

TD3 algorithm for BipedalWalkerv3

L. Utješinović, L. Boljević

Environment description

Actor-critic models

TD3 algorithm

Results

Conclusions

Application of TD3 algorithm to the BipedalWalker-v3 environment

Luka Utješinović, Luka Boljević

May 25, 2022

Environment description

TD3 algorithm for BipedalWalkerv3

L. Utješinović, L. Boljević

Environment description

Actor-critic models

TD3 algorithm

Results

Conclusions

BipedalWalker-v3 - environment provided by the famous Gym OpenAl Python library.

Figure: A single frame from the environment

Drawbacks of Q-learning

TD3 algorithm for BipedalWalkerv3

L. Utješinović, L. Boljević

Environment description

Actor-critic models

TD3 algorithm

Results

Conclusions

The first algorithm that comes to mind is Q-learning. Q-learning update rule:

$$Q^{\text{new}}(s_t, a_t) \leftarrow \underbrace{Q(s_t, a_t)}_{\text{old value}} + \underbrace{\alpha}_{\text{learning rate}} \cdot \underbrace{\left(\underbrace{r_t}_{\text{reward}} + \underbrace{\gamma}_{\text{discount factor}} \cdot \underbrace{\max_{a} Q(s_{t+1}, a)}_{\text{estimate of optimal future value}} - \underbrace{Q(s_t, a_t)}_{\text{old value}}\right)}_{\text{new value (temporal difference target)}}$$

Infeasible for continuous action space environments because of the $\max_{a} Q(s_{t+1}, a)$ term.

Alternative: actor-critic paradigm

TD3 algorithm for BipedalWalkerv3

L. Utješinović, L. Boljević

Environment description

Actor-critic models

TD3 algorithm

Results

Conclusions

Figure: High level overview of the actor-critic paradigm

DDPG - most compact explanation possible

TD3 algorithm for BipedalWalkerv3

L. Utješinović, L. Boljević

Environment description

Actor-critic models

TD3 algorithm

Results

Conclusions

DDPG - Deep deterministic policy gradient

 $y_t \leftarrow r_t + \gamma Q_w(s_{t+1}, \pi_{\theta}(s_{t+1})) \ (w - "critic", \theta - "actor")$

L. Utješinović, L. Boljević

Environment description

Actor-critic models

TD3 algorithm

Results

Conclusions

DDPG has exhibited poor performance for this environment

An extended version of DDPG - Twin delayed DDPG (TD3)

- Normal distribution instead of complicated OU (Ornstein–Uhlenbeck) random process for exploration
- ► Two critics Q_{w_1} , Q_{w_2} with target networks $Q_{w'_1}$, $Q_{w'_2}$ Modified ground truth:

$$y_t \leftarrow r_t + \gamma \min_{i=1,2} Q_{w'_i}(s_{t+1}, \pi_{\theta'}(s_{t+1}))$$

There are a few more slight differences, but they are not crucial for this presentation. Details can be found in the paper.

Results 1

TD3 algorithm for BipedalWalkerv3

L. Utješinović, L. Boljević

Environmen description

Actor-critic models

TD3 algorithm

Results

Conclusions

The following architecture for actor and critic networks was used:

Actor network architecture

Critic network architecture

tanh - activation of choice for output layer of actor networks, as agent's joint movement \Leftrightarrow motor speed values $\in [-1,1]$.

Results 2

TD3 algorithm for BipedalWalkerv3

L. Utješinović, L. Boljević

Environment description

Actor-critic models

TD3 algorithm

Results

Conclusions

Figure: 15 agents trained for 550 episodes

Conclusions

TD3 algorithm for BipedalWalkerv3

L. Utješinović, L. Boljević

Environment description

Actor-critic models

TD3 algorithm

Results

Conclusions

- ► TD3 is a very powerful algorithm, but the obtained agent is highly variable.
- ► A vague idea to improve stability would be to average trained agents