Spectroscopy of Charmed Hadrons

Facing the Latest Experimental Results with the Theory

Relatore: Dott.ssa Fulvia De Fazio Laureando: Stefano Campanella

April 26, 2018

Università degli Studi di Bari

Presentation Outline

My thesis in brief

The core of my thesis consisted in the calculations, within the framework of heavy chiral perturbation theory, of branching fraction ratios of a recently observed excited D meson, the D_2^* (3000), aimed at its classification.

1

1. Why? → Recent experimental findings in hadron spectroscopy.

- 1. Why? → Recent experimental findings in hadron spectroscopy.
- 2. **How?** → The theoretical framework: an effective field theory approach.

- 1. Why? → Recent experimental findings in hadron spectroscopy.
- 2. How? → The theoretical framework: an effective field theory approach.
- 3. What are the implications? → Classification of the charmed mesons.

- 1. Why? → Recent experimental findings in hadron spectroscopy.
- 2. **How?** → The theoretical framework: an effective field theory approach.
- 3. What are the implications? → Classification of the charmed mesons.
- 4. What's the point? \rightarrow Identification of the $D_2^*(3000)$.

- 1. Why? → Recent experimental findings in hadron spectroscopy.
- 2. How? → The theoretical framework: an effective field theory approach.
- 3. What are the implications? → Classification of the charmed mesons.
- 4. What's the point? \rightarrow Identification of the $D_2^*(3000)$.
- 5. **So What?** → Conclusions and perspectives.

Advances in Hadron Spectroscopy

Bird-eye view

Bird-eye view

Exotic spectroscopy

- Supernumerary states (es. X(3872), Y(4260), ...).
- Charged quarkoniumlike states (es. $Z(4430)^+$, $Z(4200)^+$, ...).
- Pentaquark states ($P_c(4380)^+$, $P_c(4450)^+$).

Bird-eye view

Exotic spectroscopy

- Supernumerary states (es. X(3872), Y(4260), ...).
- Charged quarkoniumlike states (es. $Z(4430)^+$, $Z(4200)^+$, ...).
- Pentaquark states ($P_c(4380)^+$, $P_c(4450)^+$).

Ordinary spectroscopy

- Heavy baryons
- Heavy mesons ← The subject of my thesis!

Charmed Mesons: Latest Observations

Advances in Hadron Spectroscopy

Leading role: B-factories (Belle, BaBar), LHCb

Latest observations:

2010 (BaBar), 2013 (LHCb) and **2016 (LHCb)** \leftarrow Observation of the $D_2^*(3000)!$

Resonance	mass (MeV)	$\Gamma (\text{MeV})$	J^P
D(2550)0	$2539.4 \pm 4.5 \pm 6.8$	$130 \pm 12 \pm 13$	0-
D*(2600) ⁰ D*(2600) [±]	$2608.7 \pm 2.4 \pm 2.5 \\ 2621.3 \pm 3.7 \pm 4.2$	$93 \pm 6 \pm 13$ $93 ext{ (fixed)}$	natural natural
$D(2750)^0$	$2752.4 \pm 1.7 \pm 2.7$	$71 \pm 6 \pm 11$	
D*(2760) ⁰ D*(2760) [±]	$2763.3 \pm 2.3 \pm 2.3 \\ 2769.7 \pm 3.8 \pm 1.5$	$60.9 \pm 5.1 \pm 3.6 \\ 60.9 \text{ (fixed)}$	natural natural

BaBar (2010)

Resonance	mass (MeV)	Γ (MeV)	J^P
$D_1^*(2680)^0$ $D_3^*(2760)^0$ $D_2^*(3000)^0$	$2681.1 \pm 5.6 \pm 4.9 \pm 13.1$ $2775.5 \pm 4.5 \pm 4.5 \pm 4.7$ $3214 \pm 29 \pm 33 \pm 36$	$186.7 \pm 8.5 \pm 8.6 \pm 8.2$ $95.3 \pm 9.6 \pm 7.9 \pm 33.1$ $186 \pm 39 \pm 34 \pm 63$	1- 3- 2+

