Predictive Analysis of Ambient Environment for Urban Cultivation using IoT based Hydroponic System

Journal:	IEEE Internet of Things Journal
Manuscript ID	IoT-23314-2022
Manuscript Type:	Regular Article
Date Submitted by the Author:	07-Apr-2022
Complete List of Authors:	S A, Hariprasad; Vellore Institute of Technology, Kavuru, Nikhil; Vellore Institute of Technology, S, Yokes Babu; Vellore Institute of Technology,
Keywords:	Controlled Environment, Hydroponic, Machine Learning Algorithms Supervised, Regression Models

SCHOLARONE™ Manuscripts

Predictive Analysis of Ambient Environment for Urban Cultivation using IoT based Hydroponic System

S A Hariprasad, Student, VIT University, Nikhil K, Student, VIT University, Yokesh Babu S, Professor, VIT University

Abstract—This paper tells about the best and optimum conditions in which one can grow crops using Hydroponic farming. For this work, we are growing coriander plant in a controlled environment with constant monitoring, the controlled environment being restricted water supply I,e Hydroponic farming. Various parameters like Soil pH, Moisture levels etc. are recorded on daily basis and made into a data set. This data set, then with the help of Supervised Machine Learning algorithms we are going to Co-Relate the data collected via IOT by the help of Regression Models find the trends within the taken parameters and give an idea as to which conditions give a better yield.

Keywords— Controlled Environment, Hydroponic, Machine Learning Algorithms Supervised, Regression Models

I. INTRODUCTION

In a rapidly developing country like India, which has the world's highest growing GDP Urbanization is being seen in every nuke and corner of the country. The difference between the population density of the cities and rural areas are very high. The population of the cities are growing exponentially every year, because of which the agricultural farms in and around the cities are being converted into residential sky scrapers. The need and demand for crops and food is growing up but the area to grow is going down. Due to this alarming scenario, hydroponic agriculture has risen in popularity and practice. It is a form of agriculture in which the plants are grown with restricted water supply.

No.	City	Corporation	Population (In Lakhs)	Area (sqkm)	Density (pph)	Core Area Density (pph)	Core Area (In sq.km)
1	Mumbai	MCGM	124.78	437	286	• 460	67.7*
2	Kolkata	KMC	44.96	205	219	219	205
3	Chennai	GCC	67.27	426	157	270	176**
4	Bengaluru	BBMP	84.25	712	118	214	216***
5	Dêlhi	MCD	164.19	1397	118	391	22.74****
6	Hyderabad	GHMC	67.31	650	104	232	172.6*****

Figure 1. Population Density of Indian Metropolitan Cities

Figure 2. Per Capita Net Availability: Food grains: Pulses

Agriculture is India's principal employment and the backbone of the Indian economy. Agriculture, in addition to supplying food, gives job possibilities to rural people on a big scale in impoverished and emerging countries. It is the process of producing food, fibre and many other desired products by the cultivation and raising of domestic animals. Agriculture is a primary source of income for more than 58 percent of India's population.

As the population of the city grows significantly the need to feed the city heavily lays on the need of agricultural land. As most of the agriculture lands are dried up due to lack of water the need for starvation increases. Hence cities have to start cultivating crops and the need for automated farming in cities becomes crucial.

Climate changes will have a significant impact on agriculture by increasing water demand and limiting crop productivity in areas where irrigation is most needed. Some of the strategies established to create better crops that may not use water effectively include irrigation systems, rain fed agriculture, and groundwater irrigation. A smart system is intended to use water effectively.. In the system farmers need not make the water flow into fields manually, but the system automatically does that efficiently.

People's traditional practises of water conservation may result in massive water waste. As a result, the notion of robotized farming with a combination of IoT has emerged. Technological developments began to significantly boost manufacturing efficiency, resulting in a dependable system. The understanding of soil qualities causes the water supply to be driven in an intelligent manner. Agriculture practised wisely aids in the acquisition of understanding about soil and temperature conditions. Developing smart agriculture employing IoT-based devices not only boosts output but also reduces water waste.

II. BACKGROUND

Hydroponic farming is heavily dependent upon the water retention. The limited amount of water available will be retained with the help of a special soil mixture provided whose key role is to maintain the water level without losing the soil moisture.

A lot of work has already been done on the aspect of hydroponic farming. We have gone through various papers and found the following drawbacks and concepts.

Feature Selection has not yet been used in the creation of the machine learning model in this study. As a result, the outcome was less than satisfactory. The lettuce was standing straight one day and swaying to the side the next due to the blowing wind. Other errors were influenced by the amount of sunlight and temperature on that particular day. A lot of sunlight causes the plant to wither and unfold. When measured on a day with less sunlight and temperature, the width is smaller than when measured on a day with more sunlight and temperature.[4] Finally, these flaws caused the model to fail to produce a good learning result.

This work focuses on a model which maintains soil moisture level which is optimum for the crop growth.

This level of soil moisture will be maintained constantly for the next 24 hours with no impact and consideration of the weather condition. This work also talks about smart irrigation system which helps in apt water management and provides ideal crop suggestions based on historic soil data.

This work also provides the type and quantity of various minerals needed.[9] This work does not talk about the plant diseases, this can further be extended so as to detect diseases and automated dispersal of pesticides and insecticides.

This work emphasizes on the importance of IoT based technologies in agriculture. This paper works on the use of Low-Power Wide-Area Network(LPWAN) to reduce the power consumption and increasing the wireless range by eliminating the unnecessary dependency of third party and backhaul networks. It also describes the comparisons between Coverage Range, Quality of Service, Battery Life, Latency, Scalability, Payload Length and Development model between LPWAN technologies. The only major drawback of the paper is the maintenance the LPWAN requires to keep it running as the technology used won't have the ideal conditions to run in an agricultural setup even though the batter life and power consumption are ideal.[7]

Multi-Level IOT framework, which uses Application Layer, Internet Layer, Sensor and Actuator Framework along with Distribution middleware and follows MQTT protocol. In the output, the End User Experiences VPS interaction in one aspect and in the other aspect, it uses VPS and Local Server Interaction. This works falls back in implementing limiting factors such as nitrate, nitrate and ammonia via the electronic sensors. Automated data collection can be implemented into this work so that the system can function with better efficiency and maybe it could send alerts to the sender if there is any change or drastic changes in the parameters.[1]

The paper focuses on five main concepts, namely

Hydroponics, Need for Automation Control, Climate Statistics, Data Analytics and Cloud, Proposed System.

The sensors record analog Data through Hydroponic system with the help of MCP 3008 ADC. This work acts as an eye mainly to farmers but this technology can sometimes act more of an ban than a boon for the farmers. This work is done solely done on the famer end so, it can be implemented in other factors as well[2].

III. SYSTEM ARCHITECTURE

A. Hydroponic Farming

In the present fast pace world, the form of hydroponic farming is taking over. The ongoing research paved new ways and paths for a better and substantial way of farming. Noticing the ways and researching the present trends, mainly followed in metropolitan cities and technologically advanced countries makes lives a lot easier in terms of hydroponic farming.

The work done by us addresses the key issues of automation and IoT integration into the way of sustainable farming in constraints such as limited water supply and space.

B. Necesity for automation

The work being done needs constant monitoring as various sensors are used in an confined and controlled environment. As pre-processing homo sapiens, we tend to make unavoidable errors in our work. To avoid such mistakes that in other ways cannot be avoided, automation is the way.

With the help of Arduino , ESp 8266 and aurd Spread Sheet the reading from the sensors are directly stored into the spreads sheet with almost no error. The readings are recorded once every 10 minutes which without automation requires a immense amount of man power which intern may lead to loss or errors in recorded results.

C. Climate Maintained

Farming mainly depends on ambient climatic conditions but the city environment is not suitable for the growth of crops in the traditional way.

For our work as we targeted the metropolitan cities we made sure that the temperature rage varied from 28 degree Celsius to 36 degree Celsius. In hydroponic farming, the crops are not exposed to sunlight throughout. Rather than exposing them to sunlight throughout, we made sure that an adequate sunlight was available which in the day reaches approximately 240 candela and in the night for the integrity of the results, we made sure no light from any source was available which resulted in 0 candela.

