Library User Manual

AnyDIO Series

AXD

Product Information

Full information about other AJINEXTEK products is available by visiting our Web Site at:

Home Page: www.ajinextek.com E-Mail: support@ajinextek.com

Useful Contact Information

Customer Support Seoul

Tel: 82-031-436-2180~2 Fax: 82-031-436-2183

Customer Support Cheonan

Tel: 82-041-555-9771~2 Fax: 82-041-555-9773

Customer Support Deagu

Tel: 82-053-593-3700~2 Fax: 82-053-593-3703

AJINEXTEK's sales team is always available to assist you in making your decision the final choice of boards or systems is solely and wholly theresponsibility of the buyer. AJINEXTEK's entire liability in respect of the board or systems is as set out in AJINEXTEK's standard terms and conditions of sale

Contents

매뉴얼 정보	6
헤더 파일	6
함수 용어	ε
본 매뉴얼의 함수 이름	6
본 매뉴얼의 인자 이름	7
Quick List	9
노드 및 모듈	g
입출력 포트	g
Function List	14
노드 및 모듈	14
AxdInfolsDIOModule	15
AxdInfoGetModuleCount	17
AxdInfoGetInputCount	
AxdInfoGetOutputCount	21
AxdInfoGetModule	23
입 출력 포트	25
AxdiLevelSetInportBit	29
AxdiLevelSetInportByte	31
AxdiLevelSetInportWord	33
AxdiLevelSetInportDword	35
AxdiLevelSetInport	
AxdiLevelGetInportBit	38
AxdiLevelGetInportByte	40
AxdiLevelGetInportWord	42
AxdiLevelGetInport	44
AxdoLevelSetOutportBit	46
AxdoLevelSetOutportByte	48
AxdoLevelSetOutportWord	50
AxdoLevelSetOutportDWord	52
AxdoLevelSetOutport	54
AxdoLevelGetOutportBit	55
AxdoLevelGetOutportByte	57
AxdoLevelGetOutportWord	59

AxdoLevelGetOutport	61
AxdoWriteOutportBit	63
AxdoWriteOutportByte	65
AxdoWriteOutportWord	67
AxdoWriteOutport	69
AxdoReadOutportBit	70
AxdoReadOutportByte	72
AxdoReadOutportWord	74
AxdoReadOutport	76
AxdiReadInportBit	78
AxdiReadInportByte	80
AxdiReadInportWord	82
AxdiReadInport	84
AxdiNLevelSetInportBit	86
AxdiNLevelSetInportByte	88
AxdiNLevelSetInportWord	90
AxdiNLevelSetInportDword	92
AxdiNLevelSetInport	94
AxdiNLevelGetInportBit	96
AxdiNLevelGetInportByte	98
AxdiNLevelGetInportWord	100
AxdiNLevelGetInport	102
AxdoNLevelSetOutportBit	104
AxdoNLevelSetOutportByte	106
AxdoNLevelSetOutportWord	108
AxdoNLevelSetOutportDword	110
AxdoNLevelSetOutport	112
AxdoNLevelGetOutportBit	114
AxdoNLevelGetOutportByte	116
AxdoNLevelGetOutportWord	118
AxdoNLevelGetOutport	120
AxdoNWriteOutportBit	122
AxdoNWriteOutportByte	124
AxdoNWriteOutportWord	126
AxdoNWriteOutportDword	128
AxdoNWriteOutport	130
AxdoNReadOutportBit	132

AxdoNReadOutportByte	134
AxdoNReadOutportWord	136
AxdoNReadOutportDword	138
AxdoNReadOutport	140
AxdiNReadInportBit	142
AxdiNReadInportByte	144
AxdiNReadInportWord	146
AxdiNReadInport	148
AxdoNetWorkErrorSetAction	150
AxdoNetWorkErrorGetAction	152
AxdoNetWorkErrorSetByteValue	154
AxdoNetWorkErrorGetByteValue	156
에러코드 테이블(Error Code Table) 확인	158

Revision History

Manual	PCB	Comments
Rev. 1.0 issue 1.0	Rev. 1.0	2008.03.27.

매뉴얼 정보

본 매뉴얼은 EIP-CPU16B, EIP-DB32T 모듈을 Windows 98, Windows NT, Windows 2000 또는 Windows XP의 OS 환경에서 Microsoft VC++6.0, Visual Basic, Borland C-Builder, Delphi 등의 언어에서 구동하기 위해 필요한 매뉴얼이며, 포함된 라이브러리 함수를 기능별로 분류하여 설명하였다.

헤더 파일

С

AXD.h

Visual Basic

AXD.bas

Delphi

AXD.pas

함수 용어

본 매뉴얼의 함수 이름

본 매뉴얼에서 사용된 함수 이름들은 접두어(Prefix)에 의해 동작을 구분할 수 있도록 되어있다.

라이브러리 함수 Prefix

Axd: Axd 전용 함수임을 나타낸다. Axd 로 시작되는 함수들은 모두 Axd.h 에 정의 되어있다.

Set: 칩의 레지스터나 변수들을 설정한다.

Get: Set 과 한 쌍으로 Set 함수에 의해 설정된 변수 값을 확인하거나 칩 레지스터의 상태를 읽는다.

Read: 입출력 접점의 특정 레지스터에서 상태를 읽는다.

Write: 입출력 접점의 특정 레지스터에서 상태를 설정한다.

Port: 입력 및 출력 접점과 관련된 함수 군이다.

Bit: 1 개의 접점 단위를 읽거나 쓴다.

Byte: 8개의 접점 단위를 읽거나 쓴다.

Word: 16개의 접점 단위를 읽거나 쓴다.

Dword: 32 개의 접점 단위를 읽거나 쓴다.

본 매뉴얼의 인자 이름

본 매뉴얼에서 사용된 함수들의 공통적인 인자들은 다음과 같은 의미를 가진다.

long INodeNum: 초기화 된 노드들의 전면 NODE ID 설정 값.

long IModuleNo: DIO 모듈 초기화 시에 첫 번째 노드의 모듈부터 오름차순으로 자동 정렬된다. 모듈 번호는 '0'부터 시작한다.

	CPU	DIO	DIO	CPU	DIO	DIO	CPU	DIO	DIO
Node ID	0			7			6		
Module ID	0	1	2	0	10	4	0	1	4
Module No	0	1	2	3	5	4	6	7	8

long IModulePos: DIO 모듈상단의 MODULE ID 설정 값. CPU 모듈은 이 값이 0 이다. MODULE ID SW 값의 범위가 (1 ~16) 이므로 IModulePos의 범위는 (0~16)이다.

Library User Manual Rev.1.0

DWORD uLevel: uLevel은 ReadPort 및 WritePort 관련 함수들을 사용시 Level을 설정 및 확인한다.

DWORD uOffset: uOffset은 사용 모듈과 사용 함수에 따라 유효 범위가 달라지는데 아래의 Table을 참조하여 설정한다.

EIP-DB32T(EIP-CPU16B) Offset 범위

Data Type	Offset	Value or Return	Related
All	0 ~ n-1	0(Off), 1(On)	
Bit	0 ~ 31	0(Off), 1(On)	Bit 계열 함수 군
Byte	0, 1, 2, 3	00h ~ FFh	Byte 계열 함수 군
Word	0, 1	0000h ~ FFFFh	Word 계열 함수 군
Dword	0	00000000h ~ FFFFFFFh	Dword 계열 함수 군

Quick List

노드 및 모듈

노드 및 모듈 정보

Function	Description
<u>AxdInfolsDIOModule</u>	DIO 모듈이 있는지 확인한다.
<u>AxdInfoGetModuleCount</u>	DIO 입출력 모듈의 개수를 확인한다.
<u>AxdInfoGetInputCount</u>	지정한 모듈의 입력 접점 개수를 확인한다.
<u>AxdInfoGetOutputCount</u>	지정한 모듈의 출력 접점 개수를 확인한다.
<u>AxdInfoGetModule</u>	지정한 모듈 번호로 베이스 노드 번호, 모듈 위치, 모듈 ID를 확인한
	다.

입출력 포트

입출력 레벨 설정 확인

Function	Description
<u>AxdiLevelSetInportBit</u>	지정한 입력 접점 모듈의 Offset 위치에서 bit 단위로 데이터 레벨을 설정한다
<u>AxdiLevelSetInportByte</u>	지정한 입력 접점 모듈의 Offset 위치에서 byte 단위로 데이터 레벨을 설정한다
AxdiLevelSetInportWord	지정한 입력 접점 모듈의 Offset 위치에서 word 단위로 데이터 레벨을 설정한다.
AxdiLevelSetInportDword	지정한 입력 접점 모듈의 Offset 위치에서 double word 단위로 데이터 레벨을 설정한다.
<u>AxdiLevelSetInport</u>	지정한 입력 접점 모듈의 Offset 위치에서 bit 단위로 데이터 레벨을 설정한다.
<u>AxdiLevelGetInportBit</u>	지정한 입력 접점 모듈의 Offset 위치에서 bit 단위로 데이터 레벨을 확인한다.
<u>AxdiLevelGetInportByte</u>	지정한 입력 접점 모듈의 Offset 위치에서 byte 단위로 데이터 레벨을 확인한다.
<u>AxdiLevelGetInportWord</u>	지정한 입력 접점 모듈의 Offset 위치에서 word 단위로 데이터 레벨을

	확인한다.
AxdiLevelGetInport	전체 입력 접점 모듈의 Offset 위치에서 bit 단위로 데이터 레벨을 확 인한다.
<u>AxdoLevelSetOutportBit</u>	지정한 출력 접점 모듈의 Offset 위치에서 bit 단위로 데이터 레벨을 설정한다.
<u>AxdoLevelSetOutportByte</u>	지정한 출력 접점 모듈의 Offset 위치에서 byte 단위로 데이터 레벨을 설정한다.
AxdoLevelSetOutportWord	지정한 출력 접점 모듈의 Offset 위치에서 word 단위로 데이터 레벨을 설정한다.
AxdoLevelSetOutportDword	지정한 출력 접점 모듈의 Offset 위치에서 double word 단위로 데이터 레벨을 설정한다.
<u>AxdoLevelSetOutport</u>	전체 출력 접점 모듈의 Offset 위치에서 bit 단위로 데이터 레벨을 설 정한다.
<u>AxdoLevelGetOutportBit</u>	지정한 출력 접점 모듈의 Offset 위치에서 bit 단위로 데이터 레벨을 확인한다.
<u>AxdoLevelGetOutportByte</u>	지정한 출력 접점 모듈의 Offset 위치에서 byte 단위로 데이터 레벨을 확인한다.
AxdoLevelGetOutportWord	지정한 출력 접점 모듈의 Offset 위치에서 word 단위로 데이터 레벨을 확인한다.
<u>AxdoLevelGetOutport</u>	전체 출력 접점 모듈의 Offset 위치에서 bit 단위로 데이터 레벨을 확 인한다.

입출력 포트 쓰기 읽기

Function	Description
<u>AxdoWriteOutportBit</u>	지정한 출력 접점 모듈의 Offset 위치에서 bit 단위로 데이터를 출력한 다
<u>AxdoWriteOutportByte</u>	지정한 출력 접점 모듈의 Offset 위치에서 byte 단위로 데이터를 출력한다.
<u>AxdoWriteOutportWord</u>	지정한 출력 접점 모듈의 Offset 위치에서 word 단위로 데이터를 출력 한다.
<u>AxdoWriteOutport</u>	전체 출력 접점 모듈의 Offset 위치에서 bit 단위로 데이터를 출력한 다.
<u>AxdoReadOutportBit</u>	지정한 출력 접점 모듈의 Offset 위치에서 bit 단위로 데이터를 읽는 다.

<u>AxdoReadOutportByte</u>	지정한 출력 접점 모듈의 Offset 위치에서 byte 단위로 데이터를 읽는 다.
AxdoReadOutportWord	지정한 출력 접점 모듈의 Offset 위치에서 word 단위로 데이터를 읽는다.
<u>AxdoReadOutport</u>	전체 출력 접점 모듈의 Offset 위치에서 bit 단위로 데이터를 읽는다.
<u>AxdiReadInportBit</u>	지정한 입력 접점 모듈의 Offset 위치에서 bit 단위로 데이터를 읽는 다.
<u>AxdiReadInportByte</u>	지정한 입력 접점 모듈의 Offset 위치에서 byte 단위로 데이터를 읽는 다.
<u>AxdiReadInportWord</u>	지정한 입력 접점 모듈의 Offset 위치에서 word 단위로 데이터를 읽는 다.
<u>AxdiReadInport</u>	전체 입력 접점 모듈의 Offset 위치에서 bit 단위로 데이터를 읽는다.

지정 노드에 대한 입력 레벨 확인

Function	Description
<u>AxdiNLevelSetInportBit</u>	해당 노드의 지정한 입력 모듈에 bit단위로Offset위치에 데이터 레벨 을 설정한다
<u>AxdiNLevelSetInportByte</u>	해당 노드의 지정한 입력 모듈에 byte단위로 Offset위치에 데이터 레벨 을 설정한다
AxdiNLevelSetInportWord	해당 노드의 지정한 입력 모듈에 word단위로 Offset위치에 데이터 레벨 을 설정한다
<u>AxdiNLevelSetInportDword</u>	해당 노드의 지정한 입력 모듈에 double word 단위로 Offset위치에 데 이터 레벨을 설정한다
AxdiNLevelSetInport	해당 노드의 전체 입력 접점 모듈의 Offset 위치에서 bit 단위로 데이 터 레벨을 설정 한다
<u>AxdiNLevelGetInportBit</u>	해당 노드의 지정한 입력 모듈에 bit단위로 Offset위치에 데이터 레벨 을 확인한다
<u>AxdiNLevelGetInportByte</u>	해당 노드의 지정한 입력 모듈에 byte단위로 Offset위치에 데이터 레벨 을 확인한다
AxdiNLevelGetInportWord	해당 노드의 지정한 입력 모듈에 word단위로 Offset위치에 데이터 레벨 을 확인한다
AxdiNLevelGetInport	해당 노드의 전체 입력 접점 모듈의 Offset 위치에서 bit 단위로 데이 터 레벨을 확인 한다
<u>AxdoNLevelSetOutportBit</u>	해당 노드의 지정한 출력 모듈에 bit단위로 Offset위치에 데이터 레벨

	을 설정한다
<u>AxdoNLevelSetOutportByte</u>	해당 노드의 지정한 출력 모듈에 byte단위로 Offset위치에 데이터 레벨 을 설정한다
<u>AxdoNLevelSetOutportWord</u>	해당 노드의 지정한 출력 모듈에 word단위로 Offset위치에 데이터 레벨 을 설정한다
<u>AxdoNLevelSetOutportDword</u>	해당 노드의 지정한 출력 모듈에 double word 단위로 Offset위치에 데 이터 레벨을 설정한다
<u>AxdoNLevelSetOutport</u>	해당 노드의 전체 출력 모듈에 bit단위로 Offset위치에 데이터 레벨을 설정한다
<u>AxdoNLevelGetOutportBit</u>	해당 노드의 지정한 출력 모듈에 bit단위로 Offset위치에 데이터 레벨 을 확인한다
<u>AxdoNLevelGetOutportByte</u>	해당 노드의 지정한 출력 모듈에 byte단위로 Offset위치에 데이터 레벨 을 확인한다
AxdoNLevelGetOutportWord	해당 노드의 지정한 출력 모듈에 word단위로 Offset위치에 데이터 레벨 을 확인한다
<u>AxdoNLevelGetOutport</u>	해당 노드의 전체 출력 접점 모듈의 Offset 위치에서 bit 단위로 데이 터 레벨을 확인 한다

지정 노드에 대한 출력 포트 쓰기 읽기

Function	Description
<u>AxdoNWriteOutportBit</u>	해당 노드의 지정한 출력 모듈에 bit단위로 Offset위치에 출력한다.
<u>AxdoNWriteOutportByte</u>	해당 노드의 지정한 출력 모듈에 byte단위로 Offset위치에 출력한다.
<u>AxdoNWriteOutportWord</u>	해당 노드의 지정한 출력 모듈에 word단위로 Offset위치에 출력한다.
<u>AxdoNWriteOutportDword</u>	해당 노드의 지정한 출력 모듈에 double word단위로 Offset위치에 출력
	한다.
<u>AxdoNWriteOutport</u>	해당 노드의 전체 출력 모듈에 bit단위로 Offset위치에 출력한다.
<u>AxdoNReadOutportBit</u>	해당 노드의 지정한 출력 모듈에 bit단위로 Offset위치에 읽는다.
<u>AxdoNReadOutportByte</u>	해당 노드의 지정한 출력 모듈에 byte단위로 Offset위치에 읽는다.
<u>AxdoNReadOutportWord</u>	해당 노드의 지정한 출력 모듈에 word단위로 Offset위치에 읽는다.
<u>AxdoNReadOutportDword</u>	해당 노드의 지정한 출력 모듈에 double word단위로 Offset위치에 읽는
	다.
<u>AxdoNReadOutport</u>	해당 노드의 전체 출력 모듈에 bit단위로 Offset위치에 읽는다.
<u>AxdiNReadInportBit</u>	해당 노드의 지정한 입력 모듈에 bit단위로Offset위치에 읽는다.

<u>AxdiNReadInportByte</u>	해당 노드의 지정한 입력 모듈에 byte단위로Offset위치에 읽는다.
<u>AxdiNReadInportWord</u>	해당 노드의 지정한 입력 모듈에 word단위로Offset위치에 읽는다.
<u>AxdiNReadInport</u>	해당 노드의 전체 입력 모듈에 bit단위로 Offset위치에 읽는다.

출력 포트의 네트웍 예외 처리

Function	Description
<u>AxdoNetWorkErrorSetAction</u>	지정한 출력 접점 모듈이 연결된 노드의 통신이 끊어 졌을때 현재 출 력 접점 상태에 대한 예외처리 방법 설정한다.
<u>AxdoNetWorkErrorGetAction</u>	지정한 출력 접점 모듈이 연결된 노드의 통신이 끊어 졌을때 현재 출 력 접점 상태에 대한 예외처리 방법 확인한다.
<u>AxdoNetWorkErrorSetByteValue</u>	Network연결이 끊어 졌을 경우 지정한 출력 접점의 상태를 설정 한다
<u>AxdoNetWorkErrorGetByteValue</u>	Network연결이 끊어 졌을 경우 지정한 출력 접점의 상태를 확인 한다

Function List

노드 및 모듈

노드 및 모듈 정보

Function	Description		
<u>AxdInfolsDIOModule</u>	DIO 모듈이 있는지 확인한다.		
<u>AxdInfoGetModuleCount</u>	DIO 입출력 모듈의 개수를 확인한다.		
<u>AxdInfoGetInputCount</u>	지정한 모듈의 입력 접점 개수를 확인한다.		
<u>AxdInfoGetOutputCount</u>	지정한 모듈의 출력 접점 개수를 확인한다.		
<u>AxdInfoGetModule</u>	지정한 모듈 번호로 노드 번호, 모듈 위치, 모듈 ID를 확인한다.		

AxdInfolsDIOModule

Purpose

DIO 모듈이 있는지 확인한다.

Format

С

DWORD AxdInfoIsDIOModule(DWORD *upStatus);

Visual Basic

Function AxdInfolsDIOModule(ByRef upStatus As Long) As Long

Delphi

function AxdInfolsDIOModule(upStatus: PDWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation	
				STATUS_NOTEXIST(0)	
up Ctatus	out.			: DIO모듈이 존재하지 않음	
upStatus	out DWORD*	Out DWOND*	out DWOND*	_	STATUS_EXIST(1)
				: DIO모듈이 존재함	

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

넥트웍으로 연결된 DIO 모듈의 존재 여부를 확인한다.

C Example

VB Example

Delphi Example

See Also

AxdInfoGetModuleCount, AxdInfoGetInputCount, AxdInfoGetOutputCount, AxdInfoGetModule

AxdInfoGetModuleCount

Purpose

DIO 입출력 모듈의 개수를 확인한다.

Format

С

DWORD AxdInfoGetModuleCount(long *lpModuleCounts);

Visual Basic

Function AxdInfoGetModuleCount(ByRef IpModuleCounts As Long) As Long

Delph

function AxdInfoGetModuleCount(IpModuleCounts: PLongInt): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
IpModuleCounts	out	long	_	DIO 입출력 모듈의 개수

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

초기화 되어 있는 DIO 입출력 모듈의 개수를 확인한다.

C Example

```
// DIO 모듈의 개수를 확인한다.
long lCount;
CString strData;

AxdInfoGetModuleCount (&lCount);
strData.Format( "DIO 모듈의 개수는 %d개 입니다." , lCount);

AfxMessageBox(strData);
```

VB Example

```
'DIO 모듈의 개수를 확인한다.
Dim lCount As Long
Dim strData As String

AxdInfoGetModuleCount lCount
strData = "DIO 모듈의 개수는 " + CStr(lCount) + " 개 입니다."

MsgBox strData
End If
```

Delphi Example

```
{ DIO 모듈의 개수를 확인한다. }
var
lCount : LongInt;
strData : String;

begin
AxdInfoGetModuleCount (@lCount);
strData := 'DIO 모듈의 개수는' + IntToStr(lCount) + '개입니다.';

Application.MessageBox (PCHAR(strData), 'Ajinextek', MB_OK);
end;
```

See Also

 $\underline{AxdInfoIsDIOModule,\ AxdInfoGetInputCount},\ \underline{AxdInfoGetOutputCount},\ \underline{AxdInfoGetModule}$

AxdInfoGetInputCount

Purpose

지정한 모듈의 입력 접점 개수를 확인한다.

Format

С

DWORD AxdInfoGetInputCount(long IModuleNo, long *IpCounts);

Visual Basic

Function AxdInfoGetInputCount(ByVal IModuleNo As Long, ByRef IpCounts As Long) As Long

Delphi

function AxdInfoGetInputCount(IModuleNo: LongInt; IpCounts: PLongInt): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
lModuleNo	in	long		모듈 번호 (0 ~ n-1)
IpCounts	out	long		입력 접점 개수

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 모듈의 입력 접점 개수를 확인한다.

Module	Input	Output
EIP-CPU16B	16	16
EIP-DB32T	16	16

Note) EIP- CPU16B접점 수는 16개 이나 모든 접점이 입력 또는 출력으로 사용될 수 있기 때문에 입력/출력 접점 개수를 라이브러리 에서는 모듈당 각각 16개로 인식한다. 즉 실제로 16 접점을 입력과 출력으로 나누어서 사용되며 입력으로만 사용시 최대 16개, 출력으로만 사용시 최대 16개로 사용될 수 있는 것이다.

