Bezpečnost: kontroly, bezpečnostní politika, standardy

PV080

Vašek Matyáš

(část slajdů ve spolupráci s Evou Rackovou, KPMG)

Zásadní kroky pro zajištění bezpečnosti

1. Analýza hrozeb

2. Specifikace bezpečnostní politiky a architektury

3. Popis bezpečnostních mechanizmů

Kontroly

- Co vlastně dělat? (Analýza rizik)
- Jak to budeme dělat? (Bezpečnostní politika)
- Jaký systém použít? (Kritéria hodnocení bezpečnosti)
- Děláme to dobře? (Interní audit)
- Dělají to špatně? (Externí, příp. i vynucený audit)

Audit IT

- Naplánování auditu
- Dokumentace a posouzení kontrol
 - Důraz na dokumentaci, ne technologie!
- Výběr testů souladu a jejich provedení
 - Je dokumentace správná?
- Výběr a provedení speciálních testů
 - Skutečná kontrola funkčnosti
- Celkové posouzení systému
- Interní audit: Oddělení nezávislé na IT oddělení!

Připomínka: Od zranitelnosti k riziku

- Zranitelnost slabé místo v systému
- Hrozba akce/událost, která může ohrozit bezpečnost
 - potenciální využití zranitelnosti
- Riziko pravděpodobnost, že se hrozba uplatní (zranitelnost využije)
 - Dva aspekty pravděpodobnost a výše škody
- Útok akt využití zranitelnosti (realizace hrozby)

Analýza rizik v IS obecně

- Často podle standardu pro řízení bezpečnosti (ISO/IEC 27002, dříve 17799, vznik z BS7799)
- Srovnání rizik a kontrol
 - Použití definované stupnice
 - Neoceňuje hodnoty
- Přístup odhadu podle informačních aktiv
 - Vhodnější pro společnosti kriticky závislé na IT a také společnosti se složitější kontrolou. Živnostníkovi stačí v méně formální postup srovnání rizik a kontrol.

Analýza rizik

- Zvážit, co všechno by mělo být chráněno
- Vyhodnotit, jaké hrozby hrozí ochraňovaným hodnotám.
 - Často nelze než vycházet z analýzy empirických poznatků o problémech v okolí, jiných útocích na podobné hodnoty atd.
- Chybně provedená analýza rizik má za důsledek téměř vždy chybně navržená bezpečnostní opatření. Hodnoty pak mohou být chráněny velmi nákladným, ale naprosto nesmyslným a neúčinným způsobem.

Analýza rizik

- Častěji spíše proces odhadu rizik méně formální a podrobný než skutečná analýza
- Kvantitativní vs. kvalitativní
- Kvantitativní
 - Výstup je velmi srozumitelný
 - Nejčastěji výstup v \$\$\$ (vystavení rizikům)
- Kvalitativní
 - Diskrétní stupnice (ne \$\$\$)
 - Jednodušší postup, automatizovatelný, ale výsledky nejsou lehce srozumitelné

Analýza rizik – metoda ALE

Annual Loss Expectancy

• ALE = SLE x ARO

- SLE Single Loss Exposure
- ARO Annualized Rate of Occurrence

Analýza rizik – BPA

- Business Process Analysis
- Širší pojetí rizik, nejen IT
 - Některá IT rizika tak mohou zůstat neidentifikována (pokud neovlivňují obchodní proces)
- Výstupy
 - Mapa procesů a jejich popisy.
 - Tabulka rizik (kvalitativní) a kontrol
 - Doporučení

CRAMM

- 1985 Vláda UK Risk Analysis and Management Method
- Strukturovaný přístup ve třech fázích:
 - Identifikace a ocenění hodnot.
 - Odhad hrozeb a zranitelností hodnot.
 - Výběr vhodných protiopatření.
- Analýza vcelku složitá, používá se zvláštní software a je zde velká časová náročnost, potřeba školených specialistů.

