	11111011111011111		北京一零一中教育集团 2023—2024 学年度第二学期初三练习数 学 2024.3 一、选择题 (本题共 16 分,每小题 2 分) 第 1-8 题均有四个选项,符合题意的只有一个. 1. 右图是某几何体的三视图,该几何体是() A.长方体 B.三棱柱 C.圆柱 D.圆锥									
			2. 经文化和旅游部数据中心测算, 2023 年清明节假期 (4月5日), 全国国内旅游出游 2376 64万人									
1	0	1	次,较去年清明节当日增长 22.7%.将 23.766 400.用科学计数法表示应为()									
		殿	A. 237.664×10 ⁵ B. 2.37664×10 ⁷ C.23.7664×10 ⁶ D.2.37664×10 ⁸									
	絥		3. 若实数 a, b 在数轴上的对应点的位置如图所示,则以下结论正确的是()									
;; 		¥α	a h									
松	Ü	瞅	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
	0	К	A. a > b $B.ab>0$ $C4< b$ $D.a>b$									
	摋											
李	0	玉	4. 若一个多边形的内角和为 720°,则该多边形的边数为() A.3 B.4 C.5 D.6									
Ī	本	狱	5. 将抛物线 $y=3x^2$ 向左平移 1 个单位长度,平移后抛物线的解析式为()									
	0	本	A. $y = 3(x+1)^2$ B. $y = 3(x-1)^2$ C. $y = 3x^2 + 1$ D. $y = 3x^2 - 1$									
	ਿ	倒	6. 如图,在△ABC中,M ,N分别是边 AB ,AC上的点,MN // BC ,									
班级:	0	7257	$BM = 2AM$. 若 $\triangle AMN$ 的面积为1,则 $\triangle ABC$ 的面积为()									
TAY.	//		A.2 B.3 C.6 D.9 $B \longrightarrow C$									
	//		7. 下面三个问题中都有两个变量:									
	10/		①如图 1, 货车匀速通过隧道(隧道长大于货车长),货车在隧道内的长度 y 与从车头进入隧									
	1		道至车尾离开隧道的时间 x; ②如图 2, 实线是王大爷从家出发匀速散步行走的路线(圆心 O 表示王大爷家的位置), 他离家的距离 y 与散步的时间 x; ③如图 3, 往空杯中匀速倒水,倒									
	1		满后停止,一段时间后,再匀速倒出杯中的水,杯中水的体积,与所用时间来									
	11011111											
	l	i	图 1 图 2 图 3									
			第1页共8页									

第2页共8页

11110111110111110

從

姓名:

学吧:

班级:

有下面几种说法: ①若某学生的期中考试成绩为 70 分,期末考试成绩为 80 分,则他的学期总评成绩为 75 分;②甲同学的期中考试成绩比乙同学高 10 分,但期末考试成绩比乙同学低 10 分,那么甲的学期总评成绩比乙同学低;③期中成绩占学期总评成绩的 60%. 结合这张算图进行判断,其中正确的说法是____

三、解答题(共68分,第17-20题,23-25,每题5分,第21,22题6分,第26-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.

17. 计算:
$$\left(\frac{1}{3}\right)^{-2} + \left|1 - \sqrt{2}\right| - (2 - \pi)^{\circ} - 2\cos 45^{\circ}$$
.

18. 解不等式组:
$$\begin{cases} 3x-2 \leq x, \\ \frac{2x+1}{5} < \frac{x+1}{2}. \end{cases}$$

19. 已知 $a^2+b^2-3=0$, 求代数式 $(a+b)^2-2b(a-b)+2a^2$ 的值.

20. 关于x的一元二次方程 $mx^2-(2m-3)x+(m-1)=0$ 有两个实数根.

- (1)求m的取值范围;
- (2)若 m 为正整数, 求此时方程的根.

21. 如图,在四边形 ABCD 中,AD//BC, $AB=BC=AE=\frac{1}{2}AD$.

- (1)求证:四边形 ABCE 为菱形;
- (2)若 $\tan \angle ACB = \frac{3}{4}$, AC = 8, 求 CD 的长.

22. 在平面直角坐标系 xOy 中,直线 y=2x+b 经过点 A (1, m), B (-1, -1).

