

MT7530 Giga Switch Programming Guide

Version: 06

Release date: 2014-8-18

© 2008 - 2014 MediaTek Inc.

This document contains information that is proprietary to MediaTek Inc. Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited.

Specifications are subject to change without notice.

Document Revision History

Revision	Date	Author	Note					
V00	2013/07/10	JayYC	Initial release					
V01	2013/09/10	JayYC	Draft version					
V02	2014/01/29	JayYC	Add Broadcast Storm suppression					
			Add TrTCM setting					
			3. Add QoS					
			Add ingress & egress rate control					
V03	2014/04/25	JayYC						
V04,V05	2014/08/11	JayYC	Update switch configuration					
			DSCP					
V06	2014/08/18	JayYC	Loop detection					
V07	2014/10/12	JayYC	VLAN ID translation					

Table of Content

Document Revision History	2
Table of Content	3
Introduction	5
Mode setting	6
Reset	8
Access control list (ACL)	8
Broadcast Storm suppression	13
Drop Precedence control	15
DSCP	19
EEPROM:	20
Egress Rate limit control	21
Flow control	23
Ingress rate control	25
Link Status	27
Link Status change	30
LED controller	30
Loop detection	36
MAC 5 interface setup	39
MAC 6 interface setup	41
MAC forward control	44
MAC table aging time	45
MAC table	46
MAC number control	47
PHY auto polling and SMI master control register	47
Output queue	48
VLAN setting	49
VLAN translation	52
QoS (Quality of Services)	54
Special tag format	58
Local port enable	69
System MAC Controller	70
Two Rate Three Color Marker (TrTCM)	71
MIB (management information base) counter	73
Annex	80
User Port	80
Translation Port	80

Transparent Port	80
Security mode	80
Check mode	80
Fallback mode	81
Port Matrix mode	81

Introduction

MT7530 including 7-port Gigabit Ethernet MAC and 5-port Gigabit Ethernet PHY for several applications, such as xDSL, xPON and Wifi router. It complies with IEEE 802.3az for Energy Efficient Ethernet and cable-length /link down power saving mode. Please refer to the below figure to know the construct of MT7530.

Mode setting

The register 0x 7800 is hardware trap, it is made when power on (define by boot-strap resistance). You can change it by writing 0x7804. Finally, the system would active according 0x7804 not 0x7800. Some registers of 0x7800 cannot be changed. For detail, please check the switch register map. You should check it bit by bit.

0000780	0	<u>HWTF</u>	RAP		Hardware Trap Status Register								01007FFF			
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		ht_loo pdet_d is		ht_sm	i_addr	ht_xta	al_fsel			intf_di				ht_chip	_mode	
Type		RO	RO	R	0	R	0	RO	RO	RO	RO	RO		R	0	
Reset		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

If you want to change 0x7804, you need to set bit 16 as 1 of 0x7804 first.

0000780)4	MHW	<u> </u>		Modif	ied Ha	ardwa	re Trap Status Register						0100000F		
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name												csr_p5 _phy0 _sel				csr_ch g_trap
Type												RW				RW
Reset												0				0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		csr_lo opdet_ dis			ni_addr	csr_xt				_intf_d	csr_c_ mdio_ bps_n			csr_chi	p_mod	е
Type	RW	RW	RW	R	0	R	0	RW	RW	RW	RW	RO		R	0	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1

Bit(s)	Name	Description
20	csr_p5_phy0_sel	When p5_intf_sel == 1'b0, the external device will be connected to 1'b0: GPHY4 1'b1: GPHY0
16	csr_chg_trap	Change HW-TRAP setting 1'b1: Change 1'b0: Use default HW-TRAP setting
15	csr_gsw_ck_sel	Control GSW_CK (if csr_chg_trap == 1) 1'b0: 500MHz 1'b1: 200MHz
14	csr_loopdet_dis	Hardware Loop Detection Disable (if csr_chg_trap == 1) 1'b0: Enable 1'b1: Disable
13	csr_p5_intf_sel	Port 5 Interface Selection (if csr_chg_trap == 1) 1'b1: P5 Interface connects to GMAC5 1'b0: P5 Interface connects to GePHY4 or GePHY0 (depends on csr_p5_phy0_sel)
12:11	csr_smi_addr	csr_smi_addr is equal to ht_smi_addr[1:0] (offset: 0x7800, bit 12~11) since this hardware trap cannot be modified by software.
10:9	csr_xtal_fsel	csr_xtal_fsel is equal to ht_xtal_fsel[1:0](offset: 0x7800, bit 10~9)since this hardware trap cannot be modified by software.
8	csr_p6_intf_dis	From hw_trap[8] Port 6 Interface Disable (if csr_chg_trap == 1) 1'b0: Enable

		1'b1: Disable
7	csr_p5_intf_mode	Port 5 Interface Mode (if csr_chg_trap == 1) 1'b0: GMII/MII 1'b1: RGMII
6	csr_p5_intf_dis	Port 5 Interface Disable (if csr_chg_trap == 1) 1'b1: Disable 1'b0: Enable
5	csr_c_mdio_bps_n	Directly access phy mdc (if csr_chg_trap==1) 0: Directly access PHY registers via C_MDC/C_MDIO 1: Indirectly access PHY registers
4	csr_eeprom_en	csr_eeprom_en is equal to ht_eeprom_en (offset: 0x7800, bit 4) since this hardware trap cannot be modified by software.
3:0	csr_chip_mode	csr_chip_mode is equal to ht_chip_mode[3:0] (offset: 0x7800, bit 3~0) since this hardware trap cannot be modified by software.

Please also check the detail hardware strapping of MT7530.

Pin Name	Туре	Pin Number	Description
P4_LED_0	I/O	99	Crystal clock frequency selection
P3_LED_0		102	{P4_LED_0, P3_LED_0} signals are used to control the crystal
			clock input frequency to XO and XI.
			00: Reserved.
			01: 20MHz
			10: 40MHz
			11: 25MHz (default)
P3_LED_2	I/O	100	SMI Address selection
P3_LED_1		101	{P3_LED_2, P3_LED_1} signals are used to define decoded
			Serial Management Interface(SMI) addresses of
			C_MDC/C_MDIO for command registers access
			00 : Use 7 to 12 SMI addresses
			01 : Use 15 to 20 SMI addresses
			10 : Use 23 to 28 SMI addresses
			11 : Use 31 and 0 to 4 SMI addresses (default)
P1_LED_1	I/O	107	SMI Access control
			0: PHY access mode 0
			1: PHY access mode 1 (default)
P1_LED_2	I/O	106	P5 Interface Disable
			0: Enable P5 IO
			1: Disable P5 IO (default)
P2_LED_1	I/O	104	P5 Interface Mode
			0: GMII or MII mode
			1: RGMII mode (default)
P4_LED_1	I/O	98	P5 Interface Selection
			0: P5 IO is connected to GPHY4
			1: P5 IO is connected to GMAC5 (default)
P2_LED_2	I/O	103	P6 Interface Disable

Pin Name	Туре	Pin Number	Description
			0: Enable P6 IO
			1: Disable P6 IO (default)
PO_LED_2	I/O	109	EEPROM Auto Initialization
			0: Disable EEPROM auto initialization
			1: Enable EEPROM auto initialization (default)
P4_LED_2	I/O	97	Loop Detection Alarm
			0: Enable loop detection
			1: Disable loop detection (default)

^{*}Note 1: We would suggest that SMI address of MT7530 is 5'b11111. If not, you need to change the driver of MT7530.

Reset

Check the Register 0x7000 if you want to do the software reset to switch or PHY. Usually, we would set 0x7000 as 0x3 for re-start switch.

0000700	0	SYS_	CTRL		Syste	m Coi	ntrol								000	00000
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name											MAC_					BMU_
										AB_INI						MEM_I
										T	NIT	NIT				NIT
Type										RO	RO	RO				RO
Reset										0	0	0				0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		TRTC M_BIS T_STS	_	CTRL_ BIST_ STS						FL_BI ST_ST S		MBIST _EN		SW_P HY_RS T		SW_R EG_R ST
Туре		RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RW		R/W/S C	R/W/S C	R/W/S C
Reset		0	0	0	0	0	0	0	0	0	0	0		0	0	0

Access control list (ACL)

ACL Rule table is implemented along with packet parser. For the incoming packet, 2-bytes packet content will be filtered sequentially and compared with 64 patterns in the ACL rule table. When one pattern is hit, the corresponding rule flag will be set. After the whole packet is done, the final 64-bits rule flag will be sent to the ACL look-up engine to get the corresponding rule control. MT7530 can support up to 32 entries ACL rules.

Take port 0 for example:

0x2004 ff0400 //enable ACL of port 0, this setting is by per-port.

After enable ACL, you need to setup ACL hit pattern. We would check the VLAN for example here.

First:

Set ACL pattern:

0x94 ffff8100 //"ffff" mean compare 2-bytes payload and need match 0x8100. 0x98 0008ff0c //ACL pattern enable, MAC header. P0 to P6. Offset 12byte. //bit [15:12]: 4'b0101: //Write the specific ACL Table entry. It is 1st rule.

Second:

Set ACL mask:

 $0x94\ 00000021$ //0x21 = 0010.0001 . Active 1st and 6th rule.

0x98 00000000

0x90 80009002 //bit [15:12]: 4'b1001: Write the specific 3rd ACL Mask entry

//use mask can enable many rules at the same time

Or set ACL mask (another sample):

 $0x94\ 00000004$ //0x4=0100. Active 3^{th} rule.

Setup the ACL action:

0x94 18000080 //Refer to 0x0094 (ACL rule control). This is used for drop packet.

0x98 00000000

//bit [15:12]: 4'b1011: Write ACL rule control entry, Action for $\mathbf{1}^{st}$ rule. //The first rule entry need to start from "1". 0x90 8000b001

Destination Address	Source Address	VLAN TAG	Type / Length	Payload	FCS
6 byte	6 byte	4byte	2byte	1500 byte	4 byte

00002004	PCR	Port Control of P0	00FF0000
----------	-----	--------------------	----------

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	REV0	MLDv2 _EN	EG_	TAG	REV1	P	ORT_P	RI				PORT_	MATRIX	(
Type	DC	RW	R	W	DC		RW					R	W			
Reset	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		REV2		UP2D SCP_E N	UP2TA G_EN	ACL_E N	PORT _TX_M IR	PORT _RX_ MIR	ACL_ MIR	MIS	_PORT	_FW	REV3	VLAN_ MIS	PORT_	_VLAN
Туре		DC		RW	RW	RW	RW	RW	RW		RW		DC	RW	R'	W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

00000090	VTCR	VLAN Table Control	00000000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	BUSY							RE	V0							IDX_IN VLD
Type	W1C							D	C							RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		FU	NC							V	ID					
Type		R	W		RW											
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description
31	BUSY	VLAN Table Is Busy
		SW can set this bit to 1 only if this bit is reset. After the VTCR register is written and this bit is set, this chip will perform the corresponding function on the VLAN table based on FUNC bits.
30:17	REV0	Reserved
16	IDX_INVLD	Entry is not Valid
		This index for the access control is out of the valid index.
15:12	FUNC	Access Control Function
		Whenever VTCR register is written and bit.31 is set, this chip will perform the corresponding function on the VLAN table based on FUNC bits. 4'b0000: Read the specified VID Entry from VAWD# register based on VID bits 4'b0001: Write the specified VID Entry though VAWD# register based on VID bits. 4'b0010: Make the specified VID entry invalid based on VID bits. 4'b0011: Make the specified VID entry valid based on VID bits . 4'b0100: Read the specified ACL Table entry. 4'b0101: Write the specified ACL Table entry. 4'b0101: Read the specified trTCM Meter Table. 4'b0111: Write the specified ACL Mask entry. 4'b1001: Write the specified ACL Mask entry. 4'b1010: Read the specified ACL Mask entry. 4'b1011: Write the specified ACL Rule Control entry.

4'b1100: Read the specified ACL Rate Control entry. 4'b1101: Write the specified ACL Rate Control entry. 4'b1110: Reserved

4'b1111: Reserved

11:0 VID

1. VLAN ID Number: 0x0 to 0x1F (16)

2. ACL table index: 0x0 to 0x3F (64) 3. ACL mask control: 0x0 to 0x3F (32 or 64)

0x94

(ACL Rule Table)

Bits	Туре	Name	Description	Initial value
31:16	RW	BIT_MASK	Comparison Pattern Mask	0x0
15:0	RW	CMP_PAT	Comparison Pattern	0x0

(ACLRule Mask)

Bits	Туре	Name	Description	Initial value
31:0	RW	ACL_MASK	ACLMask[31:0]	0x0

(ACLRule Control)

Bits	Туре	Name	Description	Initial value
31:30	-	-	Reserved	0x0
29	RW	ACL_MANG	Management Frame Attribute	0x0
28	RW	INT_EN	Interrupt Enable	0x0
27	RW	ACL_CNT_EN	Enable ACL Hit Count	0x0
26:24	RW	CNT_IDX	Counter Group Index	0x0
23	RW	VLAN_PORT_EN	Swap VLAN Member	0x0
22	RW	DA_SWAP	Multicast MAC Address Swap	0x0
21	RW	SA_SWAP	Source MAC Address Swap	0x0
20	RW	PPP_RM	PPPoE Header Removal	0x0
19	RW	LKY_VLAN	Leaky VLAN	0x0
18:16	RW	EG_TAG	Egress VLAN Tag Attribute	0x0
15:8	RW	PORT	Destination Port / VLAN Member	0x0
7	RW	PORT_EN	Force Destination port	0x0
6:4	RW	PRI_USER	User Priority from ACL	0x0
3	RW	MIR_EN	Frame Copy to Mirror Port	0x0
2:0	RW	PORT_FW	Frame TO_CPU Forwarding	0x0

0x98

(ACL Rule Table)

Bits	Туре	Name	Description	Initial value
31:20	-	-	Reserved	0x0
19	RW	EN	ACL Pattern Enable	0x0
18:16	RW	OFST_TP	Offset Range	0x0
15:8	RW	SP	Incoming Source Port Bit-map	0x0
7:1	RW	WORD_OFST	Word Offset	0x0
0	RW	CMP_SEL	Comparison mode selection	0x0

Offset range table:

3'b000: MAC Header (inc. VLAN tags and Length/Type) (L2 Offset)

3'b001: L2 Payload (L2 Offset) 3'b010: IP Header (L3 Offset) 3'b011: IP Datagram (L3 Offset) 3'b100: TCP/UDP Header (L4 Offset) 3'b101: TCP/UDP Datagram (L4 Offset) 3'b110: IPv6 Header (L3 Offset)

3'b111: Reserved

(ACLRule Mask)

Bits	Туре	Name	Description	Initial value
31:0	RW	ACL_MASK	ACL Mask[63:32]	0x0

(ACL Rule Control)

Bits	Typo	Name	Description	Initial value
	Type		Description	
31:24	RW	Reserved		0x0
23:19	RW	ACL_CLASS_I DX	Class index for the 32-entries meter table	0x0
18:17	RW	Reserved		0x0
16	RW	Reserved		0x0
15:14	RW	Reserved		0x0
13:11	RW	DROP_PCD_ G	User Defined Drop Precedence for Green color packet	0x0
10:8	RW	DROP_PCD_Y	User Defined Drop Precedence for Yellow color packet	0x0
7:5	RW	DROP_PCD_ R	User Defined Drop Precedence for Red color packet	0x0
4:2	RW	CLASS_SLR	User Defined Class Selector	0x0
1	RW	CLASS_SLR_ SEL	Select original class_selector value or ACL control table defined class selector value	0x0
0	RW	DROP_PCD_S EL	Select original drop precedence value or ACL control table defined drop Precedence value	0x0

Broadcast Storm suppression

Broadcast Storm is commonly caused by faulty protocol implementations, undetected network loops, or faulty network equipment. Broadcast storms can cause significant disruption to the network. Broadcast control is possible by using filters or user-defined throttle settings that limit broadcast/multicast propagation to a certain rate.

MT7530 provide the per-port broadcast storm controller, loop detection and alarm signal to avoid it. Here we show the example to do the rate-base control of Broadcast storm.

Register 0x30c0 is used for setting the loop detection.

You may set it if Broadcast storm came from port 1:

Set 0x30c0 as 0x1f130000 //port 0 ~ port 4 enable LPDET,

Set 0x211c as 0xce030303 //set port 1 to detect broadcast storm according to rate-based, and drop the packet. The limit rate is around 3Mbps for 1000Mbps, 100Mbps and 10Mbps base.

Read 0x30c0 again to check the per-port LPDET_ALARMx information.

000030C0 <u>LPDET_CTRL</u> LOOP DETECTION CONTROL REGISTER

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		LPDET _EN6	LPDET _EN5	LPDET _EN4	LPDET _EN3	LPDET _EN2	LPDET _EN1	LPDET	_PERI	LPDET _ALA RM_E N	LPDET _PASS	LPDET _PERI OD	LPDET _LED_ RATE	LPDET	_THRE	SHOL
Type		RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW		RW	
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	LPDE T_ST_ LOOP	LPDET _ST_B CST	LPDET _TRAP _EN							LPDET _ALA RM6		LPDET _ALA RM4		LPDET _ALAR M2		
Type	RO	RO	RO							RO	RO	RO	RO	RO	RO	W1C
Reset	0	0	0						·	0	0	0	0	0	0	0

-	Bit(s)	Name	Description
	30	LPDET_EN6	Enable the loop detection ability of user port 6. 0: Disable 1: Enable
	29	LPDET_EN5	Enable loop detection the ability of user port 5. 0: Disable 1: Enable
	28	LPDET_EN4	Enable loop detection the ability of user port 4. 0: Disable 1: Enable
	27	LPDET_EN3	Enable loop detection the ability of user port 3. 0: Disable 1: Enable
	26	LPDET_EN2	Enable loop detection the ability of user port 2. 0: Disable 1: Enable
	25	LPDET_EN1	Enable loop detection the ability of user port 1. 0: Disable 1: Enable
	24	LPDET_EN0	Enable loop detection the ability of user port 0. 0: Disable

		1: Enable
23	LPDET_PERIOD_EN	The loop detection frame is triggered by a periodical timer or by broadcast storm. 0: Broadcast mode 1: Periodical mode
22	LPDET_ALARM_EN	Enable 2 kHz alarm output and per-port LED when loop is detected. 0: Disable 1: Enable
21	LPDET_PASS	Loop detection frame is blocked or passed to packet memory. 0: Blocked 1: Pass
20	LPDET_PERIOD	Interval of transmitting loop detection frame in Periodical mode. 0: 125 us 1: 1000 ms
19	LPDET_LED_RATE	LED blinking rate of per port when loop is detected. 0: LED blinking at 2 Hz 1: LED blinking at 4 Hz
18:16	LPDET_THRESHOLD	Number of missed loop detection frame before 2 kHz alarm is reset
15	LPDET_ST_LOOP	The status of loop detection. In LOOP state, the loop detection frame is transmitted, and the loop detection frames are received. 0: Not in Loop state
		1: Loop state
14	LPDET_ST_BCST	The status of loop detection. In BCST state, the loop detection frame is transmitted, but no loop detection frame is received.
		0: Not in BCST state 1: BCST state
13	LPDET_TRAP_EN	Status of strap pin for loop detection
		0: Disabled 1: Enabled
6	LPDET_ALARM6	The status of loop detected on port 6. This bit is cleared when LPDET_ALARM0 is written as 1. 0: Not detected
		1: Detected
5	LPDET_ALARM5	The status of loop detected on port 5. This bit is cleared when LPDET_ALARM0 is written as 1.
		0: Not detected 1: Detected
4	LPDET_ALARM4	The status of loop detected on port 4. This bit is cleared when LPDET_ALARM0 is written as 1. 0: Not detected 1: Detected
3	LPDET_ALARM3	The status of loop detected on port 3. This bit is cleared when LPDET_ALARM0 is written as 1. 0: Not detected 1: Detected
2	LPDET_ALARM2	The status of loop detected on port 2. This bit is cleared when LPDET_ALARM0 is written as 1. 0: Not detected 1: Detected
1	LPDET_ALARM1	The status of loop detected on port 1. This bit is cleared when LPDET_ALARM0 is written as 1. 0: Not detected 1: Detected
0	LPDET_ALARM0	The status of loop detected on port 0. This bit is cleared when it is written as 1. 0: Not detected 1: Detected

	0000201C	BSR	Broadcast Storm Rate Control of P0	0000000
--	----------	-----	------------------------------------	---------

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	STRM	STRM	STRM	STRM	STRM	STRM										
	_MOD	_BC_I	_MC_I	_UC_I	_DRO	_PER	STRM	_UNIT	STORM_1G							
	E	NC	NC	NC	P	D										
Type	RW	RW RW RW RW RW								RW						
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7 6 5 4 3 2 1 0							0
Name	STORM_100M									STORM_10M						
Type	RW									RW						
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description
31	STRM_MODE	Broadcast Storm Suppression 0: Packet-based (1 second period) 1: Rate-based
30	STRM_BC_INC	Broadcast Storm Included 0: Exclude BC frame 1: Include BC frame
29	STRM_MC_INC	Unknown Multicast Storm Included 0: Exclude MC frame 1: Include MC frame
28	STRM_UC_INC	Unknown Unicast Storm Included 0: Exclude UC frame 1: Include UC frame
27	STRM_DROP	Broadcast Storm Suppression enabled 0: BC Storm detection only 1: Enable packet drop when BC storm is detected
26	STRM_PERD	Broadcast Strom Detection Signal Period 0: One second 1: 125us
25:24	STRM_UNIT	Broadcast Storm Suppression 2'b00: 64 packets or 64 Kbps 2'b01: 256 packets or 256 Kbps 2'b10: 1 K packets or 1 Mbps 2'b11: 4 K packets or 4 Mbps
23:16	STORM_1G	1000 Mbps Broadcast Storm Rate Limit Control The broadcast storm rate limit for 1000 Mbps link speed 8'h0: (0* STORM_UNIT) packets or bps 8'h1: (1* STORM_UNIT) packets or bps
15:8	STORM_100M	100 Mbps Broadcast Storm Rate Limit Control The broadcast storm rate limit for 100 Mbps link speed 8'h0: (0* STORM_UNIT) packets or bps 8'h1: (1* STORM_UNIT) packets or bp
7:0	STORM_10M	10 MbpsBroadcast Storm Rate Limit Control The broadcast storm rate limit for 10 Mbps link speed 8'h0: (0* STORM_UNIT) packets or bps 8'h1: (1* STORM_UNIT) packets or bps

Drop Precedence control

The "Drop Precedence" is addon function for the Flow Control. The function can enable or disable. When an enqueue request is on, the control signals of the packet like as queue priority, drop precedence which are from ARL module will feed into Drop Precedence controller, the controller will check the queue depth and drop probability to

decide the packet will be dropped or not. Fin ally, it will feedback the "dp_packet_drop" signal to tell the Flow Control to drop the packet or not. The drop precedence of value is by user setting inthe ACL entry or trTCM engine.

