Задачи по учебнику: Сборник_задач_по_математике_для_втузов_В_4_х_ч_Ч_4_ред_Ефимов: 19.62-19.69 19.254-19.255 19.418-19.420, 19.307-19.313, 19.322-19.327, 19.329-19.331, 19.335-19.338, 19.340,19.345

19.62. Показать, что выборочный коэффициент корреляции по выборке $(x_i,\,y_i),\,i=1,\,\ldots,\,n,$ вычисляется по формуле

$$r = \frac{\sum (x_i - \overline{x}) (y_i - \overline{y})}{\sqrt{\left(\sum (x_i - \overline{x})^2\right) \left(\sum (y_i - \overline{y})^2\right)}}.$$

V (~~ · ·) (~~ · · ·)

Вычислить коэффициенты корреляции и построить диаграммы рассеивания для следующих выборок:

19.66*. Известно, что для некоторой выборки $D_X^*=16,\,D_Y^*=9.$ Каково наибольшее значение ковариации?

N-19.66 K29 = 1 5 (24-x/14,-9) Ombern Kxs = 12

19.67. Пусть над элементами выборки системы двух случайных величин $(x_i, y_i), i = 1, 2, ..., n$, выполнено линейное преобразование $u_i = ax_i + b, v_i = cy_i + d, i = 1, 2, ..., n$. Показать, что выборочные ковариации и коэффициент корреляции связаны соотношениями

$$k_{UV}^* = ack_{XY}^* \quad (ac > 0), \quad r_{UV} = r_{XY}.$$

N19.66 K29° = 1 5 (21-2/19) A24=1 ==> Ombene Kes' = 18 N14.68 K26 = 1/2/21 E 201 A Efour 1 8-42 4x1-9x7 (661-667 Elax N (02) 48 = en = (21-27= 22x

$n_{UV} - acn_{XY}$ (ac > 0), $i_{UV} - i_{XY}$.

Используя подходящее линейное преобразование, вычислить выборочный коэффициент корреляции для следующих выборок: 19.68.

\boldsymbol{x}	55	71	53	67	81	75	59	89	65	81
\overline{y}	206	116	221	113	32	128	248	113	284	215

19.69.

\boldsymbol{x}	65,8	68,3	72,7	66,1	73,1	71,8	73,1	66,5
\overline{y}	65,8 166,0	115,2	157,8	152,5	149,3	181,0	173,2	120,4
\boldsymbol{x}	69,3	73,4	67,3	73,6	67,9	69,7	69,7	
	124,5							

63				
64				
65		X	Υ	
66		55	206	
67		71	116	
68		53	221	
69		67	113	
70		81	32	
71		75	128	
72		59	248	
73		89	113	
74		65	284	
75		81	215	
76				
77	КОРРЕЛ	-0,59639		
78				
79				

В задачах 19.254-19.260 предполагается, что выборки получены из генеральных совокупностей, имеющих двумерное нормальное распределение.

- **19.254.** Выборочный коэффициент корреляции r, вычисленный по выборке объема n=39, равен 0,25. Проверить значимость этого результата при альтернативных гипотезах: а) $H_1\colon \rho \neq 0$, б) $H_1\colon \rho > 0$. Принять $\alpha = 0,05$.
- 19.255. Проверить значимость коэффициента корреляции по следующим данным:
- а) $r=-0.41,\, n=52,\, \alpha=0.1,\,$ альтернативная гипотеза H_1 : ho<0;
- б) $r=0.15,\, n=39,\, \alpha=0.01,\,$ альтернативная гипотеза H_1 : $\rho\neq 0$;
- в) $r=-0.32,\, n=103,\, \alpha=0.05,\,$ альтернативная гипотеза $H_1:\, \rho\neq 0.$

a) our sol receptance 1 1 1 2 (h-21) 63-1507 = - # 899 V8 2-2+62-150) = - # 899 V80+(253) = 974 -9,47 F 63.1507 -> Ho micros -> como zoscococococo A occord resumme 1-0,3212 60,945 (40+1) = 1934 101-1915² = 0, 201 57 Ha OMEROH = 7 Const Zadliceron 10,451> 6,995 (38) = 3785 = 9486 V33,18,955,34 V34,2516 =7 Hs maturains => non xappel

19.418. Бегуны, ранги которых при построении по росту были 1, 2, ..., 10, заняли на состязаниях следующие места:

Как велика ранговая корреляция между ростом и быстротой бега?