Speaking about the soil moisture, for better understating of the impact of moisture retention of the soil we grew the crops in early summer because of which there is humidity in the air than normal. The humidity varied from 40 percent to 80 percent which is the normal range in a coastal city.

TABLE 1
Range of Parameters Full Phase of crop growth

PARAMETER	MAX	MIN
PH	27.13	6.68
LUMINOUS	226	0
INTENSITY		
HUMIDITY	82.5	47.8

TEMPERATURE	38.6	25.7
SOIL MOISTURE	687	579
WATER LEVEL	731	153

TABLE 2
Range of Parameters Initial Phase of crop growth

PARAMETER	MAX	MIN
PH	27.13	6.68
LUMINOUS	226	0
INTENSITY		
HUMIDITY	82.5	47.8
TEMPERATURE	38.6	25.7
SOIL MOISTURE	687	579
WATER LEVEL	731	153

TABLE 3
Range of Parameters Growing Phase of crop growth

PARAMETER	MAX	MIN
PH	12.59	0
LUMINOUS	220	0
INTENSITY		
HUMIDITY	72.7	43.6
TEMPERATURE	36.3	27.7
SOIL MOISTURE	685	676
WATER LEVEL	661	272

TABLE 4
Range of Parameters Harvesting Phase of crop growth

PARAMETER	MAX	MIN
PH	27.13	6.68
LUMINOUS	226	0
INTENSITY		
HUMIDITY	82.5	47.8
TEMPERATURE	38.6	25.7
SOIL MOISTURE	687	579
WATER LEVEL	731	153

D. Data Analysis

All the information collected from the sensors is stored in the personal systems directly rather than cloud as clod is heavily dependent upon an uninterrupted internet connection which sometimes may not be possible.

The data collected is stored and processed with the help of python to create results which help in better understanding of the data.

E. Proposed System

An innovative form of hydroponic farming is used. A coco pit is used as an soil replacement as the water retention capacity is much higher in this compared to general soil. The coco pit is connected to water supply which is regulated. Six different sensors are connected to the system. The sensors being, pH sensor which monitors the pH of the water in the coco pit. The water in coco pit pH initially at the time of laying it down was 6.5. The second sensor used is Luminous Intensity Sensor. This sensor monitors the amount of luminescence around the setup. The third sensor is Humidity sensor, this sensor monitors the humidity in the surroundings

of the setup. Next sensor used was temperature sensor, this sensor monitors the temperature of the surroundings. The fifth sensor used was soil moisture sensor, this sensor measured the amount of moisture in coco pit throughout the experiment. The final sensor used is water level sensor, this sensor measures the amount of water provided to the system daily. The seeds used were coriander seeds as they take less time to grow which afforded us a chance to cross verify the results by repeating the experiment.

IV. EXPERIMENTAL PROCESS

According to the proposed system, the experiment is designed in such a way that it is a prototypical implementation. The design procedures are explained with a block Diagram.

A. Block Diagram

In the following proposed system, the analoge and digital sensors collect information from the hydrophonic setup. With the help of Arduno Mega 2560 data is send to spreadsheet in a very smooth and effective manner. The data is collected and saved in database using a wifi module. The block figure is represented for the proposed system.

Figure 3. Block diagram of proposed Hydroponic system

Major Steps explained in proposed system is mentioned as flow chart.

B. Circuit diagram and components

The proposed circuit is created in such a way that the cost of components is economical and also the quality the components is not comparamised and also the performance of the components are very good.

The Major components invloved in proposed system are:

- Arduino Mega 2560
- Temperature sensor (DHT-22)
- Humidity Sensor (DHT-22)
- Water Level Sensor
- Soil Moisture Sensor
- PH Sensor
- Luminous Intensity Sensor
- WIFI module (ESP 8266)
- Breadboard
- Jumper wires
- Pump
- Water Tube
- 5V motor
- 5V power supply

Figure 4. Circuit diagram of proposed Hydroponic System

The main component of the automated system is Arduino Uno Mega 2560 which is a very stable model which provides propper power supply and also helps in uploading large bundle of code.

Figure 5. Economic PH sensor with Luminous intensity sensor

PH Sensor - In both soil and hydroponics gardening, optimal pH levels are crucial for healthy plants and excellent harvests. Maintaining those ideal values necessitates frequent, reliable pH testing, especially in soilless growth systems. A plant's nutrient uptake is maximised at ideal pH values. The vigour and productivity of a plant are increased as a result of these nutrients. Luminous Intensity Sensor helps to capture the amount of sunlight hitting the product

Figure 6. DHT-22 Humidity and Temperature Sensor

DHT22 Temperature/Humidity Sensor - The DHT22 is a Temperature and Humidity sensor with digital interface temperature. The sensor is made in such a way that it can get propper calibrated value of humidity and temperature.

Figure 7. Image of soil moisture Sensor

Soil Moisture Sensor - This soil moisture sensor can be used to detect soil moisture or evaluate if there is water around the sensor. It also tells you if the plants in the mesh pot need to be watered.

Figure 8. Image of Water Level Sensor

Water-Level Sensor - A water-level sensor is a device that detects the level of water in a container. Maintaining the water level allows the roots to absorb the proper amount of water and prevents the plant from being spoilt.

V. DATASET ANALYSIS

A. Variation of PH with respect to time

Figure 9. Time series Analysis of PH

Fig: 9 shows the pH values of the water through the experiment. The minimum value recorded is 5.5 on the ph scale and this was recorded during the Initial phase of the experiment. The maximum recorded is 13 and it was recorded during the growth phase due to the addition of mineral water to the water supply, it became more basic. After the growth phase we supplied general water again so, the pH dropped gradually making it more neutral.

B. Variation of Sunlight with respect to time

Figure 10. Time series Analysis of Luminous Intensity/ Sunlight for plant

Fig: 10 depicts the Luminous intensity on candle scale over the whole duration of the experiment. The least recorded is Zero as during the night, it is made sure that the experimental setup is not exposed to any form of light energy. The highest value recorded is around 250 candela during the day.

C. Variation of Humidity with respect to time

Figure 11. Time series Analysis of Humidity

Fig 11: shows the humidity in the surroundings of the setup. As the experiment setup was in a coastal city, the humidity is relatively high but is under the normal humidity levels for the city. The lowest recoded is 45% and the highest is around 80%. To make sure that the humidity level doesn't go overboard, we conducted the experiment during early summer.

D. Variation of Temperature with respect to time

Figure 12. Time series Analysis of Temperature

Fig 12: represents the Temperature of the surroundings throughout the experiment. The temperature kept on raising during the experiment gradually. The lowest recoded temperature was 26degree Celsius and highest was 36degree Celsius. The lowest average temperature was during the initial phase and the highest average was during the harvesting phase.

E. Variation of Soilmoisture with respect to time

Figure 13. Time series Analysis of Soil Moisture

Fig: 13 shows the moisture in the coco pit during the experiment timeline. During the initial phase the moisture level was between 682-686. The moisture level was highest during the growth phase which ranges between 680-692. The moisture level during the harvest phase is lowest in terms of average, its range varies from 676-680.

F. Variation of Water Level with respect to time

Figure 14. Time series Analysis of Water Level

Fig: 14 depicts the water level in the experiment. The water level gradually increases till the growth phase and decreases there on. The water level during the initial phase was between 160 and 240ml, during growth phase it is between 200ml and 650ml. During the harvest phase, the water level required is low , it ranges from 200-500ml.

VI. RESULT AND DISCUSSION

The main objective of the result is to corelate the various parameters of the experiments with the help of four evaluation parameters, namely

- Mean Absolute Error (MAE)
- Root Mean Square Error (MASE)
- Root Mean Square Log Error (RMSE)
- R Squared(R2)

The lower the value of MAE, the more the parameters are corelated. The R2 specifies the error in the calculations I,e the lesser the value of R2, the better the correlation is.

