Отчёт по лабораторной работе №5

Дискреционное разграничение прав в Linux. Исследование влияния дополнительных атрибутов

Киронда Михаил НБИ-01-19

Содержание

1	Цель работы		
2	2.1 2.2	полнение лабораторной работы Подготовка	6
3	Выв	оды	13
Сп	исок	литературы	14

List of Figures

2.1	подготовка к работе		5
2.2	программа simpleid		6
2.3	результат программы simpleid		6
2.4	программа simpleid2		7
2.5	результат программы simpleid2		8
2.6	программа readfile		8
2.7	результат программы readfile		9
2.8	исследование Sticky-бита	1	2

1 Цель работы

Изучение механизмов изменения идентификаторов, применения SetUID и Sticky-битов. Получение практических навыков работы в консоли с дополнительными атрибутами. Рассмотрение работы механизма смены идентификатора процессов пользователей, а также влияние бита Sticky на запись и удаление файлов.

2 Выполнение лабораторной работы

2.1 Подготовка

- 1. Для выполнения части заданий требуются средства разработки приложений. Проверили наличие установленного компилятора gcc командой gcc -v: компилятор обнаружен.
- 2. Чтобы система защиты SELinux не мешала выполнению заданий работы, отключили систему запретов до очередной перезагрузки системы командой setenforce 0:
- 3. Команда getenforce вывела Permissive:

Figure 2.1: подготовка к работе

2.2 Изучение механики SetUID

- 1. Вошли в систему от имени пользователя guest.
- 2. Написали программу simpleid.c.

```
| Simpleid.c | Sim
```

Figure 2.2: программа simpleid

- 3. Скомпилировали программу и убедились, что файл программы создан: gcc simpleid.c -o simpleid
- 4. Выполнили программу simpleid командой ./simpleid
- 5. Выполнили системную программу id с помощью команды id. uid и gid совпадает в обеих программах

Figure 2.3: результат программы simpleid

6. Усложнили программу, добавив вывод действительных идентификаторов.

Figure 2.4: программа simpleid2

7. Скомпилировали и запустили simpleid2.c:

```
gcc simpleid2.c -o simpleid2
./simpleid2
```

8. От имени суперпользователя выполнили команды:

```
chown root:guest /home/guest/simpleid2
chmod u+s /home/guest/simpleid2
```

- 9. Использовали ѕи для повышения прав до суперпользователя
- 10. Выполнили проверку правильности установки новых атрибутов и смены владельца файла simpleid2:

```
ls -l simpleid2
```

11. Запустили simpleid2 и id:

```
./simpleid2
```

id

Результат выполнения программ теперь немного отличается

12. Проделали тоже самое относительно SetGID-бита.

```
quest@mmkironda:~/lab5
                                                                                        _ 0
Файл Правка Вид Поиск Терминал Справка
[guest@mmkironda lab5]$ gcc simpleid2.c
[guest@mmkironda lab5]$ gcc simpleid2.c -o simpleid2
[guest@mmkironda lab5]$ ./simpleid2
e_uid=1001, e_gid=1001
real_uid=1001, real_gid1001
[guest@mmkironda lab5]$ su
Пароль:
[root@mmkironda lab5]# chown root:guest simpleid2
[root@mmkironda lab5]# chmod u+s simpleid2
[root@mmkironda lab5]# ./simpleid2
e_uid=0, e_gid=0
real_uid=0, real_gid0
[root@mmkironda lab5]# id
uid=0(root) gid=0(root) группы=0(root) контекст=unconfined_u:unconfined_r:unconf
ined_t:s0-s0:c0.c1023
[root@mmkironda lab5]# chmod g+s simpleid2
[root@mmkironda lab5]# ./simpleid2
e_uid=0, e_gid=1001
real_uid=0, real_gid0
[root@mmkironda lab5]# exit
[guest@mmkironda lab5]$
```

Figure 2.5: результат программы simpleid2

13. Написали программу readfile.c

```
| Companies | Com
```

Figure 2.6: программа readfile

14. Откомпилировали её.

