

Universidade Federal do Rio de Janeiro (UFRJ) Departamento de Ciência da Computação (DCC)

Recuperação da Informação (MAB605)

Ponderação de Termos

Profa. Giseli Rabello Lopes

Roteiro

- Introdução
- Ponderação de termos
 - Ponderação da frequência de termos
 - Ponderação pela frequência inversa de documentos
 - Ponderação TF-IDF
 - Variantes do TF-IDF
 - Propriedades do TF-IDF
- Referências

- Os termos de um documento não são igualmente úteis para descrever o conteúdo do documento
- Na verdade, existem termos de indexação que são simplesmente mais vagos do que outros
- Existem propriedades de um termo de indexação que são úteis para avaliar sua importância em um documento
 - Por ex., uma palavra que aparece em todos os documentos de uma coleção é completamente inútil para tarefas de recuperação

- Para caracterizar a importância de um termo, é associado um peso $w_{i,j} > 0$ para cada termo k_i que ocorre em um documento d_i
 - Se k_i não aparece em um documento d_{i} , então $w_{i,j}=0$
- O peso $w_{i,j}$ quantifica a importância do termo de indexação k_i para descrever o conteúdo do documento d_j
- Esses pesos são úteis para computar um grau numérico (rank) para cada documento da coleção em relação a uma dada consulta

- Seja,
 - $-k_i$ um termo de indexação e d_i um documento
 - $-V = \{k_1, k_2, ..., k_t\}$ o conjunto de todos os termos de indexação
 - $-w_{i,j} \ge 0$ o peso associado com (k_i, d_j)
- Então, $\overrightarrow{d_j}=(w_{l,j},w_{2,j},...,w_{t,j})$ como um vetor de pesos que contém o peso $w_{i,j}$ de cada termo $k_i \in V$ no

terms

documento d_i

vocabulary term weights of t index associated with d_i $\rightarrow w_{t,i}$

- Os pesos $w_{i,j}$ podem ser computados usando as frequências de ocorrência dos termos nos documentos
- Seja $f_{i,j}$ a frequência de ocorrência de um termo de indexação k_i no documento d_i
- A frequência total de ocorrência ${\cal F}_i$ do termo k_i na coleção é definida como

$$F_i = \sum_{j=1}^{N} f_{i,j}$$

- onde N é o número de documentos da coleção

- A frequência de documento n_i (ou df_i) para um termo k_i é o número de documentos nos quais ele ocorre
 - − Note que $n_i \le F_i$
- Por ex., na coleção de documentos abaixo, os valores de $f_{i,i}$, F_i e n_i associados ao termo do são:

$$- f(do, d_1) = 2$$

$$- f(do, d_2) = 0$$

$$- f(do, d_3) = 3$$

$$- f(do, d_4) = 3$$

$$- F(do) = 8$$

$$- n(do) = 3$$

To do is to be.
To be is to do.

 d_1

I think therefore I am. Do be do be do.

 d_3

To be or not to be. I am what I am.

 d_2

Do do do, da da da. Let it be, let it be.

 d_4

Ponderação TF-IDF

- Esquema de ponderação de termos TF-IDF:
 - Fundamentos do esquema de ponderação mais popular em RI
 - Term frequency (TF)
 - Inverse document frequency (IDF)

Ponderação da frequência dos termos

- Hipótese de Luhn. O valor (peso) $w_{i,j}$ é proporcional à frequência do termo $f_{i,j}$
 - Isto é, quanto mais frequentemente um termo k_i ocorrer no documento d_j maior será a sua frequência de termo $t\!f_{i,j}$
- Baseado na observação que termos com alta frequência são importantes para descrever os tópicos-chave de um documento
- Leva diretamente à seguinte formulação da ponderação TF:

$$tf_{i,j} = f_{i,j}$$

Ponderação da frequência dos termos

Uma variante do TF utilizada na literatura é

$$tf_{i,j} = \begin{cases} 1 + \log f_{i,j} & \text{if } f_{i,j} > 0\\ 0 & \text{otherwise} \end{cases}$$

