NASA TM X-68278

NASA TECHNICAL MEMORANDUM

NASA TM X-68278

CASE FILE COPY

COMPUTER PROGRAMS FOR CALCULATING POTENTIAL FLOW IN PROPULSION SYSTEM INLETS

by Norbert O. Stockman and Susan L. Button Lewis Research Center Cleveland, Ohio 44135 This information is being published in preliminary form in order to expedite its early release.

COMPENIES

INTR	ODUCTION	1.	e	•	0	٥	÷	•	. •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	٠	٠	1
DESCI	RIPTION																												1
	SCIRCL																												1.
	EOD																												2
	COMBYN																												3
DESCI	RIPTION	OF	IN	ΙΡΙ	T	ΑI	MD.	01	UT:	PU.	Г																		4
	SCIRCL																												4
	SCIRCL																												7
	COMBYN																												9
	COMBYN																												13
	COMPIN	00.	TT ()	•	•	•	•	•	•	•	•.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
TTCM	INGS OF	יסמ	OCE) A 1	/C																				٠				20
птот.																													
	SCIRCL																												
	EOD																												
	COMBYN	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	٠	•	•	•	114
TTOM	TNO OF 1		τπn	~ /	\ T\ T	20	T.1	an.	-	חמו	Tn .	~ ^ /	~ 1737																1 4 7
LTST.	ING OF 1																												
	SCIRCL																												
•	EOD																												
	COMBYN	•	٠	•	•	•	•	•	٠	0	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	145
PRIN.	TED OUT																												
	SCIRCL	•		•	•	•	•		•	•	•		,													•	•		147
	EOD	•	•				•	•			•					•						•							153
	COMBYN																												
· .								- :																					
REFE	RENCES .										•							•											217
	•	•	•	•																									
FIGU	RES						•		•		٥																		218
	· · · · ·	-	-	•	-	-		-	-	•	•	-	•	-	-	•	•	•	٠	-	٠	•	-	•	-	•	•	•	
, f.																													

COMPUTER PROGRAMS FOR CALCULATING POTENTIAL FLOW IN PROPULSION SYSTEM INLETS

bу

Norbert O. Stockman and Susan L. Button

INTRODUCTION

In the course of designing inlets at the Lewis Research Center, particularly for VTOL and STOL propulsion systems, a calculational procedure utilizing three computer programs evolved (refs. 1-3). The chief program is the Douglas axisymmetric potential flow program called EOD which calculates the incompressible potential flow about arbitrary axisymmetric bodies. The other two programs, original with Lewis, are called SCIRCL and COMBYN. Program SCIRCL generates input for EOD from various specified analytic shapes for the inlet components. Program COMBYN takes basic solutions output by EOD and combines them into solutions of interest, and applies a compressibility correction.

These programs are still in a state of development and users' manuals for them are not yet available. However, in the interests of making the programs available immediately, it was decided to publish the current versions in the "Quick Release" form with a minimum of write-up. First a brief summary of what each of the three programs does together with references to pertinent literature will be given. This is followed by a description of the input and output of programs SCIRCL and COMBYN. Next, listings of all three programs are given. Finally, a test case for checking-out the programs is presented.

It should be noted that programs SCIRCL and COMBYN were originally written for VTOL inlets and some of the input and output parameters are VTOL oriented.

DESCRIPTION OF PROGRAMS

SCIRCL

The purpose of this program is to supply accurate input to the potential flow program. To this end the inlet surfaces (e.g., hub and shroud) are divided into segments each of which is a portion of an analytical curve as illustrated in figure 1. The curves available are listed in the description of SCIRCL input. SCIRCL distributes points along the inlet surfaces in such a way as to meet the requirements of program EOD. The coordinates of these points are punched on cards for direct input to EOD along with other information required

by EOD. In addition, SCIRCL outputs printed information about the inlet surfaces (coordinates, curvature, slope, etc.).

In addition to the surface points, sets of points spanning the passage, like flow measuring rakes, are needed at axial locations where velocity profiles or streamlines are desired. At least one "rake" must be specified for use as a control station. (The function of the control station is given under COMBYN.) Program SCIRCL generates the coordinates of the rake points and punches them on cards for input to EOD.

EOD

This is the Douglas incompressible potential flow computer program for axisymmetric bodies. Only the bodies must be axisymmetric; the flow itself need not be. The details of the Douglas method are covered extensively in references 4 to 6; the highlights will be outlined herein.

- 1. Bodies are represented by a distribution of sources and sinks of initially unknown strengths.
- 2. An integral equation in the unknown source strength is derived from the potential flow equations and boundary conditions.
- 3. The integral equation is appproximated by a set of linear algebraic equations corresponding to discrete points on the bodies.
 - 4. These equations are solved for the source strength by matrix methods.
- 5. Velocities are calculated on the surface and at other points of interest (such as rake points) in the flow field from the source distribution obtained in step 4.

The program was originally written for closed bodies in a free stream. To apply the method to inlets, the inlets are idealized by adding artificial extensions to the inlet surfaces as shown in figures 2 and 3. The method of idealizing conventional inlets is given in reference 7 and that for lift fan or lift engine inlets in reference 2.

The Douglas program is used to obtain three basic solutions for the idealized inlet profile and certain free-stream conditions. The basic solutions are ones (e.g., as shown in fig. 4) that provide a convenient basis for generating the combined solutions that represent flow conditions of interest. The three basic solutions and the method of combining them are discussed in reference 2. Program EOD has been modified to output the basic solutions on punched cards for input to program COMBYN. No further description of EOD input or output will be given.

COMBYN

This program combines the basic solutions from EOD into any number of solutions of interest. A solution of interest or combined solution is one having specified values of free stream velocity V_{∞} and direction \sim and control station velocity $V_{\rm C}$ (as shown in fig. 5 for a VTOL inlet). As an alternative to $V_{\rm C}$, the inlet weight flow $\mathring{\rm w}$ may be specified, in which case the program will convert $\mathring{\rm w}$ to $V_{\rm C}$. Temperature and pressure must also be specified if other than standard conditions are desired. These and other COMBYN inputs are described later. (Note that COMBYN requires \sim F rather than \sim where \sim F = \sim -90.)

The method of combination of the basic solutions is essentially that given in reference 2 and is summarized in figure 5. The only major difference is in the compressibility correction. The current version of COMBYN uses the compressibility correction method of reference 8. This method is referred to in the COMBYN program listing as Approach 5 compressibility.

One of the "rakes" mentioned under SCIRCL is used as a control station by COMBYN. The control station is the rake at which the average inlet axial velocity $V_{\rm C}$ of the combined solution is specified. If there are several rakes any one may be used as the control station. It should be noted, however, that the solution is most accurate in the vicinity of the control station. The inaccuracies, which often are not significant, arise from the method of calculating the basic solution for inlets and from the compressibility correction which does not exactly satisfy continuity.

DESCRIPTION OF INPUT AND OUTPUT

SCIRCL INPUT

							:	passage station	
Description	Title card - used for input to EOD	Title number or case number =EOD for EOD axisymmetric punched output =22Y for 2-dimensional punched output =1 for basic data only from Douglas program =0 for all solutions in Douglas program	Number of bodies (can handle 3) =1.0 shroud only =2.0 hub and shroud =3.0 hub, flow splitter* and shroud	Spacing between points in region of interest	Maximum spacing far from region of interest	Axial distance at which surface distance equals zero	Number of Noise Suppression Devices or NSD Splitters (acoustic splitters) (fig. 6), can equal zero.	Number of axial locations at which data across the passage is desired, must be at least one (for the control station cannot be greater than 25.	Axial location of rake (XRAK ₁ \leq XRAK ₁₊₁).
Fortran Name	TITIE	IDENT PROG NO	AWBDYS	DELS	DELSMX	XRI	ANNSD	NRAKES	XRAK
Format	946	2A6, I4	5F10.2		·			† I	3F8.5,13
Card No.	Н	CV.	m			•		†	<u>\</u> .

(Flow splitters extend far downstream, acous-* Flow splitter programming not complete through COMBYN. tic splitters do not.)

Card No.	Format	Fortran Name	Description
		YLO	Y value of first point on the rake at XRAK. If YLO = 0.0, the program will calculate a reasonable value for YLO provided the slope of nearby surface is not $> 45^{\circ}$.
		YHI	Y value of last point on the rake at XRAK. If YHI = 0.0 , the program will calculate a reasonable value for YHI provided the slope of nearby surface is not $> 45^{\circ}$.
	· · · · ·	NY	Number of points in rake at XRAK. Restriction, Σ NY \leq 200 Δ Y = $\left(\frac{\mathrm{YHI} - \mathrm{YLO}}{\mathrm{NY}}\right)$
			Rake points are equally spaced, Δ Y, between YHI and YLO.
9	2F10,2	TYPBDY	=1.0 for hub =2.0 for shroud if ANBDYS=2, for flow splitter* if ANBDYS=3 =3.0 for shroud if ANBDYS=3 =0.0 if shroud is to be mirror image of hub
	·	ANSEG	=Number of segments for the particular body type. If IYPBDY = 0 it is the Y centerline used for mirroring. (Axis of symmetry)
7	F10.2, 10F7.2	ENREED	code indicating type of curve to be fitted through the given points, it is also the exponent for a supercircle when the exponent is to be specified.
			ENREED = 0, SCIRCL program will calculate an exponent. Read in 5 coordinates (XIN and YIN). (fig. 7(a))

*(See note on previous page)

1 < ENREED < 10, superellipse with exponent equal to ENREED. Input coordinates 1,2,4,5. Read in 0.0 for point no. 3. (Point no. 3 is not used, but points 4 and 5 must be in the proper columns.) (fig. 7(b))

spacing at the highlight. The superellipse going into the The flag 1000, added to the code of desired superellipse is used on the shroud to give finer highlight and the one on the topside of the highlight 1001. < ENREED < 1010. should have this flag. ENREED = 1, is a straight line, input 2 coordinates (XIN(1), XIN(2), XIN(2)). (fig. 7(c))

This straight line starts with large ENREED = 10, special straight line used for closed bodies (example - airfoils). This straight line starts spacing (DELSMX) and ends with the small spacing Input 2 coordinates. (fig. 7(d))

ENREED = -1, fits a lemniscate between a straight line and a point. Input is 3 coordinates. (fig. 7(e.))

should be at a right angle, therefore superellipse routine can be used, (fig. 7(f)) Restriction, the two straight lines ENREED = -2, fits an ellipse between two straight lines. Input 4 coordinates.

ENREED = -3, fits a cubic between 2 straight lines, input h coordinates. (fig. 7(g))

XIX(I (I)NIX $I=1_{\boldsymbol{b}}5$

Coordinates for the particular configuration,

Should be ANSEG of #7 cards (i.e., there should be one #7 card for every segment) (ANBDYS), At this point repeat card no. 6 and no. 7 for each body number

If ANNSD ➤ 0, read input for the NSD splitters.

DELS

Spacing between points on the NSD splitter, can be different than DELS on the body.

ONT TOTAL	· OBTITO		
	2I5.	NSEG = N	-Number of segments on the NSD splitter, Note: for a thin
:			NSD splitter, segments on the topside should begin and end
			with the same x values used as the corresponding segments
			on the lower side,

into the highlight, equal to 1/2 of NSEG for thin splitters. =Number of the segment on the underside of the NSD going Set NSHIGH = NSEC for all other splitters. Read in card no. 7, for each segment on the NSD. (i.e., ENREED, (XIN(I), XIN(I), I=1,5)) Total number of points for all the bodies should not exceed 400, REMARKS, 2

The first straight line on the shroud must be equal in axial length to the last straight segment on the hub. If the first straight line on the shroud is longer, us two segments. Total number of off-body points must not exceed 200. If there are acoustic splitters in the area of a rake, specify ANNSD + 1 rakes for axial location of rake.

SCTROT OFFINITION

RINTED OUTPUT

Case Number

Number of bodies, DELS, DELSMX, XRI (Input)

Hub, Shroud, Splitter and Acoustic Splitters
Type of Segment, and input coordinates for the segment.

Interation information if it applies (Superellipse, ellipse, lemniscate and cubic

Other information includes,

Superellipse, N = exponent of the superellipse

OMEGA = The difference between the slopes (in radians) of the superellipse end points A and B = semi-major and minor axis of the transformed superellipse. XO and YO = Center of the transformed superellipse minus

Cubic

A,B,C, and D are the coefficients for the cubic AX3 + BX2 + CX + D = 0

Lemniscate

- XIN(2))² ACALC from equation $\mathbb{R}^2 = 2A^2 \sin 2\theta$ where $\theta = \text{THETMX}$ and $\mathbb{R}^2 = (\text{XIN}(3))$ THETMX CALC = Angle between line 1-3 and line 1-2. $(xin(3) - xin(2))^2$

llipse

A and B semi-major and minor axis of transformed ellipse.

XO and YO, center of the transformed ellipse
PHI angle of rotation
THETIMX, theta of break point 3 in rotated system

Body Coordinates

Point number

X - axial distance

Y - radial distance

KAPPA - curvature

DY/DX - slope

same as SUMDS in EOD output Same as S in COMBYN output S - surface distance measured from the first point S-S(2) - surface distance measured from XRI - distance between points

Rake Information

either read in value or computed value either read in value or computed value Number of Y points calculated for XRAK. Y value of first location on rake Y value of last point on the rake KRAK - Axial location of the rake VIO I NDY XH

rea Output

I - point number

XON - axial location

YOW - Y value on the shroud

YONH - interpolated Y value on the hub

Where an NSD is located there are extra values, these are the individual areas between (if there is not hub, AREA is the disc area) The last value is the total area. AREA - Annular area between hub and shroud, the bodies.

DISC AREA - area as if there were no hub.

Funched Output

The punched output from SCIRCL is used directly as input to EOD. DO NOT INCLUDE I.D.

COMBYN INPUT

English engineering units are used throughout the program,

Length - inches.
Velocities - ft/sec
Angles - degrees
Pressures - lb/ft²
Temperature - degrees R
Densities - slug/ft³
Force - lbs
Weight flow - lbs/sec

Fortran Name Format Card No.

1 12A6 IIIIE Pitle card

Number of on-body points for the closed-end solution

L) Total number of off-body points

Card No.	o. Format	t Fortran Name	Description
		MT(2)	Number of on-body points for the open-end solution (eliminate the last body)
		NP(2)	Total number of off-body points
		CTI	Number of I.D. cards from EOD output, (usually 1, unless the closed end and open end case were run separately, then NID=2)
		KSKTP	=0 for 1 case of COMBYN =1 for successive cases using the same EOD output.
10		W4.SOL	=0 when there are 3 solutions from EOD, (one axisymmetric solution for the closed-end and open-end cases, and one crossflow solution for the open-end case) =1 when there are 4 solutions from EOD (two axisymmetric and two crossflow)
		NSPLE	=number of noise suppression devices, (NSD), can equal zero.
m	2014	(NSPB(I), NSPE(I), I=1,NSPLF)	If there are not NSD omit this card. NSPB - Number of right most point on the splitter. NSPE - Number of the left most point on the splitter. NOTE - The first splitter is the one closest to the hub and the last splitter is the one closest to the shroud.
4	10F8.5	ΛC	Average axial velocity at the control station. Based on live flow area, i.e., the flow area minus the area associated with the boundary layer displacement thickness. If VC = 0.0 the program will interpret this as a code and will calculate VC from WDOT. (To run a case with VC actually equal to zero set WDOT = 0.0.)
		VINF	Free-stream velocity

Description	Angle of attack, 0.0 for free-stream perpendicular to inlet axis. Note that $\alpha_{\rm F} = \alpha_{\rm c} - 90^{\rm o}$.	Total temperature, if PSTAT and TSTAT are read in (to be explained later), the program will calculate TTOTAL. If TTOTAL = 0 and PSTAT and TSTAT = 0, then TTOTAL = 518.67.	ELND is the arbitrary length used for normalizing - Refer to KND input, card number 6.	Upper limit of integration for surface forces (used in subroutine INFRCE*).	Rotor tip speed. Meed not be input unless relative rotor inlet quantities are desired. (See COMBYN output)	Bulk velocity at control station, i.e., average inlet axial velocity based on geometric area. If VA = 0.0, the program will interpret this as a code and set VA = VC.	Total pressure, if PT = 0.0 the program will set PT = 2116.	Static pressure Static temperature (If PSTAT and TSTAT are not 0.0, total pressure (PT) and total temperature (TTOTAL) will be calculated using PSTAT and TSTAT.	Weight flow - used only if VC is input as 0.0.	Number of THETAS, where THETA is the circumferential coordinate.	One rake must be chosen as the control station, NCLO is the number of the first point on the rake.	sion of COMBYN.
Fortran Name	ALFAF	TTOTAL	ELND	YWING	UTIP	VA	PT	PSTAT	WDOT	NTHETA	NCLO	included in this version
Format					\$.			10F8.5		1014	:	subroutine not in
Card No.	٠.			٠.				ľV				*INFRCE sub

Card No.	Format	Fortran Name	Description
		NCHI	NCHI is the number of the last point on the control startion rake.
		MX	Set = 0.0 (was used for INFRCE*).
		KAND	or no ELNI
			ટ્રેન્, ળું ઘે જ
			= μ same as KND = -1 but VA is used for locities.
			KND = 5 same as $KND = 0$, velocities normalized by VA
			KND = 6 same as KND = 1, velocities normalized by VA
! —	10E8.5	(THETA(I), I=1,NTHETA)	Circumferential coordinate in degrees, (Number of THETA'S read in depends on NTHETA)
Φ.	10E8.5	XTEST	Only used for INFRCE* axial location of control surface, usually equal to XRI.
0	3E10,5,14	XRI	Value of X at which the surface distance is zero. Usually equal to the X at the control station.
· .		YRIHUB	Y on the hub at XRI.
		YRISHR	Y on the shroud at XRI.
		NHUBWX	The number of the last point on the hub (this can be found in the printed output of SCIRCL).
* Same as I	previous page.		

At this point, the binary cards from EOD, including the I. D. card are inserted.

COMBYN OUTPUT

TITLE - COMPRESSIBLE COMBYN APPROACH 5 followed by title on title card.

The data and run num-Based on Basic Data From xx/xx/xx Run No. xxx and xx/xx/xx Run No. xxx ber came from the punched I. D. card from EOD punched output.

In the table that follows, several functions of three different velocities are given. locities are:

Control; VC, Average axial velocity at the control station. (See Input) (The control station is determined by NCLO and NCHL.)

Bulk; VA, Bulk velocity at the control station. (See Input)

Free stream, V. Free stream velocity.

calculated from incompressible flow equations and COMP means calculated from compressible flow The rest of the table is self-explanatory except perhaps the terms INC and COMP. equations.

The rest of the output will be defined by the output name:

(i.e., the angle between the free stream velocity and a line perpendicular to the inlet axis) containing WTOL Inlet. Angle of attack of wing ALPHAF

VINF/VC V_{c}

VINE/VA Va /v

VC/VA V_C/V_B

Critical velocity uncorrected for compressibility VSONIC

VSONICC Critical velocity at control station

TSTAT Free stream static temperature

Free stream incompressible static pressure

PSTAT

PSTATC Free stream compressible static pressure

ASTAT

RHOSTAT Free stream static density

WDOT Input mass flow

Incompressible average velocity at the control station VIC

ITIOTAL Free stream total temperature

Free stream total pressure incompressible.

PIOTC Free stream total pressure compressible

ATOT Free stream stagnation speed of sound

RHOTOT Free stream stagnation density

THET TTOTAL/518,67

DEL PTOTC/2116,22

Usually equal at which the surface distance is zero, at the control station. Input . Value of X to X Ä

YRIHUB Input - Y on the hub at XRI

YRISHR Input - Y on the shroud at XRI

HUB-TIP RATIO YRIHUB/YRISHR

Input - arbitrary length used for normalizing

	·	solution
	· · · · · · · · · · · · · · · · · · ·	closed-end
INFRCE*	INFRCE*	s for the
subroutine	subroutine	-body point
Input - used for subroutine INFRCE*	Input used for subroutine INFRCE*	number of on-body points for the closed-end solution
IuI	InI	, H
XTEST	YWING	TN

- number of on-body points for the open-end solution a

Input, number of the first point on the control station rake Input, number of the last point on the control station rake Input - the number of the last point on the hub 1 & 2, total number of off-body rake points NCIO NCHI

Input code for INFRCE* NHUBMX

See input KN See input KSKIP

Ŋ

ß

Average axial velocity at the control station of basic solution Average axial velocity at the control station of basic solution Closed-end.

Coefficients of combination. (ref. 2) Open-end. A,B,C Input free stream velocity uncorrected for compressibility. Input - circumferential coordinate in degrees VINFP THETA

Local weight flow at the circumferential station given by THETA WDOTT

Local VIC at given THETA

page 11. *Same as

VICT

Local average control station velocity of crossflow basic #3 solution at a given $\,\theta\,$

ON-BODY POINTS (hub, shroud and if applicable NSD)

3

The index number of each on-body point

Axial distance

Radial distance

Velocity component tangent to body profile in an X,Y plane

Circumferential velocity component

VIHEIV

Resultant velocity (VP2 + VTHETA2)1/2

Average incompressible velocity at a given axial location

Flow angle

BETA

Surface distance from XRI

Pressure coefficient compressible = PSOPIC - PSOPIC

CPC

 $\vec{
ho}_{\rm c}/
ho_{\rm t}$ at axial location (X) RB/RT

Static to total pressure ratio, compressible = PSOPTC

OFF-BODY POINTS (RAKES)

Number of the off-body point (points without numbers in I column are interpolated points on hub, shroud or splitter surfaces)

Axial distance - for each rake

Radial distance

VBARI

VRES

Axial velocity component V

Radial velocity component $m V_{
m V}$

These velocities are obtained from EOD basic data and constants of combination.

Circumferential velocity component $m V_{Z}$

Resultant velocity = $V_x^2 + V_y^2 + V_z^2 = V_{re}$

VRES

 \mathbb{Z}

×

X

Meridional velocity component $V_x^2 + V_y^2 = V_m$

Velocity component in aft direction = $V_{\rm z}$ sin Θ + $V_{
m x}$

Velocity component in spanwise direction = $\frac{V}{V}\sin\theta$ - $\frac{V}{Z}\cos\theta$

RHOBR 5/0 +

VSPAN

VAFT

M

Pressure ratio-compressible

PSOPTC

17

~

Same as above

Average incompressible velocity at a given axial location X VBRI

Pressure coefficient (compressible) CPC = $\frac{PSOPTC}{QCA/PT}$

CPC

Meridional flow angle = tan (V_y/V_x) , inlet oriented, cylindrical coordinate ALPHA

Flow angle = tan (V/V) = sin (V_Z/V) = sin (V_Z/V) = cos (V_M/V) inlet oriented, cylindrical coordinate system Underturning angle = tan (V_{aft}/V_x), wing oriented, rectangular coordinate

BETA

ETA

system for VTOL inlet

Spanwise flow angle = tan (V $_{\rm Span}/{\rm V}_{\rm X}$), wing oriented, rectangular coordinate system for VPOL inlet

ZETA

Swirl angle = tan (V_z/V_x) , inlet oriented, cylindrical coordinate system PH

Stream function QFRACT

RELATIVE ROTOR INLET DATA

Equal to XRI

Rotor tip speed UTIL

X = XRI

Local radius at

The following quantities relative to a rotor rotating at tip speed = UTIP are calculated at Local rotor speed = $\frac{\text{UTIP} * Y}{\text{YRISHR}}$

Circumferential velocity component relative to rotor = SIGN * $\rm VZ$ = U where SIGN = SIGN of sin Θ VZPRIME

Relative velocity VM/cos ? VPRIM Relative Mach number = $(V'/a_{\rm t})/\left[1.0 - .2 (V_{\rm res}/a_{\rm t})^2\right] 1/2$

MPRIME

Relative flow angle = ATAN (V_z^{1}/V_M) BETAPR

The following are the same as above, but calculated at $\theta_{\rm ST} = 360.$ - θ

VZPRST

·VPRST

MPRS

BETAPS

RAKE WEIGHT FLOW DATA

		sht flow at
		integrated weig
		2(I) is
		where (
Çe	rake	parameter
The number of each rake	Axial location of the rake	Weight flow disparity parameter where Q(I) is integrated weight flow at
EI ·	Æ	-)-QBAR W
Н	×	[] []

rake # and QBAR is integrated weight flow at control station Total weight flow for each rake QSTOT

Fraction of weight flow for each rake at a given axial location QFR

STREAMLINES

There are data for streamlines for every axial rake position, X

Value of stream function (increment of .02 is set in program value Corresponding y QSTRM YSTEM

LISTINGS OF PROGRAMS

SCIRCL

SIBFIC SCIRCL

```
PREPARE INPUT DATA FOR DOUGLAS POTENTIAL FLOW PROGRAMS EDD AND 22Y
           SECOND VERSION - SPACING SPECIFIED
      DIMENSION SD(500), S(500), NY(25)
      COMMON /SUPE/ IFLD
      CCMMON /MAIN/ "XIN(10), YIN(10), DELSMX, PIC2, DELS1, IHUB
      COMMON /SS/ NBDY1, NBCDY2, TYPEDY, NBDYS
      COMMON /MWRTE/ IFLAG,NDY4,PRCG,TITLE(9),BOCIES(4),IDENT,YLO(25),YH
     11(25),NDY(25),XRAK(25),NBDPTS(5),NC6,NRAKES
      CCMMON /FOR3SS/ I.DELS,XBK(20),YBK(20),XCN(500),YON(500),DYDXO(500
     1), ALPHA (500), CAPPA (500), SON (500), PIO180
      CCMMON /SPREP/ KPREP
      COMMON /MNSD/ NNSD, NSDBDY(10)
      CCMMEN /NHIGH/ NSPHG, NLAST, XLAST (500), YLAST (500)
      PI=3.14159265
      PIC1E0=PI/180.
      PIC2=PI/2.
С
      WHEN NO6 = 1, A FLAG IN CARD COLUMN 6 IS PUNCHED FOR 50D
C
·C
       ONLY BASIC DATA WILL BE GIVEN IN 500 PREGRAM
C
      REAC (5,84) TITLE
2
      REAC (5.82) IDENT, PROG, NO6
      WRITE (6,94) IDENT
C
      REAC INPUT CARDS FOR SUPERCIRCLE
C
           1 -- CASE HEADER CARD -- NO. OF BODIES, CASE NO., DELS, DELSMX
C
       OFF-BODY
Ċ
          2 -- NRAKES = NUMBER OF RAKES (TOTAL NUMBER CANNOT EXCEED 25)
C
C
          3 -- X, YLO, YHI, NY (DATA FOR EACH RAKE)
C
                X = X OF THE RAKE.
·C
          = Y CF THE FIRST PT. ON RAKE CLOSEST TO THE HUB - SHOULD BE
                  ABOUT DS GREATER THAN Y ON HUB
C
      YHI = Y CF THE LAST PT ON RAKE CLOSEST TO THE SHROUD - SHOULD BE
C
                  ABOUT DS LESS THAN Y ON SHROUE
·C
               NY = NC. OF PTS TO GENERATE FOR THAT RAKE
C
      CN-ECDY
C
          FOR EACH SEGMENT A DESCRIPTION CARD IS NEEDED.
C
C
            THIS CARD DENOTES THE TYPE OF LINE, AND THE
            COURCINATES OF THE LINE (UP TO 5 SETS)
      REAC (5,106) ANECYS, CELS, DELSMX, XRI, ANNSC
      READ (5.80) NRAKES
      REAC (5,1C4) (XRAK(I), YLC(I), YHI(I), NY(I), I=1, NRAKES)
      DEBLG(XRAK(I), YLC(I), YHI(I), NDY(I), I=1, NRAKES)
      WRITE (6,78) ANBOYS, DELS, DELSMX, XRI
      DC 4 I=1, NRAKES
      NCY(I)=NY(I)-1
```

```
NLAST=0
      NSP+C=0
      DELS2=DELS
      DELS1=DELS
      NBEY'S=ANEDYS
      NNSC=ANNSD
С
C
      ™ = COUNTER FOR THE NUMBER OF ONBODY POINTS GENERATED
C
      IHU8 = C, WHEN THERE IS ONLY ONE BODY-- IF THERE IS ONE BODY
C
      IT MUST BE THE SPROUD
C
      IFLAG = C, IF THERE IS MORE THAN ONE BODY
      K=C
       IHUR=0
      IFL AC=C
C
C
      NZ LCOP IS FOR THE NUMBER OF BODIES
C
      DO 26 NZ=1,NBDYS
      IF (NZ.GE.2) THUB=1
Ç
C
      TYPECY = 1 FOR HUB ---- TYPECY = 2 FOR SHROUD
C
             OR
C
       TYPECY=1 FCR HUB * TYPBDY=2 FOR FLOW SPLITTER * TYPECY=3 FOR SHROU
C
      ******FLOV SPLITTER PROGRAMMING IS NOT COMPLETE THROUGH COMBYN****
C
       *****FLCV SPLITTER IS NOT THE SAME AS NOISE SUPPRESSION DEVICES
C
            (N.S.C.) SPLITTERS****
X
             CR
~ IC
      IF THE HUB IS TO BE MIRRORED , SET TYPBOY FOR THE SEROUD = 0.0
      REAC (5,106) TYPEDY, ANSEG
      NSEG=ANSEG
       IF (NBDYS.EQ.1.AND.TYPBDY.EQ.2.0) IFLAG=1
       IF (TYPBEY.EQ.1.) WRITE (6,120)
       IF (4YPBEY.EQ.3.Q.OR.TYPBDY.EQ.O.O.OR.NBCYS.EQ.1) WRITE (6,122)
       IF (TYPBCY.EQ.U.U) GC TO 24
       IF (TYPECY.EQ.2.G.ANC.NBDYS.GT.1) WRITE (6,124)
       K=K+1
       SCN(K)=C.C.
C
       SEGMENT LCCP
C
       DC 22 J=1,NSEG
       READ (5,108) ENREED, (XIN(I), YIN(I), I=1,5)
       KSV=K
       CAPPA(K)=C.C
       IF (ENREED.NE.1.G.ANC.ENREED.NE.10.) GO TO 10
       XCN(K) = XIN(I)
       YON (K) = YIN (1)
       WRITE (6,112) ENREED, (XIN(I), I=1,2), (YIN(I), I=1,2)
       DEQUCXON(K), YON(K), TYPBDY, K, ENREAD, NSEG, J, (XIN(I), YIN(I), I=1,5)
       IF (TYPBEY.GE.2.0) GC TO 8
       IF (ENREED.EQ.1.0.AND.J.EQ.NSEG) CALL FNSTRH (K)
         (ENREED.EG.1.G.AND.J.NE%NSEG) CALL STRAIT (K,C.O)
      .IF (ENREED.EQ.10.) CALL FRSTSH (K)
```

2.2

ß

```
DYEXC(KS\)=DYDXO(KSV+1)
      ALPHAKKS\)=ALPHA(KSV+1)
      GC 1C 22
      IF (J.EQ.1) CALL FRSTSH (K)
8
      IF (J.EQ.NSEG) CALL FNSTRH (K)
      IF (J.NE.1.AND.J.NE.NSEG) CALL STRAIT (K.U.O)
      GC 10 6
         (ENREED.LT.-2.0) GO TO 20
10
      1F
      IF (ENREED.LT.-1.0) GO TO 18
      IF (ENREED.LT.G.C) GC.TO 16
·C
·C
      SET-LP SLPER ELLIPSE
C
      KPREP=0
      ENRC = ENREED-1000.
      IF (ENRO.LT.C.O) GO TO 12
      ENREED=ENREED-1000.
      IFLC=IFLC+1
      GC TC 14
      IFLC=0
12
      WRITE (6,114) ENREED, (XIN(I), I=1,5), (YIN(I), I=1,5)
      CALL TEST (5)
     ISTART=K
      K1=K
      CALL SUPERC (XIN, YIN, ENREED, CELSI, ISTART)
      K = I - 1
      K2∍K
      ICLM=0
      IF (KPREF.EQ.O) GC TC 22
      CALL PRELPS (IDUM, 1, 5, K1, K2)
      GC 1C 22
'n
C
      SET-UP LEMNISCATE
С
      WRITE (6,116) ENREED, (XIN(I), I=1,3), (YIN(I), I=1,3)
16
      CALL LEM (K)
      K=K+1
      GO 16 22
XC
C
      SET-UP ELLIPSE
C
      WRITE (6,118) ENREED, (XIN(I), I=1,4), (YIN(I), I=1,4)
      KPREP=0
      CALL TEST (4)
      K1=K
      CALL ELIFSE (K)
      K=K+1
      K2=K
      ICUM=U
      AF (KPREF.EQ.O) GC TC 22
      CALL PRELPS (IDUM, 1, 4, K1, K2)
      GC TC 22
C
X
      SET-LP CUBIC
C
      WRITE (6,126) ENREED, (XIN(I), I=1,4), (YIN(I), I=1,4)
2 C
```

```
CALL CUBIC (K)
      K=K € 1
22
      CONTINUE
C
C
      END OF SEGMENT LOOP
C
      GC TC 26
24
      CALL MIRROR (K, ANSEG)
26
      NECPTS (NZ) = K
      NBCY1=NBCPTS(1)
      NBCDY2=NPDPTS(2)
28
      CONTINUE
C
C
      ENC OF BODY LOOP
C
      ITCP12≈K
C
C
      **N.S.D. SPLITTER SUBROUTINE
      IF (NNSD.NE.O) CALL SUPRD (K)
      IF (IFLAC.EC.1) NBDY1=0
      Y4SAVE≈YCN(NBDY1)
      Y5SAVE=YCN (NBDY1+1)
      Y6SAVE≈YCN(NBODY2)
      Y7SAVE≈YCN(NBODY2+1)
      DERUG(XON(I), YON(I), DYDXO(I), ALPHA(I), CAPPA(I), SON(I), SON(I), SON(I)
     1.), I=1,K)
XC 9
C
·C
      CO-CRDINATES OF POINTS ON DOWNSTREAM CLOSURE
C
C
C
      STRAIGHT SECTION BETWEEN HUB AND SHROUD OR SPLITTER
C
C
      IF (NBDYI.EQ.O) GC TC 30
      YNPCY1=YCN (NBDY1)
      GO TC 32
30
      YNEDY1=0.0
      Y4SAVE≈C.C
      NCY4=(YON(NBDY1+1)-YNBDY1)+1.5/DELSMX
32
      ENDY4=ND14
      NPTS=NDY4+1
      NBCPTS (NEDYS+1)=APTS+NBDPTS (NBDYS)
      DY4=(YON(NECY1+1)-YNEDY1)/ENCY4
      DO 34 I=1, NPTS
      AYEN=I-1
      IPN=I+K
      XCN(IPN)=XCN(NBDY1+1)
      YON (IPN) = YNBDY1+AYEM*DY4
      CONTINUE
34
      ITCPT4=K+1
      ITCPT5=110FT4#NDY4
      IF (NBDYS.LE.2) GO TC 38
```

C

```
STRAIGHT SECTION BETWEEN FLOW SPLITTER AND SHROUD
      YNPLY2=YESAVE
      NCY5+(Y75AVE-Y6SAVE)+1.5/DELSMX
      FNEYS=NEYS
      NPTS=NDYE+1
      NECPTS (NEDYS+2)=NPTS+NBOPTS (NBDYS+1)
      CYS= (Y7SAVE-Y6SAVE)/ENDY5
      DO 36 1=1-NPTS
      AYEN= I-1
      IPN=IHITCPT5
      XCK(IPN)=XCK(NBCCY2+1)
      YCK (IPN) = YNEDY2+AYEM*DY5
      CONTINUE
36
      TTCP16=11CP15+1
      TTCPT7=11CPT6+NDY5
C
           CALL SUBROUTINE TO WRITE AND PUNCH CARDS
C
C
3 8
     CALL WPLNCH
      IF (NBDYS.GT.2) GG TC 40
      NT1=1T0P15-3
      NT2=K-2
      GC TC 42
      NT1=1T0P17-5
4 C
      NT2= ITOP15-4
      NT2=K+3
      NSPLMX=NECCY2-2
      NELEMX=NEDY1-1
42
      NP = C
      CC 44 I=1.NRAKES
      NP=NP+NCY(I)+1
44
      CCNTINUE
      NEERXC=NECERX
      IF (NBDYS.LE.2) GC TC 46
      WRITE (6,110) NT1,NT2,NT3,NHUBMX,NSPLMX,NP
      GO TC 48
      WRITE (6,100) NT1,NT2,NHUBMX,NP
46
      CALCULATING HUB SURFACE DISTANCE (S-S(2))
C
      .CALL SINTP (XON, SON, NBDY1, XRI, S2)
      WRITE (6,86)
      IF (IFLAG.EC.1) GC TC 52
      SCEL = O.C
      DC 5C [=1,NBDY1
      IF (I.NE.1) SDEL=SON(I)-SON(I-1)
       SC(1)=SCN(1)-S2
      WRITE (6,52) I,XCN(I),YON(I),CAPPA(I),DYEXC(I),ALPHA(I),SON(I),SC(
5 C
     14),SCEL
C
      CALCULATION SHROUD OR LOWER FLOW SPLITTER SURFACE DISTANCE
C
C
52
      NPP1=NBC+1+1
       IF (IFLAC.EC.1) NBODY2=ITOP12
```

```
DC 54 I=NBP1.NBODY2
      JJ = I
      ## (XON(1).LT.XON(1+1)) GO TO 56
      CONTINUE
56
      CALL SINTP (XON(NBP1),SON(NBP1),JJ-NBDY1,XRI,S22)
      IF (IFLAC.EC.1) GO TC 58
      WRITE (6,88)
58
      IF (NBDYS.LE.2) JJ=NPODY2
      SDEL=0.0
      DO 60 I=NBP1.JJ
      IF (I.NE.NBP1) SDEL=SON(I)-SCN(I-1)
      S(I)=S22-SEN(I)
      WRITE (6.52) I,XGN(1),YON(1),CAPPA(1),DYCXC(1),ALPHA(1),SON(1),S(1
60
     1), SCEL
      IF (NBDYS.LE.2) GO TC 70
X
       CALCULATING FLOW SPLITTER UPPER SURFACE DISTANCE
C
      JJ#JJ#1
      WRITE (6,96)
      CALL SINIP (XON(JJ), SON(JJ), NBODY2-JJ, XRI, S23)
      SDEL=0.0
      DC 62 I=LJ,NBODY2
      #IF (I.NE.JJ) SDEL=SGN(I)-SON(I-1)
      S(I)=SON(I)-S23
      WRITE (6,92) I,XCN(I),YON(I),CAPPA(I),DYCXG(I),ALPHA(I),SON(I),S(I
62
     I), SCEL
C
C
      CALCULATING SHROUD SURFACE DISTANCE (IF THERE IS A FLOW SPLITTER)
C
      NBP1=NBCEY2+1
      DC 64 I=NBP1, ITOP12
      IF (XON(I).LT.XCN(I+1)) GO TC 66
64
      CONTINUE
      CALL SINIP (XON(NBP1), SON(NBP1), JJ-NBODY2, XRI, S33)
66
      WRITE (6,98)
      SCEL = 0.0
      DO EE I=NBP1,ITOP12
      HF (I.NE.NRP1) SDEL=SON(I)-SCN(I-1)
      S(I)=S33-SCN(I)
      WRITE (6,92) I,XON(I),YON(I),CAPPA(I),DYCXC(I),ALPHA(I),SON(I),S(I
68
     1).SCEL
C
      WRITE OUT N.S.D. SPLITTER POINTS
C
      NECSV=NBCYS
      IF (NNSD.EQ.0) GC TO 74
      NS=1
72
      TEC=NBDYS+NS
      INSC=I+NSCBDY(NS)
      IBNSC=I+1
      WRITE (6,128) IBD
      WRITE (6,130) (I,XON(I),YON(I),CAPPA(I),CYCXO(I),ALPHA(I),SON(I),I
     1=IBNSD, INSC)
      NS=NS+1
```

```
IF (NS.LE.NNSD) GG TC 72
      NBCYS=IBC
C
C
      WRITE OUT CLOSURE COCRDINATES
C
74
      :IBC=NBDYS+1
      WRITE (6,90) IBD.(I,XON(I),YCN(I),I=ITOPT4,ITOPT5)
      IF (NBDSV.NE.3) GC TC 76
      HBC=HBD+1
      WRITE (6,90) IBD, (1, XON(1), YCN(1), I=ITOPT6, ITOPT7)
76
      WRITE (6,102) (XRAK(I),YLO(I),YHI(I),NY(I),I=1,NRAKES)
      CALL AREAA
      GC TC 2
X
C
      FORMATS
C
      FORMAT (1HC,10X,16HNC. OF BODIES = ,F2.0,5X,7HDELS = ,F6.3,5X,9HDE
78
     1LSNX = ,F6.3,5X,6HXRI = ,F10.6
:8 C
      FCRMAT (2014)
82
      FORMAT (2A6,14)
84
      FORMAT (SA6)
      FORMAT (1x/1x23HBODY 1 CO-ORDINATES - X12X1HY10X5HKAPPA10X5HDY/DX1
86
     10x5FALPHA5x1HS8x6HS-S(2),8X,6HDELTAS/1X)
      FORMAT (1x/1x23HBQDY 2 CC-ORCINATES - X12X1HY10X5HKAPPA10X5HDY/DX1
88
     10x5HALPHA5x1HS,8x,7HS*(2)-S,8X,6HDELTAS/1X)
90
      FORMAT (1X/1X5HBCDY 11,17H CC-ORDINATES - X12X1HY/1X/(9X14,3XE12.5
     -1 • E 1-2 • 5 ) -) -
92
      FORMAT ($X14,3XE12.5,7E13.5)
      FORMAT (CHICASE A6/1X)
94
96
      FORMAT (1HC)
      FORMAT (1x/1x,23HBODY 3 CO-ORDINATES - X,12X,1HY,10X,5HKAPPA,10X,5
     1HDY/DX,1(X,5HALPHA,5X,1HS,8X,6HS-S(3),8X,6HDELTAS/1X)
      FORMAT (/10x,30H INPUT FOR THE COMBINE PROGRAM,7H NT(1)=,14,7H NT(
100
     12)=,14,8F NHUBMX=,14,4H NP=,14/)
102
      FORMAT (1x,4HxRAK,10x,3HYLO,11x,3HYHI,16x,3HNDY//,(3E14.5,5x,I3))
      FORMAT (3E8.5,13)
104
106
      FORMAT (EF10.2)
108
      FORMAT (F1C.2,1GF7.2)
      FORMAT (/5x,30H INPUT FOR THE COMBINE PROGRAM,7H NT(1)=,14,7H NT(2
110
     1:=,I4,7H NT(3):=,I4,8H NHUBMX=,I4,8H NSPLMX=,I4,4H NP=,I4/)
      FORMAT (1HC,10X,6HENREED,10X,13HSTRAIGHT LINE/11X,F6.3,5X,1HX,1P2E
112
     115.4/22×,164,1P2E15.4)
      FGRMAT (1HC,10X,6HENREED,10X,12HSUPERELLIPSE/11X,F6.3,5X,1HX,1P5E1
114
     15.4/22X, 1HY, 1P5E15.4)
      FORMAT (1HC,10x,6HENREED,10x,10HLEMNISCATE/11x,F6.3,5x,1Hx,1P3E15.
116
     .14/22%。1HY,1P3E15.4)
      FORMAT (1HG, 10X, 6HENREED, 10X, 7HELLIPSE/11X, F6.3, 5X, 1HX, 1P4E15.4/22.
118
     1X.1HY.1P4E15.4)
      FORMAY (1HC,2X,18H**** HUB ********)
120
      FORMAT (1HC+2X+18H**** SHROUE ******)
122
      FORMAT (1HC,2X,18H**** SPLITTER ****)
124
      FORMAT (1HC, 10x, 6HENREED, 10x, 5HCUBIC/11x, F6.3, 5x, 1Hx, 1P4E15, 4/22x,
126
     11HY.1P4E15.4)
      FORMAT (1X/1X,5HBCDY,12,17H CO-ORDINATES - X,12X,1HY,10X,5HKAPPA,1
128
     10X,5HDY/EX,10X,5HALPHA,5X,1HS,8X,6HS-S(2),8X,6HDELTAS/1X)
      FORMAT (5X,14,3X,E12.5,5E13.5)
130
      ENC
```

```
C
      SUBROUTINE TO HANDLE NOTSE SUPPRESSION DEVICE SPLITTERS
C
      SUBROUTINE SUPRO (K)
      COMMON /FOR3SS/ I,DELS,XBK(20),YBK(20),XON(500),YON(500),DYDXO(500
     1), ALPHA(5CC), CAPPA(5CO), SON(5CO), PIO180
      CCMMGN /MAIN/ XIN(10), YIN(10), DELSMX, PIG2, DELS1, IHUR
      COMMON /MNSD/ NNSD, NSDBDY(10)
      COMMON /SPREP/ KPREP
      CCPMON /NHIGH/ NSPHG, NLAST, XLAST (500), YLAST (500)
      COMMON /SUPF/ IFLD
      IFLC=0
      READ (5,20) DELS
      DELS1=DELS
      DC 16 N=1.NNSD
      NSPFC=C
      K = K \notin I
      WRITE (6,18) N
      KN SD = K
C
C
      NSEG = NUMBER OF SEGMENTS ON THE SPLITTER
C
      NSMIGH # NSEG/2 FOR THIN SPLITTERS
C
              = NSEG
                      ( FOR ALL OTHER SPLITTERS )
      READ (5.22) NSEG, NSHIGH
      DC 14 J=1, NSEG
      REAC (5,24) ENREED, (XIN(1), YIN(1), I=1,5)
      IF (J.GT.NSHIGH) NSPHG=1
      KSV=K
      CAPPAKK)=0.0
      IF (ENREED.NE.1.0) GC TO 2
      XCN(K) = XIN(1)
      YCK(K)=YIN(1)
      NLAST=NLAST-1
      WRITE (6,26) ENREED, (XIN(I), I=1,2), (YIN(I), I=1,2).
      CALL STRAIT (K,0.0)
      DYEXC(KSV)=DYDXO(KSV+1)
      ALPHA!(KSV) = ALPHA(KSV+1)
      GC TC 12
2
      IF (ENREED.LT.-2.0) GO TO 10
      IF (ENREED.LT.-1.0) GO TO 8
      IF (ENREED.LT.C.C) GC TO 6
C
XC.
      SET-LP SUPERELLIPSE
      KPREP=0
      WRITE (6,28) ENREED, (XIN(I), I=1,5), (YIN(I), I=1,5)
      CALL TEST (5)
      ISTART=K
      K1'=K
       CALL SUPERC (XIN, YIN, ENREED, DELSI, ISTART)
```

SIBFIC SUPRD.

```
K = I - 1
      K2=K
      ACCM=0
      DD 4 KL=k1,K2
      YLASTI(KL)=YON(KL)
      XLAST(KL)=XON(KL)
      IF (KPREF.EC.O) GO TC 12
      CALL PRELPS (IDUM, 1,5,K1,K2)
      GC TC 12
C
C
      SET-UP LEMNISCATE
C
6.
      WRITE (6,3C) ENREED, (XIN(I), I=1,3), (YIN(I), I=1,3)
      CALL LEM (K)
      K=K € 1
      GC TC 12
€.
C
      SET-UP ELLIPSE
X
      WRITE (6,32) ENREED, (XIN(I), I=1,4), (YIN(I), I=1,4)
18
      KPREP=0
      CALL TEST (4)
      K1=K
      CALL ELIFSE (K)
      K=K+1
      K2=K
      ICUM=0
      IF (KPREF.EC.O) GC TC 12
      CALL PRELPS (IDUM, 1, 4, K1, K2)
      GC TC 12
£
ŀC
      SET - UP CUPIC
ĸ
10
      WRITE (6,34) ENREED, (XIN(I), I=1,4), (YIN(I), I=1,4)
      CALL CURIC (K)
      K=K + 1
12
      IF (J.EQ.NSHIGH) NLAST=K
14
      CONTINUE
ĸ
      NUMBER OF PTS ON EACH NSD
C
      NSCBCY(N)=K-KNSD+1
      CONTINUE
16
      RETURN
C
      FORMATS
C
·C
C
      FORMAT (1HC,2X,23H*** SPLITTER(NSD) NO. ,12)
18
      FORMAT (EF10.2)
20
      FORMAT (1615)
22
24
      FORMAT (F10.2,10F7.2)
      FORMAT (1HC, 10X, 6HENREED, 10X, 13HSTRAIGHT LINE/11X, F6.3, 5X, 1HX, 1P2E
26
     115.4/22X,1FY,1P2E15.4)
      FCRMAT (1HC,10x,6HENREED,10x,12HSUPERELLIPSE/11x,F6.3,5x,1Hx,1P5E1
28
     15.4/22X,1HY,1P5E15.4)
30
      FORMAT (1HC, 10X, 6HENREED, 10X, 10HLEMNISCATE/11X, F6.3, 5X, 1HX, 1P3E15.
      14/22X,1HY,1P3E15.4)
32
      FORMAT (1HC, 10X, 6HENREED, 10X, 7HELL IPSE/11X, F6.3, 5X, 1HX, 1P4E15.4/22
      1X,1HY,1P4E15.4)
34.
      FGRMAT (1HC, 10X, 6HENREED, 10X, 5HCUBIC/11X, F6.3, 5X, 1HX, 1p4E15.4/22X,
     11HY,1P4E15.4)
      ENC
```

SIBFIC WPNCH DEBUG

```
SUBROUTINE WPUNCH
      COMMON 195/ NBDY1, NBCDY2, TYPEDY, NBCYS
      COMMON /FOR3SS/ I,DELS,XBK(20),YBK(20),XGN(500),YON(500),DYDXO(500
     1), ALPHA (5CC), CAPPA (5CO), SCN (500), PIO180
      COMMON / NRTE/ IFLAG, NDY4, PRCG, TITLE(9), BODIES(4), IDENT, YLO(25), YH
     11(25),NDY(25), XRAK(25), NBDPTS(5),NC6,NRAKES
      DIMENSION YOFF (200), XOFF (200), FI (500)
      COMMON /MNSC/ NNSD, NSDBDY(10)
      DATA BODYD/6H-RCCY /, IFLAG1/4H 111/, IFLAG2/4H 1 1/, T22Y/6H
                                                                        22Y/,
     14FLG2A/1F /.IFLG28/1F1/
C
C
      IF YEO AND YHI ARE READ IN AS ZERO, CALCULATE THEM FOR THAT RAKE
C
             (FCR HUB AND SHROUD CASES ONLY)
                                                  1/4/73
C
C
      FIND HIGHLIGHT ON THE SHROUD
·C
      NE=NEDPTS(1)+1
      NE"=NEDPTS(2)
      DC 2 I=NE.NE
      IF (XON(I+1).LT.XCN(I)) GO TC 2
      I=AIML
      GC TC 4
      CONTINUE
2
4
      .DO 6 I=1,NE
6
      FI(I)=I
      NCFF=C
      DO 16 I=1, NRAKES
      NLC=NOFF+1
      NCFF=NLC4NCY(I)
      ENEY=NDY(I)
      IF (YHI(I).EQ.C.G.OR.YLO(I).EQ.O.O) GO TO 8
      GC TC 12
         (YHI(I).NE.G.G) GC TO 10
8
      CALL SINTP (XON(NB), YON(NB), JMIN-NB+1, XRAK(I), YH)
      CALL SINTP (XCN(NB), FI(NB), JMIN-NB+1, XRAK(I), FII)
      DS=SCRT((XCN(IF)-XON(IF+1))**2+(YON(IF)-YON(IF+1))**2)
      YHI((I) = YH-CS
      IF (YLO(1).NE.G.G.OR.XRAK(I).LT.XON(1)) GO TO 12
10
      CALL SINIP (XCN, YCN, NBDPTS(1), XRAK(I), YL)
      CALL SINTP (XON, FI, NEDPTS(1), XRAK(I), FII)
      IF=FII
      DS=SGRT((XCN(IF)-XCN(IF+1))**2+(YCN(IF)-YCN(IF+1))**2)
      YLC(I)=YL+CS
      CYI=(YHI(I)-YLO(I))/ENDY
12
      CC 14 J=NLC.NOFF
      DJM=J-NLC
      XCFF(J)=>RAK(I)
      MCG*IYG+(I)=YLC(I)+DYI*DJM
      CONTINUE
14
```

```
16
      CONTINUE
      NTECY=NECYS+NNSD+1
      NLCCP=2
      HF (NBDYS.EQ.3) GO TC 18
      GC TC 20
      NTECY=NTEDY+1
18
      NLCCP=3
20
      K = C
      DG 32 I=1.NLOOP
      M=NTODY-I+1
      IFLACG=IFLAC2
      IF (M.EG.NTBDY.AND.NBDYS.EG.2.OR.NBDYS.EG.3.AND.M.EG.3) IFLAGG=IFL
     1AG1
      IF (PROG.EC.T22Y) GO TO 22
      WRITE (6,34) (TITLE(L), L=1,9), M, BCCYC, ICENT
      WRITE (6,36) M, IFLAGG, NO6, IDENT
      GC TC 24
      IFLC22=IFLC2A
22
      WRITE (6,4C) M, IFLG22, (TITLE(L), L=1,7), M, BODYD, ICENT
24
      WRITE (6.38) IDENT
      N\Delta = 1
      NS=C
      IF ([.NE.1] K=1
      DO 30 J=1, M
      IF (J.GT.NEDYS.AND.NNSD.NE.O) GO TO 26
      NE=NEDPTS(J)
      GC_TC_28_
26
      NS=NS+1
      #F (NS.G1.NNSD) NSDBDY(NS)=NPDPTS(NBCYS+1)-NBDPTS(NBCYS)
      NE = NSDBDY (NS) +NA-1
28
      NP=NP-NA+1
      CALL WRIXY (NP, IDENT, J, K, XON, YON, NA, NB, PROG)
      NA=NE+1
30
      CCNTINUE
      K = C
      NA = 1
      NE=NCFF
      ંઇ = C
      CALL WRIXY (NOFF, IDENT, J, K, XCFF, YOFF, NA, NB, PROG)
      IE (PROG.NE.T22Y) GO TO 32
      #FLG22=IfLG2B
      WRITE (6,4C) M, IFLG22, (TITLE(L), L=1,7), M, BODYD, IDENT
      WRITE (6,42)
32
      CONTINUE
      RETURN
C
C
      FORMATS
C
C
      FORMAT (1H$,9A6,11,A6,2X,A6)
34
      FORMAT (1H$,11,A4,11,56X,A6,11X)
36
      FORMAT (184,62X,46,11X)
38
40
      FORMAT (1H1, I1,6H11
                                ,A1,4X,7A6,I1,A6,1X,A6)
      FORMAT (1H4,3HG.G,7X,3HO.O,7X,3H9O.)
42
      ENC
```

SIBFTC WRTHY.

```
SUBROUTINE WRIXY (NP, IDENT, J, K, X, Y, NA, NB, PROG)
C
C
      WRITE X AND Y COCRDINATES
C
      DIMENSION X(1), Y(1)
      DATA T221/6H
                      22Y/
      WRITE (6.8) NP, IDENT
      IF (PROG.NE.T22Y) GO TO 4
      IF (J.NE.C) GO TO 2
      WRITE (6,16) J,K,IDENT
      GC 10 6
2
      WRITE (6,14) J,K, IDENT
      GC 10 6
4
      WRITE (6,10) J,K, IDENT
      IF (K.EQ.1) RETURN
6
      WRITE (6,12) (X(L),L=NA,NB)
      WRITE (6,12) (Y(L), L=NA, NB)
      RETURN
C
      FORMAT STATEMENTS
C
C
C
8
      FORMAT (1H$,7X,13,52X,A6,11X)
      FORMAT (1H$,9X,11,9X,11,42X,A6,11X)
10
      FCRMAT (181,6F10.6)
12
      FCRMAT (1H$,9x,11,9x,1H1,9x,11,32x,A6,11x)
14
      FORMAT (1H:,9X,11,19X,11,32X,A6,11X)
16
      END
```

```
SUBRC
```

```
SUBROUTINE STRAIT (K, ISHR)
C
       A REGULAR STRAIGHT SEGMENT
C
      CCMMCN /NAIN/ XIN(10), YIN(10), DELSMX, PIC2, CELS1, IHUB
      TOMMON /FOR355/ I,DELS,XBK(20),YBK(20),XCN(500),YON(500),DYDXO(500
     1), ALPHA (500), CAPPA (500), SON (500), PIO180
      COMMON /55/ NBDY1, NBCDY2, TYPEDY, NBCYS
      CCMMCN /FNST/ NFIRST
      CCPMEN INFIGHT NSPHG.NLAST.XLAST(500)
      KF IRST=K
      XTEST=XIN(2)-XIN(1)
      ATEST=YIN(2)-YIN(1)
      IF (XTES1.EQ.0.0) GO TO 2
      DYCXC=YTEST/XTEST
      ALPHAC=ATAN(YTEST/XTEST)
      GC TC 4
      DYEXC=95555.
2
      ALPHAC=PIC2
      CALCULATE CELSNW
C
      STCT=SQRT(XTEST**2+YTEST**2)
      ANCS=STC1/CELS1
      AINCS=AINT (ANDS)
      TEST=ANDS-AINDS
      IF (TEST.GE..5) AINDS=AINDS+1.0
      DELSNW=S10T/AINDS
      DELSNW=ABS(DELSNW)
      DELSI=DELSNW
      IF (YTEST) 6,12,6
      IF (XTES1.EC.O.C) GO TO 18
6
      DYCXC(K+1)=DYDXC
      ALPHA(K+1)=ALPHAC
      SIGN=1.0
      IF (XTES1.LT.0.0) SIGN=-1.0
      YCN(K+1)=YCN(K)+SIGN*DELSNW*SIN(ALPHA(K+1))
      HF (NSPHE.EC.O) GO TO 8
      XON:(K+1)=XCN(NLAST-1)
      NLAST=NLAST-1
      GC TC 1C
8
      XCN(K+1)=XCN(K)+SIGN*DELSNW*COS(ALPHA(K+1))
      SON(K+1)=SON(K)+SQRT((XON(K+1)-XON(K))**2+(YON(K+1)-YON(K))**2)
10
      CAPPAKK+1)=C.O
      HE "(XTEST.LT.0.0.AND.XON(K+1).LE.XIN(2).CR.XTEST.GT.G.O.AND.XON(K+
     11).GE.XIN(2)) GO TO 20
      IF (ABS()ON(K+1)-XIN(2)).LE.1.DE-4*DELS.AND.ABS(YON(K+1)-YIN(2)).L
     1E.1.CE-4*DELS) GC TO 20
      K=K 4 1
      GC TC 6
```

```
12
      DYEXCHK#1)=C.O
      ALPHAKK#1)=C.O
      SIGN=1.0
      IF (XTES1.LT.0.0) SIGN=-1.0
      MF (NSPHG.EG.O) GO TC 14
      XON (K+1) + XCN (NLAST-1)
      NLAST=NLAST-1
      GC TC 16
14
      XCN:(K+1)=XCN(K)+SIGN*DELSNW
16
      YON (K+1) = YON (K)
      SGN(K+1)=SCN(K)+SGRT((XGN(K+1)-XGN(K))**2+(YGN(K+1)-YGN(K))**2)-
      CAPPA(K+1)=C.O
      AF (XTEST.LT.O.C.AND.XON(K+1).LE.XIN(2).GR.XTEST.GT.G.O.AND.XON(K+
     11).GE.XIN(2)) GO TO 20
      IF (ABS()CN(K+1)-XIN(2)).LE.1.DE-4*DELS.AND.ABS(YON(K+1)-YIN(2)).L
     1E.1.0E-4*DELS) GC TO 20
      K=K+1
      GC TC 12
18
      DYEXC(K#1)=99999.
      ALPHAI(K+1)=PIO2
      SIGN=1.C
      IF (YTES7.LT.0.0) SIGN=-1.0
      XCN(K+1)=XCN(K)
      YCN:(K+1)=YCN(K)+SIGN*DELSNW
      | SON(K+1)=SCN(K)+SQRT('(XON(K+1)-XON(K))**2+(YON(K+1)-YON(K))**2
      CAPPAKK+1)=C.O
      IF ((YTEST-LT-0.0-AND-YON(K+1)-LE-YIN(2)-GR-YTEST-GT-0.0-AND-YON(K+
     11).GE.YIN(2)) GO TO 20
      IF (ABS()ON(K+1)-XIN(2)).LE.1.0E-4*DELS.AND.ABS(YON(K+1)-YIN(2)).L
     1E.1.CE-4*DELS) GG TO 20
      K=K+1
      GC 1C 18
20
      K=K#1
      DO 22 KAL=KFIRST,K
22
      ALPHAM(KAL)=ALPHA(KAL)/PIO180
      RETURN
      ENC
```

```
SIBFIC CLBIC.

SUBROUTINE CUBIC (K)

C

FIT A CLBIC BETWEEN 2

C

LINES CANN

C

DIMENSION AA(4,4), BE
```

FIT A CLEIC BETWEEN 2 STRAIGHT LINES -- RESTRICTION -- THE STRAIGH

```
DIMENSICN AA(4,4), BE(4)

CCMMCN /MAIN/ XIN(10), YIN(10), DELSMX, PIC2, CELS1, IHUB

COMMCN /FCR3SS/ I, DELS, XBK(20), YBK(20), XCN(500), YON(500), DYDXO(500)

1), ALPHA(5CC), CAPPA(5CO), SÓN(500), PIO180

CCMMCN /SS/ NBDY1, NBCDY2, TYPPDY, NBCYS

CELSIN=CELS1

CELS=DELS1

KCLNT=C

K=K-1

KSTART=K

X2=XIN(2)

X2=XIN(2)

Y2=YIN(2)

Y3=YIN(3)

SLCP2=(YIN(4)-Y3)/(XIN(4)-X3)
```

SETUP 4 X 4 MATRIX OF CCEFFICIENTS

```
AA(1,1)=1.C
AA(1,2)=>2
AA.(1,3)=>2*X2
AA(1,4)=)2**3
AA (2,11=C.C
AA (2,2)=1.C
AA(2,3)=2.C*X2
AA(2,4)=2.C*X2**2
AA(2,1)=1.C
AA(2,2)=)3
AA(2,3)=>3**2
AA(2,4)=>3**3
AA(4,1)=(.C
AA(4,2)=1.C
AA(4,3)=2.C*X3
AA(4,4)=2.C*X3**2
CC 2 [1=1,4
DEPLE(AA(II,JJ),JJ=1,4)
CCNTINUE
SETUP VECTOR OF CRIGINAL CONSTANTS -- BB
BB(1)=Y2
BE(2) = (y_2 - y_1N(1))/(x_2 - x_1N(1))
```

PB(4)=(YIN(4)-Y3)/(XIN(4)-X3)

DEELC(BB(I), I=1,4)

35

C

C

```
NS IM=4
      KSIN=0
      CALL SIMG (AAGBB, NSIM, KSIM)
      D=88(1)
      C=66(5)
      A=88.(4)
      C=RP(2)
      B=66(3)
      K=KSTART
      KCUNT=KOUNT+1
      XCN(K+1)=XIN(2)
      YCN(K+1)=YIN(2)
      DYCXG(K+1)=3.0*A*XON(K+1)**2+2.0*B*XON(K+1)+C
      CAPPA(K+1) = (6 \cdot C + A + XON(K+1) + 2 \cdot O + B) / ((1 \cdot O + CYCXO(K+1) + + 2) + + 1 \cdot 5)
      ALPHAKK+1) = ATAN(CYDXC(K+1))
      DS=CELS/(1.C+.2*TANH(ABS(CAPPA(K+1))))
      K=K+1
6
      DXKP1=DS/(SQRT(1.G+DYDXQ(K)))
      #IF (XIN(3).LT.XIN(2)) DXKP1=-DXKP1
      XON(K+1) = XCN(K) + CXKP1
      YON (K+1) = A + XON (K+1) + +3+B + XON (K+1) + +2+C + XON (K+1) + B
      DYCXC(K+1)=3.0*A*XON(K+1)**2+2.0*B*XON(K+1)+C
      CAPPA(K+1)=(6.0*A*XON(K+1)+2.0*B)/((1.0+CYDXC(K+1)**2)**1.5)
      DS=DELS/(1.0+.2*TANH(ABS(CAPPA(K+1))))
      ALPHAI(K+1) = ATAN(DYDXC(K+1))
      SGN(K+1)=SCN(K)+SGRT((XON(K+1)-XON(K))**2+(YON(K+1)-YON(K))**2)
      IF (SLOP2.GT.1.0) GO TO 8
      IF (XIN(4).GE.X3.AND.XON(K+1).GT.X3) GO TO 10
      IF (XIN(4).LT.X3.AND.XON(K+1).LE.X3) GO TO 10
      GO TO 6
18
      -IF
          (YIN(4).GE.Y3.AND.YON(K+1).GT.Y3) GC TO 10
      IF (YIN(4).LT.Y3.AND.YON(K+1).LE.Y3) GO TO 10
      GC
         TC 6
10
      IF (KOUNT.GT.100) GO TO 20
      DEL'SS=DELS
      DSTEST=((XCN(K+1)-XIN(3)) **2+(YON(K+1)-YIN(3)) **2) **+5
      IF (ABS(CS-CSTEST).LT..O1*DS) GO TO 12
      IF (DSTEST.LT..01*DS) GO TO 14
      IF (CSTEST-.5*DS) 18,16,16
12
      K=K-1
      XCN:(K+1)=XIN(3)
14
      YON (K+1)=YIN(3)
      GC TC 20
      DELS=DELS+(CS-DSTEST)/FLOAT(K-1-KSTART)
16
      IF (KOUNT.GE.10) DELS=(DELS+DELSS)/2.0
      GL TC 4
      DELS=DELS-CSTEST/FLOAT(K-KSTART)
18
      IF (KOUNT.GE.10) DELS=(DELS+DELSS)/2.0
      GC TC 4
20
      DELS1=DS+1.2
      ## (DELS1.GT.DELS) DELS1=DELS
      WRITE (6,24) KOUNT, A, B, C, D
      WRITE (6,26) DELSIN, DELS, DELSI, DSTEST
      KENC=K+1
      KSTART=KSTART+1
      DC 22 I=KSTART, KEND
      ALPHART) = ALPHA(I)/PIC180
22
      CONTINUE
      RETURN
C
C
      FORMAT (1HG,2X,14,2X,10HITERATIONS,2X,4HA = ,1PE12,5,2X,4HB = ,1PE
24
      112.5,2X,4HC = ,1PE12.5,2X,4HD = ,1PE12.5)
      FORMAT (3x,10HDELS IN = ,F8.5,3x,7HDELS = ,F8.5,3x,11HDELS OUT = ,
26
      1F8.593X,9HCSTEST = ,F8.5)
       ENC
```

SIBFIC FASEB

```
SUPROUTINE FNSTRH (K)
·C
Ċ
      FINAL STRAIGHT SEGMENT ON THE HUB AND SHROUD
τ
      CCMMON /MAIN/ XIN(10), YIN(10), DELSMX, PIG2, DELS1, IHUB
      CCMMEN /FOR3SS/ I,DELS,XBK(2C),YBK(2O),XCN(5GO),YON(5GO),DYDXO(5GO
     1), ALPHA(5CG), CAPPA(5GO), SON(5OO), PTO180
      CCMMCN /SS/ NBDY1, NBCDY2, TYPEDY, NBCYS
      CCMMON /FNST/ NFIRST
      NF IRST=K
      DS=DELS1
      DEL SITR = DEL SMX
      YTEST=YIN(2)-YIN(1)
      XTEST=XIN(2)-XIN(1)
      ASICN=1.(
      IF (XTEST.LT.0.0) ASIGN=-1.0
      ISTAR=0
      SSEG=SQRT(XTEST**2+YTEST**2)
      IF ("XTES1.EC.O.O) GO TO 2
      ·IF--(-Y-TES-1--EG--O-O-)--GC--TO--4
      DYEXC=YTEST/XTEST
      ALPHAC = ATAN (YTEST/XTEST)
      SINAL = SIN (ALPHAC)
      COSAL = COS (ALPHAC)
      GC TC 6
      CYCXC=SICK(99999.,YTEST)
2
      ALPHAC=SIGN(PIO2, YTEST)
      SINAL=1.C
      COSAL=0.0
      GO TO 6
      DYBXC=0.(
      ALPHAC=0.0
      SINAL=C.C
      COSAL=1.(
      DYDXC(K+1)=DYDXC
6
      ALPHA (K+1) = ALPHAC
      IF (DS.G1.CELSMX) GO TO 8
      GC TC 16
      IF (ISTAF.NE.O) GO TC-16
      DSLAST=DS
      XCN(K+1)=XCN(K)
      YON (K+1)=YON (K)
      ACCUNT=C
      XSAVE = XCh(K+1) - XIN(1)
10
      YSAVE=YON(K+1)-YIN(1)
      SSTAR=SCRT(XSAVE**2+YSAVE**2)
      ASTAR=(SSEG-SSTAR)/DELSTR
      ATEST=ASTAR-FLOAT(IFIX(ASTAR))
      IF (ATEST.GT..5) ASTAR=ASTAR+1.0
      NSTAR=IFIX(ASTAR)
```

```
DS=(SSEG-SSTAR)/FLOAT(NSTAR)
      ISTAR=1
      IF (DS.GT.DSLAST.CR.NSTAR.EQ.O) GC TO 12
        (ICOUNT.GT.O) K=K+1
      GC TC 16
12
      K=K-1
      IF (K.GT.NFIRST) GO TO 14
      K=NFIRST
      CALL STRAIT (K.C)
      K=K-1
      GC TC 18
14
      DSLAST = S(RT((XON(K-1)-XON(K))**2+(YON(K-1)-YON(K))**2)*1.2
      DELSTR=DSLAST
      ICCUNT=ICCUNT+1
      GC TC 10
16
      XON (K+1) = XCN (K) + ASIGN *DS *COSAL
      YON (K+1) = YON (K) + ASIGN *DS *SINAL
      SCN(K+1)=SCN(K)+SCRT((XON(K+1)-XON(K))**2+(YON(K+1)-YON(K))**2)
      CAPPA(K+1)=C.O
      IF (ABS()CN(K+1)-XIN(2)).LE..OS1*DS.AND.XTEST.NE.O.G) GO TO 18
      IF (ABS(YCN(K+1)-YIN(2)).LE..OO1*DS.AND.XTEST.EQ.O.C) GO TO 18
      K=K+1
      IF (ISTAF.EG.O) DS=DS+1.2
      GC 10 6
18
      DELS1=DELS
      XCN(K+1)=XIN(2)
      YCN(K+1)=YIN(2)
      NECY1=K+1
      K=K41
      DC 2C KAL=NFIRST,K
20
      ALPHA(KAL)=ALPHA(KAL)/PIC180
      RETURN
      ENC
```

```
SIBFIC FRETS
      SUPPOUTINE FRSTSH (K)
C
      FIRST STRAIGHT SEGMENT SHROUG
C
C
      IF THERE IS NO HUB INTERCHANGE POINTS (X1, Y1) AND (X2, Y2).
C
              AND TREAT LIKE FINAL STRAIGHT SECTION ON THE HUB,
              THEN REVERSE XON AND YON ARRAYS
C
C
C
      COPPON /PAIN/ XIN(10), YIN(10), DELSPX, PIG2, DELS1, IHUB
      COMMON /FOR3SS/ I,DELS,XBK(2G),YBK(2O),XGN(50O),YON(50O),DYDXO(50O
     1), ALPHA (5CC), CAPPA (5CO), SON (5OO), PIO180
      COMMON /59/ NBDY1.NBCDY2.TYPEDY.NBCYS
      COMMON /FRST/ NFIRST
      DIMENSION XA(2), YA(2), DSV(500), ASV(500), XSV(500), YSV(500), SS
     IN (SCC)
      SON(K)=C.C
      IF (IHUB.EC.1) GC TO 8
      DC 2 I=1.2
      XA^{-}(I^{-}) = XIA^{-}(I^{-})
      YA(I)=YIN(I)
      XIN(1)=XI(2)
      XIN(2)=XA(1)
      YIN(1)=Y#(2)
      YIN(2)=YA(1)
      NFE2=K
      YCM(K)=YIN(1)
      XGN(K) = XIN(1)
      CALL FNSTRF (K)
      KSV=K
      DO 4 I=NEB2,KSV
      KSB=KSV+1-I
      DSV(KSR)=DYDXO(I)
      ASV(KSR)=ALPHA(I)
      XSV(KSR)=XCN(I)
      YSV(KSR)=YCN(I)
      $$\(\)(K$R)=$C\((I)
      DC 6 I=NFB2.KSV
      DYEXE(I)=DSV(I)
      ALPHA(I)=ASV(I)
      XEN(I) = XSV(I)
      YON(I)=Y5V(I)
      SON(I)=SEV(I)'
      CAPPA(I)=C.O
      CCNTINUE
      DELS1=ABS(SCN(KSV)-SCN(KSV-1))
      NE E Y 1 = 0
```

FIF THERE IS A HUR, USE X VALUES FROM FINAL STRAIGHT

RETURN

```
C
           SECTION ON THE HUB FOR FIRST STRAIGHT SECTION ON
C
             SHECLD
C
8
      XTEST=XIN(1)-XIN(2)
      YTEST=YIN(1)-YIN(2)
      IF (XTES].EC.O.C) GO TO 10
      DYCXC=YTEST/XTEST
      ALPHAC=ATAN2(YTEST.XTEST)
      GC TC 12
      DYEXC#99999.
10
      ALPHAC=PIC2
12
      K=K-1
      NBCC=NBCY1 .
      IF (TYPBOY.EQ.3.G.ANC.NBDYS.EQ.3) NBCC=NBCCY2
      DC 18 I=NFIRST.NBDC
      KEEP=NBDC+NFIRST-I
      XCN(K+1)=XCN(KEEP)
      DYEXC:(K+1)=DYDXC
      ALPHA(K+1) = ALPHAC
      IF (I.EQ.NFIRST) GO TO 14
      ACN(K+1) = ACN(K) + (XON(K+1) - XON(K)) + CACXC
      SON(K+1)=SCN(K)+(XON(K)-XON(K+1))*COS(ALPHAC)
      GO TC 16
14
      YCN(K+1)=YIN(1)+(XON(K+1)-XIN(1))*CYCXC
16
      CAPPAKK+1)=C.G
      ALPHA(K+1)=ALPHA(K+1)/PIC180
      K=K#1
18
      CONTINUE
      DEUSI = SON (K) - SON (K-1)
      RETURN .
      END
```

SIBFTC LEFT SUBROUTINE LEM (K) ·C SLERGUTINE TO CALCULATE POINTS ON A LEMNISCATE COMMON /FCR3SS/ I\DELS,XBK(2C),YBK(20),XCN(500),YON(500),DYDXO(500 1), ALPHA(500), CAPPA(500), SON(500), PIO180 COMMON /SS/ NBDY1, NBCDY2, TYPEDY, NBCYS COMMON /MAIN/ XIN(10), YIN(10), DELSMX, PIO2, CELS1, IHUR DELSIN=DELSI K=K-1 KSTART=K DEES=DELS1 THETMX=A1AN (ABS((YIN(3)-YIN(2))/(XIN(3)-XIN(2)))) A=SCRT(((XIN(3)-XIN(2))++2+(YIN(3)-YIN(2))++2)/(2.0+SIN(2.0+THETMX 1111 KCUNT=0 4F (YIN(1).EQ.YIN(2)) GO TO 10 IF '(XIN(1).EQ.XIN(2)) GO TO 2 SLCPE=(YIN(2)-YIN(1))/(XIN(2)-XIN(1)) ARCT = - TAN (SLOPE) GO TO 4 SLGPE = 95559. 2 ARCT =-PIC2 DO 6 IRO1=1.3 XN=XIN(IFCT) XIN(IROT) = XN*COS(AROT) - YIN(IROT) *SIN(AROT) YIN(IROT)=XN*SIN(AROT)+YIN(IROT)*COS(AROT) K=KSTART 1 C XCN (K+1)=XIN(2) YON:(K+1)=YIN(2) CAPPA(K+1)=0.0 DYEXCKK#11=0.0 ALPHAKK+1)=0.0 KCENT=KOUNT+1 DSSAVE=DELS DS=CELS DTHET=DS##2/A##2 THET=DTHET+.5 12 R= 4 * SQRT (2.0 * SIN (2.0 * THET)) DSCHEK=R*CCS(THET) IF (DSCHEK.GT.1.1*DS) GO TO 14 IF (DSCHEK.LT..9*DS) GO TO 16 DEL S=DS

GG TG 18

GC TC 12

GC T0 12 K=K€1

14

16

18

20

THET=THET-.Q2≠DTHET

THET=THET+.02*DTHET

R= 4 * SQRT (2.0 * SIN (2.0 * THET))

```
XON:(K+1)=XIN(2)-R*COS(THET)
      YON (K+1)=YIN(2)+R*SIN(THET)
       SGN(K+1)=SCN(K)+SQRT((XGN(K+1)-XGN(K))**2+(YGN(K+1)-YGN(K))**2)
       IF (ABS(SON(K+1)-SON(K)).GT.1.05*DS) GO TO 22
         "(ABS(50N(K+1)-S0N(K)).LT..95+DS) GO TO 24
       GC TC 26
22
       THET=THET-.C2*DTHET
       GC 10 20
24
       THET=THET+.02*DTHET
       GC TC 20
26
       DYBXE(K+1) = -TAN(3.0 * THET)
       ALPHAKK+1)=-3.C*THET
       CAPPA(K+1)=3.0*SCRT(SIN(2.0*THET)/2.0)/A
       DS=BELS/SQRT(1.Q+ABS(CAPPA(K+1)))
       IF (ABS(GS-DSSAVE).GT..25*DSSAVE) DS-DSSAVE+SIGN(.25*DSSAVE,DS-DSS
      1AVE)
       DSSAVE=DS
       DTFET=DS*SCRT(SIN(2.0*THET)/2.0)/A
       #HET=THET+CTHET
       IF (THET.LE.THETMX) GO TO 18
       IE ((KOUN1.GT.5C) GO TO:36
       DSTEST={(XEN(K+1)-XIN(3))**2+(YEN(K+1)-YIN(3))**2)***5
       IF (CSTEST.GT.DS) GO TO 34
          (CSTEST.LT..OGO1*CS) GO TO 28
      IF (DSTEST-.5*DS) 32,32,30
       YON (K+1) = YIN (3)
28
       XGN:(K+1)=XIN(3)
       GC 1C 36
 30
       DELS=DELS-CSTEST/FLOAT(K+1-KSTART)
       GC TC 8
       DELS=DELS+CSTEST/FLOAT(K+1-KSTART)
32
       GC TC 8
       DELS=.8*CELS
. 34
       GC TC 8
36
       DELS1=DS*1.2
       IF (DELSI-GT.DELS) DELSI=DELS
       WRITE (6,44) KOUNT, THETMX, A
       WRITE (6,46) DELSIN, CELS, DELSI, DSTEST
       KENC=K+1
       KSTART=KSTART+1
       IF (YIN(2).EQ.YIN(1)) GO TO 40
       DC 38 KRCT=KSTART.KEND
       XN = XCN(KRCT)
       XCN (MROT) = XN*COS (AROT) + YON (KROT) *SIN (AROT)
       YON (KROT) = YON (KROT) *COS (AROT) -XN*SIN (AROT)
       ALPHAI(KRCT) = ALPHA (KRCT) - AROT
       DYGXE((KRCT)=TAN(ALPHA(KROT))
38
       CONTINUE
       DG 42 KAL=KSTART, KEND
 40
       ALPHA(KAL)=ALPHA(KAL)/PIC180
 42
       RETURN
X.
       FORMAT (3X,13,2X,13HITERATIONS---,3X,13HTHETMXCALC = ,F10.5,3X,8HA
      1CALC = .F1G.5)
       FORMAT (2x,10)
      1F8.593X,9HDSTEST = ,F8.51
       ENC
```