A. Predictive Analysis of parameters using Linear Regression

TABLE 5
Linear Regression Between Parameters for Initial Phase of Coriander Plant Growth

PARAME TER VS PARAME TER	РН	SUNLI GHT	HUMI DITY	TEMPER ATURE	SOILMOI STURE	WATE R LEVEL
РН	Х	MAE=26 .54 MASE= 1702.59 RMSE=4 1.26 R2=- 0.00288	MAE=3 .13 MASE= 17.055 RMSE= 4.1298 R2= 0.03718	MAE=0.9 522 MASE=2. 0584 RMSE=1. 43474 R2=- 0.003785	MAE=0.9 161 MASE=1. 1950 RMSE=1. 0931 R2=- 0.011836	MAE= 11.9423. MASE= 233.031 RMSE= 15.265 R2=- 0.0039
SUNLIG HT	MAE=0 .3905 MASE= 0.2885 RMSE= 0.5371 R2=- 0.00707	X	MAE= 2.9133 MASE= 16.551 RMSE= 4.0683 R2= 0.0650	MAE= 0.7492 MASE= 1.268 RMSE= 1.126 R2= 0.145	MAE=0.9 02 MASE=1. 160 RMSE= 1.077 R2=- 0.0417	MAE=1 .0388 MASE= 1.521 RMSE= 1.233 R2=0.07 8

HUMIDI TY	MAE=0 .3817 MASE= 0.253 RMSE= 0.503 R2=- 0.0074	MAE=21 .29 MASE= 1630.14 RMSE= 40.375 R2= 0.157	X	MAE= 0.831 MASE= 1.205 RMSE= 1.097 R2= 0.517	MAE=0.8 75 MASE=1. 06 RMSE=1. 033 R2= - 0.0056	MAE=9 .843 MASE= 174.68 RMSE= 13.21 R2=0.09 41
TEMPER ATURE	MAE=0 .409 MASE= 0.316 RMSE= 0.562 R2=0.00 32	MAE=22 .06 MASE= 1529.58 RMSE=3 9.109 R2=0.21 6	MAE=2 .64 MASE= 10.3 RMSE= 3.214 R2=0.50	X	MAE=0.9 160 MASE=1. 190 RMSE=1. 090 R2=- 0.012	MAE=9 .714 MASE= 168.86 RMSE= 12.99 R2=0.08
SOILMOI STURE	MAE= 0.389 MASE= 0.278 RMSE= 0.527 R2==- 0.0094	MAE=24 .12 MASE= 1462.23 RMSE= 38.23 R2=0.00 32	MAE= 0.933 MASE= 2.1119 RMSE= 1.453 R2=- 0.0231	MAE=2.8 90 MASE=15 .77 RMSE= 3.97 R2=- 0.018	Х	MAE=1 1.212 MASE= 229.93 RMSE= 15.16 R2=- 0.0049
WATER LEVEL	MAE= 0.339 MASE= 0.232 RMSE= 0.4819 R2=0.02 21	MAE= 22.450 MASE= 1350.67 RMSE= 36.75 R2= 0.190	MAE= 3.35 MASE= 2.043 RMSE= 1.4296 R2=0.00 10	MAE=3.3 56 MASE=18 .41 RMSE=4. 29 R2=0.039	MAE=0.7 97 MASE=1. 540 RMSE= 1.240 R2= 0.0032	X

From Table 5, it can be inferred that water level and pH are the most corelated parameters in the initial phase of the experiment as MAE=0.339. This means, with a given Water Level, we can predict the value of pH required for a good yield. The parameters that cannot be corelated are pH and Sunlight as the MAE=26.54, this means that the value of Luminous intensity cannot be predicted with the pH level.

TABLE 6
Linear Regression Between Parameters for Growing
Phase of Coriander Plant Growth

PARAME	PH	SUNLIGH	HUMIDI	TEMPER	SOILMOI	WATER
TER VS		Т	TY	ATURE	STURE	LEVEL
PARAME						
TER						
PH	Х	MAE=21.	MAE=3.	MAE=1.1	MAE=1.6	MAE=
		157	400	55	315	136.46.
		MASE=12	MASE=2	MASE=3.	MASE=3.	MASE=
		28.42	1.329	1804	9975	23789.17
		RMSE=35	RMSE=4.	RMSE=1.	RMSE=1.	RMSE=
		.04 R2=-	618 R2=	783 R2=-	999	154.2
		0.0048	-0.0108	0.0061	R2=0.009	R2=0.1199
					6	
SUNLIGH	MAE=0.	Х	MAE=	MAE=	MAE=1.5	MAE=1.56
Т	944		3.309	1.010	56	2 MASE=
	MASE=		MASE=	MASE=	MASE=3.	3.678
	2.5054		20.457	2.544	836	RMSE=
	RMSE=		RMSE=	RMSE=	RMSE=	1.917
	1.582		4.522	1.595	1.958	R2=0.033
	R2=		R2=0.19	R2=	R2=0.024	
	0.00005		4	0.1704	7	
	23					
HUMIDIT	MAE=0.	MAE=19.	Х	MAE=	MAE=1.6	MAE=134.
Υ	9677	44		0.943	009	715
	MASE=2	MASE=		MASE=	MASE=3.	MASE=241
	.328	1072.59		1.686	845	55.87
	RMSE=	RMSE=		RMSE=	RMSE=1.	RMSE=155
	1.525	32.750		1.298	96 R2=	.42
	R2=0.00	R2=		R2=	0.00245	R2=0.1037
	814	0.1304		0.5603		
TEMPERA	MAE=0.	MAE=18.	MAE=2.	Х	MAE=1.7	MAE=142.
TURE	8932	107	487		80	16
	MASE=1	MASE=88	MASE=1		MASE=4.	MASE=252
	.6079	8.58	0.05		511	89.25
	RMSE=1.	RMSE=29	RMSE=3.		RMSE=2.	RMSE=159
	268 R2=-	.80	171		123 R2=-	.02
	0.0076	R2=0.165	R2=0.56		0.0042	R2=0.0057
			3			
SOILMOI	MAE=	MAE=19.	MAE=	MAE=3.3	х	MAE=130.
STURE	0.959	289	1.0317	324		00
	MASE=	MASE=	MASE=2	MASE=21		MASE=231
1	2.385	834.443	.1168	.27		37.316
	RMSE=	RMSE=	RMSE=1.	RMSE=		RMSE=
	1.544	28.88	454 R2=	4.612		152.109
1	R2==	R2=0.003	-0.0373	R2=-		R2= 0.0110
	0.01081	7		0.00273		

WATER	MAE=	MAE=	MAE=	MAE=3.4	MAE=1.1	Х
LEVEL	0.886	20.0011	1.563	94	73	
	MASE=2	MASE=	MASE=3	MASE=20	MASE=2.	
	.728	1183.82	.701	.4542	624	
	RMSE=1.	RMSE=	RMSE=	RMSE=4.	RMSE=	
	65	34.406	1.923	5226	1.62 R2=	
	R2=0.11	R2=	R2=0.01	R2=0.073	0.0017	
	77	0.0038	99			

From Table 6, it can be inferred that temperature and pH are the most corelated parameters in the growth phase of the experiment as MAE=0.8932. This means, with a given temperature, we can predict the value of pH required for a good yield. The parameters that cannot be corelated are temperature and water level as the MAE=142.16, this means that the value of Water level cannot be predicted with a given temperature.

TABLE 7
Linear Regression Between Parameters for Harvesting
Phase of Coriander Plant Growth

