BIGTREE TECH

Eddy V1.0

用户手册

修订历史

版本	日期	修改说明
v1.00	2024/4/19	初稿
v1.01	2024/4/25	1. 新增 B00T 按键标识 2. 增加重启 K1ipper 的说明
v1.02	2024/4/26	增加了电脑更新固件的方法
v1.03	2024/4/30	重新整理配置、校准部分的说明
v1. 04	2024/5/15	添加中心点位置尺寸

目录

一,	产品信息	4
二、	产品优点	5
三、	产品尺寸及接口	6
3	. 1 尺寸图	6
3	. 2 BOOT 按键说明	7
四、	安装指南	8
4	. 1 以 voron2. 4 为例	8
4	.2 Eddy + Manta M5P	9
4	. 3 Eddy + Manta M8P V2.0	10
4	. 4 Eddy Coil + EBB36 V1.2	10
4	.5 Eddy Coil + EBB42 V1.2	11
五、	固件	12
5	. 1 重要提示	12
5	. 2 编译固件	12
5	.3 通过电脑更新固件	13
5	. 4 通过 DFU 更新固件	14
5	.5 Klipper 配置	15
	5.5.1 USB 版本配置	15
	5.5.2 Coil 版本配置	16
	5.5.3 bed_mesh 配置	16
5	6 松准	17

一、产品信息

产品名称 Eddy

产品重量 6g

电压 5V

静态电流 30mA

工作电流 30mA

电缆长度 2.5 m (USB 版), 15cm (coil 版)

接线 USB: 4pin, 间距 1.5mm

Coil: 4-2.54mm 杜邦母头,一头 ZH1 5mm 4P 连接器

使用温度 ≤60℃ 环境温度

标准误差 0.5 μ m

适配机型 所有使用 Klipper 的 FDM 打印机

二、产品优点

- · 整体体积小,重量轻;
- · 具备温度补偿功能;
- · 高效率调平;
- · 应用广泛,兼容性强;
- · 精度高,稳定性强;
- · 非接触式;

三、产品尺寸及接口

3.1尺寸图

注意: 在安装 Eddy 时,底部之于喷嘴的位置需至少在喷嘴上面 1-2 mm。

线圈中心点如下:

3.2 BOOT 按键说明

注意: 仅仅 Eddy V1.0 拥有 BOOT 功能, Eddy Coil V1.0 上的按键无功能。

四、安装指南

4.1以 voron2.4 为例

安装位置,完全替代原有 PL-08N 安装位

使用两颗 M3*25 螺丝(包装内附)将模块固定再 X Carriage 打印件上,如视图

4.2 Eddy + Manta M5P

4.3 Eddy + Manta M8P V2.0

4.4 Eddy Coil + EBB36 V1.2

4.5 Eddy Coil + EBB42 V1.2

五、固件

5.1 重要提示

1. Klipper 还没有合并<u>快速扫描的 PR</u>, 所以在此之前请使用 BIGTREETECH 版本的 Klipper。

```
在 ssh 终端中运行以下命令
cd ~/klipper/
git remote add eddy https://github.com/bigtreetech/klipper
git fetch eddy
git checkout eddy/eddy
然后执行以下命令,重启 Klipper 服务
sudo systemctl restart klipper
```

2. Eddy 进行温度补偿时热床温度较高, 谨防烫伤

5.2 编译固件

USB 版本需要更新 Eddy 内置的 MCU 固件, 而 coil 版本需要更新其连接的主板的 MCU 固件。

1. SSH 连接到树莓派后,在命令行输入:

```
cd ~/klipper/
make menuconfig
使用下面的配置编译固件
```

[*] Enable extra low-level configuration optionsMicro-controller
Micro-controller Architecture (Raspberry Pi RP2040) --->
Bootloader offset (No bootloader) --->
Flash chip (W25Q080 with CLKDIV 2) --->
Communication interface (USB) --->

USB ids --->

- () GPIO pins to set at micro-controller startup
- 2. 配置选择完成后,输入 'q' 退出配置界面,当询问是否保存配置时选择 "Yes";
- 3. 输入 make 编译固件,当 make 执行完成后会在 home/pi/klipper/out 文件夹中生成我们所需要的'klipper.uf2'固件,在 SSH 软件左侧可以直接下载到电脑中。