The meaning of dorop precedence which is from ARL is

- (a) 2'b00, 2'b01 : No drop.
- (b) 2'b10: The drop probability of the incoming packet is based on "Graph A" setting.
- (c) 2'b11: The drop probability of the incoming packet is based on "Graph B" setting.

PnQm_pr_dp10/11 : Drop probability of Port n Queue m when drop precedence = 2'b10/2'b11.

PnQm_lt_dp10/11: Low threshold of of Port n Queue m when drop precedence = 2'b10/2'b11.

PnQm_ht_dp10/11: High threshold of Port n Queue m when drop precedence = 2'b10/2'b11.

Here we show the test environment as below:

We would design one ACL to hit the "0x0001" in the data from port 6 to mark a color for it. And use DROP precedence at port 0.

```
MAC:

MAC: Destination Address: 00 00 00 00 00 02

MAC: Source Address: 00 00 00 00 00 02

MAC: Source Address: 00 00 00 00 00 02

MAC:

MAC: Source Address: 00 00 00 00 00 02

MAC:

MAC: Source Address: 00 00 00 00 00 00

SNAP:

SNAP:

SNAP:

SNAP:

LLC:

LLC:

LLC:

LLC:

LLC:

LLC:

MAC:

M
```

;ACL port enable ethphxcmd gsww 2604 00ff0403


```
;ACL entry
ethphxcmd gsww 0094 ffff0001
                                 // 0xffff - compare 2-byte data
                               // 0x0001- compare pattern should be as 0x0001
ethphxcmd gsww 0098 0008400c
                                  // 0x000 MAC offset (bit 18:16)
                               //0x8 - ACL pattern enable
                               // 0x4 – incoming source port is port 6(bit 15:8)
                               // 0xc –offset
ethphxcmdgsww 0090 80005000
                                   //Write ACL table entry
ethphxcmd gsww 0094 00000001
ethphxcmd gsww 0098 00000000
ethphxcmd gsww 0090 80009000
                                  //Write ACL mask
ethphxcmd gsww 0094 00000000
ethphxcmd gsww 0098 00060000
                                  //mark as red
ethphxcmd gsww 0090 8000b000
                                  //ACL rule control
```

Set Drop precedence for Port 0 Q2

```
ethphxcmd gsww 180c 80000000 //enable drop precedence
ethphxcmd gsww 1814 80000000
ethphxcmd gsww 182c 011ff000 // Drop probability of P0 Q2
```

0x0098 (ACL Rule Control)

Bits	Туре	Name	Description	Initial value
31:24	RW	Reserved		0x0
23:19	RW	ACL_CLASS_I DX	ACL Class index for the 32-entries meter table (TrTcm)	0x0
18:17	RW	ACL_ User defined color remark	00:default, 01:Green, 10:Yellow, 11:Red)	0x0
16	RW	Select Color	1: TrTcm 0: ACL	0x0
15:14	RW	Reserved		0x0
13:11	RW	DROP_PCD_ G	User Defined Drop Precedence for Green	0x0
10:8	RW	DROP_PCD_ Y	User Defined Drop Precedence for Yellow	0x0
7:5	RW	DROP_PCD_ R	User Defined Drop Precedence for Red	0x0
4:2	RW	CLASS_SLR	User Defined Class Selector	0x0
1	RW	CLASS_SLR_ SEL	Select ACL Defined Class Selector	0x0
0	RW	DROP_PCD_	Select ACL Defined Drop Precedence	0x0

	!	
	191	
	IJLL	

0000180C MMDPR_10_Q0P Drop Precedence control 10 of Q0 Port 0

0000000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Name	P0_DP					P0Q0_pr_dp10						P0Q0_ht_dp10[8:4]					
	_en																
Type	RW					RW						RW					
Reset	0					0	0	0				0	0	0	0	0	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name	P0	Q0_ht_	dp10[3	:0]					P0Q0_lt_dp10								
Type		R'	W	•					RW								
Reset	0	0	0	0				0	0	0	0	0	0	0	0	0	

Bit(s)	Name	Description
31	P0_DP_en	Enable Drop Precedence function of P0. (If the function is enabled, some packets will be dropped no matter the flow control is ON or OFF) (1) When queue depth >= P0Q0_ht_dp10, the drop probability of the incoming packet is 100%.
		 (2) When queue depth < P0Q0_lt_dp10, the drop probability of the incoming packet is 0%. (3) When P0Q0_lt_dp10 <= queue depth < P0Q0_ht_dp10, the drop probability of incoming packet is based on the setting P0Q0_pr_dp10. 0: Disable 1: Enable
26:24	P0Q0_pr_dp10	Drop probability of P0 Q0 for drop precedence = 2'b10. 0x0: 0% 0x1: 12.5% 0xn: n* 12.5% 0x7: 87.5% (n=2~6)
20:12	P0Q0_ht_dp10	High threshold of P0 Q0 depth for drop precedence = 2'b10. Unit: page size
8:0	P0Q0_lt_dp10	Low threshold of P0 Q0 depth for drop precedence = 2'b10. Unit: page size

00001814 MMDPR 10 Q2P Drop Precedence control 10 of Q2 Port 0

0000000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	1/	16
Name						POC	(2_pr_c	lp10					P0Q2	_ht_dp1	0[8:4]	
Type							RW							RW		
Reset						0	0	0				0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	P0	Q2_ht_	dp10[3	:0]					P0Q2_lt_dp10							
Type		R'	W									RW				

Bit(s)	Name	Description
26:24	P0Q2_pr_dp10	Drop probability of P0 Q2 for drop precedence = 2'b10.
		0x0: 0%
		0x1: 12.5%
		0xn: n* 12.5%
		0x7: 87.5%
		(n=2~6)
20:12	P0Q2_ht_dp10	High threshold of P0 Q2 depth for drop precedence = 2'b10. Unit: page size
8:0	P0Q2_lt_dp10	Low threshold of P0 Q2 depth for drop precedence = 2'b10. Unit: page size

0000182C MMDPR 11 Q0P Drop Precedence control 11 of Q0 Port 0

0000000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name						POG	0_pr_d	p11					P0Q0	_ht_dp1	1[8:4]	
Type							RW							RW		
Reset						0	0	0				0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	P0	Q0_ht_	dp11[3	:0]							P00	Q0_lt_d	p11			
Type		R'						RW								
Reset	0	0	0	0				0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description
26:24	P0Q0_pr_dp11	Drop probability of P0 Q0 for drop precedence = 2'b11. 0x0: 0% 0x1: 12.5% 0xn: n* 12.5% 0x7: 87.5% (n=2~6)
20:12	P0Q0_ht_dp11	High threshold of P0 Q0 depth for drop precedence = 2'b11. Unit: page size
8:0	P0Q0_lt_dp11	Low threshold of P0 Q0 depth for drop precedence = 2'b11. Unit: page size

DSCP

DSCP means Differentiated Services Code Point. DSCP use 6 bits and the range is between 0 to 63.

Refer to IXIA setting.

Follow the step to set the QoS of DSCP.

- 1. Disable flow control: 0x1fe0 bit 31 as 0
- 2. Set DSCP UPW as high: 0x44 bit 12 to bit 14 as 3'h111.
- 3. Set SP and WRR as you want.

Please also know the DSCP mapping table map as below.

Default User Priority Mapping Table from PEM1 ~ PEM4

User Priority	VLAN Pri	DSCP	LAN/WAN Queue	CPU Queue
3'h0	3'h0	6'h00	2'h1	3'h2
3'h1	3'h1	6'h08	2'h0	3'h0
3'h2	3'h2	6'h10	2'h0	3'h1
3'h3	3'h3	6'h18	2'h1	3'h3
3'h4	3'h4	6'h20	2'h2	3'h4
3'h5	3'h5	6'h28	2'h2	3'h5
3'h6	3'h6	6'h30	2'h3	3'h6
3'h7	3'h7	6'h38	2'h3	3'h7

EEPROM:

Before use EEPROM, please read 0x7800 bit 4 is 1 or not. If you want to use it, it should be as 1.

You need to use 0x7120 as the register for EEPROM programming. Here take the changing the port 0 register 4 for example.

Ethphxcmd gsww 7120 c000<mark>3075</mark> // Must write the initial address of EEPROM as 7530 Ethphxcmd gsww 7120 c00<mark>2</mark>1c70 // Use 0x701c to write PHY register, and write to address 2.

Ethphxcmd gsww 7120 c0040<mark>5e1 // Write data 05e1 to address 4. Ethphxcmd gsww 7120 c0068805</mark>

// Write data 8805 to address 6, the final data would be 880505e1

It means write 05E1 to register 4 of port 0.

00007120	FFPR IND	FEPROM INDIRECT ACCESS CONTROL REGISTER	0000000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	EP_IN D_AC T											EP_IND	_ADDR	l		
Type	RW	RW										R	W			
Reset	0	0							0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								EP_IND	_DATA	\						
Type								R'	W							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

0000701C	PHY IAC	PHY Indirect Access Control	00090000
0000701C	PHY IAC	PHY Indirect Access Control	0009

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	PHY_															
	ACS_			MDIO	_REG_	ADDR			MDIO	_PHY_	ADDR		MDIO	_CMD	MDI	D_ST
	ST															
Type	R/W/S				RW					RW			Ь	W	ь	W
	С				IXVV					IXVV				vv	I.	٧V
Reset	0		0	0	0	0	0	0	0	0	0	0	1	0	0	1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							M	IDIO_R	W_DAT	Ά						
Type			•	•	•	•	•	R/W	/RO				•		•	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Write command example:

command	switch reg	EEPROM ADD					
ethphxcmd gsww	7120	c000	3	0	7	5	*chip ID, only need write at EEPROM reg 0.
ethphxcmd gsww	7120	c002	1	С	7	0	*MDIO register
ethphxcmd gsww	7120	c004	0	1	8	1	* data
ethphxcmd gsww	7120	c006	8	8	0	5	*command line

Read command example:

command	switch reg	EEPROM ADD					
ethphxcmd gsww	7120	c000	3	0	7	5	*chip ID, only need write at EEPROM reg 0.
ethphxcmd gsww	7120	c002	1	С	7	0	*MDIO register
ethphxcmd gsww	7120	c004	0	0	0	0	*command line
ethphxcmd gswr	7120						

Egress Rate limit control

There are many ways to do the rate control, like ACL rate control, ingress or egress rate control. If you want to use egress rate control, please disable flow control first to avoid the ingress congestion.

Set bit 31 of 0x1fe0 as 0 to disable global flow control.

Set 0x10e0 as 0x118 to include the IPG byte for egress rate control.

Here we show the sample for port 1 egress rate control.

egress rate	Reg 0x1140
10Mbps	0x0138898f
20Mbps	0x0271898f
30Mbps	0x03a9898f
40Mbps	0x04e2898f
100Mbps	0x0c35898f

${\color{red}000010E0 \qquad \underline{GERLCR} \qquad \qquad Global \ Egress \ Rate \ Limit \ Control \ Register}$

Λ	Λ	Λ	Λ	n	1	0
v	U	v	v	U	1	U٤

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							VIEW	EGC_I PG_OP			F	GC_IP	G_BYT	E		
Type							RW	RW				R	W			
Reset							0	1	0	0	0	0	0	1	0	0

Bit(s)	Name	Description
9	EGC_MFRM_EX	When this bit is enabled, management frames are excluded in the egress rate limit control mechanism; otherwise, management frames are included. (Management frame type is set by ARL registers)
		Include management frames Exclude management frames
8	EGC_IPG_OP	Egress Rate IPG Byte Addition or Subtraction Byte count should be added or subtracted for the rate calculation. 0: IPG byte is excluded 1: IPG byte is included
7:0	EGC_IPG_BYTE	Egress Rate IPG Byte Count Byte count should be added while calculating the rate limit. 0x04: 4 byte CRC (default) 0x18: 4 byte CRC + 12 byte IPG + 8 byte Preamble

$00001040 \qquad \underline{ERLCR_P0} \qquad \quad Egress \ Rate \ Limit \ Control \ Register \ of \ Port \ 0$

0000	0000
UUUU	UUUU

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
Name							EGC_	RATE	CIR_15	15_0_P0								
Type								R	W									
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
Name	EG_R ATE_L IMIT_ EN_P0			EGC_ RATE_ CIR_1 6_P0			MIT_EX B_T_P(EGC_ TB_EN _P0	EG_I	RATE_I	LIMIT_	MAN_P	0_EGC	_TB_CB	6S_P0		
Type	RW			RW		RW				RW								
Reset	0			0	0	0	0	0	0	0	0	0	0	0	0	0		

Bit(s)	Name	Description
31:16	EGC_RATE_CIR_15_0_P0	Total 17 bits EGC_CIR include EGC_RATE_CIR_16 in bit 12 location, support 32Kbps stepping CIR cover up to 2.5Gbps
15	EG_RATE_LIMIT_EN_P0	EXP: egress_rate_limit_exp MAN: egress_rate_limit_man Egress port rate limitation: MAN*10^(EXP)*1Kbps
		0: Egress rate limit control disable

1: Enable

12 EGC_RATE_CIR_16_P0 Combined with EGC_RATE_CIR_15_0 to form a 17 bits CIR value EG_RATE_LIMIT_EXP_P0 Exponent part of port 0 ingress rate limit control value range: 0..13 (4-bit), 11:8 _EGC_TB_T_P0 When EGC_TB_EN = 1, support EGC_TB_T period for rate measurement, 0: 1/128ms 1: 1/64ms 2: 1/32ms 3: 1/16ms 4: 1/8ms 5: 1/4ms 6: 1/2ms 7: 1ms 8: 2ms 9: 4ms 10:8ms 11: 16ms 12: 32ms 13: 64ms 14: 128ms 15: 128ms 7 EGC_TB_EN_P0 When this bit is disabled, the Egress rate control acts like a leaky bucket principle. Otherwise, the Egress rate control uses the token bucket method, and this approach guarantees some burst level for TCP transaction. 0: CIR/CBS mode token bucket Disable 1: Token bucket mode Enable 6:0 EG_RATE_LIMIT_MAN_P Mantissa part of port 0 Egress rate limit control Value range: 0..127 (7-bit), 0_EGC_TB_CBS_P0 when EGC_TB_EN = 1, support maximum bucket size CBS 512 Bytes stepping, and Token Bucket = Max (EGC_CIR*EGC_TB_T, EGC_TB_CBS*512)

Flow control

You should set 0x1fe0 bit 31 as 1 for global flow control first.

We take Port 5 for example, if you want to disable TX and RX flow control, you should set the bit 5 and bit 4 of 0x3500 as 0. And read 4th and 5th bit of 0x3508 to check it works or not.

Please know we just discussed about the MAC layer flow control. You need to check the PHY ability if you use auto polling mode. Please check the blow table:

Loca	l device	Link	partner	Y	Link partner resolution					
PAUSE	ASM_DIR	PAUSE	ASM_DIR	Local device resolution	Link partner resolution					
0	0	Don't care	Don't care	Disable PAUSE Transmit and Receive	Disable PAUSE Transmit and Receive					
0	1	0	Don't care	Disable PAUSE Transmit and Receive	Disable PAUSE Transmit and Receive					
0	1	1	0	Disable PAUSE Transmit and Receive	Disable PAUSE Transmit and Receive					
0	1	1	1	Enable PAUSE transmit Disable PAUSE receive Enable PAUSE receive Disable PAUSE transmit						
1	0	0	Don't care	Disable PAUSE Transmit and Receive	Disable PAUSE Transmit and Receive					
1	Don't care	1	Don't care	Enable PAUSE Transmit and Receive	Enable PAUSE Transmit and Receive					
1	1	0	0	Disable PAUSE Transmit and Receive	Disable PAUSE Transmit and Receive					
1 1		0	1	Enable PAUSE receive Disable PAUSE transmit	Enable PAUSE transmit Disable PAUSE receive					

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	FC_E N			FC_O N2OFF _OPT							FC.	_PORT_	_BLK_1	THD		
Type	RW		RW	RW								R'	W			
Reset	1		1	0					0	0	0	0	1	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name			FC_	FREE_E	3LK_HI	THD			FC_FREE_BLK_LOTHD							
Type			•	R\	W		•		RW							•
Reset	0	1	1	1	1	0	0	0	0	1	0	1	1	0	0	0

Bit(s)	Name	Description
31	FC_EN	0: Disable flow control 1: Enable flow control
29	FC_OFF2ON_OPT	Flow control assertion option 0: Disable 1: Enable aggressive frame discard option in flow control transition from OFF to ON
28	FC_ON2OFF_OPT	Flow control de-assertion option 0: Disable 1: Enable aggressive frame discard option in flow control transition from ON to OFF
23:16	FC_PORT_BLK_THD	Per port memory buffer (in unit of 2 blocks) associated with flow control and packet discard mechanism. (not include reserve block)
15:8	FC_FREE_BLK_HITHD	High water mark of memory buffer (in unit of 2 blocks) associated with flow control and packet discard mechanism. (not include reserve block) See TBD.
7:0	FC_FREE_BLK_LOTHD	Low water mark of memory buffer (in unit of 2 blocks) associated with flow control and packet discard mechanism. (not include reserve block) See TBD.

00003500 PMCR_P5 PORT 5 MAC Control Register

00056330

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name													IPG_C	FG_P5		MAC_ MODE _P5
Type													R'	W	RW	RW
Reset													0	1	0	1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	FORC E_MO DE_P5	TX_EN			MAC_ PRE_P 5			PR E	FORC E_EEE 1G_P5	FORC E_EEE 100_P 5	FORC E_RX_ FC_P5	FORC E_TX_ FC_P5	FORCE P	_SPD_ 5	FORC E_DPX _P5	FORC E_LN K_P5
Type	RW	RW	RW		RW		RW	RW	RW	RW	RW	RW	R'	W	RW	RW
Reset	0	1	1		0		1	1	0	0	1	1	0	0	0	0

00003508 PMSR_P5 PORT 5 MAC Status Register

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									EEE1 G_STS _P5	EEE10 0_STS _P5	RX_FC _STS_ P5	TX_FC _STS_ P5	MAC_ TS	SPD_S _P5	MAC_ DPX_S TS_P5	MAC_ LNK_ STS_P 5
Type									RO	RO	RO	RO	R	0	RO	RO
Reset									0	0	0	0	0	0	0	0

Bit(s)	Name	Description
7	EEE1G_STS_P5	PORT 5 LPI Mode Status For 1000Mbps
		0: Not capable of entering EEE Low Power Idle mode for 1000Mbps 1: Capable of entering EEE Low Power Idle mode for 1000Mbps
6	EEE100_STS_P5	PORT 5 LPI Status Mode For 100Mbps
		0: Not capable of entering EEE Low Power Idle mode for 100Mbps 1: Capable of entering EEE Low Power Idle mode for 100Mbps
5	RX_FC_STS_P5	PORT 5 RX XFC Status. Port 5 Rx flow control status
		0: Disabled.1: Let the MAC of PORT 5 accept a pause frame when operating in full-duplex mode.
4	TX_FC_STS_P5	PORT 5 TX XFC Status
		PORT 5 TX flow control status 0: Disabled. 1: Let the MAC of PORT 5 to transmit a pause frame when operating in full-duplex mode with low internal free memory page count.
3:2	MAC_SPD_STS_P5	PORT 5 Speed [1:0] Status
		Current speed of PORT 5 after PHY links up. 00: 10 Mbps 01: 100 Mbps 10: 1000 Mbps 11: Reserved
1	MAC_DPX_STS_P5	PORT 5 duplex Status
		Current duplex mode of port 5 after PHY links up 0: Half Duplex 1: Full Duplex
0	MAC_LNK_STS_P5	Port 5 Link Up Status. Link up status of PORT 5.
		0: Link Down 1: Link Up

Ingress rate control

Ingress rate control is one of basic rate control. We cannot limit the rate of physical transmission line, but we can limit the resources of packet process rate. Refer to the below to know the behavior of ingress rate control:

- -Each interval of time (programmable) H/W fill IGC_CIR bit token to bucket.
- -H/W remove token (equal to packet size) when there is packet income.
- -if remain token > packet, the packet can pass to network otherwise will drop packet.
- -A bucket with CBS sizes allow some burst traffic pass switch.

For example, to set the ingress rate as 1000kbps EGC_TBEN = 1

 $EGC_CIR = 1000K/32K = 31 = 0x1f$

 $EGC_TB_T = \frac{1}{4} \text{ ms}$

To avoid the inter-fame gap effect, please set 0x1ff0 as 0x00110118 We provide some reference data to do the rate control. For port 1, please set the register 0x1800.