Phase of Corlander Plant Growth								
PARAM ETER	PH	SUNLI GHT	HUMI DITY	TEMPE RATUR	SOILM OISTUR	WATER LEVEL		
VS PARAM ETER				E	E			
PH	X	MAE=2	MAE=	MAE=0. 906	MAE=1.	MAE= 100.54. MASE=15723.		
		2.685 MASE=	4.589 MASE	MASE=	1328 MASE=1	309 RMSE=		
		1027.81 8	=33.36 7	1.836 RMSE=1	.821 RMSE=1	125.392 R2=- 0.05177		
		RMSE= 32.059	RMSE =5.77	.35 R2=0.06	.349 R2=0.03			
		R2=- 0.020	R2= - 0.154	53	2			
SUNLIG	MAE=	X	MAE=	MAE=	MAE=0.	MAE=1.0651		
HT	0.9731 MASE		3.446 MASE	0.7630 MASE=	945 MASE=1	MASE= 1.972 RMSE= 1.404		
	= 1.421		= 20.575	1.6451 RMSE=	.470 RMSE=	R2=0.00676		
	RMSE =		RMSE = 4.535	1.282 R2=	1.212 R2=-			
	1.192 R2= -		R2= 0.1587	0.2184	0.0047			
HUME	0.0967	MARIA		MAE 0	MAE	MAE 100.25		
HUMID ITY	MAE= 0.8707	MAE=1 9.1465	X	MAE=0. 725	MAE=1. 008	MAE=108.25 MASE=14820.		
	MASE =1.290	MASE= 1114.27		MASE= 1.277	MASE=1 .796	36 RMSE=121.73		
	3 RMSE	RMSE= 33.38		RMSE= 1.130	RMSE=1 .340 R2=	8 R2=0.207		
	1.1359	R2= 0.205		R2= 0.290	0.01474			
	R2=0.1 53	0.203		0.270				
TEMPE	MAE=	MAE=2	MAE=	X	MAE=1.	MAE=111.24		
RATUR E	0.9607 MASE	0.242 MASE=	3.8819 MASE		130 MASE=2	MASE=16898. 54RMSE=129.		
	=1.441 RMSE	1750.40 4	=25.49 5		.060 RMSE=1	99 R2=0.026065		
	=1.200	RMSE= 41.837	RMSE =5.049		.435 R2=0.00			
	R2=0.0 75	R2=0.26 34	R2=0.3 559		103			
SOILM	MAE=	MAE=2	MAE=	MAE=4.	X	MAE=105.00		
OISTUR E	0.9433 MASE	3.149 MASE=	1.0291 MASE	599 MASE=		MASE=16357. 032		
	= 2.2974	1434.32 RMSE=	=1.813 RMSE	33.304 RMSE=		RMSE=127.89 4 R2= -0.004		
	RMSE =	37.87 R2=-	= 1.346 R2= -	5.770 R2=-				
	1.515 R2==	0.00766	0.1067	0.0732				
	0.0189							
WATER LEVEL	MAE= 0.9163	MAE= 28.312	MAE= 1.055	MAE=4. 03624	MAE=0. 9096	X		
LEVEL	MASE	MASE=	MASE	MASE=	MASE=1			
	=1.311 RMSE	2365.95 RMSE=	=1.632 25	25.24 RMSE=5	.342 RMSE=			
	=1.145 R2=0.0	48.641 R2=	RMSE =1.277	.024 R2=0.16	1.158 R2=			
	459	0.00048	5 RE=0.0	178	0.0436			
			771					

From Table 7, it can be inferred that humidity and temperature are the most corelated parameters in the harvesting phase of the experiment as MAE=0.723. This

means, with a given humidity level, we can predict the temperature required for a good yield. The parameters that cannot be corelated are temperature and water level as the MAE=111.24, this means that the value of Water level cannot be predicted with a given temperature.

TABLE 8 Linear Regression Between Parameters for Full Phase of Coriander Plant Growth

PARAME	PH	SUNLIGH	HUMIDI	TEMPER	SOILMOI	WATER
TER VS		T	TY	ATURE	STURE	LEVEL
PARAME			• • •	7110112	0.0112	
TER						
PH	Х	MAE=23.	MAE=3.	MAE=1.2	MAE=1.8	MAE=
		313	9601	10	210	137.684
		MASE=15	MASE=2	MASE=3.	MASE=4.	MASE=
		91.03	7.939	0650	899	22732.459
		RMSE=39	RMSE=5.	RMSE=1.	RMSE=2.	RMSE=
		.88	285 R2=	750	213	150.772
		R2=0.001	0.00598	R2=0.059	R2=0.037	R2=0.2893
		18		9	8	
SUNLIGH	MAE=1.	Х	MAE=	MAE=	MAE=1.9	MAE=1.84
T	0360		3.419	1.147	21	04 MASE=
	MASE=		MASE=	MASE=	MASE=5.	4.6457
	2.128		21.26	2.604	188	RMSE=2.15
	RMSE=		RMSE=	RMSE=	RMSE=	5 R2=-
	1.459		4.61 R2=	1.613	2.277	0.0026
	R2= -		0.157	R2=	R2=-	
	0.00024			0.185	0.0118	
	6					
HUMIDIT	MAE=0.	MAE=20.	X	MAE=	MAE=1.8	MAE=165.
Y	9411	003		0.929	11	664
	MASE=	MASE=		MASE=	MASE=4.	MASE=315
	1.633	1241.13		1.478	672	91.99
	RMSE=	RMSE=		RMSE=	RMSE=2.	RMSE=315
	1.278	35.22		1.216	161 R2=	91.99
	R2=0.02	R2=		R2=	0.023	R2=0.0264 9
TEMPERA	45 MAE=0.	0.1857 MAE=20.	MAE=3.	0.375 X	NAAF-1 C	
TURE	9259	468	1046	^	MAE=1.6 58	MAE=166. 6700
TOKE	MASE=	MASE=13	MASE=1		MASE=4.	MASE=317
	2.554	58.52	6.046		024	45.512
	RMSE=	RMSE=36	RMSE=4.		RMSE=2.	RMSE=178.
	1.598	.85	005		006	172
	R2=0.06	R2=0.176	R2=0.47		R2=0.059	R2=0.0422
	76		75		0	
SOILMOI	MAE=	MAE=22.	MAE=1.	MAE=3.6	Х	MAE=125.
STURE	0.936	930	185	435		65
	MASE=	MASE=	MASE=3.	MASE=24		MASE=228
	1.618	1473.35	058	.41		58.07
	RMSE=	RMSE=	RMSE=	RMSE=		RMSE=
	1.27	38.23	1.748	4.94		151.18 R2=
	R2=	R2=-	R2=	R2=0.015		0.288
	=0.113	0.0140	0.0505	9		
WATER	MAE=	MAE=	MAE=	MAE=1.1	MAE=1.4	Х
LEVEL	0.850	23.489	3.864	85	51	
	MASE=	MASE=	MASE=	MASE=2.	MASE=3.	
	1.518	1536.91	28.33	916	329	
	RMSE=1	RMSE=	RMSE=	RMSE=1. 707	RMSE=	
	.23	39.20	5.322		1.824 R2=	
	R2=0.27 19	R2= 0.0056	R2= 0.0316	R2=0.082 3	0.3089	
	13	0.0030	0.0310	Э		

From Table 8, it can be inferred that water level and pH are the most corelated parameters in the full phase analysis of the experiment as MAE=0.850. This means, with a given water level, we can predict the pH required for a good yield. The parameters that cannot be corelated are temperature and water level as the MAE=166.67, this means that the value of Water level cannot be predicted with a given temperature.

B. Predictive Analysis of parameters using Support Vector Regression

TABLE 9
Support Vector Regression Between Parameters for Initial Phase of Coriander Plant Growth

