Task 6: Create a Strong Password and Evaluate Its Strength

Step 1 & 2: Create multiple passwords with varying complexity . Use uppercase, lowercase, numbers, symbols, and length variations

- Low Complexity (8-10 chars, simple mix):
 - 1. Summer2024
 - 2. BlueCar99
 - 3. Pizza1234
- Medium Complexity (12 chars, mixed cases, numbers, some symbols):
 - 4. Sun\$et2024!Xq
 - 5. BlueCar#99xZ
 - 6. P1zz@L0v3r!7
- High Complexity (16 chars, full mix):
 - 7. 7S!mmer\$94#XqLp
 - 8. B!u3C@r99xZ&7pW
 - 9. P!zz@L0v3r#04*Q
- Very High Complexity (20 chars, random mix):
 - 10. 9X!m\$7Lp#QvZ&2RwYt3
 - 11. B@7xZ!pW#9Lm&3VqRsY
 - 12. P#2!zZ@L0v3r*Qw8XpYt

Step 3 & 4: Test each password on password strength checker. 4.Note scores and feedback from the tool

No.	Password	Strength Score	Estimated Time to Crack	Feedback Summary
1.	Summer2024	Weak	A few minutes	Common word + year; predictable pattern.
2.	BlueCar99	Weak	A few minutes	Dictionary word + numbers; lacks complexity.
3.	Pizza1234	Weak	A few minutes	Easily guessable; lacks special characters.
4.	Sun\$et2024!Xq	Moderate		Improved symbols and length. Still predictable.
5.	BlueCar#99xZ	Moderate	I Several days	Better entropy; real words reduce uniqueness.

No.	Password	Strength Score	Estimated Time to Crack	Feedback Summary
6.	P1zz@L0v3r!7	Strong	Weeks to months	Good symbol/number substitution; good length.
7.	7S!mmer\$94#XqLp	Very Strong	Centuries	Complex mix, decent length, minimal patterns.
8.	B!u3C@r99xZ&7pW	Very Strong	Centuries	Excellent randomness and symbol variety.
9.	P!zz@L0v3r#04*Q	Very Strong	Centuries	Secure symbol/number usage; no dictionary match.
10.	9X!m\$7Lp#QvZ&2RwYt3	Extremely Strong	Trillions of years	Long, random, unpredictable. Excellent security.
11.	B@7xZ!pW#9Lm&3VqRsY	Extremely Strong	Trillions of years	Uncommon structure and full mix; highly secure.
12.	P#2!zZ@L0v3r*Qw8XpYt	Extremely Strong	Trillions of years	Long with strong entropy and character variety.

Step 6: Tips Learned from Evaluation

- Use a mix of uppercase, lowercase, numbers, and special characters.
- Increase password length; 12+ characters is recommended, 16+ is better.
- Password length significantly impacts strength more than just complexity.
- Simple dictionary words or common phrases drastically reduce password strength.
- Adding symbols and numbers improves strength but is not enough if the password is short or predictable.
- Very long passwords with diverse characters provide the best protection.
- Password strength checkers often consider known leaked passwords and common patterns.
- Using a password manager to generate and store complex passwords is highly recommended.

Step 7: Research – Common Password Attacks

 Understanding how attackers exploit weak passwords is essential for implementing secure authentication practices. Below are the most common types of password attacks:

1. Brute Force Attack

- **Description:** The attacker tries **every possible combination** of characters until the correct password is found.
- **Speed:** Depends on password length and complexity; short/simple passwords can be cracked in seconds.
- **Tools Used:** Hydra, John the Ripper, Hashcat.

2. Dictionary Attack

- **Description:** Uses a **predefined list of words**, phrases, and common passwords (e.g., 123456, password, let Mein).
- Effectiveness: High against users with weak or common passwords.
- Tools Used: Cain & Abel, Medusa, THC Hydra.

4. Phishing Attacks

- **Description:** Tricks users into **manually revealing** their passwords via fake websites or emails.
- Prevention:
 - o Train users to recognize phishing.
 - o Use email filters and MFA.
 - o Regularly test employees with simulated phishing.

5. Keylogging

- **Description:** Malicious software records **keystrokes**, capturing the password as it's typed.
- Prevention:
 - o Use antivirus/anti-malware software.
 - Keep OS and applications patched and updated.
 - o Avoid installing software from untrusted sources.

6. Man-in-the-Middle (MitM) Attack

- **Description:** Intercepts data transmitted between a user and a server, potentially capturing login credentials.
- Prevention:
 - o Use **HTTPS** with valid SSL/TLS certificates.
 - o Avoid public Wi-Fi for sensitive logins without a VPN.

Step 8: Summary – How Password Complexity Affects Security

Password complexity directly impacts how secure an account is against both brute force and dictionary attacks.

Stronger passwords = Longer cracking time = Higher resistance to attacks

Complexity Factor	Impact on Security				
Length	Longer passwords exponentially increase difficulty.				
Character Variety	Adding uppercase, lowercase, digits, and symbols expands the character space.				
Unpredictability	Avoiding dictionary words and common patterns reduces susceptibility to guessing.				
Uniqueness	Using different passwords per account prevents credential stuffing.				