

UNIVERSIDADE SÃO JUDAS TADEU

GESTÃO E QUALIDADE DE SOFTWARE

PROJETO A3

Grupo fictício: Inovação em Código

UNIVERSIDADE SÃO JUDAS TADEU

GESTÃO E QUALIDADE DE SOFTWARE

PROJETO A3: DOCUMENTAÇÃO DE DESENVOLVIMENTO DE SOFTWARE

Grupo: Inovação em Código

RA: 823122979 - Giulia Gabriella

RA: 824211851 – Kaue Brito Vieira

RA: 823149871 – Kauê Dib de Souza Dias

RA: 823148988 – Murilo Bonuccelli de Oliveira

RA: 823125249 – Victor ignacio – 5° semestre

RA: 82319112 – Vinícius Santana Teixeira – 5° semestre

SUMÁRIO

1 INTRODUÇÃO 4
2 PLANEJAMENTO DE TESTES DE SOFTWARE 5
2.1 Cronograma de atividades 5
2.2 Alocação de recursos 6
2.3 Marcos do projeto7
3 DOCUMENTOS DE DESENVOLVIMENTO DE SOFTWARE 8
3.1 Plano de Projeto 8
3.1.1 Planejamento do projeto 8
3.1.2 Escopo9
3.1.3 Recursos 10
3.1.4 Estimativas de projeto 11
3.2 Documento de Requisitos 12
3.3 Planejamento de Testes 13
3.3.1 Plano de Testes 13
3.3.2 Casos de Testes 16
3.3.3 Roteiro de Testes 17
4 GESTÃO DE CONFIGURAÇÃO DE SOFTWARE 18
5 REPOSITÓRIO DE GESTÃO DE CONFIGURAÇÃO 19
6 CONCLUSÃO
REFERÊNCIAS21

1 INTRODUÇÃO

Este projeto tem como objetivo documentar de forma completa o processo de desenvolvimento e qualidade de um software chamado EduTrack, voltado para a gestão de desempenho acadêmico em instituições de ensino superior. O projeto será desenvolvido em conformidade com os tópicos exigidos pela disciplina de Gestão e Qualidade de Software, incluindo planejamento de testes, elaboração de documentos de requisitos, plano de projeto, planejamento e execução de testes, além da gestão de configuração de software.

A proposta simula um cenário realista de desenvolvimento, com estimativas de cronograma, recursos alocados e uso de boas práticas recomendadas na literatura da engenharia de software.

2.1 CRONOGRAMA DE ATIVIDADES

O cronograma de atividades do projeto EduTrack foi elaborado considerando as principais fases do desenvolvimento de software, incluindo planejamento, levantamento de requisitos, design, codificação, testes e entrega final. A seguir, apresenta-se o cronograma resumido em formato de tabela.

CRONOGRAMA DE ATIVIDADES

2.2 ALOCAÇÃO DE RECURSOS

Para o desenvolvimento do EduTrack, os seguintes recursos foram alocados:

- Recursos Humanos:
- Ana Beatriz Costa: responsável pelo planejamento.
- Bruno Martins Lima: responsável pelo levantamento de requisitos
- Camila Rocha Silva: responsável pelo design
- Giovanni silva de lima: responsável pela Implementação
- Yuri Brito Vieira responsável pelos testes Todos: Responsáveis pela Documentação
 Final
- Recursos Tecnológicos:
- Ambiente de desenvolvimento: Visual Studio Code, Python, Git, GitHub.
- Ferramentas de colaboração: Trello, Google Drive, Microsoft Teams.
- Ferramentas de testes: Postman (para API), Selenium (para testes automatizados de interface).

