Nazwa dokumentu:

Lab313 Opis obiektów oraz symulatorów

Data: 2025.04.28 Autor: Michał Syfert

Zmiany:

Data	Uwagi
2022.11.10	Wprowadzenie opisu symulatorów w środowisku Matlab/Simulink
2023.11.26	Wprowadzenie zmian w oznaczeniu zmiennych dla obiektów TTS2_EXT oraz BOILER_EXT
2023.11.27	Uaktualnienie opisu opcji symulatorów oraz symulacji zakłóceń procesowych dla obiektów TTS2_EXT, BOILER_EXT oraz AMIRA_EXT
2023.11.28	Poprawa opisu f_8 w AMIRA_EXT
2024.04.24	Uzupełnienie opisu działania uszkodzeń powolinarastających
2024.07.29	Porządkowanie nazw zmiennych i numeracji obwodów (BOILER_EXT)
2024.11.13	Usunięcie obiektów zwykłych (TTS2). Aktualizacja ogólnego opisu.
2025.04.10	Ujednolicony opis TTS-EXT
2025.04.28	Ujednolicony opis BOILER-EXT i AMIRA-EXT

Spis treści

1	Symulatory	4
1.1	Parametry symulacji	5
1.2	Symulacja uszkodzeń	6
1.3	Zmiany wartości zadanej	8
1.4	Zapis danych wyjściowych	8
2	Rozszerzony zespół trzech zbiorników szeregowych z zaworem reg	ulacyjnym
(TT	S-2-EXT)	9
2.1	Zakłócenia procesowe	10
2.2	Uszkodzenia	10
3	Rozszerzony zespół walczaka (BOILER-EXT)	13
3.1	Zakłócenia procesowe	14
3.2	Uszkodzenia	14
4	Rozszerzony zespół trzech zbiorników równoległo - szeregowych	ı (AMIRA-
EX.	T)	17
4.1	Zakłócenia procesowe	18
4.2	Uszkodzenia	18
5	Parametry domyślne	21

1 SYMULATORY

Wszystkie symulatory stanowisk laboratoryjnych mają tę samą strukturę. Na rys. 1 pokazano przykładowy schemat blokowy symulatora TTS-2 EXT w środowisku Matlab/Simulink.

Rys. 1. Schemat zespołu trzech zbiorników wraz z układem regulacji (widok w środowisku Simulink).

W skład każdego symulatora w środowisku Matlab/Simulink wchodzą części analogiczne jak dla symulatorów PExSim, tylko w nieco innym układzie:

- **Obiekt i regulator**. Podsystem obiektu (obejmuje elementy instalacji, wykonawcze oraz pomiarowe) oraz regulatora.
- **SP generator**. Podsystem zadawania określonych przebiegów wartości zadanej SP. Blok ten sterowany jest z poziomu panelu "*Tryb generowania SP*".
- **Parameters**. Blok zawierający definicję parametrów symulacji (patrz rozdział 1.1). Parametry ustawiane są z poziomu okna dialogowego maski tego podsystemu. Ustawione opcje widoczne sa na panelu "Status parametrów ogólnych".
- Faults. Podsystem zadawania uszkodzeń.
- Alarms. Podsystem generowania dwóch przykładowych alarmów wielkości regulowanej.
- Panel "Wybór konfiguracji sprzetowej" wykorzystywany jest do ustalania trybu pracy obiektu.
- Panele "*Nastawy regulatora*" oraz "*Tryb pracy regulatora. Ręczne sterowanie*" wykorzystywane są do sterowania i parametryzacji układu regulacji.

Modele procesów w symulatorach zostały stworzone tak, aby w miarę możliwości dokładnie odzwierciedlać działanie rzeczywistych stanowisk laboratoryjnych. Schemat poszczególnych modeli procesów odpowiada strukturze stanowisk sprzętowej przedstawionych w dalszych rozdziałach.