Ingress CIR	Reg 0x1800
10Mbps	0x0138898f
20Mbps	0x0271898f
30Mbps	0x03a9898f
40Mbps	0x04e2898f
100Mbps	0x0c35898f

00001FF0 GIRLCR Global Ingress Rate Limit Control Register

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name									IG	C_FC_	OFF_TI	HD	IG	C_FC_D	ROP_T	HD
Type										R	W			R	W	
Reset									0	0	0	1	0	0	0	1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							IGC_ MFRM _EX	IGC_I PG_OP]	GC_IP	G_BYTI	E		
Type							RW	RW	RW							
Reset							0	1	0	0	0	0	0	1	0	0

Bit(s)	Name	Description
23:20	IGC_FC_OFF_THD	Ingress Rate Limit Pause-Off Threshold
		Pause-off frame is sent when the ingress token bucket is higher than pause-off threshold. Threshold = max_bucket_size >> igc_fc_off_thd
19:16	IGC_FC_DROP_THD	Ingress Rate Limit Drop Threshold
		If Port Flow Control and rate limit control is enabled, frame is drop when the ingress token bucket is less than drop threshold. Threshold = -(max_bucket_size >> igc_fc_drop_thd)
9	IGC_MFRM_EX	Ingress Rate Excludes Management Frames
		Management frames will be ignored by rate limit. (management frame type is set by ARL registers) 0: Include management frames 1: Exclude management frames
8	IGC_IPG_OP	Ingress Rate IPG Byte Addition or Subtraction Byte count should be added or subtracted on the rate calculation.
		0: IPG byte is excluded 1: IPG byte is included
7:0	IGC_IPG_BYTE	Ingress Rate IPG Byte Count
		Byte count should be added while calculating the rate limit 8'h4: add 4 byte CRC (byte rate calculation) 8'h18: add 4 byte CRC + 8 byte Preamble + 12 byte IPG (line rate calculation)

00001800)	IRLC	R P0		Ingres	s Rate	Limit	Contr	ol Reg	ister o	f Port	0			00000000			
	Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	ĺ	

Name		IGC_RATE_CIR_15_0_P0														
Type		RW														
Reset	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	IGC_R ATE_E N_P0	GC_R TE_E IGC_RATE_EXP_P0_IGC_T B_EN_ IGC_RATE_MAN_P0_IGC_TB_CBS_P0 IGC_RATE_MAN_P0_IGC_TB_CBS_P0														
Type	RW	RW RW RW RW														
Reset	0	0 0 0 0 0 0 0 0 0 0 0 0														

Bit(s)	Name	Description
31:16	IGC_RATE_CIR_15_0_P0	Total 17 bits IGC_CIR include IGC_RATE_CIR_16 in bit 12 location, support 32Kbps stepping CIR cover up to 2.5Gbps
15	IGC_RATE_EN_P0	EXP: ingress_rate_limit_exp MAN: ingress_rate_limit_man The rate of tokens to be filled into token bucket used for ingress rate control: (MAN*10^(EXP)) Kbps 0: Ingress rate limit control disable 1: Ingress rate limit control Enable
12	IGC_RATE_CIR_16_P0	Combined with IGC_RATE_CIR_15_0 to form a 17 bits CIR value
11:8	IGC_RATE_EXP_P0_IGC_ TB_T_P0	Exponent part of port 0 ingress rate limit control value range: 013 (4-bit), When IGC_TB_EN = 1, support IGC_TB_T period for rate measurement, 0: 1/128ms 1: 1/64ms 2: 1/32ms 3: 1/16ms 4: 1/8ms 5: 1/4ms 6: 1/2ms 7: 1ms 8: 2ms 9: 4ms 10: 8ms 11: 16ms 12: 32ms 13: 64ms 14: 128ms 15: 128ms
7	IGC_TB_EN_P0	When this bit is disabled, the Ingress rate control acts like a leaky bucket principle. Otherwise, the Ingress rate control uses the token bucket method, and this approach guarantees some burst level for TCP transaction. 0: CIR/CBS mode token bucket Disable 1: Token bucket mode Enable
6:0	IGC_RATE_MAN_P0_IGC_ TB_CBS_P0	Mantissa part of port 0 ingress rate limit control Value range: 0127 (7-bit), when IGC_TB_EN = 1, support maximum bucket size CBS 512 Bytes stepping, and Token Bucket = Max (IGC_CIR*IGC_TB_T, IGC_TB_CBS*512)

Link Status

You can find MAC control register put at 0x3500 for MAC 5, and 0x3600 for MAC 6. You can change MAC ability at this register. We would suggest don't use the register 0x3000 to 0x3400. It may not work.

Force mode

0000350	00	PMCF	<u>P5</u>		PORT 5 MAC Control Register											56330
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name													IPG_C	FG_P5		MAC_ MODE _P5
Type													R'	W	RW	RW
Reset													0	1	0	1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	FORC E_MO DE_P5	TX_EN	MAC_ RX_E N_P5		MAC_ PRE_P 5		BKOF F_EN_ P5	PR E	FORC E_EEE 1G_P5		FORC E_RX_ FC_P5			SPD_ 5	FORC E_DPX _P5	FORC E_LN K_P5
Туре	RW	RW	RW		RW		RW	RW	RW	RW	RW	RW	R'	W	RW	RW
Reset	0	1	1		0		1	1	0	0	1	1	0	0	0	0

Bit(s)	Name	Description
19:18	IPG_CFG_P5	PORT 5 Inter-Frame+ Gap Shrink 00: Normal 96-bits IFG 01: Transmit 96-bits IFG with short IFG in random behavior 10: Shrink 64-bits IFG
17	EXT_PHY_P5	PORT 5 External PHY Port 5 connects with external PHY. 0: PORT 5 DOES NOT connect with external PHY. 1: PORT 5 connects with external PHY.
16	MAC_MODE_P5	PORT 5 MAC Mode PORT 5 operates in MAC mode. 0: PORT 5 operates in PHY mode. 1: PORT 5 operates in MAC mode.
15	FORCE_MODE_P5	PORT 5 Force Mode PORT 5 operates in force mode. It is used to control PORT 5 status of link, speed, duplex, rx_fc, tx_fc, eee100, and eee1g. 0: Force mode is off (mac status is determined by phy auto-polling module). 1: Force mode is on (mac status is determined by force_xxx_P5 register).
14	MAC_TX_EN_P5	Port 5 TX MAC Enable (Note: This bit only has impact on MAC function, and it has no impact on the link status or Queue manager.) 0: TX MAC function is disabled. 1: TX MAC function is enabled.
13	MAC_RX_EN_P5	PORT 5 RX MAC Enable (Note: This bit only has impact on MAC function, and it has no impact on the link status or Queue manager.) 0: RX MAC function is disabled. 1: RX MAC function is enabled.
11	MAC_PRE_P5	TX short preamble mode 0: TX short preamble length is disabled. 1: TX short preamble is enabled.
9	BKOFF_EN_P5	PORT 5 Backoff Enable 0: Disabled 1: Let the MAC of PORT 5 follow the back-off mechanism when collision happens.
8	BACKPR_EN_P5	PORT 5 Backpressure Enable 0: Disabled 1: Enable back pressure mechanism when operating in half-duplex mode with low internal free memory page count.
7	FORCE_EEE1G_P5	PORT 5 Force LPI Mode For 1000Mbps When (force_mode_P5 = 1), this bit is used to control the 1000Base-T EEE ability of PORT 5. 0: Do not have the ability of entering EEE Low Power Idle mode for 1000Mbps 1: Have the ability of entering EEE Low Power Idle mode for 1000Mbps
6	FORCE_EEE100_P5	PORT 5 Force LPI Mode For 100Mbps When (force_mode_P5 = 1), this bit is used to control the 100Base-TX EEE ability of PORT 5. 0: Do not have the ability of entering EEE Low Power Idle mode for 100Mbps 1: Have the ability of entering EEE Low Power Idle mode for 100Mbps

5	FORCE_RX_FC_P5	PORT 5 Force RX FC When (force_mode_P5 = 1), this bit is used to control the RX FC ability of PORT 5. 0: Disabled.
		1: Let the MAC of PORT 5 accept a pause frame when operating in full-duplex mode.
4	FORCE_TX_FC_P5	PORT 5 Force TX FC
		When (force_mode_P5 = 1), this bit is used to control the TX FC ability of PORT 5. 0: Disabled. 1: Let the MAC of PORT 5 transmit a pause frame when operating in full-duplex mode with low internal free memory page count.
3:2	FORCE_SPD_P5	PORT 5 Force Speed [1:0]
		When (force_mode_P5 = 1), these bits are used to control MAC speed of PORT 5. 00: 10Mbps 01: 100Mbps 10: 1000Mbps 11: Reserved
1	FORCE_DPX_P5	PORT 5 Force duplex
		When (force_mode_P5 = 1), this bit is used to control MAC duplex of PORT 5. 0: Half Duplex 1: Full Duplex
0	FORCE_LNK_P5	PORT 5 Force MAC Link Up
		When (force_mode_P5 = 1), this bit is used to control link status of PORT 5. 0: Link Down 1: Link Up

For MAC 5 and MAC6, they have its own status to check register. 0x3508 is for MAC 5 status and 0x3608 is for MAC 6. If you want to change MAC 5 status, you can use 0x3500 to change its ability.

	change its abi	lity.	MAC 5 status, you can use
00003508	PMSR_P5	PORT 5 MAC Status Register	0000000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									EEE1 G_STS _P5	EEE10 0_STS _P5	RX_FC _STS_ P5	TX_FC _STS_ P5	MAC_S	SPD_S _P5	MAC_ DPX_S TS_P5	MAC_ LNK_ STS_P 5
Type									RO	RO	RO	RO	R	0	RO	RO
Reset									0	0	0	0	0	0	0	0

D'(/)	NI	Post Coffee
Bit(s)	Name	Description
7	EEE1G_STS_P5	PORT 5 LPI Mode Status For 1000Mbps
		0: Not capable of entering EEE Low Power Idle mode for 1000Mbps 1: Capable of entering EEE Low Power Idle mode for 1000Mbps
6	EEE100_STS_P5	PORT 5 LPI Status Mode For 100Mbps
		0: Not capable of entering EEE Low Power Idle mode for 100Mbps 1: Capable of entering EEE Low Power Idle mode for 100Mbps
5	RX_FC_STS_P5	PORT 5 RX XFC Status. Port 5 Rx flow control status
		Disabled. Head of PORT 5 accept a pause frame when operating in full-duplex mode.
4	TX_FC_STS_P5	PORT 5 TX XFC Status
		PORT 5 TX flow control status 0: Disabled. 1: Let the MAC of PORT 5 to transmit a pause frame when operating in full-duplex mode with low internal free memory page count.
3:2	MAC_SPD_STS_P5	PORT 5 Speed [1:0] Status
		Current speed of PORT 5 after PHY links up. 00: 10 Mbps 01: 100 Mbps 10: 1000 Mbps

11: Reserved

1 MAC_DPX_STS_P5 PORT 5 duplex Status

Current duplex mode of port 5 after PHY links up

0: Half Duplex 1: Full Duplex

0 MAC_LNK_STS_P5 Port 5 Link Up Status. Link up status of PORT 5.

0: Link Down 1: Link Up

Link Status change

You can find the 0x700c is a record if PHY status was changed. For example, if you plug into PHY 1, you can find the 0x700c become 00080002. Then drew the PHY 1, the 0x700c would still keep 00080002. You need to write "1" to the bit which you want clean at the register 0x700c. After that you can find it would become 00080000.

0000700C SYS_INT_STS System Interrupt Status

00000000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		EC TA		EC_IG	KT_B	ARL_E Q_ER R_INT	KI_W	ARL_T BL_ER R_INT					PTP_I NT	MIB_I NT	BMU_I NT	MAC_ PC_IN T
Type	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C					W1C	W1C	W1C	W1C
Reset	0	0	0	0	0	0	0	0					0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		PHY6_ INT	PHY5_ INT	PHY4_ INT	PHY3_ INT	PHY2_ INT	PHY1_ INT	PHY0_ INT						PHY2_ LC_IN T		PHY0_ LC_IN T
Type		W1C	W1C	W1C	W1C	W1C	W1C	W1C		W1C	W1C	W1C	W1C	W1C	W1C	W1C
Reset		0	0	0	0	0	0	0		0	0	0	0	0	0	0

LED controller

All hardware traps of MT7530 are weakly pull-up internally. The only way to pull-down these traps is using an external pull-down circuit. However, hardware traps and LEDs share the same pins in MT7530. To make LEDs work normally, the hardware configurations of LEDs will depend on its related values in the current design. Every port has 3 LED to mean its behavior:

MT7530 Px_LED_0 is used for any ability linkup and traffic (10/100/1000). MT7530 Px_LED_1 is used for 10/100 ability linkup and traffic (10/100). MT7530 Px_LED_2 is used for Giga ability linkup and traffic (1000).

For trapping-high pins, the external LEDs should be active low. Its configuration is shown as below. OEs (output enables) of LED pads are controlled by the internal circuits, and LED_DO will always be LOW under this configuration. So the external LEDs should be active low.

For LED configuration, you can follow the below descrition.

00007D0	0	LED :	<u>EN</u>		LED I/O function enable									00077777		
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name														P4	_LED_	EN
Type															RW	
Reset														1	1	1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		P3	_LED_1	EN		P2	_LED_1	EN		P1_LED_EN				P0	_LED_	EN
Type			RW				RW				RW				RW	
Reset		1	1	1		1	1	1		1	1	1		1	1	1

Bit(s)	Name	Description
18:16	P4_LED_EN	P4 LED I/O Enable
		P4_LED_EN[2] for P4 LED #2 P4_LED_EN[1] for P4 LED #1 P4_LED_EN[0] for P4 LED #0 For individual LED 1'b0: Disable 1'b1: Enable
14:12	P3_LED_EN	P3 LED I/O Enable
		P3_LED_EN[2] for P3 LED #2 P3_LED_EN[1] for P3 LED #1 P3_LED_EN[0] for P3 LED #0 For individual LED 1'b0: Disable 1'b1: Enable
10:8	P2_LED_EN	P2 LED I/O Enable
		P2_LED_EN[2] for P2 LED #2 P2_LED_EN[1] for P2 LED #1 P2_LED_EN[0] for P2 LED #0 For individual LED 1'b0: Disable 1'b1: Enable
6:4	P1_LED_EN	P1 LED I/O Enable
		P1_LED_EN[2] for P1 LED #2 P1_LED_EN[1] for P1 LED #1 P1_LED_EN[0] for P1 LED #0 For individual LED 1'b0: Disable 1'b1: Enable
2:0	P0_LED_EN	P0 LED I/O Enable
		P0_LED_EN[2] for P0 LED #2 P0_LED_EN[1] for P0 LED #1 P0_LED_EN[0] for P0 LED #0 For individual LED 1'b0: Disable 1'b1: Enable

00007D04 <u>LED IO MODE</u> LED I/O Mode

00077777

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Name														P4_I	LED_M	ODE	
Type															RW		
Reset														1	1	1	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name		P3_I	LED_M	ODE		P2_I	LED_M	ODE		P1_LED_MODE				P0_I	LED_M	ODE	
Type			RW			RW				RW					RW		
Reset		1	1	1		1	1	1		1	1	1		1	1	1	

Bit(s)	Name	Description
18:16	P4_LED_MODE	P4 LED I/O Mode P4_LED_MODE[2] for P4 LED #2 P4_LED_MODE[1] for P4 LED #1 P4_LED_MODE[0] for P4 LED #0 For individual LED Mode 1'b0: GPIO 1'b1: LED
14:12	P3_LED_MODE	P3 LED I/O Mode P3_LED_MODE[2] for P3 LED #2 P3_LED_MODE[1] for P3 LED #1 P3_LED_MODE[0] for P3 LED #0 For individual LED Mode 1'b0: GPIO 1'b1: LED
10:8	P2_LED_MODE	P2 LED I/O Mode P2_LED_MODE[2] for P2 LED #2 P2_LED_MODE[1] for P2 LED #1 P2_LED_MODE[0] for P2 LED #0 For individual LED Mode 1'b0: GPIO 1'b1: LED
6:4	PI_LED_MODE	P1 LED I/O Mode P1_LED_MODE[2] for P1 LED #2 P1_LED_MODE[1] for P1 LED #1 P1_LED_MODE[0] for P1 LED #0 For individual LED Mode 1'b0: GPIO 1'b1: LED
2:0	P0_LED_MODE	P0 LED I/O Mode P0_LED_MODE[2] for P0 LED #2 P0_LED_MODE[1] for P0 LED #1 P0_LED_MODE[0] for P0 LED #0 For individual LED Mode 1'b0: GPIO 1'b1: LED

If you want to change the LED behavior, please write these registers of Ethernet physical.

51F00240 <u>dev1Fh reg024h</u> LED0 On Control Register

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		rg_led0										led	0_on_m	ask		
	_en	_pol														
Type	RW	RW								RW						
Reset	1	0								0	0	0	0	0	0	0

Bit(s)	Name	Description
15	rg_led0_en	Enable Ethernet LED Function.
		0: Disable (Hi-Z)

1: Enable 14 Select LED polarity. This field only takes effect when LED_EN is 1b1. rg_led0_pol Enable Ethernet LED Function. 0: Active low (That is, LED On means Output 0) 1: Active high (That is, LED On means Output 1) 6:0 led0_on_mask LED is on if any of the following state holds. This field only takes effect when LED_EN is 1b1. Select LED polarity. This field only takes effect when LED_EN is 1b1. Bit[0]:Link 1000 Bit[1]:Link 100 Bit[2]:Link 10 Bit[3]:Link Down Bit[4]:Full Duplex Bit[5]:Half Duplex Bit[6]:Force On (Logic 1)

51F00250 <u>dev1Fh reg025h</u> LED0 Blinking Control Register

0000

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							led0_blk_mask									
Type							RW									
Reset							0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description
9:0	led0_blk_mask	LED blinks if any of the following event occurs. This field only takes effect when LED_EN is 1b1.
		(Notes: The LED-Blinking Priority Precedes The LED-On Priority, That is, when there is an event that triggers LED-Blinking, it will take control of LED output no matter what LED-On status is) Bit[0]:1000Mbps TX Activity Bit[1]:100Mbps TX Activity Bit[3]:100Mbps RX Activity Bit[4]:10Mbps TX Activity Bit[5]:10Mbps TX Activity Bit[6]:Collision
		Bit[7]:RX CRC Error Bit[8]:RX Idle Error Bit[9]:Force Blinks (Logic 1)

51F00260 <u>dev1Fh reg026h</u> LED1 On Control Register

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	rg_led1 _en	rg_led1 _pol								led1_on_mask						
Type	RW	RW								RW						
Reset	1	0								0	0	0	0	0	0	0

Bit(s)	Name	Description
15	rg_led1_en	Enable Ethernet LED Function.
		0: Disable (Hi-Z)
		1: Enable
14	rg_led1_pol	Select LED polarity. This field only takes effect when LED_EN is 1b1.
		Enable Ethernet LED Function.
		0: Active low (That is, LED On means Output 0)
		1: Active high (That is, LED On means Output 1)
6:0	led1_on_mask	LED is on if any of the following state holds. This field only takes effect when LED_EN is 1b1.
		Select LED polarity. This field only takes effect when LED_EN is 1b1.

Bit[0]:Link 1000 Bit[1]:Link 100 Bit[2]:Link 10 Bit[3]:Link Down Bit[4]:Full Duplex Bit[5]:Half Duplex Bit[6]:Force On (Logic 1)

51F00270 dev1Fh_reg027h LED1 Blinking Control Register

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								led1_blk_mask								
Type								RW								
Reset							0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description
9:0	led1_blk_mask	LED blinks if any of the following event occurs. This field only takes effect when LED_EN is 1b1.
		(Notes: The LED-Blinking Priority Precedes The LED-On Priority, That is, when there is an event that triggers LED-Blinking, it will take control of LED output no matter LED-On status is) Bit[0]:1000Mbps TX Activity Bit[1]:1000Mbps RX Activity Bit[2]:100Mbps TX Activity Bit[3]:100Mbps RX Activity Bit[4]:10Mbps TX Activity Bit[5]:10Mbps RX Activity Bit[6]:Collision Bit[7]:RX CRC Error Bit[8]:RX Idle Error Bit[9]:Force Blinks (Logic 1)

51F00280 dev1Fh reg028h LED2 On Control Register

8000

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	rg_led2 _en	rg_led2 _pol								led2_on_mask						
Type	RW	RW								RW						
Reset	1	0								0	0	0	0	0	0	0

Bit(s)	Name	Description
		•
15	rg_led2_en	Enable Ethernet LED Function.
		0: Disable (Hi-Z)
		1: Enable
14	rg_led2_pol	Select LED polarity. This field only takes effect when LED_EN is 1b1.
		Enable Ethernet LED Function.
		0: Active low (That is, LED On means Output 0)
		1: Active high (That is, LED On means Output 1)
6:0	led2_on_mask	LED is on if any of the following state holds. This field only takes effect when LED_EN is 1b1.
		Select LED polarity. This field only takes effect when LED_EN is 1b1.
		Bit[0]:Link 1000
		Bit[1]:Link 100
		Bit[2]:Link 10
		Bit[3]:Link Down
		Bit[4]:Full Duplex
		Bit[5]:Half Duplex
		Bit[6]:Force On (Logic 1)

51F00290 <u>dev1Fh reg029h</u> LED2 Blinking Control Register

	M	n	1	٦	1
u	u	U	U	,	ı

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name											led2_bl	k_mask				
Type											R	W				
Reset							0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description
9:0	led2_blk_mask	LED blinks if any of the following event occurs. This field only takes effect when LED_EN is 1b1.
		(Notes: The LED-Blinking Priority Precedes The LED-On Priority, That is, when there is an event that triggers LED-Blinking, it will take control of LED output no matter what LED-On status is) Bit[0]:1000Mbps TX Activity Bit[1]:1000Mbps RX Activity Bit[2]:100Mbps TX Activity Bit[3]:100Mbps RX Activity Bit[4]:10Mbps TX Activity Bit[5]:10Mbps RX Activity Bit[6]:Collision Bit[7]:RX CRC Error
		Bit[8]:RX Idle Error Bit[9]:Force Blinks (Logic 1)

51F002A0 <u>dev1Fh reg02Ah</u> LED3 On Control Register

8000

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	rg_led3	rg_led3										led	3_on_m	ack		
	_en	_pol										icu	5_0H_III	ask		
Type	RW	RW											RW			
Reset	1	0								0	0	0	0	0	0	0

Bit(s)	Name	Description
15	rg_led3_en	Enable Ethernet LED Function.
		0: Disable (Hi-Z)
		1: Enable
14	rg_led3_pol	Select LED polarity. This field only takes effect when LED_EN is 1b1.
		Enable Ethernet LED Function.
		0: Active low (That is, LED On means Output 0)
		1: Active high (That is, LED On means Output 1)
6:0	led3_on_mask	LED is on if any of the following state holds. This field only takes effect when LED_EN is 1b1.
		Select LED polarity. This field only takes effect when LED_EN is 1b1.
		Bit[0]:Link 1000
		Bit[1]:Link 100
		Bit[2]:Link 10
		Bit[3]:Link Down
		Bit[4]:Full Duplex
		Bit[5]:Half Duplex
		Bit[6]:Force On (Logic 1)

51F002B0 <u>dev1Fh_reg02Bh</u> LED3 Blinking Control Register

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name											led3_bl	k_mask				
Type											R	W				
Reset							0	0	0	0	0	0	0	0	0	0

D:4(a) N	lama.	Description
DIUS) IN	ame	Description

9:0	led3_blk_mask	LED blinks if any of the following event occurs. This field only takes effect when LED_EN is 1b1.
		(Notes: The LED-Blinking Priority Precedes The LED-On Priority, That is, when there is an event that triggers LED-Blinking, it will take control of LED output no matter what LED-On status is) Bit[0]:1000Mbps TX Activity Bit[1]:1000Mbps RX Activity Bit[2]:100Mbps TX Activity Bit[3]:100Mbps RX Activity Bit[4]:10Mbps TX Activity Bit[5]:10Mbps RX Activity Bit[6]:Collision Bit[7]:RX CRC Error Bit[8]:RX Idle Error
		Bit[9]:Force Blinks (Logic 1)

Loop detection

When loop detection function is enabled by setting hardware strapping(0x7804), the MT7530 provide two different signal out. One is sent the loop frame with the SID as 0180c2000001, another is sent the period LED from the 96th pin of MT7530. Follow the step to check it:

- 1. Set 0x30c0 (for example : enable p0,p1,p3, set as 0x07130000)
- 2. Set 0x201c,0x211c ..0x261c to enable per port broadcast storm detection(for example, set 0x201c as cc030303 for port 0)

After that, you can check the Loop frame and alarm signal from 96th pin.

