Review of Data Structures

This notebook demonstrates,

- 1. Data structures of array, stack, linked list, tree and hash
- 2. Testing them with properly filled data
- 3. Measuring time complexity empirically
- 4. List of search functions
- 5. RB Trees framework

```
JOHNS HOPKINS

WHITING SCHOOL

of ENGINEERING
```

```
In [1]: %matplotlib inline
    import matplotlib.pyplot as plt
    import numpy as np
    import pandas as pd
    from random import randint
    from time import perf_counter
In [2]: # Array
    def insert_A(_array, _val): # inserts value _val at the end - measur
    ing list appends
        if _array is None:
```

```
def insert_A(_array, _val): # inserts value _val at the end - measur
ing list appends
    if _array is None:
        _array = []
    return _array+[_val]

# For measuring insertion cost
def new_A_val(_n):
    return (randint(0,_n),)
```

```
In [3]:
        # Stack
        INITIAL_STACK_SIZE = 100
        class Stack:
            stack_size = INITIAL_STACK_SIZE
            def __init__(self):
                 self.stack = stack_size*[None]
                 self.tos = 0
            def __len__(self):
                 return Stack.tos
            def push(self, _x):
                # Handle stack overflow
                 if Stack.tos < Stack.stack_size:</pre>
                     Stack.tos += 1
                     Stack.stack[Stack.tos-1] = _x
            def pop(self):
                 # Handle stack underflow
                 if Stack.tos > 0:
                     Stack.tos -= 1
                     return Stack.stack[Stack.tos+1]
                 return None
            def empty( stack):
                 return True if Stack.tos == 0 else False
        # For measuring insertion cost
        def insert_S(_stack, _val):
            _stack.push(_stack, _val) # Or should we find a position k and i
        nsert?
```

```
In [4]: # Linked-list
         class LLNode:
             def __init__(self, x):
                 self.x=x; self.next=None
             def __len__(self): # Counting every item
                 \overline{n}, \overline{n} node = 1, self
                 while node.next is not None:
                     n += 1
                     node = node.next
                 return n
        def insert_LL(_root, _newnode):
             if _root is None: # creation of the root node
                _root = _newnode
             else:
                 node = _root
                 while node.next is not None:
                     node = node.next
                 node.next = newnode
             return _root
         # For measuring insertion cost
         def new_LL_node(_n):
             return (LLNode(randint(0,_n)),)
```

```
In [5]:
        # Tree
         class TNode:
             n nodes=0
             def init (self, x):
                 self.x=x; self.left=None; self.right=None
             def len (self): # Keeping the count, otherwise have to traver
         se the tree
                 return TNode.n nodes
         def insert_BST(_root, _newnode):
             if _root is None:
                 \mathsf{TNode.n\_nodes} = 0
             y = None; node = _root
             while node is not None:
                 y = node
                 if node.x < _newnode.x:</pre>
                     node = node.right
                 else:
                     node = node.left
             if y is None:
             _root = _newnode
elif y.x < _newnode.x:
                 y.right = _newnode
             else:
                 y.left = newnode
             TNode.n nodes += 1
             return _root
         # For measuring insertion cost
         def new BST node( n):
             return (TNode(randint(0,_n)),)
         # Hash
         def insert_H(_hash, k, v):
             if hash is None:
                 hash = \{\}
             hash[k] = v
```

Empirical Time Complexity

Let's measure how long an insert takes empirically.

The following function takes an insert function and a node/value to insert.

The node/value is returned as an Iterable so its value can be 1 or more depending on the situation. For example a tree node would be a **value** only but a hash would require **key and value**. Inner loop runs 10 times to reduce the variation of the measurement for statistical purposes.

We will use the time.perf_counter to measure time accurately. Also we will use a log scale plot to show very small variations at a zoomed/focused level.