Resonance	mass (MeV)	Γ (MeV)	J^P
D_J (2580) 0	$2579.5 \pm 3.4 \pm 5.5$	$177.5 \pm 17.7 \pm 46.0$	unnatural
$D_J^*(2650)^0$	$2649.2 \pm 3.5 \pm 3.5$	$140.2 \pm 17.1 \pm 18.6$	natural
$D_J(2740)^0$	$2737.0 \pm 3.5 \pm 11.2$	$73.2 \pm 13.4 \pm 25.0$	unnatural
$D_J^*(2760)^0$	$2761.1 \pm 5.1 \pm 6.5$	$74.4 \pm 4.3 \pm 37.0$	natural
$D_J^*(2760)^0$	$2760.1 \pm 1.1 \pm 3.7$	$74.4 \pm 3.4 \pm 19.1$	natural
$D_J^*(2760)^{\pm}$	$2771.7 \pm 1.7 \pm 3.8$	$66.7 \pm 6.6 \pm 10.5$	natural
D_J (3000) ⁰	2971.8 ± 8.7	188.1 ± 44.8	unnatural
$D_J^*(3000)^0$	3008.1 ± 4.0	110.5 ± 11.5	natural
D _J (3000)±	3008.1 (fixed)	110.5 (fixed)	natural

LHCb (2013)

The Theoretical Framework

It is unclear how to describe analytically relativistic bound systems in quantum field theories.

It is unclear how to describe analytically relativistic bound systems in quantum field theories.

The approaches used in hadron spectroscopy so far:

- 1. Potential models (i.e. Schroedinger eq. with ad hoc potentials)
- 2. QCD effective theories ← The one used in my thesis!

It is unclear how to describe analytically relativistic bound systems in quantum field theories.

The approaches used in hadron spectroscopy so far:

- 1. Potential models (i.e. Schroedinger eq. with ad hoc potentials)
- 2. QCD effective theories ← The one used in my thesis!

Effective theories leverage symmetries emerging from QCD in well defined limits.

The Theoretical Framework

Heavy Quark Symmetries

Heavy quarks

Quarks within hadrons exchange gluons with $p \approx \Lambda_{\rm QCD} = 200 \, {\rm MeV} \approx 1 \, {\rm fm}^{-1}$.

Quarks with $m_Q \gg \Lambda_{\rm QCD}$ referred to as heavy (c, b). $\leftarrow t$ bound states unobserved!

6

Heavy Quark Effective Theory (HQET)

QCD Lagrangian for Heavy Quarks (HQ)

$$\mathcal{L}_{\mathrm{QCD}} = \overline{Q} \left(i D - m_Q \right) Q$$
 $D_{\mu} = \partial_{\mu} - i g A_{\mu}^a T^a$ Q : HQ field

HQ limit $m_Q \to \infty$

$$\mathcal{L}_{\rm QCD} = \overline{h}_v \; iv^{\mu} D_{\mu} \; h_v + \frac{1}{2m_Q} \overline{h}_v (iD_{\perp})^2 h_v + \frac{g}{4m_Q} \overline{h}_v \sigma_{\alpha\beta} G^{\alpha\beta} h_v + \mathcal{O}\left(\frac{1}{m_Q^2}\right)$$

$$h_v(x) = e^{im_Q v_{\mu} x^{\mu}} \frac{1 + p}{2} Q(x) \qquad \leftarrow \text{positive energy component of } Q$$

The HQET Lagrangian

$$\mathcal{L}_{\mathrm{HQET}} \equiv \overline{h}_v \ iv^{\mu} D_{\mu} \ h_v$$

7

In heavy hadrons the heavy quark decouples:

HQ spin and flavour symmetries.

Analogy with non-relativistic electrodynamics

There is an analogy with atomic spectroscopy (HQ \leftrightarrow nuclei):

Analogy with non-relativistic electrodynamics

There is an analogy with atomic spectroscopy (HQ \leftrightarrow nuclei):

 \cdot HQ spin decoupling \rightarrow hyperfine splitting is small

Analogy with non-relativistic electrodynamics

There is an analogy with atomic spectroscopy (HQ \leftrightarrow nuclei):

- HQ spin decoupling → hyperfine splitting is small
- \cdot HQ flavour irrelevant o different isotopes have the same chemistry

For heavy mesons, in the exact HQ limit

For heavy mesons, in the exact HQ limit

 \cdot Properties of beauty mesons related to those of charmed ones.