3. Read 0x30c0 to check the Alarm message. (You can write bit 1 of 0x30c0 as 1 to clean the status)

000030C0 LPDET CTRL LOOP DETECTION CONTROL REGISTER 00030000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name									T_PER	LPDE T_ALA RM_E N	LPDE T DAS	LPDE T_PER IOD		LPDET	T_THRE D	ESHOL
Type		RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW		RW	
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	LPDE	LPDE	LPDE							LPDE	LPDE	LPDE	LPDE	LPDET	LPDE	LPDE
	T_ST_	T_ST_	T_TRA							T_ALA	T_ALA	T_ALA	T_ALA	_ALAR	T_ALA	T_AL
	LOOP	BCST	P_EN							RM6	RM5	RM4	RM3	M2	RM1	ARM0
Type	RO	RO	RO							RO	RO	RO	RO	RO	RO	W1C
Reset	0	0	0							0	0	0	0	0	0	0

Bit(s)	Name	Description
30	LPDET_EN6	Enable the loop detection ability of user port 6. 0: Disable 1: Enable
29	LPDET_EN5	Enable loop detection the ability of user port 5. 0: Disable 1: Enable
28	LPDET_EN4	Enable loop detection the ability of user port 4. 0: Disable 1: Enable

27	LPDET_EN3	Enable loop detection the ability of user port 3. 0: Disable 1: Enable
26	LPDET_EN2	Enable loop detection the ability of user port 2. 0: Disable 1: Enable
25	LPDET_EN1	Enable loop detection the ability of user port 1. 0: Disable 1: Enable
24	LPDET_EN0	Enable loop detection the ability of user port 0. 0: Disable 1: Enable
23	LPDET_PERIOD_EN	The loop detection frame is triggered by a periodical timer or by broadcast storm. 0: Broadcast mode 1: Periodical mode
22	LPDET_ALARM_EN	Enable 2 kHz alarm output and per-port LED when loop is detected. 0: Disable 1: Enable
21	LPDET_PASS	Loop detection frame is blocked or passed to packet memory. 0: Blocked 1: Pass
20	LPDET_PERIOD	Interval of transmitting loop detection frame in Periodical mode. 0: 125 us 1: 1000 ms
19	LPDET_LED_RATE	LED blinking rate of per port when loop is detected. 0: LED blinking at 2 Hz 1: LED blinking at 4 Hz
18:16	LPDET_THRESHOLD	Number of missed loop detection frame before 2 kHz alarm is reset
15	LPDET_ST_LOOP	The status of loop detection. In LOOP state, the loop detection frame is transmitted, and the loop detection frames are received. 0: Not in Loop state
14	LPDET_ST_BCST	1: Loop state The status of loop detection. In BCST state, the loop detection frame is transmitted, but no loop detection frame is received. 0: Not in BCST state 1: BCST state
13	LPDET_TRAP_EN	Status of strap pin for loop detection 0: Disabled 1: Enabled
6	LPDET_ALARM6	The status of loop detected on port 6. This bit is cleared when LPDET_ALARM0 is written as 1. 0: Not detected 1: Detected
5	LPDET_ALARM5	The status of loop detected on port 5. This bit is cleared when LPDET_ALARM0 is written as 1. 0: Not detected 1: Detected
4	LPDET_ALARM4	The status of loop detected on port 4. This bit is cleared when LPDET_ALARM0 is written as 1. 0: Not detected
3	LPDET_ALARM3	1: Detected The status of loop detected on port 3. This bit is cleared when LPDET_ALARM0 is written as 1.
		0: Not detected 1: Detected
2	LPDET_ALARM2	The status of loop detected on port 2. This bit is cleared when LPDET_ALARM0 is written as 1.
		0: Not detected 1: Detected

1 LPDET_ALARM1
The status of loop detected on port 1. This bit is cleared when LPDET_ALARM0 is written as 1.
0: Not detected
1: Detected

The status of loop detected on port 0. This bit is cleared when it is written as 1.
0: Not detected
1: Detected
1: Detected
1: Detected

0000201C BSR Broadcast Storm Rate Control of P0

00000000
0000000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Name	STRM _MOD E	STRM _BC_I NC		STRM _UC_I NC	STRM _DRO P	STRM _PERD		_UNIT				STOR	M_1G				
Type	RW	RW	RW	RW	RW	RW	R	W		RW							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name				STORM	1_100M							STOR	M_10M				
Type				R	W							R	W				
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Bit(s)	Name	Description
31	STRM_MODE	Broadcast Storm Suppression
		0: Packet-based (1 second period) 1: Rate-based
30	STRM_BC_INC	Broadcast Storm Included
		0: Exclude BC frame 1: Include BC frame
29	STRM_MC_INC	Unknown Multicast Storm Included
		0: Exclude MC frame 1: Include MC frame
28	STRM_UC_INC	Unknown Unicast Storm Included
		0: Exclude UC frame 1: Include UC frame
27	STRM_DROP	Broadcast Storm Suppression enabled
		O: BC Storm detection only Enable packet drop when BC storm is detected
26	STRM_PERD	Broadcast Strom Detection Signal Period
		0: One second 1: 125us
25:24	STRM_UNIT	Broadcast Storm Suppression
		2'b00: 64 packets or 64 Kbps 2'b01: 256 packets or 256 Kbps
		2'b10: 1 K packets or 1 Mbps
		2'b11: 4 K packets or 4 Mbps
23:16	STORM_1G	1000 Mbps Broadcast Storm Rate Limit Control
		The broadcast storm rate limit for 1000 Mbps link speed 8'h0: (0* STORM_UNIT) packets or bps
		8'h1: (1* STORM_UNIT) packets or bps
15:8	STORM_100M	100 Mbps Broadcast Storm Rate Limit Control
		The broadcast storm rate limit for 100 Mbps link speed 8'h0: (0* STORM UNIT) packets or bps
		8'h1: (1* STORM_UNIT) packets or bp
7:0	STORM_10M	10 MbpsBroadcast Storm Rate Limit Control
		The broadcast storm rate limit for 10 Mbps link speed
		8'h0: (0* STORM_UNIT) packets or bps 8'h1: (1* STORM_UNIT) packets or bps

MAC 5 interface setup

Usually, GMII of P5 does not need to do the delay. If you want to use as RGMII, you may modify the TX or RX delay timing. Please also notice that 10Mbps and 100Mbps mode also can do the delay. But, you know that their CLK timing is 400ns and 40ns. So, that also means the 2ns delay latency may not useful to them.

00007B04	P5RGMIITXCR	P5 RGMII Wrapper TX Clock Control Register	0000010
----------	-------------	--	---------

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
Name														csr_rg	mii_txe	en_cfg		
Type															RW			
Reset														0	0	0		
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
Name						csr_r	gmii_tx	d_cfg					csr_rgmii_txc_cfg					
Type						RW							RW					
Reset	_					0	0	0		_		1	0	0	0	0		

You can adjust 0x7b04 for P5 CLK, data and enable delay timing.

0x7b04: P5 RGMII Wrapper TX Clock Control Register

Bit 4 ([4] - Using 90-degree TXC (central align)) is used for adjusting align. You can change the bit if you got the short packet.

Bit 3 ([3] - Inverted RXC) is used for enable the XOR, like the below figure. It is usually for a large timing adjustment.

If you need to change the RX delay of P5, please modify 0x7b00. rxd_cfg and rctl_cfg . Here is the sample when MT7530 link with Vitesse PHY.

- (a) Change reg7B00[18:16] rxd_cfg[2:0], from 3'b000 to 3'b010
- (b) Change reg7B00[26:24] rctl_cfg[2:0] , from3'b000 to 3'b010 You may also change the CLK align.

00000104

(a) Change reg7B04[4:0] GTXC setting, from 5'b10000 to 5'b01001

00007B00	P5RGMIIRXCR	P5 RGMII Wrapper RX Clock Control Register
----------	-------------	--

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Name						csr_r	gmii_ro	tl_cfg						csr_r	gmii_rx	d_cfg	
Type							RW								RW		
Reset						0	0	0						0	0	0	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name								csr_rg mii_ce ntral_a lign					csr_i	rgmii_rxc_0deg_cfg			
Type						RW RW											
Reset								1					0	1	0	0	

Please notice the bit 8 of 7b00 is used for checking the enable delay or not. The delay chain would be no longer valid if the 8th bit set as 1.

csr_rgmii_central_align

1: RXC/RXD is central-aligned; RXC does not pass through the delay chain.

0: RXC/RXD is not central-aligned (edge-aligned); RXC passes through the delay chain.

0x7810 is used for setting TXC driving. P5 CLK driving is 12mA as default value. Others, like TXD, MDC and TXEN are also locate at this register.

00007810 <u>IO DRV CR</u> IO Driving Strength Control Register 000000000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							csr_normal_d rv				csr_mdc_drv					d_mdio lrv
Type							R	W			R'	W				W
Reset							0	0			0	0			0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name			csr_p6 o_o	_data_i drv			csr_p6_clk_io _drv				csr_p5 ta_	_io_da drv			csr_pt	i_io_cl drv
Type			R'	W			RW				R'	W			R	W
Reset			0	0			0	0			0	0			0	0

If P5 want to connect a PHY IC, you should check the below flow to make sure the PHY status:

1. Check 0x3508 : check the link up status

- 2. Check PHY is link up or not, use "tce miir 5 1". If you get 796D, it means the PHY is link up.
- 3. Check 0x3500, 56300 is correct for its status.
- 4. Check 0x7018, it need to 7f7f8600 for enable polling mode.

00007018 PH	HY POLL	PHY Polling and SMI Master Control Register	007F8600
-------------	---------	---	----------

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16				
Name				PH	Y_AP_	EN						EEE	_POLL	_EN						
Type					RW								RW			16 1 0				
Reset		0	0	0	0	0	0	0		1	1	1	1	1	1	1				
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0				
Name	PHY_	RX_TA											RW							
	PRE_	1_CHK			PHY_	_END_A	ADDR		PMDC	_CFG			E_POLL_EN							
	EN	_OFF																		
Type	RW	RW				RW			R'	W				RW						
Reset	1	0		0	0	1	1	0	0	0		0	0	0	0	0				

MAC 6 interface setup

MT7530 TX driving use full power as default setting. You can change the register to change it:

0x7a54, 0x7a5c, 0x7a64, 0x7a6c, 0x7a74.

All of them are used ff as default. You can change to 44 if you need.

00007A54 TRGMII_TD0_OD_TRGMII TD0 ODT REGISTER 000000FF

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	_	M_DR PRE		M_DR PRE	1	D0_DM	_TDSE	L	TD0_O DTEN				TD0_D M_DR VNT0	M_DR		
Type	R'	W	R'	W		R'	W		RW			RW	RW	RW	RW	RW
Reset	0	0	0	0	0	0	0	0	0			0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		TD0	_DM_O	DTN		TD0	_DM_O	DTP		LD0_DI	/LDRVI	V	•	TD0_DN	I_DRVI	•
Type			RW				RW		RW				RW			
Reset		0	0	0		0	0	0	1	1	1	1	1	1	1	1

00007A5C TRGMII_TD1_OD TRGMII TD1 ODT REGISTER 000000FF

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		TD1_DM_DR			1	D1_DM	_TDSE	L	TD1_O DTEN				M_DR		M_DR	TD1_D M_DR VPTE
Type	R	RW RW				R'	W		RW			RW	RW	RW	RW	RW
Reset	0	0	0	0	0	0	0	0	0			0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		TD1	TD1_DM_ODTN			TD1	_DM_O	DTP	1	TD1_DN	/I_DRVI	V	•	ΓD1_DN	I_DRVI	•
Type		RW				RW			R	W			R'	W		
Reset		0	0	0		0	0	0	1	1	1	1	1	1	1	1

00007A64 TRGMII TD2 OD TRGMII TD2 ODT REGISTER

000000FF

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	TD2_DM_DR		1	D2_DM	_TDSE	L	TD2_O DTEN			_	M_DR	M_DR	M_DR	TD2_D M_DR VPTE		
Type	R'	RW RW				R'	W		RW			RW	RW	RW	RW	RW
Reset	0	0	0	0	0	0	0	0	0			0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		TD2	DM_ODTN		TD2	_DM_O	DTP	1	D2_DN	_DRVI	1	1	D2_DN	_DRVF	•	
Type			RW				RW			R	W			R'	W	
Reset		0	0	0		0	0	0	1	1	1	1	1	1	1	1

00007A6C $\frac{\text{TRGMII} \cdot \text{TD3} \cdot \text{OD}}{\text{T}}$ TRGMII TD3 ODT REGISTER

000000FF

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		TD3_DM_DR		1	D3_DM	_TDSE	L	TD3_O DTEN			_	M_DR	_	M_DR	TD3_D M_DR VPTE	
Type	R'	RW RW				R'	W		RW			RW	RW	RW	RW	RW
Reset	0	0	0	0	0	0	0	0	0			0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		TD3	_DM_O	DM_ODTN		TD3	_DM_O	DTP	1	D3_DN	_DRVI	1	1	D3_DN	_DRVF	•
Type			RW				RW			R	W			R'	W	
Reset		0	0	0		0	0	0	1	1	1	1	1	1	1	1

00007A74 TRGMII_TXCTL_ TRGMII TXCTL ODT REGISTER ODT

000000FF

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		_DM_D _PRE		_DM_D _PRE	ТХ	CTL_D	M_TDS	EL	TXCTL _ODT EN			TXCTL _DME _PRE	_DM_	_DM_	_DM_	TXCTL _DM_ DRVP TE
Туре	R'	RW RW				R	W		RW			RW	RW	RW	RW	RW
Reset	0	0	0	0	0	0	0	0	0			0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		TXCT	TXCTL_DM_ODTN			TXCT	L_DM_	ODTP	T	(CTL_D	M_DR	۷N	T)	(CTL_C	M_DR\	/P
Туре		RW				RW			R	W			R	W		
Reset		0	0	0		0	0	0	1	1	1	1	1	1	1	1

00007A7C $\frac{\text{TRGMII} \cdot \text{TCK} \cdot \text{O}}{\text{DT}}$ TRGMII TCK ODT REGISTER

000000FF

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		TCK_DM_DR				CK_DN	I_TDSE	L	TCK_ ODTE N			TCK_ DME_ PRE		TCK_ DM_D RVPT0	DVNT	TCK_ DM_D RVPT E
Type	R'	RW RW				R'	W		RW			RW	RW	RW	RW	RW
Reset	0	0	0	0	0	0	0	0	0			0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		TCK	TCK_DM_ODTN			TCK	_DM_C	DTP	1	CK_DI	/I_DRVI	N	1	CK_DI	/I_DRVI	•
Type		RW				RW			R	W			R'	W		
Reset		0	0	0		0	0	0	1	1	1	1	1	1	1	1

If you want to change P6 RX delay, please change the bit 0th to bit 6th of the follow register:

RXDO 0x7a10 RXD1 0x7a18

RXD2 0x7a20

RXD3 0x7a28

RXCTL 0x7a30

00007A10 TRGMII_RD0 **TRGMII RD0 CONTROL REGISTER**

0000000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	BSLIP _EN	EDGE _CHK		EDGE _CHK_ PAT		BSLIF	P_INIT					RD0	_WD			
Type	RW	RW		RW		R'	W					R	0			
Reset	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						RD0_E	RRCNT	•				R	D0_TA	P		
Type						R	0						RW			
Reset					0	0	0	0		0	0	0	0	0	0	0

Bit(s)	Name	Description
31	BSLIP_EN	To trigger a bitslip operation, this bit should be written as 1. This bit is toggled after it is written as 1. 1: Bitslip is performed. The initial value is loaded.
30	EDGE_CHK	To trigger a comparison of received data for 16 clocks, this bit should be written as 1. The comparison error is stored in ERRCNT. This bit is toggled after it is written as 1. 1: Training comparison is performed for 16 clocks.
28	EDGE_CHK_PAT	Training pattern selection for comparison 0: The training pattern is the toggling pattern. 1: The training pattern is all-zero or all-one pattern.
27:24	BSLIP_INIT	This field is the bitslip initial value loaded when the bitslip is enabled. The suggested value is 15, 0, or 1. 0: Normal operation
23:16	RD0_WD	This register holds the received word for RD0.
11:8	RD0_ERRCNT	This field is cleared when EDGE_CHK is written as 1. At each clock of the training phase, the data received are compared to the data received at the previous clock. This register holds the mismatch counter of RD0.
6:0	RD0_TAP	This is the delay tap of RD0. To modify the delay tap, it should be increased or decreased by 1.

If you want to change P6 TX delay, please change the bit 8th to bit 11th of the follow register:

TXDO 0x7a50

TXD1 0x7a58

TXD2 0x7a60

TXD3 0x7a68

TXCTL 0x7a70

Note:1 unit about 30ps

00007A50 TRGMII TD0 CT TRGMII TD0 CTRL REGISTER RL

00000455

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	TD0_D MPED RV					TDO	D_DM_F	RTT								
Type	RW					RW										
Reset	0					0	0	0								
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	TD0_D M_SR	_	TD0_D Moec Tl			TD0_	TAP				1	D0_TR	AIN_W	D		
Type	RW	RW	RW			RW						R'	W	·		
Reset	0	0	0		0	1	0	0	0	1	0	1	0	1	0	1

Bit(s)	Name	Description
31	TD0_DMPEDRV	
26:24	TD0_DM_RTT	This is the RTT setting.
15	TD0_DM_SR	
14	TD0_DMERODT	This is the ODT setting.
13	TD0_DMOECTL	OE edge selection
11:8	TD0_TAP	This is the delay tap of TD0. The delay tap is encoded as gray code $(0, 1, 3, 2, 6, 7, 5, 4, C, D, F, E, A, B, 9, 8)$
7:0	TD0_TRAIN_WD	This is the training word in training mode.

MAC forward control

0x0010 is used for MAC forwarding control rule. For different traffic, like broadcast, Unknown multicast...etc, you can set the forwarding port at this register.

00000010 MFC MAC Forward Control 00000000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				BC_	FFP							UNM	_FFP			
Type				R'	W							R	W			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				UNU	_FFP				CPU_ EN	CI	PU_POI	RT	MIRR OR_E N	MIR	ROR_P	ORT
Type				R'	W				RW		RW		RW		RW	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description
31:24	BC_FFP	Broadcast Frame Flooding Ports
		If MAC receives broadcast frames, this field indicates the flooding ports. [NOTE] 1. The flooding port excludes the received port on the switch. 2. Frame dropped though BC_FFP=6'b0
23:16	UNM_FFP	Unknown Multicast Frame Flooding Ports If MAC receives multicast frames which can not be found on the ARL, this field indicates the
		flooding ports. [NOTE]
		1. The flooding port will exclude the received port by HW. 2. Frame dropped though UNM_FFP=6'b0.

15:8	UNU_FFP	Unknown Unicast Frame Flooding Ports If MAC receives the unicast or multicast frames which can not be found on the ARL. The field indicates the flooding port. [NOTE] 1. The flooding port will excludes the received port by HW 2. Frame dropped though UNM_FFP=6'b0
7	CPU_EN	CPU Port Enable Enable the CPU port specified in CPU_PORT. 0: No CPU port exists. 1: Enable
6:4	CPU_PORT	CPU Port Number Set the CPU port number. 3'h0: Port 0 3'h7: Port 7
3	MIRROR_EN	Mirror Port Enable Enable the mirror port specified in MIRROR_PORT. 0: No mirror available 1: Enable mirror
2:0	MIRROR_PORT	Mirror Port Number Set the mirror port number. 3'h0: Port 0 3'h7: Port 7

Here also show the forwarding rule which you can set at register 0x0010.

FTAG	ACL Enable	ARL/DIP	Action
		Table	
ВС	ACL Hit and Port Map	-	Follow ACL Forwarding Port Map
	is enabled		
	Disable or ACL not Hit	-	Follow MFC .BC_FFP register
MC	ACL Hit and Port Map	-	Follow ACL Forwarding Port Map
IP_MULT	is enabled		
IPV6_MUL	Disable or ACL not Hit	ARL Hit	Follow ARL Forwarding Port Map
TI		ARL not Hit	Follow MFC.UNM_FFP register
UC	ACL Hit and Port Map	-	Follow ACL Forwarding Port Map
	is enabled		
	Disable or ACL not Hit	ARL Hit	Follow ARL Forwarding Port Map
		ARL not Hit	Follow MFC.UNU_FFP register

MAC table aging time

Aging time is used for recording the MAC is exist or not and would be clean after 300 seconds if there is no traffic pass through again. For changing this, you can modify the 0x00A0.

The aging time would be depending on the switch core clock speed.

000000	\0	AAC			Addre	ess Ag	je Coi	ntrol							000	95001
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name						REV0						AGE_		AGE_C	NT[7:4]	

												DIS				
Type		DC										RW		R'	W	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		AGE_C	NT[3:0]													
Type		R'	W						W							
Reset	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	1

Bit(s)	Name	Description
31:21	REV0	Reserved
20	AGE_DIS	Address Table Aging Disable Disable or pause MAC address aging.
19:12	AGE_CNT	Address Table Age Count This age count is recorded in the age timer field of the MAC address table when a new source address is received and the table entry is ready to refresh the timer. The applied age timer is equal to (AGE_CNT+1) *(AGE_UNIT+1) seconds.
11:0	AGE_UNIT	Address Table Age Unit The applied aging unit is equal to (AGE_UNIT+1) seconds.

MAC table

We have 2048 MAC entries exist in switch.

MT7530 build in the API command:

Ethphxcmd arl mactbl-disp

MAC AABBCCDDEEFF: TIMER:149, SA_PORT_FW:0, SA_MIR_EN:0, USER_PRI:0,

EG_TAG:0, LEAKY_EN:0, PORT:4, STATUS:1, TYPE:0

You can find that have an aging time, source port information over there.

For RT63368 or others platform, you can use the command flow to check the MAC table list:

Ethphxcmd gsww 80 8002 //clean

Ethphxcmd gsww 80 8004 //first MAC entry
Ethphxcmd gswr 84 // show the first entry
Ethphxcmd gswr 88 // show the firstentry
Ethphxcmd gsww 80 8005 //next MAC entry

Ethphxcmd gswr 84 // show the second entry Ethphxcmd gswr 88 // show the second entry

For detail, you can check the register 0x0080,0x0084 and 0x0088.

