 264:569, 1994; Cell 79:1157, 1994). These results suggest that $\alpha_5\beta_1$ integrin is a useful therapeutic target for diseases characterized by pathological angiogenesis.

There is great need for additional compositions and methods of antagonizing the interaction between integrins and their ligands. In particular, there is great need for additional compositions and methods of inhibiting angiogenesis for the prevention, abrogation, and mitigation of disease processes that are dependent upon pathological angiogenesis.

15

SUMMARY OF THE INVENTION

The present invention is based upon the discovery that ADAM disintegrin domains are useful for inhibiting the biological activity of integrins and for inhibiting endothelial cell migration and angiogenesis, including the unexpected discovery that these inhibitory activities reside in ADAM disintegrin domains that lack an RGD motif.

The invention is directed to methods of antagonizing the binding of an integrin to its ligands, and thereby inhibiting the biological activity of the integrin, comprising contacting the integrin with an effective amount of an ADAM disintegrin domain polypeptide. The invention is further directed to methods of inhibiting endothelial cell migration and methods of inhibiting angiogenesis comprising administering an effective amount of an ADAM disintegrin domain polypeptide. In some embodiments the ADAM disintegrin domain polypeptide is in the form of a multimer, preferably a leucine zipper multimer or Fc polypeptide. In some embodiments the ADAM disintegrin domain is from a human ADAM, and preferably from ADAM-8, ADAM-9, ADAM-10, ADAM-15, ADAM-17, ADAM-20, ADAM-21, ADAM-22, ADAM-23, or ADAM-29. The ADAM disintegrin domain is preferably produced in a recombinant cell, and is preferably present in a composition comprising a pharmaceutically acceptable carrier.

In some preferred embodiments the ADAM disintegrin domain polypeptide comprises an amino acid sequence selected from the group consisting of: amino acids 23-264 of SEQ ID NO:2, amino acids 23-303 of SEQ ID NO:4, amino acids 23-235 of SEQ ID NO:6, amino acids 23-292 of SEQ ID NO:8, amino acids 23-216 of SEQ ID NO:10, amino acids 23-305 of SEQ ID NO:12, amino acids 23-293 of SEQ ID NO:14, amino acids 23-312 of SEQ ID NO:16, amino acids 23-310 of SEQ ID NO:18, and amino acids 23-298 of SEQ ID NO:22. In some more preferred embodiments the ADAM disintegrin domain polypeptide comprises an amino acid sequence selected from the group

- consisting of: amino acids 34-91 of SEQ ID NO:2, amino acids 34-92 of SEQ ID NO:4, amino acids 34-99 of SEQ ID NO:6, amino acids 34-92 of SEQ ID NO:8, amino acids 34-93 of SEQ ID NO:10, amino acids 34-91 of SEQ ID NO:12, amino acids 34-91 of SEQ ID NO:14, amino acids 34-92 of SEQ ID NO:16, amino acids 34-91 of SEQ ID NO:18, and amino acids 34-91 of SEQ ID NO:22.
- 5 some most preferred embodiments the ADAM disintegrin domain polypeptide comprises an amino acid sequence selected from the group consisting of: amino acids 78-91 of SEQ ID NO:2, amino acids 79-92 of SEQ ID NO:4, amino acids 87-99 of SEQ ID NO:6, amino acids 79-92 of SEQ ID NO:8, amino acids 79-93 of SEQ ID NO:10, amino acids 78-91 of SEQ ID NO:12, amino acids 78-91 of SEQ ID NO:14, amino acids 79-92 of SEQ ID NO:16, amino acids 78-91 of SEQ ID NO:18, and
- 10 amino acids 78-91 of SEQ ID NO:22.

In some embodiments a therapeutically effective amount of the ADAM disintegrin domain is administered to a mammal in need of such treatment. In preferred embodiments the mammal is afflicted with a condition mediated by angiogenesis, an ocular disorder, malignant or metastatic condition, inflammatory disease, osteoporosis and other conditions mediated by accelerated bone resorption, restenosis, inappropriate platelet activation, recruitment, or aggregation, thrombosis, or a condition requiring tissue repair or wound healing. The ADAM disintegrin domain is, in some embodiments, administered in combination with radiation therapy and/or in combination with one or more additional therapeutic agents.

15

The invention also encompasses methods for identifying compounds that modulate integrin biological activity, that modulate the interaction between an integrin and an ADAM disintegrin domain, that inhibit endothelial cell migration, or that inhibit angiogenesis, comprising combining a test compound with an integrin or with endothelial cells and with an ADAM disintegrin domain polypeptide that binds to the integrin or endothelial cells and determining whether the test compound alters the binding of the ADAM disintegrin domain polypeptide to the integrin or endothelial cells.

20 25 These and other aspects of the present invention will become evident upon reference to the following detailed description, examples, and claims.

DETAILED DESCRIPTION OF THE INVENTION

A. Abbreviations and Terminology Used in the Specification

30 "4-IBB" and "4-1BB ligand" (4-1BB-L) are polypeptides described, inter alia, in U.S. Patent No. 5,674,704, including soluble forms thereof.

"ADAMs" are a family of transmembrane glycoproteins having disintegrin and metalloproteinase domains, also called MDC, metalloprotease/disintegrin/cysteine-rich proteins.

"Dis" is a disintegrin domain; "ADAMdis" is an ADAM disintegrin domain.

35 "CD40 ligand" (CD40L) is a polypeptide described, inter alia, in U.S. Patent No. 5,716,805, including soluble forms thereof.

"CD148" is a protein tyrosine phosphatase, also called DEP-1, ECRTP, and PTPRJ. CD148 binding proteins are described in Daniel et al., PCT Publication No. WO 00/15258, 23 March 2000.

"DMEM" is Dulbecco's Modified Eagle Medium.

"FACS" is fluorescence activated cell sorting.

5 "Flt3L" is Flt3 ligand, a polypeptide described, inter alia, in U.S. Patent No. 5,554,512, including soluble forms thereof.

"HRMEC" are human renal microvascular endothelial cells.

"HMVEC-d" are human dermal microvascular endothelial cells.

"mAb" is a monoclonal antibody.

10 "MDC" is a family of cysteine-rich proteins having metalloprotease and disintegrin domains, also called ADAM.

"Nectin-3" is a cell adhesion molecule in the nectin family (which is described, inter alia, in Satoh-Horikawa et al., J. Biol. Chem. 275(14):10291, 2000). The GenBank accession numbers of human nectin-3 nucleic acid and polypeptide sequences are AF282874 and AAF97597 respectively

15 (Reymond et al., 2000).

"PMA" is phorbol-12-myristate-13-acetate.

"Tek," which has also been called Tie2 and ork, is an receptor tyrosine kinase (RTK) that is predominantly expressed in vascular endothelium. The molecular cloning of human Tek (ork) has been described by Ziegler, U.S. Patent No. 5,447,860. "Tek antagonists" are described, inter alia, in

20 Cerretti et al., PCT Publication No. WO 00/75323, 14 December 2000.

"TNF" is tumor necrosis factor. "TNFR" is a tumor necrosis factor receptor, including soluble forms thereof. "TNFR/Fc" is a tumor necrosis factor receptor-Fc fusion polypeptide.

"TRAIL" is TNF-related apoptosis-inducing ligand, a type II transmembrane polypeptide in the TNF family described, inter alia, in U.S. Patent No. 5,763,223, including soluble forms thereof.

25 "TWEAK" is TNF-weak effector of apoptosis, a type II transmembrane polypeptide in the TNF family described, inter alia, in Chicheportiche et al., J. Biol. Chem., 272(51):32401, 1997, including soluble forms thereof. "TWEAK-R" is the "TWEAK receptor," which is described, inter alia, in U.S. Serial Numbers 60/172,878 and 60/203,347 and Feng et al., Am. J. Pathol. 156(4):1253, 2000, including soluble forms thereof. TWEAK-RFc is a TWEAK receptor-Fc fusion polypeptide.

30 "VEGF" is vascular endothelial growth factor, also known as VPF or vascular permeability factor.

B. ADAM Polypeptides and ADAM Disintegrin Domain Polypeptides

At least thirty ADAMs have been described. Table 1 provides reference information for selected human ADAMs.

ADAM disintegrin domains show sequence homology to the snake venom disintegrins, and are characterized by a framework of cysteines. For example, a typical disintegrin sequence comprises a framework such as:

CDCGX₃₋₅CX₃₋₆CCX₂₋₄CX₇CX₄₋₆CCX₂₋₄CX₈CX₅₋₇CX₃₋₅C (SEQ ID NO:20)

The sequences of several ADAM disintegrin domains are shown in Table 2 and in the Sequence Listing.

- 5 The present invention encompasses the use of various forms of ADAM disintegrin domains that retain at least one activity selected from the group consisting of integrin binding activity, inhibition of endothelial cell migration, and inhibition of angiogenesis. The term "ADAM disintegrin domain polypeptide" is intended to encompass polypeptides containing all or part of a native ADAM disintegrin domain, with or without other ADAM domains (such as the cysteine-rich region), as well
 10 as related forms including, but not limited to: (a) fragments, (b) variants, (c) derivatives, (d) fusion polypeptides, and (e) multimeric forms (multimers). The ability of these related forms to inhibit integrin binding, endothelial cell migration, and/or inhibition of angiogenesis may be determined in vitro or in vivo by using methods such as those exemplified below or by using other assays known in the art.

15

Table 1
Selected Members of the ADAM Family

ADAM	Other Names	GenBank Accession Number (Human)	Published Description
ADAM-8	MS2, CD156	D26579	Genomics 41(1):56, 1997
ADAM-9	MDC9, metrin gamma	U41766	J. Cell. Biol. 132(4):717, 1996
ADAM-10	MADM, kuzbanian, treprolysin	AF009615	J. Biol. Chem. 272(39):24588, 1997
ADAM-15	Metarginidin, MDC15	U46005	J. Biol. Chem. 271(9):4593, 1996
ADAM-17	TACB, cSVP	U86755	WO 96/41624
ADAM-20	SVPHI-26	AF029899	WO 99/23228
ADAM-21	SVPHI-8	AF029900	WO 99/36549
ADAM-22	SVPHI-13, MDC2	AB009671	WO 99/41388
ADAM-23	SVPHI-17, MDC3	AB009672	WO 99/41388
ADAM-29	SVPHI	AF171929	Biochem. Biophys. Res. Commun. 263:810, 1999

- The term "variant" includes polypeptides that are substantially homologous to native ADAM disintegrin domains, but which have an amino acid sequence different from that of a native ADAM disintegrin domain because of one or more deletions, insertions or substitutions. Particular embodiments include, but are not limited to, ADAM disintegrin domain polypeptides that comprise
- 5 from one to ten deletions, insertions or substitutions of amino acid residues, when compared to a native ADAM disintegrin domain sequence. Included as variants of ADAM disintegrin domain polypeptides are those variants that are naturally occurring, such as allelic forms and alternatively spliced forms, as well as variants that have been constructed by modifying the amino acid sequence of a ADAM disintegrin domain polypeptide or the nucleotide sequence of a nucleic acid encoding a
- 10 ADAM disintegrin domain polypeptide.

Generally, substitutions for one or more amino acids present in the native polypeptide should be made conservatively. Examples of conservative substitutions include substitution of amino acids outside of the active domain(s), and substitution of amino acids that do not alter the secondary and/or tertiary structure of the ADAM disintegrin domain. Additional examples include substituting one 15 aliphatic residue for another, such as Ile, Val, Leu, or Ala for one another, or substitutions of one polar residue for another, such as between Lys and Arg; Glu and Asp; or Gln and Asn, or substitutions of one aromatic residue for another, such as Phe, Trp, or Tyr for one another. Other such conservative substitutions, for example, substitutions of entire regions having similar hydrophobicity characteristics, are known in the art.

20 In some preferred embodiments the ADAM disintegrin domain variant is at least about 70% identical in amino acid sequence to the amino acid sequence of a native ADAM disintegrin domain; in some preferred embodiments the ADAM disintegrin domain variant is at least about 80% identical in amino acid sequence to the amino acid sequence of a native ADAM disintegrin domain. In some more preferred embodiments the ADAM disintegrin domain variant is at least about 90% identical in amino acid sequence to the amino acid sequence of a native ADAM disintegrin domain; in some more preferred embodiments the ADAM disintegrin domain variant is at least about 95% identical in amino acid sequence to the amino acid sequence of a native ADAM disintegrin domain. In some most preferred embodiments the ADAM disintegrin domain variant is at least about 98% identical in amino acid sequence to the amino acid sequence of a native ADAM disintegrin domain; in some most preferred embodiments the ADAM disintegrin domain variant is at least about 99% identical in amino acid sequence to the amino acid sequence of a native ADAM disintegrin domain.

Percent identity, in the case of both polypeptides and nucleic acids, may be determined by visual inspection. Percent identity may be determined using the alignment method of Needleman and Wunsch (J. Mol. Biol. 48:443, 1970) as revised by Smith and Waterman (Adv. Appl. Math 2:482, 1981). Preferably, percent identity is determined by using a computer program, for example, the GAP computer program version 10.x available from the Genetics Computer Group (GCG; Madison, WI, see also Devereux et al., *Nucl. Acids Res.* 12:387, 1984). The preferred default parameters for the GAP program include: (1) a unary comparison matrix (containing a value of 1 for identities and 0 for non-

identities) for nucleotides, and the weighted comparison matrix of Gribskov and Burgess, *Nucl. Acids Res.* 14:6745, 1986, as described by Schwartz and Dayhoff, eds., *Atlas of Protein Sequence and Structure*, National Biomedical Research Foundation, pp. 353-358, 1979 for amino acids; (2) a penalty of 30 (amino acids) or 50 (nucleotides) for each gap and an additional 1 (amino acids) or 3

- 5 (nucleotides) penalty for each symbol in each gap; (3) no penalty for end gaps; and (4) no maximum penalty for long gaps. Other programs used by one skilled in the art of sequence comparison may also be used. For fragments of ADAM disintegrin domains, the percent identity is calculated based on that portion of ADAM disintegrin domain that is present in the fragment.

- When a deletion or insertion strategy is adopted, the potential effect of the deletion or
10 insertion on biological activity (such as integrin binding activity, inhibition of endothelial cell migration, or inhibition of angiogenesis) must be considered. Subunits of the inventive polypeptides may be constructed by deleting terminal or internal residues or sequences. Additional guidance as to the types of mutations that can be made is provided by a comparison of the sequence of ADAM disintegrin domain polypeptides to polypeptides that have similar structures, as well as by performing
15 structural analysis of the inventive polypeptides.

- The term "variant" also includes ADAM disintegrin domain polypeptides that are encoded by nucleic acids capable of hybridizing under moderately stringent conditions (e.g., prewashing solution of 5 X SSC, 0.5% SDS, 1.0 mM EDTA (pH 8.0) and hybridization conditions of 50°C, 5 X SSC, overnight) or higher stringency conditions to DNA sequences encoding ADAM disintegrin domain polypeptides, and which encode polypeptides that retain at least one activity selected from the group consisting of integrin binding activity, inhibition of endothelial cell migration, and inhibition of angiogenesis. The skilled artisan can determine additional combinations of salt and temperature that constitute moderate hybridization stringency. Conditions of higher stringency include higher temperatures for hybridization and post-hybridization washes, and/or lower salt concentration.
25

- Mutations can be introduced into nucleic acids by synthesizing oligonucleotides containing a mutant sequence, flanked by restriction sites enabling ligation to fragments of the native sequence. Following ligation, the resulting reconstructed sequence encodes a variant having the desired amino acid insertion, substitution, or deletion. Alternatively, oligonucleotide-directed site-specific mutagenesis procedures can be employed to provide an altered gene having particular codons altered
30 according to the substitution, deletion, or insertion required. The well known polymerase chain reaction (PCR) procedure also may be employed to generate and amplify a DNA sequence encoding a desired polypeptide or fragment thereof. Oligonucleotides that define the desired termini of the DNA fragment are employed as 5' and 3' primers. The oligonucleotides may additionally contain recognition sites for restriction endonucleases to facilitate insertion of the amplified DNA fragment into an expression vector.
35

The present invention further encompasses the use of ADAM disintegrin domain polypeptides with or without associated native-pattern glycosylation. ADAM disintegrin domain expressed in yeast or mammalian expression systems (e.g., COS-1 or COS-7 cells) may be similar to or significantly

different from a native ADAM disintegrin domain polypeptide in molecular weight and glycosylation pattern, depending upon the choice of expression system. Expression of ADAM disintegrin domain polypeptides in bacterial expression systems, such as *E. coli*, provides non-glycosylated molecules. Different host cells may also process polypeptides differentially, resulting in heterogeneous mixtures

5 of polypeptides with variable N- or C-termini.

The primary amino acid structure of ADAM disintegrin domain polypeptides may be modified to create derivatives by forming covalent or aggregative conjugates with other chemical moieties, such as glycosyl groups, lipids, phosphoate, acetyl groups and the like. Covalent derivatives of ADAM disintegrin domain polypeptides may be prepared by linking particular functional groups to

10 ADAM disintegrin domain amino acid side chains or at the N-terminus or C-terminus of a ADAM disintegrin domain polypeptide.

Fusion polypeptides of ADAM disintegrin domains that are useful in practicing the invention include covalent or aggregative conjugates of ADAMdis or its fragments with other polypeptides, such as by synthesis in recombinant culture as N-terminal or C-terminal fusions. One class of fusion

15 polypeptides are discussed below in connection with ADAM disintegrin oligomers. As another example, a fusion polypeptide may comprise a signal peptide (which is also variously referred to as a signal sequence, signal, leader peptide, leader sequence, or leader) at the N-terminal region or C-terminal region of an ADAM disintegrin domain polypeptide which co-translationally or post-translationally directs transfer of the polypeptide from its site of synthesis to a site inside or outside of 20 the cell membrane or cell wall. It is particularly advantageous to fuse a signal peptide that promotes extracellular secretion to the N-terminus of a soluble ADAMdis polypeptide. In this case, the signal peptide is typically cleaved upon secretion of the soluble polypeptide from the cell.

Secreted soluble polypeptides may be identified (and distinguished from its non-soluble membrane-bound counterparts) by separating intact cells which express the desired polypeptide from

25 the culture medium, e.g., by centrifugation, and assaying the medium (supernatant) for the presence of the desired polypeptide. The presence of the desired polypeptide in the medium indicates that the polypeptide was secreted from the cells and thus is a soluble form of the polypeptide. Soluble polypeptides may be prepared by any of a number of conventional techniques. A DNA sequence encoding a desired soluble polypeptide may be subcloned into an expression vector for production of 30 the polypeptide, or the desired encoding DNA fragment may be chemically synthesized.

Soluble ADAM disintegrin domain polypeptides comprise all or part of the ADAM disintegrin domain, with or without additional segments from the extracellular portion of the ADAM (such as the cysteine-rich region) but generally lack a transmembrane domain that would cause retention of the polypeptide at the cell surface. Soluble polypeptides may include part of the

35 transmembrane domain or all or part of the cytoplasmic domain as long as the polypeptide is secreted from the cell in which it is produced. Examples of soluble ADAM disintegrin domain polypeptides are provided in the examples. In some preferred embodiments of the present invention, a multimeric form of a soluble ADAM disintegrin domain polypeptide is used to inhibit integrin binding to ligands

and, hence, integrin biological activity. In some most preferred embodiments the soluble ADAM disintegrin domain polypeptide is used to inhibit endothelial cell migration and/or inhibit angiogenesis. These inhibitory activities may include both integrin-mediated and integrin-independent mechanisms.

- ADAM disintegrin domain multimers are covalently-linked or non-covalently-linked
- 5 multimers, including dimers, trimers, and higher multimers. Oligomers may be linked by disulfide bonds formed between cysteine residues on different ADAM disintegrin domain polypeptides. One embodiment of the invention is directed to multimers comprising multiple ADAM disintegrin domain polypeptides joined via covalent or non-covalent interactions between peptide moieties fused to the ADAM disintegrin domain polypeptides. Such peptides may be peptide linkers (spacers), or peptides
- 10 that have the property of promoting multimerization. Leucine zippers and certain polypeptides derived from antibodies are among the peptides that can promote multimerization of ADAM disintegrin domain polypeptides attached thereto, as described in more detail below. In particular embodiments, the multimers comprise from two to four ADAM disintegrin domain polypeptides.

In some embodiments, a ADAM disintegrin domain multimer is prepared using polypeptides derived from immunoglobulins. Preparation of fusion proteins comprising certain heterologous polypeptides fused to various portions of antibody-derived polypeptides (including the Fc domain) has been described, e.g., by Ashkenazi et al. (Proc. Natl. Acad. Sci. USA 88:10535, 1991); Byrn et al. (Nature 344:677, 1990); and Hollenbaugh and Aruffo ("Construction of Immunoglobulin Fusion Proteins", in *Current Protocols in Immunology*, Suppl. 4, pages 10.19.1-10.19.11, 1992).

- 20 A preferred embodiment of the present invention is directed to an ADAM disintegrin domain (ADAMdis) dimer comprising two fusion polypeptides created by fusing an ADAM disintegrin domain to an Fc polypeptide. A gene fusion encoding the ADAMdis-Fc fusion polypeptide is inserted into an appropriate expression vector. ADAMdis-Fc fusion polypeptides are expressed in host cells transformed with the recombinant expression vector, and allowed to assemble much like antibody molecules, whereupon interchain disulfide bonds form between the Fc moieties to yield divalent soluble ADAMdis polypeptides. The term "Fc polypeptide" as used herein includes native and mutein forms of polypeptides derived from the Fc region of an antibody. Truncated forms of such polypeptides containing the hinge region that promotes dimerization are also included.

