Ethan Nadler | Curriculum Vitae

Carnegie Observatories & University of Southern California 813 Santa Barbara Street – Pasadena, CA 91101 – USA

☑ enadler@carnegiescience.edu • • • • • Ethan O. Nadler

Research	
Dark Matter	
 Measuring dark matter microphysics using observations of small-scale cosmic structure; Simulating structure formation in dark matter models beyond CDM. 	
Computational Astrophysics.	
Emulating the impact of baryons on small-scale structure using cosmological simulations;Modeling the connection between (satellite) galaxies and dark matter (sub)halos.	
Near-field Cosmology.	
 Reconstructing primordial density fluctuations from dwarf galaxy populations; Unifying dark matter constraints from near-field, strong lensing, and high-redshift data. 	
Positions	
Carnegie Observatories & University of Southern California Postdoctoral Research Fellow	2021-
Education	
Stanford University Ph.D., Physics Thesias Faint Calaxies and Small Haloss Probes of Calaxy Formation and Dark Matter	2021
Thesis: Faint Galaxies and Small Halos: Probes of Galaxy Formation and Dark Matter University of California, Santa Barbara	2016
B.S., Physics	2010
Thesis: Universality in the Structure and Abundance of Dark Matter Halos	
Scientific Collaborations	
Satellites Around Galactic Analogs Survey: Member	2019-
DECam Local Volume Exploration (DELVE) Survey: Member	2019-
Rubin LSST Dark Energy Science Collaboration: Member, Dark Matter Working Group	2018-
Dark Energy Survey: Member, Milky Way Working Group	2018-
Fellowships & Awards	
Carnegie DEI Grant: CreateNow + Carnegie: Dark Matter & Data Visualization	2022-
XSEDE Allocation : Cosmological Simulations of Milky Way Analogs with Galactic Disks	2022–23
XSEDE Allocation : Simulations of Milky Way Halos with Large Magellanic Cloud Analogs	2020–21
NSF Graduate Research Fellow: National Science Foundation	2018–21
Faculty Committee Commendation of Excellence: UCSB College of Creative Studies	2016

