Advanced Machine Learning Seminar 4

Exercise 1 $\mathcal{H}_{mcon}^d = class \text{ of monotone Boolean conjunctions over } \{0,1\}^d$.

$$\mathcal{H}_{\text{mcon}}^{d} = \left\{ h \colon \{0,1\}^{d} \to \{0,1\}, \ h_{(x_{1},x_{2},...,x_{d})} = \bigwedge_{i=1}^{d} l(x_{i}) \right\} \cup \left\{ h_{(x_{1},...,x_{d})=0}^{-} \right\}$$

$$l(x_{i}) \in \left\{ x_{i},1 \right\}$$
positive missing literal literal

So $|\mathcal{H}_{mcon}^d| = 2^d + 1$. Examples:

$$d = 2 \qquad \mathcal{H}^{2}_{\text{mcon}} = \{ \underset{h^{-}}{0}, \underset{h_{empty}}{1}, x_{1}, x_{2}, x_{1} \wedge x_{2} \}$$

$$d = 3 \qquad \mathcal{H}^{3}_{\text{mcon}} = \{ 0, 1, x_{1}, x_{2}, x_{3}, x_{1} \wedge x_{2}, x_{1} \wedge x_{3}, x_{2} \wedge x_{3}, x_{1} \wedge x_{2} \wedge x_{3} \}$$

We need to show that $VC\dim(\mathcal{H}_{mcon}^d) = d$.

Proof. We know that $|\mathcal{H}_{mcon}^d| = 2^d + 1$, so $VC\dim(\mathcal{H}_{mcon}^d) \leq \lfloor \log_2(|\mathcal{H}_{mcon}^d|) \rfloor$, which in turn means

$$VC\dim(\mathcal{H}_{mcon}^d) \le \lfloor \log_2(2^d + 1) \rfloor = d$$

We only need to find a set $C \subseteq \{0,1\}^d$ with d points that is shattered by $\mathcal{H}^d_{\text{mcon}}$.

Usually, taking $C = \{e_1, e_2, \dots, e_d\}, e_i = (0, \dots, 0, 1, 0, \dots, 0)$ works, but not for this $\mathcal{H} = \mathcal{H}^d_{\text{mcon}}$. You cannot have a conjunction that will have $h(e_1) = h(e_2) = 1$ and $h(e_3) = \dots = h(e_d) = 0$.

Instead, we choose $C = \{(0, 1, 1, \dots, 1), (1, 0, 1, 1, \dots, 1), \dots, (1, 1, \dots, 0, 1, 1)\}$ set of vectors of the form $c_i = (1, 1, \dots, 1) - e_i, i = \overline{1, d}$.

We want to show that, for each possible labeling (y_1, y_2, \dots, y_d) of the points $c_i = (1, 1, \dots, 1) - e_i$, there exists a function $h \in \mathcal{H}^d_{\text{mcon}}$ such that $h(c_i) = y_i, \forall i = \overline{1, d}$.

Consider (y_1, y_2, \dots, y_d) a labeling and take $\mathcal{J} = \{j \mid y_j = 1\}.$

If $\mathcal{J} = \emptyset$, then h^- realizes the labeling $(0, 0, \dots, 0)$.

If $\mathcal{J} = \{1, 2, \dots, d\}$, then $h_{empty} = 1$ (all literals are missing) realizes the labeling $(1, 1, \dots, 1)$.

If $1 \leq |\mathcal{J}| \leq d-1$, then consider $h_{\mathcal{J}}(x_1, x_2, \dots, x_d) = \bigwedge_{j \notin \mathcal{J}} x_j$.

For example, if d = 4 and $\mathcal{J} = \{2, 3\}$, $h_{\mathcal{J}}(x_1, x_2, x_3, x_4) = x_1 \wedge x_4$:

$$h_{\mathcal{J}}(c_1) = h_{\mathcal{J}}(0, 1, 1, 1) = 0$$

$$h_{\mathcal{J}}(c_2) = h_{\mathcal{J}}(1, 0, 1, 1) = 1$$

$$h_{\mathcal{J}}(c_3) = h_{\mathcal{J}}(1, 1, 0, 1) = 1$$

$$h_{\mathcal{J}}(c_4) = h_{\mathcal{J}}(1, 1, 1, 0) = 0$$

We have that $h_{\mathcal{I}}(c_i) = 1$ if $i \in \mathcal{I}$ and $h_{\mathcal{I}}(c_i) = 0$ if $i \notin \mathcal{I}$.

For all indices $i \in \mathcal{J}$, c_i will have value 0 on the position i and 1 in rest, but variable x_i is not considered in the conjunction. So $h_{\mathcal{J}}(c_i) = 1$.

For all indices $i \notin \mathcal{J}$, c_i will have value 0 on the position i and, because the conjunction contains the literal x_i , then we have that $h_{\mathcal{J}}(c_i) = 0$.

