DEEP LEARNING FOR ARTIFICIAL INTELLIGENCE

Organizers

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Supporters

Google Cloud **GitHub** Education

+ info: http://bit.ly/dlai2019

[course site]

Day 2 Lecture 2

Backpropagation

Xavier Giro-i-Nieto xavier.giro@upc.edu

Associate Professor Universitat Politècnica de Catalunya Technical University of Catalonia

Acknowledgements

Kevin McGuinness

kevin.mcguinness@dcu.ie

Research Fellow

Insight Centre for Data Analytics Dublin City University

Elisa Sayrol elisa.sayrol@upc.edu

Associate Professor

ETSETB TelecomBCN Universitat Politècnica de Catalunya

Video lecture

Loss function - $L(y, \hat{y})$

The **loss function** assesses the performance of our model by comparing its predictions (y) to an expected value (\hat{y}) , typically coming from ground truth labels.

<u>Example</u>: the predicted price (y) and one actually paid (\hat{y}) could be compared with the Euclidean distance (also referred as L2 distance or Mean Square Error - MSE):

$$y = w_1 \cdot x_1 + w_2 \cdot x_2 + w_3 \cdot x_3 + b = \mathbf{w}^T \cdot \mathbf{x} + b$$

$$\mathcal{L}_2(y, \hat{y}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

Loss function - $L(y, \hat{y})$

<u>Discussion</u>: Consider the very simple model...

$$y = w \cdot x$$

.....and that, given a pair (y, \hat{y}) , we would like to update the current w_t value to a new w_{t+1} based on the loss function L_w .

- (a) Would you increase or decrease w₊?
- (b) What operation could indicate which way to go?
- (c) How much would you increase or decrease w,?

Gradient Descent (GD)

Motivation for this lecture:

if we had a way to compute the gradient of the loss with respect to the parameter(s), we could use gradient descent to optimize them.

Gradient Descent (GD)

Backpropagation will allow us to compute the <u>gradients of the loss function</u> with respect to:

- all model parameters (w) final goal during training
- input/intermediate data visualization & interpretability purposes.

Gradients will "flow" from the output of the model towards the input ("back").

Question: What is the computational graph (operations & order) of this perceptron with a sigmoid activation?

<u>Challenge</u>: How to compute the gradient of the loss function with respect to w_1 or w_2 ?

$$\frac{\partial \mathcal{L}_w(y, \hat{y})}{\partial w_1} = ?$$

$$\frac{\partial \mathcal{L}_w(y, \hat{y})}{\partial w_2} = ?$$

$$y = f(z)$$

$$y = f(z)$$
$$z = g(x)$$

Forward pass

$$\frac{dy}{dx} =$$
?

How does a variation ("difference") on x affect y?

$$y = f(z)$$

$$y = f(z)$$
$$z = g(x)$$

It will depend on the how y is affected by a variation in z...

$$\frac{dy}{dx} = \underbrace{\frac{dy}{dz}}_{0} \underbrace{\frac{dz}{dx}}_{0} \circ$$

...scaled (multiplied) by how z is affected with a variation in x.

$$\hat{y} = g_4(g_3(g_2(g_1(x_1))))$$

Decompose into steps (**forward propagation**):

$$x_2=g_1(x_1)$$
 $x_3=g_2(x_2)$
 $x_4=g_3(x_3)$
 $\hat{y}=x_5=g_4(x_4)$ Forward pass

$$\hat{y} = g_4(g_3(g_2(g_1(x_1))))$$

Want to find $\frac{\partial \hat{y}}{\partial x_1}$. Chain rule:

How does a variation ("difference") on the input affect the prediction?

$$\frac{\partial \hat{y}}{\partial x_1} = \frac{\partial \hat{y}}{\partial x_4} \frac{\partial x_4}{\partial x_3} \frac{\partial x_3}{\partial x_2} \frac{\partial x_2}{\partial x_1}$$

Backward pass

Decompose into steps again. Let $\delta_k = \frac{\partial \hat{y}}{\partial x_k}$. Backpropagation:

$$\delta_{5} = \frac{\partial \hat{y}}{\partial x_{5}} = 1$$

$$\delta_{4} = \frac{\partial \hat{y}}{\partial x_{4}} = \frac{\partial \hat{y}}{\partial x_{5}} \frac{\partial x_{5}}{\partial x_{4}} = \delta_{5} g_{4}'(x_{4})$$

$$\delta_{3} = \frac{\partial \hat{y}}{\partial x_{3}} = \frac{\partial \hat{y}}{\partial x_{4}} \frac{\partial x_{4}}{\partial x_{3}} = \delta_{4} g_{3}'(x_{3})$$

$$\delta_{2} = \frac{\partial \hat{y}}{\partial x_{2}} = \frac{\partial \hat{y}}{\partial x_{3}} \frac{\partial x_{3}}{\partial x_{2}} = \delta_{3} g_{2}'(x_{2})$$

$$\delta_{1} = \frac{\partial \hat{y}}{\partial x_{1}} = \frac{\partial \hat{y}}{\partial x_{2}} \frac{\partial x_{2}}{\partial x_{1}} = \delta_{2} g_{1}'(x_{1})$$

Backward pass

Question: How can gradients be backpropagated for the operations involved in a perceptron?

