# Project in TMA4180

Harlad

April 14, 2015

## 0.1 The problem at hand

We want to examine a hanging chain, given as equation (1),

$$E(x_{1,1},\cdots,x_{1,n},x_{2,1},\cdots,y_{2,n}) := \sum_{i=1}^{n+1} m_i g^{\frac{x_{2,i} - x_{2,i-1}}{2}}$$
(1)

with constraints from equation (2)

$$c_i(x_{1,1},\cdots,x_{1,n},x_{2,1},\cdots,x_{2,n}) = (x_{1,i}-x_{1,i-1})^2 + (x_{2,i}-x_{2,i-1})^2 - l_i^2 = 0$$
 (2)

as a minimization problem, where  $x_{1,i}$ ,  $x_{2,i}$  are two spatial directions. We denote  $\Omega$  as the set of feasible configurations of the chain, and  $G_0 = (0,0)$ ,  $G_1 = (a,b)$  as the start and endpoint of the chain. !!!!!!!!presentere litt Teori!!!!!!!Lage algo som lser problemet.!!!!!!

## 0.2 Some theory

#### 0.2.1 Existence of solution

First we want to show that there exists a solution. For that we get som help from theorem 0.2.1.

**Theorem 0.2.1.** [1] Assume that  $f: \Omega \to \mathbb{R} \cup \{+\infty\}$  Then f has at least one global minimizer in  $\Omega$  if

- $\Omega$  is non-empty, closed and bounded.
- $f: \Omega \to \mathbb{R}$  continuously.

*Proof.*  $\Omega$  is non-empty if and only if non of the numbers  $||G_0-G_1||, l_1, \dots, l_{n+1}$  are lagrer than the sum of all the others. Since equation (2) is closed and bounded, so must  $\Omega$  be. Clearly equation (1) is linear, thus also continuous.

#### 0.2.2 KKT conditions

KKT conditions are first order necessary conditions for a solution in nonlinear programming to be optimal [6]. It is therefore of great importance that these conditions are fulfilled. The KKT conditions with equality constraints are given in theorem 0.2.2.

**Theorem 0.2.2.** [2] Assume  $x^*$  is a optimal point, and that

$$\mathcal{L}(x^*; \lambda^*) = E(x^*) - \sum_{i=1}^{n+1} \lambda_i c_i(x^*)$$

If the following conditions hold, we say that  $x^*$  is a KKT point.

1. 
$$\nabla_x \mathcal{L}(x^*, \lambda^*) = 0$$

2. 
$$c_i(x^*) = 0$$

Substituting equation (1) and equation (2) into theorem 0.2.2, we obtain the KKT conditions for our problem, given in equation (3).

$$\nabla_{x_{1,i}} \mathcal{L}(x^*, \lambda^*) = -2\lambda_i (x_{1,i} - x_{1,i-1}) + 2\lambda_{i+1} (x_{1,i+1} - x_{1,i}) = 0 \quad (3)$$

$$\nabla_{x_{1,i}} \mathcal{L}(x^*, \lambda^*) = -2\lambda_i (x_{1,i} - x_{1,i-1}) + 2\lambda_{i+1} (x_{1,i+1} - x_{1,i}) = 0 \quad (3)$$

$$\nabla_{x_{2,i}} \mathcal{L}(x^*, \lambda^*) = m_i g - 2\lambda_i (x_{2,i} - x_{2,i-1}) + 2\lambda_{i+1} (x_{2,i+1} - x_{2,i}) = 0 \quad (4)$$

$$c_i(x) = (x_{1,i} - x_{1,i-1})^2 + (y_{2,i} - y_{2,i-1})^2 - l_i^2 = 0 \quad (5)$$

$$c_i(x)$$
 =  $(x_{1,i} - x_{1,i-1})^2 + (y_{2,i} - y_{2,i-1})^2 - l_i^2$  = 0 (5)

We are also interested in what will happen if a = 0, and there exists a feasible configuration of the chain where  $x_{1,i} = 0$  for all i. This means that the whole chain is contained in a vertical line. In this special case the conditions in equation (3) simplifies a to equation (6).

$$m_i g - 2\lambda_i (x_{2,i} - x_{2,i-1}) + 2\lambda_{i+1} (x_{2,i+1} - x_{2,i}) = 0$$
 (6)

$$(x_{2,i} - x_{2,i-1})^2 - l_i^2 = 0 (7)$$

More generally, equation (6) can be written as equation (8).