1.1 PARAMETRY SYMULACJI

Dostępne są następujące parametry symulacji:

- EnD włączanie / wyłącznie zakłóceń pomiarowych (szumy pomiarowe)
 - ⇒ powinny być praktycznie zawsze włączone

w zakresie obsługi zakłóceń procesowych:

- EnPD (EnPrDist) włączanie / wyłącznie **fluktuacje** nieznanego strumienia wody dolewanej do zbiornika, w którym regulowany jest poziom,
- wartość fluktuacji zakres zmian
 - ⇒ addytywne w stosunku do ustawionej wartości stałej
- EnPDS (EnPrDistShift) włączanie / wyłącznie stałej wartości strumienia wody dolewanego do zbiornika
 - ⇒ wyrażona w % sygnału sterującego elementu wykonawczego
 - ⇒ powinny być praktycznie zawsze włączone
 - ⇒ konieczne aby zakłócenia procesowe miały wartości dodatnie i ujemne
 - ⇒ do wykorzystania przy zadaniach diagnostycznych
- wartość stała ustawiona wartość stała dopływu strumienia wody
 - ⇒ wyrażona w % sygnału sterującego elementu wykonawczego
 - ⇒ addytywne w stosunku do ustawionej wartości stałej

Rys. 2. Panel konfiguracji podsystemu Parameters.

1.2 SYMULACJA USZKODZEŃ

W symulatorach zdefiniowano pewien wyjściowy zbiór uszkodzeń odpowiadających uszkodzeniom jakie mogą być wprowadzane w rzeczywistych obiektach. Zbiór rozpatrywanych uszkodzeń obejmuje uszkodzenia instalacji technologicznej, torów pomiarowych oraz elementów wykonawczych a także uszkodzenia dodatkowe takie jak brak medium. Wykaz uszkodzeń dla poszczególnych symulatorów opisany jest w dalszych rozdziałach.

Symulacja uszkodzeń dokonywana jest poprzez specjalne bloki funkcyjne umieszczone w różnych miejscach instalacji. Bloki te posiadają szereg parametrów definiujących okres symulacji uszkodzenia oraz jego rodzaj i wielkość.

Sterowanie poszczególnymi uszkodzeniami realizowane jest z poziomu panelu podsystemu *Faults* (patrz rys. 3).

Rys. 3. Panel konfiguracji podsystemu *Faults* (widok w środowisku Simulink).

Dostępne są następujące parametry ogólne:

- Enable faults (EnF) włączanie / wyłącznie (blokowanie) symulacji uszkodzeń
 - wyłączenie spowoduje brak symulacji uszkodzeń, nawet gdy na wejścia uszkodzeń (patrz rys. 4) podawane będą niezerowe wartości
- Tryb uszkodzeń narastających (IncipF) włączanie / wyłącznie trybu symulacji uszkodzeń powoli narastających
 - ⇒ Czas narastania dla wszystkich uszkodzeń (dla których ma zastosowanie) wynosi wartość parametru Czas narastania.
- Pozostałe parametry zależne są od konkretnego uszkodzenia, ale zawsze:
 - ⇒ Czy symulacja uszkodzenia włączona? dodatkowe włączenie/blokowanie uszkodzenia niezależne od opcji ogólnej
 - ⇒ Wartość Wielkość uszkodzenia lub logiczny sygnał jego obecności
 - ⇒ Czas startu chwila automatycznego uruchomienia uszkodzenia (początek narastania)

W celu przeprowadzenia testów **możliwa jest oczywiście** lub wręcz nawet wskazana zmiana parametrów symulacji uszkodzeń. Istnieje także możliwość wprowadzenia własnych uszkodzeń w celu przeprowadzenia dodatkowych testów.

W przypadku chęci symulowania bardziej złożonych przebiegów uszkodzeń należy w podsystemie Faults (bloku Faults Generator) dodać odpowiednie bloki funkcyjne generujące przebieg wielkości uszkodzenia i podać go na stosowne wejście (patrz rys. 4).