SIBFIC ELLIPS SUBROUTINE ELIPSE (K) Ċ THIS SUBROLTINE FITS A SEGMENT OF AN ELLIPSE TO TWO ARBITRARILY C CRIENTED STRAIGHT LINES NOT MCRE THAN 90 DEGREES APART COMMON /MAIN/ XIN(10), YIN(10), DELSMX, PIO2, DELS1, IHU8 COMMON /FOR3SS/ I,DELS,XBK(20),YBK(20),XCN(500),YON(500),DYDXO(500 11, ALPHA (5CC), CAPPA (5CO), SON (500), PIO180 CCMMON /SS/ NBDY1; NBCDY2, TYPEDY, NBDYS X C TRANSLATE INPUT BREAK POINTS SO THAT POINT NO. 2 BECOMES C THE OFIGIN ·C CELSIN=CELSI KOUNT=C DELS#DELS1 P1=3.141592653 K=K-1 KSTART=K X2=XIN(2) 42=YIN(2) DO 2 I=1.4 XIN(I) = XIN(I) - X22 YIN(I)=YIN(I)-Y2K. ROTATE THE TRANSLATED BREAK FOINTS SO THAT THE SLOPE OF THE C C FIRST STRAIGHT LINE IS ZERO IF (XIN(2).NE.XIN(1)) GO TO 4 SLCPE=95555. PHI==PIG2 IF (YIN(1).GT.YIN(2)) PHI=PIC2 GC TC 6 SLGPE = (YIN(2) - YIN(1))/(XIN(2) - XIN(1))PHIMATAN(SLOPE) IF (XIN(1).LT.XIN(2)) PHI=PI+ATAN(SLOPE) DC 8 I=1,4 XA=XIN(I) XIN(I)=XA*CCS(PHI)+YIN(I)*SIN(PHI)YIN(I)=->A*SIN(PHI)+YIN(I)*CCS(PHI) 8 C C DETERMINE THE ELLIPSE C IF (XIN(4).NE.XIN(3)) GO TO 10 B=YIN(3) A=ABSIXIN(3)) PHIME=PIC2

SLCP2=(YIN(4)-YIN(3))/(XIN(4)-XIN(3))

IF (SUOP2.LE.2.0*YIN(3)/XIN(3)) GO TO 52

GC TC 12

```
C3=XIN(3) + SLOP2/YIN(3)
      PHIAE=2.(*ATAN(SQRT((C3-2.0)/C3))
      A=-XIN(2)/SIN(PHIAB)
      B=YIN(3)/(1.0-COS(PHIAB))
      THETMX=PHIAB-PIO2
12
      THINXD=THEIMX/PIG180
      WRITE (6,54) A,B,XIN(1),YIN(1),PHI,THTMXC
Ċ
C
      INITIALIZE THE FIRST POINT ON THE ELLIPSE
C
14
      K=KSTART
      XEN(K+1)=XIN(2)
      YCN(K+1)=YIN(2)
      CAFPA(K+1)=-B/(A**2)
      ALPHAKK+1)=C.O
      DYDXCKK+11=0.0
      KCLNT=KCUNT+1
      THET=-PIC2
      DSSAVE=DELS
      DS=CELS/(1.C+.2*TANH(ABS(CAPPA(I))))
      DTHET=DS/ABS(A)
      THET=THE1+CTHET
C
C
      GENERATE THE POINTS ON THE ELLIPSE
C
16
      K=K-1
      XCN(K+1)=-A+COS(THET)
18
      YCN(K+1) = B + (1.0+SIN(THET))
      SCN(K+1)=SCN(K)+SCRT((XON(K+1)-XON(K))**2+(YON(K+1)-YON(K))**2)
      TF (ABS(SCN(K+1)-SCN(K)).GT.1.05*DS) GO TO 20
      IF (ABS(SCN(K+1)-SON(K)).LT..95*DS) GO TO 22
      GC TC 24
20
      THET=THET-.02*DTHET
      GC TC 18
      THET=THE1+.02*DTHET
22
      GC TC 18
24
      IF (THET.EC.C.O) GO TO 26
      DYEXC(K+1) = B * CCTAN(THET)/A
      ALPHAKK+1) = ATAN (DYDXC (K+1))
      GC 1C 28
26
      DYEXC(K#1)=99999.
      ALPHAKK+1)=PIO2
28
      CΔPPA:(K+1)=-Δ*B/(B*B*COS(THET)**2+Δ*Δ*SIN(THET)**2)**1.5
      DS=DELS/(1.0+.2*TANH(ABS(CAPPA(I))))
      IF (ABS(ES-DELS).GT..20*DELS) DS=DELS+SIGN(.20*DELS, OS-DELS)
      DSSAVE=DS
      DTHET=DS/SCRT(B*R*COS(THET)**2+A*A*SIN(THET)**2)
3C
      DIS=DIHE1
      THET=THET#CTHET/2.0
      DTFET=DS/SCRT(B*B*COS(THET)**2+A*A*SIN(TFET)**2)
      IF (ABS(OTHET-DTS).LT..OO1*DTS) GD TO 32
         10 30
      GC
32
         -(THET.LE.THETMX-DTHET/2.0) GO TO 16
      IF (KOUNT.GT.100) GO TO 44
      DELSS=DELS
      DSTEST=((XCN(K+1)-XIN(3))**2+(YON(K+1)-YIN(3))**2)**.5
```

```
AF (ABS(DS-DSTEST).LT..O1*DS) GO TO 34
      IF (CSTEST.GT.DS) GO TO 42.
      IF (CSTEST-LT.. 01*DS) GO TO 36
      IF (CSTEST-.5*DS) 40,34,38
34
      K=H#1
36
      XON(K+1)=XIN(3)
      YCN(K+1)=YIN(3)
      GC TC 44
38
      DELS=(FLCAT(K+1-KSTART)*DELS+DSTEST)/FLCAT(K+2-KSTART)
      IF MKOUNT.GE.10) DELS=(DELS+DELSS)/2.0
      GC TC 14
40
      DELS=DELS+DSTEST/FLOAT(K+2-KSTART)
      IF (KOUNT.GE.10) DELS=(DELS+CELSS)/2.0
      GC TC 14
42
      DELS=.8*CELS
      GC 10 14
44
      DEL$1=DS*1.2
      IF (DELSI.GT.DELS) DELS1=DELS
      WRITE (6,56) KOUNT
      WRITE (6,60) DELSIN, DELS, DELSI, DSTEST
      KENC=K+1
      DERUG (XCh(I), YCh(I), I=KSTART, KEND), PHI
      KSTART=KSTART+1
C
      RCTATE AND TRANSLATE BACK
C
      DO SC KRET=KSTART.KEND
      XA=XEN(KRCT)
      XON(KROT)=XA*COS(PHI)-YON(KRCT)*SIN(PHI)+X2
      YON(KROT)=XA+SIN(PHI)+YON(KRCT)+COS(PHI)+Y2
      ALPHAKKRCT)=ALPHAKKRCT)+PHI
      IF (ALPHA(KROT).EQ.PIC2) GO TO 46
      DYDXC (KRCT) = TAN(ALPHA(KRCT))
      GC 10 48
46
      DYBXO(KRET) #99999.
48
      ALPHA(KRCT)=ALPHA(KRCT)/PIO180
5 C
      CONTINUE
      RETURN
52
      WRITE (6,58) SLOP2, XIN(3), YIN(3)
      STCP
C
C
      FORMAT (1HC,10X,4HA =,1PE10.3,5X,4HB = ,1PE10.3,5X,5HXO = ,1PE1G.
54
                 = .1PE10.3/9X.7HPHI = .1PE10.3.5X.9HTHETMX = .1PE1C.3
     13,5%,7HYC
      FORMAT (11x,13,2x,13HITERATIONS---)
56
      FORMAT (1HC, 10X, 42HCCMBINATION OF SLOPE, X , Y NOT COMPATIBLE/5X,9
58
     1HSLOPE2 = ,F7.3,3X,9HXIN(3) = ,F7.3,3X,9HYIN(3) = ,F7.3)
      FORMAT (11x,10HDELS IN = ,F8.5,3x,7HDELS = ,F8.5,3x,11HDELS OUT =
6C -
     1., FE.5.3X.9HDSTEST = .F8.5)
      ENC
```

SIBFIC PRLPS

ENC

```
SUBROUTINE PRELPS (KODE, KAT, IA, K1, K2)
      COMMON /MAIN/ XIN(10), YIN(10), DELSMX, PIO2, DELS1, IHUB
      @@MM@N /F@R3SS/ I;DELS,XBK(20),YBK(20),XCN(50@),YON(50@),DYDXO(500
     1),ALPHA(500),CAPPA(500),SON(500),PIO180
      COMMON /SPREP/ KPREP
      KPREP=1.
      AF (KAT.EQ.1) GO TO 20
      KIC=KODE
      X1 = XIN(1)
      Y1 = YIN(1)
      IF (IA.EC.5) GO TO 2
      XC= X:IN (4)
      YC = Y IN (4)
      GC TC 4
      XC=XIN(5)
2
      YC=YIN(5)
      DO 14 IB=1,IA
      GO TO (6,8,10,12,8,12),KODE
É
      YIN(IB)=\IN(IA)-(YIN(IB)-YIN(IA))
      GC TC 14
8
      XIN(IB)=\Im IN(1)-(XIN(IB)-XIN(1))
      GC TC 14
      YIN:(IB)=YIN(1)-(YIN(IB)-YIN(1))
10
      GC TC 14
      XIN(IB) = XIN(IA) - (XIN(IB) - XIN(IA))
12
14
      CONTINUE
      DEBUG(XIN(II,I=1,IA),(YIN(I),I=1,IA),KODE
      IF (KODE.EC.5) GC TO 16
         (KODE.EC.6) GO TO 18
      4F
      RETURN
16
      KCCE = 1
      GC TC 4
18
      KODE = 3.
      GC TC 4
20
      DO 32 IB=K1,K2
      GO TO (22,24,26,28,22,26),KID
22
      YON(IB)=YC-(YON(IB)-YC)
      GO TO 30
      XON(IB)= > 1-(XON(IB)- \times 1)
24
      GO TO 30
26
      YCM(IB)=Y1-(YON(IB)-Y1)
      GC TC 30
      XCN(IB)=>C-(XON(IB)-XC)
28
       DYEXE(IB)=-DYDXG(IB)
30
32
       CONTINUE
      DEPUG( XON(I), I=K1, K2), (YON(I), I=K1, K2), KID, K1, K2
      IF (KID.EQ.5) GO TO 34
      IF (KID.EQ.6) GO TO 36
      RETURN
34
      MIC=2
      GO TO 20
36
      KIC=4
      GO 10 20
```

```
SIBFIC TEST.
      SUBROUTINE TEST (IA).
      COMMON /MAIN/ XIN(10), YIN(10), DELSMX, PIG2, CELS1, IHUR
      COMMON /FOR355/ I,DELS,XBK(20),YBK(20),XCN(500),YON(500),DYDXO(500
     1),AtPHA(5(6),CAPPA(500),SON(500),P10180
      COMMON /SPREP/ KPREP
      M = I A - 1
      4F (XIN(2).EQ.XIN(1)) GO TO 2
      SLP1=(YIN(2)-YIN(1))/(XIN(2)-XIN(1))
      GC 10 4
      SLP1=99595.
2
      #F (YIN(2).GT.YIN(M).AND.XIN(2).LT.XIN(M)) GO TO 10
      IF (XIN(1).EQ.XIN(M)) GO TO 6
      SLP2=(YIA(F)-YIN(1))/(XIN(M)-XIN(1))
      ·GC 1C 8
6
      SLF2=99595.
ĸ
C
      ROTATION ONLY
C
18
     IF (SUP1.G1.SLP2) RETURN
C
IC.
      MIRROR INTO XIN(1)
C
10
      CALL PRELPS (2.0.IA)
      RETURN
      END
WIBFIC SMIR
                DECK , LIST
      SUBROUTINE MIRROR (K.YCL)
C
ĸ
      THIS SUBROUTINE MIRRORS THE HUB TO OBTAIN THE POINTS ON SHROUD
C
              USED FOR 22Y
                                   2-D INLETS
C
      COMMON /FOR355/ I,DELS,XBK(20),YBK(20),XCN(500),YON(500),DYDXO(500
     11, AUPHA(500), CAPPA(500), SON(500), PIC180
      CCPMCN /95/ NBDY1, NBCDY2, TYPEDY, NBCYS
      DO 2 J=1,NEGY1
      K=K+1
      ISTAR=1+2+NBDY1-K
      XCN(K) = XCN(ISTAR)
      YCN(k)=2.0+YCL-YEN(ISTAR)
      CAFPA(K) = -CAPPA(ISTAR)
      DYCXC(K) =-CYDXC(ISTAR)
      ALPHAKK)=-ALPHA(ISTAR)
      SCN(K)=SCN(ISTAR)
:2
      CONTINUE
      WRITE (6,4) YCL
      RETURN
C
      FORMAT (23HHUB MIRRORED INTO Y CENTERLINE = , F8.3)
```

ENC

SIBFIC SINTP

```
SUBROUTINE SINTP (Z.W.N.X1,Y1)
      DIMENSION X(200), Y(200), Z(200), W(200)
      00 2 T=1.N
      X(I)=Z(I)
2
      Y(I)=W(I)
      CALL SORTXY (X',Y,N)
C
      DC 4 I=1,N
      K = I
      IF (X1.G1.X(I)) GC TC 4
      #F" (X1.E(.X(I)) GO TE 6
      IF (X1.L1.X(I)) GO TC 8
      CONTINUE
      Y1=Y(K)
6
      GC 10 16
8
      IF (K.EC.1) GO TC 12
      IF (K.EC.N) K=N-1
      W1 = (X1-X(K)) + (X1-X(K+1))/(X(K-1)-X(K))/(X(K-1)-X(K+1))
      ₩2=(X1-X(K-1))*(X1-X(K+1))/(X(K)-X(K-1))/(X(K)-X(K+1))
      W3=(X1-X(K-1))*(X1-X(K))/(X(K+1)-X(K-1))/(X(K+1)-X(K))
      Y1=Y(K-1)+k1+Y(K)+W2+Y(K+1)+k3
10
      RETURN
      Y1=C.0
12
      RETURN
      ENC
```

\$ IBF1C SPRCRC

```
SUBROUTINE SUPERC (XERK, YBRK, ENREED, DELSI, ISTART)
      EIMENSION XBRK(5), YBRK(5), XBK1(12), YBK1(12)
      EQUIVALENCE (N.EN)
      REAL LOGYCA, LÓGYCB, N
      CCMMON /SUPF/ IFLD
      CCMMCN /FOR3SS/ I,DELS,XBK(20),YBK(20),XGN(500),YGN(500),DYDXO(500
     1), ALPHA(500), CAPPA(500), SON(500), PIO180
      COMMON /SUPN/ XOA, YOR, LOGXOA, LOGYOR
      CCMMON /NHIGH/ NSPHG, NLAST, XLAST (500), YLAST (500)
      COMMON /SPREP/ KPREP
      IPI=C
      PI=3.14159265
      IF (IFLD.EC.1) DELSHL=DELS1
      DELSIN=DELSI
      DELS2=DELS1
      KCUNT=0
2
      11'= ISTART
      IF (IFLD.GE.1) DS=DELS2
      KOUNT=KOUNT+1
      I=ISTART
      X41=XBRK(4)
      441=4BRK(4)
      DC 4 J=1,5
      XEK1 (U+7) = XERK(J)
      YBK1.(J+7)=YBRK(J)
      CONTINUE
      CERUG(XBK1(J) + YBK1(J) + J=8,12)
      IF (XBK1(9).NE.XBK1(8)) GO TC 8
      IF (YBK1(8).LT.YBK1(9)) GO TC 6
      SLEP=99555.
      SINATD=1.0
      SLCPE=99999.
      ATEYBD=9(.
      COSAID=0.0
      GO TO 14
      SLCP=-99999.
6
      SINATD=-1.C
      SLCPE =- 99999.
      ATBYCD=-90.
      COSATD=G.C
      GC TC 14
8
      SLEP=(YBM1(9)-YBK1(8))/(XBK1(9)-XBK1(8))
      SLCPE=ATAN(SLOP)
      ATCYCD=SLCPE/PIC180
      IF (XBK1(8)-XBK1(9)) 10,12,12
      SLCPE=PI4SLOPE
10
      ATCYCD=-ATCYDD
      IPI=1
      SINATD=SIN(SLOPE)
12
      CCSATD=CCS(SLOPE)
```

```
14
      CONTINUE
       XBK(E) = XEK1(8)
      YBK(8)=YEK1(8)
       DC 16 J=9,12
       XP = XEK1(J) - XBK1(E)
       YP=YEK1(J)-YBK1(8)
       XBK(J)=XEK1(8)+XP*COSATD+YP*SINATD
       YBK(J)=YEK1(8)-XP*SINATD+YP*COSATD
16
       CONTINUE
      XBK(5)=XEK(8)
      YBK (5) = YBK (8)
       XBK(6) = XEK(9)
      YEK (6) = YEK (9)
       XEK (9) = XEK (10)
       YBK(9)=YEK(10)
       DELS=DELSI
       DSSAVE=DELS
       XTM=XBK1(9)
       YTM=YBK1(9)
       B=YEK(11)-YEK(6)
      MCMEGA = (XBK(12) - XBK(11)) / (YBK(12) - YBK(11))
      HF (ABS(1CMEGA).LE..COO1) TOMEGA=O.
      EMEGA=ATAN (TOMEGA)
      XC = XBK (6)+B + TOMEGA
      MC=YBK(11)
      4=xC-X8K(11)
       XIS = XO - XEK(S)
       ETAS=YC-YBK(9)
       Y=ETA9
      X=XI9-ETAS*TOMEGA
       BCA=E/A
       IF (ENREED) 18,18,20
18
      XCA=X/A
      YCE=Y/B
      LOCKOA=ALOG(XOA)
      LOGYOB = ALOG (YOB)
      CALL FONISC (EN)
       GC TC 22
-20
       EN=ENREED
      BCATON=BCA**EN
22
      HF (KOUNT.NE.T) GC TC 24
      WRITE (6,114) EN,A,B,XO,YO, CMEGA
:24
      I = I_{i}
       ILG = I
       XER(I) = XER(II)
       CICN=1./EN
       BT=E + TOMEGA
       DX1=DELS*COSATD
       XP=XTM-XEK1(8)
       YP=YTM-YEK1(8)
       XIIROT=XEK1(8)+XP*COSATD+YP*SINATD
       XI=XC-XIIRGT
       Y=YC-YBK(6)
       X=XI-Y+TCMEGA-
      IF (X.LT.C.C) X=G.G
       DSM = SON(1) - SON(I-1)
```

```
24
      XCATEN=()/A)++N
      YCRION=(Y/P)**N
      XNMCAN=X++(N-1.)/A++N
      YNMCBN=Y**(N-1.)/B**N
      FOFY=XOAION+YOBTON-1.
      AF (ABS(FOFY).LE.1.0E-5) GO TO 28
      FPCFY=EN*(YNKOBN-XNKCAN*TOMEGA)
      YNEW=Y-FCFY/FPOFY
      GC 10 30
2 E
      YNEWEY
30
      IF (ABS(Y-YNEW)/YNEW-.1E-4) 34,34,32
3 2
      Y=YNEW
      X=XI-Y+TEMEGA
      GC TC 26
34
      N=YNEW
      X=XI-Y*TCMEGA
36
      ETA=Y
      DELS=DELS2
      IPN=I
      #F (X.LT.0.0) X=0.0
      XCANP1=(X/A)**(EN-1.)
      YCENM1=(Y/8)**(EN-1.)
      F1=XCANM1/A
      F2=YCBNM1/E
      F3=TCMEG4*F1
      IF (X.EQ.O.C) GO TO 38
      F10x=x++(EN-2.)/A++EN
      GC 10 40
38
        (EN.EC.2.) F1CX=1.0/(A*A)
        (EN.G1.2.) F1GX=0.0
4 C
        (Y.EQ.Q.Q) GO TO 42
      F2CY=Y**(EN-2.)/B**EN
42
      DEN=F2-F3
      IF (CEN.NE.C.O) GO TC 44
      DETEXI = 99999.
      GO TO 46
44
      DETCXI=-F1/DEN
46
      DYEXC (IPN) = CETDXI
      C1MEPT=1.-DETDXI*TOMEGA
      #F ((X.EC.C.O.OR.Y.EC.J.G).AND.EN.LT.2.) GO TO 48
      G1=(EN-1.)*F10X*C1MEPT
      SANC1=DEN*G1
      SANC2=F1*((EN-1.)*F2CY*DETDXI-G1*TOMEGA)
      BKT=(1.+CETCXI**2)**1.5
      CAPPA(IPA)=(SAND2-SAND1)/DEN##2/EKT
      GC 1C 50
48
      CAPPA(IPN)=59999.
5 C
      ALPHA(IPN) = ATAN(DYDXC(IPN))/PIO180
      XCN(IPN)=XC-XI
      YON (IPN L= YO-ETA
      DY1=DELS#SINATD
      IF (IFLD.GE.1) GO TO 52
      DS=DELS/(1.04.20*TANH(ABS(CAPPA(I))))
      GC TC 56
52
      IF (IFLC.GT.1) GC TO 54
      DS=CS-.05*D'S
```

```
GO TO 58
      DS=CS
      IF (CS.G1.CELSHL) DS=DELSHL
      GC TC 58
      4F (ABS(CS-DELS).GT..20*DELS) DS=DELS+SIGN(.20*DELS,DS-DELS)
56
      HF (CS.L1..50*DELS2) DS=.50*CELS2
58
      IF (NSPHC.EC.O) GO TO 60
      DX1=ABS()LAST(NLAST)-XLAST(NLAST-1))
      DX11=DX1
      DY1=ABS(YLAST(NLAST)-YLAST(NLAST-1))
      NLAST=NLAST-1
      IF (ABS(BETBXI)-1.) 70,70,62
      DY1=DS/SCRT(1.+1./DETDXI **2)
62
      IF (NSPHG.NE.O) DYISCX1
64
      ALM=ADV(1) LADAT
      IF (YTM-YBK(11)) 66.86.86
      ETA=YO-YTM
      Y=ETA
C,
      STRAIGHT SECTION BETWEEN POINTS 11 AND 12 MUST HAVE, SLOPE ABOVE 1
Ľ
C
      X MAY NOT BE TESTED AGAINST XBK(11)
Cć
      X=44(1.-(Y/8)##N)##C10N
      XI=X &Y*TCFEGA
      X T M = X O - X 1
      DX1=XTM->CN(I)
      DELTAS=SCRT(DY1*+2+DX1*+2)\
      IF '(DELTAS.GT.1.02*DS.AND.IPN.NE.1.AND.NSPHG.EQ.C) GD TO 68
      GO TO 86
      DY1=CS*CY1/CELTAS
      GC TC 64
70
      DX1=DS/SCRT(1.+DETDXI++2)
      IF (NSPHG.NE.O) DX1=CYL
      IF (NSPHC.NE.O.AND.IFI.EG.1) DX1=DX11
72
      XTF=XON(1)+SIGN(DX1.CETDXI)
      IF (CETO) I.EQ.G.) XTM=XON(I)-DX1
      AFX-DX=IX
      Y=YC-YON(I)
      X=XI-Y+TCMEGA
      IF (X.LT.0.0) X=0.0
      XCATON=()/A)**N
      XNFCAN=X++(N-1.)/A++N
      YNMCBN=Y**(N-1.)/B**N
      YORTON=(Y/B)**N
      FOFY=XOA1ON+YOBTON-1.
      IF (ABS(FCFY).LE.1.0E-5) GO TO 76
      FPGFY=EN* (YNMOBN-XNMCAN*TOMEGA)
      YNEW=Y-FOFY/FPOFY
      GC: 10.78
76
      YNEK=Y
78
      IF (ABS(Y-YNEW)/YNEW-.1E-4) 82,82,80
80
      Y=YNEW
      GC 110 74
82
      Y=YNEW
```

```
X=XI-Y*TEMEGA
      Y-DY=MIY
       XI = X * Y * TC FEGA
       DYI=YTM-YON(I-1)
C
       DY1=YTM-YCK(I)
      DELTAS=SCRT(DY1**2+DX1**2)
      IF (DELTAS.GT.1.G2*DS.AND.IPN.NE.1.AND.NSPHG.EQ.G) GC TO 84.
      GC 1C 86
284
      DX1=DS*D)1/DELTAS
      GC TC 72
98
       SON(I) = SON(I-1) + DSM
       DSM=CS
      IF (NSPHE.NE.O) DS=DX1
       IF (ABS()TM-YBK(11)).LT..001*DS) GC TO 90
      iI = I + 1
      IF (YTM-YBK(11)) 36.88,88
      31H I=1-1
88 .
      GO TO 92
90
      I = I + I
      \mathbf{d} = \mathbf{I} + \mathbf{I}
      XTM=X8K(11)
92
       DG 108 J=ILC.IHI
       XP = XON(J) - XBK1(8)
       YP=YCN(J)-YBK1(8)
       XCN(J)=XEK1(8)+XP*COSATD-YP*SINATD
       YON(J)=YEK1(8)+XP+SINATD+YP+COSATD
      DEL22=DELS2
      IF (J.NE.IHI) GO TO 104
      DSTEST=((XCN(IHI)-X4T)**2+(YCN(IHI)-Y4T)**2)**.5
      IF AMOUNT.GT.150) GO TO 104
      IF (ABS(ES-DSTEST).LT..1*DS) GO TO 94
         (CSTEST.LT..01*DS) GO TO 96
         (IHI.EQ.ILO) GC TC 102
      IF (ABS(CELS2-DSTEST).LT..OO1*DS) GO TO 100
      dF (DSTEST.LT..5*DS) GO TO 100
      IF (CSTEST.GT..5+DS) GO TO 98
      HHI=IHI &I
      FI = I €1
      SON(IHI) = SCN(IHI-1)+CSTEST
96
      XCN(IH1)= X4T
      YON (IHI)=Y4T
      GO TO 104
98
      DELS2=(FLCAT(IHI-ILO)*DELS2*CSTEST)/FLOAT(IHI+1-ILO)
      IF (KOUN1.GE.10) DELS2=(DELS2+DEL22)/2.0
      H = I + G + 1
      GC TC 2
100
      DELS2=DELS2+DSTEST/FLOAT(IHI-ILO)
      4F (KOUN1.GE.10) DELS2=(DELS2+DEL22)/2.0
      H = ILC-1
      GO TO 2
      DELS2=.8*DELS2
1C2
      I = IL G-1
      GC TC 2
104
       ALPHAK J) = ALPHA (J) - ATC YOU
      IF (ABS(ABS(ALPHA(J))-90.).LE.1.0E-4) GO TO 106
       DYEXCHJ)=TAN(ALPHA(J)*PIC180)
```

```
GO TO 108
106
       DYEXU(J)=SIGN1999.,ALPHA(J))
108
       CONTINUE
       #IF (KOUN1.GT.150) WRITE (6,116) (XBRK(I),YBRK(I),I=1,5)
       DELSI-DS
      IF (IFLD.EG.O) DELS1=1.1*DS
       IF (DELS1.GT.DELS2) CELS1=DELS2
       GO 112 Jaile, THE
       IF (J.EQ.1) GO TC 110
       SON(J)=SON(J-1)+SQRT((XON(J)-XON(J-1))++2+(YON(J)-YON(J-
       GO 10 112
110
       90 N (J) = C. C
112
       CONTINUE
       WRITE (6,118) KOUNT
WRITE (6,120) DELSIN, DELS2, DELS1, DSTEST
       RETURN
ĭC
114
       FORMAT (1X/4X4HN = E16.8,4X4HA = E16.8,7X4HB = E16.8/3X5HXO = E16.
     18,3x5HYC = E16.8,3x8HCMEGA = E16.8/1x
116
      FORMAT (1HC.60HTHIS SET OF DATA EXCEEDED 150ITERATIONS CALCULATION
     18 STOPPEC/5X,4HXBRK,5X,4HYBRK/5X,1P10E10.3)
       FORMAT (1x,5x413,2x,13HITERATIONS---)
118
       FORMAT (\epsilon x, 10 \text{HDELS IN} = , \epsilon 8.5, 3x, 7 \text{HDELS} = , \epsilon 8.5, 3x, 11 \text{HDELS OUT} = ,
120
      1F8.5,3X,9HDSTEST = ,F8.5)
```

SIBFIC AREAA.

```
SUBROUTINE AREAS
      ECMMON /SS/ NBDY1.NBCDY2.TYPEDY.NBCYS
      CCMMON /FCR3SS/ 1,DELS,XBK(20),YBK(20),XCN(500),YDN(500),DYDXD(500
     11, ALPHA (5(C), CAPPA (500), SON (500), PIO180
      COMMON / NNSD/ NNSD, NSDBDY(10)
      DIMENSION JMAX(2C), JMIN(2O), YLS(2O), YHS(2O), AREAS(2O), YAR(2G)
      PI=3.14159265
     · NPP1=NBCY1+1
      DC 2 J=NPP1.NBODY2
      L=LL
      IF (XON(J).LT.XON(J+1)) GO TO 4
2
      CCNTINUE
      WRITE (6,26)
      IF (NNSD.EC.C) GC TO 14
XC
C
      SEARCH FOR MINIMUM AND MAXIMUM X ON EACH NSD (SPLITTER)
ĸ
      NE=NeODY2+1
      NE=NEODY2+NSDBDY(1)
      DC 12 I=1,NNSD
      XMIN=XON(NB)
      BA=(I)AIMU
      XMAX=XON(NE)
      UMAX(I)=NB
      NEM1=NE-1
      DO 10 JENB NEM1
      IF (XON(J).GT.XMAX) GO TO 6
      IF (XON(3).LT.XMIN) GO TO 8
      GC TC 10
      (L) 40X'='X 4MX'
      L=(I)XAMU
      GC 10 10
      XMIN=XON(J)
18
      UMIN'(I)=J
10
      CONTINUE
      NB'=NE+1
      NE=NE+INSCREY(I+1)
      WRITE (6.28) XMIN, XMAX, JMIN(I), JMAX(I)
12
      CONTINUE
      DC 24 J=NBP1.JJ
14
      :[ A = ]
      XALE SINTP (XON, YEN, NBDY1, XON(J), YAR(IA))
      HF (NNSD.EC.O) GG TO 18
      JEND=NBOCY2
      DC 16 I=1,NNSD
      (IIIMINL=IMU
      (I)XAML=AMU
      JEND=NSDEDY(I)+JEND
      #IF (XON(J).GT.XON(JMA).OR.XON(J).LT.XON(JMI)) GO TO 16
      IA = IA + 1
```

```
((All SINTP (AML), YANGULAND, (AML), GAL) TANTS (IAL)
      1 A = 1 A +1
      CALL SINTP (XON(JMI), YON(JMI), JEND-JMI+1, XON(J), YAR(IA))
16
      CONTINUE
18
      IA= 1A+1
      MAR(IA)=YCN(J)
      IS=C
      AREA=O.C
      DC 2C I=1.IA.2
      IS = IS + 1
      AREAS(IS)=(YAR(I+1)**2-YAR(I)**2)*PI
      AREA=AREA+AREAS(IS)
20
      CCNTINUE
      AREAC=AREA+YAR(1)**2*PI
      IF (NNSC.EC.C) GC TO 22
      WRITE (6,3C) (AREAS(I), I=1, IS)
22
      WRITE (6.32) J.XCN(J), YON(J), YAR(1), AREA, AREAD
      WRITE (6,34)
24
      CONTINUE
      RETURN
XC.
26
      FORMAT (1H1//9X,1HI,14X,3HXON,18X,3HYON,19X,4HYONH,17X,4HAREA,14X,
     19HCISC AREA)
28
      FORMAT (1HC.5X,7HXMIN = ,1PE14.5,5X,7HXMAX = ,1PE14.5,5X,7HJMIN =
     1.16.5X.7FJMAX = .16)
3 C
      FORMAT (74%,1PE21.4)
      FORMAT: (EX, 13, 195621.4)
32
34
      FORMAT (1HC)
      ENC
SIBFTC NECRCL
      FIND N FCR THE SUPERCIRCLE F(N) = (X/A)**N + (Y/B)**N = 1
C.
      FREM X,Y,A,B
C
C
      SUPROUTINE FONISC (N)
      REAL LOGYCA, LOGYCB
      CCMMON /SUPN/ XOA4YOB, LOGXOA, LOGYOB
      REAL NM. NPPI.N
      DATA TOL/.1E-6/
      IF (ABS()CA-.5)-.5) 2,4,4
      IF (ABS(108-.5)-.5) 6,4,4
٠2
      WRITE (6,14) XOA, YOB
4
      NP = 1 .
E
      XCATON=X6A**NM
      YORTON=YEB**NM
      FORN=XOATON+YOBTON-1.
      FPCFN=XG&TCN*LOGXGA+YOBTON*LOGYGB
      NMP1=NM-FOFN/FPOFN
       #F (ABS(NM-NMP1)/NM-TOL) 12,10,10
      NY=NYP1
1 G
      60 10 8
1-2
      N=NMP1
      RETURN
C
      FORMAT (1X/1X-41HREQUESTED POINT IS OUTSIDE MAGIC TRIANGLE)
14
       ENC
```

C C C č C C C C € C C C C C C C C

C

C

SUBROLTINE SING

PLRPGSE

OBTAIN SOLUTION OF A SET OF SIMULTANEOUS LINEAR EQUATIONS, AX=8

LSAGE

CALL SIMC(A,B,A,KS) .

CESCRIPTION OF PARAMETERS

- A MATRIX OF COEFFICIENTS STORED COLUMNWISE. THESE ARE CESTROYED IN THE COMPUTATION. THE SIZE OF MATRIX A IS N BY N.
- B VECTOR OF CRIGINAL CONSTANTS (LENGTH N). THESE ARE REPLACED BY FINAL SOLUTION VALUES, VECTOR X.
- N NUMBER OF EQUATIONS AND VARIABLES. N MUST BE .GT. ONE.
- KS CUTPUT DIGIT
 - Q FOR A NORMAL SOLUTION
 - 1 FOR A SINGULAR SET OF EQUATIONS

REMARKS

MATRIX A MUST BE GENERAL.

IF MATRIX IS SINGULAR, SOLUTION VALUES ARE MEANINGLESS.

AN ALTERNATIVE SOLUTION MAY BE OBTAINED BY USING MATRIX
INVERSION (MINV) AND MATRIX PRODUCT (GMPRD).

SUBROLTINES AND FUNCTION SUBPROGRAMS REQUIRED NONE

METHOE

METHOD OF SCLUTION IS BY ELIMINATION USING LARGEST PIVOTAL DIVISOR. EACH STAGE OF ELIMINATION CONSISTS OF INTERCHANGING ROYS WHEN NECESSARY TO AVOID DIVISION BY ZERO OR SMALL ELEMENTS.

THE FCRWARD SOLUTION TO OBTAIN VARIABLE N IS DONE IN N STAGES. THE EACK SOLUTION FOR THE OTHER VARIABLES IS CALCULATED BY SUCCESSIVE SUBSTITUTIONS. FINAL SOLUTION VALUES ARE DEVELOPED IN VECTOR B, WITH VARIABLE 1 IN B(1), VARIABLE 2 IN E(2),...., VARIABLE N IN B(N). IF NO PIVOT CAN BE FOUND EXCEEDING A TOLERANCE OF O.O. THE MATRIX IS CONSIDERED SINGULAR AND KS IS SET TO 1. THIS TOLERANCE CAN BE MODIFIED BY REPLACING THE FIRST STATEMENT.

SUPPOUTINE SIMO (A,B,N,KS) DIMENSION A(1), B(1)

FORWARD SOLUTION

```
C
       TCL=0.0
       K S = C
      リリニーN
       DC 16 J=1.N
       JY=J+1
       I#M#LL=LU
       BIGA=0
       U-LL=TI
       CC 4 I=J.N
C
C
          SEARCH FOR MAXIMUM COEFFICIENT, IN COLUMN
C
       IJ=IT#I
       IF (ABS(EIGA)-ABS(A(IJ))) 2,4,4
2
       BIGA=A(IJ)
       I=XAMI:
4
       CONTINUE
C
C
          TEST FOR PIVOT LESS THAN TOLERANCE (SINGULAR MATRIX)
X
       IF (ABS(EIGA)-TCL) 6.6.8
       K S = 1
6
       RETURN
ĸ
ĸ
          INTERCHANGE RCWS IF NECESSARY
C
91
       11=J+N+(J-2)
      E-XAMI = TB
       CO 10 K=J,N
       41=11+N
      12=11+11
       SAVE=A(II)
       A(I1)=A(I2)
       A(I2)=SANE
K .
          CIVICE EQUATION BY LEADING COEFFICIENT
ĸ
10
      A(11)=A(11)/BIGA
      SAVE=B(IFAX)
      B(IMAX)=E(J)
      B(J)=SAVE/PIGA
C
X
          ELIMINATE NEXT VARIABLE
C
       4f (J-N) 12,18,12
12
      IGS=N*(J-1)
      DC 16 IX=JY,N
      XI+2DI=LXI
      XI-L-IF
      DC 14 JX=JY,N
      SIXUX=N*(UX-1)+IX
      TIPKUXI=KUU
14
      ((XLL)A*(LXI)A)-(XLXI)A=(XLXI)A
      B(IX)=B(IX)-(B(J)*A(IXJ))
16
ĸ
          PACK SCLUTION
IC.
X
31
      NY=N-1
      AT=N#N
      DC 2C J=1,NY
      I A'= I'I-J
                                                                            Q
      AB=N-J
      *I C,= V.
       DO 20 K=1.J
       B(IB)=B(IB)-A(IA)+B(IC)
       IA=IA-N
       IC = IC - 1
20
       RETURN
```

O

END

EOD

```
SIBFTC EOD
                 DECK
C*
                ** DOUGLAS NEUMANN POTENTIAL FLOW PROGRAM **
C
00000
                   CALCULATION OF POTENTIAL FLOW ABOUT BODIES OF
                   REVOLUTION HAVING FLOWS PARALLEL AND PERPENDICULAR
                   TO THE AXIS OF REVOLUTION.
                 * MAIN PROGRAM
        COMMON / NBSAVE / NBCLD. NIN
        NBCLD = 0
       COMMON
                                           , NB
                    HEDR(10)
                               , CASE
                                                       .NNU
      1
                                           ,FLG05
                   ,FLG03
                               ,FLG04
                                                       FLG06
                                                                   ,FLGO7
      2
                   ,FLG08
                               ,FLG09
                                           ,FLG10
                                                       ,FLG11
                                                                   ,FLG12
      3
                   FLG13
                               ,FLG14
                                           ,FLG15
                                                       •FLG16
                                                                   ,FLG17
      4
                   ,FLG18
                               .FLG19
                                           ,FLG20
                                                                   ,FLG22
                                                       •FLG21
      5
                   ,FLG23
                               ,FLG24
                                           FLG25
                                                       ,FLG26
                                                                   ,FLG27
       CCUBLE PRECISION
                          HEDR, CASE
       INTEGER
                                           ,FLG05
                    FLG03
                               ,FLG04
                                                       ,FLG06
                                                                   FLG07
                               ,FLG09
                                           ,FLG10
                                                                   ,FLG12
                   ,FLG08
                                                       •FLG11
      2
                   ,FLG13
                                           ,FLG15
                               ,FLG14
                                                       •FLG16
                                                                   ,FLG17
      3
                   ,FLG18
                               ,FLG19
                                           ,FLG20
                                                       •FLG21
                                                                   ,FLG22
                   ,FLG23
                               FLG24
                                           FLG25
                                                       FLG26
                                                                   •FLG27
       COMMON
                    NT
                               ,ND(11)
                                           , MN
                                                       ,NUNA(4)
                                                                   ,TYPEA(4)
      1
                   .NER1
                               .NER2
                                           , NMA
                                                       . NSIGA
                                                                   . NSIGC
                   , NUNC(4)
      2
                               .TYPEC(4)
                                           , NLF(11)
       CEMMON IEC, NSIGEC, TYPEEC(4), NUNEC(4)
       COMMON /P/ IPUVEL
       REAL
                    MN
C
       REWIND 13
   10 REWIND 12
       REWIND 4
       REWIND
       REWIND
       REWIND 9
       REWIND 10
       REWIND 11
        REWIND 15
        REWIND 16
       CALL PART1
C4** ***PRESCRIBED VORTICITY IMPLIES TRIANGULARIZATION METHOD OF MATRIX
C4** ***SOLUTION (SOLVIT)
       IF(FLG19.GT.O.OR.FLG13.GT.O)GO TO 30
   15 CALL PART2
       GC TO 40
   30 CALL PREP
   40 CALL PART4
      GC TO 10
      END
```

SIBFIC PCHI DECK

SUBROUTINE PUNCHC(R, J, LOC, CASE)
CIMENSION R(400)
RETURN

SIBFTC TIMEX DECK

SUBROUTINE TIMEV(T)
CALL TIME1(T)
T=T/3600.
RETURN
END

SIBFTC PCH DECK

SUBROUTINE PUNCHV(AP,J,L,LCC,CASE)
CIMENSIEN AP(500,4), T(500)
RETURN
END

```
SIBFTC PAT1 DECK
```

SUBROUTINE PARTI

```
C
                * CONTROL FOR BASIC DATA AND FORM MATRIX
C
C
       COMMON / NBSAVE /
                            NECLD, NIN
                                          , NB
                                                      • NNU
      COMMON
                   HEDR (10)
                              .CASE
                                          ,FLG05
                                                      FLG06
                                                                  •FLG07
     1
                  ,FLGO3
                              ,FLG04
     2
                                          ,FLG10
                                                      ,FLG11
                                                                  FLG12
                  ,FLG08
                              •FLG09
     3
                  ,FLG13
                              FLG14
                                          ,FLG15
                                                      FLG16
                                                                  ,FLG17
                  ,FLG18
                                          •FLG20
                                                      •FLG21
                                                                  •FLG22
                              •FLG19
                              ,FLG24
                                                      •FLG26
                                                                  FLG27
                  FLG23
                                          ,FLG25
      COUBLE PRECISION HEDR, CASE
      INTEGER
                              ,FLG04
                                          ,FLG05
                                                      FLG06
                                                                  ,FLG07
                   FLG03
                  FLG08
                             • ,FLG09
                                          ,FLG10
                                                      ,FLG11
                                                                  ,FLG12
                  ,FLG13
                              ,FLG14
                                          ,FLG15
                                                      ,FLG16
                                                                  FLG17
     2
     3
                                          ,FLG20
                                                      •FLG21
                                                                  ,FLG22
                  ,FLG18
                              FLG19
                                                      ,FLG26
                                                                  ,FLG27
                  , FLG23
                                          FLG25
                              FLG24
      COMMON
                   NT
                                                      , NUNA(4)
                                                                  ,TYPEA(4)
                              ,ND(11)
                                          , MN
                                                                  , NSIGC
                                          , NMA
                                                      , NSIGA
                  , NER1
                              ,NER2
                  , NUNC (4)
                              ,TYPEC(4)
                                          ,NLF(11)
      COMMON TEC, NSIGEC, TYPEEC(4), NUNEC(4)
      COMMON /P/ IPUVEL
      REAL
                   MN
C
      COMMON /CL/
                      X1(500),
                                Y1(500),
                                           X2(500),
                                                     · Y2(500),
                                                                 DELS(500),
                      SINA(500), COSA(500), XP(500),
                                                      YP (500)
                                                      TG (500) .
      COMMON /TL/
                      TX1(500), TY1(500), NG(500),
                                                                 ALFA(500),
                                                      SEQ2,
                      RSDS(500), CALF(500), SEQ1,
                                                                 NSEQ,
                                                      DUMMY(4915)
                      CHORD,
                                TEMP (600), TCNST,
      INTEGER
                   BDN
                               , SUBKS
                                          , SEQ1
                                                      • SEQ2
      REAL
                   MX
                               , MY
                                          , NG
C
C
                * START
                * READ INPUT CATA
      NSEC=0
  100 READ (5,4) HEDR, CASE, SEQ1, NB, NNU, FLGO3, FLGO4, FLGO5, FLGO6,
                  FLG07, FLG08, FLG09, FLG10, FLG11, FLG12, FLG13, FLG14,
     1
                  FLG15, FLG16, FLG17, FLG18, FLG19, FLG20, FLG21, FLG22,
     2
                  FLG23, FLG24, FLG25, FLG26, FLG27, IPUVEL, NIN, SEQ2
C+** ***TRIANGULARIZATION OF THE MATRIX (SOLVIT) IS THE DEFAULT SOLUTION
      IF(FLG09.EG.O.AND.FLG10.EQ.O)FLG13=1
       ***FLG22 IS GENERATED (RESEP) BOUNDARY CONDITIONS
C***
       ***FLG21 IS EXTRA CRCSS FLOW
C.*.**
    1 IF (FLG22.LE.0)GO TO 5
      FLG21 = 1
      FLGO3 = 1
      FEGO4 = 1
       ***IF FLAG 18 IS NOT EQUAL TO FLAG 14 YOU MUST USE DIRECT MATRIX
    5 IF (FLG18.NE.FLG14)GC TO 2
      IF (FLG21.LE.0)GO TO 3
      FLG12 = 1
    2 FLG13 = 1
      FLGO9 = 0
      FLG10 = 0
```

```
3 CONTINUE
    ASSIFIC NBOLD .EQ. 0 )
                                NBCLD = NB
『痛寒冬…寒々寒CARDS (UNIT 5) ARE THE DEFAULT METHOD OF INPUT
                             NIN = 5
       IF( NIN .EQ. 0 )
    4 FORMAT ( 10A6, 2X A6, 8X I4/ 28I1, I2, 46X, I4 )
      IF (SEQ2.GE.SEQ1) GO TO 120
  110 WRITE (6,6)
    6 FORMAT ( 1HO/38H DATA OUT OF SEQUENCE * SORT ON 77-80 )
     STOP
  120 SEC1=SEQ2
     READ (5,8) CHORD, MN, TCNST, SEQ2
   48 FORMAT ( 3F10.0, 46X 14 )
C### ###THE DEFAULT CHORD LENGTH IS 1.0
   TECCHORD.GT.-1.0E-5.AND.CHORC.LT.1.0E-5)CHORD=1.0
   IF (SEQ2.LT.SEQ1) GO TO 110
    SEQ1=SEQ2
      WRITE (6,12) HEDR, CASE, NB, NNU, CHORD, MN, TCNST
   12 FORMAT ( 1H1 25X, 26HDOUGLAS AIRCRAFT COMPANY /
     1
              28X, 21HLONG
                            BEACH DIVISION ///
               6X, 43HPROGRAM EODA -- AXISYMMETRIC AND CROSSFLOW //
             11X, 29H**** CASE CENTROL DATA **** ///
               6X, 10A6, 4X, 1CHCASE NO. A6 // .-
                   9HBODIES = 13/ 6X 9HNNU
                                              = I3/ 6X 9HCHORD
               6 X
                                                                  =F12.7/
                   9HMACH NC.=F12.8/ 6X 9HTCNST
                                                  =F12.7/// )
    IF (FLG03.GT.0) WRITE (6,16)
   16 FORMAT (13X 21HSURFACE OF REVOLUTION )
   # IF*(FLG04.GT.0) WRITE (6,20)
   20 FORMAT (13X
                   9HCROSSFLOW)
    " IF (FLG05.GT.O) WRITE (6,24)
   24 FORMAT (13X 15HOFF-BOCY POINTS )
     'IF (FLG06.GT.O) WRITE (6,28)
   28 FORMAT (13x 15HBASIC DATA ONLY )
      IF" (FLG07.GT.0) WRITE (6,32)
   32 FORMAT (13X 17HELLIPSE GENERATOR )
      IF (FLG08.GT.0) WRITE (6,36)
   36 FORMAT (13X 14HPRINT MATRICES )
    > IF (FLG09.GT.0) WRITE (6,40)
   40 FORMAT (13X 10HOLD SEIDEL )
     IF (FLG10.GT.0) WRITE (6,44)
   44 FORMAT(13x,31HMODIFIEC SEIDEL MATRIX SOLUTION)
    IF (FLG11.GT.O) WRITE (6,48)
   48 FORMAT (13X 18HPERTUREATIONS ONLY )
      IF (ELG12.GT.O) WRITE (6,52)
   52 FORMAT (13x 22HSOLVE POTENTIAL MATRIX )
      IF (FLG13.GT.O) WRITE (6,56)
   56 FORMAT (13x 47HMATRIX SOLUTION BY TRIANGULARIZATION
      IF (FLG14.GT.O) WRITE (6,53)
   53 FORMAT ( 13X 30HPRESCRIBED TANGENTIAL VELOCITY )
     * IF (FLG18.GT.O) WRITE (6,69)
   69 FORMAT ( 15x 22HWITH SURFACE VORTICITY )
      IF (FLG15.GT.0) WRITE (6,54)
   54 FORMAT (13X 12HSTRIP VORTEX )
      IF (FLG16.GT.O) WRITE (6,64)
   64 FORMAT (13X 40HOMIT AXI-SYMMETRIC UNIFORM FLOW SOLUTION )
      IF (FLG17.GT.O) WRITE (6.68)
   68 FORMAT (13x 36HOMIT CROSSFLOW UNIFORM FLOW SOLUTION )
```

```
IF (FLG19.GT.O) WRITE (6,72)
   72 FORMAT (13X 20HPRESCRIBED VORTICITY)
      IF (FLG20.GT.O) WRITE (6,78)
   78 FORMAT (13X 15HTOTAL VORTICITY )
      IF (FLG21.GT.0)WRITE(6,77)
   77 FORMAT (13X 16HEXTRA CROSS FLOW)
      IF(FLG22.GT.O) WRITE(6,81)
   81 FORMAT(13x 82HGENERATED BOUNDARY CONDITIONS FOR 3 AXISYMMETRIC, 1
     1CROSS. AND 1 EXTRA CRCSS FLOW.)
      IF (FLG19.GT.O) FLG18=1
      IF (FLG22.GT.O.AND.NB.NE.2) GO TO 82
      GO TO 84
   82 WRITE(6,83)
   83 FORMAT (128HO WHEN GENERATED RESEP BOUNDARY CONDITIONS ARE USED, NU
     IMBER OF BODIES MUST BE EXACTLY TWO.
                                              YOU GOOFED.
                                                            EXECUTION TERM
     2INATING.)
      STOP
   84 IF (FLG22.GT.O.AND.NNU.GT.O)GO TO 86
      GO TO 88
  .86 WRITE (6,87)
   87 FORMAT ($8HO GENERATEC RESEP BOUNDARY CONDITIONS CANNOT HAVE NON-U
     INIFORM FLOW INPUT.
                            EXECUTION TERMINATING.)
   88 IF (IPUVEL.NE.O) WRITE (6,73)
   73 FORMAT (13X 14HPUNCHED OUTPUT)
       WRITE ( 6.75 )
                      NIN
      IF (FLG18.LE.O.OR.FLG14.GT.O) GO TO 125
       FORMAT( 13x,58HINPUT TAPE NO. FOR COORDINATES AND NON-UNIFORM FLO
     IN CNLY = .
                  I 5
      WRITE (6,70)
   70 FORMAT (1HO//63H FLG14 MUST BE USED WITH FLG18 OR FLG19.
     IN TERMINATED. )
      STOP
  125 IF (NNU.LE.O.OR.FLG14.LE.O) GO TO 130
      WRITE (6,60)
   60 FORMAT (1HO// 49H COLUMNS 2 AND 14 OF FLAG CARD ARE BOTH NON-ZERO.
                 / 43H ILLEGAL COMBINATION. EXECUTION TERMINATED. )
     STOP
                * READ DATA AND SETUP FOR UNIFORM FLOW
  130 CALL BASIC1
C*♥$ ***NSIGA AND NSIGC ULTIMATELY BECOME THE NUMBER OR RIGHT HAND SIDES
C*** ***IN AXISYMMETRIC FLOW AND CROSS FLOW RESPECTIVELY
  133 NSIGA=0
      IF (FLGO3.GT.O.AND.FLG16.LE.O) NSIGA=1
      NSIGC=0
      IF (FLGO4.GT.O.AND.FLG17.LE.O) NSIGC=1
     IF (FLG22.GT.O) GO TO 136
      DO 135 I = 1, 4
      NUNA(I) = 123456
  135 \text{ TYPEA(I)} = 100.
      GO TO 138
       ***PREPARE NUNA AND TYPEA FOR NON-UNIFORM AXISYMMETRIC FLOW.GENER
C ***
       ***(RESEP) BOUNDARY CONDITIONS
C***
  136 \ 00 \ 137 \ I = 1,3
      NUNA(I) = I
  137 \text{ TYPEA(I)} = 100.0
  138 CONTINUE
```

```
C+** ***IF FLGO2 (NON-UNIFORM FLOW) IS NOT CHECKED INITIALLY. THE FLOW
C*** ***OF CONTROL WILL NEVER REACH BASIC2
      IF (NNU) 140,150,140
             O * READ DATA AND SETUP FOR NON-UNIFORM FLOW
 14C CALL BASIC2
 150 IF (NSEQ) 160,160,110
 160 REWIND 4
      IF (NSIGA.LE.4) GO TO 180
 17C WRITE (6,74)
  74 FORMAT (1H1 75HAXI-SYMMETRIC OR CROSSFLOW NON-UNIFORM FLOWS EXCEED
     A 4. EXECUTION TERMINATED )
     STOP
 180 IF (NSIGC.GT.4) GC TC 170
     IF (FLG15.LE.O.OR.FLGC3.GT.O) GO TO 200
      WRITE (6,190)
 190 FORMAT (64H1STRIP RING VORTEX OPTION MUST USE SURFACE OF REVOLUTIO
     IN OPTION. / 22H EXECUTION TERMINATED. )
 200 IF (FLG15.LE.O) GC TC 230
      J = 0
     CO 210 I = 1, NB
 210 IF (NLF(I).LE.O) J=J+1
      IF (NSIGA+J.LE.4) GO TO 230
     WRITE (6,220)
 220 FORMAT (68H1GENERATED STRIP VORTEX ONSET FLOWS (ONE FOR EACH LIFT!
     ING BODY) PLUS / 34H INPUT NON-UNIFORM FLOWS EXCEED 4. /
    2 22HOEXECUTION TERMINATED. )
     STOP
 230 IF (FLG06.NE.O) GO TO 100
     CALL MATRIX
     RETURN
      END
```

```
SIBFTC BASI
                DECK, DEBUG
C
      SUBROUTINE BASIC1
C
C
                * READ DATA AND SETUP FOR UNIFORM FLOW
C
       COMMON / NBSAVE / NBCLD, NIN
      COMMON
                               ,CASE
                                           , NB
                                                       , NNU
                   HEDR(10)
                   ,FLG03
                               FLG04
                                           ,FLG05
                                                       ,FLGO6
                                                                   ,FLG07
                                           ,FLG10
     2
                   .FLG08
                               ,FLG09
                                                       ,FLG11
                                                                   •FLG12
     3
                               ,FLG14
                                           FLG15
                                                       ,FLG16
                                                                   ,FLG17
                   FLG13
                                           • FLG20
                                                       •FLG21
                                                                   ,FLG22
                   ,FLG18
                               ,FLG19
                                                                   ,FLG27
                   ,FLG23
                               ,FLG24
                                           FLG25
                                                       FLG26
     COUBLE PRECISION
                          HEDR, CASE
      INTEGER
                                           ,FLG05
                                                                   ,FLG07
                   FLG03
                               ,FLG04
                                                       ,FLGO6
                                                       ,FLG11
                  •FLG08
                               .FLG09
                                           FLG10
                                                                   ,FLG12
                               ,FLG14
                                           ,FLG15
                                                       ,FLG16
                                                                   ,FLG17
     2
                  ,FLG13
     3
                                           ,FLG20
                                                       ,FLG21
                                                                   FLG22
                   ,FLG18
                               ,FLG19
                                           ,FLG25
                                                       FLG26
                                                                   ,FLG27
                   FLG23
                               ,FLG24
      COMMON
                   NT
                               ,ND(11)
                                           , MN
                                                       , NUNA (4)
                                                                   , TYPEA(4)
                                           , NMA
                                                       ,NSIGA
     1
                   , NER1
                               , NER 2
                                                                   NSIGC
                               ,TYPEC(4)
     2
                   , NUNC (4)
                                           , NLF(11)
      COMMON IEC, NSIGEC, TYPEEC(4), NUNEC(4)
      DIMENSION COSSQR(500), RHS(500)
      REAL
                   MN
C
                                                       Y2(500),
      COMMON /CL/
                      X1(500).
                                 Y1(500),
                                            X2(500),
                                                                 DELS(500),
                      SINA(500), COSA(500), XP(500),
                                                       YP (500)
                                                       TG(500),
      COMMON /TL/
                      TX1(500), TY1(500), NG(500),
                                                                  ALFA(500).
                      RSDS(500), DALF(500), SEQ1,
                                                       SEQ2,
                                                                  NSEQ,
                                 TEMP (600), TCNST,
                                                       DUMMY(4915)
     2
                      CHORD,
      INTEGER
                    BDN
                               .SUBKS
                                           , SEQ1
                                                       , SEQ2
                    MX
                                           . NG
      REAL
                               . MY
C
C
                * START
      NT=C
      K=0
      KZ=NB
       IF( NIN .EQ. 0 )
                               NIN = 5
      IF (FLG05.NE.O) K2=N8+1
C.
                * MAJOR LOOP * NO. OF BODIES + OFF BODY POINTS
      CO 1000 L=1,K2
      READ (5,15) NN, MX, MY, THETA, ADDX, ADDY, SEQ2
   15 FORMAT ( 5X 15, 5F10.0, 16X 14)
      IF (SEQ2.LT.SEQ1) NSEC=1
      SEQ1=SEQ2
      READ (5,16) BDN, SUBKS, NLF(L), XE, YE, SEQ2
   16 FORMAT (3(5X,15),2F10.0,26X 14)
      IF (SEQ2.LT.SEQ1) NSEC=1
      SEQ1=SEQ2
C*** ***ND(L) IS THE NUMBER OF POINTS ON BODY L, OR THE NUMBER OF OFF
```

```
***BODY PCINTS FOR L = NB + 1
      ND(L) = NN
      M=NN-1
      IF (SUBKS) 140,150,140
                               GO TO 148
       IF( L .NE. K2 )
       NTIMES = NBOLD - NB
       IF( NTIMES .LE. 0 )
                                   GC TO 148
       DO 145 NSKIPS = 1, NTIMES
145
       READ(13) ( TX1(I), I=1,NN), (TY1(I), I=1,NN
, 148
       READ(13) ( TX1(I), I=1, NN), (TY1(I), I=1, NN)
     - GC - TO 220
  150 IF (BDN.EQ.O) GO TO 200
     · IF (FLG07) 160,200,160
                * ELLIPSE GENERATOR FOR X1 AND Y1
  160 IF (XE.EQ.O.O) XE=1.
      IF (YE.EQ.0.0) YE=1.
      EN=M
      DGAM=3.141593
      GAM=3.141593
      CG 170 I=1,NN
      TX1(I) = XE * COS(GAM)
      TY1(I)=YE*SIN(GAM)
  170 GAM=GAM-DGAM
      GG TO 210
                * READ X1 AND Y1 FROM INPUT CARDS
  200 DG 204 I=1,NN,6
      READ(NIN, 20) TX1(I), TX1(I+1), TX1(I+2), TX1(I+3), TX1(I+4), TX1(I+5),
                  SEQ2
   20 FORMAY ( 6F10.0, 16X 14)
      IF (SEQ2.LT.SEQ1) NSEC=1
  204 SEQ1=SEQ2
      CC 206 I=1,NN,6
      READ(NIN, 20) TY1(1), TY1(1+1), TY1(1+2), TY1(1+3), TY1(1+4), TY1(1+5),
                  SEQ2
      IF (SEQ2.LT.SEQ1) NSEG=1
  2C6 SEQ1=SEQ2
                 SAVE X1 AND Y1 FOR SUBCASE
210 WRITE (13) (TX1(I),I=1,NN),(TY1(I),I=1,NN)
                * BASIC DATA CALC. AND PRINT (UNTRANSFORMED COORDINATES)
  220 WRITE (6,24) HEDR, NN, MX, MY, THETA, ADDX, ADDY, XE, YE
   24 FORMAT ( 1H1 25X 26HDCUGLAS AIRCRAFT
                                               COMPANY /
                28X 21HLCNG
                             BEACH DIVISION /// 5X 10A6 //
                 8X \text{ 4HNN} = 14, 15X \text{ 4HMX} = F13.7, 4X \text{ 4HMY} = F13.7'/
     2
                 5X 7HTHETA = F13.7, 4X 6HADDX = F13.7, 2X 6HADDY =F13.7/
                 8X \text{ 4HXE} = F13.7. 6X \text{ 4HYE} = F13.7.
      IF (BDN) 240,230,240
  230 WRITE (6,28) (I; TX1(I), TY1(I), I=1,NN)
   28 FORMAT ( 1HC 4X 36HOFF-BODY COORDINATES (UNTRANSFORMED) //
                10X 5HX-OFF 9X 5HY-OFF // (1H [3, 2F14.7))
      .GO TO 270
  240 SUMS=0.0
      CC 250 I=1.M
      T1=TX1(I+1)-TX1(I)
      T2=TYL(I+1)-TY1(I)
      X2(I) = (TX1(I+1)+TX1(I))/2.
      Y2(I) = (TY1(I+1)+TY1(I))/2.
```

```
DELS(I)=SQRT(T1*T1+T2*T2)
      SUMS=SUMS+DELS(I)
      RSDS(I)=SUMS
 250 ALFA(I) = ATAN2( T2, T1 )
      MA=M-1
      CO 260 I=1.MA
 260 DALF(I) = ( ALFA(I+1)-ALFA(I) ) * 57.29578
      WRITE (6,36) BDN, TX1(1), TY1(1), X2(1), Y2(1), DELS(1), RSDS(1)
   36 FORMAT ( 1HO 4X 35HON-BODY COORDINATES (UNTRANSFORMED) /
               9H BODY NO. 13// 11X 2H X 13X 1HY 11X 7HDELTA S 7X
               5HSUMDS 8X 7HD ALPHA // 1H 3H 1,2F14.7 / 4X 4F14.7)
      WRITE (6,40) (I, TX1(I), TY1(I), DALF(I-1), X2(I), Y2(I),
                 DELS(I), RSDS(I), I=2,M), NN, TX1(NN), TY1(NN)
   40 FORMAT ( 1H 13, 2F14.7, 28X F14.7 / 4X 4F14.7)
               * ADJUST COCRDINATES (TRANSFORMED)
  27C IF (MX) 280,300,280
  280 CO 290 I=1.NN
  290 TX1(I)=TX1(I)*MX
  300 IF (MY) 310,330,310
  3.10 DO 320 I=1.NN
  320 TY1(I)=TY1(I)*MY
  330 IF (THETA) 340,360,340
  340 THETA = THETA / 57.29578
      CSTHT = COS(THETA)
      SNTHT = SIN(THETA)
      CO 350 I=1.NN
      T1=TX1(I)
      TX1(I)=T1*CSTHT+TY1(I)*SNTHT
  350 TY1(I)=TY1(I) + CSTHT-T1 + SNTHT
  360 IF (ADDX) 370,390,370
  370 CO 380 I=1.NN
  38C TX1(I)=TX1(I)+ADDX
  390 IF (ADDY) 400,420,400
  400 DC 410 I=1,NN
  410 TY1(I)=TY1(I)+ADDY
  420 IF (CHORD .EQ. 1.0 .GR. CHORD .EQ. 0.0 )GO TO 450
  430 DO 440 I=1,NN
      TX1(I)=TX1(I)/CHORD
 440 TY1(I)=TY1(I)/CHORD
  450 IF (MN) 460,475,460
  460 SRM=SQRT(1.-MN*MN)
      CG 470 I=1,NN
  470 TX1(I)=TX1(I)/SRM
               * SHIFT X1 AND Y1 TO COMMON /CL/
C*** *** IF BDN = 0.0, OFF BCDY PCINTS ARE BEING OPERATED ON
  475 IF (BDN) 500,480,500
  480 CO 490 I=1.NN
      XP(I)=TX1(I)
  490 YP(I)=TY1(I)
      WRITE (12) (XP(I), I=1,NN), (YP(I), I=1,NN)
      GC TO 1000
  500 CC 510 I=1.NN
      K=K+1
      X1(K)=TX1(I)
  510 Y1(K)=TY1(I)
      NT=NT+M
```

```
1000 CONTINUE
      REWIND 13
      IF (FLG14.LE.O) GO TO 2000
      IF (FLG14.LE.NB) GO TO 1050
      WRITE (6,1025)
 1025 FORMAT (45H1VALUE OF FLG14 EXCEEDS NO. OF BODIES.
      STOP
 1050 IF (FLG14.NE.NB) GC TC 1075
      NMA=0
      GO TO 1150
 1075 L = NB-FLG14
      NMA = -L
      CO 1100 I = 1, L
C*** ***NMA BECOMES THE NUMBER OF ELEMENTS ON THE 1ST L BODIES (IE THOSE
C*** ***NOT HAVING AN INPUT VORTICITY OR VELOCITY)
 1100 \text{ PMA} = \text{NMA} + \text{ND(I)}
C### ###NR BECOMES THE NUMBER OF ELEMENTS RECEIVING AN INPUT VORTICITY
C*** ***OR VELOCITY
 1150 NR = NT-NMA
      IF (TCNST.GT.O.)GO TO 2000
      DO 1200 I = 1.NR.6
      READ (5,20) TG(1),TG(1+1),TG(1+2),TG(1+3),TG(1+4),TG(1+5),SEQ2
      IF (SEQ2.LT.SEQ1) NSEC=1
 1200 SEQ1=SEQ2
                  CALC. PARAMETERS WITH TRANSFORMED COORDINATES AND
C
                  MACH NG. ADJUSTMENT
 2000 N1=0
      J1 = 0
      CO 2500 K=1,NB
      M1=N1+1
      NI=NI+ND(K)-1
      CO 2400 J=M1.N1
      J1=J1+1
      T1=X1(J1+1)-X1(J1)
      T2=Y1{J1+1}-Y1{J1}
      X2(J)=(X1(J1+1)+X1(J1))/2.
      Y2(J) = (Y1(J1+1)+Y1(J1))/2.
      DELS(3)=SQRT(T1*T1+T2*T2)
      COSA(J)=T1/DELS(J)
 2400 SINA(J)=T2/DELS(J)
 2500 J1=J1+1
                 SAVE PARAMETERS
      WRITE (12) (X1(I),I=1,J1),(Y1(I),I=1,J1),(X2(I),I=1,NT)
                 , (Y2(I), I=1,NT), (DELS(I), I=1,NT)
      REWIND 12
                * SAVE SINA AND COSA ON TAPE 4 FOR CALC. OF MATRIX
                  SOLUTION (RIGHT HAND MATRIX)
C
                  (SINA(I), I=1,NT), (COSA(I), I=1,NT)
     WRITE (4)
      IF ( FLG14) 2600,2600,2550
 2550 IF (TCNST.GT.O.O) WRITE(4) (TCNST, I=1, NR)
      IF (TCNST.LE.O.) WRITE(4) (TG(I), I=1,NR)
 2600 IF (FLG22.LE.O) RETURN
      NPB1 = ND(1) - 1
      CC = 2700 I = 1.NPB1
      COSSQR(I) = COSA(I)**2
 2700 RHS(I) = 2.0 * ABS(SINA(I) * COSA(I))
      WRITE(4) ( COSSQR(I), I=1, NPB1), (RHS(I), I=1, NPB1)
      RETURN
      END
```

```
$IBFTC BAS2
                DECK
C
      SUBROUTINE BASIC2
C
C
                * READ DATA AND SETUP FOR NON-UNIFORM FLOWS
C
       COMMON /
                 NBSAVE / NBCLD. NIN
                               , CASE
                                           ,NB
                                                       , NNU
      COMMON
                    HEDR(10)
                                           .FLG05
                   ,FLG03
                               ,FLG04
                                                       ,FLG06
                                                                   .FLG0.7
     1
     2
                   ,FLGO8
                               ,FLG09
                                           ,FLG10
                                                       ,FLG11
                                                                    ,FLG12
     3
                               ,FLG14
                                           ,FLG15
                                                       ,FLG16
                                                                   FLG17
                   ,FLG13
                   ,FLG18
                               ,FLG19
                                           •FLG20
                                                       ,FLG21
                                                                    ,FLG22
                               ,FLG24
                                           ,FLG25
                                                       ,FLG26
                                                                    FLG27
                   FLG23
      DOUBLE PRECISION
                          HEDR, CASE
                                           ,FLG05
                                                       ,FLG06
                                                                    .FLGO7
      INTEGER
                    FLG03
                               ,FLG04
                                                       ,FLG11
                                                                    ,FLG12
                   ,FLG08
                               ,FLG09
                                           ,FLG10
     2
                                                       ,FLG16
                                                                    ,FLG17
                   ,FLG13
                               ,FLG14
                                           ,FLG15
     3
                   ,FLG18
                               ,FLG19
                                           ,FLG20
                                                       ,FLG21
                                                                    FLG22
                                           FLG25
                                                       ,FLG26
                                                                    ,FLG27
                   ,FLG23
                               ,FLG24
                                                                    , TYPEA(4)
      COMMON
                               ,ND(11)
                                           , MN
                                                       , NUNA (4)
                    NT
                                                                    , NSIGC
                   , NER1
                               , NER 2
                                           , NMA
                                                       ,NSIGA
     1
                   , NUNC (4)
                               .TYPEC(4)
                                           , NLF(11)
      COMMON IEC, NSIGEC, TYPEEC(4), NUNEC(4)
      REAL
                    MN
C
                                                       Y2(500),
                                                                  DELS(500),
      COMMON /CL/
                      X1(500),
                                 Y1(500).
                                            X2(500),
                      SINA(500), COSA(500), XP(500),
                                                       YP(500)
     1
                                                       TG(500),
                                                                  ALFA(500),
      COMMON /TL/
                      TX1(500), TY1(500), NG(500),
                                                                  NSEQ,
                      RSDS(500), DALF(500), SEQ1,
                                                       SEQ2,
                                 TEMP (600), TCNST.
                                                       DUMMY (4915)
                      CHORD,
                                           ,SEQ2
      INTEGER .
                    BDN
                               .SEQ1
      REAL
                                           , NG
                    MX
                               .MY
C
C
C
                  SETS OF NON-UNIFORM FLOW LOOP
      NSIGEC = 0
      KA=0
      KC=0
      KEC = 0
        IF( NIN .EQ. 0 )
                                 NIN = 5
      CO 1000 E=1,NNU
      READ (5,20) NUN, MSF, TYPE, FG, SEQ2
   20 FORMAT ( 2(5x 15), 2F10.0, 36x 14 )
      IF (SEQ2.LT.SEQ1) NSEQ=1
      SEQ1=SEQ2
      IF (MSF.EQ.1.OR.MSF.EQ.2.OR.MSF.EQ.5) GO TO 30
      KA=KA+1
      NSIGA=NSIGA+1
      NUNA(KA)=NUN
       TYPEA(KA)=TYPE
   30 IF (MSF.EQ.O.OR.MSF.EQ.2.OR.MSF.EQ.4) GO TO 35
```

```
KC=KC+1
      NSIGC=NSIGC+1
      NUNC (KC) = NUN
      TYPEC(KC)=TYPE
   35/1F (MSF.LT.2.OR.MSF.EC.3) GO TO 40
      KEC = KEC + 1
      NSIGEC = NSIGEC + 1
      NUNEC(KEC) = NUN
      TYPEEC(KEC) = TYPE
   40 IF (TYPE) 50,70,70
                * COMPUTED TYPE
   50 CC 60 I=1,NT
      NG(I)=Y2(I)
   6C TG(I)=FG-X2(I)
      GC TO 110
C
                * (X,Y) OR (N,T) TYPE * READ INPUT
   70 CC 90 I=1,NT,6
      READ(NIN,80)NG(I),NG(I+1),NG(I+2),NG(I+3),NG(I+4),NG(I+5),SEQ2
   80 FORMAT ( 6F10.0, 16X 14)
      IF (SEQ2.LT.SEQ1) NSEC=1
   90 SEQ1=SEQ2
      EO 100 I ₹1,NT,6
      READ(NIN, 80) TG(1), TG(1+1), TG(1+2), TG(1+3), TG(1+4), TG(1+5), SEQ2
      IF (SEQ2.LT.SEQ1) NSEC=1
  100 SEQ1=SEQ2
  110 IF (TYPE) 120,140,120
  120 \ CC \ 130 \ I = 1, \ NT
      T1 = NG(I)
      NG(I) = T1 * SINA(I) - TG(I) * COSA(I)
  130 TG(I)= T1*COSA(I)+TG(I)*SINA(I)
                * WRITE BASIC DATA OUTPUT
  140 WRITE (6,150) HEDR, MSF, TYPE, FG, NUN, (NG(I), I=1, NT)
  150 FORMAT ( 1H1 25X 26HDCUGLAS AIRCRAFT
                                               COMPANY /
               28X, 21HLONG BEACH DIVISION /// 5X 10A6 //
               6X 5HMSF = I4, 10X 6HTYPE = F10.4, 10X 4HFG = F13.7 /
                1HO, 4X, 20HNON-UNIFORM FLOW NO.16 /
     3
                1HO, 4X, 10HLIST OF NG// (1H 6F14.7))
      WRITE (6,160) (TG(I), I = 1, NT)
  160 FORMAT (1HO 4X 10HLIST OF TG // (1H 6F14.7))
      WRITE (4) MSF, (NG(I), I=1,NT), (TG(I), I=1,NT)
 1000 CONTINUE
      RETURN
      END
```

```
$IBFTC MATRX
                DECK, DEBUG
C
       SUBROUTINE MATRIX
Ċ
C
                 * COMPUTE MATRIX A, B, Z OR X, Y, Z
C
                               , CASE
       COMMON
                    HEDR (10)
                                                        , NNU
                                           , NB
                   FLG03
                               ,FLG04
     1
                                           ,FLG05
                                                        FLG06
                                                                    FLG07
     2
                   ,FLG08
                               ,FLG09
                                           ,FLG10
                                                        ,FLG11
                                                                    FLG12
     3
                                            ,FLG15
                   ,FLG13
                               ,FLG14
                                                        ,FLG16
                                                                    FLG17
                   ,FLG18
                               ,FLG19
                                           ,FLG20
                                                        ,FLG21
                                                                    FLG22
                   •FLG23
                               •FLG24
                                           ,FLG25
                                                        FLG26
                                                                    •FLG27
      COUBLE PRECISION HEDR, CASE
                    FLG03
                                           FLG05
       INTEGER
                               ,FLG04
                                                        ,FLGO6
                                                                    ,FLG07
                                                        ,FLG11
                   ,FLGO8
                               FLG09
                                                                    ,FLG12
                                           ,FLG10
     2
                   ,FLG13
                               ,FLG14
                                           ,FLG15
                                                        ,FLG16
                                                                    ,FLG17
     3
                   ,FLG18
                               ,FLG19
                                           ,FLG20
                                                        ,FLG21
                                                                    ,FLG22
                                                                    FLG27
                   FLG23
                               FLG24
                                           FLG25
                                                        ,FLG26
      COMMON
                                                                    ,TYPEA(4)
                                           , MN
                                                        , NUNA(4)
                    NT
                               ,NC(11)
                                                        , NSIGA
     1
                                           , NMA
                                                                    , NS I GC
                   , NER1
                               ,NER2
                   , NUNC(4)
                               ,TYPEC(4)
                                           .NLF(11)
      COMMON IEC, NSIGEC, TYPEEC(4), NUNEC(4)
      REAL
                    MN
      LOGICAL
C
      COMMON /ECF/ ECX(500), ECY(500), ECZ(500)
      COMMON /CL/
                      X1(500),
                                 Y1(500),
                                            X2(500),
                                                       Y2(500),
                                                                   DELS(500).
                      SINA(500), COSA(500), XP(500),
                                                       YP (500)
                      A(500),
                                                       AY(500).
      CCMMON /TL/
                                 B(500),
                                            AX (500).
                                                                   AZ(500),
                                                       AXV(500), AYV(500),
     1
                      CX(500),
                                 CY(500),
                                            CZ(500),
     2
                      VN(500,4),VT(500,4),BON,
                                                       YZERO.
                                                                   IAC.
     3
                      I,
                                 J,
                                            J1.
                                                       SJ,
                                                                   DS.
                                            NI,
     4
                      DX,
                                 DY,
                                                       LX.
                                                                   YJ,
                      XK,
                                 EEK,
                                            EKK.
                                                                   PF
                                                       Κ,
C
С
                   START
C
                   INITIALIZE
      L1=NT
      BON=0.0
      YZERO=0.0
C.* * *
       ***TEST TYPE OF FLOW AND SET INDICATORS IAC AND IEC
C***
       ***CROSS FLOW ONLY
                                                 IAC = -1
                                                            IEC = -1
       ***AXISYMMETRIC FLOW ONLY
C***
                                                 IAC = +1
                                                            IEC = -1
C.***
       ***EXTRA CROSS FLOW CNLY
                                                 IAC =
                                                        0
                                                            IEC
       ***CROSS FLOW AND AXISYMMETRIC FLOW
C***
                                                 IAC =
                                                        0
                                                            IEC
                                                               = -1
       ***CROSS FLOW AND EXTRA CROSS FLOWW
C***
                                                 IAC = -1
                                                            IEC
        ***AXISYMMETRIC AND EXTRA CROSS FLOW IAC = +1
C.*.**
                                                            IEC
        ***AXISYMMETRIC, CROSS, AND EXTRA CROSS
C#**
                                                     IAC=0 IEC = +1
      IF(FLG03)30,10,30
   10 IF(FLG04125,15,25
   15 IAC = 0
```

```
IEC = 0
      GO TO 55
   25 IAC = -1
      GO TO 45
   30 IF(FLG04)35,40,35
   35 IAC = 0
      GC TO 45
   40 IAC = 1
   45 IF(FLG21)50,53,50
   50 IEC = +1
      GC TO 55
   53 IEC = -1
   55 ASSIGN 110 TO K1
      IF (FLG15.GT.O) ASSIGN 102 TO KI
  ,60 CC 65 I =1,L1
      DC 65 J = 1, NB
      VN(I,J) = 0.
   65 VT(I,J) = 0.
C
                   I MIDPOINT LCOP
      CG 400 I=1,L1
C
                   J ELEMENT LOOP
C
                   J1 IS THE COORDINATE COUNTER
                   J IS THE ELEMENT COUNTER
      J1=0
      N1=0
      CC 110 K=1,NB
      M1=N1+1
      N1=N1+ND(K)-1
      00 100 J=M1,N1
      J1=J1+1
      PF = FLG18.GT.O.AND.J.GT.NMA.OR.FLG20.GT.O
                * COMPUTE X,Y,Z MATRICES
      CALL XYZ
  100 CONTINUE
      GO TO K1, (102,110)
  102 IF (NLF(K).GT.O) GO TO 110
      IF (BON.EQ.O.) GO TO 105
      CC 103 J = M1, N1
      VN(I,K) = VN(I,K)+AXV(J)
  103 VT(I,K) = VT(I,K)+AYV(J)
      GC TO 110
  105 CC 106 J = M1, N1
      VN(I,K) = VN(I,K) + AXV(J) * SINA(I) - AYV(J) * COSA(I)
  106 VT(I,K) = VT(I,K) + AXV(J) * COSA(I) + AYV(J) * SINA(I)
  110 J1=J1+1
      IF (BON) 120,210,120
                * SAVE X,Y,Z ON TAPE *OFF BODY POINTS
       ***SAVE X,Y,Z ON TAPE
                                     OFF BODY POINTS
C * * *
                                *
C***
       ***AXISYMMETRIC FLOW
                                    TAPE 9
                            TAPE 10
C * * *
       ***CROSS FLOW
                                   TAPE 8
C***
       ***EXTRA CROSS FLOW
  120 IF(IEC.EQ.-1)GO TO 125
  122 WRITE(8) (ECX(J), J=1,NT), (ECY(J), J=1,NT), (ECZ(J), J=1,NT)
      IF (IEC) 125,400,125
  125 IF(IAC) 140,130,130
  130 WRITE (91 (AX(J),J=1,NT),(AY(J),J=1,NT),(AZ(J),J=1,NT)
```

```
IF (IAC) 400,140,400
   140 WRITE (10)(CX(J),J=1,NT),(CY(J),J=1,NT),(CZ(J),J=1,NT)
        GO TO 400
 C 4.4 +
         ***SAVE ON TAPE
                           *
                                ON BODY
        ****AXISYMMETRIC FLOW
                                      TAPE 9
 C.*.**
≀ C\***
                            TAPE 10
         ***CROS'S FLOW
                          *
 C * * *
         ***EXTRA CROSS FLOW
                                *
                                     TAPE 8
         ***IEC = -1 MEANS NO EXTRA CROSS FLOW
 C***
   210 IF (IEC.EQ.-1) GO TO 240
   220 CO 230 J = 1,NT
        A(J) = -ECX(J) + SINA(I) + ECY(J) + COSA(I)
   230 B(J) = ECX(J) * COSA(I) + ECY(J) * SINA(I)
        WRITE (8) \{A(J), J=1, NT\}, \{B(J), J=1, NT\}, \{ECZ(J), J=1, NT\}
        IF ( IEC ) 240,400,240
   240 IF (IAC) 310,250,250
   250 CO 260 J=1,NT
        A(J) = -AX(J) * SINA(I) + AY(J) * COSA(I)
   260 B(J)=AX(J)+COSA(I)+AY(J)+SINA(I)
       WRITE (9) (A(J),J=1,NT),(B(J),J=1,NT),(AZ(J),J=1,NT)
   270 IF (IAC) 400,310,400
   310 CO 320 J=1,NT
       A(J) = -CX(J) *SINA(I) + CY(J) *COSA(I)
   320 B(J)=CX(J)*COSA(I)+CY(J)*SINA(I)
       WRITE (10) (A(J), J=1, NT), (B(J), J=1, NT), (CZ(J), J=1, NT)
   400 CONTINUE
        IF (FLG15.LE.O) GO TO 1400
        IF (BON.NE.O.) GO TO 1200
 C*** ***ON BODY
       READ (4)
        IF (NNU.LE.O) GO TO 600
        CO 500 I = 1, NNU
        READ (4) MSF_{1}(A(J)_{1}=1,NT)_{1}(B(J)_{1}=1,NT)
   500 WRITE (3) MSF, (A(J), J=1, NT), (B(J), J=1, NT)
        REWIND 3
        REWIND 4
        READ (4)
   600 N=NSIGA-1
        IF (FLG16.GT.1) N=NSIGA
 CA++ +++N = O MEANS 1 RHS ONLY NO NON-UNIFORM FLOW
        IF (N.EG.O) GO TO 800
        CO 700 I = 1, N
        READ (3) MSF,(A(J),J=1,NT),(B(J),J=1,NT)
   7CO WRITE(4) MSF, (A(J), J=1, NT), (B(J), J=1, NT)
   800 M=0
        CG 900 J = 1, NB
        IF (NLF(J).GT.O) GO TC 900
       NSIGA=NSIGA+1
       NNU=NNU+1
        WRITE (4) M,(VN(I,J),I=1,NT),(VT(I,J),I=1,NT)
   9CC CONTINUE
        M=NSIGC-1
        IF (FLG17.GT.O) M=NSIGC
        [F (M.LE.O) GO TO 1100
       E0 1000 I = 1, M
       READ (3) MSF, (A(J), J=1, NT), (B(J), J=1, NT)
  1000 WRITE (4) MSF, (A(J), U=1, NT), (B(J), J=1, NT)
```

```
1100 REWIND 3.
      GE TO 1400
C*** ***OFF BODY
 1200 CO 1300 J = 1, NB
      IF (NLF(J).GT.0) GO TO 1300
                (VN(I,J), I = 1,L1), (VT(I,J), I = 1,L1)
      WRITE(4)
 1300 CONTINUE
C
               * TEST IF OFF BODY COMPLETED
C
               * TEST IF OFF BODY
1400 IF (FLG05.EQ.O.OR.BON.NE.O.) GC TO 1600
               * INITIAL FOR OFF BCDY * THEN RE-ENTER I, J LOOPS
      BCN=1.
      L1=ND(NB+1) -
      CO 1500 I = 1, L1
      X2(I) = XP(I)
 1500 \ Y2(I) = YP(I)
      GO TO 60
 1600 REWIND 9
      REWIND 8
      REWIND 10
      REWIND 4
      RETURN
      END.
```

```
SIBFIC XYZ
                 CECK, DEBUG
       SUBROUTINE XYZ
C
C
                 * CONTROL FOR X,Y,Z MATRICES COMPUTATION
Ċ
       CCMMON
                                                         , NNU
                    HEDR(10)
                                . CASE
                                            , NB
                                            ,FLG05
                                                         ,FLG06
     1
                   ,FLGO3
                                                                     ,FLG07
                                ,FLG04
     2
                                ,FLG09
                                            ,FLG10
                                                         ,FLG11
                                                                     ,FLG12
                   ,FLGO8
      3
                                                         ,FLG16
                   ,FLG13
                                ,FLG14
                                            ,FLG15
                                                                     •FLG17
                   .FLG18
                                .FLG19
                                            ,FLG20
                                                         ,FLG21
                                                                     ,FLG22
                   ,FLG23
                                ,FLG24
                                            FLG25
                                                         •FLG26
                                                                     FLG27
       DOUBLE PRECISION HEDR. CASE
       INTEGER
                    FLG03
                                ,FLG04
                                            , FLG05
                                                         ,FLG06
                                                                     ,FLG07
      1
                   ,FLGO8
                                ,FLGC9
                                            ,FLG10
                                                         ,FLG11
                                                                     ,FLG12
      2
                   ,FLG13
                                ,FLG14
                                            FLG15
                                                         ,FLG16
                                                                     ,FLG17
      3
                                            .FLG20
                                                         .FLG21
                                                                     •FLG22
                   ,FLG18
                                ,FLG19
                                            FLG25
                                                         FLG26
                                                                     ,FLG27
                   ,FLG23
                                ,FLG24
       COMMON
                                                         , NUNA (4)
                                                                     , TYPEA(4)
                                            , MN
                    NT
                                .ND(11)
                                                         , NSIGA
                                            , NMA
                                                                     , NSIGC
                   , NER1
                                , NER 2
                   , NUNC (4)
                                            , NLF(11)
                                TYPEC(4)
       CCMMON IEC, NSIGEC, TYPEEC(4), NUNEC(4)
      REAL
                    MN
       LOGICAL PF
C
                                                         Y2(500), "DELS(500),
0
       COMMON /CL/
                      X1(500),
                                  Y1(500),
                                             X2(500),
                       SINA(500), COSA(500), XP(500),
                                                         YP (500)
                                             AX(500),
                                                         AY(500),
                                                                    AZ (500),
       COMMON /TL/
                       A(500),
                                  B(500),
                                             CZ(500),
                                                         AXV(500), AYV(500),
                       CX(500),
                                  CY(500),
      2
                                                         YZERO.
                       VN(500,4), VT(500,4), BON,
                                                                    IAC.
      3
                       I,
                                                         SJ,
                                                                    DS,
                                  J,
                                  CY,
                                             NI,
                                                        XJ,
      4
                       DX.
                                                                    YJ.
      5
                                             EKK.
                                                                    PF
                      XK.
                                  EEK.
                                                         K,
C
C
                 * START
       IF (BON) 100,10,100
   10 IF (J-I) 110,20,110
C
                 * J EQUAL I PATH
   20 T1=.5*DELS(J)
       SJ=T1/Y2(J)
       IF (SJ-.08) 30,30,40
   30 CALL XYZI
       GC TO 1000
   40 SJ=.08
       CALL XYZI
       NI = 33
       T2 = .08 + Y2 (J)
       CS=(T1-T2)/32.
       DX=DS*COSA(J)
       DY=OS*SINA(J)
       XJ=X2(J)+T2+CGSA(J)-DX
```

```
YJ=Y2(J)+T2*SINA(J)-DY
      CALL XYZ2
      GO TO 300
                 INITIAL Y CCORDINATE MID-POINT FOR ZERO TEST
  100 YZERO=Y2(1)-.000001
C
                * J NOT EQUAL I PATH
C
                * COMPUTE MINIMUM DISTANCE TO I MIDPOINT
  IIO D1=(X2(I)-X1(J1))**2+(Y2(I)-Y1(J1))**2
      C2 = (X2(I) - X2(J)) + 2 + (Y2(I) - Y2(J)) + 2
      C3 = (X2(I) - X1(J1+1)) * *2 + (Y2(I) - Y1(J1+1)) * *2
      IF (D1-D2) 130,130,120
  120 IF (D2-D3) 150,150,140
  130 IF (D1-D3) 160,160,140
  T40 DM=SQRT(D3)
      GO TO 170
  150 DM=SQRT(D2)
      GC TO 170
  160 CM=SQRT(D1)
                * COMPUTE NO. OF INTERVALS(NI) AND DELTA S (DS)
C
                  FOR SIMPSON RULE INTEGRATION
 170 IF (DM.EQ.O.O) GO TO 200
      NI=8.*DELS(J)/DM+0.9
      IF (NI) 180,180,190
  180 NI=3
      CS=DELS(J)/2.
      GO TO 220
  190 NI=NI+NI
      IF (NI-128) 210,200,200
  200 NI=129
      CS=DELS(J)/128.
      GO TO 220
  210 XNI=NI
      DS=DELS(J)/XNI
      NI = NI + 1
  220 DX=DS*COSA(J)
      DY=DS*SINA(J)
  300 XJ=X1(J11-CX
      YJ=Y1(J1)-DY
      CALL XYZZ
 1000 RETURN
      END
```

```
C
       SUBROUTINE XYZ1
C
                 * COMPUTE X,Y,Z MATRICES FOR SJ LESS THAN OR EQUAL .08
C
C
      COMMON
                               ,CASE
                                           • NB
                                                       . NNU
                    HEDR(10)
                                           ,FLG05
     1
                               FLG04
                                                       ,FLG06
                                                                    ,FLG07
                   •FLG03
                                           ,FLG10
     2
                                                        ,FLG11
                                                                    ,FLG12
                   ,FLG08
                               FLG09
      3
                                           •FLG15
                                                        ,FLG16
                                                                    ,FLG17
                   ,FLG13
                               ,FLG14
                   ,FLG18
                               •FLG19
                                           •FLG20
                                                        ,FLG21
                                                                    ,FLG22 ·
      5
                   ,FLG23
                               ,FLG24
                                           ,FLG25
                                                        ,FLG26
                                                                    •FLG27
      COUBLE PRECISION
                          HEDR, CASE
                                           FLG05
       INTEGER
                                                        ,FLG06
                                                                    •FLG07
                    FLG03
                               ,FLG04
                   .FLG08
                               ,FLG09
                                           ,FLG10
                                                        ,FLG11
                                                                    ,FLG12
      2
                                           ,FLG15
                                                        ,FLG16
                   ,FLG13
                               ,FLG14
                                                                    ,FLG17
      3
                   ,FLG18
                               ,FLG19
                                           ,FLG20
                                                        ,FLG21
                                                                    ,FLG22
                   ,FLG23
                               ,FLG24
                                           FLG25
                                                        ,FLG26
                                                                    FLG27
       COMMON
                                           , MN
                                                                    , TYPEA(4)
                                                        , NUNA (4)
                    NT
                               ,ND(11)
      1
                   .NER1
                               ,NER2
                                           , NMA
                                                        .NSIGA
                                                                    , NSIGC
                   .NUNC(4)
                               ,TYPEC(4)
                                           ,NLF(11)
      2
      COMMON IEC, NSIGEC, TYPEEC(4), NUNEC(4)
      COMMON /ECF/ ECX(500), ECY(500), ECZ(500)
      REAL
       LOGICAL PF
C
      COMMON /CL/
                      X1(500),
                                 Y1(500),
                                            X2(500),
                                                       Y2(500).
                                                                  DELS(500).
      1
                      SINA(500), COSA(500), XP(500),
                                                       YP (500)
                      A(500), "
                                                       AY (500),
      COMMON ATLA
                                 B(500),
                                            AX(500),
                                                                  AZ(500),
                                 CY(500),
     1
                      CX(500),
                                            CZ(500),
                                                       AXV(500), AYV(500),
                                                       YZERO,
     2
                      VN(500,4),VT(5C0,4),BON,
                                                                   IAC,
     3
                                                                  DS,
                      I,
                                            Jl,
                                                       SJ,
                                 J,
                      DX,
                                                       XJ,
                                                                  YJ,
                                 CY,
                                            NI,
                                                                  PF
                      XK,
                                 EEK.
                                            EKK,
                                                       Κ,
C
C
                 * START
C
                 * INITIALIZE
      T1=SJ*SJ
       T2=ALOG(SJ/8.)
       T3=SINA(J) *SINA(J)
       T4=T2+T3
       T5=.6666667 *T3
       T6=T5*T3
       T7=SJ+SJ
       T8=T7+T7
        T9=6.283185 *COSA(J)
       T10=6.283185 *SINA(J)
      T11=T1*SJ
       T14 = .33333333 * (16.0 + 6.0 * T3) + 2.0 * T2
       IF (IEC.EC.-1) GO TO 15
        ***EXTRA CROSS FLOW
                                1ST TERM OF X(I,I), Y(I,I), Z(I,I)
```

