A Shawn Bandy

Economics 420

Final Project - Construction Employment Forecast

Introduction

The data set is the time series of monthly US construction employment from January 1990 to October 2012. Following the recession in the early 1990s, employment trended steadily upward until the recession around 2008. The construction industry is highly seasonal with peak employment generally occurring in August and the trough in February.

The correlogram for the series suggests both auto-regressive and moving average processes and possibly a unit-root, as well. The Augmented Dickey-Fuller test shows that we cannot reject the hypothesis that the series has a unit-root at the 95% confidence level, although we can at 90%.

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
1	-	1	0.983	0.983	267.90	0.000
	!	2	0.947	-0.610	517.26	0.000
	' [3	0.902	0.135	744.47	0.000
	' [4	0.862	0.290	952.35	0.000
	<u> </u>	5	0.831	0.102	1146.5	0.000
	!₽	6	0.816	0.231	1334.1	0.000
	!■	7	0.816	0.181	1522.6	0.000
	! ₽	8	0.830	0.221	1718.7	0.000
	! ₽	9	0.855	0.134	1927.1	0.000
		10 11	0.882 0.901	0.123	2149.8	0.000
		12	0.901	-0.207	2383.2 2617.2	0.000
		13	0.873	-0.550	2837.8	0.000
		14	0.826	0.002	3036.3	0.000
	ili	15	0.772	0.013	3210.3	0.000
	ili l	16	0.722	0.003	3363.3	0.000
	id: I	17	0.683	-0.087	3500.5	0.000
	ili l	18	0.658	-0.039	3628.5	0.000
	1]1	19	0.649	0.004	3753.5	0.000
1	1 b 1	20	0.654	0.050	3880.9	0.000
	1 [1	21	0.669	0.039	4014.7	0.000
	1 10	22	0.687	0.095	4156.4	0.000
	1 🗓 1	23	0.698	0.041	4303.2	0.000
1	1)1	24	0.691	0.011	4447.5	0.000
	□ '	25	0.658	-0.174	4579.2	0.000
	1 []1	26	0.609	0.057	4692.2	0.000
1	i i	27	0.553	0.071	4785.7	0.000
	1)1	28	0.501	0.014	4862.8	0.000
1	1[[1	29	0.460	-0.027	4928.1	0.000
1	141	30	0.433	-0.032	4986.3	0.000
' 📃	'['	31	0.422	0.006	5041.7	0.000
!=	<u> </u>	32	0.425	0.031	5098.1	0.000
!=	<u>:[:</u>	33	0.437	-0.016	5158.0	0.000
	! P!	34	0.453	0.083	5222.7	0.000
!=	:I! I	35	0.463	0.020	5290.5	0.000
1	1]1	36	0.456	0.016	5356.5	0.000

Null Hypothesis: EMPL has a unit root Exogenous: Constant Lag Length: 15 (Automatic - based on SIC, maxlag=15)

	t-Statistic	Prob.*
Augmented Dickey-Fuller test stati	stic -2.552764	0.1044
Test critical values: 1% leve	I -3.455585	
5% leve	I -2.872542	
10% leve	el -2.572707	

^{*}MacKinnon (1996) one-sided p-values.

Leading Indicators

Using data from the United States Census Bureau, I chose and examined time series data from seven economic indicators I believed may lead construction employment. In eViews, I created an equation for each with the dependent variable 'empl', a constant 'c' and the indicator as the independent variable. In order to maximize the explanatory power of the variable, I found the lag time that maximized 'adjusted R-Squared'. The table below shows key criteria from the estimation output for each of these indicators.

Indicator	Leading By (months)	¥	Adjusted R-Squ 🚜	t-Stat Prob 💌	Durbin-Waton 🔻	AIC 🔽
Total Construction Spending (TCS)		2	0.82755	1.19E-105	0.09116	14.860
Consumer Durable Goods New Orders (DUR)		7	0.51597	0.00E+00	0.76428	15.772
PPI Price Deflator (PPI)		2	0.44976	4.11E-37	0.05225	16.018
Building Permits (Unadjusted)		2	0.40183	3.43E-32	0.06767	16.102
Unemployment Rate (Unempl)		6	0.31084	1.65E-23	0.04206	16.247
Housing Starts (Starts)		1	0.31026	7.23E-24	0.03444	16.246
Construction Machinery New Orders		1	0.07931	3.63E-06	0.03439	16.492

