Exercise 3: Genetic Algorithm (Uniform Crossover)

Setup

- Suite: PBO (F1, F2, F3, F18, F23, F24, F25), dimension 100, instance 1.
- Budget: 100k evaluations, 10 runs per function.
- **Ex3 GA:** uniform crossover (pc=1.0), bit-flip mutation pm \approx 1/n, μ =20 parents, λ =20 offspring, tournament k=3, (μ + λ) survivor selection with elitism.
- Baselines for comparison: Random Search, RLS-EA, (1+1)-EA (same budget).
- Logging via IOHexperimenter; plots and table exported from IOHanalyzer.

Why this GA?

- (1) Uniform XO mixes schemata gene-wise for exploration.
- (2) pm \approx 1/n; gives \sim 1 bit flip per offspring; standard for bit-strings.
- (3) Tournament selection adds moderate pressure without losing diversity.
- (4) $(\mu+\lambda)$ +elitism; ensures non-decreasing best-so-far.

Results at final budget (100k evals)

Medians from ex3 fixedbudget 100k (IOH shows 100,001) (Higher is better: max)

Function ID	Function	GA (median)	Best baseline (median)	Best baseline (name)	Δ (GA – best)
1	OneMax	100	71.5	Random Search	28.5
2	LeadingOnes	100	17.5	Random Search	82.5
3	Linear	5050	3755.5	Random Search	1294.5
18	LABS	3.943698	2.36621	Random Search	1.577489
23	NQueens	9	-563	Random Search	572
24	ConcatenatedTrap	16.8	11.8	Random Search	5
25	NKLandscapes	-0.293935	-0.4042	Random Search	0.110266

Per-function takeaways

From the plots

F1(OneMax)

• F1: GA reaches the optimum (100/100) on all runs; baselines plateau \approx 70. Selection + pm \approx 1/n quickly corrects bits; elitism keeps gains.

F2(LeadingOnes)

--- (1+1)-EA ---- GA_uniform ---- RLS-EA ---- Random Search

• **F2:** GA also reaches optimum; despite XO potentially breaking prefixes, elitism and moderate pm prevent regressions and preserve long prefixes.

F3(Linear)

• **F3:** GA attains the weighted-sum optimum (5050). Population + tournament accelerate alignment with weights.

F18(LABS), F23(NQueens), F24(ConcatenatedTrap), F25(NKLandscapes)

• F18/F23/F24/F25: GA dominates throughout the budget. A population with uniform XO maintains diversity and escapes local traps; (μ+λ) ensures steady best-so-far improvement.

Observed stability

• On F1/F2/F3 the interquartile band collapses near the max (low variance); on rugged problems the IQR is wider early, then tightens as selection amplifies improvements.

Tuning

• No additional tuning was performed as the default GA ($\mu=\lambda=20$, k=3, pm \approx 1/n, pc=1.0, ($\mu+\lambda$) elitism) already dominated the baselines at the same budget.

Conclusion

Across all seven PBO functions at n=100 and equal budgets, the GA with uniform crossover (pc=1.0), pm \approx 1/n, μ = λ =20, tournament k=3, and (μ + λ) elitism dominates the baselines. It reaches the known optima on F1/F2/F3 with negligible variance and shows clear gains on rugged/plateaued landscapes (F18/F23/F24/F25). No tuning was required.