EP 867458

Patents Cited by Inventor: 0
Patents Cited by Examiner: 9

Citing Patents: 2

Articles Cited by Inventor: 0
Articles Cited by Examiner: 3

Patent Number(s):

EP867458-A - ORIGINAL DOCUMENT ; EP867458-A2 - ORIGINAL DOCUMENT ; JP2854834-B2; DE69034193-E

OFICINAL DOCUMENT

#### Title:

Polyethylene terephthalate chip used for containers for storing beverages - obtained by esterifying terephthalic acid with ethylene glycol, liquid phase polycondensing, optionally moulding into granules, preparing PET and contacting with hot water

Inventor Name(s):

SHIRAKI'S, TANAKA Y, SAKAI M

Patent Assignee Name(s) and Code(s):

MITSUI CHEM INC (MITA)

**Derwent Primary Accession Number:** 

1998-497821 [45]

### Abstract:

A polyethylene terephthalate chip is obtained by: (i) esterifying terephthalic acid or its ester-forming derivative with ethylene glycol or its ester-forming derivative; (ii) liquid phase polycondensing by heating to melt in the presence of a polycondensation catalyst selected from germanium, antimony or titanium compounds; (iii) optionally moulding the polyethylene terephthalate into granules having an average diameter of 2-5 mm, or precrystallising it by heating to a temperature lower than that of the subsequent solid phase polycondensation step; (iv) preparing a polyethylene terephthalate; and (v) subsequently bringing the product of the solid phase polycondensation for 5 minutes to 10 hours into contact with hot water having a

temperature of 40-100C, or passing through the particulate product for 5 minutes to 14 days through water vapour containing gas or water vapour containing air kept at 40-150C in an amount of 0.5 g.

The polyethylene terephthalate prepared in step (iv) has an intrinsic viscosity of at least 0.54 dg/l determined at 25 C by measuring the viscosity of a solution of polyethylene terephthalate in o-chlorophenol, a density of more than 1.38 g/cm3and contains less than 0.5 wt.% a cyclic trimer of formula (I) in a solid phase polycondensation step, where the product of (ii) or (iii) is heated in an inert atmosphere to a temperature below the m.pt. of the product.

The above polyethylene terephthalate, used in the chip, has: (a) a rate of polycondensation of less than 0.004 dl/g.hour (215C in inert atmosphere); (b) a content of the cyclic trimer of formula (l) of a stepped square plate satisfying equation: Y -0.20X + 0.16, where Y = increased amount (wt.%) of (l) in the stepped square plate; and X = the cyclic trimer content (wt.%) of the polyethylene terephthalate before moulding to the stepped square plate (when the polyethylene terephthalate is injection moulded at a cylinder temperature of 290 C to a stepped square plate and the residence time at this temperature is 72 seconds); (c) a polycondensation rate ratio V1 /V10 of 0.2-1.0, where V0 = rate of solid phase polycondensation when subjected to solid phase polycondensation treatment by heating at 215C in inert atmosphere; and V1 = rate of solid phase polycondensation at 215 C in an inert atmosphere of polyethylene terephthalate immersed in hot water of 95C for 8 hours and dried; and (d) a difference W0 -W1 in content of (l) of 0-0.12 wt.% (cyclic trimer content of article obtained by injection moulding polyethylene terephthalate immersed in hot water of 95C for 8 hours and dried, being taken as W1(wt.%)).

USE - Used for forming containers to be filled particularly beverages such as fruit juices, cooling drinks and carbonated drinks.

ADVANTAGE - The material has excellent mechanical strength, heat resistance, transparency and gas barrier properties.

#### Drawing:



## International Patent Classification:

C08G-063/183; C08G-063/78; C08G-063/80; C08G-063/90; C08G-063/88; C08G-063/85

#### **Derwent Class:**

A23 (Polyamides, polyesters, polycarbonates, alkyds); A92 (Packaging and containers, ropes, nets)

#### **Derwent Manual Code(s):**

A05-E04E; A12-P01B

| Patent Number<br>EP867458-A                 | Publ. Date                                | Main IPC                                  | Week                       | Page Count            | Language |
|---------------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------|-----------------------|----------|
| EP867458-A2<br>JP2854834-B2<br>DE69034193-E | 30 Sep 1998<br>10 Feb 1999<br>30 Jun 2005 | C08G-063/90<br>C08G-063/88<br>C08G-063/90 | 199843<br>199911<br>200545 | Pages: 22<br>Pages: 9 | English  |

## **Application Details and Date:**

| EP867458-A2  | EP110419 | 21 Mar 1990 |
|--------------|----------|-------------|
| DE69034193-E | DE634193 | 21 Mar 1990 |
| JP2854834-B2 | JP066407 | 29 Mar 1990 |

## Further Application Details:

| EP867458-A2  | Div ex         | Patent      | EP389948   |
|--------------|----------------|-------------|------------|
| EP867458-A2  | Div ex         | Application | EP105337   |
| JP2854834-B2 |                | Patent      | JP8231689. |
| JP2854834-B2 | Div ex         | Application | JP082350   |
| DE69034193-E | Based on       | Patent      | EP867458   |
| DE69034193-E | EP application | Application | EP110419   |

# **Priority Application Information and Date:**

| JP083353          | 31 Mar 1989 |  |  |  |
|-------------------|-------------|--|--|--|
| JP083354          | 31 Mar 1989 |  |  |  |
| JP083355          | 31 Mar 1989 |  |  |  |
| JP083356          | 31 Mar 1989 |  |  |  |
| JP094596          | 14 Apr 1989 |  |  |  |
| JP094597          | 14 Apr 1989 |  |  |  |
| JP138179          | 31 May 1989 |  |  |  |
| JP138180          | 31 May 1989 |  |  |  |
| Decignated States |             |  |  |  |

Designated States

EP867458-A2

(Regional): AT; BE; CH; DE; DK; ES; FR; GB; GR; IT; LI; LU; NL; SE

## Field of Search:

¥