C Example

```
// 0번째 모듈의 입력 접점 개수를 확인한다.
long lCount;
CString strData;

AxdInfoGetInputCount (0, &lCount);
strData.Format( "0번 모듈의 입력 접점 개수는 %d개 입니다." , lCount);

AfxMessageBox(strData);
```

VB Example

```
' 0번째 모듈의 입력 접점 개수를 확인한다.
Dim lCount As Long
Dim strData As String

AxdInfoGetInputCount 0, lCount
strData = "0번 모듈의 입력 접점 개수는" + CStr(lCount) + "개입니다."

MsgBox strData
```

Delphi Example

```
{ 0번째 모듈의 입력 접점 개수를 확인한다. }
var
lCount : LongInt;
strData : String;

begin
AxdInfoGetInputCount (@lCount);
strData := '0번 모듈의 입력 접점 개수는 ' + IntToStr(lCount) + '개 입니다.';

Application.MessageBox (PCHAR(strData), 'Ajinextek', MB_OK);
end;
```

See Also

 $\underline{AxdInfoIsDIOModule,}, \underline{AxdInfoGetModuleCount}, \underline{AxdInfoGetOutputCount}, \underline{AxdInfoGetModule}$

AxdInfoGetOutputCount

Purpose

지정한 모듈의 출력 접점 개수를 확인한다.

Format

С

DWORD AxdInfoGetOutputCount(long IModuleNo, long *IpCounts);

Visual Basic

Function AxdInfoGetOutputCount(ByVal IModuleNo As Long, ByRef IpCounts As Long) As Long

Delphi

function AxdInfoGetOutputCount(IModuleNo: LongInt; IpCounts: PLongInt): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
lModuleNo	in	long		모듈 번호 (0 ~ n-1)
IpCounts	out	long		출력 접점 개수

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 모듈의 출력 접점 개수를 확인한다.

Module	Input	Output
EIP-CPU16B	16	16
EIP-DB32T	16	16

Note) EIP- CPU16B접점 수는 16개 이나 모든 접점이 입력 또는 출력으로 사용될 수 있기 때문에 입력/출력 접점 개수를 라이브러리 에서는 모듈당 각각 16개로 인식한다. 즉 실제로 16 접점을 입력과 출력으로 나누어서 사용되며 입력으로만 사용시 최대 16개, 출력으로만 사용시 최대 16개로 사용될 수 있는 것이다.

C Example

```
// 0번째 모듈의 출력 접점 개수를 확인한다.
long lCount;
CString strData;

AxdInfoGetOutputCount (0, &lCount);
strData.Format( "0번 모듈의 출력 접점 개수는 %d개 입니다.", lCount);
AfxMessageBox(strData);
```

VB Example

```
' 0번째 모듈의 츨력 접점 개수를 확인한다.
Dim lCount As Long
Dim strData As String

AxdInfoGetOutputCount 0, lCount
strData = "0번 모듈의 출력 접점 개수는" + CStr(lCount) + "개입니다."

MsgBox strData
```

Delphi Example

```
{ 0번째 모듈의 출력 접점 개수를 확인한다. }
var
lCount : LongInt;
strData : String;

begin
AxdInfoGetOutputCount (@lCount);
strData := '0번 모듈의 출력 접점 개수는 ' + IntToStr(lCount) + '개 입니 다.';

Application.MessageBox (PCHAR(strData), 'Ajinextek', MB_OK);
end;
```

See Also

AxdInfoIsDIOModule, AxdInfoGetModuleCount, AxdInfoGetInputCount, AxdInfoGetModule

AxdInfoGetModule

Purpose

지정한 모듈 번호로 노드 번호, 모듈 위치, 모듈 ID를 확인한다.

Format

С

DWORD AxdInfoGetModule (long IModuleNo, long *IpNodeNum, long *IpModulePos, DWORD *upModuleID);

Visual Basic

Function AxdInfoGetModule (ByVal IModuleNo As Long, ByRef IpNodeNum As Long, ByRef IpModulePos As Long, ByRef upModuleID As Long) As Long

Delphi

function AxdInfoGetModule (IModuleNo: LongInt; IpNodeNum: PLongInt; IpModulePos: PLongInt; upModuleID: PDWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
IModuleNo	in	long		모듈 번호 (0 ~ n−1)
IpNodeNum	out	Long*		노드 번호 (0 ~ n-1)
In Madula Dag	4	Langui		모듈 위치(사용자가 로터리 스위치
IpModulePos	out	Long*		로 정한 절대 위치)
upModuleID	out	DWORD*		모듈 ID

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 모듈 번호로 노드 번호, 모듈 위치, 모듈 ID를 확인한다.

Module	Input
EIP-CPU16B	0xB3
EIP-DB32T	0XB7

C Example

```
// 0번째 모듈의 노드 번호, 모듈 번호,모듈 ID를 확인한다.
long lpNodeNum;
long lModulePos;
DWORD dwModuleID;
CString strData;

AxdInfoGetModule (0, &lpNodeNum, &lModulePos, &dwModuleID);
```

VB Example

Delphi Example

See Also

AxdInfoIsDIOModule, AxdInfoGetModuleCount, AxdInfoGetInputCount, AxdInfoGetOutputCount,

입 출력 포트

입출력 레벨 쓰기 읽기

Function	Description		
<u>AxdiLevelSetInportBit</u>	지정한 입력 접점 모듈의 Offset 위치에서 bit 단위로 데이터 레벨을 설		
	정한다.		
<u>AxdiLevelSetInportByte</u>	지정한 입력 접점 모듈의 Offset 위치에서 byte 단위로 데이터 레벨을		
	설정한다		
<u>AxdiLevelSetInportWord</u>	지정한 입력 접점 모듈의 Offset 위치에서 word 단위로 데이터 레벨을		
	설정한다.		
<u>AxdiLevelSetInportDword</u>	지정한 입력 접점 모듈의 Offset 위치에서 double word 단위로 데이터		
	레벨을 설정한다.		
<u>AxdiLevelSetInport</u>	지정한 입력 접점 모듈의 Offset 위치에서 bit 단위로 데이터 레벨을 확		
	인한다.		
<u>AxdiLevelGetInportBit</u>	지정한 입력 접점 모듈의 Offset 위치에서 byte 단위로 데이터 레벨을		
	확인한다.		
<u>AxdiLevelGetInportByte</u>	지정한 입력 접점 모듈의 Offset 위치에서 word 단위로 데이터 레벨을		
	확인한다.		
<u>AxdiLevelGetInportWord</u>	전체 입력 접점 모듈의 Offset 위치에서 bit 단위로 데이터 레벨을 설정		
	한다.		
<u>AxdiLevelGetInport</u>	전체 입력 접점 모듈의 Offset 위치에서 bit 단위로 데이터 레벨을 확인		
	한다.		
<u>AxdoLevelSetOutportBit</u>	지정한 출력 접점 모듈의 Offset 위치에서 bit 단위로 데이터 레벨을 설		
	정한다.		
<u>AxdoLevelSetOutportByte</u>	지정한 출력 접점 모듈의 Offset 위치에서 byte 단위로 데이터 레벨을		
	설정한다.		
<u>AxdoLevelSetOutportWord</u>	지정한 출력 접점 모듈의 Offset 위치에서 word 단위로 데이터 레벨을		
	설정한다.		
<u>AxdoLevelSetOutportDword</u>	지정한 출력 접점 모듈의 Offset 위치에서 double word 단위로 데이터		
	레벨을 설정한다.		
<u>AxdoLevelSetOutport</u>	지정한 출력 접점 모듈의 Offset 위치에서 bit 단위로 데이터 레벨을 확		
	인한다.		
<u>AxdoLevelGetOutportBit</u>	지정한 출력 접점 모듈의 Offset 위치에서 byte 단위로 데이터 레벨을		
	확인한다.		
<u>AxdoLevelGetOutportByte</u>	지정한 출력 접점 모듈의 Offset 위치에서 word 단위로 데이터 레벨을		
	확인한다.		

<u>AxdoLevelGetOutportWord</u>	지정 노드내의 전체 출력 접점 모듈의 Offset 위치에서 bit 단위로 데이			
	터 레벨을 설정한다.			
<u>AxdoLevelGetOutport</u>	지정 노드내의 출력 접점 모듈의 Offset 위치에서 bit 단위로 데이터 레			
	벨을 확인한다.			

입출력 포트 쓰기 읽기

Function	Description		
<u>AxdoWriteOutportBit</u>	지정한 출력 접점 모듈의 Offset 위치에서 bit 단위로 데이터를 출력한		
	다		
<u>AxdoWriteOutportByte</u>	지정한 출력 접점 모듈의 Offset 위치에서 byte 단위로 데이터를 출력		
	한다		
<u>AxdoWriteOutportWord</u>	지정한 출력 접점 모듈의 Offset 위치에서 word 단위로 데이터를 출력		
	한다.		
<u>AxdoNWriteOutportDword</u>	지정한 출력 접점 모듈의 Offset 위치에서 double word 단위로 데이터		
	를 출력한다		
<u>AxdoWriteOutport</u>	전체 출력 접점 모듈의 Offset 위치에서 bit 단위로 데이터를 출력한다.		
<u>AxdoReadOutportBit</u>	지정한 출력 접점 모듈의 Offset 위치에서 bit 단위로 데이터를 읽는다.		
<u>AxdoReadOutportByte</u>	지정한 출력 접점 모듈의 Offset 위치에서 byte 단위로 데이터를 읽는		
	다.		
<u>AxdoReadOutportWord</u>	지정한 출력 접점 모듈의 Offset 위치에서 word 단위로 데이터를 읽는		
	다.		
<u>AxdoReadOutport</u>	전체 출력 접점 모듈의 Offset 위치에서 bit 단위로 데이터를 읽는다		
<u>AxdiReadInportBit</u>	지정한 입력 접점 모듈의 Offset 위치에서 bit 단위로 데이터를 읽는다		
<u>AxdiReadInportByte</u>	지정한 입력 접점 모듈의 Offset 위치에서 byte 단위로 데이터를 읽는		
	다		
<u>AxdiReadInportWord</u>	지정한 입력 접점 모듈의 Offset 위치에서 word 단위로 데이터를 읽는		
	다.		
<u>AxdiReadInport</u>	전체 입력 접점 모듈의 Offset 위치에서 bit 단위로 데이터를 읽는다.		

지정 노드에 대한 입력 레벨 확인

Function	Description		
<u>AxdiNLevelSetInportBit</u>	해당 노드의 지정한 입력 모듈에 bit 단위로Offset 위치에 데이터 레벨		
	을 설정한다		
<u>AxdiNLevelSetInportByte</u>	해당 노드의 지정한 입력 모듈에 byte 단위로 Offset위치에 데이터 레		

	벨을 설정한다
AxdiNLevelSetInportWord	해당 노드의 지정한 입력 모듈에 word 단위로 Offset위치에 데이터 레
	벨을 설정한다
AxdiNLevelSetInportDword	해당 노드의 지정한 입력 모듈에 double word 단위로 Offset 위치에 데
	이터 레벨을 설정한다
AxdiNLevelSetInport	해당 노드의 전체 입력 접점 모듈의 Offset 위치에서 bit 단위로 데이터
	레벨을 설정 한다
<u>AxdiNLevelGetInportBit</u>	해당 노드의 지정한 입력 모듈에 bit 단위로 Offset 위치에 데이터 레벨
	을 확인한다
<u>AxdiNLevelGetInportByte</u>	해당 노드의 지정한 입력 모듈에 byte 단위로Offset 위치에 데이터 레
	벨을 확인한다
<u>AxdiNLevelGetInportWord</u>	해당 노드의 지정한 입력 모듈에 word 단위로 Offset 위치에 데이터 레
	벨을 확인한다
<u>AxdiNLevelGetInport</u>	해당 노드의 전체 입력 접점 모듈의 Offset 위치에서 bit 단위로 데이터
	레벨을 확인 한다
<u>AxdoNLevelSetOutportBit</u>	해당 노드의 지정한 출력 모듈에 bit 단위로 Offset 위치에 데이터 레벨
	을 설정한다
<u>AxdoNLevelSetOutportByte</u>	해당 노드의 지정한 출력 모듈에 byte 단위로 Offset 위치에 데이터 레
	벨을 설정한다
<u>AxdoNLevelSetOutportWord</u>	해당 노드의 지정한 출력 모듈에 word 단위로 Offset 위치에 데이터 레
	벨을 설정한다
<u>AxdoNLevelSetOutportDword</u>	해당 노드의 지정한 출력 모듈에 double word 단위로 Offset위치에 데
	이터 레벨을 설정한다
<u>AxdoNLevelSetOutport</u>	해당 노드의 전체 출력 모듈에 bit 단위로 Offset 위치에 데이터 레벨을
	설정한다
<u>AxdoNLevelGetOutportBit</u>	해당 노드의 지정한 출력 모듈에 bit 단위로Offset 위치에 데이터 레벨
	을 확인한다
<u>AxdoNLevelGetOutportByte</u>	해당 노드의 지정한 출력 모듈에 byte 단위로Offset 위치에 데이터 레
	벨을 확인한다
<u>AxdoNLevelGetOutportWord</u>	해당 노드의 지정한 출력 모듈에 word 단위로Offset 위치에 데이터 레
	벨을 확인한다
<u>AxdoNLevelGetOutport</u>	해당 노드의 전체 출력 접점 모듈의 Offset 위치에서 bit 단위로 데이터
	레벨을 확인 한다

지정 노드에 대한 출력 포트 쓰기 읽기

Function	Description		
<u>AxdoNWriteOutportBit</u>	해당 노드의 지정한 출력 모듈에 bit 단위로Offset 위치에 출력한다.		

<u>AxdoNWriteOutportByte</u>	해당 노드의 지정한 출력 모듈에 byte 단위로Offset 위치에 출력한다.
<u>AxdoNWriteOutportWord</u>	해당 노드의 지정한 출력 모듈에 word 단위로Offset 위치에 출력한다.
<u>AxdoNWriteOutportDword</u>	해당 노드의 지정한 출력 모듈에 double word 단위로 Offset 위치에 출
	력한다.
<u>AxdoNWriteOutport</u>	해당 노드의 전체 출력 모듈에 bit 단위로 Offset 위치에 출력한다.
<u>AxdoNReadOutportBit</u>	해당 노드의 지정한 출력 모듈에 bit 단위로Offset 위치에 읽는다.
<u>AxdoNReadOutportByte</u>	해당 노드의 지정한 출력 모듈에 byte 단위로Offse t위치에 읽는다.
<u>AxdoNReadOutportWord</u>	해당 노드의 지정한 출력 모듈에 word 단위로Offset 위치에 읽는다.
<u>AxdoNReadOutportDword</u>	해당 노드의 지정한 출력 모듈에 double word 단위로 Offset 위치에 읽
	는다.
<u>AxdoNReadOutport</u>	해당 노드의 전체 출력 모듈에 bit 단위로 Offset 위치에 읽는다.
<u>AxdiNReadInportBit</u>	해당 노드의 지정한 입력 모듈에 bit 단위로Offset 위치에 읽는다.
<u>AxdiNReadInportByte</u>	해당 노드의 지정한 입력 모듈에 byte 단위로Offset 위치에 읽는다.
<u>AxdiNReadInportWord</u>	해당 노드의 지정한 입력 모듈에 word 단위로Offset 위치에 읽는다.
<u>AxdiNReadInport</u>	해당 노드의 전체 입력 모듈에 bit단위로 Offset위치에 읽는다.

출력 포트의 네트웍 예외 처리

Function	Description			
AxdoNetWorkErrorSetAction	지정한 출력 접점 모듈이 연결된 노드의 통신이 끊어 졌을때 현재 출력			
	접점 상태에 대한 예외처리 방법 설정한다.			
<u>AxdoNetWorkErrorGetAction</u>	지정한 출력 접점 모듈이 연결된 노드의 통신이 끊어 졌을때 현재 출력			
	접점 상태에 대한 예외처리 방법 확인한다.			
<u>AxdoNetWorkErrorSetByteValue</u>	Network연결이 끊어 졌을 경우 지정한 출력 접점의 상태를 설정 한다			
<u>AxdoNetWorkErrorGetByteValue</u>	Network연결이 끊어 졌을 경우 지정한 출력 접점의 상태를 확인 한다			

AxdiLevelSetInportBit

Purpose

지정한 입력 접점 모듈의 Offset 위치에서 bit 단위로 데이터 레벨을 설정한다.

Format

С

DWORD AxdiLevelSetInportBit(long IModuleNo, long IOffset, DWORD uLevel);

Visual Basic

Function AxdiLevelSetInportBit(ByVal IModuleNo As Long, ByVal IOffset As Long, ByVal uLevel As Long) As Long

Delphi

function AxdiLevelSetInportBit(IModuleNo: LongInt; IOffset: LongInt; uLevel: DWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
IModuleNo	in	long		모듈 번호 (0 ~ n−1)
lOffset	ln	long		입력 접점에 대한 Offset 위치
uLevel	in	DWORD		레벨 값 (Boolean)

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 입력 접점 모듈의 Offset 위치에서 bit 단위로 데이터 레벨을 설정한다. 지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 설정한다. 모듈 번호는 가장 빠른 노드(노드 ID 값이 작은 CPU)의 CPU 부터 0으로 시작되며, 그 노드에 장착된 DIO 모듈 의 모듈 위치(로터리 스위치 값)에 따라 차례대로 배열 된 후, 다음 빠른 노드로 순서대로 배열 된다.

Module	Offsett	Level
EIP-CPU16B	0 ~ 15	0(Off), 1(On)
EIP-DB32T	0 ~ 15	0(Off), 1(On)

C Example

// 0번째 모듈의 Offset 0번지에서 bit 단위로 데이터 레벨을 설정한다. AxdiLevelSetInportBit(0, 0, 1);

VB Example

' 0번째 모듈의 Offset 0번지에서 bit 단위로 데이터 레벨을 설정한다. AxdiLevelSetInportBit0, 0, 1

Delphi Example

```
{ 0번째 모듈의 Offset 0번지에서 bit 단위로 데이터 레벨을 설정한다. }
AxdiLevelSetInportBit(0, 0, 1);
```

See Also

 $\underline{\text{AxdiLevelSetInportByte}}, \underline{\text{AxdiLevelSetInportWord}}, \underline{\text{AxdiLevelSetInportDword}}, \underline{\text{AxdiLevelSetInportDword}},$

AxdiLevelSetInportByte

Purpose

지정한 입력 접점 모듈의 Offset 위치에서 byte 단위로 데이터 레벨을 설정한다.

Format

С

DWORD AxdiLevelSetInportByte(long IModuleNo, long IOffset, DWORD uLevel);

Visual Basic

Function AxdiLevelSetInportByte(ByVal IModuleNo As Long, ByVal IOffset As Long, ByVal uLevel As Long) As Long

Delphi

function AxdiLevelSetInportByte(IModuleNo: LongInt; IOffset: LongInt; uLevel: DWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
IModuleNo	in	long		모듈 번호 (0 ~ n−1)
lOffset	ln	long		입력 접점에 대한 Offset 위치
uLevel	in	DWORD		레벨 값 (Byte)

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 입력 접점 모듈의 Offset 위치에서 byte 단위로 데이터 레벨을 설정한다. 지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 설정한다. 모듈 번호는 가장 빠른 노드(노드 ID 값이 작은 CPU)의 CPU 부터 0으로 시작되며, 그 노드에 장착된 DIO 모듈 의 모듈 위치(로터리 스위치 값)에 따라 차례대로 배열 된 후, 다음 빠른 노드로 순서대로 배열 된다.

Module	offsett	Level
EIP-CPU16B	0 ~ 1	00h ~ FFh
EIP-DB32T	0 ~ 1	00h ~ FFh

C Example

// 0번째 모듈의 Offset 0번지에서 byte 단위로 데이터 레벨을 설정한다. AxdiLevelSetInportByte(0, 0, 0xFF);

VB Example

'0번째 모듈의 Offset 0번지에서 byte 단위로 데이터 레벨을 설정한다. AxdiLevelSetInportByte 0, 0, 0xFF

Delphi Example

```
{ 0번째 모듈의 Offset 0번지에서 byte 단위로 데이터 레벨을 설정한다. }
AxdiLevelSetInportByte (0, 0, 0xFF);
```

See Also

 $\underline{\mathsf{AxdiLevelSetInportBit}}, \underline{\mathsf{AxdiLevelSetInportWord}}, \underline{\mathsf{AxdiLevelSetInportDword}}, \underline$

AxdiLevelSetInportWord

Purpose

전체 DIO 모듈들의 순서 중 지정한 입력 접점 모듈의 Offset 위치에서 word 단위로 데이터 레벨을 설정한다.

Format

С

DWORD AxdiLevelSetInportWord(long IModuleNo, long IOffset, DWORD uLevel);

Visual Basic

Function AxdiLevelSetInportWord(ByVal IModuleNo As Long, ByVal IOffset As Long, ByVal uLevel As Long) As Long

Delphi

function AxdiLevelSetInportWord(IModuleNo: LongInt; IOffset: LongInt; uLevel: DWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
IModuleNo	in	long		모듈 번호 (0 ~ n−1)
lOffset	ln	long		입력 접점에 대한 Offset 위치
uLevel	in	DWORD		레벨 값 (Word)

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 입력 접점 모듈의 Offset 위치에서 word 단위로 데이터 레벨을 설정한다. 지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 설정한다. 모듈 번호는 가장 빠른 노드(노드 ID 값이 작은 CPU)의 CPU 부터 0으로 시작되며, 그 노드에 장착된 DIO 모듈 의 모듈 위치(로터리 스위치 값)에 따라 차례대로 배열 된 후, 다음 빠른 노드로 순서대로 배열 된다.

Module	Offsett	Level
EIP-CPU16B	0	0000h ~ FFFFh
EIP-DB32T	0	00h ~ FFFFh

C Example

// 0번째 모듈의 Offset 0번지에서 word 단위로 데이터 레벨을 설정한다. AxdiLevelSetInportWord(0, 0, 0xFFFF);

VB Example

'0번째 모듈의 Offset 0번지에서 word 단위로 데이터 레벨을 설정한다. AxdiLevelSetInportWord 0, 0, 0xFFFF

Delphi Example

```
{ 0번째 모듈의 Offset 0번지에서 word 단위로 데이터 레벨을 설정한다. }
AxdiLevelSetInportWord (0, 0, 0xFFFF);
```

See Also

 $\underline{\text{AxdiLevelSetInportBit}}, \underline{\text{AxdiLevelSetInportByte}}, \underline{\text{AxdiLevelSetInportDword}}, \underline$

AxdiLevelSetInportDword

Purpose

지정한 입력 접점 모듈의 Offset 위치에서 double word 단위로 데이터 레벨을 설정한다. 현재 지원하지 않음

Format

C

DWORD AxdiLevelSetInportDword(long IModuleNo, long IOffset, DWORD uLevel);

Visual Basic

Function AxdiLevelSetInportDword(ByVal IModuleNo As Long, ByVal IOffset As Long, ByVal uLevel As Long) As Long

Delphi

function AxdiLevelSetInportDword(IModuleNo: LongInt; IOffset: LongInt; uLevel: DWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
IModuleNo	in	long		모듈 번호(0 ~ n−1)
lOffset	In	long		입력 접점에 대한 Offset 위치
uLevel	in	DWORD		레벨 값 (Double Word)

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 입력 접점 모듈의 Offset 위치에서 double word 단위로 데이터 레벨을 설정한다. 지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 설정한다. 모듈 번호는 가장 빠른 노드(노드 ID 값이 작은 CPU)의 CPU 부터 0으로 시작되며, 그 노드에 장착된 DIO 모듈 의 모듈 위치(로터리 스위치 값)에 따라 차례대로 배열 된 후, 다음 빠른 노드로 순서대로 배열 된다.

