

FCC Report (Bluetooth)

Product Name : Bluetooth module

Trade mark : XUNTONG TECH

Model No. : PTR5610

FCC ID : 2AA72-PTR5610

Report Number : BLA-EMC-202001-A06-01

Date of sample receipt : 2020/1/6

Date of Test : 2020/1/6 – 2020/1/10

Date of Issue : 2020/3/3

Test standard : FCC CFR Title 47 Part 15 Subpart C Section

15.247

Test result : PASS

Prepared for:

LANKE XUNTONG TECHNOLOGY CO.,LTD

Room7A-B,Block B of Wanlian Building,Net Valley,No. 12 of Yanshan
Road, Nanshan district,Shenzhen,China

Prepared by:

BlueAsia of Technical Services(Shenzhen) Co., Ltd. IOT Test Centre of BlueAsia

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

TEL: +86-755-28682673 FAX: +86-755-28682673

Compile by: Zason	Review by: Drand-Wei
Approved by: Emen_li	Date:2020/3/3 CSETTICES (Shenzher)

BlueAsia of Technical Services(Shenzhen) Co., Ltd. IOT Test Centre of BlueAsia,

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

Report No. : BLA-EMC-202001-A06-01 Page 2 of 36

2 Version

Version No.	Date	Description
00	2020/3/3	Original

Page 3 of 36

3 Contents

		Page
1	COVER PAGE	1
2	VERSION	2
3		
4		
5		
0	5.1 GENERAL DESCRIPTION OF EUT	
	5.2 TEST MODE	
	5.3 DESCRIPTION OF SUPPORT UNITS	7
	5.4 TEST FACILITY	
	5.5 TEST LOCATION	
6		8
7	TEST RESULTS AND MEASUREMENT DATA	10
	7.1 ANTENNA REQUIREMENT	10
	7.2 CONDUCTED EMISSIONS	
	7.3 CONDUCTED OUTPUT POWER	
	7.4 CHANNEL BANDWIDTH	
	7.5 POWER SPECTRAL DENSITY	
	7.6 BAND EDGES	
	7.6.1 Conducted Emission Method	
	7.0.2 Radiated Emission Wethod: 7.7 Spurious Emission	
	7.7.1 Conducted Emission Method	
	7.7.2 Radiated Emission Method	
8		
9	EUT CONSTRUCTIONAL DETAILS	

Report No.: BLA-EMC-202001-A06-01 Page 4 of 36

Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.10:2013.

Measurement Uncertainty

· · · · · · · · · · · · · · · · · · ·			
Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)
Radiated Emission	1GHz ~ 26.5GHz	± 4.68dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)
Note (1): The measurement unce	ertainty is for coverage factor of k	2 and a level of confidence of	95%.

Report No.: BLA-EMC-202001-A06-01 Page 5 of 36

5 General Information

5.1 General Description of EUT

Product Name:	Bluetooth module
Model No.:	PTR5610
Test Model No.:	PTR5610
	are identical in the same PCB layout, interior structure and electrical odel name for commercial purpose.
Serial No.:	N/A
Sample(s) Status	Engineer sample
Hardware:	V1.0
Software:	V1.0
Operation Frequency:	2402MHz-2480MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Type:	GFSK
Antenna Type:	PCB Antenna
Antenna Gain:	0 dBi
Power Supply:	DC 3.3V

Report No. : BLA-EMC-202001-A06-01 Page 6 of 36

Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz	
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz	
			. !	• !	. !		. !	
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz	
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

Report No.: BLA-EMC-202001-A06-01 Page 7 of 36

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.3 Description of Support Units

Manufacturer	Description	Model	Serial Number
SAMSUNG	Adapter	ETAOU80EB E	N/A
Lenovo	Notebook computer	E470C	PF-10FB5C

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC — Designation No.: CN1252

BlueAsia of Technical Services(Shenzhen) Co., Ltd has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Designation CN1252.

•ISED — CAB identifier No.: CN0028

BlueAsia of Technical Services(Shenzhen) Co., Ltd has been registered by Certification and Engineering Bureau of ISED for radio equipment testing with CAB identifier CN0028

5.5 Test Location

All tests were performed at:

All tests were performed at:

BlueAsia of Technical Services(Shenzhen) Co., Ltd.

