Z RESEARCH LABORDING

AFRL-RX-WP-TR-2013-0165

Transverse Uniaxial Composite Thermal Properties Data Base of Thermally Conductive Graphite Fibers with and without Contiguous Grown Graphite Fins

Roger Gerzeski Composites Branch (AFRL/RXCC)

Aaron Sprague and Tyler Cianciolo University of Dayton Research Institute

July 2013 Interim Report

Approved for public release; distribution unlimited.

AIR FORCE RESEARCH LABORATORY
MATERIALS AND MANUFACTURING DIRECTORATE
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7750
AIR FORCE MATERIEL COMMAND
UNITED STATES AIR FORCE

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose other than Government procurement does not in any way obligate the U.S. Government. The fact that the Government formulated or supplied the drawings, specifications, or other data does not license the holder or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the USAF 88th Air Base Wing (88 ABW) Public Affairs Office (PAO) and is available to the general public, including foreign nationals.

Copies may be obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RX-WP-TR-2013-0165 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

_//Signature//_____

ROGER GERZESKI, Project Engineer Composites Branch Structural Materials Division

DONNA L. BALLARD, Deputy Chief Composites Branch Structural Materials Division

_//Signature//____

//Signature//___

ROBERT T. MARSHALL, Deputy Chief Structural Materials Division Materials and Manufacturing Directorate

This report is published in the interest of scientific and technical information exchange, and its publication does not constitute the Government's approval or disapproval of its ideas or findings.

			OMB No. 0704-0188		
The public reporting burden for this collection of information is est sources, gathering and maintaining the data needed, and compleinformation, including suggestions for reducing this burden, to Del Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respond collection of information if it does not display a currently valid OMI	ing and reviewing the collection of information. Send comments in partment of Defense, Washington Headquarters Services, Director ents should be aware that notwithstanding any other provision of I	regarding this bur brate for Information	den estimate or any other aspect of this collection of on Operations and Reports (0704-0188), 1215 Jefferson all be subject to any penalty for failing to comply with a		
1. REPORT DATE (DD-MM-YY)	2. REPORT TYPE	3. DATES	COVERED (From - To)		
July 2013	Interim	01 Jul	y 2008- 30 June 2013		
4. TITLE AND SUBTITLE		5a.	CONTRACT NUMBER		
Transverse Uniaxial Composite The	ermal Properties Data Base of Thermall	y	IN-HOUSE		
Conductive Graphite Fibers with an	d without Contiguous Grown Graphite	Fins 5b	GRANT NUMBER		
		5c	PROGRAM ELEMENT NUMBER		
			62102F		
6. AUTHOR(S)		5d	. PROJECT NUMBER		
Roger Gerzeski - (AFRL/RXCC)			4347		
Aaron Sprague and Tyler Cianciolo	- (University of Dayton Research Instit	tute) 5e	TASK NUMBER		
		5f.	WORK UNIT NUMBER $\mathrm{X0S7}$		
7. PERFORMING ORGANIZATION NAME(S) A	ND ADDRESS(ES)	_	PERFORMING ORGANIZATION PORT NUMBER		
University of Dayton Research Institute 300 College Park Ave. Dayton, OH 45469-0001	ctorate				
9. SPONSORING/MONITORING AGENCY NAI	ME(S) AND ADDRESS(ES)	10.	SPONSORING/MONITORING AGENCY ACRONYM(S)		
Air Force Research Laboratory			AFRL/RXCC		
Materials and Manufacturing Directora Wright-Patterson Air Force Base, OH		11.	11. SPONSORING/MONITORING AGENCY		
Air Force Materiel Command	15 155 7750		REPORT NUMBER(S)		
United States Air Force			AFRL-RX-WP-TR-2013-0165		
12. DISTRIBUTION/AVAILABILITY STATEMEN Approved for public release; distrib					
13. SUPPLEMENTARY NOTES	3/32-Fract cnea'F cyn/2/1/Cyi (1/2/350	Report co	ntains color		
RC'Ecug'Pwo dgt<88ABW-2013-	3432=Eigetepeg F eige24 CWi 42330	Keport co	itams color.		
14. ABSTRACT (Maximum 200 words)					
14. ABSTRACT (Maximum 200 words) Using the format of Mil Handbook 17, a co	mplete data base of the results of in house 6	experimenta	l efforts to determine if the growth of		
14. ABSTRACT (Maximum 200 words) Using the format of Mil Handbook 17, a cographite fins from thermally conductive, his	mplete data base of the results of in house eachly graphitic fibers could enhance the trans	experimenta sverse therr	l efforts to determine if the growth of nal conductivity of uniaxial tow bundle		
14. ABSTRACT (Maximum 200 words) Using the format of Mil Handbook 17, a cographite fins from thermally conductive, his laid up composites. These results designate	mplete data base of the results of in house eachly graphitic fibers could enhance the transed as With Fins (WF) are tabulated alongsic	experimenta sverse therr de additiona	l efforts to determine if the growth of nal conductivity of uniaxial tow bundle l tables of the transverse thermal		
14. ABSTRACT (Maximum 200 words) Using the format of Mil Handbook 17, a cographite fins from thermally conductive, his laid up composites. These results designate conductivity of uniaxial tow bundle laid up	mplete data base of the results of in house eachly graphitic fibers could enhance the transed as With Fins (WF) are tabulated alongsic composites made from the same fibers with	experimenta sverse therm de additiona hout graphit	l efforts to determine if the growth of nal conductivity of uniaxial tow bundle l tables of the transverse thermal e fins grown from their surface. They		
14. ABSTRACT (Maximum 200 words) Using the format of Mil Handbook 17, a cographite fins from thermally conductive, his laid up composites. These results designate conductivity of uniaxial tow bundle laid up represent baseline comparisons and are designated.	mplete data base of the results of in house of the ghly graphitic fibers could enhance the transed as With Fins (WF) are tabulated alongsic composites made from the same fibers with grated as With Out graphite Fins (WOF).	experimenta sverse therr de additiona hout graphit Appendixe	l efforts to determine if the growth of nal conductivity of uniaxial tow bundle l tables of the transverse thermal e fins grown from their surface. They is detailing the specific fabrication of		
14. ABSTRACT (Maximum 200 words) Using the format of Mil Handbook 17, a cographite fins from thermally conductive, his laid up composites. These results designate conductivity of uniaxial tow bundle laid up represent baseline comparisons and are designated, unique to this effort, experimental graphics.	mplete data base of the results of in house of the ghly graphitic fibers could enhance the transed as With Fins (WF) are tabulated alongsic composites made from the same fibers with gnated as With Out graphite Fins (WOF). hite fibers with fins grown contiguously from	experimenta sverse therr de additiona hout graphit Appendixe om their sur	l efforts to determine if the growth of mal conductivity of uniaxial tow bundle l tables of the transverse thermal e fins grown from their surface. They is detailing the specific fabrication of faces and the, also unique to this effort,		
14. ABSTRACT (Maximum 200 words) Using the format of Mil Handbook 17, a cographite fins from thermally conductive, his laid up composites. These results designate conductivity of uniaxial tow bundle laid up represent baseline comparisons and are designated.	mplete data base of the results of in house of the ghly graphitic fibers could enhance the transed as With Fins (WF) are tabulated alongsic composites made from the same fibers with gnated as With Out graphite Fins (WOF). This fibers with fins grown contiguously from the same fibers are appended to illustrate the uniquence.	experimenta sverse therr de additiona hout graphit Appendixe om their sur ue techniqu	l efforts to determine if the growth of nal conductivity of uniaxial tow bundle l tables of the transverse thermal e fins grown from their surface. They is detailing the specific fabrication of faces and the, also unique to this effort, we used to fabricate the finned graphite		
14. ABSTRACT (Maximum 200 words) Using the format of Mil Handbook 17, a cographite fins from thermally conductive, his laid up composites. These results designate conductivity of uniaxial tow bundle laid up represent baseline comparisons and are desthe, unique to this effort, experimental grap fabrication of uniaxial composites from tho fibers and Uniaxial composites. Additional	mplete data base of the results of in house of the ghly graphitic fibers could enhance the transed as With Fins (WF) are tabulated alongsic composites made from the same fibers with gnated as With Out graphite Fins (WOF). This fibers with fins grown contiguously from the same fibers are appended to illustrate the uniquence.	experimenta sverse therr de additiona hout graphit Appendixe om their sur ue techniqu d into the tal	l efforts to determine if the growth of nal conductivity of uniaxial tow bundle l tables of the transverse thermal e fins grown from their surface. They is detailing the specific fabrication of faces and the, also unique to this effort, es used to fabricate the finned graphite bles in graphical form are also included.		

17. LIMITATION

OF ABSTRACT:

SAR

18. NUMBER

OF PAGES

245

REPORT DOCUMENTATION PAGE

16. SECURITY CLASSIFICATION OF:

Unclassified Unclassified

b. ABSTRACT

c. THIS PAGE

Unclassified

a. REPORT

19a. NAME OF RESPONSIBLE PERSON (Monitor)

19b. TELEPHONE NUMBER (Include Area Code)

Roger Gerzeski

(937) 904-4323

Form Approved

Table Of Contents

Section	1	Page
List Of	Figures	ii
List Of	Tables	vii
1.0	EXECUTIVE SUMMARY	1
2.0	DATA BASE	2
2.1	Section 1: Fin Growth	2
2.2	Section 2: Transverse Uniaxial Composite Properties	9
3.0	APPENDIX A: FIN GROWTH	41
3.1	Section 1: Microwave Plasma Chemical Vapor Deposition System	41
3.2	Section 2: Fiber Elevation Stand Overall Assembly	44
3.3	Section 3: Molybdenum Puck	45
3.4	Section 4: Ceramic Stands	47
3.5	Section 5: Ceramic Caps	50
3.6	Section 6: Assembled Ceramic Jigs & Puck	52
3.7	Section 7: Extractor	57
3.8	Section 8: YSH50A Fin Growth	75
3.9	Section 9: M55JB Fin Growth	81
3.10	Section 10: YSH60A Fin Growth	91
3.11	Section 11: YS80A Fin Growth	94
3.12.1	Section 12-1: P100S 7 UnCapped Tow Fin Growth	100
3.12.1	Section 12-2: P100S 5 Un Capped Tow Fin Growth	110
3.12.3	Section 12-3: P100S 5 Capped Tow Fin Growth	120
4.0	Appendix B: Bulk Composite Fabrication	130
4.1	Section 1: Composite Lay Up Jig Design	130
4.2	Section 2: Exploded Composite Lay Up Jig	133
4.3	Section 3: Assembled Composite Lay Up Jig	135
4.4	Section 4: Release Ply Insertion	137
4.5	Section 5: Bleed Ply Insertion	137
4.6	Section 6: Bottom Graphite Tooling Plate Insertion	139
4.7	Section 7: Bottom Tooling Plate Bleed Plies Insertion	141
4.8	Section 8: Fiber Tow Bundle Lay Up	142
4.9	Section 9: Top Tooling Plate Bleed Plies Insertion	143
4.10	Section 10: Top Graphite Tooling Plate Insertion	144
4.11	Section 11: Trim Excess Fibers	147
4.12	Section 12: Refrigerated Composite Lay Up Storage Prior To Cure	148
4.13	Section 13: Bulk Composite Specimen Fabrication & Cure Experimental Run 2 (ER2)	149
4.14	Section 14: Bulk Composite Specimen Fabrication & Cure Experimental Run 3 (ER3)	158
4.15	Section 15: Bulk Composite Specimen Fabrication & Cure Experimental Run 4 (ER4)	169
4.16	Section 16: Bulk Composite Specimen Fabrication & Cure Baseline Run 1 (BR1)	174
5.0	Appendix C: Optical Microscopy	180
5.1	Section 1: YSH50 Optical Microscopy	180
5.2	Section 2: YS80A Optical Fiber Volume	184
5.3	Section 3: P100S Optical Microscopy	187
6.0	Appendix D: Heat Capacity	192
6.1	Section 1: YSH50A Composites	192
6.2	Section 2: YS80A Composites	196
6.3	Section 3: P100S Composites	202
7.0	Appendix E: Diffusivity	207
7.1	Section 1: YSH50A Diffusivity	207
7.2	Section 2: YS80A Diffusivity	211
7.3	Section 3: P100S Diffusivity	214
8.0	Appendix F: Conductivity	219
8.1	Section 1: YSH50A Conductivity	219
8.2	Section 2: YS80A Conductivity	224
8.3	Section 3: P100S Conductivity	230
9.0	Appendix G: Abbreviations	235
	11	

List Of Figures

Figure		Page
FG1,	SEKI TECHNOTRON Microwave Plasma Chemical Vapor Deposition System	41
FG2,	MWPCVD System Operations Manual	42
FG3,	Optical Pyrometer Location And Read Out	43
FG4,	Opened Reactor Chamber Door	43
FG5,	Heater Stage, Inserted Molybdenum Puck, Ceramic Stand and Specimen	43
FG6,	Fiber Elevation Stand Assembly Design	44
FG7,	Molybdenum Puck Design	45
FG8,	Molybdenum Puck	45
FG9,	Slotted Molybdenum Puck Design	46
FG10,	Slotted Molybdenum Puck	46
FG11,	Ceramic Specimen Elevation Seven One Quarter Inch Spaced Eighth Inch Slot T Stands	47
FG12,	Ceramic Specimen Elevation Five One Quarter Inch Spaced Eighth Inch Slot T Stands	48
FG13,	Ceramic Specimen Elevation Three One Quarter Inch Spaced Eighth Inch Slot T Stands	49
FG14,	Ceramic Five Specimen One Quarter Inch Spaced Eighth Inch Slot Cap	50
FG15,	Ceramic Three Specimen One Quarter Inch Spaced Eighth Inch Slot Cap	50
FG16,	Ceramic Caps	51
FG17,	UnCapped Ceramic Specimen Elevation Three One Quarter Inch Spaced Eighth Inch Slot T Stands	52
FG18,	Capped Ceramic Specimen Elevation Three One Quarter Inch Spaced Eighth Inch Slot T Stands	53
FG19,	UnCapped Ceramic Specimen Elevation Five One Quarter Inch Spaced Eighth Inch Slot T Stands	54
FG20,	Capped Ceramic Specimen Elevation Five One Quarter Inch Spaced Eighth Inch Slot T Stands	55
FG21,	UnCapped Ceramic Specimen Elevation Seven One Quarter Inch Spaced Eighth Inch Slot T Stands	56
FG22,	Seven (top) and five (bottom) fiber holders	57
FG23,	Fiber holder retriever	58
FG24,	Main chamber of soxhlet extractor	58
FG25,	Main chamber filling with condensed acetone	59
FG26,	Soxhlet extractor setup	59
FG27,	Channel assembly bed.	60
FG28,	Fiber braces.	60
FG29,	Channeled assembly bed with fibers (top) and braces (bottom).	61
FG30,	Soxhlet extractor setup in chemical hood and refrigeration unit	62
FG31,	Surface finish thickness	63
FG32,	YS80 with surface finish fin growth attempt	64
FG33,	Test Bundle Five days cleaning with ACS reagent grade acetone.	65
FG34,	Test Bundle Seven days cleaning with ACS reagent grade acetone.	65
FG35,	Ribbon of surface finish after cleaning with Technical grade acetone.	66
FG36,	Ball of surface finish after cleaning with Technical grade acetone.	66
FG37,	Four weeks cleaning with used Technical grade acetone.	67
FG38,	Four weeks cleaning with new Technical grade acetone	67
FG39,	One week clean in ACS reagent grade acetone.	68
FG40,	Two week clean in ACS reagent grade acetone.	69
FG41,	Two weeks cleaning with ACS reagent grade acetone, methanol rinse.	70
FG42,	Three weeks cleaning with ACS reagent grade acetone.	71
FG43,	Four weeks cleaning with ACS reagent grade acetone.	72
FG44,	Four weeks cleaning with ACS reagent grade acetone, methanol rinse.	72
FG45,	Surface finish residue deposits on YSH50 fibers cleaned for one week in used Technical grade acetone.	73
FG46,	Four weeks ACS reagent grade acetone cleaned, stir bar (left) and ultrasonic (right) rinse.	74
FG47,	YSH50A Fin Growth Capped Ceramic Jig O3a Position Surface View	75
FG48,	YSH50A Fin Growth Capped Ceramic Jig O3a Position End View	76
FG49,	YSH50A Fin Growth Capped Ceramic Jig C3 Position Surface View	77

Figure		Page
FG50,	YSH50A Fin Growth Capped Ceramic Jig C3 Position End View	78
FG51,	YSH50A Fin Growth Capped Ceramic Jig O3b Position Surface View	79
FG52,	YSH50A Fin Growth Capped Ceramic Jig O3b Position End View	80
FG53,	M55JB Fin Growth Capped Ceramic Jig O5a Position Side View	81
FG54,	M55JB Fin Growth Capped Ceramic Jig O5a Position End View	82
FG55,	M55JB Fin Growth Capped Ceramic Jig M5a Position Side View	83
FG56,	M55JB Fin Growth Capped Ceramic Jig M5a Position End View	84
FG57,	M55JB Fin Growth Capped Ceramic Jig C5 Position Side View	85
FG58,	M55JB Fin Growth Capped Ceramic Jig C5 Position End View	86
FG59,	M55JB Fin Growth Capped Ceramic Jig M5b Position Side View	87
FG60,	M55JB Fin Growth Capped Ceramic Jig M5b Position End View	88
FG61,	M55JB Fin Growth Capped Ceramic Jig O5b Position Side View	89
FG62,	M55JB Fin Growth Capped Ceramic Jig O5b Position End View	90
FG63,	YSH60A Fin Growth Ceramic Jig IM7 Position Side View	91
FG64,	YSH60A Fin Growth Ceramic Jig OM7 Position Side View	92
FG65,	YSH60A Fin Growth Ceramic Jig O7 Position Side View	93
FG66,	YS80A Fin Growth Capped Ceramic Jig O3a Position Surface View	94
FG67,	YS80A Fin Growth Capped Ceramic Jig O3a Position End View	95
FG68,	YS80A Fin Growth Capped Ceramic Jig C3 Position Surface View	96
FG69,	YS80A Fin Growth Capped Ceramic Jig C3 Position Surface View	97
FG70,	YS80A Fin Growth Capped Ceramic Jig O3b Position Surface View	98
FG71,	YS80A Fin Growth Capped Ceramic Jig O3b Position End View	99
FG72,	P100S 7 Tow Fin Growth 7 Tow Ceramic Jig Various Jig Positions Surface View	100
FG73,	P100S 7 Tow Fin Growth 7 Tow Un Capped Ceramic Jig O7 Positions End View I	101
FG74,	P100S 7 Tow Fin Growth 7 Tow Un Capped Ceramic Jig O7 Positions End View II	102
FG75,	P100S 7 Tow Fin Growth 7 Tow Un Capped Ceramic Jig O7 Positions End View III	103
FG76,	P100S 7 Tow Fin Growth 7 Tow Un Capped Ceramic Jig OM7a Positions End View I	104
FG77,	P100S 7 Tow Fin Growth 7 Tow Un Capped Ceramic Jig OM7a Positions End View II	105
FG78,	P100S 7 Tow Fin Growth 7 Tow Un Capped Ceramic Jig OM7a Positions End View III	106
FG79,	P100S 7 Tow Fin Growth 7 Tow Un Capped Ceramic Jig OM7b Positions End View	107
FG80,	P100S 7 Tow Fin Growth 7 Tow Un Capped Ceramic Jig IM7A Positions End View	108
FG81,	P100S 7 Tow Fin Growth 7 Tow Un Capped Ceramic Jig IM7b Positions End View	109
FG82,	P100S Fin Growth Un Capped Ceramic Jig O5a Position Side View	110
FG83,	P100S Fin Growth Un Capped Ceramic Jig O5a Position End View	111
FG84,	P100S Fin Growth Un Capped Ceramic Jig M5a Position Side View	112
FG85,	P100S Fin Growth Un Capped Ceramic Jig M5a Position End View	113
FG86,	P100S Fin Growth Un Capped Ceramic Jig C5 Position Side View	114
FG87,	P100S Fin Growth Un Capped Ceramic Jig C5 Position End View	115
FG88,	P100S Fin Growth Un Capped Ceramic Jig M5b Position Side View	116
FG89,	P100S Fin Growth Un Capped Ceramic Jig M5b Position End View	117
FG90,	P100S Fin Growth Un Capped Ceramic Jig O5b Position Side View	118
FG91,	P100S Fin Growth Un Capped Ceramic Jig O5b Position End View	119
FG92,	P100S Fin Growth Capped Ceramic Jig O5a Position Side View	120
FG93,	P100S Fin Growth Capped Ceramic Jig O5a Position End View	121
FG94,	P100S Fin Growth Capped Ceramic Jig M5a Position Side View	122
FG95,	P100S Fin Growth Capped Ceramic Jig M5a Position End View	123
FG96,	P100S Fin Growth Capped Ceramic Jig C5 Position Side View	124
FG97,	P100S Fin Growth Capped Ceramic Jig C5 Position End View	125
FG98,	P100S Fin Growth Capped Ceramic Jig M5b Position Side View	126
FG99,	P100S Fin Growth Capped Ceramic Jig M5b Position End View	127
FG100,	P100S Fin Growth Capped Ceramic Jig O5b Position Side View	128
FG101,	P100S Fin Growth Capped Ceramic Jig O5b Position End View	129
BCF1,	Bulk Composite Lay Up Jig Assembly Design	130
BCF2,	Jig Base Plate Design	131
BCF3,	Fence Plate Design	132