00000080 <u>ATC</u> Address Table Control 00000000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		RE	V0							AD	DR					
Type		D	С							R	0					
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	BUSY	SRCH _END	SRCH _HIT	ADDR _INVL D		AC_	MAT		RE	.V1	AC_	SAT	REV2	,	AC_CMI	D
Type	W1C	RO	RO	RO		R'	W		D	С	R	W	DC		RW	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

00000084 TSRA1 Table Search Read Address I 00000000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	BYTE_0 BYTE_1															
Type		RO RO														
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				BYT	E_2				BYTE_3							
Type				R	0				RO							
Reset	t 0 0 0 0 0 0 0 0 0										0	0				

Bit(s)	Name	Description
31:24	BYTE_0	MAC Address[47:40] / Destination IP(DIP) Address [31:24]
23:16	BYTE_1	MAC Address[39:32] / Destination IP(DIP) Address [23:16]
15:8	BYTE_2	MAC Address[31:24] / Destination IP(DIP) Address [15:8]
7:0	BYTE_3	MAC Address[23:16] / Destination IP(DIP) Address [7:0]

00000088 TSRA2 Table Search Read Address II 00000000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	BYTE_0 BYTE_1															
Type				R	0			RO								
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				BYT	E_2				BYTE_3							
Type				R	0				RO							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description
31:24	BYTE_0	MAC Address[15:8] / Source IP(SIP) Address [31:24]
23:16	BYTE_1	MAC Address[7:0] / Source IP(SIP) Address [23:16]
15:8	BYTE_2	SIP Address [15: 8] or bit[15]: IVL bit[14:12]: Filter ID[2:0] bit[11:8]: CVID[11: 8] NOTE: When IVL is reset, MAC[47:0] and FID[2:0] will be used to read/write the address table. When IVL is set, MAC[47:0] and CVID[11:0] will be used to read/write the address table.
7:0	BYTE_3	SIP Address[7:0] or CVID[7:0]

MAC number control

PHY auto polling and SMI master control register

Set the 0x7018 if you want to use auto polling mode for each PHY port.

00007018 PHY_POLL PHY Polling and SMI Master Control Register 007F8600

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name			_	PH	Y_AP_	EN		_				EEE	_POLL	_EN		
Type					RW								RW			
Reset		0	0	0	0	0	0	0		1	1	1	1	1	1	1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	PHY_	PHY_RX_TA PHY_END_ADDR							PMDC	_CFG			PHY	_ST_A	DDR	

	PRE_ EN	1_CHK _OFF												
Type	RW	RW			RW			R'	W			RW		
Reset	1	0	0	0	1	1	0	0	0	0	0	0	0	0

Bit(s)	Name	Description
30:24	PHY_AP_EN	PHY Auto-Polling Enable It indicates the updating PHY status by auto-polling or side-band signals. bit 24 => port 0 bit 25 => port 1 bit 30 => port 6 1: PHY status obtained by Auto-polling 0: PHY status obtained by side-band signals
22:16	EEE_POLL_EN	PHY EEE Polling Enable It indicates polling the EEE capability of each PHY. bit 16 => port 0 bit 17 => port 1 bit 22 => port 6 1: Enable 0: Disable
15	PHY_PRE_EN	PHY Preamble Enable It indicates that the SMI master will send preamble bits (32 bits) at each MDIO read/write transaction. 1: Enable 0: Disable Note: This bit will affect both PHY auto-polling mode and PHY indirect access mode.
14	RX_TA1_CHK_OFF	Disable the checking of RX_TA1 value. 1: Do not check the value of RX_TA1 state 0: Check the value of RX_TA1. If this value is not 0, it means that there is no response from PHYs, and all rx_data are invalid.
12:8	PHY_END_ADDR	PHY Polling End Address It indicates the end address of PHY auto-polling process.
7:6	PMDC_CFG	PHY MDC Clock Configuration It is used to configure the divider N for MDC clock frequency. The MDC clock is from the system clock (500MHz) and is divided by N. 2'b00: N=256 2'b01: N=64 2'b10: N=32 2'b11: N=16 Note: MDC clock should not be over the MDC clock maximum value of PHY.
4:0	PHY_ST_ADDR	PHY Polling Start Address It indicates the start address of PHY auto-polling process.

Output queue

Each port has 8 queues for different QoS services. Please know that QoS only active when traffic jam happen. It means that you should have flow control first for QoS. If not, you would only find the packet loss.

Free page: Read the 0x1fc0

For MT7530, if you want to check the queue, please use: ethphxcmd gsww 7038 220 ethphxcmd gswr 7034

Here show the Q map:

	Q1 & Q0	Q3 & Q2	Q5 & Q4	Q7 & Q6
P0	220	221	222	223
P1	224	225	226	227
P2	228	229	22a	22b
P3	22c	22d	22e	22f
P4	230	231	232	233
P5	234	235	236	237
P6	238	239	23a	23b

00001FC0 FPLC Free Page Link Count Register

01	E	E	O.	1	E	E

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name										MII	N_FREE	E_PL_C	NT			
Type											R	0				
Reset							0	1	1	1	1	0	1	1	1	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name											FREE_F	PL_CN	Ī			
Type											R	0				
Reset							0	1	1	1	1	0	1	1	1	0

Bit(s)	Name	Description
25:16	MIN_FREE_PL_CNT	Minimal Free Page Link Count in LMU from last read access
9:0	FREE_PL_CNT	Free Page Link Count in LMU

VLAN setting

You need use three registers to make one VLAN rule. Please follow the below information to do that:

Set the port you want into security mode and as user port, take port 1 as example:

0x 2104 00ff0003 //set as security mode

0x 2110 81000000 //set as user port

You should set up the each VLAN port you want to be security mode and user port. Next, you need to setup the VLAN ID and group member. Here, we set port 0 to 3 and port 6 as one group and their VLAN ID is 10. And just only port 3 get the egress tag.

 $0x94 \ 104F0001$ Port member $0\sim3+6 \ (4f=0100\ 1111\)$

0x98 000000c0 Egress tag enable for port 3, refer to register 0x98

0x90 80001003 VID member VID set as 03

Note: Please don't use 0 and 4095 for VID.

If you do not want to add egress tag at any port, just set 0x98 as 0. For detail, check the register 0x0098 at the below.

0000210)4	<u>PCR</u>			Port C	Contro	ol of P	1							00FI	F0000
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	PEVA	MI Dv2	EG	TAG	DEV/1	D	ORT P	DΙ				PORT	MATRIY	7		

		_EN														
Type	DC	RW	R	W	DC		RW					R	W			
Reset	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		REV2		UP2D SCP_E N	UP2TA G_EN	ACL_E N	PORT _TX_M IR	PORT _RX_ MIR	ACL_ MIR	MIS	_PORT	_FW	REV3	VLAN_ MIS	PORT	_VLAN
Type		DC		RW	RW	RW	RW	RW	RW		RW		DC	RW	R	W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

0000009	0	<u>VTCR</u>	i		VLAN	Table	Cont	trol							0000000	
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	BUSY		REVO									IDX_IN VLD				
Type	W1C		DC R							RO						
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		FU	NC							V	D					
Type		R'	W		RW											
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

·		
Bit(s)	Name	Description
31	BUSY	VLAN Table Is Busy
		SW can set this bit to 1 only if this bit is reset. After the VTCR register is written and this bit is set, this chip will perform the corresponding function on the VLAN table based on FUNC bits.
30:17	REV0	Reserved
16	IDX_INVLD	Entry is not Valid
		This index for the access control is out of the valid index.
15:12	FUNC	Access Control Function
		Whenever VTCR register is written and bit.31 is set, this chip will perform the corresponding function on the VLAN table based on FUNC bits. 4'b0000: Read the specified VID Entry from VAWD# register based on VID bits 4'b0001: Write the specified VID Entry though VAWD# register based on VID bits. 4'b0010: Make the specified VID entry invalid based on VID bits. 4'b0011: Make the specified VID entry valid based on VID bits. 4'b0100: Read the specified ACL Table entry. 4'b0101: Write the specified ACL Table entry. 4'b0110: Read the specified ACL Table entry. 4'b0111: Write the specified trTCM Meter Table. 4'b1000: Read the specified ACL Mask entry. 4'b1001: Write the specified ACL Mask entry. 4'b1010: Read the specified ACL Rule Control entry. 4'b1011: Write the specified ACL Rule Control entry. 4'b1001: Read the specified ACL Rate Control entry. 4'b1101: Write the specified ACL Rate Control entry. 4'b1101: Reserved
11:0	VID	1. VLAN ID Number: 0x0 to 0x1F (16) 2. ACL table index: 0x0 to 0x3F (64) 3. ACL mask control: 0x0 to 0x3F (32 or 64)

0x94

(VLAN Entry)

Bits	Туре	Name	Description	Initial value
31	RW	PORT_STAG	Port based STAG	0x0
30	RW	IVL_MAC	Independent VLAN Learning	0x0
29	RW	EG_CON	Egress Tag Consistent	0×0
28	RW	VTAG_EN	Per VLAN Egress Tag Control	0×0
27	RW	CODY DDI	Copy User Priority Value from Customer Priority	0×0
27	KVV	COPY_PRI	Tag for Stack VLAN	0.00
26:24	RW	USER_PRI	Service Tag User Priority Value from VLAN Table	0x0
23:16	RW	PORT_MEM	VLAN Member Control	0x0
15:4	RW	S_TAG1	Service Tag I	0x0
3:1	RW	FID	Filtering Database	0×0
0	RW	VALID	VLAN Entry Valid	0×0

0x98

(VLAN Entry)

Bits	Туре	Name	Description	Initial value
31:16	RW	S_TAG2	Service Tag II	0x0
15:14	-	-	Reserved	0x0
13:12	RW	P6_TAG	P6 Egress Tag Control	0x0
11:10	RW	P5_TAG	P5 Egress Tag Control	0x0
9:8	RW	P4_TAG	P4 Egress Tag Control	0x0
7:6	RW	P3_TAG	P3 Egress Tag Control	0x0
5:4	RW	P2_TAG	P2 Egress Tag Control	0x0
3:2	RW	P1_TAG	P1 Egress Tag Control	0x0
1:0	RW	P0_TAG	P0 Egress Tag Control	0x0

00002010 **PVC Port VLAN Control of P0**

0000201	10	<u>PVC</u>			Port V	ort VLAN Control of P0									00000C0	
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		STAG_VPID														
Type		RW														
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	DIS_P VID	FORC E_PVI D		PT_VP M	PT_OP TION		EG_TAC	}	VLAN_		PORT _STA G	BC_L KYV_E N		UC_L KYV_E N	ACC_	FRM
Type	RW	RW	DC	RW	RW	RW		RW RW RW		RW	RW	R'	W			
Docot	Λ	Λ	0	0)	0	0	0	4	4	0	0	0	0	0	0

Bit(s)	Name	Description
--------	------	-------------

31:16 STAG_VPID Stack Tag VPID (VLAN Protocol ID) Value

> The received frame will be regarded as a legal stack tag frame if the following conditions are matched:

Outer VPID == STAG_VPID Inner VPID == 16'h8100

The outgoing frame will be added by the outer VLAN tag with the programmable VPID field = STAG_VPID.

15	DIS DVID	PVID Disable
15	DIS_PVID	Disable PVID insertion in priority-tagged frames. 0: Use PVID for priority-tagged frames. 1: Keep VID=0 for priority-tagged frames.
14	FORCE_PVID	Force PVID on VLAN-tagged frames 0: Use VID in VLAN-tagged frame. 1: Force the replacement of VID with PVID.
13	REV0	
12	PT_VPM	Pass-through capability on TPID
		0: Disable pass-through on TPID 1: Enable pass-through on TPID
11	PT_OPTION	Pass-through capability on TX special tag
		Disable pass-through on TX special tag Enable pass-through on TX special tag
10:8	EG_TAG	Incoming Port Egress VLAN Tag Attribution 3'b000: System default (disabled) 3'b001: Consistent 3'b010, 3'b011: Reserved 3'b100: Untagged 3'b101: Swap 3'b110: Tagged 3'b111: Stack
7:6	VLAN_ATTR	VLAN Port Attribute 2'b00: User port 2'b01: Stack port 2'b10: Translation port 2'b11: Transparent port
5	PORT_STAG	Special Tag Enable
		Enable a proprietary VLAN tag format to carry additional information to the remote port. 0: No special tag format for Tx/Rx 1: Enable
4	BC_LKYV_EN	Broadcast Leaky VLAN Enable
		0: Broadcast frames received by this port will be blocked by VLAN.1: Broadcast frames received by this port can pass through VLAN.
3	MC_LKYV_EN	Multicast Leaky VLAN Enable
		[NOTE] Leaky VLAN can be configured by ARL or Port Control Register based on the indication of MAC.UC_ARL_LKYV or MAC.UC_ARL_LKYV.) 0: Multicast frames received by this port will be blocked by VLAN. 1: Multicast frames received by this port can pass through VLAN.
2	UC_LKYV_EN	Unicast Leaky VLAN Enable
		[NOTE] Leaky VLAN can be configured by ARL or Port Control Register based on the indication of MAC.UC_ARL_LKYV or MAC.UC_ARL_LKYV.) 0: Unicast frame received by this port will be blocked by VLAN. 1: Unicast frame received by this port can pass through VLAN.
1:0	ACC_FRM	Acceptable Frame Type
		2'b00: Admit All frames
		2'b01: Admit Only VLAN-tagged frames 2'b10: Admit only untagged or priority-tagged frames. 2'b11: Reserved

Note: if you want to drop (or not)packet with VLAN tag(or not), you can set bit 1:0 of REG 0x2010,0x2210,0x2210...0x2610 to do that.

VLAN translation

We provide two ways to do the VLAN ID translation. One is port base, another is not.

Port base VLAN translation:

You can follow the script to do the test(Use for ProComm plus). It is for VID=2 and VID3 translation and for Port 0 to Port 2. **************** proc main ;set security mode and user port of port 0. transmit "ethphxcmd gsww 2004 00ff0003^M" transmit "ethphxcmd gsww 2010 81000000^M" ;set security mode and user port of port 1. transmit "ethphxcmd gsww 2104 00ff0003^M" transmit "ethphxcmd gsww 2110 81000000^M" ;set security mode and user port of port 2. transmit "ethphxcmd gsww 2204 00ff0003^M" transmit "ethphxcmd gsww 2210 81000000^M" ;bit 31 of 0x94 as 1, means enable port base. Red bit means for index 0. transmit "ethphxcmd gsww 94 907f0001^M" transmit "ethphxcmd gsww 98 00001555^M"; egress tag control enable transmit "ethphxcmd gsww 90 80001002^M"; VID=2 ;bit 31 of 0x94 as 1 ,means enable port base. Red bit means for index 2. transmit "ethphxcmd asww 94 907f0021^M" transmit "ethphxcmd gsww 98 00001555^M"; egress tag control enable transmit "ethphxcmd gsww 90 80001003^M" : VID=3 : Note the index has 3 bit for setting, means from Index 0 to Index 7. set the index 0 from port 0 to port 6, and the translation ID is 100,200 and 300. transmit "ethphxcmd gsww 2020 100^M" transmit "ethphxcmd gsww 2120 200^M" transmit "ethphxcmd gsww 2220 300^M" ;set the index 2 from port 0 to port 6, and the translation ID is 102,202 and 302. transmit "ethphxcmd gsww 2024 102^M" transmit "ethphxcmd gsww 2124 202^M" transmit "ethphxcmd gsww 2224 302^M" endproc

Not Port base VLAN translation:

You can follow the script to do the test(Use for ProComm plus). It is for VID=2 and VID3 translation to VID=33 and VID=44. **************** proc main transmit "ethphxcmd gsww 2004 00ff0003^M" transmit "ethphxcmd gsww 2010 81000000^M" transmit "ethphxcmd gsww 2104 00ff0003^M" transmit "ethphxcmd gsww 2110 81000000^M" transmit "ethphxcmd gsww 2204 00ff0003^M" transmit "ethphxcmd gsww 2210 81000000^M" ;bit 31 of 0x94 as 0 ,means disable port base. Red bit means for VID=33. transmit "ethphxcmd gsww 94 107f0331^M" transmit "ethphxcmd gsww 98 00001555^M" transmit "ethphxcmd gsww 90 80001002^M" ;bit 31 of 0x94 as 0 ,means disable port base. Red bit means for VID=44. transmit "ethphxcmd gsww 94 107f0441^M" transmit "ethphxcmd gsww 98 00001555^M" transmit "ethphxcmd gsww 90 80001003^M" endproc

About the register 0x94, 0x98 and 0x90, please refer to the above VLAN setting table.

QoS (Quality of Services)

QoS is the ability to provide different priority to different applications or the data flows. MT7530 can support strict priority (SP) and weighted round-robin (WRR) mode for QoS. Please refer to packet format at the below figure and know the VID and user priority are the key for QoS. We will suggest that you should disable flow control if you want to use QoS.

You may need to make the port you want as security mode and user port first. For detail, please check the page about VALN setting in this document.

0x 2104 00ff0003 //set as security mode 0x 2110 81000000 //set as user port

 $0x94 \ 104F0001$ Port member $0\sim3+6 \ (4f=0100\ 1111)$

0x98 000000c0 Egress tag enable for port 3, refer to register 0x98

0x90 80001003 VID member VID set as 03

Please also refer the chapter of VLAN to know the detail setting.

Follow the step to setup the QoS:

Please notice the MT7530 use output queue structure. That means you should set these setting at output port. Set as Tag-base

0x0044 as 0x222722 //Tag-base for first priority

Default Priority-to-queue mapping (802.3D OoS) Priority 7 - Queue 7 Priority 6 - Queue 6 Priority 5 - Queue 5 Priority 4 - Queue 4 Priority 3 - Queue 3 Priority 1 - Queue 2 Priority 0 - Queue 1 Priority 2 - Queue 0 You can swap the Q map as you want. For example: Change priority 1 from Q2 to Q1: $0x0048\ 09080240$ Change priority 1 from Q1 to Q2: 0x0048 0a080240

If want to use SP:

0x1000 as 0x8000<mark>0</mark>000 //SP for Q0 of Port 0 0x1004 as 0x00000000 //SP for Q0 of Port 0 0x1008 as 0x8000<mark>0</mark>000 //SP for Q1 of Port 0 0x100c as 0x00000000 //SP for Q1 of Port 0

If want to use WRR:

0x1000 as 0x80008000 //WRR for Q0 of P0 0x1004 as 0x01000000 //weight of Q0 of P0 0x1008 as 0x80008000 //WRR for Q1 of P0 0x100c as 0x03000000 //weight of Q1 of P0

Set the port weight:

0x1004 as 0x01000000 //Weighting of P0 Q0 is 2 (q0_max_weight+1'b1) 0x100c as 0x03000000 //Weighting of P0 Q1 is 4 (q1_max_weight+1'b1)

•••

Note: Queue n service with probability Pn (Pn = weight n / Sum (weight))

Follow the table and set the mode as SP or WRR.

	Q0	Q1	Q2	Q3	Q4	Q5	Q6	Q7
Port 0	0x1000	0x1008	0x1010	0x1018	0x1020	0x1028	0x1030	0x1038
Port 1	0x1100	0x1108	0x1110	0x1118	0x1120	0x1128	0x1130	0x1138
Port 2	0x1200	0x1208	0x1210	0x1218	0x1220	0x1228	0x1230	0x1238
Port 3	0x1300	0x1308	0x1310	0x1318	0x1320	0x1328	0x1330	0x1338
Port 4	0x1400	0x1408	0x1410	0x1418	0x1420	0x1428	0x1430	0x1438
Port 5	0x1500	0x1508	0x1510	0x1518	0x1520	0x1528	0x1530	0x1538
Port 6	0x1600	0x1608	0x1610	0x1618	0x1620	0x1628	0x1630	0x1638

P0 weighting setting map:

00001004	MMSCR1_Q0P0	32	Max-Min Scheduler Control Register 1 of Queue 0/Port 0
0000100C	MMSCR1_Q1P0	32	Max-Min Scheduler Control Register 1 of Queue 1/Port 0
00001014	MMSCR1_Q2P0	32	Max-Min Scheduler Control Register 1 of Queue 2/Port 0
0000101C	MMSCR1_Q3P0	32	Max-Min Scheduler Control Register 1 of Queue 3/Port 0
00001024	MMSCR1_Q4P0	32	Max-Min Scheduler Control Register 1 of Queue 4/Port 0
0000102C	MMSCR1_Q5P0	32	Max-Min Scheduler Control Register 1 of Queue 5/Port 0
00001034	MMSCR1_Q6P0	32	Max-Min Scheduler Control Register 1 of Queue 6/Port 0
0000103C	MMSCR1_Q7P0	32	Max-Min Scheduler Control Register 1 of Queue 7/Port 0

08480240

00000044 UPW User Priority Weight 00234567

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Name					REV0			Α	RL_UP	W	REV1	REV1 PORT_UPW					
Type	DC										RW		DC		RW		
Reset	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name	REV2	DS	CP_UF	PW	REV3	T	AG_UP	W	REV4	STAG_UPW			REV5	Α	ACL_UPW		
Type	DC		RW		DC		RW			RW			DC	RW			
Reset	0	1	0	0	0	1	0	1	0	1	1	0	0	1	1	1	

Bit(s)	Name	Description
31:23	REV0	Reserved
22:20	ARL_UPW	ARL User Priority Weight (MAC/DIP Hit)
19	REV1	Reserved
18:16	PORT_UPW	Port-Based User Priority Weight Value Weights range from 0x0 to 0x7.
15	REV2	Reserved
14:12	DSCP_UPW	DSCP Priority Weight (IPv4)
11	REV3	Reserved
10:8	TAG_UPW	Priority Tag User Priority Weight
7	REV4	Reserved
6:4	STAG_UPW	Special Tag User Priority Weight
3	REV5	Reserved
2:0	ACL_UPW	ACL User Priority Weight (ACL Hit)

00000048 PEM1 User Priority Egress Mapping I

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Name	RE	V0	TA	TAG_PRI_1		QUE_CPU_1			QUE_I	LAN_1	DSCP_PRI_1						
Type	D	С		RW		RW			R'	RW		RW					
Reset	0	0	0	0	1	0	0	0	0	1	0	0	1	0	0	0	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name	RE	V1	T/	G_PRI	_0	QUE_CPU_0			QUE_LAN_0		DSCP_PRI_0						
Type	D	С		RW			RW			RW			R'	W			
Reset	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	