Module	Offsett	Level
지원하지 않음		

C Example

// 0번째 모듈의 Offset 0번지에서 double word 단위로 데이터 레벨을 설정한다. AxdiLevelSetInportDword(0, 0, 0xFFFFFFFF);

VB Example

'0번째 모듈의 Offset 0번지에서 double word 단위로 데이터 레벨을 설정한다. AxdiLevelSetInportDword 0, 0, 0xFFFFFFFF

Delphi Example

```
{ 0번째 모듈의 Offset 0번지에서 double word 단위로 데이터 레벨을 설정한다. }
AxdiLevelSetInportDword (0, 0, 0xFFFFFFFF);
```

See Also

 $\underline{\text{AxdiLevelSetInportByte}}, \underline{\text{AxdiLevelSetInportByte}}, \underline{\text{AxdiLevelSetInportWord}}, \underline{\text{AxdiLevelSetInport}}$

AxdiLevelSetInport

Purpose

전체 입력 접점 모듈의 Offset 위치에서 bit 단위로 데이터 레벨을 설정한다.

Format

С

DWORD AxdiLevelSetInport(long IOffset, DWORD uLevel);

Visual Basic

Function AxdiLevelSetInport (ByVal IOffset As Long, ByVal uLevel As Long) As Long

Delphi

function AxdiLevelSetInport(IOffset: LongInt; uLevel: DWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
lOffset	in	long		전체 입력 접점에 대한 Offset 위치
uLevel	in	DWORD		레벨 값 (Boolean)

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

전체 입력 접점 모듈의 Offset 위치에서 bit 단위로 데이터 레벨을 설정한다. Offset은 0부터 총 입력 접점 수 - 1까지 사용할 수 있다.

C Example

```
// 전체 입력 모듈, Offset 0번지에서 bit 단위로 데이터 레벨을 설정한다.
AxdSetPortLevel(0, 1);
```

VB Example

```
'전체 모듈, Offset 0번지에서 bit 단위로 데이터 레벨을 설정한다. AxdSetPortLevel~0,~1
```

Delphi Example

```
{ 전체 모듈, Offset 0번지에서 bit 단위로 데이터 레벨을 설정한다. }
AxdiLevelSetInport(0, 1);
```

See Also

 $\underline{\text{AxdiLevelSetInportBit}}, \underline{\text{AxdiLevelSetInportByte}}, \underline{\text{AxdiLevelSetInportDword}}, \underline$

AxdiLevelGetInportBit

Purpose

지정한 입력 접점 모듈의 Offset 위치에서 bit 단위로 데이터 레벨을 확인한다.

Format

С

DWORD AxdiLevelGetInportBit(long IModuleNo, long IOffset, DWORD *upLevel);

Visual Basic

Function AxdiLevelGetInportBit(ByVal IModuleNo As Long, ByVal IOffset As Long, ByRef upLevel As Long) As Long

Delphi

function AxdiLevelGetInportBit(IModuleNo: LongInt; IOffset: LongInt; upLevel: PDWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
IModuleNo	in	long		모듈 번호 (0 ~ n−1)
lOffset	in	long		입력 접점에 대한 Offset 위치
upLevel	out	DWORD*		레벨 값 (Boolean)

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 입력 접점 모듈의 Offset 위치에서 bit 단위로 데이터 레벨을 확인한다. 지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 확인한다. 모듈 번호는 가장 빠른 노드(노드 ID 값이 작은 CPU)의 CPU 부터 0으로 시작되며, 그 노드에 장착된 DIO 모듈 의 모듈 위치(로터리 스위치 값)에 따라 차례대로 배열 된 후, 다음 빠른 노드로 순서대로 배열 된다.

Module	Offsett	Level
EIP-CPU16B	0 ~ 15	0(Off), 1(On)
EIP-DB32T	0 ~ 15	0(Off), 1(On)

C Example

// 0번째 모듈의 Offset 0번지에서 bit 단위로 데이터 레벨을 확인한다. DWORD dwLevel;

AxdiLevelGetInportBit(0, 0, &dwLevel);

VB Example

'0번째 모듈의 Offset 0번지에서 bit 단위로 데이터 레벨을 확인한다.

```
Dim lLevel As long

AxdiLevelGetInportBit 0, 0, lLevel
```

```
{ 0번째 모듈의 Offset 0번지에서 bit 단위로 데이터 레벨을 확인한다. } var dwLevel : DWord; begin AxdiLevelGetInportBit(0, 0, @dwLevel); end;
```

See Also

 $\underline{AxdiLevelGetInportByte}, \ \underline{AxdiLevelGetInportWord}, \ \underline{AxdiLevelGetInport}$

AxdiLevelGetInportByte

Purpose

지정한 입력 접점 모듈의 Offset 위치에서 byte 단위로 데이터 레벨을 확인한다.

Format

С

DWORD AxdiLevelGetInportByte(long IModuleNo, long IOffset, DWORD *upLevel);

Visual Basic

Function AxdiLevelGetInportByte(ByVal IModuleNo As Long, ByVal IOffset As Long, ByRef upLevel As Long) As Long

Delphi

function AxdiLevelGetInportByte(IModuleNo: LongInt; IOffset: LongInt; upLevel: PDWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
IModuleNo	in	long		모듈 번호 (0 ~ n-1)
lOffset	in	long		입력 접점에 대한 Offset 위치
upLevel	out	DWORD*		레벨 값 (Byte)

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 입력 접점 모듈의 Offset 위치에서 byte 단위로 데이터 레벨을 확인한다. 지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 확인한다. 모듈 번호는 가장 빠른 노드(노드 ID 값이 작은 CPU)의 CPU 부터 0으로 시작되며, 그 노드에 장착된 DIO 모듈 의 모듈 위치(로터리 스위치 값)에 따라 차례대로 배열 된 후, 다음 빠른 노드로 순서대로 배열 된다.

Module	Offsett	Level
EIP-CPU16B	0 ~ 1	00h ~ FFh
EIP-DB32T	0 ~ 1	00h ~ FFh

C Example

// 0번째 모듈의 Offset 0번지에서 byte 단위로 데이터 레벨을 확인한다. DWORD dwLevel;

AxdiLevelGetInportByte(0, 0, &dwLevel);

VB Example

'0번째 모듈의 Offset 0번지에서 byte 단위로 데이터 레벨을 확인한다.

```
Dim lLevel As long

AxdiLevelGetInportByte 0, 0, lLevel
```

```
{ 0번째 모듈의 Offset 0번지에서 byte 단위로 데이터 레벨을 확인한다. } var dwLevel : DWord; begin AxdiLevelGetInportByte(0, 0, @dwLevel); end;
```

See Also

<u>AxdiLevelGetInportBit</u>, <u>AxdiLevelGetInportWord</u>, <u>AxdiLevelGetInport</u>

AxdiLevelGetInportWord

Purpose

지정한 입력 접점 모듈의 Offset 위치에서 word 단위로 데이터 레벨을 확인한다.

Format

С

DWORD AxdiLevelGetInportWord(long IModuleNo, long IOffset, DWORD *upLevel);

Visual Basic

Function AxdiLevelGetInportWord(ByVal IModuleNo As Long, ByVal IOffset As Long, ByRef upLevel As Long) As Long

Delphi

function AxdiLevelGetInportWord(IModuleNo: LongInt; IOffset: LongInt; upLevel: PDWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
IModuleNo	in	long		모듈 번호 (0 ~ n−1)
lOffset	in	long		입력 접점에 대한 Offset 위치
upLevel	out	DWORD*		레벨 값 (Word)

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 입력 접점 모듈의 Offset 위치에서 word 단위로 데이터 레벨을 확인한다. 지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 확인한다. 모듈 번호는 가장 빠른 노드(노드 ID 값이 작은 CPU)의 CPU 부터 0으로 시작되며, 그 노드에 장착된 DIO 모듈 의 모듈 위치(로터리 스위치 값)에 따라 차례대로 배열 된 후, 다음 빠른 노드로 순서대로 배열 된다.

Module	Offsett	Level
EIP-CPU16B	0	0000h ~ FFFFh
EIP-DB32T	0	0000h ~ FFFFh

C Example

// 0번째 모듈의 Offset 0번지에서 word 단위로 데이터 레벨을 확인한다. DWORD dwLevel;

AxdiLevelGetInportWord(0, 0, &dwLevel);

VB Example

'0번째 모듈의 Offset 0번지에서 word 단위로 데이터 레벨을 확인한다.

```
Dim lLevel As long

AxdiLevelGetInportWord 0, 0, lLevel
```

```
{ 0번째 모듈의 Offset 0번지에서 word 단위로 데이터 레벨을 확인한다. } var dwLevel : DWord; begin AxdiLevelGetInportWord(0, 0, @dwLevel); end;
```

See Also

AxdiLevelGetInportBit, AxdiLevelGetInportByte, AxdiLevelGetInport

AxdiLevelGetInport

Purpose

전체 입력 접점 모듈의 Offset 위치에서 bit 단위로 데이터 레벨을 확인한다.

Format

С

DWORD AxdiLevelGetInport(long IOffset, DWORD *upLevel);

Visual Basic

Function AxdiLevelGetInport(ByVal IOffset As Long, ByRef upLevel As Long) As Long

Delph

function AxdiLevelGetInport(IOffset: LongInt; upLevel: PDWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
lOffset	in	long		입력 접점에 대한 Offset 위치
upLevel	out	DWORD*		레벨 값 (Boolean)

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

전체 입력 접점 모듈의 Offset 위치에서 bit 단위로 데이터 레벨을 확인한다. Offset은 0부터 총 입력 접점 수 - 1까지 사용할 수 있다.

C Example

```
// 전체 입력모듈, Offset 0번지에서 bit 단위로 데이터 레벨을 확인한다.
DWORD dwLevel;
AxdiLevelGetInport(0, &dwLevel);
```

VB Example

```
'전체 입력모듈, Offset 0번지에서 bit 단위로 데이터 레벨을 확인한다.
Dim lLevel As long
AxdiLevelGetInport 0, lLevel
```

Delphi Example

```
{ 전체 입력모듈, Offset 0번지에서 bit 단위로 데이터 레벨을 확인한다. } var dwLevel : DWord; begin AxdiLevelGetInport(0, @dwLevel);
```

See Also

<u>AxdiLevelGetInportBit</u>, <u>AxdiLevelGetInportByte</u>, <u>AxdiLevelGetInportWord</u>

AxdoLevelSetOutportBit

Purpose

지정한 출력 접점 모듈의 Offset 위치에서 bit 단위로 데이터 레벨을 설정한다

Format

С

DWORD AxdoLevelSetOutportBit(long IModuleNo, long IOffset, DWORD uLevel);

Visual Basic

Function AxdoLevelSetOutportBit(ByVal IModuleNo As Long, ByVal IOffset As Long, ByVal uLevel As Long) As Long

Delphi

function AxdoLevelSetOutportBit(IModuleNo: LongInt; IOffset: LongInt; uLevel: DWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
IModuleNo	in	long		모듈 번호 (0 ~ n-1)
lOffset	in	long		출력 접점에 대한 Offset 위치
uLevel	in	DWORD		레벨 값 (Boolean)

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 출력 접점 모듈의 Offset 위치에서 bit 단위로 데이터 레벨을 설정한다. 지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 설정한다. 모듈 번호는 가장 빠른 노드(노드 ID 값이 작은 CPU)의 CPU 부터 0으로 시작되며, 그 노드에 장착된 DIO 모듈 의 모듈 위치(로터리 스위치 값)에 따라 차례대로 배열 된 후, 다음 빠른 노드로 순서대로 배열 된다.

Module	Offsett	Level
EIP-CPU16B	0 ~ 15	0(Off), 1(On)
EIP-DB32T	0 ~ 15	0(Off), 1(On)

C Example

// 0번째 모듈의 Offset 0번지에서 bit 단위로 데이터 레벨을 설정한다. AxdoLevelSetOutportBit (0, 0, 1);

VB Example

'0번째 모듈의 Offset 0번지에서 bit 단위로 데이터 레벨을 설정한다. AxdoLevelSetOutportBit 0, 0, 1

```
{ 0번째 모듈의 Offset 0번지에서 bit 단위로 데이터 레벨을 설정한다. }
AxdoLevelSetOutportBit (0, 0, 1);
```

See Also

 $\underline{AxdoLevelSet0utportByte}, \ \underline{AxdoLevelSet0utportWord}, \ \underline{AxdoLevelSet0utportDword}, \$

AxdoLevelSetOutportByte

Purpose

지정한 출력 접점 모듈의 Offset 위치에서 byte 단위로 데이터 레벨을 설정한다

Format

С

DWORD AxdoLevelSetOutportByte(long IModuleNo, long IOffset, DWORD uLevel);

Visual Basic

Function AxdoLevelSetOutportByte(ByVal IModuleNo As Long, ByVal IOffset As Long, ByVal uLevel As Long) As Long

Delphi

function AxdoLevelSetOutportByte(IModuleNo: LongInt; IOffset: LongInt; uLevel: DWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
IModuleNo	in	long		모듈 번호 (0 ~ n−1)
lOffset	in	long		출력 접점에 대한 Offset 위치
uLevel	in	DWORD		레벨 값 (Byte)

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 출력 접점 모듈의 Offset 위치에서 byte 단위로 데이터 레벨을 설정한다. 지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 설정한다. 모듈 번호는 가장 빠른 노드(노드 ID 값이 작은 CPU)의 CPU 부터 0으로 시작되며, 그 노드에 장착된 DIO 모듈 의 모듈 위치(로터리 스위치 값)에 따라 차례대로 배열 된 후, 다음 빠른 노드로 순서대로 배열 된다.

Module	Offsett	Level
EIP-CPU16B	0 ~ 1	00h ~ FFh
EIP-DB32T	0 ~ 1	00h ~ FFh

C Example

// 0번째 모듈의 Offset 0번지에서 byte 단위로 데이터 레벨을 설정한다. AxdoLevelSetOutportByte(0, 0, 0xFF);

VB Example

'0번째 모듈의 Offset 0번지에서 byte 단위로 데이터 레벨을 설정한다. AxdoLevelSetOutportByte, 0, 0xFF

```
{ 0번째 모듈의 Offset 0번지에서 byte 단위로 데이터 레벨을 설정한다. }
AxdoLevelSetOutportByte (0, 0, 0xFF);
```

See Also

 $\underline{AxdoLevelSetOutportBit}, \underline{AxdoLevelSetOutportWord}, \underline{AxdoLevelSetOutportDword}, \underline{AxdoLevelSetOut$

AxdoLevelSetOutportWord

Purpose

지정한 출력 접점 모듈의 Offset 위치에서 word 단위로 데이터 레벨을 설정한다

Format

С

DWORD AxdoLevelSetOutportWord(long IModuleNo, long IOffset, DWORD uLevel);

Visual Basic

Function AxdoLevelSetOutportWord(ByVal IModuleNo As Long, ByVal IOffset As Long, ByVal uLevel As Long) As Long

Delphi

function AxdoLevelSetOutportWord(IModuleNo: LongInt; IOffset: LongInt; uLevel: DWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
IModuleNo	in	long		모듈 번호 (0 ~ n-1)
lOffset	in	long		출력 접점에 대한 Offset 위치
uLevel	in	DWORD		레벨 값 (Word)

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 출력 접점 모듈의 Offset 위치에서 word 단위로 데이터 레벨을 설정한다. 지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 설정한다. 모듈 번호는 가장 빠른 노드(노드 ID 값이 작은 CPU)의 CPU 부터 0으로 시작되며, 그 노드에 장착된 DIO 모듈 의 모듈 위치(로터리 스위치 값)에 따라 차례대로 배열 된 후, 다음 빠른 노드로 순서대로 배열 된다.

Module	Offsett	Level
EIP-CPU16B	0	0000h ~ FFFFh
EIP-DB32T	0	0000h ~ FFFFh

C Example

// 0번째 모듈의 Offset 0번지에서 word 단위로 데이터 레벨을 설정한다. AxdoLevelSetOutportWord(0, 0, 0xFFFF);

VB Example

'0번째 모듈의 Offset 0번지에서 word 단위로 데이터 레벨을 설정한다. AxdoLevelSetOutportWord 0, 0, 0xFFFF

```
{ 0번째 모듈의 Offset 0번지에서 word 단위로 데이터 레벨을 설정한다. }
AxdoLevelSetOutportWord (0, 0, 0xFFFF);
```

See Also

 $\underline{AxdoLevelSetOutportBit}, \underline{AxdoLevelSetOutportByte}, \underline{AxdoLevelSetOutportDword}, \underline{AxdoLevelSetOut$

AxdoLevelSetOutportDWord

Purpose

지정한 출력 접점 모듈의 Offset 위치에서 double word 단위로 데이터 레벨을 설정한다 지원하지 않음

Format

C

DWORD AxdoLevelSetOutportDWord(long IModuleNo, long IOffset, DWORD uLevel);

Visual Basic

Function AxdoLevelSetOutportDWord(ByVal IModuleNo As Long, ByVal IOffset As Long, ByVal uLevel As Long) As Long

Delphi

function AxdoLevelSetOutportDWord(IModuleNo: LongInt; IOffset: LongInt; uLevel: DWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
IModuleNo	in	long		모듈 번호 (0 ~ n−1)
lOffset	in	long		출력 접점에 대한 Offset 위치
uLevel	in	DWORD		레벨 값 (double Word)

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 출력 접점 모듈의 Offset 위치에서 double word 단위로 데이터 레벨을 설정한다. 지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 설정한다. 모듈 번호는 가장 빠른 노드(노드 ID 값이 작은 CPU)의 CPU 부터 0으로 시작되며, 그 노드에 장착된 DIO 모듈의 모듈 위치(로터리 스위치 값)에 따라 차례대로 배열 된 후, 다음 빠른 노드로 순서대로 배열 된다.

Module	Offsett	Level
지원하지 않음		

C Example

// 0번째 모듈의 Offset 0번지에서 double word 단위로 데이터 레벨을 설정한다. AxdoLevelSetOutportDword(0, 0, 0xFFFFFFFF);

VB Example

'0번째 모듈의 Offset 0번지에서 double word 단위로 데이터 레벨을 설정한다. AxdoLevelSetOutportDword 0, 0, 0xFFFFFFFF

```
{ 0번째 모듈의 Offset 0번지에서 double word 단위로 데이터 레벨을 설정한다. }
AxdoLevelSetOutportDword (0, 0, 0xFFFFFFFF);
```

See Also

 $\underline{AxdoLevelSetOutportBit}, \underline{AxdoLevelSetOutportByte}, \underline{AxdoLevelSetOutportWord}, \underline{AxdoLevelSetOutportByte}, \underline{AxdoLevelSetOutportWord}, \underline{AxdoLevelSetOutportByte}, \underline$

AxdoLevelSetOutport

Purpose

전체 출력 접점 모듈의 Offset 위치에서 bit 단위로 데이터 레벨을 설정한다

Format

С

DWORD AxdoLevelSetOutport(long IOffset, DWORD uLevel);

Visual Basic

Function AxdoLevelSetOutport(ByVal IOffset As Long, ByVal uLevel As Long) As Long

Delph

function AxdoLevelSetOutport(LongInt; uLevel: DWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
lOffset	in	long		출력 접점에 대한 Offset 위치
uLevel	in	DWORD		레벨 값 (Boolean)

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

전체 출력 접점 모듈의 Offset 위치에서 bit 단위로 데이터 레벨을 설정한다. Offset은 0부터 총 입력 접점 수 - 1까지 사용할 수 있다.

C Example

```
// 전체 출력 모듈, Offset O번지에서 bit 단위로 데이터 레벨을 설정한다.
AxdoLevelSetOutport(0, 1);
```

VB Example

```
'전체 모듈의 Offset 0번지에서 bit 단위로 데이터 레벨을 설정한다.
AxdoLevelSetOutport 0, 1
```

Delphi Example

```
{ 전체 모듈의 Offset 0번지에서 bit 단위로 데이터 레벨을 설정한다. }
AxdoLevelSetOutport (0, 1);
```

See Also

<u>AxdoLevelSetOutportBit</u>, <u>AxdoLevelSetOutportByte</u>, <u>AxdoLevelSetOutportWord</u>, AxdoLevelSetOutportDword

AxdoLevelGetOutportBit

Purpose

지정한 입력 접점 모듈의 Offset 위치에서 bit 단위로 데이터 레벨을 확인한다.

Format

С

DWORD AxdoLevelGetOutportBit(long IModuleNo, long IOffset, DWORD *upLevel);

Visual Basic

Function AxdoLevelGetOutportBit(ByVal IModuleNo As Long, ByVal IOffset As Long, ByRef upLevel As Long) As Long

Delphi

function AxdoLevelGetOutportBit(IModuleNo: LongInt; IOffset: LongInt; upLevel: PDWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
IModuleNo	in	long		모듈 번호 (0 ~ n-1)
lOffset	in	long		출력 접점에 대한 Offset 위치
upLevel	out	DWORD*		레벨 값 (Boolean)

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 출력 접점 모듈의 Offset 위치에서 bit 단위로 데이터 레벨을 확인한다. 지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 확인한다. 모듈 번호는 가장 빠른 노드(노드 ID 값이 작은 CPU)의 CPU 부터 0으로 시작되며, 그 노드에 장착된 DIO 모듈 의 모듈 위치(로터리 스위치 값)에 따라 차례대로 배열 된 후, 다음 빠른 노드로 순서대로 배열 된다.

Module	Offsett	Level
EIP-CPU16B	0 ~ 15	0(Off), 1(On)
EIP-DB32T	0 ~ 15	0(Off), 1(On)

C Example

// 0번째 모듈의 Offset 0번지에서 bit 단위로 데이터 레벨을 확인한다. DWORD dwLevel;

AxdoLevelGetOutportBit (0, 0, &dwLevel);

VB Example

'0번째 모듈의 Offset 0번지에서 bit 단위로 데이터 레벨을 확인한다.

```
Dim lLevel As long

AxdoLevelGetOutportBit 0, 0, lLevel
```

```
{ 0번째 모듈의 Offset 0번지에서 bit 단위로 데이터 레벨을 확인한다. } var dwLevel : DWord; begin AxdoLevelGetOutportBit (0, 0, @dwLevel); end;
```

See Also

AxdoLevelGetOutportByte, AxdoLevelGetOutportWord, AxdoLevelGetOutport

AxdoLevelGetOutportByte

Purpose

지정한 입력 접점 모듈의 Offset 위치에서 byte 단위로 데이터 레벨을 확인한다.