Figure		Page
BCF4,	Graphite Tooling Plate Design	132
BCF5,	Exploded Composite Lay Up Jig Side View	133
BCF6,	Exploded Composite Lay Up Jig Top View	134
BCF7,	Assembled Composite Lay Up Jig Top Down View	135
BCF8,	Assembled Composite Lay Up Jig Side View	136
BCF9,	Release Ply Top Side View	137
BCF10,	Bleed Ply Insertion Top Side View	138
BCF11,	Bottom Graphite Tooling Plate Insertion Top View	139
BCF12,	Bottom Graphite Tooling Plate Insertion Top Side View	140
BCF13,	Bottom Tooling Plate Bleed PliesInsertion Top Side View	141
BCF14,	Fiber Tow Bundle Lay Up Top View	142
BCF15,	Top Tooling Plate Bleed Plies Insertion Side View	143
BCF16,	Top Graphite Tooling Plate Insertion Top View	144
BCF17,	Top Graphite Tooling Plate Insertion Top Side View	145
BCF18,	Top Graphite Tooling Plate Insertion Left Side View	146
BCF19,	Trimming Excess YSH Type Fibers Top View	147
BCF20,	Refrigerated Composite Lay Up Storage Prior To Cure	148
BCF21,	Composite Cure Profile	149
BCF22,	Composite Bagging I	150
BCF23,	Cured Bagged Composite	151
BCF24,	Cured DeBagged YSH50A Bulk Composite Specimens	152
BCF25,	Bulk YSH50A Composite Specimens made With contiguous graphite Fins	153
20120,	exhibiting (ie WF)YSH50A fibers/tows	100
BCF26,	Bulk YSH50A Composite Specimens made with baseline YSH50A fibers/tows	154
BC1 20,	WithOut graphite Fins (ie WOF)	10 1
BCF27,	Cured DeBagged P100S Bulk Composite Specimens	155
BCF28,	Bulk P100S Composite Specimens made With contiguous graphite Fins	156
DC1 20,	exhibiting (ie WF) P100S fibers/tows	130
BCF29,	Bulk P100S Composite Specimens made with baseline P100S fibers/tows	157
DC1 27,	WithOut graphite Fins (ie WOF)	137
BCF30,	Composite Cure Profile	158
BCF31,	Cured Bagged Composite	159
BCF32,	Cured DeBagged Bulk Composite Specimens	160
BCF33,	Cured DeBagged Bulk YSH50A Composite Specimens made With contiguous	161
DC1 33,	graphite Fins exhibiting (ie WF) YSH50A fibers/tows	101
BCF34,	Bulk YSH50A Composite Specimens made With contiguous graphite Fins	162
БС1 54,	exhibiting (ie WF) YSH50A fibers/tows	102
BCF35,	Cured DeBagged Bulk YSH50A Composite Specimens made with baseline	163
BCF55,	YSH50A fibers/tows WithOut graphite Fins (ie WOF)	103
BCF36,	Bulk YSH50A Composite Specimens made with baseline YSH50A fibers/tows	164
BCF30,	WithOut graphite Fins (ie WOF)	104
BCF37,	Cured DeBagged Bulk YS80A Composite Specimens made With contiguous	165
BCF57,	graphiteFins exhibiting (ie WF) YS80A fibers/tows	103
DCE20	Bulk YS80A Composite Specimens made With contiguous graphite Fins	166
BCF38,	exhibiting (ie WF) YS80A fibers/tows	100
DCE20		167
BCF39,	Cured DeBagged Bulk YS80A Composite Specimens made with baseline	167
DCE40	YS80A fibers/tows WithOut graphite Fins (ie WOF)	160
BCF40,	Bulk YS80A Composite Specimens made with baseline YS80A fibers/tows	168
DCE41	WithOut graphite Fins (ie WOF)	1.00
BCF41,	Composite Cure Profile Cyred De Pagged Bylk P1005 Composite Specimens made With contiguous	169
BCF42,	Cured DeBagged Bulk P100S Composite Specimens made With contiguous	170
DCE42	graphite Fins exhibiting (ie WF) P100S fibers/tows Pulls P100S Composite Specimens made With contiguous graphite Fins	171
BCF43,	Bulk P100S Composite Specimens made With contiguous graphite Fins exhibiting (ie WF) P100S fibers/tows	171
	CATHURIUM LIE VVITTE LUGA HUELS/HUWS	

Figure		Page
BCF44,	Cured DeBagged Bulk P100S Composite Specimens made with baseline P100S	172
	fibers/tows WithOut graphite Fins (ie WOF)	
BCF45,	Bulk P100S Composite Specimens made with baseline P100S fibers/tows WithOut	173
	graphiteFins (ie WOF)	
BCF46,	Composite Cure Profile	174
BCF47,	Cured Bagged Composite	175
BCF48,	Cured DeBagged Bulk YS80A Composite Specimens made with baseline YS80A fibers/tows WithOut graphite Fins (ie WOF)	176
BCF49,	Bulk YS80A Composite Specimens made with baseline YS80A fibers/tows WithOut graphite Fins (ie WOF)	177
BCF50,	Cured DeBagged Bulk P100S Composite Specimens made with baseline P100S fibers/tows WithOut graphite Fins (ie WOF)	178
BCF51,	Bulk P100S Composite Specimens made with baseline P100S fibers/tows WithOut graphite Fins (ie WOF)	179
OM1,	YSH50A ER2 WF Optical Microscopy, Fiber Volume And Percolation Chains	180
OM2,	YSH50A ER2 WOF Optical Microscopy, Fiber Volume And Percolation Chains.	181
OM3,	YSH50A ER3 WF Optical Microscopy, Fiber Volume And Percolation Chains	182
OM4,	YSH50A ER3 WOF Optical Microscopy, Fiber Volume And Percolation Chains	183
OM5,	YS80A ER3 WF Optical Microscopy, Fiber Volume And Percolation Chains	184
OM6,	YS80A ER3 WOF Optical Microscopy, Fiber Volume And Percolation Chains	185
OM7,	YS80A BR1 WOF Optical Microscopy, Fiber Volume And Percolation Chains	186
OM7,	P100S ER2 WF Optical Microscopy, Fiber Volume And Percolation Chains	187
OM9,	P100S ER2 WOF Optical Microscopy, Fiber Volume And Percolation Chains	188
OM10,	P100S ER4 WF Optical Microscopy, Fiber Volume And Percolation Chains	189
OM10,	P100S ER4 WOF Optical Microscopy, Fiber Volume And Percolation Chains	190
OM11, OM12,	P100S BR1 WOF Optical Microscopy, Fiber Volume And Percolation Chains	190
HC1,		191
	Heat Capacity Curves for YSH50A ER2 WOF	
HC2,	Heat Capacity Curves for YSH50A ER2 WF	193 194
HC3,	Heat Capacity Curves for YSH50A ER3 WOF	194
HC4,	Heat Capacity Curves for YSH50A ER3 WF	193
HC5,	Heat Capacity Curves for YS80A ER3 Initial WOF	
HC6,	Heat Capacity Curves for YS80A ER3 Initial WF	197
HC7,	Heat Capacity Curves for YS80A ER3 Rerun WF	198
HC8,	Heat Capacity Curves for YS80A ER3 Rerun WOF	199
HC9,	Heat Capacity Curves for YS80A BR1 Initial WOF	200
HC10,	Heat Capacity Curves for YS80A BR1 Rerun WOF	201
HC11,	Heat Capacity Curves for P100S ER2 WOF	202
HC12,	Heat Capacity Curves for P100S ER2 WF	203
HC13,	Heat Capacity Curves for P100S ER4 WOF	204
HC14,	Heat Capacity Curves for P100S ER4 WF	205
HC15,	Heat Capacity Curves for P100S BR1 WOF	206
D1,	YSH50A ER2 WF Diffusivity	207
D2,	YSH50A ER2 WOF Diffusivity	208
D3,	YSH50A ER3 WF Diffusivity	209
D4,	YSH50A ER3 WOF Diffusivity	210
D5,	YS80A ER3 WF Diffusivity	211
D6,	YS80A ER3 WOF Diffusivity	212
D7,	YS80A BR1 WOF Diffusivity	213
D8,	P100S ER2 WF Diffusivity	214
D9,	P100S ER2 WOF Diffusivity	215
D10,	P100S ER4 WF Diffusivity	216
D11,	P100S ER4 WOF Diffusivity	217
D12,	P100S BR1 WOF Diffusivity	218
C1,	YSH50A ER2 WF Conductivity	219
C2,	YSH50A ER2 FR1 WOF Conductivity	220

Figure		Page
C3,	YSH50A ER2 FR2 WOF Conductivity	221
C4,	YSH50A ER3 WF Conductivity	222
C5,	YSH50A ER3 WOF Conductivity	223
C6,	YS80A ER3 WF Conductivity ReRun	224
C7,	YS80A ER3 WOF Conductivity ReRun	225
C8,	YS80A ER3 WF Conductivity Initial	226
C9,	YS80A ER3 WOF Conductivity Initial	227
C10,	YS80A BR1 WOF Conductivity ReRun	228
C11,	YS80A BR1 WOF Conductivity Initial	229
C12,	P100S ER2 WF Conductivity	230
C13,	P100S ER2 WOF Conductivity	231
C14,	P100S ER4 WF Conductivity	232
C15,	P100S ER4 WOF Conductivity	233
C16,	P100S BR1 WOF Conductivity	234

List Of Tables

Table		Page
1,	Fin Growth Lengths YSH50A 6K Tows Graphite Fiber	2
2,	Fin Growth Lengths M55JB 6K Tows Graphite Fiber	3
3,	Fin Growth Lengths YSH60A 6K Tows Graphite Fiber	4
4,	Fin Growth Lengths YS80A 3K Tows Graphite Fiber	5
5,	Fin Growth Lengths P100S 2K Tows Graphite Fiber	6
6,	Fin Growth Lengths P100S 2K Tows Graphite Fiber	7
7,	Fin Growth Lengths P100S 2K Tows Graphite Fiber	8
8,	Thermo-Physical Properties Of ER2 WF YSH50A / Epon 826 – Cure Agent W Uniaxial Composite	9
9,	Thermo-Physical Properties Of ER2 FR1 WOF YSH50A / Epon 826 – Cure Agent W Uniaxial Composite	11
10,	Thermo-Physical Properties Of ER2 FR2 WOF YSH50A / Epon 826 – Cure Agent W Uniaxial Composite	13
11,	Thermo-Physical Properties Of ER3 WF YSH50A / Epon 826 – Cure Agent W Uniaxial Composite	15
12,	Thermo-Physical Properties Of ER3 WOF YSH50A / Epon 826 – Cure Agent W Uniaxial Composite	17
13,	Thermo-Physical Properties Of ER3 WF YS80A / Epon 826 – Cure Agent W Uniaxial Composite	19
14,	Thermo-Physical Properties OfReRun ER3 WF YS80A / Epon 826 – Cure Agent W Uniaxial Composite	21
15,	Thermo-Physical Properties Of ER3 WOF YS80A / Epon 826 – Cure Agent W Uniaxial Composite	23
16,	Thermo-Physical Properties OfReRun ER3 WOF YS80A / Epon 826 – Cure Agent W Uniaxial Composite	25
17,	Thermo-Physical Properties Of BR1 WOF YS80A / Epon 826 – Cure Agent W Uniaxial Composite	27
18,	Thermo-Physical Properties OfReRun BR1 WOF YS80A / Epon 826 – Cure Agent W Uniaxial Composite	29
19,	Thermo-Physical Properties Of ER2 WF P100S / Epon 826 – Cure Agent W Uniaxial Composite	31
20,	Thermo-Physical Properties Of ER2 WOF P100S / Epon 826 – Cure Agent W Uniaxial Composite	33
21,	Thermo-Physical Properties Of ER4 WF P100S / Epon 826 – Cure Agent W Uniaxial Composite	35
22,	Thermo-Physical Properties Of ER4 WOF P100S / Epon 826 – Cure Agent W Uniaxial Composite	37
23,	Thermo-Physical Properties Of BR1 WOF P100S / Epon 826 – Cure Agent W Uniaxial Composite	39

1.0 EXECUTIVE SUMMARY

Using the format of Mil Handbook 17, a complete data base of the results of in house experimental efforts to determine if the growth of graphite fins from thermally conductive, highly graphitic fibers could enhance the transverse thermal conductivity of uniaxial tow bundle laid up composites. These results designated as **W**ith **F**ins (WF) are tabulated alongside additional tables of the transverse thermal conductivity of uniaxial tow bundle laid up composites made from the same fibers without graphite fins grown from their surface. They represent baseline comparisons and are designated as **W**ith **O**ut graphite **F**ins (WOF). Appendixes detailing the specific fabrication of the, unique to this effort, experimental graphite fibers with fins grown contiguously from their surfaces and the, also unique to this effort, fabrication of uniaxial composites from those fibers are appended to illustrate the unique techniques used to fabricate the finned graphite fibers and Uniaxial composites. Additional appendixes depicting the data incorporated into the tables in graphical form are also included.

2.0 DATA BASE

2.1 Fin Growth

Table 1, Fin Growth Lengths YSH50A 6K Tows Graphite Fiber

General Material Class: Graphite Fiber Tabulated By: Aaron Sprague Fiber Name: YSH50A 6K Tows Tabulated On: June 2013

Material Run Number: R10 Checked By: Roger Gerzeski Checked On: July 2013

Fin Growth Conditions:

Jig Material:	Ceramic
Number of Troughs:	3
Plasma:	
Wattage (W):	1000
Pressure (Torr):	40
H_2 (sccm):	50
Oxidation:	
0_2 (sccm):	0.5
Time (min):	15
Growth:	
Methane (sccm):	10
Time (min):	16
Heater Stage Temperature (°C):	
Median:	857
Range:	831-858
Specimen Temperature (°C):	
Median	904
Range:	858-918

Notes: See "Appendix A: Fin Growth" For Further Information

Fin Lengths:

O5a	C3	O5b	Overall
238.95	237.42	333.79	269.11
143.43	112.03	149.26	140.30
656.20	583.70	698.70	698.70
77.77	63.67	107.50	63.67
578.43	520.03	591.20	635.03
61	96	75	232
	238.95 143.43 656.20 77.77 578.43	238.95 237.42 143.43 112.03 656.20 583.70 77.77 63.67 578.43 520.03	238.95 237.42 333.79 143.43 112.03 149.26 656.20 583.70 698.70 77.77 63.67 107.50 578.43 520.03 591.20

Notes: See "Appendix A: Fin Growth" For Further Information

Table 2, Fin Growth Lengths M55JB 6K Tows Graphite Fiber General Material Class: Graphite Fiber Tabulated By: Aaron Sprague Tabulated On: June 2013 Checked By: Roger Gerzeski Checked On: July 2013 Fiber Name: M55JB 6K Tows Material Run Number:

Fin Growth Conditions:

Jig Material:	Ceramic
Number of Troughs:	5
Plasma:	
Wattage (W):	1000
Pressure (Torr):	40
H_2 (sccm):	50
Oxidation:	
O_2 (sccm):	0.5
Time (min):	15
Growth:	
Methane (sccm):	10
Time (min):	12
Heater Stage Temperature (°C):	
Median:	833
Range:	827-842
Specimen Temperature (°C):	
Median:	858
Range:	858-985
Notes: See "Appendix A: Fin Growth" For Further	Information

Fiber Location:	O5a	M5a	C5	M5b	O5b	O5	M5	Overall
Average Length (nm):	287.01	57.45	73.62	123.36	87.99	151.78	94.82	127.15
Standard Deviation (nm):	220.54	28.73	34.23	66.73	53.29	153.35	62.76	135.12
Maximum Length (nm):	988.80	191.40	191.20	305.70	306.50	988.80	305.70	988.80
Minimum Length (nm):	35.99	29.27	24.16	25.96	24.06	24.06	25.96	24.06
Range (nm):	952.81	162.13	167.04	279.74	282.44	964.74	279.74	964.74
Data Points:	62	55	66	72	58	-	-	313

Table 3, Fin Growth Lengths YSH60A 6K Tows Graphite Fiber

General Material Class: Graphite Fiber Tabulated By: Aaron Sprague Fiber Name: YSH60A 6K Tows Tabulated On: June 2013

Material Run Number: R4 Checked By: Roger Gerzeski Checked On: July 2013

Fin Growth Conditions:

Jig Material:	Ceramic				
Number of Troughs:	5 (Outer 3 on one side used)				
Plasma:					
Wattage (W):	1000				
Pressure (Torr):	40				
H_2 (sccm):	50				
Oxidation:					
O_2 (secm):	0.5				
Time (min):	5				
Growth:					
Methane (sccm):	10				
Time (min):	15				
Heater Stage Temperature (°C):					
Median:	867				
Range:	-				
Specimen Temperature (°C):					
Median;	886				
Range:	-				

Notes: See "Appendix A: Fin Growth" For Further Information

Fin Lengths:

Fiber Location:	C5	M5b	O5b	Overall
Average Length (nm):	401.73	222.90	279.01	299.77
Standard Deviation (nm):	222.77	82.58	147.16	176.94
Maximum Length (nm):	798.10	586.50	789.80	798.10
Minimum Length (nm):	72.50	80.70	81.80	72.50
Range (nm):	725.60	505.80	708.00	725.60
Data Points:	95	98	81	274
37	1 11			

Notes: See "Appendix A: Fin Growth" For Further Information

Table 4, Fin Growth Lengths YS80A 3K Tows Graphite Fiber

General Material Class: Graphite Fiber
Fiber Name: YS80A 3K Tows
Material Run Number: R2

Tabulated By: Aaron Sprague Tabulated On: June 2013 Checked By: Roger Gerzeski Checked On: July 2013

Fin Growth Conditions: Jig Material:

Jig Material:	Ceramic
Number of Troughs:	3
Plasma:	
Wattage (W):	1000
Pressure (Torr):	40
H_2 (sccm):	50
Oxidation:	
O_2 (sccm):	0.5
Time (min):	15
Growth:	
Methane (sccm):	10
Time (min):	15.5
Heater Stage Temperature (°C):	
Median:	864
Range:	864-886
Specimen Temperature (°C):	
Median:	929
Range:	851-993
Notes: See "Appendix A: Fin Growth" For Further	Information

Fiber Location:	O3a	C3	O3b	Overall
Average Length (nm):	246.39	278.07	497.89	344.46
Standard Deviation (nm):	115.10	102.33	208.71	187.37
Maximum Length (nm):	674.50	477.00	1135.00	1135.00
Minimum Length (nm):	66.31	59.14	142.70	59.14
Range (nm):	608.19	417.86	992.30	1075.86
Data Points:	98	121	115	334

Table 5, Fin Growth Lengths P100S 2K Tows Graphite Fiber

General Material Class: Graphite Fiber
Fiber Name: P100S 2K Tows
Material Run Number: R1-3

Tabulated By: Aaron Sprague Tabulated On: June 2013 Checked By: Roger Gerzeski Checked On: July 2013

Fin Growth Conditions: Jig Material:

Jig Material:	Ceramic
Number of Troughs:	7
Plasma:	
Wattage (W):	700
Pressure (Torr):	30
H_2 (secm):	50
Oxidation:	
O ₂ (sccm):	0.5
Time (min):	15
Growth:	
Methane (sccm):	10
Time (min):	15
Heater Stage Temperature (°C):	
Median:	-
Range:	852-901
Specimen Temperature (°C):	
Median:	-
Range:	830-900
NI	т с

Notes: See "Appendix A: Fin Growth" For Further Information

Fiber Location:	O7	MO7a	CM7a	CM7b	MO7b	Overall
Average Length (nm):	147.64	148.28	77.87	99.24	87.69	113.68
Standard Deviation (nm):	96.31	57.59	36.35	52.30	53.54	66.52
Maximum Length (nm):	513.90	322.20	175.80	327.70	345.50	513.90
Minimum Length (nm):	33.12	66.28	16.80	36.48	37.38	16.80
Range (nm):	480.78	255.91	159.00	291.22	308.12	497.10
Data Points:	80	66	61	78	65	350

Table 6, Fin Growth Lengths P100S 2K Tows Graphite Fiber

General Material Class: Graphite Fiber Fiber Name: Graphite Fiber P100S 2K Tows

Material Run Number: R13

Tabulated By: Aaron Sprague Tabulated On: June 2013 Checked By: Roger Gerzeski Checked On: July 2013

Fin Growth Conditions: Jig Material:

Jig Material:		Ceramic
Nun	nber of Troughs:	5
Plasma:	_	
Wat	tage (W):	700
Pres	sure (Torr):	30
	sccm):	50
Oxi	dation:	
	O_2 (sccm):	0.5
	Time (min):	15
Gro	wth:	
	Methane (sccm):	10
	Time (min):	16
Hea	ter Stage Temperature (°C):	
	Median:	846
	Range:	845-855
Spe	cimen Temperature (°C):	
	Median:	826
	Range:	853-1066

Notes: See "Appendix A: Fin Growth" For Further Information

Fiber Location:	O5a	M5a	C5	M5b	O5b	Overall
Average Length (nm):	272.67	109.18	88.53	119.99	219.67	166.25
Standard Deviation (nm):	94.46	65.43	38.44	53.48	78.10	100.59
Maximum Length (nm):	546.70	570.60	239.90	298.90	437.30	570.60
Minimum Length (nm):	45.32	36.95	43.82	41.56	75.78	36.95
Range (nm):	501.38	533.65	196.08	257.34	361.52	533.65
Data Points:	73	81	45	64	62	325

Table 7, Fin Growth Lengths P100S 2K Tows Graphite Fiber

General Material Class: Graphite Fiber Fiber Name: P100S 2K Tows

Material Run Number: R17

Tabulated By: Aaron Sprague Tabulated On: June 2013 Checked By: Roger Gerzeski Checked On: July 2013

Fin Growth Conditions:

Jig Material:	Ceramic
Number of Troughs:	5
Plasma:	
Wattage (W):	700
Pressure (Torr):	30
H ₂ (sccm):	50
Oxidation:	
O_2 (sccm):	0.5
Time (min):	15
Growth:	
Methane (sccm):	10
Time (min):	16
Heater Stage Temperature (°C):	
Median:	846
Range:	843-849
Specimen Temperature (°C):	
Median:	826

Range: Notes: See "Appendix A: Fin Growth" For Further Information

Fin Lengths:

Fiber Location:	O5a	M5a	C5	M5b	O5b	Overall
Average Length (nm):	357.38	117.92	137.80	98.26	128.99	157.22
Standard Deviation (nm):	211.12	52.96	75.01	58.83	71.96	133.11
Maximum Length (nm):	812.00	266.50	416.20	275.30	394.30	812.00
Minimum Length (nm):	109.50	32.28	26.50	37.10	41.20	26.50
Range (nm):	702.50	234.22	389.70	238.20	353.10	785.50
Data Points:	39	73	52	43	44	251

842-934

2.2 Section 2: Transverse Uniaxial Composite Properties

Table 8, Thermo-Physical Properties Of ER2 WF YSH50A / Epon 826 – Cure Agent W Uniaxial Composite
General Material Class: Graphite Fiber - Epoxy Composite
Fiber: YSH50A Tabulated On: June 2013
Resin: Epon 826 – Cure Agent W Checked By: Roger Gerzeski
Material Run Number: YSH50 ER2 WF Checked On: July 2013

Preform:

Fiber:

Type: YSH50A 6K Tows

Fin Status: WF Material Run: ER2

Resin:

Type: Epon 826 – Cure Agent W

Curing Agent Content (PPH): 26.2

Forming:

Technique: Tow Lay Up In An Aluminum Tool Then Vacuum Bagged Autoclave Cure

Lay Up Sequence Profile: Hand Tow Lay Up See "Appendix B: Bulk Composite Fabrication"

Cure Profile: Vacuum to -29 inch

Pressurization Ramp Rate of 6 psi/min to 175 psi

Heating Ramp Rate of 5°F/min to 250°F

Hold at 250°F for 60 min

Heating Ramp Rate of 5°F/min to 350°F

Hold at 350°F for 120 min

Cool Temperature to Room Temperature At 100°F Vent Pressure to Atmosphere At 100°F Vent Vacuum to Atmosphere

Post Cure Profile: None.

Tooling Used: Aluminum Trough See "Appendix B: Bulk Composite Fabrication"

General Property Type:

Fiber Volume:

Average (%): 53.4 Maximum: 59.3 Minimum: 44.5 Data Points: 8 Batches: 1

Test Method: Optical Microscopy

Notes: See Appendix C: Optical Microscopy For Micrographs

Void Volume:

Average (%): 0

Test Method: Optical Microscopy

Notes: See Appendix C: Optical Microscopy For Micrographs

Density:

 Average(gms/cm³):
 1.6214

 Maximum:
 1.7046

 Minimum:
 1.4713

 STD or CV:
 0.0819

 Data Points:
 6

 Batches:
 1

Test Method: Archimedes Method

Fiber Chains:

Total Fibers Across: 784
Initial Fiber Chains: 450
Final Fiber Chains: 188

 Gap:
 2061

 Pocket:
 340

 Inner Edge:
 152

 Outer Edge:
 97

 Left Edge:
 0

 Right Edge:
 0

 TBE:
 0

Specific Property Values:

Tested In Condition:

Atmosphere: N₂

Temperature(°C): -90 - 130

Specimen PreConditioning Time-Duration: 24hrs at 125°C and -29inch Vacuum

Heat Capacity:

Test Method: Conventional MCDS Heating Rate 2 °C/min

Temperature(°C)	:-75	-50	-25	0	25	50	75	100
Average (J/g°C):	0.5555	0.7200	0.6836	0.7294	0.7967	0.8669	0.9256	0.9787
Maximum:	0.6486	0.8369	0.7856	0.8338	0.9079	0.9769	1.0400	1.0990
Minimum:	0.4542	0.6400	0.6246	0.6787	0.7412	0.8117	0.8722	0.9251
STD or CV:	0.0738	0.0964	0.0762	0.0727	0.0777	0.0757	0.0780	0.0813
Data Points:	4	4	4	4	4	4	4	4
Batches:	1	1	1	1	1	1	1	1

Notes: See "Appendix D: Heat Capacity" For Graphical Heat Capacity Curves

Thermal Diffusivity:

Test Method: ASTM E1461 Tested Orientation: Transverse

Temperature(°C)):-75	-50	-25	0	25	50	75	100
Average (mm ² /s)): 2.103	1.869	1.698	1.554	1.439	1.340	1.250	1.194
Maximum:	2.111	1.909	1.706	1.582	1.449	1.342	1.270	1.197
Minimum:	2.098	1.831	1.687	1.534	1.430	1.336	1.239	1.193
STD or CV:	0.007	0.039	0.010	0.025	0.010	0.003	0.017	0.002
Data Points:	3	3	3	3	3	3	3	3
Batches:	1	1	1	1	1	1	1	1

Notes: See "Appendix E: Diffusivity" For Graphical Diffusivity Data Point Curves

Thermal Conductivity:

Test Method: Data Acquired By Calculating Every Permutation of Density X Diffusivity X Heat Capacity Tested Orientation: Transverse

Temperature(°C)	:-75	-50	-25	0	25	50	75	100
Average (W/mK): 1.888	2.181	1.882	1.837	1.885	1.885	1.880	1.899
Maximum:	2.327	2.725	2.284	2.248	2.261	2.236	2.255	2.247
Minimum:	1.502	1.723	1.550	1.530	1.588	1.597	1.595	1.626
STD or CV:	0.236	0.277	0.203	0.183	0.173	0.168	0.165	0.164
Data Points:	72	72	72	72	72	72	72	72
Batches:	1	1	1	1	1	1	1	1

Notes: See "Appendix F: Conductivity" For Graphical Conductivity Data Points & Error Bars

Table 9, Thermo-Physical Properties Of ER2 FR1 WOF YSH50A / Epon 826 - Cure Agent W Uniaxial Composite

General Material Class: Graphite Fiber - Epoxy Composite Tabulated By: Aaron Sprague YSH50A Tabulated On: June 2013
Resin: Epon 826 – Cure Agent W Checked By: Roger Gerzeski Material Run Number: YSH50 ER2 WOF FR1 Checked On: July 2013

Preform:

Fiber:

Type: YSH50A 6K Tows

Fin Status: WOF FR1
Material Run: ER2

Resin:

Type: Epon 826 – Cure Agent W

Curing Agent Content (PPH): 26.2

Forming:

Technique: Tow Lay Up In An Aluminum Tool Then Vacuum Bagged Autoclave Cure

Lay Up Sequence Profile: Hand Tow Lay Up See "Appendix B: Bulk Composite Fabrication"

Cure Profile: Vacuum to -29 inch

Pressurization Ramp Rate of 6 psi/min to 175 psi

Heating Ramp Rate of 5°F/min to 250°F

Hold at 250°F for 60 min

Heating Ramp Rate of 5°F/min to 350°F

Hold at 350°F for 120 min

Cool Temperature to Room Temperature At 100°F Vent Pressure to Atmosphere At 100°F Vent Vacuum to Atmosphere

Post Cure Profile: None.

Tooling Used: Aluminum Trough See "Appendix B: Bulk Composite Fabrication"

General Property Type:

Fiber Volume:

Average (%): 66.0 Maximum: 71.8 Minimum: 61.3 Data Points: 8 Batches: 1

Test Method: Optical Microscopy

Notes: See Appendix C: Optical Microscopy For Micrographs

Void Volume:

Average (%): 0

Test Method: Optical Microscopy

Notes: See Appendix C: Optical Microscopy For Micrographs

Density:

 Average(gms/cm³):
 1.7353

 Maximum:
 1.9043

 Minimum:
 1.6221

 STD or CV:
 0.0943

 Data Points:
 7

 Batches:
 1

Test Method: Archimedes Method

Fiber Chains:

Total Fibers Across: 758 Initial Fiber Chains: 379 Final Fiber Chains: 0

 Gap:
 456

 Pocket:
 30

 Inner Edge:
 89

 Outer Edge:
 0

 Left Edge:
 0

 Right Edge:
 0

 TBE:
 0

Specific Property Values:

Tested In Condition:

Atmosphere: N₂

Temperature(°C): -90 - 130

Specimen PreConditioning Time-Duration: 24hrs at 125°C and -29inch Vacuum

Heat Capacity:

Test Method: Conventional MCDS Heating Rate 2 °C/min

Temperature(°C)	:-75	-50	-25	0	-	-	-	-
Average (J/g°C):	0.5749	0.7460	0.7192	0.7744	-	-	-	-
Maximum:	0.7453	0.9084	0.9837	0.9529	-	-	-	-
Minimum:	0.3912	0.5688	0.5268	0.5713	-	-	-	-
STD or CV:	0.1760	0.1692	0.1839	0.931	-	-	-	-
Data Points:	4	4	4	4	-	-	-	-
Batches:	1	1	1	1	_	-	-	-

Notes: See "Appendix D: Heat Capacity" For Graphical Heat Capacity Curves

Thermal Diffusivity:

Test Method: ASTM E1461 Tested Orientation: Transverse

Temperature(°	C):-75	-50	-25	0	25	50	75	100
Average (mm ²	/s): -	-	1.792	1.641	-	-	-	-
Maximum:	-	-	1.806	1.662	-	-	-	-
Minimum:	-	-	1.769	1.615	-	-	-	-
STD or CV:	-	-	0.020	0.024	-	-	-	-
Data Points:	-	-	3	3	-	-	-	-
Batches:	-	-	1	1	-	-	_	-

Notes: See "Appendix E: Diffusivity" For Graphical Diffusivity Data Point Curves

Thermal Conductivity:

Test Method: Data Acquired By Calculating Every Permutation of Density X Diffusivity X Heat Capacity Tested Orientation: Transverse

Temperature(°C	C):-75	-50	-25	0	25	50	75	100
Average (W/m)	K):1.896	2.277	1.990	1.978	-	-	-	-
Maximum:	2.838	3.078	2.729	2.679	-	-	-	-
Minimum:	1.047	1.611	1.352	1.360	-	-	-	-
STD or CV:	0.540	0.462	0.455	0.443	-	-	-	-
Data Points:	84	84	84	84	-	-	-	-
Batches:	1	1	1	1	_	_	_	_

Notes: See "Appendix F: Conductivity" For Graphical Conductivity Data Points & Error Bars

Table 10, Thermo-Physical Properties Of ER2 FR2 WOF YSH50A / Epon 826 - Cure Agent W Uniaxial Composite

General Material Class: Graphite Fiber - Epoxy Composite Tabulated By: Aaron Sprague Fiber: YSH50A Tabulated On: June 2013
Resin: Epon 826 – Cure Agent W Checked By: Roger Gerzeski Material Run Number: YSH50 ER2 WOF FR2 Checked On: July 2013

Preform:

Fiber:

Type: YSH50A 6K Tows

Fin Status: WOF FR2
Material Run: ER2

Resin:

Type: Epon 826 – Cure Agent W

Curing Agent Content (PPH): 26.2

Forming:

Technique: Tow Lay Up In An Aluminum Tool Then Vacuum Bagged Autoclave Cure

Lay Up Sequence Profile: Hand Tow Lay Up See "Appendix B: Bulk Composite Fabrication"

Cure Profile: Vacuum to -29 inch

Pressurization Ramp Rate of 6 psi/min to 175 psi

Heating Ramp Rate of 5°F/min to 250°F

Hold at 250°F for 60 min

Heating Ramp Rate of 5°F/min to 350°F

Hold at 350°F for 120 min

Cool Temperature to Room Temperature At 100°F Vent Pressure to Atmosphere At 100°F Vent Vacuum to Atmosphere

Post Cure Profile: None.

Tooling Used: Aluminum Trough See "Appendix B: Bulk Composite Fabrication"

General Property Type:

Fiber Volume:

Average (%): 66.0 Maximum: 71.8 Minimum: 61.3 Data Points: 8 Batches: 1

Test Method: Optical Microscopy

Notes: See Appendix C: Optical Microscopy For Micrographs

Void Volume:

Average (%): 0

Test Method: Optical Microscopy

Notes: See Appendix C: Optical Microscopy For Micrographs

Density:

 Average(gms/cm³):
 1.7353

 Maximum:
 1.9043

 Minimum:
 1.6221

 STD or CV:
 0.0943

 Data Points:
 7

 Batches:
 1

Test Method: Archimedes Method

Fiber Chains:

Total Fibers Across: 758 Initial Fiber Chains: 379 Final Fiber Chains: 0

 Gap:
 456

 Pocket:
 30

 Inner Edge:
 89

 Outer Edge:
 0

 Left Edge:
 0

 Right Edge:
 0

 TBE:
 0

Specific Property Values:

Tested In Condition:

Atmosphere: N₂

Temperature(°C): -90 - 130

Specimen PreConditioning Time-Duration: 24hrs at 125°C and -29inch Vacuum

Heat Capacity:

Test Method: Conventional MCDS Heating Rate 2 °C/min

Temperature(°C)	:-75	-50	-25	0	-	-	-	_
Average (J/g°C):	0.5749	0.7460	0.7192	0.7744	-	-	-	-
Maximum:	0.7453	0.9084	0.9837	0.9529	-	-	-	-
Minimum:	0.3912	0.5688	0.5268	0.5713	-	-	-	-
STD or CV:	0.1760	0.1692	0.1839	0.931	-	-	-	-
Data Points:	4	4	4	4	-	-	-	-
Batches:	1	1	1	1	-	-	-	-

Notes: See "Appendix D: Heat Capacity" For Graphical Heat Capacity Curves

Thermal Diffusivity:

Test Method: ASTM E1461 Tested Orientation: Transverse

Temperature(°C): -75	-50	-25	0	25	50	75	100
Average (mm ² /s): -	-	1.792	1.641	-	-	-	-
Maximum: -	-	1.806	1.662	-	-	-	-
Minimum: -	-	1.769	1.615	-	-	-	-
STD or CV: -	-	0.020	0.024	-	-	_	-
Data Points: -	-	3	3	-	-	-	-
Batches: -	-	1	1	-	-	_	-

Notes: See "Appendix E: Diffusivity" For Graphical Diffusivity Data Point Curves

Thermal Conductivity:

Test Method: Data Acquired By Calculating Every Permutation of Density X Diffusivity X Heat Capacity Tested Orientation: Transverse

Temperature(°C):-	75	-50	-25	0	25	50	75	100
Average (W/mK):	-	-	2.234	2.205	-	-	-	-
Maximum: -		-	3.073	3.016	-	-	-	-
Minimum: -		-	1.502	1.493	-	-	-	-
STD or CV:	•	-	0.512	0.493	-	-	-	-
Data Points: -		-	84	84	-	-	-	-
Batches: -		_	1	1	_	_	_	_

Notes: See "Appendix F: Conductivity" For Graphical Conductivity Data Points & Error Bars

Table 11, Thermo-Physical Properties Of ER3 WF YSH50A / Epon 826 – Cure Agent W Uniaxial Composite
General Material Class: Graphite Fiber - Epoxy Composite
Fiber: YSH50A Tabulated By: Aaron Sprague
Tabulated On: June 2013
Resin: Epon 826 – Cure Agent W Checked By: Roger Gerzeski
Material Run Number: YSH50 ER3 WF Checked On: July 2013

Preform:

Fiber:

Type: YSH50A 6K Tows

Fin Status: WF Material Run: ER3

Resin:

Type: Epon 826 – Cure Agent W

Curing Agent Content (PPH): 26.0

Forming:

Technique: Tow Lay Up In An Aluminum Tool Then Vacuum Bagged Autoclave Cure

Lay Up Sequence Profile: Hand Tow Lay Up See "Appendix B: Bulk Composite Fabrication"

Cure Profile: Vacuum to -29 inch

Pressurization Ramp Rate of 6 psi/min to 175 psi

Heating Ramp Rate of 5°F/min to 250°F

Hold at 250°F for 60 min

Heating Ramp Rate of 5°F/min to 350°F

Hold at 350°F for 120 min

Cool Temperature to Room Temperature At 100°F Vent Pressure to Atmosphere At 100°F Vent Vacuum to Atmosphere

Post Cure Profile: None.