For heavy mesons, in the exact HQ limit

- Properties of beauty mesons related to those of charmed ones.
- Mesons differing only for the orientation of the heavy quark spin expected to be degenerate.

For heavy mesons, in the exact HQ limit

- Properties of beauty mesons related to those of charmed ones.
- Mesons differing only for the orientation of the heavy quark spin expected to be degenerate.
- Heavy quark spin \vec{S}_Q and total angular momentum of the light degrees of freedom \vec{S}_ℓ separately conserved.

HQET Classification of Heavy Mesons

The Theoretical Framework

$$\vec{S}_{\ell} = \vec{L} + \vec{S}_{q}$$

$$\vec{J} = \vec{S}_{\ell} + \vec{S}_{Q}$$

$$P = (-1)^{L+1}$$

 $n: \mathsf{radial} \ \mathsf{quantum} \ \mathsf{number}$

$$\vec{S}_{\ell} = \vec{L} + \vec{S}_{q}$$

$$\vec{J} = \vec{S}_{\ell} + \vec{S}_{Q}$$

$$P = (-1)^{L+1}$$

n: radial quantum number

· Heavy mesons classified in doublets with given n and S_{ℓ}^{P} .

$$\vec{S}_{\ell} = \vec{L} + \vec{S}_{q}$$

$$\vec{J} = \vec{S}_{\ell} + \vec{S}_{Q}$$

$$P = (-1)^{L+1}$$

n: radial quantum number

- · Heavy mesons classified in doublets with given n and S_ℓ^P .
- In each doublet there are two states with $J^P = (S_\ell \pm 1/2)^P$.

$$\vec{S}_{\ell} = \vec{L} + \vec{S}_{q}$$

$$\vec{J} = \vec{S}_{\ell} + \vec{S}_{Q}$$

$$P = (-1)^{L+1}$$

n: radial quantum number

- · Heavy mesons classified in doublets with given n and S_{ℓ}^{P} .
- In each doublet there are two states with $J^P = (S_\ell \pm 1/2)^P$.
- For each n, a state with assigned J^P can belong to two possible doublets with $S_\ell^P = (J \pm 1/2)^P$ (except for 0^-).

$$P, J^{P} = 0^{-} \\ P^{*}, J^{P} = 1^{-} \end{cases} H, S_{\ell}^{P} = 1/2^{-} \rbrace L = 0$$

$$P_{0}^{*}, J^{P} = 0^{+} \\ P'_{1}, J^{P} = 1^{+} \rbrace S, S_{\ell}^{P} = 1/2^{+} \\ P_{1}, J^{P} = 1^{+} \\ P_{2}^{*}, J^{P} = 2^{+} \rbrace T, S_{\ell}^{P} = 3/2^{+} \rbrace L = 1$$

$$\vdots$$

Interlude: covariant representation of states

$$L = 0 \left\{ H = \frac{1+\psi}{2} \left(P^*_{\mu} \gamma^{\mu} - P \gamma^5 \right) \right.$$

$$L = 1 \left\{ S = \frac{1+\psi}{2} \left(P'_{1\mu} \gamma^{\mu} \gamma^5 - P^*_{0} \right) \right.$$

$$T^{\mu} = \frac{1+\psi}{2} \left(P^*_{2\mu} \gamma^{\nu} \gamma^{\nu} - P_{1\nu} \sqrt{\frac{3}{2}} \gamma^5 \left(\eta^{\mu\nu} - \frac{1}{3} \gamma^{\nu} (\gamma^{\mu} - v^{\mu}) \right) \right.$$

$$L = 2 \left\{ X^{\mu} = \frac{1+\psi}{2} \left(P_2^{\mu}_{\nu} \gamma^{\nu} \gamma^5 - P^{*'}_{1\nu} \sqrt{\frac{3}{2}} (\eta^{\mu\nu} - \frac{1}{3} \gamma^{\nu} (\gamma^{\mu} + v^{\mu})) \right.$$

