BEST AVAILABLE COPY

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 15 January 2004 (15.01.2004)

PCT

(10) International Publication Number WO 2004/004652 A2

(51) International Patent Classification7:

A61K

(21) International Application Number:

PCT/US2003/021145

(22) International Filing Date:

3 July 2003 (03.07.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/394,313

8 July 2002 (08.07.2002) US

- (71) Applicant (for all designated States except US): MERCK & CO., INC. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): BUSER-DOEP-NER, Carolyn, A. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). COLEMAN, Paul, J. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). COX, Christopher, D. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). FRALEY, Mark, E. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). GARBACCIO, Robert, M. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). HARTMAN, George, D. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US).

HEIMBROOK, David, C. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). KUO, Lawrence, C. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). HUBER, Hans, E. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). SARDANA, Vinod, V. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). TORRENT, Maricel [ES/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). YAN, Youwei [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US).

- (74) Common Representative: MERCK & CO., INC., 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: MITOTIC KINESIN BINDING SITE

(57) Abstract: The present invention is directed to the identification, characterization and three-dimensional structure of a novel ligand binding site of KSP. Binding of ligands to the novel binding site result in a conformational change in the three-dimensional structure of the protein and a modulation of the activity of KSP. This conformational change in turn results in the formation of a novel binding pocket in the KSP protein, which comprises the novel binding site of the instant invention.

WO 2004/004652 A2 ||||||

WO 2004/004652 A2

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

TITLE OF THE INVENTION MITOTIC KINESIN BINDING SITE

FIELD OF THE INVENTION

5

10

15

20

25

30

35

The present invention generally pertains to the fields of molecular biology, protein purification, protein crystallization, X-ray diffraction analysis, three-dimensional structural determination, rational drug design and molecular modeling of motor proteins, in particular -Kinesin Spindle Protein (KSP). Compositions and crystals of KSP with a KSP inhibitor bound to the protein at the novel ligand binding site identified herein are also provided. The crystallized KSP is physically analyzed by Xray diffraction techniques. The resulting X-ray diffraction patterns are of sufficiently high resolution to be useful for determining the threedimensional structure of inhibitor-bound KSP. Those atomic coordinates are useful in molecular modeling of related proteins and rational drug design (RDD) of mimetics and ligands for KSP and related proteins. Methods of using the structure coordinates of KSP in complex with an inhibitor for the design of pharmaceutical compositions which inhibit the biological function of KSP, particularly those biological functions mediated by molecular interactions involving KSP are also disclosed.

BACKGROUND OF THE INVENTION

Cancer remains one of the leading causes of death in the United States. Clinically, a broad variety of medical approaches, including surgery, radiation therapy and chemotherapeutic drug therapy are currently being used in the treatment of human cancer (see the textbook CANCER: Principles & Practice of Oncology, 6th Edition, De Vita et al., eds., J. B. Lippincott Company, Philadelphia, Pa., 2001). However, it is recognized that such approaches continue to be limited by a fundamental lack of a clear understanding of the precise cellular bases of malignant transformation and neoplastic growth.

The control of cell division is one of the most basic aspects of multicellular existence. Uncontrolled cell growth and division, which produces cells that divide when they should not, produces contiguous cellular masses called tumors that are the basis for many cancers.

A common strategy for cancer therapy is the development of drugs that interrupt the cell cycle during mitosis. Compounds that perturb shortening (depolymerization) or lengthening (polymerization) cause arrest of the cell cycle in mitosis due to perturbation of the normal microtubule dynamics necessary for the chromosome movement. (Compton, D. A., et al., (1999) Science 286:913-914). A common denominator attending these compounds is that they arrest cells in mitosis by inhibiting spindle assembly (Compton, D. A., et al., (1999) Science 286:313-314). More recently, some agents such as monastrol have been implicated in inhibiting mitosis by blocking the function of essential proteins, such as mitotic proteins. (Mayer, T.U. et al., (1999) Science 286: 971-974).

10

15

30

35.

The motor protein, kinesin, was discovered in 1985 in squid axoplasm. R. D. Vale et al., Identification of a Novel Force-generating Protein, Kinesin, Involved in Microtubule-based Motility, Cell 42:39-50 (1985). In the last few years, it has been discovered that kinesin is just one member of a very large family of motor proteins. E.g., S. A. Endow, The Emerging Kinesin Family of Microtubule Motor Proteins, 16 Trends Biochem. Sci. 221 (1991); L. S. B. Goldstein, The Kinesin Superfamily: Tails of Functional Redundancy, 1 Trends Cell Biol. 93 (1991); R. J.

Stewart et al., Identification and Partial Characterization of Six Members of the Kinesin Superfamily in Drosophila. Proc. Nat'l Acad. Sci. USA 88:8470 (1991). Other motor proteins include dynein, e.g. M.-G. Li et al., Drosophila Cytoplasmic Dynein, a Microtubule Motor that is Asymmetrically Localized in the Oocyte, J. Cell Biol. 126:1475-1493 (1994), and myosin, e.g. T. Q. P.
Uyeda et al., J. Mol. Biol. 214:699-710 (1990).

Mitotic kinesins are enzymes essential for assembly and function of the mitotic spindle, but are not generally part of other microtubule structures, such as in nerve processes. These essential microtubule-based motor proteins travel along microtubules reaching into every corner of the cell. Mitotic kinesins play essential roles during all phases of mitosis. These proteins can be conceptualized as biological machines that transduce chemical energy into mechanical forces and motion. Kinesins use the energy derived from ATP hydrolysis to power their movement unidirectionally along microtubules and to transport molecular cargo to specific destinations. During mitosis, kinesins organize

microtubules into the bipolar structure that is the mitotic spindle. Kinesins mediate movement of chromosomes along spindle microtubules, as well as structural changes in the mitotic spindle associated with specific phases of mitosis. Experimental perturbation of mitotic kinesin function causes malformation or dysfunction of the mitotic spindle, frequently resulting in cell cycle arrest and cell death. It is rapidly becoming clear that mictrotubule motors play a crucial role in the functions of microtubules in mitosis.

Among the mitotic kinesins which have been identified is Kinesin Spindle Protein (KSP). KSP belongs to the BimC family of 10 kinesins which are essentially a conserved kinesin subfamily of plus end-directed microtubule motors that assemble into bipolar homotetramers consisting of anti-parallel homodimers. Human KSP (also termed HsEg5) has been described [Blangy, et al., Cell, 83:1159-69 (1995); Whitehead, et al., Arthritis Rheum., 39:1635-42 (1996); Galgio et al., J. Cell Biol., 135:339-414 (1996); Blangy, et al., J Biol. Chem., 272:19418-24 (1997); 15 Blangy, et al., Cell Motil Cytoskeleton, 40:174-82 (1998); Whitehead and Rattner, J. Cell Sci., 111:2551-61 (1998); Kaiser, et al., JBC 274:18925-31 (1999); GenBank accession numbers: X85137, NM004523 and U37426], and a fragment of the KSP gene (TRIPS) has been described [Lee, et al., Mol 20 Endocrinol., 9:243-54 (1995); GenBank accession number L40372]. Xenopus KSP homologs (Eg5), as well as Drosophila K-LP61 F/KRP 130 have been reported. KSP is a mitotic kinesin protein essential for proper DNA division in cells.

During mitosis KSP associates with microtubules of the mitotic spindle. Microinjection of antibodies directed against KSP into human cells prevents spindle pole separation during prometaphase, giving rise to monopolar spindles and causing mitotic arrest and induction of programmed cell death. The current model of KSP function in mitosis envisions that KSP and related kinesins in other, non-human organisms, bundle antiparallel microtubules and slide them relative to one another, thus forcing the two spindle poles apart. KSP may also mediate anaphase B spindle elongation and focussing of microtubules at the spindle pole. The mitotic spindle has been the subject of considerable research. The study of mitotic spindle proteins, such as microtubules, has yielded anti-mitotic compounds with important applications in cancer chemotherapy. The

25

30

35

demonstrated effectiveness of these anti-mitotic compounds in important medical and agricultural applications demonstrates the desirability of identifying and characterizing anti-mitotic compound development candidates.

5

10

15

20

25

30

35

Because defects in the function of KSP have been implicated in cell cycle arrest, agents and/or compounds that modulate the activity of this kinesin will find use in the treatment of hyper-proliferative cell disorders such as cancer.

Medicaments generally exhibit their biological activities through strong interactions with their respective targets. Recently, advances in protein crystallography and computational chemistry have introduced a new method of structure-based drug design into the field of drug development. X-ray crystallography (crystallography) is an established, well-studied technique that provides what can be best described as a three-dimensional picture of what a molecule looks like in a crystal. Scientists have used crystallography to solve the crystal structures for many biologically important molecules. Many classes of biomolecules can be studied by crystallography, including, but not limited to, proteins, DNA, RNA and viruses.

Crystallography has been used extensively to view ligandprotein complexes for structure-based drug design. To view such complexes, known ligands are usually soaked into the target molecule crystal, followed by crystallography of the complex. Sometimes, it is necessary to cocrystallize the ligands with the target molecule to obtain a suitable crystal.

Given a "picture" of a target biomolecule or a ligand-protein complex, scientists can look for pockets or receptors where biological activity can take place. Thereafter, scientists can experimentally or computationally design high-affinity ligands (or drugs) for the protein/receptors. Computational methods have alternatively been used to screen for the binding of small molecules. This approach is also useful for developing new anti-mitotic agents.

Recently, independent efforts have confirmed the role of mitotic kinesins as critical mediators of microtubule organization during mitosis. It is postulated that blocking the biological function of motor proteins, e.g., human KSP, will lead to cell cycle arrest. While the binary

structure of KSP complexed with ADP has been published, (Turner et al., Journal of Biological Chemistry, 276; 25496-25502 (2001), no ternary structure of KSP complexed with a modulator, e.g., inhibitor, has heretofore been published. Consequently, until the present invention, which details the structural coordinates of human KSP with various ligands, albeit inhibitors, the identity and characterization of the novel binding site detailed herein was heretofore never available for rational drug design. As such, drug discovery efforts directed towards the KSP protein have been hampered by the lack of structural information about this protein and its complex with a ligand, e.g., monastrol. Such structural information would provide valuable information in discovery of anti-mitotic agents.

5

10

15

30

The inventors provide herein crystals of KSP, complexed with a ligand, containing a novel, induced-fit binding site and have determined its three-dimensional structure. With this information, it is now possible, for the first time, to rationally design inhibitors of KSP, which can function as anti-mitotic agents, e.g. compounds which inhibit spindle pole separation during mitosis, thereby effectively inducing cell cycle arrest. It is believed that no one has heretofore reported determining the three-dimensional structure of the binding site identified herein.

20 Advantageous therapeutic embodiments would therefore comprise therapeutic and/or diagnostic agents based on or derived from the three-dimensional crystal structure of KSP including its novel binding site identified herein that have one or more than one of the functional activities of KSP. Additional therapeutic embodiments would comprise therapeutic and/or diagnostic agents based on or derived from molecular modeling of other members of the BimC protein family using the three-dimensional crystal structure of KSP and its binding site provided herein.

In accordance therewith, the novel-binding site disclosed herein is considered a potential target for anti-mitotic agents. In addition, the invention provides a process for creation of ligand candidate structures by means of a computer, using the structural coordinates of KSP's binding site provided herein. Furthermore, the information provided herein will enable one to search for ligand structures from a three-dimensional structure database containing known compounds.

SUMMARY OF THE INVENTION

The present invention is directed to the identification, characterization and three-dimensional structure of a novel ligand binding site of KSP. Binding of ligands to the novel binding site result in a conformational change in the three-dimensional structure of the protein and a modulation of the activity of KSP. This conformational change in turn results in the formation of a novel binding pocket in the KSP protein, which comprises the novel binding site of the instant invention. It has been further discovered that the formation of the novel binding pocket is facilitated by the concurrent binding of a nucleotide substrate or substrates to the protein. Moreover, the instant invention provides an attractive target for the rational design of potent and selective inhibitors of KSP identified by the methods of the invention, particularly new lead compounds useful in treating hyper-proliferative and KSP-dependent disorders.

15

10

5

BRIEF DESCRIPTION OF THE DRAWINGS

FIGURE 1 An X-ray oscillation diffraction picture from a crystal of KSP in complex with (+)-monastrol and ADP (Compound 5-2b).

20

25

FIGURE 2 The KSP-ADP-(+)-monastrol complex as shown in a ribbon presentation. The structure of the KSP-ADP-(+)-monastrol (Compound 5-2b) complex is shown in a ribbon representation. The bound conformations of ADP and Compound 5-2b are also given together with their respective electron density. The location of Compound 5-2b, the active isomer of monastrol, is seen at a novel induced-fit site, some 12Å distal from the nucleotide-binding site and catalytic center of the enzyme.

30

35

FIGURE 3 (+)-Monastrol binding between helix-α2 and helix-α3. (+)-monastrol (Compound 5-2b) is seen to bind in between (the insertion loop of) helix-α2 and helix-α3 (which is immediately preceding the 'Switch 1' typically seen in all kinesins). Also shown are the side-chains of Arg119, Tyr211 and Trp127. The Arg119 and Tyr211 residues move upward and outward, yielding space to accommodate the binding of the

inhibitor. At the same time, the insertion loop of helix-α2 relocates its main-chain location with a downward shift of ~8Å; the side-chain of its Trp127 as a result swings inward by ~10Å, capping the entrance of the induced-fit cavity together with the side-chains of Arg119 and Tyr211. Lining the newly formed pocket and surrounding the inhibitor are residues 115–119, 127, 130, 132–134, 136, 137, 160, 211, 214, 215, 217, 218, 221 and 239.

5

10

15

20

25

30

FIGURE 4 Comparison between the binary and ternary structure shown in ribbon presentation. The conformational alteration observed for the kinesin structure upon Compound 5-2b binding to the ADP-binary complex is not limited to the immediate vicinity of the inhibitor. Rearrangements of protein moieties are spread throughout the enzyme upon (+)-monastrol binding, including the switch I, switch II and neck linker region, with the exception that the nucleotide binding site of the protein as well as its β-sheet structure remaining basically unchanged.

FIGURE 5 Conformational alteration of KSP structure upon ligand binding shown in ribbon presentation. In the Switch I area of KSP, as circled, the main-chain re-orients its geometry significantly on both ends of Ala230. Although the helicity of the Switch I region is unchanged, the pitch at the C-terminal end of helix-α3 is increased in the ternary complex from that in the binary complex.

FIGURE 6 Conformational alteration of KSP structure upon ligand binding shown in ribbon presentation. In the Switch II region of KSP, which is located on the opposite side of the binding site, as circled, the C-terminal end of helix-α-4 is repositioned significantly. The tip of the helix, in the Switch II region of KSP, near Arg305 is moved by ~6Å in the ternary complex from its location in the binary complex.

FIGURE 7 <u>Conformational alteration of KSP structure</u>

<u>upon ligand binding shown in ribbon presentation.</u> In the neck-linker region of KSP, which is the C-terminal portion of the protein construct, the residues

beginning from Lys357 to Phe362 swing by almost 180° in the ternary complex from its position in the ADP binary complex. Although residues 363–368 are present in the protein, they are disordered in the crystal and hence offer no electron density. The neck-linker region of KSP is circled. A close-up view is depicted, comparing the neck-linker region in the ternary complex to that in the binary complex.

5

10

15

1-368.

FIGURE 8 <u>Conformational alteration of KSP structure</u>
upon ligand binding. A close-up view comparing the nucleotide-binding site
in the binary and ternary complexes of KSP is shown. Within experimental
errors, most of the backbone and side-chains for the two complexes in this
region of the protein can be super-positioned.

FIGURE 9 Motor Domain of Human KSP, Amino Acids

FIGURE 10 Binding Pocket of human KSP.

FIGURE 11 KSP/Compound 5-2b fluorescence data.

Compound 5-2b demonstrates a dose dependent decrease on the fluorescence of Trp127 in the presence of ADP or AMPPNP. These data indicate that the fluorescence assay is useful to measure potential KSP inhibitors. In the absence of the nucleotide, 5-2b does not cause a decrease on Trp127 fluorescence, suggesting the inability of 5-2b to bind to KSP in the absence of the nucleotide.

FIGURE 12 KSP/Compound 8-1 fluorescence data.

Compound 8-1 demonstrates a dose dependent decrease on the fluorescence of Trp127 in the presence of ADP or AMPPNP. These data indicate that the fluorescence assay is useful to measure potential KSP inhibitors. In the absence of the nucleotide, 8-1 does not cause a decrease on Trp127 fluorescence, suggesting the inability of 8-1 to bind to KSP in the absence of the nucleotide.

FIGURE 13 KSP/Compound 1-7 fluorescence data.

Compound 1-7 demonstrates a dose dependent decrease on the fluorescence of Trp127 in the presence of ADP or AMPPNP. These data indicate that the fluorescence assay is useful to measure potential KSP inhibitors. In the absence of the nucleotide, 1-7 does not cause a decrease on Trp127 fluorescence, suggesting the inability of 1-7 to bind to KSP in the absence of the nucleotide.

FIGURES 14A and 14B KSP Inhibitor Pharmacophore Models.

- The two pharmacophore models derived from analysis and further computational processing of the crystallized complex are illustrated. Spheres represent a center of a hydrophobic group and boxes represent either a hydrogen bond acceptor (HA) or hydrogen bond donor (HD). All distances are in Å.
- FIGURE 15 KSP Inhibitor Pharmacophore Models in KSP Binding

 Site. A schematic view of the two pharmacophore models superimposed and mapped onto the ligand binding site of KSP defined, in part, by the amino acids of Figure 10.

 Only relevant KSP protein residues are shown.
- 20 FIGURE 16 KSP Inhibitor Pharmacophore Model.

 A pharmacophore model derived from analysis and further computational processing of a crystallized complex is illustrated. Spheres represent a center of a hydrophobic group and boxes represent either a hydrogen bond acceptor (HA).

25
TABLE 1 KSP motor domain/Compound 5-2b X-ray

coordinates.

TABLE 2 KSP motor domain/Compound 1-7 X-ray

30 coordinates.

5

TABLE 3 <u>KSP motor domain/Compound 2-7 X-ray</u> coordinates.

TABLE 4 KSP motor domain/Compound 4-2a X-ray

coordinates.

10

15

20

30

35

TABLE 5 Novel KSP ligand binding site/Compound 5-

5 2b X-ray coordinates.

DETAILED DESCRIPTION OF THE INVENTION

"Conservative substitutions" are those amino acid substitutions which are functionally equivalent to the substituted amino acid residue, either by way of having similar polarity, steric arrangement, or by belonging to the same class as the substituted residue (e.g., hydrophobic, acidic or basic), and includes substitutions having an inconsequential effect on the three-dimensional structure of KSP with respect to the use of said structure for the identification and design of KSP or KSP complex inhibitors, for molecular replacement analyses and/or for homology modeling.

Amino acid sequence "similarity" is a measure of the degree to which aligned amino acid sequences possess identical amino acids or conservative amino acid substitutions at corresponding positions.

A "fragment" of KSP is meant to refer to a protein molecule which contains a portion of the complete amino acid sequence of the wild type or reference protein.

As used herein, a "variant" of a KSP protein refers to a polypeptide having an amino acid sequence with one or more amino acid substitutions, insertions, and/or deletions compared to the sequence of the invention receptor protein.

Generally, differences are limited so that the sequences of the reference (native or wild type KSP) and the variant are closely similar overall, and in many regions, identical. Such variants are generally biologically active and necessarily have less than 100% sequence identity with the polypeptide of interest.

Preferably, the biologically active variant KSP has an amino acid sequence sharing at least about 80% amino acid sequence identity with the reference KSP, preferably at least about 85%, more preferably at least about 90%, and most preferably at least about 95%. Amino-acid substitutions are preferably substitutions of single amino-acid residues. Preferably, such polypeptides also possess characteristic structural features and biological activity of a native KSP polypeptide.

For example, variants of KSP are characterized as containing key functional residues that participate in ligand binding. These polypeptide fragments, in turn, have been derivatized by methods akin to traditional drug development. Preferred polypeptides and polynucleotides of the present invention are expected to have, *inter alia*, similar biological functions/properties to their homologous polypeptides and polynucleotides. Furthermore, preferred polypeptides and polynucleotides of the present invention have at least one GPR25 activity.

5

10

15

20

25

30

35

Sequence similarity or percent similarity can be determined, for example, by comparing sequence information using sequence analysis software such as the GAP computer program, version 6.0, available from the University of Wisconsin Genetics Computer Group (UWGCG). The GAP program utilizes the alignment method of Needleman and Wunsch (J. Mol. Biol. 48:443, 1970), as revised by Smith and Waterman (Adv. Appl. Math. 2:482, 1981).

As used herein, a "binding site" refers to a region of a molecule or molecular complex that, as a result of its shape and charge potential, favorably interacts or associates with another agent (including, without limitation, a protein, polypeptide, peptide, nucleic acid, including DNA or RNA, molecule, compound, antibody or drug) via various covalent and/or non-covalent binding forces.

The terms "ligand binding site" and "binding site" are used interchangeably and refer to a region of a human KSP resulting from the complex of a ligand with KSP. It is believed that this ligand binding site, as a result of its shape and charge potential, favorably interacts or associates with a ligand or binding partner, which is preferably an inhibitor of KSP function. The binding of the ligand to this binding site induces global conformational changes to the KSP protein, thereby potentially modulating the mitotic activity of the protein and thereby inhibiting cell division and facilitating cell cycle arrest. A ligand binding site according to the present invention may include, for example, the actual site of any one of the herein disclosed compounds binding with KSP, as well as any other moiety chemical or biological - which preferably inhibits the activities of KSP by binding to the ligand binding site disclosed herein.

As used herein, the terms "bind" and "binding" when used to describe the interaction of a ligand with a binding site or a group of amino acids means that the binding site or group of amino acids are capable of forming a covalent or non-covalent bond or bonds with the ligand.

Preferably, the binding between the ligand and the binding site or amino acid(s) is non-covalent. Such a non-covalent bond includes a hydrogen bond, an electrostatic bond, a van der Waals bond or the like. The binding of the ligand to the binding site may also be characterized by the ability of the ligand to co-crystallize with KSP within the novel binding pocket of the instant invention. It is further understood that the use of the terms "bind" and "binding" when referring to the interaction of a ligand with the novel binding site of the instant invention includes the covalent or non-covalent interactions of the ligand with all or some of the amino acid residues comprising the binding site.

5

10

15

20

25

30

A "KSP complex" refers to a co-complex of a molecule/complex comprising the KSP in bound association with a ligand either by covalent or non-covalent binding forces at the binding site disclosed herein. A non-limiting example of a KSP complex includes KSP-(+)-monastrol, or KSP bound to any one of the compounds listed herein.

The present invention relates to the three-dimensional structure of ligand bound-KSP or of a KSP analogue, and more specifically, to the structure of KSP's binding site as determined using X-ray crystallography and various computer modeling techniques. The coordinates of KSP bound to ADP and one of the ligand compounds described herein as shown in Tables 1-4 (relating to the entire motor domain), are useful for a number of applications, including, but not limited to, the characterization of a three-dimensional structure of KSP including its novel binding site, as well as the visualization, identification and characterization of a KSP ligand binding site. The ligand binding site structure(s) may then be used to predict the orientation and binding affinity of a designed or selected inhibitor of KSP, a KSP analogue or of a KSP complex. In general, KSP structures referred to herein are the KSP-ligand bound conformation of KSP. As an example, when referring to an antibody specific for the KSP of the invention, it means an antibody having an affinity for the KSP-ligand bound conformation disclosed herein.

In particular, the invention is drawn to the three-dimensional structure of a ligand bound KSP e.g., when bound to a ligand, preferably an inhibitor.

The amino acid sequence of the motor domain of human KSP is depicted in SEQ ID NO:1. These amino acids correspond to residues 1-368 of the native protein. Another aspect of the invention is a substantially pure isolated amino acid of the amino acid sequence set forth in SEQ ID NO:1. Another aspect of the invention is a variant of that isolated amino acid. Preferably the variant of the amino acid of SEQ ID NO:1 comprises one or more amino acid substitution(s) or deletion(s) of one or more of the amino acids that form the novel binding pocket of the instant invention. More preferably the variant of the amino acid of SEQ ID NO:1 comprises an amino acid substitution of one of the amino acids which form the novel binding pocket of the instant invention.

5

10

15

20

25

30

35

Another aspect of the invention is an isolated variant of KSP wherein the variant comprises one or more amino acid substitution(s) or deletion(s) of one or more of the amino acids that form the novel binding pocket of the instant invention. More preferably the variant of KSP comprises an amino acid substitution of one of the amino acids which form the novel binding pocket of the instant invention.

The KSP of the invention preferably comprises a ligand binding site characterized by the amino acid residues as set forth in Figure 10 or the relative structural coordinates of those amino acid residues according to Tables 1-4 ± a root mean square deviation from the conserved backbone atoms of said amino acids of not more than about 2.0 Å (or more preferably, not more than about 1.0 Å, and most preferably, not more than about 0.5 Å). It is understood that the amino acids listed above represent the residues defining the novel binding pocket formed upon the complexation of a ligand of the invention with KSP. It is further understood that specific binding interactions between the listed residues may or may not occur based on the size of the ligand and structure of the ligand. It is also understood that the computational length of the allowable van der Waals interactions is also a factor when determining whether an amino acid residue binds to a ligand. It is therefore understood that the binding of a ligand of the instant invention may take place between those residues listed in Figure 10 or a subset thereof.

It has been surprisingly discovered that compounds previously disclosed as kinesin inhibitors, and other recently identified

inhibitors of KSP, bind to the KSP protein at the novel binding site described herein. In particular, (+)-monastrol (Compound 5-2b), a compound previously described as inhibiting KSP kinesin activity (see Mayer, T. U. et al. Science 286:971 (1999)) has been found to be a ligand of the novel binding site of the invention. Inhibitors of KSP have also been disclosed in pending U.S. provisional applications Ser. Nos. 60/344,453 (Case 20990PV), 60/338,383 (Case 20995PV), 60/338,380 (Case 20996PV), 60/338,779 (Case 20997PV), 60/338,344 (Case 20998PV), 60/338,379 (Case 20999PV), 60/362,922 (Case 21047PV), 60/383,449 (Case 21018PV), 60/383,478 (Case 21060PV), 60/388,621 (Case 21114PV, filed June 14, 2002) and 60/388,828 (Case 21119PV, filed June 14, 2002). Additionally, inhibitors of KSP kinesin activity are described in PCT Publications WO 01/30768 and WO 01/98278.

5

10

15

20

25

30

35

The 3-dimensional structure of KSP, bound with Mg⁺⁺-ADP and Compound 5-2b, was determined at 2.5Å resolution. Compound 5-2b was found to bind to KSP via an induced-fit some 12Å away from the catalytic center of the enzyme, resulting in the creation of a previously unknown binding pocket that is non-existent in the absence of Compound 5-2b (or the other ligands described herein). The binding of Compound 5-2b also introduced significant alteration to the structural conformation in other regions of the KSP motor protein, with the interesting exception that the nucleotide-binding pocket was virtually unaltered from that seen in the ADP binary complex. An analysis of the temperature-factor distribution in the ADP binary and ADP/5-2b ternary complexes of KSP revealed that the protein region surrounding the induced-fit binding pocket of 5-2b became highly rigid upon 5-2b binding.

Using the seeding method, high quality single crystals were obtained for KSP prepared in the presence of ADP and 5-2b. A diffraction data set to 2.5Å resolution was collected and processed in the orthorhombic $P2_12_12_1$ space group. The R_{sym} was 0.084 and the data completeness was 99%. The cell dimensions were 69.5Å, 79.5Å and 159.0Å. An oscillation X-ray diffraction picture of a KSP crystal is given in Figure 1.

The 3-dimensional, tertiary structure of KSP, bound with Mg⁺⁺-ADP and 5-2b, was determined at 2.5Å resolution with use of phases derived from a combination of molecular replacement, extensive manual

rebuilding, and dynamic refinement. Two identical protein complexes were found in the asymmetric unit of the crystal and were related by a local, non-crystallographic 2-fold axis. For each, the electron density of the protein as well as those of the ligands (ADP, Mg⁺⁺, and 5-2b) was all well defined. 5-2b was seen to be of the S handedness. Residues 2-17, 272-286, and 363-368 were disordered and showed no electron densities (The N-terminal Met1 residue was processed upon expression).

5

10

15

20

25

30

The structure of the KSP/ADP/Compound 5-2b complex is shown (Figure 2) in a ribbon representation. The bound conformations of ADP and 5-2b are also given together with their respective electron density. The location of 5-2b is seen at a novel induced-fit site, some 12Å distal from the nucleotide-binding site and catalytic center of the enzyme. An enlarged section of this region is shown in Figure 3, together with 5-2b.

In Figure 3 the Compound 5-2b is seen to bind in between (the insertion loop of) helix- α 2 and helix- α 3 (which is immediately preceding the 'Switch 1' typically seen in all kinesins). Also shown are the side-chains of Arg119, Tyr211 and Trp127. The Arg119 and Tyr211 residues move upward and outward, yielding space to accommodate the binding of the inhibitor. At the same time, the insertion loop of helix- α 2 relocates its main-chain location with a downward shift of ~8Å; the side-chain of its Trp127 as a result swings inward by ~10Å, capping the entrance of the induced-fit cavity together with the side-chains of Arg119 and Tyr211. Lining the newly formed pocket and surrounding the inhibitor are the amino acid residues listed in Figure 10. A comparison of this region in the binary and ternary complex is given in Figure 4.

The binding pocket of Compound 5-2b is novel and not previously known, insofar that this binding site does not exist until an inhibitor binds. Hence, this pocket is "induced-fit" by a ligand such as Compound 5-2b. This allosteric binding pocket, located away from the nucleotide-binding site of the motor protein, is not restricted to Compound 5-2b, but is also observed upon the crystal structure determination of complexes of KSP with other compounds of diverse chemical structure that are inhibitors of KSP activity. These results have a profound impact on the design of non-active-site directing inhibitors of KSP.

In a further embodiment of the invention is a method of causing a conformational alteration in the structure of KSP by exposing the KSP to a ligand of the novel ligand binding site of the instant invention. The conformational alteration observed for the kinesin structure upon

Compound 5-2b binding (and the binding of other compounds) to the ADP-KSP binary complex is not limited to the immediate vicinity of the inhibitor. Rearrangements of protein moieties are spread throughout the enzyme upon 5-2b binding, with the exception that the nucleotide binding site of the protein as well as its β-sheet structure remain basically unchanged. Among the changes away from the induced-fit pocket, three are noteworthy:

1. In the Switch I area of KSP, as circled in Figure 5 and in a close-up view, the main-chain re-orients its geometry significantly on both ends of Ala230. It can be seen that although the helicity of the Switch I region is unchanged, the pitch at the C-terminal end of helix-α3 is increased in the ternary complex from that in the binary complex.

15

20

25

- 2. In the Switch II region of KSP, which is located on the opposite side of the 5-2b binding site as circled in Figure 6 and in a close-up view, the C-terminal end of helix-α4 is repositioned significantly. The tip of this helix near Arg305 is moved by ~6Å in the ternary complex from its location in the binary complex.
- 3. In the neck-linker region of KSP, which is the C-terminal portion of our protein construct, the residues beginning from Lys357 to Phe362 swing by almost 180° in the ternary complex from its position in the ADP binary complex. Although residues 363–368 are present in our protein, they are disordered in the crystal and hence offer no electron density. The neck-linker region of KSP is circled in Figure 7. A close-up view is depicted comparing this region in the ternary complex to that in the binary complex.

In addition to these changes, there are other smaller regional repositionings of main-chains and side-chains of the protein. Most interestingly, the nucleotide-binding site of the motor protein, where ATP hydrolysis occurs, is basically unaltered upon 5-2b binding. A close-up view comparing this site in the binary and ternary complexes of KSP is shown in Figure 8. Within experimental errors, most of the backbone and

side-chains for the two complexes in this region of the protein can be superimposed.

The effect of overall conformational changes induced by Compound 5-2b could also be examined by comparing the distribution of temperature factors.

5

10

15

20

25

30

35

High quality single crystals were also obtained for other compounds that are inhibitors of KSP. 3-Dimensional structure determined at 2.5 Å with those crystals demonstrated that the other inhibitor compounds also induce-fit into the protein in the same manner as compound 5-2b.

Consequently, an embodiment of the invention provides protein crystals of KSP complexed with a ligand bound to the ligand binding site disclosed herein and methods for making KSP or a KSP homolog. The crystals provide means to obtain atomic modeling information of the specific amino acids and their atoms forming the binding site and that interact with molecules e.g., ligands or binding partners that bind to the KSP, via the binding site.

The crystals also provide modeling information regarding the protein-ligand interaction, as well as the structure of ligands bound thereto. The KSP crystal or a KSP homolog according to the present invention can be obtained by crystallizing it with a material or compound or molecule which binds to the herein disclosed binding site of the KSP. The KSP crystal according to the present invention includes KSP (human Eg5) and the material which binds to the specific binding site of KSP.

Preferred crystalline compositions of this invention are capable of diffracting X-rays to a resolution of better than about 3.5 Å, and more preferably to a resolution of about 2.6 Å or better, and even more preferably to a resolution of about 2.0 Å or better, and are useful for determining the three-dimensional structure of the material. (The smaller the number of angstroms, the better the resolution.)

The relative structural coordinates of the amino acid residues of the KSP motor domain, when the X-ray diffraction is obtained for the crystalline complex of KSP and a ligand compound described herein, are shown in Tables 1-4.

In another aspect, the present invention provides the threedimensional structure of human KSP as well as the identification and

characterization of a binding site there within. The identification of this site permits design and identification of compounds that bind to the ligand binding site and modulate KSP related activities. The compounds include inhibitors which specifically inhibit cell proliferation.

Of equal import is the fact that knowledge of the threedimensional structure of the binding site of KSP provides a means for investigating the mechanism of action of the protein and tools for identifying inhibitors of its function.

5

10

15

20

25

30

As used herein, a ligand binding site also includes KSP or KSP analog residues which exhibit observable NMR perturbations in the presence of a binding ligand, such as any one of the herein disclosed inhibitors or any other ligand. While such residues exhibiting observable NMR perturbations may not necessarily be in direct contact with or immediately proximate to ligand binding residues, they may be critical to KSP residues for rational drug design protocols.

For example, knowledge of the three-dimensional structure of the ligand binding site allows one to design molecules, preferably pharmaceutical agents, capable of binding thereto, including molecules which are thereby capable of inhibiting the interaction of KSP with its native ligands, thereby inducing cell arrest.

Assays may be performed and the results analyzed to determine whether the agent is an inhibitor (i.e., the agent may reduce or prevent binding affinity between KSP and its native ligand/binding partner), or has no effect on the interaction between KSP and its native ligand. Agents identified using the foregoing methods, and preferably inhibitors of KSP, may then be tested as therapeutics in the treatment and/or prevention of hyper-proliferative cell disorders and other diseases that are also characterized by the presence of the hyper-proliferative cells such as cancer.

Once a KSP binding agent/inhibitor has been optimally selected or designed, as described above, substitutions may then be made in some of its atoms or side groups in order to improve or modify its selectivity and binding properties – that is its affinity for the ligand binding site disclosed herein. Generally, initial substitutions are conservative, i.e., the replacement group will have approximately the same size, shape, hydrophobicity and charge as the original group. Such substituted chemical compounds may then be analyzed for efficiency of fit the ligand binding site of KSP by the same computer methods described in detail above.

Various molecular analysis and rational drug design techniques are further disclosed in U.S. Pat. Nos. 5,834,228, 5,939,528 and 5,865,116, as well as in PCT Application No. PCT/US98/16879, published as WO 99/09148, the contents of which are hereby incorporated by reference.

5

10

15

20

25

30

35

In another aspect of the instant invention, the high quality single crystals of the KSP complexes comprising the KSP, ADP and the compounds described herein could be used to obtain single crystals of a KSP complex which comprises a compound that weakly binds to KSP or one or more weakly binding fragments of a compound that binds to KSP. This method may be termed intra-crystal ligand exchange. Thus, for example and not limiting in the scope of this embodiment, high quality single crystals of KSP-ADP-Compound 5-2b complex are exposed to the crystallization buffer described in the Materials and Methods which further contains 1mM of a test compound that weakly binds to KSP. It is expected that the test compound will intercalate into the crystal and replace the compound 5-2b in the binding site. One or more molecular fragments of compounds that strongly bind to KSP may also be utilized in this technique.

X-ray diffraction data may be collected (as described in the Materials and Methods) from the high quality single crystals obtained by the intra-crystal ligand exchange technique. The 3-dimensional, tertiary structure of KSP bound to such a weakly binding compound could be utilized to guide the structural modification of the compound and, as a result, optimize the binding of the modified compound to KSP. The 3-dimensional tertiary structure of KSP bound to molecular fragment(s) could be utilized to guide in the identification of a new template for a compound having optimal binding to KSP.

Once the material is designed or selected, the affinity of the material to KSP may be calculated. For the inhibitor to be effective, it should have a high affinity for the ligand binding site, low energy difference between that energy calculated before and after binding. The affinity of the inhibitor may be measured by calculating the dissociation constant of the complex of KSP and the inhibitor. The dissociation constant is preferably 100 micromoles or less. The inhibitor preferably also maintains the bonding with KSP stably after binding. In order to do this, electrostatic repulsion such as charge-charge interactions, dipole-dipole and charge-dipole interactions between the inhibitor and KSP should not occur or be minimized. The sum of electrostatic interaction should be neutral or give a positive effect to the enthalpy of the bonding. Examples of programs designed for calculating such affinity include, but

are not limited to as follows: Gaussian 92, revision C [M. J. Frisch, Gaussian, Inc., Pittsburgh, Pa. © 1992]; AMBER, version 4.0 [P. A. Kollman, University of California at San Fransisco, © 1994]; QUANTA/CHARMM [Molecular Simulations, Inc., Burlington, Mass. © 1994]; and Insight II/Discover (Biosysm Technologies Inc., San Diego, Calif., © 1994). Using the lead compound selected by the method, a stronger inhibitor can be made or designed. This process will be described below.

5

10

15

20

25

30

35

As well, any compound or anti-mitotic agent (lead compound) selected or designed in accordance with the methods disclosed herein can be changed or modified. Atoms, substituents or a part of the structure may be altered to increase the binding affinity to KSP. Generally, initial substitutions are conservative, i.e., the replacement group will have approximately the same size, shape, hydrophobicity and charge as the original group. It is noted that components known in the art to alter conformation should be avoided. The substituted chemical compounds may then be analyzed for fit with KSP by the same computer methods described herein.

After the material designed by the computer method described above is prepared and bound to KSP to produce a crystal, the 3-dimensional structure of the complex may be determined at high enough resolution (over 0.28 nm) using X-ray crystallographic methods. The information gained therefrom e.g., about the interaction between KSP and the inhibitor obtained from this can then be used to modify the inhibitor and to increase the affinity of the inhibitor for the ligand binding site of KSP.

Thus, for example, those atoms considered to be involved in binding to the ligand binding site of KSP disclosed herein can be mutated by exchanging one or more of the amino acid residues in the ligand binding site or in the motor domain of KSP that eventually effects the function of KSP on the underlying cell. As an example, if a cell's hyper-proliferative state is not effected by the mutated KSP, it may be surmised that the mutation very likely has not affected the function of KSP. In the alternative scenario, where the mutation decreases the hyper-proliferative state of the diseased cell, then one may surmise that the mutation has affected the ability of KSP to function in its intended purpose, e.g. hydrolyze ATP to ADP or bind microtubule etc. due to the substitution of the amino acid residue. This method can be used to identify amino acid residues in the original KSP which are important in the binding of the ligand to the binding site of KSP disclosed herein.

Once the amino acid residues in the ligand binding site of KSP have been identified as involved in the overall function attending KSP, the structure of the binding site can be identified based on the three-dimensional structure of KSP. Based on the structure of the binding site, a compound such as a peptide or other compound can be screened and designed which will fit into the three-dimensional model of the binding site.

5

10

15

20

30

35

Likewise, just as the three-dimensional modeling of KSP is provided by the present invention using the coordinates from the X-ray defraction patterns, these can be either analyzed directly to provide the three-dimensional structure (if of sufficiently high resolution). Alternatively, the atomic coordinates for the crystallized KSP, as provided herein, can be used for structure determination. The X-ray diffraction patterns obtained by methods of the present invention, can be provided on computer readable media, and used to provide electron density maps.

The electron density maps, provided by analysis of the X-ray coordinates of KSP complexed with Compound 5-2b, provided herein, may then be fitted using suitable computer algorithms to generate secondary, tertiary and/or quaternary structures and/or domains of KSP, which structures and/or domains are then used to provide an overall three-dimensional structure, as well as binding and/or active sites of KSP.

Knowledge obtained concerning KSP including the binding site defined herein can also be used to model the tertiary structure of related kinesin proteins, in particular members of the BimC protein family.

As an example, the structure of renin has been modeled using the tertiary structure of endothiapepsin as a starting point for the derivation. Model building of cercarial elastase and tophozoite cysteine protease were each built from known serine and cysteine proteases that have less than 35% sequence identity. The resultant models were used to design inhibitors in the low micromolar range. (Proc. Natl. Acad. Sci. 1993, 90, 3583).

Furthermore, alternative methods of tertiary structure determination that do not rely on X-ray diffraction techniques and thus do not require crystallization of the protein, such as NMR techniques, are simplified if a model of the structure is available for refinement using the additional data gathered by the alternative technique. Thus, knowledge of the tertiary structure of the KSP binding site provides a significant window to the

structure of the other kinesin family members. Thus, an embodiment of this invention envisions use of atomic coordinates of KSP protein, or fragment, analog or variant thereof, to model a KSP protein.

5

10

15

20

25

30

35

One skilled in the relevant art may use conventional molecular modeling methods to identify a ligand binding site of a KSP of another species. Specifically, coordinates provided by the present invention may be used to characterize a three-dimensional structure of the target KSP molecule, liganded or unliganded. Importantly, such a skilled artisan may, from such a structure, computationally visualize a putative binding site and identify and characterize other features based upon the coordinates provided herein. Such putative ligand binding sites may be further refined using chemical shift perturbations of spectra generated from various and distinct KSP complexes, e.g. from other species, competitive and non-competitive inhibition experiments, and/or by the generation and characterization of KSP or ligand mutants to identify critical residues or characteristics of the ligand binding site.

Such identification of a putative ligand binding site is of great import in rational drug design.

It is noted that in order to use the structural coordinates generated from the complex KSP described herein in Tables 1-4, it may be necessary to display the relevant coordinates as, or convert them to, a three-dimensional shape or graphical representation, or to otherwise manipulate them. In general, such a three-dimensional representation of the structural coordinates will find use in rational drug design, molecular replacement analysis, homology modeling, and mutation analysis. This is typically accomplished using any of a wide variety of commercially available software programs capable of generating three-dimensional graphical representations of molecules or portions thereof from a set of structural coordinates. The scientific art is replete with conventional software programs, which are incorporated by reference herein in their entirety. Refer to, for example, GRID (Oxford University, Oxford, UK); AUTODOCK (Scripps Research Institute, La Jolla, Calif.); Flo99 (Thistlesoft, Morris Township, N.J.) etc.

For storing, transferring and using such programs, a machine, such as a computer, is also contemplated, which produces a three-

dimensional representation of the KSP binding site. The machine would comprise a machine-readable data storage medium comprising a data storage material encoded with machine-readable data. Machine-readable storage media comprising data storage material include conventional computer hard drives, floppy disks, DAT tape, CD-ROM, and other magnetic, magnetooptical, optical, floptical and other media which may be adapted for use with a computer. The machine further comprises a working memory for storing instructions for processing the machine-readable data, as well as a central processing unit (CPU) coupled to the working memory and to the machinereadable data storage medium for the purpose of processing the machinereadable data into the desired three-dimensional representation. As well, the machine of the present invention further comprises a display connected to the CPU so that the three-dimensional representation may be visualized by the user. Accordingly, when used with a machine programmed with instructions for using said data, e.g., a computer loaded with one or more programs of the sort identified above, the machine provided for herein is capable of displaying a graphical three-dimensional representation of the KSP complex described herein and set forth in Tables 1-4.

5

10

15

20

25

30

35

The structural coordinates of the present invention enable one to use various molecular design and analysis techniques in order to (i) solve the three-dimensional structures of related molecules, preferably molecular complexes such as those of other species or members of BimC family of proteins; as well as (ii) design, select, and synthesize chemical agents capable of favorably associating or interacting with a ligand binding site of a KSP molecule, wherein the molecular chemical entity would preferably inhibit KSP function including inducing mitotic arrest in cells contacted therewith.

Thus, the present invention provides a method for determining the molecular structure of a molecular complex whose structure is unknown, comprising the steps of obtaining the molecular complex whose structure is unknown, e.g., from a related species, and then generating NMR data there from. The NMR data from the molecular complex whose structure is unknown can then be compared to the structure data obtained from the KSP complex of the present invention. Then, 2D, 3D and 4D isotope filtering, editing and triple resonance NMR techniques can be used to conform the 3D structure described

herein for the KSP complexes disclosed in Tables 1-4 to the NMR data from unknown target molecular complex. Alternatively, molecular replacement may be used to conform the 3D structure of the present invention to X-ray diffraction data from crystals of the unknown target molecular complex.

5

10

15

20

25

30

35

Molecular replacement involves correctly orienting and positioning the known structure into the crystal unit cell of the unknown structure. This is accomplished by a six dimensional (three positional and three rotational) search process that involves computation of a set of theoretical diffraction data using the known structure for every orientation and position searched and comparing it with the observed diffraction data of the unknown structure. The best match defines the correct position and orientation of the known structure in the unknown unit cell. This match offers phase information for use in conjunction with X-ray diffraction data of the unknown structure for the determination of its 3-dimensional structure.

In another aspect, this invention envisions use of atomic coordinates of the KSP protein disclosed herein, to design a chemical compound capable of associating with KSP or a fragment, analog or variant thereof.

For example, one method of this invention for evaluating the ability of a chemical entity to associate with any of the proteins or protein-ligand complexes set forth herein comprises the steps of: a) employing computational means to perform a fitting operation (docking) between the chemical entity and a binding pocket or other surface feature of the molecule or molecular complex; and b) analyzing the results of said fitting operation to quantify the association between the chemical entity and the binding pocket.

In another aspect, the invention envisions use of atomic coordinates of the KSP protein to design a model of ligands in the binding site defined herein.

Preferred embodiments of the aforementioned uses are those wherein the KSP protein comprises a binding site characterized by amino acid residues as set forth in Figure 10.

As a general rule, one may use knowledge of the geography of the various regions of the ligand binding site disclosed herein, e.g. hydrophobic and/or hydrophilic to design KSP analogs (mutant) in which

the overall KSP structure is not changed, but change does affect biological activity ("biological activity" being used here in its broadest sense to denote function). Thus, one may make changes to the amino acid sequences to effectively obtain a KSP analog/mutant that exhibits a greater affinity for its binding ligand. As well, one may correlate biological activity to structure. If the structure is not changed, and the mutation has no effect on biological activity, then the mutation has no biological function. If, however, the structure is not changed and the mutation does affect biological activity, then the residue (or atom) is essential to at least one biological function.

10

15

20

5

Similar molecular modeling is also provided by the present invention for rational drug design (RDD) of mimetics and ligands of KSP, "ligand" being used in the broadest sense, referring to any substance capable of observable binding to the KSP protein at the herein disclosed binding site. The drug design paradigm uses computer modeling programs to determine potential mimetics and ligands which are expected to interact with sites on the protein. The potential mimetics or ligands are then screened for activity and/or binding. For KSP-related mimetics or ligands, screening methods can be selected from assays for at least one biological activity of KSP, e.g., antimitotic activity. Thus, an embodiment of the invention envisions use of the structural information from the ligand/protein complexes found herein including the information derived therefrom in designing new chemical or biological moieties that bind tighter, bind more specifically, have better biological activity or have better safety profile than known ligands that bind KSP.

25

The computer modeling method disclosed herein can also be used to remodel the mimetics or ligands to improve the affinity or solubility, and produce an optimized pharmaceutical agent.

30

The resulting optimized mimetics or ligands can thereafter be prepared and the inhibitory activity for KSP can be tested *in vitro* and *in vivo*. If the test confirms that the material does indeed inhibit KSP, then the material or a derivative can be used as an anti-mitotic agent. Using the method as described above, the compound identified to have inhibitory activity may thereafter be used as a lead compound to obtain an improved inhibitor.

In order to confirm the affinity predicted by the computer modeling method, the dissociation constant of the complex may be experimentally measured.

5

10

15

20

25

30

The resulting mimetics or ligands are then provided by methods of the present invention and are useful for treating, inhibiting or preventing KSP-modulated diseases in animals, including humans.

Preferably the ligands of the novel binding site provided herein are useful in the treatment or prevention of a hyper-proliferative disease, preferably cancer. Preferably, the ligand(s) identified by the methods described herein are useful in the treatment of cancer.

The ligands identified by the methods of this invention may be administered to mammals, preferably humans, either alone or, preferably, in combination with pharmaceutically acceptable carriers, excipients or diluents, in a pharmaceutical composition, according to standard pharmaceutical practice. The ligands can be administered orally or parenterally, including the intravenous, intramuscular, intraperitoneal, subcutaneous, rectal and topical routes of administration.

As used herein, the term "composition" is intended to encompass a product comprising the specified ingredients in the specific amounts, as well as any product which results, directly or indirectly, from combination of the specific ingredients in the specified amounts.

The pharmaceutical compositions containing the active ingredient may be in a form suitable for oral use, for example, as tablets, troches, lozenges, aqueous or oily suspensions, dispersible powders or granules, emulsions, hard or soft capsules, or syrups or elixirs. When a ligand according to this invention is administered into a human subject, the daily dosage will normally be determined by the prescribing physician with the dosage generally varying according to the age, weight, sex and response of the individual patient, as well as the severity of the patient's symptoms.

In one exemplary application, a suitable amount of a ligand of the novel KSP ligand binding site is administered to a mammal undergoing treatment for cancer. Administration occurs in an amount between about 0.1 mg/kg of body weight to about 60 mg/kg of body weight per day, preferably of between 0.5 mg/kg of body weight to about 40 mg/kg of body weight per day.

Consequently, an object of the invention is to provide a method for determining the three-dimensional structure of a protein containing the ligand binding site as disclosed herein, or a complex of the protein with a ligand thereof, using homology modeling techniques and structural coordinates for a composition of this invention. Homology modeling involves constructing a model of an unknown structure using structural coordinates of one or more related proteins, protein domains and/or subdomains. Homology modeling may be conducted by fitting common or homologous portions of the protein or peptide whose three-dimensional structure is to be solved to the three-dimensional structure of homologous structural elements. Homology modeling can include rebuilding part or all of a three-dimensional structure with replacement of amino acids (or other components) by those of the related structure to be solved.

5

10

15

20

25

30

35

One of the objects of this invention is to provide threedimensional structural information on new complexes of BimC family members of which KSP is a member with various ligands, as well as muteins or other variants of any of the foregoing. To that end, the invention provides for the use of the structural coordinates of a crystalline composition of this invention, or portions thereof, to solve, e.g., by molecular replacement, the three-dimensional structure of a crystalline form of such a ligand-protein complex, typically involving a protein containing at least one ligand binding site as disclosed herein. Doing so involves obtaining X-ray diffraction data for crystals of the protein-ligand complex for which one wishes to determine the three-dimensional structure. Then, one determines the three-dimensional structure of that protein or complex by analyzing the X-ray diffraction data using molecular replacement techniques with reference to the previous structural coordinates. As described in U.S. Pat. No. 5,353,236, for instance, molecular replacement uses a molecule having a known structure as a starting point to model the structure of an unknown crystalline sample.

Still further, the invention also includes compositions and methods for identifying binding sites of other members of the BimC protein family. The methods involve examining the surface of a protein of interest, preferably a kinesin, to identify residues that facilitate binding to the binding site. The residues can be identified by homology to the ligand binding site of

human KSP described herein. Overlays and super-positioning with a threedimensional model of a KSP binding site, or a portion thereof that contains a ligand binding site, also can be used for this purpose.

An alternative method of this invention provides for selecting from a database of chemical structures a compound capable of binding to a BimC family protein. The method starts with structural coordinates of a crystalline composition of the invention, e.g., coordinates defining the three-dimensional structure of a BimC family protein or a portion thereof e.g., the herein provided coordinates relative to human KSP.

10 Points associated with that three-dimensional structure are characterized with respect to the extent of favorable interactions with one or more functional groups. A database of chemical structures is then searched for candidate compounds containing one or more functional groups disposed for favorable interaction with the protein based on the prior characterization.

15 Compounds having structures which best fit the points of favorable interaction with the three-dimensional structure are thus identified.

20

25

30

35

An exemplary embodiment of the invention provides methods for identifying and designing small molecules that bind to the binding site using atomic models of KSP provided herein. The method involves modeling test compounds that fit spacially into the binding site of interest using an atomic structural model comprising a KSP binding site or portion thereof, screening the test compounds in a biological assay characterized by binding of a test compound to KSP, and identifying a test compound that binds to KSP.

Also provided is a method for identifying a potential inhibitor of KSP, comprising the steps of using a three-dimensional structure of a KSP binding site as defined by the relative structural coordinates set forth in Table 5 or the relative structural coordinates of the amino acids of Figure 10 as set forth in Tables 1-4 to design or select a potential inhibitor, and obtaining or synthesizing said potential inhibitor. The inhibitor may be selected by screening an appropriate database, may be designed de novo by analyzing the steric configurations and charge potentials of an empty KSP binding site in conjunction with the appropriate software programs, or may be designed using characteristics of known inhibitors to create "hybrid" inhibitors. The inhibitor may then be contacted with KSP, and the effect of

the inhibitor on KSP related function may be assessed. For instance, a potential inhibitor identified by this method may be contacted with KSP in the presence of one or two KSP substrates selected from ATP and microtubules, and determining the effect the potential inhibitor has on KSP ATPase activity. It is also within the confines of the present invention that a potential inhibitor may be designed or selected by identifying chemical entities or fragments capable of associating with KSP; and assembling the identified chemical entities or fragments into a single molecule to provide the structure of the potential inhibitor.

In furtherance of the above, there is provided a method for identifying an anti-mitotic agent comprising providing the atomic coordinates comprising the relative atomic structural coordinates of the amino acids of Figure 10 as set forth in Tables 1-4 ± a root mean square deviation from the conserved backbone atoms of said amino acids of not more than about 2.00Å thereof to a computerized modeling system; modeling compounds which fit spacially into the KSP binding site; and identifying in an assay for KSP activity a compound that inhibits or decreases the activity of the KSP through binding to the binding site.

Once the agent has been identified, it may be contacted with KSP and the effect the agent has on KSP may then be assessed. In addition, the agent may be contacted with KSP in the presence of a KSP binding molecule and the effect the agent has on binding between KSP and the KSP binding molecule may then be assessed.

Also disclosed herein is a process for identifying a potential anti-mitotic agent which upon binding to a human KSP inhibits cell proliferation, the process comprising the steps of:

- exposing the KSP to a mixture of at least two potential ligands;
- b) attempting to crystallize said KSP in the presence of said mixture;
- c) if crystals are obtained, obtaining an X-ray diffraction pattern of the KSP crystal; and
- d) determining whether a ligand/KSP complex is formed by comparing the electron density map calculated from the X-ray diffraction pattern of said KSP crystal

35

10

15

20

25

30

when exposed to said mixture of said at least two potential ligands to the electron density map calculated from the X-ray diffraction pattern set forth in a table selected from Table 1, 2, 3 and 4.

5 Also provided herein is a method of identifying a compound that modulates the binding of a ligand to a ligand binding site of a human KSP, said method comprising: modeling test compounds that fit spatially into a KSP ligand binding site using an atomic structural model of a KSP binding site having the relative structural coordinates as set forth in a table 10 selected from the group consisting of Tables 1, 2, 3 and 4 for the KSP amino acid residues 115 (M), 116(E), 117(G), 118(E), 119(R), 127(W), 130(D), 132(L), 133(A), 134(G), 136(I), 137(P), 160(L) 211(Y), 214(L), 215(E), 217(G), 218(A), 221(R) and 239(F), ± the root mean square deviation from the backbone atoms of said amino acids of not more than about 2.0 Å; screening the test compounds in an assay characterized by binding of a 15 ligand to the ligand binding site; and identifying a test compound that modulates binding of said ligand to the KSP at its binding site.

Further provided is a method for identifying a potential inhibitor of human kinesin spindle protein (KSP), the method comprising the steps of :

20

30

35

- (i) providing a three-dimensional structure of a ligandbound KSP as defined by atomic coordinates set forth in a table selected from Tables 1, 2, 3 and 4;
- (ii) comparing the three-dimensional coordinates of the ligand when it is bound to KSP as set forth in Table 1, 2, 3 or 4 to the threedimensional coordinates of a compound in a database of compound structures; and
 - (iii) selecting from said database at least one compound that is structurally similar to said ligand when it is bound to said KSP, wherein the selected compound is a potential inhibitor of said KSP.

Also provided is a method for identifying an anti-mitotic agent which upon binding to a target human KSP inhibits cell proliferation, the method comprising the steps of:

a) exposing a target KSP to a mixture of at least two potential ligands;

 attempting to crystallize said target KSP in the presence of said mixture;

- c) obtaining a crystal of said target KSP exposed to said mixture to determine whether ligand/KSP complex is formed; and
- d) identifying a potential anti-mitotic agent as one that binds to said KSP at a ligand binding site having the relative structural coordinates as set forth in Table 5 ± the root mean square deviation of not more than about 2.0 Å.

Further provided is a method for identifying an anti-mitotic
agent which upon binding to a target human KSP inhibits cell proliferation,
the method comprising the steps of:

5

15

20

25

30

- (a) obtaining a crystal of KSP, where said KSP has been crystallized while exposed to a mixture of at least two potential ligands;
- (b) determining whether a ligand/KSP complex is formed in said crystal;
 and
- (c) identifying a potential anti-mitotic agent as one that binds to said KSP at a ligand binding site having the relative structural coordinates as set forth in Table 5 ± the root mean square deviation of not more than about 2.0 Å.
- In the methods described hereinabove, potential ligands of KSP include the test compounds and Mg++ and ADP.

Also provided is a method of modulating, e.g., inhibiting the activity of a KSP. The method can be *in vitro* or *in vivo*. The method comprises administering, *in vitro* or *in vivo*, a sufficient amount of a compound that binds to the binding site disclosed herein.

Also provided is a method of identifying a compound that selectively inhibits the activity of one type of KSP compared to other KSPs or kinesins, e.g., a KSP of one species over another or a KSP over another member of the BimC family, of which KSP is a member. Thus, the method enables the identification of KSP and KSP like proteins in the same family, e.g., BimC or the KSP in one species over another. The method is exemplified by modeling test compounds that fit spacially and preferentially into a KSP ligand binding site of interest using an atomic structural model of

a KSP ligand binding site, selecting a compound that interacts with one or more residues of the ligand binding site unique in the context of that site, and identifying in an assay for ligand binding activity a compound that selectively binds to the ligand binding site compared to other KSP. The unique features involved in receptor-selective ligand binding can be identified by comparing atomic models of different receptors or isoforms of the same type of receptor.

5

10

15

20

25

30

35

The present invention also provides for computer programs for the expression (such as visual display) of the KSP or analog three-dimensional structure, and further, a computer program which expresses the identity of each constituent of a KSP molecule and the precise location within the overall structure of that constituent, down to the atomic level.

There are many currently available computer programs for the expression of the three-dimensional structure of a molecule. Generally, these programs provide for inputting of the coordinates for the three-dimensional structure of a molecule (i.e., for example, a numerical assignment for each atom of a KSP molecule along an x, y, and z axis or the assignment for each atom of the binding site described in Tables 1-4), means to express (such as visually display) such coordinates, means to alter such coordinates and means to express an image of a molecule having such altered coordinates. One may program crystallographic information, i.e., the coordinates of the location of the atoms of a KSP binding site molecule in three dimension space, wherein such coordinates have been obtained from crystallographic analysis of said KSP molecule, into such programs to generate a computer program for the expression (such as visual display) of the KSP three-dimensional structure.

In furtherance of the above, the present invention provides a machine, such as a computer, programmed in memory with the coordinates of KSP or portions thereof, together with a program capable of converting the coordinates into a three-dimensional graphical representation of the structural coordinates on a display connected to the machine.

As well, there is provided a computer program for the expression of KSP's three-dimensional structure together with the structure of the novel KSP binding site. Preferred is the computer program QUANTA 2000, available from Molecular simulations or Insight II, version 4, available

from Biosym, San Diego, Calif., with the coordinates of the amino acids of Figure 10 as set forth in Tables 1-4 input. Preferred expression means are well known to a skilled artisan. Alternatively, the present KSP crystallographic coordinates and diffraction data are also deposited in the Protein Data Bank, Chemistry Department, Brookhaven National Laboratory, Upton, N.Y. 119723, USA. One may use these data in preparing a different computer program for expression of the three-dimensional structure of a KSP molecule or analog thereof.

5

10

15

20

25

30

35

Structural coordinates of a crystalline composition of this invention may be stored in a machine-readable form on a machine-readable storage medium, e.g. a computer hard drive, diskette, DAT tape, etc., for display as a three-dimensional shape or for other uses involving computer-assisted manipulation of, or computation based on, the structural coordinates or the three-dimensional structures they define. For example, data defining the three-dimensional structure of a KSP protein or portions or structurally similar homologues of such proteins, may be stored in a machine-readable storage medium, and may be displayed as a graphical three-dimensional representation of the protein structure, typically using a computer capable of reading the data from said storage medium and programmed with instructions for creating the representation from such data.

This invention thus encompasses a machine, such as a computer, having a memory which contains data representing the structural coordinates of a crystalline composition of this invention, e.g. the coordinates set forth in Tables 1-4, together with additional optional data and instructions for manipulating such data. Such data may be used for a variety of purposes, such as the elucidation of other related structures and drug discovery. For example, a machine having a memory containing such data aids in the rational design or selection of inhibitors of KSP binding or activity, including the evaluation of the ability of a particular chemical entity to favorably associate with KSP as disclosed herein, as well as in the modeling of compounds, proteins, complexes, etc. related by structural or sequence homology to KSP.

Thus, three-dimensional modeling of KSP provided by the present invention using the coordinates from the X-ray diffraction patterns can be entered into one or more computer programs for molecular modeling.

Such molecular modeling programs generate atomic coordinates that reflect the secondary, tertiary and/or quaternary structures of the protein which contribute to its overall three-dimensional structure and provide information related to binding and/or active sites of the protein.

5

10

15

20

25

30

35

The present invention further contemplates the use of the structural coordinates of the present invention with standard homology modeling techniques to determine the unknown three-dimensional structure of a target molecule or molecular complex. Homology modeling involves constructing a model of an unknown structure using structural coordinates of one or more related protein molecules/molecular complexes or parts thereof (i.e., ligand binding sites). In general, homology modeling entails fitting. common or homologous portions of the protein whose three-dimensional structure is to be solved to the three-dimensional structure of homologous structural elements in the known molecule, specifically using the relevant (i.e., homologous) structural coordinates provided in Tables 1-4. Homology may be determined using amino acid sequence identity, homologous secondary structure elements, and/or homologous tertiary folds. Homology modeling can include rebuilding part or all of a three-dimensional structure with replacement of amino acids (or other components) by those of the related structure to be solved. Examples of programs for homology modeling include, but are not limited to: QUANTA (Molecular Simulations, Inc.), Molecular Operating Environment or MOE (Chemical Computing Group, Inc. 2002), MODELLER (copyright @ 1989-2002 Andrej Sali; Departments of Biopharmaceutical Sciences and Pharmaceutical Chemistry, and California Institute for Quantitative Biomedical Research, Mission Bay Genentech Hall, University of California San Francisco) and others.

In accordance with the above, a three-dimensional structure for the unknown molecule/molecular complex may be generated using the three-dimensional structure of the KSP molecule of the present invention, Tables 1-4, refined using a number of techniques well known in the art, and then used in the same fashion as the structural coordinates of the present invention, for instance, in applications involving molecular replacement analysis, homology modeling, and rational drug design.

Among other aspects, the coordinates in Table 1-4 define the relative relationship between the protein, the nucleotide and the ligand. Such sets of

coordinates are dependent upon the particular coordinate system used. Those skilled in the art will recognize that rotation, translation or other mathematical manipulation of these coordinates may change the specific values of these coordinates, but the new set(s) will still define the relationship between the multiple components of the crystal structure disclosed herein."

5

10

15

20

25

30

35

The determination of the three-dimensional structure of the ligand binding site of KSP as disclosed herein is advantageous over conventional drug assay techniques, in which the only way to identify such an agent is to screen thousands of test compounds until an agent having the desired inhibitory effect on a target compound is identified. Generally, such conventional screening methods are expensive, time consuming, and do not elucidate the method of action of the identified agent on the target compound. In sharp contrast, advancing X-ray, spectroscopic and computer modeling technologies allow researchers to visualize the three-dimensional structure of a targeted compound (i.e., KSP ligand binding site), and using such a three-dimensional structure to identify putative binding sites and then identify or design agents to interact with these binding sites. These agents can thereafter be screened for an inhibitory effect upon the target molecule. Consequently, an embodiment of the invention details a method for identifying a potential inhibitor of KSP. The proposed method comprises using a three-dimensional structure of KSP and the novel binding site of the invention as defined by the relative structural coordinates of Tables 1-4 and the relative structural coordinates of the amino acid residues of Figure 10 as set forth in Table 1-4 to design or select a potential inhibitor of KSP activity, followed by synthesizing or obtaining the said potential inhibitor. The inhibitor may be selected by screening an appropriate database. Alternatively, it may be designed de novo by analyzing the steric configurations and charge potentials of a ligand bound KSP complex in conjunction with the appropriate software programs, or may be designed using characteristics of known inhibitors of KSP.

An entity/agent that interacts or associates with the ligand binding site of KSP may be identified by performing computer fitting analyses to identify an agent which interacts or associates with said site. Computer fitting analyses utilize various computer software programs that evaluate the "fit" between the binding site and the identified agent, by (a)

generating a three-dimensional model of the ligand binding site using homology modeling or the atomic structural coordinates of the binding site in Tables 1-4, and (b) determining the degree of association between the binding site and the identified agent. The degree of association may be determined computationally by any number of commercially available software programs, or may be determined experimentally using standard binding assays.

5

10

15

20

25

30

35

Preferably, the method of the present invention includes the use of a ligand binding site characterized by the three-dimensional structure comprising the relative structural coordinates of amino acid residues listed in Figure 10 as set forth in Tables $1-4\pm a$ root mean square deviation from the conserved backbone atoms of said amino acids of not more than about 2.0 Å, preferably not more than about 1.0 Å, and most preferably not more than about 0.5 Å. It is understood that the method of the present invention includes additional embodiments comprising conservative substitutions of the noted amino acids which result in the same structural coordinates of the corresponding residues in Tables 1-4 within the stated root mean square deviation.

The effect of an agent identified by computer fitting analyses on human KSP activity may be further evaluated computationally, or experimentally by competitive binding experiments or by contacting the identified agent with KSP and measuring the effect of the agent on the target's biological activity. Standard enzymatic assays may be performed and the results analyzed to determine whether the agent is an inhibitor of KSP activity (i.e., induce cell cycle arrest or inhibit the association of KSP with a microtubule as well as any other known activities attending a kinesin). Further tests may be performed to evaluate the selectivity of the identified agent to KSP with regard to other KSP proteins (other species) or other members of the BimC protein family.

Preferably, the agent designed or selected to interact with KSP is capable of associating with KSP and of assuming a three-dimensional configuration and orientation that complements the relevant ligand binding site of KSP.

Consequently, using these criteria, the structural coordinates of the KSP molecule as disclosed herein, and/or structural coordinates

derived therefrom using molecular replacement or homology modeling, agents may be designed having increased potency and/or selectivity versus known inhibitors, e.g, by modifying the structure of known inhibitors or by designing new agents de novo via computational inspection of the threedimensional configuration of KSP's novel ligand binding site described herein (relative structural coordinates of amino acid residues listed in Figure 10 as set forth in Tables 1-4 and the relative structural coordinates set forth in Table 5).

5

10

15

20

25

30

35

As such, an embodiment of the invention proposes using the structural coordinates of Tables 1-4 of the present invention, or structural coordinates derived therefrom using molecular replacement or homology modeling techniques as discussed above to screen a database for agents that may act as potential inhibitors of KSP activity. As an example, the obtained structural coordinates of the present invention may be read into a software package and the three-dimensional structure analyzed graphically. A number of computational software packages may be used for the analysis of structural coordinates, e.g., Sybyl (Tripos Associates) etc. Additional software programs may be optionally used to check the coordinates with regard to features such as bond and atom types. If necessary, the threedimensional structure may be modified and then energy minimized using the appropriate software until all of the structural parameters are at their equilibrium/optimal values. The energy minimized structure can then be superimposed against the original structure to make sure there are no significant deviations between the original and the energy minimized coordinates.

Once the specific interaction between KSP and a known inhibitor is determined, e.g., such as the information provided in Tables 1-4, docking studies with different inhibitors will allow one skilled in the art to generate initial models of new inhibitors bound to KSP. The integrity of these new models may be evaluated a number of ways, including constrained conformational analysis using molecular dynamics methods; that is where both KSP and the bound inhibitor are allowed to sample different three-dimensional conformational states until the most favorable state is reached or found to exist between the protein and the bound agent

etc. Once models are obtained of the original known agent bound to KSP

(Tables 1-4) and computer models of other molecules bound to KSP are as well obtained, strategies may be proposed determined for designing modifications into the inhibitors to improve their activity and/or enhance their selectivity.

5

10

15

20

30

35

For example, once a KSP binding agent has been optimally selected or designed, as described above, substitutions may then be made in some of its atoms or side groups in order to improve or modify its selectivity and binding properties for KSP. Generally, initial substitutions are conservative, i.e., the replacement group will have approximately the same size, shape, hydrophobicity and charge as the original group. Such substituted chemical compounds may then be analyzed for efficiency of fit to KSP by the same computer methods described in detail above. Further molecular analysis and rational drug design techniques are disclosed in U.S. Pat. Nos. 5,834,228, and 5,939,528 the contents of which are incorporated by reference in their entirety.

Thus, an exemplary embodiment of the invention envisions a method of three-dimensional modeling of a KSP protein, comprising the steps of:

- (a) providing three-dimensional atomic coordinates derived from
 X-ray diffraction measurements of a KSP protein in a computer readable
 format;
 - (b) inputting the data from step (a) into a computer with appropriate software programs; and
- (c) generating a three-dimensional structural representation of
 the KSP protein suitable for visualization and further computational manipulation.

This invention further provides for the use of the structural coordinates of a crystalline composition of this invention, or portions thereof, to identify reactive amino acids within the three-dimensional structure, preferably within or adjacent to a ligand binding site; to generate and visualize a molecular surface, such as a water-accessible surface or a surface comprising the space-filling van der Waals surface of all atoms; to calculate and visualize the size and shape of surface features of the protein or complex, e.g., ligand binding pockets; to locate potential H-bond donors and acceptors within the three-dimensional structure, preferably within or

adjacent to a ligand binding site; to calculate regions of hydrophobicity and hydrophilicity within the three-dimensional structure, preferably within or adjacent to a ligand binding site; and to calculate and visualize regions on or adjacent to the protein surface of favorable interaction energies with respect to selected functional groups of interest (e.g. amino, hydroxyl, carboxyl, methylene, alkyl, alkenyl, aromatic carbon, aromatic rings, heteroaromatic rings, substituted and unsubstituted phosphates, substituted and unsubstituted phosphonates, substituted and unsubstituted fluoro and difluorophosphonates; etc.). One may use the foregoing approaches for characterizing the protein and its interactions with moieties of potential ligands to design or select compounds capable of specific covalent attachment to reactive amino acids (e.g., cysteine) and to design or select compounds of complementary characteristics (e.g., size, shape, charge, hydrophobicity/hydrophilicity, ability to participate in hydrogen bonding, etc.) to surface features of the protein, a set of which may be preselected. Using the structural coordinates, one may also predict or calculate the orientation, binding constant or relative affinity of a given ligand to the protein in the complexed state, and use that information to design or select compounds of improved affinity.

5

10

15

20

25

30

35

In such cases, the structural coordinates of the KSP protein, or portion or complex thereof, are entered in machine readable form into a machine programmed with instructions for carrying out the desired operation and containing any necessary additional data, e.g. data defining structural and/or functional characteristics of a potential ligand or moiety thereof, defining molecular characteristics of the various amino acids, etc.

The present invention is additionally directed to a method of determining the three-dimensional structure of a molecule or molecular complex whose structure is unknown, comprising the steps of first obtaining crystals of the molecule or molecular complex whose structure is unknown, and then generating X-ray diffraction data from the crystallized molecule or molecular complex and/or generating NMR data from the solution of the molecule or molecular complex. The generated diffraction or spectroscopy data from the molecule or molecular complex can then be compared with the solution coordinates or three-dimensional structure of KSP as disclosed herein, and the three-dimensional structure of the unknown molecule or

molecular complex conformed to the KSP structure using standard techniques such as molecular replacement analysis, 2D, 3D and 4D isotope filtering, editing and triple resonance NMR techniques, and computer homology modeling. Alternatively, a three-dimensional model of the unknown molecule may be generated by generating a sequence alignment between KSP and the unknown molecule, based on any or all of amino acid sequence identity, secondary structure elements or tertiary folds, and then generating by computer modeling a three-dimensional structure for the molecule using the three-dimensional structure of, and sequence alignment with, KSP.

Preferred embodiments of the aforementioned methods are those methods wherein the KSP protein comprises a binding site characterized by amino acid residues described in Figure 10.

10

15

20

25

30

35

This invention also provides peptidomimetic methods for designing a compound capable of binding to a KSP protein or KSP homolog. One such method involves graphically displaying a three-dimensional representation based on coordinates defining the three-dimensional structure of a KSP family protein or a portion thereof complexed with a ligand. Interactions between portions of a ligand and the protein may then be analyzed in order to identify candidate moieties for replacement. One or more portions of the ligand which interact with the protein may be replaced with substitute moieties selected from a knowledge base of one or more candidate substitute moieties, and/or moieties may be added to the ligand to permit additional interactions with the protein.

In another aspect of the instant invention, the structural coordinates of a crystalline composition of this invention, or portions thereof, may be used to identify one or more pharmacophores of a chemical compound that binds to the ligand binding site. Such a pharmacophore is described as a set of atoms, chemical groups, pseudo-atoms or vectors, and the relative positions in space of each of these pharmacophore features. Each feature, alone or in combination with its relative position, forms a pharmacophore parameter. Thus, the pharmacophore includes the pharmacophore features, and the relative position of each descriptor with regard to all other descriptors comprising the pharmacophore.

Pharmacophore models can be constructed either directly or indirectly.

In the direct method, the pharmacophore feature spatial centers are inferred from

studying the X-ray structural coordinates or NMR structure of a receptor-ligand complex, followed by a shape-complementarity function analysis of the receptor binding site, usually performed using a computer and a computer-readable medium. In the indirect method, the structure of the receptor is unknown and the pharmacophore feature spatial centers are inferred by overlaying the three-dimensional conformations of active compounds and finding the common, overlapping functional groups.

The pharmacophore models of the present invention, obtained by combining both direct and indirect methods, are herein described, by way of example only and without any intention of being limiting, with reference to Figures 14A and B.

10

15

20

The first model pharmacophore (FIG. 14A) is represented by three pharmacophore features having the planar orientation shown: a sphere indicating the center of an aryl, heteroaryl or cycloalkyl ring (or, in general, of a hydrophobic group), and two small boxes (labeled HA and HD), representing the heterocenters of a hydrogen bond acceptor and a hydrogen bond donor, respectively. The second model pharmacophore (FIG. 14B) is represented by three pharmacophore features: two spheres indicating the centers of two aryl, heteroaryl or cycloalkyl rings (or hydrophobic groups in general), and a small box representing the heteroatomic center of a hydrogen bond acceptor (HA).

As used herein, "aryl" is intended to mean any stable monocyclic or bicyclic carbon ring of up to 7 atoms in each ring, wherein at least one ring is aromatic. Examples of such aryl elements include phenyl, naphthyl, tetrahydronaphthyl, indanyl and biphenyl. In cases where the aryl substituent is bicyclic and one ring is non-aromatic, it is understood that attachment is via the aromatic ring.

25

30

35

The term heteroaryl, as used herein, represents a stable monocyclic or bicyclic ring of up to 7 atoms in each ring, wherein at least one ring is aromatic and contains from 1 to 4 heteroatoms selected from the group consisting of O, N and S. Heteroaryl groups within the scope of this definition include but are not limited to: acridinyl, carbazolyl, cinnolinyl, quinoxalinyl, pyrrazolyl, indolyl, benzotriazolyl, furanyl, thienyl, benzothienyl, benzofuranyl, quinolinyl, isoquinolinyl, oxazolyl, isoxazolyl, indolyl, pyrazinyl, pyridazinyl, pyridinyl, pyrimidinyl, pyrrolyl, tetrahydroquinoline. In an embodiment of the instant invention, heteroaryl does not include quinazolinone.

As used herein, "cycloalkyl" is intended to include monocyclic saturated aliphatic hydrocarbon groups having the specified number of carbon atoms.

For example, "cycloalkyl" includes cyclopropyl, methyl-cyclopropyl, 2,2-dimethyl-cyclobutyl, 2-ethyl-cyclopentyl, cyclohexyl, and so on. In an embodiment of the invention the term "cycloalkyl" includes the groups described immediately above and further includes monocyclic unsaturated aliphatic hydrocarbon groups. For example, "cycloalkyl" as defined in this embodiment includes cyclopropyl, methyl-cyclopropyl, 2,2-dimethyl-cyclobutyl, 2-ethyl-cyclopentyl, cyclohexyl, cyclopentenyl, cyclobutenyl and so on.

5

10

15

20

25

30

35

The, cycloalkyl, aryl, heteroaryl and heteroaryl substituents may be substituted or unsubstituted, unless specifically defined otherwise. For example, an aryl may be substituted with one, two or three substituents selected from OH, alkyl, halogen, alkoxy or dialkylamino.

The active structural motifs designated herein as the model pharmacophores of the present invention can be used to screen libraries of molecules for the existence of a predefined structural motif, and in particular identifying molecules that meet the constraints imposed by the pharmacophore. The pharmacophore feature spatial centers are globally associated with a specific biological activity. The molecules being evaluated may be designed *de novo* using computer methods, or alternatively, be either a scaffold or a full chemical entity (e.g., chosen from a library of compounds). Using the model pharmacophores disclosed herein one of ordinary skill may predict the inhibitory potency of a compound based upon its fit with any of these two pharmacophore models shown in FIG. 14A and B.

In an embodiment, the compound identified by the use of a pharmacophore model described herein has a binding affinity for KSP of about 0.1 nM to about 100 nM. In a further embodiment, the binding affinity range is from about 1 nM to about 20 nM.

In an embodiment, the compound identified by its fit with the pharmacophore model of Figure 14A does not incorporate a 2-thioxo-1,2,3,4-tetrahydropyrimidine moiety, a dihydropyrimidine moiety or a 5,6,11,11a-tetrahydro-1H-imidazo[1',5':1,6]-pyrido[3.4-b]indole-1,3(2H)-dione moiety.

An additional pharmacophore model is illustrated by Figure 16. The pharmacophore model of Figure 16 is represented by four pharmacophore features: three spheres indicating the centers of aryl, heteroaryl or cycloalkyl rings (or hydrophobic groups in general), and a small box representing the heteroatomic center of a hydrogen bond acceptor (HA). In reference to Figure 16, the distances in Å between the pharmacophore features are listed in the following table:

	1	2	3	4
l	-			
. 2	5.1±0.6	-		
3	8.5±0.7	6.9±0.7	-	
4	3.7±0.5	5.8±0.6	5.7±0.7	-

In an embodiment, the compound identified by its fit with the pharmacophore model of Figure 16 does not incorporate a quinazolinone, phenothiazine, thienopyrimidinone, furanopyrimidinone, azolopyrimidinone, thiazolopyrimidine, cycloalkylpyrimidinone or triphenylmethane moiety. In a further embodiment, the compound identified by its fit with the pharmacophore model of Figure 16 does not incorporate a quinazolinone, phenothiazine or triphenylmethane moiety.

In an embodiment, the compound identified by its fit with the pharmacophore model of Figure 14B does not incorporate a quinazolinone, phenothiazine, thienopyrimidinone, furanopyrimidinone, azolopyrimidinone, thiazolopyrimidine, cycloalkylpyrimidinone or triphenylmethane moiety. In a further embodiment, the compound identified by its fit with the pharmacophore model of Fig. 14B does not incorporate a quinazolinone, phenothiazine or triphenylmethane moiety.

15

20

10

The degree of fit of a particular compound structure to the pharmacophore models is calculated by determining, using computer methods, if the compound possesses the chemical features of the pharmacophore model and if the features can adopt the necessary three-dimensional arrangement to fit the model. The modeling program will indicate those features in the pharmacophore model having a fit with the particular compound or chemical feature of the compound being tested. The term "fit" when referring to a compound and a pharmacophore or binding site includes both compounds that occupy only the spatial area of the pharmacophore or binding site and compounds of which the chemical features or a portion of the molecule occupy the spatial area of the pharmacophore or binding site.

25

30

Fitting of a compound to the ligand binding site volume can be done in a number of different ways using computational methods well known by those skilled in the art. Visual inspection and manual docking of compounds into the induced-fit active site volume can be done using molecular modeling software such as QUANTA (Molecular Simulations, Burlington, MA, 1992), SYBYL (Tripos Associates, Inc., St. Louis, MO, 1992), AMBER (Weiner et al., J. Am. Chem. Soc., 106: 765-784, 1984), CHARMM (Brooks et al., J. Comp. Chem., 4: 187-217, 1983) or other modeling

programs known to those of skill in the art. This modeling step may be followed by energy minimization using standard force fields, such as CHARMM and AMBER, or others. More specialized modeling programs include MCSS (Miranker & Karplus, Function and Genetics, 11: 29-34, 1991), GRID (Goodford et al., J. Med. Chem., 28: 849-857, 1985), AUTODOCK (Goodsell & Olsen, Proteins: Structure, Function and Genetics, 8: 195-202, 1990), and DOCK (Kuntz et al., J. Mol. Biol., 161: 269-288, 1982). In addition, inhibitor compounds may be constructed *de novo* in the empty active site or in the active site including some portions of a known inhibitor using computer programs such as LEGEND (Nishibata & Itai, Tetrahedron, 47: 8985, 1991), LeapFrog (Tripos Associates, St. Louis, MO), LUDI (Bohm, J. Comp. Aid. Molec. Design, 6: 61-78, 1992), AutoLudi (Accelrys Inc., San Diego, CA) or others.

5

10

15

20

25

30

Another aspect of the invention relates to a complementary protein having a structure substantially complementary to the three-dimensional structure according to Tables 1-4; or to a medicinally effective part thereof, particularly a ligand binding region. A complementary protein is one whose three-dimensional structure is substantially complementary to the Tables 1-4 structure or a part thereof, such that the complementary structure may bind thereto and may form a complex. The lifetime of the complex may be long in the case of an inhibiting complementary protein. Of course, binding will also require an appropriate choice of amino acid sequence. Such a complementary protein may act as an inhibitor of KSP. Such inhibitors may be used *in vivo* or *in vitro* to modify the activity of KSP.

In the pharmaceutical industry, new or known compounds are routinely screened for new uses employing a variety of known in vitro or in vivo screens. Often such screens involve complex natural substances and are correspondingly expensive to carry out, and the result may be difficult to interpret. The knowledge of the three-dimensional protein structure according to the invention allows a preliminary screening to be carried out on the basis of the three-dimensional structure of a region thereof, and the structural similarity of a molecule which is being screened. This is usually carried out in conjunction with a knowledge of the amino sequence of the region. Such screening can conveniently be carried out using computer modeling techniques, which match the three-dimensional structure of the protein or part thereof (or complementary protein or part thereof) with the

structure of the molecule being screened, thereby allowing one to predict potential inhibitor activity.

The binding of a ligand to the novel binding site of the instant invention and the formation of the novel binding pocket as a result can also be indirectly assessed by spectroscopically determining the shift in the fluorescence of the amino acid 127 tryptophan residue. Thus it has been discovered that the fluorescent emission of Trp127 is modulated when KSP is treated with one of the inhibitors described above in the presence of a nucleotide or nucleotides.

A further embodiment of the instant invention is an *in vitro* assay for the determination of binding of a test compound to the novel KSP binding site described herein. The assay comprises the steps of:

- contacting KSP with the test compound and a nucleotide and measuring the fluorescence of the mixture at the peak emission wavelength for Trp127 in KSP;
- contacting KSP with a nucleotide and measuring the fluorescence of the mixture at the peak emission wavelength for Trp127 in KSP; and
- comparing the fluorescence of the mixture of KSP, the test compound and the nucleotide with the fluorescence of the mixture of KSP with the nucleotide alone.

In another embodiment of the *in vitro* fluorescence assay the nucleotide is selected from ADP and AMPPNP (a non-hydrolysable analog of ATP, adenosine 5'- $(\beta,\gamma$ -imido)triphosphate tetralithium salt hydrate).

In an embodiment of the *in vitro* fluorescence assay the mixtures additionally contain a source of magnesium ion. Preferably the source of magnesium ion is MgCl₂.

In another embodiment of the *in vitro* fluorescence assay the measurement of the fluorescence of the KSP, test compound and nucleotide mixture is performed at several different concentrations of the test compound.

Because the KSP kinesin's three-dimensional structure is uniquely suited to the formation of the novel binding pocket of the instant invention, the methods of identification of compounds that bind to the novel binding pocket described herein, such as the fluorescence assay described

5

20

25

15

30

above, may be used to identify selective inhibitors of KSP which may not inhibit other mitotic kinesins. Such identification of a selective KSP inhibitor may offer particular advantages over an inhibitor which is competitive with the binding of the nucleotide substrate of KSP or which binds to the site of microtubule binding.

A still further aspect of the invention relates to antibodies (including monoclonal antibodies) directed to the KSP protein or complementary protein, for the detection thereof or for the modulation of its medicinal activity, it being understood that the antibody is specific for the KSP-ligand, e.g., inhibitor bound conformation.

Compounds of the structures selected or designed by any of the foregoing means may be tested for their ability to bind to a KSP protein, inhibit the binding of a KSP protein to a natural or non-natural ligand therefor, and/or inhibit a biological function mediated by a KSP protein or a BimC family member.

Finally, the present invention provides agents or inhibitors designed or selected using the methods disclosed herein. Such compounds may be utilized as described in the following sections.

Utilities

5

10

15

20

25

30

35

The compounds designed or selected using the methods of the invention find use in a variety of applications. As will be appreciated by those in the art, mitosis may be altered in a variety of ways; that is, one can affect mitosis either by increasing or decreasing the activity of a component in the mitotic pathway. Stated differently, mitosis may be affected (e.g., disrupted) by disturbing equilibrium, either by inhibiting or activating certain components. Similar approaches may be used to alter meiosis.

In a preferred embodiment, the compounds designed or selected using the methods of the invention are used to modulate mitotic spindle formation, thus causing prolonged cell cycle arrest in mitosis. By "modulate" herein is meant altering mitotic spindle formation, including increasing and decreasing spindle formation. By "mitotic spindle formation" herein is meant organization of microtubules into bipolar structures by mitotic kinesins. By "mitotic spindle dysfunction" herein is meant mitotic arrest and monopolar spindle formation.

The compounds designed or selected using the methods of the invention are useful to bind to and/or modulate the activity of a mitotic kinesin. In a

preferred embodiment, the mitotic kinesin is a member of the bimC subfamily of mitotic kinesins (as described in U.S. Patent No. 6,284,480, column 5). In a further preferred embodiment, the mitotic kinesin is human KSP, although the activity of mitotic kinesins from other organisms may also be modulated by the compounds of the present invention. In this context, modulate means either increasing or decreasing spindle pole separation, causing malformation, i.e., splaying, of mitotic spindle poles, or otherwise causing morphological perturbation of the mitotic spindle. Also included within the definition of KSP for these purposes are variants and/or fragments of KSP. See PCT Publ. WO 01/31335: "Methods of Screening for Modulators of Cell Proliferation and Methods of Diagnosing Cell Proliferation States", filed Oct. 27, 1999, hereby incorporated by reference in its entirety. In addition, other mitotic kinesins may be inhibited by the compounds of the present invention.

5

10

15

20

25

30

35

The compounds designed or selected using the methods of the invention are used to treat cellular proliferation diseases. Disease states which can be treated by the methods and compositions provided herein include, but are not limited to, cancer (further discussed below), autoimmune disease, arthritis, graft rejection, inflammatory bowel disease, proliferation induced after medical procedures, including, but not limited to, surgery, angioplasty, and the like. It is appreciated that in some cases the cells may not be in a hyper- or hypoproliferation state (abnormal state) and still require treatment. For example, during wound healing, the cells may be proliferating "normally", but proliferation enhancement may be desired. Similarly, as discussed above, in the agriculture arena, cells may be in a "normal" state, but proliferation modulation may be desired to enhance a crop by directly enhancing growth of a crop, or by inhibiting the growth of a plant or organism which adversely affects the crop. Thus, in one embodiment, the invention herein includes application to cells or individuals afflicted or impending affliction with any one of these disorders or states.

The compounds, compositions and methods provided herein are particularly deemed useful for the treatment of cancer including solid tumors such as skin, breast, brain, cervical carcinomas, testicular carcinomas, etc. More particularly, cancers that may be treated by the compounds, compositions and methods of the invention include, but are not limited to: Cardiac: sarcoma (angiosarcoma, fibrosarcoma, rhabdomyosarcoma, liposarcoma), myxoma, rhabdomyoma, fibroma, lipoma and teratoma; Lung: bronchogenic carcinoma (squamous cell, undifferentiated small cell, undifferentiated large cell, adenocarcinoma), alveolar (bronchiolar)

5

10

15

20

25

30

35

carcinoma, bronchial adenoma, sarcoma, lymphoma, chondromatous hamartoma, mesothelioma; Gastrointestinal: esophagus (squamous cell carcinoma, adenocarcinoma, leiomyosarcoma, lymphoma), stomach (carcinoma, lymphoma, leiomyosarcoma), pancreas (ductal adenocarcinoma, insulinoma, glucagonoma, gastrinoma, carcinoid tumors, vipoma), small bowel (adenocarcinoma, lymphoma, carcinoid tumors, Karposi's sarcoma, leiomyoma, hemangioma, lipoma, neurofibroma, fibroma), large bowel (adenocarcinoma, tubular adenoma, villous adenoma, hamartoma, leiomyoma); Genitourinary tract: kidney (adenocarcinoma, Wilm's tumor [nephroblastoma], lymphoma, leukemia), bladder and urethra (squamous cell carcinoma, transitional cell carcinoma, adenocarcinoma), prostate (adenocarcinoma, sarcoma), testis (seminoma, teratoma, embryonal carcinoma, teratocarcinoma, choriocarcinoma, sarcoma, interstitial cell carcinoma, fibroma, fibroadenoma, adenomatoid tumors, lipoma); Liver: hepatoma (hepatocellular carcinoma), cholangiocarcinoma, hepatoblastoma, angiosarcoma, hepatocellular adenoma, hemangioma; Bone: osteogenic sarcoma (osteosarcoma), fibrosarcoma, malignant fibrous histiocytoma, chondrosarcoma, Ewing's sarcoma, malignant lymphoma (reticulum cell sarcoma), multiple mycloma, malignant giant cell tumor chordoma, osteochronfroma (osteocartilaginous exostoses), benign chondroma, chondroblastoma, chondromyxofibroma, osteoid osteoma and giant cell tumors; Nervous system: skull (osteoma, hemangioma, granuloma, xanthoma, osteitis deformans), meninges (meningioma, meningiosarcoma, gliomatosis), brain (astrocytoma, medulloblastoma, glioma, ependymoma, germinoma [pinealoma], glioblastoma multiform, oligodendroglioma, schwannoma, retinoblastoma, congenital tumors), spinal cord neurofibroma, meningioma, glioma, sarcoma); Gynecological: uterus (endometrial carcinoma), cervix (cervical carcinoma, pre-tumor cervical dysplasia), ovaries (ovarian carcinoma [serous cystadenocarcinoma, mucinous cystadenocarcinoma, unclassified carcinoma), granulosa-thecal cell tumors, Sertoli-Leydig cell tumors, dysgerminoma, malignant teratoma), vulva (squamous cell carcinoma, intraepithelial carcinoma, adenocarcinoma, fibrosarcoma, melanoma), vagina (clear cell carcinoma, squamous cell carcinoma, botryoid sarcoma (embryonal rhabdomyosarcoma), fallopian tubes (carcinoma); Hematologic: blood (myeloid leukemia [acute and chronic], acute lymphoblastic leukemia, chronic lymphocytic leukemia, myeloproliferative diseases, multiple myeloma, myelodysplastic syndrome), Hodgkin's disease, non-Hodgkin's lymphoma [malignant lymphoma]; Skin: malignant melanoma, basal cell carcinoma, squamous cell carcinoma, Karposi's sarcoma, moles

dysplastic nevi, lipoma, angioma, dermatofibroma, keloids, psoriasis; and <u>Adrenal</u> glands: neuroblastoma. Thus, the term "cancerous cell" as provided herein, includes a cell afflicted by any one of the above-identified conditions.

The compounds designed or selected using the methods of the instant invention may also be useful as antifungal agents, by modulating the activity of the fungal members of the bimC kinesin subgroup, as is described in U.S. Patent No. 6,284,480.

5

10

15

20

25

30

35

The compounds designed or selected using the methods of this invention may be administered to mammals, preferably humans, either alone or, preferably, in combination with pharmaceutically acceptable carriers, excipients or diluents, in a pharmaceutical composition, according to standard pharmaceutical practice. The compounds can be administered orally or parenterally, including the intravenous, intramuscular, intraperitoneal, subcutaneous, rectal and topical routes of administration.

As used herein, the term "composition" is intended to encompass a product comprising the specified ingredients in the specific amounts, as well as any product which results, directly or indirectly, from combination of the specific ingredients in the specified amounts.

The pharmaceutical compositions containing the active ingredient may be in a form suitable for oral use, for example, as tablets, troches, lozenges, aqueous or oily suspensions, dispersible powders or granules, emulsions, hard or soft capsules, or syrups or elixirs. Compositions intended for oral use may be prepared according to any method known to the art for the manufacture of pharmaceutical compositions and such compositions may contain one or more agents selected from the group consisting of sweetening agents, flavoring agents, coloring agents and preserving agents in order to provide pharmaceutically elegant and palatable preparations. Tablets contain the active ingredient in admixture with non-toxic pharmaceutically acceptable excipients which are suitable for the manufacture of tablets. These excipients may be for example, inert diluents, such as calcium carbonate, sodium carbonate, lactose, calcium phosphate or sodium phosphate; granulating and disintegrating agents, for example, microcrystalline cellulose, sodium crosscarmellose, corn starch, or alginic acid; binding agents, for example starch, gelatin, polyvinyl-pyrrolidone or acacia, and lubricating agents, for example, magnesium stearate, stearic acid or talc. The tablets may be uncoated or they may be coated by known techniques to mask the unpleasant taste of the drug or delay disintegration and absorption in the gastrointestinal tract and

thereby provide a sustained action over a longer period. For example, a water soluble taste masking material such as hydroxypropyl-methylcellulose or hydroxypropylcellulose, or a time delay material such as ethyl cellulose, cellulose acetate buryrate may be employed.

Formulations for oral use may also be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water soluble carrier such as polyethyleneglycol or an oil medium, for example peanut oil, liquid paraffin, or olive oil.

5

10

15

20

25

30

35

Aqueous suspensions contain the active material in admixture with excipients suitable for the manufacture of aqueous suspensions. Such excipients are suspending agents, for example sodium carboxymethylcellulose, methylcellulose, hydroxypropylmethyl-cellulose, sodium alginate, polyvinyl-pyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents may be a naturally-occurring. phosphatide, for example lecithin, or condensation products of an alkylene oxide with fatty acids, for example polyoxyethylene stearate, or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethyleneoxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides, for example polyethylene sorbitan monooleate. The aqueous suspensions may also contain one or more preservatives, for example ethyl, or n-propyl p-hydroxybenzoate, one or more coloring agents, one or more flavoring agents, and one or more sweetening agents, such as sucrose, saccharin or aspartame.

Oily suspensions may be formulated by suspending the active ingredient in a vegetable oil, for example arachis oil, olive oil, sesame oil or coconut oil, or in mineral oil such as liquid paraffin. The oily suspensions may contain a thickening agent, for example beeswax, hard paraffin or cetyl alcohol. Sweetening agents such as those set forth above, and flavoring agents may be added to provide a palatable oral preparation. These compositions may be preserved by the addition of an anti-oxidant such as butylated hydroxyanisol or alpha-tocopherol.

Dispersible powders and granules suitable for preparation of an aqueous suspension by the addition of water provide the active ingredient in

admixture with a dispersing or wetting agent, suspending agent and one or more preservatives. Suitable dispersing or wetting agents and suspending agents are exemplified by those already mentioned above. Additional excipients, for example sweetening, flavoring and coloring agents, may also be present. These compositions may be preserved by the addition of an anti-oxidant such as ascorbic acid.

5

10

15

20

25

30

35

The pharmaceutical compositions of the invention may also be in the form of an oil-in-water emulsions. The oily phase may be a vegetable oil, for example olive oil or arachis oil, or a mineral oil, for example liquid paraffin or mixtures of these. Suitable emulsifying agents may be naturally occurring phosphatides, for example soy bean lecithin, and esters or partial esters derived from fatty acids and hexitol anhydrides, for example sorbitan monooleate, and condensation products of the said partial esters with ethylene oxide, for example polyoxyethylene sorbitan monooleate. The emulsions may also contain sweetening, flavoring agents, preservatives and antioxidants.

Syrups and elixirs may be formulated with sweetening agents, for example glycerol, propylene glycol, sorbitol or sucrose. Such formulations may also contain a demulcent, a preservative, flavoring and coloring agents and antioxidant.

The pharmaceutical compositions may be in the form of a sterile injectable aqueous solutions. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution and isotonic sodium chloride solution.

The sterile injectable preparation may also be a sterile injectable oil-inwater microemulsion where the active ingredient is dissolved in the oily phase. For example, the active ingredient may be first dissolved in a mixture of soybean oil and lecithin. The oil solution then introduced into a water and glycerol mixture and processed to form a microemulation.

The injectable solutions or microemulsions may be introduced into a patient's blood stream by local bolus injection. Alternatively, it may be advantageous to administer the solution or microemulsion in such a way as to maintain a constant circulating concentration of the instant compound. In order to maintain such a constant concentration, a continuous intravenous delivery device may be utilized. An example of such a device is the Deltec CADD-PLUSTM model 5400 intravenous pump.

The pharmaceutical compositions may be in the form of a sterile injectable aqueous or oleagenous suspension for intramuscular and subcutaneous administration. This suspension may be formulated according to the known art using

those suitable dispersing or wetting agents and suspending agents which have been mentioned above. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, for example as a solution in 1,3-butane diol. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil may be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid find use in the preparation of injectables.

5

.. 10

15

20

25

30

35

Compounds designed or selected using the methods disclosed herein may also be administered in the form of suppositories for rectal administration of the drug. These compositions can be prepared by mixing the drug with a suitable non-irritating excipient which is solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum to release the drug. Such materials include cocoa butter, glycerinated gelatin, hydrogenated vegetable oils, mixtures of polyethylene glycols of various molecular weights and fatty acid esters of polyethylene glycol.

For topical use, creams, ointments, jellies, solutions or suspensions, etc., containing the compound are employed. (For purposes of this application, topical application shall include mouth washes and gargles.)

The compounds designed or selected using the methods of the present invention can be administered in intranasal form via topical use of suitable intranasal vehicles and delivery devices, or via transdermal routes, using those forms of transdermal skin patches well known to those of ordinary skill in the art. To be administered in the form of a transdermal delivery system, the dosage administration will, of course, be continuous rather than intermittent throughout the dosage regimen.

Compounds of the present invention may also be delivered as a suppository employing bases such as cocoa butter, glycerinated gelatin, hydrogenated vegetable oils, mixtures of polyethylene glycols of various molecular weights and fatty acid esters of polyethylene glycol.

When a compound according to this invention is administered into a human subject, the daily dosage will normally be determined by the prescribing physician with the dosage generally varying according to the age, weight, sex and response of the individual patient, as well as the severity of the patient's symptoms.

In one exemplary application, a suitable amount of compound is administered to a mammal undergoing treatment for cancer. Administration occurs in an amount between about 0.1 mg/kg of body weight to about 60 mg/kg of body

5

10

15

20

25

30

weight per day, preferably of between 0.5 mg/kg of body weight to about 40 mg/kg of body weight per day.

The compounds designed or selected using the methods disclosed herein (hereafter referred to as the "instant compounds") are also useful in combination with known therapeutic agents and anti-cancer agents. For example, instant compounds are useful in combination with known anti-cancer agents. Combinations of the presently disclosed compounds with other anti-cancer or chemotherapeutic agents are within the scope of the invention. Examples of such agents can be found in Cancer Principles and Practice of Oncology by V.T. Devita and S. Hellman (editors), 6th edition (February 15, 2001), Lippincott Williams & Wilkins Publishers. A person of ordinary skill in the art would be able to discem which combinations of agents would be useful based on the particular characteristics of the drugs and the cancer involved. Such anti-cancer agents include, but are not limited to, the following: estrogen receptor modulators, androgen receptor modulators, retinoid receptor modulators, cytotoxic/cytostatic agents, antiproliferative agents, prenyl-protein transferase inhibitors, HMG-CoA reductase inhibitors and other angiogenesis inhibitors, inhibitors of cell proliferation and survival signaling, and agents that interfere with cell cycle checkpoints. The instant compounds are particularly useful when co-administered with radiation therapy.

In an embodiment, the instant compounds are also useful in combination with known anti-cancer agents including the following: estrogen receptor modulators, androgen receptor modulators, retinoid receptor modulators, cytotoxic agents, antiproliferative agents, prenyl-protein transferase inhibitors, HMG-CoA reductase inhibitors, HIV protease inhibitors, reverse transcriptase inhibitors, and other angiogenesis inhibitors.

"Estrogen receptor modulators" refers to compounds that interfere with or inhibit the binding of estrogen to the receptor, regardless of mechanism. Examples of estrogen receptor modulators include, but are not limited to, tamoxifen, raloxifene, idoxifene, LY353381, LY117081, toremifene, fulvestrant, 4-[7-(2,2-dimethyl-1-oxopropoxy-4-methyl-2-[4-[2-(1-piperidinyl)ethoxy]phenyl]-2H-1-benzopyran-3-yl]-phenyl-2,2-dimethylpropanoate, 4,4'-dihydroxybenzophenone-2,4-dinitrophenyl-hydrazone, and SH646.

"Androgen receptor modulators" refers to compounds which interfere or inhibit the binding of androgens to the receptor, regardless of mechanism.

Examples of androgen receptor modulators include finasteride and other 5α-reductase inhibitors, nilutamide, flutamide, bicalutamide, liarozole, and abiraterone acetate.

"Retinoid receptor modulators" refers to compounds which interfere or inhibit the binding of retinoids to the receptor, regardless of mechanism. Examples of such retinoid receptor modulators include bexarotene, tretinoin, 13-cis-retinoic acid, 9-cis-retinoic acid, α-difluoromethylomithine, ILX23-7553, trans-N-(4'-hydroxyphenyl) retinamide, and N-4-carboxyphenyl retinamide.

5

10

15

20

25

30

35

"Cytotoxic/cytostatic agents" refer to compounds which cause cell death or inhibit cell proliferation primarily by interfering directly with the cell's functioning or inhibit or interfere with cell myosis, including alkylating agents, tumor necrosis factors, intercalators, hypoxia activatable compounds, microtubule inhibitors/microtubule-stabilizing agents, inhibitors of mitotic kinesins, inhibitors of kinases involved in mitotic progression, antimetabolites; biological response modifiers; hormonal/anti-hormonal therapeutic agents, haematopoietic growth factors, monoclonal antibody targeted therapeutic agents, topoisomerase inhibitors, proteosome inhibitors and ubiquitin ligase inhibitors.

Examples of cytotoxic agents include, but are not limited to, sertenef, cachectin, ifosfamide, tasonermin, lonidamine, carboplatin, altretamine, prednimustine, dibromodulcitol, ranimustine, fotemustine, nedaplatin, oxaliplatin, temozolomide, heptaplatin, estramustine, improsulfan tosilate, trofosfamide, nimustine, dibrospidium chloride, pumitepa, lobaplatin, satraplatin, profiromycin, cisplatin, irofulven, dexifosfamide, cis-aminedichloro(2-methyl-pyridine)platinum, benzylguanine, glufosfamide, GPX100, (trans, trans, trans)-bis-mu-(hexane-1,6-diamine)-mu-[diamine-platinum(II)]bis[diamine(chloro)platinum (II)]tetrachloride, diarizidinylspermine, arsenic trioxide, 1-(11-dodecylamino-10-hydroxyundecyl)-3,7-dimethylxanthine, zorubicin, idarubicin, daunorubicin, bisantrene, mitoxantrone, pirarubicin, pinafide, valrubicin, amrubicin, antineoplaston, 3'-deamino-3'-morpholino-13-deoxo-10-hydroxycarminomycin, annamycin, galarubicin, elinafide, MEN10755, and 4-demethoxy-3-deamino-3-aziridinyl-4-methylsulphonyl-daunorubicin (see WO 00/50032).

An example of a hypoxia activatable compound is tirapazamine.

Examples of proteosome inhibitors include but are not limited to lactacystin and MLN-341 (Velcade).

Examples of microtubule inhibitors/microtubule-stabilising agents include paclitaxel, vindesine sulfate, 3',4'-didehydro-4'-deoxy-8'-

norvincaleukoblastine, docetaxol, rhizoxin, dolastatin, mivobulin isethionate, auristatin, cemadotin, RPR109881, BMS184476, vinflunine, cryptophycin, 2,3,4,5,6-pentafluoro-N-(3-fluoro-4-methoxyphenyl) benzene sulfonamide, anhydrovinblastine, N,N-dimethyl-L-valyl-L-valyl-N-methyl-L-valyl-L-prolyl-L-proline-t-butylamide, TDX258, the epothilones (see for example U.S. Pat. Nos. 6,284,781 and 6,288,237)

TDX258, the epothilones (see for example U.S. Pat. Nos. 6,284,781 and 6,288,237 and BMS188797. In an embodiment the epothilones are not included in the microtubule inhibitors/microtubule-stabilising agents.

5

30

Some examples of topoisomerase inhibitors are topotecan, hycaptamine, irinotecan, rubitecan, 6-ethoxypropionyl-3',4'-O-exo-benzylidene-chartreusin, 9-methoxy-N,N-dimethyl-5-nitropyrazolo[3,4,5-kl]acridine-2-(6H) propanamine, 1-amino-9-ethyl-5-fluoro-2,3-dihydro-9-hydroxy-4-methyl-1H,12H-benzo[de]pyrano[3',4':b,7]-indolizino[1,2b]quinoline-10,13(9H,15H)dione, lurtotecan, 7-[2-(N-isopropylamino)ethyl]-(20S)camptothecin, BNP1350, BNPI1100, BN80915, BN80942, etoposide phosphate, teniposide, sobuzoxane, 2'-dimethylamino-2'-deoxy-etoposide, GL331, N-[2-(dimethylamino)ethyl]-9-hydroxy-5,6-dimethyl-6H-pyrido[4,3-b]carbazole-1-carboxamide, asulacrine, (5a, 5aB, 8aa,9b)-9-[2-[N-[2-(dimethylamino)ethyl]-N-methylamino]ethyl]-5-[4-hydro0xy-3,5-dimethoxyphenyl]-5,5a,6,8,8a,9-hexohydrofuro(3',4':6,7)naphtho(2,3-d)-1,3-dioxol-6-one, 2,3-(methylenedioxy)-5-methyl-7-hydroxy-8-methoxybenzo[c]-

phenanthridinium, 6,9-bis[(2-aminoethyl)amino]benzo[g]isoguinoline-5,10-dione, 5-(3-aminopropylamino)-7,10-dihydroxy-2-(2-hydroxyethylaminomethyl)-6H-pyrazolo[4,5,1-de]acridin-6-one, N-[1-[2(diethylamino)ethylamino]-7-methoxy-9-oxo-9H-thioxanthen-4-ylmethyl]formamide, N-(2-(dimethylamino)ethyl)acridine-4-carboxamide, 6-[[2-(dimethylamino)ethyl]amino]-3-hydroxy-7H-indeno[2,1-c]
 quinolin-7-one, and dimesna.

Examples of inhibitors of mitotic kinesins, and in particular the human mitotic kinesin KSP, are described in PCT Publications WO 01/30768 and WO 01/98278, and pending U.S. Ser. Nos. 60/338,779 (filed December 6, 2001), 60/338,344 (filed December 6, 2001), 60/338,383 (filed December 6, 2001), 60/338,380 (filed December 6, 2001), 60/338,379 (filed December 6, 2001) and 60/344,453 (filed November 7, 2001). In an embodiment inhibitors of mitotic kinesins include, but are not limited to inhibitors of KSP, inhibitors of MKLP1, inhibitors of CENP-E, inhibitors of MCAK and inhibitors of Rab6-KIFL.

"Inhibitors of kinases involved in mitotic progression" include, but are not limited to, inhibitors of aurora kinase, inhibitors of Polo-like kinases (PLK) (in particular inhibitors of PLK-1), inhibitors of bub-1 and inhibitors of bub-R1.

"Antiproliferative agents" includes antisense RNA and DNA

oligonucleotides such as G3139, ODN698, RVASKRAS, GEM231, and INX3001, and antimetabolites such as enocitabine, carmofur, tegafur, pentostatin, doxifluridine, trimetrexate, fludarabine, capecitabine, galocitabine, cytarabine ocfosfate, fosteabine sodium hydrate, raltitrexed, paltitrexid, emitefur, tiazofurin, decitabine, nolatrexed, pemetrexed, nelzarabine, 2'-deoxy-2'-methylidenecytidine, 2'-fluoromethylene-2'-

deoxycytidine, N-[5-(2,3-dihydro-benzofuryl)sulfonyl]-N'-(3,4-dichlorophenyl)urea, N6-[4-deoxy-4-[N2-[2(E),4(E)-tetradecadienoyl]glycylamino]-L-glycero-B-L-manno-heptopyranosyl]adenine, aplidine, ecteinascidin, troxacitabine, 4-[2-amino-4-oxo-4,6,7,8-tetrahydro-3H-pyrimidino[5,4-b][1,4]thiazin-6-yl-(S)-ethyl]-2,5-thienoyl-L-glutamic acid, aminopterin, 5-flurouracil, alanosine, 11-acetyl-8-

15 (carbamoyloxymethyl)-4-formyl-6-methoxy-14-oxa-1,11-diazatetracyclo(7.4.1.0.0)tetradeca-2,4,6-trien-9-yl acetic acid ester, swainsonine, lometrexol, dexrazoxane,
methioninase, 2'-cyano-2'-deoxy-N4-palmitoyl-1-B-D-arabino furanosyl cytosine, 3aminopyridine-2-carboxaldehyde thiosemicarbazone and trastuzumab.

Examples of monoclonal antibody targeted therapeutic agents include those therapeutic agents which have cytotoxic agents or radioisotopes attached to a cancer cell specific or target cell specific monoclonal antibody. Examples include Bexxar.

20

25

30

35

"HMG-CoA reductase inhibitors" refers to inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase. Compounds which have inhibitory activity for HMG-CoA reductase can be readily identified by using assays well-known in the art. For example, see the assays described or cited in U.S. Patent 4,231,938 at col. 6, and WO 84/02131 at pp. 30-33. The terms "HMG-CoA reductase inhibitor" and "inhibitor of HMG-CoA reductase" have the same meaning when used herein.

Examples of HMG-CoA reductase inhibitors that may be used include but are not limited to lovastatin (MEVACOR®; see U.S. Patent Nos. 4,231,938, 4,294,926 and 4,319,039), simvastatin (ZOCOR®; see U.S. Patent Nos. 4,444,784, 4,820,850 and 4,916,239), pravastatin (PRAVACHOL®; see U.S. Patent Nos. 4,346,227, 4,537,859, 4,410,629, 5,030,447 and 5,180,589), fluvastatin (LESCOL®; see U.S. Patent Nos. 5,354,772, 4,911,165, 4,929,437, 5,189,164, 5,118,853, 5,290,946 and 5,356,896), atorvastatin (LIPITOR®; see U.S. Patent Nos. 5,273,995,

4,681,893, 5,489,691 and 5,342,952) and cerivastatin (also known as rivastatin and BAYCHOL®; see US Patent No. 5,177,080). The structural formulas of these and additional HMG-CoA reductase inhibitors that may be used in the instant methods are described at page 87 of M. Yalpani, "Cholesterol Lowering Drugs", Chemistry & Industry, pp. 85-89 (5 February 1996) and US Patent Nos. 4,782,084 and 4,885,314. The term HMG-CoA reductase inhibitor as used herein includes all pharmaceutically acceptable lactone and open-acid forms (i.e., where the lactone ring is opened to form the free acid) as well as salt and ester forms of compounds which have HMG-CoA reductase inhibitory activity, and therefor the use of such salts, esters, open-acid and lactone forms is included within the scope of this invention. An illustration of the lactone portion and its corresponding open-acid form is shown below as structures I and II.

5

10

15

20

25

In HMG-CoA reductase inhibitors where an open-acid form can exist, salt and ester forms may be formed from the open-acid, and all such forms are included within the meaning of the term "HMG-CoA reductase inhibitor" as used herein. In an embodiment, the HMG-CoA reductase inhibitor is selected from lovastatin and simvastatin, and in a further embodiment, simvastatin. Herein, the term "pharmaceutically acceptable salts" with respect to the HMG-CoA reductase inhibitor shall mean non-toxic salts of the compounds employed in this invention which are generally prepared by reacting the free acid with a suitable organic or inorganic base, particularly those formed from cations such as sodium, potassium, aluminum, calcium, lithium, magnesium, zinc and tetramethylammonium, as well as those salts formed from amines such as ammonia, ethylenediamine, N-methylglucamine, lysine, arginine, ornithine, choline, N,N'-dibenzylethylenediamine, chloroprocaine, diethanolamine, procaine, N-benzylphenethylamine, 1-p-

chlorobenzyl-2-pyrrolidine-1'-yl-methylbenz-imidazole, diethylamine, piperazine, and tris(hydroxymethyl) aminomethane. Further examples of salt forms of HMG-CoA reductase inhibitors may include, but are not limited to, acetate, benzenesulfonate, benzoate, bicarbonate, bisulfate, bitartrate, borate, bromide, calcium edetate, camsylate, carbonate, chloride, clavulanate, citrate, dihydrochloride, edetate, edisylate, estolate, esylate, fumarate, gluceptate, gluconate, glutamate, glycollylarsanilate, hexylresorcinate, hydrabamine, hydrobromide, hydrochloride, hydroxynapthoate, iodide, isothionate, lactate, lactobionate, laurate, malate, maleate, mandelate, mesylate, methylsulfate, mucate, napsylate, nitrate, oleate, oxalate, parnaote, palmitate, panthothenate, phosphate/diphosphate, polygalacturonate, salicylate, stearate, subacetate, succinate, tannate, tartrate, teoclate, tosylate, triethiodide, and valerate.

5

10

15

Ester derivatives of the described HMG-CoA reductase inhibitor compounds may act as prodrugs which, when absorbed into the bloodstream of a warm-blooded animal, may cleave in such a manner as to release the drug form and permit the drug to afford improved therapeutic efficacy.

"Prenyl-protein transferase inhibitor" refers to a compound which inhibits any one or any combination of the prenyl-protein transferase enzymes, including farnesyl-protein transferase (FPTase), geranylgeranyl-protein transferase type I (GGPTase-I), and geranylgeranyl-protein transferase type-II (GGPTase-II, also 20 called Rab GGPTase). Examples of prenyl-protein transferase inhibiting compounds include (+)-6-[amino(4-chlorophenyl)(1-methyl-1H-imidazol-5-yl)methyl]-4-(3chlorophenyl)-1-methyl-2(1H)-quinolinone, (-)-6-[amino(4-chlorophenyl)(1-methyl-1H-imidazol-5-yl)methyl]-4-(3-chlorophenyl)-1-methyl-2(1H)-quinolinone, (+)-6-25 [amino(4-chlorophenyl)(1-methyl-1H-imidazol-5-yl) methyl]-4-(3-chlorophenyl)-1methyl-2(1H)-quinolinone, 5(S)-n-butyl-1-(2,3-dimethylphenyl)-4-[1-(4cyanobenzyl)-5-imidazolylmethyl]-2-piperazinone, (S)-1-(3-chlorophenyl) -4-[1-(4cyanobenzyl)-5-imidazolylmethyl]-5-[2-(ethanesulfonyl) methyl)-2-piperazinone, 5(S)-n-Butyl-1-(2-methylphenyl)-4-[1-(4-cyanobenzyl)-5-imidazolylmethyl]-2-30 piperazinone, 1-(3-chlorophenyl) -4-[1-(4-cyanobenzyl)-2-methyl-5imidazolylmethyl]-2-piperazinone, 1-(2,2-diphenylethyl)-3-[N-(1-(4-cyanobenzyl)-1H-imidazol-5-ylethyl)carbamoyl]piperidine, 4-{5-[4-hydroxymethyl-4-(4chloropyridin-2-ylmethyl)-piperidine-1-ylmethyl]-2-methylimidazol-1-ylmethyl} benzonitrile, 4-{5-[4-hydroxymethyl-4-(3-chlorobenzyl)-piperidine-1-ylmethyl]-2-35 methylimidazol-1-ylmethyl benzonitrile, 4-{3-[4-(2-oxo-2H-pyridin-1-yl)benzyl]-3H-

imidazol-4-ylmethyl}benzonitrile, 4-{3-[4-(5-chloro-2-oxo-2H-[1,2']bipyridin-5'-ylmethyl]-3H-imidazol-4-ylmethyl}benzonitrile, 4-{3-[4-(2-oxo-2H-[1,2'] bipyridin-5'-ylmethyl]-3H-imidazol-4-ylmethyl}benzonitrile, 4-[3-(2-oxo-1-phenyl-1,2-dihydropyridin-4-ylmethyl)-3H-imidazol-4-ylmethyl}benzonitrile, 18,19-dihydro-19-oxo-5H,17H-6,10:12,16-dimetheno-1H-imidazo[4,3-c][1,11,4]dioxaazacyclononadecine-9-carbonitrile, (±)-19,20-dihydro-19-oxo-5H-18,21-ethano-12,14-etheno-6,10-metheno-22H-benzo[d]imidazo[4,3-k][1,6,9,12]oxatriaza-cyclooctadecine-9-carbonitrile, 19,20-dihydro-19-oxo-5H,17H-18,21-ethano-6,10:12,16-dimetheno-22H-imidazo[3,4-h][1,8,11,14]oxatriazacycloeicosine-9-carbonitrile, and (±)-19,20-dihydro-3-methyl-19-oxo-5H-18,21-ethano-12,14-etheno-6,10-metheno-22H-benzo [d]imidazo[4,3-k][1,6,9,12]oxa-triazacyclooctadecine-9-carbonitrile.

Other examples of prenyl-protein transferase inhibitors can be found in the following publications and patents: WO 96/30343, WO 97/18813, WO 97/21701, WO 97/23478, WO 97/38665, WO 98/28980, WO 98/29119, WO 95/32987,

- U.S. Patent No. 5,420,245, U.S. Patent No. 5,523,430, U.S. Patent No. 5,532,359,
 U.S. Patent No. 5,510,510, U.S. Patent No. 5,589,485, U.S. Patent No. 5,602,098,
 European Patent Publ. 0 618 221, European Patent Publ. 0 675 112, European Patent
 Publ. 0 604 181, European Patent Publ. 0 696 593, WO 94/19357, WO 95/08542, WO 95/11917, WO 95/12612, WO 95/12572, WO 95/10514, U.S. Patent No. 5,661,152,
- 20 WO 95/10515, WO 95/10516, WO 95/24612, WO 95/34535, WO 95/25086, WO 96/05529, WO 96/06138, WO 96/06193, WO 96/16443, WO 96/21701, WO 96/21456, WO 96/22278, WO 96/24611, WO 96/24612, WO 96/05168, WO 96/05169, WO 96/00736, U.S. Patent No. 5,571,792, WO 96/17861, WO 96/33159, WO 96/34850, WO 96/34851, WO 96/30017, WO 96/30018, WO 96/30362, WO
- 25 96/30363, WO 96/31111, WO 96/31477, WO 96/31478, WO 96/31501, WO 97/00252, WO 97/03047, WO 97/03050, WO 97/04785, WO 97/02920, WO 97/17070, WO 97/23478, WO 97/26246, WO 97/30053, WO 97/44350, WO 98/02436, and U.S. Patent No. 5,532,359.

30

For an example of the role of a prenyl-protein transferase inhibitor on angiogenesis see European J. of Cancer, Vol. 35, No. 9, pp.1394-1401 (1999).

"Angiogenesis inhibitors" refers to compounds that inhibit the formation of new blood vessels, regardless of mechanism. Examples of angiogenesis inhibitors include, but are not limited to, tyrosine kinase inhibitors, such as inhibitors of the tyrosine kinase receptors Flt-1 (VEGFR1) and Flk-1/KDR (VEGFR2),

35 inhibitors of epidermal-derived, fibroblast-derived, or platelet derived growth factors,

MMP (matrix metalloprotease) inhibitors, integrin blockers, interferon-α, interleukin-12, pentosan polysulfate, cyclooxygenase inhibitors, including nonsteroidal antiinflammatories (NSAIDs) like aspirin and ibuprofen as well as selective cyclooxygenase-2 inhibitors like celecoxib and rofecoxib (PNAS, Vol. 89, p. 7384 (1992);

- JNCI, Vol. 69, p. 475 (1982); Arch. Opthalmol., Vol. 108, p.573 (1990); Anat. Rec.,
 Vol. 238, p. 68 (1994); FEBS Letters, Vol. 372, p. 83 (1995); Clin, Orthop. Vol. 313,
 p. 76 (1995); J. Mol. Endocrinol., Vol. 16, p.107 (1996); Jpn. J. Pharmacol., Vol. 75,
 p. 105 (1997); Cancer Res., Vol. 57, p. 1625 (1997); Cell, Vol. 93, p. 705 (1998); Intl.
 J. Mol. Med., Vol. 2, p. 715 (1998); J. Biol. Chem., Vol. 274, p. 9116 (1999)),
- steroidal anti-inflammatories (such as corticosteroids, mineralocorticoids, dexamethasone, prednisone, prednisolone, methylpred, betamethasone), carboxyamidotriazole, combretastatin A-4, squalamine, 6-O-chloroacetyl-carbonyl)-fumagillol, thalidomide, angiostatin, troponin-1, angiotensin II antagonists (see Fernandez et al., J. Lab. Clin. Med. 105:141-145 (1985)), and antibodies to VEGF
 (see, Nature Biotechnology, Vol. 17, pp.963-968 (October 1999); Kim et al., Nature, 362, 841-844 (1993); WO 00/44777; and WO 00/61186).

Other therapeutic agents that modulate or inhibit angiogenesis and may also be used in combination with the compounds of the instant invention include agents that modulate or inhibit the coagulation and fibrinolysis systems (see review in Clin. Chem. La. Med. 38:679-692 (2000)). Examples of such agents that modulate or inhibit the coagulation and fibrinolysis pathways include, but are not limited to, heparin (see Thromb. Haemost. 80:10-23 (1998)), low molecular weight heparins, GPIIb/IIIa antagonists (such as tirofiban), warfarin, thrombin inhibitors and carboxypeptidase U inhibitors (also known as inhibitors of active thrombin activatable fibrinolysis inhibitor [TAFIa]) (see Thrombosis Res. 101:329-354 (2001)). TAFIa inhibitors have been described in U.S. Serial Nos. 60/310,927 (filed August 8, 2001) and 60/349,925 (filed January 18, 2002).

"Agents that interfere with cell cycle checkpoints" refer to compounds that inhibit protein kinases that transduce cell cycle checkpoint signals, thereby sensitizing the cancer cell to DNA damaging agents. Such agents include inhibitors of ATR, ATM, the Chk1 and Chk2 kinases and cdk and cdc kinase inhibitors and are specifically exemplified by 7-hydroxystaurosporin, flavopiridol, CYC202 (Cyclacel) and BMS-387032.

30

"Inhibitors of cell proliferation and survival signalling pathway" refer to compounds that inhibit signal transduction cascades downstream of cell surface receptors. Such agents include inhibitors of serine/threonine kinases (including but not limited to inhibitors of Akt such as described in WO 02/083064, WO 02/083139, WO 02/083140 and WO 02/083138), inhibitors of Raf kinase (for example BAY-43-9006), inhibitors of MEK (for example CI-1040 and PD-098059), inhibitors of mTOR (for example Wyeth CCI-779), and inhibitors of PI3K (for example LY294002).

The combinations with NSAID's are directed to the use of NSAID's which are potent COX-2 inhibiting agents. For purposes of this specification an NSAID is potent if it possess an IC₅₀ for the inhibition of COX-2 of $1\mu M$ or less as measured by cell or microsomal assays.

The invention also encompasses combinations with NSAID's which are selective COX-2 inhibitors. For purposes of this specification NSAID's which are 15 selective inhibitors of COX-2 are defined as those which possess a specificity for inhibiting COX-2 over COX-1 of at least 100 fold as measured by the ratio of IC50 for COX-2 over IC50 for COX-1 evaluated by cell or microsomal assays. Such compounds include, but are not limited to those disclosed in U.S. Patent 5,474,995, issued December 12, 1995, U.S. Patent 5,861,419, issued January 19, 1999, U.S. 20 Patent 6,001,843, issued December 14, 1999, U.S. Patent 6,020,343, issued February 1, 2000, U.S. Patent 5,409,944, issued April 25, 1995, U.S. Patent 5,436,265, issued July 25, 1995, U.S. Patent 5,536,752, issued July 16, 1996, U.S. Patent 5,550,142, issued August 27, 1996, U.S. Patent 5,604,260, issued February 18, 1997, U.S. 5,698,584, issued December 16, 1997, U.S. Patent 5,710,140, issued January 20,1998, WO 94/15932, published July 21, 1994, U.S. Patent 5,344,991, issued June 6, 1994, 25 U.S. Patent 5,134,142, issued July 28, 1992, U.S. Patent 5,380,738, issued January 10, 1995, U.S. Patent 5,393,790, issued February 20, 1995, U.S. Patent 5,466,823, issued November 14, 1995, U.S. Patent 5,633,272, issued May 27, 1997, and U.S. Patent 5,932,598, issued August 3, 1999, all of which are hereby incorporated by 30 reference.

Inhibitors of COX-2 that are particularly useful in the instant method of treatment are:

3-phenyl-4-(4-(methylsulfonyl)phenyl)-2-(5H)-furanone; and

35

10

5-chloro-3-(4-methylsulfonyl)phenyl-2-(2-methyl-5-pyridinyl)pyridine;

5

10

15

or a pharmaceutically acceptable salt thereof.

General and specific synthetic procedures for the preparation of the COX-2 inhibitor compounds described above are found in U.S. Patent No. 5,474,995, issued December 12, 1995, U.S. Patent No. 5,861,419, issued January 19, 1999, and U.S. Patent No. 6,001,843, issued December 14, 1999, all of which are herein incorporated by reference.

Compounds that have been described as specific inhibitors of COX-2 and are therefore useful in the present invention include, but are not limited to, the following:

$$H_2N$$
 H_3C
 H_3C

or a pharmaceutically acceptable salt thereof.

5

Compounds which are described as specific inhibitors of COX-2 and are therefore useful in the present invention, and methods of synthesis thereof, can be found in the following patents, pending applications and publications, which are herein incorporated by reference: WO 94/15932, published July 21, 1994, U.S. Patent No. 5,344,991, issued June 6, 1994, U.S. Patent No. 5,134,142, issued July 28, 1992, 10 U.S. Patent No. 5,380,738, issued January 10, 1995, U.S. Patent No. 5,393,790, issued February 20, 1995, U.S. Patent No. 5,466,823, issued November 14, 1995, U.S. Patent No. 5,633,272, issued May 27, 1997, and U.S. Patent No. 5,932,598, issued August 3, 1999.

Compounds which are specific inhibitors of COX-2 and are therefore useful in the present invention, and methods of synthesis thereof, can be found in the following patents, pending applications and publications, which are herein incorporated by reference: U.S. Patent No. 5,474,995, issued December 12, 1995, U.S. Patent No. 5,861,419, issued January 19, 1999, U.S. Patent No. 6,001,843, issued December 14, 1999, U.S. Patent No. 6,020,343, issued February 1, 2000, U.S. Patent No. 5,409,944, issued April 25, 1995, U.S. Patent No. 5,436,265, issued July 25, 1995, U.S. Patent No. 5,536,752, issued July 16, 1996, U.S. Patent No. 5,550,142, issued August 27, 1996, U.S. Patent No. 5,604,260, issued February 18, 1997, U.S. Patent No. 5,698,584, issued December 16, 1997, and U.S. Patent No. 5,710,140, issued January 20,1998.

5

10

15

20

25

30

35

Other examples of angiogenesis inhibitors include, but are not limited to, endostatin, ukrain, ranpirnase, IM862, 5-methoxy-4-[2-methyl-3-(3-methyl-2-butenyl)oxiranyl]-1-oxaspiro[2,5]oct-6-yl(chloroacetyl)carbamate, acetyldinanaline, 5-amino-1-[[3,5-dichloro-4-(4-chlorobenzoyl)phenyl]methyl]-1H-1,2,3-triazole-4-carboxamide,CM101, squalamine, combretastatin, RPI4610, NX31838, sulfated mannopentaose phosphate, 7,7-(carbonyl-bis[imino-N-methyl-4,2-pyrrole]-carbonylimino]-bis-(1,3-naphthalene disulfonate), and 3-[(2,4-dimethylpyrrol-5-yl)methylene]-2-indolinone (SU5416).

As used above, "integrin blockers" refers to compounds which selectively antagonize, inhibit or counteract binding of a physiological ligand to the $\alpha_V\beta_3$ integrin, to compounds which selectively antagonize, inhibit or counteract binding of a physiological ligand to the $\alpha_V\beta_5$ integrin, to compounds which antagonize, inhibit or counteract binding of a physiological ligand to both the $\alpha_V\beta_3$ integrin and the $\alpha_V\beta_5$ integrin, and to compounds which antagonize, inhibit or counteract the activity of the particular integrin(s) expressed on capillary endothelial cells. The term also refers to antagonists of the $\alpha_V\beta_6$, $\alpha_V\beta_8$, $\alpha_1\beta_1$, $\alpha_2\beta_1$, $\alpha_5\beta_1$, $\alpha_6\beta_1$ and $\alpha_6\beta_4$ integrins. The term also refers to antagonists of any combination of $\alpha_V\beta_3$, $\alpha_V\beta_5$, $\alpha_V\beta_6$, $\alpha_V\beta_8$, $\alpha_1\beta_1$, $\alpha_2\beta_1$, $\alpha_5\beta_1$, $\alpha_6\beta_1$ and $\alpha_6\beta_4$ integrins.

Some specific examples of tyrosine kinase inhibitors include N-(trifluoromethylphenyl)-5-methylisoxazol-4-carboxamide, 3-[(2,4-dimethylpyrrol-5-yl)methylidenyl)indolin-2-one, 17-(allylamino)-17-demethoxygeldanamycin, 4-(3-chloro-4-fluorophenylamino)-7-methoxy-6-[3-(4-morpholinyl)propoxyl]quinazoline, N-(3-ethynylphenyl)-6,7-bis(2-methoxyethoxy)-4-quinazolinamine, BIBX1382, 2,3,9,10,11,12-hexahydro-10-(hydroxymethyl)-10-hydroxy-9-methyl-9,12-epoxy-1H-

diindolo[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-i][1,6]benzodiazocin-1-one, SH268, genistein, STI571, CEP2563, 4-(3-chlorophenylamino)-5,6-dimethyl-7H-pyrrolo[2,3-d]pyrimidinemethane sulfonate, 4-(3-bromo-4-hydroxyphenyl)amino-6,7-dimethoxyquinazoline, 4-(4'-hydroxyphenyl)amino-6,7-dimethoxyquinazoline, SU6668, STI571A, N-4-chlorophenyl-4-(4-pyridylmethyl)-1-phthalazinamine, and EMD121974.

Combinations with compounds other than anti-cancer compounds are also encompassed in the instant methods. For example, combinations of the instantly claimed compounds with PPAR-γ (i.e., PPAR-gamma) agonists and PPAR-δ (i.e., PPAR-delta) agonists are useful in the treatment of certain malingnancies. PPAR-y 10 and PPAR- δ are the nuclear peroxisome proliferator-activated receptors γ and δ . The expression of PPAR-y on endothelial cells and its involvement in angiogenesis has been reported in the literature (see J. Cardiovasc. Pharmacol. 1998; 31:909-913; J. Biol. Chem. 1999;274:9116-9121; Invest. Ophthalmol Vis. Sci. 2000; 41:2309-2317). More recently, PPAR-y agonists have been shown to inhibit the angiogenic response 15 to VEGF in vitro; both troglitazone and rosiglitazone maleate inhibit the development of retinal neovascularization in mice. (Arch. Ophthamol. 2001; 119:709-717). Examples of PPAR-y agonists and PPAR-y/\alpha agonists include, but are not limited to, thiazolidinediones (such as DRF2725, CS-011, troglitazone, rosiglitazone, and pioglitazone), fenofibrate, gemfibrozil, clofibrate, GW2570, SB219994, AR-20 H039242, JTT-501, MCC-555, GW2331, GW409544, NN2344, KRP297, NP0110, DRF4158, NN622, GI262570, PNU182716, DRF552926, 2-[(5,7-dipropyl-3trifluoromethyl-1,2-benzisoxazol-6-yl)oxyl-2-methylpropionic acid (disclosed in USSN 09/782,856), and 2(R)-7-(3-(2-chloro-4-(4-fluorophenoxy) phenoxy)propoxy)-25 2-ethylchromane-2-carboxylic acid (disclosed in USSN 60/235,708 and 60/244,697). Another embodiment of the instant invention is the use of the presently disclosed compounds in combination with gene therapy for the treatment of cancer.

For an overview of genetic strategies to treating cancer see Hall et al (Am J Hum Genet 61:785-789, 1997) and Kufe et al (Cancer Medicine, 5th Ed, pp 876-889, BC Decker, Hamilton 2000). Gene therapy can be used to deliver any tumor suppressing gene. Examples of such genes include, but are not limited to, p53, which can be delivered via recombinant virus-mediated gene transfer (see U.S. Patent No. 6,069,134, for example), a uPA/uPAR antagonist ("Adenovirus-Mediated Delivery of a uPA/uPAR Antagonist Suppresses Angiogenesis-Dependent Tumor Growth and

30

Dissemination in Mice," Gene Therapy, August 1998;5(8):1105-13), and interferon gamma (J Immunol 2000;164:217-222).

The compounds designed or selected using the methods of the instant invention may also be administered in combination with an inhibitor of inherent multidrug resistance (MDR), in particular MDR associated with high levels of expression of transporter proteins. Such MDR inhibitors include inhibitors of p-glycoprotein (P-gp), such as LY335979, XR9576, OC144-093, R101922, VX853 and PSC833 (valspodar).

5

10

15

20

25

30

A compound designed or selected using the methods of the present invention may be employed in conjunction with anti-emetic agents to treat nausea or emesis, including acute, delayed, late-phase, and anticipatory emesis, which may result from the use of a compound of the present invention, alone or with radiation therapy. For the prevention or treatment of emesis, a compound of the present invention may be used in conjunction with other anti-emetic agents, especially neurokinin-1 receptor antagonists, 5HT3 receptor antagonists, such as ondansetron, granisetron, tropisetron, and zatisetron, GABAB receptor agonists, such as baclofen, a corticosteroid such as Decadron (dexamethasone), Kenalog, Aristocort, Nasalide, Preferid, Benecorten or others such as disclosed in U.S.Patent Nos. 2,789,118, 2,990,401, 3,048,581, 3,126,375, 3,929,768, 3,996,359, 3,928,326 and 3,749,712, an antidopaminergic, such as the phenothiazines (for example prochlorperazine, fluphenazine, thioridazine and mesoridazine), metoclopramide or dronabinol. For the treatment or prevention of emesis that may result upon administration of the instant compounds, conjunctive therapy with an anti-emesis agent selected from a neurokinin-1 receptor antagonist, a 5HT3 receptor antagonist and a corticosteroid is preferred.

Neurokinin-1 receptor antagonists of use in conjunction with the compounds of the present invention are fully described, for example, in U.S. Patent Nos. 5,162,339, 5,232,929, 5,242,930, 5,373,003, 5,387,595, 5,459,270, 5,494,926, 5,496,833, 5,637,699, 5,719,147; European Patent Publication Nos. EP 0 360 390, 0 394 989, 0 428 434, 0 429 366, 0 430 771, 0 436 334, 0 443 132, 0 482 539, 0 498 069, 0 499 313, 0 512 901, 0 512 902, 0 514 273, 0 514 274, 0 514 275, 0 514 276, 0 515 681, 0 517 589, 0 520 555, 0 522 808, 0 528 495, 0 532 456, 0 533 280, 0 536 817, 0 545 478, 0 558 156, 0 577 394, 0 585 913,0 590 152, 0 599 538, 0 610 793, 0 634 402, 0 686 629, 0 693 489, 0 694 535, 0 699 655,

0 699 674, 0 707 006, 0 708 101, 0 709 375, 0 709 376, 0 714 891, 0 723 959, 0 733 632 and 0 776 893; PCT International Patent Publication Nos. WO 90/05525, 90/05729, 91/09844, 91/18899, 92/01688, 92/06079, 92/12151, 92/15585, 92/17449. 92/20661, 92/20676, 92/21677, 92/22569, 93/00330, 93/00331, 93/01159, 93/01165, 5 93/01169, 93/01170, 93/06099, 93/09116, 93/10073, 93/14084, 93/14113, 93/18023. 93/19064, 93/21155, 93/21181, 93/23380, 93/24465, 94/00440, 94/01402, 94/02461, 94/02595, 94/03429, 94/03445, 94/04494, 94/04496, 94/05625, 94/07843, 94/08997. 94/10165, 94/10167, 94/10168, 94/10170, 94/11368, 94/13639, 94/13663, 94/14767, 94/15903, 94/19320, 94/19323, 94/20500, 94/26735, 94/26740, 94/29309, 95/02595. 10 95/04040, 95/04042, 95/06645, 95/07886, 95/07908, 95/08549, 95/11880, 95/14017, 95/15311, 95/16679, 95/17382, 95/18124, 95/18129, 95/19344, 95/20575, 95/21819, 95/22525, 95/23798, 95/26338, 95/28418, 95/30674, 95/30687, 95/33744, 96/05181, 96/05193, 96/05203, 96/06094, 96/07649, 96/10562, 96/16939, 96/18643, 96/20197, 96/21661, 96/29304, 96/29317, 96/29326, 96/29328, 96/31214, 96/32385, 96/37489. 15 97/01553, 97/01554, 97/03066, 97/08144, 97/14671, 97/17362, 97/18206, 97/19084, 97/19942 and 97/21702; and in British Patent Publication Nos. 2 266 529, 2 268 931. 2 269 170, 2 269 590, 2 271 774, 2 292 144, 2 293 168, 2 293 169, and 2 302 689. The preparation of such compounds is fully described in the aforementioned patents and publications, which are incorporated herein by reference.

In an embodiment, the neurokinin-1 receptor antagonist for use in conjunction with the compounds of the present invention is selected from: 2-(R)-(1-(R)-(3,5-bis(trifluoromethyl)phenyl)ethoxy)-3-(S)-(4-fluorophenyl)-4-(3-(5-oxo-1H,4H-1,2,4-triazolo)methyl)morpholine, or a pharmaceutically acceptable salt thereof, which is described in U.S. Patent No. 5,719,147.

20

25

30

A compound designed or selected using the methods of the instant invention may also be administered with an agent useful in the treatment of anemia. Such an anemia treatment agent is, for example, a continuous eythropoiesis receptor activator (such as epoetin alfa).

A compound designed or selected using the methods of the instant invention may also be administered with an agent useful in the treatment of neutropenia. Such a neutropenia treatment agent is, for example, a hematopoietic growth factor which regulates the production and function of neutrophils such as a human granulocyte colony stimulating factor, (G-CSF). Examples of a G-CSF include filgrastim.

A compound designed or selected using the methods of the instant invention may also be administered with an immunologic-enhancing drug, such as levamisole, isoprinosine and Zadaxin.

Thus, the scope of the instant invention encompasses the use of the compounds designed or selected using the methods disclosed herein in combination with a second compound selected from:

- an estrogen receptor modulator,
 an androgen receptor modulator,
 - 3) retinoid receptor modulator,
- 4) a cytotoxic/cytostatic agent,5) an antiproliferative agent,
 - 6) a prenyl-protein transferase inhibitor,
 - 7) an HMG-CoA reductase inhibitor,
 - 8) an HIV protease inhibitor,
- 15 9) a reverse transcriptase inhibitor,
 - 10) an angiogenesis inhibitor,
 - 11) a PPAR-y agonists,
 - 12) a PPAR-δ agonists,
 - 13) an inhibitor of inherent multidrug resistance,
- 20 14) an anti-emetic agent,

30

- 15) an agent useful in the treatment of anemia,
- 16) an agent useful in the treatment of neutropenia,
- 17) an immunologic-enhancing drug,
- 18) an inhibitor of cell proliferation and survival signaling, and
- 25 an agent that interfers with a cell cycle checkpoint.

The term "administration" and variants thereof (e.g., "administering" a compound) in reference to a compound of the invention means introducing the compound or a prodrug of the compound into the system of the animal in need of treatment. When a compound of the invention or prodrug thereof is provided in combination with one or more other active agents (e.g., a cytotoxic agent, etc.), "administration" and its variants are each understood to include concurrent and sequential introduction of the compound or prodrug thereof and other agents.

As used herein, the term "composition" is intended to encompass a product comprising the specified ingredients in the specified amounts, as well as any

product which results, directly or indirectly, from combination of the specified ingredients in the specified amounts.

The term "therapeutically effective amount" as used herein means that amount of active compound or pharmaceutical agent that elicits the biological or medicinal response in a tissue, system, animal or human that is being sought by a researcher, veterinarian, medical doctor or other clinician.

The term "treating cancer" or "treatment of cancer" refers to administration to a mammal afflicted with a cancerous condition and refers to an effect that alleviates the cancerous condition by killing the cancerous cells, but also to an effect that results in the inhibition of growth and/or metastasis of the cancer.

In an embodiment, the angiogenesis inhibitor to be used as the second compound is selected from a tyrosine kinase inhibitor, an inhibitor of epidermal-derived growth factor, an inhibitor of fibroblast-derived growth factor, an inhibitor of platelet derived growth factor, an MMP (matrix metalloprotease) inhibitor, an integrin blocker, interferon- α , interleukin-12, pentosan polysulfate, a cyclooxygenase inhibitor, carboxyamidotriazole, combretastatin A-4, squalamine, 6-O-chloroacetyl-carbonyl)-fumagillol, thalidomide, angiostatin, troponin-1, or an antibody to VEGF. In an embodiment, the estrogen receptor modulator is tamoxifen or raloxifene.

Also included in the scope of the claims is a method of treating cancer that comprises administering a therapeutically effective amount of a compound designed or selected using the methods disclosed herein in combination with radiation therapy and/or in combination with a compound selected from:

- 1) an estrogen receptor modulator,
- 2) an androgen receptor modulator,
- 25 3) a retinoid receptor modulator,

5

10

15

20

- 4) a cytotoxic/cytostatic agent,
- 5) an antiproliferative agent,
- 6) a prenyl-protein transferase inhibitor,
- 7) an HMG-CoA reductase inhibitor,
- 30 8) an HIV protease inhibitor,
 - 9) a reverse transcriptase inhibitor,
 - 10) an angiogenesis inhibitor,
 - 11) PPAR-y agonists,
 - 12) PPAR-δ agonists,
- 35 an inhibitor of inherent multidrug resistance,

14) an anti-emetic agent,

5

10

20

- 15) an agent useful in the treatment of anemia,
- 16) an agent useful in the treatment of neutropenia,
- 17) an immunologic-enhancing drug,
- 18) an inhibitor of cell proliferation and survival signaling, and
- 19) an agent that interfers with a cell cycle checkpoint.

And yet another embodiment of the invention is a method of treating cancer that comprises administering a therapeutically effective amount of a compound designed or selected using the methods disclosed herein in combination with paclitaxel or trastuzumab.

The invention further encompasses a method of treating or preventing cancer that comprises administering a therapeutically effective amount of a compound designed or selected using the methods disclosed herein in combination with a COX-2 inhibitor.

The instant invention also includes a pharmaceutical composition useful for treating or preventing cancer that comprises a therapeutically effective amount of a compound designed or selected using the methods disclosed herein and a compound selected from:

- 1) an estrogen receptor modulator,
- an androgen receptor modulator,
 - 3) a retinoid receptor modulator,
 - 4) a cytotoxic/cytostatic agent,
 - 5) an antiproliferative agent,
 - 6) a prenyl-protein transferase inhibitor,
- 25 7) an HMG-CoA reductase inhibitor,
 - 8) an HIV protease inhibitor,
 - 9) a reverse transcriptase inhibitor,
 - 10) an angiogenesis inhibitor, and
 - 11) a PPAR-γ agonist,
- 30 12) a PPAR-δ agonists:
 - 13) an inhibitor of cell proliferation and survival signaling, and
 - 14) an agent that interfers with a cell cycle checkpoint.

In each of the aforementioned uses of atomic coordinates of KSP, the coordinates according to Tables 1-4 are preferred.

Additional objects of the present invention will be apparent from the description which follows.

As used herein, the following terms and phrases shall have the meanings set forth below:

5

10

15

20

25

30

35

Unless otherwise noted, "KSP" includes both native and wild type Kinesin Spindle Protein as well as "KSP analogues", defined herein as proteins or peptides comprising a ligand binding site substantially as set forth in SEQ ID NO:1. Such KSP analogues include, but are not limited to, a ligand binding site characterized by a three-dimensional structure comprising the relative structural coordinates of amino acid residues set forth in Figure 10 as set forth in Tables 1-4, ± a root mean square deviation from the conserved backbone atoms of said amino acids of not more than 3.005 Å, more preferably not more than about 2.0Å, and most preferably not more than about 0.5 Å.

