UNIVERZITA PALACKÉHO V OLOMOUCI KATEDRA INFORMATIKY

M. Rotter, T. Kukučka, J. Zehnula

KMI/FJAA – Formální jazyky a automaty

	Abstrakt	
Tento dokument je pouze přepisem zápisk nášel doc. Vilém Vychodil PhD.	Abstrakt ů a poznámek z přednášek předmětu KMI/FJAA. Před	l-
Tento dokument je pouze přepisem zápisk nášel doc. Vilém Vychodil PhD.		l-
Tento dokument je pouze přepisem zápisk nášel doc. Vilém Vychodil PhD.		l-
Tento dokument je pouze přepisem zápisk nášel doc. Vilém Vychodil PhD.		l-
Tento dokument je pouze přepisem zápisk nášel doc. Vilém Vychodil PhD.		1-
Tento dokument je pouze přepisem zápisk nášel doc. Vilém Vychodil PhD.		l-
Tento dokument je pouze přepisem zápisk nášel doc. Vilém Vychodil PhD.		1-

Obsah

Seznam obrázků

Seznam tabulek

3. ZÁKLADNÍ POJMY 1

1. Historie

Počátek úvah, jež byly později základem seriozního zkoumání formálních jazyků potažmo automatů se datuje do 30. let. Průkopníkem této oblasti byl Noam Chomsky 1 .

Jako příklad selhání autora programovacího jazyka si uveďme jazyk Fortran, jehož konstrukce byla po syntaktické stránce špatná, což vedlo ke gramatické nejednoznačnosti tohoto jazyka.

2. Kódová analýza

2.1. Lexikální analýza

Dělení kódu na tokeny², jež se zapisují například ve stylu \langle znak, identifikátor \rangle . Příkladem je tedy i token $\langle =, assignment \rangle$ a jiné.

2.2. Syntaktická analýza

Syntaktická analýza vytváři stromovou závislost jednotlivých tokenů, jejíž reprezentace se nazývá syntaktický-derivační strom. V rámci této analýzy rozlišme:

- 1. Teorii jazyků, jenž se zabýva stavbou jazyka (respektive jeho syntaxí) a poskytuje tzv. **generativní aparát**. Dodejme, že gramatika řiká, v jakém tvaru může být zapsán validní program.
- 2. Teorii automatů, jež poskytuje tzv. **analytický aparát**. Dodejme, že automatem se rozumí de-facto jednoduchý algoritmus.

3. Základní pojmy

- **Symbol** (případně znak). Jedná se o syntaktický pojem (význam tedy nehraje roli), který představuje *jméno* (analogicky k *písmenu* z přirozeného jazyka). Mezi symboly počítejme například **0**, **+**, **Š**, **while**.
- Abeceda. Abecedou rozumíme množinu (například množinu X) všech přípustných symbolů (znaků), přičemž taková množina je neprázdná (tedy |x|>0) a konečná. Konečnost množiny je omezení dané reprezentovatelností množiny v rámci počitačové techniky. Abecedy značíme řeckými písmeny. Například $\Sigma, \Sigma', \Gamma, \ldots, \Omega$. Například $\Sigma = \{a, b, c\}$.
- Řetězec (případně slovo). Jedná se o konečnou posloupnost symbolů (znaků) vybraných z nějaké dané abecedy. Například $\langle a_1, a_2, \dots, a_n \rangle \in \Sigma, n$ nazvěme *délkou řetězce*. Formálně definujme řetězec jakožto zobrazení

$$x: \{a, b, c, d, \dots, i, j, \dots\} \rightarrow \Sigma$$

kde

$$1 \rightarrow a, 2 \rightarrow b, 3 \rightarrow c$$

a tak podobně. Délku řetězce označme |x|.

 $^{^1}$ Jméno této osoby čti [$\check{c}omski$] a zapamatuj si ke státnícím, že Chomsky byl nebezpečný levicový intelektuál. 2 Překládej jako část, díl nebo také fráze.

 2

• Prázdný řetězec. Jedná se o řetězec, pro který platí, že |x|=0 a značíme jej ε , přičemž platí následující zápis:

$$\varepsilon\subseteq\emptyset\to\Sigma$$

Prázdný řetězec **není** symbolem, tedy $\varepsilon \notin \Sigma$.

 ${\bf V\check{e}ta}$ 1: Nadk-prvkovou abecedou je právě k^n řetězců délky n.

Poznámka 1: Uveďme si rovněž značení pro dva důležíté pojmy:

- Σ^* označuje množinu všech řetězců nad abecedou Σ .
- Σ^+ označuje množinu všech řetězců nad abecedou Σ vyjma ε .

4. Operace s řetězci

• **Zřetězení** (konkatenace). Jde v podstatě o spojení³ dvou řetězců v daném pořadí do jednoho řetězce.

Příklad 1: Mějme dva řetězce a, b:

$$a_1 \dots a_n$$
 a $b_1 \dots b_m$

Pak jejich zřetězení má tvar:

$$a_1 \dots a_n b_1 \dots b_m$$

Identifikátorem
 4 operace zřetězení je $\circ,$ napříkla
d $x\circ y$ je zřetězením řetězců x
ay. Formálně takto:

$$\begin{aligned} x: \{1, \dots, n\} &\to \Sigma \\ y: \{1, \dots, m\} &\to \Sigma \\ x \circ y: \{1, \dots, nm\} &\to \Sigma \end{aligned}$$

Poznámka 2: Algebraicky je tatáž operace zapsána jako $\langle \Sigma^*, \circ, \varepsilon \rangle$.

- Rovnost řetězců Pro prohlášení dvou řetězců za sobě rovné v žádaném smyslu je třeba splnit obecně dvě následující podmínky:
 - 1. Oba řetězce mají stejnou délku, tedy |x| = |y|.
 - 2. Bude-li délka označena jako n, pak musí platit, že $\forall i|i\in\{1,\ldots,n\}, x(i)=y(i)$. Tedy každé dva k sobě náležící symboly z daných řetězců jsou si rovny.

Uvažujeme-li rovnost řetězců, pak je záhodno uvažovat následující pojmy:

- **Prefix** řetězce. Označme jej $Pfx(x) = \{y | \exists z \text{ tak, že } yz = x\}.$
- Infix řetězce. Označme jej $Ifx(x) = \{y | \exists z_1, z_2 \text{ tak, že } z_1yz_2 = x\}.$
- **Sufix** řetězce. Označme jej $Sfx(x) = \{y | \exists z \text{ tak, } \text{že } zy = x\}.$

 $^{^3\}mathrm{Pro}$ milovníky jazyka Scheme můžeme tuto operaci přirovnat k proceduře append

⁴Identifikátor zřetězení se velmi čast v zápisech zřetězení vynechává.

3

Věta 2:

$$xy = xz \implies y = z$$

 $yx = zx \implies y = z$

Algebraicky je operace zapsána jako $\langle \Sigma^*, \cdot, \varepsilon \rangle$.