Format

С

DWORD AxdoLevelGetOutportByte(long IModuleNo, long IOffset, DWORD *upLevel);

Visual Basic

Function AxdoLevelGetOutportByte(ByVal IModuleNo As Long, ByVal IOffset As Long, ByRef upLevel As Long) As Long

Delphi

function AxdoLevelGetOutportByte(IModuleNo: LongInt; IOffset: LongInt; upLevel: PDWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
IModuleNo	in	long		모듈 번호 (0 ~ n-1)
lOffset	in	long		출력 접점에 대한 Offset 위치
upLevel	out	DWORD*		레벨 값 (Byte)

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 출력 접점 모듈의 Offset 위치에서 byte 단위로 데이터 레벨을 확인한다. 지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 확인한다. 모듈 번호는 가장 빠른 노드(노드 ID 값이 작은 CPU)의 CPU 부터 0으로 시작되며, 그 노드에 장착된 DIO 모듈 의 모듈 위치(로터리 스위치 값)에 따라 차례대로 배열 된 후, 다음 빠른 노드로 순서대로 배열 된다.

Module	Offsett	Level
EIP-CPU16B	0 ~ 1	00h ~ FFh
EIP-DB32T	0 ~ 1	00h ~ FFh

C Example

// 0번째 모듈의 Offset 0번지에서 byte 단위로 데이터 레벨을 확인한다. DWORD dwLevel;

AxdoLevelGetOutportByte (0, 0, &dwLevel);

VB Example

```
' 0번째 모듈의 Offset 0번지에서 byte 단위로 데이터 레벨을 확인한다.
Dim lLevel As long
AxdoLevelGetOutportByte 0, 0, lLevel
```

```
{ 0번째 모듈의 Offset 0번지에서 byte 단위로 데이터 레벨을 확인한다. } var dwLevel : DWord; begin AxdoLevelGetOutportByte (0, 0, @dwLevel); end;
```

See Also

AxdoLevelGetOutportBit, AxdoLevelGetOutportWord, AxdoLevelGetOutport

AxdoLevelGetOutportWord

Purpose

지정한 입력 접점 모듈의 Offset 위치에서 word 단위로 데이터 레벨을 확인한다.

Format

С

DWORD AxdoLevelGetOutportWord(long IModuleNo, long IOffset, DWORD *upLevel);

Visual Basic

Function AxdoLevelGetOutportWord(ByVal IModuleNo As Long, ByVal IOffset As Long, ByRef upLevel As Long) As Long

Delphi

function AxdoLevelGetOutportWord(IModuleNo: LongInt; IOffset: LongInt; upLevel: PDWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
IModuleNo	in	long		모듈 번호 (0 ~ n-1)
lOffset	in	long		출력 접점에 대한 Offset 위치
upLevel	out	DWORD*		레벨 값 (Word)

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 출력 접점 모듈의 Offset 위치에서 word 단위로 데이터 레벨을 확인한다. 지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 확인한다. 모듈 번호는 가장 빠른 노드(노드 ID 값이 작은 CPU)의 CPU 부터 0으로 시작되며, 그 노드에 장착된 DIO 모듈 의 모듈 위치(로터리 스위치 값)에 따라 차례대로 배열 된 후, 다음 빠른 노드로 순서대로 배열 된다.

Module	Offsett	Level
EIP-CPU16B	0	0000h ~ FFFFh
EIP-DB32T	0	0000h ~ FFFFh

C Example

// 0번째 모듈의 Offset 0번지에서 word 단위로 데이터 레벨을 확인한다. DWORD dwLevel;

AxdoLevelGetOutportWord (0, 0, &dwLevel);

VB Example

```
' 0번째 모듈의 Offset 0번지에서 word 단위로 데이터 레벨을 확인한다.
Dim lLevel As long
AxdoLevelGetOutportWord 0, 0, lLevel
```

```
{ 0번째 모듈의 Offset 0번지에서 word 단위로 데이터 레벨을 확인한다. } var dwLevel : DWord; begin AxdoLevelGetOutportWord (0, 0, @dwLevel); end;
```

See Also

AxdoLevelGetOutportBit, AxdoLevelGetOutportByte, AxdoLevelGetOutport

AxdoLevelGetOutport

Purpose

전체 입력 접점 모듈의 Offset 위치에서 bit 단위로 데이터 레벨을 확인한다.

Format

С

DWORD AxdoLevelGetOutport(long IOffset, DWORD *upLevel);

Visual Basic

Function AxdoLevelGetOutport(ByVal IOffset As Long, ByRef upLevel As Long) As Long

Delph

function AxdoLevelGetOutport(IOffset: LongInt; upLevel: PDWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
lOffset	in	long		출력 접점에 대한 Offset 위치
upLevel	out	DWORD*		레벨 값 (Boolean)

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

전체 출력 접점 모듈의 Offset 위치에서 bit 단위로 데이터 레벨을 확인한다. Offset은 0부터 총 입력 접점 수 - 1까지 사용할 수 있다.

C Example

```
// 전체 출력모듈, Offset 0번지에서 bit 단위로 데이터 레벨을 확인한다.
DWORD dwLevel;
AxdoLevelGetOutport(0, &dwLevel);
```

VB Example

```
'전체 출력모듈, Offset O번지에서 bit 단위로 데이터 레벨을 확인한다.
Dim lLevel As long
AxdoLevelGetOutport 0, lLevel
```

Delphi Example

```
{ 전체 출력모듈, Offset 0번지에서 bit 단위로 데이터 레벨을 확인한다. }
var
dwLevel : DWord;
begin
AxdoLevelGetOutport(0, @dwLevel);
```

$\overline{}$	7	٦.	Ö	1	•
u	1	т	u	L	,

See Also

 $\underline{\mathsf{AxdoLevelGetOutportBit}}, \underline{\mathsf{AxdoLevelGetOutportByte}}, \underline{\mathsf{AxdoLevelGetOutportWord}}$

AxdoWriteOutportBit

Purpose

지정한 출력 접점 모듈의 Offset 위치에서 bit 단위로 데이터를 출력한다.

Format

С

DWORD AxdoWritePortBit(long IModuleNo, long IOffset, DWORD uValue);

Visual Basic

Function AxdoWritePortBit(ByVal IModuleNo As Long, ByVal IOffset As Long, ByVal uValue As Long) As Long

Delphi

function AxdoWritePortBit(IModuleNo: LongInt; IOffset: LongInt; uValue: DWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
IModuleNo	in	long		모듈 번호 (0 ~ n-1)
lOffset	in	long		출력 접점에 대한 Offset 위치
uValue	in	DWORD		출력 접점 값 (Boolean)

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 출력 접점 모듈의 Offset 위치에서 bit 단위로 데이터를 출력한다. 지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 설정한다. 모듈 번호는 가장 빠른 노드(노드 ID 값이 작은 CPU)의 CPU 부터 0으로 시작되며, 그 노드에 장착된 DIO 모듈 의 모듈 위치(로터리 스위치 값)에 따라 차례대로 배열 된 후, 다음 빠른 노드로 순서대로 배열 된다.

Module	Offsett	Value
EIP-CPU16B	0 ~ 15	0(Off), 1(On)
EIP-DB32T	0 ~ 15	0(Off), 1(On)

C Example

// 0번째 출력 접점 모듈의 Offset 0번지에서 bit 단위로 데이터를 출력한다. AxdoWriteOutportBit (0, 0, 1);

VB Example

'0번째 출력 접점 모듈의 Offset 0번지에서 bit 단위로 데이터를 출력한다. AxdoWriteOutportBit 0, 0, 1

Delphi Example

{ 0번째 출력 접점 모듈의 Offset 0번지에서 bit 단위로 데이터를 출력한다. } AxdoWriteOutportBit (0, 0, 1);

See Also

AxdoWriteOutportByte, AxdoWriteOutportWord, AxdoWriteOutport

AxdoWriteOutportByte

Purpose

지정한 출력 접점 모듈의 Offset 위치에서 byte 단위로 데이터를 출력한다.

Format

С

DWORD AxdoWritePortByte(long IModuleNo, long IOffset, DWORD uValue);

Visual Basic

Function AxdoWritePortByte(ByVal IModuleNo As Long, ByVal IOffset As Long, ByVal uValue As Long) As Long

Delphi

function AxdoWritePortByte(IModuleNo: LongInt; IOffset: LongInt; uValue: DWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
IModuleNo	in	long		모듈 번호 (0 ~ n-1)
lOffset	in	long		출력 접점에 대한 Offset 위치
uValue	in	DWORD		출력 접점 값 (Byte)

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 출력 접점 모듈의 Offset 위치에서 byte 단위로 데이터를 출력한다. 지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 설정한다. 모듈 번호는 가장 빠른 노드(노드 ID 값이 작은 CPU)의 CPU 부터 0으로 시작되며, 그 노드에 장착된 DIO 모듈 의 모듈 위치(로터리 스위치 값)에 따라 차례대로 배열 된 후, 다음 빠른 노드로 순서대로 배열 된다.

Module	Offsett	Value
EIP-CPU16B	0 ~ 1	00h ~ FFh
EIP-DB32T	0 ~ 1	00h ~ FFh

C Example

// 0번째 출력 접점 모듈의 Offset 0번지에서 byte 단위로 데이터를 출력한다. AxdoWriteOutportByte (0, 0, 0xFF);

VB Example

'0번째 출력 접점 모듈의 Offset 0번지에서 byte 단위로 데이터를 출력한다. AxdoWriteOutportByte 0, 0, 0xFF

 $\{$ 0번째 출력 접점 모듈의 Offset 0번지에서 byte 단위로 데이터를 출력한다. $\}$ AxdoWriteOutportByte (0, 0, 0xFF);

See Also

<u>AxdoWriteOutportBit</u>, <u>AxdoWriteOutportWord</u>, <u>AxdoWriteOutport</u>

AxdoWriteOutportWord

Purpose

지정한 출력 접점 모듈의 Offset 위치에서 word 단위로 데이터를 출력한다.

Format

С

DWORD AxdoWritePortWord(long IModuleNo, long IOffset, DWORD uValue);

Visual Basic

Function AxdoWritePortWord(ByVal IModuleNo As Long, ByVal IOffset As Long, ByVal uValue As Long) As Long

Delphi

function AxdoWritePortWord(IModuleNo: LongInt; IOffset: LongInt; uValue: DWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
IModuleNo	in	long		모듈 번호 (0 ~ n-1)
lOffset	in	long		출력 접점에 대한 Offset 위치
uValue	in	DWORD		출력 접점 값 (Word)

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 출력 접점 모듈의 Offset 위치에서 word 단위로 데이터를 출력한다. 지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 설정한다. 모듈 번호는 가장 빠른 노드(노드 ID 값이 작은 CPU)의 CPU 부터 0으로 시작되며, 그 노드에 장착된 DIO 모듈 의 모듈 위치(로터리 스위치 값)에 따라 차례대로 배열 된 후, 다음 빠른 노드로 순서대로 배열 된다.

Module	Offsett	Value
EIP-CPU16B	0	0000h ~ FFFFh
EIP-DB32T	0	0000h ~ FFFFh

C Example

// 0번째 출력 접점 모듈의 Offset 0번지에서 word 단위로 데이터를 출력한다. AxdoWriteOutportWord (0, 0, 0xFFFF);

VB Example

'0번째 출력 접점 모듈의 Offset 0번지에서 word 단위로 데이터를 출력한다. AxdoWriteOutportWord 0, 0, 0xFFFF

```
{ 0번째 출력 접점 모듈의 Offset 0번지에서 word 단위로 데이터를 출력한다. }
AxdoWriteOutportWord (0, 0, 0xFFFF);
```

See Also

 $\underline{\mathsf{AxdoWriteOutportBit}}, \underline{\mathsf{AxdoWriteOutportByte}}, \underline{\mathsf{AxdoWriteOutport}}$

AxdoWriteOutport

Purpose

전체 출력 접점 모듈의 Offset 위치에서 byte 단위로 데이터를 출력한다.

Format

С

DWORD AxdoWritePort(long IOffset, DWORD uValue);

Visual Basic

Function AxdoWritePort(ByVal IOffset As Long, ByVal uValue As Long) As Long

Delphi

function AxdoWritePort(IOffset: LongInt; uValue: DWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
lOffset	in	long		출력 접점에 대한 Offset 위치
uValue	in	DWORD		출력 접점 값 (Boolean)

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

전체 출력 접점 모듈의 Offset 위치에서 bit 단위로 데이터를 출력한다. Offset은 0부터 총 출력 접점 수 - 1까지 사용할 수 있다.

C Example

```
// 0번째 출력 접점 모듈의 Offset 0번지에서 bit 단위로 데이터를 출력한다.
AxdoWriteOutport (0, 1);
```

VB Example

'0번째 출력 접점 모듈의 Offset 0번지에서 bit 단위로 데이터를 출력한다. AxdoWriteOutport 0, 1

Delphi Example

```
{ 0번째 출력 접점 모듈의 Offset 0번지에서 bit 단위로 데이터를 출력한다. }
AxdoWriteOutport (0, 1);
```

See Also

<u>AxdoWriteOutportBit</u>, <u>AxdoWriteOutportByte</u>, <u>AxdoWriteOutportWord</u>

AxdoReadOutportBit

Purpose

지정한 출력 접점 모듈의 Offset 위치에서 bit 단위로 데이터를 읽는다.

Format

С

DWORD AxdoReadOutportBit(long IModuleNo, long IOffset, DWORD *upValue);

Visual Basic

Function AxdoReadOutportBit(ByVal IModuleNo As Long, ByVal IOffset As Long, ByRef upValue As Long) As Long

Delphi

function AxdoReadOutportBit(IModuleNo: LongInt; IOffset: LongInt; upValue: PDWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
IModuleNo	in	long		모듈 번호 (0 ~ n-1)
lOffset	in	long		출력 접점에 대한 Offset 위치
upValue	out	DWORD*		출력 접점 값 (Boolean)

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 출력 접점 모듈의 Offset 위치에서 bit 단위로 데이터를 읽는다. 지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 확인한다. 모듈 번호는 가장 빠른 노드(노드 ID 값이 작은 CPU)의 CPU 부터 0으로 시작되며, 그 노드에 장착된 DIO 모듈 의 모듈 위치(로터리 스위치 값)에 따라 차례대로 배열 된 후, 다음 빠른 노드로 순서대로 배열 된다.

Module	Offsett	Value
EIP-CPU16B	0 ~ 15	0(Off), 1(On)
EIP-DB32T	0 ~ 15	0(Off), 1(On)

C Example

// 0번째 모듈에서 Offset 0번지에 데이터를 bit 단위로 읽는다. DWORD dwValue;

AxdoReadPortBit(0, 0, &dwValue);

VB Example

'O번째 모듈에서 Offset O번지에 데이터를 bit 단위로 읽는다.

```
Dim lValue As Long

AxdoReadPortBit 0, 0, lValue
```

```
{ 0번째 모듈에서 Offset 0번지에 데이터를 bit 단위로 읽는다. } var dwValue : DWord; begin AxdoReadPortBit(0, 0, @dwValue); end;
```

See Also

<u>AxdoReadOutportByte</u>, <u>AxdoReadOutportWord</u>, <u>AxdoReadOutport</u>

AxdoReadOutportByte

Purpose

지정한 출력 접점 모듈의 Offset 위치에서 byte 단위로 데이터를 읽는다.

Format

С

DWORD AxdoReadOutportByte(long IModuleNo, long IOffset, DWORD *upValue);

Visual Basic

Function AxdoReadOutportByte(ByVal IModuleNo As Long, ByVal IOffset As Long, ByRef upValue As Long) As Long

Delphi

function AxdoReadOutportByte(IModuleNo: LongInt; IOffset: LongInt; upValue: PDWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
IModuleNo	in	long		모듈 번호 (0 ~ n-1)
lOffset	in	long		출력 접점에 대한 Offset 위치
upValue	out	DWORD*		출력 접점 값 (Byte)

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 출력 접점 모듈의 Offset 위치에서 byte 단위로 데이터를 읽는다. 지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 확인한다. 모듈 번호는 가장 빠른 노드(노드 ID 값이 작은 CPU)의 CPU 부터 0으로 시작되며, 그 노드에 장착된 DIO 모듈 의 모듈 위치(로터리 스위치 값)에 따라 차례대로 배열 된 후, 다음 빠른 노드로 순서대로 배열 된다.

Module	Offsett	Value
EIP-CPU16B	0 ~ 1	00h ~FFh
EIP-DB32T	0 ~ 1	00h ~FFh

C Example

// 0번째 모듈에서 Offset 0번지에 데이터를 byte 단위로 읽는다. DWORD dwValue;

AxdoReadPortByte(0, 0, &dwValue);

VB Example

'0번째 모듈에서 Offset 0번지에 데이터를 byte 단위로 읽는다.

```
Dim lValue As Long

AxdoReadPortByte 0, 0, lValue
```

Delphi Example

```
{ 0번째 모듈에서 Offset 0번지에 데이터를 byte 단위로 읽는다. } var dwValue : DWord; begin AxdoReadPortByte(0, 0, @dwValue); end;
```

See Also

 $\underline{AxdoReadOutportBit}, \ \underline{AxdoReadOutportWord}, \ \underline{AxdoReadOutport}$

AxdoReadOutportWord

Purpose

지정한 출력 접점 모듈의 Offset 위치에서 word 단위로 데이터를 읽는다.

Format

С

DWORD AxdoReadOutportWord(long IModuleNo, long IOffset, DWORD *upValue);

Visual Basic

Function AxdoReadOutportWord(ByVal IModuleNo As Long, ByVal IOffset As Long, ByRef upValue As Long) As Long

Delphi

function AxdoReadOutportWord(IModuleNo: LongInt; IOffset: LongInt; upValue: PDWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
IModuleNo	in	long		모듈 번호 (0 ~ n-1)
lOffset	in	long		출력 접점에 대한 Offset 위치
upValue	out	DWORD*		출력 접점 값 (word)

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 출력 접점 모듈의 Offset 위치에서 word 단위로 데이터를 읽는다. 지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 확인한다. 모듈 번호는 가장 빠른 노드(노드 ID 값이 작은 CPU)의 CPU 부터 0으로 시작되며, 그 노드에 장착된 DIO 모듈 의 모듈 위치(로터리 스위치 값)에 따라 차례대로 배열 된 후, 다음 빠른 노드로 순서대로 배열 된다.

Module	Offsett	Value
EIP-CPU16B	0	0000h ~FFFFh
EIP-DB32T	0	0000h ~FFFFh

C Example

// 0번째 모듈에서 Offset 0번지에 데이터를 word 단위로 읽는다. DWORD dwValue;

AxdoReadPortWord(0, 0, &dwValue);

VB Example

'0번째 모듈에서 Offset 0번지에 데이터를 word 단위로 읽는다.

```
Dim lValue As Long

AxdoReadPortWord 0, 0, lValue
```

Delphi Example

```
{ 0번째 모듈에서 Offset 0번지에 데이터를 word 단위로 읽는다. } var dwValue : DWord; begin AxdoReadPortWord(0, 0, @dwValue); end;
```

See Also

 $\underline{AxdoReadOutportBit}, \ \underline{AxdoReadOutportByte}, \ \underline{AxdoReadOutport}$

AxdoReadOutport

Purpose

전체 출력 접점 모듈의 Offset 위치에서 byte 단위로 데이터를 출력한다.

Format

С

DWORD AxdoReadOutport(long IOffset, DWORD *upValue);

Visual Basic

Function AxdoReadOutport(ByVal IOffset As Long, ByRef upValue As Long) As Long

Delphi

function AxdoReadOutport(IOffset: LongInt; upValue: PDWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
lOffset	in	long		출력 접점에 대한 Offset 위치
upValue	out	DWORD*		출력 접점 값 (Boolean)

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

전체 출력 접점 모듈의 Offset 위치에서 bit 단위로 데이터를 읽는다. Offset은 0부터 총 출력 접점 수 - 1까지 사용할 수 있다.

C Example

```
// 전체 출력 모듈의 Offset 0번지에서 bit 단위로 데이터를 읽는다.
DWORD dwValue;
AxdoReadOutport(0, &dwValue);
```

VB Example

```
' 전체 출력 모듈의 Offset 0번지에서 bit 단위로 데이터를 읽는다.
Dim lValue As Long
```

AxdoReadOutport 0, lValue

Delphi Example

```
{ 전체 출력 모듈의 Offset 0번지에서 bit 단위로 데이터를 읽는다. }
var
dwValue : DWord;
begin
AxdoReadOutport(0, @dwValue);
```

$\overline{}$	7	٦.	Ö	1	•
u	1	т	u	L	,

See Also

<u>AxdoReadOutportBit</u>, <u>AxdoReadOutportByte</u>, <u>AxdoReadOutportWord</u>

AxdiReadInportBit

Purpose

지정한 입력 접점 모듈의 Offset 위치에서 bit 단위로 데이터를 읽는다.

Format

С

DWORD AxdiReadInportBit(long IModuleNo, long IOffset, DWORD *upValue);

Visual Basic

Function AxdiReadInportBit(ByVal IModuleNo As Long, ByVal IOffset As Long, ByRef upValue As Long) As Long

Delphi

function AxdiReadInportBit(IModuleNo: LongInt; IOffset: LongInt; upValue: PDWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
IModuleNo	in	long		모듈 번호 (0 ~ n−1)
lOffset	in	long		출력 접점에 대한 Offset 위치
upValue	out	DWORD*		입력 접점 값 (Boolean)

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 입력 접점 모듈의 Offset 위치에서 bit 단위로 데이터를 읽는다. 지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 확인한다. 모듈 번호는 가장 빠른 노드(노드 ID 값이 작은 CPU)의 CPU 부터 0으로 시작되며, 그 노드에 장착된 DIO 모듈 의 모듈 위치(로터리 스위치 값)에 따라 차례대로 배열 된 후, 다음 빠른 노드로 순서대로 배열 된다.

Module	Offsett	Value
EIP-CPU16B	0 ~ 15	0(Off), 1(On)
EIP-DB32T	0 ~ 15	0(Off), 1(On)

C Example

// 0번째 모듈에서 Offset 0번지에 데이터를 bit 단위로 읽는다. DWORD dwValue;

AxdiReadInportBit(0, 0, &dwValue);

VB Example

'O번째 모듈에서 Offset O번지에 데이터를 bit 단위로 읽는다.

```
Dim lValue As Long

AxdiReadInportBit 0, 0, lValue
```

Delphi Example

```
{ 0번째 모듈에서 Offset 0번지에 데이터를 bit 단위로 읽는다. } var dwValue : DWord; begin AxdiReadInportBit (0, 0, @dwValue); end;
```

See Also

<u>AxdiReadInportByte</u>, <u>AxdiReadInportWord</u>, <u>AxdiReadInport</u>

AxdiReadInportByte

Purpose

지정한 입력 접점 모듈의 Offset 위치에서 byte 단위로 데이터를 읽는다.

Format

С

DWORD AxdiReadInportByte(long IModuleNo, long IOffset, DWORD *upValue);

Visual Basic

Function AxdiReadInportByte(ByVal IModuleNo As Long, ByVal IOffset As Long, ByRef upValue As Long) As Long

Delphi

function AxdiReadInportByte(IModuleNo: LongInt; IOffset: LongInt; upValue: PDWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
IModuleNo	in	long		모듈 번호 (0 ~ n-1)
lOffset	in	long		출력 접점에 대한 Offset 위치
upValue	out	DWORD*		입력 접점 값 (Byte)

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 입력 접점 모듈의 Offset 위치에서 byte 단위로 데이터를 읽는다. 지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 확인한다. 모듈 번호는 가장 빠른 노드(노드 ID 값이 작은 CPU)의 CPU 부터 0으로 시작되며, 그 노드에 장착된 DIO 모듈 의 모듈 위치(로터리 스위치 값)에 따라 차례대로 배열 된 후, 다음 빠른 노드로 순서대로 배열 된다.

