

ÁLGEBRA LINEAL

Examen Final. Enero 2014

Nombre	Grupo	
	_	

Normas:

- NO se permiten dispositivos electrónicos excepto calculadoras no programables.
- Cada respuesta debe ser justificada.
- No se puede abandonar el aula hasta transcurridos 30 minutos desde el inicio del examen.
- Este examen supone un 60% de la nota final.

Ejercicio 1 (1 punto) Consideremos el espacio vectorial de las funciones continuas en [0,1], que denotamos por $\mathcal{C}[0,1]$. Definamos

$$f_1 \cdot f_2 = \int_0^1 f_1(x) f_2(x) dx$$
, donde $f_1, f_2 \in \mathcal{C}[0, 1]$.

Consideremos

$$f_1(x) = \frac{1}{x+5}, \quad f_2(x) = x.$$

- a) Demostrar que la operación así definida es un producto escalar.
- b) Determinar si f_1 y f_2 son ortogonales.

Ejercicio 2 (2 puntos) Consideremos la transformación lineal T de \mathbb{R}^4 en \mathbb{R}^3 que satisface:

$$T(e_1) = (1, -1, 0)^T, \quad T((1, 1, 0, 0)^T) = (2, -1, 2)^T,$$

 $T((1, 0, 1, 0)^T) = (0, -3, 1)^T, \quad T((0, 0, 1, 2)^T) = (1, 4, 9)^T.$

a) Determinar la matriz A_T asociada a esta transformación lineal.

- b) Determinar la dimensión de cada uno de los cuatro subespacios vectoriales asociados a A_T . Encontrar una base B_1 para el espacio columna de A_T .
- c) Justificar si T puede ser alguna de las siguientes transformaciones: i) isomorfismo, ii) transformación inyectiva, iii) transformación sobreyectiva.
- d) Encontrar una base ortogonal B_2 del espacio columna de A_T , apoyando su construcción en la base B_1 .
- e) Encontrar la matriz del cambio de la base B_1 a la base B_2 .

Ejercicio 3 (2 puntos) Consideremos el siguiente sistema lineal de ecuaciones diferenciales:

$$x'(t) = 4x(t) - 2z(t) y'(t) = 2x(t) + 5y(t) + 4z(t) z'(t) = 5z(t)$$

- a) Escribir el sistema en forma matricial: X' = AX.
- b) Calcular los autovalores de A.
- c) Determinar los autoespacios de A asociados a los autovalores obtenidos en el apartado b). ¿Coinciden las multiplicidades algebraicas y geométricas?
- d) Resolver el sistema, con condiciones iniciales x(0) = 3, y(0) = 1 y z(0) = -1.
- e) Sin utilizar el producto de forma recursiva, encontrar A^4 .

Ejercicio 4 (1 punto) Consideremos la siguiente matriz

$$A = \left(\begin{array}{cc} 2 & -1\\ 1 & 2\\ 1 & 1 \end{array}\right).$$

a) Calcular el espacio columna de A y explicar por qué el sistema lineal

$$Ax = b$$
,

$$con b = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} no tiene solución.$$

b) Encontrar la solución de mínimos cuadrados del sistema anterior.