

Elektrická měření

1. ÚVOD, PŘÍSTROJE PRO MĚŘENÍ NAPĚTÍ A PROUDU, DIGITÁLNÍ OSCILOSKOP

2024/2025

Jakub Svatoš

1. PŘÍSTROJE PRO MĚŘENÍ NAPĚTÍ A PROUDU

- Organizace předmětu
- Přístroje pro měření stejnosměrného napětí a proudu

 multimetr v režimu měření stejnosměrného napětí
 nebo proudu
- Přístroje pro měření střídavého napětí a proudu měřící střední hodnotu – levný číslicový multimetr v režimu měření střídavého napětí nebo proudu
- Přístroje pro měření střídavého napětí a proudu měřící efektivní hodnotu – elektromagnetický voltmetr/ampérmetr, kvalitní číslicový multimetr v režimu měření střídavého napětí nebo proudu
- Digitální osciloskop blokové schéma, osciloskopická sonda

Organizace předmětu

Moodle

- Informace o předmětu
- Návody k laboratořím

- 45 bodů ze semestru
- 55 bodů ze zkoušky (minimální počet bodů 15)

Doporučená literatura

- Haasz, V. a kol.: Elektrická měření, Přístroje a metody (3. přepracované vydání), Monografie ČVUT, Česká technika – nakladatelství ČVUT, Praha 2018
- Errata viz moodle

Měření napětí a proudu

Ideální voltmetr: R_i = ∞

Realizace: - digitální voltmetr R_i typ. 10 M Ω nebo více např. > 10 G Ω

(Keysight 34401)

- analogový voltmetr, např. 5 kΩ/V

Ideální ampérmetr: $R_i = 0$

-(A)

Realizace:

- s bočníkem ($R_i = 1 \text{ m}\Omega - 1 \text{ k}\Omega$)

- elektronický (např. I=>U s OZ)

- analogový (elektromechanický)

- bezkontaktní (magnetický)

Digitální multimetry

Parametry digitálních multimetrů

- Počet míst zobrazovače: 999 199 999 999
- Počet vstupních rozsahů: typicky 4 6
- Přesnost
- Časová stálost
- Rozlišení
- Vstupní odpor pro měření *U*, obvykle 10 MΩ
- Měření skutečné efektivní hodnoty (TrueRMS)
- Rozhraní USB, GPIB, Ethernet
- Programovatelnost

Přístroje pro měření stejnosměrného napětí

(desítky mV až stovky V)

1) Analogový voltmetr s magnetoelektrickým ústrojím – dnes už historie

Ampérův zákon pro sílu

v magnetickém poli

$$F = BlI$$

Změna rozsahů: $R_{
m P}$

Vetšinou se $R_{\rm V}$ udává v $\Omega/{\rm V}$ – vztaženo k rozsahu

2) MULTIMETR v režimu měření stejnosměrného napětí

Pro přepínání napěťových rozsahů se používá odporový dělič

Přístroje pro měření stejnosměrného proudu

(desítky mA až desítky A)

1) Ampérmetr s magnetoelektrickým ústrojím - dnes už historie

a) jednorozsahový

$$I = I_{\rm m} + I_{\rm b} = U_{\rm m}/R_{\rm m} + U_{\rm m}/R_{\rm b}$$

$$\downarrow \qquad \qquad \downarrow$$

$$R_b = \frac{U_m}{\left(I - I_m\right)}$$

b) vícerozsahový

Úbytky napětí na přechodových odporech přepínače se přičítají k úbytku napětí na bočníku)

Ayrtonův bočník:

2) MULTIMETR v režimu měření stejnosměrného proudu

Pro přepínání proudových rozsahů se používá Ayrtonův bočník

Pokud $I_{\rm m} << I_{\rm 1}$ (což obvykle pro větší rozsahy je), pak

$$U_{\rm m} = (R_1 + R_2 + R_3)I_1$$

 $U_{\rm m} = (R_2 + R_3)I_2$
 $U_{\rm m} = R_3I_3$

Přístroje pro měření střídavého napětí a proudu

(desítky mV až stovky V, desítky mA až desítky A)

1) Přístroje s usměrňovačem

(ručkové magel. s usměrňovačem, historie, levné multimetry)

- Přístroj měří usměrněnou střední hodnotu, je však kalibrován v efektivních hodnotách pro harmonický (sinusový) průběh.
- Při neharmonickém (nesinusovém) průběhu nelze efektivní hodnotu z údaje přístroje určit!
- Střední hodnotu vypočteme podělením údaje koeficientem tvaru pro harmonický průběh (1,11)

