Assignment-3

Class: 12 Subject: Maths

Answer all the questions.

- 1. a. How many 5 different digit numbers can be formed with the digits 0, 1, 2, 3, 4? How many of them start with 0?
 - b. Prove that: $\frac{1}{2} \frac{1}{2 \cdot 2^2} + \frac{1}{3 \cdot 2^3} \frac{1}{4 \cdot 2^4} \dots = log_e(3/2)$
 - c. Show that multiplication is binary operation on the set $s = \{-1, 0, 1\}$.
- 2. a. Find the equation of parabola with focus at (-1, 2) and directrix x = -5.
 - b. Find the ratio in which the yz-plane divides the line joining (4, 6, 7) and (-1, 2, 5). Also, find the coordinates of the point in yz-plane.
 - c. If $\vec{a} = (1, 2, 3)$ and $\vec{b} = (-1, 2, 1)$, find the projection of \vec{a} and \vec{b} .
- 3. a. Find the sine of the angle between the two vectors $2\vec{i} \vec{j} + \vec{K}$ and $3\vec{i} + 4\vec{j} \vec{K}$.
 - b. Find the regression coefficient of x and y for the data $\sum x = 25$, $\sum y = 32$, $\sum xy = 104$, $\sum x^2 = 75$, $\sum y^2 = 230$, n = 10.
- 4. An examination paper consists of 12 questions divided into two parts A and B. Part A contains 7 questions and part B contains 5 questions. A candidate required to attempt 8 questions selecting at least 3 from each part. In how many ways he can select the questions.
- 5. Show that the set {1, -1, i, -i}, where i is imaginary unit forms a group under complex number multiplication.

OR

Prove a group (G, o) is a abelian if and only if $(aob)^{-1} = a^{-1}ob^{-1}$.

6. Find the equation of tangent at the point (x_1, y_1) to the parabola $y^2 = 4ax$. Also deduce its equation in m-form.

OR

Find the eccentricity, vertices, foci, length of latus rectum of the ellipse $25x^2+4y^2=100$.

- 7. Find the equation of plane passing through the points (1, 1, 0), (-2, 2, -1) and (1, 2, 1).
- 8. Calculate the correlation coefficient for the age of husband and age of wife.

Х	32	35	36	38	34	33	37
Υ	27	28	29	31	26	28	27

9. If
$$(1+x)^n = c_0 + c_1x + c_2x^2 + ... + c_nx^n$$
, prove that $c_0c_n + c_1c_{n-1} + + c_nc_0 = \frac{2n!}{n!n!}$. [6]

OF

Sum to infinity $1 + \frac{1+2}{2!} + \frac{1+2+2^2}{3!} + \cdots$.

- 10. Define dot product of two vectors with example. Prove cos(A + B) = cosAcosB sinAsinB using vector method. [6]
- 11. a. Using L Hospital's rule, evaluate $\lim_{x \to 0} \frac{x sinx cosx}{x^3}$.
 - b. Evaluate: $\int \frac{dx}{\sqrt{2ax+x^2}}$
- 12. a. Solve: $(x^2 1) \frac{dy}{dx} = xy$
 - b. Two dice are rolled once, what is the probability of getting a total of 9 or 6?
- 13. a. Evaluate: $\int \frac{dx}{(x-1)^2(x-2)^3}$
 - b. Reduce the equation $(1+x^2)\frac{dy}{dx} + y = e^{tan^{-1}x}$ in linear form and solve it.

OR

Solve: $\frac{dy}{dx} = \frac{y+1}{x+y+1}$

- c. A sample of 100 fuses is known to have an average 5 defective fuses. Three fuses of sample are tested. What is the probability that (i) none of them is defective (ii) exactly one of them is defective?
- 14. State Rolle's theorem. Interpret it geometrically. Verify Rolle's theorem for the function $f(x)=x(x-3)^2$ for $x \in [0, 3]$.

OR

Find from first principles, the derivative of log(tanx).

15. a. Draw the graph of the following inequalities and shade the region.

$$x + y \le 6$$
, $x - y \ge -2$, $x \ge 0$, $y \ge 0$

b. Examine whether the following system of equations are ill-conditioned or well-conditioned.

$$2x + y = 25$$

$$2.001x + y = 25.01$$

- c. Evaluate $\int_{1}^{2} \frac{1}{x^{2}} dx$, n = 4 using trapezoidal rule.
- 16. a. Solve the following system of equations by using Gauss-Seidal method.

$$2x_2 + 3x_3 = 7$$
, $3x_1 - 2x_2 + 2x_3 = 1$, $2x_1 + 3x_2 - 3x_3 = 5$

Solve the following system of equations by using Gauss-Elimination method with partial pivoting.

$$x - 2y + 3z = 2$$

$$2x - 3y + z = 1$$

$$3x - y + 2z = 9$$

- b. Evaluate the approximate value of $\int_0^{\pi} \sin x dx$ with n=6 using Simpson's $\frac{1}{3}$ rule.
- 17. Using Simplex method,

Maximize z = 5x + 3y

Subject to constraints

$$2x + y \le 40$$

$$x + 2y \le 50$$

and
$$x, y \ge 0$$

18. Find the root of the equation $x^3 - 18 = 0$ in (2, 3) up to three places of decimal by using Newton-Raphson method.

OF

Using the method of successive bisection, find the square root of 3 within 2 places of decimal in (1, 2).

The End