Věta 3: Vyslovme předpoklad, že platí xy = uv. Pak platí právě jedno z těchto tvrzení:

$$x=u,y=v$$

$$|x|>|u| \text{ a } \exists w|w\neq \varepsilon, \text{ tak že } x=uw \text{ a } v=wy$$

$$|x|<|u| \text{ a } \exists w|w\neq \varepsilon, \text{ tak že } u=xw \text{ a } y=wv$$

• N-tá mocnina řetězce.

$$x^{n} = \left\{ \begin{array}{ll} x & \text{pro } n = 1 \\ xx^{n-1} & \text{v ostatních případech} \end{array} \right\}$$

respektive

$$x^{n} = \left\{ \begin{array}{ll} \varepsilon & \text{pro } n = 0 \\ xx^{n-1} & \text{v ostatních případech} \end{array} \right\}$$

Poznámka 3: Mějme na paměti, že operace mocnění má vyšší prioritu než-li operace konkatenace (zřetězení).

Věta 4: Mějme u a $v \in \Sigma^*$, pak platí uv = vu (komutativita), právě tehdy, když $\exists z | z \in \Sigma^*$ a nezáporná celá čísla p, q tak, že $u = z^p$ a $v = z^a$.

Předpokládejme, že po p, z, q máme $u = z^p, v = z^q$. Pak obecně platí následující zápis:

$$uv = z^p z^q = z^{p+q} = z^p z^q = vu$$

Předpokládejme, že uv = vu. Indukcí přes |uv| předpokládáme, že tvrzení platí pro libovolné dva řetězce, jejichž délka zřetězení je menší než-li |uv|. Mohou nastat tyto případy:

- 1. |u| = |v|, pak u = v, pak z = u, p = q = 1
- 2. |u| < |v|

Berme v potaz také následující zápis doplněný obrázkem: 1.

$$uv = v$$

$$wu = v$$

$$uw = wu$$

$$|uw| < |uv|, \text{ tedy } \exists z, p, q \text{ tak, } \text{\'e } u = z^p, w = z^q, v = z^{p+q}$$

Obrázek 1. Grafická pomůcka ke komutativitě zřetězení řetězců.

5. Formální jazyk

Zaveďme si pojem formální jazyk nad množinou všech řetězců Σ^* . Označme tento jazyk jako L. Pak platí tato tvrzení:

 $L \subseteq \Sigma^*$ (každá podmnožina abecedy je jazykem) $L = \emptyset$ (prázdný jazyk)

 $L = \{\varepsilon\}$ (jazyk s prázdným řetězcem)

L = jazykC + + (jazyk C++)

:

Pozor, obecně platí že prázdný jazyk = jazyk s prázdným řetězcem.

6. Lexikografické uspořádání

Předpokládejme uspořádání na množině Σ^* . Nazvěme toto uspořádání striktním totálním. Pak toto uspořádání například pro $\Sigma = \{a_1, \ldots, a_n\}$ je $a_1 < a_2 < a_3 < \ldots < a_n$.

Totální striktní uspořádání označme $<_l$.

Položme $x <_l y$ pro $x, y \in \Sigma^*$. To ale platí pokud platí alespoň jedno z následujících dvou tvrzení:

- 1. |x| < |y|
- 2. |x| < |y| a $\exists i$ tak, že x(i) < y(i) a zároveň x(j) < y(j) pro $\forall j | j < i$

Příklad 2: $\Sigma = \{0,1\}$. Triviálně tedy 0 < 1. Následně striktně $\varepsilon <_l 0 <_l 1 <_l 00 <_l 01 <_l 10 <_l 11$.

Věta 5: Striktní totální uspořádání je asymetrické a tranzitivní. A pro $x \neq y$ platí buď $x <_l y$ nebo $y <_l x$.

Důsledek 1: Důsledkem věty 5 je tvrzení, že množina Σ^* je spočetně nekonečná. Dodejme, že jazyk je (obvykle) spočetná množina.

7. Operace nad jazyky

7.1. Množinové

Množinové operace nad jazyky jsou prakticky totožné operacím na kterýchkoliv jiných množinách. Můžeme tedy použít množinový průnik, sjednocení, komplement (doplněk) nebo rozdíl.

7.2. Ostatní

• Zřetězení (produkt) množin. Vyjádřeme produkt takto:

$$L_1L_2 = \{xy | x \in L_1, y \in L_2\}$$

Produkt množin není obecně komutativní, ale je asociativní, přičemž prázdná množina tuto operaci anihiluje. Uveďme si rovněž monoid $\langle 2^{\Sigma^*}, \circ, \{\varepsilon\} \rangle$.

• Mocnina jazyka. Mocninu vyjádříme takto:

$$L^{n} = \left\{ \begin{array}{ll} \{\varepsilon\} & \text{pro } n = 0 \\ LL^{n-1} & \text{pro } n > 1 \end{array} \right\}$$

 \bullet Kleeneho 5 uzávěr neboli
iterace. Tento uzávěr vyjádříme takto:

$$L^* = \bigcup_{i=0}^{\infty} L^i$$

• Pozitivní uzávěr neboli pozitivní iterace. Tento uzávěr vyjádříme takto:

$$L^+ = \bigcup_{i=1}^{\infty} L^i$$

Všimněte si podobností mezi těmito dvěma uzávěry. Pozitivní uzávěr vynechává prázdný řetezec.

8. Gramatiky

Jak víme, tak jazyky mohou být *nekonečné* ve smyslu, že obsahují nekonečný počet slov. Nabízí se tedy otázka, jak tyto jazyky rozumně popsat, jak je reprezentovat resp. jak vytvořit *konečnou* sadu pravidel, jejichž aplikace by vedla k opětovné generaci původního jazyka.

8.1. Přepisovací generovací pravidla

Pravidlem rozumíme zpravidla každou takto definovanou dvojici.

$$\langle x, y \rangle \in \Sigma^* \times \Sigma^*$$

Pak neformálně tvrdíme, že x se přepisuje na y. Nutno dodat, že předchozí zápis lze zapsat i například takto.

 $x \to y,$ kde symbol $\to \not \in \Sigma$ můžeme prohlásit za tzv. metasymbol.

8.1.1. Vlastnosti pravidel

- Nezkracující pravidlo je pravidlo, o kterém platí, že $|x| \le |y|$. Tedy aplikaci tohoto pravidla na vstupní řetězec určitě nevznikne řetězec kratší, než-li jeho předloha.
- ε pravidlo je pravidlo tvaru $x \to \varepsilon$.

 $^{^5}$ Stephen Cole Kleene je známý matematik, jenž se významně podílel na položení základů teoretických počítačových věd.

8.1.2. Příklady pravidel

Příklad 3: Mějme zadání abecedy $\Sigma = \{a, b, c\}$. Pravidla s využítím této abecedy by mohla být například tato.

$$\begin{array}{ccc} aa & \rightarrow & bc \\ bb & \rightarrow & y \\ c & \rightarrow & \varepsilon \end{array}$$

Příklad 4: Mějme další zadání abecedy $\Sigma = \{expr, +, \times\}$. Pravidla s využítím této abecedy by mohla být například tato.

$$expr \rightarrow expr + expr$$

 $expr \rightarrow expr \times expr$

8.1.3. Přímé odvozování řetězců pomocí pravidel

Uvažujme odvozovací pravidlo $x \to y$ nad abecedou Σ , pak řekneme, že řetězec v **je přímo odvozen** z řetězec u pomocí pravidla $x \to y$, pokud $\exists p, q \in \Sigma^*$ tak, že

$$u = pxq$$
$$v = pyq$$

Značení předchozí operace je následující:

$$u \Rightarrow_{x \to y} v$$

Slovně bychom tento zápis vystihli jako "přímý přepis dle pravidla $x \to y.$ "

Řetězec v vznikne přímým přepisem z u pomocí pravidel $P \subseteq \Sigma^* \times \Sigma^*$, pokud $\exists \pi \in P$ tak, že $u \Rightarrow_{\pi} v$.

