What are the chances?

INTRODUCTION TO STATISTICS IN PYTHON

Maggie Matsui
Content Developer, DataCamp

Measuring chance

What's the probability of an event?

$$P(\text{event}) = rac{\# \text{ ways event can happen}}{ and{total } \# \text{ of possible outcomes}}$$

Example: a coin flip

$$P(\text{heads}) = rac{1 \text{ way to get heads}}{2 \text{ possible outcomes}} = rac{1}{2} = 50\%$$

Assigning salespeople

$$P(\mathrm{Brian}) = rac{1}{4} = 25\%$$

Setting a random seed

```
np.random.seed(10)
sales_counts.sample()
```

```
name n_sales
1 Brian 128
```

```
np.random.seed(10)
sales_counts.sample()
```

```
name n_sales
1 Brian 128
```

```
np.random.seed(10)
sales_counts.sample()
```

```
name n_sales
1 Brian 128
```

A second meeting

$$P(ext{Claire}) = rac{1}{3} = 33\%$$

Sampling twice in Python

```
sales_counts.sample(2)
```

```
name n_sales
1 Brian 128
2 Claire 75
```


Sampling with replacement

$$P(ext{Claire}) = rac{1}{4} = 25\%$$

Sampling with/without replacement in Python

```
sales_counts.sample(5, replace = True)
```

Independent events

Two events are **independent** if the probability of the second event **isn't** affected by the outcome of the first event.

Sampling with replacement = each pick is independent

Sampling with Replacement

Dependent events

Two events are **dependent** if the probability of the second event **is** affected by the outcome of the first event.

Sampling without Replacement

Dependent events

Two events are **dependent** if the probability of the second event **is** affected by the outcome of the first event.

Sampling without replacement = each pick is dependent

Sampling without Replacement

Discrete distributions

INTRODUCTION TO STATISTICS IN PYTHON

Maggie Matsui
Content Developer, DataCamp

Rolling the dice

Choosing salespeople

Probability distribution

Describes the probability of each possible outcome in a scenario

Expected value: mean of a probability distribution

Expected value of a fair die roll =

$$(1 \times \frac{1}{6}) + (2 \times \frac{1}{6}) + (3 \times \frac{1}{6}) + (4 \times \frac{1}{6}) + (5 \times \frac{1}{6}) + (6 \times \frac{1}{6}) = 3.5$$

Visualizing a probability distribution

Probability = area

$$P(\text{die roll}) \leq 2 = ?$$

Probability = area

$$P(ext{die roll}) \leq 2 = 1/3$$

Uneven die

Expected value of uneven die roll =

$$(1 \times \frac{1}{6}) + (2 \times 0) + (3 \times \frac{1}{3}) + (4 \times \frac{1}{6}) + (5 \times \frac{1}{6}) + (6 \times \frac{1}{6}) = 3.67$$

Visualizing uneven probabilities

Adding areas

$$P(\text{uneven die roll}) \leq 2 = ?$$

Adding areas

$$P(ext{uneven die roll}) \leq 2 = 1/6$$

Discrete probability distributions

Describe probabilities for discrete outcomes

Fair die

Uneven die

Discrete uniform distribution

Sampling from discrete distributions

```
print(die)
```

```
      number
      prob

      0
      1
      0.166667

      1
      2
      0.166667

      2
      3
      0.166667

      4
      5
      0.166667

      5
      6
      0.166667
```

```
np.mean(die['number'])
```

```
3.5
```

```
rolls_10 = die.sample(10, replace = True)
rolls_10
```

```
number
              prob
0
          0.166667
          0.166667
0
          0.166667
          0.166667
          0.166667
0
0
          0.166667
5
          0.166667
5
          0.166667
```

Visualizing a sample

```
rolls_10['number'].hist(bins=np.linspace(1,7,7))
plt.show()
```


Sample distribution vs. theoretical distribution

Sample of 10 rolls

np.mean(rolls_10['number']) = 3.0

Theoretical probability distribution

A bigger sample

Sample of 100 rolls

$$np.mean(rolls_100['number']) = 3.4$$

Theoretical probability distribution

An even bigger sample

Sample of 1000 rolls

$$np.mean(rolls_1000['number']) = 3.48$$

Theoretical probability distribution

$$mean(die['number']) = 3.5$$

Law of large numbers

As the size of your sample increases, the sample mean will approach the expected value.