Outstanding Senior Award: UCSB Department of Physics

2016

2016

Mentoring

Graduate Student Project Advisor 2021 o Niusha Ahvazi, UCR/Carnegie: Semi-analytic modeling of dwarf galaxy formation and evolution (see N. Ahvazi, A. Benson, L. Sales, E. O. Nadler et al. 2024) o Wendy Crumrine, USC: Constraining dark matter-radiation interactions with small-scale structure; o Elise Darragh-Ford, Stanford: Searching for dwarf galaxies and stellar streams in Gaia data (see E. Darragh-Ford, E. O. Nadler et al. 2021); Trey Driskell, USC: Semi-analytic modeling of structure and galaxy formation (see T. Driskell, E. O. Nadler et al. 2022); o Noah Glennon, UNH: Soliton orbital evolution in self-interacting axion dark matter (see N. Glennon, E. O. Nadler et al. 2022; N. Glennon, N. Musoke, E. O. Nadler et al. 2024); o Karime Maamari, USC: Simulating galaxy formation with dark matter-baryon interactions; o Sidney Mau, Stanford: Constraining the dark matter particle lifetime with dwarf galaxies (see S. Mau, E. O. Nadler et al. 2022); Siddhesh Raut, USC/Carnegie: Self-interacting dark matter halo gravothermal evolution modeling; o Yunchong Wang, Stanford: Empirically modeling dwarf galaxy star formation histories (see Y. Wang, E. O. Nadler et al. 2021; 2024); Undergraduate, Post-baccalaureate, & High-school Student Advisor 2018o Deveshi Buch, Stanford '24: Cosmological zoom-in simulations of Milky Way-like systems; (see D. Buch, E O. Nadler et al. 2024) o Shuxing Fang, USC '22: Large Magellanic Cloud infall in self-interacting dark matter; o Abigail Lee, UPenn '19 → UChicago: Subhalo disruption in galaxy clusters. o Nyal McCrea (Simons–NSBP Scholar), CWU '22 → Synrad: Visualizing subhalo populations; o Ellen Min, Caltech '24: Code development and Python implementation for Galacticus; o Nicel Mohamed-Hinds, Stanford '19 → UW: Emulating hydrodynamic zoom-in simulations; o Veronica Pratt, Stanford '23 → Tufts: Statistics of Large Magellanic Cloud analogs in the SAGA Survey; o Juan Quiroz, Caltech '24: Modeling subhalo evolution in decaying dark matter models; o Derek Rodriguez, USC Hybrid High '23 → UCLA: Symphony simulation analysis; o Resherle Verna, USC '20 \rightarrow UT Austin: Subhalo populations in SIDM + hydrodynamic simulations; o Logan White (Simons-NSBP Scholar), NCSU '25: Halo mass function evolution beyond CDM; **Teaching Guest Lecturer** (USC) 2022 • Advanced Cosmology: Lecture on Structure Formation & Galaxies. **Textbook Co-Author** (University of California, Davis) 2022 o A Cosmology Workbook: 31: Structure Formation, 32: Galaxy Formation. 2017-21 **Teaching Assistant** (Stanford) Structure Formation & Galaxy Formation, Modern Astrophysics, Cosmology & Extragalctic Astrophysics, Origin & Development of the Cosmos, Electricity & Magnetism. Course Assistant (UCSB) 2015–16 o Relativistic Quantum Mechanics, Kinetic Theory & Relativity, Mechanics & Waves, Newtonian Mechanics. 2015-16 **Tutor** (UCSB Campus Learning Assistance Services) o Held biweekly supplementary lectures for Basic Physics, Linear Algebra, Differential Equations. Outreach & Service Conference Coordinator (KITP, Cosmic Signals of Dark Matter Physics: New Synergies) 2024

2023

2022

2022

Carnegie Observatories Lectures at the Huntington (Speaker) [video]

Proposal Review Panel Member (NASA Astrophysics Data Analysis Program)

CreateNow + Carnegie: Dark Matter & Data Visualization (Course Instructor)

Carnegie Observatories Lectures at Pasadena City College (Speaker)	2022
Carnegie Observatories Lunch with an Astronomer (Speaker)	2022
Cosmic Cocktail Hour with Carnegie Observatories (Speaker)	2022
USC Physics Climate Committee (Postdoctoral & Staff Representative)	2021-
UCSB Physics NSF REU (Speaker)	2021-
San Mateo County Astronomical Society (Speaker) [video]	2021
Journal Referee (ApJ, Astropart. Phys., JCAP, MNRAS, PRL, Language & Cognition)	2019–
Astronomy on Tap San Francisco (Speaker and Volunteer)	2018–20
Stanford Future Advancers of Science and Technology (Physics Mentor)	2017–19
Media	
UC Riverside News, New dark matter theory explains two puzzles in astrophysics	2023
Quanta Magazine, In a Monster Star's Light, a Hint of Darkness	2023
KIPAC Research Highlight, Between the worlds of the visible and invisible lies: Dark Matter	2021
Fermilab Press Release , DES census of the smallest galaxies hones the search for dark matter	2020
SLAC Press Release , Milky Way satellites reveal link between dark matter and galaxy formation	2020
AAS Nova Research Highlight, Constraining collisions of dark matter	2019
SLAC Press Release, Satellite galaxies provide new clues about dark matter	2019
KIPAC Research Highlight, Dark matter subhalo disruption: insights from machine learning	2018
Invited Presentations	
Review: Dark Matter Constraints from Dwarf Galaxies Durham, Small Galaxies, Cosmic Questions - II	2024
Forecasts for Galaxy Formation and Dark Matter Constraints from Dwarf Galaxy Surveys LBNL, Fundamental Physics from Future Spectroscopic Surveys	2024
Revealing Dark Matter and Galaxy Formation with Small-Scale Structure Rice, Astronomy & Astrophysics Seminar UC San Diego, Astrophysics Colloquium Caltech, TAPIR Seminar	2024
SIDM (Sub)halos in Milky Way and Strong Lens Analogs Pollica Physics Centre, Self-Interacting Dark Matter Models, Simulations and Signals [slides]	2023
Cosmological Simulations with Novel Dark Matter Physics UC Riverside, GalFRESCA UCLA, Dark Matter 2023 [slides] KICP, Astronomy & Astrophysics Seminar	2023
The Faint End of the Galaxy–Halo Connection KITP, Building a Physical Understanding of Galaxy Evolution [video]	2023
Dark Matter Constraints from Small-Scale Structure CERN Theory Institute, New Physics from Galaxy Clustering [video, slides]	2022
Symphony: Cosmological Zoom-in Simulations over Four Decades of Host Halo Mass Caltech, GalFRESCA [slides]	2022