19.419. Цветные диски, имеющие порядок оттенков $\hat{1}, 2, \ldots, 15,$ были расположены испытуемым в следующем порядке:

Охарактеризовать способность испытуемого различать оттенки цветов с помощью коэффициентов ранговой корреляции между действительными и наблюдаемыми рангами.

19.420. Найти коэффициент ранговой корреляции между урожайностью пшеницы и картофеля на соседних полях по следующим данным:

Годы	1926	1927	1928	1929	1930	1931	1932	1933	1934	1935	1936	1937
Пшеница (ц)	20,1	23,6	26,3	19,9	16,7	23,2	31,4	33,5	28,2	35,3	29,3	30,5
Карто- фель (т)	7,2	7,1	7,4	6,1	6,0	7,3	9,4	9,2	8,8	10,4	8,0	9,7

- **19.308.** Показать, что сумма остатков $\sum e_i$ равна нулю.
 - 19.309. Для представления некоторых данных предполагается использовать модель $y=\beta_0+\beta_1 x$, где значение β_1 известно. Найти оценку параметра β_0 .
 - **19.310.** В модели $y = \beta_0 + \beta_1 x$ параметр β_0 известен. Найти оценку параметра β_1 .

N 19 387 G - North De 6-4-5 4 (4-(50 RAIS) = E4 - 55- 02 - 22 Car = Egy - ne 4 2 By . NEW - Attai = 0 8 N 19.309 B = G - A X 8 N 19 3 100. Ba=9-117 => \$= &+ Bix 81= 2219-4 (231(24) - Exx -(4013) 222-1 (Eaple E23-1 (E2)2 =7 By (2x;2+ \$18a12)= Exy -645-51 & a BAE 21 - 1 129/2 + con + 1 52/4 52/7 -= 5016-2052; => 287 = 8205-1082 82,2 Omblem By = 224 4 - 3082 Ex 2

19.311. Показать, что точка $(\overline{x},\,\overline{y})$ лежит на прямой $y= ilde{eta}_0+ ilde{eta}_1x.$

В задачах 19.312–19.315 исследуются статистические свойства МНК-оценок параметров линейной регрессии. Оценки $\tilde{\beta}_0$ и $\tilde{\beta}_1$ (см. (7), (8)) являются линейными функциями случайных величин $Y_i = \beta_0 + \beta_1 x + \varepsilon_i, \ i = 1, 2, \ldots, n$, причем ε_i удовлетворяют предположениям (4).

- 19.312*. Показать, что МНК-оценки параметров линейной регрессии являются несмещенными оценками этих параметров.
- **19.313***. Показать, что дисперсии оденок $ilde{eta}_1$ и $ilde{eta}_0$ равны соответственно

$$\quad \quad \mathbf{D}\left[\tilde{\beta}_{1}\right] = \frac{\sigma^{2}}{Q_{x}}, \quad \mathbf{D}\left[\tilde{\beta}_{0}\right] = \frac{\sigma^{2}\sum x_{i}^{2}}{nQ_{x}}.$$

19.322*. Показать, что границы доверительных интервалов для параметров линейной регрессии имеют вид

$$\tilde{\beta}_0 \pm t_{1-\alpha/2} (n-2) s \sqrt{\frac{\sum x_i^2}{nQ_x}},$$
 $\tilde{\beta}_1 \pm t_{1-\alpha/2} (n-2) s \sqrt{\frac{1}{Q_x}}.$

Здесь $t_p(n-2)$ — квантиль распределения Стьюдента с n-2 степенями свободы порядка p, а $s=\sqrt{s^2}$, где s^2 — остаточная дис-

19.323*. Показать, что границы доверительного интервала для среднего значения Y_0 , соответствующего заданному значению $x=x_0$, определяются формулой

$$\tilde{y}_0 \pm t_{1-\alpha/2}(n-2) s \sqrt{\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{Q_x}}$$
.

19.324*. Показать, что доверительный интервал для дисперсии ошибок наблюдений σ^2 имеет вид

$$\frac{(n-2) s^2}{\chi^2_{1-\alpha/2}(n-2)} < \sigma^2 < \frac{(n-2) s^2}{\chi^2_{\alpha/2}(n-2)},$$

где $\chi_p^2(n-2)$ — квантиль распределения χ^2 с n-2 степенями свободы, а s^2 — остаточная дисперсия.

19.326*. Доказать тождество $Q_y = Q_R + Q_e$.

