수학 영역(미적분)

단답형

29. 그림과 같이 $\overline{A_1B_1} = 6$, $\angle A_1B_1C_1 = 2 \times \angle C_1A_1B_1$,

 $\cos\left(\angle C_1A_1B_1\right)=\frac{4}{5}$ 인 삼각형 $A_1B_1C_1$ 이 있다. 선분 A_1B_1 을 $1:2,\ 2:1$ 로 내분하는 점을 각각 $D_1,\ E_1$ 이라 하고, 선분 B_1C_1 위에 점 F_1 을 $\overline{B_1E_1}=\overline{B_1F_1}$ 이 되도록 잡는다. 중심이 A_1 이고 점 D_1 을 지나는 원과 선분 C_1A_1 의 교점을 A_2 라 하고, 점 A_2 를 지나고 선분 A_1B_1 에 평행한 직선과 선분 E_1F_1 의 교점을 B_2 라 하고, 두 삼각형 $A_1D_1A_2$ 와 $B_1F_1B_2$ 에 색칠하여 얻은 그림을 R_1 이라 하자.

그림 R_1 에서 점 B_2 를 지나고 선분 B_1C_1 에 평행한 직선과 선분 A_1C_1 의 교점을 C_2 라 하자. 삼각형 $A_2B_2C_2$ 에서 그림 R_1 을 얻은 것과 같은 방법으로 두 삼각형 $A_2D_2A_3$ 과 $B_2F_2B_3$ 에 색칠하여 얻은 그림을 R_2 라 하자.

이와 같은 과정을 계속하여 n번째 얻은 그림 R_n 에 색칠되어 있는 부분의 넓이를 S_n 이라 할 때, $\lim_{n \to \infty} S_n = \frac{q}{p}$ 이다. p+q의 값을 구하시오. (단, p와 q는 서로소인 자연수이다.) [4점]

- **30.** 원점 O를 지나고 x축의 양의 방향과 이루는 각의 크기가 θ 인 직선 l에 대하여 제1사분면 위의 점 P와 제2사분면 위의 점 Q가 다음 조건을 만족시킨다.
 - (가) 점 P는 직선 l 위의 점이고, 직선 PQ는 x축에 평행하다.
 - (나) 삼각형 OPQ는 $\angle POQ = \frac{\pi}{2}$ 이고 넓이가 8인 직각삼각형이다.

삼각형 OPQ의 외접원의 넓이를 $f(\theta)$ 라 할 때,

$$\int_{rac{\pi}{6}}^{rac{\pi}{3}} f(heta) d heta = k\pi$$
이다. e^k 의 값을 구하시오. (단, $0 < heta < rac{\pi}{2}$)

[4점]

* 확인 사항

- 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인 하시오.
- 이어서, 「**선택과목(기하)**」문제가 제시되오니, 자신이 선택한 과목인지 확인하시오.