M339 W: December 7th, 2020. Strong Law of Large Numbers (SLLN). A sequence of random variables $\{ \times_{k}, k = 1, 2, ... \}$ independent, identially distributed Assume $\mu_X := \mathbb{E}[X,] < 0$. Then, X1+X2+...+Xn N-D 00 MX Also, if a function g is such that $g(X_1)$ is well defined and $\frac{\text{E}[g(X_1)]}{\text{Hen}}, \quad \frac{g(X_1) + g(X_2) + \dots + g(X_n)}{n} \rightarrow \text{E}[g(X_n)]$ Monte Carlo Recipe: · Create simulated values of your random variable from a particular dist'n. · Apply a function to the simulate value. · Average the quantities that you get. We get a value which is "close to" the theoretical value. To increase precision by a fator of η , we must increase the number of varioties by η^2 .

The Inverse Transformation (Simulation) Method.

Proposition.

(1) Let X be a continuous random variable, i.e.,

let X have a density function f_X . Assume that $f_X(x) > 0$ always (i.e., for all x).

Set
$$\tilde{X} := F_X(X)$$
 w/F_X the cumulative distribution function.

Then, $\chi \sim U(0,1)$

-: Support of X will be contained in [0,1]. Let ue[0,1].

$$F_{\tilde{X}}(u) = P[\tilde{X} \leq u]$$

= $P[F_{X}(X) \leq u]$

fx(x) >0 always a Then, $F_X(a) = \int f_X(x) dx$

= P Fx is a strictly increasing function

=D F_X is one-to-one =D F_X exists and is increasing

$$F_{\chi}(u) = \mathbb{P}\left[F_{\chi}^{-1}(F_{\chi}(\chi)) \leq F_{\chi}^{-1}(u)\right]$$

$$= \mathbb{P}\left[\chi \leq F_{\chi}^{-1}(u)\right] =$$

$$= \overline{f_{\chi}}(F_{\chi}^{-1}(u)) = u = 0 \quad \tilde{\chi} \sim U(0,1).$$

(2) Let $U \sim U(0,1)$ and let

F be a (strictly increasing) cumulative dist'n f'him.

Set $Y := F^{-1}(U)$ Then, the cdf of the r.v. Y is F.

Implementation:

- 1. F... the cdf of the dist'u we want to draw from, e.g., F=N=cdf of N(0,1)
- (2.) Draw: u, u2, ..., un ~ U(0,1)
- 3.) Set $x_1 = F^{-1}(u_1)$; $x_2 = F^{-1}(u_2)$; ...; $x_n = F^{-1}(u_n)$ They will be the simulated values from your desired dist'n.