1. The Drumbeats of the Festival (Print 1 to n)

Story:

In a village festival, a drummer plays beats in increasing order. He starts with beat 1 and goes up to beat n.

← Can you print the beats in order using recursion?

Input:

• Integer n (number of beats).

Output:

• Numbers from 1 to n separated by space.

Constraints:

• $1 \le n \le 1000$

Example:

Input: 5

Output: 1 2 3 4 5

2. The Echo in the Cave (Print n to 1)

Story:

Inside a magical cave, a traveler shouts a number n.

The echo answers back in **descending order** down to 1.

← Print numbers from n to 1 using recursion.

Input:

• Integer n.

Output:

• Numbers from n to 1 separated by space.

Constraints:

• $1 \le n \le 1000$

Example:

Input: 5

Output: 5 4 3 2 1

3. The King's Treasury (Sum of First n Numbers)

Story:

The King of Numberia has n treasure chests.

Each chest contains exactly the same number of coins as its position. (Chest 1 has 1 coin, Chest 2 has 2 coins, ... Chest n has n coins).

Find the total coins using recursion.

Input:

• Integer n.

Output:

• The sum of numbers from 1 to n.

Constraints:

• $1 \le n \le 10^4$

Example:

Input: 5

Output: 15

Explanation: 1+2+3+4+5 = 15

4. The Wizard's Mirror (Reverse String)

Story:

The wizard's mirror reverses any word spoken into it.

b Reverse a string using recursion.

Input:

• String s.

Output:

• Reversed string.

Constraints:

• $1 \le \text{s.length} \le 100$

Example:

Input: hello Output: olleh

5. The Treasure Boxes (Sum of Array)

Story:

A hero finds n treasure boxes, each with some coins. He opens them one by one and counts the coins.

Find the total coins using recursion.

Input:

• First line: integer n

• Second line: n integers (coins in each box).

Output:

• Sum of coins.

Constraints:

• $1 \le n \le 100$

• 1 <= coins[i] <= 1000

Example:

Input:

5

25386

Output:

24

6. The Traveler's Steps (Climbing Stairs)

Story:

A traveler must climb a staircase with n magical steps.

He can climb 1 step or 2 steps at a time.

Find the number of distinct ways to reach the top using recursion.

Input:

• Integer n.

Output:

• Number of ways to climb.

Constraints:

• $1 \le n \le 30$

Example:

Input: 3

Output: 3

Explanation: {1+1+1, 1+2, 2+1}

7. The Princess's Lock (Factorial)

Story:

The princess is locked behind n magical locks. She can only unlock them in **every possible order**.

 ← How many ways can she open them? (factorial)

Input:

• Integer n.

Output:

• Factorial of n.

Constraints:

• $1 \le n \le 12$

Example:

Input: 4 Output: 24

Explanation: $4! = 4 \times 3 \times 2 \times 1$

8. The Rabbit's Family (Fibonacci)

Story:

In a magical forest, rabbits grow as:

- Month $1 \rightarrow 1$ rabbit
- Month $2 \rightarrow 1$ rabbit
- From Month $3 \rightarrow \text{rabbits} = \text{sum of previous two months}$.
- Find number of rabbits after n months.

Input:

• Integer n.

Output:

• Fibonacci number at month n.

Constraints:

• $1 \le n \le 40$

Example:

Input: 6

Output: 8

Explanation: 1,1,2,3,5,8