CS 154

The Church-Turing Thesis, Recognizability, Decidability, and Diagonalization

Definition: A Turing Machine is a 7-tuple

T = (Q, Σ, Γ, δ, q_0 , q_{accept} , q_{reject}), where:

Q is a finite set of states

 Σ is the input alphabet, where $\square \notin \Sigma$

 Γ is the tape alphabet, where $\square \in \Gamma$ and $\Sigma \subseteq \Gamma$

$$\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$$

 $q_0 \in Q$ is the start state

 $q_{accept} \in Q$ is the accept state

 $q_{reject} \in Q$ is the reject state, and $q_{reject} \neq q_{accept}$

Turing Machine Configurations

corresponds to the configuration:

11010
$$q_7$$
00110 ∈ (Q ∪ Γ)*

Defining Acceptance and Rejection for TMs

Let C₁ and C₂ be configurations of M Definition. C₁ yields C₂ if M is in configuration C₂ after running M in configuration C₁ for one step

> accepting computation history of M on x

Let $w \in \Sigma^*$ and M be a Turing machine M accepts w if there are configs C_0 , C_1 , ..., C_k , s.t.

- $C_0 = q_0 w$ [the initial configuration] C_i yields C_{i+1} for i = 0, ..., k-1, and C_k contains the accept state q_{accept}

A TM *M recognizes* a language L if *M* accepts exactly those strings in L

A language L is recognizable (a.k.a. recursively enumerable) if some TM recognizes L

A TM *M decides* a language L if *M* accepts all strings in L and rejects all strings not in L

A language L is *decidable* (a.k.a. recursive) if some TM decides L

A Turing machine for deciding $\{0^{2^n} | n \ge 0\}$

Turing Machine PSEUDOCODE:

- 1. Sweep from left to right, cross out every other **0**
- 2. If in step 1, the tape had only one **0**, accept
- 3. If in step 1, the tape had an **odd number** of **0**'s, reject
- 4. Move the head back to the first input symbol.
- 5. Go to step 1.

Why does this work?

Idea: Every time we return to stage 1, the number of 0's on the tape has been halved.

Multitape Turing Machines

$$\delta: \mathbf{Q} \times \mathbf{\Gamma}^{\mathbf{k}} \rightarrow \mathbf{Q} \times \mathbf{\Gamma}^{\mathbf{k}} \times \{\mathbf{L},\mathbf{R}\}^{\mathbf{k}}$$

Theorem: L is decidable iff both L and ¬L are recognizable

Recall: Given $L \subseteq \Sigma^*$, define $\neg L := \Sigma^* \setminus L$

Theorem: L is decidable

iff both L and ¬L are recognizable

Given: a TM M₁ that recognizes L and

a TM M_2 that recognizes $\neg L_1$

we want to build a new machine M that decides L

How? Any ideas?

Hint: M₁ always accepts x, when x is in L M₂ always accepts x, when x isn't in L

Recall: Given $L \subseteq \Sigma^*$, define $\neg L := \Sigma^* \setminus L$

Theorem: L is decidable iff both L and ¬L are recognizable

Given: a TM M_1 that recognizes L and a TM M_2 that recognizes $\neg L$, we want to build a new machine M that *decides* L

M(x): Run M_1 (x) and M_2 (x) on separate tapes. Alternate between simulating one step of M_1 , and one step of M_2 . If M_1 ever accepts, then accept If M_2 ever accepts, then reject

Nondeterministic Turing Machines

Have multiple transitions for a state, symbol pair

Theorem: Every nondeterministic Turing machine N can be transformed into a Turing Machine M that accepts precisely the same strings as N.

Proof Idea (more details in Sipser) Pick a natural ordering on all strings in $(Q \cup \Gamma \cup \#)^*$

M(w): For all strings $D \in (Q \cup \Gamma \cup \#)^*$ in the ordering, Check if $D = C_0 \# \cdots \# C_k$ where $C_0, ..., C_k$ is some accepting computation history for N on w. If so, accept.