gcc readfile.c -o readfile

15. Сменили владельца у файла readfile.c и изменили права так, чтобы только суперпользователь (root) мог прочитать его, а guest не мог.

```
chown root:guest /home/guest/readfile.c
chmod 700 /home/guest/readfile.c
```

- 16. Проверили, что пользователь guest не может прочитать файл readfile.c.
- 17. Сменили у программы readfile владельца и установили SetU'D-бит.
- 18. Проверили, может ли программа readfile прочитать файл readfile.c
- 19. Проверили, может ли программа readfile прочитать файл /etc/shadow

```
guest@mmkironda:~/lab5
                                                                                    _ 0
                                                                                             ×
 Файл Правка Вид Поиск Терминал Справка
ючена 1
 while (bytes read == (buffer));
[quest@mmkironda lab5]$ su
[root@mmkironda lab5]# chown root:root readfile
[root@mmkironda lab5]# chmod o-r readfile.c
[root@mmkironda lab5]# chmod g-rw readfile.c
 [root@mmkironda lab5]# chmod u+s readfile
[root@mmkironda lab5]# exit
[guest@mmkironda lab5]$ cat readfile.c
#include <stdio.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <fcntl.h>
int main(int argc, char* argv[])
unsigned char buffer[16]:
size_t bytes_read;
int fd=open(argv[1], 0 RDONLY);
bytes read=read(fd, buffer, sizeof(buffer));
for (i=0; i<bytes_read; ++i)
printf("%c", buffer[i]);
while (bytes_read == (buffer));
return 0:
}[guest@mmkironda lab5]$ ./readfile readfile.c
#include <stdio.[guest@mmkironda lab5]$ ./readfile /etc/shadow
[guest@mmkironda lab5]$ |
```

Figure 2.7: результат программы readfile

2.3 Исследование Sticky-бита

1. Выяснили, установлен ли атрибут Sticky на директории /tmp:

```
ls -l / | grep tmp
```

2. От имени пользователя guest создали файл file01.txt в директории /tmp со словом test:

```
echo "test" > /tmp/file01.txt
```

3. Просмотрели атрибуты у только что созданного файла и разрешили чтение и запись для категории пользователей «все остальные»:

```
ls -l /tmp/file01.txt
chmod o+rw /tmp/file01.txt
ls -l /tmp/file01.txt
```

Первоначально все группы имели право на чтение, а запись могли осуществлять все, кроме «остальных пользователей».

4. От пользователя (не являющегося владельцем) попробовали прочитать файл /file01.txt:

```
cat /file01.txt
```

5. От пользователя попробовали дозаписать в файл /file01.txt слово test3 командой:

```
echo "test2" >> /file01.txt
```

6. Проверили содержимое файла командой:

```
cat /file01.txt
```

В файле теперь записано:

Test

Test2

7. От пользователя попробовали записать в файл /tmp/file01.txt слово test4, стерев при этом всю имеющуюся в файле информацию командой. Для этого воспользовалась командой echo "test3" > /tmp/file01.txt

8. Проверили содержимое файла командой

```
cat /tmp/file01.txt
```

- 9. От пользователя попробовали удалить файл /tmp/file01.txt командой rm /tmp/file01.txt, однако получила отказ.
- 10. От суперпользователя командой выполнили команду, снимающую атрибут t (Sticky-бит) с директории /tmp:

```
chmod -t /tmp
```

Покинули режим суперпользователя командой exit.

11. От пользователя проверили, что атрибута t у директории /tmp нет:

```
ls -l / | grep tmp
```

- 12. Повторили предыдущие шаги. Получилось удалить файл
- 13. Удалось удалить файл от имени пользователя, не являющегося его владельцем.
- 14. Повысили свои права до суперпользователя и вернули атрибут t на директорию /tmp :

```
su
chmod +t /tmp
exit
```

Figure 2.8: исследование Sticky-бита

3 Выводы

Изучили механизмы изменения идентификаторов, применения SetUID- и Sticky-битов. Получили практические навыки работы в консоли с дополнительными атрибутами. Также мы рассмотрели работу механизма смены идентификатора процессов пользователей и влияние бита Sticky на запись и удаление файлов.

Список литературы

- 1. KOMAHДA CHATTR B LINUX
- 2. chattr