Unless otherwise indicated, "protein" or "molecule" shall include a protein, protein domain, polypeptide or peptide.

"Structural coordinates" are the Cartesian coordinates corresponding to an atom's spatial relationship to other atoms in a molecule or molecular complex. Structural coordinates may be obtained using X-ray crystallography techniques or NMR techniques, or may be derived using molecular replacement analysis or homology modeling. Various software programs allow for the graphical representation of a set of structural coordinates to obtain a three-dimensional representation of a molecule or molecular complex. The structural coordinates of the present invention may be modified from the original sets provided in Tables 1-4 by mathematical manipulation, such as by inversion or integer additions or subtractions. As such, it is recognized that the structural coordinates of the present invention are relative, and are in no way specifically limited by the actual x, y, z coordinates of Tables 1-4.

An "agent", "ligand" or "binding partner" shall include a protein, polypeptide, peptide, nucleic acid, including DNA or RNA, molecule, compound or drug.

"Root mean square deviation" is the square root of the arithmetic mean of the squares of the deviations from the mean, and is a way of expressing deviation or variation from the structural coordinates

described herein. The present invention includes all embodiments comprising conservative substitutions of the noted amino acid residues resulting in same structural coordinates within the stated root mean square deviation.

5

MATERIALS AND METHODS

Materials and methods provided are intended to assist in a further understanding of the invention and are not to limit the reasonable scope thereof.

10

25

30

Motor Domain of Human KSP, Amino Acids 1-368

MASQPNSSAK KKEEKGKNIQ VVVRCRPFNL AERKASAHSI
VECDPVRKEV SVRTGGLADK SSRKTYTFDM VFGASTKQID
VYRSVVCPIL DEVIMGYNCT IFAYGQTGTG KTFTMEGERS

15 PNEEYTWEED PLAGIIPRTL HQIFEKLTDN GTEFSVKVSL
LEIYNEELFD LLNPSSDVSE RLQMFDDPRN KRGVIIKGLE
EITVHNKDEV YQILEKGAAK RTTAATLMNA YSSRSHSVFS
VTIHMKETTI DGEELVKIGK LNLVDLAGSE NIGRSGAVDK
RAREAGNINQ SLLTLGRVIT ALVERTPHVP YRESKLTRIL

20 QDSLGGRTRT SIIATISPAS LNLEETLSTL EYAHRAKNIL

Binding Pocket of Human KSP

NKPEVNQK

Lining the newly formed pocket and surrounding the ligand are amino acid residues:

115 (M), 116(E), 117(G), 118(E), 119(R), 127(W), 130(D), 132(L), 133(A), 134(G), 136(I), 137(P) (from helix- α 2 and its insertion loop; residue 116 is at the end of the first portion of helix- α 2 and residue 134 is at the beginning of the second portion of helix- α 2 thus the insertion loop starts at residue 116 and ends at residue 134);

160(L) (from beta strain- β 4); 211(Y), 214(L), 215(E), 217(G), 218(A), 221(R) (from helix- α 3); and 239(F) (from beta strain- β 6).

35 KSP Expression

E. coli cells harboring the KSP (368 residues) vector were grown at 37°C in LB medium containing 100 μg/ml ampicillin. KSP expression was induced at 25°C with 0.5mM isopropyl-D (-)-thiogalactopyranoside, and the cells were grown for four additional hours at 25°C prior to harvest.

5 25°C prior to harvest.Cells f

10

15

20

25

30

Cells from 10 litre were suspended in 75 ml lysis buffer (50mM PIPES, 2mM MgCl₂, 1mM ATP, 1mM TCEP, 1mM EGTA, protease inhibitor tablets (one tablet per 50ml buffer)) and homogenized. Cells were disrupted by passing the homogenized suspension thrice through a Microfluidizer (Model 110-S). The cell lysate was centrifuged at 15,000 rpm for 30 minutes and the supernatant mixed with DE-52 resin (100 ml) pre-equilibrated in SP sepharose Buffer A (50mM PIPES, 2mM MgCl₂, 1mM ATP, 1mM TCEP, 1mM EGTA). Supernatant was removed after spinning at 1000 rpm for 10 minutes. Resin was washed twice with one resin volume (100ml) of 50mM PIPES, 2mM MgCl₂, 1mM ATP, 1mM TCEP, 1mM EGTA. The supernatants were pooled and loaded onto SP sepharose column (50ml, 2.6cm diameter column, Amersham Biosciences). Kinesin with ~95% purity was eluted at 0.15 to 0.2 M KCl using 0-30% KCl gradient. The fractions containing KSP (by SDS-PAGE analysis) were pooled and diluted with SP sepharose buffer A to a final KCl concentration of 50mM. The pool was mixed with 10ml of High performance Q-sepharose (Amersham Biosciencs) equilibrated in SP sepharose BufferA. The supernatent was collected by spinning at 1000rpm for 10 minutes. The resin was washed four times with two resin volume. The washes and supernatant were pooled and concentrated on Centriprep-10 to 15 to 17mg/ml and stored in small alicots at -70° C. The protein was characterized by N-terminal sequence analysis by Edman degradation on an Applied Biosystem model 470A gas phase sequencer. Protein concentration was determined with quantitative amino acid analysis by using a post column ninhydrin derivatization method on a Beckman 6300 analyzer. Molecular weight was determined on Deca-LCQ (Finnegan) mass spectrometer. Molar mass and size distribution was determined by multi-angle light scattering detector (Wyatt technology, DAWN EOS) connected to size exclusion column on Millenium HPLC.

Crystallization

The concentrated kinesin (ADP, Mg⁺⁺) protein at about 15mg/ml in 50mM PIPES buffer at pH 6.8 in the presence of 2mM MgCl₂, 1mM TECP, 1mM ATP, 84mM KCl, and 1mM EGTA was incubated with 1mM inhibitor Compound 5-2b ((+)-monastrol). Small single crystal seeds were obtained by hanging drop method with well solution containing 20% PEG3350, 0.15M K₂HPO₄ and 0.1M HEPES buffer at pH7.0 in about four days. Crystals suitable for X-ray data collection were obtained by macroseeding in hanging drops with well solution containing 14% PEG3350, 0.2M K₂HPO₄ and 0.1M HEPES at pH 6.8 in about two weeks. Hanging drops were formed by equal volume of protein and well solutions.

X-ray Data Collection and Procession

at 100K at synchrotron beamline 17-ID of the Advanced Photon Source at Argonne National Laboratory. Prior to data collection the crystal was soaked in the cryo-protectant solution for 20 minutes that contains 20% PEG3350, 0.15M K₂HPO₄, 20% PEG200, and 0.1M HEPES buffer at pH6.8. The crystal was then frozen in liquid nitrogen. The X-ray wavelength was set to 1Å. The data were collected at 0.2° oscillation per frame with 1000 frames total and 1 second exposure per frame at 250 mm detector to crystal distance. The data were processed and scaled by use of HKL2000 package. The crystal is in orthorhombic space group of P2₁2₁2₁ with cell dimensions of a= 69.5 Å b=79.5 Å and c=159.0 Å. The completeness of the data set was 99%. The Rsym was 0.084.

Structure Determination and Refinement

30

The structure was determined by the use of the molecular replacement method in cooperation with extensive model rebuilding and dynamic refinement. The kinesin protein coordinates in the binary complex crystal structure of kinesin bound with ADP (Mg⁺⁺) was used as the search model. The molecular replacement solution was obtained with use of program AmoRe at 4.0Å to 15Å resolution range, which gave R-factor of 0.48 and correlation coefficient of 0.60. The initial protein model was

rebuilt and refined literally at 2.5Å resolution, those included dynamic refinement, energy minimization and temperature factor refinement. The Compound 5-2b density became apparent at the fourth rebuilding and refinement cycle. Finally, 441 water molecules were added in the model and the R-factor was 0.21 with R-free of 0.26 with good geometry (RMSD_{bonds} = 0.007 Å, RMSD_{angles} = 1.32°). The current protein model binds with one ADP, one Mg⁺⁺ ion and one Compound 5-2b. It starts at residue Asn18 to Lys362 with a gap from residue Asn271 to Asn287 (missing loop11 from Ile272 to Gly286) due to lack of electron density. There are two complexes in an asymmetric unit.

Tertiary Structure of KSP/ADP/Compound 5-2b

The 3-dimensional, tertiary structure of KSP, bound with Mg⁺⁺-ADP and Compound 5-2b ((+)-monastrol), was determined at 2.5Å resolution with use of phases derived from a combination of molecular replacement, extensive manual rebuilding, and dynamic refinement. Two identical protein complexes were found in the asymmetric unit of the crystal and were related by a local, non-crystallographic 2-fold axis. For each, the electron density of the protein as well as those of the ligands (ADP, Mg⁺⁺, and

20 Compound 5-2b) was all well defined. Compound 5-2b was seen to be of the S handedness. Residues 2-17, 272-286, and 363-368 were disordered and showed no electron densities (The N-terminal Met1 residue was processed upon expression). See Figures 1-8.

25 Fluorescence of Trp127 of KSP(368)-ADP -/+ Inhibitors

Materials

- -2X kinesin buffer: 160 mM K-Hepes, 2 mM MgCl₂, 2 mM EGTA, 2 mM DTT (added fresh daily), and 100 mM KCl, pH 6.8.
- -Nucleotide: nucleotide is resuspended to 200 mM in 50 mM K-Hepes (pH 6.8).
 - -Nucleotide is diluted 1:1 with 200 mM MgCl₂ to a stock concentration of 100 mM of 1:1 nucleotide:MgCl₂.
 - -Cuvette volume = $300 \mu l$

Methods

1) Add 281 μ l of 1X kinesin buffer, \pm nucleotide, and H₂O (Nucleotide = none, 1 mM AMPPNP, or 1 mM ADP (final concentration)).

- 5 2) Add 18.75 μl of 4 μM stock nucleotide-free KSP(367H).
 - 3) Add compound sequentially from DMSO stock (with all the volume of all additions $\leq 0.6 \, \mu l$).
 - 4) Measure fluorescence after each addition (starting with buffer only).
- 5) Example titration for Compound 8-1 with KSP(367H)ADP:
 281 μl of 1X kinesin buffer + 1 mM ADP:
 add 250 nM KSP (18.75 μl of 4 uM nucleotide-free stock)
 add 1 nM Compound 8-1 (1 nM_f) (addition of 0.3 μl of 0.001 mM stock)
 add 2 nM Compound 8-1 (3 nM_f) (addition of 0.6 μl of 0.001 mM stock)
- add 4 nM Compound 8-1 (7 nM_f) (addition of 0.12 μl of 0.01 mM stock) add 3 nM Compound 8-1 (10 nM_f) (addition of 0.09 μl of 0.01 mM stock) add 20 nM Compound 8-1 (30 nM_f) (addition of 0.6 μl of 0.01 mM stock) add 40 nM Compound 8-1 (70 nM_f) (addition of 0.12 μl of 0.1 mM stock) add 30 nM Compound 8-1 (100 nM_f) (addition of 0.09 μl of 0.1 mM stock)
- add 200 nM Compound 8-1 (300 nM_f) (addition of 0.6 μl of 0.1 mM stock) add 400 nM Compound 8-1 (700 nM_f) (addition of 0.12 μl of 1 mM stock) add 300 nM Compound 8-1 (1000 nM_f) (addition of 0.09 μl of 1 mM stock) add 2000 nM Compound 8-1 (3000 nM_f) (addition of 0.6 μl of 1 mM stock).
- 6) After each addition, measure steady-state fluorescence under the following conditions:

 $\lambda_{ex} = 388$ nm, $\lambda_{em} = 342-346$ nm, band width = 3 nm ex/3 nm em, wavelength increment = 0.5 nm, integration time = 2 s.

Repeat the same titration series:
 in the absence of KSP (to determine compound-related background), and
 in the absence of KSP, but in the presence of 1 μM L-tryptophan (to determine compound-related effects on the amino acid itself).

Calculations

At the peak emission wavelength for W127 in KSP(367H) (=344 nm) measure the compound emission in kinesin buffer as a function of [compound]; measure fluorescence of L-tryptophan as a function of [compound]; measure fluorescence of KSP(367H) as a function of [compound]; correct KSP(367H) fluorescence for its decrease over time (due to losses of protein to the cuvette); subtract compound emission from L-tryptophan emission; subtract compound emission from KSP(367H) emission. Calculate the fraction of fluorescence of L-tryptophan vs [compound]: (L-trp fluorescence (344 nm) at given [compound]) / (L-trp fluorescence (344 nm) at given [compound]) / (KSP fluorescence (344 nm) at given [compound]) / (KSP fluorescence (344 nm) at 0 cpd); then normalize: KSP (frcn fl) / L-trp(frcn fl) and plot vs [compound].

Results of this assay are illustrated in Figures 11-13.

Compounds that were utilized in the identification and testing of the novel KSP binding site that is disclosed herein may be prepared by the methods described below:

SCHEME 1

5 <u>Step 1</u>: 3-[3-(benzyloxy)phenyl]-1-(2-chlorophenyl)prop-2-en-1-one (1-4)

10

To a solution of 2'-chloroacetophenone (1-1) (1.26mL, 9.70mmol) in 40 mL of THF at -78°C was slowly added 10.7 mL (10.7mmol) of a 1M LiHMDS solution in THF. After stirring for 1h at -78°C, a solution of 2.05g (9.70mmol) of 3-benzyloxy-benzaldehyde (1-2) in

8 mL of THF was added, and stirring was continued at that temperature for an additional hour. The mixture was then dumped into a separatory funnel containing 100 mL of saturated aqueous NH₄Cl and extracted twice with 100 mL of EtOAc. The organic phases were combined, washed with 100 mL of brine, and dried over Na₂SO₄. After filtering off the drying agent, the solvent was removed on a rotary evaporator, and the residue was dissolved in 50 mL of CH₂Cl₂. After cooling to -78°C, 4 mL of triethylamine and 2 mL of trifluoroacetic anhydride were added sequentially, and the mixture was allowed to warm to rt and stir for 12h. The reaction was then dumped into a separatory funnel with 100 mL of 1M HCl, the layers were separated, and the aqueous phase extracted again with CH₂Cl₂. The organic layers were combined, washed again with 1 M HCl, washed with water, and dried over Na₂SO₄. After concentration, the crude material was purified by chromatography on silica gel with a gradient of 0 to 40% EtOAc in hexanes over 45 min to provide 1-4 as a viscous yellow oil. Data for 1-4: HNMR $(500 \text{ MHz}, \text{CDCl}_3) \delta 7.5 - 7.0 \text{ (m, 15H) } 5.1 \text{ (s, 2H) ppm.}$

10

15

35

Step 2: 1-(2-chlorophenyl)-3-(hydroxyphenyl)prop-2-en-1-one (1-5)
To a solution of 740 mg (2.12mmol) of 1-4 in 15 mL of

CH₂Cl₂ at -78°C was added dropwise 2.75 mL (2.75mmol) of a 1M solution of BBr₃ in CH₂Cl₂. After stirring for 30 min at that temperature, 1 mL of MeOH was added, and the mixture was dumped into water, extracted twice with 50 mL of CH₂Cl₂, washed again with water, and dried over Na₂SO₄. After concentration, the residue was purified by column chromatography on silica gel with a gradient of 2 to 70% EtOAc in hexanes over 30 min to provide 1-5 as a beige solid. Data for 1-5: ¹HNMR (500 MHz, CDCl₃) δ 7.5 - 7.3 (m, 5H), 7.25 (m, 1H), 7.2 - 7.0 (m, 3H), 6.9 (m, 1H), 5.1 (bs, 1H) ppm.

30 Step 3: 3-[1-acetyl-3-(2-chlorophenyl)-4,5-dihydro-1H-pyrazol-5-yl]phenol (1-7)

To a solution of 120mg (0.46mmol) of chalcone 1-5 in 4 mL of acetic acid was added 50 μ L (0.93mmol) of hydrazine hydrate. The reaction was then placed in an oil bath at 110°C for 24h. After cooling to rt, the solvents were removed on a rotary evaporator, the residue was dissolved

in 50 mL of CH₂Cl₂, washed twice with aqueous NaHCO₃, dried over Na₂SO₄, and concentrated. The residue was then purified by column chromatography on silica gel with a gradient of 5 to 75% EtOAc in hexanes over 30 min to provide 1-7 as a fluffy white solid. Data for 1-7: ¹HNMR (500 MHz, CDCl₃) δ 7.75 (m, 1H), 7.45 (m 1H), 7.4 – 7.3 (m, 2H), 7.2 (m, 1H), 6.8 (d, 1H), 6.7 (m, 2H), 5.5 (m, 1H), 3.9 (m, 1H), 3.3 (m, 1H), 2.4 (s, 3H) ppm. HRMS (ES) calc'd M + H for C₁₇H₁₅ClN₂O₂: 315.0895. Found: 315.0904.

SCHEME 2

Step 1: 2,5-difluorobenzenediazonium tetrafluoroborate (2-1)
Nitrosonium tetrafluoroborate (905 mg, 7.75 mmol, 1.00
equiv) was added to a solution of 2,5-difluoroaniline (0.780 mL, 7.75 mmol, 1 equiv) in acetonitrile (50 mL) at 0°C. The resulting mixture was stirred for 1 h, then diluted with ethyl ether (150 mL). The precipitate was filtered and air-dried to give 2,5-difluorobenzenediazonium tetrafluoroborate (2-1) as a tan solid. ¹H NMR (300 MHz, CD₃OD) δ 8.54 (m, 1H), 8.24 (m, 1H), 7.95 (m, 1H).

5

15

20

25

30

35

10 Step 2: tert-butyl 3-(2,5-difluorophenyl)-2,3-dihydro-1H-pyrrole-1-carboxylate (2-2)

Palladium(II) acetate (67 mg, 0.30 mmol, 0.020 equiv) was added to a vigourously stirred, deoxygenated mixture of tert-butyl 2,5dihydro-1H-pyrrole-1-carboxylate (2.59 mL, 15.0 mmol, 1 equiv) and 2,5difluorobenzenediazonium tetrafluoroborate (2-1, 3.42 g, 15.0 mmol, 1.00 equiv) in water and carbon tetrachloride (1:1, 150 mL) at 23°C, and the resulting mixture was stirred for 20 h. The reaction mixture was concentrated, and the residue partitioned between ethyl acetate (300 mL) and saturated aqueous sodium bicarbonate solution (75 mL). The organic layer was washed with brine, then dried over sodium sulfate and concentrated. The residue was dissolved in toluene (200 mL), and the resulting solution concentrated in vacuo to facilitate azeotropic removal of residual water. 2,6-Lutidine (3.50 mL, 30.0 mmol, 2.00 equiv) and trifluoroacetic anhydride (1.48 mL, 10.5 mmol, 0.700 equiv) were then sequentially added to a solution of the residue in toluene (100 mL) at -10°C. The resulting mixture was allowed to warm to 10 °C over 16 h, then heated at reflux for 1 h. The reaction mixture was allowed to cool to 23°C, then concentrated. The residue was partitioned between ethyl acetate (300 mL) and saturated aqueous sodium bicarbonate solution (150 mL). The organic layer was dried over sodium sulfate and concentrated. The residue was purified by flash column chromatography (hexanes initially, grading to 20% EtOAc in hexanes) to give tert-butyl 3-(2,5-difluorophenyl)-2,3-dihydro-1H-pyrrole-1carboxylate (2-2) as a red oil. ¹H NMR (500 MHz, CDCl₃) major rotamer: δ 7.03-6.84 (m, 3H), 6.70 (br s, 1H), 5.01 (br s, 1H), 4.42 (m, 1H), 4.13 (m, 1H), 3.60 (m, 1H), 1.50 (s, 9H).

Step 3: tert-butyl 4-(2,5-difluorophenyl)-2-phenyl-2,5-dihydro-1H-pyrrole-1-carboxylate (2-4)

Tris(dibenzylideneacetone)dipalladium(0) (59 mg, 064 mmol, 0.020 equiv) was added to a deoxygenated mixture of tert-butyl 3-(2,5-difluorophenyl)-2,3-dihydro-1H-pyrrole-1-carboxylate (2-2, 900 mg, 3.20 mmol, 1 equiv), benzenediazonium tetrafluoroborate (1-3, prepared by the method described above for 2-3, 614 mg, 3.20 mmol, 1.00 equiv), and sodium acetate trihydrate (1.32 g, 9.60 mmol, 3.00 equiv) in acetonitrile (70 mL) at 23°C. The reaction mixture was stirred for 16 h, then partitioned between saturated aqueous sodium bicarbonate solution and ethyl acetate (2 x 70 mL). The combined organic layers were dried over sodium sulfate and concentrated. The residue was purified by flash column chromatography (hexanes initially, grading to 40% hexanes in EtOAc) to provide tert-butyl 4-(2,5-difluorophenyl)-2-phenyl-2,5-dihydro-1H-pyrrole-1-carboxylate (2-4) as an orange oil. LRMS m/z (M+H-CH₃) 343.0 found, 343.1 required.

Step 4: 4-(2,5-difluorophenyl)-2-phenyl-2,5-dihydro-1H-pyrrole (2-5)

Trifluoroacetic acid (20 mL) was added to a solution of tert-20 butyl 4-(2,5-difluorophenyl)-2-phenyl-2,5-dihydro-1H-pyrrole-1-carboxylate (2-4, 700 mg, 1.96 mmol, 1 equiv) in dichloromethane (50 mL) at 23 °C, and the resulting mixture was stirred for 30 min, then concentrated to give 4-(2,5-difluorophenyl)-2-phenyl-2,5-dihydro-1H-pyrrole (2-5) as a TFA salt (brown oil). LRMS m/z (M+H) 258.1 found, 258.1 required.

25

30

35

5

10

15

Step 5: 4-(2,5-difluorophenyl)-N,N-dimethyl-2-phenyl-2,5-dihydro-1H-pytrole-1-carboxamide (2-6)

Triethylamine (1.37 mL, 9.79 mmol, 5.00 equiv) and dimethylcarbamoyl chloride (0.180 mL, 1.96 mmol, 1.00 equiv) were added to a solution of 4-(2,5-difluorophenyl)-2-phenyl-2,5-dihydro-1H-pyrrole (2-5, 1.96 mmol) in dichloromethane (50 mL) at 23°C, and the resulting mixture was stirred for 2 h, then concentrated. The residue was partitioned between saturated aqueous sodium bicarbonate solution (75 ml) and ethyl acetate (100 mL). The organic layer was dried over sodium sulfate and concentrated. The residue was purified by reverse-phase LC (H₂O/CH₃CN

gradient w/ 0.1 % TFA present) to provide 4-(2,5-difluorophenyl)-N,N-dimethyl-2-phenyl-2,5-dihydro-1H-pyrrole-1-carboxamide (2-6) as an off-white solid. 1 H NMR (500 MHz, CDCl₃) δ 7.35-7.29 (m, 4H), 7.25 (m, 1H), 7.05 (m, 1H), 7.00 (m, 1H), 6.96 (m, 1H), 6.40 (br s, 1H), 6.13 (m, 1H), 4.88 (ddd, 1H, J = 13.7, 5.6, 2.0 Hz), 4.52 (d, 1H, J = 13.7 Hz), 2.88 (s, 6H). LRMS m/z (M+H) 329.1 found, 329.1 required.

<u>Step 6</u>: Enantiomers of 4-(2,5-difluorophenyl)-N,N-dimethyl-2-

10

phenyl-2,5-dihydro-1H-pyrrole-1-carboxamide (2-7 and 2-8)

Resolution of enantiomers of racemic 4-(2,5-difluorophenyl)-N,N-dimethyl-2-phenyl-2,5-dihydro-1H-pyrrole-1-carboxamide (2-6) by chiral normal-phase HPLC (Chiralcel OD column: 0.1 % diethylamine in 40% ethanol in hexanes) provided in order of elution 2-7 (-) and 2-8 (+).

SCHEME 3

5

Step 1: (2S,4S)-tert-Butyl 4-hydroxy-2-phenylpyrrolidine-1-carboxylate (3-2)

To a flame dried flask equipped with stir bar was added tertbutyl (2S,4S)-4-{[tert-butyl(dimethyl)silyl]oxy}-2-phenylpyrrolidine-1-5 carboxylate (3-1, prepared from (S)-(-)-4-chloro-3-hydroxybutyronotrile by the method of Maeda, et al Synlett 2001, 1808-1810, 7.8 g, 20.7 mmol) and anhydrous acetonitrile (20.0 mL). The resulting solution was treated with triethylamine trihydrofluoride (10.1 mL, 62.0 mmol) while stirring under N₂. The reaction stirred 12 h at 40 °C. The reaction was then diluted with EtOAc (100 mL) and poured into 5% aq. NaHCO3. Following cessation of gas 10 evolution, the organic layer was washed three addition times with 5% aq. NaHCO₃. The organic layer was dried over magnesium sulfate, filtered and concentrated to provide crude product. Recrystallization was effected from EtOAc/hexanes to provide (2S,4S)-tert-butyl 4-hydroxy-2phenylpyrrolidine-1-carboxylate (3-2) as a white crystalline solid. 'H NMR 15 (300 MHz, CDCl₃) rotamers δ 7.38-7.18 (m, 5H), 4.90 (m, 1H), 4.42 (m, 1H), 3.88 (m, 1H), 3.56 (dd, J = 11.5, 4.0 Hz, 1H), 2.60 (m, 1H), 2.03 (m, 1H), 1.50 and 1.20 (br s, 9H); MS 208.0 found, 208.1 (M – C(CH₃)₃) required.

20

25

30

35

Step 2: (2S)-tert-butyl 4-oxo-2-phenylpyrrolidine-1-carboxylate (3-3)

To a flame dried flask equipped with stir bar was added 150 mL anhydrous dichloromethane which was cooled to -78 °C. Oxalyl chloride (3.8 mL, 44 mmol) and DMSO (4.8 mL, 61 mmol) were added sequentially and the reaction stirred for 10 min. (2S,4S)-tert-butyl 4-hydroxy-2-phenylpyrrolidine-1-carboxylate (3-2, 2.28 g, 8.73 mmol) in 10 mL anhydrous dichloromethane was added dropwise and stirred 1 h at -78°C. Triethylamine (12 mL, 87mmol) was added and the reaction was warmed to 0°C over 1 h. Upon completion, the reaction was washed with 5% NaHCO₃, brine and dried over MgSO₄. The organic layer was concentrated to provide crude (2S)-tert-butyl 4-oxo-2-phenylpyrrolidine-1-carboxylate (3-3). Recrystallization was effected with EtOAc/hexanes. ¹H NMR (300 MHz, CDCl₃) δ 7.35 (m, 3H), 7.17 (m, 2H), 5.38 (m, 1H), 4.08 (d, *J* = 19.5 Hz, 1H), 3.90 (d, *J* = 19.3 Hz, 1H), 3.13 (dd, *J* = 18.8, 9.8 Hz,

1H), 2.58 (dd, J = 18.6, 2.4 Hz, 1H), 1.40 (br s, 9H); MS 206.0 found, 206.1 (M - C(CH₃)₃) required.

Step 3: (2S)-tert-butyl 2-phenyl-4-{[(trifluoromethyl)sulfonyl]oxy}2,5-dihydro-1H-pyrrole-1-carboxylate (3-4)

5

10

15

20

25

30

To a flame dried flask equipped with stir bar was added ketone (2S)-tert-butyl 4-oxo-2-phenylpyrrolidine-1-carboxylate (3-3, 0.16 g, 0.62 mmol) and anhydrous THF (2 mL). The resulting solution was cooled to -78 °C, and treated dropwise with lithium hexamethyldisilylamide (LHMDS, 0.68 mL, 1M in THF, 0.68 mmoL). The reaction stirred 1 h at -78 °C, and N-(5-chloropyridin-2-yl)-1,1,1-trifluoro-N-[(trifluoromethyl)sulfonyl]-methanesulfonamide (0.27 g, 068 mmol) was added neat in one portion. The reaction was allowed to warm to 0 °C and stirred 4 hours total. The reaction was diluted with Et2O (10mL) and washed successively with H₂O (10mL) and brine (10 mL). The organic layer was dried over MgSO₄, filtered and concentrated. The crude residue was purified by flash column choromatography (0-20% EtOAc/hexanes gradient, 15 min) to provide (2S)-tert-butyl 2-phenyl-4-{[(trifluoromethyl)sulfonyl]oxy}-2,5dihydro-1H-pyrrole-1-carboxylate (3-4). H NMR (300 MHz, CDCl₃) major rotamer: δ 7.30 (m, 5H), 5.72 (m, 1H), 5.48 (m, 1H), 4.42 (m, 2H), 1.18 (s, 9H); MS 379.0 found 379.1 (M - CH₃) required.

Step 4: (2S)-4-(2,5-difluorophenyl)-2-phenyl-N,N-dimethyl-2,5-dihydro-1H-pyrrole-1-carboxamide (3-5)

To a flame dried flask equipped with stir bar was added (2S)-tert-butyl 2-phenyl-4-{[(trifluoromethyl)sulfonyl]oxy}-2,5-dihydro-1H-pyrrole-1-carboxylate (3–4, 0.250 g, 0.636 mmol), 2,5-difluorophenyl boronic acid (0.251 g, 1.59 mmol), Na₂CO₃ (0.202 g, 1.91 mmol), and LiCl (0.081 g, 1.91 mmol). The solids were dissolved in 20 mL 4:1 DME/H₂O and degassed with nitrogen. Pd(PPh₃)₄ (0.037 g, 0.032 mmol) was added and the reaction was sealed under nitrogen and heated to 90 °C for 2 h. Upon completion, the reaction was partitioned between 5% aq. NaHCO₃ and EtOAc (3 x 50 mL), and the combined organic layers were dried over MgSO₄. Following filtration, the organic layer was concentrated and

purified via flash column chromatography (SiO₂, 0-20% EtOAc/hexanes gradient) to provide (2S)-tert-butyl 4-(2,5-difluorophenyl)-2-phenyl-2,5-dihydro-1H-pyrrole-1-carboxylate (3-5). Further transformations followed those described in Scheme 1 to provide the instant compound 2-6.

SCHEME 4

5

15

20

H 1. CHO

$$H_2SO_4$$
,

 $H_2O/EtOH$
 H_2O/Et

10 Trans-1H-Imidazo[1',5':1,6]pyrido[3,4-b]indole-1,3(2H)-dione,5,6,11,11a-tetrahydro-2-methyl-5-(3-hydroxyphenyl) (4-2a)

To a mixture of DL-tryptophan (1.5 g, 7.44 mmol), 3-hydroxybenzaldehyde (0.90, 7.44 mmol) in EtOH (3 mL) was added aq. H₂SO₄ (14.9 mL of a 0.5 M solution). The reaction was heated to 50 C for 12 h. The reaction mixture was partly concentrated to remove EtOH and resuspended in H₂O (5 mL). The precipitate was collected by filtration and dried in vacuo. The portion of this solid residue (0.14 g, 0.47 mmol) was dissolved in acetone (3 mL) and treated with methyl isocyanate. The reaction mixture was heated at 150 C in a sealed vessel for 15 min in a microwave reactor. The reaction was cooled to r.t. and concentrated. The residue was absorbed onto silica gel then purified on an ISCO automated system affixed with a Biotage flash 40(s) cartridge eluting with 0-100% EtOAc in hexane at 20 mL/min over 30 min to afford a mixture of 4-2a/4-2b Trituration of this mixture with diethyl

ether provided pure $\underline{4\text{-}2a}$. Data for $\underline{4\text{-}2a}$: ¹HNMR (600 MHz, CD₃OD) δ 7.52 (d, J=8 hz, 1H), 7.27 (d, J=8 hz, 1H), 7.18 (m, 1H), 7.12 (m, 1H), 7.07 (m, 1H), 6.84 (m, 1H), 6.74 (m, 2H), 6.24 (s, 1H), 4.44 (m, 1H), 3.43 (m, 1H), 3.01 (s, 3H), 2.88 (m, 1H) ppm. HRMS Calcd (M+1) 348.1270; found 348.1343.

SCHEME 5

10

5

(-)4-(3-Hydroxyphenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydro-4H-pyrimidin-5-carboxylic acid ethyl ester (5-2a) and (+)-4-(3-Hydroxyphenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydro-4H-pyrimidin-5-carboxylic acid ethyl ester (5-2b)

15

20

Racemic monastrol (50 mg, Tocris) was resolved by chiral HPLC (Chiralpak AD column 5 x 50 cm; 20% EtOH/80% (hexanes + 0.1% diethylamine); flow = 60 mL/min) to yield (-)-enantiomer $\underline{1\text{-}2A}$ (R_T =57.0 min) and (+)-enantiomer $\underline{5\text{-}2B}$ (R_T = 71.2 min). Enantiomer $\underline{5\text{-}2B}$ was crystallized from hexanes to yield a yellow solid.

SCHEME 6

SCHEME 6 (continued)

SCHEME 6 (continued)

$$\begin{array}{c} & & & \\ & &$$

tert-Butyl 3-[(benzylamino)carbonyl]thien-2-ylcarbamate (6-2)

5

10

A solution of tert-butyllithium in pentane (1.7 M, 42.5 mL, 72.3 mmol, 2.40 equiv) was added to a solution of tert-butyl thien-2-ylcarbamate (6-1, 6.00 g, 30.1 mmol, 1 equiv) in THF (300 mL) at -78 °C. The reaction mixture was stirred for 45 min, then solid CO₂ (approximately 20 g) was added and the resulting mixture was warmed to 0 °C and stirred for 30 minutes. The reaction mixture was partitioned between aqueous 1 N hydrochloric acid solution and ethyl acetate (2 x 150 mL). The combined organic layers were dried over sodium sulfate and concentrated. The residue

was purified by flash column chromatography (hexanes initially, grading to 100% ethyl acetate), and the polar fractions were concentrated. A solution of the residue, benzylamine (6.61 g, 61.7 mmol, 2.05 equiv), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (5.91 g, 30.8 mmol, 1.02 equiv), 1-hydroxy-7-azabenzotriazole (4.19 g, 30.8 mmol, 1.02 equiv), and triethylamine (8.59 mL, 61.7 mmol, 2.05 equiv) in DMF (100 mL) was stirred at 55°C for 24 h. The reaction mixture was concentrated, and the residue was partitioned between saturated aqueous sodium bicarbonate solution and ethyl acetate (3 x 100 mL). The combined organic layers were dried over sodium sulfate and concentrated. The residue was purified by flash column (hexanes initially, grading to 100% ethyl acetate) to give tert-butyl 3-[(benzylamino)carbonyl]thien-2-ylcarbamate (6-2) as a colorless oil. 1 H NMR (300 MHz, CDCl₃) δ 7.37 (m, 5H), 6.87 (d, 1H, J = 5.8 Hz), 6.69 (d, 1H, J = 5.8 Hz), 6.13 (s, 1H), 4.61 (d, 2H, J = 5.5 Hz), 1.52 (s, 9H).

N-benzyl-2-(butyrylamino)thiophene-3-carboxamide (6-3)

5

10

15

20

25

30

A solution of tert-butyl 3-[(benzylamino)carbonyl]thien-2-ylcarbamate (6-2, 500 mg, 1.50 mmol, 1 equiv) was saturated with HCl gas at 0 °C, and the resulting solution was stirred at 0 °C for 1 h, then allowed to warm to 23 °C and stirred for 1 h. The reaction mixture was concentrated and the residue was dissolved in pyridine (10 mL). The resulting solution was cooled to 0 °C, and butyryl chloride (420 μ L, 4.04 mmol, 2.69 equiv) was added in three equal portions over 1 h. The reaction mixture was partitioned between aqueous sodium bicarbonate solution and ethyl acetate (50 mL). The organic layer was dried over sodium sulfate and concentrated. The residue was purified by flash column (hexanes initially, grading to 100% ethyl acetate) to give N-benzyl-2-(butyrylamino)thiophene-3-carboxamide (6-3) as an off-white solid. ¹H NMR (300 MHz, CDCl₃) δ 7.36 (m, 5H), 6.92 (d, 1H, J = 6.1 Hz), 6.76 (d, 1H, J = 5.8 Hz), 6.23 (s, 1H), 4.62 (d, 2H, J = 5.8 Hz), 2.47 (t, 2H, J = 7.3 Hz), 1.80 (sextet, 2H, J = 7.3 Hz), 1.01 (t, 3H, J = 7.3 Hz).

3-benzyl-2-propylthieno[2,3-d]pyrimidin-4(3H)-one (6-4)

A mixture of N-benzyl-2-(butyrylamino)thiophene-3-carboxamide (6-3, 230 mg, 0.76 mmol, 1 equiv) and sodium hydroxide (3 mg, 0.08 mmol, 0.1 equiv) in ethylene glycol (5 mL) was heated at 130 °C for 5 h. The reaction mixture was allowed to cool, then partitioned between a half-saturated aqueous sodium chloride solution and ethyl acetate (2 x 75 mL). The combined organic layers were dried over sodium sulfate and concentrated. The residue was purified by flash column (hexanes initially, grading to 100% ethyl acetate) to provide 3-benzyl-2-propylthieno[2,3-d]pyrimidin-4(3H)-one (6-4) as a colorless oil which solidified upon standing. ¹H NMR (300 MHz, CDCl₃) δ 7.48 (d, 1H, *J* = 5.8 Hz), 7.31 (m, 3H), 7.19 (d, 1H, *J* = 5.8 Hz), 7.17 (d, 2H, *J* = 7.9 Hz), 5.42 (s, 2H), 2.72 (t, 2H, *J* = 7.6 Hz), 1.78 (sextet, 2H, *J* = 7.6 Hz), 0.97 (t, 3H, *J* = 7.3 Hz).

3-benzyl-5,6-dibromo-2-(1-bromopropyl)thieno[2,3-d]pyrimidin-4(3H)-one (6-5) and 3-benzyl-6-bromo-2-(1-bromopropyl)thieno[2,3-d]pyrimidin-4(3H)-one (6-6)

A solution of 3-benzyl-2-propylthieno[2,3-d]pyrimidin-4(3H)-one (6-4, 100 mg, 0.35 mmol, 1 equiv), potassium acetate (207 mg, 20 2.1 mmol, 6 equiv) and bromine (338 mg, 2.1 mmol, 6 equiv) in acetic acid (2 mL) was heated at 100°C for 3 hr. The reaction was concentrated, and the residue was purified by flash chromatography. Elution with 30 % hexanes/EtOAc gave 3-benzyl-5,6-dibromo-2-(1-bromopropyl)thieno[2,3d]pyrimidin-4(3H)-one (6-5) as a colorless solid. ¹H NMR (500 MHz, 25 CDCl₃) δ 7.30 (m, 1H), 7.14 (d, J = 7.3 Hz, 2H), 6.19 (d, J = 16.3 Hz, 1H), 4.87 (d, J = 16.3 Hz, 1H), 4.62 (t, J = 7.3 Hz, 1H), 2.35 (m, 1H), 2.18 (m, J= 1H), 0.72 (t, J = 7.3 Hz, 3H). Further elution with the same eluant gave 3benzyl-6-bromo-2-(1-bromopropyl)thieno[2,3-d]pyrimidin-4(3H)-one (2-6) as a colorless gum. ¹H NMR (500 MHz, CDCl₃) δ 7.53 (s, 1H), 7.34 (m, 2H), 7.29 (m, 1H), 7.12 (d, J = 7.3 Hz, 2H), 6.21 (d, J = 16.3 Hz, 1 H), 4.88 30 (d, J = 16.3 Hz, 1H), 4.62 (t, J = 7.2 Hz, 1H), 2.37 (m, 1H), 2.18 (m, 1H),

0.72 (t, J = 7.3 Hz, 3H).

3-benzyl-5,6-dibromo-2-(1-{{2-(dimethylamino)ethyl]amino}propyl)thieno[2,3-d]pyrimidin-4(3H)-one (6-7)_____

A solution of 3-benzyl-5,6-dibromo-2-(1-

5

10

15

20

25

30

35

bromopropyl)thieno[2,3-d]pyrimidin-4(3H)-one (6-5, 35 mg, 0.066 mmol, 1 equiv) and N,N-dimethylethylenediamine (17 mg, 0.198 mmol, 3 equiv) in ethanol (5mL) was heated at reflux for 18 h. The reaction was concentrated, and the residue was partitioned between EtOAc and brine. The organic layer was dried (MgSO₄) and concentrated to provide 3-benzyl-5,6-dibromo-2-(1-{[2-(dimethylamino)ethyl]amino}propyl)thieno-[2,3-d]pyrimidin-4(3H)-one (6-7) as a yellow gum. MS(M+1) = 526.8.

3-benzyl-6-bromo-2-(1-{[2-(dimethylamino)ethyl]amino}propyl)thieno[2,3-d]pyrimidin-4(3H)-one (6-8)

A solution of 3-benzyl-6-bromo-2-(1-bromopropyl)thieno[2,3-d]pyrimidin-4(3H)-one (6-6, 35 mg, 0.079 mmol, 1 equiv) and N,N-dimethylethylenediamine (21 mg, 0.237 mmol, 3 equiv) in ethanol (5mL) was heated at reflux for 18 h. The reaction was concentrated, and the residue was partitioned between EtOAc and brine. The organic layer was dried (MgSO₄) and concentrated to provide 3-benzyl-6-bromo-2-(1-{[2-(dimethylamino)ethyl]amino}-propyl)thieno[2,3-d]pyrimidin-4(3H)-one (6-8) as a yellow gum. MS(M+1) = 449.9.

N-[1-(3-benzyl-5,6-dibromo-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-2-yl)propyl]-4-bromo-N-[2-(dimethylamino)ethyl]benzamide (6-9)

A solution of 4-bromobenzoyl chloride (19 mg, 0.085 mmol, 1 equiv) in dichloromethane (1 mL) was added to a solution of 3-benzyl-5,6-dibromo-2-(1-{[2-(dimethylamino)ethyl]amino}propyl)thieno[2,3-d]pyrimidin-4(3H)-one (6-8, 45 mg, 0.085 mmol, 1 equiv) and N,N-diisopropylethylamine (11 mg, 0.085 mmol, 1 equiv) in dichloromethane (5 mL), and the resulting reaction mixture was stirred under ambient conditions for 1 h. The reaction mixture was washed with saturated aqueous NaHCO₃ solution, then brine, and dried (MgSO₄) and concentrated. The residue was purified by reverse-phase LC (H₂O/CH₃CN gradient w/ 0.1 % TFA present) to provide N-[1-(3-benzyl-5,6-dibromo-4-oxo-3,4-dihydrothieno[2,3-

d]pyrimidin-2-yl)propyl]-4-bromo-N-[2-(dimethylamino)ethyl]benzamide (6-9) as a colorless foam. MS(M+1) = 708.9

N-[1-(3-benzyl-6-bromo-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-2yl)propyl]-4-bromo-N-[2-(dimethylamino)ethyl]benzamide (6-10) 5 A solution of 4-bromobenzoyl chloride (19 mg, 0.085 mmol, 1 equiv) in dichloromethane (1 mL) was added to a solution of 3-benzyl-6bromo-2-(1-{[2-(dimethylamino)ethyl]amino}propyl)thieno[2,3dlpyrimidin-4(3H)-one (6-9, 38 mg, 0.085 mmol, 1 equiv) and N,Ndiisopropylethylamine (11 mg, 0.085 mmol, 1 equiv) in dichloromethane (5 10 mL), and the resulting reaction mixture was stirred under ambient conditions for 1 h. The reaction mixture was washed with saturated aqueous NaHCO₃ solution, and brine, then dried (MgSO₄) and concentrated. The residue was purified by reverse-phase LC (H₂O/CH₃CN gradient w/ 0.1 % TFA present) to provide N-[1-(3-benzyl-6-bromo-4-oxo-3,4-dihydrothieno[2,3-15 d]pyrimidin-2-yl)propyl]-4-bromo-N-[2-(dimethylamino)ethyl]benzamide (6-10) as a colorless foam. ¹H NMR (500 MHz, CDCl₃) δ 7.55 (m, 3H), 7.31 (m, 5H), 7.14 (m, 2H), 6.04 (d, J = 15.4 Hz, 1H), 5.92 (m, 1H), 5.12 (d, J = 15.4 Hz, 1H)

15.4 Hz, 1H), 3.37 (m, 2H), 2.05 (m, 4 H), 1.83 (m, 6H), 0.65 (m, 3H).

10

SCHEME 7

$$Br \longrightarrow H_2, Pd/C$$
 $H_2, Pd/C$
 $H_3, Pd/C$
 $H_4, Pd/C$
 $H_5, Pd/C$
 $H_7, Pd/C$
 $H_8, Pd/C$

5 3-benzyl-2-(1-{[2-(dimethylamino)ethyl]amino}propyl)thieno[2,3-d]pyrimidin-4(3H)-one (7-1)

A mixture of 3-benzyl-6-bromo-2-(1-{[2-(dimethylamino)ethyl]-amino}propyl)-thieno[2,3-d]pyrimidin-4(3H)-one (6-8,17 mg, 0.38 mmol, 1 equiv) and 10 % Pd/C in ethyl acetate (5 mL) was hydrogenated at 1 atm. for 3 h. The mixture was filtered and the filtrate concentrated to provide 3-benzyl-2-(1-{[2-

(dimethylamino)ethyl]amino)propyl)thieno[2,3-d]pyrimidin-4(3H)-one (7-1) as a pale yellow gum. MS(M+1) = 371.1.

N-[1-(3-benzyl-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-2-yl)propyl]-4-bromo-N-[2-(dimethylamino)ethyl]benzamide (7-2)

A solution of 4-bromobenzoyl chloride (8 mg, 0.035 mmol, 1 equiv) in dichloromethane (1 mL) was added to a solution of 3-benzyl-2-(1-{[2-(dimethylamino)ethyl]amino}propyl)thieno[2,3-d]pyrimidin-4(3H)-one (7-1, 13 mg, 0.035 mmol, 1 equiv) and N,N-diisopropylethylamine (5 mg, 0.035 mmol, 1 equiv) in dichloromethane (1 mL), and the resulting mixture was stirred under ambient conditions for 1 h. The reaction mixture was washed with saturated aqueous NaHCO₃ solution, and brine, then dried (MgSO₄) and concentrated. The residue was purified by flash chromatography. Elution with CH₂Cl₂ to 5 % NH₃-EtOH/CH₂Cl₂ gave N-[1-(3-benzyl-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-2-yl)propyl]-4-bromo-N-[2-(dimethylamino)ethyl]benzamide (7-2) as an off-white foam. ¹H NMR (500 MHz, CDCl₃) δ 7.31 (m, 5H), 7.14 (m, 2H), 6.09 (d, J = 15.6 Hz, 1H), 5.94 (m, 1H), 5.10 (d, J = 15.6 Hz, 1H), 3.40 (m, 2H), 2.11 (m, 1H), 2.03 (m, 2H), 1.87 (m, 1H), 1.79 (s, 6H), 0.66 (t, J = 6.6 Hz, 3H).

20

.5

10

15

SCHEME 8

3-benzyl-2-(1-{(4-bromobenzyl)[2-(dimethylamino)ethyl]amino}propyl)thieno[2,3-d]pyrimidin-4(3H)-one(8-1) A solution of 3-benzyl-2-(1-{[2-

- (dimethylamino)ethyl]amino}-propyl)thieno[2,3-d]pyrimidin-4(3H)-one(7-5 1, 175 mg, 0.47 mmol, 1 equiv) and 4-bromobenzaldehyde (174 mg, 0.94 mmol, 2 equiv) in methanol (20 mL) was treated with a solution of sodium cyanoborohydride in tetrahydrofuran (1 M, 0.94 mL, 0.94 mmol, 2 equiv). Acetic acid was added to obtain a pH of 6-7 and the reaction was warmed at 60 °C for 18 h. An additional 2 equivalents of 4-bromobenzaldehyde and 10 sodium cyanoborohydride were added after 18, 42 and 66 hours while maintaining the pH at 6-7 with acetic acid. After warming 90 h at 60°C, the reaction was concentrated and the residue was partitioned between EtOAc and aqueous saturated NaHCO3 solution. The organic layer was washed with brine, dried (MgSO₄) and concentrated. The residue was purified by flash 15 chromatography. Elution with EtOAc to 5 % NH3-EtOH/EtOAC gave 3benzyl-2-(1-{(4-bromobenzyl)[2-(dimethylamino)ethyl]amino)propyl)thieno[2,3-d]pyrimidin-4(3H)-one(8-1)
- as a pale yellow gum. ¹H NMR (500 MHz, CDCl₃) δ 7.45 (d, J = 6 Hz, 1H), 7.33 (d, J = 8 Hz, 2H), 7.21 (m, 4H), 7.05 (d, J = 8 Hz, 2H), 6.84 (d, J = 7 Hz, 2H), 5.85 (d, J = 16 Hz, 1H), 5.32 (d, J = 16 Hz, 1H), 3.87 (d, J = 14 Hz, 1H), 3.73 (dd, J = 11, 3 Hz, 1H), 3.50 (d, J = 14 Hz, 1H), 2.92 (m, 1H), 2.61 (m, 1H), 2.28 (m, 2H), 2.15 (m, 1H), 2.07 (s, 6H), 1.74 (m, 1H), 0.64 (t, J = 7 Hz, 3H).

TABLE I

```
REMARK complex 1 with water molecules surrounding it REMARK r= 0.2114 free r= 0.2639
       REMARK rmsd bonds= 0.006712 rmsd angles= 1.32262
       REMARK rmsd bonds= 0.006712 rmsd angles= 1.32262

REMARK B rmsd for bonded mainchain atoms= 1.570 target= 1.5

REMARK B rmsd for bonded sidechain atoms= 2.570 target= 2.0

REMARK B rmsd for angle mainchain atoms= 2.729 target= 2.0

REMARK B rmsd for angle sidechain atoms= 3.936 target= 2.5

REMARK sg= P2(1)2(1)2(1) a= 69.48 b= 79.54 c= 158.98 alpha= 90. beta= 90. gamma= 90.
10
       REMARK B-correction resolution: 6.0 - 2.5
       REMARK FILENAME= "kin_16dpb.pdb"
       MOTA
                       CB ASN
                                              37.472
                                                      -7.942 100.393 1.00 28.28
                                   18
15
                                             38.236
38.752
38.310
                                                       -7.260 101.506
-7.913 102.413
       MOTA
                       CG ASN
                                    18
                                                                          1.00 31.25
                                                                                              A
                                                                           1.00 36.19
       ATOM
                   3
                       OD1 ASN
                                    18
                                                                                              A
                                    18
                                                       -5.940 101.448
                                                                           1.00 32.46
       ATOM
                       ND2 ASN
                                                                                              A
       ATOM
                       С
                           ASN
                                    18
                                              35.178
                                                       -7.311 101.124
                                                                           1.00
       MOTA
                       0
                           ASN
                                    18
                                              34.900
                                                       -6.997 102.284
                                                                           1.00
                                                                                 23.76
20
       MOTA
                       N
                           ASN
                                              35.576
                                                       -9.454
                                                                99.859
                                                                           1.00 25.44
       MOTA
                   8
                       CA ASN
                                    18
                                              36.124
34.708
33.759
                                                       -8.484 100.856
                                                                           1.00 25.50
                                                                                              A
                                                       -6.636 100.074
                                                                           1.00 21.79
       MOTA
                       N
                           ILE
                                    19
                                                       -5.540 100.278
                                                                           1.00 19.48
       ATOM
                  10
                       CA
                           ILE
                                    19
       ATOM
                       СВ
                           ILE
                                    19
                                              33.425
                                                       -4.791
                                                                 98.970
                                                                           1.00
                                                                                 20.49
                  11
25
       MOTA
                       CG2 ILE
                                              32.124
                                                       -3.992
                                                                 99.129
                                                                           1.00 19.87
        MOTA
                  13
                       CG1 ILE
                                    19
                                              34.573
                                                       -3.846
                                                                 98.613
                                                                           1.00 20.82
       MOTA
                  14
                       CD1 ILE
                                    19
                                              34.194
                                                       -2.801 97.563
-6.185 100.820
                                                                           1.00 19.23
                                              32.487
                                                                           1.00 18.08
       ATOM
                  15
                       С
                           ILE
                                    19
                       ō
       MOTA
                  16
                           ILE
                                    19
                                              31.929
                                                        -7.079 100.190
                                                                           1.00 17.25
30
                  17
                                              32.044
                                                        -5.743 101.991
                                                                           1.00 16.72
       MOTA
                           GLN
        MOTA
                  18
                       CA
                           GLN
                                    20
                                              30.863
                                                        -6.315 102.624
                                                                           1.00 17.94
        MOTA
                  19
                       CB
                           GLN
                                    20
                                              30.996
                                                       -6.207 104.143
                                                                           1.00 18.71
        MOTA
                  20
                       CG
                           GLN
                                    20
                                              32.221
                                                       -6.950 104.689
                                                                           1.00 19.97
                                                                                               A
                                                       -6.829 106.196
                       CD
                           GLN
                                    20
                                              32.369
                                                                           1.00 21.29
        MOTA
                  21
35
                                              32.511
                                                        -5.730 106.734
                                                                           1.00 22.63
        MOTA
                  22
                       OE1 GLN
                                    20
                                              32.336
                                                        -7.964 106.885
                                                                           1.00 22.16
        MOTA
                  23
                       NE2 GLN
                                    20
       ATOM
                            GLN
                                              29.560
                                                        -5.681 102.147
                                                                           1.00 17.78
        MOTA
                  25
                       0
                            GLN
                                    20
                                              29.396
                                                        -4.462 102.184
                                                                           1.00 - 19.12
        MOTA
                  26
27
                       N
                           VAL
                                    21
                                              28.640
27.355
                                                       -6.528 101.695
-6.080 101.176
                                                                           1.00 14.78
40
                                                                           1.00 13.75
                           VAL
        ATOM
                       CA
                                    21
                  28
                       CB
                           VAL
                                              27.144
                                                        -6.609
                                                                 99.738
                                                                           1.00 14.14
        ATOM
                                                                 99.155
                  29
                       CG1 VAL
                                              25.854
                                                                           1.00 11.78
        MOTA
                                                        -6.065
        MOTA
                  30
                       CG2 VAL
                                              28.339
                                                        -6.238
                                                                98.875
                                                                           1.00 13.09
        MOTA
                           VAL
                                              26.198
                                                        -6.571 102.036
                                                                           1.00 14.04
45
                                                       -7.756 102.365
-5.659 102.396
        MOTA
                  32
                       0
                           VAI.
                                    21
                                              26.128
                                                                           1.00 13.35
        MOTA
                  33
                       N
                           VAL
                                    22
                                              25.294
24.123
                                                                           1.00.14.49
                  34
                                                        -6.011 103.194
                       CA. VAL
                                    22
                                                                           1.00 14.01
        MOTA
                  35
                       CB
                           VAL
                                                        -5.423 104.627
                                                                           1.00 15.50
        MOTA
                                              24.197
                       CG1 VAL
                                              25.588
                                                        -5.628 105.201
                                                                           1.00 16.80
        MOTA
50
        MOTA
                  37
                       CG2 VAL
                                    22
                                              23.817
                                                        -3.968 104.623
                                                                           1.00 15.97
                                                                           1.00 13.29
        MOTA
                  38
                       С
                            VAL
                                    22
                                              22.838
                                                        -5:518 102.532
                                                        -4.469 101.884
                                                                           1.00 13.40
        MOTA
                  39
                       0
                            VAL
                                    22
                                              22.811
                       N
                  40
                            VAL
                                                        -6:292 102.694
                                                                           1.00 12.04
        MOTA
                                    23
                                              21.773
                                              20.478
                                                        -5.953 102.125
                                                                           1.00 11.16
        MOTA
                  41
                       CA
                           VAL
                                    23
55
                       CB
                           VAL
                                              19.890
                                                        -7.155 101.350
                                                                           1.00 10.39
        MOTA
                  42
        MOTA
                  43
                       CG1 VAL
                                    23
                                              18.423
                                                        -6.883 100.979
                                                                           1.00
                                                                                   6.97
        ATOM
                  44
                       CG2 VAL
                                    23
                                              20.733
                                                        -7.429 100.112
                                                                           1.00
                                                                                   5.75
                                                                           1.00 12.26
        ATOM
                  45
                       C
                            VAL
                                    23
                                              19.496
                                                       -5.551 103.220
-6.180 104.276
                                                                           1.00 12.72
                  46
                       Ó
                            VAL
                                              19.433
18.734
        MOTA
                                     23
60
                  47
                       N
                            ARG
                                                        -4.497 102.965
                                                                           1.00 12.29
        MOTA
                                     24
                                              17.741
                                                        -4.033 103.925
                                                                            1.00 11.98
        ATOM
                  48
                       CA
                            ARG
                                     24
                            ARG
        MOTA
                  49
                       СB
                                              18.150
                                                        -2.711 104.572
                                                                            1.00
        MOTA
                  50
                       CG
                            ARG
                                              17.092
                                                        -2.197 105.533
                                                                           1.00
                                                                                  9.40
        MOTA
                  51
                       CD
                            ARG
                                     24
                                              17.412
                                                        -0.826 106.110
                                                                            1.00 11.24
65
        MOTA
                  52
                       NE
                            ARG
                                     24
                                              16.638
                                                        -0.585 107.326
                                                                           1.00
                                                                                  8.87
                                                                            1.00 11.40
                  53
                       CZ
                            ARG
                                                         0.540 108.033
        ATOM
                                     24
                                              16.668
                  54
                       NH1
                           ARG
                                              17.432
                                                         1.563 107.649
                                                                            1.00 11.52
        ATOM
                                     24
        MOTA
                  55
                       NH2
                            ARG
                                     24
                                              15.956
                                                         0.629 109.151
                                                                            1.00 12.63
        MOTA
                  56
                       ¢
                            ARG
                                     24
                                              16.404
                                                        -3.831 103.230
                                                                            1.00 13.62
70
                  57
                                     24
                                              16.248
                                                        -2.918 102.415
                                                                            1.00 14.61
        ATOM
                            ARG
        ATOM
                  58
                       N
                            CYS
                                     25
                                              15.446
                                                        -4.690 103.553
                                                                           1.00 12.77
```

	MOTA	59	CA	CYS	25	14.117	-4.599	102.983	1.00 13.88	A
	MOTA	60	CB	CYS	25	13.461		102.951	1.00 15.60	A
	MOTA	61	SG	CYS	25	11.855		102.134	1.00 21.58	A
	MOTA	62	c	CYS	25	13.292		103.865	1.00 13.78	A
5	MOTA	63	ō	CYS	25	13.293		105.084	1.00 15.62	A
-	MOTA	64	N	ARG	26	12.605		103.261	1.00 12.12	A
	MOTA	65	CA	ARG	26	11.774		104.045	1.00 12.61	A
	ATOM	66	CB	ARG	26	11.601		103.343	1.00 10.76	A
	MOTA	67	CG	ARG	26	10.679	-0.499	102.128	1.00 7.66	A
10	ATOM	68	CD	ARG	26	10.181		101.775	1.00 7.16	A
	MOTA	69	NE	ARG	26	9.592		100.442	1.00 7.55	A
	MOTA	70	CZ	ARG	26	8.413	0.411	100.125	1.00 8.80	A
	ATOM	71	NH1	ARG	26	7.677	-0.194	101.052	1.00 8.81	A
	MOTA	72	NH2		26	7.980	0.472	98.876	1.00 7.02	A
15	MOTA	73	c	ARG	26	10.407		104.215	1.00 15.65	A
	MOTA	74	Ō	ARG	26	10.058		103.500	1.00 17.10	A
	MOTA	75	N	PRO	27	9.615		105.170	1.00 17.31	A
	MOTA	76	CD	PRO	27	9.957	-1.053	106.262	1.00 18.01	A
	MOTA	77	CA	PRO	27	8.287		105.382	1.00 20.54	A
20	MOTA	78	СВ	PRO	27	8.037	-2.277		1.00 19.92	A
	ATOM	79	CG	PRO	27	8.639		107.017	1.00 17.88	A
	MOTA	80	Č	PRO	27	7.237		104.492	1.00 23.41	A
	ATOM	81	ō	PRO	27	7.482		103.916	1.00 23.28	A
	MOTA	82	N	PHE	28	6.080	-2.542	104.371	1.00 26.52	A
25	MOTA	83	CA	PHE	28	4.976		103.584	1.00 29.18	A
	ATOM	84	CB	PHE	28	3.805	-2.982	103.588	1.00 27.65	A
	ATOM	85	CG	PHE	28	3.948	-4.107	102.610	1.00 28.35	A
	ATOM	86		PHE	28	3.947		103.045	1.00 28.03	A
	MOTA	87		PHE	28	4.038	-3.850	101.243	1.00 27.68	A
30	ATOM	88		PHE	28	4.026	-6.477	102.139	1.00 27.56	A
	MOTA	89		PHE	28	4.119		100.324	1.00 29.26	A
	MOTA	90	CZ	PHE	28	4.112		100.773	1.00 27.81	A
	ATOM	91	С	PHE	28	4.513	~0.680	104.191	1.00 32.56	A
	ATOM	92	o	PHE	28	4.426	-0.548	105.411	1.00 33.43	A
35	MOTA	93	N	ASN	29	4.217		103.345	1.00 37.21	A
	MOTA	94	CA	ASN	29	3.744	1.595	103.829	1.00 42.32	A
	MOTA	95	СВ	ASN	29	4.073	2.692	102.809	1.00 42.04	A
	MOTA	96	CG	ASN	29	3.604		101.410	1.00 41.31	A
	MOTA	97	OD1	ASN	29	2.409	2.177	101.168	1.00 41.82	A
40	MOTA	98	ND2	ASN	29	4.546	2.228	100.482	1.00 40.11	À
	MOTA	99	С	ASN	29	2.232	1.526	104.054	1.00 46.51	A
	MOTA	100	0	ASN	29	1.606	0.505	103.768	1.00 46.59	A
	MOTA	101	N	LEU	3,0	1.650	2.612	104.562	1.00 51.19	A
	MOTA	102	CA	LEU	30	0.212	2.661	104.826	1.00 54.81	A
45	MOTA	103	CB	LEU	30	-0.178	4.040	105.362	1.00 56.40	A
	MOTA	104	CG	LEU	30	-1.659	4.234	105.705	1.00 58.19	A
	MOTA	105	CD1	LEU	30	-2.058	3.273	106.820	1.00 57.83	A
	MOTA	106	CD2	LEU	30	-1.899	5.680	106.130	1.00 59.11	A
	MOTA	107	С	LEU	30	-0.637	2.343	103.592	1.00 56.70	A
50	MOTA	108	0	LEU	30	-1.552		103.658	1.00 56.66	A
	MOTA	109	N	ALA	31	-0.329		102.471	1.00 59.03	A
	MOTA	110	CA	ALA	31	-1.062		101.222	1.00 61.19	A
	MOTA	111	СВ	ALA	31	-0.414		100.100	1.00 61.28	A
~ ~	MOTA	112	С	ALA	31	-1.125		100.833	1.00 62.78	A
55	MOTA	113	0	ALA	31	-2.123		100.282	1.00 62.16	A
	MOTA	114	N	GLU	32	-0.048		101.117	1.00 65.22	A
	MOTA	115	CA	GLU	32	0.031		100.801	1.00 67.27	A
	MOTA	116	CB	GLU	32	1.501		100.702	1.00 66.96	A
~	MOTA	117	CG	GLU	32	2.199	-0.712		1.00 67.12	A
60	MOTA	118	CD	GLU	32	3.713	-0.641		1.00 67.26	A
	MOTA	119		GLU	32	4.392	-0.422		1.00 66.83	A
	ATOM	120		GLU	32	4.223		100.723	1.00 65.99	A
	MOTA	121	С	GLU	32	-0.706		101.844	1.00 68.26	A
45	MOTA	122	0	GLU	32	-1.260		101.526	1.00 68.16	A
65	MOTA	123	N	ARG	33	-0.722		103.087	1.00 69.65	À
	ATOM	124	CA	ARG	33	-1.403		104.169	1.00 71.22	A
	ATOM	125	СВ	ARG	33	-1.196		105.498	1.00 72.33	A
	ATOM	126	CG	ARG	33	0.239		106.009	1.00 73.65	A
70	MOTA	127	CD	ARG	33	0.695		106.479	1.00 74.57	A
70	MOTA	128	NE	ARG	33	2.043		107.041	1.00 76.44	A
	MOTA	129	CZ	ARG	33	2.692		107.521	1.00 76.91	A
	ATOM	130		ARG	33	2.119		107.513	1.00 76.68	A
	MOTA	131	NH2	ARG	33	3.918	-3.376	108.007	1.00 77.35	A

	ATOM	132	с	ARG	33	-2.901	-2:013	103.885	1.00 71.74	A
	ATOM	133	ŏ	ARG	33	-3.464		103.900	1.00 71.46	A
	ATOM	134	N	LYS	34	-3.536		103.632	1.00 71.80	A
	MOTA	135	CA	LYS	34	-4.967		103.349	1.00 71.67	A
5	MOTA	136	СВ	LYS	34	-5.426		103.195	1.00 72.94	A
	MOTA	137	CG	LYS	34	-4.734		102.072	1.00 74.72	A
	ATOM	138	CD	LYS	34	-5.218	2.856	101.986	1.00 75.69	A
	MOTA	139	CE	LYS	34	-6.680	2.936	101.565	1.00 75.79	A
	MOTA	140	NZ	LYS	34	-7.149	4.343	101.426	1.00 74.45	A
10	MOTA	141	С	LYS	34	-5.315	-1.604	102.088	1.00 70.68	A
	MOTA	142	۰0	LYS	34	-6.448	-2.064	101.924	1.00 70.80	A
	MOTA	143	N	ALA	35	-4.338	-1.753	101.198	1.00 68.59	A
	MOTA	144	CA	ALA	35	-4.539	-2.501	99.963	1.00 66.37	A
	MOTA	145	CB	ALA	35	-3.639	-1.949	98.861	1.00 65.65	A
15	MOTA	146	С	ALA	35	-4.199		100.241	1.00 64.89	A
	MOTA	147	0	ALA	35	-4.277	-4.807	99.352	1.00 64.01	A
	MOTA	148	N	SER	. 36	-3.825	-4.233	101.491	1.00 63.72	A
	MOTA	149	CA	SER	36	-3.454		101.937	1.00 62.31	A
20	MOTA	150	CB	SER	36 .	-4.711		102.194	1.00 62.73	A
20	MOTA	151	OG	SER	36	-5.556	-6.469		1.00 63.14	A
	MOTA	152	C	SER	36	-2.542		100.920	1.00 60.52	A
	MOTA	153	0	SER	36	-2.933		100.256	1.00 60.52	Α.
	MOTA	154	N	ALA	37	-1.316		100.818	1.00 57.81	A 'A
25	MOTA	155	CA	ALA	37	-0.339	-6.291	99.877 99.561	1.00 54.58 1.00 53.39	A
23	MOTA	156	CB	ALA	37	0.709	-5.228	100.359	1.00 51.84	A
	ATOM ATOM	157 158	C	ALA ALA	37 37	0.351 0.586		101.554	1.00 50.84	Ä
	MOTA	159	N O	HIS	38	0.669	-8.429	99.405	1.00 48.60	Â
	MOTA	160	CA	HIS	38	1.363	-9.672	99.690	1.00 45.12	A
30	MOTA	161	CB	HIS	38		-10.810	98.840	1.00 48.05	A
-	MOTA	162	CG	HIS	38	0.753	-10.528	97.364	1.00 50.18	A
	MOTA	163		HIS	38		-10.171	96.542	1.00 51.32	A
•	MOTA	164		HIS	38	1.875	-10.621	96.566	1.00 50.53	A
	ATOM	165		HIS	38		-10.337	95.317	1.00 50.82	A
35		166		HIS	38		-10.059	95.275	1.00 51.95	A
	ATOM	167	С	HIS	38	2.836	-9.436	99.350	1.00 40.69	A
	MOTA	168	0	HIS	38	3.165	~9.005	98.244	1.00 39.51	A
	MOTA	169	N	SER	39	3.714	-9.692	100.312	1.00 34.50	A
	MOTA	170	CA	SER	39	5.138	-9.494	100.106	1.00 29.81	A
40	MOTA	171	CB	SER	39	5.860	-9.458		1.00 29.59	A
	MOTA	172	OG	SER	39	7.263	-9.361		1.00 30.93	A
	MOTA	173	C	SER	39	5.753	-10.578	99.242	1.00 27.18	A
	MOTA	174	0	SER	39		-11.758	99.456	1.00 27.84	A
15	MOTA	175	N	ILE	40		-10.179	98.263	1.00 23.70	A
45	MOTA	176	CA	ILE	40		-11.148	97.403	1.00 20.93	A
	MOTA	177	CB	ILE	40		-10.677	95.945	1.00 21.59	A
	MOTA	178		ILE	40		-10.554	95.381	1.00 21.07 1.00 21.01	A A
	MOTA	179 180		ILE	40 40	8.025 8.377	-9.343 -8.954	95.857 94.443	1.00 21.01	Ä
50	MOTA MOTA	181	CDI	ILE	40		-11.366	97.895	1.00 17.30	Ä
.50	ATOM	182	ŏ	ILE	40		-12.130	97.306	1.00 18.82	A
	MOTA	183	N	VAL	41		-10.696	98.988	1.00 18.43	A
	MOTA	184	CA	VAL	41		-10.801	99.572	1.00 19.01	A
	ATOM	185	CB	VAL	41	10.974	-9.394	99.666	1.00 18.10	A
55	MOTA	186		VAL	41	12.231	-9.448		1.00 17.03	A
	MOTA	187		VAL	41	11.303	-8.881	98.279	1.00 16.81	A
	MOTA	188	C	VAL	41			100.976	1.00 21.10	Α
	MOTA	189	0	VAL	41	9.401	-11.122	101.779	1.00 22.16	A
	MOTA	190	N	GLU	42			101.269	1.00 21.96	A
60	MOTA	191	CA	GLU	42	11:336	-12.894	102.595	1.00 24.43	A
	MOTA	192	ÇВ	GLU	42			102.588	1.00 26.41	A
	MOTA	193	CG	GLU	42	9.235	-14.321	102.535	1.00 33.53	A
	MOTA	194	CD	GLU	42	8.646	-15.717	102.435	1.00 37.53	A
	MOTA	195	0E1	GLU	42			102.388	1.00 37.91	A
65	ATOM	196	OE2	GLU	42			102.399	1.00 39.48	A
	ATOM	197	С	GLU	42			103.042	1.00 23.06	A
	MOTA	198	0	GLU	42			102.284	1.00 23.11	A
	MOTA	199	N	CYS	43			104.267	1.00 22.56	A
70	MOTA	200	CA	CYS	43			104.792	1.00 22.27	A
70	MOTA	201	CB	CYS	43			105.350	1.00 21.27	A
	MOTA	202	SG	CYS	43	14.515		104.119	1.00 26.40	A
	MOTA	203	C .	CYS	43			105.861	1.00 23.32	A
	MOTA	204	0.	CYS	43	13.795	-13.850	106.617	1.00 25.24	A

	MOTA	205	N	ASP	44	15.936	-13.900	105.909	1.00 24.35	A
	MOTA	206	CA	ASP	44	16.398	-14.897	106.873	1.00 24.49	Α
	MOTA	207	СВ	ASP	44	16.579			1.00 24.72	A
		208	ČĞ	ASP	44	16.638			1.00 27.03	A
5	MOTA						-			
J	MOTA	209	OD1		44	17.089			1.00 28.16	A
	MOTA	210	OD2	ASP	44			106.780	1.00 27.08	A
	MOTA	211	С	ASP	44	17.745	-14.403	107.404	1.00 24.36	A
	MOTA	212	0	ASP	44	18.804	-14.795	106.923	1.00 23.06	A
	MOTA	213	N	PRO	45			108.411	1.00 25.65	A
10		214	CD	PRO	45			109.059	1.00 25.98	A
10	MOTA									
	ATOM	215	CA	PRO	45			108.971	1.00 26.11	· A
	MOTA	216	CB	PRO	45			110.133	1.00 25.67	A
	MOTA	217	CG	PRO	45	17.153	-11.658	109.657	1.00 26.57	A
	MOTA	218	С	PRO	45	19.972	-14.051	109.418	1.00 26.95	A
15	MOTA	219	o	PRO	45			109.111	1.00 26.64	A
	ATOM	220	N	VAL	46			110.140	1.00 27.42	A
									1.00 28.91	A
	MOTA	221	CA	VAL	46			110.636		
	MOTA	222	CB	VAL	46			111.522	1.00 28.55	A
	MOTA	223	CG1	VAL	46	18.882	-18.096	110.655	1.00 28.05	A
20	MOTA	224	CG2	VAL	46	20.600	-17.807	112.465	1.00 28.65	A
	MOTA	225	С	VAL	46	21.148	-16.810	109.506	1.00 30.17	A
	ATOM	226	ō	VAL	46			109.688	1.00 29.93	A
		227	N	ARG	47			108.333	1.00 30.73	A
	MOTA									
26	MOTA	228	CA	ARG	47			107.195	1.00 31.90	A
25	MOTA	229	CB	ARG	47	20.156	-18.495	106.515	1.00 35.93	A
	MOTA	230	CG	ARG	47	19.909	-19.796	107.286	1.00 43.15	A
	MOTA	231	CD	ARG	47	18.670	-20.554	106.799	1.00 48.31	A
	MOTA	232	NE	ARG	47	18.660	-20.769	105.352	1.00 52.94	A
	ATOM	233	CZ	ARG	47			104.697	1.00 53.97	A
30	ATOM			ARG	47			105.356	1.00 54.33	A
50		234								
	MOTA	235		ARG	47			103.381	1.00 54.58	A
	MOTA	236	С	ARG	47			106.171	1.00 30.25	A
	MOTA	237	0	ARG	47	22.232	-16.965	105.122	1.00 27.99	A
	MOTA	238	N	LYS	48	21.682	-15.266	106.484	1.00 29.50	A
35	MOTA	239	CA	LYS	48	22.200	-14.228	105.586	1.00 28.39	A
-	MOTA	240	CB	LYS	48			105.425	1.00 28.24	A
			CG		48			106.662	1.00 29.13	A
	MOTA	241		LYS						
	MOTA	242	CD	LYS	48			107.677	1.00 31.53	A
in	MOTA	243	CE	LYS	48			108.651	1.00 34.18	Ą
40	ATOM	244	NZ	LYS	48	27.015	-13.908	107.950	1.00 34.16	A
	MOTA	245	С	LYS	48	21.564	-14.415	104.209	1.00 27.13	A
	MOTA	246	0	LYS	48	22.244	-14.330	103.188	1.00 27.94	A
	MOTA	247	N	GLU	49			104.170	1.00 25.69	A
		248		GLU	49			102.895	1.00 26.19	A
45	MOTA		CA							Ä
4)	MOTA	249	CB	GLU	49			102.827	1.00 28.94	
	MOTA	250	CG	GLU	49		-16.897		1.00 34.48	A
	MOTA	251	CD	GLU	49	18.082	-18.269	101.710	1.00 39.36	·A
	MOTA	252	OE1	GLU	49	16.880	-18.326	102.067	1.00 40.10	A
	MOTA	253	OE2	GLU	49	18.794	-19.285	101.516	1.00 39.93	A
50	MOTA	254	C	GLU	49			102.607	1.00 24:38	A
	ATOM	255	ŏ	GLU	49			103.496	1.00 24.72	A
		256					-13.715		1.00 22.04	Ä
	MOTA		N	VAL	50					
	ATOM	257	CA	VAL	50		-12.989		1.00 21.18	A
	MOTA	258	CB	VAL	50	17.350	-11.553	100.410	1.00 21.63	A
55	MOTA	259	CG1	VAL	50	18.150	-11.619	99.127	1.00 21.68	Α
	ATOM	260	CG2	VAL	50	16.071	-10.764	100.190	1.00 21.12	A
	ATOM	261	C	VAL	50		-13.834	99.821	1.00 19.98	A
	ATOM	262	ō	VAL	50		-14.282		1.00 20.15	A
									1.00 21.09	Ä
60	MOTA	263	N	SER	51		-14.074			
UU	MOTA	264	CA	SER	51		-14.890		1.00 21.32	A
	ATOM	265	CB	SER	51		-16.106		1.00 20.35	A
	MOTA	266	OG	SER	51	13.065	~16.943	98.712	1.00 23.49	A
	ATOM	267	С	SER	51		-14.067		1.00 20.53	A
	ATOM	268	ō	SER	51		-13.401		1.00 21.64	A
65	ATOM	269	N	VAL	52		-14.107		1.00 21.28	A
Ų,										
	ATOM	270	CA	VAL	52		-13.348		1.00 22.46	A
	MOTA	271	CB	VAL	52		-12.293		1.00 21.66	A
	MOTA	272	CG1	VAL	52		-11.462		1.00 18.69	A
	MOTA	273	CG2	VAL	52	13.835	-11.417	96.091	1.00 19.80	A
70	ATOM	274	Ċ	VAL	52		-14.220		1.00 24.82	A
	MOTA	275	ō	VAL	52		-15.099		1.00 26.25	A
	ATOM	276	N	ARG	53		-13.964		1.00 27.28	Ä
	MOTA	277	CA	ARG	53	9.034	-14.690	94.638	1.00 29.70	A

	MOTA	278	CB	ARG	53	7.679 -14.562 95.341 1.00 29.44 6.511 -15.238 94.658 1.00 32.62	A A
	MOTA MOTA	279 280	CD	ARG ARG	53 53	6.511 -15.238 94.658 1.00 32.62 5.277 ~15.124 95.536 1.00 32.33	Ä
	ATOM	281	NE	ARG	53	5.486 -15.812 96.805 1.00 34.30	Ä
5	ATOM	282	cz	ARG	53	4.754 -15.618 97.894 1.00 35.73	A
_	MOTA	283	NH1		53	3.751 -14.743 97.877 1.00 35.26	A
	MOTA	284	NH2	ARG	53	5.029 -16.297 99.001 1.00 33.24	A
	MOTA	285	С	ARG	53	8.992 -14.062 93.243 1.00 30.22	Α
10	MOTA	286	0	ARG	53	8.554 -12.922 93.080 1.00 28.70	A
10	MOTA	287	N	THR	54	9.457 -14.809 92.244 1.00 32.13	A
	MOTA	288	CA	THR THR	54 54	9.506 -14.314 90.872 1.00 35.09 10.785 -14.788 90.153 1.00 34.03	A A
	MOTA MOTA	289 290	CB OG1	THR	54 54	10.798 -16.218 90.086 1.00 33.22	Ä
•	ATOM	291	CG2		54	12.026 -14.305 90.898 1.00 33.36	A
15	ATOM	292	¢	THR	54	8.317 -14.705 90.011 1.00 38.38	A
	MOTA	293	0	THR	54	8.081 -14.098 88.970 1.00 39.08	A
	MOTA	294	N	GLY	55	7.574 -15.717 90.435 1.00 42.35	A
	MOTA	295	CA	GLY	55	6.433 -16.145 89.653 1.00 47.68	A
20	ATOM	296	C	GLY	55	5.137 -15.562 90.171 1.00 52.55	A
20	ATOM	297	0	GLY	55 56	4.638 -14.562 89.651 1.00 52.62 4.589 -16.196 91.204 1.00 56.07	A A
	ATOM ATOM	298 299	N CA	GLY	56 56	3.343 -15.734 91.789 1.00 58.64	Â,
	MOTA	300	C	GLY	56	2.660 -16.804 92.620 1.00 60.65	A
	ATOM	301	ŏ	GLY	56	2.917 -17.999 92.444 1.00 60.57	A
25	MOTA	302	N	LEU	57	1.795 -16.364 93.532 1.00 62.43	A
	MOTA	303	CA	LEU	57	1.039 -17.253 94.421 1.00 63.41	A
	MOTA	304	CB	LEU	57	0.439 -18.425 93.627 1.00 63.91	A
	ATOM	305	CG	LEU	57	-0.466 -18.152 92.419 1.00 64.67	A
30	ATOM ATOM	306 307		LEU	57 57	-0.951 -19.486 91.873 1.00 64.88 -1.654 -17.276 92.806 1.00 64.92	A A
50	ATOM	308	CD2	LEU	57	1.873 -17.800 95.586 1.00 63.25	Â
	ATOM	309	ō	LEU	57	2.934 -18.393 95.383 1.00 63.31	A
•	MOTA	310	N	ALA	58	1.385 -17.591 96.807 1.00 62.63	A
a	MOTA	311	CA	ALA	58	2.063 -18:074 98.010 1.00 61.38	A
35 T	MOTA	312	CB	ALA	58	1.586 -17.286 99.229 1.00 60.84	A
	MOTA	313	C	ALA	58	1.752 -19.562 98.184 1.00 60.68	A
	ATOM	314	0	ALA ASP	58 59	2.385 -20.261 98.979 1.00 60.38 0.765 -20.024 97.422 1.00 59.38	A A
	MOTA MOTA	315 316	N CA	ASP	59	0.321 -21.413 97.427 1.00 57.30	Ä
40	MOTA	317	CB	ASP	59	-1.058 -21.498 96.770 1.00 58.25	A
. •	MOTA	318	CG	ASP	59	-1.438 -22.907 96.386 1.00 58.65	A
	MOTA	319	OD1	ASP	59	-1.549 -23.767 97.285 1.00 58.25	A
	MOTA	320		ASP	59	-1.628 -23.151 95.175 1.00 59.46	A
45	MOTA	321	C	ASP	59	1.314 -22.267 96.652 1.00 55.60	A
45	ATOM	322	0	ASP	59	1.588 -23.414 97.007 1.00 55.05	A A
	MOTA MOTA	323 324	N CA	LYS	60 60	1.849 -21.681 95.587 1.00 53.85 2.819 -22.340 94.718 1.00 51.83	A
	MOTA	325	СВ	LYS	60	2.099 -23.322 93.787 1.00 52.01	A
	MOTA	326	CG	LYS	60	2.982 -23.940 92.720 1.00 51.22	A
50	MOTA	327	CD	LYS	60	2.184 -24.835 91.795 1.00 50.89	A
	MOTA	328	CE	LYS	60	3.054 -25.341 90.663 1.00 52.06	A
	MOTA	329	NZ	LYS	60 .	3.650 -24.213 89.891 1.00 52.67	A
	MOTA	330	c	LYS	60	3.534 -21.258 93.900 1.00 50.64 2.894 -20.350 93.358 1.00 51.26	A
55	MOTA MOTA	331 332	O N	LYS SER	60 61	2.894 -20.350 93.358 1.00 51.26 4.855 -21.347 93.805 1.00 46.71	A A
55	MOTA	333	CA	SER	61	5.582 -20.340 93.056 1.00 42.61	Ä
	MOTA	334	СВ	SER	61	5.478 -18.996 93.778 1.00 42.79	A
	ATOM	335	OG	SER	61	6.132 -19.048 95.039 1.00 41.39	A
	MOTA	336	С	SER	61	7.049 -20.668 92.846 1.00 40.50	A
60	MOTA	337	0	SER	61	7.581 -21.619 93.412 1.00 39.84	A
	MOTA	338	N	SER	62	7.691 -19.856 92.017 1.00 37.70	A
	MOTA	339	CA	SER	62	9.104 -19.998 91.732 1.00 34.42	A
	MOTA	340 341	CB OG	SER	62	9.363 -19.776 90.245 1.00 34.68 10.742 -19.881 89.964 1.00 38.74	A A
65	MOTA MOTA	341	C	SER SER	62 62	9.796 -18.917 92.554 1.00 32.09	A
5 5	MOTA	343	ŏ	SER	62	9.181 -17.903 92.888 1.00 29.47	Ä
	MOTA	344	N	ARG	63	11.062 -19.126 92.896 1.00 30.00	A
	MOTA	345	CA	ARG	63	11.775 -18.136 93.690 1.00 29.48	A
	MOTA	346	CB	ARG	63	11.685 -18.472 95.189 1.00 31.57	A
70	ATOM	347	CG	ARG	63	10.273 -18.695 95.710 1.00 35.27	A
	ATOM	348	CD	ARG	63	10.178 -18.504 97.218 1.00 37.21	A
	MOTA	349	NE	ARG	63	10.260 -17.093 97.590 1.00 42.67 9.885 -16.601 98.768 1.00 44.05	A A
	MOTA	350	CZ	ARG	63	9.885 -16.601 98.768 1.00 44.05	^

	ATOM	351	NH1	ARG	63	9.995	-15.299	99.014	1.00 42.72	A
	ATOM	352	NH2		63		-17.408	99.700	1.00 46.01	A
	ATOM	353	C	ARG	63	13.239		93.314	1.00 27.46	A
	MOTA	354	ō	ARG	63	13.831		92.702	1.00 26.59	A
5	MOTA	355	N	LYS	64	13.807		93.693	1.00 25.59	A
•	MOTA	356	CA	LYS	64	15.216		93.467	1.00 23.77	A
	MOTA	357	CB	LYS	64	15.353		92.587	1.00 25.43	A
	MOTA	358	CG	LYS	64	15.991		91.231	1.00 26.32	A
		359	CD	LYS	64	15.095		90.323	1.00 28.26	A
10	MOTA	360	CE	LYS	64	15.692		88.925	1.00 29.50	A
10	MOTA		NZ	LYS	64		-15.135	88.250	1.00 27.38	A
	MOTA	361			64	15.808		94.854	1.00 23.10	Ä
	MOTA	362	C	LYS	64	15.244		95.637	1.00 22.42	Ä
	MOTA	363	0	LYS THR	65	16.943		95.154	1.00 22.03	Ä
15	MOTA	364	N		65	17.586		96.452	1.00 20.67	Ä
13	MOTA	365	CA	THR	65	17.595		97.179	1.00 21.12	Ä
	MOTA	366	CB	THR		16.352		97.870	1.00 22.06	Ä
	MOTA	367	0G1		65		-18.187	98.154	1.00 27.20	Ä
	MOTA	368		THR	65		-16.136	96.363	1.00 27.20	Ä
20	ATOM	369	C	THR	65		-16.430	95.425	1.00 22.34	Ä
20	MOTA	370	0	THR	65	19.377		97.331	1.00 17.01	Ä
	MOTA	371	N	TYR	66			97.349		Â
	MOTA	372	CA	TYR	66		-14.695		1.00 15.46	Ä
	MOTA	373	CB	TYR	66		-13.244	96.829		A
25	MOTA	374	CG	TYR	66		-13.055	95.482	1.00 14.28	
23	MOTA	375		TYR	66		-12.984	95.366	1.00 12.32	Α
	MOTA	376	CE1		66		-12.799	94.130	1.00 14.42	A
	MOTA	377		TYR	66		-12.938	94.320	1.00 12.69	A
	MOTA	378	CE2	TYR	66		-12.752	93.079	1.00 10.53	A
30	MOTA	379	CZ	TYR	66		-12.682	92.993	1.00 13.34	A
30	MOTA	380	ОН	TYR	66		-12.483	91.776	1.00 14.95	A
	MOTA	381	C	TYR	66		-14.675	98.754	1.00 14.50	A
	MOTA	382	0	TYR	66		-14.461	99.733	1.00 13.73	A
	MOTA	383	N	THR	67.		-14.880	98.854	1.00 14.35	A
25	MOTA	384	CA	THR	67		-14.853		1.00 15.82	A
35	MOTA	385	CB	THR	67			100.386	1.00 16.72	A
	MOTA	386		THR	67		-17.261		1.00 17.16	A
	MOTA	387	CG2		67		-16.045		1.00 17.80	A
	MOTA	388	C	THR	67		-13.650		1.00 16.72	A
40	MOTA	389	0	THR	67		-13.450	99.293	1.00 17.55	A
40	MOTA	390	N	PHE	68		-12.839		1.00 16.84	A
	MOTA	391	CA	PHE	68		-11.666		1.00 18.85	A,
	MOTA	392	CB	PHE	68		-10.371		1.00 17.59	A
	MOTA	393	CG	PHE	68		-10.206		1.00 17.32	A
45	MOTA	394		PHE	68		-10.823	99.926	1.00 16.89	A
4)	MOTA	395		PHE	68	23.855	-9.447	99.036	1.00 17.68	A
	MOTA	396		PHE	68		-10.680	98.752	1.00 15.86	A
	MOTA	397		PHE	68	23.144	-9.296	97.852	1.00 16.89	A
	MOTA	398	cz	PHE	68	21.906	-9.916	97.708	1.00 17.47	A
50	MOTA	399	C	PHE	68	25.641		102.745	1.00 19.38	A
50	MOTA	400	0	PHE	68	25.505		103.479	1.00 21.74 1.00 19.56	A
	MOTA	401	N	ASP	69		-10.688			A A
	MOTA	402	CA	ASP	69		-10.670	104.344	1.00 20.30 1.00 20.07	A
	MOTA	403	CB	ASP	69	28.177			1.00 22.41	Ä
55	MOTA	404	CG	ASP	69	29.306 29.245		103.332	1.00 20.37	A
22	MOTA	405		ASP	69				1.00 20.37	A
	MOTA	406		ASP	69			103.756		
	MOTA	407	C	ASP	69			105.531	1.00 20.55 1.00 20.31	A
	ATOM	408	0	ASP	69			106.600		A
60	MOTA	409	N	MET	70	25.091		105.325	1.00 21.04	A
60	MOTA	410	CA	MET	70	24.065		106.338	1.00 20.59	A
	ATOM	411	CB	MET	70	24.464		107.257	1.00 23.87	A
	MOTA	412	CG	MET	70	25.600		108.202	1.00 27.55	A
	MOTA	413	SD	MET	70	25.794		109.420	1.00 28.63	A
45	MOTA	414	CE	MET	70	24.665		110.676	1.00 29.22	A
65	MOTA	415	C	MET	70	22.737		105.678		A
	MOTA	416	0	MET	70	22.697		104.657	1.00 19.82	A
	MOTA	417	N	VAL	71	21.646		106.258	1.00 18.11	A
	ATOM	418	ÇA	VAL	71	20.335		105.713	1.00 17.48	A
70	MOTA	419	СВ	VAL	71			105.021	1.00 17.16	A
70	MOTA	420		VAL	71			103.802	1.00 14.56	A
	MOTA	421		VAL	71			105.986	1.00 19.68	A
	MOTA	422	C	VAL	71	19.424		106.822	1.00 16.09	A
	MOTA	423	0	VAL	71	19.395	-9.350	107.913	1.00 14.72	A

										_
•	MOTA	424	N	PHE	72	18.714		106.529	1.00 16.25	A
	MOTA	425	CA	PHE	72	17.793	-7.075	107.460	1.00 15.53	A
	ATOM	426	CB	PHE	72	18.289	-5.670	107,799	1.00 14.92	A
	ATOM	427	CG	PHE	72	19.575	-5.658	108.575	1.00 17.03	A
5	MOTA	428	CD1		72	19.590		109.925	1.00 16.20	A
	MOTA	429	CD2		72	20.782		107.950	1.00 17.34	A
	ATOM	430	CE1		72	20.785		110.649	1.00 16.42	A
	MOTA	431	CE2		72	21.979		108.660	1.00 16.87	Ä
					72			110.016	1.00 16.79	Ä
10	MOTA	432	CZ	PHE		21.983				
10	MOTA	433	C	PHE	72	16.388		106.874	1.00 15.43	A
	MOTA	.434	0	PHE	72	16.163		105.834	1.00 13.98	A
	MOTA	435	N	GLY	73	15.445		107.557	1.00 18.08	A
	MOTA .	436	CA	GLY	73	14.067		107.104	1.00 17.75	A
1.5	MOTA	437	С	GLY	73	13.343		107.478	1.00 19.38	A
15	MOTA	438	0	GLY	73	13.918		108.101	1.00 19.14	A
	MOTA	439	N	ALA	74	12.069		107.103	1.00 20.07	A
	MOTA	440	CA	ALA	74	11.228	-5.145	107.363	1.00 20.00	A
	MOTA	441	CB	ALA	74	9.840	-5.399	106.800	1.00 19.61	A
	MOTA	442	С	ALA	74	11.124	-4.709	108.834	1.00 19.69	Α
20	ATOM	443	0	ALA	74	10.972	-3.525	109.123	1.00 21.06	A
	MOTA	444	N	SER	75	11.213		109.765	1.00 18.30	A
	ATOM	445	CA	SER	75	11.103		111.177	1.00 18.31	A .
	ATOM	446	CB	SER	75	10.789		111.991	1.00 16.40	A
	MOTA	447	0G	SER	75	11.886		111.971	1.00 15.90	A
25	MOTA	448	c	SER	75	12.359		111.748	1.00 18.96	A
	MOTA	449	ŏ	SER	75	12.368		112.902	1.00 19.99	Ä
					76			110.937	1.00 18.45	
	ATOM	450	N	THR THR	76	13.407			1.00 17.88	A
	MOTA	451	CA			14.667		111.390	1.00 17.00	A
30	ATOM	452	CB	THR	76 76	15.783				· A
50	MOTA	453		THR	76	15.861		110.019	1.00 17.20	A
	MOTA	454	CG2		76	17.109		110.902	1.00 17.48	A
	MOTA	455	C	THR	76	14.570		111.687	1.00 17.40	A.
	MOTA	456	0	THR	76	14.064		110.877	1.00 18.84	A
35	MOTA	457	N	LYS	77	15.061		112.853	1.00 16.09	A
22	MOTA	· 458	CA	LYS	77	15.032		113.262	1.00 17.09	A
	MOTA	459	CB	LYS	77	14.667		114.751	1.00 19.20	A
	MOTA	460	CG	LYS	77	13.337		115.120	1.00 20.20	A
	MOTA	461	ÇD	LYS	77	12.198		114.302	1.00 24.17	A
40	MOTA	462	CE	LYS	77	10.882		114.556	1.00 28.56	A
40	MOTA	463	NZ	LYS	77	9.741		113.832	1.00 29.29	A
	MOTA	464	С	LYS	77	16.383	0.039	113.007	1.00 16.81	A
	MOTA	465	0	LYS	77	17.382	-0.638	112.760	1.00 16.91	A
	MOTA	466	N	GLN	78	16.414	1.368	113.067	1.00 14.39	A
	MOTA	467	CA	GLN	. 78	17.657	2.101	112.831	1.00 13.21	A
45	MOTA	468	CB	GLN	78	17.422	3.611	112.945	1.00 10.26	A
	ATOM	469	CG	GLN	78	16.343	4.179	112.017	1.00 10.24	A
	ATOM	470	CD	GLN	78	16.799	4.325	110.579	1.00 8.85	A
	MOTA	471	OE1	GLN	78	17.170	3.348	109.922	1.00 10.32	A
	ATOM	472	NE2	GLN	78	16.776	5.555	110.081	1.00 6.58	A
50	MOTA	473	С	GLN	78	18.750		113.821	1.00 13.02	A
	MOTA	474	0	GLN	78	19.933		113.474	1.00 11.38	A
	ATOM	475	N	ILE	79	18.352		115.053	1.00 12.89	A
	ATOM	476	CA	ILE	79	19.313		116.085	1.00 13.42	A
	ATOM	477	CB	ILE	79	18.635		117.479	1.00 13.40	A
55	MOTA	478	CG2		79	17.591		117.508	1.00 14.83	A
	ATOM	479		ILE	79	19.684		118.571	1.00 13.65	Α.
	ATOM	480	CDI		79	20.653		118.775	1.00 14.47	A
	MOTA	481	C	ILE	79	19.972		115.771	1.00 12.91	A
	MOTA	482	ō	ILE	79	21.157		116.044	1.00 12.01	A
60										
00	MOTA	483	N	ASP	80	19:204		115.182	1.00 13.40	A
	ATOM	484	CA	ASP	80	19.719		114.815	1.00 14.93	A
	ATOM	485	CB	ASP	80	18.581		114.303	1.00 17.57	A
	MOTA	486	CC	ASP	80	17.428		115.300	1.00 20.41	A
65	MOTA	487		ASP	80	17.692		116.504	1.00 22.08	A
O)	ATOM	488		ASP	80	16.253		114.879	1.00 21.37	A
	MOTA	489	С	ASP	80	20.777		113.719	1.00 15.46	A
	ATOM	490	0	ASP	80	21.845		113.769	1.00 15.07	A
	MOTA	491	N	VAL	81	20.467		112.730	1.00 15.97	A
70	ATOM	492	CA	VAL	81	21.380		111.625	1.00 16.25	A
70	MOTA	493	CB	VAL	81	20.747		110.555	1.00 16.07	A
	MOTA	494		VAL	81	21.787		109.526	1.00 14.56	Α
	MOTA	495		VAL	81	19.568		109.857	1.00 14.48	A
	MOTA	496	С	VAL	81	22.667	-0.681	112.142	1.00 18.57	A

	MOTA	497	0	JAV	81	23.758	-1.079	111.733	1.00 20.96	A
	ATOM	498	N	TYR	82	22.549	0.289	113.046	1.00 19.05	A
	MOTA	499	CA	TYR	82	23.732		113.583	1.00 20.41	A
	ATOM	500	CB	TYR	82	23.339		114.471	1.00 23.17	A
5	ATOM	501	CG	TYR	82	24.532		114.992	1.00 24.73	A
_	MOTA	502	CD1		82	25.137		116.198	1.00 24.58	A
	MOTA	503		TYR	82	26.284		116.638	1.00 25.15	Ä
								114.237	1.00 25.38	Â
	ATOM	504		TYR	82	25.107			1.00 25.61	
10	MOTA	505	CE2	TYR	82	26.258		114.668		A
10	ATOM	506	CZ	TYR	82	26.842		115.868	1.00 25.89	A
	ATOM	507	OН	TYR	82	28.000		116.297	1.00 26.74	A
	MOTA	508	С	TYR	82	24.633		114.375	1.00 22.16	A
	MOTA	509	0	TYR	82	25.835		114.103	1.00 22.17	A
	MOTA	510	N	ARG	83	24.059		115.352	1.00 21.11	A
15	MOTA	511	CA	ARG	83	24.834		116.170	1.00 20.40	A
	MOTA	512	CB	ARG	83	23.928	-2.263	117.222	1.00 18.85	A
	MOTA	513	CG	ARG	83	23.521	-1.315	118.339	1.00 21.14	A
	MOTA	514	CD	ARG	83	22.272	-1.804	119.065	1.00 21.88	A
	MOTA	515	NE	ARG	83	22.478	-3.061	119.779	1.00 22.27	A
20	MOTA	516	CZ	ARG	83	23.184		120.899	1.00 23.18	A
	MOTA	517	NH1		83	23.757		121.434	1.00 23.11	A
	MOTA	518		ARG	83	23.308		121.490	1.00 23.57	A
	ATOM	519	c	ARG	83	25.553		115.361	1.00 19.49	A
	ATOM	520	ŏ	ARG	83	26.702		115.647	1.00 17.49	Ä
25	ATOM	521	N	SER	84	24.885		114.341	1.00 19.74	A
23			CA		84	25.462		113.519	1.00 19.67	Ä
	ATOM	522		SER		24.359		112.888	1.00 21.49	A
	MOTA	523	CB	SER	84			113.865	1.00 28.64	Ä
	MOTA	524	OG	SER	84	23.716			1.00 18.56	
30	ATOM	525	C	SER	84	26.419		112.426	1.00 18.30	A
JU	MOTA	526	0	SER	84	27.487		112.302	1.00 19.77	A
	MOTA	527	N	VAL	85	26.058		111.624		A
	ATOM	528	CA	VAL	85	26.949		110.542	1.00 19.52	A
	MOTA	529	CB	VAL	85	26.161		109.222	1.00 19.26	A
25	MOTA	530		VAL	85	25.165		109.011	1.00 20.45	A
35	MOTA	531		VAL	85	25.448		109.251	1.00 22.19.	A
	ATOM	532	С	VAL	85	27.828		110.810	1.00 19.41	A
	MOTA	533	0	VAL	85	29.034		110.558	1.00 19.81	A
	MOTA	534	N	VAL	86	27.236		111.342	1.00 19.42	A
40	MOTA	535	CA	VAL	86	27.959		111.603	1.00 19.60	A _.
40	ATOM	536	CB	VAL	86	26.971		111.815	1.00 18.59	A
	MOTA	537		VAL	86	27.724		111.800	1.00 19.00	A
	MOTA	538	CG2	VAL	86	25.899		110.736	1.00 18.56	A
	MOTA	539	С	VAL	86	28.950	1.067	112.773	1.00 20.31	A
	MOTA	540	0	VAL	86	30.060	1.584	112.637	1.00 19.36	A
45	MOTA	541	N	CYS	87	28.559	0.519	113.919	1.00 21.30	A
	MOTA	542	CA	CYS	87	29.438	0.535	115.082	1.00 23.03	A
	MOTA	543	CB	CYS	87	28.777	-0.187	116.254	1.00 26.09	A
	ATOM	544	SG	CYS	87	29.481	0.238	117.859	1.00 36.72	A
	MOTA	545	С	CYS	87	30.824	-0.056	114.804	1.00 21.77	A
50	MOTA	546	0	CYS	87	31.835	0.546	115.145	1.00 21.30	A
	ATOM	547	N	PRO	88	30.894	-1.241	114.185	1.00 20.49	А
	MOTA	548	CD	PRO	88	29.856	-2.240	113.881	1.00 20.97	A
	MOTA	549	CA	PRO	88	32.231	-1.783	113.926	1.00 20.97	A
	MOTA	550	СВ	PRO	88	31.948	-3.215	113.473	1.00 18.41	A
55	ATOM	551	CG	PRO	88	30.571	-3.133	112.895	1.00 20.02	A
	ATOM	552	С	PRO	. 88	33.052	-0.988	112.905	1.00 21.87	A
	MOTA	553	0	PRO	88	34.280	-0.937	113.000	1.00 22.69	A
	ATOM	554	N	ILE	89	32.380		111.934	1.00 21.27	A
	MOTA	555	CA	ILE	89	33.068		110.915	1.00 20.39	A
60	MOTA	556	СВ	ILE	89	32.130		109.720	1.00 20.42	A
00	MOTA	557		ILE	89	32.791		108.762	1.00 16.94	Α
	MOTA	558		ILE	89	31.786		108.998	1.00 20.17	A
	ATOM	559		ILE	89	30.749		107.886	1.00 20.17	A
	MOTA	560	C	ILE	89	33.577		111.515	1.00 21.10	· Å
65	MOTA	561	0	ILE	89	34.640		111.144	1.00 22.45	A
5 5	ATOM								1.00 20.96	A
		562	N	LEU	90	32.818		112.449	1.00 20.36	
	ATOM	563	CA	LEU	90	33.229		113.103		A
	MOTA	564	CB	LEU	90	32.086		113.940	1.00 18.19 1.00 19.36	A
70	MOTA	565	CG	LEU	90	32.407		114.687		A
70	MOTA	566		LEU	90	32.779		113.702	1.00 17.91	A
	MOTA	567		LEU	90	31.203		115.515	1.00 19.74	A
	MOTA	568	C	LEU	90	34.443		113.989	1.00 21.43	A
	MOTA	569	0	LEU	90	35.346	4.081	114.089	1.00 22.10	A

										•
•	MOTA	570	N	ASP	91	34.471	2.084 11		1.00 21.61	A
	MOTA	571	CA	ASP	91	35.611	1.731 11	5.476	1.00 22.75	A
	MOTA	572	CB	ASP	91	35.404	0.380 11	6.172	1.00 22.67	A
	MOTA	573	CG	ASP	91	34.535		7.410	1.00 25.39	A
5	MOTA	574	OD1		91	34.386		7.947	1.00 24.95	A
•	MOTA	575	OD2		91	34.006		7.859	1.00 27.30	Ä
						36.877		4.618	1.00 22.42	Ä
	MOTA	576	C	ASP	91				1.00 20.39	
	MOTA	577	0	ASP	91	37.956		5.077		A
10	MOTA	578	N	GLU	92	36.749		3.378	1.00 20.58	A
10	MOTA	579	CA	GLU	92	37.907		2.499	1.00 22.88	A
	MOTA	580	·CB	GLU	92	37.599	0.311 11		1.00 24.90	A
	MOTA	581	CG	GLU	92	38.131		1.282	1.00 31.75	A
	MOTA	582	CD	GLU	92	38.517	-1.655 10	9.902	1.00 35.40	A
	ATOM	583	OE1	GLU	92	39.330	-1.007 10	9.203	1.00 36.87	A
15	MOTA	584	OE2	GLU	92	38.017	-2.732 10	9.519	1.00 37.95	A
	MOTA	585	С	GLU	92	38.358	2.537 11	2.100	1.00 22.24	A
	MOTA	586	o	GLU	92	39.554	2.799 11	1.964	1.00 21.80	A
	MOTA	587	N	VAL	93	37.398	3.438 11		1.00 20.21	A
	MOTA	588	CA	VAL	93	37.712	4.808 11		1.00 18.97	A
20	MOTA	589	CB	VAL	93	36.422	5.626 11		1.00 17.93	A
	MOTA	590		VAL	93	36.755	7.102 11		1.00 14.46	A
				VAL	93	35.781	5.124 10		1.00 16.29	A
	MOTA	591					5.482 11			
	MOTA	592	C	VAL	93	38.489			1.00 19.09	A
25	MOTA	593	0	VAL	93	39.477	6.174 11		1.00 18.02	. A
25	MOTA	594	N	ILE	94	38.044	5.263 11		1.00 19.70	A
	MOTA	595	CA	ILE	94	38.690	5.845 11		1.00 21.90	A
	MOTA	596	CB	ILE	94	37.815	5.615 11		1.00 22.69	A
	MOTA	597	CG2	ILE	94	38.519	6.128 11		1.00 22.60	A
~~	MOTA	598	CG1	ILE	94	36.472	6.336 11	6.124	1.00 22.49	A
30	MOTA	599	CD1	ILE	94	35.480	6.155 11	17.266	1.00 22.50	A
	MOTA	600	С	ILE	94	40.116	5.302 11	15.265	1.00 24.26	A
	MOTA	601	0	ILE	94	40.924	5.931 11	15.945	1.00 24.34	A
	MOTA	602	N	MET	95	40.428	4.148 11	4.672	1.00 25.73	A
	MOTA	603	CA	MET	95	41.767	3.559 11	4.777	1.00 27.17	A
35	MOTA	604	CB	MET	95	41.732	2.047 11		1.00 29.33	A
	MOTA	605	CG	MET	95	41.102	1.237 11		1.00 35.68	A
	MOTA	606	SD	MET	95	41.281	-0.526 11		1.00 44.01	A
	MOTA	607	CE	MET	95		-0.911 11		1.00 39.10	A
	MOTA	608	C	MET	95	42.722	4.183 11		1.00 27.37	Ä
40			ò		95°		3.832 1		1.00 26.10	Ä
ŦV	MOTA	609		MET		43.907				
	MOTA	610	N	GLY	96	42.197	5.088 11		1.00 26.75	A
	MOTA.	611	CA	GLY	96	43.020		11.941	1.00 26.52	À
	MOTA	612	C	GLY	96	42.861	5.220 11		1.00 25.69	A
15	ATOM	613	0	GLY	96	43.752		09.690	1.00 25.52	A
45	MOTA	614	N	TYR	97	41.720	4.597 11		1.00 25.64	A
	MOTA	615	CA	TYR	97	41.439	4.033 10		1.00 24.96	A
	MOTA	616	CB	TYR	97	40.932	2.592 10		1.00 29.74	A
	MOTA	617	CG	TYR	97	42.007		09.444	1.00 34.33	A
	MOTA	618	CD1	TYR	97	42.993	1.243 10	08.514	1.00 36.66	A
50	ATOM	619	CE1	TYR	97	43.970	0.292 10	08.798	1.00 39.73	A
	MOTA	620	CD2	TYR	97	42.025	0.914 1	10.680	1.00 35.77	A
	ATOM	621	CE2	TYR	97	42.998	-0,.037 13	10.979	1.00 38.01	. A
	ATOM	622	CZ	TYR	97	43.969	-0.342 1	10.033	1.00 40.42	A
	ATOM	623	ОН	TYR	97	44.956		10.325	1.00 41.65	. A
55	ATOM	624	C	TYR	97	40.407	4.854 1		1.00 22.65	, A
	MOTA	625	ŏ	TYR	97	39.749	5.741 1		1.00 22.45	Ä
	ATOM	626	·N	ASN	98	40.290	4.565 1		1.00 19.89	A
	ATOM	627	CA	ASN	98	39.312	5.226 1		1.00 18.57	Α.
		628	CB	ASN	98		5.682 1		1.00 19.70	A
60	MOTA					39.941	6.863 1		1.00 21.50	
60	MOTA	629	CG	ASN	98	40.867				A
	MOTA	630		ASN	98	40.543	7.826 1		1.00 23.29	A
	ATOM	631		ASN	98	42.020	6.807 1		1.00 20.02	A
	MOTA	632	C	ASN	98	38.195	4.230 1		1.00 18.68	A
65	MOTA	633	0	ASN	98	38.459	3.087 1		1.00 16.93	A
65	MOTA	634	N	CYS	99	36.949	4.657 1		1.00 18.23	A
	MOTA	635	CA	CYS	99	35.825	3.776 1	05.575	1.00 17.76	A
	MOTA	636	CB	CYS	99	35.244	3.186 1	06.867	1.00 18.42	A
	MOTA	637	SG	CYS	99	36.378	2.095 1	07.771	1.00 19.49	Α
	MOTA	638	С	CYS	99	34.727	4.481 1		1.00 15.84	A
70	MOTA	639	ō	CYS	99	34.508	5.685 1		1.00 13.06	A
	ATOM	640	N	THR	100	34.044	3.696 1		1.00 15.18	Ä
	ATOM	641	Cλ	THR	100	32.968	4.190 1		1.00 14.06	Ä
	ATOM	642	СВ	THR	100	33.417	4.278 1		1.00 12.78	A
	•••								2	

					100	34 405		101 530	1 00 14	12	
	MOTA	643 644	OG1 CG2	THR THR	100 100	34.485 32.262		101.539 100.773	1.00 14		A A
	MOTA MOTA	645		THR	100	31.759		103.200	1.00 14		Ä
	MOTA	646	ò	THR	100	31.907		103.263	1.00 13		Ä
5	ATOM	647	N	ILE	101	30.568		103.199	1.00 12		A
	MOTA	648	CA	ILE	101	29.329		103.202	1.00 11		A
	MOTA	649	CB	ILE	101	28.608		104.551	1.00 10		A
	MOTA	650	CC3		101	27.404		104.527	1.00 11		A
10	MOTA	651	CG1		101	29.551		105.682	1.00 11		A A
10	MOTA	652 653	CD1	ILE	101 101	28.880 28.394		107.071 102.123	1.00 11		A
	MOTA MOTA	654	C O	ILE	101	28.077		102.133		.62	Ä
	ATOM	655	N	PHE	102	27.980		101.192		.88	A
	ATOM	656	CA	PHE	102	27.089	3.200	100.113	1.00 8	.18	A
15	MOTA	657	СВ	PHE	102 .	27.521	2.554	98.798		.39	A
	MOTA	658	CG	PHE	102	28.786	3.107	98.212		.44	. A
	MOTA	659	· CD1		102	28.746	4.237	97.400		3.21 7.42	A A
	MOTA MOTA	660 661	CD2 CE1		102 102	30.004 29.901	4.712	98.402 96.770		.64	A
20	MOTA	662	CE2	PHE	102	31.167	2.910	97.780		.88	A
	ATOM	663	cz	PHE	102	31.119	4.044	96.957		.26	A
	ATOM .	664	C	PHE	102	25.686	2.695	100.418		.34	A
	MOTA	665	0	PHE	102	25.514		101.084		.83	A
25	MOTA	666	N	ALA	103	24.686	3.420	99.937		3.83	A
25	MOTA	667	CA	ALA	103	23.301 22.503		100.088		5.41 5.59	. A
	MOTA MOTA	668 669	CB C	ALA	103 103	22.887	2.920	98.619		.06	Â
	MOTA	670	ŏ	ALA	103	22.988	3.898	97.890		3.08	Ä
	MOTA	671	N	TYR	104	22.476	1.735	98.184		1.26	A
30	MOTA	672	CA	TYR	104	22.110	1.498	96.791		.91	A
	MOTA	673	CB	TYR	104	23.142	0.552	96.137		3.89	A
	MOTA	674	CG	TYR	104	22.911	0.238	94.666		1.19	A A
	MOTA MOTA	675 676		TYR TYR	104 104	21.933 21.722	-0.675 -0.946	94.260 92.898		5.04 7.93	A
35	MOTA	677		TYR	104	23.667	0.868	93.679		5.77.	A
	ATOM	678		TYR	104	23.466	0.608	92.326		5.74	A
	MOTA	679	CZ	TYR	104	22.500	-0.295	91.944		5.93	A
	MOTA	680	OH	TYR	104	22.326	-0.551	90.604		8.61	A
40	MOTA	681	C	TYR	104	20.718	0.893	96.678		5.23	A
40	MOTA	682	0 N	TYR	104 105	20.346 19.955	0.007	97.445 95.704		7.02 3.82	A A
	MOTA MOTA	683 684	CA	GLY GLY	105	18.620	0.857	95.521		5.02	A
	MOTA	685	c	GLY	105	17.705	1.803	94.773		5.87	A
	MOTA	686	0	GLY	105	17.981	2.992	94.590	1.00	6.06	A
45	MOTA	687	N	GLN	106	16.598	1.244			4.13	A
	MOTA	688	CA	GLN	106	15.601	1.986			6.44	A
	MOTA	689 690	CB CG	GLN GLN	106 106	14.513 13.175	0.998		1.00	6.41	A A
	MOTA MOTA	691	CD	GLN	106	12.136	0.511		1.00 1		Ä
50	MOTA	692		GLN	106	12.060	-0.539		1.00 1		A
	MOTA	693	NE2		106	11.318	0.774		1.00 1	0.80	A
	MOTA	694	C	GLN	106	15.047	3.091			7.89	A
	MOTA	695	0	GLN	106	15.083	2.992			8.30	A A
55	MOTA MOTA	696 697	N CA	THR	107 107	14.558 13.981	4.157			8.49 8.83	A
55	ATOM	698	CB	THR	107	13.532	6.371		1.00 1		A A
	MOTA	699		THR	107	14.681	6.936		1.00 1		A
	MOTA	700	CG2	THR	107	12.783	7.464			9.05	A
60	MOTA	701	С	THR	107	12.763	4.751		1.00 1		A
60	MOTA	702	0	THR	107	11.936	4.017		1.00 1		A
	MOTA	703	N	GLY	108	12.661	5.121 4.703		1.00 1	9.99	A A
	MOTA MOTA	704 705	CA C	GLY GLY	108 108	11.527 11.738	3.461		1.00 1		Ä
	MOTA	706	Ö	GLY	108	10.812	3.004		1.00 1		Ä
65	ATOM	707	N	THR	109	12.947	2.919			9.04	A
-	MOTA	708	CA	THR		13.216	1.716	99.090	1.00	8.13	A
	MOTA	709	CB	THR	109	14.053	0.70		1.00	8.11	A
	ATOM	710		THR	109	15.274	1.321			5.32	A
70	MOTA	711		THR	109	13.269	0.220	97.079 100.405	1.00 1.00	2.18 8.77	A A
70	MOTA MOTA	712 713	C O	THR THR	109 109	13.914 14.029		100.405	1.00	9.56	A
	MOTA	714	N	GLY	110	14.411		100.599	1.00	6.93	A
	ATOM	715	CA	GLY		15.037		101.878	1.00	7.00	A

	MOTA	716	C GLY	110	16.491	3:959 10	1.985	1.00 8.39	A
	MOTA	717	O GLY	110	17.052	3.953 10	3.089	1.00 6.64	Α
	MOTA	718	N LYS	111	17.106	4.346 10		1.00 8.77	A
	MOTA	719	CA LYS	111	18.493	4.798 10	0.888	1.00 8.41	Α
5	MOTA	720	CB LYS	111	18.938		9.495	1.00 9.46	Α
,		721	CG LYS	111	19.086		8.462	1.00 8.41	A
	MOTA			111	19.650		7.133	1.00 7.10	A
	MOTA	722					6.526	1.00 8.55	Ä
	MOTA	723	CE LYS	111	18.772	-			Ä
10	MOTA	724	NZ LYS	111	17.364		6.325		
10	MOTA	725	C LYS	111	18.643	5.956 10		1.00 8.34	A
	MOTA	726	O LYS	111	19.448	5.895 10		1.00 9.08	A
	MOTA	727	n thr	112	17.851	7.006 10		1.00 8.83	A
•	MOTA	728	CA THR	112	17.896	8.198 10		1.00 7.73	A
	MOTA	729	CB THR	112	17.027	9.342 10	1.903	1.00 8.07	A
- 15	MOTA	730	OG1 THR	112	17.347	9.520 10	0.502	1.00 8.01	A
	MOTA	731	CG2 THR	112	17.287	10.650 10		1.00 4.02	A
•	ATOM	732	C THR	112	17.454	7.905 10		1.00 8.81	A
		733	O THR	112	17.997	8.458 10		1.00 8.08	A
	MOTA				16.476	7.025 10		1.00 11.03	A
20	MOTA	734	N PHE	113				1.00 11.19	Ä
20	MOTA	735	CA PHE	113	16.008	6.664 10			
	MOTA	736	CB PHE	113	14.806	5.727 10		1.00 10.34	A
	MOTA	737	CG PHE	113	14.208	5.385 10		1.00 10.76	A
	MOTA	738	CD1 PHE	113	13.247	6.214 10		1.00 9.64	A
	MOTA	739	CD2 PHE	113	14.623	4.249 1	07.393	1.00 9.33	· A
25	MOTA	740	CE1 PHE	113	12.703	5.917 10	08.523	1.00 10.99	A
	ATOM	741	CE2 PHE	113	14.084	3.942 10	08.646	1.00 11.97	A
	ATOM	742	CZ PHE	113	13.120	4.781 1	09.212	1.00 9.40	A
	MOTA	743	C PHE	113	17.120	5.943 1		1.00 11.21	A
	MOTA	744	O PHE	113	17.254	6.081 1		1.00 11.83	A
30		745	N THR	114	17.908	5.159 1		1.00 10.89	A
50	MOTA				18.992	4.422 1		1.00 9.91	Ä
	MOTA	746	CA THR	114				1.00 12.09	A
	MOTA	747	CB THR	114	19.458	3.267 1			
	MOTA	748	OG1 THR	114	18.375	2.336 1		1.00 10.83	A
~	MOTA	749	CG2 THR	114	20.677	2.537 1		1.00 9.73	A
35	MOTA	· 750	C THR	114	20.167	5.329 1		1.00 10.11	A
	MOTA	751	O THR	114	20.650	5.328 1	07.569	1.00 10.60	A
	MOTA	752	N MET	115	20.606	6.125 1	05.466	1.00 11.39	A
	MOTA	753	CA MET	115	21.745	7.021 1	05.666	1.00 11.76	A
	ATOM	754	CB MET	115	22.286	7.503 1	04.323	1.00 14.08	A
40	MOTA	755	CG MET	115	22.774	6.402 1		1.00 21.28	A
10	MOTA	756	SD MET	115	24.093	5.411 1		1.00 28.02	A
	MOTA	757	CE MET	115	25.184	6.682 1		1.00 16.59	Ä
					21.489	8.240 1		1.00 11.39	A
	MOTA	758	C MET	115				1.00 11.70	A
A E	MOTA	759	O MET	115	22.347	8.607 1			
45	MOTA	760	n glu	116	20.322	8.868 1		1.00 10.32	A
	MOTA	761	CA GLU	116	20.023	10.064 1		1.00 9.04	A
	MOTA	762	CB GLU	116	19.498	11.185 1		1.00 11.83	A
	MOTA	763	CG GLU	116	20.215	11.349 1		1.00 15.21	A
	MOTA	764	CD GLU	116	19.911	12.682 1	04.319	1.00 17.70	A
50	MOTA	765	OE1 GLU	116	18.751	13.137 1	04.405	1.00 20.63	A
	MOTA	766	OE2 GLU	116	20.830	13.272 1	03.715	1.00 19.36	A
	MOTA	767	C GLU	116	19.021	9.867 1	08.319	1.00 8.57	A
	MOTA	768	O GLU	116	19.225	10.344 1	09.430	1.00 6.66	A
	ATOM	769	N GLY	117	17.937			1.00 10.69	A
55 -	ATOM	770	CA GLY	117	16.894			1.00 12.05	A
33	ATOM	771	C GLY	117	15.906			1.00 14.49	A
				117	16.009				A
	MOTA	772	O GLY						A
	MOTA	773	N GLU	118	14.954				
<i>(</i> 0	MOTA	774	CA GLU	118	13.955				A
60	ATOM	775	CB GLU	118	12.680				A
	MOTA	776	CG GLU	118	12.881			1.00 24.85	A
	MOTA	777	CD GLU	118	11.659				. У
	ATOM	778	OE1 GLU	118	11.639	9.064 1	06.047	1.00 29.02	A
	MOTA	779	OE2 GLU	118	10.715				A
65	MOTA	780	C GLU	118	13.601				A
33	MOTA	781	O GLU	118	14.159				Ä
					12.660				A
	MOTA	782	N ARG	119					À
	MOTA	783	CA ARG	119	12.238				
70	MOTA	784	CB ARG	119	12.058				A
70	MOTA	785	CG ARG	119	13.311				A
	MOTA	786	CD ARG	119	14.517				A
	MOTA	787	NE ARG	119	14.226				A
	MOTA	788	CZ ARG	119	14.274	15.409 1	115.601	1.00 9.83	Α

	MOTA	789	NH1 ARG	119	14.607	16.663 115.326	1.00 8.80	A
						15.052 116.851	1.00 8.38	À ·
	MOTA	790	NH2 ARG	119	14.003			
	MOTA	791	C ARG	119	10.909	12.278 113.012	1.00 13.30	A
	MOTA	792	O ARG	119	10.055	12.134 112.140	1.00 12.33	A
5	MOTA	793	N SER	120	10.746	11.819 114.244	1.00 14.08	A
-							1.00 14.63	A
	MOTA	794	CA SER	120	9.478	11.232 114.630		
	MOTA	795	CB SER	120	9.563	10.651 116.037	1.00 13.18	A
	MOTA	796	OG SER	120	10.380	9.500 116.043	1.00 13.75	A
	ATOM	797	C SER	120	8.542		1.00 14.70	A
10								
10	MOTA	798	O SER	120	8.966	13.556 114.877	1.00 14.22	A
	ATOM	799	N PRO	121	7.263	12.222 114.295	1.00 15.80	A
	MOTA	800	CD PRO	121	6.629	10.969 113.860	1.00 15.88	A
							1.00 16:98	Ä
	MOTA	801	CA PRO	121	6.312	13.340 114.253		
	MOTA	802	CB PRO	121	5.037	12.699 113.703	1.00 17.68	A
15	MOTA	803	CG PRO	121	5.528	11.476 112.967	1.00 18.94	A
				121	6.036	14.035 115.589	1.00 17.31	A
	MOTA	804						
	MOTA	805	O PRO	121	6.316	13.495 116.662	1.00 17.01	A
	ATOM	806	N ASN	122	5.493	15.249 115.498	1.00 18.27	A
	ATOM	807	CA ASN	122	5.079	16.029 116.659	1.00 19.75	A
20							1.00 22.14	A
20	MOTA	808	CB ASN	122	3.899	15.303 117.323		
	MOTA	809	CG ASN	122	. 2.806	16.243 117.782	1.00 25.67	A
	ATOM -	810	OD1 ASN	122	2.331	17.090 117.020	1.00 28.24	A
		811	ND2 ASN	122	2.386	16.089 119.029	1.00 29.36	A
	MOTA							
~ ~	MOTA	812	C ASN	122	6.137	16.341 117.714	1.00 20.30	A
25	MOTA	813	O ASN	122	5.810	16.490 118.889	1.00 19.52	A
	MOTA	814	N GLU	123	7.398	16.443 117.312	1.00 20.21	A
							1.00 21.19	
	MOTA	815	CA GLU	123	8.460	16.745 118.267		A
	MOTA	816	CB GLU	123	8.341	18.185 118.781	1.00 20.11	A
	MOTA	817	CG GLU	123	8.519	19.249 117.731	1.00 20.41	A
30				123	8.575	20.654 118.319	1.00 21.92	A
50	MOTA	818	CD Gra					
	ATOM	819	OE1 GLU	123	7.688	21.013 119.133	1.00 18.15	A
	ATOM	820	OE2 GLU	123	9.507	21.404 117.951	1.00 21.94	A
	ATOM	821	C GLU	123.	8.446	15.806 119.468	1.00 21.37	A
25	MOTA	822	O GLU	123	8.632	16.247 120.602		λ
35	MOTA	823	N GLU	124	8.226	14.518 119.233	1.00 22.79	Α.
	MOTA	824	CA GLU	124	8.210	13.577 120.339	1.00 22.88	A
				124	7.685	12.215 119.887		A
	MOTA	825						
	MOTA	826	CG GLU	124	7.600	11.205 121.033	1.00 30.44	A
	MOTA	827	CD GLU	124	6.924	9.899 120.636	1.00 34.84	A
40	MOTA	828	OE1 GLU	124	6.827	9.003 121.508	1.00 33.81	A
40						-		
	MOTA	829	OE2 GLU	124	6.494	9.772 119.464		A
	MOTA	830	C GLU	124	9.592	13.404 120.964		A
	MOTA	831	O GLU	124	9.715	13.235 122.180	1.00 23.30	A
		832	N TYR	125	10.635	13.452 120.142		Ά
45	MOTA							
45	MOTA	833	CA TYR	125	11.988	13.269 120.657		A
	MOTA	834	CB TYR	125	12.602	11.953 120.150	1.00 17.84	A
	MOTA	835	CG TYR	125	11.805	10.695 120.391	1.00 17.89	Α
						10.304 119.513		A
	MOTA	836	CD1 TYR	125	10.791			
	MOTA	837	CE1 TYR	125	10.086	9.120 119.713	1.00 18.72	A
50	ATOM	838	CD2 TYR	125	12.090	9.871 121.477	1.00 17.89	A
	MOTA	839	CE2 TYR	125	11.395	8.691 121.686		A
						8.321 120.804		A
	MOTA	840	CZ TYR	125	10.398			
	MOTA	841	OH TYR	125	9.724	7.142 121.017	1.00 23.55	A
	MOTA	842	C TYR	125	12.941	14.377 120.260	1.00 18.68	A
55		843	O TYR	125	12.678	15.144 119.338		A
33	MOTA							
	MOTA	844	N THR	126	14.061	14.445 120.97		A
	MOTA	845	CA THR	126	15.106	15.402 120.653	1.00 18.04	Α
	ATOM	846	CB THR	126	16.063	15.618 121.839		A
	MOTA	847	OG1 THR	126	16.592	14.356 122.254		A
60	MOTA	848	CG2 THR	126	15.339	16.258 123.014	1.00 18.83	A
	MOTA	849	C THR	126	15.838	14.653 119.53		A
						13.455 119.35		A
	MOTA	850	O THR	126	15.606			
	MOTA	851	N TRP	127	16.708			A
	MOTA	852	CA TRP	127	17.401	14.636 117.71	1.00 16.42	A
65	MOTA	853	CB TRP	127	18.198			A
33								
	MOTA	854	CG TRP	127	19.443	16.133 117.50		A
	MOTA	855	CD2 TRP	127	20.746	15.554 117.38	1.00 12.40	A
	MOTA	856	CE2 TRP	127	21.634			A
								Ä
70	MOTA	857	CE3 TRP	127	21.250			
70	MOTA	858	CD1 TRP	127	19.580			A
	MOTA	859	NE1 TRP	127	20.899			A
					22.997			A
	MOTA	860	CZ2 TRP	127				
	MOTA	861	CZ3 TRP	127	22.607	14.148 116.80	1.00 8.68	A

					40-			1 00 10 75	
	MOTA	862	CH2		127	23.463	14.959 117.558	1.00 10.75	A
	MOTA	863	C	TRP	127	18.318	13.500 118.191	1.00 18.04	A
	MOTA	864	0	TRP	127	18.496	12.507 117.491	1.00 17.73	A
	MOTA	865	N	GLU	128	18.874	13.639 119.390	1.00 20.55	A
5							12.630 119.954	1.00 22.98	A
5	MOTA	866	CA	GLU	128	19.773			
	MOTA	867	CB	GLU	128	20.449	13.167 121.216	1.00 24.66	A
	MOTA	868	CG	GLU	128	21.328	14.375 121.028	1.00 30.86	A
	MOTA	869	CD	GLU	128	21.812	14.929 122.359	1.00 34.39	A
	MOTA	870	OE1		128	22.271	14.126 123.204	1.00 36.58	A
10									
10	MOTA	871	OE2		128	21.734	16.160 122.562	1.00 36.22	A
	MOTA	872	С	GLU	128	19.092	11.322 120.336	1.00 21.59	A
	MOTA	873	0	GLU	128	19.744	10.291 120.456	1.00 20.67	A
	MOTA	874	N	GLU	129	17.784	11.362 120.539	1.00 22.17	A
	MOTA	875	CA	GLU	129	17.073	10.167 120.974	1.00 22.68	A
15									
13	MOTA	876	CB	GLU	129	16.487	10.426 122.364	1.00 23.27	A
	MOTA	877	CG	GLU	129	17.550	10.770 123.392	1.00 28.13	A
	MOTA	878	CD	GLU	129	16.965	11.157 124.737	1.00 32.95	A
	ATOM	879	OE1	GLU	129	17.752	11.323 125.702	1.00 33.26	A
	ATOM	880	OE2	GLU	129	15.724	11.301 124.827	1.00 31.63	A
20									
20	ATOM	881	С	GLU	129	15.983	9.679 120.035	1.00 20.72	. A
	MOTA	882	0	GLU	129	15.273	8.728 120.343	1.00 23.09	A
	MOTA	883	N	ASP	130	15.862	10.322 118.885	1.00 18.40	A
	MOTA	884	CA	ASP	130	14.846	9.945 117.918	1.00 16.36	A '
	MOTA	885	СВ	ASP	130	14.770	11.015 116.828	1.00 15.71	Ä
25									
23	MOTA	886	CG	ASP	130	13.495	10.947 116.031	1.00 15.49	A
	MOTA	887	OD1	ASP	130	13.044	12.002 115.545	1.00 17.27	A
	MOTA	888	OD2	ASP	130	12.950	9.839 115.874	1.00 15.06	A
	MOTA	889	С	ASP	130	. 15:168	8.573 117.326	1.00 15.41	Α
									A
20	MOTA	890	0	ASP	130	16.196	8.377 116.680	1.00 15.65	
30	MOTA	891	N	PRO	131	14.287	7.597 117.548	1.00 14.81	A
	MOTA	892	CD	PRO	131	12.980	7.675 118.222	1.00 14.52	A
	ATOM	893	CA	PRO	131	14.523	6.255 117.018	1.00 15.02	A
	ATOM	894	CB	PRO	131	13.348	5.457 117.579	1.00 15.21	A
								1.00 16.02	Ä
25	MOTA	895	CC	PRO	131	12.267	6:478 117.656		
35	MOTA	· 896	С	PRO	131	14.607	6.183 115.492	1.00 15.04	A
	MOTA	897	0	PRO	131	15.103	5.196 114.943	1.00 12.71	A
	MOTA	898	N	LEU	132	14.125	7.224 114.814	1.00 14.88	A
	MOTA	899	CA	LEU	132	14.161	7.254 113.354	1.00 14.03	A
40	MOTA	900	CB	LEU	132	12.947	8.007 112.796	1.00 12.82	A
40	MOTA	901	CG	LEU	132	11.562	7.434 113.129	1.00 14.44	A
	MOTA	902	CD1	LEU	132	10.506	8.271 112.397	1.00 8.97	A
	ATOM	903	CD2	LEU	132	11.470	5.950 112.724	1.00 8.90	A
	ATOM	904	C	LEU	132	15.446	7.861 112.786	1.00 12.21	A
45	ATOM	905	0	LEU	132	15.626	7.916 111.573	1.00 11.16	A
43	MOTA	906	N	ALA	133	16.337.	8.321 113.655	1.00 11.83	A
	ATOM	907	ÇA	ALA	133	17.604	8.891 113.186	1.00 11.94	A
	MOTA	908	CB	ALA	133	18.447	9.345 114.377	1.00 7.70	A
	ATOM	909	C	ALA	133	18.367	7.825 112.373	1.00 12.53	A
			ŏ						A
50	MOTA	910		ALA	133	18.308	6.637 112.693	1.00 12.95	
20	MOTA	911	N	GLY	134	19.074	8.256 111.330	1.00 13.23	A
	MOTA	912	CA	GLY	134	19.832	7.328 110.506	1.00 13.31	A
	MOTA	913	C	GLY	134	21.314	7.273 110.858	1.00 14.51	A
	ATOM	914	0	GLY	134	21.727	7.771 111.910	1.00 12.96	A
	ATOM	915	N	ILE	135	22.111	6.685 109.962	1.00 13.27	A
55									
22	MOTA	916	CA	ILE	135	23.547	6.529 110.158	1.00 10.64	A
	MOTA	917	CB	ILE	135	24.211	5.825 108.945	1.00 12.21	Α
	ATOM	918	CG2	ILE	135	25.728	5.725 109.166	1.00 . 9.26	A
	ATOM	919		ILE	135	23.606	4.433 108.749	1.00 9.44	Α.
	ATOM	920		ILE	135	24.194	3.659 107.563	1.00 7.34	A
60			CDI						_
OU	MOTA	921	C	ILE	135	24.319	7.817 110.429	1.00 11.04	A
	MOTA	922	0	ILE	135	25.101	7.868 111.370	1.00 12.98	Α
	MOTA	923	N	ILE	136	24.117	8.843 109.606	1.00 10.10	A
	ATOM	924	CA	ILE	136	24.822	10.109 109.783	1.00 10.16	A
	MOTA	925	CB	ILE	136	24.393	11.137 108.709	1.00 9.76	Ä
65									
O)	MOTA	926		ILE	136	25.052	12.489 108.966	1.00 7.05	A
	MOTA	927	CG1	ILE	136	24.783	10.611 107.327	1.00 8.04	A
	MOTA	928	CD1	ILE	136	24.420	11.555 106.177	1.00 8.70	A
	MOTA	929	C	ILE	136	24.680	10.734 111.180	1.00 10.98	A
								1.00 10.90	
70	MOTA	930	0	ILE	136	25.673	10.974 111.848		A
70	MOTA	931	N	PRO	137	23.449	11.015 111.637	1.00 12.76	A
	MOTA	932	CD	PRO	137	22.118	10.891 111.018	1.00 12.91	A
	MOTA	933		PRO	137	23.344	11.609 112.974	1.00 13.27	A
	ATOM	934	СВ		. 137	21.863	11.966 113.079	1.00 12.28	A
	111 001	224				21.003	41.700 113.073	1.00 14.60	•

	MOTA	935	CC	PRO	137	21.210	10.920 1		1.00 12.44	A
	MOTA	936	С	PRO	137	23.814	10.707 1		1.00 13.75	Α .
	MOTA	937	0	PRO	137	24.349	11.191 1		1.00 13.93	A
_	MOTA	938	N	ARG	138	23.616.	9.401 1	13.982	1.00 13.99	A
5	MOTA	939	CA	ARG	138	24.061	8.490 1	15.034	1.00 14.63	A
	MOTA	940	CB	ARG	138	23.520	7.083 1	14.788	1.00 11.07	A
	MOTA	941	CG	ARG	138	22.026	6.971 1	15.030	1.00 10.07	A
	MOTA	942	CĐ	ARG	138	21.514	5.574 1	14.706	1.00 12.89	A
	MOTA	943	NE	ARG	138	20.063	5.502 1	14.816	1.00 14.12	A
10	ATOM	944	CZ	ARG	138	19.395	5.417 1		1.00 16.84	A
	MOTA	945	NH1		138	20.043	5.380 1		1.00 17.01	A
	ATOM	946	NH2		138	18.070	5.405 1		1.00 16.58	A
	ATOM	947	C	ARG	138	25.590	8.479 1		1.00 14.82	A
			ō		138	26.175	8.491 1		1.00 17.18	A
15	MOTA	948		ARG	139	26.227	8.490 1		1.00 13.19	Ä
13	MOTA	949	N	THR					1.00 14.27	À
	MOTA	950	CA	THR	139	27.676	8.487 1			
	MOTA	951	CB	THR	139	28.134	8.347 1		1.00 15.10	A
	MOTA	952	OG1		139	27.671	7.092 1		1.00 16.74	A
20	MOTA	953	CG2		139	29.663	8.403 1		1.00 15.25	A
20	ATOM	954	C	THR	139	28.315	9.738 1		1.00 14.96	A
	MOTA	955	0	THR	139	29.268	9.642 1		1.00 16.32	A
	MOTA	956	N	LEU	140	27.802	10.912 1		1.00 13.16	A
	MOTA	957	CA	LEU	140	28.374	12.136 1		1.00 13.55	A
	MOTA	958	CB	LEU	140	27.742	13.351 1	13.988	1.00 13.68	A
25	MOTA	959	CG	LEU	140	28.065	13.435 1	12.489	1.00 15.01	A
	MOTA	960	CD1	LEU	140	27.116	14.410 1	11.824	1.00 15.28	. A
	MOTA	961	CD2	LEU	140	29.535	13.845 1	12.286	1.00 12.18	A
	MOTA	962	С	LEU	140	28.168	12.200 1	16.165	1.00 14.55	A
	MOTA	963	0	LEU	140	29.031	12.674 1	16.900	1.00 14.87	A
30	MOTA	964	N	HIS	141	27.021	11.712 1		1.00 15.53	A
	ATOM	965	CA	HIS	141	26.715	11.731 1		1.00 15.51	A
	ATOM	966	CB	HIS	141	25.241	11.359 1		1.00 17.50	A
	MOTA	967	CG	HIS	141	24.809	11.401 1		1.00 19.49	A
	MOTA	968		HIS	141	24.144	12.349 1		1.00 20.09	A
35	MOTA	969		HIS	141	25.057	10.373 1		1.00 22.94	A
55		970		HIS	141	24.561	10.686 1		1.00 21.94	Α
	MOTA			HIS	141	24.002	11.880 1		1.00 21.59	Ä
	MOTA	971					10.772 1		1.00 14.45	λ
	MOTA	972	c	HIS	141	27.638				
40	MOTA	973	0	HIS	141	28.133	11.094 1		1.00 12.82 1.00 12.87	Ą
40	MOTA	974	N	GLN	142	27.893	9.606 1			A
	MOTA	975	CA	GLN	142	28.753	8.627 1		1.00 14.02	Ä
	MOTA	976	CB	GLN	142	28.542	7.248 1		1.00 13.39	A
	MOTA	977	CC	GLN	142	27.299	6.545 1		1.00 20.05	A
40	MOTA	978	CD	GLN	142	27.237	6.484 1		1.00 21.32	A
45	MOTA	979	OE1	GLN	142	26.660	7.361 1		1.00 21.37	A
	MOTA	980	NE2	GLN	142	27.850	5.454 1		1.00 19.74	A
	MOTA	981	С	GLN	142	30.243	8.963 1	18.862	1.00 13.74	A
	MOTA	982	0	GLN	142	30.961	8.535 1	19.759	1.00 14.17	A
	MOTA	983	N	ILE	143	30.713	9.709 1	17.870	1.00 13.21	A
50	MOTA	984	CA	ILE	143	32.119	10.087 1	17.826	1.00 13.39	A
	MOTA	985	CB	ILE	143	32.435	10.932 1	16.576	1.00 11.43	A
	MOTA	986	CG2	ILE	143	33.847	11.507 1	16.678	1.00 13.15	A
	MOTA	987	CG1	ILE	143	32.282	10.068 1	15.324	1.00 9.90	A
	MOTA	988		ILE	143	32.437	10.844 1		1.00 8.46	A
55	MOTA	989	c	ILE	143	32.454	10,897 1		1.00 14.99	A
-	MOTA	990	ŏ	ILE	143	33.473	10.660 1		1.00 13.04	A
	MOTA	991	Ň	PHE	144	31.581	11.848 1		1.00 17.68	A.
	MOTA	992	CA	PHE	144	31.741	12.694 1		1.00 20.78	A
	MOTA	993	CB	PHE	144	30.771	13.882		1.00 17.56	A
60							14.924		1.00 18.09	A
UU	MOTA	994	CG	PHE	144	31.153				Â
	MOTA	995		PHE	144	32.205	15.796 1		1.00 18.10	
	MOTA	996		PHE	144	30.492	15.013		1.00 17.52	A
	MOTA	997		PHE	144	32.596	16.740		1.00 19.03	A
45	ATOM	998		PHE	144	30.873	15.949		1.00 16.50	A
65	MOTA	999	CZ	PHE	144	31.926	16.817		1.00 18.32	A
	MOTA	1000	С	PHE	144 .	31.481	11.908		1.00 24.06	A
	MOTA	1001	0	PHE	144	32.059	12.203		1.00 25.61	A
	MOTA	1002	N	GLU	145	30.596	10.924		1.00 28.05	A
	MOTA	1003	CA	GLU	145	30.270	10.113	122.963	1.00 32.18	A
70	ATOM	1004	CB	GLU	145	29.052	9.233	122.660	1.00 34.92	A
•	MOTA	1005	CG	GLU	145	28.382		123.877	1.00 41.48	A
	MOTA	1006	CD	GLU	145	27.459		124.604	1.00 46.68	A
	MOTA	1007		GLU	145	26.808		125.583	1.00 48.85	A
						_3.00				

	MOTA	1008	OE2	GLU	145	27.379	10:772		1.00 48.27	A
	MOTA	1009	С	GLU	145	31.472		123.300	1.00 33.53	A
	MOTA	1010	0	GLU	145	31.796		124.465	1.00 35.14	A
_	MOTA	1011	N	LYS	146	32.139		122.272	1.00 33.94	A
5	MOTA	1012	CA	LYS	146	33.289		122.460	1.00 35.62	A
	MOTA	1013	CB	LYS	146	33.493		121.218	1.00 35.76	A
	ATOM	1014	CG	LYS	146	32.398		120.990	1.00 38.40	A
	MOTA	1015	CD	LYS	146	32.750		119.853	1.00 39.00	A
10	MOTA	1016	CE	LYS	146	31.822		119.842	1.00 40.55	A
10	MOTA	1017	NZ	LYS	146	32.108		118.719	1.00 42.99 1.00 37.30	A
	MOTA	1018	·C	LYS	146	34.600		122.781	1.00 37.30	A A
	ATOM	1019	0	LYS	146	35.279		123.746 121.978	1.00 37.75	À
	MOTA	1020	N	LEU	147	34.959		122.182	1.00 37.73	Ä
15	ATOM	1021	CA	LEU	147	36.212 36.611		120.894	1.00 36.70	Ä
13	MOTA	1022	CB CG	LEU	147 147	36.769		119.652	1.00 34.99	A
	ATOM	1023	CD1	LEU	147	37.244		118.483	1.00 32.76	Ä
	MOTA MOTA	1024 1025	CD2		147	37.754		119.940	1.00 33.24	A
	MOTA	1026	C	LEU	147	36.250		123.355	1.00 41.40	A
20	ATOM	1027	ŏ	LEU	147	37.329		123.803	1.00 41.57	A
20	MOTA	1028	N	THR	148	35.091		123.855	1.00 43.50	A
	MOTA	1029	CA	THR	148	35.078		124.972	1.00 46.76	Α.
	ATOM	1030	CB	THR	148	33.735		125.068	1.00 46.73	A
	ATOM	1031	OG1		148	33.559		123.901	1.00 45.09	·A
25	MOTA	1032	CG2		148	33.717		126.299	1.00 45.59	A
	ATOM	1033	c	THR	148	35.327		126.266	1.00 50.09	A
	ATOM	1034	ō	THR	148	36.050		127.149	1.00 50.49	A
	MOTA	1035	N	ASP	149	34.734	10.660	126.367	1.00 53.41	A
	ATOM	1036	CA	ASP	149	34.899	9.812	127.545	1.00 56.45	A
30	ATOM	1037	CB	ASP	149	34.094	8.515	127.395	1.00 57.31	A
	MOTA	1038	CG	ASP	149	32.677	8.641	127.926	1.00 59.22	A
	MOTA	1039	OD1	ASP	149	32.519	9.073	129.090	1.00 59.37	A
	ATOM	1040	QD2	ASP	149	31.723	8.302	127.191	1.00 59.44	A
	MOTA	1041	С	ASP	149	36.365	9.468	127.778	1.00 57.60	A
35°	MOTA	1042	0	ASP	149	36.948		128.800	1.00 57.84	A
	MOTA	1043	N	ASN	150	36.955		126.824	1.00 58.66	A
	MOTA	1044	CA	ASN	150	38.354		126.919	1.00 59.63	A
	MOTA	1045	CB	ASN	150			125.793	1.00 62.63	A
40	MOTA	1046	CG	ASN	150	37.845		125.832	1.00 65.36	A
40	MOTA	1047		ASN	150	37.880		126.803	1.00 66.45	A
	MOTA	1048		ASN	150	37.070		124.774	1.00 66.13	A
	ATOM	1049	C	ASN	150	39.248		126.833	1.00 58.25	A
	MOTA	1050	0	ASN	150	38.814		126.382	1.00 58.50	A A
45	ATOM	1051	N	GLY	151	40.492		127.279 127.233	1.00 56.63 1.00 55.03	Ä
43	ATOM	1052	CA	GLY	151	41.416		127.233	1.00 53.05	A
	MOTA	1053 1054	С 0	GLY	151 151	41.915 42.983		125.449	1.00 52.83	A
	MOTA MOTA	1055	N	THR	152	41.149		125.029	1.00 50.83	A
	ATOM	1056	CA	THR	152	41.519		123.643	1.00 47.73	A
50	MOTA	1057	CB	THR	152	40.763		122.680	1.00 47.39	A
	MOTA	1058		THR	152	40.890		123.127	1.00 48.20	A
	MOTA	1059	CG2		152	41.326		121.271	1.00 45.61	A
	MOTA	1060	C	THR	152	41.237		123.180	1.00 46.24	A
	ATOM	1061	ō	THR	152	40.163		123.425	1.00 46.24	A
55	ATOM	1062	N	GLU	153	42.217	13.828	122.510	1.00 43.69	A
	MOTA	1063	CA	GLU	153	42.066	15.165	121.957	1.00 41.25	A
	ATOM	1064	CB	GLU	153	43.386	15.926	122.014	1.00 42.93	A
	ATOM	1065	CG	GLU	153	43.815	16.330	123.407	1.00 46.50	A
	MOTA	1066	CD	GLU	153	45.193	16.952	123.421	1.00 48.91	A
60	MOTA	1067	OE1	GLU	153	46.181	16.219	123.196	1.00 49.46	A
	MOTA	1068	OE2	GLU	153	45.288	18.177	123.649	1.00 52.22	A
	MOTA	1069	С	GLU	153	41.677	14.898	120.508	1.00 38.96	A
	MOTA	1070	0	GLU	153	42.232	13.998	119.874	1.00 38.36	A
	MOTA	1071	N	PHE	154	40.730		119.980	1.00 35.01	A
65	MOTA	1072	CA	PHE	154	40.289		118.611	1.00 30.73	A
	MOTA	1073	CB	PHE	154	39.416		118.574	1.00 27.60	A
•	MOTA	1074	CG	PHE	154	38.102		119.282	1.00 24.32	A
	MOTA	1075		PHE	154	36.965		118.585	1.00 22.22	A
70	MOTA	1076		PHE	154	38.009		120.652	1.00 24.15	A
70	MOTA	1077		PHE	154	35.751		119.246	1.00 22.43	A
	MOTA	1078		PHE	154	36.797		121.327	1.00 24.33	A
	MOTA	1079	CZ.		154	35.664		120.618	1.00 23.63	A
	MOTA	1080	C	PHE	154	39.498	16.590	118.024	1.00 28.48	A