2.3 MARCOS DO PROJETO

Os principais marcos definidos para o projeto EduTrack são:

- 07/04/2025: Finalização da fase de planejamento
- 14/04/2025: Entrega da documentação de requisitos
- 21/04/2025: Conclusão do design e arquitetura do sistema
- 12/05/2025: Finalização da primeira versão funcional (MVP)
- 27/05/2025: Conclusão dos testes e validação do sistema
- 04/06/2025: Entrega da documentação final e encerramento do projeto3 DOCUMENTOS DE DESENVOLVIMENTO DE SOFTWARE

3. PLANO DE PROJETO

3.1. Planejamento do Projeto

O projeto EduTrack será desenvolvido utilizando a metodologia incremental, com entregas contínuas e evolutivas. O planejamento contempla a definição de fases, responsabilidades e metas claras para cada etapa. A coordenação do grupo será feita por meio de reuniões semanais e o uso de ferramentas como jira e GitHub para organização.

3.1.2 Escopo

O EduTrack é um sistema de gestão de desempenho acadêmico para instituições de ensino superior. O sistema inclui funcionalidades como cadastro de alunos, lançamentos de notas, acompanhamento de desempenho, e relatórios acadêmicos para alunos e docentes.

3.1.3 Recursos

Os recursos humanos e tecnológicos alocados incluem:

- Equipe de desenvolvimento: Ana Beatriz, Bruno Martins e Camila Rocha
- Computadores com conexão à internet
- Softwares: Python, Django, PostgreSQL, Selenium, Postman
- Plataformas: GitHub, jira, Microsoft Teams3.1.4 Estimativas de Projeto

A estimativa geral de esforço é de 6 semanas, totalizando cerca de 120 horas de dedicação do grupo, considerando tarefas de levantamento, codificação, testes e documentação. Cada integrante se compromete com ao menos 10 horas semanais.

3.2 DOCUMENTO DE REQUISITOS

Os requisitos do EduTrack foram levantados com base em simulações de entrevistas com usuários-alvo (coordenadores acadêmicos e docentes). Foram identificados os seguintes requisitos:

Requisitos Funcionais:

- Cadastro de alunos e professores
- Lançamento de notas e faltas
- Geração de boletins e gráficos de desempenho
- Login com controle de acesso Requisitos Não Funcionais:
- Disponibilidade mínima de 99%
- Tempo de resposta inferior a 2 segundos
- Interface intuitiva e responsiva
- Backup automático diário

3.3 PLANEJAMENTO DE TESTES

3.3.1 Plano de Testes

3.3.1.1 Introdução

Este plano de testes visa assegurar a qualidade do EduTrack por meio da verificação e validação de suas funcionalidades.

3.3.1.2 Escopo

As funcionalidades testadas incluem login, cadastro, lançamento de notas e relatórios.

3.3.1.3 Objetivos

Validar a conformidade dos módulos com os requisitos funcionais e não funcionais.

3.3.1.4 Requisitos a serem testados

Login, cadastros, geração de relatórios, usabilidade e tempo de resposta.

3.3.1.5 Estratégias, tipos de testes e ferramentas

Serão realizados testes funcionais, de interface e desempenho usando Postman, Selenium e testes manuais.

3.3.1.6 Recursos a serem empregados

Notebook com ambiente de testes, base de dados de teste, ferramentas automatizadas.

3.3.1.7 Cronograma das atividades

Alinhado ao cronograma do projeto definido na seção 2.1.

3.3.1.8 Definição dos marcos do projeto

Apresentados na seção 2.3 do documento.