One suitable Fc polypeptide, described in PCT application WO 93/10151, is a single chain polypeptide extending from the N-terminal hinge region to the native C-terminus of the Fc region of a human IgG1 antibody. Another useful Fc polypeptide is the Fc mutein described in U.S. Patent 5,457,035 and by Baum et al., EMBO J. 13:3992, 1994. The amino acid sequence of this mutein is identical to that of the native Fc sequence presented in WO 93/10151, except that amino acid 19 has been changed from Leu to Ala, amino acid 20 has been changed from Leu to Glu, and amino acid 22 has been changed from Gly to Ala. The mutein exhibits reduced affinity for Fc receptors. Fusion polypeptides comprising Fc moieties, and multimers formed therefrom, offer an advantage of facile purification by affinity chromatography over Protein A or Protein G columns, and Fc fusion

polypeptides may provide a longer *in vivo* half life, which is useful in therapeutic applications, than unmodified polypeptides.

- In other embodiments, a soluble ADAM disintegrin domain polypeptide may be substituted for the variable portion of an antibody heavy or light chain. If fusion proteins are made with both 5 heavy and light chains of an antibody, it is possible to form an ADAM disintegrin domain multimer with as many as four soluble ADAM disintegrin domain polypeptides.

Alternatively, the ADAM disintegrin domain multimer is a fusion polypeptide comprising multiple ADAM disintegrin domain polypeptides, with or without peptide linkers (spacers), or peptides that have the property of promoting multimerization.. Among the suitable peptide linkers are 10 those described in U.S. Patents 4,751,180 and 4,935,233. A DNA sequence encoding a desired peptide linker may be inserted between, and in the same reading frame as, the DNA sequences encoding ADAMdis, using conventional techniques known in the art. For example, a chemically synthesized oligonucleotide encoding the linker may be ligated between sequences encoding ADAMdis. In particular embodiments, a fusion protein comprises from two to four ADAM 15 disintegrin domain polypeptides, separated by peptide linkers.

Another method for preparing ADAM disintegrin domain multimers involves use of a leucine zipper domain. Leucine zipper domains are peptides that promote multimerization of the proteins in which they are found. Leucine zippers were originally identified in several DNA-binding proteins (Landschulz et al., *Science* 240:1759, 1988), and have since been found in a variety of different 20 proteins. Among the known leucine zippers are naturally occurring peptides and derivatives thereof that dimerize or trimerize. Examples of leucine zipper domains suitable for producing soluble oligomeric proteins are described in PCT application WO 94/10308, and the leucine zipper derived from lung surfactant protein D (SPD) described in Hoppe et al. *FEBS Lett.* 344:191, 1994. The use of a modified leucine zipper that allows for stable trimerization of a heterologous protein fused thereto is 25 described in Fanslow et al., *Semin. Immunol.* 6:267, 1994. Recombinant fusion polypeptides comprising an ADAM disintegrin domain polypeptide fused to a leucine zipper peptide are expressed in suitable host cells, and the ADAM disintegrin domain multimer that forms is recovered from the culture supernatant.

30 **C. Recombinant Production of ADAM Disintegrin Domain Polypeptides**

The ADAM disintegrin domain polypeptides used in the present invention may be prepared using a recombinant expression system. Host cells transformed with a recombinant expression vector encoding the ADAM disintegrin domain polypeptide are cultured under conditions that promote expression of ADAM disintegrin domain and the ADAM disintegrin domain is recovered. ADAM 35 disintegrin domain polypeptides can also be produced in transgenic plants or animals.

Any suitable expression system may be employed. Recombinant expression vectors include DNA encoding an ADAM disintegrin domain polypeptide operably linked to suitable transcriptional

- and translational regulatory nucleotide sequences, such as those derived from a mammalian, microbial, viral, or insect gene. Nucleotide sequences are operably linked when the regulatory sequence functionally relates to the ADAM disintegrin domain DNA sequence. Thus, a promoter nucleotide sequence is operably linked to an ADAM disintegrin domain DNA sequence if the promoter 5 nucleotide sequence controls the transcription of the ADAM disintegrin domain DNA sequence. Examples of regulatory sequences include transcriptional promoters, operators, or enhancers, an mRNA ribosomal binding site, and appropriate sequences which control transcription and translation initiation and termination. A sequence encoding an appropriate signal peptide (native or heterologous) can be incorporated into expression vectors. A DNA sequence for a signal peptide (secretory leader) 10 may be fused in frame to the ADAM disintegrin domain sequence so that the ADAM disintegrin domain polypeptide is initially translated as a fusion protein comprising the signal peptide. A signal peptide that is functional in the intended host cells promotes extracellular secretion of the ADAM disintegrin domain polypeptide. The signal peptide is cleaved from the ADAM disintegrin domain polypeptide upon secretion from the cell. Suitable host cells for expression of ADAM disintegrin 15 domain polypeptides include prokaryotes, yeast and higher eukaryotic cells, including insect and mammalian cells. Appropriate cloning and expression vectors for use with bacterial, fungal, yeast, insect, and mammalian cellular hosts are known in the art.

Using the techniques of recombinant DNA including mutagenesis and the polymerase chain reaction (PCR), the skilled artisan can produce DNA sequences that encode ADAM disintegrin 20 domain polypeptides comprising various additions or substitutions of amino acid residues or sequences, or deletions of terminal or internal residues or sequences, including ADAM disintegrin domain fragments, variants, derivatives, multimers, and fusion polypeptides.

The procedures for purifying expressed ADAM disintegrin domain polypeptides will vary according to the host system employed, and whether or not the recombinant polypeptide is secreted. 25 ADAM disintegrin domain polypeptides may be purified using methods known in the art, including one or more concentration, salting-out, ion exchange, hydrophobic interaction, affinity purification, HPLC, or size exclusion chromatography steps. Fusion polypeptides comprising Fc moieties (and multimers formed therefrom) offer the advantage of facile purification by affinity chromatography over Protein A or Protein G columns.

30

D. Therapeutic Methods

The disclosed methods may be used to inhibit integrin binding and integrin biological activity, and to inhibit endothelial cell migration, and/or angiogenesis in a mammal in need of such treatment. The treatment is advantageously administered in order to prevent the onset or the recurrence of a 35 disease or condition mediated by an integrin, or to treat a mammal that has a disease or condition mediated by an integrin.

Examples of the therapeutic uses of ADAM disintegrin domain polypeptides and compositions thereof include the treatment of individuals afflicted with conditions mediated by

angiogenesis such as ocular disorders, dermatological disorders, and malignant or metastatic conditions, inflammatory diseases, osteoporosis and other conditions mediated by accelerated bone resorption, restenosis, inappropriate platelet activation, recruitment, or aggregation, thrombosis, or a condition requiring tissue repair or wound healing.

- 5 Among the ocular disorders that can be treated according to the present invention are eye diseases characterized by ocular neovascularization including, but not limited to, diabetic retinopathy (a major complication of diabetes), retinopathy of prematurity (this devastating eye condition, that frequently leads to chronic vision problems and carries a high risk of blindness, is a severe complication during the care of premature infants), neovascular glaucoma, retinoblastoma, retrobulbar fibroplasia, rubeosis, uveitis, macular degeneration, and corneal graft neovascularization. Other eye inflammatory diseases, ocular tumors, and diseases associated with choroidal or iris neovascularization can also be treated according to the present invention.
- 10

The present invention can also be used to treat malignant and metastatic conditions such as solid tumors. Solid tumors include both primary and metastatic sarcomas and carcinomas.

- 15 The present invention can also be used to treat inflammatory diseases including, but not limited to, arthritis, rheumatism, inflammatory bowel disease, and psoriasis.

- Among the conditions mediated by inappropriate platelet activation, recruitment, aggregation, or thrombosis that can be treated according to the present invention are coronary artery disease or injury, myocardial infarction or injury following myocardial infarctum, stroke, unstable angina, atherosclerosis, arteriosclerosis, preeclampsia, embolism, platelet-associated ischemic disorders including lung ischemia, coronary ischemia, and cerebral ischemia, restenosis following percutaneous coronary intervention including angioplasty, atherectomy, stent placement, and bypass surgery, thrombotic disorders including coronary artery thrombosis, cerebral artery thrombosis, intracardiac thrombosis, peripheral artery thrombosis, venous thrombosis, thrombosis and coagulopathies.
- 20
- 25
- 30
- 35

Other diseases and conditions that can be treated according to the present invention include benign tumors and preneoplastic conditions, myocardial angiogenesis, hemophilic joints, scleroderma,

vascular adhesions, asthma and allergy, eczema and dermatitis, graft versus host disease, sepsis, adult respiratory distress syndrome, telangiectasia, and wound granulation.

The methods according to the present invention can be tested in *in vivo* animal models for the desired prophylactic or therapeutic activity, as well as to determine the optimal therapeutic dosage.

5 prior to administration to humans.

The amount of a particular ADAM disintegrin domain polypeptide that will be effective in a particular method of treatment depends upon age, type and severity of the condition to be treated, body weight, desired duration of treatment, method of administration, and other parameters. Effective dosages are determined by a physician or other qualified medical professional. Typical effective

10 dosages are about 0.01 mg/kg to about 100 mg/kg body weight. In some preferred embodiments the dosage is about 0.1-50 mg/kg; in some preferred embodiments the dosage is about 0.5-10 mg/kg. The dosage for local administration is typically lower than for systemic administration. In some embodiments a single administration is sufficient; in some embodiments the ADAM disintegrin domain is administered as multiple doses over one or more days.

15 The ADAM disintegrin domain polypeptides are typically administered in the form of a pharmaceutical composition comprising one or more pharmaceutically acceptable carriers.

Pharmaceutically acceptable carriers include diluents, fillers, adjuvants, excipients, and vehicles which are pharmaceutically acceptable for the route of administration, and may be aqueous or oleaginous suspensions formulated using suitable dispersing, wetting, and suspending agents.

20 Pharmaceutically acceptable carriers are generally sterile and free of pyrogenic agents, and may include water, oils, solvents, salts, sugars and other carbohydrates, emulsifying agents, buffering agents, antimicrobial agents, and chelating agents. The particular pharmaceutically acceptable carrier and the ratio of active compound to carrier are determined by the solubility and chemical properties of the composition, the mode of administration, and standard pharmaceutical practice.

25 The ADAM disintegrin domain polypeptides are administered to the patient in a manner appropriate to the indication. Thus, for example, ADAM disintegrin domain polypeptides, or pharmaceutical compositions thereof, may be administered by intravenous, transdermal, intradermal, intraperitoneal, intramuscular, intranasal, epidural, oral, topical, subcutaneous, intracavity, sustained release from implants, peristaltic routes, or by any other suitable technique. Parenteral administration is preferred.

30 In certain embodiments of the claimed invention, the treatment further comprises treating the mammal with one or more additional therapeutic agents. The additional therapeutic agent(s) may be administered prior to, concurrently with, or following the administration of the ADAM disintegrin domain polypeptide. The use of more than one therapeutic agent is particularly advantageous when the mammal that is being treated has a solid tumor. In some embodiments of the claimed invention, the treatment further comprises treating the mammal with radiation. Radiation, including brachytherapy and teletherapy, may be administered prior to, concurrently with, or following the administration of the ADAM disintegrin domain polypeptide and/or additional therapeutic agent(s).

In some preferred embodiments the method includes the administration of, in addition to an ADAM disintegrin domain polypeptide, one or more therapeutics selected from the group consisting of alkylating agents, antimetabolites, vinca alkaloids and other plant-derived chemotherapeutics, antitumor antibiotics, antitumor enzymes, topoisomerase inhibitors, platinum analogs, adrenocortical 5 suppressants, hormones and antihormones, antibodies, immunotherapeutics, radiotherapeutics, and biological response modifiers.

- In some preferred embodiments the method includes administration of, in addition to an ADAM disintegrin domain polypeptide, one or more therapeutics selected from the group consisting of cisplatin, cyclophosphamide, mechlorethamine, melphalan, bleomycin, carboplatin, fluorouracil, 5-fluorodeoxyuridine, methotrexate, taxol, asparaginase, vincristine, and vinblastine, lymphokines and cytokines such as interleukins, interferons (alpha., beta. or delta.) and TNF, chlorambucil, busulfan, carmustine, lomustine, semustine, streptozocin, dacarbazine, cytarabine, mercaptopurine, thioguanine, vindesine, etoposide, teniposide, dactinomycin, daunorubicin, doxorubicin, bleomycin, plicamycin, mitomycin, L-asparaginase, hydroxyurea, methylhydrazine, mitotane, tamoxifen, fluoxymesterone, IL-8 inhibitors, angiostatin, endostatin, kringle 5, angiopoietin-2 or other antagonists of angiopoietin-1, antagonists of platelet-activating factor, antagonists of basic fibroblast growth factor, and COX-2 inhibitors.

In some preferred embodiments the method includes administration of, in addition to an ADAM disintegrin domain polypeptide, one or more therapeutic polypeptides, including soluble forms thereof, selected from the group consisting of Flt3 ligand, CD40 ligand, interleukin-2, interleukin-12, 4-1BB ligand, anti-4-1BB antibodies, TRAIL, TNF antagonists and TNF receptor antagonists including TNFR/Fc, Tek antagonists, TWEAK antagonists and TWEAK-R antagonists including TWEAK-R/Fc, VEGF antagonists including anti-VEGF antibodies, VEGF receptor (including VEGF-R1 and VEGF-R2, also known as Flt1 and Flk1 or KDR) antagonists, CD148 (also referred to as DEP-1, ECRTF, and PTPRJ, see Takahashi et al., J. Am. Soc. Nephrol. 10:2135-45, 1999; and PCT Publication No. WO 00/15258, 23 March 2000) binding proteins, and nectin-3 antagonists.

In some preferred embodiments the ADAM disintegrin domain polypeptides of the invention are used as a component of, or in combination with, "metronomic therapy," such as that described by Browder et al. and Klement et al. (Cancer Research 60:1878, 2000; J. Clin. Invest. 105(8):R15, 2000; see also Barinaga, Science 288:245, 2000).

As used herein, the terms "therapy," "therapeutic," "treat," and "treatment" generally include prophylaxis, i.e. prevention, in addition to therapy or treatment for an extant disease or condition. The methods of the present invention may be used as a first line treatment, for the treatment of residual disease following primary therapy, or as an adjunct to other therapies. Methods of measuring biological effectiveness are known in the art and are illustrated in the Examples below.

EXAMPLES

The following examples are intended to illustrate particular embodiments and not to limit the scope of the invention.

EXAMPLE 1**ADAM Disintegrin Domain Polypeptides**

- This example describes one method for the recombinant production of ADAM disintegrin domain polypeptides.
- 5 Expression cassettes encoding an IgKappa leader sequence, ADAM disintegrin domain, and C-terminal Fc region were constructed in bacterial plasmids then transferred into eukaryotic expression vectors (pDC409, EMBO J. 10:2821, 1991, or another mammalian expression vector). The coding regions of the various constructs are summarized in Table 2. In addition to the disintegrin domain, these constructs encode additional portions of the extracellular portion of the ADAM (e.g., cysteine-rich region and EGF-like domain).
- 10

The expression vectors were transfected into COS-1, CV-1/EBNA, or 293/EBNA cells. Two days after transfection the cells were ³⁵S labeled for four hours. Supernatants and total cell lysates were prepared and aliquots were immunoprecipitated using protein A-sepharose beads to capture the Fc tagged polypeptides. ³⁵S labeled ADAM disintegrin-Fc polypeptides were run on 8-16% reducing gels and detected via autoradiography.

The cell type that produced the most soluble protein in the supernatant was used in a large scale (T-175 format, 20 flasks) transient transfection, and approximately one liter of supernatant was harvested after one week. ADAM disintegrin-Fc polypeptides were purified from the supernatants using affinity chromatography (protein A column). The polypeptides were characterized by determining the N-terminal amino acid sequence, amino acid composition, and protein integrity (SDS-PAGE under reducing and non-reducing conditions) before the polypeptides were used in FACS, 15 immunoprecipitations, and biological assays such as those described below.

20

25

Table 2
ADAM Disintegrin Domain Polypeptide Constructs

Construct	SEQ ID NOS: DNA/polypeptide	IgK Leader ^{1,2}	ADAM disintegrin ^{1,3} (dis Framework) ^{1,4}	Fc Region ¹
ADAM-8dis-Fc	1/2	1-20	23-264 (34-91)	267-494
ADAM-9dis-Fc	3/4	1-20	23-303 (34-92)	306-533
ADAM-10dis-Fc	5/6	1-20	23-235 (34-99)	238-465
ADAM-15dis-Fc	7/8	1-20	23-292 (34-92)	295-522
ADAM-17dis-Fc	9/10	1-20	23-216 (34-93)	219-446
ADAM-20dis-Fc	11/12	1-20	23-305 (34-91)	308-535
ADAM-21dis-Fc	13/14	1-20	23-293 (34-91)	296-523
ADAM-22dis-Fc	15/16	1-20	23-312 (34-92)	315-542
ADAM-23dis-Fc	17/18	1-20	23-310 (34-91)	313-540
ADAM-29dis-Fc	21/22	1-20	23-298 (34-91)	301-528

residues in the polypeptide sequence

5 ²the predicted cleavage site is after residue 20

³segment of the construct that includes ADAMdis, but may also contain additional ADAM sequences

⁴disintegrin framework, e.g., SEQ ID NO:20

EXAMPLE 2

10 Binding of ADAM Disintegrin Domain Polypeptides to Cells

A. Binding to Endothelial cells

This example describes a flow cytometric integrin mAb based binding inhibition assay, which is used to show binding of ADAM disintegrin-Fc polypeptides to integrins expressed on the surface of endothelial cells. Human endothelial cells express $\alpha_1\beta_1$, $\alpha_2\beta_1$, β_1 , β_3 , α_1 , α_2 , α_3 , α_5 and α_6 integrins.

15 Primary human dermal microvascular endothelial cells (HMVEC-d) were maintained in supplemented endothelial growth medium (Clonetics Corporation, Walkersville, MD). The ADAM disintegrin-Fc polypeptides produced in Example 1 were shown to bind specifically to HMVEC-d.

Monoclonal antibodies specific for human integrins $\alpha_5\beta_1$ (LM609, anti CD51/61, Chemicon, Temecula, CA Brooks et al., Science 264:569, 1994), $\alpha_5\beta_1$ (BHA2.1 anti CD49b, Chemicon, Wang et al., Mol. Biol. of the Cell 9:865, 1998), $\alpha_5\beta_1$ (SAM-1 anti CD49c, Biodesign, A. te Velde et al., J. Immunol. 140:1548, 1988), $\alpha_5\beta_1$ (ASC-6 anti-CD49c, Chemicon, Pattaramalai et al., Exp. Cell. Res. 222: 281, 1996), $\alpha_5\beta_1$ (HP2/1 anti CD49d, Immunotech, Marseilles, France. Workshop of the 4th International Conference on Human Leukocyte Differentiation Antigens, Vienna Austria, 1989, workshop number p091), $\alpha_5\beta_1$ (GoH3 anti CD49f, Immunotech, Workshop 4th International Conference on Human Leukocyte Differentiation Antigens, workshop number p055), $\alpha_5\beta_4$ (439-9B anti CD104, Pharmingen, San Diego, CA., Schlossman et al., 1995 Leukocyte Typing V: White Cell Differentiation Antigens. Oxford University Press, New York), and $\alpha_5\beta_3$ (MAB 1961, Chemicon International, monoclonal anti-human integrin $\alpha_5\beta_3$, mAb, IgG1 isotype, inhibits $\alpha_5\beta_3$ mediated binding/adhesion to vitronectin/fibronectin; Weinaker, et al., J. Biol. Chem. 269:6940, 1994) were also shown to bind specifically to HMVEC-d. Each of these antibodies is known to specifically block binding of the indicated integrin to its ligands (e.g., fibronectin, vitronectin, fibrinogen). The ability of integrin mAbs to inhibit the binding of ADAM disintegrin-Fc polypeptides reveals which integrins the disintegrin domains bind and, indirectly, which integrin binding activities the disintegrin domains are able to antagonize. The ability of the antibodies to inhibit binding of the ADAM disintegrin-Fc polypeptides to endothelial cells was tested as described below.

Prior to performing binding studies, HMVEC-d were removed from culture vessels using trypsin-EDTA. The cells were washed in media containing serum and resuspended in binding medium which consisted of PBS containing 1 mM Ca²⁺, 1 mM Mg²⁺ and 0.5 mM Mn²⁺, 0.1% sodium azide, 10% Normal goat serum, 2% rabbit serum and 2% fetal bovine serum. Under these binding conditions, ADAM-8, -9, -10, -15, -17, -20, -21, -22, -23, and -29dis-Fc all bind to human endothelial cells.

