

$\partial (HX)^{\alpha} + \sim \alpha X$	
化两个重要极限	
1. 9330 Sind =	
2. 210 (HD) = e	
●型三、不定型	
→ ○ / ◎ (单枝重)	
$\frac{1}{\infty}$, $0 \times \infty$, ∞	(ase1: 0
	Notes: () $ta = ta + ta$ $0 = \frac{1}{2} + ta$ $(n ()) \Rightarrow \ln(ta) = \ln(ta) = \ln(ta) = \ln(ta)$ $\ln(ta) = \ln(ta) = \ln(ta) = \ln(ta) = \ln(ta)$
	②保区:加减发使用无穷,替换出错

口诀: 乘法尽管使用 (元穷+替换)
加斌生精确有多则用、不够见怀用
精动酶:分子分母转换成 X时候、次数是否致、
解释:精确度不同,趋的于0速度不在用一层次
③方法 / 等价无穷人 罗以还法则 (不可滥用)(底数有X指数 表克劳林公式 和基本不用)
罗义还法则(不可滥用)(底数有X指数
表克劳林公式 (私基本不用)
Ps:
A.罗以还这则一定适用于号型与品型、
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
但是、变换后式子以须什变换前简单和一种
B、使用罗义近达Ry近极限存在、否见不用、
1512: 9x70 X3
(分有理化)
= 9 X70 X(00X - Sinx X) JHX(05X + JH3)/X (AP)/A
$= \frac{1}{2} \frac{1}{2} \frac{\cos x - x \sin x - \cos x}{3x^2}$
= -6