(1)求 b 和 m 的值;

(2)将点 B 向右平移到 y 轴上,得到点 C,设点 B 关于原点的对称点为 D,记线段 BC 与 AD 组成的 图形为 G.

① 直接写出点 C, D 的坐标;

② 若双曲线 $y = \frac{k}{x}$ 与图形 G 恰有一个公共点,结合函数图象,直接写出 k 的取值范围.

從

本

田

///0///

11110111110111110

徙

O 数

23. 某校为了解本校学生每天在校体育锻炼时间的情况,随机抽取了若干名学生进行调查,获得了他们每天在校体育锻炼时间的数据(单位: min),并对数据进行了整理、描述,部分信息如下:

a. 每天在校体育锻炼时间分布情况:

每天在校体育锻炼时间(min)	频数 (人)	百分比
60≤x<70	14	14%
70≤x<80	40	m
80≤x<90	35	35%
<i>x</i> ≥90	n	11%

b.每天在校体育锻炼时间在 80≤x<90 这一组的是:

 80
 81
 81
 81
 82
 82
 83
 83
 84
 84
 84
 84
 84
 85
 85
 85
 85
 85
 85
 85
 85
 85
 85
 85
 85
 85
 85
 85
 89
 89
 89
 89
 89
 89
 89
 89
 89

 根据以上信息,回答下列问题:

- (1)表中 m=____; n=____;
- (2)若该校有 1000 名学生,估计该校每天在校体育锻炼时间不低于 80 分钟的学生的人数:
- (3)该校准备确定一个时间标准 p (单位: min),对每天在校体育锻炼时间不低于 p 的学生进行表扬. 若使 25%的学生得到表扬,则 p 的值可以是_____.

24. 如图,AB 是 $\odot O$ 的直径,过 $\odot O$ 上一点 C 作 $\odot O$ 的切线 CD,过点 B 作 $BE \perp CD$ 于点 E,延长 EB 交 $\odot O$ 于点 F,连接 AC,AF.

(1)求证: $CE = \frac{1}{2}AF$;

(2)连接BC, 若⊙O的半径为5, tan ∠CAF=2,求BC的长.

第5页共8页

25. 小腾去公园游玩时在湖边看到了一个美丽的喷泉(图 1),善于思考的小腾想到了二次函数的图象,回家后他尝试构造了一个函数 $y=-x^2+2|x|+3(-3\le x\le 3)$ 来刻画喷泉的形状,下表是小腾列出的部分对应值

x	-3	$-\frac{5}{2}$	-2	$-\frac{3}{2}$	$-\frac{5}{4}$	-1	$-\frac{1}{2}$	$-\frac{1}{4}$	0	1/4	1/2	1	<u>5</u>	3 2	2	5 2	3	
у	0	74	3		63 16	4	15 4	55 16	3	55 16	15 4		63 16	15 4	3	7/4	0	

图 1

- (1)计算m = _____; n = _____;
- (2)在平面直角坐标系xoy中,请你描出小腾所列表中各组数值所对应的点(x,y),并画出函数的图象; (3)小腾发现平行于x轴的直线y=t和函数 $y=-x^2+2|x|+3(-3 \le x \le 3)$ 图象的交点个数跟t的取值有关,若直线y=t与函数 $y=-x^2+2|x|+3(-3 \le x \le 3)$ 的图象有4个不同的交点,请你帮小腾直接写出实数t的取值范围.

第7页 共8页

GD

28. 在平面直角坐标系 xOy 中,已知点 A(m-2,0),点 B(m+2,0).

若 $\bigcirc P$ 经过 A、B 两点,且 $60^{\circ} \le \angle APB \le 90^{\circ}$,则称点 P 是点 A 与点 B 的"相关点";

⊙P上的点称作点A与点B的"环绕点".

