TATIONAL ENERGY NGULAR COMENTUM

Important Equations

T =
$$mr^2$$
 (very general equation) $P = mv$ $\Delta P = m \Delta v$
 $L = I\omega^2$ $\Delta L = I \Delta \omega$ $L = mv r sin\theta$ $\Delta L = m \Delta v r$
 $KE_{Linear} = \frac{1}{2}mv^2$ $KE_{rot} = \frac{1}{2}I\omega^2$ $KE_{rot} = \frac{1}{2}I(\frac{v}{r})^2$
 $V = r\omega$ $\alpha = r\alpha$ $S = r\Theta$ $\Delta P = F\Delta E$

Ramp

Uniform Mass

Find inertra from non-uniform Mass mgn = 1 1. (+ 1 mv2 + Fex $\frac{2(mqn-\frac{1}{2}mv^2-F_fx)}{\left(\frac{v^2}{r^2}\right)}=I$

Rotating Rod

0000000

00000

tangential velocity at a tip

V- rw

across .

L = I,w, + I2 W2

 $I_{\omega_1} + I_{\omega_2} = I_{\omega_1} + I_{\omega_2}$ $\omega_{f} = I_{\omega_1} + I_{\omega_2}$ $I_{\omega_1} + I_{\omega_2}$

P= MIV, +M2V2

 $m_1 V_1 + m_2 V_2 = m_1 V_f + m_2 V_f$ $V_f = \frac{m_1 V_1 + m_2 V_2}{m_1 + m_2 V_2}$

0

00

0000

Total KE 3

Initial < E = \(\frac{1}{2} \mathref{m}_1 \varV_1^2 + \frac{1}{2} \mathref{m}_2 \varV_2^2 + \frac{1}{2} \Lambda_2 \varV_2^2 + \frac{1}{2} \Lambda_2 \varV_2^2 \)

Final KEE = = 14 (M1+M2) + 2 W+ (I1+I2)