Especificación de requisitos

VIMS – Vehicle IoT Metrics System

Javier Alonso Silva
Universidad Politécnica de Madrid
Máster en Software de Sistemas Distribuidos y Empotrados
Proyecto Fin de Máster
Tutor: Norberto Cañas de Paz

Madrid, 8 de septiembre de 2021

Índice general

Hi	Historial de versiones 1					
1.	Intr	oducción	2			
	1.1.	Propósito	2			
	1.2.	Alcance				
	1.3.	Definiciones, acrónimos y abreviaturas	4			
	1.4.	Estructura del documento	5			
2.	Des	cripción general del producto	7			
	2.1.	Perspectiva del producto	7			
	2.2.	Características de los usuarios finales	8			
	2.3.	Restricciones generales	ç			
	2.4.	Suposiciones y dependencias	9			
3.	Req	uisitos específicos	11			
	3.1.	Requisitos de usuario	11			
	3.2.	Requisitos funcionales				
	3.3.	Requisitos no funcionales	18			
	3.4.	Requisitos de interfaces externas	20			
	3.5.	Restricciones de desarrollo	20			
	3.6.	Requisitos de entorno físico	20			
Bi	bliog	rafía	22			
A.	Vali	dación de requisitos	2 3			
В.	Diag	gramas que modelan el sistema	2 4			
	-	Casos de uso	24			

Historial de versiones

Revisión Fecha		Autor(es)	Descripción
0.0	28/06/2021	J. Alonso	Definición de la estructura básica del documento.
1.0	07/07/2021	J. Alonso	Primera elicitación de requisitos.
1.1	09/08/2021	J. Alonso	Añadidos casos de uso en los anexos.
1.2	08/09/2021	J. Alonso	Revisión 1.1 realizada junto con el tutor.

1. Introducción

En un mundo cada vez más interconectado, hay ciertas tecnologías que se quedan por detrás en unos campos mientras que siguen progresando en otros. Esto se ve directamente reflejado en la industria automovilística en donde los vehículos cada vez cuentan con mayor y mejor tecnología (como cámaras, sensores, actuadores, etc.) pero no es directamente accesible por el usuario: mediante pantallas e interfaces se ofrecen métodos sencillos que facilitan su uso.

Vehicle IoT Metrics System (VIMS) pretende ser un sistema que facilite el acceso a todos los datos que ofrece un vehículo para generar estadísticas, descubrir patrones en la conducción y detectar errores. De esta forma, el conductor tendrá información de primera mano sobre el estado de su vehículo, eficiencia de su conducción así como obtener información en tiempo real complementaria a la ya propiciada por el vehículo.

En este documento se realiza la especificación de requisitos y se acota el alcance del proyecto, en donde se define de forma clara y concisa qué va a hacer el sistema y qué no va a hacer.

1.1. Propósito

El propósito de este documento es múltiple: por una parte, el de establecer un punto de partida claro y conciso en el desarrollo del proyecto. Una correcta especificación acompañada de sus correspondientes diagramas permite iniciar el diseño, desarrollo y verificación del proyecto con ideas claras y evaluadas con anterioridad, afrontando los posibles fallos o problemas que puedan surgir y previendo situaciones complejas o errores en el diseño.

Por otra parte, el documento se redacta como especificación de requisitos de usuario, funcionales, no funcionales, restricciones en el desarrollo, requisitos de interfaces externas y de entorno físico del proyecto. Esto sirve como "contrato" con aquello que debe aparecer y existir en una implementación final del proyecto (*requisitos funcionales*), otros requisitos que son importantes pero que, en un momento dado, no aportan funcionalidad al producto (*requisitos no funcionales*), las características de los usuarios que quieran usar el producto y otras restricciones o información relevante que se haya de tener en cuenta a la hora de diseñar, desarrollar y probar el producto antes de darlo por concluido.

Finalmente, este documento se redacta orientado a otros ingenieros que tengan curiosidad o interés en cómo se ha desarrollado el proyecto, las necesidades que se han de suplir, qué características conforman el producto final o mismamente replicar el proyecto para hacer una implementación propia o añadir alguna característica nueva. Sin embargo, con intención de facilitar la accesibilidad del documento, se buscará ser claro y conciso en la especificación, usando un lenguaje que sea preciso. Por ello, se incluye un apartado de definiciones, acrónimos y abreviaturas (sección 1.3) que pretenden servir de orientación en el lenguaje técnico que se usará en el documento.

1.2. Alcance

El objetivo principal de este Proyecto Fin de Máster (PFM) es el de diseñar un sistema de recolección de métricas orientado a vehículos en el ámbito del *Internet of Things* (IoT) (VIMS, de ahora en adelante) que permita, utilizando los conectores estándar del vehículo, generar y almacenar información relevante del vehículo, la conducción y demás factores de interés que se den mientras se interactúa con el vehículo.

El sistema VIMS deberá poder conectarse a Internet desde cualquier punto geográfico¹ usando el automóvil como sistema de alimentación y fuente de información. De esta manera, podrá enviar todo tipo de datos provistos a un servidor en donde se gestionarán, almacenarán y procesarán para una posterior visualización y generación de información.

Además, el sistema deberá poder integrarse con cualquier vehículo del mercado que utilice las conexiones estándar reguladas y que trabaje con tramas e información estandarizada. En otro caso, el sistema no funcionará correctamente y puede comportarse de manera impredecible.

La infraestructura del servidor por su parte deberá poder recibir una gran cantidad de datos (según estimaciones del mundo IoT, se pueden recibir del orden de varios *gigabyte* (GB) diarios [1]) y gestionarlos debidamente. Cada dispositivo emisor se considerará único, por lo que los datos recibidos deberán ser clasificados acorde a quién los emite.

Sin embargo, el sistema no modificará parámetros del vehículo ni realizará modificaciones sobre la configuración del mismo: se limitará a ser un "espía" y no emitirá ningún dato hacia el automóvil.

Finalmente, desde el propio vehículo con un dispositivo externo (como un *smartphone*) se podrán acceder a los datos en tiempo real que ofrece el vehículo mediante una interfaz hacia el sistema VIMS. De esta manera, se podrá saber rápidamente el estado del automóvil y detectar fallos en el mismo.

