

INICIO GRABACIÓN

SEMANA 4

INVESTIGACIÓN DE OPERACIONES – MÉTODO GAUSS JORDAN

Ing. GEORGE ANDERSON MOJICA SERRANO INGENIERO INDUSTRIAL

UNIVERSIDAD DISTRITAL FRANCISCO JOSE DE CALDAS

INDICE

- INVESTIGACIÓNN DE OPERACIONES
- 2 MÉTODO GÁUSS
- 3 EJERCICIOS
- 4 CONCLUSIONES

MÉTODO GAUSS JORDAN

MÉTODO GAUSS JORDAN

El método de Gauss consiste en transformar un sistema de ecuaciones en otro equivalente de forma que este sea escalonado.

Para facilitar el cálculo vamos a transformar el sistema en una matriz, en la que pondremos los coeficientes de las variables y los términos independientes (separados por una recta).

$$\begin{pmatrix}
a_{11} & \cdots & a_{1n} & c_1 \\
\vdots & \ddots & \vdots & \vdots \\
a_{m1} & \cdots & a_{mn} & c_m
\end{pmatrix}$$

Obtenemos sistemas equivalentes por eliminación de ecuaciones dependientes si se cumple que:

- 1. Todos los coeficientes son ceros.
- 2. Dos filas son iguales.
- 3. Una fila es proporcional a otra.
- 4. Una fila es combinación lineal de otras.

CRITERIOS DE EQUIVALENCIA DE SISTEMAS DE ECUACIONES

- **1.** Si a ambos miembros de una ecuación de un sistema se les suma o se les resta una misma expresión, el sistema resultante es equivalente.
- **2.** Si multiplicamos o dividimos ambos miembros de las ecuaciones de un sistema por un número distinto de cero, el sistema resultante es equivalente.
- **3.** Si sumamos o restamos a una ecuación de un sistema otra ecuación del mismo sistema, el sistema resultante es equivalente al dado.
- **4.** Si en un sistema se sustituye una ecuación por otra que resulte de sumar las dos ecuaciones del sistema previamente multiplicadas o divididas por números no nulos, resulta otro sistema equivalente al primero.
- **5.** Si en un sistema se cambia el orden de las ecuaciones o el orden de las incógnitas, resulta otro sistema equivalente.

EL PROCEDIMIENTO ES EL SIGUIENTE:

Primero se debe tener ya el sistema de ecuaciones que se quiere resolver y que puede ser de n numero de variables por ejemplo:

Se acomodan los coeficientes y los resultados en una matriz:

En el ejemplo, el -3 de la primera matriz se tiene que convertir en un 1, según la matriz identidad, así que hay que dividir entre -3, pero como una operación se aplica a toda la fila, entonces toda la primera fila se tiene que dividir entre -3:

EL PROCEDIMIENTO ES EL SIGUIENTE: (II)

Después, como se ve en la matriz identidad, hay que hacer 0 toda la columna debajo del 1, y se hace multiplicando por algo la fila de arriba y sumándola a la fila de abajo.

En este caso, se multiplica por -4 la fila de arriba y se suma con la correspondiente posición de la fila de abajo:

-4R1+ R2
$$\longrightarrow$$
 $\begin{pmatrix} 1 & -1 & -\frac{7}{3} & -\frac{1}{3} \\ 4 & 1 & -1 \\ 1 & -2 & 1 \end{pmatrix}$ \sim $\begin{pmatrix} 1 & -1 & -\frac{7}{3} & -\frac{1}{3} \\ 0 & 5 & \frac{5}{3} & \frac{10}{3} \\ 1 & -2 & 1 & 3 \end{pmatrix}$

Para hacer cero el siguiente renglón simplemente hay que multiplicar por –1 al primer renglón sumarlo al tercero:

-R1+ R3
$$\longrightarrow$$
 $\begin{pmatrix} 1 & -1 & -\frac{2}{3} & | & -\frac{1}{3} \\ 0 & 5 & \frac{5}{3} & \frac{10}{3} \\ 1 & -2 & 1 & 3 \end{pmatrix}$ \sim $\begin{pmatrix} 1 & -1 & -\frac{2}{3} & | & -\frac{1}{3} \\ 0 & 5 & \frac{5}{3} & \frac{10}{3} \\ 0 & -1 & \frac{5}{3} & \frac{10}{3} \end{pmatrix}$

El siguiente paso para lograr una matriz identidad es obtener el siguiente 1, que en este caso iría en donde esta el 5 en la segunda fila. Para lograrlo hay que dividir toda la segunda fila entre 5

Después se tienen que hacer 0 los que están arriba y abajo del 1, que en este caso sería, para el que esta arriba R2+R1:

R2+R3
$$\longrightarrow$$
 $\begin{pmatrix} 1 & -1 & -\frac{7}{3} & | & -\frac{7}{3} \\ 0 & 1 & \frac{7}{3} & \frac{2}{3} \\ 0 & -1 & \frac{5}{3} & \frac{10}{3} \end{pmatrix}$ \sim $\begin{pmatrix} 1 & -1 & -\frac{7}{3} & | & -\frac{7}{3} \\ 0 & 1 & \frac{7}{3} & \frac{2}{3} \\ 0 & 0 & \frac{6}{3} & \frac{12}{3} \end{pmatrix}$ = $\begin{pmatrix} 1 & -1 & -\frac{7}{3} & | & -\frac{7}{3} \\ 0 & 1 & \frac{7}{3} & \frac{2}{3} \\ 0 & 0 & 2 & \frac{4}{3} \end{pmatrix}$

Ahora hay que hacer cero la posición a12. En este caso con hacer R2+R1 es suficiente:

Dividir entre 2 R3 nos permite encontrar el otro 1, el de la posición a33:

Ahora necesitamos ceros en las posiciones a13 y a23. Dividir entre 1/3 R3 y sumarlo a R1 nos permitirá encontrar uno de ellos:

R3+R1
$$\longrightarrow$$
 $\begin{pmatrix} 1 & 0 & -\frac{1}{3} & \frac{1}{3} \\ 0 & 1 & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 1 & 2 \end{pmatrix}$ \sim $\begin{pmatrix} 1 & 0 & 0 & \frac{3}{3} \\ 0 & 1 & \frac{1}{3} & \frac{2}{3} \\ 0 & 0 & 1 & 2 \end{pmatrix}$ = $\begin{pmatrix} 1 & 0 & 0 & \frac{1}{3} \\ 0 & 1 & \frac{1}{3} & \frac{2}{3} \\ 0 & 0 & 1 & 2 \end{pmatrix}$

El último cero lo logramos multiplicando por -⅓R3 y sumándolo a R2:

$$-\frac{1}{3} R3 + R2 \longrightarrow \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & \frac{1}{3} & \frac{1}{2} \\ 0 & 0 & 1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

Al encontrar la matriz identidad se encuentra la solución del sistema de ecuaciones, pues esto se traduce a:

$$X = 1$$
; $Y = 0$; $Z = 2$

las cuales resuelven el sistema de ecuaciones de forma simultánea. La comprobación es la siguiente:

EJERCICIOS DE SISTEMAS DE ECUACIONES

$$\begin{cases} 3x + 2y + z = 1\\ 5x + 3y + 4z = 2\\ x + y - z = 1 \end{cases}$$

1. Escribimos el sistema en forma matricial

2. Intercambiamos las filas y y obtenemos por el criterio 5 la matriz equivalente

$$\begin{pmatrix} 3 & 2 & 1 & 1 \\ 5 & 3 & 4 & 2 \\ 1 & 1 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & -1 & 1 \\ 5 & 3 & 4 & 2 \\ 3 & 2 & 1 & 1 \end{pmatrix}$$

3. Reemplazamos las filas $f_2,\,f_3\,$ por $\,f_2-5f_1,\,f_3-3f_1\,$ respectivamente y obtenemos por el criterio 4 la matriz equivalente

$$\begin{pmatrix} 1 & 1 & -1 & 1 \\ 5 & 3 & 4 & 2 \\ 3 & 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & -1 & 1 \\ 0 & -2 & 9 & -3 \\ 0 & -1 & 4 & -2 \end{pmatrix}$$

EJERCICIOS DE SISTEMAS DE ECUACIONES

$$\begin{cases} 3x + 2y + z = 1 \\ 5x + 3y + 4z = 2 \\ x + y - z = 1 \end{cases}$$

4. Reemplazamos las filas f_1 , f_3 por $2f_1 + f_2$, $2f_3 - f_2$ respectivamente y obtenemos por el criterio 4 la matriz equivalente

criterio 4 la matriz equivalente

5. Reemplazamos las filas
$$f_1$$
, f_2 por $f_1 + 7f_3$, $f_2 + 9f_3$ respectivamente y obtenemos por el criterio 4 la matriz equivalente

$$\begin{pmatrix} 2 & 0 & 7 & -1 \\ 0 & -2 & 9 & -3 \\ 0 & 0 & -1 & -1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 & -8 \\ 0 & -2 & 0 & -1 \\ 0 & 0 & -1 & -1 \end{pmatrix}$$
 6. Reemplazamos las filas f_1, f_2, f_3 por $\frac{1}{2}f_1, -\frac{1}{2}f_2, -f_3$ respectivamente y obtenemos por el

$$\begin{pmatrix} 2 & 0 & 0 & -8 \\ 0 & -2 & 0 & -12 \\ 0 & 0 & -1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & -4 \\ 0 & 1 & 0 & 6 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

