Task

Prove that every odd natural number is of one of the forms 4n+1 or 4n+3, where n is an integer.

Solution

Task is equavalent to proving the following theorem:

Theorem. $\forall m \in \mathbb{N} : 2 \mid m \Rightarrow \exists n \in \mathbb{Z} [m = 4n + 1 \lor m = 4n + 3].$

Proof. Let's take arbitrary $m \in \mathbb{N}$. By division theorem, $m \in \mathbb{N}$ can be expressed in one of these forms: m = 4n, m = 4m + 1, m = 4n + 2, m = 4m + 3, for some $n \in \mathbb{Z}$.

Of these forms, two express even numbers, $4n = 2 \cdot 2n$ and 4n+2 = 2(2n+1), since both are divisible by 2.

Two remaining forms, 4n + 1 and 4n + 3, are not divisible by 2, so they are odd. Since our choice of m was arbitrary, this implies that if m is odd, it can be expressed in one of the forms 4n + 1 or 4n + 3, for some $n \in \mathbb{Z}$.

This concludes the proof. $\hfill\Box$