- Onde o logaritmo utiliza base 2
- A expressão com logaritmo é a forma preferível porque torna os pesos diretamente comparáveis ao IDF (discutido posteriormente)

log tf para uma coleção de exemplo

To do is to be.
To be is to do.

 d_1

To be or not to be. I am what I am.

 d_2

I think therefore I am. Do be do be do.

 d_3

Do do do, da da da. Let it be, let it be.

 d_4

Vocabulary		
1	to	
2	do	
3	is	
4	be	
5	or	
6	not	
7	I	
8	am	
9	what	
10	think	
11	therefore	
12	da	
13	let	
14	it	

$tf_{i,1}$	$tf_{i,2}$	$tf_{i,3}$	$tf_{i,4}$
3	2	-	-
2	-	2.585	2.585
2	-	-	-
2	2	2	2
-	1	-	-
-	1	-	-
-	2	2	-
-	2	1	-
-	1	-	-
-	-	1	-
-	-	1	-
-	-	-	2.585
-	-	-	2
_	-	-	2

$$tf_{i,j} = \left\{ egin{array}{ll} 1 + \log f_{i,j} & ext{if} & f_{i,j} > 0 \ 0 & ext{otherwise} \end{array}
ight.$$

Ponderação pela frequência inversa de documentos

- Chama-se **exaustividade** o número de termos de indexação associados a um documento
- Quanto maior o número de termos de indexação associados a um documento, maior é a probabilidade de recuperação daquele documento
 - Se muitos termos são associados a um documento, ele poderá ser recuperado por consultas para as quais ele não é relevante

Ponderação pela frequência inversa de documentos

- Especificidade é uma propriedade da semântica do termo
 - Um termo é mais ou menos específico dependendo do seu significado
 - Ex.: bebida é menos específico do que chá e cerveja
 Pode-se esperar que bebida ocorra em mais documentos do que chá e cerveja
- Especificidade do termo pode ser interpretada como uma propriedade estatística (o inverso do número de documentos nos quais o termo ocorre)

Ponderação pela frequência inversa de documentos

• Seja k_i um termo com a frequência na coleção n_i . Então,

$$idf_i = \log (N/n_i)$$

- onde idf_i é chamado de frequência inversa de documentos do termo k_i
- IDF fornece a base para os esquemas de ponderação modernos e é usado por quase todos os sistemas modernos de RI

IDF para uma coleção de exemplo

To do is to be. To be is to do.

 d_1

To be or not to be. I am what I am.

 d_2

I think therefore I am. Do be do be do.

 d_3

Do do do, da da da. Let it be, let it be.

	term	n_i	$idf_i = \log(N/n_i)$
1	to	2	1
2	do	2	0.415
2 3 4 5	is	1	2
4	be	4	0
	or	1	2
6	not	1	2
7	I	2 2	1
8	am	2	1
9	what	1	2
10	think	1	2
11	therefore	1	2
12	da	1	2
13	let	1	2
14	it	1	2

Ponderação TF-IDF

- O esquema de ponderação de termos mais popular utiliza pesos que combinam os fatores IDF e as frequências dos termos
- Seja $w_{i,j}$ o peso do termo associado ao termo k_i e ao documento d_j
- Então, definimos

$$w_{i,j} = \begin{cases} (1 + \log f_{i,j}) \times \log \frac{N}{n_i} & \text{if } f_{i,j} > 0 \\ 0 & \text{otherwise} \end{cases}$$

que é conhecida por esquema de ponderação TF-IDF

TF-IDF para uma coleção de exemplo

To do is to be. To be is to do.

 d_1

To be or not to be. I am what I am.

 d_2

I think therefore I am. Do be do be do.

 d_3

Do do do, da da da. Let it be, let it be.

		d_1	d_2	d_3	d_4
1	to	3	2	_	-
2	do	0.830	-	1.073	1.073
2 3	is	4	-	-	-
4 5	be	-	-	-	-
5	or	-	2	_	-
6	not	-	2 2 2 2	-	-
7	1	-	2	2	-
8	am	-	2	1	-
9	what	-	2	-	-
10	think	-	-	2 2	-
11	therefore	-	-	2	-
12	da	-	-	-	5.170
13	let	-	-	_	4
14	it	-	_	-	4