One hundred microliters of cell suspension, containing 200,000 to 500,000 HMVEC-d, were added to 12x75mm plastic test tubes. Monoclonal antibodies specific for one of the integrins, or a control monoclonal antibody (CD29 or M15), were added to the cell suspensions at a concentration of 100 μ g/ml (5-8 fold mass excess) 15 minutes prior to addition of disintegrin-Fc fusion proteins. ADAM disintegrin-Fc polypeptides and control Fc fusion polypeptides (P7.5ILFc) were added, at various concentrations from 12.5 to 20 μ g/ml, to the cell suspensions and incubated for 1 hour at 30° C. Unbound Fc polypeptides were washed away by centrifugation of cells in 2 mls of binding media. The washed cell pellets were resuspended in binding medium and then incubated at 30° C for 30 minutes with goat anti-human Fc-specific biotinylated antibody at a concentration of 2.5 μ g/ml for 30 minutes. After centrifugation and washing of the cell pellets, the cells were resuspended in binding medium and bound anti-human Fc-biotin was detected by adding streptavidin-phycerythrin conjugate to the cell suspension at a 1:1000 dilution (1 μ g/ml) and incubating at 30° C for 30 minutes. The unbound streptavidin-phycerythrin was washed away and the cells were resuspended in binding

medium containing propidium iodide. The level of fluorescent binding (disintegrin-Fc binding) was determined by flow cytometry.

The level of binding of each ADAM disintegrin-Fc polypeptide was determined in the presence of anti-integrin specific mAb and in the presence of control mAb. Both the intensity of binding (MFI) and the percentage of cells binding were determined. Percent inhibition was calculated using the formula [1 - (MFI control-MFI integrin mAb) / MFI control]. The results of these studies are summarized in Table 3.

- ADAM-15, -17, -20 and -22 disintegrin domain polypeptides bound to $\alpha_5\beta_3$; ADAM 23 disintegrin domain polypeptide bound to $\alpha_5\beta_1$; ADAM-15, -21, -22 and -23 disintegrin domain polypeptides bound to $\alpha_5\beta_1$; ADAM-10, -17, -22 and -23 disintegrin domain polypeptides bound to the α_5 integrins; ADAM-10 and -15 disintegrin domain polypeptides bound to $\alpha_5\beta_3$. An excess of a non blocking $\alpha_5\beta_3$ antibody did significantly affect the binding of ADAM-10, -22, and -23 disintegrin polypeptides to endothelial cells, suggesting that these ADAMdis polypeptides interact with integrin sites other than or in addition to the ligand (e.g., fibronectin, vitronectin) binding site. Based upon results from a different type of assay, Cal et al. have reported that the ADAM-23 disintegrin domain interacts with the $\alpha_5\beta_1$ integrin through an RGD-independent mechanism (Molec. Biol. of the Cell 11:1457, 2000).

Binding experiments are repeated using other ADAM disintegrin domains and other monoclonal antibodies. ADAM disintegrin-Fc polypeptides that bind to selected integrins are further tested for the ability to disrupt integrin-ligand interactions and to modulate endothelial cell function, angiogenesis, and other biological activities *in vitro* and *in vivo*.

Table 3
Binding of ADAM Disintegrin-Fc Polyglutamates to Integrins Expressed on Human Endothelial Cells

ADAM	Integrin					
	$\alpha_1\beta_3$	$\alpha_1\beta_1$	$\alpha_4\beta_1$	$\alpha_4\beta_3$	$\alpha_5\beta_1$	$\alpha_5\beta_3$
ADAM-8	ND	— (<10)	— (<10)	— (<10)	ND	ND
ADAM-9	— (<10)	— (<10)	— (<20)	— (<10)	— (<10)	— (<10)
ADAM-10	— (<10)	— (<10)	— (<20)	— (<10)	+ (48)	+ (25)
ADAM-15	+ (60)	— (<10)	— (<20)	+ (30)	— (<10)	+ (25)
ADAM-17	+ (50)	— (<10)	— (<10)	— (<10)	+ (69)	— (<10)
ADAM-20	+ (58)	— (<10)	— (<10)	— (<20)	— (<10)	— (<10)
ADAM-21	— (<10)	— (<10)	— (<10)	+ (54)	— (<10)	— (<10)
ADAM-22	+ (42)	— (<10)	— (<10)	— (<10)	+ (32)	— (<10)
ADAM-23	— (<10)	+ (22)	— (<10)	— (<10)	+ (49)	+ (31)

positive binding defined as >20% binding inhibition; normal background variation 5-10%, baseline positive approx. 2X over background

² percent inhibition of binding by ADAM-dis-Fc in the presence of 5-8 fold excess integrin mAb as compared to control mAb

B. Binding to Primary Human T-Cells

- Primary human T-cells were purified from whole blood. These cells were used in FACS experiments to assess cell surface binding of purified ADAMdis-Fc polypeptides. ADAMdis-Fc binding was assessed with and without Con A (5 µg/ml) or immobilized OTK3 antibody (1 mg/ml, 5 immobilized for 1 hour, 37°C) stimulation. ADAMdis-Fc polypeptides (20 µg/ml) were bound at either 4° C or 30° C in the presence of cations (Ca⁺⁺, Mg⁺⁺, Mn⁺⁺, 0.5 mM each). Cell surface integrin expression was assessed using a panel of murine and rat anti-human integrin antibodies. $\alpha_1\beta_1$, $\alpha_1\alpha_3$, $\alpha_1\alpha_4$, $\alpha_1\beta_1$, and β_1 integrins were detected on the surface of these cells. ADAMdis-Fc polypeptides did not bind to primary human T-cells at 4° C. ADAM-8-, ADAM-9-, ADAM-15-, 10 ADAM-20-, ADAM-21-, ADAM-22-, and ADAM-23-dis-Fc polypeptides did bind primary T-cells at 30° C with Con A stimulation. ADAMdis-Fc binding was not inhibited by a three-fold molar excess of antibodies to the integrins listed above.

C. Binding to Resting Platelets

- 15 Binding of ADAMdis-Fc polypeptides to citrated washed resting platelets was performed at 4°C or 30°C. Binding was analyzed by flow cytometry using a biotinylated-anti-human Fc specific antibody and streptavidin-PE. Resting platelets express the integrins CD41/CD61 and CD49e. ADAM-9dis-Fc and ADAM-8dis-Fc bound resting platelets at 30°C but not at 4°C. ADAM-9dis-Fc binding to resting platelets at 30°C was not inhibited by a ten-fold excess of CD41a mAb.

20

EXAMPLE 3**Activity of ADAM Disintegrin Domain Polypeptides In a Wound Closure Assay**

- A planar endothelial cell migration (wound closure) assay was used to quantitate the inhibition of angiogenesis by ADAM disintegrin-Fc polypeptides in vitro. In this assay, endothelial 25 cell migration is measured as the rate of closure of a circular wound in a cultured cell monolayer. The rate of wound closure is linear, and is dynamically regulated by agents that stimulate and inhibit angiogenesis *in vivo*.

- Primary human renal microvascular endothelial cells, HRMEC, were isolated, cultured, and used at the third passage after thawing, as described in Martin et al., *In Vitro Cell Dev Biol* 33:261, 30 1997. Replicate circular lesions, "wounds," (600-800 micron diameter) were generated in confluent HRMEC monolayers using a silicon-tipped drill press. At the time of wounding the medium (DMEM + 1% BSA) was supplemented with 20 ng/ml PMA (phorbol-12-myristate-13-acetate), a range of concentrations of ADAM disintegrin-Fc polypeptide, or combinations of PMA and ADAM disintegrin-Fc polypeptide. The residual wound area was measured as a function of time (0-12 hours) 35 using a microscope and image analysis software (Bioquant, Nashville, TN). The relative migration rate was calculated for each agent and combination of agents by linear regression of residual wound

area plotted over time. The inhibition of PMA-induced endothelial migration by ADAM disintegrin-Fc polypeptides is shown in Table 4.

The effect of ADAM-dis-Fc polypeptides on EGF-induced migration was also determined. For these experiments EGF (epidermal growth factor, 40 ng/ml) was added to the medium, instead of PMA, at the time of wounding. The results are shown in Table 5.

Table 4

Effect of ADAM-15, -17, -20, and -23dis-Fc Polypeptides in PMA-Induced Endothelial Cell Wound Closure Migration Assay

Expt. ID	No Addition	PMA 20 ng/ml	PMA + IgG	PMA + ADAM-15dis-Fc	PMA + ADAM-17dis-Fc	PMA + ADAM-20dis-Fc	PMA + ADAM-23dis-Fc
HL-H-142 15 µg/ml dis-Fc	0.0436 ¹ (0.0016) ²	0.0655 (0.0004)				0.0499 (0.0009) 72% ³	
HL-H-147 15 µg/ml dis-Fc	0.0244 (0.0023)	0.0424 (0.0002)	0.0449 (0.0012) 0%	0.0357 (0.0007) 37%			0.0225 (0.0022) 100%
HL-H-153 15 µg/ml dis-Fc	0.0253 (0.0013)	0.0460 (0.0006)	0.0491 (0.0006) 0%		0.0392 (0.0016) 33%	0.0388 (0.0005) 36%	0.0317 (0.0005) 70%
HL-H-154 15 µg/ml dis-Fc	0.0119 (0.0012)	0.0312 (0.0016)			0.0283 (0.0008) 15%	0.0160 (0.0017) 79%	

¹ Slopes to average triplicate Y values and treat as a single data point in order to test whether the slopes are significantly different

² Data in parentheses is the +/- standard error of slopes

³ Percent inhibition compared to migration rate observed in the presence of PMA

Table 5

Effect of ADAM-17, -20, and -23dis-Fc Polypeptides in EGF-Induced Endothelial Cell Wound Closure Migration Assay

Expt. ID	No Addition	EGF 40 ng/ml	EGF + IgG	EGF + ADAM-17dis-Fc	EGF + ADAM-20dis-Fc	EGF + ADAM-23dis-Fc
HL-H-154 15 µg/ml dis-Fc	0.0119 (0.0012)	0.0378 (0.0061)		0.0242 (0.0029) 53%	0.0172 (0.0031) 80%	0.0310 (0.0036) 26%
HL-H-155 9 µg/ml dis-Fc	0.0164 (0.0010)	0.0468 (0.0059)	0.0454 (0.0052) 5%	0.0412 (0.0107) 18%	0.0227 (0.0035) 79%	0.0207 (0.0016) 86%

¹ Slopes to average triplicate Y values and treat as a single data point in order to test whether the slopes are significantly different

² Data in parentheses is the +/- standard error of slopes

³ Percent inhibition compared to migration rate observed in the presence of EGF alone

ADAM-20 and -23dis-Fc polypeptides showed the greatest inhibition of both EGF- and PMA-induced endothelial migration at 15 µg/ml. ADAM-15 and -17dis-Fc polypeptides were less

effective at inhibiting endothelial cell migration at 15 µg/ml. Hu IgG did not inhibit EGF- or PMA-induced endothelial cell migration in any of the experiments performed where it was included as a control Fc protein.

5

EXAMPLE 4
Activity of ADAM Disintegrin Domain Polypeptides In a Corneal Pocket Assay

- A mouse corneal pocket assay is used to quantitate the inhibition of angiogenesis by ADAM disintegrin-Fc polypeptides *in vivo*. In this assay, agents to be tested for angiogenic or anti-angiogenic activity are immobilized in a slow release form in a hydron pellet, which is implanted into
- 10 micropockets created in the corneal epithelium of anesthetized mice. Vascularization is measured as the appearance, density, and extent of vessel ingrowth from the vascularized corneal limbus into the normally avascular cornea.
- Hydron pellets, as described in Kenyon et al., Invest Ophthalmol. & Visual Science 37:1625, 1996, incorporate sucralfate with bFGF (90 ng/pellet), bFGF and IgG (11 µg/pellet, control), or bFGF
- 15 and a range of concentrations of ADAM disintegrin-Fc polypeptide. The pellets are surgically implanted into corneal stromal micropockets created by micro-dissection 1 mm medial to the lateral corneal limbus of 6-8 week old male C57BL mice. After five days, at the peak of neovascular response to bFGF, the corneas are photographed, using a Zeiss slit lamp, at an incipient angle of 35-50° from the polar axis in the meridian containing the pellet. Images are digitized and processed by
- 20 subtractive color filters (Adobe Photoshop 4.0) to delineate established microvessels by hemoglobin content. Image analysis software (Bioquant, Nashville, TN) is used to calculate the fraction of the corneal image that is vascularized, the vessel density within the vascularized area, and the vessel density within the total cornea. The inhibition of bFGF-induced corneal angiogenesis, as a function of the dose of ADAM disintegrin-Fc polypeptide, is determined.

25

EXAMPLE 5
**Inhibition of Neovascularization by ADAM Disintegrin Domain Polypeptides
in a Murine Transplant Model**

- Survival of heterotopically transplanted cardiac tissue from one mouse donor to the ear skin of
- 30 another genetically similar mouse requires adequate neovascularization by the transplanted heart and the surrounding tissue, to promote survival and energy for cardiac muscle function. Inadequate vasculature at the site of transplant causes excessive ischemia to the heart, tissue damage, and failure of the tissue to engraft. Agents that antagonize factors involved in endothelial cell migration and vessel formation can decrease angiogenesis at the site of transplant, thereby limiting graft tissue
- 35 function and ultimately engraftment itself. A murine heterotopic cardiac isograft model is used to demonstrate the antagonistic effects of ADAM disintegrin-Fc polypeptides on neovascularization. Female BALB/c (\approx 12 weeks of age) recipients are given neonatal heart grafts from donor mice of the same strain. The donor heart tissue is grafted into the left ear pinnae of the recipient on day 0 and the

mice are divided into two groups. The control group receives human IgG (Hu IgG) while the other group receives ADAM disintegrin-Fc polypeptide, both intraperitoneally. The treatments are continued for five consecutive days. The functionality of the grafts is determined by monitoring visible pulsatile activity on days 7 and 14 post-engraftment. The inhibition of functional engraftment, 5 as a function of the dose of ADAM disintegrin-Fc polypeptide, is determined. The histology of the transplanted hearts is examined in order to visualize the effects of ADAM disintegrin-Fc polypeptides on edema at the site of transplant and host and donor tissue vasculature (using, e.g., Factor VIII staining).

10

EXAMPLE 6**Treatment of Tumors With ADAM Disintegrin Domain Polypeptides**

ADAM disintegrin-Fc polypeptides are tested in animal models of solid tumors. The effect of the ADAM disintegrin-Fc polypeptides is determined by measuring tumor frequency and tumor growth.

15

The biological activity of ADAM disintegrin-Fc polypeptides is also demonstrated in other *in vitro*, *ex vivo*, and *in vivo* assays known to the skilled artisan, such as calcium mobilization assays and assays to measure platelet activation, recruitment, or aggregation.

20

The relevant disclosures of publications cited herein are specifically incorporated by reference. The examples presented above are not intended to be exhaustive or to limit the scope of the invention. The skilled artisan will understand that variations and modifications and variations are possible in light of the above teachings, and such modifications and variations are intended to be within the scope of the invention.

25

CLAIMS

We claim:

1. A method of antagonizing the binding of an integrin to its ligands comprising contacting a cell that expresses the integrin with an effective amount of an ADAM disintegrin domain polypeptide.
2. A method of antagonizing the binding of an integrin to its ligands in a mammal in need of such treatment comprising administering an effective amount of an ADAM disintegrin domain polypeptide.
3. The method of claim 2 wherein the mammal is afflicted with a condition selected from the group consisting of ocular disorders, malignant and metastatic conditions, inflammatory diseases, osteoporosis and other conditions mediated by accelerated bone resorption, restenosis, inappropriate platelet activation, recruitment, or aggregation, thrombosis, or a condition requiring tissue repair or wound healing.
4. A method of inhibiting angiogenesis in a mammal in need of such treatment, comprising administering to the mammal an inhibition-effective amount of an ADAM disintegrin domain polypeptide, wherein the disintegrin domain does not contain an RGD sequence.
5. The method of one of claims 1-4 wherein the ADAM disintegrin domain is in the form of a multimer.
6. The method of claim 5 wherein the multimer is a dimer or trimer.
7. The method of claim 5 wherein the multimer comprises an Fc polypeptide or a leucine zipper.
8. The method of one of claims 1-7 wherein the ADAM disintegrin domain is from a human ADAM.
9. The method of claim 8 wherein the ADAM disintegrin domain is from an ADAM selected from the group consisting of ADAM-8, ADAM-9, ADAM-10, ADAM-15, ADAM-17, ADAM-20, ADAM-21, ADAM-22, ADAM-23, and ADAM-29.
10. The method of claim 9 wherein the ADAM disintegrin domain is from ADAM-17, ADAM-20, or ADAM-23.
11. The method of one of claims 1-10 wherein the ADAM disintegrin domain polypeptide comprises an amino acid sequence selected from the group consisting of:
 - (a) amino acids 1-494 of SEQ ID NO:2, amino acids 23-264 of SEQ ID NO:2, amino acids 1-533 of SEQ ID NO:4, amino acids 23-303 of SEQ ID NO:4, amino acids 1-465 of SEQ ID NO:6, amino acids 23-235 of SEQ ID NO:6, amino acids 1-522 of SEQ ID NO:8, amino acids 23-292 of SEQ ID NO:8, amino acids 1-446 of SEQ ID NO:10, amino acids 23-216 of SEQ ID NO:10, amino acids 1-535 of SEQ ID NO:12, amino acids 23-305 of SEQ ID NO:12, amino acids 1-523 of SEQ ID NO:14, amino acids 23-293 of SEQ ID NO:14, amino acids 1-542 of SEQ ID NO:16, amino acids 23-312 of SEQ ID NO:16, amino acids 1-540 of SEQ ID NO:18, amino acids 23-310 of SEQ ID NO:18, amino acids 1-528 of SEQ ID NO:22, amino acids 23-298 of SEQ ID NO:22;

(b) fragments of the polypeptides of (a) wherein said fragments retain at least one ADAMdis activity;

(c) variants of the polypeptides of (a) or (b), wherein said variants retain at least one ADAMdis activity; and

(d) fusion polypeptides comprising the polypeptides of (a), (b), or (c), wherein said fusion polypeptides retain at least one ADAMdis activity.

12. The method of claim 11 wherein the ADAM disintegrin domain comprises an amino acid sequence selected from the group consisting of amino acids 34-91 of SEQ ID NO:2, 34-92 of SEQ ID NO:4, 34-99 of SEQ ID NO:6, 34-92 of SEQ ID NO:8, 34-93 of SEQ ID NO:10, 34-91 of SEQ ID NO:12, 34-91 of SEQ ID NO:14, 34-92 of SEQ ID NO:16, 34-91 of SEQ ID NO:18, or 34-91 of SEQ ID NO:22.

13. The method of one of claims 1-12 wherein the ADAM disintegrin domain polypeptide is a variant that is at least 70%, 80%, 90%, 95%, 98%, or 99% identical in amino acid sequence to a polypeptide selected from the group consisting of:

(a) amino acids 1-494 of SEQ ID NO:2, amino acids 23-264 of SEQ ID NO:2, amino acids 1-533 of SEQ ID NO:4, amino acids 23-303 of SEQ ID NO:4, amino acids 1-465 of SEQ ID NO:6, amino acids 23-235 of SEQ ID NO:6, amino acids 1-522 of SEQ ID NO:8, amino acids 23-292 of SEQ ID NO:8, amino acids 1-446 of SEQ ID NO:10, amino acids 23-216 of SEQ ID NO:10, amino acids 1-535 of SEQ ID NO:12, amino acids 23-305 of SEQ ID NO:12, amino acids 1-523 of SEQ ID NO:14, amino acids 23-293 of SEQ ID NO:14, amino acids 1-542 of SEQ ID NO:16, amino acids 23-312 of SEQ ID NO:16, amino acids 1-540 of SEQ ID NO:18, amino acids 23-310 of SEQ ID NO:18, amino acids 1-528 of SEQ ID NO:22, amino acids 23-298 of SEQ ID NO:22; and

(b) fragments of the polypeptides of (a),
wherein said variant polypeptide retains at least one ADAMdis activity.

14. The method of one of claims 1-10 wherein the ADAM disintegrin domain polypeptide is encoded by a nucleic acid comprising a sequence selected from the group consisting of:

(a) nucleotides 118-1599 of SEQ ID NO:1, nucleotides 184-909 of SEQ ID NO:1, nucleotides 46-1644 of SEQ ID NO:3, nucleotides 112-954 of SEQ ID NO:3, nucleotides 25-1419 of SEQ ID NO:5, nucleotides 91-729 of SEQ ID NO:5, nucleotides 41-1606 of SEQ ID NO:7, nucleotides 107-916 of SEQ ID NO:7, nucleotides 25-1362 of SEQ ID NO:9, nucleotides 91-672 of SEQ ID NO:9, nucleotides 25-1629 of SEQ ID NO:11, nucleotides 91-939 of SEQ ID NO:11, nucleotides 25-1593 of SEQ ID NO:13, nucleotides 91-903 of SEQ ID NO:13, nucleotides 25-1650 of SEQ ID NO:15, nucleotides 91-960 of SEQ ID NO:15, nucleotides 25-1644 of SEQ ID NO:17, nucleotides 91-934 of SEQ ID NO:17, nucleotides 118-1701 of SEQ ID NO:21, nucleotides 184-1011 of SEQ ID NO:21;

(b) sequences which, due to the degeneracy of the genetic code, encode a polypeptide encoded by a nucleic acid of (a); and

(c) sequences that hybridize under conditions of moderate or high stringency to a sequence of (a) or (b) and that encode a polypeptide that retains at least one ADAMdis activity.