	MOTA	1081	0	PHE	154	38.921	17.402	118.744	1.00 27.87	A
	MOTA	1082	N	SER	155	39.474	16.653	116.702	1.00 26.86	A
	MOTA	1083	CA	SER	155	38.713	17.676	116.006	1.00 25.68	A
	MOTA	1084	CB	SER	155	39.635		115.347	1.00 24.22	A
5	MOTA	1085	OG	SER	155	40.401		114.309	1.00 25.09	A
-	ATOM	1086	c	SER	155	37.920		114.947	1.00 26.10	A
				SER	155	38.402		114.380	1.00 26.26	Ä
	MOTA	1087	0							
	MOTA	1088	N	VAL	156	36.697		114.700	1.00 25.35	A
10	MOTA	1089	CA	VAL	156	35.836		113.712	1.00 23.66	A
10	MOTA	1090	CB	VAL	156	34.549		114.371	1.00 22.75	A
	MOTA	1091			156	33.671		113.331	1.00 20.72	A
	MOTA	1092	CG2		156	34.910		115.497	1.00 20.01	A
	MOTA	1093	С	VAL	156	35.447	17.733	112.622	1.00 24.01	A
	MOTA	1094	0	VAL	156	34.960	18.832	112.916	1.00 24.09	A
15	MOTA	1095	N	LYS	157 -	35.679	17.344	111.369	1.00 21.25	A
	MOTA	1096	CA	LYS	157	35.332	18.172	110.220	1.00 20.34	A
	MOTA	1097	СВ	LYS	157	36.559	18.467	109.347	1.00 24.12	À
	MOTA	1098	CG	LYS	157	37.755	19.140	110.028	1.00 28.05	A
	ATOM	1099	CD	LYS	157	37.474	20.581	110.410	1.00 31.98	Α
20	MOTA	1100	CE	LYS	157	38.755	21.314	110845	1.00 35.17	A
	ATOM	1101	NZ	LYS	157	39.737		109.726	1.00 35.98	A
	ATOM	1102	c	LYS	157	34.333		109.382	1.00 19.05	A
	MOTA	1103	ŏ	LYS	157	34.475		109.209	1.00 18.10	A
	MOTA	1104	N	VAL	158	33.315		108.865	1.00 15.97	A
25		1105		VAL	158	32.340		108.025	1.00 14.22	À
23	MOTA		CA						1.00 12.88	. Â
	MOTA	1106	CB	VAL	158	30.941 31.014		108.690	1.00 10.13	Ä
	MOTA	1107		VAL VAL	158 158	30.419		109.931	1.00 13.23	Â
	MOTA MOTA	1108 1109				32.221		106.706	1.00 13.23	Ä
30			C	VAL	158					A
50	MOTA	1110	0	VAL	158	32.469 31.845		106.610 105.677	1.00 14.66	
	MOTA	1111	N	SER	159	31.702			1.00 14.86 1.00 16.10	A A
	MOTA	1112	CA	SER	159			104.362		
	ATOM	1113	CB	SER	159	33.034 32.904		103.618	1.00 17.14	A
35	MOTA	1114	OG	SER	159			102.279	1.00 23.83	A
"	MOTA	1115	Ç	SER	159	30.609		103.642	1.00 15.89 1.00 15.28	A
	MOTA	1116	0	SER	159	30.477		103.822		A A
	MOTA	1117	N	LEU	160	29.820 28.728		102.838	1.00 15.69 1.00 15.26	Ä
	MOTA	1118	CA	LEU	160			102.098		A
40	MOTA	1119	CB	LEU	160	27.388		102.715	1.00 15.28 1.00 15.37	
- U	MOTA	1120	CG	LEU	160	26.121				A
	MOTA	1121		LEU	160	26.236		102.087	1.00 12.97	A
	ATOM	1122		LEU	160	24.904	17.517	102.904	1.00 14.38	A
	MOTA	1123	C	LEU	160	28.799		100.640	1.00 15.74	A
45	MOTA	1124	0	LEU	160	28.331		100.263	1.00 15.17	A
45	MOTA	1125	N	LEU	161	29.394	16.822	99.829	1.00 15.44	A
	MOTA	1126	CA	LEU	161	29.577	17.052	98.401	1.00 15.04	A
	MOTA	1127	CB	LEU	161	30.923	16.472	97.968	1.00 16.39	A
	MOTA	1128	CG	LEU	161	31.753	17.038	96.815	1.00 19.66	A
50	MOTA	1129		LEU	161	32.749	15.955	96.386	1.00 20.66	A
20	MOTA	1130		LEU	161	30.887	17.437	95.641	1.00 20.16	A
	MOTA	1131	C	LEU	161	28.470	16.311	97.680	1.00 15.70	A
	MOTA	1132	0	LEU	161	28.200	15.161	97.989	1.00 17.10	A
	ATOM	1133	N	GLU	162	27.829	16.952	96.713	1.00 15.78	A
55	ATOM	1134	CA	GLU	162	26.763	16.286	95.984	1.00 13.96	A
23	MOTA	1135	CB	GLU	162	25.413	16.834	96.428	1.00 14.46	A
	MOTA	1136	CG	GLU	162	25.218	16.645	97.928	1.00 17.99	A
	MOTA	1137	CD	GLU	162	23.781	16.776	98.372	1.00 18.53	A
	MOTA	1138		GLU	162	23.532	16.663	99.588	1.00 20.86	A
60	MOTA	1139		GLU	162	22.902	16.984	97.513	1.00 17.99	A
60	MOTA	1140	С	GLU	162	26.948	16.403	94.489	1.00 12.56	A
	MOTA	1141	0	GLU	162	27.425	17.414	93.985	1.00 12.95	A
	MOTA	1142	N	ILE	163	26.575	15.346	93.782	1.00 11.75	A
	MOTA	1143	CA	ILE	163	26.736	15.303	92.340	1.00 11.19	A
10	MOTA	1144	CB	ILE	163	27.588	14.077	91.941	1.00 10.80	A
65	MOTA	1145		ILE	163	27.790	14.044	90.436	1.00 9.29	Α
	MOTA	1146	CG1	ILE	163	28.927	14.121	92.681	1.00 10.31	A
	MOTA	1147	CD1	ILE	163	29.667	12.777	92.718	1.00 12.19	A
	MOTA	1148	С	ILE	163	25.393	15.238	91.626	1.00 11.81	A
	MOTA	1149	0	ILE	163	24.524	14.441	91.985	1.00 13.50	A
70	MOTA	1150	N	TYR	164	25.228	16.089	90.620	1.00 10.80	A
	MOTA	1151	CA	TYR	164	24.011	16.125	89.826	1.00 11.96	A
	MOTA	1152	CB	TYR	164	23.038	17.194	90.353	1.00 11.56	A
	MOTA	1153	ÇG	TYR	164	21.746	17.240	89.573	1.00 10.77	A

	ATOM	1154	CD1	TYR	164	21.639	18.005	88.408	1.00 9.75	A
	ATOM	1155	CEl		164	20.479	17.991	87.638	1.00 8.60	A
	MOTA	1156	CD2	TYR	164	20.653	16.457	89.954	1.00 8.92	A
	ATOM	1157	CE2	TYR	164	19.483	16.428	89.187	1.00 9.51	Α
5	MOTA	1158	CZ	TYR	164	19.405	17.197	88.031	1.00 10.37	A
,										
	MOTA	1159	ОН	TYR	164	18.264	17.167	87.261	1.00 9.00	A
	MOTA	1160	С	TYR	164	24.415	16.443	88.395	1.00 12.68	A
	ATOM	1161	0	TYR	164	25.048	17.468	88.131	1.00 13.49	A
• •	MOTA	1162	N	ASN	165	24.075	15.550	87.478	1.00 12.65	A
10	MOTA	1163	CA	ASN	165	24.410	15.745	86.078	1.00'14.45	A
	MOTA	1164	CB	ASN	165	23.541	16.864	85.515	1.00 18.24	A
										A
	MOTA	1165	CG	ASN	165	23.498	16.869	84.010	1.00 24.46	
	MOTA	1166	OD1	ASN	165	23.396	15.817	83.374	1.00 29.01	A
	ATOM	1167	ND2	ASN	165	23.556	18.061	83.422	1.00 27.99	A
15							16.069	85.930	1.00 14.74	À
13	MOTA	1168	C	ASN	165	25.903				
	ATOM	1169	0	ASN	165	26.290	16.972	85.184	1.00 13.82	A
	MOTA	1170	N	GLU	166	26.729	15.321	86.663	1.00 13.32	A
	MOTA	1171	CA	GLU	166	28.178	15.475	86.645	1.00 13.84	A
^^	MOTA	1172	СВ	GLU	166	28.730	15.118	85.265	1.00 11.37	A
20	MOTA	1173	CG	GLU	166	28.676	13.635	84.952	1.00 13.48	Α
	MOTA	1174	CD	GLU	166	29.270	12.781	86.069	1.00 15.85	A
	MOTA	1175	OE1		166	28.518	12.411	86.995	1.00 14.50	A
	MOTA	1176	OE2	GLU	166	30.491	12.490	86.022	1.00 14.74	A
	MOTA	1177	С	GLU	166	28.724	16.835	87.067	1.00 15.33	A
25	MOTA	1178	ō	GLU	166	29.809	17.229	86.650	1.00 16.01	A
25										
	MOTA	1179	N	GLU	167	27.970	17.555	87.885	1.00 16.84	A
	MOTA	1180	CA	GLU	167	28.415	18.850	88.381	1.00 16.72	A
	MOTA	1181	CB	GLU	167	27.403	19.949	88.052	1.00 19.43	A
20	MOTA	1182	CG	GLU	167	27.235	20.216	86.570	1.00 23.50	A
30	MOTA	1183	CD	GLU	167	26.307	21.388	86.309	1.00 28.67	A
	MOTA	1184	OE1	GLU	167	25.176	21.382	86.846	1.00 32.20	A
									1.00 31.83	
	MOTA	1185		GLU	167	26.707	22.316	85.571		A
	MOTA	1186	С	GLU	167	28.522	18.685	89.888	1.00 15.13	A
	MOTA	1187	0	GLU	167	27.773	17:908	90.480	1.00 15.63	A
35	MOTA	1188	N	LEU	168	29.449	19.408	90.501	1.00 12.84	A
55										
•	MOTA	1189	CA	LEU	168	29.672	19.312	91.939	1.00 12.94	A
	ATOM	1190	CB	LEU	168	31.171	19.220	92.217	1.00 14.17	A
	MOTA	1191	CG	LEU	168	31.859	17.853	92.232	1.00 18.45	A
40	MOTA	1192		LEU	168	31.289	16.947	91.164	1.00 19.30	A
40	MOTA	1193	CD2	LEU	168	33.366	18.058	92.047	1.00 18.21	A
	MOTA	1194	С	LEU	168	29.080	20.467	92.732	1.00 11.51	A
										Ä
	MOTA	1195	0	LEU	168	29.228	21.631	92.357	1.00 12.03	
	ATOM	1196	N	PHE	169	28.415	20.138	93.834	1.00 8.76	A
	MOTA	1197	CA	PHE	169	27.812	21.152	94.682	1.00 10.79	A
45	ATOM	1198	CB	PHE	169	26.286	21.155	94.543	1.00 8.69	A
13										
	MOTA	1199	CG	PHE	169	25.804	21.329	93.127	1.00 9.29	A
	MOTA	1200	CD1	PHE	169	25.568	20.219	92.314	1.00 8.53	A
	MOTA	1201	CD2	PHE	169	25.605	22.595	92.598	1.00 7.95	A
		1202		PHE		25.140	20.372	90.996	1.00 9.35	A
EΛ	MOTA				169					
50	MOTA	1203	CE2	PHE	169	25.178	22.762	91.284	1.00 7.75	A
	MOTA	1204	CZ	PHE	169	24.945	21.648	90.479	1.00 9.59	A
	MOTA	1205	С	PHE		. 28.187	20.923	96.138	1.00 12.65	Α
						28.319				Ä
	MOTA	1206	0	PHE	169		19.788.	96.593	1.00 13.12	
	MOTA	1207	N	ASP	170	28.369	22.027	96.850	1.00 12.78	A
55	MOTA	1208	CA	ASP	170	28.724	22.018	98.253	1.00 13.35	A
	MOTA	1209	CB	ASP	170	29.817	23.060	98.502	1.00 12.29	A
	MOTA	1210	CG	ASP	170	30.300	23.072	99.931	1.00 13.08	A
	MOTA	1211	OD1	ASP	170	29.577	22.566	100.817	1.00 14.08	Α.
	MOTA	1212	OD2	ASP	170	31.404		100.176	1.00 15.39	A
60			_							_
UU	MOTA	1213	С	ASP	170	27:456	22.413	99.001	1.00 15.21	A
	MOTA	1214	0	ASP	170	27.086	23.588	99.003	1.00 13.76	A
	MOTA	1215	N	LEU	171	26.797	21.445	99.635	1.00 16.64	A
									1.00 19.47	A
	MOTA	1216	CA	LEU	171	25.563		100.365		
	MOTA	1217	CB	LEU	171	24.650	20.483	100.376	1.00 18.16	A
65	MOTA	1218	CG	LEU	171	23.677	20.315	99.200	1.00 20.70	A
									1.00 21.59	A
	MOTA	1219		LEU	171	22.739	21.515	99.130		
	MOTA	1220	CD2	LEU	171	24.436	20.192	97.900	1.00 19.74	A
	MOTA	1221	С	LEU	171	25.724	22.233	101.794	1.00 21.95	A
	MOTA	1222	ŏ	LEU	171	24.747		102.536	1.00 24.93	A
70										
70	MOTA	1223	N	LEU	172	26.931		102.197	1.00 24.33	, A
	MOTA	1224	CA	LEU	172	27.108	23.129	103.558	1.00 25.95	A
	ATOM	1225	CB	LEU	172	28.101		104.353	1.00 22.64	A
	MOTA	1226	CG	LEU	172	27.683	20.835	104.713	1.00 21.08	A

	1001	1227	CD1		172	28.747	20 200	105.584	1.00 19.49	A
	MOTA	1227			-					
	MOTA	1228	CD2		172	26.353		105.450	1.00 20.02	A
	MOTA	1229	С	LEU	172	27.550		103.579	1.00 28.46	A
	MOTA	1230	0	LEU	172	27.222.	25.328	104.512	1.00 33.47	A
5	MOTA	1231	N	ASN	173	28.280	25.020	102.557	1.00 27.52	A
-	MOTA	1232	CA	ASN	173	28.733		102.479	1.00 28.63	A
						29.491		101.166	1.00 28.72	A
	ATOM	1233	CB	ASN	173					
	MOTA	1234	CG	ASN	173	30.022		101.013	1.00 30.51	A
	MOTA	1235	OD1	ASN.	173	30.709 -	28.350	100.038	1.00 32.23	A
10	MOTA	1236	ND2	ASN	173	29.709	28.898	101.969	1.00 31.50	A
	MOTA	1237	Ċ	ASN	173	27.514	27.331	102.555	1.00 30.66	A
	MOTA	1238	ŏ	ASN	173	26.639		101.688	1.00 30.81	A
								103.602	1.00 32.10	A
	ATOM	1239	N	PRO	174	27.434				
	MOTA	1240	CD	PRO	174	28.196		104.862	1.00 32.35	A
15	MOTA	1241	CA	PRO	174	26.298		103.741	1.00 34.00	A
	MOTA	1242	CB	PRO	174	26.085	29.107	105.243	1.00 33.56	A
	MOTA	1243	CG	PRO	174	27.500	29.119	105.740	1.00 33.25	A
•	ATOM	1244	c	PRO	174	26.566	30,469	103.179	1.00 35.77	A
	ATOM	1245	ŏ	PRO	174	26.014		103.667	1.00 38.93	A
20								102.155	1.00 36.48	A
20	MOTA	1246	N	SER	175	27.404				
	ATOM	1247	CA	SER	175	27.734		101.568	1.00 36.56	A
	MOTA	1248	CB	SER	175	29.104		102.064	1.00 36.53	A
	ATOM	1249	OG	SER	175	29.142	32.334	103.481	1.00 38.61	A
	MOTA	1250	C.	SER	175	27.746	31.745	100.059	1.00 36.99	A
25	ATOM	1251	ŏ	SER	175	28.234	32.639	99.366	1.00 37.49	A
	ATOM	1252	N	SER	176	27.226	30.631	99.560	1.00 37.22	. A
				SER		27.142	30.385	98.125	1.00 38.02	Ä
	MOTA	1253	CA		176				1.00 37.78	
	ATOM	1254	CB	SER	176	28.296	29.483	97.662		A
	MOTA	1255	OG	SER	176	28.200	28.177	98.213	1.00 37.44	A
30	MOTA	1256	С	SER	176	25.807	29.699	97.862	1.00 37.53	A
	MOTA	1257	0	SER	176	25.277	29.016	98.734	1.00 37.34	A
	MOTA	1258	N	ASP	177	25.248	29.891	96.676	1.00 38.02	A
	MOTA	1259	CA	ASP	177	23.983	29.243	96.366	1.00 39.18	A
			CB	ASP	177	23.012	30.229	95.704	1.00 41.03	A
35	ATOM	1260								Ä
22	MOTA	1261	CG	ASP	177	23.585	30.879	94.466	1.00 42.23	
	MOTA	1262		ASP	177	23.936	30.156	93.511	1.00 43.11	A
	MOTA	1263	OD2	ASP	177	23.679	32.122	94.447	1.00 44.29	A
	MOTA	1264	С	ASP	177	24.219	28.031	95.471	1.00 38.57	A
	MOTA	1265	0	ASP	177	25.274	27.910	94.849	1.00 37.31	A
40	MOTA	1266	N	VAL	178	23.232	27.141	95.415	1.00 38.30	A.
	ATOM	1267	CA	VAL	178	23.329	25.918	94.626	1.00 38.53	A
							25.018	94.830	1.00 38.67	Ä
	MOTA	1268	CB	VAL	178	22.091				
	MOTA	1269	CG1		178	22.040	24.532	96.266	1.00 38.55	A
4.5	ATOM	1270	CG2	VAL	178	20.828	25.780	94.472	1.00 38.63	A
45	MOTA	1271	С	VAL	178	23.526	26.111	93.129	1.00 38.49	A
	MOTA	1272	0	VAL	178	23.589	25.138	92.385	1.00 39.24	A
	MOTA	1273	N	SER	179	23.618	27.357	92.683	1.00 38.10	A
	ATOM	1274	CA	SER	179	23.823	27.626	91.268	1.00 37.56	A
		1275	СВ	SER	179	23.265	29.000		1.00 39.68	A
50	MOTA									Ä
20	MOTA	1276	OG	SER	179	21.942	29.155	91.390	1.00 45.54	
	MOTA	1277	С	SER	179	25.318	27.594	90.981	1.00 36.56	A
	ATOM	1278	0	SER	179	25.740	27.516	89.828	1.00 37.57	A
	ATOM	1279	N	GLU	180	26.112	27.663	92.044	1.00 34.30	A
	MOTA	1280	CA	GLU	180	27.566	27.651	91.938	1.00 34.69	A
55	ATOM	1281	СВ	GLU	180	28.173	28.564	93.018	1.00 36.86	A
	MOTA	1282	ĊĠ	GLU	180	27.906	30.055		1.00 41.33	A
		1283							1.00 42.95	A
	MOTA		CD	GLU	180	28.262	30.958			
	MOTA	1284		GLU	180	27.629	30.832		1.00 43.98	A
	MOTA	1285	OE2	GLU	180	29.174	31.798	93.795	1.00 44.03	A
60	MOTA	1286	С	GLU	180	28.147	26.241	92.048	1.00 32.62	A
	MOTA	1287	0	GLU	180	28.084	25.614	93.104	1.00 31.99	A
	MOTA	1288	N	ARG	181	28.706	25.745		1.00 30.63	A
	MOTA	1289	CA	ARG	181	29.292	24.415		1.00 30.51	A
									1.00 34.25	Ä
65	MOTA	1290	CB	ARG	181	29.050	23.739			
65	MOTA	1291	CG	ARG	181	29.575	24.493			A
	MOTA	1292	CD	ARG	181	29.025	23.901		1.00 46.73	A
	ATOM	1293	NE	ARG	181	29.587	22.592		1.00 50.11	A
	MOTA	1294	CZ	ARG	181	30.818	22.400	86.251	1.00 52.44	A
	MOTA	1295	NH1		181	31.629	23.435		1.00 53.59	A
70	MOTA	1296		ARG	181	31.236	21.173		1.00 52.52	A
70									1.00 28.82	Â
	MOTA	1297	C	ARG	181	30.781	24.480			
	MOTA	1298	0	ARG	181	31.438	25.483		1.00 29.29	A
	MOTA	1299	N	LEU	182	31.308	23.408	91.829	1.00 25.57	A

	ATOM	1300	CA	LEU	182	32.718	23.348	92.182	1.00 21.92	A
	MOTA	1301	CB	LEU	182	32.899	22.553	93.471	1.00 20.02	A
	MOTA	1302	CG	LEU	182	32.155	23.087	94.700	1.00 20.20	A
_	MOTA	1303	CD1	LEU	182	32.161	22.044	95.812	1.00 17.99	A
5	MOTA	1304	CD2	LEU	182	32.802	24.379	95.159	1.00 16.82	A
	MOTA	1305	С	LEU	182	33.515	22.696	91.069	1.00 22.08	A
	MOTA	1306	0	LEU	182	32.960	21.949	90.257	1.00 19.82	A
	MOTA	1307	N	GLN	183	34.814	23.000	91.028	1.00 22.61	A
	MOTA	1308	CA	GLN	183	35.726	22.435	90.034	1.00 20.55	A
10	MOTA	1309	CB	GLN	183	36.702	23.488	89.523	1.00 22.39	A
	ATOM	1310	CG	GLN	183	36.100	24.557	88.652	1.00 28.44	A
	MOTA	1311	CD	GLN	183	36.981	25.799	88.593	1.00 32.88	A
	MOTA	1312	OE1		183	37.054	26.572	89.557	1.00 34.28	A
	MOTA	1313	NE2		183	37.664	25.989	87.468	1.00 33.10	A
15	MOTA	1314		GLN	183	36.518	21.327	90.702	1.00 19.22	A
	MOTA	1315		GLN	183	36.795	21.390	91.897	1.00 18.40	A
	MOTA	1316		MET	184	36.902	20.330	89.915	1.00 18.69	A
	MOTA	1317		MET	184	37.646	19.191	90.416	1.00 19.64	A
20	MOTA	1318		MET	184	36.747	17.951	90.361	1.00 21.90	A
20	MOTA	1319	CG	MET	184	37.304	16.701	91.011	1.00 25.13	A
	MOTA	1320	SD	MET	184	36.147	15.306	90.921	1.00 31.12	A
	MOTA	1321	CE	MET	184	36.591	14.620	89.352	1.00 23.65	Α.
	MOTA	1322	c	MET	184	38.897	18.983	89.568	1.00 21.60	A 'A
25	MOTA	1323	0	MET	184	38.840	19.035	88.341 90.230	1.00 21.33 1.00 23.48	Ä
23	MOTA	1324	N	PHE	185	40.026 41.299	18.750 18.531	89.544	1.00 25.16	Â
	MOTA	1325	CA	PHE	185	42.231	19.736	89.709	1.00 25.59	Ä
	MOTA	1326	CB	PHE	185 185 -	41.595	21.064	89.414	1.00 25.42	Ä
	ATOM	1327	CG CD1		185	40.791	21.691	90.360	1.00 23.63	Ä
30	MOTA	1328 1329	CD2		185	41.857	21.718	88.211	1.00 26.39	λ
50	MOTA MOTA	1330	CE1		185	40.261	22.956	90.124	1.00 24.23	A
	ATOM	1331		PHE	185	41.332	22.987	87.961	1.00 27.17	A
•	MOTA	1332	CZ	PHE	185	40.533	23.609	88.921	1.00 25.70	A
	MOTA	1333	c	PHE	185	42.002	17.326	90.149	1.00 26.03	A
35	MOTA	1334	ŏ	PHE	185	41.709	16.937	91.275	1.00 25.54	A
-	ATOM	1335	N	ASP	186	42.941	16.743	89.414	1.00 29.33	A
	ATOM	1336	CA	ASP	186	43.692	15.603	89.930	1.00 33.38	A
	MOTA	1337	CB	ASP	186		14.913	88.801	1.00 35.26	A
	MOTA	1338	. CG	ASP	186	43.546	14.212	87.816	1.00 37.12	A
40	MOTA	1339		ASP	186	43.644	14.505	86.603	1.00 37.66	A
	MOTA	1340		ASP	186	42.733	13.368	88.257	1.00 36.31	A
	MOTA	1341	С	ASP	186	44.675	16.117	90:977	1.00 35.30	A
	MOTA	1342	0	ASP	186	45.167	17.238	90.865	1.00 35.53	A
	MOTA	1343	N	ASP	187	44.959	15.313	91.996	1.00 38.26	A
45	MOTA	1344	CA	ASP	187	45.890	15.739	93.037	1.00 43.31	A
	MOTA	1345	СВ	ASP	187	45.489	15.138	94.385	1.00 42.12	A
	MOTA	1346	CG	ASP	187	46.217	15.784	95.546	1.00 42.51	A
	MOTA	1347	OD1	ASP	187	45.755	15.631	96.696	1.00 42.87	A
	ATOM	1348	OD2	ASP	187	47.252	16.442	95.307	1.00 41.23	A
50	MOTA	1349	С	ASP	187	47.307	15.318	92.665	1.00 46.67	A
	MOTA	1350	0	ASP	187	47.644	14.138	92.719	1.00 48.15	A
	MOTA	1351	N	PRO	188	48.160	16.283	92.286	1.00 50.27	A
	MOTA	1352	CD	PRO	188	47.945	17.735	92.408	1.00 50.91	λ
<i></i>	MOTA	1353	CA	PRO	188	49.548	15.996	91.897	1.00 53.10	A
55	MOTA	1354	CB	PRO	188	50.107	17.376	91.561	1.00 52.20	Α
	MOTA	1355	CG	PRO	188	49.364	18.263	92.503	1.00 52.65	A
	MOTA	1356	С	PRO	188	50.366	15.279	92.966	1.00 55.80	A
	ATOM	1357	0	PRO	188	51.319	14.568	92.650	1.00 56.91	Α.
60	MOTA	1358	N	ARG	189	49.996	15.466	94.228	1.00 58.59	A
60	MOTA	1359	CA	ARG	189	50.703	14.812	95.321	1.00 61.67	A
	MOTA	1360	CB	ARG	189	50.294	15.428	96.658	1.00 63.13	A
	MOTA	1361	CG	ARG	189	50.839	16.823	96.881	1.00 65.91	A
	MOTA	1362	CD	ARG	189	50.181	17.468	98.083	1.00 68.55	A
<i>(E</i>	ATOM	1363	NE	ARG	189	48.754	17.670	97.855	1.00 70.63	A
65	MOTA	1364	CZ	ARG	189	47.906	18.095	98.784	1.00 72.05	A
	MOTA	1365		ARG	189	48.340		100.010	1.00 72.50	A
	MOTA	1366	NH2		189	46.623	18.252	98.484	1.00 72.44	A
	MOTA	1367	C	ARG	189	50.402	13.316	95.321	1.00 63.14	A
70	MOTA	1368	0	ARG	189	51.085	12.537	94.652	1.00 63.21	A
70	MOTA	1369	И	ASN	190	49.377	12.916	96.070	1.00 64.30	A
	MOTA	1370	CA	ASN	190	49.000	11.509	96.140		A
	MOTA	1371	CB	ASN	190	48.225	11.220	97.439		A A
	MOTA	1372	CC	ASN	190	47.172	12.273	97.753	1.00 67.73	^

									1 00 67 07	
	MOTA	1373	OD1	ASN	190	47.491	13.443	97.982	1.00 67.83	A
	ATOM	1374	ND2	ASN	190	45.909	11.858	97.773	1.00 67.20	A
	MOTA	1375	С	ASN	190	48.197	11.051	94.918	1.00 64.94	A
	ATOM	1376	ō	ASN	190	47.182	11.662	94.565	1.00 64.53	A
5						48.669	9.999	94.273	1.00 64.72	Ä
J	MOTA	1377	N	LYS	191					
	MOTA	1378	CA	LYS	191	48.018	9.463	93.083	1.00 63.98	A
	MOTA	1379	CB	LYS	191	48.810	8.266	92.541	1.00 65.18	A
	MOTA	1380	CG	LYS	191	48.799	7.041	93.447	1.00 66.13	A
	MOTA	1381	CD	LYS	191	49.405	5.830	92.747	1.00 67.02	A
10			CE		191	49.274	4.572	93.593	1.00 68.29	A
10	MOTA	1382		LYS						
	MOTA	1383	NZ	LYS	191	49.860	3.375	92.919	1.00 69.29	A
	MOTA	1384	С	LYS	191	46.577	9.039	93.358	1.00 62.26	A
	MOTA	1385	0	LYS	191	46.151	8.963	94.513	1.00 63.17	A
	MOTA	1386	N	ARG	192	45.843	8.756	92.282	1.00 58.36	A
15	MOTA	1387	CA	ARG	192	44.440	8.350	92.348	1.00 54.26	A
13									1.00 56.88	
	MOTA	1388	СВ	ARG	192	44.308	6.833	92.578		A
	MOTA	1389	CG	ARG	192	44.776	6.289	93.926	1.00 59.69	Α
	MOTA	1390	CD	ARG	192	43.939	5.062	94.306	1.00 62.18	A
	MOTA	1391	NE	ARG	192	44.633	4.121	95.181	1.00 64.60	A
20	ATOM	1392	CZ	ARG	192	45.640	3.344	94.792	1.00 66.61	A
20								93.539	1.00 66.97	A
	MOTA	1393		ARG	192	46.074	3.400			
	MOTA	1394	NH2	ARG	192	46.209	2.505	95.650	1.00 67.30	A
	MOTA	1395	С	ARG	192	43.619	9.106	93.391	1.00 50.08	A
	MOTA	1396	0	ARG	192	42.742	8.538	94.049	1.00 50.87	A
25	ATOM	1397	N	GLY	193	43.909	10.395	93.531	1.00 44.14	A
20						43.183	11.231	94.469		- A
	MOTA	1398	CA	GLY	193				_	
	MOTA	1399	С	GLY	193	42.799	12.482	93.712	1.00 30.34	A
	MOTA	1400	0	GLY	193	43.343	12.732	92.639	1.00 30.32	A
	MOTA	1401	N	VAL	194	41.865	13.264	94.238	1.00 25.49	A
30	MOTA	1402	CA	VAL	194	41.463	14.489	93.557	1.00 21.22	Α
20	ATOM	1403	CB	VAL	194	40.078	14.359	92.884	1.00 20.31	A
									1.00 19.29	
	MOTA	1404		VAL	194	40.100	13.289	91.809		A
	MOTA	1405	CG2	VAL	194	39.032	14.059	93.935	1.00 18.96	A
	MOTA	1406	С	VAL	194	41.375	15.668	94.505	1.00 20.08	A
35	MOTA	1407	0	VAL	194	41.417	15.515	95.722	1.00 20.27	A
	MOTA	1408	N	ILE	195	41.238	16.853	93.930	1.00 20.12	A
						41.109		94.713	1.00 18.57	A
	MOTA	1409	CA	ILE	195		18.065			
	MOTA	1410	CB	ILE	195	42.298	19.014	94.477	1.00 20.69	A
	MOTA	1411	CG2	ILE	195	42.011	20.362	95.118	1.00 21.74	A
40	MOTA	1412	CG1	ILE	195	43.584	18.392	95.029	1.00 21.99	A
	MOTA	1413		ILE	195	44.853	19.212	94.722	1.00 23.27	A
	ATOM	1414	c	ILE	195	39.838	18.791	94.297	1.00 17.41	A
										A
	MOTA	1415	Ο.	ILE	195	39.639	19.077	93.115	1.00 15.50	
45	MOTA	1416	N	ILE	196	38.962	19.066	95.256	1.00 17.01	A
45	MOTA	1417	CA	ILE	196	37.751	19.805	94.939	1.00 18.54	A
	MOTA	1418	CB	ILE	196	36.493	19.251	95.639	1.00 18.28	A
	MOTA	1419		ILE	196	35.299	20.143	95.314	1.00 13.69	A
	MOTA	1420		ILE	196	36.209	17.819	95.171	1.00 17.38	A
50	MOTA	1421		ILE	196	37.016	16.775	95.894	1.00 21.62	A
50	MOTA	1422	С	ILE	196	37.981	21.232	95.407	1.00 20.22	A
	MOTA	1423	0	ILE	196	38.001	21.517	96.606	1.00 20.32	A
	ATOM	1424	N	LYS	197	38.158	22.122	94.441	1.00 21.72	A
	MOTA	1425	CA	LYS	197	38.418	23.524	94.709	1.00 23.72	A
	MOTA	1426	СВ	LYS	197	38.807	24.209	93.397	1.00 26.40	A
55										Ä
23	MOTA	1427	CG	LYS	197	39.068	25.693	93.481	1.00 29.01	
	MOTA	1428	CD	LYS	197	39.519	26.211	92.125	1.00 32.62	A
	MOTA	1429	CE	LYS	197	39.538	27.728	92.088	1.00 33.50	A.
	MOTA	1430	NZ	LYS	197	38.172	28.259	92.341	1.00 36.03	A
	ATOM	1431	C	LYS	197	37.226	24.225	95.348	1.00 24.04	A
60			_			36.139			1.00 24.54	
00	ATOM	1432	0	LYS	197		24.261	94.782		A
	MOTA	1433	N	GLY	198	37.436	24.763	96.543	1.00 24.46	A
	MOTA	1434	CA	GLY	198	36.377	25.478	97.227	1.00 25.68	A
	MOTA	1435	С	GLY	198	35.413	24.681	98.088	1.00 26.82	A
	ATOM	1436	ō	GLY	198	34.482	25.256	98.652	1.00 27.32	A
65	MOTA	1437	N	LEU	199	35.612	23.373	98.202	1.00 27.36	A
00										
	MOTA	1438	CA	LEU	199	34.714	22.558	99.017	1.00 27.19	A
	MOTA	1439	CB	LEU	199	35.008	21.068	98.819	1.00 26.21	A
	ATOM	1440	CG	LEU	199	33.908	20.008	99.023	1.00 27.04	A
	MOTA	1441		LEU	199	34.563	18.778	99.630	1.00 25.53	A
70	ATOM	1442		LEU	199	32.779	20.497	99.924	1.00 24.18	A
, ,									1.00 27.51	A
	ATOM	1443	C	LEU	199	34.920		100.484		
	MOTA	1444	0	LEU	199	36.024		101.005	1.00 28.57	A
	MOTA	1445	N	GLU	200	33.856	23.346	101.150	1.00 28.60	A

	ATOM	1446	CA	GLU	200	33.950	23.721	102.553	1.00 31.25	A
	MOTA	1447	CB	GLU	200	32.788	24.644	102.935	1.00 34.22	A
	MOTA	1448		GLU	200	32.933	26.067		1.00 39.68	A
		1449		GLU	200	34.051	26.823		1.00 42.07	A
5	MOTA								1.00 44.27	Ä
J	ATOM	1450	OE1		200	33.921	27.118			
	MOTA	1451	OE2		200	35.065	27.120		1.00 44.71	A
	ATOM	1452	С	GLU	200	33.986	22.540	103.516	1.00 30.44	A
	MOTA	1453	0	GLU	200	33.381	21.497	103.282	1.00 28.54	A
	MOTA	1454	N	GLU	201	34.716	22.729	104.606	1.00 30.76	A
10	ATOM	1455	CA	GLU	201	34.841	21.730		1.00 29.99	A
10						36.281	21.247		1.00 29.82	A
	MOTA	1456	CB	GLU	201					
	MOTA	1457	CG	GLU	201	36.755	20.516		1.00 32.15	A
	MOTA	1458	CD	GLU	201	38.156	19.977		1.00 35.25	A
	MOTA	1459	OE1	GLU	201	38.408	19,298	105.699	1.00 34.69	A
15	MOTA	1460	OE2	GLU	201	39.000	20.227	103.786	1.00 36.53	A
	ATOM	1461	С	GLU	201	34.439	22.418	106.943	1.00 29.40	A
	ATOM	1462	0	GLU	201	35.183	23.248	107.465	1.00 30.31	A
	ATOM	1463	Ň	ILE	202	33.256		107.449	1.00 27.91	A
				ILE					1.00 25.94	Ä
20 1	ATOM	1464	CA		202	32.765		108.679		
20	MOTA	1465	CB	ILE	202	31.207		108.720	1.00 27.58	A
	MOTA	1466	CG2	ILE	202	30.721	23.125	110.096	1.00 24.19	A
	ATOM	1467	CG1	ILE	202	30.662	23.706	107.682	1.00 28.28	A.
	MOTA	1468	CD1	ILE	202	30.809	23.241	106.256	1.00 30.78	A
	MOTA	1469	С	ILE	202	33.277		109.889	1.00 25.41	·A
25	MOTA	1470	ŏ	ILE	202	33.195		109.945	1.00 25.37	A
25								110.856	1.00 23.88	A
	MOTA	1471	N	THR	203	33:811				
	MOTA	1472	CA	THR	203	34.321		112.083	1.00 22.88	A
	MOTA	1473	CB	THR	203	35.397		112.742	1.00 22.77	A
	ATOM	1474	OG1	THR	203	36.542	23.064	111.883	1.00 23.19	A
30	MOTA	1475	CG2	THR	203	35.813	22.441	114.112	1.00 19.08	A
	MOTA	1476	С	THR	203	33.143		113.038	1.00 22.21	A
	MOTA	1477	ō	THR	203	32.385		113.242	1.00 22.47	A
					204			113.606	1.00 21.39	A
	MOTA	1478	N	VAL		32.977				
25.	MOTA	1479	CA	VAL	204	31.891		114.549	1.00 21.47	A
35	MOTA	1480	CB	VAL	204	31.248		114.278	1.00 20.28	A
•	MOTA	1481	CG1	VAL	204	30.034	18.906	115.162	1.00 21.96	A
	MOTA	1482	CG2	VAL	204	30.859	19.000	112.820	1.00 20.66	A
	MOTA	1483	С	VAL	204	32.531	20.490	115.939	1.00 23.52	A
	ATOM	1484	ŏ	VAL	204	33.083		116.385	1.00 24.43	A
40									1.00 23.51	A
40	MOTA	1485	N	HIS	205	32.468		116.615		
	MOTA	1486	CA	HIS	205	33.088		117.933	1.00 24.78	A
	MOTA	1487	CB	HIS	205	32.979		118.407	1.00 24.16	A
	MOTA	1488	ĊG	HIS	205	33.597	24.220	117.460	1.00 28.16	A
	MOTA	1489	CD2	HIS	205	34.887	24.595	117.281	1.00 28.25	A
45	ATOM	1490		HIS	205	32.870		116.493	1.00 29.05	A
	ATOM	1491		HIS	205	33.684		115.759	1.00 27.33	A
									1.00 28.33	A
	MOTA	1492		HIS	205	34.914		116.216		
	MOTA	1493	С	HIS	205	32.586		119.018	1.00 24.15	A
~^	MOTA	1494	0	HIS	205	33.341	20.445	119.909	1.00 24.11	A
50	MOTA	1495	N	ASN	206	31.318	20.458	118.945	1.00 25.62	A
	MOTA	1496	CA	ASN	206	30.758	19.552	119.939	1.00 26.43	A
	ATOM	1497	CB	ASN	206	30.598		121.281	1.00 25.52	Α
	ATOM	1498	CG	ASN	206	29.689		121.186	1.00 26.18	A
	MOTA	1499		ASN	206	28.498		120.906	1.00 28.63	A
55										
33	MOTA	1500		ASN	206	30.246		121.414	1.00 24.14	A
	MOTA	1501	С	ASN	206	29.422		119.496	1.00 27.20	A
	MOTA	1502	0	ASN	206	28.804	19.416	118.533	1.00 27.37	A
	MOTA	1503	N	LYS	207	28.993	17.933	120.212	1.00 27.93	A
	MOTA	1504	CA	LYS	207	27.751		119.924	1.00 30.13	A
60	MOTA	1505	CB	LYS	207	27.449		121.060	1.00 32.58	A
00										
	MOTA	1506	CG	LYS	207	26.151		120.906	1.00 36.84	A
	MOTA	1507	CD	LYS	207	25.112		121.929	1.00 40.39	A
	MOTA	1508	CE	LYS	207	25.525		123.349	1.00 41.61	A
	MOTA	1509	NZ	LYS	207	24.489	15.948	124.350	1.00 43.85	A
65	MOTA	1510	С	LYS	207	26.571		119.725	1.00 29.76	A
	MOTA	1511	ō	LYS	207	25.738		118.850	1.00 30.05	A
	ATOM	1512		ASP	208	26.505		120.523	1.00 28.95	A
			N							
	MOTA	1513	CA	ASP	208	25.402		120.429	1.00 27.71	A
70	MOTA	1514	CB	ASP	208	25.280		121.751	1.00 28.92	A
70	MOTA	1515	CG	ASP	208	24.772		122.895	1.00 33.21	, A
	MOTA	1516	OD1	ASP	208	24.967	20.444	124.081	1.00 32.92	A
	MOTA	1517		ASP	208	24.165		122.609	1.00 34.60	A
	MOTA	1518	c	ASP	208	25.524		119.240	1.00 26.33	A
	011	-340	v		200		~~		2.22 20.00	••

	MOTA	1519	0	ASP	208	24.836	22.186 119.156	1.00 26.39	A
	MOTA	1520	N	GLU	209	26.381	20.810 118.296	1.00 24.27	Α .
	MOTA	1521	CA	GLU	209	26.580	21.630 117.116	1.00 21.87	A
	ATOM	1522	CB	GLU	209	28.039	22.074 117.066	1.00 23.60	Ä
5									
J	MOTA	1523	CG	GLU	209	28.331	23.202 116.106	1.00 25.30	A
	MOTA	1524	CD	GLU	209	29.678	23.849 116.384	1.00 25.66	A
	MOTA	1525	OE1	GLU	209	29.872	24.362 117.507	1.00 25.63	A
	MOTA	1526	OE2	GLU	209	30.538	23.845 115.481	1.00 26.97	A
	MOTA	1527	С	GLU	209	26.217	20.819 115.874	1.00 19.67	A
10	MOTA	1528	ō	GLU	209	26.125	21.350 114.769	1.00 18.53	A
	MOTA	1529	N	VAL	210	25.988	19.528 116.075	1.00 16.60	A
	MOTA	1530	CA	VAL	210	25.648	18.625 114.985	1.00 17.06	A
	MOTA	1531	CB	VAL	210	25.654	17.148 115.479	1.00 17.27	A
	MOTA	1532	CG1	VAL	210	25.307	16.224 114.330	1.00 18.17	A
15	MOTA	1533	CG2	VAL	210	27.028	16.779 116.068	1.00 17.55	A
	MOTA	1534	C	VAL	210	24.305	18.895 114.270	1.00 16.45	A
	MOTA	1535	ō	VAL	210	24.267	19.119 113.063	1.00 17.67	Ä
				TYR	211	23.203	18.882 115.003	1.00 14.85	Ä
	MOTA	1536	N						
20	MOTA	1537	CA	TYR	211	21.911	19.072 114.366	1.00 15.99	A
20	MOTA	1538	CB	TYR	211	20.789	19.050 115.404	1.00 14.76	A
	MOTA	1539	CG	TYR	211	19.431	18.850 114.780	1.00 14.73	A
	MOTA	1540	CD1	TYR	211	19.179	17.755 113.953	1.00 12.63	A
	MOTA	1541	CE1		211	17.923	17.557 113.387	1.00 14.15	A
	ATOM	1542	CD2		211	18.395	19.746 115.025	1.00 15.52	A
25									
25	MOTA	1543	CE2	TYR	211	17.136	19.559 114.466	1.00 16.40	· A
	MOTA	1544	CZ	TYR	211	16.903	18.462 113.649	1.00 15.49	A·
	MOTA	1545	OH	TYR	211	15.645	18.271 113.116	1.00 12.99	A
	MOTA	1546	С	TYR	211	21.763	20.303 113.483	1.00 15.43	A
	MOTA	1547	0	TYR	211	21.220	20.207 112.383	1.00 17.14	A
30	ATOM	1548	N	GLN	212	22.238	21.456 113.925	1.00 15.05	Ä
-	ATOM	1549	CA		212	22.080	22.624 113.081	1.00 17.00	
				GLN					A
	MOTA	1550	CB	GLN	212	22.384	23.912 113.855	1.00 18.93	, А
	MOTA	1551	CG	GLN	212	23.803	24.099 114.319	1.00 25.15	Α
	ATOM	1552	CD	GLN	212	23.892	25.178 115.379	1.00 29.02	A
35	MOTA	1553	OE1	GLN	212	23.354	26.276 115.209	1.00 30.43	A
	MOTA	1554	NE2	GLN	212	24.562	24.870 116.486	1.00 30.19	A
	ATOM	1555	c	GLN	212	22.903	22.543 111.799	1.00 16.71	A
	MOTA	1556	0	GLN	212	22.459	23.030 110.749	1.00 16.05	A
áΩ	MOTA	1557	N	ILE	213	24.077	21.913 111.865	1.00 14.80	À
40	MOTA	1558	CA	ILE	213	24.921	21.776 110.678	1.00 13.74	A
	MOTA	1559	CB	ILE	213	26.309	21.148 111.036	1.00 14.83	A
	MOTA	1560	CG2	ILE	213	27.118	20.846 109.764	1.00 11.99	A
	MOTA	1561	CG1	ILE	213	27.099	22.122 111.926	1.00 13.49	A
	ATOM	1562		ILE	213	28.495	21.607 112.366	1.00 12.70	A
45		1563							
73	MOTA		c	ILE	213	24.170	20.909 109.662	1.00 14.25	A
	MOTA	1564	0	ILE	213.	24.135	21.223 108.474	1.00 14.16	A
	MOTA	1565	N	LEU	214	23.546	19.838 110.142	1.00 12.87	A
	ATOM	1566	CA	LEU	214	22.778	18.968 109.273	1.00 13.78	A
	MOTA	1567	CB	LEU	214	22.355	17.705 110.022	1.00 11.53	Α
50	MOTA	1568	ÇG	LEU	214	23.467	16.843 110.623	1.00 10.45	A
	ATOM	1569		LEU	214	22.840	15.626 111.257	1.00 10.08	A
	ATOM	1570		LEU	214	24.454	16.418 109.552	1.00 9.12	Ä
		1571							
	MOTA		C	LEU	214	21.536	19.695 108.749	1.00 16.52	A
E E	MOTA	1572	0	LEU	214	21.172	19.527 107.591	1.00 19.62	A
55	MOTA	1573	N	GLU	215	20.881	20.495 109.590	1.00 16.71	A
	MOTA	1574	CA	GLU	215	19.690	21.239 109.152	1.00 19.78	A
	MOTA	1575	СВ	GLU	215	19.085	22.053 110.306	1.00 19.90	A
	ATOM	1576	CG	GLU	215	18.435	21.249 111.418	1.00 21.54	A
	MOTA	1577	CD	GLU	215		22.154 112.513		
60						17.901	22.134 112.313	1.00 24.54	A
OU	MOTA	1578		GLU	215	16.661	22.267 112.659	1.00 25.81	A
	MOTA	1579		GLU	215	18.728	22.768 113.219	1.00 23.71	A
	MOTA	1580	С	GLU	215	20.049	22.211 108.025	1.00 20.52	A
	MOTA	1581	0	GLU	215	19.311	22.361 107.048	1.00 19.08	A
	ATOM	1582	N	LYS	216	21.189	22.878 108.189	1.00 21.26	A .
65	ATOM	1583	CA	LYS	216	21.677	23.840 107.215	1.00 22.33	Ä
55		1584							
	MOTA		CB	LYS	216	23.046	24.367 107.656	1.00 24.51	A
	MOTA	1585	CG	LYS	216	23.510	25.619 106.938	1.00 28.98	A
	MOTA	1586	CD	LYS	216	22.872	26.865 107.523	1.00 33.02	A
	MOTA	1587	CE	LYS	216	23.331	27.078 108.959	1.00 35.90	A
70	MOTA	1588	NZ	LYS	216	24.819	27.142 109.072	1.00 37.29	A
	MOTA	1589	c	LYS	216	21.782	23.150 105.850	1.00 22.36	A
	MOTA	1590	ŏ	LYS	216	21.782	23.708 104.832	1.00 23.95	
									A
	MOTA	1591	N	GLY	217	22.318	21.931 105.838	1.00 20.62	A

	MOTA	1592	CA	GLY	217	22.458	21.193	104.595	1.00 19.15	A
	MOTA	1593	С	GLY	217	21.119	20.836	103.976	1.00 19.07	A
	MOTA	1594	0	GLY	217	20.938	20.932	102.760	1.00 18.70	A
	MOTA	1595	N	ALA	218	20.168		104.812	1.00 17.10	A
5	MOTA	1596	CA	ALA	218	18.845		104.330	1.00 15.84	A
-	MOTA	1597	СВ	ALA	218	17.996		105.471	1.00 14.05	A
				ALA	218	18.157		103.696	1.00 15.48	A
	ATOM ATOM	1598	C			17.533		102.638	1.00 15.90	À
		1599	0	ALA	218					
10	MOTA	1600	N	ALA	219	18.273		104.331	1.00 14.41	A
10	MOTA	1601	CA	ALA	219	17.638		103.800	1.00 14.13	A
	MOTA	1602	· CB	ALA	219	17.776		104.787	1.00 12.71	A
	MOTA	1603	С	ALA	219	18.208	24.051	102.452	1.00 13.46	A
	MOTA	1604	0	ALA	219	17.469	24.441	101.561	1.00 13.70	A
	MOTA	1605	N	LYS	220	19.525	23.978	102.304	1.00 13.95	A
15	MOTA	1606	CA	LYS	220	20.146	24.357	101.045	1.00 14.23	A
	ATOM	1607	СВ	LYS	220	21.666	24.380	101.192	1.00 12.72	A
	MOTA	1608	CG	LYS	220	22.360	25.077	100.038	1.00 17.07	A
	MOTA	1609	CD	LYS	220	23.833		100.309	1.00 15.93	A
	MOTA	1610	CE	LYS	220	24.512	25.923	99.080	1.00 17.58	A
20	MOTA	1611	NZ	LYS	220	25.991	26.097	99.261	1.00 15.01	A
	ATOM	1612	c	LYS	220	19.718	23.360	99.969	1.00 14.89	A
	MOTA	1613	ŏ	LYS	220	19.497	23.722	98.809	1.00 15.14	A.
		1614	N	ARG	221	19.572		100.380	1.00 14.35	Ä.
	MOTA			ARG		19.166	21.024	99.492	1.00 15.09	Ä
25	MOTA	1615	CA		221					
25	MOTA	1616	СВ	ARG	221	19.185	19.714	100.274	1.00 14.48	A
	MOTA	1617	CG	ARG	221	19.467	18.488	99.455	1.00 18.77	A
	MOTA	1618	CD	ARG	221	19.485		100.365	1.00 20.34	A
	MOTA	1619	NE	ARG	221	20.806	16.655	100.446	1.00 21.59	A
20	MOTA	1620	CZ	ARG	221	21.148		101.357	1.00 21.60	. А
30	MOTA	1621		ARG	221	20.264		102.272	1.00 19.86	A
	MOTA	1622	NH2	ARG	221	22.367	15.218	101.344	1.00 19.97	A
	MOTA	1623	С	ARG	221	17.761	21.290	98.932	1.00 15.56	A
	ATOM	1624	0	ARG	221	17.419	20.858	97.827	1.00 15.28	A
	MOTA	1625	N	THR	222	16.945	22.004	99.698	1.00 14.05	A
.35	MOTA	1626	CA	THR	222	15.608	22.325	99.253	1.00 13.31	A
	MOTA	1627	CB	THR	222	14.781	22.963	100.384	1.00 16.22	A
	ATOM	1628	0G1	THR	222	14.707	22.058	101.495	1.00 16.19	A
	MOTA	1629	CG2	THR	222	13.367	23.252	99.904	1.00 17.44	A
	MOTA	1630	C	THR	222	15.679	23.284	98.061	1.00 13.31	A
40	MOTA	1631	0	THR	222	14.850	23.205	97.156	1.00 12.26	Α.
	MOTA	1632	N	THR	223	16.667	24.175	98.044	1.00 11.79	A
	MOTA	1633	CA	THR	223	16.787	25.112	96.936	1.00 13.70	A
	ATOM	1634	CB	THR	223	17.675	26.345	97.287	1.00 14.50	A
	MOTA	1635	0G1		223	19.058	25.979	97.247	1.00 18.73	A
45	ATOM	1636	CG2	THR	223	17.343	26.870	98.669	1.00 10.63	A
	MOTA	1637	c	THR	223	17.387	24.398	95.729	1.00 15.22	A
	MOTA	1638	ō	THR	223	17.148	24.778	94.580	1.00 17.54	A
	ATOM	1639	N	ALA	224	18.176	23.361	95.986	1.00 14.46	A
	MOTA	1640	CA	ALA	224	18.773	22.607	94.896	1.00 13.62	A
50	MOTA	1641	CB	ALA	224	19.793	21.615	95.432	1.00 14.83	A
20	MOTA	1642	c	ALA	224	17.665	21.867	94.171	1.00 13.10	A
	MOTA	1643	ŏ	ALA	224	17.672	21.775	92.958	1.00 13.24	Ä
		1644	N	ALA			21.346	94.932	1.00 13.24	A
	MOTA				225	16.710				
55	ATOM	1645	CA	ALA	225	15.598	20.596	94.369	1.00 15.07	λ
55	ATOM	1646	CB	ALA	225	14.817	19.903	95.498	1.00 15.97	A
	MOTA	1647	C	ALA	225	14.640	21.422		1.00 14.78	A
	MOTA	1648	0	ALA	225	14.070	20.908		1.00 13.24	A
	MOTA	1649	N	THR	226	14.449	22.694	93.822	1.00 15.56	Α.
	MOTA	1650	CA	THR	226	13.555	23.490	92.995	1.00 16.82	A
OU :	MOTA	1651	СВ	THR	226	12.992	24.729	93.747	1.00 17.66	A
	MOTA	1652	0G1	THR	226	13.314	25.921	93.015	1.00 21.16	A
	MOTA	1653		THR	226	13.557	24.822		1.00 16.64	A
	ATOM	1654	С	THR	226	14.300	23.943		1.00 15.61	A
	MOTA	1655	0	THR	226	13.685	24.257		1.00 13.81	A
65	ATOM	1656	N	LEU	227	15.629	23.947		1.00 14.58	A
	ATOM	1657	CA	LEU	227	16.473	24.361		1.00 14.64	A
	ATOM	1658	СВ	LEU	227	17.751	24.993		1.00 17.19	A
	MOTA	1659	CG	LEU	227	18.827	25.459		1.00 22.76	Ä
	MOTA	1660		LEU	227	18.209	26.283		1.00 21.40	Ä
70	MOTA						26.283		1.00 21.40	A
, ,		1661	CD2	LEU	227 227	19.873			1.00 24.08	
	ATOM	1662	0	LEU	227	16.808	23.223		1.00 15.20	. А
	ATOM	1663		LEU	227	16.939	23.453		1.00 18.19	A
	MOTA	1664	N	MET	228	16.924	22.000	90.256	1.00 13.03	^

	MOTA	1665	CA	MET	228	17.244	20.842	89.424	1.00 14.22	A
	MOTA	1666	CB	MET	228	18.607	20.275	89.852	1.00 17.08	A ·
	ATOM	1667	CG	MET	228	19.771	21.243	89.583	1.00 18.22	A
							20.816	90.414	1.00 19.64	Ä
5	MOTA	1668	SD	MET	228	21.340		91.964	1.00 16.95	Ä
3	MOTA	1669	CE	MET	228	21.189	21.761			
	MOTA	1670	C	MET	228	16.148	19.768	89.504	1.00 13.11	· A
	MOTA	1671	0	MET	228	15.683	19.423	90.588	1.00 10.34	À
	MOTA	1672	N	ASN	229	15.748	19.243	88.348	1.00 12.86	λ
• •	ATOM	1673	CA	ASN	229	14.676	18.246	88.259	1.00 13.74	A
10	MOTA	1674	CB	ASN	229	14.319	17.975	86.794	1.00 13.77	A
	MOTA	1675	CG	ASN	229	13.993	19.241	86.023	1.00 15.98	A
	MOTA	1676	OD1	ASN	229	13.899	19.221	84.790	1.00 16.80	A
	MOTA	1677	ND2	ASN	229	13.814	20.352	86.740	1.00 15.44	A
	MOTA	1678	С	ASN	229	14.976	16.915	88.930	1.00 14.79	A
15	MOTA	1679	0	ASN	229	16.036	16.322	88.713	1.00 15.96	A
_	MOTA	1680	N	ALA	230	14.022	16.444	89.728	1.00 12.65	A
	MOTA	1681	CA	ALA	230	14.155	15.182	90.443	1.00 13.20	A
	MOTA	1682	CB	ALA	230	13.971	14.010	89.476	1.00 11.65	A
	ATOM	1683	Č	ALA	230	15.514	15.099	91.114	1.00 12.14	A
20	ATOM	1684	ŏ	ALA	230	16.187	14.071	91.056	1.00 11.89	Ä
20	MOTA	1685	N	TYR	231	15.906	16:190	91.753	1.00 11.37	Ä
	MOTA	1686	CA	TYR	231	17.190	16.270	92.435	1.00 12.67	A
				TYR	231	17.325	17.625	93.128	1.00 13.10	Ä
	MOTA	1687	CB					93.720	1.00 13.58	Ä
25	MOTA	1688	CC.	TYR	231	18.685	17.843			- A
23	MOTA	1689		TYR	231	18.951	17.526	95.050	1.00 15.59	
	MOTA	1690	CE1	TYR	231	20.235	17.687	95.583	1.00 15.33	. А
	MOTA	1691		TYR	231	19.728	18.325	92.934	1.00 14.58	A
	MOTA	1692	CE2	TYR	231	21.008	18.489	93.454	1.00 15.62	A
20	MOTA	1693	CZ	TYR	231	21.251	18.169	94.777	1.00 14.53	A
30	MOTA	1694	ОН	TYR	231	22.508	18.355	95.291	1.00 16.72	A
	MOTA	1695	С	TYR	231	17.431	15.162	93.458	1.00 12.52	A
	MOTA	1696	0	TYR	231 -	18.470	14.500	93.436	1.00 12.31	A
	MOTA	1697	N	SER	232	16.457	14.968	94.341	1.00 12.51	A
	MOTA	1698	CA	SER	232	16.543	13.978	95.406	1.00 11.76	A
35	MOTA	1699	CB	SER	232	15.325	14.091	96.331	1.00 10.64	A
	ATOM	1700	OG	SER	232	14.143	13.654	95.692	1.00 10.59	A
	MOTA	1701	С	SER	232	16.691	12.534	94.936	1.00 12.25	A
	ATOM	1702	ō	SER	232	17.123	11.673	95.702	1.00 12.40	A
	MOTA	1703	N	SER	233	16.332	12.244	93.695	1.00 11.36	A
40	ATOM	1704	CA	SER	233	16.485	10.876	93.241	1.00 12.78	Ä
	MOTA	1705	СВ	SER	233	15.146	10.341	92.712	1.00 13.58	A
	MOTA	1706	OG	SER	233	14.735	11.011	91.547	1.00 17.87	A
	MOTA	1707	C	SER	233	17.598	10.719	92.199	1.00 12.96	. A
			ò		233	18.129	9.628	92.018	1.00 12.33	A
45	ATOM	1708		SER				91.552	1.00 13.08	À
47	MOTA	1709	N	ARG	234	17.984	11.817			
	MOTA	1710	CA	ARG	234	19.022	11.770	90.519	1.00 12.98	A
	MOTA	1711	CB	ARG	234	18.639	12.658	89.333	1.00 13.88	A
	MOTA	1712	CG	ARG	234	17.411	12.209	88.575	1.00 15.89	A
50	MOTA	1713	CD	ARG	234	17.135	13.146	87.408	1.00 16.18	A
50	MOTA	1714	NE	ARG	234	15.961	12.713	86.672	1.00 20.62	A
	MOTA	1715	CZ	ARG	234	15.330	13.442	85.761	1.00 21.81	A
	MOTA	1716	NH1		234	15.764	14.662	85.459	1.00 21.30	A
	MOTA	1717	NH2	ARG	234	14.249	12.951	85.168	1.00 21.53	A
	MOTA	1718	С	ARG	234	20.409	12.182	90.972	1.00 11.75	A
55	MOTA	1719	0	ARG	234	21.374	12.011	90.230	1.00 11.05	A
	MOTA	1720	N	SER	235	20.510	12.744	92.170	1.00 9.69	A
	MOTA	1721	CA	SER	235	21.802	13.185	92.679	1.00 9.62	A
	ATOM	1722	CB	SER	235	21.656	14.525	93.409	1.00 9.37	A
	ATOM	1723	OG	SER	235	20.858	14.410	94.575	1.00 9.00	A
60	MOTA	1724	C	SER	235	22.445	12.171	93.617	1.00 9.66	A
•	ATOM	1725	ō	SER	235	21.768	11.317	94.190	1.00 12.40	A
	MOTA	1726	N	HIS	236	23.762	12.287	93.758	1.00 8.64	A
	MOTA	1727	CA	HIS	236	24.573	11.436	94.627	1.00 5.39	Â
								93.878	1.00 6.60	À
65	MOTA	1728	CB	HIS	236	25.795	10.898			
UJ	MOTA	1729	CG	HIS	236	25.474	10.085	92.666	1.00 6.36	A
	ATOM	1730		HIS	236	25.516	10.398	91.350	1.00 6.40	A
	MOTA	1731		HIS	236	25.109	8.758	92.732	1.00 6.26	A
	MOTA	1732		HIS	236	24.945	8.287	91.509	1.00 4.95	A
70	MOTA	1733		HIS	236	25.186	9.261	90.652	1.00 5.93	A
70	MOTA	1734	С	HIS	236	25.092	12.348	95.732	1.00 6.58	A
	MOTA	1735	0	HIS	236	25.676	13.396	95.446	1.00 5.89	A
	MOTA	1736	N	SER	237	24.902	11.972	96.990	1.00 7.32	A
	MOTA	1737	CA	SER	237	25.409	12.816	98.063	1.00 7.91	A

	MOTA	1738	CB	SER	237	24.287	13.204 99.022	1.00 8.40	A
	MOTA	1739	OG	SER	237	23.895	12.093 99.805	1.00 12.48	A
								1.00 7.51	A
	MOTA	1740	C	SER	237	26.505			
_	MOTA	1741	0	SER	237	26.365	10.916 99.179	1.00 10.56	A
5	MOTA	1742	N	VAL	238	27.593	12.794 99.092	1.00 7.01	A
	ATOM	1743	CA	VAL	238	28.714	12.236 99.822	1.00 7.37	A
					238	30.032	12.305 98.998	1.00 8.80	A
	MOTA	1744	CB	VAL					
	MOTA	1745	CG1		238	31.145	11.578 99.741	1.00 6.78	A
	MOTA	1746	CG2	VAL	238	29.833	11.711 97.603	1.00 5.26	A
10	MOTA	1747	С	VAL	238	28.938	13.025 101.107	1.00 8.29	A
		1748	.0	VAL	238	29.445	14.141 101.057	1.00 8.87	A
	MOTA								
	MOTA	1749	N	PHE	239	28.549	12.454 102.247	1.00 7.65	A
	MOTA	1750	CA	PHE	239	28.756	13.114 103.531	1.00 7.41	A
	MOTA	1751	CB	PHE	239	27.557	12.895 104.454	1.00 7.34	A
- 15	MOTA	1752	CG	PHE	239	27.615	13.694 105.726	1.00 6.91	A
13						28.508	13.355 106.744	1.00 7.70	A
	MOTA	1753		PHE	239				
	MOTA	1754	CD2	PHE	239	26.778	14.788 105.906	1.00 6.68	A
	MOTA	1755	CE1	PHE	239	28.567	14.102 107.931	1.00 7.54	A
	MOTA	1756	CE2	PHE	239	26.828	15.546 107.086	1.00 8.52	A
20	MOTA	1757	CZ	PHE	239	27.724	15.201 108.101	1.00 7.57	A
20									Ä
	MOTA	1758	С	PHE	239	30.016	12.525 104.169	1.00 10.17	
	MOTA	1759	0	PHE	239	30.063	11.334 104.486	1.00 10.87	Α.
	MOTA	1760	N	SER	240	31.036	13.356 104.350	1.00 9.89	A
	ATOM	1761	CA	SER	240	32.283	12.893 104.926	1.00 11.46	A
25					240	33.441	13.168 103.966	1.00 10.05	A
23	MOTA	1762	CB	SER					
	MOTA	1763	OG	SER	240	33.183	12.621 102.681	1.00 14.59	A
	MOTA	1764	С	SER	240	32.598	13.508 106.285	1.00 12.92	A
	MOTA	1765	0	SER	240	32.405	14.705 106.509	1.00 12.61	A
	MOTA	1766	N	VAL	241	33.078	12.665 107.193	1.00 12.52	· A
30									A
30	MOTA	1767	CA	VAL	241	33.468	13.113 108.511	1.00 13.59	
	MOTA	1768	CB	VAL	241	32.559	12.501 109.613	1.00 14.83	A
	MOTA	1769	CG1	VAL	241	32.526	10.991 109.492	1.00 17.21	A
•	ATOM	1770		VAL	241	33.054	12.922 110.993	1.00 13.88	A
						34.931	12:718 108.731	1.00 13.59	A
25.	MOTA	1771	C	VAL	241				
35	MOTA	-1772	0	VAL	241	35.305	11.548 108.607	1.00 10.71	A
	MOTA	1773	N'	THR	242	35.759	13.715 109.024	1.00 14.44	A
	MOTA	1774	CA	THR	242	37.175	13.489 109.264	1.00 15.80	A
	MOTA	1775	СВ	THR	242	38.051	14.421 108.409	1.00 16.64	A
									Ä
40	MOTA	1776		THR	242	37.719	14.238 107.025	1.00 19.41	
40	MOTA	1777	CG2	THR	242	39.539	14.102 108.618	1.00 11.48	A
	MOTA	1778	С	THR	242	37.479	13.726 110.734	1.00 17.79	A
	MOTA	1779	0	THR	242	37.051	14.719 111.322	1.00 19.50	A
		1780	N	ILE	243	38.224		1.00 18.66	A
	MOTA								
45	MOTA	1781	CA	ILE	243	38.563		1.00 20.82	A
45	MOTA	1782	CB	ILE	243	37.972	11.714 113.500	1.00 20.34	A
	MOTA	1783	CG2	ILE	243	38.085	11.953 114.993	1.00 20.79	A
	MOTA	1784		ILE	243	36.506		1.00 21.41	A
		1785			243	35.902		1.00 20.85	A
	MOTA			ILE					
~~	MOTA	1786	С	ILE	243	40.076		1.00 23.56	A
50	MOTA	1787	0	ILE	243	40.782	11.953 112.664	1.00 23.06	A
•	MOTA	1788	N	HIS	244	40.574	14.053 113.458	1.00 25.26	A
	ATOM	1789	CA	HIS	244	41.994		1.00 27.63	A
								1.00 28.72	Ä
	MOTA	1790	CB	HIS	244	42.507			
	MOTA	1791	CG	HIS	244	42.974	15.799 112.079	1.00 32.69	A
55	MOTA	1792	CD2	HIS	244	44.219	15.803 111.544	1.00 33.88	A
	MOTA	1793		HIS	244	42.111		1.00 34.05	A
						42.803		1.00 33.87	A
	MOTA	1794		HIS	244				
	MOTA	1795	NE 2	HIS	244	44.085			A
	MOTA	1796	С	HIS	244	42.108	13.878 115.254	1.00 29.05	A
60	MOTA	1797	0	HIS	244	41:541	14.599 116.084	1.00 28.16	A
-									Ä
	MOTA	1798	N	MET	245	42.827			
	MOTA	1799	CA	MET	245	42.968			A
	ATOM	1800	CB	MET	245	42.330	11.053 117.210	1.00 30.98	A
	MOTA	1801	CG	MET	245	40.880			A
65	MOTA	1802	SD	MET	245	40.390			Ä
رن									
	MOTA	1803	CE	MET	245	41.018			A
	MOTA	1804	С	MET	245	44.395	12.388 117.520		Α
	MOTA	1805	o	MET	245	45.332			, A
	ATOM	1806	N	LYS	246	44.536			A
70									
70	MOTA	1807	CA	LYS	246	45.813			A
	MOTA	1808	CB	LYS	246	46.349			A
	MOTA	1809	CG	LYS	246	47.769	14.284 120.187	1.00 48.98	A
	ATOM	1810	CD	LYS	246	48.360			A
	V1061	1010	CD	413	240	40.300	, 13.0.0 120.040	. 2.00 30.11	

					246	40.000	45 603 130 440	1 00 55 00	
	MOTA	1811	CE	LYS	246	49.830	15.693 120.448	1.00 55.09	A
	MOTA	1812	NZ	LYS	246	50.445	17.035 120.232	1.00 56.33	A
	MOTA	1813	С	LYS	246	45.496	12.179 120.799	1.00 42.14	A
5	MOTA	1814	0	LYS	246	45.157	12.860 121.764	1.00 42.94	A
2	MOTA	1815	N	GLU	247	45.586	10.859 120.834	1.00 42.88	A
	MOTA	1816	CA	GLU	247	45.286	10.090 122.027	1.00 45.27	A
	MOTA	1817	CB	GLU	247	44.896	8.669 121.623	1.00 45.22	A
	MOTA	1818	CG	GLU	247	44.301	7.829 122.726	1.00 45.70	A
10	MOTA	1819	CD	GLU	247	44.075	6.396 122.282	1.00 47.91	A
10	MOTA	1820	OE1		247	43.507	6.194 121.186	1.00 48.39	A
	MOTA	1821	OE2		247	44.462	5.471 123.032	1.00 47.23	· A
	MOTA	1822	С	GLU	247	46.463	10.040 122.995	1.00 46.56	A
	MOTA	1823	0	GLU	247	47.625	10.055 122.592	1.00 46.38	A
15	MOTA	1824	N	THR	248	46.144	9.988 124.281	1.00 47.43	A
15	MOTA	1825	CA	THR	248	47.155	9.903 125.320	1.00 49.03	A
	MOTA	1826	СВ	THR	248	47.340	11.259 126.029	1.00 49.86	A
	MOTA	1827	OG1		248	47.733	12.245 125.066	1.00 50.38	A
	MOTA	1828	CG2	THR	248	48.416	11.162 127.104	1.00 49.64	A
20	MOTA	1829	c	THR	248	46.679	8.838 126.309	1.00 49.49	A
20	MOTA	1830	0	THR	248	45.810	9.087 127.148	1.00 49.04	À
	MOTA	1831	N	THR	. 249	47.244	7.641 126.177	1.00 50.47	A
	MOTA	1832	CA	THR	249	46.892	6.510 127.025	1.00 51.50	A
	MOTA	1833	CB	THR	249	47.684	5.252 126.621	1.00 51.30	A
25	MOTA	1834	0G1		249	49.072	5.435 126.933	1.00 50.45	A
25	MOTA	1835	CG2		249	47.539	4.994 125.127	1.00 50.34	A
	MOTA	1836	C	THR	249	47.157	6.813 128.493	1.00 52.76	A
	MOTA	1837		THR	249	47.801	7.811 128.819	1.00 52.66	A
	MOTA	1838	N	ILE	250	46.663	5.948 129.375	1.00 53.97	A
30	MOTA	1839	CA	ILE	250	46.842	6.136 130.812	1.00 55.19	A
30	MOTA	1840	CB	ILE	250	46.042	5.078 131.624	1.00 55.38 1.00 55.55	A
	MOTA	1841	CG2		250	44.596	5.061 131.147		A A
	MOTA	1842	CG1		250	46.656 46.516	3.683 131.466 3.078 130.073	1.00 55.59 1.00 56.12	A
	MOTA	1843	CD1		250			1.00 55.82	A
35	MOTA	1844	C	ILE	250 250	48.313 48.634	6.097 131.239 6.316 132.408	1.00 55.54	λ·
55	MOTA MOTA	1845 1846	N O	ILE ASP	251	49.198	5.833 130.281	1.00 56.61	Â
	ATOM	1847	CA	ASP	251	50.633	5.776 130.543	1.00 57.44	Ä
	MOTA	1848	CB	ASP	251	51.285	4.696 129.679	1.00 57.92	Ä
	ATOM	1849	CG	ASP	251	50.757	3.306 129.979	1.00 58.92	Ä
40	MOTA	1850		ASP	251	50.894	2.427 129.098	1.00 59.53	A
••	MOTA	1851		ASP	251	50.217	3.088 131.089	1.00 57.67	A
	MOTA	1852	c	ASP	251	51.271	7.124 130.222	1.00 57.89	A
	ATOM	1853	ŏ	ASP	251	51.858	7.770 131.090	1.00 59.32	A
	ATOM	1854	N	GLY	252	51.141	7.537 128.967	1.00 57.36	A
45	MOTA	1855	CA	GLY	252	51.707	8.797 128.526	1.00 57.52	A
	MOTA	1856	C	GLY	252	52.089	8.717 127.060	1.00 57.92	A
	MOTA	1857	0	GLY	252	52.814	9.571 126.545	1.00 58.43	A
	MOTA	1858	N	GLU	253	51.602	7.675 126.392	1.00 57.56	A
	ATOM	1859	CA	GLU	253	51.869	7.456 124.974	1.00 57.81	A
50	ATOM	1860	CB	GLU	253	51.552	6.006 124.598	1.00 59.90	A
	MOTA	1861	CC	GLU	253	52.084	4.968 125.573	1.00 62.49	A
	MOTA	1862	CD	GLU	253	51.543	3.581 125.294	1.00 63.65	A
	MOTA	1863	OE1	GLU	253	51.693	3.108 124.146	1.00 65.45	A
	MOTA	1864	OE2	GLU	253	50.970	2.967 126.219	1.00 63.15	A
55	MOTA	1865	С	GLU	253	50.959	8.381 124.179	1.00 56.36	A
	ATOM	1866	0	GLU	253	49.818	8.618 124.572	1.00 56.13	A
	MOTA	1867	N	· GLU	254	51.451	8.908 123.067	1.00 54.64	A
	MOTA	1868	CA	GLU	254	50.626	9.790 122.256	1.00 53.82	A
	MOTA	1869	CB	GLU	254	51.269	11.183 122.151	1.00 54.89	A
60	MOTA	1870	CG	GLU	254	52.568	11.259 121.354	1.00 56.86	A
	MOTA	1871	CD	GLU	254	52.363	11.790 119.939	1.00 58.42	A
	MOTA	1872		GLU	254	51.856	12.924 119.800	1.00 58.67	A
	MOTA	1873		GLU	254	52.713	11.078 118.968	1.00 57.93	A
15	MOTA	1874	С	GLU	254	50.397	9.186 120.876	1.00 52.35	A
65	MOTA	1875	0	GLU	254	51.340	8.945 120.124	1.00 52.94	A
	MOTA	1876	N	LEU	255	49.135	8.916 120.560	1.00 50.68	A
	MOTA	1877	CA	LEU	255	48.772	8.340 119.268	1.00 48.63	A
	MOTA	1878	CB	LEU	255	47.828	7.142 119.439	1.00 49.85	A
70	MOTA	1879	CG	LEU	255	48.236	5.895 120.231	1.00 52.23	A
70	ATOM	1880		LEU	255	49.595	5.409 119.752	1.00 53.67	A
	ATOM	1881		LEU	255	48.278	6.201 121.720	1.00 53.72	A
	ATOM	1882	C	LEU	255	48.069	9.381 118.413	1.00 46.05	A
	ATOM	1883	0	LEU	255	46.978	9.832 118.755	1.00 45.38	A

•	MOTA	1884	N	VAL	256	48.695	9:772	117.310	1.00 43.74	A
	MOTA	1885	CA	VAL	256	48.081		116.409	1.00 41.19	A
	MOTA	1886	СВ	VAL	256	49.084		115.943	1.00 40.17	A
_	MOTA	1887	CG1	VAL	256	48.442	12.680	114.897	1.00 38.91	A
5	MOTA	1888	CG2	VAL	256	49.543	12.614	117.132	1.00 40.08	A
	MOTA	1889	С	VAL	256	47.533	9.994	115.200	1.00 39.59	A
•	MOTA	1890	0	VAL	256	48.276	9.619	114.291	1.00 39.95	A
	MOTA	1891	N	LYS	257	46.221	9.780	115.212	1.00 36.47	A
	MOTA	1892	CA	LYS	257	45.534	9.056	114.150	1.00 32.43	A
10	MOTA	1893	CB	LYS	257	44.733	7.902	114.756	1.00 31.46	A
	MOTA	1894	CC	LYS	257	45.525		115.710	1.00 31.17	A
	MOTA	1895	CD	LYS	257	44.613		116.573	1.00 30.49	A
	MOTA	1896	CE	LYS	257	43.767		117.486	1.00 31.11	A
15	MOTA	1897	NZ	LYS	257	42.941		118.411	1.00 32.10	A
15	MOTA	1898	Ç	LYS	257	44.585		113.384	1.00 30.18	A
	MOTA	1899	0	LYS	257	44.067		113.928	1.00 28.57	A
	MOTA	1900	N	ILE	258	44.361		112.120	1.00 28.11	A
	ATOM	1901	CA	ILE	258	43.451		111.263	1.00 26.14	A
20	MOTA	1902	CB	ILE	258	44.223		110.209	1.00 26.23	A
20	MOTA	1903		ILE	258 258	43.265		109.205	1.00 26.22	· A
	MOTA	1904	CG1		258	45.027 45.828		109.943	1.00 27.27	À
	MOTA MOTA	1905 1906	CDI	ILE	258	42.493		110.573	1.00 24.09	A. A
	MOTA	1907	0	ILE	258	42.493		109.772	1.00 24.80	'A
25	MOTA	1908	N	GLY	259	41.208		110.899	1.00 20.82	Ä
	ATOM	1909	CA	GLY	259	40.221		110.300	1.00 17.04	Ä
	MOTA	1910	c	GLY	259	39.214		109.447	1.00 15.18	Ä
	MOTA	1911	ō	GLY	259	38.843		109.765	1.00 14.10	Ä
	ATOM	1912	N	LYS	260	38.782		108.349	1.00 13.62	Ä
30	ATOM	1913	CA	LYS	260	37.803		107.487	1.00 13.15	A
	MOTA	1914	СВ	LYS	260	38.480		106.247	1.00 13.95	A
	MOTA	1915	CG	LYS	260	37.557		105.414	1.00 14.12	A
	MOTA	1916	CD	LYS	260	38.254		104.220	1.00 14.32	A
	MOTA	1917	CE	LYS	260	37.256	12.328	103.410	1.00 16.28	A
35	MOTA	1918	NZ	LYS	260	37.881	13.104	102.307	1.00 14.26	A
•	MOTA	1919	C .	LYS	260	36.687	8.427	107.080	1.00 13.76	A
	MOTA	1920	0	LYS	260	36.939		106.612	1.00 14.46	A
	MOTA	1921	N	LEU	261			107.277	1.00 11.00	A
40	MOTA	1922	CA	LEU	261	34.281		106.954	1.00 9.03	A
40	MOTA	1923	СВ	LEU	261	33.461		108-217	1.00 6.67	A
	MOTA	1924	CG	LEU	261	32.123		108.093	1.00 3.68	A
	ATOM ·	1925		LEU	261	32.319		107.514	1.00 2.23	A
	MOTA	1926		LEU	261	31.499		109.470	1.00 3.51	A
45 .	MOTA	1927	C	LEU	261	33.416		105.905	1.00 10.81	A
4 5 ,	MOTA	1928	0	LEU	261	32.978		106.113	1.00 9.03	A
	MOTA MOTA	1929 1930	N CA	asn Asn	262 262	33.180 32.360		104.786 103.702	1.00 8.62 1.00 9.89	A A
	ATOM	1931	CB	ASN	262	33.042		103.702	1.00 10.45	A
	ATOM	1932	CG	ASN	262	34.436		102.346	1.00 14.30	A
50	ATOM	1933		ASN	262	35.420		102.136	1.00 16.96	Ä
-	MOTA	1934		ASN	262	34.535		102.432	1.00 9.79	Ä
	ATOM	1935	c	ASN	262	31.003		103.721	1.00 9.32	. A
	MOTA	1936	Ō	ASN	262	30.940		103.638	1.00 10.83	A
	MOTA	1937	N	LEU	263	29.923	8.673	103.839	1.00 8.87	A
55	ATOM	1938	CA	LEU	263	28.572		103.874	1.00 8.66	A
	MOTA	1939	CB	LEU	263	27.832		105.108	1.00 6.12	A
	MOTA	1940	CG	LEU	263	28.620	8.253	106.375	1.00 8.11	A
	MOTA	1941	CD1	LEU	263	27.981	8.906	107.599	1.00 8.26	A ·
	MOTA	1942	CD2	LEU	263	28.679	6.728	106.520	1.00 5.47	A
60	MOTA	1943	С	LEU	263	27.878	8.545	102.595	1.00 10.21	A
	ATOM	1944	0	LEU	263	27.488	9.706	102.441	1.00 12.04	A
	MOTA	1945	N	VAL	264	27.716	7.597	101.682	1.00 9.38	A
	MOTA	1946	CA	VAL	264	27.161	7.891	100.378	1.00 9.77	A
15	MOTA	1947	CB	VAL	264	28.089	7.329	99.291	1.00 10.33	A
65	MOTA	1948		VAL	264	27.734	7.907		1.00 8.01	A
	MOTA	1949	CG2	VAL	264	29.522	7.637		1.00 8.80	A
	MOTA	1950	C	VAL	264	25.765		100.104	1.00 10.32	A
	MOTA	1951	0	VAL	264	25.465		100.226	1.00 12.03	A
70		1952	N	ASP	265	24.925	8.355		1.00 9.00	A
70	MOTA	1953	CA	ASP	265	23.534	8.116		1.00 6.24	A
	MOTA	1954	CB	ASP	265	22.650	9.211		1.00 5.48	A
	MOTA	1955	CG.		265	21.171	8.994		1.00 7.76	A
	MOTA	1956	ODI	ASP	265	20.851	8.232	98.782	1.00 5.27	A

ATOM 1958 C ASP 265 23.497 8.203 97.838 1. ATOM 1960 N LEU 266 23.575 7.060 97.172 1. ATOM 1961 CA LEU 266 23.575 7.060 97.172 1. ATOM 1962 CB LEU 266 23.569 7.024 95.710 1. ATOM 1963 CG LEU 266 23.569 7.024 95.710 1. ATOM 1965 CD LEU 266 23.941 5.616 95.222 1. ATOM 1965 CD LEU 266 25.345 5.124 95.622 1. ATOM 1965 CD LEU 266 25.361 3.649 95.242 1. ATOM 1965 CD LEU 266 26.379 6.020 94.942 1. ATOM 1967 O LEU 266 22.552 7.451 95.065 1. ATOM 1968 N ALA 267 22.336 7.845 93.801 1. ATOM 1969 CA ALA 267 22.336 7.845 93.801 1. ATOM 1970 CB ALA 267 21.156 8.220 93.047 1. ATOM 1971 C ALA 267 21.572 8.756 91.687 1. ATOM 1971 C ALA 267 20.324 6.945 92.877 1. ATOM 1973 N GLY 268 19.042 7.105 92.571 1. ATOM 1975 C GLY 268 18.633 5.079 92.378 1. ATOM 1975 C GLY 268 18.633 5.079 92.378 1. ATOM 1976 CA SER 269 19.042 7.105 92.571 1. ATOM 1977 N SER 269 18.755 3.766 91.516 1. ATOM 1978 CA SER 269 19.220 2.802 90.543 1. ATOM 1979 CB SER 269 19.677 1.554 91.293 1. ATOM 1978 CA SER 269 19.200 2.802 90.543 1. ATOM 1978 CA SER 269 19.677 1.554 91.293 1. ATOM 1978 CA SER 269 19.575 90.113 1. ATOM 1980 CG SER 269 18.595 90.113 1. ATOM 1980 CG SER 269 18.596 1.027 92.043 1. ATOM 1985 CB GLU 270 16.994 2.950 89.537 1. ATOM 1985 CB GLU 270 14.563 2.958 89.136 1. ATOM 1985 CB GLU 270 14.563 2.958 89.136 1. ATOM 1985 CB GLU 270 14.563 2.958 89.136 1. ATOM 1985 CB GLU 270 14.563 2.958 89.136 1. ATOM 1985 CB GLU 270 14.563 2.958 89.136 1. ATOM 1985 CB GLU 270 14.563 2.958 89.136 1. ATOM 1980 CC GLU 270 14.563 2.958 89.136 1. ATOM 1980 CC GLU 270 14.563 2.958 89.136 1. ATOM 1980 CC GLU 270 14.563 2.958 89.136 1. ATOM 1980 CC GLU 270 14.563 2.958 89.136 1. ATOM 1980 CC GLU 270 14.563 2.958 89.136 1. ATOM 1980 CC GLU 270 14.563 2.958 89.136 1. ATOM 1980 CC GLU 270 14.563 2.958 89.136 1. ATOM 1990 C GLU 270 14.563 2.958 89.136 1. ATOM 1990 C GLU 270 14.563 2.958 89.136 1. ATOM 1990 C A SN 271 17.121 2.409 82.640 1. ATOM 2000 C A SN 287 17.144 400 2.537 84.120 1. ATOM 2000 C A SN 287 17.121 14.400 2.537	.00 9.82 A .00 4.32 A .00 4.24 A .00 4.44 A .00 5.61 A .00 1.02 A .00 5.57 A .00 1.02 A .00 7.56 A .00 7.56 A .00 9.23 A .00 6.36 A .00 5.05 A .00 6.36 A .00 5.05 A .00 6.36 A .00 5.05 A .00 12.51 A .00 12.64 A .00 20.29 A .00 12.64 A .00 30.31 A
ATOM 1958 C ASP 265 23.497 8.203 97.838 1. ATOM 1950 O ASP 265 23.410 9.289 97.270 1. ATOM 1960 N LEU 266 23.575 7.060 97.172 1. ATOM 1961 CA LEU 266 23.575 7.060 97.172 1. ATOM 1962 CB LEU 266 23.569 7.024 95.710 1. ATOM 1962 CB LEU 266 23.569 7.024 95.710 1. ATOM 1963 CG LEU 266 23.941 5.616 95.222 1. ATOM 1965 CD2 LEU 266 25.345 5.124 95.622 1. ATOM 1965 CD2 LEU 266 25.561 3.649 95.242 1. ATOM 1966 C LEU 266 22.552 7.451 95.065 1. ATOM 1967 O LEU 266 22.252 7.451 95.065 1. ATOM 1968 N ALA 267 22.336 7.845 93.801 1. ATOM 1969 CA ALA 267 22.336 7.845 93.801 1. ATOM 1969 CA ALA 267 21.572 8.756 91.687 1. ATOM 1970 CB ALA 267 21.572 8.756 91.687 1. ATOM 1971 C ALA 267 20.324 6.945 92.877 1. ATOM 1971 C ALA 267 20.844 5.840 93.020 1. ATOM 1973 N GLY 268 19.042 7.105 92.571 1. ATOM 1974 CA GLY 268 18.170 5.961 92.378 1. ATOM 1975 C GLY 268 18.170 5.961 92.378 1. ATOM 1976 O GLY 268 18.633 5.079 91.233 1. ATOM 1977 N SER 269 18.755 3.766 91.516 1. ATOM 1978 CA SER 269 19.220 2.802 90.543 1. ATOM 1978 CA SER 269 19.220 2.802 90.543 1. ATOM 1980 OG SER 269 18.595 90.113 1. ATOM 1980 OG SER 269 18.595 3.786 91.516 1. ATOM 1983 N GLU 270 16.994 2.950 89.537 1. ATOM 1983 N GLU 270 16.994 2.950 89.537 1. ATOM 1983 N GLU 270 16.994 2.950 89.537 1. ATOM 1983 N GLU 270 16.994 2.950 89.537 1. ATOM 1988 OEI GLU 270 14.563 2.958 89.136 1. ATOM 1988 OEI GLU 270 14.563 2.958 89.136 1. ATOM 1988 OEI GLU 270 14.563 2.958 89.136 1. ATOM 1988 OEI GLU 270 14.563 2.958 89.136 1. ATOM 1988 OEI GLU 270 14.563 2.958 89.136 1. ATOM 1999 C GLU 270 14.563 1.990 84.059 1. ATOM 1998 OE GLU 270 14.563 1.990 84.059 1. ATOM 1998 OE GLU 270 14.563 2.958 89.136 1. ATOM 1998 OE GLU 270 16.197 3.139 87.177 1. ATOM 1998 OE GLU 270 14.563 2.958 89.136 1. ATOM 1998 OEI GLU 270 16.594 2.950 89.537 1. ATOM 1998 OEI GLU 270 14.563 2.958 89.136 1. ATOM 1999 O ASN 271 15.717 2.336 86.194 1. ATOM 1999 O ASN 271 15.719 2.336 86.194 1. ATOM 1999 O ASN 271 15.799 2.730 84.120 1. ATOM 2000 ON ASN 287 18.324 10.139 81.437 1. ATOM 2000 ON ASN 287 18.348 11.168 80.	.00 4.32 A .00 4.24 A .00 5.61 A .00 1.02 A .00 5.57 A .00 1.02 A .00 7.56 A .00 7.56 A .00 9.23 A .00 6.36 A .00 5.05 A .00 5.05 A .00 5.05 A .00 12.51 A .00 12.64 A .00 22.91 A .00 12.64 A .00 20.29 A .00 22.91 A .00 22.91 A .00 22.35 A .00 22.35 A .00 22.04 A .00 22.04 A .00 22.04 A
ATOM 1950 N LEU 266 23.575 7.060 97.270 1. ATOM 1961 CA LEU 266 23.575 7.060 97.172 1. ATOM 1961 CA LEU 266 23.569 7.024 95.710 1. ATOM 1963 CG LEU 266 23.569 7.024 95.710 1. ATOM 1963 CG LEU 266 25.345 5.124 95.622 1. ATOM 1964 CD1 LEU 266 25.345 5.124 95.622 1. ATOM 1965 CD2 LEU 266 25.345 5.124 95.622 1. ATOM 1966 C LEU 266 25.561 3.649 95.242 1. ATOM 1967 O LEU 266 22.252 7.451 95.062 1. ATOM 1969 CA ALA 267 22.336 7.845 93.801 1. ATOM 1969 CA ALA 267 22.336 7.845 93.801 1. ATOM 1970 CB ALA 267 21.556 8.220 93.047 1. ATOM 1971 C ALA 267 21.556 8.220 93.047 1. ATOM 1973 N GLY 268 19.042 7.105 92.571 1. ATOM 1974 CA GLY 268 18.170 5.961 92.571 1. ATOM 1975 C GLY 268 18.633 5.079 91.233 1. ATOM 1977 N SER 269 18.755 3.786 91.561 1. ATOM 1977 N SER 269 18.755 3.786 91.516 1. ATOM 1978 CA SER 269 19.677 1.554 91.293 1. ATOM 1979 CB SER 269 19.677 1.554 91.293 1. ATOM 1980 OG SER 269 18.596 1.027 92.043 1. ATOM 1980 CG SER 269 18.697 1.594 2.596 89.597 1. ATOM 1980 CG SER 269 18.696 1.027 92.043 1. ATOM 1980 CG SER 269	.00 4.24 A .00 4.44 A .00 5.61 A .00 5.61 A .00 1.02 A .00 5.57 A .00 1.02 A .00 7.56 A .00 9.23 A .00 7.43 A .00 6.36 A .00 5.05 A .00 5.27 A .00 5.27 A .00 12.51 A .00 15.51 A .00 12.51 A .00 12.51 A .00 17.12 A .00 15.31 A .00 12.64 A .00 19.97 A .00 19.97 A .00 20.29 A .00 20.29 A .00 20.29 A .00 22.91 A .00 22.91 A .00 22.91 A .00 22.35 A .00 21.47 A .00 18.55 A .00 22.04 A .00 21.47 A .00 18.55 A .00 22.04 A .00 231.14
5 ATOM 1960 N LEU 266 23.575 7.060 97.172 1. ATOM 1961 CA LEU 266 23.569 7.024 95.710 1. ATOM 1962 CB LEU 266 23.569 7.024 95.710 1. ATOM 1963 CG LEU 266 25.365 5.124 95.622 1. ATOM 1964 CD1 LEU 266 25.561 3.649 95.222 1. ATOM 1965 CD2 LEU 266 25.561 3.649 95.242 1. ATOM 1966 C LEU 266 22.334 5.020 94.942 1. ATOM 1967 O LEU 266 22.252 7.451 95.065 1. ATOM 1968 N ALA 267 22.336 7.845 93.801 1. ATOM 1969 CA ALA 267 22.336 7.845 93.801 1. ATOM 1970 CB ALA 267 21.572 8.756 91.687 1. ATOM 1971 C ALA 267 21.572 8.756 91.687 1. ATOM 1971 C ALA 267 20.324 6.945 92.877 1. ATOM 1972 O ALA 267 20.324 6.945 92.877 1. ATOM 1973 N GLV 268 19.042 7.105 92.571 1. ATOM 1974 CA GLY 268 18.170 5.961 92.378 1. ATOM 1975 C GLY 268 18.170 5.961 92.378 1. ATOM 1977 N SER 269 18.755 3.766 91.516 1. ATOM 1978 CA SER 269 19.220 2.802 90.543 1. ATOM 1979 D SER 269 19.220 2.802 90.543 1. ATOM 1979 D SER 269 19.677 1.554 91.293 1. ATOM 1980 OG SER 269 18.755 3.766 91.516 1. ATOM 1980 CG SER 269 18.755 3.768 91.293 1. ATOM 1980 CG SER 269 18.755 3.768 91.516 91.516 1. ATOM 1981 C SER 269 18.694 2.950 89.537 1. ATOM 1983 N GLU 270 16.994 2.950 89.537 1. ATOM 1985 CB GLU 270 16.994 2.950 89.537 1. ATOM 1985 CB GLU 270 14.563 2.958 89.136 1. ATOM 1985 CB GLU 270 16.994 2.950 89.537 1. ATOM 1988 OE1 GLU 270 16.994 2.950 89.537 1. ATOM 1988 OE2 GLU 270 14.563 2.958 89.136 1. ATOM 1989 C GLU 270 14.563 2.958 89.136 1. ATOM 1999 C GLU 270 16.177 2.336 86.194 1. ATOM 1999 C GLU 270 16.545 4.524 91.234 1. ATOM 1999 C GLU 270 16.606 5.185 90.394 1. ATOM 1999 C GLU 270 16.546 1.900 84.059 1. ATOM 1998 OE2 GLU 270 16.546 86.981 1. ATOM 1999 C GLU 270 16.546 86.981 1. ATOM 1999 C GLU 270 16.546 86.981 1. ATOM 1999 C GLU 270 16.177 2.336 86.194 1. ATOM 1999 C GLU 270 16.257 2.308 80.354 1. ATOM 1999 C GLU 270 16.257 2.308 80.354 1. ATOM 1999 C GLU 270 16.257 2.308 80.354 1. ATOM 1999 C GLU 270 16.258 2.958 89.136 1. ATOM 1999 C ANN 287 18.348 11.688 80.854 1. ATOM 1990 C GLU 270 14.566 1.900 84.059 1. ATOM 19	.00 4.44 A .00 5.61 A .00 1.02 A .00 5.57 A .00 1.02 A .00 4.62 A .00 7.56 A .00 9.23 A .00 6.36 A .00 5.05 A .00 6.99 A .00 5.27 A .00 9.81 A .00 15.67 A .00 15.67 A .00 17.12 A .00 15.67 A .00 17.12 A .00 17.12 A .00 19.97 A .00 12.64 A .00 12.64 A .00 20.29 A .00 20.29 A .00 20.29 A .00 22.91 A .00 22.91 A .00 22.91 A .00 22.91 A .00 22.35 A .00 21.47 A .00 18.55 A .00 22.04 A .00 23.114
5 ATOM 1961 CA LEU 266 23.569 7.024 95.710 1. ATOM 1963 CG LEU 266 23.941 5.616 95.222 1. ATOM 1963 CG LEU 266 25.345 5.124 95.622 1. ATOM 1964 CD1 LEU 266 25.345 5.124 95.622 1. ATOM 1965 CD2 LEU 266 25.561 3.649 95.242 1. ATOM 1966 C LEU 266 26.379 6.020 94.942 1. ATOM 1966 C LEU 266 22.252 7.451 95.065 1. ATOM 1968 N ALA 267 22.336 7.845 93.801 1. ATOM 1968 N ALA 267 22.336 7.845 93.801 1. ATOM 1970 CB ALA 267 21.156 8.220 93.047 1. ATOM 1971 C ALA 267 20.324 6.945 92.877 1. ATOM 1971 C ALA 267 20.324 6.945 92.877 1. ATOM 1973 N GLY 268 19.042 7.105 92.571 8. ATOM 1973 N GLY 268 19.042 7.105 92.571 8. ATOM 1974 CA GLY 268 18.170 5.961 92.378 1. ATOM 1977 C GLY 268 18.633 5.079 91.233 1. ATOM 1977 C GLY 268 18.633 5.079 91.233 1. ATOM 1978 C GLY 268 18.855 5.555 90.113 1. ATOM 1979 CB SER 269 18.755 3.786 91.516 1. ATOM 1979 CB SER 269 18.755 3.786 91.516 1. ATOM 1979 CB SER 269 19.200 2.802 90.543 1. ATOM 1980 OG SER 269 18.596 1.027 92.043 1. ATOM 1980 CG SER 269 18.596 1.027 92.043 1. ATOM 1981 C SER 269 18.195 2.383 89.484 1. ATOM 1983 N GLU 270 16.994 2.576 88.587 1. ATOM 1984 CA GLU 270 14.563 2.958 89.136 1. ATOM 1986 CG GLU 270 14.563 2.958 89.136 1. ATOM 1987 CD GLU 270 14.960 5.185 90.309 1. ATOM 1988 OEI GLU 270 14.960 5.185 90.309 1. ATOM 1987 CD GLU 270 14.960 5.185 90.309 1. ATOM 1988 OEI GLU 270 14.960 5.185 90.309 1. ATOM 1988 OEI GLU 270 14.960 5.185 90.309 1. ATOM 1988 OEI GLU 270 14.960 5.185 90.309 1. ATOM 1989 OE2 GLU 270 14.960 5.185 90.309 1. ATOM 1991 CA ANN 271 15.717 2.336 86.194 1. ATOM 1992 CA ANN 271 15.717 2.336 86.194 1. ATOM 1993 CA ANN 271 15.719 2.736 84.793 1. ATOM 1994 CB ANN 271 15.719 2.736 84.793 1. ATOM 1995 CG ANN 271 17.661 3.500 82.649 1. ATOM 1995 CG ANN 271 17.661 3.500 82.649 1. ATOM 1995 CG ANN 271 17.661 3.500 82.649 1. ATOM 1995 CG ANN 271 17.661 3.500 82.649 1. ATOM 1995 CG ANN 271 17.661 3.500 82.649 1. ATOM 1995 CG ANN 271 17.661 3.500 82.649 1. ATOM 1995 CG ANN 271 17.661 3.500 82.640 1. ATOM 2000 CR ANN 287 18.348 11.168 80.854 1. ATOM 2000 CR SN 287 18.34	.00 5.61 A .00 1.02 A .00 5.57 A .00 1.02 A .00 4.62 A .00 7.56 A .00 7.56 A .00 7.43 A .00 6.36 A .00 5.05 A .00 5.05 A .00 5.27 A .00 9.81 A .00 12.51 A .00 15.67 A .00 17.12 A .00 17.12 A .00 17.12 A .00 19.97 A .00 19.97 A .00 12.64 A .00 20.29 A .00 20.29 A .00 20.29 A .00 20.29 A .00 22.35 A .00 22.35 A .00 21.47 A .00 18.55 A .00 22.04 A .00 22.04 A .00 22.04 A
ATOM 1962 CB LEU 266 23.941 5.616 95.222 1. ATOM 1964 CD1 LEU 266 25.345 5.124 95.622 1. ATOM 1964 CD1 LEU 266 25.561 3.649 95.622 1. ATOM 1966 CD2 LEU 266 26.379 6.020 94.942 1. ATOM 1966 C LEU 266 22.525 7.451 95.065 1. ATOM 1967 O LEU 266 22.252 7.451 95.065 1. ATOM 1968 N ALA 267 22.336 7.845 93.801 1. ATOM 1969 CA ALA 267 22.336 7.845 93.801 1. ATOM 1970 CB ALA 267 21.156 8.220 93.047 1. ATOM 1971 C ALA 267 20.324 6.945 92.877 1. ATOM 1972 O ALA 267 20.324 6.945 92.877 1. ATOM 1973 N GLY 268 19.042 7.105 92.571 1. ATOM 1974 CA GLY 268 18.633 5.079 91.233 1. ATOM 1975 C GLY 268 18.633 5.079 91.233 1. ATOM 1977 N SER 269 18.755 3.786 91.516 1. ATOM 1978 CA SER 269 19.677 1.554 91.593 1. ATOM 1978 CA SER 269 19.677 1.554 91.293 1. ATOM 1980 OG SER 269 18.596 1.027 92.043 1. ATOM 1981 C SER 269 18.967 1.554 91.293 1. ATOM 1983 N GLU 270 14.563 2.958 89.484 1. ATOM 1985 CB GLU 270 14.563 2.958 89.136 1. ATOM 1986 CG GLU 270 14.563 2.958 89.136 1. ATOM 1988 OEL GLU 270 14.563 2.958 89.136 1. ATOM 1989 OEZ GLU 270 14.563 2.958 89.136 1. ATOM 1989 OEZ GLU 270 14.563 2.958 89.136 1. ATOM 1998 CB SER 269 18.594 2.556 88.587 1. ATOM 1988 OEL GLU 270 14.563 2.958 89.136 1. ATOM 1988 OEL GLU 270 14.563 2.958 89.136 1. ATOM 1989 OEZ GLU 270 15.549 2.576 88.587 1. ATOM 1988 OEL GLU 270 14.563 2.958 89.136 1. ATOM 1998 CG SLU 270 14.563 2.958 89.136 1. ATOM 1998 CG ASN 271 15.717 2.336 86.194 1. ATOM 1999 C GLU 270 15.545 4.524 91.234 1. ATOM 1999 C A SN 271 15.717 2.336 86.194 1. ATOM 1999 C A SN 271 15.717 2.336 86.194 1. ATOM 1999 C A SN 271 15.717 2.336 86.194 1. ATOM 1999 C A SN 271 15.719 1.408 81.710 1. ATOM 1999 C A SN 271 15.719 1.408 81.710 1. ATOM 1999 C A SN 271 15.719 1.408 81.710 1. ATOM 1999 C A SN 287 18.323 13.385 79.614 1. ATOM 2000 N ASN 287 18.323 13.385 79.614 1. ATOM 2000 C A SN 287 18.323 13.385 79.614 1. ATOM 2000 C A SN 287 18.324 10.439 81.237 1. ATOM 2000 C A SN 287 18.329 1.338 9.347 1.771 1.	.00 1.02 A .00 5.57 A .00 1.02 A .00 4.62 A .00 7.56 A .00 9.23 A .00 6.36 A .00 5.05 A .00 5.05 A .00 5.27 A .00 9.81 A .00 12.51 A .00 12.64 A .00 20.29 A .00 20.29 A .00 22.31 A .00 22.35 A .00 21.47 A .00 18.55 A .00 22.04 A .00 22.04 A
ATOM 1963 CG LEU 266 25.345 5.124 95.622 1. ATOM 1964 CD1 LEU 266 25.561 3.649 95.242 1. ATOM 1965 CD2 LEU 266 26.379 6.020 94.942 1. ATOM 1966 C LEU 266 22.252 7.451 95.065 1. ATOM 1967 O LEU 266 22.252 7.451 95.065 1. ATOM 1968 N ALA 267 22.336 7.845 93.801 1. ATOM 1968 N ALA 267 22.336 7.845 93.801 1. ATOM 1970 CB ALA 267 21.156 8.220 93.047 1. ATOM 1970 CB ALA 267 21.572 8.756 91.687 1. ATOM 1971 C ALA 267 20.324 6.945 92.877 1. ATOM 1973 N GLY 268 19.042 7.105 92.571 1. ATOM 1973 N GLY 268 19.042 7.105 92.571 1. ATOM 1975 C GLY 268 18.633 5.079 91.233 1. ATOM 1976 O GLY 268 18.859 5.555 90.113 1. ATOM 1977 N SER 269 18.755 3.786 91.516 1. ATOM 1978 CA SER 269 19.677 1.554 91.293 1. ATOM 1978 CA SER 269 19.677 1.554 91.293 1. ATOM 1981 C SER 269 18.956 1.027 92.043 1. ATOM 1983 N GLU 270 16.994 2.950 89.537 1. ATOM 1984 CA GLU 270 16.994 2.950 89.537 1. ATOM 1985 CB GLU 270 14.960 5.185 90.349 1. ATOM 1986 CG GLU 270 14.960 5.185 90.349 1. ATOM 1987 CD GLU 270 14.960 5.185 90.349 1. ATOM 1988 CG GLU 270 14.960 5.185 90.349 1. ATOM 1989 OEZ GLU 270 14.960 5.185 90.349 1. ATOM 1989 OEZ GLU 270 14.960 5.185 90.349 1. ATOM 1989 OEZ GLU 270 14.960 5.185 90.349 1. ATOM 1998 CA SER 269 17.151 1. ATOM 1998 CA SER 269 19.271 1. ATOM 1988 CG GLU 270 14.960 5.185 90.349 1. ATOM 1988 CG GLU 270 14.960 5.185 90.349 1. ATOM 1989 OEZ GLU 270 14.960 5.185 90.349 1. ATOM 1989 OEZ GLU 270 14.960 5.185 90.349 1. ATOM 1999 OEZ GLU 270 16.117 3.139 87.177 1. ATOM 1999 CA SEN 271 15.717 2.336 86.194 1. ATOM 1999 CA SEN 271 15.717 2.336 86.194 1. ATOM 1999 CA SEN 271 17.121 2.409 82.649 1. ATOM 1999 CA SEN 271 17.121 2.409 82.649 1. ATOM 1999 CA SEN 287 18.332 13.385 79.614 1. ATOM 1999 CA SEN 287 18.332 13.385 79.614 1. ATOM 1999 CA SEN 287 18.322 13.385 79.614 1. ATOM 1999 CA SEN 287 18.322 13.385 79.614 1. ATOM 2000 N ASN 287 18.322 13.385 79.614 1. ATOM 2000 CA SEN 287 18.322 13.385 79.614 1. ATOM 2000 CA SEN 287 18.322 13.385 79.614 1. ATOM 2000 CA SEN 287 18.322 13.385 79.614 1. ATOM 2000 CA SEN 287 18.322 13.385 79.614 1.	.00 5.57 A .00 1.02 A .00 4.62 A .00 7.56 A .00 9.23 A .00 7.43 A .00 6.36 A .00 5.05 A .00 5.27 A .00 9.81 A .00 12.51 A .00 15.67 A .00 17.12 A .00 15.31 A .00 15.31 A .00 15.67 A .00 17.12 A .00 19.97 A .00 19.97 A .00 20.29 A .00 20.20 A .00 20.20 A
ATOM	.00 1.02 A .00 4.62 A .00 7.56 A .00 7.56 A .00 9.23 A .00 7.43 A .00 6.36 A .00 5.05 A .00 6.99 A .00 5.27 A .00 9.81 A .00 15.67 A .00 17.12 A .00 15.67 A .00 17.12 A .00 15.67 A .00 17.12 A .00 19.97 A .00 12.64 A .00 20.29 A .00 20.20 A
10 ATOM 1965 CD2 LEU 266 26.379 6.020 94.942 1. ATOM 1966 C LEU 266 22.252 7.451 95.065 1. ATOM 1968 N ALA 267 22.336 7.845 93.801 1. ATOM 1968 N ALA 267 22.336 7.845 93.801 1. ATOM 1970 CB ALA 267 21.156 8.220 93.047 1. ATOM 1971 C ALA 267 21.572 8.756 91.687 1. ATOM 1972 O ALA 267 20.324 6.945 92.877 1. ATOM 1973 N GLY 268 19.042 7.105 92.571 1. ATOM 1973 N GLY 268 19.042 7.105 92.571 1. ATOM 1975 C GLY 268 18.170 5.961 92.378 1. ATOM 1976 O GLY 268 18.859 5.555 90.113 1. ATOM 1977 N SER 269 18.755 3.786 91.516 1. ATOM 1978 CA SER 269 19.220 2.802 90.543 1. ATOM 1979 CB SER 269 19.202 2.802 90.543 1. ATOM 1980 OG SER 269 18.956 1.027 92.043 1. ATOM 1980 N GLY 270 16.994 2.950 89.537 1. ATOM 1984 CA GLU 270 16.994 2.950 89.537 1. ATOM 1985 CB GLU 270 14.956 2.958 89.136 1. ATOM 1986 OC GLY 270 14.950 2.576 88.587 1. ATOM 1988 OE1 GLU 270 14.563 2.958 89.136 1. ATOM 1988 OE1 GLU 270 14.950 2.576 88.587 1. ATOM 1989 OC GLY 270 14.950 2.576 88.587 1. ATOM 1989 OC GLU 270 14.551 4.460 89.210 1. ATOM 1989 OC GLU 270 14.950 5.959 89.354 1. ATOM 1988 OE1 GLU 270 14.553 2.958 89.136 1. ATOM 1989 OC GLU 270 14.950 5.859 0.349 1. ATOM 1998 OC GLU 270 14.950 5.859 0.349 1. ATOM 1998 OC GLU 270 14.551 4.460 89.210 1. ATOM 1998 OC GLU 270 14.553 2.958 89.136 1. ATOM 1998 OC GLU 270 14.554 4.524 91.234 1. ATOM 1998 OC GLU 270 14.950 5.859 0.349 1. ATOM 1998 OC GLU 270 14.950 5.859 0.349 1. ATOM 1999 C ASN 271 15.717 2.336 86.194 1. ATOM 1999 C ASN 271 15.717 2.336 86.194 1. ATOM 1999 C ASN 271 15.717 2.336 86.194 1. ATOM 1999 C ASN 271 15.739 1.494 84.276 1. ATOM 1999 C ASN 271 16.933 1.385 79.614 1. ATOM 1999 C ASN 271 13.799 1.494 84.276 1. ATOM 1999 C ASN 287 18.323 13.385 79.614 1. ATOM 2000 N ASN 287 18.323 13.385 79.614 1. ATOM 2000 N ASN 287 18.922 11.408 81.710 1. ATOM 2000 C ASN 287 19.324 10.139 81.437 1. ATOM 2000 C ASN 287 19.324 10.139 81.437 1. ATOM 2000 C ASN 287 18.922 11.408 81.710 1. ATOM 2000 C ASN 287 18.922 11.408 81.771 1. ATOM 2000 C ASN 287 18.922 11.408 81.771 1. ATOM 2000 C ASN 287 19.324 10.139 81	.00 4.62 A .00 7.56 A .00 9.23 A .00 7.43 A .00 6.36 A .00 5.05 A .00 5.05 A .00 5.27 A .00 9.81 A .00 12.51 A .00 15.67 A .00 17.12 A .00 15.31 A .00 15.31 A .00 17.50 A .00 12.64 A .00 20.29 A .00 20.29 A .00 20.29 A .00 22.91 A .00 22.35 A .00 21.47 A .00 18.55 A .00 22.04 A .00 22.04 A
10 ATOM 1966 C LEU 266 22.252 7.451 95.065 1. ATOM 1968 N ALA 267 22.336 7.451 95.065 1. ATOM 1968 N ALA 267 22.336 7.485 93.801 1. ATOM 1969 CA ALA 267 21.156 8.220 93.047 1. ATOM 1970 CB ALA 267 21.156 8.220 93.047 1. ATOM 1971 C ALA 267 20.324 6.945 92.877 1. ATOM 1972 O ALA 267 20.324 6.945 92.877 1. ATOM 1973 N GLY 268 19.042 7.105 92.571 1. ATOM 1974 CA GLY 268 18.170 5.961 92.378 1. ATOM 1975 C GLY 268 18.633 5.079 91.233 1. ATOM 1977 N SER 269 18.755 3.786 91.516 1. ATOM 1978 CA SER 269 19.220 2.802 90.543 1. ATOM 1979 CB SER 269 19.220 2.802 90.543 1. ATOM 1979 CB SER 269 19.220 2.802 90.543 1. ATOM 1980 OG SER 269 18.596 1.027 92.043 1. ATOM 1981 C SER 269 18.195 2.383 89.484 1. ATOM 1982 O SER 269 18.195 2.383 89.484 1. ATOM 1983 N GLU 270 16.994 2.950 89.537 1. ATOM 1984 CA GLU 270 16.994 2.950 89.537 1. ATOM 1985 CB GLU 270 16.594 2.950 89.537 1. ATOM 1986 CG GLU 270 14.563 2.958 89.136 1. ATOM 1988 OE1 GLU 270 14.563 2.958 89.136 1. ATOM 1988 OE2 GLU 270 14.563 2.958 89.136 1. ATOM 1988 OE2 GLU 270 14.563 2.958 89.136 1. ATOM 1988 OE2 GLU 270 14.563 2.958 89.136 1. ATOM 1988 OE2 GLU 270 14.563 2.958 89.136 1. ATOM 1988 OE2 GLU 270 16.177 3.139 87.177 1. ATOM 1999 C AASN 271 15.717 2.336 86.194 1. ATOM 1998 OE2 GLU 270 16.173 3.198 87.177 1. ATOM 1999 C AASN 271 15.719 2.730 84.793 1. ATOM 1999 C AASN 271 15.719 2.730 84.793 1. ATOM 1999 C ASN 271 16.856 1.900 84.059 1. ATOM 1999 C ASN 271 16.856 1.900 84.059 1. ATOM 1999 C ASN 271 16.733 1.618 81.650 1. ATOM 1999 C ASN 271 16.733 1.618 81.650 1. ATOM 1999 C ASN 271 17.661 3.504 82.460 1. ATOM 1999 C ASN 271 17.661 3.504 82.460 1. ATOM 1999 C ASN 271 17.661 3.504 82.460 1. ATOM 1999 C ASN 271 17.661 3.504 82.460 1. ATOM 2000 N ASN 287 19.078 12.487 80.582 1. ATOM 2000 C ASN 287 19.078 12.487 80.582 1. ATOM 2000 C ASN 287 19.078 12.487 80.582 1. ATOM 2000 C ASN 287 19.078 12.487 80.582 1. ATOM 2000 C ASN 287 19.078 12.487 80.582 1. ATOM 2000 C ASN 287 19.304 10.400 81.285 1. ATOM 2000 C ASN 287 19.304 10.139 81.437 1. ATOM 2000 C ASN 287 19.304 10.1	.00 7.56 A .00 9.23 A .00 7.43 A .00 6.36 A .00 5.05 A .00 6.99 A .00 5.27 A .00 9.81 A .00 12.51 A .00 12.51 A .00 15.31 A .00 12.64 A .00 20.29 A .00 20.29 A .00 22.91 A .00 22.91 A .00 22.91 A .00 22.93 A .00 22.94 A .00 22.35 A .00 21.47 A .00 18.55 A .00 22.04 A .00 21.47 A
ATOM 1967 O LEU 266 21.190 7.438 95.694 1. ATOM 1968 N ALA 267 22.336 7.845 93.801 1. ATOM 1969 CA ALA 267 21.156 8.220 93.047 1. ATOM 1970 CB ALA 267 21.572 8.756 91.687 1. ATOM 1971 C ALA 267 20.324 6.945 92.877 1. ATOM 1972 O ALA 267 20.844 5.840 93.020 1. ATOM 1973 N GLY 268 19.042 7.105 92.571 1. ATOM 1973 N GLY 268 18.170 5.961 92.378 1. ATOM 1975 C GLY 268 18.633 5.079 91.233 1. ATOM 1976 O GLY 268 18.859 5.555 90.113 1. ATOM 1977 N SER 269 18.755 3.786 91.516 1. ATOM 1978 CA SER 269 19.220 2.802 90.543 1. ATOM 1979 CB SER 269 19.677 1.554 91.293 1. ATOM 1979 CB SER 269 18.596 1.027 92.043 1. ATOM 1980 OG SER 269 18.497 1.549 88.627 1. ATOM 1981 C SER 269 18.497 1.549 88.627 1. ATOM 1982 O SER 269 18.497 2.576 88.587 1. ATOM 1984 CA GLU 270 16.994 2.950 89.537 1. ATOM 1985 CB GLU 270 14.563 2.958 89.136 1. ATOM 1986 CG GLU 270 14.563 2.958 89.136 1. ATOM 1987 CD GLU 270 14.926 6.433 90.354 1. ATOM 1988 OE1 GLU 270 14.960 5.185 90.349 1. ATOM 1988 OE1 GLU 270 14.960 5.185 90.349 1. ATOM 1980 C GLU 270 14.926 6.433 90.354 1. ATOM 1980 C GLU 270 14.926 6.433 90.354 1. ATOM 1991 O GLU 270 16.608 4.256 86.981 1. ATOM 1992 N ASN 271 15.717 2.336 86.194 1. ATOM 1993 CA ASN 271 15.717 2.336 86.194 1. ATOM 1994 CB ASN 271 15.717 2.336 86.194 1. ATOM 1995 CB ASN 271 15.717 2.336 86.194 1. ATOM 1995 CB ASN 271 15.717 2.336 86.194 1. ATOM 1995 CB ASN 271 15.717 2.336 86.194 1. ATOM 1995 CB ASN 271 15.717 2.336 86.194 1. ATOM 1995 CB ASN 271 15.717 2.336 86.194 1. ATOM 1995 CB ASN 271 15.717 2.336 86.194 1. ATOM 1995 CB ASN 271 17.661 3.504 82.460 1. ATOM 1995 CB ASN 271 17.661 3.504 82.460 1. ATOM 1995 CB ASN 271 17.661 3.504 82.649 1. ATOM 1995 CB ASN 271 17.661 3.504 82.760 1. ATOM 1995 CB ASN 271 17.661 3.504 82.760 1. ATOM 1995 CB ASN 271 17.661 3.504 82.760 1. ATOM 1995 CB ASN 271 17.661 3.504 82.760 1. ATOM 1995 CB ASN 271 17.661 3.504 82.760 1. ATOM 2000 CB ASN 287 18.348 11.168 80.854 1. ATOM 2000 CB ASN 287 18.348 11.168 80.854 1. ATOM 2000 CB ASN 287 18.348 11.168 80.854 1. ATOM 2000 CB ASN 287 18.348 11.	.00 9.23 A .00 7.43 A .00 6.36 A .00 6.36 A .00 5.05 A .00 6.99 A .00 5.27 A .00 12.51 A .00 15.67 A .00 17.12 A .00 15.31 A .00 15.31 A .00 15.31 A .00 15.47 A .00 12.64 A .00 20.29 A .00 19.97 A .00 22.91 A .00 22.91 A .00 22.91 A .00 22.91 A .00 22.35 A .00 21.47 A .00 18.55 A .00 21.47 A .00 18.55 A .00 22.04 A .00 23.14 A
ATOM 1968 N ALA 267 22.336 7.845 93.801 1. ATOM 1970 CB ALA 267 21.156 8.220 93.047 1. ATOM 1971 C ALA 267 21.572 8.756 91.687 1. ATOM 1972 O ALA 267 20.324 6.945 92.877 1. ATOM 1973 N GLY 268 19.042 7.105 92.571 1. ATOM 1974 CA GLY 268 18.633 5.079 91.233 1. ATOM 1975 C GLY 268 18.633 5.079 91.233 1. ATOM 1976 O GLY 268 18.633 5.079 91.233 1. ATOM 1977 N SER 269 18.755 3.786 91.516 1. ATOM 1978 CA SER 269 19.220 2.802 90.543 1. ATOM 1979 CB SER 269 19.220 2.802 90.543 1. ATOM 1979 CB SER 269 18.596 1.027 92.043 1. ATOM 1980 OG SER 269 18.596 1.027 92.043 1. ATOM 1981 C SER 269 18.195 2.383 89.484 1. ATOM 1983 N GLU 270 16.994 2.950 89.537 1. ATOM 1984 CA GLU 270 16.994 2.950 89.537 1. ATOM 1985 CB GLU 270 14.563 2.958 89.136 1. ATOM 1987 CD GLU 270 14.563 2.958 89.136 1. ATOM 1988 OEI GLU 270 14.960 5.185 90.349 1. ATOM 1989 OE2 GLU 270 14.960 5.185 90.349 1. ATOM 1989 OE2 GLU 270 14.960 5.185 90.349 1. ATOM 1989 OE2 GLU 270 16.608 4.256 86.981 1 ATOM 1989 OE2 GLU 270 16.608 4.256 86.981 1 ATOM 1999 C ASN 271 15.717 2.336 86.194 1 ATOM 1999 C ASN 271 15.717 2.336 86.194 1 ATOM 1999 C ASN 271 15.717 2.336 86.194 1 ATOM 1999 C ASN 271 15.717 2.336 86.194 1 ATOM 1999 C ASN 271 16.618 3.504 82.640 1 ATOM 1999 C ASN 271 17.661 3.504 82.640 1 ATOM 1999 C ASN 271 17.661 3.504 82.640 1 ATOM 1999 C ASN 271 17.661 3.504 82.640 1 ATOM 1999 C ASN 271 17.661 3.504 82.640 1 ATOM 1999 C ASN 271 17.661 3.504 82.640 1 ATOM 1999 C ASN 271 17.661 3.504 82.640 1 ATOM 1999 C ASN 271 17.661 3.504 82.640 1 ATOM 1999 C ASN 271 17.661 3.504 82.640 1 ATOM 1999 C ASN 271 17.661 3.504 82.640 1 ATOM 1999 C ASN 271 17.661 3.504 82.640 1 ATOM 1999 C ASN 271 17.230 12.870 79.053 1 ATOM 2000 C ASN 287 18.323 13.385 79.614 1 ATOM 2000 C ASN 287 18.324 10.139 81.437 71 ATOM 2000 C ASN 287 18.324 10.139 81.437 71 ATOM 2000 C ASN 287 18.324 10.139 81.437 71 ATOM 2000 C ASN 287 18.324 10.139 81.437 71 ATOM 2000 C ASN 287 18.324 10.139 81.437 71 ATOM 2000 C ASN 287 18.324 10.139 81.437 71 ATOM 2000 C AS	.00 7.43 A .00 6.36 A .00 5.05 A .00 6.99 A .00 5.27 A .00 9.81 A .00 15.67 A .00 17.12 A .00 15.31 A .00 15.31 A .00 15.31 A .00 15.31 A .00 19.97 A .00 12.64 A .00 20.29 A .00 20.20 A
ATOM 1969 CA ALA 267 21.556 8.220 93.047 1. ATOM 1970 CB ALA 267 21.572 8.756 91.687 1. ATOM 1971 C ALA 267 20.324 6.945 92.877 1. ATOM 1972 O ALA 267 20.324 6.945 92.877 1. ATOM 1973 N GLY 268 19.042 7.105 92.571 1. ATOM 1974 CA GLY 268 18.170 5.961 92.378 1. ATOM 1975 C GLY 268 18.633 5.079 91.233 1. ATOM 1976 O GLY 268 18.859 5.555 90.113 1. ATOM 1977 N SER 269 18.755 3.786 91.516 1. ATOM 1978 CA SER 269 19.220 2.802 90.543 1. ATOM 1979 CB SER 269 19.220 2.802 90.543 1. ATOM 1980 OG SER 269 18.596 1.027 92.043 1. ATOM 1981 C SER 269 18.596 1.027 92.043 1. ATOM 1981 C SER 269 18.497 1.554 98.667 1. ATOM 1982 O SER 269 18.497 1.549 88.627 1. ATOM 1984 CA GLU 270 16.994 2.576 88.587 1. ATOM 1985 CB GLU 270 14.563 2.958 89.136 1. ATOM 1987 CD GLU 270 14.960 5.185 90.349 1. ATOM 1988 OEI GLU 270 14.960 5.185 90.349 1. ATOM 1989 OE2 GLU 270 16.17 3.139 87.177 1. ATOM 1990 C GLU 270 16.608 4.256 86.981 1. ATOM 1991 O GLU 270 16.608 4.256 86.981 1. ATOM 1992 N ASN 271 15.779 2.730 84.793 1. ATOM 1993 CA ASN 271 15.799 2.730 84.793 1. ATOM 1994 CB ASN 271 15.799 2.730 84.793 1. ATOM 1995 CG ASN 271 17.661 3.504 82.649 1. ATOM 1996 ODI ASN 271 17.661 3.504 82.640 1. ATOM 1997 CD ASN 271 16.733 1.618 81.650 1. ATOM 1998 C ASN 271 17.661 3.504 82.640 1. ATOM 1999 C ASN 271 17.661 3.504 82.640 1. ATOM 1999 C ASN 271 17.661 3.504 82.640 1. ATOM 1999 C ASN 271 17.661 3.504 82.640 1. ATOM 1999 C ASN 271 17.661 3.504 82.640 1. ATOM 1999 C ASN 271 17.661 3.504 82.640 1. ATOM 1999 C ASN 271 16.733 1.618 81.650 1. ATOM 1999 C ASN 271 17.661 3.504 82.640 1. ATOM 1999 C ASN 271 17.661 3.504 82.640 1. ATOM 1999 C ASN 271 17.661 3.504 82.640 1. ATOM 1999 C ASN 271 17.661 3.504 82.640 1. ATOM 2000 C ASN 287 18.348 11.168 80.854 1. ATOM 2000 C ASN 287 18.348 11.168 80.854 1. ATOM 2000 C ASN 287 18.348 11.168 80.854 1. ATOM 2000 C ASN 287 18.348 11.168 80.855 1. ATOM 2000 C ASN 287 18.348 11.168 80.855 1. ATOM 2000 C ASN 287 18.348 11.168 80.855 1. ATOM 2000 C ASN 287 18.348 11.168 80.855 1	.00 6.36 A .00 5.05 A .00 6.99 A .00 6.99 A .00 5.27 A .00 9.81 A .00 12.51 A .00 15.67 A .00 17.12 A .00 15.31 A .00 15.31 A .00 17.50 A .00 12.64 A .00 20.29 A .00 12.64 A .00 20.29 A .00 20.29 A .00 22.91 A .00 24.65 A .00 22.35 A .00 21.47 A .00 18.55 A .00 22.04 A .00 31.14 A
15 ATOM 1970 CB ALA 267 20.324 6.945 92.877 1. ATOM 1971 C ALA 267 20.324 6.945 92.877 1. ATOM 1972 O ALA 267 20.844 5.840 93.020 1. ATOM 1973 N GLY 268 19.042 7.105 92.571 1. ATOM 1974 CA GLY 268 18.170 5.961 92.378 1. ATOM 1975 C GLY 268 18.633 5.079 91.233 1. 20 ATOM 1976 O GLY 268 18.859 5.555 90.113 1. ATOM 1977 N SER 269 18.755 3.786 91.516 1. ATOM 1978 CA SER 269 19.200 2.802 90.543 1. ATOM 1979 CB SER 269 19.677 1.554 91.293 1. ATOM 1980 OG SER 269 18.596 1.027 92.043 1. ATOM 1981 C SER 269 18.195 2.383 89.484 1. ATOM 1982 O SER 269 18.497 1.549 88.627 1. ATOM 1983 N GLU 270 16.994 2.950 89.537 1. ATOM 1984 CA GLU 270 16.994 2.950 89.537 1. ATOM 1985 CB GLU 270 14.563 2.958 89.136 1. ATOM 1986 CG GLU 270 14.563 2.958 89.136 1. ATOM 1987 CD GLU 270 14.960 5.185 90.349 1. ATOM 1988 OEI GLU 270 14.960 5.185 90.349 1. ATOM 1989 OE2 GLU 270 14.922 6.433 90.354 1. ATOM 1989 OE2 GLU 270 14.922 6.433 90.354 1. ATOM 1990 C GLU 270 16.17 3.139 87.177 1. ATOM 1991 O GLU 270 16.608 4.256 86.981 1. ATOM 1992 N ASN 271 15.717 2.336 86.194 1. ATOM 1993 CA ASN 271 15.717 2.336 86.194 1. ATOM 1994 CB ASN 271 15.717 2.336 86.194 1. ATOM 1995 CG ASN 271 15.717 2.336 86.194 1. ATOM 1996 ODI ASN 271 17.121 2.409 82.649 1. ATOM 1997 ND2 ASN 271 15.717 2.336 86.194 1. ATOM 1999 C ASN 271 17.121 2.409 82.649 1. ATOM 1999 CA ASN 271 17.121 2.409 82.649 1. ATOM 1999 CA ASN 271 17.121 2.409 82.649 1. ATOM 1999 CA ASN 271 17.121 2.409 82.649 1. ATOM 1999 CA ASN 271 17.121 2.409 82.649 1. ATOM 1999 CA ASN 271 17.121 2.409 82.649 1. ATOM 1999 CA ASN 271 17.121 2.409 82.649 1. ATOM 1999 CA ASN 271 17.121 2.409 82.649 1. ATOM 1999 CA ASN 271 17.121 2.409 82.649 1. ATOM 1999 CA ASN 271 17.121 2.409 82.649 1. ATOM 1999 CA ASN 287 17.122 11.408 81.710 1. ATOM 1999 CA ASN 287 17.122 11.408 81.710 1. ATOM 2000 N ASN 287 18.348 11.168 80.854 1. ATOM 2001 CA ASN 287 19.078 12.487 80.582 1. ATOM 2003 CA ASN 287 19.078 12.487 80.582 1. ATOM 2004 ODI ASN 287 18.244 10.139 81.437 1. ATOM 2008 N ILE 288 20.619 10.400 81.285 1. ATOM 2009 CA ILE 2	.00 5.05 A .00 6.99 A .00 5.27 A .00 9.81 A .00 12.51 A .00 15.67 A .00 17.12 A .00 15.31 A .00 17.50 A .00 17.50 A .00 12.64 A .00 20.29 A .00 22.91 A
15 ATOM 1971 C ALA 267 20.324 6.945 92.877 1. ATOM 1972 O ALA 267 20.844 5.840 93.020 1. ATOM 1973 N GLY 268 19.042 7.105 92.571 1. ATOM 1974 CA GLY 268 18.170 5.961 92.378 1. ATOM 1975 C GLY 268 18.633 5.079 91.233 1. 20 ATOM 1976 O GLY 268 18.859 5.555 90.113 1. ATOM 1977 N SER 269 18.755 3.786 91.516 1. ATOM 1978 CA SER 269 19.200 2.802 90.543 1. ATOM 1978 CB SER 269 19.677 1.554 91.293 1. ATOM 1978 CB SER 269 19.677 1.554 91.293 1. ATOM 1980 OG SER 269 18.996 1.027 92.043 1. ATOM 1981 C SER 269 18.996 1.027 92.043 1. ATOM 1982 O SER 269 18.497 1.549 88.627 1. ATOM 1983 N GLU 270 16.994 2.950 89.537 1. ATOM 1984 CA GLU 270 16.994 2.950 89.537 1. ATOM 1985 CB GLU 270 14.563 2.958 89.136 1. 30 ATOM 1986 CG GLU 270 14.563 2.958 89.136 1. ATOM 1987 CD GLU 270 14.960 5.185 90.349 1. ATOM 1988 OE1 GLU 270 14.960 5.185 90.349 1. ATOM 1989 OE2 GLU 270 14.960 5.185 90.349 1. ATOM 1990 C GLU 270 16.608 4.256 86.981 1 ATOM 1991 O GLU 270 16.608 4.256 86.981 1 ATOM 1992 N ASN 271 15.717 2.336 86.194 1 ATOM 1993 CA ASN 271 15.717 2.336 86.194 1 ATOM 1994 CB ASN 271 15.799 2.730 84.793 1 ATOM 1995 CG ASN 271 17.661 3.504 82.640 1 ATOM 1996 CG ASN 271 17.661 3.504 82.640 1 ATOM 1997 ND2 ASN 271 16.733 1.618 81.650 1 ATOM 1998 C ASN 271 17.661 3.504 82.640 1 ATOM 1999 C ASN 271 17.661 3.504 82.640 1 ATOM 1999 C ASN 271 17.661 3.504 82.640 1 ATOM 1999 C ASN 271 17.661 3.504 82.640 1 ATOM 1999 C ASN 271 17.661 3.504 82.640 1 ATOM 1999 C ASN 271 17.661 3.504 82.640 1 ATOM 1999 C ASN 271 17.661 3.504 82.640 1 ATOM 1999 C ASN 271 17.661 3.504 80.854 1 ATOM 1990 C ASN 271 17.661 3.504 80.855 1 ATOM 2000 N ASN 287 18.348 11.168 80.854 1 ATOM 2001 CA ASN 287 18.324 10.139 81.437 1 ATOM 2008 N ASN 287 18.324 10.139 81.437 1 ATOM 2009 CA ILE 288 20.619 10.400 81.285 1 ATOM 2009 CA ILE 288 20.619 10.400 81.285 1 ATOM 2009 CA ILE 288 20.619 10.400 81.285 1 ATOM 2000 CA SILE 288 22.657 9.156 80.646 1	.00 6.99 A .00 5.27 A .00 9.81 A .00 12.51 A .00 15.67 A .00 15.67 A .00 15.31 A .00 15.31 A .00 12.64 A .00 12.64 A .00 20.29 A .00 19.97 A .00 22.91 A .00 22.91 A .00 22.45 A .00 22.35 A .00 21.47 A .00 18.55 A .00 22.04 A .00 23.114 A
ATOM 1973 N GLY 268 19.042 7.105 92.571 1. ATOM 1974 CA GLY 268 18.170 5.961 92.378 1. ATOM 1975 C GLY 268 18.633 5.079 91.233 1. ATOM 1976 O GLY 268 18.653 5.079 91.233 1. ATOM 1977 N SER 269 18.755 3.786 91.516 1. ATOM 1978 CA SER 269 19.200 2.802 90.543 1. ATOM 1979 CB SER 269 19.677 1.554 91.293 1. ATOM 1980 OG SER 269 19.677 1.554 91.293 1. ATOM 1981 C SER 269 18.996 1.027 92.043 1. ATOM 1981 C SER 269 18.195 2.383 89.484 1. ATOM 1982 O SER 269 18.497 1.549 88.627 1. ATOM 1983 N GLU 270 16.994 2.950 89.537 1. ATOM 1984 CA GLU 270 14.563 2.958 89.136 1. ATOM 1985 CB GLU 270 14.563 2.958 89.136 1. ATOM 1986 CG GLU 270 14.563 2.958 89.136 1. ATOM 1987 CD GLU 270 14.960 5.185 90.349 1. ATOM 1988 OE1 GLU 270 14.960 5.185 90.349 1. ATOM 1989 OE2 GLU 270 14.960 5.185 90.349 1. ATOM 1990 C GLU 270 14.960 5.185 90.349 1. ATOM 1991 O GLU 270 16.608 4.256 86.981 1. ATOM 1992 N ASN 271 15.717 2.336 86.194 1. ATOM 1993 CA ASN 271 15.717 2.336 86.194 1. ATOM 1994 CB ASN 271 15.799 2.730 84.793 1. ATOM 1995 CG ASN 271 15.717 2.336 86.194 1. ATOM 1997 ND2 ASN 271 15.717 2.336 86.194 1. ATOM 1998 CA ASN 271 15.717 2.336 86.194 1. ATOM 1999 CA ASN 271 16.836 1.900 84.059 1. ATOM 1999 CA ASN 271 16.733 1.618 81.650 1. ATOM 1999 CA ASN 271 16.733 1.618 81.650 1. ATOM 1999 CA ASN 271 17.121 2.409 82.649 1. ATOM 1999 CA ASN 271 17.121 2.409 82.649 1. ATOM 1999 CA ASN 271 17.121 2.409 82.649 1. ATOM 1999 CA ASN 271 17.121 2.409 82.649 1. ATOM 1999 CA ASN 271 17.121 2.409 82.649 1. ATOM 1999 CA ASN 271 17.121 2.409 82.649 1. ATOM 1990 CA ASN 287 17.122 1.408 81.710 1. ATOM 2001 CA ASN 287 18.348 11.168 80.854 1. ATOM 2002 CB ASN 287 17.122 11.408 81.710 1. ATOM 2003 CG ASN 287 18.323 13.385 79.614 1. ATOM 2004 OD1 ASN 287 18.324 10.139 81.371 1. ATOM 2007 CA ASN 287 19.324 10.139 81.371 1. ATOM 2008 N ILE 288 20.619 10.400 81.285 1. ATOM 2009 CA ILE 288 20.619 10.400 81.285 1. ATOM 2000 CA ILE 288 20.619 10.400 81.285 1.	.00 5.27 A .00 9.81 A .00 12.51 A .00 15.67 A .00 17.12 A .00 15.31 A .00 18.23 A .00 17.50 A .00 12.64 A .00 20.29 A .00 20.29 A .00 20.29 A .00 22.91 A .00 24.65 A .00 22.35 A .00 21.47 A .00 18.55 A .00 22.04 A .00 31.14 A
ATOM 1973 N GLY 268 19.042 7.105 92.571 1. ATOM 1974 CA GLY 268 18.170 5.961 92.378 1. ATOM 1975 C GLY 268 18.633 5.079 91.233 1. ATOM 1976 O GLY 268 18.859 5.555 90.113 1. ATOM 1977 N SER 269 18.755 3.786 91.516 1. ATOM 1978 CA SER 269 19.220 2.802 90.543 1. ATOM 1979 CB SER 269 19.677 1.554 91.293 1. ATOM 1980 OG SER 269 19.677 1.554 91.293 1. ATOM 1981 C SER 269 18.596 1.027 92.043 1. ATOM 1982 O SER 269 18.497 1.549 88.627 1. ATOM 1983 N GLU 270 16.994 2.950 89.537 1. ATOM 1985 CB GLU 270 15.949 2.576 88.587 1. ATOM 1985 CB GLU 270 14.563 2.958 89.136 1. ATOM 1986 CG GLU 270 14.563 2.958 89.136 1. ATOM 1987 CD GLU 270 14.960 5.185 90.349 1. ATOM 1988 0E1 GLU 270 14.960 5.185 90.349 1. ATOM 1989 0E2 GLU 270 14.922 6.433 90.354 1. ATOM 1999 C GLU 270 16.17 3.139 87.177 1. ATOM 1990 C GLU 270 16.608 4.256 86.981 1. ATOM 1991 O GLU 270 16.608 4.256 86.981 1. ATOM 1992 N ASN 271 15.717 2.336 86.9194 1. ATOM 1995 CG ASN 271 15.717 2.336 84.793 1. ATOM 1995 CG ASN 271 17.61 3.509 82.469 1. ATOM 1997 ND2 ASN 271 15.717 2.336 84.793 1. ATOM 1999 CA ASN 271 16.856 1.900 84.059 1. ATOM 1999 CA ASN 271 17.61 3.509 82.469 1. ATOM 1999 CA ASN 271 17.61 3.509 82.469 1. ATOM 1999 CA ASN 271 17.61 3.509 82.469 1. ATOM 1999 CA ASN 271 17.61 3.509 82.469 1. ATOM 1999 CA ASN 271 17.61 3.509 82.469 1. ATOM 1999 CA ASN 271 17.61 3.509 82.469 1. ATOM 1999 CA ASN 271 17.61 3.509 82.469 1. ATOM 1999 CA ASN 271 17.61 3.509 82.469 1. ATOM 1999 CA ASN 271 17.61 3.509 82.469 1. ATOM 1990 CA ASN 271 17.62 3.509 86.582 1. ATOM 2000 N ASN 287 18.348 11.168 80.854 1. ATOM 2000 CA ASN 287 18.348 11.168 80.854 1. ATOM 2000 CA ASN 287 18.324 10.139 81.771 1. ATOM 2000 CA ASN 287 18.912 9.131 82.021 1. ATOM 2000 CA ASN 287 18.912 9.131 82.021 1. ATOM 2000 CA ASN 287 18.912 9.131 82.021 1. ATOM 2000 CA ASN 287 19.324 10.139 81.771 1. ATOM 2000 CA ASN 287 19.324 10.139 81.771 1. ATOM 2000 CA ASN 287 19.324 10.139 81.771 1. ATOM 2000 CA ASN 287 19.324 10.139 81.771 1.	.00 9.81 A .00 12.51 A .00 15.67 A .00 15.31 A .00 15.31 A .00 17.50 A .00 12.64 A .00 20.29 A .00 12.64 A .00 20.29 A .00 22.91 A .00 22.91 A .00 22.91 A .00 22.35 A .00 21.47 A .00 18.55 A .00 22.04 A .00 22.04 A
ATOM 1974 CA GLY 268 18.170 5.961 92.378 1. ATOM 1975 C GLY 268 18.633 5.079 91.233 1. ATOM 1976 O GLY 268 18.859 5.555 90.113 1. ATOM 1977 N SER 269 18.755 3.786 91.516 1. ATOM 1978 CA SER 269 19.220 2.802 90.543 1. ATOM 1979 CB SER 269 19.220 2.802 90.543 1. ATOM 1980 OG SER 269 19.677 1.554 91.293 1. ATOM 1981 C SER 269 18.596 1.027 92.043 1. ATOM 1982 O SER 269 18.195 2.383 89.484 1. ATOM 1983 N GLU 270 16.994 2.950 89.537 1. ATOM 1984 CA GLU 270 16.994 2.950 89.537 1. ATOM 1985 CB GLU 270 14.563 2.958 89.136 1. ATOM 1986 CG GLU 270 14.563 2.958 89.136 1. ATOM 1987 CD GLU 270 14.960 5.185 90.349 1. ATOM 1988 OE1 GLU 270 14.960 5.185 90.349 1. ATOM 1989 OE2 GLU 270 14.960 5.185 90.349 1. ATOM 1990 C GLU 270 16.608 4.256 86.981 1. ATOM 1991 O GLU 270 16.608 4.256 86.981 1. ATOM 1992 N ASN 271 15.799 2.730 84.793 1. ATOM 1994 CB ASN 271 15.799 2.730 84.793 1. ATOM 1995 CG ASN 271 17.661 3.504 82.460 1. ATOM 1995 CG ASN 271 16.635 1.900 84.059 1. ATOM 1996 OD1 ASN 271 17.661 3.504 82.460 1. ATOM 1997 ND2 ASN 271 17.661 3.504 82.460 1. ATOM 1999 C ASN 271 17.661 3.504 82.460 1. ATOM 1999 C ASN 271 17.661 3.504 82.460 1. ATOM 1999 C ASN 271 17.661 3.504 82.460 1. ATOM 1999 C ASN 271 17.661 3.504 82.460 1. ATOM 1999 C ASN 271 17.661 3.504 82.460 1. ATOM 1999 C ASN 271 17.661 3.504 82.460 1. ATOM 1999 C ASN 271 17.661 3.504 82.460 1. ATOM 1999 C ASN 271 17.661 3.504 82.460 1. ATOM 1999 C ASN 271 17.661 3.504 82.460 1. ATOM 1999 C ASN 271 17.661 3.504 82.460 1. ATOM 1990 C ASN 287 18.338 11.168 80.854 1. ATOM 2000 N ASN 287 18.338 11.168 80.854 1. ATOM 2000 C ASN 287 18.338 13.385 79.614 1. ATOM 2000 C ASN 287 18.323 13.385 79.614 1. ATOM 2000 C ASN 287 18.912 9.131 82.021 1. ATOM 2000 C ASN 287 18.912 9.131 82.021 1. ATOM 2000 C ASN 287 18.912 9.131 82.021 1. ATOM 2000 C ASN 287 18.912 9.131 82.021 1. ATOM 2000 C ASN 287 18.912 9.131 82.021 1. ATOM 2000 C ASN 287 18.912 9.131 82.021 1. ATOM 2000 C ASN 287 19.566 79.156 80.666 1.	.00 12.51 A .00 15.67 A .00 17.12 A .00 15.31 A .00 18.23 A .00 17.50 A .00 12.64 A .00 20.29 A .00 19.97 A .00 22.91 A .00 22.91 A .00 24.65 A .00 24.65 A .00 21.47 A .00 18.55 A .00 21.47 A .00 18.55 A .00 22.04 A .00 31.14 A
20 ATOM 1975 C GLY 268 18.633 5.079 91.233 1. ATOM 1976 O GLY 268 18.859 5.555 90.113 1. ATOM 1977 N SER 269 18.755 3.786 91.516 1. ATOM 1978 CA SER 269 19.220 2.802 90.543 1. ATOM 1979 CB SER 269 19.677 1.554 91.293 1. ATOM 1980 OG SER 269 18.596 1.027 92.043 1. ATOM 1981 C SER 269 18.596 1.027 92.043 1. ATOM 1982 O SER 269 18.596 1.027 92.043 1. ATOM 1983 N GLU 270 16.994 2.950 89.537 1. ATOM 1984 CA GLU 270 15.949 2.576 88.587 1. ATOM 1985 CB GLU 270 14.563 2.958 89.136 1. ATOM 1986 CG GLU 270 14.960 5.185 90.349 1. ATOM 1987 CD GLU 270 14.960 5.185 90.349 1. ATOM 1988 OE1 GLU 270 14.960 5.185 90.349 1. ATOM 1989 OE2 GLU 270 14.922 6.433 90.354 1. ATOM 1990 C GLU 270 16.608 4.256 4.91.234 1. ATOM 1991 O GLU 270 16.608 4.256 8981 3 35 ATOM 1991 O GLU 270 16.608 4.256 8981 3 ATOM 1992 N ASN 271 15.799 2.730 84.793 1. ATOM 1993 CA ASN 271 15.799 2.730 84.793 1. ATOM 1994 CB ASN 271 15.799 2.730 84.793 1. ATOM 1995 CG ASN 271 17.121 2.409 82.649 1. ATOM 1996 OD1 ASN 271 17.121 2.409 82.649 1. ATOM 1997 ND2 ASN 271 17.121 2.409 82.649 1. ATOM 1999 C ASN 271 17.121 2.409 82.649 1. ATOM 1999 C ASN 271 17.121 2.409 82.649 1. ATOM 1999 C ASN 271 17.121 2.409 82.649 1. ATOM 1999 C ASN 271 17.121 2.409 82.649 1. ATOM 1999 C ASN 271 17.121 2.409 82.649 1. ATOM 1999 C ASN 271 17.121 2.409 82.649 1. ATOM 1999 C ASN 271 17.121 2.409 82.649 1. ATOM 1999 C ASN 271 17.121 2.409 82.649 1. ATOM 1999 C ASN 271 17.122 1.408 81.710 1. ATOM 1999 C ASN 271 18.333 13.385 79.614 1. ATOM 2000 C ASN 287 18.323 13.385 79.614 1. ATOM 2000 C ASN 287 18.324 10.139 81.437 1. ATOM 2000 C ASN 287 18.912 9.131 82.021 1. ATOM 2000 C ASN 287 18.912 9.131 82.021 1. ATOM 2000 C ASN 287 18.912 9.131 82.021 1. ATOM 2000 C ASN 287 18.912 9.131 82.021 1. ATOM 2000 C ASN 287 18.912 9.131 82.021 1. ATOM 2000 C ASN 287 18.912 9.131 82.021 1. ATOM 2000 C ASN 287 18.912 9.131 82.021 1. ATOM	.00 15.67 A .00 17.12 A .00 15.31 A .00 18.23 A .00 17.50 A .00 12.64 A .00 20.29 A .00 19.97 A .00 22.91 A .00 26.68 A .00 24.65 A .00 22.35 A .00 21.47 A .00 18.55 A .00 21.47 A .00 18.55 A .00 22.04 A
20	.00 17.12 A .00 15.31 A .00 18.23 A .00 17.50 A .00 12.64 A .00 20.29 A .00 19.97 A .00 22.91 A .00 26.68 A .00 24.65 A .00 22.35 A .00 21.47 A .00 18.55 A .00 22.04 A .00 21.47 A
20	.00 15.31 A .00 18.23 A .00 17.50 A .00 17.50 A .00 12.64 A .00 20.29 A .00 19.97 A .00 22.91 A .00 26.68 A .00 24.65 A .00 22.35 A .00 21.47 A .00 18.55 A .00 22.04 A .00 31.14 A
ATOM 1977 N SER 269 18.755 3.786 91.516 1. ATOM 1978 CA SER 269 19.220 2.802 90.543 1. ATOM 1979 CB SER 269 19.677 1.554 91.293 1. ATOM 1980 OG SER 269 18.596 1.027 92.043 1. 25 ATOM 1981 C SER 269 18.596 1.027 92.043 1. ATOM 1982 O SER 269 18.495 2.383 89.484 1. ATOM 1983 N GLU 270 16.994 2.950 89.537 1. ATOM 1984 CA GLU 270 15.949 2.576 88.587 1. ATOM 1985 CB GLU 270 15.949 2.576 88.587 1. ATOM 1986 CG GLU 270 14.563 2.958 89.136 1. ATOM 1987 CD GLU 270 14.563 2.958 89.136 1. ATOM 1988 OEI GLU 270 14.960 5.185 90.349 1. ATOM 1988 OEI GLU 270 14.960 5.185 90.349 1. ATOM 1989 OE2 GLU 270 14.922 6.433 90.354 1. ATOM 1990 C GLU 270 16.508 4.524 91.234 1. ATOM 1990 C GLU 270 16.6608 4.256 86.981 1. ATOM 1991 O GLU 270 16.6608 4.256 86.981 1. ATOM 1992 N ASN 271 15.717 2.336 86.194 1. ATOM 1994 CB ASN 271 15.799 2.730 84.793 1. ATOM 1995 CG ASN 271 15.799 2.730 84.793 1. ATOM 1995 CG ASN 271 17.661 3.504 82.460 1. ATOM 1996 OD1 ASN 271 17.661 3.504 82.460 1. ATOM 1997 ND2 ASN 271 17.661 3.504 82.460 1. ATOM 1998 C ASN 271 17.661 3.504 82.460 1. ATOM 1999 O ASN 271 17.661 3.504 82.460 1. ATOM 1999 C ASN 271 17.661 3.504 82.460 1. ATOM 1999 C ASN 271 17.661 3.504 82.460 1. ATOM 1999 C ASN 271 17.661 3.504 82.460 1. ATOM 1999 C ASN 271 17.661 3.504 82.460 1. ATOM 1999 C ASN 271 17.661 3.504 82.460 1. ATOM 1999 C ASN 271 17.92 11.408 81.710 1. ATOM 2000 N ASN 287 18.348 11.168 80.854 1. ATOM 2000 C ASN 287 18.348 11.168 80.854 1. ATOM 2000 C ASN 287 18.323 13.385 79.614 1. ATOM 2000 C ASN 287 18.323 13.385 79.614 1. ATOM 2000 C ASN 287 18.324 10.139 81.437 1. ATOM 2000 C ASN 287 18.324 10.139 81.437 1. ATOM 2000 C ASN 287 18.924 10.139 81.437 1. ATOM 2000 C ASN 287 18.924 10.139 81.437 1. ATOM 2000 C ASN 287 18.924 10.139 81.437 1. ATOM 2000 C ASN 287 18.924 10.139 81.437 1. ATOM 2000 C ASN 287 18.924 10.139 81.437 1. ATOM 2000 C ASN 287 18.924 10.139 81.437 1. ATOM 2000 C ASN 287 18.924 10.139 81.437 1. ATOM 2000 C ASN 287 18.924 10.139 81.437 1. ATOM 2000 C ASN 287 18.924 10.139 81.437 1. ATOM 2000 C ASN 287 18.924 1	.00 18.23 A .00 17.50 A .00 12.64 A .00 20.29 A .00 19.97 A .00 22.91 A .00 26.68 A .00 24.65 A .00 22.35 A .00 21.47 A .00 18.55 A .00 21.47 A .00 18.55 A
ATOM 1978 CA SER 269 19.220 2.802 90.543 1. ATOM 1979 CB SER 269 19.677 1.554 91.293 1. ATOM 1980 OG SER 269 18.596 1.027 92.043 1. ATOM 1981 C SER 269 18.596 1.027 92.043 1. ATOM 1981 C SER 269 18.195 2.383 89.484 1. ATOM 1983 N GLU 270 16.994 2.950 89.537 1. ATOM 1984 CA GLU 270 15.949 2.576 88.587 1. ATOM 1985 CB GLU 270 14.563 2.958 89.136 1. ATOM 1986 CG GLU 270 14.563 2.958 89.136 1. ATOM 1987 CD GLU 270 14.960 5.185 90.349 1. ATOM 1988 OE1 GLU 270 14.960 5.185 90.349 1. ATOM 1989 OE2 GLU 270 14.922 6.433 90.354 1. ATOM 1990 C GLU 270 14.922 6.433 90.354 1. ATOM 1991 O GLU 270 16.608 4.256 86.981 1. ATOM 1991 O GLU 270 16.608 4.256 86.981 1. ATOM 1992 N ASN 271 15.717 2.336 86.194 1. ATOM 1994 CB ASN 271 15.799 2.730 84.793 1. ATOM 1995 CG ASN 271 16.656 1.900 84.059 1. ATOM 1995 CG ASN 271 17.661 3.504 82.460 1. ATOM 1996 OD1 ASN 271 17.661 3.504 82.460 1. ATOM 1997 ND2 ASN 271 17.661 3.504 82.460 1. ATOM 1998 C ASN 271 17.661 3.504 82.460 1. ATOM 1999 O ASN 271 17.661 3.504 82.460 1. ATOM 1999 C ASN 271 17.661 3.504 82.460 1. ATOM 1999 C ASN 271 17.661 3.504 82.460 1. ATOM 1999 C ASN 271 17.661 3.504 82.460 1. ATOM 1999 C ASN 271 17.661 3.504 82.460 1. ATOM 1999 C ASN 271 17.661 3.504 82.460 1. ATOM 1999 C ASN 271 17.661 3.504 82.460 1. ATOM 1999 C ASN 271 17.661 3.504 82.460 1. ATOM 1990 C ASN 271 17.661 3.504 82.460 1. ATOM 1990 C ASN 271 17.661 3.504 82.460 1. ATOM 2000 N ASN 287 18.338 11.168 80.854 1. ATOM 2000 C ASN 287 18.338 11.168 80.854 1. ATOM 2000 C ASN 287 18.338 11.168 80.854 1. ATOM 2000 C ASN 287 18.323 13.385 79.614 1. ATOM 2000 C ASN 287 18.323 13.385 79.614 1. ATOM 2000 C ASN 287 18.324 10.139 81.437 1. ATOM 2000 C ASN 287 18.912 9.131 82.021 1. ATOM 2000 C ASN 287 18.912 9.131 82.021 1. ATOM 2000 C ASN 287 18.912 9.131 82.021 1. ATOM 2000 C ASN 287 18.912 9.131 82.021 1. ATOM 2000 C ASN 287 18.912 9.131 82.021 1. ATOM 2000 C ASN 287 18.912 9.131 82.021 1. ATOM 2000 C ASN 287 18.912 9.131 82.021 1. ATOM 2000 C ASN 287 18.912 9.131 82.021 1. ATOM 2000 C ASN 287 18.912 9.131 82.021 1. A	.00 18.23 A .00 17.50 A .00 12.64 A .00 20.29 A .00 19.97 A .00 22.91 A .00 26.68 A .00 24.65 A .00 22.35 A .00 21.47 A .00 18.55 A .00 21.47 A .00 18.55 A
ATOM 1979 CB SER 269 19.677 1.554 91.293 1. ATOM 1980 OG SER 269 18.596 1.027 92.043 1. ATOM 1981 C SER 269 18.195 2.383 89.484 1. ATOM 1982 O SER 269 18.497 1.549 88.627 1. ATOM 1983 N GLU 270 16.994 2.950 89.537 1. ATOM 1985 CB GLU 270 15.949 2.576 88.587 1. ATOM 1985 CB GLU 270 14.563 2.958 89.136 1. ATOM 1986 CG GLU 270 14.960 5.185 90.349 1. ATOM 1988 OE1 GLU 270 14.960 5.185 90.349 1. ATOM 1988 OE1 GLU 270 14.960 5.185 90.349 1. ATOM 1989 OE2 GLU 270 14.922 6.433 90.354 1. ATOM 1990 C GLU 270 16.117 3.139 87.177 1. ATOM 1991 O GLU 270 16.608 4.256 86.891 1. ATOM 1992 N ASN 271 15.717 2.336 86.194 1. ATOM 1993 CA ASN 271 15.799 2.730 84.793 1. ATOM 1994 CB ASN 271 15.799 2.730 84.793 1. ATOM 1995 CG ASN 271 17.121 2.409 82.649 1. ATOM 1996 OD1 ASN 271 17.121 2.409 82.649 1. ATOM 1997 ND2 ASN 271 16.733 1.618 81.650 1. ATOM 1998 C ASN 271 17.121 2.409 82.649 1. ATOM 1999 C ASN 271 17.121 2.409 82.649 1. ATOM 1999 C ASN 271 17.121 2.409 82.649 1. ATOM 1999 C ASN 271 17.121 2.409 82.649 1. ATOM 1999 C ASN 271 17.121 2.409 82.649 1. ATOM 1999 C ASN 271 17.121 2.409 82.649 1. ATOM 1999 C ASN 271 17.121 2.409 82.649 1. ATOM 1999 C ASN 271 17.121 2.409 82.649 1. ATOM 1999 C ASN 271 17.121 2.409 82.649 1. ATOM 1999 C ASN 271 17.121 2.409 82.649 1. ATOM 1990 C ASN 271 18.333 1.618 81.650 1. ATOM 1990 C ASN 287 18.348 11.168 80.854 1. ATOM 2000 C ASN 287 18.323 13.385 79.614 1. ATOM 2000 C ASN 287 18.324 10.139 81.437 1. ATOM 2006 C ASN 287 19.324 10.139 81.437 1. ATOM 2007 O ASN 287 18.912 9.131 82.021 1. ATOM 2000 C ASN 287 18.912 9.131 82.021 1. ATOM 2000 C ASN 287 18.912 9.131 82.021 1. ATOM 2000 C ASN 287 18.912 9.131 82.021 1. ATOM 2000 C ASN 287 18.912 9.131 82.021 1. ATOM 2000 C ASN 287 18.912 9.131 82.021 1. ATOM 2000 C ASN 287 18.912 9.131 82.021 1. ATOM 2000 C ASN 287 18.912 9.131 82.021 1. ATOM 2000 C ASN 287 18.912 9.131 82.021 1. ATOM 2000 C ASN 287 18.912 9.131 82.021 1. ATOM 2000 C ASN 287 18.912 9.131 82.021 1. ATOM 2000 C ASN 287 18.912 9.131 82.021 1.	.00 17.50 A .00 12.64 A .00 20.29 A .00 19.97 A .00 22.91 A .00 26.68 A .00 24.65 A .00 22.35 A .00 21.47 A .00 18.55 A .00 22.04 A .00 21.14 A
25 ATOM 1981 C SER 269 18.596 1.027 92.043 1. ATOM 1982 O SER 269 18.195 2.383 89.484 1. ATOM 1983 N GLU 270 16.994 2.950 89.537 1. ATOM 1985 CB GLU 270 15.949 2.576 88.587 1. ATOM 1985 CB GLU 270 14.563 2.958 89.136 1. ATOM 1986 CG GLU 270 14.563 2.958 89.136 1. ATOM 1987 CD GLU 270 14.563 2.958 89.136 1. ATOM 1988 OEI GLU 270 14.960 5.185 90.349 1. ATOM 1988 OEI GLU 270 14.960 5.185 90.349 1. ATOM 1989 OE2 GLU 270 14.960 5.185 90.349 1. ATOM 1989 OE2 GLU 270 15.545 4.524 91.234 1. ATOM 1990 C GLU 270 15.545 4.524 91.234 1. ATOM 1991 O GLU 270 16.117 3.139 87.177 1. ATOM 1992 N ASN 271 15.717 2.336 86.194 1. ATOM 1993 CA ASN 271 15.717 2.336 86.194 1. ATOM 1994 CB ASN 271 15.717 2.336 86.194 1. ATOM 1995 CG ASN 271 16.856 1.900 84.059 1. ATOM 1995 CG ASN 271 17.661 3.504 82.460 1. ATOM 1997 ND2 ASN 271 17.661 3.504 82.460 1. ATOM 1998 C ASN 271 16.733 1.618 81.650 1. ATOM 1999 O ASN 271 16.733 1.618 81.650 1. ATOM 1999 O ASN 271 14.440 2.537 84.120 1. ATOM 1999 O ASN 271 13.799 1.494 84.276 1. ATOM 1999 O ASN 271 13.799 1.494 84.276 1. ATOM 2000 N ASN 287 18.348 11.168 80.854 1. ATOM 2000 C ASN 287 18.348 11.168 80.854 1. ATOM 2000 C ASN 287 18.348 11.168 80.854 1. ATOM 2000 C ASN 287 18.348 11.168 80.854 1. ATOM 2000 C ASN 287 18.348 11.168 80.854 1. ATOM 2000 C ASN 287 18.323 13.385 79.614 1. ATOM 2000 C ASN 287 18.324 10.139 81.437 1. ATOM 2000 C ASN 287 18.924 10.139 81.437 1. ATOM 2000 C ASN 287 18.924 10.139 81.437 1. ATOM 2000 C ASN 287 18.924 10.139 81.437 1. ATOM 2000 C ASN 287 18.924 10.139 81.437 1. ATOM 2000 C ASN 287 18.924 10.139 81.437 1. ATOM 2000 C ASN 287 18.924 10.139 81.437 1. ATOM 2000 C ASN 287 18.912 9.131 82.021 1. ATOM 2000 C ASN 287 19.324 10.139 81.437 1. ATOM 2000 C ASN 287 18.912 9.131 82.021 1. ATOM 2000 C ASN 287 19.324 10.139 81.437 1. ATOM 2000 C ASN 287 18.912 9.131 82.021 1. ATOM 2000 C ASN 287 19.324 10.139 81.437 1. ATOM 2000 C ASN 287 18.912 9.131 82.021 1. ATOM 2000 C ASN 287 19.324 10.139 81.437 1. ATOM 2000 C ASN 287 19.324 10.139 81.437 1.	.00 12.64 A .00 20.29 A .00 19.97 A .00 22.91 A .00 26.68 A .00 24.65 A .00 22.35 A .00 21.47 A .00 18.55 A .00 22.04 A .00 31.14 A
25 ATOM 1981 C SER 269 18.195 2.383 89.484 1 ATOM 1982 O SER 269 18.497 1.549 88.627 1 ATOM 1983 N GLU 270 16.994 2.950 89.537 1 ATOM 1984 CA GLU 270 15.949 2.576 88.587 1 ATOM 1985 CB GLU 270 14.563 2.958 89.136 1 ATOM 1986 CG GLU 270 14.563 2.958 89.136 1 ATOM 1987 CD GLU 270 14.960 5.185 90.349 1 ATOM 1988 OE1 GLU 270 14.960 5.185 90.349 1 ATOM 1988 OE1 GLU 270 15.545 4.524 91.234 1 ATOM 1989 OE2 GLU 270 14.922 6.433 90.354 1 ATOM 1990 C GLU 270 16.117 3.139 87.177 1 ATOM 1991 O GLU 270 16.668 4.256 86.981 1 ATOM 1992 N ASN 271 15.717 2.336 86.194 1 ATOM 1993 CA ASN 271 15.799 2.730 84.793 1 ATOM 1994 CB ASN 271 16.856 1.900 84.059 1 ATOM 1995 CG ASN 271 17.121 2.409 82.649 1 ATOM 1996 OD1 ASN 271 17.661 3.504 82.460 1 ATOM 1997 ND2 ASN 271 17.661 3.504 82.460 1 ATOM 1998 C ASN 271 16.733 1.618 81.650 1 ATOM 1999 O ASN 271 14.440 2.537 84.120 1 ATOM 1999 C ASN 271 14.440 2.537 84.120 1 ATOM 1999 C ASN 271 13.799 1.494 84.276 1 ATOM 2000 N ASN 287 17.192 11.408 81.710 1 ATOM 2000 C ASN 287 18.348 11.168 80.854 1 ATOM 2001 CA ASN 287 18.348 11.168 80.854 1 ATOM 2002 CB ASN 287 18.348 11.168 80.854 1 ATOM 2003 CG ASN 287 18.348 11.168 80.854 1 ATOM 2000 C ASN 287 18.323 13.385 79.614 1 ATOM 2000 CA ASN 287 18.323 13.385 79.614 1 ATOM 2000 N ASN 287 18.323 13.385 79.614 1 ATOM 2000 CA SSN 287 18.324 10.139 81.437 1 ATOM 2000 CA SSN 287 18.924 10.139 81.437 1 ATOM 2000 CA SSN 287 18.924 10.139 81.437 1 ATOM 2000 CA SSN 287 18.924 10.139 81.437 1 ATOM 2000 CA SSN 287 18.924 10.139 81.437 1 ATOM 2000 CA SSN 287 18.924 10.139 81.437 1 ATOM 2000 CA SSN 287 18.924 10.139 81.437 1 ATOM 2000 CA SSN 287 18.924 10.139 81.437 1 ATOM 2000 CA SSN 287 18.924 10.139 81.437 1 ATOM 2000 CA SSN 287 18.924 9.431 81.771 1 ATOM 2000 CA SSN 287 18.924 9.431 81.771 1 ATOM 2000 CA SSN 287 18.924 9.431 81.771 1 ATOM 2000 CA SSN 287 18.924 9.431 81.771 1 ATOM 2000 CA SSN 287 18.924 9.431 81.771 1 ATOM 2000 CA SSN 287 18.924 9.431 81.771 1 ATOM 2000 CA SSN 286 266 9.465 9.476 81.666 81.666 81.666 81.666 81.666 81.666 81.666 81.666 81.666	.00 20.29 A .00 19.97 A .00 22.91 A .00 26.68 A .00 24.65 A .00 22.35 A .00 21.47 A .00 18.55 A .00 22.04 A
ATOM 1982 O SER 269 18.497 1.549 88.627 1 ATOM 1983 N GLU 270 16.994 2.950 89.537 1 ATOM 1985 CB GLU 270 15.949 2.576 88.587 1 ATOM 1985 CB GLU 270 14.563 2.958 89.136 1 ATOM 1987 CD GLU 270 14.563 2.958 89.136 1 ATOM 1987 CD GLU 270 14.960 5.185 90.349 1 ATOM 1988 OE1 GLU 270 14.960 5.185 90.349 1 ATOM 1989 OE2 GLU 270 14.922 6.433 90.354 1 ATOM 1990 C GLU 270 15.545 4.524 91.234 1 ATOM 1991 O GLU 270 16.608 4.256 86.981 1 ATOM 1991 O GLU 270 16.608 4.256 86.981 1 ATOM 1992 N ASN 271 15.717 2.336 86.194 1 ATOM 1993 CA ASN 271 15.799 2.730 84.793 1 ATOM 1994 CB ASN 271 15.799 2.730 84.793 1 ATOM 1995 CG ASN 271 17.661 3.504 82.460 1 ATOM 1995 CG ASN 271 17.661 3.504 82.460 1 ATOM 1996 OD1 ASN 271 17.661 3.504 82.460 1 ATOM 1998 C ASN 271 16.733 1.618 81.650 1 ATOM 1999 O ASN 271 14.440 2.537 84.120 1 ATOM 1999 C ASN 271 13.799 1.494 84.276 1 ATOM 1999 C ASN 271 13.799 1.494 84.276 1 ATOM 2000 N ASN 287 17.192 11.408 81.710 1 ATOM 2000 CG ASN 287 18.348 11.168 80.854 1 ATOM 2001 CA ASN 287 18.348 11.168 80.854 1 ATOM 2002 CB ASN 287 18.348 11.168 80.854 1 ATOM 2003 CG ASN 287 18.348 11.168 80.854 1 ATOM 2004 OD1 ASN 287 18.348 11.168 80.854 1 ATOM 2000 C ASN 287 18.348 11.168 80.854 1 ATOM 2000 C ASN 287 18.348 11.168 80.854 1 ATOM 2000 C ASN 287 18.323 13.385 79.614 1 ATOM 2000 C ASN 287 18.323 13.385 79.614 1 ATOM 2000 C ASN 287 18.323 13.385 79.614 1 ATOM 2000 C ASN 287 18.924 10.139 81.437 1 ATOM 2000 C ASN 287 18.924 10.139 81.437 1 ATOM 2000 C ASN 287 18.924 10.139 81.437 1 ATOM 2000 C B SILE 288 20.619 10.400 81.285 1 ATOM 2000 C B LIE 288 20.619 10.400 81.285 1 ATOM 2000 C B LIE 288 20.667 9.156 80.646 1	.00 19.97 A .00 22.91 A .00 26.68 A .00 24.65 A .00 22.35 A .00 21.47 A .00 18.55 A .00 22.04 A .00 31.14 A
ATOM 1983 N GLU 270 16.994 2.950 89.537 1 ATOM 1985 CB GLU 270 15.949 2.576 88.587 1 ATOM 1985 CB GLU 270 14.563 2.958 89.136 1 ATOM 1986 CG GLU 270 14.251 4.460 89.210 1 ATOM 1987 CD GLU 270 14.960 5.185 90.349 1 ATOM 1988 OE1 GLU 270 15.545 4.524 91.234 1 ATOM 1989 OE2 GLU 270 14.922 6.433 90.354 1 ATOM 1990 C GLU 270 16.117 3.139 87.177 1 ATOM 1991 O GLU 270 16.608 4.256 86.981 1 ATOM 1992 N ASN 271 15.717 2.336 86.194 1 ATOM 1993 CA ASN 271 15.717 2.336 86.194 1 ATOM 1995 CG ASN 271 16.856 1.900 84.059 1 ATOM 1995 CG ASN 271 17.121 2.409 82.460 1 ATOM 1996 OD1 ASN 271 17.661 3.504 82.460 1 ATOM 1997 ND2 ASN 271 16.733 1.618 81.650 1 ATOM 1998 C ASN 271 16.733 1.618 81.650 1 ATOM 1999 O ASN 271 13.799 1.494 84.276 1 ATOM 1999 O ASN 271 13.799 1.494 84.276 1 ATOM 2000 N ASN 287 17.192 11.408 81.710 1 ATOM 2000 C ASN 287 17.192 11.408 81.710 1 ATOM 2000 C ASN 287 18.348 11.168 80.854 1 ATOM 2000 C ASN 287 18.348 11.168 80.854 1 ATOM 2000 C ASN 287 18.348 11.168 80.854 1 ATOM 2000 C ASN 287 18.348 11.168 80.854 1 ATOM 2000 C ASN 287 18.348 11.168 80.854 1 ATOM 2000 C ASN 287 18.348 11.168 80.854 1 ATOM 2000 C ASN 287 18.348 11.168 80.854 1 ATOM 2000 C ASN 287 18.323 13.385 79.614 1 ATOM 2000 C ASN 287 18.324 10.139 81.437 1 ATOM 2006 C ASN 287 18.924 10.139 81.437 1 ATOM 2007 O ASN 287 18.924 10.139 81.437 1 ATOM 2009 CA ILE 288 20.619 10.400 81.285 1 ATOM 20010 CR ILE 288 21.634 9.471 81.771 1 ATOM 20010 CR ILE 288 21.634 9.471 81.771 1	.00 22.91 A .00 26.68 A .00 24.65 A .00 22.35 A .00 21.47 A .00 18.55 A .00 22.04 A .00 31.14 A
ATOM 1984 CA GLU 270 15.949 2.576 88.587 1 ATOM 1985 CB GLU 270 14.563 2.958 89.136 1. ATOM 1986 CG GLU 270 14.251 4.460 89.210 1 ATOM 1987 CD GLU 270 14.960 5.185 90.349 1. ATOM 1988 OE1 GLU 270 15.545 4.524 91.234 1. ATOM 1989 OE2 GLU 270 14.922 6.433 90.354 1. ATOM 1990 C GLU 270 16.117 3.139 87.177 1. ATOM 1991 O GLU 270 16.608 4.256 86.981 1. ATOM 1992 N ASN 271 15.717 2.336 86.194 1. ATOM 1993 CA ASN 271 15.717 2.336 86.194 1. ATOM 1994 CB ASN 271 16.856 1.900 84.059 1. ATOM 1995 CG ASN 271 17.121 2.409 82.649 1. ATOM 1995 CG ASN 271 17.661 3.504 82.460 1. ATOM 1998 C ASN 271 17.661 3.504 82.460 1. ATOM 1998 C ASN 271 14.440 2.537 84.120 1. ATOM 1999 O ASN 271 14.440 2.537 84.120 1. ATOM 1999 O ASN 271 13.799 1.494 84.276 1. ATOM 2000 N ASN 287 17.192 11.408 81.710 1. ATOM 2001 CA ASN 287 18.348 11.168 80.854 1. ATOM 2002 CB ASN 287 18.348 11.168 80.854 1. ATOM 2003 CG ASN 287 18.348 11.168 80.854 1. ATOM 2004 OD1 ASN 287 18.323 13.385 79.614 1. ATOM 2005 ND2 ASN 287 18.323 13.385 79.614 1. ATOM 2006 C ASN 287 18.324 10.139 81.437 1. ATOM 2007 O ASN 287 18.924 10.139 81.437 1. ATOM 2008 N ILE 288 20.619 10.400 81.285 1. ATOM 2009 CA ILE 288 21.634 9.471 81.771 1. ATOM 2000 CR ILE 288 21.634 9.471 81.771 1.	.00 26.68 A .00 24.65 A .00 22.35 A .00 21.47 A .00 18.55 A .00 22.04 A
30 ATOM 1985 CB GLU 270 14.563 2.958 89.136 1 ATOM 1986 CG GLU 270 14.251 4.460 89.210 1. ATOM 1987 CD GLU 270 14.960 5.185 90.349 1 ATOM 1988 0E1 GLU 270 15.545 4.524 91.234 1. ATOM 1989 0E2 GLU 270 14.922 6.433 90.354 1 ATOM 1990 C GLU 270 16.6117 3.139 87.177 1. 35 ATOM 1991 O GLU 270 16.608 4.256 86.981 1 ATOM 1992 N ASN 271 15.717 2.336 86.194 1 ATOM 1993 CA ASN 271 15.717 2.336 86.194 1 ATOM 1994 CB ASN 271 15.799 2.730 84.793 1 ATOM 1995 CG ASN 271 16.6856 1.900 84.059 1 ATOM 1995 CG ASN 271 17.121 2.409 82.649 1 ATOM 1996 OD1 ASN 271 17.661 3.504 82.460 1 ATOM 1997 ND2 ASN 271 16.733 1.618 81.650 1 ATOM 1998 C ASN 271 14.440 2.537 84.120 1 ATOM 1999 O ASN 271 14.440 2.537 84.120 1 ATOM 2000 N ASN 287 17.192 11.408 81.710 1 ATOM 2000 CG ASN 287 18.348 11.168 80.854 1 ATOM 2001 CA ASN 287 18.348 11.168 80.854 1 ATOM 2002 CB ASN 287 18.348 11.168 80.854 1 ATOM 2003 CG ASN 287 18.323 13.385 79.614 1 ATOM 2004 OD1 ASN 287 18.323 13.385 79.614 1 ATOM 2005 ND2 ASN 287 18.323 13.385 79.614 1 ATOM 2006 C ASN 287 18.323 13.385 79.614 1 ATOM 2007 O ASN 287 18.924 10.139 81.437 1 ATOM 2009 CA SILE 288 20.619 10.400 81.285 1 ATOM 2009 CA ILE 288 20.619 10.400 81.285 1 ATOM 2009 CA ILE 288 21.634 9.471 81.771 1	.00 24.65 A .00 22.35 A .00 21.47 A .00 18.55 A .00 22.04 A
30	.00 22.35 A .00 21.47 A .00 18.55 A .00 22.04 A .00 31.14 A
ATOM 1987 CD GLU 270 14.960 5.185 90.349 1 ATOM 1988 OE1 GLU 270 15.545 4.524 91.234 1 ATOM 1989 OE2 GLU 270 14.922 6.433 90.354 1 ATOM 1990 C GLU 270 16.117 3.139 87.177 1 35 ATOM 1991 O GLU 270 16.117 3.139 87.177 1 ATOM 1992 N ASN 271 15.717 2.336 86.194 1 ATOM 1993 CA ASN 271 15.717 2.336 86.194 1 ATOM 1993 CA ASN 271 15.717 2.336 84.793 1 ATOM 1995 CG ASN 271 16.856 1.900 84.059 1 ATOM 1995 CG ASN 271 17.121 2.409 82.649 1 ATOM 1996 ODI ASN 271 17.661 3.504 82.460 1 ATOM 1997 ND2 ASN 271 16.733 1.618 81.650 1 ATOM 1998 C ASN 271 16.733 1.618 81.650 1 ATOM 1999 O ASN 271 14.440 2.537 84.120 1 ATOM 1999 O ASN 271 13.799 1.494 84.276 1 ATOM 2000 N ASN 287 17.192 11.408 81.710 1 ATOM 2000 CA ASN 287 17.192 11.408 81.710 1 ATOM 2000 CA ASN 287 18.348 11.168 80.854 1 ATOM 2000 CA ASN 287 18.348 11.168 80.854 1 ATOM 2000 CA ASN 287 18.348 11.168 80.854 1 ATOM 2000 CA ASN 287 18.348 11.168 79.614 1 ATOM 2000 CA ASN 287 18.348 11.168 80.854 1 ATOM 2000 CA ASN 287 18.348 11.168 80.854 1 ATOM 2000 CA ASN 287 18.328 13.385 79.614 1 ATOM 2000 CA ASN 287 18.324 10.139 81.437 1 ATOM 2006 C ASN 287 19.324 10.139 81.437 1 ATOM 2007 O ASN 287 18.912 9.131 82.021 1 ATOM 2008 N ILE 288 20.619 10.400 81.285 1 ATOM 2009 CA ILE 288 21.634 9.471 81.771 1 ATOM 20010 CB ILE 288 21.634 9.471 81.771 1	00 21.47 A 00 18.55 A 00 22.04 A 00 31.14 A
ATOM 1988 OE1 GLU 270 15.545 4.524 91.234 1 ATOM 1989 OE2 GLU 270 14.922 6.433 90.354 1 ATOM 1990 C GLU 270 16.117 3.139 87.177 1 ATOM 1991 O GLU 270 16.608 4.256 86.981 1 ATOM 1992 N ASN 271 15.717 2.336 86.194 1 ATOM 1993 CA ASN 271 15.717 2.336 86.194 1 ATOM 1994 CB ASN 271 16.856 1.900 84.059 1 ATOM 1995 CG ASN 271 17.121 2.409 82.649 1 ATOM 1995 CG ASN 271 17.121 2.409 82.649 1 ATOM 1996 OD1 ASN 271 17.661 3.504 82.460 1 ATOM 1997 ND2 ASN 271 17.661 3.504 82.460 1 ATOM 1998 C ASN 271 16.733 1.618 81.650 1 ATOM 1999 O ASN 271 14.440 2.537 84.120 1 ATOM 1999 O ASN 271 14.440 2.537 84.120 1 ATOM 2000 N ASN 287 17.192 11.408 81.710 1 ATOM 2001 CA ASN 287 18.348 11.168 80.854 1 ATOM 2002 CB ASN 287 18.348 11.168 80.854 1 ATOM 2003 CG ASN 287 18.348 11.168 80.854 1 ATOM 2003 CG ASN 287 18.323 13.385 79.614 1 ATOM 2004 OD1 ASN 287 18.323 13.385 79.614 1 ATOM 2005 ND2 ASN 287 18.323 13.385 79.614 1 ATOM 2006 C ASN 287 18.324 10.139 81.437 1 ATOM 2007 O ASN 287 18.924 10.139 81.437 1 ATOM 2008 N ILE 288 20.619 10.400 81.285 1 ATOM 2009 CA ILE 288 21.634 9.471 81.771 1 ATOM 2010 CR ILE 288 21.634 9.471 81.771 1 ATOM 2010 CR ILE 288 21.634 9.471 81.771 1	00 18.55 A 00 22.04 A 00 31.14 A
ATOM 1989 OE2 GLU 270 14.922 6.433 90.354 1 ATOM 1990 C GLU 270 16.117 3.139 87.177 1. 35 ATOM 1991 O GLU 270 16.608 4.256 86.981 1 ATOM 1992 N ASN 271 15.717 2.336 86.194 1 ATOM 1993 CA ASN 271 15.717 2.336 86.194 1 ATOM 1994 CB ASN 271 15.799 2.730 84.793 1 ATOM 1995 CG ASN 271 16.856 1.900 84.059 1 ATOM 1995 CG ASN 271 17.121 2.409 82.649 1 ATOM 1996 OD1 ASN 271 17.661 3.504 82.460 1 ATOM 1997 ND2 ASN 271 16.733 1.618 81.650 1 ATOM 1998 C ASN 271 14.440 2.537 84.120 1 ATOM 1999 O ASN 271 14.440 2.537 84.120 1 ATOM 2000 N ASN 287 17.192 11.408 81.710 1 ATOM 2000 N ASN 287 17.192 11.408 81.710 1 ATOM 2001 CA ASN 287 18.348 11.168 80.854 1 ATOM 2002 CB ASN 287 18.348 11.168 80.854 1 ATOM 2003 CG ASN 287 18.348 11.168 80.854 1 ATOM 2003 CG ASN 287 18.323 13.385 79.614 1 ATOM 2004 OD1 ASN 287 18.323 13.385 79.614 1 ATOM 2005 ND2 ASN 287 18.323 13.385 79.614 1 ATOM 2006 C ASN 287 19.078 12.487 80.582 1 ATOM 2006 C ASN 287 19.324 10.139 81.437 1 ATOM 2007 O ASN 287 18.924 10.139 81.437 1 ATOM 2009 CA ILE 288 20.619 10.400 81.285 1 ATOM 2009 CA ILE 288 21.634 9.471 81.771 1 ATOM 2009 CA ILE 288 21.634 9.471 81.771 1 ATOM 20010 CB ILE 288 21.634 9.471 81.771 1	00 22.04 A
35 ATOM 1990 C GLU 270 16.117 3.139 87.177 1 ATOM 1991 O GLU 270 16.608 4.256 86.981 1 ATOM 1992 N ASN 271 15.717 2.336 86.194 1 ATOM 1993 CA ASN 271 15.799 2.730 84.793 1 ATOM 1995 CG ASN 271 16.856 1.900 84.059 1 ATOM 1995 CG ASN 271 17.121 2.409 82.460 1 ATOM 1996 OD1 ASN 271 17.661 3.504 82.460 1 ATOM 1997 ND2 ASN 271 17.661 3.504 82.460 1 ATOM 1997 ND2 ASN 271 16.733 1.618 81.650 1 ATOM 1998 C ASN 271 14.440 2.537 84.120 1 ATOM 1999 O ASN 271 13.799 1.494 84.276 1 ATOM 2000 N ASN 287 17.192 11.408 81.710 1 ATOM 2001 CA ASN 287 18.348 11.168 80.854 1 ATOM 2002 CB ASN 287 19.078 12.487 80.8582 1 ATOM 2003 CG ASN 287 18.348 11.168 80.854 1 ATOM 2004 OD1 ASN 287 18.348 11.168 80.854 1 ATOM 2000 C ASN 287 19.078 12.487 80.8582 1 ATOM 2000 C ASN 287 19.324 10.139 81.437 1 ATOM 2006 C ASN 287 17.392 11.404 81.710 1 ATOM 2006 C ASN 287 19.324 10.139 81.437 1 ATOM 2007 O ASN 287 18.324 10.139 81.437 1 ATOM 2008 N ILE 288 20.619 10.400 81.285 1 ATOM 2009 CA ILE 288 21.634 9.471 81.771 1 ATOM 20010 CR ILE 288 21.634 9.471 81.771 1 ATOM 20010 CR ILE 288 21.634 9.471 81.771 1 ATOM 20010 CR ILE 288 22.657 9.156 80.646 1	.:00 31.14 A
35 ATOM 1991 O GLU 270 16.608 4.256 86.981 1 ATOM 1992 N ASN 271 15.717 2.336 86.194 1 ATOM 1993 CA ASN 271 15.719 2.730 84.793 1 ATOM 1994 CB ASN 271 15.799 2.730 84.793 1 ATOM 1995 CG ASN 271 17.121 2.409 82.649 1 ATOM 1995 OD1 ASN 271 17.661 3.504 82.460 1 ATOM 1997 ND2 ASN 271 17.661 3.504 82.460 1 ATOM 1997 ND2 ASN 271 16.733 1.618 81.650 1 ATOM 1998 C ASN 271 16.733 1.618 81.650 1 ATOM 1999 O ASN 271 13.799 1.494 84.276 1 ATOM 2000 N ASN 287 17.192 11.408 81.710 1 ATOM 2000 CB ASN 287 17.192 11.408 81.710 1 ATOM 2001 CA ASN 287 18.348 11.168 80.584 1 ATOM 2002 CB ASN 287 18.348 11.168 80.584 1 ATOM 2003 CG ASN 287 18.323 13.385 79.614 1 ATOM 2004 OD1 ASN 287 18.323 13.385 79.614 1 ATOM 2005 ND2 ASN 287 18.323 13.385 79.614 1 ATOM 2006 C ASN 287 18.323 13.385 79.614 1 ATOM 2006 C ASN 287 19.324 10.139 81.437 1 ATOM 2007 O ASN 287 18.912 9.131 82.021 1 ATOM 2008 N ILE 288 20.619 10.400 81.285 1 ATOM 2009 CA ILE 288 21.634 9.471 81.771 1 ATOM 2010 CB ILE 288 21.634 9.471 81.771 1	
ATOM 1992 N ASN 271 15.717 2.336 86.194 1 ATOM 1993 CA ASN 271 15.799 2.730 84.793 1 ATOM 1994 CB ASN 271 16.856 1.900 84.059 1 ATOM 1995 CG ASN 271 17.121 2.409 82.649 1 ATOM 1996 OD1 ASN 271 17.661 3.504 82.460 1 ATOM 1997 ND2 ASN 271 16.733 1.618 81.650 1 ATOM 1998 C ASN 271 14.440 2.537 84.120 1 ATOM 1999 O ASN 271 13.799 1.494 84.276 1 ATOM 1999 O ASN 271 13.799 1.494 84.276 1 ATOM 2000 N ASN 287 17.192 11.408 81.710 1 ATOM 2001 CA ASN 287 18.348 11.168 80.854 1 ATOM 2002 CB ASN 287 18.348 11.168 80.854 1 ATOM 2003 CG ASN 287 18.323 13.385 79.614 1 ATOM 2004 OD1 ASN 287 18.323 13.385 79.614 1 ATOM 2005 ND2 ASN 287 17.230 12.870 79.053 1 ATOM 2006 C ASN 287 19.324 10.139 81.437 1 ATOM 2007 O ASN 287 18.324 10.139 81.437 1 ATOM 2008 N ILE 288 20.619 10.400 81.285 1 ATOM 2009 CA ILE 288 21.634 9.471 81.771 1 ATOM 2010 CR ILE 288 22.657 9.156 80.646 1	
ATOM 1993 CA ASN 271 15.799 2.730 84.793 1 ATOM 1994 CB ASN 271 16.856 1.900 84.059 1 ATOM 1995 CG ASN 271 17.121 2.409 82.649 1 ATOM 1996 OD1 ASN 271 17.661 3.504 82.460 1 ATOM 1997 ND2 ASN 271 16.733 1.618 81.650 1 ATOM 1998 C ASN 271 14.440 2.537 84.120 1 ATOM 1999 O ASN 271 13.799 1.494 84.276 1 ATOM 2000 N ASN 287 17.192 11.408 81.710 1 ATOM 2001 CA ASN 287 17.192 11.408 81.710 1 ATOM 2002 CB ASN 287 18.348 11.168 80.854 1 ATOM 2002 CB ASN 287 19.078 12.487 80.852 1 ATOM 2003 CG ASN 287 18.323 13.385 79.614 1 ATOM 2004 OD1 ASN 287 18.323 13.385 79.614 1 ATOM 2005 ND2 ASN 287 17.230 12.870 79.053 1 ATOM 2006 C ASN 287 19.324 10.139 81.437 1 ATOM 2007 O ASN 287 19.324 10.139 81.437 1 ATOM 2008 N ILE 288 20.619 10.400 81.285 1 ATOM 2009 CA ILE 288 21.634 9.471 81.771 1 ATOM 2001 CB ILE 288 21.634 9.471 81.771 1	
ATOM 1995 CG ASN 271 16.856 1.900 84.059 1 ATOM 1995 CG ASN 271 17.121 2.409 82.669 1 ATOM 1996 OD1 ASN 271 17.661 3.504 82.460 1 ATOM 1997 ND2 ASN 271 16.733 1.618 81.650 1 ATOM 1998 C ASN 271 16.733 1.618 81.650 1 ATOM 1999 O ASN 271 13.799 1.494 84.276 1 ATOM 2000 N ASN 271 13.799 1.494 84.276 1 ATOM 2001 CA ASN 287 17.192 11.408 81.710 1 ATOM 2002 CB ASN 287 18.348 11.168 80.854 1 ATOM 2003 CG ASN 287 19.078 12.487 80.854 1 ATOM 2004 OD1 ASN 287 18.323 13.385 79.614 1 ATOM 2005 ND2 ASN 287 18.724 14.526 79.368 1 ATOM 2006 C ASN 287 19.324 10.139 81.437 1 ATOM 2007 O ASN 287 19.324 10.139 81.437 1 ATOM 2008 N ILE 288 20.619 10.400 81.285 1 ATOM 2009 CA ILE 288 21.634 9.471 81.771 1 ATOM 2001 CI ILE 288 22.657 9.156 80.646 1	00 36.67 A
40 ATOM 1995 CG ASN 271 17.121 2.409 82.649 1 ATOM 1996 OD1 ASN 271 17.661 3.504 82.460 1 ATOM 1997 ND2 ASN 271 16.733 1.618 81.650 1 ATOM 1998 C ASN 271 14.440 2.537 84.120 1 ATOM 1999 O ASN 271 13.799 1.494 84.276 1 ATOM 2000 N ASN 287 17.192 11.408 81.710 1 ATOM 2001 CA ASN 287 17.192 11.408 81.710 1 ATOM 2002 CB ASN 287 18.348 11.168 80.854 1 ATOM 2002 CB ASN 287 18.348 11.168 80.584 1 ATOM 2003 CG ASN 287 18.323 13.385 79.614 1 ATOM 2004 OD1 ASN 287 18.323 13.385 79.614 1 ATOM 2005 ND2 ASN 287 18.724 14.526 79.368 1 ATOM 2006 C ASN 287 17.230 12.870 79.053 1 ATOM 2006 C ASN 287 19.324 10.139 81.437 1 ATOM 2007 O ASN 287 18.912 9.131 82.021 1 ATOM 2008 N ILE 288 20.619 10.400 81.285 1 ATOM 2009 CA ILE 288 21.634 9.471 81.771 1 ATOM 2010 CB ILE 288 22.657 9.156 80.646 1	.00 41.70 A
40 ATOM 1996 OD1 ASN 271 17.661 3.504 82.460 1 ATOM 1997 ND2 ASN 271 16.733 1.618 81.650 1 ATOM 1998 C ASN 271 14.440 2.537 84.120 1 ATOM 1999 O ASN 271 13.799 1.494 84.276 1 ATOM 2000 N ASN 287 17.192 11.408 81.710 1 ATOM 2001 CA ASN 287 18.348 11.168 80.854 1 ATOM 2002 CB ASN 287 18.348 11.168 80.854 1 ATOM 2003 CG ASN 287 19.078 12.487 80.582 1 ATOM 2003 CG ASN 287 18.323 13.385 79.614 1 ATOM 2004 OD1 ASN 287 18.323 13.385 79.614 1 ATOM 2005 ND2 ASN 287 18.223 13.385 79.614 1 ATOM 2006 C ASN 287 17.230 12.870 79.053 1 ATOM 2007 O ASN 287 19.324 10.139 81.437 1 ATOM 2008 N ILE 288 20.619 10.400 81.285 1 ATOM 2009 CA ILE 288 20.619 10.400 81.285 1 ATOM 2001 CB ILE 288 21.634 9.471 81.771 1 ATOM 2001 CB ILE 288 22.657 9.156 80.646 1	00 45.31 A
ATOM 1997 ND2 ASN 271 16.733 1.618 81.650 1 ATOM 1998 C ASN 271 14.440 2.537 84.120 1 ATOM 1999 O ASN 271 13.799 1.494 84.276 1 ATOM 2000 N ASN 287 17.192 11.408 81.710 1 45 ATOM 2001 CA ASN 287 18.348 11.168 80.854 1 ATOM 2002 CB ASN 287 19.078 12.487 80.8582 1 ATOM 2003 CG ASN 287 19.078 12.487 80.8582 1 ATOM 2004 OD1 ASN 287 18.323 13.385 79.614 1 ATOM 2005 ND2 ASN 287 18.724 14.526 79.368 1 ATOM 2006 C ASN 287 17.230 12.870 79.053 1 ATOM 2006 C ASN 287 19.324 10.139 81.437 1 ATOM 2007 O ASN 287 19.324 10.139 81.437 1 ATOM 2008 N ILE 288 20.619 10.400 81.285 1 ATOM 2009 CA ILE 288 21.634 9.471 81.771 1 ATOM 2010 CR ILE 288 21.634 9.471 81.771 1 ATOM 2010 CR ILE 288 21.634 9.471 81.771 1 ATOM 2010 CR ILE 288 22.657 9.156 80.646 1	.00 49.20 A
ATOM 1998 C ASN 271 14.440 2.537 84.120 1 ATOM 1999 O ASN 271 13.799 1.494 84.276 1 ATOM 2000 N ASN 287 17.192 11.408 81.710 1 ATOM 2001 CA ASN 287 17.192 11.408 80.854 1 ATOM 2002 CB ASN 287 19.078 12.487 80.582 1 ATOM 2003 CG ASN 287 19.078 12.487 80.582 1 ATOM 2004 OD1 ASN 287 18.323 13.385 79.614 1 ATOM 2004 OD1 ASN 287 18.724 14.526 79.368 1 ATOM 2005 ND2 ASN 287 17.230 12.870 79.053 1 ATOM 2006 C ASN 287 19.324 10.139 81.437 1 ATOM 2007 O ASN 287 18.912 9.131 82.021 1 ATOM 2008 N ILE 288 20.619 10.400 81.285 1 ATOM 2009 CA ILE 288 21.634 9.471 81.771 1 ATOM 2010 CB ILE 288 21.634 9.471 81.771 1	00 50.16 A
ATOM 1999 O ASN 271 13.799 1.494 84.276 1 ATOM 2000 N ASN 287 17.192 11.408 81.710 1 ATOM 2001 CA ASN 287 18.348 11.168 80.854 1 ATOM 2002 CB ASN 287 19.078 12.487 80.582 1 ATOM 2003 CG ASN 287 19.078 12.487 80.582 1 ATOM 2004 OD1 ASN 287 18.323 13.385 79.614 1 ATOM 2005 ND2 ASN 287 18.724 14.526 79.368 1 ATOM 2005 ND2 ASN 287 17.230 12.870 79.053 1 ATOM 2006 C ASN 287 17.230 12.870 79.053 1 ATOM 2007 O ASN 287 19.324 10.139 81.437 1 ATOM 2008 N ILE 288 20.619 10.400 81.285 1 ATOM 2009 CA ILE 288 21.634 9.471 81.771 1 ATOM 2010 CB ILE 288 22.657 9.156 80.646 1	.00 50.41 A
45 ATOM 2000 N ASN 287 17.192 11.408 81.710 1 ATOM 2001 CA ASN 287 18.348 11.168 80.854 1 ATOM 2002 CB ASN 287 19.078 12.487 80.582 1 ATOM 2003 CG ASN 287 18.323 13.385 79.614 1 ATOM 2004 OD1 ASN 287 18.323 13.385 79.614 1 ATOM 2005 ND2 ASN 287 17.230 12.870 79.053 1 ATOM 2006 C ASN 287 17.230 12.870 79.053 1 ATOM 2007 O ASN 287 19.324 10.139 81.437 1 ATOM 2007 N 1LE 288 20.619 10.400 81.285 1 ATOM 2009 CA ILE 288 21.634 9.471 81.771 1 ATOM 2010 CB ILE 288 22.657 9.156 80.646 1	.00 42.80 A
45 ATOM 2001 CA ASN 287 18.348 11.168 80.854 1 ATOM 2002 CB ASN 287 19.078 12.487 80.854 1 ATOM 2003 CG ASN 287 19.078 12.487 80.582 1 ATOM 2004 OD1 ASN 287 18.323 13.385 79.614 1 ATOM 2005 ND2 ASN 287 18.724 14.526 79.368 1 ATOM 2005 ND2 ASN 287 17.230 12.870 79.053 1 ATOM 2006 C ASN 287 19.324 10.139 81.437 1 ATOM 2007 O ASN 287 19.324 10.139 81.437 1 ATOM 2008 N ILE 288 20.619 10.400 81.285 1 ATOM 2009 CA ILE 288 21.634 9.471 81.771 1 ATOM 2010 CB ILE 288 21.634 9.471 81.771 1 ATOM 2010 CB ILE 288 21.634 9.471 81.771 1 ATOM 2010 CB ILE 288 22.657 9.156 80.646 1	1.00 44.21 A
45 ATOM 2001 CA ASN 287 18.348 11.168 80.854 1 ATOM 2002 CB ASN 287 19.078 12.487 80.854 1 ATOM 2003 CG ASN 287 19.078 12.487 80.582 1 ATOM 2004 OD1 ASN 287 18.323 13.385 79.614 1 ATOM 2005 ND2 ASN 287 18.724 14.526 79.368 1 ATOM 2005 ND2 ASN 287 17.230 12.870 79.053 1 ATOM 2006 C ASN 287 19.324 10.139 81.437 1 ATOM 2007 O ASN 287 19.324 10.139 81.437 1 ATOM 2008 N ILE 288 20.619 10.400 81.285 1 ATOM 2009 CA ILE 288 21.634 9.471 81.771 1 ATOM 2010 CB ILE 288 21.634 9.471 81.771 1 ATOM 2010 CB ILE 288 21.634 9.471 81.771 1 ATOM 2010 CB ILE 288 22.657 9.156 80.646 1	L.00 47.26 A
ATOM 2002 CB ASN 287 19.078 12.487 80.582 1 ATOM 2003 CG ASN 287 18.323 13.385 79.614 1 ATOM 2004 OD1 ASN 287 18.724 14.526 79.368 1 ATOM 2005 ND2 ASN 287 17.230 12.870 79.053 1 ATOM 2006 C ASN 287 19.324 10.139 81.437 1 ATOM 2007 O ASN 287 18.912 9.131 82.021 1 ATOM 2008 N ILE 288 20.619 10.400 81.285 1 ATOM 2009 CA ILE 288 21.634 9.471 81.771 1 ATOM 2010 CB ILE 288 22.657 9.156 80.646 1	L.00 46.49 A
ATOM 2003 CG ASN 287 18.323 13.385 79.614 1 ATOM 2004 OD1 ASN 287 18.724 14.526 79.368 1 ATOM 2005 ND2 ASN 287 17.230 12.870 79.053 1 ATOM 2006 C ASN 287 19.324 10.139 81.437 1 ATOM 2007 O ASN 287 18.912 9.131 82.021 1 ATOM 2008 N ILE 288 20.619 10.400 81.285 1 ATOM 2009 CA ILE 288 21.634 9.471 81.771 1 ATOM 2010 CB ILE 288 22.657 9.156 80.646 1	L.00 48.42 A
50 ATOM 2004 OD1 ASN 287 18.724 14.526 79.368 1 ATOM 2005 ND2 ASN 287 17.230 12.870 79.053 1 ATOM 2006 C ASN 287 19.324 10.139 81.437 1 ATOM 2007 O ASN 287 18.912 9.131 82.021 1 ATOM 2008 N ILE 288 20.619 10.400 81.285 1 ATOM 2009 CA ILE 288 21.634 9.471 81.771 1 ATOM 2010 CR ILE 288 22.657 9.156 80.646 1	1.00 51.20 A
50 ATOM 2005 ND2 ASN 287 17.230 12.870 79.053 1 ATOM 2006 C ASN 287 19.324 10.139 81.437 1 ATOM 2007 O ASN 287 18.912 9.131 82.021 1 ATOM 2008 N ILE 288 20.619 10.400 81.285 1 ATOM 2010 CR ILE 288 21.634 9.471 81.771 1 ATOM 2010 CR ILE 288 22.657 9.156 80.646 1	L.00 51.62 A
50 ATOM 2006 C ASN 287 19.324 10.139 81.437 1 ATOM 2007 O ASN 287 18.912 9.131 82.021 1 ATOM 2008 N ILE 288 20.619 10.400 81.285 1 ATOM 2009 CA ILE 288 21.634 9.471 81.771 1 ATOM 2010 CB ILE 288 21.657 9.156 80.646 1	1.00 50.69 A
ATOM 2007 O ASN 287 18.912 9.131 82.021 1 ATOM 2008 N ILE 288 20.619 10.400 81.285 1 ATOM 2009 CA ILE 288 21.634 9.471 81.771 1 ATOM 2010 CB ILE 288 21.654 9.471 81.771 1	L.00 45.61 A
ATOM 2008 N ILE 288 20.619 10.400 81.285 1 ATOM 2009 CA ILE 288 21.634 9.471 81.771 1 ATOM 2010 CB ILE 288 22.657 9.156 80.646 1	L.00 45.57 A
ATOM 2009 CA ILE 288 21.634 9.471 81.771 1	L.00 42.07 A
ATOM 2010 CB TLE 288 22.657 9.156 80.646 1	L.00 42.07 A
ATOM 2010 CB ILE 288 22.837 9.136 80.046 1	1.00 37.70 A
33 MAGE 2013 202 FEE 200 31 ACA 0 41C 20 511 1	
	1.00 40.59 A
	1.00 42.56 A
	1.00 33.61 A
ATOM 2015 O ILE 288 22.668 11.113 83.194 1	1.00 34.30 A
	1.00 26.00 A
	1.00 19.08 A
ATOM 2018 CB ASN 289 22.810 8.599 86.334 1	1.00 17.79 A
ATOM 2019 CG ASN 289 23.253 9.253 87.645 1	1.00 18.18 A
ATOM 2020 OD1 ASN 289 22.461 9.928 88.299 1	1.00 18.30 A
	1.00 13.15 A
	1.00 15.55 A
	1.00 15.55 A 1.00 12.50 A
	1.00 12.50 A
	1.00 12.50 A 1.00 13.86 A
	1.00 12.50 A 1.00 13.86 A 1.00 12.24 A
	1.00 12.50 A 1.00 13.86 A 1.00 12.24 A 1.00 11.18 A
	1.00 12.50 A 1.00 13.86 A 1.00 12.24 A 1.00 11.18 A 1.00 10.23 A
ATOM 2029 OE1 GLN 290 28.336 8.609 81.273 1	1.00 12.50 A 1.00 13.86 A 1.00 12.24 A 1.00 11.18 A

