1.3 Rational Numbers

- 1. Define the rational numbers
- 2. Reduce rational numbers
- 3. Convert between mixed numbers and improper fractions
- 4. Express rational numbers as decimals.
- Express decimals in the form a/b
- Multiply and divide rational numbers
- Add and subtract rational numbers
- Use the order of operations agreement with rational numbers
- 9. Solve problems involving rational numbers

Copyright © 2018 R. Laurie

Defining the Rational Numbers

- The set of rational numbers is the set of all numbers which can be expressed in the form where a and b are integers and b is not equal to 0.
- **❖** The integer *a* is called the *numerator*
- ❖ The integer b is called the denominator b
- **❖** Examples of rational numbers: ¹/₄, −¹/₂, ³/₄, 5, 0
- Equivalent Rational Numbers
 - ◆ To reduce a rational number to its lowest terms
 - divide numerator and denominator by their greatest common divisor

Copyright © 2018 R. Laurie 2

Reducing a Rational Number

Reduce $\frac{130}{455}$ to lowest terms.

- Solution: Begin by finding the Greatest Common Factor of 130 and 455.
- **❖** Thus, $130 = 2 \cdot 5 \cdot 13$, and $455 = 5 \cdot 7 \cdot 13$
- * Divide the numerator and the denominator of the given rational number by 5 · 13 or 65

$$\frac{130}{455} = \frac{2 \cdot 5 \cdot 13}{5 \cdot 7 \cdot 13} = \frac{2}{7}$$

$$\frac{130}{455} = \frac{2 \cdot 5 \cdot 13}{5 \cdot 7 \cdot 13} = \frac{2}{7} \quad \text{or} \quad \frac{130}{455} = \frac{130 \div 65}{455 \div 65} = \frac{2}{7}$$

- * There are no common divisors of 2 and 7 other than 1.
- * Thus, the rational number 2/7 is in its lowest terms.

Copyright © 2018 R. Laurie 3

Mixed Numbers, Improper Fractions, and Decimal

*A mixed number consists of the sum of an integer and a rational number, expressed without the use of an addition sign.

Example:

The Integer is 3 and the rational number is
$$\frac{4}{5}$$
. $3\frac{4}{5}$ means $3+\frac{4}{5}$.

- *An improper fraction is a rational number whose numerator is greater than denominator 5
- *Any rational number can be expressed as a decimal number by dividing the denominator into the numerator 3.8

Copyright © 2018 R. Laurie 4

Expressing Decimals as a Fraction

Express terminating decimal as a quotient of integers:

- a. 0.7
- b. 0.49
- c. 0.048

Solution:

- a. $0.7 = \frac{7}{10}$ because the 7 is in the tenths position.
- b. $0.49 = \overline{100}$ because the digit on the right, 9, is in the hundredths position.

c.
$$0.048 = \frac{48}{1000} = \frac{48 \div 8}{1000 \div 8} = \frac{6}{125}$$

because the digit on the right, 8, is thousandths position and can be reduced to lowest terms

Multiplying Rational Numbers

- The product of two rational numbers is the product of their numerators divided by the product of their denominators. a c a c
- **If** $\frac{a}{b}$ and $\frac{c}{d}$ are multiplied, then $\frac{a}{b} \cdot \frac{c}{d} = \frac{a}{b} \cdot \frac{c}{d}$ $\left(-\frac{2}{3}\right)\left(-\frac{9}{4}\right) = \frac{(-2)(-9)}{3 \cdot 4} = \frac{18}{12} = \frac{3 \cdot 6}{2 \cdot 6} = \frac{3}{2} \quad \text{or} \quad 1\frac{1}{2}$

Multiply across. Simplify to lowest terms.