SIBFTC XYZ1

DECK, DEBUG

زنج

```
10 ECX(J) = 6.283185 * SINA(J) + 2.0 * SINA(J) * COSA(J) * SJ
                    ECY(J) = -6.283185 * CCSA(J) + SJ * T14
                    ECZ(J) = -8.0 * (1.666667 + T2) * SJ
                     IF (IEC) 15,1000,15
           15 IF(PF) GC TO 25
                     IF (IAC) 30,20,20
C
                                                    * AXIS FLOW
          20 AX(J)=T10+SINA(J)*COSA(J)*(T7+(T4+2.166667)*T11/12.)
                    AY(J)=T7*T4-T9-(1.+T2-T3-T6)*T11/8.
                    T12=T1+T1
                     AZ(J)=Y2(J)+T8+(1.-T2+T1+(2.-T12+3.+T2+(1.+T12))/144.)
          25 IF (IAC) 30,30,100
                                                    * CROSS FLOW
         30 T13=T1/16.
                    CX(J)=T10+2.*SINA(J)*SJ*COSA(J)*(1.-T13*(3.-T5+T2+T2))
                    CY(J) = -T9 + T7 * (2. + T4 + T13 * (1. -4.777778 * T3 + T6 + T2 * (3. -2.666667 * T2 * T3 + T6 + T2 * (3. -2.666667 * T3 + T6 + T2 * (3. -2.666667 * T3 + T6 + T2 * (3. -2.666667 * T3 + T6 + T2 * (3. -2.666667 * T3 + T6 + T2 * (3. -2.666667 * T3 + T6 + T2 * (3. -2.666667 * T3 + T6 + T2 * (3. -2.666667 * T3 + T6 + T2 * (3. -2.666667 * T3 + T6 + T2 * (3. -2.666667 * T3 + T6 + T2 * (3. -2.666667 * T3 + T6 + T2 * (3. -2.666667 * T3 + T6 + T2 * (3. -2.666667 * T3 + T6 + T2 * (3. -2.666667 * T6 + T2 * (3. -2.666667 * T6 + T2 * (3. -2.666667 * T6 + T2 * (3. -2.6666667 * T6 + T2 * (3. -2.666667 * T6 + T2 * (3. -2.666667 * T6 + T2 * (3. -2.666667 * T6 + T2 * (3. -2.6666667 * T6 + T2 * (3. -2.666667 * T6 + T2 * (3. -2.66667 * T6 + T2 * (3. -2.66667 * T6 + T2 * (3. -2.666667 * T6 + T2 * (3. -2.66667 * T6 + T2 * (3. -2.666667 * T6 + T2 * (3. -2.666667 * T6 + T2 * (3. -2.666667 * T6 + T2 * (3. -2.66667 * T6 + T2 * (3. -2.66667 * T6 + T2 * (3. -2.666667 * T6 + T2 * (3. -2.666667 * T6 + T2 * (3. -2.666667 * T6 * (3. -2.66667 * T6 * (3. -2.6666
                                                          T3)))
                    CZ(J)=-T8*(1.+T2-T13*(1.111111) *T3+T2*(T5-1.)))
       100 IF (PF) GG TO 200
                    IF (FLG15.LE.O.OR.NLF(K).GT.C) GO TO 1000
       200 \text{ AXV(J)} = \text{T9+T7+(T2-T3)+T11+(T2+(12.*T3-9.)}
                                              -9. + 23. +T3 - 6. +T3 +T3) / 72.
                    AYV(J) = T10 + 2.*COSA(J)*SINA(J)*(SJ-T11*(6.*T2+9.-2.*T3)/48.)
                    IF (.NOT.PF) GO TO 1000
                    (L)VXA = (L)XA
                     (L)VYA = (L)YA
   10CO RETURN
                    END
```

```
$IBFTC XYZ2
                DEBUG, DECK
C
      SUBROUTINE XYZ2
C
C
                 * COMPUTE X,Y,Z MATRICES USING SIMPSON RULE INTEGRATION
      COMMON
                    HEDR(10)
                               ,CASE
                                            , NB
                                                        , NNU
                                            FLG05
                               ,FLG04
                                                        ,FLG06
                                                                    ,FLG07
     1
                   ,FLGO3
     2
                                            ,FLG10
                               ,FLGQ9
                                                        ,FLG11
                                                                    ,FLG12
                   FLG08
     3
                   •FLG13
                               ,FLG14
                                            ,FLG15
                                                        ,FLG16
                               ,FLG19
                                            ,FLG20
                                                        ,FLG21
                                                                    ,FLG22
                   ,FLG18
     5
                   ,FLG23
                               ,FLG24
                                            •FLG25
                                                        ,FLG26
                                                                    ,FLG27
      COUBLE PRECISION
                          HEDR, CASE
       INTEGER
                               ,FLG04
                                            ,FLG05
                                                        ,FLG06
                    FLG03
                                                                    ,FLG07
                                            ,FLG10
                   ,FLG08
                               ,FLG09
                                                        ,FLG11
                                                                    FLG12
     2
                   •FLG13
                               ,FLG14
                                            FLG15
                                                        •FLG16
                                                                    ,FLG17
     3
                                            ,FLG20
                                                        ,FLG21
                   ,FLG18
                               •FLG19
                                                                    FLG22
                                            ,FLG25
                   ,FLG23
                               ,FLG24
                                                        ,FLG26
                                                                    ,FLG27
      COMMON
                                            , MN
                                                        , NUNA (4)
                                                                    , TYPEA(4)
                    NT
                               ,ND(11)
                   , NER1
                                            , NMA
     1
                               , NER 2
                                                        , NSIGA
                                                                    , NSIGC
                               , TYPEC(4)
                                            , NLF(11)
                   , NUNC (4)
      COMMON IEC, NSIGEC, TYPEEC(4), NUNEC(4)
      COMMON /ECF/ ECX(500), ECY(500), ECZ(500)
      REAL
      LOGICAL PF
C
                      X1(500),
      COMMON /CL/
                                 Y1(500), X2(500),
                                                        Y2(500).
                                                                   DELS(500).
                      SINA(500), COSA(500), XP(500),
     1
                                                        YP (500)
      COMMON /TL/
                      A(500),
                                 B(500),
                                             AX(500),
                                                        AY(500),
                                                                   AZ(500),
                                             CZ(500),
                      CX(500),
                                 CY(500),
                                                        AXV(500), AYV(500),
     1
                      VN(500,4), VT(500,4), BON,
                                                        YZERO,
                                                                   IAC.
                                                                   DS.
     3
                      I,
                                  J,
                                             Jl,
                                                        SJ.
                                             NI.
                      DX,
                                 CY,
                                                        XJ,
                                                                   YJ,
                                                                 PF
                      XK,
                                             EKK,
                                 EEK,
                                                        Κ,
C
C
                 * START
                * INITIALIZE
      DEBUG NI, I, DX, DY, YJ, X2(I), XJ, Y2(I)
      ASSIGN 570 TO KI
       IF (FLG15.LE.O.OR.NLF(K).GT.O) GO TO 15°
   10 ASSIGN 420 TO K1
   15 S2=.6666667
                    *DS
                                            o·
      S1 = .33333333 * DS
      $3 = 8.0/3.0 * $1
      S5
         = .3333333 * S1
      S4
         = S2+S2
      T1 = Y2(I) * Y2(I)
      ASSIGN 28 TO K2
      ASSIGN 410 TO K3
      ASSIGN 570 TO K4
         (.NOT.PF) GO TO 16
```

```
ASSIGN 110 TO K2
      ASSIGN 420 TO K3
      ASSIGN 560 TO K4
                * NO. OF INTERVAL LCOP
   16 CC 1000 IS=1,NI
      XJ=XJ+DX
      YJ=YJ+DY
      T'2=YJ*YJ
      T3=X2(I)-XJ
      T4=T3*T3
      T5 = (Y2(I) + YJ) + *2
      T6=T4+T5
      T7=SQRT(T6)
      T8=T2+T4
      IF(T8.EQ.O.) T8=1.E-6
      T9 = (Y2(I) - YJ) * *2
      T10=T9+T4
      T21 = SQRT(T1 / T8)
               * COMPUTE ELLIPIC INTEGRAL
      XK=4.*YJ*Y2(I)/T6
      CALL ELIP
      IF ( IEC ) 18,575,18
   18 IF (IAC) 200,20,20
C
              · * AXIS FLOW
   20 T11=YJ/T7
      IF ( T21.LT.0.01) GO TO 24
      T12 = YJ/Y2(I)
      FV2 = (EKK+EEK*(T1-T8)/T10)/T7
      FV3 = Y2(I)/T10 * T3/T7 * EEK
      F1 = FV3*T12
      F2 = FV2*T12
      FV4 = FV2*T3/Y2(I)
      F3=T11*EKK
      GO TO 26
   24 \text{ FV2} = 0.
      FV3 = 0.
      FV4 = 0.
       ***SMALL Y FORMULAS AXISYMMETRIC FLOW
C.**.*
      T23 = T1 / T8 * * 2
      T24 = 2.0 * T4 - T2
                           * YJ * T3 ) / ( T8**1.5
      F1 = (
                 1.570,796
       (1.0 + (.75 + (3.0 + T2 - 2.0 + T4) + T23))
              1.570796 * YJ * Y2(I)) * ( T24 / (T8**2.5)
      F2 = (
      F3 = 1.570796 * YJ * (1.0 + (.25 * T23 * (-T24) ) ) / SQRT(T8 )
   26 CONTINUE
      GO TO K2, (28,110)
                * SIMPSON RULE INTEGRATION
C
   28 IF (IS-11 30,30,40
C
                * FIRST PASS
   30 AXS=F1
      AYS=F2
      AZS=F3
      IA=0
      GO TO 110
   40 IF (IS-NI) 50,80,50
   50 IF (IA) 70,60,70
```

```
* EVEN PASS
   60 AXS=AXS+4.*F1
      AYS=AYS+4.*F2
      AZS=AZS+4.*F3
      IA=1
      GO TO 110
                * OCD PASS
   70 AXS=AXS+F1+F1
      AYS=AYS+F2+F2
      AZS=AZS+F3+F3
      IA = 0
      GO TO 110
C
                * LAST PASS
   8C IF (J-I) 1CO,90,100
   90 IF (BON-NE.O.O) GC TC 100
      \Delta X(J) = \Delta X(J) - S4 * (\Delta XS + F1)
      AY(J)=AY(J)-S2*(AYS+F2)
      AZ(J)=AZ(J)+S4*(AZS+F3)
      GO TO 110
  100 AX(J) = -S4 * (AXS+F1)
      AY(J) = -S2 * (AYS+F2)
      AZ(J)=S4*(AZS+F3)
  110 IF (IAC) 200,200,400
                * CROSS FLOW
  200 IF (T21.LT.0.04) GC TC 220
      T12 = T1 + T8
      F1=T3/Y2(I)*(EKK-EEK*T12/T10)/T7
      F2=(EEK*(T8*T8+T1*(T4-T2))/T10-EKK*T8)/T1/T7
      F3=T7*(EKK*T12/T6-EEK)/T1
      GO TO 230
C.***
       ***SMALL Y FORMULAS
                                   CROSS FLOW
  220 T23 = T1 / T8 ** 2
      T29 = (1.570796 * T2) / (T8**1.5)
      T26 = 4.0 + T4 - T2
      T31 = T26 * T23
      F1 = ((-4.712389) + T2 + T3 + Y2(I)) / (T8**2.5)
      F2 = T29 * (1.0 - (1.125 * T31))
      F3 = T29 * (1.0 - (.375 * T31))
                 SIMPSON RULE INTEGRATION
  230 IF (IS-11 240,240,250
                * FIRST PASS
  240 CXS=F1
      CYS=F2
      CZS=F3
      IC=0
      GO TO 400
  250 IF (IS-NI) 260,290,260
  260 IF
         (EC) 280,270,280
                * EVEN PASS
  270 CXS=CXS+4.*F1
      CYS=CYS+4.*F2
      CZS=CZS+4. *F3
      IC=1
      GO TO 400
                # OCD PASS
```

280 CXS=CXS+F1+F1

```
CYS=CYS+F2+F2
      CZS=CZS+F3+F3
       IC=0
      GC TO 400
                 * LAST PASS
  290 IF (J-I) 310,300,310
  300 IF (BON.NE.O.O) GO TO 310
      CX(J)=CX(J)+S2*(CXS+F1)
      CY(J)=CY(J)+S2*(CYS+F2)
      CZ(J)=CZ(J)+S2*(CZS+F3)
       GO TO 400
  310 CX(J)=S2*(CXS+F1)
      CY(J)=S2*(CYS+F2)
      CZ(J)=S2*(CZS+F3)
  400 GC TO K3, (410,420)
  410 GO TO K1, (570,420)
C*+* ***FLOW OF CCNTROL REACHES HERE FOR (PF=TRUE) OR ( (FLG15 GT O AND
C*** ***NLF LE O (LIFTING BCCY)) AND (I NE J ON BODY OR ANY OFF BODY) )
  420 \text{ FV1} = (T2-T1)/T7 * EEK/T10
       IF (IS.GT.1) GO TO 440
                 * FIRST PASS
      AX1 = FV1
      AX2 = FV2
       AY1 = FV3
      AY2 = FV4
       IV=0
      GC TO 570
  440 IF (IS.EQ.NI) GO TO 500
       IF (IV) 460,450,460
                 * EVEN PASS
  450 AX1 = AX1+4.*FV1
      \Delta X2 = \Delta X2 + 4. *FV2
       \Delta Y1 = \Delta Y1 + 4. *FV3
       \Delta Y2 = \Delta Y2 + 4.*FV4
       IV=1
      GC TO 570
                 * OCC PASS
  460 \text{ AX1} = \text{AX1+FV1+FV1}
       AX2 = AX2+FV2+FV2
       AY1 = AY1+FV3+FV3
       \Delta Y2 = \Delta Y2 + FV4 + FV4
       IV = 0
       GC TO 570
                 * LAST PASS
  500 IF (J-I) 540,520,540
  520 IF (BON.NE.O.) GO TO 540
       AXV(J) = AXV(J) - S4*(AX1+FV1) - S2*(AX2+FV2)
      \Delta YV(J) = \Delta YV(J) - S4*(\Delta Y1+FV3) + S2*(\Delta Y2+FV4)
      GO TO 550
  540 \text{ AXV(J)} = -S4*(AX1+FV1) -S2*(AX2+FV2)
       AYV(J) = -S4*(AY1+FV3) +S2*(AY2+FV4)
  550 GC TO K4, (560,570)
C### ###FLOW OF CONTROL REACHES HERE IF PF IS TRUE
  560 \text{ AX(J)} = \text{AXV(J)}
       (L)VYA = (L)YA
  570 IF (IEC.EQ.-1) GO TO 1000
```

```
575 IF (T21.LT.0.08)GO TO 595
  580 \ T20 = SORT( \ T2 / (T1 + T4) )
      IF (T20.LT.0.01) GO TC 590
      T13 = YJ + Y2(I)**3
      T14 = T1 + T8
     T15 = T2 + T1
      T16 = T14 * T14
      T17 = T1 * YJ
      T18 = T1 + T1
      T19 = T8 * T8
     F3 = ( T7/T13 ) * ( (-T14) * EEK + ( ( (T16 - T15) * EKK) / T6 ) )
      F1 = (T3 / (T17 *T7) ) * ( (EEK / T10 ) * (T16 - 3.0 * T15)
     1 (T14 * EKK) )
      TEMP1 = ((-8.0*T8**3) - (12.0*T1*T19) + (26.0*T15*T8)
         + (2.0*T18*(2.0*T1 -5.0*T2) ))* EEK/T10
      TEMP2 = EKK * ((8.0*T19) + (4.0*T1*T8) - (2.0*T15) - (4.0*T18) )
      F2 = (TEMP1 + TEMP2) / (T13 * T7)
      GC 10 630
      ***SMALL YJ FORMULAS
                             * : EXTRA CROSS FLOW
 590 \ T25 = YJ**3
      130 = 14 + 11
      T27 = T30**3.5
      T28 = T25 + Y2(1)
      F1 = (
              2.945243 * T25 * T3 * T1) / T27
             7.068584 * T28 * ( 3.0 * T1 - 2.0 * T4 ) / T27
      F2 =
      F3 = 1.767146 * T28 / (T3C**2.5)
      GC TO 630
       ***SMALL Y FORMULAS *
                                EXTRA CROSS FLOW
 595 T25 = YJ**3
      F1 = (2.945243 * T25 * T3 * T1 ) / ( T8**3.5)
      F2 = ((-14.13717) * T25 * Y2(1)) / (T8**2.5)
      F3 = -F2 / 8.0
       ***SIMPSCN*S RULE
 630 IF (IS - 1) 640,640,650
       ***FIRST PASS
 640 ECXS = F1
      ECYS = F2
      ECZS = F3
      16 = 0
      CC TO 1000
 -650 IF (IS - NI) 660,690,660
 660 IF ( IE ) 680,670,680
C***
       ***EVEN PASS
 670 ECXS = ECXS + 4.0 + F1
      ECYS = ECYS + 4.0 * F2
      ECZS = ECZS + 4.0 * F3
      i \in -1
      GC TO 1000
C***
       ***CDD PASS
 680 ECXS = ECXS + F1 + F1
      ECYS = ECYS + F2 + F2
      ECZS = ECZS + F3 + F3
      I = 0
      GO TO 1000
       ***LAST PASS
 69C IF(J - I) 710,700,710
                        ELEMENTS ON MAIN DIAGONAL
      ***I=J *
C*** ·
 700 IF (BON.NE.O.O) GO TC 710
      ECX(J) = ECX(J) -S4 + ( ECXS + F1 )

ECY(J) = ECY(J) -S5 + ( ECXS + F2 )
      ECZ(J) = ECZ(J) + S3 + (ECZS + F3)
     CC TO 1000
       ***OFF MAIN DIAGENAL CR OFF BODY POINTS
 71C ECX(J) = -S4 * (ECXS + F1)
      ECY(J) = -S5 * (ECYS + F2).
      ECZ(J) = S3 * (ECZS + F3)
10CO CENTINUE
      RETURN
```

END

```
$IBFTC ELIP
                DECK
C
       SUBROUTINE ELIP
C
C
                 * HASTINGS AFPROXIMATION FOR ELLIPTIC INTERGALS
C
      COMMON
                                                        , NNU
                    HEDR (10) -
                               ,CASE
                                           , NB
                                           ,FLG05
                               ,FLG04
                                                       ,FLGC6
                                                                    •FLG07
     1
                   ,FLG03
     2
                                           ,FLG10
                   ,FLG08
                               ,FLG09
                                                        ,FLG11
                                                                    ,FLG12
     3
                   ,FLG13
                               ,FLG14
                                           •FLG15
                                                        ,FLG16
                                                                    ,FLG17
                                                        ,FLG21
                   ,FLG18
                               ,FLG19
                                           ,FLG20
                                                                    ,FLG22
                                                        ,FLG26
                                                                    •FLG27
                   ,FLG23
                               ,FLG24
                                           FLG25
      COUBLE PRECISION HEDR, CASE
                               ,FLG04
       INTEGER
                                                                    ,FLG07
                    FLG03
                                           ,FLG05 ·
                                                       ,FLG06
                   •FLG08
                               ,FLG09
                                           ,FLG10
                                                        ,FLG11
                                                                    ,FLG12
                                                                    ,FLG17
     2
                   ,FLG13
                               ,FLG14
                                           ,FLG15
                                                        ,FLG16
     3
                   ,FLG18
                               ,FLG19
                                           ,FLG20
                                                        FLG21
                                                                    ,FLG22
                                           FLG25
                                                                    ,FLG27
                   FLG23
                               FLG24
                                                        FLG26
      COMMON
                    NT
                               ,NC(11)
                                           , MN
                                                        , NUNA (4)
                                                                    , TYPEA(4)
                                           , NMA
     1
                   , NER1
                               , NER 2
                                                        .NSIGA
                                                                    NSIGC
     2
                   , NUNC(4)
                               ,TYPEC(4)
                                           ,NLF(11)
       COMMON IEC, NSIGEC, TYPEEC(4), NUNEC(4)
                    MN
       LOGICAL PF
C
       COMMON /CL/
                                            X2(500),
                                                                  DELS(500).
                      X1(500),
                                 Y1(500).
                                                       Y2(500),
     1
                      SINA(500), COSA(500), XP(500),
                                                       YP (500)
      COMMON /TL/
                      A(500),
                                 B(500),
                                            AX(500),
                                                       AY(500).
                                                                  AZ (500),
                      CX(500),
                                 CY(500),
                                            CZ(500).
                                                       AXV(500), AYV(500),
     1
                                                                   IAC,
                      VN(500,4),VT(500,4),BON,
     2
                                                       YZERO,
                                                       SJ,
                                                                  DS,
     3
                      I,
                                 J,
                                            Jl,
     4
                                 CY.
                                                       XJ,
                                                                  YJ,
                      DX.
                                            NI,
                      XK.
                                 EEK.
                                            EKK.
C
C
                 * START
       ETA = 1. - XK
       IF (ETA) 20,20,40
   20 WRITE (6,30) ETA
   30 FORMAT ( 1H1 36H *** ERROR IN SUBROUTINE ELIP * ETA= F15.8 )
        WRITE(6,800) I, XJ, DX, YJ, DY, X2(I), Y2(I), XK
       FORMAT(1H , 15,7F15.6).
        ETA = 0.0C0C05
   40 ELN=ALOG(ETA)
       EKK = 1.386294E0
                               + ETA * (.9666344E-1
                                                          + ETA *
             (.3590092E-1
                               + ETA * (.3742564E-1
                                                          + ETA *
                             ))) - ELN * (.5 + ETA * (.1249859E0
     2
             .1451196E-1
     3
                                      + ETA * (.3328355E-1
             ETA * (.6880249E-1
                                                                + ETA *
              .4417870E-2 ))))
                                                                     + ETA *
                                           + ETA * (.6260601E-1
       EEK = 1. + ETA * (.4432514E0)
                                                       ))) - ELN * (ETA *
             (.4757384E-1
                               + ETA * .1736506E-1
     1
                                                         + ETA *
     2
             (.2499837E0
                              + ETA * (.9200180E-1
             (.4069698E-1
                               + ETA * .5264496E-2
      RETURN
       END
```

\$IBFTC PAT2 DECK

SUBROUTINE PART2 C . C * COMPUTE SOURCE DENSITY SIGMA BY SIEDEL ITERATION C , CASE , NB NNU COMMON. HEDR (10) ,FLG07 1 ,FLGO3 ,FLGC4 FLG05 ,FLG06 2. ,FLG08 ,FLG09 ,FLG10 ,FLG11 ,FLG12 3 FLG13 FLG14 •FLG15 FLG16 ,FLG21 ,FLG18 ,FLG19 ,FLG20 ,FLG22 ,FLG24 , FLG23 FLG25 FLG26 FLG27 DOUBLE PRECISION HEDR, CASE ,FLG04 •FLG05 .FLG07 INTEGER FLG03 ,FLG06 ,FLGO8 ,FLG09 •FLG10 ,FLG11 •FLG12 ,FLG14 FLG16 ,FLG13 FLG15 •FLG17 3 ,FLG19 ,FLG20 ,FLG21 FLG22 FLG18 ,FLG23 ,FLG25 FLG26 FLG24 COMMON , TYPEA(4) NT ,NC(11) , MN ,NUNA(4) , NER1 , NMA , NER 2 , NSIGA , NUNC(4) ,TYPEC(4) ,NLF(11) COMMON IEC, NSIGEC, TYPEEC(4), NUNEC(4) REAL MN C CEMMON /C2/ A(500). R(500,4). NSIG. ASIG(500,4), CSIG(500,4), T(500) DIMENSION C C * START IF (FLG03.EQ.0) GO TO 1000 C * AXIS FLOW L=0 READ (4) (T(I), I=1,NT)IF (FLG16.NE.O) GO TO 200 E=L+1 DO 100 I = 1, NT ICC R(I,L) = T(I)200 IF (NNU) 600,600,300 300 CO 500 J = 1, NNUC * READ NON-UNIFORM NO * SKIP TO READ (4) $MS_{\bullet}(T(I), I=1, NT)$ IF (MS.EQ.1) GO TO 500 L=L+1 00 400 I = 1, NT400 R(I,L) = T(I)500 CONTINUE 600 REWIND 4 IT = 9NSIG = NSIGA * SOLVE SIMULTANEOUS EQUATIONS FOR SIGMAS C CALL MISNA2 (ASIG) REWIND 9 IF (FLG04.GT.Q) GO TO 1000 * WRITE SIGMAS ON TAPE 3 C CO 700 J = 1, NSIGA

700 WRITE (3) (ASIG(I,J), I = 1, NT)

```
RETURN
                * CROSS FLOW
1000 L = 0
      READ (4) (T(I), I=1,NT), (T(I), I=1,NT)
      IF (FLG17.NE.O) GG TG 1200
      L = L+1
      CC 1100 I = 1, NT
1100 R(I,L) = -T(I)
1200 IF (NNU) 1600,1600,1300
13CC CC 1500 J = 1, NNU
READ (4) MS, (T(,I), I=1,NT)
      IF (MS.LE.O) GO TO 1500
      L = L+1
      CC = 1400 I = 1, NT
 1400 R(I,L) = T(I)
 1500 CONTINUE
 16CO REWIND 4
      IT = 10
     NSIG = NSIGC
               * SOLVE SIMULTANEOUS EQUATIONS FOR SIGMAS
      CALL MISNA2 (CSIG)
      REWIND 10
      IF (FLG03.LE.O) GD TO 1675
C
               * WRITE SIGMAS ON TAPE 3
      CC 1650 J = 1, NSIGA
 1650 WRITE (3) (ASIG(I,J), I=1,NT)
 1675 DO 1700 J = 1, NSIGC
 1700 WRITE (3) (CSIG(I,J),I=1,NT)
      RETURN
      END
```

SIBFTC MISN

CECK

READ (9) (A(L),L=1,NT),(A(L),L=1,NT),(A(L),L=1,NT)

```
GO TO 80
70 READ (10) (A(L), L=1, NT), (A(L), L=1, NT), (A(L), L=1, NT)
             * SAVE LEFT SIDE MATRIX
 80 WRITE (3) (A(L),L=1,NT)
    WRITE (11) (A(L), L=1, NT)
    GO TO 200
              * READ LEFT SIDE MATRIX
ICO READ (3) (A(L), L=1, NT)
    GO TO 200
110 READ (11) (A(L), L=1, NT)
200 CO 300 J=1.NSIG
    IF (KFLAG(J).NE.O) GO TO 300
    SUM=0.0
    CO 210 L=1,NT
210 SUM=SUM+A(L) +SIG(L,J)
    CSIG(I,J) = (R(I,J) - SUM)/A(I)
    IF (FLG09.NE.O) GO TO 220
    SIG(I,J)=SIG(I,J)+DSIG(I,J)
220 IF (ABS(DSIG(I,J)).GT.DSIG1(J)) DSIG1(J)=ABS(DSIG(I,J))
300 CONTINUE
    IF (FLG09.LE.O) GO TO 320
    CO 310 J=1,NSIG
    CC 310 I=1.NT
31C SIG(I,J) = SIG(I,J) + DSIG(I,J)
              * TEST FOR SCLUTION
320 REWIND 3
    REWIND 11
    ITER=ITER+1.
    CO 400 J=1,NSIG
    IF (KFLAG(J).NE.O) GG TO 400
    IF (DSIG1(J).GE.1.E-6) GO TO 400
    KFLAG(J)=ITER
    NCONV=NCCNV+1
    IF (NCONV.EQ.NSIG) GC TO 600
4CC CONTINUE
    IF (ITER.EQ.100) GO TO 600
    IF (NTU.EC.3) GO TO 500
    NTU=3
    GC TO 30
500 NTU=11
    GC TO 30
              * PRINT NO. OF ITERATIONS
600 DO 800 J=1,NSIG
    IF (KFLAG(J).NE.O) GC TO 700
    WRITE (6,610)
610 FORMAT (1HO 7X 36H NO CONVERGENCE AFTER 100 ITERATIONS )
    GO TO 800
700 WRITE (6,710) KFLAG(J)
710 FORMAT (1HO 5X I5,1X 36H ITERATIONS REQUIRED FOR CONVERGENCE )
800 CONTINUE
    RETURN
    END
```

```
SUBROUTINE
                   PREP
                * PREPARE TAPES 3 AND 11 FOR USE BY LINK 5 (MATSOL)
      CEMPON/SPACER/WKAREA(16000)
      DIMENSION TEMP(504), Y2(500)
      COMMON
                   HEDR (10)
                              . CASE
                                          , NB
                                                      , NNU
                  ,FLG03
                              ,FLG04
                                          .FLG05
                                                      FLG06
                                                                  ,FLG07
     2
                  ,FLGO8
                                          ,FLG10
                                                      •FLG11
                                                                  FLG12
                              •FLG09
                                                      ,FLG16
                                                                  ,FLG17
     3
                  ,FLG13
                              .FLG14
                                          FLG15
                                                      ,FLG21
                                                                  •FLG22
                  ,FLG18
                              ,FLG19
                                          FLG20
                  FLG23
                              ,FLG24
                                          FLG25
                                                      ,FLG26
                                                                  FLG27
      CCUBLE PRECISION
                         HEDR, CASE
                                                      ,FLG06
      INTEGER
                              ,FLGC4
                                                                  .FLG07
                   FLG03
                                          •FLG05
                  ,FLGO8
                                                      ,FLG11
                                                                  ,FLG12
                              ,FLG09
                                          ,FLG10
                                                                  ,FLG17
                                          ,FLG15
     2
                  ,FLG13
                              ,FLG14
                                                      ,FLG16
     3
                  ,FLG18
                              ,FLG19
                                          •FLG20
                                                      ,FLG21
                                                                  ,FLG22
                                          ,FLG25
                                                                  ,FLG27
                  •FLG23
                              •FLG24
                                                      .FLG26
                                                      , NUNA (4)
      COMMON
                   NT.
                              ,ND(11).
                                          , MN
                                                                  ,TYPEA(4)
                                                      , NSIGA
                  , NER1
                                          , NMA
                                                                  , NSIGC
     1
                              ,NER2
                  , NUNC (4)
                              ,TYPEC(4)
                                          ,NLF(11)
      CCMMON IEC, NSIGEC, TYPEEC(4), NUNEC(4)
                   MN
      DIMENSION COSSOR(500), RHS(500)
      EIMENSICN A(504), R(500,4), FF(500), T(500)
             FOURPI/12.5663706/
      DATA
       ***AXISYMMETRIC FLOW ONLY
                                                     MS = 0
C***
       ***CROSS FLOW ONLY
                                                     MS = 1
C***
C ***
       ***EXTRA CROSS FLOW CNLY
                                                     MS =
                                                     MS = 3
C * * *
       ***AXISYMMETRIC AND CROSS FLOW
                                                     MS = 4
       ***AXISYMMETRIC AND EXTRA CROSS FLOW
C***
                                                     MS = 5
C. * * *
       ***CROSS AND EXTRA CROSS FLCW
       ***AXISYMMETRIC, CROSS, AND EXTRA CROSS FLOW MS = 6
      IF(FLG12.EQ.O.OR.(FLG04.EQ.O.AND.FLG21.EQ.O) ) GO TO 3
      IF (FLG05.EQ.0) GO TC 4
       ***SKIP CFF BODY COCRDINATES
C * * *
      READ(12)
    4 NI=NT+NB
      READ(12) (TEMP(I), I = 1, NI), (TEMP(I), I = 1, NI),
          (TEMP(I), I = 1,NT), (Y2(I), I = 1,NT)
      REWIND 12
    3 REWIND 3
      IF (FLG03) 5,800,5
                * PREPARE AXISYMMETRIC MATRIX TAPE (3)
    5 IF (FLG19.GT.O) GO TO 2000
      IF ( FLG22.GT.O) GO TC 255
      K = 0
      L = NT+NSIGA
      READ (4) (A(I), I=1,NT), (FF(I), I=1,NT)
      IF (FLG16.NE.O) GO TO 20
      K = K+1
      CC 10 I = 1, NT
   1C R(I,K) = A(I)
   20 IF (NNU) 60,60,30
   30 CC 50 J = 1. NNU
      READ (4) MS, (A(I), I=1, NT)
```

```
IF (MS.EQ.1.OR.MS.EQ.2.OR.MS.EQ.5) GO TO 50
      K = K+1
      CC 40 I = 1, NT
   40 R(I,K) = A(I)
  50 CONTINUE
   60 IF (FLG14.LE.O) GO TO 290
      NR= NMA+1
      READ (4) (R(I,1), I=NR,NT)
      REWIND 4
      CO 220 I = NR, NT
  220 R(I,1) = R(I,1)-FF(I)
      IF (FLG14.EQ.NB) GO TC 245
      CC 240 I = 1, NMA
      READ (9) (A(J), J=1, NT)
      \Delta(NT+1) = R(I,1)
 240 WRITE (3) (A(J), J=1,L)
 245 EC 250 I = NR, NT
      READ (9) (A(J), J=1, NT), (A(J), J=1, NT)
      A(NT+1) = R(I-1)
  250 WRITE (3) (A(J),J=1,L)
                                      INPUT TO SOLVIT ON TAPE 3
  PRESCRIBED TANGENTIAL VELOCITY
                                         OUTPUT FROM SOLVIT ON TAPE -3.
   TAPES 1 AND 2 ARE SCRATCH TAPES
      CALL SOLVIT(WKAREA, NT, NSIGA, 16000, 3, 1, 2, 3, +9010)
      REWIND 9
      GO TO 800
                                   GENERATED (RESEP) BOUNDARY CONDITIONS
C.*.**
       ***AXISYMMETRIC FLOW
       ***NPB1 = THE NUMBER OF ELEMENTS ON BODY 1
C * * *
       ***NPB2 = THE NUMBER OF ELEMENTS ON BODY 2
C.* * *
  255 \text{ NPB1} = \text{ND(1)} - 1
      NPB2 = ND(2) - 1
      NSIGA ≈ 3 ·
      NSIGC ≈ 1
      NSIGEC = 1
      L = NT + NSIGA
       ***L IS THE TOTAL WICTH OF THE MATRIX FOR AXISYMMETRIC FLOW INCL.
C.* * *
C***
       ***RIGHT HAND SIDES
      READ (4)
      READ(4) ( COSSQR(I), I = 1, NPB1), (RHS(I), I = 1, NPB1)
      REWIND 4
      CC \ 260 \ I = 1,NPB1
      R(I,1) = 0.0
      R(I,2) = 1.0
  260 R(I,3) = CCSSQR(I)
      NBEGIN = NPB1 + 1
      NEND = NPB1 + NPB2
      CC 265 I = NBEGIN, NENC
      R(I,1) = 1.0
      R(1,2) = 0.0
  265 R(I,3) = 0.0
  29C REWIND 4
      ASSIGN 400 TO M
      IF (FLG12.NE.O) ASSIGN 300 TO M
      DC 700 I = 1, NT
      GO TO M, (300,400)
  300 READ (9) (A(J), J=1,NT), (A(J), J=1,NT), (A(J), J=1,NT)
```

```
GC TO 500
  400 READ (9) (A(J), J=1, NT)
  500 CO 600 J = 1, NSIGA
      K = NT+J
 600 A(K) = R(I,J)
  700 WRITE (3) (A(J), J=1,L)
  AXISYMMETRIC FLOW
                              INPUT TO SOLVIT ON TAPE 3
                              OUTPUT FROM SOLVIT ON TAPE 3
C
   TAPES 1 AND 2 ARE SCRATCH TAPES
      CALL SOLVIT(WKAREA, NT, NSIGA, 16000, 3, 1, 2, 3, +9020)
      REWIND 9
C **
                * PREPARE CROSSFLOW MATRIX TAPE (11)
                * SKIP SINA * READ COSA
C **
  800 IF (FLG04.EQ.0) GO TC 1610
      K = 0
      L = NT + NSIGC
      IF (FLG22.GT.0) GO TO 910
      READ (4) (A(I), I=1,NT), (A(I), I=1,NT)
     _IF (FLG17.NE.O) GG: TC:820
      K = K+1
      CC 810 I = 1, NT
  810 R(I,K) = A(I)
  82C IF (NNU) 900,900,830
  830 CC 850 J = 1, NNU
      READ (4) MS, (A(I), I=1, NT)
      IF ( MS.EQ.O.OR.MS.EQ.2.OR.MS.EQ.4) GO TO 850
      K = K+1
      CC 840 I = 1, NT
  840 R(I,K) = -A(I)
  850 CONTINUE
  9CC REWIND 4
      CC TO 1000
C * * *
       ***CROSS FLOW *
                            GENERATED (RESEP) BOUNDARY CONDITIONS
  910 CC 920 I = 1,NPB1
  920 R(I,1) = -RHS(I)
      CO 930 I = NBEGIN, NEND
  930 R(I,1) = 0.0
 1000 ASSIGN 1300 TO M
      IF (FLG12.NE.O) ASSIGN 1200 TO M
      CO 1600 I = 1, NT
      GD TO M, (1200,1300)
 12CO READ (10) (A(J), J=1, NT), (A(J), J=1, NT), (A(J), J=1, NT)
       ***FORM PHI MATRIX FROM THETA (CROSS FLOW) MATRIX
      CG 1250 J = 1.NT
 1250 A(J) = Y2(I) * A(J)
      GC TO 1400
 13CC READ (10) (A(J), J=1, NT)
 1400 CO 1500 J = 1, NSIGC
      K = NT+J
 1500 A(K) = -R(I,J)
 1600 WRITE (11) (A(J), J=1,L)
                    INPUT TO SOLVIT ON TAPE 11
   CRGSS FLOW
                    OUTPUT FROM SOLVIT ON TAPE 3
   TAPES 1 AND 2 ARE SCRATCH TAPES
      CALL SOLVIT(WKAREA, NT, NSIGC, 16000, 11, 1, 2, 3, +9030)
      REWIND 10
```

```
1610 CONTINUE
       ***EXTRA CROSS FLOW
      REWIND 11
      IF (FLG21.EQ.O.AND.FLG22.EQ.O)RETURN
      L = NT + NSIGEC
      IF (FLG22.GT.0) GO TO 1800
C***
       ***EXTRA CROSS FLOW
                             * NCN-UNIFORM FLOW ONLY
C.*.*.*
       ***SKIP RECORD WITH SINES AND COSINES
      CC 1650 J=1, NNU
      READ(4) MS, (A(I), I=1,NT)
      IF (MS.LT.2.OR.MS.EQ.3) GO TO 1650
      K = K + 1
      CC 1640 I = 1.NT
 1640 R(I,K) = A(I)
 1650 CONTINUE
      GC TO 1900
       ***EXTRA CROSS FLOW
                                    GENERATED (RESEP) BOUNDARY CONDITIONS
 1800 \text{ CO } 1820 \text{ I = 1,NPB1}
 1820 R(I,1) = COSSQR(I)
      CO 1840 I = NBEGIN, NEND
 1.84C R(I.1) = 0.0
 1900 REWIND 4
C.***
                          SCLVE A MATRIX
       ***M IS 1920
       ASSIGN 1920 TO M
                            SCLVE POTENTIAL MATRIX
       ***M IS 1940
       IF (FLG12.NE.G)ASSIGN 1940 TO M
      DC 1980 \cdot I = 1,NT
      GO TO M, (1920,1940)
C:***
       ***SOLVE A MATRIX
 1920 READ (8) (A(J),J = 1,NT)
       GO TO 1960
 1940 \text{ READ } (8) (A(J), J=1, NT), (A(J), J=1, NT), (A(J), J=1, NT)
       ***FORM PHI MATRIX FROM THETA (EXTRA CROSS FLOW) MATRIX
C***
      EG 1950 J = 1,NT
 1950 A(J) = Y2(I) * A(J) / 2.0
 1960 DO 1970 J = 1, NSIGEC
       K = NT + J
 1970 A(K) = R(I,J)
 1980 WRITE (11) (A(J), J=1,L)
                               INPUT TO SOLVIT ON TAPE 11
       ***EXTRA CROSS FLOW
C***
       ***OUTPUT FROM SCLVIT ON TAPE 3
C * * *
        ***TAPES 1 AND 2 ARE SCRATCH TAPES
C * * *
      CALL SOLVIT (WKAREA, NT, NSIGEC, 16000, 11, 1, 2, 3, +9040)
      REWIND 8
      REWIND 11
      RETURN
 2000 NR = NT-NMA
      L = NMA+1
       READ (4) (R(I,1),I=1,NMA)
       READ (4) (FF(I), I=1, NR)
       CC 2100 I = 1. NR
 2100 \text{ FF(I)} = \text{FF(I)/FOURPI}
      EACKSPACE 4
      WRITE (4) (FF(I), I=1,NR)
```

```
REWIND 4
      CC 2300 I = 1, NMA
      READ (9) (A(J), J=1, NMA), (T(J), J=1, NR)
      CC 2200 J = 1, NR
2200 R(I,I) = R(I,I) - T(J) * FF(J)
      A(L) = R(I,1)
23CC WRITE (3) (A(J), J=1,L)
                              INPUT FOR SOLVIT ON TAPE 3
C.
  PRESCRIBED VCRTICITY
                              CUTPUT FROM SOLVIT ON TAPE 3
   TAPES 1 AND 2 ARE SCRATCH TAPES
      CALL SOLVIT(WKAREA, NMA, L - NMA, 16000, 3, 1, 2, 3, +9000)
      REWIND 9
      CC 10, 800
 9000 WRITE(6,9001)
 9001 FORMAT(61H NOT ENCUGH SPACE RESERVED IN SOLVIT FOR PRESCRIBED VORT
     GC TO 9080
 9010 WRITE(6,9011)
 9011 FORMAT(71H NCT ENCUGH SPACE RESERVED IN SOLVIT FOR PRESCRIBED TANG
     1ENTIAL VELCCITY)
      GC TO 9080
 9023 WRITE (6,9021)
 9021 FORMAT(58H NCT ENCUGE SPACE RESERVED IN SOLVIT FOR AXISYMMETRIC FL
     1CW)
      GC TO 9080
 9030 WRITE(6.9031)
 9031 FORMAT(51H NOT ENOUGH SPACE RESERVED IN SOLVIT FOR CROSS FLOW)
      GO TO 9080
 9040 WRITE (6,9041)
 9041 FCRMAT (57H NOT ENCUGE SPACE RESERVED IN SOLVIT FOR EXTRA CROSS FL
     1CW)
 9080 STOP
      END
```

```
SIBFTC SOLV
                DEBUG, DECK
C20X9
       SUBROUTINE
                   SOLVIT (A, NC, MC, KD, NI, MM, NO, NW,
0.0
MATRIX
                        HESS * PROGRAMMED BY T. M. RIDDELL
       DIMENSION
C
       LOGICAL
                LAST
C
       CALL TIMEV (AA1)
       N' = ND
       M = MD
       KORE = KD
       NPM = N + M
                           * N) .GT. KORE) RETURN 1
       IF (MAXO'(3 * NPM. M
       MT = MM
       REWIND MT
       NIN = NI
       CEBUG NIN.NI.NO
       REWIND NIN
       NOUT = NO
       REWIND NOUT
       MP1 = M + 1
       NN = N
       NEL = NPM
      CALCULATE THE MAXIMUM NO. OF ROWS, *K*
   10 K = (KORE - NEL) / NEL
C
      TEST TO SEE IF THE REST OF THE MATRIX WILL FIT IN CORE
       LAST = K .GE. NN
       IF (LAST) K = NN
      READ .K. ROWS OF THE AUGMENTED 'A' MATRIX
С
C
   30. NT = 0.
       60 \ 40 \ IB = 1, K
       NS = NT + 1
```

NT = NT + NEL

```
.40 READ (NIN) (A(IO), IC = NS, NT)
      CHECK TO SEE IF WE WERE UNLUCKY ENOUGH TO END UP WITH ONLY ONE ROW
       IF (K .EQ. 1) GO TO 90
    - 'K' IS GREATER THAN 'I' SO WE CAN START THE TRIANGULARIZATION;
      NELP1 = NEL + 1
      NS = - NEL
      NELP2 = NELP1 + 1
Ċ
       FORM THE 'TRAPEZOIDAL' ARRAY
      CC 50 IB = 2, K
      NP = NELP2 - IB
      NS = NS + NELP1
      NT = NS
      CO 50 IC = 18, K
      NT = NT + NEL
      MN = NT
       NB = NS
       \Delta(NT) = (-\Delta(NT)) / \Delta(NS)
      CC 50 NF = 2, NP
      MN = MN + 1
      NB = NB + 1
   50 A(MN) = A(MN) + A(NT) \neq A(NB)
       IF (LAST) GO TO 90
       WRITE THE 'TRAPEZCIDAL' MATRIX ON TAPE
      NT = 0
      NP = NEL
      NS = - NEL
      00 60 10 = 1, K
      NS = NS + NELP1
      NT = NT 4 NEL
      WRITE (MT) NP, (A(IB), IB = NS, NT)
   60 \text{ NP} = \text{NP} - 1
      NP = NP - M
      NS = KORE - NEL + 1
    - READ ANOTHER ROW
      CC 80 IC = 1, NP
       READ (NIN) (A(IB), IB = NS, KORE).
      MODIFY THIS ROW BY THE "TRAPEZOIDAL" ARRAY
      NT = 1
       MN = NS
      CC 70 IB = 1, K
       NB = NT
       NF = MN + 1
       A(MN) = \{-A(MN)\} / A(NT)
       DO 65 NN = NF, KORE
```

```
NB = NB + 1
   65 A(NN) = A(NN) + A(MN) * A(NB)
      MN = NF
   70 NT = NT + NELP1
C - - WRITE THE MODIFIED ROW ON TAPE
   80 WRITE (NOUT)
                         (A(NT), NT = MN, KORE)
      REWIND NOUT
      REWIND NIN
      SWITCH THE TAPES
      NT = NIN
      NIN = NOUT
      NOUT = NT
      RE-CALCULATE ROW LENGTH AND LOOP BACK
      NEL = NEL - K
      NN = NEL - M
      GC TO 10
C
C
      REWIND ALL TAPES
   90 REWIND MT
      REWIND NIN
      REWIND NOUT
      CONDENSE THE MATRIX
      NN = NEL
      NL = NELP1
       IF (K .EQ. 1) GO TO 105
      NS = 1
      NT = NEL
      CC 100 IB = 2, K
      NS = NS + NELP1
      NT = NT + NEL
      DO 100 IO = NS, NT
       A(NL) = A(IC)
  100 \text{ NL} = \text{NL} + 1
  105 \text{ K1} = \text{KORE} - \text{K} * \text{M} + 1
C - - THERE, NOW WE CAN START THE BACK-SOLUTION
C * * NOTE..THE FIRST AVAILABLE LOCATION FOR THE SOLUTIONS IS A(N1)
      NREM = N
      NEL = NPM
      LAST = K .EQ. N
      NPASS = 0
      SOLVE FOR THE ANSWERS CORRESPONDING TO "K" ROWS
C
  110 \text{ KM1} = \text{K} - 1
      KP1 = K + 1
```

```
NS = NL - MP1
      NPASS = NPASS + 1
      EO 130 MN = 1, M
      NE = NS + MN.
      \Delta(NF) = \Delta(NF) / \Delta(NS)
      NT = NS
      IF (KM1 .EQ. 0) GO
                          TC 130
      CO 125 IB = 1, KM1
      NF = NF - IB - P
      NT = NT - PP1 - IB
      SUM = 0.0
      NP = NF
      N2 = MP1 + I.B
      CC 120 IO = 1, IB
      NN = NT + IO
      NP = NP + N2 - IC
  12C SUM = SUM + A(NN) * A(NP)
  125 A(NF) = (A(NF) - SUM) / A(NT)
  130 CONTINUE
C
      MCVE THE SCLUTIONS TO CONTIGUOUS LOCATIONS STARTING AT A(N1)
C
      N1 = KORE + 1
      CO 140 NN = 1, K
      CC 135 MN =-1, M
      NL = NL - 1
      N1 = N1 - 1
  135 A(N1) = A(NL)
  140 NL = NL - NN
     WRITE THE SOLUTIONS ON TAPE
      WRITE (NIN) K
      NS = N1 - 1
      EO 145 MN = 1. M
      NT = NS + MN
  145 WRITE ( NIN ) (A(IO), IO = NT, KORE, M)
  - - TEST IF THIS IS THE LAST PASS
      IF (LAST) GC TO 200
    - WE MUST NOW MODIFY THE TRIANGULAR MATRIX TO REFLECT THE EFFECT OF
      THE SOLUTIONS OBTAINED SO FAR (EQ 21)
   * NOTE..LOCATIONS A(1) TO A(N1-1) ARE NOW FREE TO USE
C
   - CALCULATE THE NEXT VALUES OF 'NEL' AND 'NREM'
      NELOLD = NEL
      KOLD = K
      NEL = NEL - K
      NREM = NREM - K
C
      NOW APPLY THE INCREDIBLE FORMULA FOR THE NEW "K"
      K = (-4 * M - 1) / 2 + IFIX(SQRT(0.25 + FLOAT((4 * M + 2) * M +
```

```
1 2 * (KORE - NELOLD))))
      NROW = NREM - K + 1
      IF (K .LT. NREM) GO TC 150
      LAST = .TRUE.
      NROW = 1
      K = NREM
 150 NS = 1
      NT = NELOLD + 1
  - ~ READ IN THE ROWS TO BE MODIFIED
      DO 190 IB = 1, NREM
      NT = NT - 1
      IF (IB .LE. NROW) GO TO 160
      NS = NS + NN
      NT = NT + NN
  160 READ ( MT ) NN, (A(IC), IO = NS, NT)
      NP = N1 - 1
      NF = NT - M - KM1
      NN = NN - KOLD
      CC 170 MN = 1, M
      N2 = NF
      NA = NP + MN
      NB = NA
      SUM = 0.0
      CO 165 IO = 1, KOLD
      SUM = SUM + A(N2) + A(NA)
      N2 = N2 + 1
 165 NA = NA + M
      N2 = N2 + MN - 1
 170 A(N2) = A(N2) - SUM
     WRITE THE MODIFIED ROW ON TAPE OR CONDENSE THE ROW
      NL = NT - M + 1
      IF (IB .GE. NROW) GO TO 175
      NF = NL - KP1
      WRITE (NOUT) NN, (A(IC), IO = NS, NF), (A(IO), IO = NL, NT)
      GO TO 190
  175 NF = NL - KOLD:
      DO 180 MN = NL, NT
      A(NF) = A(MN)
  180 NF = NF + 1
  190 CONTINUE
      REWIND MT
      REWIND NOUT
C
     SWITCH THE TAPES
      NT = MT
      MT = NOUT
      NCUT = NT
      LOOP BACK THRU THE SCLUTION.
      NL = NF
```

```
GO TO 110
C - - START TO WRAP IT UP
  2CC REWIND NIN
      N2 = N.
   * NOTE .. AT THIS POINT ALL LOCATIONS A(1) THRU A(KORE) ARE FREE
      CO 220 IB = 1, NPASS
      READ (NIN) K
      N1 = N2 - K + 1
      NS = N1
      NT = N2
   - REAC IN THE SOLUTIONS
      CC 210 IC = 1, M
      READ (NIN) (A(NN), NN = NS, NT)
      NT = NT + N
  210 NS = NS + N
  220 N2 = N1 - 1
        REWIND ALL INPUT TAPES
      REWIND 'NIN
      REWIND MT
      REWIND NOUT /
    - WRITE THE SOLUTIONS ON TAPE
     NT = 0
      CO 230 IO = 1, M
      NS = NT + 1
      NT = NT + N
  230 WRITE (NW) (A(NN), NN = NS, NT)
C
      CALL TIMEV(AA2)
      EB = (AA2 - AA1) / 60.
      WRITE (6, 300) N, N, M, BB
  300 FORMAT (4HOTHE I5, 2H X I5, 12H MATRIX WITH I4, 35H RIGHT SIDES WA
     IS SOLVED DIRECTLY IN F.8.3, 9F MINUTES. )
      RETURN
      END
```

```
SIBETC PATA
                DECK
C
      SUBROUTINE PART4
C
                * COMPUTE VELOCITY COMPONENTS AND PRINT
      COMMON
                    HEDR (10)
                               , CASE
                                           , NB
                                                       , NNU
                                           ,FLG05
                                                                   ,FLG07
     1
                   ,FLG03
                               ,FLG04
                                                      FLG06
     2
                               ,FLG09
                                                                   ,FLG12
                   ,FLG08
                                           ,FLG10
                                                       ,FLG11
     3
                                           ,FLG15
                                                       FLG16
                                                                   ,FLG17
                   ,FLG13
                               •FLG14
                               ,FLG19
                   ,FLG18
                                           FLG20
                                                       ,FLG21
                                                                   ,FLG22
                               ,FLG24
                                                                   ,FLG27
                                                       •FLG26
                   FLG23
                                           •FLG25
      DOUBLE PRECISION
                          HEDR, CASE
      INTEGER
                    FLG03
                               ,FLG04
                                           ,FLG05
                                                       FLG06
                                                                   FLG07
                   , FLG08
                               ,FLG09
                                           ,FLG10
                                                       ,FLG11
                                                                   ,FLG12
     2
                   .FLG13
                               ,FLG14
                                           ,FLG15
                                                       •FLG16
                                                                   ,FLG17
     3
                                                                   ,FLG22
                   ,FLG18
                               ,FLG19
                                           ,FLG20
                                                       FLG21
                                           ,FLG25
                                                                   FLG27
                   ,FLG23
                               ,FLG24
                                                       •FLG26
                                                       NUNA(4)
                                                                   ,TYPEA(4)
      COMMON
                                           , MN
                    NT
                               ,NE(11)
     1
                   .NER1
                               ,NER2
                                           , NMA
                                                       , NSIGA
                                                                   , NSIGC
                   , NUNC (4)
                               ,TYPEC(4)
                                           ,NLF(11)
      COMMON IEC, NSIGEC, TYPEEC(4), NUNEC(4)
      REAL
                    MN
C
      COMMON /C4/
                                Y1(500), X2(500),
                                                       Y2(500),
                                                                  DELS(500),
                      X1(500),
                      SINA(500), COSA(500), XP(500),
                                                       YP (500)
                                                 A(500),
      COMMON /TC/
                      RB(500,8),SIG(500,4),
                                                            B(500).
                                                                        Z(500).
                                                 XN(500,4),
                      PHI(500,4),
     1
     2 .
                      T(500,4), T3(500,4),
                                                 NSIG.
                                                            NP.
                                                                        SUMV
                                                                  NI.
C
                 * START
      REWIND 3
      IF (FLG05.EQ.0) GC TC 30
                * READ OFF-BCCY XP, YP
C
      NP=ND(NB+1)
      READ (12) (XP(I), I=1, NP), (YP(I), I=1, NP)
                 * READ X1,Y1,X2,Y2,CELS WITH MACH NO. ADJUSTMENT IF ANY
   30 NI=NT+NB
      READ (12)
                   (X1(I), I=1, NI), (Y1(I), I=1, NI), (X2(I), I=1, NT)
                  ,(Y2(I), I=1,NT), (DELS(I), I=1,NT)
                 * READ SINA, COSA, NO, TO...
      READ (4) \{A(I), I=1, NT\}, \{B(I), I=1, NT\}
      SUMV = 0.0
      EC 100 I = 1, NT
      SINA(.I) = A(I)
      COSA(I) = B(I)
  100 SUMV = SUMV + B(I)*DELS(I)*Y2(I)**2
      SUMV = SUMV*3.141593
      IF (FLG03.LE.O) GO TO 10CO
      L = 1
      LS = 0
      IF (FLG16.NE.O) GO TO 200
      00 \ 150 \ I = 1, NT
      RB(I,L) = A(I)
  150 RB(I,L+1) = B(I)
```

```
200 IF (NNU) 600,600,300
 300 EE 500 J = 1, NNU
     READ (4) MS_{*}(A(I), I=1, NT), (B(I), I=1, NT)
     IF (MS.EQ.1.OR.MS.EQ.2.OR.MS.EQ.5) GO TO 500
     L = L+2
     LS = LS+1
     IF (LS.EQ.1.AND.FLG16.GT.O) L=L-2
     DO 400 I = 1, NT
    RB(I,L) = A(I)
 4CC RB(I,L+1) = B(I)
 5CO CONTINUE
600 REWIND 4
     NSIG = NSIGA
     CALL AXIS
 1000 IF (FLG04.LE.0) GO TO 2000
      IF (FLG03.LE.0) GC TC 1050
     READ (4) (A(I), I=1, NT), (B(I), I=1, NT)
 1050 L = 1
     LS=0
    IF (FLG17.NE.O) GO TO 1200
     CC 1100 I = 1, NT
      RB(I,L) = A(I)
 1100 RB(I,L+1) = B(I)
 1200 IF (NNU) 1600,1600,1300
 1300 DG 1500 J = 1, NNU , ...
     READ (4) MS_{*}(A(I), I=1, NT), (B(I), I=1, NT)
      IF ( MS.EQ.O.OR.MS.EQ.2.CR.MS.EQ.4) GO TO 1500
     L = L+2
   LS=LS+1
     IF (LS.EQ.1.AND.FLG17.GT.O) L=L-2
     CC 1400 I = 1, NT
      RB(I,L) = A(I)
 14CC RB(I,L+1) = B(I)
 1500 CONTINUE
 16CC REWIND 4
      NSIG = NSIGC.
      CALL CROSS
 2000 IF (FLG21.LE.O) RETURN
      REWIND 4
      IF(FLG22.GT.O) GO TO 2400
       *** IF CENTROL REACHES THIS POINT, THERE IS AT LEAST 1 NNU
       ***SKIP RECORD WITH SIN AND COS
C***
      READ (4)
      CC 2200 J = 1.NNU
      READ(4) MS, ( A(I), I=1, NT ), ( B(I), I=1, NT )
      L = L + 1
      CC \cdot 2200 I = 1,NT
      RB(I,L) = A(I)
2200 RB(I,L+1) = B(I)
2400 REWIND 4
      NSIG = NSIGEC
       ***CALL TO EXCROS FOR GENERATED (RESEP) BOUNDARY CONDITIONS
      CALL EXCROS
      RETURN
      END
```

```
C
      SUBPOUTINE AXIS
C
C
                * COMPUTE AXISYMMETRIC VELOCITY COMPONENTS AND PRINT
C
      COMMON
                   HEDR(10)
                               , CASE
                                           , NB
                                                       . NNU
                   •FLG03
                               ,FLG04
                                           .FLG05
                                                       ,FLG06
     1
                                                                   FLG07
     2
                   FLG08
                               ,FLG09
                                           ,FLG10
                                                                   •FLG12
                                                       ,FLG11
     3
                   ,FLG13
                               ,FLG14
                                           ,FLG15
                                                       ,FLG16
                                                                   FLG17
                                           ,FLG20
                   •FLG18
                               •FLG19
                                                       ,FLG21
                                                                   •FLG22
                   , FLG23
                               ,FLG24
                                           ,FLG25
                                                       FLG26
                                                                   FLG27
      COUPLE PRECISION
                          HEDR, CASE
      INTEGER
                    FLG03
                               ,FLG04
                                           •FLG05
                                                       FLG06
                                                                   •FLG07
                   ,FLG08
                               ,FLGC9
                                           •FLG10
                                                                   .FLG12
     1
                                                      ,FLG11
     2
                   ,FLG13
                               .FLG14
                                           ,FLG15
                                                       ,FLG16
                                                                   FLG17
     3
                   ,FLG18
                               ,FLG19
                                                                   FLG22
                                           •FLG20
                                                       •FLG21
                                           ,FLG25
                   •FLG23
                               FLG24
                                                                   •FLG27
                                                       ,FLG26
      COMMON
                    NT
                               .NC(11)
                                                       , NUNA (4)
                                                                   , TYPEA(4)
                                           , MN
                                           , NMA
                   , NER1
                               , NER 2
                                                       , NSIGA
                                                                   , NSIGC
                   , NUNC (4)
                               ,TYPEC(4)
                                           , NLF(11)
      COMMON IEC, NSIGEC, TYPEEC(4), NUNEC(4)
      COMMON /P/ IPUVEL
                    MN
      REAL
C
      COMMON /C4/
                      X1(500),
                                 Y1(500).
                                            X2(500).
                                                       Y2(500).
                                                                  DELS(500).
                      SINA(500), COSA(500), XP(500),
                                                       YP (500)
      COMMON /TC/
                                                 A(500),
                                                            B(500),
                      RB(500,8),SIG(500,4),
                                                                       Z(500),
                                                 XN(500,4),
     1
                      PHI(500,4),
                      T(500.4), T3(500.4),
                                                 NSIG.
                                                            NP.
                                                                       SUMV
     2
     3
                      .SUMM(4)
C
                      VX(500,4), VY(500,4), VT(500,4), TH(500,4), CP(500,4),
      DIMENSION
                      SUMTDS (4)
C
      EQUIVALENCE
                     (VX(1,1), XN(1,1)), (VY(1,1),T(1,1)),
        (VT(1,1), T3(1,1)), (TH(1,1),SIG(1,1)), (CP(1,1),T3(1,1))
C
      EQUIVALENCE (VY, VYDP), (VT, VTDP), (T, TDP), (VX, VXDP)
      DIMENSION TOP(1), VXDP(1), VYDP(1), VTDP(1)
                * START
C
      NC=NT
      IF (FLG19.GT.O) NC=NMA
      IF (FLG08.EQ.0) GO TO 10
                 * TITLE FOR MATRIX PRINT
      WRITE (6,150) HEDR, CASE
      WRITE (6,8)
    8 FORMAT (1H 43H MATRICES A.B.Z BY ROWS * AXISYMMETRIC FLOW
C
                * READ AXIS SIGMAS
   10 CO 20 N=1.NSIG
      SUMM(N)=0.0
```

