IPSEC模式下ESP报文的装包与拆包

IPSec模式下ESP报文的装包与拆包

IPSec

隧道模式

传输模式

ESP报文

ESP报文的装包与拆包

装包

拆包

参考

IPSEC

"Internet 协议安全性(**IPSec**)"是一种开放标准的框架结构,通过使用加密的安全服务以确保在 Internet 协议(**IP**) 网络上进行保密而安全的通讯。**IPSec**是安全联网的长期方向。它通过端对端的安全性来提供主动的保护以防止专用网络与 Internet 的攻击。在通信中,只有发送方和接收方才是唯一必须了解 **IPSec** 保护的计算机。

IPSec由两部分组成:

1. *IKE协议*:建立安全分组流的密钥交换协议;

2. **ESP协议**:保护分组流的协议。

IPSec可以保证入口对入口通信安全,在此机制下,分组通信的安全性由单个节点提供给多台机器;同时,端到端分组通信安全,由作为端点的计算机完成安全操作。

IPSec 协议工作在 OSI 模型的第三层,使其在单独使用时适于保护基于 TCP 或 UDP 的协议。与传输层或更高层的协议相比: IPsec协议必须处理可靠性和分片的问题; 它的复杂性更高。

隧道模式和传输模式是IPSec最主要的两种运行模式。

隧道模式

隧道模式保护所有 IP 数据并封装新的 IP 头部,不使用原始 IP 头部进行路由。在 IPSec 头部前加入新的 IP 头部,源目为 IPSec peer 地址。并允许 RFC 1918 规定的地址参与 VPN 穿越互联网。

传输模式

传输模式保护原始 IP 头部后面的数据,在原始 IP 头和 payload 间插入 IPSec 头部 (ESP 或 AH)。典型应用为端到端的会话,并且要求原始 IP 头部全局可路由。

与隧道模式不同,当 **IPSec** 工作在传输模式时,新的 IP 头并不会被生成,而是采用原来的 IP 头,保护的也仅仅是真正传输的数据,而不是整个IP报文。在处理方法上,原 IP 报文会先被解开,再在数据前面加上新的 ESP 或 AH 协议头,最后再装回原来的 IP 头。

ESP报文

封装安全载荷协议(**ESP**),**IPSec** 所支持的两类协议中的一种。该协议能够在数据的传输过程中对数据进行完整性度量,来源认证以及加密,也可防止回放攻击。**ESP** 包大致结构可见上图:传输模式——ESP传输模式。

ESP 的数据封装格式如下:

ESP报文的装包与拆包

装包

- 1. 在原IP报文末尾添加 **ESP** 尾部信息。
- 2. 将原IP报文以及第1步得到的 **ESP** 尾部作为一个整体进行加密。
- 3. 为第2步得到的加密数据添加 **ESP** 头部。
- 4. 对第三步得到的加密数据与 **ESP** 头做摘要,得到一个完整性度量值,附在报文尾部。
- 5. 得到原本的IP头。
- 6. 发送 **ESP** 报文了。

拆包

- 1. 查看 ESP 头, 通过里面的SPI决定数据报文所对应的 SA。
- 2. 对加密数据与 **ESP** 头做摘要,与附在末尾的完整性度量值做对比,判断完整性。
- 3. 检查 Seq 里的顺序号, 保证最新数据。
- 4. 根据SA所提供的加密算法和密钥,解密被加密过的数据——加密数据与 **ESP** 头。
- 5. 得到原 IP 报文与 **ESP** 尾部。
- 6. 找出填充字段的长度,得到原来的 IP 报文。
- 7. 转让到一个高一级的协议层(UDP或ICP),对这个包进行处理。

参考

"喝水不忘挖井人",在此感谢为我提供思路的参考:

- 传输模式下ESP的装包与拆包过程
- TCP-IP 详解: ESP(IPSec Encapsulating Security Payload)
- 在IPSec传输模式下ESP报文装包和拆包过程
- 传输模式下ESP的装包和拆包过程
- Psec维基百科
- WEB安全——IPsec传输模式下ESP报文的装包与拆包过程
- IPSec详细介绍

