Map Projections I

GEOG380 FA 2018

The round earth vs. a flat map/screen

- Map Projections I (Session I)
 - The process of map projections
 - Geographic coordinates
 - Projected coordinates
 - Map projection characteristics
 - Distortion
 - Scale
- Map Projections II (Session II)
 - Projections in depth
 - Selecting an appropriate map projection

The spherical Earth

- Points of reference based on Earth's position relative to the sun...
 - Equator
 - North and south poles
 - Cf. Magnetic poles
- ...and arbitrary agreements
 - Prime meridian
- Reference system
 - A geographic grid (graticule)
 measured in a sexagesimal
 (base-sixty) scale; degrees, minutes,
 and seconds

The spherical Earth – the geographic grid

- ▶ Lines of longitude Meridians (|)
 - From pole to pole
 - ▶ E and W of the Prime meridian
- ▶ Lines of latitude Parallels (—)
 - ightharpoonup East $\leftarrow \rightarrow$ West
 - N and S of the Equator
- Ex. I 250 N Bellflower Blvd Long Beach, CA 90840

Decimal Degrees Deg:Min:Sec

Lat: 33.781466 33° 46' 53.28" N

Lon: -118.119035 118°7' 8.53" W

Some examples

Where is Seoul, Korea?

37° 34' N 126° 58' E

- What's at
 - > 33° 49' N
 - ▶ 118° 9'W ?

Long Beach, CA

Converting from DMS to DD

- To convert degrees, minutes, and seconds (DMS) to degrees and decimals of a degree (DD): ex) 59°19′48″N
 - I. Convert the seconds

```
Since there are 60 seconds in each minute, 59°19′ 48″ / 60 converts to 59°19′8 ′
```

2. Convert the minutes

```
Since there are 60 minutes in each degree 59° 19.8 ′ / 60 converts to Lat. 59.33
```

Calculator example: 18° 04′12″ E

```
Enter 12.00 / 60 = then displays 0.2
```

Enter
$$+ 4 =$$
 then displays 4.2

Enter
$$/60$$
 = then displays 0.07

Enter +
$$18$$
 = then displays 18.07

Long. 18.07 is your final decimal degrees for longitude

3. For South or West Coordinates, add a negative sign to the DD

Converting from DD to DMS

- ► To convert degrees, minutes, and seconds (DMS) from degrees and decimals of a degree (DD): ex) Lat. 59.33
 - 1. The whole number part is the whole degrees, 59°.
 - 2. Subtract the whole degrees (59.33 59 = 0.33) and multiply the decimal degree to minutes. 0.33 * 60 = 19.8 (the number of minutes in a degree). The whole number of the answer is the whole minutes, 19.
 - 3. Subtract the whole minutes from the answer (19.8 19 = 0.8) and multiply the decimal minutes to seconds. 0.8 * 60 = 48 (the number of seconds in a minute). The answer is the seconds, 48 ".
 - 4. If there is a decimal remaining, keep as the decimal of a second.

Answer: 59° 19′ 48″ N

```
Calculator example: Long. -18.07

Enter 18.07 - 18 = then displays 0.07

Enter *60 = then displays 4.2

Enter -4 = then displays 0.2

Enter *60 = then displays 12
```

Remember the - (for West)
Write down 18°
Write down 4′

Write down 12″
Answer: 18° 4′ 12″W

Some things to note

- On a spherical grid:
 - Scale is the same everywhere on the globe
 - Meridians (|) are spaced evenly on parallels and converge towards the poles
 - ▶ Parallels (—) are parallel... and spaced equally on the meridians
 - Meridians and parallels intersect at right (90°) angles
 - Quadrilaterals of a certain longitudinal extent have equal areas
 - Areas of quadrilaterals decrease towards the poles

Terms related to distance and direction

Great Circle

- Formed by plane cutting through the center of the Earth and its intersection with the surface
- Ex) Equator, meridians –
 measure shortest distance from
 a Great Circle (themselves)
 - All great circles have equal lengths
- Small circle
 - Ex) Parallels

FIGURE 7.4 Examples of great and small circles on the Earth's surface.

Terms related to distance and direction (cont.)

Azimuth

- Measures angles
 between meridian
 from points A to B
 - Ex) a, b, and c in the figure 7.5
- Useful for describing direction of the shortest path (on a great circle) between two points
 - Ex) points A and B

FIGURE 7.5 A great circle arc from point A to point B

Terms related to distance and direction (cont.)

Loxodrome

- A path formed by keeping a constant bearing from points A to B
- Useful for navigation

FIGURE 7.6 A line drawn from point A to point B crossing each meridian at a constant angle is called a loxodrome. If extended, this line will continue to spiral toward the North Pole.

