Observations and Insights

In this clinical study we can see that Capomulin and Ramicane are the most effective drugs based off of this specific data set in treating tumor growth. Capomulin slightly edges out Ramicane in effectiveness based off of the bar plots provided below.

The data provided was evenly distubuted across the male and female mice, with 50.6% being male and 49.4% being female.

By taking a look at the scatter plot graph, we can see that the drug reponsiveness had a positive correlation to weight. The heavier the mice were the less effective the drugs were. Leading the mice studied to have a higher tumor volume in comparison to the lighter weighing mice.

```
In [45]: # Dependencies and Setup
         import matplotlib.pyplot as plt
         import pandas as pd
         import scipy.stats as st
         from scipy.stats import linregress
         import numpy as np
         # Study data files
         mouse_metadata_path = "data/Mouse_metadata.csv"
         study_results_path = "data/Study_results.csv"
         # Read the mouse data and the study results
         mouse_metadata = pd.read_csv(mouse_metadata_path)
         study_results = pd.read_csv(study_results_path)
         # Combine the data into a single dataset
         mouse_data = pd.merge(mouse_metadata, study_results, how='outer', on='
         # Display the data table for preview
         mouse_data.head()
```

Out[45]:

	Mouse ID	Drug Regimen	Sex	Age_months	Weight (g)	Timepoint	Tumor Volume (mm3)	Metastatic Sites
0	k403	Ramicane	Male	21	16	0	45.000000	0
1	k403	Ramicane	Male	21	16	5	38.825898	0
2	k403	Ramicane	Male	21	16	10	35.014271	1
3	k403	Ramicane	Male	21	16	15	34.223992	1
4	k403	Ramicane	Male	21	16	20	32.997729	1

In [46]: # Checking the number of mice.
mice_count = mouse_data["Mouse ID"].count()
mice_count

Out[46]: 1893

In [47]: # Getting the duplicate mice by ID number that shows up for Mouse ID a
dup_mice = mouse_data[mouse_data.duplicated(['Mouse ID','Timepoint'])]
dup_mice

Out[47]:

	Mouse ID	Drug Regimen	Sex	Age_months	Weight (g)	Timepoint	Tumor Volume (mm3)	Metastatic Sites
909	g989	Propriva	Female	21	26	0	45.000000	0
911	g989	Propriva	Female	21	26	5	47.570392	0
913	g989	Propriva	Female	21	26	10	49.880528	0
915	g989	Propriva	Female	21	26	15	53.442020	0
917	g989	Propriva	Female	21	26	20	54.657650	1

In [48]: # Optional: Get all the data for the duplicate mouse ID.
dup_mouse_id = mouse_data[mouse_data.duplicated('Mouse ID')]
dup_mouse_id

Out [48]:

	Mouse ID	Drug Regimen	Sex	Age_months	Weight (g)	Timepoint	Tumor Volume (mm3)	Metastatic Sites
1	k403	Ramicane	Male	21	16	5	38.825898	0
2	k403	Ramicane	Male	21	16	10	35.014271	1
3	k403	Ramicane	Male	21	16	15	34.223992	1
4	k403	Ramicane	Male	21	16	20	32.997729	1
5	k403	Ramicane	Male	21	16	25	33.464577	1
1888	z969	Naftisol	Male	9	30	25	63.145652	2
1889	z969	Naftisol	Male	9	30	30	65.841013	3
1890	z969	Naftisol	Male	9	30	35	69.176246	4
1891	z969	Naftisol	Male	9	30	40	70.314904	4
1892	z969	Naftisol	Male	9	30	45	73.867845	4

1644 rows × 8 columns

```
In [49]: # Create a clean DataFrame by dropping the duplicate mouse by its ID.
      clean_data = mouse_data.drop_duplicates('Mouse ID')
      clean_data
```

Out [49]:

	Mouse ID	Drug Regimen	Sex	Age_months	Weight (g)	Timepoint	Tumor Volume (mm3)	Metastatic Sites
0	k403	Ramicane	Male	21	16	0	45.0	0
10	s185	Capomulin	Female	3	17	0	45.0	0
20	x401	Capomulin	Female	16	15	0	45.0	0
30	m601	Capomulin	Male	22	17	0	45.0	0
40	g791	Ramicane	Male	11	16	0	45.0	0
1858	z314	Stelasyn	Female	21	28	0	45.0	0
1860	z435	Propriva	Female	12	26	0	45.0	0
1863	z581	Infubinol	Female	24	25	0	45.0	0
1873	z795	Naftisol	Female	13	29	0	45.0	0
1883	z969	Naftisol	Male	9	30	0	45.0	0