❖ Pre-simplify Example

$$\left(-\frac{2}{3}\right)\left(-\frac{9}{4}\right) = \frac{3}{2} \text{ or } 1\frac{1}{2}$$

Convright © 2018 R. Laurie

Dividing Rational Numbers

- *The quotient of two rational numbers is a product of the first number and the reciprocal of the second number
- Flip last number and multiply by first number
- **If** $\frac{a}{b}$ and $\frac{c}{d}$ are rational $\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{a \cdot d}{b \cdot c}$ numbers, then

$$-\frac{3}{5} \div \frac{7}{11} = -\frac{3}{5} \cdot \frac{11}{7} = -\frac{3 \cdot 11}{5 \cdot 7} = -\frac{33}{35}$$

Change to by using the reciprocal.

across.

Copyright © 2018 R. Laurie 10

Add and Subtract Rational Numbers

The sum or difference of two rational numbers with identical denominators is the sum or difference of numerators over common denominator.

If $\frac{a}{b}$ and $\frac{c}{b}$ are rational numbers, then

$$\frac{a}{b} + \frac{c}{b} = \frac{a+c}{b}$$

$$\frac{a}{b} - \frac{c}{b} = \frac{a-c}{b}$$

Examples:

$$\frac{3}{7} + \frac{2}{7} = \frac{3+2}{7} = \frac{5}{7}$$

$$\frac{3}{7} + \frac{2}{7} = \frac{3+2}{7} = \frac{5}{7}$$
 $\frac{11}{12} - \frac{5}{12} = \frac{11-5}{12} = \frac{6}{12} = \frac{1 \cdot 6}{2 \cdot 6} = \frac{1}{2}$

$$-5\frac{1}{4} - \left(-2\frac{3}{4}\right) = -\frac{21}{4} - \left(-\frac{11}{4}\right) = -\frac{21}{4} + \frac{11}{4} = \frac{-21 + 11}{4} = \frac{-10}{4} = -\frac{5}{2} \quad \text{or} \quad -2\frac{1}{2}$$

Convright © 2018 R. Laurie

Add and Subtract Rational Numbers

- The sum or difference of two rational numbers with different denominators, we use the Least Common Multiple of their denominators to rewrite the rational numbers.
- * The Least Common Multiple of their denominators is called the Least Common Denominator or LCD.

$$\frac{3}{4} + \frac{1}{6} = \frac{3}{4} \cdot \frac{3}{3} + \frac{1}{6} \cdot \frac{2}{2}$$

$$= \frac{9}{4} + \frac{2}{6} \cdot \frac{2}{2} = \frac{9}{4} + \frac{2}{6} + \frac{2}{6} + \frac{2}{6} = \frac{9}{4} + \frac{2}{6} + \frac{2}{6} + \frac{2}{6} = \frac{9}{4} + \frac{2}{6} + \frac{2}{6} + \frac{2}{6} = \frac{9}{4} + \frac{2}{6} + \frac{2}{6} + \frac{$$

We multiply the first rational number by 3/3 and the second one by 2/2 to

Add numerators and put this sum over the

Copyright © 2018 R. Laurie 12

Exercise: Simplify using PEMDAS

$$\left| \frac{-\frac{1}{2}}{2} \right|^{2} - \left| \frac{7}{10} - \frac{8}{15} \right|^{2} (-18)$$

$$\frac{\frac{1}{2} - \frac{2}{3}}{\frac{3}{5} + \frac{1}{6}} \quad \text{Prob 1.3.95}$$

$$\frac{3}{3 + \frac{1}{6}} = \frac{7}{8} \div \frac{3}{2} \quad \text{Prob 1.3.99}$$

1.4 The Irrational Numbers

- Define the irrational numbers.
- Simplify square roots.
- Perform operations with square roots.
- Rationalize the denominator.

