(A.p.) (A.p.) . W.T.S. I unique K. S.t. Kystet.

fnez| n> / }

n	$\boldsymbol{\gamma}$
K-1 K	FI HZ Eis bad below by Th. => inf E exists!
	V E is bad below by th. => inf E exists!
(F)	By def of inf. 2KEE. St infE=K< infE+1.
	> K-1 < inf E. > K-1 & E.
70	tm = k1. mtl. mcifE => m & E.
	So if net then $n \ge k \in E \implies k \ge min \in X$ $K \in E \implies k > h \ge k + k + k \in E$
	KEE >> K> f.> k-1 € K-1 € E
unign	ness: If Ki>K, and KiER. then (CI > Kt)
	then K1-1 2K> \$.
	then $k_1 - z_k > \frac{x}{h}$. k_1 does not satisfy condition k_1
	7f krck, and ket 1. then kr 5K-1
	then $k_1 \leq k-1 \leq \frac{\gamma}{h}$.
	V Kr does not - U
3. prof.	UAn = UAn = {XERIXEAN for some NEW}
	OAN = OAN = EXERIXEAN FOI UNEWS.
	W.T.S $\forall x \in \mathbb{R}$ $\chi \notin \bigcap_{i \in \mathbb{R}} (0, \frac{1}{n})$ $\emptyset \forall x \in \mathbb{Q}$. $\chi \notin (0, 1) \Rightarrow \chi \notin \bigcap_{i \in \mathbb{R}} (0, \frac{1}{n})$ $\emptyset \forall x > 0$. $\forall y \in \mathbb{R}$ $\exists x \in \mathbb{R}$ $\exists x \in \mathbb{R}$.
	0 4x <0. xt(0,1) >> xt (0,1)
	@ VX>O. by A.D & nt/N. C.t NCX.
	So x 4 (0, N)
	$\Rightarrow \chi \notin \mathcal{O}_{(0,h)}$
	N-J
4. Proof.	we say AaB if A&B have the same cord
	(i) Take f: A->A. where f(x)=x. => A nA.
	(i) ANB >> 7 f: A -> B bijetine.
	· · · · · · · · · · · · · · · · · · ·

h: $(0.1) \rightarrow (0.1)$ by $h(x) = \begin{cases} g(x) & \text{if } x \in \emptyset \cap (0.1) \\ \gamma, & \text{if } x \in \emptyset^c \cap (0.1) \end{cases}$
v
More generally: take & ctb set {ai.an}. ai ar az ay
More generally. take & ctb set {aa} a. a. a. a. a.
V Schroder Bernstein Thim card A E card B
3 1-1-f: A > B
7 1-1: f: A > B 3 1-1: g: B > A
≥ cord A ≥ cord B.
Take $f: \tau_{011} \to \tau_{011}$ $f(x) = \frac{1}{5}x + \frac{1}{5}$
Take $f: \tau_{0,1}) \to \iota_{0,1}$ $f(x) = \frac{1}{2}x + \frac{1}{4}$. $g: (0,1) \to \tau_{0,1}$ $g(x) = x$
,