Teoría de números algebraicos Tarea 3

Alexey Beshenov (alexey.beshenov@cimat.mx)

2 de septiembre de 2020

Fecha límite: viernes, 11 de septiembre miércoles, 15 de septiembre.

Consideremos el campo ciclotómico $K=\mathbb{Q}(\zeta_8)$. Más adelante veremos un modo adecuado para probar que $\mathcal{O}_K=\mathbb{Z}[\zeta_8]$, pero por el momento se puede aceptar este resultado.

Ejercicio 3.1. Usando el teorema de Kummer–Dedekind, describa las factorizaciones de $p\mathcal{O}_K$ en ideales primos para diferentes primos racionales p. (La respuesta depende de p mód 8.)

Solución. Para ocupar el Kummer–Dedekind, nos interesa cómo el octavo polinomio ciclotómico $\Phi_8 = x^4 + 1$ se factoriza módulo diferentes primos p.

Primero, módulo 2 se obtiene $(x+1)^4$. Si p es un primo impar, se ve que el polinomio $f=x^8-1$ es separable en $\mathbb{F}_p[x]$: tenemos $\gcd(f,f')=1$. Esto implica que Φ_8 es también separable.

Notamos que si x^4+1 tiene raíz ζ en \mathbb{F}_p , entonces ζ es un elemento de orden 8 en el grupo cíclico \mathbb{F}_p^{\times} . Esto es posible si y solamente si $p \equiv 1 \pmod{8}$. En este caso ζ^3 , ζ^5 , ζ^7 son otras raíces de x^4+1 en \mathbb{F}_p :

$$\overline{\Phi_8} = (x - \zeta) (x - \zeta^3) (x - \zeta^5) (x - \zeta^7).$$

Supongamos ahora que $p\equiv 3,5,7\pmod 8$). En cada uno de estos casos $p^2\equiv 1\pmod 8$, así que las raíces octavas primitivas $\zeta,\zeta^3,\zeta^5,\zeta^8$ existen en $\mathbb{F}_{p^2}^{\times}$. Recordemos que $\mathrm{Gal}(\mathbb{F}_{p^2}/\mathbb{F}_p)=\{1,\sigma\}$, donde $\sigma\colon x\mapsto x^p$ es el automorfismo de Frobenius, y la teoría de Galois nos dice que

$$\mathbb{F}_p = \{ a \in \mathbb{F}_{p^2} \mid \sigma(a) = a \}.$$

Para $p \not\equiv 1 \pmod{8}$ el polinomio Φ_8 no puede tener un factor lineal, así que este será irreducible o producto de dos polinomios cuadráticos. Curiosamente, Φ_8 no será irreducible módulo ningún primo p.

Para verlo, consideremos cómo el Frobenius permuta las raíces octavas primitivas par $p \equiv 3, 5, 7$.

Ahora si $\{\alpha_1,\alpha_2\}$ y $\{\alpha_3,\alpha_4\}$ forman órbitas respecto a la acción del Frobenius, entonces el último dejo fijo a

$$\alpha_1 + \alpha_2$$
, $\alpha_1\alpha_2$, $\alpha_3 + \alpha_4$, $\alpha_3\alpha_4$,

así que estos elementos están en \mathbb{F}_p , y por lo tanto tenemos factorización en $\mathbb{F}_p[x]$

$$(x-\alpha_1)(x-\alpha_2)(x-\alpha_3)(x-\alpha_4) = (x^2 - (\alpha_1 + \alpha_2)x + \alpha_1\alpha_2) \cdot (x^2 - (\alpha_3 + \alpha_4)x + \alpha_3\alpha_4).$$

En particular,

• Si $p \equiv 3 \pmod{8}$, entonces

$$\Phi_8(x) = (x^2 - (\zeta + \zeta^3)x - 1)(x^2 - (\zeta^5 + \zeta^7)x - 1).$$

También podemos calcular que

$$(\zeta + \zeta^3)^2 = (\zeta^5 + \zeta^7)^2 = -2,$$

así que los coeficientes de x que nos salen son las dos raíces cuadradas de -2 módulo p.