(1)当m=3时,

①在点 $P_1(3,2)$; $P_2(2,3)$; $P_3(3,2\sqrt{3})$; $P_4(3,\frac{2\sqrt{3}}{3})$ 中,是点A与点B 的"相关点"的是

②若 $\odot O$ 的半径为r,且 $\odot O$ 上存在点A与点B的"相关点",求r的取值范围:

(2)若直线 $y = \sqrt{3}x + m$ 上存在点 A 与点 B 的"环绕点",直接写出 n 的取值范围。

北京一零一中教育集团 2023-2024 学年度第二学期初三练习

数 学 答 案

2024.3

一、选择题(共16分,每题2分)

题号	1	2	3	4	5	6	7	8
答案	С	В	C	D	A	D	В	В

二、填空题(共16分,每题2分)

题号	9	10	11	12	13	14	15	16
答案	<i>x</i> ≠ 3	$a(b-1)^2$	\	2√3	47.3	70°或 110°	2	27 cm

三、解答题(共 68 分, 第 17-20 题, 23-25, 每题 5 分, 第 21, 22 题 6 分, 第 26-28 题, 每题 7 分)解答应写出文字说明、演算步骤或证明过程.

17.
$$\Re: \left(\frac{1}{3}\right)^{-2} + \left|1 - \sqrt{2}\right| - \left(2 - \pi\right)^0 - 2\cos 45^\circ.$$

19. **M**:
$$(a+b)^2 - 2b(a-b) + 2a^2$$

解不等式②得x > -3,

$$=3a^2+3b^2......3$$
 $\%$

20.
$$\Re: (1) : \Delta = [-(2m-3)]^2 - 4m(m-1)$$

= $-8m+9$.

依题意,得
$$\begin{cases} m \neq 0, \\ \Delta = -8m + 9 \geqslant 0, \end{cases}$$

解得
$$m \leq \frac{9}{8}$$
且 $m \neq 0$.

(2) : m 为正整数, $\therefore m=1$4 分 ∴原方程为 $x^2 + x = 0$. 解得 $x_1 = 0$, $x_2 = -1$ 5 分 21. 证明: (1) *∵AE=BC*, *AD*//*BC*, ∴四边形 *ABCE* 为平行四边形......2 分 AB=BC. ∴平行四边形 ABCE 为菱形......3 分 (2) 如图, 连接 BE 交 AC 于点 F. ∴ $BE \perp AC$, $AF = \frac{1}{2}AC = 4$4 分 $\therefore \tan \angle EAF = \tan \angle ACB = \frac{3}{4}$, 在 Rt $\triangle EAF$ 中, : $EF = AF \cdot \tan \angle EAF = 3 \cdot \dots 5$ 分 :: E, F 分别是 AD, AC 的中点, ∴ CD=2EF=6......6 分 (或用 CE=AE=ED 推导 $\angle ACD=90^{\circ}$ 等其他解法酌情给分) 22. (本小题满分 6 分) (1) ::直线 y = 2x + b 经过点 A(1, m), B(-1, -1),∴ b=1.1 分 又**:**直线 y = 2x + b 经过点 A(1, m), (2) ①C (0, -1), D (1, 1).4 分 ②函数 $y = \frac{k}{n}$ 的图象经过点 A 时, k = 3. 函数 $y = \frac{k}{r}$ 的图象经过点 D 时, k = 1, 此时双曲线也经过点 B, (2) 抽取的学生中,每天在校体育锻炼时间不低于80分钟的学生有46人. 估计该校每天在校体育锻炼时间不低于 80 分钟的学生人数为

(3) 答案不唯一,如 86.5 分

24	(1)	证明.	连接 CO	並延长 交	AF 于点 G
24.	$\langle 1 \rangle$	业"州:	と 後し し	开延下父.	AF 丁总 G .

- : CD 是⊙O 的切线,
- $\therefore \angle ECO = 90^{\circ}$.
- : AB 是⊙O 的直径,
- $\therefore \angle AFB = 90^{\circ}$.
- $: BE \perp CD$,
- $\therefore \angle CEF = 90^{\circ}$.
- ∴四边形 *CEFG* 是矩形.

 $\therefore CG \perp AF$.

$$\therefore GF = \frac{1}{2}AF.$$

$$\therefore CE = \frac{1}{2}AF.$$

------3 分

(2) 解: $: CG \perp AF$,

$$\therefore CF = CA$$
.

$$\therefore \angle CBA = \angle CAF$$
.

$$CAF$$
.4 f .

$$\therefore \tan \angle CBA = \tan \angle CAF = 2.$$

:AB 是 $\odot O$ 的直径,

$$\therefore \angle ACB = 90^{\circ}$$
.