Několik poznámek k analýze rizik

- Sběr informací dotazníky, pohovory atd.
- Kontrola úplnosti formální kontroly, ale hlavně zkušenost hodnotitelů!!!
- Zpracování vstupních dat
 - polo/automatizované
- Zpráva s návrhy pro snížení rizik

Bezpečnostní politika

- Co a jak mají dosáhnout ochranná opatření.
- Cíl minimalizace (kontrola) rizik.
- Strategie jak dosáhnout cíle použití bezpečnostních funkcí
 - Zahrnuje požadavky, pravidla a postupy, určující způsob ochrany a zacházení s ochraňovanými hodnotami.
- Většinou psána normálním jazykem, lze ale použít i nějaký druh formalismu.

Bezpečnostní politika

- Celková bezpečnostní politika
 - Určitá míra nezávislosti na použitých IT.
 - Citlivá data, zodpovědnosti, základ infrastruktury.
 - Horizont nad 5 let.
- Systémová bezpečnostní politika
 - Zohledňuje použité IT, konkretizace CBP.
 - Horizont obvykle cca 2-3 roky.
- Příp. další, specifické, politiky provozní, personální, intranetová...

Bezpečnostní (IT) standardy

- Motivace
 - Kompatibilita, cena implementace a změn
 - Minimalizace problémů
- Standardy oficiální (vyžadovány zákonnými normami) – ČSNI, ISO
- Standardy průmyslové
- Kritéria hodnocení bezpečnosti

ISO/IEC 27002 I.

Dříve BS 7799:

- 1. Code of Practice for Information Security Management 1995
- 2. Specification for Information Security Management Systems 1998

- Oba doplněny v roce 1999
- ISO/IEC standard 17799, i jako česká norma
- V roce 2007 jako ISO/IEC 27002

ISO/IEC 27002 II.

- Vznik celé rodiny standardů 27k
- Tento se věnuje zásadám budování a využívání systému řízení bezpečnosti informací (Information Security Management System – ISMS)
- Model PDCA (Plan Do Check Act) používaný např. v řízení kvality

Standardizační organizace

Český normalizační institut (ČSNI)

- Založen k 1. lednu 1993
- Státní příspěvková organizace
- Aktivity
 - člen ISO a IEC
 - člen CEN a CENELEC
 - člen ETSI
 - organizace Ministerstva průmyslu a obchodu
- Zákon č. 22/1997 Sb. o technických požadavcích na výrobky zabezpečováním tvorby a vydáváním českých technických norem
- Normy (většinou) nejsou závazné vynucování ad hoc

Bezp. standardy ISO/ČSNI

- Základní standardy bezpečnost OSI, bezp. architektura, mechanizmy autentizace entit...
- Přejmutí mezinárodních standardů překlady
- Funkční standardy jak aplikovat základní standardy
- Kritéria hodnocení bezpečnosti
- Odvětvové standardy a metodologie
- Vysvětlující dokumenty slovníky, příručky atd.

Standardy ISO

• Principy:

- shoda: jsou vzaty úvahu názory všech
 zainteresovaných stran (výrobci, dodavatelé,
 uživatelé, spotřebitelská uskupení, testovací
 laboratoře, vládní orgány, výzkumná pracoviště)
- globální řešení: musí vyhovovat požadavkům daného odvětví po celém světě
- dobrovolnost
- Přezkoumávány alespoň jednou za 5 let
- Také prozatímní (interim) dokumenty

Srovnání ISO standardů v oblasti řízení bezpečnosti

	Systém řízení bezpečnosti	Seznamy protiopatření	
ISO/IEC 27k	ANO	ANO	
ISO/IEC TR 13335, Část 1-3	ANO	NE	
ISO/IEC TR 13335, Část 4	NE	ANO	
ISO/TR 13 569	NE	ANO (financial services)	

ISO/IEC TR 13335

Standardy NIST – Special Publications

- 800-14: Generally Accepted Principles and Practices for Securing Information Technology
- 800-26: Security Self-Assessment Guide for Information Technology Systems
- 800-27: Engineering Principles for Information Technology Security
- 800-30: Risk Management Guide for Information Technology Systems
- 800-33: Underlying Technical Models for Information Technology Security

800-27: Engineering Principles for Information Technology Security

- A Baseline for Achieving Security
- 32 základních principů
 - předpokládejte, že externí zdroje nejsou bezpečné
 - usilujte o jednoduchost
 - identifikujte možné kompromisy mezi snížením rizika a vyššími náklady a snížením ostatních aspektů provozní efektivity
 - minimalizujte části systému, které musí být vysoce bezpečné
 - fyzicky nebo logicky oddělte kritické zdroje
 - neimplementujte nadbytečné bezpečnostní mechanizmy

