Sprawozdanie z laboratorium MOwNiT

Radosław Szepielak, Patryk Blacha

16 kwietnia 2025

1 Wprowadzenie

Celem zadań w ramach tego laboratorium było wykorzystanie metod całkowania numerycznego do obliczenia przybliżonej wartości liczby oraz porównanie różnych kwadratur złożonych. W obu zadaniach wykorzystujemy znaną równość:

$$\int_0^1 \frac{4}{1+x^2} dx = \pi.$$

2 Zadanie nr 1

W tym zadaniu analizujemy, jak zmiana liczby ewaluacji funkcji $f(x) = \frac{4}{1+x^2}$ oraz krok h wpływają na dokładność obliczeń na przykładzie trzech metod: prostokątów (midpoint), trapezów oraz Simpsona. Porównujemy także empiryczne rzędy zbieżności z teoretycznymi. Również analizujemy wartość bezwzględną błędu względnego w zależności od liczby węzłów (liczby ewaluacji funkcji).

Zastosowano następujące metody:

- Kwadratura prostokatów (midpoint),
- Kwadratura trapezów,
- Kwadratura Simpsona.

2.1 Wzory kwadratur prostych

Metoda prostokatów:

$$\int_{a_i}^{b_i} f(x) dx \approx f\left(\frac{a_i + b_i}{2}\right) \cdot (b_i - a_i)$$

• Metoda trapezów:

$$\int_{a_i}^{b_i} f(x) \, dx \approx \frac{1}{2} [f(a_i) + f(b_i)] \cdot (b_i - a_i)$$

• Metoda Simpsona:

$$\int_{a_i}^{b_i} f(x) \, dx \approx \frac{1}{6} (b_i - a_i) [f(a_i) + 4f\left(\frac{a_i + b_i}{2}\right) + f(b_i)]$$

2.2 Wyniki numeryczne

Liczba węzłów: $n = 2^m + 1$ Liczba przedziałów 2^m

m	Midpoint	Trapezów	Simpsona
1	3.162353	3.100000	3.133333
2	3.146801	3.131176	3.141569
3	3.142895	3.138988	3.141593
4	3.141918	3.140942	3.141593
5	3.141674	3.141430	3.141593
6	3.141613	3.141552	3.141593
7	3.141598	3.141582	3.141593
8	3.141594	3.141590	3.141593
9	3.141593	3.141592	3.141593
10	3.141593	3.141592	3.141593

Tabela 1: Wartości przybliżone liczby π dla różnych metod i m

Można tutaj z łatwością zauważyć, że metoda Simpson'a jest najbardziej dokładna. Nawet dla m=1 metoda Simpson'a jest dokładniejsza w porównaniu do innych metod, a od m=4 pierwsze 6 cyfr po przecinku są identyczne jak przy wartości dokładnej pobranej z np.pi:3.1415926.

Rysunek 1: Błąd względny dla metody midpoint, trapezów i Simpsona (log-log).

Na wykresie widać oczywiste podobieństwo błędu metod prostokątów i trapezów. Wykresy ich błędów są w zasadzie nierozróżnialne. Wyróżnia się natomiast metoda Simpson'a,

która szybciej zbiega do wartości bliskich zeru i jako jedyna osiąga wartość 0, co oznacza, że jej dokładność dla pewnej liczby ewaluacji jest większa od prezycji float64.

2.3 Minimalny krok całkowania

W tabeli poniżej przedstawiono optymalne wartości kroku h_{\min} , przy których obserwowano minimalizację błędu względnego.

Metoda	h_{\min}
Mid-point	1.19×10^{-7}
Trapezoidal	1.19×10^{-7}
Simpson	3.91×10^{-3}

Tabela 2: Optymalne wartości kroku całkowania h_{\min}

2.4 Empiryczny rzad zbieżności

m	Simpson	Mid-point	Trapezów
1	11.432390	2.707130	2.710440
2	8.623450	2.358360	2.358430
3	6.536880	2.179740	2.179740
4	6.269860	2.090010	2.090010
5	6.135490	2.045040	2.045040
6	6.090220	2.022530	2.022530
7	_	2.011270	2.011270
8	_	2.005630	2.005630
9	_	2.002820	2.002820
10	_	2.001410	2.001410
11	_	2.000700	2.000700
12	_	2.000350	2.000350
13	_	2.000180	2.000180
14	_	2.000080	2.000080

Tabela 3: Empiryczny rzad zbieżności dla różnych metod kwadratury

Jak widzimy we wszystkich przypadkach, nasz ciąg zmierza do wartości teoretycznych rzędów zbieżności zarówno dla metody prostokątów i trapezów, gdzie wartość teoretyczna to 2, jak i dla metody Simpson'a, gdzie wartość teoretyczna to 6. Dla metody Simpson'a korzystamy z pierwszych 6 wartości m, gdyż dla kolejnych zaczynają się pojawiać wartości równe 0.