• Si $p \equiv 5 \pmod{p}$, entonces

$$\Phi_8(x) = (x^2 - \zeta^2)(x^2 + \zeta^2).$$

Aquí $\pm \zeta^2$ son las raíces cuadradas de -1 módulo p.

• Si $p \equiv 7 \pmod{p}$, entonces

$$\Phi_8(x) = (x^2 - (\zeta + \zeta^7)x + 1)(x^2 - (\zeta^3 + \zeta^5)x + 1).$$

Notamos que

$$(\zeta + \zeta^7)^2 = (\zeta^3 + \zeta^5) = 2,$$

así que los coeficientes de x son las raíces cuadradas de 2 módulo p.

Resumiendo todo esto y ocupando el teorema de Kummer–Dedekind, podemos concluir que los primos racionales se factorizan en $\mathbb{Z}[\zeta_8] = \mathcal{O}_K$ de la siguiente manera.

- $\bullet 2\mathcal{O}_K = \mathfrak{p}^4.$
- Si $p \equiv 1 \pmod{8}$, entonces $p\mathcal{O}_K = \mathfrak{p}_1\mathfrak{p}_2\mathfrak{p}_3\mathfrak{p}_4$.
- Si $p \equiv 3, 5, 7 \pmod{8}$, entonces $p\mathcal{O}_K = \mathfrak{p}_1\mathfrak{p}_2$.

Esto es algo curioso: ningún primo racional $p \in \mathbb{Z}$ es inerte en $\mathbb{Z}[\zeta_8]$, lo que equivale al hecho de que $\Phi_8 = x^4 + 1$ es un polinomio irreducible en $\mathbb{Z}[x]$ que se vuelve reducible en $\mathbb{F}_p[x]$ para cualquier p.

Recordemos que uno de los criterios de irreducibilidad más sencillos nos dice que $si\ f\in \mathbb{Z}[x]$ es un polinomio mónico que se vuelve irreducible módulo algún p, entonces f es irreducible en $\mathbb{Z}[x]$. Como acabamos de ver, hay polinomios irreducibles para cuales este criterio no sirve.

Ejercicio 3.2. Encuentre las subextensiones $\mathbb{Q} \subset F \subset \mathbb{Q}(\zeta_8)$ y las factorizaciones de $p\mathcal{O}_F$ para cada una de estas.

(Para encontrar las subextensiones, use la teoría de Galois.)

Solución. Primero, el grupo de Galois de $\mathbb{Q}(\zeta_8)/\mathbb{Q}$ consiste en los automorfismos

$$\sigma_a: \zeta_8 \mapsto \zeta_8^a, \quad a = 1, 3, 5, 7$$

Este grupo es isomorfo a $(\mathbb{Z}/8\mathbb{Z})^{\times}=\{1,3,5,7\}$. Hay tres subgrupos propios no triviales, cada uno cíclico de orden 2. Por la teoría de Galois, habrá tres suextensiones que corresponden a los subcampos fijos por $\sigma_3, \sigma_5, \sigma_7$ respectivamente.

Tenemos

$$\begin{split} K^{\langle \sigma_3 \rangle} &= \mathbb{Q}(\zeta_8 + \zeta_8^3) = \mathbb{Q}(\sqrt{-2}), \\ K^{\langle \sigma_5 \rangle} &= \mathbb{Q}(\zeta_8^2) = \mathbb{Q}(i), \\ K^{\langle \sigma_7 \rangle} &= \mathbb{Q}(\zeta_8 - \zeta_8^3) = \mathbb{Q}(\sqrt{2}). \end{split}$$

Ya sabemos cómo se factorizan primos racionales en campos cuadráticos. En todos los casos de arriba el único primo que se ramifica es 2. Ahora para $K=\mathbb{Q}(\sqrt{d})$ con d=2,-2,-1 y p primo impar tenemos dos casos:

- $\operatorname{si}\left(\frac{d}{p}\right)=+1$, entonces $p\mathcal{O}_K=\mathfrak{p}_1\mathfrak{p}_2$,
- $\operatorname{si}\left(\frac{d}{p}\right) = -1$, entonces $p\mathcal{O}_K$ es primo.