Tooling Used: Aluminum Trough See "Appendix B: Bulk Composite Fabrication"

General Property Type:

Fiber Volume:

Average (%): 56.4
Maximum: 58.9
Minimum: 54.5
Data Points: 8
Batches: 1

Test Method: Optical Microscopy

Notes: See Appendix C: Optical Microscopy For Micrographs

Void Volume:

Average (%): 0

Test Method: Optical Microscopy

Notes: See Appendix C: Optical Microscopy For Micrographs

Density:

 Average(gms/cm³):
 1.5849

 Maximum:
 1.6367

 Minimum:
 1.5006

 STD or CV:
 0.0736

 Data Points:
 3

 Batches:
 1

Test Method: Archimedes Method

Fiber Chains:

Total Fibers Across: 853 Initial Fiber Chains: 586 Final Fiber Chains: 383

 Gap:
 3062

 Pocket:
 353

 Inner Edge:
 235

 Outer Edge:
 192

 Left Edge:
 6

 Right Edge:
 0

 TBE:
 0

Specific Property Values:

Tested In Condition:

Atmosphere: N₂

Temperature(°C): -90 - 130

Specimen PreConditioning Time-Duration: 24hrs at 125°C and -29inch Vacuum

Heat Capacity:

Test Method: Conventional MCDS Heating Rate 2 °C/min

Temperature(°C):	:-75	-50	-25	0	25	50	75	100
Average (J/g°C):	0.7982	0.9706	0.9549	1.0163	1.0998	1.1815	1.2583	1.3345
Maximum:	0.8282	1.0020	0.9852	1.0470	1.1310	1.2150	1.2930	1.3750
Minimum:	0.7179	0.8905	0.8709	0.9280	1.0090	1.0870	1.1600	1.2300
STD or CV:	0.0536	0.0536	0.0560	0.0588	0.0605	0.0630	0.0655	0.0698
Data Points:	4	4	4	4	4	4	4	4
Batches:	1	1	1	1	1	1	1	1

Notes: See "Appendix D: Heat Capacity" For Graphical Heat Capacity Curves

Thermal Diffusivity:

Test Method: ASTM E1461 Tested Orientation: Transverse

Temperature(°C):-75	-50	-25	0	25	50	75	100
Average (mm ² /s):1.798	1.683	1.493	1.359	1.270	1.185	1.125	1.037
Maximum:	1.810	1.693	1.499	1.371	1.279	1.188	1.131	1.042
Minimum:	1.790	1.670	1.481	1.350	1.258	1.180	1.122	1.030
STD or CV:	0.011	0.012	0.010	0.011	0.011	0.004	0.005	0.006
Data Points:	3	3	3	3	3	3	3	3
Batches:	1	1	1	1	1	1	1	1

Notes: See "Appendix E: Diffusivity" For Graphical Diffusivity Data Point Curves

Thermal Conductivity:

Test Method: Data Acquired By Calculating Every Permutation of Density X Diffusivity X Heat Capacity Tested Orientation: Transverse

Temperature(°C	C):-75	-50	-25	0	25	50	75	100
Average (W/m)	K): 2.256	2.592	2.259	2.191	2.229	2.223	2.248	2.197
Maximum:	2.422	2.774	2.416	2.350	2.384	2.366	2.396	2.350
Minimum:	1.916	2.238	1.936	1.882	1.917	1.926	1.958	1.906
STD or CV:	0.160	0.161	0.146	0.140	0.139	0.135	0.134	0.132
Data Points:	36	36	36	36	36	36	36	36
Batches:	1	1	1	1	1	1	1	1

Notes: See "Appendix F: Conductivity" For Graphical Conductivity Data Points & Error Bars

Table 12, Thermo-Physical Properties Of ER3 WOF YSH50A / Epon 826 - Cure Agent W Uniaxial Composite

General Material Class: Graphite Fiber - Epoxy Composite Tabulated By: Aaron Sprague Fiber: YSH50A Tabulated On: June 2013
Resin: Epon 826 – Cure Agent W Checked By: Roger Gerzeski Material Run Number: YSH50 ER3 WOF Checked On: July 2013

Preform:

Fiber:

Type: YSH50A 6K Tows

Fin Status: WOF Material Run: ER3

Resin:

Type: Epon 826 – Cure Agent W

Curing Agent Content (PPH): 26.0

Forming:

Technique: Tow Lay Up In An Aluminum Tool Then Vacuum Bagged Autoclave Cure

Lay Up Sequence Profile: Hand Tow Lay Up See "Appendix B: Bulk Composite Fabrication"

Cure Profile: Vacuum to -29 inch

Pressurization Ramp Rate of 6 psi/min to 175 psi

Heating Ramp Rate of 5°F/min to 250°F

Hold at 250°F for 60 min

Heating Ramp Rate of 5°F/min to 350°F

Hold at 350°F for 120 min

Cool Temperature to Room Temperature At 100°F Vent Pressure to Atmosphere At 100°F Vent Vacuum to Atmosphere

Post Cure Profile: None.

Tooling Used: Aluminum Trough See "Appendix B: Bulk Composite Fabrication"

General Property Type:

Fiber Volume:

Average (%): 57.5

Maximum: 60.9

Minimum: 48.6

Data Points: 8

Batches: 1

Test Method: Optical Microscopy

Notes: See Appendix C: Optical Microscopy For Micrographs

Void Volume:

Average (%): 0

Test Method: Optical Microscopy

Notes: See Appendix C: Optical Microscopy For Micrographs

Density:

 Average(gms/cm³):
 1.7310

 Maximum:
 1.7429

 Minimum:
 1.7168

 STD or CV:
 0.0132

 Data Points:
 3

 Batches:
 1

Test Method: Archimedes Method

Fiber Chains:

Total Fibers Across: 901 Initial Fiber Chains: 504 Final Fiber Chains: 0

 Gap:
 783

 Pocket:
 26

 Inner Edge:
 100

 Outer Edge:
 0

 Left Edge:
 5

 Right Edge:
 1

 TBE:
 0

Specific Property Values:

Tested In Condition:

Atmosphere: N₂

Temperature(°C): -90 - 130

Specimen PreConditioning Time-Duration: 24hrs at 125°C and -29inch Vacuum

Heat Capacity:

Test Method: Conventional MCDS Heating Rate 2 °C/min

Temperature(°C)	:-75	-50	-25	0	25	50	75	100
Average (J/g°C):	1.0924	1.2830	1.2270	1.2720	1.3470	1.4213	1.4910	1.5565
Maximum:	1.2220	1.4320	1.3550	1.3930	1.4680	1.5400	1.6100	1.6750
Minimum:	0.9606	1.1330	1.0970	1.1490	1.2250	1.3000	1.3720	1.4380
STD or CV:	0.1156	0.1379	0.1155	0.1093	0.1087	0.1076	0.1077	0.1079
Data Points:	4	4	4	4	4	4	4	4
Batches:	1	1	1	1	1	1	1	1

Notes: See "Appendix D: Heat Capacity" For Graphical Heat Capacity Curves

Thermal Diffusivity:

Test Method: ASTM E1461 Tested Orientation: Transverse

Temperature(°C)) : -75	-50	-25	0	25	50	75	100
Average (mm ² /s): 1.574	1.431	1.313	1.222	1.135	1.070	1.007	0.949
Maximum:	1.588	1.440	1.319	1.228	1.140	1.075	1.015	0.956
Minimum:	1.561	1.424	1.305	1.215	1.131	1.063	0.999	0.939
STD or CV:	0.014	0.008	0.007	0.007	0.005	0.006	0.008	0.009
Data Points:	3	3	3	3	3	3	3	3
Batches:	1	1	1	1	1	1	1	1

Notes: See "Appendix E: Diffusivity" For Graphical Diffusivity Data Point Curves

Thermal Conductivity:

Test Method: Data Acquired By Calculating Every Permutation of Density X Diffusivity X Heat Capacity Tested Orientation: Transverse

Temperature(°C)	:-75	-50	-25	0	25	50	75	100
Average (W/mK): 2.933	3.171	2.789	2.691	2.661	2.634	2.601	2.559
Maximum:	3.312	3.587	3.118	2.978	2.930	2.888	2.850	2.792
Minimum:	2.553	2.760	2.456	2.402	2.393	2.376	2.355	2.321
STD or CV:	0.272	0.299	0.232	0.204	0.188	0.176	0.167	0.158
Data Points:	36	36	36	36	36	36	36	36
Batches:	1	1	1	1	1	1	1	1

Notes: See "Appendix F: Conductivity" For Graphical Conductivity Data Points & Error Bars

Table 13, Thermo-Physical Properties Of ER3 WF YS80A / Epon 826 – Cure Agent W Uniaxial Composite
General Material Class: Graphite Fiber - Epoxy Composite
Fiber: YS80A Tabulated By: Aaron Sprague
Tabulated On: June 2013
Resin: Epon 826 – Cure Agent W Checked By: Roger Gerzeski
Material Run Number: YS80 ER3 WF Checked On: July 2013

Preform:

Fiber:

Type: YS80A 3K Tows Surface Finish Removed (See Appendix B: Bulk Comp Fabrication)

Fin Status: WF Material Run: ER3 Initial

Resin:

Type: Epon 826 – Cure Agent W

Curing Agent Content (PPH): 26.0

Forming:

Technique: Tow Lay Up In An Aluminum Tool Then Vacuum Bagged Autoclave Cure

Lay Up Sequence Profile: Hand Tow Lay Up See "Appendix B: Bulk Composite Fabrication"

Cure Profile: Vacuum to -29 inch

Pressurization Ramp Rate of 6 psi/min to 175 psi

Heating Ramp Rate of 5°F/min to 250°F

Hold at 250°F for 60 min

Heating Ramp Rate of 5°F/min to 350°F

Hold at 350°F for 120 min

Cool Temperature to Room Temperature At 100°F Vent Pressure to Atmosphere At 100°F Vent Vacuum to Atmosphere

Post Cure Profile: None.

Tooling Used: Aluminum Trough See "Appendix B: Bulk Composite Fabrication"

General Property Type:

Fiber Volume:

Average (%): 53.1

Maximum: 62.0

Minimum: 47.8

Data Points: 8

Batches: 1

Test Method: Optical Microscopy

Notes: See Appendix C: Optical Microscopy For Micrographs

Void Volume:

Average (%): 0

Test Method: Optical Microscopy

Notes: See Appendix C: Optical Microscopy For Micrographs

Density:

 Average(gms/cm³):
 1.8136

 Maximum:
 2.1875

 Minimum:
 1.6728

 STD or CV:
 0.2076

 Data Points:
 6

 Batches:
 1

Test Method: Archimedes Method

Fiber Chains:

Total Fibers Across: 703 Initial Fiber Chains: 577 Final Fiber Chains: 181

 Gap:
 2553

 Pocket:
 200

 Inner Edge:
 209

 Outer Edge:
 72

 Left Edge:
 13

 Right Edge:
 6

 TBE:
 0

Specific Property Values:

Tested In Condition:

Atmosphere: N₂

Temperature(°C): -90 - 130

Specimen PreConditioning Time-Duration: 24hrs at 125°C and -29inch Vacuum

Heat Capacity:

Test Method: Conventional MCDS Heating Rate 2 °C/min

Temperature(°C)	:-75	-50	-25	0	25	50	75	100
Average (J/g°C):	0.4032	0.6329	0.5533	0.5976	0.6449	0.7132	0.7732	0.8313
Maximum:	0.4377	0.6589	0.5877	0.6327	0.6873	0.7514	0.8117	0.8672
Minimum:	0.3775	0.6159	0.5308	0.5767	0.6161	0.6784	0.7375	0.7958
STD or CV:	0.0258	0.0183	0.0253	0.0251	0.0326	0.0372	0.0399	0.0404
Data Points:	4	4	4	4	4	4	4	4
Batches:	1	1	1	1	1	1	1	1

Notes: See "Appendix D: Heat Capacity" For Graphical Heat Capacity Curves

Thermal Diffusivity:

Test Method: ASTM E1461 Tested Orientation: Transverse

Temperature(°C)	:-75	-50	-25	0	25	50	75	100
Average (mm ² /s)	: -	2.377	2.192	2.071	1.926	1.792	1.676	1.571
Maximum:	-	2.383	2.210	2.088	1.953	1.798	1.689	1.578
Minimum:	-	2.365	2.173	2.050	1.898	1.784	1.662	1.564
STD or CV:	-	0.010	0.019	0.019	0.028	0.007	0.014	0.007
Data Points:	-	3	3	3	3	3	3	3
Batches:	-	1	1	1	1	1	1	1

Notes: See "Appendix E: Diffusivity" For Graphical Diffusivity Data Point Curves

Thermal Conductivity:

Test Method: Data Acquired By Calculating Every Permutation of Density X Diffusivity X Heat Capacity Tested Orientation: Transverse

Temperature(°C	C):-75	-50	-25	0	25	50	75	100
Average (W/m)	K): -	2.733	2.199	2.240	2.282	2.321	2.356	2.372
Maximum:	-	3.455	2.841	2.886	2.972	2.961	3.005	2.999
Minimum:	-	2.430	1.928	1.979	1.986	2.027	2.059	2.084
STD or CV:	-	0.296	0.248	0.251	0.261	0.266	0.270	0.269
Data Points:	-	72	72	72	72	72	72	72
Batches:	_	1	1	1	1	1	1	1

Notes: See "Appendix F: Conductivity" For Graphical Conductivity Data Points & Error Bars

Table 14, Thermo-Physical Properties Of ReRun ER3 WF YS80A / Epon 826 - Cure Agent W Uniaxial Composite

General Material Class: Graphite Fiber - Epoxy Composite Tabulated By: Aaron Sprague Fiber: YS80A Tabulated On: June 2013
Resin: Epon 826 – Cure Agent W Checked By: Roger Gerzeski Material Run Number: YS80 ER3 WF Rerun Checked On: July 2013

Preform:

Fiber:

Type: YS80A 3K Tows Surface Finish Removed (See Appendix B: Bulk Comp Fabrication)

Fin Status: WF Material Run: ER3 Rerun

Resin:

Type: Epon 826 – Cure Agent W

Curing Agent Content (PPH): 26.0

Forming:

Technique: Tow Lay Up In An Aluminum Tool Then Vacuum Bagged Autoclave Cure

Lay Up Sequence Profile: Hand Tow Lay Up See "Appendix B: Bulk Composite Fabrication"

Cure Profile: Vacuum to -29 inch

Pressurization Ramp Rate of 6 psi/min to 175 psi

Heating Ramp Rate of 5°F/min to 250°F

Hold at 250°F for 60 min

Heating Ramp Rate of 5°F/min to 350°F

Hold at 350°F for 120 min

Cool Temperature to Room Temperature At 100°F Vent Pressure to Atmosphere At 100°F Vent Vacuum to Atmosphere

Post Cure Profile: None.

Tooling Used: Aluminum Trough See "Appendix B: Bulk Composite Fabrication"

General Property Type:

Fiber Volume:

Average (%): 53.1

Maximum: 62.0

Minimum: 47.8

Data Points: 8

Batches: 1

Test Method: Optical Microscopy

Notes: See Appendix C: Optical Microscopy For Micrographs

Void Volume:

Average (%): 0

Test Method: Optical Microscopy

Notes: See Appendix C: Optical Microscopy For Micrographs

Density:

 Average(gms/cm³):
 1.8136

 Maximum:
 2.1875

 Minimum:
 1.6728

 STD or CV:
 0.2076

 Data Points:
 6

 Batches:
 1

Test Method: Archimedes Method

Fiber Chains:

Total Fibers Across: 703 Initial Fiber Chains: 577 Final Fiber Chains: 181

 Gap:
 2553

 Pocket:
 200

 Inner Edge:
 209

 Outer Edge:
 72

 Left Edge:
 13

 Right Edge:
 6

 TBE:
 0

Specific Property Values:

Tested In Condition:

Atmosphere: N₂

Temperature(°C): -90 - 130

Specimen PreConditioning Time-Duration: 168hrs at 125°C and -29inch Vacuum

Heat Capacity:

Test Method: Conventional MCDS Heating Rate 2 °C/min

Temperature(°C):	:-75	-50	-25	0	25	50	75	100
Average (J/g°C):	0.7091	0.8201	0.9725	1.1156	1.2520	1.3765	1.4968	1.5988
Maximum:	0.7955	0.9231	1.1070	1.2790	1.4350	1.5800	1.7210	1.8380
Minimum:	0.5807	0.6861	0.8224	0.9524	1.0770	1.1910	1.3010	1.3970
STD or CV:	0.0982	0.1049	0.1221	0.1384	0.1518	0.1650	0.1781	0.1874
Data Points:	4	4	4	4	4	4	4	4
Batches:	1	1	1	1	1	1	1	1

Notes: See "Appendix D: Heat Capacity" For Graphical Heat Capacity Curves

Thermal Diffusivity:

Test Method: ASTM E1461 Tested Orientation: Transverse

Temperature(°C)	:-75	-50	-25	0	25	50	75	100
Average (mm ² /s)	: -	2.377	2.192	2.071	1.926	1.792	1.676	1.571
Maximum:	-	2.383	2.210	2.088	1.953	1.798	1.689	1.578
Minimum:	-	2.365	2.173	2.050	1.898	1.784	1.662	1.564
STD or CV:	-	0.010	0.019	0.019	0.028	0.007	0.014	0.007
Data Points:	-	3	3	3	3	3	3	3
Batches:	-	1	1	1	1	1	1	1

Notes: See "Appendix E: Diffusivity" For Graphical Diffusivity Data Point Curves

Thermal Conductivity:

Test Method: Data Acquired By Calculating Every Permutation of Density X Diffusivity X Heat Capacity Tested Orientation: Transverse

Temperature(°C	C):-75	-50	-25	0	25	50	75	100
Average (W/m	K): -	3.531	3.857	4.183	4.428	4.479	4.564	4.514
Maximum:	-	4.812	5.356	5.819	6.212	6.226	6.376	6.353
Minimum:	-	2.719	2.975	3.268	3.464	3.558	3.634	3.659
STD or CV:	-	0.543	0.589	0.633	0.665	0.666	0.677	0.636
Data Points:	-	72	72	72	72	72	72	72
Batches:	-	1	1	1	1	1	1	1

Notes: See "Appendix F: Conductivity" For Graphical Conductivity Data Points & Error Bars

Table 15, Thermo-Physical Properties Of ER3 WOF YS80A / Epon 826 – Cure Agent W Uniaxial Composite
General Material Class: Graphite Fiber - Epoxy Composite
Fiber: YS80A Tabulated By: Aaron Sprague
Tabulated On: June 2013
Resin: Epon 826 – Cure Agent W Checked By: Roger Gerzeski
Material Run Number: YS80 ER3 WOF Checked On: July 2013

Preform:

Fiber:

Type: YS80A 3K Tows Surface Finish Removed (See Appendix B: Bulk Comp Fabrication)

Fin Status: WOF Material Run: ER3 Initial

Resin:

Type: Epon 826 – Cure Agent W

Curing Agent Content (PPH): 26.0

Forming:

Technique: Tow Lay Up In An Aluminum Tool Then Vacuum Bagged Autoclave Cure

Lay Up Sequence Profile: Hand Tow Lay Up See "Appendix B: Bulk Composite Fabrication"

Cure Profile: Vacuum to -29 inch

Pressurization Ramp Rate of 6 psi/min to 175 psi

Heating Ramp Rate of 5°F/min to 250°F

Hold at 250°F for 60 min

Heating Ramp Rate of 5°F/min to 350°F

Hold at 350°F for 120 min

Cool Temperature to Room Temperature At 100°F Vent Pressure to Atmosphere At 100°F Vent Vacuum to Atmosphere

Post Cure Profile: None.