5.3 通过电脑更新固件

1. 按住 Boot 按钮,用 USB 线将 Eddy 接到电脑的 USB 端口

2. 电脑会识别出一个存储设备,将上面步骤下载下来的 klipper. uf2 文件拷贝 到这个存储设备,设备会自动更新固件并重启,重启后即完成了更新固件。

5.4 通过 DFU 更新固件

1. 按住 Boot 按钮,用 USB 线将 Eddy 接到树莓派/BIGTREETECH Pi 的 USB 端口

2. 在 SSH 终端命令行中运行 1susb 查询 DFU 设备 ID

```
pi@fluiddpi: ~ $ lsusb
Bus 001 Device 005: ID
Bus 001 Device 004: ID
Bus 001 Device 003: ID
Bus 00424:9514 Microchip Technology, Inc. (formerly SMSC ) SMC9514 Hub
Bus 001 Device 003: ID
Bus 00424:9514 Microchip Technology, Inc. (formerly SMSC ) SMC9514 Hub
Bus 001 Device 003: ID
Bus 00424:9514 Microchip Technology, Inc. (formerly SMSC ) SMC9514 Hub
```

3. 运行

cd ~/klipper make flash FLASH_DEVICE=2e8a:0003 开始烧录固件(注意:将 2e8a:0003 更换为上一步中查询到的实际的设备的 ID)

4. 固件烧录完成后,运行

ls /dev/serial/by-id/*

查询 USB 通信的 ID。或者在 mainsail 中也可以找到

5.5 Klipper 配置

5.5.1 USB 版本配置

在 printer.cfg 中配置 eddy

[mcu eddy]

serial: /dev/serial/by-id/(根据上面的方法在 ssh 或 mainsail 里面查找到的实际 ID)

[temperature_sensor btt_eddy_mcu]
sensor_type: temperature_mcu

sensor_mcu: eddy

[probe_eddy_current btt_eddy]

sensor_type: 1dc1612

```
z offset: 1.0 # 不要设置为 0 即可
i2c mcu: eddy
i2c bus: i2c0f
x offset:0 # 根据实际相对于喷嘴的偏移量设置
y offset: 20 # 根据实际相对于喷嘴的偏移量设置
data rate: 500
[temperature probe btt eddy]
sensor type: Generic 3950
sensor pin: eddy:gpio26
horizontal_move_z: 2
[bed mesh]
horizontal move z: 2
# 其他参数根据机器实际情况配置
5.5.2 Coil 版本配置
在 printer.cfg 中配置 eddy coil
[probe_eddy_current btt_eddy]
sensor_type: 1dc1612
z offset: 1.0 # 不要设置为 0 即可
i2c mcu: EBBCan # eddy coil 实际连接的主板的 mcu 名称
i2c bus: i2c3 PB3 PB4 # eddy coi1 实际连接的 I2C 总线
x offset:0 # 根据实际相对于喷嘴的偏移量设置
y offset: 20 # 根据实际相对于喷嘴的偏移量设置
data rate: 500
[bed mesh]
horizontal move z: 2
# 其他参数根据机器实际情况配置
# coil 版本没有内置的热敏电阻,所以无需配置 temperature_probe
```

5.5.3 bed mesh 配置

[bed mesh]

speed: 50

校准 X、Y 移动的速度(毫米/秒)

horizontal move z: 2

在开始探测操作前,头部被命令移动到的高度(mm)

