Math 221 Worksheet 1 December 1, 2020

Section 6.8: L'Hôpital's Rule; Section 5.1: Areas Between Curves

1. For each of the following, evaluate the limit or show that it does not exist.

(a)
$$\lim_{x \to 0} \frac{e^x - 1 - x}{x^2}$$

Plugging in X = 0 gives the indeterminate form $\frac{6}{0}$, so by L'Hôpital's rule

$$\lim_{x \to 0} \frac{e^{x} - 1 - x}{x^{2}} = \lim_{x \to 0} \frac{e^{x} - 1}{2x}.$$
This again gives $\frac{e}{0}$, so by L'Hopital, $\lim_{x \to 0} \frac{e^{x} - 1}{2x} = \lim_{x \to 0} \frac{e^{x}}{2} = \boxed{1}$

- (b) $\lim_{x \to 1} \frac{1-x}{1+\cos(x)}$ The function $\frac{1-x}{1+\cos(x)}$ is continuous at x=1(since 1+ cos(1) #0), 50 $\lim_{X \to 1} \frac{1-X}{1+\cos(X)} = \frac{1-1}{1+\cos(1)} = \boxed{0}$
- (c) $\lim_{x\to 0^+} \sqrt{x} \ln x$ "Plugging in " $\times = 0$ gives the sholeterminant form $0.(-\infty)$. Convert the product to a quotient and apply L'Hôpital: $\lim_{X \to 0^{+}} \sqrt{\frac{1}{x}} \ln x = \lim_{X \to 0^{+}} \frac{\ln x}{x^{-1/2}} = \lim_{X \to 0^{+}} \frac{\overline{x}}{-\frac{1}{2}x^{-3/2}}$ $=\lim_{x\to 0^+} \left(-2x^{1/2}\right) = -\infty$

(d)
$$\lim_{x \to \infty} (\ln x)^{\frac{1}{x}}$$

First, rewrite in base e (good to do whenever you see an

exponential function):

$$(\ln x)^{\frac{1}{x}} = e^{\frac{\ln(\ln x)}{x}}$$

So $\lim_{x\to\infty} (\ln x)^{\frac{1}{x}} = e^{\lim_{x\to\infty} \frac{\ln(\ln x)}{x}}$ provided the second limit exists.

By L'Hôpital,
$$\lim_{x\to\infty}\frac{\ln(\ln x)}{x}=\lim_{x\to\infty}\frac{\frac{1}{\ln x}\cdot\frac{1}{x}}{1}=0.$$
So the or swer is $e^{0}=1$

So the answer is e°= 1

(e)
$$\lim_{t \to 0} \frac{e^{3t} - 1}{\sin(t)}$$

By L'Hôp ital,
$$\lim_{t \to 0} \frac{e^{3t} - 1}{\sin(t)} = \lim_{t \to 0} \frac{e^{3t} \cdot 3}{\cos(t)} = \frac{e^{3t} \cdot 3}{\cos(0)} = \boxed{3}$$

(f)
$$\lim_{x \to \infty} \frac{\ln(x)}{\sqrt{x}}$$

By L'Hôpital,

 $\lim_{x \to \infty} \frac{\ln(x)}{\sqrt{x}} = \lim_{x \to \infty} \frac{\frac{1}{x}}{\frac{1}{x}} = \lim_{x \to \infty} 2 \times \frac{1}{x} = 0$

(g)
$$\lim_{x\to 1^+} \left[\ln(x^7-1) - \ln(x^5-1)\right]$$

First make the difference a quotient:
$$\ln\left(x^7-1\right) - \ln\left(x^5-1\right) = \ln\left(\frac{x^7-1}{x^5-1}\right)$$
Then $\lim_{x\to 1^+} \left(\ln\left(x^7-1\right) - \ln\left(x^5-1\right)\right) = \ln\left(\lim_{x\to 1^+} \frac{x^7-1}{x^5-1}\right)$ provided the second limit exists. By L'Hôpítal,

$$\lim_{\chi \to 1} + \frac{\chi^{7-1}}{\chi^{5-1}} = \lim_{\chi \to 1^{+}} \frac{7\chi^{6}}{5\chi^{9}} = \lim_{\chi \to 1^{+}} \frac{7}{5} \chi^{2} = \frac{7}{5}.$$
(h)
$$\lim_{y \to 0} \frac{\sin y}{y + \tan y}$$
So the answer is $\left[\ln\left(\frac{1}{5}\right)\right]$

By L'Hôpital,

$$\lim_{y\to 0} \frac{\sin(y)}{y + \tan(y)} = \lim_{y\to 0} \frac{\cos(y)}{1 + \sec^2(y)} = \frac{\cos(0)}{1 + \sec^2(0)} = \boxed{\frac{1}{2}}$$

