

## Universidad Nacional de Colombia

Facultad de ciencias

Departamento de matemáticas

Contingencias de vida 2025-I

Trabajo de seguros de vida

#### **Estudiantes:**

Jose Miguel Acuña Hernandez Andrés Steven Puertas Santiago Hernandez Bernal Yefferson Fabian Rubio Anna Gabriela Salazar Castro Guillermo Eduardo Murillo

#### Docente:

Jaime Abel Huertas Campos

| Contenido                                         |   |
|---------------------------------------------------|---|
| 1. Crecimiento aritmético fraccionado             | 1 |
| Crecimiento aritmético dentro del año fraccionado | 1 |
|                                                   | 1 |
| 3. Demostración                                   | _ |
| 4. Crecimiento geométrico                         | 5 |
| 5. Tabla y gráfica de comparación                 | 5 |

**HOLA** 

### 1. Crecimiento aritmético fraccionado

## 2. Crecimiento aritmético dentro del año fraccionado

### 3. Demostración

**Teorema 3.1.** Consideremos un seguro de vida entero para una persona de edad x, donde el valor asegurado sigue el siguiente patron temporal:



Bajo la hipótesis UDD la prima simple neta de este seguro es:

$$P.S.N. = \frac{i}{i^{(m)}} [A_x + r((IA)_x - A_x)] + r \left[ \frac{i - i^{(m)}}{(i^{(m)})^2} \right]$$
 (1)

Demostración. La definición de la prima neta de un seguro es la esperanza del valor presente del pago. Como el año esta fraccionado en m partes, la probabilidad de realizar el pago al final de la j-esima parte del año k es simplemente la probabilidad de que la persona de edad (x) haya sobrevivido  $k+\frac{j}{m}$  años y muera pasados  $\frac{1}{m}$ , es decir  $k+\frac{j}{m}|\frac{1}{m}qx$ . Simplemente traemos a valor presente con la tasa de descuento v elevado al tiempo transcurrido hasta el pago que es  $k+\frac{j+1}{m}$  el pago que es  $(1+r(k+\frac{j}{m}))$ . Asi, la prima de este seguro es:

$$P.S.N. = \sum_{k=0}^{\infty} \sum_{j=0}^{m-1} \left( 1 + r \left( k + \frac{j}{m} \right) \right) v^{k + \frac{j+1}{m}} {}_{k + \frac{j}{m} \mid \frac{1}{m}} q_x$$
 (2)

Observemos que el valor asegurado se puede reescribir como:

$$1 + r\left(k + \frac{j}{m}\right) = (1 + rk) + r\frac{j}{m}$$

Por lo tanto, la prima neta única se puede expresar como:

$$\sum_{k=0}^{\infty} \sum_{j=0}^{m-1} \left[ (1+rk) + r \frac{j}{m} \right] v^{k + \frac{j+1}{m}} k + \frac{j}{m} |_{\frac{1}{m}} q_x$$

Así, aplicando la propiedad distributiva:

$$P.S.N. = \sum_{k=0}^{\infty} \sum_{j=0}^{m-1} (1+rk) v^{k+\frac{j+1}{m}}{}_{k+\frac{j}{m}|\frac{1}{m}} q_x + \sum_{k=0}^{\infty} \sum_{j=0}^{m-1} r \frac{j}{m} v^{k+\frac{j+1}{m}}{}_{k+\frac{j}{m}|\frac{1}{m}} q_x$$

$$= \mathsf{Parte} \ \mathsf{I} + \mathsf{Parte} \ \mathsf{II}$$

Para la Parte I:

Parte I = 
$$\sum_{k=0}^{\infty} \sum_{j=0}^{m-1} (1+kr) v^{k+\frac{j+1}{m}}_{k+\frac{j}{m}|\frac{1}{m}} q_x$$
$$= \sum_{k=0}^{\infty} (1+kr) \sum_{j=0}^{m-1} v^{k+\frac{j+1}{m}}_{k+\frac{j}{m}|\frac{1}{m}} q_x$$

Pero observe que  $\sum_{j=0}^{m-1} v^{k+\frac{j+1}{m}} {}_{k+\frac{j}{m}} |_{\frac{1}{m}} q_x$  es la prima de un seguro temporal de un año (m posibles pagos de un año fraccionado en m partes) con valor asegurado de 1 pagadero al final del la fracción del año de muerte pero diferido k años. Es decir