Značme $u \Rightarrow_P v$. P je množinou užitých pravidel. P i \Rightarrow_p jsou binární relace na Σ^* a $P \subseteq \Rightarrow_p$, tedy "P je podmnožinou šipky p." Platí, že $x \to y \in P$ a $x \Rightarrow_{x \to y} y$.

Příklad 5: Mějme abecedu $\Sigma = \{a, b, c\}$ a soubor pravidel $P = \{aa \to bc, a \to cab, bb \to \varepsilon\}$. Pak by odvození v jednom kroku mohla vypadat například takto:

$$baaa \rightarrow bbca$$

 $bac \rightarrow bcabc$

Definice 1: Definujme pojem derivace. Jedná se o posloupnost řetězců ve tvaru:

$$x_0, \ldots, x_k$$
, kde $k \ge 0$ a kde $\{x_0, \ldots, x_k\} \in \Sigma^*$

se nazývá **P-derivace délky k**, pokud $x_{i-1} \Rightarrow_p x_i, \forall 1 \leq i \leq k$. Symbolicky totéž $x_0 \Rightarrow_p x_1 \Rightarrow_p \dots \Rightarrow_p x_k$. Počet odvození tedy značí *délku* derivace.

Pokud pro $u, v \in \Sigma^* \exists$ P-derivace $u = x_0 \dots x_k = v$, pak říkáme, že v je odvozeno z u pomocí pravidel z P, což značíme například $u \Rightarrow_P^* v$, tímto je pochopitelně myšleno odvození ve více krocích. Platí, že $P \subseteq \Rightarrow_P \subseteq \Rightarrow_P^+$.

Příklad 6: Mějme abecedu $\Sigma = \{a, \dots, z\}$ a pravidla stejná jako v příkladu 5. Nyní odvozujeme například takto:

$$b\underline{aaa}, \underline{bb}ca, \underline{ca}, \underline{ccab}$$

8.2. Formální gramatiky

Mějme následující entity:

- Σ abeceda terminálních symbolů (tyto symboly tvoří řetězce daného jazyka).
- N abeceda neterminálních symbolů (tyto symboly se užívají k řízení průběhu odvozování).

Dodejme, že obě množiny by měly být neprázdné a konečné.

Definice 2: Odvozovací pravidlo $x \to y$ se nazývá generativní, pokud x obsahuje alespoň jeden neterminální symbol.

Definice 3: Mějme strukturu $G = \langle N, \Sigma, R, S \rangle$, kde N je abecedou neterminálních symbolů, Σ je abecedou terminálních symbolů, P je množinou odvozovacích pravidel a $S \in N$ je tzv. počátečním resp. startovním neterminálem. Pak tuto čtveřici nazveme **gramatikou**.

Poznámka 4: Pokud chceme vyjádřit, že z jednoho symbolu odvozujeme několik možných alternativ, tak to zapíšeme místo klasického dlouhé zápisu $y \to x_1, y \to x_2, \ldots$ pomocí zkrácené notace např. $y \to x_1 |x_2| \ldots$

Příklad 7: Gramatikou může vypadat třeba takto:

$$\begin{array}{lcl} N & = & \{\varepsilon, S, D, I\} \\ \Sigma & = & \{0, \dots, 9, +, -\} \\ P & = & \{S \rightarrow -I| + I|I, I \rightarrow DI|D, D \rightarrow 0|1|\dots|9\} \\ G & = & \langle N, \Sigma, P, S \rangle \end{array}$$

Příklad 8: Nebo tato.

$$\begin{array}{lcl} N & = & \{S,X,Y\} \\ \Sigma & = & \{a,b,c\} \\ P & = & \{S \rightarrow XcYcX,X \rightarrow aX,X \rightarrow bX,X \rightarrow cX,X \rightarrow \varepsilon,y \rightarrow abY,Y \rightarrow ab\} \\ G & = & \langle N,\Sigma,P,S \rangle \end{array}$$

Definice 4: Každý řetězec $x \in (N \cup \Sigma)^*$, pro který platí $S \to^* x$, je **větná forma** gramatiky $G = \langle N, \Sigma, P, S \rangle$. Větná forma se nazývá **větou**, pokud $x \in \Sigma^*$.

Definice 5: Jazyk generovaný gramatikou definujme jako:

$$L(G) = \{ x \in \Sigma^* | S \Rightarrow_G^* x \}$$

Vidíme tedy, že takový jazyk obsahuje $v \check{e} t y$, které lze odvodit ze startovacího neterminálu pomocí pravidel této gramatiky.

Příklad 9: Tento příklad čerpá gramatiku z příkladu 1.

$$\begin{array}{lll} S & \Rightarrow_G^* & abbccYcX \\ S & \Rightarrow_G^* & Xcababababc \\ S & \Rightarrow_G^* & cYcbaX \\ S & \Rightarrow_G^* & abbccabca \\ S & \Rightarrow_G^* & cabababc \end{array}$$

Definice 6: Gramatiky G_1 a G_2 jsou **ekvivalentní**, pokud generují stejný jazyk.

8.3. Hierarchie gramatik

- Gramatiky typu 0 jedná se o gramatiky bez omezení.
- Gramatiky typu 1 jedná se o tzv. kontextové nebo kontextově závislé gramatiky. Ty splňují následující omezení na tvar pravidel. Pro každé pravidlo gramatik tohoto typu platí, že:
 - 1. Buď je (pravidlo) ve tvaru $pAq \to p \times q$, kde $p, q \in (\Sigma \cup N)^*, A \in N, x \in (\Sigma \cup N)^*$, kde p a q se nazývají levým resp. pravým **kontextem**.
 - 2. Nebo je (pravidlo) ve tvaru $S \to \varepsilon$, kde S je startovní terminál gramatiky, ale pouze za předpokladu, že S se nevyskytuje na pravé straně žádného pravidla.
- Gramatiky typu 2 jedná se o tzv. *bezkontextové* gramatiky, jenž obsahují pravidla ve tvaru:

$$A \to x$$
, kde $A \in N, x \in (\Sigma \cup N)^*$

Na levých stranách pravidel tedy očekáváme pouze neterminální symbol.

Příklad 10: Mějme tuto gramatiku:

$$\begin{array}{rcl} G & = & \langle N, \Sigma, P, S \rangle \\ N & = & \{A, S\} \\ \Sigma & = & \{0, 1\} \\ P & = & \{S \rightarrow 0A, A \rightarrow \varepsilon\} \end{array}$$

- Gramatiky typu 3 jedná se o tzv. *regulární* resp. *pravolineární* gramatiky, které obsahují pravidla ve třech následujících tvarech:
 - 1. $A \to bB$, kde $A, B \in N, b \in \Sigma$
 - $2. A \rightarrow a$
 - 3. $S \to \varepsilon$

Poznámka 5: Každý konečný jazyk je regulární.

