

CUADRO DE FUNCIONES DERIVADAS

FUNCIÓN	DERIVADA
Constante	
y = k	y'= 0
identidad .	
y = x	y'=1
Patenciales	
y = x ⁿ	y '= nx ⁿ⁻¹
y = √x	$y = \frac{1}{2\sqrt{x}}$
y = V x	$y = \frac{1}{n \sqrt[n]{x^{n-1}}}$
Exponenciales ()	
y = e ^X	y = θ ^X
y ≈ a ^x	y'≈ a ^x Ina
Logaritmicas	
y = ln x	$y' = \frac{1}{x}$
y = log _a x	$y' = \frac{1}{x} \log_a e$
Trigonométricos	
y = sen x	y = cos x
y = cos x	y'= -sen x
y= tg x	$y' = \frac{1}{\cos^2 x} = 1 + tg^2 x$

CUADRO DE INTEGRALES INMEDIATAS

$\int x^n dx = \frac{x^{n+1}}{n+1} + C \text{ si } n \neq -1$	$\int \frac{dx}{x} = \int x^{-1} dx = Ln x + C$
$\int a^x dx = \frac{a^x}{Lna} + C$	$\int senxdx = -\cos x + C$
$\int \frac{dx}{\cos^2 x} = tagx + C$	$\int (1 + \tan^2 x) dx = \tan x + C$
$\int (1 + ctag^2 x) dx = -ctag x + C$	$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C$
$\int \frac{dx}{\sin^2 x} = -\operatorname{ctag} x + C$	$\int e^x dx = e^x + C$
$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a} + C$	$\int cosxdx = senx + C$