Coherent and incoherent photoproduction of J/ψ in Pb-Pb UPCs at 5.02 TeV

Vadim Guzey, M. Strikman, M. Zhalov

October 26, 2021

In this note we update our predictions of Ref. [1] to Run 2 Pb-Pb UPCs at $\sqrt{s_{NN}} = 5.02$ TeV. At y = 0, this corresponds to $W_{\gamma p} = 125$ GeV and $x = 6 \times 10^{-4}$.

Using our predictions for the leading-twist gluon nuclear shadowing [2, 3], we can estimate the nuclear suppression factor at this value of x (see Eq. (11) of Ref. [1])

$$R(x = 6 \times 10^{-4}) = \frac{\sigma_{\gamma A \to J/\psi Y}(W_{\gamma p})}{A(\sigma_{\gamma p \to J/\psi p}(W_{\gamma p}) + \sigma_{\gamma p \to J/\psi Y}(W_{\gamma p}))}$$
$$= \int d^2bT_A(b) \left(1 - \frac{\sigma_2}{\sigma_3} + \frac{\sigma_2}{\sigma_3} e^{-\frac{\sigma_3}{2}AT_A(b)}\right)^2 = 0.10 - 0.26, \qquad (1)$$

where $T_A(b)$ is normalized to unity, i.e. $\int d^2\vec{b}T_A(b) = 1$. These values are expectedly smaller than those for $x = 10^{-3}$ in Ref. [1] because of a somewhat larger suppression due to nuclear shadowing at higher energies.

Combining this with the parametrization of the cross section of elastic J/ψ photoproduction on the proton $\sigma_{\gamma p \to J/\psi p}(W_{\gamma p})$ and proton-dissociative J/ψ photoproduction on the proton $\sigma_{\gamma p \to J/\psi Y}(W_{\gamma p})$, see Ref. [4], one can readily make predictions for the elastic and nucleon-dissociation contributions to the $d\sigma_{\gamma A \to J/\psi Y}(W_{\gamma p})/dt$ cross section as a function of |t|. The result is presented in Fig. 1 in next page.

Note that our predictions for the elastic contribution for $|t| \ge 1.2 \text{ GeV}^2$ is an extrapolation of the H1 parametrization into the unmeasured range of t [4].

One can see from the figure that our predictions for Run 2 are rather close (on the log scale) to our predictions for Run 1. This is a result of a partial compensation of two opposite effects: a decrease of R in Eq. (1) with an increase of energy is partially compensated by an increase of the proton $\sigma_{\gamma p \to J/\psi p}(W_{\gamma p})$ and $\sigma_{\gamma p \to J/\psi Y}(W_{\gamma p})$.

References

- [1] V. Guzey, M. Strikman and M. Zhalov, Phys. Rev. C **99** (2019) no.1, 015201 [arXiv:1808.00740 [hep-ph]].
- [2] V. Guzey, E. Kryshen, M. Strikman and M. Zhalov, Phys. Lett. B 726 (2013), 290-295 [arXiv:1305.1724 [hep-ph]].
- [3] V. Guzey and M. Zhalov, JHEP **10** (2013), 207 [arXiv:1307.4526 [hep-ph]].
- [4] C. Alexa et al. [H1], Eur. Phys. J. C 73 (2013) no.6, 2466 [arXiv:1304.5162 [hep-ex]].

Figure 1: The elastic and nucleon-dissociation contributions to $d\sigma_{\gamma A \to J/\psi Y}(W_{\gamma p})/dt$ cross section as a function of |t|. The shaded error bands quantify the uncertainty in the calculation of nuclear shadowing; $W_{\gamma p}=125$ GeV corresponds to Pb-Pb UPCs at $\sqrt{s_{NN}}=5.02$ TeV and y=0.