$$X'^{\mu\nu} = \frac{1+\psi}{2} \left(P^*_{3\mu}_{3\nu} \gamma^{\rho} - P'_{2\alpha\beta} \sqrt{\frac{5}{3}} \gamma^5 (\eta^{\mu\alpha} \eta^{\nu\beta} - \frac{1}{5} \gamma^{\alpha} \eta^{\nu\beta} (\gamma^{\mu} - v^{\mu}) - \frac{1}{5} \gamma^{\beta} \eta^{\mu\alpha} (\gamma^{\nu} - v^{\nu})) \right.$$

$$L = 3 \left. \left. \left. F^{\mu\nu} = \frac{1+\psi}{2} \left(P_3^{\mu\nu}_{\rho} \gamma^{\rho} \gamma^5 - P^{*'}_{2\alpha\beta} \sqrt{\frac{5}{3}} (\eta^{\mu\alpha} \eta^{\nu\beta} - \frac{1}{5} \gamma^{\alpha} \eta^{\nu\beta} (\gamma^{\mu} + v^{\mu}) - \frac{1}{5} \gamma^{\beta} \eta^{\mu\alpha} (\gamma^{\nu} + v^{\nu})) \right. \right.$$

$$L = 3 \left. \left. \left. \left. F^{\mu\nu} = \frac{1+\psi}{2} \left(P_3^{\mu\nu}_{\rho} \gamma^{\rho} \gamma^5 - P^{*'}_{2\alpha\beta} \sqrt{\frac{5}{3}} (\eta^{\mu\alpha} \eta^{\nu\beta} - \frac{1}{5} \gamma^{\alpha} \eta^{\nu\beta} (\gamma^{\mu} + v^{\mu}) - \frac{1}{5} \gamma^{\beta} \eta^{\mu\alpha} (\gamma^{\nu} + v^{\nu})) \right. \right. \right.$$

First radial excitations (n = 2) will be marked with a tilde.

Classification of observed states

			$c\overline{q}$			$c\overline{s}$	
Doublet	J^P	n = 1	n = 2	n = 3	n = 1	n = 2	n = 3
H	0-	D(1869)	D(2550)*		$D_s(1968)$		
H	1-	$D^*(2010)$	D*(2600)*	$D_1^*(2680)^*$	$D_s^*(2112)$	$D_{s1}^{*}(2700)$	$D_{s1}^{*}(2860)^{*}$
S	0+	$D_0^*(2400)$			$D_{s0}^{*}(2317)$		
S	1+	$D_1'(2430)$	D(3000)*		$D'_{s1}(2460)$	$D_{sJ}(3040)^*$	
T	1+	$D_1(2420)$	D(3000)*		$D_{s1}(2536)$	$D_{sJ}(3040)^*$	
T	2+	$D_2^*(2460)$	$D_2^*(3000)^*$		$D_{s2}^{*}(2573)$		
X	1-	$D_1^*(2680)^*$			$D_{s1}^{*}(2860)^{*}$		
X	2-				01		
X'	2-	$D(2750)^*$					
X'	3-	$D_3^*(2760)$			$D_{s3}^*(2860)$		
F	2+	$D_2^*(3000)^*$					
F	3+	- 1					

States with uncertain identification are indicated with ★.

The Theoretical Framework

Chiral Symmetry

Quarks with mass $m_q \ll \Lambda_{\rm QCD}$ are referred to as light quarks (d, u, s).

Quarks with mass $m_a \ll \Lambda_{\rm OCD}$ are referred to as light quarks (d, u, s).

In the limit $m_q \rightarrow 0$, the relevant part of the QCD Lagrangian

$$\mathcal{L}_{\text{QCD}} = \overline{q} \left(i D - m_q \right) q$$

can be written as

$$\mathcal{L}_{\text{QCD}} = q_L i \mathcal{D} q_L + q_R i \mathcal{D} q_R ,$$

where q_L and q_R are the left and right chiral components of q.

Quarks with mass $m_q \ll \Lambda_{\rm OCD}$ are referred to as light quarks (d, u, s).

