

```
Part I: Sementic Web Languages:
   Q.I Translate HTML information into an XML object.
              <restaurants>
                 <restaurant>
                     <number> 1 </number>
                     <name > Culinary Dropout </name>
                     <telephone> (480) 240-1601 </telephone>
                     < rating> 4 </rating>
                     <reviews> 1621 </reviews>
                     <address> 149 5 Farmer road </address>
                      <pri><pricerange> ~$$ <1pricerange>
                      < cuisine> American (New) </ cuisine>
                      < note> most viewed restaurant in Tempe </note>
                      <br/>
<br/>
button> Find a table </button>
                      <offerings> offer reservations < 10fferings>
                 </restaurant>
                  <restaurant>
                     <number> 2 </number>
                                                                </name>
                     < name > Ghost Ranch: Modern southwest Cuisine
                     <telephone> (480) 474-4328</telephone>
                     < rating> 4.5 < /rating>
                     creviews> 237 < Ireviews>
                                                   </address>
                      <address> 1006 E Warner Rd
                      <pricerange> $$ </pricerange>
                      < cuisine > American (New) < I cuisine>
                      < note> Popular for its Ghast Ranch
                                                               </note>
                      < button> start Order </ button>
                                                      < 1 offerings>
                      <offerings> offers takeout
                 </restaurant>
```

Name: Amey Sadanand Bhilegaonkar
ASU Number: 1225368924

Q.3 Given XML-QL Query, its English translation is:

Select the telephone numbers of all restaurants listed on Yelp who offer takeout.

Part 2: Frequent Item-Sets and Association Rules:

Q.4 APRIORI Algorithm

Given transactions are:

$$T1 = \{A, B, C\}$$
 $T6 = \{B, C, D, E\}$
 $T2 = \{A, F, G\}$ $T7 = \{E, F\}$

Given minimum support is 40% which is 4/10

For the first pass-

F	07	5	+>	ne	3	Se	ഥ	n	d	1	pc	11	Ь
									_	-			

îtem	Frequency
Ð	3
В	8
C	8
D	1
E	2
F	5
G	5

item	Frequency
₹B,C}	8
१८, ६३	3
रू B, ५-३	4
₹ C, F 3	3
६ C, ६८३	4
१ F, ५९	3

remove items with frequency < 4 : ¿A}, \DS, \E \ will be removed

· F1 : {B}, {C}, {FG, \$G}

- & B, F}, & C, F}, & F, G} will be removed

• : F2 = \(\mathbb{B}_1C\), \(\mathbb{B}_1\), \(\mathbb{C}_1\), \(

Name: Amey Sadanand Bhilegaonkar ASU Number: 1225368924

For the third part

1 tem	Frequency
1 B, C, G3	4

95	Cilon	- 1 1 D D D D	1 - 10 -1	لمما	confidence is	10001
US.	QIVEN	SUPPOOL	1540%	unq	WITGETTE 15	100 6
						•

&B, C, Gg is the most frequent dataset

The association Rules:

Ryle	confidence calculation	confidence	Rule	Confidence Calculations C	onfidence
. \$B,C3 -> \$GZ	Support & BIC, GE = 4110 =0.5 Support & BICS = 8110	50°/0	8. 2 43 - 3 2 8}	Support & B, G & 4110 Support & G & 5110	80°/.
· {B,G} → \C}	Support & B, C, G & 4 1/0 5 4 110	100%	9. 7 B3 -> 7 C3	Support & B. C. & _ 8/10 Support & B & _ 8/10	100-6
3- € c, G€ → 8B3	Support & B,C, G & = 4/10 Support & C,G & 4/10 Support & B,C,G & -4/10	100°%	10. { c} -> { B}	Support & B, C & = \$110 Support & C & = 8110	100-/-
1. \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Support & B & 8/10 Support & B,C,G& 4/10	50%	11. { c} -> { G}	Support & C. G & = 4/10 Support & G & 5/10	86-10
5- ≥ cg → ≥ B, cg	Support & C & 8/10 Support & B,C, G & = 41/0 Support & G & 5 10	50°1.	12. { 63 -> 20}	Support & Ciq & 4/10 Support & G 3 = 5/10	80-10
7· {B3 -> {G3	Support & B1 G3 = 410 Support & B3 = 8/10	50%			

- : The association rules with support 40% and confidence 100% are-
- · { C, GG -> 9BG
- · 283 -> 4c3