												٠	
•	MOTA	2030	NE2		290		30.399	8 059	81.990	1.00		A	
	MOTA	2031	C	GLN	290		27.778	8.414	85.276	1.00		A	
	MOTA	2032	0	GLN	290		28.394	7.359	85,130	1.00	12.20	A	
_	MOTA	2033	N	SER	291		27.662	9.023	86.452	1.00	10.76	A	
5	MOTA	2034	CA	SER	291		28.304	8.485	87.650	1.00	11.04	A	
	ATOM	2035	СВ	SER	291		28.163	9.450	88.830	1.00	10.12	A	
	MOTA	2036	OG	SER	291		29.068	10.536	88.711	1.00		A	
	ATOM	2037	c	SER	291		27.753	7.131	88.043	1.00		A	
	MOTA	2038	ŏ	SER	291		28.512	6.241	88.420		14.45	A	
10													
10	MOTA	2039	N	LEU	292		26.437	6.971	87.959	1.00		A	
	MOTA	2040	CA	LEU	292		25.805	5.709	88.312		10.53	A	
	MOTA	2041	СВ	LEU	292		24.278	5.875	88.329	1.00	10.11	A	
	MOTA	2042	CG	LEU	292		23.467	4.734	88.952	1.00	11.58	A	
	ATOM	2043	CD1	LEU	292		23.811	4.605	90.427	1.00	9.76	A	
15	ATOM	2044	CD2	LEU	292		21.974	5.007	88.791	1.00	11.92	Α	
	MOTA	2045	С	LEU	292		26.216	4.653	87.289	1.00	10.87	A	
	MOTA	2046	0	LEU	292		26.559	3.525	87.634	1.00	12.05	A	
	ATOM	2047	N	LEU	293		26.196	5.043	86.022	1.00	11.04	A	
	ATON	2048	CA	LEU	293		26.566	4.165	84.929	1.00	11.19	A	
20	ATOM	2049	CB	LEU	293		26.382	4.922	83.608	1.00		. A	
	ATOM	2050	cc	LEU	293		25.394	4.442	82.532	1.00		A	
	ATOM	2051	CD1		293		24.197	3.755	B3.162	1.00		A	
	ATOM	2052	CD2		293		24.948	5.638	81.690	1.00		A	
25	MOTA	2053	C	LEU	293		28.026	3.714	85.094	1.00		A	
25	ATOM	2054	0	LEU	293		28.355	2.535	84.918	1.00		A	
	MOTA	2055	N	THR	294		28.896	4.660	85.437	1.00		A	
	MOTA	2056	CA	THR	294		30.313	4.372	85.613		10.86	A	
	MOTA	2057	СB	THR	294		31.119	5.690	85.778		12.02	A	
20	MOTA	2058	QG1	THR	294		30.934	6.497	84.611	1.00		A	
30	MOTA	2059	CG2	THR	294		32.605	5.409	85.947	1.00	8.75	A	
	MOTA	2060	С	THR	294		30.571	3.459	86.809	1.00	11.13	A	
	ATOM	2061	0	THR	294		31.416	2.563	86.735	1.00	10.49	A	
•	ATOM	2062	N	LEU	295		29.843	3.686	87.906	1.00	11.70	A	
	MOTA	2063	CA	LEU	295		29.983	2.870	89.117	1.00	11.27	A	
35	ATOM	2064	CB	LEU	295		29.033	3.348	90.224		10.76	A	
	ATOM	2065	CG	LEU	295		28.993	2.535	91.529		10.99	A	
	ATOM	2066		LEU	295		30.352	2.540	92.214		12.41	A	
	ATOM	2067		LEU	295		27.950	3.126	92.458		10.86	A	
	ATOM	2068		LEU	295		29.683	1.424	88.788		10.80	Ã	
40			C										
70	MOTA	2069	0	LEU	295		30.365	0.521	89.252		12.59	A	
	ATOM	2070	И	GLY	296		28.652	1.205	87.986		11.95	A	
	MOTA	2071	CA	GLY	296		28.311	-0.153	87.607		12.43	A	
	MOTA	2072	C	GLY	296		29.444	-0.772	86.810		13.06	A	
15	MOTA	2073	0	GLY	296		29.796	-1.938	87.007		15.18	A	
45	MOTA	2074	N	ARG	297		30.021	0.014	85.906		11.06	A	
	MOTA	2075	CA	ARG	297		31.121	-0.458	85.086	1.00	9.97	A	
	MOTA	2076	CB	ARG	297	•	31.369	0.517	83.943	1.00	9.77	A	L
	MOTA	2077	CG	ARG	297		30.264	0.487	82.909	1.00	10.57	A	L
	MOTA	2078	CD.	ARG	297		30.173	1.789	82.136	1.00	8.79	A	Ĺ.
50	MOTA	2079	NE	ARG	297		29.014	1.776	81.259	1.00	10.33	A	L
	MOTA	2080	CZ	ARG	297		28.492	2.853	80.685	1.00	9.93	A	
	MOTA	2081	NH1	ARG	297	٠.	29.033	4.044	80.892	1.00	10.65	Ą	4
	MOTA	2082	NH2		297	٠.	27.412	2.740	79.920	1.00	7.47	2	
	MOTA	2083	С	ARG	297		32.395	-0.675	85.889	1.00	9.24	2	
55	ATOM	2084	ŏ	ARG	297		33.154	-1.597	85.594		10.04	A	
	ATOM	2085	N	VAL	298		32.632	0.164	86.897	1.00	6.73		
	MOTA	2086	CA	VAL	298		33.823		87.734	1.00	7.78	,	
								0.009		1.00	7.07		
	MOTA	2087	CB	VAL	298		33.988	1.196	88.719			,	
60	MOTA	2088		VAL	298		35.026	0.865	89.773	1.00	2.16	ŀ	
OU	MOTA	2089		VAL	298		34.408	2.449	87.957		4.22		
	MOTA	2090	С	VAL	298		33.775	-1.315	88.517	1.00	9.86	,	
	MOTA	2091	0	VAL	298		34.761	-2.057	88.556		11.69	7	i.
	MOTA	2092	N	ILE	299		32.625	-1.616	89.120		10.47	7	
	MOTA	2093	CA	ILE	299		32.437	-2.858	89.879		10.02	7	ŧ.
65	MOTA	2094	CB	ILE	299		31.004	-2.910	90.488	1.00	10.33	,	Ł
	MOTA	2095	CG2	ILE	299		30.710	-4.280	91.095	1.00	9.07	,	Ł
	MOTA	2096		ILE	299		30.869	-1.821	91.558		10.35	1	
	MOTA	2097		ILE	299		29.445	-1.587	92.019		13.51	1	
	ATOM	2098	c	ILE	299		32.659	-4.070	88.972		11.19	1	
70	MOTA	2099	ŏ	ILE	299		33.341	-5.019	89.348	1.00	9.09	,	
. 🗸	ATOM	2100	N	THR	300		32.084	-4.031	87.771		14.08	,	
	ATOM	2101	CA.	THR	300		32.227	-5.125	86.808		13.98		À
	ATOM	2102	CB	THR	300		31.470	-4.813	85.506		13.76		A
	7.01	2102			300		22.770	4.013	-5.500		22.70	•	-

	MOTA	2103	0G1	THR	300	30.062	-4.803	85.770	1.00 14.55	A
	MOTA	2104	CG2		300	31.783	-5.848	84.436	1.00 10.43	Ä
	MOTA	2105	С	THR	300	33.699	-5.394	86.472	1.00 16.17	A
_	MOTA	2106	0	THR	300	34.151	-6.536	86.533	1.00 16.23	A
5	MOTA	2107	N	ALA	301	34.442	-4.345	86.120	1.00 15.12	A
-	MOTA	2108	CA.	ALA	301	35.850	-4.502	85.791	1.00 14.70	A
	MOTA	2109	CB	ALA	301	36.449	-3.157	85.362	1.00 13.94	A
	MOTA	2110	С	ALA	301	36.622	-5.068	86.985	1.00 14.94	Α
	MOTA	2111	0	ALA	301	37.512	-5.893	86.819	1.00 15.20	A
10	ATOM	2112	N	LEU	302	36.282	-4.620	88.188	1.00 16.14	A
10							-5.101	89.392	1.00 19.53	Ä
	MOTA	2113	CA	LEU	302	36.951				
	MOTA	2114	CB	LEU	302	36.585	-4.222	90.594	1.00 19.74	Α
	MOTA	2115	CG	LEU	302	37.221	-2.830	90.688	1.00 17.91	A
	MOTA	2116	CD1	LEU	302	36.558	-2.045	91.802	1.00 17.40	A
15	MOTA	2117	CD2		302	38.717	-2.963	90.948	1:00 15.50	A
13							-6.564	89.717	1.00 21.83	A
	MOTA	2118	C	LEU	302	36.643				
	MOTA	2119	0	LEU	302	37.533	-7.302	90.127	1.00 23.13	A
	MOTA	2120	N	VAL	303	35.398	-6.993	89.535	1.00 24.49	A
	MOTA	2121	CA	VAL	303	35.059	-8.379	89.838	1.00 27.38	A
20	MOTA	2122	CB	VAL	303	33.547	-8.571	90.069	1.00 26.90	A
		2123					-7.570	91.101	1.00 26.40	A
	ATOM			VAL	.303	33.052				
	ATOM	2124	CG2		303	32.796	-8.428	88.770	1.00 29.98	A
	MOTA	2125	С	VAL	303	35.512	-9.341	88.744	1.00 30.52	A
	MOTA	2126	0	VAL	303	35.877	-10.477	89.035	1.00 31.69	A
25	ATOM	2127	N	GLU	304	35.491	-8.897	87.490	1.00 32.89	A
						35.921		86.389	1.00 35.74	A
	ATOM	2128	CA	GLU	304		-9.750			
	MOTA	2129	CB	GLU	304	35.203	-9.374	85.094	1.00 37.37	A
	MOTA	2130	CG	GLU	304	33.689	-9.307	85.221	1.00 39.61	A
	ATOM	2131	CD	GLU	304	32.999	-9.146	83.876	1.00 42.09	A
30	ATOM	2132	OEl		304	33.515	-8.380	83.028	1.00 42.71	A
-					304		-9.775	83.671	1.00 41.78	A
	MOTA	2133	OE2	GLU		31.939				
	MOTA	2134	C	GLU	304	37.426	-9.604	86.206	1.00 37.86	A
	ATOM	2135	0	GLU	304	37.996	-10.078	85.227	1.00 37.10	A
	MOTA	2136	N	ARG	305	38.054	-8.937	87.169	1.00 40.46	A
35	MOTA	2137	CA	ARG	305	39.496	-8.716	87.177	1.00 42.89	Α .
J J	MOTA	2138	CB	ARG	305		-10.025	87.534	1.00 45.84	A
	MOTA	2139	CG	ARG	305	40.201	-10.328	89.040	1.00 50.55	A
	MOTA	2140	CD	ARG	305	40.942	-9.222	89.795	1.00 55.95	A
4.	MOTA	2141	NE	ARG	305	40.641	-9.139	91.227	1.00 60.56	A
40	MOTA	2142	CZ	ARG	305	41.079	-9.988	92.154	1.00 62.46	A
	MOTA	2143	NH1	ARG	305	41.848	-11.016	91.816	1.00 63.45	Ä
	MOTA	2144	NH2		305	40.765	-9.793	93.431	1.00 62.35	A
	MOTA	2145	С	ARG	305	40.094	-8.101	85.913	1.00 43.03	A
	MOTA	2146	0	ARG	305	41.257	-8.337	85.585	1.00 42.44	A
45	MOTA	2147	N	THR	306	39.292	-7.300	85.218	1.00 43.37	A
	MOTA	2148	CA	THR	306	39.728	-6.607	84.009	1.00 43.89	A
	MOTA	2149	CB	THR	306	38.553	-5.823	83.373	1.00 44.73	A
	MOTA	2150		THR	306	37.525	-6.738	82.967	1.00 46.53	A
	MOTA	2151	CG2	THR	306	39.021	-5.031	B2.173	1.00 44.99	A
50	MOTA	2152	С	THR	306	40.816	-5.616	84.428	1.00 43.35	A
	MOTA	2153	0	THR	306	40.648	-4.883	85.405	1.00 44.14	A
	ATOM	2154	N	PRO	307	41.944	-5.572	B3.696.	1.00 42.66	A
								82.436		
	MOTA	2155	CD	PRO	307	42.230	-6.282		1.00 43.08	A
	MOTA	2156	CA	PRO	307	43.039	-4.651	84.035	1.00 41.12	A
55	MOTA	2157	CB	PRO	307	44.109	-4.993	83.001	1.00 41.90	A
	MOTA	2158	CG	PRO	307	43.302	-5.410	81.811	1.00 42.89	A
	ATOM	2159	c	PRO	307	42.661	-3.165	84.023	1.00 39.78	A
	MOTA	2160	0	PRO	307	43.151	-2.384	84.847	1.00 38.90	A
	MOTA	2161	N	HIS	308	41.789	-2.773	83.099	1.00 36.76	' A
60	MOTA	2162	CA	HIS	308	41.373	-1.381	83.018	1.00 34.24	A
	MOTA	2163	CB	HIS	308	41.248	-0.946	81.558	1.00 35.68	A
	ATOM	2164	CG	HIS	308	40.936	0.507	81.395	1.00 38.11	A
	MOTA	2165		HIS	308	39.847	1.134	80.888	1.00 39.53	A
	MOTA	2166	ND1	HIS	308	41.794	1.503	81.809	1.00 38.73	A
65	MOTA	2167		HIS	308	41.249	2.682	81.565	1.00 39.88	A
	ATOM	2168		HIS	308	40.067	2.486	81.006	1.00 40.19	Ä
	MOTA	2169	C	HIS	308	40.052	-1.120	83.737	1.00 31.65	A
	MOTA	2170	0	HIS	308	39.009	-1.661	83.362	1.00 32.49	A
	MOTA	2171	N	VAL	309	40.117	-0.282	84.769	1.00 26.89	A
70	MOTA	2172	CA	VAL	309	38.959	0.101	85.580	1.00 22.85	A
	MOTA	2173	СВ	VAL	309	39.298	-0.013	87.083	1.00 22.36	A
	ATOM	2174		VAL	309	38.091	0.351	87.922	1.00 22.91	A
	MOTA	2175	CG2	VAL	309	39.765	-1.427	87.403	1.00 22.12	A

			_			20 600			1 00 00 44	
	ATOM	2176	С	VAL	309	38.629	1.558	85.231	1.00 20.44	A
	MOTA	2177	0	VAL	309	39.450	2.446	85.433	1.00 19.97	A
	ATOM	2178	N	PRO	310	37.421	1.822	84.704	1.00 17.91	A
_	ATON	2179	CD	PRO	310	36.413	0.834	B4.277	1.00 14.72	A
5	MOTA	2180	CA	PRO	310	37.019	3.186	84.322	1.00 17.34	A
	MOTA	2181	CB	PRO	310	35.839	2.937	83.386	1.00 15.77	A
	MOTA	2182	CG	PRO	310	35.214	1.699	83.978	1.00 15.26	A
	MOTA	2183	C	PRO	310	36.689	4.227	85.404	1.00 16.65	A
	ATOM	2184	ŏ	PRO	310	35.673	4.908	85.317	1.00 15.99	A
10		2185	N	TYR	311	37.557	4.368	86.402	1.00 18.31	A
10	MOTA						5.335	87.485	1.00 18.33	Ä
	MOTA		·CA	TYR	311	37.346				
	MOTA	2187	CB	TYR	311	38.549	5.374	88.430	1.00 18.13	A
	MOTA	2188	CC	TYR	311	38.826	4.115	89.209	1.00 20.50	A
16	MOTA	2189	CD1		311	37.943	3.660	90.194	1.00 19.61	A
15	MOTA	2190	CE1		311	38.242	2.538	90.957	1.00 19.17	A
	MOTA	2191		TYR	311	40.008	3.407	89.005	1.00 19.30	A
	MOTA	2192	CE2	TYR	311	40.314	2.290	89.759	1.00 18.88	A
	MOTA	2193	CZ	TYR	311	39.432	1.860	90.732	1.00 20.10	A
	MOTA	2194	OH	TYR	311	39.754	0.749	91.480	1.00 23.13	A
20	MOTA	2195	С	TYR	311	37.150	6.753	86.969	1.00 19.65	A
	MOTA	2196	0	TYR	311	36.288	7.485	87.449	1.00 20.71	A
	MOTA	2197	N	ARG	312	37.967	7.140	85.995	1.00 19.46	Α.
	MOTA	2198	CA	ARG	312	37.919	8.484	85.447	1.00 19.67	A
	MOTA	2199	СВ	ARG	312	39.223	8.775	84.699	1.00 24.48	A
25	ATOM	2200	CG	ARG	312	40.470	8.521	85.534	1.00 31.49	A
2,5		2201	CD	ARG	312	41.737	8.793	84.742	1.00 38.21	A
	MOTA							84.543		
	MOTA	2202	NE	ARG	312	41.948	10.223		1.00 41.59	A
	ATOM	2203	CZ	ARG	312	42.419	11.040	85.479	1.00 43.45	A
30	MOTA	2204		ARG	312	42.733	10.564	86.678	1.00 43.96	A
30	MOTA	2205		ARG	312	42.570	12.332	85.217	1.00 44.26	A
	ATOM	2206	C	ARG	312	36.736	8.826	84.547	1.00 17.18	A
	MOTA	2207	0	ARG	312	36.610	9.976	84.121	1.00 17.17	A
	MOTA	2208	N	GLU	313	35.856	7.869	84.262	1.00 14.11	A
35.	MOTA	2209	CA	GLU	313	34.729	8.178	83.378	1.00 11.27	A
35	MOTA	-2210	CB	GLU	313	34.258	6.911	82.646	1.00 10.67	A
	MOTA	2211	CG	GLU	313	35.399	6.213	81.891	1.00 15.89	A
	MOTA	2212	CD	GLU	313	34.946	5.089	80.956	1.00 19.42	A
	MOTA	2213	OE1	GLU	313	35.821	4.301	80.519	1.00 20.64	A
	MOTA	2214	OE2	GLU	313	33.739	4.992	80.641	1.00 19.87	A
40	MOTA	2215	С	GLU	313	33.554	8.893	84.048	1.00 9.14	Α
	MOTA	2216	0	GLU	313	32.550	9.155	83.410	1.00 8.08	Α.
	ATOM	2217	N	SER	314	33.692	9.226	85.327	1.00 9.25	A
	MOTA	2218	CA	SER	314	32.647	9.951	86.051	1.00 11.62	A
	MOTA	2219	CB	SER	314	31.508	9.011	86.467	1.00 14.09	A
45	MOTA	2220	OG	SER	314	31.812	8.354	87.688	1.00 14.04	A
	MOTA	2221	С	SER	314	33.233	10.604	87.298	1.00 11.57	A
	MOTA	2222	0	SER	314	34.283	10.186	87.791	1.00 12.89	A
	MOTA	2223	N	LYS	315	32.541	11.615	87.812	1.00 12.14	A
	MOTA	2224	CA	LYS	315	32.981	12.340	89.002	1.00 14.40	A
50	MOTA	-2225	CB	LYS	315	32.082	13.556	89.246	1.00 17.33	A
-	ATOM	2226	CG	LYS	315	32.015	14.559	88.105	1.00 19.52	A
	ATOM	2227	CD	LYS	315	33.175	15.536	88.143	1.00 22.04	. A
		2228	CE	LYS	315	33.021	16.584		1.00 22.29	Ä
	MOTA							87.054		
55	MOTA	2229	NZ	LYS	315	32.991	15.922	85.724	1.00 25.05	A
JJ	MOTA	2230	C	LYS	315	32.952	11.461	90.253	1.00 14.36	A
	MOTA	2231	0	LYS	315	33.899	11.459	91.042	1.00 15.78	A
	MOTA	2232	N	LEU	316	31.859	10.723	90.430	1.00 12.10	A
	MOTA	2233	CA	LEU	316	31.693	9.864	91.591	1.00 12.11	A.
~ 0	MOTA	2234	CB	LEU	316	30.346	9.132	91.521	1.00 11.47	A
60	MOTA	2235	CG	LEU	316	30.052	8.165	92.673	1.00 11.12	A
	MOTA	2236	CD1	LEU	316	29.755	8.941	93.947	1.00 10.52	A
	ATOM	2237	CD2	LEU	316	28.867	7.294	92.313	1.00 9.92	Α
	MOTA	2238	С	LEU	316	32.816	8.846	.91.790	1.00 12.47	A
	MOTA	2239	0	LEU	316	33.346	8.720	92.892	1.00 13.63	A
65	ATOM	2240	N	THR	317	33.192	8.124	90.738	1.00 13.16	A
- '	ATOM	2241	CA	THR	317	34.245	7.118	90.875	1.00 12.10	A
	ATOM	2242	СВ	THR	317	34.132	6.031	89.783	1.00 9.66	A
	MOTA	2243		THR	317	34.077	6.642	88.496	1.00 9.89	A
	MOTA	2244		THR	317	32.870	5.200	89.994	1.00 10.70	A
70	ATOM	2245	C	THR	317	35.674	7.681	90.923	1.00 12.84	Ä
	ATOM	2246	õ	THR	317	36.611	6.965	91.270	1.00 13.25	Ä
	ATOM	2247	N.		318	35.852	8.951	90.575	1.00 13.06	Ä
	ATOM	2248	CA	ARG	318	37.180	9.544	90.682	1.00 14.05	Ä
		-270	Cn	1210	310	27.100	J. J.4	20.002	2.00 24.03	~

	MOTA	2249	СВ	ARG	318	37.326	10.780	89.796	1.00 15.43	A
								88.319	1.00 20.15	A ·
	MOTA	2250	CG	ARG	318	37.417	10.473			
	MOTA	2251	CD	ARG	318	37.526	11.755	87.527	1.00 22.93	A
_	MOTA	2252	NE	ARG	318	38.747	12.468	87.865	1.00 27.97	A
5	MOTA	2253	CZ	ARG	318	39.015	13.710	87.482	1.00 32.10	A
	ATOM .	2254	NH1	ARG	318	38.138	14.383	86.747	1.00 32.47	A
	MOTA	2255	NH2	ARG	318	40.162	14.276	87.833	1.00 33.23	A
	ATOM	2256	c	ARG	318	37.281	9.948	92.138	1.00 13.35	A
		2257	ò	ARG		38.276	9.679	92.801	1.00 15.31	A
10	MOTA				318					
10	MOTA	2258	N	ILE	319	36.222	10.575	92.640	1.00 12.79	A
	MOTA	2259	CA	ILE	319	36.175	11.012	94.030	1.00 11.02	A
	MOTA	2260	CB	ILE	319	34.837	11.727	94.322	1.00 9.24	A
	MOTA	2261	CG2	ILE	319	34.660	11.958	95.819	1.00 4.84	A
	MOTA	2262	CG1	ILE	319	34.786	13.047	93.561	1.00 9.26	A
15	MOTA	2263		ILE	319	33.431	13.786	93.692	1.00 9.14	A
		2264		ILE	319	36.344	9.833	95.002	1.00 12.21	A
	MOTA		C							
	MOTA	2265	0	ILE	319	37.127	9.913	95.950	1.00 12.33	A
	ATOM	2266	N	LEU	320	35.627	8.739	94.752	1.00 10.74	A
~~	MOTA	2267	CA	LEU	320	35.674	7.577	95.638	1.00 11.28	A
20	MOTA	2268	CB	LEU	320	34.240	7.142	95.965	1.00 8.50	A
	MOTA	2269	CG	LEU	320	33.364	8.196	96.642	1.00 11.65	A
	ATOM .	2270	CD1	LEU	320	31.909	7.774	96.550	1.00 12.32	A
	ATOM	2271		LEU	320	33.794	8.390	98.090	1.00 7.79	A
						36.466	6.359	95.146	1.00 12.31	A
25	MOTA	2272	C	LEU	320					
23	ATOM	2273	0	LEU	320	36.276	5.254	95.658	1.00 10.52	A
	MOTA	2274	N	GLN	321	37.356	6.541	94.177	1.00 13.27	A
	MOTA	2275	CA	GLN	321	38.110	5.401	93.668	1.00 16.08	A
	MOTA	2276	CB	GLN	321	39.087	5.844	92.569	1.00 19.75	· A
	ATOM	2277	CG	GLN	321	40.196	6.756	93.006	1.00 21.68	A
30	ATOM	2278	CD	GLN	321	41.079	7.139	91.840	1.00 25.85	A
	ATOM	2279		GLN	321	41.622	6.266	91.152	1.00 22.98	
									1.00 26.88	
	MOTA	2280		GLN	321	41.228	8.450	91.602		
	MOTA	2281	С	GLN	321	38.842	4.548	94.723	1.00 14.28	
~~	MOTA	2282	0	GLN	321	38.972	3.335	94.543	1.00 12.19	
35	ATOM	2283	N	ASP	322	39.305	5.151	95.817	1.00 12.59	A
	MOTA	2284	CA	ASP	322	39.978	4.351	96.835	1.00 14.78	A
	MOTA	2285	СВ	ASP	322	40.769	5.230	97.811	1.00 17.14	
	ATOM	2286	CG	ASP	322	41.787	4.426	98.620	1.00 18.36	
in	MOTA	2287		ASP	322	42.588	3.692	98.003	1.00 19.34	
40	MOTA	2288		ASP	322	41.791	4.521	99.865	1.00 19.68	
	MOTA	2289	C	ASP	322	38.988	3.473	97.609	1.00 15.66	A
	MOTA	2290	0	ASP	322	39.384	2.598	98.384	1.00 17.16	A
	MOTA	2291	N	SER	323	37.697	3.696	97.386	1.00 16.21	. A
	MOTA	2292	CA	SER	323	36.657	2.915	98.047	1.00 16.47	
45	MOTA	2293	СВ	SER	323	35.436	3.795	98.343	1.00 13.71	
13										
	ATOM	2294	OG	SER	323	35.749	4.804	99.284	1.00 11.67	
	MOTA	2295	С	SER	323	36.247	1.735	97.166	1.00 18.02	
	MOTA	2296	0	SER	323	35.459	0.876	97.574	1.00 18.75	i A
	ATOM	2297	N	LEU	324	36.795	1.696	95.956	1.00 18.69	A
50	MOTA	2298	CA	LEU	324	36.495	0.635	95.009	1.00 19.76	A
-	MOTA	2299	CB	LEU	324	35.782	1.225	93.789	1.00 19.37	
	ATOM	2300	ÇG	LEU	324	34.461	1.920	94.127	1.00 19.69	
	ATOM	2301		LEU	324	34.028	2.781	92.973	1.00 22.50	
55	MOTA	2302		LEU	324	33.394	0.887	94.449	1.00 20.33	
22	MOTA	2303	С	LEŲ	324	37.789	-0.045	94.591	1.00 21.46	
	MOTA	2304	0	LEU	324	38.427	0.353	93.618	1.00 23.00) A
	MOTA	2305	N	GLY	325	38.174	-1.074	95.341	1.00 22.77	A
	MOTA	2306	CA	GLY	325	39.398	-1.794	95.047	1.00 21.76	S A
	MOTA	2307	C	GLY	325	40.620	-1.028	95.516	1.00 24.37	
60		2308							1.00 24.93	
00	MOTA		0	GLY	325	41.718	-1.239	95.005		
	MOTA	2309	N	GLY	326	40.428	-0.132	96.484	1.00 24.40	
	MOTA	2310	CA	GLY	326	41.526	0.663	97.002	1.00 24.15	i A
	MOTA	2311	С	GLY	326	41.897	0.284	98.424	1.00 26.42	2 A
_	MOTA	2312	0	GLY	326	41.656	-0.840	98.856	1.00 25.60	
65	MOTA	2313	N	ARG	327	42.470	1.220	99.168	1.00 25.86	
	ATOM	2314		ARG	327	42.875			1.00 28.96	
			CA					100.528		
	MOTA	2315	CB	ARG	327	44.219		100.834	1.00 32.07	
	MOTA	2316	CG	ARG	327	45.329	1.220	99.853	1.00 37.14	
=0	MOTA	2317	CD	ARG	327	46.714	1.483	100.432	1.00 42.74	
70	MOTA	2318	NE	ARG	327	47.800	1.031	99.556	1.00 47.24	1 A
	MOTA	2319	CZ	ARG	327	48.286	1.730	98.530	1.00 49.78	
	ATOM	2320		ARG	327	47.787	2.926	98.237	1.00 50.77	
	MOTA	2321		ARG	327	49.286	1.245	97.805	1.00 49.64	
	A I OF	6341	1402	MO	321	43.200	1.243	31.0V3	1.00 43.00	. ^

•	MOTA	2322	С	ARG	327	41.83	1 1.320	101.569	1.00	28.96	A
	MOTA	2323	0	ARG	327	42.15	7 1.543	102.731	1.00	28.88	A
	ATOM	2324	N	THR	328	40.57		101.151	1.00		A
	ATOM	2325	CA	THR	328	39.49		102.064		23.77	A
5										24.66	Ä
5	MOTA	2326	CB	THR	328	38.67		101.488			
	MOTA	2327	OG1		328	39.52		101.344		25.37	A
	MOTA	2328	CG2	THR	328	37.51		102.409	1.00		A
	MOTA	2329	С	THR	328	38.55	66 0.611	102.353	1.00	20.49	A
	ATOM	2330	0	THR	328	38.28	37 -0.213	101.480	1.00	19.13	A
10	ATOM	2331	N	ARG	329	38.07		103.588	1.00		A
	MOTA	2332	CA	ARG	329	37.13		103.954	1.00		A
			CB	ARG	329	37.12		105.465	1.00		A
	ATOM	2333									
	MOTA	2334	CC	ARG	329	36.03		105.878	1.00		A
• -	MOTA	2335	CD	ARG	329	35.98		107.370	1.00		A
15	MOTA	2336	NE	ARG	329	34.89	7 -2.947	107.655	1.00	21.72	A
	MOTA	2337	CZ	ARG	329	34.68	38 -3.553	108.819	1.00	22.49	A
	ATOM	2338	NH1	ARG	329	35.50	04 -3.343	109.841	1.00	20.08	A
	MOTA	2339		ARG	329	33.64		108.958		22.92	A
	ATOM	2340	C	ARG	329	35.78		103.539		14.65	A
20			ŏ	ARG	329	35.39		104.030		15.12	A
20	MOTA	2341									
	MOTA	2342	N	THR	330	35.10		102.640		12.06	A
	MOTA	2343	CA	THR	330	33.80		102.224		14.04	Α.
	MOTA	2344	СВ	THR	330	33.83		100.782		15.17	A
	MOTA	2345	OG1	THR	330	33.69	94 -0.739	99.847	1.00	18.22	·A
25	ATOM	2346	CG2	THR	330	35.14	17 1.052	100.513	1.00	14.36	A
	ATOM	2347	С	THR	330	32.70		102.323		13.65	A
	ATOM	2348	ŏ	THR	330	32.9		102.140		13.67	A
	ATOM	2349		SER	331	20.5		102.637		12.70	A
			N								
30	ATOM	2350	CA	SER	331	30.34		102.740		10.49	A
30	MOTA	2351	СВ	SER	331	29.8		3 104.177		12.02	A
	MOTA	2352	OG	SER	331	30.8		105.072		18.36	A
	MOTA	2353	С	SER	331	29.2	59 -1.044	101.830	1.00	10.83	A
	MOTA	2354	0	SER	331	29.2	35 0.16	101.555	1.00	8.62	A
	ATOM	2355	N	ILE	332	28.3		101.349	1.00	9.52	A
35	ATOM	-2356	CA	ILE	332	27.2		100.511	1.00	9.50	A
	ATOM	2357	СВ	ILE	332	27.3				10.70	A
•											Ä
	MOTA	2358		ILE	332	26.1			1.00	8.05	
	MOTA	2359		ILE		28.6			1.00	9.17	A
40	MOTA	2360		ILE	332	28.7			1.00	5.23	A
40	MOTA	2361	С	ILE	332	25.9	93 -1.93	101.138	1.00	9.51	A
	MOTA	2362	0	ILE	332	25.8	43 -3.12	7 101.413	1.00	9.19	A
	MOTA	2363	N	ILE	333	25.0		101.391	1.00	9.81	A
	ATOM	2364	CA	ILE	333	23.7		5 101.942	1.00	8.92	A
	ATOM	2365	СВ	ILE	333	23.3		103.103	1.00	8.82	A
45										7.93	A
73	MOTA	2366		ILE	333	21.9		3 103.614	1.00		
	ATOM	2367		ILE	333	24.3		3 104.272	1.00	6.76	A
	MOTA	2368	CD1	ILE	333	24.0		3 105.387	1.00	2.97	A
	MOTA	2369	С	ILE	. 333	22.7	77 -1.24	100.797	1.00	9.34	A
	MOTA	2370	Ο.	ILE	333	22.4	83 -0.13	2 100.347	1.00	6.58	A
50	MOTA	2371	N	ALA	334	. 22.2	94 -2.37	5 100.303	1.00	9.13	A
	ATOM	2372	CA	ALA	334	21.3			1.00	8.43	A
	ATOM	2373	CB	ALA	334	21.5			1.00	6.36	A
	MOTA	2374	c	ALA	334	19.9			1.00	8.65	A
									1.00		
55	MOTA	2375	0	ALA	334	19.5				6.98	A
JJ	MOTA	2376	N	THR	335	19.0			1.00	8.61	A
	MOTA	2377	CA	THR	335	17.7	27 -1.33	4 99.899	1.00	8.77	A
	MOTA	2378	CB	THR	335	17.3	75 0.09	2 100.290	1.00	7.57	A
	MOTA	2379	OG1	THR	335	17.5	38 0.94	9 99.157	1.00	8.21	A -
	MOTA	2380		THR	335	18.2		2 101.398	1.00	7.82	A
60	MOTA	2381	c	THR	335	16.7			1.00	8.70	A
00											
	MOTA	2382	0	THR	335	16.8			1.00	8.21	A
	MOTA	2383	N	ILE	336	15.7			1.00	8.74	A
	ATOM	2384	CA	ILE	336	14.7				10.87	A
	MOTA	2385	CB	ILE	336	14.9	98 -4.61	3 98.216	1.00	10.46	A
65	MOTA	2386		ILE	336	16.3			1.00	8.62	A
-	MOTA	2387		ILE	336	14.9				10.60	A
	MOTA	2388		ILE	336	14.9				10.91	A
										12.03	
	MOTA	2389	C	ILE	336	13.2					A
70	MOTA	2390	0	ILE	336	13.0				12.49	A
70	MOTA	2391	N	SER	337	12.3				13.93	A
	MOTA	2392	CA	SER	337	10.9	18 -2.96	9 98.426		13.83	A
	MOTA	2393	СВ	SER	337	10.1	80 -2.15	4 97.359	1.00	14.05	A
	MOTA	2394	0G	SER	337	8.7				13.32	A

	MOTA	2395	C SER	337	10.371	~4.386	98.464	1.00 14.60	A
	MOTA	2396	O SER	337	10.829	~5.250	97.717	1.00 14.95	Α -
	MOTA	2397	N PRO	338	9.398	-4.652	99.350	1.00 15.93	A
_	MOTA	2398	CD PRO	338	8.967.	-3.811	100.483	1.00 16.39	A
5	MOTA	2399	CA PRO	338	8.809	-5.990	99.451	1.00 15.42	A
	MOTA	2400	CB PRO	338	8.461	-6.088	100.921	1.00 15.52	A
	MOTA	2401	CG PRO	338	7.930	-4.705	101.176	1.00 17.59	A
	MOTA	2402	C PRO	338	7.564	-6.138	98.576	1.00 15.52	A
	MOTA	2403	O PRO	338	6.929	-7.185	98.571	1.00 17.10	A
10	ATOM	2404	N ALA	339	7.212	-5.091	97.841	1.00 15.73	A
	MOTA	2405	CA ALA	339	6.023	-5.122	96.989	1.00 17.08	A
	MOTA	2406	CB ALA	339	5.494	-3.699	96.765	1.00 13.90	A
	MOTA	2407	C ALA	339	6.255	-5.793	95.647	1.00 17.79	A
	MOTA	2408	O ALA	339	7.290	-5.586	95.010	1.00 18.27	A
15		2409	N SER	340	5.270	-6.575	95.210	1.00 19.26	A
13	MOTA					-7.280	93.933	1.00 20.19	Ä
	ATOM	2410	CA SER	340	5.339		93.741	1.00 20.19	Ä
	MOTA	2411	CB SER		4.088	-8.151		1.00 24.50	Ä
	MOTA	2412	OG SER	340	2.909	-7.370	93.812	1.00 24.30	
20	MOTA	2413	C SER	340	5.495	-6.340	92.736		A
20	ATOM	2414	O SER		5.977	-6.755	91.687	1.00 17.98	A
	ATOM	2415	N LEU	341	5.083	-5.084	92.883	1.00 19.49	Α
	MOTA	2416	CA LEU		5.212	-4.114	91.793	1.00 21.42	A
	MOTA	2417	CB LEU		4.539	-2.787	92.159	1.00 24.24	A
	MOTA	2418	CG LEU	341	3.056	-2.763	92.528	1.00 30.57	A
25	MOTA	2419	CD1 LEU	341	2.838	-3.310	93.952	1.00 30.86	A
	MOTA	2420	CD2 LEU	341	2.563	-1.325	92.435	1.00 32.23	A
	MOTA	2421	C .LEU	341	6.678	-3.821	91.452	1.00 20.58	A
	MOTA	2422	O LEU	341	7.017	-3.528	90.308	1.00 20.62	A
	MOTA	2423	N ASN	342	7.544	-3.905	92.455	1.00 19.46	A
30	ATOM	2424	CA ASN		8.958	-3.620	92.267	1.00 18.47	A
	ATOM	2425	CB ASN		9.471	-2.863	93.485	1.00 17.34	A
	MOTA	2426	CG ASN		8.662	-1.618	93.763	1.00 16.86	A
	MOTA	2427	OD1 ASN			-0.730		1.00 18.67	A
	ATOM	2428	ND2 ASN		8.070	-1.546		1.00 15.28	A
35	ATOM	2429	C ASN		9.795	-4.871	92.041	1.00 18.85	A
23		2430	O ASN		10.988	-4.893	92.351	1.00 17.91	A
	MOTA							1.00 17.20	Ä
	MOTA	2431	N LEU		9.170	-5.908		1.00 17.20	
	MOTA	2432	CA LEU		9.863	-7.163			A
ΔO	MOTA	2433	CB LEU		8.917	-8.179		1.00 13.78	A
40	MOTA	2434	CG LEU		9.593	-9.472		1.00 14.61	A
	ATOM	2435	CD1 LEU			-10.143		1.00 10.55	A
	MOTA	2436	CD2 LEU		8.554	-10.415		1.00 13.10	A
	MOTA	2437	C LEU		11.115	-7.020		1.00 17.48	A
	MOTA	2438	O LEU		12.211	-7.377		1.00 17.34	A
45	MOTA	2439	N GLU	344	10.946	-6.514	89.184	1.00 19.72	A
	MOTA	2440	CA GLU	344	12.063	-6.358	88.263	1.00 20.96	A
	MOTA	2441	CB GLU	344	11.598	-5.684	86.969	1.00 24.20	A
	MOTA	2442	CG GLU	344	12.675	-5.635	85.887	1.00 32.62	A
	ATOM	2443	CD GLU	344	12.213	-4.959	84.599	1.00 38.13	A
50	MOTA	2444	OE1 GLU	344	12.908	-5.115	83.566	1.00 40.01	A
	MOTA	2445	OE2 GLU	344	11.165	-4.270	84.617	1.00 41.47	A
	ATOM	2446	C GLU		13.208	-5.561	88.883	1.00 20.19	A
	MOTA	2447	O GLU		14.371	-5.957		1.00 20.32	A
	MOTA	2448	N GLU		12.883	-4.441		1.00 17.74	A
55	MOTA	2449	CA GLU		13.909	-3.615		1.00 18.84	A
-	MOTA	2450	CB GLU		13.335	-2.240		1.00 21.25	A
	MOTA	2451	CG GLU		13.076	-1.356		1.00 24.52	A
		2452			14.348	-1.036		1.00 27.03	Ä
	MOTA				14.232	-0.592		1.00 29.83	Ä
60	MOTA	2453	OE1 GLU						
OU	MOTA	2454	OE2 GLU		15.462	-1.216		1.00 27.61	A
	MOTA	2455	C GLU		14.555	-4.270		1.00 16.79	A
	MOTA	2456	O GLU		15.762	-4.143		1.00 17.33	A
	MOTA	2457	N THE		13.760	-4.978		1.00 14.42	A
, -	MOTA	2458	CA THE		14.286	-5.649		1.00 14.40	A
65	MOTA	2459	CB THE	346	13.160	-6.304			A
	MOTA	2460	OG1 THE		12.399	-5.285	94.801	1.00 13.04	A
	ATOM	2461	CG2 THE		13.735	-7.255		1.00 15.14	A
	MOTA	2462	C THE		15.302	-6.705		1.00 14.50	A
	ATOM	2463	O THE		16.294	-6.922		1.00 13.63	A
70	MOTA	2464	N LE		15.061	-7.362		1.00 14.51	A
. •	ATOM	2465	CA LE		16.005	-8.357		1.00 15.49	A
	ATOM	2466	CB LET		15.369	-9.222			A
	MOTA	2467	CG LET		14.220			1.00 15.51	A
	VIOL:	240/	CG LEG	, ,4,	14.220	-10.136		2.00 23.34	

•	MOTA	2468	CD1		347	13.712		89.351	1.00 11.90	A
	MOTA	2469	CD2	LEU	347	14.687	-11.142	91.627	1.00 13.17	A
	MOTA	2470	С	LEU	347	17.267	-7.666	90.734	1.00 16.52	A
	MOTA	2471		LEU	347	18.376	-8.175	90.908	1.00 18.79	A
5	MOTA	2472	N	SER	348	17.111	-6.513	90.088	1.00 15.74	A
,								89.567	1.00 16.97	A
	MOTA	2473	CA	SER	348	18.274	-5.795			
	MOTA .	2474	СВ	SER	348	17.857	-4.502	88.872	1.00 17.03	A
	MOTA	2475	OG	SER	348	17.008	-4.785	87.780	1.00 23.78	A
	MOTA	2476	С	SER	348	19.199	-5.438	90.712	1.00 16.29	A
10	ATOM	2477	ō	SER	348	20.415	-5.668	90.655	1.00 17.03	A
10				THR	349	18.603	-4.864	91.751	1.00 13.43	A
	MOTA	2478	N.							
	MOTA	2479	CA	THR	349	19.341	-4.452	92.925	1.00 12.53	A
	MOTA	2480	CB	THR	349	18.400	-3.808	93.953	1.00 11.53	A
	MOTA	2481	OG1	THR	349	17.883	-2.583	93.416	1.00 12.14	A
15	MOTA	2482	CG2	THR	349	19.143	-3.512	95.243	1.00 8.21	A
	MOTA	2483	С	THR	349	20.074	-5.624	93.563	1.00 12.73	A
	ATOM	2484	ŏ	THR	349	21.292	-5.590	93.732	1.00 10.74	A
										A
	MOTA	2485	N	LEU	350	19.325	-6.660	93.916	1.00 14.33	
20	ATOM	2486	CA	LEU	350	19.923	-7.830	94.532	1.00 16.65	A
20	ATOM	2487	CB	LEU	350	18.855	-8.892	94.803	1.00 14.51	A
	ATOM	2488	CG	LEU	350	17.916	-8.537	95.960	1.00 13.75	A
	ATOM	2489	CD1		350	16.780	-9.516	96.035	1.00 10.80	A
	ATOM	2490	CD2		350	18.703	-8.526	97.258	1.00 15.25	Α'
									1.00 17.62	Ā
25	ATOM	2491	C	LEU	350	21.033	-8.400	93.660		
25	MOTA	2492	0	LEU	350	22.116	-8.695	94.148	1.00 19.69	A
	MOTA	2493	N	GLU	351	20.774	-8.540	92.368	1.00 18.77	A
	ATOM	2494	CA	GLU	351	21.783	-9.078	91.466	1.00 20.26	A
	MOTA	2495	ÇВ	GLU	351	21:203	-9.215	90.061	1.00 23.16	A
	MOTA	2496	CG	GLU	351	21.961	-10.194	89.186	1.00 31.07	A
30		2497	CD	GLU	351	21.645	-11.652	89.508	1.00 35.15	A
50	MOTA									
	MOTA	2498		GLU	351		-12.531	89.070	1.00 37.94	A
	MOTA	2499	OE2	GLU	351		-11.921	90.180	1.00 35.11	A
	MOTA	2500	С	GLU	351	23.030	-8.181	91.440	1.00 18.73	A
	MOTA	2501	Ö	GLU	351	24.163	-8.662	91.407	1.00 18.86	A
35·	MOTA	.2502	N	TYR	352	22.810	-6.873	91.463	1.00 18.82	А
	ATOM	2503	CA	TYR	352	23.893	-5.898	91.443	1.00 16.90	A
•						23.304	-4.500	91.261	1.00 17.28	A
	ATOM	2504	CB	TYR	352					
	MOTA	2505	CG	TYR	352	24.306	-3.374	91.118	1.00 15.30	A
40	MOTA	2506	CD1	TYR	352	24.940	-2.833	92.227	1.00 12.89	A
40	MOTA	2507	CE1	TYR	352	25.779	-1.740	92.100	1.00 15.82	A
	MOTA	2508	CD2	TYR	352	24.550	-2.798	89.869	1.00 15.34	A
	ATOM	2509			352	25.382	-1.712	89.731	1.00 14.65	A
	ATOM	2510	CZ	TYR	352	25.989	-1.180	90.848	1.00 15.26	A
								90.715	1.00 17.76	A
45	ATOM	2511	OH	TYR	352	26.767	-0.050			
43	MOTA	2512	С	TYR	352	24.688	-5.973	92.733	1.00 16.43	A
	MOTA	2513	0	TYR	352	25.917	-5.964	92.715	1.00 17.51	Α
	MOTA	2514	N.	ALA	353	23.989	-6.065	93.855	1.00 15.81	A
	MOTA	2515	CA	ALA	353	24.658	-6.137	95.145	1.00 16.65	A
	ATOM	2516	CB	ALA	353	23.646	-5.931	96.269	1.00 15.23	A
50	ATOM	2517	c	ALA	353	25.405	-7.458	95.350	1.00 17.40	A
. 50							-7.497	96.050	1.00 18.96	A
	MOTA	2518	0	ALA	353	26.412				
	MOTA	2519	N	HIS	354	24.916	-8.535	94.744	1.00 18.26	A
	MOTA	2520	CA	HIS	354	25.555	-9.838	94.883	1.00 19.76	A
	MOTA	2521	CB	HIS	354	24.676	-10.932	94.266	1.00 19.50	A
55	MOTA	2522	CG	HIS	354	25.143	-12.324	94.566	1.00 21.21	A
	MOTA	2523		HIS	354	25.758	-13.246	93.786	1.00 20.11	A
	ATOM	2524		HIS	354	25.032	-12.894	95.817	1.00 20.61	A
	ATOM	2525		HIS	354		-14.105	95.796	1.00 20.62	Α.
~ ^	MOTA	2526	NE2	HIS	354	26.009	-14.342	94.576	1.00 20.83	A
60	MOTA	2527	С	HIS	354	26.936	-9.842	94.224	1.00 21.08	A
	MOTA	2528	0	HIS	354		-10.313	94.816	1.00 22.05	A
	MOTA	2529	N	ARG	355	27.027	-9.314	93.004	1.00 22.49	A
	ATOM	2530	CA	ARG	355	28.308	-9.256	92.292	1.00 24.62	A
									1.00 25.83	 A
65	MOTA	2531	CB	ARG	355	28.153	-8.619	90.905		
$\sigma_{\mathcal{I}}$	MOTA	2532	CG	ARG	355	27.358	-9.413	89.894	1.00 29.38	A
	MOTA	2533	CD	ARG	355	27.482	-8.762	88.535	1.00 32.38	A
	MOTA	2534	NE	ARG	355	27.233	-7.326	88.622	1.00 37.22	A
	MOTA	2535	CZ	ARG	355	27.902	-6.412	87.924	1.00 40.93	A
	MOTA	2536		ARG	355	28.860	-6.797	87.087	1.00 41.58	A
70	MOTA	2537		ARG	355	27.624	-5.117	88.066	1.00 39.72	Ä
, 0									1.00 24.34	
	MOTA	2538	C	ARG	355	29.352	-8.447	93.054		A
	MOTA	2539	0	ARG	355	30.523	-8.821	93.098	1.00 25.69	Α
	MOTA	2540	N	ALA	356	28.923	-7.332	93.640	1.00 23.36	A

	MOTA	2541	CA	ALA	356	29.814	-6.447	94.387	1.00 22.82	A
	MOTA	2542	CB	ALA	356	29.016	-5.295	94.985	1.00 20.20	A ·
	MOTA	2543	С	ALA	356	30.603	-7.161	95.484	1.00 23.12	A
	MOTA	2544	0	ALA	356	31.708	-6.751	95.820	1.00 20.69	A
5	MOTA	2545	N	LYS	357	30.030	-8.222	96.047	1.00 24.95	A
~										
	MOTA	2546	CA	LYS	357	30.695	-8.981	97.111	1.00 26.72	A
	MOTA	2547	СВ	LYS	357	29.849	-10.195	97.497	1.00 25.95	A
	ATOM	2548	CG	LYS	357	28.570	-9.854	98.232	1.00 27.20	A
		2549	CD	LYS	357		-11.052	98.293	1.00 28.41	Ä
10	ATOM									
10	MOTA	2550	CE	LYS	357		-12.220	99.024	1.00 29.67	A
	MOTA	2551	NZ	LYS	357	27.537	-13.483	98.790	1.00 30.65	A
	MOTA	2552	С	LYS	357	32.099	-9.453	96.733	1.00 27.68	A
		2553	ō	LYS	357	32.968	-9.595	97.601	1.00 26.10	Ä
	MOTA									
• -	MOTA	2554	N	ASN	358	32.312	-9.691	95.438	1.00 28.56	A
15	MOTA	2555	CA	ASN	358	33.591	-10.177	94.925	1.00 28.98	A
	MOTA	2556	CB	ASN	358	33.363	-10.897	93.597	1.00 31.13	A
	ATOM	2557	CG	ASN	358		-12.071	93.735	1.00 34.60	· A
	MOTA	2558		ASN	358		-13.071	94.375	1.00 37.20	A
	MOTA	2559	NDZ	asn	358	31.226	-11.952	93.145	1.00 33.97	A
20	ATOM	2560	С	ASN	358	34.676	-9.118	94.751	1.00 27.98	Α
- •	ATOM	2561	ō	ASN	358	35.784	-9.426	94.316	1.00 28.50	A
	MOTA	2562	N	ILE	359	34.364	-7.871	95.079	1.00 25.92	A
	MOTA	2563	CA	ILE	359	35.350	-6.811	94.957	1.00 24.09	A
	ATOM	2564	ÇВ	ILE	359	34.673	-5.429	94.910	1.00 21.25	Α
25	ATOM	2565		ILE	359	35.727	-4.329	94.867	1.00 19.17	A
	MOTA	2566		ILE	359	33.748	-5.367	93.689	1.00 19.08	A
	MOTA	2567	CD1	ILE	359	32.909	-4.109	93.597	1.00 18.25	A
	MOTA	2568	С	ILE	359	36.290	-6.906	96.155	1.00 25.26	A
	MOTA	2569	0	ILE	359	35.847		97.290	1.00 23.96	A
30	MOTA	2570	N	LEU	360	37.588	-6.817	95.897	1.00 27.58	A
50										
	MOTA	2571	CA	LEU	360	38.578	-6.917	96.963	1.00 32.07	A
	ATOM	2572	СВ	LEU	360	39.478	-8.137	96.722	1.00 34.40	A
	MOTA	2573	CG	LEU	360	40.711	-8.333	97.613	1.00 36.57	A
	ATOM	2574	CD1	LEU	360	40.309	-8.930	98.961	1.00 37.87	A
35	ATOM	2575		LEU	360	41.687	-9.265	96.913	1.00 38.48	Α .
~		2576				39.438	-5.665	97.033	1.00 33.54	Ä
	ATOM		С	LEU	360					
	MOTA	2577	0	LEU	360	39.905	-5.174	96.008	1.00 32.97	A
	MOTA	2578	N	ASN	361	39.635	-5.132	98.234	1.00 35.62	A
	ATOM	2579	CA	ASN	361	40.485	-3.962	98.372	1.00 39.86	A
40	ATOM	2580	CB	ASN	361	39.649	-2.672	98.395	1.00 41.32	À
. •	MOTA	2581	CG	ASN	361	38.490	-2.732	99.345	1.00 42.28	A
									1.00 42.60	
	MOTA	2582		ASN	361	37.523	-1.985	99.203		A
	MOTA	2583		ASN	361	38.578	-3.609		1.00 45.41	A
	MOTA	2584	С	ASN	361	41.439	-4.056	99.565	1.00 41.68	A
45	MOTA	2585	0	ASN	361	41.180	-4.768	100.532	1.00 41.90	A
	ATOM	2586	N	LYS	362	42.560	-3.348	99.446	1.00 44.89	A
	MOTA	2587	CA	LYS	362	43.643		100.432	1.00 46.74	A
	MOTA	2588	CB	LYS	362	43.106		101.870	1.00 45.91	A
	MOTA	2589	CG	LYS	362	42.518	-2.057	102.353	1.00 44.95	A
50	MOTA	2590	CD	LYS	362	42.184	-2.089	103.841	1.00 44.77	A
	MOTA	2591	CE	LYS	362	43.444		104.701	1.00 44.68	A
	ATOM	2592	NZ		362	44.224		104.523	1.00 44.09	A
				LYS						
1	MOTA	2593	С	LYS	362	44.576		100.173	1.00 48.88	A
	MOTA	2594	0	LYS	362	44.928	-5.219	101.141	1.00 50.91	A
55	ATOM	2595	OXT	LYS	362	44.955	-4.700	98.992	1.00 49.21	A
	MOTA	2596	MG	MG	603	16.038		98.154	1.00 22.45	
	ATOM	2597	PB	ADP	601			98.896	1.00 9.83	ADP
						14.871				
	ATOM	2598		ADP	601	14.389		97.604	1.00 11.43	ADP
	MOTA	2599	OZB	ADP	601	15.417	5.029	98.682	1.00 12.43	ADP
60	ATOM	2600	O3B	ADP	601	15.921	7.374	99.491	1.00 9.54	ADP
	MOTA	2601	PA	ADP	601	13.343	7.143	101.254	1.00 13.34	ADP
	ATOM	2602		ADP	601	14.336		102.280	1.00 14.02	ADP
									1.00 12.22	
	ATOM	2603		ADP	601	13.336		101.013		ADP
~=	MOTA	2604		ADP	601	13.676		99.912	1.00 11.56	ADP
65	MOTA	2605	05*	ADP	601	11.879	6.778	101.742	1.00 16.31	ADP
	MOTA	2606	C5*	ADP	601	10.894	5.934	101.155	1.00 16.15	ADP
	MOTA	2607		ADP	601	9.662		102.132	1.00 18.96	ADP
		2608		ADP				102.132		
	MOTA				601	9.712			1.00 19.62	ADP
70	MOTA	2609		ADP	601	9.700		103.229	1.00 18.60	ADP
70	MOTA	2610	03*	ADP	601	8.406	7.650	103.431	1.00 22.72	ADP
	MOTA	2611	C2*	ADP	601	10.188	6.391	104.496	1.00 19.66	ADP
	MOTA	2612		ADP	601	9.655		105.672	1.00 21.78	ADP
	MOTA	2613		ADP	601	9.788		104.281	1.00 19.08	ADP
	AION	2013	CI.	AU F	001	2.700	4.54/	104.201	2.00 17.00	ADE

	ATOM	2614	N9	ADP	601	10.778	3:943	104.795	1.00 19.36	ADP
	MOTA	2615	C8	ADP	601	11.895	3.536	104.137	1.00 19.33	ADP
	ATOM	2616	N7	ADP	601	12.535		104.859	1.00 19.29	ADP
	ATOM	2617	C5	ADP	601	11.874		105.961	1.00 20.60	ADP
5									1.00 20.38	
5	MOTA	2618	C6	ADP	601	12.043		107.091		ADP
	MOTA	2619	N6	ADP	601	13.085		107.178	1.00 20.28	ADP
	MOTA	2620	N1	ADP	601	11.118	1.701	108.120	1.00 22.79	ADP
	MOTA	2621	C2	ADP	601	10.028	2.524	108.081	1.00 22.78	ADP
	MOTA	2622	N3	ADP	601	9.854	3.302	106.988	1.00 20.98	ADP
10	ATOM	2623	C4	ADP	601	10.736		105.936	1.00 20.39	ADP
10				5-2b	2	19.000		112.199	1.00 28.18	5-2b
	ATOM	2859	·C1							
	MOTA	2860	C2	5-2b	2	18.061		111.340	1.00 32.48	5-2b
	MOTA	2861	C3	5-2b	2	17.078		111.895	1.00 28.56	5-2b
	MOTA	2862	C4	5-2b	2	17.088	12.427	113.305	1.00 27.05	5-2b
15	MOTA	2863	C5	5-2b	2	18.039	13.044	114.157	1.00 26.16	5-2b
	MOTA	2864	C6	5-2b	2	19.015	13.950	113.622	1.00 28.62	5-2b
•	MOTA	2865	C7	5-2b	2	18.128		109.878	1.00 39.58	5-2b
	MOTA	2866	N8	5-2b	2	19.295		109.173	1.00 34.03	5-2b
								108.603		5-2b
20	MOTA	2867	C9	5-2b	2	20.221			1.00 31.92	
20	MOTA	2868		5-2b	2	19.947		108.469	1.00 36.78	5-2b
	MOTA	2869		5-2b	2	18.661		108.801	1.00 44.76	5-2b
	MOTA	2870	C12	5-2b	2	17.708	15.078	109.368	1.00 52.53	5-2b
	MOTA	2871	013	5-2b	2	16.238	11.708	113.800	1.00 23.44	5-2b
	MOTA	2872		5-2b	2	16.264	15.498	109.536	1.00 70.42	-5-2b
25	MOTA	2873		5-2b	2	15.927		109.475	1.00104.53	5-2b
		2874		5-2b	2	14.579	17.475	109.627	1.00 95.04	5-2b
	ATOM									5-2b
	MOTA	2875		5-2b	2.	14.646		109.575	1.00 97.91	
	MOTA	2876		5-2b	2	18.590		108.468	1.00 43.13	5-2b
20	MOTA	2877	019		2	15.462		109.721	1.00 72.50	5-2b
30	MOTA	2878	S20	5-2b	2	21.688	13.451	108.038	1.00 18.17	5-2b
	MOTA	2624	0	нон	1	20.805	10.444	96.618	1.00 3.59	s
	MOTA	2625	0	нон	6	18.478	8.895	97.954	1.00 22.75	S
	ATOM	2626	Ō	нон	7	8.678		114.749	1.00 5.86	S
	ATOM	2627	ŏ	нон	8	15.946	-1.691	94.899	1.00 5.80	š
35										
33	MOTA	-2628	0	нон	11	21.220		106.339	1.00 1.72	s
	MOTA	2629	0	нон	13	14.805	10.449	99.917	1.00 8.07	S
	MOTA	2630	0	нон	16	13.355	-2.493	95.064	1.00 7.03	S
	ATOM	2631	0	HOH	19	21.262	3.695	111.999	1.00 8.18	S
	MOTA	2632	0	нон	20	10.684	13.846	117.065	1.00 18.83	S
40	ATOM	2633	ō	нон	25	21.216	2.976		1.00 14.00	s ·
	ATOM	2634	ō	нон	27	24.932		102.192	1.00 7.13	Š
										s
	MOTA	2635	0	нон	34	15.711		114.948		
	MOTA	2636	0	нон	35	31.658	6.477		1.00 16.68	S
45	MOTA	2637	0	нон	36	16.262			1.00 13.14	S
45	ATOM	2638	0	нон	38	15.341	-0.450	103.081	1.00 3.96	S
	MOTA	2639	0	HOH	40	20.527	12.061	101.135	1.00 13.66	S
	MOTA	2640	0	HOH	42	31.548	4.510	82.184	1.00 13.63	S
	ATOM	2641	Ö	нон	44	20.139		109.317	1.00 9.63	s
	ATOM	2642	ō	нон	46	38.748		117.615	1.00 16.12	s
50			ŏ						1.00 20.54	Š
50	MOTA	2643		нон	48	37.332				s
	MOTA	2644	0	нон	50	15.243		105.237	1.00 7.71	
	MOTA	2645	0	нон	52	23.362		103.308	1.00 16.03	S
	MOTA	2646	0	нон	54	24.373			1.00 21.19	s
	MOTA	2647	0	нон	55	38.272	4.890	80.366	1.00 15.34	S
55	MOTA	2648	0	нон	60	28.231	24.639	95.411	1.00 10.59	S
	MOTA	2649	0	нон	61	39.120			1.00 17.30	S
	ATOM	2650	ŏ	нон	63	18.805			1.00 24.81	s
	MOTA	2651	ŏ	нон	64	40.943			1.00 24.53	s
<i>ζ</i> Λ	MOTA	2652	0	нон	68	31.035			1.00 17.53	S
60	MOTA	2653	0	нон	69	19.610		118.241	1.00 28.77	S
	MOTA	2654	0	нон	70	23.256	19.519	117.749	1.00 12.03	S
	MOTA	2655	0	нон	71	21.279	14.920	97.265	1.00 17.07	Ş
	ATOM	2656	0	нон	72	11.571			1.00 17.54	S
	MOTA	2657	ŏ	нон	73	0.219			1.00 36.34	Š
65					74	14.061		107.352	1.00 17.49	s
05	ATOM	2658	Ó	нон						
	MOTA	2659	0	нон	75	38.428		101.400	1.00 20.61	S
	MOTA	2660	0	нон	76	28.147			1.00 6.93	S
	MOTA	2661	0	нон	78	16.520	-15.702	110.664	1.00 42.69	S
	MOTA	2662	0	нон	79	40.740	11.793	96.499	1.00 19.31	S
70	MOTA	2663	ō	нон	82	38.334		104.252	1.00 25.92	Ś
	MOTA	2664	ŏ	нон	83	28.296			1.00 31.56	š
	ATOM	2665	ŏ	нон	84	14.008			1.00 5.75	s
										S
	MOTA	2666	0	нон	87	45.629	/.251	110.783	1.00 17.29	5

	MOTA	2667	0	нон	90	13.592 18	.093	92.309	1.00 13.66	S
	ATOM	2668	ō	нон	91		.181	96.091	1.00 36.98	S
	MOTA	2669	ŏ	нон	92			106.048	1.00 20.85	Š
	MOTA	2670	ŏ	нон	93		.050	89.915	1.00 17.97	Š
5	MOTA	2671	ŏ	нон	94		.331	96.952	1.00 21.35	. S
,							.163	89.951	1.00 16.99	. s
	MOTA	2672	0	нон	95					S
	MOTA	2673	0	нон	96		.999	87.296		
	MOTA	2674	0	нон	97		.478	84.877	1.00 51.52	S
10	MOTA	2675	0	нон	99		.749	79.785	1.00 19.87	S
10	MOTA	2676	0	нон	101			118.594	1.00 28.07	S
	MOTA	267 7	0	нон	102		.064	84.678	1.00 16.03	S
	MOTA	2678	0	нон	104	36.377 -3		102.275	1.00 18.75	S
	MOTA	2679	0	нон	106	3.852 11	. 665	120.058	1.00 30.71	S
	MOTA	2680	0	HOH	108	39.673 -0	.150	74.200	1.00 46.52	s
15	MOTA	2681	0	нон	110	6.144 -12	.000	92.235	1.00 50.82	s
	MOTA	2682	0	нон	111			102.526	1.00 21.67	S
	MOTA	2683	ō	нон	112		.389	96.506	1.00 17.19	s
	ATOM	2684	ŏ	нон	113			104.371	1.00 25.20	š
	MOTA	2685	ŏ	нон	114		.715	74.652	1.00 19.53	š
20	ATOM	2686	ŏ	нон	117		.027		1.00 38.73	S
20	MOTA	2687	ŏ	нон	118		.227	84.656	1.00 17.38	s
										S
	MOTA	2688	0	нон	121			110.275	1.00 13.05	3
	MOTA	2689	0	нон	122			101.349	1.00 11.39	S
25	MOTA	2690	0	нон	123		.616	90.813	1.00 13.59	S
25	MOTA	2691	0	нон	124			110.137	1.00 23.55	S
	MOTA	2692	0	нон	126		.133	95.389	1.00 15.79	. S
	MOTA	2693	0	HOH	129	3.202 -12		94.601	1.00 59.83	S
	MOTA	2694	0	нон	130		. 696	95.694	1.00 19.43	S
20	MOTA	2695	0	нон	131		.858	98.664	1.00 24.88	S
30	MOTA	2696	0	нон	132		.912	85.606	1.00 40.74	s
	MOTA	2697	0	нон	134		.722	86.631	1.00 12.20	s
	MOTA	2698	0	нон	135			102.663	1.00 23.55	s
	ATOM	2699	0	нон	136.	7.395 -14	.251	99.064	1.00 49.69	S
~-	MOTA	2700	0	нон	137	16.245 22	.597	107.873	1.00 19.89	S
35	MOTA	2701	0	нон	139	9.431 -0	.664	90.038	1.00 31.01	s
	MOTA	2702	0	нон	145	19.183 30	.020	93.555	1.00 40.54	s
	MOTA	2703	0	нон	146	27.383 12	.738	122.250	1.00 22.34	S
	MOTA	2704	0	нон	148	39.078 -6	.174	93.184	1.00 34.51	s
	MOTA	2705	0	нон	149	49.726 3	941	96.574	1.00 41.42	s
40	ATOM	2706	0	нон	151	13.531 20	.213	113.505	1.00 35.47	s
	MOTA	2707	0	HOH	152	49.848 18	.275	102.636	1.00 39.85	s
	MOTA	2708	0	нон	153	27.728 -14	.666	103.176	1.00 32.11	S
	ATOM	2709	0	нон	154	17.610 7	.968	89.633	1.00 32.29	s
	MOTA	2710	0	нон	155		.937	85.776	1.00 24.59	·s
45	ATOM	2711	0	нон	158		.720	75.821	1.00 31.57	s
	MOTA	2712	Ó	нон	159			103.524	1.00 34.83	S
	ATOM	2713	ō	нон	164			116.065	1.00 33.66	s
	ATOM	2714	o	нон	166			123.561	1.00 30.64	s
	MOTA	2715	ō	нон	167		.107	99.622	1.00 11.12	s
50	MOTA	2716	ō	нон	168			107.683	1.00 39.92	s
	ATOM	2717	ŏ	нон	170			122.206	1.00 27.20	Š
	MOTA	2718	ŏ	нон	171	6.377 -23		91.461	1.00 39.35	Š
	MOTA	2719	ŏ	нон	175			100.957	1.00 44.52	Š
	MOTA	2720	ŏ	нон	179			109.488	1.00 28.60	š
55	MOTA	2721	ŏ	нон	184			104.290	1.00 21.93	s
55									1.00 26.18	S
	ATOM	2722	0	нон	186		.930			S
	MOTA	2723	0	нон	187	3.662 -13			1.00 25.44	
	MOTA	2724	0	нон	188		.057		1.00 31.53	S
40	MOTA	2725	0	нон	189			123.817	1.00 23.03	· S
60	MOTA	2726	٥	нон	190		.497		1.00 16.10	s
	MOTA	2727	0	нон	191		.870		1.00 32.35	S
	MOTA	2728	0	нон	192		2.484		1.00 33.77	S
	MOTA	2729	0	нон	195			103.939	1.00 24.38	S
	MOTA	2730	0	нон	197		.762		1.00 34.75	. S
65	MOTA	2731	0	HOH	198	11.981 14	1.135	109.242	1.00 26.93	S
	MOTA	2732	0	нон	199	29.034 -13	3.318	94.699	1.00 32.78	s
	MOTA	2733	0	нон	201	33.413 -10			1.00 31.96	s
	MOTA	2734	0	нон	203		2.342		1.00 39.56	S
	MOTA	2735	0	нон	205		1.617		1.00 17.67	s
70	MOTA	2736	ō	нон	207		2.937		1.00 28.66	S
•	MOTA	2737	ō	нон	208		2.363		1.00 39.90	s
	MOTA	2738	ŏ	нон	210	7.291 -19			1.00 39.55	Š
	ATOM	2739	ŏ	нон	211			105.669	1.00 3.65	Š
			•							_

	MOTA	2740	0	нон	212	16.82	11:748 9	8.364	1.00 4.40	s
	ATOM	2741	0	нон	215	37.02	15.874 10	2.172	1.00 9.34	S
	ATOM	2742	0	нон	217	45.21	3 10.237 9	0.158	1.00 50.32	S
	ATOM	2743	0	нон	220	46.61	7 4.288 10	8.402	1.00 29.26	S
5	ATOM	2744	0	нон	221	18.95	8.984 9	5.378	1.00 23.41	S
	MOTA	2745	0	нон	223	22.90	6.137 11	8.403	1.00 15.81	S
	ATOM	2746	Ó	нон	225	2.95		7.196	1.00 46.93	s
	MOTA	2747	0	нон	226	11.43		9.490	1.00 15.86	S
	MOTA	2748	ō	нон	228	16.69		2.916	1.00 25.42	S
10	ATOM	2749	Ó	нон	229	14.67		6.079	1.00 26.44	S
	ATOM	2750	.0	нон	232	21.59		7.827	1.00 14.15	S
	MOTA	2751	ō	нон	233	11.15		5.185	1.00 32.57	s
	MOTA	2752	ò	нон	238	29.37		7.740	1.00 19.94	s
	MOTA	2753	ō	нон	241	13.50		9.625	1.00 20.34	s
15	ATOM	2754	ō	нон	243	17.42			1.00 24.32	s
	MOTA	2755	ō	нон	244	21.24		2.924	1.00 39.07	s
	MOTA	2756	ō	нон	245	11.59		8.284	1.00 19.24	s
	MOTA	2757	ō	нон	247	51.80			1.00 55.38	S
	MOTA	2758	Ō	нон	251	8.18		9.128	1.00 31.61	s
20	MOTA	2759	Ō	нон	252	21.30		8.575	1.00 31.29	s
	MOTA	2760	0	нон	253	41.89		7.607	1.00 30.47	S
	ATOM	2761	0	нон	254	23.62			1.00 27.92	S.
	ATOM	2762	Ó	HOH	255	29.43		3.667	1.00 26.17	s
	ATOM	2763	0	нон	256	20.44		6.657	1.00 34.15	·s
25	MOTA	2764	0	нон	257	11.97		1.516	1.00 18.84	s
	ATOM	2765	ō	нон	260	13.78			1.00 23.75	s
	MOTA	2766	0	нон	262	7.62		4.008	1.00 30.74	S
	MOTA	2767	0	нон	263	20:39		1.694	1.00 33.87	S
	MOTA	2768	0	нон	266	34.25		31.343	1.00 30.08	s
30	ATOM	2769	0	HOH	268	45.41	7 1.198 10	5.917	1.00 33.79	S
	MOTA	2770	0	HOH	271	15.54	0 -18.971 10	4.185	1.00 36.81	s
	ATOM	2771	0	HOH	272	31.56	0 28.306 9	5.365	1.00 25.41	S
	ATOM	2772	0	нон	273	10.82	0 11.774 12	24.773	1.00 27.96	s
	ATOM	2773	0	нон	275	16.25	9 16.032 10	6.228	1.00 15.83	s
35	MOTA	-2774	0	нон	279	14.25	5 23.209 10	4.198	1.00 21.24	s
	ATOM	2775	0	HOH	280	14.15	2 22.369 10	9.944	1.00 30.26	s
	MOTA	2776	0	нон	281	28.64	5 -13.914 11	0.927	1.00 35.08	s
	MOTA	2777	0	HOH	283	15.85	5 .18.951 10	2.400	1.00 31.06	s
	MOTA	2778	0	HOH	288	15.55	7 2.812 11	16.261	1.00 19.13	S
40	ATOM	2779	0	HOH	290	52.55	0 19.096 9	9.218	1.00 47.57	s
	MOTA	2780	O	HOH	291	26.20	2 14.680 8	31.794	1.00 53.97	S
	ATOM	2781	0	нон	294	20.08			1.00 37.20	S
	MOTA	2782	0	HOH	295	6.01			1.00 18.20	S
4.5	MOTA	2783	0	нон	296	30.91			1.00 37.71	S
45	MOTA	2784	0	HOH	297	46.04			1.00 43.25	S
	MOTA	2785	0	HOH	299	31.56			1.00 32.15	S
	MOTA	2786	0.		300	21.16		37.125	1.00 32.61	s
	MOTA	2787	0	нон	303	9.76			1.00 27.58	S
50	MOTA	2788	0	HOH	305	32.06			1.00 32.24	s
20	ATOM	2789	0	нон	307	33.48		33.015	1.00 27.49	S
	ATOM	2790		нон	308	2.98			1.00 31.57	S
	MOTA	2791	0	нон	309	34.59		94.772	1.00 43.06	S
	ATOM	2792	0	нон	310	34.47			1.00 46.76	S
55	ATOM	2793	0	нон	313	18.10		37.036	1.00 25.07	S
55	MOTA	2794	0	HOH	314	2.83			1.00 42.28	S
	MOTA	2795	0	нон	315	13.69			1.00 35.74	S
	MOTA	2796	0	нон	317	34.11			1.00 28.52	S
	MOTA	2797	ŏ	HOH	318	29.11		83.701	1.00 38.21	S
60	MOTA	2798	0	нон	319	32.66			1.00 27.32	S
OU	MOTA	2799	0	нон	323			88.447	1.00 56.20	S
	ATOM	2800	0	нон	324	-2.28		97.004	1.00 48.36	S
	MOTA	2801	0	нон	327	28.63			1.00 30.32	S
	MOTA	2802	0	HOH	328	29.44			1.00 30.29	S
65	MOTA	2803	0	HOH	331	25.02		88.662	1.00 35.16	S
ŲJ	MOTA	2804	0	HOH	332	25.07		92.315	1.00 37.36	S
	MOTA	2805	0	HOH	334	17.96		84.628	1.00 44.99	S
	MOTA	2806	0	HOH	336	35.27		82.255		S
	ATOM ATOM	2807	0	HOH	338	5.65		95.494	1.00 39.33 1.00 58.72	S
70		2808	0	HOH	340	46.41			1.00 58.72	S
, ,	MOTA	2809	0	HOH	342	10.26		88.835		s s
	MOTA MOTA	2810	0	нон Нон	344	48.37			1.00 39.43	S
		2811	0		345	7.84		90.785	1.00 34.08	S
	MOTA	2812	v	нон	347	42.03	6 -0.811	JU. 103	1.00 34.08	3

	MOTA	2813	٥	нон	351	51.775		133.541	1.00 37.45	s
	MOTA	2814	0	HOH	354	31.545	13.101	83.668	1.00 37.78	S
	MOTA	2815	0	нон	355	35.526		100.364	1.00 8.84	S
_	MOTA	2816	0	нон	361	12.290		107.012	1.00 17.59	s
5	MOTA	2817	0	HOH	363	40.627		127.391	1.00 41.84	S
	MOTA	2818	0	HOH	365	30.371	-1.879	79.833	1.00 13.67	s
	MOTA	2819	0	HOH	367	11.687		107.264	1.00 22.06	s
	MOTA	2820	0	нон	370	18.511		119.773	1.00 38.47	s
	MOTA	2821	0	нон	371	17.908	13.463	100.054	1.00 12.12	S
10	MOTA	2822	0	нон	372	27.131	-3.005	76.310	1.00 16.74	s
	MOTA	2823	0	HOH	375	8.972	7.528	97.923	1.00 26.11	S
	MOTA	2824	0	HOH	377	18.727	10.788	84.519	1.00 41.33	S
	MOTA	2825	0	HOH	379	14.127	15.750	98.863	1.00 25.29	S
	MOTA	2826	0	HOH	383	41.700	9.858	81.807	1.00 33.52	S
15	MOTA	2827	0	HOH	385	35.261	15.280	106.016	1.00 28.87	S
	MOTA	2828	0	HOH	386	12.726	21.661	115.689	1.00 46.81	S
	MOTA	2829	٠٥.	HOH	393	43.648	7.839	106.741	1.00 16.47	·S
	MOTA	2830	٥	HOH	394	37.259	24.740	104.054	1.00 14.17	S
	ATOM	2831	0	HOH	396	24.282	-6.502	87.829	1.00 42.62	S
20	MOTA	2832	0	нон	400	43.027	-3.036	92.095	1.00 34.87	S
	ATOM	2833	0	HOH	406	31.066	-3.244	81.803	1.00 24.95	S
	MOTA	2834	0	HOH	409	36.251	3.079	119.019	1.00 19.28	S
	MOTA	2835	0	HOH	415	10.534	10.025	100.073	1.00 39.35	S
	ATOM	2836	0	HOH	41B	8.054		110.289	1.00 45.64	s
25	MOTA	2837	0	HOH	422	39.306	16.744	111.576	1.00 34.28	S
	MOTA	2838	0	HOH	425	6.396	5.427	103.157	1.00 32.56	S
	MOTA	2839	0	HOH	426	39.952	24.546	98.144	1.00 27.08	S
	MOTA	2840	0	нон	429	39.863	6.685	82.133	1.00 40.09	s
	MOTA	2841	0	HOH	430	21.921	12.487	85.799	1.00 40.68	S
30	MOTA	2842	0	HOH	433	11.505		100.809	1.00 30.56	S
	MOTA	2843	0	HOH	435	10.302		104.901	1.00 29.96	S
	MOTA	2844	0	HOH	438	23.476	-0.876	78.128	1.00 28.68	S
	MOTA	2845	0	HOH	442	40.869		100.914	1.00 39.98	S
~-	MOTA	2846	0	HOH	444	36.147	28.207	94.921	1.00 46.43	S
35	MOTA	2847	0	HOH	445	23.713		119.077	1.00 42.21	s
	MOTA	2848	0	HOH	447	27.306	-4.631	90.698	1.00 43.77	S
	MOTA	2849	0	HOH	448	45.805		107.875	1.00 28.04	s
	MOTA	2850	0	HOH	449	11.162		125.577	1.00 42.08	s
• •	MOTA	2851	0	HOH	450	51.897		132.993	1.00 37.33	S
40	MOTA	2852	0	HOH	452	28.491	3.721	119.002	1.00 32.94	S
	ATOM	2853	0	HOH	454	8.173		105.141	1.00 50.50	s
	ATOM	2854	0	HOH	459	42.750	5.736	87.519	1.00 36.93	s
	MOTA	2855	0	HOH	460	30.376	34.460	94.131	1.00 31.43	S
4.5	MOTA	2856	0	HOH	466	25.986		120.060	1.00 52.81	S
45	MOTA	2857	0	HOH	467	22.489		108.669	1.00 29.27	S
	MOTA	2858	0	HOH	468	23.362	-2.077	86.180	1.00 37.76	s
	END									

50

TABLE 2

	REMARK	1	Солюс	ound	1-7_3dpb	.pdb molec	ule B			
	!CRYST		. 250			9.580 90.		0 90.00	P212121	
5	ATOM	20	CB	LYS	17		-12.458	60.280	1.00 51.00	В
	MOTA	21	CG	LYS	17		-12.492	59.882	1.00 53.34	В
	MOTA	22	CD	LYS	17		-12.316	58.375	1.00 53.77	В
	MOTA	23	CE	LYS	17		-13.512	57.582	1.00 54.85	В
10	MOTA	24	.NZ	LYS	17		-13.693	57.700	1.00 53.86	В
10	MOTA	25	Ç	LYS	17	_	-10.105	59.443	1.00 47.83	B B
	MOTA	26	0	LYS	17 17		-10.140 -10.549	58.419 61.888	1.00 49.93	В
	MOTA MOTA	27 28	N CA	LYS	17		-11.048	60.601	1.00 49.15	В
	MOTA	29	N	ASN	18	23.597	-9.260	59.599	1.00 45.98	В
15	ATOM	30	CA	ASN	18	23.245	-8.340	58.535	1.00 43.66	В
	ATOM	31	СВ	ASN	18	21.960	-7.627	58.880	1.00 45.49	В
	MOTA	32	CG	ASN	18	20.740	-8.481	58.599	1.00 49.80	В
	MOTA	33	OD1	ASN	18	20.453	-8.811	57.442	1.00 50.22	В
20	MOTA	34	ND2		18	20.019	-8.856	59.653	1.00 49.94	В
20	MOTA	35	С	ASN	18	24.338	-7.336	58.180	1.00 41.30	В
	MOTA	36	0	ASN	18	24.671	-7.173	57.006	1.00 41.62	B.
	MOTA	37	N	ILE	19 19	24.906 25.949	-6.669 -5.679	59.179 58.928	1.00 37.77	.B B
	ATOM ATOM	38 39	CA CB	ILE	19	26.325	-4.966	60.253	1.00 35.25	В
25	MOTA	40		ILE	19	26.548	-5.988	61.346	1.00 38.29	В
	ATOM	41		ILE	19	27.581	-4.139	60.078	1.00 35.22	В
	MOTA	42		ILE	19	28.042	-3.487	61.347	1.00 36.16	В
	MOTA	43	С	ILE	19	27.213	-6.272	58.266	1.00 31.28	В
20	MOTA	44	0	ILE	19	27.730	-7.287	58.722	1.00 31.52	В
30	MOTA	45	N	GLN	20	27.699	-5.639	57.194	1.00 27.50	В
	MOTA	46	CA	GLN	20	28.903	-6.091	56.483	1.00 26.14	В
	MOTA	47	CB	GLN	20	28.889	~5.603	54.996 54.347	1.00 25.10 1.00 27.01	B B
	MOTA MOTA	48 49	CD	GLN GLN	20 20	30.276 30.232	-5.495 -5.169	52.843	1.00 29.81	В
35	MOTA	50	OE1		20	29.920	-6.026	52.016	1.00 30.67	В
-	MOTA	51	NE2	GLN	20	30.546	-3.924	52.493	1.00 30.62	В
	MOTA	52	С	GLN	20	30.162	-5.567	57.176	1.00 25.43	В
	MOTA	53	· O	GLN	20	30.211	-4.398	57.561	1.00 27.09	В
40	MOTA	54	N	VAL	21	31.176	-6.426	57.327	1.00 22.08	В
40	ATOM	55	CA	VAL	21	32.427	-6.048	57.989	1.00 18.37	В
	MOTA	56	CB	VAL	21	32.472	-6.584	59.471 60.125	1.00 19.87 1.00 16.85	B B
	ATOM	57 58	CG2	VAL	21 21	33.802 31.300	-6.230 -6.004	60.123	1.00 14.97	В
	MOTA MOTA	59	C	VAL	21	33.648	-6.567	57.221	1.00 18.19	В
45	MOTA	60	ŏ.	VAL	21	33.848	-7.771	57.081	1.00 16.60	В
	MOTA	61	N	VAL	22	34'.457	-5.637	56.722	1.00 17.58	В
	MOTA	62	CA-	VAL	22	35.651	-5.965	55.967	1.00 15.68	В
	MOTA	63	CB	VAL	. 22	35.568	-5.385	54.532	1.00 17.56	В
50	MOTA	64		VAL	22	34.305	-5.889	53.846	1.00 17.79	В
50	ATOM	65	CG2		22	35.553	-3.863	54.575	1.00 17.41	В
	MOTA	66	C	VAL	22 22	36.869 36.746	-5.396 -4.502	56.693 57.549	1.00 16.43	B B
:	MOTA MOTA	67 68	N ·	VAL	23	38.038	-5.936	56.358	1.00 14.83	В
	MOTA	69	CA	VAL	23	39.304	-5.534	56.972	1.00 13.82	B
55	ATOM	70	CB	VAL	23	39.935	-6.745	57.768	1.00 13.54	В
	ATOM	71	CG1		23	41.330	-6.405	58.282	1.00 6.83	В.
	MOTA	72	CG2	VAL	23	39.034	-7.112	58.944	1.00 13.12	В
	MOTA	73	С	VAL	23	40.304	-5.023	55.928	1.00 13.37	В
~	MOTA	74	0	VAL	23	40.414	-5.576	54.835	1.00 10.49	В
60	MOTA	75	N	ARG	24	41.008	-3.944	56.256	1.00 14.76	В
	MOTA	76	CA	ARG	24	42.019	-3.407	55.346	1.00 17.25	8
	MOTA	77	CB	ARG	24	41.577	-2.087 -1.660	54.700	1.00 14.29 1.00 12.98	B B
	ATOM ATOM	78 79	CD	ARG ARG	24 24	42.528 42.331		53.590 53.130	1.00 12.38	В
65	MOTA	80	NE	ARG	24	42.331		51.838	1.00 9.97	В
55	MOTA	81	CZ	ARG	24	42.881		51.112	1.00 9.72	В
	MOTA	82		ARG	24	42.165		51.544	1.00 3.96	В
	ATOM	83		ARG	24	43.477		49.923	1.00 8.75	В
~~	MOTA	84	С	ARG	24	43.328		56.098	1.00 18.12	В
70	MOTA	85	0	ARG	24	43.384		57.055	1.00 16.79	В
	MOTA	86	N	CYS	25	44.372	-3.874	55.657	1.00 21.17	В

										_
	MOTA	87	CA	CYS	25	45.688 46.415	-3.764 -5.140	56.268 56.254	1.00 23.23 1.00 23.67	B B
	MOTA MOTA	88 89	CB SG	CYS	25 25	48.096	-5.149	56.970	1.00 28.58	В
	MOTA	90	č	CYS	25	46.464	-2.764	55.443	1.00 24.61	В
5	MOTA	91	0	CYS	25	46.457	-2.836	54.211	1.00 24.46	В
	MOTA	92	N	ARG	26	47.116	-1.818	56.109	1.00 25.36	В
	MOTA	93	CA	ARG	26 26	47.897 48.087	-0.829 0.458	55.380 56.219	1.00 27.69 1.00 26.88	B B
	MOTA MOTA	94 95	CB	ARG ARG	26	49.165	0.361	57.300	1.00 25.37	В
10	MOTA	96	CD	ARG	26	49.817	1.722	57.544	1.00 26.81	В
	ATOM	97	NE	ARG	26	51.181	1.599	58.060	1.00 30.34	В
	MOTA	98	CZ	ARG	26	51.504	1.598	59.349	1.00 31.91	В
	MOTA	99	NHI		26 26	50.566 52.767	1.721 1.459	60.277 59.714	1.00 32.84 1.00 33.10	B B
15	MOTA MOTA	100 101	NH2 C	ARG	26 26	49.268	-1.423	55.072	1.00 29.73	В
	MOTA	102	ŏ	ARG	26	49.673	-2.417	55.676	1.00 28.95	В
	MOTA	103	. N	PRO	27	49.991	-0.832	54.108	1.00 31.27	В
	MOTA	104	CD	PRO	27	49.498	0.108	53.083	1.00 32.66	В
20	MOTA	105	CA	PRO	27 27	51.327 51.452	-1.324 -0.937	53.757 52.287	1.00 32.62 1.00 31.65	B B
20	MOTA MOTA	106 107	CB CG	PRO PRO	27	50.745	0.369	52.235	1.00 31.82	В
	MOTA	108	c	PRO	27	52.372	-0.626	54.642	1.00 33.24	В
	MOTA	109	0	PRO	27	52.065	0.364	55.311	1.00 33.16	В
25	MOTA	110	N	PHE	28	53.599	-1.141	54.652	1.00 34.79	B
23	MOTA MOTA	111 112	CA CB	PHE	28 28	54.670 55.890	-0.545 -1.393	55.451 55.401	1.00 34.86 1.00 33.35	В
	MOTA	113		PHE	28	55.756	-2.691	56.124	1.00 33.06	В
	MOTA	114	CD1	PHE	28	55.856	-3.893	55.440	1.00 31.63	В
20	MOTA	115		PHE	28	55.590	-2.715	57.507	1.00 31.31	В
30	MOTA	116 117		PHE	28 28	55.801 55.536	-5.102 -3.918	56.128 58.193	1.00 31.40 1.00 30.69	B
	MOTA MOTA	118	CZ	PHE	28	55.644	-5.112	57.500	1.00 29.86	В
	MOTA	119	č	PHE	28.	55.043	0.842	54.956	1.00 36.62	В
25	MOTA	120	0	PHE	28	55.102	1.080	53.752	1.00 36.72	В
35	MOTA	121	N	ASN	29	55.297	1.755	55.885	1.00 39.15 1.00 43.00	В · В
	MOTA MOTA	122 123	CA CB	ASN ASN	29 29	55.687 55.449	3.109 4.078	55.517 56.693	1.00 41.82	В
	ATOM	124	CG	ASN	29	55.787	3.460	58.044	1.00 41.11	В
4.0	ATOM	125		ASN	29	56.953	3.237	58.367	1.00 38.49	В
40	MOTA	126		ASN	29	54.758	3.178	58.838	1.00 40.06	В
	MOTA	127	c	asn asn	29 29	57.160 57.913	3.083 2.236	55.130 55.621	1.00 46.95 1:00 48.65	B B
	MOTA MOTA	128 129	N N	LEU	30	57.554	3.998	54.243	1.00 49.22	В
	MOTA	130	CA	LEU	30	58.930	4.106	53.751	1.00 49.70	В
45	MOTA	131	CB	LEU	30	59.142	5.490	53.121	1.00 49.24	В
	MOTA	132	CG	LEU	30	60.429	5.757	52.341	1.00 49.29	B B
	MOTA MOTA	133 134		LEU	30 30	60.294 61.643	7.104 5.740	51.640 53.264	1.00 49.07 1.00 49.24	В
	MOTA	135	c	LEU	30	59.989	3.866	54.823	1.00 51.07	В
50	MOTA	136	0	LEU	30	60.877	3.032	54.649	1.00 50.68	В
	MOTA	137	N	ALA	31	59.889	4.605	55.925	1.00 52.87	В
	MOTA MOTA	138 139	CA CB	ALA ALA	31 31	60.831 60.399	4.497 5.420	57.035 58.157	1.00 54.80 1.00 53.50	B B
	MOTA	140	c	ALA	31	61.011	3.077	57.576	1.00 56.55	B
55	ATOM	141	ō	ALA	31	62.140	2.649	57.837	1.00 56.62	В
	ATOM	142	N	GLU	32	59.906	2.354	57.751	1.00 59.00	В
	MOTA	143	CA	GLU	32	59.958 58.625	0.989	58.272 58.999	1.00 61.92 1.00 61.49	B B
	MOTA MOTA	144 145	CB	GLU	32 32	57.413	0.631		1.00 60.80	В
60	MOTA	146	CD	GLU	32	56.101	0.376	58.872	1.00 59.87	В
	MOTA	147		GLU	32	55.038	0.196	58.242	1.00 58.45	В
	MOTA	148		GLU	32	56.129	0.514	60.115	1.00 60.23	В
	MOTA	149	c	GLU	32	60.270	-0.057 -1.199	57.198 57.522	1.00 64.49 1.00 64.33	. B
65	MOTA MOTA	150 151	N	GLU ARG	32 33	60.610 60.148	0.330	55.927		В
-	MOTA	152	CA	ARG	33	60.447	-0.573	54.813	1.00 69.70	В
	MOTA	153	CB	ARG	33	59.996	0.033	53.435	1.00 71.95	В
	MOTA	154	CG	ARG	33	58.567	0.570	53.353	1.00 75.31	В
70	MOTA	155	CD	ARG ARG	33 33	58.383 57.203	1.377 2.248	52.056 52.066	1.00 78.38	B B
10	MOTA MOTA	156 157	NE CZ	ARG	33	56.937	3.167	51.136	1.00 80.67	В
	ATOM	158		ARG	33	57.766	3.345	50.114	1.00 79.70	В
	MOTA	159	NH2	ARG	33	55.841	3.913	51.226	1.00 80.30	В