Exercise 2 $\mathcal{X} = \{0,1\}^n$

$$\mathcal{H}_{\text{n-parity}} = \left\{ h_I \mid I \subseteq \{1, 2, \dots, n\}, \ h_I(x_1, x_2, \dots, x_n) = \left(\sum_{i \in I} x_i\right) \mod 2 \right\}$$

What is $VC \dim(\mathcal{H}_{n\text{-parity}})$?

Proof. For each subset $I \subseteq \{1, 2, ..., n\}$ we have a h_I , so $|\mathcal{H}_{n\text{-parity}}| = 2^n$.

We know that $VC \dim(\mathcal{H}_{n\text{-parity}}) \leq \lfloor \log_2 2^n \rfloor = n$.

So $VC \dim(\mathcal{H}_{n\text{-parity}}) \leq n$.

Can we find a set C with n points that is shattered by $\mathcal{H}_{n-parity}$?

Let's try the "usual" set of unit vectors $C = \{e_1, e_2, ..., e_n\}, e_i = (0, ..., 0, 1, 0, ..., 0).$

We want to show that, for each possible labeling (y_1, y_2, \dots, y_n) of (e_1, e_2, \dots, e_n) , you can find a corresponding h such that $h(e_i) = y_i, \forall i = \overline{1, n}$.

Consider (y_1, y_2, \dots, y_n) such a labeling and take $I = \{i \mid y_i = 1\}$.

Then we have

$$h_I(e_i) = \left(\sum_{i \in I} x_i\right) \mod 2 = \begin{cases} 1, & \text{if } i \in I \\ 0, & \text{otherwise} \end{cases}$$

So $VC \dim(\mathcal{H}_{n\text{-parity}}) = n$.

Exercise 3 \mathcal{X} – finite domain, $|\mathcal{X}| = n < \infty, k \le |\mathcal{X}|$

3.1.
$$\mathcal{H}_{=k}^{\mathcal{X}} = \{h \in \{0,1\}^{\mathcal{X}} \mid |\{x \colon h(x) = 1\}| = k\}$$

= set of all functions that assign the value 1 to exactly k elements of \mathcal{X}

 $VC\dim(\mathcal{H}_{=k}^{\mathcal{X}}) = ?$

Proof.

If
$$k = 0 \Rightarrow \mathcal{H}_{=0}^{\mathcal{X}} = \{h^-\}$$
, all points get the value 0

If
$$k = 1 \Rightarrow \mathcal{H}_{=1}^{\mathcal{X}}$$
 has $|\mathcal{X}|$ functions = n functions

$$\mathcal{X} = \{x_1, x_2, \dots, x_n\}, n = |\mathcal{X}|$$

$$h_i: \{x_1, \dots, x_n\} \to \{0, 1\}$$
 $h_i(x_j) = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$

If
$$k = 2 \Rightarrow \mathcal{H}_{=2}^{\mathcal{X}}$$
 has C_n^2 elements

:

If
$$k = n - 1 \Rightarrow \mathcal{H}_{=n-1}^{\mathcal{X}}$$
 has n elements

If
$$k = n \Rightarrow \mathcal{H}_{\equiv n}^{\mathcal{X}}$$
 has 1 element $h^+(x_i) = 1 \ \forall i = \overline{1, n}$

We first show that $VC\dim(\mathcal{H}_{=k}^{\mathcal{X}}) \leq \min(k, n-k) = VC\dim(\mathcal{H})$.

Case 1) if
$$n \ge 2k$$
, in this case, $\min(k, n - k) = k$, $k \le \frac{n}{2}$

 \mathcal{H} will consist of functions h that label exactly k elements of \mathcal{X} with label 1. So any set C with more than k points cannot be shattered because the labeling with all 1's $(1, 1, 1, \ldots, 1)$ cannot be realized by any $h \in \mathcal{H}$.

Case 2) if
$$n < 2k$$
, in this case $\min(k, n - k) = n - k$, $k > \frac{n}{2}$

 \mathcal{H} will consist of functions h that labels k elements of \mathcal{X} with label 1, and n-k points of \mathcal{X} with label 0. So any set with more than n-k+1 points cannot be shattered by \mathcal{H} as the labeling with all 0's $(0,0,\ldots,0)$ cannot be realized by any $h \in \mathcal{H}$.

So we have that $VC\dim(\mathcal{H}) \leq \min(k, n-k)$.

We will prove that $VC\dim(\mathcal{H}) = \min(k, n - k)$.

Consider $k' = \min(k, n - k)$.

We need to show that there exists a set of points $A = \{x_{i1}, x_{i2}, \dots, x_{ik'}\} \subseteq \mathcal{X}$ that is shattered by \mathcal{H} . This means that, for each subset $B \subseteq A$, we can find $h_B \in \mathcal{H}$ such that

$$h_B(x) = \begin{cases} 1, & x \in B \\ 0, & x \in A \setminus B \end{cases}$$

We choose a set of k - |B| points $B' = \{b_1, b_2, \dots, b_{k-|B|}\} \subseteq \mathcal{X} \setminus A$.