Parte I = 
$$\sum_{k=0}^{\infty} (1+kr) \sum_{j=0}^{m-1} v^{k+\frac{j+1}{m}} {}_{k+\frac{j}{m}|\frac{1}{m}} q_x$$
$$= \sum_{k=0}^{\infty} (1+kr)_{k|} A_{\frac{1}{x:1|}}^{(m)}$$

Por lo tanto, la parte I es un seguro con incremento aritmético anual de r pero es pagadero al final de la fracción del año de muerte. Sabemos que bajo UDD la prima de este seguro es:

Parte I = 
$$\frac{i}{i(m)}[A_x + r((IA)_x - A_x)]$$
 (3)

Para la Parte II:

$$\begin{split} \text{Parte II} &= \sum_{k=0}^{\infty} \sum_{j=0}^{m-1} r \frac{j}{m} v^{k + \frac{j+1}{m}}{}_{k + \frac{j}{m}} p_x \cdot \frac{1}{m} q_{x + k + \frac{j}{m}} \\ &= r \sum_{k=0}^{\infty} \sum_{j=0}^{m-1} \frac{j}{m} v^{k + \frac{j+1}{m} + 1 - 1}{}_{k + \frac{j}{m}} p_x \cdot \frac{1}{m} q_{x + k + \frac{j}{m}} \\ &= r \sum_{k=0}^{\infty} \sum_{j=0}^{m-1} \frac{j}{m} v^{k + \frac{j+1}{m} + 1 - 1}{}_{k} p_x \cdot \frac{j}{m} p_{x + k} \cdot \frac{1}{m} q_{x + k + \frac{j}{m}} \\ &= r \sum_{k=0}^{\infty} v^{k+1}{}_{k} p_x \sum_{j=0}^{m-1} \frac{j}{m} v^{\frac{j+1}{m} - 1} \frac{1}{m} p_{x + k} \cdot \frac{1}{m} q_{x + k + \frac{j}{m}} \\ &= r \sum_{k=0}^{\infty} v^{k+1}{}_{k} p_x \sum_{j=0}^{m-1} \frac{j}{m} v^{\frac{j+1}{m} - 1} \frac{1}{m} q_{x + k} \text{ (Utilizando DUM)} \\ &= r \sum_{k=0}^{\infty} v^{k+1}{}_{k} p_x \cdot q_{x + k} \sum_{j=0}^{m-1} \frac{j}{m^2} v^{\frac{j+1}{m} - 1} \\ &= r A_x \sum_{j=0}^{m-1} \frac{j}{m^2} v^{\frac{j+1}{m} - 1} \text{ (Reorganizamos la suma, def. } A_x \text{)} \\ &= r A_x v^{\frac{1}{m}} (1 + i) \frac{1}{m^2} \sum_{i=0}^{m-1} j v^{\frac{j}{m}} \end{split}$$

Analicemos unicamente  $v^{\frac{1}{m}}(1+i)\frac{1}{m^2}\sum_{j=0}^{m-1}jv^{\frac{j}{m}}$  :

