Deep Reinforcement Learning

Matteo Hessel

The only stupid question is the one you never asked.

Rich Sutton (allegedly)

1. Introduction

The reinforcement learning problem

A learning system (the **agent**) must learn to act in the universe it's embedded in (the **environment**) to maximize a scalar feedback signal (the **reward**).

Policies

The agent's behaviour is defined by a **policy** $\pi(A_t/S_t)$, i.e. by a probability distribution over actions, conditioned on the current **state**

The agent's objective is to find an **optimal** policy $\pi^*(A_t/S_t)$ that maximises the **return**, i.e. the sum of discounted rewards collected from any state S_t onwards:

$$G_t = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

the **discount** γ modulates the relative weight of immediate vs distant rewards.

Values

If the environment or the agent is **stochastic**, the return is a random variable, thus the objective is typically formulated as maximizing **expected returns**, or **values**.

$$V(s) = E[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s] \rightarrow \text{state value}$$

$$Q(s,a) = E[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s, A_t = a] \rightarrow \text{state-action value}$$

The expectations are over both the environment and agent stochasticity.

Models

In RL we often assume that we do not know the environment dynamics:

- values and policies may be learned model-free from interaction
- we may use the interaction data to learn a model of the environment, inferring, from data, how actions affect environment state and rewards.

RL solutions: the Big Picture

- Learn **policy** directly **execute** it
- Estimate values of each action infer policy by inspection
- Construct a model infer policy by planning

RL solutions: the Big Picture

Deep Reinforcement Learning

- Policy $\pi: S_t \to p(A_t)$
- Value $v: S_t \rightarrow V(S_t)$
- Model $m: S_{t}, A_{t} \rightarrow S_{t+1}, R_{t+1}$

Ultimately these are just **functions**,

and we need a flexible way of representing and learning them

Function approximation

Consider the problem of representing and learning state values V:

A simple choice could be to represent these as a linear function of the state features:

$$v_w(s) = w^T s + b$$

Deep reinforcement learning focuses on the case where the function is represented by a large neural network, whose parameters are trained via **gradient descent** on a suitable loss function

Why Deep Learning?

Deep learning is not the only answer, but it's a pretty convenient one

- Table look-up?
 - → Learn about each state separately
 - → No **generalization**, does not scale to large state spaces
- Linear?
 - $\rightarrow y_t = \mathbf{w}^T S_t + b$
 - \rightarrow Can work very well if you have a rich state representation S_t
 - \rightarrow Hard-coding a suitable **rich state representation** S_t is difficult!

Why Deep Learning?

Credits: Adam White

2. Introduction to deep RL

MC prediction with deep nets

Consider now the **prediction** problem of estimating state values for a fixed policy π :

Lets approximate the values using a **neural network** $v_{ heta}(s)$

with parameters θ , state features S as inputs, and a single scalar output.

Deep Monte Carlo Prediction:

$$L = (G_t - v_{\theta}(S_t))^2$$

$$\Delta \theta = -\nabla_{\theta} L = (G_t - v_{\theta}(S_t))\nabla_{\theta} v_{\theta}(S_t)$$

TD(0) prediction with deep nets - I

In practice Monte-Carlo methods have often high variance

What does a **temporal difference** algorithm for function approximation look like?

Deep TD(0) Prediction:

$$\Delta\theta = (G_t - v_\theta(S_t))\nabla_\theta v_\theta(S_t) \quad \text{[MC]}$$

$$\Delta\theta = (R_t + \gamma v_\theta(S_{t+1}) - v_\theta(S_t))\nabla_\theta v_\theta(S_t) \quad \text{[TD]}$$

TD(0) prediction with deep nets - II

What objective function is TD(0) optimizing?

→ This update is actually **not the gradient** of any objective function

How do we implement this in practice in the context of common DL frameworks?

$$L = (|R_t + \gamma v_{\theta}(S_{t+1})| - v_{\theta}(S_t))^2$$

where we **stop gradients** from flowing into $v_{ heta}(S_{t+1})$

Q-learning with deep nets

The same approach extends also to **control**.

In this case we strive to estimate the action values $\,q_{ heta}(s,a)\,$ of the optimal policy.