Bit(s)	Name	Description
31:30	REV0	Reserved
29:27	TAG_PRI_1	User Priority 1 Priority Tag Value
26:24	QUE_CPU_1	User Priority 1 CPU Queue Selectio
23:22	QUE_LAN_1	User Priority 1 LAN Queue Selection
21:16	DSCP_PRI_1	User Priority 1 DSCP Value
15:14	REV1	Reserved
13:11	TAG_PRI_0	User Priority 0 Priority Tag Value
10:8	QUE_CPU_0	User Priority 0 CPU Queue Selectio
7:6	QUE_LAN_0	User Priority 0 LAN Queue Selection
5:0	DSCP_PRI_0	User Priority 0 DSCP Value

0000004C PEM2 User Priority Egress Mapping II

1B581110

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	REV0		TAG_PRI_3			QL	QUE_CPU_3			LAN_3	DSCP_PRI_3					
Type	D	С	C RW RW RW							R'	W					
Reset	0	0	0	1	1	0	1	1	0	1	0	1	1	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	RE	V1	T/	G_PRI	_2	QUE_CPU_2			QUE_I	LAN_2	DSCP_PRI_2					
Type	DC		RW		RW		RW		RW							
Reset	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	0

Bit(s)	Name	Description
31:30	REV0	Reserved
29:27	TAG_PRI_3	User Priority 3 Priority Tag Value
26:24	QUE_CPU_3	User Priority 3 CPU Queue Selectio
23:22	QUE_LAN_3	User Priority 3 LAN Queue Selection
21:16	DSCP_PRI_3	User Priority 3 DSCP Value
15:14	REV1	Reserved
13:11	TAG_PRI_2	User Priority 2 Priority Tag Value
10:8	QUE_CPU_2	User Priority 2 CPU Queue Selectio
7:6	QUE_LAN_2	User Priority 2 LAN Queue Selection
5:0	DSCP_PRI_2	User Priority 2 DSCP Value

00001000 MMSCR0_Q0P0 Max-Min Scheduler Control Register 0 of Queue 0/Port 0 00000000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	MIN_S															
	P_WR															
	$R_Q0_$															
	P0															
Type	RW															
Reset	0															
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	MIN_ RATE				MIN_F	RATE_C	TRL E	XP_Q0		MIN DATE CTIN MAN OR PO						
	_EN_Q 0_P0						P0			MIN_RATE_CTRL_MAN_Q0_P0						
Type	RW					R'	W			RW						
Reset	0				0	0	0	0		0	0	0	0	0	0	0

Bit(s)	Name	Description
31	MIN_SP_WRR_Q0_P0	Port 0 Queue 0 min. traffic arbitration scheme 0: Strict Priority (SP) 1: Round-Robin (RR)
15	MIN_RATE_EN_Q0_P0	Port 0 Queue 0 minimum shaper rate limit control is enabled. 0: Queue 0 min. rate limit control is disabled, when it is disabled, shaper will always let the pkt pass (infinite rate). 1: Queue 0 min. rate limit control is enabled.
11:8	MIN_RATE_CTRL_EXP_Q 0_P0	Exponent part of Port 0 Queue 0 min. shaper rate limit control Value range: 04
6:0	MIN_RATE_CTRL_MAN_ Q0_P0	Mantissa part of Port 0 Queue 0 min. shaper rate limit control Value range: 1100

00001004	<u> 20P0</u>	Max-N	Min Sc	hedule	er Con	trol Re	rol Register 1 of Queue 0/Port 0									
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	MAX_ SP_W FQ_Q0 _P0				MAX	X_WEI	GHT_Q	0_P0								
Type	RW					R	W									
Reset	0				0	0	0	0								
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	MAX_ RATE _EN_Q 0_P0				MAX_I	_	CTRL_F P0	EXP_Q0			MAX	_RATE_	_CTRL_	_MAN_(Q0_P0	
Type	RW					R	W			RW						
Reset	0				0	0	0	0		0	0	0	0	0	0	0

Bit(s)	Name	Description
31	MAX_SP_WFQ_Q0_P0	Port 0 Queue 0 maximum traffic arbitration scheme
		0: Weighted Fair Queuing (WFQ) 1: Strict Priority (SP)
27:24	MAX_WEIGHT_Q0_P0	Port 0 Queue 0 weighted value for maximum WFQ weighted value is (q0_max_weight+1'b1)
15	MAX_RATE_EN_Q0_P0	Port 0 Queue 0 maximum shaper rate limit control is enabled.
		0: Queue 0 maximum shaper rate limit control is disabled, the shaper will always let the pkt pass (infinite rate). 1: Queue 0 maximum shaper rate limit is enabled.
11:8	MAX_RATE_CTRL_EXP_ Q0_P0	Exponent part of Port 0 Queue 0 maximum shaper rate limit control Value range: 013 (4-bit)
6:0	MAX_RATE_CTRL_MAN_ Q0_P0	Mantissa part of Port 0 Queue 0 maximum shaper rate limit control Value range: 0127 (7-bit)

0000100	8	MMS	CR0_()1 <u>P0</u>	Max-N	Min Sc	hedule	er Con	trol Re	egister	0 of Q	ueue 1	/Port	0	000	00000
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	MIN_S															
	P_WR															
	R_Q1_															
	P0															
Type	RW															
Reset	0															
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	MIN_															
	RATE				MIN_F	RATE_C	TRL_E	XP_Q1			NATNI	DATE	CTDI	MANI C	11 D0	
	_EN_Q						P0				IVIIIN_	KAIL_	CIKL_	MAN_(ĮI_PU	
	1_P0															
Type	RW					R	W						RW			
Reset	0				0	0	0	0		0	0	0	0	0	0	0

Bit(s)	Name	Description
31	MIN_SP_WRR_Q1_P0	Port 0 Queue 1 min. traffic arbitration scheme 0: Strict Priority (SP) 1: Round-Robin (RR)
15	MIN_RATE_EN_Q1_P0	Port 0 Queue 1 minimum shaper rate limit control is enabled. 0: Queue 1 min. rate limit control is disabled, when it is disabled, shaper will always let the pkt pass.(infinite rate) 1: Queue 1 min. rate limit control enable
11:8	MIN_RATE_CTRL_EXP_Q 1_P0	Exponent part of Port 0 Queue 1 min. shaper rate limit control Value range: 013
6:0	MIN_RATE_CTRL_MAN_ Q1_P0	Mantissa part of Port 0 Queue 1 min. shaper rate limit control

0000100	C	MMS	CR1_()1P0	Max-N	Min Sc	hedul	er Con	trol Re	egister	1 of Q	ueue 1	/Port	0	000	000000
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	MAX_ SP_W FQ_Q1 _P0				MAX	X_WEI	GHT_Q	1_P0								
Type	RW					R	W									
Reset	0				0	0	0	0								
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	MAX_ RATE _EN_Q 1_P0				MAX_I		CTRL_I P0	EXP_Q1			MAX	_RATE_	_CTRL	_MAN_(Q1_P0	
Type	RW					RW				RW						
Reset	0				0	0	0	0		0	0	0	0	0	0	0

Bit(s)	Name	Description
31	MAX_SP_WFQ_Q1_P0	Port 0 Queue 1 maximum traffic arbitration scheme
		0: Weighted Fair Queuing (WFQ) 1: Strict Priority (SP)
27:24	MAX_WEIGHT_Q1_P0	Port 0 Queue 1 weighted value for maximum WFQ weighted value is (q1_max_weight+1'b1)
15	MAX_RATE_EN_Q1_P0	Port 0 Queue 1 maximum shaper rate limit control is enabled.
		0: Queue 1 maximum rate limit control disable, shaper will always let the pkt pass.(infinite rate) 1: Queue 1 maximum rate limit enable
11:8	MAX_RATE_CTRL_EXP_	Exponent part of Port 0 Queue 1 maximum shaper rate limit control
	Q1_P0	Value range: 013 (4-bit)
6:0		Mantissa part of Port 0 Queue 1 maximum shaper rate limit control
	Q1_P0	Value range: 0127 (7-bit)

00001010	0	MMS	CR0_()2P0	Max-N	Min Sc	hedule	er Con	trol Re	egister	0 of Q	ueue 2	/Port	0	000	00000
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	MIN_S															
	P_WR															
	R_Q2_															
	P0															
Type	RW															
Reset	0															
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	MIN_															
	RATE				MIN_F	RATE_C	TRL_E	XP_Q2			MINI	DATE	CTDI	MAN (22 DO	
	_EN_Q					ل ا	P0				IVIIIN_	_KAIL_	CIKL_	_IVIAIN(22_FU	
	2_P0															
Type	RW					R	W	•			•	•	RW			
Reset	0				0	0	0	0		0	0	0	0	0	0	0

Bit(s)	Name	Description
31	MIN_SP_WRR_Q2_P0	Port 0 Queue 2 min. traffic arbitration scheme 0: Strict Priority (SP) 1: Round-Robin (RR)
15	MIN_RATE_EN_Q2_P0	Port 0 Queue 2 minimum shaper rate limit control is enabled. 0: Queue 1 min. rate limit control is disabled, when it is disabled, shaper will always let the pkt pass.(infinite rate) 1: Queue 1 min. rate limit control enable
11:8	MIN_RATE_CTRL_EXP_Q 2_P0	Exponent part of Port 0 Queue 2 min. shaper rate limit control Value range: 013
6:0	MIN_RATE_CTRL_MAN_ Q2_P0	Mantissa part of Port 0 Queue 2 min. shaper rate limit control Value range: 1127

00001014	1	MMS(CR1_(<u>)2P0</u>	Max-N	Min Sc	hedule	r Con	trol Re	egister	1 of Q	ueue 2	/Port (0	000	00000	

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	MAX_															
	SP_W				MA	X_WEI	ти О	2 P0								
	FQ_Q2				1,222		J111_Q									
Trmo	_P0					D	337									
Type	RW					K	W									
Reset	0				0	0	0	0								
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	MAX_ RATE _EN_Q 2_P0				MAX_I		CTRL_E P0	EXP_Q2			MAX	_RATE_	_CTRL_	_MAN_(Q2_P0	
Type	RW					R	W						RW			
Reset	0				0	0	0	0		0	0	0	0	0	0	0

Bit(s)	Name	Description
31	MAX_SP_WFQ_Q2_P0	Port 0 Queue 2 maximum traffic arbitration scheme
		0: Weighted Fair Queuing (WFQ) 1: Strict Priority (SP)
27:24	MAX_WEIGHT_Q2_P0	Port 0 Queue 2 weighted value for maximum WFQ weighted value is (q1_max_weight+1'b1)
15	MAX_RATE_EN_Q2_P0	Port 0 Queue 2 maximum shaper rate limit control is enabled.
		0: Queue 2 maximum rate limit control disable, shaper will always let the pkt pass.(infinite rate) 1: Queue 2 maximum rate limit enable
11:8	MAX_RATE_CTRL_EXP_	Exponent part of Port 0 Queue 2 maximum shaper rate limit control
	Q2_P0	Value range: 013 (4-bit)
6:0	MAX_RATE_CTRL_MAN_ Q2_P0	Mantissa part of Port 0 Queue 2 maximum shaper rate limit control Value range: 0127 (7-bit)

	Q2_1 0				value ra	value range: 0127 (7-bit)											
00001018	8	MMS	CR0_(<u> 23P0</u>	Max-I	Min Sc	hedule	er Con	trol Re	egister	00000000						
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Name	MIN_S P_WR R_Q3_ P0																
Type	RW																
Reset	0																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name	MIN_ RATE _EN_Q 3_P0				MIN_I	_	CTRL_E P0	EXP_Q3			MIN	RATE_	_CTRL_	MAN_(Q3_P0		
Type	RW					R	W						RW				
Reset	0				0	0	0	0		0	0	0	0	0	0	0	

Bit(s)	Name	Description
31	MIN_SP_WRR_Q3_P0	Port 0 Queue 3 min. traffic arbitration scheme 0: Strict Priority (SP) 1: Round-Robin (RR)
15	MIN_RATE_EN_Q3_P0	Port 0 Queue 3 minimum shaper rate limit control is enabled. 0: Queue 3 min. rate limit control is disabled, when it is disabled, shaper will always let the pkt pass.(infinite rate) 1: Queue 3 min. rate limit control enable
11:8	MIN_RATE_CTRL_EXP_Q 3_P0	Exponent part of Port 0 Queue 3 min. shaper rate limit control Value range: 013
6:0	MIN_RATE_CTRL_MAN_ Q3_P0	Mantissa part of Port 0 Queue 3 min. shaper rate limit control Value range: 1127

0000101C	MMSCR1_Q3P0	Max-Min Scheduler Con	ntrol Register 1	of Queue 3/Port 0	0000000
----------	-------------	-----------------------	------------------	-------------------	---------

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	MAX_ SP_W FQ_Q3 _P0				MAX	X_WEI	GHT_Q	3_P0								
Type	RW					R	W									
Reset	0				0	0	0	0								
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	MAX_ RATE _EN_Q 3_P0				MAX_I		CTRL_E P0	EXP_Q3			MAX	_RATE_	_CTRL_	_MAN_(Q3_P0	
Type	RW					R	W						RW			
Reset	0				0	0	0	0		0	0	0	0	0	0	0

Bit(s)	Name	Description
31	MAX_SP_WFQ_Q3_P0	Port 0 Queue 3 maximum traffic arbitration scheme
		0: Weighted Fair Queuing (WFQ) 1: Strict Priority (SP)
27:24	MAX_WEIGHT_Q3_P0	Port 0 Queue 3 weighted value for maximum WFQ weighted value is (q3_max_weight+1'b1)
15	MAX_RATE_EN_Q3_P0	Port 0 Queue 3 maximum shaper rate limit control is enabled.
		0: Queue 3 maximum rate limit control disable, shaper will always let the pkt pass.(infinite rate) 1: Queue 3 maximum rate limit enable
11:8	MAX_RATE_CTRL_EXP_	Exponent part of Port 0 Queue 3 maximum shaper rate limit control
	Q3_P0	Value range: 013 (4-bit)
6:0	MAX_RATE_CTRL_MAN_ Q3_P0	Mantissa part of Port 0 Queue 3 maximum shaper rate limit control Value range: 0127 (7-bit)

					v arac ra	nge. 01	27 (7 01	-)									
0000102	0	MMS	CR0_(<u>)4P0</u>	Max-Min Scheduler Control Register 0 of Queue 4/Port 0										00000000		
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Name	MIN_S	3															
	P_WR																
	R_Q4_	-															
TD.	PO																
Type	RW																
Reset	0																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name	MIN_																
	RATE				MIN_F	RATE_C	TRL_E	XP_Q4			MIN	DATE	CTRL	MANI (M D0		
	$_{\mathbf{EN}}_{\mathbf{Q}}$	2					P0				IVIIIN_	_KAIL_	_CTKL_	IVIAIN_(24_FU		
	4_P0																
Type	RW					R	W						RW				
Reset	0				0	0	0	0		0	0	0	0	0	0	0	

Bit(s)	Name	Description
31	MIN_SP_WRR_Q4_P0	Port 0 Queue 4 min. traffic arbitration scheme 0: Strict Priority (SP) 1: Round-Robin (RR)
15	MIN_RATE_EN_Q4_P0	Port 0 Queue 4 minimum shaper rate limit control is enabled. 0: Queue 4 min. rate limit control is disabled, when it is disabled, shaper will always let the pkt pass.(infinite rate) 1: Queue 4 min. rate limit control enable
11:8	MIN_RATE_CTRL_EXP_Q 4_P0	Exponent part of Port 0 Queue 4 min. shaper rate limit control Value range: 013
6:0	MIN_RATE_CTRL_MAN_ Q4_P0	Mantissa part of Port 0 Queue 4 min. shaper rate limit control Value range: 1127

00001024 MMSCR1_Q4P0 Max-Min Scheduler Control Register 1 of Queue 4/Port 0 00000	00001024	MMSCR1 O4P0	Max-Min Scheduler	Control Register 1 o	of Oueue 4/Port 0	00000000
---	----------	-------------	-------------------	----------------------	-------------------	----------

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	MAX_ SP_W FQ_Q4 _P0				MAX	X_WEI	GHT_Q	4_P0								
Type	RW					R	W									
Reset	0				0	0	0	0								_
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	MAX_ RATE _EN_Q 4_P0				MAX_I		CTRL_E P0	EXP_Q4			MAX	_RATE_	_CTRL_	_MAN_(Q4_P0	
Type	RW					R	W						RW			
Reset	0				0	0	0	0		0	0	0	0	0	0	0

Bit(s)	Name	Description
31	MAX_SP_WFQ_Q4_P0	Port 0 Queue 4 maximum traffic arbitration scheme
		0: Weighted Fair Queuing (WFQ) 1: Strict Priority (SP)
27:24	MAX_WEIGHT_Q4_P0	Port 0 Queue 4 weighted value for maximum WFQ weighted value is (q4_max_weight+1'b1)
15	MAX_RATE_EN_Q4_P0	Port 0 Queue 4 maximum shaper rate limit control is enabled.
		0: Queue 4 maximum rate limit control disable, shaper will always let the pkt pass.(infinite rate) 1: Queue 4 maximum rate limit enable
11:8	MAX_RATE_CTRL_EXP_	Exponent part of Port 0 Queue 4 maximum shaper rate limit control
	Q4_P0	Value range: 013 (4-bit)
6:0	MAX_RATE_CTRL_MAN_ Q4_P0	Mantissa part of Port 0 Queue 4 maximum shaper rate limit control Value range: 0127 (7-bit)

	< ··	*			v alue la	ue range. 0127 (7-01t)														
0000102	8	MMS	CR0_()5P0	Max-I	Min Sc	hedule	er Con	trol Re	egister	0 of Q	00000000								
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16				
Name	MIN_S P_WR R_Q5_ P0																			
Type	RW																			
Reset	0																			
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0				
Name	MIN_ RATE _EN_Q 5_P0				MIN_I		CTRL_E P0	XP_Q5			MIN	_RATE_	_CTRL_	MAN_(Q5_P0					
Type	RW					R	W						RW							
Reset	0				0	0	0	0		0	0	0	0	0	0	0				

Bit(s)	Name	Description
31	MIN_SP_WRR_Q5_P0	Port 0 Queue 5 min. traffic arbitration scheme 0: Strict Priority (SP) 1: Round-Robin (RR)
15	MIN_RATE_EN_Q5_P0	Port 0 Queue 5 minimum shaper rate limit control is enabled. 0: Queue 5 min. rate limit control is disabled, when it is disabled, shaper will always let the pkt pass.(infinite rate) 1: Queue 5 min. rate limit control enable
11:8	MIN_RATE_CTRL_EXP_Q 5_P0	Exponent part of Port 0 Queue 5 min. shaper rate limit control Value range: 013
6:0	MIN_RATE_CTRL_MAN_ Q5_P0	Mantissa part of Port 0 Queue 5 min. shaper rate limit control Value range: 1127

0000102	C	MMS	<u>CR1_(</u>	<u>Q5P0</u>	Max-N	Min Sc	hedule	er Con	trol Re	egister	1 of Q	ueue 5	/Port ()	000	00000	
Rit	31	30	29	28	2.7	26	25	24	23	22	2.1	20	19	18	17	16	l

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	MAX_ SP_W FQ_Q5 _P0				MAX	X_WEI	GHT_Q	5_P0								
Type	RW					R	W									
Reset	0				0	0	0	0								
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	MAX_ RATE _EN_Q 5_P0				MAX_I		CTRL_F P0	EXP_Q5			MAX	_RATE_	_CTRL_	_MAN_(Q5_P0	
Type	RW					R	W						RW			
Reset	0				0	0	0	0		0	0	0	0	0	0	0

Bit(s)	Name	Description
31	MAX_SP_WFQ_Q5_P0	Port 0 Queue 5 maximum traffic arbitration scheme 0: Weighted Fair Queuing (WFQ) 1: Strict Priority (SP)
27:24	MAX_WEIGHT_Q5_P0	Port 0 Queue 5 weighted value for maximum WFQ weighted value is (q5_max_weight+1'b1)
15	MAX_RATE_EN_Q5_P0	Port 0 Queue 5 maximum shaper rate limit control is enabled.
		0: Queue 5 maximum rate limit control disable, shaper will always let the pkt pass.(infinite rate) 1: Queue 5 maximum rate limit enable
11:8	MAX_RATE_CTRL_EXP_	Exponent part of Port 0 Queue 5 maximum shaper rate limit control
	Q5_P0	Value range: 013 (4-bit)
6:0	MAX_RATE_CTRL_MAN_ Q5_P0	Mantissa part of Port 0 Queue 5 maximum shaper rate limit control Value range: 0127 (7-bit)

	Q3_10						value range: 0127 (7-bit)										
0000103	00001030 <u>MMSCR0_Q6P0</u>					Max-Min Scheduler Control Register 0 of Queue 6/Port 0									000	00000000	
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Name	MIN_S P_WR R_Q6_ P0																
Type	RW																
Reset	0																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name	MIN_ RATE _EN_Q 6_P0				MIN_I		CTRL_E P0	XP_Q6			MIN_	_RATE_	_CTRL_	MAN_(Q6_P0		
Type	RW					R	W						RW				
Reset	0				0	0	0	0		0	0	0	0	0	0	0	

Bit(s)	Name	Description
31	MIN_SP_WRR_Q6_P0	Port 0 Queue 6 min. traffic arbitration scheme 0: Strict Priority (SP) 1: Round-Robin (RR)
15	MIN_RATE_EN_Q6_P0	Port 0 Queue 6 minimum shaper rate limit control is enabled. 0: Queue 6 min. rate limit control is disabled, when it is disabled, shaper will always let the pkt pass.(infinite rate) 1: Queue 6 min. rate limit control enable
11:8	MIN_RATE_CTRL_EXP_Q 6_P0	Exponent part of Port 0 Queue 6 min. shaper rate limit control Value range: 013
6:0	MIN_RATE_CTRL_MAN_ Q6_P0	Mantissa part of Port 0 Queue 6 min. shaper rate limit control Value range: 1127

00001034 MMSCR1_Q6P0 Max-Min Scheduler Control Register 1 of Queue 6/Port 0 00000000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	MAX_															
	SP_W				MAY	X_WEI	сит О	6 P0								
	FQ_Q6				IVIA	A_WEI	JIII_Q	0_1 0								
	_P0															
Type	RW					R	W									
Reset	0				0	0	0	0								
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	MAX_															
	RATE				MAX_I	RATE_C	CTRL_E	EXP_Q6			MAY	DATE	CTDI	MAN ()6 D0	
	_EN_Q						P0				MAA.	_KAIL	_CTKL_	MAN_(QO_PU	
	6_P0															
Type	RW					R	W						RW			
Reset	0				0	0	0	0		0	0	0	0	0	0	0