In the limit $m_q \rightarrow 0$, the relevant part of the QCD Lagrangian

$$\mathcal{L}_{\text{QCD}} = \overline{q} \left(i D - m_q \right) q$$

can be written as

$$\mathcal{L}_{\text{QCD}} = q_L i \mathcal{D} q_L + q_R i \mathcal{D} q_R ,$$

where q_L and q_R are the left and right chiral components of q.

 \mathcal{L}_{QCD} invariant for separate flavour rotations of $q_{L/R}$. \leftarrow QCD Chiral symmetry

The chiral perturbation theory

Chiral symmetry is spontaneously broken

The light pseudoscalar mesons are the Goldstone bosons of this broken symmetry.

At low energies, dof of QCD are hadrons not quarks. ← Modelled as effective fields

Hadrons containing light quarks can be represented by effective fields with light-flavour indices.

$$\mathcal{M} = \begin{pmatrix} \frac{1}{\sqrt{2}} \pi^0 + \frac{1}{\sqrt{6}} \eta & \pi^+ & K^+ \\ \pi^- & -\frac{1}{\sqrt{2}} \pi^0 + \frac{1}{\sqrt{6}} \eta & K^0 \\ K^- & \overline{K}^0 & -\sqrt{\frac{2}{3}} \eta \end{pmatrix}$$

Aim: describe interactions of heavy mesons with π , K and η .

The Theoretical Framework

Heavy Chiral Perturbation Theory

Field content of the theory

- · HQ meson doublets
- · Light pseudoscalar octet.

Field content of the theory

- · HQ meson doublets
- · Light pseudoscalar octet.

HChPT Lagrangian:

- Describe transitions between doublets with emission of a light pseudoscalar.
- · Built demanding prescribed symmetries (HQ, chiral, Poincaré).

Field content of the theory

- · HQ meson doublets
- · Light pseudoscalar octet.

HChPT Lagrangian:

- Describe transitions between doublets with emission of a light pseudoscalar.
- · Built demanding prescribed symmetries (HQ, chiral, Poincaré).

Notice: only decays to the fundamental doublet H considered

- · Large available phase space.
- · Easier reconstruction.

HChPT interaction Lagrangians

$$S_{\ell} = 1/2 \begin{cases} \mathcal{L}_{HH} = g \operatorname{Tr}(\overline{H}_{a}H_{b}\gamma_{\mu}\gamma^{5}A_{ba}^{\mu}) \\ \mathcal{L}_{SH} = h \operatorname{Tr}(\overline{H}_{a}S_{b}\gamma_{\mu}\gamma^{5}A_{ba}^{\mu}) + \text{h.c.} \end{cases}$$

$$S_{\ell} = 3/2 \begin{cases} \mathcal{L}_{TH} = \frac{h'}{\Lambda_{\chi}} \operatorname{Tr}(\overline{H}_{a}T_{b}^{\mu}(iD_{\mu}A + iDA_{\mu})_{ba}\gamma^{5}) + \text{h.c.} \\ \mathcal{L}_{XH} = \frac{k'}{\Lambda_{\chi}} \operatorname{Tr}(\overline{H}_{a}X_{b}^{\mu}(iD_{\mu}A + iDA_{\mu})_{ba}\gamma^{5}) + \text{h.c.} \end{cases}$$

$$S_{\ell} = 5/2 \begin{cases} \mathcal{L}_{X'H} = \frac{1}{\Lambda_{\chi}^{2}} \operatorname{Tr}(\overline{H}_{a}X_{b}^{\mu\nu}(k_{1}(D_{\mu}D_{\nu}A_{\lambda} + D_{\nu}D_{\mu}A_{\lambda}) + k_{2}(D_{\mu}D_{\lambda}A_{\nu} + D_{\nu}D_{\lambda}A_{\mu}))_{ba}\gamma^{\lambda}\gamma^{5}) + \text{h.c.} \end{cases}$$

$$S_{\ell} = 5/2 \begin{cases} \mathcal{L}_{K'H} = \frac{1}{\Lambda_{\chi}^{2}} \operatorname{Tr}(\overline{H}_{a}X_{b}^{\mu\nu}(k_{1}(D_{\mu}D_{\nu}A_{\lambda} + D_{\nu}D_{\mu}A_{\lambda}) + k_{2}(D_{\mu}D_{\lambda}A_{\nu} + D_{\nu}D_{\lambda}A_{\mu}))_{ba}\gamma^{\lambda}\gamma^{5}) + \text{h.c.} \end{cases}$$

$$A_{\mu} = \frac{1}{f_{\pi}} \partial_{\mu} \mathcal{M}$$

What's the use of HChPT?

