Linear Regression

Analytical solution, gradient descent, feature expansion

Machine Learning and Data Mining, 2021

Abdalaziz Al-Maeeni

National Research University Higher School of Economics

Why study linear models?

Linear models in a nutshell

Regression:

$$\hat{f}(x) = \theta^{\mathrm{T}} x$$

Classification:

$$\hat{f}(x) = \mathbb{I} \big[\theta^{\mathrm{T}} x > 0 \big]$$

Outputs linear in inputs

Linear models in a nutshell

Regression:

Classification:

$$\hat{f}(x) = \mathbb{I} \big[\theta^{\mathrm{T}} x > 0 \big]$$

Outputs linear in inputs

Linear models in a nutshell

Regression:

Classification:

Outputs linear in inputs

The hidden power

► Linearly inseparable — separable by transforming the features

The hidden power

► Linearly inseparable — separable by transforming the features

Building block for deep models

Neural network

Better intuition for deep neural networks training

Interpretability

One can take a look at the weights corresponding to each of the features separately, e.g.:

Note: this example is not based on real data, but rather taken from the lecturer's imagination

```
PredictedIncome = 1000 + 10 \times Age + 1000 \times HasHigherEducation - 0.1 \times DistanceFromCapital
```

- Higher weight means more impact on the prediction
 - Note: features need to be of same scale if you want to compare their weights

Linear Regression

Linear Regression model

Mean squared error (MSE):

Mean squared error (MSE):

Mean absolute error (MAE):

Mean squared error (MSE):

Mean absolute error (MAE):

Mean absolute percentage error (MAPE):

Mean squared logarithmic error (MSLE):

Mean squared error (MSE):

Mean absolute error (MAE):

Mean absolute percentage error (MAPE):

Mean squared logarithmic error (MSLE):

 Different loss functions also are related to different assumptions about the data

Recall the design matrix:

$$X = \begin{bmatrix} x_1^1 & x_1^2 & \cdots & x_1^d \\ x_1^2 & x_2^2 & \cdots & x_2^d \\ \vdots & \vdots & \ddots & \vdots \\ x_N^1 & x_N^2 & \cdots & x_N^d \end{bmatrix}$$
 features objects

Aziz Al-Maeeni, NRU HSE

Recall the design matrix:

$$X = \begin{bmatrix} x_1^1 & x_1^2 & \cdots & x_1^d \\ x_1^1 & x_1^2 & \cdots & x_2^d \\ \vdots & \vdots & \ddots & \vdots \\ x_N^1 & x_N^2 & \cdots & x_N^d \end{bmatrix}$$
 features objects

We can use it to rewrite the MSE loss:

$$\mathcal{L}_{\text{MSE}} = \frac{1}{N} \sum_{i=1...N} (y_i - \theta^{T} x_i)^2 = \frac{1}{N} ||y - X\theta||^2$$

$$y = (y_1, y_2, ..., y_N)^T$$
 – vector of targets

$$\mathscr{L}_{\text{MSE}} \sim \left\| y - X\theta \right\|^2 \rightarrow \min_{\theta}$$

$$\begin{cases} \frac{\partial}{\partial \theta} \mathcal{L}_{\text{MSE}} = 0\\ \frac{\partial^2}{\partial \theta \partial \theta^{\text{T}}} \mathcal{L}_{\text{MSE}} > 0 \text{ (pos. def.)} \end{cases}$$

Working on the 1st derivative*:

$$\frac{\partial}{\partial \theta} \mathcal{L}_{\text{MSE}} \sim \frac{\partial}{\partial \theta} (y - X\theta)^{\text{T}} (y - X\theta)$$

^{*}some useful info about matrix calculus: https://en.wikipedia.org/wiki/Matrix_calculus#Identities

Working on the 1st derivative*:

$$\frac{\partial}{\partial \theta} \mathcal{L}_{\text{MSE}} \sim \frac{\partial}{\partial \theta} (y - X\theta)^{\text{T}} (y - X\theta) = -2X^{\text{T}} (y - X\theta) = 0$$

^{*}some useful info about matrix calculus: https://en.wikipedia.org/wiki/Matrix calculus#Identities

