

Optimization for Machine Learning

Moritz Wolter

February 10, 2025

High-Performance Computing and Analytics Lab, Universität Bonn

Overview

Introduction

The derivative

Optimization in a single dimension

Optimization in many dimensions

Introduction

Optimization

Traditionally, optimization means minimizing using a cost function f(x). Given the cost, we must find the cheapest point x^* on the function, or in other words,

$$x^* = \min_{x \in \mathbb{R}} f(x) \tag{1}$$

Functions

Functions are mathematical mappings. Consider for example, the quadratic function, $f(x): \mathbb{R} \to \mathbb{R}$:

$$f(x) = x^2 \tag{2}$$

Where is the minimum?

In this case, we immediately see it's at zero. To find it via an iterative process, we require derivate information.

Summary

- Functions assign a value to each input.
- We seek an iterative way to find the smallest value.
- Doing so requires derivates.

The derivative

The derivative

$$\frac{\mathrm{d}f(x)}{\mathrm{d}x} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \tag{3}$$

Derivation of the parabola derivative

$$\lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h}$$

$$= \lim_{h \to 0} \frac{2xh + h^2}{h}$$

$$= \lim_{h \to 0} \frac{h(2x+h)}{h}$$

$$= \lim_{h \to 0} 2x + h$$

$$= 2x$$
(8)

The derivate of a polynomial

What is the derivative of the function $f(x) = x^n$?

$$\frac{\mathrm{d}f(x)}{\mathrm{d}x} = nx^{n-1} \tag{9}$$

Summary

- A function is differentiable if the limit of the difference quotient exists.
- For any point on a differentiable function, the derivative provides a tangent slope.
- We will exclusively work with differentiable functions in this course.

Differentiation Rules [DFO20]

Product Rule:
$$(g(x)h(x))' = g'(x)h(x) + g(x)h'(x)$$
 (10)

Quotient Rule: $(\frac{g(x)}{h(x)})' = \frac{g'(x)h(x) - g(x)h'(x)}{(h(x))^2}$ (11)

Sum Rule: $(g(x) + h(x))' = g'(x) + h'(x)$ (12)

Chain Rule: $(g(h(x)))' = g'(h(x))h'(x)$ (13)

The logistic sigmoid [GBC16]

The sigmoid function $\sigma(x)$ is a common activation function.

$$\sigma(x) = \frac{1}{1 + e^{-x}} \tag{14}$$

The derivative of the sigmoidal function

Using the Chain Rule

How do we best differentiate $f(x) = \sigma(ax + b)$?

$$\frac{\mathrm{d}f(x)}{\mathrm{dx}} = \frac{\mathrm{d}\sigma(ax+b)}{\mathrm{dx}} \tag{16}$$

(17)

Chain Rule: (g(h(x)))' = g'(h(x))h'(x)

$$g(x) = \sigma(x), h(x) = ax + b \tag{18}$$

$$\Rightarrow \sigma(ax+b)(1-\sigma(ax+b))(a) \tag{19}$$

Optimization in a single dimension

Steepest descent

To find a minimum, we descent along the gradient, with n denoting the step number, $\epsilon \in \mathbb{R}$ the step size and $\frac{df}{dx}$ the derivate of f along $x \in \mathbb{R}$:

$$x_n = x_{n-1} - \epsilon \cdot \frac{df(x)}{dx}.$$
 (20)

Steepest descent on the parabola

Working with the initial position $x_0=5$ and a step size of $\epsilon=0.1$ for 25 steps leads to:

Summary

- Following the negative derivative iteratively got us to the minimum.
- At points of interest, the first derivate is zero.

