Lattice-based coding schemes and Diophantine approximations

Evgeniy Zorin

University of York

23 January 2018

Single-user receiver

$$\begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = \mathbf{H} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix},$$

where
$$\mathbf{H} \in \mathrm{M}_{m \times n}(\mathbb{R})$$

Single-user receiver

$$\begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = \mathbf{H} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix},$$

where
$$\mathbf{H} \in \mathrm{M}_{m \times n}(\mathbb{R})$$

Messages $x_k \in \mathbb{R}^d$, k = 1, ..., n, are subject to the power constraint in terms of the Signal-to-Noice Ratio (SNR):

$$||x_k||^2 \le n \cdot SNR, \quad \forall k = 1, \dots, n.$$

Single-user receiver

$$\begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = \mathbf{H} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix},$$

where
$$\mathbf{H} \in \mathrm{M}_{m \times n}(\mathbb{R})$$

Messages $x_k \in \mathbb{R}^d$, k = 1, ..., n, are subject to the power constraint in terms of the Signal-to-Noice Ratio (SNR):

$$||x_k||^2 \le n \cdot SNR, \quad \forall k = 1, \dots, n.$$

The mutual information in this case is equal to

$$C = \log \det (\mathbf{I}_m + \mathrm{SNR} \cdot \mathbf{H}^t \cdot \mathbf{H}).$$

$$\begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = \mathbf{H} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix},$$

where
$$\mathbf{H} \in \mathrm{M}_{m \times n}(\mathbb{R})$$

Zero-forcing,

$$\begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = \mathbf{H} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix},$$

where
$$\mathbf{H} \in \mathrm{M}_{m \times n}(\mathbb{R})$$

- Zero-forcing,
- Minimum mean-squared error (MMSE).

B. Nazer and M. Gastpar, "Compute-and-forward: Harnessing interference through structured codes", IEEE Transactions on Information Theory (2011)

The decoder can directly recover a linear combination of interfering data streams.

B. Nazer and M. Gastpar, "Compute-and-forward: Harnessing interference through structured codes", IEEE Transactions on Information Theory (2011)

The decoder can directly recover a linear combination of interfering data streams.

Each data stream is drawn from the same lattice codebook. The codebook structure ensures that any integer combination of codewords is itself a codeword, and thus decodable at high rates

B. Nazer and M. Gastpar, "Compute-and-forward: Harnessing interference through structured codes", IEEE Transactions on Information Theory (2011)

The decoder can directly recover a linear combination of interfering data streams.

Each data stream is drawn from the same lattice codebook. The codebook structure ensures that any integer combination of codewords is itself a codeword, and thus decodable at high rates

Key step: selection of an integer matrix **A** to approximate the channel matrix **H**.

J. Zhan, B. Nazer, U. Erez, and M. Gastpar, "Integer-forcing linear receivers", IEEE Transactions on Information Theory (2014)

J. Zhan, B. Nazer, U. Erez, and M. Gastpar, "Integer-forcing linear receivers", IEEE Transactions on Information Theory (2014)

Integer-Forcing (IF) receiver's goal is to decode V := AX.

J. Zhan, B. Nazer, U. Erez, and M. Gastpar, "Integer-forcing linear receivers", IEEE Transactions on Information Theory (2014)

Integer-Forcing (IF) receiver's goal is to decode V := AX.

Let \mathbf{a}_k^T be the k-th row of the matrix \mathbf{A} .

J. Zhan, B. Nazer, U. Erez, and M. Gastpar, "Integer-forcing linear receivers", IEEE Transactions on Information Theory (2014)

Integer-Forcing (IF) receiver's goal is to decode V := AX.

Let \mathbf{a}_k^T be the k-th row of the matrix \mathbf{A} .

The receiver first performs MMSE estimate of the vectors $\mathbf{v}_k = \mathbf{a}_k^T \mathbf{X}$ from the output \mathbf{Y}

J. Zhan, B. Nazer, U. Erez, and M. Gastpar, "Integer-forcing linear receivers", IEEE Transactions on Information Theory (2014)

Integer-Forcing (IF) receiver's goal is to decode V := AX.

Let \mathbf{a}_k^T be the k-th row of the matrix \mathbf{A} .

The receiver first performs MMSE estimate of the vectors $\mathbf{v}_k = \mathbf{a}_k^T \mathbf{X}$ from the output \mathbf{Y}

To make the Integer-Forcing scheme to be successful, decoding over **all** sub-channels should be correct.

$$SNR_{eff,k} := \left(\mathbf{a}_k^T \left(\mathbf{I} + SNR\mathbf{H}^T \mathbf{H}\right) \mathbf{a}_k\right)^{-1},$$

$$SNR_{eff,k} := \left(\mathbf{a}_k^T \left(\mathbf{I} + SNR\mathbf{H}^T \mathbf{H}\right) \mathbf{a}_k\right)^{-1},$$

and

$$SNR_{eff} := \min_{k=1,...,n} SNR_{eff,k}.$$

$$SNR_{eff,k} := \left(\mathbf{a}_k^T \left(\mathbf{I} + SNR\mathbf{H}^T \mathbf{H}\right) \mathbf{a}_k\right)^{-1},$$

and

$$SNR_{eff} := \min_{k=1,...,n} SNR_{eff,k}.$$

Theorem (Zhan, Nazer, Ordentlich and Gastbar)

Integer-forcing can achieve any rate

$$R_{IF} < \frac{1}{2} n \log \left(\mathrm{SNR}_{eff} \right).$$

$$SNR_{eff,k} := \left(\mathbf{a}_k^T \left(\mathbf{I} + SNR\mathbf{H}^T \mathbf{H}\right) \mathbf{a}_k\right)^{-1},$$

and

$$SNR_{eff} := \min_{k=1,\dots,n} SNR_{eff,k}.$$

Theorem (Zhan, Nazer, Ordentlich and Gastbar)

Integer-forcing can achieve any rate

$$R_{IF} < \frac{1}{2} n \log \left(\mathrm{SNR}_{eff} \right).$$

Remark

The optimal choice of the matrix A is given by

$$\mathbf{A}^{opt} := \mathop{\mathrm{argmin}}_{\substack{\mathbf{A} \in \mathbb{Z}^{n \times n} \\ \det \mathbf{A} \neq 0}} \max_{k=1,\dots,n} \mathbf{a}_k^T \left(\mathbf{I} + \mathbf{SNR} \mathbf{H}^T \mathbf{H} \right) \mathbf{a}_k.$$