Each HChPT Lagrangian term comes with its coupling constant. ← Low energy constants are not given by HChPT

What's the use of HChPT?

Each HChPT Lagrangian term comes with its coupling constant. ← Low energy constants are not given by HChPT

However, these constants simplify in the ratios of decay widths derived from the same Lagrangian. \leftarrow i.e. they are fixed within HChPT!

What's the use of HChPT?

Each HChPT Lagrangian term comes with its coupling constant. ← Low energy constants are not given by HChPT

However, these constants simplify in the ratios of decay widths derived from the same Lagrangian. \leftarrow i.e. they are fixed within HChPT!

Predictions obtained are very sound, since do not rely on approximate models.

Classification of the D_2^* (3000)

Available assignments

LHCb PRD 94 (2016) 072001

Measured properties of the $D_2^*(3000)$

	mass (MeV)	Γ (MeV)	J^P
$D_2^*(3000)^0$	$3214 \pm 29 \pm 33 \pm 36$	$186 \pm 39 \pm 34 \pm 63$	2+

→ Lowest available assignments

- \tilde{T} doublet: n=1, L=1, $S_{\ell}^{P}=3/2$
- F doublet: $n = 0, L = 3, S_{\ell}^{P} = 7/2^{+}$

Classification of the D_2^* (3000)

The Ratio R_{π}

Definition

$$R_{\pi} = \frac{\Gamma\left(D_{2}^{*}(3000)^{0} \to D^{*+}\pi^{-}\right) + \Gamma\left(D_{2}^{*}(3000)^{0} \to D^{*0}\pi^{0}\right)}{\Gamma\left(D_{2}^{*}(3000)^{0} \to D^{+}\pi^{-}\right) + \Gamma\left(D_{2}^{*}(3000)^{0} \to D^{0}\pi^{0}\right)}.$$

Definition

$$R_{\pi} = \frac{\Gamma\left(D_2^*(3000)^0 \to D^{*+}\pi^-\right) + \Gamma\left(D_2^*(3000)^0 \to D^{*0}\pi^0\right)}{\Gamma\left(D_2^*(3000)^0 \to D^+\pi^-\right) + \Gamma\left(D_2^*(3000)^0 \to D^0\pi^0\right)}.$$

Calculated values

$$R_{\pi} = \begin{cases} 0.40 \pm 0.01 & F \\ 1.06 \pm 0.03 & \tilde{T} \end{cases}$$

Definition

$$R_{\pi} = \frac{\Gamma\left(D_2^*(3000)^0 \to D^{*+}\pi^-\right) + \Gamma\left(D_2^*(3000)^0 \to D^{*0}\pi^0\right)}{\Gamma\left(D_2^*(3000)^0 \to D^+\pi^-\right) + \Gamma\left(D_2^*(3000)^0 \to D^0\pi^0\right)}.$$

Calculated values

$$R_{\pi} = \begin{cases} 0.40 \pm 0.01 & F \\ 1.06 \pm 0.03 & \tilde{T} \end{cases}$$

What does it mean?

 R_{π} very different in the two cases \rightarrow Very good discriminator to identify $D_2^*(3000)$.

Classification of the $D_2^*(3000)$

Its Spin Partner

The two alternatives

Let D^{**} be the spin partner of the $D_2^*(3000)$.

The two alternatives

Let D^{**} be the spin partner of the $D_2^*(3000)$.

- · If $D_2^*(3000)$ belongs to the \tilde{T} doublet, the D^{**} has $J^P=1^+$
- If $D_2^*(3000)$ belongs to the F doublet, the D^{**} has $J^P=3^+$

The two alternatives

Let D^{**} be the spin partner of the $D_2^*(3000)$.

