INSTITUTO TECNOLÓGICO DE BUENOS AIRES

22.42 Laboratorio de Electrónica

Trabajo Práctico N°2

Grupo 3

BERTACHINI, Germán	58750		
LAMBERTUCCI, Guido Enrique			
LONDERO BONAPARTE, Tomás Guillermo	58150		
MECHOULAM, Alan	58438		

Profesor

COSSUTTA, Pablo Martín WEILL, María Alejandra SALVATI, Matías Damián

Presentado: 17/09/19

1. Introducción

En esta práctica se volverán a aplicar los contenidos aprendidos para realizar el trabajo práctico anterior pero para analizar el comportamiento de un circuito de segundo orden. También, se realizarán mediciones automáticas con el osciloscopio que servirán de guía para trabajos prácticos posteriores.

2. Caracterización de componentes pasivos

2.1. Inductancia

A continuación de realizará un estudio acerca del comportamiento de una bobina, observando como varían sus magnitudes según la frecuencia y analizando sus circuitos equivalentes.

En un sistema simplificado, la bobina sólo tiene un componente inductivo, sin embargo, dicho planteo dista en gran medida de la realidad donde, debido en gran medida a su fabricación, las inductancias tendrán tanto componentes resistivos como capacitivos.

Las características previamente mencionadas nos llevarán a plantear distintos circuitos equivalentes. Se analizará cual de ellos refleja en mejor medida la práctica experimental realizada.

Para comenzar, se realiza el estudio de las magnitudes propias del inductor en función de la frecuencia.

Las frecuencias utilizadas fueron detectadas al realizar las frecuencias ya que eran las que permitían ver con claridad como variaba la fase. Las mediciones se tomaron en el modo serie del analizador de impedancias, las mismas se pueden apreciar en la Tabla (1):

$\overline{f_S[Hz]}$	$L_S[mH]$	\overline{Q}	$R_S[\Omega]$	$ Z [\Omega]$	$oldsymbol{ heta}[^{\circ}]$
10	0.490	0.0	0.91	0.96	18.7
100	0.480	3.0	0.10	0.32	72.0
1K	0.480	16.6	0.18	3.02	86.0
5K	0.485	25.8	0.59	15.23	87.8
10K	0.482	26.0	1.16	30.32	87.8
20K	0.478	23.8	2.52	60.11	87.6
30K	0.474	22.1	4.04	89.35	87.4
50K	0.467	19.5	7.50	146.70	87.1
75K	0.462	16.7	13.00	217.80	86.6
100K	0.459	14.4	20.00	289.20	86.0
200K	0.466	8.6	67.70	589.50	83.4
400K	0.529	4.1	322	1368	76.4
450K	0.556	3.5	450	1635	74.1
500K	0.589	2.9	632	1954	71.2
550K	0.627	2.4	893	2344	67.6
600K	0.669	2.0	1281	2829	63.1
650K	0.708	1.5	1868	3442	57.1
700K	0.724	1.2	2763	4217	49.1
725K	0.711	1.0	3356	4664	44.0
750K	0.671	8.0	4060	5147	38.0
775K	0.595	0.6	4831	5633	31.0
800K	0.472	0.4	5608	6089	22.9
825K	0.301	0.2	6264	6456	14.0
850K	0.094	0.1	6653	6672	4.4
855K	0.053	0.0	6692	6698	2.5
862K5	-0.100	0.0	6715	6715	-0.5
870K	-0.719	0.1	6706	6718	-3.4
875K	-0.111	0.1	6677	6705	-5.3
900K	-0.290	0.3	6356	6563	-14.4
925K	-0.421	0.4	5787	6282	-22.9
950K	-0.500	0.6	5114	5921	-30.3
1M	-0.549	0.9	3820	5146	-42.1
1M1	-0.470	1.5	2132	3884	-56.7
1M2	-0.368	2.1	1306	3068	-64.8
1M3	-0.291	2.7	874	2531	-69.8
1M4	-0.235	3.3	626	2159	-73.2
2M	-0.093	6.7	175	1179	-81.5
4M	-19.79 μ	16.8	29.6	498.4	-86.6
10M	-2.893 μ	27.3	6.7	181.9	-87.9

Tabla 1: Magnitudes del inductor en función de la frecuencia Página 2

2.2. Capacitor

Se procederá a realizar el mismo análisis planteado anteriormente para una inductancia pero para este caso para un capacitor, analizando como varían sus magnitudes según la frecuencia a la que trabaja y el estudio de sus circuitos equivalentes.

Para comenzar, se realiza el estudio de las magnitudes propias del capacitor en función de la frecuencia.