- PRODUCT (x)
- SUM (+)
- SIGMOID (σ)

We can now estimate the sensitivity of the output y with respect to each input parameter w_i and x_i.

Gradient weights for sigmoid σ

$$\frac{\partial \sigma(x)}{\partial x} = \frac{\partial}{\partial x} \left(\frac{1}{1 + e^{-x}} \right) = \frac{-1}{(1 + e^{-x})^2} \frac{\partial (1 + e^{-x})}{\partial x} = \frac{-1}{(1 + e^{-x})^2} \frac{\partial (e^{-x})}{\partial x}$$

(*)
$$f(x) = \frac{g(x)}{h(x)}$$
 $f'(x) = \frac{g'(x)h(x) - g(x)h'(x)}{h^2}$

$$\frac{\partial \sigma(x)}{\partial x} = \frac{-1}{(1+e^{-x})^2}(-e^{-x}) = \frac{e^{-x}}{(1+e^{-x})^2}$$

...which can be re-arranged as...

$$\frac{\partial \sigma(x)}{\partial x} = \frac{e^{-x}}{(1+e^{-x})^2} = \frac{e^{-x}}{(1+e^{-x})} \frac{1}{(1+e^{-x})}$$

$$\frac{\partial \sigma(x)}{\partial x} = \left(\frac{1 + e^{-x}}{1 + e^{-x}} - \frac{1}{1 + e^{-x}}\right) \sigma(x)$$

$$\frac{\partial \sigma(x)}{\partial x} = (1 - \sigma(x)) \, \sigma(x) \quad {}^{\mathrm{b}}$$

0.6 0.4 0.2

Even more details: Arunava, "Derivative of the Sigmoid function" (2018)

Figure: Andrej Karpathy

$$\frac{\partial \sigma(x)}{\partial x} = (1 - \sigma(x)) \, \sigma(x)$$

Sum: Distributes the gradient to both branches.

$$\frac{\partial(a+b)}{\partial a} = 1$$

$$\frac{\partial(a+b)}{\partial b} = 1$$

Product: Switches gradient weight values.

$$\frac{\partial(a\cdot b)}{\partial a} = b$$

$$\frac{\partial(a\cdot b)}{\partial b} = a$$

Normally, we will be interested only on the weights (w_i) and biases (b), not the inputs (x_i). The weights are the parameters to learn in our models.

(bonus) Gradients weights for MAX & SPLIT

Max: Routes the gradient only to the higher input branch (not sensitive to the lower branches).

Split: Branches that split in the forward pass and merge in the backward pass, add gradients

(bonus) Gradient weights for ReLU

$$ReLU(x) = \left\{ \begin{array}{ll} x & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{array} \right\}$$

$$\frac{\partial ReLU(x)}{\partial x} = u(x) = \left\{ \begin{array}{ll} 1 & \text{if } x > 0 \\ 0 & \text{if } x < 0 \end{array} \right\}$$

Figures: Andrei Karpathy

Learn more

READ

- Chris Olah, "Calculus on Computational Graphs: Backpropagation" (2015).
- Andrej Karpathy,, <u>"Yes, you should understand backprop"</u> (2016), and his <u>"course notes</u> at Stanford University CS231n.

WATCH

Gilbert Strang, <u>"27. Backpropagation: Find Partial Derivatives"</u>. MIT 18.065 (2018)

What are the clearest explanations of backprop on the web? The two that I happily point students to are...

cs231n.github.io/optimization-2/colah.github.io/posts/2015-08-...

Any others?

Tradueix el tuit 9:47 p. m. · 16 jul. 2019 · Twitter Web App

Undergradese

What undergrads ask vs. what they're REALLY asking

"Is it going to be an open book exam?"

Translation: "I don't have to actually memorize anything, do I?"

"Hmm, what do you mean by that?"

> Translation: "What's the answer so we can all go home."

"Are you going to have office hours today?"

Translation: "Can I do my homework in your office?"

"Can i get an extension?"

Translation: "Can you re-arrange your life around mine?"

"Is grading going to be curved?"

Translation: "Can I do a mediocre job and still get an A?"

WW. PHDCOMICS. COM

JORGE CHAM @ 2008