Mathematics I

Dr. Vincent A. L. Boyer

Graduate Program in Systems Engineering (PISIS) Facultad de Ingeniería Mecánica y Eléctrica Universidad Autónoma de Nuevo León

Content

- Contact Information
- 2 Evaluation Criteria
- Opening the second of the s

Agenda

- Contact Information
- 2 Evaluation Criteria
- 3 Program

Contact information

Dr. Vincent A. L. Boyer

Associate Professor - SNI II Graduate Program in Systems Engineering (PISIS)

email: vincent.boyer@uanl.edu.mx

Agenda

- Contact Information
- 2 Evaluation Criteria
- 3 Program

Evaluation criteria

Criterion	Value
Homework	30%
Midterm exam	25%
Final exam	25%
Project	20%
Total	100%

Important remarks:

70% of the activities and homework must be delivered in order to present the second opportunity.

Your grade for the second opportunity will be computed as follows:

- 30% of the final grade obtained from the homeworks, exams, and project during the semester;
- 70% of the grade obtined with the extra-ordinary exam.

Agenda

- Contact Information
- 2 Evaluation Criteria
- 3 Program

Weekly schedule

Week	Topics	Chapter	Section(s)
Number			
1	Introduction to Calculus	1 & 2	1.1-1.3
			2.1-2.5
2	Neighborhood of a point	3	3.1-3.2
3	Finite and infinite limits	3	3.3-3.8
	Limits of sum, product, quotient		
4	Limits of composite functions	3	3.9-3.10
	Left and right hand limits		
5	Derivatives	4	4.1-4.4
	Left and right hand derivative		
6 - Activity 1	Derivatives of sum, product, quotient	4	4.5-4.7
· ·	Derivatives of composite functions		
7	Derivatives of transcendental functions	5	5.1-5.6
	MidTerm Exam		
10	Differentiation techniques	6	6.1-6.2
11	Differentiation and rate of change	7	7.1-7.3
12	Study of functions	8	8.1-8.4
13 - Activity 2	Application to optimization	9	9.1-9.3
14	Functions of multiple variables	10	10.1-10.3
15 - Activity 3	Differential of a function	10	10.4-10.7
	Directional derivatives		
	Implicit functions		
16	The gradient	10	10.8-10.9
	Lagrangian relaxation		
	-		

Final Exam

Final Project

- The final project must be delivered before the final exam
- The project must be done in team of exactly 5 members
- The team will have to study an engineering case related to their educational program.
- The team should deliver a report in pdf format using LATEX and a 5 minutes video
- The team may show to the teacher their work during the semester for feedbacks

Suggestions for the Final Project

- Gradient descent method and applications
- Polynomial regression
- Mathematics of neural networks
- Numerical solution of differential equations (e.g., Euler method, Runge-Kutta method)
- Approximation methods for transcendental function computation
- Non-linear optimization and applications
- Mathematics for computer graphics and animation

