Searching

Joy Mukherjee

Search Algorithms

Input:

A set of n integers $\{a_0, a_1, \ldots, a_{n-1}\}$, and an integer key.

Output:

If key = ai for $0 \le i \le n - 1$, then the function prints "Key is found at i"; otherwise prints "Key is not found".

Linear Search

-23 97 18 21 5 -86 64 0	-86 64 0 -37	-86	5	21	18	97	-23	
---------------------------------------	--------------	-----	---	----	----	----	-----	--

Linear search means looking at each element of the array, in turn, until you find the target value.

Searching for -86.

element

Searching for -86: found!

Linear Search Code

```
int LinearSearch(int a[], int n, int key)
  int i;
  for(i = 0; i < n; i++) {
         if(a[i] = = key) {
                 return i;
  return -1;
```

Linear Search: Worst Case

How long will our search take?

Worst case: key is the last element of the array.

Search takes a time proportional to the length of the array.

Computer scientists denote this as O(n).

Binary Search

- 1. Initially, the search region is the whole array.
- 2. Look at the data value in the middle of the search region.
- 3. If you've found your key, stop.
- If key is less than middle data value, the new search region is the lower half of the data.
- If key is greater than middle data value, the new search region is the higher half of the data.
- 6. Continue from Step 2.

Binary Search Example

Binary Search Example

Binary Search Example

Searching for 18: found!

Binary Search Code

```
int BinarySearch (int a[], int n, int key)
int low, high, mid;
low = 0; high = n - 1;
while(low <= high) {</pre>
 mid = (low + high) / 2;
 if(a[mid] = = key)
        return mid;
 else if(a[mid] > key)
        high = mid - 1;
 else
        low = mid + 1;
return -1;
```

Time Complexity: Binary Search

 T(n) = Time to binary search for a key in array of n = 2^k integers, where T(1) = 1T(n) = T(n/2) + c $T(n/2) = T(n/2^2) + c$ $T(n/2^2) = T(n/2^3) + c$ $T(n/2^{k-1}) = T(n/2^k) + c$ $T(n) = T(n/2^k) + c. k$ (Summation of k equations) $T(n) = T(1) + c.\log_2 n = O(\log_2 n)$ f(n) = O(g(n)) iff for all n>n0, $c \in R^+$ f(n) <= c. g(n) $T(n) = O(log_2n)$ iff for all n>0, $c \in R^+$ $T(n) <= c. log_2n$