IOT Test Centre of BlueAsia

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

No tests were sub-contracted.

Report No. : BLA-EMC-202001-A06-01 Page 8 of 36

6 Test Instruments list

Radi	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m SAC	SKET	9m*6 m*6m	966	06-10-2018	06-09-2023		
2	Broadband Antenna	SCHWARZBECK	VULB9168	00836 P:00227	07-14-2019	07-13-2020		
3	Horn Antenna	SCHWARZBECK	9120D	01892 P:00331	07-14-2019	07-13-2020		
4	EMI Test Software	EZ	EZ	N/A	N/A	N/A		
5	Pre-amplifier	SKET	N/A	N/A	07-19-2019	07-18-2020		
6	Spectrum analyzer	Rohde & Schwarz	FSP40	100817	05-24-2019	05-23-2020		
7	EMI Test Receiver	Rohde & Schwarz	ESR7	101199	03-21-2019	03-20-2020		
8	Controller	SKET	N/A	N/A	N/A	N/A		
9	Vector Signal Generator	Agilent	E4438C	MY45092582	05-24-2019	05-23-2020		
10	Signal Generator	Agilent	E8257D	MY44320250	05-24-2019	05-23-2020		
11	Coaxial Cable	BlueAsia	BLA-XC-02	N/A	N/A	N/A		
12	Coaxial Cable	BlueAsia	BLA-XC-03	N/A	N/A	N/A		
13	Coaxial Cable	BlueAsia	BLA-XC-01	N/A	N/A	N/A		

Conduc	Conducted Emission								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	EMI Test Receiver	Rohde & Schwarz	ESPI3	101082	06-10-2019	06-09-2020			
2	LISN	CHASE	MN2050D	1447	12-18-2019	12-17-2020			
3	LISN	Rohde & Schwarz	ENV216	3560.6550.15	07-19-2019	07-18-2020			
4	EMI Test Software	EZ	EZ	N/A	N/A	N/A			
5	Temperature Humidity Chamber	Mingle	TH101B	N/A	07-19-2019	07-18-2020			
6	Coaxial Cable	BlueAsia	BLA-XC-05	N/A	N/A	N/A			

Report No. : BLA-EMC-202001-A06-01 Page 9 of 36

RF Con	RF Conducted Test:							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Spectrum Analyzer	Agilent	N9030A	MY50510123	05-24-2019	05-23-2020		
2	Spectrum analyzer	Rohde & Schwarz	FSP40	100817	05-24-2019	05-23-2020		
3	Vector Signal Generator	Agilent	E4438C	MY45092582	05-24-2019	05-23-2020		
4	Signal Generator	Agilent	E8257D	MY44320250	05-24-2019	05-23-2020		
5	Power Sensor	D.A.R.E	RPR3006W	17I00015SNO27	05-24-2019	05-23-2020		
6	Power Sensor	D.A.R.E	RPR3006W	17I00015SNO28	05-24-2019	05-23-2020		
7	DC Power Supply	LODESTAR	LP305DE	N/A	07-19-2019	07-18-2020		
8	Temperature Humidity Chamber	Mingle	TH101B	N/A	07-19-2019	07-18-2020		

Report No.: BLA-EMC-202001-A06-01 Page 10 of 36

Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is PCB antenna, the best case gain of the antenna is 0 dBi

Report No. : BLA-EMC-202001-A06-01 Page 11 of 36

7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.10:2013				
Test Frequency Range:	150KHz to 30MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto			
Limit:	Francisco (MALIE)	Limit (c	lBuV)		
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logarithn	n of the frequency.			
Test setup:	Reference Plane				
	AUX Equipment Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m				
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 				
Test Instruments:	Refer to section 6.0 for details	;			
Test mode:	Refer to section 5.2 for details	}			
Test results:	Pass				

Measurement data

Line:

EUT: Bluetooth module Probe: L1

Model: PTR5610 Power Source: AC120V/60Hz

Page 12 of 36

Mode:BLE modeTest by:Eason

Temp./Hum.(%H): 26 °C/60%RH

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.2380	28.34	9.93	38.27	62.17	-23.90	QP
2	0.2380	19.73	9.93	29.66	52.17	-22.51	AVG
3	0.7060	26.49	9.67	36.16	56.00	-19.84	QP
4	0.7060	14.67	9.67	24.34	46.00	-21.66	AVG
5	1.1460	18.99	9.83	28.82	56.00	-27.18	QP
6	1.1460	13.03	9.83	22.86	46.00	-23.14	AVG
7	1.9740	22.44	9.82	32.26	56.00	-23.74	QP
8	1.9740	15.74	9.82	25.56	46.00	-20.44	AVG
9	7.6420	22.92	9.86	32.78	60.00	-27.22	QP
10	7.6420	13.23	9.86	23.09	50.00	-26.91	AVG
11	14.7500	30.84	9.97	40.81	60.00	-19.19	QP
12 *	14.7500	22.58	9.97	32.55	50.00	-17.45	AVG

Neutral:

Report No.: BLA-EMC-202001-A06-01 Page 13 of 36

EUT: Bluetooth module Probe:

Model: PTR5610 Power Source: AC120V/60Hz

Mode: BLE mode Test by: Eason

Temp./Hum.(%H): 26°C/60%RH

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
	0.2540	25.08	9.84	34.92	61.63	-26.71	QP
	0.2540	15.93	9.84	25.77	51.63	-25.86	AVG
	0.4020	21.35	9.70	31.05	57.81	-26.76	QP
	0.4020	14.63	9.70	24.33	47.81	-23.48	AVG
	0.6860	18.86	9.74	28.60	56.00	-27.40	QP
	0.6860	12.47	9.74	22.21	46.00	-23.79	AVG
	2.3740	22.34	9.86	32.20	56.00	-23.80	QP
	2.3740	14.09	9.86	23.95	46.00	-22.05	AVG
	7.7020	22.52	9.86	32.38	60.00	-27.62	QP
	7.7020	13.42	9.86	23.28	50.00	-26.72	AVG
	14.2980	33.25	10.01	43.26	60.00	-16.74	QP
*	14.2980	24.01	10.01	34.02	50.00	-15.98	AVG
		MHz 0.2540 0.2540 0.4020 0.4020 0.6860 0.6860 2.3740 2.3740 7.7020 7.7020 14.2980	Mk. Freq. Level MHz dBuV 0.2540 25.08 0.2540 15.93 0.4020 21.35 0.4020 14.63 0.6860 18.86 0.6860 12.47 2.3740 22.34 2.3740 14.09 7.7020 22.52 7.7020 13.42 14.2980 33.25	Mk. Freq. Level Factor MHz dBuV dB 0.2540 25.08 9.84 0.2540 15.93 9.84 0.4020 21.35 9.70 0.4020 14.63 9.70 0.6860 18.86 9.74 0.6860 12.47 9.74 2.3740 22.34 9.86 7.7020 22.52 9.86 7.7020 13.42 9.86 14.2980 33.25 10.01	Mk. Freq. Level Factor ment MHz dBuV dB dBuV 0.2540 25.08 9.84 34.92 0.2540 15.93 9.84 25.77 0.4020 21.35 9.70 31.05 0.4020 14.63 9.70 24.33 0.6860 18.86 9.74 28.60 0.6860 12.47 9.74 22.21 2.3740 22.34 9.86 32.20 2.3740 14.09 9.86 23.95 7.7020 22.52 9.86 32.38 7.7020 13.42 9.86 23.28 14.2980 33.25 10.01 43.26	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV dBuV dBuV 0.2540 25.08 9.84 34.92 61.63 0.2540 15.93 9.84 25.77 51.63 0.4020 21.35 9.70 31.05 57.81 0.4020 14.63 9.70 24.33 47.81 0.6860 18.86 9.74 28.60 56.00 0.6860 12.47 9.74 22.21 46.00 2.3740 22.34 9.86 32.20 56.00 2.3740 14.09 9.86 23.95 46.00 7.7020 22.52 9.86 32.38 60.00 7.7020 13.42 9.86 23.28 50.00 14.2980 33.25 10.01 43.26 60.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV dBuV dB 0.2540 25.08 9.84 34.92 61.63 -26.71 0.2540 15.93 9.84 25.77 51.63 -25.86 0.4020 21.35 9.70 31.05 57.81 -26.76 0.4020 14.63 9.70 24.33 47.81 -23.48 0.6860 18.86 9.74 28.60 56.00 -27.40 0.6860 12.47 9.74 22.21 46.00 -23.79 2.3740 22.34 9.86 32.20 56.00 -23.80 2.3740 14.09 9.86 23.95 46.00 -22.05 7.7020 22.52 9.86 32.38 60.00 -27.62 7.7020 13.42 9.86 23.28 50.00 -26.72 14.2980 33.25 10.01 43.26 60.00 -16