'Total Construction Spending' (TCS) and new orders for 'Consumer Durable Goods' seemed to have the most explanatory power and the lowest out-of-sample forecast errors of the group. The reason for including TCS as a leading indicator is fairly direct: spending on construction will increase in tandem with increases in labor, with labor trailing slightly as finding and contracting labor can take longer to fulfill than other purchases made. Consumer durable goods includes refrigerators, washers, dryers and other large appliances. In the retail market consumer durable goods is a trailing indicator of construction as new homes create demand for these products. The logic here is that new orders from manufacturers are made with anticipation of future construction. The PPI price measures price levels at the manufacturing level and was included out of curiosity. Building permits and housing starts are included for the same reason as they generally measure impending construction activity for which construction workers would be needed. The national unemployment rate was included simply because employment is a key criteria in securing a home mortgage and new housing is a significant portion of the construction industry. New orders for construction machinery had little explanatory power. My assumption then is most machinery is purchased independently of changes in demand for the construction industry's products.

Model 0: ARMA

For the first model, I used none of the leading indicators above and instead used only auto-regression and moving average terms. It was important to have both an experimental control against which to measure the other model and also to have a "back-up" in case the other models were total failures. In this case, by trial-and-error I added and removed AR and MA terms until I was satisfied with the estimation output and the correlogram.

Variables	Adjusted R-Squared	Prob(f-Stat)	AIC	Durbin-Watson
ar(1), sar(12), sma(3), sma(12)	0.998328871	0	10.23723	1.567252498

Model 1
For this model, I chose the two indicators, TCS and DUR, that had the better overall estimation output

the model.

(see above) and then added and removed ARMA terms until I was satisfied with overall performance of

Variables	Adjusted R-Squared	Prob(f-Stat)	AIC	Durbin-Watson
TCS, DUR	0.836702474	3.30E-95	14.68978117	0.422790286
TCS, DUR, AR(1), SAR(12)	0.997266736	1.26E-286	10.48387	1.735933373
DUR,AR(1),AR(3),SAR(12)	0.997170855	5.97E-285	10.51835159	1.590463863

In this model, TCS, DUR, AR(1) and SAR(12) had the best estimation output with the correlogram and residual graph shown below.

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
- <u> </u>	ı b	1 0.130	0.130	3.9445	
' !	! =	2 0.282			
:E		3 0.230 4 0.320			0.000
; -	i 🗖	5 0.142			0.000
	I]ii	6 0.199			0.000
! !!	יַוּלַי	7 0.193			0.000
: <u> </u>			-0.096 -0.048		0.000
; 6 ; 1	111	10 0.109			0.000
16	i b i		0.114		0.000
<u> </u>	I		-0.300		0.000
:] !	!9!		-0.050		0.000
:\:\:		14 -0.042 15 0.014	-0.027 0.040		0.000
idi l	i i ii			106.00	
11 1	ı (Fi		-0.049		0.000
[] '	d '		-0.104		0.000
<u> </u>	! .]!	19 -0.050			0.000
#1:		20 -0.074 21 -0.051		112.00 112.65	0.000
iii l	in i			117.47	0.000
ī jui		23 0.083	0.282	119.22	0.000
<u> </u>	<u> </u>			123.67	0.000
!!!	<u> </u>	25 -0.012		123.70	0.000
;;;; l	'∦';	26 -0.002 27 -0.075		123.70 125.19	0.000
iii l	i ii			130.25	0.000
ia - 1	ığı			132.48	0.000
1] 1	111	30 0.004			0.000
9!	! ! !	31 -0.091		134.70 135.45	0.000
19.1				135.45	0.000
iji l	ili			137.36	0.000
□ '	101	35 -0.233	-0.044	152.18	
111	d :	36 -0.022	-0.104	152.31	0.000

Model 2: The Kitchen Sink

As an anti-thesis to Model 0, I chose to create a model that included all of the leading indicators listed above then added and removed terms iteratively based on the estimation output and correlogram. Not surprisingly, this was the poorest of the four models I explored.

Variables	Adjusted R-Squared	Prob(f-Stat)	AIC	Durbin-Watson
tcs, ppi, unempl, starts	0.960912182	1.25E-184	13.38788963	0.365168522
tcs,ppi,unempl,starts, ar1, ar24,				
ma12	0.992657199	2.19E-249	11.61757	1.195041

Model 3: The Difference Model

The unit-root test result shows that we cannot reject the null hypothesis – that EMPL has a unit root – at the 5% confidence level. Considering this, I chose to difference EMPL and then implement a model along the lines of Model 1. Ultimately, this proved to be the best performing of the four models in the hold-out sample forecast.

