Setup(λ):

- 1. PKG picks random generators $g, h_1, h_2, h_3 \in \mathbb{G}$
- 2. PKG picks random $\alpha \in \mathbb{Z}_p$
- 3. PKG calculates $g_1 = g^{\alpha}$
- 4. PKG chooses hash functions:
 - ► $H_0: \mathbb{G} \to \{0,1\}^{\lambda}$ ► $H_1: \{0,1\}^* \to \mathbb{Z}_p$
- 5. PKG publishes params \leftarrow $(g, g_1, h_1, h, h_3, H_0, H_1)$ and keeps α secret as the master key

Extract($ID \in \{0, 1\}^*$):

- 1. PKG calulates $Q_{ID} \leftarrow H_1(ID)$
- 2. PKG generates random $r_{ID,i}$ for $i \in \{1,2,3\}$
- 3. PKG calulates the private key $d_{ID} \leftarrow \{(r_{ID,i}, h_{ID,i}) : i \in \{1, 2, 3\}\}$ where $h_{ID,i} \leftarrow (h_i g^{-r_{ID,i}})^{\frac{1}{\alpha ID}}$
- 4. PKG transmits d_{ID} over a secure channel to user ID

Encrypt(S, M)

- 1. Alice calculates $(vk, sk) \leftarrow Sig-Gen(\lambda)$
- 2. Alice picks a random symmetric key K
- 3. Alice picks a random exponent r and calculates $T \leftarrow g^r$
- 4. For each $(ID, g^a) \in S$, $c_{ID} \leftarrow H_0(g^{r\alpha}) || E_{ID}$ with E_{ID} 5.