Převodníky střední hodnoty – opakování

Střední hodnota

sinusový průběh $u(t) = U_m \sin \omega t$

$$U_S = \frac{1}{T} \int_0^T u(t) dt$$
 pro sin $U_S = 0$

Střední usměrněná hodnota

$$U_{SU} = \frac{1}{T} \int_{0}^{T} |u(t)| dt \quad nebo \qquad U_{SU} = \frac{1}{\frac{T}{2}} \int_{0}^{\frac{T}{2}} u(t) dt = \frac{2U_{m}}{\pi} = \frac{2\sqrt{2}U_{ef}}{\pi} = 0.9U_{ef}$$

Efektivní hodnota (RMS)

$$U_{ef} = \sqrt{\frac{1}{T} \int_{0}^{T} u^{2}(t) dt}$$
 prosinus $U_{ef} = \frac{U_{m}}{\sqrt{2}}$

Levný multimetr v režimu měření střídavého napětí a proudu

~/= Usměrňovač - linearizace operačním zesilovačem (viz 3. přednáška)

Kmitočtová závislost:

- kmitočtová závislost zesilovače
- kmitočtová závislost vstupního děliče (parazitní kapacity rezistorů)
- kmitočtová závislost Ayrtonova bočníku (parazitní indukčnosti rezistorů)
- kmitočtová závislost bývá na proudových rozsazích o cca jeden řád horší

2) Elektromagnetický (ferromagnetický) přístroj - PRO ILUSTRACI

$$\begin{cases} F \sim B^2 \\ B \sim I \end{cases} M_{\rm p} = k_{\rm p} I^2; \quad M_{\rm p} = \frac{1}{T} \int_0^T m_{\rm p}(t) dt = k_{\rm p} \frac{1}{T} \int_0^T i^2(t) dt = k_{\rm p} I_{\rm ef}^2$$

Základní rozsah: 10 mA až 100 A

Změna rozsahu A-metru: - odbočky

Elektromagnetický voltmetr:

Silná kmitočtová závislost $I = \frac{U}{\sqrt{R_{\rm V}^2 + \omega^2 L_{\rm m}^2}}$ $R_{\rm V} = R_{\rm P} + R_{\rm m}$ Změna rozsahů: $R_{\rm P}$

3) Kvalitní multimetr v režimu měření střídavého napětí a proudu

(měří efektivní hodnotu)

~/= Převodník efektivní hodnoty na stejnosměrné napětí (viz 9. přednáška) Režim pro střídavá měření označen RMS popř. True RMS

Kmitočtová závislost:

- kmitočtová závislost zesilovače
- kmitočtová závislost vstupního děliče (parazitní kapacity rezistorů)
- kmitočtová závislost Ayrtonova bočníku (parazitní indukčnosti rezistorů)
- kmitočtová závislost bývá na proudových rozsazích o cca jeden řád horší

HP 34401 (standardní laboratorní DMM)

OSCILOSKOP – STRUČNÝ ÚVOD

Přístroje pro zobrazení průběhu analogového signálu v čase t pro kmitočty od jednotek Hz do desítek GHz

Analogové – vhodné pro periodické děje, signál na stínítku je "přímo" vykreslen měřeným signálem, stále může být používán v laboratořích a průmyslu … dnes už jen zřídka

Digitální – AD převodník + μP + displej – všechny výhody digitálního zpracování signálů, měření digitálních signálů a jednorázových dějů a mnoho dalšího

DIGITÁLNÍ OSCILOSKOP – zjednodušené blokové schéma

DIGITÁLNÍ OSCILOSKOP - ovládání

OSCILOSKOPICKÁ SONDA

- Menší zatížení měřeného obvodu, kompenzace vstupní kapacity osciloskopu a přívodního kabelu, případně modifikace rozsahu
- Pro nejjednodušší měření při nízkých frekvencích postačí "banánková sonda" přímé připojení vstupu osciloskopu 1 M Ω , ~100 pF (vstup osciloskopu + kapacita kabelu)

Pasivní sonda 1:10

- a) ekvivalentní obvod,
- b) ekvivalentní obvod překreslený jako frekvenčně kompenzovaný odporový dělič napětí

Kalibrace sondy (nastavení kapacity C_1) pomocí periodického obdélníkového průběhu

a)
$$R_1C_1 < R_i(C_K + C_i)$$

b)
$$R_1C_1 = R_i(C_K + C_i)$$

(správná kompenzace)

c)
$$R_1C_1 > R_i(C_K + C_i)$$