MODELOS Y SISTEMAS

Práctica 1: Sistemas

- 1. Para los siguientes sistemas, determinar las variables, identificar las entradas, las salidas y las perturbaciones (donde sea aplicable):
 - (a) Un termómetro
 - (b) Un electrocardiograma
 - (c) Un crecimiento bacterial
- 2. Dar 3 ventajas y 3 desventajas de usar simulaciones (o experimentos numéricos) para predecir el comportamiento de un
 - (a) marcapasos
 - (b) órgano artificial
- 3. Proponer 2 sistemas biomédicos
 - (a) dar sus variables, entradas, salidas y perturbaciones.
 - (b) dar ventajas y desventajas de utilizar modelos y simulaciones para predecir sus comportamiento.
- 4. Para cada uno de los sistemas dados más abajo:
 - Discretizar los siguientes sistemas de ecuaciones diferenciales para $t \in [0, 5]$ usando el algoritmo de Euler con paso h.
 - Escribir un código para resolver numéricamente el sistema discrtizado
 - Simular el sistema con paso h=0.5 seg., h=0.1 seg., h=0.05 seg. para aproximar la solución del sistema de ecuaciones diferenciales en el t_0 dado.
 - \bullet Hacer un cuadro con los resultados obtenidos para los distintos valores h.

(a)
$$\dot{x} = \sqrt{x}$$
, $x(0) = 2$, $t_0 = 2$
(b) $\begin{cases} \dot{x} = y \\ \dot{y} = x - y \end{cases}$ $x(0) = 1, y(0) = 2, t_0 = 1.$
(c) $\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = \cos(10x_1\pi) \end{cases}$ $x(0) = 0, y(0) = 1, t_0 = 1.$
 $y = x_1$
(d) $\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = x_3 \\ \dot{x}_3 = -2x_1 - 3x_2 - 4x_3 \\ y = 7x_1 - 5x_2 \end{cases}$ $x_1(0) = 2, x_2(0) = 1, x_3(0) = 0, t_0 = 1.$