- · If $D_2^*(3000)$ belongs to the \tilde{T} doublet, the D^{**} has $J^P=1^+$
- If $D_2^*(3000)$ belongs to the F doublet, the D^{**} has $J^P=3^+$

What about its mass?

In all the observed cases, in each doublet the mass splitting between the two spin partners ranges between 50 MeV and 100 MeV (larger for the one with higher spin).

Spin partner branching ratio

Definition

$$R'_{\pi} = \frac{\Gamma(D^{**0} \to D^{*+}\pi^{-}) + \Gamma(D^{**0} \to D^{*0}\pi^{0})}{\Gamma(D_{2}^{*}(3000)^{0} \to D^{+}\pi^{-}) + \Gamma(D_{2}^{*}(3000)^{0} \to D^{0}\pi^{0})}$$

- · If $J^P(D^{**}) = 1^+ \rightarrow m_{D^{**}} < m_{D_2^*(3000)}$
- · If $J^P(D^{**}) = 3^+ \rightarrow m_{D^{**}} > m_{D_2^*(3000)}$

Spin partner branching ratio

Definition

$$R'_{\pi} = \frac{\Gamma(D^{**0} \to D^{*+}\pi^{-}) + \Gamma(D^{**0} \to D^{*0}\pi^{0})}{\Gamma(D_{2}^{*}(3000)^{0} \to D^{+}\pi^{-}) + \Gamma(D_{2}^{*}(3000)^{0} \to D^{0}\pi^{0})}$$

· If
$$J^P(D^{**}) = 1^+ \rightarrow m_{D^{**}} < m_{D_2^*(3000)}$$

· If
$$J^P(D^{**}) = 3^+ \rightarrow m_{D^{**}} > m_{D_2^*(3000)}$$

Parametric analysis

Classification of the D_2^* (3000)

Its Strange Partner

What about its mass?

In (almost) all observed states the strange partner has a mass difference of about 100 MeV. ← About the mass difference between the strange and up/down quarks

What about its mass?

In (almost) all observed states the strange partner has a mass difference of about 100 MeV. \leftarrow About the mass difference between the strange and up/down quarks

An Educated Guess

The strange partner of the $D_2^*(3000)$, namely the $D_{s2}^{*\prime}$, should have mass ≈ 3.3 GeV The value $m(D_{s2}^{*\prime})=3313\pm62$ MeV is used.

Strange decays hierarchy

Definitions

$$R_{K} = \frac{\Gamma(D_{s2}^{*+} \to D^{*0}K^{+}) + \Gamma(D_{s2}^{*+} \to D^{*+}K_{S})}{\Gamma(D_{s2}^{*+} \to D^{0}K^{+}) + \Gamma(D_{s2}^{*+} \to D^{+}K_{S})}$$

$$R_{\eta} = \frac{\Gamma(D_{s2}^{*+} \to D^{0}K^{+}) + \Gamma(D_{s2}^{*+} \to D^{+}K_{S})}{\Gamma(D_{s2}^{*+} \to D^{0}K^{+}) + \Gamma(D_{s2}^{*+} \to D^{+}K_{S})}$$

$$R_{\eta}^{*} = \frac{\Gamma(D_{s2}^{*+} \to D^{0}K^{+}) + \Gamma(D_{s2}^{*+} \to D^{+}K_{S})}{\Gamma(D_{s2}^{*+} \to D^{0}K^{+}) + \Gamma(D_{s2}^{*+} \to D^{+}K_{S})}$$

