Logics for Computation

Lecture #10: Were do We Go from Here?

Carlos Areces and Patrick Blackburn {carlos.areces,patrick.blackburn}@loria.fr

INRIA Nancy Grand Est Nancy, France

ESSLLI 2008 - Hamburg - Germany

The Story up to Now

- ▶ In the last three lectures we have discussed a very strong logic namely first-order logic (developed using the Arthur Prior style notation $\langle x \rangle$ and [x]) from the perspective of inference, expressivity, and computation.
- ► As we have seen, it is deductively natural, highly expressive (albeit with some interesting limitations), and undecidable.
- ► The question now, of course, is where (if anywhere) do we go from here . . . ?
- ▶ The answer is higher-order logic, and in particular, second order logic.

Areces & Blackburn: Logics for Computation

NDIA Name Count Feb.

What's that?

- ► Well, what is that? Aren't we already quantifying over everything that there is in our models?
- ► The answer is no. There's lot more sitting out there in our models, patiently waiting to be quantified.
- Sure, we're already quantifying over the individuals but there are higher-order entities there too, such as sets of individuals, and relations.
- ▶ And these logics certainly do offer increased expressivity. . .

Areces & Blackburn: Logics for Computation

INRIA Nancy Grand Es

Transitive closure

- ▶ In Lecture 6 we met the concept of the reflexive transitive closure of a relation.
- There are two (equivalent) ways of defining reflexive transitive closure.
 - As the smallest reflexive and transitive relation S (on the domain D) containing an arbitrary relation R; or
 - domain D) containing an arbitrary relation R; or \blacktriangleright As the relation T on D defined by xTy iff there is a finite sequence of elements of D such that $x=d_0$ and

$$d_0R'd_1, d_1R'd_2, \dots, d_{n1}R'_n$$
, and $d_nR'_v$

where dR'e means that dRe or d=e.

▶ Let's try defining this concept in our shiny new $\langle x \rangle$ [x] language . . .

Areces & Blackburn: Logics for Computation

INRIA Nancy Grand Es

Let's try...

Let X and Y be binary relationslt easy to insist that X is reflexive:

$$Ref(X) =_{def} [n](n:\langle X \rangle n).$$

And it's easy to say that X is transitive:

$$Tran(X) =_{def} [n](n : \langle X \rangle \langle X \rangle n \rightarrow \langle X \rangle n)$$

And to say that X is a subrelation of Y

$$X \subseteq Y =_{def} [n](n:\langle X \rangle n \rightarrow \langle Y \rangle n).$$

Areces & Blackburn: Logics for Computation

INRIA Nancy Grand Est

Here's a first try...

So let's put all this together to define transitive reflexive closure:

$$Tran^*(R, S) =_{def} Ref(S)$$

 $\land Tran(S)$
 $\land R \subseteq S$

 $\land S$ -is-the-smallest-such-subrelation-of-R

Oh dear...!

Areces & Blackburn: Logics for Computation

INRIA Nancy Grand Est

No way José!

- ▶ Try as you might, you won't be able to do this
- $\,\blacktriangleright\,$ And we can prove this using the Compactness Theorem
- ► Every finite sunset has a model. Hence (by Compactness) so does the whole thing. But this is impossible.
- ► Hence we can define R*.

So extend the language

- ▶ As we learned in Lecture 6, we're free to extend the language.
- \blacktriangleright Now of course, we could just add the $\langle R^* \rangle$ operator but that was just one example of something we couldn't do.
- ► Lets give ourselves the power to quantify over two types of higher order entities: properties and binary relations.

Areces & Blackburn: Logics for Computation

INRIA Nancy Grand Est

Areces & Blackburn: Logics for Computation

INRIA Nancy Grand Est

A second order language

- $\blacktriangleright \ \langle p \rangle \varphi,$ and $[p] \varphi$ express existential and universal quantification over properties.
- $\begin{tabular}{l} $ \langle R \rangle \varphi $, and $[R] \varphi $ express existential and universal quantification over relations. \end{tabular}$
- ▶ Semantics? Simply extend what we did in first-order case.

Areces & Blackburn: Logics for Computation

IRIA Nancy Grand

Now we can define reflexive transitive closure...

$$Tran^*(R,S) =_{def} Ref(S)$$

$$\wedge Tran(S)$$

$$\wedge R \subseteq S$$

$$\wedge [X](Ref(X) \wedge Tran(X) \wedge R \subseteq X \rightarrow S \subseteq X).$$

Areces & Blackburn: Logics for Computation

What's the Price

- ▶ Loss of Completeness (for standard models)
- ▶ Loss of Compactness. After all:

$$\{\neg p, [R] \neg p, [R][R] \neg p, [R][R][R] \neg p, \dots, \langle R^* \rangle p\}$$

is now an example of a set in which each finite subset has a model, and the complete set doesn't.

► Loss of Löwenheim Skolem. (It is easy to define the natural number **N** and the integers **Z** up to isomorphism.)

Areces & Blackburn: Logics for Computatio

INRIA Nancy Grand Est

Tradeoff: expressivity versus computation and inference

- ► Which brings us back to the fundamental trade-off, expressivity versus inference/tractability.
- We've bought serious expressivity and have lost everything else.

Areces & Blackburn: Logics for Computation

INRIA Nancy Grand E

What we covered in the course

- ▶ We've been essentially looking at a menu of logics.
- But the menu was designed by a Master Chef (Tarski!); the meal is built around the crucial ingredient of relational structures.
- Relational structures tell us why logic is applicable in semantics (natural language metaphysics) and computer science.
- $\,\blacktriangleright\,$ Back to a logicist position, but not in traditional sense.
- Monotheist but not in terms of logic, rather, in terms of semantics.

Areces & Blackburn: Logics for Computation

INRIA Nancy Grand Est

Relevant Bibliography

And, hanging over it all, the brooding specter of Rudolf Carnap and Hans Reichenbach, the Vienna Circle of Philosophy and the rise of symbolic logic. A muddy world, in which he did not care to involve himself. From: Galactic Pot-Healer, by Philip K. Dick, 1060.

Areces & Blackburn: Logics for Computation

INRIA Nancy Grand Es