

Sound Classification Intro & Hands-On

Prof. Marcelo J. Rovai rovai@unifei.edu.br

UNIFEI - Federal University of Itajuba, Brazil TinyML4D Academic Network Co-Chair

Vision

Sound

Vibration

KWS (KeyWord Spotting) Introduction

Personal Assistant

Keyword Spotting v. General Speech Recognition

- Keyword spotting is one of the most successful examples of TinyML
 - Low-power, continuous, on-device
 - Common Voice SWTS expands keyword spotting to more languages
 - * Single Word Target Segment
- General ASR* still requires larger, power-hungry models
 - But it can run on mobile devices (offline dictation on smartphones)

^{*} Automatic Speech Recognition

Personal Assistant Google WIFI TinyML Device Local Computer Device Trigger Continuously listen

"Cascade" Detection: multi-stage model

KeyWord Spotting (KWS)

Sound Image

KeyWord Spotting (KWS) - Model

KeyWord Spotting (KWS) – Create Model (Training)

KeyWord Spotting (KWS) - Create Model (Training)

KeyWord Spotting (KWS) – Create Model (Training)

KWS Data Collection & Pre-Processing

Sensor Data

Signal Components?

Time

Data Preprocessing

Data Preprocessing

Data Preprocessing

The lower band frequencies is much more crisper to us

Mel Filterbanks

Spectrograms v. MFCCs

Additional Feature Engineering

Spectrograms and MFCCs

<u>SpectrogramsMFCCs.ipynb</u>

A Keyword Spotting Model

Collect Preprocess Design a Model Train a Evaluate Convert Deploy Make Inferences

A model for **Keyword Spotting**

A model for **Keyword Spotting**

Model: "sequential"

Layer (type)	Output	Shape	Param #
reshape (Reshape)	(None,	50, 13)	0
conv1d (Conv1D)	(None,	50, 8)	320
max_pooling1d (MaxPooling1D)	(None,	25, 8)	0
dropout (Dropout)	(None,	25, 8)	0
conv1d_1 (Conv1D)	(None,	25, 16)	400
max_pooling1d_1 (MaxPooling1	(None,	13, 16)	0
dropout_1 (Dropout)	(None,	13, 16)	0
flatten (Flatten)	(None,	208)	0
y_pred (Dense)	(None,	3)	627

Total params: 1,347

Trainable params: 1,347 Non-trainable params: 0

Model size: 200KB

KWS Keyword Spotting Project

- First keyword: Yes
- Second keyword: No
- Noise Background Noise
- Unknow: (a mix of different words than Yes and No)

https://studio.edgeimpulse.com/public/292418/latest

Thanks