Así, el producto está orientado para su implantación en cualquier vehículo y que, haciendo uso de las características de conectividad inalámbrica que presentará, pueda adaptarse a nuevos automóviles y nuevas tramas estándar. Su venta está dirigida principalmente a conductores que cuenten con un vehículo con algún conector estándar compatible.

Este documento sigue la taxonomía de especificación descrita en la sección anterior (1.1) y

¹Dentro de las restricciones y limitaciones físicas y geográficas del entorno.

abraca una actividad adicional que consistirá en una validación de los requisitos, definida en el anexo A.

1.3. Definiciones, acrónimos y abreviaturas

GB gigabyte

IoT Internet of Things

PFM Proyecto Fin de Máster

VIMS Vehicle IoT Metrics System

OBD On-Board Diagnostics

GPS Global Positioning System

BLE Bluetooth Low Energy

PAN Personal Area Network

CAN Controller Area Network

API Application Programming Interface

- GB unidad de almacenamiento de información equivalente a 10⁹ bytes.
- IoT concepto que se refiere a la interconexión digital de objetos cotidianos con Internet
 [2].
- On-Board Diagnostics (OBD) sistema de diagnóstico a bordo de vehículos que cuenta con múltiples estándares según la región de uso. Estos sistemas ofrecen una monitorización activa y control completo sobre el motor y otros dispositivos del vehículo [3].
- *jitter* retardo relativo que se produce en las comunicaciones y que afecta directamente a la saturación de la red y a la capacidad de transmisión de la misma.
- Global Positioning System (GPS) sistema que permite posicionar cualquier objeto con

una precisión de hasta centímetros usando cuatro o más satélites y trilateración [4].

- trilateración método matemático que permite determinar las posiciones relativas de objetos usando la geometría de los triángulos [5].
- Bluetooth Low Energy (BLE) tecnología Personal Area Network (PAN) que permite la comunicación entre dispositivos con un rango similar a Bluetooth pero un menor consumo de energía.
- Bus Controller Area Network (CAN) protocolo de comunicaciones de tiempo real para el envío de mensajes en entornos distribuidos, permitiendo la comunicación entre múltiples CPUs.
- Application Programming Interface (API) conjunto de definiciones, subrutinas y protocolos que ofrecen ciertos softwares para ser usados por otras aplicaciones como capa de abstracción sobre el original [6].
- PAN redes destinadas a la comunicación entre dispositivos en una misma red o malla. Tiene un alcance muy limitado, de unos pocos metros por lo general.

1.4. Estructura del documento

Este documento se estructura de la siguiente manera:

- 1. En la sección 2 se define la descripción general del producto. Allí, se abordan aspectos directamente relacionados con el producto en sí como son definirlo brevemente junto con el contexto de desarrollo y la perspectiva del mismo (a quién va orientado, qué funcionalidades tendrá) (2.1), qué características deben tener o se contemplan en los usuarios finales (2.2), qué restricciones de diseño, técnicas o regulaciones se aplican sobre el producto (2.3) y, finalmente, aquellas suposiciones y dependencias sobre el producto que se asumirán a lo largo del proyecto.
- 2. En la sección 3 se especifican formalmente los requisitos del proyecto. En primer lugar, se definen aquellos requisitos de usuario que especifican las necesidades finales de las personas con respecto del producto (3.1). En segundo lugar, se exponen los requisitos funcionales a un nivel más técnico e interno. Estos requisitos definen la base del producto y aquellas funcionalidades que deben existir en el resultado final (3.2). Por otra parte, se continúa detallando los requisitos no funcionales. Estos requisitos si bien no añaden funcionalidad al sistema directamente, limitan y acotan el alcance del mismo (3.3). Allí se incluye la especificación de las interfaces externas del sistema, es decir, aquellos elementos externos con los que interactuará (3.4); restricciones a aplicar durante el desarrollo del producto, en donde se tienen en cuenta estándares, limitaciones físicas, etc (3.5); y por último, los requisitos que se imponen del entorno físico del producto, que limitan y definen bajo qué circunstancias debe funcionar y bajo cuáles no (3.6).

3.	Al final de la especificación, en los anexos, se incluyen por una parte la validación de los
	requisitos propuestos (A), que ayuda a detectar incongruencias y fallos en los mismos; y
	por otro lado los distintos diagramas que complementan la especificación, como casos de
	uso, bloques, etc. (B).

2. Descripción general del producto

A lo largo de esta sección se va a presentar el producto en sí, presentando por una parte la perspectiva del mismo (2.1), las características de los usuarios finales (2.2), restricciones generales que se aplican sobre el producto (2.3) y supuestos y dependencias sobre el proyecto que afectan directamente al desarrollo (2.4).

2.1. Perspectiva del producto

VIMS se constituirá de un módulo independiente diseñado desde cero aprovechando las tecnologías que ofrecen los vehículos de forma estándar (como el conector OBD).

La intención principal es ofrecer un sistema de recolección de métricas autónomo, automático y lo más simple posible para el usuario, que siga la idea de "conectar y funcionar", con la intención de salvar la diferencia tecnológica existente entre vehículos y otorgarle al conductor el control total.

Al igual que se narró en el alcance (1.2), el objetivo principal del proyecto es el de desarrollar un sistema autónomo que pueda funcionar con cualquier vehículo del mercado (que cumpla con las condiciones especificadas) y que permita generar, recolectar, procesar y mostrar cientos de datos relativos al coche y su estado actual y estado pasado.

Para ello, se necesitará de una conexión permanente y activa a Internet (siempre y cuando sea posible) por la cual se enviarán en flujo los datos del vehículo. En posteriores etapas de diseño se valorará la cantidad de datos a enviar según la red en uso, disponibilidad de los recursos, saturación local, *jitter* en las comunicaciones, etc.

La transmisión de los datos recibidos constituyen la cualidad característica del sistema. Sin embargo, como es posible que por factores del entorno ciertos valores no se puedan transmitir en el momento, estos se almacenarán en memoria persistente (mínimo 1 Mb) hasta que haya una conexión de red por la que enviarlos.

Por otra parte, se ofrece la posibilidad de ver los datos con retardo mínimo: dado que no siempre es adecuado observar los datos *a posteriori* sino que puede ser necesario evaluarlos en el momento, se podrá observar información en el momento del estado del vehículo, información de sensores, etc. Esta visualización se realizará mediante un dispositivo externo al sistema como puede ser un *smartphone*. Para facilitar la integración, se desarrollará en paralelo una aplicación móvil específicamente diseñada para VIMS.