15. The method of one of claim 11-14 wherein the ADAMdis activity is selected from the group consisting of integrin binding activity, inhibition of endothelial cell migration, and inhibition of angiogenesis.
16. The method of one of claims 1-15 wherein the ADAM disintegrin domain polypeptide has been produced by culturing a recombinant cell that encodes the ADAM disintegrin domain polypeptide under conditions permitting expression of the ADAM disintegrin domain polypeptide, and recovering the ADAM disintegrin domain polypeptide.
17. The method of one of claims 1-16 wherein the ADAM disintegrin domain polypeptide is present in a composition comprising a pharmaceutically acceptable carrier.
18. The method of claim 2 wherein the mammal has a disease or condition mediated by angiogenesis.
19. The method of claim 18 wherein the disease or condition is characterized by ocular neovascularization.
20. The method of claim 18 wherein the disease or condition is a solid tumor.
21. The method of one of claims 1-20 wherein the method further comprises treating the mammal with radiation.
22. The method of one of claims 1-21 wherein the method further comprises treating the mammal with a second therapeutic agent.
23. The method of claim 22 wherein the second therapeutic agent is selected from the group consisting of alkylating agents, antimetabolites, vinca alkaloids and other plant-derived chemotherapeutics, antitumor antibiotics, antitumor enzymes, topoisomerase inhibitors, platinum analogs, adrenocortical suppressants, hormones and antihormones, antibodies, immunotherapeutics, radiotherapeutics, and biological response modifiers.
24. The method of claim 22 wherein the second therapeutic agent is selected from the group consisting of cisplatin, cyclophosphamide, bleomycin, carboplatin, fluorouracil, 5-fluorouracil, 5-fluorodeoxyuridine, methotrexate, taxol, asparaginase, vincristine, vinblastine, mechlorethamine, melphalan, 5-fluorodeoxyuridine, lymphokines and cytokines such as interleukins, interferons (alpha., beta. or delta.) and TNF, chlorambucil, busulfan, carmustine, lomustine, semustine, streptozocin, dacarbazine, cytarabine, mercaptopurine, thioguanine, vindesine, etoposide, teniposide, daetinomycin, daunorubicin, doxorubicin, bleomycin, picamycin, mitomycin, L-asparaginase, hydroxyurea, methylhydrazine, mitotane, tamoxifen, fluoxymesterone, and COX-2 inhibitors.
25. The method of claim 22 wherein the second therapeutic agent is a polypeptide, including soluble forms thereof, selected from the group consisting of Flt3 ligand, CD40 ligand, interleukin-2, interleukin-12, 4-1BB ligand, anti-4-1BB antibodies, TRAIL, TNF antagonists and TNF receptor antagonists including TNFR/Fc, Tek antagonists, TWEAK antagonists and TWEAK-R antagonists including TWEAK-R/Fc, VEGF antagonists including anti-VEGF antibodies, VEGF receptor antagonists, CD148 binding proteins, and nectin-3 antagonists.

26. The method of claim 2 wherein the ADAM disintegrin domain is administered parenterally.
27. A method for inhibiting the biological activity of an integrin selected from the group consisting of $\alpha_5\beta_3$, $\alpha_5\beta_1$, $\alpha_6\beta_1$, $\alpha_6\beta_4$, and $\alpha_6\beta_5$ comprising contacting the integrin with an inhibition-effective amount of an ADAM disintegrin domain polypeptide.
28. The method of claim 27 wherein the integrin is $\alpha_6\beta_3$ and wherein the ADAM disintegrin domain does not contain an RGD sequence.
29. The method of claim 28 wherein the ADAM is ADAM-17, ADAM-20, or ADAM-22.
30. The method of claim 27 wherein the integrin is $\alpha_5\beta_1$ and the ADAM is ADAM-23.
31. The method of claim 27 wherein the integrin is $\alpha_5\beta_1$ and the ADAM is ADAM-15, ADAM-21, ADAM-22, or ADAM-23.
32. The method of claim 27 wherein the integrin is $\alpha_6\beta_1$ or $\alpha_6\beta_4$ and the ADAM is ADAM-10, ADAM-17, ADAM-22, or ADAM-23.
33. The method of claim 27 wherein the integrin is $\alpha_6\beta_5$ and the ADAM is ADAM-10, ADAM-15, or ADAM-23.
34. A method for identifying a compound that modulates integrin biological activity comprising:
 - (a) combining a test compound with an integrin and an ADAM disintegrin domain polypeptide that binds to the integrin; and
 - (b) determining whether the test compound alters the binding of the ADAM disintegrin domain polypeptide to the integrin.
35. A method for identifying a compound that modulates the interaction between an integrin and an ADAM disintegrin domain comprising:
 - (a) combining a test compound with the integrin and an ADAM disintegrin domain polypeptide that binds to the integrin; and
 - (b) determining whether the test compound alters the binding of the ADAM disintegrin domain polypeptide to the integrin.
36. The method of claim 34 or 35 wherein the integrin is present on a cell surface.
37. The method of claim 36 wherein the cell is an endothelial cell.
38. The method of one of claims 34-37 wherein the integrin is selected from the group consisting of $\alpha_5\beta_3$, $\alpha_5\beta_1$, $\alpha_6\beta_1$, $\alpha_6\beta_4$, $\alpha_6\beta_5$, and $\alpha_6\beta_3$.
39. The method of one of claims 34-38 wherein the integrin biological activity or integrin binding activity is at least partially inhibited.
40. A method for identifying a compound that inhibits endothelial cell migration and/or angiogenesis comprising:
 - (a) combining a test compound with endothelial cells and with an ADAM disintegrin domain polypeptide that binds to endothelial cells; and

(b) determining whether the test compound alters the binding of the ADAM disintegrin domain polypeptide to the endothelial cells.

41. The method of one of claims 34-40 wherein the ADAM disintegrin domain polypeptide comprises an ADAM disintegrin domain from ADAM-8, ADAM-9, ADAM-10, ADAM-15, ADAM-17, ADAM-20, ADAM-21, ADAM-22, ADAM-23, or ADAM-29.

42. The method of claim 41 wherein the ADAM disintegrin domain polypeptide comprises an ADAM disintegrin domain from ADAM-17, ADAM-20, or ADAM-23.

SEQUENCE LISTING

<110> Immunex Corporation
Fanslow, William C.
poindexter, Kurt
Cerretti, Douglas P.
Black, Roy A.

<130> INTEGRIN ANTAGONISTS

<130> 2958-WO

<140>
<141>

<150> 60/184,865
<151> 2000-02-25

<160> 22

<170> PatentIn Ver. 2.1

<210> 1
<211> 1700

<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: fusion polypeptide

<220>
<221> CDS
<222> (118)..(1602)

<400> 1
gggttttccg agtcacgcacg ttgtaaaaacg acggccagtg aattgtata cgactcacta 60

```

tagggcgaat tgggtaacgg gccccccctc gaggtgcacc caagttgggt agccacc 117
atg gag aca gac aca ctc crt cta tgg gta ctg ctg ctc tgg gtt cca 165
Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro
   1          5          10         15

```

```

ggt tcc act ggt act agt tgt ggg aac ctg ttt gtg gag cgt ggg gag 213
Gly Ser Thr Gly Thr Ser Cys Gly Asn Ieu Phe Val Glu Arg Gly Glu
     2A          2S           3D

```

cag tgc gac tgc ggc ccc ccc gag gac tgc cgg aac cgc tgc tgc aac 261
 Gln Cys Asp Cys Gly Pro Pro Glu Asp Cys Arg Asn Arg Cys Cys Asn
 35 40 45

tct acc acc tgc cag ctg gct gag egg gcc cag tgt gcg cac ggt acc 309
 Ser Thr Cys Cys Gln Leu Ala Glu Gly Ala Gln Cys Ala His Gly Thr
 50 55 60

tgc tgc cag gag tgc aag gtg aag ccg gct ggt gag ctg tgc cgt ccc 357
 Cys Cys Gln Glu Cys Lys Val Lys Pro Ala Gly Glu Leu Cys Arg Pro
 65 70 75 80

aag aag gag atg tgg gac ctc gag gag ttc tgt gac ggc egg eac cct 405
 Lys Lys Asp Met Cys Asp Leu Glu Glu Phe Cys Asp Gly Arg His Pro
 an an an

oao tgc ccc gaa pac acc ttc caq pag aac aac pag acc acq ccc tac tcc agg 453

Glu Cys Pro Glu Asp Ala Phe Gln Glu Asn Gly Thr Pro Cys Ser Gly			
100	105	110	
ggc tac tgc tac aac ggg gcc tgt ccc aca ctg gcc cag cag tgc cag		501	
Gly Tyr Cys Tyr Asn Gly Ala Cys Pro Thr Leu Ala Gln Gln Cys Gln			
115	120	125	
gcc ttc tgg ggg cca ggt ggg cag gct gcc gag gag tcc tgc ttc tcc		549	
Ala Phe Trp Gly Pro Gly Gln Ala Ala Glu Glu Ser Cys Phe Ser			
130	135	140	
tat gac atc cta ccc ggc tgc aag gcc agg tac egg gct gac atg		557	
Tyr Asp Ile Leu Pro Gly Cys Lys Ala Ser Arg Tyr Arg Ala Asp Met			
145	150	155	160
tgt ggc gtt ctg caa tgt aaa ggt ggt caa caa cct tta ggt aga gct		645	
Cys Gly Val Leu Gln Cys Lys Gly Gly Gln Gln Pro Leu Gly Arg Ala			
165	170	175	
ata tgt att gtc gac gtg tgc cac ccc ctc acc aca gag gat ggc act		693	
Ile Cys Ile Val Asp Val Cys His Ala Leu Thr Thr Glu Asp Gly Thr			
180	185	190	
gag tat gaa cca gtg ccc gag ggc acc egg tgt gga cca gag aag gct		741	
Ala Tyr Glu Pro Val Pro Glu Gly Thr Arg Cys Gly Pro Glu Lys Val			
195	200	205	
tgc tgg aca gga cgt tgc cag gac tta cac gtt tac aga tcc agc aac		789	
Cys Trp Lys Gly Arg Cys Gln Asp Leu His Val Tyr Arg Ser Ser Asn			
210	215	220	
tgc tct gcc cag tgc cac aac cat ggg gtg tgc aac cac aag cag gag		837	
Cys Ser Ala Gln Cys His Asn His Gly Val Cys Asn His Lys Gln Glu			
225	230	235	240
tgc cac tgc cac gcg ggc tgg gcc ccg ccc cac tgc gcg aag ctg ctg		885	
Cys His Cys His Ala Gly Trp Ala Pro Pro His Cys Ala Lys Leu Leu			
245	250	255	
act gag gtg cac gca gcg tcc ggg aga tct tgt gac aaa act cac aca		933	
Thr Glu Val His Ala Ala Ser Gly Arg Ser Cys Asp Lys Thr His Thr			
260	265	270	
tgc cca ccg tgc cca gca cct gaa gcc gag ggc gcg ccg tca gtc ttc		981	
Cys Pro Pro Cys Pro Ala Pro Glu Ala Gln Gly Ala Pro Ser Val Phe			
275	280	285	
ctc ttc ccc cca aam ccc aag gac acc ctc atg atc tcc egg acc cct		1029	
Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro			
290	295	300	
gag gtc aca tgc gtg stg gtg gac agc cac gaa gac cct gag gtc		1077	
Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val			
305	310	315	320
aag ttc aac tgg tac gtg gac ggc gtg gag gtg cat aat gcc aag aca		1125	
Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr			
325	330	335	
aag ccg ccg gag gag cag tac aac egc acg tac cgt gtg gtc agc gtc		1173	
Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val			
340	345	350	
ctc acc gtc ctg cac cag gac tgg ctg aat ggc aag gag tac aag tgc		1221	
Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys			
355	360	365	

aag gtc tcc aac aaa gcc ctc cca gcc ccc atc gag aaa acc atc tcc 1269
 Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser
 370 375 380
 aaa gcc aaa ggg cag ccc cga gaa cca cag gtg tac acc ctg ccc cca 1317
 Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro
 385 390 395 400
 tcc cgg gag gag atg acc aac cag gtc agc ctg acc tgc ctg gtc 1365
 Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val
 405 410 415
 aaa ggc ttc tat ccc aac gac atc gcc gtg gag tgg gag aac aat ggg 1413
 Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly
 420 425 430
 cag ccg gag aac aac tac aac aag acc acg cct ccc gtg ctg gac tcc gac 1461
 Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp
 435 440 445
 .
 ggc tcc ttc ttc ctc tat aac aag ctc acc gtg gac aag aac agg tgg 1509
 Gly Ser Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp
 450 455 460
 cag cag ggg aac gtc ttc tca tgc tcc gtg atg cat gag gct ctg cac 1557
 Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His
 465 470 475 480
 aac cac tac acg cag aag agc ctc tcc ctg tct ccg ggt aaa tga 1602
 Asn His Tyr Thr Gln Lys Ser Leu Ser Pro Gly Lys
 485 490 495
 actagagccg ccccccacccg ggtggagctc cagttttgt tcccttttagt gagggtaat 1662
 ttcgagctg gctatacat ggtcatatgc gtttccctg 1700

<210> 2
<211> 494
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: fusion polypeptide

<400> 2
Met Glu Thr Asp Thr Leu Leu Trp Val Leu Leu Trp Val Pro
1 5 10 15
Gly Ser Thr Gly Thr Ser Cys Gly Asn Leu Phe Val Glu Arg Gly Glu
20 25 30
Gln Cys Asp Cys Gly Pro Pro Glu Asp Cys Arg Asn Arg Cys Cys Asn
35 40 45
Ser Thr Thr Cys Gln Leu Ala Glu Gly Ala Gln Cys Ala His Gly Thr
50 55 60
Cys Cys Gln Glu Cys Lys Val Lys Pro Ala Gly Glu Leu Cys Arg Pro
65 70 75 80
Lys Lys Asp Met Cys Asp Leu Glu Glu Phe Cys Asp Gly Arg His Pro
85 90 95
Glu Cys Pro Glu Asp Ala Phe Gln Glu Asn Gly Thr Pro Cys Ser Gly
100 105 110
Gly Tyr Cys Tyr Asn Gly Ala Cys Pro Thr Leu Ala Gln Gln Cys Gln
115 120 125
Ala Phe Trp Gly Pro Gly Gly Gln Ala Ala Glu Ser Cys Phe Ser
130 135 140
Tyr Asp Ile Leu Pro Gly Cys Lys Ala Ser Arg Tyr Arg Ala Asp Met
145 150 155 160
Cys Gly Val Leu Gln Cys Lys Gly Gly Gln Gln Pro Leu Gly Arg Ala
165 170 175

Ile Cys Ile Val Asp Val Cys His Ala Leu Thr Thr Glu Asp Gly Thr
 180 185 190
 Ala Tyr Glu Pro Val Pro Glu Gly Thr Arg Cys Gly Pro Glu Lys Val
 195 200 205
 Cys Trp Lys Gly Arg Cys Gln Asp Leu His Val Tyr Arg Ser Ser Asn
 210 215 220
 Cys Ser Ala Gln Cys His Asn His Gly Val Cys Asn His Lys Gln Glu
 225 230 235 240
 Cys His Cys His Ala Gly Trp Ala Pro Pro His Cys Ala Lys Leu Leu
 245 250 255
 Thr Glu Val His Ala Ala Ser Gly Arg Ser Cys Asp Lys Thr His Thr
 260 265 270
 Cys Pro Pro Cys Pro Ala Pro Glu Ala Glu Gly Ala Pro Ser Val Phe
 275 280 285
 Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro
 290 295 300
 Glu Val Thr Cys Val Val Asp Val Ser His Glu Asp Pro Glu Val
 305 310 315 320
 Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr
 325 330 335
 Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val
 340 345 350
 Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys
 355 360 365
 Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser
 370 375 380
 Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro
 385 390 395 400
 Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val
 405 410 415
 Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly
 420 425 430
 Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp
 435 440 445
 Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp
 450 455 460
 Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His
 465 470 475 480
 Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
 485 490

<210> 3

<211> 1668

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Fusion polypeptide

<220>

<221> CDS

<222> (46)..(1647)

<400> 3

```
ggtaaccgggc ccccccctcga ggtcgacccca agctggctag ccacc atg gag aca gac 57
Met Glu Thr Asp
  i
```

```
aca ctc ctg cta tgg gta ctg ctg ctc tgg gtt cca ggt tcc act ggt 105
Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro Gly Ser Thr Gly
  5          10           15           20
```

```
act agt tgt ggt aat aag ttg gtg gac gct ggg gaa gag tgt gac tgt 153
```

Thr Ser Cys Gly Asn Lys Leu Val Asp Ala Gly Glu Glu Cys Asp Cys			
25	30	35	
ggt act cca aag gaa tgt gaa ttg gac cct tgc tgc gaa gga agt acc		201	
Gly Thr Pro Lys Glu Cys Glu Leu Asp Pro Cys Cys Glu Gly Ser Thr			
40	45	50	
tgt aag ctt aaa tca ttt gct gag tgc tat ggt gac tgc tgc tgc tgc aat		249	
Cys Lys Leu Lys Ser Phe Ala Glu Cys Ala Tyr Gly Asp Cys Cys Lys			
55	60	65	
gac tgc tgg ttc ctt cca gga ggt act tta tgc cga gga aat acc agt		297	
Asp Cys Arg Phe Leu Pro Gly Gly Thr Leu Cys Arg Gly Lys Thr Ser			
70	75	80	
gag tgc tat gtt cca gag tac tgc aat ggt tct tct cag ttc tgc tgc cag		345	
Glu Cys Asp Val Pro Glu Tyr Cys Asn Gly Ser Ser Gln Phe Cys Gln			
85	90	95	100
cca gat gtt ttt att cag aat gga tat cct tgc cag aat mac aat gcc		393	
Pro Asp Val Phe Ile Gln Asn Gly Tyr Pro Cys Gln Asn Asn Lys Ala			
105	110	115	
tat tgc tac aac ggc atg tgc cag tat tat gat gtc caa tgc caa gtc		441	
Tyr Cys Tyr Asn Gly Met Cys Gln Tyr Tyr Asp Ala Gln Cys Gln Val			
120	125	130	
atc ttt ggc tca aaa gcc aag gct gcc ccc aat gat tgc ttc att gaa		489	
Ile Phe Ser Lys Ala Lys Ala Ala Pro Lys Asp Cys Phe Ile Glu			
135	140	145	
gtg aat tct aaa ggt gac aat ttt ggc aat tgc tgc ttc tct ggc aat		537	
Val Asn Ser Lys Gly Asp Arg Phe Gly Asn Cys Gly Phe Ser Gly Asn			
150	155	160	
gaa tac aac aag tgc act ggg aat gct ttg tgc tgc aat gtt ttc att		585	
Glu Tyr Lys Lys Cys Ala Thr Gly Asn Ala Leu Cys Gly Lys Leu Gln			
165	170	175	180
tgt gag aat gta caa gag aat cct gta ttt gga att gtg cct gtc aat		633	
Cys Glu Asn Val Gln Glu Ile Pro Val Phe Gly Ile Val Pro Ala Ile			
185	190	195	
att cca acg cct aat cga ggc acc aat ttt tgg ggt gtg gat ttc cag		681	
Ile Gln Thr Pro Ser Arg Gly Thr Lys Cys Trp Gly Val Asp Phe Gln			
200	205	210	
cta gga tca gat gtt cca gat cct ggg atg gtt aac gaa ggc aca aat		729	
Lau Gly Ser Asp Val Pro Asp Pro Gly Met Val Asn Glu Gly Thr Lys			
215	220	225	
tgt ggt gat gga aag aat ttc cag tgc tat gta gat gtc tct		777	
Cys Gly Ala Gly Lys Ile Cys Arg Asn Phe Gln Cys Val Asp Ala Ser			
230	235	240	
gtt ctg aat tat gac tgc tat gtc cag aat aag tgc cat gga cat ggg		825	
Val Leu Asn Tyr Asp Cys Asp Val Gln Lys Cys His Gly His Gly			
245	250	255	260
gtc tgc aat aat gtc aat aat tgc cac tgc gaa aat ggc tgg gtc ccc		873	
Val Cys Asn Ser Asn Lys Asn Cys His Cys Glu Asn Gly Trp Ala Pro			
265	270	275	
cca aat tgc gag act aat gga tac gga gga agt gtg gac agt gga cct		921	
Pro Asn Cys Glu Thr Lys Gly Tyr Gly Gly Ser Val Asp Ser Gly Pro			
280	285	290	

act tac eat gaa atg aat act gca ttg agg gac gga tct tgt gac aaa	969
Thr Tyr Asn Glu Met Asn Thr Ala Leu Arg Asp Gly Ser Cys Asp Lys	
295 300 305	
act cac aca tgc cca ccg tgc cca gca cct gaa gcc gag ggc gcg ccg	1017
Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Ala Glu Gly Ala Pro	
310 315 320	
tca gtc ttc ctc ttc ccc cca aaa ccc aag gac acc ctc atg atc tcc	1065
Ser Val Phe Leu Phe Pro Pro Lys Pro Asp Thr Ieu Met Ile Ser	
325 330 335 340	
cgg acc cct gag gtc aca tgc gtg gtg gac gtg agc cac gaa gac	1113
Arg Thr Pro Glu Val Thr Cys Val Val Asp Val Ser His Glu Asp	
345 350 355	
cct gag gtc aag ttc aac tgg tac gtg gag ggc gtg gag gtg cat aat	1161
Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn	
360 365 370	
gcc aag aca aag ccg ccg gag gag cag tac aac agc acg tac cgg gtg	1209
Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val	
375 380 385	
gtc agc gtc ctc acc gtc ctg cac cag gac tgg ctg aat ggc aag gag	1257
Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu	
390 395 400	
tac aag tgc aag gtc tcc aac aaa gcc ctc cca gcc ccc acct gag aaa	1305
Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys	
405 410 415 420	
acc atc tcc aaa gcc aaa ggg cag ccc cga gaa cca cag gtg tac acc	1353
Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr	
425 430 435	
ctg ccc cca tcc cgg gat gag ctg acc aag aac cag gtc agc ctg acc	1401
Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr	
440 445 450	
tgc ctg gtc aaa ggc ttc tat ccc aeg gac atc gcc gtg gag tgg gag	1449
Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu	
455 460 465	
agc aat ggg cag ccg gag aac aac tac aag acc aeg ect ccc gtg ctg	1497
Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu	
470 475 480	
gac tcc gac ggc tcc ttc ttc ctc tac agc aag ctc acc gtg gac aag	1545
Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Iys Leu Thr Val Asp Lys	
485 490 495 500	
agg agg tgg cag ccg ggg aac gtc ttc tgc tcc gtg atg cat gag	1593
Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu	
505 510 515	
gct ctg cac aac cac tac acg cag aag agc ctc tcc ctg tct ccg ggt	1641
Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly	
520 525 530	
aaa tga actagagccggccgcgtacaga t	1668
Lys	

```
<211> 533
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: fusion
polypeptide
```