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + Correct factor
- 4. Correct factor = LISN Factor + Cable Loss
- 5. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

BlueAsia of Technical Services(Shenzhen) Co., Ltd.

IOT Test Centre of BlueAsia,

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

Report No. : BLA-EMC-202001-A06-01 Page 14 of 36

7.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05		
Limit:	30dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data

Test channel	Peak Output Power (dBm)	Limit(dBm)	Result
Lowest	-1.57		
Middle	-2.17	30.00	Pass
Highest	-1.87		

Test plot as follows:

Page 15 of 36

Date: 10.JAN.2020 12:11:10

Lowest channel

Highest channel

Report No. : BLA-EMC-202001-A06-01 Page 16 of 36

7.4 Channel Bandwidth

Toot Dogwing manufi	FOO Double C Continue 45 247 (2)(2)		
Test Requirement:	FCC Part15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05		
Limit:	>500KHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data

Test channel	Channel Bandwidth (MHz)	Limit(KHz)	Result
Lowest	0.720		
Middle	0.714	>500	Pass
Highest	0.708		

Page 17 of 36

Date: 10.JAN.2020 11:47:21

Lowest channel

Highest channel

Report No. : BLA-EMC-202001-A06-01 Page 18 of 36

7.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05		
Limit:	8dBm/3kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data

Test channel	Power Spectral Density (dBm/3KHz)	Limit(dBm/3kHz)	Result
Lowest	-17.04		
Middle	-17.67	8.00	Pass
Highest	-18.21		

Test plot as follows:

Page 19 of 36

Date: 10.JAN.2020 11:17:49

Lowest channel

Highest channel

Report No. : BLA-EMC-202001-A06-01 Page 20 of 36

7.6 Band edges

7.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:					
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

Test plot as follows:

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

Report No.: BLA-EMC-202001-A06-01 Page 21 of 36

7.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	All of the restrict bands were tested, only the worst band's (2310MHz to 2390MHz, 2483.5MHz to 2500MHz) data was showed.							
Test site:	Measurement Distance: 3m							
Receiver setup:	Frequency	Detector	RBW	VBW	Value			
	Above 1CHz	Peak	1MHz	3MHz	Peak			
	Above 1GHz	RMS	1MHz	3MHz	Average			
Limit:	Freque	ncy	Limit (dBuV	/m @3m)	Value			
	Above 1	GH ₇	54.0		Average			
	Above	OFFE	74.0	0	Peak			
	Tum Table	EUIT		Antenna 4m >	R+			
Test Procedure:	determine the 2. The EUT was antenna, whi tower. 3. The antenna ground to de horizontal an measuremen 4. For each sus and then the and the rota the maximum 5. The test-rece Specified Bai 6. If the emissio the limit spec of the EUT w have 10dB m peak or avera sheet. 7. The radiation And found th	t a 3 meter care position of the position of the set 3 meters che was mounted the position of the set of the position of the p	mber. The tallie highest race away from the don the top and from one nearmum value rizations of the con, the EUT conditions as set to Peadaximum Hole EUT in peaking could be ed. Otherwise re-tested or as specified arts are performoning which is	ble was rotated diation. The interference of a variable of a variable of the field state antenna at the antenna at the was arranged hits from 1 magrees to 360 at Detect Fund Mode. The mode was 10 stopped and the emission of the emission of the mode was 10 stopped and the mode was 10 stopped and the emission of the mode was 10 stopped and the emission of the mode was 10 stopped and the emission of the mode was 10 stopped and the emission of the mode was 10 stopped and the emission of the mode was 10 stopped and the emission of the mode was 10 stopped and the emission of the was 10 stopped and the	ed 360 degrees to se-receiving shelph antenna meters above the strength. Both re set to make the d to its worst case eter to 4 meters degrees to find action and DdB lower than the peak values ons that did not ing peak, quasi-			
	worst case mode is recorded in the report. Refer to section 6.0 for details							
Test Instruments:	Refer to section	6.0 for details		Refer to section 5.2 for details				
Test Instruments: Test mode:								