Tooling Used: Aluminum Trough See "Appendix B: Bulk Composite Fabrication"

General Property Type:

Fiber Volume:

Average (%): 65.3 Maximum: 71.9 Minimum: 57.4 Data Points: 8 Batches: 1

Test Method: Optical Microscopy

Notes: See Appendix C: Optical Microscopy For Micrographs

Void Volume:

Average (%): 0

Test Method: Optical Microscopy

Notes: See Appendix C: Optical Microscopy For Micrographs

Density:

 Average(gms/cm³):
 1.780.

 Maximum:
 1.8876

 Minimum:
 1.6951

 STD or CV:
 0.0657

 Data Points:
 6

 Batches:
 1

Test Method: Archimedes Method

Fiber Chains:

Total Fibers Across: 1073 Initial Fiber Chains: 546 Final Fiber Chains: 0

 Gap:
 730

 Pocket:
 15

 Inner Edge:
 110

 Outer Edge:
 0

 Left Edge:
 1

 Right Edge:
 0

 TBE:
 6

Specific Property Values:

Tested In Condition:

Atmosphere: N₂

Temperature(°C): -90 - 130

Specimen PreConditioning Time-Duration: 24hrs at 125°C and -29inch Vacuum

Heat Capacity:

Test Method: Conventional MCDS Heating Rate 2 °C/min

Temperature(°C):	:-75	-50	-25	0	25	50	75	100
Average (J/g°C):	0.7570	0.9283	0.8479	0.8752	0.9468	1.0336	1.1245	1.2029
Maximum:	0.9358	1.1410	1.0450	1.0770	1.1350	1.2030	1.2740	1.3420
Minimum:	0.5616	0.6021	0.5744	0.6086	0.6818	0.7567	0.8641	0.9077
STD or CV:	0.1796	0.2415	0.2108	0.2123	0.2048	0.1871	0.1821	0.1989
Data Points:	4	4	4	4	4	4	4	4
Batches:	1	1	1	1	1	1	1	1

Notes: See "Appendix D: Heat Capacity" For Graphical Heat Capacity Curves

Thermal Diffusivity:

Test Method: ASTM E1461 Tested Orientation: Transverse

Temperature(°C):-75	-50	-25	0	25	50	75	100
Average (mm ² /s	3):2.462	2.074	1.823	1.675	1.553	1.438	1.328	1.245
Maximum:	2.584	2.081	1.831	1.691	1.559	1.451	1.344	1.258
Minimum:	2.348	2.062	1.815	1.661	1.543	1.429	1.312	1.236
STD or CV:	0.118	0.010	0.008	0.015	0.009	0.012	0.016	0.011
Data Points:	3	3	3	3	3	3	3	3
Batches:	1	1	1	1	1	1	1	1

Notes: See "Appendix E: Diffusivity" For Graphical Diffusivity Data Point Curves

Thermal Conductivity:

Test Method: Data Acquired By Calculating Every Permutation of Density X Diffusivity X Heat Capacity Tested Orientation: Transverse

Temperature(°C	C):-75	-50	-25	0	25	50	75	100
Average (W/ml	X): 3.267	3.437	2.753	2.606	2.618	2.649	2.664	2.663
Maximum:	4.360	4.524	3.612	3.430	3.338	3.295	3.232	3.190
Minimum:	2.245	2.106	1.773	1.707	1.788	1.911	1.928	1.902
STD or CV:	0.694	0.790	0.604	0.560	0.502	0.426	0.387	0.394
Data Points:	72	72	72	72	72	72	72	72
Batches:	1	1	1	1	1	1	1	1

Notes: See "Appendix F: Conductivity" For Graphical Conductivity Data Points & Error Bars

Table 16, Thermo-Physical Properties Of ReRun ER3 WOF YS80A / Epon 826 - Cure Agent W Uniaxial

Composite

General Material Class: Graphite Fiber - Epoxy Composite Tabulated By: Aaron Sprague YS80A Tabulated On: June 2013
Resin: Epon 826 – Cure Agent W Checked By: Roger Gerzeski Material Run Number: YS80 ER3 WOF Rerun Checked On: July 2013

Preform:

Fiber:

Type: YS80A 3K Tows Surface Finish Removed (See Appendix B: Bulk Comp Fabrication)

Fin Status: WOF Material Run: ER3 Rerun

Resin:

Type: Epon 826 – Cure Agent W

Curing Agent Content (PPH): 26.0

Forming:

Technique: Tow Lay Up In An Aluminum Tool Then Vacuum Bagged Autoclave Cure

Lay Up Sequence Profile: Hand Tow Lay Up See "Appendix B: Bulk Composite Fabrication"

Cure Profile: Vacuum to -29 inch

Pressurization Ramp Rate of 6 psi/min to 175 psi

Heating Ramp Rate of 5°F/min to 250°F

Hold at 250°F for 60 min

Heating Ramp Rate of 5°F/min to 350°F

Hold at 350°F for 120 min

Cool Temperature to Room Temperature At 100°F Vent Pressure to Atmosphere At 100°F Vent Vacuum to Atmosphere

Post Cure Profile: None.

Tooling Used: Aluminum Trough See "Appendix B: Bulk Composite Fabrication"

General Property Type:

Fiber Volume:

Average (%): 65.3 Maximum: 71.9 Minimum: 57.4 Data Points: 8 Batches: 1

Test Method: Optical Microscopy

Notes: See Appendix C: Optical Microscopy For Micrographs

Void Volume:

Average (%): 0

Test Method: Optical Microscopy

Notes: See Appendix C: Optical Microscopy For Micrographs

Density:

 Average(gms/cm³):
 1.780.

 Maximum:
 1.8876

 Minimum:
 1.6951

 STD or CV:
 0.0657

 Data Points:
 6

 Batches:
 1

Test Method: Archimedes Method

Fiber Chains:

Total Fiber Across: 1073 Initial Fiber Chains: 546 Final Fiber Chains: 0

 Gap:
 730

 Pocket:
 15

 Inner Edge:
 110

 Outer Edge:
 0

 Left Edge:
 1

 Right Edge:
 0

 TBE:
 6

Specific Property Values:

Tested In Condition:

Atmosphere: N₂

Temperature(°C): -90 - 130

Specimen PreConditioning Time-Duration: 168hrs at 125°C and -29inch Vacuum

Heat Capacity:

Test Method: Conventional MCDS Heating Rate 2 °C/min

Temperature(°C)	:-75	-50	-25	0	25	50	75	100
Average (J/g°C): 0.7127		0.7777	0.8583	0.9294	1.0020	1.0597	1.1047	1.1383
Maximum:	0.7289	0.7954	0.8768	0.9487	1.0220	1.0800	1.1250	1.1600
Minimum:	0.6806	0.7441	0.8230	0.8923	0.9631	1.0200	1.0640	1.0960
STD or CV:	0.0278	0.0291	0.0306	0.0321	0.0337	0.0344	0.0352	0.0367
Data Points:	3	3	3	3	3	3	3	3
Batches:	1	1	1	1	1	1	1	1

Notes: See "Appendix D: Heat Capacity" For Graphical Heat Capacity Curves

Thermal Diffusivity:

Test Method: ASTM E1461 Tested Orientation: Transverse

Temperature(°C):-75	-50	-25	0	25	50	75	100
Average (mm ² /s):2.462	2.074	1.823	1.675	1.553	1.438	1.328	1.245
Maximum:	2.584	2.081	1.831	1.691	1.559	1.451	1.344	1.258
Minimum:	2.348	2.062	1.815	1.661	1.543	1.429	1.312	1.236
STD or CV:	0.118	0.010	0.008	0.015	0.009	0.012	0.016	0.011
Data Points:	3	3	3	3	3	3	3	3
Batches:	1	1	1	1	1	1	1	1

Notes: See "Appendix E: Diffusivity" For Graphical Diffusivity Data Point Curves

Thermal Conductivity:

Test Method: Data Acquired By Calculating Every Permutation of Density X Diffusivity X Heat Capacity Tested Orientation: Transverse

Temperature(°C): -75		-50	-25	0	25	50	75	100
Average (W/mK): 3.123		2.867	2.785	2.764	2.770	2.714	2.614	2.525
Maximum:	3.553	3.128	3.023	3.017	3.006	2.959	2.854	2.756
Minimum:	2.709	2.599	2.539	2.506	2.522	2.472	2.369	2.297
STD or CV:	0.191	0.133	0.125	0.124	0.122	0.119	0.115	0.111
Data Points:	54	54	54	54	54	54	54	54
Batches:	1	1	1	1	1	1	1	1

Notes: See "Appendix F: Conductivity" For Graphical Conductivity Data Points & Error Bars

Table 17, Thermo-Physical Properties Of BR1 WOF YS80A / Epon 826 – Cure Agent W Uniaxial Composite
General Material Class: Graphite Fiber - Epoxy Composite
Fiber: YS80A Tabulated By: Aaron Sprague
Tabulated On: June 2013
Resin: Epon 826 – Cure Agent W Checked By: Roger Gerzeski
Material Run Number: YS80 BR1 WOF Checked On: July 2013

Preform:

Fiber:

Type: YS80A 3K Tows Surface Finish Removed (See Appendix B: Bulk Comp Fabrication)

Fin Status: WOF Material Run: BR1 Initial

Resin:

Type: Epon 826 – Cure Agent W

Curing Agent Content (PPH): 25.4

Forming:

Technique: Tow Lay Up In An Aluminum Tool Then Vacuum Bagged Autoclave Cure

Lay Up Sequence Profile: Hand Tow Lay Up See "Appendix B: Bulk Composite Fabrication"

Cure Profile: Vacuum to -29 inch

Pressurization Ramp Rate of 6 psi/min to 130 psi

Heating Ramp Rate of 5°F/min to 250°F

Hold at 250°F for 60 min

Heating Ramp Rate of 5°F/min to 350°F

Hold at 350°F for 120 min

Cool Temperature to Room Temperature At 100°F Vent Pressure to Atmosphere At 100°F Vent Vacuum to Atmosphere

Post Cure Profile: None.

Tooling Used: Aluminum Trough See "Appendix B: Bulk Composite Fabrication"

General Property Type:

Fiber Volume:

Average (%): 54.1

Maximum: 65.5

Minimum: 40.2

Data Points: 5

Batches: 1

Test Method: Optical Microscopy

Notes: See Appendix C: Optical Microscopy For Micrographs

Void Volume:

Average (%): 0

Test Method: Optical Microscopy

Notes: See Appendix C: Optical Microscopy For Micrographs

Density:

 Average(gms/cm³):
 1.7832

 Maximum:
 1.8221

 Minimum:
 1.7280

 STD or CV:
 0.0491

 Data Points:
 3

 Batches:
 1

Test Method: Archimedes Method

Fiber Chains:

Total Fibers Across: 694 Initial Fiber Chains: 256 Final Fiber Chains: 0

 Gap:
 311

 Pocket:
 9

 Inner Edge:
 47

 Outer Edge:
 0

 Left Edge:
 1

 Right Edge:
 0

 TBE:
 2

Specific Property Values:

Tested In Condition:

Atmosphere: N₂

Temperature(°C): -90 - 130

Specimen PreConditioning Time-Duration: 24hrs at 125°C and -29inch Vacuum

Heat Capacity:

Test Method: Conventional MCDS Heating Rate 2 °C/min

Temperature(°C)	:-75	-50	-25	0	25	50	75	100
Average (J/g°C):	1.356	1.669	1.488	1.498	1.575	1.649	1.713	
Maximum:	1.835	2.219	1.935	1.920	1.956	2.016	2.067	2.087
Minimum:	1.07	1.252	1.171	1.220	1.314	1.398	1.477	1.590
STD or CV:	0.365	0.443	0.341	0.308	0.290	0.280	0.270	0.235
Data Points:	4	4	4	4	4	4	4	4
Batches:	1	1	1	1	1	1	1	1

Notes: See "Appendix D: Heat Capacity" For Graphical Heat Capacity Curves

Thermal Diffusivity:

Test Method: ASTM E1461 Tested Orientation: Transverse

Temperature(°C	C):-75	-50	-25	0	25	50	75	100
Average (mm ² /	s): 2.418	2.085	1.867	1.729	1.587	1.494	1.395	1.306
Maximum:	2.441	2.123	1.872	1.742	1.594	1.499	1.403	1.311
Minimum:	2.383	2.055	1.859	1.716	1.582	1.490	1.387	1.301
STD or CV:	0.031	0.0335	0.007	0.013	0.006	0.005	0.008	0.005
Data Points:	3	3	3	3	3	3	3	3
Batches:	1	1	1	1	1	1	1	1

Notes: See "Appendix E: Diffusivity" For Graphical Diffusivity Data Point Curves

Thermal Conductivity:

Test Method: Data Acquired By Calculating Every Permutation of Density X Diffusivity X Heat Capacity Tested Orientation: Transverse

Temperature(°C	:):-75	-50	-25	0	25	50	75	100
Average (W/mk	(x): 5.820	6.217	4.953	4.616	4.475	4.393	4.264	4.132
Maximum:	8.121	8.615	6.599	6.094	5.702	5.507	5.282	4.972
Minimum:	4.136	4.449	3.762	3.618	3.605	3.602	3.546	3.579
STD or CV:	1.383	1.460	1.004	0.842	0.726	0.664	0.595	0.479
Data Points:	36	36	36	36	36	36	36	36
Batches:	1	1	1	1	1	1	1	1

Notes: See "Appendix F: Conductivity" For Graphical Conductivity Data Points & Error Bars

Table 18, Thermo-Physical Properties Of ReRun BR1 WOF YS80A / Epon 826 - Cure Agent W Uniaxial

Composite

General Material Class: Graphite Fiber - Epoxy Composite Tabulated By: Aaron Sprague Fiber: YS80A Tabulated On: June 2013
Resin: Epon 826 – Cure Agent W Checked By: Roger Gerzeski Material Run Number: YS80 BR1 WOF Rerun Checked On: July 2013

Preform:

Fiber:

Type: YS80A 3K Tows Surface Finish Removed (See Appendix B: Bulk Comp Fabrication)

Fin Status: WOF
Material Run: BR1 Rerun

Resin:

Type: Epon 826 – Cure Agent W

Curing Agent Content (PPH): 25.4

Forming:

Technique: Tow Lay Up In An Aluminum Tool Then Vacuum Bagged Autoclave Cure

Lay Up Sequence Profile: Hand Tow Lay Up See "Appendix B: Bulk Composite Fabrication"

Cure Profile: Vacuum to -29 inch

Pressurization Ramp Rate of 6 psi/min to 130 psi

Heating Ramp Rate of 5°F/min to 250°F

Hold at 250°F for 60 min

Heating Ramp Rate of 5°F/min to 350°F

Hold at 350°F for 120 min

Cool Temperature to Room Temperature At 100°F Vent Pressure to Atmosphere At 100°F Vent Vacuum to Atmosphere

Post Cure Profile: None.

Tooling Used: Aluminum Trough See "Appendix B: Bulk Composite Fabrication"

General Property Type:

Fiber Volume:

Average (%): 54.1

Maximum: 65.5

Minimum: 40.2

Data Points: 5

Batches: 1

Test Method: Optical Microscopy

Notes: See Appendix C: Optical Microscopy For Micrographs

Void Volume:

Average (%): 0

Test Method: Optical Microscopy

Notes: See Appendix C: Optical Microscopy For Micrographs

Density:

 Average(gms/cm³):
 1.7832

 Maximum:
 1.8221

 Minimum:
 1.7280

 STD or CV:
 0.0491

 Data Points:
 3

 Batches:
 1

Test Method: Archimedes Method

Fiber Chains:

Total Fibers Across: 694 Initial Fiber Chains: 256 Final Fiber Chains: 0

 Gap:
 311

 Pocket:
 9

 Inner Edge:
 47

 Outer Edge:
 0

 Left Edge:
 1

 Right Edge:
 0

 TBE:
 2

Specific Property Values:

Tested In Condition:

Atmosphere: N₂

Temperature(°C): -90 - 130

Specimen PreConditioning Time-Duration: 168hrs at 125°C and -29inch Vacuum

Heat Capacity:

Test Method: Conventional MCDS Heating Rate 2 °C/min

Temperature(°C)	:-75	-50	-25	0	25	50	75	100
Average (J/g°C):	0.5273	0.6630	0.8303	0.9890	1.1378	1.2693	1.3930	1.4923
Maximum:	0.6742	0.7912	0.9450	1.0840	1.2170	1.3320	1.4570	1.5780
Minimum:	0.4547	0.5895	0.7525	0.9038	1.0440	1.1630	1.2720	1.3620
STD or CV:	0.1013	0.0890	0.0817	0.0738	0.0715	0.0749	0.0836	0.0920
Data Points:	4	4	4	4	4	4	4	4
Batches:	1	1	1	1	1	1	1	1

Notes: See "Appendix D: Heat Capacity" For Graphical Heat Capacity Curves

Thermal Diffusivity:

Test Method: ASTM E1461 Tested Orientation: Transverse

Temperature(°C)	:-75	-50	-25	0	25	50	75	100
Average (mm ² /s)	: 2.418	2.085	1.867	1.729	1.587	1.494	1.395	1.306
Maximum:	2.441	2.123	1.872	1.742	1.594	1.499	1.403	1.311
Minimum:	2.383	2.055	1.859	1.716	1.582	1.490	1.387	1.301
STD or CV:	0.031	0.0335	0.007	0.013	0.006	0.005	0.008	0.005
Data Points:	3	3	3	3	3	3	3	3
Batches:	1	1	1	1	1	1	1	1

Notes: See "Appendix E: Diffusivity" For Graphical Diffusivity Data Point Curves

Thermal Conductivity:

Test Method: Data Acquired By Calculating Every Permutation of Density X Diffusivity X Heat Capacity Tested Orientation: Transverse

Temperature(°C)	:-75	-50	-25	0	25	50	75	100
Average (W/mK)	: 2.272	2.460	2.767	3.050	3.252	3.385	3.477	3.481
Maximum:	2.998	3.051	3.225	3.443	3.567	3.640	3.743	3.773
Minimum:	1.872	2.091	2.422	2.682	2.872	2.997	3.060	3.071
STD or CV:	0.388	0.298	0.247	0.212	0.193	0.192	0.199	0.204
Data Points:	36	36	36	36	36	36	36	36
Batches:	1	1	1	1	1	1	1	1

Notes: See "Appendix F: Conductivity" For Graphical Conductivity Data Points & Error Bars

Table 19, Thermo-Physical Properties Of ER2 WF P100S / Epon 826 - Cure Agent W Uniaxial Composite

General Material Class: Graphite Fiber - Epoxy Composite Fiber: P100S Tabulated By: Aaron Sprague Tabulated On: June 2013
Resin: Epon 826 – Cure Agent W Checked By: Roger Gerzeski Material Run Number: P100 ER2 WF Checked On: July 2013

Preform:

Fiber:

Type: P100S 2K Tows

Fin Status: WF Material Run: ER2

Resin:

Type: Epon 826 – Cure Agent W

Curing Agent Content (PPH): 26.2

Forming:

Technique: Tow Lay Up In An Aluminum Tool Then Vacuum Bagged Autoclave Cure

Lay Up Sequence Profile: Hand Tow Lay Up See "Appendix B: Bulk Composite Fabrication"

Cure Profile: Vacuum to -29 inch

Pressurization Ramp Rate of 6 psi/min to 175 psi

Heating Ramp Rate of 5°F/min to 250°F

Hold at 250°F for 60 min

Heating Ramp Rate of 5°F/min to 350°F

Hold at 350°F for 120 min

Cool Temperature to Room Temperature At 100°F Vent Pressure to Atmosphere At 100°F Vent Vacuum to Atmosphere

Post Cure Profile: None.

