NANYANG TECHNOLOGICAL UNIVERSITY

SEMESTER 1 EXAMINATION 2024-2025

EE6222 – MACHINE VISION

November/December 2024

Time Allowed: 3 hours

INSTRUCTIONS

- 1. This paper contains 4 questions and comprises 4 pages.
- 2. Answer all 4 questions.
- 3. All questions carry equal marks.
- 4. This is a closed-book examination.
- 5. Unless specifically stated, all symbols have their usual meanings.
- 1. A filter with impulse response $h(x,y) = 2\delta(x,y) \delta(x,y-1) \delta(x-1,y)$ is applied to an image f(x,y) plotted in Figure 1.

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	1	1	1	1	1	-1	-1
-1	-1	1	1	1	1	1	-1	-1
-1	-1	1	1	1	1	1	-1	-1
-1	-1	1	1	1	1	1	-1	-1
-1	-1	1	1	1	1	1	-1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

Figure 1. f(x, y)

Suppose the image f(x, y) out of the Figure 1 is constant -1.

(a) Show the filter mask.

(5 Marks)

Note: Question No. 1 continues on page 2.

- (b) Express the output image g(x, y) in terms of the input image f(x, y).
- (5 Marks)
- (c) Plot the output image g(x, y) of size 9×9 in the same way as Figure 1.

(10 Marks)

(d) The semantic meaning of the input image f(x, y) is a square object in a constant background. What is the semantic meaning of the output image g(x, y)? How to map image g(x, y) to another image $g_1(x, y)$ to make its semantic meaning clearer?

(5 Marks)

- 2. Given a database of c classes, each class has n samples and each sample has m features. Each element of the database is denotted by x_{kij} , $1 \le i \le m$, $1 \le j \le n$, $1 \le k \le c$.
 - (a) Compute the class-conditional mean μ_{ki} and the element σ_{kpq} of the covariance matrix.

(6 Marks)

(b) Construct a column feature vector \mathbf{x}_{kj} of each sample from the given x_{kij} and then compute the class-conditional mean vector $\mathbf{\mu}_k$ and the covariance matrix $\mathbf{\Sigma}_k$ using \mathbf{x}_{ki} .

(6 Marks)

(c) Construct the class-conditional data matrix \mathbf{X}_k using \mathbf{x}_{kj} and $\mathbf{\mu}_k$ computed in (b) such that the mean feature vector of \mathbf{X}_k is zero and compute $\mathbf{\Sigma}_k$ using \mathbf{X}_k .

(5 Marks)

(d) We want to extract a one-dimensional feature. The unit length column vector that spans this dimension in the feature space is \mathbf{a} . Derive the class-conditional variance v_k of this one-dimensional feature from the definition of the variance using \mathbf{a} , \mathbf{x}_{kj} and $\mathbf{\mu}_k$ or \mathbf{X}_k to the final result in terms of \mathbf{a} and $\mathbf{\Sigma}_k$.

(8 Marks)

- 3. A two-layer fully connected feed-forward neural network (also called multilayer perceptron) has two inputs, x_1 and x_2 , two hidden neurons and one output y.
 - (a) Draw a diagram of this network and show all network parameters in your diagram.

(5 Marks)

(b) The above network has a nonlinear activation function $f(s) = \frac{1}{1 + \exp(-s)}$ for the hidden neurons and linear activation function g(s) = s for the output neuron. Express the output y of the network as a function of the inputs x_1 and x_2 .

(5 Marks)

(c) Construct the input vector \mathbf{x} , network parameter matrics \mathbf{W} and \mathbf{V} using inputs x_1 and x_2 and parameters you used in (a) and (b) so that the output of the network is expressed in a simple vector/matrix form of $y = g(\mathbf{V}^T f(\mathbf{W}^T \mathbf{x}))$.

(5 Marks)

(d) In a step-by-step manner, derive a learning rule that adjusts the network parameters of the output neuron to make the square error between the network output *y* and the desired output *t* smaller.

(10 Marks)

- 4. Deep learning has been used for video processing and stereo matching.
 - (a) What is the difference between ReID and JDE in object detection and tracking?

(6 Marks)

(b) Describe the main pipeline of stereo matching.

(6 Marks)

- (c) In a deep learning stereo matching algorithm such as PSMnet, the cost volume would be up-sampled to size $H \times W \times D$ via bilinear interpolation before the final step of regression to calculate the disparity map with size $H \times W$ where H and W denote the height and width of the input images, respectively. Answer the following questions.
 - (i) What does D stand for?
 - (ii) How does the value of D affect the stereo matching results?
 - (iii) What is the physical meaning of a voxel in the cost volume C at voxel (h, w, d)?

(13 Marks)

END OF PAPER

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

EE6222 MACHINE VISION

CONFIDENTIAL

Please read the following instructions carefully:

- 1. Please do not turn over the question paper until you are told to do so. Disciplinary action may be taken against you if you do so.
- 2. You are not allowed to leave the examination hall unless accompanied by an invigilator. You may raise your hand if you need to communicate with the invigilator.
- 3. Please write your Matriculation Number on the front of the answer book.
- 4. Please indicate clearly in the answer book (at the appropriate place) if you are continuing the answer to a question elsewhere in the book.