POLITECHNIKA POZNAŃSKA

Wydział Automatyki, Robotyki i Elektrotechniki Instytut Robotyki i Inteligencji Maszynowej Zakład Sterowania i Elektroniki Przemysłowej

RAPORT KOŃCOWY SYSTEMY MIKROPROCESOROWE

Układ regulacji oświetlenia

Spis treści

VV	stęp		J
1	Zad	nie	3
	1.1	Elemeny układu	3
		Działanie	
D,	odem	owanie	7

Wstęp

Projektem końcowym na zaliczenie zajęć laboratoryjnych jest układ automatycznej regulacji oświetlenia, oparty o Nucleo-F746ZG.

Zadanie

Układ automatycznej regulacji steruje jasnością diody. Pomiar natężenia światła następuje poprzez czujnik BH1750. Wartość pomiarowa jest przetwarzana przez mikrokontroler i zawarty na nim regulator PID, po czym następuje proces sterowania prądem diody w kluczu tranzystora.

Rys. 1. Omawiany układu

1.1 Elemeny układu

■ Nucleo-F746ZG. Opis wyjść na Rys.2

Rys. 2. Schemat wyjść Nucleo

 \blacksquare Cyfrowy czujnik natężenia światła BH1750 podłączony w sposób ukazany na Rys.3

Rys. 3. Schemat połączeń czujnika

- LED biała
- \blacksquare Moduł sterowania podłączony w sposób ukazany na Rys.4

Rys. 4. Schemat połączeń modułu sterowania

1.2 Działanie

- 1. Implementujemy odpowiednie nastawy dla regulatora PID. W naszym przypadku są to:
 - Kp=0
 - Ki=1.8
 - Kd=0.01
 - Ts=0.025
- 2. Po załadowaniu programu na Nucleo włączamy terminal i wybieramy wartość z jaką dioda ma świecić(lux). W terminalu również otrzymujemy informację zwrotną z układu jak ukazano na Rys.5

Rys. 5. Terminal jako narzędzie komunikacji z układem sterowania. Ref- wartość zadana; Illuminance-wartość uzyskana przez czujnik; PWM- stopień zasilenia diody w promilach(1000%=max)

3. Rejestrujemy przebieg zmian za pomocą SWV.

	71	
[*:]= var	int	3000
^{ൂ:} light_ctrl	float	820.102417
🕬 light	float	2997.5

Rys. 6. Zaimplementowane w SWV zmienne. var- wartość zadana; light_ctrl- stopień zasilenia diody (1000=max); light- wartość odczytana z czujnika

Rys. 7. Wykres ukazujący zmianę wartości w czasie podczas zmiany natężenia światła na wyższe

Rys. 8. Wykres ukazujący zmianę wartości w czasie podczas zmiany natężenia światła na niższe

Podsumowanie

Projekt został zrealizowany prawidłowo. Mamy jedynie wrażenie, że gdyby dobrać lepsze nastawy to jakość regulowania jeszcze bardziej by wzrosła.