800-30: Postup odhadu rizika

800-30: Postup odhadu rizika

Identifikace hrozeb Identifikace zranitelností

Zranitelnost	Aktivita hrozby
Účty bývalých zaměstnanců nejsou vymazány ze systému	Vzdálený přístup k síti organizace a přístup k citlivým datům
Firewall umožňuje příchozí telnet službu a účet GUEST je aktivní na serveru XYZ	Využití služby telnet pro přístup k serveru XYZ
Dodavatel identifikoval slabiny v návrhu systému, ale zatím nejsou k dispozici opravy	Získání neautorizovaného přístupu k systému využitím slabin
Výpočetní středisko využívá automatické vodní hasicí zařízení a zároveň není k dispozici zařízení chránící hardware před poškozením vodou	Poškození výpočetní techniky vodou

4. Analýza kontrol

Technická bezpečnostní kritéria

Provozní bezpečnostní kritéria

Organizační bezpečnostní kritéria

Organizační bezpečnostní kritéria

- Jednoznačné přiřazení odpovědnosti
- Průběžná podpora
- Schopnost reakce na incidenty
- Periodické prověrky bezpečnostních kontrol
- Prověřování zaměstnanců
- Analýza rizik
- Bezpečnostní a technická školení
- Rozdělení pravomocí a odpovědností
- Systém schvalování a autorizací
- Bezpečnostní plán

Provozní bezpečnostní kritéria

- Kontrola možného znečištění vzduchu (kouř, prach, chemické látky)
- Kontroly zajišťující stabilitu dodávky elektrické energie
- Přístup a datovým médiím a metody jejich likvidace
- Externí distribuce dat a jejich označování
- Fyzická ochrana objektů (např. výpočetního střediska, kanceláří)
- Kontroly vlhkosti
- Kontroly teploty
- Zabezpečení pracovních stanic, notebooků a počítačů

Technická bezpečnostní kritéria

- Ochrana komunikací (např. vzdálený přístup, propojení systémů, routery)
- Šifrování
- Kontrola přístupu
- Identifikace a autentizace
- Detekce průniku
- Opakované využití objektů
- Systémový audit

5. Odhad pravděpodobnosti

Pravděpodobnost	Popis pravděpodobnosti
Vysoká	Zdroj hrozby je vysoce motivován a dostatečně schopný, kontroly, které mohou zabránit zneužití zranitelnosti nejsou účinné
Střední	Zdroj hrozby je motivovaný a schopný, ale jsou implementovány kontroly, které mohou zdržovat nebo komplikovat úspěšné zneužití zranitelnosti
Nízká	Zdroj hrozby nemá dostatečnou motivaci ani dostatečné schopnosti nebo jsou implementovány kontroly, které mohou zabránit zneužití zranitelnosti, nebo ho alespoň významně zdržet

6. Analýza dopadu

Dopad	Definice		
Vysoký	Využití zranitelnosti může:		
	1. způsobit značnou finanční ztrátu (ztrátou aktiv nebo zdrojů)		
	2. významně porušit, poškodit nebo zbrzdit cíle organizace, její pověst nebo zájmy		
	3. mít za následek závažné zranění nebo smrt osob		
Střední	Využití zranitelnosti může:		
	1. způsobit významnou finanční ztrátu (ztrátou aktiv nebo zdrojů)		
	2. porušit, poškodit nebo zbrzdit cíle organizace, její pověst nebo zájmy		
	3. způsobit zranění osob		
Nízký	Využití zranitelnosti může:		
	1. způsobit ztrátu některých aktiv nebo zdrojů		
	2. ovlivnit cíle organizace, její pověst nebo zájmy		

7. Odhad rizika

Dopad Pravděp odobnos t	Nízký (10)	Střední (50)	Vysoký (100)
Vysoká (1.0)	Nízké (10)	Střední (50)	Vysoké (100)
Střední (0,5)	Nízké (5)	Střední (25)	Vysoké (50)
Nízká (0,1)	Nízké (1)	Nízké (5)	Nízké (5)