249 rows × 8 columns

```
In [50]: # Checking the number of mice in the clean DataFrame.
    clean_data = clean_data["Mouse ID"].count()
    clean_data
```

Out[50]: 249

Summary Statistics

```
In [51]: # Generate a summary statistics table of mean, median, variance, stand
summ_stats = mouse_data.groupby("Drug Regimen")

# Use groupby and summary statistical methods to calculate the followi
# mean, median, variance, standard deviation, and SEM of the tumor vol
# Assemble the resulting series into a single summary dataframe.
tumor_mean = summ_stats["Tumor Volume (mm3)"].mean()
tumor_med = summ_stats["Tumor Volume (mm3)"].war()
tumor_var = summ_stats["Tumor Volume (mm3)"].var()
tumor_sd = summ_stats["Tumor Volume (mm3)"].std()
tumor_sem = summ_stats["Tumor Volume (mm3)"].sem()
```

Out [52]:

	Mean	Median	Variance	Std. Deviation	SEM
Drug Regimen					
Capomulin	40.675741	41.557809	24.947764	4.994774	0.329346
Ceftamin	52.591172	51.776157	39.290177	6.268188	0.469821
Infubinol	52.884795	51.820584	43.128684	6.567243	0.492236
Ketapril	55.235638	53.698743	68.553577	8.279709	0.603860
Naftisol	54.331565	52.509285	66.173479	8.134708	0.596466
Placebo	54.033581	52.288934	61.168083	7.821003	0.581331
Propriva	52.322552	50.854632	42.351070	6.507770	0.512884
Ramicane	40.216745	40.673236	23.486704	4.846308	0.320955
Stelasyn	54.233149	52.431737	59.450562	7.710419	0.573111
Zoniferol	53.236507	51.818479	48.533355	6.966589	0.516398

Bar and Pie Charts

```
In [53]: # Generate a bar plot showing the total number of measurements taken of
bar_graph = mouse_data["Drug Regimen"].value_counts().plot.bar()

bar_graph.set_xlabel("Drug Regimen")
bar_graph.set_ylabel("# of Data Points")
bar_graph.set_title("Drug Treatments")
```

Out[53]: Text(0.5, 1.0, 'Drug Treatments')


```
In [55]: # Generate a pie plot showing the distribution of female versus male m
    pie_info = mouse_data["Sex"].value_counts()
    pie_graph = pie_info.plot.pie(autopct="%1.1f%%", startangle=90)
    pie_graph.set_title("Distribution by Sex")
    pie_graph.set_ylabel(" ")
```

Out[55]: Text(0, 0.5, ' ')

Distribution by Sex


```
In [56]: # Generate a pie plot showing the distribution of female versus male m
    pie_info = mouse_data["Sex"].value_counts()

plt.pie(pie_info, labels = pie_info.index.values, autopct="%1.1f%%", s
    plt.title("Distribution by Sex")
    plt.show()
```

Distribution by Sex

Quartiles, Outliers and Boxplots

Out [57]:

	Mouse ID	Drug Regimen	Sex	Age_months	Weight (g)	Timepoint	Tumor Volume (mm3)	Metastatic Sites	Timepoint Max
0	k403	Ramicane	Male	21	16	0	45.000000	0	45
1	k403	Ramicane	Male	21	16	5	38.825898	0	45
2	k403	Ramicane	Male	21	16	10	35.014271	1	45
3	k403	Ramicane	Male	21	16	15	34.223992	1	45
4	k403	Ramicane	Male	21	16	20	32.997729	1	45

```
In [65]: # Put treatments into a list for for loop (and later for plot labels)
         drugs_used = ['Capomulin', 'Ramicane', 'Infubinol', 'Ceftamin']
         drugs = []
         # Create empty list to fill with tumor vol data (for plotting)
         for drug in drugs used:
             drug df = merged group.loc[merged group['Drug Regimen'] == drug]
             timepoint_df = merged_group.loc[merged_group['Timepoint'] == merge
             vol_val = timepoint_df["Tumor Volume (mm3)"]
             drugs.append(vol_val)
         # Calculate the IQR and quantitatively determine if there are any pote
             quartiles = values.quantile([.25,.5,.75])
             lower_q = quartiles[0.25]
             upper_q = quartiles[0.75]
             IQR = upper_q-lower_q
             print(f'IQR for {drug}: {IQR}')
             # Locate the rows which contain mice on each drug and get the tumd
             lower_bound = lower_q - (1.5*IQR)
```

```
upper_bound = upper_q + (1.5*IQR)

print(f'Lower Bound for {drug}: {lower_bound}')
print(f'Upper Bound for {drug}: {upper_bound}')

# add subset
# Determine outliers using upper and lower bounds

outliers_count = [x for x in vol_val if x <= lower_bound or x >= u len(outliers_count)

print(f'{drug} outliers: {outliers_count}')
```

