ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA CAMPUS DI CESENA

Corso di Laurea triennale in Inge	gneria e Scienze Informatiche
-----------------------------------	-------------------------------

Image Denoising Technique with Neural Network

Relatore:
Prof. Lazzaro Damiana

Co/Contro Relatore

Dott. Ezio Greggio

Candidato:

Matteo Vanni

Matricola: 0000935584

Contents

1	Articolanzio	5
	1.1 Panoramica sul problema	5
	1.2 Utilizzo di modelli di Deep Learning	5
	1.3 Dataset utilizzati	5
2	Decsrizione delle reti	7
	2.1 Autoencoder	7
	2.2 RIDNet	7
3	Analisi ed ottimizzazione	9
	3.1 Prestazioni	9
	3.2 Quantizzazione dei modelli	9
	3.3 Analisi dei modelli	
4	Bibliografia	11

4 CONTENTS

1 Articolanzio

1.1 Panoramica sul problema

L'image denoising è il processo di rimozione di rumore da un'immagine.

Il rumore, che è causato da svariate fonti, quali foto fatte in condizioni di scarsa illuminazione o problemi che corrompono i file, causa perdita d'informazione sull'immagine.

Cos è il rumore? Un aggiunta casuale di pixel che non appartengono all'immagine originale e ce ne sono di varie tipologie:

Impulse Noise(IN) dove i pixel sono completamente diversi da quelli attorno. Esistono due categorie di IN: Salt and Pepper Noise(SPN) e Random Valued Impulse Noise(RVIN).

Additive White Gaussian Noise(AWGN) cambia ogni pixel dall'originale di una piccola quantità.

1.2 Utilizzo di modelli di Deep Learning

É essenziale rimuovere il rumore e ristabilire l'immagine originale dove riottenere l'immagine originale è importante per prestazioni robuste o ricostruire le informazioni mancanti è molto utile, come immagini astronomiche di oggetti molto lontani.

Le reti neurali convoluzionali lavorano bene con le immagini e ne utilizzeremo N, menzionate in alcuni paper di ricerca e compareremo i risultati di ogni modello.

1.3 Dataset utilizzati

2 Decsrizione delle reti

- 2.1 Autoencoder
- 2.2 RIDNet

3 Analisi ed ottimizzazione

- 3.1 Prestazioni
- 3.2 Quantizzazione dei modelli
- 3.3 Analisi dei modelli

4 Bibliografia

• ¡nome¿