ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE DISOPT

SEMESTER PROJECT

Reinforcement learning and robot navigation

Student: Charles Dufour

 $Supervisors: \\ Jonas \ Racine \\ Prof. \ Friedrich \ Eisenbrand$

CONTENTS

Contents

1	Theory			
	1.1	Introduction		2
	1.2	MDP	: Markov decision processes	2
		1.2.1	Policies and Value functions	4
		1.2.2	Optimal policies and Optimal value function	
	1.3	Solvin	ng MDP's	٠
		1.3.1	Dynamic programming	٠
2 Journal			4	
References				į

1 Theory

1.1 Introduction

Reinforcement learning

Reinforcement learning is learning what to do, how to map situations to actions so as to maximize a numerical reward signal. The learner is not told which actions to take, but instead must discover which actions yield the most reward by trying them. [1]

Some technical terms:

- policy: it is a mapping from the states to the actions
- value function: what our learning agent is trying to optimize
- model of the environment: the laws governing the environment

"Reinforcement learning methods specify how the agent's policy is changed as a result of its experience"[1] The usual way to formulate the reinforcement learning problem from a mathematical point of view is by using what we call Markov's decision processes.

1.2 MDP : Markov decision processes

Markov's decision processes are composed by:

- \bullet a set of states : \mathcal{S}
- a set of actions : A
- a transition function : $T(s, a, s') \sim Pr(s' \mid a, s)$ $s, s' \in \mathcal{S}$ which gives the state transition probabilities
- a reward function : $\mathcal{R}: \mathcal{S} \mapsto \mathbb{R}$
- The Markov property: the transitions only depends on the current state and action

The Bellman equation

$$v_{\pi}(s) = R(s) + \gamma \sum_{s \in \mathcal{S}} P(s' \mid s, \pi(s)) v_{\pi}(s')$$
 (1)

$$v_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s',r} p(s',r \mid s,a) [r + \gamma v_{\pi}(s')]$$
 (2)

These are two formulations of the bellman equation used to compute optimal policies by iteration : (1) is from the MOOC and (2) is from Sutton's book [1]

1.2.1 Policies and Value functions

A policy : $\pi : \mathcal{S} \mapsto A$ is a mapping from states to action. If we follow this policy (way of behaving) we can define the value function for a policy in order to compare them, which links a state and its expected reward if we follow this policy :

The discount factor helps making our learning agent more or less far-sighted : the greater γ the more "impact" will have a late reward on our reward sequence, hence making the agent more conscious about these actions.

We define the return as: $G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$ And $\pi(a \mid s)$ is the probability that $A_t = a$ if $S_t = s$

Then we can define the value of taking action a in state s while following the policy π

$$q_{\pi}(s, a) = \mathbb{E}[G_t \mid S_t = s, A_t = a] = \mathbb{E}[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s, A_t = a]$$
(3)

And the value of a state s under a policy:

$$v_{\pi}(s) = \mathbb{E}[G_t \mid S_t = s] = \mathbb{E}[\sum_{k=0}^{\infty} \gamma^t R_{t+k+1} \mid S_t = s] \quad \forall s \in \mathcal{S}$$

$$\tag{4}$$

1.3 Solving MDP's 1 THEORY

1.2.2 Optimal policies and Optimal value function

For finite MDP's, the value function can define a partial order in the space of policies:

$$\pi \le \pi' \Leftrightarrow \pi(s) \le \pi'(s) \quad \forall s \in \mathcal{S}$$

An optimal policy is a policy which is greater or equal than any other policy.

Bellman optimality equations

$$v_*(s) = \max_{a} \sum_{s',r} p(s',r \mid s,a)[r + \gamma v_*(s')]$$
 (5)

$$q_*(s, a) = \sum_{s', r} p(s', r \mid s, a) [r + \gamma \max_{a'} q_*(s', a')]$$
(6)

For finite MDP's these equations have a unique solution. We can note that if we know v_* or q_* a greedy approach to define a policy (best in the short term) becomes a long-term optimal solution.

1.3 Solving MDP's

In general we don't have all the information we need to compute the exact value of v_* or even if we have them, we don't have the computational power needed. We often use approximation of value-function instead.

1.3.1 Dynamic programming

2 Journal

- 28.02.2018 finished reading chapter 2 Sutton's book about the k-bandits problem: implementation of simple algorithms of the book on jupyter notebook in Rl-sandbox
- ${f 01.03.2018}$ initiated the Latex journal
- 04.03.2108 read the notebook about numpy and tried to go on with the lecture of the literature—> have to read again the example about the golf

finished the chapter 3

12.03.2018 read chapter three again and made a summary of it

Then tried to attack the street racer problem

REFERENCES

References

[1] Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning. MIT Press, Cambridge, MA, USA, 1st edition, 1998.

Charles DUFOUR 5 March 12, 2018