Rys. 4. Podsystem *Faults* (widok w środowisku Simulink).

1.3 ZMIANY WARTOŚCI ZADANEJ

Oprócz skorzystania z predefiniowanych zmian wartości zadanej (podsystem/blok *SP Generator*) możliwe jest także oczywiście skonstruowanie własnego zestawu bloków generujących żądany przebieg zmian SP i podanie go na stosowne wejście, np. w podsystemie *SP Generator* jako kolejny rodzaj przebiegu. Na rys. 5 pokazano schemat podsystemu *SP Generator* dla symulatora w Simulink.

Rys. 5. Podsystem *SP Generator* (widok w środowisku Simulink).

1.4 ZAPIS DANYCH WYJŚCIOWYCH

W symulatorach PExSim dane wyjściowe zapisywane są przez blok **Text File Output** do wskazanego pliku, pod warunkiem podania sygnału "1" na pierwsze wejście tego bloku.

W symulatorach Simulink dane zapisywane są do przestrzeni roboczej Matlaba do zmiennej roboczej simout (patrz rys.).

Rys. 6. Podsystem *SP Generator* (widok w środowisku Simulink).

2 Rozszerzony zespół trzech zbiorników szeregowych z zaworem REGULACYJNYM (TTS-2-EXT)

Schemat obiektu został przedstawiony na rys. 7. Zbiór zmiennych procesowych wraz z opisem przedstawiono w tabeli 1.

Rys. 7. Schemat zespołu TTS-2-EXT wraz z układem regulacji.

Tabela 1. Zbiór zmiennych procesowych dla TTS-2-EXT.

Symbol (PExSim)	Opis	Jednostki	Zakres
SP (LIC.11.01.SP)	Wartość zadana poziomu wody w zbiorniku III	m	00.5
CV (LIC.11.01.CV)	Sygnał sterujący na wyjściu regulatora	%	0100
P ₁ (PT.11.01)	Ciśnienie za pompą	kPa	80260
 (GC.11.01.SP)	Wartość zadana położenia zaworu V1	%	0100
CV _{G1} (GC.11.01.CV)	Sygnał sterujący regulatora 3P na zawór V1	-	{-1,0,1}
G ₁ (GT.11.01 - GC.11.01.PV)	Sygnał sprzężenia zwrotnego położenia zaworu V1	%	0100
F ₁ (FT.11.01)	Przepływ wody przez zawór V1	l/min	028
 (GC.11.02.SP)	Wartość zadana położenia zaworu V2	%	0100
CV _{G2} (GC.11.02.CV)	Sygnał sterujący regulatora 3P na zawór V2	-	{-1,0,1}
G ₂ (GT.11.02 - GC.11.02.PV)	Sygnał sprzężenia zwrotnego położenia zaworu V2	%	0100
dP ₂ (PDT.11.02)	Różnica ciśnień na zaworze V2	kPa	
F ₂ (FT.11.02)	Przepływ wody przez zawór V2	l/min	

CV _{G12} (HV.11.12)	Sygnał sterujący zaworu V12	-	{0,1}
G ₁₂ (GT.11.12)	Aktualny stan zaworu V12	-	{0,1}
L ₁₁ , L ₁₂ (LT.11.01, LT.11.11)	Poziom wody w zbiorniku I (podstawowy + redundantny)		
L ₂₁ , L ₂₂ (LT.11.02, LT.11.12)	Poziom wody w zbiorniku II (podstawowy + redundantny)	m	01
L ₃₁ , L ₃₂ (LT.11.03 - LIC.11.01.PV, LT.11.13)	Poziom wody w zbiorniku III (podstawowy + redundantny)		
F ₃ (FT.11.03)	Wypływ wody ze zbiornika Tank 3	l/min	035

