WHAT IS CLAIMED IS:

1	1. A color separation system for generating optical signals for display
2	applications, comprising:
3	an optical illumination source operative to generate an optical beam;
4	a first optically refractive element operative to refract the optical beam to
5	produce an optical spectrum;
6	a selection mechanism operative to separate the optical spectrum into a first
7	optical signal of a first predetermined wavelength range and a second optical signal of a
8	second predetermined wavelength range; and
9	a second optically refractive element operative to temporally separate the first
10	optical signal and the second optical signal.
1	2. The color separation system of claim 1 further wherein said selection
2	mechanism is further operative to separate the optical spectrum into a third optical signal of a
3	third predetermined wavelength range.
1	3. The color separation system of claim 2 wherein the first predetermined
2	wavelength range corresponds to a red region of the optical spectrum, the second
3	predetermined wavelength range corresponds to a green portion of the optical spectrum, and
4	the third predetermined wavelength range corresponds to a blue portion of the optical
5	spectrum.
J	spectrum.
1	4. The color separation system of claim 1 wherein the optical spectrum is
2	separated into more than three wavelength ranges.
1	5. A color separation system for generating optical signals for display
2	applications, comprising:
3	an optical illumination source operative to generate an optical beam;
4	a first optically dispersive element to generate an optical spectrum from the
5	optical beam;
6	a selection mechanism operated to separate the optical spectrum into a
7	plurality of optical signals, each of the plurality of optical signals characterized by a
8	predetermined wavelength range; and
9	a second optically dispersive element, wherein the plurality of optical signals
10	are temporally separated.

1	o. The color separation system of claim 5 wherein a first of the plurality
2	of optical signals extends over a first wavelength range greater than a second of the plurality
3	of optical signals.
1	7. The color separation system of claim 6 wherein the first of the plurality
2	of optical signals is a white light signal.
1	8. A method of generating optical signals for display applications
2	comprising the steps of:
3	illuminating a first spectral dispersion element with a beam of light from a
4	multispectral light source;
5	passing the beam of light through the first spectral dispersion element to
6	produce a spatially dispersed optical spectrum;
7	separating the optical spectrum into a plurality of spectral components;
8	selecting a plurality of sub-beams from the plurality of spectral components;
9	passing the plurality of sub-beams through a second spectral dispersion
10	element; and
11	generating from the sub-beams a plurality of temporal signals corresponding
12	to said sub-beams.
1	9. The method of claim 8 wherein a first of the spectral components
2	corresponds to a red region of the optical spectrum, a second of the spectral components
3	corresponds to a green portion of the optical spectrum, and a third of the spectral components
4	corresponds to a blue portion of the optical spectrum.
1	10. The method of claim 8 wherein said plurality of temporal signals is a
2	train of optical pulses.