O. Ordentlich and U. Erez, "Precoded Integer-Forcing Universally Achieves the MIMO Capacity to Within a Constant Gap", IEEE Transactions on Information Theory (2015)

O. Ordentlich and U. Erez, "Precoded Integer-Forcing Universally Achieves the MIMO Capacity to Within a Constant Gap", IEEE Transactions on Information Theory (2015)

for any positive definite $m \times m$ matrix \mathbf{Q} , define

$$M_n(\mathbf{Q}) := \min_{\mathbf{a} \in \mathbb{Z}^n \setminus \{\mathbf{0}\}} \mathbf{a}^T \cdot \mathbf{Q} \cdot \mathbf{a}$$

O. Ordentlich and U. Erez, "Precoded Integer-Forcing Universally Achieves the MIMO Capacity to Within a Constant Gap", IEEE Transactions on Information Theory (2015)

for any positive definite $m \times m$ matrix \mathbf{Q} , define

$$M_n(\mathbf{Q}) := \min_{\mathbf{a} \in \mathbb{Z}^n \setminus \{\mathbf{0}\}} \mathbf{a}^T \cdot \mathbf{Q} \cdot \mathbf{a}$$

Theorem (Ordentlich and Erez)

$$\frac{1}{n^2}M_n(\mathbf{I}_n + \mathrm{SNR} \cdot \mathbf{H}^T \cdot \mathbf{H}) < \mathrm{SNR}_{eff} \leq M_n(\mathbf{I}_n + \mathrm{SNR} \cdot \mathbf{H}^T \cdot \mathbf{H}).$$

O. Ordentlich and U. Erez, "Precoded Integer-Forcing Universally Achieves the MIMO Capacity to Within a Constant Gap", IEEE Transactions on Information Theory (2015)

for any positive definite $m \times m$ matrix \mathbf{Q} , define

$$M_n(\mathbf{Q}) := \min_{\mathbf{a} \in \mathbb{Z}^n \setminus \{\mathbf{0}\}} \mathbf{a}^T \cdot \mathbf{Q} \cdot \mathbf{a}$$

Theorem (Ordentlich and Erez)

$$\frac{1}{n^2}M_n(\mathbf{I}_n + \mathrm{SNR} \cdot \mathbf{H}^T \cdot \mathbf{H}) < \mathrm{SNR}_{eff} \leq M_n(\mathbf{I}_n + \mathrm{SNR} \cdot \mathbf{H}^T \cdot \mathbf{H}).$$

Problem

Assume that the channel matrix \mathbf{H} has coefficients distributed with respect to a given law (e.g. Gaussian distribution independently for each entry). Let $\kappa \in (0,1)$.

Find the best possible value of $s \ge 0$ such that the event $SNR_{eff} \ge s$ is realised with probability greater than κ .

Refined version of the problem

Define

$$\mathcal{H}_{m,n}\left(\textit{C}_{0},\operatorname{SNR}\right) \,:=\, \left\{ \textbf{H} \in \mathbb{R}^{n \times m} \;:\; \log \det \left(\textbf{I}_{m} + \operatorname{SNR} \cdot \textbf{H}^{\textit{T}} \cdot \textbf{H}\right) \,=\, \textit{C}_{0} \right\}.$$

Refined version of the problem

Define

$$\mathcal{H}_{m,n}\left(\textit{C}_{0},\operatorname{SNR}\right) \,:=\, \left\{ \textbf{H} \in \mathbb{R}^{n \times m} \;:\; \log \det \left(\textbf{I}_{m} + \operatorname{SNR} \cdot \textbf{H}^{\textit{T}} \cdot \textbf{H}\right) \,=\, \textit{C}_{0} \right\}.$$

Problem

Assume that the channel matrix H is chosen randomly from the set $\mathcal{H}_{m,n}$ (C_0 , SNR), according to any given probability distribution on this set. Let $\kappa \in (0,1)$.

Find the best possible value of $s \geq 0$ such that the event $\mathrm{SNR}_{\mathrm{eff}} \geq s$ is realised with probability greater than κ ; equivalently, determine the cumulative distribution function of the quantity $\mathrm{SNR}_{\mathrm{eff}}$ seen as a random variable.

So, we would like to find cumulative distribution function of

$$M_m(\mathbf{I}_m + \mathrm{SNR}\mathbf{H}^T\mathbf{H})$$

when

$$\mathbf{H} \in \mathcal{H}_{m,n}\left(C_0, \mathrm{SNR}\right) := \left\{\mathbf{H} \in \mathbb{R}^{n \times m} : \log \det \left(\mathbf{I}_m + \mathrm{SNR} \cdot \mathbf{H}^T \cdot \mathbf{H}\right) = C_0\right\}$$

So, we would like to find cumulative distribution function of

$$M_m(\mathbf{I}_m + \mathrm{SNR}\mathbf{H}^T\mathbf{H})$$

when

$$\mathbf{H} \in \mathcal{H}_{m,n}\left(C_0, \mathrm{SNR}\right) := \left\{\mathbf{H} \in \mathbb{R}^{n \times m} \ : \ \log \det \left(\mathbf{I}_m + \mathrm{SNR} \cdot \mathbf{H}^T \cdot \mathbf{H}\right) = C_0\right\}$$

Let S_d^{++} denotes the set of positive definite (symmetric) matrices in dimension $d \ge 2$.

