MAA301 — 2022-2023

Homework 1 - Measure and Integration Due to October 17th, 2022

Exercise 1. Let $A \subset \mathbb{N}$ be a subset of integers. We say that A has a density if the limit

$$\lim_{n \to \infty} \frac{|A \cap \{0, 1, \dots, n\}|}{n}$$

exists, where $|\cdot|$ denotes the cardinal of a set. In this case we say that this limit is the density of A and we denote it by d(A). Set $\mathcal{D} := \{A \subset \mathbb{N} : A \text{ has a density}\}$ and $\mathcal{D}_a := \{A \subset \mathbb{N} : A \text{ has a density and } d(A) = a\}$ for all $a \in [0,1]$.

- 1. Let $A \subset \mathbb{N}$ be a finite set. Show that A has a density and compute d(A).
- 2. Let $A := p\mathbb{N} = \{pn : n \in \mathbb{N}\}$ with $p \geq 1$. Show that A has a density and compute d(A).
- 3. (Bonus) Let $1 \leq p_1 < p_2 < \cdots$ be an increasing sequence of integers that are pairwise co-prime. Let $A := \{p_1, p_2, \dots\}$. Show that $A \in \mathcal{D}_0$.
 - (Hint: consider the cases $\sum_{i\geq 1} p_i^{-1} < +\infty$ and $\sum_{i\geq 1} p_i^{-1} = +\infty$).
- 4. Find a subset of \mathbb{N} with no density.
- 5. Let \mathcal{B} be a Boolean algebra of \mathbb{N} included in \mathcal{D} . Show that d is a set additive function on $(\mathbb{N}, \mathcal{B})$.
- 6. Is \mathcal{D} a Boolean algebra? Justify.
- 7. Show that $\mathcal{D}_0 \cup \mathcal{D}_1$ is a Boolean algebra.

We define the following relation between subsets of \mathbb{N} : for all $A, B \subset \mathbb{N}$, $A \sim B$ if and only if $A\Delta B \in \mathcal{D}_0$, where $A\Delta B := (A \setminus B) \cup (B \setminus A)$ is the so-called symmetric difference between A and B.

8. Show that \sim is an equivalence relation.

For all $A \subset \mathbb{N}$, denote by $C\ell(A)$ the equivalence class of A for the relation \sim .

- 9. Compute $C\ell(\emptyset)$ and $C\ell(\mathbb{N})$.
- 10. Let $A \subset \mathbb{N}$, show that $C\ell(A^{c}) = \{B^{c} : B \in C\ell(A)\}.$
- 11. Let $A, A', B, B' \subset \mathbb{N}$ such that $A \sim A'$ and $B \sim B'$, prove that $A \cup B \sim A' \cup B'$.
- 12. Show that, if $A \in \mathcal{D}_a$ for some $a \in [0,1]$, then $C\ell(A) \subset \mathcal{D}_a$.
- 13. Let \mathcal{B} be a Boolean algebra on \mathbb{N} . Show that $\bigcup_{A \in \mathcal{B}} C\ell(A)$ is a Boolean algebra.

Exercise 2. Let \mathbb{N} be the set of integers and $\mathcal{P}(\mathbb{N})$ the set of all subsets of \mathbb{N} . The goal of this exercise is to build a set additive function μ on $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$ such that μ takes only the value 0 or 1, $\mu(\{n\}) = 0$ for all $n \in \mathbb{N}$ and $\mu(\mathbb{N}) = 1$. We define the notion of filter: a filter is a set $\mathcal{F} \subset \mathcal{P}(\mathbb{N})$ such that

- $i. \ \mathbb{N} \in \mathcal{F},$
- ii. $\emptyset \notin \mathcal{F}$,
- *iii.* $\forall A \in \mathcal{F}, \forall B \subset \mathbb{N}, A \subset B \Rightarrow B \in \mathcal{F},$
- iv. $\forall A, B \in \mathcal{F}, A \cap B \in \mathcal{F}.$

Moreover, \mathcal{F} is an ultrafilter if it is a filter and satisfies the extra condition