Kritéria hodnocení bezpečnosti

- USA konec 60. let a 70. léta potřeba minimalizace nákladů na individuální hodnocení
- 1985 Trusted Computer System
 Evaluation Criteria "Orange Book"
 - Třída D– žádná bezpečnost
 - A1 nejvyšší bezpečnost (matematický formalismus)

Pojmy

- Akreditace oficiální souhlas (pověření) s prováděním určité činnosti
- Certifikace vydání daného osvědčení na základě provedného hodnocení
- Hodnocení (evaluace) ověření shody deklarovaných vlastností (dle kritérií)
- Validace ověření platnosti/souladu, v US terminologii "hodnocení" – viz výše

Důležité pojmy z CC

- Předmět hodnocení (Target of Evaluation, TOE) – produkt nebo systém (nebo jeho část), který je předmětem hodnocení
- Specifikace bezpečnosti (Security Target, ST) cílová kombinace komponent spojených s konkrétním produktem nebo systémem
- **Profil bezpečnosti** (*Protection Profile*, *PP*) implementačně nezávislá skupina bezpečn. požadavků určité skupiny TOE

Společná kritéria

- Zájem uživatelů, výrobců, hodnotitelů
- Profil bezpečnosti (čipové karty, biometriky, DBMS, poštovní razítkovače ap.)
 - "Minikritéria" katalogovány jako samostatný hodnotitelský dokument
 - Popisy bezpečnostních potřeb často různorodé ☺
- Security target (ST) teoretický koncept/cíl
- Hodnocení TOE odpovídá realita teorii (ST)?
- Požadavky na funkčnost a záruky

Význam a výhody kritérií

 Usnadňují nasazení a používání bezpečných systémů – jednodušší srovnávání a výběr podle skutečných potřeb

Usnadňují specifikaci požadavků

Ujasňují požadavky na návrh a vývoj

Základní krypto-standardy

- Symetrická kryptologie (DES), AES
- Asymetrická kryptologie šifrování, podpisy, výměna klíčů
 - IEEE P1363 založené na faktorizaci, diskrétním logratimu, eliptických křivkách
 - NIST FIPS 186-3 Digital Signature Standard
- Hašovací funkce SHA-1, RIPEMD, (MD5),
 SHA-2 (SHA-224, -256, -384, -512)
 - Tento měsíc doběhla soutěž na SHA-3

Kryptografické algoritmy

- Kritické pro většinu systémů
- Národní zájmy
- Desetiletí úmyslného opomíjení (bojkotování) tohoto tématu v procesu standardizace
- Zásadní pro nasazení DES nepřímá podpora díky absenci jiných široce uznávaných standardů
- Proto i velké očekávání od AES

"Cvičení" Advanced Encryption Standard

- Zprávy o veřejné soutěži od NIST 1996
- Leden 1997 Oficiální oznámení o projektu
- Září 1997 Call for Proposals
- Srpen 1998 oznámeno 15 kandidátů
- Srpen 1999 5 finalistů
- 2. října 2000 Volba algoritmu
- Konec 2000 První implementace (PGP 7.0.3)
- Listopad 2001 FIPS 197

AES – Algoritmus Rijndael

- Vstup i výstup: bloky 128b
- Délka klíče: 128, 192 nebo 256 bitů
- Zpracování po bytech
- 10, 12 or 14 rund (podle délky klíče)
 - Přidání Initial Round Key
 - Poslední runda je mírně odlišná

Nová hašovací funkce SHA-3

- Délka prací dle očekávání jako AES
- Listopad 2007: Request for Candidate Algorithm Nominations for a New Cryptographic Hash Algorithm (SHA-3) Family
- http://www.nist.gov/hash-competition
- Nenahrazuje, ale doplňuje funkce v FIPS 180-2
- 64 návrhů, 16 dle neoficiálních info (Wikipedia) slabých, 51 postoupilo do dalšího kola
- Kolo 2 (změny povoleny) 14 kandidátů (např. bez MD6)
- Finále s 5 finalisty (pochybnosti o jejich výběru)
- Vyhlášení vítěze v říjnu 2012 Keccak (EU)

Standardy aplikované kryptografie

- Digitální certifikáty X.509 +
- PKCS standardy
- Bezpečnostní/krypto protokoly
 - Nízká úroveň zákl. standardy (autentizace entit)
 - ISO/IEC Key Management 11770, Non-repudiation 13888
 - IETF PKIX, IPSEC, S/MIME

Hodnocení kryptografických prostředků

- použité kryptografické algoritmy
 - schválení převzetí jiných, obvykle mezinár.
 - kryptografický a kryptoanalytický rozbor nově navrhovaných algoritmů
- vlastní implementace kryptogr. algoritmů
- prostředí vlastní implementace
 - správa klíčů, kryptografické protokoly,
 autentizace uživatelů, odolnost produktu ap.