So, we would like to find cumulative distribution function of

$$M_m(\mathbf{I}_m + \mathrm{SNR}\mathbf{H}^T\mathbf{H})$$

when

$$\mathbf{H} \in \mathcal{H}_{m,n}\left(\mathcal{C}_{0}, \mathrm{SNR}\right) := \left\{\mathbf{H} \in \mathbb{R}^{n \times m} : \log \det \left(\mathbf{I}_{m} + \mathrm{SNR} \cdot \mathbf{H}^{T} \cdot \mathbf{H}\right) = \mathcal{C}_{0}\right\}$$

Let \mathcal{S}_d^{++} denotes the set of positive definite (symmetric) matrices in dimension $d \geq 2$. Define

$$\Sigma_d^{++} \,:=\, \left\{\Sigma \in \mathcal{S}_d^{++} \,:\, \mathsf{det}(\Sigma) = 1
ight\}$$

So, we would like to find cumulative distribution function of

$$M_m(\mathbf{I}_m + \mathrm{SNR}\mathbf{H}^T\mathbf{H})$$

when

$$\mathbf{H} \in \mathcal{H}_{m,n}\left(\mathit{C}_{0}, \mathrm{SNR}
ight) := \left\{\mathbf{H} \in \mathbb{R}^{n imes m} : \log \det \left(\mathbf{I}_{m} + \mathrm{SNR} \cdot \mathbf{H}^{T} \cdot \mathbf{H}\right) = \mathit{C}_{0}\right\}$$

Let \mathcal{S}_d^{++} denotes the set of positive definite (symmetric) matrices in dimension $d \geq 2$. Define

$$\Sigma_d^{++} := \left\{ \Sigma \in \mathcal{S}_d^{++} : \det(\Sigma) = 1 \right\}$$

Problem (Mathematical version of the previous problem)

For a given probability measure μ on the set Σ_d^{++} , estimate the probability $\mu\left(M_d(\Sigma) \leq \delta\right)$ as a function of $\delta > 0$.

Mathematical Problem 2

Let \mathcal{S}_d^{++} denotes the set of positive definite (symmetric) matrices in dimension $d \geq 2$. Define

$$\Sigma_d^{++} := \left\{ \Sigma \in \mathcal{S}_d^{++} : \det(\Sigma) = 1 \right\}$$

Problem (Mathematical version of the previous problem)

For a given probability measure μ on the set Σ_d^{++} , estimate the probability $\mu\left(M_d(\Sigma) \leq \delta\right)$ as a function of $\delta > 0$.

Mathematical Problem 2

Let \mathcal{S}_d^{++} denotes the set of positive definite (symmetric) matrices in dimension $d \geq 2$. Define

$$\Sigma_d^{++} \,:=\, \left\{\Sigma \in \mathcal{S}_d^{++} \,:\, \mathsf{det}(\Sigma) = 1
ight\}$$

Problem (Mathematical version of the previous problem)

For a given probability measure μ on the set Σ_d^{++} , estimate the probability $\mu\left(M_d(\Sigma) \leq \delta\right)$ as a function of $\delta > 0$.

Problem (Problem 2)

For a given probability measure μ on the set S_d^{++} , estimate the probability $\mu\left(M_d(S) \leq \delta\right)$ as a function of $\delta > 0$.

Mathematical simplification

The quantity

$$M_d(\mathbf{Q}) := \min_{\mathbf{a} \in \mathbb{Z}^d \setminus \{\mathbf{0}\}} \mathbf{a}^T \cdot \mathbf{Q} \cdot \mathbf{a}$$

does not change if we replace the matrix \mathbf{Q} by $\mathbf{A}^T \mathbf{Q} \mathbf{A}$, for any $\mathbf{A} \in \mathrm{SL}_d(\mathbb{Z})$.

Mathematical simplification

The quantity

$$M_d(\mathbf{Q}) := \min_{\mathbf{a} \in \mathbb{Z}^d \setminus \{\mathbf{0}\}} \mathbf{a}^T \cdot \mathbf{Q} \cdot \mathbf{a}$$

does not change if we replace the matrix \mathbf{Q} by $\mathbf{A}^T\mathbf{Q}\mathbf{A}$, for any $\mathbf{A} \in \mathrm{SL}_d(\mathbb{Z})$.

Because of this, in our problem we can restrain the considerations to the set of reduced symmetric quadratic forms $\Sigma_{d,red}^{++}$.

Mathematical simplification

The quantity

$$M_d(\mathbf{Q}) := \min_{\mathbf{a} \in \mathbb{Z}^d \setminus \{\mathbf{0}\}} \mathbf{a}^T \cdot \mathbf{Q} \cdot \mathbf{a}$$

does not change if we replace the matrix \mathbf{Q} by $\mathbf{A}^T \mathbf{Q} \mathbf{A}$, for any $\mathbf{A} \in \mathrm{SL}_d(\mathbb{Z})$.

Because of this, in our problem we can restrain the considerations to the set of reduced symmetric quadratic forms $\Sigma_{d,red}^{++}$.

Then, there is a bijection between the locally symmetric set

$$X_d := SL_d(\mathbb{Z})\backslash SL_d(\mathbb{R})/SO_d(\mathbb{R})$$

and $\Sigma_{d,red}^{++}$, given by

$$\phi: \overline{g} \in X_d \mapsto g^T \cdot g \in \Sigma_{d,red}^{++}$$
.

$$G:=SL_d(\mathbb{R}),$$

$$\Gamma := SL_d(\mathbb{Z}),$$

$$H:=SO_d(\mathbb{R})$$

$$G := SL_d(\mathbb{R}),$$

$$\Gamma := SL_d(\mathbb{Z}),$$

$$H := SO_d(\mathbb{R})$$

$$X_d := \Gamma \backslash G/H$$
.

$$G:=SL_d(\mathbb{R}),$$

$$\Gamma := SL_d(\mathbb{Z}),$$

$$H := SO_d(\mathbb{R})$$

So,

$$X_d := \Gamma \backslash G/H$$
.

The set X_d can be equipped with a natural G-invariant probability measure μ_{X_d} arising from the G-invariant probability measure $\mu_{\Gamma \setminus G}$ on the space of lattices $\Gamma \setminus G$.

$$G:=SL_d(\mathbb{R}),$$

$$\Gamma := SL_d(\mathbb{Z}),$$

$$H := SO_d(\mathbb{R})$$

So,

$$X_d := \Gamma \backslash G/H$$
.

The set X_d can be equipped with a natural G-invariant probability measure μ_{X_d} arising from the G-invariant probability measure $\mu_{\Gamma \setminus G}$ on the space of lattices $\Gamma \setminus G$.

With the help of the bijection ϕ , the measure μ_{X_d} can be pushed forward to a probability measure $\phi_*\mu_{X_d}$ on the space $\Sigma_{d,red}^{++}$.

$$G := SL_d(\mathbb{R}),$$

 $\Gamma := SL_d(\mathbb{Z}),$
 $H := SO_d(\mathbb{R})$

So,

$$X_d := \Gamma \backslash G/H$$
.

The set X_d can be equipped with a natural G-invariant probability measure μ_{X_d} arising from the G-invariant probability measure $\mu_{\Gamma \setminus G}$ on the space of lattices $\Gamma \setminus G$.

