1 Grundlagen

- Erwartungswert misst den mittleren Wert einer Zufallsvariable X
- Varianz misst wie stark die Werte von X typischerweise vom Erwartungswert abweichen
- Nicht jede reellwertige ZV X besitzt einen Erwartungswert und eine Varianz (manche haben unendlich als Erwartungswert)

2 Erwartungswert

2.1 Diskrete ZVs

Definition: Erwartungswert Sei (Ω, \mathcal{A}, P) ein W-Raum, $X : \Omega \mapsto \mathbb{R}$ eine diskrete ZV

- Dann besitzt X einen Erwartungswert wenn $\sum_{x \in X[\Omega]} |x| P(X = x) < \infty$
- In diesem Fall ist nach dem Umordnungsatz: $E(X) = E_p(X) := \sum_{x \in X[\Omega]} |x| P(X = x)$ wohldefiniert und heißt der Erwartungswert von X bzgl. P
- $\mathfrak{L}^1(P) := \{X : \Omega \mapsto \mathbb{R} | E_p(|X|) < \infty\} = \mathfrak{L}^1$ bezeichnet die Menge aller ZVs X für die ein Erwartungswert bzgl. P existiert

Satz: Rechenregeln für Erwartungswerte Für diskrete ZVs $X,Y,X_n,Y_n:\Omega\to\mathbb{R}$ in \mathfrak{L}^1 gilt:

- 1. Monotonie: Aus $X \leq Y$, d.h. $X(\omega) \leq Y(\Omega) \forall \omega \in \Omega$ folgt $E_p(X) \leq E_p(Y)$
- 2. **Linearität:** $\mathfrak{L}^1(P)$ ist ein reeller Vektorraum und $E_p: \mathfrak{L}^1 \to \mathbb{R}$ ist **linear**: $E_p(c_1 \cdot X_1 + c_2 \cdot X_2) = c_1 \cdot E_p(X_1) + c_2 \cdot E_p(X_2)$ für $c_1, c_2 \in \mathbb{R}$
- 3. σ -additivität: Sind alle $X_n \ge 0$ und ist $X = \sum_{n \ge 1} X_n$ so gilt: $E_p(X) = \sum_{n \ge 1} E_p(X_n)$
- 4. Monotone Konvergenz: Wenn Y_n gegen Y und n gegen ∞ so folgt: $E_p(Y) = \lim_{n \to \infty} E_p(Y_n)$
- 5. **Produktregel:** Sind X,Y unabhängig so ist $X \cdot Y \in \mathfrak{L}^1(P)$ und es gilt: $E_p(X \cdot Y) = E_p(X) \cdot E_p(Y)$

Beweis: Rechenregeln für Erwartungswerte

- 1. Monotonie: $E_P(X) = \sum_{x \in X[\Omega]} x \cdot P(X = x) = \sum_{x \in X[\Omega], y \in Y[\Omega]} x \cdot P(X = x, Y = y) \le \sum_{x \in X[\Omega], y \in Y[\Omega]} y \cdot P(X = x, Y = y) = \sum_{y \in X[\Omega]} y \cdot P(Y = y) = E_P(Y)$
- 2. Linearität 1: $E_P(c \cdot X_1) = \sum_{x \in [\Omega]} c \cdot x \cdot P(cX = cx) = \sum_{x \in [\Omega]} c \cdot x \cdot P(X = x) = c \cdot \sum_{x \in [\Omega]} x \cdot P(X = x) = c \cdot E_P(X)$ Außerdem $cX \in \mathcal{L}^1$
- 3. **Linearität 2:** ???

2.2 Reelle ZVs

Definition: Erwartungswert gleicher Shit nur einmal approximiert und eimal mit Integral; Keine Aufgabe will das, also lasse ich es raus

3 Varianz und Kovarianz

Definition: Varianz und Kovarianz Für $X,Y \in \mathfrak{L}^2(P)$ heißt:

- $V(X) = V_p(X) := E_p([X E_p(X)]^2) = E_p(X^2) E_p(X)^2$ die Varianz von X bzgl P
- $\sqrt{V(X)}$ die Standardabweichung von X bzgl. P
- $Cov_P(X,Y) := E_p([X E_p(X)] \cdot [Y E_p(Y)]) = E_p(XY) E_p(X)E_p(Y)$ die Kovarianz von X und Y bzgl. P
- Ist $Cov_P(X, Y) = 0$ so ist X und Y unkorreliert
- Bei einer Gleichverteilung ist die Varianz gerade die mittlere quadratische Abweichung vom Mittelpunkt
- Korrelation: $p(X,Y) := \frac{Cov(X,Y)}{\sqrt{V(X)V(Y)}}$ (-1 bis 1)

Satz: Rechenregeln für Varianz und Kovarianz Seien $X,Y,X_i \in \mathfrak{L}^2(P)$ und $a,b,c,d \in \mathbb{R}$ Dann gilt:

- 1. aX + b, cY + d liegen in $\mathfrak{L}^2(P)$ und $Cov_P(aX + b, cY + d) = ac \cdot Cov_P(X, Y)$. Insbesondere gilt: $V_P(aX + b) = a^2V_P(X)$
- 2. $Cov_P(X,Y)^2 \leq V_P(X)V_P(Y)$ Cauchy Schwarz Ungleichung
- 3. To do
- 4. Sind X und Y unabhängig, so sind X und Y auch unkorreliert (Umkehrung muss nicht gelten!)

Beweis: Rechenregeln für Varianz und Kovarianz

- 1. $Cov_P(aX + b, cY + d) = E_P([aX + b] \cdot [cY + d]) E_P(aX + b) \cdot E_P(cY + d) = a \cdot cE_P(XY) + a \cdot dE_P(X) + b \cdot cE_P(Y) + bd (a \cdot E_P(X) + b) \cdot (c \cdot E_P(Y) + d) = a \cdot cCov_P(X, Y)$
- 2. $V_p(aX+b) = E([aX+b-E(aX+b)]^2) = E([aX+b-a\cdot E(X)+b]^2) = E([a\cdot (X-E(X))]^2) = a^2\cdot V(X)$
- 3. Cauchy Schwarz Gleichung ist viel zu schwer zum beweisen
- 4. Viel Index geshifte, siehe Lösung
- 5. Produktregel von Erwartungswerten + zweite Def. von CoVarianz nutzen!