

Halbleitertechnik IV-Nanoelectronics

Friedrich-Alexander-Universität Erlangen-Nürnberg | Lehrstuhl für Elektronische Bauelemente | Cauerstraße 6 | 91058 Erlangen | www.leb.tf.fau.de | Michael Jank

Metal-Oxide-Semiconductor Memory Devices

Objectives of the lecture

Mission and goals?

Objectives

- This lecture introduces the knowledge on the three classes of most-adopted semiconductor-based memory devices
 - SRAM
 - DRAM
 - Flash
- You should be able to
 - describe the memory architectures and principles of operation
 - know about the critical parameters in scaling of DRAMs
 - explain problems and solutions in the operation and scaling of Flash memories
 - consider measures for maximizing the memory density in Flash- and SONOS memories

Overview on information storage systems

Overview on information storage systems - Abbreviations

ROM Read Only Memory

EPROM Electrically Programmable ROM

OTP-EPROM One-Time Programmable EPROM

• E²PROM Electrically Erasable Programmable ROM

RAM Random Access Memory

DRAM Dynamic RAM

SRAM Static RAM

• FRAM Ferroelectric RAM (auch: FeRAM)

MRAM Magnetic RAM

CBRAM Conductive Bridging RAM

RRAM Resistive RAM

PCRAM Phase Change RAM

Read-only memory (principle is not MOS based)

- Only one-time programming
 - e.g. by formation or opening of wiring at a via (i.e. cross-point connection between two metal layers) between word and bit line in an array
 - · during processing (photo mask) or eletrically in the chip (burning)
- Concepts for realization of ROM memories
 - rectifiying/switching elements avoid cross-talk between the cells

Slide nE23-07-7

SRAM

MOS-based Semiconductor Memories

6-transistor cell (6T)

WL

Job

Job

Feedback loop

BL

1-transistor/1 capacitor cell (1T1C)

DRAM

Flash

- + very fast
- + CMOS
- + no refresh necessary
- transient
- very large cell

- + fast
- + small cell
- volatile
- refresh
- elaborate technology

- + non volatile
- + small cell
- + multibit capability
- slow
- erase by block
- limited cycling capability

Outline

- Overview on highly-integrated information storage
- Volatile semiconductor memory
 - Static memory with random access (SRAM)
 - Dynamic memory with random access (DRAM)
- Non-volatile semiconductor memory
 - Flash memory transistors
 - Flash architectures
 - SONOS storage stacks
 - Nitride-ROM memory (NROM)

Volatile Semiconductor Memory

- SRAM (6T): more a circuit concept than a device
 - two fed-back CMOS inverters that conservate their state

SRAM: write (high/"1")

- set inverted bitline BL to low/L and bitline BL to high/H
- activate wordline WL, nodes
 Q / Q of the flip-flop will be set to
 H / L
- deactivate wordline => information is stored statically

SRAM: read

- activate wordline
- bitline is charged by flip-flop, read result

Volatile Semiconductor Memory

- SRAM (6T): more a circuit concept than a device
 - two fed-back CMOS inverters that conservate their state

SRAM: write (high/"1")

- set inverted bitline BL to low/L and bitline BL to high/H
- activate wordline WL, nodes
 Q / Q of the flip-flop will be set to
 H / L
- deactivate wordline => information is stored statically

SRAM: read

- activate wordline
- bitline is charged by flip-flop, read result

Volatile Semiconductor Memory

- DRAM (1T1C): two-device assembly
 - "0" no charge on capacitor
 - "1" charge on capacitor
 - can be realized in CMOS
 - refresh necessary due to leakage
- Concepts:
 - planar cell (formerly)
 - "Trench" cell
 - "Stacked" cell
- Definition of the smallest structure size (F):
 - Diameter of the capacitor/gate electrode
 - "Pitch": Distance between 2 conductor tracks (word/bit lines)

Cell Size 4F²

Volatile Semiconductor Memory

- DRAM Cell Concepts: Trench Cell
 - The aim is to maximize the area of the storage capacitor to store as much charge as possible
 - Burying creates large capacitor gate area and consumes only a small amount of chip area

Volatile Semiconductor Memory

- DRAM Cell Concepts: Stacked Capacitor
 - here the capacitor is mounted above the transistors
 - generation of a large effective capacitor area with low consumption of chip area

- Both cells (trench/stacked) are very complex to produce
 - practically, deep trench etching is more difficult to scale (the narrower, the deeper you have to etch and refill!) → Stack capacitor has prevailed

Volatile Semiconductor Memory

DRAM: challenges

capacitor:

minimum

capacity of 30fF

must be

maintained

Halbleitertechnik IV

Nanoelectronics

leakage < 1fA

 $I_{ON} > \text{few } \mu A$

 $I_{ON}/I_{OFF} > 10^9$

Volatile Semiconductor Memory

- DRAM: increasing the capacitance
- besides the area enlargement by trench or stacked capacitors there are mainly materialsdriven approaches

increase of capacity by high-k dielectrics e.g. Al₂O₃, Hf₂O, Zr₂O, Ta₂O₅, BST

reduction of thickness

Nucleation and ripening at etch defects (crystal defects)

grains (HSG)

Outline

- Overview on highly-integrated information storage
- Volatile semiconductor memory
 - Static memory with random access (SRAM)
 - Dynamic memory with random access (DRAM)
- Non-volatile semiconductor memory
 - Flash memory transistors
 - Flash architectures
 - SONOS storage stacks
 - Nitride-ROM memory (NROM)