Measurement data:

Remark: The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

П	<u> </u>		
	Test channel:		Lowest

 ${\bf Blue Asia\ of\ Technical\ Services (Shenzhen)\ Co.,\ Ltd.}$

IOT Test Centre of BlueAsia,

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

Peak value:

Page 22 of 36

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	55.99	-14.42	41.57	74.00	-32.43	Horizontal
2390.00	57.76	-14.11	43.65	74.00	-30.35	Horizontal
2310.00	58.69	-14.71	43.98	74.00	-30.02	Vertical
2390.00	64.85	-14.44	50.41	74.00	-23.59	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	44.31	-14.42	29.89	54.00	-24.11	Horizontal
2390.00	44.86	-14.11	30.75	54.00	-23.25	Horizontal
2310.00	45.47	-14.71	30.76	54.00	-23.24	Vertical
2390.00	51.36	-14.44	36.92	54.00	-17.08	Vertical

The state of the s	1 2	Carron au a
Test channel:		Highest
1 OSt Originion.	1 3	IIGIIOSE

Peak value:

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	57.21	-13.61	43.60	74.00	-30.40	Horizontal
2500.00	56.90	-13,53	43-37	74.00	-30.63	Horizontal
2483.50	56.85	-14.00	42.85	74.00	-31.15	Vertical
2500.00	66.91	-13.93	52.98	74.00	-21.02	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	44.17	-13.61	30.56	54.00	-23.44	Horizontal
2500.00	43.17	-13.53	29.64	54.00	-24.36	Horizontal
2483.50	42.97	-14.00	28.97	54.00	-25.03	Vertical
2500.00	52.45	-13.93	38.52	54.00	-15.48	Vertical

Remark:

- 1. Final Level =Receiver Read level + Correct factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. Correct factor= Antenna Factor + Cable Loss Preamplifier Factor

BlueAsia of Technical Services(Shenzhen) Co., Ltd. IOT Test Centre of BlueAsia,

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

Report No. : BLA-EMC-202001-A06-01 Page 23 of 36

7.7 Spurious Emission

7.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	,				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

%

Test plot as follows:

Lowest channel

Page 24 of 36

Date: 10.JAN.2020 11:31:30

Middle channel

30MHz~25GHz

Date: 10.JAN.2020 11:35:38

30MHz~25GHz

Highest channel

Date: 10.JAN.2020 11:37:29

30MHz~25GHz

BlueAsia of Technical Services(Shenzhen) Co., Ltd. IOT Test Centre of BlueAsia, No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

Report No. : BLA-EMC-202001-A06-01 Page 25 of 36

7.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section	nn 15 200							
· · · · · · · · · · · · · · · · · · ·	FCC Part15 C Section 15.209 ANSI C63.10:2013								
Test Method:									
Test Frequency Range:	9kHz to 25GHz								
Test site:	Measurement Distar	Measurement Distance: 3m							
Receiver setup:	Frequency	Detector	RB\	W	VBW	Value			
	9KHz-150KHz	Quasi-peak	2001	Hz	600Hz	Quasi-peak			
	150KHz-30MHz	Quasi-peak	9KH	Ηz	30KHz	Quasi-peak			
	30MHz-1GHz	Quasi-peak	120K	Ήz	300KHz	Quasi-peak			
	1011	Peak	1MF	-Iz	3MHz	Peak			
	Above 1GHz	Peak	1MF	Ηz	10Hz	Average			
Limit: (Spurious Emissions)	Frequency	Limit (uV/m)	Va	alue	Measurement Distance			
,	0.009MHz-0.490M	IHz 2400/F(KHz)		QP		300m			
	0.490MHz-1.705M	IHz 24000/I	(KHz)	(QP	30m			
	1.705MHz-30MH	z 30		QP		30m			
	30MHz-88MHz	10	100		QP				
	88MHz-216MHz	z 15	0	(QP				
	216MHz-960MH	z 20	0	QP		0			
	960MHz-1GHz	50	0	QP		3m			
	4011	50	0	Average					
	Above 1GHz	50	5000		eak				
Limit: (band edge)	Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.								