Entre las demás características del producto, se contempla una más que es la geolocalización del vehículo. Para ello, se usarán las distintas redes con las que contará el producto así como el GPS. De esta forma, al usuario final no solo se le mostrarán estadísticas e información sobre sus desplazamientos sino que también sabrá en qué puntos ha estado y así obtener más información con respecto a su conducción. Esto permite también usar VIMS como medida de seguridad, en caso de hurto del vehículo, para saber su ubicación precisa. También puede ser útil como recordatorio de dónde estaba aparcado el coche, ya que solo habrá que revisar la última ubicación.

Finalmente, el sistema deberá integrarse de forma fácil y sencilla, y así debe ser también su utilización. Esto se traduce en que tanto el montaje como el desmontaje debe ser sencillo, permitiendo que si se necesita acceso a los puertos estándar del vehículo el sistema no será un impedimento.

En definitiva, para conductores de vehículos que quieran conocer más información sobre su automóvil, que necesiten hacer diagnósticos o que quieran estadísticas/datos, VIMS es un sistema autónomo integrado que ayuda al conductor a generar y obtener los datos mencionados anteriormente. A diferencia de otras soluciones presentes en el mercado, nuestro producto permitirá integrarse sin dificultades en cualquier vehículo que cumpla con los estándares y sin ninguna configuración adicional para el usuario. Además, será personalizable y podrá recibir actualizaciones y mejoras que aumenten su funcionalidad y amplíen su compatibilidad con nuevos vehículos.

2.2. Características de los usuarios finales

Dado que el sistema se integra sobre un vehículo, se espera los usuarios finales puedan tener una o varias de las siguientes características:

- El usuario contará con un carnet de conducir.
- El usuario dispondrá de un vehículo que cuente con alguno de los conectores estándar empleados por VIMS.
- El usuario trabajará en temas relacionados con la mecánica y automovilismo.
- El usuario tendrá interés en la automatización de tareas y generación de datos.
- El usuario tendrá interés en el análisis de datos y generación de información a partir de los mismos.
- El usuario usará de forma habitual su vehículo.
- El usuario vivirá en una zona en donde haya cobertura de alguna de las tecnologías inalámbricas empleadas por el dispositivo para comunicarse.
- El usuario contará con un *smartphone* o dispositivo inteligente que le permita conectarse con su vehículo.

2.3. Restricciones generales

El producto en principio no está restringido en términos de legalidad, ya que las actividades de monitorización que realiza en nada deberían alterar la funcionalidad del vehículo al que se conectan (el producto, como se especificó en el alcance – 1.2, no está diseñado para modificar parámetros relativos al vehículo).

Por otra parte, el sistema no solo se compone del dispositivo que va sobre el automóvil en sí, sino también de la aplicación de visualización. Por consiguiente, el desarrollo al completo deberá realizarse teniendo en cuenta todos los componentes para que sea compatible desde el primer momento.

En lo referente a la presentación gráfica, los usuarios solicitaron que fuese simple y accesible, así como personalizable. Se comentará más sobre esto en la sección de requisitos de usuario (3.1), pero se comenta aquí ya que es una limitación en el desarrollo en cuanto a que define una característica que se considera necesaria.

Además, como el sistema se integra con los automóviles, la única fuente de alimentación será el vehículo en sí. Existe una casuística en la que el conductor apaga el coche pero existen datos que todavía no se han podido enviar. Ante esta situación, como el conector OBD sigue ofreciendo alimentación, se tiene que detectar este evento y decidir si o bien se envían los datos pendientes si se cuenta con conexión de red o bien se almacenan en memoria persistente hasta que el vehículo se encienda de nuevo. De esta forma, no se compromete la batería del automóvil.

Como se ha contemplado anteriormente, el sistema será geolocalizable. Esto conlleva tener en cuenta el consumo adicional de los módulos de geolocalización, los cuales suelen tener asociados un elevado gasto energético, para evitar un desgaste prematuro de la batería. Por otra parte, como la información recogida del vehículo se puede considerar información sensible, debe permanecer privada y accesible únicamente al usuario poseedor de VIMS.

Si el sistema funciona correctamente, se espera una implantación en el mercado elevada y que se empiece a redistribuir de forma nacional. Esto se produciría por la necesidad del mercado de este producto, la facilidad en su instalación y su correcto funcionamiento final.

2.4. Suposiciones y dependencias

Dependencias

- **DEP-1** El sistema necesitará siempre de una conexión a Internet para funcionar. En otro caso, almacenará los datos en la memoria persistente que se estima de al menos 1 Mb.
- **DEP-2** El sistema dependerá del área geográfica en la que se encuentre para enviar información, ya que pueden existir zonas en donde no haya ningún tipo de conectividad.

- **DEP-3** El sistema deberá localizarse al aire libre en una zona sin apantallar la señal de los satélites para ofrecer los servicios de geolocalización al completo.
- **DEP-4** Los dispositivos de visualización deberán encontrarse en un rango suficientemente cercano para realizar la transmisión de la información. Dependerá de la tecnología de red utilizada: WiFi, Bluetooth o BLE.
- **DEP-5** Las redes que se usen para transmitir datos pueden variar con el tiempo así como su disponibilidad y velocidad. El sistema debe estar preparado para este escenario y adecuarse correctamente.
- **DEP-6** El método de transmisión y envío de datos por Internet hacia el servidor de gestión y almacenamiento debe ser lo más eficiente posible, ya que la calidad de la conexión puede ser mala (debido a **DEP-5**).

Supuestos

- **SUP-1** Se supone que el vehículo en que se implante el sistema contará con un conector estándar que permita las comunicaciones y la alimentación del módulo, como el OBD.
- SUP-2 Se supone que el servidor de recolección de datos será capaz de aguantar la demanda de los dispositivos destinados a pruebas y de una cantidad considerable de dispositivos en entorno de producción.
- **SUP-3** Se supone que cada VIMS contará con un identificador único que permitirá identificar al dispositivo inequívocamente del resto.
- **SUP-4** Se supone que cada usuario poseedor de un VIMS contará con acceso a Internet recurrente y dispondrá de una cuenta en el servicio de estadísticas que le permita vincular su(s) dispositivo(s) VIMS a su cuenta, según el **SUP-3**.
- **SUP-5** Se supone que las tramas transmitidas por el vehículo son las estándar definidas de forma global para los automóviles del mercado. Este supuesto guarda una estrecha relación con **SUP-1**.