Dark Matter Physics + Rubin LSST LSST Dark Energy Science Collaboration, CosmoPalooza	2022
Towards Precision Near-Field Cosmology KIPMU, Astro Lunch Seminar UC Riverside, Astronomy Seminar Fermilab, Cosmic Physics Center Seminar [video]	2021
Dark Matter Constraints from a Unified Analysis of Strong Lenses and Satellite Galaxies LSST DESC Dark Matter Working Group Virginia Tech Center for Neutrino Physics, Journal Club	2021
The Faintest Galaxies and their Dark Matter Halos Harvard-Smithsonian Center for Astrophysics, GCSP Seminar [video] International Centre for Theoretical Sciences, Less Travelled Path of Dark Matter [video, slide KITP, The Galaxy–Halo Connection Across Cosmic Time: Recent Updates [video] LIneA, Webinar [video, slides] KIPAC, Astrophysics Colloquium [video] Fermilab, New Perspectives [slides]	2020–21 s]
BSM Pandemic Seminar [video, slides] Milky Way Satellites: Probes of Dark Matter Microphysics University of Chicago, Cosmic Controversies [slides] KICP, LSST Dark Matter Workshop [slides] Institute for Advanced Study, Astro Coffee Johns Hopkins, High Energy Physics/Cosmology Seminar UC Berkeley, LSST DESC Winter Collaboration Meeting	2019
Modeling Subhalos and Satellites in Milky Way-like Systems KICP, Near-Field Cosmology with DES DR1 [slides] KITP, The Small-Scale Structure of Cold(?) Dark Matter [video, slides] UC Berkeley Center for Cosmological Physics, Cosmology Seminar [slides]	2018
Predicting Realistic Subhalo Populations KITP, The Galaxy–Halo Connection Across Cosmic Time	2017
First & Co-Authored Publications	
E. O. Nadler , V. Gluscevic, T. Driskell, R. H. Wechsler, L. A. Moustakas, <i>et al. Forecasts for Galaxy F and Dark Matter Constraints from Dwarf Galaxy Surveys.</i> 2401.10318 (ApJ in press).	Formation

- E. O. Nadler, D. Yang, and H.-B. Yu. A Self-interacting Dark Matter Solution to the Extreme Diversity of Low-mass Halo Properties. 2023, ApJL, 958, L39.
- E. O. Nadler, P. Mansfield, Y. Wang, X. Du et al. Symphony: Cosmological Zoom-in Simulation Suites over Four Decades of Host Halo Mass. 2023, ApJ, 945, 159.
- **E. O. Nadler**, A. Benson, T. Driskell, X. Du, and V. Gluscevic. *Growing the First Galaxies' Merger Trees*. 2023, MNRAS, 521, 3201.
- E. O. Nadler, A. Banerjee, S. Adhikari, Y.-Y. Mao, and R. H. Wechsler. The Effects of Dark Matter and Baryonic Physics on the Milky Way Subhalo Population in the Presence of the Large Magellanic Cloud. 2021, ApJL, 920, L11.
- E. O. Nadler, S. Birrer, D. Gilman, R. H. Wechsler, X. Du, A. Benson, A. Nierenberg, and T. Treu. Dark Matter Constraints from a Unified Analysis of Strong Gravitational Lenses and Milky Way Satellite Galaxies. 2021, ApJ, 917, 7.