Tooling Used: Aluminum Trough See "Appendix B: Bulk Composite Fabrication"

General Property Type:

Fiber Volume:

Average (%): 56.0

Maximum: 58.6

Minimum: 53.4

Data Points: 8

Batches: 1

Test Method: Optical Microscopy

Notes: See Appendix C: Optical Microscopy For Micrographs

Void Volume:

Average (%): 0

Test Method: Optical Microscopy

Notes: See Appendix C: Optical Microscopy For Micrographs

Density:

 Average(gms/cm³):
 1.8054

 Maximum:
 1.8180

 Minimum:
 1.7955

 STD or CV:
 0.0115

 Data Points:
 3

 Batches:
 1

Test Method: Archimedes Method

Fiber Chains:

Total Fibers Across: 823 Initial Fiber Chains: 540 Final Fiber Chains: 380

 Gap:
 1030

 Pocket:
 166

 Inner Edge:
 155

 Outer Edge:
 97

 Left Edge:
 4

 Right Edge:
 5

 TBE:
 148

Specific Property Values:

Tested In Condition:

Atmosphere: N₂

Temperature(°C): -90 - 130

Specimen PreConditioning Time-Duration: 24hrs at 125°C and -29inch Vacuum

Heat Capacity:

Test Method: Conventional MCDS Heating Rate 2 °C/min

Temperature(°C)	:-75	-50	-25	0	25	50	75	100
Average (J/g°C):	0.9993	1.1778	1.1410	1.1973	1.2795	1.3598	1.4300	1.4958
Maximum:	1.0460	1.2350	1.1560	1.2450	1.3300	1.4120	1.4830	1.5480
Minimum:	0.9565	1.1270	1.1000	1.1570	1.2370	1.3160	1860	1.4510
STD or CV:	0.0435	0.0534	0.0421	0.0410	0.0432	0.0446	0.0443	0.0440
Data Points:	4	4	4	4	4	4	4	4
Batches:	1	1	1	1	1	1	1	1

Notes: See "Appendix D: Heat Capacity" For Graphical Heat Capacity Curves

Thermal Diffusivity:

Test Method: ASTM E1461 Tested Orientation: Transverse

Temperature(°C)	:-75	-50	-25	0	25	50	75	100
Average (mm ² /s)): 2.429	2.165	1.984	1.804	1.662	1.598	1.461	1.316
Maximum:	2.455	2.207	2.019	1.831	1.679	1.620	1.481	1.334
Minimum:	2.414	2.107	1.952	1.776	1.631	1.578	1.437	1.303
STD or CV:	0.022	0.052	0.034	0.028	0.027	0.021	0.022	0.016
Data Points:	3	3	3	3	3	3	3	3
Batches:	1	1	1	1	1	1	1	1

Notes: See "Appendix E: Diffusivity" For Graphical Diffusivity Data Point Curves

Thermal Conductivity:

Test Method: Data Acquired By Calculating Every Permutation of Density X Diffusivity X Heat Capacity Tested Orientation: Transverse

Temperature(°C)	:-75	-50	-25	0	25	50	75	100
Average (W/mK): 4.383	4.603	4.089	3.902	3.869	3.924	3.777	3.556
Maximum:	4.668	4.953	4.366	4.147	4.088	4.159	3.996	3.757
Minimum:	4.146	4.265	3.856	3.691	3.652	3.730	3.579	3.400
STD or CV:	0.172	0.205	0.146	0.129	0.126	0.123	0.115	0.100
Data Points:	36	36	36	36	36	36	36	36
Batches:	1	1	1	1	1	1	1	1

Notes: See "Appendix F: Conductivity" For Graphical Conductivity Data Points & Error Bars

Table 20, Thermo-Physical Properties Of ER2 WOF P100S / Epon 826 - Cure Agent W Uniaxial Composite

General Material Class: Graphite Fiber - Epoxy Composite Tabulated By: Aaron Sprague Fiber: P100S Tabulated On: June 2013
Resin: Epon 826 – Cure Agent W Checked By: Roger Gerzeski Material Run Number: P100 ER2 WOF Checked On: July 2013

Preform:

Fiber:

Type: P100S 2K Tows

Fin Status: WOF Material Run: ER2

Resin:

Type: Epon 826 – Cure Agent W

Curing Agent Content (PPH): 26.2

Forming:

Technique: Tow Lay Up In An Aluminum Tool Then Vacuum Bagged Autoclave Cure

Lay Up Sequence Profile: Hand Tow Lay Up See "Appendix B: Bulk Composite Fabrication"

Cure Profile: Vacuum to -29 inch

Pressurization Ramp Rate of 6 psi/min to 175 psi

Heating Ramp Rate of 5°F/min to 250°F

Hold at 250°F for 60 min

Heating Ramp Rate of 5°F/min to 350°F

Hold at 350°F for 120 min

Cool Temperature to Room Temperature At 100°F Vent Pressure to Atmosphere At 100°F Vent Vacuum to Atmosphere

Post Cure Profile: None.

Tooling Used: Aluminum Trough See "Appendix B: Bulk Composite Fabrication"

General Property Type:

Fiber Volume:

Average (%): 60.1

Maximum: 65.8

Minimum: 47.9

Data Points: 12

Batches: 1

Test Method: Optical Microscopy

Notes: See Appendix C: Optical Microscopy For Micrographs

Void Volume:

Average (%): 0

Test Method: Optical Microscopy

Notes: See Appendix C: Optical Microscopy For Micrographs

Density:

 Average(gms/cm³):
 1.7884

 Maximum:
 1.8082

 Minimum:
 1.7728

 STD or CV:
 0.0181

 Data Points:
 3

 Batches:
 1

Test Method: Archimedes Method

Fiber Chains:

Total Fibers Across: 770 Initial Fiber Chains: 425 Final Fiber Chains: 0

 Gap:
 419

 Pocket:
 21

 Inner Edge:
 43

 Outer Edge:
 0

 Left Edge:
 1

 Right Edge:
 0

 TBE:
 18

Specific Property Values:

Tested In Condition:

Atmosphere: N₂

Temperature(°C): -90 - 130

Specimen PreConditioning Time-Duration: 24hrs at 125°C and -29inch Vacuum

Heat Capacity:

Test Method: Conventional MCDS Heating Rate 2 °C/min

Temperature(°C)	:-75	-50	-25	0	25	50	75	100
Average (J/g°C):	0.9839	1.1630	1.1270	1.1843	1.2695	1.3530	1.4263	1.4933
Maximum:	0.9941	1.1790	1.1400	1.1960	1.2800	1.3650	1.4340	1.4990
Minimum:	0.9787	1.1530	1.1200	1.1760	1.2610	1.3440	1.4170	1.4850
STD or CV:	0.0069	0.0125	0.0089	0.0084	0.0081	0.0092	0.0077	0.0069
Data Points:	4	4	4	4	4	4	4	4
Batches:	1	1	1	1	1	1	1	1

Notes: See "Appendix D: Heat Capacity" For Graphical Heat Capacity Curves

Thermal Diffusivity:

Test Method: ASTM E1461 Tested Orientation: Transverse

Temperature(°C)) : -75	-50	-25	0	25	50	75	100
Average (mm ² /s)): 2.130	2.161	2.082	1.875	1.724	1.591	1.490	1.373
Maximum:	2.176	2.215	2.121	1.888	1.739	1.626	1.500	1.375
Minimum:	2.106	2.110	2.045	1.853	1.711	1.570	1.478	1.371
STD or CV:	0.040	0.053	0.038	0.019	0.014	0.031	0.011	0.002
Data Points:	3	3	3	3	3	3	3	3
Batches:	1	1	1	1	1	1	1	1

Notes: See "Appendix E: Diffusivity" For Graphical Diffusivity Data Point Curves

Thermal Conductivity:

Test Method: Data Acquired By Calculating Every Permutation of Density X Diffusivity X Heat Capacity Tested Orientation: Transverse

Temperature(°C)	:-75	-50	-25	0	25	50	75	100
Average (W/mK): 3.742	4.496	4.197	3.972	3.939	3.851	3.805	3.670
Maximum:	3.911	4.726	4.372	4.085	4.049	4.015	3.894	3.734
Minimum:	3.641	4.314	4.061	3.862	3.854	3.742	3.716	3.611
STD or CV:	0.074	0.108	0.078	0.054	0.047	0.073	0.044	0.035
Data Points:	36	36	36	36	36	36	36	36
Batches:	1	1	1	1	1	1	1	1

Notes: See "Appendix F: Conductivity" For Graphical Conductivity Data Points & Error Bars

Table 21, Thermo-Physical Properties Of ER4 WF P100S / Epon 826 - Cure Agent W Uniaxial Composite

General Material Class: Graphite Fiber - Epoxy Composite Tabulated By: Aaron Sprague Fiber: P100S Tabulated On: June 2013
Resin: Epon 826 – Cure Agent W Checked By: Roger Gerzeski Material Run Number: P100 ER4 WF Checked On: July 2013

Preform:

Fiber:

Type: P100S 2K Tows

Fin Status: WF Material Run: ER4

Resin:

Type: Epon 826 – Cure Agent W

Curing Agent Content (PPH): 25.7

Forming:

Technique: Tow Lay Up In An Aluminum Tool Then Vacuum Bagged Autoclave Cure

Lay Up Sequence Profile: Hand Tow Lay Up See "Appendix B: Bulk Composite Fabrication"

Cure Profile: Vacuum to -29 inch

Pressurization Ramp Rate of 6 psi/min to 175 psi

Heating Ramp Rate of 5°F/min to 250°F

Hold at 250°F for 60 min

Heating Ramp Rate of 5°F/min to 350°F

Hold at 350°F for 120 min

Cool Temperature to Room Temperature At 100°F Vent Pressure to Atmosphere At 100°F Vent Vacuum to Atmosphere

Post Cure Profile: None.

Tooling Used: Aluminum Trough See "Appendix B: Bulk Composite Fabrication"

General Property Type:

Fiber Volume:

Average (%): 58.5

Maximum: 63.5

Minimum: 48.5

Data Points: 8

Batches: 1

Test Method: Optical Microscopy

Notes: See Appendix C: Optical Microscopy For Micrographs

Void Volume:

Average (%): 0

Test Method: Optical Microscopy

Notes: See Appendix C: Optical Microscopy For Micrographs

Density:

 Average(gms/cm³):
 1.7710

 Maximum:
 1.7864

 Minimum:
 1.7456

 STD or CV:
 0.0159

 Data Points:
 5

 Batches:
 1

Test Method: Archimedes Method

Fiber Chains:

Total Fibers Across: 805 Initial Fiber Chains: 595 Final Fiber Chains: 387

 Gap:
 1581

 Pocket:
 196

 Inner Edge:
 145

 Outer Edge:
 113

 Left Edge:
 1

 Right Edge:
 11

 TBE:
 160

Specific Property Values:

Tested In Condition:

Atmosphere: N₂

Temperature(°C): -90 - 130

Specimen PreConditioning Time-Duration: 24hrs at 125°C and -29inch Vacuum

Heat Capacity:

Test Method: Conventional MCDS Heating Rate 2 °C/min

Temperature(°C):-75		-50	-25	0	25	50	75	100	
	Average (J/g°C):	0.9224	1.1363	1.0553	1.0983	1.1725	1.2423	1.3065	1.3663
	Maximum:	0.9759	1.2050	1.1020	1.1280	1.2130	1.2780	1.3390	1.3940
	Minimum:	0.8500	1.0480	0.9882	1.0530	1.1120	1.1860	1.2520	1.3140
	STD or CV:	0.0591	0.0764	0.0508	0.0358	0.0442	0.0405	0.0385	0.0360
	Data Points:	4	4	4	4	4	4	4	4
	Batches:	1	1	1	1	1	1	1	1

Notes: See "Appendix D: Heat Capacity" For Graphical Heat Capacity Curves

Thermal Diffusivity:

Test Method: ASTM E1461 Tested Orientation: Transverse

Temperature(°C)	:-75	-50	-25	0	25	50	75	100
Average (mm ² /s)): 2.605	2.193	1.965	1.805	1.667	1.531	1.470	1.317
Maximum:	2.661	2.220	1.969	1.811	1.682	1.542	1.647	1.325
Minimum:	2.555	2.170	1.960	1.797	1.658	1.523	1.365	1.311
STD or CV:	0.053	0.025	0.005	0.007	0.013	0.010	0.154	0.007
Data Points:	3	3	3	3	3	3	3	3
Batches:	1	1	1	1	1	1	1	1

Notes: See "Appendix E: Diffusivity" For Graphical Diffusivity Data Point Curves

Thermal Conductivity:

Test Method: Data Acquired By Calculating Every Permutation of Density X Diffusivity X Heat Capacity Tested Orientation: Transverse

Temperature(°C	C):-75	-50	-25	0	25	50	75	100
Average (W/mK): 4.246		4.415	3.673	3.511	3.483	3.369	3.408	3.192
Maximum:	4.627	4.782	3.876	3.649	3.652	3.521	3.948	3.302
Minimum:	3.782	3.972	3.381	3.303	3.149	3.154	2.986	3.013
STD or CV:	0.250	0.265	0.157	0.105	0.114	0.101	0.310	0.079
Data Points:	60	60	60	60	60	60	60	60
Batches:	1	1	1	1	1	1	1	1

Notes: See "Appendix F: Conductivity" For Graphical Conductivity Data Points & Error Bars

Table 22, Thermo-Physical Properties Of ER4 WOF P100S / Epon 826 – Cure Agent W Uniaxial Composite

General Material Class: Graphite Fiber - Epoxy Composite Tabulated By: Aaron Sprague Fiber: P100S Tabulated On: June 2013
Resin: Epon 826 – Cure Agent W Checked By: Roger Gerzeski Material Run Number: P100 ER4 WOF Checked On: July 2013

Preform:

Fiber:

Type: P100S 2K Tows

Fin Status: WOF Material Run: ER4

Resin:

Type: Epon 826 – Cure Agent W

Curing Agent Content (PPH): 25.7

Forming:

Technique: Tow Lay Up In An Aluminum Tool Then Vacuum Bagged Autoclave Cure

Lay Up Sequence Profile: Hand Tow Lay Up See "Appendix B: Bulk Composite Fabrication"

Cure Profile: Vacuum to -29 inch

Pressurization Ramp Rate of 6 psi/min to 175 psi

Heating Ramp Rate of 5°F/min to 250°F

Hold at 250°F for 60 min

Heating Ramp Rate of 5°F/min to 350°F

Hold at 350°F for 120 min

Cool Temperature to Room Temperature At 100°F Vent Pressure to Atmosphere At 100°F Vent Vacuum to Atmosphere

Post Cure Profile: None.

Tooling Used: Aluminum Trough See "Appendix B: Bulk Composite Fabrication"

General Property Type:

Fiber Volume:

Average (%): 60.1 Maximum: 64.4 Minimum: 54.6 Data Points: 9 Batches: 1

Test Method: Optical Microscopy

Notes: See Appendix C: Optical Microscopy For Micrographs

Void Volume:

Average (%): 0

Test Method: Optical Microscopy

Notes: See Appendix C: Optical Microscopy For Micrographs

Density:

 Average(gms/cm³):
 1.8072

 Maximum:
 1.8565

 Minimum:
 1.7570

 STD or CV:
 0.0325

 Data Points:
 6

 Batches:
 1

Test Method: Archimedes Method

Fiber Chains:

Total Fibers Across: 829 Initial Fiber Chains: 284 Final Fiber Chains: 0

 Gap:
 412

 Pocket:
 13

 Inner Edge:
 54

 Outer Edge:
 0

 Left Edge:
 2

 Right Edge:
 0

 TBE:
 10

Specific Property Values:

Tested In Condition:

Atmosphere: N₂

Temperature(°C): -90 - 130

Specimen PreConditioning Time-Duration: 24hrs at 125°C and -29inch Vacuum

Heat Capacity:

Test Method: Conventional MCDS Heating Rate 2 °C/min

Temperature(°C)	:-75	-50	-25	0	25	50	75	100
Average (J/g°C):	0.7401	0.9078	0.8846	0.9440	1.0238	1.0970	1.1695	1.2398
Maximum:	0.7688	0.9376	0.9144	0.9742	1.0630	1.1160	1.1900	1.2630
Minimum:	0.6917	0.8433	0.8207	0.8873	0.9623	1.0410	1.1180	1.1960
STD or CV:	0.0340	0.0438	0.0438	0.0398	0.0434	0.0373	0.0345	0.0299
Data Points:	4	4	4	4	4	4	4	4
Batches:	1	1	1	1	1	1	1	1

Notes: See "Appendix D: Heat Capacity" For Graphical Heat Capacity Curves

Thermal Diffusivity:

Test Method: ASTM E1461 Tested Orientation: Transverse

Temperature(°C)	:-75	-50	-25	0	25	50	75	100
Average (mm ² /s)): 2.416	2.114	1.913	1.741	1.585	1.470	1.370	1.265
Maximum:	2.438	2.147	1.947	1.745	1.586	1.476	1.385	1.272
Minimum:	2.393	2.085	1.879	1.734	1.584	1.459	1.362	1.255
STD or CV:	0.032	0.031	0.034	0.006	0.001	0.009	0.013	0.009
Data Points:	2	3	3	3	3	3	3	3
Batches:	1	1	1	1	1	1	1	1

Notes: See "Appendix E: Diffusivity" For Graphical Diffusivity Data Point Curves

Thermal Conductivity:

Test Method: Data Acquired By Calculating Every Permutation of Density X Diffusivity X Heat Capacity Tested Orientation: Transverse

Temperature(°C	:-75	-50	-25	0	25	50	75	100
Average (W/mk	age (W/mK): 3.244		3.059	2.971	2.948	2.915	2.901	2.840
Maximum:	3.512	3.742	3.310	3.164	3.112	3.061	3.070	2.987
Minimum:	2.901	3.112	2.709	2.701	2.700	2.669	2.679	2.646
STD or CV:	0.150	0.160	0.149	0.121	0.110	0.100	0.092	0.077
Data Points:	48	72	72	72	72	72	72	72
Batches:	1	1	1	1	1	1	1	1

Notes: See "Appendix F: Conductivity" For Graphical Conductivity Data Points & Error Bars

Table 23, Thermo-Physical Properties Of BR1 WOF P100S / Epon 826 - Cure Agent W Uniaxial Composite

General Material Class: Graphite Fiber - Epoxy Composite Tabulated By: Aaron Sprague Fiber: P100S Tabulated On: June 2013
Resin: Epon 826 – Cure Agent W Checked By: Roger Gerzeski Material Run Number: P100 BR1 WOF Checked On: July 2013

Preform:

Fiber:

Type: P100S 2K Tows

Fin Status: WOF Material Run: BR1

Resin:

Type: Epon 826 – Cure Agent W

Curing Agent Content (PPH): 25.4

Forming:

Technique: Tow Lay Up In An Aluminum Tool Then Vacuum Bagged Autoclave Cure

Lay Up Sequence Profile: Hand Tow Lay Up See "Appendix B: Bulk Composite Fabrication"

Cure Profile: Vacuum to -29 inch

Pressurization Ramp Rate of 6 psi/min to 130 psi

Heating Ramp Rate of 5°F/min to 250°F

Hold at 250°F for 60 min

Heating Ramp Rate of 5°F/min to 350°F

Hold at 350°F for 120 min

Cool Temperature to Room Temperature At 100°F Vent Pressure to Atmosphere At 100°F Vent Vacuum to Atmosphere

Post Cure Profile: None.

