$$\mathbf{P(C)} = \sum_{k=0}^{5} \left[\theta b_{12}(k; p) + (1 - \theta) b_{12}(k; 1 - p) \right]$$

$$\mathbf{P(C)} = \sum_{k=0}^{5} \left[\theta b_{12}(k; p) + (1 - \theta)b_{12}(k; 1 - p)\right]$$

What is the probability of erroneous conviction?

$$P(I \mid C)$$

$$\mathbf{P(C)} = \sum_{k=0}^{5} \left[\theta b_{12}(k; p) + (1 - \theta) b_{12}(k; 1 - p) \right]$$

What is the probability of erroneous conviction?

Bayes's rule

$$\mathbf{P}(\mathbf{I} \mid \mathbf{C}) = \frac{\mathbf{P}(\mathbf{C} \mid \mathbf{I}) \mathbf{P}(\mathbf{I})}{\mathbf{P}(\mathbf{C})}$$

$$\mathbf{P(C)} = \sum_{k=0}^{5} \left[\theta b_{12}(k; p) + (1 - \theta) b_{12}(k; 1 - p) \right]$$

What is the probability of erroneous conviction?

$$P(I \mid C) = \frac{P(C \mid I) P(I)}{P(C)} = \frac{\sum_{k=0}^{5} (1 - \theta) b_{12}(k; 1 - p)}{\sum_{k=0}^{5} \left[\theta b_{12}(k; p) + (1 - \theta) b_{12}(k; 1 - p)\right]}$$

$$\mathbf{P(C)} = \sum_{k=0}^{5} \left[\theta b_{12}(k; p) + (1 - \theta) b_{12}(k; 1 - p) \right]$$

What is the probability of erroneous conviction?

$$\mathbf{P}(\mathbf{I} \mid \mathbf{C}) = \frac{\mathbf{P}(\mathbf{C} \mid \mathbf{I}) \, \mathbf{P}(\mathbf{I})}{\mathbf{P}(\mathbf{C})} = \frac{\sum_{k=0}^{5} (1 - \theta) b_{12}(k; 1 - p)}{\sum_{k=0}^{5} \left[\theta b_{12}(k; p) + (1 - \theta) b_{12}(k; 1 - p)\right]}$$

$$\mathbf{P(C)} = \sum_{k=0}^{5} \left[\theta b_{12}(k; p) + (1 - \theta) b_{12}(k; 1 - p) \right]$$

What is the probability of erroneous conviction?

$$\mathbf{P}(\mathbf{I} \mid \mathbf{C}) = \frac{\mathbf{P}(\mathbf{C} \mid \mathbf{I}) \mathbf{P}(\mathbf{I})}{\mathbf{P}(\mathbf{C})} = \frac{\sum_{k=0}^{5} (1 - \theta) b_{12}(k; 1 - p)}{\sum_{k=0}^{5} \left[\theta b_{12}(k; p) + (1 - \theta) b_{12}(k; 1 - p)\right]}$$

$$\mathbf{P}(G \mid A) = \frac{\mathbf{P}(A \mid G) \mathbf{P}(G)}{\mathbf{P}(A)} = \frac{\sum_{k=6}^{12} \theta b_{12}(k; p)}{\sum_{k=6}^{12} \left[\theta b_{12}(k; p) + (1 - \theta)b_{12}(k; 1 - p)\right]}$$

$$\mathbf{P(C)} = \sum_{k=0}^{5} \left[\theta b_{12}(k; p) + (1-\theta)b_{12}(k; 1-p)\right]$$

What is the probability of erroneous conviction?

$$P(I \mid C) = \frac{P(C \mid I) P(I)}{P(C)} = \frac{\sum_{k=0}^{5} (1 - \theta) b_{12}(k; 1 - p)}{\sum_{k=0}^{5} \left[\theta b_{12}(k; p) + (1 - \theta) b_{12}(k; 1 - p)\right]}$$

What is the probability of erroneous acquittal?

$$\mathbf{P}(G \mid A) = \frac{\mathbf{P}(A \mid G) \mathbf{P}(G)}{\mathbf{P}(A)} = \frac{\sum_{k=6}^{12} \theta b_{12}(k; p)}{\sum_{k=6}^{12} \left[\theta b_{12}(k; p) + (1 - \theta)b_{12}(k; 1 - p)\right]}$$

How do we determine θ and p?

