FEATURES:

- N channel FET switches with no parasitic diode to Vcc
 - Isolation under power-off conditions
 - No DC path to Vcc or GND
 - 5V tolerant in OFF and ON state
- 5V tolerant I/Os
- Low Ron 4Ω typical
- · Flat Ron characteristics over operating range
- Rail-to-rail switching 0 5V
- Bidirectional dataflow with near-zero delay: no added ground bounce
- Excellent Ron matching between channels
- Vcc operation: 2.3V to 3.6V
- High bandwidth up to 500MHz
- · LVTTL-compatible control Inputs
- · Undershoot Clamp Diodes on all switch and control Inputs
- · Low I/O capacitance, 4pF typical
- · Available in QSOP and TSSOP packages

APPLICATIONS:

- · Hot-swapping
- Multiplexing/demultiplexing
- · Low distortion analog switch
- · Replaces mechanical relay
- ATM 25/155 switching

DESCRIPTION:

The QS3VH253 HotSwitch Dual 4:1 multiplexer/demultiplexer is a high bandwidth bus switch. The QS3VH253 has very low ON resistance, resulting in under 250ps propagation delay through the switch. The Select (Sx) inputs control the data flow. The multiplexers/demultiplexers are enabled when the Enable $(\overline{\text{EA}}, \overline{\text{EB}})$ inputs are low. In the ON state, the switches can pass signals up to 5V. In the OFF state, the switches offer very high impedance at the terminals.

The combination of near-zero propagation delay, high OFF impedance, and over-voltage tolerance makes the QS3VH253 ideal for high performance communication applications.

The QS3VH253 is characterized for operation from -40°C to +85°C.

FUNCTIONAL BLOCK DIAGRAM

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

INDUSTRIAL TEMPERATURE RANGE

FEBRUARY 2014

PIN CONFIGURATION

TOP VIEW

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM ⁽²⁾	SupplyVoltage to Ground	-0.5 to +4.6	V
VTERM ⁽³⁾	DC Switch Voltage Vs	-0.5 to +5.5	V
VTERM ⁽³⁾	DC Input Voltage Vเท	-0.5 to +5.5	V
VAC	AC Input Voltage (pulse width ≤20ns)	-3	V
lout	DC Output Current (max. sink current/pin)	120	mA
Tstg	Storage Temperature	-65 to +150	°C

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause
 permanent damage to the device. This is a stress rating only and functional operation of
 the device at these or any other conditions above those indicated in the operational
 sections of this specification is not implied. Exposure to absolute maximum rating
 conditions for extended periods may affect reliability.
- 2. Vcc terminals.
- 3. All terminals except Vcc .

CAPACITANCE (TA = +25°C, F = 1MHz, VIN = 0V, VOUT =

0 % ymbol	Parameter ⁽¹⁾		Тур.	Max.	Unit
CIN	Control Inputs		3	5	pF
CI/O	Quickswitch Channels	Demux	4	6	pF
	(Switch OFF)	Mux	11	15	
CI/O	Quickswitch Channels	Demux	12	16	pF
	(Switch ON)	Mux	12	16	

NOTE:

1. This parameter is guaranteed but not production tested.

FUNCTION TABLE(1)

Ena	nable Select Outputs		Enable			
ĒĀ	ĒΒ	S ₁	S ₀	YA	ΥB	Function
Н	Х	Х	Х	Z	Х	Disable A
Х	I	Х	Х	Χ	Z	Disable B
L	L	L	L	10a	10в	S1 - 0 = 0
L	لــ	L	Η	I1a	I1 в	S1 - 0 = 1
L	L	Н	L	I2A	12 B	S1 - 0 = 2
L	L	Н	Н	I3 _A	I3 в	S1 - 0 = 3

NOTE:

- 1. H = HIGH Voltage Level
 - L = LOW Voltage Level
 - X = Don't Care
 - Z = High-Impedence

PIN DESCRIPTION

Pin Names	I/O	Description
lxx		Data Inputs
S0, S1	_	Select Input
EA, EB	_	Enable Input
Үа, Үв	0	Data Outputs

6

8

5

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Vcc = 3V

Following Conditions Apply Unless Otherwise Specified: Industrial: TA = -40° C to $+85^{\circ}$ C, VCC = $3.3V \pm 0.3V$

