

SmartBin

Svetya Koppisetty | Curtis Hayes | Edgar Legaspi | Diego Chiok

SmartBin: Purpose and Vision

The Problem We Solve

Employs AI to detect, classify, and sort waste, addressing the challenge of improper disposal and promoting responsible waste management practices.

Our Motive

Leverage Al-driven computer vision models to develop an accurate waste detection system.

Understanding the Need for Waste Detection

- Waste is an inevitable part of daily life, yet we rarely acknowledge it.
- ☐ It's always there more in our subconscious mind
- As a result, much of it goes unnoticed and mismanaged

reduces environmental footprint, improves recycling, and supports the development of smarter waste management solutions

Impact of Mismanaged Waste

- ☐ Contributes to pollution in land, water, and air
- ☐ Harms wildlife and disrupts ecosystems
 - Increases health risks due to toxic waste exposure
- ☐ Worsens climate change through methane emissions from landfills

Inside SmartBin: Key Features

Technology Overview

- ☐ Windows application using the detect-waste
 ResNet50 AI model
- Designed to run on
 Snapdragon X Elite laptop
 sponsored by Qualcomm
- ☐ Functions as a standalone product

How SmartBin Works

- ☐ Single-page application for simple navigation
- ☐ Toggle to upload or live video feed
- Image is processed by AI to detect and categorize waste
- Labeled bounding boxes around detected waste
- Settings button opens a new window

Non-Functional Requirements

Performance	User Accessibility
☐ Response Time☐ Fast, Responsive, Snappy	☐ Seamless design☐ Natural, Common Sense
☐ Resource Efficiency☐ Lightweight, economic	□ Dynamic Font Scaling□ Normalized to context window
☐ Smooth rendering☐ No stutters, screen tears	□ Color blind friendly□ Change UI for user needs
☐ Inference Speed☐ Real-time detection	□ Error messaging□ Prevent fatal system failure and recover

Live Feed vs. Image Upload

Name: Detect-waste detr

resnet50

Inference Time: 20.6ms

Memory Usage: 85 mb

Layers: 841 NPU

Input Resolution: 480×480

Number of parameters: 44M

Versions: ONNX runtime 1.20

Information Chart

Settings Page

Architectural Design

Architectural Design

DeTr ResNet50

- ☐ The model has a transformer based deep learning architecture.
- ☐ This model has no need for post-processing like NMS (Non-Maximum Suppression).
- ☐ Model has refined bounding boxes around objects rather than anchor boxes.

ONNX Runtime Integration

- ONNX Runtime will be how we run the model
- ONNX Runtime will be a critical tool in terms of testing and looking for possible optimization opportunities in the model.

Implementation Plan

Deve	lopme	ent Tools & Framework	S
		Visual Studio	
		Docker	
		Pytorch	
		ONNX Runtime	
		Onen CV	

Implementation Tasks

Import model (DeTr ResNet50)
Train model
Develop Windows App
Implement model with OpenCV
Backend
Develop controller UI

	Category	Development Activities	Outcomes	Timeline	Personnel
dule	Model	Run, compile and preform inferences on our deep learning model (DeTr ResNet50)	To confirm our model performs as expected.	3/3 – 3/6	Diego Chiok, Edgar Legaspi, Curtis Hayes, Svetya Koppisetty
Sched	UI	Develop the UI and make the functionality	To make sure user can interact with our program	3/10 - 3/12	Diego Chiok, Edgar Legaspi, Curtis Hayes, Svetya Koppisetty
	Window App	Develop the main window application our model will run using DWM api for the window framework	Have a basic windows application	3/13-3/27	Diego Chiok, Edgar Legaspi, Curtis Hayes, Svetya Koppisetty

Challenges & Solutions

☐ The Madel misidentifies Track as plactic or vice verse due to toe bread of
 The Model misidentifies Trash as plastic or vice versa due to too broad of categories on COCO
☐ To fix this we are using a different Dataset Called TACO which is
specifically trash images
☐ The Model Has low Detection confidence due to Bad Lighting or weird
surface since COCO does not diversify the scene
☐ The TACO dataset has images of trash in all different scenes like Grass,
pavement and Water
☐ Malware being uploaded in the upload image.
☐ We could Have Strict validation for the files and or run the fills in a test
environment to check for harmful Malware.

Future Enhancements

- ☐ Expanding to Autonomous Systems
- □ Detecting biohazard Material Like used
 - needles
- □ Detecting hazardous Material like Car

Batteries

SmartBin is a step toward a cleaner, more sustainable future.