Module	Offsett	Value
EIP-CPU16B	0 ~ 1	00h ~FFh
EIP-DB32T	0 ~ 1	00h ~FFh

C Example

// 0번째 모듈에서 Offset 0번지에 데이터를 byte 단위로 읽는다. DWORD dwValue;

AxdiReadInportByte(0, 0, &dwValue);

VB Example

'0번째 모듈에서 Offset 0번지에 데이터를 byte 단위로 읽는다.

```
Dim lValue As Long

AxdiReadInportByte 0, 0, lValue
```

Delphi Example

```
{ 0번째 모듈에서 Offset 0번지에 데이터를 byte 단위로 읽는다. } var dwValue : DWord; begin AxdiReadInportByte (0, 0, @dwValue); end;
```

See Also

<u>AxdiReadInportBit</u>, <u>AxdiReadInportWord</u>, <u>AxdiReadInport</u>

AxdiReadInportWord

Purpose

지정한 입력 접점 모듈의 Offset 위치에서 word 단위로 데이터를 읽는다.

Format

С

DWORD AxdiReadInportWord(long IModuleNo, long IOffset, DWORD *upValue);

Visual Basic

Function AxdiReadInportWord(ByVal IModuleNo As Long, ByVal IOffset As Long, ByRef upValue As Long) As Long

Delphi

function AxdiReadInportWord(IModuleNo: LongInt; IOffset: LongInt; upValue: PDWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
IModuleNo	in	long		모듈 번호 (0 ~ n−1)
lOffset	in	long		출력 접점에 대한 Offset 위치
upValue	out	DWORD*		입력 접점 값 (Word)

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 입력 접점 모듈의 Offset 위치에서 word 단위로 데이터를 읽는다. 지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 확인한다. 모듈 번호는 가장 빠른 노드(노드 ID 값이 작은 CPU)의 CPU 부터 0으로 시작되며, 그 노드에 장착된 DIO 모듈 의 모듈 위치(로터리 스위치 값)에 따라 차례대로 배열 된 후, 다음 빠른 노드로 순서대로 배열 된다.

Module	Offsett	Value
EIP-CPU16B	0	0000h ~ FFFFh
EIP-DB32T	0	0000h ~ FFFFh

C Example

// 0번째 모듈에서 Offset 0번지에 데이터를 word 단위로 읽는다. DWORD dwValue;

AxdiReadInportWord(0, 0, &dwValue);

VB Example

'0번째 모듈에서 Offset 0번지에 데이터를 word 단위로 읽는다.

```
Dim lValue As Long

AxdiReadInportWord 0, 0, lValue
```

Delphi Example

```
{ 0번째 모듈에서 Offset 0번지에 데이터를 word 단위로 읽는다. } var dwValue : DWord; begin AxdiReadInportWord (0, 0, @dwValue); end;
```

See Also

<u>AxdiReadInportBit</u>, <u>AxdiReadInportByte</u>, <u>AxdiReadInport</u>

AxdiReadInport

Purpose

전체 출력 접점 모듈의 Offset 위치에서 byte 단위로 데이터를 출력한다.

Format

С

DWORD AxdiReadInport(long IOffset, DWORD *upValue);

Visual Basic

Function AxdiReadInport(ByVal IOffset As Long, ByRef upValue As Long) As Long

Delphi

function AxdiReadInport(IOffset: LongInt; upValue: PDWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
lOffset	in	long		입력 접점에 대한 Offset 위치
upValue	out	DWORD*		입력 접점 값 (Boolean)

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

전체 입력 접점 모듈의 Offset 위치에서 bit 단위로 데이터를 읽는다. Offset은 0부터 총 입력 접점 수 - 1까지 사용할 수 있다.

C Example

```
// 전체 입력 모듈의 Offset 0번지에서 bit 단위로 데이터를 읽는다.
DWORD dwValue;
AxdiReadInport (0, &dwValue);
```

VB Example

```
ㆍ 전체 입력 모듈의 Offset 0번지에서 bit 단위로 데이터를 읽는다.
Dim lValue As Long
```

Delphi Example

AxdiReadInport 0, lValue

```
{ 전체 입력 모듈의 Offset 0번지에서 bit 단위로 데이터를 읽는다. } var dwValue : DWord; begin AxdiReadInport (0, @dwValue);
```

See Also

 $\underline{AxdiReadInportBit},\ \underline{AxdiReadInportByte},\ \underline{AxdiReadInportWord}$

AxdiNLevelSetInportBit

Purpose

지정한 노드에 대한 지정 입력 접점 모듈의 Offset 위치에서 bit 단위로 데이터 레벨을 설정한다.

Format

С

DWORD AxdiNLevelSetInportBit(long INodeNum, long IModulePos, long IOffset, DWORD uLevel);

Visual Basic

Function AxdiNLevelSetInportBit(ByVal INodeNum As Long, ByVal IModulePosAs Long, ByVal IOffset As Long, ByVal uLevel As Long) As Long

Delphi

function AxdiNLevelSetInportBit(INodeNum: LongInt; IModulePos: LongInt; IOffset: LongInt; uLevel: DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation		
INodeNum	in	long		노드 번호		
IM a dula Da a	in long			모듈 위치(사용자가 로터리 스위치		
IModulePos		III long	long	long	long	
lOffset	in	long		입력 접점에 대한 Offset 위치		
uLevel	in	DWORD		레벨 값 (Boolean)		

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 노드에 대한 지정 입력 접점 모듈의 Offset 위치에서 bit 단위로 데이터 레벨을 설정한다. 지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 설정한다. 노드 번호는 CPU모듈의 로터리 스위치 16진수 두자리 값이다.

Module	Offsett	Level
EIP-CPU16B	0 ~ 15	0(Off), 1(On)
EIP-DB32T	0 ~ 15	0(Off), 1(On)

C Example

// 0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 bit 단위로 데이터 레벨을 설정한다. AxdiNLevelSetInportBit (0, 0, 0, 1);

VB Example

' 0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 bit 단위로 데이터 레벨을 설정한다. AxdiNLevelSetInportBit 0, 0, 0, 1

Delphi Example

 $\{0$ 번째 노드에 대한 0번째 모듈의 Offset 0번지에서 bit 단위로 데이터 레벨을 설정한다. $\}$ AxdiNLevelSetInportBit (0, 0, 0, 1);

See Also

AxdiNLevelSetInportByte, AxdiNLevelSetInportWord, AxdiNLevelSetInportDword, AxdiNLevelSetInportD

AxdiNLevelSetInportByte

Purpose

지정한 노드에 대한 지정 입력 접점 모듈의 Offset 위치에서 byte 단위로 데이터 레벨을 설정한다.

Format

С

DWORD AxdiNLevelSetInportByte(long INodeNum, long IModulePos, long IOffset, DWORD uLevel);

Visual Basic

Function AxdiNLevelSetInportByte(ByVal INodeNum As Long, ByVal IModulePosAs Long, ByVal IOffset As Long, ByVal uLevel As Long) As Long

Delphi

function AxdiNLevelSetInportByte(INodeNum: LongInt; IModulePos: LongInt; IOffset: LongInt; uLevel: DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation			
INodeNum	in	long		나 다 호			
IMa dula Da a	in	la man		모듈 위치(사용자가 로터리 스위치			
IModulePos	III IONG	III long	long	iong	long		로 정한 절대 위치)
lOffset	in	long		입력 접점에 대한 Offset 위치			
uLevel	in	DWORD		레벨 값 (Byte)			

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 노드에 대한 지정 입력 접점 모듈의 Offset 위치에서 byte 단위로 데이터 레벨을 설정한다. 지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 설정한다. 노드 번호는 CPU모듈의 로터리 스위치 16진수 두자리 값이다.

Module	Offsett	Level
EIP-CPU16B	0 ~ 1	00h ~ FFh
EIP-DB32T	0 ~ 1	00h ~ FFh

C Example

// 0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 byte 단위로 데이터 레벨을 설정한다. AxdiNLevelSetInportByte (0, 0, 0, 0xFF);

VB Example

'0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 byte 단위로 데이터 레벨을 설정한다. AxdiNLevelSetInportByte 0, 0, 0, 0xFF

Delphi Example

 $\{0$ 번째 노드에 대한 0번째 모듈의 Offset 0번지에서 byte 단위로 데이터 레벨을 설정한다. $\}$ AxdiNLevelSetInportByte (0, 0, 0, 0xFF);

See Also

AxdiNLevelSetInportBit, AxdiNLevelSetInportWord, AxdiNLevelSetInportDword, AxdiNLevelSetInportDw

AxdiNLevelSetInportWord

Purpose

지정한 노드에 대한 지정 입력 접점 모듈의 Offset 위치에서 word 단위로 데이터 레벨을 설정한다.

Format

С

DWORD AxdiNLevelSetInportWord(long INodeNum, long IModulePos, long IOffset, DWORD uLevel);

Visual Basic

Function AxdiNLevelSetInportWord(ByVal INodeNum As Long, ByVal IModulePosAs Long, ByVal IOffset As Long, ByVal uLevel As Long) As Long

Delphi

function AxdiNLevelSetInportWord(INodeNum: LongInt; IModulePos: LongInt; IOffset: LongInt; uLevel: DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation		
INodeNum	in	long		노드 번호		
MadulaDaa	is	long		모듈 위치(사용자가 로터리 스위치		
IModulePos	in		iong	long	III long	
lOffset	in	long		입력 접점에 대한 Offset 위치		
uLevel	in	DWORD		레벨 값 (Word)		

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 노드에 대한 지정 입력 접점 모듈의 Offset 위치에서 word 단위로 데이터 레벨을 설정한다. 지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 설정한다. 노드 번호는 CPU모듈의 로터리 스위치 16진수 두자리 값이다.

Module	Offsett	Level
EIP-CPU16B	0 ~ 1	0000h ~ FFFFh
EIP-DB32T	0 ~ 1	0000h ~ FFFFh

C Example

// 0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 word 단위로 데이터 레벨을 설정한다. AxdiNLevelSetInportWord (0, 0, 0, 0xFFFF);

VB Example

'0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 word 단위로 데이터 레벨을 설정한다. AxdiNLevelSetInportWord 0, 0, 0, 0xFFFF

Delphi Example

{0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 word 단위로 데이터 레벨을 설정한다. } AxdiNLevelSetInportWord (0, 0, 0, 0xFFFF);

See Also

<u>AxdiNLevelSetInportBit</u>, <u>AxdiNLevelSetInportByte</u>, <u>AxdiNLevelSetInportDword</u>, <u>AxdiNLevelSetInportDword</u>, <u>AxdiNLevelSetInportByte</u>

AxdiNLevelSetInportDword

Purpose

지정한 노드에 대한 지정 입력 접점 모듈의 Offset 위치에서 double word 단위로 데이터 레벨을 설정한다. 현재 지원하지 않음

Format

C

DWORD AxdiNLevelSetInportDword(long INodeNum, long IModulePos, long IOffset, DWORD uLevel);

Visual Basic

Function AxdiNLevelSetInportDword(ByVal INodeNum As Long, ByVal IModulePosAs Long, ByVal IOffset As Long, ByVal uLevel As Long) As Long

Delphi

function AxdiNLevelSetInportDword(INodeNum: LongInt; IModulePos: LongInt; IOffset: LongInt; uLevel: DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation		
INodeNum	in	long		노드 번호		
IMa dula Da a	in long			모듈 위치(사용자가 로터리 스위치		
IModulePos		iii long	long	iong	iong	
lOffset	in	long		입력 접점에 대한 Offset 위치		
uLevel	in	DWORD		레벨 값 (Double Word)		

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 노드에 대한 지정 입력 접점 모듈의 Offset 위치에서 double word 단위로 데이터 레벨을 설정한다.

지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 설정한다. 노드 번호는 CPU모듈의 로터리 스위치 16진수 두자리 값이다.

Module	Offsett	Level
지원하지 않음		

C Example

// 0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 double word 단위로 데이터 레벨을 설정한다.

AxdiNLevelSetInportDword (0, 0, 0, 0xFFFFFFF);

VB Example

```
'0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 double word 단위로 데이터 레벨을 설
정한다.
AxdiNLevelSetInportDword 0, 0, 0, 0xFFFFFFFF
```

Delphi Example

```
{0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 double word 단위로 데이터 레벨을 설정한다. }
AxdiNLevelSetInportDword (0, 0, 0, 0xFFFFFFFF);
```

See Also

 $\underline{AxdiNLevelSetInportBit}, \underline{AxdiNLevelSetInportByte}, \underline{AxdiNLevelSetInportWord}, \underline{AxdiNLevelSetInportByte}, \underline$

AxdiNLevelSetInport

Purpose

지정한 노드에 대한 지정 입력 접점 모듈의 Offset 위치에서 bit 단위로 데이터 레벨을 설정한다.

Format

С

DWORD AxdiNLevelSetInport(long INodeNum, long IOffset, DWORD uLevel);

Visual Basic

Function AxdiNLevelSetInport(ByVal INodeNum As Long, ByVal IOffset As Long, ByVal uLevel As Long) As Long

Delphi

function AxdiNLevelSetInport(INodeNum: LongInt; IOffset: LongInt; uLevel: DWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
INodeNum	in	long		노드 번호
lOffset	in	long		입력 접점에 대한 Offset 위치
uLevel	in	DWORD		레벨 값 (Boolean)

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 노드에 대한 전체 입력 접점 모듈의 Offset 위치에서 bit 단위로 데이터 레벨을 설정한다. Offset은 0부터 총 입력 접점 수 - 1까지 사용할 수 있다. 노드 번호는 CPU모듈의 로터리 스위치 16진수 두자리 값이다.

C Example

// 0 번째 노드,전체 입력 모듈, Offset 0번지에서 bit 단위로 데이터 레벨을 설정한다. AxdiNLevelSetInport(0,0,1);

VB Example

// 0 번째 노드,전체 입력 모듈, Offset 0번지에서 bit 단위로 데이터 레벨을 설정한다. AxdiNLevelSetInport(0,0,1);

Delphi Example

 $\{$ 0번째 노드, 전체 입력 모듈, Offset 0번지에서 bit 단위로 데이터 레벨을 설정한다. $\}$ AxdiNLevelSetInport(0, 0, 1);

See Also

 $\underline{\mathsf{AxdiNLevelSetInportBit}}, \underline{\mathsf{AxdiNLevelSetInportByte}}, \underline{\mathsf{AxdiNLevelSetInportWord}}, \underline{\mathsf{AxdiNLevelSetInportDword}}$

AxdiNLevelGetInportBit

Purpose

지정한 노드에 대한 지정 입력 접점 모듈의 Offset 위치에서 bit 단위로 데이터 레벨을 설정한다.

Format

С

DWORD AxdiNLevelGetInportBit(long INodeNum, long IModulePos, long IOffset, DWORD *upLevel);

Visual Basic

Function AxdiNLevelGetInportBit(ByVal INodeNum As Long, ByVal IModulePos As Long, ByVal IOffset As Long, ByRef upLevel As Long) As Long

Delphi

function AxdiNLevelGetInportBit(INodeNum: LongInt; IModulePos: LongInt; IOffset: LongInt; upLevel: DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation			
INodeNum	in	long		노드 번호			
MadulaDaa	in	long		모듈 위치(사용자가 로터리 스위치			
IModulePos	l Iri	long	iong	iong	long		로 정한 절대 위치)
lOffset	in	long		입력 접점에 대한 Offset 위치			
upLevel	out	DWORD*		레벨 값 (Boolean)			

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 노드에 대한 지정 입력 접점 모듈의 Offset 위치에서 bit 단위로 데이터 레벨을 확인한다. 지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 확인한다. 노드 번호는 CPU모듈의 로터리 스위치 16진수 두자리 값이다.

Module	Offsett	Level
EIP-CPU16B	0 ~ 15	0(Off), 1(On)
EIP-DB32T	0 ~ 15	0(Off), 1(On)

C Example

// 0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 bit 단위로 데이터 레벨을 확인한다. DWORD dwLevel;

AxdiNLevelGetInportBit (0, 0, 0, &dwLevel);

VB Example

```
' 0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 bit 단위로 데이터 레벨을 확인한다.
Dim lLevel As long
AxdiNLevelGetInportBit 0, 0, 0, lLevel
```

Delphi Example

```
{ 0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 bit 단위로 데이터 레벨을 확인한다. } var dwLevel : DWord;
begin AxdiNLevelGetInportBit (0, 0, 0, @dwLevel); end;
```

See Also

AxdiNLevelGetInportByte, AxdiNLevelGetInportWord, AxdiNLevelGetInport

AxdiNLevelGetInportByte

Purpose

지정한 노드에 대한 지정 입력 접점 모듈의 Offset 위치에서 byte 단위로 데이터 레벨을 설정한다.

Format

С

DWORD AxdiNLevelGetInportByte(long INodeNum, long IModulePos, long IOffset, DWORD *upLevel);

Visual Basic

Function AxdiNLevelGetInportByte(ByVal INodeNum As Long, ByVal IModulePos As Long, ByVal IOffset As Long, ByRef upLevel As Long) As Long

Delphi

function AxdiNLevelGetInportByte(INodeNum: LongInt; IModulePos: LongInt; IOffset: LongInt; upLevel: DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation			
INodeNum	in	long		노드 번호			
		la mar		모듈 위치(사용자가 로터리 스위치			
IModulePos	in	long	iong	iong	long		로 정한 절대 위치)
lOffset	in	long		입력 접점에 대한 Offset 위치			
upLevel	out	DWORD*		레벨 값 (Byte)			

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 노드에 대한 지정 입력 접점 모듈의 Offset 위치에서 byte 단위로 데이터 레벨을 확인한다. 지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 확인한다. 노드 번호는 CPU모듈의 로터리 스위치 16진수 두자리 값이다.

Module	Offsett	Level
EIP-CPU16B	0 ~ 1	00h ~FFh
EIP-DB32T	0 ~ 1	00h ~FFh

C Example

// 0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 byte 단위로 데이터 레벨을 확인한다. DWORD dwLevel;

AxdiNLevelGetInportByte (0, 0, 0, &dwLevel);

VB Example

```
' 0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 byte 단위로 데이터 레벨을 확인한다.
Dim lLevel As long
AxdiNLevelGetInportByte 0, 0, 0, lLevel
```

Delphi Example

```
{ 0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 byte 단위로 데이터 레벨을 확인한다. } var dwLevel : DWord; begin AxdiNLevelGetInportByte (0, 0, 0, @dwLevel); end;
```

See Also

AxdiNLevelGetInportByte, AxdiNLevelGetInportWord, AxdiNLevelGetInport

AxdiNLevelGetInportWord

Purpose

지정한 노드에 대한 지정 입력 접점 모듈의 Offset 위치에서 word 단위로 데이터 레벨을 설정한다.

Format

С

DWORD AxdiNLevelGetInportWord(long INodeNum, long IModulePos, long IOffset, DWORD *upLevel);

Visual Basic

Function AxdiNLevelGetInportWord(ByVal INodeNum As Long, ByVal IModulePos As Long, ByVal IOffset As Long, ByRef upLevel As Long) As Long

Delphi

function AxdiNLevelGetInportWord(INodeNum: LongInt; IModulePos: LongInt; IOffset: LongInt; upLevel: DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation	
INodeNum	in	long		노드 번호	
MadulaDaa	i- 1	in long		모듈 위치(사용자가 로터리 스위치	
IModulePos	Iri		iong	II long	
lOffset	in	long		입력 접점에 대한 Offset 위치	
upLevel	out	DWORD*		레벨 값 (Word)	

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 노드에 대한 지정 입력 접점 모듈의 Offset 위치에서 word 단위로 데이터 레벨을 확인한다. 지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 확인한다. 노드 번호는 CPU모듈의 로터리 스위치 16진수 두자리 값이다.

Module	Offsett	Level
EIP-CPU16B	0	0000h ~FFFFh
EIP-DB32T	0	0000h ~FFFFh

C Example

// 0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 word 단위로 데이터 레벨을 확인한다. DWORD dwLevel;

AxdiNLevelGetInportWord (0, 0, 0, &dwLevel);

VB Example

```
' 0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 word 단위로 데이터 레벨을 확인한다.
Dim lLevel As long
AxdiNLevelGetInportWord 0, 0, 0, lLevel
```

Delphi Example

```
{ 0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 word 단위로 데이터 레벨을 확인한다. } var dwLevel : DWord;
begin AxdiNLevelGetInportWord (0, 0, 0, @dwLevel); end;
```

See Also

<u>AxdiNLevelGetInportBit</u>, <u>AxdiNLevelGetInportByte</u>, <u>AxdiNLevelGetInport</u>

AxdiNLevelGetInport

Purpose

지정한 노드에 대한 전체 입력 접점 모듈의 Offset 위치에서 bit 단위로 데이터 레벨을 설정한다.

Format

С

DWORD AxdiNLevelGetInport (long INodeNum, long IOffset, DWORD *upLevel);

Visual Basic

Function AxdiNLevelGetInportBit(ByVal INodeNum As Long, ByVal IOffset As Long, ByRef upLevel As Long) As Long

Delphi

function AxdiNLevelGetInportBit(INodeNum: LongInt; IOffset: LongInt; upLevel: DWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
INodeNum	in	long		노드 번호
lOffset	in	long		입력 접점에 대한 Offset 위치
upLevel	out	DWORD*		레벨 값 (Boolean)

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 노드에 대한 전체 입력 접점 모듈의 Offset 위치에서 bit 단위로 데이터 레벨을 확인한다. Offset은 0부터 총 입력 접점 수 - 1까지 사용할 수 있다. 노드 번호는 CPU모듈의 로터리 스위치 16진수 두자리 값이다.

C Example

```
// 0번째 노드에 대한 전체 모듈의 Offset 0번지에서 bit 단위로 데이터 레벨을 확인한다.
DWORD dwLevel;
```

VB Example

```
'0번째 노드에 대한 전체 모듈의 Offset 0번지에서 bit 단위로 데이터 레벨을 확인한다.
Dim lLevel As long
```

AxdiNLevelGetInport 0, 0, lLevel

AxdiNLevelGetInport (0, 0, &dwLevel);

Delphi Example

```
{ 0번째 노드에 대한 전체 모듈의 Offset 0번지에서 bit 단위로 데이터 레벨을 확인한다. } var dwLevel : DWord; begin AxdiNLevelGetInport(0, 0, @dwLevel); end;
```

See Also

 $\underline{\mathsf{AxdiNLevelGetInportBit}}, \underline{\mathsf{AxdiNLevelGetInportByte}}, \underline{\mathsf{AxdiNLevelGetInportWord}}$

AxdoNLevelSetOutportBit

Purpose

지정한 노드에 대한 지정 출력 접점 모듈의 Offset 위치에서 bit 단위로 데이터 레벨을 설정한다.