Bit(s)	Name	Description
31	MAX_SP_WFQ_Q6_P0	Port 0 Queue 6 maximum traffic arbitration scheme
		0: Weighted Fair Queuing (WFQ) 1: Strict Priority (SP)
27:24	MAX_WEIGHT_Q6_P0	Port 0 Queue 6 weighted value for maximum WFQ weighted value is (q6_max_weight+1'b1)
15	MAX_RATE_EN_Q6_P0	Port 0 Queue 6 maximum shaper rate limit control is enabled.
		0: Queue 6 maximum rate limit control disable, shaper will always let the pkt pass.(infinite rate) 1: Queue 6 maximum rate limit enable
11:8	MAX_RATE_CTRL_EXP_ Q6_P0	Exponent part of Port 0 Queue 6 maximum shaper rate limit control Value range: 013 (4-bit)
6:0	MAX_RATE_CTRL_MAN_Q6_P0	Mantissa part of Port 0 Queue 6 maximum shaper rate limit control Value range: 0127 (7-bit)

00001038 MMSCR0 Q7P0 Max-Min Scheduler Control Register 0 of Queue 7/Port 0 00000000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	MIN_S															
	P_WR															
	R_Q7_															
	P0															
Type	RW															
Reset	0															
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	MIN_ RATE _EN_Q 7_P0				MIN_F		TRL_E P0	XP_Q7			MIN_	RATE_	_CTRL_	MAN_(27_P0	
Type	RW					R	W				•	•	RW		•	
Reset	0				0	0	0	0		0	0	0	0	0	0	0

Bit(s)	Name	Description
31	MIN_SP_WRR_Q7_P0	Port 0 Queue 7 min. traffic arbitration scheme
		0: Strict Priority (SP) 1: Round-Robin (RR)
15	MIN_RATE_EN_Q7_P0	Port 0 Queue 7 minimum shaper rate limit control is enabled.
		0: Queue 7 min. rate limit control is disabled, when it is disabled, shaper will always let the pkt pass.(infinite rate) 1: Queue 7 min. rate limit control enable
11:8	MIN_RATE_CTRL_EXP_Q 7_P0	Exponent part of Port 0 Queue 7 min. shaper rate limit control Value range: 013

6:0 Q7_P0

MIN_RATE_CTRL_MAN_ Mantissa part of Port 0 Queue 7 min. shaper rate limit control Value range: 1..127

MMSCR1_Q7P0 Max-Min Scheduler Control Register 1 of Queue 7/Port 0 0000103C 00000000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	MAX_															
	SP_W				NAA	v weto	THE O	7 DO								
	FQ_Q7				MA	X_WEI	JII_Q	/_ru								
	_P0															
Type	RW					R	W									
Reset	0				0	0	0	0								
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	MAX_ RATE _EN_Q 7_P0				MAX_I		CTRL_F P0	EXP_Q7			MAX	_RATE_	_CTRL_	_MAN_(Q7_P0	
Type	RW					R'	W	•				•	RW	•	•	
Reset	0				0	0	0	0		0	0	0	0	0	0	0

Bit(s)	Name	Description
31	MAX_SP_WFQ_Q7_P0	Port 0 Queue 7 maximum traffic arbitration scheme
		0: Weighted Fair Queuing (WFQ) 1: Strict Priority (SP)
27:24	MAX_WEIGHT_Q7_P0	Port 0 Queue 7 weighted value for maximum WFQ weighted value is (q7_max_weight+1'b1)
15	MAX_RATE_EN_Q7_P0	Port 0 Queue 7 maximum shaper rate limit control is enabled.
		0: Queue 7 maximum rate limit control disable, shaper will always let the pkt pass.(infinite rate) 1: Queue 7 maximum rate limit enable
11:8	MAX_RATE_CTRL_EXP_	Exponent part of Port 0 Queue 7 maximum shaper rate limit control
	Q7_P0	Value range: 013 (4-bit)
6:0		Mantissa part of Port 0 Queue 7 maximum shaper rate limit control
	Q7_P0	Value range: 0127 (7-bit)

00001040 ERLCR PO **Egress Rate Limit Control Register of Port 0**

			N	

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		EGC_RATE_CIR_15_0_P0														
Type								R	W							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	EG_R ATE_L IMIT_ EN_P0			EGC_ RATE_ CIR_1 6_P0	EG_R	ATE_LI EGC_T	MIT_E B_T_P(XP_P0_)	EGC_ TB_EN _P0	EG_I	RATE_I	LIMIT_	MAN_P	0_EGC_	_TB_CB	S_P0
Type	RW			RW		R	W		RW				RW			
Reset	0			0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description
31:16	EGC_RATE_CIR_15_0_P0	Total 17 bits EGC_CIR include EGC_RATE_CIR_16 in bit 12 location, support 32Kbps stepping CIR cover up to 2.5Gbps
15	EG_RATE_LIMIT_EN_P0	EXP: egress_rate_limit_exp
		MAN: egress_rate_limit_man Egress port rate limitation: MAN*10^(EXP)*1Kbps 0: Egress rate limit control disable 1: Enable
12	EGC_RATE_CIR_16_P0	Combined with EGC_RATE_CIR_15_0 to form a 17 bits CIR value
11:8	EG_RATE_LIMIT_EXP_P0 _EGC_TB_T_P0	Exponent part of port 0 ingress rate limit control value range: 013 (4-bit), When EGC_TB_EN = 1, support EGC_TB_T period for rate measurement,

0: 1/128ms 1: 1/64ms 2: 1/32ms 3: 1/16ms 4: 1/8ms 5: 1/4ms 6: 1/2ms 7: 1ms 8: 2ms 9: 4ms 10: 8ms 11: 16ms 12: 32ms 13: 64ms 14: 128ms 15: 128ms

7 EGC_TB_EN_P0

When this bit is disabled, the Egress rate control acts like a leaky bucket principle.

Otherwise, the Egress rate control uses the token bucket method, and this approach guarantees some burst level for TCP transaction.

0: CIR/CBS mode token bucket Disable

1: Token bucket mode Enable

6:0 EG_RATE_LIMIT_MAN_P 0_EGC_TB_CBS_P0

 ${\tt EG_RATE_LIMIT_MAN_P} \quad \textbf{Mantissa part of port 0 Egress rate limit control Value range: 0..127~(7-bit),}$

when EGC_TB_EN = 1, support maximum bucket size CBS 512 Bytes stepping, and Token Bucket = Max (EGC_CIR*EGC_TB_T, EGC_TB_CBS*512)

000010E0 GERLCR Global Egress Rate Limit Control Register

Λ	Λ	Λ	Λ	n	1	Λ	J
U	v	U	U	U	1	U	4

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							EGC_ MFRM _EX	EGC_I PG_OP			F	GC_IP	G_BYT	E		
Type							RW	RW				R	W			
Reset							0	1	0	0	0	0	0	1	0	0

Bit(s)	Name	Description
9	EGC_MFRM_EX	When this bit is enabled, management frames are excluded in the egress rate limit control mechanism; otherwise, management frames are included. (Management frame type is set by ARL registers)
		0: Include management frames 1: Exclude management frames
8	EGC_IPG_OP	Egress Rate IPG Byte Addition or Subtraction Byte count should be added or subtracted for the rate calculation.
		0: IPG byte is excluded 1: IPG byte is included
7:0	EGC_IPG_BYTE	Egress Rate IPG Byte Count
		Byte count should be added while calculating the rate limit. 0x04: 4 byte CRC (default) 0x18: 4 byte CRC + 12 byte IPG + 8 byte Preamble

Special tag format

Special is used for taking the per-port information to CPU port. It replaces the VLAN tag and inserts the special tag format as below:

Rx:							
	FUP		UPRI[2:0]		DVP	DRM	VPM[1:0]
	PT	SA			DP[5:0]	
Tx:							
	0	0	0	0	0	0	VPM[1:0]
	PT	0	0	0	0		SPN[2:0]

RX

Bit	15	14	13	12	11	10	9	8	
Name	FUP		UPR[2:0]		DVP	DRM	VPM	[1:0]	
Bit	7	6	5	4	3	2	1	0	
Name	PT	SA	DP[5:0]						

Bit(s)	Name	Description
15	FUP	Force PPE user priority
14:12	UPR	PPE user priority
11	DVP	Disable VALN priority remarking
10	DRM	Disable DSCP priority remarking
9:8	VPM	Tag attribute before special tag insertion; 2'b00 untagged; 2'b01 TPID=8100;
7	PT	2'b10 TPID=predefined (e.g. 0x9100 or 0x88a8) Pass through
6	SA	Disable SA learning
5:0	DP	Force forwarding port map: all 0 means disable

ΤX

Bit	15	14	13	12	11	10	9	8
Name	0	0	0	0	0	0	VPN	1[1:0]
Bit	7	6	5	4	3	2	1	0
Name	PT	0	0	0	0		SPN[2:0]	

Bit(s)	Name	Description
9:8	VPM	Tag attribute before special tag insertion;
		2'b00 untagged;
		2'b01 TPID=8100;
		2'b10 TPID=predefined (e.g. 0x9100 or 0x88a8)
_		Pass through
7	PT	Disable VALN priority remarking
2:0	SPN	Source port number

We show some case here to explain the behavior of special tag:

You can enable them at Reg 0x2010,0x2110...etc.., for per-port ability.

0000201	10	<u>PVC</u>			Port V	LAN	Contr	ol of F	2 0						0000	000C0
Bit	31	30	29 28 27 26 25 24 23 22 21 20 19 18									17	16			
Name		STAG_VPID														
Type								R	W							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	DIS_P VID	FORC E_PVI D	REV0	PT_VP M	PT_OP TION	E	EG_TAC	3	VLAN_	_ATTR	_			UC_L KYV_E N	ACC_	_FRM
Type	RW	RW	DC	RW	RW	RW			R'	W	RW	RW	RW	RW	R	W
Reset	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0

Local port enable

This is used for debugging not for normal use. It means it would add the self port to the MAC table. So, the same packet would come out from the input port. Set 7th of 0x000c to enable it.

0000000C AGC ARL Global Control **00071819**

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	MLDv 2_int_ en		REV0											ACL_I NT	VLAN_ INT	ADDR _INT
Type	RW						D	C						RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	RATE _COM P		COMP_BNUM							ARL_P Addin G	ACL_ MULTI	L2LEN _CHK	CTRL_ DROP		ARL_P RI	ALR_ RST_ N
Туре	RW		RW							RW	RW	RW	RW	RW	RW	RW
Reset	0	0	0	1	1	0	0	0	0	0	0	1	1	0	0	1

System MAC Controller

MT7530 build-in the internal MAC. The default MAC is 00000017a501. We put them at 0x30E8 and 0x30E4. You can change the default value as you want.

000030E4 SMACCR0 System MAC Control Register 0

0017A501

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		SMACCR0[31:16]														
Type								R	W							
Reset	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							5	MACC	R0[15:0]						
Type		RW														
Reset	1	0	1	0	0	1	0	1	0	0	0	0	0	0	0	1

Bit(s)	Name	Description
31:0	SMACCR0	System MAC Address, sys_mac [31:0]. The first 32-bit of system MAC address. It is unique and is specified for pause frame.

000030E8 SMACCR1 System MAC Control Register 1

00000000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		SMACCR1														
Type	RW															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description
15:0	SMACCR1	System MAC Address, sys_mac [47:32]. The second 16-bit of system MAC address. It is unique and is specified for pause frame.

Two Rate Three Color Marker (TrTCM)

RFC2698 clearly points out the behavior of trTCM. The implementation adopts 2 token bucket counters to realize 64Kbps-step rate metering. CIR/PIR stands for token accumulating rate and CBS/PBS is the bucket depth. trTCM engine is divided into bucket filling engine and marker. The bucket filling engine utilize one shared hardware engine is running full- time to update 32 token bucket counters. When there comes a packet need for coloring, the marker has higher priority to take the owner ship of metertable to mark the packet a color. You can know the concept below.

ethphxcmd gsww 94 ffff0001 //rule pattern
ethphxcmd gsww 98 0008400c
ethphxcmd gsww 90 80005000

ethphxcmd gsww 94 00000001; acl mask
ethphxcmd gsww 98 00000000
ethphxcmd gsww 90 80009000

ethphxcmd gsww 94 30004000 ; CBS , PBS ethphxcmd gsww 98 03200640 ; CIR = 50Mbps,PIR=100Mbps

ethphxcmd gsww 90 80007000 ;trtcm meter table

ethphxcmd gsww 94 18000000 ; Enable ACL interrupt [28] and hit count [27] . ACL hit index[26:24] is 0

ethphxcmd gsww 98 00010000 ; meter idx & color by trtcm_

ethphxcmd gsww 90 8000b000 ; ACL rule

ethphxcmd gsww 9c 80000000 ;trtcm enable_

ethphxcmd gsww 180c 80000000

ethphxcmd gsww 1814 04020000 ;yellow for port 0 Q=2 ethphxcmd gsww 1834 07030010 ;Red for port 0 Q=2

0x0094 TrTCM Meter table

31:16	RW	CBS	Committed Burst Size The maximum number of bytes allowed for incoming packets to burst above the CIR, but still be marked green. The CBS burst size should be larger than CIR for token added.	0x0
15:0	RW	PBS	Peak Burst Size The maximum number of bytes allowed for incoming packets to burst above the CIR and still be marked yellow. The PBS burst size should be larger than PIR for token added.	0x0

0x0098 TrTCM Meter table

31:16	RW	CIR	Committed Information Rate 16'h0: 0 * 64Kbps 16'h1: 1 * 64Kbps 16'hFFFF: 65536* 64Kbps (Note: 1*64Kbps means that ACL will add 1 token (1-Byte) to the CBS burst bucket every 125us.)	0x0
15:0	RW	PIR	Peak Information Rate 16'h0: 0 * 64Kbps 16'h1: 1 * 64Kbps 16'hFFFF: 65536* 64Kbps (Note: 1*64Kbps means that ACL will add 1 token (1-Byte) to the PBS burst bucket every 125us.)	0x0

You can read these registers to check the ACL status. (You need to enable 27th bit for enable ACL hit count and 26th to 24th bit for counter group index at 0x0094 ACL rule control,)

00004F00	AE0CNT	32	ACL Event 0 Counter
00004F04	AE1CNT	32	ACL Event 1 Counter
00004F08	AE2CNT	32	ACL Event 2 Counter
00004F0C	AE3CNT	32	ACL Event 3 Counter
00004F10	AE4CNT	32	ACL Event 4 Counter
00004F14	AE5CNT	32	ACL Event 5 Counter
00004F18	AE6CNT	32	ACL Event 6 Counter
00004F1C	AE7CNT	32	ACL Event 7 Counter

MIB (management information base) counter
MIB counters are used to record the packet number of ingress and egress port. You can use software reset to clean it. Or write 0x4fe0 as 0 then write 80000000 to restart it.

MIB counter of port 0:

IVIID COU	illei oi port o.		
00004000	TDPC_P0	32	TX Drop Packet Counter of Port 0
00004004	TCRC PO	32	TX CRC Packet Counter of Port 0
00004008	TUPC_P0	32	TX Unicast Packet Counter of Port 0
0000400C	TMPC P0	32	TX Multicast Packet Counter of Port 0
00004010	TBPC_P0	32	TX Broadcast Packet Counter of Port 0
00004014	TCEC_P0	32	TX Collision Event Counter of Port 0
00004018	TSCEC_P0	32	TX Single Collision Event Counter of Port 0
0000401C	TMCEC_P0	32	TX Multiple Collision Event Counter of Port 0
00004020	TDEC_P0	32	TX Deferred Event Counter of Port 0
00004024	TLCEC_P0	32	TX Late Collision Event Counter of Port 0
00004028	TXCEC_P0	32	TX excessive Collision Event Counter of Port 0
0000402C	TPPC_P0	32	TX Pause Packet Counter of Port 0
00004030	TL64PC_P0	32	TX packet Length in 64-byte slot Packet Counter of Port 0
00004034	TL65PC_P0	32	TX packet Length in 65-byte slot Packet Counter of Port 0
00004038	TL128PC_P0	32	TX packet Length in 128-byte slot Packet Counter of Port 0
0000403C	TL256PC_P0	32	TX packet Length in 256-byte slot Packet Counter of Port 0
00004040	TL512PC_P0	32	TX packet Length in 512-byte slot Packet Counter of Port 0
00004044	TL1024PC_P0	32	TX packet Length in 1024-byte slot Packet Counter of Port 0
00004048	TOCL_P0	32	TX Octet Counter Low double word of Port 0
0000404C	TOCH_P0	32	TX Octet Counter High double word of Port 0
00004060	RDPC_P0	32	RX Drop Packet Counter of Port 0
00004064	RFPC_P0	32	RX Filtering Packet Counter of Port 0
00004068	RUPC_P0	32	RX Unicast Packet Counter of Port 0
0000406C	RMPC_P0	32	RX Multicast Packet Counter of Port 0
00004070	RBPC_P0	32	RX Broadcast Packet Counter of Port 0
00004074	RAEPC_P0	32	RX Alignment Error Packet Counter of Port 0
00004078	RCEPC_P0	32	RX CRC(FCS) Error Packet Counter of Port 0
0000407C	RUSPC_P0	32	RX Undersize Packet Counter of Port 0
00004080	RFEPC_P0	32	RX Fragment Error Packet Counter of Port 0
00004084	ROSPC_P0	32	RX Oversize Packet Counter of Port 0
00004088	RJEPC_P0	32	RX Jabber Error Packet Counter of Port 0
0000408C	RPPC_P0	32	RX Pause Packet Counter of Port 0
00004090	RL64PC_P0	32	RX packet Length in 64-byte slot Packet Counter of Port 0
00004094	RL65PC_P0	32	RX packet Length in 65-byte slot Packet Counter of Port 0
00004098	RL128PC_P0	32	RX packet Length in 128-byte slot Packet Counter of Port 0
0000409C	RL256PC_P0	32	RX packet Length in 256-byte slot Packet Counter of Port 0
000040A0	RL512PC_P0	32	RX packet Length in 512-byte slot Packet Counter of Port 0
000040A4	RL1024PC_P0	32	RX packet Length in 1024-byte slot Packet Counter of Port 0
000040A8	ROCL_P0	32	RX Octet Counter Low double word of Port 0
000040AC	ROCH_P0	32	Rx Octet Counter High double word of Port 0
000040B0	RDPC_CTRL_P0	32	RX CTRL Drop Packet Counter of Port 0
000040B4	RDPC ING PO	32	RX Ingress Drop Packet Counter of Port 0

000040B8	RDPC_ARL_P0	32	RX ARL Drop Packet Counter of Port 0
000040D0	TMIB_HF_STS_P0	32	TX Port MIB Counter Half Full Status of Port 0
000040D4	RMIB_HF_STS_P0	32	RX Port MIB Counter Half Full Status of Port 0

MIB counter of port 1:

IVIID COU	nter or port i.		
00004100	TDPC_P1	32	TX Drop Packet Counter of Port 1
00004104	TCRC_P1	32	TX CRC Packet Counter of Port 1
00004108	TUPC_P1	32	TX Unicast Packet Counter of Port 1
0000410C	TMPC_P1	32	TX Multicast Packet Counter of Port 1
00004110	TBPC_P1	32	TX Broadcast Packet Counter of Port 1
00004114	TCEC_P1	32	TX Collision Event Counter of Port 1
00004118	TSCEC_P1	32	TX Single Collision Event Counter of Port 1
0000411C	TMCEC_P1	32	TX Multiple Collision Event Counter of Port 1
00004120	TDEC_P1	32	TX Deferred Event Counter of Port 1
00004124	TLCEC_P1	32	TX Late Collision Event Counter of Port 1
00004128	TXCEC_P1	32	TX excessive Collision Event Counter of Port 1
0000412C	TPPC_P1	32	TX Pause Packet Counter of Port 1
00004130	TL64PC_P1	32	TX packet Length in 64-byte slot Packet Counter of Port 1
00004134	TL65PC_P1	32	TX packet Length in 65-byte slot Packet Counter of Port 1
00004138	TL128PC_P1	32	TX packet Length in 128-byte slot Packet Counter of Port 1
0000413C	TL256PC_P1	32	TX packet Length in 256-byte slot Packet Counter of Port 1
00004140	TL512PC_P1	32	TX packet Length in 512-byte slot Packet Counter of Port 1
00004144	TL1024PC_P1	32	TX packet Length in 1024-byte slot Packet Counter of Port 1
00004148	TOCL_P1	32	TX Octet Counter Low double word of Port 1
0000414C	TOCH_P1	32	TX Octet Counter High double word of Port 1
00004160	RDPC_P1	32	RX Drop Packet Counter of Port 1
00004164	RFPC_P1	32	RX Filtering Packet Counter of Port 1
00004168	RUPC_P1	32	RX Unicast Packet Counter of Port 1
0000416C	RMPC_P1	32	RX Multicast Packet Counter of Port 1
00004170	RBPC_P1	32	RX Broadcast Packet Counter of Port 1
00004174	RAEPC_P1	32	RX Alignment Error Packet Counter of Port 1
00004178	RCEPC_P1	32	RX CRC(FCS) Error Packet Counter of Port 1
0000417C	RUSPC_P1	32	RX Undersize Packet Counter of Port 1
00004180	RFEPC P1	32	RX Fragment Error Packet Counter of Port 1
00004184	ROSPC_P1	32	RX Oversize Packet Counter of Port 1
00004188	RJEPC P1	32	RX Jabber Error Packet Counter of Port 1
0000418C	RPPC_P1	32	RX Pause Packet Counter of Port 1
00004190	RL64PC P1	32	RX packet Length in 64-byte slot Packet Counter of Port 1
00004194	RL65PC_P1	32	RX packet Length in 65-byte slot Packet Counter of Port 1
00004198	RL128PC P1	32	RX packet Length in 128-byte slot Packet Counter of Port 1
0000419C	RL256PC_P1	32	RX packet Length in 256-byte slot Packet Counter of Port 1
000041A0	RL512PC P1	32	RX packet Length in 512-byte slot Packet Counter of Port 1
000041A4	RL1024PC_P1	32	RX packet Length in 1024-byte slot Packet Counter of Port 1
000041A8	ROCL P1	32	RX Octet Counter Low double word of Port 1
000041AC	ROCH_P1	32	Rx Octet Counter High double word of Port 1
000041B0	RDPC CTRL P1	32	RX CTRL Drop Packet Counter of Port 1
000041B4	RDPC_ING_P1	32	RX Ingress Drop Packet Counter of Port 1