Report No.: BLA-EMC-202001-A06-01 Page 26 of 36

 ${\bf Blue Asia\ of\ Technical\ Services (Shenzhen)\ Co.,\ Ltd.}$

IOT Test Centre of BlueAsia,

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

Report No. : BLA-EMC-202001-A06-01 Page 27 of 36

Troport No DEA-ENIO-202001	-A00-01 1 age 27 01 30
	measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement Data

■ 9 kHz ~ 30 MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Report No.: BLA-EMC-202001-A06-01 Page 28 of 36

■ Below 1GHz

Horizontal:

EUT: Bluetooth module **Polarziation**: Horizontal

Model: PTR5610 Power Source: AC120V/60Hz

Mode: BLE mode Test by: Eason

Temp./Hum.(%H): 26 °C/60 %RH

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		34.3964	8.93	12.99	21.92	40.00	-18.08	QP
2		70.8315	7.95	10.90	18.85	40.00	-21.15	QP
3		139.8508	8.47	13.18	21.65	43.50	-21.85	QP
4		216.0240	19.18	11.13	30.31	46.00	-15.69	QP
5		352.9433	16.21	15.39	31.60	46.00	-14.40	QP
6	*	480.5276	16.02	18.46	34.48	46.00	-11.52	QP

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

Report No. : BLA-EMC-202001-A06-01 Page 29 of 36

Vertical:

EUT: Bluetooth module Polarziation: Vertical

Model: PTR5610 Power Source: AC120V/60Hz

Mode: BLE mode Test by: Eason

Temp./Hum.(%H): 26°C/60%RH

Note:

No. M	lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	34.5173	11.89	13.00	24.89	40.00	-15.11	QP
2	70.3365	9.43	11.00	20.43	40.00	-19.57	QP
3	127.6645	9.89	12.80	22.69	43.50	-20.81	QP
4	216.0240	14.23	11.13	25.36	46.00	-20.64	QP
5	404.6665	14.78	16.97	31.75	46.00	-14.25	QP
6 *	687.1507	11.90	22.35	34.25	46.00	-11.75	QP

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

■ Above 1GHz

Test channel: Lowest

Page 30 of 36

Pea	k	va	lıı	Δ.

I can value.						
Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	53.26	-7.47	45.79	74.00	-28.21	Vertical
7206.00	55.92	-2.45	53.47	74.00	-20.53	Vertical
9608.00	57.62	-2.37	55.25	74.00	-18.75	Vertical
12010.00	*	*	*	74.00	*	Vertical
14412.00	*	*	*	74.00	*	Vertical
4804.00	55.43	-7.47	47.96	74.00	-26.04	Horizontal
7206.00	58.45	-2.45	56.00	74.00	-18	Horizontal
9608.00	59.33	-2.37	56.96	74.00	-17.04	Horizontal
12010.00	*	*	*	74.00	*	Horizontal
14412.00	*	*	*	74.00	*	Horizontal

Average value:

Average var						
Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m) Limit Line (dBuV/m)		Over Limit (dB)	Polarization
4804.00	44.12	-7.47	36.65	54.00	-17.35	Vertical
7206.00	45.23	-2.45	42.78	54.00	-11.22	Vertical
9608.00	46.85	-2.37	44.48	54.00	-9.52	Vertical
12010.00	*	*	*	54.00	*	Vertical
14412.00	*	*	*	54.00	*	Vertical
4804.00	43.22	-7.47	35.75	54.00	-18.25	Horizontal
7206.00	45.62	-2.45	43.17	54.00	-10.83	Horizontal
9608.00	48.61	-2.37	46.24	54.00	-7.76	Horizontal
12010.00	*	*	*	54.00	*	Horizontal
14412.00	*	*	*	54.00	*	Horizontal

Remark:

- 1. Final Level =Receiver Read level +Correct factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. Correct factor = Antenna Factor + Cable Loss Preamplifier Factor