<400> 4
 Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro
 1 5 10 15
 Gly Ser Thr Gly Thr Ser Cys Gly Asn Lys Leu Val Asp Ala Gly Glu
 20 25 30
 Glu Cys Asp Cys Gly Thr Pro Lys Glu Cys Glu Leu Asp Pro Cys Cys
 35 40 45
 Glu Gly Ser Thr Cys Lys Leu Lys Ser Phe Ala Glu Cys Ala Tyr Gly
 50 55 60
 Asp Cys Cys Lys Asp Cys Arg Phe Leu Pro Gly Gly Thr Leu Cys Arg
 65 70 75 80
 Gly Lys Thr Ser Glu Cys Asp Val Pro Glu Tyr Cys Asn Gly Ser Ser
 85 90 95
 Gln Phe Cys Gln Pro Asp Val Phe Ile Gln Asn Gly Tyr Pro Cys Gln
 100 105 110
 Asn Asn Lys Ala Tyr Cys Tyr Asn Gly Met Cys Gln Tyr Tyr Asp Ala
 115 120 125
 Gin Cys Gin Val Ile Phe Gly Ser Lys Ala Lys Ala Ala Pro Lys Asp
 130 135 140
 Cys Phe Ile Glu Val Asn Ser Lys Gly Asp Arg Phe Gly Asn Cys Gly
 145 150 155 160
 Phe Ser Gly Asn Glu Tyr Lys Lys Cys Ala Thr Gly Asn Ala Leu Cys
 165 170 175
 Gly Lys Leu Gln Cys Glu Asn Val Gln Glu Ile Pro Val Phe Gly Ile
 180 185 190
 Val Pro Ala Ile Ile Gln Thr Pro Ser Arg Gly Thr Lys Cys Trp Gly
 195 200 205
 Val Asp Phe Gln Leu Gly Ser Asp Val Pro Asp Pro Gly Met Val Asn
 210 215 220
 Glu Gly Thr Lys Cys Gly Ala Gly Lys Ile Cys Arg Asn Phe Gln Cys
 225 230 235 240
 Val Asp Ala Ser Val Leu Asn Tyr Asp Cys Asp Val Gln Lys Lys Cys
 245 250 255
 His Gly His Gly Val Cys Asn Ser Asn Lys Asn Cys His Cys Glu Asn
 260 265 270
 Gly Trp Ala Pro Pro Asn Cys Glu Thr Lys Gly Tyr Gly Glu Ser Val
 275 280 285
 Asp Ser Gly Pro Thr Tyr Asn Glu Met Asn Thr Ala Leu Arg Asp Gly
 290 295 300
 Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Ala
 305 310 315 320
 Glu Gly Ala Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Pro Thr
 325 330 335
 Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val
 340 345 350
 Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val
 355 360 365
 Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr Asn Ser
 370 375 380
 Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Glu Asp Trp Leu
 385 390 395 400
 Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala
 405 410 415
 Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro
 420 425 430
 Glu Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln
 435 440 445
 Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala
 450 455 460

Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr
 465 470 475 480
 Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu
 485 490 495
 Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser
 500 505 510
 Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser
 515 520 525
 Leu Ser Pro Gly Lys
 530

<210> 5
<211> 1443
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: fusion
polypeptide

<220>
<221> CDS
<222> (25)..(1422)

<400> 5
gtcgtacccaa gctggcttagc cacc atg gag aca gac aca ctc ctg cta tgg 51
Met Glu Thr Asp Thr Leu Leu Leu Trp
1 5
gta ctg ctg ctc tgg gtt cca act ggt act agt tgg gga aat 99
Val Leu Leu Leu Trp Val Pro Gly Ser Thr Gly Thr Ser Cys Gly Asn
10 15 20 25
gga atg gta gaa caa sgt gaa gaa igt gat tgg ggc tat agt gac cag 147
Gly Met Val Glu Gln Gly Glu Glu Cys Asp Cys Cys Gly Tyr Ser Asp Gln
30 35 40
tgt aaa gat gaa tgc tgc ttc gat gca sat caa cca gag gga aga aaa 195
Cys Lys Asp Glu Cys Cys Phe Asp Ala Asn Gln Pro Glu Gly Arg Lys
45 50 55
tgc aaa ctg aaa cct ggg aaa cag tgc agt cca agt caa ggt cct tgt 243
Cys Lys Leu Lys Pro Gly Lys Gln Cys Ser Pro Ser Gln Gly Pro Cys
60 65 70
tgt aca gca cag tgt gca ttc aag tct gag aag tgt cgg gat 291
Cys Thr Ala Glu Cys Ala Phe Lys Ser Lys Ser Glu Lys Cys Arg Asp
75 80 85
gat tca gac tgt gca agg gaa gga ata tgt aat ggc ttc aca gct ctc 339
Asp Ser Asp Cys Ala Arg Glu Gly Ile Cys Asn Gly Phe Thr Ala Leu
90 95 100 105
tgc cca gca tct gac cct aaa cca aac ttc aca gac tgt aat agg cat 387
Cys Pro Ala Ser Asp Pro Lys Pro Asn Phe Thr Asp Cys Asn Arg His
110 115 120
aca cca stg tgc att aat ggg caa tgt gca ggt tct atc tgt gag aaa 435
Thr Gln Val Cys Ile Asn Gly Gln Cys Ala Gly Ser Ile Cys Glu Lys
125 130 135
tat ggc tta gag gag tgt acg tgt gcc agt tct gat ggc aaa gat gat 483
Tyr Gly Leu Glu Glu Cys Thr Cys Ala Ser Ser Asp Gly Lys Asp Asp
140 145 150

aat gaa tta tgc cat gta tgc tgt atg aag aaa atg gac cca tca act	531
Lys Glu Leu Cys His Val Cys Cys Met Lys Lys Met Asp Pro Ser Thr	
155 160 165	
tgt gcc agt aca ggg tct gtg cag tgg agt agg cac ttc agt ggt cga	579
Cys Ala Ser Thr Gly Ser Val Gln Trp Ser Arg His Phe Ser Gly Arg	
170 175 180 185	
acc atc acc ctg caa cct gga tcc cct tgc aac gat ttt aga ggt tac	627
Thr Ile Thr Leu Gln Pro Gly Ser Pro Cys Asn Asp Phe Arg Gly Tyr	
190 195 200	
tgt gat gtt ttc atg cgg tgc aga tta gta gat gct gat ggt cct cta	675
Cys Asp Val Phe Met Arg Cys Arg Leu Val Asp Ala Asp Gly Pro Leu	
205 210 215	
gtt agg ctt aat aaa gca att ttt agt cca gag ctc tat gaa aac att	723
Ala Arg Leu Lys Ala Ile Phe Ser Pro Glu Leu Tyr Glu Asn Ile	
220 225 230	
gct gaa aga tct tgt gac aat act cac aca tgc cca ccg tgc cca gca	771
Ala Glu Arg Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala	
235 240 245	
cct gaa gcc gag ggc ccg tca gtc ttc ctc ttc ccc cca aat ccc	819
Pro Glu Ala Glu Gly Ala Pro Ser Val Phe Leu Phe Pro Pro Lys Pro	
250 255 260 265	
aag gac acc ctc atg atc tcc cgg acc cct gag gtc aca tgc gtg gtg	867
Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val	
270 275 280	
gtt gac gtc agc cac gaa gac cct gag gtc aag ttc aac tgg tac gtg	915
Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val	
285 290 295	
gac ggc gtc gag gtc cat aat gcc aag aca aag ccg ccg gag gag cag	963
Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln	
300 305 310	
tac aac agc acg tac cgg gtc agc gtc ctc acc gtc ctg cac cag	1011
Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln	
315 320 325	
gac tgg ctg aat ggc aag gag tac aag tgc aag gtc tcc aac aaa gcc	1059
Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala	
330 335 340 345	
ctc cca gcc ccc atc gag aaa acc atc tcc aaa gcc aaa ggg cag ccc	1107
Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro	
350 355 360	
cga gaa cca cag gtc tac acc ctg ccc cca tcc cgg gat gag ctg acc	1155
Arg Glu Pro Glu Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr	
355 370 375	
aag aac cag gtc agc ctg acc tgc ctg stc aaa ggc ttc tat ccc acc	1203
Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser	
380 385 390	
gac atc gcc gtc gag tgg gag agc aat ggg cag ccg gag aac aac tac	1251
Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr	
395 400 405	
aag acc acg cct ccc gtg ctg gac tcc gac ggc tcc trc ttc etc tac	1299

Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr						
410	415	420	425			
agc aag ctc acc gtc gag aag agc agg tgg cag cag ggg aac gtc ttc						1347
Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe						
430	435	440	445			
tca tgc tcc gtg atg cat gag gct ctg cac aac cac tac acy cag cag aag						1395
Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys						
445	450	455	460			
agc ctc tcc ctg tct ccg ggt aad tga actagagccgg ccgtatcaga t						1443
Ser Leu Ser Leu Ser Pro Gly Lys						
460	465					

<210> 6
<211> 465
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: fusion polypeptide

<400> 6						
Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Trp Val Pro						
1	5	10	15			
Gly Ser Thr Gly Thr Ser Cys Gly Asn Gly Met Val Glu Gln Gly Glu						
20	25	30				
Glu Cys Asp Cys Gly Tyr Ser Asp Gln Cys Lys Asp Glu Cys Cys Phe						
35	40	45				
Asp Ala Asn Gln Pro Glu Gly Arg Lys Cys Lys Lys Pro Gly Lys						
50	55	60				
Gln Cys Ser Pro Ser Gln Gly Pro Cys Cys Thr Ala Gln Cys Ala Phe						
65	70	75	80			
Lys Ser Lys Ser Glu Lys Cys Arg Asp Asp Ser Asp Cys Ala Arg Glu						
85	90	95				
Gly Ile Cys Asn Gly Phe Thr Ala Leu Cys Pro Ala Ser Asp Pro Lys						
100	105	110				
Pro Asn Phe Thr Asp Cys Asn Arg His Thr Gln Val Cys Ile Asn Gly						
115	120	125				
Gln Cys Ala Gly Ser Ile Cys Glu Lys Tyr Gly Leu Glu Cys Thr						
130	135	140				
Cys Ala Ser Ser Asp Gly Lys Asp Asp Lys Glu Leu Cys His Val Cys						
145	150	155	160			
Cys Met Lys Lys Met Asp Pro Ser Thr Cys Ala Ser Thr Gly Ser Val						
165	170	175				
Gln Trp Ser Arg His Phe Ser Gly Arg Thr Ile Thr Leu Gln Pro Gly						
180	185	190				
Ser Pro Cys Asn Asp Phe Arg Gly Tyr Cys Asp Val Phe Met Arg Cys						
195	200	205				
Arg Leu Val Asp Ala Asp Gly Pro Leu Ala Arg Leu Lys Lys Ala Ile						
210	215	220				
Phe Ser Pro Glu Leu Tyr Glu Asn Ile Ala Glu Arg Ser Cys Asp Lys						
225	230	235	240			
Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Ala Glu Gly Ala Pro						
245	250	255				
Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser						
260	265	270				
Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp						
275	280	285				
Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn						
290	295	300				
Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val						
305	310	315	320			
Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu						
325	330	335				

<210> 7
<211> 1638
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: fusion polypeptide

<220>
<221> CDS
<222> (41)..(1609)

<400> 7
cgggcccccc ctcgaggctcg acccaagctg gcttagccacc atg gag aca gac aca 55
Met Glu Thr Asp Thr
1 5

ctc	ctg	cta	tgg	gtt	gtt	cca	ggg	tcc	act	ggg	act	103
Leu	Leu	Leu	Trp	Val	Leu	Leu	Trp	Val	Pro	Gly	Ser	Thr
				10			15			20		Gly Thr

```

agt tgc gga aat atg ttt gtg gag ccg ggc gag cag tgt gac tgt ggc 151
Ser Cys Gly Asn Met Phe Val Glu Pro Gly Glu Gln Cys Asp Cys Gly
          25           30           35

```

ttc ctg gat gac tgc gtc gat ccc tgc tgt gat tct ttg acc tgc cag	199	
Phe Leu Asp Asp Cys Val Asp Pro Cys Cys Asp Ser Leu Thr Cys Gln		
40	45	50

ctg agg cca ggt gca cag tgt gca tct gac gga ccc tgt tgt caa sat 247
 Leu Arg Pro Gly Ala Gln Cys Ala Ser Asp Gly Pro Cys Cys Gln Asn
 55 60 65

tgc	cag	ctg	cgc	ccg	act	ggc	tgg	cag	tgt	cgt	cct	acc	aga	ggg	gat	295
Cys	Gln	Lau	Arg	Pro	Ser	Gly	Trp	Gln	Cys	Arg	Pro	Thr	Arg	Gly	Asp	
70		75						80					85			

tgt	gac	ttg	cct	gaa	ttc	tgc	cca	gga	gac	agc	tcc	cag	tgt	ccc	cct	343
Cys	Asp	Leu	Pro	Glu	Phe	Cys	Pro	Gly	Asp	Ser	Ser	Gln	Cys	Pro	Pro	
90						95							100			

```

gat gtc agc cta ggg gat ggc gag ccc tgc gct ggc ggg caa gct gtg 391
Asp Val Ser Leu Gly Asp Gly Glu Pro Cys Ala Gly Gly Gln Ala Val
105          110          115

```

tgc atg cac ggg cgt tgc gcc tcc tat gcc cag cag tgc cag tca ctt	439
Cys Met His Gly Arg Cys Ala Ser Tyr Ala Gln Gln Cys Gln Ser Leu	
120 125 130	
tgg gga cct gga gcc cag ccc gct ggc cca ctt tgc ctc cag aca gct	487
Trp Gly Pro Gly Ala Gln Pro Ala Ala Pro Leu Cys Leu Gin Thr Ala	
135 140 145	
aat act cgg gga aat gct ttt ggg agc tgc tgg cgc aac ccc agt ggc	535
Asn Thr Arg Gly Asn Ala Phe Gly Ser Cys Gly Arg Asn Pro Ser Gly	
150 155 160 165	
agt tat tgt tcc tgc acc cct aya gat gcc att tgt ggg cag ctc cag	583
Ser Tyr Val Ser Cys Thr Pro Arg Asp Ala Ile Cys Gly Gln Leu Gln	
170 175 180	
tgc cag aca ggt egg acc cag cct ctg ctc ggc tcc atc cgg gat cta	631
Cys Gln Thr Gly Arg Thr Gln Pro Leu Leu Gly Ser Ile Arg Asp Leu	
185 190 195	
ctc tgg gag aca ata gat gtg aat ggg act gag ctg aac tgc agc tgg	679
Leu Trp Glu Thr Ile Asp Val Asn Gly Thr Glu Leu Asn Cys Ser Trp	
200 205 210	
gtg cac ctg gac ctg ggc agt gat gtg gcc cag ccc ctc ctg act ctg	727
Val His Leu Asp Leu Gly Ser Asp Val Ala Gln Pro Leu Leu Thr Leu	
215 220 225	
act ggc aca gcc tgt ggc cct ggc ctg gtg tgt ata gac cat cga tgc	775
Pro Gly Thr Ala Cys Gly Pro Gly Leu Val Cys Ile Asp His Arg Cys	
230 235 240 245	
cag cgt gtg gat ctc ctg ggg gca cag gaa tgc tgg cgt aaa tgc cat	823
Gin Arg Val Asp Leu Leu Gly Ala Gln Glu Cys Arg Ser Lys Cys His	
250 255 260	
gga cat ggg gtc tgt gac agc aac agg cac tgc tac tgt gag gag ggc	871
Gly His Gly Val Cys Asp Ser Asn Arg His Cys Tyr Cys Glu Glu Gly	
265 270 275	
tgg gca ccc cct gac tgc acc act cag ctc aaa gca acc aac tcc aza	919
Trp Ala Pro Pro Asp Cys Thr Thr Gln Leu Lys Ala Thr Ser Ser Arg	
280 285 290	
tct tgt gac aaa act cac aca tgc cca tgg tgc cca gca cct gaa goc	967
Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Ala	
295 300 305	
gag ggc gcg ccc tca gtc ttc ctc ttc ccc cca aaa ccc aag gac acc	1015
Glu Gly Ala Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr	
310 315 320 325	
ctc atg atc tcc cgg acc cct gag gtc aca tgc gtg gtg gac gtc	1063
Lys Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Asp Val	
330 335 340	
agg cac gaa gac cct gag gtc aag ttc aac tgg tac gtg gac ggc gtg	1111
Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val	
345 350 355	
gag gtg cat aat gcc aag aca aag ccg cgg gag gag cag tac aac agc	1159
Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser	
360 365 370	
acg tac cgt gtg gtc agc gtc ctc acc gtc ctg cac cag gac tgg ctg	1207

Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu	
375 380 385	
aat ggc aag gag tac aag tgc aag gtc tcc aac aaa gcc ctc cca gcc	1255
Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala	
390 395 400 405	
ccc atc gag aac acc atc tcc aaa gcc aac ggg cag ccc cga gaa cca	1303
Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro	
410 415 420	
cag gtg tac acc ctg ccc tcc tcc cgg gag gag atg acc aac aac cag	1351
Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln	
425 430 435	
gtc agc ctg acc tgc ctg gtc aaa ggc ttc tat ccc agc gac atc gcc	1399
Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala	
440 445 450	
gtg gag tgg gag aac aat ggg cag ccg gag aac aac tac aag acc acg	1447
Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr	
455 460 465	
cct ccc gtg ctg gac tcc gac ggc tcc ttc ttc ctc tat agc aag ctc	1495
Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu	
470 475 480 485	
acc gtg gac aag aac agg tgg cag cag ggg aac gtc rtc tca tgc tcc	1543
Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser	
490 495 500	
gtg atg cat gag gct ctg cac aac cac tac acg cag aag agc ctc tcc	1591
Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser	
505 510 515	
ctg tct ccc ggt aaa tga actagagccg cccgcacccg ggtggagct	1638
Leu Ser Pro Gly Lys	
520	

<210> 8

<211> 522

<212> DRT

<213> Artificial Sequence

<223> Description of Artificial Sequence: fusion polypeptide

<400> 8

Met Glu Thr Asp Thr Leu Leu Trp Val Leu Leu Trp Val Pro	
1 5 10 15	
Gly Ser Thr Gly Thr Ser Cys Gly Asn Met Phe Val Glu Pro Gly Glu	
20 25 30	
Gln Cys Asp Cys Gly Phe Leu Asp Asp Cys Val Asp Pro Cys Cys Asp	
35 40 45	
Ser Leu Thr Cys Gln Leu Arg Pro Gly Ala Gln Cys Ala Ser Asp Gly	
50 55 60	
Pro Cys Cys Gln Asn Cys Gln Leu Arg Pro Ser Gly Trp Gln Cys Arg	
65 70 75 80	
Pro Thr Arg Gly Asp Cys Asp Leu Pro Glu Phe Cys Pro Gly Asp Ser	
85 90 95	
Ser Gln Cys Pro Pro Asp Val Ser Leu Gly Asp Gly Glu Pro Cys Ala	
100 105 110	
Gly Gly Gln Ala Val Cys Met His Gly Arg Cys Ala Ser Tyr Ala Gln	
115 120 125	
Gln Cys Gln Ser Leu Trp Gly Pro Gly Ala Gln Pro Ala Ala Pro Leu	
130 135 140	

Cys Leu Gln Thr Ala Asn Thr Arg Gly Asn Ala Phe Gly Ser Cys Gly
 145 150 155 160
 Arg Asn Pro Ser Gly Ser Tyr Val Ser Cys Thr Pro Arg Asp Ala Ile
 165 170 175
 Cys Gly Gln Leu Gln Cys Gln Thr Gly Arg Thr Gln Pro Leu Leu Gly
 180 185 190
 Ser Ile Arg Asp Leu Leu Trp Glu Thr Ile Asp Val Asn Gly Thr Glu
 195 200 205
 Leu Asn Cys Ser Trp Val His Leu Asp Leu Gly Ser Asp Val Ala Gln
 210 215 220
 Pro Leu Leu Thr Leu Pro Gly Thr Ala Cys Gly Pro Gly Leu Val Cys
 225 230 235 240
 Ile Asp His Arg Cys Gln Arg Val Asp Leu Leu Gly Ala Gln Glu Cys
 245 250 255
 Arg Ser Lys Cys His Gly His Gly Val Cys Asp Ser Asn Arg His Cys
 260 265 270
 Tyr Cys Glu Glu Gly Trp Ala Pro Pro Asp Cys Thr Thr Gln Leu Lys
 275 280 285
 Ala Thr Ser Ser Arg Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys
 290 295 300
 Pro Ala Pro Glu Ala Glu Gly Ala Pro Ser Val Phe Leu Phe Pro Pro
 305 310 315 320
 Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys
 325 330 335
 Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp
 340 345 350
 Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu
 355 360 365
 Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu
 370 375 380
 His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn
 385 390 395 400
 Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly
 405 410 415
 Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu
 420 425 430
 Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr
 435 440 445
 Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn
 450 455 460
 Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe
 465 470 475 480
 Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn
 485 490 495
 Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr
 500 505 510
 Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
 515 520

