Posets

Partially ordered relation: A relation R on a set A is called partial order if R is reflexive, antisymmetric & transitive.

The set A together with the partial order R is called a partially ordered set or simply a poset, It is denoted by (AIR).

Example

Let A be a set of positive integers and let R be a binary relation such that (a,b) is in R if a divides b.

Since any integer divides itself. R is reflexive.

Since a divides b means b does not divide a unless a = b, R is an antisymmetric relation.

Since a divides b, b divides c, then a divides c, so R is transitive.

Consequently, R is a partial ordered relation.

- 2. Let Zt be the set of positive integers. The relation (<) is a partial order on Zt because for any element X.
 - i) x < x
 - ii) it x < y & y & x, then Y=x.
 - iii) If x≤y & y ∈ Z, then x ≤ Z

Dual of Poset

Let R be a partial order on a set A, and let R^{-1} be the inverse relation of R.

Then R⁻¹ is also a partial order.

The poset (A,R-1) is called the dual of the poset (A,R) and the partial order R-1 is called the dual of the partial order R.

Hasse Diagram

A graphical supresentation of a partial ordering selation in which all arrowheads are understood to be pointing upward is known as the "Hasse Diagram" of the relation.

Solved Example

Draw all Hasse Diagrams of posets with three elements.

Draw Hasse diagram for the following relations on set A = 21,2,3,4,122

 $R = \frac{3}{2}(1,1), (2,2), (3,3), (4,4), (12,12), (1,12), (1,12), (1,12), (1,13), (1,14), (1,12), (2,14), (2,112), (3,12),$

Soli Digraph

Step 1: Remove Cycle

Step 2:

Remove transitive edge

1R2, 2R4 : 1R4
2R4, 4R12 : 2R12
1R4, 4R12 : 1R12

Step3 Circles are replaced by dots. Arrows are also removed.