Symbol	Parameter	Test Conditions		Min.	Typ. ⁽¹⁾	Max.	Unit	
ViH	Input HIGH Voltage	Guaranteed Logic HIGH	Vcc = 2.3V to 2.7	V	1.7	_	_	V
		for Control Inputs	Vcc = 2.7V to 3.6	V	2	_	_	
VIL	Input LOW Voltage	Guaranteed Logic LOW	Vcc = 2.3V to 2.7V		_	_	0.7	V
		for Control Inputs	Vcc = 2.7V to 3.6	V	_	_	0.8	
lin	Input Leakage Current (Control Inputs)	$0V \le VIN \le VCC$		_	_	±1	μΑ	
loz	Off-State Current (Hi-Z)	0V ≤ Vouт ≤ 5V, Switches OFF		_	_	±1	μΑ	
IOFF	Data Input/Output Power Off Leakage	VIN or VOUT 0V to 5V, VCC = 0V		_	_	±1	μΑ	
		Vcc = 2.3V	VIN = 0V	Ion = 30mA	_	6	8	
RON	Switch ON Resistance	Typical at Vcc = 2.5V	VIN = 1 7V	ION = 15mA		7	9	0

VIN = 0V

VIN = 2.4V

Ion = 30mA

ION = 15mA

NOTE:

TYPICAL ON RESISTANCE vs Vin AT Vcc = 3.3V

^{1.} Typical values are at Vcc = 3.3V and Ta = 25°C.

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾	Min.	Тур.	Max.	Unit
Iccq	Quiescent Power Supply Current	Vcc = Max., Vin = GND or Vcc, f = 0	_	2	4	mA
Δlcc	Power Supply Current (2,3) per Input HIGH	Vcc = Max., Vin = 3V, f = 0 per Control Input	_	_	30	μA
ICCD	Dynamic Power Supply Current ⁽⁴⁾	Vcc = 3.3V, A and B Pins Open, Control Inputs Toggling @ 50% Duty Cycle	See Typical	ICCD vs Enabl	e Frequency	graph below

NOTES:

- 1. For conditions shown as Min. or Max., use the appropriate values specified under DC Electrical Characteristics.
- 2. Per input driven at the specified level. Mux/demux pins do not contribute to Δlcc.
- 3. This parameter is guaranteed but not tested.
- 4. This parameter represents the current required to switch internal capacitance at the specified frequency. The mux/demux inputs do not contribute to the Dynamic Power Supply Current. This parameter is guaranteed but not production tested.

TYPICAL ICCD vs ENABLE FREQUENCY CURVE AT VCC = 3.3V

ENABLE FREQUENCY (MHz)

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

 $T_A = -40$ °C to +85°C

		$Vcc = 2.5 \pm 0.2V^{(1)}$		Vcc = 3.3		
Symbol	Parameter	Min. ⁽⁴⁾	Max.	Min. ⁽⁴⁾	Max.	Unit
t PLH	Data Propagation Delay ^(2,3)	_	0.2	_	0.2	ns
t PHL	Yx to lxx or lxx to Yx					
tsel	Select Time	1.5	9	1.5	8	ns
	S to Yx					
tpzh	Enable Time	1.5	9	1.5	9	ns
t PZL	Sx to lxx					
tphz	Disable Time	1.5	8	1.5	8	ns
t PLZ	Sx to lxx					
t PZH	Enable Time	1.5	9	1.5	8	ns
t PZL	Ex to Yx or Ixx					
t PHZ	Disable Time	1.5	8	1.5	8	ns
tPLZ	Ex to Yx or lxx					
fExorSx	Operating Frequency - Enable ^(2,5)		10	_	20	MHz

NOTES:

- 1. See Test Conditions under TEST CIRCUITS AND WAVEFORMS.
- 2. This parameter is guaranteed but not production tested.
- 3. The bus switch contributes no propagation delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.2ns at C_L = 50pF. Since this time constant is much smaller than the rise and fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.
- 4. Minimums are guaranteed but not production tested.
- 5. Maximum toggle frequency for Sx or $\overline{\text{Ex}}$ control input (pass voltage > Vcc, Vin = 5V, RLOAD \geq 1M Ω , no CLOAD).

SOME APPLICATIONS FOR HOTSWITCH PRODUCTS

Rail-to-Rail Switching

Multiplexing/Demultiplexing

Hot-Swapping

TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

Symbol	Vcc ⁽¹⁾ = 3.3V ± 0.3V	Vcc ⁽²⁾ = 2.5V ± 0.2V	Unit
VLOAD	6	2 x Vcc	V
VIH	3	Vcc	V
VT	1.5	Vcc/2	V
VLZ	300	150	mV
VHZ	300	150	mV
CL	50	30	pF

Test Circuits for All Outputs

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to ZouT of the Pulse Generator.

NOTES:

- 1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2ns.

SWITCH POSITION

Test	Switch
tplz/tpzl	Vload
tpHz/tpzH	GND
tPD	Open

Propagation Delay

NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

Enable and Disable Times

ORDERING INFORMATION

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Renesas Electronics:

QS3VH253QG8 QS3VH253PAG8 QS3VH253PAG QS3VH253QG