mesh_min: 10, 10

对于矩形热床,定义网格的最小 X, Y 坐标。此坐标相对于探测头的位置。这将是第一个探测点,最接近原点。矩形热床必须提供此参数。

mesh_max: 220, 220

对于矩形热床,定义网格的最大 X, Y 坐标。遵循与 mesh_min 相同的原则,但这将是离床原点最远的探测点。矩形热床必须提供此参数。

probe count: 5, 5

对于矩形热床,这是一对逗号分隔的整数值 X, Y, 定义沿每个轴探测的点数。 单个值也有效,此时该值将应用于两个轴。

参考 https://www.klipper3d.org/Config_Reference.html#bed_mesh

[bed_mesh] 里的 horizontal_move_z 参数,建议设置为 2, 使扫描平台的时候, Eddy 尽可能的靠近平台。

5.6 校准

1. 上述配置完成后,首先需要校准 Eddy 的驱动电流,将 Eddy 放置在平台上方 20mm 左右的地方。在 Mainsail 的 Console 执行

LDC CALIBRATE DRIVE CURRENT CHIP=btt eddy

自动获取电流,然后 SAVE_CONFIG 保存参数

2. 校准 Eddy 频率与 Z 轴高度的关系, 先 home X 和 Y 轴

G28 X Y

然后将喷头移动到平台中心(注意:此步骤要确保机器没有加载 heightmap)

GO X150 Y150 F6000

开始手动 z 偏移校准 (Paper test)

PROBE EDDY CURRENT CALIBRATE CHIP=btt eddy

校准完成后 SAVE_CONFIG 保存参数

09:23 SAVE_CONFIG

09:23 probe_eddy_current: stddev=144.727 in 3998 queries
 The SAVE_CONFIG command will update the printer config file and restart the printer.

09:22 ACCEPT

- 3. 带有 z_tilt 或者 quad_gantry_level (QGL) 功能的打印机,先运行一次 Z TILT ADJUST 或者 QUAD GANTRY LEVEL,防止网格扫描时喷嘴撞到热床
- 4. 此时可以 home 所有轴,然后执行以下命令进行快速的网格扫描: BED_MESH_CALIBRATE METHOD=scan SCAN_MODE=rapid 扫描完成后 SAVE_CONFIG 保存参数
- 5. 温度补偿(coil版本无温度补偿,忽略此步骤即可) 注意:热床极限温度很高,谨防烫伤。
 - (1) home 所有的轴
 - (2) 执行

SET IDLE TIMEOUT TIMEOUT=36000

将机器的 idle timeout 设置长一点,避免我们升温过程的时候 timeout

(3) 记录下常温下的 BIGTREETECH Eddy 温度。设定一个热床极限温度,并设置常用的工具头温度,等待 BIGTREETECH Eddy 温度稳定后记录这个极限的 BIGTREETECH Eddy 温度。

这个极限 BIGTREETECH Eddy 温度作为下面的目标温度。目标温度不要超过极限温度,最好少一两度

(4) 等待回到常温后执行

PROBE DRIFT CALIBRATE PROBE=btt eddy TARGET=50 STEP=5

其中 TARGET=50 是指目标温度到 50 ℃, STEP=5 指的是每个节点的温度刻度 是 5 ℃。

例如当前的温度为 30 ℃,目标温度是 50 ℃,那么总的温度范围为 50 -30 =20 ℃,每个节点的刻度是 5 ℃,也就是会采样 20 / 5 = 4 个节点。

执行以上命令会立刻要求一个手动 z 偏移校准(Paper test),然后手动加热 热床、喷头等待温度升高,等待 BIGTREETECH Eddy 的温度升高,BIGTREETECH Eddy 在下一个节点也就是 35 $^{\circ}$ 会再要求一个手动 z 偏移校准(Paper test),然后再在下一个节点也就是 40 $^{\circ}$ 再要求一个手动 z 偏移校准(Paper test),以此类推。

注意: 如上述的例子, 第二个温度节点为 35℃, 但是手动 z 偏移校准需要时间, 并且此时温度可能仍然在不断的升高, 如果校准完成时候的实际温度

为 36℃,那么下一个节点的温度会在此基础上增加一个刻度值,也就是41℃。

如果您还需要此产品的其他资源,可以到 https://github.com/bigtreetech/ 上自行查找,如果无法找到您所需的资源,可以联系我们的售后支持(service005@biqu3d.com)。

若您使用中还遇到别的问题,欢迎您联系我们,我们定会细心为您解答;若您对我们的产品有什么好的意见或建议,也欢迎您回馈给我们,我们也会仔细斟酌您的意见或建议,感谢您选择 BIGTREETECH 制品,谢谢!