SIBFTC AXIS

DECK

```
SUMTDS(N)=0.0
   2C READ (3) (SIG(I,N), I=1,NC)
      IF (FLG19.LE.O) GC TC 25
      READ (4)
      NR = NMA+1
      READ (4) (SIG(I,1),I=NR,NT)
      REWIND 4
                * NO. OF MIDPOINTS LCOP
   25 CC 100 I=1.NT
                * KEAD MATRICES A,B,Z
      READ (9) (\Lambda(J), J=1, NT), (B(J), J=1, NT), (Z(J), J=1, NT)
                * NC. OF FLOWS LOCP
      N1=0 -
      CC 70 N=1,NSIG
      N.1 = N 1+2
      SN=0.0
      ST=0.0
      SP=0.0.
C
                * NO. OF ELEMENTS LCOP
      CC 30 J=1,NT
      SN = SN + A(J) * SIG(J,N)
      ST=ST+B(J)*SIG(J,N)
   30 SP=SP+Z(J)*SIG(J,N)
      IF(FLG22.GT.0) GO TO 68 -
      IF (FLG12.EQ.0) GO TO 40
      XN(I,N)=SN
      PHI(I,N)=SP-RB(I,N1-1)
      CC TO 50
   4C \times N(I,N) = SN - RB(I,N1-1)
      PHI(I,N)=SP
   50 IF (FLG11.EQ.0) GC TC 60
      T(I,N)=ST
      GC TC 65
   6C T(I,N)=ST+RB(I,N1)
   65 SUMM(N)=SUMM(N)+PHI(I,N)*Y2(I)*RB(I,N1-1)*DELS(I)
      CP(I,N)=1.-T(I,N)**2
      GC TC 70
   68 \times N(I,N) = SN
      PHI(I,N) = SP
      T(I,N) = ST
      CP(I,N) = 1.0 - T(I,N)**2
   7C CONTINUE
      IF(FLG08.EC.0) GO TO 100
      WRITE (6,80) I, (A(J),J=1,NT)
   80 FORMAT (1H0 13H MATRIX A ROW, 16/ (1H 10F10.5))
      kRITE (6,85) I, (B(J), J=1,NT)
   85 FCRMAT (1HC 13H MATRIX B RCW 16/ (1H 10F10.5))
      WRITE (6,9C) I, (Z(J),J=1,NT)
   90 FCRMAT (1HO 13H MATRIX Z ROW 16/ (1H 10F10.5))
  1CC CCNTINUE
      IF (MN.EQ.C.O) GC TO 130
                * MACH NO. ADJUSTMENT
      C1=MN+MN
      C2=1.-D1
      C3=SQRT(D2)
      C4=.7*D1
```

```
Ĉ5≐•2¥D1
    CC 120 N=1,NSIG
    CC 120 I=1;NT
    ŤX=(Ť(Ĩ,N)*COSA(I)-1.)/D2+1.
    TY = (T(I,N) * SINA(I)) / D3
    T(I,N) = SQRT(TX * TX + TY * TY)
12C CP(I,N)=((1.+D5*(1.-T(I,N)**2))**3.5-1.)/D4
              * ELIMINATE MACH NO ÉFFECT FOR PRINTOUT
    CC 122 I=1.NI
122 X1(I)=X1(I)+D3
    N = 0
    J1=0
    CC 126 K=1,NB
    M=N+1
    N = N + ND(K) - 1
    CC 124 J=M,N
    Ji=Ji+i
    Ťi=Xi(ji+1)-Xi(ji)
    T2 = Y1(J1+1)-Y1(J1)
    X_{2}(J) = (X_{1}(J_{1}+1)+X_{1}(J_{1}))/2.
    CELS(J)=SGRT(T1+T1+T2+T2)
    COSA(J)=T1/DELS(J)
124 SINA(J)=T2/DELS(J)
126 Ji=Ji+1
              * PRINT AXIS FLOW (CN-BODY) OUTPUT
130 CC 250 L=1,NSIG
    ŘÀ ≈ L
    İF
       (FLG16.LE.0) KA=L-1
    İF
      (FLG22.GT.G) KA = L
    IF(FLG22.GT.O)GD TO 136
    SUMM(L)=-6.2831853*SUMM(L)
    \hat{C}C_{\perp}\hat{I}\hat{3}\hat{5}\hat{J}=1, NT
    SUMTOS(L) = SUMTOS(L) + Ť(J;L)*DELŠ(J)
136 I = 1
    J = 1
    M = 1
    N=NC(M)
    LCTR=22
140 WRITE (6,150) HEDR, CASE
150 FORPAT (1H1 25%, 26HCCUGLAS AIRCRAFT COMPANY /
            28X, 21HLONG BEACH DIVISION ///
             6X, 10A6, 4X, 10HCASE NO. A6 // )
    ÎF (FLG22.GT.O) GC TO 178
    IF (L.GT.1.CR.FLG16.NE.O) GO TO 170
    WRITE (6,160)
160 FORMAT (1H 34H ON-BODY UNIFORM AXISYMMETRIC FLOW )
    GC TO 190
      (TYPEA(KA).GE.O.O) GO TC 175
170 IF
    MRITE (6,172)
172 FORPAT (18 44H FLOW GENERATOR * ROTATING BODY * TYPE ERROR )
175 IF (NUNA(KA).EQ.123456) WRITE (6,177)
177 FORMAT (27H CN-BODY STRIP VORTEX FLOW)
178 IF (NUNA(KA).NE.123456) WRITE(6,180)NUNA(KA)
180 FORMAT (1H 42H CN-BODY NON-UNIFORM AXISYMMETRIC FLOW NO: 18)
190 WRITE (6,200)
200 FORMAT (1H 5X 24H TRANSFORMED COORDINATES //
```

```
12X 1HX 13X 1HY 13X
                                             2HT1 12X 2HCP
              6x 5HCOS A 7x 5HSIGMA 11x 1HN 13x 3HPHI //)
  210 WRITE (6,220) I,X1(I),Y1(I),X2(J),Y2(J),
                                                        T(J,L),CP(J,L),
                 SINA(J), COSA(J), SIG(J, L), XN(J, L), PHI(J, L)
  220 FORMAT (1H I3,2F14.7/ 4X 4F14.7,2F11.5,3F14.7)
      I = I + 1
      J=J+1
      IF (I.EQ.N) GO TO 230 (
      IF (I.LE.LCTR) GO TO 210
      LCTR=LCTR+22
      GC TC 140
  230 N=M+1
      N=N+ND(M)
     WRITE (6,240) I,X1(I),Y1(I)
  240 FORMAT (1H I3, 2F14.7 //)
      I = I + 1
      IF ( J - NT ) 210, 242, 242
  242 IF(FLG22.GT.O) GO TO 250
      WRITE(6,244) SUMM(L), SUMV, SUMTDS(L)
  244 FORMAT (1HC 1GX 13H ACCEC MASS =F12.7, 4X 9H VOLUME = F12.7,
              5x 18HSUM (T)(CELTA S) = F12.7
  25C CONTINUE
      CALL BCDUMP(X2(1), X2(NT))
      CALL BCDUMP(Y2(1),Y2(NT))
      CALL BCDUMP(TDP(1),TEP(NT))
       IF (IPUVEL .EQ. 0) GC TO 2.52
      LCC = 100
      CALL PUNCHC (X2, NT, LCC, CASE )
      LCC = 500
      CALL PUNCHC ( Y2, NT, LOC, CASE )
      LCC = 900
      CALL PUNCHY ( T, NT, NSIG, LCC, CASE )
  252 IF (FLG05.EG.O) RETURN
               * OFF-BODY PCINT
      IF (FLG15.LE.0) GO TC 258
      M = 0
      CO 254 I = 1, NB
  254 IF (NLF(I) \cdot LE \cdot O) M = M + 1
      IF ( M .EQ. 0 ) GC TC 258
      M = NNU + 1
      CC 255 I = 1, MM
  255 READ (4)
      IF (FLG22.GT.O)READ(4)
      CC = 256 J = 1, M
  256 READ(4) (RB(I,J),I = 1,NP), (T3(I,J),I = 1,NP)
      REWIND 4
  258 CC 300 I = 1. NP
      L = 0
               * READ MATRICES X,Y,Z
C
      READ (9) (A(J), J=1, NT), (B(J), J=1, NT), (Z(J), J=1, NT)
               * NO. OF FLOW
      DC 300 N=1,NSIG
      KA=N
    IF (FLG16.LE.O) KA=N-1
      SX=0.0
      SY=0.0
```

```
SP=0.0
               * NO. OF ELEMENTS LOOP
      DC 260 J=1.NT
      SX=SX+A(J)*SIG(J,N)
      SY=SY+B(J)*SIG(J,N)
 260 SP=SP+Z(J)*SIG(J,N)
      PHI(I,N)=SP
      IF (FLG22.GT.0) GC TO 270
         (FLG11.GT.O) GO TO 270
      IF (N.NE.1.OR.FLG16.GT.0) GO TO 262
      VX(I,N) = SX+1.
      GC TO 280
  262 IF (NUNA(KA).NE.123456) GO TO 270
      L=L+1
      VX(I,N)=SX+RB(I,L)
      VY(I,N)=SY+T3(I,L)
      GO TO 300
  270 VX(I.N) = SX
  280 VY(I,N) = SY
  300 CONTINUE
      IF (MN.EQ.O.O) GO TO 330
C
               * MACH NO. ACJUSTMENT
      CC 320 N=1.NSIG
      CO 320 I=1.NP
      VY(I,N)=VY(I,N)/D3
  320 VX(I,N)=\{VX(I,N)-1.\}/C2+1.
      CG 322 I = 1 \cdot NP
  322 XP(I)=XP(I)*D3
C
               * COMPUTE VT AND THETA
  330 DO 335 N=1,NSIG
      CC 335 I=1,NP
      VT(I,N)=SQRT(VX(I,N)**2+VY(I,N)**2)
  335 TH(I,N)=ATAN2(VY(I,N),VX(I,N)) * 57.29578
C
               * PRINT AXIS FLOW (CFF-80DY) OUTPUT
      CC 450 L=1,NSIG
      IF(FLG16.LE.O.AND.FLG22.LE.O) KA = L - 1
      I = 1
      LCTR=45
  340 WRITE (6,150) HEDR, CASE
      IF (L.GT.1.OR.FLG16.NE.O) GO TO 370
      IF(FLG22.GT.O) GO TO 378
      WRITE (6,360)
  360 FORMAT (1H 35H OFF-BODY UNIFORM AXISYMMETRIC FLOW )
      GO TO 390
  370 IF (TYPEA(KA).GE.O.) CO TO 375
      WRITE (6,172)
  375 IF (NUNA(KA).EQ.123456) WRITE (6,377)
  377 FORMAT (28H OFF-BODY STRIP VORTEX FLOW)
  378 IF (NUNA(KA).NE.123456) WRITE (6,380) NUNA(KA)
  38C FORMAT (1H 43H OFF-BOCY NON-UNIFORM AXISYMMETRIC FLOW NO. 18)
  390 WRITE (6,400)
  4GO FORMAT (1H 5X, 24H TRANSFORMED COORDINATES //
              12X 1HX 13X 1FY 13X
                                              2HVX 12X 2HVY 12X 2HVT 19X
              5HTHETA 11X 3FPHI //)
                                            VX(I,L),VY(I,L),VT(I,L),
  410 WRITE (6,420) I,XP(I),YP(I),
```

```
1 TH(I,L), PHI(I,L)
420 FORMAT (1H I3, 7F14.7)
    I = I + 1
    IF (I.GT.NP) GO TO 450
    IF (I.LE.LCTR) GO TO 410
    LCTR=LCTR+45
    GC TO 340
450 CONTINUE
    CALL BCDUMP(XP(1), XP(NP))
    CALL BCCUMP(YP(1), YP(NP))
    CALL BCDUMP(VXDP(1), VXDP(NP))
    CALL BCDUPP(VYDP(1), VYCP(NP))
    CALL BCDUMP(VTDP(1), VTDP(NP))
500 IF (IPUVEL .EQ. 0) RETURN
    LCC = 2500
    CALL PUNCHC ( XP, NP, LOC, CASE )
    LCC = 2900
    CALL PUNCHC ( YP, NP, LOC, CASE )
    LCC = 3300 · ...
    CALL PUNCHY ( VX, NP, NSIG, LOC, CASE )
    LCC = 4900
    CALL PUNCHY ( VY, NP, NSIG, LOC, CASE )
   RETURN
    END
```

\$IBFTC CROSS DECK

```
SUBROUTINE CROSS
C
C
                * COMPUTE CROSS FLOW VELOCITY COMPONENTS AND PRINT
C
      COMMON
                    HEDR(10)
                               , CASE
                                                       , NNU
                                           , NB
     1
                   ,FLG03
                               ,FLG04
                                           ,FLG05
                                                       ,FLG06
                                                                   ,FLG07
                                           ,FLG10
     2
                   .FLG08
                               ,FLG09
                                                       FLG11
                                                                   ,FLG12
     3
                                                       ,FLG16
                                                                   ,FLG17
                   ,FLG13
                               ,FLG14
                                           FLG15
     4
                                                       ,FLG21
                                                                   FLG22
                   ,FLG18
                               ,FLG19
                                           , FL G20-
                   FLG23
                               ,FLG24
                                                       ,FLG26
                                                                   ,FLG27
                                           FLG25
      CCUBLE PRECISION
                          HEDR, CASE
       INTEGER
                    FLG03
                               ,FLG04
                                           •FLG05
                                                       ,FLG06
                                                                   ,FLG07
                   ,FLGO8
                               FLG09
                                           .FLG10
                                                       ,FLG11
                                                                   ,FLG12
     2
                                                                   ,FLG17
                   ,FLG13
                               ,FLG14
                                           ,FLG15
                                                       ,FLG16
     3
                   ,FLG18
                               ,FLG19
                                           ,FLG20
                                                       ,FLG21
                                                                   •FLG22
                               ,FLG24
                   ,FLG23
                                           FLG25
                                                       ,FLG26
                                                                   FLG27
      COMMON
                                                                   .TYPEA(4)
                    NT
                               ,NC(11)
                                           , MN
                                                       , NUNA(4)
                   , NER1
                               , NER2
                                                       , NSIGA
                                                                   , NSIGC
     1
                                           , NMA
                   , NUNC (4)
                               .TYPEC(4)
                                           .NLF(11)
      COMMON IEC, NSIGEC, TYPEEC(4), NUNEC(4)
      COMMON /P/ IPUVEL
      REAL
                    MN
C
      COMMON /C4/
                      X1(500), Y1(500),
                                                       Y2(500),
                                                                  DELS(500),
                                            X2(500),
                      SINA(500), COSA(500), XP(500),
                                                       YP (500)
                                                  A(500),
      COMMON /TC/
                      RB(500,8),SIG(500,4),
                                                             B(500),
                                                                        Z(500),
                                                  XN(500,4),
                      PHI (500,4),
     1
     2
                      T(500,4), T3(5C0,4),
                                                                        SUMV
                                                  NSIG.
                                                             NP.
                                                                  NI,
     3
                      , SUMM(4)
C
      CIMENSION
                      VX(500,4),VY(500,4),VZ(500,4),T2(500,4)
       EQUIVALENCE ( VX(1,1), XN(1,1) ), ( VY(1,1), T(1,1) ),
     1
          (VZ(1,1), T3(1,1)), (T2(1,1), T(1,1))
C
      EQUIVALENCE (VZ, VZDP), (VX, VXDP), (VY, VYDP), (T2, T2DP), (T3, T3DP)
      DIMENSION T2DP(1), T3DP(1), VXDP(1), VYDP(1), VZDP(1)
                * START
C
       IF (FLG08.EQ.0) GC TC 10
C
                * TITLE FOR MATRIX PRINT
      WRITE (6,150) HEDR, CASE
      WRITE (6.8)
    8 FORMAT (1H 36H MATRICES A, B, Z BY ROWS * CROSS FLOW //)
C
                * READ CROSS SIGMAS
   10 DC 20 N=1,NSIG
       SUMM (N) = 0.0
   2C READ (3) (SIG(I,N), I=1,NT)
C
                 * NO. OF MICPOINTS LOGP
      CC 100 I=1,NT
C
                 * READ MATRICES A,B,Z
```

```
READ (10) (A(J), J=1, NT), (B(J), J=1, NT), (Z(J), J=1, NT)
               * NO. OF FLOWS LOOP
      CC 70 N=1, NSIG
      N=M+2
      SA=0.0
      S.B = 0.0
      SZ=C.0
                * NG. OF ELEMENTS LOOP
      CC 30 J=1.NT
      SA=SA+A(J)*SIG(J,N)
      SB=SB+B(J)*SIG(J.N)
   3C SZ=SZ+Z(J)*SIG(J,N)
               * INITIALIZE UNIFORM OR NON-UNIFORM PARAMETERS
      IF (FLG21.GT.O) GO TC 38
      IF (N.EQ.1.AND.FLG17.LE.0) GC TO 35
      C1=RB(I,M)
      C2 = -RB(I,M-1)
      C3 = 0.0
      GC TO 40
   35 C1=SINA(I)
      C2=COSA(I)
      C3=1.
      GC TO 40
   38 \text{ C1} = 0.0
      C2 = 0.0
      C3 = 0.0
   4C IF (FLG12.EQ.O) GO TO 45
               * OPTION FOR Z (PHI) MATRIX SOLUTION
      XN(I,N) = SA
      PHI(I,N) = Y2(I) * SZ
      GC TO..50
               * REGULAR A MATRIX SOLUTION
C
   45 PHI(I,N)=Y2(I)*SZ
      XN(I.N) = SA + C2
   50 IF (FLG11.EG.O) GC TC 55
                * OPTION PERTURBATIONS
C
      T2(I,N)=SB
      T3(I.N)=SZ
      GC TO 60
   55 T2(I,N)=SB+C1
      T3.(.I.N.)=SZ+C3
   60 IF(FLG21.GT.0) GO TO 70
      SUMM(N) = SUMM(N) + PFI(I,N) * Y2(I) * C2 * DELS(I)
   70 CONTINUE
      IF (FLG08.EQ.0) GC TC 100
      WRITE (6,80): I, (A(J),J=1,NT)
   80 FORMAT (1HC 13H MATRIX A RCW 16/ (1H 10F10.5))
      WRITE (6,85) I, (8(J),J=1,NT)
   85 FORMAT (1HO 13H MATRIX B ROW 16/ (1H 10F10.5))
      WRITE (6,90) I, (Z(J),J=1,NT)
   90 FORMAT (1HO 13H MATRIX Z ROW 16/ (1H 10F10.5))
                * PRINT CROSS FLOW (ON-BODY) OUTPUT
C
  130 EG 250 L=1,NSIG
      KC = L
```

```
IF (FLG17.LE.O) KC=L-1
    IF(FLG21.GT.O) GO TO 138
    SUMM(L) = 3.141593 *SUMM(L)
138 I = 1
    J=1 ·
    v = 1
    N=ND(M)
    LCTR=22
140 WRITE (6.150) HEDR, CASE
150 FORMAT (1H1 25X, 26HCCUGLAS AIRCRAFT COMPANY /
           28X, 21HLCNG BEACH DIVISION ///
            6X, 10A6, 4X, 10FCASE NO. A6 //)
    IF (FLG22.GT.O) GC TC 175
    IF (L.GT.1.OR.FLG17.NE.0) GO TO 170
    WRITE (6,160).
16C FORMAT (1H 27H ON-BODY UNIFORM CROSS FLOW )
    GC TO 190
170 IF (TYPEC(KC).GE.O.) GC TO 175
    WRITE (6,172)
172 FORMAT (1H 31H FLOW GENERATOR * ROTATING BODY )
175 WRITE (6,18C) NUNC(KC)
180 FORMAT (1H 35H ON-BODY NON-UNIFORM CROSS FLOW NO. I.8)
190 WRITE (6,200)
2CC FORMAT (1H 5X 24H TRANSFORMED COORDINATES //
                                           2HT2 12X 2HT3 9X 5HSIN A
            12X 1HX 13X 1FY 13X
            6x 5HCOS A 7x 5HSIGMA 11x 1HN 13x 3HPHI //)
210 WRITE (6,220) I, X1(I), Y1(I), X2(J), Y2(J),
                                                      T2(J,L),T3(J,L);
               SINA(J), COSA(J), SIG(J,L), XN(J,L), PHI(J,L)
220 FORMAT (1H I3,2F14.7/ 4X 4F14.7,2F11.5,3F14.7)
    I = I + 1
    J=J+1
    IF (I.EQ.N) GC TO 230
    IF (I.LE.LCTR) GO TO 210 -
    LCTR=LCTR+22
    GC TO 140
230 M=M+1
    N=N+ND(M)
    WRITE (6,240) I, XI(I), YI(I)
240 FGRMAT (1H I3, 2F14.7 //)
    I = I + 1
    IF(J.GT.NT)GC TO 242
    GC TO 210
242 IF(FLG22.GT.O)GO TO 250
    WRITE(6,244) SUMM(L), SUMV
244 FORMAT (1HO 10X,14H ACCED MASS = F12.7, 4X,10H VOLUME = F12.7)
250 CENTINUE
    CALL BCDUMP(X2(1), X2(NT))
    CALL BCDUMP(Y2(1),Y2(NT))
    CALL BCDUMP(T2DP(1), T2CP(NT))
    CALL BCDUMP(T3DP(1), T3CP(NT))
     IF (IPUVEL .EQ. 0) GC TO 252
    LCC = 6500
    CALL PUNCHY ( T2, NT, NSIG, LOC, CASE )
    LCC = 6900
    CALL PUNCHY (T3, NT, NSIG, LCC, CASE )
252 IF (FLGO5.EQ.O) RETURN
```

```
* CFF-8CDY PCINT
      CO 300 I=1.NP
C
               * READ MATRICES X.Y.Z.
      READ (10) (A(J), J=1, NT), (B(J), J=1, NT), (Z(J), J=1, NT)
               * NC. OF FLCh
      CC 300 N=1.NSIG
      Sx=0.0
      SY=0.0
      SP=0.0
               * NC. OF ELEMENTS LCOP
      CC 260 J=1.NT
   :\SX=SX+A(J)*SIG(J,N):
      SY=SY+B(J)+SIG(J,N)
  260 SP=SP+Z(J) *SIG(J,N).
     .VX(I.N)=SX
     PHI(I,N)=YP(I)*SP
      IF (FLG22.GT.U) GO TC 27G
      IF (FLG11.GT.O.OR.N.NE.1.OR.FLG17.GT.O) GO TO 270
      VY(I,N)=SY+1.
      VZ(I,N)=SP+1.
      CC TO 300
               * PERTURBATION OR NON-UNIFORM VY, VZ
  27C VY(I,N)=SY
      VZ(1,N)=SP 5
 '3CC CONTINUE
               * PRINT CROSS FLOW (OFF-BODY) OUTPUT
  33C CC 450 L=1.NSIG
      KC = L
      IF (FLG17.LE.G) KC=L-1
      I = 1
      LCTR=45
  34C WRITE (6,15C) HEDR, CASE
      IF (FLG22.GT.O) GC TC 375
      IF (L.GT.1.OR.FLG17.NE.O) GO TO 370
      WRITE: (6.360)
  36C FCRMAT (1H 28H OFF-BCCY UNIFORM CROSS FLOW ):
      GC TO 390
  370 IF (TYPEC(KC):GE:C.) GC TO 375
      WRITE (6,172)
  375 WRITE (6,380) NUNC(KC)
  380 FORMAT (1H 36H OFF-BCCY NON-UNIFORM CROSS FLOW NO. 18)
  390 HRITE (6,400)
  4CO FCRMAT (1H 5X, 24H TRANSFORMED COORDINATES //
     1 12X 1HX 13X 1HY 13X 2HVX 12X 2HVY 12X 2HVZ 12X 3HPHI //)
  410 WRITE (6,420) I,XP(I),YP(I),VX(I,L),VY(I,L),VZ(I,L),PHI(I,L)
  420 FORMAT (1H I3, 6F14.7)
      I = I + 1 .
      IF (I.GT.NP) GO TO 450
      IF (I.LE.LCTR) GO TO 410
      LCTR=LCTR+45
      GC TO 340
  450 CCNTINUE
      CALL BCCUMP(XP(1), XP(NP))
      CALL BCDUMP(YP(1), YP(NP))
      CALL BCDUMP(VXDP(1), VXDP(NP))
      CALL BCDUMP(VYDP(1), VYCP(NP))
      CALL BCDUMP(VZDP(1), VZCP(NP))
  500 IF ( IPUVEL .EQ. 0 ) RETURN
      LCC = 7300
      CALL PUNCHY ( VX, NP, NSIG, LOC, CASE )
      LCC = 7700
      CALL PUNCHY ( VY, NP, NSIG, LOC, CASE )
      LCC = 8100
      CALL PUNCHV(VZ, NP, NSIG, LOC, CASE)
      RETURN.
      END
```

```
SUBROUTINE EXCROS
C***
       ***COMPUTE EXTRA CROSS FLOW VELOCITY COMPONENTS AND PRINT
                                                     NNU
                   HEDR(10)
                             ,CASE
      COMMON
                                         , NB
                                                     FLG06
                                                                 ,FLG07
     1
                              ,FLG04
                                         ,FLG05
                  ,FLGO3
                                         ,FLG10
                              ,FLGC9
                                                     ,FLG11
                  •FLGC8
                                                                 ,FLG12
                  ,FLG13
                             ,FLG14
                                         ,FLG15
                                                     ,FLG16
                                                                 ,FLG17
                 FLG18
                             -, FLG19
                                         ,FLG20
                                                     •FLG21
                                                                 •FLG22
                  FLG23
                              ,FLG24
                                         •FLG25
                                                     •FLG26.
                                                                 FLG27
      CCUBLE PRECISION
                        HEDR, CASE
                              ,FLGC4.
      INTEGER
                   FLGC3
                                         .FLG05
                                                     .FLGC6
                             , FEG09 😘
                  .FLG08
                                        •FLG10
                                                     •FLG11
                                                                 •FLG12
                              ,FLG14
                                         ,FLG15
                  FLG13
                                                     ,FLG16
                                                                •FLG17
                  •FLG18
                              ,FLG19
                                         ,FLG20
                                                     ,FLG21
                                                                 ,FLG22
                              FLG24
                                         ,FLG25
                  ,FLG23
                                                     •FLG26
                                                                 ,FLG27.
                                         , MN
      CCMMCN
                   NT
                                                     , NUNA (4)
                                                                .,TYPEA(4)
                             *, NE(11)
                              ,NER2
                                         , NMA
                                                     NSIGA
                                                                , NSIGC
                  NER1
                  , NUNC(4)
                              ,TYPEC(4)
                                         ,NLF(11)
      COMMON IEC, NSIGEC, TYPEEC(4), NUNEC(4)
      COMMON /P/ IPUVEL
      REAL
                   MN
C
                                                    Y2(500),
      COMMON /C4/
                     X1(500), Y1(500), X2(500),
                                                    YP (500)
                     SINA(5CC), COSA(5CO), XP(5CC),
      COMMON /TC/
                     RB(500,8),SIG(500,4), A(500),
                                                XN(500,4),
     1
                     PHI(500,4),
                     T(500,4), T3(500,4),
     2
                                                NSIG.
                                                                     SUMV
     3
                     ,SUMM(4)
C
      CIMENSICN _____ VX(500,4), VY(500,4), VZ(500,4), T2(500,4)
C
      EQUIVALENCE ( VX(1,1), XN(1,1) ), ( VY(1,1), T(1,1) ),
          (VZ(1,1), T3(1,1), ), (T2(1,1), T(1,1))
C
      REWIND 8
      IF (FLG08.EQ.O) GC TC 10
       ***TITLE FOR MATRIX PRINT
      WRITE (6,150) HEDR, CASE
      WRITE (6,8)
    8 FORMAT (1H 42H MATRICES A, B, Z BY ROWS * EXTRA CROSS FLOW //)
       ***READ EXTRA CROSS SIGMAS
   10 CC 20 N = 1.NSIG
   2C READ (3) (SIG(I,N),I = 1,NT)
       ***NO. OF MIDPOINTS LCCP
C***
      EC 100 I = 1.NT
C * * *
       ***READ MATRICES A, B, Z
       ***YOU MUST SOLVE PCTENTIAL MATRIX FOR EXCROS
C * * *
      REAC (8) ( A(J), J = 1, NT), ( B(J), J = 1, NT ), ( Z(J), J = 1, NT )
C * * *
       ***NO. OF FLOWS LOOP
      M = 0
      CC 70 N = 1.NSIG
```

```
SB = 0.0
      SZ = 0.0
      ***NO. OF ELEMENTS LCOP
      CC 30 J = 1,NT
      SA = SA + A(J) * SIG(J,N)
      SB = SB + B(J) * SIG(J,N)
   3CSZ = SZ + Z(J) * SIG(J,N)
   40 T2(I,N) = SB
      T3(I,N) = SZ
      XN(I,N) = SA
      PHI(I,N) = Y2(I) * SZ^2 / 2.0
   7C CONTINUE
      IF (FLG08.EQ.C) GO TO 100
      WRITE (6,80) I, (A(J),J = 1,NT)
   80 FORMAT (1HO 13H MATRIX A ROW 16/
                                        (1H 10F10.5)
      kRITE (6,85) I, (B(J),J = 1,NT)
   85 FORMAT (1HO 13H MATRIX B ROW 16/
                                         (1H 10F10.5)
      WRITE (6,90) I, (Z(J),J = 1,NT)
   90 FORMAT (1HO 13H MATRIX Z ROW 16/
                                        (1H 10F10.5)
  ICO CONTINUE
C * * *
       ***PRINT EXTRA CROSS FLOW (CN BODY) OUTPUT
  130 CG 250 L = 1, NSIG
      KEC = L
      I = 1
      J = 1
      M = 1
      N = ND(M)
C.***
       ***M IS THE BODY NUMBER
       ***N IS THE NUMBER OF POINTS ON BODY M
C***
      LCTR = 22
  140 WRITE (6,150) HEDR, CASE
  15C FORMAT (1H1 25X, 26HDCUGLAS AIRCRAFT COMPANY /
     1
             28X, 21HLONG BEACH DIVISION ///
     2
              6X, 10A6, 4X, 10HCASE NO. A6 //)
      IF (FLG22.GT.O) GC TC 160
      WRITE (6,155)NUNEC(KEC)
  155 FORMAT(41H CN-BODY NON-UNIFORM EXTRA CROSS FLOW NO. 18)
      GO TO 190
  160 WRITE (6,162)
  162 FORMAT(68H ON BODY GENERATED (RESEP) BOUNDARY CONDITIONS
     1A CROSS FLOW)
  190 WRITE (6,200)
  200 FORMAT (1H 5X 24H TRANSFORMED COORDINATES //
              12X 1HX 13X 1HY 13X
                                            2HT2 12X 2HT3 9X 5HSIN A
              6X 5HCOS A 7X 5HSIGMA 11X 1HN 13X 3HPHI //)
  210 WRITE (6,220) I,X1(I),Y1(I),X2(J),Y2(J),
                                                       T2(J,L),T3(J,L),
                 SINA(J),CCSA(J),SIG(J,L),XN(J,L),PHI(J,L)
  220 FORMAT (1H 13,2F14.7/ 4X 4F14.7,2F11.5,3F14.7)
      I = I + 1
      J = J + 1
      IF (I.EQ.N) GO TO 230
      IF (I.LE.LCTR) GO TO 210
      LCTR = LCTR + 22
      GC TO 140
```

```
230 N = M + 1
      N = N + ND(M)
      WRITE (6,240)I , X1(I), Y1(I)
  240 FORMAT (1H I3,2F14.7 //)
      I = I + 1
      IF (J.GE.NT) GO TO 250
      GC TO 210
  250 CONTINUE
       ***THIS IS WHERE THE CALL FOR PUNCHED OUTPUT WILL GO
C.***
  252 IF (FLGO5.EG.O) RETURN
       ***OFF BCDY POINTS
C * * *
      CO 300 I = 1.NP
C4**
       ***READ MATRICES X, Y, Z
      READ (8) ( A(J), J=1, NT ), (B(J), J=1, NT), ( Z(J), J=1, NT ).
      CC 300 N = 1.NSIG
      SX = 0.0
      SY = 0.0
      SP = 0.0
       ***NUMBER OF ELEMENTS LCOP
C***
      CC \ 260 \ J = 1,NT
      SX. = SX + A(J) + SIG (J,N)
      SY = SY + B(J) * SIG (J,N)
  260 SP = SP + Z(J) * SIG(J,N)
      VX(I,N) = SX
      VY(I,N) = SY
      VZ(I,N) = SP
      PHI(I,N) = YP(I) * SP / 2.0
  300 CONTINUE
       ***PRINT EXTRA CROSS FLOW (OFF-BODY) OUTPUT
C * * *
  330 DC 450 L = 1.NSIG
      KEC = L
      \Gamma = 1
      LCTR = 45
  340 WRITE (6.150) HEDR.CASE
      IF (FLG22.GT.O) GO TO 355
      WRITE(6,350) NUNEC(KEC)
  350 FORMAT (43H OFF BODY NON-UNIFORM EXTRA CROSS FLOW NO. 18)
      GC TO 390
  355 WRITE(6,357)
  357 FORMAT(68H OFF BODY GENERATED (RESEP) BOUNDARY CONDITIONS
     1A CROSS FLOW)
  390 WRITE (6,400)
  400 FORMAT (1H 5X, 24H TRANSFORMED COORDINATES //
     1 12x 1HX 13X 1HY 13X 2HVX 12X 2HVY 12X 2HVZ 12X 3HPHI //)
  410 WRITE (6,420) I,XP(I),YP(I),VX(I,L),VY(I,L),VZ(I,L),PHI(I,L)
  420 FORMAT (1H I3, 6F14.7)
      I = I + 1
      IF (I.GT.NP)GO TO 450.
      IF (I.LE.LCTR) GO TO 410
      LCTR = LCTR + 45
      GC TO 340
450 CONTINUE
       ***THIS IS WHERE THE CALL TO PUNCHED OUTPUT . OFF BODY WILL GO
C * * *
      RETURN
      END
```

COMBYN

```
SIBFTC COMBYN
                DEBUG, DECK
C
      THE MAIN PROGRAM FOR APPROACH 5 COMBYN
C
      COMMON /MONOF/ JJS.JJ
      COMMON /NIN/ XOFF(200), YOFF(200), NPMIN, NCLO, NCHI
      COMMON /RDOUTI/ XON(400), YON(400), NSPE(10), NSPB(10), XRI, NHUBMX, NTM
     1IN, NSPLT, YWING
      COMMON /RDGUT2/ T(400,2), VYAX(200,2), VYCR(200), V2(400), V3(400), VZC
     1R(200)
      COMMON /RDOUT3/ VXAX(200,2), VXCR(200)
      COMMON /RCONTI/ VC, VINF, ALFAF, TTOTAL, ELND, VA, PT
      COMMON /COUT1/ QCA,PTC,PSPTCI,PIO180,ATOTAL,GRHO
      COMMON /COUT2/ VINFP, RHOTOT, VIC
      COMMON /RDOUT4/ NTHETA, THETA(10), XTEST(10)
      COMMON /GETOUT/ VMAG(3), ALIL, BLIL, CLIL
      COMMON /TOUT1/ SINTH, COSTH, OMEGA
      COMMON /RCONT2/ PSTAT, TSTAT, WDOT, NX, KND, YRIHUB, YRISHR, UTIP
      COMMON /RSAVE/ XDUM(400), YDUM(400), XAFF(200), YAFF(200)
     1 ,MO,JA,IR,NRUNNO,MO2,JA2,IR2,NRUNO2
2
      CALL" READS
      VSAVE=VINF
      IF (VINF.EQ.O.O) GO TO 4
      VINF=VINF+(1.0-.2+(VINF/ATOTAL)++2)++2.5
      VCSAVE=VC
      VC=VIC
      CALL GETABC
      VC=VCSAVE
      VINFP=VINF
      VINF=VSAVE
      WRITE (6,8) VMAG(1), VMAG(2), ALIL, BLIL, CLIL, VINFP
      CALL AVERV
      REWIND 2
      REWIND 3
      DO 6 N=1,NTHETA
      WRITE (6,10) N,NTHETA
      READ (3) WDOTT, VICT
      WRITE (6,12) THETA(N), WDOTT, VICT, VMAG(3)
      THETA(N)=THETA(N)=PIO180
      SINTH=SIN(THETA(N))
      CSINTH=CLIL*SINTH
      COSTH=COS(THETA(N))
      CCOSTH=CLIL*COSTH
      OMEGA=UTIP/YRISHR
      CALL ONOFF
      CONTINUE
      GO TO 2
C*** FORMATS
C****
C
8
      FORMAT (97H
                                                   /5X,1P6E14.3)
10
      FORMAT (1H0,4X,12,4H OF ,12,7H THETAS/1H0)
      FORMAT (3X,8HTHETA = ,E12.5,13H
                                             WDOTT = ,1PE12.5,12H
12
     1 = ,1PE12.5,10H
                          V3 = ,1PE12.5)
      END
```

\$IBFTC SINTP.

```
SUBROUTINE SINTP (Z,W,N,X1,Y1)
      DIMENSION X(200), Y(200), Z(1), W(1)
      DO 2 I=1,N
      X(I)=Z(I)
      Y(I)=W(I)
2
      CALL SORTXY (X,Y,N)
      DO 4 I=1,N
      K = I
      IF (X1.GT.X(I)) GO TO 4
      IF (X1.EQ.X(I)) GO TO 6
      IF (X1.LT.X(I)) GO TO 8
      CONTINUE :
      Y1=Y(K)
      GO TO 10
      IF (K.EQ.1) GO TO 12
         (K.EQ.N) K=N-1
      IF (X(K).EQ.X(K+1)) K=K-1
      W1=(X1-X(K))+(X1-X(K+1))/(X(K-1)-X(K))/(X(K-1)-X(K+1))
      W2=(X1-X(K-1))*(X1-X(K+1))/(X(K)-X(K-1))/(X(K)-X(K+1))
      W3=(X1-X(K-1))*(X1-X(K))/(X(K+1)-X(K-1))/(X(K+1)-X(K))
      Y1=Y(K-1)*W1+Y(K)*W2+Y(K+1)*W3
10
      RETURN
      Y1=0.0
12
      RETURN
      END
```

\$IBFTC INTPL. DEBUG, DECK

```
SUBROUTINE INTPOL (L, J, XI, IFLAG, VX, VRES, BETA, ALPH
C***
      THIS SUBROUTINE INTERPOLATES AND DIFFERENTIATES
      COMMON /CNOUT/ VRESON(400), VP(400), BETAON(400)
      COMMON /GEABC/ YI
      COMMON /RDOUT1/ XON(400), YON(400), NSPE(10), NSPB(10), XRI, NHUBMX, NTM
     1IN, NSPLT, YWING
      COMMON /RDOUT2/ T(400,2), VYAX(200,2), VYCR(200), V2(400), V3(400), VZC
     1R(200)
      DIMENSION V(400), B(400)
      EPS=1.0E-6
      M=J-1
      N=J+1
      A=1.0
      DO 2 K=M.N
      XDIF=XI-XON(K)
      IF (XDIF.EQ.O.O) XDIF=EPS
      A=A*XDIF
2
      CONTINUE
C
C
      IF THE REAKE X EQUALS THE ON BODY X THEN SET INTERPOLATED VALUES
C
           TO THE VALUES ON BODY
      IF (ABS(XI-XON(J)).LE.1.0E-6) GO TO 20
      DO 4 K=M, N
      B(K)=1.0
      DO 4 LL=M, N
      IF (LL.EQ.K) GO TO 4
      B(K)=B(K)*(XON(K)-XON(LL))
      CONTINUE
      0.0=1Y
      DUM=0.0
      VINT=0.0
      DO 12 II=M,N
      XDIF=XI-XON(II)
        (XDIF.EQ.O.O) XDIF=EPS
         (L.EQ.3) GO TO 6
         (IFLAG.GT.1) GO TO 8
      V(II)=T(II_*L)
      GO TO 10
      V(II)=V2(II)
      GO TO 10
8
      V(II)=VRESON(II)
10
      YI=YI+(A+YON(II))/(XDIF+B(II))
      VINT=VINT+(A*V(II))/(XDIF*B(II))
      IF (IFLAG.EQ.1) GO TO 12
      V(I:I)=VP(II)
      DUM=DUM+(A+V(II))/(XDIF+B(II))
12
      CONTINUE
```

```
IF (IFLAG.EQ.1) GO TO 16
      BETA=0.0
      PSOP=0.0
      DO 14 II=M,N
      XDIF=XI-XON(II)
      IF (XDIF.EQ.O.O) XDIF=EPS
      BETA=BETA+(A*BETAON(II))/(XDIF*B(II))
      CONTINUE
14
      JK=J
16
      AD=XI-XON(JK-1)
18
      BD=XON(JK)-XI
      PO=AD*(AD+BD)
      P1=-(AD*BD)
      P2=(AD+BD) *BD
      AO=-BD
      A1=AD-BD
      A2=AD
      DY=(A0+YCN(JK-1))/P0+(A1+YI)/P1+(A2+YON(JK))/P2
      ALPHA=ATAN(DY)
      ALPH=ALPHA/(3.14159265/180.)
      VX=VINT*COS(ALPHA)
      VRES=VINT
      IF (IFLAG.EQ.2) VX=DUM+COS(ALPHA)
      RETURN
      IF (L.EQ.3) VINT=V2(J)
20
      VINT=T(J,L)
      IF (IFLAG.GT.1) VINT=VRESON(J)
      YI=YON(J)
      IF (IFLAG.NE.1) DUM=VP(J)
      BETA=BETAON(J)
      JK=J-1
      GO TO 18
      END
```

SIBFTC GTABC. DEBUG. DECK SUBROUTINE GETABC C**** COMPUTES V1 , V2 , V3 , A , B , C FROM INPUT PARAMETERS COMMON /RDOUT1/ XON(400), YON(400), NSPE(10), NSPB(10), XRI, NHUBMX, NTM 11N, NSPLT, YWING COMMON /RDOUT2/ T(400,2), VYAX(200,2), VYCR(200), V2(400), V3(400), VZC 1R(200) COMMON /NIN/ XOFF(200), YOFF(200), NPMIN, NCLO, NCHI '-COMMON /RDOUT3/ VXAX(200,2), VXCR(200) COMMON /RCONTI/ VC, VINF, ALFAF, TTOTAL, ELND, VA, PT COMMON /GETOUT/ VMAG(3), ALIL, BLIL, CLIL COMMON /GEABC/ YI DIMENSION VXAXH(2), VXAXS(2) PI0180=3.14159265/180. ALFAF=ALFAF*PIO180 DEBUG((VXAX(I,J),I=1,200),J=1,2) DEBUG(VXCR(I), I=1,200) C**** C*** COMPUTE V1 , V2 , V3 IF (XOFF(NCLO).LT.XON(1)) GO TO 6 C Carry SEARCH ON HUB COUNTING BACKWARDS .

2 IF (XON(J).LT.XOFF(NCLO)) GO TO 4 J=J-1 -GO TO 2 J=J+1 " XH=XOFF(NCLO) IFLAG=1 CALL INTPOL (1, J, XH, IFLAG, VX, DUM, DUM, DUM) VXAXH(1)=VX CALL INTPOL (2, J, XH, IFLAG, VX, DUM, DUM, DUM) VXAXH(2)=VXCALL INTPOL (3, J, XH, IFLAG, VXCRH, DUM, DUM, DUM) IY=HY GO TO 8 YH=0.0 VXAXH(1)=0.0 VXAXH(2)=0.0

C****

C+++ SEARCH ON SHROUD COUNTING FORWARDS

C****

8

K=NHUBMX+1

VXCRH=0.0

J=NHUBMX

12 K=K-1

```
XS=XOFF(NCHI)
      IFLAG=1
      CALL INTPOL (1, K, XS, IFLAG, VX, DUM, DUM, DUM)
      VXAXS(1)=VX
      CALL INTPOL (2,K,XS,IFLAG,VX,DUM,DUM,DUM)
      VXAXS(21=VX
      CALL INTPOL (3,K,XS,IFLAG, VXCRS,DUM,DUM,DUM)
      YS=YI
      ILOW=NCLO+1
      IHIGH=NCHI-1
C
      AXIAL COMPONENT VELOCITY *** AXISSYMETRIC SOLUTION
C
     DO 16 L=1.2
      SUM=YH*VXAXH(L)*(YOFF(NCLO)-YH)+VXAX(NCLO,L)*YOFF(NCLO)*(YOFF(NCLO
     1+1)-YH)
      DO 14 I=ILOW, IHIGH
      SUM=SUM+VXAX(I,L)*YOFF(I)*(YOFF(I+1)-YOFF(I-1))
14
      CONTINUE
      SUM=SUM+YOFF(NCHI)*VXAX(NCHI,L)*(YS-YOFF(NCHI-1))+(-1.0)*YS*VXAXS(
     ll) * (YS-YOFF(NCHI))
      VMAG(L)=SUM/(YS**2-YH**2)
      CONTINUE
16
C
C
      AXIAL COMPONENT CROSSFLOW VELOCITY SOLUTION
C
      SUM=YH*VXCRH*(YOFF(NCLO)-YH)+VXCR(NCLO)*YOFF(NCLO)*(YOFF(NCLO+1)-Y
     1H)
      DC 18 I=ILOW, IHIGH
      SUM=SUM+VXCR(I)*YOFF(I)*(YOFF(I+1)-YOFF(I-1))
      CONTINUE
18
      SUM=SUM+YOFF(NCHI)*VXCR(NCHI)*(YS-YOFF(NCHI-1))+(-1.0)*YS*VXCRS*(Y
     1S-YOFF(NCHI))
      VMAG(3)=SUM/(YS**2-YH**2)
      CLIL=VINF * COS(ALFAF)
      ALIL=(VC+VINF*SIN(ALFAF)*VMAG(2))/(VMAG(1)-VMAG(2))
      BLIL=(VC+VINF*SIN(ALFAF)*VMAG(1))/(VMAG(2)-VMAG(1))
      ALFAF=ALFAF/PI0180
      RETURN
      END
```

```
SIBÉTC VBART
C
      APPROACH 5
C
      SUBROUTINE VBARIT (VBAR, ATOTAL, RHOTOT, RHOBAR)
C
      TO SOLVE VBAR COMP ITERATIVELY
C
      VCRIT=ATOTAL/SQRT(1.2)
      I =0
      VGUES=VBAR
      VGUESA=(VGUES/ATOTAL) **2
2
     A=1.0-.2*VGUESA
      B=A-VGUESA
      VCOMP=(VBAR-A**2.5*VGUES)/(A**1.5*B)+VGUES
      IF (ABS((VCOMP-VGUES)/VCOMP).LT..0001) GO TO 4
      I = I + 1
      IF (VCOMP.GE.VCRIT) VCOMP=.5*(VGUES+VCRIT)
      VGUES=VCCMP
      IF (I.GT.20) GO TO 4
      GO TO 2
      RHOBAR=(1.0-.2*(VCOMP/ATOTAL)**2)**2.5*RHOTOT
      IF (I.GT.20) WRITE (6,6) VBAR, VCOMP, RHOBAR
      RETURN
C
6
      FORMAT (1H0,34HI EXCEEDS 20 ITERATIONS FOR RHOBAR,5X,7HVBAR = ,1PE
     110.3,2X,8HVCOMP = ,1PE10.3,2X,9HRHOBAR = ,1PE10.3)
      END
```

SIBFTC READS. DEBUG, DECK

```
SUBROUTINE READS
C****
C***
     THIS SUBROUTINE READS ALL INPUT
C****
      EQUIVALENCE (T,TRD), (VXAX,VXAXRD), (VYAX,VYAXRD)
      DIMENSION TRD(1), VXAXRD(1), VYAXRD(1), EODD(400), TITLE(12)
      COMMON /RSAVE/ XDUM(400);YDUM(400);XAFF(200);YAFF(200)
     1 ,MO,JA,IR,NRUNNO,MO2,JA2,IR2,NRUNO2
      COMMON /NIN/ XOFF(200), YOFF(200), NPMIN, NCLO, NCHI
      COMMON /RDOUT1/ XON(400),YON(400),NSPE(10),NSPB(10),XRI,NHUBMX,NTM
     1IN, NSPLT, YWING
      COMMON /WRT/ KSKIP.NT(2).NP(2)
      COMMON /RDOUT2/ T(400,2),VYAX(200,2),VYCR(200),V2(400),V3(400),VZC
     1R(200)
      COMMON /RDOUT3/ VXAX(200,2), VXCR(200)
      COMMON /RDOUT4/ NTHETA, THETA(10), XTEST(10)
      COMMON /RCONT1/ VC, VINF, ALFAF, TTOTAL, ELND, VA, PT
      COMMON /RCONT2/ PSTAT, TSTAT, WDOT, NX, KND, YRIHUB, YRISHR, UTIP
      READ NT(1) = NUMBER OF ON-BODY POINTS FOR CLOSED BODY SOLUTION
C
           NT(2) = NUMBER OF ON-BODY POINTS FOR OPEN-END SOLUTION
                            TOTAL NUMBER OF OFF-BODY POINTS
           NP(1) = NP(2) =
                 = NUMBER OF EOD I.D. CARDS
           NID
           KSKIP = 0
                       FOR 1 CASE OF COMBYN
                       FOR SUCCESSIVE CASES USING THE SAME EOD OUTPUT
                  = 1
           N4SOL = 0 THREE (3) SOLUTIONS FROM EOD
                       ( 2 FOR STREAMLINES .1 FOR CROSSFLOW )
                       FOUR (4) SOLUTIONS FROM EOD
                       ( 2 FOR STREAMLINES, 2 FOR CROSSFLOW )
           NSPLT = NUMBER OF SPLITTERS (NOISE SUPPRESSION DEVICES )
                    RIGHT MOST POINT ON THE SPLITTER
           NSPB =
                    LEFT MOST POINT ON THE SPLITTER
           NSPE =
                    THE FIRST SPLITTER IS THE ONE CLOSEST TO THE HUB
                     AND THE LAST SPLITTER IS THE ONE CLOSEST TO THE SHRO
      READ (5.30) TITLE
      READ (5,32) (NT(I),NP(I),I=1,2),NID,KSKIP,N4SOL,NSPLT
      NPMIN=NP(1)
      NTMIN=NT(2)
      IF (NSPLT.NE.O) READ (5,32) (NSPB(I),NSPE(I),I=1,NSPLT)
      READ (5,34) VC,VINF,ALFAF,TTOTAL,ELND,YWING,UTIP,VA,PT
      READ (5,34) PSTAT, TSTAT, WDOT
      READ (5,32) NTHETA, NCLO, NCHI, NX, KND
      READ (5,34) (THETA(I), I=1, NTHETA)
      READ (5,34) (XTEST(I),I=1,NX)
      READ (5,36) XRI, YRIHUB, YRISHR, NHUBMX
      DEBUG(NSPB(I), NSPE(I), I=1, NSPLT)
```

IF KSKIP = 0 , READ DATA PUNCHED FROM EOD

```
IF (KSKIP.NE.O) GO TO 20
     READ (5,38) MO, JA, IR, NRUNNO
      DO 18 L=1,2
      ILOON=1+400*(L-1)
      IHION=ILCON+NT(L)-1
      NTL=NT(L)
      IL0=1+200*(L-1)
      IHI = ILO + NP(L) - 1
      NPL=NP(L)
         (L.EQ.1) GO TO 4
      IF
         (NID.GT.1) GO TO 2
      M02=M0
      JA2=JA
      IR2=IR
      NRUNO2=NRUNNO
      GO TO 4
      READ (5,38) MO2, JA2, IR2, NRUNO2
C*** READ OUTPUT FROM EOD
                               (BINARY RECORDS)
      CALL BCREAD (XON(1), XON(NTL))
      CALL BCREAD (YON(1), YON(NTL))
      CALL BCREAD (TRD(ILOON), TRD(IHION))
      CALL BCREAD (XOFF(1).XOFF(NPL))
      CALL BCREAD (YOFF(1), YOFF(NPL))
      CALL BCREAD (VXAXRD(ILO), VXAXRD(IHI))
      CALL BCREAD (VYAXRD(ILO), VYAXRD(IHI))
      CALL BCREAD (EODD(1), EODD(NPL))
      IF (L.EQ.2) GO TO 6
      CALL BCREAD (XON(1), XON(NTL))
      CALL BCREAD (YON(1), YON(NTL))
      CALL BCREAD (V2(ILOON), V2(IHION))
      CALL BCREAD (V3(ILOON), V3(IHION))
      CALL BCREAD (XOFF(1), XOFF(NPL))
      CALL BCREAD (YOFF(1), YOFF(NPL))
      CALL BCREAD (VXCR(ILO), VXCR(IHI))
      CALL BCREAD (VYCR(ILO), VYCR(IHI))
      CALL BCREAD (VZCR(ILO), VZCR(IHI))
      GO TO 12
      IF (N4SOL.EQ.O) GO TO 18
      DO 8 I=1.4
      CALL BCREAD (EODD(1), EODD(NTL))
      CONTINUE
      DO 10 I=1.5
      CALL BCREAD (EODD(1), EODD(NPL))
10
      CONTINUE
12
      DO 14 I=1,NTL
      XDUM(I)=XON(I)
14
      YDUM(I)=YON(I)
      DO 16 I=1, NPL
      XAFF(I)=XOFF(I)
16
      YAFF(I)=YOFF(I)
18
      CONTINUE
      WRITE (6,28) TITLE
20
      WRITE (6,40) MO, JA, IR, NRUNNO, MO2, JA2, IR2, NRUNO2
      CALL CONST
```

```
DO 22 I=1, NTMIN
      XON(I)=XDUM(I)/ELND
22
      YON(I)=YDUM(I)/ELNO
      DO 24 I=1, NPMIN
      XOFF(I)=XAFF(I)/ELND
24
      YOFF(I)=YAFF(I)/ELND
      DO 26 I=1,NX
      XTEST(I)=XTEST(I)/ELND
26
      RETURN
C
C
      FORMATS
C
C
      FORMAT (1H1,10X,30HCOMPRESSIBLE COMBYN APPROACH 5,10X,12A6)
28
30
      FORMAT (12A6)
      FORMAT (2014)
32
34
      FORMAT (10F8.3)
36
      FORMAT (3F10.2,14)
38
      FORMAT (42X,312,16)
40
      FORMAT (1HO/25H BASED ON BASIC DATA FROM, 13, 1H/, 12, 1H/, 12, 8H RUN N
     10., 16, 4H AND, 13, 1H/, 12, 1H/, 12, 8H RUN NO., 16/)
```

\$IBFTC CONST. DEBUG, DECK

```
SUBROUTINE CONST
C
      THIS SUBROUTINE CALCULATES MOST OF THE CONSTANTS USED IN COMBYN
C.
      COMMON /NIN/ XOFF(200), YOFF(200), NPMIN, NCLO, NCHI
      COMMON /RCONT2/ PSTAT, TSTAT, WDOT, NX, KND, YRIHUB, YRISHR, UTIP
      COMMON /RCONTI/ VC, VINF, ALFAF, TTOTAL, ELND, VA, PT
      COMMON /COUTI/ QCA,PTC,PSPTCI,PIO180,ATOTAL,GRHO
      COMMON /COUT2/ VINFP, RHOTOT, VIC
      COMMON /WRT/ KSKIP,NT(2),NP(2)
      COMMON /RDOUT4/ NTHETA, THETA(10), XTEST(10)
      COMMON /RDOUT1/ XON(400),YON(400),NSPE(10),NSPB(10),XRI,NHUBMX,NTM
     1IN, NSPLT, YWING
      REAL MC.MA.MINF
      PI=3.14159265
      R21568=1715.63
      G = 32.174
      PI0180=PI/180.
      IF (PSTAT.NE.O.O.AND.TSTAT.NE.O.O) GO TO 2
      IF
         (PT.EQ.0.0) PT=2116.22
      IF
         (TTOTAL.EQ.0.0) TTOTAL=518.67
      ATOTAL=49. *SQRT(TTOTAL)
      CATOT=1.0-.2*(VINF/ATOTAL)**2
      PSTATC=PT+CATOT++3.5
      PTC=PT
      RHOTOT=PT/(R21568*TTOTAL)
      TSTAT=TTOTAL *CATOT
      RHOST=PSTATC/(R21568+TSTAT)
      PSTAT=PT-.5*RHOST*VINF**2
      ASTAT=49. *SQRT(TSTAT)
      GO TO 4
2
      ASTAT=49.0*SQRT(TSTAT)
      PSTATC=PSTAT
      RHOST=PSTAT/(R21568*TSTAT)
      AMINF=VINF/ASTAT
      CAMINF=1.0+.2*AMINF**2
      PT=PSTAT+.5*RHOST*VINF**2
      PTC=PSTAT+CAMINF++3.5
      TTOTAL=TSTAT*CAMINF
      RHOTOT=PT/(R21568*TTOTAL)
      ATOTAL=49. +SQRT(TTOTAL)
      IF (WDOT.EQ.O.O) GO TO 6
      AC=PI+(YRISHR++2-YRIHUB++2)/144.
      VIC=WDOT/(G*RHOTOT*AC)
      VICC=ATOTAL/1.728
                                                            8/30/71
C***
      FOR D. BREUNLIN TAKE OUT FOLLOWING THREE(3) CARDS
C****
C
      IF(VIC.LE.VICC) GO TO 25
      VIC = VICC
```

```
WDOT = RHOTOT*VICC*AC*G
CALL VBARIT (VIC, ATOTAL, RHOTOT, RHOC)
VC=WDOT/(G*RHOC*AC)
IF (VA.EQ.O.O) VA=VC
TESTS FOR NORMALIZING PARAMETERS (ELND)
  IF KND = -1, ELND =YRISHR
              O, SET ELND = 1.0 AND SKIP NONDIMENSIONAL CALCULATIO.
              1, ELND = YRISHR - YRIHUB
              2, USE READ IN VALUE OF ELND
              4.5,6 USE VA FOR NONDIMENSIONALIZING VELOCITIES
IF (KND.EQ.O) GO TO 8
VCA=VC
IF (KND.GE.4) VCA=VA-
WRITE (6,28) VC, VINF, VA, VCA, PT, TTOTAL
VC=VC/VCA
VA=VA/VCA
VINF=VINF/VCA
PT=1.0
TTOTAL=TTOTAL/(VCA*+2)
   (KND.EQ.-1.OR.KND.EQ.4) ELND=YRISHR
  (KND.EQ.1.OR.KND.EQ.6) ELND=YRISHR-YRIHUB
  (KND.EQ.O.OR.KND.EQ.5) ELND=1.0
XRI=XRI/ELND
YRIHUB=YRIHUB/ELND
YRISHR=YRISHR/ELND
RTTOT=R21568*TTOTAL
GRH0=32.174*PT/RTTOT
C102RT=.5/RTTOT
  (PSTAT.NE.O.O) ClO2RT=.5*RHOST/PT
VCOVA=VC/VA
VIOVA=VINF/VA
VNFGVC=VINF/VC
VFOAT=VINF/ATOTAL
VCOAT=VC/ATOTAL
VACAT=VA/ATOTAL
CON1=1.0-.2*VCOAT**2
CON2=1.0-.2*VFOAT**2
CON3=1.0-.2*VAOAT**2
RSORTF=CCN2**2.5
RSORTA=CON3**2.5
RSORTC=CON1**2.5
  (WDOT.EQ.O.O) VIC = VC*RSORTC
VSONIC=ATOTAL/1.728
VSCNCC=ATOTAL/SQRT(1.2)
PSPTC=1.0-C102RT*VC**2
PSPTIF=1.0-C102RT*VINF**2
PSPTCI=RSORTF*CON2
PSPTCC=RSORTC*CON1
PSPTCA=RSORTA*CON3
PSPTA=1.0-C102RT*VA**2
MINF=VFOAT/(CON2**.5)
MC=VCOAT/(CON1**.5)
MA=VADAT/(CON3++.5)
```

QINF=PT*(1.0-PSPTIF)

```
QCINF=PTC*(.7*VFOAT**2*RSORTF)
      QC=PT*(1.0-PSPTC)
      QCC=PTC*(.7*VCOAT**2*RSORTC)
      QA=PT*(1.0-PSPTA)
      QCA=PTC*(.7*VAOAT**2*RSORTA)
      THETC=TTOTAL/518.67
      DEL=PTC/2116.22
      HBTPR=YRIHUB/YRISHR
      WRITE (6,10)
      WRITE (6,12) VC,MC,QC,QCC,PSPTC,PSPTCC,RSDRTC
      WRITE (6,14) VA, MA, QA, QCA, PSPTA, PSPTCA, RSORTA
      WRITE (6,16) VINF, MINF, QINF, QCINF, PSPTIF, PSPTCI, RSORTF
      WRITE (6,18)
      WRITE (6,20) ALFAF, VNFOVC, VIOVA, VCOVA, VSONIC, VSONCC
      WRITE (6,22)
      WRITE (6,24) TSTAT, PSTAT, PSTATC, ASTAT, RHOST, WDOT, VIC
      WRITE (6,18)
      WRITE (6,26) TTOTAL, PT, PTC, ATOTAL, RHOTOT, THETC, DEL
      WRITE (6,22)
      WRITE (6,18)
      WRITE (6,30) XRI, YRIHUB, YRISHR, HBTPR, ELND
      WRITE (6,18)
      WRITE (6,32) XTEST(1), YWING
      WRITE (6,22)
      WRITE (6,34) NT(1),NP(1),NCLO,NCHI,NHUBMX,NX,KND,KSKIP,NT(2),NP(2)
C
C
      FORMATS
C
      RETURN
10
      FORMAT (1HO, 27X, 58HMACH
                                          DYNAMIC PRESSURE
                                                                         PRE
                                                      NO
     1SSURE RATIO/107H
                                    VELOCITY
                                                     DENSITY RATIO)
            COMP.
                           INC.
                                          COMP.
                             ,1PE10.3,1P6E14.3)
12
      FORMAT (11H
                   CONTROL
14
      FORMAT (11H BULK
                             ,1PE10.3,1P6E14.3)
16
      FORMAT (11H FREE
                             ,1PE10.3,1P6E14.3/8H STREAM)
18
      FORMAT (1HO)
20
      FORMAT (87H
                             ALFAF
                                           VINF/VC
                                                          VINF/VA
     1/VA
                  VSONIC
                                VSONICC/5X.1P6E14.3)
22
      FORMAT (1H0,110H-
24
                                              PSTAT
      FORMAT (100H
                                TSTAT
                                                             PSTATC
                                                   VIC/9X,1PE10.3,1P6E14.3
     1 ASTAT
                     RHOSTAT
                                   WDOT .
     2)
26
     FORMAT (101H
                                TTOT
                                              PTOT
                                                              PTOTC
                                                     DEL/5X,1P7E14.3)
     1 ATOT
                     RHOTOT
                                     THET
28
      FORMAT (1H0,6E12.5)
                                            YRIHUB
                                                                       HUB-T
30
      FORMAT (75H)
                            XRI
                                                           YR I SHR
                        LND/5X,1P5E14.3)
     1IP RATIO
32
      FORMAT (31H.
                              XTEST
                                             YWING/5X, 1P2E14.3)
74
      FORMAT (74H
                                NT
                                           NP
                                                 NCLO NCHI
                                                                  NHUBMX
             KND
                     KSKIP/10X,1H1,14,5X,1H1,I5,4X,I3,5X,I3,6X,I3,6X,I2,4
     2X, I2, 6X, I2/10X, 1H2, I4, 5X, 1H2, I5)
```

```
$18FTC AVERY
               DECK . DEBUG
      SUBROUTINE AVEV
C
      APPROACH 5
      COMMON /MONOF/ JJS,JJ
      COMMON /RDOUTI/ XON(400), YON(400), NSPE(10), NSPB(10), XRI, NHUBMX, NTM
     11N, NSPLT, YWING
      COMMON /NIN/ XOFF(200), YOFF(200), NPMIN, NCLO, NCHI
      COMMON /RDOUT2/ T(400,2), VYAX(200,2), VYCR(200), V2(400), V3(400), VZC
     1R(200)
      COMMON /RDOUT3/ VXAX(200,2), VXCR(200)
      COMMON /RDOUT4/ NTHETA, THETA(10), XTEST(10)
      COMMON /RCONT1/. VC, VINF, ALFAF, TTOTAL, ELND, VA, PT
      COMMON /RCONT2/ PSTAT, TSTAT, WDOT, NX, KND, YRIHUB, YRISHR, UTIP
      COMMON /COUT2/ VINFP, RHOTOT, VIC
      COMMON /GETOUT/ VMAG(3), ALIL, BLIL, CLIL
      DIMENSION IBEGIN(25), IEND(25), VBAR(400), A(400), VBAROF(200), RH
     10BAR(400), RBROFF(200), RBORT(400), RBFORT(200)
      DIMENSION IED(25)
      REWIND 2
      REWIND 3
      PI=3.14159265
      PI0180=PI/180.
      G=32.174
      AC=PI*(YRISHR**2-YRIHUB**2)/144.
      ATOTAL=49. +SQRT(TTOTAL)
      FACTR=(144./G)/RHDTOT
      NSHR=NTMIN-NHUBMX+1
      NBP1=NHUBMX+1
C*** FIND THE HIGH-LIGHT ON THE SHROUD
      DO 2 I=NBP1,NTMIN
      J J = I
      IF (XON(I).LE.XON(I+1)) GO TO 4
      CONTINUE
C*** MODIFICATION FOR SPLITTER TO FIND THE LAST POINT ON THE SHROUD
      DO 6 I=JJ,NTMIN
      JJS=1
      IF (xon(I).GT.xon(I+1)) GO TO 8
      CONTINUE
    FIND AREAS FOR POINTS ON THE SHROUD THEN INTERPOLATE FOR ALL
         OTHER POINTS
      NHUBP1=NHUBMX+1
      IF (NSPLT.EQ.0) GO TO 12
      DO 10 IN=1, NSPLT
      IED(IN)=NSPB(IN+1)-1
10
      IF (IN.EQ.NSPLT) IED(IN)=NTMIN
C****
      FIND AREA FOR EVERY POINT ON THE SHROUD
```

```
C****
 12
       DO 20 I=NHUBP1.JJS
       YS=YON(I)
       XS = XON(I)
       IF (I.GT.JJ) GO TO 18
       ARS=0.0
       IF (NSPLT.EQ.O) GO TO 16
C*** IF THERE ARE SPLITTERS, SUBTRACT AREA OF SPLITTERS FROM OVERALL AR
       DO 14 IN=1, NSPLT
       NSB=NSPB(IN)
       NSE=NSPE(IN)
       IF (XS.LT.XON(NSE).OR.XS.GT.XON(NSB)) GO TO 14
       CALL SINTP (XON(NSB), YON(NSB), NSE-NSB+1, XS, YSP1)
       CALL SINTP (XON(NSE), YON(NSE), IED(IN)-NSE, XS, YSP2)
       ARS=PI*(YSP2**2-YSP1**2)+ARS
14
       CONTINUE
       CALL SINTP (XON, YON, NHUBMX, XS, YH)
       A(I)=PI*(YS**2-YH**2)-ARS
       GO TO 20
       R=SQRT(YS++2+(XS-XQN(JJ))++2)
18
       A(I)=(1.0+(YS-YON(JJ))/(YON(JJS)-YON(JJ)))*PI*R*(R+XS-XON(JJ))
20
       CONTINUE
C****
       INTERPOLATE AREAS FROM THE POINTS ON THE SHROUD TO OBTAIN
C***
C***
         REMAINING AREAS
C****
       NCNTH=0
       DO 24 I=1,NTMIN
       IF (I.GE.NHUBP1.AND.I.LE.JJS) GO TO 24
       IF (XON(I).LT.XON(JJ)) GO TO 22
       XA = XON(I)
       CALL SINTP (XON(NHUBP1), A(NHUBP1), JJ-NHUBMX, XA, AX)
       A(I)=AX
       GO TO 24
22
       NCNTH=NCNTH+1
24
       CONTINUE
       IF (NCNTH.EQ.O) GO TO 28
       DO 26 I=1, NCNTH
       A(I)=A(NCNTH+1)
26
       CONTINUE
       DO 50 N=1, NTHETA
       THETA(N)=THETA(N)*PIO180
       COSTH=COS(THETA(N))
       CCOSTH=CLIL*COSTH
       SINTH=SIN(THETA(N))
       CSINTH=CLIL*SINTH
       VICT=VIC+CLIL*VMAG(3)*COSTH
       WDOTT=G*RHOTOT*VICT*AC
       FACTOR=FACTR*WDOTT
       WRITE (3) WDOTT.VICT
C*** CALCULATE VBAR FOR EVERY POINT ON BODY
```

ISTOP=NTMIN

```
SLOPE = (XON(JJS)-XON(JJ))/(YON(JJS)-YON(JJ))
      DO 32 I=1, NTMIN
      IF (I.GT.JJ.AND.I.LE.JJS.AND.SLOPE.GT.1.0) GO TO 30
      VBAR(I)=FACTOR/A(I)
      GO TO 32
      VBAR(I)=VINFP
30
      IF (VBAR(I).EQ.O.O) VBAR(I)=1.0
         (ISTOP.EQ.NTMIN) ISTOP=I
32
      CONTINUE
      DEBUG(VBAR(I), I=1, NTMIN)
C
C
      CNBODY RHOBAR AND VRES CALCULATIONS
      RRSRTF=RHOTOT*(1.0-.2*(VINF/ATOTAL)**2)**2.5
      RSORTC=(1.0-.2*(VC/ATOTAL)**2)**2.5
      DO 38 I=1.NTMIN
      VP=ALIL*T(I,1)+BLIL*T(I,2)+CCOSTH*V2(I)
      VTH=CSINTH*V3(I)
C
C
      ORIGINAL VRESON
C
      VRESON=SQRT(VP*+2+VTH*+2)
      RESVV=VRESON
C
      APPROACH 5 VRESON
      IF (I.GE.ISTOP.AND.I.LE.JJS) GO TO 34
      CALL VBARIT (VBAR(I), ATOTAL, RHOTOT, RHOBAR(I))
      GO TO 36
      RHOBAR(I)=RRSRTF
34
      RBORT(I)=RHOBAR(I)/RHOTOT
36
      VRESON=VRESON*(1.0/RBORT(1))**(VRESON/VBAR(1))
      VP=VRESON*VP/RESVV
      VTH=VRESON*VTH/RESVV
      WRITE (3) VRESON, VP, VTH
38
      CONTINUE
      WRITE (2) (VBAR(I), RBCRT(I), I=1, NTMIN)
C
      OFF BODY POINTS A AND VBAR
C
      J=1
      IBEGIN(J)=1
      NRAKES=1
      DO 42 I=1, NPMIN
      IF (ABS(XOFF(I+1)-XOFF(I)).GT..01) GO TO 40
      GO TO 42
40
      IF (I.EQ.NPMIN) GO TO 42
      J=J+1
      IBEGIN(J)=I+1
      NRAKES=J
42
      CONTINUE
      DO 46 I=1.NRAKES
      IB=IBEGIN(I)
C+++ FIND AREA FOR OFF-BODY RAKES
```

```
CALL SINTP (XON(NHUBP1), A(NHUBP1), JJ-NHUBMX, XOFF(IB), AR)
      VB=FACTOR/AR
      CALL VBARIT (VB, ATOTAL, RHOTOT, RHB)
      IE=IBEGIN(I+1)-1
      IF (I.EQ.NRAKES) IE=NPMIN
      DO 44 J=18,1E
      VBAROF(J)=VB
      RBROFF(J)=RHB
44
      CONTINUE
46 -
      CONTINUE
      DO 48 I=1, NPMIN
C.
C
      ORIGINAL VRESOF
      VXC=ALIL+VXAX(I,1)+BLIL+VXAX(I,2)+CCOSTH+VXCR(I)
      VYC=ALIL*VYAX(I,1)+BLIL*VYAX(I,2)+CCOSTH*VYCR(I)
      VZC=CSINTH*VZCR(I)
      VRESOF=SORT(VXC**2+VYC**2+VZC**2)
      RESVV=VRESOF
C
      APPROACH 5 VRESOF
C
      RBFORT(I)=RBROFF(I)/RHOTOT
      VRESOF=VRESOF*(1.0/RBFORT(I))**(VRESOF/VBAROF(I))
      VXC=VRESOF*VXC/RESVV
      VYC=VRESOF*VYC/RESVV
      VZC=VRESOF*VZC/RESVV
      WRITE (3) VRESOF, VXC, VYC, VZC
48
      CONTINUE
      WRITE (2) (VBAROF(I), RBFORT(I), I=1, NPMIN)
      THETA(N)=THETA(N)/PIO180
50
      CONTINUE
      RETURN
      END
```

SIBFTC ONOFF. DECK

SUBROUTINE ONOFF
CALL ONBODY
CALL OFFBDY
RETURN
END

\$IBFTC ONBDY. DECK

```
SUBROUTINE ONBODY
C***
     THIS SUBROUTINE CALCULATES ON-BODY VARIABLES
C****
      COMMON /MONOF/ JJS,JJ
      COMMON /RDOUT1/ XON(400), YON(400), NSPE(10), NSPB(10), XRI, NHUBMX, NTM
     1IN.NSPLT.YWING
      COMMON /COUT1/ QCA.PTC.PSPTCI.PIO180.ATOTAL.GRHO
      COMMON /CNOUT/ VRESON(400), VP(400), BETAON(400)
      COMMON /RCONT2/ PSTAT, TSTAT, WDOT, NX, KND, YRIHUB, YRISHR, UTIP
      DIMENSION VTH(400), PSOPTC(400), CPCON(400), VBAR(400), RBORT(400)
     1. S(400)
      CALL SRINE (XON, YON, XRI, YRIHUB, YRISHR, NHUBMX, NTMIN, S)
      DO 10 I=1.NTMIN
C****
C*** READ FROM TAPE 3
                          VRESON
                                             VTH
C****
      READ (3) VRESON(I), VP(I), VTH(I)
      VCONC=.2*(VRESON(I)/ATOTAL)**2
      IF (VCONC.GT.1.0) GO TO 2
      PSOPTC(I)=(1.0-VCONC)**3.5
      GO TO 4
2
      PSOPTC(I)=0.0
      IF (VTH(I).EQ.O.O) GO TO 6
      BETAON(I) = ATAN(VTH(I)/VP(I))/PIO180
      GO TO 8
      BETAON(I)=0.0
6
8
      CPCON(I)=(PSOPTC(I)-PSPTCI)/(QCA/PTC)
      CONTINUE
10
      READ (2) (VBAR(I), RBORT(I), I=1, NTMIN)
C****
      WRITE HUB COORDINATES AND VARIABLES
C***
C****
      WRITE (6,14)
      WRITE (6,16)
      WRITE (6,18) (I,XON(I),YON(I),VP(I),VTH(I),VRESON(I),VBAR(I),BETAO
     1N(I).S(I),CPCON(I),RBORT(I),PSOPTC(I),I=1,NHUBMX)
C*** WRITE SHROUD COORDINATES AND VARIABLES
C****
      WRITE (6,20)
      WRITE (6,16)
      NHUBP1=NHUBMX+1
      WRITE (6,18) (I,XON(I),YON(I),VP(I),VTH(I),VRESON(I),VBAR(I),BETAO
     1N(I),S(I),CPCON(I),RBORT(I),PSOPTC(I),I=NHUBP1,JJS)
C
      WRITE SPLITTER COORDINATES AND VARIABLES IF IT APPLIES
      IF (NSPLT.EQ.O) GO TO 13
      DO 12 IN=1.NSPLT
```

```
NB=NSPB(IN)
      NE=NSPB(IN+1)-1
      IF (IN.EQ.NSPLT) NE=NTMIN
      WRITE (6,22) IN
      WRITE (6,16)
      WRITE (6,18) (1,XON(I),YON(I),VP(I),VTH(I),VRESON(I),VBAR(I),BETAO
     IN(I),S(I),CPCON(I),RBORT(I),PSOPTC(I),I=NB,NE)
12
      CONTINUE
13
      CONTINUE
      RETURN
C***
        FORMATS
C****
14
      FORMAT (1HO, 10X, 3HHUB)
      FORMAT (11X,14HON-BODY POINTS//2X,1HI,6X,1HX,11X,1HY,11X,2HVP,9X,6
16
     1HVTHETA,7X,4HVRES,7X,5HVBARI,7X,4HBETA,10X,1HS,11X,3HCPC,5X,5HRB/R
     2T,3X,6HPSOPTC)
18
      FORMAT (14,9E12.4,F7.4,F8.4)
      FORMAT (1HO, 10X, 6HSHROUD)
20
22
      FORMAT (1H0,10X,8HSPLITTER,13)
      END
```

```
SUBROUTINE SETNE (XON, YON, XRI, YRIHUB, YRISHR, NHUBMX, NTMIN, S)
        DIMENSION XON(1), YON(1), S(1)
  C
           ROUTINE
  C
        ISI=0
  2
        ISI=ISI+1
        IF (XON(ISI)-XRI) 2.4.4
        S(ISI)=SQRT((XON(ISI)-XRI)**2+(YON(ISI)-YRIHUB)**2)
        IS1=ISI+1
        DO 6 I=IS1,NHUBMX
        S(I)=S(I-1)+SQRT((XON(I)-XON(I-1))**2+(YON(I)-YON(I-1))**2).
        CONTINUE
        IS2 = ISI - 1
        S(IS2)=-SQRT((XON(IS2)-XRI)**2+(YON(IS2)-YRIHUB)**2)
        IS3=IS1-2
        DO 8 I=1, IS3
        139=IS2-I
        S(139)=S(139+1)-SQRT((XON(139)-XON(139+1))**2+(YON(139)-YON(139+1)
        CONTINUE
        ISI=NHUBMX
        ISI=ISI+1
      IF (XON(ISI)-XRI) 12.12.10
12
      "S(ISI)=-SQRT((XON(ISI)-XRI)**2+(YON(ISI)-YRISHR)**2)
        IS1=ISI+1
        DO 14 I=IS1.NTMIN
        S(I)=S(I-1)-SQRT((XON(I)-XON(I-1))**2+(YON(I)-YON(I-1))**2)
        CONTINUE
        IS2=ISI-1
        S(IS2)=SQRT((XON(IS2)-XRI) ** 2+ (YON(IS2)-YRISHR) ** 2)
        ISMIN=NHUBMX+1
        IS3=ISI-2
        DO 16 I=ISMIN, IS3
        139=1S2-1+NHUBMX
        $(139)=$(139+1)+$QRT((XON(139)-XON(139+1))**2+(YON(139)-YON(139+1)
       1)**2)
  16
        CONTINUE
  C
  C
        END OF S
        RETURN
        END
```

