Introduction to Lateral Control

Course 1, Module 6, Lesson 1

Learning Objectives

- In this module, you'll
 - Explore lateral vehicle control definitions
 - Design two geometric path following controllers
 - Discuss model predictive control for autonomous driving
- By the end of this video, you'll be able to...
 - Define different types of reference path
 - Compute heading and crosstrack errors

Lateral Control Design

- Lateral control for an automobile
 - Define error relative to desired path
 - Select a control law that drives errors to zero and satisfies input constraints
 - Add dynamic considerations to manage forces and moments acting on vehicle

The Reference Path

- Track
 - Straight line segments
 - Waypoints
 - Parameterized curves
- Main goals:
 - Heading path alignment
 - o Elimination of offset to path

Two Types of Control Design

- Geometric Controllers
 - Pure pursuit (carrot following)
 - Stanley

- Dynamic Controllers
 - MPC control
 - Other control systems
 - Sliding mode, feedback linearization

Plant Model

- Vehicle (bicycle) model & parameters
 - All states variables and inputs defined relative to the centre of front axle

Front wheel velocity Main vehicle reference frame for lateral control can be at: Steering relative to The center of front axle heading The center of gravity (cg) The center of rear axle Heading relative to trajectory

Driving Controller

- Controller error terms
 - Heading error
 - Component of velocity perpendicular to trajectory divided by ICR radius

Driving Controller

- Crosstrack error (e):
 - Distance from center of front axle to the closest point on path

Summary

What we have learned from this lesson:

 Basic concept in lateral vehicle control which will used in all lateral control development

What is next?

We will start defining the pure pursuit (carrot following) control strategy