			_		••			F 4 704	1 00 70 10	٠ ۾
•	MOTA	160	C	ARG	33 33	61.965 62.502	-0.720 -1.813	54.794 54.599	1.00 70.18 1.00 70.13	B B
	MOTA MOTA	161 162	N N	ARG LYS	34	62.638	0.411	54.997	1.00 70.20	В
	MOTA	163	CA	LYS	34	64.094	0.483	55.012	1.00 70.34	В
5	MOTA	164	CB	LYS	34	64.552	1.980	55.063	1.00 71.26	В
•	MOTA	165	CG	LYS	34	66.041	2.209	54.795	1.00 71.67	В
	MOTA	166	CD	LYS	34	66.407	3.688	54.868	1.00 71.50	В
	MOTA	167	CE	LYS	34	66.116	4.260	56.251	1.00 72.55	В
10	MOTA	168	NZ	LYS	34	66.513	5.694	56.388	1.00 72.95	В
10	MOTA	169	C	LYS	34	64.644	-0.288	56.211	1.00 70.18	В
	MOTA	170	0	LYS	34	65.707	-0.915	56.123 57.330	1.00 70.68 1.00 68.80	B B
	MOTA	171	N	ALA ALA	35 35	63.921 64.324	-0.236 -0.952	58.540	1.00 67.64	В
	MOTA MOTA	172 173	CA CB	ALA	35	63.605	-0.381	59.760	1.00 67.24	В
15	MOTA	174	Č	ALA	35	63.958	-2.424	58.356	1.00 66.54	В
	MOTA	175	ō	ALA	35	64.075	-3.232	59.286	1.00 65.43	В
	MOTA	176	N	SER	36	63.520	-2.750	57.138	1.00 64.95	В
	MOTA	177	CA	SER	36	63.113	-4.099	56.770	1.00 63.77	В
20 .	MOTA	178	CB	SER	36	64.347	-4.974	56.532	1.00 63.33	В
20	MOTA	179	OG	SER	36	65.136	-4.438	55.481	1.00 61.84	B B
	MOTA	180	C	SER	36	62.240 62.731	-4.670 -5.313	57.879 58.810	1.00 63.32 1.00 63.79	B
	MOTA MOTA	181 182	0 N	SER ALA	36 37	60.939	-4.417	57.772	1.00 61.85	В.
	MOTA	183	CA	ALA	37	59.989	-4.873	58.773	1.00 59.96	В
25	MOTA	184	СВ	ALA	37	58.921	-3.806	58.987	1.00 59.90	В
-	MOTA	185	С	ALA	37	59.344	-6.219	58.442	1.00 58.87	В
	MOTA	186	0	ALA	37	58.975	-6.499	57.301	1.00 58.65	В
	MOTA	187	N	HIS	38 .	59.215	-7.038	59.479	1.00 57.20	В
20	MOTA	188	CA	HIS	38	58.638	-8.378	59.411	1.00 54.48	В
30	MOTA	189	CB	HIS HIS	38	59.315 59.436	-9.263 -8.582	60.513 61.851	1.00 56.18 1.00 56.74	B B
	MOTA MOTA	190 191	CC	HIS	38 38	59.430	-8.977	63.092	1.00 57.32	В
•	MOTA	192		HIS	38	60.024	-7.344	62.011	1.00 55.67	В
	MOTA	193		HIS	38	60.005	-7:006	63.288	1.00 56.12	В
35 °	MOTA	194		HIS	38	59.424	-7.980	63.967	1.00 57.53	В
	MOTA	195	С	HIS	38	57.118	-8.352	59.615	1.00 51.90	В
	MOTA	196	0	HIS	38	56.642	-8.343	60.754	1.00 52.05	В
	MOTA	197	N	SER	39	56.356	-8.350	58.523	1.00 47.82	В
40	MOTA	198	CA	SER	39	54.893	-8.320	58.619	1.00 44.47 1.00 43.58	B B
40	MOTA	199 200	CB OG	SER SER	39 ⁻ 39	54.255 52.837	-8.336 -8.377	57.219 57.305	1.00 43.56	В
	MOTA MOTA	201	c	SER	39	54.303	-9.468	59.435	1.00 43.06	В
	ATOM	202	õ	SER	39	54.681	-10.624	59.246	1.00 42.78	В
	MOTA	203	N	ILE	40	53.373	-9.144	60.334	1.00 41.07	В
45	MOTA	204	CA	ILE	40	52.727	-10.162	61.157	1.00 39.33	В
	MOTA	205	CB	ILE	40	52.660	-9.761	62.665	1.00 39.17	В
	MOTA	206		ILE	40	54.063	-9.542	63.215	1.00 38.53	В
	MOTA	207		ILE	40 40	51.824 51.496	-8.511 -8.238	62.858 64.319	1.00 39.67 1.00 38.82	B B
50	MOTA MOTA	208 209	CDI	ILE	40	51.496	-10.456	60.663	1.00 38.28	В
50	MOTA	210	õ	ILE	40	50.591	-11.249	61.265	1.00 37.83	В
	ATOM	211	N	VAL	41	50.932	-9.837	59.550	1.00 38.34	В
	MOTA	212	CA	VAL	41	49.597	-10.047	59.000	1.00 38.90	В
	MOTA	213	CB	VAL	41	48.792	-8.724	58.956	1.00 39.34	В
55	MOTA	214		VAL	41	47.421	-8.971	58.345	1.00 38.41	В
	MOTA	215		VAL	41	48.648	-8.154	60.360	1.00 38.28	B B
	MOTA	216	C	VAL.	41 41		-10.683 -10.243	57.612 56.661	1.00 38.55 1.00 36.24	В.
	MOTA	217 218	O N	GLU	42		-11.729	57.513	1.00 40.08	В
60	ATOM ATOM	219	CA	GTO	42		-12.433	56.255	1.00 42.70	B
00	MOTA	220	CB	GLU	42		-13.916	56.393	1.00 45.52	В
	MOTA	221	CG	GLU	42		-14.215	56.163	1.00 47.68	В
	MOTA	222	CD	GLU	42		-15.636	56.578	1.00 50.75	В
	MOTA	223		GLU	42		-16.576	56.323	1.00 52.01	В
65	MOTA	224		GLU	42		-15.816	57.151	1.00 51.85	В
	MOTA	225	C	GLU	42		-12.338	55.896	1.00 41.88	В
	MOTA	226	0	GLU	42		-12.740	56.683	1.00 42.51 1.00 40.93	В
	ATOM	227 228	N	CYS	43 43		-11.798 -11.670	54.718 54.275	1.00 40.93	B B
70	ATOM ATOM	229	CA CB	CYS	43		-10.237	53.775	1.00 39.59	В
	MOTA	230	SG	CYS	43	44.959	-9.008	55.115	1.00 41.44	В
	ATOM	231	c	CYS	43		-12.682	53.185	1.00 42.27	В
	MOTA	232	ō	CYS	43		-12.781	52.182	1.00 43.23	В

						43.053	12 425	63 304	1.00 43.10	В
	MOTA	233		ASP	44	43.953		53.394	1.00 43.10	В
	MOTA	234		ASP	44	43.504		52.436	1.00 45.99	В
	MOTA	235	CB	ASP	44	43.392 43.414		53.138	1.00 46.99	В
5	MOTA	236	CG	ASP	44			52.151	1.00 48.57	В
J	MOTA	237	OD1		44	42.678		51.139	1.00 44.91	В
	MOTA	238	OD2		44	44.167		52.398	1.00 42.13	В
	MOTA	239	C	ASP	44	42.140		51.853	1.00 42.13	В
	MOTA	240	0	ASP	44	41.093		52.363	1.00 39.99	В
10	ATOM	241	N	PRO	45	42.142		50.767	1.00 41.64	В
10	MOTA	242	CD	PRO	45	43.328		49.990	1.00 40.63	В
	MOTA	243	CA	PRO	45	40.917		50.107		В
	MOTA	244	CB	PRO	45	41.449		48.918	1.00 41.50	В
	MOTA	245	CG	PRO	45	42.755		48.614	1.00 40.93	В
15	MOTA	246	C	PRO	45	39.940		49.690	1.00 42.90	
15	MOTA	247	0	PRO	45	38.750		50.002	1.00 43.83	В
	MOTA	248	N	VAL	46	40.429		48.985	1.00 42.74	B B
	MOTA	249	CA	VAL	46	39.554		48.552	1.00 42.50	
	MOTA	250	CB	VAL	46	40.348		47.854	1.00 41.92	В
20	MOTA	251	CG1		46		-18.269	47.531	1.00 40.40	В
20	MOTA	252		VAL	46		-16.574	46.581	1.00 41.19	В
	MOTA	253	C	VAL	46		-16.577	49.751	1.00 43.26	В
	MOTA	254	0	VAL	46		-16.736	49.730	1.00 43.10	В
	MOTA	255	N	ARG	47		-16.896	50.797	1.00 43.54	B B
25	MOTA	256	CA	ARG	47		-17.455	52.007	1.00 44.21	
25	MOTA	257	CB	ARG	47		-18.250	52.784	1.00 47.76	В
	MOTA	258	CG	ARG	47		-19.635	52.203	1.00 52.08	. B
	MOTA	259	CD	ARG	47		-19.981	52.208	1.00 55.86	В
	MOTA	260	NE	ARG	47		-19.743	53.508	1.00 59.28	B B
20	MOTA	261	CZ	ARG	47		-20.346	54.638	1.00 60.15	В
30	MOTA	262	NH1		47		-21.237	54.639	1.00 60.50	
	MOTA	263		ARG	47		-20.051	55.770	1.00 60.66	В
	MOTA	264	C	ARG	47		-16.360	52.883	1.00 41.71	В
	MOTA	265	0	ARG	47		-16.643	53.845	1.00 40.72	В
25	MOTA	266	N	LYS	48		-15.112	52.537	1.00 39.92	В
35	ATOM	267	CA	LYS	48		-13.947	53.268	1.00 38.19	В
	ATOM	268	CB	LYS	48		-13.912	53.223	1.00 38.15	В
	ATOM	269	CG	LYS	48		-13.820	51.826	1.00 39.40	B B
	MOTA	270	CD	LYS	48		-14.236	51.809	1.00 39.31	В
40	MOTA	271	CE	LYS	48		-14.014	50.440	1.00 41.44	В
40	MOTA	272	NZ	LYS	48		-14.620	49.354	1.00 42.78	В
	ATOM	273	c	LYS	48		-13.925	54.723 55.617	1.00 37.03	В
	MOTA	274	0	LYS	48 49		-13:563	54.961	1.00 37.31	В
	MOTA	275 276	N CA	GLU	49		-14.314 -14.327	56.315	1.00 36.33	В
45	MOTA	277	CB	GLU	49		-15.733	56.743	1.00 40.35	8
73	ATOM	278	CG	GLU	49		-16.767	56.761	1.00 46.19	B
	MOTA MOTA	279	CD	GLU	49		-18.163	57.122	1.00 49.22	B
	ATOM	280		GLU	49		-19.131	56.975	1.00 50.87	В
	MOTA	281		GLU	49		-18.293	57.555	1.00 49.58	В
50	MOTA	282	C	GLU	49		-13.444	56.445	1.00 35.96	В
50	ATOM	283	ō	GLU	49		-13.095	55.462	1.00 34.28	В
	MOTA	284	N	VAL	50		-13.097	57.685	1.00 34.47	В
	MOTA	285	CA	VAL	50		-12.292	57.999	1.00 34.53	В
	MOTA	286	СВ	VAL	50		-10.858	58.439	1.00 32.83	В
55	ATOM	287		VAL	50		-10.918	59.512	1.00 30.31	В
55	ATOM	288		VAL	50		-10.092	58.929	1.00 32.98	В
	ATOM	289	c	VAL	50		-13.059	59.135	1.00 35.60	В
	MOTA	290	ō	VAL	50		-13.367	60.130	1.00 36.44	В
	ATOM.	291	N	SER	51		-13.411	58.976	1.00 36.72	В
60	MOTA	292	CA	SER	51		-14.157	60.022	1.00 36.92	В.
00	MOTA	293	СВ	SER	51		-15.481	59.447	1.00 37.59	В
	MOTA	294	OG	SER	51		-16.427	60.482	1.00 36.23	В
	ATOM	295		SER	51		-13.315	60.656	1.00 37.31	В
	MOTA	295	С 0	SER	51		-12.731	59.960	1.00 36.32	В
65	ATOM	297	N	VAL	52		-13.265	61.984		В
05	ATOM	298					-12.474	62.735	1.00 37.74	В
		298	CA	VAL VAL	52		-11.558	63.749	1.00 38.44	В
	MOTA	300	CB	VAL	52 52		-11.558	64.454	1.00 37.83	В
	ATOM				52 52		-10.888	63.042	1.00 37.78	В
70	MOTA	301 302		VAL	52 52		-10.737	63.507	1.00 41.45	В
70	MOTA		C	VAL	52 52		-14.296	64.167	1.00 41.43	В
	ATOM	303 304	O N	VAL ARG	52 53		-12.968	63.434	1.00 43.18	В
	ATOM	305	CA	ARG	53 53		-13.713	64.166	1.00 46.04	В
	MOTA	303	CA	w	در	21.100		54.100	2.00 30.04	-

	1004	206	GD.	100	63	E2 452	13 600	63.434	1 00 45 91	В
•	MOTA MOTA	306 307	CB CG	ARG ARG	53 53	52.452 - 53.488 -		64.064	1.00 45.91 1.00 44.72	8
	ATOM	308	CD	ARG	53	54.490 -		63.034	1.00 45.80	В
_	ATOM	309	NE	ARG	53	55.317		62.514	1.00 46.75	В
5	MOTA	310	CZ	ARG	53	56.036		61.398	1.00 45.30	В
	MOTA	311	NH1		53	56.028		60.675	1.00 44.24	В
	MOTA	312 313	NH2	ARG	53 53	56.765 - 51.259 -		61.011 65.540	1.00 44.19 1.00 47.93	B B
	MOTA MOTA	314	С 0	ARG	53	51.466		65.667	1.00 48.40	В
10	ATOM	315	N	THR	54	51.156		66.565	1.00 49.62	В
	MOTA	316	·CA	THR	54	51.257		67.941	1.00 51.39	В
	MOTA	317	СВ	THR	54	49.941		68.683	1.00 51.01	В
	MOTA	318	OG1		54	49.735		68.795	1.00 49.13	В
15	MOTA	319	CG2		54	48.775 · 52.391 ·		67.914	1.00 51.53 1.00 52.60	B B
13	MOTA MOTA	320 321	С О	THR THR	54 54	52.439		68.709 69.933	1.00 53.07	B
	MOTA	322	N	GLY	55	53.309		67.995	1.00 54.10	В
	MOTA	323	CA	GLY	55	54.404		68.666	1.00 57.08	В
•	MOTA	324	С	GLY	55	55.721		67.914	1.00 59.62	В
20	MOTA	325	0	GLY	55	56.119		67.264	1.00 59.27	В
	MOTA	326	N	GLY	56	56.393		68.016	1.00 60.97	В
	MOTA MOTA	327 328	CA C	GLY	56 56	57.682 57.782	-16.549	67.372 65.892	1.00 62.99 1.00 64.76	В. В
	ATOM	329	Ö	GLY	56	56.940		65.350	1.00 66.18	·B
25	MOTA	330	N	LEU	57	58.818		65.235	1.00 64.97	В
	MOTA	331	CA	LEU	57	59.032	-16.821	63.809	1.00 64.92	В
	MOTA	332	CB	LEU	57	60.508		63.407	1.00 63.43	В
	MOTA	333	CG.	LEU	57	61.638		64.258	1.00 63.25	В
30	MOTA MOTA	334 335		LEU	57 57	61.844 62.928		65.520 63.459	1.00 62.77 1.00 61.76	B B
50	MOTA	336	CD2	LEU	57		-17.654	62.951	1.00 65.79	В
	MOTA	337	ŏ	LEU	57	57.186		63.470	1.00 65.88	В
•	MOTA	338	N	ALA	58	58.269	-17.597	61.636	1.00 65.65	В
25	MOTA	339	CA	ALA	58	57.435		60.712	1.00 65.12	В
35		340	СВ	ALA	58		-17.891	59.286	1.00 65.82	B B
	MOTA MOTA	341 342	0	ALA ALA	58 58	57.770 56.953	-19.836	60.847 60.525	1.00 64.20	В
	MOTA	343	N	ASP	59	58.980		61.340	1.00 62.61	В
	ATOM	344	CA	ASP	59	59.509		61.542	1.00 60.18	В
40	MOTA	345	CB	ASP	59	60.973		62.035	1.00 60.66	В
	MOTA	346	CG	ASP	59		-22.682	62.266	1.00 61.45	В
	ATOM ATOM	347 348		ASP ASP	59 59	61.396 62.356		63.343 61.370	1.00 61.95 1.00 61.61	B B
	MOTA	349	C	ASP	59	58.663		62.519	1.00 58.06	В
45	MOTA	350	ŏ	ASP	59		-23.490	62.370	1.00 56.73	В
	MOTA	351	N	LYS	60	58.109		63.513	1.00 55.07	В
	MOTA	352	CA	LYS	60	57.258		64.528	1.00 52.63	В
	MOTA	353	CB	LYS	60	58.107		65.525	1.00 51.66	B B
50	ATOM ATOM	354 355	CG CD	LYS	60 60	57.301 58.046		66.672 67.368	1.00 51.86 1.00 51.88	8
	MOTA	356	CE	LYS	. 60	59.349		68.011	1.00 53.18	В
	MOTA	357	NZ	LYS	60	60.197		68.528	1.00 52.09	В
	MOTA	358	С	LYS	60	56.615		65.248	1.00 51.19	В
55	MOTA	359	0	LYS	60		-20.124	65.724	1.00 51.41	В
23	MOTA	360	N	SER	61		-21.010 -19.905	65.313	1.00 48.55 1.00 45.99	B B
	ATOM ATOM	361 362	CA CB	SER	61 61		-18.636	65.960 65.192	1.00 46.32	В
	ATOM	363	ŌĞ	SER	·61		-18.803	63.820	1.00 44.99	В.
	MOTA	364	C	SER	61	53.092	-20.082	66.086	1.00 45.35	В
60	MOTA	365	0	SER	61		-20.950	65.449	1.00 44.81	В
	MOTA	366	N	SER	62		-19.242	66.922	1.00 43.72	В
	MOTA	367	CA	SER	62 62		-19.261 -19.050	67.131	1.00 41.95 1.00 41.39	B B
	MOTA MOTA	368 369	CB OG	SER	62		-18.079	69.135	1.00 41.34	В
65	MOTA	370	C	SER	62		-18.143	66.291	1.00 40.85	В
	MOTA	371	ŏ	SER	62		-17.229	65.872	1.00 39.19	B
	MOTA	372	N	ARG	63	49.138	-18.221	66.031	1.00 40.24	В
	MOTA	373	CA	ARG	63		-17.207	65.226	1.00 38.90	В
70	MOTA	374	CB	ARG	63		-17.514	63.695	1.00 39.76 1.00 41.62	В
, 0	ATOM ATOM	375 376	CD	ARG ARG	63 63		-17.554 -17.897	63.205 61.725	1.00 41.62	B B
	MOTA	377	NE.	ARG	63		-16.776	60.866	1.00 46.47	В
	ATOM	378	CZ	ARG	63		-15.711	60.626	1.00 46.07	В

	MOTA	379	NH1	ARG	63	51.728 -	-15.613	61.178	1.00 47.55	В
	ATOM	380	NH2		63	50.090		59.833	1.00 45.86	В
	MOTA	381	C	ARG	63	46.976		65.558	1.00 37.75	В
	ATOM	382	0	ARG	63	46.410 -	-18.050	66.143	1.00 36.32	В
5	MOTA	383	N	LYS	64	46.356		65.174	1.00 37.15	В
	MOTA	384	CA	LYS	64	44.931	-15.788	65.400	1.00 35.14	В
	MOTA	385	CB	LYS	64	44.737	-14.607	66.342	1.00 36.48	В
	MOTA	386	CG	LYS	64	45.236	-14.826	67.760	1.00 37.70	В
	MOTA	387	CD	LYS	64	44.174	-15.510	68.604	1.00 40.04	В
10	MOTA	388	CE	LYS	64	44.488	-15.408	70.087	1.00 40.04	В
	MOTA	389	NZ	LYS	64	43.325	-15.861	70.893	1.00 40.98	В
	MOTA	390	С	LYS	64	44.316	-15.467	64.041	1.00 33.82	В
	MOTA	391	0	LYS	64	44.811	-14.590	63.329	1.00 35.17	В
	MOTA	392	N	THR	65	43.253	-16.173	63.669	1.00 31.23	В
15	MOTA	393	CA	THR	65	42.619	-15.928	62.377	1.00 30.10	В
	MOTA	394	CB	THR	65	42.784	-17.141	61.438	1.00 32.25	В
	MOTA	395 -	OG1		65	44.171		61.357	1.00 32.66	B
	MOTA	396	CG2	THR	65	42.279		60.028	1.00 33.40	В
20	MOTA	397	С	THR	65	41.133		62.503	1.00 28.24	В
20	ATOM	398	0	THR	65	40.440		63.382	1.00 28.59	В
	MOTA	399	N	TYR	66	40.648		61.630	1.00 24.28	В
	MOTA	400	CA	TYR	66	39.244		61.665	1.00 22.45	В
	MOTA	401	CB	TYR	66	39.045		62.362	1.00 19.03	В
25	ATOM	402	CG	TYR	66	39.783		63.674	1.00 16.05	В
23	MOTA	403	CD1		66	41.158		63.697	1.00 11.74	В
	MOTA	404	CE1		66	41.829		64.894 64.891	1.00 13.31 1.00 15.60	B B
	MOTA	405	CD2		66 66	39.094		66.097	1.00 13.06	В
	ATOM ATOM	406 407	CZ	TYR	66	39.753 41.121		66.090	1.00 15.20	В
30	MOTA	408	OH	TYR	66	41.781		67.272	1.00 19.72	В
50	MOTA	409	C	TYR	66	38.666		60.271	1.00 22.39	В
	MOTA	410	ŏ	TYR	66	39.355		59.317	1.00 21.02	В
	MOTA	411	N	THR	67	37.387		60.167	1.00 23.76	B
	ATOM	412	CA	THR	67	36.678		58.900	1.00 25.75	В
35	MOTA	413	CB	THR	67	35.789		58.699	1.00 24.72	В.
	MOTA	414		THR	67	36.607		58.702	1.00 28.23	В
	MOTA	415	CG2	THR	67	35.043	-15.664	57.376	1.00 24.97	В
	MOTA	416	С	THR	67	35.787		58.864	1:00 26.39	В
	MOTA	417	0	THR	67	35.036	-13.026	59.811	1.00 26.22	В
40	MOTA	418	N	PHE	68	35.899	-12.538	57.775	1.00 26.28	В
	MOTA	419	CA	PHE	68	35.091	-11.342	57.565	1.00 27.23	В
	MOTA	420	CB	PHE	68		-10.056	57.673	1.00 25.89	B
	MOTA	421	CG	PHE	68	36.634	-9.893	58.997	1.00 27.52	В
45	MOTA	422		PHE	68		-10.485	59.230	1.00 26.70	В
45	MOTA	423		PHE	68	36.037	-9.161	60.023	1.00 26.12	В
	ATOM	424			· 68		-10.350	60.464	1.00 25.62	В
	MOTA	425		PHE	68	36.662	-9.025	61.258	1.00 25.03	8
	MOTA	426	CZ	PHE	68	37.894	-9.619	61.478	1.00 25.92	В
50	MOTA	427	Ç	PHE	68		-11.434	56.171	1.00 27.19	В
50	MOTA	428 429	0	PHE	68 69		-12.206	55.328 55.926	1.00 27:43	B B
	MOTA MOTA	430	N CA	ASP ASP	69		-10.631 -10.629	54.636	1.00 27.55	В
	ATOM	431	CB	ASP	69	31.660	-9.635	54.684	1.00 27.55	8
	MOTA	432	CG	ASP	69		-10.019	55.735	1.00 28.58	В
55	ATOM	433		ASP	69	30.578	-9.403	56.831	1.00 27.66	В
	MOTA	434		ASP	69		-10.972	55.461	1.00 28.48	В
	MOTA	435	c	ASP	69		-10.366	53.458	1.00 27.41	В
	MOTA	436	ŏ	ASP	69		-10.771	52.334	1.00 27.23	В
	ATOM	437	N	MET	70		-9.710	53.732	1.00 28.30	B
60	MOTA	438	CA	MET	70	35.865	-9.396	52.717	1.00 28.88	В
	MOTA	439	СВ	MET	70	35.424	-8.213	51.821	1.00 30.69	В
	MOTA	440	CG	MET	70	34.283	-8.469	50.867	1.00 31.73	В
	MOTA	441	SD	MET	70	33.894	-6.957	49.923	1.00 36.68	В
	MOTA	442	CE	MET	70	32.083	-7.049	49.877	1.00 34.73	В
65	MOTA	443	c	MET	70	37.141	-8.983	53.433	1.00 28.83	В
	MOTA	444	ō	MET	70	37.098	-8.480	54.553	1.00 29.82	В
	ATOM	445	N	VAL	71	38.274	-9.188	52.780	1.00 27.33	В
	MOTA	446	CA	VAL	71	39.553	-8.812	53.349	1.00 26.23	В
	MOTA	447	CB	VAL	71	40.291	-10.021	54.003	1.00 27.99	В
70	MOTA	448	CG1	VAL	71		-10.381	55.319	1.00 28.32	В
	MOTA	449	CG2	VAL	71		-11.219	53.076	1.00 28.60	В
	MOTA	450	С	VAL	71	40.398	-8.233	52.231	1.00 25.01	В
	MOTA	451	0	VAL	71	40.363	-8.713	51.100	1.00 24.55	В

	MOTA	452	N	PHE	72	41.146	-7.191	52.571	1.00 24.93	В
	ATOM	453	CA	PHE	72	42.005	-6.475	51.645	1.00 24.43	В
	MOTA	454	СВ	PHE	72	41.444	-5.076	51.392	1.00 23.95	В
								50.903	1.00 23.17	В
5	MOTA	455	CG	PHE	72	40.024	-5.059			
3	MOTA	456		PHE	72	39.722	-5.376	49.583	1.00 22.75	В
	MOTA	457	CD2	PHE	72	38.991	-4.680	51.754	1.00 23.31	В
	MOTA	458	CE1	PHE	72	38.414	-5.310	49.113	1.00 23.87	В
	MOTA	459	CE2	PHE	72	37.679	-4.612	51.294	1.00 23.71	В
	MOTA	460	CZ	PHE	72	37.389	-4.927	49.970	1.00 24.15	В
10					72		-6.321	52.266	1.00 25.11	В
10	MOTA	461	С	PHE		43.381				
	MOTA	462	0	PHE	72	43.522	-5.683	53.312	1.00 26.80	В
	MOTA	463	N	GLY	73	44.394	-6.885	51.621	1.00 24.77	В
	MOTA	464	CA	GLY	73	45.741	-6.774	52.142	1.00 23.03	В
	MOTA	465	С	GLY	73	46.352	-5.450	51.743	1.00 26.33	В
15	MOTA	466	0	GLY	73	45.698	-4.594	51.141	1.00 26.76	В
	MOTA	467	N	ALA	74	47.626	-5.284	52.062	1.00 27.88	В
				ALA	74	48.335	-4.054	51.752	1.00 28.98	В
	MOTA	468	CA							
	MOTA	469	CB	ALA	74	49.690	-4.074	52.427	1.00 29.52	В
00	MOTA	470	С	ALA	74	48.505	-3.802	50.260	1.00 29.91	В
20	MOTA	471	0	ALA	74	49.037	-2.773	49.865	1.00 31.84	В
	ATOM	472	N	SER	75	48.051	-4.726	49.426	1.00 31.43	B
	ATOM	473	CA	SER	75	48.209	-4.558	47.982	1.00 34.31	В
	ATOM	474	СВ	SER	75	48.382	-5.914	47.318	1.00 32.52	В
		475	OG	SER	75	49.088	-6.785	48.183	1.00 36.15	В
25	ATOM									В
23	MOTA	476	C	SER	75	46.994	-3.858	47.395	1.00 34.29	
	MOTA	477	0	SER	75	47.066	-3.236	46.327	1.00 34.53	В
	MOTA	478	N	THR	76	45.882	-3.963	48.111	1.00 32.69	В
	MOTA	479	CA	THR	76	44.635	-3.364	47.675	1.00 32.77	В
	MOTA	480	CB	THR	76	43.530	-3.549	48.744	1.00 32.84	В
30	MOTA	481		THR	76	43.612	-4.863	49.305	1.00 31.95	В
	ATOM	482		THR	76	42.158	-3.380	48.120	1.00 33.21	В
		483		THR	76	44.803	-1.870	47.403	1.00 31.46	В
	ATOM		C							
	MOTA	484	0	THR	76	45.305	-1.134	48.251	1.00 32.33	В
25	MOTA	485	N	LYS	77	44.394	-1.430	46.218	1.00 29.15	В
35	MOTA	486	CA	LYS	77	44.469	-0.015	45.875	1.00 27.33	В
	MOTA	487	CB	LYS	77	44.906	0.155	44.423	1.00 29.39	В
	MOTA	488	CG	LYS	77	46.342	-0.341	44.187	1.00 32.84	B
	MOTA	489	CD	LYS	77	46.949	0.180	42.884	1.00 36.59	В
	MOTA	490	CE	LYS	77	46.241	-0.349	41.627	1.00 38.03	В
40							0.106	41.501	1.00 38.31	В
+0	MOTA	491	NZ	LYS	77	44.818				
	ATOM	492	C	LYS	77	43.096	0.625	46.134	1.00 25.52	В
	MOTA	493	0	LYS	77	42.127	-0.088	46.371	1.00 23.25	В
	MOTA	494	N	GLN	78	43.018	1.956	46.115	1.00 24.22	В
	MOTA	495	CA	GLN	78	41.759	2.652	46.398	1.00 22.43	В.
45	MOTA	496	CB	GLN	78	41.935	4.177	46.226	1.00 22.53	В
	MOTA	497	CG	GLN	78	43.014	4.799	47.088	1.00 21.23	В
	ATOM	498	CD	GLN	78	42.603	4.953	48.539	1.00 20.15	В
								49.192	1.00 18.03	В
	MOTA	499		GLN	78	42.235	3.988			
50	MOTA	500		GLN	78	42.661	6.178	49.045	1.00 21.65	В
50	MOTA	501	С	GLN	78	40.624	2.177	45.504	1.00 22.10	В
	MOTA	502	0	GLN	78	39.533	1.839	45.986	1.00 20.46	В
	MOTA	503	N	ILE	79 .	40.898	2.153	44.203	1.00 21.56	В
	MOTA	504	CA	ILE	79	39.929	1.746	43.194	1.00 23.67	В
	ATOM	505	СВ	ILE	79	40.590	1.749	41.774	1.00 23.18	В
55	ATOM	506		ILE	79	41.716	0.732	41.715	1.00 24.28	В
55									1.00 21.20	
	MOTA	507		ILE	79	39.574	1.416	40.705		В
	MOTA	508		ILE	79	38.563	2.492	40.470	1.00 23.15	. В
	MOTA	509	С	ILE	79	39.303	0.366	43.475	1.00 25.91	₿.
	MOTA	510	Ο.	ILE	79	38.142	0.120	43.122	1.00 26.57	B
60	ATOM	511	N	ASP	80	40.061	-0.527	44.107	1.00 24.45	В
	MOTA	512	CA	ASP	80	39.547	-1.857	44.416	1.00 25.05	В
	MOTA	513	СВ	ASP	80	40.694	-2.832	44.721	1.00 25.59	В
	MOTA	514	CG	ASP	80	41.691	-2.928	.43.588	1.00 26.46	В
ce	MOTA	515		ASP	80	41.248	-2.925	42.414	1.00 26.20	В
65	MOTA	516	OD2	ASP	80	42.912	-3.016	43.877	1.00 27.35	В
	MOTA	517	С	ASP	80	38.612	-1.809	45.611	1.00 24.84	В
	ATOM	518	ō	ASP	80	37.638	-2.553	45.686	1.00 23.83	В
	MOTA	519	N	VAL	81	38.924	-0.934	46.556	1.00 25.12	В
	MOTA	520	CA	VAL	81	38.102	-0.794	47.742	1.00 25.00	В
70										
70	MOTA	521	CB	VAL	81	38.749	0.174	48.750	1.00 22.43	В
	MOTA	522		VAL	81	37.698	0.713	49.716	1.00 21.58	В
	MOTA	523	CG2	VAL	81	39.855	-0.555	49.509	1.00 20.63	В
	MOTA	524	С	VAL	81	36.753	-0.250	47.320	1.00 27.16	В

	MOTA	525	0	VAL	81	35.707	-0.746	47.747	1.00 27.22	В
	MOTA	526 527	N	TYR TYR	82 82	36.792 35.580	0.769 1.406	46.464 45.987	1.00 27.98 1.00 28.04	B B
	MOTA MOTA	528	CA CB	TYR	82	35.922	2.661	45.125	1.00 27.34	В
5	MOTA	529	CG	TYR	82	34.681	3.366	44.637	1.00 26.71	В
_	ATOM	530	CD1		82	34.262	3.252	43.315	1.00 26.63	В
	ATOM	531	CEl		82	33.054	3.808	42.893	1.00 29.11	В
	MOTA	532	CD2		82	33.866	4.063	45.529	1.00 27.27	В
10	MOTA	533	CE2		82	32.660	4.620	45.128	1.00 28.67	В
10	MOTA	534 535	CZ OH	TYR TYR	82 82	32.257 31.047	4.488 5.021	43.809 43.418	1.00 30.95 1.00 34.58	B B
	MOTA MOTA	536	C	TYR	82	34.705	0.454	45.183	1.00 29.38	В
	MOTA	537	ŏ	TYR	82	33.498	0.322	45.448	1.00 28.44	В
	MOTA	538	N	ARG	83	35.312	-0.212	44.206	1.00 30.12	В
15	MOTA	539	CA	ARG	83	34.569	-1.136	43.365	1.00 32.33	В
	MOTA	540	CB	ARG	83	35.475	-1.667	42.238	1.00 32.84 1.00 36.78	B B
	MOTA MOTA	541 542	CD	ARG ARG	83 83	35.814 36.995	-0.610 -1.024	41.177 40.298	1.00 38.78	В
	MOTA	543	NE	ARG	83	36.692	-2.180	39.459	1.00 45.16	B
20	ATOM	544	CZ	ARG	83	36.158	-2.110	38.242	1.00 46.77	В
	MOTA	545	NH1	ARG	83	35.870	-0.930	37.706	1.00 47.42	В
	MOTA	546	NH2	ARG	83	35.897	-3.226	37.567	1.00 47.17	В
	MOTA	547	C	ARG	83 83	33.930 32.786	-2.291 -2.658	44.142 43.866	1.00 32.86 1.00 34.02	В В
25	MOTA MOTA	548 549	И	ARG SER	84	34.648	-2.834	45.125	1.00 32.13	В
	MOTA	550	CA	SER	84	34.159	-3.959	45.933	1.00 30.95	В
	MOTA	551	CB	SER	84	35.347	-4.712	46.558	1.00 32.34	В
	MOTA	552	OG	SER	84	36.301	-5.060	45.568	1.00 37.12	В
30	MOTA	553	C	SER	84 84	33.186	-3.593 -4.241	47.046 47.225	1.00 29.09 1.00 29.03	B B
30	MOTA MOTA	554 555	O N	SER VAL	85	32.151 33.522	-2.570	47.815	1.00 27.74	В
	ATOM	556	CA	VAL	85	32.652	-2.176	48.911	1.00 27.01	В
	MOTA	557	CB	VAL	85	33.481	-1.800	50.165	1.00 25.48	В
25	MOTA	558		VAL	85	32.566	-1.623	51.354	1.00 24.98	В
35	MOTA	559	CG2		85	34.514	-2.865	50.448	1.00 26.13	B B
	MOTA MOTA	560 561	0	VAL VAL	85 85	31.684 30.480	-1.024 -1.167	48.613 48.779	1.00 25.90 1.00 24.94	В
	MOTA	562	N	VAL	86	32.205	0.106	48.152	1.00 26.94	B
4.0	ATOM	563	CA	VAL	86	31.368	1.281	47.916	1.00 27.62	B
40	MOTA	564	СВ	VAL	86	32.227	2.551	47.793	1.00 25.49	В
	ATOM	565		VAL	86	31.384	3.763	48.096	1.00 25.95	_B
	MOTA MOTA	566 567	C	VAL	86 86	33.418 30.395	2.480 1.267	48.722 46.736	1.00 24.40 1.00 28.91	В
	MOTA	568	õ	VAL	86	29.254	1.709	46.874	1.00 27.52	В
45	MOTA	569	N	CYS	87	30.835	0.773	45.583	1.00 30.20	В
	MOTA	570	CA	CYS	87	29.978	0.748	44.402	1.00 31.96	В
	ATOM	571	CB	CYS	87	30.692	0.026	43.257	1.00 35.17	B B
	MOTA MOTA	572 573	SG C	CYS	87 87	30.072 28.593	0.418 0.126	41.599 44.653	1.00 41.71 1.00 32.37	В
50	MOTA	574	ŏ	CYS	87	27.571	0.682	44.234	1.00 31.48	В
	ATOM	575	N	PRO	88	28.538	-1.028	45.347	1.00 31.98	В
	MOTA	576	CD	PRO	88	29.675	-1.840	45.803	1.00 32.51	В
	ATOM	577	CA	PRO	88	27.272	-1.712	45.648	1.00 30.72	B B
55	MOTA MOTA	578 579	CB	PRO PRO	88 88	27.720 29.104	-3.024 -3.223	46.269 45.739	1.00 31.27 1.00 32.03	В
55	MOTA	580	c	PRO	. 88	26.407	-0.907	46.617	1.00 30.37	В
	MOTA	581	ō	PRO	88	25.179	-0.928	46.528	1.00 29.46	В
	MOTA	582	N	ILE	89	27.060	-0.214	47.549	1.00 28.89	В
6 0	ATOM	583	CA	ILE	89		0.607	48.539	1.00 26.92	В
60	MOTA	584	CB	ILE	89	27.325	1.032	49.677	1.00 27.36 1.00 29.65	8 B
	MOTA MOTA	585 586		ILE	89 89	26.562 27.949	-0.202	50.728 50.327	1.00 28.47	В
	ATOM	587		ILE	89	28.880	0.116	51.493	1.00 28.07	В
	ATOM	588	С	ILE	89	25.815	1.866	47.883	1.00 26.45	В.
65	MOTA	589	0	ILE	89	24.733	2.329	48.236	1.00 25.57	В
	MOTA	590	N	LEU	90	26.551	2.416	46.922	1.00 26.88	В
	MOTA MOTA	591 592	CA CB	LEU	90 90	26.097 27.185	3.618 4.167	46.242 45.305	1.00 27.21 1.00 26.30	B B
	ATOM	593	CG	LEU	90	26.768	5.457	44.531	1.00 28.27	В
70	ATOM	594		LEU	90	26.300	6.546	45.499	1.00 27.39	В
	MOTA	595	CD2	LEU	90	27.936	5.952	43.707	1.00 30.13	В
	MOTA	596	C	LEU	90	24.828	3.334	45.451	1.00 28.12	В
	MOTA	597	0	LEU	90	23.914	4.156	45.423	1.00 27.80	В

		***				04 550	2 160	44 011	1 00 00 04	
	MOTA	598	N	ASP	91	24.778	2.168	44.811	1.00 29.04	B B
	MOTA	599	CA	ASP	91	23.615	1.782	44.029	1.00 29.68	B
	MOTA	600	CB	ASP	91	23.888	0.479	43.238 41.975	1.00 30.25 1.00 33.21	В
5	MOTA MOTA	601 602	CG OD1	ASP	91 91	24.715 24.655	0.717 1.836	41.417	1.00 33.21	В
,	MOTA	603	OD2		91	25.409	-0.225	41.522	1.00 34.57	В
	MOTA	604	C	ASP	91	22.412	1.604	44.950	1.00 29.79	В
	ATOM	605	ŏ	ASP	91	21.265	1.785	44.542	1.00 29.34	В
	MOTA	606	N	GLU	92	22.684	1.254	46.199	1.00 30.26	В
10	MOTA	607	CA	GLU	92	21.632	1.077	47.191	1.00 33.20	В
	MOTA	608	CB	GLU	92	22.240	0.434	48.455	1.00 37.58	В
	MOTA	609	CG	GLU	92	21.243	-0.021	49.519	1.00 45.34	В
	MOTA	610	CD	GLU	92	20.622	-1.378	49.215	1.00 49.33	В
	MOTA	611	OE1	GLU	92	19.996	-1.963	50.134	1.00 51.49	В
15	MOTA	612	OE2	GLU	92	20.760	-1.851	48.061	1.00 50.48	В
	ATOM	613	С	GLU	92	21.036	2.471	47.516	1.00 32.34	В
	MOTA	614	0	GLU	92	19.816	2.659	47.548	1.00 31.40	В
	MOTA	615	N	VAL	93	21.921	3.438	47.757	1.00 29.83	В
20	ATOM	616	CA	VAL	93	21.532	4.813	48.060	1.00 27.09	В
20	MOTA	617	CB	VAL	93	22.794	5.732	48.216	1.00 27.00	В
	MOTA	618	CG1		93	22.362	7.185	48.503	1.00 23.70	В
	MOTA	619			93	23.720	5.189 5.384	49.320 46.936	1.00 24.02 1.00 25.06	В. В
	MOTA MOTA	620 621	С 0	VAL	93 93	20.661 19.631	6.005	47.184	1.00 23.06	В
25	MOTA	622	N	ILE	94	21.090	5.173	45.700	1.00 23.81	В
25	ATOM	623	CA	ILE	94	20.357	5.679	44.554	1.00 26.20	В
	MOTA	624	CB	ILE	94	21.196	5.496	43.268	1.00 24.09	В
	ATOM	625		ILE	94	20.398	5.871	42.040	1.00 22.58	В
	MOTA	626		ILE	94	22.436	6.394	43.367	1.00 23.30	В
30	MOTA	627		ILE	94	23.378	6.288	42.211	1.00 25.19	В
	MOTA	628	С	ILE	94	18.964	5.057	44.417	1.00 28.52	В
	MOTA	629	0	ILE	94	18.101	5.606	43.742	1.00 30.41	В
	MOTA	630	N	MET	95	18.729	3.925	45.073	1.00 31.00	В
25.	MOTA	631	CA	MET	95	17.408	3.305	45.032	1.00 32.10	В
35	MOTA	. 632	CB.	MET	95	17.501	1.789	45.171	1.00 35.87	В
	MOTA	633	CG	MET	95	17.836	1.059	43.885	1.00 39.09	В
	MOTA	634	SD	MET	95	17.725	-0.743	44.078	1.00 46.44	В
	MOTA	635	CE	MET	95 05	19.451	1.155	44.567	1.00 42.73	В
40	MOTA MOTA	636 637	C O	MET	95 95	16.514 15.340	3.857 3.518	46.140 46.204	1.00 31.79 1.00 32.44	B B
70	ATOM	638	N	GLY	96	17.069	4.697	47.016	1.00 32.44	В
	MOTA	639	CA	GLY	96	16.274	5.290	48.083	1.00 30.86	В
	ATOM	640	c	GLY	96	16.506	4.778	49.497	1.00 31.33	В
	ATOM	641	ō	GLY	96	15.695	5.005	50.398	1.00 31.96	В
45	MOTA	642	N	TYR	97	17.617	4.085	49.700	1.00 31.69	В
	MOTA	643	CA	TYR	97	17.951	3.539	51.009	1.00 31.47	В
	MOTA	644	CB	TYR	97	18.620	2.119	50.859	1.00 35.21	В
	MOTA	645	CG	TYR	97	17.707	0.979	50.448	1.00 38.09	В
5 0	MOTA	646		TYR	97	16.856	0.369	51.374	1.00 38.78	B
50	MOTA	647		TYR	97	16.060	-0.716	51.017	1.00 39.92	B
	MOTA	648		TYR	97	17.733	0.476	49.146	1.00 38.17	В
	ATOM	649		TYR	97	16.938	-0.606	48.777	1.00 40.59	В
	MOTA MOTA	650 651	CZ OH	TYR TYR	97 97	16.105 15.314	-1.197 -2.262	49.717 49.350	1.00 42.01 1.00 44.26	B B
55	MOTA	652	C	TYR	97	18.944	4.465	51.699	1.00 29.27	В
<i></i>	MOTA	653	ŏ	TYR	97	19.557	5.309	51.055	1.00 29.87	В
	ATOM	654	N	ASN	98	19.089	4.308	53.008	1.00 26.93	В
	MOTA	655	CA	ASN	98	20.061	5.081	53.768	1.00 27.11	В.
	MOTA	656	CB	ASN	98	19.500	5.509	55.156	1.00 27.12	В
60	MOTA	657	CG	ASN	98	18.435	6.579	55.048	1.00 27.28	В
	MOTA	658		ASN	98	18.553	7.506	54.245	1.00 30.11	В
	MOTA	659	ND2	ASN	98	17.394	6.465	55.860	1.00 26.60	В
	MOTA	660	С	ASN	98	21.243	4.141	53.975	1.00 26.22	В
65	MOTA	661	0	ASN	98	21.055	2.971	54.292	1.00 25.58	В
65	MOTA	662	N	CYS	99	22.457	4.634	53.775	1.00 25.47	В
	MOTA	663	CA	CYS	99	23.629	3.791	53.977	1.00 25.10	В
	MOTA	664	CB	CYS	99	24.206	3.357	52.654	1.00 26.81	В
	MOTA	665	SG	CYS	99	23.084	2.317	51.714	1.00 26.81	В
70	MOTA	666	C	CYS	99 99	24.697	4.486	54.798	1.00 23.75 1.00 25.67	B B
70	MOTA MOTA	667 668	O N	CYS THR	100	24.804 25.482	5.712 3.683	54.804 55.496	1.00 20.94	B
	ATOM	669	CA	THR	100	26.549	4.181	56.341	1.00 19.27	В
	MOTA	670	CB	THR	100	26.076	4.266	57.795	1.00 17.86	В
		J. J								_

										_
	MOTA	671	0G1		100	24.992	5.192 4.714	57.875 58.708	1.00 16.90 1.00 17.10	B B .
	MOTA MOTA	672 673	CG2	THR THR	100 100	27.202 27.760	3.247	56.269	1.00 17.10	В
	MOTA	674		THR	100	27.615	2.013	56.297	1.00 19.41	В
5	MOTA	675		ILE	101	28.945	3.846	56.170	1.00 17.12	В
	MOTA	676		ILE	101	30.194	3.096	56.112	1.00 13.84	B B
	MOTA	677		ILE	101 101	30.923 32.193	3.273 2.459	54.770 54.763	1.00 11.63	В
	ATOM ATOM	678 679	CG2 CG1		101	30.029	2.847	53.614	1.00 11.12	В
10	MOTA	680	CD1		101	30.610	3.205	52.240	1.00 8.60	В
	MOTA	681	С	ILE	101	31.088	3.655	57.189	1.00 14.61	В
	MOTA	682	0	ILE	101	31.434	4.828	57.158	1.00 16.06	B B
	MOTA	683	N CA	PHE	102 102	31.454 32.336	2.814 3.214	58.149 59.246	1.00 16.69 1.00 15.45	В
15	ATOM ATOM	684 685	CB	PHE	102	31.957	2.509	60.517	1.00 15.38	В
	ATOM	686	CG	PHE	102	30.704	3.002	61.158	1.00 17.02	В
	MOTA		CD1		102	30.746	4.068	62.060	1.00 14.70	В
	ATOM	688	CD2		102	29.489	2.341	60.937	1.00 15.06	B B
20	ATOM ATOM	689 690	CE1	PHE	102 102	29.601 28.336	4.468 2.732	62.744 61.614	1.00 15.17 1.00 16.46	В
20	MOTA	691	CZ	PHE	102	28.389	3.797	62.523	1.00 16.06	В
	MOTA	692	С	PHE	102	33.770	2.789	58.956	1.00 13.66	В
	MOTA	693	0	PHE	102	34.004	1.767	58.335	1.00 14.29	В
25	MOTA	694	N	ALA	103 103	34.723 36.135	3.571 3.230	59.431 59.309	1.00 14.00 1.00 13.68	B B
23	MOTA MOTA	695 696	CA CB	ALA ALA	103	36.894	4.316	58.595	1.00 12.73	В
	ATOM	697	c	ALA	103	36.579	3.142	60.771	1.00 14.68	В
	MOTA	698	0	ALA	103	36.560	4.144	61.491	1.00 12.81	В
20	ATOM	699	N	TYR	104	36.943	1.939	61.211	1.00 14.23 1.00 13.28	B B
30	MOTA	700 701	CA CB	TYR TYR	104 104	37.369 36.415	0.741	62.588 63.271	1.00 13.28	В
	MOTA MOTA	702	CG	TYR	104	36.704	0.496	64.740	1.00 9.23	В
	MOTA	703	CD1		104	37.774	-0.304	65.139	1.00 10.77	В
25	MOTA	704	CE1		104	38.050	-0.519	66.497	1.00 8.87	В
35	MOTA	705	CD2	TYR TYR	104 104	35.916 36.180	1.072 0.861	65.728 67.085	1.00 7.28 1.00 6.26	B · B
	MOTA MOTA	706 707	CZ	TYR	104	37.245	0.063	67.459	1.00 6.63	В
	MOTA	708	ОН	TYR	104	37.492	-0.189	68.791	1.00 6.91	В
í.	MOTA	709	С	TYR	104	38.791	1.191	62.660	1.00 14.55	В
40	MOTA	710	0	TYR	104	39.192	0.344	61.866	1.00 17.36 1.00 15.00	· B B
	MOTA ATOM	711 712	N CA	GLY GLY	105 105	39.553 40.920	1.688 1.239	63.622 63.760	1.00 16.15	8
	MOTA	713	c	GLY	105	41.818	2.222	64.480	1.00 18.48	В
	MOTA	714	Ó	GLY	105	41.464	3.383	64.733	1.00 19.06	В
45	MOTA	715	N	GLN	106	42.996	1.726	64.818	1.00 18.69	8
	MOTA MOTA	716 717	CA CB	GLN GLN	106 106	44.012 45.109	2.480 1.510	65.524 65.958	1.00 20.40 1.00 20.92	B B
	MOTA	718	CG	GLN	106	46.494	2.093	65.959	1.00 25.11	В
	ATOM	719	CD	GLN	106	47.546	1.104	66.424	1.00 27.12	В
50	MOTA	720		GLN	106	47.724	0.033	65.833	1.00 29.47	В
	MOTA	721		GLN	106	48.254 44.595	1.462 3.602	67.486 64.668	1.00 24.05 1.00 22.74	B B
	MOTA MOTA	722	С 0	GLN GLN	106 106	44.733	3.442	63.447	1.00 22.56	В
	ATOM	724	N	THR	107	44.924	4.733	65.312	1.00 22.64	В
55	MOTA	725	CA	THR	107	45.526	5.893	64.637	1.00 21.79	В
	MOTA	726	CB	THR	107	46.070	6.943	65.659	1.00 22.17 1.00 22.36	B B
	MOTA MOTA	727 728		THR	107 107	45.014 46.675	7.404 8.142	66.510 64.927	1.00 22.36	В
	ATOM	729		THR	107	46.720	5.430		1.00 21.90	· в
60	ATOM	730	ō	THR	107	47.605	4.752	64.288	1.00 20.99	В
	MOTA	731	N	GLY	108	46.739	5.796	62.510	1.00 22.46	В
	MOTA	732	CA	GLY	108	47.836	5.394	61.652	1.00 21.62 1.00 22.90	B B
	MOTA MOTA	733 734	C	GLY GLY	108 108	47.664 48.653	4.088 3.547	60.882 60.376	1.00 24.07	В В
65	MOTA	735	N	THR	109	46.436	3.572	60.786		В
	MOTA	736	CA	THR	109	46.197	2.321	60.050	1.00 21.18	В
	MOTA	737	СВ	THR	109	45.408	1.259	60.884	1.00 21.26	В
	MOTA	738		THR	109	44.159	1.814	61.335	1.00 20.11	B B
70	ATOM ATOM	739 740		THR THR	109 109	46.250 45.439	0.777 2.523	62.071 58.754	1.00 19.60 1.00 19.58	В
, 0	MOTA	741	ŏ	THR	109	45.126	1.551	58.068	1.00 20.97	В
	ATOM	742	N	GLY	110	45.125	3.776	58.428	1.00 17.22	В
	MOTA	743	CA	GLY	110	44.415	4.048	57.193	1.00 12.69	В
									•	

•	MOTA	744	C	GLY	110	42.943	4.424	57.232	1.00 12.29	В
	MOTA	745	0	GLY	110	42.288	4.365	56.193	1.00 14.37	В
	MOTA	746	N	LYS	111	42.398	4.795	58.386	1.00 11.41	В
_	MOTA	747	CA	LYS	111	40.983	5.198	58.432	1.00 12.47	В
5	ATOM	748	СВ	LYS	111	40.540	5.653	59.898	1.00 13.24	В
	ATOM	749	CG	LYS	111	40.379	4.538	60.934	1.00 10.82 1.00 6.09	B B
	MOTA	750 751	CE	LYS LYS	111 111	39.805 40.691	5.061 6.142	62.229 62.813	1.00 10.33	В
	MOTA MOTA	752	NZ	LYS	111	42.130	5.748	63.038	1.00 9.60	В
10	MOTA	753	Ç	LYS	111	40.742	6.363	57.465	1.00 13.44	В
10	MOTA	754	ŏ	LYS	111	39.870	6.295	56.587	1.00 14.48	В
	ATOM	755	N	THR	112	41.538	7.423	57.614	1.00 14.82	В
	MOTA	756	CA	THR	112	41.403	8.613	56.773	1.00 15.93	В
	MOTA	757	CB	THR	112	42.140	9.793	57.417	1.00 15.93	В
15	MOTA	758		THR	112	41.538	10.066	58.694	1.00 14.63	В
	MOTA	759		THR	112	42.055	11.040	56.522	1.00 13.41	В
	MOTA	760	C	THR	112	41.870	8.426	55.323	1.00 17.21	В
	MOTA	761	0	THR	112	41.318	9.021	54.385	1.00 16.82 1.00 17.40	B B
20	MOTA	762	N	PHE	113 113	42.887 43.398	7.595 7.313	55.142 53.811	1.00 17.40	В
20	MOTA MOTA	763 764	CA CB	PHE	113	44.654	6.389	53.889	1.00 16.02	В
	MOTA	765	cc	PHE	113	45.233	6.054	52.540	1.00 17.10	B
	MOTA	766		PHE	113	46.126	6.918	51.920	1.00 18.15	В
	MOTA	767		PHE	113	44.836	4.911	51.868	1.00 18.15	· B
25	MOTA	768	CEl	PHE	113	46.614	6.654	50.652	1.00 19.37	В
	MOTA	769	CE2	PHE	113	45.317	4.632	50.588	1.00 20.77	В
	ATOM	770	CZ	PHE	113	46.208	5.508	49.980	1.00 21.58	В
	ATOM	771	C	PHE	113	42.305	6.615	52.997	1.00 15.35 1.00 13.50	8 B
30	MOTA	772 773	O N	PHE THR	113 114	42.125 41.590	6.894 5.700	51.816 53.647	1.00 13.50	В
30	MOTA MOTA	774	CA	THR	114	40.524	4.942	53.008	1.00 13.72	В
	MOTA	775	CB	THR	114	40.119	3.722	53.868	1.00 14.47	В
	ATOM	776	OG1		114	41.228	2.834	53.980	1.00 13.50	В
~-	MOTA	777	CG2	THR	114	38.944	2:984	53.258	1.00 10.99	В
35		778	С	THR	114	39.283	5.773	52.764	1.00 13.62	В
	MOTA	779	0	THR	114	38.733	5.758	51.674	1.00 14.61	В
	MOTA	780	N	MET	115	38.842	6.499 7.311	53.784 53.663	1.00 15.54 1.00 16.98	B B
	ATOM ATOM	781 782	CA CB	MET MET	115 115	37.635 37.121	7.711	55.043	1.00 10.38	В
40	MOTA	783	CG	MET	115	36.776	6.525	55.938	1.00 22.32	В
	ATOM	784	SD	MET	115	35.694	5.280	55.139	1.00 24.33	В
	MOTA	785	CE	MET	115	34.110	6.102	55.162	1.00 17.96	В
	MOTA	786	С	MET	115	37.772	8.556	52.809	1.00 16.94	В
AE	MOTA	787	0	MET	115	36.824	8.956	52.140	1.00 17.35	В
45	MOTA	788	N	GLU	116	38.947	9.168	52.816	1.00 16.96 1.00 17.40	B B
	MOTA MOTA	789 790	CA CB	GLU	116 116	39.139 39.564	10.391 11.563	52.040 52.988	1.00 17.75	В
	MOTA	791	CG	GLU	116	38.457	12.038	53.929	1.00 20.71	В
	MOTA	792	CD	GLU	116	38.980	12.893	55.070	1.00 22.10	В
50	ATOM	793		GLU	116	40.113	13.404	54.961	1.00 26.78	В
	MOTA	794	OE2	GLU	116	38.260	13.064	56.074	1.00 22.44	В
	MOTA	795	Ç	GLU	116	40.178	10.211	50.953	1.00 16.14	. В
	MOTA	796	0	GLU	116	39.925	10.474	49.783	1.00 12.66 1.00 16.93	B B
55	MOTA	797 798	N CA	GLY GLY	117 117	41.357 42.425	9.768 9.585	51.360 50.406	1.00 10.93	В
33	MOTA MOTA	799	C	GLY	117	43.424	10.723	50.439	1.00 22.08	8
	MOTA	800	ŏ	GLY	117	43.321	11.640	51.248	1.00 21.52	В
	MOTA	801	N	GLU	118	44.390	10.661	49.536	1.00 24.00	В.
	MOTA	802	CA	GLU	118	45.436	11.664	49.457	1.00 26.12	В
60	MOTA	803	CB	GLU	118	46:712	11.116	50.134	1.00 27.39	В
	MOTA	804	CG	GLU	118	46.574	11.023	51.647	1.00 32.78	В
	MOTA	805	CD	GLU	118	47.603	10.111	52.316	1.00 37.03	В
	MOTA	806		GLU	118	48.799	10.149	51.938	1.00 36.38	В
65	MOTA	807		GLU	118	47.208 45.702	9.369 12.026	53.246 48.000	1.00 39.57 1.00 26.11	B B
OJ.	MOTA MOTA	808 809	0	GLU	118 118	45.702	11.481	47.088	1.00 24.83	В
	MOTA	810	N	ARG	119	46.613	12.961	47.780	1.00 25.93	В
	ATOM	811	CA	ARG	119	46.922	13.355	46.423	1.00 26.49	В
	ATOM	812	CB	ARG	119	47.076	14.913	46.313	1.00 24.19	В
70	MOTA	813	CG	ARG	119	45.824	15.737	46.642	1.00 18.83	В
	MOTA	814	CD	ARG	119	44.579	15.206	45.965	1.00 15.06	В
	MOTA	815	NE.		119	44.755	14.940	44.542	1.00 15.80	В
	MOTA	816	CZ	ARG	119	44.761	15.869	43.591	1.00 18.90	В

	MOTA	817	NH1	ARG	119	44.601	17.142	43.910	1.00 20.61	В
	MOTA	818	NH2	ARG	119	44.910	15.528	42.314	1.00 17.87	В .
	MOTA	819		ARG	119	48.207	12.682	45.967	1.00 29.08	. В
5	ATOM	820		ARG	119	49.178	12.572	46.735 44.731	1.00 27.84	B B
J	MOTA	821 822		SER SER	120 120	48.205 49.417	12.192 11.597	44.203	1.00 30.37	В
	ATOM ATOM	823		SER	120	49.190	11.014	42.825	1.00 33.55	В
	ATOM	824		SER	120	48.380	9.854	42.897	1.00 34.65	В
	MOTA	825		SER	120	50.287	12.839	44.123	1.00 31.39	В
10	MOTA	826		SER	120	49.849	13.883	43.651	1.00 31.19	В
	ATOM	827		PRO	121	51.522	12.745	44.599	1.00 30.67	· B
	MOTA	828	CD	PRO	121	52.207	11.494	44.965	1.00 31.67	В
	MOTA	829		PRO	121	52.455	13.870	44.595	1.00 31.71	В
1.5	MOTA	830		PRO	121	53.674	13.288	45.270	1.00 31.87	B B
15	MOTA	831		PRO	121	53.658	11.869	44.783	1.00 32.88	В
	ATOM	832		PRO	121 121	52.788 52.557	14.511 13.925	43.240	1.00 32.30	В
	MOTA MOTA	833 834		PRO ASN	122	53.319	15.733	43.319	1.00 30.43	В
	ATOM	835		ASN	122	53.753	16.529	42.175	1.00 30.58	В
20	ATOM	836		ASN	122	54.974	15.864	41.515	1.00 30.83	В
	ATOM	837		ASN	122	56.101	16.850	41.250	1.00 29.55	В
	ATOM -	838	OD1	ASN	122	56.512	17.589	42.139	1.00 30.20	В
	MOTA	839	ND2	ASN	122	56.614	16.849	40.032	1.00 29.25	В
25	MOTA	840	Ç	ASN	122	52.708	16.838	41.107	1.00 30.96	В
25	MOTA	841	0	ASN	122	53.022	16.840	39.916	1.00 28.89	. B
	ATOM	842		GLU	123	51.479	17.121	41.540 40.630	1.00 31.29 1.00 31.61	. В
	MOTA MOTA	843 844		GLU GLU	123 123	50.380 50.437	17.435 18.873	40.222	1.00 29.75	В
	MOTA	845	CG	GLU	123	50.311	19.825	41.382	1.00 31.53	В
30	ATOM	846	CD	GLU	123	50.030	21.243	40.942	1.00 34.00	В
• •	ATOM	847	OE1		123	50.896	21.842	40.255	1.00 32.81	В
	ATOM	848	O£2		123	48.937	21.753	41.288	1.00 35.74	В
	ATOM	849	С	GLU	123 .	50.396	16.558	39.393	1.00 32.07	₿.
25	MOTA	850	0	GLU	123	50.246	17.038	38.272	1.00 32.39	В
35	MOTA	851	N	GLU	124	50.576	15.261	39.620	1.00 33.92	В
	MOTA	852	CA	GLU	124	50.628	14.269	38.558 39.111	1.00 33.69 1.00 35.39	B B
	MOTA	853 854	CB CG	GLU	124 124	51.235 51.234	12.998 11.798	38.184	1.00 39.45	В
	ATOM ATOM	855	CD	GLU	124	51.966	10.613	38.801	1.00 42.18	В
40	MOTA	856	OE1		124	51.802	10.390	40.026	1.00 42.52	В
	ATOM	857	OE2		124	52.698	9.906	38.067	1.00 42.46	В
	ATOM	858	С	GLU	124	49.252	13.994	37.958	1.00 33.48	В
	ATOM	859	0	GLU	124	49.149	13.665	36.778	1.00 33.85	В
45	MOTA	860	N	TYR	125	48.196	14.141	38.758	1.00 32.64	В
45	MOTA	861	CA	TYR	125	46.841	13.895	38.267	1.00 33.52	В
	MOTA	862	СВ	TYR	. 125	46.261	12.523	38.817	1.00 33.48	B B
	MOTA	863 864	CG	TYR	125 125	47.109 47.951	11.290 10.826	38.613 39.624	1.00 35.25	В
	MOTA MOTA	865		TYR TYR	125	48.709	9.668	39.461	1.00 36.41	B
50	ATOM	866	CD2		125	47.046	10.565	37.422	1.00 36.88	В
-	ATOM	867	CE2	TYR	125	47.803	9.403	37.242	1.00 37.22	В
	ATOM	868	CZ	TYR	125	48.630	8.962	38.268	1.00 38.72	В
	ATOM	869	OH	TYR	125	49.369	7.811	38.108	1.00 40.27	В
	MOTA	870	С	TYR	125 -	45.851	14.985	38.677	1.00 33.79	В
55	ATOM	871	0	TYR	125	46.150	15.834	39.520	1.00 34.63	В
	MOTA	872	N	THR	126	44.669	14.949	38.063	1.00 33.04	В
	ATOM	873	CA	THR	126	43.588	15.858	38.420 37.286	1.00 31.85	B B
	MOTA MOTA	874 875	CB OG1	THR	126 126	42.562	16.061	36.723		В
60	ATOM	876		THR	126	43.114	16.996	36.216	1.00 30.94	В
00	MOTA	877	C	THR	126	42.911	15.061	39.518	1.00 31.76	В
	MOTA	878		THR	126	43.023	13.836	39.552	1.00 31.47	В
	MOTA	879	N	TRP	127	42.197	15.738	40.401	1.00 31.44	В
	MOTA	880	CA	TRP	127	41.559	15.053	41.507	1.00 30.17	В
65	MOTA	881	СВ	TRP	127	40.749	16.048	42.357		В
	MOTA	882		TRP	127	39.474	16.455	41.718	1.00 25.01	В
	ATOM	883		TRP	127	38.207	15.796	41.846	1.00 24.45	В
	MOTA	884		TRP	127	37.285	16.514	41.059	1.00 24.12	В
70	MOTA	885		TRP	127	37.764	14.662	42.546	1.00 22.04 1.00 23.64	B B
70	ATOM	886		TRP	127	39.278 37.966	17.507 17.553	40.885	1.00 23.64	В
	ATOM ATOM	887 888		TRP	127 127	35.937	16.143	40.483	1.00 25.81	В
	MOTA	889		TRP	127	36.427	14.285	42.441	1.00 24.07	В
					J-2 -		•	·-		

	ATOM	890	CH2	TRP	127	35.526	15.026	41.647	1.00 26.19	В
	MOTA	891	С	TRP	127	40.664	13.883	41.099	1.00 30.31	В
	ATOM	892	ō	TRP	127	40.635	12.859	41.784	1.00 31.25	В
						39.945	14.014	39.991	1.00 30.25	В
5	MOTA	893	N	GLU	128					В.
J	MOTA	894	CA	GLU	128	39.036	12.943	39.575	1.00 29.93	
	MOTA	895	CB	GLU	128	38.010	13.477	38.601	1.00 30.66	В
	MOTA	896	CG	GLU	128	38.597	14.116	37.360	1.00 32.82	В
	ATOM	897	CD	GLU	128	37.522	14.757	36.522	1.00 37.02	В
	MOTA	898	OE1		128	36.740	15.558	37.085	1.00 37.94	В
10			OE2		128	37.450	14.460	35.309	1.00 39.71	В
10	MOTA	899								В
	MOTA	900	C	GLU	128	39.692	11.704	38.977	1.00 28.41	
	ATOM	901	0	GLU	128	39.004	10.755	38.623	1.00 28.40	В
	MOTA	902	N	GLU	129	41.012	11.716	38.853	1.00 27.73	В
	ATOM	903	CA	GLU	129	41.724	10.574	38.303	1.00 26.98	В
15	MOTA	904	CB	GLU	129	42.343	10.919	36.940	1.00 25.80	В
	MOTA	905	CG	GLU	129	41.317	11.144	35.841	1.00 28.03	В
	MOTA	906	CD	GLU	129	41.954	11.422	34.487	1.00 33.17	В
										В
	ATOM	907	OE1		129	41.201	11.654	33.510	1.00 35.80	
•	MOTA	908	OE2	GLU	129	43.206	11.411	34.389	1.00 33.91	В
20	MOTA	909	С	GLU	129	42.807	10.110	39.257	1.00 27.19	. В
	MOTA	910	0	GLU	129	43.480	9.117	38.997	1.00 28.14	В
	ATOM	911	N	ASP	130	42.966	10.814	40.372	1.00 27.13	В
	MOTA	912	CA	ASP	130	43.995	10.445	41.336	1.00 28.16	в
					130	44.092	11.498	42.458	1.00 29.19	B
25	MOTA	.913	CB	ASP						В
23	MOTA	914	CG	ASP	130	45.484	11.577	43.061	1.00 31.28	
	MOTA	915		ASP	130	46.026	10.525	43.470	1.00 31.52	В
	MOTA	916	OD2	ASP	130	46.039	12.695	43.125	1.00 33.01	В
	MOTA	917	С	ASP	130	43.690	9.068	41.925	1.00 27.22	В
	MOTA	918	0	ASP	130	42.646	8.865	42.551	1.00 27.12	В
30	MOTA	919	N	PRO	131	44.590	8.093	41.704	1.00 26.27	В
-	ATOM	920	CD	PRO	131	45.722	8.143	40.760	1.00 25.74	В
							6.733	42.217	1.00 25.42	В
	MOTA	921	CA	PRO	131					В
	MOTA	922	CB	PRO	131	45.436	5.928	41.431	1.00 25.20	
05.	MOTA	923	CG	PRO	131	46.516	6.926	41.158	1.00 25.28	В
35	MOTA	924	С	PRO	131	44.550	6.586	43.734	1.00 25.10	В
	ATOM	925	0	PRO	131	44.317	5.514	44.284	1.00 25.70	В
	MOTA	926	N	LEU	132	44.939	7.659	44.414	1.00 25.55	В
	ATOM	927	CA	LEU	132	45.061	7.615	45.870	1.00 24.12	В
				LEU	132	46.335	8.393	46.358	1.00 23.33	В
40	MOTA	928	CB							. в
40	MOTA	929	CG	LEU	132	47.750	7.835	45.985	1.00 24.01	
	MOTA	930		LEU	132	48.853	8.699	46.613	1.00 21.35	В
	MOTA	931	CD2	LEU	132	47.875	6.394	46.474	1.00 25.49	В
	MOTA	932	С	LEU	132	43.794	8.216	46.497	1.00 23.99	В
	MOTA	933	0	LEU	132	43.694	8.338	47.728	1.00 24.50	В
45	ATOM	934	N	ALA	133	42.831	8.587	45.650	1.00 21.97	В
	MOTA	935	CA	ALA	133	41.566	9.155	46.129	1.00 23.50	В
								44.958	1.00 19.96	В
	MOTA	936	CB	ALA	133	40.738	9.710			
	MOTA	937	Ç	ALA	133	40.760	8.097	46.896	1.00 24.12	₽.
	MOTA	938	0 .	ALA	133	40.766	6.914	46.552	1.00 24.63	В
50	ATOM	939	N	GLY	134	40.060	8.546	47.931	1.00 25.21	В
	MOTA	940	CA	GLY	134	39.289	7.646	48.763	1.00 23.61	В
	MOTA	941	С	GLY	134	37.831	7.541	48.387	1.00 23.90	В
	ATOM	942	ō	GLY	134	37.399	8.030	47.344	1.00 25.12	В
		943	N		135	37.075	6.887	49.261	1.00 22.33	В
55	MOTA			ILE						
22	MOTA	944	CA	ILE	135	35.657	6.662	49.055	1.00 19.60	. В
	MOTA	945	CB	ILE	135	35.048	5.962	50.295	1.00 17.94	В
	MOTA	946	CG2	ILE	135	33.513	5.984	50.232	1.00 15.17	В
	MOTA	947	CG1	ILE	135	35.604	4.531	50.381	1.00 13.85	В
	ATOM	948	CDI	ILE	135	35.402	3.883	51.712	1.00 11.57	В
60	MOTA	949	C	ILE	135	34.886	7.941	48.751	1.00 19.64	В
00							7.995		1.00 17.27	В
	MOTA	950	0	ILE	135	34.130		47.789		
	MOTA	951	N	ILE	136	35.090	8.971	49.566	1.00 19.64	В
	MOTA	952	CA	ILE	136	34.383	10.229	49.377	1.00 19.00	В
	MOTA	953	CB	ILE	136	34.758	11.219	50.486	1.00 18.34	В
65	ATOM	954		ILE	136	34.174	12.595	50.188	1.00 19.49	В
	MOTA	955		ILE	136	34.226	10.669	51.838	1.00 18.91	В
		956		ILE	136	34.680	11.447	53.086	1.00 18.92	В.
	ATOM								1.00 17.37	В
	MOTA	957	C	ILE	136	34.552	10.867	47.991		
70	MOTA	958	0	ILE	136	33.614	10.888	47.207	1.00 15.94	В
70	MOTA	959	N	PRO	137	35.742	11.382	47.662	1.00 16.74	В
	MOTA	960	CD	PRO	137	37.083	11.311	48.259	1.00 16.29	В
	MOTA	961	CA	PRO	137	35.785	11.963	46.318	1.00 17.68	В
	ATOM	962	CB	PRO	137	37.263	12.305	46.132	1.00 14.17	В
	0	244								_

	MOTA	963	CG	PRO	137	37.966	11.351	47.037	1.00 16.06	В
	MOTA	964	c	PRO	137	35.229	11.025	45.232	1.00 20.66	В
	MOTA	965	0	PRO	137	34.408	11.434	44.406	1.00 22.43	В
_	MOTA	966	N	ARG	138	35.651	9.764	45.232	1.00 21.33	В
5	MOTA	967	CA	ARG	138	35.154	8.825	44.224	1.00 21.16	В
_	MOTA	968	СВ	ARG	138	35.768	7.428	44.436	1.00 19.87	В
	ATOM	969	CG	ARG	138	37.251	7.370	44.138	1.00 18.07	В
	MOTA	970	CD	ARG	138	37.812	5.989	44.402	1.00 17.00	В
	MOTA	971	NE	ARG	138	39.264	6.019	44.408	1.00 14.48	В
10	MOTA	972	CZ	ARG	138	40.016	5.909	43.327	1.00 16.26	В
		973	NH1		138	39.446	5.743	42.137	1.00 15.29	В
	MOTA									
	ATOM	974	NH2		138	41.337	6.004	43.433	1.00 14.85	В
	MOTA	975	C	ARG	138	33.630	8.705	44.202	1.00 21.32	В
	MOTA	976	0	ARG	138	33.021	8.644	43.139	1.00 25.00	В
15	ATOM	977	N	THR	139	33.009	8.667	45.370	1.00 20.40	В
					139	31.562	8.540	45.436	1.00 20.86	В
	ATOM	978	CA	THR						
	MOTA	979	CB	THR	139	31.081	8.385	46.895	1.00 20.11	` В
	MOTA	980	OG1	THR	139	31.770	7.293	47.512	1.00 21.18	В
	MOTA	981	CG2	THR	139	29.583	8.120	46.944	1.00 18.68	В
20	MOTA	982	С	THR	139	30.883	9.753	44.815	1.00 23.10	В
										В
	MOTA	983	0	THR	139	29.955	9.613	44.014	1.00 24.95	
	ATOM	984	N	LEU	140	31.340	10.944	45.189	1.00 23.71	В
	MOTA	985	CA	LEU	140	30.762	12.175	44.659	1.00 23.38	В
	MOTA	986	CB	LEU	140	31.480	13.401	45.238	1.00 21.47	В
25	ATOM	987	CG	LEU	140	31.211	13.560	46.733	1.00 21.91	В
										. в
	MOTA	988		LEU	140	32.120	14.621	47.305	1.00 21.37	
	MOTA	989	CD2	LEU	140	29.740	13.883	46.966	1.00 18.69	В
	ATOM	990	С	LEU	140	30.859	12.184	43.154	1.00 23.10	В
	MOTA	991	0	LEU	140	29.870	12.395	42.467	1.00 21.86	В
30	MOTA	992	N	HIS	141	32.058	11.948	42.645	1.00 24.02	В
50										В
	MOTA	993	CA	HIS	141	32.272	11.927	41.207	1.00 27.46	
	ATOM	994	СВ	HIS.	141	33.741	11.616	40.908	1.00 27.50	В
	MOTA	995	CG	HIS	141.	34.101	11.718	39.457	1.00 30.18	В
	MOTA	996	CD2	HIS	141	34.041	10.807	38.457	1.00 30.98	В
35	MOTA	997		HIS	141	34.614	12.869	38.896	1.00 30.79	В
-		998			141		12.662	37.615	1.00 29.68	В
	MOTA			HIS		34.859				
	MOTA	999	NEZ	HIS	141	34.520	11.419	37.324	1.00 31.87	В
	MOTA	1000	С	HIS	141	31.372	10.885	40.517	1.00 28.79	В
	MOTA	1001	0	HIS	141	30.835	11.133	39.432	1.00 30.63	В
40	MOTA	1002	N	GLN	142	31.196	9.728	41.154	1.00 27.09	В
••									1.00 26.11	В
	MOTA	1003	CA	GLN	142	30.392	8.664	40.579		
	ATOM	1004	CB	GLW	142	30.660	7.381	41.302	1.00 27.58	В
	ATOM	1005	CG	GLN	142	31.938	6.733	40.855	1.00 29.72	В
	MOTA	1006	CD	GLN	142	32.001	6.617	39.344	1.00 31.15	В
45	MOTA	1007	OE1	GLN	142	31.181	5.929	38.729	1.00 32.85	В
	MOTA	1008	NE2	GLN	142	32.969	7.300	38.735	1.00 29.44	В
	MOTA	1009	С	GLN	142	28.894	8.913	40.514	1.00 25.79	В
	MOTA	1010	0	GLN	142	28.238	8.494	39.564	1.00 25.19	В
	MOTA	1011	N	ILE	143	28.351	9.583	41.523	1.00 24.49	В
50	ATOM	1012	CA	ILE	143	26.928	9.888	41.555	1.00 23.07	В
	MOTA	1013	CB	ILE	143	26.581	10.716	42.805	1.00 22.41	В
	ATOM	1014		ILE	143	25.174	11.285	42.690	1.00 24.89	В
	MOTA	1015	CG1		143	26.727	9.856	44.044	1.00 21.77	В
	MOTA	1016	CD1	ILE	143	26.477	10.599	45.339	1.00 21.34	В
55	MOTA	1017	C	ILE	143	26.492	10.664	40.308	1.00 23.84	В
	ATOM	1018	Ó	ILE	143	25.417	10.425	39.769	1.00 23.49	В
	MOTA	1019	N	PHE	144	27.334	11.593	39.860	1.00 25.75	. В
•	MOTA	1020	CA	PHE	144	27.044	12.418	38.690	1.00 27.59	В
	MOTA	1021	CB	PHE	144	28.019	13.657	38.638	1.00 26.93	В
60	MOTA	1022	CG	PHE	144	27.734	14.694	39.688	1.00 27.63	В
		1023		PHE	144		15.478	39.614	1.00 28.58	В
	ATOM	1023				26.583				
	MOTA	1024		PHE	144	28.577	14.845	40.785	1.00 27.80	В
	MOTA	1025		PHE	144	26.271	16.396	40.626	1.00 28.69	В
	ATOM	1026	CE2	PHE	144	28.279	15.756	41.802	1.00 27.42	В
65	MOTA	1027	CZ	PHE	144	27.121	16.532	41.723	1.00 29.86	В
	MOTA	1028			144		11.621	37.394	1.00 28.56	В
			C	PHE		27.129				
	ATOM	1029	0	PHE	144	26.425	11.918	36.423	1.00 27.83	В
	MOTA	1030	N	GLU	145	27.998	10.614	37.382	1.00 30.60	В
	MOTA	1031	CA	GLU	145	28.160	9.757	36.209	1.00 32.75	В
70	ATOM	1032	СВ	GLU	145	29.433	8.889	36.357	1.00 35.85	В
. •				GLU					1.00 42.03	В
	MOTA	1033	CG		145	30.742	9.673	36.317		
	MOTA	1034	CD	GLU	145	31.201	9.977	34.898	1.00 46.55	В
	MOTA	1035	OE1	GLU	145	32.014	10.916	34.699	1.00 47.36	₿

	MOTA	1036	OE2	CLID	145	30.748	9.262	33.976	1.00 49.72	В
	MOTA	1037	c	GLU	145	26.934	8.854	36.040	1.00 32.32	В
	MOTA	1038	ō	GLU	145	26.319	8.812	34.974	1.00 32.21	В
	MOTA	1039	N	LYS	146	26.573	8.150	37.104	1.00 31.79	В
5	MOTA	1040	CA	LYS	146	25.443	7.235	37.066	1.00 34.10	В
,							6.463	38.430	1.00 34.57	В
	MOTA	1041	CB	LYS	146	25.340			1.00 35.68	8
	ATOM	1042	CC	LYS	146	26.693	5.973	38.952		В
	MOTA	1043	CD	LYS	146	26.597	4.862	39.994	1.00 34.50	
10	MOTA	1044	CE	LYS	146	26.566	3.486	39.327	1.00 35.54	В
10	MOTA	1045	NZ	LYS	146	27.115	2.405	40.204	1.00 33.09	8
	MOTA	1046	С	LYS	146	24.098	7.888	36.721	1.00 34.95	B
	MOTA	1047	0	LYS	146	23.320	7.342	35.929	1.00 35.60	В
	MOTA	1048	N	LEU	147	23.831	9.057	37.298	1.00 34.40	В
- -	MOTA	1049	CA	LEU	147	22.574	9.762	37.061	1.00 33.66	В
15	MOTA	1050	CB	LEU	147	22.154 -	10.477	38.336	1.00 32.95	В
	MOTA	1051	CG	LEU	147	21.963	9.607	39.554	1.00 33.64	В
	ATOM	1052	CD1		147	21.682	10.474	40.775	1.00 34.40	В
	MOTA	1053	CD2		147	20.809	8.645	39.308	1.00 35.51	В
	MOTA	1054	c	LEU	147	22.634	10.772	35.907	1.00 34.15	В
20	ATOM	1055	ŏ	LEU	147	21.724	11.576	35.728	1.00 32.96	В
	MOTA	1056	N	THR	148	23.698	10.719	35.115	1.00 35.64	В
	MOTA	1057	CA	THR	148	23.863	11.656	34.011	1.00 36.46	В
	MOTA	1058	CB	THR	148	25.138	11.332	33.198	1.00 35.78	В.
							12.468	32.409	1.00 36.67	·B
25	MOTA	1059	OG1		148	25.492		32.274	1.00 36.63	В
25	MOTA	1060	CG2	THR	148	24.914	10.150		1.00 37.44	
	МОТА	1061	c	THR	148	22.659	11.770	33.057		В
	MOTA	1062	0	THR	148	22.313	12.878	32.639	1.00 37.93	В
	MOTA	1063	N	ASP	149	22:019	10.653	32.712	1.00 35.78	В
20	MOTA	1064	CA	ASP	149	20.867	10.706	31.807	1.00 35.94	В
30	MOTA	1065	CB	ASP	149	21.337	11.004	30.322	1.00 34.77	В
	MOTA	1066	CG	ASP	149	22.404	10.027	29.827	1.00 36.65	В
	MOTA	1067		ASP	149	22.605	8.965	30.467	1.00 35.17	В
	MOTA	1068	OD2	ASP	149	23.032	10.321	28.784	1.00 35.41	В
	MOTA	1069	С	ASP	149	19.966	9.460	31.824	1.00 36.15	В
35	MOTA .	1070	0	ASP	149	19.568	8.947	30.769	1.00 32.78	В
	ATOM	1071	N	ASN	150	19.639	8.987	33.025	1.00 36.51	В
	MOTA	1072	CA	ASN	. 150	18.781	7.819	33.181	1.00 38.16	В
	MOTA	1073	CB	ASN	150	19.218	6.992	34.417	1.00 37.97	В
	MOTA	1074	CG	ASN	150	19.159	7.785	35.704	1.00 37.13	В
40	MOTA	1075		ASN	150	19.548	8.951	35.742	1.00 37.20	В
. •	ATOM	1076	ND2		150	18.694	7.148	36.774	1.00 36.82	В
	MOTA	1077	C	ASN	150	17.314	8.240	33.305	1.00 39.47	В
	ATOM	1078	ŏ	ASN	150	16.419	7.397	33.433	1.00 39.49	В
	MOTA	1079	N	GLY	151	17.077	9.549	33.245	1.00 39.29	В
45			CA				10.063	33.343	1.00 39.01	В
43	MOTA	1080		GLY	151	15.725			1.00 39.23	9
	MOTA	1081	C	GLY	151	15.333	10.349	34.772		В
	ATOM	1082		GLY	151	14.170	10.612	35.063	1.00 40.53	
	MOTA	1083	••	THR	152	16.307	10.285	35.670	1.00 40.25	В
50	MOTA	1084	CA	THR	152	16.069	10.547	37.085	1.00 40.87	В
50	MOTA	1085	СВ	THR	152	16.730	9.463	37.960	1.00 39.78	В
	MOTA	1086		THR	152	16.146	8.191	37.655	1.00 43.27	В
	MOTA	1087		THR	152	16.531	9,764	39.437	1.00 40.09	В
	MOTA	1088	С	THR	152	16.643	11.918	37.448	1.00 41.24	В
	MOTA	1089	0	THR	152	17.860	12.120	37.434	1.00 42.84	В
55	MOTA	1090	N	GLU	153	15.753	12.856	37.754	1.00 40.50	B
	MOTA	1091	CA	GLU	153	16.140	14.216	38.118	1.00 39.45	В
	MOTA	1092	СВ	GLU	153	14.910	15.143	38.054	1.00 41.77	В
	MOTA	1093	CG	GLU	153	15.258	16.606	37.831	1.00 47.08	В.
	MOTA	1094	CD	GLU	153	15.903	16.847	36.474	1.00 49.24	В
60	MOTA	1095		GLU	153	16.559	17.901	36.313	1.00 49.10	В
•	ATOM	1096		GLU	153	15.747	15.988	35.570	1.00 49.10	В
	MOTA	1097	C		153	16.697	14.170	39.538	1.00 36.82	В
				GLU				40.387	1.00 35.59	В
	MOTA	1098	0	GLU	153	16.140	13.472		1.00 33.39	В
65	MOTA	1099	N	PHE	154	17.770	14.919	39.807		
UJ	MOTA	1100	CA	PHE	154	18.380	14.877	41.140	1.00 31.58	В
	MOTA	1101	CB	PHE	154	19.302	13.644	41.212	1.00 29.10	В
	MOTA	1102	CG	PHE	154	20.572	13.797	40.414	1.00 25.93	В
	MOTA	1103		PHE	154	21.763	14.165	41.038	1.00 25.72	В
70	MOTA	1104		PHE	154	20.573	13.597	39.037	1.00 23.66	В
70	MOTA	1105		PHE	154	22.941	14.328	40.297	1.00 26.03	В
	MOTA	1106	CE2	PHE	154	21.741	13.758	38.294	1.00 25.52	В
	MOTA	1107	CZ.	PHE	154	22.930	14.123	38.925	1.00 24.44	В
	MOTA	1108	С	PHE	154	19.183	16.093	41.627	1.00 29.93	В

			_				15 004	40.050	1 00 30 00	
	MOTA	1109	0	PHE	154 155	19.651 19.357	16.924 16.157	40.850 42.940	1.00 30.00 1.00 28.97	B B
	MOTA MOTA	1110 1111	N CA	SER SER	155	20.140	17.212	43.572	1.00 28.90	B
	MOTA	1112	CB	SER	155	19.225	18.281	44.243	1.00 26.53	В
5	ATOM	1113	0G	SER	155	18.732	17.844	45.502	1.00 24.48	В
	MOTA	1114	С	SER	155	21.010	16.537	44.635	1.00 28.97	В
	MOTA	1115	0	SER	155	20.588	15.569	45.279	1.00 28.86	В
	MOTA	1116	N	VAL	156	22.221	17.047	44.819	1.00 29.35	В
10	MOTA	1117	CA	VAL	156	23.135	16.483	45.803	1.00 29.64	В
10	MOTA	1118	CB	VAL	156	24.431	15.977	45.125 46.124	1.00 28.79 1.00 29.92	. B
	MOTA MOTA	1119 1120	CG1 CG2		156 156	25.280 24.089	15.208 15.116	43.930	1.00 29.12	В
	MOTA	1121	C	VAL	156	23.516	17.517	46.863	1.00 29.76	B
	ATOM	1122	ŏ	VAL	156	23.925	18.627	46.532	1.00 30.11	В
15	MOTA	1123	N	LYS	157 .	23.372	17.149	48.132	1.00 30.23	В
	ATOM	1124	CA	LYS	157	23.731	18.028	49.245	1.00 31.02	В
	MOTA	1125	CB	LYS	157	22.489	18.431	50.063	1.00 32.19	В
	ATOM	1126	CG	LYS	157	21.543	19.376	49.364	1.00 35.38 1.00 39.38	B B
20	MOTA MOTA	1127 1128	CD	LYS LYS	157 157	20.246 19.169	19.523 20.259	50.162 49.369	1.00 39.38 1.00 39.91	В
20	MOTA	1129	NZ	LYS	157	17.857	20.187	50.067	1.00 40.45	В
	ATOM	1130	c	LYS	157	24.702	17.308	50.171	1.00 30.04	В
	MOTA	1131	o	LYS	157	24.399	16.230	50.668	1.00 30.82	В
25	MOTA	1132	N	VAL	158	25.866	17.900	50.402	1.00 27.97	В
25	MOTA	1133	CA	VAL	158	26.839	17.290	51.292	1.00 27.63	В
	ATOM	1134	CB	VAL	158	28.284 28.433	17.406	50.751	1.00 27.29 1.00 29.26	B B
	MOTA MOTA	1135 1136	CG2	VAL	158 158	28.433	16.582 18.861	49.478 50.491	1.00 25.20	В
	ATOM	1137	C	VAL	158	26.785	17.959	52.649	1.00 27.62	В
30	MOTA	1138	ŏ	VAL	158	26.182	19.009	52.818	1.00 27.51	В
	ATOM	1139	N	SER	159	27.431	17.344	53.624	1.00 28.77	В
	MOTA	1140	CA	SER	159	27.449	17.896	54.962	1.00 29.25	В
	MOTA	1141	СВ	SER	159.	26.155	17.634	55.612	1.00 29.36	В
35	MOTA	1142 1143	OG	SER	159 159	26.083	18.324 17.255	56.835 55.753	1.00 35.64	B B
55	MOTA MOTA	1143	C O	SER SER	159	28.584 28.762	16.037	55.723	1.00 29.46	В
	MOTA	1145	N	LEU	160	29.364	18.070	56.451	1.00 26.66	В
	MOTA	1146	CA	LEU	160	30.473	17.529	57.215	1.00 26.24	В
	MOTA	1147	CB	LEU	160	31.769	18.008	56.649	1.00 26.22	В
40	MOTA	1148	CG	LEU	160	33.024	17.381	57.255	1.00 25.56	В
	MOTA	1149		LEU	160	32.850	15.873	57.350	1.00 24.56	В
	MOTA	1150 1151		LEU LEU	160 160	34.241 30.393	17.759 17.872	56.400 58.690	1.00 24.75 1.00 26.51	B B
	MOTA MOTA	1152	C O	LEU	160	30.816	18.949	59.119	1.00 24.86	В
45	MOTA	1153	N	LEU	161	29.844	16.937	59.461	1.00 25.32	В
	ATOM	1154	CA	LEU	161	29.686	17.112	60.895	1.00 23.81	В
	MOTA	1155	CB	LEU	161	28.349	16.607	61.310	1.00 23.24	В
	MOTA	1156	CG	LEU	161	28.109	16.490	62.766	1.00 23.19	В
50	MOTA	1157		LEU	161	27.992	17.879	63.371 62.989	1.00 24.82 1.00 22.84	B B
50	MOTA MOTA	1158 1159	CD2	LEU	161 161	26.838 30.777	15.701 16.338	61.613	1.00 24.19	В
	MOTA	1160	ò	LEU	161	31.024	15.178	61.307	1.00 25.43	B
	MOTA	1161	N	GLU	162	31.444	16.983	62.563	1.00 23.56	В
	MOTA	1162	CA	GLU	162	32.507	16.322	63.304	1.00 21.29	В
55	MOTA	1163	CB	GLU	162	33.892	16.895	62.872	1.00 19.65	В
	MOTA	1164	CG	GLÜ	162	34.027	16.956	61.338	1.00 18.31	8
	MOTA	1165	CD	GLU	162	35.463	16.923	60.845 61.557	1.00 19.90 1.00 20.88	B B
	ATOM MOTA	1166 1167		GLU	162 162	36.362 35.699	17.416 16.413	59.729	1.00 21.08	В
60	ATOM	1168	C	GLU	162	32.276	16.448	64.803	1.00 21.51	В
•	MOTA	1169	ō	GLU	162	31.734	17.441	65.286	1.00 24.11	В
	MOTA	1170	N	ILE	163	32.665	15.419	65.543	1.00 20.50	В
	ATOM	1171	CA	ILE	163	32.464	15.414	66.979	1.00 16.52	В
65	MOTA	1172	CB	ILE	163	31.587	14.221	67.396	1.00 15.68	В
65	MOTA	1173		ILE	163	31.070	14.412	68.813	1.00 13.11	В
	MOTA MOTA	1174 1175		ILE	163 163	30.420 29.521	14.093 12.920	66.427 66.704	1.00 14.88	B B
	MOTA	1176	CDI	ILE	163	33.805	15.325	67.672	1.00 17.43	В
	MOTA	1177	ō	ILE	163	34.644	14.499	67.319	1.00 17.59	В
70	MOTA	1178	N	TYR	164	33.996	16.201	68.654	1.00 17.46	В
	MOTA	1179	CA	TYR	164	35.219	16.263	69.430	1.00 16.57	В
	MOTA	1180	CB	TYR	164	36.192	17.276	68.783	1.00 14.70	В
	MOTA	1181	CG	TYR	164	37.464	17.474	69.559	1.00 12.25	В

	MOTA	1182	CD1	TVD	164	37.502	18.334	70.653	1.00 13.17	В
								71.454	1.00 15.94	В
	MOTA	1183	CEl	TYR	164	38.643	18.439			
	MOTA	1184	CD2	TYR	154	38.600	16.724	69.267	1.00 13.00	В
_	MOTA	1185	CE2	TYR	164	39.753	16.814	70.058	1.00 15.22	В
5	MOTA	1186	CZ	TYR	164	39.773	17.674	71.155	1.00 17.31	В
	MOTA	1187	ОН	TYR	164	40.909	17.774	71.952	1.00 15.71	В
	ATOM	1188	C	TYR	164	34.875	16.669	70.863	1.00 18.56	В
				TYR	164	34.289	17.726	71.094	1.00 21.94	В
	MOTA	1189	0							
10	MOTA	1190	N	ASN	165	35.225	15.826	71.828	1.00 20.33	В
10	MOTA	1191	CA	ASN	165	34.942	16.122	73.232	1.00 22.94	В
	MOTA	1192	· CB	ASN	165	35.633	17.402	73.653	1.00 24.28	В
	MOTA	1193	CG	ASN	165	36.418	17.255	74.942	1.00 28.53	В
	ATOM	1194	OD1		165	37.598	16.864	74.929	1.00 31.28	В
						35.777		76.064	1.00 24.86	В
15	MOTA	1195	ND2		165		17.569			
15	MOTA	1196	С	ASN	165	33.443	16.314	73.406	1.00 24.90	В
	ATOM	1197	0	ASN	165	33.009	17.222	74.121	1.00 26.77	В
	MOTA	1198	N	GLU	166	32.657	15.471	72.745	1.00 23.40	В
	MOTA	1199	CA	GLU	166	31.200	15.555	72.813	1.00 22.69	В
	ATOM	1200	СВ	GLU	166	30.706	15.231	74.237	1.00 22.07	В
20	ATOM	1201	cc	GLU	166	30.814	13.757	74.590	1.00 22.71	В
20										В
	MOTA	1202	CD	GLU	166	30.157	12.849	73.548	1.00 23.19	
	MOTA	1203	0E1	GLU	166	28.906	12.779	73.505	1.00 22.44	В.
	MOTA	1204	OE2	GLU	166	30.899	12.211	72.769	1.00 21.71	В
	MOTA	1205	С	GLU	166	30.610	16.884	72.349	1.00 22.21	· B
25	ATOM	1206	0	GLU	166	29.491	17.228	72.709	1.00 22.53	В
	ATOM	1207	N	GLU	167	31.363	17.631	71.545	1.00 24.18	В
									1.00 23.58	В
	MOTA	1208	CA	GLU	167	30.885	18.899	71.011		
	MOTA	1209	CB	GLU	167	31.825	20.009	71.365	1.00 28.43	В
~~	MOTA	1210	CG	GLU	167	31.900	20.321	72.848	1.00 34.21	В
30	MOTA	1211	CD	GLU	167	32.857	21.470	73.142	1.00 40.07	В
	MOTA	1212	OE1	GLU	167	34.033	21.400	72.702	1.00 41.07	В
	ATOM	1213		GLU	167	32.431	22.441	73.812	1.00 43.47	В
•			.C	GLU	167	30.800	18.766	69.500	1.00 22.74	B
	MOTA	1214								
25.	ATOM	1215	0	GLU	167	31.659	18.142	68.884	1.00 23.08	В
35	ATOM	1216	N	LEU	168	29.766	19.347	68.904	1.00 21.20	В
•	MOTA	1217	CA	LEU	168	29.578	19.274	67.461	1.00 20.52	В
	ATOM	1218	CB	LEU	168	28.088	19.156	67.125	1.00 21.09	В
	MOTA	1219	CG	LEU	168	27.319	17.889	67.681	1.00 22.11	В
	ATOM	1220		LEU	168	28.249	16.663	67.622	1.00 15.69	В
40					168	26.837		69.114	1.00 21.13	В
70	MOTA	1221	CD2				18.136			
	ATOM	1222	C	LEU	168	30.173	20.458	66.702	1.00 21.77	В
	MOTA.	1223	0	LEU	168	30.178	21.598	67.179	1.00 22.45	В
	MOTA	1224	N	PHE	169	30.673	20.171	65.506	1.00 20.28	В
	ATOM	1225	CA	PHE	169	31.282	21.180	64.665	1.00 19.17	В
45	MOTA	1226	CB	PHE	169	32.835	21.112	64.778	1.00 19.31	В
	MOTA	1227	CG	PHE	169	33.345	21.308	66.177	1.00 19.18	В
		1228		PHE	169	33.688	20.213	66.966	1.00 20.05	B
	MOTA									
	MOTA	1229	CD2		169	33.434	22.591	66.722	1.00 18.70	В
50	MOTA	1230	CE1		169	34.112	20.385	68.281	1.00 19.61	В
50	MOTA	1231	CE2	PHE	169	33.852	22.782	68.027	1.00 18.44	В
	MOTA	1232	CZ	PHE	169	34.193	21.676	68.814	1.00 22.70	В
	MOTA	1233	C	PHE	169	30.865	20.981	63.220	1.00 20.25	В
	ATOM	1234	0	PHE	169	30.476	19.880	62.808	1.00 20.20	В
	ATOM	1235	N	ASP	170	30.949	22.064	62.462	1.00 19.31	В
55										
55	MOTA	1236	CA	ASP	170	30.603	22.069	61.053	1.00 19.06	В
	MOTA	1237	CB	ASP	170	29.549	23.141	60.785	1.00 19.49	В
	ATOM	1238	CG	ASP	170	28.970	23.066	59.386	1.00 21.37	В
	MOTA	1239	OD1	ASP	170	29.648	22.556	58.463	1.00 20.46	В
	MOTA	1240		ASP	170	27.827	23.542	59.206	1.00 24.10	В
60	MOTA	1241	C.	ASP	170	31'.902	22.429	60.353	1.00 20.21	В
•					170					B
	MOTA	1242	0	ASP		32.402	23.540	60.509	1.00 21.52	
	MOTA	1243	N	LEU	171	32.460	21.492	59.599	1.00 20.15	В
	MOTA	1244	CA	LEU	171	33.699	21.758	.58.900	1.00 22.53	В
	MOTA	1245	CB	LEU	171	34.620	20.517	58.965	1.00 19.76	В
65	MOTA	1246	CG	LEU	171	35.385	20.297	60.340	1.00 18.93	В
	MOTA	1247		LEU	171	36.562	21.251	60.487	1.00 16.80	В
						34.426	20.479		1.00 18.41	В
	ATOM	1248		LEU	171			61.495		
	ATOM	1249	C	LEU	171	33.460		57.459	1.00 24.95	В
~^	MOTA	1250	0	LEU	171	34.374	22.169	56.632	1.00 25.06	В
70	MOTA	1251	N	LEU	172	32.233	22.618	57.160	1.00 28.25	. В
	MOTA	1252	CA	LEU	172	31.910	23.081	55.812	1.00 33.55	В
	MOTA	1253	CB	LEU	172	31.001	22.111	55.116	1.00 33.77	В
	ATOM	1254	CG	LEU	172	31.664	20.867	54.556	1.00 34.20	В
	N. OEI	4674		250	112	22.004	20.007	54.550	1.00 34.20	٠

										_
	MOTA	1255	CD1		172	30.632	20.056	53.783	1.00 33.48	В
	MOTA	1256	CD2	LEU	172	32.807	21.268	53.644	1.00 34.44	8
	MOTA	1257	С	LEU	172	31.279	24.461	55.766	1.00 35.97	В
	MOTA	1258	Ō	LEU	172	31.181	25.059	54.706	1.00 37.85	В
5	ATOM	1259	N	ASN	173	30.843	24.962	56.912	1.00 39.07	В
,								56.972	1.00 44.33	В
	MOTA	1260	CA	ASN	173	30.242	26.284			
	MOTA	1261	CB	asn	173	29.451	26.445	58.275	1.00 45.10	В
	MOTA	1262	ÇG	ASN	173	28.700	27.765	58.345	1.00 47.21	В
	MOTA	1263	OD1	ASN	173	27.898	27.987	59.254	1.00 46.55	В
10	MOTA	1264	ND2		173	28.958	28.650	57.384	1.00 47.66	В
	ATOM	1265	C	ASN	173	31.355	27.330	56.903	1.00 48.18	В
				ASN	173	32.094	27.532	57.871	1.00 47.58	В
	ATOM	1266	0							
	MOTA	1267	N	PRO	174	31.492	28.007	55.752	1.00 51.96	В
	MOTA	1268	CD	PRO	174	30.737	27.802	54.502	1.00 52.92	В
15	MOTA	1269	CA	PRO	174	32.527	29.030	55.572	1.00 55.50	В
	MOTA	1270	CB	PRO	174	32.609	29.162	54.076	1.00 54.73	В
	MOTA	1271	CG	PRO	174	31.184	28.973	53.660	1.00 53.60	В
	ATOM	1272	c	PRO	174	32.226	30.364	56.259	1.00 58.47	В
									1.00 59.03	В
20	ATOM	1273	0	PRO	174	33:076	31.256	56.286		
20	MOTA	1274	N	SER	175	31.024	30.497	56.819	1.00 60.76	В
	MOTA	1275	CA	SER	175	30.639	31.730	57.504	1.00 62.73	В
	ATOM	1276	CB	SER	175	29.138	32.013	57.301	1.00 63.76	В
	MOTA	1277	OG	SER	175	28.877	32.450	55.975	1.00 66.00	В
	MOTA	1278	С	SER	175	30.957	31.725.	59.000	1.00 63.50	В
25	ATOM	1279	ŏ	SER	175	30.901	32.769	59.654	1.00 63.94	В
23							30.557	59.543	1.00 63.63	В
	MOTA	1280	N	SER	176	31.293				
	MOTA	1281	CA	SER	176	31.613	30.456	60.964	1.00 63.17	В
	MOTA	1282	CB	SER	176	30.589	29.549	61.694	1.00 63.04	В
	MOTA	1283	OG	SER	176	30.805	28.181	61.389	1.00 64.15	В
30	MOTA	1284	С	SER	176	33.017	29.909	61.188	1.00 62.90	В
	ATOM	1285	0	SER	176	33.758	29.643	60.238	1.00 62.07	В
	ATOM	1286	N	ASP	177	33.371	29.744	62.459	1.00 62.85	В
	MOTA	1287	CA	ASP	177	34.676	29.225	62.837	1.00 62.62	В
25	MOTA	1288	CB	ASP	177	35.352	30.147	63.856	1.00 63.20	В
35	MOTA	1289	CG	ASP	177	35.504	31.559	63.345	1.00 63.21	В.
	ATOM	1290	OD1	ASP	177	36.062	31.729	62.243	1.00 63.09	В
	MOTA	1291	OD2	ASP	177	35.068	32.498	64.044	1.00 62.91	В
	ATOM	1292	С	ASP	177	34.515	27.852	63.452	1.00 61.87	В
	ATOM	1293	ŏ	ASP	177	33.447	27.504	63.954	1.00.62.79	В
40								63.415	1.00 60.45	B
70	ATOM	1294	N	VAL	178	35.588	27.078			
	MOTA	1295	CA	VAL	178	35.572	25.743	63.977	1.00 59.51	В
	MOTA	1296	CB	VAL	178	36.894	25.005	63.688	1.00 59.52	В
	MOTA	1297	CG1	VAL	178	37.118	24.909	62.183	1.00 59.92	В
	MOTA	1298	CG2	VAL	178	38.048	25.729	64.356	1.00 59.97	В
45	ATOM	1299	С	VAL	178	35.363	25.834	65.485	1.00 58.12	В
	MOTA	1300	Ó	VAL	178	35.159	24.825	66.157	1.00 59.80	В
	ATOM	1301	N	SER	179	35.421	27.047	66.016	1.00 55.31	В
	MOTA	1302	CA	SER	179	35.221	27.245	67.443	1.00 52.98	В
50	MOTA	1303	CB	SER	179	35.823	28.578	67.871	1.00 51.75	В
50	ATOM	1304	OG	SER	179	35.401	29.619	67.011	1.00 50.71	В
	MOTA	1305	С	SER	179	33.725	27.211	67.746	1.00 52.04	В
	MOTA	1306	0	SER	179	33.313	26.894	68.860	1.00 52.07	В
	ATOM	1307	N	GLU	180	32.917	27.535	66.743	1.00 51.08	В
	ATOM	1308	CA	GLU	180	31.467	27.541	66.882	1.00 50.67	В
55										В
55	MOTA	1309	CB	GLU	180	30.834	28.188	65.639	1.00 53.74	
	MOTA	1310	CG	GLU	180	29.322	28.334	65.691	1.00 57.88	В
	MOTA	1311	CD	GLU	180	28.872	29.401	66.666	1.00 60.00	В
	MOTA	1312	OE1	GLU	180	29.192	29.279	67.868	1.00 61.89	В
	MOTA	1313	OE2	GLU	180	28.199	30.362	66.230	1.00 61.08	В
60	ATOM	1314	Ċ	GLU	180	30.989	26.096	67.026	1.00 48.91	В
~~	MOTA	1315	ŏ	GLU	180	31.307	25.249	66.196	1.00 49.20	В
	ATOM	1316	N	ARG	181	30.234	25.817	68.082	1.00 46.31	В
	ATOM	1317	CA	ARG	181	29.739	24.472	68.332	1.00 44.31	В
	ATOM	1318	CB	ARG	181	30.194	24.018	69.710	1.00 46.69	В
65	MOTA	1319	CG	ARG	181	29.815	24.962	70.842	1.00 50.74	В
	MOTA	1320	CD	ARG	181	28.527	24.530	71.547	1.00 55.78	В
	ATOM	1321	NE	ARG	181	28.677	23.242	72.234	1.00 60.23	В
		1322						72.913	1.00 61.32	В
	MOTA		CZ	ARG	181	27.708	22 628			
70	MOTA	1323		ARG	181	26.501	23.180	73.007	1.00 61.66	В
70	MOTA	1324		ARG	181	27.945	21.453	73.490	1.00 61.67	В
	MOTA	1325	C	ARG	181	28.217	24.395	68.211	1.00 42.65	B
	MOTA	1326	0	ARG	181	27.491	25.115	68.888	1.00 42.59	В
	ATOM	1327	Ň	LEU	182	27.739	23.510	67.344	1.00 39.35	В
		-32.	••	-55		,				_

	ATOM	1328	CA	LEU	182	26.310	23:355	67.110	1.00 35.22	В
	MOTA	1329		LEU	182	26.088	22.559	65.843	1.00 32.83	В
	MOTA	1330	CG	LEU	182	26.998	22.979	64,710	1.00 31.23	В
_	MOTA	1331	CD1		182	26.730	22.114	63.508	1.00 32.55	В
5	MOTA	1332	CD2		182	26.776	24.444	64.386	1.00 31.45	В
	MOTA	1333		LEU	182	25.581	22.690	68.260	1.00 33.98 1.00 33.33	B B
	MOTA	1334 1335		LEU	182	26.197 24.259	22.057 22.843	69.117 68.266	1.00 33.33	В
	MOTA MOTA	1336		GLN GLN	183 183	23.399	22.259	69.296	1.00 32.84	В
10	MOTA	1337		GLN	183	22.430	23.320	69.842	1.00 34.22	B
10	MOTA	1338		GLN	183	23.122	24.542	70.436	1.00 37.39	В
	MOTA	1339		GLN	183	22.163	25.699	70.671	1.00 38.77	В
	ATOM	1340	OE1		183	21.325	26.003	69.818	1.00 39.62	В
	MOTA	1341	NE2	GLN	183	22.294	26,361	71.820	1.00 37.72	В
15	MOTA	1342		GLN	183	22.603	21.099	68.706	1.00 31.57	В
	MOTA	1343		GLN	183	22.209	21.134	67.545	1.00 31.18	В
	MOTA	1344		MET	184	22.353	20.079	69.513 69.052	1.00 31.59	B B
	MOTA	1345	_	MET	184 184	21.622 22.480	18.908 17.677	69.297	1.00 32.44 1.00 32.63	В
20	MOTA MOTA	1346 1347		MET MET	184	22.018	16.404	68.626	1.00 34.09	В
20	MOTA	1348		MET	184	23.162	15.016	68.908	1.00 32.00	В
	MOTA	1349		MET	184	22.574	14.436	70.488	1.00 31.68	В.
	ATOM	1350		MET	184	20.289	18.787	69.791	1.00 34.68	В
	MOTA	1351	0	MET	184	20.203	19.114	70.976	1.00 35.18	·B
25	MOTA	1352	N	PHE	185	19.248	18.345	69.086	1.00 36.66	В
	MOTA	1353		PHE	185	17.922	18.168	69.690	1.00 39.01	В
	MOTA	1354	-	PHE	185	16.987	19.422	69.462	1.00 37.84	В
	MOTA	1355	CG CD1	PHE	185 185	17.676 18.453	20.750 21.270	69.619 68.593	1.00 38.18 1.00 36.50	B B
30	MOTA MOTA	1356 1357	CD2		185	17.534	21.488	70.793	1.00 38.31	В
20	ATOM	1358	CE1		185	19.080	22.502	68.724	1.00 36.83	В
	MOTA	1359	CE2		185	18.158	22.724	70.936	1.00 38.32	В
	MOTA	1360	CZ	PHE	185	18.933	23.232	69.897	1.00 38.06	В
25.	MOTA	1361	С	PHE	185	17.224	16.956	69.077	1.00 40.70	В
35 .	MOTA	1362	0	PHE	185	17.485	16.598	67.931	1.00 39.58	В
	MOTA	1363	N	ASP	186	16.333	16.330	69.838	1.00 43.77	B B
	MOTA	1364 1365	CA CB	ASP ASP	186 186	15.588 14.737	15.187 14.550	69.328 70.419	1.00 46.67 1.00 47.89	В
	MOTA MOTA	1366	CG	ASP	186	15.534	14.206	71.659	1.00 50.45	В
40	ATOM	1367	OD1		186	16.535	13.461	71.540	1.00 50.63	В
	MOTA	1368	OD2		186	15.154	14.679	72.756	1.00 51.23	В
	MOTA	1369	С	ASP	186	14.668	15.740	68.262	1.00 47.79	В
	MOTA	1370	0	ASP	186	14.371	16.933	68.246	1.00 47.04	В
45	ATOM	1371	N	ASP	187	14.215	14.883	67.365	1.00 50.77	B B
73	ATOM ATOM	1372 1373	CA CB	ASP ASP	187 187	13.318 13.748	15.351 14.832	66.328 64.990	1.00 54.90 1.00 56.93	B
	MOTA	1374	CG	ASP	187	12.973	15.457	63.860	1.00 59.28	B
	ATOM	1375	OD1		187	13.425	15.343	62.700	1.00 60.01	В
	ATOM	1376		ASP	187	11.910	16.060	64.138	1.00 60.38	В
50	MOTA	1377	C	ASP	187	11.915	14.877	66.662	1.00 56.34	В
	MOTA	1378	0	ASP	187	11.638	13.678	66.649	1.00 56.08	В
	MOTA	1379	N	PRO	188	11.015	15.820	66.985	1.00 58.11	В
	MOTA	1380 1381	CD CA	PRO PRO	188 188	11.251 9.621	17.274 15.529	66.963 67.339	1.00 57.99 1.00 60.11	B B
55	MOTA MOTA	1382	CB	PRO	188	8.978	16.890	67.309	1.00 59.76	В
55	MOTA	1383	CG	PRO	188	10.091	17.790	67.764	1.00 58.23	В
	ATOM	1384	c	PRO	188	8.956	14.549	66.376	1.00 61.87	В
	MOTA	1385	0	PRO	188	8.162	13.700	66.783	1.00 61.46	В -
60	MOTA	1386	N	ARG	189	2.2.2	14.669	65.100	1.00 64.31	В
60	MOTA	1387	CA	ARG	189	8.757	13.812	64.058	1.00 66.68	В
	MOTA	1388	CB	ARG	189	9.307	14.265	62.701	1.00 66.61	В
	MOTA	1389	CG	ARG	189	8.813 9.586	15.651	62.277	1.00 66.58 1.00 66.65	B B
	ATOM ATOM	1390 1391	CD NE	ARG ARG	189 189	10.834	16.213 16.866	61.080 61.474	1.00 66.32	В
65	ATOM	1392	CZ	ARG	189	11.704	17.407	60.625	1.00 66.09	В
	MOTA	1393		ARG	189	11.474	17.377	59.319	1.00 66.33	В
	MOTA	1394		ARG	189	12.803	17.988	61.083	1.00 65.55	В
	MOTA	1395	С	ARG	189	9.041	12.321	64.289	1.00 68.64	В
70	MOTA	1396	0	ARG	189	8.300	11.461	63.813	1.00 69.00	В
70	MOTA	1397	N	ASN	190	10.110	12.018	65.022	1.00 71.07	В
	MOTA	1398	CA	ASN	190	10.487	10.634	65.329	1.00 72.28 1.00 72.30	B B
	MOTA MOTA	1399 1400	CB CG	ASN ASN	190 190	10.758 11.706	9.814 10.525	63.998 63.041	1.00 72.30	B
	VI ON	1400	CG	NON	170	11.700	10.323	03.041	1.00 /1.70	-

										_
	MOTA	1401	OD1	ASN	190	12.847	10.822	63.385	1.00 71.47	В
	MOTA	1402	ND2	ASN	190	11.233	10.789	61.826	1.00 71.27	В
	MOTA	1403	С	ASN	190	11.709	10.579	66.252	1.00 73.09	В
	ATOM	1404	ŏ	ASN	190	12.783	11.067	65.905	1.00 73.71	В
5				LYS	191	11.534	9.979	67.427	1.00 73.58	В
,	MOTA	1405	N							
	MOTA	1406	CA	LYS	191	12.601	9.871	68.428	1.00 73.23	В
	MOTA	1407	CB	LYS	191	12.123	9.021	69.606	1.00 75.05	В
	MOTA	1408	CG	LYS	191	11.285	9.778	70.614	1.00 76.84	В
	MOTA	1409	CD	LYS	191	12.074	10.920	71.241	1.00 77.87	В
10	MOTA	1410	CE	LYS	191	11.299	11.547	72.387	1.00 78.94	В
	MOTA	1411	NZ	LYS	191	9.939	11.988	71.961	1.00 79.06	В
	MOTA	1412	C	LYS	191	13.965	9.351	67.968	1.00 71.65	В
	MOTA	1413	0	LYS	191	15.000	9.869	68.395	1.00 71.97	В
	MOTA	1414	N	ARG	192	13.977	8.326	67.121	1.00 68.70	В
15	MOTA	1415	CA	ARG	192	15.238	7.772	66.638	1.00 65.72	В
	MOTA	1416	CB	ARG	192 .	14.978	6.515	65.768	1.00 67.67	В
	ATOM	1417	CG	ARG	192	16.217	5.978	65.052	1.00 69.51	В
	MOTA	1418	CD	ARG	192	16.068	4.519	64.616	1.00 70.83	В
					192		4.261		1.00 71.87	В
20	MOTA	1419	NE	ARG		14.855		63.839		
20	MOTA	1420	CZ	ARG	192	13.672	3.950	64.364	1.00 71.73	В
	MOTA	1421	NHl	ARG	. 192	13.527	3.855	65.681	1.00 70.61	В
	MOTA	1422	NH2	ARG	192	12.631	3.727	63.569	1.00 71.53	В
	MOTA	1423	С	ARG	192	16.033	8.803	65.843	1.00 62.08	В
	MOTA	1424	Ō	ARG	192	17.190	8.572	65.482	1.00 61.32	В
25	MOTA	1425	N	GLY	193	15.403	9.946	65.585	1.00 58.42	В
23									1.00 52.07	В
	MOTA	1426	CA	GLY	193	16.045	11.008	64.828		
	MOTA	1427	C	GLY	193	16.519	12.171	65.674	1.00 47.14	В
	MOTA	1428	0	GLY	193	16.159	12.300	66.843	1.00 46.94	В
	MOTA	1429	N	VAL	194	17.323	13.033	65.067	1.00 44.16	В
30	MOTA	1430	CA	VAL	194	17.875	14.184	65.757	1.00 40.67	В
	MOTA	1431	CB	VAL	194	19.266	13.838	66.329	1.00 39.96	В
	MOTA	1432		VAL	194	20.338	14.058	65.271	1.00 37.96	В
					194		14.653	67.564	1.00 39.63	В
	MOTA	1433	CG2			19.539				
25	MOTA	1434	Ç	VAL	194	18.008	15.373	64.800	1.00 39.90	В
35	MOTA	1435	0	VAL	194	18.145	15.194	63.592	1.00 40.91	В
	MOTA	1436	N	ILE	195	17.965	16.585	65.347	1.00 38.55	В
	MOTA	1437	CA	ILE	195	18.104	17.803	64.553	1.00 35.81	В
	MOTA	1438	CB	ILE	195	16.862	18.728	64.709	1.00 38.25	В
	ATOM	1439		ILE	195	17.132	20.092	64.055	1.00 38.19	В
40									1.00 39.77	B
70	MOTA	1440		ILE	195	15.615	18.049	64.084		
	MOTA	1441	CD1		195	14.321	18.863	64.185	1.00 41.59	В
	MOTA	1442	С	ILE	195	19.347	18.581	65.001	1.00 32.57	В
	MOTA	1443	0	ILE	195	19.452	18.970	66.162	1.00 30.74	В
	MOTA	1444	N	ILE	196	20.292	18.787	64.086	1.00 29.82	В
45	MOTA	1445	CA	ILE	196	21.500	19.539	64.405	1.00 27.94	В
	MOTA	1446	СВ	ILE	196	22.800	18.919	63.769	1.00 26.64	В
		1447			196				1.00 21.22	В
	MOTA		CG2			24.006	19.816	64.070		
	MOTA	1448		ILE	196	23.110	17.510	64.383	1.00 24.18	В
60	MOTA	1449	CD1	ILE	196	22.375	16.374	63.764	1.00 22.10	В
50	MOTA	1450	С	ILE	196	21.303	20.951	63.872	1.00 27.99	В
	MOTA	1451	0	ILE	196	21.375	21.196	62.669	1.00 27.68	В
	MOTA	1452	N	LYS	197	21.044	21.876	64.784	1.00 29.44	В
	ATOM	1453	CA	LYS	197	20.813	23.265	64.426	1.00 30.91	В
	ATOM	1454	CB	LYS	197	20.205	24.026	65.616	1.00 33.42	В
55				-						
22	MOTA	1455	CG	LYS	197	19.931	25.486	65.303	1.00 35.76	В
	MOTA	1456	CD	LYS	· 197	19.670	26.299	66.548	1.00 39.21	В
	MOTA	1457	CE	LYS	197	19.686	27.776	66.199	1.00 42.14	В
	MOTA	1458	NZ	LYS	197	20.909	28.121	65.411	1.00 42.07	В
	MOTA	1459	С	LYS	197	22.073	23.984	63.971	1.00 29.67	В
60	ATOM	1460	ō	LYS	197	23.080	23.977	64.674	1.00 29.22	В
00										
	ATOM	1461	N	GLY	198	22.005	24.600	62.792	1.00 29.85	В
	MOTA	1462	CA	GLY	198	23.141	25.345	62.275	1.00 30.66	В
	MOTA	1463	С	GLY	198	24.040	24.637	61.282	1.00 30.74	В
	MOTA	1464	0	GLY	198	24.857	25.283	60.618	1.00 30.16	· В
65	MOTA	1465	N	LEU	199	23.903	23.318	61.178	1.00 30.32	В
	MOTA	1466	CA	LEU		24.722	22.538	60.255	1.00 30.74	В
	MOTA	1467	CB	LEU	199	24.530	21.004	60.530	1.00 30.24	В
	MOTA	1468	CG	LEU	199	25.328	19.967	59.664	1.00 28.88	В
70	ATOM	1469		LEU	199	26.773	20.398	59.527	1.00 30.22	В
70	ATOM	1470	CD2	LEU	199	25.254	18.587	60.308	1.00 28.26	В
	MOTA	1471	С	LEU	199	24.397	22.869	58.792	1.00 31.25	В
	ATOM	1472	ō	LEU	199	23.256	22.699	58.340	1.00 31.36	В
	ATOM	1473	N	GLU	200	25.406	23.345	58.065	1.00 30.26	В
	011		••	200		25.400	22.543	20.003	2.00 00.20	-

										_
	MOTA	1474	CA	GLU	200	25.253	23.712	56.661	1.00 32.06	В
	MOTA	1475	CB	GLU	200	26.446	24.590	56.190	1.00 34.38	В
	MOTA	1476	CG	GLU	200	26.604	25.870	56.961	1.00 41.33	В
	MOTA	1477	CD	GLU	200	25.395	26.773	56.833	1.00 42.76	В
5	ATOM	1478	OE1		200	25.121	27.535	57.785	1.00 43.19	В
-	MOTA	1479	OE2		200	24.730	26.721	55.776	1.00 43.56	В
						25.164		55.722		В
	MOTA	1480	C	GLU	200		22.514			
	MOTA	1481	0	GLU	200	25.841	21.503	55.916	1.00 30.83	В
10	MOTA	1482	N	GLU	201	24.328	22.654	54.700	1.00 30.84	В
10	MOTA	1483	CA	GLU	201	24.163	21.639	53.677	1.00 30.37	В
	MOTA	1484	CB	GLU	201	22.732	21.167	53.611	1.00 30.91	В
	MOTA	1485	CG	GLU	201	22.386	20.111	54.629	1.00 33.83	В
	MOTA	1486	CD	GLU	201	20.975	19.587	54.454	1.00 36.02	В
	ATOM	1487	OE1		201	20.052	20.163	55.069	1.00 37.16	В
15										
13	MOTA	1488	OE2		201	20.791	18.604	53.695	1.00 36.56	В
	MOTA	1489	C	GLU	201	24.528	22.328	52.373	1.00 30.44	В
	MOTA	1490	0	GLU	201	23.796	23.207	51.919	1.00 30.69	В
	MOTA	1491	N	ILE	202	25.663	21.958	51.783	1.00 28.80	₿
	MOTA	1492	CA	ILE	202	26.073	22.575	50.526	1.00 28.82	B
20	MOTA	1493	CB	ILE	202	27.619	22.739	50.409	1.00 28.91	В
	MOTA	1494	CG2		202	27.978	23.225	49.014	1.00 26.00	В
	MOTA	1495	CG1		202	28.137	23.751	51.426	1.00 28.90	B
	MOTA	1496	CD1		202	28.057	23.294	52.863	1.00 32.03	В
25	MOTA	1497	С	ILE	202	25.594	21.773	49.324	1.00 28.57	В
25	MOTA	1498	0	ILE	202	25.844	20.571	49.215	1.00 29.93	В
	MOTA	1499	N	THR	203	24.896	22.448	48.422	1.00 28.23	В
	MOTA	1500	CA	THR	203	24.404	21.803	47.219	1.00 26.49	В
	MOTA	1501	CB	THR	203	23.307	22.665	46.527	1.00 26.14	В
	ATOM	1502		THR	203	22.173	22.791	47.401	1.00 24.25	В
30	MOTA	1503		THR	203		22.028	45.208		В
50						22.862			1.00 25.01	
	MOTA	1504	c	THR	203	25.606	21.636	46.293	1.00 26.13	В
	MOTA	1505	0	THR	203	26.483	22.495	46.253	1.00 26.91	В
	MOTA	1506	N	VAL	204	25.666	20.504	45.599	1.00 26.49	В
	MOTA	1507	CA	VAL	204	26.741	20.220	44.654	1.00 27.51	В
35	MOTA	1508	CB	VAL	204	27.444	18.868	44.967	1.00 25.76	В
	MOTA	1509		VAL	204	28.653	18.672	44.056	1.00 23.12	В
	ATOM	1510		VAL	204	27.879	18.837	46.423	1.00 24.79	В
	MOTA	1511	C	VAL	204		20.149	43.321	1.00 29.14	В
40	MOTA	1512	0	VAL	204	25.265	19.199	43.061	1.00 30.39	В
40	MOTA	1513	N	HIS	205	26.218	21.170	42.495	1.00 29.22	В
	MOTA	1514	CA	HIS	205	25.553	21.313	41.195	1.00 30.55	В
	ATOM	1515	CB	HIS	205	25.613	22.794	40.767	1.00 28.34	В
	MOTA	1516	CG	HIS	205	25.157	23.732	41.838	1.00 28.46	В
	ATOM	1517		HIS	205	25.858	24.492	42.711	1.00 27.43	В
45	ATOM	1518		HIS	205	23.832	23.862	42.196	1.00 28.83	B
15										
	MOTA	1519		HIS	205	23.736	24.654	43.249	1.00 28.44	В
	MOTA	1520		HIS	205	24.952	25.049	43.582	1.00 29.92	В
	MOTA	1521	С	HIS	205	26.092	20.435	40.081	1.00 31.51	В
	MOTA	1522	0	HIS	205	25.358	20.055	39.169	1.00 31.34	В
50	ATOM	1523	N	ASN	206	27.383	20.136	40.147	1.00 33.49	В
	MOTA	1524	CA	ASN	206	28.032	19.299	39.151	1.00 34.62	В
	MOTA	1525	CB	ASN	206	28.444	20.138	37.930	1.00 34.75	В
	MOTA	1526	CG	ASN	206	29.164	21.417	38.309	1.00 35.27	В
				_						
55	ATOM	1527		ASN	206	30.224	21.391	38.938	1.00 37.58	В
22	MOTA	1528	ND2		206	28.589	22.548	37.925	1.00 34.11	В
	MOTA	1529	С	ASN	206	29.243	18.650	39.798	1.00 35.69	В
	MOTA	1530	0	ASN	206	29.478	18.836	40.992	1.00 36.45	В
	MOTA	1531	N	LYS	207	30.002	17.876	39.031	1.00 36.43	В.
	ATOM	1532	CA	LYS	207	31.171	17.216	39.590	1.00 38.62	В
60		1533								В
00	MOTA		CB	LYS	207	31:582	15.993	38.703	1.00 40.10	
	ATOM	1534	CG	LYS	207	32.123	16.339	37.319	1.00 42.56	8
	MOTA	1535	CD	LYS	207	32.259	15.081	36.456	1.00 44.26	В
	MOTA	1536	CE	LYS	207	33.191	15.293	35.267	1.00 43.78	В
	MOTA	1537	NZ	LYS	207	34.613	15.454	35.696	1.00 42.46	В
65	ATOM	1538	С	LYS	207	32.313	18.222	39.700	1.00 39.03	В
	MOTA	1539	ō	LYS	207	33.176	18.120	40.576	1.00 38.73	В
	ATOM	1540	N	ASP	208	32.292	19.208	38.813	1.00 39.88	В
	MOTA	1541	CA	ASP'	208	33.312	20.244	38.790	1.00 40.76	В
70	MOTA	1542	CB	ASP	208	33.248	20.981	37.461	1.00 42.58	В
70	MOTA	1543	CG	ASP	208	33.659	20.101	36.292	1.00 45.91	В
	ATOM	1544	OD1	ASP	208	33.407	20.484	35.127	1.00 46.74	В
	ATOM	1545	OD2	ASP	208	34.246	19.023	36.542	1.00 46.78	В
	MOTA	1546	C	ASP	208	33.141	21.219	39.952	1.00 39.55	В
			-		-				3.22 23.33	_

	MOTA	1547	0	ASP	208	33.643	22.339	39.922	1.00 41.22	В
									1.00 37.46	В
	ATOM	1548	N	GLU	209	32.457	20.784	40.996		
	atom	1549	CA	GLU	209	32.241	21.660	42.128	1.00 35.89	В
_	MOTA	1550	СВ	GLU	209	30.760	22.075	42.158	1.00 35.84	В
5	MOTA	1551	CG	GLU	209	. 30.445	23.275	43.010	1.00 37.17	В
-	MOTA	1552	CD	GLU	209	28.973	23.682	42.924	1.00 38.94	В
										В
	MOTA	1553	OE1		209	28.462	23.857	41.793	1.00 37.72	
	MOTA	1554	OE2	GLU	209	28.327	23.835	43.988	1.00 38.77	В
	MOTA	1555	С	GLU	209	32.646	20.992	43.439	1.00 34.61	В
10	MOTA	1556	ŏ	GLU	209	32.763	21.657	44.470	1.00 36.51	В
10										
	MOTA	1557	N	VAL	210	32.907	19.690	43.395	1.00 32.07	В
	MOTA	1558	CA	VAL	210	33.268	18.966	44.609	1.00 29.92	В
	MOTA	1559	CB	VAL	210	33.065	17.411	44.450	1.00 29.01	В
	MOTA	1560	CG1	VAL	210	31.856	17.110	43.574	1.00 26.09	В
15	MOTA	1561	CG2		210	34.301	16.774	43.901	1.00 29.03	В
13										
	MOTA	1562	C	VAL	210	34.668	19.212	45.183		В
	MOTA	1563	0	VAL	210	34.820	19.322	46.406	1.00 29.31	В
	ATOM	1564	N	TYR	211	35.694	19.311	44.343	1.00 26.40	В
	MOTA	1565	CA	TYR	211	37.038	19.505	44.894	1.00 24.93	В
20	MOTA	1566	СВ	TYR	211	38.106	19.552	43.783	1.00 22.02	В
20										
	MOTA	1567	CG	TYR	211	39.510	19.386	44.318	1.00 23.83	В
	ATOM	1568	CD1	TYR	211	39.850	18.284	45.097	1.00 26.06	В
	MOTA	1569	CE1	TYR	211	41.136	18.131	45.625	1.00 25.76	В
	ATOM	1570	CD2		211	40.498	20.339	44.074	1.00 24.90	В
25										В
25	MOTA	1571		TYR	211	41.790	20.196	44.597	1.00 24.81	
	MOTA	1572	CZ	TYR	211	42.103	19.089	45.374	1.00 25.75	В
	ATOM	1573	OH	TYR	211	43.373	18.938	45.910	1.00 23.97	В
	MOTA	1574	С	TYR	211	37.111	20.759	45.757	1.00 25.45	В
	MOTA	1575	ō	TYR	211	37.691	20.740	46.844	1.00 24.21	В
30						36.501			1.00 27.99	В
50	MOTA	1576	N	GLN	212		21.840	45.272		
	MOTA	1577	CA	GLN	212	36.473	23.117	45.983	1.00 27.45	В
	MOTA	1578	CB	GLN	212	35.721	24.126	45.163	1.00 31.66	В
	MOTA	1579	CG	GLN	212	35.365	25.402	45.907	1.00 37.63	В
	ATOM	1580	CD	GLN	212	35.696	26.654	45.105	1.00 40.53	В
35					212					В
33	MOTA	1581	OE1	GLN		35.305	26.782	43.937	1.00 39.59	
	MOTA	1582	NE2	GLN	212	36.418	27.587	45.731	1.00 39.73	В
	MOTA	1583	С	GLN	212	35.834	22.981	47.364	1.00 26.73	В
	MOTA	1584	0	GLN	212	36.329	23.527	48.347	1.00 26.01	В
	ATOM	1585	N	ILE	213	34.733	22.243	47.437	1.00 26.10	В
40										
40	MOTA	1586	CA	ILE	213	34.044	22.037	48.703	1.00 24.91	В
	MOTA	1587	CB	ILE	213	32.694	21.327	48.496	1.00 23.51	B
	ATOM	1588	CG2	ILE	213	31.978	21.200	49.835	1:00 20.39	В
	MOTA	1589	CGI	ILE	213	31.843	22.117	47.461	1.00 22.89	В
	MOTA	1590		ILE	213	30.472	21.509	47.152	1.00 23.13	В
45										
43	MOTA	1591	С	ILE	213	34.906	21.207	49.656	1.00 25.49	В
	MOTA	1592	0	ILE	213	34.916	21.448	50.865	1.00 24.30	В
	MOTA	1593	N	LEU	214	35.618	20.226	49.106	1.00 26.92	В
	MOTA	1594	CA	LEU	214	36.496	19.381	49.905	1.00 28.08	В
		1595	СВ	LEU	214	37.031	18.168	49.050	1.00 28.21	В
50	MOTA									
50	MOTA	1596	CG	LEU	214	36.272	16.802	49.152	1.00 30.13	В
	MOTA	1597	CD1	LEU	214	34.796	17.034	49.411	1.00 31.20	В
	MOTA	1598	CD2	LEU	214	36.482	15.987	47.876	1.00 29.12	В
	MOTA	1599	С	LEU	214	37.657	20.225	50.442	1.00 29.28	В
	ATOM	1600	ō	LEU	214	38.012	20.114	51.620	1.00 30.45	В
55										
JJ	MOTA	1601	N	GLU	215	38.235	21.083	49.599	1.00 28.08	В
	MOTA	1602	ÇA	GLU	215	39.339	21.932	50.059	1.00 28.89	В
	MOTA	1603	CB	GLU	215	39.864	22.842	48.914	1.00 29.69	В
	MOTA	1604	CG	GLU	215	40.426	22.093	47.714	1.00 33.51	В
										В
60	ATOM	1605	CD	GLU	215	41.092	23.014	46.700	1.00 36.27	
W	MOTA	1606		GLU	215	42.343	23.136	46.730	1.00 34.34	В
•	MOTA	1607	OE2	GLU	215	40.358	23.620	45.880	1.00 36.57	В
	MOTA	1608	С	GLU	215	38.919	22.795	51.255	1.00 28.03	В
	MOTA	1609	ō	GLU	215	39.682	22.953	52.210	1.00 27.31	В
									1.00 27.31	
45	MOTA	1610	N	LYS	216	37.707	23.348	51.204		.В
65	MOTA	1611	ÇA	LYS	216	37.202	24.183	52.290	1.00 29.52	В
	MOTA	1612	ÇВ	LYS	216	35.799	24.696	51.971	1.00 30.11	В
	MOTA	1613	CG	LYS	216	35.691	25.416	50.650	1.00 32.53	В
	MOTA	1614	CD	LYS	216	36.584	26.643	50.602	1.00 34.31	В
	MOTA	1615	CE	LYS	216	36.596	27.272	49.200	1.00 36.64	B
70	MOTA	1616	NZ	LYS	216	37.248	26.419	48.152	1.00 34.44	В
	MOTA	1617	С	LYS	216	37.170	23.415	53.609	1.00 30.05	В
	ATOM	1618	ŏ	LYS	216	37.516	23.960	54.658	1.00 31.96	B
	MOTA	1619	N	GLY	217	36.742	22.156	53.553	1.00 30.83	В

	N COM	1620	~	GLY	217	36.695	21.335	54.752	1.00 29.82	В
•	ATOM		CA		217					
	MOTA	1621	C	GLY	217	38.107	21.144	55.270	1.00 29.77	В
	MOTA	1622	0	GLY	217	38.389	21.354	56.460	1.00 28.73	В
_	MOTA	1623	N	ALA	218	39.000	20.749	54.363	1.00 29.20	В
5	MOTA	1624	CA	ALA	218	40.404	20.548	54.696	1.00 28.09	В
	ATOM	1625	CB	ALA	218	41.212	20.299	53.427	1.00 25.39	В
	MOTA	1626	Ċ	ALA	218	40.924	21.792	55.422	1.00 27.61	В
				ALA		41.623		56.429	1.00 27.17	В
	MOTA	1627	0		218		21.684			
10	MOTA	1628	N	ALA	219	40.559	22.969	54.914	1.00 27.54	В
10	ATOM	1629	CA	ALA	219	40.984	24.243	55.505	1.00 27.45	В
	MOTA	1630	CB	ALA	219	40.430	25.406	54.695	1.00 26.20	В
	MOTA	1631	С	ALA	219	40.553	24.385	56.964	1.00 27.16	В
	MOTA	1632	Ō	ALA	219	41.368	24.726	57.833	1.00 26.05	В
•	MOTA	1633	N	LYS	220	39.273	24.135	57.227	1.00 26.17	В
15							24.234			В
IJ	MOTA	1634	CA	LYS	220	38.754		58.585	1.00 26.59	
	MOTA	1635	CB	LYS	220	37.203	24.057	58.592	1.00 25.82	В
	MOTA	1636	CG	LYS	220	36.477	25.037	57.691	1.00 26.36	В
	MOTA	1637	CD	LYS	220	34.997	25.195	58.065	1.00 28.61	В
	MOTA	1638	CE	LYS	220	34.827	25.771	59.471	1.00 27.13	В
20	ATOM	1639	NZ	LYS	220	33.406	26.129	59.789	1.00 25.98	В
	ATOM	1640	c	LYS	220	39.426	23.190	59.491	1.00 26.00	В
	MOTA	1641	0	LYS	220	39.715	23.465	60.665	1.00 24.88	В.
	MOTA	1642	N	ARG	221	39.671	22.000	58.937	1.00 24.80	В
~-	MOTA	1643	CA	ARG	221	40.330	20.916	59.671	1.00 22.73	В
25	MOTA	1644	CB	ARG	221	40.685	19.757	58.725	1.00 24.70	В
	MOTA	1645	CG	ARG	221	39.524	18.885	58.293	1.00 25.62	В
	ATOM	1646	CD	ARG	221	39.367	17.736	59.256	1.00 26.10	В
	MOTA	1647	NE	ARG	221	. 38:190	16.934	58.960	1.00 24.76	В
20	MOTA	1648	CZ	ARG	221	38.065	16.146	57.901	1.00 22.87	В
30	MOTA	1649		ARG	221	39.061	16.051	57.021	1.00 19.50	В
	MOTA	1650	NH2	ARG	221	36.942	15.451	57.735	1.00 20.09	В
	MOTA	1651	С	ARG	221	41.624	21.456	60.267	1.00 21.95	В
	MOTA	1652	0	ARG	221	41.889	21.306	61.466	1.00 20.88	В
	ATOM	1653	N	THR	222	42.421	22.089	59.406	1.00 20.21	В
35	MOTA	1654	CA	THR	222	43.705	22.661	59.795	1.00 19.39	В
55										
•	MOTA	1655	CB	THR	222	44.312	23.464	58.650	1.00 21.09	В
	ATOM	1656		THR	222	44.502	22.600	57.525	1.00 22.38	В
	MOTA	1657	CG2	THR	222	45.649	24.077	59.073	1.00 20.44	В
	ATOM	1658	С	THR	222	43.589	23.579	60.991	1.00 18.28	В
40	MOTA	1659	0	THR	222	44.338	23.441	61.952	1.00 17.80	В
	ATOM	1660	N	THR	223	42.649	24.517	60.926	1.00 17.37	В
	ATOM	1661	CA	THR	223	42.452	25.461	62.012	1.00 18.66	В
	MOTA	1662	CB	THR	223	41.496	26.590	61.605	1.00 17.71	В
45	ATOM	1663		THR	223	40.245	26.413	62.268	1.00 20.08	В
45	MOTA	1664	CG2	THR	223	41.258	26.581	60.111	1.00 16.54	В
	MOTA	1665	С	THR	223	41.902	24.740	63.242	1.00 20.76	В
	MOTA	1666	0	THR	223	42.206	25.120	64.374	1.00 24.08	В
	MOTA	1667	N	ALA	224	41.100	23.698		1.00 21.47	В
	MOTA	1668	CA	ALA	224	40.529	22.898	64.105	1.00 19.87	В
50										
50	ATOM	1669	CB	ALA	224	39.642	21.801	63.534	1.00 22.14	. В
	ATOM	1670	С	ALA	224	41.667	22.266	64.894	1.00 19.87	В
	MOTA	1671	0	ALA	224	41.689	22.289	66.129	1.00 16.71	В
	MOTA	1672	N	ALA	225	42.604	21.680	64.155	1.00 20.37	В
	MOTA	1673	CA	ALA	225	43.765	21.048	64.755	1.00 20.88	В
55	ATOM	1674	CB	ALA	225	44.647	20.440	63.666	1.00 19.50	В
-	ATOM	1675	c	ALA	225	44.541	22.096		1.00 22.18	В
								65.553		
	MOTA	1676	0	ALA	225	45.054	21.808	66.638	1.00 20.94	В
	MOTA	1677	N	THR	226	44.613	23.319	65.023	1.00 23.92	В.
	MOTA	1678	CA	THR	226	45.324	24.401	65.717	1.00 24.83	В
60	MOTA	1679	CB	THR	226	45.313	25.723	64.895	1.00 24.59	В
	MOTA	1680		THR	226	46.088	25.565	63.699	1.00 23.18	В
	MOTA	1681		THR	226	45.904	26.866	65.721	1.00 25.23	B
	MOTA	1682	Ç	THR	226	44.699	24.679	67.089	1.00 25.41	В
45	MOTA	1683	0	THR	226	45.405	24.877	68.083	1.00 25.12	В
65	MOTA	1684	N	LEU	227	43.370	24.680	67.130	1.00 25.47	В
	MOTA	1685	CA	LEU	227	42.619	24.942	68.353	1.00 26.90	В
	MOTA	1686	CB	LEU	227	41.222	25.541	67.980	1.00 29.00	В
	ATOM	1687	CC	LEU	227	41.051	27.041	67.561	1.00 32.68	В
70	MOTA	1688		LEU	227	42.240	27.567	66.763	1.00 31.51	В
70	MOTA	1689		LEU	227	39.756	27.156	66.755	1.00 32.75	В
	MOTA	1690	С	LEU	227	42.409	23.739	69.296	1.00 26.44	В
	MOTA	1691	0	LEU	227	42.348	23.906	70.520	1.00 25.50	В
	MOTA	1692	N	MET	228	42.295	22.533	68.755	1.00 24.99	В
										_