Sample size	Mean
10	3.00
100	3.40
1000	3.48

Continuous distributions

INTRODUCTION TO STATISTICS IN PYTHON

Maggie Matsui
Content Developer, DataCamp

Waiting for the bus

Continuous uniform distribution

Probability still = area

$$P(4 \leq \text{wait time} \leq 7) = ?$$

Probability still = area

$$P(4 \leq \text{wait time} \leq 7) = ?$$

Probability still = area

$$P(4 \le \text{wait time} \le 7) = 3 \times 1/12 = 3/12$$

Uniform distribution in Python

 $P(\text{wait time} \leq 7)$

from scipy.stats import uniform
uniform.cdf(7, 0, 12)

0.5833333

"Greater than" probabilities

$$P(\text{wait time} \ge 7) = 1 - P(\text{wait time} \le 7)$$

from scipy.stats import uniform
1 - uniform.cdf(7, 0, 12)

$P(4 \leq ext{wait time} \leq 7)$

$P(4 \leq \text{wait time} \leq 7)$

$P(4 \leq \text{wait time} \leq 7)$

from scipy.stats import uniform
uniform.cdf(7, 0, 12) - uniform.cdf(4, 0, 12)

Total area = 1

$$P(0 \le \text{wait time} \le 12) = ?$$

Total area = 1

$$P(0 \le {
m outcome} \le 12) = 12 \times 1/12 = 1$$

Generating random numbers according to uniform distribution

```
from scipy.stats import uniform
uniform.rvs(0, 5, size=10)
```

```
array([1.89740094, 4.70673196, 0.33224683, 1.0137103 , 2.31641255, 3.49969897, 0.29688598, 0.92057234, 4.71086658, 1.56815855])
```

Other continuous distributions

Other continuous distributions

Other special types of distributions

Normal distribution

Exponential distribution

The binomial distribution

INTRODUCTION TO STATISTICS IN PYTHON

Maggie Matsui
Content Developer, DataCamp

Coin flipping

Binary outcomes

Loss

Win

A single flip

```
binom.rvs(# of coins, probability of heads/success, size=# of trials)
```

```
1 = \text{head}, 0 = \text{tails}
```

```
from scipy.stats import binom
binom.rvs(1, 0.5, size=1)
```

```
array([1])
```


One flip many times

```
binom.rvs(1, 0.5, size=8)
```

array([0, 1, 1, 0, 1, 0, 1, 1])

binom.rvs(1, 0.5, size = 8)

Flip 1 coin with 50% chance of success 8 times

Many flips one time

```
binom.rvs(8, 0.5, size=1)
```

array([5])

binom.rvs(8, 0.5, size = 1)

Flip 8 coins with 50% chance of success 1 time

Many flips many times

```
binom.rvs(3, 0.5, size=10)
```

array([0, 3, 2, 1, 3, 0, 2, 2, 0, 0])

binom.rvs(3, 0.5, size = 10)

Flip 3 coins with 50% chance of success 10 times

Other probabilities

```
binom.rvs(3, 0.25, size=10)
```


Binomial distribution

Probability distribution of the number of successes in a sequence of independent trials

E.g. Number of heads in a sequence of coin flips

Described by n and p

- n: total number of trials
- p: probability of success

 $p \qquad n$ binom.rvs(3, 0.5, size = 10)

What's the probability of 7 heads?

```
P(\text{heads} = 7)
```

```
# binom.pmf(num heads, num trials, prob of heads)
binom.pmf(7, 10, 0.5)
```


What's the probability of 7 or fewer heads?

 $P(\text{heads} \leq 7)$

binom.cdf(7, 10, 0.5)

What's the probability of more than 7 heads?

```
P(\text{heads} > 7)
```

```
1 - binom.cdf(7, 10, 0.5)
```


Expected value

Expected value = $n \times p$

Expected number of heads out of 10 flips =10 imes0.5=5

Independence

The binomial distribution is a probability distribution of the number of successes in a sequence of **independent** trials

Independence

The binomial distribution is a probability distribution of the number of successes in a sequence of **independent** trials

Probabilities of second trial are altered due to outcome of the first

If trials are not independent, the binomial distribution does not apply!