000041B8	RDPC_ARL_P1	32	RX ARL Drop Packet Counter of Port 1
000041D0	TMIB_HF_STS_P1	32	TX Port MIB Counter Half Full Status of Port 1
000041D4	RMIB_HF_STS_P1	32	RX Port MIB Counter Half Full Status of Port 1

MIB counter of port 2:

INIID COL	inter of port 2:	<u> </u>	
00004200	TDPC_P2	32	TX Drop Packet Counter of Port 2
00004204	TCRC_P2	32	TX CRC Packet Counter of Port 2
00004208	TUPC_P2	32	TX Unicast Packet Counter of Port 2
0000420C	TMPC_P2	32	TX Multicast Packet Counter of Port 2
00004210	TBPC_P2	32	TX Broadcast Packet Counter of Port 2
00004214	TCEC_P2	32	TX Collision Event Counter of Port 2
00004218	TSCEC_P2	32	TX Single Collision Event Counter of Port 2
0000421C	TMCEC_P2	32	TX Multiple Collision Event Counter of Port 2
00004220	TDEC_P2	32	TX Deferred Event Counter of Port 2
00004224	TLCEC_P2	32	TX Late Collision Event Counter of Port 2
00004228	TXCEC_P2	32	TX excessive Collision Event Counter of Port 2
0000422C	TPPC_P2	32	TX Pause Packet Counter of Port 2
00004230	TL64PC_P2	32	TX packet Length in 64-byte slot Packet Counter of Port 2
00004234	TL65PC_P2	32	TX packet Length in 65-byte slot Packet Counter of Port 2
00004238	TL128PC_P2	32	TX packet Length in 128-byte slot Packet Counter of Port 2
0000423C	TL256PC_P2	32	TX packet Length in 256-byte slot Packet Counter of Port 2
00004240	TL512PC_P2	32	TX packet Length in 512-byte slot Packet Counter of Port 2
00004244	TL1024PC_P2	32	TX packet Length in 1024-byte slot Packet Counter of Port 2
00004248	TOCL_P2	32	TX Octet Counter Low double word of Port 2
0000424C	TOCH_P2	32	TX Octet Counter High double word of Port 2
00004260	RDPC_P2	32	RX Drop Packet Counter of Port 2
00004264	RFPC_P2	32	RX Filtering Packet Counter of Port 2
00004268	RUPC_P2	32	RX Unicast Packet Counter of Port 2
0000426C	RMPC_P2	32	RX Multicast Packet Counter of Port 2
00004270	RBPC_P2	32	RX Broadcast Packet Counter of Port 2
00004274	RAEPC_P2	32	RX Alignment Error Packet Counter of Port 2
00004278	RCEPC_P2	32	RX CRC(FCS) Error Packet Counter of Port 2
0000427C	RUSPC_P2	32	RX Undersize Packet Counter of Port 2
00004280	RFEPC P2	32	RX Fragment Error Packet Counter of Port 2
00004284	ROSPC_P2	32	RX Oversize Packet Counter of Port 2
00004288	RJEPC P2	32	RX Jabber Error Packet Counter of Port 2
0000428C	RPPC_P2	32	RX Pause Packet Counter of Port 2
00004290	RL64PC P2	32	RX packet Length in 64-byte slot Packet Counter of Port 2
00004294	RL65PC_P2	32	RX packet Length in 65-byte slot Packet Counter of Port 2
00004298	RL128PC P2	32	RX packet Length in 128-byte slot Packet Counter of Port 2
0000429C	RL256PC_P2	32	RX packet Length in 256-byte slot Packet Counter of Port 2
000042A0	RL512PC P2	32	RX packet Length in 512-byte slot Packet Counter of Port 2
000042A4	RL1024PC_P2	32	RX packet Length in 1024-byte slot Packet Counter of Port 2
000042A8	ROCL P2	32	RX Octet Counter Low double word of Port 2
000042AC	ROCH_P2	32	Rx Octet Counter High double word of Port 2
000042B0	RDPC CTRL P2	32	RX CTRL Drop Packet Counter of Port 2
000042B4	RDPC_ING_P2	32	RX Ingress Drop Packet Counter of Port 2

000042B8	RDPC_ARL_P2	32	RX ARL Drop Packet Counter of Port 2
000042D0	TMIB_HF_STS_P2	32	TX Port MIB Counter Half Full Status of Port 2
000042D4	RMIB_HF_STS_P2	32	RX Port MIB Counter Half Full Status of Port 2

MIB counter of port 3:

IVIID COU	nter or port 3.		
00004300	TDPC_P3	32	TX Drop Packet Counter of Port 3
00004304	TCRC_P3	32	TX CRC Packet Counter of Port 3
00004308	TUPC_P3	32	TX Unicast Packet Counter of Port 3
0000430C	TMPC_P3	32	TX Multicast Packet Counter of Port 3
00004310	TBPC_P3	32	TX Broadcast Packet Counter of Port 3
00004314	TCEC_P3	32	TX Collision Event Counter of Port 3
00004318	TSCEC_P3	32	TX Single Collision Event Counter of Port 3
0000431C	TMCEC_P3	32	TX Multiple Collision Event Counter of Port 3
00004320	TDEC_P3	32	TX Deferred Event Counter of Port 3
00004324	TLCEC_P3	32	TX Late Collision Event Counter of Port 3
00004328	TXCEC_P3	32	TX excessive Collision Event Counter of Port 3
0000432C	TPPC_P3	32	TX Pause Packet Counter of Port 3
00004330	TL64PC_P3	32	TX packet Length in 64-byte slot Packet Counter of Port 3
00004334	TL65PC_P3	32	TX packet Length in 65-byte slot Packet Counter of Port 3
00004338	TL128PC_P3	32	TX packet Length in 128-byte slot Packet Counter of Port 3
0000433C	TL256PC_P3	32	TX packet Length in 256-byte slot Packet Counter of Port 3
00004340	TL512PC_P3	32	TX packet Length in 512-byte slot Packet Counter of Port 3
00004344	TL1024PC_P3	32	TX packet Length in 1024-byte slot Packet Counter of Port 3
00004348	TOCL_P3	32	TX Octet Counter Low double word of Port 3
0000434C	TOCH_P3	32	TX Octet Counter High double word of Port 3
00004360	RDPC_P3	32	RX Drop Packet Counter of Port 3
00004364	RFPC_P3	32	RX Filtering Packet Counter of Port 3
00004368	RUPC_P3	32	RX Unicast Packet Counter of Port 3
0000436C	RMPC_P3	32	RX Multicast Packet Counter of Port 3
00004370	RBPC_P3	32	RX Broadcast Packet Counter of Port 3
00004374	RAEPC_P3	32	RX Alignment Error Packet Counter of Port 3
00004378	RCEPC_P3	32	RX CRC(FCS) Error Packet Counter of Port 3
0000437C	RUSPC_P3	32	RX Undersize Packet Counter of Port 3
00004380	RFEPC P3	32	RX Fragment Error Packet Counter of Port 3
00004384	ROSPC_P3	32	RX Oversize Packet Counter of Port 3
00004388	RJEPC P3	32	RX Jabber Error Packet Counter of Port 3
0000438C	RPPC_P3	32	RX Pause Packet Counter of Port 3
00004390	RL64PC P3	32	RX packet Length in 64-byte slot Packet Counter of Port 3
00004394	RL65PC_P3	32	RX packet Length in 65-byte slot Packet Counter of Port 3
00004398	RL128PC P3	32	RX packet Length in 128-byte slot Packet Counter of Port 3
0000439C	RL256PC_P3	32	RX packet Length in 256-byte slot Packet Counter of Port 3
000043A0	RL512PC P3	32	RX packet Length in 512-byte slot Packet Counter of Port 3
000043A4	RL1024PC_P3	32	RX packet Length in 1024-byte slot Packet Counter of Port 3
000043A8	ROCL P3	32	RX Octet Counter Low double word of Port 3
000043AC	ROCH_P3	32	Rx Octet Counter High double word of Port 3
000043B0	RDPC CTRL P3	32	RX CTRL Drop Packet Counter of Port 3
000043B4	RDPC_ING_P3	32	RX Ingress Drop Packet Counter of Port 3

000043B8	RDPC_ARL_P3	32	RX ARL Drop Packet Counter of Port 3
000043D0	TMIB_HF_STS_P3	32	TX Port MIB Counter Half Full Status of Port 3
000043D4	RMIB_HF_STS_P3	32	RX Port MIB Counter Half Full Status of Port 3

MIB counter of port 4:

IVIID COUL	nter of port 4:		
00004400	TDPC_P4	32	TX Drop Packet Counter of Port 4
00004404	TCRC_P4	32	TX CRC Packet Counter of Port 4
00004408	TUPC_P4	32	TX Unicast Packet Counter of Port 4
0000440C	TMPC_P4	32	TX Multicast Packet Counter of Port 4
00004410	TBPC_P4	32	TX Broadcast Packet Counter of Port 4
00004414	TCEC_P4	32	TX Collision Event Counter of Port 4
00004418	TSCEC_P4	32	TX Single Collision Event Counter of Port 4
0000441C	TMCEC_P4	32	TX Multiple Collision Event Counter of Port 4
00004420	TDEC_P4	32	TX Deferred Event Counter of Port 4
00004424	TLCEC_P4	32	TX Late Collision Event Counter of Port 4
00004428	TXCEC_P4	32	TX excessive Collision Event Counter of Port 4
0000442C	TPPC_P4	32	TX Pause Packet Counter of Port 4
00004430	TL64PC_P4	32	TX packet Length in 64-byte slot Packet Counter of Port 4
00004434	TL65PC_P4	32	TX packet Length in 65-byte slot Packet Counter of Port 4
00004438	TL128PC_P4	32	TX packet Length in 128-byte slot Packet Counter of Port 4
0000443C	TL256PC_P4	32	TX packet Length in 256-byte slot Packet Counter of Port 4
00004440	TL512PC_P4	32	TX packet Length in 512-byte slot Packet Counter of Port 4
00004444	TL1024PC_P4	32	TX packet Length in 1024-byte slot Packet Counter of Port 4
00004448	TOCL_P4	32	TX Octet Counter Low double word of Port 4
0000444C	TOCH_P4	32	TX Octet Counter High double word of Port 4
00004460	RDPC_P4	32	RX Drop Packet Counter of Port 4
00004464	RFPC_P4	32	RX Filtering Packet Counter of Port 4
00004468	RUPC_P4	32	RX Unicast Packet Counter of Port 4
0000446C	RMPC_P4	32	RX Multicast Packet Counter of Port 4
00004470	RBPC_P4	32	RX Broadcast Packet Counter of Port 4
00004474	RAEPC_P4	32	RX Alignment Error Packet Counter of Port 4
00004478	RCEPC_P4	32	RX CRC(FCS) Error Packet Counter of Port 4
0000447C	RUSPC_P4	32	RX Undersize Packet Counter of Port 4
00004480	RFEPC P4	32	RX Fragment Error Packet Counter of Port 4
00004484	ROSPC_P4	32	RX Oversize Packet Counter of Port 4
00004488	RJEPC P4	32	RX Jabber Error Packet Counter of Port 4
0000448C	RPPC_P4	32	RX Pause Packet Counter of Port 4
00004490	RL64PC P4	32	RX packet Length in 64-byte slot Packet Counter of Port 4
00004494	RL65PC_P4	32	RX packet Length in 65-byte slot Packet Counter of Port 4
00004498	RL128PC P4	32	RX packet Length in 128-byte slot Packet Counter of Port 4
0000449C	RL256PC_P4	32	RX packet Length in 256-byte slot Packet Counter of Port 4
000044A0	RL512PC P4	32	RX packet Length in 512-byte slot Packet Counter of Port 4
000044A4	RL1024PC_P4	32	RX packet Length in 1024-byte slot Packet Counter of Port 4
000044A8	ROCL P4	32	RX Octet Counter Low double word of Port 4
000044AC	ROCH_P4	32	Rx Octet Counter High double word of Port 4
000044B0	RDPC CTRL P4	32	RX CTRL Drop Packet Counter of Port 4
000044B4	RDPC_ING_P4	32	RX Ingress Drop Packet Counter of Port 4

000044B8	RDPC_ARL_P4	32	RX ARL Drop Packet Counter of Port 4
000044D0	TMIB_HF_STS_P4	32	TX Port MIB Counter Half Full Status of Port 4
000044D4	RMIB_HF_STS_P4	32	RX Port MIB Counter Half Full Status of Port 4

MIB counter of port 5:

IVIID COU	nter or port 5.		
00004500	TDPC_P5	32	TX Drop Packet Counter of Port 5
00004504	TCRC_P5	32	TX CRC Packet Counter of Port 5
00004508	TUPC_P5	32	TX Unicast Packet Counter of Port 5
0000450C	TMPC_P5	32	TX Multicast Packet Counter of Port 5
00004510	TBPC_P5	32	TX Broadcast Packet Counter of Port 5
00004514	TCEC_P5	32	TX Collision Event Counter of Port 5
00004518	TSCEC_P5	32	TX Single Collision Event Counter of Port 5
0000451C	TMCEC_P5	32	TX Multiple Collision Event Counter of Port 5
00004520	TDEC_P5	32	TX Deferred Event Counter of Port 5
00004524	TLCEC_P5	32	TX Late Collision Event Counter of Port 5
00004528	TXCEC_P5	32	TX excessive Collision Event Counter of Port 5
0000452C	TPPC_P5	32	TX Pause Packet Counter of Port 5
00004530	TL64PC_P5	32	TX packet Length in 64-byte slot Packet Counter of Port 5
00004534	TL65PC_P5	32	TX packet Length in 65-byte slot Packet Counter of Port 5
00004538	TL128PC_P5	32	TX packet Length in 128-byte slot Packet Counter of Port 5
0000453C	TL256PC_P5	32	TX packet Length in 256-byte slot Packet Counter of Port 5
00004540	TL512PC_P5	32	TX packet Length in 512-byte slot Packet Counter of Port 5
00004544	TL1024PC_P5	32	TX packet Length in 1024-byte slot Packet Counter of Port 5
00004548	TOCL_P5	32	TX Octet Counter Low double word of Port 5
0000454C	TOCH_P5	32	TX Octet Counter High double word of Port 5
00004560	RDPC_P5	32	RX Drop Packet Counter of Port 5
00004564	RFPC_P5	32	RX Filtering Packet Counter of Port 5
00004568	RUPC_P5	32	RX Unicast Packet Counter of Port 5
0000456C	RMPC_P5	32	RX Multicast Packet Counter of Port 5
00004570	RBPC_P5	32	RX Broadcast Packet Counter of Port 5
00004574	RAEPC_P5	32	RX Alignment Error Packet Counter of Port 5
00004578	RCEPC_P5	32	RX CRC(FCS) Error Packet Counter of Port 5
0000457C	RUSPC_P5	32	RX Undersize Packet Counter of Port 5
00004580	RFEPC P5	32	RX Fragment Error Packet Counter of Port 5
00004584	ROSPC_P5	32	RX Oversize Packet Counter of Port 5
00004588	RJEPC P5	32	RX Jabber Error Packet Counter of Port 5
0000458C	RPPC_P5	32	RX Pause Packet Counter of Port 5
00004590	RL64PC P5	32	RX packet Length in 64-byte slot Packet Counter of Port 5
00004594	RL65PC_P5	32	RX packet Length in 65-byte slot Packet Counter of Port 5
00004598	RL128PC P5	32	RX packet Length in 128-byte slot Packet Counter of Port 5
0000459C	RL256PC_P5	32	RX packet Length in 256-byte slot Packet Counter of Port 5
000045A0	RL512PC P5	32	RX packet Length in 512-byte slot Packet Counter of Port 5
000045A4	RL1024PC_P5	32	RX packet Length in 1024-byte slot Packet Counter of Port 5
000045A8	ROCL P5	32	RX Octet Counter Low double word of Port 5
000045AC	ROCH_P5	32	Rx Octet Counter High double word of Port 5
000045B0	RDPC CTRL P5	32	RX CTRL Drop Packet Counter of Port 5
000045B4	RDPC_ING_P5	32	RX Ingress Drop Packet Counter of Port 5

000045B8	RDPC_ARL_P5	32	RX ARL Drop Packet Counter of Port 5
000045D0	TMIB_HF_STS_P5	32	TX Port MIB Counter Half Full Status of Port 5
000045D4	RMIB_HF_STS_P5	32	RX Port MIB Counter Half Full Status of Port 5

MIB counter of port 6:

	niei oi port o.		
00004600	TDPC_P6	32	TX Drop Packet Counter of Port 6
00004604	TCRC_P6	32	TX CRC Packet Counter of Port 6
00004608	TUPC_P6	32	TX Unicast Packet Counter of Port 6
0000460C	TMPC_P6	32	TX Multicast Packet Counter of Port 6
00004610	TBPC_P6	32	TX Broadcast Packet Counter of Port 6
00004614	TCEC_P6	32	TX Collision Event Counter of Port 6
00004618	TSCEC_P6	32	TX Single Collision Event Counter of Port 6
0000461C	TMCEC_P6	32	TX Multiple Collision Event Counter of Port 6
00004620	TDEC_P6	32	TX Deferred Event Counter of Port 6
00004624	TLCEC_P6	32	TX Late Collision Event Counter of Port 6
00004628	TXCEC_P6	32	TX excessive Collision Event Counter of Port 6
0000462C	TPPC_P6	32	TX Pause Packet Counter of Port 6
00004630	TL64PC_P6	32	TX packet Length in 64-byte slot Packet Counter of Port 6
00004634	TL65PC_P6	32	TX packet Length in 65-byte slot Packet Counter of Port 6
00004638	TL128PC_P6	32	TX packet Length in 128-byte slot Packet Counter of Port 6
0000463C	TL256PC_P6	32	TX packet Length in 256-byte slot Packet Counter of Port 6
00004640	TL512PC_P6	32	TX packet Length in 512-byte slot Packet Counter of Port 6
00004644	TL1024PC_P6	32	TX packet Length in 1024-byte slot Packet Counter of Port 6
00004648	TOCL_P6	32	TX Octet Counter Low double word of Port 6
0000464C	TOCH_P6	32	TX Octet Counter High double word of Port 6
00004660	RDPC_P6	32	RX Drop Packet Counter of Port 6
00004664	RFPC_P6	32	RX Filtering Packet Counter of Port 6
00004668	RUPC_P6	32	RX Unicast Packet Counter of Port 6
0000466C	RMPC_P6	32	RX Multicast Packet Counter of Port 6
00004670	RBPC_P6	32	RX Broadcast Packet Counter of Port 6
00004674	RAEPC_P6	32	RX Alignment Error Packet Counter of Port 6
00004678	RCEPC_P6	32	RX CRC(FCS) Error Packet Counter of Port 6
0000467C	RUSPC_P6	32	RX Undersize Packet Counter of Port 6
00004680	RFEPC_P6	32	RX Fragment Error Packet Counter of Port 6
00004684	ROSPC_P6	32	RX Oversize Packet Counter of Port 6
00004688	RJEPC_P6	32	RX Jabber Error Packet Counter of Port 6
0000468C	RPPC_P6	32	RX Pause Packet Counter of Port 6
00004690	RL64PC_P6	32	RX packet Length in 64-byte slot Packet Counter of Port 6
00004694	RL65PC_P6	32	RX packet Length in 65-byte slot Packet Counter of Port 6
00004698	RL128PC_P6	32	RX packet Length in 128-byte slot Packet Counter of Port 6
0000469C	RL256PC_P6	32	RX packet Length in 256-byte slot Packet Counter of Port 6
000046A0	RL512PC_P6	32	RX packet Length in 512-byte slot Packet Counter of Port 6
000046A4	RL1024PC_P6	32	RX packet Length in 1024-byte slot Packet Counter of Port 6
000046A8	ROCL_P6	32	RX Octet Counter Low double word of Port 6
000046AC	ROCH_P6	32	Rx Octet Counter High double word of Port 6
000046B0	RDPC_CTRL_P6	32	RX CTRL Drop Packet Counter of Port 6
			1

000046B4	RDPC_ING_P6	32	RX Ingress Drop Packet Counter of Port 6
000046B8	RDPC_ARL_P6	32	RX ARL Drop Packet Counter of Port 6
000046D0	TMIB_HF_STS_P6	32	TX Port MIB Counter Half Full Status of Port 6
000046D4	RMIB_HF_STS_P6	32	RX Port MIB Counter Half Full Status of Port 6

Annex User Port

The user port is the default VLAN port. The incoming VLAN-tagged frame will be stripped by the outer tag no matter the following inner tags. Per untagged or priority-tagged frame, PVID will be treated as VID1 tag. At the same time, VID1 is used to look for VLAN table to get the FID and Service tag for VID0. When a new Source MAC address is learned, the VID1 will also be learned on the MAC table.

On the TX_CTRL side, each frame will carry 2*N-port egress control bits on per-port based. Bit0 indicates that this frame will carry VID 0 or not; similarly, Bit.1 is for VID1. Once if "Consistent tag" is set, the egress tag format will follow the ingress tag format

Translation Port

The translation port is designated for 1:1 or N:1 VLAN aggregation according to CHINA TELECOM EPON requirement. When an incoming frame is received on the translation port, the corresponding custom VID will be found from MAC table and then the CVID would be the VID for VLAN table.

On the upload direction, several custom VID could be translated into one service VID from VLAN table which be carried on VID0. When this frame is transmitted on the translation port, etag_ctrl[1:0] will be 2'b01 (Swap) and then service VID will appear on the egress frame.

Transparent Port

When the port is chosen as transparent port, the VLAN tags on the incoming will be ignored and treated as un-tagged frames. VID0 and VID1 will store PVID as the default VID which is used to look up VLAN table. On the egress side, TX_CTRL can accept "UNTAG" control to send the original frame.

Security mode

Enable 802.1Q VLAN for all the received frames.

Discard received frame due to ingress membership violation (interrupt CPU)
Discard received frames once if VID is missed on the VLAN table (interrupt CPU)

Check mode

Enable 802.1Q function for all the received frames.

Don't discard received frame due to ingress membership violation

Discard received frames once if VID is missed on the VLAN table (interrupt CPU)

Fallback mode

Enable 802.1Q function for all the received frames.

Don't discard received frame due to ingress membership violation

Frames whose VID is missed on the VLAN table will be filtered by the Port Matrix Member

Port Matrix mode

802.1Q function disables (VLAN Security and VLAN Filter Table) Frames filtered by the Port Matrix Member