Las frecuencias utilizadas fueron detectadas al realizar las frecuencias ya que eran las que permitían ver con claridad como variaba la fase. Las mediciones se tomaron en el modo paralelo del analizador de impedancias por lo que se medirán conductancias. Las mismas se pueden apreciar en la Tabla (2):

$\overline{f_P[Hz]}$	$C_P[nH]$	D	$R_P[S]$	Z [S]	$oldsymbol{ heta}[^{\circ}]$
10	2.2	0.000	0.00	0.14μ	89.9
100	2.27	0.010	0.00	1.43 μ	89.90
1K	2.26	0.004	0.05μ	14.22 μ	89.80
5K	2.25	0.007	0.49μ	70.73 μ	89.60
10K	2.24	0.007	1μ	0.14m	89.56
20K	2.23	0.010	3μ	0.28m	89.42
30K	2.23	0.011	5 μ	0.42m	89.35
50K	2.22	0.013	9 μ	0.70m	89.28
75K	2.21	0.014	14 μ	1.04m	89.22
100K	2.21	0.014	19 μ	1.38m	89.21
200K	2.19	0.015	42 μ	2.75m	89.30
400K	2.18	0.016	88 μ	5.47m	89.08
450K	2.17	0.016	100μ	6.15m	89.07
500K	2.17	0.016	111μ	6.82m	89.06
550K	2.12	0.017	124 μ	7.40m	89.06
650K	2.17	0.017	149 μ	8.84m	89.04
750K	2.16	0.017	173μ	10.20m	89.03
800K	2.16	0.017	186μ	10.87m	89.02
900K	2.16	0.017	210μ	12.22m	89.01
1M	2.16	0.018	240 μ	13.57m	89.00
1M2	2.16	0.018	290μ	16.27m	88.97
2M	2.16	0.019	520μ	27.12m	88.90
4M	2.2	0.023	1.270m	55.38m	88.68
7M	2.3	0.032	3.200 m	101.05m	88.16
9M	2.43	0.039	0.005	0.13	87.70
11M	2.63	0.050	0.009	0.18	87.10
12M	2.76	0.057	0.012	0.21	86.70
13M	2.91	0.065	0.015	0.24	86.30

Tabla 2: Magnitudes del capacitor en función de la frecuencia

2.3. Filtro pasabajos

En esta sección se analizó la respuesta al escalón del circuito mostrado en la Figura (1). Sabiendo que $L=500~\mu H$, C=33~nF y $\xi=0,33$, se determinó que $R=81,24~\Omega$. Además, se calculó la frecuencia de resonancia de este circuito, siendo esta $f_0=39,2~kHz$.

Figura 1: Primera etapa del circuito.

Luego se procedió a analizar distintos valores de importancia del circuito, como lo son la frecuencia de oscilación del transitorio, el tiempo de establecimiento del $5\,\%$ y el sobrepico. Para ello se calculó primero la transferencia del circuito:

$$H(S) = \frac{1}{LCS^2 + RCS + 1} \tag{1}$$

Es así que, sabiendo que la transformada de Laplace del escalón es $\frac{1}{S}$, y la salida del sistema es $Y(S)=X(S)\cdot H(S)$, se obtuvo la respuesta al escalón de este:

$$V_C(t) = 1 - e^{-t\frac{R}{2L}} \cdot \left[\frac{1}{2\sqrt{4LC - RC^2}} \cdot sen\left(\frac{\sqrt{4LC - RC^2}}{2LC} \cdot t\right) + cos\left(\frac{\sqrt{4LC - RC^2}}{2LC} \cdot t - \pi\right) \right]$$
(2)

Además, se sabe que la frecuencia de oscilación del transitorio se puede calcular como

$$f_t = f_0 \cdot \sqrt{|\xi^2 - 1|} = 37 \ kHz$$
 (3)

Por otro lado, con (3) se calcula el sobrepico,

COLOCAR CALCULOS.

Considerando los valores comerciales, se utilizaron ...

COLOCAR COMPONENTES USADOS.

Es así que se preparó el circuito en un protoboard y se procedió a realizar las mediciones pertinentes y así compararlas con los cálculos teóricos. Este circuito fue excitado con una señal cuadrada, la cual posee una frecuencia de $3{,}92\ kHz$ y una amplitud tal que la tensión de salida máxima sea de $1\ V_{pp}$. Es así que se observó la respuesta al escalón del sistema, al inicio de cada cuadrada.

Figura 2: Respuesta al escalón del circuito.

De esta forma, se obtuvo ...

COLOCAR MEDICIONES.

Luego, se obtuvo el diagrama de BODE del sistema. Es así que se compara este con el teórico y con el simulado.

BODE.

PUNTO E.