- S. Das & E. O. Nadler. Constraints on the epoch of dark matter formation from Milky Way satellites. 2021, PRD, 103, 043517.
- **E. O. Nadler** & A. Drlica-Wagner *et al.* (DES Collaboration). *Constraints on Dark Matter Properties from Observations of Milky Way Satellite Galaxies*. 2021, PRL, 126, 091101.
- **E. O. Nadler**, A. Banerjee, S. Adhikari, Y.-Y. Mao, and R. H. Wechsler. *Signatures of Velocity-dependent Dark Matter Self-interactions in Milky Way-mass Halos*. 2020, ApJ, 896, 112.
- **E. O. Nadler** & R. H. Wechsler *et al.* (DES Collaboration). *Milky Way Satellite Census. II. Galaxy-Halo Connection Constraints Including the Impact of the Large Magellanic Cloud.* 2020, ApJ, 893, 48.
- **E. O. Nadler**, V. Gluscevic, K. K. Boddy, and R. H. Wechsler. *Constraints on Dark Matter Microphysics from the Milky Way Satellite Population*. 2019, ApJL, 878, L32.
- **E. O. Nadler**, Y.-Y. Mao, G. M. Green, and R. H. Wechsler. *Modeling the Connection between Subhalos and Satellites in Milky Way-like Systems*. 2019, ApJ, 873, 34.
- **E. O. Nadler**, Y.-Y. Mao, R. H. Wechsler, S. Garrison-Kimmel, and A. Wetzel. *Modeling the Impact of Baryons on Subhalo Populations with Machine Learning*. 2018, ApJ, 859, 129.
- **E. O. Nadler**, A. Perko, and L. Senatore. *On the bispectra of very massive tracers in the Effective Field Theory of Large-Scale Structure*. 2018, JCAP, 1, 058.
- **E. O. Nadler**, S. P. Oh, and S. Ji. *On the apparent power law in CDM halo pseudo-phase space density profiles*. 2017, MNRAS, 470, 500.

Publications

- Y. Wang, E. O. Nadler et al. (SAGA Collaboration). *The SAGA Survey. V. Modeling Satellite Systems around Milky Way-mass Galaxies with Updated UniverseMachine*. 2404.14500 (ApJ submitted).
- o Major contributions: Interpreted galaxy-halo connection constraints; developed modeling pipeline.
- M. Geha *et al.* (SAGA Collaboration, incl. **E. O. Nadler**). *The SAGA Survey. IV. The Star Formation Properties of 101 Satellite Systems around Milky Way-mass Galaxies*. 2404.14499 (ApJ submitted).
- Y.-Y. Mao *et al.* (SAGA Collaboration, incl. **E. O. Nadler**). *The SAGA Survey. III. A Census of 101 Satellite Systems around Milky Way-mass Galaxies.* **2404**.14498 (ApJ submitted).
- <u>D. Buch</u>, **E. O. Nadler**, R. H. Wechsler, and Y.-Y. Mao. *Milky Way-est: Cosmological Zoom-in Simulations with Large Magellanic Cloud and Gaia-Sausage-Enceladus Analogs*. 2404.08043 (ApJ submitted).
- o Major contributions: Conceptualization; co-developed zoom-in simulation pipeline and analysis.
- S. Ando, S. Horigome, E. O. Nadler, D. Yang, and H.-B. Yu. *SASHIMI-SIDM: Semi-analytical subhalo modelling for self-interacting dark matter at sub-galactic scales.* 2403.16633 (JCAP submitted).
- Major contributions: Analytic prediction for core-collapse fraction and interpretation of SIDM models.
- X. Du *et al.* (incl. **E. O. Nadler**). *Tidal evolution of cored and cuspy dark matter halos.* **24**03.09597 (PRD submitted).
- P. Mansfield, E. Darragh-Ford, Y. Wang, **E. O. Nadler**, and R. H. Wechsler. *Symfind: Addressing the Fragility of Subhalo Finders and Revealing the Durability of Subhalos*. 2308.10926 (ApJ submitted).
- E. Kado-Fong *et al.* (SAGA Collaboration, incl. **E. O. Nadler**). *SAGAbg I: A Near-Unity Mass Loading Factor in Low-Mass Galaxies via their Low-Redshift Evolution in Stellar Mass, Oxygen Abundance, and Star Formation Rate.* 2024, ApJ, 966, 129.
- N. Ahvazi, A. Benson, L. V. Sales, **E. O. Nadler** *et al. A comprehensive model for the formation and evolution of the faintest Milky Way dwarf satellites.* 2024, MNRAS, 529, 3387.
- o Major contributions: Interpreted galaxy-halo connection and Milky Way satellite predictions.

