

What are contrasts?

- Each standardized contrast is telling us something about the RATE of evolution
- The contrasts have a close relationship with σ², the rate parameter from BM
- The sum of the squared contrasts divided by n gives the ML estimate of σ²

Using and Interpreting Contrasts

- Independent contrasts should be thought of as vectors
- They summarize information about the amount and direction of evolution at each node in the tree
- Standardized contrasts provide information about the rate of evolution

Using and Interpreting Contrasts

- This provides an unbiased estimate of evolutionary rate
- The expected value of this estimate is equal to the actual rate parameter
- The maximum likelihood estimate of the rate parameter is biased

Character correlations

- Most common use for ICs: testing for character correlations
- Are two characters evolving in a correlated fashion?

Character correlations

- Calculate independent contrasts for two characters, x and y
- Carry out a regression analysis of y on x with no intercept (force regression line through the origin)
- P < 0.05, then reject the null hypothesis of no evolutionary correlation

Character correlations

- · Why force contrasts through the origin?
- Because, for each contrast, the direction of subtraction is arbitrary; the signs of all the contrasts could be reversed
- Regression through the origin treats the contrasts as vectors

Outline - BM

- · What is Brownian motion?
- When might characters evolve in a Brownian-like way?
- · Simulating Brownian motion on trees
- Independent contrasts

Likelihoods for Continuous Characters

March 31, 2009

Outline

- Calculating the likelihood for a single character evolving under a BM model
- Alternative models for continuous character evolution
- Multivariate character evolution

Outline

- Calculating the likelihood for a single character evolving under a BM model
- Alternative models for continuous character evolution
- Multivariate character evolution

Likelihood for a single character

Brownian motion

$$y \sim N(0, \sigma^2 * t)$$

$$Pr[y = x] = \frac{1}{\sigma \sqrt{2\pi t}} exp \left(-\frac{(x - \theta)^2}{2\sigma^2 t}\right)$$

Two dimensions (x,y) correspond to tree with n=2

$$f(x,y) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}}\exp\left(-\frac{1}{2(1-\rho^2)}\left(\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2} - \frac{2\rho xy}{(\sigma_x\sigma_y)}\right)\right)$$

More dimensions gets more complicated Easy to do with computers

Likelihood for continuous characters on trees

- Given phylogeny, measurements of character y for each tip (y_i)
- Choose a rate parameter σ² and mean Θ
- Calculate the phylogenetic variancecovariance matrix for the tree V

Likelihood for continuous characters on trees

- y_i~MVN(Θ, σ²V)
- Determine the probability of drawing the vector of y, from the MVN distribution with mean Θ and vev σ²V

Analytic Solution for MLE

$$\hat{\sigma}^2 = \frac{(\mathbf{x} - \hat{a}\mathbf{1})'\mathbf{C}^{-1}(\mathbf{x} - \hat{a}\mathbf{1})}{n}$$

$$\hat{a} = [(1'C^{-1}1)^{-1}(1'C^{-1}X)]'$$

x = vector of trait values, n = number of species, C = coancestry matrix (shared path lengths)

Outline

- Calculating the likelihood for a single character evolving under a BM model
- Alternative models for continuous character evolution
- · Multivariate character evolution

Three Models for Phenotypic Evolution

- Single Rate (SR)
- Early Burst (EB)
- Constant Constraints (CC)

Single Rate Model (SR)

- Brownian motion model with a constant rate of evolution
- Two parameters: starting value (Θ) and rate (σ²)

Early Burst Model (EB)

- · Rate of evolution slows through time
- · Highest rate at the root of the tree
- Three parameters: starting value (Θ), starting rate (σ²₀), and rate change (r)

$$r(t) = \sigma_0^2 e^{rt}$$

$$V_{ij} = \int_0^{s_{ij}} \sigma_0^2 e^{rt} dt = \sigma_0^2 \frac{e^{rs_{ij}}}{r}$$

Constant Constraints Model (CC)

- Evolution has a tendency to move towards some medial value
- · "Brownian motion with a spring"
- Three parameters: starting value (Θ), rate (σ²), and constraint parameter (α)

Why these three?

- SR (Brownian motion) is assumed by almost all phylogenetic comparative methods
- EB (early burst) corresponds to one idea of adaptive radiation
- CC (constant constraint) may capture the importance of constraints on evolution

Example: Anolis lizards

- Lizards on Caribbean islands
- Phylogenetic and body size data for 73 species (out of ~140 total)

	_
└	
\\T-\ 	

Cichlids in Lake Tanganyika

Model	Parameter estimates	InL	Akaike weight
SR	σ² = 0.02	-62.3	0.00
EB	σ² = 0.02 r = 0	-62.3	0.00
СС	σ=_	-33.3	1.00

Clades	Data set		Criterion	the .	œ		
All full clades	Body size	49	Макения и	35	10	1	
	Story shape		Maximum w				
Al substates	Bedy son		Maximum w				
	Body shape		Maximum w				

Outline

- Calculating the likelihood for a single character evolving under a BM model
- Alternative models for continuous character evolution
- Multivariate character evolution

What if you have more than one character?

- Consider two characters evolving on a single tree
- · Use a multivariate Brownian motion model
- Each character has a rate of evolution σ_i²
- Characters also have an evolutionary covariance σ_{ij}
- · We can call this evolutionary vcv matrix R

What if you have more than one character?

- For each character, species covary with each other according to the coancestry matrix C
- Within species, characters covary according to the evolutionary covariance matrix R

What if you have more than one character?

- All characters for all species are drawn from a multivariate normal distribution
- V = R ⊗ C
- ⊗ is the Kronecker product

Four taxa, two traits

Multiple characters

- Equations for the likelihood and analytic solutions for the mle are fairly simple, see Revell and Harmon 2008
- Easy likelihood-based tests for character correlations, etc.
- Still very similar to approaches based on contrasts

Outline

- Calculating the likelihood for a single character evolving under a BM model
- Alternative models for continuous character evolution
- · Multivariate character evolution