Outcomes of jury trials in France 1825–1830

	1825	1826	1827	1828	1829	1830	Total
# accused	6652	6988	6929	7396	7373	6962	42300
# convicted	4037	4348	4236	4551	4475	4130	25777
Conviction ratios	0.6068	0.6222	0.6133	0.6153	0.6069	0.5932	0.6094

Outcomes of jury trials in France 1825–1830

	1825	1826	1827	1828	1829	1830	Total
# accused	6652	6988	6929	7396	7373	6962	42300
# convicted	4037	4348	4236	4551	4475	4130	25777
Conviction ratios	0.6068	0.6222	0.6133	0.6153	0.6069	0.5932	0.6094

A problem of estimation from the data: Poisson calculated $\theta = 0.64$ and p = 0.25.

What is the probability of erroneous conviction?

$$\mathbf{P}(\mathbf{I} \mid \mathbf{C}) = \frac{\mathbf{P}(\mathbf{C} \mid \mathbf{I}) \mathbf{P}(\mathbf{I})}{\mathbf{P}(\mathbf{C})} = \frac{\sum_{k=0}^{5} (1 - \theta) b_{12}(k; 1 - p)}{\sum_{k=0}^{5} \left[\theta b_{12}(k; p) + (1 - \theta) b_{12}(k; 1 - p)\right]}$$

$$\mathbf{P}(G \mid A) = \frac{\mathbf{P}(A \mid G) \, \mathbf{P}(G)}{\mathbf{P}(A)} = \frac{\sum_{k=6}^{12} \theta b_{12}(k; p)}{\sum_{k=6}^{12} \left[\theta b_{12}(k; p) + (1 - \theta) b_{12}(k; 1 - p)\right]}$$

Jury of n individuals; majority of m > n/2 needed for conviction.

What is the probability of erroneous conviction?

$$\mathbf{P}(\mathbf{I} \mid \mathbf{C}) = \frac{\mathbf{P}(\mathbf{C} \mid \mathbf{I}) \mathbf{P}(\mathbf{I})}{\mathbf{P}(\mathbf{C})} = \frac{\sum_{k=0}^{5} (1 - \theta) b_{12}(k; 1 - p)}{\sum_{k=0}^{5} \left[\theta b_{12}(k; p) + (1 - \theta) b_{12}(k; 1 - p)\right]}$$

$$\mathbf{P}(G \mid A) = \frac{\mathbf{P}(A \mid G) \, \mathbf{P}(G)}{\mathbf{P}(A)} = \frac{\sum_{k=6}^{12} \theta b_{12}(k; p)}{\sum_{k=6}^{12} \left[\theta b_{12}(k; p) + (1 - \theta) b_{12}(k; 1 - p)\right]}$$

Jury of n individuals; majority of m > n/2 needed for conviction.

What is the probability of erroneous conviction?

$$\mathbf{P}(\mathbf{I} \mid \mathbf{C}) = \frac{\mathbf{P}(\mathbf{C} \mid \mathbf{I}) \, \mathbf{P}(\mathbf{I})}{\mathbf{P}(\mathbf{C})} = \frac{\sum_{k=0}^{n-m} (1-\theta) b_n(k; 1-p)}{\sum_{k=0}^{n-m} \left[\theta b_n(k; p) + (1-\theta) b_n(k; 1-p)\right]}$$

$$\mathbf{P}(G \mid A) = \frac{\mathbf{P}(A \mid G) \mathbf{P}(G)}{\mathbf{P}(A)} = \frac{\sum_{k=6}^{12} \theta b_{12}(k; p)}{\sum_{k=6}^{12} \left[\theta b_{12}(k; p) + (1 - \theta)b_{12}(k; 1 - p)\right]}$$

Jury of n individuals; majority of m > n/2 needed for conviction.

What is the probability of erroneous conviction?

$$\mathbf{P}(\mathbf{I} \mid \mathbf{C}) = \frac{\mathbf{P}(\mathbf{C} \mid \mathbf{I}) \, \mathbf{P}(\mathbf{I})}{\mathbf{P}(\mathbf{C})} = \frac{\sum_{k=0}^{n-m} (1-\theta) b_n(k; 1-p)}{\sum_{k=0}^{n-m} \left[\theta b_n(k; p) + (1-\theta) b_n(k; 1-p)\right]}$$

$$P(G \mid A) = \frac{P(A \mid G) P(G)}{P(A)} = \frac{\sum_{k=n-m+1}^{n} \theta b_n(k; p)}{\sum_{k=n-m+1}^{n} \left[\theta b_n(k; p) + (1-\theta)b_n(k; 1-p)\right]}$$