With the help of the bijection ϕ , the measure μ_{X_d} can be pushed forward to a probability measure $\phi_*\mu_{X_d}$ on the space $\Sigma_{d,red}^{++}$.

Consider

$$p_{X_d}(\delta) = (\phi_* \mu_{X_d}) \left(\left\{ \overline{\Sigma} \in \Sigma_{d,red}^{++} : M_d(\overline{\Sigma}) \le \delta \right\} \right)$$
$$= \mu_{X_d} \left(\left\{ \overline{g} \in X_d : M_d(\phi(\overline{g})) \le \delta \right\} \right)$$

D.Y. Kleinbock and G.A. Margulis, "Logarithm laws for flows on homogeneous spaces", Inventiones Mathematicae (1998).

D.Y. Kleinbock and G.A. Margulis, "Logarithm laws for flows on homogeneous spaces", Inventiones Mathematicae (1998).

$$V_d = rac{\pi^{d/2}}{\Gamma\left(rac{d}{2}+1
ight)} \qquad ext{and} \qquad A_d = rac{2\pi^{d/2}}{\Gamma\left(rac{d}{2}
ight)}$$

D.Y. Kleinbock and G.A. Margulis, "Logarithm laws for flows on homogeneous spaces", Inventiones Mathematicae (1998).

$$V_d = \frac{\pi^{d/2}}{\Gamma\left(\frac{d}{2} + 1\right)}$$
 and $A_d = \frac{2\pi^{d/2}}{\Gamma\left(\frac{d}{2}\right)}$

Theorem (Kleinbock & Margulis, 1998)

The following inequalities hold for any $\delta > 0$:

$$\frac{V_d}{2\zeta(d)}\delta^{d/2} - c_d \frac{V_d^2}{4}\delta^d \leq p_{X_d}(\delta) \leq \frac{V_d}{2\zeta(d)}\delta^{d/2}. \tag{1}$$

Here, ζ denotes the Riemann zeta function and c_d a strictly positive constant which, when $d \geq 3$, can be taken to be

$$c_d = \frac{1}{\zeta(d) \cdot \zeta(d-1)}$$

Adiceam and Z., "On the Minimum of a Positive Definite Quadratic Form over Non–Zero Lattice points. Theory and Applications", Journal de Mathmatiques Pures et Appliques (2018)

Adiceam and Z., "On the Minimum of a Positive Definite Quadratic Form over Non–Zero Lattice points. Theory and Applications", Journal de Mathmatiques Pures et Appliques (2018)

Let $f: \mathcal{S}_d^{++} \to \mathbb{R}_+$ be a density function supported on \mathcal{S}_d^{++} . The corresponding measure is denoted by ν_f .

Adiceam and Z., "On the Minimum of a Positive Definite Quadratic Form over Non–Zero Lattice points. Theory and Applications", Journal de Mathmatiques Pures et Appliques (2018)

Let $f: \mathcal{S}_d^{++} \to \mathbb{R}_+$ be a density function supported on \mathcal{S}_d^{++} . The corresponding measure is denoted by ν_f .

$$m_f(\delta) := \nu_f(\{Q \in \mathcal{S}_d^{++} : M_d(Q) \leq \delta\})$$

Adiceam and Z., "On the Minimum of a Positive Definite Quadratic Form over Non–Zero Lattice points. Theory and Applications", Journal de Mathmatiques Pures et Appliques (2018)

Let $f: \mathcal{S}_d^{++} \to \mathbb{R}_+$ be a density function supported on \mathcal{S}_d^{++} . The corresponding measure is denoted by ν_f .

$$m_f(\delta) := \nu_f\left(\left\{Q \in \mathcal{S}_d^{++} : M_d(Q) \leq \delta\right\}\right)$$

Theorem (Adiceam and Z.)

Let $\delta \in (0, 1)$. Then,

$$0 \leq 1 - \int_{\sqrt{\delta}}^{\infty} g_f \leq m_f(\delta) \leq 1 - \int_{I_d(\delta)} G_f \leq 1, \qquad (2)$$

where

$$I_d(\delta) := \left(\sqrt{\delta}, +\infty\right)^d.$$

the following map is bijective
$$\varphi_{chol} \ : \ L \in \mathcal{T}_d^{++} \ \mapsto \ L^T L \in \mathcal{S}_d^{++} \eqno(3)$$

$$\varphi_{chol} : L \in \mathcal{T}_d^{++} \mapsto L^T L \in \mathcal{S}_d^{++}$$
 (3)

(this map corresponds to Cholesky decomposition)

$$\varphi_{chol} : L \in \mathcal{T}_d^{++} \mapsto L^T L \in \mathcal{S}_d^{++}$$
(3)
(this map corresponds to Cholesky decomposition)

Let λ_k be the Lebesgue measure on \mathbb{R}^k .

$$\rho := \frac{d(d-1)}{2}.$$

$$\varphi_{chol} : L \in \mathcal{T}_d^{++} \mapsto L^T L \in \mathcal{S}_d^{++}$$
 (3)

(this map corresponds to Cholesky decomposition) Let λ_k be the Lebesgue measure on \mathbb{R}^k .

$$p:=\frac{d(d-1)}{2}.$$

Given any $\beta = (\beta_1, \dots, \beta_d) \in (\mathbb{R}_{>0})^d$,

$$G_f(eta) \,:=\, 2^d \cdot \prod_{i=1}^d eta_i^{d-i+1} \cdot \int_{\mathbb{R}^p} ig(f \circ arphi_{ extit{chol}}ig) ig(eta, \mathbf{u}ig) \cdot \mathrm{d} \lambda_p(\mathbf{u}).$$

$$\varphi_{chol} : L \in \mathcal{T}_d^{++} \mapsto L^T L \in \mathcal{S}_d^{++}$$
 (3)

(this map corresponds to Cholesky decomposition) Let λ_k be the Lebesgue measure on \mathbb{R}^k .

$$p:=\frac{d(d-1)}{2}.$$

Given any $\beta = (\beta_1, \dots, \beta_d) \in (\mathbb{R}_{>0})^d$,

$$G_f(\beta) := 2^d \cdot \prod_{i=1}^d \beta_i^{d-i+1} \cdot \int_{\mathbb{R}^p} (f \circ \varphi_{chol}) (\beta, \mathbf{u}) \cdot d\lambda_p(\mathbf{u}).$$

and, given any $\beta_1 > 0$

$$g_f(\beta_1) := \int_{(\mathbb{R}_{>0})^{d-1}} G_f(\beta_1, \, \tilde{\beta}) \cdot \mathrm{d}\lambda_{d-1}(\tilde{\beta}).$$
 (4)

Adiceam and Z., "On the Minimum of a Positive Definite Quadratic Form over Non–Zero Lattice points. Theory and Applications", Journal de Mathmatiques Pures et Appliques (2018)

Adiceam and Z., "On the Minimum of a Positive Definite Quadratic Form over Non–Zero Lattice points. Theory and Applications", Journal de Mathmatiques Pures et Appliques (2018) Let $\tilde{f}: \Sigma_d^{++} \to \mathbb{R}_+$ be a density function supported on Σ_d^{++} . The

corresponding measure is denoted by $\tilde{\nu}_f$.