Důkaz 1: Mějme jazyk $L = \{x_1, \dots, x_n\}$. Abychom tento jazyk prohlásili za regulární, tak je třeba najít regulární gramatiku, která tento jazyk generuje.

Mějme tedy nějaké dané Σ a S a zvolme N. Následně platí $\forall x_i \in L$ je dvojího typu:

- 1. $x_i = \varepsilon$ a následně $S \to \varepsilon$
- 2. $x_i = a_1 \dots a_k$ a následně $S \to a_{i1}A', A' \to a_{i2}A'', \dots, A^{k-1} \to a_{ik}A^k$

Obrázek 2. Vychodilovo "vajíčko."

Příklad 11:

$$N = \{S\}$$

$$\Sigma = \{a, b\}$$

$$P = \{S \to aSb|\varepsilon\}$$

$$L(G) = \{a^n b^n | n \le 0\}$$

Máme tedy bezkontextový jazyk.

Příklad 12:

$$\begin{array}{rcl} N & = & \{S\} \\ \Sigma & = & \{a,b\} \\ P & = & \{S \rightarrow SS|aSb|bSa|\varepsilon\} \end{array}$$

L(G) je bezkontextový jazyk.

Příklad 13:

$$\begin{array}{lcl} N & = & \{S,V\} \\ \Sigma & = & \{p,),(,\Rightarrow,!\} \\ P & = & \{S\rightarrow V|(S\Rightarrow S)|!S,V\Rightarrow pV|p\} \end{array}$$

L(G) je jazyk všech výrokových formulí.

8.4. Gramatika nezkracující

Gramatika G se nazývá nezkracující, pokud má pouze nezkracující pravidla a může mít pravidlo ve tvaru $S \to \varepsilon$, přičemž S se nenachází na žádné z pravých stran.

Příklad 14:

$$\begin{array}{lcl} N & = & \{S,A,B,C\} \\ \Sigma & = & \{a,b,c\} \\ P & = & \{S \rightarrow \varepsilon | abc | Ac,A \rightarrow aBcb,Bcb \rightarrow bBc,Bcc \rightarrow Ccc,bc \rightarrow Cb,aC \rightarrow aab | aA\} \end{array}$$

Věta 6: Gramatiky typu 1(8.3.) a 3(8.3.) jsou nezkracující.

Věta 7: Ke každé gramatice G, existuje ekvivalentní gramatika G', ve které jsou všechna pravidla obsahující terminální symboly ve tvaru $A \to a$, kde $A \in N, a \in \Sigma$.

Důkaz 2: Pro každý terminál $a \in \Sigma$, zavedeme terminál N_a a pravidlo $N_a \to a$. Všechny výskyty terminálů ve výchozích pravidlech nahradíme příslušnými pomocnými neterminály.

$$Bcb \to bBc$$
se změní na $BN_cN_b \to N_bBN_c, N_c \to c, N_b \to b$

Věta 8: Ke každé nezkracující gramatice existuje ekvivalentní gramatika, která je kontextově závislá.

Důkaz 3: Předpokládejme, že $G=\langle N,\Sigma,P,S\rangle$ je nezkracující gramatika. Dle věty 7 můžeme předpokládat, že všechna pravidla jsou buď ve tvaru $A\to a$ (nevadí) nebo ve tvaru obecně. $A_1A_2\cdots A_m\to B_1B_2\cdots B_n$, kde $A_1,\ldots,A_m,B_1,\ldots,B_n\in N$ a navíc $m\le n$. Tj. taková pravidla lze psát ve tvaru $A_1A_2\cdots A_m\to B_1B_2\cdots B_{my}$, kde $y=B_{m+1}\cdots B_n$ Budeme uvažovat nové pomocné neterminály X_1,\ldots,X_m 6. A zavedeme následující pravidla:

$$A_1A_2 \cdots A_m \to X_1A_2 \cdots A_m$$

$$X_1A_2 \cdots A_m \to X_1X_2A_3 \cdots A_m$$

$$\vdots$$

$$X_1X_2 \cdots X_{m-1}A_m \to X_1 \cdots X_{m-1}X_{my}$$

$$X_1X_2 \cdots X_{my} \to B_1X_2X_3 \cdots X_{my}$$

$$\vdots$$

$$B_1B_2 \cdots B_{m-1}X_{my} \to B_1B_2 \cdots B_{m-1}B_{my}$$

Tento postup se aplikuje pro všechna pravidla. Hledaná gramatika G' se skládá z Σ, N + všechny pomocné terminály + všechna odvozená pravidla.

8.5. Základní vlastnosti bezkontextových gramatik

- Levé strany pravidel obsahují jedeiný neterminál.
- Odvozování nezávisí na kontextu.

Věta 9: Mějme bezkontextovou gramatiku $G = \langle N, \Sigma, P, S \rangle$ a nechť $X_1 \cdots X_k, \ldots, z$ je P-derivace délky n, kde $X_1, \ldots, X_k \in (N \cup \Sigma)$ a $z \in (N \cup \Sigma)^*$ a potom pro každé $i = 1, \ldots, k$ existuje řetězec $z_i \in (N \cup \Sigma)^*$ a P-derivace X_i, \ldots, z_i délky n_i tak, že $z = z_1, z_2, \ldots, z_k$ a $n = n_1 + n_2 + \cdots + n_k$

Důkaz 4: Tvrzení prokážeme indukcí přes délku výchozí derivace $X_1 \cdots X_k, \ldots, z$. Pro n=0: Triviální $z=X_1 \cdots X_k, z_i=X_i, n_i=0$. Každé X_i je derivace délky 0. Nechť tvrzení platí pro libovolnou derivaci délky n a dokážeme, že $X_1 \cdots X_k$ je P-derivace délky n+1. Jelikož má uvažovaná P-derivace délku n+1, lze ji psát ve tvaru:

$$X_1 \cdots X_k, \dots, y^7, z$$

Máme $y \Rightarrow_G z$. Můžeme aplikovat indukční předpoklad: Existují řetězce y_1, \ldots, y_k a P-derivace X_1, \ldots, y_1 až X_k, \ldots, y_k délek $n_1 \cdots n_k$ tak, že $y = y_1 y_2 \cdots y_k$ a $n = n_1 + n_2 + \cdots + n_k$. Z faktu, že $y \Rightarrow_G z$ a z toho, že gramatika je bezkontextová plyne, že y je ve tvaru y = y'' y' Aw' w'' pro

 $^{^6\}mathrm{pro}$ každé pravidlo se uvažují zvlášť

 $^{{}^7}X_1\cdots X_k,\ldots,$ y má délku n

 $i=1,\ldots,k$. Pak z je ve tvaru $z=y^{''}y^{'}uw^{'}w^{''}$ a $A\to n\in P,$ to jest $X_i,\ldots,y_i,y^{'}uw^{'}$ je P-derivace délky n_{i+1} . Hledané derivace jsou:

$$X_{1}, \dots, y_{1}$$
 \vdots
 X_{i-1}, \dots, y_{i-1}
 $X_{i}, \dots, y_{i}y^{'}uw^{'}$
 X_{1+1}, \dots, y_{i+1}
 X_{k}, \dots, j_{k}

Příklad 15:

$$\begin{array}{rcl} N & = & \{S\} \\ \Sigma & = & \{a,b\} \\ P & = & \{S \rightarrow SS|aS|bSa|\varepsilon\} \end{array}$$

Posloupnost: SbSaS, SbSa, SbaSba, aSbbaSba, abbaSba je P-derivace délky 4. Hledáme P-derivace:

- 1. S, aSb, ab (délka 2)
- 2. b (délka 0)
- 3. S, aSb (délka 1)
- 4. a (délka 0)
- 5. S, ε (délka 1)

Příklad 16: Gramatika s jediným pravidlem $aBc \to abc$

Poznámka 6: U regulárních a kontextových gramatik lze hned vidět, jestli $\varepsilon \in L(G)$.

