Devoir surveillé n° 8 – Version 2 –

Durée: 3 heures, calculatrices et documents interdits

I. Inégalité de Wirtinger.

Soit f une fonction de classe $\mathscr{C}^1(\mathbb{R})$ à valeurs réelles. Soit a et b deux réels tels que

$$a < b \le a + \pi$$
 et $f(a) = f(b) = 0$.

Le but de ce problème est de démontrer l'inégalité de Wirtinger :

$$\int_a^b f^2(t) \, \mathrm{d}t \leqslant \int_a^b f'^2(t) \, \mathrm{d}t,$$

et d'étudier le cas d'égalité.

Soit φ la fonction définie dans]a,b[par :

$$\forall t \in]a, b[: \varphi(t) = f(t) \cot(t - a) = f(t) \times \frac{\cos(t - a)}{\sin(t - a)}.$$

1) Montrer que l'on peut toujours prolonger φ par continuité en une fonction définie dans [a,b]. Préciser, suivant les cas, les valeurs de $\varphi(a)$ et $\varphi(b)$.

Dans toute la suite, φ désignera la fonction continue prolongée dans [a,b]. Il est clair que φ est dérivable et à dérivée continue dans l'ouvert]a,b[. En revanche, la question de la dérivabilité en a et b n'est pas abordée.

2) Soit u et v deux réels tels que a < u < v < b. Montrer que

$$f(v)\varphi(v) - f(u)\varphi(u) = \int_{u}^{v} f'^{2}(t) dt - \int_{u}^{v} f^{2}(t) dt - \int_{u}^{v} (\varphi(t) - f'(t))^{2} dt$$

3) La relation

$$0 = \int_a^b f'^2(t) dt - \int_a^b f^2(t) dt - \int_a^b (\varphi(t) - f'(t))^2 dt$$

est-elle valide? Le justifier soigneusement.

4) Montrer que

$$\int_a^b f^2(t) \, \mathrm{d}t \leqslant \int_a^b f'^2(t) \, \mathrm{d}t$$

- 5) On suppose maintenant que l'inégalité de la question 4) est une égalité.
 - a) Montrer que, pour tout $t \in [a, b]$, $f'(t) = \varphi(t)$.
 - **b)** Montrer qu'il existe un réel λ tel que, pour tout $t \in [a, b]$, $f(t) = \lambda \sin(t a)$.

II. Involutions dans un ensemble fini.

Soit E un ensemble. On note $\mathcal{I}(E)$ l'ensemble des *involutions* de E, c'est-à-dire des applications $f: E \to E$ telles que $f \circ f = \mathrm{id}_E$:

$$\mathcal{I}(E) = \{ f : E \to E \mid f \circ f = \mathrm{id}_E \}.$$

- 1) Montrer qu'une involution est bijective.
- 2) Soit E et F deux ensembles équipotents, c'est-à-dire tels qu'il existe une bijection $\varphi: E \to F$. Montrer qu'il existe une bijection entre les ensembles $\mathcal{I}(E)$ et $\mathcal{I}(F)$.

Lorsque l'ensemble E est fini de cardinal n, on note I_n le nombre d'involutions de E, c'est-à-dire

$$I_n = \operatorname{Card}(\mathcal{I}(E)).$$

3) Déterminer I_1 et I_2 .

On suppose désormais que $E = \{1, ..., n\}$, où $n \ge 3$. On note :

$$\mathcal{I}_k = \{ f \in \mathcal{I}(E) \mid f(n) = k \}.$$

- 4) a) Est-il restrictif de faire ce choix pour E, plutôt qu'un ensemble quelconque à n éléments?
 - **b)** Proposer une majoration simple de I_n .
- 5) Montrer que la famille $(\mathcal{I}_k)_{1 \leq k \leq n}$ forme une partition de $\mathcal{I}(E)$.
- 6) Montrer qu'il existe une bijection entre \mathcal{I}_n et $\mathcal{I}(E)$, puis qu'il existe une bijection entre \mathcal{I}_k et $\mathcal{I}(\{1,\ldots,n-2\})$, pour tout $k \in \{1,\ldots,n-1\}$.

On se contentera d'exhiber ces bijections et de vérifier qu'elles sont bien définies, sans faire en détail les preuves qu'elles sont bijectives.

- 7) Exprimer, pour tout $n \ge 3$, I_n en fonction de I_{n-1} , I_{n-2} et n.
- 8) On considère la suite de terme général $u_n = \frac{I_n}{n!}$.
 - a) Que représente u_n ?
 - **b)** Montrer que, pour tout $n \geqslant 3$, $u_n = \frac{u_{n-1} + u_{n-2}}{n}$.
 - c) Montrer que, pour tout $n \in \mathbb{N}$, $u_n \leqslant \frac{2}{n}$. En déduire la nature de la suite $(u_n)_n$.
- 9) Montrer que, pour tout $n \ge 1$:

$$I_{2n} = \sum_{k=0}^{n} \frac{(2k)!}{2^k k!} {2n \choose 2k}$$
 et $I_{2n+1} = \sum_{k=0}^{n} \frac{(2k)!}{2^k k!} {2n+1 \choose 2k}$.

— FIN —