Problemi sul Primo Principio della Termodinamica (2)

- 1. Un disco omogeneo di ferro di massa $m_1=1\,\mathrm{kg}$ e raggio $R=0.1\,\mathrm{m}$ ruota attorno al suo asse con frequenza $v=6000\,\mathrm{giri/minuto}$. Si aziona il freno, che consiste in una ganascia di ferro di massa $m_2=0.3\,\mathrm{kg}$ fino a che il disco si ferma. Determinare di quanto si alza la temperatura media del disco, sapendo che il calore specifico del ferro è $c_{Fe}=450\,\mathrm{J/Kkg}$ e trascurando la dispersione termica nell'ambiente.
- 2. Un proiettile di piombo di massa $m_p=0.05$ kg alla temperatura $T_p=293$ K sta viaggiando con velocità orizzontale di modulo $v_0=100$ m/s quando si conficca in un blocco di ghiaccio fondente di massa M=0.5 kg posto su un piano orizzontale adiabatico e liscio.

Sapendo che il calore specifico del piombo $c_{Pb}=130$ J/Kkg e che il calore latente del ghiaccio è $\lambda_{gh}=3.3\cdot 10^5$ J/kg, determinare la massa di ghiaccio che fonde a seguito dell'impatto.

- 3. Due corpi solidi identici, inizialmente posti alla stessa temperatura $T_1=293~{\rm K}$ posti in un contenitore adiabatico vengono strofinati in contatto termico uno sull'altro fino a che raggiungono la temperatura $T_2=303~{\rm K}$. Determinare:
 - a) se i corpi scambiano calore tra loro;
 - b) quanto vale il lavoro W_{ext} fatto dall'esterno sui corpi, sapendo che la capacità termica di ciascuno di essi è C=837 J/K.
- 4. Un gas compie le trasformazioni mostrate in figura. Si sa che nelle trasformazioni AB+CB il

gas compie complessivamente un lavoro $W_{ABC}=50~\mathrm{J}$ e scambia con l'ambiente un calore $Q_{ABC}=83.5~\mathrm{J}$. Si sa inoltre che il lavoro complessivamente subito dal gas nel ciclo ABCDA è pari a $W_{ciclo}=-40~\mathrm{J}$. Determinare:

- a) la variazione di energia interna ΔU_{AC} del gas tra gli stati A e C;
- b) il calore Q_{CDA} scambiato dal gas nelle trasformazioni CD+DA;
- c) il lavoro W_{AC} e il calore Q_{AC} scambiati dal gas con l'ambiente nella trasformazione AC.