<210> 9
<211> 1386
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: fusion
 polypeptide

<400> 9
gtcgacccaa gctggctagc cacc atg gag aca gac aca ctc ctg cta tgg 51

	Met	Glu	Thr	Asp	Thr	Leu	Leu	Leu	Trp							
	1					5										
gta	ctg	ctg	ctc	tgg	gtt	cca	ggg	tcc	act	ggt	act	agt	tgt	ggg	aac	99
Val	Leu	Leu	Leu	Trp	Val	Pro	Gly	Ser	Thr	Gly	Thr	Ser	Cys	Gly	Asn	
10					15				20				25			
tcg	agg	gtg	gat	gaa	gga	gaa	gag	tgt	gat	cct	ggc	atc	atg	tat	ctg	147
Ser	Arg	Val	Asp	Glu	Gly	Glu	Glu	Glu	Cys	Asp	Pro	Gly	Ile	Tyr	Leu	
					30				35				40			
aac	sac	gac	acc	tgc	tgc	sac	agc	gac	ttg	sag	gaa	ggg	gtc		195	
Asn	Asn	Asp	Thr	Cys	Cys	Asn	Ser	Asp	Cys	Thr	Leu	Lys	Glu	Gly	Val	
					45				50			55				
cag	tgc	agt	gac	agg	aac	agt	cct	tgc	tgt	aaa	sac	tgt	cag	ttt	gag	243
Gln	Cys	Ser	Asp	Arg	Asn	Ser	Pro	Cys	Cys	Lys	Asn	Cys	Gln	Phe	Glu	
					60				65			70				
act	gcc	cag	aag	sag	tgc	cag	gag	ggc	att	aat	gct	act	tgc	aaa	ggc	291
Thr	Ala	Gln	Lys	Cys	Gln	Glu	Ala	Ile	Asn	Ala	Thr	Cys	Lys	Gly		
					75				80			85				
gtg	tcc	tac	tgc	aca	ggg	aat	agc	agt	gag	tgc	ccg	cct	cca	gga	aat	339
Val	Ser	Tyr	Cys	Thr	Gly	Asn	Ser	Ser	Glu	Cys	Pro	Pro	Pro	Gly	Asn	
					90				95			100		105		
gtt	gaa	gat	gac	act	ttt	tgc	ttg	gat	ctt	ggc	aaq	tgt	aag	aat	ggg	387
Ala	Glu	Asp	Asp	Thr	Val	Cys	Leu	Amo	Ile	Gly	Lys	Cys	Lys	Asp	Gly	
					110				115			120				
aaa	tgc	atc	cct	tgc	gag	agg	gaa	cag	cag	ctg	gag	tcc	tgt	gca	435	
Lys	Cys	Ile	Pro	Phe	Cys	Glu	Arg	Ile	Glu	Gln	Leu	Glu	Ser	Cys	Ala	
					125				130			135				
tgt	aat	gaa	act	gac	aac	tcc	tgc	aaq	gtg	tgc	agg	gac	ctt	tcc	483	
Cys	Asn	Glu	Thr	Asp	Asn	Ser	Cys	Lys	Val	Cys	Cys	Arg	Asp	Leu	Ser	
					140				145			150				
ggc	cgc	tgt	ccc	tat	gtc	gat	gtc	gaa	caa	sag	aaq	tta	ttt	ttg	531	
Gly	Arg	Cys	Val	Pro	Tyr	Val	Asp	Ala	Glu	Gln	Lys	Asn	Leu	Phe	Leu	
					155				160			165				
agg	aaa	gga	aag	ccc	tgt	aca	gta	gga	ttt	tgt	gac	atg	aat	ggc	aaq	579
Arg	Lys	Gly	Lys	Pro	Thr	Val	Gly	Phe	Cys	Asp	Met	Asn	Gly	Lys		
					170				175			180		185		
tgt	gag	aaa	cga	gta	cag	gat	gta	att	gaa	caa	ttt	tgg	aat	ttc	act	627
Cys	Glu	Lys	Arg	Val	Gln	Asp	Val	Ile	Glu	Arg	Phe	Trp	Asp	Phe	Ile	
					190				195			200				
gac	cag	ctg	agc	atc	aat	act	ttt	gga	aaq	ttt	tta	gca	gac	aaq	aga	675
Asp	Gln	Leu	Ser	Ile	Asn	Thr	Phe	Gly	Lys	Phe	Leu	Ala	Asp	Asn	Arg	
					205				210			215				
tct	tgt	gac	aaa	act	cac	aca	tgc	cca	ccg	tcc	gca	cct	gaa	gcc	723	
Ser	Cys	Asp	Lys	Thr	His	Thr	Cys	Pro	Pro	Cys	Pro	Ala	Pro	Glu	Ala	
					220				225			230				
gag	ggc	ggc	ccg	tca	tgc	ttc	ctc	ccc	cca	aaa	ccc	aag	gac	acc	771	
Glu	Gly	Ala	Pro	Ser	Val	Phe	Leu	Phe	Pro	Pro	Lys	Pro	Lys	Asp	Thr	
					235				240			245				
ctc	atg	atc	tcc	ccg	acc	cct	gag	gtc	aca	tgc	gtg	gtg	gac	gtg	819	
Leu	Met	Ile	Ser	Arg	Thr	Pro	Glu	Val	Thr	Cys	Val	Val	Val	Asp	Val	
					250				255			260		265		

agc cac gaa gac cct gag gtc aag ttc aac tgg tac gtg gac ggc gtg Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val 270 275 280	867
gag gtg cat aat gcc aag aca aag ccg cgg gag gag cag tac aac aac Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Gln Tyr Asn Ser 285 290 295	915
acg tac cgg gtg gtc agc gtc ctc acc gtc ctg cac cag gac tgg ctg Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu 300 305 310	963
aat ggc aag gag tac aag tgc aag gtc tcc aac aaa gcc ctc cca gcc Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala 315 320 325	1011
ccc atc gag aaa acc atc tcc aaa gcc aac ggg cag ccc cga gaa cca Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro 330 335 340 345	1059
cag gtg tac acc ctg ccc cca tcc cgg gat gag ctg acc aag aac cag Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln 350 355 360	1107
gtc agc ctg acc tgc ctg gtc aas ggc ttc tat ccc agc gac atc gcc Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala 365 370 375	1155
gtg gag tgg gag agc aat ggg cag ccg gag aac aac tac aag aac acc acg Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr 380 385 390	1203
cct ccc gtg ctg gad tcc gac ggc tcc ttc ctc tac agc aag ctc Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Leu Tyr Ser Lys Leu 395 400 405	1251
acc gtg gac aag agc agg tgg cag cag ggg aac gtc ttc tca tgc tcc Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser 410 415 420 425	1299
gtg atg cat gag gct ctg cac aac cac tac agc cag aag agc ctc tcc Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser 430 435 440	1347
ctg tct cog ggt aac tga actagagccggccgcgtacaga t Leu Ser Pro Gly Lys 445	1386
<210> 10 <211> 446 <212> PRT <213> Artificial Sequence <223> Description of Artificial Sequence: fusion polypeptide	
<400> 10 Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Trp Val Pro I 5 10 15 Gly Ser Thr Gly Thr Ser Cys Gly Asn Ser Arg Val Asp Glu Gly Glu 20 25 30 Glu Cys Asp Pro Gly Ile Met Tyr Leu Asn Asn Asp Thr Cys Cys Asn 35 40 45 Ser Asp Cys Thr Leu Lys Glu Gly Val Gln Cys Ser Asp Arg Asn Ser 50 55 60	

Pro Cys Cys Lys Asn Cys Gln Phe Thr Ala Gln Lys Lys Cys Gln
 65 70 75 80
 Glu Ala Ile Asn Ala Thr Cys Lys Gly Val Ser Tyr Cys Thr Gly Asn
 85 90 95
 Ser Ser Glu Cys Pro Pro Gly Asn Ala Glu Asp Asp Thr Val Cys
 100 105 110
 Leu Asp Leu Gly Lys Cys Lys Asp Gly Lys Cys Ile Pro Phe Cys Glu
 115 120 125
 Arg Glu Gln Gln Leu Glu Ser Cys Ala Cys Asn Glu Thr Asp Asn Ser
 130 135 140
 Cys Lys Val Cys Cys Arg Asp Leu Ser Gly Arg Cys Val Pro Tyr Val
 145 150 155 160
 Asp Ala Glu Gln Lys Asn Leu Phe Leu Arg Lys Gly Lys Pro Cys Thr
 165 170 175
 Val Gly Phe Cys Asp Met Asn Gly Lys Cys Glu Lys Arg Val Gln Asp
 180 185 190
 Val Ile Glu Arg Phe Trp Asp Phe Ile Asp Gln Leu Ser Ile Asn Thr
 195 200 205
 Phe Gly Lys Phe Leu Ala Asp Asn Arg Ser Cys Asp Lys Thr His Thr
 210 215 220
 Cys Pro Pro Cys Pro Ala Pro Glu Ala Glu Gly Ala Pro Ser Val Phe
 225 230 235 240
 Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro
 245 250 255
 Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val
 260 265 270
 Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr
 275 280 285
 Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val
 290 295 300
 Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys
 305 310 315 320
 Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser
 325 330 335
 Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro
 340 345 350
 Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val
 355 360 365
 Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly
 370 375 380
 Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Val Leu Asp Ser Asp
 385 390 395 400
 Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp
 405 410 415
 Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His
 420 425 430
 Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
 435 440 445

<210> 11

<211> 1553

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: fusion polypeptide

<220>

<221> CDS

<222> (25)..(1632)

<400> 11

gtcgacccaa gctggctagc cacc atg gag aca gac aca ctc ctg cta tgg 51

Met	Glu	Thr	Asp	Thr	Leu	Leu	Leu	Trp	
1					5				
gta ctg ctg ctc tgg gtt cca ggt tcc act ggt act agt tgt ggg aat									99
Val	Leu	Leu	Leu	Trp	Pro	Gly	Ser	Thr	Gly Thr Ser Cys Gly Asn
10					15				25
ctc gtg gtt gaa gaa ggg gag gas tgt gac tgt gga acc ata cgg cag									147
Leu	Val	Val	Glu	Glu	Glu	Cys	Asp	Cys	Gly Thr Ile Arg Gln
					30				40
tgt gca aaa gat ccc tgt tgt ctg tta sac tgt act cta cat cct ggg									195
Cys	Ala	Lys	Asp	Pro	Cys	Cys	Leu	Leu	Asn Cys Thr Leu His Pro Gly
					45				55
gtc gct tgt gct ttt gga ata tgt tgc aaa gac tgc aaa ttt ctg cca									243
Ala	Ala	Cys	Ala	Phe	Gly	Ile	Cys	Cys	Asp Cys Lys Phe Leu Pro
					60				70
tca gga act tta tgt aga caa cca gtt ggt gaa tgt gac ctt cca gag									291
Ser	Gly	Thr	Leu	Cys	Arg	Gln	Gln	Val	Gly Glu Cys Asp Leu Pro Glu
					75				85
tgg tgc aat ggg aca tcc cat cca tgc cca gat gat gtg tat gtg cag									339
Trp	Cys	Asn	Gly	Thr	Ser	His	Gln	Cys	Pro Asp Asp Val Tyr Val Gln
					90				105
gac ggg atc tcc tgt aat gtg aat gcc ttc tgc tat gaa aag acg tgt									387
Asp	Gly	Ile	Ser	Cys	Asn	Val	Ala	Phe	Cys Tyr Glu Lys Thr Cys
					110				120
aat aac cat gat ata cca tgt aaa gag att ttt ggc caa gat gca agg									435
Asn	Asn	His	Asp	Ile	Gln	Cys	Lys	Glu	Ile Phe Cys Gin Asp Ala Arg
					125				135
agt gca tct cag agt tgc tac cca gaa atc aac acc caa gga aac cgt									483
Ser	Ala	Ser	Gln	Ser	Cys	Tyr	Gln	Glu	Ile Asn Thr Gln Gly Asn Arg
					140				150
ttc ggt cac tgt ggt att gta ggc aca aca tat gta aaa tgt tgg acc									531
Phe	Gly	His	Cys	Gly	Ile	Val	Gly	Thr	Thr Val Lys Cys Trp Thr
					155				165
ccc aat ctg ata gag cat tct aca gtg cag cag ttt cac ctc aat gac									579
Pro	Asp	Ile	Met	Cys	Gly	Arg	Val	Gln	Cys Glu Asn Val Gly Val Ile
					170				180
acc act tgc tgg ggc act gat tat cat tta ggg atg gct ata cct gat									627
Thr	Thr	Cys	Trp	Gly	Thr	Asp	Tyr	His	Leu Gly Met Ala Ile Pro Asp
					205				210
att ggt gag gtg aaa gat ggc aca gta tgt ggt ccc gaa aag atc tgc									675
Ile	Arg	Gly	Glu	Val	Lys	Asp	Gly	Thr	Val Cys Gly Pro Glu Lys Ile Cys
					220				230
atc cgt aag aag tgt gcc agt atg gtt cat ctg tca caa gcc tgt cag									771
Ile	Arg	Lys	Lys	Cys	Ala	Ser	Met	Val	His Leu Ser Gln Ala Cys Gln
					235				245
cct aag acc tgc aac atg agg gga atc tgc aac aac aaa caa cac tgt									819
Pro	Lys	Thr	Cys	Asn	Met	Arg	Gly	Ile	Cys Asn Asn Lys Gln His Cys
					250				260
					255				265

cac tgc aac cat gaa tgg gca ccc cca tac tgc aag gac aaa ggc tat His Cys Asn His Glu Trp Ala Pro Pro Tyr Cys Lys Asp Lys Gly Tyr 270 275 280	867
gga sgt agt gct gat agt ggc cca cct cct aag aac aac atg gaa gga Gly Gly Ser Ala Asp Ser Gly Pro Pro Lys Asn Asn Met Glu Gly 285 290 295	915
tta aat gtg atg gga aag ttg cgt gga tct tgt gac aaa act cac aca Leu Asn Val Met Gly Lys Leu Arg Gly Ser Cys Asp Lys Thr His Thr 300 305 310	963
tgc cca ccg tgc cca gca gca cct gaa gcc gag ggc ggc ccg tca gtc ttc Cys Pro Pro Cys Pro Ala Pro Glu Ala Glu Gly Ala Pro Ser Val Phe 315 320 325	1011
ctc ttc ccc cca aaa ccc aag gac acc ctc atg atc tcc cgg acc cct Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro 330 335 340 345	1059
gag gtc aca tgc gtg gtg gtg gac gtg agc cac gaa gac cct gag gtc Glu Val Thr Cys Val Val Asp Val Ser His Glu Asp Pro Glu Val 350 355 360	1107
aag ttc aac tgg tac gtg gac ggc gtg gag gtg cat aat gcc aag aca Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr 365 370 375	1155
aag ccg ccg gag gag cag tac aac aac acg tac cgg gtc gtc agc gtc Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val 380 385 390	1203
ctc acc gtc ctg cac cag gac tgg ctg aat ggc aag gag tac aag tgc Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys 395 400 405	1251
aag gtc tcc aac aaa gcc ctc cca gcc ccc atc gag aaa acc acc atc tcc Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser 410 415 420 425	1299
aaa gcc aaa ggg cag ccc cga gaa cca cag gtg tac acc ctg ccc cca Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro 430 435 440	1347
tcc egg gag gag ctg acc aag aac cag gtc agc ctg acc tgc ctg gtc Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val 445 450 455	1395
aaa ggc ttc rat ccc ayc gac atc gcc gtc gag tgg gag agc aat ggg Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly 460 465 470	1443
cag ccg gag aac aac tac aag acc acg cct ccc gtg ctg gac tcc gac Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp 475 480 485	1491
ggc tcc ttc ttc ctc tac agc aag ctc acc gtg gac aag agc agg tgg Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp 490 495 500 505	1539
cag cag ggg aac gtc ttc tca tgc tcc gtg agt cat gag gac gtc cac Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His 510 515 520	1587
aac cac tac acg aag aac acg ctc tcc ctg tct ccc ggt aaa tga	1632

Asn	His	Tyr	Thr	Gln	Lys	Ser	Leu	Ser	Leu	Ser	Pro	Gly	Lys
				525		530						535	

actagagccggc cgctcaga t

1653

<210> 12

<211> 535

<212> PFP

<213> Artificial Sequence

<223> Description of Artificial Sequence: fusion polypeptide

<400> 12

Met	Glu	Thr	Asp	Thr	Leu	Leu	Trp	Val	Leu	Leu	Trp	Val	Pro
1					5			10			15		
Gly	Ser	Thr	Gly	Thr	Ser	Cys	Gly	Asn	Leu	Val	Val	Glu	Glu
						20		25			30		
Glu	Cys	Asp	Cys	Gly	Thr	Ile	Arg	Gln	Cys	Ala	Lys	Asp	Pro
						35		40			45		
Leu	Leu	Aaa	Cys	Thr	Leu	His	Pro	Gly	Ala	Ala	Cys	Ala	Phe
						50		55			60		
Cys	Cys	Lys	Asp	Cys	Lys	Phe	Leu	Pro	Ser	Gly	Thr	Leu	Cys
						65		70			75		
Gln	Val	Gly	Glu	Cys	Asp	Leu	Pro	Glu	Trp	Cys	Asn	Gly	Thr
						85		90			95		
Gln	Cys	Pro	Asp	Asp	Val	Tyr	Val	Gln	Asp	Gly	Ile	Ser	Cys
						100		105			110		
Asn	Ala	Phe	Cys	Tyr	Glu	Lys	Thr	Cys	Asn	Asn	His	Asp	Ile
						115		120			125		
Lys	Glu	Ile	Phe	Gly	Gln	Asp	Ala	Arg	Ser	Ala	Ser	Gly	Tyr
						130		135			140		
Gln	Glu	Ile	Asn	Thr	Gln	Gly	Asn	Arg	Phe	Gly	His	Cys	Gly
						145		150			155		
Gly	Thr	Thr	Tyr	Val	Lys	Cys	Trp	Thr	Pro	Asp	Ile	Met	Cys
						165		170			175		
Val	Gln	Cys	Glu	Asn	Val	Gly	Val	Ile	Pro	Asn	Leu	Ile	Glu
						180		185			190		
Thr	Val	Gln	Gln	Phe	His	Leu	Asn	Asp	Thr	Thr	Cys	Trp	Gly
						195		200			205		
Tyr	His	Leu	Gly	Met	Ala	Ile	Pro	Ile	Gly	Glu	Val	Lys	Asp
						210		215			220		
Thr	Val	Cys	Gly	Pro	Glu	Lys	Ile	Cys	Ile	Arg	Lys	Lys	Ala
						225		230			235		
Met	Val	His	Leu	Ser	Gln	Ala	Cys	Gln	Pro	Lys	Thr	Cys	Asn
						245		250			255		
Gly	Ile	Cys	Asn	Asn	Lys	Gln	His	Cys	His	Cys	Asn	His	Glu
						260		265			270		
Pro	Pro	Tyr	Cys	Lys	Asp	Lys	Gly	Tyr	Gly	Gly	Ser	Ala	Asp
						275		280			285		
Pro	Pro	Pro	Lys	Asn	Asn	Met	Glu	Gly	Leu	Asn	Val	Met	Gly
						290		295			300		
Arg	Gly	Ser	Cys	Asp	Lys	Thr	His	Thr	Cys	Pro	Pro	Cys	Pro
						305		310			315		
Glu	Ala	Glu	Gly	Ala	Pro	Ser	Val	Phe	Leu	Phe	Pro	Pro	Lys
						325		330			335		
Asp	Thr	Leu	Met	Ile	Ser	Arg	Thr	Pro	Glu	Val	Thr	Cys	Val
						340		345			350		
Asp	Val	Ser	His	Glu	Asp	Pro	Glu	Val	Lys	Phe	Asn	Trp	Tyr
						355		360			365		
Gly	Val	Glu	Val	His	Asn	Ala	Lys	Thr	Lys	Pro	Arg	Glu	Gln
						370		375			380		
Asn	Ser	Thr	Tyr	Arg	Val	Val	Ser	Val	Leu	Thr	Val	Leu	His
						385		390			395		
Trp	Leu	Asn	Gly	Lys	Glu	Tyr	Lys	Cys	Lys	Val	Ser	Asn	Lys
						405		410			415		

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg
 420 425 430
 Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys
 435 440 445
 Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp
 450 455 460
 Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys
 465 470 475 480
 Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser
 485 490 495
 Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser
 500 505 510
 Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser
 515 520 525
 Leu Ser Leu Ser Pro Gly Lys
 530 535

<210> 13
<211> 1617
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: fusion
polypeptide

<220>
<221> CDS
<222> (25)..(1596)