Fact: We can encode Turing Machines as bit strings

Similarly, we can encode DFAs and NFAs as bit strings, and $w \in \Sigma^*$ as bit strings

For $x \in \Sigma^*$ define $b_{\Sigma}(x)$ to be its binary encoding For $x, y \in \Sigma^*$, define the *pair of x and y* to be

$$(x, y) := 0^{|b_{\Sigma}(x)|} 1 b_{\Sigma}(x) b_{\Sigma}(y)$$

Then we define the following languages over {0,1}

 A_{DFA} = { (B, w) | B encodes a DFA over some Σ, and B accepts w $\in \Sigma^*$ }

A_{NFA} = { (B, w) | B encodes an NFA, B accepts w }

A_{TM} = { (M, w) | M encodes a TM, M accepts w }

 $A_{TM} = \{ (M, w) \mid M \text{ encodes a TM over some } \Sigma, w \text{ encodes a string over } \Sigma$ and M accepts w

Technical Note:

We'll use an decoding of pairs, TMs, and strings so that every binary string decodes to some pair (M, w)

If $z \in \{0,1\}^*$ doesn't decode to (M, w) in the usual way, then we *define* that z decodes to the pair (D, ϵ) where D is a "dummy" TM that accepts nothing.

 $\neg A_{TM} = \{ z \mid z \text{ decodes to } (M, w) \text{ and } M \text{ does not accept } w \}$

Universal Turing Machines

Theorem: There is a Turing machine U which takes as input:

- the code of an arbitrary TM M
- and an input string w
 such that U accepts (M, w) ⇔ M accepts w.

This is a *fundamental* property of TMs:

There is a Turing Machine that
can run arbitrary Turing Machine code!

Note that DFAs/NFAs do *not* have this property. That is, A_{DFA} and A_{NFA} are not regular.

A_{DFA} = { (D, w) | D is a DFA that accepts string w }

Theorem: A_{DFA} is decidable

Proof: A DFA is a special case of a TM.

Run the universal U on (D, w) and output its answer.

A_{NFA} = { (N, w) | N is an NFA that accepts string w }

Theorem: A_{NFA} is decidable. (Why?)

A_{TM} = { (M, w) | M is a TM that accepts string w }

Theorem: A_{TM} is recognizable

The Church-Turing Thesis

Everyone's
Intuitive Notion = Turing Machines
of Algorithms

This is not a theorem – it is a falsifiable scientific hypothesis.

And it has been thoroughly tested!

Thm: There are unrecognizable languages

Assuming the Church-Turing Thesis, this means there are problems that *NO* computing device can solve!

We will prove that there is no onto function from the set of all Turing Machines to the set of all languages over $\{0,1\}$. (But the proof will work for any *finite* Σ)

That is, every mapping from Turing machines to languages fails to cover all possible languages

"There are more problems to solve than there are programs to solve them."

Languages over {0,1}

Turing Machines

f: A \rightarrow B is *not* onto \Leftrightarrow (\exists b \in B)(\forall a \in A)[f(a) \neq b] Let L be any set and 2^L be the power set of L

Theorem: There is no onto function from L to 2^L

Proof: Assume, for a contradiction, there is an onto function $f: L \rightarrow Z^1$

Define S = $\{x \in L \mid x \notin f(x)\} \in 2$

If f is onto, then there is a $y \in L$ with f(y) = S. Suppose $y \in S$. By definition of S, $y \notin f(y) = S$. Suppose $y \notin S$. By definition of S, $y \in f(y) = S$. Contradiction! f: A \rightarrow B is *not* onto \Leftrightarrow (\exists b \in B)(\forall a \in A)[f(a) \neq b] Let L be any set and 2^L be the power set of L

Theorem: There is *no* onto function from L to 2^L

Proof: Let $f: L \to 2^L$ be an arbitrary function Define $S = \{ x \in L \mid x \notin f(x) \} \in 2^L$

For all $x \in L$,

If $x \in S$ then $x \notin f(x)$ [by definition of S]

If $x \notin S$ then $x \in f(x)$ In either case, we have $f(x) \neq S$. (Why?)

Therefore f is not onto!

What does this mean?

No function from L to 2^L can "cover" all the elements in 2^L

No matter what the set L is, the power set 2^L always has strictly larger cardinality than L

Thm: There are unrecognizable languages

Proof: Suppose all languages are recognizable. Then for all L, there's a Turing machine M for recognizing L. Hence there is an onto R: $\{Turing Machines\} \rightarrow \{Languages\}$

```
{Turing Machines}

{\text{O,1}}*

{\text{Sets} of strings} \\
\text{of 0s and 1s}}

Set \text{M}

Set of all subsets of M: 2M
```

But there is *no* onto function from $Turing Machines \subseteq M$ to 2^M. Contradiction!