Tabela 2. Zbiór sygnałów sterujących dla TTS-EXT

Symbol	Opis	Jednostki	Zakres
OPER _{mode} (OPER.11.mode)	Wybór trybu pracy instalacji (1 – z zaworem V1, 2 – z zaworem V2). W obu trybach działa regulator PID (który może być w trybie manual albo auto)	int	{1, 2}
PID _{mode} (PID.11.mode)	Wybór ręcznego trybu pracy regulatora (1 – auto, 2 - manual). W trybie ręcznym na wyjście podawana jest wartość ${\sf CV}_{\sf man}$	bool	{1, 2}
SP _{mode} (SP.11.mode)	Tryb generowania wartości zadanej: 1 – manual, 2 – sinusoida, 3 – predefiniowane skoki	int	{1, 2, 3}
SP _{man} (SP.11.man)	Pożądana wartość zadana (wykorzystywana w trybie SP _{mode} =1)	m	00.5
CV ^{G1} _{man} (CV.11.G1.man)	Wartość sygnału sterującego zaworu G1 w ręcznym trybie pracy regulatora	%	0100
CV ^{G2} _{man} (CV.11.G2.man)	Wartość sygnału sterującego zaworu G2 w ręcznym trybie pracy regulatora	%	0100

Układ sterowania realizuje zadanie regulacji poziomu w zbiorniku III (L₃).

W zależności od wybranej konfiguracji wykorzystywany jest zawór V1 lub zawór V2. W konfiguracji z zaworem V2 (dolewanie wody do zbiornika 2-go) odcinany jest zbiornik pierwszy poprzez zawór V12.

2.1 ZAKŁÓCENIA PROCESOWE

Jako zakłócenie procesowe rozpatrywany jest dodatkowy dopływ wody do zbiornika III zmieniający się losowo wokół pewnej określonej stałej wartości (zmiana na plus i minus wokół ustalonej wartości przy aktywnym **EnPrDistShift**):

- domyślny poziom stały zakłócenia: 80% odpowiada to około 5.5 [l/min],
- domyślne wahania: ± 20%, powodują zmiany w zakresie 4.2...6.8 [l/min],
- okres symulacji zakłócenia: 480 [s].

2.2 USZKODZENIA

Zbiór rozpatrywanych uszkodzeń obejmuje: uszkodzenia urządzeń pomiarowych, uszkodzenie siłownika i zaworu, brak medium na wejściu obiektu oraz uszkodzenia komponentów instalacji (wycieki ze zbiorników oraz przytkania połączeń pomiędzy zbiornikami). Miejsce wprowadzenia uszkodzeń przedstawiono na schemacie 8.

Wykaz uszkodzeń wraz z przykładowym okresem oraz typem uszkodzenia zdefiniowanymi w symulatorze przedstawiono w tabeli 3.

Rys. 8. Miejsce wprowadzenia uszkodzeń TTS-2-Ext.

Tabela 3. Lista uszkodzeń dla TTS-2-Ext.