Pro bezkontextovou gramatiku $G = \langle N, \Sigma, P, S \rangle$ zavedeme následující podmnožiny

$$E_0 = \{ A \in N | A \to \varepsilon \in P \}$$

$$E_{i+1} = E_i \cup \{ A \in N | A \to x, \text{ kde } x \in E_i^* \}$$

Příklad 17:

$$A \rightarrow \varepsilon$$

$$B \rightarrow \varepsilon$$

$$E_0 = \{A, B\}$$

$$E_1 = \{A, B, F\}$$

$$E_2 = \{A, B, F, G\}$$

$$E_i \subseteq N, E_N = \bigcup_{i=0}^{\infty} E_i$$

Jelikož je N konečná, musí platit:

$$E_0 \subseteq E_1 \subseteq E_2 \subseteq \dots \subseteq E_i = E_{i+1} = E_{i+2}$$
$$E_N = E_i$$

Věta 10: Pro každou bezkontextovou gramatiku $G = \langle N, \Sigma, P, S \rangle$ a pro příslušné E_N platí nasledující $A \Rightarrow_G^* \varepsilon$, pak $A \in E_N$. Speciálně $\varepsilon \in L(G)$, pak $S \in E_N$.

Důkaz 5: Prokážeme obě implikace:

Pokud $A \Rightarrow_G^* \varepsilon$, pak prokážeme indukci přes délku P-derivace, tj. triviální případ je $A \Rightarrow_G \varepsilon$, tj. existuje pravidlo $A \to \varepsilon \in P$ tj. $A \in E_0$. Předpokládejme, že tvrzení platí pro všechny P-derivace délky n. Mějme A, \ldots, ε P-derivace délky n+1. Použitím předchozí věty $(A, X_1 \cdots X_k, \ldots, \varepsilon)$ $A, X_i \cdots X_n, \ldots, \varepsilon$. Tzn. existují derivace X_i, \ldots, ε délek nejvýše n. Z předpokladu $X_i \in E_n$, pro každé i tj. i $A \in E_N$. \Leftarrow Dokáže, že pro každé E_i platí, pokud $E \in E_i$ pak $A \Rightarrow_G^* \varepsilon$. Pro E_0 zřejmé. $A \to X_0 \cdots X_k, A \in E_j$.

Věta 11: Pro každou bezkontextovou gramatiku G, existuje bezkontextová gramatika G' neobsahující ε pravidla tak, že $L(G) \setminus \{\varepsilon\} = L(G')$.

Důkaz 6: $G = \langle N, \Sigma, P, S \rangle$ - výchozí gramatika.

Stanovíme množinu E_n dle předchozího postupu $G' = \langle N, \Sigma, P', S \rangle$. $P' = \{A \to y | A \to x \in P \text{ a } y \in D_{(x)}\}$, kde $D_{(x)}$ značí množinu řetězeců, které jsou neprázné a vznikly z řetězce x vynecháním libovolného množství neterminálů z E_N .

Příklad 18:

$$E_{n} = \{A, B\}$$

$$X \rightarrow aAbAB$$

$$\dots$$

$$X \rightarrow aAbAB$$

$$X \rightarrow abAB$$

$$X \rightarrow aAbB$$

$$X \rightarrow aAbB$$

$$X \rightarrow aAbB$$

$$X \rightarrow aAbA$$

$$X \rightarrow abB$$

$$X \rightarrow abA$$

Věta 12: Pro každou bezkontextovou gramatiku existuje ekvivalentní bezkontextová gramatika, která je navíc kontextová (a tudíž nezkracující)

Důkaz 7: Vstupní gramatika G. Dle předchozí věty existuje $G^{'}$ tak, že $L(G) \setminus \{\varepsilon\} = L(G^{'})$. $G^{'}$ je nezkracující a kontextová, protože nemá ε pravidla. Pokud ε nepatří do L(G), pak jsme hotovi. Pokud $\varepsilon \in L(G)$. Pak $G^{'}$ rozšíříme tak, že přidáme startovní symbol $S^{'}$ a pravidlo $S^{'} \to \varepsilon$ a $S^{'} \to S$.

dopsat jednu stránku

9. Automaty

Gramatiky x automaty

generativní formalismus

Automaty - analytické formalismy

Konečné automaty: neformální výpočetní formalismus "jednoduchý počítač" omezená paměť vstup: řetězec nad vstupní abecedou Σ . Řídící jednotka. Skládá se z konečně mnoha stavů. **Počátek činnosti:** Vstup = celý vstupní řetězec. Řídící jednotka je v počátečním (iniciálním) stavu. **Činnost automatu:** Na základě prvního symbolu na vstupu a na základě aktuálního stavu se řídící jednotka přepne do jiného stavu a odebere vstupní symbol.

Konec činnosti: Byl přečten celý vstupní řetězec. Podle toho v jaké končí automat stavu říkáme, že buď přijímá nebo zamítá vstupní řetězec. Některé stavy jsou označené jako přijímací.

Příklad 19: sešit - automat (obr. 4.1)

Formalizace: Konečný deterministický automat (s úplnou přechodovou funkcí) (nad vstupní abecedou Σ) je struktura:

 $\langle \Sigma, Q, d, q_0 \rangle$

 $\Sigma \dots$ vstupní abeceda

 $Q\dots$ konečná množina stavu, která je neprázdná

 $q_0 \in Q \dots$ počáteční stav

 $F \subseteq Q \dots$ množina koncových stavů (přijímacích)

 δ je zobrazení $\delta: Qx\sigma \to Q$

 $\delta(r,a)=q$ čteme: automat A při vstupním symbolu $A\in \Sigma$ a aktuálním stavu $r\in Q$ přejde do stavu $q\in Q$

Pozn.: Q je konečná $\delta \dots$ zobrazení

Definice 7: Za *determinismus* považujme takovou konfiguraci, pro kterou platí, že je v každém jejím kroku jasné, co bude následovat. Naopak u *nedeterministických* konfigurací není v určitých případech možné další krok přesně vyjádřit na základě znalostí aktuálního kroku.

Vstupní řetězce: abba (nepřijat), baba (nepřijat), baab (přijat), bbaa (přijat).