$$\begin{split} v^{\frac{1}{m}}(1+i)\frac{1}{m^2} \sum_{j=0}^{m-1} jv^{\frac{j}{m}} &= \frac{v^{\frac{1}{m}}(1+i)}{m^2} \left( \sum_{j=0}^{m-1} jv^{\frac{j}{m}} + mv^{\frac{m}{m}} - mv^{\frac{m}{m}} \right) \\ &= \frac{v^{\frac{1}{m}}(1+i)}{m^2} \left( \sum_{j=0}^{m} jv^{\frac{j}{m}} - mv \right) \\ &= v^{\frac{1}{m}}(1+i)\frac{1}{m^2} \sum_{j=0}^{m} jv^{\frac{j}{m}} - \frac{v^{\frac{1}{m}}}{m} \\ &= v^{\frac{1}{m}}(1+i)(I^{(m)}\ddot{a})^{\binom{m}{1}} - \frac{v^{\frac{1}{m}}}{m} \\ &= v^{\frac{1}{m}}(1+i) \left( \frac{\ddot{a}^{(m)} - v}{i^{(m)}} \right) - \frac{v^{\frac{1}{m}}}{m} \\ &= v^{\frac{1}{m}}(1+i) \left( \frac{1-v-vd^{(m)}}{i^{(m)}d^{(m)}} \right) - \frac{v^{\frac{1}{m}}}{m} \\ &= v^{\frac{1}{m}}(1+i) \left( \frac{1-v-vd^{(m)}}{i^{(m)}d^{(m)}} \right) - \frac{v^{\frac{1}{m}}}{m} \\ &= v^{\frac{1}{m}}(1+i) \left( \frac{1-v-vd^{(m)}}{i^{(m)}i^{(m)}v^{\frac{1}{m}}} \right) - \frac{v^{\frac{1}{m}}}{m} \\ &= \frac{(1+i)-1-d^{(m)}}{(i^{(m)})^2}v^{\frac{1}{m}} - \frac{v^{\frac{1}{m}}}{m} \\ &= \frac{i-d^{(m)}}{(i^{(m)})^2}v^{\frac{1}{m}} - \frac{v^{\frac{1}{m}}}{m} \\ &= \frac{m\left(i-d^{(m)}\right)-(i^{(m)})^2v^{\frac{1}{m}}}{(i^{(m)})^2m} \end{split}$$

Como  $v^{\frac{1}{m}}=\frac{1}{1+(i^{(m)})/m}=\frac{m}{m+i^{(m)}}$  entonces

$$\begin{split} \frac{m\left(i-d^{(m)}\right)-(i^{(m)})^{2}v^{\frac{1}{m}}}{(i^{(m)})^{2}m} &= \frac{m\left(i-d^{(m)}\right)-(i^{(m)})^{2}\left(\frac{m}{m+i^{(m)}}\right)}{(i^{(m)})^{2}m} \\ &= \frac{m\left(i-\frac{i^{(m)}m}{m+i^{(m)}}\right)-(i^{(m)})^{2}\frac{m}{m+i^{(m)}}}{(i^{(m)})^{2}m} \\ &= \frac{mi-\frac{i^{(m)}m^{2}}{m+i^{(m)}}-\frac{(i^{(m)})^{2}m}{m+i^{(m)}}}{(i^{(m)})^{2}m} \\ &= \frac{mi-\frac{i^{(m)}m^{2}+(i^{(m)})^{2}m}{m+i^{(m)}} \\ &= \frac{m^{2}i+imi^{(m)}-i^{(m)}m^{2}-(i^{(m)})^{2}m}{m+i^{(m)}} \\ &= \frac{m\left(mi+ii^{(m)}-i^{(m)}m-(i^{(m)})^{2}\right)}{m+i^{(m)}} \frac{1}{(i^{(m)})^{2}m} \\ &= \frac{m(m(i-i^{(m)})+i^{(m)}(i-i^{(m)}))}{m+i^{(m)}} \frac{1}{(i^{(m)})^{2}m} \\ &= \frac{m((i-i^{(m)})(m+i^{(m)}))}{m+i^{(m)}} \frac{1}{(i^{(m)})^{2}m} \\ &= \frac{m((i-i^{(m)})(m+i^{(m)}))}{(m+i^{(m)})} \frac{1}{(i^{(m)})^{2}m} \\ &= \frac{m(i-i^{(m)})(m+i^{(m)})}{(i^{(m)})^{2}} \frac{1}{(i^{(m)})^{2}m} \end{split}$$

Por lo tanto

$$rA_x v^{\frac{1}{m}} (1+i) \frac{1}{m^2} \sum_{j=0}^{m-1} j v^{\frac{j}{m}} = rA_x \frac{(i-i^{(m)})}{(i^{(m)})^2}$$

así, sumando las dos partes tenemos que:

$$P.S.N. = \sum_{k=0}^{\infty} \sum_{j=0}^{m-1} \left( 1 + r \left( k + \frac{j}{m} \right) \right) v^{k + \frac{j+1}{m}} {}_{k + \frac{j}{m} \mid \frac{1}{m}} q_x = \frac{i}{i(m)} [A_x + r[(IA)_x - A_x]] + r \frac{\left( i - i^{(m)} \right)}{(i^{(m)})^2} A_x \tag{4}$$

Que es lo que se quería demostrar.

# 4. Crecimiento geométrico

# 5. Tabla y gráfica de comparación