在 Rt \triangle *CBA* 中,设 *BC* = x, *AC* = 2x,

则
$$AB = \sqrt{5}x = 5 \times 2$$
.

$$\therefore BC = x = 2\sqrt{5}.$$

-----5分

.....4 分

(或用其他解法酌情给分)

$$25.(1)m = \frac{15}{4}, n = 4$$

......2 分

(2)图象如下:

26. M: (1) : $y = x^2 + (2m - 6)x + 1$,

(2) 当 $y_1 = y_2$ 时,点 A 与点 B 关于对称轴对称,所以 $3 - m = \frac{-m + m}{2} = 0$

(本题直接计算也可)

(3) 解: 作差法:

$$x = -m \mathbb{H}^{\frac{1}{2}}, y_1 = -m^2 + 6m + 1$$

$$x = m \mathbb{H}^{1}, y_2 = 3m^2 - 6m + 1$$

$$x = m + 2 \mathbb{H}^{\dagger}, y_3 = 3m^2 + 2m - 7$$

$$: y_2 < y_3 < y_1$$
, 所以

$$y_1 - y_3 > 0$$
 $\mathbb{I} \mathbb{I} - 4m^2 + 4m + 8 > 0$ $\mathbb{I} \mathbb{I} = -1 < m < 2$

$$y_3 - y_2 > 0$$
即8 $m - 8 > 0$ 解得 $m > 1$

(结果2分,过程1分)

27. (1) 补全图形如图所示

(2) 猜想: $\sqrt{2}BE = AE + DE$

… 2分

证明: 过点 B 作 $BF \perp BE$ 交 EA 延长线于点 F,

$$\therefore \angle ABD = \angle AED = 90^{\circ} \therefore \angle BAE + \angle BDE = 180^{\circ}$$

 $\therefore \angle BAF = \angle BDE$

$$\therefore \angle ABD = \angle FBE = 90^{\circ} \therefore \angle FBA = \angle EBD$$

在 $\triangle FBA$ 和 $\triangle EBD$ 中,

$$\begin{cases} \angle BAF = \angle BDE \\ AB = BD \\ \angle FBA = \angle EBD \end{cases}$$

 $\therefore \triangle FBA \cong \triangle EBD(ASA) \therefore BF = BE, AF = ED$

$$\therefore EF = \sqrt{2}BE$$

 $\therefore EF = AF + AE \therefore \sqrt{2}BE = AE + DE$

-----4分

(3) 取 AD 中点 H, 连接 BH、EH、GH

$$\therefore \angle ABC = \angle AED = 90^{\circ} \therefore BH = EH$$

:: *G*为*CD*中点

$$\therefore HG \parallel AC$$
, $\angle HGB = \angle ACB = 60^{\circ}$

$$\therefore AB = BD \therefore \angle BAD = 45^{\circ}, BH \perp AD$$

$$B$$
 C
 G
 D

$$\therefore \angle DHG = \angle CAD = \angle BAD - \angle BAC = 45^{\circ} - 30^{\circ} = 15^{\circ}$$

$$\therefore \angle BHG = \angle BHD - \angle DHG = 75^{\circ} \because \angle DAE = 30^{\circ}, \therefore \angle DHE = 60^{\circ}$$

$$\therefore \angle EHG = \angle DHE + \angle DHG = 75^{\circ} \therefore \angle BHG = \angle EHG$$

$$\therefore BH = EH, HG = HG \therefore \triangle BHG \cong \triangle EHG(SAS)$$

$$\therefore EG = BG$$
, $\angle BGE = 2\angle HGB = 120^{\circ}$, $\therefore BE = \sqrt{3}EG$

由 (2) 的结论可求,
$$AE = 3\sqrt{2}$$
, $BE = 3 + \sqrt{3}$

$$\therefore EG = \frac{BE}{\sqrt{3}} = \sqrt{3} + 1$$

-----7分

28. (1) ① P_1 , P_3 ------2 分

②= 3 =

$$(3)$$
 $-3\sqrt{3}+1 \le m \le 3\sqrt{3}-1$ _______7 分