N 19, 324 128(2)=> 23/2 (m2) 02/2-2 (22/1/2 (n-2)=> (n-2152 824 per 200 2) Lore (n-2152 22 xx2(1-21 N 19 326 On +9== = (41-5/2+ = (9, -9/2= = 2472-254, 5 +457 = 552-254167 + 4 5 4,2 = 45 + 54,2 - 254,2 - 319 - 579 = hg+542-2544- 5(4-572-86

В задачах 19.329–19.332 по заданным выборкам найти оценки для параметров линейной регрессии Y на x, проверить значимость линейной регрессии и вычислить коэффициент корреляции. Найти границы доверительных интервалов для параметров линейной модели и для среднего значения Y при $x = x_0$.

Предполагается, что ошибки наблюдений независимы и имеют нормальное распределение $N(0,\sigma)$. Уровень значимости α задается. При вычислении следует использовать значения сумм переменных, их квадратов и попарных произведений.

M 19 329 8+= 2214 - AZDO 1 254 Brosucens; Ho! 1100 Z/Ho 2- Fl 1 10-21 8292 9811-2 (n-2/87 (202 px) 25/2-45-57202 -45 2 9,0034 - 4,54 4, 2 7 = > 16 omal 12= 9x norge nogreen 1 2 3 2 3 by 0 = Juny charges B14 848-128)

Считая, что зависимость между переменными x и Y имеет вид $y=\beta_0+\beta_1x+\beta_2x^2$, в задачах 19.335–19.338 найти оценки параметров по следующим выборкам:

M 19. 335 1 = 6 821 = 38 8213 = 328 8213 = 1900 8240 = 21566 + EN = 1 EN 4 + 100 E 23 84 = 170 6 So130 By +820 Bz = 87 30 B + 220 Rot meach = 120 220 Spx + 300 BAT 15664012 = 1730 => B0 =4 B1= -2,160 B2-9208 Consen 1 9 = 9-3 10 Cara 264m

19.336.	\boldsymbol{x}	0,07	0,31	0,61	0,99	1,29	1,78	2,09
10.000.	y	1,34	1,08	0,94	1,06	1,25	2,01	2,60

19, 334 De1 = 266 E213=10566 Ex13=605 426 500,4-18524600 EG, -48,64 FRIGH - 1936, Th 2234 = 30648,50 8=2 4 B + 266 By + 105 66 Bo = 4764 9 286 Ba + 10 506 Bo + 485 196 Sp = 1926 18 10566 Bo+47514614152460 Sc = 2001350 = 130 = 0,132 St=0,008 Bz=0,000 Ombem, 4=0,18210,18210,002x2 11/9,337 N=5 E21=0 S23=10 528=8 523-35 Z4=5,8 Z214,2=-28 Z02,4 = 372 3 Po + 10 Bz - 5,8 Bo = 1,926 C 10-31 = -2,8 10 So + 34 St = 337 Sy + 1,3 43

В задачах 19.339–19.341 найти оценки параметров β_0 и β_1 , считая, что зависимость между переменными x и Y имеет вид

2142 (ATA)-1/1274 -1345 (A+A7-7 40/36 23124 20126 4/m +1013 -0173 -224/85 3/26 34 4 25 1 18 23 8 15,24 Onless 1 G= 8 24 + 15, 34

19.345. Предполагается, что зависимость между переменными Y и x достаточно точно описывается функцией $y=\beta_0+\beta_1x+\beta_2x^2$. Найти оценки параметров $\beta_0,\ \beta_1$ и $\beta_2,\$ а также оценку ковариационной матрицы этих оценок по следующей выборке:

1 19. 345 TO TO TO TO TO TO TO TO a) 460 + 2752 = 45 BJ = -1.440 2000-675 22 80 1 196 30 = 285 4=-1,42612,44621863422 35 416 = B 1 8 4 20963 87,5 13,5 91 Q12 = B 7 A 7 9 - 862 2 = 2017, 82 3, 102 3- 20135 96-542-45 - 5056 ge=96-9k=2428 20188 E0 34 (34) -556 12 45

6) 12 2 - 204 38 92- 23,79 +0737 223,24 2904 = 8=2,14 2) 1 = 1 40 20 1413 -0 - 189 0 23 8 0 4/2/0 69345 197 = 3,246 130-2,446,2,64 13-423 15-2 416, 200 V = 3,66 AB2 = 3,500, 364 0 70 = 2,01 18