The neural network will now have to output a vector, with a prediction per action

In the tabular setting we may do this with **Q-learning**:

$$\Delta Q(S_t, A_t) \propto R_t + \gamma \max_{a'} Q(S_{t+1}, a') - Q(S_t, A_t)$$

Also Q-learning can be extended to function approximation resulting in the update:

$$\Delta\theta = (R_t + \gamma \max_{a'} q_\theta(S_{t+1}, a') - q_\theta(S_t, A_t)) \nabla q_\theta(S_t, A_t)$$

Optimization

Many RL algorithms apply a learning update after each step in the environment using the latest transition $(S_{t-1}, A_{t-1}, R_t, S_t)$ to compute such update:

- Adjacent states, and their values, are strongly correlated → stochastic gradient descent and the optimizers used in DL assume that the updates are i.i.d.
- The transition is then **discarded** \rightarrow in standard DL, it typically requires multiple passes through a dataset to incorporate into a network all useful info

Experience Replay

Compute the Q-learning loss not on the most recent transition in the environment but instead on an old one sampled from a large memory buffer

- The larger the buffer, the less correlated consecutive updates
- We can reuse transitions in multiple updates
- We can prioritize novel by sampling more often "surprising" data from which there is much to learn
- We can compute updates from batches rather than single samples

Ref: Lin et al, 1992

DQN

Ref: Mnih et al, 2015

Parallel experience generation

In some cases we may be able to learn from **multiple streams of experience** in parallel:

- Trivial to implement this in simulation
- Internet services where the agent must interact with several users in parallel
- Robot farms, where multiple identical robots attempt the same task

This can also be used to reduce the correlation of updates

Ref: Mnih et al, 2016

Async RL

3. Generalization

Generalization

Generalization is the process of updating your beliefs about one or more states in response to observing novel information about a *different* set of states

The generalization problem is the focus of much of supervised learning, and is framed as

- ullet maximizing performance on a **test set** $\,D_1 = \{x_i\} \sim p(x)\,$
- ullet despite only being able to see a different **train set** $D_2 = \{x_i\} \sim p(x)$

In SL generalization performance is optimized for

- explicitly (through the use of validation data and early stopping)
- implicitly (through regularization, via handcrafted losses or dropout)

Investigating generalization in RL

Consider the grid world on the right and lets

- ullet estimate values for a fixed policy π
- ullet using a neural network $\,v_{ heta}(s)$
- trained using SGD on the Monte-Carlo loss

$$L = (G_t - v_\theta(S_t))^2$$

Ref: Penedones et al, 2018

Inappropriate generalization: leakage

Can be difficult to predict how exactly updates to some states will end up affecting other states.

Neural network induce some degree of smoothness → this inductive bias is reasonable but can lead to inappropriate generalization when the dynamics is not smooth

Inappropriate generalization: leakage propagation

Consider the deep TD(0) algorithm instead:

- It learns much better approximations of the values in the bottom half of the grid
- But causes leakage propagation, with high error across the whole of the top half

Inappropriate generalization: feedback loops

Consider the transition on the right:

If we perform deep TD update to a value network $\,v_{\theta}(s)\,$ every time we update the value of state $\,{\rm S_1},\,$ we will, through generalization, also perturb the values of $\,{\rm S_2}\,$

Because we use our own estimates to construct the target $R + \gamma v_{\theta}(S_2)$ for $v_{\theta}(S_1)$ This can result in **feedback loops**!

The deadly triad

Function Approximation \rightarrow Estimate values by training the parameters of some function.

Bootstrapping \rightarrow Using the current agent's value estimates to construct the targets used to update those same agent's estimates.

Off-Policy \rightarrow Compute learning updates from a distribution that differs from that arises under the policy whose values are being estimated and the given environment dynamics.

Ref: Sutton and Barto, 2018

A simple example

A very simple example of to understand the issue was provided by Tsitsiklis and Van Roy

Simplest possible parametrization of the value

$$v_w(s) = w\phi(s)$$

Optimal solution is trivially:

$$w^* = 0$$

Ref: <u>Tsitsiklis and Van Roy, 1997</u>

How does DQN work?

Function Approximation \rightarrow DQN uses neural networks to approximate values.

Bootstrapping o DQN uses Q-learning with bootstrap targets $R_t + \gamma \max_a Q(S_{t+1}, a)$

Off-Policy → DQN uses Q-learning, which is off-policy by construction

The specifics matter!

(b)
$$v(s) = w\phi(s)$$
 diverges.

(b)
$$v(s) = w\phi(s)$$
 diverges. (c) $v(s) = w(\phi(s) + u)$ converges.

Ref: van Hasselt et al, 2018

Soft-divergence

This form of **soft-divergence** where values grow to unreasonably high values but then converge back to sensible estimates, is more common in practice than unbounded divergence.