3. Requisitos específicos

A continuación se definen los requisitos específicos en sí del proyecto. En esta sección primero se habla de las necesidades de los usuarios (3.1) y a continuación se prosigue con las funciones, dependencias y restricciones que se aplican al proyecto durante el desarrollo en los puntos pendientes.

Se pretende que esta sección sea auto contenida, esto es, sirva por sí sola para diseñar el sistema. Sin embargo, se recomienda una lectura acompañada de las secciones anteriores para una mayor comprensión.

3.1. Requisitos de usuario

La especificación de requisitos de usuario pretende recoger las necesidades de los usuarios finales del producto para tenerlas en cuenta a lo largo del desarrollo del mismo.

Para esta labor, se ha realizado un cuestionario voluntario donde la comunidad de conductores y no conductores informaban de sus preferencias, gustos, necesidades y otra información que se pudiera considerar relevante.

Como los encuestados se mezclaban, se ha decidido hacer una separación por conductores y no conductores teniendo en cuenta sus preferencias. La distribución de las preguntas quedaba de esta forma:

- 1. Se le pregunta al encuestado datos básicos y si es conductor.
- 2. En caso afirmativo, se recoge esta información:
 - Años de carnet.
 - Tipo de carnet.
 - Edad del conductor.
 - Tecnologías que presenta el vehículo de uso habitual.
 - Tipo de vehículo de uso habitual.
 - Años del vehículo de uso habitual.
- 3. A continuación, se le muestra al usuario una matriz de selección en donde, de una escala

del 1 al 20, debe priorizar los distintos elementos que aparecen (en total, 20). Solo se permite una única prioridad por elemento, de forma que múltiples elementos tengan la misma prioridad.

Los elementos que se han propuesto en este cuestionario son (tabla 3.1):

Visualización	Información	Velocímetro	Cuentarrevoluciones	
en tiempo real	detallada de errores	velocimetro		
Marcha actual	Temperatura	Presión del aceite	Temperatura	
$(1^a, 2^a,)$	del aceite	r resion der acente	exterior	
Intensidad del	Consumo actual	Presión de	Presión de los	
acelerador (%)	Consumo actual	las ruedas	inyectores	
			Nivel de carga en	
Nivel de combustible	Distancia recorrida	Nivel de batería	valor absoluto	
			del motor	
Presión atmosférica	Temperatura de	Temperatura	Temperatura	
r resion atmosferica	la toma de aire	del refrigerante	del motor	

Tabla 3.1.: Opciones ofrecidas a los encuestados. Se han escogido diversas opciones que se encuentran entre los datos habituales generados por un vehículo.

4. Finalmente, de forma libre, se le pide al usuario que indique qué sensores añadiría a su vehículo (si tiene), qué datos querría poder medir y qué tareas querría automatizar.

Las opciones anteriores se componen de elementos que se pueden obtener mediante el OBD estándar, usando una lista de *pids* comunes públicos que todos los vehículos deberían usar [7]. Dado que la encuesta se podía realizar tanto por conductores como por no conductores, se van a separar las respuestas en donde se evaluará la población global (tabla 3.2) y luego a la población únicamente de conductores (tabla 3.3). Todo el desglose y el análisis se encuentra disponible en: https://s.javinator9889.com/vims-analysis.

Puntuación	Opción
1	Velocímetro
1	Nivel de combustible
4	Marcha actual
5	Distancia recorrida
5	Nivel de batería
6	Cuentarrevoluciones
8	Intensidad del
0	acelerador (%)
8	Presión de las ruedas
10	Temperatura del aceite
10	Nivel de carga en valor
10	absoluto del motor
12	Visionado en tiempo real
12	Consumo actual
12	Temperatura del motor
14	Presión del aceite
14	Temperatura
14	del refrigerante
16	Presión atmosférica
17	Temperatura exterior
19	Información
19	detallada de errores
19	Presión de los inyectores
20	Temperatura de
20	la toma de aire

Tabla 3.2.: Puntuaciones obtenidas de	e for	ma
general, por la poblac	ión	al
completo (conductores	y	no
conductores).		

Puntuación	Opción
1	Velocímetro
1	Nivel de combustible
3	Temperatura del motor
4	Temperatura del aceite
4	Nivel de batería
5	Distancia recorrida
6	Cuentarrevoluciones
7	Presión de los inyectores
8	Presión de las ruedas
10	Presión del aceite
11	Marcha actual
11	Presión atmosférica
14	Temperatura
14	del refrigerante
15	Temperatura exterior
17	Intensidad del
17	acelerador (%)
18	Información
10	detallada de errores
18	Consumo actual
19	Temperatura de
17	la toma de aire
20	Visionado en tiempo real
20	Nivel de carga
20	absoluta del motor

Tabla 3.3.: Puntuaciones obtenidas de forma general, por la población (excluídos los no conductores).

Resulta interesante ver cómo varios elementos coinciden en puntuación y posición, como el *Velocímetro* o el *Nivel de combustible* mientras que otros se mueven radicalmente de posición, como la *Marcha actual*, la *Temperatura del motor*, etc.

En general, se observa cómo los usuarios quieren tener más información sobre distintos elementos del vehículo y no necesariamente en "tiempo real" sino *a posteriori*, como información estadística. En particular, entre la comunidad de conductores prima información mecánica y relativa al estado del vehículo más allá de información sobre el viaje.

Además, hay bastante interés en la automatización de ciertas acciones como el cierre de las puertas automáticamente, reset del odómetro cuando se repuesta, notificaciones cuando

haya que realizar labores de mantenimiento, etc. Sin embargo, el diseño inicial del proyecto no contempla el realizar acciones sobre el automóvil principalmente porque los conectores estándar permiten la lectura de datos pero no la escritura. Para conseguir enviar información al vehículo sería necesario realizar un montaje directamente sobre los cables de los buses CAN que tiene, escuchar de forma activa las tramas y generar la información a enviar. En principio, esto se encuentra fuera del alcance del proyecto, por lo que se ignoran todas las modificaciones sobre el automóvil en sí.