Tooling Used: Aluminum Trough See "Appendix B: Bulk Composite Fabrication"

General Property Type:

Fiber Volume:

Average (%): 55.1 Maximum: 61.7 Minimum: 44.9 Data Points: 8 Batches: 1

Test Method: Optical Microscopy

Notes: See Appendix C: Optical Microscopy For Micrographs

Void Volume:

Average (%): 0

Test Method: Optical Microscopy

Notes: See Appendix C: Optical Microscopy For Micrographs

Density:

 Average(gms/cm³):
 1.8027

 Maximum:
 1.8048

 Minimum:
 1.7996

 STD or CV:
 0.0027

 Data Points:
 3

 Batches:
 1

Test Method: Archimedes Method

Fiber Chains:

Total Fibers Across: 775 Initial Fiber Chains: 371 Final Fiber Chains: 0

 Gap:
 505

 Pocket:
 13

 Inner Edge:
 84

 Outer Edge:
 0

 Left Edge:
 1

 Right Edge:
 0

 TBE:
 24

Specific Property Values:

Tested In Condition:

Atmosphere: N₂

Temperature(°C): -90 - 130

Specimen PreConditioning Time-Duration: 24hrs at 125°C and -29inch Vacuum

Heat Capacity:

Test Method: Conventional MCDS Heating Rate 2 °C/min

Temperature(°C):	:-75	-50	-25	0	25	50	75	100
Average (J/g°C):	0.8321	1.0249	0.9844	1.0367	1.1152	1.1944	1.2672	1.3340
Maximum:	0.8901	1.0940	1.0410	1.0920	1.1720	1.2520	1.3250	1.3940
Minimum:	0.7816	0.9663	0.9356	0.9903	1.0680	1.1460	1.2190	1.2890
STD or CV:	0.0396	0.0484	0.0384	0.0369	0.0378	0.0383	0.0383	0.0386
Data Points:	5	5	5	5	5	5	5	5
Batches:	1	1	1	1	1	1	1	1

Notes: See "Appendix D: Heat Capacity" For Graphical Heat Capacity Curves

Thermal Diffusivity:

Test Method: ASTM E1461 Tested Orientation: Transverse

Temperature(°C)	:-75	-50	-25	0	25	50	75	100
Average (mm ² /s)): 2.737	1.985	1.802	1.607	1.475	1.386	1.272	1.189
Maximum:	2.759	2.009	1.811	1.617	1.497	1.391	1.280	1.211
Minimum:	2.714	1.969	1.788	1.600	1.453	1.377	1.259	1.157
STD or CV:	0.023	0.021	0.013	0.009	0.022	0.008	0.011	0.028
Data Points:	3	3	3	3	3	3	3	3
Batches:	1	1	1	1	1	1	1	1

Notes: See "Appendix E: Diffusivity" For Graphical Diffusivity Data Point Curves

Thermal Conductivity:

Test Method: Data Acquired By Calculating Every Permutation of Density X Diffusivity X Heat Capacity Tested Orientation: Transverse

Temperature(°C	C):-75	-50	-25	0	25	50	75	100
Average (W/ml	Average (W/mK): 4.090		3.199	3.005	2.992	2.986	2.910	2.863
Maximum:	4.432	3.968	3.403	3.189	3.194	3.145	3.066	3.050
Minimum:	3.774	3.420	3.010	2.854	2.817	2.840	2.770	2.691
STD or CV:	0.183	0.160	0.114	0.098	0.098	0.088	0.082	0.093
Data Points:	45	45	45	45	45	45	45	45
Batches:	1	1	1	1	1	1	1	1

Notes: See "Appendix F: Conductivity" For Graphical Conductivity Data Points & Error Bars

3.0 APPENDIX A: FIN GROWTH

3.1 Section 1: Microwave Plasma Chemical Vapor Deposition System

Figure FG1, SEKI TECHNOTRON Microwave Plasma Chemical Vapor Deposition System

RXBT-INTERNAL REPORT -2011

SEKI TECHNOTRON Microwave Plasma Chemical Vapor Deposition (MWCVD) Restricted Users Operations Manual

Roger Gerzeski
Thermal Sciences And Materials Branch (AFRL/RXBT)
Nonmetallic Materials Division
Materials And Manufacturing Directorate
WPAFB Ohio

May 2011 Internal Technical Report

RXBT Internal Technical Report.

AIR FORCE RESEARCH LABORATORY
MATERIALS AND MANUFACTURING DIRECTORATE
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7750
AIR FORCE MATERIEL COMMAND
UNITED STATES AIR FORCE

RXBT Internal Technical Report.

Figure FG2, MWPCVD System Operations Manual

Figure FG3, Optical Pyrometer Location And Read Out

Figure FG4, Opened Reactor Chamber Door

Figure FG5, Heater Stage, Inserted Molybdenum Puck, Ceramic Stand and Specimen

3.2 Section 2: Fiber Elevation Stand Overall Assembly

Parts List:

- 1. Two Ceramic Fiber Elevation Stand Plates (See Attached Detail Draftings)
- Two 1.875" +/- 0.050" Long 0.125" OD Precision Ground (+/-0.001") Very High Temperature Nonporous High Alumina Rods McMaster-Carr Part Number 8446K11
- 3. One Slotted Molybdenum Puck (See Attached Detail Draftings)

Fiber Specimen Elevation Jig Assembly Engineer: Roger Gerzeski

Date: Rev B 1 Apr 2010, Org 7 Feb 2010

Figure FG6, Fiber Elevation Stand Assembly Design

Figure FG7, Molybdenum Puck Design

Figure FG8, Molybdenum Puck

Slotted Molybdenum Puck Engineer: Roger Gerzeski

Engineer: Roger Gerzeski
Material Of Construction: Previously Machined Molybdenum Puck
Date: Rev B 1 Apr 2010, Rev A 25 Feb 2010, Org 7 Feb 2010

Figure FG9, Slotted Molybdenum Puck Design

Figure FG10, Slotted Molybdenum Puck

3.4 Section 4: Ceramic Stands

Figure FG11, Ceramic Specimen Elevation Seven One Quarter Inch Spaced Eighth Inch Slot T Stands

Figure FG12, Ceramic Specimen Elevation Five One Quarter Inch Spaced Eighth Inch Slot T Stands

Figure FG13, Ceramic Specimen Elevation Three One Quarter Inch Spaced Eighth Inch Slot T Stands

3.5 Section 5: Ceramic Caps

Fiber Elevation Stand Plate Cap 5 Slots

Engineer: Roger Gerzeski Material Of Construction:

Very High Temperature Nonporous High-Alumina Ceramic

Tolerances: x.xxx" +/- 0.010"

Date: 1 Apr 2012,

Figure FG14, Ceramic Five Specimen One Quarter Inch Spaced Eighth Inch Slot Cap

Fiber Elevation Stand Plate Cap 3 Slots

Engineer: Roger Gerzeski Material Of Construction:

Very High Temperature Nonporous High-Alumina Ceramic

Tolerances: x.xxx" +/- 0.010"

Date: 1 Apr 2012,

Figure FG15, Ceramic Three Specimen One Quarter Inch Spaced Eighth Inch Slot Cap

Figure FG16, Ceramic Caps

Top View I Top View II
Figure FG17, Un Capped Ceramic Specimen Elevation Three One Quarter Inch Spaced Eighth Inch Slot T Stands

End View

Figure FG18, Capped Ceramic Specimen Elevation Three One Quarter Inch Spaced Eighth Inch Slot T Stands

Figure FG19, Un Capped Ceramic Specimen Elevation Five One Quarter Inch Spaced Eighth Inch Slot T Stands

Labeled Slots View

Side View

End View

Top View

Figure FG20, Capped Ceramic Specimen Elevation Five One Quarter Inch Spaced Eighth Inch Slot T Stands

Figure FG21, Un Capped Ceramic Specimen Elevation Seven One Quarter Inch Spaced Eighth Inch Slot T Stands

3.7 Section 7: Extractor

"Cleaning The Surface Finish Off Of YS80 With Soxhlet Extraction"

Aaron Sprague, University Of Dayton Research Institute

Soxhlet Extractor Design.

• Fiber Holder

The main chamber for the design of soxhlet extractor used provided no internal structures to support the fiber bundles. When fiber bundles were loosely placed in the main chamber, fibers were lost during the siphoning process. A four and a half inch glass tube was used to provide the necessary structural support for fiber holders. Fiber holders were machined out of three eighths inch diameter Teflon rod, with one eighth by five sixteenths inch notches cut into both ends to provide stability. Eighth inch holes were drilled through the rods at eighth inch intervals, designed for a fiber bundle to be placed in each hole. A perpendicular hole was drilled halfway through the rod into the each fiber bundle hole and threaded for nylon set screws. The nylon set screws served to securely hold each fiber bundle to the Teflon rod. Two different size holders were used in the extractors, one two and a half inch holder containing seven holes and two two inch holders containing five holes each. The center hole in each fiber holder was left empty to enable the holders to be lowered into and removed from the main chamber of the soxhlet extractor.

Figure FG22, Seven (top) and five (bottom) fiber holders.

The fiber holders were lowered and removed from the extractor by an aluminum rod with different thread sizes (eighth inch, sixteenth inch) machined on the rod. The sixteenth inch thread was used to tighten the nylon set screws on the fiber holders and the eighth inch was used for the fiber holders.

Figure FG23, Fiber holder retriever.

Figure FG24, Main chamber of Soxhlet extractor.

Figure FG25, Main chamber filling with condensed acetone.

Figure FG26, Soxhlet extractor setup.

A loading station was machined to consistently load the fiber bundles into the fiber holders. The loading station consisted of a Teflon® channeled bed, aluminum base, ten screws, and two Teflon® fiber braces. The channeled bed consisted of channels eighth inch intervals, with notches cut quarter inch by three quarter inch into each end of the bed.

Figure FG27, Channel assembly bed.

The fiber holder is placed in the notch of the channeled bed, aligning the channels with the fiber bundle holes and with the notches on the fiber holder facing the channels. A fiber bundle was placed in each aligned channel and pushed through the fiber holder so that approximately half inch of the fiber bundle was on the other side. Two braces spanning the width of the bed were screwed into place to secure the fiber bundles on the bed while the nylon set screws were tightened on the fiber holders.

Figure FG28, Fiber braces.

Figure FG29, Channeled assembly bed with fibers (top) and braces (bottom).

Aluminum base provided support for the screws used to hold the braces. The braces contained knobs corresponding to the channels of the bed. Once all set screws were tightened, the braces were removed and the fiber holder and attached fiber bundles were lowered into the soxhlet extractor threading the aluminum rod through the open center hole on each fiber holder.

All items besides the soxhlet extractors, screws used on the loading station, and nylon set screws were custom machined.

• Cleaning equipment

Ultrasonic cleaning was performed on all equipment that came in contact with the each set fiber bundles during surface finish removal or post-removal. Items that came in contact with the fibers prior to

surface finish removal were periodically ultrasonic cleaned as needed. Cleaning sequence consisted of one wash cycle and five rinse cycles. Wash cycle consisted of ultrasonic wash with double-distilled water and Alconox® soap for one hour. Rinse cycles consisted of ultrasonic rinse with double-distilled water for various durations; first rinse for one hour, second and third rinse for thirty minutes each, and fourth and fifth rinse for fifteen minutes each. All cleaned items were dabbed dry with Kimwipes®. Individual items were sealed in new plastic bags until next usage.

Cooling water

A refrigeration chilling unit was to control cooling fluid supply and temperature. The cooling fluid used in the chiller was a mixture of water and isopropanol. The cooling fluid was pumped from the chiller reservoir through the two condensing columns in series and returned to the chiller reservoir, creating a closed loop system. The temperature of the cooling fluid in the chiller was set at 10°C in order to provide sufficient cooling and minimize loss of acetone. Lower temperatures were achievable, but were not used in order to mitigate the amount of condensation formed on the supply and return cooling fluid tubes.

Figure FG30, Soxhlet extractor setup in chemical hood and refrigeration unit.

• Soxhlet Extractor

YS80 fibers contained a surface finish that prevented fin growth on the surface of the fibers.

Figure FG31, Surface finish thickness.

Figure FG32, YS80 with surface finish fin growth attempt.

Soxhlet extractor was selected on the theory that all or majority of the surface finish on the YS80 fibers, once stripped, would not volatilize back into the Soxhlet extractor. Acetone was chosen for its organic solvent properties. Each two liter round bottom flask was filled approximately three quarters full with ACS reagent grade acetone.

Figure FG33, Test Bundle Five days cleaning with ACS reagent grade acetone.

Figure FG34, Test Bundle Seven days cleaning with ACS reagent grade acetone.

It was tested and shown that Technical grade acetone provided unsatisfactory surface finish removal, the surface finish material would form into large clumps and long ribbons on the fibers.

Figure FG35, Ribbon of surface finish after cleaning with Technical grade acetone.

Figure FG36, Ball of surface finish after cleaning with Technical grade acetone.

Figure FG37, Four weeks cleaning with used Technical grade acetone.

Figure FG38, Four weeks cleaning with new Technical grade acetone.

Teflon® boiling stones were placed in the bottom of the round bottom flask. Heating mantles were used to provide the heat input to volatize the acetone. The voltage to the heating mantle was controlled through a variable autotransformer. The voltage to the heating mantle was set to provide heat input to complete an entire cycle in the Soxhlet extractor approximately once every 20 minutes.

The cycle of the Soxhlet extractor consists of three steps: volatilization, condensation and collection, and siphoning. When sufficient heat is applied to the acetone solvent, it volatizes out of the round bottom flask and up the side arm of the Soxhlet extractor. The acetone vapor condenses on the cooled condensing column and drips into the Soxhlet extractor's main chamber. At a specific height in the main chamber, a suction head is formed and the mixture of liquid acetone and surface coating is siphoned back into the round bottom flask; completing one cycle.

Complete stripping of surface finish off of 14 fiber bundles in each extractor required four continuous weeks of stripping.

Figure FG39, One week clean in ACS reagent grade acetone.

Figure FG40, Two week clean in ACS reagent grade acetone.

Figure FG41, Two weeks cleaning with ACS reagent grade acetone, methanol rinse.

Figure FG42, Three weeks cleaning with ACS reagent grade acetone.

Figure FG43, Four weeks cleaning with ACS reagent grade acetone.

Figure FG44, Four weeks cleaning with ACS reagent grade acetone, methanol rinse.

Diminishing returns were observed over the four week period. Placing non-finish YSH50 fibers in the Soxhlet extractor for one week using the used acetone resulted in small deposits of finish onto the fibers, concluding that some of the finish was volatizing with the acetone.

Figure FG45, Surface finish residue deposits on YSH50 fibers cleaned for one week in used Technical grade acetone.

Several post-Soxhlet extractor cleaning methods were tested. Ultrasonic rinse and stir bar rinse in double-distilled water were effective in removing surface finish deposits, but resulted in breakages in the fibers. Rinsing fibers with methanol after removal from soxhlet extractor resulted in less coating deposits and did not cause fiber breakage. Methanol rinses were immediately applied to all fiber bundles upon removal from the Soxhlet extractors.

Figure FG46, Four weeks ACS reagent grade acetone cleaned, stir bar (left) and ultrasonic (right) rinse.

Conclusion

Four weeks of continuous cleaning with ACS reagent grade acetone were required to strip the surface finish off of the YS80 fiber bundles in order that graphitic fins could be grown on the fiber surface. YS80 fiber bundles were not available without the surface finish. A Variety of cleaning methods were tested and those that provided the desired results were chosen, regardless of prevalence or lack thereof in an industrial setting. Removal of the surface finish was required to achieve the primary experimental objective; superior alternate cleaning methods that were not tested are plausible.

3.8 Section 8: YSH50A Fin Growth

Figure FG47, YSH50A Fin Growth Capped Ceramic Jig O3a Position Surface View

Figure FG48, YSH50A Fin Growth Capped Ceramic Jig O3a Position End View

Figure FG49, YSH50A Fin Growth Capped Ceramic Jig C3 Position Surface View

Figure FG50, YSH50A Fin Growth Capped Ceramic Jig C3 Position End View

Figure FG51, YSH50A Fin Growth Capped Ceramic Jig O3b Position Surface View

Figure FG52, YSH50A Fin Growth Capped Ceramic Jig O3b Position End View

3.9 Section 9: M55JB Fin Growth

Figure FG53, M55JB Fin Growth Capped Ceramic Jig O5a Position Side View

82

Figure FG54, M55JB Fin Growth Capped Ceramic Jig O5a Position End View

Figure FG55, M55JB Fin Growth Capped Ceramic Jig M5a Position Side View

Figure FG56, M55JB Fin Growth Capped Ceramic Jig M5a Position End View

Figure FG57, M55JB Fin Growth Capped Ceramic Jig C5 Position Side View

Figure FG58, M55JB Fin Growth Capped Ceramic Jig C5 Position End View

Figure FG59, M55JB Fin Growth Capped Ceramic Jig M5b Position Side View

Figure FG60, M55JB Fin Growth Capped Ceramic Jig M5b Position End View

5 Trough Ceramic Jigs W/Caps; Gr Cap: 833^c(827-842); Pyro: 858^c(858-985); Plasma: 1000W 40Torr 50sccm H₂; O₂: 15min 0.5sccm; Growth: 12min 10sccm CH₄

Figure FG61, M55JB Fin Growth Capped Ceramic Jig O5b Position Side View

Figure FG62, M55JB Fin Growth Capped Ceramic Jig O5b Position End View

3.10 Section 10: YSH60A Fin Growth

Use: Outer 3 on one side of 5 trough Ceramic Jigs; Gr Cap: 867C; Pyro: 886C; O2: Last 5 min of growth 0.5sccm; Plasma: 1000W 40Torr 50sccm H2; Growth: 15min 10sccm CH4

Figure FG63, YSH60A Fin Growth Ceramic Jig IM7 Position Side View

Use: Outer 3 on one side of 5 trough Ceramic Jigs; Gr Cap: 867C; Pyro: 886C; O2: Last 5 min of growth 0.5sccm; Plasma: 1000W 40Torr 50sccm H2: Growth: 15min 10sccm CH4

Figure FG64, YSH60A Fin Growth Ceramic Jig OM7 Position Side View

Use: Outer 3 on one side of 5 trough Ceramic Jigs; Gr Cap: 867C; Pyro: 886C; O2: Last 5 min of growth 0.5sccm; Plasma: 1000W 40Torr 50sccm H2; Growth: 15min 10sccm CH4