3.3.2 Casos de Testes

CT01 – Login com credenciais válidas

Entrada: email e senha válidos

Resultado Esperado: acesso permitido

CT02 – Cadastro de aluno

Entrada: nome, matrícula, curso

Resultado Esperado: cadastro salvo no banco de dados7

CT03 – Lançamento de nota inválida

Entrada: nota acima de 6

Resultado Esperado: mensagem de erro e bloqueio do envio

ID do Caso de Teste	Título	Usuário	Entradas	Procedimento de Teste	Resultado Esperado
CT01	Login com credenciais válidas	Qualquer usuário com cadastro	Email e senha válidos	1. Acessar a tela de login 2. Informar email e senha válidos 3.Clicar em 'Entrar'	Acesso permitido ao Sistema
CT02	Cadastro de aluno	Administrador	Nome, matrícula, curso	 Acessar a tela de cadastro Preencher nome, matrícula e curso Clicar em 'Salvar' 	Cadastro salvo corretamente no banco de dados
СТОЗ	Lançamento de nota inválida	Professor	Nota acima de 6	1. Acessar tela de lançamento de notas 2. Informar nota superior a 6 3. Clicar em 'Enviar'	bloquear envio da nota inválida

3.3.3 Roteiro de Testes

- 1. Iniciar o sistema EduTrack
- 2. Efetuar login com perfil de docente
- 3. Cadastrar um novo aluno

4.GESTÃO DE CONFIGURAÇÃO DE SOFTWARE

A gestão de configuração de software (GCS) no projeto EduTrack tem como objetivo garantir o controle e rastreabilidade das alterações no código, documentos e artefatos do sistema durante todo o ciclo de desenvolvimento.

Para isso, foram adotadas as seguintes práticas:

- Versionamento com Git, utilizando branches específicas para desenvolvimento, testes e produção.
- Uso de GitHub como repositório central, com controle de pull requests e revisão de código.
- Registro de mudanças através de arquivos CHANGELOG.md, atualizados a cada nova versão.
- Padronização de commits com convenções de mensagens para fácil identificação e histórico de alterações.
- Armazenamento seguro de configurações sensíveis em arquivos .env, não rastreados pelo repositório.

5. REPOSITÓRIO DE GESTÃO DE CONFIGURAÇÃO DE SOFTWARE

O repositório oficial do projeto EduTrack está hospedado em: https://github.com/inovacaoem-codigo/edutrack

A estrutura organizacional do repositório foi definida da seguinte forma: - /docs: contém a documentação do projeto em formato Markdown (manual do usuário, requisitos, https://github.com/inovacao-em-codigo/edutrack planejamento de testes). - /src: diretório principal com o código-fonte dividido em módulos (usuários, desempenho, relatórios).

- /tests: scripts de testes automatizados, casos de testes e logs de execução.
- .gitignore: define arquivos e pastas a serem ignoradas no versionamento.
- README.md: arquivo de apresentação e instruções de uso do sistema. CHANGELOG.md: histórico de versões e mudanças realizadas no sistema.

Essa estrutura facilita a manutenção, auditoria e colaboração entre os membros do grupo, garantindo maior qualidade e organização.

6. CONCLUSÃO

A elaboração do projeto EduTrack permitiu aplicar conceitos fundamentais da Engenharia de Software e práticas de Gestão da Qualidade. Ao longo do desenvolvimento, foi possível compreender a importância do planejamento estruturado, da documentação técnica e da execução criteriosa de testes.

Além disso, o uso de ferramentas adequadas para controle de versão e automação de testes contribuiu significativamente para a organização e qualidade final do produto. O projeto simula com fidelidade o ciclo de vida de um software real, reforçando a relevância da disciplina para a formação profissional.

REFERÊNCIAS

PRESSMAN, Roger S.; MAXIM, Bruce R. Engenharia de Software: uma abordagem profissional. 8. ed. Porto Alegre: AMGH, 2016.

SOMMERVILLE, Ian. Engenharia de Software. 9. ed. São Paulo: Pearson Prentice Hall, 2011.

GONÇALVES, Priscila de Fátima et al. Testes de software e gerência de configuração. Soluções Educacionais Integradas, 2019.

BRAGA, Pedro Henrique Cacique. Teste de Software. São Paulo: Pearson Education, 2016.

PFLEEGER, Shari Lawrence. Engenharia de software: teoria e prática. 2. ed. São Paulo: Prentice Hall, 2004.