Adiceam and Z., "On the Minimum of a Positive Definite Quadratic Form over Non–Zero Lattice points. Theory and Applications", Journal de Mathmatiques Pures et Appliques (2018)

Let $\tilde{f}: \Sigma_d^{++} \to \mathbb{R}_+$ be a density function supported on Σ_d^{++} . The corresponding measure is denoted by $\tilde{\nu}_f$.

$$\tilde{m}_f(\delta) := \tilde{\nu}_f\left(\left\{Q \in \Sigma_d^{++} : M_d(Q) \leq \delta\right\}\right)$$

Adiceam and Z., "On the Minimum of a Positive Definite Quadratic Form over Non-Zero Lattice points. Theory and Applications", Journal de Mathmatiques Pures et Appliques (2018) Let $\tilde{f}: \Sigma_d^{++} \to \mathbb{R}_+$ be a density function supported on Σ_d^{++} . The

corresponding measure is denoted by $\tilde{\nu}_f$.

$$ilde{m}_f\left(\delta
ight) := ilde{
u}_f\left(\left\{Q \in \Sigma_d^{++} \ : \ extit{M}_d(Q) \le \delta
ight\}
ight)$$

Theorem (Adiceam and Z.)

Let $\delta \in (0, 1)$. Then,

Let
$$\delta \in (0, 1)$$
. The

Let
$$o \in (0, 1)$$
. The

$$0 \leq 1 - \int_{\sqrt{\delta}} \widetilde{g}_{\widetilde{f}} \leq$$

 $\Delta_{d-1}(\delta) := \left\{ \beta' \in (\mathbb{R}_{>0})^{d-1} : \right\}$

(1, 1). Then,
$$0 \leq 1 - \int_{\sqrt{\delta}}^\infty \widetilde{g}_{\widetilde{f}} \leq \widetilde{m}_{\widetilde{f}}(\delta) \leq 1 - \int_{\Delta_{d-1}(\delta)} \widetilde{G}_{\widetilde{f}} \leq 1,$$

 $\left(\forall i=1,\ldots,d-1,\,\beta_i>\sqrt{\delta}\right)\wedge\left(\prod_{i=1}^{d-1}\beta_i<\frac{1}{\sqrt{\delta}}\right)\right\}.$

(5)

Interference Alignment and Diophantine approximations

$$y=h_1x_1+h_2x_2.$$

$$y = h_1 x_1 + h_2 x_2.$$

$$y = \begin{cases} 0 & \text{if} \quad x_1 = x_2 = 0 \\ h_1 & \text{if} \quad x_1 = 0 \text{ and } x_2 = 1 \\ h_2 & \text{if} \quad x_1 = 1 \text{ and } x_2 = 0 \\ h_1 + h_2 & \text{if} \quad x_1 = x_2 = 1 \end{cases}$$

$$y = h_1 x_1 + h_2 x_2.$$

$$y = \begin{cases} 0 & \text{if} \quad x_1 = x_2 = 0 \\ h_1 & \text{if} \quad x_1 = 0 \text{ and } x_2 = 1 \\ h_2 & \text{if} \quad x_1 = 1 \text{ and } x_2 = 0 \\ h_1 + h_2 & \text{if} \quad x_1 = x_2 = 1 \end{cases},$$

$$y = h_1 x_1 + h_2 x_2 + z.$$

$$y = h_1 x_1 + h_2 x_2.$$

$$y = \begin{cases} 0 & \text{if} \quad x_1 = x_2 = 0 \\ h_1 & \text{if} \quad x_1 = 0 \text{ and } x_2 = 1 \\ h_2 & \text{if} \quad x_1 = 1 \text{ and } x_2 = 0 \\ h_1 + h_2 & \text{if} \quad x_1 = x_2 = 1 \end{cases},$$

$$y = h_1 x_1 + h_2 x_2 + z.$$

$$y = h_1 x_1 + h_2 x_2.$$

$$y = \begin{cases} 0 & \text{if} \quad x_1 = x_2 = 0 \\ h_1 & \text{if} \quad x_1 = 0 \text{ and } x_2 = 1 \\ h_2 & \text{if} \quad x_1 = 1 \text{ and } x_2 = 0 \\ h_1 + h_2 & \text{if} \quad x_1 = x_2 = 1 \end{cases},$$

$$y = h_1 x_1 + h_2 x_2 + z.$$

Picture become more complicated if we transmit x_1 and x_2 from bigger interval, e.g. $x_1, x_2 \in [1, ..., 16]$.

Precoding:

$$x_1 = h_{22}u_1 + h_{12}v_1$$

 $x_2 = h_{21}u_2 + h_{11}v_2$

$$y_1 = (h_{11}h_{22})u_1 + (h_{21}h_{12})u_2 + (h_{11}h_{12})(v_1 + v_2)$$

$$y_2 = (h_{21}h_{12})v_1 + (h_{11}h_{22})v_2 + (h_{21}h_{22})(u_1 + u_2).$$

$$y_1 = (h_{11}h_{22})u_1 + (h_{21}h_{12})u_2 + (h_{11}h_{12})(v_1 + v_2)$$

$$y_2 = (h_{21}h_{12})v_1 + (h_{11}h_{22})v_2 + (h_{21}h_{22})(u_1 + u_2).$$

$$y_1 = (h_{11}h_{22})u_1 + (h_{21}h_{12})u_2 + (h_{11}h_{12})(v_1 + v_2)$$

$$y_2 = (h_{21}h_{12})v_1 + (h_{11}h_{22})v_2 + (h_{21}h_{22})(u_1 + u_2).$$

Problem

Estimate outage probability of this scheme.