f _k	Opis	Zakres	Rodzaj
f ₁	Zatrzymanie pracy pompy (wyłączenie) (tylko nagłe)	{-100,0} %	-
f_2	Spadek wydajności pompy	<-100,0> %	multi.
f_3	Uszkodzenie w torze sygnału sterującego CV	<-100,100> %	multi.
f_4	Uszkodzenie siłownika zaworu regulacyjnego	<-100,0> %	multi.
f_5	Uszkodzenie toru pomiarowego położenia zaworu G ₁	<-100,100>	addytywne
f ₆	Uszkodzenie grzyba lub gniazda zaworu regulacyjnego V1	<-100,100> %	multi.
f_7	Uszkodzenie toru pomiarowego przepływu F_1	<-100,100> %	multi.
f_8	Uszkodzenie toru pomiarowego poziomu L_{11}	<-100,100> %	multi.
f 9	Przeciek ze zbiornika 1	<0,1>	-
f ₁₀	Częściowe przytkanie kanału pomiędzy zbiornikami 1 i 2	<0,1>	-
f ₁₁	Uszkodzenie toru pomiarowego poziomu L_{21}	<-1,1>	addytywne
f_{12}	Przeciek ze zbiornika 2	<0,1>	-
f ₁₃	Częściowe przytkanie kanału pomiędzy zbiornikami 2 i 3	<0,1>	-
f_{14}	Uszkodzenie toru pomiarowego poziomu L_{31}	<-100,100> %	multi.
f ₁₅	Przeciek ze zbiornika 3	<0,1>	-
f_{16}	Częściowe przytkanie odpływu	<0,1>	-
f_{17}	Uszkodzenie toru pomiarowego przepływu F ₃	<-100,100> %	multi.
f_{18}	Uszkodzenie toru pomiarowego poziomu L_{12}	<-100,100> %	multi.
f_{19}	Uszkodzenie toru pomiarowego poziomu L_{22}	<-1,1>	addytywne
f_{20}	Uszkodzenie toru pomiarowego poziomu L_{32}	<-100,100> %	multi.
f ₂₁	Uszkodzenie toru pomiarowego ciśnienia P	<-100,100> %	multi.
f ₅₁	Uszkodzenie toru pomiarowego położenia zaworu G ₂	<-100,100>	addytywne
f ₅₂	Uszkodzenie przetwornika różnicy ciśnienia dP	<-100,100>	multiplikatywne
f ₅₃	Uszkodzenie grzyba lub gniazda zaworu regulacyjnego V2	<-100,100> %	multi.
f ₅₄	Uszkodzenie toru pomiarowego przepływu F_2	<-100,100> %	multi.
f ₅₅	Nieoczekiwane otwarcie / zamknięcie zaworu V12 pomiędzy zbiornikami 1 i 2	-	-

3 ROZSZERZONY ZESPÓŁ WALCZAKA (BOILER-EXT)

Schemat obiektu został przedstawiony na rys. 9. Zbiór zmiennych procesowych wraz z opisem przedstawiono w tabeli 4.

Rys. 9. Schemat zespołu BOILER-Ext wraz z układem regulacji.

Tabela 4. Zbiór zmiennych procesowych dla BOILER-Ext.

Symbol (PExSim)	Opis	Jednostki	Zakres
SP (LIC.21.01.SP)	Wartość zadana poziomu wody w walczaku	m	0 – 0.5
CV (LIC.21.01.CV)	Sygnał sterujący na wyjściu regulatora	%	0 – 100
P (PT.21.01)	Ciśnienie przed zaworem VB1	kPa	0 – 500
CV _{G1} (GC.21.01.CV)	Sygnał sterujący położeniem grzyba zaworu VB1	%	0 – 100
G ₁ (GT.21.01)	Aktualne położenie grzyba zaworu (zakładam, że pozycjoner zaworu nie korzysta z pomiaru G)	%	0 – 100
dP ₁ (PDT.21.01)	Różnica ciśnień na zaworze VB1	kPa	0 – 275
F ₁₁ (FT.21.11)	Przepływ medium przez zawór VB1 (przepływomierz Vortex)	m³/h	0 – 5
F ₁₂ (FT.21.12)	Przepływ medium przez zawór VB1 (przepływomierz elektromagnetyczny)	m³/h	0 – 5

CV _{G3} (GC.21.03.CV)	Sygnał sterujący położeniem grzyba zaworu VB3	%	0 – 100
dP ₃ (PDT.21.03)	Różnica ciśnień na zaworze VB3	kPa	
F ₃ (FT.21.03)	Przepływ medium przez zawór VB3	m³/h	
L (LT.21.01)	Poziom w zbiorniku	m	0 – 0.5

Układ sterowania realizuje zadanie regulacji poziomu w zbiorniku (L).

W zależności od konfiguracji układu (OPER_{mode}) wykorzystywany jest zawór VB1 lub VB3. Zawór VB2 jest zaworem sterownym ręcznie, bez wskazania położenia.