\$IBFTC SSUB

LIST, DECK

\$IBFTC OFBDY. DEBUG, DECK SUBROUTINE OFFBDY C C SUBROUTINE TO CALCULATE ALL OFF-BODY VARIABLES C COMMON /MONOF/ JJS:JJ COMMON /CNOUT/ VRESON(400), VP(400), BETAON(400) COMMON /NIN/ XOFF(200), YOFF(200), NPMIN, NCLO, NCHI COMMON /NOUT/ IBEGIN(25), IEND(25), NOEP(50,6), NOS(25), NRAKES COMMON /RDOUT1/ XON(400),YON(400),NSPE(10),NSPB(10),XRI,NHUBMX,NTM 1IN. NSPLT. YWING COMMON /GEABC/ YI COMMON /COUT1/ QCA,PTC,PSPTCI,PIO180,ATOTAL,GRHO COMMON /TOUT1/ SINTH, COSTH, OMEGA COMMON /RCONT2/ PSTAT.TSTAT.WDOT.NX.KND.YRIHUB.YRISHR.UTIP COMMON /VOUT1/ PSOPC(100), PHII(100), ZETAI(100), VYI(100), CPC(100), V 121(100), VMI(100), VAFTI(100), VSPANI(100), ETAI(100) COMMON /VOUT2/ UI(100), VZPRI(100), BETAPI(100), VPRI(100), VZPRST(100 1),BETAPS(100),VPRST(100),MPRST(100),MPRI(100) DIMENSION X(100), VRES(100), VX(100), BETA(100), PSOP(100), ALFA(1 100) DIMENSION QLOC(300), IQSJ(50), Q(50), DEV1(50), QFRACT(300), YLOC(1300) DIMENSION VBRFF(200), RBRTF(200), Y(100), QSTOT(50,6) DIMENSION VRESOF(200), VYC(200). VXC(200), VZC (200). PSOPTC(200), MPRIME(200), MPRIST(200), ALFAOF(200), BETAUF(200), VAFT(200), VSPAN(200), ETA(200), VM(200), CPCOFF(200), ZETA(200), PHI(200), U(200), VZPRIM(200), BETAPR(200), VPRIME(200), VZPRS(200), BETPS(200), VPRIST(200) REAL MPRIME, MPRIST, MPRST, MPRI PI=3.14159265 014=1.0/1.4 GR044=GRH0/144. DO 8 I=1.NPMIN C READ FROM TAPE 3 VRESOF(I), VXC(I), VYC(I), VZC(I) C READ (3) VRESOF(I), VXC(I), VYC(I), VZC(I) VCONA=.2*(VRESOF(I)/ATOTAL)**2 IF (VCONA.LE.1.0) GO TO 2 PSOPTC(I)=0.0MPRIME(I)=0.0MPRIST(I)=0.0GO TO 4 PSOPTC(1)=(1.0-VCONA) **3.5 2 ALFAOF(I)=ATAN(VYC(I)/VXC(I))/PIO180 BETAOF(I)=ARSIN(VZC(I)/VRESOF(I))/PIO180 VAFT(I)=VZC(I)*SINTH+VYC(I)*COSTH VSPAN(I)=VYC(I)*SINTH-VZC(I)*COSTH

ETA(I)=ATAN2(VAFT(I), VXC(I))/PI0180

```
ZETA(1)=ATAN2(VSPAN(1), VXC(1))/P10180
       PHI(I)=ATAN2(VZC(I), VXC(I))/PI0180
       VM(I)=SQRT(VXC(I)++2+VYC(I)++2)
       CPCOFF(I)=(PSOPTC(I)-PSPTCI)/(QCA/PTC)
C
C
       IF THE OFF-BODY X IS NOT AT CONTROL STATION, SKIP FOLLOWING CALCUL
C
       IF (XOFF(I).NE.XRI) GO TO 8
       U(I)=OMEGA*YOFF(I)
       VZPRIM(I) = VZC(I) - U(I)
       BETAPR(I)=ATAN2(VZPRIM(I),VM(I))
       VPRIME(I)=VM(I)/COS(BETAPR(I))
       BETAPR(I)=BETAPR(I)/PIO180
       VCON=VPRIME(I)/ATOTAL
       IF (VCDNA.GT.1.0) GO TO 6
       MPRIME(I) = VCON/((1.0 - VCONA) + +.5)
6
       VZPRS(I) = -VZC(I) - U(I)
       BETPS(1)=ATAN2(VZPRS(1), VM(1))
       VPRIST(I)=VM(I)/COS(BETPS(I))
       BETPS(I)=BETPS(I)/PI0180
       VPCON≈VPRIST(I)/ATOTAL
       IF (VCONA.GT.1.0) GO TO 8
       MPRIST(I)=VPCON/((1.0-VCONA) **.5)
       CONTINUE
       CALL NOEPTS
C***
       I = COUNT FOR INTERPOLATED OFF-BODY POINTS
       IK! LOOP FOR NUMBER OF RAKES
C***
C****
       I =0
       DO 30 IK=1, NRAKES
       NOSI=NOS(IK)
       IB=IBEGIN(IK)
C****
C***
       IS = STARTING POINT TO FIND ON-BODY X VALUE
       ISP = STOPPING POINT TO FIND ON-BODY X VALUE
C***
C***
       K = COUNT FOR NUMBER OF ENDPOINTS FOR RAKE
C****
       NS=0
       DO 28 K=1,NOSI
       IF (K.GT.1) GO TO 10
       IS=1
       ISP=NHUBMX
       GO TO 20
          (K.EQ.NOSI) GO TO 18
10
       IF (MOD(K,2).EQ.0) GO TO 12
       IS=NSPE(NS)
       ISP=NSPB(NS+1)-1
       IF (K.EQ.NOSI-1) ISP=NTMIN
       GO TO 20
12
       NS=NS+1
       IS=NSPB(NS)
 14
       ISP=NSPE(NS)
       IF (XOFF(IB).GT.XON(IS).OR.XOFF(IB).LT.XON(ISP)) GO TO 16
       GO TO 20
 16
       NS=NS+1
```

```
GO TO 14
18
      IS=NHUBMX+1
      LL=92I
C
                                        VALUES NEAREST TO OFF-BODY X VALUE
C
      DO LOOP TO SEARCH FOR ON-BODY X
C
20
      X(I) = XOFF(IB)
      IFLAG=2
      DO 26 J=IS, ISP
      IF (MOD(K,2).EQ.0) GO TO 22
C
C
      SEARCHING FORWARD - 'TOP-SIDE OF A BODY
C
      IF (X(I).LE.XON(IS)) GO TO 24
      IF (XON(J).LT.X(I)) GG TO 26
      CALL INTPOL (1, J, X(I), IFLAG, VX(I), VRES(I), BETA(I), ALFA(I))
      PSOPC(I)=(1.0-.2*(VRES(I)/ATOTAL)**2)**3.5
      Y(I)=YI
      CALL VAROFF (I, BETA, ALFA, VX, VRES, X, Y)
      GO TO 28
C
C.
      SEARCHING BACKWARD - UNDERSIDE OF A BODY
C
22
      IF (XON(J).GT.X(I)) GO TO 26
      IND=J-1
      CALL INTPOL (1, J, X(I), IFLAG, VX(I), VRES(I), BETA(I), ALFA(I)
      PSOPC(I)=(1.0-.2*(VRES(I)/ATOTAL)**2)**3.5
      Y(I)=YI
      BETA=-BETA(I)
      (I)XV==(I)XV
      CALL VAROFF (I, BETA, ALFA, VX, VRES, X, Y)
      GC TO 28
24
      Y(I) = 0.0
      VX(I)=VXC(IB)
      VRES(I)=VRESOF(IB)
      BETA(I)=BETAOF(IB)
      ALFA(I)=ALFAOF(IB)
      PSOPC(I)=PSOPTC(IB)
      GO TO 28
      CONTINUE
26
28
      CONTINUE
30
      CONTINUE
      INTEGRATED WEIGHT FLOW BETWEEN LOWER BOUNDARY(EITHER HUB OR AXIS)
             AND LOCAL Y VALUE
            = NUMBER OF INTERPOLATED OFF BODY POINT
      NIO=0
      IQS=0
      DO 42 J=1, NRAKES
      IQS=IQS+1
      QLOC(IQS)=0.0
      NOSI=NOS(J)
      QST=0.0
      DO 40 NS=1.NOSI.2
```

```
NIO=NIO+1
       NLOW=NOEP(J.NS)
       NHI=NOEP(J,NS+1)
    ...NHIM1=NHI-1
       IQS=IQS+1
       QLOC(IQS)=PI*(PSOPTC(NLOW)**014*(YOFF(NLOW)*VXC(NLOW))+PSOPC(NIO)*
      1*014*(Y(NIO)*VX(NIO)))*(YOFF(NLOW)-Y(NIO))+QST
       DO 32 I=NLOW, NHIM1
       IQS=IQS+1
       QLOC(IQS)=QLOC(IQS-1)+PI*(PSOPTC(I+1)**014*(YOFF(I+1)*VXC(I+1))+PS
      10PTC(I)**014*(Y0FF(I)*VXC(I)))*(Y0FF(I+1)-Y0FF(I))
 32
       CONTINUE
       NIO=NIO+1
       IQS=IQS+1
       IF (X(NIO).LT.XON(JJ)) GO TO 34
      QLOC(IQS)=QLOC(IQS-1)+PI*(PSOPC(NIO)**014*(Y(NIO)*VX(NIO))+PSOPTC(
      1NHI)**014*(YOFF(NHI)*VXC(NHI)))*(Y(NIO)-YOFF(NHI))
       QST=QLOC(IQS)
       GO TO 36
 34
       QLOC(IQS) = QLOC(IQS-1)
       QST=QLOC(IQS)
 36"
       IF (NS.EQ.NOSI-1) GO TO 38
       IQS = IQS + 1
       QLOC(IQS)=QLOC(IQS-1)
··· 38····
       QSTOT(J,NS)=QST
       CONTINUE
       IQSJ(J)=IQS-IQSAVE
       IQSAVE=IQS
       IF (J.EQ.1) IQSJ(J)=IQS
       Q(J) = QST
       CONTINUE
 42
       DO 44 I=1, IQS
       QLOC(I)=QLOC(I)*GRO44
       CONTINUE
 44
       SUM=0.0
       DO 46 I=1, NRAKES
       Q(I)=Q(I)*GRO44
       IF (IBEGIN(I).NE.NCLO) GO TO 46
       QBAR=Q(I)
       CONTINUE
 46
       DO 48 I=1, NRAKES
       DEV1(I)=(Q(I)-QBAR)/QBAR
       CONTINUE
 48
       IST=1
       IFN=IQSJ(1)
       DO 52 I=1.NRAKES
       DO 50 J=IST, IFN
       QFRACT(J)=QLOC(J)/Q(I)
 50
       CONTINUE
       IST=IFN+1
       IFN=IFN+IQSJ(I+1)
 52
       CONTINUE
 C
 C
       WRITE OFF-BODY DATA
       READ (2) (VBRFF(I), RBRTF(I), I=1, NPMIN)
```

```
WRITE (6,82)
      NIO=0
      DO 58 I=1.NRAKES
      NOSI=NOS(I)
      DO 56 NS=1,NOSI,2
      NLOW=NOEP(I,NS)
      NHI=NOEP(I.NS+1)
54
      NIO=NIO+1
      WRITE (6,84) X(NIO), Y(NIO), VX(NIO), VYI(NIO), VZI(NIO), VRES(NIO), VMI
     1(NIO), VAFTI(NIO), VSPANI(NIO), PSOPC(NIO)
      IF (MOD(NIO,2).EQ.0) GO TO 56
      WRITE (6,86) (J,XOFF(J),YOFF(J),VXC(J),VYC(J),VZC(J),VRESOF(J),VM(
     1J),VAFT(J),VSPAN(J),RBRTF(J),PSOPTC(J),J=NLOW,NHI)
      GO TO 54
56
      CONTINUE
58
      CONTINUE
      WRITE (6,88)
      NIO=0
      NQ=()
      DO 66 I=1, NRAKES
      NOSI=NOS(I)
      DO 64 NS=1,NOSI,2
      NLOW=NOEP(I,NS)
      NHI=NOEP(I,NS+1)
      NIO=NIO+1
      NQ=NQ+1
      YLOC(NQ) = Y(NIO)
      WRITE (6,90) X(NIO), Y(NIO), CPC(NIO), ALFA(NIO), BETA(NIO), ETAI(NIO),
     1ZETAI(NIO), PHII(NIO), QFRACT(NQ)
      IF (MOD(NIO, 2). EQ. 0) GO TO 64
      DO 62 J=NLOW,NHI
      NQ=NQ+1
      YLOC(NQ) = YOFF(J)
      WRITE (6,92) J,XOFF(J),YOFF(J),VBRFF(J),CPCOFF(J),ALFAOF(J),BETAOF
     l(J), ETA(J), ZETA(J), PHI(J), QFRACT(NQ)
62
      CONTINUE
      GO TO 60
      CONTINUE
64
66
      CONTINUE
C
C
      WRITE OFF-BODY DATA AT THE CONTROL STATION
C
      WRITE (6,94) XRI, UTIP
      NIO=0
      DO 74 I=1.NRAKES
      NOS I = NOS (I)
      DO 72 NS=1, NOSI, 2:
      NLOW=NOEP(I,NS)
      NHI=NOEP(I,NS+1)
      NIO=NIO+1
68
      IF (X(NIO).NE.XRI) GO TO 70
      WRITE (6,96) Y(NIO), UI(NIO), VZPRI(NIO), VPRI(NIO), MPRI(NIO), BETAPI(
     1NIO), VZPRST(NIO), VPRST(NIO), MPRST(NIO), BETAPS(NIO)
      IF (MOD(NIO,2).EQ.0) GO TO 72
      WRITE (6,96) (YOFF(J), U(J), VZPRIM(J), VPRIME(J), MPRIME(J), BETAPR(J)
     1,VZPRS(J),VPRIST(J),MPRIST(J),BETPS(J),J=NLOW,NHI)
```

```
GO TO 68
70
      NIO=NIO+1
72
      CONTINUE
74
      CONTINUE
C
C
      WRITE WEIGHT FLOW DATA
C
      WRITE (6,102)
      NIO=0
      DO 80 I=1.NRAKES
      NOSI=NOS(I)
      DO 78 J=1,NOSI,2
      NIO=NIO+2
      QSTOT(I,J)=QSTOT(I,J)*GRO44
      QFR=QSTOT([,J)/Q(I)
      IF (J.GT.1) GO TO 76
      WRITE (6,98) I,X(NIO),DEV1(I),QSTOT(I,J),QFR
      GO. TO 78
76
      WRITE (6,100) QSTOT(I,J),QFR
78
      CONTINUE
80
      CONTINUE
      CALL STRML (YLOC, QFRACT, IQSJ, NRAKES, XOFF, NOEP)
      RETURN
C ****
C***
             FORMATS
C****
C
      FORMAT (1H1,5X,23HOFF-BODY POINTS (RAKES)/
82
               1HO, 10X, 116HCOORDINATES
         ----VELOCITIES-
                                                           RADIAL
                                                                      CIRCUMF
                     AXIAL
                                              AXIAL
     2ATIO/123H
                                 RADIAL
                                                                         COMP
             RESULTANT MERIDIONAL
                                       CHORDWISE
                                                    SPANWISE
     3RNTL
                                                                          ٧Z
     4/129H
                       X
                                               VX
               I
               VRES
                                                      VSPAN
                                                                RHOBR
                                                                         PSOP
     5
                             VM
                                         VAFT
     6TC)
      FORMAT (5X,1P9E12.4,7X,0PF8.4)
84
      FORMAT (15,1P9E12.4, OPF7.4, OPF8.4)
86
                                                                     CP
88
      FORMAT (//1H0,112H
                                     COORDINATES
                                        ANGLES-
     209H
                   AXIAL
                               RADIAL
                                                                    MERIDIONA
                                                   SWIRL/122H
     3L
             FLOW
                       UNDER TURNG
                                     SPANWISE
                                                                 Ι
                                                                 BETA
                                       CPC .
                                                    ALPHA
                         VBRI
     5ETA
                   ZETA
                                PHI
                                            QFRACT)
      FORMAT (5X,1P2E12.4,12X,1P7E12.4)
90
92
      FORMAT (15,1P10E12.4)
94
      FORMAT (1HL 5X, 25HRELATIVE ROTOR INLET DATA/
                                                           UTIP = ,F10.4//12
               1H0,14H
                                 X = F10.4,17H
                                                                     MPRIME
                                           VZPRIME
                                                         VPRIM
     12H
                                 U
                                                   MPR S
           BETAPR
                        VZPRST
     2
96
      FORMAT (5X,1P10E12.4)
      FORMAT (18,2X,1PE11.4,5X,1PE11.4,6X,1PE11.4,2X,1PE11.4)
98
100
      FORMAT (43X, 1PE11.4, 2X, 1PE11.4)
      FORMAT (1HL,5X,21HRAKE WEIGHT FLOW DATA/
102
               1H0,63H
                                      X
                                               (Q(I)-QBAR)/QBAR
                                                                       QS TOT
                             I
                QFR)
      END
```

\$IBFTC NOEPT. DEBUG.DECK.

NOS(I)=NS CONTINUE

RETURN END

10

SUBROUTINE NOEPTS C**** C*** THIS SUBROUTINE IS TO FIND THE END POINTS - FOR RAKES NEAR HUB, SHROUD AND/OR SPLITTERS NOS = THE NUMBER OF END POINTS FOR EACH RAKE = 2*NO. OF SPLITTE C*** + 2 (HUB AND SHROUD) C*** NOEP = THE INDEX OF THE RAKE ENDPOINTS C**** COMMON /NIN/ XOFF(200), YOFF(200), NPMIN, NCLO, NCHI COMMON /NOUT/ IBEGIN(25), IEND(25), NOEP(50,6), NOS(25), NRAKES COMMON /RDOUT1/ XON(400), YON(400), NSPE(10), NSPB(10), XRI, NHUBMX, NTM 1IN, NSPLT, YWING J=1IBEGIN(1)=1 NPMNM1=NPMIN-1 DO 4 I=1, NPMNM1 IF (ABS(XOFF(I+1)-XOFF(I)).GT..O1) GO TO 2 GO TO 4 2 I = ND(J) = I1+1.=1. IBEGIN(J) = I + 1CONT INUE NRAKES=J IEND(J)=NPMIN FIND THE END POINTS OF THE SPLITTER C*** DO 10 I=1, NRAKES IB=IBEGIN(I) IE=IEND(1) IEM1=IE-1 DYTEST=ABS(YOFF(IB)-YOFF(IB+1)) NS IS THE COUNTER TO DETERMINE NUMBER OF END POINTS PER RAKE C*** NOEP IS THE END POINT INDEX. C**** NS=1NOEP(I,1)=IBIF (NSPLT.EQ.O) GO TO 8 DO 6 K=IB, IEM1 IF (ABS(ABS(YOFF(K+1)-YOFF(K))-DYTEST).LE.1.0E-4) GO TO 6 NS=NS+1 NOEP(I,NS)=K NS=NS+1 NOEP(I,NS)=K+1DYTEST=ABS(YOFF(K+1)-YOFF(K+2)) CONTINUE NS=NS+1 NOEP(I,NS)=IE

\$IBFTC VAROF. DEBUG, DECK

```
SUBROUTINE VAROFF (I, BETA, ALFA, VX, VRES, X, Y)
      DIMENSION BETA(1), ALFA(1), VX(1), VRES(1), X(1), Y(1)
      COMMON /TOUT1/ SINTH, COSTH, OMEGA
      COMMON /NIN/ XOFF(200), YOFF(200), NPMIN, NCLO, NCHI
      COMMON /COUTI/ QCA,PTC,PSPTCI,PIO180,ATOTAL,GRHO
      COMMON /VOUT1/ PSOPC(100), PHII(100), ZETAI(100), VYI(100), CPC(100), V
     121(100), VMI(100), VAFTI(100), VSPANI(100), ETAI(100)
      COMMON /VOUT2/ UI(100), VZPRI(100), BETAPI(100), VPRI(100), VZPRST(100
     1), BETAPS(100), VPRST(100), MPRST(100), MPRI(100)
      REAL MPRST, MPRI
      VCAN=.2*(VRES(I)/ATOTAL)**2
      IF (VCAN.LE.1.0) GO TO 2
      PSOPC(I)=0.U
      MPRI(I)=0.0
      MPRST(I)=0.0
      GO TO 4
      PSOPC(I) = (1.0-VCAN)**3.5
      VYI(1)=VX(1)*TAN(ALFA(1)*PIO180)
      CPC(I)=(PSOPC(I)-PSPTCI)/(QCA/PTC)
      VZI(I)=VRES(I)*SIN(BETA(I)*PIO180)
      VMI(I)=SQRT(VX(I)++2+VYI(I)++2)
      VAFTI(I)=VZI(I)*SINTH+VYI(I)*COSTH
      VSPANI(I)=VYI(I)*SINTH-VZI(I)*COSTH
      ETAI(I)=ATAN2(VAFTI(I), VX(I))/PIO180
      ZETAI(I)=ATAN2(VSPANI(I), VX(I))/PI0180
      PHII(I) = ATAN2(VZI(I), VX(I))/PI0180
C
C
      IF X IS NOT AT THE CONTROL STATION SKIP FOLLOWING CALCULATIONS
C
      IF (X(I).NE.XOFF(NCLO)) RETURN
      UI(I)=OMEGA*Y(I)
      VZPRI(I)=VZI(I)-UI(I)
      BETAPI(I)=ATAN2(VZPRI(I),VMI(I))
      VPRI(I)=VMI(I)/COS(BETAPI(I))
      BETAPI(I)=BETAPI(I)/PIO180
      IF (VCAN.GT.1.0) GO TO 6
      VCON=VPRI(I)/ATOTAL
      MPRI(I)=VCON/((1.0-VCAN)**.5)
      VZPRST(I) = -VZI(I) - UI(I)
6
      BETAPS(I)=ATAN2(VZPRST(I);VMI(I))
      VPRST(I)=VMI(I)/COS(BETAPS(I))
      BETAPS(I)=BETAPS(I)/PIO180
      IF (VCAN.GT.1.0) RETURN
      VPCON=VPRST(I)/ATOTAL
      MPRST(I)=VPCON/((1.0-VCAN)**.5)
      RETURN
      END
```

\$IBFTC STRML. DEBUG

```
SUBROUTINE STRML (Y,Q,IQ,NRAKES,X,N)
      DIMENSION Y(1), Q(1), IQ(1), X(1), N(1,1)
C
C
      THIS SUBROUTINE CALCULATES STREAMLINES.
      WRITE (6,6)
      DELQ=.02
      IST=1
      IFN=IQ(1)
      DO 4 I=1, NRAKES
      NQ=N(I,1)
      QSTRM=DELQ
      WRITE (6,8) X(NQ)
2
      CALL SINTP (Q(IST),Y(IST), IFN-IST+1,QSTRM, YSTRM)
      WRITE (6,10) QSTRM, YSTRM
      QSTRM=QSTRM+DELQ
      IF (QSTRM.LE.1.0) GO TO 2
      IST=IFN+1
      IFN=IFN+IQ(I+1)
      CONTINUE
      RETURN
C
6
      FORMAT (1HO, 10X, 11HSTREAMLINES/)
8.
      FORMAT (1H0,10X,4HX = ,F7.3/10X,5HQSTRM,10X,5HYSTRM)
10
      FORMAT (5X,1PE12.5,6X,1PE12.5)
      END
```

LISTING OF INPUT CARDS FOR TEST CASE

SCIRCL INPUT

3:1

379.

			TEST	CASE								
	TEST	1		•					•			
	2.0		• 25	1.0)	6.0			1/2			,‡
	3											:: 1
~	2.0		2.5	5.0	6							
	4.0		2.75	4.75	9					i		, ;
	6.0	*.	2.75	4.75	9							
			5.0		.*							•
	1.0		0.0	0.0	0.0	.50		•				;
	2.5	٠.,	0.0	0.0	0.0	.50	.25	1.5	2.0	2.0	3.5	2.25
	1.0		2.0	2.0	3.5	2.25	•	•				
	0.0		2.0		3.5	2.25	4.5	2.39	6.0	2.5	12.	2.5
	1.0	•	6.0		12.	2.5						
	2.0		5.0			.7*-				•		
	1.0		12.	5.0	6.0	5.0				٠.	. •	
	-,-	-	6.0	5.0	5.0	5.0						
	1.0						^ 2.0	5.5	0.0	5.5		
	-3.0		6.0	5.0	5.0				1.699	30.		
•	-1.0		4.0	5.5	2.0	5.5	0.0	6.65	1.699	30.		
	1.0	,	0.0	6.65	0.0	20.						

TEST 1

-3-BODY

EOD INPUT

TEST CASE

THESE CARDS ARE ALL PUNCHED BY PROGRAM SCIRCL

```
TEST 1
3 1110
                                                                        TEST 1
          1
                                                                        TEST 1
                                     0.016758
                                                0.075506
                                                            0.177876
  0.316638
             0.483249
                                     0.863316
                                                1.075317
                         0.664451
             1.760536
3.250000
4.748669
  1.525978
                         2.000000
                                     2.250000
                                                2.500000
                                                            2.750000
  3.000000
                         3.500000
                                     3.749816
5.250110
                                                3.998633
                                                            4.248171
  4.498234
  6.000000
             6.254089
                         6.558996
                                     6.924884
                                                7.363950
                                                            7.890829
                        10.192237 11.096118
  8.523084
             9.281790
                                               12.000000
             0.250000
                         0.500000
                                     0.750708
                                                0.961274
  Ω.
                                                            1.151886
  1.319440
              1.464105
                                                            1.847875
  1.908128
              1.957771
                         2.000000
                                     2.041667
                                                2.083333
                                                            2.125000
  2.166667
              2.208333
                         2.250000
                                     2.289805
                                                2.326024
                                                            2.359299
                                     2.464049
2.500000
2.500000
  2.389795
             2.417534
                         2.442390
                                                2.481898
                                                            2.494743
  2.500000
                                                2.500000
                                                            2.500000
  2.500000
             2.500000
                         2.5C0000
                                                2.500000
                                                                        TEST 1
12.000000 11.096118 10.192237
7.363950 6.924884 6.558996
                                    9.281790
                                                8.523084
                                                            7.890829
                                                            5.750000
                                                6.000000
  5.500000
             5.250000
                                     4.758758
                                                4.505645
                         5.000000
                                                            4.240505
  3.963951
             3.677557
                         3.383893
                                     3.089105
                                                2.801122
                                                            2.522935
  2.256492
             2.000000
                         1.773871
                                     1.572897
                                                1.379335
                                                            1.194856
             0.851496
                                     0.547348
  1.018986
                         0.694532
                                                0.414819
                                                            0.296525
             0.112475
  0.194941
                                     0.013387
                                                0.
                                                            0.
             ٥.
  0.
                         ٥.
  0.
                                     O.
                                                            0.
                         5.000000
                                                5.000000
  5.000000
             5.000000
                                     5.000000
                                                            5.000000
  5.000000
             5.000000
                         5.000000
                                     5.000000
                                                5.000000
                                                            5.000000
  5.000000
             5.000000
                         5.000000
                                     5.009180
                                                 5.036257
                                                            5.079913
  5.137711
                         5.278969
                                     5.350155
5.506328
5.765821
             5.205818
                                                5.412077 5.519450
                                                            5.459720
  5.489660
                                                            5.542613
  5.577614
             5.625974
                         5.688220
                                                5.857039
                                                            5.962749
             6.212809
  6.081901
                         6.353156
                                     6.500028
                                                6.650000
                                                            6.832585
  7.051688 7.314611
9.662493 10.447577
                         7.630119
                                     8.008728
                                                8.463059
                                                            9.008256
                        11.389678 12.346381 13.303083 14.259785
 15.216488 16.173190 17.129892 18.086594 19.043297 20.000000
                                                                        TEST 1
                                                                       TEST. 1
 12.000000 12.000000 12.000000 12.000000 2.500000 3.333333 4.166667 5.000000
        24
                                                                        TEST 1
                                                                        TEST 1
             2.000000
  2.000000
                         2.000000
                                    2.000000
                                                2.000000
                                                            2.000000
  4.000000
                                                4.0000000
                                                            4.000000
                         4.000000
  4.000000
             4.000000
                                     6.000000
                                                6.000000
                                                            6.000000
  6.00000
             6.000000
                         6.000000
                                     6.000000
                                                6.000000
                                                            6.000000
  2.500000
             3.000000
                         3.500000
                                     4.000000
                                                4.500000
                                                            5.000000
                                                3.750000
  2.750000
             3.000000
                                    3.500000
                                                            4.000000
                         4.750000
  4.250000
             4.500000
                                                3.000000
                                                            3.250000
  3.500000
             3.750000
                         4.000000
                                     4.250000
                                                4.500000
                                                            4.750000
```

2 1 10	TE	ST CASE	,	· .	· . ·	2-BODY	TEST 1 TEST 1 TEST 1
	41				• .	•	TEST 1
	1	1					TEST 1
	60						TEST 1
	2	1					TEST 1
	24						TEST 1
:	0	0					TEST 1
2.000	000	2.000000	2.000000	2.000000	2.000000	2.000000	
4.000	000	4.000000	4.000000	4.000000	4.000000	4.000000	
4.000	000	4.000000	4.000000	6.000000	6.000000	6.000000	
6.000	000	6.000000	6.000000	6.000000	6.000000	6.000000	
2.500	000	3.000000	-3.500000°	4.000000	4.500000	5.00000ú	
2.750	000	3.000000	3.250000	3.500000	3.750000	4.000000	
4.250	000	4.500000	4.750000	2.750000	3.000000	3.250000	•
3.500	000	3.750000	4.000000	4.250000	4.500000	4.750000	

COMBYN INPUT

TEST - 1

102 24 99 24 1

700. 0.0 0.0 0.0 0.0 0.0 900.

0.0 0.0 0.0

1 16 24

0.0

6.0 2.5 5.0 40

HERE INSERT BINARY RECORD CARDS PUNCHED BY PROGRAM EOD

TEST-1 24 1 102 24 99 900. 0.0 0.0 700. 100. 0.0 0.0 0.0 16 24 180. 90. 0.0 0.0 6.0 2.5

1

PRINTED OUTPUT FOR TEST CASE

0.25C DELSMX = 1.000 XRI = 5.00000		6. 5.000E-01	6. 2.5000E-01 2.0000E+00 3.5000E+00 5.0000E-01 1.5000E+00 2.0000E+00 2.2500E+00	.67E+C1 B = 0.2CCCOOG@E+©1 .0OE+O1 OMEGA = -0.16514868R+C	DELS GUT = 6.25071 DSTEST = 0.24316	3.5000F+GC 2.2500E+CO	3.5000E+00 4.5000E+00 6.0000E+05 1.2907E+01 2.2500E+00 2.3900E+00 2.5000E+00 2.5000F+00	05E+01) DELS GUT = 0.25409 '0STEST = 0.24908	1.2000E+01 2.50C0E+00		6.0000E+C0 5.0000E+C0	5.000E+C0 5.000E+C0	5.0000E+00 2.UC00E+00 0. 5.0000E+00 5.5000E+00 5.5000F+00	: -3.88889E-01 C = 1.11111E+59.D = 4.53764F+59 DELS CUT = 0.25675 DSTEST = C.23895	
= 2. DELS = (STRAIGHT LINE 0.	SUPERELLIPSE 0. 0.	A = 0.11666667E+C1	CELS = 6.25371	STRAIGHT LINE 2.CGGOE+00 2.QGGOE+00	SUPERELLIPSE 2.0000E+00 2.0000E+00	A = 0.15206905E+61 YO = 0.21643990E+01	CELS = C.25409	STRAIGHT LINE 6.00006+00 2.50006+00		STRAIGHT LINE 1.2000E+01 5.0000E+00	STRAIGHT LINE 6.0000E+00 5.0000E+00	CUBIC 6.0000E+00 5.0000E+00	3.70370E-62 R = CELS = 0.25675 (LEMNISCATE
NO. CF BODIES	华州北京 	ENREEC X 1.0CG X	ENREED X 2.5CG X	A C.25CCCCCCCE+01	Z ITERFICHS CELS IN = C.25GGG	ENREED 1.CCC X	ENREED X	. XC = -C.20628183E+G1	2 ITERATIONS CELS IN = C.25345	ENREED 1.CCC X	**** SFRCUD *****	ENREED 1.666	ENREEC X	ENREED -3.CCO X	2 ITERATIONS A = DELS IN * C.25CCO DI	ENREED

INPUT FOR THE COMBINE, PROGRAM NT(1)= 102 NT(2)= 99 NHUBMX= 40 NP= 24

0. .2.0000E+01

STRAIGHT LINE 0. 6.6500E+00

	-		•		•				
. BCD% 1	CG-GRDINAT	NATES - X	>	КАРРА	XO/AO:	ALPHA	۸ ک	8-5(2)	DELTAS
	7	•		. 0	0.99959E+05	C.90C00E+02		2835€	
	۰ ۲	٠	88	0.	0.99559E+05	0+300006	25000E+00	0.70335	0.250006+00
	n 4	16-3865-01	3 6	-0-12455E-05		0.90000000	. 75127E+00	10001 5300E+	. 25127E+D
	'n	5506E-	0	-0.10310E+01		0.68C01E+02	969888+00	0.63136	0.21861E+00
	9	.17788E	5	-0.91960E+00		0.55756E+02	.11862E+01	3973E	0.21636E+00
	_	•31664E+	0	-0.74713E+00		0.45348E+02	.14038E+01	8797	9
	6 0	•.4832	5	-0.59194E+00		0.36514E+02	.16244F+01	56591	7
	6	•66445E+	70	-0.47508E+00		6.30304E+02	.18417E+01	-0.54418E+01	0.217276+00
	9:	.86332E+	3 8	-0.38556E+00		G 24805E+02	.29658F+01	0.52117	0.22611F+00
i i	17	130705	3 5	-0-3100/E+00			•	-0.49883E+01 -0.47640E+01	04367677
	7 [71.	04 / 7 E	2005			•	-0-4/249E+01 -0-45182E+01	7367
	1 5	.17605E+	0.19578E+01	: -:				2784F+	23975E+0
	51	.2000CE+	0.200C0E+01				•	-0.40352E+01	24316
	. 16	.22500E+	0.20417E+01	•			C.35017E+01	-0.37818E+01	0.25345E+00
	17	.25000E+	0.20833E+01	•			0.37552E+01 -	-0.35283E+01	0.253456+00
	2 0	C-2000E+01	0.21657E+01	• 6		0.946235+01	G-42621F+01	-0.30214F+01	0.253456+00
4	000	.3250CF+	0.22083E+01				C.45155E+01	-0.27680E+91	
&	21.	.35000E+	0.22500E+01	-0.22303E-01			0.47690E+01	-0.25145E+01	5345
	22	.37498	0.22858E+01	-0.53315E-01				-0.22616E+01	5297
		•3868E	0.23260F+01	-0.47420E-01				-0.20101E+01	0.25144E+00
	4 (42482E	0.23593E+01	-0.44301E-01	0.12757E400	0.72658E+01		7584	0.25175E+00
	25	.44982E+	0.23858E+01	-0.43620E-01	0.11638E+00			5065	ς:
	26	.47487E+	0.24175E+01	-0.45329E-01	0.10509E+00	.59591E+01	C.60290E+01	-0.12545F+01	0.25197E+00
•	7 6	• •	0.24424E+01	-0.49985E-01	0.93039E-01	3134E+U1		-0.750916+00.	0 6
	. 62	# # H	0.24819E+01	-0.77234E-01	0.62352E-01	.35679E+01		-0.49961E+00	0.251305+00
	01	.57510E+	0.24947E+01	-0.11637E+00	0.38730E-01	.22179E+01	C. 70344E+01	4908E+	0.25053E+00
	15	. 6000CE	0.25000E+01	•0		•	C.72835E+01	•	0.24908E+03
	32	•62	0.25000E+01	•0	•	•	C.75376E+01	ۥ25409E+05	0.25409E+00
	E D	.65590E+	0.25000E+01	ċ	•		0.78425E+01	0.55900E+00	0.30491E+00
	4 (•69245E	0.25000E+01	•		·	0.82084F+01	C.92488E+C3	6589
	(C)	73640E+	0.25000E+01	• •	•	•	0.864755+01	G.13639E+U1	0.43907E+00
		ם הינ	0.25000E+01	• 6	• •	•	G-98046F+01	0.252316+01	, 4
	- 60 1 (1)	92818E+	0.25000F+01				C.10565E+02	0.32818E+01	0.75871E+00
	6 61	10192E+	0.25000E+01	0			C.11476F+02	0.419226+01	
	0,	.1109	0.25000E+01	•	•0	•0	380E	0961E+	88
	41	C.1200CE+02	0.250C0E+01		•0	0.	.13284E	0.60000E+31	0,903886+00
				4	200			•	+
	כני-ניסו	٠ ا	- .	4	Y0/40	ALPHA	n	\$-(2).\$	DELIAS
	. 42	.12000E+0	0.500C0E+01		•	ؿ	007100000	6.60000E+01	O.
		C.11096E+02	0.50000E+01	• 6	• 6	• 6	. 18678F+01	0.41922F+01	0.903886+00
	47	G-92818E+01	0.50000E+01	. 0			.27182E+01	C.32818E+01	0.919456+00
		85231E+0	0.50000E+01		•		0.34769F+01	5.25231F+01	0.758716+00
٠.		.78908E+0	0.50000E+01	.	•	•	.41C92E+01	.0.18908E+61	0.632256+00

•	•						*	`. :
	Q.73640E+0	.50000E	•0	•	0.	5360E+0	13640E+0	889E
	C.69245E+0	. 50000E	•	• 0		751E+0	G • 92488E+00	3907E
	0.625416+0	50000	• (• c		1410E40	25409E+0	14976
	C. 60000E+0	.50000E	· 0		•	0000E+0	i	3409E
	C.57500E+0	. 50000E	٥.	•		2500E+0	0.25000E+	5000E
	C.55000E+0	50000	• •	င်င		3555E+0	0.50000E+	
	G-50000F+0	50000	3333E	2 G 8 O 2 E	0.17075F	0+30000	0.10000E+	0000
75	C.47588E+0	.5005E	27745E	73948E	0.42292E	2414F+0	0.124146+	1142E
	C.45056E+0	.50363E	21727E	13763E	0.78364E	1960E+0	0.149606+	34568
	C.42405E+0	.50799E	15611E 95672E	1 5 9 0 7 E	C. 12729F	7647E+0	0.1/64/E+	3553F
3	G.36776E+0	.52058E	36116E	24650E	0.13847E	3416E+0	0.23416E+	9438E
	C-33839E+0	.52790E	23584E	24850E	0.1355E	5442E+0	C. 26442E+	1264E
	C-30891E+0	.535C2E	84447E	23124E	0.13020E	9475E+0	0.29475E+	326E
	C.28011E+0	541216	-0.14679E+00.	-0.19573E#60	-0.11074E#02	2421E+0	3.32421E+ 0.35243c+	3456E
3 40	C.22565E+0	54897E	27382F	78188	0.44707F	7924E+0	0.37924E+	9812E
	C.2000CE+0	.550CDE) 		• 0	046E+0	C.40465E+	3407E
	C.17739E+0	.55009E	11616E	2456E-0	.71362E+0)273E+0	C.42726E+	2613E
20	C.13793	. 55195E	20808E 30249E	4416	.234466E+U .53£47E+Q	14/4E+0	0.44131	3401E
	C.11949E+0	.55426E	39276E	5998E+0	-90889E+0	3854E+0	0.48536E+	1593E
L	C-10190E+0	.0.55776E	0.47938E+0C	4139E+0	.13571E+0	1033E+0	50329E+	1932E
	C. 85150E+0	0.56260	56283E	4001E+0	.18778E+0	1207E+0	0.52072E+	7433F
	C - 54735F+0	0.576586	71939E	0411E+0	.31110F+0	1542F+0	C. 55425E+	3639E
16	C.41482E+0	0.58570	79154E	8353E+0	.38080E+0	1703E+0	0.57034E+	3680¢
11	0.29653E+0	0.59627E	85989E	€ 209E+0	.45593E+0	1862F+0	0.58620E+	3864F
£ .	C.19494E	0.608196	92387E	2565E+0	• 53604E+0	2019E+0	0.60186E+	5658E
- a	C. 112465+0	0.635326	762601 10363F	89336+0	.70934F+0	2112540 2326E+0	0.63764E+	300E
	C-13387E-0	0.650C0E	10834E	7653E+0	.80160E+0	2478E+0	0.64781E+	170E
20	<u>ن</u>	.665G0E		9999E+0	. 90COOE+0	2629E+0	0.66287E+	3056E
a		-68326E	• 6	0+36556	. 50000E+0	28115+0 3030F+0	0.68112E+ 6.70303E+	3239E
, an	סנ	.73146E		0+36556	- 50C00E+0	3253E+0	G. 72933E+	32625
99	0	.763C1E	•	0+36556	. 9000E+0	3609E+0	0.76088E+	15516
,- u	U C	.80087E	• •	9559E+0	.50C00E+0	3987E+0	7. 19874E+ 7. 84437E+	7 86 Lt
i d	5 6	900835		0446666	• 500000+0 • 500000+0	1447E+0	0.8441/E4	5206
36	. 0	.96625E		0+36656	. 500 00E+0	5641E+0	0.96411E+	3424E
	.	.10448E	ė	0+36555	. 50C00E+0	5426E+0	0.10426E+	3508E
9 6		113906	•	0+36665	- 50C COE+0	7368E+0	0.11368E+ C 12325E+	7210E
6	; ;	.13303E	• •	043656 6666	. 50000E+0	3282F+0	0.13282E+	670E
		.14260	0.	0+36555	- 50C00E+C)238E+0	14238E+	5670E
3 65 €		152168	•	0+36556	. 96C00E+C	1195E+0	0.15195E+ 3.14152E+	6 70E
. U		17130	• •	0+36556 0+36556	.50CCCE+0	3109E+0	0.17109F+	670E
55		.18087E	0	0+36555	.90C00E+0	+065E+0	C. 18065E+	3079S
100	٥	0.19043E+02	.	0.999996+05	0.90CC0E+02	G.25022E+02	-0.19022E+02 -0.19979F+02	0.95670E+00 0.95670E+00
,	•		•				4	: :
BODN 2 CG-CR	LDINATES - X .	>	• .					
162	U	0.250C0E	<i>‡</i>			:	٠.	
Ö	C. 12000E+0	0.41667E+0		´ :	•	. !		
91	C.12000E+0	0.500C0E+0	2					
X REK	VI.C	144	AO N				•	
O.2COCE+O	ن ن - ا	00	•0 0				-	
#00009*	1 C.27500E+0	0.47500E+0	· o					
I								

							:	٠,			•					٠		
DISC AREA 7.8540E+01	7.8540E+01	7.8540E+01	7.8540E+01	7.85495+01	7.8540E+01	7.8540E+01	7.8540E+01	7.8549E+91	7.8540E+01	7.8540E+01	7.8540E+01	7.8540E+01	7.8540E+01	7.8540E+01	7.8828E+01	7.9683E+01	8.1070E+01	8.2926E+01
AREA 5.8905E+01	5.8905E+01	5.8905E+01	5.8905E+01	5.8965E+01	5.8905E+01	5.8905E+01	5.89655+01	5.8905E+D1	5.8905E+01	5.8905E+01	5.8988E+01	5.91896+01	5.9466E+01	10+386+01	6.0451E+01	6.17286+01	6.3558E+01	6.6000E+01
YONH 2.5000E+00	2.5000E+00	2.5000E+00	2.5000E+0C	2.5000E+00	Z.5000E+00	2.5000E+00	2.5000E+00	2.5000E+0C	2.5000E+0C	2.500CE+0C	2.4947E+00	2.4819E+0G	2.4640E+0G	2.4425E+00	2.4186E+00	2+3907E+00	2.3583E+0G	2.3212E+0G
YCN 5.0000E+00	5.0000E+00	5.0000E+C0	5.0000E+C0	5.0000E+90	5.0000E+00	5.0000E+C0	5.0000E+C0	5.00C0E+C0	5.0000E+C0	5.0000E+C0	5.0000E+C0	5.0000E+C0	5.00C0E+30	5.00G0E+CC	5.0092E+C0	5.0363E+C0	5.0759E+C0	5.13776+60
xON 1.200CE+01	1.1096E+01	1.0192E+01	9.2818E+00	8.52316+00	7.890EE+00	7.364CE+90	6.5245E+00	6.5590.00	6.2541E+00	6.CCCE+00	5.750CE+00	5.50CCE+00	5.25ccE+00	5.000CE+00	4.758EE+00	4.5056E+00	4.2405E+00	3.564CE+00
I 42	61	7	a.,	46	47		49	25	15	(V)	ei ui	7	u) u)	ų u	L 5	a. u.	5	99

5.2750E+C0 2.	2.23096+00	7.1913E+n1	8.7548E+01
5.3502E+60		7.4975E+31.	8.9925E+01
5.4121E+00 2.		7.7719E+01	9.2019E+01
5.4597E+C0 2.0		7.9961E+01	9.3646E+01
5.4857E+£0		8.1567E+01	9.4676E+01
5.5000E+CC 2.(9.5033E+01
5.5C09E+C0 1.º	•	8.2995E+01	9.5066E+01
5.5063E+C0 1.º	4.	8.3686E+01	9.5252E+01
5.5195E+C0 1.6	e Ja	8.4710E+01	9.5707E+01
5.5426E+Cŋ 1.8		8•6151E+01	9.6511E+01
5.5776E+CG 1.		8.8C77E+nl	9.7734E+01
	. •.	9.C551E+01	9.9436E+91
		9.3597E+Ul	1.0165E+02
		9.7285E+51	1.0444E+02
	٠.	1.01546+02	1.07776+92
5.9627E+G0 1.2		1.0641E+72	1.1173E+02
6.0819E+f@ 1.		1.11875+12	1.16216+02
6.2128E+C0 1.		1.17896+72	1.2126E+02
6.3532E+C0 8.8		1.2435E+02	1.2680E+02
5.3522E+CO 5.4121E+CO 5.4597E+CO 5.4597E+CO 5.5000E+CO 5.5000E+CO 5.5009E+CO 5.5009E+CO 5.5009E+CO 5.5009E+CO 5.5009E+CO 5.5009E+CO 5.5009E+CO 5.5009E+CO 5.5009E+CO 5.5009E+CO 6.0819E+CO 6.0819E+CO 6.35322E+CO		2.1815E+0C 2.1335F+CC 2.0872E+UC 2.0427E+UC 2.0427E+UC 2.000UE+UC 1.9187E+CC 1.8160E+OC 1.8160E+OC 1.8160E+OC 1.8160E+CC 1.4087E+CC 1.4087E+CC 1.2978E+CC 1.30367E+CC 1.3367E+CC	2.1815E+0G 2.1335E+CG 2.0872E+UG 2.0872E+UG 2.0872E+UG 2.0427E+UG 3.2467E+U1 1.9187E+CG 3.2467E+U1 1.8166E+UG 3.2467E+U1 1.8166E+UG 3.3697E+U1 1.6069E+UG 3.3597E+U1 1.6069E+UG 3.3597E+U1 1.2978E+UG 3.3597E+U1 1.3367F+UG 3.3367E+UG

									, ,											
1.3273E+02	1.3893E+02	1.4666E+02	· 1.5622F+02	1.6809E+02	1.8290E+02	2.0150E+02	2.25016+02	2.54946+02	2,93316+02	3.4291E+02	4.07546+02	4.7888E+02	5.5597E+02	6.3882E+02.	7.27415+02	8.21756+02	9.2185E+02	1.0277E+03	1.1393E+03	1.2566E+03
1.3116E+02	1.3893E+02	1.46665+02	1.5622E+02.	1.6909E+02	1.8290€+02	2.0150E+02	2.25G1E+02	2.5494E+02	2.93316+02	3.4291E+02	4.0754E+02	4.78E8E+02	5.5597E+02	6.3882E+02	7.2741E+02	8.2175E+02	9.2185E+02	1.02776+03	1.13936+03	1.2566E+03
7.0708E-ûl	• 0	*.	• 0	· :	• 0	• 0	• 0	• 0	• 0	• 0	•	•	• 0	• 0	•	• 0	• 0	• 0	•	•0
6.5000E+C0	6.6500E+CO	6.83265+60	7.0517E+0@	7.3146E+CO	7.6301E+CC	8.0087E+C0	8.4631E+00	9.0083E+CC	9.6625E+CC	1.0448E+01	1.1350E+01	1.2346E+01	1.3363E+01	1.4260E+01	1.5216E+01	1.6173E+01	1.7130E+01	1.80876+01	1.9043E+01	2,0000E+01.
1.33875-02	• 0	•0	• 0	• 0	• 0	٠	•0	•0	•0	• 0	• 0	• 0	• 0	•0	• 0	•0	• 0	•0	•0	•
.	23	£5	£ 4	u i W	33	67	. 33	54	35	61	25	c;	۸,	8) U	9.5	15	y,	55	166	101

#61# UNITES, ECF.

REC= 00000 FIL= 00002

AIRCRAFT COMPANY	BEACH DIVISION	
DCCGLAS	LCNG	
	: •	

CROSSFLOW		*
AND		**
FTRIC		DATA
AXISYMMETRIC		CCNTRCL
!		CASE
EOCA		***
RCGRAM	٠,٠	**

TEST CASE	m C	1.0000000	-0-
	BCCIES =	. (.)	FACT NO.

SURFACE OF REVCLUTION
CROSSFLCW
OFF-EGDY POINTS
MATRIX SOLUTION BY TRIANGULARIZATION (SOLVIT)
INPUT TAPE NO. FCR COORDINATES AND NON-UNIFORM FLOW ONLY =

3-80DY			D ALPHA		7	•	-3.8241162	-11.7650077	-	-12.6493235	-11,3918442	-9.4025823		-7.4792177	-6.0293090		->•0<1970•c-	-4.2010204	-3.4872889		0471461-7-	-1.9488477	-0.5387681	-0.0002325	•	262500•	• •	-0.0002325	6	0.0002325	-0.4091516	-0.7711682	1	-0.6866971
3-8	MY = -0. ADDY = -0.		SUMDS		0.2500000	0.500000		0.7512674	0.9698752	1,1862373		1.4037901	1.6244419	1.8417099		2.0658224	2.2951787		2,5286056	2,7653532	3.0051070		07047•	3.5017145	3.7551628	4.0086113	7630597		4.5155081	4.7689565	1	5.0219238	5.2733631	
	000	MED)	DELTA S		0.2500000	0.2500000		0.2512674	0.2186078	0.2163621		0.2175528	0.2206517	0.2172680	•	0.2241126	0.2293564		0.2334269	0.2367476	6.2397538	27.216	£67 6 5 7•	0.2534485	0.2534483	0.2534485	3877256 0	044677	0.2534483	0.2534485		0.2529673	0.2514393	
CASE	ACCX = A	ATES (UNTRANSFORMED)	>		.125000	375660	500000	.625354 .750708	.855581	.961274 .056580	151886	.235663	391772	464105	583985	635655	.731085	.774846	1.8113605	.878001	.908128 .932949	.957771	000000	.02C833 .041667	.062500	.104166	.125000	.166667	.187500	.208223 .229166	.25000	.265902 .289805	.307914	.326024
ŢEST (THETA = -0.	CN-BODY COORCINATES NC. 1	×	0.	• •	ှိ	٠	50	9	0.0755060	1	24	. 6	48	. 9	• 76	96.	6	1.1861715	4.	64	• 76	88	.12	E. 9	.62	2.6	. 8	.12	5.6	500	.62	.87	66•
	-	BCCY		-	·	v	m	4	ı	'n	.00	. ,		œ	σ		10	11	12	: :	<u>-</u>	14	15	16	į	<u>.</u>	18	19	¢	9	21	22	1	23

,	1000000	, ,
	.902437	. 500C
38	.281790	. 50 GC
٠.	. 737013	.5000
39	0.192237	.500C
	10.6441774	2.50000
0,4	1.096118	. 500C
	1.548059	.5000
41	2.000000	.50CC

.12340	.342661	0.2517468	. 5.5251098	
.24817	.359299			-0.642309
.37320	.374547	0.2519157	5.1770255	
.49823	.389795			-0.632573
4.6234515	.403664	0.2519666	6.0289921	•
.74866	.417534			-0.657706
4.8740050	2.4295620	0.2519013	6.2808933	
.99934	.442390			-0.726389
.12472	•453219	0.2517026	6.5325959	
.25011	.464049			-0.86346
.37544	.472573	0.2513007	6.7838966	
.50077	.481898			-1.134038
5.6258765	.488320	0.2505305	7.0344270	
. 75097	.494743	:	:	-1.729542
.87548	.497371	C.2490785	7,2835055	
.0000	.50000			-1.20936
.12704	.500000	0.2540890	7.5375945	
.25408	.5000co			6
6.4065425	. 500cc	0.3049070	7.8425015	
• 55899	• 50ccco			·
.74.194	200005	0.3658880	8,2083895	
.92488	.500000			• o
.14441	· 500000	0.4390660	8.6474555	
.36395	.500000			· •3
.62738	.500000	0.5268790	9.1743344	
.89082	· 50cc00		*****	.5
.20695	.500000	0.6322550	9.8065894	
.52308	.500000			·
.90243	500000	0901851.0	10,5652952	
9.281790C	. 500000			
. 73701	200000	0.9104470	11.4757422	
.19223	· 500cc0			•
0.64417	.500000	0.9038810	12,3796232	
.09611	· 500cc0	•		•
1.54805	. 500000	0.9038820	13,2835052	-
20000				

<u> </u>			D ALPHA		•0	.•0	•	,	•	•0	0.	·	•	•	•0		•	••	Ö	•	•	-2,1792316	-3.9268209	-3.2439557		-2.4545241	-1.5724325	-0.406030		0.4115753	1.4410384	2.4166217	1
3-80DY	MY = -0. ADDY = -0.		SUMDS	0.9038820		•	2./182100	3.4769159	4.1091709	0070967 7	4.0000433	5.0751159	5.4410039	0010376 3	. 6016641 • 6	6666666	. 6666672*9		6.4999999	6.7499999	66666666	7.2414165	0.000	6)4644	7.7646837	8.0472127	,	8.3415935	8.6442312	077703	C764746.0	9.2420574	
	000	RMED)	DELTA S	0.9038820	0.000		0.91044/0	0.7587060	0.6322550	0 5269790		0.4390660	0.3658880		0.3049010	0.2540890	0.2500000		0.2500000	0.2500000	0.2500000	0.2414166		716646710	0.2687100	0.2825291		0.2943809	0.3026377	10006	6192606.0	0.2945650	
CASE	ACCX YEN	TES (UNTRANSFORMED)	>	5.00000005	000000	000000	000000	000000	000000	000000	000000	000000	000000	000000	000000	000000	000000	000000	000000	000000	000000	.000000	009180	.036257	.058085	.079513	117761.	171764	.242393	.278569	. 350155 . 350155	.38111 .41207	
TEST C	NN = 60 THETA = -0. XE = -0.	CN-BODY COORDINATES NC. 2	×	12.0000000	911960		9.7370135		8.2069565	•		•		•	6.2540890		•		•			5.0000000		500	.373074	0.00	.963951	.820754	.530725	.383893	.638499 .089105	945113 801122	
	F	ECDY .		-	7	m	4	ı	ý	9	7	•	D	6	10		Ξ	1.2	-	3	7	15	16	17		æ	19	ç	3	21	22	23	

-	7.3069654		4.1028724	20 j	2.0705958	-1.298053		-2.3423041		-3.2782757	-4 0001454	C01660•	-4.8494838		-5.5262105	: !	-6.1684719	72027	2764	-7.2455193	1 .	-7.7658312		-8.2404850		+70/6000-	-9.0519558		-9.3864200	-	-5.1008937	٠.	•	•		•		•			• 0	1	•	C	•		3	••		•		
7700700	9.3646	9.7924144		10.0491147		10.2732455	10.4762918	-	10.6702980		10.8562254	11,0355444		11.2098762		11,3787318		11.5451250	0700007-11		11,8646514		12.0212289		12,1759465	12, 3290322	700000	12,4807277		12.6312959		12.8138809	13,0329839		13.2959069		13.6114149	13 9900239		14,4443548		14.9895518		15.6437888	14 4.388734	7 . 00 7 .	17.3709736		18.3276765		19.2843/85	
,	71677970	0.2681199		0.2567003		6061922.0	C.2010462		0.1940063		0.1859275	0.1793191		0.1743318		0.1688557		7985001.0	0.1408871		0.1586445		0.1565775		0.1547176	0.1530857		0.1516955	: •	0.1505683		0.1825850	0.2191030	•	0.2629230		0.3155080	0.2786.00		0.4543309		0.5451970	•	0.6542370	0.40504.0	• 0000	0.9421010		0.9567029	•	020/956.0	
0000	٥Ç	474690	.489660	6	. 500000	500409	.503633	.506328	.512889	.519450	542413	560113	.577614	.601794	.625574	.657097	.688220	077171	811430	857639	909894	.962749	.022325	.081501	47355	282663	353156	.426592	.500C28	.575014	.650000	.741292	922299	.051688	183149	14611	.472365	611000	008728	235893	.463058	.735657	.008256	335374	0557350	775777	.918627	.389678	.868C29	.346280	12,824/315	
00000	.522935	.389713	.256492	2.1282460	000000	3871	73384	72897	76116	79335		06921	018986	.935241	.851496	.773014	694532	046070.	481083	414819	355672	.296525	.245733	.194941	.153708	1174	.051336	.032361	.013387	.00669	•	•	• 6	• •	•0	•	•	• •	• 6		•0	•	•	• •	•	• •	• •	•	•	•	• 6	•
	70		25	 	92	7.0		. 8	!	53		5	31		32	:	F)		r	35		36		37	9	Ď	39		0,		-1		2	64	٠.	44		r. n	95	! . ,	. 25		8 0		r .	50	,	51		. 25		

13.7814339 0.9567021 20.2410805 14.2597651 0.9567029 21.1977835 15.2164880 0.9567021 22.1544855 16.1731901 0.9567020 23.1111875 17.429821 0.9567020 24.0678895 18.0865941 0.9567020 24.0678895 18.0865941 0.9567029 25.0245924 19.0432971 0.9567029 25.9812953

59

158

			. 4	•				
			D ALPHA		•	•		
3-800Y					0	()		
3-B	ဝှီခ			, E	. 20	,	000	
	ADDY =		SUMDS	0.8333333	1,6666670	2	2.5000000	2.1 1. 14
			S	3330		·	3330	
	င်္ခင်	MED)	DELTA S	0.8333330	0.833340		0.833330	
	ACCX = YE =	CN-BODY CCORCINATES (UNTRANSFORMED)	:	2,5000000 2,9166665	3.3323330	1666670	4.583335	2000000
ASE		NTES (U	>	2,50	3,33	4.16	4.58	5.00
TEST CASE	. 4 1	COREIN		00000	00000	20000	00000	00000
	NN II THETA II	CN-800Y C	×	12.0000000	12.0000000	12.000000	12.000000	12.000000
•	-	٥٠			7	en.		4

3-80DY

	ADDY																				٠		
		FCRMED)																					
CASE	ADCX YE	NATES (UNTRANSFORM	Y-OFF	3,0000000	,500cco	000000	.500000	000000	.75000	.000000	.250000	.50ccc0	.750000	.000000	.250000	.500000	.756600	.750000	.000000	.25000	.500000	.750000	
TEST (NN = 24 THETA = -C. XE = -0.	CFF-BCDY CCGRDINAT	X-OFF	2.0000000	000000	.00000	200000	.00000	000000	000000	000000	.0000C	.000000	000000	000000	.000000	000000	.00000	.00000	.000000	000000	.00000	00000
	_	J		1 0	ı m	4	S	9	_	œ	6											7	

0.005 MINUTES. 0.005 MINUTES.

I RIGHT SIDES WAS SOLVED DIRECTLY IN I RIGHT SIDES WAS SOLVED DIRECTLY IN

102 X 102 MATRIX WITH

000000009

102 MATRIX WITH

102 x

THE 3H1

DCUGLÁS AIRCRAFT COMPANY LCNG BEACH DIVISION

EST CASE

3-800Y CASE NO. TEST

CN-BCCY UNIFORM AXISYMMETRIC FLCW TRANSFORMEC CCORDINATES

, v			11	ď	SINA	COS A	SIGMA	Z,	IH.
0.12500	1250000	0.0131311		0.9998276	1.30000	•	-0.0342820	-0.0000001	-19,9221981
0.3750000	375000	0.0396814		0.9984254	1.00000	-0-	-0.0333696	-0.000000-	-19.9153388
.0083790 0.625354	.6253540 45040	0.0809950		0.9934398	11166.0	69990.0	-0.0310698	0000000-0-	-19,9078133
.0461320 0.855591 0755040 0.855591	.85591C	0.1436507		0.9793645	0.96321	0.26874	-0.0267064	(0000000-0-	-19.9178820
.126691C 1.056580	0565800	0.1942429		0.9622697	0.88099	0.47314	-0.0224692	-0.000000-	-19,9603941
.2472570 1.235663	.2356630	0.2310025		0.9466379	0.77018	0.63783	-0.0184587	-0,000000-	-20,0335832
.3999435 1.39172	.3917725	0.2548887		0.9350317	0.65563	0.75509	-0.0150457	-0.000000-	-20.1319773
. 4832490 1.464105 .5738500 1.524045	. 5240450	0.2698558		0.9271778	0.55176	0.83400	-0.0122794	1070000-0-	-20.2476029
.7638835 1.635655	.583585C .635655C	0.2789624		0.9221800	0.46111	0.88734	-0.0100747	-0.000000	-20.3764017
33160 1.687325 93165 1.731C85	7325C 10855	0.2848752		0.9188461	0.38159	0.92433	-0.0082269	000000°-	-20,5173342
.1861715 1.811360	13605 13605	0.2884461		0.9167988	0.31286	0.94980	-0.0066774	-0.0000001	-20.6673591
.4115020 1.878001	8780015	0.2901116		0.9158353	0.25450	0.96707	-0.0053966	-0.0000000	-20.8242595
.5259/8U 1.908128 .6432570 1.932949	.9329495	0.2899924		0.9159044	0.20706	0.97833	-0.0044130	-0.0000000	-20.9865668
.7605360 1.9577710 .8802680 1.9788855	.9577710	0.2882581		0.9169073	0.17367	0.98480	-0.0038844	0000000-0-	-21, 1535707
.1250000 2.000000 .125000 2.020833	.0208335	0.2871253		0.9175591	0.16440	0.98639	-0.0042788	-0.0000000	-21.3270819
500000 2.04166 750000 2.06250	.0416676	0.2889896		0.9164850	0.16440	0.98639	-0.0049329	0000000-0-	-21.5043774
.6250000 2.104166	.1041665	0.2932947		0.9139782	0.16440	0.98639	-0.0054755	-0.000000-	-21.6808147
.7500000 2.1250000 .8750000 2.1458335	.1250000 .1458335	0.2990876		0.9105466	0.16440	0.98639	-0.0059514	-0.000000	-21.8559356
.000000C 2.166667C	.1666670	0.3061728		0.9062582	0.16440	0.98639	-0.0063818	0333000*0-	-22.0294168
25000CC 2.208333C 0.3148567 3750C00 2.2291665 0.3148567	.208333C 0.3148567	. •		0.9008653	0.16440	0.98639	-0.0067743	00000000-0-	-22,2009008
.5000000 2.256000 .6249080 2.2699025	. 250000 . 2695025	0.3248776		0.8944546	0.15735	. 0.98754	-0.0067836	-0.0000000	-22,3698225
.749816C 2.289E05C .8742245 2.3079145 0.3345165	.289E05C .3079145 0.3345165			0.8880987	0.14405	0.98957	-0.0064461	-0.0000000	-22,5358374
									- ,

CASE NO. TEST 3-80DY

TEST CASE

	JHd	22.6996534	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	04 19 109 • 2 2 -	-23.0224252	-23_1812561		21.46.056.54	-23.4936559	-23.6471574	2100001	. 1988915	-23.9522195		-24.1241920	-24.3312447	. !	-24.5800261	-24.8787391	30 , , , , , , ,	CD 94 / 67 * C7 -	-25.6690440	-26.19119 ë 1	0601622 96-	0301611	-27.3090472		-26.9859664	-24.4804409		-26.1649947
		. •	. •							•		-					٠														
	Z	0000000-0-		2011000.01	00000000-0-	000000-0-		0011000.01	-0.0000000	0.000000-0-		202000-2-	-0.000000		0000000-0-	-0.0000000		000000-0-	00000000		0011000-0-	-0.000600	-0.000000	1000000	1222000	-0.000000		-0.000000	£000000 0# ·		-0.000000
	SIGMA	-0.0061479	0	-0.0038413	-0.0054958	-0-0050836		- O - C + OO - O -	-0.0038981	-0.0029364	0676100 0- 7	6646100*0-	-0.0002873	1	-0.0004877	-0.0007144		-0.0010486	-0.0016351	7010000	+010200•0-	-0.0055094	-0.0129652	0 0361507	60100000	-0-1301985		-0.4456426	728202 U-	•	-0.2453889
	COS A	0.99123		60766.0	0.99392	0.99512		67066.0	0.99747	0.99868	0000	01444.0	1.00000	,	1.00000	1.00000	. !	1.00000	1.00000		00000-1	1.00000	1.00000	00000		1.00000	٠	-1.00000	. 1-1		-1.00000
	SINA	0.13218		0.121.0	0.11009	0.09867		60000.	0.07103	0.05127	11160	11170.0	•0	1	•0	•0	,	•	•	ď	•	•	•	c	•	• •		°	c	;	•
	å	0.8822351		0.8164921	0.8707051	0.8650260		0.004 P	0.8541842	0.8495270	6776470	0.8477003	0.8501778	•	0.8528064	0.8536809		0.8539037	0.8537853		0.8333112	0.8533513	0.8517864	7736170	0.03140.0	0.2887488		-1.0560904	0 4714217		0.7813325
·	1.1	C.3431688		0.59166.0	0.3595760	0.3673881		0.0148000	0.3818584	0.3879084	7121001 0	0.3901/14	0.3870687	1	0.3836582	0.3825168		0.3822255	0.3823803		0.3827307	0.3829474	0.3849852	1707000 0	1+3+846.0	0.8433571		-1.4339074	9270225 0-		-0.4676190
AXISYMMETRIC FLOW) COORDINATES	>	2.3260240	355299	2,3897950	2,4036645	2,4175340	2.4423900	2,4640490	2.4729735	2.4818980 2.4883205	2.4947430	5715164.5	2.500000	2.5000000	2.5000000	2.5000000	2.5000000	2.5000000	2.500002	2.5000.000	2.5000000	2.5000000	2,500000	2.5000000	2,500000	2.5000000	7 - 70 - 10 - 1	5.0000000 5.0000000	5.000000 5.000000	5.0000000	5.0000000
CN-ECCY UNIFORM AXISYMMETRI TRANSFORMED COORDINATE	×	3.9986330	4.2481710	4.4982340	4.6234515	4.7486690	4.99934In	5.2501100	5.3754430	5.5007160	5.7509770	7.07.0000 7.0000000	6.1270445	6.2540890	6.4065425	6.7419400	6.9248840	7.1444170	7.6273895	7.8908290	8.5230840	8.9024370	9.7370135	10.1922370	.096118	.54805	20000	12.0000000	11.0961180	10.1922370	. 737013
CN-B(23	54	. 25	;	92	27	. 88	·	53	30	. ;	†	32	66	0	¥.	36	.	36	37	90	Š	39	24	? ;	;	45	43	77	

DCUGLAS AIRCRAFT COMPANY LONG BEACH, DIVISION,

TEST CASE

CN-BEEY UNIFORM AXISYMMETRIC FLOW TRANSFORMED COORDINATES

3-80DY CASE NO. TEST

-25.6633532 -25.2371342 -24.5811722 -24.1242630 -23, 7950759 -23,3353105 -23,1894159 -24.8797667 -24.3320181 -23.9510939 -23.6407433 -23.0433102 -22.8867433 -22.7178323 -21,5261956 -21,7178130 -23.4871421 -22,5356865 -22.3407023 -22.1356509 -21,5143833 -21.3187256 PHI -0.0000000 -0.000000--0.000000 -0.000cc01 -0.000000--0.000000--0.000000 -0.0000000--0.000000--0.000cco -0.0000000 -0.000CC01 -0.000cco--0.000000 -0.0000col -0.0000000 00000000-0--0.000cco-0.0000000 -0.000000--0.000000 -0.0000.0--0.2122278 -0.1630011 -0.1455890 -0.1270145 -0.1906611 -0.1534174 -0.1390766 -0.1331225 -0.1071958 -0.1094069 -0.1084799 -0.1057404 -0.1008595 -0.1750244 -0.1204525 -0.1067106 -0.1078417 -0.0936006 -0.1125981 -0.1090011 -0.0708376 -0.0837641 SIGMA -0.98671 -1.00000 -1.00000 -1.00000 -1.00000 -i.00000 -1.00000 -1.00000 -1.00000 -0.99375 -0.99919 -1.00000 -1,00000 -1.00000 -0.99928 -0.99433 -0.97885 -0.97287 -0.97035 -0.97206 -0.97766 -0.98565 COS A 0.10637 0.03803 0.23136 0.23473 0.21022 0.16880 0.11167 0.16247 0.20457 0.24171 0.04028 SIN A 0.8394510 0.8434249 0.8491103 0.9172188 0.9303842 0.8327980 0.8477883 0.8479136 0.8459547 0.8270513 0.8401088 0.8559369 0.8735947 0.8906944 3.9055582 0.9298565 0.8194933 0.8460251 0.8420281 0.8294809 0.9253594 0.9232803 ď -0.4248608 -0.4089934 0.4006856 -0.3956957 0.3923964 -0.3901432 -0.3884452 -0.3899826 -0.3924860 .0.3974568 -0.4129395 -0.4158710 0.3998640 -0.3795565 -0.3555353 0.3306140 0.3073139 C.2877171 0.2732043 0.2648462 0.2638481 -0.2769832 .036257C .058C85C ,0091800 .4597200 0227185 0799130 .2785690 000000 0000000 ,0045900 1088120 1377110 1717645 2423935 .3145620 .3501550 .3811160 4120770 .4358985 .4746900 000000 6.4065425 .8011220 3.5230840 8.2069565 .8908290 .6273895 5.7419400 5.5589960 5.1270445 .8793790 .7587580 .6322015 3730749 .1022280 9639510 .9451135 .3639500 5.9248840 0000000 .6250000 .1250000 .5056450 .2405050 .8207540 .5307250 .3838930 .2364990 .0891050 65 99 63 9.4

GN-BGCY UNIFORM AXISYMMETRIC FLOW TRANSFORMED CGORDINATES

TEST CASE

TEST

-20.9871237 -20.8469472 -20.5882916 -20.4686667 -20.3553135 -20.2482080 -20.1483808 -19.9751430 -19.8035123 -19.7656555 -19.7544489 -19,7090740 -21.140991 -20.7140911 -20.0571594 -15.7780633 -19.7364702 -15.6689107 -19.6114573 -15.9041621 -19.8462351 -19.5305371 PHI 0.00000.0 -0.000000--0.000000--0.000cco -0.000000-0--0.000ccd -0.0000000 0.0000000 0.0000000 -0.000000--0.000cc01 C00000000 -0.000cco-0.000000 -0.0000col -0.000000--0.000000 -0,0000col -0.000cco1 -0.000000-0.0000000 ं -0.0419254 -0.0408578 -0.0420641 -0.0432812 -0.0444124 -0.0467678 -0.0733233 -0.0585021 -0.0505095 -0.0453209 -0.0399776 -0.0391646 -0.0398612 -0.0454803 -0.0494296 0.0550653 -0.0617072 -0.0675260 -0.0793238 -0.0856098 -0.0391932 -0.0921941 SIGMA -0.74565 -0.82374 -0.64878 -0.99999 -0.99964 -0.99771 -0.98077 -0.96075 -0.92957 -0.88458 -0.39938 -0.25017 -0.08891 -0.99221 -0.53301 COS ċ 0.19519 0.76098 0.96820 1.00000 0.00415 0.02680 0.12458 0.27740 0.36863 0.46638 0.91679 40966.0 1.00000 .00000 ..0000 ..0000 1.00000 0.06764 0.66633 ..0000 0.56697 0.84611 SIN 0.9475002 0.9757973 0.9965818 0.9915173 0.9663399 0.9168148 0.9139188 0.9104604 0.9091502 0.9104915 0.9150444 0.9229760 0.9340945 0.9618913 0.9875044 0.9956456 0.9993562 0.9947184 0.9872776 0.9750148 0.9995754 0.9818618 ٦ -0.2291283 -0.2884185 -0.2933960 -0.3014130 -0.2991797 -0.2914714 -0.2775320 -0.1952145 -0.1555722 -0.1117835 -0.0659875 0.0253722 0.0584650 0.0726749 0.0921014 0.1127936 0.1346782 0.1834670 -0.2992317 .0.2567207 -0.0206061 0.1580671 5.5004695 6.9421365 5.5310315 .8570390 .0516880 .1831495 5.5036335 5.5128890 .5194500 .657697 5.0819010 5.7412925 6.8325850 .3146110 .4723650 .8194235 5.500939(5.5063280 .560113 .765821 .811430 .909894 5.962749 6.212869 5.426592 6.6500000 .6301190 5.147355 .542613 0.0133870 .6733840 .5728970 4761160 2870955 .1948560 .1069210 .0189860 .9352410 .6945320 . 5473480 4810835 0.4148190 3556720 .2965250 0.2457330 1.1949410 .1537080 .1124750 0.0819055 0.0513360 3793350 .8514960 .6209400 0323615 80 84 85 86 8

DCUGLAS AIRCRAFT COMPANY LCNG BEACH DIVISION

TEST CASE

TEST

	TRANSFORMEC CCORDINATE	CORDINATES							
• .	×	>	Ľ.	СР	SINA	COS A	SIGMA	Ž	IHd
68	• 0	9,0082560	0.2116146	0.9552192	1,00000		-0.0990431	J03 J000 - J-	-19.4176202
96	•	9.6624930	•			•			
- 5	• •	10.0550350	C.2436C64	0.9406559	1.00000	•	-0.1060840	-0.0000000	-19.2607155
• •	•	10.9186275	0.2813443	0.9208454	1.00000	٥.	-0.1132069	00000000	-19.0425532
76	••	11.3896780	0.3204983	0.8972809	1.00050	•	-0.1197264	0.0000000	-18, 7656510
63	• •	12,3463809	0.3626853.	0.8684594	1.00000	•	-0.1251944	• 0	-18,4463552
46	• •	13,3030829	0.4090451	0.8326821	1.00000	•	-0.1297728	0.0000000	-18.0836513
96	• • •	14,2597851	0.4614128	0.7870982	1.00000	•0	-0.1336261	00000000	-17.6729352
96	00	15,2164880	0.5226561	0.7268306	00000		-0-1368830	00000000	-17-2073767
16		16,1731901				•			
G	• •	16,6515410	0.5977251	0.6427247	1.00000	•0	-0.1396468	00000000	-16.6764889
0	•••	17.6082430	0.6965811	0.5147747	1.00000	•0	-0.1420009	0.0000001	-16.0630064
65	• •	18.564541	0.8450034	0.2859693	1.09000	0	-0-1440136	00000000	-15.3341706
100	•	19.0432971		5. 1		1			
101	• •	19,5216484	1.1631805	-0.3529889	1.00000	•	-0.1457406	0000000	-14.4032063
162	12.000000	2,5000000							
	12.0000000	2,9166665	-0.4855867	0.7642056	1.00000	••	-0.3836764	0.0000000	-27. 7096057
103	12.0000000	3,3333330	0.2290280	0.9475462	1.00000	6	-0-3935302	20000000	-27,7708983
104	12.000000	4.1666670		1	,		i i i		
20.	12.0000000	4,5833335	1.3318560	-0-1738403	1.00000	•	-0.5074222	0000000	-27.3689723
. .))))) 1	•			· ·				
	00 V W U 9 U V V	278 - 2713 03873	- 3MI 10V	811 6679382	CT MIN	SIM (T)(DELTA C) =	6 2187632		

	TES	TEST CASE		3~8	3-800Y CASE NO.	.O. TEST	
FF-1	BCCY UNIFORM TRANSFORMED	IFF-ECCY UNIFORM AXISYMMETRIC FLOW TRANSFORMED CCORDINATES					
	×	>-	×	*	10	THETA	PHI
-	2.0000000	2,5000000	0.2783720	0.0336532	0.2803988	6.8932023	-21,2176995
~	2.0000000	3.000000	0.2754318	0.0177211	0.2760013	3,6812993	-21.2049010
. (-1)	2.0000000	3,500000	0.2730569	0.0034169	0.2730783	0.7169349	-21,1996984
. 4	2.0000000	4.0000000	0.2708232	-0.0086427	0.2709610	-1.8278427	-21,2011127
. د	2.0000000	4.5000006	0.2688064	-0.0172767	0.2693611	-3.6774445	-21,2077827
9	2.000000	5.0000000	0.2672812	-0.0188682	0.2679464	-4.0379831	-21,2172489
_	4.0000000	2.7500000	0.3352026	0.0256516	0.3361827	4.3760748	-22,6035929
&	4.0000000	3.0000000	0.3350338	0.0153103	0.3353835	2.6164717	-22,5984983
6	4.0000000	3.2560000	0.3350651	0.0059770	0.3351184	1,0219521	-22,5958533
ó	4.0000000	3.500000	0.3353166	-0.0027746	0.3353280	-0.4740918	-22,5954611
	4.00000000	3.7500000	0.3358158.	-0.0113375	0.3360071	-1,9336242	-22.5972252
2	4.0000000	4.0000000	0.3365780	-0.0201211	0.3371789	-3,4211542	-22,6011481
<u></u>	4.000000	4.2500000	0.3375773	-0.0296086	0.3388733	-5.0125377	-22,6073432
4	4.0000000	4.5000000	0.3386874	-0.0404200	0.3410908	-6.8056579	-22.6160617
Ŋ	4.0000000	4.750000	0.3395517	-0.0533587	0.3437186	-8.9306852	-22.6277306
9	0000000.9	2.7500000	0.3845217	0.0052223	0.3845571	0.7780958	-23.8734667
2	0000000.9	3.000000	0,3812172	0.0043775	0.3812424	0.6578988	-23.8722413
80	6.0000000	3.250000	0.3794156	0.0028392	6.3794262	0.4287352	-23.8713326
0	6.00000000	3.5000000	0.3786132	0.0012065	0.3786151	0.1825759	-23.8708274
ပ္	9.000000	3.7560000	0.3785338	-0.0002416	0.3785338	-0.0365754	-23.8707125
1	6.0000000	4.0000000	0.3789717	-0.0013260	0.3789741	0.2004746	-23.8709183
2	0000000.9	4.250000	0.3797150	-0.0019088	0.3797198	-0.2880234	-23,8713338
ξ.	6.0000000	4.5000000	0.3804967	-0.0018985	0.3805015	-0.2858757	-23.8718228
3	6.0000000	4.7500000	0.3809523	-0.0012789	0.3809544	-0.1922116	-23,8722317

DCCGLAS AIRCRAFT COMPANY LCNG BEACH DIVISION

TEST CASE

TEST

CASE NO.