Optimization in many dimensions

The two-dimensional paraboloid

$$f(x_1, x_2) = x_1^2 + x_2^2 (21)$$

The gradient

The gradient lists partial derivatives with respect to all inputs in a vector. For a function $f: \mathbb{R}^n \to \mathbb{R}$ of n variables the gradient $\nabla f: \mathbb{R}^n \to \mathbb{R}^n$ is defined as

$$\nabla f = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}. \tag{22}$$

Computing the gradient of the paraboloid

$$\nabla f(x_1, x_2) = \nabla(x_1^2 + x_2^2)$$

$$= \begin{pmatrix} 2x_1 \\ 2x_2 \end{pmatrix}$$
(23)

Gradients at points

For every point $\mathbf{p} = (x_1, x_2, \dots, x_n)$ we can write

$$\nabla f(\mathbf{p}) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(\mathbf{p}) \\ \frac{\partial f}{\partial x_2}(\mathbf{p}) \\ \vdots \\ \frac{\partial f}{\partial x_n}(\mathbf{p}) \end{pmatrix}. \tag{25}$$

Gradients on the Paraboloid

Gradient descent

Initial position: $x_0 = [2.9, -2.9]$, Gradient step size: $\epsilon = 0.025$

$$\mathbf{x}_n = \mathbf{x}_{n-1} - \epsilon \cdot \nabla f(\mathbf{x}_{n-1}) \tag{26}$$

n denotes the step number, ∇ the gradient operator, and $f(\mathbf{x})$ a vector valued function.

Gradient descent on the Paraboloid

Paraboloid Optimization

The Rosenbrock test function

$$f(x_1, x_2) = (a - x_1)^2 + b(x_2 - x_1^2)^2$$
 (27)

Figure: Rosenbrock function with a=1 and b=100.

The gradient of the Rosenbrock function

Recall the Rosenbrock function:

$$f(x,y) = (a-x)^2 + b(y-x^2)^2$$
 (28)

$$\nabla f(x,y) = \begin{pmatrix} -2a + 2x - 4byx + 4bx^{3} \\ 2by - 2bx^{2} \end{pmatrix}$$
 (29)

Gradients on the Rosenbrock function

Gradient descent

Initial position: $x_0 = [0.1, 3.]$, Gradient step size: $\epsilon = 0.01$

$$\mathbf{x}_n = \mathbf{x}_{n-1} - \epsilon \cdot \nabla f(\mathbf{x}_{n-1}) \tag{30}$$

n denotes the step number, ∇ the gradient operator, and $f(\mathbf{x})$ a vector valued function.

Gradient descent on the Rosenbrock function

Rosenbrock Optimization

Motivating Momentum

- The standard gradient descent approach gets stuck.
- What if we could somehow use a history of recent gradient information?

Gradient descent with momentum

Initial position: $x_0 = [0.1, 3.]$,

Gradient step size: $\epsilon = 0.01$,

Momentum parameter: $\alpha = 0.8$

$$\mathbf{v}_n = \alpha \mathbf{v}_{n-1} - \epsilon \cdot \nabla f(\mathbf{x}_{n-1}) \tag{31}$$

$$\mathbf{x}_n = \mathbf{x}_{n-1} + \mathbf{v}_n \tag{32}$$

 ${\bf v}$ denotes the velocity vector, n the step number, ∇ the gradient operator, and $f({\bf x})$ a vector-valued function. A good initial value for ${\bf v}_0$ is ${\bf 0}$.

Gradient descent with momentum

Rosenbrock Optimization

Summary

- Gradient descent works in high-dimensional spaces!
- On the Rosenbrock function, we required momentum to find the minimum.
- Momentum adds the notion of inertia, which can help overcome local minima in some cases.
- Just like in the 1d case, the gradient equals zero at local minima and saddle points.

Optional reading

- Mathematics for machine learning, [DFO20, Chapter 5, Vector Calculus]
- Numerical optimization, [WN+99, Chapter 8.2, Automatic Differentiation]
- Deep learning, [GBC16, Chapter 8, Optimization for Training Deep Models]

References

References

[DFO20]	Marc Peter Deisenroth, A Aldo Faisal, and Cheng Soon Ong. <i>Mathematics for machine learning</i> . Cambridge University Press, 2020.
[GBC16]	lan Goodfellow, Yoshua Bengio, and Aaron Courville. <i>Deep learning</i> . MIT press, 2016.
[WN+99]	Stephen Wright, Jorge Nocedal, et al. "Numerical optimization." In: <i>Springer Science</i> 35.67-68 (1999), p. 7.