

Quadrupole Tune Identification by Pattern Matching

Jure Beričič :: Thomas Jefferson National Accelerator Facility :: bericic@jlab.org

Super High Momentum Spectrometer

- new spectrometer for JLab's Hall C
- optics defined by five magnets:
- 3° horizontal bender, three quadrupoles and 18.4° vertical bender
- Q1 and Q3 have vertical focusing and Q2 horizontal

Max Gradient: 8.9 T/m EFL: 2.14 m

point to point focus

Establishing Optimal Tune

- need to establish optimal tune for quadrupoles during commissioning
- look at changes of patterns in focal plane when changing magnet's strength
- four focal plane variables
 - locations in dispersive and non-dispersive directions: $x_{\rm fp}$ and $y_{\rm fp}$
 - corresponding angles: $x'_{\rm fp}$ and $y'_{\rm fp}$
- coarse tuning done with \$^{12}\$C quasi-elastic scattering and "hourglass" patterns

- fine tuning done with ¹²C elastic scattering and inner sieve
- ullet sieve: $0.6\,\mathrm{cm}$ diameter holes on $2.5\,\mathrm{cm} imes 1.64\,\mathrm{cm}$ grid

Problem?

- in reality each of three quadrupoles can be offset from optimal tune
- remember, have "inverse" problem
 - need to figure out which tune produced observed patterns
 - not how the pattern for a given tune would look like
- need to disetangle effect of each magnet
- quadrupoles have similar effects on patterns, especially Q1 and Q3

Database Generation

- ran simulation for different settings of quadrupoled
- created a 3D lookup table table of focal plane patterns

- selected ray of events corresponding to each sieve hole using $y'_{\rm fp}$ vs $x'_{\rm fp}$ plot
- determined a centroid for these rays in focal plane variables
- stored these points in a database for later comparison

Pattern Matching

- have an unknown tune
- fit the pattern as described in Database generation bubble
- calculate distance to each of the tunes in the grid by

$$d = \sum_{\text{holes}} \left[\frac{(x_{\text{fp}} - \tilde{x}_{\text{fp}})^2}{l_x^2} + \frac{(y_{\text{fp}} - \tilde{y}_{\text{fp}})^2}{l_y^2} + \frac{(x'_{\text{fp}} - \tilde{x}'_{\text{fp}})^2}{l_{x'}^2} + \frac{(y'_{\text{fp}} - \tilde{y}'_{\text{fp}})^2}{l_{y'}^2} \right]$$

- ullet l_i are typical sizes to normalize contribution of each coordinate
- compare patterns of tunes with smallest distances to unknown tune

Results

- ideally, the closest grid tune would have the smallest distance to unknown tune
- results for "unknown" tune: Q1 +0.84% Q2 -0.78% Q3 +1.10%

i	d	Q1 [%]	Q2 [%]	Q3 [%]
1	0.01216	0.8	-0.8	1.2
2	0.01364	1.2	-0.8	0.8
3	0.01419	0.4	-0.8	1.2
4	0.06437	0.8	-0.8	0.8
5	0.10286	1.2	-0.8	1.2

- unfortunately, closest tune does not always have smallest distance
- usually the Q2 matching is very accurate
- can have difficulties matching Q1 and Q3
- however, a good match is achieved by "averaging"
- \bullet after averaging first three results: Q1 +0.80% Q2 -0.80% Q3 +1.10%

Possible Improvements

- try interpolating grid?
- try fitting pattern dependence on quadrupole changes?
- use neural networks?

Conclusion

- characterizing unknown tunes by eye is tedious when all quadrupoles are offset
- the automatic pattern recognition works reasonably well
- produces good first guess of where to look
- sometimes has problems with characterizing Q1 and Q3
- averaging helps produce better results
- accuracy limited by grid spacing