							•		
CN-BCCY	UNIFCRM	S FLOW				٠.	. •		
	INANSPURMED C	CORDINALES							
	×	>	12	T3	SINA	COS A	SIGMA	Z	IHd
•					•				·
-		0.1250000	0.8839548	0.8798248	1,00000	•	-0.0013069	-0.0000000	-6.0150219
٧.	0 9	256660	0.0000	0.01.300.0	00000	ç	6000000	0000000	-C 042481
M		.500000	00100000	05070000	0000	•	0.0000000		100310
	.008379	.625354	0.9545615	0.9066597	0.99777	0.06669	-0.0001076	0.0000000	-0.0583707
4	0.0167580	ပတ	0.9528734	0.9343072	0.96321	0.26874	0.0219439	0.000000	-6.0562325
ر. س	.075506	.961274				· · · · · · · · · · · · · · · · · · ·			
	.126691	05658	0.8496185	0.9492967	0.88099	0.47314	0.0434816	0.000000	-0.0535721
ø	0.1178760	.151886	0.6925106	9666056-0	0.77018	0.63783	0.0590396	0.000000	-0.0605480
7	.316638	319440)					
	. 399943	.391772	0.5244932	0.9419854	0.65563	0.75509	0.0682725	0.0000000	-C.0807431
αο	48324	.4641C	36,74,46,0	ניינייני ל		00000			יר ספרור סי
σ	664451	385	0.01110.0	6626626.0	0.100.0	0.03400	5050710.0	000000	0 00011 •0-
	.763883	.635655	0.2396997	0.9034732	0.46111	0.88734	0.0740767	0.0000000	-0.1578846
10	.86331	325	1						
•	969316	73108	0.12/39/4	0.8773892	0.38159	0.92433	0.0734779	0.0000.02	-0.2122491
1	86171	11360	0.0352671	0.8483738	0.31286	0.94980	0.0715738	6333000.0	-0.2746496
12	.297026	847875							
ţ	.411502	.878001	-0.0376076	0.8175012	0.25450	0.96707	0.0689167	0.0000000	-C.3427331
13	.525978	08128		1000					
. *	1.6432570	93254 06777	-0.3926393	0.7855970	0.20706	0.97833	0.0659016	סיפספרופק	-0.414436
ŗ.	880268	.978885	-0.1314020	0.7531158	0.17367	0.98480	0.0631034	0.0000001	-0.4885556
15	.00000	000000			. **				
	٦,	.0208	-0.1541155	0.7194394	0.16440	0:98639	0.0604147	0.000000	-0.5669662
· :	375000	.062500	-0.1697662	0.6844537	0.16440	0.98639	0.0574256	0.000000	-0.6508143
1.7	. 50000	.083333	2			•			
•	. 625000	.10416	-0.1812836	0.6491799	0.16440	0.98639	0.0542236	0.000000	-0.7381838
2	975000	145833	1800568	0.6161650	0.16660	0.98639	0.0510144	0.000000	-0-82798CF
19	20000	166667	22.00	20.0	2				
	125000	187500	-0.1939094	0.5797300	0.16440	0.98639	. 0.0478577	0.000000	-C. 9193407
02	.25000	.208333			f				
. [.375000	.22516	-0.1964849	0.5461897	0.16440	0.98639	0.0447342	0.0000001	-1.0116186
1,	8064	20569	-0.1984572	0.5138301	0.15735	0.98754	0.0415148	0.000CO	-1,1035583
55	.74981	.289805				, ,			
	.874224	.30791	-0.1987656	0.4831613	0.14405	0.98957	0.0384110	0000000	-1.1928155

CASE NO. TEST

3-800Y

TEST CASE

GN-81	GN-BGCY UNIFORM CRCSS TRANSFORMEC COOR!	RGSS FLOW COORDINATES								
	·.	>-	. 12	13	SIN A	COS A	SIGMA	Z	РНІ	
23	3.9986330	3260	-0.1959838	0.4543702	0.13218	0.99123	0.0356482	0 .000c c01	-1.2782260	
54	.373202	.359299	_	0.4273429	0.12106	0.99265	0.0331015	0.000000	-1.3598012	- '
52		389795	10 1052174	0 4020733	000110	0 00300	0 0301326	1003000 0	~1 6372156	
56		417534		10-00010	66011.0	21.500.0	0.50.00.0		0000000	-
27	4.874CC50 4.9993410	429562	~ (0.3/857/8	79860.0	21666.0	0.0285211	201100000	-1.5100809	
28		464049		0.5561991	C0980.0	67966.0	3064920.0	1000000	01163776	
29		.472973 .481898	-0.1612794	0.3368188	0.07103	0.99747	0.0245040	0.000000	-1.6400296	
		488320	-0.1519486	0.3186784	0.05127	0.99868	0,0226608	0.000000	-1.6953466	
, ,	875488	497371	-0.1421024	0.3025579	0.02111	0.99978	0.0209543	0.000000	-1.7417720	
31			-0-1296604	0.2884135	•	1.00000	0.0198461	10000000	-1.7789663	
32	6.2540890	500000					0 0 0		3100010 1"	
(r)	6.5589960	000006.	-0-1141936	0.2747074	•	7.00000	0961610*0	10000000	C162610•1=	
		500000	-0.0979210	0.2603280	•	1.00000	0.0182641	0.0000000	-1.8491759	
¥	6.9248840	.500000	-0.0797128	0.2458317	•	1.00000	0.0173047	0.000000	-1.8854207	•
35		500000	1842650-0-	0.2321834	6	1.00000	0.0163875	.0200000	-1-9195414	
36	96	200000			· .		2 (0001010		7700170 1	
37	.20¢	.500000	9776950*0-	0.2208114	•	00000	7669CIO*0	0.000,00	+0 00 1 +c •T -	
3.8	8.9024370	500000	-0.0119181	0.2140739	•	1.00000	0.0153181	00000000	-1.9648152	
	9.737013	200000	0.0119846	0.2144477	•0	1.00000	0.0156503	0.0000001	-1.9638808	
£	.192237	.500000	0.0265113	0.2223098	•	1.00000	0.0162867	000000000	-1.9442255	
04	11.0961180	5000	0.0450105	0.2322860	•	1.00000	0.0119990	0.000000	-1,9192849	
41	12.0000000	.50000								
45	12.0000000	000	-0.5060347	0.1665020	•	-1.00000	-0.2326855	-0.000000-0	-4.1674898	
43	11.0961180	5.00000000	-0.1278910	0.1287015	•	-1.00000	-0.1958085	-0.0000.05	-4.3564924	
4	10.1922370 9.7370135	88	-0.0457658	0.1163904	•	-1.00000	-0.1852531	-0.000000-	-4.4180477	

DGUGLAS AIRCRAFT COMPANY LCNG BEACH DIVISION

					. ,			5	
٠.	TEST	CASE		3,	3-BODY CAS	CASE NO. TEST	⊢.,		• • •
CN-BCCY TR	UNIFORM CR Ansformed C	OSS FLOW CORDINATES	ŧ						
	×	>	12	T3	SINA	CDS A	SIGMA	Z	PHI
4.5	.28	000000	1767100 0	***************************************	c	000	7797001 0	20000	3113057 7
46	.523084	000000	10507000	1169611.0	•	00000	F00001 *CL	700000	110051-1-
ŗ	. 20695	000000	0.0346369	0.1169007	•	-1.00000	-0.1781795	-0.000000	-4.4154966
.	.890829	0000000	0.0615492	0.1227353	•	-1.00000	-0.1764823	E030000°3-	-4.3863234
8	63950 44417	5.0000000 5.000000000	0.0847648	0.1299740	•	-1.00000	-0,1750985	-0.000000	-4.3501258
49	924884	000000	. 105261	F134461 0		0000	1730364	200000	7176116 7-
20	.558996	000000	1047601.0	0.13//51/	•	00000-1-	0000011.00	E010000.01	+1+2116*+-
	.406542	002300	C.1234927	0.1455297	•0	-1.00000	-0.1726019	€033000*0-	-4.2723515
10	.127044	000000	0.1398704	0.1529802	0	-1.00000	-0.1713523	£333000°0-	-4.2350988
55	.00000	.000000				·	1		
. c	875000	000000	0.1551398	0.1605088	•0	-1.00000	-0.1699436	-0.0000000	-4.1974560
	.62500	000000	0.1713148	0.1687915	•	-1.00000	-0.1681101	-0.00000-0-	-4.1560426
54	.500000	000000	9717001		ć				010101
c C	. 37,5000		0.1884145	0.1779608	•	00000-1-	-0-1054807	2011000°0-	-4.1101958
	.125ccc	000000	0.2017302	0.1880715	•	-1.00000	-0.1608369	-0.000cc02.	-4.0596423
26		000000	0.2373048	0.1992169	50850-0	-0.99928	-0.1543143	-0.000000-0-	-4.0075912
15	758758	.009180							
r. a.		.036257	0.2817408	0.2116849	0.19637	-0.99433	-0.1502851	-0.000cc02	-3.9594849
,		.058085	0.3107114	0.2255229	0.16247	-0.98671	-0.1503696	-0,000000-	-3.9173768
26	17	5.075913	0.3345502	0.2464658	0.20457	-0.97885	-0.1530061	€033000*0-	-3.8803173
9	.9639510	.137711		. !		1		1	
. 3	.820754	.171764	0.3556180	0.2563748	0.23136	-0.57287	-0.1576521	-0.0000000	-3.8458544
;	.530725	.242353	0.3752538	0.2731549	0.24171	-0.97035	-0.1639631	-0.000000-	-3.8104078
62		.278969	2042142	. 2004031	27726 0	-0.67204	-0.1715592	£073000-0=	-3,7697085
63	.089105	.356155	7-17-66-0	1689063.0	0.634.0	90316.0	2600111.0		
	.945113	.381116	0.4133580	0.3087802	0.21022	-0.97766	-0.1798953	-0.000000-	-3,7195339
4	.66202	.4120 <i>11</i> .435898	6.4347328	0.3274676	0.16880	-0.98565	-0.1881493	-0.000000	-3.6558178
65	.522935	.45972C	0.611370	0.4807.45	0 11167	-0 00375	-0 1051165	6000000	-2, 5745018
66	.256492	.489660		0000		7.52.5	5011561-0		
	.128246	.494830	0.4925189	0.3683239	0.04028	-0.99919	-0.1980338	-0.000000-	-3.4709530

TEST

CASE NO.

3-80DY

TEST CASE

*								•																							
	IH	-3.3464746	-3 2116611	1100117.6	-3.0699959	-2,9192867	-2.7613446	-2.5965540		-2.4259481	-2.2500096	20 0705401	16460-043-	-1.8899169	-1.7089142		-1.5306624	-1,3590862		-1.1993136	-1.0592153		7000646-0-	-C.8464448	3070970		-0.6750962	-0.5967867	0 5231630	05 t 16 3 5 * 0 -	-0.4544929
٠.,	Z	-0.0000000	6333000 5-	7777000-7	-0.0006.02	-0.000000-	-0.000000-	-0.000000	70000	-C.000C.01	-0.000000	10000	10000	-0.0000cc2			-0.000000-0-	100000-0-		-0.000000	0000000-0-		0000000	00000000-0-		30000	000000-0-	-0.0000000		000000	-0.0000000
	SIGMA	-0.1934799	0 1837712	7177601.01	-0.1749310	-0.1655381	-0.1552723	-6 1627517	401014	-0.1305619	-0.1154487	7470200	T	-0.0781858	-0.0557357		-0.0306205	-0-002915B		0.0273381	0.0607916		0.0751876	0.0674265	0 0606262	6.00000	0.0519221	0.0446786	0070700	00.00.00	0.0315930
	COS A	66666*0-	77000 0-	10.444	-0.99771	-0.99221	-0.98077	-0 94075	0.000	-0.92957	-0.88458	72600	#16.20.D	-0.74565	87879	0.00	-0.53301	-0.39938		-0.25017	-0.08891		•	•		•	•0	•	c	•	•
	SIN A	0.00415	003600	00070	0.06764	0.12458	0.19519	07220	7.7	0.36863	0.46638	60779	16000.0	0.66633	74008	•	0.84611	0.91679		0.96820	0.99604		1.00000	1.00000		00000	1.00000	1.00000	1.00000	00000-1	1.00000
	13	0.3916020	1477717.0	1.44014.0	. 6.4431232	0.4721985	0.5033654	0 5354.781	10.10.0	0.5711673	0.6071239	00111177	10101000	0.6802114	8722712 0	000000000000000000000000000000000000000	0.7510047	7836877		0.8133826	0.8389030		0.8601151	0.8780714	7977700	1004460	0.9096543	0.9236789	1007760	1084966.0	0.9479727
विकास है।	May 1813	r in Sec.		. ' :	٠.	٠				٠																	÷	37		'n.	
	12	0.5696822	7030607 0	0067760*0	0.8114604	0.9414069	1.0799738	1 2251820	0201627-1	1.3734992	1,5198023	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.0203014	1.7813848	1 9907713	7711000-1	1.9467971	1.9674952	37110101	1.9264472	1.7830468		1.5729730	1.4282942	1 227.0176	0170466.1	1.2649974	1.2098988	0000011	1.1653909	1.1290117
CRGSS FLOW CCORDINATES	≻ .	5.5000000	.500539	.506328 .506328	688	331	5.5426130	14	74	197	220	321	3 6	9.54				90	33	90	6.5750140	25000	6.8375850	.942136	.051688	.103149 .314611	.472365	.630119 .819423	.008728	.463C58 .463C58	735657
CN-BECY UNIFORM CRGSS FLOW TRANSFORMED CCORDINAT	×	2.0000000	1.7738710	1.5728970	1.4761160	1.2870955	1.1948560	1.0189860	0.8514960	0.7730140	0.6945320	0.5473480			0.2965250			112475	.051336	.0323	. 01.338 r . 006693		• 6	•		• •	•	• •		• •	0
ر اگر	ંક <u>ે</u> ત્*	.5 .	89	69		2	11	72	73		4.	15	76	•	11	18		19	80	į	1 8	82	8)	84	85		9	67	. 60	

DCUGLAS AIRCRAFT COMPANY LCNG BEACH DIVISION

		IHd	703030064	•	-0.3340164	-0.2829989	-0.2419592	-0.2115760				-0.1494180	-0.1429536	-0.1393844	6.1395481	-2.3223103	-3.0926827	-3,7339197
		z		20200-0-	-0.000000-	-0.000000-	-0.000000	-0300000-0-	0000000-0-	-0.000000	-0.000000	000000-0-	-0.000000	0000000-0-	-0.000000-	0.000000	0.0000003	0°000000
·		SIGMA	7700360 0	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.0207938	0.0163409	0.0127984	0.0101733	0.0081949	0.0066744	0.0054877	0.0045497	0.0038003	0.0031960	0.0027047	-0.0505576	-0.0861733	-0.1601152
CASE NO. TEST		COS A	•		•0,	•0	•	•	•	•	°	•	•	•	•0	·	•	•0
3-BODY C		SINA			2 1.00000	1.00000	5 1.00000						4 1.00000	1 1.00000	6 1.00000	3 1.00000	0000001 9	000001 9
		. 13	77808200		0.9667812	0.9740811	0.9796125	0.9835025	0.9862966	0.9883488	0.9898788	0.9910268	0.9918814	0.9924921	0.9928516	0.2037793	0.1752846	0.1853266
		12	1 0003843	70076604	1.0754161	1.0563795	1.0409711	1.0304283	1.0229304	1.0173456	1.0129941	1.0094112	1.0062029	1.0028322	0.9973935	0.0733774	0.1788418	0.6107001
TEST CASE	RGSS FLOW CCORDINATES	>	9.0082560	9.6624930	10.0550350	10.44/5/10	11.3896780	.346380	13.3030829 13.7814339	14.2597851	15.2164880 15.6948390	16.1731901	17.1298921	18.0865941	19.0432971 19.5216484 20.00CC0CC	2.9166665	3.750000	4.10ece10 4.58333335 5.000000
TES	GN-BCCY UNIFCRM CRGSS FLOW TRANSFORMEC CCORDINATES	×	•	• •	•	• • •	• •	•••		• •	• •	••	• • • •	• •	•••	12.0000000	12.0000000	12.0000000
	GN-E		68	06	;	1	35	93	46	95	96	16	8 5	66	101	102	£01	104

ADDEC MASS = 622,7799301 VOLUME = -811.

FORP CROSS FLCh WX VX VX VX VY VZ PHI CCORDINATES WX VY VZ PHI CCORDINATES VX VX PHI CCORDINATES VX VX PHI CCORDINATES VX PHI CCORDINATES VX VX PHI CCORDINATES VX PHI CCORDINATES PHI CCORDINATES CCORDINATE		TES	TEST CASE		3-6	3-BODY CASE N	NO. TEST
Y VX VX 2.50CC00C -0.1997469 0.1386537 0.6026236 3.00CC00C -0.2656179 0.2163255 0.5326011 4.00CC00C -0.3657216 0.2473314 0.4900668 4.00CC00C -0.4772017 0.2143952 0.4347488 5.00CC00C -0.4772017 0.2143952 0.4347488 5.00CC0C -0.2103406 0.0343569 0.3447488 5.00CC0C -0.2103406 0.0343569 0.3477481 2.75CC0C -0.2103406 0.0343569 0.3474547 3.25CC00C -0.2299844 0.076022 0.3444597 3.5CC00C -0.2299844 0.076022 0.3444597 3.75CC00 -0.2299844 0.076022 0.3578649 4.00CC00 -0.2299844 0.076022 0.3578649 4.5CCC0C -0.2299844 0.076022 0.3578649 4.5CCC0C -0.2299844 0.076022 0.3244597 4.5CCC0C -0.2298839 0.07756849 0.2688950 2.75CC0C -0.2788259 <th>CFF-BCDY UNIFORM TRANSFORMED</th> <th></th> <th>CROSS FLCW CCORDINATES</th> <th>•</th> <th></th> <th>٠.</th> <th></th>	CFF-BCDY UNIFORM TRANSFORMED		CROSS FLCW CCORDINATES	•		٠.	
2.50CC0C	×		>	××	>	7.7	PHI
3.00CC00C -0.2656179 0.2163255 0.5326011	2.0000000	00	2,5000000	-0.1997469	0.1386537	0.6026236	-0.9934410
3.50CCCGC	2.000000	000	3.0000000	-0.2656179	0.2163255	0.5326011	-1.4021966
4.00CCCGG -0.4067216 0.2461933 0.4599611 4.50CCGG -0.4772017 0.2143952 0.4347488 5.00CCGG -0.2134945 0.04337170 0.43971312 2.75CCGG -0.2195174 0.0560405 0.3971312 3.00CCCG -0.2195174 0.0560405 0.344597 3.5CCGGG -0.2195174 0.0182452 0.357864 3.5CCGGG -0.2533831 0.0815387 0.3251820 4.25CCGG -0.2538939 0.0815387 0.268144597 4.25CCGG -0.2689999 0.0182452 0.3251414 4.25CCGG -0.2689999 0.0182452 0.3251820 4.25CCGG -0.2538939 0.0797659 0.2681414 4.25CCGG -0.2922953 0.01797659 0.2681414 4.75CCGG -0.1357891 0.018466 0.2603980 2.75CCGG -0.1357891 0.02258182 0.20336238 3.5CCGG -0.1357891 0.02258182 0.2306238 3.75CCGG -0.1359031 0.02717524 0.2160805 4.25CCGG -0.1436737 0.0214363 0.11824260	2.0000000	000	3,5000000	-0.3351830	0.2473314	0.4900668	-1,7847660
4.500CC00 -0.4772017 0.2143952 0.4374488 5.000CC00 -0.2194944 0.1437170 0.4095616 2.750CC00 -0.2195174 0.0560405 0.3678649 3.00CC000 -0.2299844 0.0700522 0.3444597 3.55C0000 -0.2299844 0.0702452 0.3444597 3.50C0000 -0.2533831 0.0821538 0.3251820 4.25CC000 -0.2538909 0.0821538 0.2947040 4.25CC000 -0.2922953 0.01797659 0.22821414 4.50C000 -0.2922953 0.01797659 0.2688950 4.75CC000 -0.2922953 0.01786843 0.2707908 2.75CC000 -0.2922953 0.0178665 0.2688950 2.75CC000 -0.3964387 0.0079865 0.2603980 2.75CC000 -0.3964387 0.00258182 0.2030628 3.25CC000 -0.1357801 0.02258182 0.2160805 3.75CC00 -0.1357801 0.0271752 0.2035185 4.00CC00 -0.143873 0.0201519 0.1824260 4.75CC00 -0.14488967 0.0201519 0.11824260	2.0000000	000	4.0000000	-0.4067216	0.2461933	0.4599611	-2,1601555
5.000CCO: -C.5349454 0.1437170 0.4095616 2.75GCGC -0.2103406 0.0343569 0.3971312 3.00CCCCC -0.2299844 0.0560405 0.3578649 3.25CCGOC -0.2413607 0.0782452 0.32518649 3.25CCGOC -0.2533831 0.0819387 0.3088646 4.00CCCGO -0.2583831 0.0819387 0.3088646 4.25CCGOC -0.2583831 0.0819387 0.2947040 4.25CCGOC -0.2788359 0.0797659 0.22821414 4.50CCGOC -0.2788359 0.0797659 0.22821414 4.50CCGOC -0.2788359 0.0756843 0.2707905 2.75CCGOC -0.3064387 0.0756843 0.2707905 2.75CCGOC -0.3064387 0.0258182 0.22688950 3.25CCGOC -0.1356797 0.0118466 0.2688950 3.25CCCOC -0.13570509 0.0258182 0.2306238 3.55CCCOC -0.1370509 0.0277524 0.2160805 3.75CCGOC -0.1413720 0.0271705 0.2035185 4.25CCCCOC -0.1413720 0.0143963 0.1732566 4.75CCCC -0.1458733 0.0201519 0.1824260 4.75CCCC -0.1468967 0.0075804 0.1647201	2.0000000	000	4.5000000	-0.4772017	0.2143952	0.4347488	-2.5436304
2.75CCCC	2.0000000	000	5.0000000	-C.5349454	0.1437170	0.4095616	-2.9521919
3.00CCCCC -0.2195174 0.0560405 0.3678649 3.25C00C -0.2299844 C.07C0522 0.3251820 3.55C00C -0.2498341 0.0819387 0.3588646 4.00CCCGU -0.2558909 0.0821508 0.2947040 4.25CCCGO -0.2788359 0.0797659 0.2821414 4.50CCGC -0.2922953 0.0797659 0.2707905 4.75CCGC -0.3964387 0.0756843 0.2707905 2.75GCGGC -0.135797 0.0118466 0.2688950 3.00CCGG -0.1357801 0.0207792 0.2478768 3.25GCGG -0.1370509 0.0258182 0.2306238 3.55CCGG -0.1390031 0.0277524 0.2160805 3.56CCGG -0.1413020 0.0277754 0.1924260 4.25CCCGG -0.1458733 0.0201519 0.1824260 4.55CCGG -0.1458739 0.0201519 0.1824260 4.75GCGG -0.1468967 0.0075804 0.1647201	4.0000000	000	2.7500000	-0.2103406	0.0343569	0.3971312	-1,6578893
3.25CC00C	4.00000000	000	3.000000	-0.2195174	0.0560405	0.3678649	-1.8964053
3.5000000	.0000000	000	3.250000	-0.2299844	C.07C0522	0.3444597	-2,1305059
3.75CCCCC	4.0000000	2000	3.5006000	-0.2413607	0.0782452	0.3251820	-2,3618630
4.00CCCC0 -0.2658909 0.0821508 0.2947040 4.25CCC0 -0.2788359 0.0797659 0.2821414 4.50CCC0 -0.2922953 0.0797659 0.2503980 4.50CC00 -0.3664387 0.0709865 0.2603980 2.75CC00 -0.1357801 0.0207792 0.2688950 3.25CC00 -0.1370509 0.0277724 0.2306238 3.5CCC0 -0.1390031 0.0277524 0.2160805 3.5CCC0 -0.1413720 0.0277524 0.2160805 4.25CCC0 -0.1436737 0.0245176 0.1924236 4.25CCC0 -0.1456730 0.0143363 0.1732566 4.50CCC0 -0.145873 0.0251519 0.1824260 4.750CC0 -0.145873 0.0075804 0.1647201	4.0000000	0000	3.7500000	-0.2533831	0.0819387	0.3088646	-2,5917577
4.25CCC00 -0.2788359 0.0797659 0.2821414 4.50CC00 -0.2922953 0.0756843 0.2707905 4.75CC00 -0.3064387 0.018466 0.2603980 2.75CC00 -0.1357801 0.0118466 0.2688950 3.00CC00 -0.1370509 0.0207792 0.2478768 3.5CC00 -0.1370509 0.0258182 0.2306238 3.5CC00 -0.1390031 0.0277524 0.2160805 4.25CC00 -0.1413020 0.0271705 0.1924236 4.25CCC00 -0.1458733 0.0201519 0.1824260 4.50CC00 -0.1458873 0.0143963 0.1732566 4.750CC00 -0.1488967 0.0075804 0.1647201	0000000	0000	4.0000000	-0.2658909	0.0821508	0.2947040	-2.8211838
4.500CCOC -0.2922953 0.0756843 0.2707905 4.75CCOC -0.3064387 0.0709865 0.2683980 2.75CCCOC -0.1357801 0.0118466 0.2688950 3.00CCOOC -0.1377801 0.0207792 0.2478768 3.25CCOC -0.1370509 0.0258182 0.2306238 3.5CCCOC -0.1390031 0.02717524 0.2160805 3.75CCOC -0.1436737 0.0271705 0.2160805 4.25CCCCC -0.1458733 0.0201519 0.1824260 4.50CCCO -0.1458733 0.0201519 0.1732564 4.750CCO -0.1488967 0.0075804 0.1647201	.0000000	0000	4.25CC000	-0.2788359	0.0797659	0.2821414	-3.0508990
4.75GCGGC -0.3064387 0.0709865 0.2603980 2.75GCGG -0.1356797 0.0118466 0.2688950 3.00GCGGC -0.1370509 0.0258182 0.2478768 3.25GCGGC -0.1370509 0.0258182 0.230628 3.55GCGG -0.1390031 0.0277524 0.2160805 3.75GCGG -0.1413720 0.0271705 0.2035185 4.50GCGG -0.1468737 0.0201519 0.1824260 4.50GCGGG -0.146873 0.00143963 0.1732566 4.75GGGG -0.1488967 0.0075804 0.1647201	4.000000	0000	4.5000000	-0.2922953	0.0756843	0.2707905	-3.2814425
2.750CC00 -0.1356797 0.0118466 0.2688950 3.00CC00C -0.1357801 0.0207792 0.2478768 3.250C00C -0.1370509 0.0277524 0.2306238 3.550CC0C -0.1390031 0.0277524 0.2160805 4.25CC0C -0.1413020 0.0277705 0.2035185 4.25CCC0C -0.1458733 0.0201519 0.1824260 4.55CCC0C -0.1476750 0.0143963 0.1732566 4.750CC0C -0.1488967 0.0075804 0.1647201	4.0000000	0000	4.7500000	-0.3064387	0.0709865	0.2603980	-3.5131096
3.00CC00C -0.1357801 0.0207792 0.2478768 3.250C0C -0.1370509 0.0258182 0.2306238 3.50CC0C -0.1390031 0.0277524 0.2160805 4.25CC0C -0.1413020 0.0271705 0.2035185 4.25CCCCC -0.1458737 0.0245176 0.1924236 4.25CCCC -0.1458733 0.0201519 0.1824260 4.50CCCO -0.1476750 0.0143963 0.1732566 4.750CCOC -0.1488967 0.0075804 0.1647201	00000009	0000	2.7500000	0.1356797	0.0118466	0.2688950	-2.0105387
3.250C00C -0.1370509 0.0258182 0.2306238 3.50CC00 -0.1390031 0.0277524 0.2160805 3.750C00C -0.1413720 0.0271705 0.2035185 4.250CC00C -0.1436737 0.0201519 0.1924236 4.250CC00 -0.1458733 0.0201519 0.1824260 4.50CC00 -0.1488967 0.0075804 0.1647201	6.000000.4	0000	3.000000	-0.1357801	0.0207792	0.2478768	-2,2563695
3.50CCC0C -0.1390031 0.0277524 0.2160805 3.75CC0C -0.1413020 0.0271705 0.2035185 4.25CCCCC -0.1458737 0.0201519 0.1824260 4.50CCCCO -0.1458739 0.0201519 0.1824260 4.50CCCCO -0.1458750 0.0143963 0.1732556 4.750CCCC -0.1488967 0.0075804 0.1647201	6.0000000	0000	3.2500000	-0.1370509	0.0258182	0.2306238	-2.5004726
3.75CC00C -0.1413020 0.0271705 0.2035185 4.C0CCC0C -0.1436737 0.0245176 0.1924236 4.25CCCCCC -0.1458733 0.0201519 0.1824260 4.50CCC0O -0.1456750 0.0143963 0.1732566 4.750CC0C -0.1488967 0.0075804 0.1647201	9.000000	2000	3.5000000	-0.1390031	0.0277524	0.2160805	-2,7437181
4.COCCCOC -0.1436737 0.0245176 0.1924236 4.25CCCCC -0.1458733 0.0201519 0.1824260 4.50CCCOO -0.1476750 0.0143963 0.1732566 4.750CCCC -0.1488967 0.0075804 0.1647201	6.000000.0	0000	3.7500000	-0.1413020	0.0271705	0.2035185	-2.9868057
4.25CCCCC -0.1458733 0.0201519 0.1824260 4.50CCCO0 -0.1476750 0.0143963 0.1732566 4.750CCCC -0.1488967 0.0075804 0.1647201	6.0000000	0000	4.0000000	-0.1436737	0.0245176	0.1924236	-3.2303058
4.50CCC00 -0.1476750 0.0143963 0.1732566 4.750CC0C -0.1488967 0.0075804 0.1647201	6.000000	0000	4.250000	-0.1458733	0.0201519	0.1824260	-3.4746896
4.750CCCC -0.1488967 0.0075804 0.1647201	00000009	0000	4.500000	-0.1476750	0.0143963	0.1732566	-3.7203452
	00000009	6000	4.750000	-0.1488967	0.0075804	0.1647201	-3.9675793

AIRCRAFT COMPANY	NOISIAI
AIRCRAF	BEACH
DCCGLAS	LCNG

PREGRAM EOCA -- AXISYMMETRIC AND CROSSFLOW

**** CASE CENTREL DATA ***

SURFACE OF REVOLUTION
OFF-BODY POINTS
MATRIX SOLUTION BY TRIANGULARIZATION (SOLVIT)
INPUT TAPE NO. FCR CCORDINATES AND NON-UNIFORM FLOW ONLY =

2-800Y			D ALPHA		0	-3.8241162	244.70.0	1100001-11-	-12.6493235	-11.3918442	0 3 0 0 7	-9.4025823	-7.4792177	0000000	0606620.00	-5.0261505	0.01	+020102•+-	-3.4872889	-2.7941246		1	-0.5387681	-0.0002325	3000000	262000•		-6,0002325		0.0002325	-0.4091516	-0.7711682	7001111-0-	-0.6866971
2-E	MY = -0. ADDY = -0.		SUMDS	0.250000		0.5000000	0.7512674	0.9698752	6666401 1	616700111	1.4037901	1.6244419		1.8417099	2.0658224		2.2951787	2,5286056	74.6363	7666601.2	3,0051070	3.2482660	2 6017176	1000	3,7551628	4.0086113		4.202034	4.5155081	1480845	4.1004303	5.0219238	5.2733631	
	000	RMED)	DELTA S	0.2500000	00000	0.2500000	0.2512674	0.2186078	1676716 0		0.2175528	0.2206517		0.2172680	0.2241126		0.2293564	0.2334269		0.2301416	0.2397538	0.2431590	3077636 6	, , , , , , , , , , , , , , , , , , ,	0.2534483	0.2534485	•	0.2534485	0.2534483	3077750	•	0.2529673	0.2514393	
CASE 1-6-72	ADCX YE III	ATES (UNTRANSFORMED)	>				0.6253540											1.8113605														2.2695025		
TEST (NN = 41 THETA = -0. XE = -0.	CN-BODY COORDINATES NC. 1	×	• •	• •	• •	.008379	.016/	0.0755060		•	• •		•	•		•						•		•		•		27	.25000	. 500000	62490	874224	966
	-	BGCY		1	Ċ		n •	J	ស	•	. •	~	60	(٦	2 7	·	11	12	13	: :	<u> </u>	15	16	_	7	1.8	61		5 C	12	1 2	7.7	23

							٠.			٠,٠								÷.																		
		-0.6423096		-0.6325730	:	-0.6577064		-0.7263850		-0.8634634		-1.1340381		-1.7295423		-1.2093652		•		°C		•		•		ં		•				•		· ·		
0001000	8601626.6		5.1770255		6.0289921		6.2808933		6.5325959		6.7838966		7.0344270		7.2835055		7.5375945	•	7.8425015		8.2083895		8.6474555	•	9.1743344		9.8065894	-	10.5652952		11.4757422	•	12,3796232		13.2835052	
000000	0.231/468		0.2519157		0.2519666		0.2519013		0.2517026		0.2513007		0.2505305	•	0.2490785		0.2540890		0.3049070		0.3658880	,	0.4390660		0.5268790		0.6322550		0.7587960		0.9104470		0.9038810	3	0.9038820	***
č	2.342eo15	2.3552590	•	2,3897950	2,4036645	2,4175340	2,4299620	2,4423900				2,4818980				2.500000						2,5000000	2.500000		2.500000	2,500000	2.500000	2,500000	2.500000	2,5000000				2.5000000		2,5000000
0.07664	•	4.2481710	4-3732024	4.4982340	4.6234515	4.7486690	4.874CC5C	4.9993410	5.1247255	5.2501100	5.3754430	5.5007760	5.6258765	5.7509770	5.8754885	00000009	6.1270445	.0680452*9	6.4065425	0966855.9	. 6.7419400	6.9248840	7.1444170	7.3639500	7.6273895	7.8908290	•	8.5230840	•	•	9.7370135	10.1922370	10.6441774	ä	.54805	12.0000000
	٠			2		٠.		~		 80					٠.			~		M	٠.		• :	Ś	:	•		_				6				_

Ø

	λO			D ALPHA		• •	• •	• ‹	•	•	•0	• •	•	•	σ. •	••	•0	·	71.00001.0	0167611•7-	-3.9268209	-3.2439557	-2,4545241	-1.5724325	0.6104070		0.4115753	1.4410384	2.4166217
•	Z-800¥	MY = -0. ADDY = -0.		SUMDS	0.9038820	1.8077630	2,7182160	3.4769159	4.1091709	4.6360499	5.0751159	5.4410039	5,7459109	0000005	0000%	66664340	656667*9	6.7499999	6666666*9	7.2414165	7.4959737	7.7646837		8.04/212/	8.3415935	8.6442312	8.9474925		9.2420574
	•	000	MED)	DELTA S	0.9038820	0.9038810	0.9104470	0.7587060	0.6322550	0.5268790	0.4390660	0.3658880	0.3049070	0-2540890			0.2500000	0.2500000	0.2500000	0.2414166	0.2545572	0.2687100		0.2825291	0.2943809	0.3026377	0.3032613		0.2945650
	CASE 1-6-72	ACCX II	ATES (UNTRANSFORMED)	>	000000*5		5.000000 5.0000000		2000000°C		99	5.000cc00 5.000cc00	5.0000000 5.00000000	5.0000000	000000	0000000	5.0000000 5.0000000	5,00000008	. 000000*6	5.0045900	5.0091800	5.0362570 5.0580850	5.0799130	5.1377110	5.17.17645	5.2423935	5.2785690	5.3501550	5.3811160 5.4120770
	TEST	NN = 60 THETA = -0. XE = -0.	Ch-BODY COORDINATES	×	4 80	~ ~ .				62	.36395 .14441	6.9248840 6.7419400	6.5589960 6.4065425	• •		.75060	.62500 .50000	.37500	12500	.87937	4.7587580 4.6322015	4.5056450	.24	. 6	. 82	53	86.6	186	2.9451135 2.8011220
			eccy		-	N (m ×	T (ν.	o . ·	7	60 .	6	10	11	12	13	71		5	91	-11	18	19	6	J	. 21	22	23

	9454		1028724		15958	Ü	550086	23041		82757	•	1654	4838		62105	i	684719	92436	٠,	55193	8312		404850		+707	. 8556		3864200	08937	4			:						•						٠.	•	· .		
	3,3069	•	4.10		2.070		.67.1	-2.342		-3.278	-	-4*099I	7678-7-	•	-5,526		-6.168	-6.73	. ;	-7.24	-7.765	•	-8.24		600.0-	-9.0519		-9.386	-5.10(•	•		٠ ٠	c	;	ં		•	Ċ	• •	3		•	.0	;	• •	•	
9.5242946		9.7924144	٠	10.0491147	, 1	10.2752455	10.4762918	70	10.6702980		10.8562254	11 0355.44		11.2098762		11,3787318	11 6/61330	071010	11.7060070		11-8040211	12.0212289		12.1759465	12,3290322		12.4807277	12,6312959		12.8138839	03200	706370	13.2959069		13.6114149	13,5900239		14.4443548		14.9895518	15.6437888		16.4288726		17.3709736	18.3276765		19.2843785	
0.2822372		0.2681199		0.2567003		0.2261309	6,2010462		0.1940063		0.1859275	1703101	(10011	0.1743318		0.1688557	16430	00001	0.1608871	, , , ,	0.1380443	0.1565775		0.1547176	0.1530857); · .	0.1516955	0.1505683		C.1825850	0501010		0.2629230		0.3125080	0.3786090	! ! 	0.4543309		0/61666	0.6542370		0.7850840		0.9421010	0.9567029	() ()	0.9567020	
5.4358985	`~		99	94830	000005	. 500469	503633	06328	.512889	.519450	31631	542613	.577614	.601794	25574	.657697	.688220	.765821	.811430	57639	4777	.022325	.081501	.147355	982	353156	.426592	50028	.65000	.741292	2585	1688	149	4611	472365	19423	.008728	.235893	.463058	(3565/	335374	662493	.055035	775775	10.9186275	.868629	.346380	12.8247315 13.3036829	
2,6620285	22935	9713	.256492	28246	00000	3	73384	72857	76116	79335	87095	4856	18986	35241	51496	73014	2	47348	810	14819	Ž	45733	1 565	80.4 10.10	1905	51336	32361	338		•	•	• •	•0	•	• • •		.0	• 0	•	•	•	•	•0	· · · · · · · · · · · · · · · · · · ·	• c	• •	•	••	
																						•		٠				٠.			• •		• •	:	·												. •		

```
0.9567021 20.2410805
0.9567029 21.1977835
0.9567021 22.1544855
0.9567020 23.1111875
0.9567029 24.0678895
0.9567029 25.0245924
0.9567029 25.9812953
```

	TEST	CASE 1-6-72			2-80
	NN = 24 THETA = -0. XE = -0.	ACCX VE	600 111	MY = ADDY =	90
	CFF-BCDY CCORDI	NATES (UNTRAN	SFCRMED)		
•	X-OFF	Y-0FF			
	_	.500000			, .
7	_	.000000			
m s	2.0006.00	3.500000			. •
רנה		.500000			: **
•	_	000000			
-	_	.750000			
ω (~ .	000000		•	
2 5	-		,		
7	_	.75000			
12	-	000000			
£ .	000000	.250000			٠.
. T		20000			
16	.00000	50000			
1	000000	00000	• •	٠	
18	000000	200035			
2 2	<u> </u>	20000			
212	000000	00000			
22	ā	2000		ı	
23	-	00000			• • •
76	_	50000			

0.005 MINUTES.

RIGHT SIDES WAS SOLVED DIRECTLY IN

TEST CASE 1-6-72

CN-ECCY UNIFCRM AXISYMMETRIC FLOW TRANSFORMED CCORDINATES

IHd		-16.2307770	-16.2114217	3107771 71-	610++/1.01	-16.1315036	-16.0984416	· et	-16.0735321	-16.0542350	-16.0374880		-16.0207942	-14-0018842	7. 00 100 01	-15.9798419	20 23 23 21	30 00 000 000	-15.9265398	-15 8070440		-15.8667105		-15-8323100	-15.7921332		-15.7442549	-15.6879194		-15.6220624	-15.5449587	
z		-0.0000000-	-0.000000-	1- 6037000 0-		-0.0000co2 -1	-0.000000-		-0.000,000 -1	-0.0000003 -1	- 6033000-0-		-0.000000-	1-000000-0-		-0.000000-	100000		-0.0000co1 -1	·		-0.000000-		- 7000000-	-0.0000co1 -1		-0.000000-0-	-0.000000-		-0.000cc01 · -1	-0.0006001	
SIGMA		-0.1115199	-0.1084210	7900101 0	-0-101023	-0.0881396	-0.0764615		-0.0655820	-0.0562167	-0.0483404		-0.0417518	0478360-0-		-0.0305269	7000100	00000000	-0.0219283	100100		-0.0207712		7146770-0-	-0.0247087		-0.0262469	-0.0276340		-0.0288922	-0.0286244	
COS A		•	. 0-	07770	60000·0	0.26874	0.47314	· • • • • • • • • • • • • • • • • • • •	0.63783	0.75509	0.83400		0.88734	0.92633	77.77	0.94980	10170		0.97833	08780		0.98639		66986.0	0.98639	,	0.98639	0.98639		0.98639	0.98754	
A NIS		1.00000	1.00000	72200		0.96321	0.88099		0.77018	0.65563	0.55176		0.46111	0.38150		0.31286	79796	00103.0	0.20706	17267		0.16440	. (0.10440	0.16440		0.16440	0.16440	1	0.16440	0.15735	
S	,	0.9986417	0.9877446	3103770 0	0100046.0	0.8200694	0.6525808		0.4785718	0.3237245	0-1930060		0.0840360	-0-0108292	7/ 700 10 0	-0.0907116	1630631	10000110	-0.1977849	-0.2218468		-0.244461		-0.42882.0	-0.3504495		-0.4241786	-0.5091033		-0.6097057	-0.7250508	
1	•	0.0368556	0.1107042	7721126	5471167°C	0.4241823	0.5894228		0.7220999	0.8223597	0.8983284		0.9570601	1,0054000	000	1.0443714	. 04771	70071.001	1.0944336	1.1053718		1.1155474		1.1350309	1.1620884	,	1,1933895	1.2284557		1.2687418	1.3134119	
>		12500	.25000	.500000	.750708	.855591	61274 56580	.151886	.235663	.391772	1.5246450	.583985	.635655	.687325 731685	774846	.811360	847875	.908128	932549	.957771	000000	.020833	.041667	005200	104166	.125000	.145833	187500	.208333	.229166	C) (1)	2000
×		• • •	• •		.016758	.046132	.075	.177876	.247257	.399943	0.4832490	.664451	.763883	.863316	.075317	.186171	.297026	. 52597A	.643257	.760536	000000	.125000	.250000	500000	.625000	.750000	.875000	12566	.250000	375000		71.0017
•	_	.		m	4		ır.	9	,	_	60 .	σ			-		2			4	2		.0	_	_	80	c		0		_	,

DCUGLAS AIRCRAFT COMPANY LONG BEACH DIVISION

TEST CASE 1-6-72

2-BODY CASE NO.

CN-BGCY UNIFCRM AXISYMETRIC FLOW TRANSFORMEC COORDINATES

	*	>	11	dO	SINA	COS A	SIGMA	Z	H
23	998633	26024				i.		en en en en en en en en en en en en en e	
	123401	.342661	1.3928830	-0.9401229	0.13218	0.99123	-0.0254793	-0.000000	-15,3598396
5 7	4.3732024	2.3745470	1.4280763	-1.0394019	0.12106	0.99265	-0.0239671	-0.000000	-15.2538805
52	498234	.389795							
26	748669	403664	1,40104.1	-1.1364123	6011.0	0.99392	-0.0223051	-0-00000-0-	0106661-61-
)	874005	.429562	1.4936022	-1.2308476	0.09867	0.99512	-0.0203810	-0.000000	-15.0170884
22	999341	.442390	1 5337888	-1 2010201	90.700	00,000	FC 300 C	100000	71-
28	250110	677564.	000/676*1	-1.5219563	60960 .0	67066.0	1260810-0-	1000000-0-	44.00/0034 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
. ,	375443	.472573	1.5517787	-1.4080172	0.07103	0.99747	-0.0150735	-0.000000-	-14.7499491
53	500776	.481898	1 5757200	000000	0.05137	0,000	1000010	10000	2077707 71
	750670	070004.	1.3676360	7006784-1-	0.03127	0.9980	1806010*0-	100000-0-	7004000**1-
))	875488	497371	1.5841553	-1.5095479	0.02111	0.99978	-0.0041475	-0.000600	-14.4584720
ं 1E	000000	.500000	:	.:(
	.127044	.500000	1,5707382	-1.4672185	•	1.00000	0.0005090	-0.000000-	-14.3111918
32	.254089	. 500000	30100	F > > 0 0 C > 1 -			200000	00000	7000731 71
	400046	3000	L*3394133	7008074-1-	•	00000	0.000000	000000-0-	+0674CT+HI-
	741940	20	1.5500170	-1.4025528	•	1.00000	0.0000781	3033000*0-	-13.9690509
34	.924884	. 500000							: :
	.144417	200000	1.5472057	-1.3938453	•	1.00000	0.0000446	0000000-0-	-13,7483451
35	.363950	20000						- :	
7,5	686729	0000004	77)) < 5 < 1	-1.3894116	•	1.00000	51/0000-0	0011000-1-	13.48443EI
o O	.206924	50000	1.5448672	-1.3866147	•	1.00000	0.0001496	0000000-0-	-13,1683471
37	523084	.500000							
	.902437	. 500000	1.5438080	-1.3833432	•	1.00000	0.0003049	-0.0000000	-12.7896081
96	9.2817900	2,5000600	1.5412707	-1.3755152	C	1.0000	0.0006430	000000-0-	1962988-01-
39	.192237	500000			;				
	.644177	.500000	1.5345076	-1.3547136	•	1.00000	0.0013419	00) 0000 0-0-	-11.8469679
40	.09611	. 500000				, (1)			
	548059	.50000	1,5157102	-1.2973773	•	1.00000	0.0025366	00000000	-11.3693341
41		. 500000				٠.			
42	12,0000000	000000							
	.548059	000000	-1.5710313	-1.4681394	••	-1.00000	-0.0207993	-0.0000000	-11.3278660
6.	1.096118		-1-5492320	-1-40011997	C	-1-00000	-0.0230B2S	000000-0-	-11. 8341868
44	1922	000000			•				
	9.737013	000000	-1.5446047	-1-3858038	•0	-1.00000	-0.0248907	-0.000000-	-12,3321306

-0.0273490 -0.0272197 -0.0261733 -0.0269431 -0.027490B -0.0274330 -0.0268846 -0.026414C SIGMA **TEST** -1.00000 -1.00000 -1.00000 -1.00000 -1.00000 -1.00000 -1.00000 -1.00000 COS A CASE ND. SINA 2-80DY • • ំ ċ -1.4045280 -1.3860503 -1,3945710 -1.3847322 -1,3851761 -1.3856151 -1.3870863 -1,3896211 G. -1.5445436 -1.5442578 -1.5444015 -1.5450199 -1.5458399 -1.5446845 -1.5474401 -1,5506541 CN-BGCY UNIFORM AXISYMMETRIC FLOW TRANSFORMED: CGORCINATES TEST CASE 1-6-72 9.5589960 ,2069565 .8908290 .3639500 .1444170 .9248840 5.4065425 5.2540890 5.0000000 .6273895

-13.16715C7

000000°0÷

-13,4830229

00000000--0.0000000 -0.0000000 -C.000.C.COO. 2022000*0--0.000CC00

-12,7878705

-0.000ccoc

-13.7461405

-13,9653823 -14.1481954 -14,4389983

-14,3008221

	-1.0856452 -0.1773231 0.04028 -0.99919	-1.0660751 -0.1365161 0.11167 -0.99375 -0.0268290 0.000000		-1.0874014 -0.1824419 0.16880 -0.58565 -0.0445982 -0.000CC00		16c -1.1346654 -0.2874656 0.21022 -0.97766 -0.0584032 -0.000CCC	C) SI	-1.2029944 -0.4471955 0.23473 -0.57206 -0.0678699 -0.000CC01		-1.2874888 -0.6576273 0.24171 -0.97035 -0.0725212 -C.000CC01		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	-1.4//1/19 -1.182054/ 0.2045/ -0.4/885 -0.06/8015 -0.000001		-1,5630248 -1,4430465 0,16247 -0,98671 -0,0588651 -0,000C(00		-1.6250398 -1.6407544 0.10637 -0.99433 -0.0461289 -0.00000000		-1.6394832 -1.6879051 0.03803 -0.99928 -0.0304354 -0.000(00	医神经神经神经 医糖素性 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性 医多种		-1.6036117 -1.5715704 01.00000 -0.0229665 0.0000000	-1.6036117 -1.5715704 01.00000 -0.0229665 0.000CC00	-1.5699865 -1.4648576 01.00000 -0.0246909 0.00000000 -1.6036117 -1.5715704 01.00000 -0.0229665 0.0000000
	7	7		7		160 -1	550	ī		-		14.5	ī		7		7		7		-	ب	7	
	2.1282460	2.3897135	2,5229350	2.6620285	2.8011220	2.9451135	3.0891050	3.2364990	3,3838930	3.5307250	3.6775570	3.8207540	4.1022280	4.2405050	4.3730749	4.5056450	4.6322015	4.7587580	4.8793790	5.0000000	5.1250000	5.2500000	5.3750000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
5.000CC00 -1.5699865 -1.4648576 0. -1.00000 -0.0246909 0.000CC00 5.00CC00C -1.5699865 -1.4648576 0. -1.00000 -0.0229665 0.000CC00 5.00CC0CC -1.6394832 -1.6879051 0.03803 -0.99928 -0.0304354 -0.000CC00 5.0054800 -1.6250398 -1.6407544 0.10637 -0.99433 -C.0461285 -0.000CC00 5.0054800 -1.6250398 -1.6407544 0.10637 -0.99433 -C.0461285 -0.000CC00 5.005403C -1.6330248 -1.4430465 0.16247 -0.98671 -0.0588651 -0.000CC00 5.03627185 -1.477179 -1.182C547 0.20457 -0.97885 -0.0678013 -0.000CC01 5.1377116 -1.3817395 -0.9092739 0.23473 -0.97287 -0.07288C -0.000CC01 5.242335 -1.2029944 -0.4471955 0.23473 -0.97286 -0.0578699 -0.000CC01 5.35C155C -1.1346654 -0.287465 0.21022 -0.072865 -0.057889	5.000CCCCC 5.000CCCCC 5.00CCCCC -1.669865 -1.4648576 01.00000 -0.0246909 0.000CCCC 5.00CCCCC -1.6636117 -1.5715704 01.00000 -0.0229665 0.000CCCC 5.00CCCCCC -1.66394832 -1.6879051 0.03863 -0.99928 -0.0304354 -0.000CCCC 5.00C5000 5.00C5000 5.00C5000 5.00C5000 5.00C5000 -1.6394832 -1.6879051 0.03863 -0.99928 -0.0304354 -0.000CCCC 5.00C5000 5	5.000CCCCC 5.000CCCCC 5.00CCCCC 6.005865 6.005865 7.4648576 7.1.00000 7.0.29665 7.00CCCCC 7.6036117 7.1.5715704 7.1.00000 7.0.29665 7.00CCCCC 7.6036117 7.1.5715704 7.1.00000 7.0.39028 7.0.99928 7.0.99928 7.0.0903545 7.0.99928 7.0.0903545 7.0.99928 7.0.090435 7.0.099433 7.0.99928 7.0.99928 7.0.0903549 7.0.09928 7.0.090435 7.0.09928 7.0.09928 7.0.09928 7.0.0906CCC 7.630248 7.0.09928 7.0.09928 7.0.0906CCC 7.630248 7.0.09928 7.0.09928 7.0.0906CCC 7.630248 7.0.090829 7.0.000829 7.0.00	5.000CC00 -1.5699865 -1.4648576 0. -1.00000 -0.0246909 0.000CC00 5.00CC00C -1.6036117 -1.515715704 0. -1.00000 -0.0229665 6.000CC00 5.00CC00C -1.6394832 -1.6470544 0.10637 -0.99928 -0.0304354 -0.000CC00 5.0045900 -1.6250398 -1.6407544 0.10637 -0.99433 -C.0461289 -0.000CC00 5.0362570 -1.5530248 -1.4430465 0.16247 -0.99433 -C.0461289 -0.000CC00 5.0362570 -1.54771779 -1.182C547 0.20457 -0.998671 -0.0588651 -0.000CC00 5.058085C -1.54771779 -1.182C547 0.20457 -0.97885 -0.000CC01 5.05818C -1.2874888 -0.6576273 0.24171 -0.97285 -0.00725212 -0.000CC01 5.27896C -1.2029944 -0.4471955 0.23473 -0.97286 -0.0578699 -0.000CC01 5.314562C -1.1346654 -0.2874656 0.21022 -0.97766 -0.0584032 -0.000CC01	5.000CC00 -1.5699865 -1.4648576 0. -1.00000 -0.0246909 0.000CC00 5.000CC00 -1.5699865 -1.4648576 0. -1.00000 -0.0229665 0.000CC00 5.000CC00 -1.6394832 -1.6879051 0.03803 -0.99928 -0.0304354 -0.000CC00 5.005180 -1.6407544 0.10637 -0.99433 -C.0461289 -0.000CC00 5.0227185 -1.6407544 0.10637 -0.99433 -C.0461289 -0.000CC00 5.0227185 -1.6407544 0.10637 -0.99433 -C.0461289 -0.000CC00 5.026180 -1.4477179 -1.182C547 0.20457 -0.97885 -0.0578613 -0.000CC01 5.242395 -1.2874888 -0.9092039 0.23136 -0.97287 -0.072458C -0.000CC01 5.242395 -1.202944 -0.4471955 0.23473 -0.97266 -0.0578699 -0.000CC01 5.314562C -1.1346654 -0.2874656 0.21022 -0.97766 -0.0584032 -0.000CC01 5.412077c -0.0000	5.000CC00 -1.5699865 -1.4648576 0. -1.00000 -0.0246909 0.000CC00 5.000CC0CC -1.6036117 -1.5715704 0. -1.00000 -0.0229665 0.000CC0 5.00CC0C0 -1.6394832 -1.6879051 0.03803 -0.99928 -0.0304354 -0.000CC0 5.0045900 -1.6350398 -1.6407544 0.10637 -0.99433 -C.0461289 -0.000CC0 5.0362570 -1.5630248 -1.4430465 0.16247 -0.998671 -0.0588651 -0.000CC0 5.0362570 -1.5630248 -1.4430465 0.16247 -0.97887 -0.0588651 -0.000CC0 5.079513C -1.4771779 -1.182C547 0.20457 -0.97885 -0.0678013 -0.000CC0 5.079513C -1.2817488 -0.9092039 0.23136 -0.97287 -0.072458C -0.000CC0 5.2423935 -1.2874888 -0.6576273 0.23473 -0.97286 -0.0678099 -0.000CC0 5.2423935 -1.2874656 0.23473 -0.97786 -0.0584032 -0.000CC0 5.38116C -1.34654 -0.4471955 0.23473 -0.97786	5.000cc0c 5.000cc0c -1.5699865 -1.4648576 01.00000 -0.0246909 0.000cc00 5.00cc0c 5.00cc0c 5.00cc0c -1.6036117 -1.5715704 01.00000 -0.0229665 0.000cc00 5.00cc0c 5.00cc0c 5.00cc0c -1.6394832 -1.6879051 0.03803 -0.99928 -0.0304354 -0.000cc00 5.004590c 5.004590c -1.6250398 -1.6407544 0.10637 -0.99433 -c.0461289 -0.000cc00 5.0362570 5.0362570 -1.5630248 -1.4430465 0.16247 -0.98671 -0.0588651 -0.000cc01 5.079513c -1.4771779 -1.182C547 0.20457 -0.97885 -0.0678013 -0.000cc01 5.13717645 -1.3817395 -0.9092039 0.23136 -0.97287 -0.072458C -0.000cc01 5.2423935 -1.2874888 -0.6576273 0.24171 -0.97035 -0.0725212 -c.000cc01 5.314562c -1.2029944 -0.4471955 0.23473 -0.97206 -0.0578099 -0.000cc01	5.000CC0C 5.00CCCCC -1.5699865 -1.4648576 01.00000 -0.0246999 0.000CC0C 5.00CCCCC -1.6036117 -1.5715704 01.00000 -0.0229665 0.000CC0C 5.00CCCCC -1.6394832 -1.6879051 0.03803 -0.99928 -0.0304354 -0.000CC0C 5.0027185 -1.6250398 -1.6407544 0.10637 -0.99433 -0.0461289 -0.000CC0C 5.0227185 -1.6250398 -1.6407544 0.10637 -0.99433 -0.0461289 -0.000CC0C 5.0362570 -1.5630248 -1.4430465 0.16247 -0.998671 -0.0588651 -0.000CC0C 5.0362570 -1.4771779 -1.182C547 0.20457 -0.97885 -0.0678013 -0.000CC0C 5.0362818C -1.2874888 -0.6576273 0.24171 -0.97035 -0.0725212 -0.000CC0CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	5.000CC0C 5.00CCCCC 5.00CCCCC 6.00CCCCC 7.5699865 7.14648576 7.15715704 7.15715704 7.15715704 7.15715704 7.15715704 7.15715704 7.15715704 7.15715704 7.15715704 7.15715704 7.15715704 7.1587951 7.008928	5.000CC0C 5.00CCCCC 5.00CCCCC 6.00CCCCCC 6.00CCCCCCCCC 6.00CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	5.000cc0c 5.000cc0c 5.000cc0c 5.000cc0c 6.000cc0c	5.000cc0c 5.000cc0c 5.00cc0c 5.00cc0c 5.00cc0c 5.00cc0c 6.00cc0c	5.000cc0c 5.000cc0c 5.000cc0c 5.00cc0c 5.00cc0c 6.00cc0c	5.000cc0c 5.000cc0c 5.00cc0c 6.000cc0c 5.00cc0c 5.00cc0c 6.00cc0 6.00cc0 6.00cc0 6.00cc0 6.00cc0 6.00cc0 6.00cc0 6.00cc0 6.00cc0 6.	5.000cc0c 5.000cc0c 5.00cc0 5.00cc0 5.00cc0 5.00cc0 5.00cc0 5.00cc0 5.00cc0 5.00cc0 5.00cc0 5.00cc0 5.00cc0 5.00cc0 5.00cc0 5.00cc0	5.000cc00 5.00cc00 5.00cc0c	5.0000000 5.0000000 5.0000000 5.0000000 5.0000000 5.0046909 -1.6394832 -1.6879051 0.03803 -0.99928 -0.0304354 -0.000000 5.0091800 5.0091800 5.0091800 5.0091800	5.000cc00 5.00cc00 5.00cc0c 5.00cc0c 5.00ccc0c 5.00cc0c 5.00cc0c 5.004590 -1.6394832 -1.6879051 0.03803 -0.99928 -0.0304354 -0.000CC00 5.009180c	5.000cc0c 5.000cc0c -1.5699865 -1.4648576 01.00000 -0.0246909 0.000cc00 5.00cc0c -1.6036117 -1.5715704 01.00000 -0.0229665 0.000cc0 5.00cc00 -1.6394832 -1.6879051 0.03803 -0.99928 -0.0304354 -0.000cc00	5.000cc0c	5.000cc00 5.00cc000 -1.5699865 -1.4648576 01.00000 -0.0246909 0.000Cc00 5.00CcC0c -1.6036117 -1.5715704 01.00000 -0.0229665 0.000Cc0	5.000cc00 5.00cc000 -1.5699865 -1.4648576 01.00000 -0.0246909 0.000Cc00 5.00Cccoc	5.000cc00 -1.5699865 -1.4648576 01.00000 -0.0246909 0.000C(00	5.0000000	
5.000CCCC -1.5569644 -1.4241381 0. -1.00000 -0.0257242 -0.000CCCC 5.000CCCCC -1.5699865 -1.4648576 0. -1.0000 -0.0246909 0.000CCCC 5.000CCCCC -1.6036117 -1.5715704 0. -1.0000 -0.0229665 0.000CCCC 5.00CCCCC -1.6334832 -1.6879051 0.03803 -0.99928 -0.0304354 -0.000CCCC 5.00CCCCC -1.63362946 -1.6407544 0.10637 -0.99928 -0.0304354 -0.000CCCC 5.004590C -1.6330289 -1.6407544 0.10637 -0.99433 -C.0461285 -0.000CCCC 5.004590C -1.5630248 -1.4430465 0.16247 -0.98671 -0.0588651 -0.000CCCC 5.03257C -1.287488 -0.9092739 0.23458 -0.0678013 -0.000CCCO 5.1777645 -1.287488 -0.6576273 0.24171 -0.97286 -0.0725212 -0.000CCCO 5.242335 -1.2029944 -0.4471955 0.23478 -0.0728699 -0.000CCCO 5.381	5.000CC0C -1.5569644 -1.4241381 0. -1.00000 -0.0257242 -0.000CC0C 5.000CC0C -1.569965 -1.4648576 0. -1.00000 -0.0246909 0.000CC0C 5.000CC0C -1.6036117 -1.5715704 0. -1.00000 -0.0229665 0.000CC0C 5.000CC0C -1.6334832 -1.6407544 0.10637 -0.99928 -0.0304354 -0.000CC0C 5.000C0C0C -1.6336248 -1.6407544 0.10637 -0.99433 -C.0461285 -0.000CC0C 5.0262786 -1.6407544 0.10637 -0.99433 -C.0461285 -0.000CC0C 5.0262786 -1.6407544 0.10637 -0.99433 -C.0461289 -0.000CC0C 5.0262786 -1.6407544 0.10637 -0.99433 -C.0461289 -0.000CC0C 5.0262876 -1.5630248 -1.4430465 0.16247 -0.98671 -0.0588651 -0.000CC0C 5.0268186 -1.287488 -0.9092039 0.23138 -0.97287 -0.072458C -0.000CC0C 5.2423935 -1.28748	5.000CCCCC 5.000CCCCC 5.000CCCCCC 5.000CCCCCC -1.5699865 -1.4648576 01.00000 -0.0246909 0.00CCCCC 5.00CCCCCC -1.6036117 -1.5715704 01.00000 -0.0246909 0.00CCCCC 5.00CCCCCC -1.636117 -1.5715704 01.00000 -0.0246909 0.00CCCCC 5.00CCCCCC -1.636117 -1.5715704 01.00000 -0.0246909 0.00CCCCC 5.00CCCCCC -1.636117 -1.5715704 01.009928 -0.0304354 -0.00CCCCC 5.00CCCCCC -1.6362570 -1.6407544 0.10637 -0.99433 -C.0461289 -0.00CCCCC 5.0362570 -1.6430465 0.16247 -0.98671 -0.0588651 -0.00CCCCC 5.0362570 -1.4430465 0.16247 0.20457 -0.97885 -0.0678013 -0.00CCCCC 5.0362570 -1.4430465 0.20457 -0.97885 -0.0678013 -0.00CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	5.00CCCCC -1.5569644 -1.4241381 0. -1.00000 -0.0257242 -0.000CCCC 5.00CCCCC -1.569965 -1.4648576 0. -1.0000 -0.0246909 0.000CCCC 5.00CCCCC -1.6336117 -1.5715704 0. -1.0000 -0.0229665 0.000CCCC 5.00CCCCC -1.6394832 -1.6407544 0.10637 -0.99433 -0.0304354 -0.000CCCC 5.00C180C -1.6394832 -1.6407544 0.10637 -0.99433 -C.0461289 -0.000CCCC 5.00E180C -1.5630248 -1.4430465 0.16247 -0.99671 -0.0588651 -0.000CCCC 5.028035C -1.5630248 -1.4430465 0.16247 -0.97885 -0.06788651 -0.000CCCO 5.026818C -1.4771779 -1.182C547 0.20457 -0.97885 -0.06788651 -0.000CCCO 5.205818C -1.2874888 -0.6576273 0.23136 -0.972887 -0.072458C -0.000CCCO 5.215848C -1.2029944 -0.4471955 0.23473 -0.97286 -0.0584032 <	5.000CC0C -1.5569644 -1.4241381 0. -1.00000 -0.0257242 -0.000CC0C 5.000CC0C -1.5699865 -1.4648576 0. -1.00000 -0.0246909 0.000CC0C 5.00CCC0C -1.6394832 -1.4648576 0. -1.0000 -0.0229665 0.000CC0C 5.00CC0C -1.6394832 -1.6879051 0.03803 -0.99928 -0.0304354 -0.000CC0C 5.005180 -1.6250398 -1.6407544 0.10637 -0.99433 -C.0461289 -0.000CC0C 5.0227185 -1.5630248 -1.4430465 0.16247 -0.99433 -C.0461289 -0.000CC0C 5.0361870 -1.4771779 -1.182C547 0.20457 -0.99433 -C.0461289 -0.000CC0I 5.0362518 -1.4771779 -1.182C547 0.20457 -0.97885 -0.0678013 -0.000CC0I 5.2422355 -1.2874888 -0.6576273 0.23473 -0.97755212 -0.000CC0I 5.314562C -1.1346654 -0.2874656 0.21022 -0.97766 -0.0584032 -0.000CC0I	5.000CC0C -1.5569644 -1.4241381 0. -1.00000 -0.0257242 -0.000CC0C 5.000CC0C -1.569965 -1.4648576 0. -1.0000 -0.0246909 0.000CC0C 5.000CC0C -1.6036117 -1.5715704 0. -1.0000 -0.029665 0.000CC0C 5.000C50C -1.6394832 -1.6879051 0.03803 -0.99928 -0.0304354 -0.000CC0C 5.0005180C -1.6550398 -1.6407544 0.10637 -0.99433 -C.0461285 -0.000CC0C 5.0227185 -1.5530248 -1.4430465 0.16247 -0.99671 -0.0588651 -0.000CC0C 5.0279513C -1.5630248 -1.4430465 0.16247 -0.996871 -0.0588651 -0.000CC0C 5.079513C -1.4771779 -1.1820547 0.20457 -0.97885 -0.0678013 -0.000CC01 5.059818C -1.2874888 -0.6576273 0.24171 -0.97287 -0.0725512 -0.000CC01 5.278969C -1.2874888 -0.6576273 0.23136 -0.0725612 -0.000CC01 <td>5.000CC0C -1.5569644 -1.4241381 0. -1.00000 -0.0257242 -0.000CC0C 5.000CC0C -1.5699865 -1.4648576 0. -1.0000 -0.0246909 0.000CC0C 5.00CC0CC -1.6036117 -1.5715704 0. -1.0000 -0.0246909 0.000CC0C 5.00CC0CC -1.6336117 -1.5715704 0. -1.0000 -0.0229665 0.000CC0C 5.00C5000 -1.6336283 -1.6407544 0.10637 -0.99928 -0.0304354 -0.000CC0C 5.0054590 -1.6407544 0.10637 -0.99433 -C.0461289 -0.000CC0C 5.0054590 -1.6407544 0.10637 -0.99433 -C.0461289 -0.000CC0C 5.0058085 -1.4471779 -1.182C547 0.20457 -0.99433 -C.0461289 -0.000CC0I 5.058086 -1.4471779 -1.182C547 0.20457 -0.97885 -0.0678013 -0.000CC0I 5.1717645 -1.2874888 -0.6976273 0.23473 -0.97286 -0.00725212 -0.0000CC0I 5.378995</td> <td>5.000CC0C -1.5569644 -1.4241381 0. -1.00000 -0.0257242 -0.000CC0C 5.000CC0C -1.5699865 -1.4648576 0. -1.0000 -0.0246909 0.000CC0C 5.00CC0C -1.6036117 -1.5715704 0. -1.0000 -0.0229665 0.000CC0C 5.00CC0C -1.6394832 -1.6879051 0.03803 -0.99928 -0.0304354 -0.000CC0C 5.00527185 -1.6439465 -1.6407544 0.10637 -0.99433 -0.0461289 -0.000CC0C 5.0287185 -1.6439465 0.16247 -0.99433 -0.0461289 -0.000CC0C 5.0287186 -1.4430465 0.16247 -0.99433 -0.0461289 -0.000CC0 5.028085C -1.5630248 -1.4430465 0.16247 -0.99433 -0.0461289 -0.000CC0 5.079413C -1.4430465 0.16247 -0.994885 -0.0678013 -0.000CC0 5.1717445 -1.3817395 -0.9092039 0.23136 -0.97287 -0.072458C -0.0000CC0 5.2723486 -1.2029944<!--</td--><td>5.000CC0C -1.5569644 -1.4241381 0. -1.00000 -0.0257242 -0.000CC00 5.000CC0C -1.5699865 -1.4648576 0. -1.00000 -0.0246909 0.000CC00 5.000CC0C -1.6036117 -1.5715704 0. -1.00000 -0.0229665 0.000CC00 5.00CC0C -1.6394832 -1.6879051 0.03803 -0.99928 -0.0304354 -0.000CC00 5.007185 -1.6250398 -1.6407544 0.10637 -0.99433 -C.0461289 -0.000CC00 5.0079430C -1.5630248 -1.4430465 0.16247 -0.99671 -0.0588651 -0.000CC00 5.010813C -1.4771779 -1.1820547 0.20457 -0.97885 -0.0678013 -0.000CC01 5.137711C -1.3817395 -0.9092039 0.23136 -0.97287 -0.072458C -0.000CC01 5.205318C -1.2874888 -0.6576273 0.24171 -0.9725212 -0.000CC01</td><td>5.000CC0C -1.5569644 -1.4241381 0. -1.00000 -0.0257242 -0.000CC00 5.000CC0C -1.5699865 -1.4648576 0. -1.0000 -0.0246909 0.000CC00 5.000CC0C -1.6036117 -1.5715704 0. -1.0000 -0.0229665 0.000CC00 5.00CC0C -1.6394832 -1.6879051 0.03803 -0.99928 -0.0304354 -0.000CC00 5.0045900 -1.6250398 -1.6407544 0.10637 -0.99433 -C.0461289 -0.000CC00 5.03627185 -1.5630248 -1.4430465 0.16247 -0.99433 -C.0461289 -0.000CC00 5.0362813C -1.5630248 -1.4430465 0.16247 -0.998671 -0.0588651 -0.000CC01 5.018812C -1.4771779 -1.182C547 0.20457 -0.97885 -0.0678013 -0.000CC01 5.205818C -1.2874888 -0.6576273 0.24171 -0.9725212 -0.000CC01</td><td>5.000CC0C 5.00CCC0C 5.00CCC0C -1.559965 -1.4648576 01.00000 -0.0246909 0.00CC00 5.00CCC0C 5.00CCC0C -1.6036117 -1.5715704 01.00000 -0.029665 0.00CC00 5.00CCC0C 5.00CCC0C -1.6394832 -1.6879051 0.03803 -0.99928 -0.0304354 -0.00CC00 5.0045900 -1.6250398 -1.6407544 0.10637 -0.99433 -0.0461289 -0.000CC00 5.0364530 -1.5630248 -1.4430465 0.16247 -0.98671 -0.0588651 -0.000CC00 5.0362570 -1.5630248 -1.4430465 0.16247 -0.98671 -0.0588651 -0.000CC00 5.0362570 -1.4771779 -1.182C547 0.20457 -0.97885 -0.0678013 -0.000CC01 5.13817395 -0.9092039 0.23136 -0.97287 -0.072458C -0.000CC01</td><td>5.000CC0C 5.000CC0C 5.00CCC0C -1.559965 -1.4648576 01.00000 -0.0257242 -0.000CC00 5.00CCC0C 5.00CC0C 5.00CCCC -1.6036117 -1.5715704 01.00000 -0.022965 0.000CC00 5.00CCC0C 5.00CC0C 5.00CC0C -1.6394832 -1.6879051 0.03803 -0.99928 -0.0304354 -0.000CC00 5.00CC0C 5.00CC0C -1.6394832 -1.6879051 0.03803 -0.99928 -0.000CC00 5.00CC0C 5.00CC0C -1.6394832 -1.6407544 0.10637 -0.99433 -0.0461289 -0.000CC00 5.00CC0C 5.00CC0C -1.6394832 -1.4430465 0.16247 -0.99671 -0.0588651 -0.000CC01 5.00CC0C 5.00CC0C 5.00CC0C 5.00CC0C 5.00CC0C 5.00CC0C 5.00CC0C 5.00CC0C 5.00CC0C 5.00CC0C 5.00CC0C 6.00CC0C 6.00CC0C 6.00CC0C 6.00CCC0C 6.00CCCC 6.00CCC0C 6.00CCCCC 6.00CCCCC 6.00CCCCC 6.00CCCCC 6.00CCCCC 6.00CCCCC 6.00CCCCC 6.00CCCCC 6.00CCCCC 6.00CCCCC</td><td>5.000CC0C</td><td>5.000CC0C</td><td>5.000CC0C -1.5569644 -1.4241381 01.00000 -0.0257242 -0.000CC00 5.000CC0C -1.5699865 -1.4648576 01.00000 -0.0246909 0.000CC0C 5.00CC0C -1.569865 -1.5715704 01.00000 -0.0229665 0.000CC0C 5.00CC0C -1.6394832 -1.6879051 0.03803 -0.99928 -0.0304354 -0.000CC0C 5.0041865 -1.6250398 -1.6407544 0.10637 -0.99433 -0.0461289 -0.000CC0C 5.0362570 -1.5630248 -1.4430465 0.16247 -0.98671 -0.0588651 -0.000CC00</td><td>5.000CC0C -1.5569644 -1.4241381 01.00000 -0.0257242 -0.000CC00 5.00CC0C -1.5699865 -1.4648576 01.00000 -0.0246909 0.000CC0C 5.00CC0C -1.6036117 -1.5715704 01.00000 -0.0229665 0.000CC0C 5.00CC0C -1.6394832 -1.6879051 0.03803 -0.99928 -0.0304354 -0.000CC0C 5.005185 -1.6250398 -1.6407544 0.10637 -0.99433 -0.0461289 -0.000CC00 5.0362570</td><td>5.000CC0C -1.5569644 -1.4241381 01.00000 -0.0257242 -0.000CC00 5.000CC0C -1.5569865 -1.4648576 01.00000 -0.0246909 0.000CC0C 5.00CC0C -1.569865 -1.4648576 01.00000 -0.0246909 0.000CC0C 5.00CC0C -1.6036117 -1.5715704 01.00000 -0.0229665 0.000CC0C 5.00CC0C -1.6394832 -1.6879051 0.03803 -0.99928 -0.0304354 -0.000CC0C 5.004180C 5.0227185 -1.6407544 0.10637 -0.99433 -0.0461289 -0.000CC00</td><td>5.000CC0C -1.5569644 -1.4241381 01.00000 -0.0257242 -0.000CC00 5.000CC0C -1.5569865 -1.4648576 01.00000 -0.0246909 0.000CC00 5.00CC0C -1.5699865 -1.4648576 01.00000 -0.0246909 0.000CC00 5.00CC0C -1.6036117 -1.5715704 01.00000 -0.0229665 0.000CC00 5.0045900 -1.6394832 -1.6879051 0.03803 -0.99928 -0.0304354 -0.000CC00 5.009180C</td><td>5.000CC0C -1.5569644 -1.4241381 01.00000 -0.0257242 -0.000CC00 5.000CC0C -1.5569865 -1.4648576 01.00000 -0.0257249 0.000CC0C 5.00CC0C -1.5699865 -1.4648576 01.00000 -0.029665 0.000CC0C 5.00CC0C -1.6036117 -1.5715704 01.00000 -0.0229665 0.000CC0C 5.00CC0C -1.6394832 -1.6879051 0.03803 -0.99928 -0.0304354 -0.000CC00</td><td>5.000CC0C -1.5569644 -1.4241381 01.00000 -0.0257242 -0.000CC00 5.000CC0C -1.5699865 -1.4648576 01.00000 -0.0246909 0.000CC0C 5.00CCCC -1.6036117 -1.5715704 01.00000 -0.0229665 0.000CC0C 5.00CCC0C</td><td>5.000CC0C -1.5569644 -1.4241381 01.00000 -0.0257242 -0.000CC00 5.00CC0C -1.5699865 -1.4648576 01.00000 -0.0246909 0.000CC0C 5.00CC0C -1.6036117 -1.5715704 01.00000 -0.0229665 0.000CC0C</td><td>5.000CC0C -1.5569644 -1.4241381 01.00000 -0.0257242 -0.000CC00 5.000CC0G 5.000C000 -1.5699865 -1.4648576 01.00000 -0.0246909 0.000CC00 5.00CCCGC</td><td>5.000CC0C -1.5569644 -1.4241381 01.00000 -0.0257242 -0.000CC00 5.000CC0G -1.5699865 -1.4648576 01.00000 -0.0246909 0.000CC00</td><td>5.000CC0C -1.5569644 -1.4241381 01.00000 -0.0257242 -0.000CC00 5.000CC0G</td><td>5.000CC0C -1.5569644 -1.4241381 01.00000 -0.0257242 -0.000CC00</td></td>	5.000CC0C -1.5569644 -1.4241381 0. -1.00000 -0.0257242 -0.000CC0C 5.000CC0C -1.5699865 -1.4648576 0. -1.0000 -0.0246909 0.000CC0C 5.00CC0CC -1.6036117 -1.5715704 0. -1.0000 -0.0246909 0.000CC0C 5.00CC0CC -1.6336117 -1.5715704 0. -1.0000 -0.0229665 0.000CC0C 5.00C5000 -1.6336283 -1.6407544 0.10637 -0.99928 -0.0304354 -0.000CC0C 5.0054590 -1.6407544 0.10637 -0.99433 -C.0461289 -0.000CC0C 5.0054590 -1.6407544 0.10637 -0.99433 -C.0461289 -0.000CC0C 5.0058085 -1.4471779 -1.182C547 0.20457 -0.99433 -C.0461289 -0.000CC0I 5.058086 -1.4471779 -1.182C547 0.20457 -0.97885 -0.0678013 -0.000CC0I 5.1717645 -1.2874888 -0.6976273 0.23473 -0.97286 -0.00725212 -0.0000CC0I 5.378995	5.000CC0C -1.5569644 -1.4241381 0. -1.00000 -0.0257242 -0.000CC0C 5.000CC0C -1.5699865 -1.4648576 0. -1.0000 -0.0246909 0.000CC0C 5.00CC0C -1.6036117 -1.5715704 0. -1.0000 -0.0229665 0.000CC0C 5.00CC0C -1.6394832 -1.6879051 0.03803 -0.99928 -0.0304354 -0.000CC0C 5.00527185 -1.6439465 -1.6407544 0.10637 -0.99433 -0.0461289 -0.000CC0C 5.0287185 -1.6439465 0.16247 -0.99433 -0.0461289 -0.000CC0C 5.0287186 -1.4430465 0.16247 -0.99433 -0.0461289 -0.000CC0 5.028085C -1.5630248 -1.4430465 0.16247 -0.99433 -0.0461289 -0.000CC0 5.079413C -1.4430465 0.16247 -0.994885 -0.0678013 -0.000CC0 5.1717445 -1.3817395 -0.9092039 0.23136 -0.97287 -0.072458C -0.0000CC0 5.2723486 -1.2029944 </td <td>5.000CC0C -1.5569644 -1.4241381 0. -1.00000 -0.0257242 -0.000CC00 5.000CC0C -1.5699865 -1.4648576 0. -1.00000 -0.0246909 0.000CC00 5.000CC0C -1.6036117 -1.5715704 0. -1.00000 -0.0229665 0.000CC00 5.00CC0C -1.6394832 -1.6879051 0.03803 -0.99928 -0.0304354 -0.000CC00 5.007185 -1.6250398 -1.6407544 0.10637 -0.99433 -C.0461289 -0.000CC00 5.0079430C -1.5630248 -1.4430465 0.16247 -0.99671 -0.0588651 -0.000CC00 5.010813C -1.4771779 -1.1820547 0.20457 -0.97885 -0.0678013 -0.000CC01 5.137711C -1.3817395 -0.9092039 0.23136 -0.97287 -0.072458C -0.000CC01 5.205318C -1.2874888 -0.6576273 0.24171 -0.9725212 -0.000CC01</td> <td>5.000CC0C -1.5569644 -1.4241381 0. -1.00000 -0.0257242 -0.000CC00 5.000CC0C -1.5699865 -1.4648576 0. -1.0000 -0.0246909 0.000CC00 5.000CC0C -1.6036117 -1.5715704 0. -1.0000 -0.0229665 0.000CC00 5.00CC0C -1.6394832 -1.6879051 0.03803 -0.99928 -0.0304354 -0.000CC00 5.0045900 -1.6250398 -1.6407544 0.10637 -0.99433 -C.0461289 -0.000CC00 5.03627185 -1.5630248 -1.4430465 0.16247 -0.99433 -C.0461289 -0.000CC00 5.0362813C -1.5630248 -1.4430465 0.16247 -0.998671 -0.0588651 -0.000CC01 5.018812C -1.4771779 -1.182C547 0.20457 -0.97885 -0.0678013 -0.000CC01 5.205818C -1.2874888 -0.6576273 0.24171 -0.9725212 -0.000CC01</td> <td>5.000CC0C 5.00CCC0C 5.00CCC0C -1.559965 -1.4648576 01.00000 -0.0246909 0.00CC00 5.00CCC0C 5.00CCC0C -1.6036117 -1.5715704 01.00000 -0.029665 0.00CC00 5.00CCC0C 5.00CCC0C -1.6394832 -1.6879051 0.03803 -0.99928 -0.0304354 -0.00CC00 5.0045900 -1.6250398 -1.6407544 0.10637 -0.99433 -0.0461289 -0.000CC00 5.0364530 -1.5630248 -1.4430465 0.16247 -0.98671 -0.0588651 -0.000CC00 5.0362570 -1.5630248 -1.4430465 0.16247 -0.98671 -0.0588651 -0.000CC00 5.0362570 -1.4771779 -1.182C547 0.20457 -0.97885 -0.0678013 -0.000CC01 5.13817395 -0.9092039 0.23136 -0.97287 -0.072458C -0.000CC01</td> <td>5.000CC0C 5.000CC0C 5.00CCC0C -1.559965 -1.4648576 01.00000 -0.0257242 -0.000CC00 5.00CCC0C 5.00CC0C 5.00CCCC -1.6036117 -1.5715704 01.00000 -0.022965 0.000CC00 5.00CCC0C 5.00CC0C 5.00CC0C -1.6394832 -1.6879051 0.03803 -0.99928 -0.0304354 -0.000CC00 5.00CC0C 5.00CC0C -1.6394832 -1.6879051 0.03803 -0.99928 -0.000CC00 5.00CC0C 5.00CC0C -1.6394832 -1.6407544 0.10637 -0.99433 -0.0461289 -0.000CC00 5.00CC0C 5.00CC0C -1.6394832 -1.4430465 0.16247 -0.99671 -0.0588651 -0.000CC01 5.00CC0C 5.00CC0C 5.00CC0C 5.00CC0C 5.00CC0C 5.00CC0C 5.00CC0C 5.00CC0C 5.00CC0C 5.00CC0C 5.00CC0C 6.00CC0C 6.00CC0C 6.00CC0C 6.00CCC0C 6.00CCCC 6.00CCC0C 6.00CCCCC 6.00CCCCC 6.00CCCCC 6.00CCCCC 6.00CCCCC 6.00CCCCC 6.00CCCCC 6.00CCCCC 6.00CCCCC 6.00CCCCC</td> <td>5.000CC0C</td> <td>5.000CC0C</td> <td>5.000CC0C -1.5569644 -1.4241381 01.00000 -0.0257242 -0.000CC00 5.000CC0C -1.5699865 -1.4648576 01.00000 -0.0246909 0.000CC0C 5.00CC0C -1.569865 -1.5715704 01.00000 -0.0229665 0.000CC0C 5.00CC0C -1.6394832 -1.6879051 0.03803 -0.99928 -0.0304354 -0.000CC0C 5.0041865 -1.6250398 -1.6407544 0.10637 -0.99433 -0.0461289 -0.000CC0C 5.0362570 -1.5630248 -1.4430465 0.16247 -0.98671 -0.0588651 -0.000CC00</td> <td>5.000CC0C -1.5569644 -1.4241381 01.00000 -0.0257242 -0.000CC00 5.00CC0C -1.5699865 -1.4648576 01.00000 -0.0246909 0.000CC0C 5.00CC0C -1.6036117 -1.5715704 01.00000 -0.0229665 0.000CC0C 5.00CC0C -1.6394832 -1.6879051 0.03803 -0.99928 -0.0304354 -0.000CC0C 5.005185 -1.6250398 -1.6407544 0.10637 -0.99433 -0.0461289 -0.000CC00 5.0362570</td> <td>5.000CC0C -1.5569644 -1.4241381 01.00000 -0.0257242 -0.000CC00 5.000CC0C -1.5569865 -1.4648576 01.00000 -0.0246909 0.000CC0C 5.00CC0C -1.569865 -1.4648576 01.00000 -0.0246909 0.000CC0C 5.00CC0C -1.6036117 -1.5715704 01.00000 -0.0229665 0.000CC0C 5.00CC0C -1.6394832 -1.6879051 0.03803 -0.99928 -0.0304354 -0.000CC0C 5.004180C 5.0227185 -1.6407544 0.10637 -0.99433 -0.0461289 -0.000CC00</td> <td>5.000CC0C -1.5569644 -1.4241381 01.00000 -0.0257242 -0.000CC00 5.000CC0C -1.5569865 -1.4648576 01.00000 -0.0246909 0.000CC00 5.00CC0C -1.5699865 -1.4648576 01.00000 -0.0246909 0.000CC00 5.00CC0C -1.6036117 -1.5715704 01.00000 -0.0229665 0.000CC00 5.0045900 -1.6394832 -1.6879051 0.03803 -0.99928 -0.0304354 -0.000CC00 5.009180C</td> <td>5.000CC0C -1.5569644 -1.4241381 01.00000 -0.0257242 -0.000CC00 5.000CC0C -1.5569865 -1.4648576 01.00000 -0.0257249 0.000CC0C 5.00CC0C -1.5699865 -1.4648576 01.00000 -0.029665 0.000CC0C 5.00CC0C -1.6036117 -1.5715704 01.00000 -0.0229665 0.000CC0C 5.00CC0C -1.6394832 -1.6879051 0.03803 -0.99928 -0.0304354 -0.000CC00</td> <td>5.000CC0C -1.5569644 -1.4241381 01.00000 -0.0257242 -0.000CC00 5.000CC0C -1.5699865 -1.4648576 01.00000 -0.0246909 0.000CC0C 5.00CCCC -1.6036117 -1.5715704 01.00000 -0.0229665 0.000CC0C 5.00CCC0C</td> <td>5.000CC0C -1.5569644 -1.4241381 01.00000 -0.0257242 -0.000CC00 5.00CC0C -1.5699865 -1.4648576 01.00000 -0.0246909 0.000CC0C 5.00CC0C -1.6036117 -1.5715704 01.00000 -0.0229665 0.000CC0C</td> <td>5.000CC0C -1.5569644 -1.4241381 01.00000 -0.0257242 -0.000CC00 5.000CC0G 5.000C000 -1.5699865 -1.4648576 01.00000 -0.0246909 0.000CC00 5.00CCCGC</td> <td>5.000CC0C -1.5569644 -1.4241381 01.00000 -0.0257242 -0.000CC00 5.000CC0G -1.5699865 -1.4648576 01.00000 -0.0246909 0.000CC00</td> <td>5.000CC0C -1.5569644 -1.4241381 01.00000 -0.0257242 -0.000CC00 5.000CC0G</td> <td>5.000CC0C -1.5569644 -1.4241381 01.00000 -0.0257242 -0.000CC00</td>	5.000CC0C -1.5569644 -1.4241381 0. -1.00000 -0.0257242 -0.000CC00 5.000CC0C -1.5699865 -1.4648576 0. -1.00000 -0.0246909 0.000CC00 5.000CC0C -1.6036117 -1.5715704 0. -1.00000 -0.0229665 0.000CC00 5.00CC0C -1.6394832 -1.6879051 0.03803 -0.99928 -0.0304354 -0.000CC00 5.007185 -1.6250398 -1.6407544 0.10637 -0.99433 -C.0461289 -0.000CC00 5.0079430C -1.5630248 -1.4430465 0.16247 -0.99671 -0.0588651 -0.000CC00 5.010813C -1.4771779 -1.1820547 0.20457 -0.97885 -0.0678013 -0.000CC01 5.137711C -1.3817395 -0.9092039 0.23136 -0.97287 -0.072458C -0.000CC01 5.205318C -1.2874888 -0.6576273 0.24171 -0.9725212 -0.000CC01	5.000CC0C -1.5569644 -1.4241381 0. -1.00000 -0.0257242 -0.000CC00 5.000CC0C -1.5699865 -1.4648576 0. -1.0000 -0.0246909 0.000CC00 5.000CC0C -1.6036117 -1.5715704 0. -1.0000 -0.0229665 0.000CC00 5.00CC0C -1.6394832 -1.6879051 0.03803 -0.99928 -0.0304354 -0.000CC00 5.0045900 -1.6250398 -1.6407544 0.10637 -0.99433 -C.0461289 -0.000CC00 5.03627185 -1.5630248 -1.4430465 0.16247 -0.99433 -C.0461289 -0.000CC00 5.0362813C -1.5630248 -1.4430465 0.16247 -0.998671 -0.0588651 -0.000CC01 5.018812C -1.4771779 -1.182C547 0.20457 -0.97885 -0.0678013 -0.000CC01 5.205818C -1.2874888 -0.6576273 0.24171 -0.9725212 -0.000CC01	5.000CC0C 5.00CCC0C 5.00CCC0C -1.559965 -1.4648576 01.00000 -0.0246909 0.00CC00 5.00CCC0C 5.00CCC0C -1.6036117 -1.5715704 01.00000 -0.029665 0.00CC00 5.00CCC0C 5.00CCC0C -1.6394832 -1.6879051 0.03803 -0.99928 -0.0304354 -0.00CC00 5.0045900 -1.6250398 -1.6407544 0.10637 -0.99433 -0.0461289 -0.000CC00 5.0364530 -1.5630248 -1.4430465 0.16247 -0.98671 -0.0588651 -0.000CC00 5.0362570 -1.5630248 -1.4430465 0.16247 -0.98671 -0.0588651 -0.000CC00 5.0362570 -1.4771779 -1.182C547 0.20457 -0.97885 -0.0678013 -0.000CC01 5.13817395 -0.9092039 0.23136 -0.97287 -0.072458C -0.000CC01	5.000CC0C 5.000CC0C 5.00CCC0C -1.559965 -1.4648576 01.00000 -0.0257242 -0.000CC00 5.00CCC0C 5.00CC0C 5.00CCCC -1.6036117 -1.5715704 01.00000 -0.022965 0.000CC00 5.00CCC0C 5.00CC0C 5.00CC0C -1.6394832 -1.6879051 0.03803 -0.99928 -0.0304354 -0.000CC00 5.00CC0C 5.00CC0C -1.6394832 -1.6879051 0.03803 -0.99928 -0.000CC00 5.00CC0C 5.00CC0C -1.6394832 -1.6407544 0.10637 -0.99433 -0.0461289 -0.000CC00 5.00CC0C 5.00CC0C -1.6394832 -1.4430465 0.16247 -0.99671 -0.0588651 -0.000CC01 5.00CC0C 5.00CC0C 5.00CC0C 5.00CC0C 5.00CC0C 5.00CC0C 5.00CC0C 5.00CC0C 5.00CC0C 5.00CC0C 5.00CC0C 6.00CC0C 6.00CC0C 6.00CC0C 6.00CCC0C 6.00CCCC 6.00CCC0C 6.00CCCCC	5.000CC0C	5.000CC0C	5.000CC0C -1.5569644 -1.4241381 01.00000 -0.0257242 -0.000CC00 5.000CC0C -1.5699865 -1.4648576 01.00000 -0.0246909 0.000CC0C 5.00CC0C -1.569865 -1.5715704 01.00000 -0.0229665 0.000CC0C 5.00CC0C -1.6394832 -1.6879051 0.03803 -0.99928 -0.0304354 -0.000CC0C 5.0041865 -1.6250398 -1.6407544 0.10637 -0.99433 -0.0461289 -0.000CC0C 5.0362570 -1.5630248 -1.4430465 0.16247 -0.98671 -0.0588651 -0.000CC00	5.000CC0C -1.5569644 -1.4241381 01.00000 -0.0257242 -0.000CC00 5.00CC0C -1.5699865 -1.4648576 01.00000 -0.0246909 0.000CC0C 5.00CC0C -1.6036117 -1.5715704 01.00000 -0.0229665 0.000CC0C 5.00CC0C -1.6394832 -1.6879051 0.03803 -0.99928 -0.0304354 -0.000CC0C 5.005185 -1.6250398 -1.6407544 0.10637 -0.99433 -0.0461289 -0.000CC00 5.0362570	5.000CC0C -1.5569644 -1.4241381 01.00000 -0.0257242 -0.000CC00 5.000CC0C -1.5569865 -1.4648576 01.00000 -0.0246909 0.000CC0C 5.00CC0C -1.569865 -1.4648576 01.00000 -0.0246909 0.000CC0C 5.00CC0C -1.6036117 -1.5715704 01.00000 -0.0229665 0.000CC0C 5.00CC0C -1.6394832 -1.6879051 0.03803 -0.99928 -0.0304354 -0.000CC0C 5.004180C 5.0227185 -1.6407544 0.10637 -0.99433 -0.0461289 -0.000CC00	5.000CC0C -1.5569644 -1.4241381 01.00000 -0.0257242 -0.000CC00 5.000CC0C -1.5569865 -1.4648576 01.00000 -0.0246909 0.000CC00 5.00CC0C -1.5699865 -1.4648576 01.00000 -0.0246909 0.000CC00 5.00CC0C -1.6036117 -1.5715704 01.00000 -0.0229665 0.000CC00 5.0045900 -1.6394832 -1.6879051 0.03803 -0.99928 -0.0304354 -0.000CC00 5.009180C	5.000CC0C -1.5569644 -1.4241381 01.00000 -0.0257242 -0.000CC00 5.000CC0C -1.5569865 -1.4648576 01.00000 -0.0257249 0.000CC0C 5.00CC0C -1.5699865 -1.4648576 01.00000 -0.029665 0.000CC0C 5.00CC0C -1.6036117 -1.5715704 01.00000 -0.0229665 0.000CC0C 5.00CC0C -1.6394832 -1.6879051 0.03803 -0.99928 -0.0304354 -0.000CC00	5.000CC0C -1.5569644 -1.4241381 01.00000 -0.0257242 -0.000CC00 5.000CC0C -1.5699865 -1.4648576 01.00000 -0.0246909 0.000CC0C 5.00CCCC -1.6036117 -1.5715704 01.00000 -0.0229665 0.000CC0C 5.00CCC0C	5.000CC0C -1.5569644 -1.4241381 01.00000 -0.0257242 -0.000CC00 5.00CC0C -1.5699865 -1.4648576 01.00000 -0.0246909 0.000CC0C 5.00CC0C -1.6036117 -1.5715704 01.00000 -0.0229665 0.000CC0C	5.000CC0C -1.5569644 -1.4241381 01.00000 -0.0257242 -0.000CC00 5.000CC0G 5.000C000 -1.5699865 -1.4648576 01.00000 -0.0246909 0.000CC00 5.00CCCGC	5.000CC0C -1.5569644 -1.4241381 01.00000 -0.0257242 -0.000CC00 5.000CC0G -1.5699865 -1.4648576 01.00000 -0.0246909 0.000CC00	5.000CC0C -1.5569644 -1.4241381 01.00000 -0.0257242 -0.000CC00 5.000CC0G	5.000CC0C -1.5569644 -1.4241381 01.00000 -0.0257242 -0.000CC00