	MOTA	1693	CA	MET	228	42.041	21.392	69.635	1.00 25.58	8
	MOTA	1694	CB	MET	228	40.625	20.786	69.310	1.00 27.00	В
	MOTA	1695	CC	MET	228	39.499	21.798	69.554	1.00 28.30	В
_	MOTA	1696	SD	MET	228	37.874	21.368	68.919	1.00 31.74	В
5	MOTA	1697	CE	MET	228	37.998	22.026	67.265	1.00 30.21	В
	MOTA	1698	C ·	MET	228	43.091	20.301	69.666	1.00 23.55	В
	MOTA	1699	0	MET	228	43.547	19.828	68.629	1.00 23.83	В
	MOTA	1700	N	ASN	229	43.471	19.913	70.882	1.00 22.85	В
	MOTA	1701	CA	ASN	229	44.470	18.870	71.099	1.00 21.02	В
10	ATOM	1702	СВ	ASN	229	44.574	18.524	72.588	1.00 19.32	В
	ATOM	1703	CG	ASN	229	45.172	19.646	73.426	1.00 19.33	В
	MOTA	1704		ASN	229	45.690	20.634	72.899	1.00 19.44	В
	MOTA	1705	ND2	ASN	229	45.112	19.484	74.751	1.00 13.92 -	В
	MOTA	1706	C	ASN	229	44.162	17.582	70.329	1.00 21.09	В
15	MOTA	1707	ō	ASN	229	43.063	17.026	70.435	1.00 21.09	В
15		1708	N		230	45.144	17.121	69.558	1.00 20.25	В
	MOTA	1709		ALA			15.887	68.786	1.00 19.42	· B
	MOTA	1710	CA	ALA	230	45.030	14.675	69.721	1.00 21.67	В
	MOTA		CB	ALA	230	45.224			1.00 21.07	В
20	MOTA	1711	C	ALA	230	43.694	15.783	68.067		
20	MOTA	1712	0	ALA	230	43.096	14.712	68.000	1.00 17.83	В
	MOTA	1713	N	TYR	231	43.242	16.897	67.512	1.00 17.17	В
	MOTA	1714	CA	TYR	231	41.965	16.927	66.821	1.00 17.72	В
	MOTA	1715	CB	TYR	231	41.694	18.379	66.201	1.00 15.95	В
05	MOTA	1716	CG	TYR	231	40.341	18.465	65.524	1.00 12.55	В
25	ATOM	1717	CD1	TYR	231	40.205	18.269	64.151	1.00 12.28	· B
	MOTA	1718	CE1	TYR	231	38.933	18.219	63.555	1.00 8.18	. В
	MOTA	1719	CD2	TYR	231	39.182	18.621	66.279	1.00 10.61	В
	MOTA	1720	CE2	TYR	231	37.918	18.573	65.690	1.00 9.26	В
	MOTA	1721	CZ	TYR	231	37.802	18.372	64.338	1.00 6.19	В
30	MOTA	1722	ОН	TYR	231	36.545	18.335	63.777	1.00 8.98	В
	MOTA	1723	С	TYR	231	41.728	15.869	65.731	1.00 18.14	В
	MOTA	1724	0	TYR	231	40.596	15.392	65.571	1.00 17.92	В
	ATOM	1725	N	SER	232	42.769	15.504	64.982	1.00 17.34	В
	MOTA	1726	CA	SER	232	42.585	14.537	63.903	1.00 17.96	В
35	MOTA	1727	CB	SER	232	43.681	14.688	62.816	1.00 13.72	В.
	ATOM	1728	0G	SER	232	44.941	14.251	63.275	1.00 15.73	В
	ATOM	1729	c	SER	232	42.502	13.070	64.323	1.00 18.78	В
	MOTA	1730	õ	SER	232	41.934	12.255	63.598	1.00 19.24	В
	ATOM	1731	N	SER	233	43.051	12.726	65.480	1.00 17.77	В
40	MOTA	1732	CA	SER	233	43.019	11.340	65.904	1.00 16.56	В
40	ATOM				233			66.496	1.00 18.00	В
		1733	CB OG	SER		44.383 44.509	10.932	67.846	1:00 17.89	В
	MOTA	1734		SER	233		11.362			В
	MOTA	1735	C	SER	233	41.935	11.141	66.943	1.00 17.20	В
45	MOTA	1736	0	SER	233	41.413	10.035	67.110	1.00 13.55	
43	MOTA	1737	N	ARG	234	41.570	12.235	67.609	1.00 18.37	В
	ATOM	1738	CA	ARG	- 234	40.579	12.185	68.678	1.00 18.14	В
	MOTA	1739	СВ	ARG	234	41.035	13.079	69.848	1.00 20.04	В
	MOTA	1740	CG	ARG	234	41.136	12.352	71.169	1.00 23.36	В
50	MOTA	1741	CD	ARG	234	42.547	12.392	71.767	1.00 25.39	В
50	MOTA	1742	NE	ARG	234	42.847	13.651	72.455	1.00 28.46	В
	MOTA	1743	CZ	ARG	234	43.898	13.844	73.255	1.00 28.83	В
	MOTA	1744	NH1	ARG	234	44.765	12.865	73.479	1.00 28.24	В
	MOTA	1745	NH2	ARG	234	44.082	15.019	73.842	1.00 28.56	В
	MOTA	1746	С	ARG	234	39.142	12.524	68.318	1.00 17.12	В
55	MOTA	1747	0	ARG	234	38.262	12.440	69.174	1.00 16.45	В
	ATOM	1748	N	SER	235	38.879	12.876	67.064	1.00 17.25	В
	MOTA	1749	CA	SER	235	37.508	13.232	66.685	1.00 17.01	8
	MOTA	1750	CB	SER	235	37.470	14.581	66.108	1.00 16.15	В
	MOTA	1751	OG	SER	235	38.109	14.594	64.847	1.00 15.24	В
60	MOTA	1752	C	SER	235	36.847	12.297	65.697	1.00 17.23	В
	ATOM	1753	ō	SER	235	37.505	11.536	64.991	1.00 17.87	В
	MOTA	1754	N	HIS	236	35.527	12.381	65.655	1.00 16.90	В
	MOTA	1755	CA	HIS	236	34.720	11.580	64.750	1.00 18.47	В
	MOTA	1756	CB	HIS	236	33.553	10.961	65.484	1.00 20.05	В
65										В
05	MOTA	1757	CG	HIS	236	33.941	10.192	66.705		
	MOTA	1758		HIS	236	33.907	10.529	68.016	1.00 20.87	В
	MOTA	1759		HIS	236	34.444	8.910	66.650	1.00 21.00	В
	MOTA	1760		HIS	236	34.700	8.490	67.876	1.00 20.80	В
70	MOTA	1761		HIS	236	34.385	9.454	68.723	1.00 19.15	В
70	MOTA	1762	C	HIS	236	34.166	12.518	63.688	1.00 19.93	В
	MOTA	1763	0	HIS	236	33.598	13.569	64.005	1.00 18.38	В
	MOTA	1764	N	SER	237	34.326	12.155	62.425	1.00 20.64	В
	MOTA	1765	CA	SER	237	33.795	13.001	61.374	1.00 21.44	В

	MOTA	1766	СВ	SER	237	34.889	13.424	60.424	1.00 20.37	В
						35.258		59.566	1.00 19.17	
	MOTA	1767	OG.	SER	237		12.370			В
	MOTA	176B	С	SER	237	32.731	12.224	60.619	1.00 21.91	В
_	MOTA	1769	0	SER	237	32.908	11.043	60.320	1.00 21.18	В
5	MOTA	1770	N	VAL	238	31.620	12.886	60.324	1.00 21.76	В
	MOTA	1771	CA	VAL	238	30.548	12.246	59.587	1.00 22.83	В
	ATOM	1772	СВ	VAL	238	29.297	12.024	60.475	1.00 25.08	В
						29.043			1.00 27.25	В
	MOTA	1773	CG1		238		13.241	61.323		
10	ATOM	1774	CG2	VAL	238	28.077	11.717	59.601	1.00 24.91	В
10	MOTA	1775	С	VAL	238	30.176	13.052	58.366	1.00 21.64	В
	ATOM	1776	.0	VAL	238	29.399	13.986	58.450	1.00 24.16	В
	MOTA	1777	N	PHE	239	30.764	12.683	57.232	1.00 23.48	В
	ATOM	1778	CA	PHE	239	30.513	13.331	55.943	1.00 23.45	В
16	MOTA	1779	CB	PHE	239	31.736	13.139	55.002	1.00 22.63	В
15	MOTA	1780	CG	PHE	239	31.658	13.923	53.722	1.00 20.75	В
	MOTA	1781	CD1	PHE	239	30.660	13.667	52.785	1.00 19.42	В
	MOTA	1782	CD2	PHE	239	32.580	14.928	53.458	1.00 20.63	В
	MOTA	1783		PHE	239	30.578	14.403	51.596	1.00 21.05	В
	ATOM	1784		PHE	239	32.510	15.676	52.268	1.00 21.14	В
20										
20	MOTA	1785	CZ	PHE	239	31.506	15.413	51.334	1.00 19.84	В
	ATOM	1786	С	PHE	239	29.286	12.669	55.321	1.00 24.62	В
	MOTA	1787	0	PHE	239	29.326	11.482	54.983	1.00 24.57	₿.
	MOTA	1788	N	SER	240	28.202	13.430	55.178	1.00 24.38	В
	MOTA	1789	CA	SER	240	26.968	12.910	54.596	1.00 23.26	В
25	MOTA	1790	CB	SER	240	25.778	13.249	55.480	1.00 22.32	В
23										
	MOTA	1791	OG	SER	240	25.932	12.724	56.786	1.00 21.48	В
	MOTA	1792	С	SER	240	26.704	13.447	53.199	1.00 23.92	В
	MOTA	1793	0	SER	240	27.065	14.568	52.865	1.00 23.73	В
	MOTA	1794	N	VAL	241	26.067	12.622	52.382	1.00 25.40	В
30	ATOM	1795	CA	VAL	241	25.712	12.995	51.022	1.00 25.45	В
	MOTA	1796	СВ	VAL	241	26.654	12.349	49.985	1.00 26.85	В
								50.249	1.00 26.88	
	MOTA	1797		VAL	241	26.790	10.856			· B
	MOTA	1798	CG2	VAL	241	26.118	12.595	48.579	1.00 26.95	В
	MOTA	1799	С	VAL	241	24.293	12.513	50.787	1.00 25.56	В
35°	MOTA	·1800	0	VAL	241	24.013	11.321	50.856	1.00 25.33	В
	ATOM	1801	N	THR	242	23.391	13.454	50.536	1.00 26.85	В
	ATOM	1802	CA	THR	242	21.996	13.130	50.302	1.00 26.02	В
										В
	MOTA	1803	CB	THR	242	21.091		51.182	1.00 26.36	
40	MOTA	1804		THR	242	21.447	13.814	52.557	1.00 26.94	В
40	MOTA	1805	CG2	THR	242	19.628	13.612	50.995	1.00 28.00	В
	MOTA	1806	С	THR	242	21.656	13.352	48.832	1.00 27.35	В
	MOTA.	1807	0	THR	242	22.126	14.311	48.217	1.00 26.21	В
	ATOM	1808	N	ILE	243	20.857	12.451	48.263	1.00 28.40	В
	MOTA	1809	CA	ILE	243	20.468	12.564	46.861	1.00 28.65	В
45										
43	MOTA	1810	CB	ILE	243	21.048	11.407	46.017	1.00 28.29	В
	MOTA	1811	CG2		243	20.944	11.746	44.534	1.00 27.94	B
	MOTA	1812	CG1	ILE	243	22.526	11.156	46.392	1.00 29.06	В
	MOTA	1813	CD1	ILE	243	23.191	10.046	45.592	1.00 25.36	В
	MOTA	1814	С	ILE	243	18.950	12.538	46.721	1.00 29.68	В
50	ATOM	1815	ō	ILE	243	18.327	11.512	46.966	1.00 30.63	В
		1816	N	HIS	244	18.355	13.672	46.358	1.00 31.77	В
	MOTA									
	MOTA	1817	CA	HIS	244	16.908	13.744	46.158	1.00 32.56	В
	MOTA	1818	CB	HIS	244	16.354	15.175	46.421	1.00 33.70	В
	MOTA	1819	CG	HIS	244	16.323	15.570	47.864	1.00 34.78	В
55	MOTA	1820	CD2	HIS	244	15.331	15.500	48.785	1.00 35.77	В
	MOTA	1821	ND1	HIS	244	17.405	16.132	48.511	1.00 36.48	В
	MOTA	1822		HIS	244	17.080	16.392	49.765	1.00 35.67	В
									1.00 35.06	
	MOTA	1823		HIS	244	15.827	16.018	49.958		₿.
~ 0	MOTA	1824	С	HIS	244	16.700	13.383	44.693	1.00 33.70	В
60	MOTA	1825	0	HIS	244	17.271	14.020	43.798	1.00 33.29	В
	MOTA	1826	N	MET	245	15.885	12.366	44.448	1.00 34.30	В
	MOTA	1827	CA	MET	245	15.654	11.910	43.087	1.00 34.70	В
	MOTA	1828	СВ	MET	245	16.212	10.483	42.944	1.00 34.85	В
65	MOTA	1829	CG	MET	245	17.734	10.441	43.100	1.00 35.80	В
O)	MOTA	1830	SD	MET	245	18.439	8.805	43.321	1.00 36.13	В
	MOTA	1831	CE	MET	245	18.009	8.537	45.032	1.00 32.87	В
	MOTA	1832	С	MET	245	14.203	11.985	42.628	1.00 34.49	В
	ATOM	1833	ō	MET	245	13.272	11.757	43.402	1.00 33.49	В
	ATOM	1834	N	LYS	246	14.026	12.313	41.352	1.00 35.05	В
70										
,,	MOTA	1835	CA	LYS	246	12.700	12.449	40.769	1.00 36.99	В
	MOTA	1836	СB	LYS	246	12.280	13.947	40.750	1.00 38.69	В
	MOTA	1837	CG	LYS	246	10.919	14.227	40.117	1.00 43.46	В
	MOTA	1838	CD	LYS	246	10.702	15.729	39.856	1.00 45.60	В

	MOTA	1839	CE	LYS	246	10.795	16.556	41.148	1.00 48.45	В
	MOTA	1840	NZ	LYS	246	10.619	18.031	40.940	1.00 46.59	В
	MOTA	1841	С	LYS	246	12.654	11.889	39.353	1.00 36.70	В
_	ATOM	1842	0	LYS	246	13.324	12.387	38.452	1.00 36.63	В
5	MOTA	1843	N	GLU	247	11.864	10.841	39.166	1.00 36.80	В
	MOTA	1844	CA	GLU	247	11.706	10.240	37.854	1.00 37.12	В
	MOTA	1845	CB	GLU	247	12.209	8.806	37.866	1.00 37.24	В
	MOTA	1846	CG	GLU	247	11.710	7.990	39.036	1.00 37.73	В
10	MOTA	1847	CD	GLU	247	12.621	6.820	39.347	1.00 38.20	В
10	MOTA	1848	OE1		247	12.293	6.035	40.262	1.00 37.07	В
	MOTA	1849	OE2		247	13.670	6.692	38.677	1.00 38.76	В
	MOTA	1850	С	GLU	247	10.228	10.299	37.498	1.00 36.40	В
	MOTA	1851	0	GLU	247	9.369	10.193	38.365	1.00 35.41	В
15	MOTA	1852	N	THR	248	9.940	10.498	36.219	1.00 37.67	В
15	ATOM	1853	CA	THR	248	8.563	10.587	35.746	1.00 39.02	В
	MOTA	1854 1855	CB	THR	248	8.344	11.889	34.920	1.00 39.40	. В
	MOTA	1856	· OG1 CG2		248 248	8.754 6.877	13.025 12.050	35.693 34.543	1.00 40.65	В
	ATOM ATOM	1857	C	THR	248	8.240	9.381	34.863	1.00 39.45	В
20	MOTA	1858	ŏ	THR	248	8.959	9.095	33.902	1.00 39.20	В
20	MOTA	1859	N	THR	249	7.158	8.678	35.187	1.00 39.85	В
	MOTA	1860	CA	THR	249	6.751	7.515	34.407	1.00 40.93	В
	MOTA	1861	CB	THR	249	5.642	6.728	35.119	1.00 41.31	В
	ATOM	1862		THR	249	4.458	7.531	35.190	1.00 40.33	В
25	ATOM	1863		THR	249	6.078	6.345	36.527	1.00 39.92	В
	ATOM	1864	С	THR	249	6.233	7.952	33.039	1.00 41.94	. В
	MOTA	1865	0	THR	249	6.178	9.145	32.736	1.00 41.92	В
	ATOM	1866	N	ILE	250	5.857	6.979	32.214	1.00 43.64	В
20	MOTA	1867	CA	ILE	250	5.343	7.253	30.875	1.00 43.57	В
30	MOTA	1868	СB	ILE	250	5.340	5.970	30.004	1.00 43.38	В
	MOTA	1869		ΙLΕ	250	4.228	5.029	30.465	1.00 41.86	В
	MOTA	1870		ILE	250	5.173	6.343	28.510	1.00 41.89	В
	MOTA	1871		ILE	250	5.286	5.169	27.560	1.00 39.31	В
35	MOTA	1872	C	ILE	250	3.922	7.805	30.983	1.00 44.06	В
33	MOTA	1873	0	ILE	250	3.320	8.197	29.984	1.00 43.16	В.
	MOTA	1874 1875	N CA	ASP ASP	251 251	3.402 2.059	7.834 8.353	32.209 32.493	1.00 45.37	B B
	ATOM ATOM	1876	CB	ASP	251	1.319	7.437	33.502	1.00 47.52	В
	ATOM	1877	CG	ASP	251	0.719	6.208	32.852	1.00 46.95	В
40	MOTA	1878		ASP	251	0.222	5.335	33.595	1.00 46.42	B
••	MOTA	1879		ASP	251	0.735	6.121	31.606	1.00 46.77	В
	ATOM	1880	C	ASP	251	2.097	9.778	33.061	1.00 48.00	В
	ATOM	1881	ō	ASP	251	1.052	10.349	33.377	1.00 49.62	В
	MOTA	1882	N	GLY	252	3.297	10.339	33.195	1.00 48.57	В
45	MOTA	1883	CA	GLY	252	3.445	11.684	33.725	1.00 48.41	В
	MOTA	1884	С	GLY	252	3.519	11.749	35.243	1.00 49.25	В
	MOTA	1885	0	GLY	252	3.592	12.839	35.823	1.00 48.30	В
	MOTA	1886	N	GLU	253	3.489	10.584	35.890	1.00 49.52	В
50	MOTA	1887	CA	GLU	253	3.555	10.504	37.349	1.00 49.94	В
50	MOTA	1888	CB	GLU	253	2.989	9.156	37.839	1.00 51.87	В
	MOTA	1889	CG	GLU	253	3.083	8.942	39.349	1.00 55.20	В
	MOTA	1890	CD	GLU	253	2.805	7.498 7.204	39.764 40.981	1.00 57.60 1.00 58.27	B B
	MOTA MOTA	1891 1892		GLU	253 253	2.837 2.558	6.655	38.875	1.00 58.27	B
55	MOTA	1893	C	GLU	253	4.996	10.659	37.835	1.00 49.08	В
55	MOTA	1894	ŏ	GLU	253	5.948	10.301	37.136	1.00 47.88	В
	ATOM	1895	N	GLU	254	5.148	11.187	39.043	1.00 48.18	В
	ATOM	1896	CA	GLU	254	6.471	11.394	39.610	1.00 48.03	В
	MOTA	1897	CB	GLU	254	6.633	12.854	40.000	1.00 48.74	B
60	ATOM	1898	CG	GLU	254	6.950	13.761	38.827	1.00 51.39	В
	ATOM	1899	CD	GLU	254	6.866	15.232	39.193	1.00 53.81	В
	ATOM	1900		GLU	254	7.184	15.575	40.356	1.00 54.50	В
	MOTA	1901		GLU	254	6.493	16.043	38.313	1.00 54.20	В
	MOTA	1902	С	GLU	254	6.817	10.497	40.797	1.00 46.73	В
65	MOTA	1903	0	GLU	254	6.111	10.466	41.805	1.00 46.07	В
	MOTA	1904	N	LEU	255	7.918	9.763	40.651	1.00 45.44	В
	MOTA	1905	CA	LEU	255	8.416	8.869	41.689	1.00 43.34	В
	MOTA	1906	CB	LEU	255	8.880	7.522	41.069	1.00 42.70	В
70	MOTA	1907	CG	LEU	255	7.888	6.755	40.138	1.00 42.10	В
70	MOTA	1908		LEU	255	8.584	5.548	39.528	1.00 41.93	В
	MOTA	1909		LEU	255	6.658	6.322	40.919	1.00 42.42	В
	MOTA	1910	C	LEU	255	9.603	9.591	42.329	1.00 42.63	В
	MOTA	1911	0	LEU	255	10.599	9.886	41.662	1.00 40.70	В

•	MOTA	1912	N	VAL	256	9.484	9.890	43.617	1.00 41.65	В
	MOTA	1913	CA	VAL	256	10.540	10.594	44.326	1.00 41.53	В
	MOTA	1914	CB	VAL	256	9.994	11.865	45.040	1.00 42.73	В
-	MOTA	1915	CG1		256	9.445	12.851	44.013	1.00 41.79	В
5	MOTA	1916	CG2		256	8.899	11.487	46.028	1.00 43.14	· В
	MOTA	1917	С	VAL	256	11.192	9.691	45.357	1.00 40.91	В
	MOTA	1918	0	VAL	256	10.516	9.123	46.216	1.00 42.52	В
	MOTA	1919	N	LYS	257	12.507	9.542	45.255	1.00 38.10	В
10	MOTA	1920	CA	LYS	257	13.237	8.718	46.200	1.00 35.97	В
10	MOTA	1921	CB	LYS	257	13.712	7.370	45.525	1.00 37.07	В
	MOTA	1922	CG	LYS	257	14.482	7.490	44.219	1.00 35.97	В
	MOTA	1923	CD	LYS	257	14.612	6.108	43.592	1.00 34.96	В
	MOTA	1924	CE	LYS	257	15.566	6.085	42.412	1.00 36.06	В
• •	MOTA	1925	NZ	LYS	257	15.142	6.972	41,303	1.00 38.19	В
15	ATOM	1926	С	LYS	257	14.408	9.497	46.777	1.00 34.33	В
	MOTA	1927	0	LYS	257	15.100	10.227	46.074	1.00 35.94	В
	MOTA	1928	N	ILE	258	14.618	9.345	48.074	1.00 31.24	В
	MOTA	1929	CA	ILE	258	15.677	10.066	48.747	1.00 27.10	В
.	MOTA	1930	CB	ILE	258	15.077	10.988	49.842	1.00 28.34	В
20	MOTA	1931		ILE	258	16.181	11.791	50.516	1.00 26.47	В
	MOTA	1932		ILE	258	14.021	11.949	49.203	1.00 27.71	В
	MOTA	1933	CD1	ILE	258	13.168	12.703	50.214	1.00 25.91	В.
	MOTA	1934	С	ILE	258	16.695	9.136	49.382	1.00 24.38	В
25	ATOM	1935	0	ILE	258	16.386	8.400	50.314	1.00 22.26	·B
25	MOTA	1936	N	GLY	259	17.917	9.182	48.872	1.00 22.97	В
	MOTA	1937	CA	GLY	259	18.975	8.359	49.422	1.00 22.93	В
	MOTA	1938	C	GLY	259	20.055	9.163	50.135	1.00 22.70	В
	MOTA	1939	0	GLY	259	20.561	10.161	49.609	1.00 21.85	В
20	MOTA	1940	N	LYS	260	20.410	8.731	51.339	1.00 21.39	В
30	MOTA	1941	CA	LYS	260	21.441	9.412	52.112	1.00 21.77	В
	MOTA	1942	CB	LYS	260	20.834	10.042	53.411	1.00 20.00	В
	MOTA	1943	CG	LYS	260	21.805	10.848	54.262	1.00 17.18	В
	ATOM	1944	CD	LYS	260	21.119	11.342	55.534	1.00 16.09	В
25	MOTA	1945	CE	LYS	260	22.049	12.181	56.417	1.00 16.97	В
35	MOTA	1946	NZ	LYS	260	21.341	12.724	57.641	1.00 15.85	В
	MOTA	1947	C	LYS	260	22.545	8.419	52.469	1.00 21.92	В
	MOTA	1948	0	LYS	260	22.284	7.303	52.938	1.00 22.32	В
	MOTA	1949	N	LEU	261	23.780	8.837	52.236	1.00 19.52	В
40	MOTA	1950	CA	LEU	261	24.932	8.009	52.520	1.00 17.05	В
40	MOTA	1951	CB	LEU	261	25.693	7.741	51.235	1.00 14:85	. В
	MOTA	1952	CG	LEU	261	27.111	7.236	51.385	1.00 14.96	В
	MOTA	1953		LEU	261	27.114	5.939	52.165	1.00 12.47	В
	MOTA	1954		LEU	261	27.730	7.054	50.019	1.00 12.11	В
45	MOTA	1955	C	LEU	261	25.828	8.720	53.519	1.00 17.96	В
45	MOTA	1956	0	LEU	261	26.258	9.850	53.284	1.00 16.25	В
	MOTA	1957	N	ASN	262	26.099	8.063	54.643	1.00 18.12	В
	MOTA	1958	CA	ASN	262	26.970	8.640	55.670	1.00 18.04	В
	MOTA	1959	CB	ASN	. 262	26.336	8.512	57.080	1.00 15.45	В
50	MOTA	1960	CG	ASN	262	24.943	9.103	57.152	1.00 17.34	В
50	MOTA	1961		ASN	262	23.957	8.381	57.282	1.00 17.52	В
	MOTA	1962		ASN	262	24.855	10.420	57.070	1.00 17.02	В
	MOTA	1963	Ç	ASN	262	28.327	7.929	55.664	1.00 18.26	В
	MOTA	1964	0	ASN	262	28.399	6.697	-55.735	1.00 16.87	В
55	MOTA MOTA	1965	N	LEU	263 263	29.394	8.717 8.200	55.564	1.00 18.04	В
55		1966	CA CB	LEU		30.759		55.560	1.00 17.90	B B
	ATOM	1967 1968			263	31.482	8.723	54.339	1.00 15.70	В
	MOTA		CG	LEU	263	30.717	8.283	53.075	1.00 17.05	
	MOTA	1969		LEU	263	31.255	8.961	51.853	1.00 16.38	В.
60	MOTA	1970		LEU	263	30.812	6.754	52.929	1.00 18.46	В
OO	MOTA	1971	C	LEU	263	31:411	8.688	56.849	1.00 18.79	В
	MOTA	1972	0	LEU	263	31.712	9.873	56.992	1.00 20.38	В
	MOTA	1973	N	VAL	264	31.614	7.774	57.794	1.00 18.49	В
	MOTA MOTA	1974 1975	CA	VAL	264 264	32.183	8.128	59.093	1.00 18.30	B B
65	MOTA	1975	CB	VAL VAL	264	31.335	7.529	60.228 61.561	1.00 18.68	В
05	ATOM			VAL		31.752	8.115		1.00 17.56	
		1977			264	29.858	7.772 7.696	59.955	1.00 21.14	В
	MOTA MOTA	1978 1979	С 0	VAL VAL	264 264	33.627 33.952	6.513	59.333 59.210	1.00 19.31	В
	ATOM	1979		ASP	265	33.952	8.667		1.00 19.80	B B
70	ATOM	1980	N	ASP	265 265			59.680	1.00 17.81	
, 0	ATOM	1981	CA	ASP		35.880	8.419	59.995 59.355		В
	ATOM		CB	ASP	265 265	36.771	9.484		1.00 14.42	B 19
		1983 1984	CG	ASP	265	38.258 38.583	9.279	59.658	1.00 16.29	B B
•	ATOM	1704	ODI	ASP	265	20.203	8.741	60.736	1.00 19.48	D

	MOTA	1985	OD2	ASP	265	39.110	9.677	58.832	1.00 16.17	В
	ATOM	1986	С	ASP	265	35.971	8.507	61.528	1.00 15.62	В
	ATOM	1987		ASP	265		9.593	62.086	1.00 17.19	
			0			36.119				В
_	MOTA	1988	N	LEU	266	35.891	7.367	62.205	1.00 13.53	В
5	MOTA	1989	CA	LEU	266	35.930	7.357	63.666	1.00 12.99	В
	ATOM	1990	CB	LEU	266	35.555	5.913	64.239	1.00 9.90	В
	ATOM	1991	CG	LEU	266	34.172	5.339	63.898	1.00 12.88	B
	MOTA	1992		LEU	266	34.070	3.881	64.374	1.00 12.44	В
	MOTA	1993	CD2	LEU	266	33.088	6.185	64.542	1.00 11.19	В
10	MOTA	1994	С	LEU	266	37.277	7.783	64.240	1.00 11.25	В
	ATOM	1995	Ō	LEU	266	38.274	7.867	63.532	1.00 7.77	В
	MOTA	1996	N	ALA	267	37.263	8.059	65.539	1.00 10.58	В
	ATOM	1997	ÇA	ALA	267	38.453	8.422	66.284	1.00 13.04	В
	MOTA	1998	CB	ALA	267	38.057	9.029	67.634	1.00 11.27	В
15	MOTA	1999	С	ALA	267	39.221	7.125	66.507	1.00 14.13	В
	ATOM	2000	ō	ALA	267	38.610	6.077	66.718	1.00 16.34	В
	ATOM	2001	N	GLY	268	40.546	7.190	66.475	1.00 14.85	В
	MOTA	2002	CA	GLY	268	41.347	5.999	66.688	1.00 17.83	В
	ATOM	2003	С	GLY	268	40.934	5.198	67.909	1.00 20.15	В
20	MOTA	2004	0	GLY	268	40.663	5.760	68.978	1.00 21.52	В
_ •	ATOM	2005	N	SER	269	40.918	3.878	67.773	1.00 20.60	В
	MOTA	2006	CA	SER	269	40.500	3.017	68.878	1.00 23.05	В
	MOTA	2007	CB	SER	269	39.929	1.721	68.324	1.00 20.23	В
	MOTA	2008	OG	SER	269	40.842	1.099	67.442	1.00 17.43	В
25	ATOM	2009	C	SER	269	41.546	2.678	69.941	1.00 26.49	В
	ATOM	2010	õ	SER	269	41.227		70.903		
							1.969		1.00 27.04	. В
	MOTA	2011	N	GLU	270	42.775	3.171	69.781	1.00 29.47	В
	MOTA	2012	CA	GLU	270	43.848	2.887	70.743	1.00 32.95	В
	MOTA	2013	CB	GLU	270	45.234	3.432	70.210	1.00 32.65	В
30	ATOM	2014	CG	GLU	270	45.405	4.968	70.193	1.00 30.27	В
	MOTA	2015	CD	GLU	270	44.822	5.656	68.963	1.00 30.89	В
	MOTA	2016		GLU	270	44.879	6.908	68.911	1.00 32.19	В
	MOTA	2017	OE2	GLU	270	44.315	4.961	68.052	1.00 28.80	B
	ATOM	2018	С	GLU	270	43.560	3.472	72.129	1.00 36.87	В
35	ATOM	2019	0	GLU	270	43.380	4.681	72.277	1.00 39.21	В
									1.00 40.27	
	MOTA	2020	N	ASN	271	43.503	2.613	73.143		В
	MOTA	2021	CA	ASN	271	43.238	3.062	74.515	1.00 42.68	В
	MOTA	2022	СВ	ASN	271	42.196	2.131	75.222	1.00 43.15	В
	MOTA	2023	CG	ASN	271	40.798	2.244	74.621	1.00 45.39	В
40	MOTA	2024		ASN	271	40.230	3.337	74.540	1.00 46.39	B
. •	ATOM	2025		ASN	271					
						40.232	1.109	74.210	1.00 43.39	В
	MOTA	2026	С	ASN	271	44.528	3.093	75.331	1.00 43.55	В
	MOTA	2027	0	asn	271	45.603	2.746	74.833	1.00 43.93	В
	MOTA	2028	N	ASN	287	41.588	11.864	79.666	1.00 44.94	В
45	MOTA	2029	CA	ASN	287	40.716	12.252	78.558	1.00 45.22	В
	MOTA	2030	СВ	ASN	287	41.514		77.476		
							13.086		1.00 48.29	В
	MOTA	2031	CG	ASN	287	42.261	14.276	78.074	1.00 50.68	В
	MOTA	2032	OD1	ASN	287	43.249	14.106	78.796	1.00 51.76	В
	MOTA	2033	ND2	ASN	287	41.791	15.488	77.774	1.00 51.75	В
50	MOTA	2034	С	ASN	287	40.091	11.016	77.897	1.00 42.90	В
	ATOM	2035	ŏ	ASN	287	40.787	10.182	77.315	1.00 42.06	В
	MOTA	2036	N	ILE	288	38.771	10.914	77.995	1.00 40.12	В
	MOTA	2037	CA	ILE	288	38.034	9.794	77.424	1.00 36.62	В
	MOTA	2038	CB	ILE	288	37.110	9.146	.78.479	1.00 37.65	В
55	MOTA	2039	CG2	ILE	288	37.911	8.154	79.325	1.00 38.70	В
	MOTA	2040		ILE	288	36.464	10.252	79.390	1.00 36.64	В
	MOTA	2041		ILE	288	35.583	11.252	78.657	1.00 36.28	В
	MOTA	2042	C	ILE	288	37.183	10.200	76.230	1.00 33.35	В
	MOTA	2043	0	ILE	288	36.763	11.356	7.6.100	1.00 34.53	В
60	MOTA	2044	N	ASN	289	36.938	9.252	75.342	1.00 27.16	В
	MOTA	2045	CA		289	36.112		74.199		
				ASN			9.564		1.00 23.25	В
	MOTA	2046	CB	ASN	289	36.731	9.052	72.954	1.00 20.82	В
	MOTA	2047	CG	ASN	289	36.172	9.721	71.712	1.00 19.85	В
	MOTA	2048	OD1	ASN	289	36.929	10.208	70.878	1.00 19.66	В
65	MOTA	2049		ASN	289	34.846	9.737	71.576	1.00 17.37	В
	MOTA	2050	C	ASN.	289			74.459		
						34.763	8.912		1.00 20.79	В
	MOTA	2051	0	ASN	289	34.553	7.735	74.170	1.00 18.65	В
	MOTA	2052	N	GLN	290	33.863	9.694	75.042	1.00 19.57	В
	MOTA	2053	CA	GLN	290	32.537	9.216	75.379	1.00 19.29	В
70	MOTA	2054	CB	GLN	290	31.678	10.366	75.901	1.00 19.26	В
	MOTA									
		2055	CG	GLN	290	30.278	9.942	76.312	1.00 19.65	В
	MOTA	2056	CD	GLN	290	30.265	8.891	77.423	1.00 20.79	В
	MOTA	2057	OE1	GLN	290	29.211	8.339	77.754	1.00 21.88	В

•	MOTA	2058	NE2	GLN	290	31.427	8.621	78.006	1.00 18.18	В
	MOTA	2059	С	GLN	290	31.830	8.538	74.214	1.00 18.80	В
	MOTA	2060	0	GLN	290	31.199	7.502	74.397	1.00 17.47	В
_	MOTA	2061	N	SER	291	31.939	9.122	73.021	1.00 18.97	В
5	ATOM	2062	CA	SER	291	31.289	8.565	71.841	1.00 18.84	В
_	MOTA	2063	CB	SER	291	31.326	9.565	70.646	1.00 19.15	В
	MOTA	2064	ŌĞ	SER	291	30.347	10.593	70.784	1.00 19.00	В
	ATOM	2065	c	SER	291	31.897	7.239	71.420	1.00 19.68	В
						31.173	6.323	71.027	1.00 21.26	В
10	MOTA	2066	. 0	SER	291					
10	ATOM	2067	N	LEU	292	33.219	7.131	71.494	1.00 18.43	В
	MOTA	2068	-CA	LEU	292	33.872	5.888	71.128	1.00 17.73	В
	MOTA	2069	СВ	LEU	292	35.361	6.070	71.140	1.00 15.77	В
	MOTA	2070	ÇG	LEU	292	36.119	4.969	70.418	1.00 15.31	В
	MOTA	2071	CD1		292	35.703	4.951	68.953	1.00 11.07	В
15	MOTA	2072	CD2	LEU	292	37.621	5.213	70.548	1.00 16.30	В
	MOTA	2073	С	LEU	292	33.461	4.827	72.159	1.00 19.37	В
	MOTA	2074	0	LEU	292	33.107	3.698	71.814	1.00 20.03	В
	ATOM	2075	N	LEU	293	33.504	5.219	73.430	1.00 19.01	В
	MOTA	2076	CA	LEU	293	33.137	4.357	74.531	1.00 18.18	В
20	MOTA	2077	СВ	LEU	293	33.194	5.140	75.819	1.00 16.50	В
	ATOM	2078	CG	LEU	293	34.193	4.752	76.903	1.00 18.80	В
	MOTA	2079	CD1		293	35.291	3.824	76.354	1.00 14.59	В
	MOTA	2080	CD2		293	34.789	6.039	77.485	1.00 18.33	В.
	ATOM	2081	c	LEU	293	31.724	3.828	74.326	1.00 20.79	В
25	MOTA	2082	ŏ	LEU	293	31.446	2.629	74.480	1.00 21.79	В
	ATOM	2083	N	THR	294	30.824	4.730	73.972	1.00 20.82	В
	MOTA	2084	CA	THR	294	29.444	4.348	73.785	1.00 20.02	В
	MOTA	2085	CB	THR	294	 28.556	5.607	73.770	1.00 21.70	В
		2086		THR	294	28.737	6.305	75.012	1.00 20.05	В
30	MOTA	2087	CG2		294	27.085	5.243	73.638	1.00 23.08	В
50	MOTA									
	MOTA	2088	C	THR	294	29.245	3.488 2.589	72.541 72.541	1.00 22.57 1.00 24.83	В
	MOTA	2089	0	THR	294	28.410				В
	ATOM	2090	N	LEU	295	30.028	3.726	71.492	1.00 22.48	В
35	MOTA	2091	CA	LEU	295	29.888	2.929	70.278	1.00 20.67	В
22	MOTA	-2092	CB	LEU	295	30.896	3.354	69.239	1.00 16.50	В
•	MOTA	2093	CG	LEU	295	30.872	2.542	67.933	1.00 15.31	В
	MOTA	2094		LEU	295	29.480	2.540	67.301	1.00 9.83	В
	MOTA	2095		LEU	295	31.901	3.126	66.996	1.00 13.69	В
40	ATOM	2096	c	LEU	295	30.072	1.453	70.614	1.00 21.75	В
40	MOTA	2097	0	LEU	295	29.261	0.620	70.222	1.00 22.82	В
	MOTA	2098	N	GLY	296	31.141	1.141	71.345	1.00 22.87	В
	MOTA	2099	CA	GLY	296	31.402	-0.230	71.753	1.00 21.35	В
	MOTA	2100	Ç	GLY	296	30.318	-0.785	72.668	1.00 20.58	В
15	MOTA	2101	0	GLY	296	29.960	-1.950	72.566	1.00 22.84	В
45	ATOM	2102	N	ARG	297	29.782	0.034	73.562	1.00 19.00	В
	MOTA	2103	CA	ARG	297	28.735	-0.441	74.462	1.00 18.91	В
	MOTA	2104	CB	ARG	297	28.530	0.539	75.601	1.00 17.91	В
	MOTA	2105	CG	ARG	297	29.645	0.523	76.596	1.00 17.55	B
	MOTA	2106	CD.	ARG	297	29.622	1.775	77.433	1.00 21.12	В
50	MOTA	2107	NE	ARG	297	30.783	1.860	78.311	1.00 20.84	, В
	MOTA	2108	CZ	ARG	297	31.212	2.987	78.862	1.00 19.95	В
	MOTA	2109	NH1	ARG	297	30.567	4.118	78.614	1.00 19.89	В
	MOTA	2110	NH2	ARG	297	32.274	2.982	79.661	1.00 15.55	В
	MOTA	2111	С	ARG	297	27.419	-0.662	73.733	1.00 18.05	В
55	MOTA	2112	0	ARG	297	26.581	-1.440	74.177	1.00 18.18	В
	MOTA	2113	N	VAL	298	27.235	0.035	72.618	1.00 19.06	В
	MOTA	2114	CA	VAL	298	26.019	-0.106	71.823	1.00 17.97	В
	MOTA	2115	СВ	VAL	298	25.816	1.111	70.885	1.00 15.95	В.
	ATOM	2116		VAL	298	24.691	0.843	69.899	1.00 13.08	В
60	ATOM	2117		VAL	298	25.507	2.350	71.710	1.00 14.44	В
	MOTA	2118	C	VAL	298	26.140	-1.377	70.985	1.00 19.67	В
	ATOM	2119	ŏ	VAL	298	25.153	-2.075	70.749	1.00 21.91	В
	MOTA	2120	N	ILE	299	27.356	-1.686	70.544	1.00 19.47	В
	MOTA	2121	CA	ILE	299	27.570	-2.879	69.736	1.00 21.25	В
65	ATOM	2122	CB	ILE	299	28.973	-2.830	69.068	1.00 21.35	В
55	ATOM	2123		ILE	299	29.354	-4.192	68.502	1.00 19.14	В
	ATOM	2124		ILE	299	28.950	-1.752	67.932	1.00 19.14	В
		2125		ILE	299			67.523	1.00 19.64	В
	ATOM				299	30.316	-1.238		1.00 19.64	В
70	MOTA	2126	C	ILE		27.399	-4.122	70.610	1.00 22.50	
, 0	ATOM	2127	O N	ILE	299 300	26.774	-5.102	70.206 71.821		В
	ATOM	2128	N	THR	300	27.936	-4.057		1.00 23.04	В
	ATOM	2129	CA.	THR	300	27.827	-5.153	72.763	1.00 23.72	В
	MOTA	2130	CB	THR	300	28.521	-4.787	74.068	1.00 23.18	В

	MOTA	2131	OG1	(BUD	300	29.923	-4.646	73.811	1.00 21.92	В
	MOTA	2132	CG2		300	28.284	-5.841	75.138	1.00 17.93	В
	MOTA	2133		THR	300	26.353	-5.447	73.130	1.00 27.59	В
	MOTA	2134	C	THR	300	25.878	-6.563	72.787	1.00 27.46	В
5		2135		ALA			-4.438	73.480	1.00 27.40	В
,	ATOM		N		301	25.626			1.00 29.03	
	MOTA	2136	CA	ALA	301	24.206	-4.600	73.754		В
	MOTA	2137	СВ	ALA	301	23.598	-3.262	74.139	1.00 31.16	В
	ATOM	2138	C	ALA	301	23.437	-5.196	72.573	1.00 32.99	В
10	MOTA	2139	0	ALA	301	22.545	-6.017	72.772	1.00 35.01	В
10	ATOM	2140	N	LEU	302	23.770	-4.780	71.351	1.00 34.50	В
	MOTA	2141	CA	LEU	302	23.088	-5.279	70.152	1.00 34.70	В
	MOTA	2142	CB	LEU	302	23.440	-4.425	68.943	1.00 35.01	В
	MOTA	2143	CG	LEU	302	22.840	-2.999	68.895	1.00 35.55	В
1.0	MOTA	2144	CD1		302	23.474	-2.227	67.759	1.00 36.40	В
15	MOTA	2145	CD2	LEU	302	21.334	-3.063	68.714	1.00 33.89	В
	MOTA	2146	С	LEU	302	23.451	-6.721	69.855	1.00 35.87	В
	MOTA	2147	0	LEU	302	22.590	-7.547	69.549	1.00 36.50	В
	MOTA	2148	N	VAL	303	24.742	-7.008	69.941	1.00 36.97	В
00	MOTA	2149	CA	VAL	303	25.271	-8.339	69.691	1.00 36.81	В
20	MOTA	2150	CB	VAL	303	26.818	-8.289	69.707	1.00 36.26	В
	MOTA	2151	CG1	VAL	303 .	27.402	-9.658	69.961	1.00 35.12	В
	· MOTA	2152	CG2	VAL	303	27.316	-7.726	68.384	1.00 35.06	В
	MOTA	2153	С	VAL	303	24.757	-9.359	70.711	1.00 38.19	В
	MOTA	2154	0	VAL	303	24.495	-10.506	70.368	1.00 39.57	В
25	MOTA	2155	N	GLU	304	24.597	-8.928	71.957	1.00 39.43	В
	MOTA	2156	CA	GLU	304	24.129	-9.796	73.032	1.00 40.38	. В
	MOTA	2157	CB	GLU	304	24.768	-9.359	74.350	1.00 41.03	В
	ATOM	2158	CG	GLU	304	26.290	-9.464	74.347	1.00 42.14	В
	MOTA	2159	CD	GLU	304	26.889	-9.210	75.713	1.00 43.89	В
30	MOTA	2160	OE1	GLU	304	28.116	-9.390	75.879	1.00 42.77	В
	ATOM	2161	OE2		.304	26.127	-8.827	76.625	1.00 45.66	В
	ATOM	2162	С	GLU	304	22.612	-9.817	73.179	1.00 41.20	В
	ATOM	2163	0	GLU	304	22.071	-10.477	74.062	1.00 39.68	В
	ATOM	2164	N	ARG	305	21.932	-9.088	72.305	1.00 44.11	В
35	ATOM	2165	CA	ARG	305	20.474	-9.004	72.310	1.00 46.91	В
	MOTA	2166	CB	ARG	305		-10.408	71.997	1.00 48.72	В
	ATOM	2167	CG	ARG	305		-11.222	70.897	1.00 52.86	В
	ATOM	2168	ÇD	ARG	305		-10.461	69.579	1.00 56.32	В
	MOTA	2169	NE	ARG	305		-11.268	68.582	1.00 59.70	В
40	ATOM	2170	CZ	ARG	305	21.970	-10.782	67.483	1.00 61.81	B
	ATOM	2171	NH1		305	21.926	-9.479	67.221	1.00 61.95	В
	ATOM	2172	NH2		305		-11.601	66.649	1.00 61.81	В
	ATOM	2173	C	ARG	305	19.890	-8.469	73.620	1.00 47.13	В
	ATOM	2174	ō	ARG	305	18.784	-8.840	73.996	1.00 48.14	В
45	MOTA	2175	N	THR	306	20.621	-7.599	74.311	1.00 48.36	В
	ATOM	2176	CA	THR	306	20.135	-7.027	75.568	1.00 49.45	В
	MOTA	2177	CB	THR	306	21.275	-6.367	76.356	1.00 49.08	В
	MOTA	2178		THR	306	22.429	-7.214	76.326	1.00 49.36	В
	MOTA	2179		THR	306	20.862	-6.155	77.802	1.00 48.92	В
50	MOTA	2180	C	THR	306	19.066	-5.972	75.262	1.00 50.64	B
-	ATOM	2181	ŏ	THR	306	19.275	-5.091	74.428	1.00 51.81	В
	MOTA	2182	N	PRO	307	17.910	-6.044	75.942	1.00 51.76	В
	MOTA	2183	CD		307	17.651	-6.959	77.068	1.00 52.91	В
	ATOM	2184	CA	PRO	307	16.779	-5.119	75.761	1.00 52.01	В
55	MOTA	2185	СВ	PRO	307	15.945	-5.358	76.995	1.00 52.53	В
	ATOM	2186	CC.	PRO	307	16.158	-6.818	77.257	1.00 53.28	B
	ATOM	2187	c	PRO	307	17.124	-3.638	75.585	1.00 51.42	В
	ATOM	2188	ō	PRO	307	16.624	-2.983	74.664	1.00 51.33	В
	MOTA	2189	N	HIS	308	17.973	-3.115	76.466	1.00 49.88	В
60								76.410		
00	MOTA MOTA	2190 2191		HIS	308 308	18.359 18.432	-1.711	77.832	1.00 47.29 1.00 50.27	B
		2192	CB	HIS			-1.141			В
	MOTA MOTA	2192	CG	HIS HIS	308 308	18.812 19.992	0.306 0.909	77.877 78.158	1.00 54.50 1.00 55.48	B B
65	MOTA	2194		HIS	308	17.931	1.318	77.559	1.00 55.94	.B
UJ	MOTA	2195		HIS	308	18.552	2.482	77.641	1.00 56.20	В
	MOTA	2196		HIS	308	19.804	2.262	78.003	1.00 56.35	В
	MOTA	2197	C	HIS	308	19.685	-1.445	75.690	1.00 43.71	В
	MOTA	2198	0	HIS	308	20.709	-2.061	75.991	1.00 43.17	В
70	MOTA	2199	N	VAL	309	19.649	-0.517	74.737	1.00 39.63	В
70	MOTA	2200	CA	VAL	309	20.829	-0.117	73.964	1.00 34.96	В
	MOTA	2201	CB	VAL	309	20.561	-0.206	72.449	1.00 34.96	В
	MOTA	2202		VAL	309	21.858	0.013	71.675	1.00 34.27	В
	MOTA	2203	CG2	VAL	309	19.934	-1.548	72.114	1.00 32.68	В
								-		

	MOTA	2204	С	VAL	309	21.086	1.344	74.336	1.00 31.77	В
	MOTA	2205	0	VAL	309	20.237	2.204	74.102	1.00 30.77	В
	ATOM	2206	N	PRO	310	22.266	1.642	74.906	1.00 29.55	В
	ATOM	2207	CD	PRO	310	23.347	0.670	75.171	1.00 27.65	В
5		2208	CA	PRO	310	22.652	2.997	75.335	1.00 29.03	В
,	MOTA									В
	MOTA	2209	СВ	PRO	310	23.856	2.732	76.230	1.00 29.20	
	MOTA	. 2210	CG	PRO	310	24.518	1.555	75.539	1.00 27.40	В
	MOTA	2211	С	PRO	310	22.949	4.064	74.268	1.00 28.13	В
	MOTA	2212	0	PRO	310	23.960	4.760	74.357	1.00 27.93	В
10	ATOM	2213	N	TYR	311	22.064	4.198	73.284	1.00 27.73	В
	ATOM	2214	ÇA	TYR	311	22.217	5.175	72.203	1.00 28.46	В
			CB	TYR	311	20.949	5.195	71.291	1.00 29.00	В
	ATOM	2215								В
	ATOM	2216	CG	TYR	311	20.724	3.960	70.450	1.00 32.30	
1.5	MOTA	2217	CD1	TYR	311	21.600	3.631	69.413	1.00 32.05	В
.15	MOTA	2218	CE1		311	21.393	2.492	68.628	1.00 34.37	₿
	ATOM	2219	CD2	TYR	311	19.627	3.119	70.686	1.00 31.31	В
	MOTA	2220	CE2	TYR	311	19.411	1.979	69.908	1.00 32.07	В
	ATOM	2221	CZ	TYR	311	20.299	1.669	68.882	1.00 34.42	В
	ATOM	2222	ОН	TYR	311	20,120	0.531	68.122	1.00 35.43	В
20	ATOM	2223	c	TYR	311	22.458	6.611	72.678	1.00 28.67	В
	MOTA	2224	ŏ	TYR	311	23.343	7.296	72.177	1.00 27.07	В
							7.059			В
	ATOM	2225	N	ARG	312	21.652		73.635	1.00 29.15	
	MOTA	2226	CA	ARG	312	21.716	8.425	74.143	1.00 29.95	В
~~	MOTA	2227	CB	ARG	312	20.481	8.724	74.961	1.00 32.31	В
25	ATOM	2228	CG	ARG	312	19.189	8.626	74.196	1.00 36.65	В
	ATOM	2229	CD	ARG	312	18.046	8.529	75.169	1.00 40.81	В
	MOTA	2230	NE	ARG	312	16.862	7.919	74.577	1.00 43.18	В
	MOTA	2231	CZ	ARG	312	15.951	7.251	75.278	1.00 45.73	В
	ATOM	2232		ARG	312	16.100	7.108	76.597	1.00 44.15	В
30	ATOM	2233	NH2	ARG	312	14.888	6.737	74.664	1.00 45.91	В
50										
	MOTA	2234	C	ARG	312	22.926	8.811	74.969	1.00 28.83	В
	MOTA	2235	0	ARG	312	23.104	9.991	75.276	1.00 29.69	В
	MOTA	2236	N	GLU	313	23.755	7.843	75.340	1.00 26.62	В
~ ~	MOTA	2237	CA	GLU	313	24.917	8.160	76.153	1.00 22.31	В
35	ATOM	2238	CB	GLU	313	25.419	6.929	76.814	1.00 22.37	В
	ATOM	2239	CG	GLU	313	24.550	6.521	77.994	1.00 24.92	В
	ATOM	2240	CD	GLU	313	24.871	5.136	78.554	1.00 26.13	В
	MOTA	2241	0E1		313	26.060	4.823	78.755	1.00 27.91	В
					313	23.926	4.365	78.813	1.00 27.77	В
40	MOTA	2242	OE2							
40	MOTA	2243	C	GLU	313	26.031	8.873	75.403	1.00 21.16	В
	MOTA	2244	0	GLU	313	27.096	9.122	75.963	1.00 21.76	В
	MOTĄ	2245	N	SER	314	25.789	9.222	74.144	1.00 18.52	B
	MOTA	2246	CA	SER	314	26.796	9.935	73.375	1.00 19.81	В
	MOTA	2247	CB	SER	314	27.966	8.992	72.968	1.00 20.10	В
45	MOTA	2248	OG	SER	314	27.731	8.382	71.710	1.00 19.29	В
	MOTA	2249	C	SER	314	26.206	10.583	72.130	1.00 20.60	В
	MOTA	2250	ō.	SER	314	25.198	10.126	71.597	1.00 19.90	В
				LYS		26.854	11.654	71.676	1.00 20.92	В
	MOTA	2251	N		315					
50	ATOM	2252	CA	LYS	315	26.412	12.395	70.504	1.00 20.48	В
50	MOTA	2253	CB	LYS	315	27.264	13.689	70.329	1.00 20.26	В
	MOTA	2254	CG	LYS	315	27.318	14.572	71.556	1.00 19.73	В
	MOTA	2255	CĐ	LYS	315	25.936	14.893	72.074	1.00 22.19	, В
	MOTA	2256	CE	LYS	315	25.984	15.989	73.129	1.00 23.41	В
	ATOM	2257	NZ	LYS	315	26.408	17.293	72.528	1.00 26.09	В
55	ATOM	2258	C	LYS	315	26.513	11.560	69.239	1.00 19.78	В
	ATOM	2259	ŏ	LYS	315	25.626	11.614	68.373	1.00 20.29	В
	MOTA	2260	N	LEU	316	27.598	10.796	69.130	1.00 17.65	В.
	MOTA	2261	CA	LEU	316	27.808	9.962	67.955	1.00 17.80	В
C O	MOTA	2262	CB	LEU	316	29.209	9.245	68.013	1.00 16.46	В
60	MOTA	2263	CG	LEU	316	29.602	8.339	66.775	1.00 15.01	В
	MOTA	2264	CD1	LEU	316	29.683	9.151	65.507	1.00 14.12	В
	MOTA	2265		LEU .		30.937	7.695	67.030	1.00 17.53	В
	MOTA	2266	c	LEU	316	26.698	8.926	67.798	1.00 17.14	В
	MOTA	2267	ŏ	LEU	316	26.060	8.854	66.742	1.00 17.17	В
65								68.844		В
05	MOTA	2268	N	THR	317	26.462	8.137		1.00 17.69	
	MOTA	2269	CA	THR	317	25.439	7.106	68.777	1.00 19.04	В
	MOTA	2270	CB	THR	317	25.525	6.124	69.966	1.00 21.44	В
	MOTA	2271	OG1	THR	317	25.617	6.848	71.198	1.00 21.96	В
	MOTA	2272	CG2	THR	317	26.743	5.206	69.804	1.00 21.41	В
70	ATOM	2273	C	THR	317	24.031	7.659	68.659	1.00 18.09	В
-	MOTA	2274	ŏ	THR	317	23.155	6.990	68.130	1.00 17.17	В
	MOTA	2275	N	ARG	318	23.800	8.877	69.134	1.00 19.16	В
									1.00 20.49	В
	MOTA	2276	CA	ARG	318	22.469	9.460	68.986	1.00 20.49	•

	MOTA	2277	CB	ARG	318	22.283	10.654	69.927	1.00 22.85	В
	MOTA	2278	CG	ARG	318	22.155	10.218	71.387	1.00 28.27	В
	MOTA	2279	CD	ARG	318	21.942	11.375	72.318	1.00 31.62	В
	ATOM	2280	NE	ARG	318	20.929	12.277	71.788	1.00 39.60	В
5	MOTA	2281	CZ	ARG	318	20.361	13.261	72.479	1.00 40.99	В
,										
	MOTA	2282	NH1	ARG	318	20.703	13.474	73.746	1.00 41.19	В
	MOTA	2283	NH2		318	19.454	14.034	71.894	1.00 41.05	В
	MOTA	2284	С	ARG	318	22.288	9.873	67.525	1.00 20.16	В
	MOTA	2285	0	ARG	318	21.237	9.648	66.929	1.00 21.26	B
10	MOTA	2286	N	ILE	319	23.332	10.435	66.932	1.00 18.27	В
	MOTA	2287	CA	ILE	319	23.255	10.843	65.539	1.00 18.18	В
				ILE	319			65.132	1.00 17.80	В
	MOTA	2288	CB			24.505	11.665			В
	MOTA	2289		ILE	319	24.482	11.913	63.619	1.00 17.11	
	MOTA	2290		ILE	319	24.561	13.006	65.928	1.00 17.07	В
15	MOTA	2291	CD1	ILE	319 .	25.901	13.727	65.838	1.00 14.30	В
	MOTA	2292	С	ILE	319	23.134	9.663	64.550	1.00 18.77	В
	MOTA	2293	0	ILE	319	22.397	9.753	63.569	1.00 16.28	. В
	MOTA	2294	N	LEU	320	23.860	8.571	64.808	1.00 18.72	В
	MOTA	2295	CA	LEU	320	23.874	7.415	63.905	1.00 18.52	В
20	ATOM	2296	СВ	LEU	320	25.323	7.003	63.621	1.00 14.27	В
20										В
	MOTA	2297	CG	LEU	320	26.321	8.000	63.025	1.00 16.38	
	MOTA	2298		LEU	320	27.707	7.354	63.017	1.00 13.61	В
	MOTA	2299	CD2	LEU	320	25.905	8.426	61.605	1.00 14.32	В
	MOTA	2300	С	LEU	320	23.113	6.159	64.354	1.00 21.16	В
25	MOTA	2301	0	LEU	320	23.308	5.087	63.780	1.00 21.77	В
_	MOTA	2302	N	GLN	321	22.249	6.277	65.357	1.00 22.79	. В
	MOTA	2303	CA	GLN	321	21.519	5.114	65.848	1.00 25.68	B
			CB	GLN	321	20.531	5.524	66.954	1.00 28.52	B
	MOTA	2304								
20	MOTA	2305	CG	GLN	321	19.448	6.490	66.535	1.00 32.15	В
30	MOTA	2306	CD	GLN	321	18.539	6.843	67.700	1.00 35.99	В
	MOTA	2307	OE1	GLN	321	17.953	5.954	68.332	1.00 33.89	В
	MOTA	2308	NE2	GLN	321	18.417	8.144	67.997	1.00 36.73	В
	MOTA	2309	С	GLN	321	20.790	4.254	64.813	1.00 25.53	В
	MOTA	2310	0	GLN	321	20.625	3.056	65.029	1.00 25.73	В
35	MOTA	2311	N	ASP	322	20.353	4.837	63.701	1.00 26.46	В
55	ATOM	2312	CA	ASP	322	19.659	4.040	62.695	1.00 28.33	В
	MOTA	2313	CB	ASP	322	18.913	4.934	61.681	1.00 29.02	В
	MOTA	2314	CG	ASP	322	17.894	4.152	60.847	1.00 30.51	В
40	MOTA	2315	OD1	ASP	322	17.880	4.308	59.604	1.00 31.51	В
40	ATOM	2316	OD2	ASP	322	17.100	3.384	61.434	1.00 29.46	B
	MOTA	2317	С	ASP	322	20.661	3.152	61.959	1.00 29.44	В
	ATOM	2318	0	ASP	322	20.284	2.195	61.280	1.00 29.55	В
	ATOM	2319	N	SER	323	21.943	3.480	62.095	1.00 29.59	В
	ATOM	2320			323	22.999	2.705	61.458	1.00 28.78	В
45			CA	SER						
43	MOTA	2321	CB	SER	323	24.172	3.594	61.165	1.00 27.31	В
	MOTA	2322	OG	SER	. 323	23.845	4.545	60.178	1.00 26.34	В
	MOTA	2323	С	SER	323 .	23.453	1.519	62.322	1.00 29.30	В
	MOTA	2324	0	SER	323	24.234	0.687	61.875	1.00 28.51	В
	MOTA	2325	N	LEU	324	22.967	1.445	63.558	1.00 30.19	В
50	MOTA	2326	CA	LEU	324	23.338	0.354	64.451	1.00 30.51	В
	ATOM	2327	CB	LEU	324	24.110	0.893	65.662	1.00 30.62	В
	MOTA	2328	CG	LEU	324	25.577	1.365	65.474	1.00 29.76	В.
								64.401		
	MOTA	2329		LEU	324	25.670	2.412		1.00 31.76	В
E	MOTA	2330		LEU	324	26.085	1.928	66.775	1.00 28.62	В
55	MOTA	2331	С	LEU	324	22.113	-0.419	64.927	1.00 31.44	В
	MOTA	2332	0	LEU	324	21.611	-0.184	66.026	1.00 32.71	В
	MOTA	2333	N	GLY	325	21.642	-1.347	64.095	1.00 31.87	В
	MOTA	2334	CA	GLY	325	20.479	-2.148	64.444	1.00 30.03	В
	ATOM	2335	c	GLY	325	19.190	-1.440	64.082	1.00 29.89	В
60										
OO	MOTA	2336	0	GLY	325	18.160	-1.636	64.727	1.00 29.38	В
	MOTA	2337	N	GLY	326	19.253	-0.614	63.042	1.00 29.59	В
	MOTA	2338	CA	GLY	326	18.092	0.139	62.603	1.00 27.99	В
	MOTA	2339	C	GLY	326	17.706	-0.236	61.193	1.00 27.84	В
	MOTA	2340	0	GLY	326	17.896	-1.378	60.811	1.00 28.56	В
65	MOTA	2341	N	ARG	327	17.197	0.719	60.418		В
00	MOTA	2342	CA	ARG -	327				1.00 27.36	В
		_				16.763	0.456	59.046		
	MOTA	2343	CB	ARG	327	15.451	1.234	58.745	1.00 30.55	В
	MOTA	2344	CG	ARG	327	14.534	1.451	59.943	1.00 34.58	В
	MOTA	2345	CD	ARG	327	13.775	0.198	60.367	1.00 40.44	В
70	MOTA	2346	NE	ARG	327	12.359	0.271	60.014	1.00 43.41	В
	MOTA	2347	cz	ARG	327	11.898	0.209	58.768	1.00 47.99	В
	MOTA	2348		ARG	327	12.741	0.071	57.751	1.00 49.86	В
	MOTA	2349		ARG	327	10.592	0.285	58.535	1.00 48.98	В
	11 TO 11	2343	*****		220	20.334	0.203	20.22	1.00 40.70	

	ATOM	2350	С	ARG	327	17.796	0.811	57.967	1.00 27.20	В
	ATOM	2351	0	ARG	327	17.521	0.680	56.775	1.00 27.07	В
	ATOM	2352	N	THR	328					
						18.977	1.257	58.379	1.00 26.89	В
_	MOTA	2353	CA	THR	328	20.028	1.646	57.441	1.00 25.49	В
5	MOTA	2354	CB	THR	328	20.870	2.813	58.024	1.00 27.20	В
	MOTA	2355	OG1	THR	328	20.024	3.944	58.252	1.00 29.46	В
	MOTA	2356	CG2		328	21.992	3.210	57.072	1.00 26.15	В
	MOTA	2357	С	THR	328	20.974	0.492	57.125	1.00 24.96	В
4.0	MOTA	2358	0	THR	328	21.238	-0.346	57.984	1.00 24.98	В
10	MOTA	2359	N	ARG	329	21.465	0.431	55.890	1.00 23.74	В
	MOTA	2360	CA	ARG	329	22.426	-0.610	55.543	1.00 24.57	В
	ATOM	2361	CB	ARG						
					329	22.551	-0.842	54.014	1.00 26.29	В
	ATOM	2362	CG	ARG	329	23.421	-2.071	53.721	1.00 31.07	В
	MOTA	2363	CD	ARG	329	24.277	-1.980	52.461	1.00 34.15	В
.15	MOTA	2364	NE	ARG	329	23.590	-2.447	51.259	1.00 37.59	В
	MOTA	2365	CZ	ARG	329	24.217	-2.885	50.168	1.00 38.17	В
	ATOM	2366		ARG	329				1.00 38.35	
						25.547	-2.923	50.124		В
•	MOTA	2367	NH2	ARG	329	23.513	-3.284	49.119	1.00 36.37	В
	ATOM	2368	С	ARG	329	23.761	-0.102	56.061	1.00 22.51	В
20	MOTA	2369	0	ARG	329	24.174	1.012	55.741	1.00 21.91	В
	MOTA	2370	N	THR	330	24.431	-0.919	56.856	1.00 21.40	В
	ATOM	2371	CA	THR	330					
						25.704	-0.529	57.433	1.00 21.18	В.
	MOTA	2372	CB	THR	330	25.610	-0.435	58.971	1.00 20.58	В
0.5	MOTA	2373	OG1	THR	330	24.666	0.581	59.317	1.00 22.60	В
25	MOTA	2374	CG2	THR	330	26.962	-0.099	59.581	1.00 17.89	В
	ATOM	2375	C	THR	330	26.837	-1.471	57.085	1.00 21.32	B
	ATOM	2376	ō							
				THR	330	26.673	-2.691	57.001	1.00 19.41	В
	MOTA	2377	N	SER	331	28.002	-0.872	56.902	1.00 21.49	В
~~	MOTA	2378	CA	SER	331	29.200	-1.602	56.574	1.00 21.39	В
30	MOTA	2379	CB	SER	331	29.469	-1.473	55.084	1.00 22.34	В
	MOTA	2380	OG	SER	331	30.537	-2.313	54.694	1.00 26.49	B
	ATOM	2381								
			С	SER	331	30.340	-1.001	57.391	1.00 20.49	В
	MOTA	2382	0	SER	331	30.418	0.208	57.565	1.00 21.48	В
~ ~	MOTA	2383	N	ILE	332	31.213	-1.849	57.911	1.00 18.89	В
35	ATOM ·	2384	CA	ILE	332	32.341	-1.371	58.695	1.00 15.95	В
	ATOM	2385	CB	ILE	332	32.321	-1.936	60.135	1.00 15.17	В
	MOTA	2386		ILE						
					332	33.621	-1.568	60.854	1.00 12.52	В
	MOTA	2387		ILE	332	31.091	-1.447	60.882	1.00 11.58	В
40	ATOM	2388	CD1	ILE	332	30.932	-2.097	62.247	1.00 7.00	В
40	MOTA	2389	С	ILE	332	33.650	-1.818	58.063	1.00 15.41	В
	MOTA	2390	0	ILE	332	33.802	-2.980	57.687	1.00 12.48	В
	MOTA	2391	N	ILE	333	34.591				
							-0.888	57,948	1.00 16.21	В
•	MOTA	2392	CA	ILE	333	35.899	-1.203	57.411	1.00 16.71	В
40	ATOM	2393	CB	ILE	333	36.310	-0.266	56.273	1.00 16.82	В
45	ATOM	2394	CG2	ILE	333	37.616	-0.744	55.675	1.00 15.94	В
	ATOM	2395	CG1	ILE	333	35.242	-0.259	55.169	1.00 16.68	В
	ATOM	2396		ILE	333	35.557	0.705	54.012	1.00 15.18	
										В
	MOTA	2397	C	ILE	333	36.860	-1.021	58.561	1.00 18.56	В
~ 0	MOTA	2398	0	ILE	333	37.074	0.104	59.032	1.00 21.41	В
50	ATOM	2399	N	ALA	334	37.411	-2.137	59.035	1.00 20.14	В
	MOTA	2400	CA	ALA	334	38.360	-2.125	60.147	1.00 19.94	В
	MOTA	2401	СВ	ALA	334	38.182	-3.362	61.020	1.00 18.30	
	ATOM	2402	c	ALA	334					. В
						39.756	-2.096	59.550	1.00 20.34	В
55	MOTA	2403	0	ALA	334	40.135	-2.989	58.790	1.00 20.44	В
55	MOTA	2404	N	THR	335	40.514	-1.062	59.897	1.00 19.08	В
	MOTA	2405	CA	THR	335	41.853	-0.901	59.369	1.00 19.70	В
	MOTA	2406	CB	THR	335	42.106	0.584	59.008	1.00 21.15	В
	ATOM	2407		THR						
					335	41.876	1.409	60.157	1.00 24.31	В.
<i>(</i> 0	MOTA	2408	CG2	THR	335	41.158	1.026	57.905	1.00 21.90	В
60	MOTA	2409	С	THR	335	42.907	-1.403	60.351	1.00 19.67	В
	MOTA	2410	0	THR	335	42.796	-1.190	61.559	1.00 20.81	В
	ATOM	2411	N	ILE.		43.924	-2.085	59.833	1.00 19.06	В
	MOTA									
		2412	CA	ILE	336	44.991	-2.618	60.680	1.00 19.16	В
25	MOTA	2413	CB	ILE	336	44.845	-4.147	60.882	1.00 18.20	В
65	MOTA	2414	CG2	ILE	336	43.519	-4.470	61.562	1.00 17.20	В
	MOTA	2415		ILE	336	44.933	-4.857	59.564	1.00 15.56	В
	MOTA	2416		ILE	336	44.926	-6.371	59.697	1.00 16.09	
	ATOM									В
		2417	c	ILE	336	46.388	-2.343	60.116	1.00 19.85	В
70	MOTA	2418	0	ILE	336	46.547	-1.995	58.945	1.00 20.63	В
70	MOTA	2419	N	SER	337	47.395	-2.487	60.970	1.00 21.82	В
	ATOM	2420	CA	SER	337	48.788	-2.277	60.576	1.00 23.86	В
	MOTA	2421	СВ	SER	337	49.514	-1.430		1.00 22.35	
•								61.611		8
	MOTA	2422	OG	SER	337	50.551	-2.165	62.229	1.00 19.41	В

	MOTA	2423	С	SER	337	49.507	-3.622	60.458	1.00 26.10	В
	MOTA	2424	0	SER	337	49.133	-4.597	61.119	1.00 25.43	В -
	ATOM	2425	N	PRO	338	50.543	-3.692	59.606	1.00 26.45	В
						50.873	-2.755	58.518	1.00 26.43	
5	MOTA	2426	CD	PRO	338					В
5	MOTA	2427	CA	PRO	338	51.287	-4.943	59.441	1.00 27.75	В
	MOTA	2428	CB	PRO	338	51.703	-4.893	58.009	1.00 25.91	В
	MOTA	2429	CG	PRO	338	52.043	-3.453	57.835	1.00 26.04	В
	MOTA	2430	С	PRO	338	52.493	-5.016	60.366	1.00 28.99	В
	MOTA	2431	0	PRO	338	53.304	-5.929	60.250	1.00 30.27	В
10	MOTA	2432	N	ALA	339	52.615	-4.057	61.280	1.00 29.91	В
10								62.184		
	MOTA	2433	CA	ALA	339	53.765	-4.024		1.00 31.92	В
	MOTA	2434	СВ	ALA	339	54.076	-2.582	62.598	1.00 32.09	В
	MOTA	2435	С	ALA	339	53.576	-4.884	63.415	1.00 31.91	В
	MOTA	2436	0	ALA	339	52.483	-4.965	63.959	1.00 34.29	В
15	MOTA	2437	N	SER	340	54.651	-5.525	63.856	1.00 31.24	В
	MOTA	2438	CA	SER	340	54.580	-6.374	65.030	1.00 29.08	В
	MOTA	2439	СВ	SER	340	55.877	-7.280	65.138	1.00 29.57	В
	ATOM	2440	OG	SER	340	57.053	-6.513	65.327	1.00 28.10	В
		2441	č	SER	340	54.396	-5.555	66.307	1.00 28.00	
20	MOTA									В
20	ATOM	2442	0	SER	340	53.844	-6.046	67.280	1.00 28.20	В
	MOTA	2443	N	LEU	341	54.852	-4.308	66.309	1.00 28.24	В
	-MOTA	2444	CA	LEU	341	54.715	-3.471	67.493	1.00 28.05	B
	MOTA	2445	CB	LEU	341	55.742	-2.306	67.463	1.00 29.43	В
	MOTA	2446	CG	LEU	341	55.315	-0.861	67.190	1.00 30.31	В
25	MOTA	2447		LEU	341	56.404	0.084	67.690	1.00 28.26	В
	ATOM	2448		LEU	341	55.065	-0.659	65.707	1.00 31.94	В
	MOTA	2449		LEU	341	53.290	-2.936	67.647	1.00 28.81	В
	MOTA	2450	0	LEU	341	52.954	-2.305	68.650	1.00 28.00	В
20	MOTA	2451	N	ASN	342	52.450	-3.209	66.656	1.00 28.88	В
30	MOTA	2452	CA	ASN	342	51.060	-2.780	66.690	1.00 29.97	В
	MOTA	2453	CB	ASN	342	50.689	-2.094	65.369	1.00 28.90	В
	MOTA	2454	CG	ASN	342	51.256	-0.680	65.258	1.00 29.29	В
	MOTA	2455	OD1	ASN	342	51.568	-0.210	64.161	1.00 27.68	В
	MOTA	2456	ND2	ASN	342	51.373	0.007	66.394	1.00 26.96	В
35	MOTA	2457	c	ASN	342	50.185	-4.010	66.902	1.00 31.53	В -
55										
	MOTA	2458	0	ASN	342	48.958	-3.956	66.765	1.00 32.86	В
	MOTA	2459	N	LEU	343	50.830	-5.118	67.252	1.00 30.95	В
	MOTA	2460	CA	LEU	343	50.143	-6.387	67.474	1.00 30.40	B
40	MOTA	2461	CB	LEU	343	51.167	-7.448	67.961	1.00 31.48	В
40	ATOM	2462	CG	LEU	343	50.755	-8.930	68.109	1.00 33.60	B
	MOTA	2463	CD1	LEU	343	50.408	-9.217	69.553	1.00 34.09	В
	ATOM	2464	CD2		343	49.599	-9.270	67.168	1.00 31.95	В
	MOTA	2465	c	LEU	343	48.945	-6.325	68.422	1.00 28.19	В
	MOTA	2466	ō	LEU	343	47.839	-6.698	68.042	1.00 29.33	ъ
45										
73	MOTA	2467	N	GLU	344	49.145	-5.858	69.647	1.00 26.96	В
	MOTA	2468	CA	GLU .	344	48.035	-5.787	70.598	1.00 25.82	В
	MOTA	2469	CB	GLU	344	48.537	-5.276	71.962	1.00 27.56	В
	MOTA	2470	CG	GLU	344	47.438	-4.776	72.879	1.00 33.02	В
	MOTA	2471	CD	GLU	344	47.884	-4.708	74.329	1.00 36.74	В
50	MOTA	2472	OE1	GLU	344	49.011	-4.222	74.583	1.00 36.88	В
	ATOM	2473	OE2	GLU	344	47.104	-5.138	75.217	1.00 38.52	В
	MOTA	2474	C	GLU	344	46.843	-4.948	70.122	1.00 23.12	В
		2475	ŏ	GLU	344	45.696	-5.357	70.265	1.00 22.53	В
	ATOM	2476	N	GLU	345	47.102	-3.775		1.00 22.13	В
55								69.564		
"	MOTA	2477	CA	GLU	345	46.007	-2.949	69.082	1.00 22.56	В
	MOTA	2478	СВ	GLU .	345	46.484	-1.487	68.830	1.00 23.16	В
	MOTA	2479	CG	GLU	345	46.722	-0.693	70.108	1.00 23.64	B
	MOTA	2480	CD	GLU	345	45.440	-0.386	70.872	1.00 25.85	В
	MOTA	2481	OE1	GLU	345	45.530	0.135	72.003	1.00 29.18	В
60	MOTA	2482		GLU	345	44.342	-0.653	70.352	1.00 25.14	В
••	ATOM	2483	C	GLU	345			67.808		B
		2484				45.422	-3.566		1.00 21.03	
	ATOM		0	GLU	345	44.238	-3.398	67.519	1.00 20.99	В
	MOTA	2485	N	THR	346	46.253	-4.274	67.048	1.00 20.57	В
<i>C</i> =	MOTA	2486	CA	THR	346	45.794	-4.959	65.838	1.00 20.75	В
65	MOTA	2487	CB	THR	346	46.978	-5.579	65.057	1.00 21.69	В
	MOTA	2488	0G1	THR	346	47.743	-4.531	64.460	1.00 23.54	В
	MOTA	2489	CG2		346	46.486	-6.540	63.964	1.00 20.78	В
	MOTA	2490	c	THR	346	44.825	-6.070	66.269	1.00 20.06	В
	ATOM	2491	ŏ						1.00 20.00	
70				THR	346	43.824	-6.323	65.603		В
, 0	MOTA	2492	N	LEU	347	45.127	-6.717	67.395	1.00 19.28	В
	MOTA	2493	CA	LEU	347	44.265	-7 .771	67.924	1.00 20.23	В
	ATOM	2494	CB	LEU	347	44.967	-8.547	69.080	1.00 20.75	В
	MOTA	2495	CG	LEU	347	46.123	-9.517	68.681	1.00 20.74	В

	3 moss	2400			242	46 650	10 100	CO 003	1 00 10 01	
	MOTA	2496	CD1		347		-10.198	69.923	1.00 18.01	В
	MOTA	2497	CD2		347		-10.563	67.681	1.00 19.87	В
	MOTA	2498	С	LEU	347	42.950	-7.187	68.426	1.00 20.24	В
_	MOTA	2499	0	LEU	347	41.884	-7.735	68.165	1.00 20.79	В
5	MOTA	2500	N	SER	348	43.019	-6.074	69.148	1.00 19.68	В
	MOTA	2501	CA	SER	348	41.800	-5.450	69.645	1.00 18.65	В
	ATOM	2502	CB	SER	348	42.123	-4.205	70.337	1.00 18.12	В
	ATOM	2503	OG	SER	348	42.924	-4.491	71.458	1.00 23.16	В
10	MOTA	2504	С	SER	348	40.848	-5.161	68.498	1.00 18.64	В
10	MOTA	2505	0	SER	348	39.662	-5.505	68.560	1.00 17.43	В
	MOTA	2506	N	THR	349	41.377	-4.535	67.447	1.00 18.49	В
	ATOM	2507	CA	THR	349	40.577	-4.195	66.274	1.00 20.04	В
	ATOM	2508	CB	THR	349	41.440	-3.523	65.189	1.00 21.24	В
•	ATOM	2509		THR	349	41.774	-2.195	65.607	1.00 22.77	В
15	ATOM	2510		THR	349	40.692	-3.471	63.848	1.00 20.74	В
13									1.00 20.94	
	ATOM	2511	Ç	THR	349	39.873	-5.402	65.658		В
	MOTA	2512	0	THR	349	38.651	-5.399	65.516	1.00 19.02	В
	MOTA	2513	N	LEU	350	40.645	-6.423	65.280	1.00 23.75	В
^	MOTA	2514	CA	LEU	350	40.072	-7.632	64.682	1.00 25.37	В
20	MOTA	2515	CB	LEU	350	41.155	-8.728	64.483	1.00 24.15	В
	MOTA	2516	CG	LEU	350	42.104	-8.768	63.261	1.00 23.69	В
	MOTA	2517		LEU	350	41.548	-7.931	62.146	1.00 24.69	В
	MOTA	2518		LEU	350	43.476	-8.294	63.652	1.00 25.26	В.
		2519	C	LEU	350	38.967		65.570		
25	MOTA						-8.204		1.00 25.64	- В
43	MOTA	2520	0	LEU	350	37.925	-8.651	65.088	1.00 25.79	В
	MOTA	2521	N	GLU	351	39.215	-8.179	66.873	1.00 26.21	В
	MOTA	2522	CA	GLU	351	38.280	-8.705	67.859	1.00 26.22	В
	MOTA	2523	CB	GLU	351	38.950	-8.729	69.230	1.00 29.30	В
	MOTA	2524	CG	GLU	351	38.325	-9.722	70.181	1.00 35.95	В
30	MOTA	2525	CD	GLU	351	38.148	-11.081	69.528	1.00 39.86	В
	ATOM	2526		GLU	351	39.180	-11.726	69.204	1.00 39.55	В
	MOTA	2527		GLU	351	36.973		69.326	1.00 40.87	В
				GLU						
	MOTA	2528	C		351	36.995	-7.887	67.927	1.00 24.59	В
25	ATOM	2529	0	GLU	351	35.886	-8.438	67.987	1.00 24.44	В
.35	MOTA	2530	N	TYR	352	37.163	-6.569	67.922	1.00 22.44	В
	MOTA	2531	CA	TYR	352	36.058	-5.627	67.973	1.00 20.05	₿
	MOTA	2532	CB	TYR	352	36.638	-4.176	68.166	1.00 20.78	В
	MOTA	2533	CG	TYR	352	35.618	-3.065	68.285	1.00 19.34	В
	ATOM	2534		TYR	352	34.997	-2.539	67.153	1.00 17.81	B
40	MOTA	2535		TYR	352	34.062	-1.515	67.258		В
-10									1.00 19.71	
	MOTA	2536		TYR	352	35.277	-2.535	69.533	1.00 19.30	В
	MOTA	2537		TYR	352	34.339	-1.507	69.649	1.00 17.88	В
	MOTA	2538	CZ	TYR	352	33.737	-1.003	68.508	1.00 19.50	В
4 ~	MOTA	2539	OH	TYR	352	32.810	0.017	68.602	1.00 23.10	В
45	MOTA	2540	С	TYR	352	35.211	-5.723	66.706	1.00 20.25	В
	MOTA	2541	0	TYR	352	33.989	-5.704	66.776	1.00 20.39	В
	MOTA	2542	N	ALA	353	35.855	-5.851	65.549	1.00 20.55	В
	ATOM	2543	CA	ALA	353	35.122		64.289	1.00 23.02	В
	MOTA	2544	СВ	ALA	353	36.076	-5.711	63.116	1.00 20.71	В
50										
20	MOTA	2545	C	ALA	353	34.374	-7.271	64.109	1.00 25.05	В
	ATOM	2546	0	ALA	353	33.259	-7.299	63.580	1.00 24.67	В
	MOTA	2547	N	HIS	354	34.983	-8.366	64.553	1.00 26.56	В
	MOTA	2548	CA	HIS	354	34.372	-9.682	64.420	1.00 29.08	В
	MOTA	2549	CB	HIS	354	35.332	-10.761	64.917	1.00 30.47	В
55	MOTA	2550	CG	HIS	354	34.916	-12.150	64.547	1.00 31.52	В
	MOTA	2551	CD2	HIS	354		-13.156	65.293	1.00 30.23	В
	ATOM	2552		HIS	354		-12.629	63.255	1.00 32.72	В
	ATOM	2553		HIS	354		-13.870	63.222	1.00 32.65	В.
60 -	ATOM	2554	_	HIS	354		-14.213	64.445	1.00 32.59	В
00 .	ATOM	2555	C	HIS	354	33.059		65.194	1.00 30.20	В
	MOTA	2556	0	HIS	354	32.075	-10.332	64.722	1.00 30.57	В
	MOTA	2557	N	ARG	355	33.044	-9.177	66.390	1.00 31.47	В
	MOTA	2558	CA	ARG	355	31.825		67.182	1.00 33.23	В
	ATOM	2559	СВ	ARG	355	32.064		68.551	1.00 35.96	В
65	ATOM	2560	CG	ARG	355	32.853		69.516	1.00 40.08	В
	ATOM	2561	CD	ARG	355					
						33.214		70.797	1.00 43.24	В
	MOTA	2562	NE	ARG	355	32.052		71.579	1.00 47.90	В
	MOTA	2563	CZ	ARG	355	31.127		72.081	1.00 50.90	В
70	MOTA	2564		ARG	355		-10.329	71.881	1.00 50.97	В
70	MOTA	2565	NH2	ARG	355	30.128	-8.521	72.806	1.00 50.14	В
	MOTA	2566	C	ARG	355	30.770		66.413	1.00 32.60	В
	MOTA	2567	ō	ARG	355	29.619		66.321	1.00 32.82	В
	MOTA	2568	N	ALA	356	31.178		65.850	1.00 29.87	В
	A. Off	2300	••	~~~	220	J1.1/0	-7.240	05.850	1.00 23.01	

	MOTA	2569	CA	ALA	356	30.266	-6.389	65.096	1.00 27.94	В
	MOTA	2570	СВ	ALA	356	31.025		64.467	1.00 28.16	В
	MOTA	2571	Č	ALA	356	29.485		64.022	1.00 26.92	В
	MOTA	2572	ŏ	ALA	356	28.356		63.698	1.00 24.79	
5	ATOM	2573			357					В
,	MOTA	2574	N	LYS		30.074		63.486	1.00 25.84	В
			CA	LYS	357	29.416		62.438	1.00 27.17	В
	MOTA	2575	CB	LYS	357	30.248		62.040	1.00 26.83	В
	MOTA	2576	CG	LYS	357	31.690		61.724	1.00 28.45	В
10	MOTA	2577	CD	LYS	357		-10.857	60.651	1.00 31.56	В
10	MOTA	2578	CE	LYS	357	31.933	-12.305	61.008	1.00 31.36	В
	MOTA	2579	NZ	LYS	357	32.361	-13.190	59.908	1.00 30.37	В
	MOTA	2580	С	LYS	357	28.036	-9.483	62.831	1.00 27.51	В
	MOTA	2581	0	LYS	357	27.173	-9.651	61,974	1.00 27.57	В
	MOTA	2582	N	ASN	358	27.829	-9.728	64.121	1.00 28.92	В
15	MOTA	2583	CA	ASN	358	26.546	-10.234	64.597	1.00 30.60	В
	MOTA	2584	СВ	ASN	358	26.741	-11.024	65.911	1.00 31.34	В
	MOTA	2585	CG	ASN	358		-12.311	65.709	1.00 33.50	В
	MOTA	2586		ASN	358		-12.292	65.537	1.00 34.98	B
	MOTA	2587		ASN	358	26.823		65.716	1.00 33.36	В
20	ATOM	2588	c	ASN	358	25.426		64.788	1.00 30.89	В
	ATOM	2589	ŏ	ASN	358	24.367		65.302	1.00 32.42	В
	MOTA	2590	N	ILE	359	25.642		64.381		В
		2591	CA		359				1.00 31.36	
	ATOM			ILE		24.607		64.530	1.00 31.09	В
25	MOTA	2592	CB	ILE	359	25.185		64.454	1.00 30.83	В
23	MOTA	2593		ILE	359	24.060		64.496	1.00 28.14	В
	ATOM	2594		ILE	359	26.144		65.629	1.00 29.88	В
	MOTA	2595		ILE	359	27.028		65.421	1.00 29.12	В
	MOTA	2596	C	ILE	359	23.583		63.416	1.00 32.70	В
20	MOTA	2597	0	ILE	359	23.938		62.250	1.00 31.89	В
30	MOTA	2598	N	LEU	360	22.312	-7.045	63.795	1.00 34.93	В
	MOTA	2599	CA	LEU	360	21.195	-7.185	62.869	1.00 37.63	В
	ATOM -	2600	CB	LEU	360	20.056	-7.993	63.544	1.00 39.00	В
	MOTA	2601	CG	LEU	360	18.581	-7.590	63.189	1.00 41.16	В
	ATOM	2602	CD1	LEU	360	18.283	-7.917	61.728	1.00 42.20	В
35	MOTA	2603	CD2	LEU	360	17.599	-8.315	64.118	1.00 41.50	В
	MOTA	2604	С	LEU	360-	20.672		62.475	1.00 38.26	В
	MOTA ·	2605	0	LEU	360	20.356		63.343	1.00 38.46	В
	MOTA	2606	N	ASN	361	20.580		61.171	1.00 39.80	В
	MOTA	2607	CA	ASN	361	20.079		60.656	1.00 41.76	В
40	ATOM	2608	CB	ASN	361	21.133		59.822	1.00 42.66	В
• •	MOTA	2609	CG	ASN	361	22.088		60.657	1.00 44.51	В
	ATOM	2610		ASN	361	22.791		61.528	1.00 45.27	В
	ATOM	2611		ASN	361	22.117				
	ATOM	2612	C					60.394	1.00 45.23	В
45	ATOM	2613		ASN	361	18.825		59.812	1.00 44.12	В
73			0	ASN	361	18.478		59.438	1.00 45.59	В
	MOTA	2614	N	LYS	362	18.160		59.514	1.00 45.40	В
	MOTA	2615	CA	LYS	362	16.931		58.716	1.00 45.80	В
	MOTA	2616	CB	LYS	362	17.226		57.260	1.00 45.62	₿
50	MOTA	2617	CG	LYS	362	17.222		56.240	1.00 45.92	В
50	MOTA	2618	CD	LYS	362	15.832		56.093	1.00 45.58	В
	MOTA	2619	CE	LYS	362	15.739		54.862	1.00 43.34	В
	MOTA	2620	NŻ	LYS	362	14.456	-0.345	54.818	1.00 42.49	В
		2621	С	LYS	362	15.823		59.292	1.00 47.03	В
	ATOM	2622	0	LYS	362	15.150		58.492	1.00 48.78	В
55	MOTA	2623	OXT	LYS	362	15.624	-4.198	60.526	1.00 47.26	В
	MOTA	2624	MG	MG	2602	43.330	10.372	60.103	1.00 26.54	
	MOTA	2625	PB	ADP	2600	44.452	7.135	60.400	1.00 17.43	ADP
	ATOM	2626	01B	ADP	2600	44.951		61.612	1.00 18.86	ADP
	MOTA	2627		ADP	2600	44.008		60.747	1.00 22.98	ADP
60	ATOM	2628		ADP	2600	43.299		59.790	1.00 19.76	ADP
	MOTA	2629		ADP	2600	45.880		57.967	1.00 24.97	ADP
	MOTA	2630		ADP	2600	44.906		56.989	1.00 27.54	ADP
	MOTA	2631		ADP	2600	45.805		58.061	1.00 27.34	ADP
	ATOM	2632		ADP	2600					
65						45.606		59.369	1.00 22.28	ADP
55	MOTA	2633		ADP	2600	47.347		57.518	1.00 28.31	ADP
	MOTA	2634		ADP	2600	48.422		58.144	1.00 30.71	ADP
	MOTA	2635		ADP	2600	49.601		57.103	1.00 33.98	ADP
	MOTA	2636		ADP	2600	49.664		56.457	1.00 33.98	ADP
70	MOTA	2637		ADP	2600	49.383		55.972	1.00 32.52	ADP
70	MOTA	2638		ADP	2600	50.518		55.838	1.00 36.94	ADP
	MOTA	2639	C2*	ADP	2600	49.106	7.017	54.682	1.00 35.49	ADP
	MOTA	2640	02*	ADP	2600	49.782		53.522	1.00 38.23	ADP
	MOTA	2641	C1*	ADP	2600	49.483		55.026	1.00 35.20	ADP

	MOTA	2642	N9	ADP	2600	48.437	4.548	54 600	1.00 33.78	3.00
								54.689		ADP
	MOTA	2643	C8	ADP	2600	47.512	4.099	55.567	1.00 34.18	ADP
	ATOM	2644	N7	ADP	2600	46.745	3.202	55.003	1.00 36.36	ADP
	MOTA	2645	C5	ADP	2600	47.137	3.045	53.768		
5		-							1.00 36.94	ADP
J	MOTA	2646	C6	ADP	2600	46.721	2.241	52.700	1.00 37.31	ADP
	MOTA	2647	N6	ADP	2600	45.687	1.403	52.874	1.00 37.72	ADP
	MOTA	2648	N1	ADP	2600					
						47.381	2.320	51.471	1.00 37.39	ADP
•	MOTA	2649	C2	ADP	2600	48.446	3.171	51.268	1.00 37.76	ADP
	MOTA	2650	N3	ADP	2600	48.859	3.957	52.311	1.00 35.88	ADP
10	MOTA	2651								
10			C4	ADP	2600	48.245	3.925	53.548	1.00 35.51	ADP
	MOTA	2652	C1	1-7	1	37.929	17.272	54.077	1.00 38.43	1-7
	MOTA	2653	C2	1-7	1	38.932	17.045	53.074	1.00 38.52	1-7
	ATOM	2654	C3	1-7						
					1	38.735	15.932	52.163	1.00 39.96	1-7
	ATOM	2655	C4	1-7	1	37.528	15.091	52.280	1.00 39.17	1-7
15	MOTA	2656	C5	1-7	1	36.503	15.314	53.268	1.00 37.92	1-7
	MOTA	2657	C6	1-7	ī					
						36.737	16.421	54.166	1.00 39.95	1-7
	ATOM	2658		1-7	1	39.781	15.680	51.154	1.00 38.83	1-7
	MOTA	2659	N12	1-7	1	40.860	16.465	50.816	1.00 41.41	1-7
	MOTA	2660		1-7	ī	41.632	15.978	49.912		
20									1.00 42.37	1-7
20	MOTA	2661	C14	1-7	1	41.128	14.690	49.355	1.00 40.44	1-7
	MOTA	2662	C15	1-7	1	40.183	14.416	50.455	1.00 39.39	1-7
	MOTA	2663	C18		1	41.056	14.226	47.951		
									1.00 36.95	1-7
	MOTA	2664		1-7	1	42.809	16.554	49.520	1.00 43.23	1-7
	MOTA	2665	C21	1-7	1	43.706	15.596	48.761	1.00 42.51	1-7
25	ATOM	2666	025	1-7	1	43.145	17.720	49.767	1.00 44.94	
										1-7
	MOTA	2667		1-7	1	40.067	14.828	47.075	1.00 35.46	1-7
	MOTA	2668	C27	1-7	1	40.008	14.513	45.661	1.00 35.09	1-7
	MOTA	2669	C28	1-7	1	40.989	13.573	45.157	1.00 34.04	1-7
	ATOM	2670			ī					
30				1-7		41.984	12.977	46.048	1.00 34.13	1-7
30	MOTA	2671	C30	1-7	1	42.012	13.263	47.467	1.00 34.81	1-7
	MOTA	2672	CL35	1-7	1.	37.356	13.776	51.201	1.00 40.06	1-7
	ATOM	2673		1-7	ī					
						42.983	12.166	45.535	1.00 32.08	1-7
	ATOM	2674	0	HOH	2	38.525	10.810	62.766	1.00 2.98	S
	MOTA	2675	0	HOH	3	23.222	11.589	60.100	1.00 22.29	s
35	MOTA	. 2676	o	нон	4	41.960	12.208			
								60.870	1.00 9.69	s
•	MOTA	2677	0	нон	5	50.029	-4.994	63.682	1.00 18.21	S
	ATOM	2678	0	HOH	8	28.413	21.060	56.800	1.00 20.56	S
	ATOM	2679	0	нон	9	31.397	6.826	80.114	1.00 18.48	
										s
40	MOTA	2680	0	нон	10	38.337	3.375	65.490	1.00 21.12	S
40	ATOM	2681	0	HOH	13	45.628	22.010	69.140	1.00 9.64	S
	MOTA	2682	0	HOH	14	48.257	14.330	41.733	1.00 18.62	s
	ATOM									
		2683	0	HOH	15	41.014	5.558	71.890	1.00 28.07	S
	MOTA	2684	0	нон	16	27.936	20.868	70.581	1.00 22.56	S
	ATOM	2685	0	HOH	17	43.663	-1.056	64.226	1.00 13.66	s
45	ATOM	2686	ō							
1.5				HOH	18	43.194	8.354	64.240	1.00 19.73	s
	MOTA	2687	0	нон	20	54.924	6.098	49.933	1.00 32.18	s
	ATOM	2688	0.	HOH	22	31.350	4.322	82.668	1.00 37.14	s
	ATOM	2689	o	HOH	27					
						45.521	-1.603	51.520	1.00 20.22	s
6 0	MOTA	2690	0	HOH	28	53.208	11.559	41.772	1.00 42.11	s
50	MOTA	2691	0	HOH	31	27.994	6.504	79.871	1.00 18.94	S
	MOTA	2692	0	HOH	33	49.291	-7.879	50.486		
									1.00 35.78	s
	MOTA	2693	0	HOH	34	18.468	12.203	33.372	1.00 19.62	S
	ATOM	2694	0	HOH	35	53.496	-17.951	61.642	1.00 35.98	S
	ATOM	2695	0	HOH	36	45.680	3.185	45.465	1.00 19.30	s
55	ATOM	2696								
55			0	нон	38	42.176	-0.846	72.113	1.00 14.70	S
	ATOM	2697	0	нон	39	51.304	5.232	60.441	1.00 24.96	s
	ATOM	2698	٥	HOH	40	34.806	13.087	70.806	1.00 32.37	s
	ATOM	2699	ō	HOH	41					
						19.156	14.294	56.441	1.00 28.63	S
~ 0	MOTA	2700	0	нон	46	44.126	0.351	55.876	1.00 28.55	S
60 ·	ATOM	2701	٥	HOH	47	20.432	7.836	62.530	1.00 16.12	s
	ATOM	2702	ō	нон	48					
						31.643	24.934	63.575	1.00 31.65	S
	MOTA	2703	0	нон	50	45.290	17.359	64.325	1.00 15.86	S
	ATOM	2704	0	HOH	53	41.790	5.942	40.546	1.00 28.37	s
	MOTA	2705	ŏ	нон	54					<u> </u>
65						38.452	4.419	47.214	1.00 14.56	S
O)	MOTA	2706	0	HOH	55	52.009	4.613	57.096	1.00 35.87	S
	MOTA	2707	0	HOH	57	51.429	6.864	39.244	1.00 27.91	s
	ATOM									
		2708	0	нон	58	22.685	19.136	43.047	1.00 29.36	S
	MOTA	2709	0	нон	61	39.044	12.519	58.483	1.00 28.94	S
	MOTA	2710	0	HOH	67	45.314	-7.264	72.406	1.00 17.23	Š
70	MOTA	2711								3
			0	нон	69	46.768	-2.040	64.134	1.00 23.58	s
	ATOM	2712	0	HOH	71	45.298	18.821	48.751	1.00 30.98	s
	MOTA	2713	0	нон	79	45.903	11.457	63.308	1.00 21.87	s
	MOTA	2714	0	нон	83 -	29.506	-5.557	49.394	1.00 32.50	s

	MOTA	2715	0	нон	86	28.178	4.602	77.098	1.00 29.04	S
	MOTA	2716	0	нон	89	55.210	-16.662	58.167	1.00 35.61	S
	MOTA	2717	0	нон	91	37.135	0.846	70.878	1.00 20.52	s
_	MOTA	2718	0	нон	93	17.438	19.816	52.756	1.00 35.47	s
5	MOTA	2719	0	HOH	94	29.881	3.798	41.417	1.00 42.97	S
	MOTA	2720	0	HOH	98	39.190	3.892	49.946	1.00 13.01	S
	MOTA	2721	0	нон	100	41.671	15.312	56.323	1.00 31.21	s
	MOTA	2722	0	нон	101	52.876	0.835	68.812	1.00 32.79	S
	MOTA	2723	0	нон	105	37.722	2.513	73.490	1.00 36.02	S
10	MOTA	2724	0	нон	109	27.450	25.927	61.040	1.00 42.15	S
	MOTA	2725	0	нон	111	39.804	17.000	76.527	1.00 40.03	S
	MOTA	2726	0	нон	117	2.532	6.263	36.270	1.00 22.77	S
	MOTA	2727	0	нон	119	43.756	2.932	43.574	1.00 30.63	S
	MOTA	2728	0	нон	124	41.324	9.248	61.513	1.00 50.60	s
15	MOTA	2729	0	HOH	128	45.349	21.055	46.092	1.00 34.28	S
	MOTA	2730	0	HOH	129	47.480	9.402	61.725	1.00 20.53	S
	MOTA	2731	0	HOH	130	27.022	14.663	58.188	1.00 21.56	·S
	MOTA	2732	0	HOH	131	38.009	11.637	34.970	1.00 36.04	s
	MOTA	2733	0	нон	135	21.462	18.078	39.253	1.00 49.42	S
20	MOTA	2734	0	HOH	136	50.206	-0.381	68.977	1.00 28.73	S
	MOTA	2735	0	HOH	142	43.209	19.312	57.176	1.00 32.90	S
	MOTA	2736	0	HOH	144	27.420	-13.840	56.585	1.00 40.61	S
	MOTA	2737	0	HOH	145	56.085	3.298	61.538	1.00 27.46	S
~~	MOTA	2738	0	HOH	148	45.044	22.181	54.899	1.00 33.67	s
25	MOTA	2739	0	HOH	149	47.168	9.785	68.295	1.00 32.20	s
	MOTA	2740	0	HOH	150	35.221	13.107	56.556	1.00 39.71	S
	MOTA	2741	0	HOH	156	19.494	13.147	35.697	1.00 37.79	s
	MOTA	2742	0	HOH	158	35.348	1.853	79.606	1.00 35.97	S
20	MOTA	2743	0	HOH	160	44.086	-3.335	73.582	1.00 28.68	s
30	MOTA	2744	0	нон	163	22.716	28.692	55.723	1.00 38.12	S
	MOTA	2745	0	HOH	164	29.077	26.837	62.948	1.00 37.04	s
	END									

TABLE 3

```
REMARK refinement resolution: 50.0 - 2.5 A
                        r= 0.2461 free_r= 0.3007
 5
       REMARK rmsd bonds= 0.007673 rmsd angles= 1.23268
       REMARK sg= P2(1)2(1)2(1) a= 68.9 b= 79.4 c= 158.8 alpha= 90. beta= 90. gamma= 90. REMARK FILENAME= *Compound 2-7_3pb.pdb*
ATOM 1 CB LYS 17 24.357 -12.099 59.933 1.00 58.09 B
                                            23.017 -12.631
                      CG
                           LYS
                                   17
                                                               59.411
                                                                        1.00 60.84
       MOTA
10
                                            22.865 -12.482
                                                               57.896
                                                                        1.00
       MOTA
                      CD
                           LYS
                                   17
                                                                                           В
       ATOM
                      CE
                           LYS
                                            23.604 -13.578
                                                               57.123
                                                                         1.00 63.01
                                                                                           В
       MOTA
                   5
                      NZ
                           LYS
                                   17
                                            25.089 -13.550
                                                               57.289
                                                                        1.00 63.35
                                                                                           В
                                                     -9.737
-9.723
       MOTA
                   6
                      C
                           LYS
                                   17
17
                                            24.262
25.150
                                                               59.096
                                                                        1.00 54.65
                                                                                           В
                                                               58.262
                                                                              53.83
       ATOM
                      o
                           LYS
                                                                         1.00
                                                                                           В
15
                                            23.253 -10.341
                                   17
                                                               61.285
                                                                         1.00
       ATOM
                   8
                      N
                           LYS
                                                                              56.25
       MOTA
                      CA
                           LYS
                                   17
                                            24.364 -10.617
                                                               60.333
                                                                         1.00
       MOTA
                  10
                                             23.168
                                                      -8.993
                                                               58.994
                                                                         1.00
                           ASN
                                   18
       MOTA
                  11
                      CA
                           ASN
                                   18
                                            22.956
                                                      -8.115
                                                               57.857
                                                                         1.00 52.96
                                            21.634
20.433
                                                      -7.362
                                                               58.018
       ATOM
                  12
                      CB
                           ASN
                                   18
                                                                         1.00
                                                                              55.67
                                                                                           B
20
                                                               57.613
                                                      -8.197
       MOTA
                  13
                      CG
                           ASN
                                   18
                                                                         1.00 58.59
                                            20.173
                                                      -9.261
                      OD1 ASN
                                                               58.187
                                                                         1.00
                                                                              59.98
       ATOM
                  14
                                   18
                                            19.688
                                                      -7.717
       MOTA
                  15
                      ND2 ASN
                                   18
                                                                56.621
                                                                         1.00
       MOTA
                  16
                                   18
                                             24.093
                                                      -7.115
                                                                57.635
                                                                         1.00 51.27
                           ASN
       MOTA
                  17
                      0
                           ASN
                                   18
                                            24.391
                                                      -6.754
                                                               56.495
                                                                         1.00 52.49
                                                                                           В
25
                                                      -6.665
-5.698
                                            24.723
25.811
                                                               58.716
58.613
       MOTA
                  18
                      N
                           ILE
                                   19
                                                                         1.00 47.11
                                                                                           В
                                   19
                                                                         1.00 42.06
       MOTA
                  19
                      CA
                           ILE
                                                                                           В
       MOTA
                  20
                      CB
                           ILE
                                   19
                                             26.192
                                                      -5.152
                                                                60.004
                                                                         1.00 42.31
                      CG2 ILE
                                             26.598
                                                      -6.295
                                                                60.917
                                                                         1.00 43.22
       MOTA
                                            27.343
27.762
       MOTA
                  22
                      CG1 ILE
                                   19
                                                      -4.159
                                                                59.881
                                                                         1.00
                                                                              41.90
                                                                                           В
30
       MOTA
                  23
                      CD1 ILE
                                   19
                                                      -3.556
                                                               61.193
                                                                         1.00 43,78
                                                                                           В
                                            27.054
27.480
                                                      -6.300
-7.376
                                   19
19
                                                               .57.958
                                                                         1.00 38.26
       MOTA
                  24
                      С
                           ILE
                                                                                           В
                                                                58.312
                                                                         1.00 38.23
                      .0
                                                                                           В
       MOTA
                  25
                           ILE
                  26
                           GLN
                                   20
                                             27.627
                                                      -5.577
                                                                56.999
                                                                         1.00 34.90
       ATOM
                      N
                                                                56.279
                                             28.820
                                                      -6.021
       MOTA
                      CA
                           GLN
35
       MOTA
                  28
                      CB
                           GLN
                                   20
                                             28.778
                                                      -5.516
                                                                54.838
                                                                         1.00 27.85
                                                                                           В
       ATOM
                  29
                      CG
                           GLN
                                   20
                                             30.034
                                                      -5.802
                                                               54.038
                                                                         1.00 26.74
                                                                                           В
                                   20
20
                                             29.987
                                                                52.643
       MOTA
                  30
                      CD
                           GLN
                                                      -5.186
                                                                         1.00 27.60
                                                                                            В
                                                      -3.984
                                             30.137
                                                                52.484
       ATOM
                  31
                      OE1 GLN
                                                                         1.00 29.30
                                                                                            В
                                   20
                                             29.774
       MOTA
                  32
                      NE2 GLN
                                                      -6.017
                                                                51.632
                                                                         1.00 26.15
40
                                             30.091
                                                      -5.507
                                                                56.949
                                                                         1.00 29.28
       MOTA
                           GLN
                                                                57.290
       MOTA
                  34
                      0
                           GLN
                                   20
                                             30.186
                                                      -4.346
                                                                         1.00 29.19
                                                                                            В
                                   21
21
                                             31.075
32.325
       ATOM
                  35
                      N
                           VAL
                                                      -6.379
                                                                57.127
                                                                         1.00 27.08
                                                                                            R
                                                      -5.975
                                                                         1.00 24.84
                           VAL
                                                                57.754
       ATOM
                  36
                      CA
                                                                                            В
                                   21
21
                           VAL
                                             32.448
33.766
                                                      -6.546
                                                                59.180
                                                                         1.00 24.84
       ATOM
                      CB
                                                                                            В
45
                                                      -6.123
                                                                         1.00
       MOTA
                  38
                      CG1
                           VAL
                                                                59.804
                                                                              23.30
                      CG2
       MOTA
                                             31.274
                                                      -6.078
                                                                60.033
                                                                         1.00 24.09
                           VAL
                                                                                            В
                                                      -6.439
-7.608
       ATOM
                  40
                           VAL
                                   21
                                             33.524
                                                                56.938
                                                                         1.00 24.57
                                                                                            R
                                             33.677
34.370
35.558
                                   21
       ATOM
                  41
                      0
                           VAL
                                                                56.687
                                                                         1.00 24.54
                                                                                            В
                                   22
22
                                                                56.531
                                                                         1.00 25.16
       MOTA
                  42
                      N
                           VAL
                                                      -5.496
                                                                                            В
50
       MOTA
                                                       -5.818
                                                                55.753
                                                                         1.00 24.51
                  43
                           VAL
                      CA
                                                                                            В
       MOTA
                                   22
                      CB
                           VAL
                                             35.493
                                                       -5.171
                                                                54.356
                                                                         1.00 25.74
                                                                         1.00 23.07
       MOTA
                  45
                      CG1 VAL
                                   22
                                             34.274
                                                       -5.694
                                                                53.602
                                   22
22
22
22
23
       ATOM
                  46
                      CG2 VAL
                                             35.428
                                                      -3.648
                                                                54.488
                                                                         1.00 26.13
                                                                                            В
       MOTA
                  47
                      C
                           VAL
                                             36.825
                                                       -5.350
                                                                56.464
                                                                         1.00 24.25
                                                                                            B
55
                                                                               25.41
       ATOM
                           VAI.
                                             36.769
37.964
                                                       -4.532
                                                                57.376
                  48
                      O
                                                                         1.00
                                                                                            R
                  49
                                                      -5.889
       ATOM
                      N
                           VAL
                                                                         1.00
                                                                56.047
                                                                               21.62
                                                                                            В
                                   23
                                             39.249
       MOTA
                  50
                      CA
                           VAL
                                                       -5.541
                                                                56.640
                                                                         1.00 20.21
                                   23
                                             39.875
                                                       -6.749
       ATOM
                      СВ
                           VAL
                                                                57.398
                                                                         1.00
       ATOM
                  52
                       CG1 VAL
                                    23
                                             41.246
                                                       -6.386
                                                                57.920
                                                                         1.00
                                                                               17.77
60
       MOTA
                  53
                      CG2
                           VAL
                                   23
                                             38.980
                                                       -7.164
                                                                58.552
                                                                         1.00
                                                                               19.57
                                                                                            В
                                   23
23
       MOTA
                  54
                           VAĹ
                                             40.224
                                                       -5.069
                                                                55.565
                                                                         1.00 20.21
                                                                                            R
                                             40.231
                                                                         1.00 18.34
                  55
                           VAL
       MOTA
                      0
                                                       -5.587
                                                                54.453
                                                                                            В
                                             41.026
                                                                55.908
       ATOM
                  56
                      N
                           ARG
                                    24
                                                       -4.063
                                                                         1.00
                                                                               20.97
                                                                                            В
       MOTA
                                    24
                                             42.012
                                                       -3.508
                                                                54.987
                                                                         1.00
                                                                               23.76
                       CA
                           ARG
                                                                                            В
65
       MOTA
                  58
                       СВ
                           ARG
                                    24
                                             41.493
                                                       -2.221
                                                                54.341
                                                                         1.00 19.71
                                                                                            В
       MOTA
                                    24
                                             42.364
                                                       -1.729
                                                                53.201
                                                                         1.00
                  59
                       CG
                           ARG
                                                                               19.19
       MOTA
                  60
                       CD
                           ARG
                                    24
                                             42.064
                                                       -0.294
                                                                52.784
                                                                         1.00
                                                                               17.94
                                                                                            В
       MOTA
                  61
                      NE
                           ARG
                                   24
                                             42.664
                                                       0.010
                                                                51.487
                                                                         1.00 16.57
                                                                                            B
                                    24
                                             42.479
       MOTA
                  62
                       CZ.
                           ARG
                                                        1.134
                                                                50.801
                                                                         1.00 18.90
                                                                                            R
70
       MOTA
                  63
                       NH1
                           ARG
                                    24
                                                        2.100
                                                                51.281
                                                                         1.00 16.81
                                                                                            В
       ATOM
                                             43.057
                                                        1.275
                                                                49.615
                                                                         1.00 16.05
                                                                                            В
                       NH2
                           ARG
```

	MOTA	65	С	ARG	24	43.304	-3.210	55.736	1.00 27.05	В
	MOTA	66	ŏ	ARG	24	43.313	-2.442	56.712	1.00 27.85	В.
								55.274		В
	MOTA	67	N	CYS	25	44.392	-3.820		1.00 29.51	
_	MOTA	68	CA	CYS	25	45.699	-3.637	55.890	1.00 32.32	В
5	MOTA	69	CB	CYS	25	46.410	-4.991	56.027	1.00 30.86	В
	MOTA	70	SG	CYS	25	48.111	-4.890	56.627	1.00 32.54	В
						46.545	-2.696	55.045	1.00 33.84	B
	MOTA	71	С	CYS	25					
	MOTA	72	0	CYS	25	46.587	-2.820	53.831	1.00 35.92	В
	MOTA	73	N	ARG	26	47.218.	-1.754	55.694	1.00 34.94	В
10	MOTA	74	CA	ARG	26	48.053	-0.807	54.967	1.00 37.11	В
								55.723		В
	MOTA	75	CB	ARG	26	48.130	0.526		1.00 37.77	
	MOTA	76	CG	ARG	26	48.388	0.384	57.222	1.00 37.85	В
	MOTA	77	CD	ARG	26	49.107	1.591	57.802	1.00 36.08	В
	MOTA	78	NE	ARG	26	50.554	1.433	57.704	1.00 35.38	В
15	MOTA	79	CZ	ARG	26	51.379	1.390	58.747	1.00 35.56	В
13										
	MOTA	80	NH1		26	50.910	1.502	59.982	1.00 32.33	В
	MOTA	81	NH2	ARG	26	52.677	1.209	58.551	1.00 37.10	. В
	MOTA	82	С	ARG	26	49.463	-1.341	54.751	1.00 38.55	В
	ATOM	83	ŏ	ARG	26	49.917	-2.224	55.460	1.00 38.07	В
20										
20	MOTA	84	N	PRO	27	50.170	-0.806	53.752	1.00 40.05	В
	MOTA	85	CD	PRO	27	49.674	0.092	52.693	1.00 41.26	В
	MOTA	86	CA	PRO	27	51.536	-1.244	53.467	1.00 42.07	В
	MOTA	87	CB	PRO	27	51.734	-0.805	52.021	1.00 42.46	В
25	MOTA	88	CG	PRO	27	50.945	0.468	51.961	1.00 41.54	В
25	MOTA	89	С	PRO	27	52.508	-0.555	54.418	1.00 43.29	. В
	MOTA	90	0	PRO	27	52.115	0.329	55.170	1.00 43.49	. В
	ATOM	91	N	PHE	28	53.773	-0.968	54.380	1.00 45.76	В
		92		PHE	28	54.807	-0.381	55.233	1.00 47.49	В
	MOTA		CA							
20	MOTA	93	CB	PHE	28	56.045	-1.290	55.308	1.00 46.30	В
30	MOTA	94	CG	PHE	28	55.770	-2.659	55.861	1.00 45.96	В
	MOTA	95	CD1		28	55.424	-3.709	55.015	1.00 45.49	В
	ATOM	96		PHE	28	55.849	-2.899	57.230	1.00 45.19	В
	MOTA	97		PHE	28	55.162	-4.976	55.526	1.00 44.86	В
	MOTA	98	CE2	PHE	28	55.588	-4.165	57.751	1.00 44.92	В
35	MOTA	99	CZ	PHE	28	55.244	-5.204	56.897	1.00 43.96	В.
- -	ATOM	100	c	PHE	28	55.240	0.974	54.686	1.00 49.68	В
	MOTA	101	O	PHE	28	55.458	1.127	53.484	1.00 50.76	B
	MOTA	102	N	ASN	29	55.369	1.955	55.572	1.00 51.78	В
	ATOM	103	CA	ASN	29	55.791	3.289	55.164	1.00 53.98	· B
40	ATOM	104	CB	ASN	29	55.477	4.303	56.268	1.00 52.37	В
					29					В
	ATOM	105	CG	ASN		55.889	3.818	57.647	1.00 51.95	
	MOTA	106	OD1	ASN	29	57.068	3.614	57.918	1.00 51.68	В
	MOTA	107	ND2	ASN	29	54.909	3.633	58.526	1.00 50.23	В
	MOTA	108	С	ASN	29	57.285	3.275	54.841	1.00 56.89	В
45			ō	ASN	29	57.973	2.293	55.111		В
73	MOTA	109								
	MOTA	110	N	LEU	30	57.779	4.361	54.257	1.00 59.05	В
	MOTA	111	CA	LEU	30	59.185	4.452	53.882	1.00 60.93	В
	MOTA	112	CB	LEU	30	59.466	5.837	53.293	1.00 60.81	В
	ATOM	113	CG	LEU	30	60.555	5.909	52.218	1.00 61.25	В
50										
50	MOTA	114		LEU	30	60.401	7.199	51.429	1.00 61.39	В
	MOTA	115	CD2	LEU	30	61.935	5.810	52.856	1.00 61.13	В
	ATOM	116	С	LEU	30	60.136	4.167	55.047	1.00 62.80	В
	ATOM	117	0	LEU	30	61.206	3.611	54.852	1.00 63.36	В
	ATOM	118	N	ALA	31	59.736		56.257	1.00 64.56	В
55							4.545			
دد	MOTA	119	CA	ÀLA	31	60.565	4.326	57.440	1.00 66.24	В
	MOTA	120	CB	ALA	31	59.999	5.104	58.617	1.00 64.93	В
	MOTA	121	С	ALA	31	60.671	2.846	57.798	1.00 68.38	В
	ATOM	122	ō	ALA	31	61.757	2.345	58.088	1.00 69.26	В
~ ^	MOTA	123	N	GLU	32	59.537	2.153	57.781	1.00 69.84	В
60	MOTA	124	CA	GLU	32	59.492	0.734	58.107	1.00 71.88	В
	MOTA	125	СВ	GLU	32	58.038	0.275	58.225	1.00 70.67	В
	MOTA	126	CG	GLU	32		0.752	59.487	1.00 67.99	
						57.338				В
	MOTA	127	CD	GLU	32	55.831	0.607	59.412	1.00 65.98	В
	MOTA	128	OE1	GLU	32	55.174	0.723	60.468	1.00 65.36	В
65	MOTA	129		GLU	32	55.302	0.383	58.301	1.00 62.48	В
		130			32					
	MOTA		C	GLU		60.232	-0.143	57.097	1.00 74.40	В
	MOTA	131	0	GLU	32	61.090	-0.930	57.472	1.00 74.92	В
	MOTA	132	N	ARG	33	59.897	-0.008	55.816	1.00 76.35	В
	MOTA	133	CA	ARG	33	60.550	-0.803	54.779	1.00 78.32	В
70			СВ			59.936	-0.502			
, 0	MOTA	134		ARG	33			53.407	1.00 79.77	В
	ATOM	135	CG	ARG	33	59.972	0.964	53.010	1.00 83.18	В
	ATOM	136	CD	ARG	33	59.329	1.183	51.645	1.00 85.46	В
	ATOM	137	NE	ARG	33	60.032	0.459	50.589	1.00 87.40	В
						2				-

	MOTA	138	CZ	ARG	33	61.269	0.737	50.186	1.00 88.75	В
	MOTA	139	NHl		33	61.948	1.729	50.747	1.00 89.79	В
	MOTA	140	NH2		33	61.828	0.019	49.221	1.00 89.07	B
_	MOTA	141	C	ARG	33	62.053	-0.536	54.754	1.00 78.80	В
5	MOTA	142	0	ARG	33	62.832	-1.379	54.318	1.00 78.36	В
	MOTA	143	N	LYS	34	62.448	0.644	55.226	1.00 79.39	В
	MOTA .	144	CA	LYS	34	63.853	1.029	55.284	1.00 80.19	В
	MOTA	145	CB	LYS	34	63.984	2.543	55.504	1.00 81.11	В
	MOTA	146	CG	LY\$	34	64.392	.3.347	54.267	1.00 82.59	В
10	MOTA	147	CD	LYS	34	65.910	3.501	54.147	1.00 83.41	В
	MOTA	148	. CE	LYS	34	66.604	2.186	53.810	1.00 84.19	В
	MOTA	149	NZ	LYS	34	68.089	2.305	53.845	1.00 84.38	В
	MOTA	150	С	LYS	34	64.539	0.285	56.423	1.00 80.45	В
	MOTA	151	0	LYS	34	65.757	0.159	56.448	1.00 81.20	B
15	MOTA	152	N	ALA	35	63.740	-0.209	57.365	1.00 80.19	В
	MOTA	153	CA	ALA	35	64.264	-0.946	58.509	1.00 79.99	В
•	MOTA	154	CB	ALA	35	63.654	-0.405	59.800	1.00 79.19	В
	MOTA	155	С	ALA	35	63.966	-2.441	58.372	1.00 79.54	В
20	MOTA	156	0	ALA	35	64.029	-3.181	59.347	1.00 79.52	В
20	MOTA	157	N	SER	36	63.650	-2.870	57.150	1.00 79.23	В
	MOTA	158	CA	SER	36	63.324	-4.269	56.866	1.00 78.90	В
	MOTA	159	СВ	SER	36	64.581	-5.140	56.934	1.00 79.55	В
	MOTA	160	OG	SER	36	65.497	-4.786	55.913	1.00 80.94	В
25	MOTA	161	C	SER	36	62.291	-4.773	57.863	1.00 77.94	- B
23	MOTA	162	0	SER	36	62.621	-5.460	58.826	1.00 78.06	В
	MOTA	163	N	ALA	37	61.033	-4.422	57.620	1.00 76.14	В
	MOTA	164	CA	ALA	37	59.952	-4.822	58.505	1.00 74.02	В
	MOTA	165	СВ	ALA	37	58.862	-3.763	58.496	1.00 74.76	В
30	MOTA	166	C	ALA	37	59.370	-6.177	58.128	1.00 72.27	. В
50	MOTA	167	0	ALA	37	59.282	-6.526	56.956	1.00 71.83	В
	ATOM	168	N	HIS	38	58.975	-6.928	59.151	1.00 70.33	В
	ATOM	169	CA	HIS	38 .	58.388	-8.249	58.981	1.00 67.10	В
	MOTA	170	CB	HIS	38	59.039	-9.236	59.961	1.00 69.95	B B
35	ATOM ATOM	171 . 172	CG	HIS HIS	38 38	59.177 58.589	-8.706 -9.085	61.358 62.518	1.00 72.03 1.00 72.68	8
.55	ATOM	173		HIS	38	60.004	-7.648	61.676	1.00 72.05	В
•	MOTA	174		HIS	38	59.919	-7.399	62.971	1.00 72.38	В
	MOTA	175		HIS	38	59.067	-8.256	63.505	1.00 73.14	В
	MOTA	176	C	HIS	38	56.877	-8.187	59.220	1.00 63.55	В
40	ATOM	177	ŏ	HIS	38	56.426	-7.917	60.335	1.00 63.33	8
	ATOM	178	N	SER	39	56.100	-8.432	58.168	1.00 58.67	В
	MOTA	179	CA	SER	39	54.643	-8.399	58.266	1.00 54.45	В
	ATOM	180	СВ	SER	39	54.005	-8.478	56.879	1.00 53.84	В
	ATOM	181	OG	SER	39	52.595	-8.614	56.976	1.00 49.31	В
45	ATOM	182	Ċ	SER	39	54.081	-9.519	59.122	1.00 52.25	В
	ATOM	183	ō	SER	39	54.384	-10.686	58.910	1.00 51.84	В
	ATOM	184	N	ILE	40	53.251	-9.149	60.089	1.00 49.22	В
	MOTA	185	CA	ILE	40		-10.122	60.967	1.00 47.52	В
	MOTA	186	ÇВ	ILE	40	52.679	-9.674	62.444	1.00 45.91	В
50	ATOM	187	CG2	ILE	40	54.115	-9.499	62.881	1.00 44.82	В
	MOTA	188	CG1	ILE	40	51.915	-8.361	62.622	1.00 45.54	В
	MOTA	189	CD1	ILE	40	51.580	-8.050	64.066	1.00 46.62	, В
	ATOM	190	С	ILE	40	51.176	-10.316	60.557	1.00 47.28	В
	MOTA	191	0	ILE	40	50.421	-10.994	61.234	1.00 46.90	В
55	MOTA	192	N	VAL	41	50.798	-9.718	59.433	1.00 47.41	В
	MOTA	193	CA	VAL	41	49.430	-9.824	58.939	1.00 48.95	В
	MOTA	194	CB	VAL	41	48.713	-8.450	58.983	1.00 49.16	В
	MOTA	195		VAL	41	47.290	-8.585	58.467	1.00 49.01	В
60	MOTA	196	CG2	VAL	41	48.713	-7.903	60.402	1.00 49.06	В
60	MOTA	197	С	VAL	41	49.395	-10.347	57.509	1.00 49.67	В
	MOTA	198	0	VAL	41	50.004	-9.777	56.620	1.00 49.95	В
	MOTA	199	N	GLU	42		-11.449	57.301	1.00 50.48	В
	MOTA	200	CA	GLU	42		-12.024	55.969	1.00 51.59	В
C E	MOTA	201	CB	GLU	42		-13.434	55.935	1.00 52.66	В
65	MOTA	202	CG	GLU	42		-13.510	56.447	1.00 56.16	В
	MOTA	203	CD	GLU	42		-14.931	56.476	1.00 58.24	В
	MOTA	204		GLU	42		-15.854	56.899	1.00 57.80	В
	MOTA	205		GLU	42		-15.119	56.081	1.00 58.28	В
70	MOTA	206	C	GLU	42		-12.072	55.599	1.00 50.83	В
70	MOTA	207	0	GLU	42		-12.604	56.343	1.00 51.55	В
	ATOM	208	N	CYS	43		-11.493	54.453	1.00 49.80	В
	MOTA	209	CA	CYS	43		-11.473	53.995	1.00 49.65	В
	MOTA	210	CB	CYS	43	45.037	-10.087	53.433	1.00 49.93	В

	MOTA	211	SG	CYS	43	45.019	-8.745	54.661	1.00 48.78	В
	ATOM	212		CYS	43		-12.535			
								52.931	1.00 48.94	В
	MOTA	213		CYS	43		-12.833	52.123	1.00 48.97	В
•	MOTA	214		ASP	44	43.939	-13.105	52.954	1.00 49.14	В
5	MOTA	215	CA	ASP	44	43.534	-14.121	51.992	1.00 48.86	В
	MOTA	216	CB	ASP	44	43.463	-15.494	52.660	1.00 50.97	В
	MOTA	217		ASP	44		-16.635	51.666	1.00 52.32	В
	ATOM	218	OD1		44		-16.483	50.510	1.00 52.22	В
10	ATOM	219	OD2		44		-17.689	52.048	1.00 52.81	В
10	MOTA	220	С	ASP	44	42.150	-13.749	51.456	1.00 48.60	В
	MOTA	221	0	ASP	44	41.127	-14.147	52.012	1.00 46.42	В
	ATOM	222	N	PRO	45	42,108	-12.969	50.364	1.00 48.35	В
	ATOM	223		PRO	45		-12.517	49.557	1.00 48.19	В
	MOTA	224		PRO	45		-12.540	49.755	1.00 48.75	B
15										
13	MOTA	225		PRO	45		-11.680	48.584	1.00 49.00	В
	MOTA	226		PRO	45		-12.306	48.211	1.00 49.04	В
	MOTA	227	C	PRO	45	39.957	-13.688	49.312	1.00 50.08	В
	MOTA	228	0	PRO	45	38.750	-13.661	49.535	1.00 50.55	В
	MOTA	229	N	VAL	46	40.561	-14.693	48.683	1.00 50.66	В
20	ATOM	230		VAL	46		-15.851	48.213	1.00 50.49	В
	ATOM	231		VAL	46		-16.853	47.500	1.00 50.30	В
	ATOM	232	CG1							
					46		-18.079	47.077	1.00 49.67	В
	ATOM	233	CG2		46		-16.192	46.293	1.00 49.30	В
25	MOTA	234		VAL	46	39.145	-16.545	49.389	1.00 50.88	. В
25	MOTA	235	0	VAL	46	37.965	-16.870	49.338	1.00 52.16	В
	MOTA	236	N	ARG	47	39.906	-16.761	50.454	1.00 49.91	В
	ATOM	237	CA	ARG	47		-17.417	51.635	1.00 49.25	В
	MOTA	238		ARG	47		-18.074	52.431	1.00 53.01	В
	MOTA	239		ARG	47		-19.009	53.535	1.00 58.79	В
30										
50	ATOM	240		ARG	47		-20.404	52.993	1.00 62.76	В
	MOTA	241		ARG	47		-21.094	52.566	1.00 65.61	В
	MOTA	242 -		ARG	47		-21.489	53,395	1.00 67.31	В
	MOTA	243	NH1	ARG	47	41.770	-21.265	54.699	1.00 67.77	B
	MOTA	244	NH2	ARG	47	42.970	-22.093	52.922	1.00 67.97	В
35	ATOM	245		ARG	47		-16.396	52.518	1.00 46.27	В
	MOTA	246		ARG	47		-16.767	53.479	1.00 45.17	В
	ATOM	247		LYS	48		-15.116	52.167		
									1.00 43.30	В
	ATOM	248		LYS	48		-14.003	52.911	1.00 40.30	В
áΩ	MOTA	249		LYS	48		-14.063	52.861	1.00 40.48	В
40	ATOM	250	CG	LYS	48	36.074	-13.999	51.466	1.00 42.10	В
	ATOM	251	CD	LYS	48	34.566	-14.224	51.491	1.00 46.49	В
	ATOM	252	CE	LYS	48		-14.463	50.088	1.00 48.94	В
	MOTA	253	NZ	LYS	48		-13.358	49.137	1.00 51.33	В
	ATOM	254		LYS	48		-14.040	54.364	1.00 38.40	B
45	ATOM	255		LYS	48					
15							-13.780	55.271	1.00 37.06	В
	MOTA	256		GLU			-14.374	54.573	1.00 38.43	В
	MOTA	257		GLU	49		-14.451	55.918	1.00 38.68	₿
	MOTA	258		GLU	49	40.965	-15.867	56.237	1.00 42.04	В
	MOTA	259	CG	GLU	49	39.896	-16.940	56.342	1.00 47.74	В
50	MOTA	260		GLU	49		-18.320	56.671	1.00 49.86	В
	ATOM	261	OE1		49		-19.305	56.666	1.00 50.42	В
	MOTA	262	OE2		49		-18.419	56.930	1.00 49.85	
										В
	ATOM	263		GLU	49		-13.506	56.111	1.00 37.41	В
55	MOTA	264		GLU	49		-13.066	55.158	1.00 34.84	В
23	MOTA	265		VAL	50	41.925	-13.220	57.374	1.00 36.48	В
	MOTA	266	CA	VAL	50	43.035	-12.366	57.751	1.00 37.37	В
	MOTA	267	СВ	VAL	50		-10.930	58.146	1.00 37.30	В
	MOTA	268	CG1		50		-11.008	59.061	1.00 38.02	В
	ATOM	269	CG2		50					
60							-10.153	58.813	1.00 36.20	B
00	MOTA	270		VAL	50		-13.074	58.921	1.00 36.84	В
	MOTA	271		VAL	50		-13.354	59.926	1.00 37.07	В
	MOTA	272	N	SER	51	44.988	-13.399	58.772	1.00 37.03	В
	MOTA	273	CA	SER	51	45.702	-14.095	59.835	1.00 37.03	В
	MOTA	274		SER	51		-15.390	59.294	1.00 37.38	В
65	MOTA	275		SER	51		-16.327	60.339	1.00 38.42	В
	ATOM	276								
				SER	51		-13.217	60.436	1.00 37.30	В
	ATOM	277		SER	51		-12.567	59.712	1.00 37.32	В
	ATOM	278		VAL	52		-13.207	61.764	1.00 37.43	В
70	MOTA	279	CA	VAL	52		-12.398	62.476	1.00 40.09	В
70	MOTA	280	CB	VAL	52	47.170	-11.380	63.433	1.00 38.82	В
	MOTA	281	CG1		52		-10.529	64.140	1.00 38.44	В
	ATOM	282	CG2		52		-10.507	62.664	1.00 39.75	В
	ATOM	283		VAL						
	A100	203	•	* AL	52	40.014	-13.254	63.307	1.00 41.41	В

	MOTA	284	0	VAL	52	48.383		64.059	1.00 42.26	В
	MOTA	285	N	ARG	53	50.112		63.170	1.00 42.93	В
	MOTA	286	CA	ARG	53	51.115		63.922 63.156	1.00 44.63	B B
5	ATOM	287 288	CB	ARG ARG	53 53	52.435 53.621		63.976	1.00 45.18	В
,	MOTA MOTA	289	CD	ARG	53	54.721		63.069	1.00 47.32	В
	MOTA	290	NE	ARG	53	55.045		62.016	1.00 48.93	В
	MOTA	291	CZ	ARG	53	55.538		60.831	1.00 48.81	В
	ATOM	292	NH1	ARG	53	55.762	-15.430	60.548	1.00 49.29	В
10	MOTA	293	NH2	ARG	53	55.804		59.928	1.00 50.89	В
	MOTA		. C	ARG	53	51.333		65.298	1.00 46.43	В
	MOTA	295	0	ARG	53	51.867		65.420	1.00 47.02	В
	ATOM	296	N	THR	54	50.915 51.052		66.331 67.711	1.00 48.25	B B
15	MOTA MOTA	297 298	CA CB	THR THR	54 54	49.768		68.512	1.00 50.32	В
13	MOTA	299		THR	54	49.572		68.631	1.00 50.23	В
	MOTA	300		THR	54	48.567		67.810	1.00 50.24	В
	ATOM	301	C	THR	54	52.211		68.412	1.00 53.34	В
~~	MOTA	302	0	THR	54	52.551		69.538	1.00 53.13	В
20	MOTA	303	N	GLY	55	52.815		67.726	1.00 57.17	. B
	MOTA	304	CA	GLY	55	53.917		68.303	1.00 61.42	В
	ATOM	305	C	GLY	55	55.300		67.868 67.715	1.00 64.33	В _. В
	MOTA MOTA	306 . 307	O N	GLY GLY	55 56	55.566 56.181		67.672	1.00 66.22	· B
25	ATOM	308	CA	GLY	56	57.548		67.272	1.00 68.09	В
	MOTA	309	c .	GLY	56	57.760		65.777	1.00 69.96	В
	MOTA	310	0	GLY	56	56.950		65.084	1.00 70.41	В
	MOTA	311	N	LEU	57 .	58'.860		65.288	1.00 71.01	В
20	MOTA	312	CA	LEU	57	59.220		63.873	1.00 70.64	В
30	MOTA	313	CB	LEU	57	60.702		63.704	1.00 71.42	В
	MOTA	314	CG	LEU	57 57		-17.671 -19.034	64.778 64.777	1.00 71.92 1.00 72.30	B B
	MOTA MOTA	315 316		LEU	57		-17.813	64.522	1.00 72.27	В
	ATOM	317	C	LEU	57		-17.311	62.973	1.00 70.34	В
.35	ATOM	318	Ō	LEU	57		-18.083	63.450	1.00 69.85	В
	MOTA	319	N	ALA	58	58.589	-17.189	61.667	1.00 69.38	В
	MOTA	320	CA	ALA	58		-17.959	60.669	1.00 68.14	В
	MOTA	321	CB	ALA	58		-17.430	59.268	1.00 68.25	В
40	MOTA	322	C	ALA	58		-19.462	60.742 60.433	1.00 66.52	B B
40	MOTA MOTA	323 324	И О	ALA ASP	58 59		-20.268 -19.825	61.150	1.00 64.49	В
	MOTA	325	CA	ASP	59		-21.226	61.270	1.00 62.67	В
	MOTA	326	CB	ASP	59		-21.310	61.798	1.00 62.19	В
	MOTA	327	ÇG	ASP	59	61.589	-22.724	62.197	1.00 61.33	В
45	MOTA	328		ASP	59		-23.594	61.307	1.00 59.84	В
	MOTA	329		ASP	59		-22.963	63.410	1.00 60.73	В
	MOTA	330	C.	ASP	59		-21.994	62.201	1.00 61.33	B B
	MOTA MOTA	331 332	N.	ASP LYS	59 60		-23.182 -21.302	62.005 63.211	1.00 60.81	₿.
50	MOTA	333	CA	LYS	60		-21.897	64.179	1.00 57.28	В
-	MOTA	334	СВ	LYS	60		-22.816	65.134	1.00 57.38	В
	ATOM	335	CG	LYS	60 .		-23.524	66.164	1.00 57.92	В
	MOTA	336	CD	LYS	60		-24.299	67.172	1.00 58.61	В
55	MOTA	337	CE	LYS	60 .		-24.930	68.245	1.00 58.86	В
55	MOTA	338	NZ	LYS	60.		-25.535	69.333	1.00 59.92 1.00 55.75	В
	ATOM	339	C	LYS	60 60		-20.771 -19.942	64.968 65.574	1.00 55.85	B B
	MOTA MOTA	340 341	0 N	LYS	61		-20.735	64.953	1.00 52.88	В.
	ATOM	342		SER	61		-19.692		1.00 50.87	В
60	MOTA	343	СВ	SER	61	54.863	-18.343	64.967	1.00 50.80	В
	MOTA	344	0G	SER	61		-18.346	63.667	1.00 48.16	В
	MOTA	345	C	SER	61	53.158	-19.957	65.796	1.00 50.20	В
	MOTA	346	0	SER	61		-20.909	65.245	1.00 49.59	В
65	ATOM	347	N	SER	62		-19.086	66.547	1.00 49.11	В
65	MOTA	348	CA	SER	62		-19.170	66.752	1.00 48.21	В
	MOTA	349	CB	SER	62 63		-19.101	68.248	1.00 48.08	B B
	MOTA	350 351	OG C	SER SER	62 62		-17.993 -17.990	68.858 66.010	1.00 48.30 1.00 48.13	В
	MOTA MOTA	352	Ö	SER	62		-17.016	65.703	1.00 47.13	В
70	MOTA	353	N	ARG	63		-18.085	65.712	1.00 47.13	В
	ATOM	354	CA	ARG	63		-17.015	64.998	1.00 45.05	В
	MOTA	355	CB	ARG	63	48.539	-17.231	63.481	1.00 44.51	В
	MOTA	356	CG	ARG	63	49.960	-17.194	62.925	1.00 44.98	В

	ATOM	357	CD	ARG	63	49.976 -	17.466	61.428	1.00 46.63	В
	MOTA	358	NE	ARG	63	49.443 -	16.349	60.645	1.00 48.69	В.
	MOTA	359	CZ	ARG	63	50.148 -	15.285	60.263	1.00 48.66	В
~	MOTA	360	NH1	ARG	63	51.429 -		60.587	1.00 49.48	В
5	MOTA	361	NH2	ARG	63	49.574 -		59.545	1.00 48.53	B
	MOTA	362	С	ARG	63	46.975 -		65.401	1.00 43.84	В
	MOTA	363	0	ARG	63	46.477 -		66.176	1.00 44.06	В
	MOTA	364	N	LYS	64	46.305 -		64.868	1.00 42.24	В
10	MOTA	365	CA	LYS	64	44.892 -		65.124	1.00 40.40	В
10	MOTA	366	СВ	LYS	64	44.723 -		66.032	1.00 41.92	В
	MOTA	367	CG	LYS	64	45.181 -		67.470	1.00 43.37	В
	ATOM	368	CD	LYS	64	44.088 -		68.317	1.00 43.81	В
	MOTA	369	CE	LYS	64	44.446 -		69.794	1.00 45.77	В
15	MOTA	370	NZ	LYS	64	43.374 -		70.658	1.00 46.88	В
15	MOTA	371	С	LYS	64	44.257 -		63.771	1.00 39.22	В
	MOTA	372	0	LYS	64	44.631 -		63.102	1.00 39.99	. В
	MOTA	373	N	THR	65	43.312 -		63.361	1.00 36.46	В
	MOTA	374	CA	THR	65	42.656 -		62.074	1.00 34.76	В
20	MOTA	375	CB	THR	65	42.745 -		61.212	1.00 35.41	B B
20	MOTA	376	OG1 CG2	THR	65 65	44.118 - 42.130 -		61.041 59.826	1.00 32.86	В
	MOTA	377 378	C	THR THR	65	42.130 -		62.238	1.00 34.16	В
	ATOM ATOM	379	ò	THR	65	40.477 -		63.070	1.00 35.43	В
	ATOM	380	N	TYR	66	40.764 -		61.448	1.00 30.66	В
25	ATOM	381	CA	TYR	66	39.391 -		61.488	1.00 28.38	В
25	ATOM	382	CB	TYR	66	39.337 -		62.072	1.00 25.32	B
	MOTA	383	CG	TYR	66	39.886 -		63.473	1.00 22.38	В
	ATOM	384		TYR	66	41.255 -		63.710	1.00 20.36	В
	MOTA	385	CE1	TYR	66	41.753 -		65.011	1.00 19.50	В
30	ATOM	386		TYR	66	39.027 -		64.569	1.00 22.45	В
	MOTA	387	CE2	TYR	66	39.506 -		65.868	1.00 19.18	В
	MOTA	388	CZ	TYR	66	40.865 -		66.086	1.00 21.06	В
	MOTA	389	OH	TYR	66	41.317 -	12.358	67.391	1.00 25.17	В
	ATOM	390	С	TYR	66	38.815 -	14.171	60.076	1.00 29.18	В
35	MOTA	391	0	TYR	66	39.537 -	13.953	59.108	1.00 29.59	В
	MOTA	392	N	THR	67	37.514 -	14.418	59.963	1.00 30.96	В
	MOTA	393	CA	THR	67	36.854 -	14.420	58.662	1.00 31.82	В
	MOTA	394	CB	THR	67	36.083 -		58.418	1.00 31.49	В
40	MOTA	395	OG1	THR	67	36.983 -	16.849	58.543	1.00 35.18	В
40	MOTA	396	ÇG2	THR	67	35.482 -	-15.759	57.016	1.00 30.30	В
	MOTA	397	С	THR	67	35.873 -	-13.252	58.565	1.00 31.85	В
	MOTA	398	0	THR	67	35.100 -		59.504	1.00 32.04	В
	MOTA	399	N	PHE	68	35.923 -		57.442	1.00 29.70	В
45	MOTA	400	CA	PHE	68		11.400	57.203	1.00 31.18	В
45	MOTA	401	CB	PHE	68		-10.063	57.305	1.00 29.26	В
	MOTA	402	CG	PHE	68	36.374	-9.797	58.658	1.00 27.25	В
	MOTA	403		PHE	68	37.617 -		59.001	1.00 28.36	В
	MOTA	404		PHE	68	35.666	-9.071	59.611	1.00 28.98	В
50	MOTA	405		PHE	68		-10.110	60.277	1.00 27.66	В
50	MOTA	406 407	CEZ	PHE	68 68	36.188	-8.867 -9.388	60.894 61.225	1.00 27.30	B B
	MOTA MOTA	408	c	PHE	68	37.430 34.418 -	-11.527	55.815	1.00 30.88	В
	MOTA	409	õ	PHE	68		-12.385	55.032	1.00 32.33	В
	ATOM	410	N	ASP	69		-10.670	55.514	1.00 30.45	В
55	ATOM	411	CA	ASP	69		-10.702	54.212	1.00 31.77	В
	ATOM	412	CB	ASP	. 69	31.636	-9.698	54.185	1.00 33.60	В
	MOTA	413	CG	ASP	69	30.590	-9.988	55.258	1.00 36.34	В
	ATOM	414		ASP	69	30.514	-9.221	56.254	1.00 35.89	B
	ATOM	415		ASP	69	29.856 -		55.112	1.00 33.96	В
60	ATOM	416	c	ASP	69	33.775 -		53.078	1.00 30.67	В
	ATOM	417	õ	ASP	69	33.594		51.970	1.00 31.26	В
	ATOM	418	N	MET	70	34.816	-9.646	53.377	1.00 31.20	В
	ATOM	419	CA	MET	70	35.836	-9.294	52.394	1.00 31.00	В
	ATOM	420	СВ	MET	70	35.396	-8.081	51.567	1.00 33.24	В
65	ATOM	421	CG	MET	70	34.253	-8.330	50.598	1.00 35.15	В
	MOTA	422	SD	MET	70	33.994	-6.921	49.476	1.00 43.03	В
	ATOM	423	CE	MET	70	32.288	-6.531	49.777	1.00 42.27	В
	MOTA	424	C	MET	70	37.158	-8.978	53.090	1.00 29.72	В
	MOTA	425	Ō	MET	70	37.186	-8.682	54.271	1.00 29.23	В
70	MOTA	426	N	VAL	71	38.257	-9.052	52.353	1.00 28.80	В
	MOTA	427	CA	VAL	71	39.561	-8.765	52.929	1.00 30.15	В
	MOTA	428	CB	VAL	71		-10.054	53.443	1.00 31.84	В
	MOTA	429	CG1	VAL	71	41.603	-9.713	54.060	1.00 33.61	В