Finalmente, se observa que hay un interés generalizado en que la interfaz sea simple, en que se pueda saber dónde se ha aparcado el vehículo y en que el sistema sea fluido y rápido.

A partir de lo anterior, se definen los siguientes requisitos de usuario:

- RU-1 Como usuario no necesito que la información se muestre en tiempo real sino que se almacene para una posterior consulta, o bien en forma de estadísticas o bien como datos en crudo. Dichas estadísticas se conformarían de la media, varianza, tendencia y moda de los datos de interés recogidos individualmente por cada conductor durante el uso del vehículo, destacando la velocidad, carga del motor, consumo, tiempo acelerando, metros ascendidos, metros descendidos, etc.
- RU-2 Como conductor me gustaría conocer de primera mano el estado del motor, a niveles tanto de temperatura de los elementos principales como de estado de los distintos elementos mecánicos del mismo.
- **RU-3** Como usuario, me gustaría conocer fácilmente información relativa al mantenimiento del vehículo, como el desgaste de las ruedas, nivel de aceite, líquido de frenos, etc.
- **RU-4** Como usuario, y en estrecha relación con **RU-3**, me gustaría recibir una notificación o alerta sobre cuándo se debe realizar el mantenimiento del vehículo.
- **RU-5** Como usuario también querría ser notificado si se detecta algún error o problema en el vehículo.
- **RU-6** Como conductor, me gustaría saber dónde he aparcado el vehículo.
- **RU-7** Como conductor, me gustaría que tras realizar un viaje o tras realizar un repostaje se generasen estadísticas que me sirviesen para analizar mi perfil de conducción.
- **RU-8** Como usuario, me gustaría recibir recomendaciones sobre mi estilo de conducción para optimizar el consumo o entender mejor cómo manejar el vehículo.
- **RU-9** Como usuario, me gustaría que el sistema fuese fluido y funcionase bien, con tiempos de carga pequeños y sin ir a trompicones.
- **RU-10** Como usuario, me gustaría que el sistema fuese accesible e intuitivo, simple a primera vista pero personalizable. Se propone una interfaz como la que se muestra en la figura 3.1 que permite seleccionar el rango temporal sobre el cual evaluar los datos y la información estadística definida en **RU-1**:

Figura 3.1.: Representación de los datos en la interfaz propuesta – fuente: https://grafana.csselectronics.stellarhosted.com/d/6qvL90vMz/css-playground-obd2?orgId=1.

3.2. Requisitos funcionales

Analizando las características del producto y las necesidades del mercado, se proponen los siguientes requisitos funcionales con respecto a diversas temáticas y características de VIMS:

Conectividad

- RF-1 El sistema se conectará a cualquier vehículo que use un conector estándar, como el OBD.
- RF-2 El sistema usará redes móviles para intentar estar conectado siempre a la red. De esta manera, se intenta cubrir la dependencia DEP-1 (pero se sigue sujeto a DEP-2).
 - Para esta labor, se propone realizar un uso combinado de redes móviles 4G/3G/2G y WiFi (si está disponible).
- **RF-3** El sistema deberá ser geolocalizable bien mediante el uso de tecnologías GPS o bien mediante el uso de redes móviles.
- **RF-4** El sistema usará redes PAN para permitir la comunicación con dispositivos cercanos y mostrar información en tiempo casi real.
- **RF-5** El sistema, usando la conectividad de red, podrá actualizarse de forma remota para ofrecer nuevas funcionalidades.

Datos

- **RF-6** El sistema recogerá todo tipo de datos emitidos por el vehículo y los clasificará según corresponda, con sus unidades de medida e información que representa.
- **RF-7** En relación con el requisito **RF-6**, el sistema emitirá esos datos a un servicio en la red para su gestión. Los datos deberán ir acompañados de una marca temporal que permita identificar el instante origen, como se especifica posteriormente en **RF-10**.
- **RF-8** Además de los datos del vehículo definidos en **RF-6**, el sistema deberá enviar información sobre la geolocalización del vehículo en sí, según lo estipulado en **RF-7**.
- **RF-9** El sistema almacenará los datos en memoria si no se han podido transmitir hasta que o bien no quepan más datos o bien se hayan podido enviar. En caso de que la memoria estuviese completa, mediante indicadores visuales se le notificaría al usuario de este evento, dándole a entender que las entradas más antiguas serán eliminadas (ver **RNF-19**).
- **RF-10** El sistema deberá llevar un control del tiempo para asociar el dato con la marca temporal en la que se obtuvo.
- **RF-11** El sistema ofrecerá una interfaz desde la cual se podrá configurar la cuenta asociada y el dispositivo en sí.
- **RF-12** El sistema, una vez se aparque el vehículo, deberá notificar su última posición a modo de recordatorio de dónde se ha aparcado.
- RF-13 Las estadísticas de los viajes se generan tras un periodo de tiempo con el motor apagado. Dicho periodo se establece por defecto en 1 hora pero podrá ser configurable por el usuario desde la aplicación. Pasado ese tiempo, se generará la información relacionada con el trayecto realizado y se pondrá a disposición del usuario en forma de estadísticas y datos en sí. Opcionalmente, el usuario recibiría una notificación una vez estuviesen disponibles.
- **RF-14** Además de las estadísticas de los viajes, se generarán estadísticas temporales: cada semana, cada mes y cada año. En ellas, el usuario conocerá de primera mano el uso que ha hecho del coche, gasto estimado, desgastes, etc. y se le notificarán cuando estén disponibles.

Servidor

- **RF-15** El servicio web recibirá los datos transmitidos por los múltiples sistemas VIMS que existan.
- **RF-16** El servicio web clasificará la información recibida por cada dispositivo y la asociará a la cuenta del usuario correspondiente.
- **RF-17** El servicio web ofrecerá una interfaz en donde el usuario podrá ver información relacionada con sus últimos viajes, estadísticas e información del vehículo.

- **RF-18** El servicio web ofrecerá una API para acceder desde otras máquinas a los datos almacenados e información estadística.
- **RF-19** El servicio web mostrará información sobre la ubicación actual del coche, trazando un mapa con la ruta realizada.
- **RF-20** El servicio web mostrará al usuario la última ubicación conocida del vehículo, es decir, dónde está aparcado.
- **RF-21** El servidor almacenará los datos en principio de forma indefinida. Como todavía no se conoce la cantidad de información que se almacenará, en un futuro este requisito puede ser modificado y se puede establecer una temporalidad de los datos.