<400> 13
gtcgacccaa gctggctatgc cacc atg gag aca gac aca ctc ctg cta tgg 51
Met Glu Thr Asp Thr Leu Leu Leu Trp
1 5
gta ctg ctg ctc tgg cta ggt tcc act ggt act agt tgg ggg aat 99
Val Leu Leu Leu Trp Val Pro Gly Ser Thr Gly Thr Ser Cys Gly Asn
10 15 20 25
ggc gtg gtt gaa aga gaa gag cag tgt gac tgg tcc gta cag cag 147
Gly Val Val Glu Arg Glu Glu Gln Cys Asp Cys Gly Ser Val Gln Gln
30 35 40
tgt gaa cca gac gcc tgt tgt ctg ttg aac tgc act cta agg cct ggg 195
Cys Glu Gln Asp Ala Cys Cys Leu Leu Asn Cys Thr Leu Arg Pro Gly
45 50 55
gtc gcc tgt gtc ttt ggg ctt tgt tgc aac gac tgc aag ttc atg cca 243
Ala Ala Cys Ala Phe Gly Leu Cys Cys Lys Asp Cys Lys Phe Met Pro
60 65 70
tca ggg gaa ctc tgt aga caa gag gtc aat gaa tgt gac ctt cca gaa 291
Ser Gly Glu Leu Cys Arg Gln Glu Val Asn Glu Cys Asp Leu Pro Glu
75 80 85
tgg tgc aat gga aca tct cat cag tgt cca gaa gat aga tat gtc cag 339
Trp Cys Asn Gly Thr Ser His Gln Cys Pro Glu Asp Arg Tyr Val Gln
90 95 100 105
gac ggg atc ccc tgt agt gac agt gcc tac tgt tat caa aag egg tgt 387
Asp Gly Ile Pro Cys Ser Asp Ser Ala Tyr Cys Tyr Gln Lys Arg Cys
110 115 120
aat aac cat gac cag cat tgc agg gag att ttt ggt aaa gat gca aaa 435

Asn Asn His Asp Gln His Cys Arg Glu Ile Phe Gly Lys Asp Ala Lys			
125	130	135	
agt gca tct cag aat tgc tat aaa gaa atc aac tct cag gga aac cgt	483		
Ser Ala Ser Gln Asn Cys Tyr Lys Glu Ile Asn Ser Gln Gly Asn Arg			
140	145	150	
ttt ggt cac tgt ggt ata aat ggc aca aca tac cta aaa tgt cat atc	531		
Phe Gly His Cys Gly Ile Asn Gly Thr Thr Tyr Leu Lys Cys His Ile			
155	160	165	
tct gat gtc ttt tgt ggg aya ggt cca tgt gag aat gty aga gac att	579		
Ser Asp Val Phe Cys Gly Arg Val Gln Cys Glu Asn Val Arg Asp Ile			
170	175	180	185
cct ctt ctc caa gat cat ttt act ttg cag cac act cat atc eat ggt	627		
Pro Leu Leu Gln Asp His Phe Thr Leu Gln His Thr His Ile Asn Gly			
190	195	200	
gtc acc tgc tgg ggt att gac tat cat tta agg atg aac ata tct gac	675		
Val Thr Cys Trp Gly Ile Asp Tyr His Leu Arg Met Asn Ile Ser Asp			
205	210	215	
att ggt gaa gtg eaa gat ggt act gtg tgt ggc cca gga aag atc tgc	723		
Ile Gly Glu Val Lys Asp Gly Thr Val Cys Gly Pro Gly Lys Ile Cys			
220	225	230	
atc cat aag aag tgt gtc agt ctg ttt gtc tgg tca cat gtc tgc ctt	771		
Ile His Lys Lys Cys Val Ser Leu Ser Val Leu Ser His Val Cys Leu			
235	240	245	
cct gag acc tgc aat atg aag ggg att tgc aat aac aaa cat cac tgc	819		
Pro Glu Thr Cys Asn Met Lys Gly Ile Cys Asn Asn Lys His His Cys			
250	255	260	265
cac tgt ggc tat ggg tgg tcc cca ccc tac tgc cag cac aga ggc tat	867		
His Cys Gly Tyr Gly Trp Ser Pro Pro Tyr Cys Gln His Arg Gly Tyr			
270	275	280	
ggg ggc agt att gac agt ggc cca gca tct gca aag aga tct tgt gac	913		
Gly Gly Ser Ile Asp Ser Gly Pro Ala Ser Ala Lys Arg Ser Cys Asp			
285	290	295	
aaa act ccc aca tgc cca ccg tgc cca gca cct gaa gcc gag ggc gcg	963		
Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Ala Glu Gly Ala			
300	305	310	
ccg tca gtc ttc ctc ttc ccc cca aaa ccc aag gac acc ctc atg atc	1011		
Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile			
315	320	325	
tcc cgg acc cct gag gtc aca tgc stg stg gtg gac gtg agc cac gaa	1059		
Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu			
330	335	340	345
gac cct gag gtc aag ttc aac tgg tac gtg gac ggc gtg gag gtg cat	1107		
Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His			
350	355	360	
aat gcc aag aca aag ccg cgg gag ggg cag tac aac agc acg tac ccg	1155		
Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg			
365	370	375	
gtg gtc ayc gtc ctc acc gtc ctg cac cag gac tgg ctg aat ggc aag	1203		
Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys			
380	385	390	

gag tec aag tgc aag gtc tcc aac aaa gcc ctc cca gcc ccc atc gag Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu 395 400 405	1251
aaa acc atc tcc aaa gcc aaa ggg cag ccc cga gaa cca cag gtg tac Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Val Tyr 410 415 420 425	1299
acc ctg ccc cca tcc cgg gat gag ctg acc aag aac cag gtc agc ctg Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu 430 435 440	1347
acc tgc ctg gtc aaa ggc ttc tat ccc agc gac atc gcc gtg gag tgg Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 445 450 455	1395
gag agc aat ggg cag cgg aac aac tac aag acc acg cct ccc gtg Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val 460 465 470	1443
ctg gac tcc gac ggc tcc ttc ttc ctc tac agc aag ctc acc gtg gac Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 475 480 485	1491
aag agc agg tgg cag cag ggg aac gtc ttc tcc tgc tcc gtg atg cat Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 490 495 500 505	1539
gag gct ctg cac aac cac tac acg cag aag agc ctc tcc ctg tot ccg Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 510 515 520	1587
ggt aaa tga acttagagcccgccgtacaga t Gly Lys	1617

<210> 14
<211> 523
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: fusion polypeptide

<400> 14
Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro 1 5 10 15
Gly Ser Thr Gly Thr Ser Cys Gly Asn Gly Val Val Glu Arg Glu Glu 20 25 30
Gln Cys Asp Cys Gly Ser Val Gln Gln Cys Glu Gln Asp Ala Cys Cys 35 40 45
Leu Leu Asn Cys Thr Leu Arg Pro Gly Ala Ala Cys Ala Phe Gly Leu 50 55 60
Cys Cys Lys Asp Cys Lys Phe Met Pro Ser Gly Glu Leu Cys Arg Gln 65 70 75 80
Glu Val Asn Glu Cys Asp Leu Pro Glu Trp Cys Asn Gly Thr Ser His 85 90 95
Gln Cys Pro Glu Asp Arg Tyr Val Gln Asp Gly Ile Pro Cys Ser Asp 100 105 110
Ser Ala Tyr Cys Tyr Gln Lys Arg Cys Asn Asn His Asp Gln His Cys 115 120 125
Arg Glu Ile Phe Gly Lys Asp Ala Lys Ser Ala Ser Gln Asn Cys Tyr 130 135 140
Lys Glu Ile Asn Ser Gln Gly Asn Arg Phe Gly His Cys Gly Ile Asn 145 150 155 160
Gly Thr Thr Tyr Leu Lys Cys His Ile Ser Asp Val Phe Cys Gly Arg 165 170 175

Val Gln Cys Glu Asn Val Arg Asp Ile Pro Leu Leu Gln Asp His Phe
 180 185 190
 Thr Leu Gln His Thr His Ile Asn Gly Val Thr Cys Trp Gly Ile Asp
 195 200 205
 Tyr His Leu Arg Met Asn Ile Ser Asp Ile Gly Glu Val Lys Asp Gly
 210 215 220
 Thr Val Cys Gly Pro Gly Lys Ile Cys Ile His Lys Lys Cys Val Ser
 225 230 235 240
 Leu Ser Val Leu Ser His Val Cys Leu Pro Glu Thr Cys Asn Met Lys
 245 250 255
 Gly Ile Cys Asn Asn Lys His His Cys His Cys Gly Tyr Gly Trp Ser
 260 265 270
 Pro Pro Tyr Cys Gln His Arg Gly Tyr Gly Ser Ile Asp Ser Gly
 275 280 285
 Pro Ala Ser Ala Lys Arg Ser Cys Asp Lys Thr His Thr Cys Pro Pro
 290 295 300
 Cys Pro Ala Pro Glu Ala Glu Gly Ala Pro Ser Val Phe Leu Phe Pro
 305 310 315 320
 Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr
 325 330 335
 Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn
 340 345 350
 Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg
 355 360 365
 Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val
 370 375 380
 Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser
 385 390 395 400
 Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys
 405 410 415
 Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp
 420 425 430
 Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe
 435 440 445
 Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu
 450 455 460
 Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe
 465 470 475 480
 Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly
 485 490 495
 Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr
 500 505 510
 Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
 515 520

<210> 15

<211> 1674

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: fusion polypeptide

<220>

<221> CDS

<222> {25}..(1653)

<400> 15

```

gtcgacccaa gtcggcttagc cacc atg gag aca gac aca ctc ctg cta tgg      51
          Met Glu Thr Asp Thr Leu Leu Trp
           1           5

```

```

gta ctg ctc tgg gtt cca ggt tcc act ggt act act agt tgt ggc aat     99

```

Val Leu Leu Leu Trp Val Pro Gly Ser Thr Gly Thr Ser Cys Gly Asn	
10 15 20 25	
ggc ttc att gaa act gga gag gag tgt gat tgt gga acc ccg gcc gaa	147
Gly Phe Ile Glu Thr Gly Glu Glu Cys Asp Cys Gly Thr Pro Ala Glu	
30 35 40	
tgt gtc ctt gaa gga gca gag tgc tgc aag aaa tgc acc ttg act cca	195
Cys Val Leu Glu Gly Ala Glu Cys Cys Lys Lys Cys Thr Leu Thr Gln	
45 50 55	
gac tct caa tgc agt gac ggt ctt tgc tgc aag aag tgc aag ttt cag	243
Asp Ser Gln Cys Ser Asp Gly Leu Cys Cys Lys Lys Cys Phe Gln	
60 65 70	
cct atg ggc act gtg tgc cga gaa gca gta aat gat tgt gat att cgt	291
Pro Met Gly Thr Val Cys Arg Glu Ala Val Asn Asp Cys Asp Ile Arg	
75 80 85	
gaa acg tgc tca gga aat tca agc cag tgc tgc cct aat att cat aas	339
Glu Thr Cys Ser Gly Asn Ser Ser Gln Cys Ala Pro Asn Ile His Lys	
90 95 100 105	
atg gat gga tat tca tgt gat ggt gtt cag gga att tgc ttt gga gga	387
Met Asp Gly Tyr Ser Cys Asp Gly Val Gln Gly Ile Cys Phe Gly Gly	
110 115 120	
aga tgc aaa acc aga gat aga caa tgc aaa tsc att tgg ggg caa aag	435
Arg Cys Lys Thr Arg Asp Arg Gln Cys Lys Tyr Ile Trp Gly Gln Lys	
125 130 135	
gtg aca gca tca gac aaa tat tgc tat gag aca ctg aat att gaa ggg	483
Val Thr Ala Ser Asp Lys Tyr Cys Tyr Glu Lys Leu Asn Ile Glu Gly	
140 145 150	
acc gag sag cgt aac tgc tgc tgg aaa gac aac gac aca tgg ata cag tgc	531
Thr Glu Lys Gly Asn Cys Gly Lys Asp Lys Asp Thr Trp Ile Gln Cys	
155 160 165	
aac aaa cgg gat gtg ctt tgt ggt tac ctt ttg tgt acc aat att ggc	579
Asn Lys Arg Asp Val Leu Cys Gly Tyr Leu Cys Thr Asn Ile Gly	
170 175 180 185	
aat atc cca agg ctt gga gaa ctc gat ggt gaa atc aca tcc act tta	627
Asn Ile Pro Arg Leu Gly Glu Leu Asp Gly Glu Ile Thr Ser Thr Leu	
190 195 200	
gtt gtg cag caa gga aga aca tta aac tgc agt ggt ggg cat gtt aag	675
Val Val Gln Gln Gly Arg Thr Leu Asn Cys Ser Gly Gly His Val Lys	
205 210 215	
ctt gaa gaa gat gta gat ctt ggc tat gtg gaa gat ggg aca cct tgt	723
Leu Glu Glu Asp Val Asp Leu Gly Tyr Val Glu Asp Gly Thr Pro Cys	
220 225 230	
ggt ccc caa atg atg tgc tta gaa cac agg tgt ctt cct gtg gtc tct	771
Gly Pro Gln Met Met Cys Leu Glu His Arg Cys Leu Pro Val Ala Ser	
235 240 245	
tcc aac ttt agt act tgc ttg agc agt aaa gaa ggc act att tgc tca	819
Phe Asn Phe Ser Thr Cys Leu Ser Ser Lys Glu Gly Thr Ile Cys Ser	
250 255 260 265	
gga aat gga gtt tgc agt aat gag ctg aag tgt gtg tgc aac aca cac	867
Gly Asn Gly Val Cys Ser Asn Glu Leu Lys Cys Val Cys Asn Arg His	
270 275 280	

tgg ata ggt tct gat tgc aac act tac ttc cct cac aat gat gat gca Trp Ile Gly Ser Asp Cys Asn Thr Tyr Phe Pro His Asn Asp Asp Ala	915
285 290 295	
aag act ggt atc act ctg tct ggc aat ggt gtt gct ggc acc aat gga Lys Thr Gly Ile Thr Leu Ser Gly Asn Gly Val Ala Gly Thr Asn Gly	963
300 305 310	
tct tgt gac aaa act cac aca tgc cca ccg tgc cca gca cct gaa gcc Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Ala	1011
315 320 325	
gag ggc gcg ccg tca gtc ttc ctc ttc ccc cca aaa ccc aag gac acc Glu Gly Ala Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr	1059
330 335 340 345	
ctc atg atc tcc cgg acc cct gag gtc aca tgc gtg gtg gtg gac gtg Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val	1107
350 355 360	
agc cac gaa gac cct gag gtc aag ttc aac tgg tac gtg gac ggc gtg Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val	1155
365 370 375	
gag gtg cat aat gcc aag aca aag ccg ccg gag gag gag cag tac aac agc Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser	1203
380 385 390	
acg tac cgg gtg gtc agc gtc ctc acc gtc ctg cac cag gac tgg ctg Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu	1251
395 400 405	
aat ggc aag gag tac aag tgc aag gtc tcc aac aas gcc ctc cca gcc Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala	1299
410 415 420 425	
ccc atc gag aaa acc atc tcc aaa gcc aaa ggg cag ccc cga gaa cca Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Glu Gln Pro Arg Glu Pro	1347
430 435 440	
cag gtg tac acc ctc cca tcc ccg gat gag ctg acc aag aac cag Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln	1395
445 450 455	
gtc agc ctg acc tgc ctg gtc aza ggc ttc tat ccc agc gac atc gcc Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala	1443
460 465 470	
gtg gag tgg gag agc aat ggg cag ccg gag aac aac tac aag acc acc Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr	1491
475 480 485	
cct ccc gtg ctg gac tcc gac ggc tcc ttc ttc ctc tac agc aag ctc Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu	1539
490 495 500 505	
acc gtg gac aag agc agg tgg cag cag ggg aac gtc ttc tca tgc tcc Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser	1587
510 515 520 525	
gtg atg cat gag gct ctg cac aac cac tac aac gag cag aac ctc tcc Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser	1635
525 530 535	
ctg tct ccg ggt aaa tga actagagccg cccgtacacaga t	1674

Leu Ser Pro Gly Lys
540

<210> 16
<211> 542
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: fusion polypeptide

<400> 16

Met	Glu	Thr	Asp	Thr	Leu	Leu	Leu	Trp	Val	Leu	Leu	Leu	Trp	Val	Pro
1	5								10					15	
Gly	Ser	Thr	Gly	Thr	Ser	Cys	Gly	Asn	Gly	Phe	Ile	Glu	Thr	Gly	Glu
20	20							25					30		
Glu	Cys	Asp	Cys	Gly	Thr	Pro	Ala	Glu	Cys	Val	Leu	Glu	Gly	Ala	Glu
35	35							40					45		
Cys	Cys	Lys	Lys	Cys	Thr	Leu	Thr	Gln	Asp	Ser	Cln	Cys	Ser	Asp	Gly
50	50							55					60		
Leu	Cys	Cys	Lys	Lys	Cys	Lys	Phe	Gln	Pro	Met	Gly	Thr	Val	Cys	Arg
65	65						70				75			80	
Glu	Ala	Val	Asn	Asp	Cys	Asp	Ile	Arg	Glu	Thr	Cys	Ser	Gly	Asn	Ser
85	85						90				90			95	
Ser	Gln	Cys	Ala	Pro	Asn	Ile	His	Lys	Met	Asp	Gly	Tyr	Ser	Cys	Asp
100	100						105				110				
Gly	Val	Gln	Gly	Ile	Cys	Phe	Gly	Gly	Arg	Cys	Thr	Arg	Asp	Arg	
115	115						120				125				
Gln	Cys	Lys	Tyr	Ile	Trp	Gly	Gln	Lys	Val	Thr	Ala	Ser	Asp	Lys	Tyr
130	130						135				140				
Cys	Tyr	Glu	Lys	Leu	Asn	Ile	Glu	Gly	Thr	Glu	Lys	Gly	Asn	Cys	Gly
145	145						150				155			160	
Lys	Asp	Lys	Asp	Thr	Trp	Ile	Gln	Cys	Asn	Lys	Arg	Asp	Val	Leu	Cys
165	165						170				175				
Gly	Tyr	Leu	Leu	Cys	Thr	Asn	Ile	Gly	Asn	Ile	Pro	Arg	Leu	Gly	Glu
180	180						185				190				
Leu	Asp	Gly	Glu	Ile	Thr	Ser	Thr	Leu	Val	Val	Gln	Gly	Arg	Thr	
195	195						200				205				
Leu	Asn	Cys	Ser	Gly	Gly	His	Val	Lys	Leu	Glu	Asp	Val	Asp	Leu	
210	210						215				220				
Gly	Tyr	Val	Glu	Asp	Gly	Thr	Pro	Cys	Gly	Pro	Gln	Met	Met	Cys	Leu
225	225						230				235			240	
Glu	Ris	Arg	Cys	Leu	Pro	Val	Ala	Ser	Phe	Asn	Phe	Ser	Thr	Cys	Leu
245	245						245				250			255	
Ser	Ser	Lys	Glu	Gly	Thr	Ile	Cys	Ser	Gly	Asn	Gly	Val	Cys	Ser	Asn
260	260						265				270				
Glu	Leu	Lys	Cys	Val	Cys	Asn	Arg	His	Trp	Ile	Gly	Ser	Asp	Cys	Asn
275	275						280				285				
Thr	Tyr	Phe	Pro	His	Asn	Asp	Asp	Ala	Lys	Thr	Gly	Ile	Thr	Leu	Ser
290	290						295				300				
Gly	Asn	Gly	Val	Ala	Gly	Thr	Asn	Gly	Ser	Cys	Asp	Lys	Thr	His	Thr
305	305						310				315			320	
Cys	Pro	Pro	Cys	Pro	Ala	Pro	Glu	Ala	Glu	Gly	Ala	Pro	Ser	Val	Phe
325	325						325				330			335	
Leu	Phe	Pro	Pro	Lys	Pro	Lys	Asp	Thr	Leu	Met	Ile	Ser	Arg	Thr	Pro
340	340						345				350				
Glu	Val	Thr	Cys	Val	Val	Val	Asp	Val	Ser	His	Glu	Asp	Pro	Glu	Val
355	355						360				365				
Lys	Phe	Asn	Trp	Tyr	Val	Asp	Gly	Val	Glu	Val	His	Asn	Ala	Lys	Thr
370	370						375				380				
Lys	Pro	Arg	Glu	Glu	Gln	Tyr	Asn	Ser	Thr	Tyr	Arg	Val	Val	Ser	Val
385	385						390				395			400	
Leu	Thr	Val	Leu	His	Gln	Asp	Trp	Ile	Asn	Gly	Lys	Glu	Tyr	Lys	Cys
405	405						405				410			415	
Lys	Val	Ser	Asn	Lys	Ala	Leu	Pro	Ala	Pro	Ile	Glu	Lys	Thr	Ile	Ser
420	420						425				425			430	

<210> 17

<211> 1668

<212> DNE

<313> Artificial Sequence

<220>

<223> Description of Artificial Sequence: fusion polypeptide

<220>

<221> CDS

<222> (25) .. (1647)

<400> 1.7

gtcgacccaa gctggctagc cacc atg gag aca gac aca ctc ctg cta tgg 51
Mer Glu Thr Asp Thr Leu Leu Leu Trp
1 5

```

gta ctg ctg ctc tgg gtt cca ggt tcc act ggt act agt tgt gga sat 99
Val Leu Leu Leu Trp Val Pro Gly Ser Thr Gly Thr Ser Cys Gly Asn
   10          15          20          25