FIPS 140-1, 140-2 ... 3(?)

- Hodnocení kryptografických modulů
 - SW, firmware, ale především HW!
- 4 bezpečnostní úrovně pro 11 požadovaných oblastí
- Verze 2 je jen mírnou změnou verze 1
- Program hodnocení podle *Cryptographic Module Program Validation*
- 2007 zveřejněn draft FIPS 140-3, poslední info 2010
 - Výraznější změny navíc 1 úroveň, všech 11 požadavků předefinováno, některé požadavky zesíleny

Bezp. požadavky FIPS 140-1/2

- Specifikace modulu
- Rozhraní modulu
- Role
- Služby a autentizace
- Fyzická bezpečnost
- Bezpečnost O/S

- Správa klíčů
- Elektromagnetická inference/kompatibilit a
- Provádění testování
- Záruky za návrh
- Metody pro zmírnění jiných útoků

FIPS 140-1/2

- 1. Použitý kryptoalgoritmus schválený ap., není fyzická bezpečnost (lze i SW na PC)
- 2. Detekce narušení, autentizace podle rolí, víceuživatelské systémy (CC CAPP, EAL2)
- 3. Nulování kritických hodnot při narušení krytů/dvířek, oddělené porty (EAL3)
- 4. Detekce průniku odkudkoliv, spolupráce se systémy na EAL4

Standardy

- Standardy umožňují dosažení základní "kvalitativní" úrovně podobných produktů nebo systémů a jejich interoperabilitu
- Standardy soustředí zásadní poznatky
- Standardy lze použít jako měřítko pro hodnocení nebo srovnání

Úloha manažera bezpečnosti IT

- Zkušenost s bezpečností důležitá, ale...
- Umění přesvědčovat je zásadní!
- Zkušenost: 60 % manažer, 40 % expert
- Místo velmi náročné
 - Kritizován za bezpečnostní incidenty
 - Kritizován za obstrukce "normálnímu" chodu
 - Jak může být oceněn za "nic se neděje!"? ☺

Polosemestrální písemka!

- 6. listopadu **nutná registrace** do skupin!
- Doba pro práci 30 minut
- I. skupina 10:00
- II. skupina 10:50

- Příchod vždy spodním vchodem (řazení dle abecedy!!!), odchod horním vchodem
- S sebou jen pero (2) a ISIC (nebo jiný doklad s aktuální fotografií a jménem)

Mezi základní pravidla bezpečnostního modelu Bell-LaPadula patří:

- :c1 Procesy nesmějí číst data na vyšší úrovni.
- :c2 Procesy nesmějí zapisovat data do vyšší úrovně.
- :c3 Procesy nesmějí číst/zapisovat data z/do nižsí úrovně.
- :c4 Procesy nesmějí číst data na nižší úrovni.
- :c5 Procesy nesmějí zapisovat data do nižší úrovně.
- :c1 ok 2
- :c2 -2
- :c3 -2
- :c4 -2
- :c5 ok 2

Povinnosti správce osobních údajů:

- :c1 ověřovat neautorizované výskyty osob
- :c2 stanovit prostředky a způsob zpracování osobních údajů
- :c3 zpracovávat pouze pravdivé a přesné osobní údaje
- :c4 neposkytovat data třetím stranám před sepsáním Smlouvy o autorizovaném poskytnutí osobních dat
- :c5 archivovat data kódovaně, není-li řečeno jinak
- :c6 vkládat falešné záznamy, aby v případě krádeže dat nebylo možné snadno posoudit jejich validitu
- :c1 -2
- :c2 ok 3
- :c3 ok 3
- :c4-1
- :c5 -1
- :c6 -1