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

Report No. : BLA-EMC-202001-A06-01 Page 31 of 36

Test channel: Middle						
Peak value:			,			
Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	53.20	-7.47	45.73	74.00	-28.27	Vertical
7326.00	55.97	-2.45	53.52	74.00	-20.48	Vertical
9768.00	58.63	-2.37	56.26	74.00	-17.74	Vertical
12210.00	*	*	*	74.00	*	Vertical
14652.00	*	*	*	74.00	*	Vertical
4884.00	52.94	-7.47	45.47	74.00	-28.53	Horizontal
7326.00	56.32	-2.45	53.87	53.87 74.00		Horizontal
9768.00	54.98	-2.37	52.61	52.61 74.00		Horizontal
12210.00	*	*	*	74.00	*	Horizontal
14652.00	*	*	* *		*	Horizontal
Average va	lue:					
Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	40.32	-7.47	32.85	54.00	-21.15	Vertical
7326.00	42.33	-2.45	39.88	54.00	-14.12	Vertical
9768.00	45.62	-2.37	43.25	54.00	-10.75	Vertical
12210.00	*	*	* 54.00		*	Vertical
14652.00	*	*	*	54.00		Vertical
4884.00	40.92	-7.47	33.45	54.00	-20.55	Horizontal
7000.00	17.55	0.15	00.4	= 4.00	440	

39.1

46.29

*

54.00

54.00

54.00

54.00

-14.9

-7.71

*

*

Horizontal

Horizontal

Horizontal

Horizontal

Remark:

7326.00

9768.00

12210.00

14652.00

1. Final Level =Receiver Read level +Correct factor

41.55

48.66

2. "*", means this data is the too weak instrument of signal is unable to test.

-2.45

-2.37

3 . Correct factor = Antenna Factor + Cable Loss – Preamplifier Factor

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

Report No.: BLA-EMC-202001-A06-01 Page 32 of 36

Test channel:	Highest
---------------	---------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	51.04	-7.47	43.57	74.00	-30.43	Vertical
7440.00	54.69	-2.45	52.24	74.00	-21.76	Vertical
9920.00	59.63	-2.37	57.26	74.00	-16.74	Vertical
12400.00	*	*	*	74.00	*	Vertical
14880.00	*	*	*	74.00	*	Vertical
4960.00	51.99	-7.47	44.52	74.00	-29.48	Horizontal
7440.00	58.35	-2.45	55.9	74.00	-18.1	Horizontal
9920.00	57.14	-2.37	54.77	74.00	-19.23	Horizontal
12400.00	*	*	*	74.00	*	Horizontal
14880.00	*	*	*	74.00	*	Horizontal

Average value:

Average valu	uc.					, , , , , , , , , , , , , , , , , , ,
Frequency (MHz)	Read Level (dBuV)	Correct factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	39.51	-7.47	32.04	54.00	-21.96	Vertical
7440.00	39.99	-2.45	37.54	54.00	-16.46	Vertical
9920.00	42.35	-2.37	39.98	54.00	-14.02	Vertical
12400.00	*	*	*	54.00	*	Vertical
14880.00	*	*	*	54.00	*	Vertical
4960.00	38.12	-7.47	30.65	54.00	-23.35	Horizontal
7440.00	41.52	-2.45	39.07	54.00	-14.93	Horizontal
9920.00	43.74	-2.37	41.37	54.00	-12.63	Horizontal
12400.00	*	*	*	54.00	*	Horizontal
14880.00	*	*	*	54.00	*	Horizontal

Remark:

- Final Level =Receiver Read level + Correct factor.
 "*", means this data is the too weak instrument of signal is unable to test.
- 3. Correct factor = Antenna Factor + Cable Loss Preamplifier Factor.

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

Report No.: BLA-EMC-202001-A06-01 Page 33 of 36

8 Test Setup Photo

Radiated Emission

Report No. : BLA-EMC-202001-A06-01 Page 34 of 36

Conducted Emission

port No. : BLA-EMC-202001-A06-01 Page 35 of 36

9 EUT Constructional Details

Report No. : BLA-EMC-202001-A06-01 Page 36 of 36

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of BlueAsia, this report can't be reproduced except in full.