	MOV	430	663	178.5	71	39.388	-10 770	54.471	1.00 31.83	В
•	ATOM ATOM	430 431	CC5	VAL	71 71	40.439	-8.102	51.878	1.00 29.25	B
	MOTA	432	ò	VAL	71	40.471	-8.526	50.734	1.00 30.25	В
	ATOM	433	N	PHE	72	41.146	-7.053	52.285	1.00 30.15	В
· 5	MOTA	434	CA	PHE	72	42.015	-6.306	51.384	1.00 30.67	В
	MOTA	435	CB	PHE	72	41.445	-4.905	51.152	1.00 28.16	В
	ATOM.	436	CG	PHE	72	40.060	-4.903	50.573	1.00 27.42	В
•	MOTA	437	CD1		72	39.854	-5.145	49.220	1.00 26.23	В
10	MOTA	438	CD2		72	38.955	-4.686	51.390	1.00 26.64	. В В
10	MOTA MOTA	439 440	CE1 CE2		72 72	38.565 37.664	-5.171 -4.709	48.688 50.868	1.00 25.66 1.00 25.86	В
	MOTA	441	CZ	PHE	72	37.469	-4.954	49.516	1.00 24.73	В
	MOTA	442	c	PHE	72	43.428	-6.188	51.940	1.00 31.84	В
	ATOM	443	ō	PHE	72	43.646	-5.560	52.973	1.00 30.82	В
15	ATOM	444	N	GLY	73	44.385	-6.797	51.247	1.00 32.27	В
	MOTA	445	CA	GLY	73	45.757	-6.727	51.697	1.00 32.67	В
	MOTA	446	C	GLY	73	46.358	-5.377	51.366	1.00 33.72	В
	ATOM	447	0	GLY	73	45.730	-4.553	50.707	1.00 33.21 1.00 34.20	B B
20	MOTA MOTA	448 449	N CA	ALA ALA	74 74	47.589 48.296	-5.163 -3.911	51.815 51.583	1.00 35.80	В
20	ATOM	450	CB	ALA	74	49.615	-3.929	52.329	1.00 35.10	В
	ATOM	451	c	ALA	74	48.547	-3.664	50.100	1.00 37.02	В
	MOTA	452	0	ALA	74	49.235	-2.734	49.730	1.00 38.45	В
05	MOTA	453	N	SER	75	47.971	-4.498	49.250	1.00 38.40	· B
25	MOTA	454	CA	SER	75	48.179	-4.356	47.821	1.00 40.23	В
	MOTA	455	CB	SER	75 75	48.437	-5.733	47.204	1.00 40.06	В
	MOTA MOTA	456 457	OG C	SER SER	75 75	47.371 46.990	-6.617 -3.701	47.504 47.126	1.00 38.50 1.00 40.71	18 18
	ATOM	458	ŏ	SER	75	47.155	-3.026	46.109	1.00 40.44	В
30	MOTA	459	N	THR	76	45.795	-3.917	47.677	1.00 40.56	В
	MOTA	460	CA	THR	76	44.568	-3.365	47.107	1.00 40.11	В
	ATOM	461	CB	THR	76	43.325	-3.769	47.960	1.00 41.15	В
	MOTA	462		THR	76	43.690	-3.865	49.342	1.00 43.22	В
35 ⁻	MOTA	463		THR	76 76	42.774	-5.118	47.498	1.00 43.01	В
33	MOTA MOTA	. 464 465	С 0	THR THR	76 76	44.615 45.071	-1.849 -1.119	46.937 47.819	1.00 38.50 1.00 38.53	B B
•	MOTA	466	N	LYS	77	44.152	-1.385	45.785	1.00 36.21	В
	MOTA	467	CA	LYS	77	44.135	0.036	45.483	1.00 34.26	В
	MOTA	468	СВ	LYS	77	44.482	0.243	44.011	1.00 36.10	В
40	MOTA	469	CG	LYS	77	45.901	-0.174	43.651	1.00 39.66	В
	MOTA	470	CD	LYS	77	46.138	-0.013	42.153	1.00 43.10	В
	MOTA	471	CE	LYS	77	47.538	-0.446	41.749	1.00 44.09	В
	MOTA MOTA	472 473	NZ C	LYS	77 77	47.693 42.776	-0.451 0.662	40.261 45.799	1.00 46.93 1.00 32.74	B B
45	MOTA	474	Ö	LYS	77	41.807	-0.045	46.049	1.00 30.61	В
	MOTA	475	N	GLN	78	42.729	1.994	45.800	1.00 31.08	В
	ATOM	476	CA	GLN	78	41.499	2.731	46.084	1.00 29.81	В
	MOTA	477	CB	GLN	78	41.718	4.241	45.896	1.00 29.96	В
50	MOTA	478	CG	GLN	78	42.791	4.867	46.790	1.00 28.93	В
50	MOTA	479	CD	GLN	78	42.339	5.029	48.224	1.00 28.69	В
	MOTA MOTA	480 481		GLN GLN	78 78	41.731	4.136 6.177	48.789 48.822	1.00 28.17 1.00 28.63	B B
	MOTA	482	C	GLN	78	40.371	2.273	45.160	1.00 29.13	В
	ATOM	483	ō	GLN	78	39.255	2.045	45.597	1.00 28.04	В
55	MOTA	484	N	ILE	79	40.687	2.140	43.877	1.00 27.65	В
	MOTA	485	CA	ILE	79.	39.710	1.730	42.874	1.00 28.90	В
	MOTA	486	CB	ILE	79	40.369	1.664	41.472	1.00 28.34	В
	MOTA	487		ILE	79	41.411	0.564	41.442	1.00 30.45	В.
60	MOTA	488	CG1	ILE	79	39.316	1.396	40.400	1.00 29.43 1.00 30.66	B B
00	ATOM ATOM	489 490	CDI	ILE	79 79	38.333 39.055	2.517 0.377	40.226	1.00 30.88	В
•	MOTA	491	ŏ	ILE	79	37.867	0.175	42.938	1.00 27.79	В
	ATOM	492	N	ASP	80	39.829	-0.548	43.749	1.00 28.15	В
	MOTA	493	CA	ASP	80	39.296	-1.866	44.076	1.00 27.60	В
65	MOTA	494	CB	ASP	80	40.435	-2.865	44.316	1.00 27.34	В
	MOTA	495	CG	ASP	80	41.439	-2.908	43.164	1.00 29.59	В
	MOTA	496		ASP	80	41.018	-2.784	41.987	1.00 27.17	В
	MOTA MOTA	497		ASP	80	42.648 38.395	-3.078 -1.800	43.445	1.00 29.79 1.00 27.71	B B
70	ATOM	498 499	C O	ASP	80 80	37.394	-2.492	45.303 45.383	1.00 27.71	В
	MOTA	500	N	VAL	81	38.761	-0.964	46.265	1.00 28.05	В
	MOTA	501	CA	VAL	81	37.947	-0.820	47.460	1.00 27.29	В
	MOTA	502	CB	VAL	81	38.618	0.115	48.495	1.00 25.22	В

	MOTA	503	CG1		81	37.662	0.394	49.633	1.00 21.33	В
	MOTA	504	CG2		81	39.890	-0.532	49.036	1.00 23.97	В
	MOTA	505		VAL	81	36.588	-0.244	47.079	1.00 28.97	В
5	ATOM	506		VAL	81	35.555	-0.682	47.590	1.00 29.68	В
)	MOTA	507		TYR	82	36.593	0.721	46.162 45.723	1.00 28.62 1.00 30.02	B B
	MOTA	508 509		TYR TYR	82 82	35.364 35.693	1.368 2.640	44.924	1.00 30.02	В
	ATOM ATOM	510		TYR	82	34.472	3.389	44.443	1.00 33.00	В
	MOTA	511	CD1		82	33.934	3.144	43.180	1.00 34.00	В
10	ATOM	512	CE1		82	32.776	3.781	42.762	1.00 37.72	В
10	ATOM	513		TYR	82	33.817	4.299	45.278	1.00 32.60	B
	MOTA	514		TYR	82	32.659	4.938	44.871	1.00 36.04	В
	MOTA	515	CZ	TYR	82	32.142	4.676	43.613	1.00 39.42	В
-	MOTA	516	OH	TYR	82	30.992	5.316	43.203	1.00 42.75	В
15	MOTA	517	С	TYR	82	34.456	0.451	44.906	1.00 30.88	В
	MOTA	518	0	TYR	82	33.264	0.363	45.168	1.00 30.76	В
	MOTA	519	N	ARG	83	35.021	-0.223	43.910	1.00 32.85	В
	MOTA	520	CA	ARG	83	34.239	-1.136	43.077	1.00 34.09	В
20	ATOM	521	CB	ARG	83	35.120	-1.702	41.965	1.00 35.60	В
20	MOTA	522	CG	ARG	83	35.333	-0.749	40.798	1.00 42.48	В
	MOTA	523	CD	ARG	83	36.652	-1.013	40.072 39.503	1.00 46.99	B B
	ATOM-	524	NE CZ	ARG	83	36.734	-2.358 -2.758	38.404	1.00 53.06 1.00 56.78	В
	MOTA MOTA	525 526	CZ NH1	ARG	83 83	36.100 35.323	-1.914	37.735	1.00 57.61	В
25	ATOM	527	NH2		83	36.254	-4.004	37.967	1.00 57.03	В
	MOTA	528	C	ARG	83	33.630	-2.277	43.895	1.00 33.36	В
	ATOM	529	ŏ	ARG	83	32.492	-2.674	43.667	1.00 34.00	В
	MOTA	530	N	SER	84	34.390	-2.785	44.860	1.00 31.69	В
	MOTA	531	CA	SER	84	33.956	-3.899	45.701	1.00 30.91	В
30	MOTA	532	СВ	SER	84	35.180	-4.582	46.322	1.00 31.88	В
	MOTA	533	OG	SER	84	36.115	-4.951	45.324	1.00 34.36	В
	MOTA	534	С	SER	84	32.983	-3.535	46.816	1.00 30.39	В
	MOTA	535	0	SER	84	31.963	-4.195	47.007	1.00 30.60	В
25	MOTA	536	N	VAL	85	33.299	-2.489	47.568	1.00 29.66	В
35	MOTA	537	CA	VAL	85 85	32.432	-2.091	48.663	1.00 28.01 1.00 27.01	В · В
	MOTA	538 539	CB	VAL	85 85	33.255 32.336	-1.652 -1.128	49.887 50.971	1.00 26.26	В
	MOTA MOTA	540		VAL	85	34.080	-2.815	50.407	1.00 26.27	В
	MOTA	541	C	VAL	85	31.445	-0.983	48.337	1.00 27.47	В
40	ATOM	542	ō.	VAL	85	30.249	-1.149	48.498	1.00 28.23	B
	MOTA	543	N	VAL	86	31.960	0.145	47.868	1.00 28.02	В
	MOTA	544	CA	VAL	86	31.132	1.313	47.585	1.00 28.51	В
	MOTA	545	CB	VAL	86	32.004	2.568	47.370	1.00 26.65	В
4 =	MOTA	546		VAL	86	31.180	3.808	47.625	1.00 25.89	B
45	MOTA	547		VAL	86	33.220	2.532	48.267	1.00 25.41	В
	MOTA	548	C	VAL	86	30.150	1.224	46.425	1.00 29.30	В
	MOTA	549	0	VAL	86	28.959	1.479	46.599	1.00 28.44	B B
	MOTA	550 551	N CA	CYS	87 87	30.649 29.802	0.881 0.786	45.244 44.064	1.00 29.85 1.00 33.34	В
50	MOTA MOTA	552	CB	CYS	87	30.549	0.025	42.965	1.00 36.49	В
50	MOTA	553	SG	CYS	87	29.936	0.313	41.286	1.00 43.07	В
	MOTA	554	c	CYS	87	28.445	0.131	44.373	1.00 34.93	В
	MOTA	555	0	CYS	87	27.396	0.670	44.026	1.00 34.18	В
	MOTA	556	N	PRO	88	28.452	-1.035	45.045	1.00 35.57	В
55	MOTA	557	CD	PRO	88	29.603	-1.876	45.420	1.00 37.48	В
	MOTA	558	CA	PRO	88	27.195	-1.715	45.378	1.00 35.50	В
	MOTA	559	CB	PRO	88	27.664	-2.989	46.078	1.00 35.52	В
	MOTA	560	CG	PRO	88	28.984	-3.247	45.464	1.00 36.85	В
40	MOTA	561	C	PRO	88	26.295	-0.874	46.287		В
60	MOTA	562	0	PRO	88	25.099	-0.765	46.050	1.00 35.74	В
	MOTA	563	N	ILE	89 89	26.885	-0.288	47.327 48.279	1.00 34.00 1.00 33.52	B B
	MOTA	564 565	CA CB	ILE	89	26.140 27.031	0.535 0.978	49.465	1.00 33.84	В
	MOTA MOTA	566		ILE	89	26.250	1.910	50.384	1.00 34.73	В
65	MOTA	567	CG1		89	27.514	-0.247	50.243	1.00 33.35	В
00	MOTA	568		ILE	89	28.486	0.077	51.357	1.00 33.52	В
	MOTA	569	c	ILE	89	25.552	1.786	47.636	1.00 32.98	В
	MOTA	570	ŏ	ILE	89	24.485	2.243	48.016	1.00 33.67	В
	MOTA	571	N	LEU	90	26.258		46.662	1.00 32.32	В
70	ATOM	572	CA	LEU	90	25.782	3.540	45.996	1.00 32.57	В
	MOTA	573	CB	LEU	90	26.866	4.097	45.074	1.00 30.54	В
	ATOM	574	CG	LEU	90	26.431	5.292	44.229	1.00 29.69	В
	MOTA	575	CD1	LEU	90	26.018	6.448	45.122	1.00 28.62	В

	MOTA	576	CD2	LEU	90	27.564	5.695	43.319	1.00 31.53	В
	MOTA	577		LEU	90	24.504	3.272	45.202	1.00 32.92	В
	MOTA	578		LEU	90	23.567	4.074	45.240	1.00 32.45	В
	MOTA	579		ASP	91	24.466	2.147	44.491	1.00 33.45	В
5	MOTA	580		ASP	91	23.292	1.785	43.699	1.00 34.72	В
-	ATOM	581		ASP	91	23.520	0.470	42.940	1.00 35.65	В
				ASP	91	24.593	0.582	41.863	1.00 39.61	В
	MOTA	582						41.214	1.00 40.33	В
•	MOTA	583	OD1		91	24.686	1.648			
10	ATOM	584	OD2		91	25.335	-0.409	41.661	1.00 41.38	В
10	MOTA	585		ASP	91	22.068	1.633	44.597	1.00 33.10	В
	MOTA	586		ASP	91	20.954	1.885	44.174	1.00 33.56	В
	MOTA	587		GLU	92	22.290	1.221	45.839	1.00 32.56	В
	MOTA	588		GLU	92	21.196	1.044	46.783	1.00 34.16	В
	MOTA	589	CB	GLU	92	21.657	0.171	47.954	1.00 37.44	В
15	MOTA	590	CG	GLU	92	20.545	-0.258	48.890	1.00 42.74	В
	MOTA	591	CD	GLU	92	20.880	-1.536	49.648	1.00 46.50	В
	MOTA	592	OE1	GLU	92	20.053	-1.956	50.490	1.00 47.07	В
	MOTA	593	OE2	GLU	92	21.962	-2.120	49.396	1.00 46.74	В
	MOTA	594	С	GLU	92	20.709	2.409	47.280	1.00 32.53	В
20	MOTA	595		GLU	92	19.518	2.608	47.519	1.00 30.70	В
	MOTA	596		VAL	93	21.641	3.348	47.422	1.00 31.20	В
	MOTA	597		VAL	93	21.303	4.699	47.854	1.00 31.28	В
	MOTA	598		VAL	93	22.580	5.569	48.076	1.00 31.49	В
	MOTA	599	CG1		93	22.194	7.010	48.365	1.00 27.40	- B
25	ATOM	600	CG2		93	23.398	5.004	49.233	1.00 33.28	В
23	ATOM	601		VAL	93	20.452	5.322	46.750	1.00 29.79	В
		602		VAL	93	19.416	5.913	47.013	1.00 28.28	В
	MOTA						5.163	45.510	1.00 27.82	18
	MOTA	603	N	ILE	94	20.899		44.378		В
20	MOTA	604	CA	ILE	94	20.166	5.703		1.00 30.44	
30	MOTA	605	CB	ILE	94	20.915	5.429	43.051	1.00 28.59	В
	MOTA	606	CG2		94	20.035	5.787	41.853	1.00 26.78	В
	MOTA	607	CG1		94	22.216	6.240	43.037	1.00 27.01	В
	MOTA	608	CD1		94	23.087	5.978	41.846	1.00 26.60	В
25.	MOTA	609	С	ILE	94	18.749	5.131	44.306	1.00 32.32	В
35	MOTA	. 610	0	ILE	94	17.872	5.738	43.714	1.00 32.23	В
	MOTA	611	N	MET	95	18.531	3.968	44.920	1.00 34.51	В
	MOTA	612	CA	MET	. 95	17.201	3.360	44.923	1.00 36.17	В
	MOTA	613	CB	MET	95	17.282	1.850	45.149	1.00 38.61	В
	MOTA	614	CG	MET	95	17.372	1.017	43.881	1.00 40.44	В
40	MOTA	615	SD	MET	95	17.488	-0.772	44.242	1.00 46.46	В
	ATOM	616	CE	MET	95	19.102	-1.171	43.546	1.00 44.51	В
	ATOM	617	c	MET	95	16.315	3.979	45.996	1.00 36.50	В
	ATOM	618	ō	MET	95	15.113	3.732	46.030	1.00 37.42	В
	ATOM	619	N	GLY	96	16.914	4.775	46.879	1.00 36.28	В
45	MOTA	620	CA	GLY	96	16.145	5.414	47.932	1.00 35.74	В
13	MOTA	621	C	GLY	96	16.366	4.830	49.314	1.00 36.78	В
		622	Ō.	GLY	96	15.538	5.026	50.210	1.00 37.90	В
	MOTA							49.487	1.00 36.85	В
	MOTA	623	N	TYR	97	17.479	4.118			
50	MOTA	624	CA	TYR	97	17.835	3.496	50.763	1.00 37.58	В
30	MOTA	625	CB	TYR	97	18.381	2.081	50.525	1.00 40.65	В
	MOTA	626	CG	TYR	97	17.341	1.025	50.217	1.00 45.13	В
	MOTA	627	CD1		97	16.518	0.518	51.220	1.00 46.62	В
	MOTA	628	CE1		97	15.558	-0.454	50.944	1.00 49.26	В
	MOTA	629	CD2	TYR	97	17.182	0.533	48.921	1.00 46.06	В
55	MOTA	630	CE2	TYR	97	16.228	-0.436	48.630	1.00 49.09	В
	MOTA	631	CZ	TYR	97	15.417	-0.928	49.646	1.00 50.42	В
	MOTA	632	OH	TYR	97	14.465	-1.888	49.358	1.00 52.50	В
	MOTA	633	С	TYR	97	18.889	4.304	51.526	1.00 35.44	В
	MOTA	634	0	TYR	97	19.789	4.876	50.926	1.00 37.02	В
60 -	MOTA	635	N	ASN	98	18.776	4.349	52.849	1.00 31.97	В
•	MOTA	636	CA	ASN	98	19.759	5.059	53.662	1.00 30.42	В
	MOTA	637	CB	ASN	98	19.169	5.460	55.025	1.00 30.64	В
		638	CG	ASN		18.239	6.663	54.945	1.00 28.74	В
	MOTA				98				1.00 29.47	
65	MOTA	639		ASN	98	18.255	7.413	53.981		В
O)	MOTA	640		ASN	98	17.436	6.855	55.984	1.00 27.34	В
	MOTA	641	c	ASN	98	20.942	4.124	53.897	1.00 29.81	В
	MOTA	642	0	ASN	98	20.762	3.006	54.324	1.00 29.82	В
	MOTA	643	N	CYS	99	22.152	4.590	53.615	1.00 28.53	В
	MOTA	644	CA	CYS	99	23.339	3.767	53.816	1.00 26.90	В
70	MOTA	645	CB	CYS	99	23.974	3.384	52.477	1.00 28.87	В
	ATOM	646	SG	CYS	99	22.946	2.349	51.428	1.00 34.21	В
	MOTA	647	С	CYS	99	24.382	4.465	54.677	1.00 25.00	В
	MOTA	648	0	CYS	99 .	24.380	5.670	54.830	1.00 25.25	В
					-					

WO 2004/004652 PCT/US2003/021145

	MOTA	649	N '	THR	100	25.285	3.671	55.232	1.00 23.32	В
	MOTA	650	CA '	THR	100	26.341	4.187	56.080	1.00 19.59	в.
	MOTA	651		THR	100	25.876	4.258	57.544	1.00 17.10	В
	ATOM	652	OG1		100	24.789	5.179	57.657	1.00 16.21	В
5										В
,	MOTA	653	CG2		100	27.005	4.696	58.456	1.00 15.27	
	MOTA	654		THR	100	27.552	3.266	55.982	1.00 21.18	В
	MOTA	655	0 '	THR	100	27.417	2.039	56.005	1.00 22.70	B
	MOTA	656	N	ILE	101	28.732	3.858	55.849	1.00 18.53	В
	MOTA	657	CA	ILE	101	29.967	3.097	55.782	1.00 17.55	В
10	ATOM	658		ILE	101	30.650	3.212	54.420	1.00 16.14	В
	MOTA	659	CG2		101	31.939	2.414	54.423	1.00 16.50	. B
	MOTA	660	CG1		101	29.730	2.690	53.318	1.00 14.57	В
	MOTA	661	CD1		101	30.186	3.077	51.930	1.00 14.45	В
	MOTA	662	C	ILE	101	30.913	3.654	56.834	1.00 19.99	В
15	MOTA	663	0	ILE	101	31.296	4.822	56.786	1.00 20.78	В .
	MOTA	664		PHE	102	31.273	2.808	57.793	1.00 19.14	В
	ATOM	665		PHE	102	32.176	3.179	58.876	1.00 17.58	. В
	MOTA	666		PHE	102	31.835	2.373	60.123	1.00 17.67	В
20	MOTA	667		PHE	102	30.618	2.842	60.847	1.00 17.05	В
20	MOTA	668	CD1		102	30.714	3.855	61.790	1.00 16.04	В
	MOTA	669	CD2	PHE	102	29.386	2.239	60.624	1.00 16.40	В
	ATOM -	670	CE1	PHE	102	29.603	4.265	62.508	1.00 16.56	В
	MOTA	671	CE2	PHE	102	28.268	2.643	61.337	1.00 18.62	В
	ATOM	672		PHE	102	28.377	3.658	62.283	1.00 16.81	В
25	MOTA	673		PHE	102	33.625	2.891	58.515	1.00 16.69	B
23										
	MOTA	674		PHE	102	33.910	2.289	57.516	1.00 18.17	. В
	MOTA	675		ALA	103	34.535	3.338	59.366	1.00 17.68	В
	MOTA	676	CA	ALA	103	35.961	3.089	59.187	1.00 17.02	19
	MOTA	677	CB .	ALA	103	36.620	4.229	58.451	1.00 16.82	В
30	MOTA	678	С .	ALA	103	36.471	2.991	60.617	1.00 17.64	В
	MOTA	679		ALA	103	36.482	3.963	61.339	1.00 18.79	В
	MOTA	680		TYR	104	36.866	1.786	61.012	1.00 18.22	В
	MOTA	681		TYR	104.	37.340	1.540	62.368	1.00 16.40	В
25	MOTA	682		TYR	104	36.436	0.496	63.034	1.00 15.83	В
35	MOTA	683	CG	TYR	104	36.706	0.291	64.508	1.00 12.67	В.
	MOTA	684	CD1	TYR	104	37.771	-0.501	64.941	1.00 10.95	В
	MOTA	685	CE1	TYR	104	38.046	-0.659	66.301	1.00 11.52	В
	MOTA	686		TYR	104	35.919	0.920	65.469	1.00 10.91	В
	MOTA	687		TYR	104	36.187	0.768	66.832	1.00 12.42	В
40										
70	MOTA	688		TYR	104	37.253	-0.023	67.239	1.00 10.32	В
	MOTA	689		TYR	104	37.526	-0.180	68.574	1.00 11.99	В
	MOTA	690	C	TYR	104	38.778	1.061	62.380	1.00 15.64	В
	MOTA	691	. 0	TYR	104	39.203	0.348	61.497	1.00 17.51	В
	MOTA	692	N	GLY	105	39.524	1.456	63.397	1.00 15.78	В
45	MOTA	693		GLY	105	40.904	1.047	63.475	1.00 16.05	В
	MOTA	694		GLY	105	41.748	2.044	64.226	1.00 16.81	В
	MOTA	695		GLY	105	41.318	3.151	64.526	1.00 19.22	В
	MOTA	696		GLN	106	42.963	1.616	64.531	1.00 18.16	В
5 0	MOTA	697		GLN	106	43.940	2.408	65.244	1.00 18.74	В
50	MOTA	698	CB	GLN	106	45.122	1.519	65.652	1.00 19.69	В
	MOTA	699	CG	GLN	106	46.278	2.251	66.305	1.00 23.87	В
	MOTA	700	CD	GLN	106	47.527	1.411	66.407	1.00 24.14	B
	ATOM	701	OE1		106	47.865	0.669	65.490	1.00 27.37	B
	MOTA	702		GLN	106	48.225	1.528	67.525	1.00 25.29	В
55	MOTA									
<i>J J</i>		703		GLN	106	44.440	3.552	64.363	1.00 20.10	В
	MOTA	704		GLN	106	44.438	3.451	63.134	1.00 19.09	В
	MOTA	705	N	THR	107	44.864	4.639	65.004	1.00 19.11	В
	MOTA	706	CA	THR	107	45.385	5.792	64.291	1.00 18.65	В
	MOTA	707	CB	THR	107	45.849	6.914	65.270	1.00 20.97	В
60	MOTA	708	OG1		107	44.730	7.405	66.017	1.00 19.66	В
•		709			107		8.064	64.497		В
	MOTA		CG2			46.476			1.00 15.96	
	MOTA	710		THR	107	46.588	5.391	63.439	1.00 17.71	В
	MOTA	711		THR	107	47.518	4.747	63.921	1.00 16.56	В
	MOTA	712	N	GLY	108	46.554	5.786	62.171	1.00 17.28	. B
65	MOTA	713		GLY	108	47.642	5.483	61.267	1.00 15.71	В
	MOTA	714		GLY	108	47.499	4.181	60.505	1.00 17.55	В
	ATOM	715		GLY	108	48.489	3.682	59.938	1.00 17.87	В
	MOTA	716		THR	109	46.288	3.626	60.478	1.00 15.83	В
70	MOTA	717		THR	109	46.064	2.374	59.765	1.00 14.74	В
70	MOTA	718	CB	THR	109	45.276	1.352	60.632	1.00 13.57	В
	MOTA	719	OG1	THR	109	43.978	1.866	60.943	1.00 13.63	В
	MOTA	720	CG2		109	46.035	1.064	61.934	1.00 12.00	В
	MOTA	721		THR	109	45.350	2.573	58.435	1.00 15.88	В
	114 747		•	* * * * * * * * * * * * * * * * * * * *	100	-3.330	2.3/3	20.433	1.00 13.00	b

	N COM	722	^	THE	109	45.132	1.602	57.708	1.00 14.55	. В
•	MOTA		0	THR						В
	MOTA	723	N	GLY	110	44.977	3.819	58.124	1.00 13.70	
	MOTA	724	CA	GLY	110	44.321	4.073	56.849	1.00 10.56	В
_	MOTA	725	С	GLY	110	42.846	4.433	56.833	1.00 10.76	В
5	MOTA	726	0	GLY	110	42.201	4.298	55.792	1.00 9.95	В
-	MOTA	727	N	LYS	111	42.302	4.885	57.959	1.00 8.99	В
	MOTA	728	CA	LYS	111	40.889	5.267	58.022	1.00 11.48	В
						40.497	5.693	59.449	1.00 12.59	В
	MOTA	729	CB	LYS	111					
10	MOTA	730	CG	LYS	111	40.315	4.531	60.426	1.00 15.28	В
10	MOTA	731	CD	LYS	111	39.651	4.955	61.738	1.00 12.73	В
	MOTA	732	CE	LYS	111	40.439	6.034	62.455	1.00 11.56	В
	MOTA	733	NZ	LYS	111	41.905	5.766	62.396	1.00 10.51	В
	ATOM	734	C	LYS	111	40.575	6.408	57.062	1.00 13.97	В
							6.302	56.206	1.00 15.37	В
15	MOTA	735	0	LYS	111	39.683				
. 15	MOTA	736	N	THR	112	41.321	7.498	57.198	1.00 13.82	В
	MOTA	737	CA	THR	112	41.120	8.663	56.353	1.00 12.58	В
•	MOTA	738	CB	THR	112	41.895	9.871	56.926	1.00 12.79	В
	MOTA	739	OG1	THR	112	41.408	10.160	58.245	1.00 9.63	В
	ATOM	740		THR	112	41.723	11.103	56.037	1.00 10.46	В
20		741	c	THR	112	41.535	8.396	54.905	1.00 14.40	В
20	MOTA									В
	MOTA	742	0	THR	112	40.886	8.846	53.978	1.00 15.19	
	ATOM	743	N	PHE	113	42.618	7.651	54.723	1.00 15.74	₿.
	MOTA	744	CA	PHE	113	43.095	7.326	53.384	1.00 17.09	В
	MOTA	. 745	CB	PHE	113	44.316	6.408	53.463	1.00 17.69	В
25	ATOM	746	CG	PHE	113	44.867	6.030	52.123	1.00 20.87	В
	MOTA	747		PHE	113	45.783	6.849	51.475	1.00 22.41	В
		748		PHE	113	44.445	4.871	51.490	1.00 22.63	В
	ATOM									
	MOTA	749		PHE	113	46.271	6.517	50.218	1.00 22.81	В
	MOTA	750	CEZ	PHE	113	44.924	4.529	50.228	1.00 23.87	В
30	ATOM	751	CZ	PHE	113	45.840	5.354	49.590	1.00 25.27	В
	MOTA	752	С	PHE	113	42.000	6.626	52.580	1.00 18.62	В
	MOTA	753	õ	PHE	113	41.817	6.888	51.389	1.00 17.60	В
	ATOM	754	N	THR	114	41.291	5.719	53.247	1.00 19.63	В
							4.945	52.646		В
25	MOTA	755	CA	THR	114	40.212			1.00 18.57	
35 ⁻	MOTA	· 756	CB	THR	114	39.816	3.760	53.582	1.00 20.30	В
	MOTA	757	OG1	THR	114	40.970	2.947	53.828	1.00 18.79	В
	MOTA	758	CG2	THR	114	38.700	2.910	52.972	1.00 12.74	В
	ATOM	759	С	THR	114	38.991	5.825	52.410	1.00 19.70	В
	ATOM	760	ō	THR	114	38.497	5.932	51.297	1.00 22.13	В
40					115	38.518	6.473	53.465	1.00 19.43	В
70	MOTA	761	N	MET						
•	MOTA	762	CA	MET	115	37.345	7.318	53.347	1.00 20.55	В
	MOTA	763	CB	MET	115	36.877	7.771	54.730	1.00 21.97	В
	MOTA	764	CG	MET	115	36.471	6.620	55.644	1.00 27.07	В
	ATOM	765	SD	MET	115	35.328	5.432	54.848	1.00 29.66	₿
45	MOTA	766	CE	MET	115	33.753	6.265	55.089	1.00 27.98	В
	ATOM	767	Ċ	MET	115	37.532	8.528	52.454	1.00 21.26	В
	ATOM	768	ō	MET	115	36.639	8.866	51.674	1.00 23.74	В
							9.179	52.549	1.00 20.10	В
	MOTA	769	N	GLU	116	38.687				
50	ATOM	770	CA.	GLU	116	38.937	10.377	51.749	1.00 20.30	В
50	MOTA	771	CB	GLU	116	39.323	11.541	52.659	1.00 19.03	В
	MOTA	772	CG	GLU	116	38.309	11.824	53.741	1.00 17.09	В
	MOTA	773	CD	GLU	116	38.746	12.922	54.687	1.00 18.90	В
	ATOM	774		GLU	116	39.886	13.421	54.550	1.00 21.39	В
	ATOM	775		GLU	116	37.951	13.280	55.579	1.00 17.52	В
55					116	40.010		50.694	1.00 20.60	В
33	MOTA	776	C	GLU			10.194			
	MOTA	777	0	GLU	116	39.804	10.494	49.527	1.00 19.26	В
	MOTA	778	N	GLY	117	41.166	9.708	51.116	1.00 22.39	В
	MOTA	779	CA	GLY	117	42.249	9.508	50.176	1.00 24.67	₿.
	MOTA	780	С	GLY	117	43.194	10.689	50.144	1.00 25.76	В
60	MOTA	781	ō	GLY	117	43.056	11.630	50.918	1.00 24.17	В
50		782			118	44.162	10.635	49.237	1.00 27.49	В
	MOTA		N	GLU						
	MOTA	783	CA	GLU	118	45.133	11.710	49.128	1.00 28.73	В
	MOTA	784	CB	GLU	118	46.465	11.273	49.740	1.00 30.64	В
	MOTA	785	CG	GLU	118	46.311	10.255	50.853	1.00 35.23	В
65	ATOM	786	CD	GLU	118	47.579	10.060	51.657	1.00 37.43	В
	ATOM	787		GLU	118	48.671	9.993	51.049	1.00 35.58	В
				GLU		47.476	9.958	52.900	1.00 40.04	В
	MOTA	788			118					
	MOTA	789	C	GLU	118	45.338	12.082	47.671	1.00 27.97	В
~~	MOTA	790	0	GLU	118	44.692	11.542	46.779	1.00 29.50	В
70	MOTA	791	N	ARG	119	46.244	13.017	47.436	1.00 25.87	В
	MOTA	792	CA	ARG	119	46.532	13.439	46.085	1.00 25.52	В
	MOTA	793	CB.	ARG	119	46.613	14.968	46.006	1.00 24.48	В
	MOTA	794	CG			45.323	15.708	46.358	1.00 23.62	В
	W1011	174	-0	ARG	119	43.363	19.700	40.330	2.00 23.02	

	ATOM	795	CD	ARG	119	44.190	15.361	45.387	1.00 22.16	В
	MOTA	796	NE	ARG	119	44.654	15.191	44.011	1.00 20.25	В.
	MOTA	797	CZ	ARG	119	44.382	16.018	43.005	1.00 19.31	В
~	MOTA	798	NH1		119	43.642	17.102	43.203	1.00 19.24	В
5	MOTA	799	NH2	ARG	119	44.842	15.744	41.791	1.00 17.50	В
	MOTA	800	С	ARG	119	47.857	12.836	45.654	1.00 26.80	В
	MOTA	801	ō	ARG	119	48.779	12.711	46.457	1.00 25.89	В
	MOTA	802	N	SER	120	47.942	12.440	44.390	1.00 25.98	В
	MOTA	803	CA	SER	120	49.189	11.893	43.880	1.00 28.78	В
10	MOTA	804	CB	SER	120	49.015	11.326	42.472	1.00 29.79	В
	MOTA	805	OG	SER	120	48.428	10.038	42.508	1.00 33.26	В
	MOTA	806	C	SER	120	50.130	13.077	43.834	1.00 27.18	В
	MOTA	807	0	SER	120	49.779	14.121	43.326	1.00 27.97	В
	MOTA	808	N	PRO	121	51.348	12.913	44.357	1.00 27.06	В
15	MOTA	809	CD	PRO	121	51.902	11.662	44.900	1.00 26.17	В
		810	CA	PRO	121	52.350	13.987	44.381	1.00 27.66	В
	MOTA									
	MOTA	811	CB	PRO	121	53.528	13.342	45.117	1.00 27.55	В
	MOTA	812	CG	PRO	121	53.386	11.899	44.779	1.00 28.94	В
	ATOM	813	С	PRO	121	52.760	14.591	43.031	1.00 27.47	В
20	MOTA	814	ō	PRO	121	52.773	13.914	42.009	1.00 27.14	В
										В
	MOTA	815	N	ASN	122	53.072	15.885	43.050	1.00 27.34	
	MOTA	816	CA	ASN	122	53.517	16.615	41.865	1.00 28.41	В
	MOTA	817	CB	ASN	122	54.690	15.875	41.217	1.00 29.21	В
	MOTA	818	CG	ASN	122	55.857	16.789	40.906	1.00 29.30	В
25				ASN	122	56.355	17.491	41.777	1.00 30.37	В
25	MOTA	819								
	MOTA	820		ASN	122	56.305	16.774	39.656	1.00 30.61	. B
	ATOM	821	С	ASN	122	52.434	16.859	40.817	1.00 28.67	В
	MOTA	822	0	ASN	122	52.725	16.940	39.627	1.00 25.87	В
	MOTA	823	N	GLU	123	51.191	16.985	41.265	1.00 30.12	В
30							17.240	40.356	1.00 33.32	В
50	MOTA	824	CA	GLU	123	50.070				
	MOTA	825	СВ	GLU	123	50.105	18.699	39.870	1.00 33.54	В
	MOTA	826	CG	GLU	123	50.037	19.748	40.968	1.00 33.76	, в
	MOTA	827	CD	GLU	123	49.872	21.158	40.420	1.00 34.11	В
-	ATOM	828		GLU	123	50.763	21.623	39.678	1.00 32.71	В
35										
JJ	MOTA	829		GLU	123	48.848	21.804	40.734	1.00 33.32	В.
	MOTA	830	С	GLU	123	50.061	16.307	39.137	1.00 34.30	В
	MOTA	831	0	GLU	123	49.856	16.743	38.013	1.00 32.10	В
	ATOM	832	N	GLU	124	50.283	15.020	39.373	1.00 36.35	В
	ATOM	833	CA	GLU	124	50.303	14.046	38.292	1.00 36.52	В
40										
40	MOTA	834	CB	GLU	124	50.709	12.678	38.846	1.00 40.35	В
	MOTA	835	CG	GLU	124	51.279	11.711	37.815	1.00 45.05	В
	MOTA	836	CD	GLU	124	52.026	10.550	38.458	1.00 47.77	В
	MOTA	837		GLU	124	51.966	10.427	39.705	1.00 47.83	В
					124		9.769	37.720	1.00 48.04	·B
45	MOTA	838		GLU		52.671				
4)	MOTA	839	С	GLU	124	48.942	13.964	37.590	1.00 36.15	В
	MOTA	840	0	GLU	124	48.876	13.987	36.363	1.00 34.16	В
	MOTA	841	N	TYR	125	47.859	13.886	38.361	1.00 35.31	В
	MOTA	842	CA	TYR	125	46.524	13.803	37.770	1.00 36.12	В
50	MOTA	843	CB	TYR	125	45.863	12.440	38.054	1.00 38.61	В
50	MOTA	844	ÇG	TYR	125	46.757	11.216	37.992	1.00 39.31	В
	MOTA	845	CD1	TYR	125	47.657	10.933	39.019	1.00 39.77	В
	MOTA	846	CE1	TYR	125	48.454	9.784	38.987	1.00 40.96	В
	MOTA	847	CD2		125	46.675	10.321	36.922	1.00 39.64	В
								-	1.00 40.42	
55	MOTA	848	CE2		125	47.468	9.169	36.879		В
55	MOTA	849	CZ	TYR	125	48.355	8.908	37.916	1.00 41.60	В
	MOTA	850	ОН	TYR	125	49.141	7.776	37.882	1.00 43.64	В
	MOTA	851	С	TYR	125	45.590	14.873	38.332	1.00 35.75	В
	ATOM	852	ŏ	TYR	125	45.925	15.577	39.273	1.00 36.04	В
~ ^	MOTA	853	N	THR	126	44.409	14.976	37.729	1.00 35.01	В
60	MOTA	854	CA	THR	126	43.385	15.901	38.189	1.00 34.12	В
	MOTA	855	CB	THR	126	42.393	16.275	37.064	1.00 34.09	В
	ATOM	856		THR	126	41.885	15.080	36.458	1.00 36.33	В
	MOTA	857		THR	126	43.075	17.134	36.005	1.00 30.16	В
15	MOTA	858	С	THR	126	42.645	15.117	39.271	1.00 34.15	. В
65	MOTA	859	0	THR	126	42.555	13.896	39.197	1.00 35.30	В
	ATOM	860	N	TRP	127	42.111	15.807	40.270	1.00 33.25	В
	MOTA	861		TRP				41.363	1.00 31.64	В
			CA		127	41.422	15.133			
	MOTA	862	CB	TRP	127	40.596	16.135	42.182	1.00 28.58	В
	MOTA	863	CG	TRP	127	39.362	16.610	41.489	1.00 25.55	В
70	MOTA	864	CD2	TRP	127	38.066	16.008	41.551	1.00 23.28	В
-	ATOM	865		TRP	127	37.218	16.754	40.699	1.00 23.64	В
	MOTA	866		TRP	127	37.537	14.907	42.244	1.00 23.43	В
	MOTA	867	CD1	TRP	127	39.255	17.667	40.631	1.00 23.80	В

,	MOTA	868	NE1	TRP	127	37.969	17.761	40.150	1.00 24.71	В
	MOTA	869	CZ2	TRP	127	35.867	16.433	40.518	1.00 24.05	В
	MOTA	870		TRP	127	36.192	14.585	42.065	1.00 24.74	В
	MOTA	871	CH2		127	35.372	15.351	41.207	1.00 26.04	В
5		872		TRP	127	40.522	13.968	40.931	1.00 31.94	В
J	MOTA									В
	MOTA	873		TRP	127	40.510	12.927	41.579	1.00 32.64	
	MOTA	874		GLU	128	39.781	14.131	39.838	1.00 32.66	В
	MOTA	875	CA (GLU	128	38.869	13.078	39.394	1.00 33.32	В
	MOTA	876	CB (GLU	128	37.785	13.669	38.502	1.00 34.68	В
10	ATOM'	877	CG (GLU	128	38.287	14.201	37.178	1.00 39.01	В
	MOTA	878		GLU	128	37.206	14.964	36.442	1.00 42.74	В
		879	OE1		128	36.895	16.100	36.867	1.00 44.33	В
	MOTA							35.458		В
	MOTA	880		GLU	128	36.654	14.422		1.00 43.63	
10	MOTA	881		GLU	128	39.512	11.879	38.700	1.00 32.67	В
15	MOTA	882	0 (GĽU	128	38.825	10.930	38.348	1.00 31.45	В
	MOTA	883	N (GLU	129	40.825	11.926	3B.500	1.00 32.62	В
•	MOTA	884	CA (GLU	129	41.532	10.815	37.871	1.00 33.28	В
	MOTA	885	CB (GLU	129	42.192	11.246	36.561	1.00 35.75	8
	MOTA	886		GLU	129	41.218	11.496	35.420	1.00 39.64	В
20	MOTA	887		GLU	129	41.922	11.680	34.082	1.00 42.49	В
20			OE1		129		12.139	33.119	1.00 43.56	В
	MOTA	888				41.266				
	MOTA	889		GLU	129	43.129	11.367	33.996	1.00 45.44	В.
	MOTA	890		GLU	129	42.602	10.280	38.808	1.00 33.23	В
~-	MOTA	891	0	GLU	129	43.242	9.297	38.511	1.00 33.33	·B
25	MOTA	892	N .	ASP	130	42.776	10.934	39.951	1.00 32.98	В
	MOTA	893	CA .	ASP	130	43.789	10.516	40.912	1.00 32.86	В
	ATOM	894		ASP	130	43.884	11.544	42.045	1.00 34.15	В
	ATOM	895		ASP	130	45.247	11.564	42.699	1.00 35.32	В
								43.030	1.00 36.91	В
20	MOTA	896	OD1		130	45.765	10.477			
30	MOTA	897	OD2		130	45.801	12.665	42.882	1.00 36.83	В
	MOTA	898		ASP	130	43.468	9.129	41.485	1.00 33.07	В
	MOTA	899	Ο.	ASP	130	42.429	8.928	42.114	1.00 32.52	В
	MOTA	900	N	PRO	131	44.367	8.152	41.268	1.00 32.43	В
	MOTA	901	CD	PRO	131	45.638	8.278	40.533	1.00 32.63	В
35 ·	ATOM	. 902		PRO	131	44.186	6.782	41.757	1.00 30.77	В
	MOTA	903		PRO	131	45.339	6.029	41.102	1.00 31.15	В
					131					В
	MOTA	904		PRO		46.399	7.073	41.005		
	MOTA	905		PRO	131	44.192	6.673	43.283	1.00 30.54	В
40	MOTA	906	0	PRO	131	43.717	5.688	43.845	1.00 31.07	В
40	MOTA	907	N	LEU	132	44.721	7.691	43.953	1.00 28.68	В
	MOTA	908	CA	LEU	132	44.750	7.684	45.407	1.00 26.49	В
	MOTA	909	CB	LEU	132	45.965	8.461	45.918	1.00 24.68	В
	MOTA	910		LEU	132	47.355	7.961	45.497	1.00 25.57	В
	MOTA	911	CDI		132	48.414	8.782	46.221	1.00 24.29	В
45	ATOM	912	CD2		132	47.526	6.481	45.843	1.00 26.94	В
73										
	MOTA	913		LEU	132	43.455	8.248	46.008	1.00 26.30	В
	MOTA	914		LEU	132	43.294	8.285	47.228	1.00 26.84	· В
	MOTA	915	N	ALA	133	42.532	8.672	45.145	1.00 24.55	В
	MOTA	916	CA:	ALA	133	41.243	9.217	45.572	1.00 25.15	В
50	MOTA	917	CB	ALA	133	40.393	9.562	44.352	1.00 24.26	В
	MOTA	918		ALA	133	40.502	8.215	46.453	1.00 25.64	В
	ATOM	919		ALA	133	40.528	7.034	46.201	1.00 27.86	В
	MOTA	920		GLY	134	39.831	8.706	47.485	1.00 26.27	В
										В
55	MOTA	921		GLY	134	39.107	7.822	48.379	1.00 24.63	
22	MOTA	922		GLY	134	37.633	7.705	48.038	1.00 24.63	В
	ATOM	923	0	GLY	134	37.176	8.224	47.013	1.00 23.91	В
	MOTA	924	N	ILE	135	36.887	7.030	48.910	1.00 22.69	₽
	MOTA	925	CA	ILE	135	35.457	6.816	48.704	1.00 21.86	В
	MOTA	926		ILE	135	34.839	6.028	49.898	1.00 21.68	В
60	MOTA	927	CG2		135	33.315	5.945	49.745	1.00 20.01	В
00										
	MOTA	928	CG1		135	35.464	4.628	49.971	1.00 20.31	В
	MOTA	929	CD1		135	35.183	3.865	51.246	1.00 16.89	В
	MOTA	930	С	ILE	135	34.652	8.103	48.481	1.00 20.87	В
	MOTA	931	0	ILE	135	33.956	8.228	47.495	1.00 19.45	В
65	MOTA	932	N	ILE	136	34.762	9.053	49.405	1.00 20.74	В
	MOTA	933	CA	ILE	136	34.018	10.309	49.297	1.00 19.78	В
	MOTA	934	CB	ILE	136	34.420	11.273	50.436	1.00 19.46	В
									1.00 13.46	
	MOTA	935	CG2		136	33.654	12.581	50.302		В
70	MOTA	936	CG1		136	34.128	10.616	51.792	1.00 19.18	В
70	MOTA	937	CD1		136	34.597	11.398	53.011	1.00 20.13	В
	MOTA	938	С	ILE	136	34.146	11.016	47.929	1.00 19.32	В
	MOTA	939	Ο.	ILE	136	33.149	11.258	47.255	1.00 18.78	В
	MOTA	940	N	PRO	137	35.377	11.340	47.499	1.00 18.18	В
										-

ATOM 941 CD PRO 137 35.591 11.158 48.127 1.00 15.77 B ATOM 942 CB PRO 137 35.591 12.008 46.198 1.00 17.79 B ATOM 944 CB PRO 137 35.591 12.008 46.198 1.00 17.79 B ATOM 944 CC PRO 137 37.618 11.255 46.294 1.00 16.71 B ATOM 946 C PRO 137 37.618 11.255 46.294 1.00 16.71 B ATOM 946 C PRO 137 37.618 11.255 46.294 1.00 16.71 B ATOM 946 C PRO 137 34.431 11.255 46.898 1.00 24.22 B ATOM 946 CA PRO 137 34.431 11.255 46.898 1.00 24.22 B ATOM 946 CA PRO 137 34.431 11.255 46.898 1.00 24.21 B ATOM 946 CA PRO 137 34.431 11.255 46.898 1.00 24.21 B ATOM 949 CA PRO 138 34.189 8.237 44.075 1.00 22.41 B ATOM 949 CA PRO 138 35.187 7.534 44.270 1.00 22.46 B ATOM 949 CA PRO 138 35.187 7.534 44.270 1.00 22.46 B ATOM 951 CD ARG 138 37.395 6.072 44.170 1.00 20.35 B ATOM 951 CD ARG 138 37.395 6.072 44.171 1.00 71.89 B ATOM 952 NE ARG 138 37.395 6.072 44.171 1.00 71.89 B ATOM 953 CZ ARG 138 39.529 9.505 43.142 1.00 18.07 B ATOM 955 MP ARG 138 39.529 5.005 43.142 1.00 18.07 B ATOM 955 NE ARG 138 39.529 5.005 43.142 1.00 18.07 B ATOM 955 NE ARG 138 39.529 5.005 43.142 1.00 18.07 B ATOM 955 NE ARG 138 39.529 6.072 44.175 1.00 27.89 B ATOM 955 NE ARG 138 39.529 6.072 44.175 1.00 27.89 B ATOM 956 CE ARG 138 39.529 6.072 44.175 1.00 27.89 B ATOM 956 CE ARG 138 39.529 6.072 44.175 1.00 27.89 B ATOM 956 CE ARG 138 39.529 6.072 44.175 1.00 27.89 B ATOM 956 CE ARG 138 39.529 6.072 44.10 1.00 27.14 B ATOM 958 NE ARG 138 39.529 6.072 44.10 1.00 27.14 B ATOM 958 NE ARG 138 39.529 6.072 44.10 1.00 27.14 B ATOM 958 CE ARG 138 39.529 6.072 44.10 1.00 27.14 B ATOM 958 CE ARG 138 39.529 6.072 44.10 1.00 27.14 B ATOM 958 CE ARG 138 39.529 6.072 44.10 1.00 27.17 B ATOM 958 CE THR 139 31.61 8.566 4.200 1.00 27.07 B ATOM 959 CA THR 139 31.61 8.566 4.00 1.00 27.07 B ATOM 950 CE THR 139 30.675 8.360 46.662 1.00 22.12 B ATOM 950 CE THR 139 30.675 8.360 46.662 1.00 22.67 B ATOM 950 CE THR 139 30.675 8.360 46.662 1.00 22.67 B ATOM 958 CE LEU 140 30.493 1.10 8.81 10.00 22.00 B ATOM 959 CA THR 139 30.675 8.360 46.662 1.00 22.67 B ATOM 958 CE LEU 140 30.493 1.10 8.81 1											
ATOM 943 CB PRO 137 35.501 12.008 46.198 1.00 17.79 B ATOM 944 CG PRO 137 36.995 12.321 46.105 1.00 15.58 B ATOM 945 CP RO 137 35.010 11.315 45.040 1.00 20.22 B ATOM 945 CP RO 137 35.010 11.315 45.040 1.00 20.22 B ATOM 946 O PRO 137 35.010 11.315 45.040 1.00 20.22 B ATOM 947 N ANG 138 35.233 9.627 45.131 1.00 21.41 B ATOM 947 N ANG 138 35.233 9.627 45.131 1.00 21.41 B ATOM 948 CB ANG 138 35.233 9.627 45.131 1.00 21.41 B ATOM 950 CB ANG 138 35.237 8.227 44.270 1.00 21.49 B ATOM 950 CB ANG 138 35.378 7.44 4270 1.00 21.95 B ATOM 951 CD ANG 138 35.378 7.44 4270 1.00 21.95 B ATOM 952 NE ANG 138 36.60 7.433 41.351 1.00 21.95 B ATOM 952 C2 ANG 138 39.529 5.005 43.142 1.00 18.07 B ATOM 954 NHI ANG 138 38.886 5.818 41.397 1.00 19.38 B ATOM 955 M12 ANG 138 30.886 5.818 41.397 1.00 19.38 B ATOM 955 NH2 ANG 138 30.2685 5.818 41.397 1.00 19.38 B ATOM 955 NH2 ANG 138 30.2685 6.818 41.397 1.00 19.38 B ATOM 956 C ANG 138 31.2683 8.899 42.942 1.00 22.14 B ATOM 958 NH ANG 138 30.675 8.160 46.662 1.00 22.14 B ATOM 958 NH RR 139 31.615 8.606 46.662 1.00 22.16 B ATOM 959 NH RR 139 31.615 8.606 46.662 1.00 22.17 B ATOM 960 CB THR 139 30.675 8.160 46.662 1.00 22.17 B ATOM 961 CG THR 139 30.675 8.160 46.662 1.00 22.67 B ATOM 962 CG2 THR 139 29.174 8.100 46.700 1.00 27.15 B ATOM 963 C THR 139 29.544 9.675 43.809 1.00 26.69 B ATOM 960 CB THR 139 30.463 9.797 44.4164 1.00 26.55 B ATOM 960 CB THR 139 30.463 9.797 44.4164 1.00 22.55 B ATOM 960 CB THR 139 30.463 1.09 46.700 1.00 27.11 B ATOM 960 CB THR 139 30.463 1.09 46.700 1.00 27.11 B ATOM 960 CB THR 139 29.544 9.675 43.809 1.00 26.69 B ATOM 960 CB THR 139 30.463 1.09 46.700 1.00 27.70 B ATOM 960 CB THR 139 29.544 9.675 43.809 1.00 26.69 B ATOM 960 CB THR 139 29.544 9.675 43.809 1.00 26.69 B ATOM 960 CB THR 139 29.544 9.675 43.809 1.00 26.69 B ATOM 960 CB THR 139 29.544 9.675 43.809 1.00 26.69 B ATOM 960 CB THR 139 29.544 9.675 43.809 1.00 26.69 B ATOM 960 CB THR 139 20.468 1.00 46.700 1.00 27.70 B ATOM 960 CB THR 139 29.544 9.675 43.809 1.00 26.69 B ATOM 960 CB THR 139 20.468 1.00 46.70		ATOM	941	CD 1	PRO	137	36.695	11.158	48.127	1.00 15.47	В
ATOM 941 CB PRO 137 36.995 12.321 46.105 1.00 15.58 B ATOM 944 CC PRO 137 37.618 11.255 46.946 1.00 16.71 B ATOM 945 CC PRO 137 35.010 11.315 45.040 1.00 20.22 B ATOM 946 CO PRO 137 34.434 11.625 44.080 1.00 21.41 B ATOM 948 CA ARG 138 34.789 8.927 44.075 1.00 22.41 B ATOM 948 CA ARG 138 34.789 8.927 44.075 1.00 22.41 B B ATOM 940 CB ARG 138 35.345 7.331 44.270 1.00 21.61 B ATOM 950 CC ARG 138 35.685 6.072 43.751 1.00 21.61 B ATOM 950 CC ARG 138 33.685 6.072 41.751 1.00 21.63 B ATOM 950 CC ARG 138 33.585 6.072 41.751 1.00 10.89 B ATOM 955 CC ARG 138 33.525 8.897 44.007 1.00 12.63 B ATOM 955 CC ARG 138 33.263 8.892 44.007 1.00 12.68 B ATOM 955 CC ARG 138 33.263 8.892 44.007 1.00 22.16 B ATOM 955 CC ARG 138 33.263 8.892 44.007 1.00 22.16 B ATOM 955 CC ARG 138 33.263 8.892 44.007 1.00 22.16 B ATOM 955 CC ARG 138 33.263 8.892 44.007 1.00 22.16 B ATOM 956 CC ARG 138 33.63 8.892 44.007 1.00 22.16 B ATOM 956 CC ARG 138 33.63 8.892 44.007 1.00 22.16 B ATOM 956 CC ARG 138 33.63 8.893 42.941 1.00 23.68 B ATOM 956 CC ARG 138 33.673 8.895 44.007 1.00 22.16 B ATOM 956 CC ARG 138 33.673 8.895 44.007 1.00 22.16 B ATOM 956 CC ARG 138 33.673 8.895 44.007 1.00 22.16 B ATOM 956 CC ARG 138 33.673 8.895 44.007 1.00 22.16 B ATOM 956 CC ARG 138 33.673 8.895 44.007 1.00 22.16 B ATOM 956 CC ARG 138 33.673 8.895 44.007 1.00 22.16 B ATOM 956 CC ARG 138 33.673 8.895 44.007 1.00 22.16 B ATOM 956 CC ARG 138 33.673 8.895 44.007 1.00 22.57 B ATOM 956 C								12.008	46.198	1.00 17.79	В.
NTOW 944 CO PRO 137 35.016 11.255 46.946 1.00 16.71 B ATOW 945 O PRO 137 35.010 11.135 45.040 1.00 20.22 B ATOW 946 O PRO 137 35.010 11.135 45.040 1.00 20.22 ATOW 948 CA ARG 138 35.234 9.829 44.075 1.00 22.72 B ATOW 949 CA ARG 138 35.334 9.829 44.075 1.00 22.72 B ATOW 949 CA ARG 138 35.378 7.534 44.075 1.00 22.41 B ATOW 950 CG ARG 138 35.386 7.433 43.951 1.00 20.35 B ATOW 951 CD ARG 138 33.686 7.433 43.951 1.00 20.35 B ATOW 952 NE ARG 138 33.844 6.002 44.277 1.00 17.83 B ATOW 952 NE ARG 138 33.844 6.002 44.271 1.00 17.83 B ATOW 955 NH2 ARG 138 33.849 6.528 44.071 1.00 17.83 B ATOW 955 NH2 ARG 138 33.269 8.890 44.271 1.00 17.83 B ATOW 955 NH2 ARG 138 33.269 8.890 42.942 1.00 22.14 B ATOW 957 O ARG 138 33.269 8.890 42.942 1.00 22.14 B ATOW 958 NH2 ARG 138 33.269 8.890 42.942 1.00 22.14 B ATOW 958 NH2 ARG 138 33.269 8.890 42.942 1.00 22.14 B ATOW 959 CA THR 139 32.615 8.678 45.154 1.00 22.15 B ATOW 958 CA THR 139 32.615 8.678 45.154 1.00 22.15 B ATOW 961 CG THR 139 30.675 8.360 46.662 1.00 25.67 B ATOW 961 CG THR 139 31.161 8.666 45.203 1.00 25.57 B ATOW 962 CG THR 139 30.461 9.797 44.614 1.00 25.55 B ATOW 962 CG THR 139 30.461 9.797 44.614 1.00 26.55 B ATOW 963 C THR 139 30.461 9.797 44.614 1.00 26.55 B ATOW 962 CG DEU 140 30.473 1.00 47.236 47.234 1.00 27.75 B ATOW 962 CG DEU 140 30.473 1.00 30.991 30.65 46.690 1.00 26.65 B ATOW 968 CG LEU 140 30.473 1.200 30.991 30.65 46.690 1.00 26.55 B ATOW 970 CD LEU 140 30.473 1.200 30.991										_	
S											
ATOM	5										
NTOM	,										
ATOM 948 CA ARC 138 34.789 8.927 44.075 1.00 21.69 8.700 930 CG ARC 138 35.378 7.534 44.270 1.00 21.69 8.700 7.0											
NTOW 959 CB ARC 138 35.378 7.534 44.270 1.00 21.69 B											
ATOM		MOTA									
ATOM 951 CD ARG 138 37.395 6.072 44.377 1.00 17.89 B ATOM 953 CZ ARG 138 39.529 5.905 43.142 1.00 18.07 B B ATOM 954 MI ARG 138 39.529 5.905 43.142 1.00 18.07 B B ATOM 955 MI ARG 138 39.529 5.905 43.142 1.00 19.08 B ATOM 956 CA ARG 138 39.529 5.905 43.156 1.00 18.54 B ATOM 956 CA ARG 138 33.263 8.829 44.007 1.00 22.16 B ATOM 958 N THR 139 32.669 8.890 42.942 1.00 23.66 B ATOM 959 CA THR 139 32.669 8.890 42.942 1.00 23.66 B ATOM 959 CA THR 139 31.161 8.566 45.154 1.00 22.15 B ATOM 960 CB THR 139 31.155 7.236 45.622 1.00 23.66 B ATOM 961 CGI THR 139 30.463 9.797 44.614 1.00 26.57 B ATOM 962 CGI THR 139 29.174 8.100 46.700 1.00 27.07 B ATOM 963 C THR 139 29.144 9.675 43.809 1.00 26.55 B ATOM 963 C THR 139 29.344 9.675 43.809 1.00 26.55 B ATOM 966 C LEU 140 30.510 10.982 45.231 1.00 26.67 B ATOM 966 C LEU 140 30.510 10.982 45.231 1.00 26.67 B ATOM 966 C LEU 140 30.510 10.982 45.231 1.00 26.67 B ATOM 968 C LEU 140 30.590 11.605 46.690 1.00 26.65 B ATOM 968 C LEU 140 30.491 13.234 45.209 1.00 26.65 B ATOM 970 CD2 LEU 140 30.491 13.234 45.209 1.00 26.65 B ATOM 970 CD2 LEU 140 30.491 13.234 45.209 1.00 26.65 B ATOM 970 CD2 LEU 140 30.491 13.234 45.209 1.00 26.65 B ATOM 970 CD2 LEU 140 30.491 13.234 45.209 1.00 26.65 B ATOM 970 CD2 LEU 140 30.491 13.234 45.209 1.00 26.65 B ATOM 970 CD2 LEU 140 30.491 13.896 46.849 1.00 26.65 B ATOM 970 CD2 LEU 140 30.491 13.896 46.849 1.00 26.65 B ATOM 970 CD2 LEU 140 30.491 13.896 46.849 1.00 26.65	4.0	MOTA	949	CB A	ARG	138					
ATOM 9512 NE ARG 138 38,847 6,020 44,275 1,00 17,83 B	10	MOTA	950	CG 2	ARG	138	36.860	7.433	43.951	1.00 20.35	В
ATOM 951 CZ ARG 138 38.847 6.020 44.275 1.00 17.83 B		ATOM	951	CD I	ARG	138	37.395	6.072	44.347	1.00 17.89	. B
ATOM 954 NH ARG 138 39,529 5,905 43,142 1,00 18.07 B					ARG	138	38.847	6.020	44.275	1.00 17.83	В
ATOM 954 NHL ARG 138 38.886 5.818 41.987 1.00 19.38 B ATOM 956 C ARG 138 33.263 8.829 44.007 1.00 12.14 B ATOM 957 O ARG 138 33.263 8.829 44.007 1.00 22.14 B ATOM 957 O ARG 138 33.263 8.829 44.007 1.00 22.14 B ATOM 958 N THR 139 32.615 8.678 45.154 1.00 22.12 B ATOM 950 CA THR 139 31.616 8.566 45.203 1.00 25.67 B ATOM 960 CB THR 139 30.675 8.360 46.662 1.00 25.67 B ATOM 961 CG THR 139 30.675 8.360 46.662 1.00 25.67 B ATOM 962 CG2 THR 139 30.675 8.360 46.662 1.00 25.67 B ATOM 962 CG2 THR 139 30.675 8.360 46.662 1.00 25.67 B ATOM 962 CG2 THR 139 30.463 9.797 44.614 1.00 26.55 B ATOM 964 O THR 139 30.463 9.797 44.614 1.00 26.65 B ATOM 965 CA LEU 140 30.910 10.992 45.017 1.00 27.11 B ATOM 966 CA LEU 140 30.910 10.992 45.017 1.00 26.65 B ATOM 967 CB LEU 140 30.991 31.402 45.209 1.00 26.65 B ATOM 967 CD LEU 140 30.991 31.402 45.209 1.00 26.65 B ATOM 967 CD LEU 140 30.991 31.603 46.690 1.00 26.65 B ATOM 970 CD2 LEU 140 30.431 12.213 47.280 1.00 26.65 B ATOM 970 CD2 LEU 140 30.431 12.233 47.280 1.00 26.65 B ATOM 970 CD2 LEU 140 30.431 12.233 47.280 1.00 26.65 B ATOM 970 CD2 LEU 140 30.431 12.233 47.280 1.00 26.65 B ATOM 970 CD2 LEU 140 30.431 12.233 47.280 1.00 26.65 B ATOM 970 CD2 LEU 140 30.431 12.233 47.280 1.00 26.65 B ATOM 970 CD2 LEU 140 30.431 12.233 47.280 1.00 26.65 B ATOM 970 CD2 LEU 140 30.95 13.603 46.690 1.00 26.65 B ATOM 970 CD2 HIS 141 31.907 12.001 41.001 1.00 26.55 B ATOM 970 CD2 HIS 141 31.907 12.001 41.001 1.00 26.65 B								5.905	43.142	1.00 18.07	В
ATOM											
ATOM 956 C ARG 138 33.263 8.829 44.007 1.00 22.14 B	15										
ATOM 9557 O ARC 138 32.689 8.890 42.942 1.00 22.168 B ATOM 958 N THR 139 31.615 8.678 45.154 1.00 22.12 B ATOM 950 CB THR 139 31.616 8.566 45.203 1.00 25.57 B ATOM 961 OCI THR 139 31.615 8.566 45.203 1.00 25.57 B ATOM 962 CC2 THR 139 31.355 7.236 47.234 1.00 27.07 B ATOM 962 CC2 THR 139 30.461 9.797 44.614 1.00 27.07 B ATOM 963 C THR 139 30.461 9.797 44.614 1.00 26.55 B ATOM 964 O THR 139 29.544 9.675 31.809 1.00 26.69 B ATOM 965 N LEU 140 30.910 10.982 45.017 1.00 27.11 B ATOM 966 CA LEU 140 30.940 13.605 45.209 1.00 26.20 B ATOM 968 CG LEU 140 30.940 13.605 46.690 1.00 26.20 B ATOM 968 CG LEU 140 30.949 13.605 46.690 1.00 26.20 B ATOM 970 CD2 LEU 140 29.114 13.895 46.690 1.00 25.28 B ATOM 971 C LEU 140 29.556 12.725 42.333 1.00 25.33 B ATOM 972 O LEU 140 29.556 12.725 42.333 1.00 25.33 B ATOM 974 CA HIS 141 31.907 12.001 41.081 1.00 25.57 B ATOM 976 CG HIS 141 33.770 11.804 39.364 1.00 25.57 B ATOM 976 CG HIS 141 33.770 11.804 39.364 1.00 25.57 B ATOM 976 CG HIS 141 33.770 11.804 39.364 1.00 25.57 B ATOM 976 CG HIS 141 33.770 11.804 39.364 1.00 25.57 B ATOM 976 CG HIS 141 34.138 12.774 38.739 1.00 26.67 B ATOM 978 NIL HIS 141 34.138 12.774 38.739 1.00 26.55 B ATOM 978 NIL HIS 141 34.138 12.774 38.739 1.00 26.67 B ATOM 978 NIL HIS 141 34.438 12.774 38.739 1.00 26.57 B ATOM 978 CG LIN 142 30.605 8.780 40.925 1.00 26.67 B ATOM 978 CG LIN 142 30.609 11.999 39.181 1.00 26.67 B ATOM 978 CG LIN 142 30.606 8.34 40.565 1.00 27.48 B A	13										
ATOM 958 N THR 139 32.615 8.678 45.154 1.00 22.12 B ATOM 950 CB THR 139 30.675 8.360 46.662 1.00 25.67 B ATOM 961 CB THR 139 30.675 8.360 46.662 1.00 25.67 B ATOM 961 CB THR 139 30.675 8.360 46.662 1.00 25.67 B ATOM 962 CG2 THR 139 30.675 8.360 46.700 1.00 27.35 B ATOM 963 C THR 139 30.463 9.797 44.614 1.00 26.55 B ATOM 963 C THR 139 30.463 9.797 44.614 1.00 26.655 B ATOM 965 N LEU 140 30.910 10.982 45.017 1.00 27.13 B ATOM 965 N LEU 140 30.910 10.982 45.017 1.00 27.11 B ATOM 965 N LEU 140 30.910 10.982 45.017 1.00 26.17 B ATOM 969 CD1 LEU 140 30.999 13.654 46.509 1.00 26.655 B ATOM 970 CD2 LEU 140 30.939 13.605 46.680 1.00 26.655 B ATOM 970 CD2 LEU 140 30.473 12.320 43.018 1.00 25.28 B ATOM 971 C LEU 140 30.473 12.320 43.018 1.00 25.73 B ATOM 973 N HIS 141 31.641 11.941 42.514 1.00 25.67 B ATOM 973 N HIS 141 31.641 11.941 42.514 1.00 25.67 B ATOM 975 CB HIS 141 33.994 11.044 30.813 1.00 25.99 B ATOM 975 CB HIS 141 33.994 11.044 30.813 1.00 25.95 B ATOM 976 CG HIS 141 33.394 11.743 40.813 1.00 25.95 B ATOM 977 CD2 HIS 141 33.997 12.001 41.081 1.00 26.655 B ATOM 978 CG HIS 141 33.993 10.97 12.001 41.081 1.00 26.655 B ATOM 978 CG HIS 141 33.993 1.00 27.48 B ATOM 988 CG LEU 142 30.950 5.475 38.415 1.00 28.65 B ATOM 988 CG LEU 142 30.950 5.475 38.415 1.00 29.67 B ATOM 988 CG LEU 142 30.950 5.475 38.711 1.00 29.67 B ATOM 986 CG CLN 142 30.605 9.664 41.297 1.00 27.48 B ATOM 986 CG CLN 142 30.605 9.664 41.297 1.00 27.48 B ATOM 996 CG											
ATOM 950 CA THE 139 31.161 8.566 45.203 1.00 25.57 B ATOM 961 OCI THE 139 31.355 7.236 47.234 1.00 27.07 B ATOM 962 CQ2 THE 139 31.355 7.236 47.234 1.00 27.07 B ATOM 963 C THE 139 30.463 9.797 44.614 1.00 26.55 B ATOM 963 C THE 139 30.463 9.797 44.614 1.00 26.55 B ATOM 965 N LEU 140 30.910 10.982 45.017 1.00 27.11 B ATOM 965 N LEU 140 30.910 10.982 45.017 1.00 27.11 B ATOM 965 C LEU 140 30.940 13.424 45.209 1.00 26.69 B ATOM 965 C LEU 140 30.940 13.424 45.209 1.00 26.65 B ATOM 968 C LEU 140 30.940 13.424 45.209 1.00 26.65 B ATOM 968 C LEU 140 30.940 13.424 45.209 1.00 25.28 B ATOM 970 CD2 LEU 140 29.114 13.895 66.899 1.00 25.28 B ATOM 971 C LEU 140 29.114 13.895 66.899 1.00 25.28 B ATOM 972 O LEU 140 29.556 12.725 43.018 1.00 25.73 B ATOM 973 N HIS 141 11.907 12.001 41.081 1.00 25.573 B ATOM 974 CA HIS 141 11.907 12.001 41.081 1.00 25.57 B ATOM 976 CG HIS 141 33.370 11.804 39.364 1.00 25.57 B ATOM 976 CG HIS 141 33.370 11.804 39.364 1.00 25.57 B ATOM 978 NID HIS 141 34.138 12.774 30.813 1.00 25.67 B ATOM 978 NID HIS 141 34.405 12.731 37.467 1.00 26.55 B ATOM 978 NID HIS 141 34.405 12.731 37.467 1.00 26.57 B ATOM 978 NID HIS 141 34.405 12.731 37.467 1.00 26.67 B ATOM 978 NID HIS 141 34.405 12.731 37.467 1.00 26.67 B ATOM 978 NID HIS 141 34.405 12.731 37.467 1.00 26.67 B ATOM 978 NID HIS 141 34.221 11.441 37.245 1.00 26.67 B ATOM 978 NID HIS 141 34.252 11.00 36.00 B ATOM 978 NID HIS 141 34.252 11.00 36.00 B ATOM 978 NID HIS 141											
ATOM 960 CB THR 139 30.675 8.360 46.662 1.00 25.67 B ATOM 961 OG1 THR 139 29.174 B.100 46.700 1.00 27.07 B ATOM 962 CG2 THR 139 29.174 B.100 46.700 1.00 27.07 B ATOM 963 C THR 139 29.544 9.675 43.809 1.00 26.55 B ATOM 966 C THR 139 29.544 9.675 43.809 1.00 26.55 B ATOM 966 C LEU 140 30.910 10.992 45.171 1.00 27.11 B ATOM 966 C LEU 140 30.910 10.992 45.201 10.00 26.65 B ATOM 967 CB LEU 140 30.949 13.424 45.203 1.00 26.65 B ATOM 969 CD1 LEU 140 30.599 13.605 46.690 1.00 25.65 B ATOM 970 CD2 LEU 140 30.473 12.200 47.280 1.00 25.28 B ATOM 971 C LEU 140 30.473 12.220 47.280 1.00 25.73 B ATOM 973 N HIS 141 31.641 11.941 42.514 1.00 25.73 B ATOM 975 CB HIS 141 33.949 11.743 40.813 1.00 25.93 B ATOM 975 CB HIS 141 33.770 11.804 39.164 1.00 25.65 B ATOM 977 CD HIS 141 33.370 11.804 39.164 1.00 25.67 B ATOM 978 CB HIS 141 33.370 11.804 39.164 1.00 25.67 B ATOM 979 CEI HIS 141 33.421 1.743 40.813 1.00 25.95 B ATOM 978 CB HIS 141 33.405 12.731 37.467 1.00 29.67 B ATOM 980 CB HIS 141 34.405 12.731 37.467 1.00 29.67 B ATOM 980 CB HIS 141 34.405 12.731 37.467 1.00 29.67 B ATOM 980 CB HIS 141 34.405 12.731 37.467 1.00 29.67 B ATOM 980 CB HIS 141 34.405 12.731 37.467 1.00 29.67 B ATOM 980 CB HIS 141 34.405 12.731 37.467 1.00 29.67 B ATOM 980 CB GIN 142 30.802 9.844 40.955 1.00 28.28 B ATOM 980 CB GIN 142 30.802 9.844 40.955 1.00 28.28 B ATOM 980 CB LEU 143 26.300 10.973 40.122 1.00 26.86 B ATOM 990 CB LEU 143 26.300 10.973 40.122 1.00 27.48 B											
ATOM 961 OGI THR 139 31.355 7.236 47.234 1.00 27.07 B ATOM 963 C CG2 THR 139 30.463 9.797 44.614 1.00 26.55 B ATOM 964 O THR 139 30.463 9.797 44.614 1.00 26.65 B ATOM 965 N LEU 140 30.910 10.982 45.017 1.00 27.11 B ATOM 966 CA LEU 140 30.910 10.982 45.017 1.00 27.11 B ATOM 966 CA LEU 140 30.949 13.424 45.209 1.00 26.17 B ATOM 968 CD LEU 140 30.599 13.605 46.690 1.00 26.55 B ATOM 968 CD LEU 140 30.599 13.605 46.690 1.00 26.55 B ATOM 970 CD2 LEU 140 31.435 14.723 47.280 1.00 25.28 B ATOM 971 C LEU 140 29.114 13.896 46.899 1.00 24.93 B ATOM 972 D LEU 140 29.556 12.725 42.333 1.00 25.73 B ATOM 973 N HTS 141 31.641 11.941 42.514 1.00 25.567 B ATOM 974 CA HTS 141 33.997 12.001 41.081 1.00 26.55 B ATOM 976 CG HTS 141 33.394 11.743 40.813 1.00 25.96 B ATOM 977 CD2 HTS 141 33.823 10.841 38.415 1.00 28.59 B ATOM 978 ND1 HTS 141 33.631 1.841 31.91 42.514 1.00 26.59 B ATOM 978 ND1 HTS 141 33.823 10.841 38.415 1.00 28.59 B ATOM 978 ND HTS 141 33.631 1.043 40.813 1.00 25.96 B ATOM 978 ND HTS 141 33.623 10.841 38.415 1.00 28.59 B ATOM 978 ND HTS 141 33.623 10.841 38.415 1.00 28.59 B ATOM 978 ND HTS 141 33.623 10.841 38.415 1.00 28.59 B ATOM 978 ND HTS 141 33.623 10.841 38.415 1.00 28.59 B ATOM 980 NE2 HTS 141 33.623 10.841 38.415 1.00 28.59 B ATOM 980 NE2 HTS 141 33.623 10.841 38.15 1.00 28.59 B ATOM 980 NE2 HTS 141 30.679 11.99 39.181 1.00 28.03 B ATOM 980 NE2 HTS 141 30.679 11.99 39.181 1.00 28.03 B ATOM 980 NE2 HTS 141 30.679 11.99 39.181 1.00 28.03 B ATOM 980 NE2 HTS 141 30.679 11.99 39.181 1.00 28.03 B ATOM 980 NE2 HTS 141 30.679 11.99 39.181 1.00 28.03 B ATOM 980 NE2 HTS 141 30.679 11.99 39.181 1.00 28.03 B ATOM 980 NE2 HTS 141 30.679 11.99 39.181 1.00 28.03 B ATOM 980 NE2 HTS 141 30.679 11.99 39.181 1.00 28.03 B ATOM 980 NE2 HTS 141 30.679 11.99 39.181 1.00 28.03 B ATOM 980 NE2 HTS 141 30.679 11.99 39.181 1.00 28.03 B ATOM 980 NE2 HTS 141 30.679 11.99 39.181 1.00 28.03 B ATOM 980 NE2 HTS 141 30.679 11.99 39.181 1.00 28.03 B ATOM 980 NE3 NEA	20										
ATON 962 CG2 THR 139 29.174 8.100 46.700 1.00 27.35 B ATON 964 C THR 139 30.463 9.797 44.614 1.00 26.55 B ATON 965 N LEU 140 30.910 10.922 45.017 1.00 27.11 B ATON 966 CA LEU 140 30.910 10.922 45.017 1.00 27.11 B ATON 967 CB LEU 140 30.910 10.922 45.017 1.00 27.11 B ATON 968 CG LEU 140 30.949 13.424 45.209 1.00 26.65 B ATON 969 CD1 LEU 140 30.599 13.605 46.690 1.00 26.65 B ATON 970 CD2 LEU 140 30.473 12.213 44.523 1.00 25.28 B ATON 970 CD2 LEU 140 30.473 12.220 43.018 1.00 25.73 B ATON 971 C LEU 140 30.473 12.220 43.018 1.00 25.73 B ATON 973 N HIS 141 31.641 11.941 42.514 1.00 25.65 B ATON 973 N HIS 141 31.907 12.001 41.081 1.00 25.59 B ATON 975 CB HIS 141 33.394 11.743 40.813 1.00 25.55 B ATON 976 CG HIS 141 33.370 11.804 39.364 1.00 25.57 B ATON 976 CG HIS 141 33.182 10.841 39.364 1.00 25.57 B ATON 976 CB HIS 141 33.3823 10.841 38.415 1.00 28.59 B ATON 976 CB HIS 141 34.405 12.773 37.467 1.00 29.67 B ATON 976 CB HIS 141 34.405 12.773 37.467 1.00 29.67 B ATON 976 CB HIS 141 34.405 12.773 38.739 1.00 29.67 B ATON 980 NE2 HIS 141 34.405 12.773 38.731 1.00 28.28 B ATON 980 C HIS 141 30.679 11.199 39.181 1.00 28.28 B ATON 980 C HIS 141 30.679 11.199 39.181 1.00 28.08 B ATON 980 C GIN 142 30.045 8.780 40.955 1.00 28.28 B ATON 980 C GIN 142 30.045 8.780 40.955 1.00 29.67 B ATON 980 C GIN 142 30.602 9.844 40.563 1.00 30.52 B ATON 995 CG LIE 143 26.364 10.062 41.365 1.00 22.10 B ATON 997 CD LIE 143 26.364 10.062 41.365 1.00 22.10 B ATON	20										
ATOM 963 C THR 139 30.463 9.797 44.614 1.00 26.55 B NOM 966 O THR 139 29.544 9.675 43.809 1.00 26.65 B ATOM 966 CA LEU 140 30.910 10.982 45.017 1.00 27.11 B ATOM 966 CA LEU 140 30.910 10.982 45.017 1.00 27.11 B ATOM 966 CB LEU 140 30.949 13.424 45.209 1.00 26.67 B ATOM 968 CG LEU 140 30.949 13.425 46.690 1.00 26.65 B ATOM 968 CG LEU 140 30.599 13.605 46.690 1.00 26.65 B ATOM 970 CD2 LEU 140 29.114 13.956 46.690 1.00 25.28 B ATOM 971 C LEU 140 29.515 14.723 47.280 1.00 25.73 B ATOM 973 N HTS 141 31.641 11.941 42.514 1.00 25.56 B ATOM 974 CA HTS 141 31.907 12.001 41.081 1.00 26.55 B ATOM 976 CB HTS 141 33.770 11.804 39.164 1.00 26.55 B ATOM 976 CB HTS 141 33.770 11.804 39.164 1.00 26.55 B ATOM 976 CB HTS 141 33.823 10.841 38.415 1.00 26.55 B ATOM 976 CB HTS 141 33.823 10.841 38.415 1.00 26.55 B ATOM 976 CB HTS 141 33.823 10.841 38.415 1.00 26.55 B ATOM 978 NT HTS 141 34.405 12.731 37.457 1.00 29.67 B ATOM 980 NE2 HTS 141 34.405 12.731 37.457 1.00 28.59 B ATOM 981 C HTS 141 34.405 12.731 37.457 1.00 28.28 B ATOM 985 CB GLN 142 30.802 9.844 40.965 1.00 28.80 B ATOM 986 CG GLN 142 30.802 9.844 40.965 1.00 28.80 B ATOM 986 CG GLN 142 30.659 11.999 39.181 1.00 28.05 B ATOM 987 CD GLN 142 30.802 9.844 40.965 1.00 27.48 B ATOM 986 CG GLN 142 30.802 9.844 40.965 1.00 27.48 B ATOM 986 CG GLN 142 30.656 1.00 31.71 1.00 28.05 B ATOM 986 CG GLN 142 30.656 1.00 31.71 1.00 22.00 B ATOM 989 CC GLN 142 32.6634 10.062 41.965 1.00 22.10 B ATOM		MOTA	961	OG1 '	THR						
25 ATOM 966 O THR 139 29.544 9.675 43.809 1.00 26.69 B ATOM 966 CA LEU 140 30.910 10.982 45.017 1.00 26.17 B ATOM 967 CB LEU 140 30.910 11.092 45.209 1.00 26.17 B ATOM 968 CG LEU 140 30.949 13.424 45.209 1.00 26.62 B ATOM 968 CG LEU 140 30.599 13.605 46.690 1.00 26.65 B ATOM 970 CD2 LEU 140 30.599 13.605 46.690 1.00 26.65 B ATOM 970 CD2 LEU 140 30.473 12.320 43.018 1.00 24.93 B ATOM 971 C LEU 140 30.473 12.320 43.018 1.00 24.93 B ATOM 971 C LEU 140 30.473 12.320 43.018 1.00 25.93 B ATOM 972 O LEU 140 30.473 12.320 43.018 1.00 25.93 B ATOM 973 N HIS 141 31.907 12.001 41.081 1.00 25.67 B ATOM 973 N HIS 141 31.907 12.001 41.081 1.00 25.67 B ATOM 974 CA HIS 141 33.994 11.743 40.813 1.00 25.93 B ATOM 975 CB HIS 141 33.3794 11.743 40.813 1.00 25.95 B ATOM 977 CD2 HIS 141 33.970 11.804 39.364 1.00 26.55 B ATOM 979 CEI HIS 141 33.470 11.804 39.364 1.00 26.57 B ATOM 979 CEI HIS 141 33.470 11.804 39.364 1.00 26.67 B ATOM 979 CEI HIS 141 33.470 11.804 39.364 1.00 26.67 B ATOM 979 CEI HIS 141 33.405 12.731 37.467 1.00 29.67 B ATOM 979 CEI HIS 141 34.405 12.731 37.467 1.00 29.67 B ATOM 980 NEZ HIS 141 34.405 12.731 37.467 1.00 29.67 B ATOM 980 NEZ HIS 141 30.072 10.973 40.322 1.00 26.86 B ATOM 980 NEZ HIS 141 30.072 10.973 40.322 1.00 26.86 B ATOM 980 NEZ HIS 141 30.072 10.973 40.322 1.00 26.86 B ATOM 980 NEZ HIS 141 30.072 10.973 40.322 1.00 26.86 B ATOM 980 NEZ HIS 141 30.072 10.973 40.322 1.00 26.86 B ATOM 980 NEZ GIN 142 30.802 9.844 40.965 1.00 26.480 B ATOM 980 NEZ GIN 142 30.802 9.844 40.965 1.00 26.86 B ATOM 980 NEZ GIN 142 30.802 9.844 40.965 1.00 24.80 B ATOM 980 NEZ GIN 142 30.802 9.844 40.965 1.00 24.80 B ATOM 980 NEZ GIN 142 30.802 9.844 40.965 1.00 24.80 B ATOM 980 NEZ GIN 142 30.802 9.844 40.965 1.00 24.80 B ATOM 980 NEZ GIN 142 30.802 9.844 40.965 1.00 24.80 B ATOM 980 NEZ GIN 142 30.802 9.844 40.965 1.00 24.80 B ATOM 990 C GIN 142 30.802 9.844 40.965 1.00 24.80 B ATOM 990 C GIN 142 30.802 9.804 40.302 1.00 24.80 B ATOM 990 C GIN 142 30.802 9.804 9.804 0.00 24.61 B ATOM 990 C GIN 142 30.802 9.804 9.804 0.00		ATOM -	962	CG2 '	THR	139	29.174				
ATOM 965 N LEU 140 30.910 10.982 45.017 1.00 27.11 B ATOM 966 CA LEU 140 30.314 12.213 44.523 1.00 26.20 B ATOM 968 CB LEU 140 30.949 13.424 45.209 1.00 26.20 B ATOM 969 CD1 LEU 140 30.599 13.605 46.660 1.00 26.665 B ATOM 970 CD2 LEU 140 30.599 13.605 46.680 1.00 25.28 B ATOM 970 CD2 LEU 140 29.114 13.896 46.849 1.00 25.73 B ATOM 971 C LEU 140 29.556 12.725 42.333 1.00 25.73 B ATOM 973 N HIS 141 31.641 11.941 42.514 1.00 25.67 B ATOM 973 N HIS 141 31.641 11.941 42.514 1.00 25.95 B ATOM 975 CB HIS 141 33.394 11.743 40.813 1.00 25.96 B ATOM 976 CG HIS 141 33.370 11.804 39.364 1.00 26.55 B ATOM 977 CD HIS 141 33.418 1.2974 38.739 1.00 26.57 B ATOM 978 ND1 HIS 141 34.181 12.974 38.739 1.00 29.67 B ATOM 979 CEL HIS 141 34.181 12.974 38.739 1.00 29.67 B ATOM 981 C HIS 141 34.221 11.443 37.245 1.00 28.03 B ATOM 981 C HIS 141 34.221 11.443 37.245 1.00 28.03 B ATOM 983 N GLN 142 30.802 9.844 40.965 1.00 28.03 B ATOM 984 CA GLN 142 30.802 9.844 40.965 1.00 28.03 B ATOM 986 CG GLN 142 30.802 9.844 40.965 1.00 27.48 B ATOM 986 CG GLN 142 30.805 9.766 41.297 1.00 34.29 B ATOM 987 CD GLN 142 30.680 9.874 40.965 1.00 27.48 B ATOM 998 OEI GLN 142 30.680 9.874 40.965 1.00 27.48 B ATOM 998 OEI GLN 142 30.680 9.874 40.965 1.00 27.48 B ATOM 999 CC GLN 142 30.699 5.475 38.711 1.00 34.29 B ATOM 999 CC GLN 142 30.699 5.475 38.711 1.00 34.29 B ATOM 999 CC GLN 142 28.550 9.017 40.317 1.00 22.20 B ATOM 999 CLL 143 26.634 10.062 41.365 1.00 22.20 B ATOM		MOTA	963	C '	THR	139	30.463	9.797	44.614	1.00 26.55	В
ATOM 966 CA LEU 140 30.314 12.213 44.523 1.00 26.17 B		MOTA	964	0 '	THR	139	29.544	9.675	43.809	1.00 26.69	В
ATOM 966 CA LEU 140 30.314 12.213 44.523 1.00 26.17 B	25	MOTA	965	N	LEU	140	30.910	10.982	45.017	1.00 27.11	· B
ATOM 968 CG LEU 140 30.949 13.424 45.209 1.00 26.20 B									44.523	1.00 26.17	В
ATOM 968 CG LEU 140 30.599 13.605 46.690 1.00 25.26 B ATOM 970 CD2 LEU 140 29.114 13.896 46.849 1.00 25.28 B ATOM 970 CD2 LEU 140 30.473 12.320 43.018 1.00 25.28 B ATOM 972 C LEU 140 29.556 12.725 42.333 1.00 25.93 B ATOM 973 N HIS 141 31.641 11.941 42.514 1.00 25.57 B ATOM 974 CA HIS 141 31.907 12.001 41.081 1.00 26.55 B ATOM 975 CB HIS 141 33.394 11.743 40.813 1.00 25.96 B ATOM 976 CG HIS 141 33.394 11.743 40.813 1.00 26.55 B ATOM 977 CD2 HIS 141 33.823 10.841 38.415 1.00 26.57 B ATOM 977 CD2 HIS 141 33.823 10.841 38.415 1.00 28.59 B ATOM 978 DN1 HIS 141 34.138 12.974 38.739 1.00 29.67 B ATOM 979 CEI HIS 141 34.138 12.974 38.739 1.00 29.67 B ATOM 980 N22 HIS 141 34.221 11.443 37.245 1.00 28.28 B ATOM 981 C HIS 141 31.072 10.973 40.322 1.00 26.86 B ATOM 983 N GLN 142 30.802 9.844 40.965 1.00 26.86 B ATOM 984 CA GLN 142 30.802 9.844 40.965 1.00 24.80 B ATOM 985 CB GLN 142 30.802 9.844 40.965 1.00 24.80 B ATOM 986 CG GLN 142 30.802 9.844 40.965 1.00 24.80 B ATOM 987 CD GLN 142 31.680 6.834 40.965 1.00 24.80 B ATOM 988 OEI GLN 142 30.802 9.844 40.965 1.00 24.80 B ATOM 989 NE2 GLN 142 30.802 9.844 40.965 1.00 24.80 B ATOM 989 CC GLN 142 31.680 6.834 40.965 1.00 24.80 B ATOM 989 CC GLN 142 31.680 6.834 40.965 1.00 24.80 B ATOM 989 CC GLN 142 31.680 6.834 40.965 1.00 24.80 B ATOM 989 CC GLN 142 31.680 6.834 40.965 1.00 24.80 B ATOM 989 CC GLN 142 32.468 7.116 38.287 1.00 34.29 B ATOM 990 C GLN 142 32.468 7.116 38.287 1.00 34.29 B ATOM 990 C GLN 142 32.468 7.116 38.287 1.00 34.29 B ATOM 990 C GLN 142 32.468 7.116 38.287 1.00 22.20 B ATOM 990 C GLN 142 32.468 7.116 38.287 1.00 22.70 B ATOM 990 C GLN 142 32.468 7.116 38.287 1.00 22.70 B ATOM 990 C GLN 142 27.856 8.528 39.440 1.00 27.48 B ATOM 990 C GLN 142 32.468 7.166 41.365 1.00 22.81 B ATOM 990 C GLN 142 32.468 7.166 41.365 1.00 22.81 B ATOM 990 C GLN 142 27.856 8.528 39.440 1.00 27.48 B ATOM 990 C GLN 142 27.856 8.528 39.440 1.00 27.48 B ATOM 990 C GLN 142 27.856 8.528 39.40 1.00 27.48 B ATOM 990 C GLN 142 27.856 8.528 39.40 1.00 27.48 B ATOM 990 C GLD HE 144 26.40											В
ATOM											
ATOM											
ATOM 971 C LEU 140 30.473 12.320 43.018 1.00 25.73 B ATOM 972 O LEU 140 29.556 12.725 42.333 1.00 25.93 B ATOM 973 N HIS 141 31.641 11.941 42.514 1.00 25.67 B ATOM 974 CA HIS 141 33.997 12.001 41.081 1.00 25.67 B ATOM 975 CB HIS 141 33.997 11.804 39.364 1.00 25.56 B ATOM 975 CB HIS 141 33.997 11.804 39.364 1.00 25.596 B ATOM 977 CD2 HIS 141 33.997 11.804 39.364 1.00 25.596 B ATOM 978 ND1 HIS 141 34.138 12.974 38.739 1.00 29.67 B ATOM 978 ND1 HIS 141 34.138 12.974 38.739 1.00 29.67 B ATOM 978 ND1 HIS 141 34.138 12.974 38.739 1.00 29.67 B ATOM 980 NE2 HIS 141 34.221 11.443 37.245 1.00 28.28 B ATOM 980 NE2 HIS 141 34.221 11.443 37.245 1.00 28.28 B ATOM 981 C HIS 141 30.072 10.973 40.322 1.00 26.86 B ATOM 983 N GLN 142 30.802 98.84 40.965 1.00 24.80 B ATOM 983 N GLN 142 30.802 98.84 40.965 1.00 24.80 B ATOM 985 CB GLN 142 30.802 98.84 40.965 1.00 24.80 B ATOM 985 CB GLN 142 30.353 7.436 40.994 1.00 27.48 B ATOM 986 CG GLN 142 31.680 6.834 40.965 1.00 24.80 B ATOM 987 CD GLN 142 31.680 6.834 40.563 1.00 30.52 B ATOM 988 OEI GLN 142 31.680 6.834 40.563 1.00 30.52 B ATOM 989 NE2 GLN 142 31.680 6.834 40.563 1.00 30.52 B ATOM 989 NE2 GLN 142 32.468 7.116 38.287 1.00 34.29 B ATOM 999 NE2 GLN 142 32.468 7.116 38.287 1.00 34.29 B ATOM 999 NE2 GLN 142 32.468 7.116 38.287 1.00 34.96 B ATOM 999 NE2 GLN 142 32.468 7.116 38.287 1.00 34.99 B ATOM 999 C GLN 142 28.550 9.017 40.317 1.00 22.70 B ATOM 999 CD GLN 142 28.550 9.017 40.317 1.00 22.70 B ATOM 999 CD GLN 142 28.550 9.017 40.317 1.00 22.70 B ATOM 999 CD GLN 142 28.550 9.017 40.317 1.00 22.70 B ATOM 999 CD GLN 142 28.550 9.017 40.317 1.00 22.70 B ATOM 999 CD GLN 142 28.550 9.017 40.317 1.00 22.70 B ATOM 999 CD GLN 142 28.550 9.017 40.317 1.00 22.70 B ATOM 999 CD GLN 142 28.550 9.017 40.317 1.00 22.70 B ATOM 999 CD GLN 142 28.550 9.017 40.317 1.00 22.70 B ATOM 999 CD GLN 142 28.550 9.017 40.317 1.00 22.70 B ATOM 999 CD GLN 142 28.550 9.017 40.317 1.00 22.70 B ATOM 999 CD GLN 144 26.660 10.024 40.114 1.00 22.70 B ATOM 999 CD GLN 144 26.660 10.024 40.560 10.022 2.00 B ATOM 999	30										
ATOM 972 O LEU 1400 29.556 12.725 42.333 1.00 25.93 B ATOM 974 CA HIS 141 31.641 11.941 42.514 1.00 25.67 B ATOM 975 CB HIS 141 331.907 12.001 41.081 1.00 25.65 B ATOM 976 CG HIS 141 33.3.94 11.743 40.813 1.00 25.96 B ATOM 976 CG HIS 141 33.3.94 11.743 40.813 1.00 25.96 B ATOM 977 CD2 HIS 141 33.3.94 11.743 40.813 1.00 25.96 B ATOM 978 ND1 HIS 141 33.823 10.841 38.415 1.00 28.57 B ATOM 979 CEL HIS 141 34.138 12.974 38.739 1.00 29.67 B ATOM 979 CEL HIS 141 34.405 12.731 37.467 1.00 29.67 B ATOM 980 NE2 HIS 141 34.221 11.443 37.245 1.00 28.28 B ATOM 981 C HIS 141 31.072 10.973 40.322 1.00 26.86 B ATOM 982 O HIS 141 30.679 11.199 39.181 1.00 28.03 B ATOM 983 N GLN 142 30.802 9.844 40.965 1.00 28.28 B ATOM 986 CG GLN 142 30.802 9.844 40.965 1.00 27.48 B ATOM 987 CD GLN 142 30.353 7.436 40.994 1.00 27.48 B ATOM 987 CD GLN 142 31.680 6.843 40.563 1.00 30.52 B ATOM 988 OEI GLN 142 31.680 6.843 40.563 1.00 30.52 B ATOM 989 NE2 GLN 142 32.468 7.116 38.287 1.00 34.96 B ATOM 999 NE2 GLN 142 32.468 7.116 38.287 1.00 34.96 B ATOM 999 NE2 GLN 142 228.550 9.017 40.317 1.00 22.70 B ATOM 999 NE2 GLN 142 228.550 9.017 40.317 1.00 22.70 B ATOM 999 CC GLN 142 228.550 9.017 40.317 1.00 22.70 B ATOM 999 CC GLN 142 27.856 8.528 39.440 1.00 21.46 B ATOM 999 CC ILE 143 26.634 10.062 41.365 1.00 22.81 B ATOM 999 CC ILE 143 26.634 10.062 41.365 1.00 22.20 B ATOM 999 CCI ILE 143 26.634 10.062 41.365 1.00 22.20 B ATOM 999 CDI ILE 143 26.634 10.062 41.365 1.00 22.20 B ATOM 999 CDI ILE 143 26.634 10.062 41.365 1.00 22.81 B ATOM 999 CDI ILE 143 26.634 10.062 41.365 1.00 22.81 B ATOM 999 CDI ILE 143 26.636 10.062 41.365 1.00 22.81 B ATOM 999 CDI ILE 143 26.636 10.062 41.365 1.00 22.81 B ATOM 999 CDI ILE 143 26.636 10.062 41.365 1.00 22.81 B ATOM 1001 CA PHE 144 26.698 11.803 39.693 1.00 22.82 B ATOM 1000 N PHE 144 26.698 11.803 39.693 1.00 22.82 B ATOM 1000 C PHE 144 26.698 11.803 39.693 1.00 28.77 B ATOM 1000 C PHE 144 26.805 16.646 40.646 1.00 28.77 B ATOM 1000 C PHE 144 26.805 16.646 40.646 1.00 28.29 B ATOM 1000 C PHE 144 26.805 16.646 40.	50										
ATOM 973 N HIS 141 31.641 11.941 42.514 1.00 25.67 B ATOM 974 CA HIS 141 31.907 12.001 41.081 1.00 25.65 B ATOM 975 CB HIS 141 33.394 11.743 40.813 1.00 25.96 B ATOM 976 CG HIS 141 33.370 11.804 39.364 1.00 26.55 B ATOM 977 CD2 HIS 141 33.823 10.841 38.415 1.00 28.59 B ATOM 978 ND1 HIS 141 34.138 12.974 38.739 1.00 29.67 B ATOM 978 ND1 HIS 141 34.138 12.974 38.739 1.00 29.67 B ATOM 979 CEL HIS 141 34.405 12.731 37.467 1.00 29.67 B ATOM 980 NE2 HIS 141 34.221 11.443 37.245 1.00 28.28 B ATOM 981 C HIS 141 30.679 11.99 39.181 1.00 28.03 B ATOM 982 O HIS 141 30.679 11.199 39.181 1.00 28.03 B ATOM 983 N GLN 142 30.802 9.844 40.955 1.00 28.03 B ATOM 985 CB GLN 142 30.045 8.780 40.326 1.00 25.14 B ATOM 986 CG GLN 142 30.353 7.436 40.994 1.00 27.48 B ATOM 986 CG GLN 142 30.353 7.436 40.994 1.00 27.48 B ATOM 987 CD GLN 142 30.695 8.780 40.326 1.00 30.52 B ATOM 988 OEI GLN 142 30.695 5.75 38.711 1.00 34.29 B ATOM 989 NE2 GLN 142 30.990 5.475 38.711 1.00 34.29 B ATOM 999 C GLN 142 28.550 9.017 40.317 1.00 22.70 B ATOM 999 C GLN 142 28.550 9.066 41.297 1.00 21.46 B ATOM 999 C GLN 142 28.550 9.066 41.297 1.00 21.46 B ATOM 999 C GLN 142 28.550 9.066 41.297 1.00 22.70 B ATOM 999 CG ILE 143 26.304 10.888 42.620 1.00 22.81 B ATOM 999 CG ILE 143 26.304 10.888 42.620 1.00 22.20 B ATOM 999 CG ILE 143 26.304 10.888 42.620 1.00 22.20 B ATOM 999 CGI ILE 143 26.304 10.888 42.620 1.00 22.20 B ATOM 999 CGI ILE 143 26.304 10.888 42.620 1.00 22.20 B ATOM 999 CGI ILE 143 26.304 10.888 42.620 1.00 22.20 B ATOM 999 CGI ILE 143 26.307 10.034 39.593 1.00 22.62 B ATOM 999 CGI ILE 143 26.307 10.034 39.593 1.00 22.62 B ATOM 999 CGI ILE 143 26.304 10.888 42.620 1.00 22.20 B ATOM 999 CGI ILE 143 26.304 10.888 42.620 1.00 22.20 B ATOM 999 CHE 144 26.805 11.803 39.693 1.00 22.62 B ATOM 999 CHE 144 26.605 10.525 39.544 1.00 24.61 B ATOM 1000 N PHE 144 26.605 15.00 24 43.872 1.00 22.62 B ATOM 1000 CP PHE 144 26.605 15.606 40.606 1.00 28.77 B ATOM 1000 CP PHE 144 26.805 16.646 41.647 1.00 28.13 B ATOM 1000 CP PHE 144 26.805 16.646 41.646 1.00 28.29 B AT											
ATOM											
ATOM											
ATOM 976 CG HIS 141 33.770 11.804 39.364 1.00 26.57 B ATOM 977 CD2 HIS 141 33.823 10.841 38.415 1.00 28.59 B ATOM 978 ND1 HIS 141 34.138 12.974 38.739 1.00 29.67 B ATOM 979 CE1 HIS 141 34.405 12.731 37.467 1.00 29.67 B ATOM 980 NE2 HIS 141 34.221 11.443 37.245 1.00 28.28 B ATOM 981 C HIS 141 31.072 10.973 40.322 1.00 26.86 B ATOM 982 O HIS 141 30.679 11.199 39.181 1.00 28.03 B ATOM 983 N GLN 142 30.802 9.844 40.965 1.00 24.80 B ATOM 985 CB GLN 142 30.353 7.416 40.994 1.00 27.48 B ATOM 986 CG GLN 142 30.353 7.416 40.994 1.00 27.48 B ATOM 987 CD GLN 142 31.680 6.814 40.563 1.00 30.52 B ATOM 988 OEI GLN 142 31.680 6.814 40.563 1.00 30.52 B ATOM 989 NE2 GLN 142 31.680 6.814 40.563 1.00 30.52 B ATOM 989 NE2 GLN 142 31.680 6.417 39.102 1.00 34.29 B ATOM 989 NE2 GLN 142 32.468 7.116 38.287 1.00 35.49 B ATOM 990 C GLN 142 28.550 9.017 40.317 1.00 22.70 B ATOM 991 O GLN 142 27.856 8.528 39.440 1.00 21.46 B ATOM 993 CR ILE 143 28.058 9.766 41.297 1.00 21.92 B ATOM 994 CB ILE 143 26.634 10.062 41.365 1.00 22.62 B ATOM 995 CG2 ILE 143 24.880 11.423 42.533 1.00 22.62 B ATOM 996 CG ILE 143 26.676 10.024 43.872 1.00 21.94 B ATOM 997 CD1 ILE 143 26.476 10.024 43.872 1.00 21.94 B ATOM 998 C ILE 143 26.476 10.024 43.872 1.00 21.94 B ATOM 999 C ILE 143 26.476 10.024 43.872 1.00 21.94 B ATOM 999 C ILE 143 26.476 10.024 43.872 1.00 21.94 B ATOM 999 C ILE 143 26.476 10.024 43.872 1.00 21.94 B ATOM 999 C ILE 143 26.187 10.824 40.114 1.00 24.31 B ATOM 999 C ILE 144 26.697 11.803 39.543 1.00 22.62 B ATOM 1001 CA PHE 144 26.697 11.803 39.543 1.00 22.806 B ATOM 1002 CB PHE 144 27.580 13.857 38.439 1.00 28.27 B ATOM 1006 CE1 PHE 144 26.897 11.803 39.545 1.00 28.27 B ATOM 1007 CE2 PHE 144 26.898 11.778 37.238 1.00 28.27 B ATOM 1008 CZ PHE 144 26.895 16.646 41.646 1.00 28.27 B ATOM 1009 C PHE 144 26.895 16.646 41.647 1.00 28.27 B ATOM 1000 C PHE 144 26.895 16.646 41.647 1.00 28.27 B ATOM 1001 O PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1001 C O PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1001 C O PHE 144 26.805 16.646 41.646 1.00 30	25										
ATOM 977 CD2 HIS 141 33.823 10.841 38.415 1.00 28.59 B ATOM 978 ND1 HIS 141 34.138 12.974 38.739 1.00 29.67 B ATOM 979 CEI HIS 141 34.405 12.731 37.467 1.00 29.67 B ATOM 980 NE2 HIS 141 34.221 11.443 37.245 1.00 28.28 B ATOM 981 C HIS 141 30.679 11.199 39.181 1.00 26.86 B ATOM 982 O HIS 141 30.679 11.199 39.181 1.00 28.03 B ATOM 983 N GLN 142 30.802 9.844 40.955 1.00 24.80 B ATOM 984 CA GLN 142 30.802 9.844 40.955 1.00 25.14 B ATOM 985 CB GLN 142 30.353 7.436 40.994 1.00 27.48 B ATOM 986 CG GLN 142 31.680 6.834 40.563 1.00 30.52 B ATOM 987 CD GLN 142 31.684 6.417 39.102 1.00 34.29 B ATOM 988 OEI GLN 142 30.990 5.475 38.711 1.00 34.29 B ATOM 989 NE2 GLN 142 32.468 7.116 38.287 1.00 34.29 B ATOM 990 C GLN 142 28.550 9.017 40.317 1.00 22.70 B ATOM 991 O GLN 142 27.856 8.528 39.440 1.00 21.46 B ATOM 993 CA ILE 143 26.634 10.062 41.365 1.00 22.20 B ATOM 995 CG ILE 143 26.634 10.062 41.365 1.00 22.20 B ATOM 996 CG ILE 143 26.304 10.888 42.620 1.00 22.20 B ATOM 997 CDI ILE 143 26.304 10.888 42.620 1.00 22.20 B ATOM 999 CG ILE 143 26.304 10.888 42.620 1.00 22.20 B ATOM 999 CI ILE 143 26.304 10.888 42.620 1.00 22.20 B ATOM 999 CDI ILE 143 26.304 10.888 42.620 1.00 22.20 B ATOM 999 CDI ILE 143 26.304 10.881 42.533 1.00 22.62 B ATOM 999 CDI ILE 143 26.304 10.881 42.533 1.00 22.62 B ATOM 999 CDI ILE 143 26.304 10.881 42.533 1.00 22.62 B ATOM 999 CDI ILE 143 26.309 10.793 45.177 1.00 22.22 B ATOM 999 CDI ILE 143 26.309 10.793 45.177 1.00 22.22 B ATOM 1000 N PHE 144 26.672 12.611 38.511 1.00 24.31 B ATOM 1001 CA PHE 144 27.580 13.857 38.439 1.00 26.87 B ATOM 1000 CD2 PHE 144 27.330 14.861 38.9536 1.00 27.89 B ATOM 1000 CD2 PHE 144 27.330 14.861 38.9536 1.00 28.27 B ATOM 1000 CP PHE 144 27.330 14.861 38.9536 1.00 28.27 B ATOM 1000 CP PHE 144 27.330 14.861 38.9536 1.00 28.27 B ATOM 1000 CP PHE 144 27.330 14.861 38.9536 1.00 28.27 B ATOM 1000 CP PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1000 CP PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1001 CA GLU 145 27.703 10.786 37.273 1.00 28.29 B ATOM 1001 CA GLU 145 27.703 10.78	33	MOTA									
## ATOM 978 ND1 HIS 141 34.138 12.974 38.739 1.00 29.67 B ## ATOM 979 CE1 HIS 141 34.405 12.731 37.467 1.00 29.67 B ## ATOM 980 NE2 HIS 141 34.221 11.443 37.245 1.00 28.28 B ## ATOM 981 C HIS 141 31.072 10.973 40.322 1.00 26.86 B ## ATOM 982 O HIS 141 30.679 11.199 39.181 1.00 28.03 B ## ATOM 983 N GLN 142 30.802 9.844 40.965 1.00 24.80 B ## ATOM 984 CA GLN 142 30.802 9.844 40.965 1.00 25.14 B ## ATOM 985 CB GLN 142 30.353 7.436 40.994 1.00 27.48 B ## ATOM 986 CG GLN 142 31.680 6.834 40.563 1.00 30.52 B ## ATOM 987 CD GLN 142 31.680 6.834 40.563 1.00 30.52 B ## ATOM 988 OE1 GLN 142 30.990 5.475 38.711 1.00 34.96 B ## ATOM 989 NE2 GLN 142 32.468 7.116 38.287 1.00 34.96 B ## ATOM 990 C GLN 142 28.550 9.017 40.317 1.00 22.70 B ## ATOM 991 O GLN 142 27.856 8.528 39.440 1.00 21.46 B ## ATOM 993 CA ILE 143 28.058 9.766 41.297 1.00 21.92 B ## ATOM 994 CB ILE 143 26.634 10.062 41.365 1.00 22.20 B ## ATOM 996 CGI ILE 143 26.634 10.062 41.365 1.00 22.20 B ## ATOM 997 CD ILE 143 26.634 10.062 41.365 1.00 22.20 B ## ATOM 999 C GI ILE 143 26.634 10.062 41.365 1.00 22.20 B ## ATOM 999 C GI ILE 143 26.634 10.062 41.365 1.00 22.20 B ## ATOM 996 CGI ILE 143 26.634 10.062 41.365 1.00 22.20 B ## ATOM 997 CD ILE 143 26.637 10.024 43.872 1.00 21.94 B ## ATOM 999 C ILE 143 26.637 10.0793 45.177 1.00 22.20 B ## ATOM 999 C ILE 143 26.637 10.0793 45.177 1.00 22.20 B ## ATOM 999 C ILE 143 26.639 10.0793 45.177 1.00 20.22 B ## ATOM 999 C ILE 143 26.639 10.0793 45.177 1.00 20.22 B ## ATOM 999 C ILE 143 26.639 10.0793 45.177 1.00 20.22 B ## ATOM 1000 N PHE 144 26.679 15.630 39.545 1.00 28.77 B ## ATOM 1000 C PHE 144 27.530 13.857 38.439 1.00 26.87 B ## ATOM 1000 C PHE 144 27.530 13.857 38.439 1.00 28.77 B ## ATOM 1000 C PHE 144 26.805 16.646 41.647 1.00 28.13 B ## ATOM 1000 C PHE 144 26.805 16.646 41.647 1.00 28.23 B ## ATOM 1000 C PHE 144 26.805 16.646 41.647 1.00 28.23 B ## ATOM 1000 C PHE 144 26.805 16.646 41.647 1.00 28.23 B ## ATOM 1000 C PHE 144 26.805 16.646 41.647 1.00 28.23 B ## ATOM 1000 C PHE 144 26.805 16.646 41.647 1.00 28.23		MOTA	976			141	33.770				
40 ATOM 979 CEI HIS 141 34.405 12.731 37.467 1.00 29.67 B ATOM 980 NE2 HIS 141 34.221 11.443 37.245 1.00 28.28 B ATOM 981 C HIS 141 31.072 10.973 40.322 1.00 26.86 B ATOM 983 N GLN 142 30.679 11.199 39.181 1.00 28.03 B ATOM 984 CA GLN 142 30.802 9.844 40.965 1.00 25.14 B ATOM 985 CB GLN 142 30.035 7.436 40.994 1.00 27.48 B ATOM 986 CG GLN 142 31.680 6.834 40.563 1.00 30.52 B ATOM 987 CD GLN 142 31.680 6.834 40.563 1.00 30.52 B ATOM 988 OEI GLN 142 30.990 5.475 38.711 1.00 34.29 B ATOM 989 NE2 GLN 142 32.468 7.116 38.287 1.00 34.96 B ATOM 990 C GLN 142 27.856 8.528 39.440 1.00 27.46 B ATOM 991 O GLN 142 27.856 8.528 39.440 1.00 21.46 B ATOM 992 N 1LE 143 28.058 9.766 41.297 1.00 21.92 B ATOM 993 CA 1LE 143 26.394 10.062 41.365 1.00 22.20 B ATOM 996 CG ILE 143 26.394 10.062 41.365 1.00 22.20 B ATOM 997 CD1 1LE 143 26.394 10.062 41.365 1.00 22.20 B ATOM 998 C 1LE 143 26.390 10.793 45.177 1.00 22.20 B ATOM 999 O 1LE 143 26.390 10.793 45.177 1.00 22.20 B ATOM 999 O 1LE 143 26.390 10.793 45.177 1.00 22.20 B ATOM 999 C DI 1LE 143 26.390 10.793 45.177 1.00 22.20 B ATOM 999 C DI 1LE 143 26.390 10.793 45.177 1.00 22.20 B ATOM 999 C DI 1LE 143 26.390 10.793 45.177 1.00 22.20 B ATOM 990 C DI 1LE 143 26.390 10.793 45.177 1.00 22.20 B ATOM 990 C DI 1LE 143 26.390 10.793 45.177 1.00 22.20 B ATOM 1000 N PHE 144 26.987 11.803 39.693 1.00 26.83 B ATOM 1000 C PHE 144 27.580 13.857 13.85 11 00 24.61 B ATOM 1000 C PHE 144 27.590 13.857 13.85 11 00 29.48 B ATOM 1000 C PHE 144 27.590 13.857 13.85 11 00 28.27 B ATOM 1000 C PHE 144 27.590 15.002 40.592 1.00 28.27 B ATOM 1000 C PHE 144 26.818 11.778 37.238 1.00 28.27 B ATOM 1000 C PHE 144 26.818 11.778 37.238 1.00 28.29 B ATOM 1000 C PHE 144 26.818 11.778 37.238 1.00 28.27 B ATOM 1000 C PHE 144 26.818 11.778 37.238 1.00 28.29 B ATOM 1000 C PHE 144 26.818 11.778 37.238 1.00 28.29 B ATOM 1001 O PHE 144 26.818 11.778 37.238 1.00 28.29 B ATOM 1001 O PHE 144 26.818 11.778 37.238 1.00 28.29 B ATOM 1001 O PHE 144 26.818 11.778 37.238 1.00 28.29 B ATOM 1001 O PHE 144 26.818 11.778 37.238 1.00 2		ATOM	977	CD2	HIS	141	33.823	10.841	38.415		
40 ATOM 980 NE2 HIS 141 34.221 11.443 37.245 1.00 28.28 B ATOM 981 C HIS 141 31.072 10.973 40.322 1.00 26.86 B ATOM 982 O HIS 141 30.679 11.199 39.181 1.00 28.03 B ATOM 983 N GLN 142 30.802 9.844 40.965 1.00 24.80 B ATOM 985 CB GLN 142 30.045 8.780 40.326 1.00 25.14 B ATOM 985 CB GLN 142 30.353 7.436 40.994 1.00 27.48 B ATOM 986 CG GLN 142 31.680 6.834 40.563 1.00 30.52 B ATOM 987 CD GLN 142 31.680 6.834 40.563 1.00 30.52 B ATOM 988 OEI GLN 142 31.680 6.834 40.563 1.00 30.52 B ATOM 988 OEI GLN 142 32.468 7.116 38.287 1.00 34.96 B ATOM 989 NE2 GLN 142 32.468 7.116 38.287 1.00 35.49 B ATOM 990 C GLN 142 28.550 9.017 40.317 1.00 22.70 B ATOM 991 O GLN 142 28.550 9.017 40.317 1.00 22.70 B ATOM 993 CA ILE 143 28.058 9.766 41.297 1.00 21.92 B ATOM 993 CA ILE 143 26.634 10.062 41.365 1.00 22.81 B ATOM 994 CB ILE 143 26.634 10.062 41.365 1.00 22.81 B ATOM 996 CGI ILE 143 26.304 10.888 42.620 1.00 22.20 B ATOM 997 CDI ILE 143 26.304 10.888 42.620 1.00 22.20 B ATOM 999 O ILE 143 26.304 10.888 42.620 1.00 22.20 B ATOM 999 O ILE 143 26.390 10.793 45.177 1.00 20.22 B ATOM 999 O ILE 143 26.390 10.793 45.177 1.00 20.22 B ATOM 999 O ILE 143 26.390 10.793 45.177 1.00 20.22 B ATOM 999 O ILE 143 26.390 10.793 45.177 1.00 20.22 B ATOM 999 O ILE 143 26.390 10.793 45.177 1.00 20.22 B ATOM 999 O ILE 143 26.390 10.793 45.177 1.00 20.22 B ATOM 999 O ILE 143 26.187 10.824 40.114 1.00 24.31 B ATOM 1000 N PHE 144 26.987 11.803 39.693 1.00 26.83 B ATOM 1000 CB PHE 144 27.580 13.857 38.439 1.00 26.83 B ATOM 1000 CB PHE 144 27.580 13.857 38.439 1.00 26.87 B ATOM 1000 CB PHE 144 27.580 13.857 38.439 1.00 28.06 B ATOM 1000 CB PHE 144 27.580 13.857 38.439 1.00 28.27 B ATOM 1000 CB PHE 144 27.580 13.857 38.439 1.00 28.27 B ATOM 1000 CB PHE 144 27.580 13.857 38.439 1.00 28.27 B ATOM 1000 CB PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1000 CB PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1000 CB PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1000 CB PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1000 CB PHE 144 26.805 16.646 41.646 1.00 28.29		MOTA	978	ND1	HIS	141	34.138	12.974	38.739	1.00 29.67	В
## ATOM 980 NE2 HIS 141 34.221 11.443 37.245 1.00 28.28 B ## ATOM 981 C HIS 141 31.072 10.973 40.322 1.00 26.86 B ## ATOM 982 O HIS 141 30.679 11.199 39.181 1.00 28.03 B ## ATOM 983 N GLN 142 30.802 9.844 40.965 1.00 24.80 B ## ATOM 985 CB GLN 142 30.353 7.436 40.994 1.00 27.48 B ## ATOM 986 CG GLN 142 30.353 7.436 40.994 1.00 27.48 B ## ATOM 986 CG GLN 142 31.680 6.834 40.563 1.00 30.52 B ## ATOM 988 OEI GLN 142 31.684 6.417 39.102 1.00 34.29 B ## ATOM 988 OEI GLN 142 32.468 7.116 38.287 1.00 35.49 B ## ATOM 990 C GLN 142 28.550 9.017 40.317 1.00 22.70 B ## ATOM 991 O GLN 142 28.550 9.017 40.317 1.00 22.70 B ## ATOM 992 N ILE 143 28.058 9.766 41.297 1.00 21.92 B ## ATOM 993 CA ILE 143 26.634 10.062 41.365 1.00 22.81 B ## ATOM 994 CB ILE 143 26.304 10.888 42.620 1.00 22.20 B ## ATOM 995 CG2 ILE 143 26.304 10.888 42.620 1.00 22.20 B ## ATOM 996 CGI ILE 143 26.304 10.088 42.620 1.00 22.20 B ## ATOM 997 CDI ILE 143 26.304 10.082 42.533 1.00 22.62 B ## ATOM 998 C ILE 143 26.304 10.082 42.533 1.00 22.62 B ## ATOM 999 C ILE 143 26.304 10.888 42.620 1.00 22.20 B ## ATOM 996 CGI ILE 143 26.304 10.888 42.620 1.00 22.20 B ## ATOM 997 CDI ILE 143 26.304 10.088 32.600 1.00 22.20 B ## ATOM 998 C ILE 143 26.304 10.082 40.593 1.00 24.31 B ## ATOM 999 C ILE 143 26.304 10.083 42.533 1.00 22.62 B ## ATOM 999 C ILE 143 26.304 10.584 40.114 1.00 24.31 B ## ATOM 996 CGI ILE 143 26.476 10.024 38.872 1.00 21.94 B ## ATOM 997 CDI ILE 143 26.476 10.525 39.544 1.00 24.61 B ## ATOM 1000 N PHE 144 26.987 11.803 39.693 1.00 28.68 B ## ATOM 1000 CB PHE 144 27.530 13.857 38.439 1.00 28.06 B ## ATOM 1000 CB PHE 144 27.530 13.857 38.439 1.00 28.07 B ## ATOM 1000 CB PHE 144 26.805 16.646 41.646 1.00 28.13 B ## ATOM 1000 CB PHE 144 27.974 15.890 41.647 1.00 28.13 B ## ATOM 1000 CB PHE 144 26.805 16.646 41.646 1.00 28.81 B ## ATOM 1000 CB PHE 144 26.805 16.646 41.646 1.00 28.81 B ## ATOM 1000 CB PHE 144 26.805 16.646 41.646 1.00 28.87 B ## ATOM 1000 CB PHE 144 26.805 16.646 41.646 1.00 28.87 B ## ATOM 1000 CB PHE 144 26.805 16.646 41.646 1.00 28.			979	CE1	HIS	141	34.405	12.731	37.467	1.00 29.67	В
ATOM 981 C HIS 141 31.072 10.973 40.322 1.00 26.86 B ATOM 982 O HIS 141 30.679 11.199 39.181 1.00 26.86 B ATOM 983 N GLN 142 30.802 9.844 40.965 1.00 24.80 B ATOM 986 CB GLN 142 30.353 7.436 40.994 1.00 27.48 B ATOM 986 CG GLN 142 31.680 6.834 40.994 1.00 27.48 B ATOM 987 CD GLN 142 31.680 6.834 40.994 1.00 34.29 B ATOM 988 DEI GLN 142 31.680 6.834 40.994 1.00 34.29 B ATOM 989 NE2 GLN 142 32.468 7.116 38.287 1.00 34.96 B ATOM 999 NE2 GLN 142 32.468 7.116 38.287 1.00 35.49 B ATOM 991 O GLN 142 28.550 9.017 40.317 1.00 22.70 B ATOM 992 N ILE 143 28.558 9.766 41.297 1.00 21.46 B ATOM 993 CA ILE 143 26.634 10.062 41.365 1.00 22.81 B ATOM 994 CB ILE 143 26.634 10.062 41.365 1.00 22.20 B ATOM 995 CG2 ILE 143 24.880 11.423 42.533 1.00 22.20 B ATOM 996 CG1 ILE 143 26.304 10.888 42.620 1.00 22.20 B ATOM 997 CD1 ILE 143 26.304 10.888 42.620 1.00 22.20 B ATOM 998 C ILE 143 26.304 10.888 42.620 1.00 22.20 B ATOM 999 C ILE 143 26.304 10.888 42.620 1.00 22.20 B ATOM 999 C ILE 143 26.304 10.888 42.620 1.00 22.20 B ATOM 999 C ILE 143 26.304 10.888 42.620 1.00 22.20 B ATOM 999 C ILE 143 26.304 10.888 42.620 1.00 22.20 B ATOM 999 C ILE 143 26.304 10.888 42.620 1.00 22.20 B ATOM 999 C ILE 143 26.304 10.888 42.620 1.00 22.20 B ATOM 999 C ILE 143 26.304 10.888 42.620 1.00 22.20 B ATOM 999 C ILE 143 26.304 10.888 42.620 1.00 22.20 B ATOM 999 C ILE 143 26.304 10.888 42.620 1.00 22.20 B ATOM 999 C ILE 143 26.304 10.888 42.620 1.00 22.20 B ATOM 999 C ILE 143 26.304 10.888 42.620 1.00 22.20 B ATOM 1000 C PHE 144 26.85 10.525 39.544 1.00 24.61 B ATOM 1000 C PHE 144 26.987 11.803 39.693 1.00 26.87 B ATOM 1000 C PHE 144 26.987 11.803 39.536 1.00 28.77 B ATOM 1000 C PHE 144 27.997 15.890 41.647 1.00 28.13 B ATOM 1000 C PHE 144 27.997 15.890 41.647 1.00 28.27 B ATOM 1000 C PHE 144 26.818 11.778 37.238 1.00 28.27 B ATOM 1000 C PHE 144 26.818 11.778 37.238 1.00 28.29 B ATOM 1000 C PHE 144 26.818 11.778 37.238 1.00 28.29 B ATOM 1001 O PHE 144 26.818 11.778 37.238 1.00 28.29 B ATOM 1001 O PHE 144 26.818 11.778 37.238 1.00 28.29 B ATOM 1001 O PHE	40					141			37.245	1.00 28.28	В
ATOM 982 O HIS 141 30.679 11.199 39.181 1.00 28.03 B ATOM 983 N GLN 142 30.802 9.844 40.955 1.00 24.80 B ATOM 984 CA GLN 142 30.045 8.780 40.326 1.00 25.14 B ATOM 985 CB GLN 142 30.035 7.436 40.994 1.00 27.48 B ATOM 986 CG GLN 142 31.680 6.834 40.563 1.00 30.52 B ATOM 987 CD GLN 142 31.684 6.417 39.102 1.00 34.29 B ATOM 988 0E1 GLN 142 32.468 7.116 38.287 1.00 34.96 B ATOM 989 NE2 GLN 142 32.468 7.116 38.287 1.00 35.49 B ATOM 990 C GLN 142 28.550 9.017 40.317 1.00 22.70 B ATOM 991 O GLN 142 28.550 9.017 40.317 1.00 22.70 B ATOM 992 N ILE 143 28.058 9.766 41.297 1.00 21.92 B ATOM 993 CA ILE 143 26.534 10.062 41.365 1.00 22.81 B ATOM 994 CB ILE 143 26.534 10.062 41.365 1.00 22.81 B ATOM 995 CG2 ILE 143 26.304 10.888 42.620 1.00 22.20 B ATOM 997 CD1 ILE 143 26.304 10.888 42.620 1.00 22.20 B ATOM 998 C ILE 143 26.304 10.888 42.620 1.00 22.20 B ATOM 998 C ILE 143 26.304 10.888 42.620 1.00 22.20 B ATOM 999 C ILE 143 26.304 10.888 42.620 1.00 22.20 B ATOM 999 C ILE 143 26.304 10.888 42.620 1.00 22.20 B ATOM 999 C ILE 143 26.304 10.88 42.620 1.00 22.20 B ATOM 998 C ILE 143 26.390 10.793 45.177 1.00 20.22 B ATOM 998 C ILE 143 26.187 10.024 43.872 1.00 21.94 B ATOM 999 C ILE 143 26.187 10.024 40.114 1.00 24.31 B ATOM 1000 N PHE 144 26.672 12.611 38.511 1.00 28.06 B ATOM 1000 C PHE 144 27.580 13.857 38.439 1.00 26.87 B ATOM 1000 C PHE 144 27.580 13.857 38.439 1.00 26.87 B ATOM 1000 C PHE 144 28.230 15.002 40.592 1.00 28.77 B ATOM 1006 CE1 PHE 144 27.991 16.518 40.592 1.00 28.77 B ATOM 1006 CE2 PHE 144 27.991 16.518 40.592 1.00 28.77 B ATOM 1007 CE2 PHE 144 27.991 16.518 40.592 1.00 28.77 B ATOM 1000 C PHE 144 26.805 16.664 41.646 1.00 30.04 B ATOM 1000 C PHE 144 26.805 16.664 41.646 1.00 30.04 B ATOM 1000 C PHE 144 26.805 16.664 41.646 1.00 30.04 B ATOM 1000 C PHE 144 26.805 16.664 41.646 1.00 30.04 B ATOM 1011 N GLU 145 27.970 10.795 36.122 1.00 28.71 B ATOM 1010 C PHE 144 26.805 16.664 41.646 1.00 30.04 B ATOM 1011 N GLU 145 27.915 9.909 36.122 1.00 28.71 B ATOM 1011 N GLU 145 27.915 9.909 36.122 1.00 29.40 B											
## ATOM 983 N GLN 142 30.802 9.844 40.965 1.00 24.80 B ATOM 984 CA GLN 142 30.045 B.780 40.326 1.00 25.14 B ATOM 985 CB GLN 142 30.153 7.436 40.994 1.00 27.48 B ATOM 986 CG GLN 142 31.680 6.834 40.563 1.00 30.52 B ATOM 987 CD GLN 142 31.684 6.417 39.102 1.00 34.29 B ATOM 988 OEI GLN 142 32.468 7.116 38.287 1.00 34.96 B ATOM 989 NE2 GLN 142 32.468 7.116 38.287 1.00 35.49 B ATOM 990 C GLN 142 28.550 9.017 40.317 1.00 22.70 B ATOM 991 O GLN 142 27.856 8.528 39.440 1.00 21.46 B ATOM 992 N ILE 143 28.058 9.766 41.297 1.00 21.92 B ATOM 993 CA ILE 143 26.634 10.062 41.365 1.00 22.81 B ATOM 994 CB ILE 143 26.304 10.888 42.620 1.00 22.20 B ATOM 995 CG2 ILE 143 24.880 11.423 42.533 1.00 22.62 B ATOM 996 CG1 ILE 143 26.304 10.888 42.620 1.00 22.20 B ATOM 997 CD1 ILE 143 26.476 10.024 43.872 1.00 21.94 B ATOM 998 C ILE 143 26.476 10.024 43.872 1.00 21.94 B ATOM 999 O ILE 143 26.390 10.793 45.177 1.00 20.22 B ATOM 999 O ILE 143 26.390 10.793 45.177 1.00 20.22 B ATOM 999 C ILE 143 26.476 10.024 43.872 1.00 21.94 B ATOM 999 C ILE 143 26.187 10.824 40.114 1.00 24.61 B ATOM 1000 CB PHE 144 26.672 12.611 38.511 1.00 28.06 B ATOM 1000 CB PHE 144 26.672 12.611 38.511 1.00 28.06 B ATOM 1000 CB PHE 144 27.580 13.857 38.439 1.00 26.87 B ATOM 1005 CD2 PHE 144 27.580 13.857 38.439 1.00 26.87 B ATOM 1000 CE2 PHE 144 27.580 13.857 38.439 1.00 26.87 B ATOM 1000 CE2 PHE 144 27.580 13.857 38.439 1.00 26.87 B ATOM 1000 CE2 PHE 144 27.580 13.857 38.439 1.00 28.77 B ATOM 1000 CE2 PHE 144 27.580 13.857 38.439 1.00 28.77 B ATOM 1000 CE2 PHE 144 27.580 13.857 38.439 1.00 28.77 B ATOM 1000 CE2 PHE 144 26.805 16.664 41.646 1.00 30.04 B ATOM 1000 CE2 PHE 144 27.974 15.890 41.647 1.00 28.13 B ATOM 1000 CE2 PHE 144 26.805 16.664 41.646 1.00 30.04 B ATOM 1000 CE2 PHE 144 26.805 16.664 41.646 1.00 30.04 B ATOM 1000 CE2 PHE 144 26.805 16.664 41.646 1.00 30.04 B ATOM 1000 CE2 PHE 144 26.805 16.664 41.646 1.00 30.04 B ATOM 1011 N GLU 145 27.970 10.785 37.273 1.00 29.40 B ATOM 1011 N GLU 145 27.970 10.785 37.273 1.00 29.40 B ATOM 1011 N GLU 145 27.915 9.909											
45 ATOM 985 CB GLN 142 30.045 8.780 40.326 1.00 25.14 B ATOM 985 CB GLN 142 30.353 7.436 40.994 1.00 27.48 B ATOM 986 CG GLN 142 31.680 6.834 40.563 1.00 30.52 B ATOM 987 CD GLN 142 31.684 6.417 33.102 1.00 34.29 B ATOM 988 0E1 GLN 142 32.468 7.116 38.287 1.00 35.49 B ATOM 989 NE2 GLN 142 32.468 7.116 38.287 1.00 35.49 B ATOM 990 C GLN 142 28.550 9.017 40.317 1.00 22.70 B ATOM 991 0 GLN 142 27.856 8.528 39.440 1.00 21.46 B ATOM 992 N ILE 143 28.058 9.766 41.297 1.00 21.92 B ATOM 993 CA ILE 143 26.634 10.062 41.365 1.00 22.81 B ATOM 994 CB ILE 143 26.634 10.062 41.365 1.00 22.20 B ATOM 995 CG2 ILE 143 26.304 10.888 42.620 1.00 22.20 B ATOM 996 CG1 ILE 143 26.390 10.793 45.177 1.00 21.94 B ATOM 997 CD1 ILE 143 26.390 10.793 45.177 1.00 21.94 B ATOM 999 0 ILE 143 26.390 10.793 45.177 1.00 20.22 B ATOM 999 0 ILE 143 26.390 10.793 45.177 1.00 20.22 B ATOM 999 0 ILE 143 26.390 10.793 45.177 1.00 20.22 B ATOM 999 0 ILE 143 26.390 10.793 45.177 1.00 20.22 B ATOM 999 0 ILE 143 26.390 10.793 45.177 1.00 20.22 B ATOM 999 0 ILE 143 26.390 10.793 45.177 1.00 20.22 B ATOM 1000 N PHE 144 26.987 11.803 39.693 1.00 24.61 B ATOM 1000 CQ PHE 144 26.987 11.803 39.693 1.00 26.83 B ATOM 1000 CQ PHE 144 27.580 13.857 38.439 1.00 26.87 B ATOM 1000 CQ PHE 144 27.580 13.857 38.439 1.00 28.06 B ATOM 1000 CQ PHE 144 27.580 13.857 38.439 1.00 28.27 B ATOM 1004 CD1 PHE 144 26.672 12.611 38.511 1.00 28.07 B ATOM 1006 CC1 PHE 144 27.974 15.890 41.667 1.00 28.27 B ATOM 1006 CC2 PHE 144 27.974 15.890 41.667 1.00 28.27 B ATOM 1006 CC2 PHE 144 27.974 15.890 41.667 1.00 28.27 B ATOM 1006 CC2 PHE 144 26.805 16.664 41.664 1.00 30.04 B ATOM 1009 C PHE 144 26.805 16.664 41.664 1.00 30.04 B ATOM 1000 O PHE 144 26.805 16.664 41.664 1.00 28.27 B ATOM 1000 CQ PHE 144 26.805 16.664 41.664 1.00 28.29 B ATOM 1000 O PHE 144 26.805 16.664 41.664 1.00 28.27 B ATOM 1000 O PHE 144 26.805 16.664 41.664 1.00 28.27 B ATOM 1000 O PHE 144 26.805 16.664 41.664 1.00 29.48 B ATOM 1000 O PHE 144 26.805 16.664 41.664 1.00 29.40 B ATOM 1011 N GLU 145 27.703 10.786 37.273 1.											
## ATOM											
ATOM 986 CG GLN 142 31.680 6.834 40.563 1.00 30.52 B ATOM 987 CD GLN 142 31.684 6.417 39.102 1.00 34.29 B ATOM 988 OE1 GLN 142 30.990 5.475 38.711 1.00 34.96 B ATOM 989 NE2 GLN 142 32.468 7.116 38.287 1.00 35.49 B ATOM 990 C GLN 142 28.550 9.017 40.317 1.00 22.70 B ATOM 991 O GLN 142 27.856 8.528 39.440 1.00 21.46 B ATOM 992 N ILE 143 28.058 9.766 41.297 1.00 21.92 B ATOM 993 CA ILE 143 26.634 10.062 41.365 1.00 22.81 B ATOM 995 CG2 ILE 143 26.304 10.888 42.620 1.00 22.20 B ATOM 995 CG2 ILE 143 26.304 10.888 42.620 1.00 22.20 B ATOM 997 CD1 ILE 143 26.476 10.024 43.872 1.00 21.94 B ATOM 998 C ILE 143 26.390 10.793 45.177 1.00 20.22 B ATOM 999 O ILE 143 26.390 10.793 45.177 1.00 20.22 B ATOM 999 O ILE 143 25.156 10.525 39.544 1.00 24.31 B ATOM 1000 N PHE 144 26.672 12.611 38.511 1.00 24.31 B ATOM 1001 CA PHE 144 26.672 12.611 38.511 1.00 28.06 B ATOM 1002 CB PHE 144 27.580 13.857 38.439 1.00 26.87 B ATOM 1004 CD1 PHE 144 26.169 15.630 39.545 1.00 29.48 B ATOM 1005 CD2 PHE 144 27.301 14.861 39.536 1.00 27.89 B ATOM 1006 CE1 PHE 144 26.805 16.646 41.646 1.00 29.48 B ATOM 1007 CE2 PHE 144 26.805 16.646 41.646 1.00 28.77 B ATOM 1008 CZ PHE 144 26.805 16.646 41.646 1.00 28.13 B ATOM 1009 C PHE 144 26.805 16.646 41.646 1.00 28.13 B ATOM 1009 C PHE 144 26.805 16.646 41.646 1.00 28.13 B ATOM 1009 C PHE 144 26.805 16.646 41.646 1.00 28.13 B ATOM 1009 C PHE 144 26.805 16.646 41.646 1.00 28.13 B ATOM 1009 C PHE 144 27.974 15.890 41.647 1.00 28.13 B ATOM 1009 C PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1009 C PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1009 C PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1010 N GLU 145 27.703 10.786 37.273 1.00 29.40 B ATOM 1011 N GLU 145 27.703 10.786 37.273 1.00 29.40 B ATOM 1011 CA GLU 145 27.703 10.786 37.273 1.00 29.40 B ATOM 1011 CA GLU 145 27.915 9.909 36.122 1.00 31.01	45										
ATOM 987 CD GLN 142 31.684 6.417 39.102 1.00 34.29 B ATOM 988 OE1 GLN 142 30.990 5.475 38.711 1.00 34.96 B ATOM 989 NE2 GLN 142 32.468 7.116 38.287 1.00 35.49 B ATOM 990 C GLN 142 28.550 9.017 40.317 1.00 22.70 B ATOM 991 O GLN 142 27.856 8.528 39.440 1.00 21.46 B ATOM 992 N ILE 143 28.058 9.766 41.297 1.00 21.92 B ATOM 993 CA ILE 143 26.634 10.062 41.365 1.00 22.81 B ATOM 994 CB ILE 143 26.634 10.062 41.365 1.00 22.20 B ATOM 995 CG2 ILE 143 26.476 10.024 43.872 1.00 21.94 B ATOM 997 CD1 ILE 143 26.390 10.793 45.177 1.00 20.22 B ATOM 998 C ILE 143 26.390 10.793 45.177 1.00 20.22 B ATOM 999 O ILE 143 26.380 10.793 45.177 1.00 20.22 B ATOM 999 O ILE 143 26.187 10.824 40.114 1.00 24.31 B ATOM 999 O ILE 143 25.156 10.525 39.544 1.00 24.61 B ATOM 1000 N PHE 144 26.672 12.611 38.511 1.00 28.06 B ATOM 1001 CA PHE 144 26.672 12.611 38.511 1.00 28.06 B ATOM 1002 CB PHE 144 27.580 13.857 38.439 1.00 26.87 B ATOM 1003 CG PHE 144 27.580 13.857 38.439 1.00 26.87 B ATOM 1004 CD1 PHE 144 26.169 15.630 39.545 1.00 27.89 B ATOM 1006 CE1 PHE 144 28.230 15.002 40.592 1.00 28.77 B ATOM 1007 CE2 PHE 144 28.230 15.002 40.592 1.00 28.77 B ATOM 1008 CZ PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1009 C PHE 144 26.818 11.778 37.238 1.00 28.29 B ATOM 1000 CR PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1000 CR PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1000 CR PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1000 CR PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1000 CR PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1000 CR PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1000 CR PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1001 CA GLU 145 27.703 10.786 37.273 1.00 28.71 B ATOM 1001 CA GLU 145 27.703 10.786 37.273 1.00 28.71 B ATOM 1011 N GLU 145 27.703 10.786 37.273 1.00 29.40 B	7,5										
ATOM 988 OE1 GLN 142 30.990 5.475 38.711 1.00 34.96 B 50 ATOM 989 NE2 GLN 142 32.468 7.116 38.287 1.00 35.49 B ATOM 990 C GLN 142 28.550 9.017 40.317 1.00 22.70 B ATOM 991 O GLN 142 27.856 8.528 39.440 1.00 21.46 B ATOM 993 CA ILE 143 26.634 10.062 41.365 1.00 22.20 B ATOM 994 CB ILE 143 26.304 10.082 41.365 1.00 22.20 B ATOM 995 CG2 ILE 143 26.476 10.024 43.872 1.00 21.94 B ATOM 996 CG1 ILE 143 26.187 10.024 43.872 1.00 <td></td>											
50 ATOM 989 NE2 GLN 142 32.468 7.116 38.287 1.00 35.49 B ATOM 990 C GLN 142 28.550 9.017 40.317 1.00 22.70 B ATOM 991 O GLN 142 27.856 8.528 39.440 1.00 21.46 B ATOM 992 N ILE 143 28.058 9.766 41.297 1.00 21.92 B ATOM 993 CA ILE 143 26.634 10.062 41.365 1.00 22.81 B ATOM 994 CB ILE 143 26.304 10.888 42.620 1.00 22.20 B ATOM 995 CG2 ILE 143 24.880 11.423 42.533 1.00 22.62 B ATOM 996 CG1 ILE 143 26.476 10.024 43.872 1.00 21.94 B ATOM 997 CD1 ILE 143 26.476 10.024 43.872 1.00 21.94 B ATOM 999 C ILE 143 26.390 10.793 45.177 1.00 20.22 B ATOM 999 O ILE 143 26.390 10.793 45.177 1.00 20.22 B ATOM 999 O ILE 143 26.387 10.824 40.114 1.00 24.31 B ATOM 1000 N PHE 144 26.987 11.803 39.544 1.00 24.61 B ATOM 1001 CA PHE 144 26.672 12.611 38.511 1.00 26.83 B ATOM 1002 CB PHE 144 27.580 13.857 38.439 1.00 26.87 B ATOM 1003 CG PHE 144 27.580 13.857 38.439 1.00 26.87 B ATOM 1004 CD1 PHE 144 26.669 15.630 39.536 1.00 27.89 B ATOM 1005 CD2 PHE 144 27.330 14.861 39.536 1.00 27.89 B ATOM 1007 CE2 PHE 144 27.974 15.890 41.647 1.00 28.77 B ATOM 1009 C PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1009 C PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1009 C PHE 144 26.805 16.646 41.647 1.00 28.13 B ATOM 1009 C PHE 144 26.805 16.646 41.647 1.00 28.13 B ATOM 1009 C PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1010 O PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1010 O PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1010 O PHE 144 27.974 15.890 41.647 1.00 28.13 B ATOM 1010 O PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1010 O PHE 144 26.805 16.646 41.646 1.00 28.71 B ATOM 1010 O PHE 144 26.805 16.646 41.646 1.00 29.40 B ATOM 1011 N GLU 145 27.703 10.786 37.273 1.00 29.40 B ATOM 1012 CA GLU 145 27.915 9.909 36.122 1.00 21.01											
50 ATOM 990 C GLN 142 28.550 9.017 40.317 1.00 22.70 B ATOM 991 0 GLN 142 27.856 8.528 39.440 1.00 21.92 B ATOM 992 N ILE 143 28.058 9.766 41.297 1.00 21.92 B ATOM 993 CA ILE 143 26.634 10.062 41.365 1.00 22.20 B ATOM 994 CB ILE 143 26.304 10.088 42.620 1.00 22.20 B ATOM 995 CG1 ILE 143 26.304 10.024 43.872 1.00 21.94 B ATOM 997 CD1 ILE 143 26.390 10.793 45.177 1.00 20.22 B ATOM 998 C ILE 143 26.187 10.824 40.114 1.00											
ATOM 991 O GLN 142 27.856 8.528 39.440 1.00 21.46 B ATOM 992 N ILE 143 28.058 9.766 41.297 1.00 21.92 B ATOM 993 CA ILE 143 26.634 10.062 41.365 1.00 22.81 B ATOM 994 CB ILE 143 26.304 10.888 42.620 1.00 22.20 B ATOM 995 CG2 ILE 143 24.880 11.423 42.533 1.00 22.62 B ATOM 996 CG1 ILE 143 26.390 10.793 45.177 1.00 21.94 B ATOM 997 CD1 ILE 143 26.390 10.793 45.177 1.00 20.22 B ATOM 998 C ILE 143 26.187 10.824 40.114 1.00 24.31 B ATOM 999 O ILE 143 25.156 10.525 39.544 1.00 24.61 B ATOM 999 O ILE 143 25.156 10.525 39.544 1.00 24.61 B ATOM 1000 N PHE 144 26.672 12.611 38.511 1.00 28.06 B ATOM 1001 CA PHE 144 26.672 12.611 38.511 1.00 28.06 B ATOM 1002 CB PHE 144 27.580 13.857 38.439 1.00 26.87 B ATOM 1003 CG PHE 144 27.330 14.861 39.536 1.00 27.89 B ATOM 1004 CD1 PHE 144 26.169 15.630 39.545 1.00 27.89 B ATOM 1006 CE1 PHE 144 28.230 15.002 40.592 1.00 28.77 B ATOM 1006 CE1 PHE 144 27.974 15.890 41.647 1.00 28.13 B ATOM 1008 CZ PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1009 C PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1009 C PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1009 C PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1000 CD PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1001 CA GLU 145 27.703 10.786 37.273 1.00 28.77 B ATOM 1001 CA GLU 145 27.7915 9.909 36.122 1.00 28.71 B ATOM 1011 N GLU 145 27.703 10.786 37.273 1.00 29.40 B ATOM 1011 CA GLU 145 27.7915 9.909 36.122 1.00 21.40	50										
ATOM 992 N ILE 143 28.058 9.766 41.297 1.00 21.92 B ATOM 993 CA ILE 143 26.634 10.062 41.365 1.00 22.81 B ATOM 994 CB ILE 143 26.304 10.888 42.620 1.00 22.20 B ATOM 995 CG2 ILE 143 24.880 11.423 42.533 1.00 22.62 B ATOM 996 CG1 ILE 143 26.476 10.024 43.872 1.00 21.94 B ATOM 997 CD1 ILE 143 26.390 10.793 45.177 1.00 20.22 B ATOM 998 C ILE 143 26.390 10.793 45.177 1.00 20.22 B ATOM 999 O ILE 143 26.187 10.824 40.114 1.00 24.31 B ATOM 999 O ILE 143 25.156 10.525 39.544 1.00 24.61 B ATOM 1000 N PHE 144 26.987 11.803 39.693 1.00 26.83 B ATOM 1001 CA PHE 144 26.672 12.611 38.511 1.00 28.06 B ATOM 1002 CB PHE 144 27.580 13.857 38.439 1.00 26.87 B ATOM 1003 CG PHE 144 27.330 14.861 39.536 1.00 27.89 B ATOM 1004 CD1 PHE 144 26.169 15.630 39.545 1.00 29.48 B ATOM 1006 CE1 PHE 144 28.230 15.002 40.592 1.00 28.77 B ATOM 1007 CE2 PHE 144 27.974 15.890 41.647 1.00 28.13 B ATOM 1009 C PHE 144 27.974 15.890 41.647 1.00 28.13 B ATOM 1009 C PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1009 C PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1000 CD PHE 144 26.818 11.778 37.238 1.00 28.27 B ATOM 1000 CD PHE 144 26.818 11.778 37.238 1.00 28.27 B ATOM 1000 CD PHE 144 26.818 11.778 37.238 1.00 28.27 B ATOM 1000 CD PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1010 O PHE 144 26.818 11.778 37.238 1.00 28.27 B ATOM 1010 O PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1010 O PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1010 O PHE 144 26.805 16.646 37.273 1.00 28.71 B ATOM 1010 O PHE 144 26.805 16.646 37.273 1.00 28.71 B ATOM 1011 N GLU 145 27.703 10.786 37.273 1.00 29.40 B ATOM 1011 N GLU 145 27.703 10.786 37.273 1.00 29.40 B ATOM 1011 CA GLU 145 27.7915 9.909 36.122 1.00 31.01	OU,	MOTA			GLN						
ATOM 993 CA ILE 143 26.634 10.062 41.365 1.00 22.81 B ATOM 994 CB ILE 143 26.304 10.888 42.620 1.00 22.20 B ATOM 995 CG2 ILE 143 24.880 11.423 42.533 1.00 22.62 B ATOM 996 CG1 ILE 143 26.476 10.024 43.872 1.00 21.94 B ATOM 997 CD1 ILE 143 26.390 10.793 45.177 1.00 20.22 B ATOM 998 C ILE 143 26.187 10.824 40.114 1.00 24.31 B ATOM 999 O ILE 143 25.156 10.525 39.544 1.00 24.61 B ATOM 1000 N PHE 144 26.987 11.803 39.693 1.00 26.83 B ATOM 1001 CA PHE 144 26.672 12.611 38.511 1.00 28.06 B ATOM 1002 CB PHE 144 27.580 13.857 38.439 1.00 26.87 B ATOM 1003 CG PHE 144 27.330 14.861 39.536 1.00 27.89 B ATOM 1004 CD1 PHE 144 26.169 15.630 39.545 1.00 29.48 B ATOM 1005 CD2 PHE 144 28.230 15.002 40.592 1.00 28.77 B ATOM 1006 CE1 PHE 144 27.974 15.890 41.647 1.00 28.13 B ATOM 1007 CE2 PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1009 C PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1009 C PHE 144 26.818 11.778 37.238 1.00 28.29 B ATOM 1010 O PHE 144 26.818 11.778 37.238 1.00 28.29 B ATOM 1010 O PHE 144 26.818 11.778 37.238 1.00 28.13 B ATOM 1010 CA GLU 145 27.703 10.786 37.273 1.00 29.40 B ATOM 1011 N GLU 145 27.703 10.786 37.273 1.00 29.40 B ATOM 1012 CA GLU 145 27.915 9.909 36.122 1.00 31.01		MOTA	991	0	GLN	142	27.856				
55 ATOM 994 CB ILE 143 26.304 10.888 42.620 1.00 22.20 B ATOM 995 CG2 ILE 143 24.880 11.423 42.533 1.00 22.62 B ATOM 996 CG1 ILE 143 26.476 10.024 43.872 1.00 21.94 B ATOM 997 CD1 ILE 143 26.390 10.793 45.177 1.00 20.22 B ATOM 998 C ILE 143 26.187 10.824 40.114 1.00 24.31 B ATOM 999 O ILE 143 25.156 10.525 39.544 1.00 24.61 B ATOM 1000 N PHE 144 26.987 11.803 39.693 1.00 26.83 B ATOM 1001 CA PHE 144 26.672 12.611 38.511 1.00 28.06 B ATOM 1002 CB PHE 144 27.580 13.857 38.439 1.00 26.87 B ATOM 1003 CG PHE 144 27.580 13.857 38.439 1.00 26.87 B ATOM 1004 CD1 PHE 144 26.169 15.630 39.545 1.00 27.89 B ATOM 1005 CD2 PHE 144 28.230 15.002 40.592 1.00 28.77 B ATOM 1006 CE1 PHE 144 28.230 15.002 40.592 1.00 28.77 B ATOM 1006 CE1 PHE 144 27.915 16.518 40.592 1.00 28.77 B ATOM 1006 CE2 PHE 144 27.917 16.518 40.592 1.00 28.13 B ATOM 1008 CZ PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1009 C PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1009 C PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1009 C PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1010 O PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1010 O PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1010 O PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1010 O PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1011 N GLU 145 27.703 10.786 37.273 1.00 28.71 B ATOM 1011 CA GLU 145 27.703 10.786 37.273 1.00 29.40 B ATOM 1011 CA GLU 145 27.703 10.786 37.273 1.00 29.40 B		MOTA	992	N	ILE	143	28.058	9.766	41.297	1.00 21.92	В
55 ATOM 995 CG2 ILE 143 24.880 11.423 42.533 1.00 22.62 B ATOM 996 CG1 ILE 143 26.476 10.024 43.872 1.00 21.94 B ATOM 997 CD1 ILE 143 26.390 10.793 45.177 1.00 20.22 B ATOM 998 C ILE 143 26.187 10.824 40.114 1.00 24.61 B ATOM 1000 N PHE 144 26.987 11.803 39.693 1.00 24.61 B ATOM 1001 CA PHE 144 26.987 11.803 39.693 1.00 24.61 B ATOM 1002 CB PHE 144 26.672 12.611 38.511 1.00 26.87 B ATOM 1003 CG PHE 144 27.580 13.857 38.439 1		MOTA	. 993	CA	ILE	143	26.634	10.062	41.365	1.00 22.81	В
ATOM 996 CG1 ILE 143 26.476 10.024 43.872 1.00 21.94 B ATOM 997 CD1 ILE 143 26.390 10.793 45.177 1.00 20.22 B ATOM 998 C ILE 143 26.187 10.824 40.114 1.00 24.31 B ATOM 999 O ILE 143 25.156 10.525 39.544 1.00 24.61 B ATOM 1000 N PHE 144 26.987 11.803 39.693 1.00 26.83 B ATOM 1001 CA PHE 144 26.672 12.611 38.511 1.00 28.06 B ATOM 1002 CB PHE 144 27.580 13.857 38.439 1.00 26.87 B ATOM 1003 CG PHE 144 27.330 14.861 39.536 1.00 27.89 B ATOM 1004 CD1 PHE 144 26.169 15.630 39.545 1.00 29.48 B ATOM 1005 CD2 PHE 144 28.230 15.002 40.592 1.00 28.77 B ATOM 1006 CE1 PHE 144 27.974 15.890 41.647 1.00 28.13 B ATOM 1008 CZ PHE 144 27.974 15.890 41.647 1.00 28.13 B ATOM 1009 C PHE 144 26.818 11.778 37.238 1.00 28.27 B ATOM 1009 C PHE 144 26.818 11.778 37.238 1.00 28.27 B ATOM 1009 C PHE 144 26.818 11.778 37.238 1.00 28.29 B ATOM 1010 O PHE 144 26.818 11.778 37.238 1.00 28.29 B ATOM 1010 O PHE 144 26.818 11.778 37.238 1.00 28.29 B ATOM 1010 O PHE 144 26.818 11.778 37.238 1.00 28.29 B ATOM 1011 N GLU 145 27.703 10.786 37.273 1.00 29.40 B ATOM 1011 N GLU 145 27.703 10.786 37.273 1.00 29.40 B ATOM 1011 CA GLU 145 27.703 10.786 37.273 1.00 29.40 B		MOTA	994	CB	ILE	143	26.304	10.888	42.620	1.00 22.20	В
ATOM 996 CG1 ILE 143 26.476 10.024 43.872 1.00 21.94 B ATOM 997 CD1 ILE 143 26.390 10.793 45.177 1.00 20.22 B ATOM 998 C ILE 143 26.187 10.824 40.114 1.00 24.31 B ATOM 999 O ILE 143 25.156 10.525 39.544 1.00 24.61 B ATOM 1000 N PHE 144 26.987 11.803 39.693 1.00 26.83 B ATOM 1001 CA PHE 144 26.672 12.611 38.511 1.00 28.06 B ATOM 1002 CB PHE 144 27.580 13.857 38.439 1.00 26.87 B ATOM 1003 CG PHE 144 27.330 14.861 39.536 1.00 27.89 B ATOM 1004 CD1 PHE 144 26.169 15.630 39.545 1.00 29.48 B ATOM 1005 CD2 PHE 144 28.230 15.002 40.592 1.00 28.77 B ATOM 1006 CE1 PHE 144 27.974 15.890 41.647 1.00 28.13 B ATOM 1008 CZ PHE 144 27.974 15.890 41.647 1.00 28.13 B ATOM 1009 C PHE 144 26.818 11.778 37.238 1.00 28.27 B ATOM 1009 C PHE 144 26.818 11.778 37.238 1.00 28.27 B ATOM 1009 C PHE 144 26.818 11.778 37.238 1.00 28.29 B ATOM 1010 O PHE 144 26.818 11.778 37.238 1.00 28.29 B ATOM 1010 O PHE 144 26.818 11.778 37.238 1.00 28.29 B ATOM 1010 O PHE 144 26.818 11.778 37.238 1.00 28.29 B ATOM 1011 N GLU 145 27.703 10.786 37.273 1.00 29.40 B ATOM 1011 N GLU 145 27.703 10.786 37.273 1.00 29.40 B ATOM 1011 CA GLU 145 27.703 10.786 37.273 1.00 29.40 B	55	ATOM	995	CG2	ILE	143	24.880	11.423	42.533	1.00 22.62	В
ATOM 997 CD1 ILE 143 26.390 10.793 45.177 1.00 20.22 B ATOM 998 C ILE 143 26.187 10.824 40.114 1.00 24.31 B ATOM 999 O ILE 143 25.156 10.525 39.544 1.00 24.61 B ATOM 1000 N PHE 144 26.987 11.803 39.693 1.00 26.83 B ATOM 1001 CA PHE 144 26.672 12.611 38.511 1.00 28.06 B ATOM 1002 CB PHE 144 27.580 13.857 38.439 1.00 26.87 B ATOM 1003 CG PHE 144 27.330 14.861 39.536 1.00 27.89 B ATOM 1004 CD1 PHE 144 26.169 15.630 39.545 1.00 29.48 B ATOM 1005 CD2 PHE 144 28.230 15.002 40.592 1.00 28.77 B ATOM 1006 CE1 PHE 144 25.901 16.518 40.592 1.00 28.13 B ATOM 1007 CE2 PHE 144 27.974 15.890 41.647 1.00 28.13 B ATOM 1008 CZ PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1009 C PHE 144 26.818 11.778 37.238 1.00 28.29 B ATOM 1010 O PHE 144 26.818 11.778 37.238 1.00 28.29 B ATOM 1010 N GLU 145 27.703 10.786 37.273 1.00 29.40 B ATOM 1011 N GLU 145 27.703 10.786 37.273 1.00 29.40 B ATOM 1012 CA GLU 145 27.915 9.909 36.122 1.00 31.01		MOTA	996	CG1	ILE	143	26.476	10.024	43.872	1.00 21.94	В
ATOM 998 C ILE 143 26.187 10.824 40.114 1.00 24.31 B ATOM 999 O ILE 143 25.156 10.525 39.544 1.00 24.61 B ATOM 1000 N PHE 144 26.987 11.803 39.693 1.00 26.83 B ATOM 1001 CA PHE 144 26.672 12.611 38.511 1.00 28.06 B ATOM 1002 CB PHE 144 27.580 13.857 38.439 1.00 26.87 B ATOM 1003 CG PHE 144 27.330 14.861 39.536 1.00 27.89 B ATOM 1004 CD1 PHE 144 26.169 15.630 39.545 1.00 29.48 B ATOM 1005 CD2 PHE 144 28.230 15.002 40.592 1.00 28.77 B ATOM 1006 CE1 PHE 144 25.901 16.518 40.592 1.00 28.77 B ATOM 1007 CE2 PHE 144 27.914 15.890 41.647 1.00 28.13 B ATOM 1008 CZ PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1009 C PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1009 C PHE 144 26.818 11.778 37.238 1.00 28.29 B ATOM 1010 O PHE 144 26.818 11.778 37.238 1.00 28.71 B ATOM 1010 CA GLU 145 27.703 10.786 37.273 1.00 29.40 B ATOM 1011 N GLU 145 27.703 10.786 37.273 1.00 29.40 B											
60 ATOM 999 O ILE 143 25.156 10.525 39.544 1.00 24.61 B ATOM 1000 N PHE 144 26.987 11.803 39.693 1.00 26.83 B ATOM 1001 CA PHE 144 27.580 13.857 38.439 1.00 26.87 B ATOM 1003 CG PHE 144 27.580 13.857 38.439 1.00 27.89 B ATOM 1004 CD1 PHE 144 27.330 14.861 39.536 1.00 27.89 B ATOM 1005 CD2 PHE 144 28.230 15.630 39.545 1.00 29.48 B ATOM 1006 CE1 PHE 144 28.230 15.002 40.592 1.00 28.77 B ATOM 1007 CE2 PHE 144 25.901 16.518 40.592 1.00 28.77 B ATOM 1007 CE2 PHE 144 27.974 15.890 41.647 1.00 28.13 B ATOM 1008 CZ PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1009 C PHE 144 26.818 11.778 37.238 1.00 28.29 B ATOM 1010 O PHE 144 26.818 11.778 37.238 1.00 28.29 B ATOM 1010 O PHE 144 26.818 11.778 37.238 1.00 28.71 B ATOM 1011 N GLU 145 27.703 10.786 37.273 1.00 29.40 B ATOM 1011 CA GLU 145 27.701 9.909 36.122 1.00 31.01											
60 ATOM 1000 N PHE 144 26.987 11.803 39.693 1.00 26.83 B ATOM 1001 CA PHE 144 26.672 12.611 38.511 1.00 28.06 B ATOM 1002 CB PHE 144 27.580 13.857 38.439 1.00 26.87 B ATOM 1003 CG PHE 144 27.330 14.861 39.536 1.00 27.89 B ATOM 1004 CD1 PHE 144 26.169 15.630 39.545 1.00 29.48 B ATOM 1005 CD2 PHE 144 28.230 15.002 40.592 1.00 28.77 B ATOM 1006 CE1 PHE 144 28.230 15.002 40.592 1.00 28.77 B ATOM 1007 CE2 PHE 144 27.974 15.890 41.647 1.00 28.13 B ATOM 1008 CZ PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1009 C PHE 144 26.818 11.778 37.238 1.00 28.29 B ATOM 1010 O PHE 144 26.818 11.778 37.238 1.00 28.29 B ATOM 1011 N GLU 145 27.703 10.786 37.273 1.00 29.40 B ATOM 1011 N GLU 145 27.703 10.786 37.273 1.00 29.40 B ATOM 1012 CA GLU 145 27.915 9.909 36.122 1.00 31.01 B											
ATOM 1001 CA PHE 144 26.672 12.611 38.511 1.00 28.06 B ATOM 1002 CB PHE 144 27.580 13.857 38.439 1.00 26.87 B ATOM 1003 CG PHE 144 27.330 14.861 39.536 1.00 27.89 B ATOM 1004 CD1 PHE 144 26.169 15.630 39.545 1.00 29.48 B ATOM 1005 CD2 PHE 144 28.230 15.002 40.592 1.00 28.77 B ATOM 1006 CE1 PHE 144 25.901 16.518 40.592 1.00 28.77 B ATOM 1007 CE2 PHE 144 27.974 15.890 41.647 1.00 28.13 B ATOM 1008 CZ PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1009 C PHE 144 26.818 11.778 37.238 1.00 28.29 B ATOM 1010 O PHE 144 26.818 11.778 37.238 1.00 28.29 B ATOM 1011 N GLU 145 27.703 10.786 37.273 1.00 29.40 B ATOM 1012 CA GLU 145 27.7915 9.909 36.122 1.00 31.01 B	60										
ATOM 1002 CB PHE 144 27.580 13.857 38.439 1.00 26.87 B ATOM 1003 CG PHE 144 27.330 14.861 39.536 1.00 27.89 B ATOM 1004 CD1 PHE 144 26.169 15.630 39.545 1.00 29.48 B ATOM 1005 CD2 PHE 144 28.230 15.002 40.592 1.00 28.77 B ATOM 1006 CE1 PHE 144 25.901 16.518 40.592 1.00 28.27 B ATOM 1007 CE2 PHE 144 27.974 15.890 41.647 1.00 28.13 B ATOM 1008 CZ PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1009 C PHE 144 26.818 11.778 37.238 1.00 28.29 B ATOM 1010 O PHE 144 26.818 11.778 37.238 1.00 28.29 B ATOM 1011 N GLU 145 27.703 10.786 37.273 1.00 29.40 B ATOM 1012 CA GLU 145 27.915 9.909 36.122 1.00 31.01 B	OO										
ATOM 1003 CG PHE 144 27.330 14.861 39.536 1.00 27.89 B ATOM 1004 CD1 PHE 144 26.169 15.630 39.545 1.00 29.48 B ATOM 1005 CD2 PHE 144 28.230 15.002 40.592 1.00 28.77 B ATOM 1006 CE1 PHE 144 25.901 16.518 40.592 1.00 28.27 B ATOM 1007 CE2 PHE 144 27.974 15.890 41.647 1.00 28.13 B ATOM 1008 CZ PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1009 C PHE 144 26.818 11.778 37.238 1.00 28.29 B ATOM 1010 O PHE 144 26.818 11.778 37.238 1.00 28.71 B ATOM 1011 N GLU 145 27.703 10.786 37.273 1.00 29.40 B ATOM 1012 CA GLU 145 27.915 9.909 36.122 1.00 31.01 B											
65 ATOM 1004 CD1 PHE 144 26.169 15.630 39.545 1.00 29.48 B ATOM 1005 CD2 PHE 144 28.230 15.002 40.592 1.00 28.77 B ATOM 1006 CE1 PHE 144 25.901 16.518 40.592 1.00 28.27 B ATOM 1007 CE2 PHE 144 27.974 15.890 41.647 1.00 28.13 B ATOM 1008 CZ PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1009 C PHE 144 26.818 11.778 37.238 1.00 28.29 B ATOM 1010 0 PHE 144 26.818 11.778 37.238 1.00 28.29 B ATOM 1011 N GLU 145 27.703 10.786 37.273 1.00 29.40 B ATOM 1012 CA GLU 145 27.915 9.909 36.122 1.00 31.01 B											
65 ATOM 1005 CD2 PHE 144 28.230 15.002 40.592 1.00 28.77 B ATOM 1006 CE1 PHE 144 25.901 16.518 40.592 1.00 28.27 B ATOM 1007 CE2 PHE 144 27.974 15.890 41.647 1.00 28.13 B ATOM 1008 CZ PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1009 C PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1010 0 PHE 144 26.818 11.778 37.238 1.00 28.29 B ATOM 1011 N GLU 145 27.703 10.786 37.273 1.00 29.40 B ATOM 1012 CA GLU 145 27.915 9.909 36.122 1.00 31.01 B											
ATOM 1006 CE1 PHE 144 25.901 16.518 40.592 1.00 28.27 B ATOM 1007 CE2 PHE 144 27.974 15.890 41.647 1.00 28.13 B ATOM 1008 CZ PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1009 C PHE 144 26.818 11.778 37.238 1.00 28.29 B ATOM 1010 O PHE 144 26.140 12.025 36.253 1.00 28.71 B ATOM 1011 N GLU 145 27.703 10.786 37.273 1.00 29.40 B ATOM 1012 CA GLU 145 27.915 9.909 36.122 1.00 31.01 B	<i>(</i> =										
70 ATOM 1012 CA GLU 145 27.915 9.909 36.122 1.00 31.01 B ATOM 1012 CA GLU 145 27.915 9.909 36.122 1.00 31.01 B	62	MOTA									
70 ATOM 1012 CA GLU 145 27.915 9.909 36.122 1.00 31.01 B ATOM 1012 CA GLU 145 27.915 9.909 36.122 1.00 31.01 B		MOTA	1006	CE1	PHE	144	25.901	16.518	40.592	1.00 28.27	В
70 ATOM 1008 CZ PHE 144 26.805 16.646 41.646 1.00 30.04 B ATOM 1009 C PHE 144 26.818 11.778 37.238 1.00 28.29 B ATOM 1010 O PHE 144 26.818 12.025 36.253 1.00 28.71 B ATOM 1011 N GLU 145 27.703 10.786 37.273 1.00 29.40 B ATOM 1012 CA GLU 145 27.915 9.909 36.122 1.00 31.01 B		MOTA	1007	CE2	PHE	144	27.974	15.890	41.647	1.00 28.13	В
70 ATOM 1009 C PHE 144 26.818 11.778 37.238 1.00 28.29 B ATOM 1010 O PHE 144 26.140 12.025 36.253 1.00 28.71 B ATOM 1011 N GLU 145 27.703 10.786 37.273 1.00 29.40 B ATOM 1012 CA GLU 145 27.915 9.909 36.122 1.00 31.01 B		MOTA				144			41.646	1.00 30.04	В
70 ATOM 1010 0 PHE 144 26.140 12.025 36.253 1.00 28.71 B ATOM 1011 N GLU 145 27.703 10.786 37.273 1.00 29.40 B ATOM 1012 CA GLU 145 27.915 9.909 36.122 1.00 31.01 B											
ATOM 1011 N GLU 145 27.703 10.786 37.273 1.00 29.40 B ATOM 1012 CA GLU 145 27.915 9.909 36.122 1.00 31.01 B	70										
ATOM 1012 CA GLU 145 27.915 9.909 36.122 1.00 31.01 B	. •										
NICH 1013 CD GRO 143 25.210 5.125 30.25/ 1.00 32.03 B											
		A LON	1013	CB	GDO	143	23.210	3.149	30.23/	1.00 32.03	ь