- N. Glennon, N. Musoke, E. O. Nadler, C. Prescod-Weinstein, and R. H. Wechsler. *Dynamical friction in self-interacting ultralight dark matter*. 2024, PRD, 109, 063501.
- D. Yang, E. O. Nadler, H.-B. Yu, and Y.-M. Zhong. *A parametric model for self-Interacting dark matter halos*. 2024, JCAP, 2, 032.
- o Major contributions: Ran cosmological SIDM simulations and interpreted comparisons to parametric model.
- M. McNanna, K. Bechtol, S. Mau, **E. O. Nadler** *et al.* (DES Collaboration). *A Search for Faint Resolved Galaxies Beyond the Milky Way in DES Year 6: A New Faint, Diffuse Dwarf Satellite of NGC 55.* 2024, ApJ, 961, 126
- o Major contributions: Developed dwarf galaxy population predictions and interpreted NGC 55 satellite.
- P. Hopkins, **E. O. Nadler**, M. Grudić, X. Shen *et al. Novel Conservative Methods for Adaptive Force Softening in Collisionless and Multi-Species N-Body Simulations*. 2023, MNRAS, 525, 5951.
- o Major contributions: Conceptualized softening algorithms and interpreted small-scale structure results.
- E. Darragh-Ford *et al.* (DESI Collaboration, incl. **E. O. Nadler**). *Target Selection and Sample Characterization for the DESI LOW-Z Secondary Target Program.* 2023, ApJ, 954, 149.
- R. An, V. Gluscevic, **E. O. Nadler**, and Y. Zhang. *Can Neutrino Self-interactions Save Sterile Neutrino Dark Matter?* 2023, ApJL, 954, L18.
- o Major contributions: Developed framework for sterile neutrino constraints.
- A. Banerjee, S. Das, A. Maharana, E. O. Nadler, and R. K. Sharma. *Nonthermal warm dark matter limits from small-scale structure*. 2023, PRD, 108, 043518.
- o Major contributions: Derived small-scale structure constraints and interpreted results.
- W. Cerny *et al.* (DELVE Collaboration, incl. **E. O. Nadler**). *Six More Ultra-Faint Milky Way Companions Discovered in the DECam Local Volume Exploration Survey.* 2023, ApJ, 953, 1.
- D. Yang, **E. O. Nadler**, and H.-B. Yu. *Strong Dark Matter Self-interactions Diversify Halo Populations Within and Surrounding the Milky Way.* 2023, ApJ, 949, 67.
- o Major contributions: Performed cosmological SIDM simulations and interpreted dwarf galaxy predictions.
- S. Yang, X. Du, Z. C Zeng, A. Benson, F. Jiang, **E. O. Nadler** *et al. Gravothermal Solutions of SIDM Halos: Mapping from Constant to Velocity-dependent Cross Section.* 2023, ApJ, 946, 47.
- S. Wagner-Carena, J. Aalbers, S. Birrer, E. O. Nadler et al. From Images to Dark Matter: End-To-End Inference of Substructure From Hundreds of Strong Gravitational Lenses. 2023, ApJ, 942, 75.
- <u>T. Driskell</u>, **E. O. Nadler**, J. Mirocha, A. Benson, K. K. Boddy *et al. Structure formation and the global 21-cm signal in the presence of Coulomb-like dark Matter-baryon interactions*. 2022, PRD, 106, 103525.
- o Major contributions: Interpreted structure formation predictions for interacting dark matter models.
- N. Glennon, E. O. Nadler, N. Musoke, A. Banerjee, C. Prescod-Weinstein, and R. H. Wechsler. *Tidal disruption of solitons in self-interacting ultralight axion dark matter*. 2022, PRD, 105, 123540.
- o Major contributions: Conceptualized and interpreted soliton tidal disruption simulations.
- S. Mau, E. O. Nadler, R. H. Wechsler, A. Drlica-Wagner, K. Bechtol *et al.* (DES Collaboration). *Milky Way Satellite Census. IV. Constraints on Decaying Dark Matter from Observations of Milky Way Satellite Galaxies*. 2022, ApJ, 932, 128.
- o Major contributions: Performed cosmological decaying dark matter simulations and derived constraints.
- J. Bhattacharyya, S. Adhikari, A. Banerjee, S. More, A. Kumar, E. O. Nadler et al. The Signatures of Self-Interacting Dark Matter and Subhalo Disruption on Cluster Substructure. 2022, ApJ, 932, 30.
- J. F. Wu, J. E. G. Peek, E. J. Tollerud, Y.-Y. Mao, **E. O. Nadler** *et al. Extending the SAGA Survey (xSAGA) I: Satellite Radial Profiles as a Function of Host Galaxy Properties.* 2022, ApJ, 927, 121.
- D. Nguyen, D. Sarnaaik, K. K. Boddy, **E. O. Nadler**, and V. Gluscevic. *Observational constraints on dark matter scattering with electrons*. 2021, PRD, 104, 103521.