Usuario

- RF-22 El usuario se dará de alta en la plataforma y se asociará un dispositivo VIMS a su cuenta.
- **RF-23** El usuario podrá usar su *smartphone* para visualizar información en tiempo casi real de su vehículo.
- **RF-24** El usuario podrá definir información básica sobre el estado del vehículo actualmente. De esta forma, tras el tiempo estipulado por el fabricante o tras cierto kilometraje este recibirá una notificación indicándole los mantenimientos a realizar.
- RF-25 El sistema usará la información recogida según los requisitos RF-6 y RF-8 para ofrecerle al usuario un perfil personalizado sobre su conducción. En dicho perfil se tendrán en cuenta los datos de revoluciones del motor, intensidad del acelerador, desnivel del terreno, consumo del vehículo, distancia recorrida y demás para adecuarlo bajo un perfil propio según diversos modelos existentes [8].

Aplicación móvil

- **RF-26** La aplicación deberá poder conectarse de forma inalámbrica al sistema VIMS en cuestión.
- **RF-27** La aplicación deberá leer toda la información obtenida por VIMS con retardo mínimo de hasta 200 ms.
- **RF-28** La aplicación deberá poder mostrar información estadística en base a los datos almacenados en el servidor. Para ello, se hará uso del requisito **RF-18**.
- **RF-29** La aplicación podrá mostrar la última ubicación conocida del vehículo, es decir, dónde está aparcado.

3.3. Requisitos no funcionales

Precisión

RNF-1 El módulo de geolocalización ofrecerá una precisión que vendrá limitada directamente por el sistema utilizado. Así, con el GPS se puede llegar a obtener una precisión media de 5 metros mientras que con redes móviles la precisión media está en torno a los 60 metros. Por ello, no se considera algo crítico.

Rendimiento

- **RNF-2** El sistema deberá leer y recibir los datos del conector estándar a la máxima velocidad que permita este.
- **RNF-3** El sistema enviará los datos a medida los vaya recibiendo. Si hay congestión en la red y los datos no se pueden enviar tan rápido como se generan, se almacenarán en un *buffer* hasta poder transmitirlos.
- RNF-4 La aplicación móvil deberá recibir directamente los datos desde el dispositivo VIMS con un retardo mínimo de 200 ms desde su petición, indiferentemente de la tasa de refresco.

Eficiencia

- RNF-5 Según la sección 2.3, se prevé que el dispositivo pueda funcionar sin alimentación directa del coche cuando queden datos por enviar. Por razones de seguridad, el tiempo máximo que el sistema permanecerá activo será de hasta una hora. Así se evita drenar la batería del coche. Pasado ese periodo, los datos que no se pudieron transmitir se almacenarán de forma definitiva en memoria persistente hasta que el vehículo se encienda de nuevo.
- RNF-6 A razón del requisito RNF-5, se deberá escoger la red priorizando aquella que suponga un menor consumo. Este criterio se puede basar en usar la que ya esté activa (ya que el inicio de una interfaz de red conlleva un alto consumo), usar una red de menor potencia o usar la red que esté disponible. En otro caso, se almacenarán los datos pendientes de envío en VIMS.

Mantenibilidad

- **RNF-7** Los componentes *software* estarán estructurados siguiendo patrones de código limpio (como los principios S.O.L.I.D.) de forma que permitan una fácil mantenibilidad del mismo.
- RNF-8 Las actualizaciones OTA no deberán tardar más de 5 minutos en instalarse (se obvia el tiempo de descarga debido a que se depende directamente de la red en la que se esté

conectado), para evitar un alto periodo de downtime.

Portabilidad

RNF-9 Como se mencionó en la perspectiva del producto (2.1), el sistema debe ser fácilmente montable y desmontable, permitiendo el uso directo del conector estándar para otras labores.

Recuperabilidad

RNF-10 En caso de fallo inesperado del sistema, este deberá reiniciarse en no más de 30 segundos, si el vehículo está activo. En otro caso, permanecerá desactivado.

Seguridad

- **RNF-11** Si no se detecta ningún tipo de red, el sistema avisará al usuario de dicho evento y se almacenarán los datos temporalmente hasta que esté disponible.
- **RNF-12** Si la aplicación no detecta conexión con el servidor, notificará al usuario de dicho evento.
- RNF-13 Dependiendo de la precisión de la ubicación del GPS, el sistema informará al usuario de la calidad del mismo y de las "consecuencias" (falta de precisión en el recorrido, en el aparcamiento, etc.).

Integridad

- **RNF-14** Los mensajes enviados hacia y desde el servidor estarán siempre cifrados y debidamente protegidos.
- **RNF-15** Las actualizaciones de la placa deberán estar verificadas y protegidas, para evitar instalar *malware* de un atacante.
- **RNF-16** Las comunicaciones directas con la aplicación deberán ser previamente verificadas, para evitar enviar información a otro(s) dispositivo(s) no autorizados.
- **RNF-17** Antes de acceder a ningún tipo de dato producido por VIMS, el usuario deberá autenticarse apropiadamente.

Escalabilidad

RNF-18 El servidor web puede recibir cientos (o miles) de peticiones cada minuto, por lo que deben tomarse medidas específicas que faciliten la escalabilidad del mismo.

Usabilidad

- RNF-19 El sistema indicará distintos estados y mensajes mediante indicadores visuales, como luces LED.
- **RNF-20** Los indicadores visuales que se integren podrán ser ajustables por el usuario mediante un potenciómetro, que permitirá regular la intensidad lumínica a gusto del conductor.

3.4. Requisitos de interfaces externas

Interfaces de usuario

- RNF-21 Los datos mostrados en las interfaces de usuario deberán ser simples, claros y accesibles.
- RNF-22 La interfaz de usuario estará distribuida en varios dispositivos: el servidor, la aplicación y VIMS en sí. Desde las dos primeras, se ofrecen los datos recibidos, estadísticas, perfiles de conducción, etc. Desde el sistema, se muestra una interfaz básica de registro, configuración de la misma y gestiones básicas.
- **RNF-23** La configuración inicial de VIMS se realizará o bien desde la placa en sí o bien desde la aplicación. Ambas interfaces serán similares.
- RNF-24 Las notificaciones al usuario en principio se realizan única y exclusivamente desde la aplicación.