Figure FG65, YSH60A Fin Growth Ceramic Jig O7 Position Side View

Figure FG66, YS80A Fin Growth Capped Ceramic Jig O3a Position Surface View

Figure FG67, YS80A Fin Growth Capped Ceramic Jig O3a Position End View

Figure FG68, YS80A Fin Growth Capped Ceramic Jig C3 Position Surface View

Figure FG69, YS80A Fin Growth Capped Ceramic Jig C3 Position Surface View

Figure FG70, YS80A Fin Growth Capped Ceramic Jig O3b Position Surface View

Figure FG71, YS80A Fin Growth Capped Ceramic Jig O3b Position End View

3.12.1 Section 12-1: P100S 7 Un Capped Tow Fin Growth

7 trough Ceramic Jigs; Gr Cap: 852-901c; Pyro: 830-900c; O2: 15min 0.5sccm; Plasma: 700W 30Torr 50sccm H2; Growth: 15min 10sccm CH4

Figure FG72, P100S 7 Tow Fin Growth 7 Tow Ceramic Jig Various Jig Positions Surface View

Figure FG73, P100S 7 Tow Fin Growth 7 Tow Un Capped Ceramic Jig O7 Positions End View I

Figure FG74, P100S 7 Tow Fin Growth 7 Tow Un Capped Ceramic Jig O7 Positions End View II

Figure FG75, P100S 7 Tow Fin Growth 7 Tow Un Capped Ceramic Jig O7 Positions End View III

Figure FG76, P100S 7 Tow Fin Growth 7 Tow Un Capped Ceramic Jig OM7a Positions End View I

Figure FG77, P100S 7 Tow Fin Growth 7 Tow Un Capped Ceramic Jig OM7a Positions End View II

Figure FG78, P100S 7 Tow Fin Growth 7 Tow Un Capped Ceramic Jig OM7a Positions End View III

Figure FG79, P100S 7 Tow Fin Growth 7 Tow Un Capped Ceramic Jig OM7b Positions End View

 $Figure\ FG80,\ P100S\ 7\ Tow\ Fin\ Growth\ 7\ Tow\ Un\ Capped\ Ceramic\ Jig\ IM7A\ Positions\ End\ View$

Figure FG81, P100S 7 Tow Fin Growth 7 Tow Un Capped Ceramic Jig IM7b Positions End View

3.12.2 Section 12-2: P100S 5 Un Capped Tow Fin Growth

Figure FG82, P100S Fin Growth Un Capped Ceramic Jig O5a Position Side View

5 Trough Ceramic Jigs 5 Tows; Gr Cap: 846^c(845-855); Pyro: 826^c(853-1066); O2: 15min 0.5sccm; Plasma: 700W; 30Torr 50sccm H₂; Growth: 16min 10sccm CH₄

Figure FG83, P100S Fin Growth Un Capped Ceramic Jig O5a Position End View

Figure FG84, P100S Fin Growth Un Capped Ceramic Jig M5a Position Side View

Figure FG85, P100S Fin Growth Un Capped Ceramic Jig M5a Position End View

Figure FG86, P100S Fin Growth Un Capped Ceramic Jig C5 Position Side View

Figure FG87, P100S Fin Growth Un Capped Ceramic Jig C5 Position End View

Figure FG88, P100S Fin Growth Un Capped Ceramic Jig M5b Position Side View

Figure FG89, P100S Fin Growth Un Capped Ceramic Jig M5b Position End View

Figure FG90, P100S Fin Growth Un Capped Ceramic Jig O5b Position Side View

Figure FG91, P100S Fin Growth Un Capped Ceramic Jig O5b Position End View

3.12.3 Section 12-3: P100S 5 Capped Tow Fin Growth

Figure FG92, P100S Fin Growth Capped Ceramic Jig O5a Position Side View

Figure FG93, P100S Fin Growth Capped Ceramic Jig O5a Position End View

Figure FG94, P100S Fin Growth Capped Ceramic Jig M5a Position Side View

Figure FG95, P100S Fin Growth Capped Ceramic Jig M5a Position End View

Figure FG96, P100S Fin Growth Capped Ceramic Jig C5 Position Side View

5 Trough Ceramic Jigs 5 Tows; Gr Cap: 846^c(843-849); Pyro: 826^c(842-934); O2: 15min 0.5sccm; Plasma: 700W; 30Torr 50sccm H₂; Growth: 16min 10sccm CH₄ 110.2 nm 165.2 nm 184.9 nm 217.3 nm 193.4 nm 126.5 nm 241.4 nm det HV spot WD mag ETD 5.00 kV 3.0 10.0 mm 60 526 x

Figure FG97, P100S Fin Growth Capped Ceramic Jig C5 Position End View

Figure FG98, P100S Fin Growth Capped Ceramic Jig M5b Position Side View

Figure FG99, P100S Fin Growth Capped Ceramic Jig M5b Position End View

Figure FG100, P100S Fin Growth Capped Ceramic Jig O5b Position Side View

129

Figure FG101, P100S Fin Growth Capped Ceramic Jig O5b Position End View

4.0 APPENDIX B: BULK COMPOSITE FABRICATION

4.1 Section 1: Composite Lay Up Jig Design

Parts List:

- 1. One Base Plate
- 2. Two Fence Plates
- 3. Eight 8-32 1" 4140 Alloy Steel Socket Head Shoulder Screws
- 4. Eight 8-32 Stainless Steel Hex Nuts
- 5. Eight 11/64" ID 3/8" OD Stainless Steel Washers

SBS Composite Lay Up and Bonded Laser Flash Specimens Assembly Jig Engineer: Roger Gerzeski Date: Rev A 14 Jul 2010, Org 1 Dec2009
Figure BCF1, Bulk Composite Lay Up Jig Assembly Design

Tolerances: X.XXX" +/- 0.010"

Date: Rev A 2 Nov 2011, Orig 19 June 2009

Figure BCF2, Jig Base Plate Design

Note:

1. Interpret this DWG Per ANSi Y14.5M-1982

2. Screw Threads Per FED-STD-H28

3. All Fillets R 0.010" Max

4. Break All Edges 0.005" Rad. Or Cham.

5. Machines Surface Finish 64/

SBS Fence Plate Engineer: Roger Gerzeski

Material Of Construction: Aluminum Tooling Plate

Tolerances: X.XXX" +/- 0.005" Date: Rev B 24 Sep 2011, Rev A 14 Jul 2010, Org 1 Dec 2009

Figure BCF3, Fence Plate Design

Note:

1. Interpret this DWG Per ANSi Y14.5M-1982

2. Screw Threads Per FED-STD-H28

3. All Fillets R 0.010" Max

4. Break All Edges 0.005" Rad. Or Cham.

5. Machines Surface Finish 64/

Tooling Plate

Engineer: Roger Gerzeski

Material Of Construction: Pyrolytic Graphite

Tolerances: X.XXX +/- 0.010"

Date: Rev A 4 Nov 2011, Orig 1 Dec 2009

Figure BCF4, Graphite Tooling Plate Design

4.2 Section 2: Exploded Composite Lay Up Jig

Figure BCF5, Exploded Composite Lay Up Jig Side View

Figure BCF6, Exploded Composite Lay Up Jig Top View

4.3 Section 3: Assembled Composite Lay Up Jig

Figure BCF7, Assembled Composite Lay Up Jig Top Down View

135
Approved for public release; distribution unlimited.

Figure BCF8, Assembled Composite Lay Up Jig Side View

Figure BCF9, Release Ply Top Side View

Figure BCF10, Bleed Ply Insertion Top Side View

4.6 Section 6: Bottom Graphite Tooling Plate Insertion

Figure BCF11, Bottom Graphite Tooling Plate Insertion Top View

Figure BCF12, Bottom Graphite Tooling Plate Insertion Top Side View

4.7 Section 7: Bottom Tooling Plate Bleed Plies Insertion

Figure BCF13, Bottom Tooling Plate Bleed Plies Insertion Top Side View

Figure BCF14, Fiber Tow Bundle Lay Up Top View

142
Approved for public release; distribution unlimited.

4.9 Section 9: Top Tooling Plate Bleed Plies Insertion

Figure BCF15, Top Tooling Plate Bleed Plies Insertion Side View

4.10 Section 10: Top Graphite Tooling Plate Insertion

Figure BCF16, Top Graphite Tooling Plate Insertion Top View

144
Approved for public release; distribution unlimited.

Figure BCF17, Top Graphite Tooling Plate Insertion Top Side View

Figure BCF18, Top Graphite Tooling Plate Insertion Left Side View

4.11 Section 11: Trim Excess Fibers

Figure BCF19, Trimming Excess YSH Type Fibers Top View

147
Approved for public release; distribution unlimited.

4.12 Section 12: Refrigerated Composite Lay Up Storage Prior To Cure

Figure BCF20, Refrigerated Composite Lay Up Storage Prior To Cure

148
Approved for public release; distribution unlimited.

Figure BCF21, Composite Cure Profile

Figure BCF22, Composite Bagging I
Note: Zone between black marks locates laid up fiber tows exhibiting continuous graphite fins

Figure BCF23, Cured Bagged Composite

Figure BCF24, Cured DeBagged YSH50A Bulk Composite Specimens
Note: Zone between black marks locates laid up fiber tows exhibiting continuous graphite fins

Side-Edge View Side-Edge View

Bottom View I Bottom View II

Figure BCF25, Bulk YSH50A Composite Specimens made With contiguous graphite Fins exhibiting (ie WF) YSH50A fibers/tows Note: Zone between red marks locates fibers with continuous graphite fins

Bottom View I Top View

Bottom Side View Edge View

Figure BCF26, Bulk YSH50A Composite Specimens made with baseline YSH50A fibers/tows WithOut graphite Fins (ie WOF)

Figure BCF27, Cured DeBagged P100S Bulk Composite Specimens
Note: Zone between black marks locates laid up fiber tows exhibiting continuous graphite fins

Bottom View Side-Edge View

Top View I Top View II

Figure BCF28, Bulk P100S Composite Specimens made With contiguous graphite Fins exhibiting (ie WF) P100S fibers/tows Note: Zone between red marks locates fibers with continuous graphite fins

Top View Bottom View I

Figure BCF29, Bulk P100S Composite Specimens made with baseline P100S fibers/tows WithOut graphite Fins (ie WOF)

4.14 Section 14: Bulk Composite Specimen Fabrication & Cure Experimental Run 3 (ER3)

Figure BCF30, Composite Cure Profile

Figure BCF32, Cured DeBagged Bulk Composite Specimens
Note: Zone between black marks locates laid up fiber tows exhibiting continuous graphite fins

Top View Side View

Figure BCF33, Cured DeBagged Bulk YSH50A Composite Specimens made With contiguous graphite Fins exhibiting (ie WF) YSH50A fibers/tows

Note: Zone between black marks locates laid up fiber tows exhibiting continuous graphite fins

Figure BCF34, Bulk YSH50A Composite Specimens made With contiguous graphite Fins exhibiting (ie WF) YSH50A fibers/tows Note: Zone between silver-red marks locates fibers with continuous graphite fins

Figure BCF35, Cured DeBagged Bulk YSH50A Composite Specimens made with baseline YSH50A fibers/tows WithOut graphite Fins (ie WOF)

Figure BCF36, Bulk YSH50A Composite Specimens made with baseline YSH50A fibers/tows WithOut graphite Fins (ie WOF)

Figure BCF37, Cured DeBagged Bulk YS80A Composite Specimens made With contiguous graphite Fins exhibiting (ie WF) YS80A fibers/tows
Note: Zone between black marks locates laid up fiber tows exhibiting continuous graphite fins

Bottom View I Top View I

Bottom View II Top View II

Bottom View III Side-Edge View

Figure BCF38, Bulk YS80A Composite Specimens made With contiguous graphite Fins exhibiting (ie WF) YS80A fibers/tows Note: Zone between silver marks locates fibers with continuous graphite fins

Top view

Figure BCF39, Cured DeBagged Bulk YS80A Composite Specimens made with baseline YS80A fibers/tows WithOut graphite Fins (ie WOF)

Figure BCF40, Bulk YS80A Composite Specimens made with baseline YS80A fibers/tows WithOut graphite Fins (ie WOF)

Figure BCF41, Composite Cure Profile

Figure BCF42, Cured DeBagged Bulk P100S Composite Specimens made With contiguous graphite Fins exhibiting (ie WF) P100S fibers/tows Note: Zone between black marks locates laid up fiber tows exhibiting continuous graphite fins

Bottom View I Top View I

Bottom View II Top Side-Edge View

Figure BCF43, Bulk P100S Composite Specimens made With contiguous graphite Fins exhibiting (ie WF) P100S fibers/tows Note: Zone between silver marks locates fibers with continuous graphite fins

Figure BCF 44, Cured DeBagged Bulk P100S Composite Specimens made with baseline P100S fibers/tows WithOut graphite Fins (ie WOF)

Edge Top View Bottom View II

Figure BCF45, Bulk P100S Composite Specimens made with baseline P100S fibers/tows WithOut graphite Fins (ie WOF)

Figure BCF46, Composite Cure Profile

Figure BCF47, Cured Bagged Composite

Figure BCF48, Cured DeBagged Bulk YS80A Composite Specimens made with baseline YS80A fibers/tows WithOut graphite Fins (ie WOF)

Figure BCF49, Bulk YS80A Composite Specimens made with baseline YS80A fibers/tows WithOut graphite Fins (ie WOF)

Figure BCF50, Cured DeBagged Bulk P100S Composite Specimens made with baseline P100S fibers/tows WithOut graphite Fins (ie WOF)

Figure BCF51, Bulk P100S Composite Specimens made with baseline P100S fibers/tows WithOut graphite Fins (ie WOF)

5.1 Section 1: YSH50 Optical Microscopy

Figure OM1, YSH50A ER2 WF Optical Microscopy, Fiber Volume And Percolation Chains

YSH50 ER2 WOF

Figure OM2, YSH50A ER2 WOF Optical Microscopy, Fiber Volume And Percolation Chains.

Figure OM3, YSH50A ER3 WF Optical Microscopy, Fiber Volume And Percolation Chains

Figure OM4, YSH50A ER3 WOF Optical Microscopy, Fiber Volume And Percolation Chains

184

Figure OM5, YS80A ER3 WF Optical Microscopy, Fiber Volume And Percolation Chains

Figure OM6, YS80A ER3 WOF Optical Microscopy, Fiber Volume And Percolation Chains

Figure OM7, YS80A BR1 WOF Optical Microscopy, Fiber Volume And Percolation Chains

5.3 Section 3: P100S Optical Microscopy

Figure OM8, P100S ER2 WF Optical Microscopy, Fiber Volume And Percolation Chains

Figure OM9, P100S ER2 WOF Optical Microscopy, Fiber Volume And Percolation Chains

Figure OM10, P100S ER4 WF Optical Microscopy, Fiber Volume And Percolation Chains

Figure OM11, P100S ER4 WOF Optical Microscopy, Fiber Volume And Percolation Chains

Figure OM12, P100S BR1 WOF Optical Microscopy, Fiber Volume And Percolation Chains

6.1 Section 1: YSH50A Composites

192

Figure HC1, Heat Capacity Curves for YSH50A ER2 WOF

Figure HC2, Heat Capacity Curves for YSH50A ER2 WF

Figure HC3, Heat Capacity Curves for YSH50A ER3 WOF

Figure HC4, Heat Capacity Curves for YSH50A ER3 WF

5.2 Section 2: YS80A Composites

Figure HC5, Heat Capacity Curves for YS80A ER3 Initial WOF

Figure HC6, Heat Capacity Curves for YS80A ER3 Initial WF

Figure HC7, Heat Capacity Curves for YS80A ER3 Rerun WF

Figure HC8, Heat Capacity Curves for YS80A ER3 Rerun WOF

Figure HC9, Heat Capacity Curves for YS80A BR1 Initial WOF

Figure HC10, Heat Capacity Curves for YS80A BR1 Rerun WOF

6.3 Section 3: P100S Composites

Figure HC11, Heat Capacity Curves for P100S ER2 WOF

Figure HC12, Heat Capacity Curves for P100S ER2 WF

Figure HC13, Heat Capacity Curves for P100S ER4 WOF

Figure HC14, Heat Capacity Curves for P100S ER4 WF

Figure HC15, Heat Capacity Curves for P100S BR1 WOF

207

7.0 APPENDIX E: DIFFUSIVITY

7.1 Section 1: YSH50A Diffusivity

Figure D1, YSH50A ER2 WF Diffusivity

207
Approved for public release; distribution unlimited.

Figure D2, YSH50A ER2 WOF Diffusivity

208
Approved for public release; distribution unlimited.

Figure D3, YSH50A ER3 WF Diffusivity

Figure D4, YSH50A ER3 WOF Diffusivity

210 Approved for public release; distribution unlimited.

Figure D5, YS80A ER3 WF Diffusivity

211
Approved for public release; distribution unlimited.

Figure D6, YS80A ER3 WOF Diffusivity

Figure D7, YS80A BR1 WOF Diffusivity

213
Approved for public release; distribution unlimited.

Figure D8, P100S ER2 WF Diffusivity

214
Approved for public release; distribution unlimited.

Figure D9, P100S ER2 WOF Diffusivity

215
Approved for public release; distribution unlimited.

Figure D10, P100S ER4 WF Diffusivity

216
Approved for public release; distribution unlimited.

Figure D11, P100S ER4 WOF Diffusivity

217
Approved for public release; distribution unlimited.

Figure D12, P100S BR1 WOF Diffusivity

218
Approved for public release; distribution unlimited.

Figure C1, YSH50A ER2 WF Conductivity

Figure C2, YSH50A ER2 FR1 WOF Conductivity

220 Approved for public release; distribution unlimited.

Figure C3, YSH50A ER2 FR2 WOF Conductivity

Figure C4, YSH50A ER3 WF Conductivity

222
Approved for public release; distribution unlimited.

Figure C5, YSH50A ER3 WOF Conductivity

223
Approved for public release; distribution unlimited.

Figure C6, YS80A ER3 WF Conductivity ReRun

Figure C7, YS80A ER3 WOF Conductivity ReRun

225
Approved for public release; distribution unlimited.

Figure C8, YS80A ER3 WF Conductivity Initial

226
Approved for public release; distribution unlimited.

Figure C9, YS80A ER3 WOF Conductivity Initial

Figure C10, YS80A BR1 WOF Conductivity ReRun

228
Approved for public release; distribution unlimited.

Figure C11, YS80A BR1 WOF Conductivity Initial

5.5

Figure C12, P100S ER2 WF Conductivity

230
Approved for public release; distribution unlimited.

Figure C13, P100S ER2 WOF Conductivity

Figure C14, P100S ER4 WF Conductivity

232 Approved for public release; distribution unlimited.

Figure C15, P100S ER4 WOF Conductivity

233
Approved for public release; distribution unlimited.

Figure C16, P100S BR1 WOF Conductivity

234
Approved for public release; distribution unlimited.

9.0 APPENDIX G: ABREVIATIONS

Abbreviation Meaning

STD Standard Deviation

WF With Fins WOF Without Fins

MCDS Modulated Differential Scanning Calorimetry

°C Degrees Celsius

 $\begin{array}{ccc} J & & Joules \\ g & & Grams \\ N_2 & & Nitrogen \end{array}$

C_p Heat Capacity A Specimen A

A1 First Run of Specimen A
A2 Second Run of Specimen A

B Specimen B

B1 First Run of Specimen B
B2 Second Run of Specimen B

gms Grams K Kelvin

k Conductivity

W Watts m Meters

V_F Fiber Volume

sccm Standard Cubic Centimeters

TBE Tote Bundle Edge

psi Pounds per square inch °F Degrees Fahrenheit

nm Nanometers
H₂ Hydrogen
MPa Megapascal
Lbf Pound-force

FG Fin Growth D Diffusivity

BCF Bulk Composite Fabrication

OM Optical Microscopy

MWCVD Microwave Plasma Chemical Vapor Deposition