6. Reemplazamos las spectivamente y obtenemos por el criterio 2 la matriz equivalente

7. Tenemos que el sistema original es compatible determinado y sus soluciones son

$$x = -4, y = 6, z = 1$$

EJERCICIOS DE SISTEMAS DE ECUACIONES (II)

$$\begin{cases} 2x - 5y + 4z + u - v = -3\\ x - 2y + z - u + v = 5\\ x - 4y + 6z + 2u + v = 10 \end{cases}$$

2. Intercambiamos las filas f_1 y f_2 y obtenemos por el criterio 5 la matriz $\begin{pmatrix} 2 & -5 & 4 & 1 & -1 & | & -3 \\ 1 & -2 & 1 & -1 & 1 & | & 5 \\ 1 & -4 & 6 & 2 & 1 & | & 10 \end{pmatrix}$ equivalente

$$(2 -5 \ 4 \ 1 \ -1 \ -3)$$

$$\begin{pmatrix} 2 & -5 & 4 & 1 & -1 & | & -3 \\ 1 & -2 & 1 & -1 & 1 & | & 5 \\ 1 & -4 & 6 & 2 & 1 & | & 10 \end{pmatrix} = \begin{pmatrix} 1 & -2 & 1 & -1 & 1 & | & 5 \\ 2 & -5 & 4 & 1 & -1 & | & -3 \\ 1 & -4 & 6 & 2 & 1 & | & 10 \end{pmatrix}$$

3. Reemplazamos las filas f_2, f_3 por $f_2 - 2f_1, f_3 - f_1$ respectivamente y obtenemos por el criterio 4 la matriz equivalente

$$\begin{pmatrix} 1 & -2 & 1 & -1 & 1 & 5 \\ 2 & -5 & 4 & 1 & -1 & -3 \\ 1 & -4 & 6 & 2 & 1 & 10 \end{pmatrix} = \begin{pmatrix} 1 & -2 & 1 & -1 & 1 & 5 \\ 0 & -1 & 2 & 3 & -3 & -13 \\ 0 & -2 & 5 & 3 & 0 & 5 \end{pmatrix}$$

EJERCICIOS DE SISTEMAS DE ECUACIONES (II)

$$\begin{cases} 2x - 5y + 4z + u - v = -3\\ x - 2y + z - u + v = 5\\ x - 4y + 6z + 2u + v = 10 \end{cases}$$

4. Reemplazamos la filas f_1 , f_3 por f_1-2f_2 , f_3-2f_2 respectivamente y obtenemos por el criterio 4 la matriz equivalente

$$\begin{pmatrix} 1 & -2 & 1 & -1 & 1 & 5 \\ 0 & -1 & 2 & 3 & -3 & -13 \\ 0 & -2 & 5 & 3 & 0 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -3 & -7 & 7 & 31 \\ 0 & -1 & 2 & 3 & -3 & -13 \\ 0 & 0 & 1 & -3 & 6 & 31 \end{pmatrix}$$

5. Reemplazamos las filas f_1, f_2 por f_1+3f_3, f_2-2f_3 respectivamente y obtenemos por el criterio 4 la matriz equivalente

$$\begin{pmatrix} 1 & 0 & -3 & -7 & 7 & 31 \\ 0 & -1 & 2 & 3 & -3 & -13 \\ 0 & 0 & 1 & -3 & 6 & 31 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & -16 & 25 & 124 \\ 0 & -1 & 0 & 9 & -15 & -75 \\ 0 & 0 & 1 & -3 & 6 & 31 \end{pmatrix}$$

6. Obtenemos el sistema compatible indeterminado que es equivalente al sistema original

$$\begin{cases} x - 16u + 25v = 124 \\ -y + 9u - 15v = -75 \\ z - 3u + 6v = 31 \end{cases}$$

EJERCICIOS DE SISTEMAS DE ECUACIONES (II)

$$\begin{cases} 2x - 5y + 4z + u - v = -3\\ x - 2y + z - u + v = 5\\ x - 4y + 6z + 2u + v = 10 \end{cases}$$

7. Multiplicamos la segunda ecuación por -1 y por el criterio 2 se obtiene el sistema equivalente

$$\begin{cases} x - 16u + 25v = 124 \\ y - 9u + 15v = 75 \\ z - 3u + 6v = 31 \end{cases}$$