The set of *irrational numbers* is the set of numbers whose decimal representations are neither terminating nor repeating.

$$\pi \approx 3.1415926535897932384626433832795...$$
 $\sqrt{2} \approx 1.414213562373095...$
 $\sqrt{27} \approx 5.196152422706632...$

Copyright © 2018 R. Laurie 14

Square Roots

- The principal square root of a nonnegative number n, written \sqrt{n} , is the positive number that when multiplied by itself gives n.
- ***** For example, $\sqrt{36}=6$ because $6 \cdot 6 = 36$.
- Notice that $\sqrt{36}$ is a rational number because 6 is a terminating decimal.
- *Not all square roots are irrational.
- *For example, here are a few perfect squares:

\bullet 0 = 0 ²	$\sqrt{0}=0$ The square root of a	
♦ 1 = 1 ²	$\sqrt{1}$ =1 perfect square is a	1
♦ 4 = 2 ²	$\sqrt{4}$ =2 rational number	
◆ 9 = 3 ²	$\sqrt{9}=3$	D. I

The Product Rule For Square Roots

❖ If a and b represent non-negative numbers

$$\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$$
 and $\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}$

- * The square root of a product is the product of the square roots.
- Simplify, if possible:

$$\sqrt{75} = \sqrt{25 \cdot 3}
= \sqrt{25} \cdot \sqrt{3}
= 5 \sqrt{3}$$

$$\sqrt{500} = \sqrt{100 \cdot 5}
= \sqrt{100} \cdot \sqrt{5}
= 10 \sqrt{5}$$
Copyright © 2018 R. Laurie 16

Copyright © 2018 R. Laurie

Adding and Subtracting Square Roots

- *The number that multiplies a square root is called the square root's coefficient.
- ❖ Square roots with the same radicand can be added or subtracted by adding or subtracting their coefficients:

$$a\sqrt{c} + b\sqrt{c} = (a+b)\sqrt{c}$$
 $a\sqrt{c} - b\sqrt{c} = (a-b)\sqrt{c}$

$$a\sqrt{c} - b\sqrt{c} = (a - b)\sqrt{c}$$

Sum of coefficients times

Difference of coefficients times the common square root

$$7\sqrt{2}+5\sqrt{2}=(7+5)\sqrt{2}=12\sqrt{2}$$

$$2\sqrt{5}-6\sqrt{5}=(2-6)\sqrt{5}=-4\sqrt{5}$$

Product Rule Exercises

$$\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$$
 and $\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}$

$$\sqrt{2} \cdot \sqrt{5} = \sqrt{2 \cdot 5} = \sqrt{10}$$

$$\sqrt{7} \cdot \sqrt{7} = \sqrt{49} = 7$$

It is possible to multiply Irrational numbers and obtain a rational number for the product.

$$\sqrt{7}\cdot\sqrt{7}=\sqrt{49}=7$$

$$\sqrt{6} \cdot \sqrt{12} = \sqrt{6 \cdot 12} = \sqrt{72} = \sqrt{36 \cdot 2} = \sqrt{36} \cdot \sqrt{2} = 6\sqrt{2}$$

$$3\sqrt{5}\cdot(2\sqrt{5}+3\sqrt{15})$$
 Prob 1.4.31

$$12\sqrt{12}+3\sqrt{27}-4\sqrt{75}$$
 Prob 1.4.39

Copyright © 2018 R. Laurie

Dividing Square Roots = Quotient Rule

If a and b represent nonnegative real numbers and $b \neq 0$, then

$$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$$
 and $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$

The quotient of two square roots is the square root of the quotient.

$$\frac{\sqrt{90}}{\sqrt{2}} = \sqrt{\frac{90}{2}} = \sqrt{45} = \sqrt{9 \cdot 5} = \sqrt{9} \cdot \sqrt{5} = 3\sqrt{5}$$

$$\frac{\sqrt{75}}{\sqrt{3}} = \sqrt{\frac{75}{3}} = \sqrt{25} = 5$$

Copyright © 2018 R. Laurie

Time is Relative

- **❖Planet of the Apes (1968)**
 - **◆**Einstein's Special Relativity Equation
 - $ightharpoonup R_a = Relative Age Astronaut$
 - ♦R, = Relative Age Friend on Earth
 - *v* = Velocitv
 - $\diamond c$ = Speed of light