También vale la pena notar que este ejercicio junto con el anterior nos dan una prueba de las leyes suplementarias de reprocidad cuadrática.

- $\left(\frac{2}{p}\right)=+1$ si y solamente si p se escinde en $\mathbb{Q}(\sqrt{2})$. Por otra parte, las consideraciones del ejercicio anterior demuestran que esto sucede si y solamente si $p\equiv 1,7\pmod 8$.
- De la misma manera, $\left(\frac{-2}{p}\right) = +1$ si y solamente si $p \equiv 1, 3 \pmod 8$.
- $\left(\frac{-1}{p}\right) = +1$ si y solamente si $p \equiv 1, 5 \pmod{8}$; es decir, $p \equiv 1 \pmod{4}$.

Otra observación interesante: ningún primo racional p queda inerte en $\mathbb{Q}(\zeta_8)$ porque este se descompone en uno de los subcampos cuadráticos. La siguiente página contiene una tabla de descomposiciones.

p	$p\mathbb{Z}[\sqrt{2}]$	$\frac{p\mathbb{Z}[\sqrt{-1}]}{\mathfrak{p}^2}$	$p\mathbb{Z}[\sqrt{-2}]$	$p\mathbb{Z}[\zeta_8]$	p(8)
2	\mathfrak{p}^2	\mathfrak{p}^2	\mathfrak{p}^2	\mathfrak{q}^4	2
3	p	p	$\mathfrak{p}_1\mathfrak{p}_2$	$\mathfrak{q}_1\mathfrak{q}_2$	3
5	p	$\mathfrak{p}_1\mathfrak{p}_2$	p	$\mathfrak{q}_1\mathfrak{q}_2$	5
7	$\mathfrak{p}_1\mathfrak{p}_2$	p	p	$\mathfrak{q}_1\mathfrak{q}_2$	7
11	p	p	$\mathfrak{p}_1\mathfrak{p}_2$	$\mathfrak{q}_1\mathfrak{q}_2$	3
13	p	$\mathfrak{p}_1\mathfrak{p}_2$	p	$\mathfrak{q}_1\mathfrak{q}_2$	5
17	$\mathfrak{p}_1\mathfrak{p}_2$	$\mathfrak{p}_1\mathfrak{p}_2$	$\mathfrak{p}_1\mathfrak{p}_2$	$\mathfrak{q}_1\mathfrak{q}_2\mathfrak{q}_3\mathfrak{q}_4$	1
19	p	p	$\mathfrak{p}_1\mathfrak{p}_2$	$\mathfrak{q}_1\mathfrak{q}_2$	3
23	$\mathfrak{p}_1\mathfrak{p}_2$	p	p	$\mathfrak{q}_1\mathfrak{q}_2$	7
29	p	$\mathfrak{p}_1\mathfrak{p}_2$	p	$\mathfrak{q}_1\mathfrak{q}_2$	5
31	$\mathfrak{p}_1\mathfrak{p}_2$	p	p	$\mathfrak{q}_1\mathfrak{q}_2$	7
37	p	$\mathfrak{p}_1\mathfrak{p}_2$	p	$\mathfrak{q}_1\mathfrak{q}_2$	5
41	$\mathfrak{p}_1\mathfrak{p}_2$	$\mathfrak{p}_1\mathfrak{p}_2$	$\mathfrak{p}_1\mathfrak{p}_2$	$\mathfrak{q}_1\mathfrak{q}_2\mathfrak{q}_3\mathfrak{q}_4$	1
43	p	p	$\mathfrak{p}_1\mathfrak{p}_2$	$\mathfrak{q}_1\mathfrak{q}_2$	3