P/	RAM	PH	SUNLIG	HUMIDI	TEMPE	SOILMO	WATER
E	TER		HT	TY	RATUR	ISTURE	LEVEL
	VS				E		

PARAM						
ETER						
PH	Χ	MAE=2	MAE=2.	MAE=0.8	MAE=0.8	MAE=
		2.102	9432	2803	812	10.6116
		MASE=	MASE=	MASE=1	MASE=1	MASE=
		2351.64 RMSE=	15.363 RMSE=	.598 RMSE=1	.423 RMSE=1	218.732 RMSE=
		48.493	3.919	.2642	.193	14.789
		R2=-	R2=	R2=0.04	R2=-	R2=-
		0.0852	0.2227	46	0.174	0.0377
SUNLIG	MAE=0	X	MAE=	MAE=	MAE=0.8	MAE=0.9
HT	.3460		2.836	0.518	686	89
	MASE=		MASE=	MASE=	MASE=1	MASE=
	0.227		13.770	0.871	.362	1.627
	RMSE=		RMSE=	RMSE=	RMSE=	RMSE=
	0.4766		3.710	0.933	1.167	1.275
	R2= -		R2=	R2=	R2=-	R2=-
HUMIDI	0.0458	MAE=1	0.264 X	0.450 MAE=	0.120	0.225 MAE=9.3
TY	MAE=0 .310	MAE=1 7.27	٨	0.683	MAE=0.8 33	MAE=9.3 29
	MASE=	MASE=		MASE=	MASE=1	MASE=1
	0.174	1259.40		0.825	.378	69.081
	RMSE=	7		RMSE=0	RMSE=1	RMSE=1
	0.417	RMSE=		.908 R2=	.174 R2=	3.0031
	R2=0.2	35.48		0.3423	-0.057	R2=0.03
	75	R2=				02
		0.0078				
TEMPE RATUR	MAE=0	MAE=1	MAE=2.	Х	MAE=0.8	MAE=7.9
E	.396 MASE=	3.68 MASE=	742 MASE=		42 MASE=1	547 MASE=1
_	0.317	1172.59	11.737		.325	37.199
	RMSE=	RMSE=	RMSE=		RMSE=1	RMSE=1
	0.563	34.24	3.425		.151	1.713
	R2=0.0	R2=0.21	R2=0.46		R2=-	R2=0.25
	0755	42	6		0.1810	006
SOILMO	MAE=	MAE=2	MAE=3.	MAE=0.8	X	MAE=8.9
ISTURE	0.348	0.962	7415	96		695
	MASE=	MASE=	MASE=	MASE=1		MASE=1
	0.199	2052.05	23.297	.852		61.8012
	RMSE= 0.4461	1 RMSE=	RMSE= 4.8267	RMSE= 1.3611		RMSE= 12.7201
	0.4461 R2= = -	45.299	4.8267 R2= -	1.3611 R2=-		12.7201 R2= -
1	0.0110	43.299 R2=-	0.0293	0.1329		0.00836
1	3.0110	0.0695	0.0200	0.1020		3.00000
WATER	MAE=	MAE=	MAE=	MAE=1.0	MAE=0.7	X
LEVEL	0.359	23.2524	2.9750	0006	492	
1	MASE=	MASE=	MASE=	MASE=2	MASE=1	
1	0.2667	2417.05	16.440	.70294	.0809	
1	RMSE=	9	RMSE=	RMSE=1	RMSE=	
1	0.5165	RMSE=	4.05465	.6440	1.0396	
1	R2=-	49.1636	R2=0.02	R2=0.11	R2= -	
1	0.0788	R2=0.00 59	438	64	0.1662	
•		29	ı	1	1	1

From Table 9, it can be inferred that humidity and pH are the most corelated parameters in the initial phase of the experiment as MAE=0.310. This means, with a given humidity level, we can predict the pH required for a good yield. The parameters that cannot be corelated are water level and sunlight as the MAE=23.025, this means that the value of Water level cannot be predicted with a given luminous intensity.

TABLE 10
Support Vector Regression Between Parameters for Growing Phase of Coriander Plant Growth

		0	or Corra			
PARAM	PH	SUNLIG	HUMIDI	TEMPER	SOILMOI	WATER
ETER		HT	TY	ATURE	STURE	LEVEL
VS						
PARAM						
ETER						
PH	X	MAE=17	MAE=3.	MAE=0.9	MAE=1.6	MAE=
		.013	8003	95	38	120.94.
		MASE=	MASE=	MASE=2	MASE=4	MASE=
		1014.28	25.36	.330	.429	24176.55
		RMSE=	RMSE=	RMSE=1	RMSE=2	RMSE=
		31.84	5.0361	.526	.104	155.48
		R2=-	R2=	R2=0.11	R2=0.01	R2=0.02
		0.0743	0.0470	12	09	6
SUNLIG	MAE=1	X	MAE=	MAE=	MAE=1.6	MAE=13
HT	.005		3.602	0.802	199	9.698
	MASE		MASE=	MASE=1	MASE=4	MASE=2
	=		23.974	.444	.0536	9287.10
	4.719		RMSE=	RMSE=1	RMSE=2	RMSE=1
	RMSE		4.896	.2019	.013	71.134
	=		R2=	R2=0.43	R2=0.02	R2=-
	2.172		0.1506	0	20	0.1414
	R2= -					-
	0.0719					
HUMIDIT	MAE=0	MAE=17	X	MAE=0.7	MAE=1.7	MAE=13
Υ	.822	.210		45	49	4.739
	MASE	MASE=		MASE=0	MASE=4	

	=1.879	1090.04		.958	.602	MASE=
	RMSE	RMSE=		RMSE=0	RMSE=2	24557.95
	=	33.015		.979 R2=	.1453	RMSE=1
	1.370	R2=		0.7400	R2=0.02	56.709
	R2=-	0.0421			95	R2=-
	0.0892					0.0675
TEMPER	MAE=0	MAE=18	MAE=2.	X	MAE=1.5	MAE=13
ATURE	.839	.473	618		64	9.68
	MASE	MASE=	MASE=		MASE=3	MASE=2
	=1.934	1451.83	11.78		.69	6889.48
	RMSE	RMSE=	RMSE=		RMSE=1	RMSE=1
	=1.391	38.102	3.43		.922	63.980
	R2=-	R2=0.13	R2=0.5		R2=0.02	R2=-
	0.0447	18	72		55	0.00359
SOILMOI	MAE=	MAE=18	MAE=	MAE=1.1	X	MAE=13
STURE	0.886	.183	4.1329	566		6.775
	MASE	MASE=	MASE=	MASE=3		MASE=2
	=	1149.82	30.32	.419		4782.89
	2.831	RMSE=	RMSE=	RMSE=		RMSE=1
	RMSE	33.909	5.5065	1.84		57.42
	=1.682	R2=-	R2=	R2=-		R2=0.06
	R2= -	0.0549	0.0070	0.0083		98
	0.037					
WATER	MAE=0	MAE=17	MAE=3.	MAE=1.1	MAE=1.2	Х
LEVEL	.5868	.654	581	76	847	
	MASE	MASE=	MASE=	MASE=3	MASE=2	
	=1.542	1008.07	24.307	.361	.611	
	RMSE	RMSE=	RMSE=	RMSE=1	RMSE=1	
	=1.241	31.750	4.930	.83	.616	
	R2=0.3	R2=-	R2=0.1	R2=0.03	R2=0.36	
	133	0.04008	196	80	8	

From Table 10, it can be inferred that water level and pH are the most corelated parameters in the growth phase of the experiment as MAE=0.586. This means, with a given water level, we can predict the pH required for a good yield. The parameters that cannot be corelated are temperature and water level as the MAE=139.68, this means that the value of Water level cannot be predicted with a given temperature.

TABLE 11 Support Vector Regression Between Parameters for Harvesting Phase of Coriander Plant Growth

PARAM	PH	SUNLIG	HUMID	TEMPE	SOILMO	WATER
ETER VS		HT	ITY	RATUR E	ISTURE	LEVEL
PARAM				-		
ETER						
PH	Х	MAE=14	MAE=3	MAE=0.	MAE=1.	MAE=
		.519	.750	8486	2121	109.77
		MASE=1 121.40	MASE= 23.179	MASE=1 .7209	MASE=2 .518	MASE= 21901.17
		RMSE=3	23.179 RMSE=	.7209 RMSE=1	RMSE=1	21901.17 RMSE=
		3.487	4.814	.311	.586	147.99
		R2=-	R2=	R2=0.05	R2=0.04	R2=-
		0.055	0.2572	36	38	0.1792
SUNLIG	MAE=0	X	MAE=	MAE=	MAE=1.	MAE=11
HT	.975		3.642	0.5587	033	0.02
	MASE=		MASE=	MASE=	MASE=1	MASE=2
	1.782		23.84	0.9602	.731	1459.37
	RMSE=		RMSE=	RMSE=	RMSE=	RMSE=
	1.334 R2=		4.883	0.979	1.315	146.49
	0.0502		R2= 0.2922	R2= 0.537	R2=- 0.109	R2=0.334
HUMIDI	MAE=0	MAE=15	X	MAE=0.	MAE=1.	MAE=11
TY	.733	.693	,	6907	197	2.208
	MASE=	MASE=		MASE=1	MASE=2	MASE=2
	1.0997	1416.60		.549	.227	1545.41
	RMSE=	8		RMSE=1	RMSE=1	RMSE=1
	1.0487	RMSE=3		.244	.492 R2=	46.783
	R2=0.1	7.637		R2=0.14	-0.087	R2=-
	170	R2=0.10		4		0.1230
TEMPE	MAE=0	04 MAE=7.	MAE=2	X	MAE=0.	MAE=10
RATUR	.848	830	.654	^	9160	3.405
E	MASE=	MASE=2	MASE=		MASE=1	MASE=1
	1.307	09.74	13.02		.190	8617.395
	RMSE=	RMSE=1	RMSE=		RMSE=1	RMSE=1
	1.143	4.482	3.609		.090	36.445
	R2=-	R2=0.49	R2=0.3		R2=-	R2=-
	0.0404	1	560		0.012	0.0513
SOILMO	MAE=0	MAE=14	MAE=4	MAE=1.	Х	MAE=11
ISTURE	.908 MASE=	.502 MASE=1	.892 MASE=	027 MASE=2		7.428 MASE=2
	1.576	074.906	38.307	.190		2258.28
	RMSE=	RMSE=3	RMSE=	RMSE=1		2236.26 RMSE=1
	1.255	2.785	6.189	.480		49.192
	R2=0.0	R2=-	R2=	R2=-		R2=
	711	0.0437	0.0917	0.0648		0.1749

