ADVANCED QUANTUM MECHANICS TUTORIAL QUESTIONS WEEK 4

- 1. Consider the properly symmetrized wave-function of two spinless bosons, $\psi(\mathbf{r}_1, \mathbf{r}_2) = \frac{1}{\sqrt{2}} \left[\psi_1(\mathbf{r}_1) \psi_2(\mathbf{r}_2) + \psi_1(\mathbf{r}_2) \psi_2(\mathbf{r}_1) \right]$. Suppose that state 1 has positive parity and state 2 has negative parity.
 - (a) Determine the probability of finding a particle at position \mathbf{r} , $P(\mathbf{r})$, if the position of the other one is arbitrary.
 - (b) Find the probability of finding one particle in the upper half-space, $z \ge 0$.
 - (c) Find the probability of finding two particles in the upper half-space, $z \ge 0$.
 - (d) Answer these questions for two fermions in the same states.
- 2. Use the anticommutation relations of the creation, a_{α}^{\dagger} , and annihilation, a_{α} , operators of a system of identical fermions to show that
 - (a) $a^\dagger_\alpha \mid 0 \rangle$ is an eigenstate of the particle number operator, $\hat{N} = \sum_\alpha a^\dagger_\alpha a_\alpha$.
 - (b) $a^{\dagger}_{\beta}a^{\dagger}_{\gamma} \mid 0 \rangle$ is also eigenstate of \hat{N} .
 - (c) Determine the corresponding eigenvalues in both cases.
- 3. Consider a Hamiltonian of the one-body type, $\hat{H}=\sum_{\alpha\beta}t_{\alpha\beta}\hat{a}_{\alpha}^{\dagger}\hat{a}_{\beta}$.
 - (a) Prove that \hat{N} and \hat{H} commute.
 - (b) Consider a one-particle fermionic state, $|\eta\rangle$, and a two-particle fermionic state, $|\delta\gamma\rangle$. Find an expression for the expectation value of \hat{H} in these two states.
- 4. Use the convention $|11111000\cdots\rangle=\hat{a}_{5}^{\dagger}\hat{a}_{4}^{\dagger}\hat{a}_{3}^{\dagger}\hat{a}_{2}^{\dagger}\hat{a}_{1}^{\dagger}|0\rangle$ to describe a second-quantization state.
 - (a) Find the result of the operation $\hat{a}_3^{\dagger}\hat{a}_6\hat{a}_4\hat{a}_6^{\dagger}\hat{a}_3 \mid 111111000 \cdots \rangle$.
 - (b) Write $|1101100100\cdots\rangle$ in terms of excitations around the "filled Fermi sea" $|1111100000\cdots\rangle$. Interpret your answer in terms of particle and hole excitations.
 - (c) Consider the state $|\psi\rangle=A\,|100\rangle+B\,|111000\rangle$. Find the expectation value of the number operator, $\langle\psi|\hat{N}|\psi\rangle$.
- 5. The density operator in first quantization is given by the expression $\rho(\mathbf{r}) = \sum_{i=1}^{N} \delta(\mathbf{r} \mathbf{r_i})$.
 - (a) Find an expression for this operator in second quantization.
 - (b) The field operator is given by $\hat{\psi}(\mathbf{r}) = \sum_{l} \varphi_{l}(\mathbf{r}) \hat{a}_{l}$, where $\varphi_{l}(\mathbf{r}) = \langle \mathbf{r} | l \rangle$ is the real-space single-particle wave function of state l. Show that $\hat{\rho}(\mathbf{r}) = \hat{\psi}^{\dagger}(\mathbf{r})\hat{\psi}(\mathbf{r})$.
 - (c) Show that the particle number operator $\hat{N} = \sum_{l} \hat{a}_{l}^{\dagger} \hat{a}_{l}$ can be expressed as $\hat{N} = \int d^{3}\mathbf{r} \hat{\rho}(\mathbf{r})$.
- 6. Consider two fermion operators, \hat{a}_1 and \hat{a}_2 .
 - (a) Show that the Bogolyubov transformation

$$\hat{b}_1 = u\hat{a}_1 + v\hat{a}_2^{\dagger},$$

 $\hat{b}_2^{\dagger} = -v\hat{a}_1 + u\hat{a}_2^{\dagger},$

preserves the canonical anti-commutation relations for u and v real and $u^2 + v^2 = 1$.

(b) Show that the hamiltonian

$$\hat{H} = \epsilon \left(\hat{a}_1^{\dagger} \hat{a}_1 - \hat{a}_2 \hat{a}_2^{\dagger} \right) + \Delta \left(\hat{a}_1^{\dagger} \hat{a}_2^{\dagger} + \hat{a}_2 \hat{a}_1 \right)$$

can be written as a matrix product

$$\hat{H} = \begin{pmatrix} \hat{a}_1^{\dagger} \hat{a}_2 \end{pmatrix} \begin{pmatrix} \epsilon & \Delta \\ \Delta & -\epsilon \end{pmatrix} \begin{pmatrix} \hat{a}_1 \\ \hat{a}_2^{\dagger} \end{pmatrix}.$$

(c) Use the Bogolyubov transformations above to write \hat{H} in a diagonal form,

$$\hat{H} = \bar{\epsilon} \left(\hat{b}_1^{\dagger} \hat{b}_1 + \hat{b}_2^{\dagger} \hat{b}_2 - 1 \right) .$$

What is the ground-state energy of this Hamiltonian?

(d) Prove that $\bar{\epsilon} = \sqrt{\epsilon^2 + \Delta^2}$.