The Earth is not precisely round

- Earth's rotation and differences in geology/density results in a non-spherical shape
- Geodesy refers to Earth's true shape as the geoid
 - Average ocean surface of the Earth
- To calculate locations easier a reference ellipsoid is used that approximates the geoid
- This introduces some distortions

FIGURE 7.18 The relationship among surfaces representing the Earth, a reference ellipsoid, and a geoid. Note that when determining geodetic latitude, a line perpendicular to the reference ellipsoid is not perpendicular to the geoid.

The Earth is not precisely round

Model of the Earth

The Earth is not precisely round (cont.)

Deviation of the Geoid from the idealized figure of the Earth

(difference between the EGM96 geoid and the WGS84 reference ellipsoid)

Red areas: the geoid (average ocean surface) above the ellipsoid; blue areas: below

Datum

- ▶ A mathematical model of the earth which approximates the shape of the earth
- Different regions on the earth have different datums
- ► Calculations in a consistent and more accurate manner for a specific region
- If comparing GPS coordinates to a chart or map...
 - the map datum in the GPS unit must be set to match the chart for accurate comparison

(http://www8.garmin.com/support/faqs/faq.jsp?faq=17; Bolstad, 2012)

Why bother?

- Well, a lot of position readings today are done using a GPS and this requires specifying what datum to use.
 - (Map's datum = GPS's datum)
 - e.g. <u>scuba diving</u> (this link provides a useful example of applied GPS and earth coordinate knowledge)
- But, for most medium of small-scale thematic mapping we can ignore these details

Choose datum that better matches to geoid

The projection concept

- Any map projection is the systematic arrangement of the earth's meridians and parallels onto a plane surface (Dent 1999).
- ▶ The basic steps
 - Choose a scale reduction
 - Choose a projection type
 - Direct developable surfaces (ex. somewhere on Earth)
 - ▶ Indirect purely mathematically defined surfaces

Ex. A projected map (<u>http://www.answers.com/topic/map-projection</u>) and The Costa surface (<u>http://www.philosophy.umd.edu/Faculty/jhbrown/BtyAdds/</u>)

The scale reduction

- ▶ The amount of spatial reduction from real world to the map
- Expressed
 - Numerically
 - Graphically
 - Verbally

"Imm on the map represents 700,000 mm on the earth"

- Generally:
 - Important to use same units when comparing different maps!

Other statements of scale

- Cartographic
 - Verbal, representative fraction (RF), graphic
- Geographic
 - "Large" scale, Vs. "small" scale (extents)

- Resolution
 - "Minimum mapping unit"
 - Ex. a census block-group (vector data)or a pixel size (raster data)

Some common mapping scales

I:24,000 scale,
I inch represents
2,000 feet

I:100,000 scale,
I inch represents about
I.6 miles (8,448 feet)

1:250,000 scale, I inch represents about 4 miles (21,120 feet)

Q. Using calculator or whatever, answer A, B, and C:
 1/24,000 = A
 1/100,000 = B
 1/250,000 = C

Selecting map projections

- ▶ Three basic rules (after Maling, 1992)
 - A country in the tropics asks for a cylindrical projection.
 - A country in the temperate zone asks for a conical projection.
 - A polar area asks for an azimuthal projection.

Cylindrical projections

Cylindricals are true at the equator and distortion increases toward the poles

Conical projections

▶ Conics are true along some parallel somewhere between the equator and a pole and distortion increases away from this standard.

Standard Parallel: A parallel on a map along which the scale is as stated for that map.

Azimuthal projections

Azimuthals are true at some point and distortion increases away from this standard.

Projection and distortion

- Each projection creates specific distortions
- Typically we can choose to preserve one or two spatial properties but not all:
 - Areas Equivalent proj.
 - Angles Conformal proj.
 - Distances Equidistant proj.
 - Directions Azimuthal proj.
 - ▶ See Table 9.1 (p.155) on the textbook for details of Named Projection for each Property of projection

A closer look at distortion

- Distortion increases away from the standard line
 - Scale on reference globe equals to scale on developable surface only at the standard line(s)!
- Ways to mitigate distortion
 - Secant case (intersect 2 points)
 - Modify aspect of projection (following slide)

Scale factor varies across a projected map

- ▶ A mathematical measure of distortion
- Depends on
 - Type of projection
 - Case
 - Aspect

Aspects by latitude

- Equatorial
- Oblique
- Polar

• "...there is no such thing as a bad projection — there are only good and bad choices."

Arthur Robinson

Choosing a projection

- Projection properties (Equivalency, conformality, equidistance, azimuthality)
 - Suitable to the map's purpose?
 - Which ones must be preserved, and which can be sacrificed?
 Or, is compromise of all for the best choice?
- Deformational patterns across mapped area
 - Is amount and location of deformation acceptable?
- Projection center
 - Can the projection be centered easily on the mapped area?
- Familiarity
 - Is appearance recognizable to map reader or will it confuse?

Questions?

- ▶ For next time...
 - Revisit Chapters 7&8 in the textbook

▶ Lab I