3.5. Restricciones de desarrollo

Limitaciones hardware

- **RNF-25** El sistema debe ser lo más pequeño posible y adaptarse a los vehículos en general. Para ello, se encapsulará el *hardware* en una carcasa exterior que lo proteja.
- **RNF-26** El circuito del sistema debe diseñarse teniendo en cuenta que ciertos pines pueden ser expuestos hacia el exterior para añadir módulos, en una versión futura.

3.6. Requisitos de entorno físico

RNF-27 El sistema en principio estará alojado siempre dentro del vehículo. Sin embargo, se estima que en épocas de especial calor o según la zona geográfica, la temperatura del interior del

habitáculo pueda alcanzar los 60 °C. Por ello, debe estar preparado para soportar dichas temperaturas.

RNF-28 El sistema sin embargo no estará preparado para resistir al agua, por lo que nunca debe entrar en contacto con la misma. Se sugiere pues que se sitúe en un entorno aislado.

Bibliografía

- [1] Vish. «How Much Data Is Created Every Day in 2021? [You'll be shocked!]» TechJury. (24 de jun. de 2020), dirección: https://techjury.net/blog/how-much-data-is-created-every-day/(visitado 30-06-2021).
- [2] Internet de las cosas, en Wikipedia, la enciclopedia libre, 25 de jun. de 2021. dirección: https://es.wikipedia.org/w/index.php?title=Internet_de_las_cosas&oldid=136582135 (visitado 30-06-2021).
- [3] OBD, en Wikipedia, la enciclopedia libre, 23 de mar. de 2021. dirección: https://es.wikipedia.org/w/index.php?title=OBD&oldid=134200517 (visitado 01-07-2021).
- [4] GPS, en Wikipedia, la enciclopedia libre, 29 de jun. de 2021. dirección: https://es.wikipedia.org/w/index.php?title=GPS&oldid=136677430 (visitado 01-07-2021).
- [5] Trilateración, en Wikipedia, la enciclopedia libre, 19 de feb. de 2021. dirección: https://es.wikipedia.org/w/index.php?title=Trilateraci%C3%B3n&oldid=133346807 (visitado 01-07-2021).
- [6] Interfaz de programación de aplicaciones, en Wikipedia, la enciclopedia libre, 28 de jun. de 2021. dirección: https://es.wikipedia.org/w/index.php?title=Interfaz_de_programaci%C3%B3n_de_aplicaciones&oldid=136639494 (visitado 06-07-2021).
- [7] OBD-II PIDs, en Wikipedia, 21 de jun. de 2021. dirección: https://en.wikipedia.org/w/index.php?title=OBD-II_PIDs&oldid=1029775117 (visitado 05-07-2021).
- [8] Hussein Ali Ameen, Abd Kadir Mahamad, Sharifah Saon, Mohd Anuaruddin Ahmadon y Shingo Yamaguchi, «Driving Behaviour Identification based on OBD Speed and GPS Data Analysis,» *Advances in Science, Technology and Engineering Systems Journal*, Advances in Science, Technology and Engineering Systems Journal, vol. 6, n.º 1, págs. 550-569, 28 de ene. de 2021, ISSN: 2415-6698. dirección: https://www.astesj.com/publications/ASTESJ_060160.pdf.

A. Validación de requisitos

B. Diagramas que modelan el sistema

B.1. Casos de uso

Figura B.1.: Caso de uso 01 - autenticación.

01	Autenticación		
Descripción	La placa identificará de forma inequívoca al		
Descripcion	conductor (usuario) y a sí misma frente al servidor.		
	Paso	Acción	
	1	El usuario se autentica contra la placa con su cuenta personal	
		ya creada.	
	2	La placa VIMS recoge la información del usuario y la envía al	
Secuencia normal		servidor junto con su identificador único.	
	3	El servidor verifica que la cuenta del usuario existe y se	
		asocia la información al dispositivo.	
	4	La placa almacena la información del usuario y finaliza el	
		proceso de inicio de sesión.	
	Paso	Acción	
Evenneiones	2	La placa no cuenta con conexión a la red o el servidor no está	
Excepciones		disponible.	
	3	La cuenta del usuario no existe.	

Figura B.2.: Casos de uso 02 – generación y transmisión de datos.

02	Generación y transmisión de datos		
		El dispositivo VIMS recibirá los datos del vehículo al	
Descripción	que está conectado y los preparará para una posterior		
		transmisión al servidor remoto de almacenamiento y gestión.	
	Paso	Acción	
	1	La placa VIMS recibe los datos que el vehículo está	
	1	generando de forma continuada.	
		Los datos recibidos se preparan para el envío, ajustando	
Secuencia normal	2	cierta información y añadiendo valores como la cuenta	
Secuencia normai		asociada a dichos datos.	
	3	Mediante el uso de redes móviles o locales, según	
		disponibilidad, se envían los datos al servidor.	
	4	El servidor recibe la información transmitida por el sistema y	
		la almacena para una posterior visualización y tratamiento.	
	Paso	Acción	
	1	El vehículo no está conectado o no transmite datos.	
	2	Todavía no hay ninguna cuenta asociada a la placa VIMS.	
	3.1	No hay redes móviles disponibles, se intenta transmitir por	
Excepciones		redes locales.	
	3.2	No hay redes locales disponibles, se intenta transmitir por	
		redes móviles.	
	3.3	No hay redes disponibles, se almacenan los datos para su	
		posterior transmisión.	

Figura B.3.: Caso de uso 03 – generación de estadísticas.

03	Generación de estadísticas		
	El servidor, en conjunción con el resto de elementos		
Descripción	del sistema, preparará los datos para generar		
	información estadística útil para el usuario.		
	Paso	Acción	
	1	El usuario solicita al servidor visualizar estadísticas con	
		respecto a sus vehículos.	
Secuencia normal	2	El servidor prepara los datos y genera distintos tipos de	
		información estadística visual basados en tablas, gráficos, etc.	
	3	El usuario recibe la información estadística ajustada a su	
		cuenta.	
	Paso	Acción	
Evenneiones	1.1	El usuario no está autenticado.	
Excepciones	1.2	El usuario no cuenta con ningún dispositivo VIMS asociado.	
	2	Todavía no se ha registrado ningún dato.	

Figura B.4.: Caso de uso 04 – envío de notificaciones.