62

AIRCRAFT COMPANY BEACH DIVISION

CASE NO. 2-80DY TEST CASE 1-6-72

CN-BCCY UNIFCRM AXISYMMETRIC FLCW TRANSFORMED COORDINATES

TEST

-16.0945370 -16.1575143 -16.3708076 -16.4454610 -16.5202377 -16.5953908 -16-8248591 -16.9036355 -17.0633900 -17.2037122 -17.3193846 -15.9546909 -16.0383403 -16.2256000 -16.2970641 -16.6709387 -16,7472491 -16.9843843 -17.1371088 -17.2599022 -17,3007567 -15.9912541 PHI 2022200-0 0.00000.0 00000000 0.0000000 -0.0000co1 -0.000ccc1 -0.000000 -0.000000 0000000-0--0.000000-000000000 00000000 00000000 0.00000.0 0.000000 0.000000 0.0000001 -0.000GC01 -0.000000-0000000 0.000000 • -0.1416185 0.0056303 -0.0014069 -0.0207996 -0.0322180 -0.0441028 -0.0680253 0.0910778 -0.1177322 -0-1359790 -0-1475605 0.0089669 0.0116082 0.0101827 0.0103935 -0.0561202 -0.0796486 -0.1029392 0.1303247 -0-1391815 0.1456896 -0.1437301 SIGMA 66666.0-17766.0--0.96075 -0.92957 -0.88458 -0.82374 -0.74565 -0.64878 -0.35938 -0.99964 -0.99221 -0.98077 -0.53301 -0.25017 -0.08891 SOO 0 0 1.00000 0.00415 0.02680 0.06764 0.19519 0.27740 0.36863 0.46638 0.76098 0.96820 90966.0 0000001 000001 1.00000 1.00000 0.12458 0.56697 0.66633 0.91679 1.00000 1.00000 0.84611 V NIS 0.2139493 0.9956999 0.9999654 -0.2993612 -0.4569836 -0.7054269 -0.8212376 -0.8068296 -0.7361262 -0.6142102 -0.4453436 -0.2411328 0.0161724 0.4364704 0.6567297 0.8126475 0.8822586 0.9302985 0.9627047 0.9837289 -0.5923366 -0.7851714 G -1,0080538 6.1931200 -0.0058820 -1.1398952 -1.2070558 -1.2618782 -1.3059200 -1.3361031 -1.3495324 -1,3441836 -1.3176214 -1.2705157 -1.2022244 -1.1140614 -0.8865950 -0.5858928 -0.4328423 0.3431347 0.2640104 0.1275582 0.0655747 0.7506861 I 5426130 .5601135 426592 765821 ..5733840 .1069210 .2870955 .1948560 .0189860 3.8514960 1.7730140 .6945320 .6209400 0.5473489 .4810835 0.3556720 0.2965250 0.1124750 .4761160 .3793350 0.2457330 0.1949410 0.1537080 3.0819055 .7738710 82 2 80 83 86

CASE NO.	
2-80DY	
r CASE 1-6-72	
TEST (

TEST

			· ·										,	
•	IHd	-17.3062739		-17.1266842	-16.5351134	-16.6848519	-16.3779094	16.0121262	-15.5821936	-15.0784303	-14.4836129	-13.7637696	-12,8270314	
-	Z	0.0000000	000000000	0.0000000	0.0000001	00000000	00000000	0.0000000	00000000	00000000	0,000000	00000000	0.0000000	
	SIGMA	-0.1493496	-0.1510347	-0.1525834	-0,1538652	-0.1548430	-0.1555961	-0.1561854	-0.1566530	-0.1570286	-0.1573336	-0.1575836	-0.1577905	
	COS A		• •	· 0	• 0		•	•	•0	• 0	ò	•0	0	
	SIN A	1.00000	0.000.1	00000-1	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	
.	a	0.9972197	0.9875294	0260016.0	0.9454802	0.9145922	0.8761947	0.8274971	0.7634450	0.6743460	0.5387981	0.2952997	-0.3934896	
		0.0527286	0.1116719	0.1729392	0.2334948	0.2922462	0.3518597	0.4153347	0.4863692	0.5706610	0.6791185	0.8394643	1.1804616	
CN-EGEY UNIFORM AXISYMMETRIC FLOW TRANSFORMED COORDINATES	.; ; ; ≻	9.0082560	9.6624930 \ 10.0550350	10.447577C	11.3896780	12.3463809	13.3030829	14.2597851	15.2164880	16.1731901 16.651541G	17.1298921	18.0865941	19.0432971 19.5216484 20.0000000	
RE AXI	•								·					
SEY UNIFO	×		00	• •	• •	• •		• •	••	; ;		• •	•••	,
CN-B(83	06	16	95	66	96	95	96	76	86	66	991	

SUM (T)(DELTA S) = 3.9540037 VOLUME =-811.6679382 ADDED MASS =8747.2006836

TEST CASE 1-6-72

#01# UNITOS, EDF

BASED CN BASIC DATA FROM 6/13/73 RUN NO. 189 AND 6/13/73 RUN NO. 189

								•	PSOPTC 0.9999 0.9993 0.9969 0.9891 0.9657 0.9536
									RB/RT 0.9769 0.9769 0.9737 0.9698 0.9591 0.9530
NSITY RATIO 8.147E-01 8.147E-01 1.000E+00	9 8 9 9 9 1	2 9 -	00+ 1						CPC -0.3393E-03 -0.3054E-02 -0.1376E-01 -0.9780E-01 -0.15296+00
DENSITY 8.1478 8.1478 1.0006	i i i i i	VIC 5.703E+62	DEL 1.000E+00				-01	•	5 -0.7153E+01 -0.6903E+01 -0.6652E+01 -0.6418E+01 -0.598E+01 -0.5768E+01
TRE RATIO COMP. 7.506E-01 7.506E-01 1.000E+00	VSONICC 1.019E+03	MDOT 0.	THET 1.000E+00			VINFP	V3 = -1.42602E-01		90000000000000000000000000000000000000
PRESSURE INC. 7.2476-01 7.2476-01 1.0006+00	VSONIC 6.458E+02	RHDSTAT 2.378E-03	RHDTOT 2.378E-03	LND 1.000E+00		KSKIP -0 C	5.70305E+02		VBARI 0.2354E+03 0.2354E+03 0.2503E+03 0.2671E+03 0.3080E+03 0.3285E+03
PRESSURE COMP. 4.749E+02 4.749E+02 0.	VC/VA 1.000E+00	ASTAT 1.116E+03	ATOT 1.116E+03	HUB-TIP RATIO 5.000E-01		X NX KND -0 -0 -0	VICT = 5.70	•	VRES 0.1164E+02 0.3492E+02 0.7415E+02 0.1397E+03 0.1984E+03 0.2886E+03
DYNAMIC INC. 5.8276+02 5.8276+02 0.	VINF/VA	PSTATC 2.116E+03	PTOTC 2.116E+03	YRISHR H 5.000E+00		NCHI NHUBMX 24 40 A A -4.900E+02	1.78504E+01		VTHETA 2 0. 2 0. 3 0. 3 0.
MACH NO .535E-01	VINF/VC VI	PSTAT 2.116E+03 2.	PTOT 2.116E+03 2.	YRIHUB 2.500E+00 5.	AM ING	NP NCLO NC 24 16 24 V2 1.545E+00 -4	WDOTT = 1.		VP 0 0.1164E+02 0 0.3492E+02 10 0.7415E+02 10 0.1397E+03 11 0.1984E+03 11 0.2896E+03
17Y . 6 + 62 6 + 6 0 0	0 V		•		•	1 2 1		HUB ON-BODY POINTS	7 0.1250E+00 0.3750E+00 0.6254E+00 0.8560E+00 0.1057E+01 0.1392E+01
VELOCITY: 7.0006+02 7.0006+02 0.	ALFAF 0.	TSTAT 5.187E+02	TTOT 5.187E+02	XRI 6.000E+00	XTEST -0.	NT 1 102 2 99 V1 3.810E-01	5 #	HUB ON-BODY	x 8379E-02 4613E-01 1267E+00 2473E+00 3999E+00
CONTROL BULK FREE STREAM							⋖		_ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

																			•										• •																						•			4	
0.9425	356	776	. 6	200	0.8987	\$95	.890	•	.875	.866	•	•	φ,	.813	.799	.785	0.7720	.760	•	.740	0.7366	۲.	.746	0.7489	750	0.7508	.751	۲.	.754	.76	.924				PSOPTC	166	. ~	.789	0	.763	.759	7.	50.		752	751	748	741	727	.730	0.754		0.844	.86	0.8847
•	1000	0000	> C	0.00	ò	9.922	0.920	Ö	0.610	0.9031	0.894	9.0	0.8	0.8	.ه	0.8351	0.8266	.82	.819	• 81¢	.81	.814	0.8147	0.8147	0.8147	8	81	8	81	0.8147	8				RB/RT	2	0.81	0.81	0.81	0.81	0.81	8.0	5 6	> C	5 6	į =	•	82	0.82	ω.	0.84	0 0	8	9	4084
• 256 3E +0	. 301 2E+C	•	381354¢	436 55 40	4516E+C	4656E+	488CE+0	5183E+	. 5545E+C	3968E+	5479E+	2	7707E+	2	õ	ın	9101)68E+	-0.111 6E+01	1158E+	.	11536+	Ξ	1119	11146+	1110	1108	105	1096E+	1055	3351E		-		CPC		.7573E	•	0.1021E+01	0.1053E+C1	0-107CE+C1	0.1081E+01	0. LUB 8E+C1	0.10936+11	5.4		1122E+	154E+	215	20 2E +	395E+C	0.9565E+30	5918E+ C	5902E+0	0.5140F+C0
5549E+01 -	5329E+01 -	5103E+01 -	48/1E+01 -	10130504	4157F+01 -	3908E+01 -	3655E+01 -	3402E+01 -	<u> </u>	2895E+01 -	≍		; ;	=	Ξ	380E+01	129E+01	76 7E+00	<u>'</u>	_	_	8	_	8	11446+01	- 10	2207E+01 -	2902E+01 -	3737E+01 -	4644E+01 -	5548E+01 -			•	v	554 RF+01 -	1	1	•	,	•	•	ı				6750F+00 -		0.1121E+01 -(0.6E+01 -	2493E+01 -	2795E+01 -	10424012
	ှ် (•		ģ		o	· o		9	9	9	o o	Ģ	9	ė	-0-1	Ŷ	9	•	• •	O	•				•	•	•	•	°				•		Ö	•	ċ	ċ	•	ċ	•	.	. ç		ငှ		o o	ဝှ	o ·	ဝှီ			
•			•			ď		0	0	•	•		•	ċ	•	•	•	ċ	•	•	ċ	•	•	•	•	•	•	•	•	•		· ·			AFT	١,		•	ċ	ċ	•		•	• •		• •				•	•	•		0	•
3474	.36416+0	3	38925+0	•	4060F+0	4095E+0	4155E+0	4245E+0	4363E+0	505E+0	4667E+0	4842E+0	5023E+	u٦	5361E+	n	558	5633E+0	566	5685E+0	569	5703E+0	5703E+0	5703E+0	5703E+0	.5703E+0	.5703E+0	5703E+0	.5703E+	.570	.5703E+		• ,	٠.	VRARI	5703F+	57.5	5703E+	5703E+	5703E+	5703E+	5703E+	57036+	2,5	7 (0054	7099E+	5662F+	56335+0	۱ 1	5499	5361	5185	4304Et 4774F+	.4574E+	
23	•	•	;;;	•	0.4321E+03	, `.		٠,	٠,	•				•	•	v	٦,	٧.	٦,	٦,	7	' •	٦.	7	-	್	6988E+0	.6978E+0	.6945	•6800E+0	709E+0				VRFS	0.6884F+02		9	0.6680E+03	Ÿ	÷	•	φ,	v	•	•			0.7357E+03	٦.	٠.	~ .	0.5413E+03	.4977E+0	0.100.
_													_				-								_	_	_	_		_				:	Ţ				_	_				_		_					,		_	· ·	
•			•	•						•	•			•	•	•	•		•	•	•	•	•							•		٠.		• •	VTHET			•	•		•		•	•		•						•	•	•	•
3232E	-3513E+	13 C3 CE	* *	30C14.	4327F+	4396E+	4505E+	*4649E+	-4816E+	5006E+	.522	548	573	597	•	.644	0.6661E+03	36	7101.	.7162E	0.7217E+03	144	.7061	.7026	.7008E	1669	.6988E	.6978E	.6945E+	*6800E+	3709E+				6	0.6884F+02	0.5681E	0.6379E	.6680E	•6795E	0.6856E	0.6893E	9	0.6941E	700000	• •		7148	0.73576	.7312E	.6943	364456	0-54136+03	0.4977E+	44.29F+
524E	.1636E+U	•1/31E+0	. 1811E+0	1033640	979F+0	2021E+0	2063E+0	2104E+0	-2146E+0	2188E+0	.2229E+0	.2270E+0	.2308E+0	.2343E+0	2375E+0	.2404E+0	.2430E+0	.2453E+0	.2473E+0	.2488E+0	.2497E+0	.2500E+0	.2500E+0	.2500E+0	.2500E+0	.2500E+0	.2500E+0	.2500E+0	2500E+0	.2500E+0	.2500E+0		1	POINTS	%e* 1 	0 5000F±01 -	.5000E+0	.5000E+01	5000E+01	.5000E+01	.5000E+0	. 5000E+01	.5000E+01	.5000E+01	*3000E+01	5000E+01 -	5000E+01 -	50005+01	10	.5023E+01	.5058E+01	.5109E+01	0.5242E+01 -	.5315E+01	6201EA01
00	• (639E+00	. 46.43E+00	11865+01	14426401	ADE+01	2125E+01	2375E+01	2625E+01	2875E+01	31256+01	3375E+01	3625E+01	38746+01	4123E+01	4373E+01	4623E+01	4874E+01	5125E+01	5375E+01	5626E+01	5875E+01	6127E+01	.6407E+01	6742E+01	.7144E+01	.7627E+01	.8207E+01	.8902E+01	.9737E+01	.1064E+02	1155E+02		SHROUD	AGD9-ND	*	11555+02	10646+02	.9737E+01	8902E+01	.8207E+01	.7627E+01	.7144E+01	.6742E+01	.6407E+01	10+27710	54266401	5275F+01	51256+01	4879E+01	.4632E+01	.4373E+01	.4102E+01	21E+01	32365+01	3000
	_	_							يا		_						•		_	_	_	~					٠																	_						_	_		_		

Ş B

SOP TC	8998	6 4	8931	8900	8959	8201	8227	8222	8192	8166	m co	8036	973	446	464	532	533	528	40	496 526	i.			,			•									
PSOP	9 0	680	8 0	000		8 0	8	0 0		0.8	0.80	0.8	0 0	-	~ 1		2.0	0 0	0	2.0	,	٠.	_	5	10 J	E-01	9 0	9		E-01	10 G	10 10 10 10 10 10 10 10 10 10 10 10 10 1	E-01	ш ф ф ф	E-01	100
RHOBR	٠,	0.9237	. 5	σ, ο	·	370	.865	0.8658	.865	.865	.865 865	.865		8	8	0.8149	.81	œ «	0.8149	.81			OFRACT		1.8642	3.7886	4.5163E- 6.1515E-	7.9927	1. C000 G	1.0139E	•	3, 2289	•	5.0131E	•	4611.94
z	٠.		-		. •				-							٠				,*- ,	*. 	*					· .	٠.					•			;
VSPAN		:	٠													:- <i>:</i>		,			,	1017	PHI					•						_		
		-	9		1 1	00	0	0 9		9.	ှ ငှ	0.0	P		0.0			1 1	9	0.0			,	ဂိုင်	• •				၁ ငှ			٥		00	ာ် (3 (
۰ . د	13E+01	111 41	6E+0	1E+01	9E+01	8E+0)	96+0	3E+00	286+0	.6006E+01	6E+01	1E+0	34 80E+02	27E+00	8E+00	1 1 1 1 1 1 1 1	w	шч	+ +	ш		100	•	• .	4 % 2 % 2 %	: ::		· :: · :: ·				·			· · ·.	
VAF	940	•	80 16	.951	1.0129E	-084	4.	90				9.058	948		•	• •	.33	.014	476	.525		124	ZET			•	•		•				•		•	•
Ž,	7.0 7.0	~ ~	i i	7	17	~ ~	, v	2 6	9 7	<u>ا</u>	N 4		N	- 6	œ ·	0 0 0 m	. ~	7.7	1 1	9 9	•	"	,	_	20	I	9.0 9.0	1	1 0-c		9	7 P	ا د د	၀ ၀ ၀	0	다. 다.
	2E+0	96E+0	5E+0;	10	76+0	62E+0	48E+0	∞ ∘	408E+0.	9182E+02	8E+0	5E+0	\mathbf{m}	5E+0	4E+0	0 F + 0	574E+0		6E+0	61E+0 85E+0		ES		290E+00	96E+0	636E+0	4 E + 0	8	24E+0(1E+0	35E+00	שט	ı ŵ	79E+0 85E+0	96	29E+0
5 °	4.3022	en c	440	S		Φ,0	.81	.61		5.918	•	: -:	~	;ઃ	•	6.9786	6		, 0	7.016		-ANGLES	ET	~ (1.0606	. (7)	4.9024	.78	32	.27	-4 C	6.8361		3.4879	.56	8.48
ACK 101	2.0	20	200	700	, 20+ +02	-		ο ο	_			_								. 707 +02		=	5	•		Ī	ìì	ĭ	!		· .	Ī	ï	ï÷ĩ	T	ī
S	61E 22E	96E+	27E 85E	65E	7.E 87E	62E	48E 05E	98E	08E 34E	82E	68E	05E+	473E+	810E+	94E	86E	74E	63E	277 06E	6 1E 85E		20	ETA.							*						
$z \propto u$	4.30	സി	4.44	٠,	4.38	85	2 6	. 81	5.87	.91	9.	` →	~	7.09	10.	6.9	.95	96.	\circ	7.01		ū		•	• •		00		.		•	• •		0.0	•	•
KESU																				enter Vina			į	00	200	9	E+00	H+00	4E+00	9	00+	F-01	E+00	00+u	E+00	00+
Z / Z /	٠.			٠٠.																		ANGLOTO	ALPHA	7290E+	549E+00	3636E+00	924 936	868	224	56	085	361	908	879	90E	829E
CIRCUMPRN VZ	• •	•	•	•	• ဝု	• •	•	•	• •	•	o c	: 0	ဝုံင	ှံဝ	o.	ó	6	.	• •	• •		1007	1. :	e •	1.0	•	2.		-1- 0		•	6.8	0	4.6		-8.4
ב בייני	3E+01	00+	101	10+	100	10+	9E+01	3E+00	6E+00	06E+01	56E+01	10+4	+05	89E+00 27E+00	E+00	900	# 100 100 100 100 100 100 100 100 100 10	E-01	? 0	E-01		*	7 (-01	10-10 10-10-10-10-10-10-10-10-10-10-10-10-10-1	-0	316-01 406-01	-01	10-1	E-01	-01	70	E-01	E-01	- 1	E-01
_ X	36131 94026	6	30.40E	95116	.5//6E+(0848E+0	2/80E+01 4419E+01	08531	9686E+00 1428E+01	9009	1556	05818	8	9827	828	3117E+0 6672E+0	361	146	049 762	<u>-</u>			SPC	5750E-0	4662E	6146E	7631E	9482E-01	6411E-91	91028	6	9228E-01	05926	1740E	168	7514
AUIA 7	. 6	~	ŤŸ	4.	÷ -	σ,	• ~	æ ,	9.7	6	5, 4	•	7,	- 6	8	.	:	4-		80	٠.	د	, T	•	• •	•	4 4		4 0		۴,		8	80 8	•	8
* ;	2	· N (V (V	N (V A I	A1.6																									2	2	2	20	2	2
2	H +0	0.0	ф ф ф	Q+0	m + 0.	E+0.	E+02 E+02		E+02	E+02			E+02		111	E+02 F+02	E+02	E+02	2 9	E+02 E+02		NEW:		1 6	E+02	9	99	9	٠.	E+02	E+0,	100	10	0 0	Ф.	C+2
> (2935E 2841E	3189E	322E	893E	3146E 3876E	8001E	1990E 8054E	8192E	8404E 8695E	9073E				1806E 0928E	0188E	9783E 9599F	9574E	9663E	9822E+0	0161E+0 9685E+0		NEW	.BR.I		744E+0	44E+0	744E+0 744E+0	744E+0	· · · · · · · · · · · · · · · · · · ·	1336+0	133E+0	1 33E+0 1 33E+0	133E+0	133E+0	1133E+0	Ξ
ירן נו	4.2935E	4.3189E	4.4322E	4.4893E	4.3876E	5.8001E	5.80546	5.8192E	5.8404	5.9073E	5.9546	6.0733E	6.1001E	7.0928E	7.0188E	6.9783E	6.9574E	6.9663E	7.0006E+0	7.0161E+0 6.9685E+0		w.	∝		4.0744E+0	4.074E+0	4.0744E+0	4.0744E+0	0.0	5.11336+0	5-1133E+0	5-1133E+0	5.1133E+0	5.1133E+0	5.11336+0	5.113
A VI AL	0 4.2935E 0 4.2841E	0 4.3189E	+00 4.432E	+00 4.4893E	00 4.3146E	00 5.8001E	:+00 5.8054E	E+00 5.8192E	00 5.8404E	00 5.9073E	+00 5.9546E	+00 6.0733	+00 6.1001E	.00 7.0928E	00 7.0188E	=+00 6.9783E	+00 6.9574E	E+00 6.9663E	E+00 0.9822E+U E+00 7.0006E+O	E+00 7.0161E+0 E+00 6.9685E+0		NE.	VBR	0	0 4-0744E+0	E+00 4.0744E+0	4.0744E+0	4.0744E+0	0.0	5.11336+0	+00 5.1133E+0	-+00 5.1133E+0 -+00 5.1133E+0	+00 5.1133E+0	E+00 5.1133E+0	E+00 5.1133E+0	E+00 5.113
Y AAIAL Y V	96E+00 4.2935E 00E+00 4.2841E	0000E+00 4.3189E	0 4.4322E	.5000E+00 4.4893E	.0000E+00 4.3146E .4981E+00 4.3876E	.3258E+00 5.800lE	.0000E+00 5.8054E	.2500E+00 5.8192E	5000E+00 5.8404E 7500E+00 5.8695E	0000E+00 5.9073E	2500E+00 5.9546E	.7500E+00 6.0733E	.1310E+00 6.1001E	.7500E+00 7.0928E	.0000E+00 7.0188E	.2500E+00 6.9783E	.7500E+0C 6.9574E	00000E+00 6.9663E	2300E+00 6.9822E+0 5000E+00 7.0006E+0	7500E+00 7.0161E+0 0000E+00 6.9685E+0		S	Y VBR	.9996€+00	.50000E+00 4.0744E+0	.5000E+00 4.0744E+0	.0000E+00 4.0744E+0	.0000E+00 4.074E+0	.4981E+00	.7500E+00 5.1133E+0	.0000E+00 5.1133E+0	.2500E+00 5.1133E+0	.7500E+00 5.1133E+0	00000E+00 5.1133E+0	.5000E+00 5.1133E+0	.7500E+00 5.113
KADIAL AXIAL Y V	0 1.9996E+00 4.2935E 0 2.5000E+00 4.2841E	0 3.0000E+00 4.3189E	0 3.3000E+00 4.3/20E	0 4.5000E+00 4.4893E	5.4981E+00 4.3876E	0 2,3258E+00 5,800lE	3.0000E+00 5.8054E	3.2500E+00 5.8192E	3.7500E+00 5.8404E	4.0000E+00 5.9073E	4.2500E+00 5.9546E	4.7500E+00 6.0733E	5.1310E+00 6.1001E	2.7500E+00 7.0928E	3.0000E+00 7.0188E	3.2500E+00 6.9783E	3.7500E+0C 6.9574E	0 4.0000E+00 6.9663E	0 4.5000E+00 6.982E+0 0 4.5000E+00 7.0006E+0	0 4.7500£+00 7.0161E+0 0 5.0000£+00 6.9685E+0		NATES	Y VBR	1.9996E+00	0 2.5000E+00 4.0744E+0	3.5000E+00 4.0744E+0) 4.0000E+00 4.0744E+0	5.0000E+00 4.0744E+0	5.4981E+00	2.7500E+00 5.1133E+0	3.0000E+00 5.1133E+0) 3.2500E+00 5.1133E+0) 3.5000F+00 5.1133E+0	3.7500E+00 5.1133E+0	7 4.0000E+00 5.1133E+0	4.5000E+00 5.1133E+0	0 4.7500E+00 5.113
RADIAL AXIAL Y V	0 1.9996E+00 4.2935E 0 2.5000E+00 4.2841E	+00 3.0000E+00 4.3189E	00 4.0000E+00 4.4322E	+00 4.5000E+00 4.4893E	E+00 5.4981E+00 4.3876E	E+00 2,3258E+00 5,800lE	3.0000E+00 5.8054E	3.2500E+00 5.8192E	3.7500E+00 5.8404E	4.0000E+00 5.9073E	4.2500E+00 5.9546E	4.7500E+00 6.0733E	5.1310E+00 6.1001E	2.7500E+00 7.0928E	3.0000E+00 7.0188E	3.2500E+00 6.9783E	3.7500E+0C 6.9574E	-00 4.0000E+00 6.9663E	.00 4.2300E+00 6.982E+0	E+00 4.7500E+00 7.0161E+0 E+00 5.0000E+03 6.9685E+0		DORDINATES NE	TE NEUTRE VBR	1.9996E+00	0 2.5000E+00 4.0744E+0	3.5000E+00 4.0744E+0) 4.0000E+00 4.0744E+0	5.0000E+00 4.0744E+0	5.4981E+00	2.7500E+00 5.1133E+0	3.0000E+00 5.1133E+0) 3.2500E+00 5.1133E+0) 3.5000F+00 5.1133E+0	3.7500E+00 5.1133E+0	7 4.0000E+00 5.1133E+0	4.5000E+00 5.1133E+0	E+00 4.7500E+00 5.113
X Y X V V V	.0000E+00	.0000E+00 3.0000E+00 4.3189E	.0000E+00 3.2000E+00 4.3/20E .0000E+00 4.0000E+00 4.4322E	.0000E+00 4.5000E+00 4.4893E)0E+00	*0000E+00 2.3258E+00 5.8001E	00E+00 2.1900E+00 5.1990E 00E+00 3.0000E+00 5.8054E	.0000E+00 3.2500E+00 5.8192E	3.7500E+00 5.8404E	.0000E+00 4.0000E+00 5.9073E	0000E+00 4.2500E+00 5.9546E	.0000E+00 4.7500E+00 6.0733E	.0000E+00 5.1310E+00 6.1001E	2.7500E+00 7.0928E	.0000E+00 3.0000E+00 7.0188E	3.2500E+00 6.9783E	.0000E+00 3.7500E+0C 6.9574E	.0000E+00 4.0000E+00 6.9663E	.00 4.2300E+00 6.982E+0	.0000E+00 4.7500E+00 7.0161E+0 .0000E+00 5.0000E+01 6.9685E+0		RDINATES NE	TE NEUTRE VBR	*0000E+00 1.9996E+00	.0000E+00 Z.5000E+00 4.0744E+0	.0000E+00 3.5000E+00 4.0744E+0	0000E+00 4.9000E+00 4.0744E+0	*0000E+00 5.0000E+00 4.0744E+0	.0000E+00 5.4981E+00	.0000E+00 2.7500E+00 5.1133E+0	.0000E+00 3.0000E+00 5.1133E+0) 3.2500E+00 5.1133E+0) 3.5000F+00 5.1133E+0	.0000E+00 3.7500E+00 5.1133E+0	4.0000E+00 5.1133E+0	.0000E+00 4.5000E+00 5.1133E+0	+00 4.7500E+00 5.113

```
1.4800E-01
2.3131E-01
3.2106E-01
4.1739E-01
                                                       5.2038E-01
6.3014E-01
7.4671E-01
                                                                                                                                                                      -3. 2063E +01
-3. 490BE +01
-3. 490BE +01
-3. 9972E +01
-4. 2151E +01
-4. 5945E +01
-4. 7613E +01
-5. 062BE +01
-5. 2250E +01
                                                                                   8.7011E-01
1.0000E+00
         7. 1016E
                                                                                                                                                                                                            E-01
                                                                                                                                                                                                   8.4993E-01
                                                                                                                                                                                                                              9.3453E-01
                                                                                                                                                                                          8.27C0E-C1
                                                                                                                                                                                                                                       .66 74E -01
                                                                                                                                                                                                           .7601
 0000000000
                                                                                                                                                                                         8.8562E+02
9.1062E+02
9.3878E+02
                                                                                                                                                                             8.6499E+02
                                                                                                                                                                                                                    9.6937E+02
                                                                                                                                                                                                                              1.00 18E+03
                                                                                                                                                                                                                                      1.0357E+03
                                                                                                                                                                                                                                                .0706E+03
                                                                                                                                                                                                                                                        .1060E+03
6.0152E-01
8.0635E-01
7.1692E-01
5.1821E-01
3.0189E-01
1.109E-01
-1.1195E-01
-1.2082E-01
-6.9623E-02
                                                                                                                                                                      -4.4982E+02
-4.9500E+02
-5.4000E+02
-5.8500E+02
-6.3000E+02
-7.5000E+02
-7.5000E+02
-7.6500E+02
-8.1000E+02
                                                                                                                                                                                                                                                        -8.5500E+02
                                                                                                                                                                                                  -3.9972E+01
                                                                                                                                                                               -3.4908E+01
                                                                                                                                                                                          -3.7571E+01
                                                                                                                                                                                                           -4.2151E+01
                                                                                                                                                                                                                                       -4.7613E+01
                                                                                                                                                                                                                                              4.9164E+01
                                                                                                                                                                                                                                                        -5.0628E+0
         0000000000
                                                                                                                                                                                                                                                                                                                         1.0000E+00
1.0000E+00
1.0000E+00
                   7.1692E-01
5.1821E-01
3.0189E-01
1.1003E-01
-3.3019E-02
                                                                                                                                                                                                  8.4993E-01
8.7601E-01
                                                                           -1.2082E-01
-6.9623E-02
                                                                                                                                                                               8.0847E-01
                                                                                                                                                                                                                    9.0453E-01
                                                                                                                                                                                                                                       9.6674E-01
           8.0635E-01
                                                                                                                                                                                                                                               9.9951
-1.1635E+00
-1.1382E+00
-1.1169E+00
-1.1053E+00
-1.000E+00
-1.099E+00
-1.019E+00
                                                                                                                                                             VPRIM
8.4735E+02
8.6499E+02
                                                                                                                                                                                         8.8562E+02
9.1062E+02
9.3878E+02
9.6937E+02
1.0018E+03
                                                                                                                                                                                                                                               1.0706E+03
1.1060E+03
1.1382E+03
                                                                                                                                                                                                                                                                                                                         1.7834E+01
1.7864E+01
1.7853E+01
                                                                                   -1.1160E+00
-1.1024E+00
                                                                                                                                                                                                                                      1.0357E+03
                                                                           -1.1115E+00
                                                                                                                                             9000.000
                   5.7015E+02
5.7015E+02
5.7015E+02
5.7015E+02
5.7015E+02
5.7015E+02
                                                                                                                                                                       -4.4982E+02
-4.9500E+02
                                                                                                                                                                                          -5.4000E+02
                                                                                                                                                                                                                                      -7.6500E+02
                                                                                                                                                                                                                                                                                                                (Q(I)-QBAR)/QBAR
-1.0433E-03
6.3221E-04
0.
                                                                                                                                                                                                                                                                                                                                                                                       YSTRM
2,12664E+00
2,24897E+00
2,3656E+00
2,47940E+00
2,58406E+00
2,68495E+00
2,78305E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      3.22689E+00
3.30836E+00
3.38808E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             3.14367E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 3.46604E+00
3.54116E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    3.61412E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    3.05869
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            3.68591
                                                                                                                          DATA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           2,97088
                   3.2500E+00
3.2500E+00
3.5000E+00
4.0000E+00
  2.4990E+00
                                                                                                                                                                       4.4982E+02
4.9500E+02
                                                                                                                                                                                                            6.3000E+02
                                                                                                                                                                                                                                       .6500E+02
                                                                                             5.0000E+00
                                                                                                                                                                                          .4000E+02
                                                                                                                                                                                                                              .2000E+02
                                                                                                                                                                                                                                                 8.1000E+02
                                                                                                                                                                                                                                                                                              DATA
                                                                                                                          ROTOR INLET
                                                                                                                                                                                                                                                                                              FLOW
                                                                                                                                                                                                                                                                                                                                                                                2.000
                                                                                                                                                                                                                                                                                                                         2.0000E+00
4.0000E+00
6.0000E+00
                                                                                                                                                                                                                                                                                                                                                             STREAML INES
                   6.0000E+00
6.0000E+00
6.0000E+00
6.0000E+00
                                                                                                                                                                                         3.0000E+00
3.2500E+00
3.5000E+00
                                                                                                                                                                       2.4990E+00
2.7500E+00
                                                                                                                                                                                                                                       4.2500E+00
4.5000E+00
                                                                           6.0000E+00
6.0000E+00
                                                                                                                                                                                                                                                                                                                                                                                                   E-02
                                                                                                                                                                                                                                                                                               WE I GHT
           6.0000E+00
                                                                                              6.0000E+00
                                                                                                                                                                                                                              4.0000E+00
                                                                                                                                                                                                                                                                   .0000E+00
                                                                                                                                                                                                                                                                                                                                                                                                          4.00000E-02
                                                                                                                                                                                                                                                                                                                                                                                                                  6.00000E-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              2.60000E-01
2.80000E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          3.20000E-01
3.40000E-01
3.60000E-01
                                                                   6.0000E+00
                                                                                                                                                                                                                                                                                                                                                                                                                             8.00000E-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            2.20000E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                       1.00000E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                        1.40000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1.60000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           1.80000E-0]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    2.00000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      2.40000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                3.00000E-0
                                                                                                                                                                                                                                                          4.7500E+0
                                                                                                                                                                                                                                                                                                                                                                                                                                                1.20000E-0
                                                                                                                          RELATIVE
                                                                                                                                                                                                                                                                                               RAKE
```



```
4.53335E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             3.99910E+00
4.04573E+00
                                                                                                                                .62352E+00
                                                                                                                                           4.66801E+00
                                 4.24983E+00
                                               4.29841E+00
                                                                    4.39403E+00
                                                                                             4.48757E+00
                                                                                                                    4.57864E+00
                                                                                                                                                                                4.79938E+00
                                                                                                                                                                                                                                                                                                                           2.57166E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      3.33170E+00
3.38766E+00
           •.15038E+00
                       4.20041E+00
                                                          *.34648E+00
                                                                                 4.44106E+00
                                                                                                                                                        4.71210E+00
                                                                                                                                                                    4.75579E+00
                                                                                                                                                                                            4.84197E+00
                                                                                                                                                                                                       .88446E+00
                                                                                                                                                                                                                    4.92656E+00
                                                                                                                                                                                                                               4.96825E+00
                                                                                                                                                                                                                                           5.00955E+00
                                                                                                                                                                                                                                                                5.09094E+00
                                                                                                                                                                                                                                                                                                                                       2.64278E+00
2.71235E+00
                                                                                                                                                                                                                                                                                                                                                              2.78011E+00
                                                                                                                                                                                                                                                                                                                                                                           ..84625E+00
                                                                                                                                                                                                                                                                                                                                                                                       2.91117E+00
                                                                                                                                                                                                                                                                                                                                                                                                 2.97485E+00
                                                                                                                                                                                                                                                                                                                                                                                                             3.03706E+00
                                                                                                                                                                                                                                                                                                                                                                                                                         3.09807E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                   3.15807E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                3.21708E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                           3.27493E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               3.44281E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         3.49713E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     3.55038E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 3.60294E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            3.65482E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        3.70603E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     3.75653E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               3.80617E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            3.85524E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        3.90376E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  3.95171E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     4.09188E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 4.13756E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             4.18277E+00
                                                                                                                                                                                                                                                                             5.13104E+0C
                                                                                                                                                                                                                                                                                                   6.000
                                                                                                                                                                                                                                                                                                                           2.00000E-02
                       5.80000E-01
                                                                                              .00000E-01
                                                                                                        1.20000E-0
                                                                                                                              7.60000E-0
                                                                                                                                         7.80000E-0
                                                                                                                                                                   8.20000E-01
                                                                                                                                                                                                                                                                                                                                                   5.00000E-02
                                                                                                                                                                                                                                                                                                                                                              8.00000E-02
           5. 60000E-0
                                    6.00000E-0
                                               6.20000E-0
                                                                       6.60000E-01
                                                                                  6.80000E-0]
                                                                                                                     7.40000E-0
                                                                                                                                                        8-00000E-0
                                                                                                                                                                                 8.40000E-0
                                                                                                                                                                                            8.60000E-0
                                                                                                                                                                                                       8.80000E-0
                                                                                                                                                                                                                    9.00000E-0
                                                                                                                                                                                                                               9.20000E-0
                                                                                                                                                                                                                                                                                                                                                                           .00000E-0]
                                                                                                                                                                                                                                                                                                                                                                                        . 20000E-0
                                                                                                                                                                                                                                                                                                                                                                                                   .40000E-0
                                                                                                                                                                                                                                                                                                                                                                                                              . 60000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                          . 80000E-0]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                3.00000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           . 20000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1.40000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             . 80000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ..00000E-0]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     . 20000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 . 40000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             • 60000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        . 80000E-0]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               . 20000E-0]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           5.40000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 5.80000E-0
                                                          6.40000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                -20000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                           .40000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         5-60000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    2.80000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  - 60000e-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   5.00000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     5.60000E-0
.40000E-0
                                                                                                                                                                                                                                                                                                                QSTRM
                                                                                                                                                                                                                                                                                                     Ħ
```

```
6.60000E-01 4.31533E+00
6.80000E-01 4.35859E+00
7.00000E-01 4.40145E+00
7.00000E-01 4.46391E+00
7.60000E-01 4.5526E+00
8.00000E-01 4.56865E+00
8.20000E-01 4.56865E+00
8.20000E-01 4.5695E+00
8.60000E-01 4.5695E+00
9.0000E-01 4.80873E+00
9.0000E-01 4.80873E+00
9.0000E-01 4.80873E+00
9.0000E-01 4.80873E+00
9.0000E-01 4.80873E+00
9.0000E-01 4.80873E+00
9.00000E-01 5.00000E+00
```

BASED ON BASIC DATA FROM 6/13/73 RUN NO. 189 AND 6/13/73 RUN NO. 189

								PSG 0.9990 0.9980 0.9580 0.9580 0.942
		•, •						RB/RT 0.9780 0.9780 0.9750 0.9714 0.9667 0.9613
DENSITY RATIO 8.147E-01 8.147E-01 9.960E-01		7.5	. 000+	·				CPC -0.3164E-03 -0.1521E-01 -0.158E+00 -0.1790E+00 -0.2301E+00
DENSIT 8.14 8.14 9.96		VIC 5.703E+02	DEL 1.000E+00				1	\$ 10.00 \$ 10.0
E RATIO COMP. 7.506E-01 7.506E-01 9.944E-01	VS ONICC 1.019E+03	WDOT	THET 1.000E+00			VINFP 9.960E+01	= -1.426 <u>0</u> 2E-01	86T A
PRESSURE INC. 7.258E-01 7.258E-01 9.944E-01	VSONIC 6.458E+02	RHUSTAT 2.369E-03	RHÓTOT 378E-03	LND 1.000E+00		KSKIP 1 C 60E+01	12 V3	VBARI 0.2295E+03 0. 0.2240E+03 0. 0.2440E+03 0. 0.279E+03 0. 0.303E+03 0.
6 6	VSQNIC 6.458E	RHC 2.369	RHÓTOT 2.378E-03	1.000		6	5.56102E+02	
PRESSURE COMP. 4.749E+02 4.749E+02 1.185E+01	VC/VA 1.000E+00	ASTAT 1.115E+03	ATOT 1.116E+03	HUB-TIP RATIO 5.000E-01		1X NX KND -0 -0 B 4.900E+02	VICT = 5.5	VRES 0.1006E+03 0.1269E+03 0.1716E+03 0.2385E+03 0.3255E+03
DYNAMIC INC. 5.803E+02 5.803E+02 1.184E+01	VINF/VA 1.429E-01	PSTATC 2.104E+03	PTOTC 2.116E+03	YRISHR F		NCHI NHUBMX 24 40 4.900E+02	1.74058E+01	VTHETA 3 0. 3 0. 3 0. 3 0. 3 0.
MACH NO 5.535E-01 6.535E-01 8.968E-02	01	PSTAT 2.104E+03 2	+03	YRIHUB 2.500E+00 5	YWING	NP NCLO N 24 16 24 V2 1.545E+CO4	MDOTT = 1.	VP 0.1006E+03 0.1269E+03 0.2385E+03 0.2878E+03 0.3225E+03
	VINF/VC 1.429E-	P S 2 . 10	PTCT 2.116E	YR1 2.50	M A 0	1 24 2 24 1 54 1 54	V FA	Y 0.1250E+00 0.3750E+00 0.6554E+00 0.8560E+00 0.1057E+01 0.1392E+01
VELOCITY 7.000E+02 7.000E+02 1.000E+02	. ALFAF 0.	TSTAT 5.178E+02	TTOT 5.187E+02	XRI 6.000E+00	XTEST 0.	NT 1 102 2 99 8 V1 3 810E-01 3 THETAS	HUB	X 0. 0.8379E-02 0.1267E-01 0.1267E-00 0.2473E-00 0.3999E-00
TROL K E EAM						# Q#	ETA .	000000

	D.	ŗ	'n	•
		٠		
١	Q)	Ę	

```
0.9185
0.9246
0.9256
0.9189
0.9189
0.9008
0.9001
0.9460
0.9460
0.9460
0.9915
0.9960
0.9960
                                                                                                                                                                                                                                                                                                                                                   0.9990
0.9990
0.99994
0.99996
0.99990
0.9990
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              0.9957
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               69660
0.9245
0.9272
0.9272
0.9286
0.9314
0.9314
0.9460
0.9460
0.9527
0.9654
0.9654
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.9663
0.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              0.9993
-0.3384E+00.3384E+00.3386E+00.0.3386E+00.0.3386E+00.0.3386E+00.0.3386E+00.0.3487E+00.0.2428E+00.0.2428E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2484E+00.0.2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      0.1471E+02
-0.1471E+02
-0.1567E+02
-0.1663E+07
-0.1758E+07
-0.1950F
-0.383E+01

-0.365E+01

-0.4161E+01

-0.4372E+01

-0.4572E+01

-0.4546E+01

-0.54945E+01

-0.5494E+01

-0.5494E+01

-0.5494E+01

-0.5494E+01

-0.5494E+01

-0.5494E+01

-0.6783E+01

-0.6783E+01

-0.6783E+01

-0.6783E+01

-0.6784E+01

-0.6784E+01

-0.6786E+01

-0.6786E+01

-0.6786E+01

-0.6786E+01

-0.6786E+01

-0.678E+01

-0.6786E+01

-0.6786E+01

-0.6786E+01

-0.6786E+01

-0.678E+01

-0.6786E+01

-0.6786E+01

-0.6786E+01

-0.6786E+01

-0.678E+01

-0.6786E+01

                                                                                                                                                                                                                                                                                                                                                                                                                    -0.8712E+01
-0.9312E+01
-0.1003E+02
-0.1090E+02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           .1184E+02
                                 0.3994E+03
0.3959E+03
0.3930E+03
0.3834E+03
0.3760E+03
0.357E+03
0.357E+03
0.3294E+03
0.2564E+03
0.2564E+03
0.2564E+03
0.2564E+03
0.2564E+03
0.2764E+03
0.2764E+03
0.2764E+03
0.2764E+03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           0.4295E+02
0.3540E+02
0.2953E+02
0.2489E+02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              0.2118E+02
0.1818E+02
0.1571E+02
0.1368E+02
                                                                                                                                                                                                                                                                                                                                                                                                       0.1376E+03
0.1182E+03
0.9946E+02
                                                                                                                                                                                                                                                                                                                                                                                                                                                          0.8190E+02
0.6592E+02
0.5283E+02
 0.3867E+03
0.3713E+03
0.3156E+03
0.4063E+03
0.4198E+03
0.4279E+03
0.4279E+03
0.4239E+03
0.3302E+03
0.3302E+03
0.2530E+03
0.2152E+03
      -0.3867E+03
-0.3713E+03
-0.3857E+03
-0.408E+03
-0.4198E+03
-0.429E+03
-0.4239E+03
-0.4239E+03
-0.3901E+03
-0.3901E+03
-0.3901E+03
-0.3901E+03
-0.2930E+03
-0.2528E+03
-0.2528E+03
-0.2528E+03
-0.2528E+03
-0.2528E+03
-0.2528E+03
                                                                                                                                                                                                                                                                                                                   -0.8477E+02
-0.6184E+02
-0.4170E+02
-0.2395E+02
-0.8000E+01
0.1968E+02
0.3168E+02
0.4252E+02
0.4262E+02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0.8734E+02
0.9172E+02
0.9723E+02
0.1113E+03
                0.5475E+01
0.5495E+01
0.5500E+01
0.5513E+01
0.5531E+01
0.5500E+01
0.5600E+01
0.5657E+01
                                                                                                                                                                                                             0.5910E+01
0.6022E+01
0.6427E+01
0.6427E+01
0.6427E+01
0.6427E+01
0.6742E+01
0.7183E+01
0.7183E+01
0.7819E+01
0.7819E+01
0.7819E+01
0.7819E+01
0.1956E+02
0.1092E+02
0.1187E+02
0.1378E+02
0.1378E+02
0.1378E+02
0.1378E+02
                                                                                                                                                                                                 0.5811E+01
    2396+01
2396+01
18128+01
18128+01
1673+01
11076+01
11076+01
11076+01
93526+00
48116+00
48116+00
35576+00
24576+00
32366-01
```

2	VRES VM 1789E+02 4.1789E+	VRES VM 4.1789E+02 4.1789E+	VY VRES VM 02 0619E+01 -0. 4.1789E+02 4.1789
	.0801E+02 4.0801	4.0801E+02 4.0801	3993E+01 0. 4.0801E+02 4.0801
1	9755E+02 3.9755	3.9755E+02 4.0146 3.9755E+02 3.9755	1052E+01
526E+(9526E+02 3.9	3.9526E+02 3.9 3.9346E+03 3.9	*1332E+01 0. 3.9526E+02 3.9
976	8970E+02 3.8	3.8970E+02 3.8	.9855E+01 0. 3.8970E+02 3.8
746	7746E+02 3.	3.7746E+02 3.	.7115E+0U -0. 3.7746E+02 3.
2099	5099E+02 5	5.5099E+02 5	.6162E+01 0. 5.5099E+02 5
4935	4935E+02 5	5.4935E+02 5	.0473E+01 0. 5.4935E+02 5
487	4873E+02 5	5.4873E+02 5 5.4873E+02 5	.5926E+01 0. 5.4873E+02 5
2.7	5.5047E+02 5	5.5047E+02	.1847E+01 0. 5.5047E+02
5301	5301E+02	5.5301E+02	.6186E+01 0. 5.5301E+02
687	5687E+02 5	. 5.5687E+02 5	.1762E+01 0. 5.5687E+02 5
6220	5220E+02 5	5.6220E+02 5	.9598E+01 0. 5.6220E+02 5
2040	5903E+02 5	. 5.6903E+02 5 6.7647E+02 6	.1123E+01 0. 5.6903E+02 5
900	3929F+02 6	6 201301E+U2 3	-2421E+UZ =U.
8090	3090E+02 6	6.8090E+02 6	238E+01 0. 6.8090E+02 6
.7372	.7372E+02	. 6.7372E+02	.1131E+01 0. 6.7372E+02
.6959	*6959E+02	• 6.6959E+02	.3051E+00 0. 6.6959E+02
6749	.6749E+02	6.6749E+02	.9361E+00 0. 6.6749E+02
2600		ě,	.5743E+00 0. 6.
7410.		ě	.5484E+30 U. 0.
7015		•	**************************************
7149		•	076F-02 0. 6.
6708	5.6708E+02	•	9 .0-
ANGLES-			
UNDEKTUKNU	FLUM	RIDIONAL	MERIDIONAL
7200640		ALFIA	CPC ALFRA
4004	•	•	**************************************
4359	•	4 3 5 9 F + 00	18235-01 1.80445:00 65875-01 6.63595+00
2293	: -	2293E+00	.5849F=01 1.2293F+00
6429		6429E+00 0-	67375-01 1.22/32:00 0: 64375-01 -1 44395+00 0:
, -		.7941E+00 0.	**************************************
3937		3937E+00 0.	4395F=01 =4.3937F+00 0.
3224		3224F+00 -0.	2181E-01 -1-3224F+00 -0-
9354		9254C:00 00	0308E-01 -103224E-00 -00
2000			
110000	•	8058E+00 0.	.9025E-01 4.8058E+00 0.
119864		1798E+00 0.	.8626E-01 3.1798E+00 0.
.6631E		6631E+00 0.	.8475E-01 1.6631E+00 0.
806E-	•	0806E-01	3561E-01 2.0806E-01
1.2332E		.2332E+00 0.	8899E-01 -1.2332E+00 0.
7140E	•	.7140E+00 0	3518E-01 -2.7140E+00 0
600	•	.3009E+00	E-01 -4.3009E+00
10425	•	•	1777E-01 -6.0853E+30
19025	•		3477F-01 - X - 1047F+00
461E+0		**************************************	100 00 00 TO TO TO TO TO TO TO TO TO TO TO TO TO

OFF-BODY POINTS (RAKES)

	60000000000000000000000000000000000000	00111101 00111101	0000		
	0. 7.1136E-02 1.4822E-01 2.3159E-01 3.2138E-01 4.171E-01 5.2068E-01 6.3039E-01 7.4689E-01 8.7021E-01	BETAPS -3.3128E+01 -3.6016E+01 -3.1143E+01 -4.3345E+01 -4.5346E+01	-4.8845E+01 -5.0397E+01 -5.1855E+01 -5.3454E+01	. (
•		MPRS 6742E 8411E 0356E 2710E 5359E 1301E	9.4502E-51 9.7759E-51 1.5115E+60 1.0418E+00		
	••••••	VPR ST 8.2307E+02 8.4181E+02 8.6342E+02 8.6342E+02 9.1785E+02 9.4888E+02	1.0160E+03 1.0513E+03 1.0872E+03 1.1203E+03		
	6.0152E-01 9.4572E-01 7.4670E-01 7.9538E-01 3.9299E-01 2.1878E-01 9.2455E-02 2.3819E-02	VZPRST - 4982E+02 - 9500E+02 - 4000E+02 - 3500E+02 - 3500E+02 - 7500E+02	-7.6500E+02 -8.1000E+02 -8.5500E+02 -9.0000E+02		
		BETAPR 3.3128E+01 3.6016E+01 4.1143E+01 4.3346E+01 4.5346E+01 4.5346E+01	-4.8845E+01 -5.0397E+01 -5.1855E+01 -5.3454E+01	.	
• .	6.0152E-01 9.4572E-01 9.4670E-01 7.953E-01 3.9298E-01 2.1878E-01 9.2455E-02 2.3819E-02 6.2353E-03	Σ	9.45026-01 9.77996-01 1.01156+00 1.04186+00	0FR 1.0000E+00 1.0000E+00 1.0000E+00	
,	-1.0559E+00 -1.032E+00 -1.0121E+00 -1.070E+00 -9.9478E-01 -9.9313E-01 -9.976E-01 -1.0022E+00 -1.0059E+00	900.0000 VPRIM 8.2307E+02 8.4181E+02 8.6342E+02 8.8914E+02 9.1788E+02 9.4888E+02	1.0160E+03 1.0513E+03 1.0872E+03 1.1203E+03	QS TOT 1.6190E+01 1.7032E+01 1.7408E+01	
	5.5595E+02 5.5595E+02 5.5595E+02 5.5595E+02 5.5595E+02 5.5595E+02 5.5595E+02 5.5595E+02	VZPRIME -4.4982E+02 -4.9500E+02 -5.4000E+02 -5.3000E+02 -6.3000E+02 -6.7500E+02	-7.6500E+02 -8.1000E+02 -8.5500E+02 -9.0000E+02)-QBAR)/QBAR 5.9979E-02 2.1595E-02	18M 1972E+00 4802E+00 5614E+00 5614E+00 5805E+00 5305E+00 2305E+00 433E+00 6692E+00 6692E+00 452E+00 452E+00 452E+00 453E+00 453E+00 453E+00
	2.4990E+00 2.7500E+00 3.0000E+00 3.25000E+00 3.7500E+00 4.0000E+00 4.2500E+00 4.7500E+00	6.0000 6.0000 0 4.4982E+02 - 00 4.9500E+02 - 00 5.4000E+02 - 00 5.8500E+02 - 00 6.3500E+02 - 00 6.7500E+02 - 00 6.7500E+02 - 00 7.2000E+02 -	7.6500E+02 8.100UE+02 8.5500E+02 9.0000E+02		> 000000000000000000000000000000000000
	6.0000E+00 6.0000E+00 6.0000E+00 6.0000E+00 6.0000E+00 6.0000E+00 6.0000E+00 6.0000E+00 6.0000E+00	X = X = X = 2.4990E+00 2.7500E+00 3.2500E+00 3.7500E+00 3.7500E+00 4.0000E+00 4.0000E+00	4.2500E+00 4.5000E+00 4.7500E+00 5.0000E+00	1 2.0000E+00 2 4.0000E+00 3 6.0000E+00 3 TREAMINES	X = 2. QSTRM 2.00000E-02 6.00000E-02 1.00000E-02 1.00000E-01 1.50000E-01 1.80000E-01 2.00000E-01 2.00000E-01 2.00000E-01 2.00000E-01 3.00000E-01 3.00000E-01 3.00000E-01 3.00000E-01 3.00000E-01 3.00000E-01
					•

```
2.74114E+00
2.81669E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           3.23453E+00
3.71432E+00
3.78402E+00
                       3.85268E+00
                                   3.92032E+00
                                              3.98693E+00
                                                          4.05159E+00
                                                                      4.11528E+00
                                                                                  -17826E+00
                                                                                              .24052E+00
                                                                                                          .30208E+00
                                                                                                                      .36292E+00
                                                                                                                                 42305E+00
                                                                                                                                            48247E+00
                                                                                                                                                         54047E+00
                                                                                                                                                                     59767E+00
                                                                                                                                                                                            .71066E+00
                                                                                                                                                                                                         .76645E+00
                                                                                                                                                                                                                    82177E+00
                                                                                                                                                                                                                               .87662E+00
                                                                                                                                                                                                                                            *93099E+00
                                                                                                                                                                                                                                                       *98490E+00
                                                                                                                                                                                                                                                                   .03834E+00
                                                                                                                                                                                                                                                                              5.09130E+00
                                                                                                                                                                                                                                                                                          .14380E+00
                                                                                                                                                                                                                                                                                                      .19583E+00
                                                                                                                                                                                                                                                                                                                                                                 5.44890E+00
                                                                                                                                                                                                                                                                                                                                                                             5.49810E+00
                                                                                                                                                                                                                                                                                                                                                                                                                            2.41343E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                         5.49876E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                    .581836+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                               **66262E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 2.89047E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             2.96260E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          3.03283E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      3.10137E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                3.16860E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         3.29885E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     3.36199E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                3.42408E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            3.48512E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        3.54485E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    3.60361E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                3.66151E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            3.71855E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       3.77459E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    3.99072E+00
                                                                                                                                                                                65440E+00
                                                                                                                                                                                                                                                                                                                  -24738E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    3.82970E+0C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          3.93777
                                                                                                                                                                                                                                                                                                                                                                                                   4.000
                                                                                                                                                                                                                                                                                                                                                                                                                            2.00000E-02
                                            60000E-01
                                                                                                                                                                                                                                                                                                                                                                             1.00000E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                        ..00000E-02
                                                          80000E-01
                                                                                 20000E-01
                                                                                                          . 60000E-01
                                                                                                                      .80000E-01
                                                                                                                                                         40000E-01
                                                                                                                                                                    . 60000E-01
                                                                                                                                                                                                        20000E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                    00000E-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           00000E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      20000E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  .40000E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              . 60000E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          .80000E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      00000E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             .40000E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     2.80000E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 3.00000E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            3.20000E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   60000E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                3.80C00E-01
                       0000E-01
                                   40000E-01
                                                                                              . 40000E-0]
                                                                                                                                                                                . 80000E-01
                                                                                                                                                                                           00000E-0
                                                                                                                                                                                                                                                                                           8.60000E-0]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                20000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         . 60000E-0]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1.40000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            ** 00000E-0
                                                                                                                                                                                                                                                                   8.2000E-0
                                                                                                                                                                                                                                                                              8.40000E-0
                                                                                                                                  00000E-0
                                                                                                                                                                                                                               60000E-0
                                                                                                                                                                                                                                            80000E-0
                                                                                                                                                                                                                                                       8.00000E-0
```

```
4.75299E+00
4.79655E+00
                                                                                                                                                                                                                                                                                                      2.57153E+00
2.64253E+00
          19511E+00
                                                                                                                                                                                                                                                                                                                                                                                     3.03637E+00
3.09733E+00
                      .24468E+00
                                  .29347E+00
                                              .34172E+00
                                                         .38945E+00
                                                                     .43668E+00
                                                                                48339E+00
                                                                                                      ..57490E+00
                                                                                                                              .66472E+00
                                                                                                                                         4.70905E+00
                                                                                                                                                                           4.83971E+00
                                                                                                                                                                                      4.88249E+00
                                                                                                                                                                                                  .92489E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         3.75573E+00
.14494E+00
                                                                                           ..52940E+00
                                                                                                                 .62000E+00
                                                                                                                                                                                                             ..96689E+00
                                                                                                                                                                                                                       .00851E+00
                                                                                                                                                                                                                                  5.04974E+00
5.09058E+00
                                                                                                                                                                                                                                                           5.13104E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              3.70521E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    3.80538E+00
                                                                                                                                                                                                                                                                                                                               2.71199E+00
                                                                                                                                                                                                                                                                                                                                         2.77967E+00
                                                                                                                                                                                                                                                                                                                                                    2.84573E+00
                                                                                                                                                                                                                                                                                                                                                               2.91058E+00
                                                                                                                                                                                                                                                                                                                                                                          2.97421E+0C
                                                                                                                                                                                                                                                                                                                                                                                                                                    3.27412E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                              3.33088E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                           3.38682E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     3.44196E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               3.49628E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            3.54954E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        3.60210E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  3.65399E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                3.85448E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           3.90301E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        3.95098E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   3.99840E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              4.04505E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          4.09123E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   4.13694E+00
                                                                                                                                                                                                                                                                                                                                                                                                            3.15730E+0(
                                                                                                                                                                                                                                                                                                                                                                                                                         3.21628E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               4.18217E+0(
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           4.22694E+0(
                                                                                                                                                                                                                                                                                000.9
                                                                               .00000E-01
                       0-300000 · 9
                                             6.40000E-0
                                                       6.60000E-0
                                                                    0-300008 · 9
                                                                                           . 20000E-0
                                                                                                                 . 60000E-0
                                                                                                                           . 80000E-0
                                                                                                                                         8.00000E-0
                                                                                                                                                               8.40000E-0
                                                                                                                                                                           8.60000E-0
                                                                                                                                                                                       8.80000E-0
                                                                                                                                                                                                                                                                                                                4.00000E-02
                                                                                                                                                                                                                                                                                                                               5.00000E-02
                                   6.20000E-0
                                                                                                                                                    8.20000E-0
                                                                                                                                                                                                                                                                                                                                           8.00000E-0
                                                                                                                                                                                                                                                                                                                                                   .00000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                          20000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                     2.40000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                             0-300009 ·
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0-900009°
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     3.80000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              -000000 ·
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  . 60000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    5. 20000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              . 40000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        -- 600006-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           6.20000E-0
                                                                                                                                                                                                                                                                                                                                                                . 20000E-0
                                                                                                                                                                                                                                                                                                                                                                            -40000+
                                                                                                                                                                                                                                                                                                                                                                                        0-300009°
                                                                                                                                                                                                                                                                                                                                                                                                  -80000E-0
                                                                                                                                                                                                                                                                                                                                                                                                              0-300000 ·
                                                                                                                                                                                                                                                                                                                                                                                                                                                           -80000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     0-300000°
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 3.20000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             .40000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          . 20000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     40000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            . 80000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0-300000 S
```