Format

С

DWORD AxdoNLevelSetOutportBit(long INodeNum, long IModulePos, long IOffset, DWORD uLevel);

Visual Basic

Function AxdoNLevelSetOutportBit(ByVal INodeNum As Long, ByVal IModulePosAs Long, ByVal IOffset As Long, ByVal uLevel As Long) As Long

Delphi

function AxdoNLevelSetOutportBit(INodeNum: LongInt; IModulePos: LongInt; IOffset: LongInt; uLevel: DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation	
INodeNum	in	long		노드 번호	
MadulaDaa	is	in long	in long		모듈 위치(사용자가 로터리 스위치
IModulePos	III long				로 정한 절대 위치)
lOffset	in	long		출력 접점에 대한 Offset 위치	
uLevel	in	DWORD		레벨 값 (Boolean)	

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 노드에 대한 지정 출력 접점 모듈의 Offset 위치에서 bit 단위로 데이터 레벨을 설정한다. 지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 설정한다. 노드 번호는 CPU모듈의 로터리 스위치 16진수 두자리 값이다.

Module	Offsett	Level
EIP-CPU16B	0 ~ 15	0(Off), 1(On)
EIP-DB32T	0 ~ 15	0(Off), 1(On)

C Example

// 0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 bit 단위로 데이터 레벨을 설정한다. AxdoNLevelSetOutportBit $(0,\ 0,\ 0,\ 1);$

VB Example

' 0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 bit 단위로 데이터 레벨을 설정한다. AxdoNLevelSetOutportBit 0, 0, 0, 1

Delphi Example

 $\{0$ 번째 노드에 대한 0번째 모듈의 Offset 0번지에서 bit 단위로 데이터 레벨을 설정한다. $\}$ AxdoNLevelSetOutportBit (0, 0, 0, 1);

See Also

 $\underline{AxdiNLevelSetInportByte}, \underline{AxdiNLevelSetInportWord}, \underline{AxdiNLevelSetInportDword}, \underline{AxdiNLevelSetI$

AxdoNLevelSetOutportByte

Purpose

지정한 노드에 대한 지정 출력 접점 모듈의 Offset 위치에서 byte 단위로 데이터 레벨을 설정한다.

Format

С

DWORD AxdoNLevelSetOutportByte(long INodeNum, long IModulePos, long IOffset, DWORD uLevel);

Visual Basic

Function AxdoNLevelSetOutportByte(ByVal INodeNum As Long, ByVal IModulePosAs Long, ByVal IOffset As Long, ByVal uLevel As Long) As Long

Delphi

function AxdoNLevelSetOutportByte(INodeNum: LongInt; IModulePos: LongInt; IOffset: LongInt; uLevel: DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation	
INodeNum	in	long		노드 번호	
MadulaDaa		long		모듈 위치(사용자가 로터리 스위치	
IModulePos	in		iong	long	
lOffset	in	long		출력 접점에 대한 Offset 위치	
uLevel	in	DWORD		레벨 값 (Byte)	

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 노드에 대한 지정 출력 접점 모듈의 Offset 위치에서 byte 단위로 데이터 레벨을 설정한다. 지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 설정한다. 노드 번호는 CPU모듈의 로터리 스위치 16진수 두자리 값이다.

Module	Offsett	Level
EIP-CPU16B	0 ~ 1	00h ~ FFh
EIP-DB32T	0 ~ 1	00h ~ FFh

C Example

// 0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 byte 단위로 데이터 레벨을 설정한다. AxdoNLevelSetOutportByte (0, 0, 0, 0xFF);

VB Example

'0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 byte 단위로 데이터 레벨을 설정한다. AxdoNLevelSetOutportByte 0, 0, 0, 0xFF

Delphi Example

 $\{0$ 번째 노드에 대한 0번째 모듈의 Offset 0번지에서 byte 단위로 데이터 레벨을 설정한다. $\}$ AxdoNLevelSetOutportByte $\{0, 0, 0, 0 \text{XFF}\}$;

See Also

 $\underline{ AxdoNLevelSetOutportBit}, \, \underline{ AxdoNLevelSetOutportWord}, \, \underline{ AxdoNLevelSetOutportDword}, \\ \underline{ AxdoNLevelSetOutport}$

AxdoNLevelSetOutportWord

Purpose

지정한 노드에 대한 지정 출력 접점 모듈의 Offset 위치에서 byte 단위로 데이터 레벨을 설정한다.

Format

С

DWORD AxdoNLevelSetOutportWord(long INodeNum, long IModulePos, long IOffset, DWORD uLevel);

Visual Basic

Function AxdoNLevelSetOutportWord(ByVal INodeNum As Long, ByVal IModulePosAs Long, ByVal IOffset As Long, ByVal uLevel As Long) As Long

Delphi

function AxdoNLevelSetOutportWord(INodeNum: LongInt; IModulePos: LongInt; IOffset: LongInt; uLevel: DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation	
INodeNum	in	long		노드 번호	
MadulaDaa	in long	long		모듈 위치(사용자가 로터리 스위치	
IModulePos		iong	iong	long	
lOffset	in	long		출력 접점에 대한 Offset 위치	
uLevel	in	DWORD		레벨 값 (Word)	

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 노드에 대한 지정 출력 접점 모듈의 Offset 위치에서 word 단위로 데이터 레벨을 설정한다. 지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 설정한다. 노드 번호는 CPU모듈의 로터리 스위치 16진수 두자리 값이다.

Module	Offsett	Level
EIP-CPU16B	0	0000h ~ FFFFh
EIP-DB32T	0	0000h ~ FFFFh

C Example

// 0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 word 단위로 데이터 레벨을 설정한다. AxdoNLevelSetOutportWord (0, 0, 0, 0xFFFF);

VB Example

' 0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 word 단위로 데이터 레벨을 설정한다. AxdoNLevelSetOutportWord 0, 0, 0, 0xFFFF

Delphi Example

 $\{0$ 번째 노드에 대한 0번째 모듈의 Offset 0번지에서 word 단위로 데이터 레벨을 설정한다. $\}$ AxdoNLevelSetOutportWord $\{0, 0, 0, 0 \text{XFFFF}\};$

See Also

 $\underline{\mathsf{AxdoNLevelSetOutportBit}}, \underline{\mathsf{AxdoNLevelSetOutportByte}}, \underline{\mathsf{AxdoNLevelSetOutportDword}}, \underline{\mathsf{AxdoNLevelSetOutport}}$

AxdoNLevelSetOutportDword

Purpose

지정한 노드에 대한 지정 출력 접점 모듈의 Offset 위치에서 double word 단위로 데이터 레벨을 설정한다. 현재 지원하지 않음

Format

C

DWORD AxdoNLevelSetOutportDword(long INodeNum, long IModulePos, long IOffset, DWORD uLevel);

Visual Basic

Function AxdoNLevelSetOutportDword(ByVal INodeNum As Long, ByVal IModulePosAs Long, ByVal IOffset As Long, ByVal uLevel As Long) As Long

Delphi

function AxdoNLevelSetOutportDword(INodeNum: LongInt; IModulePos: LongInt; IOffset: LongInt; uLevel: DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation	
LNodeNum	in	long		나 번호	
l Madula Dag	in	long		모듈 위치(사용자가 로터리 스위치	
LModulePos	III long	III IONG	long		로 정한 절대 위치)
LOffset	in	long		출력 접점에 대한 Offset 위치	
ULevel	in	DWORD		레벨 값 (Double Word)	

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 노드에 대한 지정 출력 접점 모듈의 Offset 위치에서 double word 단위로 데이터 레벨을 설정한다.

지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 설정한다. 노드 번호는 CPU모듈의 로터리 스위치 16진수 두자리 값이다.

Module	Offsett	Level
지원하지 않음		

C Example

// 0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 double word 단위로 데이터 레벨을 설정한다.

AxdoNLevelSetOutportDword (0, 0, 0, 0xFFFFFFFF);

'0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 double word 단위로 데이터 레벨을 설 정한다. AxdoNLevelSetOutportDword 0, 0, 0, 0xFFFFFFFF

Delphi Example

{0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 double word 단위로 데이터 레벨을 설정한다. } AxdoNLevelSetOutportDword (0, 0, 0, 0xFFFFFFFF);

See Also

 $\underline{\text{AxdoNLevelSetOutportBit}}, \, \underline{\text{AxdoNLevelSetOutportByte}}, \, \underline{\text{AxdoNLevelSetOutportWord}}, \\ \underline{\text{AxdoNLevelSetOutport}}$

AxdoNLevelSetOutport

Purpose

지정한 노드에 대한 전체 출력 접점 모듈의 Offset 위치에서 bit 단위로 데이터 레벨을 설정한다.

Format

С

DWORD AxdoNLevelSetOutport(long INodeNum, long IOffset, DWORD uLevel);

Visual Basic

Function AxdoNLevelSetOutportBit(ByVal INodeNum As Long, ByVal IOffset As Long, ByVal uLevel As Long) As Long

Delphi

function AxdoNLevelSetOutportBit(INodeNum: LongInt; IOffset: LongInt; uLevel: DWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
INodeNum	in	long		노드 번호
lOffset	in	long		출력 접점에 대한 Offset 위치
uLevel	in	DWORD		레벨 값 (Boolean)

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 노드에 대한 전체 출력 접점 모듈의 Offset 위치에서 bit 단위로 데이터 레벨을 설정한다. Offset은 0부터 총 출력 접점 수 - 1까지 사용할 수 있다. 노드 번호는 CPU모듈의 로터리 스위치 16진수 두자리 값이다.

C Example

// 0 번째 노드,전체 출력 모듈, Offset 0번지에서 bit 단위로 데이터 레벨을 설정한다. AxdoNLevelSetOutport (0,0,1);

VB Example

'0번째 노드에 대한 전체 모듈의 Offset 0번지에서 bit 단위로 데이터 레벨을 설정한다. AxdoNLevelSetOutport 0, 0, 1

Delphi Example

 $\{0$ 번째 노드에 대한 전체 모듈의 Offset 0번지에서 bit 단위로 데이터 레벨을 설정한다. $\}$ AxdoNLevelSetOutport (0, 0, 1);

See Also

 $\underline{AxdoNLevelSetOutportBit}, \, \underline{AxdoNLevelSetOutportByte}, \, \underline{AxdoNLevelSetOutportWord}, \\ \underline{AxdoNLevelSetOutportDword}$

AxdoNLevelGetOutportBit

Purpose

지정한 노드에 대한 지정 출력 접점 모듈의 Offset 위치에서 bit 단위로 데이터 레벨을 확인한다.

Format

С

DWORD AxdoNLevelGetOutportBit(long INodeNum, long IModulePos, long IOffset, DWORD upLevel);

Visual Basic

Function AxdoNLevelGetOutportBit(ByVal INodeNum As Long, ByVal IModulePos As Long, ByVal IOffset As Long, ByRef upLevel As Long) As Long

Delphi

function AxdoNLevelGetOutportBit(INodeNum: LongInt; IModulePos: LongInt; IOffset: LongInt; upLevel: DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation		
INodeNum	in	long		노드 번호		
MadulaDaa	in	long		모듈 위치(사용자가 로터리 스위치		
IModulePos	in		iong	long	long	
lOffset	in	long		출력 접점에 대한 Offset 위치		
upLevel	out	DWORD*		레벨 값 (Boolean)		

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 노드에 대한 지정 출력 접점 모듈의 Offset 위치에서 bit 단위로 데이터 레벨을 확인한다. 지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 확인한다. 노드 번호는 CPU모듈의 로터리 스위치 16진수 두자리 값이다.

Module	Offsett	Level
EIP-CPU16B	0 ~ 15	0(Off), 1(On)
EIP-DB32T	0 ~ 15	0(Off), 1(On)

C Example

// 0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 bit 단위로 데이터 레벨을 확인한다. DWORD dwLevel;

AxdoNLevelGetOutportBit (0, 0, 0, &dwLevel);

```
'0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 bit 단위로 데이터 레벨을 확인한다.
Dim lLevel As long
AxdoNLevelGetOutportBit 0, 0, 0, lLevel
```

Delphi Example

```
{ 0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 bit 단위로 데이터 레벨을 확인한다. } var dwLevel : DWord;
begin AxdoNLevelGetOutportBit (0, 0, 0, @dwLevel); end;
```

See Also

AxdoNLevelGetOutportByte, AxdoNLevelGetOutportWord, AxdoNLevelGetOutport

AxdoNLevelGetOutportByte

Purpose

지정한 노드에 대한 지정 출력 접점 모듈의 Offset 위치에서 byte 단위로 데이터 레벨을 확인한다.

Format

С

DWORD AxdoNLevelGetOutportByte(long INodeNum, long IModulePos, long IOffset, DWORD upLevel);

Visual Basic

Function AxdoNLevelGetOutportByte(ByVal INodeNum As Long, ByVal IModulePos As Long, ByVal IOffset As Long, ByRef upLevel As Long) As Long

Delphi

function AxdoNLevelGetOutportByte(INodeNum: LongInt; IModulePos: LongInt; IOffset: LongInt; upLevel: DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation	
INodeNum	in	long		노드 번호	
	:	long		모듈 위치(사용자가 로터리 스위치	
IModulePos	in		iong	long	
lOffset	in	long		출력 접점에 대한 Offset 위치	
upLevel	out	DWORD*		레벨 값 (Byte)	

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 노드에 대한 지정 출력 접점 모듈의 Offset 위치에서 byte 단위로 데이터 레벨을 확인한다. 지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 확인한다. 노드 번호는 CPU모듈의 로터리 스위치 16진수 두자리 값이다.

Module	Offsett	Level
EIP-CPU16B	0 ~ 1	00h ~ FFh
EIP-DB32T	0 ~ 1	00h ~ FFh

C Example

// 0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 byte 단위로 데이터 레벨을 확인한다. DWORD dwLevel;

AxdoNLevelGetOutportByte (0, 0, 0, &dwLevel);

```
'0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 byte 단위로 데이터 레벨을 확인한다.
Dim lLevel As long
AxdoNLevelGetOutportByte 0, 0, 0, lLevel
```

Delphi Example

```
{ 0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 byte 단위로 데이터 레벨을 확인한다. } var dwLevel : DWord;
begin AxdoNLevelGetOutportByte (0, 0, 0, @dwLevel); end;
```

See Also

<u>AxdoNLevelGetOutportBit</u>, <u>AxdoNLevelGetOutportWord</u>, <u>AxdoNLevelGetOutport</u>

AxdoNLevelGetOutportWord

Purpose

지정한 노드에 대한 지정 출력 접점 모듈의 Offset 위치에서 word 단위로 데이터 레벨을 확인한다.

Format

С

DWORD AxdoNLevelGetOutportWord(long INodeNum, long IModulePos, long IOffset, DWORD upLevel);

Visual Basic

Function AxdoNLevelGetOutportWord(ByVal INodeNum As Long, ByVal IModulePos As Long, ByVal IOffset As Long, ByRef upLevel As Long) As Long

Delphi

function AxdoNLevelGetOutportWord(INodeNum: LongInt; IModulePos: LongInt; IOffset: LongInt; upLevel: DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation		
INodeNum	in	long		노드 번호		
	:	long		모듈 위치(사용자가 로터리 스위치		
IModulePos	in		iong	iong	long	
lOffset	in	long		출력 접점에 대한 Offset 위치		
upLevel	out	DWORD*		레벨 값 (Word)		

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 노드에 대한 지정 출력 접점 모듈의 Offset 위치에서 word 단위로 데이터 레벨을 확인한다. 지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 확인한다. 노드 번호는 CPU모듈의 로터리 스위치 16진수 두자리 값이다.

Module	Offsett	Level
EIP-CPU16B	0 ~ 1	0000h ~ FFFFh
EIP-DB32T	0 ~ 1	0000h ~ FFFFh

C Example

// 0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 word 단위로 데이터 레벨을 확인한다. DWORD dwLevel;

AxdoNLevelGetOutportWord (0, 0, 0, &dwLevel);

```
'0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 word 단위로 데이터 레벨을 확인한다.
Dim lLevel As long
AxdoNLevelGetOutportWord 0, 0, 0, lLevel
```

Delphi Example

```
{ 0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 word 단위로 데이터 레벨을 확인한다. } var dwLevel : DWord;
begin AxdoNLevelGetOutportWord (0, 0, 0, @dwLevel); end;
```

See Also

<u>AxdoNLevelGetOutportBit</u>, <u>AxdoNLevelGetOutportByte</u>, <u>AxdoNLevelGetOutport</u>

AxdoNLevelGetOutport

Purpose

지정한 노드에 대한 전체 출력 접점 모듈의 Offset 위치에서 bit 단위로 데이터 레벨을 확인한다.

Format

С

DWORD AxdoNLevelGetOutport (long INodeNum, long IOffset, DWORD upLevel);

Visual Basic

Function AxdoNLevelGetOutport(ByVal INodeNum As Long, ByVal IOffset As Long, ByRef upLevel As Long) As Long

Delphi

function AxdoNLevelGetOutport(INodeNum: LongInt; IOffset: LongInt; upLevel: DWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
INodeNum	in	long		노드 번호
lOffset	in	long		출력 접점에 대한 Offset 위치
upLevel	out	DWORD*		레벨 값 (Boolean)

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 노드에 대한 전체 출력 접점 모듈의 Offset 위치에서 bit 단위로 데이터 레벨을 확인한다. Offset은 0부터 총 출력 접점 수 - 1까지 사용할 수 있다. 노드 번호는 CPU모듈의 로터리 스위치 16진수 두자리 값이다.

C Example

// 0번째 노드에 대한 전체 모듈의 Offset 0번지에서 bit 단위로 데이터 레벨을 확인한다. DWORD dwLevel;

AxdoNLevelGetOutport (0, 0, &dwLevel);

VB Example

'0번째 노드에 대한 전체 모듈의 Offset 0번지에서 bit 단위로 데이터 레벨을 확인한다. Dim lLevel As long

AxdoNLevelGetOutport 0, 0, lLevel

Delphi Example

```
{ 0번째 노드에 대한 전체 모듈의 Offset 0번지에서 bit 단위로 데이터 레벨을 확인한다. } var dwLevel : DWord; begin AxdiNLevelGetInport(0, 0, @dwLevel); end;
```

See Also

<u>AxdoNLevelGetOutportBit</u>, <u>AxdoNLevelGetOutportByte</u>, <u>AxdoNLevelGetOutportWord</u>,

AxdoNWriteOutportBit

Purpose

지정한 노드에 대한 지정 출력 접점 모듈의 Offset 위치에서 bit 단위로 데이터를 출력한다.

Format

С

DWORD AxdoNWriteOutportBit(long INodeNum, long IModulePos, long IOffset, DWORD uValue);

Visual Basic

Function AxdoNWriteOutportBit(ByVal INodeNum As Long, ByVal IModulePos As Long, ByVal IOffset As Long, ByVal uValue As Long) As Long

Delphi

function AxdoNWriteOutportBit(INodeNum: LongInt; IModulePos: LongInt; IOffset: LongInt; uValue: DWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation			
INodeNum	in	long		노드 번호			
MadulaDaa	is	long		모듈 위치(사용자가 로터리 스위치			
IModulePos	in	long	iong	iong	long		로 정한 절대 위치)
lOffset	in	long		출력 접점에 대한 Offset 위치			
uValue	in	DWORD		출력 접점 값 (Boolean)			

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 노드에 대한 지정 출력 접점 모듈의 Offset 위치에서 bit 단위로 데이터를 출력한다. 지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 설정한다. 노드 번호는 CPU모듈의 로터리 스위치 16진수 두자리 값이다.

Module	Offsett	Level
EIP-CPU16B	0 ~ 15	0(Off), 1(On)
EIP-DB32T	0 ~ 15	0(Off), 1(On)

C Example

// 0번째 노드에 대한 0번째 출력 접점 모듈의 Offset 0번지에서 bit 단위로 데이터를 출력한다. AxdoNWriteOutportBit (0, 0, 0, 1);

VB Example

'0번째 노드에 대한 0번째 출력 접점 모듈의 Offset 0번지에서 bit 단위로 데이터를 출력한 다. AxdoNWriteOutportBit 0, 0, 0, 1

Delphi Example

{0번째 노드에 대한 0번째 출력 접점 모듈의 Offset 0번지에서 bit 단위로 데이터를 출력한다.} AxdoNWriteOutportBit (0, 0, 0, 1);

See Also

AxdoWriteOutportByte, AxdoWriteOutportWord, AxdoWriteOutportDword, A

AxdoNWriteOutportByte

Purpose

지정한 노드에 대한 지정 출력 접점 모듈의 Offset 위치에서 byte 단위로 데이터를 출력한다.

Format

С

DWORD AxdoNWriteOutportByte(long INodeNum, long IModulePos, long IOffset, DWORD uValue);

Visual Basic

Function AxdoNWriteOutportByte(ByVal INodeNum As Long, ByVal IModulePos As Long, ByVal IOffset As Long, ByVal uValue As Long) As Long

Delphi

function AxdoNWriteOutportByte(INodeNum: LongInt; IModulePos: LongInt; IOffset: LongInt; uValue: DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation	
INodeNum	in	long		노드 번호	
MadulaDaa	:	long		모듈 위치(사용자가 로터리 스위치	
IModulePos	in	long	long		로 정한 절대 위치)
lOffset	in	long		출력 접점에 대한 Offset 위치	
uValue	in	DWORD		출력 접점 값 (Byte)	

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 노드에 대한 지정 출력 접점 모듈의 Offset 위치에서 byte 단위로 데이터를 출력한다. 지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 설정한다. 노드 번호는 CPU모듈의 로터리 스위치 16진수 두자리 값이다.

Module	Offsett	Level
EIP-CPU16B	0 ~ 1	00h ~ FFh
EIP-DB32T	0 ~ 1	00h ~ FFh

C Example

// 0번째 노드에 대한 0번째 출력 접점 모듈의 Offset 0번지에서 byte 단위로 데이터를 출력한 다. AxdoNWriteOutportByte (0, 0, 0, 0xFF);

VB Example

'0번째 노드에 대한 0번째 출력 접점 모듈의 Offset 0번지에서 byte 단위로 데이터를 출력한 다. AxdoNWriteOutportByte 0, 0, 0, 0xFF

Delphi Example

{0번째 노드에 대한 0번째 출력 접점 모듈의 Offset 0번지에서 byte 단위로 데이터를 출력한다.} AxdoNWriteOutportByte (0, 0, 0, 0xFF);

See Also

AxdoWriteOutportBit, AxdoWriteOutportWord, AxdoNWriteOutportDword, AxdoWriteOutport

AxdoNWriteOutportWord

Purpose

지정한 노드에 대한 지정 출력 접점 모듈의 Offset 위치에서 word 단위로 데이터를 출력한다.

