Panel Data Regression 090507

Up to now we have analyzed either

 Cross-sectional data (data collected on several individuals/units at one point in time)

or

 Time series data (data collected on one individual/unit over several time periods)

What if we have a combination of these two types of data?

Panel data are repeated cross-sections over time, in essence there will be space as well as time dimensions.

Other names are pooled data, micropanel data, longitudinal data, event history analysis and cohort analysis

Panel Data Examples

The individuals/units can for example be workers, firms, states or countries

- Annual unemployment rates of each state over several years
- Quarterly sales of individual stores over several quarters
- Wages for the same worker, working at several different jobs

Panel Data Examples

Some american surveys:

- The National Longitudinal Survey of Youth (NLSY) tracks labor market outcomes for thousands of individuals, beginning in their teenage years
- The Panel Survey of Income Dynamics (PSID) since 1968 collects data on 5000 families about various socioeconomic and demographic variables
- The Survey of Income and Program Participation (SIPP), conducts interviews four times a year about the respondents economic conditions

Potential gains

- take heterogenity into account, get individual-specific estimates
- especially suitable to study dynamics of change
- study more sophisticated behavioral models
- minimize bias due to aggregation

However, panel data also increases the complexity of the analysis.

- Balanced/unbalanced
- Short panel/long panel

Two kinds of models:

FIXED EFFECTS MODELS

RANDOM EFFECTS MODELS

The two types of analyses make conceptually contrasting assumptions about effects as either random or fixed

Example with 2 explanatory variables:

$$Y_{it} = \beta_1 + \beta_2 X_{2it} + \beta_3 X_{3it} + u_{it}$$

Notice the subscript index it

- i stands for the i: th cross-sectional unit, i = 1, ..., N
- **t** stands for the t: th time period, i = 1, ..., T

Pooled OLS Regression

Treats all observation as equivalent and OLS as usual

$$Y_{it} = \beta_1 + \beta_2 X_{2it} + \beta_3 X_{3it} + u_{it}$$

In this case the error term captures "everything"

Naive, ignores time and space

Several kinds of fixed effects models, differs in the asumptions about

The intercept
The slope coefficients

	Varies over individuals	Varies over time
The intercept		_
The slope coefficients	_	_

Different intercepts for different individuals β_{1i}

$$Y_{it} = \beta_{1i} + \beta_2 X_{2it} + \beta_3 X_{3it} + u_{it}$$

but each individuals intercept does not vary over time

If the number of individuals is N=4

$$Y_{it} = \alpha_1 + \alpha_2 D_{2i} + \alpha_3 D_{3i} + \alpha_4 D_{4i} + \beta_2 X_{2it} + \beta_3 X_{3it} + u_{it}$$

	Varies over individuals	Varies over time
The intercept	_	
The slope coefficients	_	_

Different intercepts for different time periods instead $\beta_{1\mathbf{t}}$

$$Y_{it} = \beta_{1t} + \beta_2 X_{2it} + \beta_3 X_{3it} + u_{it}$$

If the number of time periods is T=20

$$Y_{it} = \lambda_1 + \lambda_2 D_{2t} + \lambda_3 D_{3t} + ... + \lambda_{20} D_{20t} + \beta_2 X_{2it} + \beta_3 X_{3it} + u_{it}$$

	Varies over individuals	Varies over time
The intercept		
The slope coefficients	_	_

Different intercepts for different individuals AND time periods $\beta_{1\mathrm{it}}$

$$Y_{it} = \beta_{1it} + \beta_2 X_{2it} + \beta_3 X_{3it} + u_{it}$$

For
$$N=4$$
 and $T=20$

$$Y_{it} = \alpha_1 + \alpha_2 D_{2i} + \alpha_3 D_{3i} + \alpha_4 D_{4i} + \lambda_1 + \lambda_2 D_{2t} + \lambda_3 D_{3t} + \dots + \lambda_{20} D_{20t} + \beta_2 X_{2it} + \beta_3 X_{3it} + u_{it}$$

	Varies over individuals	Varies over time
The intercept	$\sqrt{}$	_
The slope coefficients		_

Both intercepts and slopes varies over individuals, introduces a lot of dummy variables

$$Y_{it} = \alpha_1 + \alpha_2 D_{2i} + \alpha_3 D_{3i} + \alpha_4 D_{4i} + \beta_2 X_{2it} + \beta_3 X_{3it}$$

$$+ \gamma_1 D_{2i} X_{2it} + \gamma_2 D_{2i} X_{3it} + \gamma_3 D_{3i} X_{2it} + \gamma_4 D_{3i} X_{3it}$$

$$+ \gamma_5 D_{4i} X_{2it} + \gamma_6 D_{4i} X_{3it} + u_{it}$$

the number of interaction terms is number of dummy variables \times number of explanatory variables

Both intercepts and slopes varies over individuals and time requires even more variables

Fixed Effects Models

Cautions

- a lot of dummy variables
 - \Rightarrow less df
 - ⇒ increased risk of multicollinearity
- have to reflect on the assumptions about the error term u_{it}
 - heteroscedasticity?
 - autocorrelation?

easily gets complicated when both time and space dimensions

Now, in the Random Effects Model

$$Y_{it} = \beta_{1i} + \beta_2 X_{2it} + \beta_3 X_{3it} + u_{it}$$

the intercepts/effects β_{1i} are assumed to be random variables with mean value

$$E\left(\beta_{1i}\right) = \beta_1$$

and the intercept value for individual i can be expressed as

$$\beta_{1i} = \beta_1 + \varepsilon_i$$
 $i = 1, ..., N$

where
$$E\left({{arepsilon _i}} \right) = 0$$
 and $Var\left({{arepsilon _i}} \right) = \sigma _{arepsilon }^2$

each individual in the sample is considered to be a drawing from an infinite (or "close to") population of individuals which share the common mean value β_1

$$Y_{it} = \beta_1 + \beta_2 X_{2it} + \beta_3 X_{3it} + \varepsilon_i + u_{it}$$

$$Y_{it} = \beta_1 + \beta_2 X_{2it} + \beta_3 X_{3it} + w_{it}$$

The error term w_{it} consists of two components, random effects models are sometimes called error components models

Assumptions about the error components

$$egin{aligned} arepsilon_i & \sim N\left(0,\sigma_arepsilon^2
ight) \ & E\left(arepsilon_i arepsilon_j
ight) = 0 \quad ext{for } i
eq j \ & u_{it} \sim N\left(0,\sigma_u^2
ight) \ & E\left(u_{it}u_{is}
ight) = E\left(u_{it}u_{js}
ight) = 0 \quad ext{for } i
eq j \ t
eq s \ & E\left(arepsilon_i u_{it}
ight) = 0 \end{aligned}
ight\}$$

$$\Rightarrow \begin{cases} E\left(w_{it}\right) = 0 \\ Var\left(w_{it}\right) = \sigma_{\varepsilon}^{2} + \sigma_{u}^{2} \\ Corr\left(w_{it}, w_{is}\right) = \frac{\sigma_{\varepsilon}^{2}}{\sigma_{\varepsilon}^{2} + \sigma_{u}^{2}} \end{cases}$$

Random Effects vs Fixed Effects

depends on

 whether or not the individuals can be viewed as a random sample from a large population

$$E\left(\varepsilon_{i}X_{i}\right)=0$$
?

If yes: random effects, if no: fixed effects

- the relation between T and N
 - for large T and small N not a big difference
 - for small *T* and large *N* random effects estimators are more efficient than fixed effects (if the assumptions hold)