- **①** ...
- A. S. Motahari, S. Oveis-Gharan, M.A. Maddah-Ali, A. K. Khandani. Real interference alignment: exploiting the potential of single antenna systems, *IEEE Trans. Inform. Theory* 60 (2014), no. 8, 4799–4810.
- 3 A. S. Motahari, S. Oveis-Gharan, M.A. Maddah-Ali, A. K. Khandani. "Real Interference Alignment", 2010.
- **4** ...

Definition

Given a real positive function $\psi: \mathbb{R}^+ \to \mathbb{R}^+$ with $\psi(r) \to 0$ as $r \to \infty$ (i.e. a so called approximating function), let

$$\mathcal{B}(\psi) := \left\{ x \in \mathbb{R} : |qx - p| > \psi(q) \text{ for a.b.f.m. } (q, p) \in \mathbb{N} \times \mathbb{Z} \right\},$$

where 'for a.b.f.m.' reads 'for all but finitely many'.

Definition

Given a real positive function $\psi: \mathbb{R}^+ \to \mathbb{R}^+$ with $\psi(r) \to 0$ as $r \to \infty$ (i.e. a so called approximating function), let

$$\mathcal{B}(\psi) := \left\{ x \in \mathbb{R} : |qx - p| > \psi(q) \text{ for a.b.f.m. } (q, p) \in \mathbb{N} \times \mathbb{Z} \right\},$$

where 'for a.b.f.m.' reads 'for all but finitely many'.

Theorem (Khintchine, 1924)

Let ψ be an approximating function. Then

$$|\mathcal{B}(\psi)| \; = \; egin{cases} \mathrm{FULL} & \mathit{if} & \sum_{q=1}^\infty \psi(q) < \infty \,, \ & \sum_{q=1}^\infty \psi(q) = \infty \ & \mathit{and} \ \psi \ \mathit{is monotonic}. \end{cases}$$

Theorem (Khintchine, 1924)

Let ψ be an approximating function. Then

$$|\mathcal{B}(\psi)| \; = \; egin{cases} \operatorname{FULL} & \mathit{if} & \sum_{q=1}^\infty \psi(q) < \infty \,, \ 0 & \mathit{if} & \sum_{q=1}^\infty \psi(q) = \infty \;\; \mathit{and} \; \psi \; \mathit{is monotonic}. \end{cases}$$

Example

Let $\log^+(q) := \max(1, \log(q))$. Set $\psi(q) = \frac{1}{q \log^+(q)^2}$. Clearly,

Let
$$\log^+(q):=\max(1,\log(q))$$
. Set $\psi(q)=\frac{1}{q\log^+(q)^2}$. Clearly,
$$\sum_{q=1}^\infty \frac{1}{q\log^+(q)^2} < \infty,$$

so for almost all $x \in \mathbb{R}$ we have

 $\|qx\|>rac{1}{q\log^+(q)^2}$ for a.b.f.m. $q\in\mathbb{N}$.

Example

For almost all $x \in \mathbb{R}$ we have

$$||qx|| > \frac{1}{q \log^+(q)^2} \tag{6}$$

for a.b.f.m. $q \in \mathbb{N}$.

For almost all $x \in \mathbb{R}$ we have

$$||qx|| > \frac{1}{q \log^+(q)^2} \tag{6}$$

for a.b.f.m. $q \in \mathbb{N}$.

However if we are interested in just one value q = 1, the inequality (6) fails for **all** $x \in \mathbb{R}$.

For almost all $x \in \mathbb{R}$ we have

$$||qx|| > \frac{1}{q \log^+(q)^2}$$
 (6)

for a.b.f.m. $q \in \mathbb{N}$.

However if we are interested in just one value q = 1, the inequality (6) fails for **all** $x \in \mathbb{R}$.

Moreover, the inequality

$$||qx|| > \frac{10^{-100}}{q \log^+(q)^2} \tag{7}$$

fails for all integers $q \in [-1024; 1024]$ on a set of x of strictly positive Lebesgue measure. Indeed, it fails on, say,

$$x \in [2 - \frac{10^{-100}}{1024 \log(1024)^2}; 2 + \frac{10^{-100}}{1024 \log(1024)^2}]$$

Mutidimensional case

Definition

Let $m \in \mathbb{N}$ and $\psi : (0, \infty) \to (0, \infty)$, define

$$\mathcal{B}_m(\psi) := \{ \mathbf{x} \in \mathbb{R}^m : \|\mathbf{a}.\mathbf{x}\| > \psi(|\mathbf{a}|) \text{ for a.b.f.m. } \mathbf{a} \in \mathbb{Z}^m, \ \mathbf{a} \neq \mathbf{0} \},$$

Mutidimensional case

Definition

Let $m \in \mathbb{N}$ and $\psi : (0, \infty) \to (0, \infty)$, define

$$\mathcal{B}_m(\psi) := \{ \mathbf{x} \in \mathbb{R}^m : \|\mathbf{a}.\mathbf{x}\| > \psi(|\mathbf{a}|) \text{ for a.b.f.m. } \mathbf{a} \in \mathbb{Z}^m, \ \mathbf{a} \neq \mathbf{0} \},$$

Theorem

Let $m \in \mathbb{N}$, ψ be an approximating function and

$$S_m(\psi) := \sum_{q=1}^{\infty} q^{m-1} \psi(q). \tag{8}$$

Then for any m > 1

$$|\mathcal{B}(\psi)|_m = \begin{cases} \text{FULL} & \text{if} \quad S_m(\psi) < \infty, \\ 0 & \text{if} \quad S_m(\psi) = \infty. \end{cases}$$

Corollary

Suppose that ψ is an approximating function and $S_m(\psi) < \infty$. Then for almost every $\mathbf{x} \in \mathbb{R}^m$ there exists a constant $\kappa(\mathbf{x}) > 0$ such that

$$\|\mathbf{a}.\mathbf{x}\| > \kappa(\mathbf{x}) \psi(|\mathbf{a}|)$$
 for all $\mathbf{a} \in \mathbb{Z}^m$, $\mathbf{a} \neq \mathbf{0}$. (9)

Corollary

Suppose that ψ is an approximating function and $S_m(\psi) < \infty$. Then for almost every $\mathbf{x} \in \mathbb{R}^m$ there exists a constant $\kappa(\mathbf{x}) > 0$ such that

$$\|\mathbf{a}.\mathbf{x}\| > \kappa(\mathbf{x}) \psi(|\mathbf{a}|)$$
 for all $\mathbf{a} \in \mathbb{Z}^m$, $\mathbf{a} \neq \mathbf{0}$. (9)

Question

Is it possible to replace $\kappa(\mathbf{x}) > 0$ in the above corollary with an absolute constant κ independent of \mathbf{x} ?