Below, the generation of random input variable is also included in the time measurement. Unfortunately it is hard to get rid of it as it is a passed function to node f.

```
In [7]:
        def measure cost(n runs, insert f, node f):
            ds = None
            t = []
             for n in n runs:
                 runs = []
                 for j in range(10): # reduce the variation of the measuremen
        t
                     ds = None # starting from an empty data structure
                     st = perf counter()
                     for i in range(n):
                         ds = insert_f(ds, *node_f(n))
                     runs += [perf counter()-st]
                t += [np.mean(runs)]
             print('clock: ', ' '.join(['{:g}'.format(v) for v in t]))
            # ds dataset can be used for search
             return t, ds
```

```
In [8]: N_RUNS = [10,100,500,700,1000,2000,3000,5000,7000,9000,10000]

t1, ds1 = measure_cost(N_RUNS, insert_A, new_A_val)
t2, ds2 = measure_cost(N_RUNS, insert_LL, new_LL_node)
t3, ds3 = measure_cost(N_RUNS, insert_BST, new_BST_node)
t4, ds4 = measure_cost(N_RUNS, insert_H, new_H_val)
```

```
clock: 1.335e-05 0.00018959 0.00117511 0.00219212 0.0026183 0.007701 24 0.0150975 0.0327746 0.0752413 0.126521 0.152472 clock: 1.812e-05 0.00043124 0.00859135 0.0233096 0.0391681 0.129291 0.280848 0.725559 1.26333 2.1047 2.5564 clock: 2.205e-05 0.00023492 0.00135512 0.00185644 0.0027204 0.007682 22 0.00924789 0.021562 0.032392 0.0395772 0.0484651 clock: 2.206e-05 0.00020499 0.00110383 0.00153321 0.00206598 0.00481 355 0.00742348 0.0117127 0.0171652 0.0197633 0.0212367
```

```
In [9]:
         # Plot
         df = pd.DataFrame({'DS size $n$':
                                                N RUNS,
                               'Array':
                                                t1,
                               'LL':
                                                t2,
                               'BST':
                                                t3,
                               'Hash':
                                                t4,
                               ^{\t}mathcal\{0\}(\log(n))^{\t}: [1e-4*np.log(n) for n in
         N_RUNS],
                               '$\mathcal{0}(n)$':
                                                           [1e-4*n for n in N RUNS
         ],
                               ^{\prime} mathcal \{0\} (n \setminus \log(n)) ^{\prime}: [1e-4*n*np.log(n) for n
         in N_RUNS],
                               '$\mathcal{0}(n^2)$':
                                                           [1e-6*n**2 for n in N_RU
         NS]
                             })
         df.set_index('DS size $n$', drop=True, inplace=True)
         fig = df.plot().get_figure()
         plt.legend(bbox to anchor=(1.01, 1.0))
         plt.ylabel('time')
         plt.grid()
         plt.xscale('log')
         plt.yscale('log')
         fig.savefig('data structures 01.png')
```


Let's sanity check by examining the filled data structures - ds1, ds2, ds3, ds4 are filled over and over again inside the measure function.

```
In [10]: print(ds1[100], ds1[1000])
    print(ds2.x, ds2.next.next.x)
    print(ds3.x, ds3.right.right.x, ds3.right.right.left.x)
    print(ds4[10], ds4[30]) # note that (k,v) randomly generated and has
    h might not exist

1460 2461
    4578 3347
    8511 9125 9103
    1403 2336
```

Search Function

```
# Search a vector/array for a value - O(n)
In [11]:
         def search_A(_array, k):
              for i, x in enumerate( array):
                  if x == k:
                      return i
              return None
         # Search a linked list for a value - O(n)
         def search_LL(_node, k):
             while _node != None:
                  if _node.x == k:
                      return node
                  node = node.next
              return None
         # Search a BST recursively for a value - O(logn)
         def search_BST_r(_node, k):
              if _node == None:
                  return None
              elif _node.x == k:
                  return node
              if node.x < k:</pre>
                  return search BST r( node.right, k)
              else:
                  return search_BST_r(_node.left, k)
         # Search a BST iteratively for a value - O(logn)
         def search_BST_it(_node, k):
              while _node is not None and node.x != k:
                  if _node.x < k:</pre>
                      _node = _node.right
                  else:
                      _node = _node.left
              return _node if _node is not None else None
         # Search a hash/dictionary for a value - 0(1)
         def search_H(_hash, k):
              if k in _hash:
                  return _hash[k]
              return None
```

Exercise: Write the code to search some values from the filled data structures and measure their complexity. Note that n has to be the size of the data structure so that you have to fill a new one for each n size measurement.