8. Haciendo $u=\lambda$ y $v=\mu$ se obtiene

$$x - 16\lambda + 25\mu = 124 \implies x = 124 + 16\lambda - 25\mu$$

$$y - 9\lambda + 15\mu = 75$$
 \Longrightarrow $y = 75 + 9\lambda - 15\mu$

$$z - 3\lambda + 6\mu = 31$$
 \Longrightarrow $z = 31 + 3\lambda - 6\mu$

MODELAMIENTO MEDIANTE PROGRAMACIÓN LINEAL

Gauus Jordan eliminanación

$$-2x+y+2z=-3$$

$$z = -1$$

CONCLUSIÓN

Aunque los métodos de *Gauss-Jordan* y de *eliminación de Gauss* pueden parecer casi idénticos, el primero requiere aproximadamente 50% menos operaciones. Por lo tanto, la eliminación gaussiana es el método simple por excelencia en la obtención de soluciones exactas a las ecuaciones lineales simultáneas. Una de las principales razones para incluir el método de Gauss-Jordan, es la de proporcionar un método directo para obtener la matriz inversa.

2.5.1 INVERSIÓN DE MATRICES

Sea **A** una matriz cuadrada *no singular*, es decir, que su determinante sea diferente de cero, $|A| \neq 0$. Por definición de matriz inversa, se tiene que

$$A^{-1}$$

es la inversa de A si:

$$\mathbf{A} \bullet \mathbf{A}^{-1} = \mathbf{I} \quad (13)$$

Haciendo $X = A^{-1}$ y sustituyendo en la ecuación anterior, se obtiene

$$A X = I (14)$$

Puede considerarse que esta ecuación matricial representa un sistema de ecuaciones simultáneas, en donde no hay un solo vector de términos independientes sino **n**, los **n** vectores básicos que forman la matriz unitaria **I**. Además, no existe un solo vector de incógnitas, sino **n**, los que corresponden a cada columna de la matriz unitaria.

Por lo anterior, es posible determinar la inversa de una matriz con el método de Gauss-Jordan de eliminación completa. Para lograrlo, bastará con aplicar las operaciones elementales sobre los renglones de la matriz ampliada (A, I) de manera de transformar A en I. Cuando se haya hecho, se obtendrá la matriz ampliada (I, A⁻¹), con lo que se tendrá la inversa buscada.

EJEMPLO

Invertir la matriz

$$A = \begin{bmatrix} 1 & -6 & 2 \\ 2 & -2 & -1 \\ 1 & -3 & -5 \end{bmatrix}$$

Auméntese la matriz de coeficientes con una matriz identidad

$$(A, I) = \begin{bmatrix} 1 & -6 & 2 & 1 & 0 & 0 \\ 2 & -2 & -1 & 0 & 1 & 0 \\ 1 & -3 & -5 & 0 & 0 & 1 \end{bmatrix}$$

Usando a_{tt} como pivote, el renglón 1 se normaliza y se usa para eliminar a X_t de los otros renglones.

$$\begin{bmatrix}
1 & -6 & 2 & 1 & 0 & 0 \\
0 & 10 & -5 & -2 & 1 & 0 \\
0 & 3 & -7 & -1 & 0 & 1
\end{bmatrix}$$

En seguida, se usa a_{22} como pivote y x_2 se elimina de los otros renglones.

$$\begin{bmatrix} 1 & 0 & -1 & -\frac{1}{5} & \frac{3}{5} & 0 \\ 0 & 1 & -\frac{1}{2} & -\frac{1}{5} & \frac{1}{10} & 0 \\ 0 & 0 & -\frac{11}{2} & -\frac{2}{5} & -\frac{3}{10} & 1 \end{bmatrix}$$

Finalmente, se usa **a**33 como pivote y **X**3 se elimina de los renglones restantes:

$$(I, A^{-1}) = \begin{bmatrix} 1 & 0 & 0 & -\frac{7}{55} & \frac{36}{55} & -\frac{2}{11} \\ 0 & 1 & 0 & -\frac{9}{55} & \frac{7}{55} & -\frac{1}{11} \\ 0 & 0 & 1 & \frac{4}{55} & \frac{3}{55} & -\frac{2}{11} \end{bmatrix}$$

Por lo tanto, la inversa es:

$$\mathbf{A}^{-1} = \begin{bmatrix} -7/55 & 36/55 & -2/11 \\ -9/55 & 7/55 & -1/11 \\ 4/55 & 3/55 & -2/11 \end{bmatrix}$$

Se puede resolver un sistema de ecuaciones con la inversa de la matriz de coeficientes, de la siguiente manera:

$$X = A^{-1}C$$

donde C es el vector de términos independientes.

Para acceder a este video diríjase a la etiqueta de material de apoyo