WATER	MAE=0	MAE=13	MAE=	MAE=0.	MAE=0.	X
LEVEL	.868	.670	3.9546	785	9191	
	MASE=	MASE=5	MASE=	MASE=1	MASE=1	
	2.479	25.301	25.571	.084	.329	
	RMSE=	RMSE=2	RMSE=	RMSE=1	RMSE=	
	1.574	2.919	5.056	.041	1.152	
	R2=0.0	R2= -	R2=0.3	R2=-	R2=0.29	
	69	0.1050	047	0.011	8	

From Table 11, it can be inferred that sunlight and temperature are the most corelated parameters in the harvesting phase of the experiment as MAE=0.558. This means, with a given luminous intensity, we can predict the temperature required for a good yield. The parameters that cannot be corelated are soil moisture and water level as the MAE=117.428, this means that the value of Water level cannot be predicted with a soil moisture.

TABLE 12 Support Vector Regression Between Parameters for Full Phase of Coriander Plant Growth

Phase of Coriander Plant Growth						
PARAM ETER VS PARAM	PH	SUNLIG HT	HUMIDI TY	TEMPE RATUR E	SOILMO ISTURE	WATER LEVEL
SUNLIG	X MAE=0	MAE=18 .38 MASE=1 347.984 RMSE=3 6.71 R2=- 0.0432 X	MAE=3. 538 MASE= 22.984 RMSE= 4.7942 R2=0.0 380 MAE=	MAE=1. 002 MASE=2 .368 RMSE=1 .539 R2=0.18 9 MAE=	MAE=1. 506 MASE=3 .971 RMSE=1 .992 R2=0.17 33 MAE=1.	MAE= 127.77. MASE= 22839.3 RMSE= 151.12 R2=0.28 8
нт	.9430 MASE= 2.927 RMSE= 1.711 R2= - 0.0097 5		3.621 MASE= 23.651 RMSE= 4.8632 R2=0.2 1463	1.111 MASE=2 .539 RMSE=1 .593 R2= 0.3130	9406 MASE=5 .305 RMSE= 2.3033 R2=- 0.0322	2.013 MASE= 31499.0 RMSE=1 77.479 R2=0.02 18
HUMIDI TY	MAE=0 .9039 MASE= 1.6860 RMSE= 1.298 R2=- 0.0062	MAE=18 .2066 MASE=1 258.105 RMSE=3 5.469 R2= 0.0738	Х	MAE= 0.974 MASE= 1.814 RMSE= 1.3470 R2=0.48 6	MAE=1. 715 MASE=4 .422 RMSE=2 .102 R2= 0.0019	MAE=16 1.61 MASE=3 0181.06 RMSE=1 73.72 R2=0.05
TEMPE RATUR E	MAE=0 .898 MASE= 2.785 RMSE= 1.668 R2=0.0 656	MAE=18 .518 MASE=1 583.68 RMSE=3 9.109 R2=0.11	MAE=2. 86 MASE= 13.61 RMSE= 3.689 R2=0.4 670	X	MAE=1. 609 MASE=4 .139 RMSE=2 .034 R2=0.09 95	MAE=13 6.567 MASE=2 6169.03 RMSE=1 61.76 R2=0.14 8
SOILMO	MAE=0 .8068 MASE= 1.744 RMSE= 1.320 R2=0.0 942	MAE=20 .280 MASE=1 555.81 RMSE= 39.443 R2=- 0.055	MAE= 3.8521 MASE= 27.5794 RMSE= 5.251 R2= 0.0213	MAE=1. 179 MASE=3 .128 RMSE= 1.768 R2=0.04	Х	MAE=11 0.411 MASE=2 1951.64 RMSE=1 48.160 R2= 0.312
WATER LEVEL	MAE= 0.682 MASE= 1.331 RMSE= 1.153 R2=0.3 88	MAE= 19.253 MASE= 1462.55 RMSE= 38.243 R2= - 0.0474	MAE= 3.608 MASE= 25.069 RMSE= 5.0069 R2=- 0.00369	MAE=1. 0911 MASE=2 .591 RMSE=1 .609 R2=0.13	MAE=1. 237 MASE=2 .696 RMSE= 1.642 R2= 0.4985	Х

From Table 12, it can be inferred that water level and pH are the most corelated parameters in the full phase analysis of the experiment as MAE=0.682. This means, with a given water level, we can predict the pH required for a good yield. The parameters that cannot be corelated are sunlight and water level as the MAE=162.013, this means that the value of Water level cannot be predicted with a given luminous intensity.

C. Predictive Analysis of parameters using Decision Tree Regression

TABLE 13

Decision Tree Regression Between Parameters for Initial

Phase of Coriander Plant Growth

Phase of Coriander Plant Growth									
PARAME	PH	SUNLIG	HUMI	TEMPER	SOILMO	WATE			
TER VS		HT	DITY	ATURE	ISTURE	R			
PARAME						LEVEL			
TER									
PH	X	MAE=25.	MAE=3	MAE=1.0	MAE=0.9	MAE=1			
		117	.4989	85	52	1.330			
		MASE=1	MASE=	MASE=2.	MASE=1.	MASE=			
		570.68	21.020 DMCE-	704	3727	266.11			
		RMSE=3	RMSE= 4.584	RMSE=1. 644 R2=-	RMSE=1. 171 R2=-	RMSE= 16.312			
		9.631 R2=-	4.584 R2=0.26	0.415	0.1289	R2=-			
		0.0493	2	0.413	0.1269	0.303			
SUNLIG	MAE=0	X	MAE=	MAE=	MAE=1.1	MAE=0			
HT	.4213	- 11	3.117	0.637	26	.996			
	MASE=		MASE=	MASE=1.	MASE=2.	MASE=			
	0.329		16.69	028	266	1.558			
	RMSE=		RMSE=	RMSE=1.	RMSE=1.	RMSE=			
	0.573		4.085	014	505 R2=-	1.248			
	R2=-		R2=	R2=0.545	0.0655	R2=-			
	0.227		0.216	0		0.3035			
HUMIDI	MAE=0	MAE=36.	X	MAE=0.9	MAE=1.0	MAE=1			
TY	.408	44		103	399	1.833			
	MASE=	MASE=4		MASE=1.	MASE=2.	MASE=			
	0.292	653.88		477	304	332.31			
	RMSE=	RMSE=6		RMSE=1.	RMSE=1.	RMSE=			
	0.541 R2=-	8.219 R2=-		215 R2=0.174	517 R2=- 0.2165	18.22 R2=-			
	0.365	0.3042		K2-0.174	0.2163	1.0522			
TEMPER	MAE=0	MAE=23.	MAE=2	X	MAE=1.1	MAE=8			
ATURE	.389	802	.903		320	.271			
	MASE=	MASE=2	MASE=		MASE=1.	MASE=			
	0.280	150.406	11.880		858	122.69			
	RMSE=	RMSE=4	RMSE=		RMSE=1.	RMSE=			
	0.529	6.37	3.446		363 R2=-	11.07			
	R2=-	R2=0.322	R2=0.41		0.433	R2=0.30			
	0.0033		0			3			
SOILMO	MAE=	MAE=28.	MAE=3	MAE=0.7	X	MAE=1			
ISTURE	0.406	44	.018	735		1.341			
	MASE=	MASE=	MASE=	MASE=1.		MASE=			
	0.294	2407.91	16.75	104		217.46			
	RMSE=	RMSE=4	RMSE=	RMSE=1.		RMSE=			
	0.542 R2==-	9.070 R2=-	4.093 R2= -	050 R2=- 0.0059		14.74 R2= -			
	0.0160	0.0055	0.020	0.0037		0.205			
WATER	MAE=	MAE=21.	MAE=	MAE=0.9	MAE=1.0	X			
LEVEL	0.334	03	3.323	19	835				
	MASE=	MASE=1	MASE=	MASE=2.	MASE=1.				
	0.218	526.93	18.834	70294	879				
	RMSE=	RMSE=3	RMSE=	RMSE=1.	RMSE=1.				
	0.4672	9.075	4.339	5006	3707 R2=				
	R2=-	R2=0.240	R2=0.05	R2=0.007	-0.5531				
	0.129	2	843	2					

From Table 13, it can be inferred that water level and pH are the most corelated parameters in the initial phase of the experiment as MAE=0.334. This means, with a given water level, we can predict the pH required for a good yield. The parameters that cannot be corelated are water level and humidity as the MAE=11.833, this means that the value of Water level cannot be predicted with a given humidity.