Target Networks

Target Networks are a common remedy to this type of inappropriate generalization

We can keep **two copies** of the neural network used to estimate Q values:

- The parameters of one are updated at each step,
- The parameters of the other are a slow copy of the first one.

This reduces the opportunity for feedback loops.

Ref: Mnih et al, 2015

Multi-step deep Q-learning

Using our own estimates Q_{θ} to construct targets $R_t + \gamma \max_a Q_{\theta}(S_{t+1}, A_{t+1})$ is called **bootstrapping**.

We don't however need to bootstrap necessarily after a single step.

We can construct multi-step targets:

$$R_t + \gamma R_{t+1} + \dots + \gamma^{K-1} R_{t+K-1} + \gamma^K \max_a Q_{\theta}(S_{t+k}, A_{t+k})$$

Ref: Sutton and Barto, 2018

Multi-step targets and soft-divergence

multi-step returns **reduce** the reliance of our updates on bootstrapping, and the likelihood of observing divergence

Prioritized replay and soft-divergence

Prioritized replay makes the data distribution more off-policy, and therefore increases the likelihood of divergence.

→ importance sampling can help mitigate the effect of prioritization

Network size and soft-divergence

The likelihood of observing divergence is often higher for larger neural networks

Model-based RL and the deadly triad

Model-based RL can also trigger the deadly triad:

Given a learned environment model, consider the model-based prediction algorithm:

```
initialize v_{\theta}(s) while True: S_{\mathsf{t}}, \ \mathsf{A}_{\mathsf{t}} \leftarrow \mathsf{memory.sample}() \\ \mathsf{R}_{\mathsf{t}}, \ \mathsf{S}_{\mathsf{t+1}} \leftarrow \mathsf{model.query}(\mathsf{S}, \ \mathsf{A}) \\ \Delta\theta = (R_t + \gamma v_{\theta}(S_{t+1}) - v_{\theta}(S_t)) \nabla_{\theta} v_{\theta}(S_t)
```

This also results in divergence if the state distribution in memory doesn't match the model's state distribution

4. RL-aware deep learning

RL-aware deep learning

It's important to understand how RL algorithm interact with function approximation

- 1. Experience Replay
- 2. Target networks

→ DL-aware reinforcement learning

However, we should also design deep learning architecture with the right inductive biases for RL \rightarrow RL aware Deep Learning

Dueling Networks

Value-Advantage decomposition of Q-values

$$Q^{\pi}(s,a) = V^{\pi}(s) + A^{\pi}(s,a)$$

Can we encode this as a suitable deep neural network architecture?

Ref: Wang et al, 2016

Reward Scaling

An RL task is define by its rewards

- Go: win (1), loss (0)
- Atari: change in score
 (+-1 in Pong, +-1000s in MsPacman)

The magnitude of updates scales directly with the magnitude/frequency of rewards, which is **non-stationary**.

PopArt

PopArt is a principled solution for

- Rescale gradients / updates
- Doing so adatively

Can useful beyond RL, whenever applying deep-learning to problems where the scale of the predictions changes over time (e.g. certain time series prediction problems)

Ref: Van Hasselt et al, 2016, Hessel et al, 2019

Art

$$V(s) = \mu + \sigma * U^{n}(s)$$

$$\mu = (1 - \beta) \mu + \beta G$$

 $v = (1 - \beta) v + \beta G^2$

$$\sigma = v - \mu^2$$

Adaptively Rescale Targets

$$U^n(s) = W^Tx + b$$

$$\sigma \to \sigma', \quad \mu \to \mu'$$

$$W' = \sigma/\sigma' * W$$

$$b = (\sigma * b + \mu - \mu') / \sigma'$$

Preserve Output Precisely

Pop

$$V(s) = \mu + \sigma * U_n(s)$$

$$\mu = (1 - \beta) \mu + \beta G$$

$$v = (1 - \beta) v + \beta G^{2}$$

$$\sigma = v - \mu^{2}$$

Adaptively Rescale Targets

$$U_n(s) = W^T x + b$$

 $\sigma \rightarrow \sigma', \quad \mu \rightarrow \mu'$

$$W' = \sigma/\sigma' * W$$

$$b = (\sigma * b + \mu - \mu') / \sigma'$$

Preserve Output Precisely

Normalized value learning

We can rewrite our value learning update

$$(R_t + \gamma v_\theta(S_{t+1}) - v_\theta(S_t))^2$$

in normalized space, by:

- using the unnormalized value V to bootstrap
- then normalizing the target before computing the loss for U

$$([R_t + \gamma V_\theta(S_{t+1}) - \mu]/\sigma - U_\theta(S_t))^2$$

The End