- A. Drlica-Wagner *et al.* (DELVE Collaboration, incl. **E. O. Nadler**). *The DECam Local Volume Exploration Survey: Overview and First Data Release.* 2021, ApJS, 256, 2.
- Y. Wang, E. O. Nadler, Y.-Y. Mao, S. Adhikari, R. H. Wechsler *et al.* UniverseMachine: *Predicting Galaxy Star Formation over Seven Decades of Halo Mass with Zoom-in Simulations*. 2021, ApJ, 915, 116.
- o Major contributions: Interpreted dwarf galaxy star formation history predictions; analyzed simulations.
- E. Darragh-Ford, E. O. Nadler, S. McLaughlin, and R. H. Wechsler. *Searching for Dwarfs in Gaia DR2 Phase-space Data using Wavelet Transforms*. 2021, ApJ, 915, 48.
- o Major contributions: Piloted and developed search algorithm; predicted number of detected dwarfs.
- K. Maamari, V. Gluscevic, K. K. Boddy, E. O. Nadler, and R. H. Wechsler. *Bounds on velocity-dependent dark matter*—proton scattering from Milky Way satellite abundance. 2021, ApJL, 907, L46.
- o Major contributions: Developed numerical techniques to constrain interacting dark matter models.
- Y.-Y. Mao, M. Geha, R. H. Wechsler, B. Weiner, E. J. Tollerud, E. O. Nadler et al. The Saga Survey. II. Building a Statistical Sample of Satellite Systems around Milky Way-like Galaxies. 2021, ApJ, 907, 85.
- o Major contributions: Provided theoretical predictions for SAGA satellite populations and interpreted results.
- A. Drlica-Wagner, K. Bechtol, S. Mau, M. McNanna, E. O. Nadler et al. (DES Collaboration). *Milky Way Satellite Census. I. The Observational Selection Function for Milky Way Satellites in DES Y3 and Pan-STARRS DR1*. 2020, ApJ, 893, 47.
- o Major contributions: Developed machine-learning model of satellite detection sensitivity; analyzed simulations.
- S. Mau *et al.* (DELVE Collaboration, incl. **E. O. Nadler**). Two Ultra-Faint Milky Way Stellar Systems Discovered in Early Data from the DECam Local Volume Exploration Survey. 2020, ApJ, 890, 136.
- C. E. Martínez-Vázquez *et al.* (DES Collaboration, incl. **E. O. Nadler**). *Search for RR Lyrae stars in DES ultrafaint systems: Grus I, Kim 2, Phoenix II, and Grus II.* 2019, MNRAS, 490, 2183.
- K. M. Stringer *et al.* (DES Collaboration, incl. **E. O. Nadler**). *Identification of RR Lyrae stars in multiband, sparsely-sampled data from the Dark Energy Survey using template fitting and Random Forest classification.* 2019, AJ, 158, 16.

