

Machine Learning & Deep Learning (Barcha uchun)

<02> Chiziqli model (Linear model)

Mansurbek Abdullaev

www.uzbek-ai.gitbook.io

mansurbek.comchemai@gmail.com

@MansurbekUST

Machine Learning

Agar 1 kunda 4 soat o'qisam nechchi baho olaman?

Soat (x)	Baho(y)
1 '	_2
2	4
3	6
4	?

O'rgatish ma'lumotlar to'plami (Training dataset)

Test ma'lumotlar to'plami (Test dataset)

Supervised learning

Model dizayni

Ushbu ma'lumotlar uchun qaysi model to'g'ri keladi? Chiziqli?

Soat (x)	Baho(<u>y</u>)
1 .	2
2 .	4
3 .	6
4	?

Chiziqli Regressiya

Soat (x)	Baho(y)
1 .	2
2	4
3	6

* w=taxminiy qiymatlar orqali o'rgatish.

$$loss = (\hat{y} - y)^2 = (x * w - y)^2$$

Soat (x)	Baho (y)	Bashorat(predict) $\hat{y}(w=3)$	Xatolik (loss) $(w=3)$
1	2	3 */	12 1
2	4	6 -	<u>ے 4</u>
3 .	6	9 ,	3 9
			O'rtacha(mean)= 14/3

$$loss = (\hat{y} - y)^2 = (x * w - y)^2$$

Soat (x)	Baho (y)	Bashorat(predict) $\hat{y}(w=4)$	Xatolik (loss) (w=4)
1	2	4 ·	4
2 .	4	8 .	4 16
3	6	12 ·	<u>L</u> 36
			O'rtacha(mean)= 56/3

$$loss = (\hat{y} - y)^2 = (x * w - y)^2$$

Soat (x)	Baho (y)	Bashorat(predict) $\hat{y}(w=0)$	Xatolik (loss) (w=0)
1	2	0 ·	4
2	4	0 .	_16
3	6	0 .	_36
			O'rtacha(mean)= 56/3

$$loss = (\hat{y} - y)^2 = (x * w - y)^2$$

Soat (x)	Baho (y)				Xatolik (loss) (w=0)	
1	2		1	ſ	1	
2	4		2		4	
3	6		3		9	l
					O'rtacha(me 14/3	ean)=

$$loss = (\hat{y} - y)^2 = (x * w - y)^2$$

Soat (x)	Baho (y)	Bashorat(predict) $\hat{y}(w=2)$	Xatolik (loss) (w=2)
1	2	-2	-0_
2	4_	4	_0_
3	6	6	_0
			O'rtacha(mean) = 0

$$loss = (\hat{y} - y)^2 = (x * w - y)^2$$

$$loss = \frac{1}{N} \sum_{n=1}^{N} (\hat{y}_n - y_n)^2$$

O'rtacha kvadratik xatolik (Mean Square Error)

Soat (x)	Loss(w=0)	Loss(w=1)	Loss(w=2)	Loss(w=3)	Loss(w=4)
1	4	1	0	1	4
2	16	4	0	4	16
3	36	9	0	9	36
	MSE=56/3=18.7	MSE=14/3=4.7	MSE=0	MSE=14/3=4.7 ———	MSE=56/3=18.7

O'rgatishdagi xatolik(Loss) grafigi.

❖ O'rtacha kvadratik xatolik (Mean Square Error)

$$loss = \frac{1}{N} \sum_{n=1}^{N} (\hat{y}_n - y_n)^2$$

Loss(w=0)	Loss(w=1)	Loss(w=2)	Loss(w=3)	Loss(w=4)
MSE=56/3=18.7	MSE=14/3=4.7	MSE=0	MSE=14/3=4.7	MSE=56/3=18.7

Model&Loss.

