1. zárthelyi dolgozat -2022-04-06

Felhasználható idő: 105 perc, használható segédeszközök: üres papír és toll vagy digitális változatuk. Gyorssegély, ne ezen múljon: $\cos 30^\circ = \sin 60^\circ = \sqrt{3}/2$, $\cos 45^\circ = \sin 45^\circ = \sqrt{2}/2$, $\cos 60^\circ = \sin 30^\circ = 1/2$, $180^\circ = \pi$, $i^2 = -1$.

1. feladat 6 pont

- (a) Döntse el, hogy a következő állítások igazak vagy hamisak (helyes válasz: fél pont, nincs válasz/helytelen válasz: 0 pont). **2 pont**
 - (1) Ha a, b, c, d valósak, és a + bi = c + di, akkor a = c, és b = d. I H

NEPTUN:

- (2) Egy reláció nem lehet egyszerre szimmetrikus és antiszimmetrikus. I H
- (3) Egy ekvivalencia
reláció esetén az ekvivalencia
osztályok uniója a reláció értelmezési tartománya.
 ${\bf I}$ ${\bf H}$
- (4) Ha f és g injektív függvények, akkor $f \circ g$ is injektív. I H
- (b) Határozza meg az $R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid 10x 5 = y\} \subset \mathbb{Z} \times \mathbb{Z}$ reláció értelmezési tartományát és az $R^{-1}(\{-20\})$ inverz képet. **2 pont**
- (c) Konstruáljon az $\{1,2,3\}$ halmazon olyan R relációt mely nem szimmetrikus és nem tranzitív. **2 pont**

2. feladat 10 pont

- (a) Igazolja, hogy az $R \subset \mathbb{Z} \times \mathbb{Z}$, $R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid y x \text{ nemnegatív páros szám } \}$ reláció részbenrendezés. Mik lesznek a minimális elemek? **5 pont**
- (b) Adjon meg olyan A, B és C halmazokat, amelyekre teljesül a következő összefüggés: $(A \setminus B) \setminus C = A \setminus (B \setminus C)$. **2 pont**
- (c) Igazolja, hogy tetszőleges A,B és C halmazok esetén igaz a következő összefüggés: $A \setminus (B \cup C) = (A \setminus B) \setminus C$. **3 pont**

3. feladat 5 pont

Legyen $R \subset \mathbb{R} \times \mathbb{R}$, $R = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid 3y + 5 = -8x\}$ és $S \subset \mathbb{R} \times \mathbb{R}$, $S = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid 3x \geq -8y + 4\}$. Határozza meg az $S \circ R$ és $R \circ S$ kompozíciót.

4. feladat 5 pont

- (a) Döntse el a következő relációkról, hogy függvények-e. **3 pont** $f_1 \subset (\mathbb{R} \setminus \{1\}) \times \mathbb{R}, \ f_1 = \{(x,y) \in (\mathbb{R} \setminus \{1\}) \times \mathbb{R} \mid (x-2)y = 1\}$ $f_2 \subset \mathbb{R} \times \mathbb{R}, \ f_2 = \{(x,y) \in \mathbb{R} \times \mathbb{R} \mid x^3 = y^2\}$ $f_3 \subset \mathbb{R} \times \mathbb{R}, \ f_3 = \{(x,y) \in \mathbb{R} \times \mathbb{R} \mid |y-x^{12} = -1 + 3y\}$
- (b) Döntse el, hogy az $f: \mathbb{R}_0^+ \to \mathbb{R}, \ f(x) := 2\sqrt{x+13}$ függvény injektív-, illetve szürjektív-e. **2** pont

5. feladat 7 pont

A trigonometrikus alak segítségével számítsa ki z értékét trigonometrikus és algebrai alakban is, majd adja meg az összes olyan w komplex számot trigonometrikus alakban, melyekre $w^3=z$, ahol

$$z = \frac{(1+i)^{32}}{(-1-\sqrt{3}i)^{12}}.$$

6. feladat 7 pont

Ábrázolja a Gauss-számsíkon a következő halmazokat:

- (a) $\{z \in \mathbb{C} \mid 2\operatorname{Re} z + 2\operatorname{Im} z \ge 2 \wedge \operatorname{Im} z < 5\}$ 3 pont
- (b) $\{z \in \mathbb{C} \mid |z-1| \le 4 \land \operatorname{Re} z < 10\}$ 4 pont