47	$\mathfrak{p}_1\mathfrak{p}_2$	p	p	$\mathfrak{q}_1\mathfrak{q}_2$	7
53	p	$\mathfrak{p}_1\mathfrak{p}_2$	p	$\mathfrak{q}_1\mathfrak{q}_2$	5
59	p	p	$\mathfrak{p}_1\mathfrak{p}_2$	$\mathfrak{q}_1\mathfrak{q}_2$	3
61	p	$\mathfrak{p}_1\mathfrak{p}_2$	p	$\mathfrak{q}_1\mathfrak{q}_2$	5
67	p	p	$\mathfrak{p}_1\mathfrak{p}_2$	$\mathfrak{q}_1\mathfrak{q}_2$	3
71	$\mathfrak{p}_1\mathfrak{p}_2$	p	p	$\mathfrak{q}_1\mathfrak{q}_2$	7
73	$\mathfrak{p}_1\mathfrak{p}_2$	$\mathfrak{p}_1\mathfrak{p}_2$	$\mathfrak{p}_1\mathfrak{p}_2$	$\mathfrak{q}_1\mathfrak{q}_2\mathfrak{q}_3\mathfrak{q}_4$	1
79	$\mathfrak{p}_1\mathfrak{p}_2$	p	p	$\mathfrak{q}_1\mathfrak{q}_2$	7
83	p	p	$\mathfrak{p}_1\mathfrak{p}_2$	$\mathfrak{q}_1\mathfrak{q}_2$	3
89	$\mathfrak{p}_1\mathfrak{p}_2$	$\mathfrak{p}_1\mathfrak{p}_2$	$\mathfrak{p}_1\mathfrak{p}_2$	$\mathfrak{q}_1\mathfrak{q}_2\mathfrak{q}_3\mathfrak{q}_4$	1
97	$\mathfrak{p}_1\mathfrak{p}_2$	$\mathfrak{p}_1\mathfrak{p}_2$	$\mathfrak{p}_1\mathfrak{p}_2$	$\mathfrak{q}_1\mathfrak{q}_2\mathfrak{q}_3\mathfrak{q}_4$	1
101	p	$\mathfrak{p}_1\mathfrak{p}_2$	р	$\mathfrak{q}_1\mathfrak{q}_2$	5
103	$\mathfrak{p}_1\mathfrak{p}_2$	p	р	$\mathfrak{q}_1\mathfrak{q}_2$	7
107	p	p	$\mathfrak{p}_1\mathfrak{p}_2$	$\mathfrak{q}_1\mathfrak{q}_2$	3
109	p	$\mathfrak{p}_1\mathfrak{p}_2$	р	$\mathfrak{q}_1\mathfrak{q}_2$	5
113	$\mathfrak{p}_1\mathfrak{p}_2$	$\mathfrak{p}_1\mathfrak{p}_2$	$\mathfrak{p}_1\mathfrak{p}_2$	$\mathfrak{q}_1\mathfrak{q}_2\mathfrak{q}_3\mathfrak{q}_4$	1

Ejercicio 3.3. Considerando la descomposición de primos racionales en \mathcal{O}_K , demuestre que $\zeta_p \notin \mathbb{Q}(\zeta_q)$ para diferentes primos impares $p \neq q$.

Solución. Si $\zeta_p \in \mathbb{Q}(\zeta_q)$, entonces tenemos la inclusión de anillos de enteros $\mathbb{Z}[\zeta_p] \subset \mathbb{Z}[\zeta_q]$. Ahora p se ramifica en $\mathbb{Z}[\zeta_p]$:

$$p\mathbb{Z}[\zeta_p] = (1 - \zeta_p)^{p-1}.$$

Al pasar a $\mathbb{Z}[\zeta_q]$, vemos que allí p debe también ramificarse. Sin embargo, el único primo que se ramifica en $\mathbb{Z}[\zeta_q]$ es q, así que p=q.