Variables	Adjusted R-Squared	Prob(f-Stat)	AIC	Durbin-Watson
tcs, dur, unempl, starts, ar(12), ma(12)	0.961119667	1.08E-159	9.819111439	2.019705157

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
1 1	1(1	1	-0.021	-0.021	0.1032	
' 		2	0.187	0.187	8.5387	
1 🛅	 	3	0.095	0.106	10.729	0.001
· 🗖		4	0.176	0.153	18.189	0.000
1 🗗	1 1	5	0.075	0.055	19.543	0.000
111	1(1)	6	0.020	-0.043	19.643	0.001
' P	'P	7	0.173	0.127	27.002	0.000
111		8	0.014	-0.007	27.048	0.000
' [[]	'[['	9	0.028	-0.041	27.240	0.000
' <u>P</u>	י פוי	10	0.110	0.091	30.263	0.000
! 🖳	!₽	11	0.178	0.158	38.169	0.000
1.5	<u> </u>	12	0.122	0.107	41.895	0.000
!!!!	<u>""</u> !	13	-0.027	-0.084	42.085	0.000
! !!	!4!	14	0.063	-0.062	43.104	0.000
: P:	1 11:	15 16	0.049	-0.007 -0.024	43.721 43.736	0.000
:1:	'};	17	0.008		43.759	0.000
id:	1 4:	18	-0.072	-0.016 -0.123	45.097	0.000
:5:	I 51	19	0.011	-0.030	45.127	0.000
27	"4"	20	-0.136	-0.030	49.920	0.000
77.	l ali	21	-0.053	-0.096	50.661	0.000
317	l illi	22	-0.045	-0.058	51.191	0.000
i lini	l illi	23	0.091	0.133	53.384	0.000
ial'i	1 16	24	-0.073	0.017	54.800	0.000
ill i	l idi	25	-0.069	-0.052	56.070	0.000
illi	l ili	26	0.031	0.021	56.334	0.000
ufi	10	27	-0.049	-0.022	56,969	0.000
<u>i</u> l 1	l d:	28	-0.136	-0.122	61.996	0.000
i] i	l ilu	29	0.005	0.064	62.004	0.000
ıd ı	1[1	30	-0.070	-0.005	63.328	0.000
ığı	1(1	31	-0.096	-0.025	65.840	0.000
ığı	1)11	32	-0.083	0.041	67.725	0.000
(d) -	(d)	33	-0.088	-0.097	69.875	0.000
1 1	1 1	34	0.007	-0.005	69.890	0.000
= '	 	35	-0.200	-0.136	81.048	0.000
1(1)	1(1	36	-0.034	-0.031	81.382	0.000

Comparison of the Models

	Actual Model 0: ARMA			MA	Model 1: TCS,DUR			Model 2: Kitchen Sink			Model 3: Difference		
		Forecast	Error	SE	Forecast	Error	SE	Forecast	Error	SE	Forecast	Error	SE
Jan-12	5158	5111	47	41	5152	6	46	5115	43	84	5137	21	34
Feb-12	5133	5113	20	40	5170	-37	46	5137	4	81	5130	3	33
Mar-12	5220	5220	0	40	5237	-17	45	5095	125	82	5237	17	33
Apr-12	5389	5405	16	41	5393	-4	46	5349	40	81	5417	28	33
May-12	5548	5576	28	40	5578	-30	46	5683	135	83	5582	34	33
Jun-12	5716	5703	13	40	5705	11	45	5752	36	82	5705	11	33
Jul-12	5782	5783	1	40	5775	7	45	5860	78	81	5793	11	33
Aug-12	5813	5793	20	40	5835	-22	46	5805	8	81	5805	8	33
Sep-12	5770	5745	25	40	5774	-4	46	5907	137	81	5755	15	33
Oct-12	5770	5746	24	40	5736	34	46	5858	88	82	5754	16	33
12-Nov		5662.9536		40.487022	5704.8498		46.17689	5797.0614		80.789629	5670.8995		32.980794

The contrast in performance of each model is clearest in the above table, with Model 3 best performing. Although the model forecast for September and October was lower than actual, I will not include an add-factor in my final forecast but instead will simply submit what the model produced. My forecast is 5671 and with 2 Standard Errors, the forecast interval is 5605 to 5737.