V případě řetězce baab máme dokonce 3 možnosti výpočtu:

- 1. $\langle q_0, baab \rangle, \langle q_0, aab \rangle, \langle q_0, ab \rangle, \langle q_0, b \rangle, \langle q_0, \varepsilon \rangle$ končí neúspěchem.
- 2. $\langle q_0, baab \rangle, \langle q_0, aab \rangle, \langle q_1, ab \rangle, \langle q_2, b \rangle$ končí neúspěchem.
- 3. $\langle q_0, baab \rangle, \langle q_0, aab \rangle, \langle q_0, ab \rangle, \langle q_1, b \rangle, \langle q_2, \varepsilon \rangle$ končí úspěchem.

Předchozí zápisy můžeme pojmenovat také jako "nedeterministický výpočet."

Jiným zápisem téhož může být také ten následující.

$$\langle \{q_0\}, baab \rangle, \langle \{q_0\}, aab \rangle, \langle \{q_0, q_1\}, ab \rangle, \langle \{q_0, q_1, q_2\}, b \rangle, \langle \{q_0, q_2\}, \varepsilon + \rangle$$

Definice 8: Strukturu $A = \langle \Sigma, Q, \delta, I, F \rangle$ nazvěme konečným nedeterministickým automatem nad abecedou Σ . Pro tuto strukturu následně platí tato tvrzení:

- $\bullet~\Sigma, Q$ a Fjsou stejné jako u konečného deterministického automatu.
- $\bullet\,$ Ioznačuje množinu počátečních stavů, která by měla být obecně neprázdná.
- δ označuje přechodovou funkci ve tvaru $\delta: Q \times \Sigma \to 2^Q$, tedy $\delta(q, a) = \{r_1, \dots, r_k\}$. Totéž slovně: "Automat může při stavu q při symbolu a přejít do kteréhokoliv stavu z $\{r_1, \dots, r_k\}$."

Příklad 21:

$$\Sigma = \{a, b\}
P = \{q_0, q_1, q_2, q_3\}
I = \{q_0, q_3\}
F = \{q_2\}$$

Následně přechodová funkce:

$$\delta = \{ \langle q_0, a, \{q_0, q_1\} \rangle, \langle q_0, b, \{q_0\} \rangle, \langle q_1, a, \{q_2\} \rangle, \langle q_1, b, \{q_2\} \rangle, \langle q_2, a, \emptyset \rangle, \langle q_2, b, \emptyset \rangle, \langle q_3, a, \emptyset \rangle, \langle q_3, b, \emptyset \rangle \}$$

9.1. Reprezentace KNA

Předchozí příklad číslo 21 lze reprezentovat několika způsoby:

1. **Přechodová tabulka**, která ve svém těle obsahuje množiny stavů.

	a	b
$\rightarrow q_0$	$\{q_0,q_1\}$	$\{q_0\}$
q_1	$\{q_2\}$	$\{q_2\}$
q_2*	Ø	Ø
$\rightarrow q_3$	Ø	$\{q_1\}$

2. Diagram, který automat demonstruje v grafičtější podobě.

9.2. Nedeterministický výpočet

Nyní si popišme nedeterministický výpočet, který je definován následujícími věcmi:

- Konfigurace, což je dvojice ve tvaru (stav, řetězec).
- Počáteční konfigurace ve tvaru $\langle q, w \rangle$ kde $q \in I$.
- Koncová konfigurace ve tvaru $\langle q, \varepsilon \rangle$.
- Koncová přijímací konfigurace $\langle q, \varepsilon \rangle$ kde $q \in F$.

Definice 9: Mějme $A = \langle \Sigma, Q, \delta, I, F \rangle$ a $w \in \Sigma^*$. Pak posloupnost konfigurací $\langle r_i, w_i \rangle$ pro $i = \{0, \ldots, n\}$ splňující podmínky:

$$R_0 \in I \tag{1}$$

$$w_0 = w \tag{2}$$

$$w_n = \varepsilon \tag{3}$$

$$w_i = a_i w_{i+1} \text{ a } r_{i+1} \in \delta(r_i, a_i) \text{ pro } i = \{0, \dots, n-1\}$$
 (4)

nazveme nedeterministický výpočet.

9.3. Rozšířená přechodová funkce

Definice 10: Rozšířená přechodová funkce má tvar

$$A = \langle \Sigma, Q, \delta, I, F \rangle$$

navíc zavádíme:

$$\delta^*: \Sigma^Q \times \Sigma^* \to \Sigma^Q$$

$$\delta^*(R, w) = \left\{ \begin{array}{ll} R & \text{pokud } w = \varepsilon \\ \delta^*(\bigcup_{q \in R} \delta(q, w), u) & \text{pokud } w = au, \text{ kde } a \in \Sigma, u \in \Sigma^q \end{array} \right\}$$

Věta 13: Platí $\delta^*(R, w) = \delta^*(\delta^*(R, u), v), \forall R \subseteq Q, uv \in \Sigma^*$.

Důkaz 8: Předchozí tvrzení dokazujeme indukcí přes délku řetězce.

- 1. Pro $u = \varepsilon$ je situace triviální.
- 2. Pokud $u = ay, |y| < |u|, \text{ pak } \delta^*(R, w) = \delta^*(R, ayv) = \delta^*(R, a(yv)).$
- 3. Nyní aplikujme definici.

$$\begin{split} \delta^*(\bigcup_{q\in R}\delta(q,a),yv) &= \text{ indukční předpoklad} \\ \delta^*(\delta^*(\bigcup_{q\in R}\delta(q,a),y),v) &= \text{ definicie } \delta^* \\ \delta^*(\delta^*(R,ay),v) &= \delta^*(\delta^*(R,u),v) \end{split}$$

Věta 14: Platí následující tvrzení:

$$\delta^*(\bigcup_{i=1}^k R_i, w) = \bigcup_{i=1}^k \delta^*(R_i, w)$$
 pro každé $R_i \subseteq Q, w \in \Sigma^*$

Důkaz 9: Předchozí tvrzení dokazujeme indukcí přes délku řetězce w.

$$\delta^*(\bigcup_{i=1}^k R_i, w) = \delta^*(\bigcup_{i=1}^k R_i, au) = \delta^*(q \in \bigcup_{\bigcup_{i=1}^k} \delta(q, a), u)$$
$$\delta^*(\bigcup_{i=1}^k \bigcup_{q \in R_i} \delta(q, a), u) \dots \text{indukční předpoklad}$$
$$\bigcup_{i=1}^k \delta^*(\bigcup_{q \in R_i} \delta(q, a), u)$$
$$\bigcup_{i=1}^k \delta^*(R, a_n) = \bigcup_{q \in R_i} \delta(R, w)$$

9.4. Řetězce přijímané KNA

KNA A přijímá řetězec w, pokud $\delta^*(I,w) \cap F \neq \emptyset$. Navíc jazyk, přijímaný KNA A si definujme jako $L(A) = \{w \in \Sigma^* | \delta^*(I,w) \cap F \neq \emptyset\}$.

Věta 15: Platí, že $w \in L(a)$ právě tehdy, když KNA A má přijímací výpočet pro w.

Důkaz 10: Předchozí tvrzení lze dokázat indukcí přes délku řetězce w.

 $q \in \delta^*(I,w)$ právě tehdy, když existuje výpočet pro w
, končící ve stavu q dekompozice naví
cw=ua

9.5. Determinizace KNA

Věta 16: Pro každý KDA $A = \langle \Sigma, Q, \delta, q_0, F \rangle \exists$ KNA A' tak, že L(A) = L(A').