Working on the 1st derivative*:

$$\frac{\partial}{\partial \theta} \mathcal{L}_{\text{MSE}} \sim \frac{\partial}{\partial \theta} (y - X\theta)^{\text{T}} (y - X\theta) = -2X^{\text{T}} (y - X\theta) = 0$$

$$X^{\mathrm{T}}y - X^{\mathrm{T}}X\theta = 0$$

^{*}some useful info about matrix calculus: https://en.wikipedia.org/wiki/Matrix_calculus#Identities

Working on the 1st derivative*:

$$\frac{\partial}{\partial \theta} \mathcal{L}_{\text{MSE}} \sim \frac{\partial}{\partial \theta} (y - X\theta)^{\text{T}} (y - X\theta) = -2X^{\text{T}} (y - X\theta) = 0$$

$$X^{\mathrm{T}}y - X^{\mathrm{T}}X\theta = 0$$

Solution:

$$\theta = \left(X^{\mathrm{T}}X\right)^{-1}X^{\mathrm{T}}y$$

^{*}some useful info about matrix calculus: https://en.wikipedia.org/wiki/Matrix_calculus#Identities

Working on the 1st derivative*:

$$\frac{\partial}{\partial \theta} \mathcal{L}_{\text{MSE}} \sim \frac{\partial}{\partial \theta} (y - X\theta)^{\text{T}} (y - X\theta) = -2X^{\text{T}} (y - X\theta) = 0$$

$$X^{\mathrm{T}}y - X^{\mathrm{T}}X\theta = 0$$

Solution:

$$\theta = \left(X^{\mathrm{T}}X\right)^{-1}X^{\mathrm{T}}y$$

Note that this matrix needs to be invertible

^{*}some useful info about matrix calculus: https://en.wikipedia.org/wiki/Matrix calculus#Identities

2nd derivative:

$$\frac{\partial^2}{\partial \theta \partial \theta^{\mathrm{T}}} \mathcal{L}_{\mathrm{MSE}} \sim 2X^{\mathrm{T}} X$$

This needs to be positive definite

2nd derivative:

$$\frac{\partial^2}{\partial \theta \partial \theta^{\mathrm{T}}} \mathcal{L}_{\mathrm{MSE}} \sim 2X^{\mathrm{T}} X$$

- This needs to be positive definite
- True when all the features (columns of the design matrix) are linearly independent

2nd derivative:

$$v \dot{v}^{\mathsf{T}} X^{\mathsf{T}} X v = (X v)^{\mathsf{T}} (X v) = \|X v\|^2 \ge 0$$

- $\frac{\partial^2}{\partial \theta \partial \theta^{\mathrm{T}}} \mathscr{L}_{\mathrm{MSE}} \sim 2X^{\mathrm{T}} X$
- This needs to be positive definite
- True when all the features (columns of the design matrix) are linearly independent
- ▶ This also makes X^TX invertible

2nd derivative:

$$\frac{\partial^2}{\partial \theta \partial \theta^{\mathrm{T}}} \mathcal{L}_{\mathrm{MSE}} \sim 2X^{\mathrm{T}} X$$

$$v \dot{v}^T X^T X v = (X v)^T (X v) = \|X v\|^2 \ge 0$$
 $\neq 0$
when columns of X are linearly independent

- This needs to be positive definite
- True when all the features (columns of the design matrix) are linearly independent
- ▶ This also makes X^TX invertible

2nd derivative:

$$\frac{\partial^2}{\partial \theta \partial \theta^{\mathrm{T}}} \mathcal{L}_{\mathrm{MSE}} \sim 2X^{\mathrm{T}} X$$

$$v \dot{v}^T X^T X v = (X v)^T (X v) = \|X v\|^2 \ge 0$$
 $\neq 0$
when columns of X are linearly independent

- This needs to be positive definite
- True when all the features (columns of the design matrix) are linearly independent
- ▶ This also makes X^TX invertible

2nd derivative:

$$\frac{\partial^2}{\partial \theta \partial \theta^{\mathrm{T}}} \mathcal{L}_{\mathrm{MSE}} \sim 2X^{\mathrm{T}} X$$

$$v \dot{v}^T X^T X v = (X v)^T (X v) = \|X v\|^2 \ge 0$$
 $\neq 0$
when columns of X are linearly independent

- This needs to be positive definite
- True when all the features (columns of the design matrix) are linearly independent
- ▶ This also makes X^TX invertible

Feature correlations matter!