Format

С

DWORD AxdoNWriteOutportWord(long INodeNum, long IModulePos, long IOffset, DWORD uValue);

Visual Basic

Function AxdoNWriteOutportWord(ByVal INodeNum As Long, ByVal IModulePos As Long, ByVal IOffset As Long, ByVal uValue As Long) As Long

Delphi

function AxdoNWriteOutportWord(INodeNum: LongInt; IModulePos: LongInt; IOffset: LongInt; uValue: DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation		
INodeNum	in	long		노드 번호		
IM a dula Da a	in	long		모듈 위치(사용자가 로터리 스위치		
IModulePos			iong	iong	long	
lOffset	in	long		출력 접점에 대한 Offset 위치		
uValue	in	DWORD		출력 접점 값 (Word)		

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 노드에 대한 지정 출력 접점 모듈의 Offset 위치에서 word 단위로 데이터를 출력한다. 지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 설정한다. 노드 번호는 CPU모듈의 로터리 스위치 16진수 두자리 값이다.

Module	Offsett	Level
EIP-CPU16B	0	0000h ~ FFFFh
EIP-DB32T	0	0000h ~ FFFFh

C Example

// 0번째 노드에 대한 0번째 출력 접점 모듈의 Offset 0번지에서 word 단위로 데이터를 출력한 다. AxdoNWriteOutportWord (0, 0, 0, 0xFFFF);

VB Example

'0번째 노드에 대한 0번째 출력 접점 모듈의 Offset 0번지에서 word 단위로 데이터를 출력한 다. AxdoNWriteOutportWord 0, 0, 0, 0xFFFF

Delphi Example

{0번째 노드에 대한 0번째 출력 접점 모듈의 Offset 0번지에서 word 단위로 데이터를 출력한다.} AxdoNWriteOutportWord (0, 0, 0, 0xFFFF);

See Also

AxdoWriteOutportBit, AxdoWriteOutportByte, AxdoNWriteOutportDword, AxdoWriteOutport

AxdoNWriteOutportDword

Purpose

지정한 노드에 대한 지정 출력 접점 모듈의 Offset 위치에서 double word 단위로 데이터를 출력한다. 현재 지원하지 않음

Format

C

DWORD AxdoNWriteOutportDword(long INodeNum, long IModulePos, long IOffset, DWORD uValue);

Visual Basic

Function AxdoNWriteOutportDword(ByVal INodeNum As Long, ByVal IModulePos As Long, ByVal IOffset As Long, ByVal uValue As Long) As Long

Delphi

function AxdoNWriteOutportDword(INodeNum: LongInt; IModulePos: LongInt; IOffset: LongInt; uValue: DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
INodeNum	in	long		노드 번호
MadulaDaa	:	long		모듈 위치(사용자가 로터리 스위치
IModulePos	in		long	
lOffset	in	long		출력 접점에 대한 Offset 위치
uValue	in	DWORD		출력 접점 값 (Double Word)

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 노드에 대한 지정 출력 접점 모듈의 Offset 위치에서 double word 단위로 데이터를 출력한다. 지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 설정한다. 노드 번호는 CPU모듈의 로터리 스위치 16진수 두자리 값이다.

Module	Offsett	Level
지원하지 않음		

C Example

// 0번째 노드에 대한 0번째 출력 접점 모듈의 Offset 0번지에서 double word 단위로 데이터를 출력한다. AxdoNWriteOutportDword (0, 0, 0, 0xFFFFFFFF);

'0번째 노드에 대한 0번째 출력 접점 모듈의 Offset 0번지에서 double word 단위로 데이터를 출력한다. AxdoNWriteOutportDword 0, 0, 0, 0xFFFFFFFF

Delphi Example

{0번째 노드에 대한 0번째 출력 접점 모듈의 Offset 0번지에서 double word 단위로 데이터를 출력한다. } AxdoNWriteOutportDword (0, 0, 0, 0xFFFFFFFF);

See Also

AxdoWriteOutportBit, AxdoWriteOutportByte, AxdoWriteOutportWord, AxdoWriteOutport

AxdoNWriteOutport

Purpose

지정한 노드에 대한 전체 출력 접점 모듈의 Offset 위치에서 bit 단위로 데이터를 출력한다.

Format

С

DWORD AxdoNWriteOutport(long INodeNum, long IOffset, DWORD uValue);

Visual Basic

Function AxdoNWriteOutport(ByVal INodeNum As Long, ByVal IOffset As Long, ByVal uValue As Long) As Long

Delphi

function AxdoNWriteOutport(INodeNum: LongInt; IOffset: LongInt; uValue: DWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
INodeNum	in	long		노드 번호
lOffset	in	long		출력 접점에 대한 Offset 위치
uValue	in	DWORD		출력 접점 값 (Boolean)

Return

AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 노드에 대한 지정 출력 접점 모듈의 Offset 위치에서 bit 단위로 데이터를 출력한다. Offset은 0부터 총 출력 접점 수 - 1까지 사용할 수 있다. 노드 번호는 CPU모듈의 로터리 스위치 16진수 두자리 값이다.

C Example

```
// 0번째 노드에 대한 전체 출력 접점 모듈의 Offset 0번지에서 bit 단위로 데이터를 출력한
다.
AxdoNWriteOutport (0, 0, 1);
```

VB Example

'0번째 노드에 대한 전체 출력 접점 모듈의 Offset 0번지에서 bit 단위로 데이터를 출력한다. AxdoNWriteOutport 0, 0, 1

Delphi Example

```
{0번째 노드에 대한 전체 출력 접점 모듈의 Offset 0번지에서 bit 단위로 데이터를 출력한다.}
AxdoNWriteOutport(0, 0, 1);
```

See Also

 $\underline{\text{AxdoWriteOutportBit}}, \underline{\text{AxdoWriteOutportByte}}, \underline{\text{AxdoWriteOutportWord}}, \underline{\text{AxdoNWriteOutportDword}}$

AxdoNReadOutportBit

Purpose

지정한 노드에 대한 지정 출력 접점 모듈의 Offset 위치에서 bit 단위로 데이터를 읽는다.

Format

С

DWORD AxdoNReadOutportBit(long INodeNum, long IModulePos, long IOffset, DWORD *upValue);

Visual Basic

Function AxdoNReadOutportBit(ByVal INodeNum As Long, ByVal IModulePos As Long, ByVal IOffset As Long, ByRef upValue As Long) As Long

Delphi

function AxdoNReadOutportBit(INodeNum: LongInt IModulePos: LongInt; IOffset: LongInt; upValue: PDWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
INodeNum	in	long		노드 번호
MadulaDaa	in	long		모듈 위치(사용자가 로터리 스위치
IModulePos	III			로 정한 절대 위치)
lOffset	in	long		출력 접점에 대한 Offset 위치
upValue	out	DWORD*		출력 접점 값 (Boolean)

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 노드에 대한 지정 출력 접점 모듈의 Offset 위치에서 bit 단위로 데이터를 읽는다. 지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 확인한다. 노드 번호는 CPU모듈의 로터리 스위치 16진수 두자리 값이다.

Module	Offsett	Level
EIP-CPU16B	0 ~ 15	0(Off), 1(On)
EIP-DB32T	0 ~ 15	0(Off), 1(On)

C Example

// 0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 bit 단위로 데이터를 읽는다. DWORD dwValue;

AxdoNReadOutportBit(0,0,0, &dwValue);

```
'0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 bit 단위로 데이터를 읽는다.
Dim lValue As Long
AxdoNReadOutportBit 0,0,0, lValue
```

Delphi Example

```
{ 0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 bit 단위로 데이터를 읽는다. } var dwValue : DWord; begin AxdoNReadOutportBit(0,0,0, @dwValue); end;
```

See Also

AxdoNReadOutportByte, AxdoNReadOutportWord, AxdoNReadOutportDword, AxdoNReadOutport

AxdoNReadOutportByte

Purpose

지정한 노드에 대한 지정 출력 접점 모듈의 Offset 위치에서 byte 단위로 데이터를 읽는다.

Format

С

DWORD AxdoNReadOutportByte(long INodeNum, long IModulePos, long IOffset, DWORD *upValue);

Visual Basic

Function AxdoNReadOutportByte(ByVal INodeNum As Long, ByVal IModulePos As Long, ByVal IOffset As Long, ByRef upValue As Long) As Long

Delphi

function AxdoNReadOutportByte(INodeNum: LongInt IModulePos: LongInt; IOffset: LongInt; upValue: PDWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
INodeNum	in	long		노드 번호
MadulaDaa		long		모듈 위치(사용자가 로터리 스위치
IModulePos	in			로 정한 절대 위치)
lOffset	in	long		출력 접점에 대한 Offset 위치
upValue	out	DWORD*		출력 접점 값 (Byte)

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 노드에 대한 지정 출력 접점 모듈의 Offset 위치에서 byte 단위로 데이터를 읽는다. 지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 확인한다. 노드 번호는 CPU모듈의 로터리 스위치 16진수 두자리 값이다.

Module	Offsett	Level
EIP-CPU16B	0 ~ 1	00h ~ FFh
EIP-DB32T	0 ~ 1	00h ~ FFh

C Example

// 0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 byte 단위로 데이터를 읽는다. DWORD dwValue;

AxdoNReadOutportByte(0,0,0, &dwValue);

```
'0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 byte 단위로 데이터를 읽는다.
Dim lValue As Long
AxdoNReadOutportByte 0,0,0, lValue
```

Delphi Example

```
{ 0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 byte 단위로 데이터를 읽는다. } var dwValue : DWord; begin AxdoNReadOutportByte(0,0,0, @dwValue); end;
```

See Also

AxdoNReadOutportBit, AxdoNReadOutportWord, AxdoNReadOutportDword, AxdoNReadOutport

AxdoNReadOutportWord

Purpose

지정한 노드에 대한 지정 출력 접점 모듈의 Offset 위치에서 word 단위로 데이터를 읽는다.

Format

С

DWORD AxdoNReadOutportWord(long INodeNum, long IModulePos, long IOffset, DWORD *upValue);

Visual Basic

Function AxdoNReadOutportWord(ByVal INodeNum As Long, ByVal IModulePos As Long, ByVal IOffset As Long, ByRef upValue As Long) As Long

Delphi

function AxdoNReadOutportWord(INodeNum: LongInt IModulePos: LongInt; IOffset: LongInt; upValue: PDWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
INodeNum	in	long		노드 번호
MadulaDaa	D :-	long		모듈 위치(사용자가 로터리 스위치
IModulePos	in			로 정한 절대 위치)
lOffset	in	long		출력 접점에 대한 Offset 위치
upValue	out	DWORD*		출력 접점 값 (Word)

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 노드에 대한 지정 출력 접점 모듈의 Offset 위치에서 word 단위로 데이터를 읽는다. 지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 확인한다. 노드 번호는 CPU모듈의 로터리 스위치 16진수 두자리 값이다.

Module	Offsett	Level
EIP-CPU16B	0	0000h ~ FFFFh
EIP-DB32T	0	0000h ~ FFFFh

C Example

// 0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 word 단위로 데이터를 읽는다. DWORD dwValue;

AxdoNReadOutportWord (0,0,0, &dwValue);

```
' 0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 word 단위로 데이터를 읽는다.
Dim lValue As Long
AxdoNReadOutportWord 0,0,0, lValue
```

Delphi Example

```
{ 0번째 노드에 대한 0번째 모듈에서 Offset 0번지에서 word 단위로 데이터를 읽는다. } var dwValue : DWord; begin AxdoNReadOutportWord (0,0,0,@dwValue); end;
```

See Also

<u>AxdoNReadOutportBit</u>, <u>AxdoNReadOutportByte</u>, <u>AxdoNReadOutportDword</u>, <u>AxdoNReadOutport</u>

AxdoNReadOutportDword

Purpose

지정한 노드에 대한 지정 출력 접점 모듈의 Offset 위치에서 double word 단위로 데이터를 읽는다.

Format

С

DWORD AxdoNReadOutportDword(long INodeNum, long IModulePos, long IOffset, DWORD *upValue);

Visual Basic

Function AxdoNReadOutportDword(ByVal INodeNum As Long, ByVal IModulePos As Long, ByVal IOffset As Long, ByRef upValue As Long) As Long

Delphi

function AxdoNReadOutportDword(INodeNum: LongInt IModulePos: LongInt; IOffset: LongInt; upValue: PDWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation	
INodeNum	in	long		노드 번호	
IM a dula Da a	in long	la sa sa		모듈 위치(사용자가 로터리 스위치	
IModulePos		III IONG	iong	iong	
lOffset	in	long		출력 접점에 대한 Offset 위치	
upValue	out	DWORD*		출력 접점 값 (Double Word)	

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 노드에 대한 지정 출력 접점 모듈의 Offset 위치에서 double word 단위로 데이터를 읽는다. 지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 설정한다. 노드 번호는 CPU모듈의 로터리 스위치 16진수 두자리 값이다.

Module	Offsett	Level
지원하지 않음		

C Example

// 0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 double word 단위로 데이터를 읽는다. DWORD dwValue;

AxdoNReadOutportDword (0,0,0, &dwValue);

VB Example

```
' 0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 double word 단위로 데이터를 읽는다.
Dim lValue As Long
AxdoNReadOutportDword 0,0,0, lValue
```

Delphi Example

```
{ 0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 double word 단위로 데이터를 읽는다. }
var
dwValue : DWord;
begin
AxdoNReadOutportDword (0,0,0,@dwValue);
end;
```

See Also

AxdoNReadOutportBit, AxdoNReadOutportByte, AxdoNReadOutportWord, AxdoNReadOutport

AxdoNReadOutport

Purpose

지정한 노드에 대한 전체 출력 접점 모듈의 Offset 위치에서 bit 단위로 데이터를 읽는다.

Format

С

DWORD AxdoNReadOutport(long INodeNum, long IOffset, DWORD *upValue);

Visual Basic

Function AxdoNReadOutport(ByVal INodeNum As Long,ByVal IOffset As Long ByRef upValue As Long)) As Long

Delphi

function AxdoNReadOutport(INodeNum: LongInt, IOffset: LongInt; upValue: PDWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
INodeNum	in	long		노드 번호
lOffset	in	long		출력 접점에 대한 Offset 위치
upValue	out	DWORD*		출력 접점 값 (Boolean)

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 노드에 대한 지정 출력 접점 모듈의 Offset 위치에서 bit 단위로 데이터를 읽는다. Offset은 0부터 총 출력 접점 수 - 1까지 사용할 수 있다. 노드 번호는 CPU모듈의 로터리 스위치 16진수 두자리 값이다.

C Example

/ 0번째 노드에 대한 전체 모듈의 Offset 0번지에서 bit 단위로 데이터를 읽는다. DWORD dwValue;

AxdoNReadOutport (0, 0, &dValue);

VB Example

'0번째 노드에 대한 전체 모듈의 Offset 0번지에서 bit 단위로 데이터를 읽는다. Dim lValue As Long

AxdoNReadOutport 0,0, lValue

Delphi Example

```
{ 0번째 노드에 대한 전체 모듈의 Offset 0번지에서 bit 단위로 데이터를 읽는다. } var dwValue : DWord; begin AxdoNReadOutport(0,0, @dwValue); end;
```

See Also

AxdoNReadOutportBit, AxdoNReadOutportByte, AxdoNReadOutportWord, AxdoNReadOutportDword

AxdiNReadInportBit

Purpose

지정한 노드에 대한 지정 입력 접점 모듈의 Offset 위치에서 bit 단위로 데이터를 읽는다.

Format

С

DWORD AxdiNReadInportBit(long INodeNum, long IModulePos, long IOffset, DWORD *upValue);

Visual Basic

Function AxdiNReadInportBit(ByVal INodeNum As Long, ByVal IModulePos As Long, ByVal IOffset As Long, ByRef upValue As Long) As Long

Delphi

function AxdiNReadInportBit(INodeNum: LongInt IModulePos: LongInt; IOffset: LongInt; upValue: PDWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation		
INodeNum	in	long		노드 번호		
	lePos in long		모듈 위치(사용자가 로터리 스위치			
IModulePos		111	long	long	III IONG	
lOffset	in	long		입력 접점에 대한 Offset 위치		
upValue	out	DWORD*		입력 접점 값 (Boolean)		

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 노드에 대한 지정 입력 접점 모듈의 Offset 위치에서 bit 단위로 데이터를 읽는다. 지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 확인한다. 노드 번호는 CPU모듈의 로터리 스위치 16진수 두자리 값이다.

Module	Offsett	Level
EIP-CPU16B	0 ~ 15	0(Off), 1(On)
EIP-DB32T	0 ~ 15	0(Off), 1(On)

C Example

// 0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 bit 단위로 데이터를 읽는다. DWORD dwValue;

AxdiNReadInportBit(0,0,0, &dwValue);

```
'0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 bit 단위로 데이터를 읽는다.
Dim lValue As Long
AxdiNReadInportBit 0,0,0, lValue
```

Delphi Example

```
{ 0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 bit 단위로 데이터를 읽는다. } var dwValue : DWord; begin AxdiNReadInportBit (0,0,0, @dwValue); end;
```

See Also

AxdoNReadOutportByte, AxdoNReadOutportWord, AxdoNReadOutportDword, AxdoNReadOutport

AxdiNReadInportByte

Purpose

지정한 노드에 대한 지정 입력 접점 모듈의 Offset 위치에서 byte 단위로 데이터를 읽는다.

Format

С

DWORD AxdiNReadInportByte(long INodeNum, long IModulePos, long IOffset, DWORD *upValue);

Visual Basic

Function AxdiNReadInportByte(ByVal INodeNum As Long, ByVal IModulePos As Long, ByVal IOffset As Long, ByRef upValue As Long) As Long

Delphi

function AxdiNReadInportByte(INodeNum: LongInt IModulePos: LongInt; IOffset: LongInt; upValue: PDWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation			
INodeNum	in	long		노드 번호			
IMa dula Da a	:			모듈 위치(사용자가 로터리 스위치			
IModulePos	in long	III IOIIÇ	III long	long	long		로 정한 절대 위치)
lOffset	in	long		입력 접점에 대한 Offset 위치			
upValue	out	DWORD*		입력 접점 값 (Byte)			

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 노드에 대한 지정 입력 접점 모듈의 Offset 위치에서 byte 단위로 데이터를 읽는다. 지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 확인한다. 노드 번호는 CPU모듈의 로터리 스위치 16진수 두자리 값이다.

Module	Offsett	Level
EIP-CPU16B	0 ~ 1	00h ~ FFh
EIP-DB32T	0 ~ 1	00h ~ FFh

C Example

// 0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 byte 단위로 데이터를 읽는다. DWORD dwValue;

AxdiNReadInportByte(0,0,0, &dwValue);

VB Example

```
'0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 byte 단위로 데이터를 읽는다.
Dim lValue As Long
AxdiNReadInportByte 0,0,0, lValue
```

Delphi Example

```
{ 0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 byte 단위로 데이터를 읽는다. } var dwValue : DWord; begin AxdiNReadInportByte (0,0,0, @dwValue); end;
```

See Also

 $\underline{\text{AxdiNReadInportBit}}, \underline{\text{AxdiNReadInportWord}}, \underline{\text{AxdiNReadInport}}$

AxdiNReadInportWord

Purpose

지정한 노드에 대한 지정 입력 접점 모듈의 Offset 위치에서 word 단위로 데이터를 읽는다.

Format

С

DWORD AxdiNReadInportWord(long INodeNum, long IModulePos, long IOffset, DWORD *upValue);

Visual Basic

Function AxdiNReadInportWord(ByVal INodeNum As Long, ByVal IModulePos As Long, ByVal IOffset As Long, ByRef upValue As Long) As Long

Delphi

function AxdiNReadInportWord(INodeNum: LongInt IModulePos: LongInt; IOffset: LongInt; upValue: PDWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
INodeNum	in	long		나 번호
IM a dula Da a	os in long			모듈 위치(사용자가 로터리 스위치
IModulePos		III IOIIG	iong	long
lOffset	in	long		입력 접점에 대한 Offset 위치
upValue	out	DWORD*		입력 접점 값 (Word)

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 노드에 대한 지정 입력 접점 모듈의 Offset 위치에서 word 단위로 데이터를 읽는다. 지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 확인한다. 노드 번호는 CPU모듈의 로터리 스위치 16진수 두자리 값이다.

Module	Offsett	Level
EIP-CPU16B	0	0000h ~ FFFFh
EIP-DB32T	0	0000h ~ FFFFh

C Example

// 0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 word 단위로 데이터를 읽는다. DWORD dwValue;

AxdiNReadInportWord (0,0,0, &dwValue);

VB Example

```
'0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 word 단위로 데이터를 읽는다.
Dim lValue As Long
AxdiNReadInportWord 0,0,0, lValue
```

Delphi Example

```
{ 0번째 노드에 대한 0번째 모듈의 Offset 0번지에서 word 단위로 데이터를 읽는다. } var dwValue : DWord; begin AxdiNReadInportWord (0,0,0, @dwValue); end;
```

See Also

<u>AxdiNReadInportBit</u>, <u>AxdiNReadInportWord</u>, <u>AxdiNReadInport</u>

AxdiNReadInport

Purpose

지정한 노드에 대한 전체 입력 접점 모듈의 Offset 위치에서 bit 단위로 데이터를 읽는다.

Format

С

DWORD AxdiNReadInport(long INodeNum, long IOffset, DWORD *upValue);

Visual Basic

Function AxdiNReadInportBit(ByVal INodeNum As Long, ByVal IOffset As Long, ByRef upValue As Long) As Long

Delphi

function AxdiNReadInportBit(INodeNum: LongInt; IOffset: LongInt; upValue: PDWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
INodeNum	in	long		노드 번호
lOffset	in	long		입력 접점에 대한 Offset 위치
upValue	out	DWORD*		입력 접점 값 (Boolean)

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 노드에 대한 지정 입력 접점 모듈의 Offset 위치에서 bit 단위로 데이터를 읽는다. Offset은 0부터 총 입력 접점 수 - 1까지 사용할 수 있다. 노드 번호는 CPU모듈의 로터리 스위치 16진수 두자리 값이다.