Corollary

Suppose that ψ is an approximating function and $S_m(\psi) < \infty$. Then for almost every $\mathbf{x} \in \mathbb{R}^m$ there exists a constant $\kappa(\mathbf{x}) > 0$ such that

$$\|\mathbf{a}.\mathbf{x}\| > \kappa(\mathbf{x}) \psi(|\mathbf{a}|)$$
 for all $\mathbf{a} \in \mathbb{Z}^m$, $\mathbf{a} \neq \mathbf{0}$. (9)

Question

Is it possible to replace $\kappa(\mathbf{x}) > 0$ in the above corollary with an absolute constant $\kappa > 0$ independent of \mathbf{x} ?

$$\mathcal{B}_m(\Psi,\kappa) := \{ \mathbf{x} \in \mathbb{R}^m : \|\mathbf{a}.\mathbf{x}\| > \kappa \Psi(\mathbf{a}) \text{ for all } \mathbf{a} \in \mathbb{Z}^m, \ \mathbf{a} \neq \mathbf{0} \}$$

$$\mathcal{B}_m(\Psi,\kappa) := \{ \mathbf{x} \in \mathbb{R}^m : \|\mathbf{a}.\mathbf{x}\| > \kappa \Psi(\mathbf{a}) \text{ for all } \mathbf{a} \in \mathbb{Z}^m, \ \mathbf{a} \neq \mathbf{0} \}$$

Theorem

Let $m \in \mathbb{N}$ and μ be a probability measure on \mathbb{R}^m absolutely continuous with respect to the Lebesgue measure on \mathbb{R}^m .

$$\mathcal{B}_m(\Psi,\kappa) := \{ \mathbf{x} \in \mathbb{R}^m : \|\mathbf{a}.\mathbf{x}\| > \kappa \Psi(\mathbf{a}) \ \text{ for all } \ \mathbf{a} \in \mathbb{Z}^m, \ \mathbf{a} \neq \mathbf{0} \}$$

Theorem

Let $m \in \mathbb{N}$ and μ be a probability measure on \mathbb{R}^m absolutely continuous with respect to the Lebesgue measure on \mathbb{R}^m . Let $\Psi: \mathbb{Z}^m \to \mathbb{R}^+$ be any function, $M_{\Psi}:=\max_{\mathbf{a}\in\mathbb{Z}^m\setminus\{\mathbf{0}\}}\Psi(\mathbf{a})$ and

$$\Sigma(\Psi) := \sum_{q \in \mathbb{Z}^m} \Psi(q).$$

$$\mathcal{B}_m(\Psi, \kappa) := \{ \mathbf{x} \in \mathbb{R}^m : \|\mathbf{a}.\mathbf{x}\| > \kappa \Psi(\mathbf{a}) \text{ for all } \mathbf{a} \in \mathbb{Z}^m, \ \mathbf{a} \neq \mathbf{0} \}$$

Theorem

Let $m \in \mathbb{N}$ and μ be a probability measure on \mathbb{R}^m absolutely continuous with respect to the Lebesgue measure on \mathbb{R}^m . Let $\Psi: \mathbb{Z}^m \to \mathbb{R}^+$ be any function, $M_{\Psi}:=\max_{\mathbf{a}\in\mathbb{Z}^m\setminus\{\mathbf{0}\}}\Psi(\mathbf{a})$ and

$$\Sigma(\Psi) := \sum_{\mathbf{a} \in \mathbb{Z}^m} \Psi(q).$$

Then for any $\delta \in (0,1)$ there is an (explicit) constant $\kappa > 0$ depending on μ , $\Sigma(\Psi)$ and δ only such that

$$\mu\left(\mathcal{B}_{m}(\psi,\kappa)\right)\geq 1-\delta.$$

$$\mathcal{B}_m(\Psi, \kappa) := \{ \mathbf{x} \in \mathbb{R}^m : \|\mathbf{a}.\mathbf{x}\| > \kappa \Psi(\mathbf{a}) \text{ for all } \mathbf{a} \in \mathbb{Z}^m, \ \mathbf{a} \neq \mathbf{0} \}$$

Theorem

Let $m \in \mathbb{N}$ and μ be a probability measure on \mathbb{R}^m absolutely continuous with respect to the Lebesgue measure on \mathbb{R}^m . Let $\Psi: \mathbb{Z}^m \to \mathbb{R}^+$ be any function, $M_{\Psi}:=\max_{\mathbf{a}\in \mathbb{Z}^m\setminus\{\mathbf{0}\}}\Psi(\mathbf{a})$ and

$$\Sigma(\Psi) := \sum_{q \in \mathbb{Z}^m} \Psi(q).$$

Then for any $\delta \in (0,1)$ there is an (explicit) constant $\kappa>0$ depending on μ , $\Sigma(\Psi)$ and δ only such that

$$\mu(\mathcal{B}_m(\psi,\kappa)) > 1 - \delta.$$

$$\kappa := \frac{1}{2} \min \left\{ \frac{1}{\mathit{M}_{\Psi}}, \; \left(\frac{\delta}{2\Sigma(\Psi)\Sigma_{\mathit{f}}} \right)^{1/\mathit{m}} \right\} \, .$$

Assume that x follows the standard normal distribution, $\mathcal{N}(0,1)$, and that $\psi(n) = \frac{1}{n \cdot \log(n)^2}$, $n \geq 2$, with $\psi(1) = 1$.

Assume that x follows the standard normal distribution, $\mathcal{N}(0,1)$, and that $\psi(n)=\frac{1}{n\cdot\log(n)^2}$, $n\geq 2$, with $\psi(1)=1$. One can readily verify that $S(\psi)<3.11$.

Assume that x follows the standard normal distribution, $\mathcal{N}(0,1)$, and that $\psi(n)=\frac{1}{n\cdot\log(n)^2}$, $n\geq 2$, with $\psi(1)=1$. One can readily verify that $S(\psi)<3.11$.