TABLE 14

Decision Tree Regression Between Parameters for Growing Phase of Coriander Plant Growth

				iidei i idii		
PARAME	PH	SUNLIG	HUMI	TEMPER	SOILMO	WATER
TER VS		HT	DITY	ATURE	ISTURE	LEVEL
PARAME						
TER						
PH	X	MAE=23	MAE=4	MAE=1.0	MAE=1.6	MAE=
		.487	.4440	67	62	86.23
		MASE=1	MASE=	MASE=2.	MASE=4.	MASE=1
		556.330	33.518	294	845	4214.92
		RMSE=3	RMSE=	RMSE=1.	RMSE=2.	RMSE=
		9.450	5.789	514	201	119.22
		R2=-	R2= -	R2=0.055	R2=0.017	R2=0.422
		0.133	0.066	5	3	
SUNLIG	MAE=	X	MAE=3	MAE=0.9	MAE=1.8	MAE=14
HT	1.210		.764	02	52	0.63
	MASE		MASE=	MASE=2.	MASE=5.	MASE=2
	=5.287		24.775	036	100	8070.58
	RMSE		RMSE=	RMSE=	RMSE=2.	RMSE=1
	=2.299		4.977	2.036 R2=	258	67.54
	R2= -		R2=0.1	0.3970	R2=-0.126	R2=-
	0.220		022			0.131
HUMIDI	MAE=	MAE=19	X	MAE=0.9	MAE=1.8	MAE=14
TY	1.085	.74		107	16	2.944
	MASE	MASE=		MASE=1.		MASE=3

	=2.475	1059.71		569	MASE=5.	2162 22
		1059.71 RMSE=				
	RMSE			RMSE=1.	153	RMSE=1
	= 1.57	32.55		252	RMSE=2.	79.338
	R2=-	R2= -		R2=0.438	270	R2=-
	0.264	0.2786			R2= -	0.161
					0.4041	
TEMPER	MAE=	MAE=15	MAE=2	X	MAE=1.7	MAE=13
ATURE	0.947	.279	.512		75	4.80
	MASE	MASE=7	MASE=		MASE=4.	MASE=2
	=1.723	91.16	11.047		988	5756.83
	RMSE	RMSE=2	RMSE=		RMSE=2.	RMSE=1
	=1.312	8.127	3.323		233 R2=-	60.48
	R2=-	R2=0.295	R2=0.4		0.105	R2=-
	0.142	3	75			0.010
SOILMO	MAE=	MAE=21	MAE=3	MAE=1.0	X	MAE=12
ISTURE	1.0263	.63	.285	63		1.68
	MASE	MASE=	MASE=	MASE=2.		MASE=2
	=4.360	1319.71	19.059	231		2438.58
	RMSE	RMSE=3	RMSE=	RMSE=1.		RMSE=1
	=2.088	6.32	4.365	493		49.79
	R2==-	R2=-	R2= -	R2=0.013		R2=0.150
	0.0082	0.0284	0.0023	2		8
WATER	MAE=	MAE=22	MAE=3	MAE=1.0	MAE=1.5	X
LEVEL	0.698	.549	.063	67	28	
	MASE	MASE=1	MASE=	MASE=3.	MASE=3.	
	=1.371	676.62	20.044	0071	8184	
	RMSE	RMSE=4	RMSE=	RMSE=1.	RMSE=1.	
	=1.171	0.94	4.477	734	9540 R2=	
	R2=0.0	R2=-	R2=0.2	R2=0.097	0.0723	
	499	0.261	023	65		

From Table 14, it can be inferred that water level and pH are the most corelated parameters in the growth phase of the experiment as MAE=0.698. This means, with a given water level, we can predict the pH required for a good yield. The parameters that cannot be corelated are water level and humidity as the MAE=142.944, this means that the value of Water level cannot be predicted with a given humidity.

TABLE 15
Decision Tree Regression Between Parameters for Harvesting Phase of Coriander Plant Growth

PARAME	PH	SUNLIG	HUMI	TEMPER	SOILMO	WATER
TER VS	rn	HT	DITY	ATURE	ISTURE	LEVEL
PARAME		111	DITT	ATOKE	ISTURE	LEVEL
TER						
PH	X	MAE=22	MAE=4	MAE=0.8	MAE=1.4	MAE=
		.732	.569	82	71	83.55
		MASE=2	MASE=	MASE=2.	MASE=4.	MASE=
		045.76	45.141	502	134	18340.29
		RMSE=4	RMSE=	RMSE=1.	RMSE=2.	RMSE=1
		5.230	6.718	581 R2=-	0333 R2=-	35.42
		R2=-	R2= -	0.225	0.8793	R2=-
		0.0708	0.4399			0.069
SUNLIG	MAE=	X	MAE=3	MAE=	MAE=1.5	MAE=12
HT	1.146		.395	0.6377	740	9.51
	MASE		MASE=	MASE=	MASE=3.	MASE=2
	=2.743		21.554	1.307	8384	5884.24
	RMSE		RMSE=	RMSE=1.	RMSE=1.	RMSE=1
	=1.656		4.642	143 R2=	959 R2=-	60.885
	R2= -		R2=0.4	0.498	0.453	R2=0.436
HUMIDI	0.0261 MAE=	MAE=15	14 X	MAE=0.8	MAE=1.5	7 MAE=87
TY	1.062	.92	Λ	MAE-0.8 41	22	.022
11	MASE	MASE=5		MASE=2.	MASE=3.	MASE=1
	=2.186	05.16		206	722	5484.1
	RMSE	RMSE=2		RMSE=1.	RMSE=1.	RMSE=1
	=1.478	2.47		485 R2= -	929 R2= -	24.43
	R2=-	R2=0.59		0.262	0.926	R2=0.135
	0.724					
TEMPER	MAE=	MAE=7.	MAE=3	X	MAE=1.1	MAE=93
ATURE	0.723	183	.359		23	.27
	MASE	MASE=1	MASE=		MASE=1.	MASE=1
	=0.985	98.86	23.251		954	5132.8
	RMSE	RMSE=1	RMSE=		RMSE=1.	RMSE=1
	=0.992	4.102	4.822		397 R2=-	23.01
	R2=0.4	R2=0.787	R2=0.3		0.4325	R2=-
SOILMO	802 MAE=	MAE=28	42 MAE=4	MAE=1.0	X	0.0493 MAE=11
ISTURE	1.046	.62	.297	MAE=1.0 60	Λ	7.64
BIONE	MASE	MASE=2	MASE=	MASE=1.		MASE=2
	=1.781	623.48	29.772	905		2102.11
	RMSE	RMSE=5	RMSE=	RMSE=1.		RMSE=1
	= 1.33	1.220	5.456	380 R2=-		48.66
	R2==-	R2=-	R2= -	0.3879		R2= -
	0.018	0.0750	0.190			0.1676
WATER	MAE=	MAE=22	MAE=4	MAE=1.0	MAE=1.1	X
LEVEL	0.7400	.803	.103	0740	97	
	MASE	MASE=1	MASE=	MASE=2.	MASE=2.	
	=1.444	843.464	32.056	8656	6819	
	RMSE	RMSE=4	RMSE=	RMSE=1.	RMSE=1.	
1	=1.201	2.935	5.661	6928 R2=-	6376 R2=	
	R2=0.1 58	R2=- 0.616	R2=0.0 454	0.9196	-0.33059	

From Table 15, it can be inferred that sunlight and temperature are the most corelated parameters in the harvesting phase of the experiment as MAE=0.6377. This means, with a given temperature, we can predict the luminous intensity required for a good yield. The parameters that cannot be corelated are water level and sunlight as the MAE=129.51, this means that the value of Water level cannot be predicted with a given sunlight.