White Papers

- J. Han et al. NANCY: Next-generation All-sky Near-infrared Community surveY. 2023, 2306.11784.
- A. Drlica-Wagner *et al.* Report of the Topical Group on Cosmic Probes of Dark Matter for Snowmass 2021. 2022, 2209.08215
- A. Banerjee et al. Snowmass2021 Cosmic Frontier White Paper: Cosmological Simulations for Dark Matter Physics. 2022, 2203.07049
- o Major contributions: Developed simulation algorithm section and flowchart for tests of dark matter physics.
- K. Bechtol *et al. Snowmass*2021 *Cosmic Frontier White Paper: Dark Matter Physics from Halo Measurements.* 2022, 2203.07354.
- o Major contributions: Developed ultra-faint dwarf galaxy section and power spectrum visualization.
- Y.-Y. Mao et al. Snowmass2021: Vera C. Rubin Observatory as a Flagship Dark Matter Experiment. 2022, 2203.07252.
- K. Boddy et al. Astrophysical and Cosmological Probes of Dark Matter. 2022, 2203.06380.
- S. Gezari et al. R2-D2: Roman and Rubin From Data to Discovery. 2022, 2202.12311.
- V. Gluscevic et al. Cosmological Probes of Dark Matter Interactions: The Next Decade. 2019, 1903.05140.
- J. Simon et al. Dynamical Masses for a Complete Census of Local Dwarf Galaxies. 2019, 1903.047435.
- K. Bechtol et al. Dark Matter Science in the Era of LSST. 2019, 1903.04425.
- A. Drlica-Wagner *et al. Probing the Fundamental Nature of Dark Matter with the Large Synoptic Survey Telescope*. 2019, 1902.01055.
- o Major contributions: Developed dwarf galaxy section and forecasted dark matter constraints.

Interdisciplinary Publications

- D. Guilbeault, S. Delecourt, T. Hull, B. S. Desikan, M. Chu, and E. O. Nadler. *Online images amplify gender bias*. 2024, Nature, 626, 1049.
- **E. O. Nadler**, E. Darragh-Ford, B. S. Desikan *et al. Divergences in Color Perception between Deep Neural Networks and Humans*. 2023, Cognition, 241, 105621.
- M. Chu, B. S. Desikan, E. O. Nadler et al. Signal in Noise: Exploring Meaning Encoded in Random Character Sequences with Character-Aware Language Models. 2022, Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, 7120
- B. S. Desikan, T. Hull, **E. O. Nadler** *et al.* comp-syn: *Perceptually Grounded Word Embeddings with Color.* 2020, Proceedings of the 28th International Conference on Computational Linguistics, 1744.
- D. Guilbeault, E. O. Nadler et al. Color associations in abstract semantic domains. 2020, Cognition, 201, 104306.