· · ·	Ŧ	THETA = 0.90000E+02		WDOTT = 1.78	.78504E+01	VICT = 5.70	5.70305E+02	V3 = -1.42602E-01	26-01			
		HUB 0N-800	HUB ON-BODY POINTS		;				· .			. :
•	-	×	>	47	VTHETA	VRES	VBARI	BETA	v	UBU	RB/RT	•
20	-	•	0.1250E+00		0.8840E+02	0.8918E+02	0.2354E+03	0.82446+02	-0.7153E+01	0.511CE-02	6916.0	Ġ
JC	~		0.3750E+00	0.3513E+02	•	0.9578E+02	0.2354E+03	0.6848E+02	-0.6903E+01	0.2363E-02	0.9769	ċ
ċ	6	0.8379E-02	0.6254E+00	•	0.9143E+02	0.1179E+03	0.2503E+03	٠.	-0.6652E+31	-0.9741E-C2	0.9737	်
	4	0.4613E-01	0.8560E+00	•	0.9484E+02	0.1692E+03	0.2671E+03	0.3410E+02	-0.6418E+01	-0.463CE-C1	9696 0	Ġ
	S	0.1267E+00	0.1057E+01	•	0.9712E+02	0.2214E+03	0.2869E+03	0.2602E+02	-0.6202E+01	-0.9654E-01	6796.0	Ġ
:	9	0.2473E+00	0.1236E+01	0.2492E+03	0.9810E+02	0.2678E+03	0.3080E+03	0.2148E+02	•	-0.1521E+00	0.9591	o.
	~	0.3999E+00	0.1392E+01	•	0.9795E+02		0.3285E+03	D.1864E+02	-0.5768E+01	-0.2057E+03	0.9530	
	ထ	0.5738E+00	0.1524E+01	•	0.9694E+02	0.3381E+03	0.3474E+03	0.1666E+02	-0.5549E+01	-0.2545E+00	0.9468	ċ
	σ,	0.7639E+00	0.1636E+01	0.3520E+03	0.9531E+02	0.3646E+03	0.3641E+03	0.1515E+02	-0.5329E+01	-0.2993E+C	0.9410	ċ
	2	0.9693E+00	0.1/31E+01	•	0.9315E+02		0.3/81E+03	0.1390E+02	-0.5103E+01	-0.3403E+00	1666.0	•
	1	0.1186E+01	0.1811E+01	•	0.9057E+02	0.4072E+03	0.3892E+03	0.1285E+02	-0.4871E+01	-0.3768E+0-	0.9314	
	75	0.14126+01	0.1878E+01	•	0.8766E+02	0.4228E+03	0.3972E+03	0.1197E+02	-0.4636E+01	-0.407CE+.C	0.9281	• •
	13		0.19336+01	0.4257E+03	•	0.4340E+03	0.4025E+03	0.1123E+02	-0.4398E+01	-0.4293E+C	3.9258	j,
:	14		0.1979E+01	0.43336+03	•	0.4408E+03	0.4060E+03	•	-0.4157E+01	-0.4431E+0	0.5243	٠,
	57	0.2125E+01	0.2021E+01	•	0.7769E+02	0.4469E+03	0.4095E+03	O. LOUIE+02	-0.3908E+01	-0.4556E+0	0.9228	· .
• :	16	0.2375E+01	0.2063E+01	0.4510E+03	0.7416E+02	0.4570E+03	0.4155E+03	0.9338E+01	-0.3655E+01	-0.4767E+CO	0.9201	
. "	11	0.2625E+01	0.2104E+01	0.46545+03	0.7068E+02	0.4707E+03	0.4245E+03	0.8636E+01	-0.3402E+01	-0.505/E+CC	0.9160	
	18	0.2875E+01	0.2146E+01	•	0.6729E+02	0.4867E+03	0.4363E+03	0.7946E+01	-0.3148E+01	-0.54G/EFCG	5016-0	
	61	0.3125E+01	0.2188E+01	.•	0.6401E+02	0.5051E+03	0.45056+03	0.7281E+01	10+36687-0-	-0.3820E+CO	0.9021	•
	20	0.3375E+01	0.22296+01		0.6089E+02	0.5267E+03	0.4667E+03	0.6638E+01	-0-200E-01	-0.6322E+53	2468-0	• •
	21	0.3625E+01	0.2270E+01	•	0.5795E+02	0.5515E+03	0.48425403	0.6031E+01	-0.2388E+01	-0.4916E+0-	0.8838	٠.
	77	0.41736+01	0.23435+01	0.59796+03	0.5260F+02	0.6007E+03	0.5199E+03	0.5028E+01	-0.1884E+01	-0.8135E+0	0.8595	
	24	0.4373E+01	0.2375E+01		0.5016E+02	0.6237E+03	0.5361E+03	0.46136+01	-0.1632E+01	-0.8758E+0	0.8467	Ö
	25	0.4623E+01	0.2404E+01	•	0.4783E+02	0.6467E+03	0.5495E+03	0.4241E+01	-0.1380E+01	-0.9377E+CO	0.8351	ď
	97	0.4874E+01	0.2430E+01	•	0.4553E+02	0.6679E+03	0.5586E+03	0.3908E+01	-0-1129E+01	-0.996 CE+0.	0.8266	ċ
	27	0.5125E+01	0.2453E+01	•	0.4325E+02	0.6865E+03	0.5633E+03	0.3612E+01	-0.8767E+00	-0.1048E+C1	0.8219	Ö
	28	0.5375E+01	0.24736+01	•	0.4108E+02	0.7032E+03	0.5662E+03	0.3349E+01	•6252E+	-0.1095E+01	0.8190	o,
	53	C. 5626E+01	0.2488E+01	0.7165E+03	0.3907E+02	0.7175E+03	0.5685E+03	0.3121E+01	-0.3743E+00	-0.1137E+01	0.8166	ċ.
	30	0.5875E+01	0.2497E+01	٠	0.3718E+02	.C.7228E+03	0.5699E+03	0.2948E+01		-0.1152E+01		့် (
	. 31	0.6127E+01	0.2500E+01	•	0.3539E+02	0.7155E+03	0.5703E+03	0.2835E+01	0.1270E+00	-0.1131E+C1	0.8147	o i
	35	0.6407E+01	0.2500E+01	0.7063E+03	0.3364E+02	0.7071E+03	0.5703E+03	0.2727E+01	0.4065E+00	-0.1107E+01	0.8147	•
							•			-		

.8638

.8874

.9031

.8392

4.52716E+00 4.56832E+00

.48559E+00

..64968E+00

7.4000E-01 7.6000E-01 7.80000E-01 8.0000E-01 8.40000E-01 8.80300E-01 9.00000E-01 9.20000E-01

.72977E+00 .76933E+00 .80858E+00

3 THETAS

2 OF

9.60000E-01 9.80000E-01

•		
0.7496 0.7504 0.7510 0.7510 0.7510 0.7537 0.7537	PSOPTC 0.89972 0.7597 0.7597 0.7597 0.7597 0.7573 0	286. 288. 388.
0.8147 0.8147 0.8147 0.8147 0.8147 0.8147 0.8147	ေ ရွားလွှာလလေးထာတ္တာလာလာလာလာလာလာလာလာလာလာလာလုံတေတြကောက်လောက်လောက်လောက်လောက်လောက်လောက်လောက်	86.00
-0.1096E+01 -0.1091E+01 -0.1087E+01 -0.1085E+01 -0.1072E+01 -0.1031E+01 -0.1031E+01	CFC 0.12 6FC 0.914 3F +00 0.996 7F +00 0.996 7F +00 0.104 6F +01 0.104 11 6F +01 0.104 6F +01 0.104 6F +01 0.104 6F +01 0.104 6F +01 0.104 6F +01 0.104 6F +01 0.104 6F +01 0.104 6F +01 0.104 7F +01 0.104 7F +01 0.104 7F +01 0.104 7F +01	3340E-0 3856E-C 2752E-0 1931E-0
0.7419E+00 0.1144E+01 0.1627E+01 0.2207E+01 0.3737E+01 0.4644E+01 0.5548E+01		44 9E 4 796E 4 213E 4 712E 4
0.2595E+01 0.2456E+01 0.2323E+01 0.2212E+01 0.2147E+01 0.2159E+01 0.2278E+01	ETA 53866+02 53866+02 53866+02 185866-01 19586-01 19586-01 195876-01	250
0.5703E+03 0.5703E+03 0.5703E+03 0.5703E+03 0.5703E+03 0.5703E+03 0.5703E+03	VBARI 57703E+03	.1811E+03 .1613E+03 .1411E+03
0.7035E+03 0.7016E+03 0.7004E+03 0.6994E+03 0.6984E+03 0.6951E+03 0.6951E+03		.1775E+0 .1597E+0 .1451E+0 .1332E+0
0.3185E+02 0.3006E+02 0.2839E+02 0.2700E+02 0.2616E+02 0.2618E+02 0.2618E+02	9998 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	.9180E .9297E .9465E .9504E
0.7028E+03 0.7010E+03 0.6998E+03 0.6989E+03 0.6979E+03 0.6946E+03 0.6801E+03	0.000 0.000	-0.1519E+03 -0.1299E+03 -0.1105E+03 -0.9339E+02
0.2500E+01 0.2500E+01 0.2500E+01 0.2500E+01 0.2500E+01 0.2500E+01 0.2500E+01	7	.7472E+ .7819E+ .8236E+ .8736E+
0.6742E+01 0.7144E+01 0.7627E+01 0.8207E+01 0.8902E+01 0.9737E+01 0.1064E+02 0.1155E+02 0.1155E+02	X 0.1155E+02 0.9737E+01 0.8902E+01 0.8207E+01 0.67142E+01 0.6727E+01 0.6727E+01 0.6727E+01 0.6727E+01 0.5875E+01 0.5875E+01 0.5875E+01 0.5875E+01 0.5875E+01 0.2865E+01 0.2865E+01 0.2866E+01 0.2866E+01 0.2866E+01 0.2866E+01 0.2866E+01 0.2866E+01 0.2866E+01 0.2866E+01 0.2866E+01 0.2866E+01 0.2866E+01 0.2866E+01 0.187E+01 0.187E+01 0.187E+01 0.187E+01 0.187E+01 0.187E+01 0.187E+01 0.187E+01 0.187E+01 0.187E+01 0.187E+01	
40 93 40 40	33518	84 86 7

```
0.9914
0.9931
0.99331
0.99331
0.99343
0.9943
0.9943
0.9945
0.9988
0.9972
0.9982
0.9995
0.9999
0.9999
0.9999
0.9999
-0.13276-C1
-0.887CE-02
-0.34676-02
-0.2062F-02
-0.1163E-02
-0.56146-03
-0.16716-03
-0.16716-03
-0.16716-03
-0.16716-03
-0.16716-03
-0.16716-03
-0.16716-03
-0.9312E+01
-0.1003E+02
-0.11090E+02
-0.12B6E+02
-0.1376E+02
-0.1471E+02
-0.1567E+02
-0.1567E+02
-0.1567E+02
-0.1567E+02
-0.1567E+02
-0.1567E+02
-0.5079E+02
-0.5612E+02
-0.6130E+02
-0.7059E+02
-0.708E+02
-0.7708E+02
-0.7708E+02
-0.8235E+02
-0.8235E+02
-0.8535E+02
-0.8535E+02
-0.8535E+02
-0.8535E+02
0.1020E+03
0.8399E+02
0.6760E+02
0.540EE+02
0.340E+02
0.3028E+02
0.2553E+02
0.2172E+02
0.162E+02
0.1238E+03
0.1164E+03
0.1109E+03
0.1061E+03
0.1061E+03
0.1013E+03
0.1013E+03
0.9968E+02
0.9895E+02
0.9591E+02
0.967E+02
0.9731E+02
0.9814E+02
0.9834E+02
0.9856E+02
0.9856E+02
0.9891E+02
0.9891E+02
.7825E+02
.6491E+02
.5328E+02
.423E+02
.3458E+02
.2806E+02
.2261E+02
.2261E+02
.1780E+02
.1327E+02
.1327E+02
.2316E+01
999999999
0.9335E+01
0.1006E+02
0.11092E+02
0.1137E+02
0.1378E+02
0.1569E+02
0.1569E+02
0.1569E+02
0.176E+02
```

888 0.0990 0.0991 0.0992 0.0993 0.0994 0.0999 0.099

	COORD					VELOCITIES			# 1 1 1 1 1 1 1	PRESS.	SS. RATIO
â.				RADIAL CIRC	CIRCUMPRNIL KES	Į,	IDIONAL CHU	CHUKUMISE SPI	ANW I SE	EU SHORE	PSOPTC
_	•	4	7 A A	7.37085+01	7 94575+01		4.3617	u	1 8	NOO!!	5 6
_	2.0000E+00	. 5000F+0	.2878E	-9436E	4917E	4.3546E+02	4.3059E+02	0	3436E+	0.9237	ο
. 2	•	000E+C	3218E	.0010E+	. ф		4.3226	.7380E	0010E+	0.9237	897
٣	٦.	3.5000E+00	3745E	*8056E+	.2841E+		4.3782	.2841E	3056E+	0.9237	0.8949
4	٦	.0000E+0	4344E	8035E+	.9651E+	4.4783E+02	4.4507	96 51 E	30.35E+	0.9237	891
د د	٦.	. 5000E+0	4,4913E+02	נ א	•6980E+		4.5185	.6980E	3533E+	0.9237	0.8887
9	~	.0000E+C	•5163E	.5794E+	•42/2E+		4.5393	2) 24•	104545401	1676.	2000
		4981E+0	4.3891E+UZ	-1.01.32E+01	10+32/60*+- E 38455401	4.4093E+UZ	4.09UJ	29 45E+	10+32510+1-		0.0343
•	•	0.5255E+U	30,00	2700F¢			5.8173		4.2799F+01	8658	0.8213
- a	•	00000	80 76F	4478F+	2249F+		5.8127			658	0.8217
9	•	.2500E+0	8211E	0880E	9567E+		5.8217	9	0880E+	865	821
. 01	~	.5000E+0	8421E	.9706E+	.7368E+		5.8425	3.7368E+01	-6.9706E+00	Ö	0.8202
11	4.0000E+00	.7500E+0	5.8710E+02	1433E	.5516E+		5.8749	55.5	-2.1433E+01	0.8658	0.8185
12	4.0000E+00	.0000E+0	9087E	014E	.3919		5.9197		-3.6014	0.8658	815
13	4.0000E+00	.2500E+0	5.9559E+02	-5.1567E+01	•		5.9781		-5.	0.8658	C.8126
14	٧.	5000E+0	6.0123E+02	-6.9235E+01	.1254		6.0520	3.1254E+01	9-	0.8658	0.8083
15	4.0000E+00	.7500E+0	6.0744E+02	3 597E	.0111		6.1416		-6-	0.8658	0.8031
	٦.	.1310E+0	116	3482E	ω,		6.2483		-		0.7968
	٧.	.4990E+0	•1825E	7.5409E+00	3,6269	7.1921E+02	7.1829	.6269	•	;	738
16	۲	.7500E+0	944E	9.9849E+00	3.2950		7.0951	•29	38 49E+	0.8149	0.7440
11	٦	.0000E+0	0202E	8.7845E+00	3.0319E+		7.0207	3.0319E+01	•	0.8149	748
8	٠.	500E+0	9795E	127E	.8180E+		6.9798	3 (6.3127E+00	,	121
61	٦.	.5000E+0	9609E	۰	•6391E+		0196.9	-0391E	3.6677E+30)	727
50	٠,	.7500E+0	9583E	53E	4854		6.9583	-4854E	1.33636+00	,	U. (530 2010 2010
12	٠,	.0000E+0	. 96 / LE	*0151E	•		706.00	*37046*	1	0.00	701
77	•	. 2500E+0	78300	9 7	1677.		2 2010	31622.	0.444E4	0.0149	750
5 7	•	5 C	0147	52645	01445	7.0194E+02	7,0167	- 11 COE	764F	0.8149	0.7493
,	6.0000E+00	.0000E+	96.		· ~	6.9717E+02	9696	9139E+	.893		.752
		•		•							٠.
							,				
	COORDINATES	ATES	MHK				ANG! ES		*		
	AXIAL	RADIAL		5	MERIDIONAL	FLOW	UNDERTURNG	SPANWISE	_		
_	×	>	VBRI	CPC		BETA		ZETA	I Hd	QFRACT	
	2.0000E+00	1.9996E+00		-4.4825E-01	٠.	1.5731E+00	1.0472E	7.	1.0472E	•	
-	2.0000E+30	.5000E+0	4.0744E+02	.3219E-	``	8.5735E+00	8.6091	5	8.6051	8.3696E	-05
7	2.0000E+00	1	4.0744E+02	338E-		7.5615E+00	7.5628E	1.0606E+	7.5628	1.8635E	-01
m ·	2.0000E+00	. S000E+0	4.0744E+02		.,	6.8818E+00	6.8876E	2.3636E+	9/88/9	3.08775	주 2
3 (2.0000E+00	.0000E+0	コキャンロ		-4.9024E+00	6 36365+00	0 0	30365	2000	ח ה	7 9
Λ,	2.0000E+00	- 2000E+0	はなさいつ	-4. (089E-01	-0.230E+00	5 5703E400		70007	2.500.0	7 00235	7 7
0	2.000E+00	. 00000±0	**************************************	10-30/4/**	· -	3316E+00	, ,	3226F+	-5,3330	י ע	1 0
	4-000E+00	258F+		-7-8374E-01	7.9354E+00	5.2521E+00	5	9354E+	00 5.3026E+00		
~	4 0000E+00	.7500E+0	5.1133E+02	-7.7120E-01	4.2191E+00	4.4837E+00	4	2191E+	4	1.0135E	٥ م
· œ	4.0000E+00	.0000E+0	20	-7.6938E-01	2.4085E+00	4.1571E+00	4	.4085E+	4	169	-01
6	4.0000E+00	.2500E+0	201	-7.7117E-01	7.9603E-01	3.8881E+00		-9603E-	۳ •	2.4294E	٥ م
2	4.0000E+00	.5000E+0	F02	-7.7609E-01		3.6596E+00	9	.8361E-	9	3.2283E	ģ.
=	4.0000E+00	.7500E+0	50	-7.8405E-01	Ň	3.4596E+00	518	2.09	m	4.0890E	7
12	4.0000E+00	.0000E+0	, 0			3.2795E+00	ന	48		5.0126E	9
13	4.0000E+00	.2500E+0	26	-8.1010E-01		3.1131E+00	247E	.9485E	3.1247E+0	6. 0003E	Ģ
4 .	4.0000E+00	.5000E+	5.11335+02	6062.	9 9	2.9562E+00	2.975/E+00	-6.369UE+00	,	8 1722E	7 5
2	4.0000E+00	1210540	2043661196	72306-	204.	6161E+0	77,	.2661	7175 7175		10
	4.0000E+00	• 1 3 1 0 E + 0		• • • • • •	7047	0.4314.10	1111	11017	1	3	3

```
7.1003E-02
1.4798E-01
                              2.3128E-01
3.2103E-01
4.1736E-01
                                                                          6.3011E-01
7.4669E-01
                                                                                                                                                                                                                               -4.1300E+01
                                                                                                                                                                                               -3.4087E+01
-3.6653E+01
                                                               5.2035E-01
                                                                                                                                                                                                                     -3.9088E+01
                                                                                                                                                                                                                                           -4.3318E+01
                                                                                                                                                                                                                                                                -4.6861E+01
                                                                                                                                                                                                                                                                            -4.8428E+01
                                                                                                                                                                                                                                                                                                           -5.1650E+01
                                                                                                8.7010E-01
                                                                                                          1.0000E+00
                                                                                                                                                                                                                                                      -4.5165E+01
                                                                                                                                                                                                                                                                                      -4. 9892E+01
                                                                                                                                                                                                                                                                                                 -5.1278E+01
        2.6592E+00
2.4730E+.0
                              2.3121E+.0
2.1712E+00
2.0457E+00
                                                                                                                                                                                                                                                                                               1.0475E+00
1.0483E+00
                                                               1.9322E+.0
1.8284E+00
                                                                                                                                                                                                8.1164E-01
8.2670E-01
                                                                                                                                                                                                                              8.6721E-01
                                                                                      1.7328:+00
                                                                                              1.6444E+30
                                                                                                                                                                                                                     8.4474. -01
                                                                                                                                                                                                                                           8.9286E-C1
                                                                                                                                                                                                                                                                9.5052E-01
                                                                                                                                                                                                                                                                                      1-01465+30
                                                                                                                                                                                                                                                      9.20945 -01
                                                                                                                                                                                                                                                                            9.8231E-:1
                                                                                                                                                                                     VPRST
8.6731E+02
8.8438E+02
9.0453E+02
        8.0635E-01
7.1692E-01
                              5.1821E-01
3.0189E-01
1.1003E-01
                                                                                                                                                                                                                               9.2906E+02
                                                                                                                                                                                                                                                               .0189E+03
                                                                                                          4.8451E-08
                                                                                                                                                                                                                                                                                                1.1217E+03
                                                               -3.3019E-02
                                                                          -1.1195E-01
                                                                                      -1.2082E-01
                                                                                               -6.9623E-02
                                                                                                                                                                                                                                           9.5677E+02
                                                                                                                                                                                                                                                     9.8690E+02
                                                                                                                                                                                                                                                                            .0524E+03
                                                                                                                                                                                                                                                                                      .08 68E+03
                                       2.1712E+00
2.0457E+00
1.9322E+00
1.8284E+00
1.7328E+00
                              2.3121E+00
                                                                                                                                                                                                                                        -6.5639E+02
        2.6592E+00
                                                                                                                                                                                                                     -5.7032E+02
-6.1318E+02
                                                                                                                                                                                                                                                  -6.9985E+02
                     2.4730E+00
                                                                                                          -1.5731E+00
                                                                                                                                                                                                 -4.8609E+02
                                                                                                                                                                                                          -5.2795E+02
                                                                                                                                                                                                                                                                 -7.4350E+02
                                                                                                                                                                                                                                                                            -7.8729E+02
                                                                                                                                                                                                                                                                                      -8.3118E+02
                   2.4728E+00
2.3120E+00
2.1712E+00
2.0457E+00
2.8906E+00
2.6589E+00
                                                               1.9322E+00
                                                                                               1.6444E+00
-1.5731E+00
                                                                                                                                                                                                -2.9931E+01
-3.3073E+01
                                                                                                                                                                                                                     -3.5978E+01
                                                                                                                                                                                                                                          -4.0930E+01
                                                                                                                                                                                                                                                     -4.3056E+01
                                                                         1.8284E+00
                                                                                                                                                                                                                                                                 -4.4991E+01
                                                                                      1.7328E+00
                                                                                                                                                                                                                                  -3.8582E+01
                                                                                                                                                                                                                                                                            -4.6765E+01
                                                                                                                                                                                                                                                                                      -4.8409E+01
                                                                                                                                                                                                                                                                                                  -4.9954E+01
                                                                                                                                                                                                                                                                                                                                                                                     1.0000E+30
1.0000E+00
                                                                                                                                                                                                                                          8.5982E-01
8.8865E-01
                              5.1821E-01
3.0189E-01
                                                                -3.3019E-02
                                                                                                                                                                                                 7.7564E-01
                                                                                                                                                                                                         7.9147E-01
                                                                                                                                                                                                                       8.1023E-01
                                                                                                                                                                                                                                  8.3343E-01
                                                                                                                                                                                                                                                                            9.5157E-01
                                                                                                                                                                                                                                                                                       9.8472E-01
                                                                                                                                                                                                                                                                                                  1.0184E+00
                                                                                     -1.2082E-01
-6.9623E-02
                                                     1.1003E-01
                                                                        -1.1195E-01
                     7.1692E-0
                                                                                                                                                                                                                                                                  9.1940E-0
6.0152E
8.0635E
                                                                                                                                                                                                                                                                                                                                                                                      ..7858E+01
                               -1.0822E+00
-1.0767E+00
                                                                 -1.0781E+00
                                                                                                -1.0920E+00
                                                     -1.0757E+00
                                                                            -1.0825E+0U
                                                                                      -1.0876E+03
                      -1.0942E+00
                                                                                                           -1.0783E+00
                                                                                                                                                                                                                                                     9.5230E+02
           -1.1159E+00
                                                                                                                                                                                                                      8.6757E+02
                                                                                                                                                                                                                                                                             1.0194E+03
                                                                                                                                                                                                                                                                                       1.0547E+03
                                                                                                                                                                                                 8.2884E+02
                                                                                                                                                                                                            8.4670E+02
                                                                                                                                                                                                                                  8.9287E+02
                                                                                                                                                                                                                                            9.2136E+02
                                                                                                                                                                                                                                                                  9.8514E+02
                                                                                                                                                                                                                                                                                                  1.0906E+03
                   5, 7015E+02
5, 7015E+02
5, 7015E+02
5, 7015E+02
5, 7015E+02
5, 7015E+02
          5.7015E+02
                                                                                               5.7015E+02
                                                                                                                                                                                                            -4.6205E+02
                                                                                                                                                                                                                                           -6.0361E+02
-6.5015E+02
                                                                                                                                                                                                                                                                             -7.4271E+02
                                                                                                                                                                                                  -4.1355E+02
                                                                                                                                                                                                                        -5.0968E+02
                                                                                                                                                                                                                                  -5.5682E+02
                                                                                                                                                                                                                                                                  -6.9650E+02
                                                                                                                                                                                                                                                                                       -7.8882E+02
                                                                                                                                                                                                                                                                                                  -8.3486E+02
                                                                                                                                                                                                                                                                                                            -9.1914E+02
                                                                                                                                                                                                                                                                                                                                                                   10(1)-08AR)/08AR
                                                                                                                                                                                                                                                                                                                                                                           -1.4958E-03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  2.12672E+00
2.24913E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         2.68524E+00
2.78336E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            2.87868E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             3.38839E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       2.36677E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  2.47966E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              2.58433E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         2.97120E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    3.05900E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             3.14398E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         3.22721E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    3.30868E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          3.46635E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              3.61441E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         3.68620E+00
                                                                                                                                            RELATIVE ROTOR INLET DATA
                               3.2500E+00
3.5000E+00
                                                                                              4.7500E+00
                                                                                                                                                                                                          4.9500E+02
                                                                                                                                                                                                                                           6.3000E+02
                                                                                                                                                                                                                                                                                                            9.0000E+02
                     3.0000E+00
                                                     3.7500E+00
                                                                4.0000E+00
                                                                           4.2500E+0C
                                                                                      4.5000E+00
                                                                                                                                                                                                 4.4982E+02
                                                                                                                                                                                                                       5.4000E+02
                                                                                                                                                                                                                                  5.8500E+02
                                                                                                                                                                                                                                                                  .2000E+02
                                                                                                                                                                                                                                                                             7.6500E+02
                                                                                                                                                                                                                                                                                       8.1000E+02
                                                                                                                                                                                                                                                                                                  8.5500E+C2
          2.7500E+00
                                                                                                          5.0000E+00
                                                                                                                                                                                                                                                                                                                                             FLOW DATA
                                                                                                                                                                00000.9
                                                                                                                                                                                                                                                                                                                                                                                                                                            2:000
                                                                                                                                                                                                                                                                                                                                                                            2.0000E+00
4.0000E+00
6.0000E+00
                                                                                                                                                                                                                                                                                                                                                                                                                        STREAML INES
                               6.0000E+00
                                                                                                                                                                                                            2.7500E+00
3.0000E+00
                                                                                                                                                                                                                                           3.5000E+00
3.7500E+00
                                                                                                                                                                                                                                                                                                                                             WE IGHT
6.0000E+00
                                                                 6.0000E+00
                                                                            6.0000E+00
                                                                                               6.0000E+00
                                                                                                                                                                                                                                  3.2500E+00
                                                                                                                                                                                                                                                                 4.0000E+00
                                                                                                                                                                                                                                                                             4.2500E+00
                                                                                                                                                                                                                                                                                       4.5000E+00
                                                                                                                                                                                                                                                                                                  4.7500E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   2.00000E-02
                     6.0000E+00
                                                     6.0000E+00
                                                                                      6.0000E+00
                                                                                                            6.0000E+00
                                                                                                                                                                                                                                                                                                             5.0000E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              . 00000E-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       5.00000E-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   8.00000E-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               .00000E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             .60000E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             2.20000E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              2.80000E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               3.40000E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         . 20000E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  .40000E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    2.00000E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         2.40000E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    2.60000E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          3.00000E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         60000E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         . 80000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    3. 20000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                         OSTRH
                                                                                                                                                                                                                                                                                                                                                                                                                                               Ħ
```

```
..02713€+00
                      .15362E+00
                                   4.21568E+00
                                                ..27696E+00
                                                           1.33745E+00
                                                                                             .51387E+00
                                                                                                                                  .68097E+00
                                                                                                                                                                                                                                 5.10512E+00
                                                                                                                                                                                                                                                                                                                                                                  YSTRM
2.41430E+00
                                                                                                                                                                                                                                                                                                                                                                                         2.50044E+00
2.58422E+00
                                                                      .39716E+00
                                                                                   .45607E+00
                                                                                                          .57006E+00
                                                                                                                       .62576E+00
                                                                                                                                              .73569E+00
                                                                                                                                                                     4.84368E+00
                                                                                                                                                                                  **89694E+00
                                                                                                                                                                                             4.94972E+00
                                                                                                                                                                                                         5.00200E+00
                                                                                                                                                                                                                      5.05381E+00
                                                                                                                                                                                                                                                                                                                                                                                                                 $.66565E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                      2.82071E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              3.49143E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         3.55117E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      3.60997E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                3.66788E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            3.72490E+00
          4.09077E+00
                                                                                                                                                         .78993E+00
                                                                                                                                                                                                                                            5.15595E+00
                                                                                                                                                                                                                                                       3.20629E+00
                                                                                                                                                                                                                                                                                                                             5.49810E+00
                                                                                                                                                                                                                                                                                                                                                                                                                           2.74473E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1.10677E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  3.43031E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         3.78087E+00
                                                                                                                                                                                                                                                                    5.25614E+0(
                                                                                                                                                                                                                                                                                .30551E+0(
                                                                                                                                                                                                                                                                                           .35439E+0(
                                                                                                                                                                                                                                                                                                                                                                                                                                                    :.89492E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                               2.96743E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           3.03794E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    3.17425E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              3.24038E+0(
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         3.30483E+0C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       3.36811E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    3.83593E+00
                                                                                                                                                                                                                                                                                                                                                     4.000
                                                                                                                                                                                                                                                                                                                                                                                                    6.00000E-02
                                                                                                                                  6.80000E-01
                                                                                                                       6.60000E-0]
                                                                                                           6.40000E-0
                                                                                                                                                          7. 20000E-0
                                                                                                                                                                     7.40000E-0
                                                                                                                                                                                   . 60000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               . 20000E-0]
                                                                                                                                                                                             . 80000E-0
                                                                                                                                                                                                                      8.20000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                    .40000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                               .60000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            -300008 ·
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        00000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    .20000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           . 60000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  *00000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          . 40000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      . 60000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             .00000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              .40000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 .80000E-0
                                                                                                                                                                                                                                                                                                                                                                   OSTRM
```

```
4.15049E+00
4.20052E+00
4.24993E+00
4.29851E+00
4.34657E+00
                                                                                             4.53342E+00
4.57870E+00
4.62359E+00
                                                                                                                                                                                                                                                                                                     2.64281E+00
2.71239E+00
2.71239E+00
2.87631E+00
2.91122E+00
3.03714E+00
3.03714E+00
3.0314E+00
3.15815E+00
                                                                                                                                                                                                                                                                                                                                                                                                              3.27501E+00
3.33179E+00
3.38775E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       4.09194E+00
4.13762E+00
                                                              4.39412E+00
                                                                                     4.48765E+00
                                                                                                                             4.66807E+00
                                                                                                                                       4.71215E+00
                                                                                                                                                                       4.84201E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                        3.49722E+00
3.55047E+00
                                                                                                                                                             4.79912E+00
                                                                                                                                                                                              4.92658E+00
                                                                                                                                                                                                        4.96827E+00
                                                                                                                                                                                                                 .00956E+00
                                                                                                                                                                                                                                       5.09095E+00
                                                                                                                                                                                                                                                                                          2.57167E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                               3.44289E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  3.70611E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  3.85532E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  3.99917E+00
                                                                                                                                                                                                                            5.05045E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              3.60302E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        3.65490E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             3,90383E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        3.95178E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             4.04579E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                4.27173E+00
                                                                                                                                                                                                                                                                      6.000
                                                                                                                                      8.00006-01
8.200006-01
8.400006-01
8.600006-01
9.800006-01
         5.60000E-01
5.80000E-01
                                        6.20000E-01
6.40000E-01
6.60000E-01
                                                                                                        7.40000E-01
                                                                                                                                                                                                                                                1.00000E+00
                                                                                                                                                                                                                                                                                                                6.00000E-02
8.00000E-02
                                                                                                                                                                                                       9. 20000E-01
                                                                                                                                                                                                                                                                                                      4.00000E-02
                                                                        6.80000E-01
                                                                                                                                                                                                                                       9.80000E-01
                                                                                                                                                                                                                                                                                                                                                                                       .00000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1.40000E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  4.00000E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                4.60000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           4. 80000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        5.00000E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  5.20000E-01
5.40000E-0
                               6.00000E-0
                                                                                     7.00000E-0
                                                                                               7.20000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                         2.60000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                    .80000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                        .20000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             3.60000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        3.80000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              4.20000E-0
```

```
PSOPTC
0.9967
0.9982
0.9997
                                                                                                                                                                                 9557
9418
9282
9157
9050
                                                                                                                                                                                                                                                .8865
                                                                                                                                                                .9827
                                                                                                                                               0666.
                                                                                                                                                      .9931
                                                                                                                                                                                                                                                                           .8632
                                                                                                                                                                                                                                                                                                       .8252
                                                                                                                                                                                                                                                                                                               8098
                                                                                                                                                                                                                                                                                                                        1949
                                                                                                                                                                         9696.0
                                                                                                                                                                                                                                        .8911
                                                                                                                                                                                                                                                                   .8724
                                                                                                                                                                                                                                                                                     .8526
                                                                                                                                                                                                                                                                                                                                          .7644
                                                                                                                                                                                                                                                                                                                                                                     .7272
                                                                                                                                                                                                                                                                                              8401
                                                                                                                                                                                                                                                                                                                                                             .7381
                                                                                                                                                                                                                                                                                              0
                                                                                                          RB/RT
0.9756
0.9756
0.9682
0.9680
0.9690
                                                                                                                                                                        0.9504
0.9438
0.9376
0.9274
0.9239
0.9215
                                                                                                                                                                                                                                                        0.9154
                                                                                                                                                                                                                                                                                   0.8970
                                                                                                                                                                                                                                                                                                               0.8633
                                                                                                                                                                                                                                                                                                                                                             80 70
                                                                                                                                                                                                                                                                                                                                                                              8008
                                                                                                                                                                                                                                                                                                                                                                                     1662
                                                                                                                                                                                                                                                82
                                                                                                                                                                                                                                                                                                       .8761
                                                                                                                                                                                                                                                                           0.9048
                                                                                                                                                                                                                                                                                                                                  0.8352
                                                                                                                                                                                                                                                                                                                                          8221
                                                                                                                                                                                                                                                                                                                                                                     0.8035
                                                                                                                                                                                                                                                                                                                                                                                               0.79
                                                                                                                                                                                          -0.2344E+00 C
-0.2949E+00 C
-0.3505E+66 C
                                                                                                                   0.1016E-01
0.1712E-01
0.2384E-01
0.2042E-01
-0.5545E-02
                                                                                                                                                                                                                     -0.3982E+00
                                                                                                                                                                                                                                      -0.4605E+CO
                                                                                                                                                                                                                                                -0.4807E+00
-0.5084E+00
                                                                                                                                                                         -0.1103E+00
-0.1726E+€€
                                                                                                                                                                                                                                                                                   -0.631 7E+ GU
                                                                                                                                                                                                                                                                                                              -0.8224E+00
                                                                                                                                                                                                                                                                   -0.5438E+CO
                                                                                                                                                                                                                                                                           -0.5847E+00
                                                                                                                                                                                                                                                                                              -0.6878E+03
                                                                                                                                                                                                                                                                                                       -0.7535E+00
                                                                                                                                                                                                                                                                                                                         -0.8892E+00
                                                                                                                                                                                                                                                                                                                                  -0.9572E+00
                                                                                                                                                                                                                                                                                                                                                    -0.1088E+01
                                                                                                                                                                                                                                                                                                                                           -0.1025E+01
                                                                                                                                                                                                                                                                                                                                                 -0.1129E+01
-0.8767E+00
-0.6252E+00
-0.3743E+00
-0.1245E+00
                                                                                                                  -0.7153E+01
-0.6903E+01
-0.6652E+01
-0.6418E+01
-0.5986E+01
-0.5768E+01
-0.5549E+01
-0.5329E+01
-0.5329E+01
-0.5329E+01
-0.5329E+01
-0.5339E+01
-0.5436E+01
-0.5436E+01
                                                                                                                                                                                                                                      -0.4157E+01
-0.3908E+01
-0.365E+01
-0.3402E+01
-0.3148E+01
-0.2895E+01
-0.284E+01
-0.238E+01
-0.238E+01
-0.1894E+01
                                                                                                                                                                                                                                                                                                                                           0E+01
                                                                                                                                                                                                                                                                                                                                                                                                         5E+00
                                                                                                                                                                                                                                                                                                                                           -0.138
                                                                                                                                                                                                                                                                                                                                                                                                         0.406
                                                                                                                                             0.3981E-05
0.1579E-05
0.6194E-06
0.5313E-06
0.3822E-06
0.3832E-06
0.3832E-06
0.3832E-06
0.2837E-06
                                                                                                                   -0.2088E-05
-0.2882E-05
-0.7646E-05
                                                                                                                                                                                                                                                                                                                                                                                        E-07
                                                                                                                                                                                                                                                                                                                                                                              .9678E-07
                                                                                                                                                                                                                                                                                                                                                                                                 8822E-07
                                                                                                                                                                                                                                                                                                                                                                                                         8505E-07
                                                                                                                   0.2412E+03
0.2412E+03
0.2535E+03
0.2341E+03
0.3156E+03
0.3156E+03
0.3366E+03
0.3732E+03
0.3732E+03
0.4071E+03
0.4125E+03
0.4125E+03
0.4156E+03
0.4126E+03
0.4156E+03
0.4156E+03
0.4156E+03
0.4156E+03
0.4156E+03
0.4156E+03
                                                                                                                                                                                                                                                                                                     0.4963E+03
0.5148E+03
0.5329E+03
0.5495E+03
                                                                                                                                                                                                                                                                                                                                                                            0.5827E+03
0.5841E+03
0.5845E+03
                                                                                                                                                                                                                                                                                                                                          5632E+03
                                                                                                                                                                                                                                                                                                                                                  0.5725E+03
                                                                                                                                                                                                                                                                                                                                                          0.57746+03
                                                                                                                                                                                                                                                                                                                                                                     5803E+03
                                                               84508E+02
                                                                                                                                     0.2156E+02
0.4277E+02
0.1106E+03
0.1758E+03
                                                                                                                   0.7702E+02
0.5609E+02
                                                                                                                                                                                  0.2831E+03
0.3253E+03
                                                                                                                                                                                                    0.3621E+03
                                                                                                                                                                                                                     0.4184E+03
                                                                                                                                                                                                                             0.4370E+03
                                                                                                                                                                                                                                                        0.4719E+03
                                                                                                                                                                         0.2337E+03
                                                                                                                                                                                                             0.3933E+03
                                                                                                                                                                                                                                        0.4493E+03
                                                                                                                                                                                                                                                0.4590E+03
                                                                                                                                                                                                                                                                   0.4881E+03
                                                                                                                                                                                                                                                                           0.5063E+03
                                                                                                                                                                                                                                                                                    0.5265E+03
                                                                                                                                                                                                                                                                                              0.5500E+03
                                                                                                                                                                                                                                                                                                       0.5767E+03
                                                                                                                                                                                                                                                                                                                0.6034E+03
                                                                                                                                                                                                                                                                                                                         0.6288E+03
                                                                                                                                                                                                                                                                                                                                  0.6539E+03
                                                                                                                                                                                                                                                                                                                                           0.6783E+03
                                                                                                                                                                                                                                                                                                                                                    0.7004E+03
                                                                                                                                                                                                                                                                                                                                                           0.7193E+03
                                                                                                                                                                                                                                                                                                                                                                             0.7499E+03
                                                                                                                                                                                                                                                                                                                                                                                                7449E+03
                                                               ŝ
                                                                II
                                                              VICT
                                                                                                                  0.2807E-05
0.2821E-05
0.2877E-05
0.3047E-05
0.3083E-05
0.3085E-05
0.3081E-05
0.2954E-05
0.2791E-05
0.2590E-05
0.2590E-05
0.2590E-05
                                                                                                                                                                                                                                                                                                                                                 0.1473E-05
0.1401E-05
0.1331E-05
                                                                                                                                                                                                                                                                                                               0.1774E-05
0.1694E-05
                                                                                                                                                                                                                                                                                                                                                                             0.1267E-05
0.1206E-05
                                                                                                                                                                                                                                                                                                                                                                                               0.1147E-05
0.1089E-05
                                                                                                                                                                                                                                                                                                                                 0.1618E-05
                                                                                                                                                                                                                                                                                                                                          0.1546E-05
                                                                                                                                                                                                                                                                                              0.1952E-05
                                                                                                                                                                                                                                                                                                       0.1860E-05
                                                              1.82949E+01
                                                                                                                   -0.7702E+02
-0.5609E+02
-0.2156E+02
0.4277E+02
0.1106E+03
0.138E+03
0.2337E+03
0.2831E+03
                                                                                                                                                                                                            0.3933E+03
0.4184E+03
0.4370E+03
                                                                                                                                                                                                                                                        .4719E+03
                                                                                                                                                                                                                                                                                           0.5500E+03
                                                                                                                                                                                                                                                                                                                                                  0.7004E+03
                                                                                                                                                                                                                                                                                    0.5265E+03
                                                                                                                                                                                                                                                                                                       .5767E+03
                                                                                                                                                                                                                                                                                                                       0.6288E+03
                                                                                                                                                                                                                                                                                                                                  .6539E+03
                                                                                                                                                                                                                                                                                                                                          0.6783E+03
                                                                                                                                                                                                                                                                                                                                                            0.7193E+03
                                                                                                                                                                                                                                                                                                                                                                     0.7359E+03
                                                                                                                                                                                                     0.3621E+03
                                                                                                                                                                                                                                        .4493E+03
                                                                                                                                                                                                                                                .4590E+03
                                                                                                                                                                                                                                                                           0.5063E+03
                                                                                                                                                                                                                                                                                                                0.6034E+03
                                                                                                                                                                                                                                                                                                                                                                              .7499E+03
                                                                                                                                                                                                                                                                                                                                                                                                         .7339E+03
        4.96239E+00
5.00000E+00
                                                              WD0TT
                                                                                                                                                                                                                                                         ō
                                                                                                                                                                                                                                                                   ò
                                                                                                                                                                                                                                        0
                                                                                                                                                                                                                                                                                                       0
                                                                                                                   0.1250E+00
0.3750E+00
0.6254E+00
0.1057E+01
0.1236E+01
0.1392E+01
0.1524E+01
0.1731E+01
0.1731E+01
                                                                                                                                                                                                                                                                                                              0.2308E+01
0.2343E+01
                                                                                                                                                                                                                                                                                                                                         .2404E+01
.2430E+01
.2453E+01
                                                                                                                                                                                                                                       0.1979E+01
0.2021E+01
0.2063E+01
                                                                                                                                                                                                                                                                                                                                                                                                       2500E+01
                                                                                                                                                                                                                                                                                   0.2188E+01
                                                                                                                                                                                                                                                                                                                                                                                       .2497E+01
                                                                                                                                                                                                                                                                                              0.2229E+01
                                                                                                                                                                                                                                                                                                                                  0.2375E+01
                                                                                                                                                                                                                                                                                                                                                                     0.2473E+01
                                                                                                                                                                                                                                                                                                                                                                              2488E+01
                                                                                                                                                                                                                                                                   0.2104E+0]
                                                                                                                                                                                                                                                                            2146E+01
                                                                                                                                                                                                                                                                                                       0.2270E+0
                                                                                                                                                                                                                               0.19336+0
                                                                                        POINTS
                                                         0.18000E+03
                                   THETAS:
                                                                                HUB
ON-BODY
                                                                                                                   0.

0.4613E-02

0.4613E-01

0.1267E+00

0.2673E+00

0.399E+00

0.7639E+00

0.7639E+00

0.7639E+00

0.1412E+01

0.1412E+01

0.2125E+01

0.2875E+01

0.2875E+01

0.2875E+01

0.2875E+01

0.4673E+01

0.4673E+01

0.4673E+01

0.4673E+01

0.4673E+01

0.4673E+01

0.4673E+01

0.5125E+01

0.5125E+01

0.6626E+01

0.6626E+01

0.6626E+01

0.6626E+01

0.6626E+01

0.6626E+01
9.60000E-01
9.80000E-01
                 1.00000E+00
                                    m
                                                                ti
                                    9
                                                              THETA
                                    6
```

4.40149E+00 4.44396E+00

.35863E+00

80000E-01

4.52755E+00

.48602E+30 4.56868E+00

7.00000E-01 7.20000E-01 7.40000E-01 7.60000E-01 7.80000E-01

4.60949E+00

4.69015E+00 4.73000E+00

4.76953E+00 4.84763E+00 4.88621E+00 4.92446E+00

8.00000E-01 8.20000E-01 8.40000E-01 8.60000E-01 9.00000E-01 9.20000E-01 9.40000E-01

4.80874E+00

E-01

742E+0		.2500E+0	.7279E+0	.1031E-0	7279E+0	.5845E+	.8114E-0	.7419E+00	67E+0	0.79	.732
27E+01 0.2500E+01 0	.2500E+01 0		.7189E+03	216	.718	ועטע	7311E	353	4 4 6	0.7986	0.7384
207E+01 0.2500E+01 0 902E+01 0.2500E+01 0	.2500E+01 0		145E+0	.8/1/E-U	./145E+0 .7098E+0	.5845E+	.6990E-0	.2902E+01	15E+3	2.2	744
737E+01 0.2500E+01 0 064E+02 0.2500E+01 0	.2500E+01 0		028E+0 857E+0	.8438E-0	7028E+0 6857E+0	.5845E+	.6879E-0	.3737E+01	94E+	65.	.748 .759
155E+02 0.2500E+01 0	.2500E+01 0		683E+0	.8332E-0	.3683E+0	.5845E+	.1296E-0	.5548E+01	56E+	• 79	.925
SHROUD ON-BOOY POINTS	POINT										
> 0	> 0		d A	VTHETA	VRES	VBARI	BETA		CPC	. 86	PS.
E+02 0.5000E+01 -0	.5000E+01 -0	o .c	? ?	.5303E-0	.5570E+0	.5845E+0	.1/985-0 .5013E-0	.3348E+ .4644E+	- 36 7 14 5E+	. 5	ļΨ
737E+01 0.5000E+01 -0	-5000E+01 -0	.0	399E+U	.4506E-0	.6399E+0	.5845E+0	4035E-0	.373	0+3051	6.	
902E+01 0.5000E+01 -0	5000E+01 -0	O C	0 + d	4453E-0	.6777E+0 6945E+0	5845E+0	0.3/65E-0 0.3787E-0	.2902E+	7.3E+	. 5	٦.٢
627E+01 0.5000E+01 -0	.5000E+01 -0	0	047E+0	.4832E-0	.7047E+0	.5845E+0	0.3928E-0	.1627E+	. 0	2	. ^-
4E+01 0.5000E+01 -0	.5000E+01 -0	0 0	120E+0	.5126E-0	.7120E+0	. 5845 845	.4125E-0	.1144E+	21E+	6.0	٠,
407E+01 0.5000E+01 -0	.5000E+01 -0	0 0	229E+0	.5755E-0	.7229E+0	.5845E+0	.4562E-0	404	52E+	2 6	
127E+01 0.5000E+01 -0	.5000E+01 -0	0	279E+0	.6058E-0	.7279Ë+0	.5845E+0	4768E-0	.1270E+	67E+	0.79	~,
8/3E+01 0.5000E+01 -0 625E+01 0.5000E+01 -0	.5000E+01 -0	D. Q	11c+0 53E+0	.6685E-0	./311E+U .7353E+O	.5827E+0	0.5209E-0	.1250E+	89E+	8 2	٠.
75E+01 0.5000E+01 -0	.5000E+01 -0	0	\$20E+0	7045E-0	.7420E+0	.5803E+0	.5440E-0	.625 CE+0	120 8E+	80	L. 1
125E+01 0.5000E+01 -0 879E+01 0.5005E+01 -0	.5000E+01 -0	0	# + C	.7908E-0	.7816E+0	.5//4E+0 .5726E+0	0.5652E-0 0.5797E-0	.1121	4 2 E +	9.0	- 9
632E+01 0.5023E+01 -0	.5023E+01 -0	0	7823E+0	.8341E-0	.7823E+0	.5636E+0	0.6109E-0	.1369E+	2 SE+	0.82	9
373E+01 0.5058E+0 102E+01 0.5109E+0	.5058E+01 -0 .5109E+01 -0	00	7463E+0 6962E+0	.8721E-0 .9090E-0	.7463E+0 .6962E+0	.5495E+03	- 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19	.1630E+ .1906E+	2 1E	0.83	-
821E+01 0.5172E+01 -0	.5172E+01 -0	0	6427E+0	.9474E-0	.6427E+0	.5108E+03	7E-0	.2194E+	9266E+	0.86	, ~
31E+01 0.5242E+01 -0	.5242E+01 -0	0.0	22E+0	.9891E-0	.5922E+0	4893E+03	0E-0	2493	7934E+	8 8	8,4
945E+01 0.5381E+01 -0	.5381E+01 -0	0	5146E+0	.1086E-0	.5146E+0	.4510E+03	96-0	.3094E+	6039E+	0.0	8
662E+01 0.5436E+01 -	.5436E+01 -0	00	4915E+0	.1141E-0	4915E+0	4367E+03	- 3	.3383	5513E+	6.0	œ «
128E+01 0.5495E+01 -0	.5495E+01 -0	0	4872E+0	.1276E-0	.4872E+0	.4198E+03	1E-0	.3920E+	5417E+C	0.91	8
887E+01 0.5500E+01 -0	.5500E+01 -0	00	Ф. С	.1363E-0 .1461E-0	.5213E+0 5725E+0	.4162E+03	9E-0	4161	.6194E+	0.0	œ «
476E+01 0.5513E+01 -0	.5513E+01 -0	0	157E+0	.1563E-0	.6157E+0	.4089E+03	5.6-0	4572E+	8544E+	0.92	œ.
287E+01 0.5531E+01 -	.5531E+01 -	99	.6557E+0 .6906F+0	.1672E-0 .1787E-0	.6557E+0 .6906E+0	.4030E+03	3E-0	4965	.9622E+ .106CE+	25	~ ~
1 (.5602E+01 -	9.0	.71	1906	718	3854E+03	-0.1519E-06	5122E+		0.9329	0.7384
209E+00 0.5727E+01 -	.5727E+01 -	9	.7499E+0	.2147E-0	.7499E+0	.3607E+03	9-90	.5460E+	1232E+	8	~
811E+00 0.5811E+01 -0	.5811E+01 -0	0	509E+0	.2265E-0	.7509E+0	.3463E+03	8E-0	.5624E+	.1235E+	96	
57E+00 0.591UE+01 = 57E+00 0.6022E+01 =	.>910E+01 = .6022E+01 =	9 9	.7201E+0	.2485E-0	.7201E+0	.3311E+U3	7.5	5940	1446+	. 95	-
537E+00 0.6147E+0	-6147E+01 -	Ĭ	.68796+0	.2583E-0	.6879E+0	.2996E+03	1E-0	.6096E+	.1052E+G	96.	7
191E-01 0.6283E+01 -	.6283E+01 -	9 9	.6438E+0	.2670E-0	.6438E+0	.2842E+03	76.	.6249	9297E+	96.	۳. ۵
693E-01 0.842/E+01 -	.6575E+01 -	ן י	.5026E+0	.2797E-0	.5026E+0	.2555E+03	9E-0	.6552E+	. 5763E+0	.97	. 6
0.67416+01 -	-6741E+01 -	Ϋ.	.4139E+0	.2836E-0	.4139E+0	.2412E+03	5E-0	.6718E+	.3896E+0	6	6
0.6942E+01 - 0.7183E+01 -	.6942E+01 - .7183E+01 -	ן ו	.3575E+0 .3157E+0	.28/1E-0 .2907E-0	.35/5E+0 .3157E+0	.2239E+03 .2053E+03	7 E - 0	7160	22.	. 86	0.0
7.	.7472E+01 -	9	.2818E+0	.2941E-0	.2818E+0	.1857E+03	0-30	. 7449E+	.1708E+C	86	6
.7819E+01 -	.7819E+01 -	99	.2533E+0	.2974E-0	.2533E+0	.1653	-0.6728E-06	•	-0.1336E+60 -0.1046F+00	2.5	, 0
.8736E+01 -	.8736E+01 -	9	2074E+0	.3032E-0	.2074E+0	.1242E+	.8377	.8712E+	.8180E-	66	6.
•											

```
0.8608E+02
0.6928E+02
0.553E+02
0.4514E+02
0.3721E+02
0.3106E+02
0.2226E+02
0.1910E+02
0.1888E+03
0.1728E+03
0.1590E+03
0.1456E+03
0.1302E+03
0.1241E+03
0.1241E+03
0.1089E+03
0.1089E+03
0.1089E+03
0.3057E-05
0.3079E-05
0.3111E-05
0.3121E-05
0.3128E-05
0.3138E-05
0.3137E-05
        -0.1728E+03
-0.1590E+03
-0.1468E+03
-0.1375E+03
-0.1241E+03
                                                                  -0.1139E+03
-0.1089E+03
-0.1027E+03
-0.9321E+02
       0.1006F+02
0.1092F+02
0.1187F+02
0.1378E+02
0.1474F+02
0.1569F+02
0.1665F+02
0.1866F+02
```

888 0. 899 0. 991 0. 992 0. 994 0. 995 0. 997 0.

RESS.RATIO COMP 408R PSOPTG 0.8890 1192 0.8891	0.8679 0.8601 0.8560 0.8653	0.8040 0.8035 0.8020 0.7996 0.7965 0.7926	0.750 0.7750 0.7750 0.7181 0.7242 0.7293 0.7319	0.7329 0.7321 6.7308 0.7293 0.7282 0.7315	\$ 0,00000 \$ 0,000000	5555555555 555555555555555555555555555
PRESS CC RHOBR •9192	0.9192 0.9192 0.9192	0.8563 0.8563 0.8563 0.8563 0.8563	7988 7988 7988 7988 7988	B B B B B B B B B B B B B B B B B B B B	0 FRACT 0 8 01896- 1.79806- 2.00116- 4.42196- 6.06906- 1.00006- 0.00006-	1.0067E 1.6810E 3.4162E 3.4162E 4.0727E 4.9962E 7.9960E 1.0000E
1SE VSPAN 2575E-0 5924E-0	42776- 42776- 02186- 40226- 03266-	8918E-0 4831E-3 2772E-K 0748E-0 8268E-0 7481E-0	86576 21326 90836 66646 60396 37466	6.8116E-57 5.4862E-57 4.8231E-07 4.8344E-57 5.4141E-07 -6.2058E-07	SWIRL 25046 62516 26756 035176 70866 58246 50526	1.25 45E-7 1.26 45E-7 1.11 194 - 0.7 1.04 95E-07 9.93 86E-08 9.43 18E-08 8.96 29E-08 8.52 89E-08
1SE SP 4AFT 661E+01 4641E+01 5420E+01	51446 53296 36196 21666 15906	3526 2296 3526 3626 1546 1546	3225 3045 4591 8704 7025 3661 8373	2.0213E+00 3.4643E+00 3.4643E+00 3.3019E+00 1.8159E+00 -3.8217E-14	1 1 4 1 0 4 0 0 0 4 0 4 0 6	3.6430E-07 2.3172E-07 1.9156E-08 -1.9156E-08 -1.5877E-07 -2.472E-07 -3.4365E-07 -4.5702E-07
010NAL VM 4.5364E+ 4.5355E+	.8015 .9707 .1233 .2014 .0218	1335 1424 1682 2077 2599 3252	500 500 500 500 500 500 500 500 500 500	0-00 ~ ∃0 + 00 . ∃	NGLES ERTUR 17290E 1739	-3.6786E+00 -1.7006E+00 -3.8978E-03 1.865E+00 4.1845E+00 5.5287E+00 5.5287E+00 1.2461E+01
ITIES TANT MERI VRES •5364E+02 •5355E+02	.8015E+0 .9707E+0 .1233E+0 .2014E+0	13356+0 14246+0 16826+0 20776+0 32596+0	0003 124 968 968 968 103 103	.2729E+02 .2858E+02 .3057E+02 .3275E+02 .3454E+02 .2939E+02	#ELOW BELOW BELOW 2.6213E-07 2.6221E-07 2.6227E-07 1.69391E-07 1.55710E-07 1.55710E-07 1.5710E-07 1	2
UMFRNIL RES VZ 2.5365E-06 2.0750E-06 1.8373E-06	1.6951E-06 1.5955E-06 1.5119E-06 1.4262E-06 -1.3189E-06	6684E-0 6684E-0 746E-0 043E-0 452E-0 942E-0	.0093E- .7289E- .2267E- .1757E- .0680E- .8260E- .1329E-	8.0564E-07 7.6197E-07 7.2274E-07 6.5324E-07 -6.2058E-07	1 = 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	2461E+0
AL CIRC VY •6661E+01 •4641E+01		3.9352E-01 1.8252E-01 4.1962E-02 -1.6187E+01 -3.1305E+01 -4.6154E+01	-7.9225E+01 -1.0045E+02 -1.4591E+02 7.8704E+00 7.8704E+00 6.3601E+00 3.2203E+00	2.0213E+ 3.4643E+ 3.9040E+ 3.3019E+ 1.8159E+ 0.	CPC 6955E-01 6936E-01 9250E-01 2627E-01 6382E-01 1668E-01 1568E-01	8.57456 8.677456 8.677456 8.67791 9.2068 9.46676
AL VX 4.4712E+0 4.5288E+0	4.7803E+02 4.9276E+02 5.0702E+02 5.1641E+02 5.0205E+02	97E+02 97E+02 82E+02 56E+02 21E+02 83E+02	6.4518E+02 6.5357E+02 6.6030E+02 7.4046E+02 7.3281E+02 7.2880E+02	000000	VBRI 4.1759E+02 4.1759E+02 4.1759E+02 4.1759E+02 4.1759E+02	5.2407E+02 5.2407E+02 5.2407E+02 5.2407E+02 5.2407E+02 5.2407E+02 5.2407E+02 5.2407E+02
ATES #- 31AL 1.9996E+00 2.5000E+00 3.0000E+00	5000E+0 5000E+0 5000E+0 5000E+0 4981E+0	3.2500E+00 3.2500E+00 3.2500E+00 3.500E+00 4.0000E+00	.5000E+0 .7500E+0 .1310E+0 .4990E+0 .7500E+0 .2500E+0	3.7500E+00 4.0000E+00 4.2500E+00 4.5000E+00 5.0000E+00	RADIAL 1.9996+00 2.50006+00 3.00006+00 3.50006+00 4.00006+00 4.50006+00 5.00006+00 5.35816+00	2.7500E+00 3.0000E+00 3.5000E+00 4.0000E+00 4.5000E+00 4.7500E+00
COORDINATES LAL 2.0000E+00 1.9 2.0000E+00 2.5 2.0000E+00 3.0	2.0000E+00 2.0000E+00 2.0000E+00 2.0000E+00 4.0000E+00	4.0000E+00 4.0000E+00 4.0000E+00 4.0000E+00 4.0000E+00	4.0000E+00 4.0000E+00 6.0000E+00 6.0000E+00 6.0000E+00 6.0000E+00			
< 4	4440	7 8 6 0 11 Z E I	40 0-00	223 21 24 24 24 24 24 24 24 24 24 24 24 24 24	→ 000400	5 4 2 2 1 1 0 9 8 7

```
1.4780E-01
2.3105E-01
3.2078E-01
4.1710E-01
                                                                                                         5.2012E-01
6.2992E-01
7.4655E-01
                                                                                                                                                                                                                                                                                                                           -3.0964E+01
-3.3761E+01
-3.6385E+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                    -4.7867E+01
-4.9334E+01
-5.0978E+01
                                                                                                                                                                                                                                                                                                                                                                                                                -4.2865E+01
-4.4661E+01
                                                                                                                                                                                                                                                                                                                                                                                 -3.8753E+01
-4.0904E+01
                                                                                                                                                                8. 7002E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                 -4.6319E+01
                                                                                                                                                                                                                                                                                                             BETAPS
 8.9858E-08
8.2637E-08
7.6826E-08
7.1759E-08
                                                                                      6.3468E-38
5.9922E-28
                                                                                                                                                                                                                                                                                                                                         8.3583E-01
8.5336E-01
8.7564E-11
9.0130E-11
                                                                                                                                           5.3703E-08
5.0954E-08
                                                                                                                                                                                                                                                                                                                                                                                                                                 9.5971E-(1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     1.0569E+J0
1.0855E+.0
                                                                                                                                                                                                                                                                                                                                                                                                                  9.2952E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                      9.9135E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1.0239E+00
                                                                                                                          5.6682E
                                                                                                                                                                               -4.8748
                 1.2411E-07
1.0748E-07
8.7390E-08
6.8770E-08
5.3662E-08
4.3144E-08
                                                                                                                          3.7826E-08
3.7802E-08
4.2231E-08
                                                                                                                                                                                                                                                                                                                       8.7428 E+02
8.9072 E+02
9.1030 E+02
9.3455 E+02
9.6214 E+02
                                                                                                                                                                                                                                                                                                                                                                                                                                1.0243E+03
1.0578E+03
1.0923E+03
1.1272E+03
1.1584E+03
                                                                                                                                                                               -4.8748
                                                                                                                                                                                                                                                                                                                                                         -5.4000E+02
-5.8500E+02
-6.3000E+02
-6.7500E+02
-7.2000E+02
-7.6500E+02
-8.1000E+02
-8.5500E+02
                                                                                                                                                                               -3.0021E-15
                                                  -2.5317E-01
-2.2355E-02
                             -4.9773E-01
                                                                                                                                                                                                                                                                                                                                             -4.9500E+02
                                                                                       1.5924E-01
                                                                                                                        3.0618E-07
                                                                                                                                                             1.4164E-01
                                                                                                                                           2,58196
               7.6825E-08
7.1798E-08
6.7393E-08
6.3468E-08
5.6681E-08
5.3702E-08
                                                                                                                                                                                                                                                                                                                                                            -3.6385E+01
-3.8753E+01
-4.0904E+01
                                                                                                                                                                                                                                                                                                                        -3.3964E+01
                                                                                                                                                                               -4.8748E-08
                                                                                                                                                                                                                                                                                                                                                                                                                                   -4.4661E+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                   -4.6319E+01
                                                                                                                                                                                                                                                                                                                                             -3.3761E+01
                                                                                                                                                                                                                                                                                                                                                                                                                  -4.2865E+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      -4.7867E+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       -5.0978E+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     -4.9334E+01
                                                                                                                                                                                                                                                                                                        BETAPR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           QFR
1.0000E+00
1.0000E+00
1.0000E+00
               6.7335E-01
4.9773E-01
2.5317E-01
2.2355E-02
-1.5924E-01
                                                                                                      -2.7244E-01
-3.0618E-01
-2.5819E-01
-1.4164E-01
                                                                                                                                                                                                                                                                                                                                                         8.5336E-01
8.7564E-01
9.0130E-01
9.2952E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     1.0569E+00
1.0855E+00
                                                                                                                                                                                                                                                                                                                           8.2139E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                    1.0239E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                   9.9135E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                 9.5971E-01
                                                                                                                                                                                                                                                                                                                                             8.35836-01
                                                                                                                                          -1.1812E+00
-1.1864E+00
-1.1713E+00
                                                                                                                                                                                                                                                                                                        VPRIM
8.7428E+02
8.9072E+02
                                                                                                                                                                                                                                                                                                                                                           9.1030E+02
9.3455E+02
9.6214E+02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1.0923E+03
1.1272E+03
1.1584E+03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              1.8664E+01
1.8297E+01
                                                                                                                                                                                                                                                                                                                                                                                                                                1.0243E+03
1.0578E+03
                                                  -1.1696E+00
-1.1649E+00
                                                                                       -1.1652E+00
                                                                                                       -1.1690E+00
-1.1748E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              1.9409E+0]
                                1.1814E+00
                                                                                                                                                                                                                                                                                                                                                                                                                9.9226E+02
                                                                                                                                                                                                                                                                      900.000
                                                  5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8435E+02 - 5.8455E+02 - 5.8455E+02 - 5.8455E+02 - 5.8455E+02 - 5.8455E+02 - 5.845
                                                                                                                          5.8435E+02
                                                                                                                                           5.8435E+02
                                                                                                                                                           5.8435E+02
                                                                                                                                                                                                                                                                         H
                                                                                                                                                                                                                                                                                                                                                                              -5.8500E+02
-6.3000E+02
                                                                                                                                                                                                                                                                                                       VZPRIME
-4.4982E+02
                                                                                                                                                                                                                                                                                                                                           -4.9500E+02
                                                                                                                                                                                                                                                                                                                                                              -5.4000E+02
                                                                                                                                                                                                                                                                                                                                                                                                                -6.7500E+02
                                                                                                                                                                                                                                                                                                                                                                                                                                                 -7.6500E+02
                                                                                                                                                                                                                                                                                                                                                                                                                                 -7.2000E+02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      8.1000E+02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          (Q(I)-QBAR)/QBAR
6.0734E-02
2.0013E-02
0.
                                                                                                                                                                                                                                                                       UTIP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    YSTRM
2.13255E+00
2.326211E+00
2.326211E+00
2.49892E+00
2.60565E+00
2.70919E+00
2.90683E+00
3.08886E+00
3.17488E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      3.49956E+00
3.57381E+00
3.64679E+00
3.71851E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        3.34110E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        3.42130E+00
                                                                                                                                                                                                                                     DATA
2.4990E+00
2.7500E+00
3.0000E+00
3.5000E+00
3.7500E+00
4.0000E+00
                                                                                                                                                                                                                                                                                                                                                           5.4000E+02
5.8500E+02
6.3000E+02
6.7500E+02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    8.5500E+02
9.00C0E+02
                                                                                                                                          4.5000E+00
4.7500E+00
5.0000E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                    7.6500E+02
                                                                                                                                                                                                                                                                                                                           4.4982E+02
                                                                                                                                                                                                                                                                                                                                             4.9500E+02
                                                                                                                                                                                                                                                                                                                                                                                                                                 7.2000E+02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      8.1000E+02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            DATA
                                                                                                                                                                                                                                     ROTOR INLET
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            WEIGHT FLOW
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             2.0000E+00
4.0000E+00
6.0000E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        2.000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  STREAML INES
                                                  6.0000E+00
6.0000E+00
6.0000E+00
                                                                                                                                          6.0000E+00
6.0000E+00
6.0000E+00
                                                                                                                                                                                                                                                                                                                                                                          3.2500E+00
3.5000E+00
3.7500E+00
                                                                                                                                                                                                                                                                                                                                           2.7500E+00
3.0000E+00
                                                                                                       6.0000E+00
 6.0000E+00
                                  6.0000E+00
                                                                                                                          6.0000E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                    4.5000E+00
4.7500E+00
                                                                                                                                                                                                                                                                                                                             .4990E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                 4.0000E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                   4.2500E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       5.0000E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       4.00000E-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         2.00000E-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           8.00000E-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           1.00000E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                1.60000E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1.20000E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                1.40000E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    2.20000E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       2.40000E-0]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        2.80000E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   1.80000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    2.00000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        2.60000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         .00000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            3.20000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            3.40000E-0.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             3.60000E-0
                                                                                                                                                                                                                                     RELATIVE
                                                                                                                                                                                                                                                                         11
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            RAKE
```

```
2.50168E+00
2.50168E+00
2.58599E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                               3.04172E+00
3.11075E+00
3.17841E+00
3.24469E+00
3.30922E+00
                              4.05680E+00
                                                                                                                                                                                                                                                                                                                                                                                                          2.66790E+00
2.74739E+00
2.82370E+00
.85816E+00
                                                                         4.30377E+00
                                                                                                         .48020E+00
                                                                                                                                                                                   4.85950E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             3.49605E+00
                    .99277E+00
                                                     4.18196E+00
                                                               .24328E+00
                                                                                     .36342E+00
                                                                                               .42223E+00
                                                                                                                      .53637E+00
                                                                                                                                .59147E+00
                                                                                                                                           .64608E+00
                                                                                                                                                                                                                                                                           5.26245E+00
                                                                                                                                                                                                                                                                                                                     5.45197E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                          2.89822E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                     2.97101E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 3.43488E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      .55579E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 3.61460E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             3.67251E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        3.7.2952E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  3.78542E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             *84044E+00
                                                                                                                                                      .70018E+00
                                                                                                                                                                                                                                *06496E+00
                                                                                                                                                                                                                                                     5.16470E+00
                                                                                                                                                                                                                                                              5.21383E+00
                                                                                                                                                                                                                                                                                                5.35820E+00
                                                                                                                                                                                                                                                                                                           5.40533E+00
                                                                                                                                                                4.75379E+00
                                                                                                                                                                          4.80689E+00
                                                                                                                                                                                                           4.96323E+00
                                                                                                                                                                                                                     5.01435E+0C
                                                                                                                                                                                                                                            .11508E+00
                                                                                                                                                                                                                                                                                      5,31058E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            4.00099E+00
                                                                                                                                                                                                                                                                                                                                 5.49810E+0C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  .94822E+0(
                                                                                                                                                                                                4.91162E+0
                                                                                                                                                                                                                                                                                                                                                       4.000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  4.80000E-01
                                4.60000E-0
                                        4.80000E-0
          4.20000E-0
                                                     .00000E-0
                                                                2000E-0
                                                                           40000E-0
                                                                                     0-300009
                                                                                                           5.00000E-0
                                                                                                                                           0-300C09 9
                                                                                                                                                                           -20000E-D
                                                                                                                                                                                     .40000E-0
                                                                                                                                                                                                           -800008-
                                                                                                                                                                                                                     00000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           2.60000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       2.80000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  3.0000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             . 20000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       -40000F-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  .60000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             80000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        . 00000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   4.20000E-0
                                                                                               .80000E-0
                                                                                                                      5.20000E-0
                                                                                                                                6.40000E-0
                                                                                                                                                      5.80000E-0
                                                                                                                                                                 000000
                                                                                                                                                                                                                                 20000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                            -40000+
                                                                                                                                                                                                                                                                                                                                                                                                                                                        60000E-0
                                                                                                                                                                                                 . 60000E-0
```

```
4.67043E+00
4.71434E+00
                                                                                                                                                                                                                                                                                                                                                                                                                      3.33246E+00
3.38843E+00
3.44357E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 3.55114E+00
3.60369E+00
3.65556E+00
                                                                                    .53626E+00
                                                                                                                                                                                                                                                                           YSTRM
2.57179E+00
                                                                                                                                                                                                                                                                                                           2.71269E+00
2.78054E+00
                                                                                                                                                                                                                                                                                                                                                      2.97547E+00
.15447E+00
         .20438E+00
                    .25365E+00
                                -30210E+00
                                                     4.39743E+00
                                                                4.44431E+00
                                                                           ..49066E+00
                                                                                                .58139E+00
                                                                                                           .62611E+00
                                                                                                                                           4.75784E+00
                                                                                                                                                      .80093E+00
                                                                                                                                                                .84362E+00
                                                                                                                                                                            *88590E+00
                                                                                                                                                                                      4.92777E+00
                                                                                                                                                                                                 *96924E+00
                                                                                                                                                                                                                                                                                                 2.64302E+00
                                                                                                                                                                                                                                                                                                                                  2.84675E+00
                                                                                                                                                                                                                                                                                                                                            2.91173E+00
                                                                                                                                                                                                                                                                                                                                                                  3.03772E+00
                                                                                                                                                                                                                                                                                                                                                                            3.09875E+00
                                                                                                                                                                                                                                                                                                                                                                                                3.21781E+00
3.27568E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  3.70676E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            3.75723E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      3.80686E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        4.09244E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 4.27214E+00
                                         .35002E+00
                                                                                                                                                                                                             .01030E+00
                                                                                                                                                                                                                      .05095E+00
                                                                                                                                                                                                                                 5.09120E+00
                                                                                                                                                                                                                                            5.13104E+00
                                                                                                                                                                                                                                                                                                                                                                                      3.15878E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                     3.49790E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   3.85591E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             3.90441E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       3.95234E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  3.99971E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             4.04631E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                4.13809E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        4.22799E+00
                                                                                                                                                                                                                                                                6.000
                                                                                                                                                                                                                                                                                       2.00000E-02
                                                                                                                                                                                                                                            1.00000E+00
                                                                                                                                                                                                                                                                                                                     .00000E-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            1.60000E-01
                    .00000E-01
         80000E-01
                               . 20000E-01
                                                              5.80000E-01
60000E-01
                                         6.40000E-01
                                                    6.60000E-01
                                                                                      .20000E-0]
                                                                                                                                           .20000E-0]
                                                                                                                                                                 8.60000E-0]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      .40000E-01
                                                                          .00000E-0
                                                                                               40000E-0
                                                                                                          .60000E-0
                                                                                                                      80000E-0
                                                                                                                               8-00000E-0
                                                                                                                                                      .40000E-0
                                                                                                                                                                           8.80000E-0
                                                                                                                                                                                      .00000E-0
                                                                                                                                                                                                             9.40000E-0
                                                                                                                                                                                                                      .60000E-0
                                                                                                                                                                                                                                                                                                                                  00000E-0
                                                                                                                                                                                                                                                                                                                                            20000E-0
                                                                                                                                                                                                                                                                                                                                                      40000E-0
                                                                                                                                                                                                                                                                                                                                                                  60000E-0
                                                                                                                                                                                                                                                                                                                                                                             80000E-0
                                                                                                                                                                                                                                                                                                                                                                                       00000E-0
                                                                                                                                                                                                                                                                                                                                                                                                  20000E-0
                                                                                                                                                                                                                                                                                                                                                                                                            40000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                        . 60000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                           0-300000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  .00000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             20000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  . 60000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             .80000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       -000000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   20000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             40000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                 80000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                        .20000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  .40000E-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   80000
```

```
7.80006-01
8.00006-01
8.20006-01
8.60006-01
9.00006-01
9.00006-01
9.60006-01
9.80006-01
9.80006-01
```

4.40183E+00 4.44427E+00 4.48631E+00 4.52782E+00

> 7.20000E-01 7.40000E-01 7.60000E-01

4.60972E+00 4.65019E+00 4.69034E+00 4.76967E+00 4.80886E+00 6.84773E+00

..88628E+00

01 UNITOS, EDF.

REFERENCES

- 1. Stockman, Norbert O.; and Lieblein, Seymour: Theoretical Analysis of Flow in VTOL Lift Fan Inlets Without Crossflow. NASA IN D-5065, 1969.
- 2. Stockman, Norbert O.: Potential Flow Solutions for Inlets of VTOL Lift Fans and Engines. Analytical Methods in Aircraft Aerodynamics. NASA SP-228, 1970, pp. 659-681.
- 3. Albers, James A.: Theoretical and Experimental Internal Flow Characteristics of a 13.97-Centimeter-Diameter Inlet at STOL Takeoff and Approach Conditions. NASA TN D-7185, 1973.
- 4. Smith, A. M. O.; and Pierce, Jesse: Exact Solution of the Neumann Problem. Calculation of Non-Circulatory Plane and Axially Symmetric Flows About or Within Arbitrary Boundaries. Rep. ES-26988, Douglas Aircraft Co., Apr. 25, 1958.
- 5. Hess, J. L.; and Smith, A. M. O.: Calculation of Potential Flow About Arbitrary Bodies. Progress in Aeronautical Sciences, vol. 8, D. Küchemann, ed., Pergamon Press, 1967, pp. 1-138.
- 6. Hess, John L.: Calculation of Potential Flow About Bodies of Revolution Having Axes Perpendicular to the Free-Stream Direction. J. Aerospace Sci., vol. 29, no. 6, June 1962, pp. 726-742.
- 7. Hess, John L.; and Smith, A. M. O.: A General Method for Calculating Low Speed Flow About Inlets. Aerodynamics of Power Plant Installation, Part 1. AGARDograph 103, pt. 1, 1965, pp. 345-372.
- 8. Lieblein, S.; and Stockman, N. O.: Compressibility Correction for Internal Flow Solutions. J. Aircraft, vol. 9, no. 4, Apr. 1972, pp. 312-313.

Figure 1. Test case showing segmentation of inlet surfaces.

Figure 2. - Idealized profile of VTOL inlet.

Figure 3. Idealized profile of conventional inlet.

Figure 4. - Basic solutions, \overline{V}_1 .

AT ANY POINT, $\overline{V} = A\overline{V}_1 + B\overline{V}_2 + C\overline{V}_3$ A, B, AND C ARE DETERMINED BY SPECIFYING VALUES OF: $V_C \quad \text{AVERAGE AXIAL VELOCITY} \\ \quad \text{AT CONTROL STATION}$ $V_{\infty} \quad \text{MAGNITUDE OF FREE STREAM} \\ \quad \text{VELOCITY}$ $\alpha \quad \text{DIRECTION OF FREE STREAM} \\ \quad \text{VELOCITY RELATIVE TO} \\ \quad \text{THE INLET AXIS}$ CS-51791

Figure 5. - Combined solution, \overline{V} .

Figure 7. Sketches for SCIRCL input.