C Example

// 0번째 노드에 대한 전체 모듈의 Offset 0번지에서 bit 단위로 데이터를 읽는다. DWORD dwValue;

AxdiNReadInport (0,0, &dwValue);

VB Example

'0번째 노드에 대한 전체 모듈의 Offset 0번지에서 bit 단위로 데이터를 읽는다. Dim lValue As Long

AxdiNReadInport 0,0, lValue

Delphi Example

```
{ 0번째 노드에 대한 전체 모듈의 Offset 0번지에서 bit 단위로 데이터를 읽는다. } var dwValue : DWord;
begin AxdiNReadInport (0,0, @dwValue); end;
```

See Also

 $\underline{AxdiNReadInportBit}, \ \underline{AxdiNReadInportByte}, \ \underline{AxdiNReadInportWord},$

AxdoNetWorkErrorSetAction

Purpose

지정한 출력 접점 모듈이 연결된 노드의 통신이 끊어 졌을 때 현재 출력 접점 상태를 설정한다

Format

С

DWORD AxdoNetWorkErrorSetAction(long IModuleNo, DWORD dwNetErrorAct);

Visual Basic

Function AxdoNetWorkErrorSetAction (ByVal IModuleNo As Long, ByVal dwNetErrorAct As Long) As Long

Delphi

function AxdoNetWorkErrorSetAction (IModuleNo: LongInt; dwNetErrorAct: DWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
IModuleNo	in	long		노드 번호
al NatFura v A at	is	in DWORD		접점의 상태
dwiverEfforAct	dwNetErrorAct in			(자세한 내용은 아래의 표를 참고)

NetErrorAct

Value	Explanation
00h	동작 하지 않음
01h	AxdoSetNetWorkErrorByteValue()에 의하여
	Setting 된 값으로 동작

Return

AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

지정한 출력 접점 모듈이 연결된 노드의 통신이 끊어 졌을 때 현재 출력 접점 상태를 설정한다

C Example

// 0 번째 모듈이 연결이 끊어 졌을 때 동작하지 않는다. AxdoNetWorkErrorSetAction (0,0);

VB Example

'0 번째 모듈이 연결이 끊어 졌을 때 동작하지 않는다. AxdoNetWorkErrorSetAction 0, 0

Delphi Example

```
0 번째 모듈이 연결이 끊어 졌을 때 동작하지 않는다. }
AxdoNetWorkErrorSetAction (0, 0);
```

See Also

AxdoNetWorkErrorGetAction, AxdoNetWorkErrorSetByteValue, AxdoNetWorkErrorGetByteValue

AxdoNetWorkErrorGetAction

Purpose

지정한 출력 접점 모듈이 연결된 노드의 통신이 끊어 졌을 때 현재 출력 접점 상태를 확인한다

Format

С

DWORD AxdoNetWorkErrorGetAction(long IModuleNo, DWORD * dwpNetErrorAct);

Visual Basic

Function AxdoNetWorkErrorGetAction (ByVal IModuleNo As Long, ByRef dwpNetErrorAct As Long) As Long

Delphi

function AxdoNetWorkErrorGetAction (IModuleNo: LongInt; dwpNetErrorAct: PDWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
IModuleNo	in	long		노드 번호
dup Not Crror A of	out.	DWODD to		접점의 상태
dwpinetEfforAct	dwpNetErrorAct out	DWORD*		(자세한 내용은 아래의 표를 참고)

NetErrorAct

Value	Explanation
00h	동작 하지 않음
01h	AxdoSetNetWorkErrorByteValue()에 의하여
OIII	Setting 된 값으로 동작

Return

AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

지정한 출력 접점 모듈이 연결된 노드의 통신이 끊어 졌을 때 현재 출력 접점 상태를 확인한다.

C Example

```
// 0 번째 모듈이 연결이 끊어 졌을 때 동작하지 않는다.
DWORD dwpNetErrorAct;
AxdoNetWorkErrorGetAction(0, &dwpNetErrorAct);
```

VB Example

```
' 0 번째 모듈이 연결이 끊어 졌을 때 동작하지 않는다.
Dim dwpNetErrorAct As Long
```

AxdoNetWorkErrorGetAction 0, dwpNetErrorAct

Delphi Example

```
{ 0 번째 모듈이 연결이 끊어 졌을 때 동작하지 않는다. }
var
dwpNetErrorAct: DWord;
begin
AxdoNetWorkErrorGetAction (0, @ dwpNetErrorAct);
end;
```

See Also

AxdoNetWorkErrorSetAction, AxdoNetWorkErrorSetByteValue, AxdoNetWorkErrorGetByteValue

AxdoNetWorkErrorSetByteValue

Purpose

Network연결이 끊어 졌을 경우 지정한 출력 접점의 상태를 byte 단위로 설정 한다.

Format

С

DWORD AxdoNetWorkErrorSetByteValue (long IModuleNo, long IOffset, DWORD uValue);

Visual Basic

Function AxdoNetWorkErrorSetByteValue (ByVal IModuleNo As Long, ByVal IOffset As Long, ByVal uValue As Long) As Long

Delphi

function AxdoNetWorkErrorSetByteValue (IModuleNo: LongInt; IOffset: LongInt; uValue: DWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
IModuleNo	in	long		노드 번호
lOffset	in	long		출력 접점에 대한 Offset 위치
uValue	in	DWORD		출력 접점의 값(Byte)

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 출력 접점 모듈의 Offset 위치에서 byte 단위로 출력 접점 상태를 설정 한다. 지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 읽는다. 모듈 번호는 가장 빠른 노드(노드 ID 값이 작은 CPU)의 CPU 부터 0으로 시작되며, 그 노드에 장착된 DIO 모듈 의 모듈 위치(로터리 스위치 값)에 따라 차례대로 배열 된 후, 다음 빠른 노드로 순서대로 배열 된다.

Module	Offsett	Level
EIP-CPU16B	0 ~ 1	00h ~ FFh
EIP-DB32T	0 ~ 1	00h ~ FFh

C Example

// 0번째 출력 접점 모듈의 Offset 0번지에서 byte 단위로 출력 접점 상태를 설정 한다. AxdoNetWorkErrorSetByteValue (0, 0, 0xFF);

VB Example

' 0번째 출력 접점 모듈의 Offset 0번지에서 byte 단위로 출력 접점 상태를 설정 한다. AxdoNetWorkErrorSetByteValue 0, 0, 0xFF

Delphi Example

 $\{$ 0번째 출력 접점 모듈의 Offset 0번지에서 byte 단위로 출력 접점 상태를 설정 한다. $\}$ AxdoNetWorkErrorSetByteValue 0, 0, 0xFF

See Also

 $\underline{AxdoNetWorkErrorSetAction}, \underline{AxdoNetWorkErrorGetAction}, \underline{AxdoNetWorkErrorGetByteValue}$

AxdoNetWorkErrorGetByteValue

Purpose

Network연결이 끊어 졌을 경우 지정한 출력 접점의 상태를 byte 단위로 확인 한다.

Format

С

DWORD AxdoNetWorkErrorGetByteValue(long IModuleNo, long IOffset, DWORD *upValue);

Visual Basic

Function AxdoNetWorkErrorGetByteValue(ByVal IModuleNo As Long, ByVal IOffset As Long, ByRef upValue As Long) As Long

Delphi

function AxdoNetWorkErrorGetByteValue (IModuleNo: LongInt; IOffset: LongInt; upValue: PDWord): DWord; stdcall;

Input / Output

Name	in/out	Format	Init Value	Explanation
IModuleNo	in	long		노드 번호
lOffset	in	long		출력 접점에 대한 Offset 위치
upValue	out	DWORD*		출력 접점의 값(Byte)

Return AXT_RT_SUCCESS(0000): Successful execution of API

* See error code Table more information on status error codes

Description

사용자가 지정한 출력 접점 모듈의 Offset 위치에서 byte 단위로 출력 접점 상태를 확인 한다. 지정한 모듈이 어떤 모듈인지 확인하여 아래의 Table에서 Offset 사용 범위 참조하여 읽는다. 모듈 번호는 가장 빠른 노드(노드 ID 값이 작은 CPU)의 CPU 부터 0으로 시작되며, 그 노드에 장착된 DIO 모듈 의 모듈 위치(로터리 스위치 값)에 따라 차례대로 배열 된 후, 다음 빠른 노드로 순서대로 배열 된다.

Module	Offsett	Level
EIP-CPU16B	0 ~ 1	00h ~ FFh
EIP-DB32T	0 ~ 1	00h ~ FFh

C Example

/// 0번째 출력 접점 모듈의 Offset 0번지에서 byte 단위로 출력 접점 상태를 확인한다. DWORD dwValue;

AxdoGetNetWorkErrorByteValue (0, 0, &dwValue);

VB Example

'0번째 출력 접점 모듈의 Offset 0번지에서 byte 단위로 출력 접점 상태를 확인한다. Dim lValue As Long

AxdoGetNetWorkErrorByteValue 0, 0, 1Value

Delphi Example

```
{0번째 출력 접점 모듈의 Offset 0번지에서 byte 단위로 출력 접점 상태를 확인한다. } var dwValue : DWord;
begin AxdoGetNetWorkErrorByteValue (0, 0, @dwValue); end;
```

See Also

AxdoNetWorkErrorSetAction, AxdoNetWorkErrorGetAction, AxdoNetWorkErrorSetByteValue

에러코드 테이블(Error Code Table) 확인

라이브러리 사용 중 오 동작 또는 동작을 안 하는 경우가 발생 할 수 있다. 이러한 경우 함수의 리턴 값을 체크하므로라이브러리 사용상에서의 문제점을 알 수 있다. 문제를 빨리 해결하고 손쉬운 디버깅을 위해 많은 에러 코드가 제공 되고있으니 에러 코드를 잘 활용 하시오

에러코드 (Error Code)	Description
AXT_RT_SUCCESS(0000)	API 함수 수행 성공
AXT_RT_OPEN_ERROR (1001)	라이브러리 오픈 되지않음
AXT_RT_OPEN_ALREADY (1002)	라이브러리 오픈 되어있거나 사용중 임
AXT_RT_NOT_OPEN (1053)	라이브러리 초기화 실패
AXT_RT_NOT_SUPPORT_VERSION(1054)	지원하지않는 하드웨어
AXT_RT_INVALID_NODE_NO (1101)	유효하지않는 노드 번호
AXT_RT_INVALID_MODULE_POS (1102)	유효하지않는 모듈 위치
AXT_RT_INVALID_LEVEL (1103)	유효하지않는 레벨
AXT_RT_FLASH_BUSY(1150)	플래시 상태가 Busy 상태 임
AXT_RT_ERROR_VERSION_READ(1151)	라이브러리 버전을 읽을수 없음
AXT_RT_ERROR_NETWORK(1152)	네트웍크 에러
AXT_RT_ERROR_HW_ACCESS(1153)	하드웨어 에러
AXT_RT_ERROR_NETWORK_CHEKSUM(1154)	네트웍크 CheckSum 에러
AXT_RT_1ST_BELOW_MIN_VALUE (1160)	첫번째 인자값이 최소값보다 더 작음
AXT_RT_1ST_ABOVE_MAX_VALUE (1161)	첫번째 인자값이 최대값보다 더 큼
AXT_RT_2ND_BELOW_MIN_VALUE (1170)	두번째 인자값이 최소값보다 더 작음
AXT_RT_2ND_ABOVE_MAX_VALUE (1171)	두번째 인자값이 최대값보다 더 큼
AXT_RT_3RD_BELOW_MIN_VALUE (1180)	세번째 인자값이 최소값보다 더 작음
AXT_RT_3RD_ABOVE_MAX_VALUE (1181)	세번째 인자값이 최대값보다 더 큼
AXT_RT_4TH_BELOW_MIN_VALUE (1190)	네번째 인자값이 최소값보다 더 작음
AXT_RT_4TH_ABOVE_MAX_VALUE (1191)	네번째 인자값이 최대값보다 더 큼
AXT_RT_5TH_BELOW_MIN_VALUE (1200)	다섯번째 인자값이 최소값보다 더 작음
AXT_RT_5TH_ABOVE_MAX_VALUE (1201)	디섯번째 인자값이 최대값보다 더 큼
AXT_RT_6TH_BELOW_MIN_VALUE (1210)	여섯번째 인자값이 최소값보다 더 작음

AXT_RT_6TH_ABOVE_MAX_VALUE (1211)	여섯번째 인자값이 최대값보다 더 큼
AXT_RT_7TH_BELOW_MIN_VALUE (1220)	일곱번째 인자값이 최소값보다 더 작음
AXT_RT_7TH_ABOVE_MAX_VALUE (1221)	일곱번째 인자값이 최대값보다 더 큼
AXT_RT_8TH_BELOW_MIN_VALUE (1230)	여덟번째 인자값이 최소값보다 더 작음
AXT_RT_8TH_ABOVE_MAX_VALUE (1231)	여덟번째 인자값이 최대값보다 더 큼
AXT_RT_9TH_BELOW_MIN_VALUE (1240)	아홉번째 인자값이 최소값보다 더 작음
AXT_RT_9TH_ABOVE_MAX_VALUE (1241)	아홉번째 인자값이 최대값보다 더 큼
AXT_RT_10TH_BELOW_MIN_VALUE (1250)	열번째 인자값이 최소값보다 더 작음
AXT_RT_10TH_ABOVE_MAX_VALUE (1251)	열번째 인자값이 최대값보다 더 큼
AXT_RT_AIO_OPEN_ERROR (2001)	AIO 모듈 오픈실패
AXT_RT_AIO_NOT_MODULE (2051)	AIO 모듈 없음
AXT_RT_AIO_INVALID_MODULE_NO (2101)	유효하지않은 AIO모듈
AXT_RT_AIO_INVALID_CHANNEL_NO (2102)	유효하지않은 AIO채널번호
AXT_RT_AIO_INVALID_USE (2106)	AIO 함수 사용못함
AXT_RT_AIO_INVALID_TRIGGER_MODE (2107)	유효하지않는 트리거 모드
AXT_RT_DIO_OPEN_ERROR (3001)	DIO 모듈 오픈실패
AXT_RT_DIO_NOT_MODULE (3051)	DIO 모듈 없음
AXT_RT_DIO_INVALID_MODULE_NO (3101)	유효하지않는 DIO 모듈 번호
AXT_RT_DIO_INVALID_OFFSET_NO (3102)	유효하지않는 DIO OFFSET 번호
AXT_RT_DIO_INVALID_LEVEL (3103)	유효하지않는 DIO 레벨
AXT_RT_DIO_INVALID_MODE (3104)	유효하지않는 DIO 모드
AXT_RT_DIO_INVALID_VALUE (3105)	유효하지않는 값 설정
AXT_RT_DIO_INVALID_USE (3106)	DIO 함수 사용못함
AXT_RT_MOTION_OPEN_ERROR(4001)	모션 라이브러리 Open 실패
AXT_RT_MOTION_NOT_MODULE(4051)	
7V(1_) 11_WO110N_1V01_WO00LE(4001)	시스템에 장착된 모션 모듈이 없음
AXT_RT_MOTION_NOT_INITIAL_AXIS_NO(4053)	시스템에 장착된 모션 모듈이 없음 해당 축 모션 초기화 실패
AXT_RT_MOTION_NOT_INITIAL_AXIS_NO(4053)	해당 축 모션 초기화 실패
AXT_RT_MOTION_NOT_INITIAL_AXIS_NO(4053) AXT_RT_MOTION_NOT_PARA_READ(4055)	해당 축 모션 초기화 실패 원점 구동 설정 파라미터 로드 실패
AXT_RT_MOTION_NOT_INITIAL_AXIS_NO(4053) AXT_RT_MOTION_NOT_PARA_READ(4055) AXT_RT_MOTION_INVALID_AXIS_NO(4101)	해당 축 모션 초기화 실패 원점 구동 설정 파라미터 로드 실패 해당 축이 존재하지 않음

AXT_RT_MOTION_INVALID_STOP_MODE(4106) 모션 3	입출력 해당 비트가 잘못 설정됨 정지 모드 설정값이 잘못됨
	정지 모드 설정값()I 잘목됨
AXT BT MOTION INVALID TRIGGER MODE(4107) □ □	
	l 설정 모드가 잘못 설정됨
AXT_RT_MOTION_INVALID_TRIGGER_LEVEL(4108) 트리커	l 출력 레벨 설정이 잘못됨
'uSele AXT_RT_MOTION_INVALID_SELECTION(4109) 정되어	ection' 인자가 COMMAND 또는 ACTUAL 이외의 값으로 설 I 있음
AXT_RT_MOTION_INVALID_TIME(4110) Trigge	er 출력 시간값이 잘못 설정되어 있음
AXT_RT_MOTION_INVALID_FILE_LOAD(4111) 모션 설	설정값이 저장된 파일이 로드가 안됨
AXT_RT_MOTION_INVALID_FILE_SAVE(4112) 모션 설	설정값을 저장하는 파일 저장에 실패함
AXT_RT_MOTION_INVALID_VELOCITY(4113) 모션 =	구동 속도값이 0으로 설정되어 모션 에러 발생
AXT_RT_MOTION_INVALID_ACCELTIME(4114) 모션 =	구동 가속 시간값이 0으로 설정되어 모션 에러 발생
AXT_RT_MOTION_INVALID_PULSE_VALUE(4115) 모션 5	단위 설정 시 입력 펄스값이 0보다 작은값으로 설정됨
AXT_RT_MOTION_INVALID_NODE_NUMBER (4116) 위치니	수도 오버라이드 함수가 모션 정지 중에 실햄됨
AXT_RT_MOTION_INVALID_TARGET(4117) 다축 9	고션 정지 원인에 관한 플래그를 반환한다.
AXT_RT_MOTION_ERROR_IN_NONMOTION(4151) 모션 =	구동중이어야 되는데 모션 구동중이 아닐 때
AXT_RT_MOTION_ERROR_IN_MOTION(4152) 모션 =	구동 중에 다른 모션 구동 함수를 실행함
AXT_RT_MOTION_ERROR(4153) 다축 -	구동 정지 함수 실행 중 에러 발생함
AXT_RT_MOTION_ERROR_GANTRY_ENABLE(4154) 눌렀을	l enable이 되어있어 모션중일 때 또 겐트리 enable을 때
AXT_RT_MOTION_ERROR_GANTRY_AXIS(4155)	축이 마스터채널(축) 번호(0 ~ (최대축수 - 1))가 잘 머갔을 때
AXT_RT_MOTION_ERROR_MASTER_SERVOON(4156)	· 축 서보온이 안되어있을 때
AXT_RT_MOTION_ERROR_SLAVE_SERVOON(4157) 슬레이	브 축 서보온이 안되어있을 때
AXT_RT_MOTION_INVALID_POSITION(4158) 유효한	· 위치에 없을 때
AXT_RT_ERROR_NOT_SAME_MODULE (4159) 똑 같은	은 모듈내에 있지 않을경우
AXT_RT_ERROR_NOT_SAME_PRODUCT (4161) 제품이	서로 다를경우
AXT_RT_NOT_CAPTURED(4162) 위치기	사 저장되지 않을 때
AXT_RT_ERROR_NOT_SAME_IC(4163) 같은 참	칠내에 존재하지않을 때
AXT_RT_ERROR_NOT_GEARWODE(4164) 기어도	으므로 변환이 안될 때
AXT_ERROR_CONTI_INVALID_AXIS_NO(4165) 연속보	d간 축맵핑할 때 유효한축이 아닐 때

AXT_ERROR_CONTI_INVALID_MAP_NO(4166)	유효한 맵핑 번호가 아닐 때
AXT_ERROR_CONTI_EMPTY_MAP_NO(4167)	맵핑 번호가 비워있을 때
AXT_RT_MOTION_ERROR_CACULATION(4168)	계산상의 오차가 발생했을 때
AXT_RT_ERROR_NOT_SAME_NODE(4169)	노드 번호가 틀릴 때
AXT_ERROR_HELICAL_INVALID_AXIS_NO(4170)	헬리컬 축 번호가 존재하지 않을 때
AXT_ERROR_HELICAL_INVALID_MAP_NO(4171)	헬리컬 맵이 존재하지 않을 때
AXT_ERROR_HELICAL_EMPTY_MAP_NO(4172)	헬리컬 맵 번호가 비어 있을 때
AXT_RT_MOTION_INTERPOL_VALUE(4184)	보간할 때 입력 값이 잘못넣어졌을 때
AXT_RT_MOTION_HOME_SEARCHING(4201)	홈을 찾고 있는 중일 때 다른 모션 함수들을 사용할 때
AXT_RT_MOTION_HOME_ERROR_SEARCHING(4202)	홈을 찾고 있는 중일 때 외부에서 사용자나 혹은 어떤것에 의한 강제로 정지당할 때
AXT_RT_MOTION_HOME_ERROR_START(4203)	초기화 문제로 홈시작 불가할 때
AXT_RT_MOTION_HOME_ERROR_GANTRY(4204)	홈을 찾고 있는 중일 때 겐트리 enable 불가할 때
AXT_RT_MOTION_POS_OUTOFBOUND(4251)	설정한 위치값이 설정 최대값보다 크거나 최소값보다 작은값 임
AXT_RT_MOTION_PROFILE_INVALID(4252)	구동 속도 프로파일 설정이 잘못됨
AXT_RT_MOTION_VELOCITY_OUTOFBOUND(4253)	구동 속도값이 최대값보다 크게 설정됨
AXT_RT_MOTION_MOVE_UNIT_IS_ZERO(4254)	구동 단위값이 0으로 설정됨
AXT_RT_MOTION_SETTING_ERROR(4255)	속도, 가속도, 저크, 프로파일 설정이 잘못됨
AXT_RT_MOTION_DISABLE_TRIGGER(4257)	트리거 출력이 Disable 상태임
AXT_RT_MOTION_INVALID_CONT_INDEX(4258)	연속 보간 Index값 설정이 잘못됨
AXT_RT_INIT_DOSE_NOT_EXIST_LAN_CARD(4301)	랜카드가 존재하지 않을 때
AXT_RT_INIT_DOES_NOT_RESPONSE_SLAVE(4302)	슬레이브에서의 응답이 없을 때
AXT_RT_INIT_INVALID_HOST_IP_ADDRESS(4303)	마스터의 IP 주소가 틀릴 때
AXT_RT_INIT_INVALID_HOST_COUNT(4304)	랜카드 개수가 틀릴 때
AXT_RT_INIT_EIPSTART_FAIL(4305)	Ethernet/IP 통신이 초기화 되지 않을 때
AXT_RT_INIT_ALREADY_INITIALIZED(4306)	초기화가 이미 되어 있을 때
AXT_RT_INIT_INVALID_NET_TYPE(4307)	Network 타입이 틀릴 때
AXT_RT_INIT_PRODUCTID(4308)	모듈 ID가 존재하지 않을 때
AXT_RT_INIT_NOT_ENOUGH_MEMORY(4309)	메모리가 충분하지 않을 때
AXT_RT_INIT_DOES_NOT_RESPONSE_SLAVE_AT_RING(4310)	링 오픈시 응답이 없을 때

AXT_RT_INIT_NETWORK_ERROR(4311)	네트워크 초기화 에러
AXT_RT_INIT_BACKGROUND_NOT_STARTED(4312)	BackGround Process 에러
AXT_RT_INIT_BACKGROUND_START_FAIL (4313)	BackGround Process 초기화 실패

이 설명서의 내용은 예고 없이 변경될 수 있습니다. 용례에 사용된 회사, 기관, 제품, 인물 및 사건 등은 실제 데이터가 아닙니다. 어떠한 실제 회사, 기관, 제품, 인물 또는 사건과도 연관시킬 의도가 없으며 그렇게 유추해서도 안됩니다. 해당 저작권법을 준수하는 것은 사용자의 책임입니다. 저작권에서의 권리와는 별도로, 이 설명서의 어떠한 부분도(주)아진엑스텍의 명시적인 서면 승인 없이는 어떠한 형식이나 수단(전기적, 기계적, 복사기에 의한 복사, 디스크 복사 또는 다른 방법) 또는 다른 목적으로도 복제되거나, 검색 시스템에 저장 또는 도입되거나, 전송될 수 없습니다.

(주)아진엑스텍은 이 설명서 본 안에 관련된 특허권, 상표권, 저작권 또는 기타 지적 소유권 등을 보유할 수 있습니다. 서면 사용권 계약에 따라 (주)아진엑스텍으로부터 귀하에게 명시적으로 제공된 권리 이외에, 이 설명서의 제공은 귀하에게 이러한 특허권, 저작권 또는 기타 지적 소유권 등에 대한 어떠한 사용권도 허용하지 않습니다.