```
import pandas as pd
data = pd.read_csv('/content/weight-height.csv')
#checking first 10 elements of dataset
data.head(10)
                              Weight
                                        \blacksquare
         Gender
                   Height
      0
          Male 73.847017 241.893563
                                        ıl.
      1
          Male
                68.781904 162.310473
      2
          Male
               74.110105 212.740856
      3
           Male
                71.730978 220.042470
      4
          Male
               69.881796 206.349801
      5
           Male
                67.253016 152.212156
      6
          Male 68.785081 183.927889
      7
           Male 68.348516 167.971110
      8
           Male 67.018950 175.929440
      9
           Male 63.456494 156.399676
                                        View recommended plots
 Next steps:
             Generate code with data
#checking the shape of the dataset
data.shape
     (10000, 3)
#checking if there are null values in the dataset
data.isnull().sum()
     Gender
              0
     Height
              0
     Weight
     dtype: int64
#Getting a sample of the dataset
data.sample(10)
                      Height
                                           ▦
            Gender
                                 Weight
      6211 Female 64.135856 132.991795
                                           ıl.
      6253 Female 67.248224 172.713625
      1543
              Male 68.469824 201.086014
      2686
              Male 65.207347 151.875669
     9168 Female 64.453190 152.705133
      8533 Female 59.815911 130.957028
      2597
              Male 68.957439 182.192513
      2008
              Male 66.416414 193.601091
              Male 70.074296 205.387910
      2472
      7655 Female 62.754392 131.292880
#check bottom of the dataset
data.tail(10)
```

```
丽
           Gender
                     Height
                                 Weight
     9990 Female 63.179498 141.266100
      9991 Female 62.636675 102.853563
     9992 Female 62.077832 138.691680
     9993 Female 60.030434
                              97.687432
     9994 Female 59.098250 110.529686
     9995 Female 66.172652 136.777454
     9996 Female 67.067155 170.867906
     9997 Female 63.867992 128.475319
     9998 Female 69.034243 163.852461
      9999 Female 61.944246 113.649103
column_to_drop = ['Gender']
#Drop column Gender
data = data.drop(column_to_drop, axis=1)
from sklearn.model_selection import train_test_split
#splitting the dataset
x_train, x_test, y_train, y_test = train_test_split(data.Height.values.reshape(-1, 1), data.Weight, random_state=11)
x_train.shape
     (7500, 1)
y_train.shape
     (7500,)
x_test.shape
     (2500, 1)
from sklearn.linear model import LinearRegression
#The linear regression model
linear_regression = LinearRegression()
#calling function fit so as to train the model
linear_regression.fit(X= x_train, y=y_train)
     ▼ LinearRegression
     LinearRegression()
#linear regression co-efficient (gradient of the slope)
linear_regression.coef_
     array([7.71345358])
#linear regression y-intercept (where x and y meet)
linear_regression.intercept_
     -350.390277050054
equation = y = mx + c
weight = 7.71345358 * height - 350.390277050054
```

```
#calling function predict to test the model
predicted_values = linear_regression.predict(x_test)
#re-assigning the expected values
expected_values = y_test
from sklearn.metrics import mean_absolute_error
#cheking the Mean Abolute Error
print("MAE", mean_absolute_error(expected_values, predicted_values))
     MAE 9.585892229098492
#lambda function to calculate different weights
predict_weight = (lambda x: linear_regression.coef_ * x + linear_regression.intercept_)
\hbox{\tt \#Weight predicted for a height of } 70.1047862551571
predict_weight(70.1047862551571)
     array([190.35973736])
import matplotlib.pyplot as plt
weight = data['Weight']
weight
     0
             241.893563
             162.310473
     1
             212.740856
     2
     3
             220.042470
             206.349801
     9995
            136.777454
     9996
            170.867906
     9997
            128.475319
            163.852461
     9998
            113.649103
     Name: Weight, Length: 10000, dtype: float64
height = data['Height']
height
     0
             73.847017
             68.781904
     1
     2
             74.110105
     3
             71.730978
             69.881796
     9995
             66.172652
     9996
            67.067155
     9997
             63.867992
     9998
            69.034243
     9999
            61.944246
     Name: Height, Length: 10000, dtype: float64
plt.figure(figsize=(20,20))
     <Figure size 2000x2000 with 0 Axes>
     <Figure size 2000x2000 with 0 Axes>
```

```
#scatter plot
#Attempt 1 at scatter plot
plt.scatter(height, weight, c='red', label='Scatter Plot')

#label for x-axis
plt.xlabel('Height')

#label for y-axis
plt.ylabel('Weight')

#Title for plot
plt.title("Scatter plot for height vs weight linear regression")
plt.legend()
plt.show()
```

Scatter plot for height vs weight linear regression

Start coding or generate with AI.

```
import seaborn as sns
```

```
#seaborn scatterplot
#attempt number 2 of scatter plot
axes = sns.scatterplot(data=data, x='Height', y='Weight', hue='Height', palette='winter', legend=False)

x = np.array([min(data.Height.values), max(data.Height.values)])
y = predict(x)
line = plt.plot(x, y)
```

