Matlab Assignment

Ziad Mohamed Mohamed Abdallah Elbouriny - 20010643

Ahmed Osama Mohamed Afifi - 20010038

Mazen Mohamed Hassanen - 20011161

Mohamed Ashraf Elsayed Mahmoud - 20011488

October 2023

Experiment 1: Double Sided Band Modulation

• Spectrum of attached audio file

• Ideal low pass filter (BW = 4000Hz)

Time Domain

Frequency Domain

• Modulation plot in frequency domain (fc = 100KHz)

DSB-SC

DSB-TC

• Envelop detector in time domain

$\operatorname{DSB-SC}$

We can recognize that in DSB-SC the signal is distorted while, in DSB-TC is much better. DSB-SC has no DC bias (A=0) then, the modulation index (m) tends to infinity since, $m=\frac{a}{A}$. We can conclude that envelop detection can only be used with DSB-TC.

• Coherent Detection for DSB-SC

Signal to noise ratio (SNR = 0)

Signal to noise ratio (SNR = 10)

Signal to noise ratio (SNR = 30)

• Coherent Detection for DSB-TC

Signal to noise ratio (SNR = 0)

Signal to noise ratio (SNR = 10)

• Coherent Detection for DSB-SC with frequency error

• Coherent Detection for DSB-SC with phase error

Experiment 2: Single Sided Band Modulation

• Spectrum of attached audio file

• Ideal low pass filter (BW = 4000Hz)

Time Domain

Frequency Domain

• DSB-SC modulated in frequency domain

• Demodulation with ideal LPF

SSB LSB obtained from DSB-SC

Coherent detection demodulation for SSB-SC

• Demodulation with 4th order butterworth filter

SSB LSB obtained from DSB-SC

Coherent detection demodulation for SSB-SC

• Recieved signal with added noise (ideal LPF)

Signal to noise ratio (SNR = 0)

Signal to noise ratio (SNR = 10)

Signal to noise ratio (SNR = 30)

• Generated SSB-TC

Frequency Domain

\bullet Envelop detected SSB-TC

Experiment 3: Single Sided Band Modulation

• Spectrum of attached audio file

• Ideal low pass filter (BW = 4000Hz)

Time Domain

Frequency Domain

• Generated NBFM signal in frequency domain

We can recognize that the spectrum is same as DSB-TC. One of its drawbacks that it needs double the bandwidth.

The condition to achieve narrow band frequency modulation is having small frequency deviation, $Q(t) <= \frac{\pi}{6}$

• Demodulation of NBFM signal

We have assumed that kf = 1 and A = 10.