(i)
$$\lim_{x\to\infty} \left(1+\frac{4}{x}\right)^x$$
Like in part (d): $\lim_{x\to\infty} \left(1+\frac{4}{x}\right)^x = \lim_{x\to\infty} e^{-\frac{1}{x}} \left(1+\frac{4}{x}\right)^x = \lim_{x\to\infty} x \ln\left(1+\frac{4}{x}\right)^x$

By L'Hôpital,

 $\lim_{x\to\infty} x \ln\left(1+\frac{4}{x}\right) = \lim_{x\to\infty} \frac{\ln\left(1+\frac{4}{x}\right)}{x^{-1}} = \lim_{x\to\infty} \frac{1+\frac{4}{x}}{1+\frac{4}{x}} \cdot \frac{-4}{x^2} = \lim_{x\to\infty} \frac{4}{1+\frac{4}{x}}$

So the answer is $e^{\frac{1}{x}}$

2. Determine values of a and b such that $\lim_{x\to 0} \left(\frac{\sin(2x)}{x^3} + 2b + \frac{a}{x^2}\right) = 0$.

$$\lim_{X\to 0} \left(\frac{\sin(2x)}{X^3} + 2b + \frac{a}{X^2} \right) = 2b + \lim_{X\to 0} \frac{\sin(2x) + ax}{X^3}$$
 provided

the second limit exists. By L'Hôpital,

$$\lim_{x\to 0} \frac{\sin(2x) + ax}{x^3} = \lim_{x\to 0} \frac{2\cos(2x) + a}{3x^2}$$

 $\lim_{x\to 0} \frac{\sin(2x) + ax}{x^3} = \lim_{x\to 0} \frac{2\cos(2x) + a}{3x^2}$ so we must have a = -2 (otherwise the limit does not exist).

Applying L'Hôpital twice more to a, we find that $a = -\frac{4}{3}$.

3. Let $f(x) = x^2$ and $g(x) = \sqrt{x}$ Since the total limit is 0, we must have

(a) Find all points where the graphs of f and g intersect. Sketch the graphs.

$$x^2 = \sqrt{x}$$
 \iff $x = 0$ or $x = 1$, so the intersections

are (0,0) and (1,1).

(b) Find the area of the bounded region(s) enclosed by the graphs of f and g.

area =
$$\int_0^1 g(x) dx - \int_0^1 f(x) dx$$

= $\int_0^1 \sqrt{x} dx - \int_0^1 x^2 dx$
= $\frac{z}{3} - \frac{1}{3} = \frac{1}{3}$

4. Repeat Problem 3 for the following pairs of functions:

(a)
$$f(x) = x^3 \text{ and } g(x) = x$$

$$x^{3} = x \iff x = -1, x = 0, \text{ or } x = 1.$$

The intersections are (-1,-1), (0,0), and (1,1).

area =
$$\int_{-1}^{0} (f(x) - g(x)) dx + \int_{0}^{1} (g(x) - f(x)) dx$$

= $\int_{-1}^{0} (x^{3} - x) dx + \int_{0}^{1} (x - x^{3}) dx$
= $-\frac{1}{4} + \frac{1}{2} + \frac{1}{2} - \frac{1}{4}$
= $\frac{1}{2}$

- (b) $f(x) = \sin(x)$ and $g(x) = 1 \sin(x)$ for $0 \le x \le \pi$
 - $sin(x) = 1 sin(x) \iff x = \frac{\pi}{6} \text{ or } x = \frac{5\pi}{6}$

Intersections are $(\frac{\pi}{6}, \frac{1}{2})$ and $(\frac{5\pi}{6}, \frac{1}{2})$.

area =
$$\int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} (f(x) - g(x)) dx$$

$$= \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} (2 \sin(x) - 1) dx$$

$$= -2 \cos(\frac{5\pi}{6}) - \frac{5\pi}{6} + 2\cos(\frac{\pi}{6}) + \frac{\pi}{6}$$

$$= 2 \sqrt{3} - \frac{2\pi}{3}$$

(c) $f(x) = \sqrt{1-x^2}$ and $g(x) = \frac{1-x^2}{2}$ for $-1 \le x \le 1$

$$\sqrt{1-x^2} = \frac{1-x^2}{z} \iff x = -1 \text{ or } x = 1.$$

Intersections are (-1,0) and (1,0).

The graph of f is a semicircle of radius 1. So

area =
$$\frac{\pi}{2} - \int_{-1}^{1} g(x) dx$$

= $\frac{\pi}{2} - \int_{-1}^{1} \frac{1-x^{2}}{2} dx$
= $\frac{\pi}{2} - \left(\frac{1}{2} - \frac{1}{6} + \frac{1}{2} - \frac{1}{6}\right)$
= $\frac{\pi}{2} - \frac{2}{3}$