Notamos que a priori no es completamente obvio qué $\zeta_p \notin \mathbb{Q}(\zeta_q)$. Una condición necesaria sería

$$[\mathbb{Q}(\zeta_p):\mathbb{Q}] \mid [\mathbb{Q}(\zeta_q):\mathbb{Q}] \iff (p-1) \mid (q-1),$$

pero esto puede pasar para varios p y q. La teoría de Galois tampoco ayuda mucho: los grupos de Galois son cíclicos y C_{p-1} sí se obtiene como un cociente de C_{q-1} ...

Ejercicio 3.4. Para el campo ciclotómico $K=\mathbb{Q}(\zeta_p)$ el grupo de Galois $\operatorname{Gal}(K/\mathbb{Q})$ es cíclico, así que la teoría de Galois implica que existe un subcampo cuadrático único $F\subset K$. Considerando la factorización de primos racionales en \mathcal{O}_F y \mathcal{O}_K , demuestre que $F=\mathbb{Q}(\sqrt{p^*})$, donde $p^*=(-1)^{(p-1)/2}p$. (Sugerencia: si q se ramifica en \mathcal{O}_F , entonces q se ramifica en \mathcal{O}_K .)

Solución. Primero, el grupo de Galois es isomorfo a $(\mathbb{Z}/p\mathbb{Z})^{\times}$, y allí hay un solo subgrupo de orden $\frac{p-1}{2}$ que corresponde a una subextensión cuadrática.

Por ejemplo, si p=7, el subgrupo de $(\mathbb{Z}/7\mathbb{Z})^{\times}$ generado por 2 tiene 3 elementos, y entonces F es el subcampo fijo por el automorfismo $\sigma\colon \zeta_7\mapsto \zeta_7^2$, y se puede calcular que este es $\mathbb{Q}(\sqrt{-7})$.

Tenemos la siguiente situación:

$$\mathbb{Z}[\zeta_p] \subset \mathbb{Q}(\zeta_p) \\
\mid \qquad \qquad \mid \\
\mathcal{O}_F \subset F \\
\mid \qquad \qquad \mid \\
\mathbb{Z} \subset \mathbb{Q}$$

Si un primo racional $q \in \mathbb{Z}$ se ramifica en \mathcal{O}_F , esto significa que (dado que se trata de un campo cuadrático)

$$q\mathcal{O}_F = \mathfrak{p}^2$$
.

Ahora

$$q\mathcal{O}_K = \mathfrak{p}^2\mathcal{O}_K.$$

El ideal $\mathfrak{p}\subset\mathcal{O}_L$ puede factorizarse en \mathcal{O}_K , pero de todas maneras, habrá ramificación.

Ahora $K=\mathbb{Q}(\zeta_p)$, así que el único primo que puede ramificarse en K es p. Por otra parte, si $F=\mathbb{Q}(\sqrt{d})$, entonces todos los divisores $q\mid d$ se ramifican en F. Esto nos dice que $d=\pm p$, falta solo determinar el signo. Como vimos, si $d\equiv 2,3\pmod 4$, entonces 2 también se ramifica, y luego necesariamente

$$d = \pm p \equiv 1 \pmod{4}$$
.

Esto nos dice que $d=(-1)^{(p-1)/2} p$.

Por ejemplo, si p = 7, entonces hay ramificación

$$7\mathbb{Z}\left[\frac{1+\sqrt{-7}}{2}\right] = (\sqrt{-7})^2,$$
$$7\mathbb{Z}[\zeta_7] = (1-\zeta_7)^6.$$

El ideal $(\sqrt{-7})$ no es primo en $\mathbb{Z}[\zeta_7]$: tenemos la factorización $\sqrt{-7}\mathbb{Z}[\zeta_7]=(1-\zeta_7)^3$. Usando las sumas de Gauss, se puede obtener la expresión

$$\sqrt{-7} = \sum_{1 \le a \le 6} \left(\frac{a}{7}\right) \zeta_7^a = 1 + 2\zeta_7 + 2\zeta_7^2 + 2\zeta_7^4,$$

pero ¡el punto de este ejercicio es evitar las sumas de Gauss!