RB Trees

```
In [12]: # used for RB tree node
         RED, BLACK = 'R', 'B'
         # Tnil necessary since code has reference assignments like y.right.p
         class Tn:
             def init (self):
                 self.p=None; self.color=BLACK
         Tnil = Tn()
         # All references are assigned to Tnil
         class RBNode:
             def init (self, value):
                 self.value=value; self.left=Tnil; self.right=Tnil; self.p=Non
         e; self.color=None; self.height=None
         def rotate_left(_root, x):
             y = x.right
             x.right = y.left # turn y.left subT into x.right subT
             if y.left is not Tnil:
                 y.left.p = x
             y.p = x.p \# link x's parent to y
             if x.p is Tnil:
                  _root = y
             elif x == x.p.left:
                 x.p.left = y
             else:
                 x.p.right = y
             y.left = x # put x on y's left
             x.p = y
             return root
         def rotate_right(_root, x):
             y = x.left
             x.left = y.right # turn y.right subT into x.left subT
             if y.right is not Tnil:
                 y.right.p = x
             y.p = x.p \# link x's parent to y
             if x.p is Tnil:
                 _root = y
             elif x == x.p.right:
                 x.p.right = y
             else:
                 x.p.left = y
             y.right = x # put x on y's right
             x.p = y
             return _root
```

```
In [13]:
         # Insert a node to the tree
         def insert_RB(_root, z): # insert node z with default color red
             # check if root inserted
             if root is None:
                  root = z; z.color=BLACK; z.p=Tnil
                  return _root
             # insert node
             y = Tnil; x = root
             while x is not Tnil:
                  y = x
                  if z.value < x.value:</pre>
                      x = x.left
                  else:
                     x = x.right
             z.p = y
             if y == Tnil:
                 _{root} = z
             elif z.value < y.value:</pre>
                 y.left = z
             else:
                  y.right = z
             z.color = RED
             # fixup
             while z.p.color == RED:
                  if z.p == z.p.p.left: # z parent is left child
                      y = z.p.p.right
                      if y.color == RED: # case 1
                          z.p.color = BLACK
                          v.color = BLACK
                          z.p.p.color = RED
                          z = z.p.p
                      else:
                          if z == z.p.right: # case 2
                              z = z.p
                              _root = rotate_left(_root, z)
                          # case 3
                          z.p.color = BLACK
                          z.p.p.color = RED
                          _root = rotate_right(_root, z.p.p)
                  else: # z parent is right child
                      y = z.p.p.left
                      if y.color == RED: # case 1
                          z.p.color = BLACK
                          y.color = BLACK
                          z.p.p.color = RED
                          z = z.p.p
                      else:
                          if z == z.p.left: # case 2
                              root = rotate right( root, z)
                          # case 3
                          z.p.color = BLACK
                          z.p.p.color = RED
                          _root = rotate_left(_root, z.p.p)
             #
```

```
_root.color = BLACK # red reached to root
return _root
```

```
In [15]: import numpy as np
         # Insert values and check if we can find them in the tree
         def test RB(vals):
             # Fill values
              rootrb = None
             for val in vals:
                  rootrb = insert RB(rootrb, RBNode(val))
             # Check values
             for val in vals:
                  ret = search_RB(rootrb, val)
                  if ret == Tnil:
                      print(f'Test failed, value={val} not found in the tree.')
             print(f'Test passed.')
              return rootrb
         # Test
         n = 10000
         print('Random values (with replacement):')
         vals = np.random.randint(0, n//2, n)
         root1 = test_RB(vals)
```

Random values (with replacement): Test passed.

Exercises

Write the code to measure the height and size of the tree (i.e. number of elements it has) and add these to the test while running the test for [10-10000000] number of randomly generated elements.