$$\hat{y} = x * w$$

$$loss = (\hat{y} - y)^2$$

```
#Xatolik (Loss) ning funksiyasi

def <u>loss(x,y):</u>

y_pred = forward(x)

return (y_pred-y)**2
```

w ning xatolik (loss) qiymatini hisoblash.


```
#w ni 0 dan 4 gacha oralig'ida hisblash
for w in np.arange(0.0,4.1,0.1):
  print("w={:.3f}".format(w))
  L_umum=0
  for x_hb_qiym, y_hb_qiym in zip(x_soat, y_baho):
    y_hb_bash = forward(x_hb_qiym)
    L_hb_qiym = loss(x_hb_qiym, y_hb_qiym)
    L_umum += L_hb_qiym
    print("\t", "{:.2f}, {:.2f}, {:.2f}, format(x_hb_qiym, y_hb_qiym, y_hb_bash, L_hb_qiym))
  # Har bir ma'lumot uchun MSE ni hisoblaymiz
  print("MSE=", L_umum / len(x_soat)) #len(x_soat)--> N
```

```
w=0.000
         1.00, 2.00, 0.00, 4.00
         2.00, 4.00, 0.00, 16.00
         3.00, 6.00, 0.00, 36.00
MSE= 18.6666666666668
w=0.100
         1.00, 2.00, 0.10, 3.61
         2.00, 4.00, 0.20, 14.44
        3.00, 6.00, 0.30, 32.49
MSE= 16.84666666666668
w=0.200
        1.00, 2.00, 0.20, 3.24
         2.00, 4.00, 0.40, 12.96
         3.00, 6.00, 0.60, 29.16
MSE= 15.1200000000000000
w=0.300
         1.00, 2.00, 0.30, 2.89
         2.00, 4.00, 0.60, 11.56
         3.00, 6.00, 0.90, 26.01
MSE= 13_486666666666665]
w=0.400
         1.00, 2.00, 0.40, 2.56
         2.00, 4.00, 0.80, 10.24
         3.00, 6.00, 1.20, 23.04
MSE= 11.946666666666667
```

Xatolik (loss) grafigini olish.


```
w_list=[]
mse list=[]
#w ni 0 dan 4 gacha oralig'ida hisblash
for w in np.arange(0.0,4.1,0.1):
  print("w={:.3f}".format(w))
  L_umum=0
  for x_hb_qiym, y_hb_qiym in zip(x_soat, y_baho):
    y_hb_bash = forward(x_hb_qiym)
    L_hb_qiym = loss(x_hb_qiym, y_hb_qiym)
    L_umum += L_hb_qiym
    print("\t", "{:.2f}, {:.2f}, {:.2f}, {:.2f}, format(x_hb_qiym, y_hb_qiym, y_hb_bash, L_hb_qiym))
  # Har bir ma'lumot uchun MSE ni hisoblaymiz
  print("MSE=", L_umum / len(x_soat)) #len(x_soat)--> N
  w_list.append(w)
  mse_list.append(L_umum / len(x_soat))
plt.plot(w_list, mse_list)
plt.ylabel('Loss')
plt.xlabel('w')
ax= plt.axes()
ax.set_facecolor('#030101')
plt.show()
```


To'liq kodimiz


```
import matplotlib.pyplot as plt
import numpy as np
x_soat = np.array([1.0, 2.0, 3.0])
y_baho = np.array([2.0, 4.0, 6.0])
def forward(x):
  return x*w
#Xatolik (Loss) ning funksiyasi
def loss(x,y):
 y_pred = forward(x)
  return (y_pred-y)**2
w list=[]
mse list=[]
for w in np.arange(0.0,4.1,0.1):
  print("w={:.3f}".format(w))
  L umum=0
 for x_hb_qiym, y_hb_qiym in zip(x_soat, y_baho):
    y_hb_bash = forward(x_hb_qiym)
    L_hb_qiym = loss(x_hb_qiym, y_hb_qiym)
    L_umum += L_hb_qiym
    print("\t", "{:.2f}, {:.2f}, {:.2f}, {:.2f}, format(x_hb_qiym, y_hb_qiym, y_hb_bash, L_hb_qiym))
  print("MSE=", L_umum / len(x_soat)) #len(x_soat)--> N
  w_list.append(w)
  mse_list.append(L_umum / len(x_soat))
plt.plot(w_list, mse_list)
plt.ylabel('Loss')
plt.xlabel('w')
ax= plt.axes()
ax.set_facecolor('#030101')
plt.show()
```


Vazifa - 2

- O'zingiz biror qiziq chiziqli modelni qurib ko'ring
- Biror qizi chiziqli ma'lumot qidirib toping va uni modellashtiring.
 - -Grafik ko'rinishida w va xatolkning (loss) ning natijasini oling.

www.uzbek-ai.gitbook.io

Keyingi darsligimiz

<03>Dars
Gradient pastlash (Gradient Descent)