Důkaz 11: Pro výchozí A uvažujme $A' = \langle \langle \Sigma, Q, \delta', q_0, F \rangle$, pak $\delta'(q, a) = \{\delta(q, a)\}$. Zbytek důkazu je zřejmý.

Věta 17: Pro každý KNA A existuje KDA A^D tak, že $L(A) = L(A^D)$.

Důkaz 12: Předchozí větu lze dokázat následujícím způsobem:

- 1. Uvažujme $A^D = \langle \Sigma, 2^Q, \delta^D, I, F^D \rangle$, kde $F^D = \{R \subseteq Q | R \cap F \neq \emptyset\}, \delta^D(R, a) = \delta^*(R, a)$. Nyní zbývá ukázat, že $\delta^*(I, w) \cap F \neq \emptyset$ právě tehdy, když $(\delta D)^*(I, w) \in F^D$, což prokážeme indukcí přes délku řetězce w.
- 2. Pro $w = \varepsilon$ je situace zřejmá. Jinak $(\delta D)^*(R, w) = (\delta D)^*(R, \varepsilon) = R = \delta^*(R, \varepsilon) = \delta^*(R, w)$.
- 3. Předpokládejme, že tvrzení platí pro řetězce délky n a nechť w má délku n+1 a w=au pro $a\in \Sigma, |u|<|v|.$ Pak:

$$(\delta^{D})^{*}(R, w) = (\delta^{D})^{*}(R, au) = (\delta^{D})^{*}(\delta^{D}(R, a), u) =$$

$$= \delta^{*}(\delta^{D}(R, a)u) = \delta^{*}(\delta^{*}(R, a), u) = \delta^{*}(R, au) = \delta^{*}(R, w)$$

Příklad 22: Vemme KNA z příkladu 21.

Ještě jeden automat, nepřečtu to dobře ze sešitu. :)

9.6. Algoritmus pro převod KNA na KDA

Nyní si ukažme pseudokód algoritmu pro převod konečných nedeterministických automatů na konečné deterministické automaty, pro které platí, že akceptují řetězece stejného jazyka.

```
\delta \hat{D} \leftarrow \emptyset; Q\hat{D} \leftarrow \emptyset; F\hat{D} \leftarrow \emptyset; w \leftarrow 1
while w \neq Q do
          \mathtt{select} \quad R \ \in \ w
           w \leftarrow w \setminus R; Q\hat{D} \leftarrow Q\hat{D} \cup R
                R \cap F \neq \emptyset then
                    F\hat{\ }D \leftarrow F\hat{\ }D \cup R
          endif
          \text{foreach} \quad a \ \in \ \Sigma \quad \text{do}
                   v \leftarrow \delta^*(R, a)
                  if N \neq \emptyset then
                                N \notin w \cup Q^{\hat{}}D then
                                    w \leftarrow w \cup N
                          endif
                            \delta \hat{D} \leftarrow \delta D \cup \langle R, u, N \rangle
                  endif
          end
end
\texttt{return} \quad < \Sigma, \quad Q \hat{\ } D, \quad \delta \hat{\ } D, \quad I, \quad F \hat{\ } D >
```

Obrázek 3. Pseudokód pro převod KNA na KDA.

Definice 11: Trie je prefixový strom, který umožňuje "rychlé hledání ve slovníku."

Definice 12: Jako slovník označujeme konečný neprázdný jazyk který neobsahuje ε .

Definice 13: Trie slovníku L je KDA $T_L = \langle \Sigma, Q, \delta, \varepsilon, F \rangle$, přičemž:

Příklad 23: Uveďme si příklad konečného slovníkového automatu D_L , který je pochopitelně deterministický:

10. Vztah regulárních jazyků a konečných automatů

10.1. Regulární jazky jsou rozpoznatelné KDA (implikace zleva)

Věta 18: Pro každou regulární gramatiku $G=\langle N, \Sigma, P, S \rangle$ existuje konečný deterministický automat A tak, že jazyk generovaný gramatikou je totéž, jako jazyk rozpoznatelný automatem, tj. L(G)=L(A)

Důkaz 13: Nejprve uvažujeme situaci, že $\varepsilon \notin L(G)$. Uvažujme konečný nedeterministický automat $A = \langle \Sigma, N \cup \{\#\}, \delta, \{S\}, \{\#\} \rangle$.

$$\delta(A,b) = \left\{ \begin{array}{ll} \{B \in N | A \to bB \in P\} & \text{pokud} \quad A \in N \land A \to b \notin P \\ \{B \in N | A \to bB \in P\} \cup \{\#\} & \text{pokud} \quad A \in N \land A \to b \in P \\ \emptyset & \text{jinak} \end{array} \right.$$

Pro důkaz L(G) = L(A) stačí prokázat, že pro každé $A \in N$ a $x \in \Sigma^*$ platí, že $A \Rightarrow_G^* x$ právě když $\# \in \delta^*(\{A\}, x)$.

Důkaz provedeme indukcí přes délku řetězce x.

1. Pro |x|=1 zřejmé. $A\Rightarrow_G^* x$ právě když $A\Rightarrow_G x$, tj. existuje pravidlo $A\to x\in P$ tj. z definice δ^* platí, že $\#\in \delta^*(\{A\},x)$. Nechť |x|=n a nechť tvrzení platí pro všechny řetězce

kratší délky. Jelikož gramatika G je regulární, má P-derivace A,\dots,x právě n kroků. Pokud |x|>1 pak $A\Rightarrow_G bB\Rightarrow_G^* by=x$ pro nějaké $A\to bB\in P$.

- 2. Pro |y| < n z indukčního předpokladu platí, že $\# \in \delta^*(\{B\}, y)$. Tím spíš $\delta^*(\{A\}, x) = \delta^*(\{A\}, by) = \delta^*(\delta(A, b), y) = \delta^*(\{B\}, y)$ tj. $\# \in \delta^*(\{A\}, \#)$ protože $A \to bB \in P$ tj. $B \in \delta(A, b)$
- 3. Tím jsme prokázali, že pokud $A \Rightarrow_G^* x$ pak $\# \in \delta^*(\{A\}, x)$.
- 4. Obráceně, pokud # $\in \delta^*(\{A\}, x)$ pak pro $x = by, b \in \Sigma$ máme: # $\in \delta^*(\{A\}, by) = \delta^*(\delta(A, b), y) = \delta^*(\bigcup_{B \in \delta(A, b)} \{B\}, y) = \bigcup_{B \in \delta(A, b)} \delta^*(\{B\}, y)$ Tj. existuje $B \in \delta(A, b)$ tak, že # $\in \delta^*(\{B\}, y)$. Ze zavedení δ plyne, že $A \to bB \in P$
- 5. Aplikací indukčního předpokladu, existuje P-derivace B, \ldots, y . Hledaná P-derivace je ve tvaru: $A, bB, \ldots, by = x$,tj. $A \Rightarrow_G^* x$.

