

Best Programming Practice

- 1. All values as variables including Fixed, User Inputs, and Results
- 2. Proper naming conventions for all variables

```
String name = "Eric";
double height = input.nextDouble();
double totalDistance = distanceFromToVia + distanceViaToFinalCity;
```

- 3. Proper Program Name and Class Name
- 4. Follow proper indentation
- 5. Give comments for every step or logical block like a variable declaration or conditional and loop blocks
- 1. **Sample Program 1 -** Create a program to check if 3 values are internal angles of a triangle.

IMP => Follow Good Programming Practice demonstrated below in all Practice Programs

Hint =>

- a. Get integer input for 3 variables named x, y, and z.
- b. Find the sum of x, y, and z.
- c. If the sum is equal to 180, print "The given angles are internal angles of a triangle" else print They are not

```
Java
// Creating Class with name TriangleChecker indicating the purpose is to
// check if the internal angles add to 180
import java.util.Scanner;
class TriangleChecker {
   public static void main(String[] args) {
      // Create a Scanner Object
      Scanner input = new Scanner(System.in);
      // Get 3 input values for angles
      int x = input.nextInt();
      int y = input.nextInt();
      int z = input.nextInt();
      // Find the sum of all angles
      int sumOfAngles = x + y + z;
      // Check if sum is equal to 180 and print either true or false
      System.out.println("The given angles " +x+ ", " +y+ ", " + z +
                         " add to " + sumOfAngles);
```


2. **Sample Program 2 -** Create a program to find the sum of all the digits of a number given by a user.

Hint =>

- a. Get an integer input for the number variable.
- b. Create an integer variable sum with an initial value of 0.
- c. Create a while loop to access each digit of the number.
- d. Inside the loop, add each digit of the number to the sum.
- e. Finally, print the sum outside the loop

```
Java
// Create SunOfDigit Class to compute the sum of all digits of a number import java.util.Scanner;

class SumOfDigits {

   public static void main(String[] args) {

      // Create a Scanner Object
      Scanner input = new Scanner(System.in);

      // Get input value for number int origNumber = input.nextInt();

      // Define variable number and sum initialized to zero int number = origNumber; int sum = 0;
```


Level 3 Practice Programs

1. Create a program to check if a number is Armstrong or not. Use the hints to show the steps clearly in the code

Hint =>

- a. Armstrong Number is a number whose Sum of cubes of each digit results in the original number e.g. $153 = 1^3 + 5^3 + 3^3$
- b. Get an integer input and store it in the number variable define sum variable, initialize it to zero and originalNumber variable, and assign it to the input number variable
- c. Use the **while** loop till the originalNumber is not equal to zero
- d. In the *while* loop find the reminder number by using the modulus operator as in *number* % 10. Find the cube of the number and add it to the *sum* variable
- e. Again in while loop find the quotient of the number and assign it to the original number using number / 10 expression. This romoves the last digit of the original number.
- f. Finally check if the number and the sum are the same, if same its an Armstrong number else not. So display accordingly
- 2. Create a program to count the number of digits in an integer.

Hint =>

- a. Get an integer input for the number variable.
- b. Create an integer variable count with value 0.
- c. Use a loop to iterate until number is not equal to 0.
- d. Remove the last digit from number in each iteration
- e. Increase count by 1 in each iteration.
- f. Finally display the count to show the number of digits
- 3. Create a program to check if a number taken from the user is a Harshad Number.

Hint =>

a. A Harshad number is an integer which is divisible by the sum of its digits.

For example, 21 which is perfectly divided by 3 (sum of digits: 2 + 1).

- b. Get an integer input for the number variable.
- c. Create an integer variable sum with initial value 0.
- d. Create a while loop to access each digit of the number.
- e. Inside the loop, add each digit of the number to sum.
- f. Check if the number is perfectly divisible by the sum.
- g. If the number is divisible by the sum, print Harshad Number. Otherwise, print Not a Harshad Number.

4. Create a program to check if a number is an Abundant Number.

Hint =>

a. An abundant number is an integer in which the sum of all the divisors of the number is greater than the number itself. For example,

Divisor of 12: 1, 2, 3, 4, 6

Sum of divisor: 1 + 2 + 3 + 4 + 6 = 16 > 12

- b. Get an integer input for the number variable.
- c. Create an integer variable sum with initial value 0.
- d. Run a for loop from i = 1 to i < number.
- e. Inside the loop, check if number is divisible by i.
- f. If true, add i to sum.
- g. Outside the loop Check if sum is greater than number.
- h. If the sum is greater than the number, print Abundant Number. Otherwise, print Not an Abundant Number.
- 5. Write a program **DayOfWeek** that takes a date as input and prints the day of the week that the date falls on. Your program should take three command-line arguments: m (month), d (day), and y (year). For m use 1 for January, 2 for February, and so forth. For output print 0 for Sunday, 1 for Monday, 2 for Tuesday, and so forth. Use the following formulas, for the Gregorian calendar (where / denotes integer division):

$$y_0 = y - (14 - m) / 12$$

 $x = y_0 + y_0 / 4 - y_0 / 100 + y_0 / 400$
 $m_0 = m + 12 \times ((14 - m) / 12) - 2$
 $d_0 = (d + x + 31m_0 / 12) \mod 7$

6. Write a program to create a calculator using **switch...case**.

Hint =>

- a. Create two double variables named first and second and a String variable named op.
- b. Get input values for all variables.
- c. The input for the operator can only be one of the four values: "+", "-", "*" or "/".
- d. Run a for loop from i = 1 to i < number.
- e. Based on the input value of the op, perform specific operations using the **switch...case** statement and print the result.
- f. If op is +, perform addition between first and second; if it is -, perform subtraction and so on.
- g. If op is neither of those 4 values, print Invalid Operator.