- Combination of storage and control electrode in a single gate stack
 - electrically programmable and erasable
 - 1T architecture
 - storage electrode is not contacted: floating gate

- Readout of Flash memory
 - stored charges (mostly electrons) increase U_{Th} (see lectures on basics or on hot electrons)
 - read-out voltage is selected between lower and upper U_{th} , the associated current is detected

- Programming (writing) of Flash memory
 - hot electrons generate electron-hole pairs at the drain. Electrons with sufficient energy reach FG directly (if energy is sufficient) or through FOWLER NORDHEIM tunneling
 - programming by Fowler Nordheim tunneling

Flash Memory Transistors

- Erase programming of Flash memory
 - application of a high voltage between control gate and Source

p-Si

• FOWLER NORDHEIM tunneling of carriers

Source

 E_{ν}

- Increase of memory capacity by multilevel programming (MLC: MultiLevel Cell)
 - differentiation of multiple U_{Th} levels in a cell

- precise control of programmed U_{th} s is mandatory
 - active "post-writing" / "-erasing"
- · high requirements for retention time

Flash Architectures

NOR architecture (e.g. for code memory in microcontrollers)

cell size ≈10F²

due to individual addressing capability

- fast random access to single bits (<100ns)
- fast programming (1-10 μs) by hot electron injection (high currents limit parallel programming)
- erase by FN tunneling (Flash) per block

Flash Architectures

- NAND architecture
 (e.g. for high volume data storage)
 - Pros
 - space-saving design (shared S/D)
 - massively parallel programming (FN)
 - Cons
 - random access is very slow (>10 μm)
 - programming is very slow (>100 μm)

cell size ≈5F²

SONOS Memory stacks

- Flash memory: problems
 - Retention: charge loss
 - · write/erase cycling degrades gate and tunnel oxide
 - SILC: Stress Induced Leakage Currents over defect cascades
 - Endurance: allowed number of cycles
 - U_{Th} shift by defects (traps) in tunnel oxide

retention approx. 100 yrs.

retention approx. 10 yrs.

SONOS Storage Stacks

- Solution: Flash memories with storage layer from silicon nitride
 - dielectric ONO stack (already known from reinforcement of control oxide)

- Stationary charge storage in adhesion points of silicon nitride
 - Better integration (lower vertical layer thickness)
 - · Only local, no full charge loss if tunnel oxide is locally damaged

- NROM memory based on ONO layer stack
 - dedicated operation mode of SONOS memories (preferrably in NAND architecture)
 - device is symmetrical, as any "normal" MOSFET

- Brand names
 - TWIN Flash, Mirror Bit,

Nitride ROM Memory

- NROM memory based on ONO layer stack
 - programming
 - injection of hot channel electrons (high current)
 - · local storage of electrons in silicon nitride close to drain area

the individual assignment of the contacts as source or drain is done by voltage polarity

Nitride ROM Memory

- NROM memory based on ONO layer stack
 - programming
 - injection of hot channel electrons (high current)
 - · local storage of electrons in silicon nitride close to drain area

the individual assignment of the contacts as source or drain is done by voltage polarity

- NROM memory based on ONO layer stack
 - programming
 - injection of hot channel electrons (high current)
 - · local storage of electrons in silicon nitride close to drain area

- a second bit can be addressed by changing source and drain
 - 2-bit storage, doubling the memory capacity

- NROM memory based on ONO layer stack
 - erasing
 - local injection of hot holes from drain into nitride layer
 - · recombination of injected holes with trapped electrons

- disadvantages
 - high current consumption due to low ratio of trapped vs. injected carriers
 - limitation of lateral scaling by charge packet extension and misalignment of electron and hole packets

- NROM memory based on ONO layer stack
 - erasing
 - local injection of hot holes from drain into nitride layer
 - · recombination of injected holes with trapped electrons

- disadvantages
 - high current consumption due to low ratio of trapped vs. injected carriers
 - limitation of lateral scaling by charge packet extension and misalignment of electron and hole packets

- NROM memory based on ONO layer stack
 - erasing
 - local injection of hot holes from drain into nitride layer
 - · recombination of injected holes with trapped electrons

- disadvantages
 - high current consumption due to low ratio of trapped vs. injected carriers
 - limitation of lateral scaling by charge packet extension and misalignment of electron and hole packets

- NROM memory based on ONO layer stack
 - reading
 - operation in saturation mode $V_{DS} \ge V_{GS} V_{TH}$
 - charge at source side defines V_{TH}
 - V_{TH} is increasing with (electron) charge

- NROM memory based on ONO layer stack
 - reading
 - operation in saturation mode $V_{DS} \ge V_{GS} V_{TH}$
 - charge at source side defines V_{TH}
 - V_{TH} is increasing with (electron) charge

- NROM memory based on ONO layer stack
 - reading
 - operation in saturation mode $V_{DS} \ge V_{GS} V_{TH}$
 - charge at source side defines V_{TH}
 - V_{TH} is increasing with (electron) charge

Outline

- Overview on highly-integrated information storage
- Volatile semiconductor memory
 - Static memory with random access (SRAM)
 - Dynamic memory with random access (DRAM)
- Non-volatile semiconductor memory
 - Flash memory transistors
 - Flash architectures
 - SONOS storage stacks
 - Nitride-ROM memory (NROM)

put

Thanks for your attention!