23, 38.93963263, 38.98287774, 38.75326548, 38.407618299999996, 38.125 16439999996, 39.95234669, 40.65812366, 40.1592203, 40.72857787, 41.4 8300765, 41.58152074, 40.65900627, 40.66771292, 45.22086888, 43.04754 260000001, 47.68596303, 43.41938077, 43.16637266, 44.18345092, 67.973 41878, 65.52574285, 70.71762058, 62.99935619, 63.44068627, 66.7941559 9, 49.78341894, 60.12201052, 57.03186187, 66.08306589, 62.19141437, 6 0.41370908, 74.99776443, 72.25596306, 62.76509317, 55.74514628, 45.0, 56.05774909, 73.05136339, 55.74282869, 72.55523894, 72.2267309, 67.94 212107, 65.81516535, 64.57522157, 36.321345799999996, 74.04039018, 61 .84005842, 58.04656941, 69.04284082, 69.82314577, 62.17570465, 65.415 95451, 60.96971133, 64.18322918, 45.0, 47.47464468, 60.23373278, 63.1 056963, 73.21293851, 55.1389525, 62.43540402, 68.3597767, 49.98830246 , 57.74875831, 48.19457788, 60.91876652, 47.03309963, 48.72207785, 73 .32443228, 45.0, 52.07951009, 71.90511721, 68.16319517, 69.87225079, 61.77496268, 70.49278763, 51.06041924, 62.57087961, 74.10408567, 55.4 5528975, 45.0, 47.784681799999994, 67.28962147, 47.52063206, 58.63340 414, 53.30318455, 65.34181087, 52.94290169, 61.84902336, 64.29408493, 69.56362076, 70.65383162, 68.92318457, 73.71561899999999, 66.19691151 , 52.10557382, 50.18010935, 52.69342276, 62.11727887, 69.29914907, 60 76070417 E2 66006060000006 E0 66060004 67 74066174 E7 01000100

```
In [59]: # Generate a box plot of the final tumor volume of each mouse across f
flierprops = dict(marker='o', markerfacecolor='r', markersize=8, marke

plt.boxplot(drugs, flierprops = flierprops)
plt.title("Final Tumor Volume by Drug Type")
plt.xticks([1, 2, 3, 4], ['Capomulin', 'Ramicane', 'Infubinol', 'Cefta
plt.ylabel("Final Tumor Volume (mm3)")

plt.show()
```


Line and Scatter Plots

```
In [67]: # Generate a line plot of tumor volume vs. time point for a mouse trea

capo_df = mouse_data.loc[mouse_data["Mouse ID"] == "s185"]

plt.plot(capo_df["Timepoint"], capo_df["Tumor Volume (mm3)"], marker =
    plt.title("Capomulin Treatment")
    plt.xlabel("Timepoint")
    plt.ylabel("Tumor Volume (mm3)")

plt.show()
```


Correlation and Regression

```
In [62]: # Calculate the correlation coefficient and linear regression model
         # for mouse weight and average tumor volume for the Capomulin regimen
         capo_reg_df
         corr_co = st.pearsonr(capo_reg_df["Weight (g)"], capo_reg_df["mean_vol
         print(f"""The correlation found between the Weight (g) and Average Tu
         on the Capomulin Regimen is {round(corr_co[0],2)}.""")
         x = capo_reg_df["Weight (g)"]
         y = capo_reg_df["mean_vol"]
         (slope, intercept, rvalue, pvalue, stderr) = linregress(x, y)
         regress values = x * slope + intercept
         line eq = "y = " + str(round(slope,2)) + "x + " + str(round(intercept,
         plt.scatter(x, y, marker = "o", color = "m")
         plt.plot(x,regress_values,"r-", color = "g")
         plt.title("Avg. Tumor Volume by Weight (Capomulin)")
         plt.xlabel("Weight (g)")
         plt.ylabel("Avg. Tumor Volume (mm3)")
         plt.show()
```

The correlation found between the Weight (g) and Average Tumor Volum e (mm3) on the Capomulin Regimen is 0.84.


```
In []:
```