Tabela 5. Zbiór sygnałów sterujących dla TTS-EXT

Symbol	Opis	Jednostki	Zakres
OPER _{mode} (OPER.21.mode)	Wybór trybu pracy instalacji (1 – z zaworem V1, 2 – z zaworem V3). W obu trybach działa regulator PID (który może być w trybie manual albo auto)	int	{1, 2}
PID _{mode} (PID.21.mode)	Wybór ręcznego trybu pracy regulatora (1 – auto, 2 - manual). W trybie ręcznym na wyjście podawana jest wartość CV _{man}	bool	{1, 2}
SP _{mode} (SP.21.mode)	Tryb generowania wartości zadanej: 1 – manual, 2 – sinusoida, 3 – predefiniowane skoki	int	{1, 2, 3}
SP _{man} (SP.21.manual)	Pożądana wartość zadana (wykorzystywana w trybie $SP_{mode} = 1$)	m	00.5
CV ^{G1} _{man} (CV.21.G1.man)	Wartość sygnału sterującego zaworu G1 w ręcznym trybie pracy regulatora	%	0100
CV ^{G3} _{man} (CV.21.G3.man)	Wartość sygnału sterującego zaworu G2 w ręcznym trybie pracy regulatora	%	0100

3.1 ZAKŁÓCENIA PROCESOWE

Jako zewnętrzne zakłócenie uwzględniany jest dodatkowy strumień dopływu wody do zbiornika (zmiana na plus i minus wokół ustalonej wartości przy aktywnym **EnPrDistShift**):

- domyślny poziom stały zakłócenia: 80% odpowiada to około 0.4 [m3/h],
- domyślne wahania: ± 20%, powodują zmiany w zakresie 0.3...0.5 [l/min],
- okres symulacji zakłócenia: 480 [s].

3.2 USZKODZENIA

Zbiór rozpatrywanych uszkodzeń obejmuje: uszkodzenia urządzeń pomiarowych, uszkodzenie siłownika i zaworu, otwarcie zaworu obejścia, uszkodzenie pompy oraz uszkodzenia komponentów instalacji (wycieki z rurociągu za przepływomierzami, wyciek ze zbiornika, przytkanie rurociągu na wlocie do zbiornika). Miejsce wprowadzenia uszkodzeń przedstawiono na schemacie 10.

Wykaz uszkodzeń wraz z przykładowym okresem oraz typem uszkodzenia zdefiniowanymi w symulatorze przedstawiono w tabeli 6.

Rys. 10. Miejsce wprowadzenia uszkodzeń w stanowisku BOILER-Ext.

Tabela 6. Zbiór uszkodzeń dla BOILER-Ext.

f _k	Opis	Zakres	Rodzaj
f ₁	Przeciek ze zbiornika	<0, 1>	-
f_2	Dławienie wypływu ze zbiornika	<0, 1>	-
f_3	Zarastanie rurociągów w ciągu 1	<0, 1>	-
f ₄	Wyciek z rurociągu	<0, 1>	-
f_5	Uszkodzenie przetwornika poziomu L	<-0.5, 0.5>	addytywne
f_6	Uszkodzenie przetwornika przepływu F_{12}	<-100,100> %	multiplikatywne
f_7	Uszkodzenie przetwornika ciśnienia P ₁	<-100,100> %	multiplikatywne
f ₈	Uszkodzenie przetwornika różnicy ciśnienia dP ₁	<-100,100> %	multiplikatywne
f 9	Uszkodzenie pozycjonera lub siłownika zaworu VB1	<-100,100> %	multiplikatywne
f_{10}	Uszkodzenie grzyba lub gniazda zaworu VB1	<-100,100> %	multiplikatywne
f_{11}	Spadek obrotów pompy	<-100, 0> %	multiplikatywne
f_{12}	Otwarcie zaworu obejścia	<0, 1>	-
f_{13}	Zatrzymanie pracy pompy	{0, 1}	-
f ₁₄	Uszkodzenie przetwornika położenia G_1 (zakładam, że pozycjoner zaworu nie korzysta z pomiaru G_1)	<-100, 100>	addytywne
f_{21}	Uszkodzenie grzyba lub gniazda zaworu VB3	<-100,100> %	multiplikatywne
f_{22}	Uszkodzenie przetwornika różnicy ciśnienia dP3	<-100,100> %	multiplikatywne
f_{23}	Zarastanie rurociągów w ciągu 2	<0, 1>	-
f ₂₄	Uszkodzenie przetwornika przepływu F ₃	<-100,100> %	multiplikatywne