Strange decays hierarchy

Definitions

$$R_{K} = \frac{\Gamma(D_{s2}^{*+} \to D^{*0}K^{+}) + \Gamma(D_{s2}^{*+} \to D^{*+}K_{S})}{\Gamma(D_{s2}^{*+} \to D^{0}K^{+}) + \Gamma(D_{s2}^{*+} \to D^{+}K_{S})}$$

$$R_{\eta} = \frac{\Gamma(D_{s2}^{*+} \to D^{0}K^{+}) + \Gamma(D_{s2}^{*+} \to D^{+}K_{S})}{\Gamma(D_{s2}^{*+} \to D^{0}K^{+}) + \Gamma(D_{s2}^{*+} \to D^{+}K_{S})}$$

$$R_{\eta}^{*} = \frac{\Gamma(D_{s2}^{*+} \to D^{0}K^{+}) + \Gamma(D_{s2}^{*+} \to D^{+}K_{S})}{\Gamma(D_{s2}^{*+} \to D^{0}K^{+}) + \Gamma(D_{s2}^{*+} \to D^{+}K_{S})}$$

Calculated values

	$ ilde{T}$	F
R_K	1.02 ± 0.03	0.39 ± 0.02
R_{η}	0.31 ± 0.01	0.29 ± 0.01
R_{η}^*	0.29 ± 0.02	0.10 ± 0.01

Strange decays hierarchy

Definitions

$$R_{K} = \frac{\Gamma(D_{s2}^{*+} \to D^{*0}K^{+}) + \Gamma(D_{s2}^{*+} \to D^{*+}K_{S})}{\Gamma(D_{s2}^{*+} \to D^{0}K^{+}) + \Gamma(D_{s2}^{*+} \to D^{+}K_{S})}$$

$$R_{\eta} = \frac{\Gamma(D_{s2}^{*+} \to D^{0}K^{+}) + \Gamma(D_{s2}^{*+} \to D^{+}K_{S})}{\Gamma(D_{s2}^{*+} \to D^{0}K^{+}) + \Gamma(D_{s2}^{*+} \to D^{+}K_{S})}$$

$$R_{\eta}^{*} = \frac{\Gamma(D_{s2}^{*+} \to D^{0}K^{+}) + \Gamma(D_{s2}^{*+} \to D^{+}K_{S})}{\Gamma(D_{s2}^{*+} \to D^{0}K^{+}) + \Gamma(D_{s2}^{*+} \to D^{+}K_{S})}$$

Calculated values

	$ ilde{T}$	F
R_K	1.02 ± 0.03	0.39 ± 0.02
R_{η}	0.31 ± 0.01	0.29 ± 0.01
R_{η}^*	0.29 ± 0.02	0.10 ± 0.01

What does it mean?

- Case $D_2^*(3000)$ belongs to \tilde{T} : $R_K \gg R_\eta \approx R_\eta^*$
- Case $D_2^*(3000)$ belongs to $F: R_K > R_{\eta} \gg R_{\eta}^*$

Conclusions and Perspectives

My thesis

My thesis

What has been done?

- The whole observed spectrum of open-charm mesons has been presented and discussed.
- An original contribution aimed at the classification of the $D_2^*(3000)$ has been presented.

Summary of the Results for the Classification of the $D_2^*(3000)$

Case $D_2^*(3000)$ belongs to the F doublet

- $R_{\pi} = 0.40 \pm 0.01$.
- Spin partner: D_3^* , $J^P = 3^+$, $\approx 3.2 3.3$ GeV.
- $R'_{\pi} = 3.60 \pm 1.60$.
- Strange partner: $R_K = 0.39 \pm 0.02 > R_\eta \gg R_\eta^*$.

Case $D_2^*(3000)$ belongs to the \tilde{T} doublet

- $R_{\pi} = 1.06 \pm 0.03$.
- · Spin partner: \tilde{D}_1 , $J^P=1^+$, pprox 3.1–3.2 GeV.
- $R'_{\pi} = 1.50 \pm 0.60$.
- Strange partner: $R_K = 1.02 \pm 0.03 \gg R_{\eta} \approx R_{\eta}^*$.

My thesis

What has been done?

- The whole observed spectrum of open-charm mesons has been presented and discussed.
- An original contribution aimed at the classification of the $D_2^{*}(3000)$ has been presented.

What could still be done?

- Within the same framework: decays to excited D mesons.
- Needing and extension of the framework: decays with light vector mesons in the final state $(\rho, K^*, \omega \text{ and } \phi)$.

Qui finisce l'avventura

26

He who knows does not speak; he who speaks does not know.

(Laozi, Tao Te Ching)