Feature Tracking

Discussion

Questions

- What can be tracked?
 - Brightness changes → Need temporal contrast (DVS has a contrast sensitivity of ~ 15%)
 - What causes brightness changes?
 - Blinking lights (LEDs) seldom considered.
 - Moving edges, found in textures, silhouettes, etc.
 Regions with low contrast or texture are challenging to track.
 - What's the scenario?
 - Static or moving camera?
 - How many objects are there in the scene?
 - How big are the objects on the image plane?
 - How to express what we want to track in terms of events?
 - Need a "template" or "representation" (Detection)

Questions

- How to track?
 - Can we track with just one event?
 - Better if multiple events (or additional knowledge) to build a representation to track.
 - Exploiting high temporal resolution and spatial vicinity: (nearest neighbor) data association.
 - How to handle nuisances, such as perspective distortion, noise, etc.?
 - We would like the tracker to have some "invariance" and "robustness".
 - Tracking may be posed as a registration problem
 - and solved via ICP, gradient descent, etc.

Tracking Methods

- Blob / Cluster tracking
 - A filter updates the parameters of the "blob" distribution
 - Example: vehicles or people modeled as "blobs"
- Shape tracking (evolving point shapes on image plane 2D)
 - Simple shapes (squares, triangles, stars)
 - More complex shapes
- Tracking posed as a registration problem
 - What is registration?
 - Matching events to a model
 - What is being optimized?
 - What type of distortions can be handled?
 - Iterative Closest Point (ICP)
 - Point set registration by gradient descent
 - Extension of the KLT tracker to events: EKLT

More Questions

- How are outliers handled by ICP?
- How to handle events due to occlusions or disocclusions?
- Is polarity used in the different methods?
 - Typically not. Only in EKLT (in the event generation model).
 - Example: an Off event may be caused by a dark-to-bright (DL) edge moving right or by a bright-to-dark (LD) edge moving left, thus polarity can be confusing; need to be able to disambiguate.
- Classical computer vision:
 - What is Canny edge detection?
 - What are Harris corners?
 - What are the colors in the plot? (Tedaldi et al. EBCCSP 2016)

Evolution Analysis

- We can identify several axes of progression (evolution):
 - Increasing **complexity of shapes** to be tracked: from hand-crafted to natural shapes, obtained from the data itself.
 - **Techniques** used:
 - Data association: from hard to soft (explicit or implicit).
 - Registration / alignment methods: from point-based methods (shapes represented as 2D point sets) to grid-based ones (shapes represented by histograms of events, to account for edge strength, using lattice-based implicit data association and reutilizing registration techniques from images): more accurate and longer tracks but higher computational cost.

 Improve this progression by reading Section 4.1 of <u>Event-based Vision: A Survey</u>, TPAMI 2020