4 Rozszerzony zespół trzech zbiorników równoległo - szeregowych (AMIRA-EXT)

Schemat obiektu został przedstawiony na rys. 11. Zbiór zmiennych procesowych wraz z opisem przedstawiono w tabeli 7.

Rys. 11. Schemat zespołu AMIRA-Ext z układem regulacji.

Tabela 7. Zbiór zmiennych procesowych dla AMIRA-Ext.

	Opis	Jednostki	Zakres
SP (LIC.31.01.SP)	Wartość zadana poziomu wody w zbiorniku III	m	0 - 0.6
CV (LIC.31.01.CV)	Sygnał sterujący na wyjściu regulatora	V	0-12
CV _{P1}	Sygnał sterujący pompą 1	V	0-12
F ₁ (FT.31.01)	Przepływ wody do zbiornika 1	m³/h	0 - 0.26
L ₁ (LT.31.01)	Poziom wody w zbiorniku I	m	0 - 0.6
CV _{P2}	Sygnał sterujący pompą 2	V	0-12
F ₂ (FT.31.02)	Przepływ wody do zbiornika 2	m³/h	0 - 0.26
L ₂ (LIC.31.02)	Poziom wody w zbiorniku II	m	0 - 0.6
L ₃ (LT.31.03)	Poziom wody w zbiorniku III	m	0 - 0.6
CV _{G13} (HV.31.13)	Sygnał sterujący zaworu V13	-	{0,1}
G ₁₃ (GT.31.13)	Aktualny stan zaworu V13	-	{0,1}

CV _{G23} (HV.31.23)	Sygnał sterujący zaworu V23	-	{0,1}
G ₂₃ (GT.31.23)	Aktualny stan zaworu V23	-	{0,1}

Układ sterowania realizuje zadanie regulacji poziomu w zbiorniku III (L₃).

Układ może działać w dwóch konfiguracjach: wykorzystanie pompy 1 oraz zbiornika 1 lub pompy 2 i zbiornika 2. W zależności od konfiguracji odpowiednio zamykane są zawory V13 i V23 (dwustanowe).

Tabela 8. Zbiór sygnałów sterujących dla AMIRA-Ext

Symbol	Opis	Jednostki	Zakres
OPER _{mode} (OPER.21.mode)	Wybór trybu pracy instalacji (1 – ze zbiornikiem I, 2 – ze zbiornikiem II). W obu trybach działa regulator PID (który może być w trybie manual albo auto)	int	{1, 2}
PID _{mode} (PID.21.mode)	Wybór ręcznego trybu pracy regulatora (1 – auto, 2 - manual). W trybie ręcznym na wyjście podawana jest wartość ${\rm CV}_{\rm man}$	bool	{1, 2}
SP _{mode} (SP.21.mode)	Tryb generowania wartości zadanej: 1 – manual, 2 – sinusoida, 3 – predefiniowane skoki	int	{1, 2, 3}
SP _{man} (SP.21.manual)	Pożądana wartość zadana (wykorzystywana w trybie SP _{mode} =1)	m	00.5
CV ^{P1} man (CV.31.P1.man)	Wartość sygnału sterującego pompy P1 w ręcznym trybie pracy regulatora	%	0100
CV ^{P2} _{man} (CV.31.P2.man)	Wartość sygnału sterującego pompy P2 w ręcznym trybie pracy regulatora	%	0100

4.1 ZAKŁÓCENIA PROCESOWE

Jako zewnętrzne zakłócenie uwzględniany jest dodatkowy strumień dopływu wody do zbiornika III (zmiana na plus i minus wokół ustalonej wartości przy aktywnym **EnPrDistShift**):

- domyślny poziom stały zakłócenia: 80% odpowiada to około 0.108 [m3/h],
- domyślne wahania: ± 20%, powodują zmiany w zakresie 0.081...0.135 [l/min],
- okres symulacji zakłócenia: 480 [s].