MSE level maps

Bias term

a.k.a. intercept term

$$\hat{f}_{\theta}(x) = \theta^{\mathrm{T}} x + \theta_0$$

$$\theta \in \mathbb{R}^d$$

$$\theta_0 \in \mathbb{R}$$

$$x \in \mathcal{X} \subset \mathbb{R}^d$$

No need to redo the math – just add a constant feature to the design matrix:

$$X = \begin{bmatrix} x_1^1 & x_1^2 & \cdots & x_1^d \\ x_2^1 & x_2^2 & \cdots & x_2^d \\ \vdots & \vdots & \ddots & \vdots \\ x_N^1 & x_N^2 & \cdots & x_N^d \end{bmatrix} \longrightarrow X = \begin{bmatrix} 1 & x_1^1 & x_1^2 & \cdots & x_1^d \\ 1 & x_2^1 & x_2^2 & \cdots & x_2^d \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_N^1 & x_N^2 & \cdots & x_N^d \end{bmatrix}$$

Aziz Al-Maeeni, NRU HSE

Numerical & Stochastic Optimization

Gradient

Gradient:
$$\nabla_x f(x) \equiv \left(\frac{\partial f(x)}{\partial x_1}, \dots, \frac{\partial f(x)}{\partial x_d}\right)$$

Points towards steepest function increase

Gradient Descent Optimization

Can optimize functions starting at some initial point $x^{(0)}$ and moving opposite to the gradient:

$$x^{(k)} \longleftarrow x^{(k-1)} - \alpha \nabla_x f(x^{(k-1)})$$

with $\alpha \in \mathbb{R}$, $\alpha > 0$ – learning rate.

For smooth convex functions with a single minimum x*:

$$f(x^{(k)}) - f(x^*) = \mathcal{O}\left(\frac{1}{k}\right)$$

Gradient descent for non-convex functions

- May get to a minimum which is not global
- Result depends on the starting point

Gradient descent as means for regularisation

- Large parameter values typically mean overfitting
- You may avoid this problem by initializing parameters with small values and early stopping the gradient descent

In machine learning we optimize loss functions which are typically averages over objects:

$$L = \frac{1}{N} \sum_{i=1...N} \mathcal{L}\left(y_i, \, \hat{f}_{\theta}(x_i)\right)$$

In machine learning we optimize loss functions which are typically averages over objects:

$$L = \frac{1}{N} \sum_{i=1...N} \mathcal{L}\left(y_i, \hat{f}_{\theta}(x_i)\right)$$

ightharpoonup For large N, gradient descent is computationally inefficient and may be unfeasible in terms of memory consumption

In machine learning we optimize loss functions which are typically averages over objects:

$$L = \frac{1}{N} \sum_{i=1...N} \mathcal{L}\left(y_i, \, \hat{f}_{\theta}(x_i)\right)$$

- ► For large *N*, gradient descent is computationally inefficient and may be unfeasible in terms of memory consumption
- Aternative:
 - At each step k pick $l_k \in \{1, ..., N\}$ at random
 - _ Optimize: $\theta^{(k)} \leftarrow \theta^{(k-1)} \alpha \nabla_{\theta} \mathcal{L}\left(y_{l_k}, \hat{f}_{\theta}(x_{l_k})\right) | \theta = \theta^{(k-1)}$

Feature Expansion

Feature expansion

▶ One can perform **feature transformations** with any function $\Phi: \mathbb{R}^d \to \mathbb{R}^{d'}$

$$X = \begin{bmatrix} x_1^1 & x_1^2 & \cdots & x_1^d \\ x_2^1 & x_2^2 & \cdots & x_2^d \\ \vdots & \vdots & \ddots & \vdots \\ x_N^1 & x_N^2 & \cdots & x_N^d \end{bmatrix} \longrightarrow \Phi(X) = \begin{bmatrix} \Phi^1(x_1^1, \dots, x_1^d) & \cdots & \Phi^{d'}(x_1^1, \dots, x_1^d) \\ \Phi^1(x_2^1, \dots, x_2^d) & \cdots & \Phi^{d'}(x_2^1, \dots, x_2^d) \\ \vdots & \ddots & \vdots & \vdots \\ \Phi^1(x_N^1, \dots, x_N^d) & \cdots & \Phi^{d'}(x_N^1, \dots, x_N^d) \end{bmatrix}$$