$$\begin{pmatrix}
l_1 & -l_2 & 0 & \cdots & 0 \\
0 & l_2 & -l_3 & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & l_n & -l_{n+1}
\end{pmatrix}
\begin{pmatrix}
\lambda_1 \\
\lambda_2 \\
\vdots \\
\lambda_n \\
\lambda_{n+1}
\end{pmatrix} = \frac{g}{2} \begin{pmatrix}
m_1 \\
m_2 \\
\vdots \\
m_n \\
m_{n+1}
\end{pmatrix}$$
(8)

The linear system presented in equation (8) has n equations with n+1 unknowns and will always yield a solution. It is important to notice that even though the KKT conditions are satisfied, this might not be the optimal solution. !!!!!!!!!Skrive nr dette ikke er optimal lsning!!!!!!!!!!!!!!

#### 0.2.3LICQ conditions

LICQ conditions with equality constraints are given in definition 0.2.1.

**Definition 0.2.1.** [3] Given a point x and the set of all constraints, C(x), we say that the linear independence constraint qualification (LICQ) holds if the set of constraint gradients  $\{\nabla c_i(x), i \in C(x)\}$  is linearly independent.

We now want to show that if the LICQ conditions does not hold, then all the links in the chain are parallel.

*Proof.* Given two dependant vectors a, b, we know that

$$\lambda_1 a + \lambda_2 b = 0 \rightarrow a = -\lambda_2/\lambda_1 b$$

So they are parallel. By assumption, all  $\nabla c_i(x)$  are linearly dependant thus all  $\nabla c_i(x)$  are parallel.

## 0.3 Solving the problem

#### 0.3.1 How to find the solution

The greates difficulty with the problem presented in equation (1) is the need to satisfy constraints in equation(2). The augmented lagrangian method is a method that simplifies the problem to only minimize equation (9) in each iteration, the full method is given in algorithm 1.

$$\mathcal{L}(x,\lambda,\mu) = E(x) - \sum_{i=1}^{n+1} \lambda c_i(x) + \frac{\mu}{2} \sum_{i=1}^{n+1} c_i(x)$$
 (9)

#### Algorithm 1 [4] Augmented lagrangian metod

```
Start with x_0, \lambda_0 and \mu_0

for k = 1, 2, \cdots do

Find x_{k+1} minimizing \mathcal{L}(x_k, \lambda_i^k, \mu_k)

Set \lambda_i^{k+1} = \lambda_i^k - \mu_k c_i(x_{k+1})

Choose \mu_{k+1} > \mu_k

end for
```

!!!!!!!!Harald m vise at metoden vil gi rett lsning!!!!!!!!!!!!!

**Algorithm 2** [5] Newton's method and steepest decent method with backtracking

```
Start with x_0, \lambda_0 and \mu_0

Set \gamma < 1, \rho < 1

for k = 1, 2, \cdots do

Find \mathcal{N} = \nabla C(x_k), \mathcal{H} = \nabla^2 C(x_k).

Set p = -\mathcal{H} \setminus \mathcal{N}

if \mathcal{N}^\top \mathcal{H} \mathcal{N} \geq 0 then

Set p = -\mathcal{N}

end if

Set \alpha = 1

while E(x_k + \alpha p) > E(x_k) + \gamma \alpha \mathcal{N}' p do

\alpha = \rho \alpha

end while

x_{k+1} = x_k + \alpha p

end for
```

### 0.3.2 Implementation

The algorithms presented in section 0.3.1 where implemented, and can be run with the script runthing.m, and should be self explanatory. The implementation of algorithm 1 is called alf.m, and the implementation of algorithm 2 is called minimizer.m.

#### 0.4 Some results

Some results from running runthing with different chains are shown in figure 1.

## 0.4.1 What about run time?

### 0.5 Discussion



Figure 1: Examples of hanging chains

## **Bibliography**

- [1] J. Nocedal and S. Wright *Numerical Optimization*. Theorem 2nd edition, 2006.
- [2] J. Nocedal and S. Wright *Numerical Optimization*. Theorem 12.1 page 321 2nd edition, 2006.
- [3] J. Nocedal and S. Wright *Numerical Optimization*. Definition 12.4 page 321 2nd edition, 2006.
- [4] J. Nocedal and S. Wright *Numerical Optimization*. Framework 17.3 page 515 2nd edition, 2006.
- [5] J. Nocedal and S. Wright *Numerical Optimization*. Algorithm 3.2 page 37 2nd edition, 2006.
- [6] Karush-Kuhn-Tucker conditions http://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker\_conditions