4.2 USZKODZENIA

Zbiór rozpatrywanych uszkodzeń obejmuje: uszkodzenia urządzeń pomiarowych, uszkodzenia pomp oraz uszkodzenia komponentów instalacji (wycieki ze zbiorników oraz przytkania połączeń pomiędzy zbiornikami oraz wypływu). Miejsce wprowadzenia uszkodzeń przedstawiono na schemacie 12.

Wykaz uszkodzeń wraz z przykładowym okresem oraz typem uszkodzenia zdefiniowanymi w symulatorze przedstawiono w tabeli 9.

Podczas badania układów sterowania uszkodzenia wyłączamy.

Rys. 12. Miejsce wprowadzenia uszkodzeń w stanowisku AMIRA-Ext.

Tabela 9. Zbiór uszkodzeń dla AMIRA-Ext.

f _k	Opis	Zakres	Rodzaj
f ₁	uszkodzenie toru pomiarowego poziomu L ₁	<-100,100> %	multiplikatywne
f ₂	uszkodzenie toru pomiarowego poziomu L ₃	<-1,1>	addytywne
f ₃	uszkodzenie toru pomiarowego poziomu L ₂	<-100,100> %	multiplikatywne
f ₄	uszkodzenie pompy I	<-100,0> %	multiplikatywne
f_5	wyciek ze zbiornika I	<0,1>	-
f_6	wyciek ze zbiornika II	<0,1>	-
f ₇	przytkanie kanału miedzy zbiornikami I i III	<0,1>	-
f ₈	przytkanie kanału miedzy zbiornikami II i III	<0,1>	-
f 9	przytkanie odpływu	<0,1>	-
f ₁₀	brak medium	{0,1}	-
f ₁₁	uszkodzenie pompy II (zależnie od konfiguracji obiektu)	<-100,100> %	multiplikatywne
f ₂₁	Uszkodzenie przetwornika przepływu F ₁	<-100,100>	multiplikatywne
f 22	Uszkodzenie przetwornika przepływu F ₂	<-100,100>	multiplikatywne
f ₂₃	Nieoczekiwane otwarcie / zamknięcie kanału miedzy zbiornikami I i III	-	-
f ₂₄	Nieoczekiwane otwarcie / zamknięcie kanału miedzy zbiornikami II i III	-	-

5 PARAMETRY DOMYŚLNE

Tabela 10. Symulator Amira

Parametr	Wartość
ProcDistShift	1.8E-5
ProcDist.Aplitude	±20% ProcDistShift
ProcDist.Frequency	1/360
CV _{SP=0.6} – bez ProcDistShift	5.2

Tabela 11. Symulator TTS

Parametr	Wartość	
ProcDistShift	1.6E-4	
ProcDist.Aplitude	±20% ProcDistShift	
ProcDist.Frequency	1/360	
CV _{SP=16,5} – bez ProcDistShift	45	

Tabela 12. Symulator TTS-2

Parametr	Wartość
ProcDistShift	1.6E-4
ProcDist.Aplitude	±20% ProcDistShift
ProcDist.Frequency	1/360
$CV_{SP=0,2}$ – bez ProcDistShift	67

Tabela 13. Symulator Boiler

Parametr	Wartość	
ProcDistShift	0.2	
ProcDist.Aplitude	±20% ProcDistShift	
ProcDist.Frequency	1/360	
CV _{SP=0.25} – bez ProcDistShift	55	