Let δ takes the values 0.5, 0.25, 0.1 and 0.01. Then we have from previous calculations:

δ	0.5	0.25	0.1	0.01
N	2	2	3	4
κ	0.00224	0.00112	0.00011	$3.03455 \cdot 10^{-6}$

Assume that x follows the standard normal distribution, $\mathcal{N}(0,1)$, and that $\psi(n)=\frac{1}{n\cdot\log(n)^2}$, $n\geq 2$, with $\psi(1)=1$. One can readily verify that $S(\psi)<3.11$.

Let δ takes the values 0.5, 0.25, 0.1 and 0.01. Then we have from previous calculations:

δ	0.5	0.25	0.1	0.01
N	2	2	3	4
κ	0.00224	0.00112	0.00011	$3.03455 \cdot 10^{-6}$

In particular, see that for 99% of the values of the random variable x that has normal distribution $\mathcal{N}(0,1)$ the inequality

$$||nx|| > \frac{3 \cdot 10^{-6}}{n \cdot \log(n)^2}$$

holds for all $n \in \mathbb{N}$.

MANIFOLDS

MANIFOLDS

Let \mathcal{M} be a manifold parametrized by $\mathbf{f}: \mathcal{U} \to \mathbb{R}^m$, where $\mathcal{U} \subset \mathbb{R}^d$ is an open set (might be all \mathbb{R}^d). Let $I \in \mathbb{N}$ and assume that at every point $\mathbf{x} \in \mathcal{U}$ among all partial derivatives of the order up to I, $\frac{\partial^k \mathbf{f}}{\partial x_1^{a_1}...\partial x_d^{a_d}}(\mathbf{x})$, $a_1,\ldots,a_d \in \mathbb{N} \cup \{0\}$, $k=a_1+\cdots+a_d,\ 1,\leq k\leq I$, there are d linearly independent vectors. Then we say that manifold \mathcal{M} is **non-degenerate**.

Example

Consider the simplest case, when \mathcal{M} is a planar curve, defined by a function $f:I\to\mathbb{R}$, where $I\subset\mathbb{R}$ is an interval. Then the condition that the curve \mathcal{M} is non-degenerate means that at every point \mathbf{x} at least one of derivatives of \mathbf{f} of an order up to I is non-zero.

Let $\Psi:\mathbb{Z}^m\setminus\{0\} o (0,\infty)$ be a function satisfying $\Sigma(\Psi):=\sum \Psi(\mathbf{q})<\infty$

$$\Psi(\mathbf{q}) \leq rac{\mathcal{C}_{\Psi}}{\prod_{i} \mathsf{max}(1,|q_{i}|)},$$
 (11)

 $\mathbf{q}\in\mathbb{Z}^m\setminus\{0\}$

(10)

where $C_{\Psi}>0$.

$$\mathcal{B}_m(\Psi,\kappa,\mathcal{M}) := \left\{ \mathbf{x} \in \mathcal{U} : \|\mathbf{a}.\mathbf{f}(\mathbf{x})\| > \kappa \Psi(\mathbf{a}) \ \text{ for all } \ \mathbf{a} \in \mathbb{Z}^m, \ \mathbf{a} \neq \mathbf{0} \right\}.$$

Let $\Psi: \mathbb{Z}^m \setminus \{0\} \to (0, \infty)$ be a function satisfying $\Sigma(\Psi) := \sum \Psi(\mathbf{q}) < \infty$

$$\Psi(\mathbf{q}) \le \frac{C_{\Psi}}{\prod_{i} \max(1, |q_{i}|)},\tag{11}$$

(10)

where $C_{\Psi} > 0$.

Theorem (Adiceam, Beresnevich, Leveseley, Velani and Z.)

Let $l \in \mathbb{N}$ and let \mathcal{M} be a compact d-dimensional C^{l+1} submanifold of \mathbb{R}^n and assume it is I-non-degenerate at every point. Let μ be a probability measure supported on \mathcal{M} absolutely continuous with respect to $|.|_{\mathcal{M}}$. Let $\Psi: \mathbb{Z}^n \to \mathbb{R}^+$ be a monotonically decreasing function in each variable satisfying (10). Then there exist positive constants κ_0 , C_0 , C_1 depending on Ψ and \mathcal{M} only such that for any $0 < \delta < 1$, the inequality

$$u(\mathcal{B}(W_{\kappa}) \cap \Lambda)$$

$$\mu(\mathcal{B}_n(\Psi,\kappa)\cap\mathcal{M})\geq 1-\delta$$
 holds with
$$\kappa:=\min\left\{\kappa_0,\ \textit{C}_0\Sigma_{\Psi}^{-1}\delta,\ \textit{C}_1\delta^{\textit{d}(n+1)(2l-1)}\right\}\,.$$

 $\mu(\mathcal{B}_n(\Psi,\kappa)\cap\mathcal{M})>1-\delta$

One more example

So, admitting a small error $\delta > 0$ we can always find a constant κ such that for m-tuple of integers $\mathbf{a} \in \mathbb{Z}^m \setminus \{0\}$ we have

$$\|\mathbf{a}.\mathbf{f}(\mathbf{x})\| > \kappa \Psi(\mathbf{a}).$$

For example for any $\delta>0$, we can provide a constant κ such that with probability $>1-\delta$ we have

$$\|\mathbf{a}.\mathbf{f}(\mathbf{x})\| > \frac{\kappa}{\prod_i \max(1, a_i \log(a_i)^2)}$$

Remark

If we transmit only such m-tuples $\mathbf{a} = (a_1, \dots, a_m)$ that $|a_i| \leq Q$, $i = 1, \dots, m$, we can optimize this result.

One more example

Define

$$\Psi(a_1,\ldots,a_m):=egin{cases} rac{1}{Q^m}, & ext{if } |a_i|\leq Q ext{ for all } i=1,\ldots,m. \ 0 & ext{otherwise}. \end{cases}$$

We have $S_{\Psi}=1$. Then we have that for any $\delta>0$ there exists an explicite constant κ such that for any $\mathbf{a}=(a_1,\ldots,a_m)$ such that $|a_i|\leq Q$, $i=1,\ldots,m$ we have

$$\|\mathbf{a}.\mathbf{f}(\mathbf{x})\| > \frac{\kappa}{Q^m}.$$

Thank you!