04	Envío de notificaciones		
	El servidor, en conjunción con el resto de elementos		
Descripción		del sistema, detecta ciertos eventos y actúa	
		generando una notificación que envía al usuario.	
	Paso	Acción	
	1	El servidor en un instante puntual produce y procesa un	
	1	evento.	
		Si el evento se ha producido por un hecho (p.e.: repostar,	
	1 1	finalizar un viaje,), es un evento puntual sobre el cual se	
	1.1	envía información relativa al mismo y al contexto	
		(estadísticas del depósito, información del viaje, etc.).	
	1.2	Si el evento se ha producido porque ha pasado un lapso de	
Secuencia normal		tiempo, es un evento temporal. El servidor generará	
Secuencia normai		estadísticas relativas a ese lapso de tiempo y mandará esa	
		notificación.	
	2	Se envía una notificación al usuario con los datos relativos al	
		evento.	
	2.1	Si es un evento puntual, la notificación se envía a todos los	
	2.1	medios: correo electrónico, servidor web y aplicación.	
	2.2	Si es un evento temporal, la notificación se envía solo al	
		correo electrónico y al servidor web.	
	3	El usuario recibe la notificación en alguno de los tres medios.	

Figura B.5.: Caso de uso 05 – visualización en tiempo real

05	Visualización en tiempo real	
Docarinaión		Un usuario podrá visualizar información en tiempo
Descripción		real sobre su vehículo mediante la aplicación.
	Paso	Acción
	1	El usuario solicita visualizar información sobre el vehículo
	1	desde la aplicación.
Secuencia normal	2	La aplicación recibe la información de la placa VIMS usando
		redes PAN.
	3	La placa VIMS prepara la información que recibe del vehículo
	3	y la transmite hacia la aplicación.
	Paso	Acción
	1.1	El usuario no está autenticado.
	1.2	El usuario no cuenta con ningún dispositivo VIMS asociado.
	2.1	No hay conexión mediante Bluetooth, se realiza la
Excepciones		comunicación por WiFi.
Excepciones	2.2	No hay conexión mediante WiFi, se realiza la comunicación
	2.2	por Bluetooth.
	2.3	La placa VIMS está desconectada.
	3	La placa VIMS está desconectada o el vehículo no emite
		ningún dato.

Figura B.6.: Caso de uso 06 – generación de eventos

06	Generación de eventos	
Dogovinojón		El dispositivo VIMS, a la hora de enviar datos, podrá producir
Descripción		eventos según el tipo de información que haya de enviar.
	Paso	Acción
Secuencia normal	1	El dispositivo VIMS genera información y la transmite hacia
		el servidor.
	1.1	Si la información a transmitir es "normal", se envía
		directamente al servidor.
	1.2	Si la información a transmitir es eventual, se procesa el
		evento generando información estadística referente al mismo
		o mandando una notificación.
	2	El servidor recibe el evento y se encarga de gestionarlo, como
		se vio en el UC-04.
Excepciones	Paso	Acción
	1	No hay ninguna cuenta asociada al dispositivo.
	1.1	No hay conexión a Internet por parte del dispositivo VIMS.

Figura B.7.: Casos de uso 07*-envío, almacenamiento y visualización de geolocalización

07.1	Visualización de ubicación		
	El usuario mediante una aplicación podrá visualizar la		
Descripción	ubicación del vehículo en tiempo real. Si el vehículo		
	está apagado, se visualiza la ubicación del aparcamiento.		
	Paso	Acción	
	1	El usuario inicia una aplicación para visualizar la ubicación	
		de su vehículo.	
	1.1	Si el vehículo se encuentra en movimiento, se visualiza la	
Secuencia normal		ubicación en tiempo real según se va actualizando.	
	1.2	Si el vehículo está apagado se considera que está aparcado y	
		se visualiza la última ubicación conocida, correspondiente	
		con el aparcamiento.	
	2	Se realizan peticiones al servidor para obtener la información	
		de la geolocalización.	
	Paso	Acción	
Excepciones	1	No hay ningún dispositivo asociado a la cuenta.	
	1.1	El vehículo está desconectado de la red, por lo que no se	
	1.1	pueden transmitir los datos de geolocalización.	
	1.2	No hay ningún dato de geolocalización almacenado.	
	2	La aplicación no cuenta con conexión a la red.	

07.2	Envío de ubicación		
Descripción	La placa VIMS enviará la información		
Descripcion	relativa al vehículo al servidor.		
Secuencia normal	Paso	Acción	
	1	La placa actualiza la información sobre la ubicación del vehículo.	
	1.1	Si se ha perdido la conexión con el vehículo (motor apagado), se considera que está aparcado y se envía la ubicación actual como "ubicación de aparcado".	
	1.2	Si el vehículo está activo (motor encendido), se considera que está en movimiento y envía de forma periódica la ubicación actual del vehículo.	
	2	Según la precisión de las redes y la disponibilidad de las mismas, la ubicación se obtiene mediante dos métodos.	
	2.1	Se obtiene la ubicación mediante el uso de redes móviles cuando el módulo GPS no se encuentre disponible o no se tengan suficientes satélites.	
	2.2	Se obtiene la ubicación mediante el módulo GPS como primera alternativa, y se usan las redes móviles cuando estén disponibles para mejorar la precisión de la ubicación.	
	3	Se manda la ubicación obtenida al servidor y se enlaza a la cuenta asociada.	
	Paso	Acción	
Excepciones	1	No hay ninguna cuenta asociada al dispositivo.	
	1.1	No hay ninguna conectividad de red disponible para realizar el envío de la ubicación.	
	3	La conexión de red no está disponible para realizar la transmisión de la información.	

07.3	Almacenamiento de los datos de ubicación		
Descripción	El servidor almacenará y gestionará los datos de		
	ubicación recibidos por los múltiples dispositivos VIMS.		
	Paso	Acción	
Secuencia normal	1	El servidor recibe la información de la ubicación de un	
		dispositivo VIMS.	
	1.1	Los datos de ubicación se almacenan en una línea temporal	
		para poder ver el histórico de ubicaciones del vehículo.	
	1.2	El último valor de ubicación se almacena para una posterior	
		visualización.	
	2	El servidor ofrece los datos de ubicación a través de la API.	
Excepciones	Paso	Acción	
	1	No hay ninguna cuenta asociada al dispositivo.	