3 Zadanie nr 2

W drugim zadaniu, stosujemy metodę Gaussa-Legendre'a do obliczenia wartości tej samej całki. Również analizujemy wartość bezwzględną błędu względnego w zależności od liczby ewaluacji funkcji podcałkowej i porównujemy wyniki z wcześniejszymi metodami.

W metodzie Gaussa–Legendre'a korzystamy z następującego sposobu obliczania całki:

$$\int_{-1}^{1} f(\xi)d\xi \approx \sum_{i=1}^{n} A_i f(\xi_i),$$

gdzie ξ_i to pierwiastki *n*-tego wielomianu Legendre'a, natomiast A_i to odpowiednie współczynniki, których sposób wyliczenia omawiamy w następnej sekcji. Ponieważ obliczamy całkę w przedziale [0; 1], stosujemy transformację:

$$\int_0^1 f(x)dx \approx \frac{1}{2} \sum_{i=1}^n A_i f(x_i) \quad \text{dla} \quad x_i = \frac{1}{2} + \frac{1}{2} \xi_i.$$

3.1 Wyniki numeryczne

Liczba węzłów (n)	Wartość przybliżenia
2	3.14754098360
3	3.14106813996
4	3.14161190524
5	3.14159263988
9	3.14159265358
50	3.14159265358
200	3.14159265358

Tabela 4: Przybliżenia liczby π w zależności od liczby węzłów

Widać, że metoda Gaussa-Legendre'a o wiele szybciej zbiega do wartości np.pi=3.141592653589. Przykładowo metoda Simpsona dla $n=2^3+1=9$ osiąga tą samą dokładność co tutaj mamy dla n=5. Przy większej ilości cyfr po przecinku jest to bardziej widoczne.

3.2 Wykres bezwzględnego błędu względnego w zależnosci od liczby ewaluacji funkcji podcałkowej

Rysunek 2: Porównanie błędów czterech metod kwadratury.

3.3 Ogólny wykres- porównanie wszystkich metod

Rysunek 3: Porównanie błędów czterech metod kwadratury.

4 Wnioski

- Metoda Gaussa-Legendre'a wykazuje największą dokładność i szybkość zbieżności.
- Kwadratura Gaussa-Legendre'a (w zadaniu 2) osiąga wysoką dokładność przy małej liczbie węzłów.

- Empiryczne rzędy zbieżności zbiegają do teoretycznych dla dużej liczby węzłów
- Metoda Gaussa-Legendre'a pozwala uzyskać bardzo wysoką dokładność przy stosunkowo niewielkiej liczbie węzłów. Dzięki temu jest szczególnie efektywna w zastosowaniach wymagających minimalnej liczby ewaluacji funkcji podcałkowej.
- \bullet Przy większej liczbie węzłów, np. n>15, błąd numeryczny zaczyna dominować nad błędem metody (pierwszy raz osiągnięta wartość 0 na wykresie). Jest to istotny czynnik ograniczający dokładność obliczeń w praktyce, zwłaszcza gdy obliczenia wymagają użycia wysokiej precyzji arytmetycznej.
- W połączeniu z rosnącym kosztem obliczeniowym dla dużych n, metoda Gaussa-Legendre'a nie zawsze jest optymalna w zadaniach wymagających obliczeń dla dużej liczby węzłów. W takich sytuacjach inne metody, jak np. Simpsona, mogą okazać się bardziej praktyczne.
- Zastosowanie metody Gaussa-Legendre'a jest najbardziej korzystne w przypadkach, gdy:
 - wymagana jest bardzo wysoka dokładność przy niewielkiej liczbie ewaluacji funkcji,
 - funkcja podcałkowa jest kosztowna w obliczeniach i konieczne jest ograniczenie liczby jej wywołań.
- ullet Porównując z metodami mid-point, trapezów i Simpsona, Gauss-Legendre wyróżnia się szybszym zmniejszaniem błędu przy małej liczbie węzłów. Jednak jej efektywność spada wraz ze wzrostem n z uwagi na dominację błędu numerycznego oraz koszty obliczeniowe.