We can make the choice since $k - |B| \le |\mathcal{X} \setminus A|$

$$k - |B| \le n - k'$$

$$k' - |B| \le n - k$$

$$k' - |B| \le k' \le n - k$$
 this is true

So $B \subseteq A$ has |B| elements

$$B' \subseteq \mathcal{X} \setminus A$$
 has $k - |B|$ elements

So
$$|B \cup B'| = |B| + |B'|$$
 (as $B \cap B' = \emptyset$) = k

So, if we consider the characteristic function of the set $B \cup B'$, we have

$$\mathbb{1}_{B \cup B'}(x) = \begin{cases} 1, & x \in B \cup B' \\ 0, & \text{otherwise} \end{cases}$$

What is more important, $\mathbb{1}_{B \cup B'}$ takes value 1 for exactly k points, so it is a member of \mathcal{H} .

So, in this case, we take $h_B = \mathbb{1}_{B \cup B'}$.

 h_B will have the desired property that $h_B(x) = \begin{cases} 1, & x \in B \\ 0, & x \in A \setminus B \end{cases}$ So any set A of k' = min(k, n - k) points can be shattered by \mathcal{H} .

So
$$VC \dim(\mathcal{H}) = k' = \min(k, n - k)$$
.

3.2.
$$\mathcal{H}_{\text{at-most-}k} = \{ h \in \{0,1\}^{\mathcal{X}} : |\{x : h(x) = 1\}| \le k \text{ or } |\{x : h(x) = 0\}| \le k \}$$

Proof.

If
$$k = 0$$
 $\mathcal{H}_{\text{at-most-}0} = \{h^-, h^+\}$ where $|\{x \colon h^-(x) = 1\}| \le 0$ and $|\{x \colon h^+(x) = 0\}| \le 0$

If
$$k = 1$$
 $\mathcal{H}_{\text{at-most-1}} = \{h^-, h^+\} \cup \{\text{functions } h \text{ which label just one point with label } 1\}$

 $\cup \{ \text{functions } h \text{ which label just 1 point with label 0} \}$

Case 1 If $n = |\mathcal{X}| \le 2k + 1$, then we have that $\mathcal{H}_{\text{at-most-}k} = \{0, 1\}^{\mathcal{X}} = \{h : \mathcal{X} \to \{0, 1\}\}$ This is true because any function $h : \mathcal{X} \to \{0, 1\}$ will have either at most k points labeled with 0 or

at most k points labeled with 1.

Example (see Table 1): Take n = 7, k = 4 $\mathcal{X} = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7\}$

	\boldsymbol{x}	x_1	x_2	x_3	x_4	x_5	x_6	x_7
at most 4 1's or 4 0's \leftarrow	h(x)	1	1	0	0	1	0	1
at most 4 1's \leftarrow	h(x)	0	0	1	0	0	0	0
at most 4 1's \leftarrow	h(x)	0	1	0	0	1	0	0

Table 1

In this case, $VC \dim(\mathcal{H}_{\text{at-most-}k}) = VC \dim(\{0,1\})^{\mathcal{X}} = n = |\mathcal{X}|.$

Case 2 If
$$n = |\mathcal{X}| \ge 2k + 2$$

We first show that
$$VC\dim(\mathcal{H}_{\text{at-most-}k}) = VC\dim(\mathcal{H}) \geq 2k + 1$$

Consider any set A of 2k + 1 points in \mathcal{X} : $A = \{a_1, a_2, \dots, a_{2k+1}\}.$

We will show that A is shattered by \mathcal{H} . It is enough to show that, for each possible labeling $(y_1, y_2, \ldots, y_{2k+1})$ of the points $(a_1, a_2, \ldots, a_{2k+1})$, we can find an $h \in \mathcal{H}$ such that $h(y_i) = a_i$.

Take
$$\mathcal{J} = \{j \mid y_j = 1\}$$
, and take $B_{\mathcal{J}} = \{a_j \in A \mid y_j = 1\}$

If $|\mathcal{J}| \leq k$ we know that $\mathbb{1}_{B_{\mathcal{J}}} \in \mathcal{H}_{\text{at-most-}k}$, so we take

$$h = \mathbb{1}_{B_{\mathcal{J}}} \quad h(a_j) = \begin{cases} 1, & y_j = 1 \\ 0, & \text{otherwise} \end{cases}$$

If $|\mathcal{J}| > k$ take $C_{\mathcal{J}} = \{a_{\mathcal{J}} \in A \mid y_j = 0\}$ has at most k elements, so we take in this case $j \notin \mathcal{J}$

$$h = \mathbb{1}_{A \setminus C_{\mathcal{J}}} \quad h(a_j) = \begin{cases} 1, & y_j = 1 \\ 0, & y_j = 0 \end{cases}$$

So, we have that $VC\dim(\mathcal{H}) \geq 2k+1$.

We show now that $VC\dim(\mathcal{H}) < 2k + 2$.

Consider any set A of 2k + 2 points $A = \{a_1, a_2, \dots, a_{2k+2}\}.$

There is no $h \in \mathcal{H}$ that will label the first k+1 points with 1 and the rest k+1 points with 0.

So, in conclusion, $VC \dim(\mathcal{H}_{\text{at-most-}k}) = \min(|\mathcal{X}|, 2k+1).$