L'exponentielle

Fabien Delhomme

3 septembre 2018

Table des matières

1	L'ez	sponentielle et sa copine le logarithme	1
	1.1	Motivations	1
	1.2	Definition	1
	1.3	Propriétés de l'exponentielle	1

1 L'exponentielle et sa copine le logarithme

1.1 Motivations

Maintenant que vous connaissez le merveilleux outils qu'est la dérivée, nous allons étudier deux autres fonctions dont les propriétés sont *indispensables* en mathématique, et en science en général.

Ces deux fonctions sont l'exponentielle et le logarithme, qui sont réciproques l'une de l'autre. Nous reverrons l'exponentielle dans le chapitre des complexes (en géométrie).

1.2 Definition

Voici la définition de la fonction exponentielle réelle. C'est une fonction, notée exp, qui va de \mathbb{R} dans \mathbb{R} , telle que :

$$\begin{cases} \forall x \in \mathbb{R} & \exp' x = \exp x \\ & \exp 0 = 1 \end{cases}$$

1.3 Propriétés de l'exponentielle

À cause de sa définition, l'exponentielle admet plusieurs propriétés.

- Elle n'est jamais nulle,
- elle est toujours strictement positive,
- elle est toujours croissante,
- Sa limite en plus l'infini vaut l'infini
- Sa limite en moins l'infini vaut 0
- Elle se comporte comme une fonction puissance (voir le paragraphe du dessous), à cause de sa propriété : $\exp x + y = \exp x * \exp y$.

De plus, on $\exp 1 = e$. C'est un nombre que l'on peut calculer, et qui donne d'après la calculatrice (ou google !) ≈ 2.71828182846

Lien entre l'exponentielle est les fonctions puissance

La formule $\exp x + y = \exp x * \exp y$ fait écho avec la formule $a^{x+y} = a^x * a^y$. C'est pour cela que l'on note :

$$\exp x = e^x$$

Donc, calculer $\exp x$ revient à calculer e *puissance* x.

Exemple de calcul : on sait que exp $\frac{1}{2}$ est plus petit que exp1, mais plus grand que exp0 = 1 donc exp $\frac{1}{2} > 0$ puisque la fonction exponentielle est croissante. De plus,

$$\left(\exp\frac{1}{2}\right)^2 = \exp\frac{1}{2} * \exp\frac{1}{2} = \exp\left(\frac{1}{2} + \frac{1}{2}\right) = \exp 1 = e$$

Or, le nombre $\exp \frac{1}{2} > 0$, donc :

$$\exp\frac{1}{2} = \sqrt{e}$$

Jetez un coup d'œil à la figure 1 la croissance extraordinaire de cette fonction lorsque x devient de plus en plus grand! Graphiquement, on peut retenir:

- Les limites de l'exponentielle en plus et moins l'infini
- Sa propriété de croissance sur tout \mathbb{R}
- Sa propriété de positivité sur tout \mathbb{R}

 ${\bf Figure} \ 1 - {\bf Courbe} \ {\bf représentative} \ {\bf de} \ {\bf la} \ {\bf fonction} \ {\bf exponentielle}$