 $v. \ \forall A \subset \mathbb{N}, \ A \in \mathcal{F} \ or \ A^{c} \in \mathcal{F}.$

Define $\mathcal{F}_0 := \{ A \subset \mathbb{N} : A^{\mathsf{c}} \text{ is finite} \}.$

- 1. Show that \mathcal{F}_0 is a filter.
- 2. Let $(\mathcal{F}_i)_{i\leq 1}$ be a sequence of filters such that $\mathcal{F}_i \subset \mathcal{F}_{i+1}$ for all $i\geq 1$. Show that $\bigcup_{i\geq 1} \mathcal{F}_i$ is a filter.
- 3. Let \mathcal{F} be an ultrafilter and define $\mu_{\mathcal{F}}$ by : for all $A \subset \mathbb{N}$, $\mu_{\mathcal{F}}(A) = 0$ if $A \notin \mathcal{F}$ and $\mu_{\mathcal{F}}(A) = 1$ if $A \in \mathcal{F}$. Show that $\mu_{\mathcal{F}}$ is a set additive function on $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$.
- 4. Let \mathcal{F} be a filter and $A \subset \mathbb{N}$. We define the set $\mathcal{F}_A := \{D \subset \mathbb{N} : \exists B \in \mathcal{F}, A \cap B \subset D\}$. Show that $\mathcal{F} \subset \mathcal{F}_A$ and that \mathcal{F}_A satisfies conditions i, iii and iv in the definition of filter.
- 5. Let \mathcal{F} be a filter and $A \subset \mathbb{N}$. Suppose that $A \notin \mathcal{F}$ and $A^{c} \notin \mathcal{F}$, show that \mathcal{F}_{A} is a filter and $\mathcal{F} \neq \mathcal{F}_{A}$.
- 6. Suppose that there exists a filter \mathcal{F} containing \mathcal{F}_0 and such that it is maximal for the inclusion (i.e. if \mathcal{F}' is another filter with $\mathcal{F} \subset \mathcal{F}'$ then $\mathcal{F}' = \mathcal{F}$). Using previous questions, find a set additive function μ on $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$ such that μ takes only the value 0 or 1, $\mu(\{n\}) = 0$ for all $n \in \mathbb{N}$ and $\mu(\mathbb{N}) = 1$.
- 7. (Bonus) Show that there exists a filter \mathcal{F} containing \mathcal{F}_0 and such that it is maximal for the inclusion. (Hint: use Zorn's lemma and question 2).

Exercise 3. Let Π_0 be the set of all subsets of \mathbb{R} that are either open or closed. For all $n \geq 0$ we define $\Pi_{n+1} := \{A \cup B : A, B \in \Pi_n\} \cup \{A \cap B : A, B \in \Pi_n\}$. Finally we set $\Pi_\infty := \bigcup_{n \geq 0} \Pi_n$.

1. Show that Π_{∞} is a Boolean algebra on \mathbb{R} .

Let $\Sigma_0 := \{A \cap B : A, B \subset \mathbb{R}, A \text{ open, } B \text{ closed}\}$ and $\Sigma_1 := \{A_1 \cup \cdots \cup A_n : n \in \mathbb{N}, n \geq 1, A_1, \ldots, A_n \in \Sigma_0\}.$

- 3. Show that Σ_1 is a Boolean algebra on \mathbb{R} .
- 4. Show that $\Sigma_1 = \Pi_{\infty}$.

Let $\Sigma_1' := \{A_1 \sqcup \cdots \sqcup A_n : n \in \mathbb{N}, n \geq 1, A_1, \ldots, A_n \in \Sigma_0 \text{ are pairwise disjoint}\}.$

- 6. Show that $\Sigma_1 = \Sigma_1'$.
- 7. Prove that Σ_1 can't contain a set $D \subset \mathbb{R}$ such that : there exists a non-empty open interval J such that D is dense in J and for every non-empty open interval $I \subset J$, $I \cap D \notin \Pi_0$.

(Hint: write $D = A_1 \cup \cdots \cup A_n$ with $A_i \in \Sigma_0$ for all i and do an induction on n).

8. Is Σ_1 equal to the Borel σ -algebra on \mathbb{R} ?