Week 7, Lecture 1

Algorithm Analysis and Design

Pratyay Suvarnapathaki, 2020111016

The Shortest Reliable Path Problem

Given a weighted graph G, a src node and a dest node, the shortest path from src to dest is to be found, that uses at most k edges.

Note: Dijkstra's Algorithm is not useful here as it doesn't keep track of the number of edges traversed.

The Dynamic Programming Solution

Since the problem can be broken down into several overlapping subproblems, we define:

Subproblem dist(v, i) (where $i \leq k$) for each vertex v, to be the shortest length for a path from src to v.

Base cases: $dist(v, 0) = \infty$, dist(src, 0) = 0

The relation thus obtained is:

 $dist(v,i) = min_{(u,v)\in E} \{ dist(u,i-1) + l(u,v) \}$

The Shortest Path All Vertex Pairs Problem

Given a weighted graph G, the shortest path between every pair of discrete vertices is to be found.

The Dynamic Programming Solution

Defining the Subproblems

Here, we observe that the **optimum substructure property** is followed. Firstly, we try to find paths between node pairs that do not include *any* intermediate nodes whatsoever. Now, the shortest paths between all vertex pairs is

just the edge weight, if there exists an edge between a pair of vertices.

Then, we *gradually* expand our scope and consider intermediate nodes too, and keep expanding this scope till all vertices of the graph are covered.

Hence, we define the subproblem:

dist(i, j, k) = the shortest path from node i to node j with the set of intermediate nodes being limited to $\{1, \dots, k\}$

Base Cases: dist(i, j, 0) length of edge ij if it exists, else ∞ .

Algorithm

Using a two dimensional memoization table, we obtain the following algorithm:

```
# let us conveniently name the memoization table 'dist'. 'Graph' is an
adjacency table (default value = infinity)
for i in range(0,V):
for j in range(0,V):
C[i][j] = Graph.edgeweight(i,j)

for k in range(0,V):
for i in range(0,V):
    if (dist[i][j] > dist[i][k] + dist[k][j]):
    dist[i][j] = dist[i][k] + dist[k][j]
    return dist
```

The complexity of the above algorithm is naturally $O(n^3)$ owing to the three nested loops.

The Independent Sets In Trees Problem

Given a graph G = (V, E), the largest subset of vertices S is to be found such that there exist no edges between them.

The Dynamic Programming Solution

The layered structure of the tree itself provides the framework to define subproblems, as the **optimum substructure property** is followed since for a tree to represent the optimal solution, its subtrees need to represent their respective optimal sub-solution.

Hence, we define the subproblem I(v) = largest independent set in the subtree with root v.

So, for a subtree with root v, the largest independent subset:

 Case 2: Does not include v Relation: $I_2 = \sum \{children\ w\ of\ v\}I(w)$

and finally, $I(v) = max(I_1, I_2)$