```

gga tac gtc gaa gct ggg gag gag tgt gat tgt ggt ttt cat gtg gaa	147	
Gly Tyr Val Glu Ala Gly Glu Glu Cys Asp Cys Gly Phe His Val Glu		
30	35	40

tgc tat gga tta tgc tgt aag aaa tgt tcc ctc tcc aac ggg gct cac 195
 Cys Tyr Gly Leu Cys Cys Lys Lys Cys Ser Leu Ser Asn Gly Ala His
 45 50 55

tgc agc gac ggg ccc tgc tgt aac aat acc tca tgt ctt ttt cag cca	243
Cys Ser Asp Gly Pro Cys Cys Asn Asn Thr Ser Cys Leu Phe Gln Pro	
60 65 70	

```

cga ggg tat gaa tgc cgg gat gct gtg aac gag tgt gat att act gaa 291
Arg Gly Tyr Glu Cys Arg Asp Ala Val Asn Glu Cys Asp Ile Thr Glu
    75          80          85

```

tgc aag gcc aga gac aac cag tgt cag tac atc tgg gga aca aag gct 435
 Cys Lys Ala Arg Asp Asn Gln Cys Gln Tyr Ile Trp Gly Thr Lys Ala
 asn gln

gca ggg tct gac aag ttc tgc tat gaa aag ctg aat aca gaa ggc act Ala Gly Ser Asp Lys Phe Cys Tyr Glu Lys Leu Asn Thr Glu Gly Thr 140 145 150	483
gag aag gga aac tgc ggg aag gat gga gac cgg tgg att cag tgc agc Glu Lys Gly Asn Cys Gly Lys Asp Gly Asp Arg Trp Ile Gln Cys Ser 155 160 165	531
aaa cat gat gtg ttc tgt gga ttc tta ctc tgt acc aat ctt act cga Lys His Asp Val Phe Cys Gly Phe Leu Leu Cys Thr Asn Leu Thr Arg 170 175 180 185	579
gtt cca cgt att ggt cca ctt cag cgt gag atc att cca act tcc ttc Ala Pro Arg Ile Gly Gln Leu Gln Gly Glu Ile Ile Pro Thr Ser Phe 190 195 200	627
tac cat caa ggc cgg gtg att gac tgc aat ggt gcc cat gta gtt tta Tyr His Gln Gly Arg Val Ile Asp Cys Ser Gly Ala His Val Val Leu 205 210 215	675
cat gat gat acg gat gtg ggc tat gta gaa gat gga acg cca tgt ggc Asp Asp Asp Thr Asp Val Gly Tyr Val Glu Asp Gly Thr Pro Cys Gly 220 225 230	723
cog tct atg atg tgt tta gat cgg aag tgc cta caa att caa gcc cta Pro Ser Met Met Cys Leu Asp Arg Lys Cys Leu Gln Ile Gln Ala Leu 235 240 245	771
aat atg agc agc tgt cca ctc gat tcc aag ggt aaa gtc tgt tcc ggc Asn Met Ser Ser Cys Pro Leu Asp Ser Lys Gly Lys Val Cys Ser Gly 250 255 260 265	819
cat ggg gtg tgt agt aat gaa gcc acc tgc att tgt gat ttc acc tgg His Gly Val Cys Ser Asn Glu Ala Thr Cys Ile Cys Asp Phe Thr Trp 270 275 280	867
gca ggg aca gat tgc agt atc cgg gat cca gtt agg aac ctt cac ccc Ala Gly Thr Asp Cys Ser Ile Arg Asp Pro Val Arg Asn Leu His Pro 285 290 295	915
ccc aag gat gaa gga ccc aag ggt cct agt gcc acc aat aga tct tgt Pro Lys Asp Glu Gly Pro Lys Gly Pro Ser Ala Thr Asn Arg Ser Cys 300 305 310	963
gac aaa act cac aca tgc cca cog tgc cca gca cct gaa gcc gag ggc Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Ala Glu Gly 315 320 325	1011
ggc ccc tca gtc ttc ctc ttc ccc cca aac ccc smg gac acc ctc atg Ala Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 330 335 340 345	1059
atc tcc cgg acc cct gag gtc aca tgc gtg gtg gtg gac gtg agc cac Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His 350 355 360	1107
gaa gac cct gag gtc aag ttc aac tgg tac gtg gac ggc gtg gag gtg Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val 365 370 375	1155
cat aat gcc aag aca aag ccg cgg gag gag cag tac aac agc acg tac His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr 380 385 390	1203
cgg gtg gtc agc gtc ctc acc gtc ctg cac cag gag gac tgg ctg aat ggc	1251

Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly			
395	400	405	
aag gag tac aag tgc aag gtc tcc aac aaa gcc ctc cca gcc ccc atc			1299
Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile			
410	415	420	425
gag aaa acc atc tcc aaa gcc aaa ggg cag cga gaa cca cag gtg			1347
Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val			
430	435	440	
tac acc ctg ccc cca tcc cgg gat gag ctg acc aag aac cag gtc agc			1395
Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser			
445	450	455	
ctg acc tgc ctg gtc aaa ggc ttc tat ccc agc gac atc gcc gtg gag			1443
Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu			
460	465	470	
tgg gag aac aat ggg cag ccg gag aac aac tac aag acc acg cct ccc			1491
Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro			
475	480	485	
gtg ctg gac tcc gac ggc tcc ttc ttc ctc tac agc aag ctc acc gtg			1539
Val Leu Asp Ser Asp Gly Ser Phe Leu Tyr Ser Lys Leu Thr Val			
490	495	500	505
gac aag agc agg tgg cag cag ggg aac gtc ttc tca tgc tcc gtg atg			1587
Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met			
510	515	520	
cat gag gct ctg cac aac cac tac acg cag aag agc ctc tcc ctg tct			1635
His Glu Ala Leu His Asn His Tyr Thr Glu Lys Ser Leu Ser Leu Ser			
525	530	535	
ccg ggt aaa tga acttagagccg ccgtatacaga t			1668
Pro Gly Lys			
540			

<210> 18

<211> 540

<212> PPT

<213> Artificial Sequence

<223> Description of Artificial Sequence: fusion polypeptide

<400> 18

Met Glu Thr Asp Thr Leu Leu Trp Val Leu Leu Trp Val Pro			
1	5	10	15
Gly Ser Thr Gly Thr Ser Cys Gly Asn Gly Tyr Val Glu Ala Gly Glu			
20	25	30	
Glu Cys Asp Cys Gly Phe His Val Glu Cys Tyr Gly Leu Cys Cys Lys			
35	40	45	
Lys Cys Ser Leu Ser Asn Gly Ala His Cys Ser Asp Gly Pro Cys Cys			
50	55	60	
Asn Asn Thr Ser Cys Leu Phe Gln Pro Arg Gly Tyr Glu Cys Arg Asp			
65	70	75	80
Ala Val Asn Glu Cys Asp Ile Thr Glu Tyr Cys Thr Gly Asp Ser Gly			
85	90	95	
Gln Cys Pro Pro Asn Leu His Lys Gln Asp Gly Tyr Ala Cys Asn Gln			
100	105	110	
Asn Gln Gly Arg Cys Tyr Asn Gly Glu Cys Lys Ala Arg Asp Asn Gln			
115	120	125	
Cys Gln Tyr Ile Trp Gly Thr Lys Ala Ala Gly Ser Asp Lys Phe Cys			
130	135	140	

Tyr Glu Lys Leu Asn Thr Glu Gly Thr Glu Lys Gly Asn Cys Gly Lys
 145 196 155 160
 Asp Gly Asp Arg Trp Ile Gin Cys Ser Lys His Asp Val Phe Cys Gly
 165 170 175
 Phe Leu Leu Cys Thr Asn Leu Thr Arg Ala Pro Arg Ile Gly Gln Leu
 180 185 190
 Gln Gly Glu Ile Ile Pro Thr Ser Phe Tyr His Gln Gly Arg Val Ile
 195 200 205
 Asp Cys Ser Gly Ala His Val Val Leu Asp Asp Asp Thr Asp Val Gly
 210 215 220
 Tyr Val Glu Asp Gly Thr Pro Cys Gly Pro Ser Met Met Cys Leu Asp
 225 230 235 240
 Arg Lys Cys Leu Gln Ile Gln Ala Leu Asn Met Ser Ser Cys Pro Leu
 245 250 255
 Asp Ser Lys Gly Lys Val Cys Ser Gly His Gly Val Cys Ser Asn Glu
 260 265 270
 Ala Thr Cys Ile Cys Asp Phe Thr Trp Ala Gly Thr Asp Cys Ser Ile
 275 280 285
 Arg Asp Pro Val Arg Asn Leu His Pro Pro Lys Asp Glu Gly Pro Lys
 290 295 300
 Gly Pro Ser Ala Thr Asn Arg Ser Cys Asp Lys Thr His Thr Cys Pro
 305 310 315 320
 Pro Cys Pro Ala Pro Glu Ala Glu Gly Ala Pro Ser Val Phe Leu Phe
 325 330 335
 Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val
 340 345 350
 Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe
 355 360 365
 Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro
 370 375 380
 Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr
 385 390 395 400
 Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val
 405 410 415
 Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala
 420 425 430
 Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg
 435 440 445
 Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly
 450 455 460
 Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro
 465 470 475 480
 Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser
 485 490 495
 Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln
 500 505 510
 Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His
 515 520 525
 Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
 530 535 540

<210> 19

<211> 3

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Consensus binding motif

<400> 19

Arg Gly Asp

1

<210> 20
 <211> 67
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: consensus
 disintegrin domain

<220>
 <221> VARIANT
 <222> (5)..(9)
 <223> 3-5 varying residues in a consensus sequence

<220>
 <221> VARIANT
 <222> (11)..(16)
 <223> 3-6 varying residues in a consensus sequence

<220>
 <221> VARIANT
 <222> (19)..(22)
 <223> 2-4 varying residues in a consensus sequence

<220>
 <221> VARIANT
 <222> (24)..(30)
 <223> 7 varying residues in a consensus sequence

<220>
 <221> VARIANT
 <222> (32)..(37)
 <223> 4-6 varying residues in a consensus sequence

<220>
 <221> VARIANT
 <222> (40)..(43)
 <223> 2-4 varying residues in a consensus sequence

<220>
 <221> VARIANT
 <222> (45)..(52)
 <223> 8 varying residues in a consensus sequence

<220>
 <221> VARIANT
 <222> (54)..(60)
 <223> 5-7 varying residues in a consensus sequence

<220>
 <221> VARIANT
 <222> (62)..(66)
 <223> 3-5 varying residues in a consensus sequence

<400> 20
 Cys Asp Cys Gly Xaa Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa
 1 5 10 15

Cys	Cys	Xaa	Xaa	Xaa	Cys	Xaa	Xaa	Xaa	Xaa	Xaa	Xaa
20	.				25				30		

Xaa Xaa Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Cys Xaa Xaa Xaa
 35 40 45 .

Xaa Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Cys Xaa Xaa Xaa
 50 55 60 .

Xaa Xaa Cys

<210> 21
<211> 1725
<212> DNA
<213> Artificial Sequence

<220>
<221> Description of Artificial Sequence: fusion
polypeptide

<220>
<221> CDS
<222> (118) .. (1704)

<400> 21
gggtttcccg agtcacgacg ttgtaaaacg acggccagtg aatgtataa cgaactca 60

```

tagggcgaat tgggtacccgg gccccccctca gaggtcgacc caaactggct accgacc 117
atg gag aca gac aca ctc ctg cta tgg gta ctg ctg ctc tgg gtt cca 165
Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro

```

```

ggt tcc act ggt act agt tgt ggg aat ggt gty gtt gaa gaa gga gaa 213
Gly Ser Thr Gly Thr Ser Cys Gly Asn Gly Val Val Glu Glu Gly Glu
          20      25      30

```

```

gag tgt gac tgt gga cct tta aag cat tgt gca aaa gat ccc tgc tgt 261
Glu Cys Asp Cys Gly Pro Leu Lys His Cys Ala Lys Asp Pro Cys Cys
      35           40           45

```

```

ctg tca aat tgc act ctg act gat ggt tct act tgt gct ttt ggg ctt 309
Leu Ser Asn Cys Thr Leu Thr Asp Gly Ser Thr Cys Ala Phe Gly Leu
      50          55          60

```

tgt tgc aaa gac tgc aag ttc cta cca tca ggg aaa gtg tgt aga aag 357
 Cys Cys Lys Asp Cys Lys Phe Leu Pro Ser Gly Lys Val Cys Arg Lys
 65 70 75 80

```

gag gtc aat gaa tgt gat ctt cca gag tgg tgc aat ggt act tcc cat 405
Glu Val Asn Glu Cys Asp Leu Pro Glu Trp Cys Asn Gly Thr Ser His
          85           90           95

```

```

aag tgc cca gat gac ttt tat gtg gaa gat gga att ccc tgt aag gag 453
Lys Cys Pro Asp Asp Phe Tyr Val Glu Asp Gly Ile Pro Cys Lys Glu
      100          105          110

```

```

agg ggc tac tgc tat gaa aag ego tgt cat gac cgc eat gaa cag tgt 501
Arg Gly Tyr Cys Tyr Glu Lys Ser Cys His Asp Arg Asn Glu Gln Cys
    115           120           125

```

```

agg agg att ttt ggt gca ggc gca aat act gca sgt gag act tgc tac 549
Arg Arg Ile Phe Gly Ala Gly Ala Asn Thr Ala Ser Glu Thr Cys Tyr
130          135          140

```

aaa gaa ttg aac acc tta ggt gac cgt gtt ggt cac tgt ggt atc aaa	597
Lys Glu Leu Asn Thr Leu Gly Asp Arg Val Gly His Cys Gly Ile Lys	
145 150 155 160	

```

act gct acg tat ata aag tgt eat atc tca gat gtc cag tgt gga aga 645
Asn Ala Thr Tyr Ile Lys Cys Asn Ile Ser Asp Val Gln Cys Gly Arg
          165           170           175

```

att cag tgt gag aat gtg aca gaa att ccc aat atg agt gat cat act Ile Gln Cys Glu Asn Val Thr Glu Ile Pro Asn Met Ser Asp His Thr 180 185 190	693
ect gtg cat tgg gct cgc ttc eat gac ate atg tgc tgg act ect gat Thr Val His Trp Ala Arg Phe Asn Asp Ile Met Cys Trp Ser Thr Asp 195 200 205	741
tac cat ttg ggg atg aag gga cct gat att ggt gaa gtg aaa gat gga Tyr His Leu Gly Met Lys Gly Pro Asp Ile Gly Glu Val Lys Asp Gly 210 215 220	789
aca gag tgt ggg ata gat cct ata tgc atc cac agg cac tgt gtc cat Thr Glu Cys Gly Ile Asp His Ile Cys Ile His Arg His Cys Val His 225 230 235 240	837
ata acc atc ttg aat agt aat tgc tca cct gca ttt tgt aac aag agg Ile Thr Ile Leu Asn Ser Asn Cys Ser Pro Ala Phe Cys Asn Lys Arg 245 250 255	885
ggc atc tgc aac aat aac ctc ctc tgc cat tgc aat tat ctg tgg gac Gly Ile Cys Asn Asn Lys His His Cys His Cys Asn Tyr Leu Trp Asp 260 265 270	933
cet ccc aac tgc ctg ata aua ggc tat ggc ggt aat gtt gtc aat ggc Pro Pro Asn Cys Leu Ile Lys Gly Tyr Gly Gly Ser Val Asp Ser Gly 275 280 285	981
cca ccc cct aag aga aag aag aad aag aag aag aag tct tgt gac aat act Pro Pro Pro Lys Arg Lys Lys Lys Lys Arg Ser Cys Asp Lys Thr 290 295 300	1029
cac aca tgc cca ccg tgc cca gca cct gaa ggc gag ggc ggc ccg tca His Thr Cys Pro Pro Cys Pro Ala Pro Glu Ala Glu Gly Ala Pro Ser 305 310 315 320	1077
gtc ttc ctc ttc ccc cca aua ccc aag gac acc ctc atg atc tcc egg Val Phe Leu Phe Pro Pro Lys Pro Asp Thr Leu Met Ile Ser Arg 325 330 335	1125
acc cct gag gtc aca tgc gtg gtg gac gtg aat ccc gaa gac cct Thr Pro Glu Val Thr Cys Val Val Asp Val Ser His Glu Asp Pro 340 345 350	1173
gag gtc aag ttc aac tgg tac gtg gac ggc gtg gag gtg cat aat gcc Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala 355 360 365	1221
aag aca aag ccg ccg gag gag cag tac aac aac agc acc tac ccg gtg gtc Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val 370 375 380	1269
agg gtc ctc acc gtc ctg cac cag gac tgg ctg aat ggc aag gag tac Ser Val Leu Thr Val His Gln Asp Trp Leu Asn Gly Lys Glu Tyr 385 390 395 400	1317
aag tgc aag gtc tcc aac aua ggc ctc cca gcc ccc atc gag aat acc Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr 405 410 415	1365
att tcc aaa gcc aua ggg cag ccc cga gaa cca cag gtg tac acc ctg Ile Ser Lys Ala Lys Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu 420 425 430	1413
ccc cca tcc ccg gat gag ctg acc aag aac cag gtc aat ctg acc tgc ccc	1461

Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys			
435	440	445	
ctg gtc aaa ggc ttc tat ccc agc gac atc gcc gtg gag tgg gag agc			1509
Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser			
450	455	460	
aat ggg cag ccg gag aac aac tac aag acc acg cct ccc gtg ctg gac			1557
Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp			
465	470	475	480
tcc gac ggc rcc ttc ttc ctc tac agc aag ctc acc gtg gac aag agc			1605
Ser Asp Gly Ser Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser			
485	490	495	
agg tgg cag cag ggg aac gtc ttc tca tgc tcc gtg atg cat gag gct			1653
Arg Trp Glu Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala			
500	505	510	
ctg ccc asc cac tac acg cag aag aac ctc tcc ctg tcc ccg ggt aaa			1701
Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys			
515	520	525	
tga antagagcgcccgcttacaga t			1725
<210> 22			
<211> 528			
<212> PRT			
<213> Artificial Sequence			
<223> Description of Artificial Sequence: fusion polypeptide			
<400> 22			
Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro			
1	5	10	15
Gly Ser Thr Gly Thr Ser Cys Gly Asn Gly Val Val Glu Glu Gly Glu			
20	25	30	
Glu Cys Asp Cys Gly Pro Leu Lys His Cys Ala Lys Asp Pro Cys Cys			
35	40	45	
Leu Ser Asn Cys Thr Leu Thr Asp Gly Ser Thr Cys Ala Phe Gly Leu			
50	55	60	
Cys Cys Lys Asp Cys Lys Phe Leu Pro Ser Gly Lys Val Cys Arg Lys			
65	70	75	80
Glu Val Asn Glu Cys Asp Leu Pro Glu Trp Cys Asn Gly Thr Ser His			
85	90	95	
Lys Cys Pro Asp Asp Phe Tyr Val Glu Asp Gly Ile Pro Cys Lys Glu			
100	105	110	
Arg Gly Tyr Cys Tyr Glu Lys Ser Cys His Asp Arg Asn Glu Gln Cys			
115	120	125	
Arg Arg Ile Phe Gly Ala Gly Ala Asn Thr Ala Ser Glu Thr Cys Tyr			
130	135	140	
Lys Glu Leu Asn Thr Leu Gly Asp Arg Val Gly His Cys Gly Ile Lys			
145	150	155	160
Asn Ala Thr Tyr Ile Lys Cys Asn Ile Ser Asp Val Gln Cys Gly Arg			
165	170	175	
Ile Gln Cys Glu Asn Val Thr Glu Ile Pro Asn Met Ser Asp His Thr			
180	185	190	
Thr Val His Trp Ala Arg Phe Asn Asp Ile Met Cys Trp Ser Thr Asp			
195	200	205	
Tyr His Leu Gly Met Lys Gly Pro Asp Ile Gly Glu Val Lys Asp Gly			
210	215	220	
Thr Glu Cys Gly Ile Asp His Ile Cys Ile His Arg His Cys Val His			
225	230	235	240
Ile Thr Ile Leu Asn Ser Asn Cys Ser Pro Ala Phe Cys Asn Lys Arg			
245	250	255	

Gly Ile Cys Asn Asn Lys His His Cys His Cys Asn Tyr Leu Trp Asp
 260 265 270
 Pro Pro Asn Cys Leu Ile Lys Gly Tyr Gly Gly Ser Val Asp Ser Gly
 275 280 285
 Pro Pro Pro Lys Arg Lys Lys Lys Lys Arg Ser Cys Asp Lys Thr
 290 295 300
 His Thr Cys Pro Pro Cys Pro Ala Pro Glu Ala Glu Gly Ala Pro Ser
 305 310 315 320
 Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg
 325 330 335
 Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro
 340 345 350
 Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala
 355 360 365
 Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val
 370 375 380
 Ser Val Leu Thr Val Leu His Glu Asp Trp Leu Asn Gly Lys Glu Tyr
 385 390 395 400
 Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr
 405 410 415
 Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu
 420 425 430
 Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Glu Val Ser Leu Thr Cys
 435 440 445
 Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser
 450 455 460
 Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp
 465 470 475 480
 Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser
 485 490 495
 Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala
 500 505 510
 Leu His Asn His Tyr Thr Cys Lys Ser Leu Ser Leu Ser Pro Gly Lys
 515 520 525