Name: Amey Sadanand Bhilegaonkar
ASU Number: 1225368924

Part 3: Clustering

QG: Given C1,C2,C3 after first iteration:

$$C_1 = \{(2,2), (4,4), (6,6)\}$$

$$C_2 = \{(0,4), (4,0)\}$$

$$c_3 = \{ (5.5), (9.9) \}$$

For 2nd iteration, we need to calculation the centroids

-- centroids of
$$(x_1, y_1)$$
 & (x_2, y_2) is $(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})$

Centroid of
$$C_1 = \left(\frac{2+4+6}{3}, \frac{2+4+6}{3}\right) = (4,4)$$

Centroid of
$$C_2 = (0+4, 4+0) = (2,2)$$

Centroid of
$$C_3 = \left(\frac{5+9}{2}, \frac{5+9}{2}\right) = (7,7)$$

Name: Amey Sadanand Bhilegaonkar ASU Number: 1225368924

- Centroid for C, -> (4,4) Centroid for (2) (2,2) Centroid for (3-) (7.7)

For second iteration: using new centroids:

Q7: New Clusters

C	ι =	C	4,	4')	
				•		
C.	2 =		2,	2		
	ع =		7	. 7	7	
	3 –	_		, ,		

After second iteration C1 = 3 (414), (515)} $C_2 = \frac{5}{2}(212), (014), (410)$

C3 = { (6,6), (9,9) }

0

Distance d between $(x_1, y_1) = (x_2 - x_1)^2 + (y_2 - y_1)^2$ (1=(414) | C2=(212) C3=(7.7) | Cluster to which distance | distance 2 distance 3 | it belongs 2.83 0.00 7.07 Co C, 2.83 0.00 4-24 Cg 1-41 2.83 5.66 C2 2.83 4 4.0 7.62 C2 2.83 7.62 0 4.0 1-412 4.24 2.83 91 9 9.9 7.07 2.83 C3

Part: 4 Web Ranking:

Q g Given edges are: (A >B), (B >B), (B >C), (C >A)

The network graph will be as follows:

Adj Matrix =
$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

column Normalized Matrix = [0.5 0]

Qg: Irreducible Matrix

The matrix M is Irreducible

Explaination:

There exists a path between all nodes i.e. we can reach any other node if we choose to start from any node in the network.

Lets consider:

Start Point	End point	Edge path
A	В	A→B→C
В	A	B→C→A B→C
C	A	$C \rightarrow A$
С	В	C→A→B

. The matrix is irreducible.

Q10 Page Rank

Column Normalized Hyperlink matrix M is:

$$X = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & 2 \\ 0 & 1/2 & 0 \end{bmatrix}$$

Name: Amey Sadanand Bhilegaonkar
ASU Number: 1225368924

Replace x by product Mx until page rankings converge.

Iteration (1)
$$MX = \begin{bmatrix} 1 & 1/2 & 0 & 1 \\ 0 & 1/2 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0x1 + 0x1 + (x1) \\ 1x1/2 + 0x1 \end{bmatrix} = \begin{bmatrix} 1.5 \\ 0.5 \end{bmatrix}$$

$$0x1 + 1/2x1 + 0x1 \end{bmatrix} = \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix}$$

Iteration	n (2)				<u> </u>					7
				Γ . \Box	Тохі	+071.5			0.5	
		0				T 0 V 12	+1x0.5			
$M\chi =$			' '(1 0000		1.75	
		1/2	0 1	1.5		十分×1.5	+ 0×0.2			
							0 2 0.5		0.75	
	0	110	0	0.5	IOXI	+ 1 x 1.5	+ 0 × 0 2			
		12	ل ٔ			21			<u>-</u> ا ا	_

Iteration 3:

$$MX = \begin{bmatrix} 0 & 0 & 1 & 0.5 \\ 1 & 1/2 & 0 & 1.75 \end{bmatrix} = \begin{bmatrix} 0x0.5 + 0x1.75 + 1x0.75 \\ 1x0.5 + \frac{1}{2}x1.75 + 0x0.75 \end{bmatrix} = \begin{bmatrix} 0.75 \\ 1.375 \end{bmatrix}$$

$$0 & 1/2 & 0 & 0.75 \\ 0 & 0.75 & 0.875 \end{bmatrix}$$

01 - 40			
iteration	Χħ	ХВ	Χc
0	1	J	1
1	1	1.5	0.2
2	0.5	1.75	0.75
3	0.75	1-375	0.875

The page rank algorithm stops when rankings converge.

In iteration (1): rankings are

In iteration (3): rankings are

In iteration : rankings are

The page rank algorithm stops of terration 3