Feature expansion

One can perform **feature transformations** with any function $\Phi: \mathbb{R}^d \to \mathbb{R}^{d'}$

$$X = \begin{bmatrix} x_1^1 & x_1^2 & \cdots & x_1^d \\ x_2^1 & x_2^2 & \cdots & x_2^d \\ \vdots & \vdots & \ddots & \vdots \\ x_N^1 & x_N^2 & \cdots & x_N^d \end{bmatrix} \longrightarrow \Phi(X) = \begin{bmatrix} \Phi^1(x_1^1, \, \dots, \, x_1^d) & \cdots & \Phi^{d'}(x_1^1, \, \dots, \, x_1^d) \\ \Phi^1(x_2^1, \, \dots, \, x_2^d) & \cdots & \Phi^{d'}(x_2^1, \, \dots, \, x_2^d) \\ \vdots & \vdots & \ddots & \vdots \\ \Phi^1(x_N^1, \, \dots, \, x_N^d) & \cdots & \Phi^{d'}(x_N^1, \, \dots, \, x_N^d) \end{bmatrix}$$

$$\blacktriangleright \text{ Finding the best function } \Phi \text{ is called } \textbf{feature engineering}$$

- \blacktriangleright Finding the best function Φ is called **feature engineering**
 - It is an important part of machine learning and requires deep understanding of the underlying problem and the data

Example: polynomial features

Can't be solved with the only linear feature (x)

Example: polynomial features

Introducing another feature does the job:

$$(x_1, x_2) \equiv (x, x^2)$$

Now our estimate is:

$$\hat{f}(x) = \theta_1 x + \theta_2 x^2$$

Polynomial features of degree p (general case)

For the original features:

$$(x_i^1, x_i^2, ..., x_i^d)$$

introduce all unique multiplicative combinations of the form:

$$\left(x_i^{k_1}\right)^{p_1}\cdot \left(x_i^{k_2}\right)^{p_2}\cdot \ldots \cdot \left(x_i^{k_m}\right)^{p_m}$$

with
$$p_1 + p_2 + ... + p_m \le p$$

Example: degree 3 polynomial features

For the original features (a, b, c):

 $(1, a, b, c, a^2, ab, ac, b^2, bc, c^2, a^3, a^2b, a^2c, ab^2, abc, ac^2, b^3, b^2c, bc^2, c^3)$

 Understanding linear models gives useful insights into more complicated machine learning algorithms and optimization

- Understanding linear models gives useful insights into more complicated machine learning algorithms and optimization
- Linear Regression with MSE loss allows for analytical solution

- Understanding linear models gives useful insights into more complicated machine learning algorithms and optimization
- Linear Regression with MSE loss allows for analytical solution
- The stability of the solution depends on the feature correlations

- Understanding linear models gives useful insights into more complicated machine learning algorithms and optimization
- Linear Regression with MSE loss allows for analytical solution
- The stability of the solution depends on the feature correlations
- Linear models can be optimized with gradient descent and stochastic gradient descent

- Understanding linear models gives useful insights into more complicated machine learning algorithms and optimization
- Linear Regression with MSE loss allows for analytical solution
- The stability of the solution depends on the feature correlations
- Linear models can be optimized with gradient descent and stochastic gradient descent
 - In some cases this can regularize the solution
- Feature transformations allow for very powerful use of the linear models

- Understanding linear models gives useful insights into more complicated machine learning algorithms and optimization
- Linear Regression with MSE loss allows for analytical solution
- The stability of the solution depends on the feature correlations
- Linear models can be optimized with gradient descent and stochastic gradient descent
 - In some cases this can regularize the solution
- Feature transformations allow for very powerful use of the linear models
- ► Food for thought: how does polynomial feature expansion affect the complexity of the model?