Tutorial 1 – An introduction to environmental economics

Thomas Douenne - University of Amsterdam

Let's consider an economy composed of H different types of individuals. We assume a unit size population with n_h individuals of type h (i.e. $\sum_{h=1}^{H} n_h = 1$). Individuals differ in two ways. First, with respect to their productivity: we assume that individuals of type h exogenously supply l_h units of effective labor, with unit wage normalized to 1. Second, with respect to their preferences. Individual preferences are defined over two consumption goods, x and y, and aggregate pollution, E. x is a clean good and does not pollute. y is a dirty good and generates pollution. In particular, aggregate pollution is given by:

$$E = \sum_{h=1}^{H} n_h e_h \tag{1}$$

with $e_h = \phi y_h$ where ϕ is the pollution intensity of the dirty good. We assume that the dirty good is a necessity: individuals of type h need to consume a minimum amount of \bar{y}_h and experience utility from that good only when they consume more than this level. In particular, we assume that preferences can be represented by the following utility function:

$$u^{h}(x_{h}, y_{h}, E) = x_{h} + \gamma \ln(y_{h} - \bar{y}_{h}) - \chi E$$
(2)

In addition of individual consumers, we also suppose that in both sectors (clean and dirty) there is one representative competitive firm producing from a linear technology such that producing one unit of good x (resp. y) requires a_x (resp. a_y) units of effective labor.

Decentralized problem

We first consider the behavior of private agents under a laissez-faire scenario.

- 1. Write down the profit function of both firms. Keeping in mind that both sectors are competitive, show that in equilibrium the firms will sell at prices $p_x = a_x$ and $p_y = a_y$.
- 2. Write down agent *h* problem and the associated Lagrangian. Show that the first order conditions give:

$$\frac{\frac{\partial u^h}{\partial x_h}}{\frac{\partial u^h}{\partial y_h}} = \frac{p_x}{p_y} \tag{3}$$

3. Using equation (2), show that the equilibrium demands for x_h and y_h are given by:

$$x_h = \frac{l_h - p_y \bar{y}_h}{p_x} - \gamma \tag{4}$$

$$y_h = \bar{y}_h + \gamma \frac{p_x}{p_y} \tag{5}$$

4. Show that the aggregate level of pollution in the decentralized equilibrium is:

$$E^{eq} = \phi \left(\gamma \frac{a_x}{a_y} + \sum_h n_h \bar{y}_h \right) \tag{6}$$

Central planner's problem

Let's now consider a central planner deciding on the optimal allocation. We assume that the planner gives equal weight to the utility of each individual.

- 5. Write down the planner's problem i.e. its objective function, the feasibility constraint, and the pollution constraint and express it as a Lagrangian.
- 6. Show that for any individual of type h the first order conditions give:

$$\frac{\partial u^h}{\partial y_h} = \frac{a_y}{a_x} \frac{\partial u^h}{\partial x_h} - \phi \sum_{k=1}^H n_k \frac{\partial u^k}{\partial E}.$$
 (7)

7. For any individual of type h, show that the consumption of dirty good at the optimum (y_h^*) is given by:

$$y_h^* = \bar{y}_h + \gamma \frac{a_x}{a_y + \phi \chi a_x} \tag{8}$$

- 8. Explain why we cannot derive such expression for x_h^* .
- 9. Compute E^* , the optimal level of pollution, and compare it to E^{eq} .

Government's problem

Let's now assume that a government cannot choose all allocations, but can tax the polluting good, so that its final price is $q_y = p_y + t_y$. Also assume that the government can redistribute the tax revenue through a uniform lump-sum transfer T to all agents.

- 10. Write down the government budget constraint.
- 11. Show that in equilibrium, the firms sell at prices $q_x = a_x$ and $q_y = a_y + t_y$.
- 12. Show that the equilibrium demands for x_h and y_h are given by:

$$x_h = \frac{l_h + T - q_y \bar{y}_h}{q_x} - \gamma \tag{9}$$

$$y_h = \bar{y}_h + \gamma \frac{q_x}{q_y} \tag{10}$$

- 13. Compute the level of tax t_y necessary for the government to reach the optimal level of pollution.
- 14. We denote σ_h the effort rate on the pollution tax, defined as the ratio between an household contribution to this tax over its income. Compute the effort rate of this tax. If \bar{y}_h is the same for all types h, how does the effort rate evolves with income?
- 15. Consider the case where \bar{y}_h is a function of income, so that we can write $\bar{y}_h = \bar{y}(l_h)$. Under which condition over this function is the tax progressive?