TABLE 16
Decision Tree Regression Between Parameters for Full
Phase of Coriander Plant Growth

DADAM		SUNLIG	HUMI	TEMPER	SOILMO	WATED
PARAM ETER VS	PH	SUNLIG	DITY	ATURE	ISTURE	WATER LEVEL
PARAM		пі	DITT	ATUKE	ISTURE	LEVEL
ETER						
PH	X	MAE=23	MAE=3	MAE=1.1	MAE=1.3	MAE=
	- 11	.667	.77	62	75	70.152
		MASE=1	MASE=	MASE=3.	MASE=3.	MASE=1
		574.28	26.197	1117	4744	3362.83
		RMSE=3	RMSE=	RMSE=1.	RMSE=1.	RMSE=1
		9.67	5.118	764	863	15.597
		R2=-	R2=	R2=0.027	R2=0.296	R2=0.58
		0.0871	0.0070	7	8	9
SUNLIG	MAE=1	X	MAE=3	MAE=1.0	MAE=1.8	MAE=16
HT	.0190		.674	661	57	3.11
	MASE=		MASE=	MASE=2.	MASE=5.	MASE=3
	2.469		22.97	232	101	4396.27
	RMSE=		RMSE=	RMSE=1.	RMSE=2.	RMSE=1
	1.571		4.7930	494	258 R2=-	85.46
	R2= -		R2=0.1	R2=0.243	0.155	R2=-
IIIIMID.	0.1476	MAE-22	71 X	4	MAE-10	0.0659
HUMIDI TY	MAE=1 .032	MAE=22 .217	X	MAE=0.9 61	MAE=1.9 06	MAE=16 2.59
11	MASE=	MASE=1		MASE=1.	MASE=5	2.39 MASE=3
	1.956	540.602		620	624	6533.3
	RMSE=	RMSE=3		RMSE=1.	RMSE=2.	RMSE=1
	1.398	9.250		272	371 R2= -	91.13
	R2=-	R2=0.10		R2=0.337	0.1596	R2=-
	0.219	37		8		0.152
TEMPER	MAE=0	MAE=17	MAE=3	X	MAE=1.6	MAE=14
ATURE	.911	.664	.0675		50	7.269
	MASE=	MASE=1	MASE=		MASE=4.	MASE=2
	1.703	005.81	16.238		224	9019.5
	RMSE=	RMSE=3	RMSE=		RMSE=2.	RMSE=1
	1.305	1.714	4.0296		055	70.351
	R2=0.1	R2=0.04	R2=0.3		R2=0.058	R2=0.12
SOILMO	1710	40 MAE-20	001	MAE=1.0	7 X	99 MAE=11
ISTURE	MAE=0 .9751	MAE=20 .854	MAE=3 .995	MAE=1.0 834	A	MAE=11 2.74
151 UKE	MASE=	.634 MASE=1	MASE=	MASE=2.		MASE=2
	2.7447	216.04	28.318	619		0885.92
	RMSE=	RMSE=3	RMSE=	RMSE=1.		RMSE=1
	1.656	4.87	5.321	618		44.519
	R2=0.0	R2=0.00	R2= -	R2=0.109		R2=
	873	587	0.0553			0.3583
WATER	MAE=	MAE=23	MAE=3	MAE=1.1	MAE=1.2	X
LEVEL	0.706	.019	.665	366	53	
	MASE=	MASE=1	MASE=	MASE=3.	MASE=2.	
	1.328	913.38	25.972	302	836	
	RMSE=	RMSE=4	RMSE=	RMSE=1.	RMSE=1.	
	1.152	3.74	5.096	8172 R2=-	684	
	R2=0.2	R2=0.05	R2=0.0	0.2404	R2=0.425	
	10	53	735		8	

From Table 16, it can be inferred that water level and pH are the most corelated parameters in the full phase analysis of the experiment as MAE=0.706. This means, with a given water level, we can predict the pH required for a good yield. The parameters that cannot be corelated are water level and sunlight as the MAE=163.11, this means that the value of Water level cannot be predicted with a given luminous intensity.

VII. CONCLUSION AND FUTURE WORKS

In conclusion, our whole work can be split into two main part. The first one being the growth of plants and creation of data set, in this we have grown the crops and taken the data with the help of sensors. In this aspect, there is minimal automation. The dataset is then created by taking the data and cleaning it to make sure that the anomalies are removed. With

the help of this data set, we then move onto the second phase of the work. The second phase of this work is processing of the data set created and corelating the data to establish the best scenario for plant growth and good yield. With the help of Linear Regression, Support vector regression and Decision Tree Regression, we have established the parameters which are best corelated.

For the work that can be done to further the progress done by us is to fully automate the system. With the correlation achieved by us, the parameters can be used to know the ambient conditions required when a certain parameter is fixed and cannot be altered in any way possible especially in the city environment in countries like India.

REFERENCES

- [1] A. Nichani, S. Saha, T. Upadhyay, A. Ramya and M. Tolia, "Data Acquisition and Actuation for Aquaponics using IoT," 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), 2018, pp. 46-51, doi: 10.1109/RTEICT42901.2018.9012260.
- [2] H. K. Srinidhi, H. S. Shreenidhi and G. S. Vishnu, "Smart Hydroponics system integrating with IoT and Machine learning algorithm," 2020 International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT), 2020, pp. 261-264, doi: 10.1109/RTEICT49044.2020.9315549.
- [3] P. Srivani, Y. Devi C. and S. H. Manjula, "A Controlled Environment Agriculture with Hydroponics: Variants, Parameters, Methodologies and Challenges for Smart Farming," 2019 Fifteenth International Conference on Information Processing (ICINPRO), 2019, pp. 1-8, doi: 10.1109/ICInPro47689.2019.9092043.
- [4] C. Joshitha, P. Kanakaraja, K. S. Kumar, P. Akanksha and G. Satish, "An eye on hydroponics: The IoT initiative," 2021 7th International Conference on Electrical Energy Systems (ICEES), 2021, pp. 553-557, doi: 10.1109/ICEES51510.2021.9383694.
- [5] S. Gertphol, P. Chulaka and T. Changmai, "Predictive models for Lettuce quality from Internet of Things-based hydroponic farm," 2018 22nd International Computer Science and Engineering Conference (ICSEC), 2018, pp. 1-5, doi: 10.1109/ICSEC.2018.8712676.
- [6] S. Jaisankar, P. Nalini and K. K. Rubigha, "A Study on IoT based Low-Cost Smart Kit for Coconut Farm Management," 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 2020, pp. 161-165, doi: 10.1109/I-SMAC49090.2020.9243486.
- [7] M. S. Farooq, S. Riaz, A. Abid, K. Abid and M. A. Naeem, "A Survey on the Role of IoT in Agriculture for the Implementation of Smart Farming," in IEEE Access, vol. 7, pp. 156237-156271, 2019, doi: 10.1109/ACCESS.2019.2949703.
- [8] N. Islam, B. Ray and F. Pasandideh, "IoT Based Smart Farming: Are the LPWAN Technologies Suitable for Remote Communication?," 2020 IEEE International Conference on Smart Internet of Things (SmartIoT), 2020, pp. 270-276, doi: 10.1109/SmartIoT49966.2020.00048.
- [9] S. Chaikhamwang, C. Janthajirakowit and S. Fongmanee, "IoT for Smart Farm: A Case Study of the Fertilizer Mixer Prototype," 2021 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunication Engineering, 2021, pp. 136-139, doi: 10.1109/ECTIDAMTNCON51128.2021.9425708.
- [10] F. K. Syed, A. Paul, A. Kumar and J. Cherukuri, "Low-cost IoT+ML design for smart farming with multiple applications," 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 2019, pp. 1-5, doi: 10.1109/ICCCNT45670.20