V případě, že $\varepsilon \in L(G)$, rozšíříme automat následovně, jednou ze tří možností:

- 1. Přidáme S do množiny koncových stavů.
- 2. Přidáme # mezi počáteční stavy
- 3. Zavedeme nový stav, který bude počáteční a zároveň koncový a nevedou z něj žádné přechody jinam.

Poznámka 7: Nyní zbývá automat pouze determinizovat.

Příklad 24: Máme gramatiku G.

 $\begin{array}{lcl} G &=& \langle N, \Sigma, P, S \rangle \\ \Sigma &=& \{e, d, .\} \\ P &=& \{S \rightarrow .F | dT, T \rightarrow .E | .F | dT | ., D \rightarrow dD | d, E \rightarrow eD, F \rightarrow dE | dF | d\} \end{array}$

Automat rozpoznávající jazyk, generovaný gramatikou G, bude vypadat následovně:

 $\begin{array}{c}
d \\
(T) \\
d
\end{array}$ $\begin{array}{c}
(E, T, \#) \\
e
\end{array}$ $\begin{array}{c}
(E, T, \#) \\
d
\end{array}$

Když tento automat zdeterminizujeme, dostaneme následující automat:

10.2. Jazyky rozpoznatelné KDA jsou regulární (implikace zprava)

Věta 19: Pro každý konečný deterministický automat $A = \langle \Sigma, Q, \delta, q_0, F \rangle$ existuje regulární gramatika G tak, že L(A) = L(G).

Důkaz 14: Za neterminální symboly G vezmeme stavy automatu. Startovní neterminál bude q_0 . Uvažujeme gramatiku: $G = \langle Q, \Sigma, P, q_0 \rangle$

 $\begin{array}{l} P = \{q \rightarrow ar | \text{ pokud } \delta(q,a) = r, \text{ pro } q,r \in Q \text{ a } a \in \Sigma\} \\ \cup \left\{q \rightarrow a | \text{ pokud } \delta(q,a) \in F\right\} \end{array}$

Prokážeme že: $q\Rightarrow_G^* x$ právě když $\delta^*(q,x)\in F$

Pro |x|=1 platí: $q\Rightarrow_G^* x$ právě když existuje pravidlo $q\to x\in P$, tj. z definice P platí $\delta(q,x)\in F$

Pro x=by, kde $b\in \Sigma^*$ předpokládejme, že tvrzení platí pro y. Platí, že $q\Rightarrow_G br\Rightarrow_G^* by=x$ právě když $\delta(q,b)=r$ a $\delta^*(r,y)\in F$

To znamená $\delta^*(q,by) = \delta^*(\delta(q,b),y) \in F$

Předchozí dokazuje, že $x \in L(G)$ právě když $x \in L(A)$ pro každý neprázdný x.

Pokud A nepříjímá ε , pak jsme hotovi.

Uvažujeme nový neterminál S, který bude nový startovní symbol, tj. místo G uvažujeme $G' = \langle Q \cup \{S\}, \Sigma, P', S \rangle$

 $P' = \{S \to \varepsilon\} \cup \{S \to x | q_0 \to x \in P\} \cup P$

Pak L(A) = L(G).

Příklad 25: Mějme abecedu $\Sigma = \{a, b\}$ a automat zadaný diagramem:

Odvozovací pravidla gramatiky, generujíci tento jazyk budou:

$$q_0 \rightarrow aq_1 \mid bq_0$$

$$q_1 \rightarrow aq_2 \mid a \mid bq_3 \mid b$$

$$q_2 \rightarrow aq_2 \mid a \mid bq_3 \mid b$$

$$q_3 \rightarrow aq_1 \mid bq_0$$

10.3. Regulární gramatiky

Co jsou to regulární gramatiky a jaké podmínky jejich odvozovací pravidla splňují již víme, ale můžeme si je ještě rozdělit na dva druhy, právě podle tvaru odvozovacích pravidel.

- 1. **Zprava regulární gramatiky:** Obsahují pravidla ve tvaru $A \to bB$ tj. neterminál na prvé straně je na pravo od terminálního symbolu.
- 2. Zleva regulární gramatiky: Obsahují pravidla ve tvaru $A \to Bb$. Analogicky se neterminál nachází vlevo od terminálního symbolu.

Věta 20: Pro každou zleva regulární gramatiku $G = \langle N, \Sigma, P, S \rangle$ existuje konečný deterministický automat A tak, že L(A) = L(G).

 \mathbf{D} ůkaz 15: Budeme konstruovat automat, jehož stavy budou N, nový pomocný počáteční stav # a jediný koncový stav je S.

Hledaný KNA $A=\langle \Sigma, N\cup \{\#\}, \delta, \{\#\}, \{S\} \rangle$ s následovně definovanou přechodovou funkcí δ

$$\delta(q,a) = \left\{ \begin{array}{ll} \{A \in N | A \rightarrow a \in P\} & \text{pokud} & q = \# \\ \{A \in N | A \rightarrow Ba \in P\} & \text{pokud} & q = B \end{array} \right.$$

Ekvivalence L(A)=L(G) se dokazuje vzájemně jednoznačnou korespondencí P-derivace a nedeterministického výpočtu.

Pro derivaci:

$$x_0=S,x_1,x_2,\ldots,x_{n-1},x_n=x$$
jsme schopni sestavit posloupnost
$$\langle\#,X_n\rangle,\langle A_{n-1},y_{n-1}\rangle,\ldots,\langle A_1,y_1\rangle,\langle S,\varepsilon\rangle \text{ kde } x_i=A_iy_i$$

Příklad 26: Máme gramatiku G s následovně definovanými pravidly.

$$\begin{array}{ccc} S & \rightarrow & Aa|Ba|Bb|a \\ A & \rightarrow & Aa|Bb \\ B & \rightarrow & Ab|Ba|b \end{array}$$

Automat rozpoznávající jazyk generovaný touto gramatikou bude vypadat následovně:

 ${\bf Věta}$ 21: Pro každý konečný deterministický automat Aexistuje zleva regulární gramatika taková, že $L(A){=}L(G)$

 $\mathbf{D}\mathbf{\hat{u}kaz}$ 16: Neterminály gramatiky jsou stavy automatu a budeme uvažovat dodatečný statovní neterminál S.

$$\begin{array}{ll} P = & \{ & \delta(q,a) \to qa | q \in Q \land a \in \Sigma \} \ \cup \\ & \{ & \delta(q_0,a) \to a | q_0 \text{ je počáteční stav} \} \ \cup \\ & \{ & S \to w | w \text{ je pravá strana každého pravidla } q \to w, \text{ kde } q \in F \} \end{array}$$

Příklad 27: Vezmeme KDA z příkladu 25. Odvozovací pravidla budou vypadat takto:

$$\begin{array}{lllll} q_0 & \to & q_0b \mid b \mid q_3b \\ q_1 & \to & q_0a \mid a \mid q_3a \\ q_2 & \to & q_1a \mid q_2a \\ q_3 & \to & q_1b \mid q_2b \\ S & \to & q_1a \mid q_1b \mid q_2a \mid q_2b \end{array}$$

Definice 14: Regulární jazyky jsou jazyky, generované zprava (zleva) regulárními gramatikami, tj. jsou rozpoznatelné konečnými ne/deterministickými automaty.

Poznámka 8: Pravidla zprava a zleva nelze míchat.