Variantes do esquema TF-IDF

• Esquemas recomendados de ponderação TF-IDF [Salton, 1971]

Esquema de ponderação	Pesos para os termos dos docs	Pesos para os termos das consultas
1	$f_{i,j} * \log \frac{N}{n_i}$	$(0.5 + 0.5 \frac{f_{i,q}}{max_i f_{i,q}}) * \log \frac{N}{n_i}$
2	$1 + \log f_{i,j}$	$\log(1 + \frac{N}{n_i})$
3	$(1 + \log f_{i,j}) * \log \frac{N}{n_i}$	$(1 + \log f_{i,q}) * \log \frac{N}{n_i}$

18

Propriedades do TF-IDF

- Considerando os pesos tf, idf, and tf-idf para a coleção de referência Wall Street Journal
- Para estudar o comportamento dos pesos, eles são plotados juntos
- Enquanto idf é computado sobre toda a coleção, tf é computado em uma base por documento. Então, precisamos de uma representação de tf baseada em toda a coleção, que é provida pela frequência de termos na coleção F_i
- Este raciocínio leva aos seguintes esquemas de ponderação tf e idf:

$$tf_i = 1 + \log \sum_{j=1}^{N} f_{i,j} \qquad idf_i = \log \frac{N}{n_i}$$

Propriedades do TF-IDF

Plotando tf e idf em escala logarítmica

- Observamos que os pesos tf e idf apresentam um comportamento de lei de potência que equilibram um ao outro
- Termos com valores intermediários de idf atigem os valores máximos de tf-idf e são mais importantes para fins de ranqueamento

Exercício - Ponderação de termos

- Partir da implementação desenvolvida na aula anterior (modelo booleano), sendo que foram aplicadas as mesmas etapas de préprocessamento indicadas previamente.
- Implemente a ponderação TF-IDF para atribuição dos pesos dos termos (você deve utilizar o 3º esquema de ponderação sugerido por [Salton, 1971] – slide 18).

Exercício - Relembrando

Exemplo de entradas:

```
M=['O peã e o caval são pec de xadrez. O caval é
o melhor do jog.';
'A jog envolv a torr, o peã e o rei.';
'O peã lac o boi';
'Caval de rodei!';
'Polic o jog no xadrez.']; //conjunto de
documentos
stopwords=['a', 'o', 'e', 'é', 'de', 'do', 'no',
'são']; //lista de stopwords
q='xadrez peã caval torr'; //consulta
separadores=[' ',',','.','!','?']; //separadores
para tokenizacao
```

Exercício - Relembrando

- Sua implementação deve:
 - Tokenizar os documentos utilizando os separadores adequados
 - Normalizar termos (ex. caixa-baixa) e eliminar stopwords das consultas e documentos
 - Usar uma solução de indexação utilizando uma variação da matriz de incidências (obs.: guarde a frequência de aparecimento dos termos em cada documento)

Referências

 Baeza-Yates, R.; Ribeiro-Neto, B. Recuperação de Informação: Conceitos e Tecnologia das Máquinas de Busca. 2 ed. Bookman, 2013.

 Baeza-Yates, R.; Ribeiro-Neto, B. Modern Information Retrieval. Wokingham, UK: Addison-Wesley, 2 ed., 2011.

 Manning, C. D.; Raghavan, P.; Schütze, H. Introduction to Information Retrieval. Cambridge University Press, 2008.

Online edition 2009: http://nlp.stanford.edu/IR-book/

Referências

Salton, G. The SMART Retrieval System –
 Experiments in Automatic Document Processing.

 Prentice-Hall Inc., Englewood Cliffs, New Jersey,
 1971.

Universidade Federal do Rio de Janeiro (UFRJ) Departamento de Ciência da Computação (DCC)

Recuperação da Informação (MAB605) Dúvidas?

Profa. Giseli Rabello Lopes giseli@dcc.ufrj.br CCMN - DCC - Sala E-2012