	ATOM	1014	CG	GLU	145	30.467	9.938	36.056	1.00 38.99	. В
	MOTA	1015	CD	GLU	145	30.706	10.197	34.578	1.00 43.44	В
	MOTA	1016	0E1	GLU	145	31.623	10.987	34.246	1.00 45.83	В
_	MOTA	1017	0E2	GLU	145	29.977	9.603	33.752	1.00 45.50	В
5	MOTA	1018	С	GLU	145	26.753	8.926	35.940	1.00 31.44	В
	MOTA	1019	0	GLU	145	26.237	8.754	34.841	1.00 30.51	В
	MOTA	1020	N	LYS	146	26.348	8.290	37.033	1.00 31.75	В
	MOTA	1021	CA	LYS	146	25.269	7.310	37.012	1.00 33.61 1.00 34.03	B B
10	MOTA	1022	CB ~~	LYS	146 146	25.172 26.350	6.629 5.717	38.381 38.695	1.00 38.09	В
10	MOTA	1023	CC	LYS	146	26.243	5.107	40.086	1.00 40.00	В
	MOTA MOTA	1024 1025	.CD CE	LYS	146	27.228	3.958	40.263	1.00 43.91	B
	MOTA	1026	NZ	LYS	146	26.919	2.818	39.352	1.00 43.76	В
	ATOM	1027	c	LYS	146	23.908	7.882	36.624	1.00 33.97	В
15	MOTA	1028	ō	LYS	146	23.171	7.276	35.840	1.00 33.52	В
	ATOM	1029	N	LEU	147	23.577	9.046	37.176	1.00 33.52	В
	MOTA	1030	CA	LEU	147	22.302	9.689	36.892	1.00 32.92	В
	MOTA	1031	CB	LEU	147	21.746	10.320	38.175	1.00 31.38	В
20 .	MOTA	1032	CG	LEU	147	21.336	9.359	39.302	1.00 32.23	В
20	MOTA	1033	CD1		147	21.060	10.138	40.585	1.00 31.01	В
	ATOM	1034	CD2		147	20.096	8.569	38.883	1.00 32.23	B B
	MOTA	1035	С 0	LEU	147 147	22.418 21.562	10.749 11.609	35.794 35.669	1.00 32.85 1.00 33.29	₿.
	MOTA MOTA	1036 1037	N	THR	148	23.475	10.666	34.992	1.00 33.48	.B
25	MOTA	1038	CA	THR	148	23.701	11.636	33.921	1.00 35.96	В
	ATOM	1039	CB	THR	148	24.900	11.236	33.036	1.00 36.22	В
	MOTA	1040	OG1		148	25.074	12.218	32.008	1.00 37.20	В
	MOTA	1041	CG2	THR	148	24:664	9.871	32.381	1.00 38.66	В
20	MOTA	1042	С	THR	148	22.484	11.879	33.014	1.00 36.52	. В
30	MOTA	1043	0	THR	148	22.123	13.021	32.772	1.00 35.06	В
	MOTA	1044	N	ASP	149	21.868	10.806	32.514	1.00 35.79	В
	MOTA	1045	CA	ASP	149	20.690	10.923	31.648	1.00 35.29 1.00 36.06	. В В
	MOTA MOTA	1046 1047	CB CG	ASP ASP	149 149	21.101 22.065	11.265 10.249	30.206 29.607	1.00 37.80	В
35	ATOM	1048		ASP	149	22.292	9.196	30.243	1.00 40.41	B
	MOTA	1049	OD2		149	22.590	10.500	28.496	1.00 36.11	В
	ATOM	1050	Ċ	ASP	149	19.821	9.657	31.646	1.00 34.60	В
	MOTA	1051	0	ASP	149	19.397	9.184	30.592	1.00 31.15	В
40	MOTA	1052	N	ASN	150	19.554	9.122	32.834	1.00 34.29	В
40	MOTA	1053	CA	ASN	150	18.732	7.923	32.948	1.00 35.52	В
	MOTA	1054	CB	ASN	150	19.227	7.041	34.102 35.452	1.00 32.56	B B
	MOTA	1055 1056	CG OD1	ASN ASN	150 150	19.031 19.134	8.903	35.579	1.00 29.46	В
	MOTA	1057		ASN	150	18.760	6.877	36.475	1.00 31.14	В
45	MOTA	1058	C	ASN	150	17.265	8.292	33.154	1.00 36.96	В
	MOTA	1059	0	ASN	150	16.436	7.431	33.447	1.00 37.74	В
	ATOM	1060	N.	GLY	151	16.953	9.578	32.996	1.00 37.37	В
	MOTA	1061	CA	GLY	151	15.585	10.044	33.153	1.00 37.75	В
60	MOTA	1062	C	GLY	151	15.195	10.351	34.585	1.00 39.12	В
50	ATOM	1063	0	GLY	151	14.013	10.490	34.903	1.00 39.41	В
	MOTA	1064	N	THR	152	16.190	10.455	35.455 36.860	1.00 40.74	B B
	MOTA MOTA	1065 1066	CA CB	THR	152 152	15.950 16.587	10.748 9.674	37.772	1.00 42.40	B
	ATOM	1067	0G1		152	16.143	8.375	37.365	1.00 46.42	В
55	MOTA	1068		THR	152	16.182	9.891	39.221	1.00 43.02	В
	ATOM	1069	C	THR	152	16.537	12.108	37.216	1.00 42.92	В
	MOTA	1070	0	THR	152	17.753	12.303	37.176	1.00 45.15	В
	MOTA	1071	N	GLU	153	15.657	13.050	37.539	1.00 41.16	В
60	MOTA	1072	CA	GLU	153	16.083	14.390	37.910	1.00 39.15	В
60	MOTA	1073	CB	GLU	153	14.902	15.350	37.865	1.00 41.46	В
	MOTA	1074	CG	GLU	153	15.290	16.742	37.456	1.00 46.88	В
	MOTA	1075	CD	GLU	153	15.645	16.826	35.983	1.00 50.26	В
	MOTA	1076		GLU	153	16.309 15.256	17.808	35.591 35.216	1.00 54.28	B B
65	ATOM	1077		GLU	153		15.920	39.336	1.00 35.77	В
95	MOTA MOTA	1078 1079	С 0	GLU GLU	153 153	16.601 16.024	14.273 13.550	40.143	1.00 34.39	В
	ATOM	1080	N	PHE		17.676	14.986	39.649	1.00 32.19	В
	ATOM	1081	CA	PHE	154	18.247	14.903	40.985	1.00 29.64	В
	MOTA	1082	СВ	PHE	154	19.221	13.731	41.036	1.00 26.07	В
70	MOTA	1083	CG	PHE	154	20.478	13.959	40.244	1.00 22.24	В
	MOTA	1084		PHE	154	21.634	14.413	40.870	1.00 19.12	. В
	MOTA	1085		PHE	154	20.502	13.725	38.873	1.00 19.79	В
	MOTA	1086	CE1	PHE	154	22.804	14.627	40.140	1.00 20.17	В

	MOTA	1087	CE2	PHE	154	21.665	13.938	38.132	1.00 19.68	В
	MOTA	1088	cz	PHE	154	22.819	14.388	38.768	1.00 18.22	В.
	MOTA	1089	Č	PHE	154	18.983	16.153	41.462	1.00 28.59	В
	MOTA	1090	ō	PHE	154	19.343	17.025	40.687	1.00 28.03	В
5	MOTA	1091	N	SER	155	19.219	16.194	42.765	1.00 28.62	В
,		1091		SER	155	19.940	17.286	43.398	1.00 29.65	В
	MOTA	1092	CA				18.297	44.007	1.00 29.30	B
	MOTA		CB	SER	155	18.958		45.210	1.00 30.25	В
	MOTA	1094	OG	SER	155	18.373	17.825			
10	MOTA	1095	C	SER	155	20.812	16.670	44.495	1.00 29.32	В
10	MOTA	1096	0	SER	155	20.364	15.799	45.236	1.00 28.78	В
	MOTA	1097	N	VAL	156	22.057	17.117	44.601	1.00 28.25	В
	MOTA	1098	CA	VAL	156	22.945	16.571	45.622	1.00 27.65	В
	MOTA	1099	CB	VAL	156	24.266	16.059	45.002	1.00 27.82	В
	MOTA	1100	CG1	VAL	156	25.067	15.296	46.051	1.00 26.25	В
15	MOTA	1101	CG2		156	23.970	15.178	43.793	1.00 26.92	В
	MOTA	1102	С	VAL	156	23.293	17.600	46.697	1.00 28.00	В
	MOTA	1103	0	VAL	156	23.691	18.705	46.386	1.00 27.61	В
	ATOM	1104	N	LYS	157	23.135	17.210	47.961	1.00 28.26	В
	ATOM	1105	CA	LYS	157	23.455	18.066	49.107	1.00 29.25	В
20	MOTA	1106	CB	LYS	157	22.188	18.423	49.897	1.00 30.98	В
	MOTA	1107	CG	LYS	157	21.322	19.485	49.261	1.00 34.09	В
	MOTA	1108	CD	LYS	157	20.065	19.741	50.080	1.00 37.95	В
	MOTA	1109	CE	LYS	157	19.399	21.060	49.665	1.00 41.02	В
	MOTA	1110	NZ	LYS	157	20.186	22.277	50.077	1.00 41.43	В
25	MOTA	1111	С	LYS	157	24.426	17.349	50.047	1.00 28.34	В
	ATOM	1112	o	LYS	157	24.195	16.217	50.413	1.00 28.14	В
	ATOM	1113	N .	VAL	158	25.510	18.016	50.433	1.00 27.07	В
	ATOM	1114	CA	VAL	158	26.480	17.412	51.342	1.00 27.48	В
	MOTA	1115	CB	VAL	158	27.883	17.280	50.694	1.00 26.91	В
30	ATOM	1116		VAL	158	27.811	16.356	49.489	1.00 27.77	В
•	MOTA	1117		VAL	158	28.415	18.648	50.301	1.00 27.25	В
	MOTA	1118	c	VAL	158	26.629	18.183	52.651	1.00 28.66	В
	MOTA	1119	ŏ	VAL	158	26.444	19.393	52.705	1.00 27.69	B
	MOTA	1120	N	SER	159	26.973	17.460	53.708	1.00 28.98	В
35	MOTA	1121	CA	SER	159	27.155	18.058	55.013	1.00 30.95	В.
33						25.869	17.953	55.823	1.00 32.26	В
	MOTA	1122	CB	SER	159					
	MOTA	1123	OG	SER	159	24.817	18.602	55.132 55.736	1.00 38.42	В
	MOTA	1124	C	SER	159	28.289	17.362		1.00 30.96	В
40	MOTA	1125	0	SER	159	28.388	16.146	55.722	1.00 34.27	В
40	MOTA	1126	N	LEU	160	29.158	18.143	56.357	1.00 29.31	В
	MOTA	1127	CA	LEU	160	30.280	17.577	57.064	1.00 27.33	В
	MOTA	1128	CB	LEU	160	31.582	18.130	56.499	1.00 27.18	В
	MOTA	1129	CG	LEU	160	32.856	17.456	56.991	1.00 28.13	В
45	MOTA	1130		LEU	160	32.751	15.954	56.790	1.00 29.56	В
45	MOTA	1131		LEU	160	34.044	18.019	56.237	1.00 28.17	В
	MOTA	1132	С	LEU	160	30.167	17.884	58.552	1.00 28.09	В
	MOTA	1133	0	LEU	160	30.607	18.943	59.026	1.00 26.39	В
	MOTA	1134	N	LEU	161	29.558	16.949	59.276	1.00 25.48	В
~ ^	MOTA	1135	CA	LEU	161	29.371	17.075	60.710	1.00 23.19	B
50	MOTA	1136	CB	LEU	161	27.982	16.567	61.101	1.00 21.33	В
	MOTA	1137	CG	LEU	161	27.694	16.395	62.594	1.00 19.50	В
	MOTA	1138	CD1	LEU	161	27.772	17.736	63.288	1.00 19.94	В
	ATOM	.1139	CD2	LEU	161	26.314	15.775	62.782	1.00 17.88	В
	MOTA	1140	С	LEU	161	30.452	16.264	61.415	1.00 23.39	В
55	MOTA	1141	0	LEU	161	30.641	15.094	61.129	1.00 25.56	В
	MOTA	1142	N	GLU	· 162	31.165	16.899	62.336	1.00 22.32	В
	MOTA	1143	CA	GLU	162	32.232	16.237	63.065	1.00 19.98	В
	MOTA	1144	CB	GLU	162	33.574	16.839	62.650	1.00 17.28	В
	MOTA	1145	CG	GLU	162	33.762	16.859	61.137	1.00 15.11	В
60	MOTA	1146	CD	GLU	162	35.212	16.937	60.737	1.00 15.23	В
	ATOM	1147		GLU	162	36.063	17.134	61.621	1.00 15.82	В
	MOTA	1148		GLU	162	35.513	16.813	59.539	1.00 17.71	В
	ATOM	1149	C	GLU	162	32.031	16.344	64.573	1.00 19.72	В
	MOTA	1150	ŏ	GLU	162	31.468	17.299	65.059	1.00 20.94	В
65	MOTA	1151	И	ILE	163	32.503	15.348	65.312		В
33	MOTA	1151	CA	ILE	163	32.346	15.350	66.756	1.00 18.63	В
	MOTA					31.544			1.00 18.63	В
		1153	CB	ILE	163		14.120 14.178	67.223		
	ATOM	1154		ILE	163	31.324		68.742	1.00 16.34	В
70	MOTA	1155		ILE	163	30.210	14.072	66.466	1.00 20.01	В
70	MOTA	1156		ILE	163	29.479	12.746	66.563	1.00 22.19	В
	ATOM	1157	C	ILE	163	33.694	15.353	67.467	1.00 20.32	В
	MOTA	1158	0	ILE	163	34.616	14.672	67.050	1.00 21.59	В
	MOTA	1159	N	TYR	164	33.799	16.131	68.542	1.00 20.27	В

	MOTA	1160	CA	TYR	164	35.031	16.206	69.312	1.00 19.81	В
	MOTA	1161	CB	TYR	164	35.964	17.271	68.709	1.00 20.16 1.00 17.18	B B
	MOTA	1162	CG	TYR	164 164	37.269	17.434 18.191	69.451 70.622	1.00 17.18	B
5	MOTA	1163 1164	CD1 CE1		164	37.334 38.506	18.253	71.372	1.00 16.71	· в
J	MOTA MOTA	1165	CD2		164	38.416	16.756	69.042	1.00 18.67	В
	MOTA -	1166		TYR	164	39.594	16.812	69.789	1.00 16.74	В
	MOTA	1167	cz	TYR	164	39.627	17.557	70.954	1.00 14.83	В
	MOTA	1168	ОН	TYR	164	40.758	17.569	71.726	1.00 14.97	В
10	MOTA	1169	С	TYR	164	34.685	16.520	70.761	1.00 21.32	В
•	ATOM	1170	0	TYR	164	33.971	17.468	71.044	1.00 22.71	В
	MOTA	1171	N	ASN	165	35.185	15.694	71.672	1.00 22.32	В
	MOTA	1172	CA	asn	165	34.926	15.860	73.092	1.00 23.78	В
1.5	MOTA	1173	CB	ASN	165	35.722	17.043	73.636	1.00 27.16	В
15	MOTA	1174	CG	ASN	165	35.729	17.090	75.149	1.00 31.99 1.00 37.27	B B
	ATOM	1175		ASN	165	36.159 35.249	16.150 18.190	75.801 75.714	1.00 37.27	В
	MOTA	1176	ND2		165 165	33.431	16.088	73.714	1.00 24.23	В
	MOTA MOTA	1177 1178	С 0	asn Asn	165	33.034	16.915	74.130	1.00 25.34	В
20	ATOM	1179	N	GLU	166	32.615	15.340	72.572	1.00 22.37	В
20	ATOM	1180	CA	GLU	166	31.154	15.421	72.641	1.00 22.51	В
	MOTA	1181	СВ	GLU	166	30.638	15.047	74.044	1.00 19.36	В
	MOTA	1182	CG	GLU	166	30.620	13.540	74.319	1.00 20.22	В
	MOTA	1183	CD	GLU	166	29.915	12.746	73.222	1.00 20.01	·B
25	MOTA	1184		GLU	166	28.668	12.648	73.240	1.00 19.99	B
	MOTA	1185	OE2	GLU	166	30.618	12.228	72.330	1.00 16.45	В
	MOTA	1186	C	GLU	166	30.570	16.770	72.223	1.00 22.98	B .
	MOTA	1187	0	GLU	166	29:553	17.189	72.725 71.288	1.00 22.40 1.00 25.41	. В
30	MOTA	1188	N	GLU	167 167	31.229 30.739	17.443 18.721	70.793	1.00 27.30	В
50	ATOM	1189 1190	CA CB	GLU GLU	167	31.679	19.858	71.191	1.00 29.98	В
	MOTA MOTA	1191	CG	GLU	167	31.567	20.295	72.648	1.00 34.85	В
	MOTA	1192	CD	GLU	167	32.384	21.553	72.941	1.00 39.75	В
	MOTA	1193		GLU	167	33.635	21.487	72.865	1.00 39.56	В
35	MOTA	1194		GLU	167	31.771	22.608	73.237	1.00 41.26	В
	MOTA	1195	С	GLU	167	30.637	18.626	69.278	1.00 28.54	В
	MOTA	1196	0	GLU	167	31.495	18.046	68.633	1.00 29.56	В
	MOTA	1197	N	LEU	168	29.574	19.190	68.719	1.00 28.34	В
40	MOTA	1198	CA	LEU	168	29.367	19.138	67.280	1.00 28.28	B B
40	MOTA	1199	CB	LEU	168	27.865	19.078 17.925	66.955 67.512	1.00 30.49 1.00 30.82	В
•	MOTA	1200 1201	CG	LEU	168 168	27.009 27.623	16.583	67.142	1.00 30.02	В
	MOTA MOTA	1201		LEU	168	26.892	18.044	69.009	1.00 33.15	В
	MOTA	1203	c	LEU	168	29.997	20.322	66.563	1.00 26.93	В
45	MOTA	1204	ō	LEU	168	29.972	21.442	67.064	1.00 28.48	В
	MOTA	1205	N	PHE	169	30.562	20.069	65.386	1.00 24.01	В
	MOTA	1206	CA	PHE	169	31.191	21.112	64.584	1.00 22.58	В
	MOTA	1207	CB	PHE	169	32.723	21.073	64.727	1.00 22.71	В
50	MOTA	1208	CG	PHE	169	33.213	21.377	66.118	1.00 21.76	В
50	ATOM	1209		PHE	169	33.451	20.354	67.027	1.00 21.14 1.00 22.60	B B
	MOTA MOTA	1210 1211	CE1	PHE	169 169	33.393 33.861	22.699 20.628	66.534 68.323	1.00 22.05	В
	MOTA	1212		PHE	169	33.802	22.989	67.830	1.00 21.62	. В
	MOTA	1213	CZ	PHE	169	34.037	21.952	68.729	1.00 24.67	В
55	ATOM	1214	c c	PHE	169	30.824	20.950	63.111	1.00 23.10	В
	MOTA	1215	ō	PHE	169	30.612	19.836	62.634	1.00 20.06	В
	MOTA	1216	N	ASP	170	30.739	22.079	62.406	1.00 22.96	В
	MOTA	1217	CA	ASP	170	30.416	22.100	60.978	1.00 22.20	В.
60	MOTA	1218	CB	ASP	170	29.344	23.148	60.679	1.00 20.54	В
60	MOTA	1219	CG	ASP	170	28.799	23.048	59.257	1.00 21.66	В
	MOTA	1220		ASP	170	29.554	22.671	58.337	1.00 18.77	В
	MOTA	1221		ASP	170	27.602	23.358	59.065 60.211	1.00 23.66 1.00 22.85	B B
	MOTA	1222	C	ASP	170 170	31.680 32.108	22.466 23.621	60.211	1.00 25.36	В
65	ATOM	1223 1224	O N	ASP LEU	171	32.280	21.490	59.529	1.00 22.35	В
05	MOTA MOTA	1225	CA	LEU	171	33.494	21.729	58.764	1.00 22.58	В
	ATOM	1226	CB	LEU	171	34.430	20.533	58.864	1.00 16.27	В
	MOTA	1227	CG	LEU	171	35.235	20.424	60.169	1.00 16.39	В
	MOTA	1228		LEU	171	36.234	21.577	60.274	1.00 14.32	В
70	MOTA	1229		LEU	171	34.304	20.421	61.351	1.00 12.71	В
	MOTA	1230	С	LEU	171	33.257	22.082	57.300	1.00 26.58	В
	MOTA	1231	Ο,	LEU	171	34.167	21.976	56.479	1.00 26.75	В
	MOTA	1232	N	LEU	172	32.038	22.510	56.978	1.00 29.45	В

	MOTA	1233	CA LEU	172	31.706	22.898	55.612	1.00 34.57	В
	ATOM	1234	CB LEU	172	30.742	21.892	54.975	1.00 33.36	В.
	MOTA	1235	CG LEU	172	31.387	20.715	54.244	1.00 31.35	В
_	MOTA	1236	CD1 LEU	172	30.316	19.992	53.459	1.00 32.85	В
5	MOTA	1237	CD2 LEU	172	32.473	21.201	53.302	1.00 32.08	В
	MOTA	1238	C LEU	172	31.107	24.297	55.531	1.00 38.00	В
	MOTA	1239	O LEU	172	30.961	24.850	54.457	1.00 39.59	В
	MOTA	1240	n asn	173	30.766	24.865	56.679	1.00 41.36	В
	MOTA	1241	CA ASN	173	30.201		56.714	1.00 45.99	В
10	MOTA	1242	CB ASN	173	29.401	26.405	58.003	1.00 47.65	В
	MOTA	1243	CG ASN	173	28.670	27.735	58.038	1.00 50.77	В
	MOTA	1244	OD1 ASN	173	28.005	28.060	59.014	1.00 51.85	В
	MOTA	1245	ND2 ASN	173	28.792	28.508	56.964	1.00 51.20	В
15	MOTA	1246	C ASN	173	31.346	27.214	56.643	1.00 48.84	8 8
15	MOTA	1247	O ASN	173	32.070	27.403	57.606	1.00 48.46 1.00 52.47	В
	MOTA	1248	N PRO	174	31.521	27.872	55.484 54.258	1.00 53.23	В
	MOTA	1249	CD PRO	174	30.710	27.738	55.289	1.00 55.00	В
	MOTA	1250	CA PRO	174	32.587	28.862 29.116	53.786	1.00 53.00	B
20	MOTA	1251	CB PRO	174 174	32:542 31:089	28.983	53.482	1.00 52.93	В
20	MOTA	1252	CG PRO	174	32.396	30.141	56.095	1.00 58.07	В
	MOTA	1253		174	33.329	30.921	56.263	1.00 58.84	В
	MOTA	1254 1255	O PRO N SER	175	31.183	30.343	56.596	1.00 60.39	В
	MOTA MOTA	1256	CA SER	175	30.861	31.534	57.372	1.00 62.65	В
25	MOTA	1257	CB SER	175	29.343	31.666	57.498	1.00 63.30	В
23	MOTA	1258	OG SER	175	28.723	31.545	56.230	1.00 65.14	В
	MOTA	1259	C SER	175	31.500	31.535	58.759	1.00 63.89	В
	MOTA	1260	O SER	175	32.365	32.358	59.051	1.00 65.71	В
	MOTA	1261	N SER	176	31.066	30.608	59.608	1.00 64.41	В
30	MOTA	1262	CA SER	176	31.581	30.506	60.969	1.00 64.51	В
	MOTA	1263	CB SER	176	30.597	29.725	61.844	1.00 64.33	В
	MOTA	1264	OG SER	176	30.446	28.396	61.378	1.00 64.08	В
	MOTA	1265	C SER	176	32.942	29.824	61.012	1.00 64.78	В
	MOTA	1266	O SER	176	33.474	29.418	59.984	1.00 64.25	В
35	ATOM	1267	N ASP	177	33.500	29.704	62.213	1.00 65.17	В.
	MOTA	1268	CA ASP	177	34.789	29.051	62.379	1.00 65.62	В
	MOTA	1269	CB ASP	177	35.782	29.964	63.106	1.00 66.73	В
	MOTA	1270	CG ASP	177	35.449	30.137	64.576	1.00 68.48	В
40	MOTA	1271	OD1 ASP		36.388	30.344	65.377	1.00 67.76	В
40	MOTA	1272	OD2 ASP		34.251	30.069	64.929	1.00 69.81	В
	MOTA	1273	C ASP		34.615	27.757	63.166	1.00 64.60	В
	MOTA	1274	O ASP		33.498	27.335	63.445	1.00 64.22	В
	ATOM	1275	N VAL		35.737	27.146	63.529	1.00 63.40	B B
45	MOTA	1276	CA VAL		35.735	25.890	64.264	1.00 62.69	
45	MOTA	1277	CB VAL		37.046	25.116	64.016		. В В
	MOTA	1278	CG1 VAL		37.190	24.809	62.536	1.00 61.71 1.00 62.99	В
	MOTA	1279	CG2 VAL		38.231	25.934	64.510 65.770	1.00 62.99	В
	MOTA	1280			35.552 35.792	26.050	66.524	1.00 62.60	В
50	MOTA	1281	O VAL		35.124	25.122 27.227	66.208	1.00 61.07	В
50	MOTA	1282			34.922	27.447	67.632	1.00 59.46	В
	MOTA	1283 1284			35.629	28.731	68.080	1.00 59.42	В
	MOTA MOTA	1285			35.020	29.877	67.507	1.00 59.13	В
	MOTA	1286			33.437	27.517	67.977	1.00 58.68	В
55	MOTA	1287			33.067	27.489	69.144	1.00 59.17	В
33	ATOM	1288				27.605	66.955	1.00 56.65	В
	ATOM	1289					67.161	1.00 55.22	В
	MOTA	1290					66.129	1.00 56.66	В
	ATOM	1291					66.535	1.00 59.12	В
60	ATOM	1292					65.392	1.00 60.03	В
•••	MOTA	1293					64.474	1.00 60.45	В
	MOTA	1294					65.411	1.00 61.47	В
	MOTA	1295					67.080	1.00 52.95	В
	MOTA	1296					66.004	1.00 52.86	В
65	ATOM	1297					68.239		В
•••	MOTA	1298					68.315	1.00 48.73	В
	MOTA	1299					69.727	1.00 51.62	В
	ATOM	1300					70.836	1.00 56.45	В
	MOTA	1301					72.007	1.00 61.65	В
70	MOTA	1302					71.702	1.00 64.33	В
. •	MOTA	1303					72.560	1.00 65.71	В
	MOTA	1304					73.786	1.00 66.05	В
	MOTA	1305					72.194	1.00 66.36	В

	MOTA	1306	С	ARG	181	28.196	24.403	67.940	1.00 45.46	В
	MOTA	1307	0	ARG	181	27.556	25.438	68.029	1.00 45.33	В
	MOTA	1308	N	LEU	182	27.661	23.267	67.510	1.00 41.98	В
	MOTA	1309	CA	LEU	182	26.258	23.193	67.133	1.00 38.04	В
5	ATOM	1310	СВ	LEU	182	26.099	22.419	65.824	1.00 35.02	В
_	MOTA	1311	CG	LEU	182	26.990	22.896	64.677	1.00 33.00	В
	MOTA	1312	CD1		182	26.723	22.060	63.450	1.00 31.57	В
			CD2		182	26.733	24.372	64.393	1.00 32.49	В
	MOTA	1313		LEU	182	25.456	22.524	68.236	1.00 38.00	В
10	MOTA	1314	C				21.845	69.096	1.00 37.75	В
10	MOTA	1315	0	LEU	182	26.017	22.723	68.206	1.00 37.43	B
	MOTA	1316	N	GLN	183	24.140		69.200	1.00 36.96	В
	MOTA	1317	CA	GLN	183	23.239	22.148			В
	MOTA	1318	ĊВ	GLN	183	22.269	23.210	69.724	1.00 38.87	
	MOTA	1319	ĊG	GLN	183	22.925	24.543	70.024	1.00 43.04	В
15	MOTA	1320	CD	GLN	183	21.969	25.536	70.653	1.00 45.13	В
	MOTA	1321		GLN	183	21.663	25.448	71.832	1.00 45.23	В
	MOTA	1322	NE2	GLN	183	21.493	26.492	69.856	1.00 46.40	В
	MOTA	1323	С	GLN	183	22.455	21.018	68.567	1.00 35.80	В
	MOTA	1324	0	GLN	183	22.097	21.073	67.397	1.00 33.40	В
20	MOTA	1325	N	MET	184	22.165	20.005	69.367	1.00 36.43	В
	MOTA	1326	ÇA	MET	184	21.450	18.840	68.877	1.00 37.65	В
	MOTA	1327	СВ	MET	184	22.322	17.610	69.118	1.00 38.53	В,
	ATOM	1328	CG	MET	184	22.033	16.445	68.221	1.00 41.45	В
	ATOM	1329	SD	MET	184	23.141	15.085	68.586	1.00 42.59	·B
25	ATOM	1330	CE	MET	184	22.590	14.660	70.190	1.00 40.16	В
	ATOM	1331	c	MET	184	20.111	18.692	69.590	1.00 37.82	В
	MOTA	1332	ŏ	MET	184	20.021	18.909	70.790	1.00 37.22	В
	MOTA	1333	N	PHE	185	19.070	18.328	68.844	1.00 39.01	В
	MOTA	1334	CA	PHE	185	17.741	18.148	69.432	1.00 41.26	В
30		1335	CB	PHE	185	16.851	19.377	69.160	1.00 40.10	В
50	MOTA			PHE	185	17.499	20.697	69.494	1.00 38.50	В
	MOTA	1336	CG	PHE			21.377	68.544	1.00 36.52	В
	MOTA	1337			185	18.249	21.248	70.770	1.00 38.29	В
	MOTA	1338		PHE	185	17.376			1.00 37.06	В
25.	MOTA	1339		PHE	185	18.869	22.586	68.851		В
35 ·	MOTA	1340		PHE	185	17.994	22.459	71.089	1.00 37.60	
	MOTA	1341	CZ	PHE	185	18.743	23.128	70.128	1.00 37.41	В
	MOTA	1342	С	PHE	185	17.034	16.903	68.887	1.00 43.21	В
	MOTA	1343	0	PHE	185	17.221	16.532	67.734	1.00 41.62	В
	MOTA	1344	N	ASP	186	16.223	16.259	69.724	1.00 46.68	В
40	MOTA	1345	CA	ASP	186	15.482	15.078	69.286	1.00 51.00	В
	MOTA	1346	CB	ASP	186	14.722	14.437	70.449	1.00 52.32	В
	MOTA	1347	CG	ASP	186	15.642	13.912	71.530	1.00 54.63	В
	MOTA	1348	ODI	ASP	186	16.575	13.150	71.202	1.00 55.59	В
	ATOM	1349		ASP	186	15.428	14.262	72.712	1.00 56.98	В
45	ATOM	1350	C	ASP	186	14.481	15.539	68.241	1.00 52.48	В
	MOTA	1351	ō	ASP	186	13.777	16.510	68.443	1.00 52.99	В
	MOTA	1352	N	ASP	187	14.425	14.841	67.118	1.00 55.70	В
	MOTA	1353	CA	ASP	187	13.500	15.214	66.061	1.00 59.24	В
	MOTA	1354	CB	ASP	187	13.845	14.469	64.772	1.00 58.33	В
50		1355	CG	ASP	187	13.015	14.929	63.601	1.00 58.32	В
50	MOTA	1356		LASP	187	13.345	14.546	62.459	1.00 59.29	В
	MOTA				187	12.035	15.672	63.822	1.00 58.82	В
	MOTA	1357		2 ASP			14.905	66.473	1.00 61.85	В
	MOTA	1358	C	ASP	187	12.064	13.750	66.626	1.00 62.59	В
55	MOTA	1359	0	ASP	187	11.690			1.00 64.18	В
22	MOTA	1360	N	PRO	188	. 11.241	15.950	66.662		В
	MOTA	1361	CD	PRO	188	11.573	17.374	66.493	1.00 64.61	
	MOTA	1362	CA	PRO	188	9.840	15.794	67.061	1.00 66.06	В
	MOTA	1363	CB	PRO	188	9.287	17.207	66.923	1.00 65.95	В
	MOTA	1364	CC	PRO	188	10.472	18.048	67.271	1.00 65.81	В
60	MOTA	1365	С	PRO	188	9.094	14.793	66.189	1.00 68.16	В
	ATOM	1366	0	PRO	188	8.316	13.981	66.687	1.00 67.45	8
	MOTA	1367	N	ARG	189	9.345	14.854	64.886	1.00 70.27	В
	MOTA	1368	CA	ARG	189	8.702	13.949	63.944	1.00 73.47	В
	MOTA	1369	СВ	ARG	189	9.278	14.170		1.00 73.94	В
65	MOTA	1370		ARG	189	8.869	15.498		1.00 75.92	В
05	MOTA	1371	CD	ARG	189	9.507	15.693		1.00 77.54	В
				ARG	189	10.797	16.373		1.00 78.29	В
	MOTA	1372				10.797	17.686		1.00 78.57	В
	MOTA	1373	CZ	ARG	189				1.00 78.77	В
70	MOTA	1374		1 ARG	189	9.870	18.466			В
70	MOTA	1375		2 ARG	189	12.153	18.218		1.00 78.05	
	MOTA	1376		ARG	189	8.869	12.491		1.00 75.30	В
	MOTA	1377			189	7.896	11.815		1.00 75.56	В
	MOTA	1378	N	ASN	190	10.112	12.019	64.370	1.00 77.42	В

	MOTA	1379	CA	ASN	190	10.417	10.640	64.748	1.00 78.69	В
	MOTA	1380	СВ	ASN	190	10.760	9.829	63.494	1.00 78.94	В.
	MOTA	1381	CG	ASN	190	11.569	10.629	62.483	1.00 78.61	В
	MOTA	1382	OD1		190	12.745	10.905	62.689	1.00 78.52	В
5	MOTA	1383	ND2		190	10.926	11.011	61.383	1.00 78.16	В
,					190	11.571	10.575	65.749	1.00 79.40	В
	MOTA	1384	c	ASN	190	12.706	10.875	65.408	1.00 79.98	В
	MOTA	1385	0	ASN		11.265	10.182	66.986	1.00 79.97	В
	MOTA	1386	N	LYS	191		10.182	68.051	1.00 79.77	В
10	MOTA	1387	CA	LYS	191			69.336	1.00 81.11	В
10	MOTA	1388	CB	LYS	191	11.616	9.561		1.00 82.60	В
	MOTA	1389	CG	LYS	191	10.794	10.600	70.090		В
	MOTA	1390	CD	LYS	191	11.695	11.630	70.758	1.00 83.37	
	MOTA	1391	CE	LYS	191	10.887	12.716	71.450	1.00 84.12	В
1.5	MOTA	1392	NZ	LYS	191	10.109	13.539	70.478	1.00 84.72	В
15	MOTA	1393	С	LYS	191	13.478	9.216	67.695	1.00 78.46	В
	MOTA	1394	0	LYS	191	14.462	9.173	68.434	1.00 77.59	В
	MOTA	1395	N	ARG	192	13.398	8.525	66.563	1.00 76.93	В
•	MOTA	1396	CA	ARG	192	14.489	7.675	66.106	1.00 75.17	В
~~	MOTA	1397	CB	ARG	192	13.975	6.667	65.078	1.00 77.95	В
20	ATOM	1398	CG	ARG	192	15.041	5.708	64.573	1.00 80.81	В
	MOTA	1399	CD	ARG	192	14.801	5.305	63.122	1.00 83.98	В
	ATOM	1400	NE	ARG	192	14.928	6.434	62.198	1.00 86.03	В
	MOTA	1401	CZ	ARG	192	13.946	7.277	61.884	1.00 86.70	В
	ATOM	1402	NH1	ARG	192	12.737	7.133	62.415	1.00 86.57	В
25	MOTA	1403	NH2	ARG	192	14.175	8.267	61.033	1.00 87.03	· B
	ATOM	1404	С	ARG	192	15.565	8.545	65.463	1.00 72.66	В
	MOTA	1405	0	ARG	192	16.699	8.112	65.272	1.00 72.31	В
	ATOM	1406	N	GLY	193	15.195	9.781	65.136	1.00 69.32	В
	MOTA	1407	CA	GLY	193	16.132	10.695	64.507	1.00 63.90	В
30	ATOM	1408	С	GLY	193	16.538	11.863	65.382	1.00 59.50	В
	ATOM	1409	Ó	GLY	193	16.132	11.961	66.531	1.00 59.54	В
	ATOM	1410	N	VAL	194	17.346	12.757	64.824	1.00 55.13	В
	ATOM	1411	CA	VAL	194	17.812	13.918	65.562	1.00 50.91	В
	MOTA	1412	СВ	VAL	194	19.114	13.606	66.309	1.00 50.28	В
35	MOTA	1413		VAL	194	20.226	13.319	65.318	1.00 49.18	В.
-	MOTA	1414		VAL	194	19.476	14.760	67.207	1.00 48.67	В
	MOTA	1415	Č	VAL	194	18.055	15.098	64.629	1.00 49.13	В
	MOTA	1416	ŏ	VAL	194	18.379	14.918	63.461	1.00 49.22	В
	MOTA	1417	N	ILE	195	17.906	16.308	65.160	1.00 46.55	В
40	ATOM	1418	CA	ILE	195	18.106	17.514	64.372	1.00 42.49	B
40	ATOM	1419	CB	ILE	195	16.846	18.405	64.396	1.00 43.57	В
	MOTA	1420		ILE	195	17.076	19.653	63.561	1.00 44.86	В
	MOTA	1421		ILE	195	15.647	17.639	63.837	1.00 44.25	В
	MOTA	1422		ILE	195	15.828	17.184	62.393	1.00 45.64	В
45	MOTA	1423	C	ILE	195	19.291	18.349	64.856	1.00 39.72	B
73		1424	ŏ	ILE	195	19.379	18.691	66.030	1.00 38.69	В
	MOTA	1425	N	ILE	196	20.197	18.672	63.936	1.00 37.40	В
	MOTA	1425	CA	ILE	196	21.365	19.483	64.255	1.00 35.21	В
	MOTA				196	22.654	18.960	63.561	1.00 34.42	В
50	MOTA	1427	CB	ILE				63.881	1.00 33.62	В
50	MOTA	1428		ILE	196	23.821 23.010	19.880 17.552	64.057	1.00 33.50	В
	MOTA	1429		ILE	196			63.416	1.00 31.23	В
	MOTA	1430		ILE	196	22.222	16.445	63.806	1.00 35.34	В
	MOTA	1431	C	ILE	196	21.113	20.920 21.218		1.00 33.58	8
55	MOTA		. 0	ILE	196	21.108		62.619	1.00 35.36	
22	MOTA		. N	LYS	197	20.912	21.806	64.777	1.00 36.02	B B
	MOTA	1434	CA	LYS	197	20.639	23.209	64.494		
•	MOTA	1435	CB	LYS	197	20.101	23.909	65.744	1.00 37.83	В
	MOTA	1436	CG	LYS	197	19.736	25.370	65.519	1.00 42.01	В
~ 0	MOTA	1437	CD	LYS	197	19.391	26.055	66.829	1.00 45.50	B
60	MOTA	1438	CE	LYS	197	19.039	27.518	66.628	1.00 46.65	В
	MOTA	1439	NZ	LYS	197	18.686	28.161	67.932	1.00 47.32	В
	MOTA	1440	С	LYS	197	21.857	23.968	63.983	1.00 36.01	В
	MOTA	1441	0	LYS	197	22.887	24.025	64.646	1.00 34.47	В
	MOTA	1442	N	GLY	198	21.722	24.547	62.793	1.00 35.82	. В
65	MOTA	1443	CA	GLY	198	22.809	25.316	62.212		В
	MOTA	1444	С	GLY	198	23.715	24.583	61.240	1.00 38.13	В
	MOTA	1445	ō	GLY	198	24.580	25.198	60.615	1.00 39.69	В
	MOTA	1446	N	LEU	199	23.530	23.275	61.098	1.00 37.34	В
	MOTA	1447	CA	LEU	199	24.376	22.512	60.190	1.00 36.62	В
70	MOTA	1448	СВ	LEU	199	24.218	21.006	60.444	1.00 34.70	В
• •	ATOM	1449	CG	LEU	199	25.067	20.058	59.588	1.00 33.44	В
	ATOM	1450		LEU	199	26.553	20.355	59.755	1.00 31.11	В
	ATOM	1451		LEU	199	24.767	18.634	59.994	1.00 32.49	В

	MOTA	1452	С	LEU	199	24.066	22.838	58.729	1.00 36.33	В
	MOTA	1453	0	LEU	199	22.971	22.550	58.228	1.00 35.86	В
	ATOM	1454	.N	GLU	200	25.040	23.441	58.053	1.00 35.51	В
	MOTA	1455	CA	GLU	200	24.896	23.815	56.653	1.00 37.46	В
5	MOTA	1456	CB	GLU	200	26.037	24.746	56.234	1.00 40.69	В
_	MOTA	1457	CG	GLU	200	26.005	26.135	56.868	1.00 49.20	В
	MOTA	1458	CD	GLU	200	24.757	26.925	56.502	1.00 51.96	В
	ATOM	1459	0E1		200	23.659	26.576	56.990	1.00 54.11	В
	ATOM	1460	OE2		200	24.873	27.896	55.722	1.00 54.04	В
10	MOTA	1461	C	GLU	200	24.874	22.612	55.717	1.00 36.14	В
10			.0	GLU	200	25.434	21.564	56.015	1.00 35.01	В
	MOTA	1462		GLU	201	24.217	22.787	54.575	1.00 35.47	В
	MOTA	1463	N		201	24.124	21.752	53.559	1.00 34.36	В
	MOTA	1464	CA	GLU				53.483	1.00 34.40	В
15	MOTA	1465	CB	GLU	201	22.709	21.189		1.00 34.40	В
13	MOTA	1466	CG	GLU	201	22.207	20.582	54.773		В
	MOTA	1467	CD	GLU	201	20.816	19.998	54.626 55.665	1.00 36.86 1.00 37.44	В
	ATOM	1468		GLU	201	20.137	19.825			
	MOTA	1469		GLU	201	20.408	19.710	53.476	1.00 36.10	В
20 .	MOTA	1470	C	GLU	201	24.479	22.393	52.226	1.00 34.09	В
20	MOTA	1471	0	GLU	201	23.681	23.115	51.657	1.00 33.70	В
	MOTA	1472	N	ILE	202	25.687	22.127	51.740	1.00 33.17	В
	MOTA	1473	CA	ILE	202	26.130	22.689	50.472	1.00 32.42	В.
	MOTA	1474	CB	ILE	202	27.679	22.715	50.357	1.00 33.25	В
25	MOTA	1475		ILE	202	28.087	23.275	49.002	1.00 31.31	·B
25	MOTA	1476		ILE	202	28.286	23.582	51.465	1.00 33.81	В
	MOTA	1477		ILE	202	28.222	22.967	52.849	1.00 36.54	В
	MOTA	1478	C	ILE	202	25.572	21.888	49.305	1.00 31.15	В
	MOTA	1479	0	ILE	202	25:703	20.678	49.257	1.00 33.14	В
20	MOTA	1480	N	THR	203	24.948	22.583	48.361	1.00 29.99	. В
30	MOTA	1481	CA	THR	203	24.371	21.944	47.185	1.00 27.86	В
	MOTA	1482	CB	THR	203	23.228	22.804	46.572	1.00 27.52	В
	MOTA	1483	0G1	THR	203	22.157	22.925	47.516	1.00 27.78	В
	ATOM	1484	CG2	THR	203	22.701	22.174	45.284	1.00 26.79	В
~ -	MOTA	1485	С	THR	203	25.448	21.741	46.130	1.00 27.11	8
35	ATOM	-1486	0	THR	203	26.217	22.637	45.853	1.00 26.94	В
	MOTA	1487	N	VAL	204	25.500	20.541	45.560	1.00 27.55	В
	MOTA	1488	CA	VAL	204	26.467	20.222	44.517	1.00 27.42	В
	MOTA	1489	CB	VAL	204	27.136	18.859	44.781	1.00 25.01	В
	MOTA	1490	CG1	VAL	204	28.393	18.718	43.941	1.00 23.11	В
40	ATOM	1491	CG2	VAL	204	27.468	18.729	46.250	1.00 23.76	В
	MOTA	1492	С	VAL	204	25.677	20.178	43.207	1.00 29.81	В
	MOTA	1493	0	VAL	204	24.887	19.261	42.983	1.00 30.56	В
	ATOM	1494	N	HIS	205	25.891	21.188	42.364	1.00 30.97	В
	MOTA	1495	CA	HIS	205	25.197	21.318	41.079	1.00 33.24	В
45	ATOM.	1496	CB	HIS	205	25.199	22.792	40.649	1.00 33.42	В
	MOTA	1497	CG	HIS	205	24.641	23.716	41.687	1.00 34.00	В
	MOTA	1498		HIS	205	25.233	24.333	42.739	1.00 33.05	В
	ATOM	1499		HIS	205	23.297	24.019	41.771	1.00 33.23	В
	ATOM	1500		HIS	205	23.086	24.777	42.832	1.00 33.03	В
50	ATOM	1501		HIS	205	24.244	24.981	43.437	1.00 32.48	В
	ATOM	1502	C	HIS	205	25.790	20.450	39.969	1.00 33.72	В
	ATOM	1503	ō	HIS	205	25.084	20.022	39.061	1.00 32.22	В
	MOTA	1504	N	ASN	206	27.094	20.201	40.048	1.00 35.23	В
	MOTA	1505	CA	ASN	206	27.779	19.381	39.055	1.00 36.89	В
55	· ATOM	1506	CB	ASN	206	28.178	20.229	37.837	1.00 37.95	В
55	MOTA	1507	€G	ASN	206	28.999	21.455	38.213	1.00 41.34	В
	ATOM	1508		ASN	206	30.130	21.339	38.697	1.00 43.10	В
	ATOM	1509		ASN	206	28.428	22.641	37.993	1.00 38.53	В.
		1510				29.007	18.712	39.666	1.00 36.43	В.
60	ATOM		C		206 206		18.805	40.864	1.00 36.95	В
OU	MOTA	1511	0	ASN		29.233			1.00 36.70	В
	ATOM	1512	N	LYS	207	29.787	18.029	38.834		
	ATOM	1513	CA	LYS	207	30.983	17.338	39.297	1.00 37.65	В
	MOTA	1514	CB	LYS	207	31.357	16.232	38.314	1.00 38.65	В
65	MOTA	1515	CG	LYS	207	31.892	16.726	36.977	1.00 41.42	B
O)	MOTA	1516	CD	LYS	207	31.938	15.585	35.966	1.00 45.62	В
	MOTA	1517	CE	LYS	207	32.889	15.877	34.814	1.00 47.44	В
	MOTA	1518	NZ	LYS	207	34.314	15.937	35.262	1.00 47.37	В
	MOTA	1519	C	LYS	207	32.155	18.298	39.464	1.00 38.02	В
70	MOTA	1520	0	LY\$	207	32.990	18.121	40.340	1.00 38.46	В
70	MOTA	1521	N	ASP	208	32.199	19.320	38.618	1.00 38.91	. В
	ATOM	1522	CA	ASP	208	33.264	20.313	38.667	1.00 40.47	В
	MOTA	1523	CB.	ASP	208	33.316	21.061	37.338	1.00 42.51	В
	MOTA	1524	CG	ASP	208	33.664	20.156	36.192	1.00 44.26	В

	MOTA	1525	OD1	ASP	208	33.297	20.470	35.041	1.00 44.33	В
	MOTA	1526	OD2		208	34.321	19.127	36.451	1.00 46.27	В
	MOTA	1527	Ç	ASP	208	33.058	21.300	39.805	1.00 39.34	В
	MOTA	1528	ò	ASP	208	33.568	22.405	39.780	1.00 40.79	В
5	MOTA	1529	N	GLU	209	32.308	20.893	40.813	1.00 38.81	В
,					209	32.050	21.772	41.930	1.00 38.33	В
	MOTA	1530	CA	GLU		30.604		41.866	1.00 39.47	В
	MOTA	1531	CB	GLU	209		22.260			В
	MOTA	1532	CG	GLU	209	30.278	23.400	42.805	1.00 42.87	
10	MOTA	1533	CD	GLU	209	28.824	23.836	42.700	1.00 44.43	В
10	MOTA	1534	OE1		209	28.373	24.134	41.573	1.00 42.49	В
	MOTA	1535	OE2		209	28.135	23.885	43.749	1.00 44.53	В
	MOTA	1536	С	GLU	209	32.303	21.055	43.247	1.00 37.83	В
	MOTA	1537	0	GLU	209	32.147	21.649	44.316	1.00 38.61	В
	MOTA	1538	N	VAL	210	32.720	19.790	43.171	1.00 35.54	В
15	MOTA	1539	CA	VAL	210	32.954	19.011	44.384	1.00 32.37	В
	MOTA	1540	CB	VAL	210	32.679	17.485	44.158	1.00 31.94	В
	MOTA	1541	CG1	VAL	210	31.641	17.286	43.057	1.00 31.12	. В
•	MOTA	1542	CG2	VAL	210	33.961	16.749	43.842	1.00 30.76	В
	MOTA	1543	C	VAL	210	34.342	19.173	44.991	1.00 29.97	В
20	MOTA	1544	Ö	VAL	210	34.482	19.206	46.207	1.00 29.98	В
	MOTA	1545	N	TYR	211	35.367	19.285	44.154	1.00 27.29	В
	MOTA	1546	CA	TYR	211	36.718	19.408	44.685	1.00 25.19	В
	ATOM	1547	СВ	TYR	211	37.747	19.437	43.549	1.00 24.73	В
	MOTA	1548	CG	TYR	211	39.177	19.352	44.040	1.00 26.20	В
25	MOTA	1549		TYR	211	39.601	18.278	44.824	1.00 27.98	В
23						40.903	18.214	45.325	1.00 27.65	. B
	MOTA	1550		TYR	211	40.093	20.360	43.761	1.00 26.06	. В
	MOTA	1551		TYR	211				1.00 26.72	B
	ATOM	1552		TYR	211	41.398	20.308	44.257		
20	MOTA	1553	CZ	TYR	211	41.797	19.233	45.041	1.00 29.28	В
30	ATOM	1554	ОН	TYR	211	43.081	19.193	45.556	1.00 27.76	В
	MOTA	1555	C	TYR	211	36.864	20.635	45.573	1.00 24.67	В
	MOTA	1556	0	TYR	211	37.515	20.578	46.615	1.00 24.02	В
	MOTA	1557	N	GLN	212	36.251	21.742	45.160	1.00 25.05	В
0.5	MOTA	1558	CA	GLN	212	36.294	22.982	45.926	1.00 24.24	В
35	MOTA	1559	CB	GLN	212	35.508	24.082	45.224	1.00 27.89	₿ -
	MOTA	1560	CG	GLN	212	36.375	25.051	44.459	1.00 36.14	В
	MOTA	1561	CD	GLN	212	35.625	26.311	44.048	1.00 40.99	В
	MOTA	1562	OE1	GLN	212	34.641	26.248	43.312	1.00 42.51	В
	MOTA	1563	NE2	GLN	212	36.090	27.465	44.532	1.00 41.52	В
40	MOTA	1564	C	GLN	212	35.713	22.777	47.305	1.00 22.91	В
. •	ATOM	1565	ō	GLN	212	36.285	23.206	48.299	1.00 23.35	В
	MOTA	1566	N	ILE	213	34.560	22.122	47.362	1.00 22.44	В
	MOTA	1567	CA	ILE	213	33.905	21.876	48.640	1.00 22.31	В
	MOTA	1568	СВ	ILE	213	32.595	21.095	48.472	1.00 20.76	В
45	ATOM	1569		ILE	213	31.910	20.947	49.828	1.00 21.01	В
73	MOTA	1570		ILE	213	31.675	21.821	47.492	1.00 20.79	В
					213		21.012	47.071	1.00 22.47	В
	MOTA	1571		ILE		30.457			1.00 22.47	В
	MOTA	1572	C	ILE	213	34.816	21.095	49.573		
50	MOTA	1573	0	ILE	213	34.863	21.366	50.764	1.00 23.38	В
50	MOTA	1574	N	LEU	214	35.539	20.126	49.020	1.00 24.93	В
	MOTA	1575	CA	LEU	214	36.455	19.307	49.811	1.00 26.22	В
	MOTA	1576	CB	LEU	214	36.965	18.129	48.972	1.00 27.09	В
	MOTA	·1577	CG	LEU	214	36.092	16.868	48.882	1.00 29.34	В
	MOTA	1578		LEU	214	34.618	17.235	48.836	1.00 30.24	В
55	MOTA	1579	CD2	LEU	214	36.491	16.059	47.649	1.00 30.55	В
	MOTA	1580	С	LEU	214	37.621	20.149	50.314	1.00 26.01	В
	MOTA	1581	0	LEU.	214	38.064	19.994	51.444	1.00 26.33	В
	MOTA	1582	N	GLU	215	38.108	21.049	49.464	1.00 25.83	В
	MOTA	1583	CA	GLU	215	39.215	21.930	49.834	1.00 24.69	В
60	ATOM	1584	CB	GLU	215	39.586	22.830	48.655	1.00 23.60	В
	MOTA	1585	CG	GLU	215	40.814	22.380	47.882	1.00 22.50	В
	ATOM	1586	CD	GLU	215	40.907	23.030	46.511	1.00 23.11	В
	ATOM	1587		GLU	215	42.047	23.251	46.040	1.00 20.98	В
				GLU		39.839	23.306	45.913	1.00 20.38	В
65	MOTA	1588			215			51.040		В
05	MOTA	1589	C	GLU	215	38.837	22.784			
	MOTA	1590	0	GLU	215	39.636	22.960	51.967	1.00 23.91	В
	MOTA	1591	N	LYS	216	37.617	23.306	51.033	1.00 22.14	В
	MOTA	1592	CA	LYS	216	37.152	24.135	52.129	1.00 24.81	В
70	MOTA	1593	CB	LYS	216	35.794	24.747	51.781	1.00 28.88	В
70	MOTA	1594	CG	LYS	216	35.875	25.760	50.637	1.00 35.31	В
	MOTA	1595	CD	LYS	216	34.492	26.263	50.229	1.00 40.73	В
	MOTA	1596	CE	LYS	216	34.591	27.386	49.208	1.00 42.22	В
	MOTA	1597	NZ	LYS	216	35.405	27.007	48.007	1.00 44.86	В

	MOTA	1598	С	LYS	216	37.066	23.327	53.417	1.00 24.49	В
	MOTA	1599	0	LYS	216	37.497	23.790	54.475	1.00 25.43	В
	MOTA	1600	N	GLY	217	36.525	22.117	53.325	1.00 22.80	В
	MOTA	1601	CA	GLY	217	36.427	21.282	54.498	1.00 21.61	В
5	ATOM	1602	c	GLY	217	37.813	21.056	55.063	1.00 21.73	В
-	ATOM	1603	ŏ	GLY	217	38.019	21.154	56.273	1.00 21.45	В
	MOTA	1604	N	ALA	218	38.770	20.770	54.182	1.00 19.63	В
		1605	CA	ALA	218	40.146	20.522	54.607	1.00 20.23	В
•	MOTA	1606				41.013	20.194	53.402	1.00 20.86	B
10	MOTA		СВ	ALA	218					
10	MOTA	1607	С	ALA	218	40.720	21.717	55.358	1.00 19.43	В
	MOTA	1608	.0	ALA	218	41.151	21.588	56.500	1.00 21.17	В
	MOTA	1609	N	ALA	219	40.725	22.877	54.706	1.00 19.70	В
	MOTA	1610	CA	ALA	219	41.248	24.111	55.299	1.00 18.89	В
1.5	MOTA	1611	CB	ALA	219	40.928	25.296	54.400	1.00 17.46	В
15	MOTA	1612	С	ALA	219	40.672	24.357	56.675	1.00 18.82	В
	MOTA	1613	0	ALA	219	41.394	24.630	57.621	1.00 19.06	В
	MOTA	1614	N	LYS	220	39.355	24.266	56.778	1.00 19.83	В
	MOTA	1615	CA	LYS	220	38.698	24.501	58.049	1.00 21.65	В
	MOTA	1616	CB	LYS	220	37.179	24.475	57.867	1.00 22.34	В
20	MOTA	1617	CG	LYS	220	36.416	24.906	59.101	1.00 25.89	В
	MOTA	1618	CD	LYS	220	35.002	25.363	58.759	1.00 28.36	В
	MOTA	1619	CE	LYS	220	34.296	25.886	60.002	1.00 28.81	В
	MOTA	1620	NZ	LYS	220	32.888	26.286	59.732	1.00 27.62	B ·
	MOTA	1621	C	LYS	220	39.145	23.486	59.101	1.00 21.92	⋅B
25	MOTA	1622	ō	LYS	220	39.199	23.807	60.278	1.00 23.01	В
	ATOM	1623	N	ARG	221	39.478	22.268	58.672	1.00 21.66	В
	ATOM	1624	CA	ARG	221	39.934	21.223	59.596	1.00 20.06	В
	MOTA	1625	CB	ARG	221	40.015	19.878	58.882	1.00 22.12	В
	MOTA	1626	CG	ARG	221	38.739	19.076	58.916	1.00 23.91	В
30	ATOM	1627	CD	ARG	221	38.952	17.787	58.173	1.00 26.21	В
50	ATOM	1628	NE	ARG	221	37.777	16.929	58.203	1.00 27.96	В
			CZ	ARG	221	37.620	15.882	57, 407	1.00 27.08	В
	MOTA	1629					15.583	56.529	1.00 27.00	В
	MOTA	1630	•	ARG	221	38.571				В
35	MOTA	1631		ARG	221	36.519	15.145	57.491	1.00 27.49	
33	MOTA	.1632	C	ARG	221	41.301	21.562	60.167	1.00 18.78	В
	MOTA	1633	0	ARG	221	41.623	21.206	61.315	1.00 16.42	В
	MOTA	1634	N	THR	222	42.101	22.238	59.350	1.00 15.19	В
	MOTA	1635	CA	THR	222	43.433	22.659	59.741	1.00 15.22	В
40	MOTA	1636	CB	THR	222	44.119	23.409	58.593	1.00 16.99	В
40	MOTA	1637		THR	222	44.121	22.573	57.424	1.00 16.46	В
	MOTA	1638	CG2	THR	222	45.534	23.796	58.977	1.00 14.73	В
	MOTA	1639	С	THR	222	43.323	23.601	60.928	1.00 16.64	В
	MOTA	1640	0	THR	222	44.046	23.461	61.920	1.00 16.06	В
	MOTA	1641	N	THR	223	42.405	24.559	60.828	1.00 16.39	В
45	MOTA	1642	CA	THR	223	42.202	25.515	61.902	1.00 17.40	В
	MOTA	1643	CB	THR	223	41.160	26.603	61.519	1.00 18.18	В
	ATOM	1644	OG1	THR	223	39.839	26.125	61.780	1.00 22.16	В
	ATOM	1645	CG2	THR	223	41.268	26.953	60.048	1.00 18.76	В
	MOTA	1646	c	THR	223	41.708	24.757	63.134	1.00 17.96	В
50	ATOM	1647	ō	THR	223	42.078	25.083	64.253	1.00 20.22	В
	MOTA	1648	N	ALA	224	40.875	23.743	62.916	1.00 17.09	B
	MOTA	1649	CA	ALA	224	40.348	22.953	64.027	1.00 17.61	В
	ATOM	1650	CB	ALA	224	39.349	21.902	63.520	1.00 17.42	В
	ATOM	1651	C	ALA	224	41.503	22.268	64.744	1.00 16.75	В
55			Ö	ALA	224	41.588	22.284	65.979	1.00 13.71	В
"	MOTA	1652					21.663	63.950	1.00 16.23	В
	ATOM	1653	N	ALA	225	42.384		64.486	1.00 15.23	В
	MOTA	1654	CA	ALA	225	43.551	20.980			
	MOTA	1655	CB	ALA	225	44.391	20.426	63.346	1.00 14.25	В.
<i>6</i> 0	MOTA	1656	C	ALA	225	44.376	21.956	65.332	1.00 16.42	В
60	MOTA	1657	0	ALA	225	44.983	21.566	66.329	1.00 14.18	В
	MOTA	1658	N	THR	226	44.385	23.231	64.931	1.00 18.14	В
	MOTA	1659	CA	THR	226	45.135	24.261	65.666	1.00 18.36	В
	MOTA	1660	CB	THR	226	45.205	25.606	64.894	1.00 19.59	В
	MOTA	1661	0G1	THR	226	45.994	25.445	63.705	1.00 20.89	В
65	MOTA	1662		THR	226	45.821	26.696	65.775	1.00 18.63	В
	ATOM	1663	C	THR	226	44.507	24.541	67.024	1.00 19.56	В
	ATOM	1664	ō	THR	226	45.214	24.765	68.000	1.00 22.00	В
	ATOM	1665	N	LEU	227	43.178	24.527	67.074	1.00 19.70	В
	MOTA	1666	CA	LEU	227	42.427	24.798	68.297	1.00 20.19	В
70	MOTA	1667	CB	LEU	227	41.011	25.291	67.943	1.00 22.99	В
, ,	MOTA	1668	CG	LEU	227	40.728	26.794	67.875	1.00 28.11	В
	ATOM	1669			227	41.162	27.422	69.202	1.00 28.40	В
				LEU				66.677	1.00 27.33	В
	MOTA	1670	CDZ	LEU	227	41.452	27.445	00.077	1.00 41.33	

	MOTA	1671	С	LEU	227	42.279	23.627	69.269	1.00 19.64	В
	MOTA	1672	ō	LEU	227	42.384	23.801	70.480	1.00 17.11	В
		1673	N	MET	228	42.021	22.440	68.727	1.00 21.48	В
	MOTA							69.557	1.00 21.62	В
6	MOTA	1674	CA	MET	228	41.807	21.253			
5	ATOM	1675	CB	MET	228	40.465	20.627	69.174	1.00 21.31	В
	ATOM	1676	CG	MET	228	39.286	21.542	69.510	1.00 22.62	В
	ATOM	1677	SD	MET	228	37.764	21.286	68.570	1.00 28.36	В
	ATOM	1678	CE	MET	228	37.979	22.463	67.223	1.00 25.23	В
	MOTA	1679	c	MET	228	42.936	20.235	69.472	1.00 19.55	В
10						43.364	19.884	68.392	1.00 19.08	В
10	MOTA	1680	0	MET	228					
	MOTA	1681	N	ASN	229	43.404	19.764	70.628	1.00 19.30	В
	MOTA	1682	CA	ASN	229	44.496	18.790	70.683	1.00 21.72	В
	MOTA	1683	CB	ASN	229	44.902	18.512	72.140	1.00 21.27	В
	ATOM	1684	CG	ASN	229	45.124	19.786	72.952	1.00 23.92	В
15	ATOM	1685		ASN	229	45.493	20.829	72.413	1.00 26.36	В
10	MOTA	1686		ASN	229	44.913	19.694	74.262	1.00 18.44	В
					229	44.165	17.460	69.993	1.00 21.18	. В
	ATOM	1687	Ç	ASN						В
	MOTA	1688	0	ASN	229	43.071	16.927	70.153	1.00 21.11	
	MOTA	1689	N	ALA	230	45.129	16.945	69.231	1.00 20.55	В
20	MOTA	1690	CA	ALA	230	44.975	15.683	68.510	1.00 21.88	В
	MOTA	1691	CB	ALA	230	45.172	14.502	69.466	1.00 22.05	В
	ATOM	1692	С	ALA	230	43.599	15.601	67.869	1.00 21.44	В
	MOTA	1693	ō	ALA	230	42.925	14.588	67.974	1.00 23.20	В
			N	TYR	231	43.197	16.667	67.191	1.00 20.11	В
25	MOTA	1694							1.00 21.54	В
23	MOTA	1695	CA	TYR	231	41.878				
	MOTA	1696	CB	TYR	231	41.637	18.103	65.968	1.00 19.36	. B
	MOTA	1697		TYR	231	40.280	18.276	65.322	1.00 14.20	В
	MOTA	1698	CD1	TYR	231	40.106	18.061	63.956	1.00 10.71	В
	MOTA	1699	CE1	TYR	231	38.852	18.173	63.369	1.00 9.05	В
30	MOTA	1700	CD2	TYR	231	39.159	18.613	66.085	1.00 14.00	В
-	ATOM	1701	CE2	TYR	231	37.900	18.725	65.503	1.00 11.47	В
		1702			231	37.757	18.505	64.152	1.00 9.28	В
	ATOM		CZ	TYR					1.00 11.26	В
	MOTA	1703	OH	TYR	231.	36.522	18.626	63.583		
~ -	MOTA	1704	С	TYR	231	41.603	15.614	65.526	1.00 22.31	В
35	MOTA	1705	0	TYR	231	40.611	14.889	65.630	1.00 23.44	В
	ATOM	1706	N	SER	232	42.481	15.482	64.538	1.00 21.31	В
	ATOM	1707	CA	SER	232	42.286	14.487	63.486	1.00 21.21	8
	MOTA	1708	CB	SER	232	43.382	14.614	62.424	1.00 19.70	В
					232	44.658	14.355	62.980	1.00 22.28	В
40	MOTA	1709	OG.	SER						B
40	ATOM	1710	C	SER	232	42.245	13.046	63.983	1.00 20.84	
	MOTA	1711	0	SER	232	41.718	12.165	63.303	1.00 21.67	В
	MOTA	1712	N	SER	233	42.788	12.805	65.166	1.00 18.82	В
	MOTA	1713	CA	SER	233	42.801	11.447	65.670	1.00 16.78	В
	MOTA	1714	CB	SER	233	44.189	11.108	66.222	1.00 14.92	В
45	MOTA	1715	OG	SER	233	44.295	11.465	67.587	1.00 15.42	В
	MOTA	1716	c	SER	233	41.745	11.193	66.741	1.00 17.60	В
					233	41.365	10.067	66.964	1.00 18.14	В
	MOTA	1717	0	SER						В
	MOTA	1718	N	ARG	234	41.267	12.253	67.392	1.00 18.41	
	MOTA	1719	CA	ARG	234	40.266	12.113	68.450	1.00 18.22	В
50	MOTA	1720	CB	ARG	234	40.716	12.874	69.703	1.00 20.85	В
	MOTA	1721	CG	ARG	234	41.207	11.975	70.809	1.00 26.63	В
	MOTA	1722	CD	ARG	234	42.603	12.340	71.282	1.00 28.86	В
	MOTA	1723	NE	ARG	234	42.624	13.522	72.138	1.00 28.89	В
	MOTA	1724	cz	ARG	234	43.641	13.853	72.927	1.00 30.32	В
55							13.089		1.00 29.87	В
22	MOTA	1725		ARG	234	44.724		72.969		
	MOTA	1726	NH2	ARG	234	43.571	14.941	73.683	1.00 29.28	В
	ATOM	1727	С	ARG	234	38.858	12.559	68.065	1.00 18.79	В
	MOTA	1728	0	ARG	234	37.986	12.639	68.914	1.00 18.55	В
	MOTA	1729	N	SER	235	38.641	12.826	66.780	1.00 19.09	· в
60	ATOM	1730	CA	SER	235	37.339	13.278	66.307	1.00 18.40	В
00					235	37.477	14.654	65.655	1.00 16.08	B
	MOTA	1731	CB	SER						В
	MOTA	1732	0G	SER	235	38.275	14.584	64.481	1.00 13.92	
	MOTA	1733	С	SER	235	36.694	12.314	65.312	1.00 18.89	В
	ATOM	1734	0	SER	235	37.379	11.637	64.558	1.00 18.57	В
65	MOTA	1735	N	HIS	236	35.363	12.284	65.323	1.00 20.05	В
	MOTA	1736	CA	HIS	236	34.571	11.445	64.427	1.00 20.67	В
	MOTA	1737	СВ	HIS	236	33.409	10.800	65.186	1.00 21.89	B
				HIS		33.819	10.092	66.439	1.00 22.09	В
	MOTA	1738	CG		236					
70	MOTA	1739		HIS	236	33.733	10.462	67.740	1.00 22.95	В
70	MOTA	1740		. HIS	236	34.406	8.847	66.433	1.00 22.44	В
	MOTA	1741	CE1	. HIS	236	34.663	8.480	67.677	1.00 24.61	В
	MOTA	1742		HIS	236	34.265	9.441	68.489	1.00 23.56	В
	ATOM	1743	С	HIS		33.994	12.353	63.345	1.00 21.61	В
			•			•				

	MOTA	1744	0	HIS	236	33.373	13.368	63.658	1.00 22.50	В
	MOTA	1745	N	SER	237	34.195	12.000	62.080	1.00 20.87	В
	MOTA	1746	CA	SER	237	33.673	12.813	60.992	1.00 21.41	В
	MOTA	1747	CB	SER	237	34.811	13.241	60.061	1.00 21.79	В
5	MOTA	1748	0G	SER	237	35.388	12.121	59.411	1.00 21.23	В
•	ATOM	1749	c	SER	237	32.618	12.049	60.201	1.00 22.61	В
	MOTA -	1750	õ	SER	237	32.863	10.939	59.749	1.00 23.35	В
	MOTA	1751	N	VAL	238	31.440	12.648	60.053	1.00 21.59	В
		1752		VAL	238	30.348	12.022	59.313	1.00 20.89	В
10	MOTA		CA			29.106		60.234	1.00 22.16	В
10	MOTA	1753	CB	VAL	238		11.821			
	MOTA	1754	·CG1		238	28.807	13.104	60.977	1.00 24.21	В
	MOTA	1755		VAL	238	27.886	11.395	59.419	1.00 18.41	В
	MOTA	1756	С	VAL	238	29.967	12.872	58.103	1.00 18.95	В
1.5	MOTA	1757	0	VAL	238	29.157	13.772	58.205	1.00 18.39	В
15	MOTA	1758	N	PHE	239	30.586	12.577	56.962	1.00 19.38	В
	MOTA	1759	CA	PHE	239	30.329	13.295	55.712	1.00 19.10	В
	MOTA	1760	CB	PHE	239	31.501	13.115	54.735	1.00 16.63	В
	MOTA	1761	CC	PHE	239	31.413	13.986	53.501	1.00 13.65	В
	MOTA	1762	CD1	PHE	239	30.443	13.752	52.521	1.00 13.62	В
20	MOTA	1763	CD2	PHE	239	32.307	15.029	53.316	1.00 11.10	В
	MOTA	1764	CE1	PHE	239	30.375	14.557	51.367	1.00 11.04	В
	MOTA	1765	CE2	PHE	239	32.248	15.836	52.174	1.00 11.49	В.
	MOTA	1766	CZ	PHE	239	31.281	15.598	51.196	1.00 10.13	В
	MOTA	1767	С	PHE	239	29.072	12.709	55.089	1.00 20.70	В
25	MOTA	1768	0	PHE	239	29.088	11.581	54.635	1.00 21.65	В
	ATOM	1769	N	SER	240	27.992	13.487	55.056	1.00 19.79	В
	ATOM	1770	CA	SER	240	26.737	12.999	54.489	1.00 20.02	В
	ATOM	1771	CB	SER	240	25.568	13.303	55.430	1.00 17.99	В
	MOTA	1772	0G	SER	240	25.714	12.651	56.682	1.00 13.88	В
30	ATOM	1773	c	SER	240	26.424	13.552	53.104	1.00 21.86	В
•	MOTA	1774	ŏ	SER	240	26.721	14.684	52.796	1.00 22.91	В
	ATOM	1775	N	VAL	241	25.818	12.720	52.271	1.00 23.30	В
	ATOM	1776	CA	VAL	241	25.448	13.130	50.932	1.00 24.80	В
		1777		VAL	241	26.432	12.581	49.884	1.00 24.40	В
35	MOTA MOTA		CB		241	26.805		50.226	1.00 26.22	В
22		1778		VAL			11.139		1.00 28.22	
	MOTA	1779		VAL	241	25.807	12.668	48.494		В
	MOTA	1780	C	VAL	241	24.035	12.646	50.619	1.00 26.53	В
	ATOM	1781	0	VAL	241		. 11.465	50.433	1.00 27.95	В
40	MOTA	1782	N	THR	242	23.093	13.582	50.586	1.00 28.63	В
40	MOTA	1783	CA	THR	242	21.698	13.287	50.311	1.00 30.95	В
	MOTA	1784	CB	THR	242	20.779	14.186	51.164	1.00 32.05	В
	MOTA	1785		THR	242	20.997	13.901	52.555	1.00 33.54	В
•	ATOM	1786	CG2	THR	242	19.319	13.939	50.825	1.00 34.70	В
4-	MOTA	1787	С	THR	242	21.393	13.490	48.828	1.00 32.32	В
45	MOTA	1788	0	THR	242	21.845	14.451	48.213	1.00 33.97	В
	MOTA	1789	N	ILE	243	20.628	12.573	48.250	1.00 33.03	В
	ATOM	1790	CA	ILE	243	20.293	12.660	46.837	1.00 33.83	В
	MOTA	1791	CB	ILE	243	20.912	11.493	46.052	1.00 33.37	В
	MOTA	1792	CG2	ILE	243	20.732	11.719	44.561	1.00 32.82	В
50	MOTA	1793		ILE	243	22.395	11.361	46.400	1.00 34.30	В
	MOTA	1794		ILE	243	23.071	10.176	45.750	1.00 35.23	В
	ATOM	1795	c	ILE	243	18.789	12.635	46.604	1.00 35.12	В
	ATOM	1796	ŏ	ILE	243	18.175	11.581	46.655	1.00 34.29	В
	ATOM	1797	N	HIS	244	18.197	13.803	46.364	1.00 37.02	B
55	ATOM	1798	CA	HIS	244	16.766	13.878	46.097	1.00 38.10	В
55	MOTA	1799	CB	HIS	244	16.214	15.280	46.390	1.00 40.10	В
				HIS			15.635	47.845	1.00 42.80	B
	MOTA	1800	CC		244	16.190		48.781		В.
	MOTA	1801		HIS	244	15.219	15.493		1.00 43.38	
60	MOTA	1802		HIS	244	17.271	16.192	48.496	1.00 44.55	В
60	MOTA	1803		HIS	244	16.968	16.376	49.770	1.00 44.18	В
	MOTA	1804		HIS	244	15.729	15.960	49.968	1.00 43.01	В
	MOTA	1805	С	HIS	244	16.569	13.545	44.624	1.00 38.58	В
	MOTA	1806	0	HIS	244	17.113	14.216	.43.754	1.00 38.74	В
~~	MOTA	1807	N	MET	245	15.790	12.500	44.357	1.00 38.78	В
65	MOTA	1808	CA	MET	245	15.534	12.056	42.991	1.00 38.49	В
	MOTA	1809	СВ	MET	245	16.081	10.646	42.791	1.00 35.74	В
	ATOM	1810	CG	MET	245	17.579	10.552	42.978	1.00 34.03	В
	ATOM	1811	SD	MET	245	18.110	8.870	43.218	1.00 32.96	В
	ATOM	1812	CE	MET	245	17.855	8.694	44.996	1.00 26.04	В
70	ATOM	1813	c	MET	245	14.058	12.083	42.618	1.00 39.24	В
. •	MOTA	1814	ŏ	MET	245	13.193	11.814	43.439	1.00 39.24	В
	MOTA	1815	N.	LYS	246	13.791	12.409	41.358	1.00 39.88	В
	MOTA	1816	CA	LYS	246	12.430	12.477	40.855	1.00 40.90	В
	AL OF	1010		2.3	210	22.430			2	~

WO 2004/004652 PCT/US2003/021145

	ATOM	1817	CB	LYS	246	11.910	13.916	40.915	1.00 42.86	В
	MOTA	1818	CG	LYS	246	10.453	14.080	40.467	1.00 45.41	В
	MOTA	1819	CD	LYS	246	10.140	15.516	40.018	1.00 47.23	В
_	MOTA	1820	CE	LYS	246	10.383	16.538	41.134	1.00 49.08	В
5	ATOM	1821	NZ	LYS	246	10.267	17.954	40.659	1.00 47.64	В
	MOTA	1822	С	LYS	246	12.406	11.994	39.414	1.00 41.15	В
	MOTA	1823	0	LYS	246	13.084	12.547	38.552	1.00 40.37	В
	MOTA	1824	N	GLU	247	11.622	10.954	39.163	1.00 40.39	В
	MOTA	1825	CA	GLU	247	11.496	10.414	37.821	1.00 40.56	В
10	MOTA	1826	СB	GLU	247	12.010	8.977	37.769	1.00 39.14	В
	MOTA	1827	CG	GLU	247	11.479	8.090	38.866	1.00 37.23	В
	MOTA	1828	CD	GLU	247	12.390	6.916	39.118	1.00 36.86	В
	MOTA	1829		GLU	247	12.094	6.104	40.021	1.00 36.22	В
	MOTA	1830	OE2	GLU	247	13.410	6.813	38.406	1.00 36.77	В
15	MOTA	1831	С	GLU	247	10.039	10.469	37.402	1.00 40.31	В
	MOTA	1832	0	GLU	247	9.142	10.304	38.220	1.00 39.86	В
	MOTA	1833	N	THR	248	9.820	10.720	36.117	1.00 40.83	В
	MOTA	1834	CA	THR	248	8.480	10.826	35.569	1.00 40.95	В
20	MOTA	1835	CB	THR	248	8.339	12.123	34.736	1.00 40.97	В
20	MOTA	1836		THR	248	8.804	13.238	35.507	1.00 41.15	В
	MOTA	1837		THR	248	6.886	12.363	34.358	1.00 40.88	В
	MOTA	1838	C	THR	248	8.143	9.625	34.690	1.00 40.36	В
	MOTA	1839	0	THR	248	8.799	9.380	33.684	1.00 40.50	В
25	MOTA	1840	N	THR	249	7.111	8.885	35.086	1.00 39.94	В
23	MOTA	1841	CA	THR	249	6.661	7.712	34.341	1.00 39.13	В
	MOTA	1842	CB	THR	249	5.537	6.976	35.086	1.00 39.64	В
	MOTA	1843		THR	249	4.307	7.686	34.897	1.00 37.39	В
	ATOM	1844		THR	249	5.846	6.894	36.575	1.00 38.52	В
30	MOTA	1845	C	THR	249	6.115	8.132	32.980	1.00 39.50	В.
20	MOTA	1846	0	THR ILE	249	5.943	9.311 7.148	32.713	1.00 39.71 1.00 40.73	В
	MOTA MOTA	1847	N	-	250	5.841	7.398	32.129 30.794	1.00 40.49	B B
		1848 1849	CA CB	ILE ILE	250	5.307 5.292	6.095	29.944	1.00 37.78	В
	MOTA MOTA	1850		ILE	250 250	4.244	5.135	30.472	1.00 37.78	8
35	ATOM	1851		ILE	250	4.999	6.421	28.479	1.00 35.79	В.
33	ATOM	1852		ILE	250	5.125	5.238	27.552	1.00 33.73	В
	MOTA	1853	C	ILE	250	3.892	7.963	30.905	1.00 42.55	В
	ATOM	1854	ō	ILE	250	3.361	8.534	29.953	1.00 43.05	В
	ATOM	1855	N	ASP	251	3.296	7.800	32.084	1.00 44.44	В
40	ATOM	1856	CA	ASP	251	1.947	8.286	32.357	1.00 46.93	В
••	ATOM	1857	CB	ASP	251	1.215	7.318	33.290	1.00 47.07	В
	ATOM	1858	CG	ASP	251	0.494	6.221	32.539	1.00 47.33	В
	MOTA	1859		ASP	251	0.034	5.257	33.190	1.00 47.89	В
	ATOM	1860		ASP	251	0.381	6.325	31.298	1.00 45.62	`B
45	MOTA	1861	c	ASP	251	1.965	9.675	32.987	1.00 48.37	В
	MOTA	1862		ASP	251	0.933	10.175	33.424	1.00 49.52	В
	MOTA	1863	N	GLY	252	3.145	10.286	33.038	1.00 49.00	В
	MOTA	1864	CA	GLY	252	3.275	11.612	33.609	1.00 48.84	В
	ATOM	1865	C	GLY	252	3.432	11.634	35.117	1.00 49.43	В
50	MOTA	1866	0	GLY	252	3.856	12.638	35.675	1.00 49.95	В
	ATOM	1867	N	GLU	253	3.093	10.538	35.787	1.00 49.54	В
	MOTA	1868	CA	GLU	253	3.219	10.499	37.237	1.00 50.34	В
	MOTA	1869	CB	GLU	253	2.693	9.183	37.797	1.00 51.72	В
	MOTA	1870	CG	GLU	253	2.753	9.136	39.309	1.00 55.44	В
55	MOTA	1871	CD	GLU	253	2.605	7.734	39.856	1.00 57.73	В
	MOTA	1872	OE1	GLŲ	253	2.703	7.561	41.091	1.00 59.23	, в
	MOTA	1873	OE2	GLU	253	2.400	6.805	39.048	1.00 59.21	В
	MOTA	1874	С	GLU	253	4.671	10.678	37.661	1.00 49.73	В
	MOTA	1875	0	GLU	253	5.582	10.326	36.930	1.00 49.04	В
60	MOTA	1876	N	GLU	254	4.878	11.229	38.851	1.00 49.71	В
	MOTA	1877	CA	GLU	254	6.230	11.445	39.346	1.00 50.40	В
	MOTA	1878	CB	GLU	254	6.452	12.927	39.629	1.00 51.91	В
	MOTA	1879	CG	GLU	254	7.036	13.680	38.448	1.00 56.74	В
	MOTA	1880	ÇD	GLU	254	6.579	15.124	38.397	1.00 59.63	. в
65	MOTA	1881		GLU	254	6.444	15.739	39.479	1.00 61.46	В
	ATOM	1882		GLU	254	6.363	15.642	37.276	1.00 60.48	В
	MOTA	1883	C	GLU	254	6.562	10.614	40.578	1.00 48.68	В
	MOTA	1884	Ō	GLU	254	5.812	10.579	41.546	1.00 47.25	В
	MOTA	1885	N	LEU	255	7.703	9.938	40.517	1.00 47.02	В
70	MOTA	1886	CA	LEU	255	8.157	9.094	41.609	1.00 45.92	В
	ATOM	1887	СВ	LEU	255	8.566	7.722	41.067	1.00 45.31	В
	MOTA	1888	CG	LEU	255	7.647	7.080	40.016	1.00 44.40	В
	MOTA	1889		LEU	255	8.308	5.837	39.454	1.00 43.92	В

	MOTA	1890	CD2	LEU	255	6.294	6.747	40.621	1.00 43.09	В
	ATOM	1891	c	LEU	255	9.353	9.780	42.250	1.00 46.31	В
			ŏ		255	10.346	10.044	41.580	1.00 46.88	В
	MOTA	1892		LEU						
_	MOTA	1893	N	VAL	256	9.255	10.069	43.545	1.00 46.34	В
5	MOTA	1894	CA	VAL	256	10.343	10.739	44.254	1.00 46.32	В
	MOTA	1895	CB	VAL	256	9.837	12.012	44.988	1.00 46.60	В
	MOTA	1896	CG1	VAL	256	9.447	13.075	43.971	1.00 46.43	В
	ATOM	1897	CG2		256	8.642	11.679	45.870	1.00 46.46	В
	ATOM	1898	c	VAL	256	11.049	9.835	45.258	1.00 45.32	В
10								46.158	1.00 45.96	В
10	MOTA	1899	0	VAL	256	10.428	9.287			
	MOTA	1900	.N	LYS	257	12.359	9.687	45.077	1.00 44.55	В
	MOTA	1901	CA	LYS	257	13.190	8.865	45.951	1.00 42.39	В
	MOTA	1902	CB	LYS	257	13.997	7.852	45.133	1.00 43.00	В
	ATOM	1903	CG	LYS	257	13.170	6.932	44.261	1.00 41.72	В
15	ATOM	1904	CD	LYS	257	14.058	6.001	43.457	1.00 38.34	В
	ATOM	1905	CE	LYS	257	14.956	6.771	42.514	1.00 37.62	В
		1906	NZ	LYS	257	15.665	5.873	41.563	1.00 37.38	В
	MOTA									В
	ATOM	1907	C	LYS	257	14.161	9.755	46.705	1.00 40.94	
20	MOTA	1908	0	LYS	257	14.545	10.802	46.220	1.00 42.05	В
20	MOTA	1909	N	ILE	258	14.557	9.322	47.893	1.00 38.70	В
	MOTA	1910	CA	ILE	258	15.498	10.082	48.699	1.00 35.70	В
	MOTA	1911	CB	ILE	258	14.790	10.816	49.850	1.00 36.93	В
	MOTA	1912	CG2	ILE	258	15.811	11.596	50.667	1.00 37.53	В
	ATOM	1913		ILE	258	13.729	11.767	49.291	1.00 38.43	·B
25	ATOM	1914		ILE	258	12.932	12.500	50.363	1.00 38.30	В
23									1.00 33.73	
	MOTA	1915	С	ILE	258	16.541	9.142	49.285		В
	MOTA	1916	0	ILE	258	16.257	8.388	50.209	1.00 32.97	В
	MOTA	1917	N	GLY	259	17:746	9.186	48.731	1.00 31.67	В
	MOTA	1918	CA	GLY	259	18.815	8.338	49.219	1.00 30.51	В
30	MOTA	1919	С	GLY	259	19.874	9.136	49.956	1.00 29.55	В
	MOTA	1920	0	GLY	259	20.363	10.138	49.442	1.00 30.38	В
	ATOM	1921	N	LYS	260	20.230	8.692	51.159	1.00 27.15	В
	MOTA	1922	CA	LYS	260	21.239	9.377	51.95B	1.00 26.83	В
25	MOTA	1923	CB	LYS	260	20.603	9.940	53.240	1.00 24.21	В
35	ATOM	.1924	CG	LYS	260	21.518	10.858	54.037	1.00 19.17	В
	MOTA	1925	CD	LYS	260	20.833	11.362	55.289	1.00 17.68	В
	ATOM	1926	CE	LYS	260	21.768	12.219	56.124	1.00 16.42	В
	ATOM	1927	NZ	LYS	260	21.115	12.662	57.378	1.00 16.56	В
	ATOM	1928	C	LYS	260	22.394	8.437	52.318	1.00 27.97	В
40	ATOM	1929	ŏ	LYS	260	22.184	7.357	52.864	1.00 30.85	В
70							8.859		1.00 26.40	В
	MOTA	1930	N	LEU	261	23.616		52.011		
	MOTA	1931	CA	LEU	261	24.792	8.056	52.306	1.00 24.54	8
	MOTA	1932	CB	LEU	261	25.587	7830	51.019	1.00 23.41	В
	ATOM	1933	CG	LEU	261	26.989	7.243	51.175	1.00 23.40	В
45	MOTA	1934	CD1	LEU	261	26.922	5.920	51.941	1.00 20.72	В
	MOTA	1935	CD2	LEU	261	27.599	7.045	49.798	1.00 20.51	В
	MOTA	1936	C.	LEU	261	25.685	8.715	53.362	1.00 23.98	В
	ATOM	1937	ŏ.	LEU	261	26.117	9.836	53.198	1.00 22.95	В
50	ATOM	1938	N	ASN	262	25.953	8.000	54.448	1.00 22.99	В
50	MOTA	1939	CA	ASN	262	26.799	8.529	55.511	1.00 21.81	В
	MOTA	1940	CB	ASN	- 262	26.138	8.303	56.874	1.00 19.98	В
	ATOM	1941	CG	ASN	262	24.730	8.872	56.945	1.00 24.40	В
	ATOM	1942	OD1	ASN	262	23.770	8.135	57.124	1.00 24.74	В
	MOTA	1943	ND2	ASN	262	24.606	10.189	56.807	1.00 20.69	8
55	MOTA	1944	С	ASN	262	28.192	7.879	55.494	1.00 21.73	В
-	ATOM	1945	ŏ	ASN	262		6.680	55.589	1.00 20.91	В
						28.314				
	ATOM	1946	N	LEU	263	29.238	8.691	55.348	1.00 21.87	В
	MOTA	1947	CA	LEU	263	30.611	8.191	55.338	1.00 20.99	В
	MOTA	1948	CB	LEU	263	31.360	8.750	54.136	1.00 19.60	В
60	MOTA ·	1949	CG	LEU	263	30.578	8.470	52.856	1.00 20.68	В
	MOTA	1950	CD1	LEU	263	31.187	9.220	51.710	1.00 22.18	В
	ATOM	1951		LEU	263	30.557	6.972	52.584	1.00 20.91	В
	ATOM	1952	c	LEU	263	31.262	8.650	56.630	1.00 21.08	В
65	MOTA	1953	0	LEU	263	31.631	9.793	56.753	1.00 20.87	В
65	MOTA	1954	N	VAL	264	31.397	7.734	57.586	1.00 22.31	В
	MOTA	1955	CA	VAL	264	31.964	8.048	58.901	1.00 22.41	В
	MOTA	1956	CB	VAL	264	31.119	7.378	60.042	1.00 22.70	В
	MOTA	1957		VAL	264	31.373	8.082	61.372	1.00 22.08	В
	ATOM	1958		VAL	264	29.627	7.398	59.691	1.00 23.20	В
70	MOTA	1959	C	VAL	264	33.425	7.645	59.112	1.00 23.23	В
, 5										
	ATOM	1960	0	VAL	264	33.776	6.482	58.994	1.00 25.35	B
	MOTA	1961	N	ASP	265	34.262	8.625	59.443	1.00 23.36	В
	MOTA	1962	CA	ASP	265	35.683	8.397	59.709	1.00 21.00	В

	MOTA	1963	CB	ASP	265	36.528	9.471	59.011	1.00 17.94	В
	MOTA	1964	CG	ASP	265	38.024	9.311	59.258	1.00 18.29	В
	ATOM	1965	OD1		265	38.429	8.960	60.384	1.00 17.19	В
-	MOTA	1966	OD2		265	38.806	9.554	58.322	1.00 15.43	В
5	MOTA	1967	С	ASP	265	35.840	8.501	61.230	1.00 21.25	В
	MOTA	1968	0	ASP	265	36.208	9.550	61.758	1.00 22.30	В
	ATOM	1969	N	LEU	266	35.552	7.406	61.928	1.00 19.20	Ė
	MOTA	1970	CA	LEU	266	35.636	7.387	63.387	1.00 19.48	В
	MOTA	1971	CB	LEU	266	35.269	5.991	63.913	1.00 17.26	В
10	MOTA	1972	CG	LEU	266	33.871	5.454	63.567	1.00 18.72	В
		1973	CD1		266	33.752	4.005	64.042	1.00 15.87	. В
	MOTA									
	MOTA	1974	CD2		266	32.792	6.332	64.207	1.00 17.11	В
	MOTA	1975	С	LEU	266	37.008	7.818	63.936	1.00 17.95	В
	MOTA	1976	0	LEU	266	37.982	7.938	63.198	1.00 16.50	В
15	ATOM	1977	N	ALA	267	37.053	8.062	65.243	1.00 16.22	В
		1978			267			65.920	1.00 17.36	В
	MOTA		CA	ALA		38.284	8.458			
	MOTA	1979	CB	ALA	267	37.957	9.144	67.244	1.00 13.49	В
	MOTA	1980	С	ALA	267	39.112	7.202	66.183	1.00 18.67	В
	MOTA	1981	0	ALA	267	38.561	6.119	66.320	1.00 18.45	В
20	ATOM	1982		GLY	268	40.430	7.357	66.249	1.00 18.66	В
20			N							
	MOTA	1983	CA	GLY	268	41.291	6.226	66.507	1.00 20.51	В
	MOTA	1984	С	GLY	268	40.738	5.336	67.604	1.00 22.52	В
	MOTA	1985	0	GLY	268	40.123	5.815	68.545	1.00 22.16	В
	MOTA	1986	N	SER	269	40.974	4.033	67.483	1.00 23.43	В
25										
23	MOTA	1987	CA	SER	269	40.471	3.075	68.461	1.00 25.19	. В
	MOTA	1988	CB	SER	269	40.083	1.796	67.750	1.00 24.66	В
	MOTA	1989	OG	SER	269	41.131	1.412	66.883	1.00 25.58	В
	MOTA	1990	C	SER	269	41.446	2.739	69.584	1.00 26.21	В
20	MOTA	1991	0	SER	269	41.100	1.996	70.493	1.00 24.37	В
30	MOTA	1992	N	GLU	270	42.657	3.286	69.520	1.00 28.26	В
	MOTA	1993	CA	GLU	270	43.664	3.029	70.546	1.00 31.89	В
	MOTA	1994	СВ	GLU	270	45.031	3.589	70.118	1.00 31.04	В
	MOTA								1.00 28.41	
		1995	CG	GLU	270	45.140	5.113	70.033		В
~ -	MOTA	1996	CD	GLU	270	44.679	5.680	68.701	1.00 28.74	В
35	MOTA	1997	OE1	GLU	270	44.875	6.895	68.471	1.00 30.30	В
	MOTA	1998		GLU	270	44.129	4.921	67.884	1.00 28.84	В
		1999			270	43.262	3.618	71.904	1.00 35.40	В
	MOTA		С	GLU						
	MOTA	2000	0	GLU	270	42.847	4.770	71.993	1.00 34.74	В
	MOTA	2001	N	ASN	271	43.378	2.798	72.950	1.00 40.25	В
40	MOTA	2002	CA	ASN	271	43.039	3.192	74.324	1.00 44.12	В
. •	ATOM	2003	СВ	ASN	271	41.581	3.693	74.419	1.00 45.82	В
	MOTA	2004	CG	ASN	271	40.546	2.600	74.147	1.00 46.03	В
	MOTA	2005	OD1	ASN	271	39.347	2.845	74.224	1.00 45.22	В
	MOTA	2006	ND2	ASN	271	41.011	1.395	73.829	1.00 47.11	В
45	ATOM	2007	С	ASN	271	43.246	2.039	75.307	1.00 45.92	В
										В
	ATOM	2008	0	ASN	271	43.668	0.938	74.922	1.00 46.63	
	MOTA	2009	N	ASN	287	41.544	11.757	79.480	1.00 56.32	В
	MOTA	2010	CA	ASN	287	40.687	12.175	78.374	1.00 56.59	В
	MOTA	2011	CB	ASN	287	41.514	12.914	77.315	1.00 58.79	В.
50		2012	CG	ASN	287	42.376	14.006	77.912	1.00 60.93	B
50	MOTA									
	MOTA	2013	OD1		287	43.344	13.729	78.617	1.00 62.31	В
	MOTA	2014	ND2	ASN	287	42.024	15.259	77.637	1.00 61.77	В
	MOTA	.2015	С	ASN	287	39.995	10.965	77.736	1.00 54.81	В
	MOTA	2016	o	ASN	287	40.651	10.079	77.181	1.00 55.49	В
55		2017						77.811		В
55	MOTA		N	ILE	288	38.667	10.940		1.00 50.95	
	MOTA	2018	CA	ILE	288	37.889	9.838	77.252	1.00 46.25	В
	MOTA	2019	CB	ILE	288	36.925	9.250	78.314	1.00 48.90	В
	MOTA	2020	CG2	ILE	288	37.713	8.784	79.530	1.00 49.46	В
										В
60	MOTA	2021		ILE	288	35.903	10.307	78.741	1.00 49.66	_
UU	MOTA	2022	CD1	ILE	288	34.687	9.730	79.435	1.00 51.96	В
	MOTA	2023	С	ILE	288	37.060	10.259	76.039	1.00 40.91	В
	MOTA	2024	0	ILE	288	36.680	11.423	75.904	1.00 41.77	В
	ATOM	2025	Ň	ASN	289	36.774	9.302	75.163	1.00 32.95	В
C E	MOTA	2026	CA	ASN	289	35.979	9.582	73.976	1.00 26.09	В
65	MOTA	2027	CB	ASN	289	36.674	9.045	72.728	1.00 22.00	В
•	MOTA	2028	CG	ASN		36.093	9.612	71.444	1.00 19.37	В
	MOTA	2029		ASN	289	36.819	9.927	70.521	1.00 19.84	В
	MOTA	2030		ASN	289	34.774	9.725	71.382	1.00 17.42	В
	MOTA	2031	С	ASN	289	34.624	8.927	74.154	1.00 22.64	В
70	MOTA	2032	o	ASN	289	34.394	7.805	73.718	1.00 22.38	В
. •	MOTA	2033	N	GLN	290	33.726	9.652	74.806	1.00 20.05	В
	MOTA	2034	CA	GLN	290	32.386	9.166	75.085	1.00 18.94	В
	MOTA	2035	CB	GLN	290	31.542	10.299	75.659	1.00 20.27	В

	MOTA	2036	ÇG	GLN	290	30.180	9.847	76.124	1.00 20.13	В
	ATOM	2037		GLN	290	30.273	8.777	77.182	1.00 20.41	В
		2038	OE1		290	29.311	8.067	77.441	1.00 22.39	В
	MOTA				290	31.435	8.662	77.806	1.00 20.99	В
5	MOTA	2039	NE2				8.526	73.899	1.00 18.42	В
J	MOTA	2040		GLN	290	31.652			1.00 15.37	В
	MOTA	2041		GLN	290	30.945	7.543	74.068		
	ATOM .	2042	N	SER	291	31.808	9.088	72.704	1.00 19.89	В
	MOTA	2043	CA	SER	291	31.139	8.540	71.526	1.00 21.11	В
• •	MOTA	2044	CB	SER	291	31.161	9.541	70.366	1.00 22.02	В
10	MOTA	2045	OG	SER	291	30.121	10.496	70.491	1.00 23.09	В
	MOTA	2046	,C	SER	291	31.757	7.212	71.090	1.00 22.87	В
	MOTA	2047	0	SER	291	31.051	6.294	70.681	1.00 24.87	В
	MOTA	2048	N	LEU	292	33.074	7.107	71.187	1.00 21.56	В
	MOTA	2049	CA	LEU	292	33.741	5.878	70.812	1.00 21.17	В
15	MOTA	2050	CB	LEU	292	35.247	6.097	70.826	1.00 18.31	В
	MOTA	2051	CG	LEU	292	36.074	5.053	.70.089	1.00 18.27	В
	MOTA	2052	CD1		292	35.653	4.994	68.625	1.00 13.66	В
	ATOM	2053	CD2		292	37.548	5.418	70.218	1.00 17.97	В
	ATOM	2054	c	LEU	292	33.345	4.785	71.818	1.00 21.64	В
20	ATOM	2055	ŏ	LEU	292	32.914	3.703	71.454	1.00 19.24	В
	MOTA	2056	N	LEU	293	33.481	5.100	73.098	1.00 22.14	В
		2057	CA	LEU	293	33.141	4.172	74.158	1.00 22.23	В
	MOTA				293	33.374	4.841	75.513	1.00 22.95	₿.
	ATOM	2058	CB	LEU			4.277	76.408	1.00 25.37	В
25	MOTA	2059	CG	LEU	293	34.479		75.597	1.00 25.32	В
23	MOTA	2060	CD1		293	35.684	3.860			
	MOTA	2061	CD2		293	34.851	5.345	77.431	1.00 26.42	В
	MOTA	2062	C	LEU	293	31.689	3.713	74.046	1.00 24.05	В
	MOTA	2063	0	LEU	293	31:373	2.552	74.304	1.00 27.12	В
20	MOTA	2064	N	THR	294	30.807	4.622	73.647	1.00 23.43	В
30	MOTA	2065	CA	THR	294	29.396	4.293	73.534	1.00 22.37	В
	MOTA	2066	CB	THR	294	28.554	5.580	73.487	1.00 22.35	.В
	MOTA	2067	OG1	THR	294	28.706	6.277	74.734	1.00 19.68	Ъ.
	MOTA	2068	CG2	THR	294	27.090	5.275	73.270	1.00 19.85	В
	MOTA	2069	C	THR	294	29.148	3.419	72.313	1.00 23.90	В
35	ATOM .	2070	0	THR	294	28.276	2.561	72.325	1.00 26.74	В
•	ATOM	2071	N	LEU	295	29.938	3.628	71.268	1.00 24.08	В
	MOTA	2072	CA	LEU	295	29.817	2.846	70.048	1.00 24.42	В
	MOTA	2073	CB	LEU	295	30.822	3.332	69.004	1.00 22.92	В
	ATOM	2074	CG	LEU	295	30.940	2.449	67.760	1.00 22.72	В
40	ATOM	2075		LEU	295	29.647	2.481	66.975	1.00 20.45	В
	MOTA	2076	CD2	LEU	295	32.096	2.925	66.907	1.00 22.47	В
	ATOM	2077	C	LEU	295	30.064	1.361	70.340	1.00 26.15	В
		2078	Ö	LEU	295	29.363	0.503	69.836	1.00 28.14	В
	MOTA					31.079	1.076	71.149	1.00 26.16	В
45	ATOM	2079	N	GLY	296		-0.295	71.503	1.00 25.55	В
43	MOTA	2080	CA	GLY	296	31.391			1.00 25.59	В
	MOTA	2081	C	GLY	296	30.300	-0.915	72.361		
	MOTA	2082	0	GLY	296	29.898	-2.059	72.134	1.00 26.11	В
	MOTA	2083	N	ARG	297	29.817	-0.162	73.346	1.00 22.71	В
50	ATOM	2084	CA	ARG	297	28.760	-0.660	74.217	1.00 22.15	В
50	ATOM	2085	CB	ARG	297	28.528	0.306	75.372	1.00 19.27	В
	MOTA	2086	CG	ARG	297	29.719	0.450	76.284	1.00 20.29	В
	MOTA	2087	CD	ARG	297	29.456	1.467	77.372	1.00 22.43	В
	MOTA	2088	NE	ARG	297	30.639	1.658	78.201	1.00 26.34	В
	MOTA	2089	CZ	ARG	297	31.226	2.833	78.407	1.00 24.22	В
55	MOTA	2090	NH1	ARG	297	30.729	3.921	77.838	1.00 23.11	В
	MOTA	2091	NH2	ARG	297	32.306	2.918	79.178	1.00 18.73	В
	ATOM	2092	С	ARG	297	27.449	-0.876	73.452	1.00 21.70	В
	ATOM	2093	0	ARG	297	26.634	-1.674	73.844	1.00 20.12	В.
	MOTA	2094	N .	VAL	298	27.255	-0.138	72.362	1.00 23.14	В
60	ATOM	2095	CA	VAL	298	26.046	-0.284	71.558	1.00 23.54	В
•	ATOM	2096	CB	VAL	298	25.845	0.924	70.613	1.00 22.84	В
	MOTA	2097		VAL	298	24.742	0.634	69.582	1.00 18.86	В
							2.146	71.432	1.00 19.90	В
	MOTA	2098		VAL	298	25.477		70.739	1.00 25.65	В
65	MOTA	2099	C	VAL	298	26.150	-1.563			
O	MOTA	2100	0	VAL	298	25.192	-2.325	70.643	1.00 27.92	В
	MOTA	2101	N	ILE	299	27.317	-1.793	70.147	1.00 25.96	В
	MOTA	2102	CA	ILE	299	27.516	-2.992	69.354	1.00 27.94	В
	MOTA	2103	CB	ILE	299	28.880	-2.971	68.649	1.00 26.11	В
	MOTA	2104		ILE	299	29.187	-4.330	68.053	1.00 24.74	В
70	MOTA	2105	CG1	ILE	299	28.862	-1.910	67.550	1.00 26.37	В
	MOTA	2106	CD1	ILE	299	30.192	-1.704	66.889	1.00 28.12	В
	ATOM	2107	c	ILE	299	27.413	-4.240	70.235	1.00 29.09	В
	ATOM	2108	ō	ILE	299	26.958	-5.284	69.791	1.00 28.96	В
						-				

	MOTA	2109	N	THR	300	27.829	-4.112	71.490	1.00 29.82	В
							-5.213			
	MOTA	2110		THR	300	27.771		72.440	1.00 30.01	В
	MOTA	2111	CB	THR	300	28.561	-4.877	73.706	1.00 29.27	В
_	MOTA	2112	OG1	THR	300	29.960	-4.842	73.392	1.00 30.68	В
5	MOTA	2113	CG2	THR	300	28.299	-5.900	74.796	1.00 28.12	В
	MOTA	2114	С	THR	300	26.330	-5.517	72.821	1.00 32.39	В
	ATOM	2115	ō	THR	300	25.927	-6.675	72.902	1.00 33.67	В
	MOTA	2116	N	ALA	301	25.552	-4.467	73.044	1.00 32.46	В
10	MOTA	2117	CA	ALA	301	24.157.	-4.631	73.414	1.00 34.19	В
10	MOTA	2118	CB	ALA	301	23.584	-3.305	73.863	1.00 32.83	В
	MOTA	2119	C	ALA	301	23.353	-5.182	72.238	1.00 35.75	В
	ATOM	2120	Ó	ALA	301	22.348	-5.842	72.425	1.00 37.02	В
	ATOM	2121	N	LEU	302	23.812	-4.899	71.024	1.00 36.43	В
15	ATOM	2122	CA	LEU	302	23.132	-5.352	69.817	1.00 38.14	В
15	MOTA	2123	CB	LEU	302	23.549	-4.488	68.622	1.00 38.00	В
	MOTA	2124	CG	LEU	302	22.492	-3.555	68.031	1.00 39.25	В
	MOTA	2125	CD1	LEU	302	21.823	~2.753	69.128	1.00 39.09	· в
	MOTA	2126	CD2		302	23.149	-2.630	67.016	1.00 38.56	В
	ATOM	2127	c	LEU	302	23.428	-6.812	69.514	1.00 39.23	В
20										
20	MOTA	2128	0	LEU	302	22.520	-7.594	69.249	1.00 39.50	В
	MOTA	2129	N	VAL	303	24.709	-7.163	69.552	1.00 40.87	В
	ATOM.	2130	CA	VAL	303	25.161	-8.521	69.287	1.00 42.58	В
	MOTA	2131	CB	VAL	303	26.706	-8.605	69.331	1.00 42.52	В
	MOTA	2132	CG1		303		-10.051	69.270	1.00 43.58	В
25	ATOM	2133	CG2		303	27.301	-7.824	68.167	1.00 42.05	В
23										
	MOTA	2134	C	VAL	303	24.579	-9.496	70.306	1.00 44.19	. B
	MOTA	2135	0	VAL	303		-10.538	69.941	1.00 45.04	В
	MOTA	2136	N	GĽU	304	24.685	-9.145	71.584	1.00 45.93	В
	ATOM	2137	CA	GLU	304	24.169	-9.973	72.667	1.00 48.10	В
30	ATOM	2138	CB	GLU	304	24.792	-9.541	73.998	1.00 47.26	В
	MOTA	2139	CG	GLU	304	26.305	-9.707	74.041	1.00 46.33	В
		2140					-9.334	75.382	1.00 46.65	В
	MOTA		CD	GLU	304	26.901				
	MOTA	2141		GLU	304	28.139	-9.410	75.519	1.00 44.41	В
25	MOTA	2142	OE2	GLU	304	26.135	-8.968	76.302	100 47.42	В
35	MOTA	2143	С	GLU	304	22.649	-9.885	72.753	1.00 49.92	В.
	MOTA	2144	0	GLU	304	22.031	-10.492	73.612	1.00 50.02	В
	ATOM	2145	N	ARG	305	22.061	-9.116	71.844	1.00 52.91	В
	ATOM	2146	CA	ARG	305	20.614	-8.941	71.787	1.00 56.32	В
40	MOTA	2147	CB	ARG	305		-10.251	71.357	1.00 58.76	В
40	ATOM	2148	CG	ARG	305	20.300	-10.652	69.934	1.00 63.36	В
	MOTA	2149	CD	ARG	305	19.501	-11.856	69.475	1.00 68.00	В
	MOTA	2150	NE	ARG	305	19.718	-12.133	68.057	1.00 71.78	B
	MOTA	2151	CZ	ARG	305		-11.344	67.068	1.00 73.93	В
	ATOM	2152		ARG	305		-10.222	67.339	1.00 74.69	·B
45		2153	NH2					65.807	1.00 75.22	В
73	MOTA			ARG	305		-11.675			
	MOTA	2154	С	ARG	305	19.981	-8.443	73.082	1.00 56.68	В
	MOTA	2155	0	ARG	305	18.809	-8.699	73.340	1.00 56.68	В
	MOTA	2156	N	THR	306	20.757	-7.728	73.892	1.00 57.02	В
	MOTA	2157	CA	THR	306	20.248	-7.185	75.146	1.00 56.82	В
50	MOTA	2158	CB	THR	306	21.347	-6.426	75.912	1.00 56.33	В
	MOTA	2159	OG1		306	22.482	-7.281	76.095	1.00 56.76	В
	ATOM	2160		THR	306	20.836	-5.975	77,272	1.00 56.64	В
	MOTA	2161	C	THR	306	19.122	-6.213	74.812	1.00 57.35	В
E E	MOTA	2162	0	THR	306	19.239	-5.421	73.881	1.00 58.12	В
55	MOTA	2163	N	PRO	307	18.011	-6.268	75.564	1.00 57.68	В
	MOTA	2164	CD	PRO	. 307	17.750	-7.184	76.688	1.00 58.36	В
	MOTA	2165	CA	PRO	307	16.861	-5.384	75.336	1.00 57.69	В
	ATOM	2166	СВ	PRO	307	15.959	-5.682	76.533	1.00 57.98	В
		2167				16 241	-7.125			В
60	MOTA		CG	PRO	307	16.241		76.803	1.00 58.68	
UU	MOTA	2168	С	PRO	307	17.218	-3.898	75.237	1.00 56.99	В
	MOTA	2169	0	PRO	307	16.684	-3.187	74.386	1.00 57.64	В
	MOTA	2170	N	HIS	308	18.120	-3.439	76.105	1.00 55.27	В
	MOTA	2171	CA	HIS	308	18.539	-2.034	76.123	1.00 53.51	В
	ATOM	2172	СВ	HIS	308	18.749	-1.565	77.567	1.00 55.71	В.
65	ATOM	2173	CG	HIS	308	19.227	-0.150	77.677	1.00 58.12	В
55										
	MOTA	2174		HIS	308	20.385	0.367	78.155	1.00 59.12	В
	MOTA	2175		HIS	308	18.475	0.925	77.252	1.00 58.97	В
	MOTA	2176	CE1	HIS	308	19.148	2.043	77.464	1.00 58.91	В
	MOTA	2177	NE2	HIS	308	20.310	1.732	78.012	1.00 59.24	В
70	ATOM	2178	С	HIS	308	19.813	-1.749	75.329	1.00 50.82	В
	MOTA	2179	ŏ	HIS	308	20.793	-2.472	75.433	1.00 50.26	В
						19.780				
	MOTA	2180	N	VAL	309		-0.671	74.551	1.00 47.79	В
	MOTA	2181	CA	VAL	309	20.921	-0.239	73.743	1.00 44.18	В

	MOTA	2182	СВ	VAL	309	20.619	-0.355	72.233	1.00 44.37	. В
	ATOM	2183	CG1		309	21.876	-0.067	71.427	1.00 43.69	В
	MOTA	2184	CG2	VAL	309	20.076	-1.737	71.912	1.00 43.50	В
_	MOTA	2185	С	VAL	309	21.188	1.234	74.075	1.00 41.50	В
5	MOTA	2186	0	VAL	309	20.368	2.091	73.788	1.00 41.50	В
	MOTA	2187	N	PRO	310	22.351	1.535	74.675	1.00 38.54	В
	MOTA	2188	CD	PRO	310	23.440	0.586	74.968	1.00 37.32	В
	MOTA	2189	CA	PRO	310	22.736	2.898	75.058	1.00 37.55	В
10	MOTA	2190	CB	PRO	310	23.983	2.669	75.909	1.00 36.77	В
10	MOTA	2191	CG	PRO	310	24.614	1.502	75.238	1.00 36.14	В
	MOTA		. C	PRO	310	22.977	3.898	73.917	1.00 36.95	В
	MOTA	2193	0	PRO	310	24.042	4.493	73.827	1.00 36.57	В
	MOTA	2194	N	TYR	311	21.972	4.076	73.061	1.00 36.05	В
15	MOTA	2195	CA	TYR	311	22.047	5.012	71.940	1.00 34.95 1.00 35.41	B B
13	MOTA	2196	CB	TYR	311 311	20.778 20.603	4.949 3.711	71.085 70.245	1.00 35.41	В
	MOTA MOTA	2197 2198	CG CD1	TYR	311	21.603	3.289	69.374	1.00 35.89	В
	ATOM	2199	CE1		311	21.433	2.161	68.578	1.00 36.91	В
	ATOM	2200	CD2		311	19.416	2.973	70.300	1.00 36.75	В
20	MOTA	2201	CE2		311 ·	19.234	1.844	69.508	1.00 36.61	В
	ATOM	2202	cz	TYR	311	20.247	1.442	68.651	1.00 36.85	В.
	ATOM	2203	OH	TYR	311	20.086	0.312	67.882	1.00 35.56	В
	ATOM	2204	C	TYR	311	22.217	6.462	72.402	1.00 35.12	В
	MOTA	2205	Ó	TYR	311	23.038	7.186	71.868	1.00 34.13	·B
25	MOTA	2206	N	ARG	312	21.422	6.868	73.392	1.00 34.48	B
	MOTA	2207	CA	ARG	312	21.444	8.237	73.906	1.00 34.28	В
	MOTA	2208	CB	ARG	312	20.160	8.523	74.690	1.00 35.83	В
	MOTA	2209	CG	ARG	312	18.882	8.227	73.935	1.00 41.17	В
20	MOTA	2210	CD	ARG	312	17.732	8.007	74.897	1.00 44.62	В
30	MOTA	2211	NE	ARG	312	16.596	7.341	74.263	1.00 48.42	В
	MOTA	2212	CZ	ARG	312	15.608	6.747	74.926	1.00 51.08	В
	MOTA	2213		ARG	312	15.610	6.732	76.254 74.259	1.00 50.32 1.00 51.58	B B
	MOTA	2214		ARG	312	14.618 22.638	8.593	74.787	1.00 33.03	В
35	ATOM ATOM	2215 . 2216	C O	ARG ARG	312 312	22.701	9.699	75.317	1.00 34.26	В
33	MOTA	2217	N	GLU	313	23.581	7.669	74.953	1.00 29.69	В
	ATOM	2218	CA	GLU	313	24.735	7.947	75.799	1.00 25.30	В
	ATOM	2219	CB	GLU	313	25.200	6.655	76.481	1.00 24.49	В
	ATOM	2220	CG	GLU	313	24.278	6.242	77.634	1.00 25.08	В
40	ATOM	2221	CD	GLU	313	24.677	4.946	78.327	1.00 23.59	В
	MOTA	2222	OE1	GLU	313	25.883	4.722	78.553	1.00 23.79	В
	MOTA	2223	OE2	GLU	313	23.775	4.156	78.665	1.00 23.87	В
	MOTA	2224	С	GLU	313	25.898	8.646	75.089	1.00 23.89	В
A E	MOTA	2225	0	GLU	313	26.963	8.806	75.659	1.00 23.12	В
45	MOTA	2226	N	SER	314	25.680	9.068	73.843	1.00 21.70	В
	MOTA	2227	CA	SER	314	26.714	9.766	73.080	1.00 21.61	В
	MOTA	2228	CB	SER	314	27.800	8.796	72.622	1.00 19.78 1.00 17.85	B B
	MOTA	2229	OG C	SER	314	27.401	8.118 10.466	71.442 71.861	1.00 17.85	В
50	MOTA MOTA	2230 2231	0	SER	314 314	26.124 25.047	10.105	71.388	1.00 23.43	В
50	MOTA	2232	N	LYS	315	26.840	11.462	71.348	1.00 23.77	В
	ATOM	2233	CA	LYS	315	26.367	12.204	70.186	1.00 24.56	В
	MOTA	2234	CB	LYS	315	27.216	13.462	69.963	1.00 24.98	В
	MOTA	2235	CG	LYS	315	27.295	14.394	71.165	1.00 25.63	В.
55	MOTA	2236	CD	LYS	315	25.926	14.862	71.607	1.00 25.73	В.
	MOTA	2237	CE	LYS	315	26.034	15.834	72.774	1.00 26.31	В
	MOTA	2238	NZ	LYS	315	26.660	17.123	72.353	1.00 30.29	В
	MOTA	2239	С	LYS	315	26.416	11.335	68.939	1.00 24.22	В
~	MOTA	2240	0	LYS	315	25.498	11.338	68.138	1.00 25.98	В
60	MOTA	2241	N	LEU	316	27.503	10.591	68.787	1.00 23.22	В
	MOTA	2242	CA	LEU	316	27.674	9.719	67.636	1.00 24.18	В
	MOTA	2243	CB	LEU	316	29.039	9.022	67.711	1.00 24.13	В
	ATOM	2244	CG	LEU	316	29.451	8.205	66.488	1.00 23.55	В
65	MOTA	2245		LEU	316	29.850	9.149	65.370	1.00 25.34	В
65	MOTA	2246		LEU	316	30.609	7.299	66.840	1.00 22.84	В
	MOTA	2247	c	LEU	316	26.567	8.664	67.506	1.00 23.18	В
	MOTA	2248	0	LEU	316	25.892	8.590	66.480	1.00 22.77 1.00 22.09	B
	MOTA	2249	N	THR	317	26.369	7.855 6.817	68.543 68.470	1.00 22.09	B B
70	MOTA MOTA	2250 2251	CA CB	THR THR	317 317	25.346 25.459	5.809	69.651	1.00 22.50	В
	ATOM	2252		THR	317	25.198	6.472	70.892	1.00 19.26	В
	MOTA	2253		THR	317	26.848	5.192	69.682	1.00 20.16	В
	MOTA	2254	C	THR	317	23.923	7.367	68.394	1.00 23.49	В
			-							_

										_
	MOTA	2255	0	THR	317	23.025	6.684	67.929	1.00 23.95	В
	MOTA	2256	N	ARG	318	23.723	8.606	68.836	1.00 23.82	В
•	MOTA	2257	CA	ARG	318	22.402	9.225	68.764	1.00 25.01	В
	MOTA	2258	CB	ARG	318	22.317	10.426	69.705	1.00 28.63	В
5	MOTA	2259	CG	ARG	318	21.923	10.065	71.120	1.00 34.53	В
	ATOM	2260	CD	ARG	318	22.260	11.179	72.094	1.00 38.92	В
	MOTA	2261	NE	ARG	318	21.606	12.436	71.745	1.00 45.13	В
	MOTA	2262	CZ	ARG	318	20.293	12.642	71.792	1.00 47.64	В
	MOTA	2263	NH1		318	19.479		72.177	1.00 49.68	В
10						19.796	13.826	71.456	1.00 45.41	В
10	MOTA	2264	NH2		318					В
	MOTA	2265	C	ARG	318	22.127	9.674	67.335	1.00 24.81	
	MOTA	2266	0	ARG	318	21.015	9.522	66.828	1.00 24.93	В
	MOTA	2267	N	ILE	319	23.149	10.217	66.684	1.00 22.86	В
	MOTA	2268	CA	ILE	319	23.001	10.688	65.313	1.00 23.60	В
15	MOTA	2269	CB	ILE	319	24.197	11.588	64.893	1.00 22.37	В
	MOTA	2270	CG2	ILE	319	24.089	11.947	63.410	1.00 22.84	В
	MOTA	2271	CG1	ILE	319	24.224	12.861	65.748	1.00 22.76	B
	MOTA	2272		ILE	319	25.457	13.738	65.533	1.00 17.34	В
	ATOM	2273	C	ILE	319	22.903	9.532	64.322	1.00 24.40	В
20	MOTA	2274	ŏ	ILE	319	22.144	9.585	63.381	1.00 23.60	В
20	ATOM	2275	N	LEU	320	23.688	8.486	64.556	1.00 27.00	В
				LEU	320	23.725	7.331	63.664	1.00 28.83	В
	ATOM .	2276	CA					63.274	1.00 26.75	В
	ATOM	2277	CB	LEU	320	25.180	7.037			
25	MOTA	2278	CG	LEU	320	26.035	8.151	62.668	1.00 28.19	В
25	ATOM	2279		LEU	320	27.479	7.720	62.710	1.00 27.81	В
	MOTA	2280	CD2	LEU	320	25.601	8.459	61.237	1.00 26.81	. В
	MOTA	2281	С	LEU	320	23.098	6.053	64.220	1.00 30.42	В
	MOTA	2282	0	LEU	320	23.501	4.957	63.841	1.00 31.06	В
	ATOM	.2283	N	GLN	321	22.097	6.188	65.085	1.00 32.73	В
30	MOTA	2284	CA	GLN	321	21.457	5.012	65.674	1.00 34.42	В
	MOTA	2285	СВ	GLN	321	20.466	5.419	66.777	1.00 35.23	В
	ATOM	2286	CG	GLN	321	19.195	6.116	66.314	1.00 39.71	B
	MOTA	2287	CD	GLN	321.	18.320	6.569	67.488	1.00 42.32	В
	MOTA	2288		GLN	321	17.881	5.755	68.298	1.00 42.09	В
35	ATOM	2289	NE2		321	18.069	7.877	67.577	1.00 44.14	В
55		2290		GLN	321	20.758	4.102	64.663	1.00 33.44	В
	MOTA		C					64.868	1.00 34.48	В
	MOTA	2291	0	GLN	321	20.677	2.901			В
	MOTA	2292	N	ASP	322	20.261	4.666	63.569	1.00 32.24	
40	MOTA	2293	CA	ASP	322	19.583	3.839	62.575	1.00 33.02	В
40	MOTA	2294	CB	ASP	322	18.780	4.693	61.595	1.00 32.22	В
	MOTA	2295	CG	ASP	322	17.790	3.871	60.783	1.00 32.38	В
	MOTA	2296	OD1	ASP	322	17.716	4.061	59.548	1.00 32.08	В
	ATOM	2297	OD2	ASP	322	17.074	3.045	61.382	1.00 30.54	В
	MOTA	2298	С	ASP	322	20.598	3.011	61.794	1.00 32.49	В
45	MOTA	2299	0	ASP	322	20.228	2.175	60.988	1.00 32.45	В
	MOTA	2300	N	SER	323	21.880	3.274	62.030	1.00 32.77	В
	MOTA	2301	CA	SER	323	22.951	2.547	61.361	1.00 30.97	В
	ATOM	2302	CB	SER	323	24.122	3.480	61.067	1.00 28.95	В
	MOTA	2303	OG	SER	323	23.837	4.320	59.959	1.00 27.41	В
50	MOTA	2304	c	SER	323	23.416	1.374	62.224	1.00 30.75	В
50	ATOM	2305	ŏ	SER	323	24.171	0.517	61.783	1.00 29.17	В
	MOTA	2306	N	LEU	324	22.966	1.352	63.470	1.00 30.45	В
			CA	LEU	324	23.326	0.270	64.363	1.00 31.28	В
	MOTA	2307				24.046		65.606	1.00 31.28	В
55	ATOM	2308	CB	LEU	324		0.809 1.353			В
JJ	ATOM	2309	CG	LEU	324	25.476		65.463	1.00 32.14	
	MOTA	2310	CD1		324	26.308	0.424	64.587	1.00 33.04	В
	MOTA	2311	CD2		324	25.436	2.739	64.862	1.00 34.26	В
	MOTA	2312	С	LEU	324	22.081	-0.511	64.771	1.00 31.54	В
	MOTA	2313	0	LEU	324	21.468	-0.235	65.785	1.00 31.30	В
60	MOTA	2314	N	GLY	325	21.715	-1.490	63.950	1.00 33.73	В
	MOTA	2315	CA	GLY	325	20.554	-2.311	64.249	1.00 33.79	В
	ATOM	2316	C	GLY	325	19.244	-1.636	63.901	1.00 33.20	В
	ATOM	2317	ō	GLY	325	18.218	-1.905	64.517	1.00 33.16	В
	MOTA	2318	N	GLY	326	19.286	-0.754	62.909	1.00 32.43	В
65			CA		326	18.090	-0.048	62.499	1.00 33.13	8
0,5	MOTA	2319		GLY					1.00 34.86	В
	MOTA	2320	Ç	GLY	326	17.704	-0.420	61.088		
	MOTA	2321	0	GLY	326	17.905	-1.541	60.680	1.00 34.93	В
	MOTA	2322	N	ARG	327	17.157	0.535	60.343	1.00 37.13	В
70	MOTA	2323	CA	ARG	327	16.748	0.278	58.974	1.00 38.94	В
70	MOTA	2324	СВ	ARG	327	15.327	0.784	58.753	1.00 43.05	. В
	MOTA	2325	CG	ARG	327	14.278	0.034	59.559	1.00 49.59	В
	MOTA	2326	CD	ARG	327	12.872	0.464	59.159	1.00 54.64	В
	MOTA	2327	NE	ARG	327	12.071	-0.657	58.665	1.00 60.40	В
		-								•

	MOTA	2328	cz	ARG	327		12.358	-1.380	57.583	1.00 62.77	В
	MOTA	2329	NH1		327		13.441	-1.105	56.861	1.00 63.46	В
		2330	NH2		327		11.556	-2.377	57.219	1.00 61.73	В
	MOTA			ARG	327		17.686	0.887.	57.934	1.00 38.03	В
5	MOTA	2331	c				17.249	1.289	56.869	1.00 37.61	В
J	MOTA	2332	0	ARG	327				58.252	1.00 36.37	В
	MOTA	2333	N	THR	328		18.979	0.931	57.345		В
	MOTA	2334	CA	THR	328		19.983	1.481		1.00 35.54	
	MOTA	2335	CB	THR	328		20.715	2.685	57.989	1.00 34.89	В
	MOTA	2336		THR	328		19.798	3.762	58.194	1.00 35.66	В
10	MOTA	2337	CG2	THR	328		21.847	3.156	57.096	1.00 33.72	В
	MOTA	2338	C	THR	328		21.040	0.442	56.974	1.00 34.98	В
	MOTA	2339	0	THR	328		21.630	-0.170	57.848	1.00 36.65	B
	MOTA	2340	N	ARG	329		21.274	0.252	55.678	1.00 33.43	В
	MOTA	2341	CA	ARG	329		22.281	-0.704	55.226	1.00 33.67	В
15	MOTA	2342	CB	ARG	329		22.354	-0.752	53.696	1.00 35.61	В
	MOTA	2343	CG	ARG	329		23.146	-1.938	53.156	1.00 40.29	В
	MOTA	2344	CD	ARG	329		23.642	-1.691	51.736	1.00 45.76	В
	ATOM	2345	NE	ARG	329		24.253	-2.877	51.133	1.00 51.83	В
	MOTA	2346	CZ	ARG	329		25.297	-3.540	51.632	1.00 54.83	В
20	MOTA	2347		ARG	329		25.874	-3.148	52.761	1.00 54.64	В
	MOTA	2348		ARG	329		25.772	-4.601	50.991	1.00 56.00	В
		2349	C	ARG	329		23.615	-0.218	55.764	1.00 30.92	В,
	MOTA		ò	ARG	329		24.034	0.871	55.452	1.00 33.46	В.
	ATOM	2350					24.277	-1.028	56.573	1.00 28.10	·B
25	MOTA	2351	N	THR	330			-0.622	57.156	1.00 26.64	В
43	MOTA	2352	CA	THR	330		25.541			1.00 25.12	В
	MOTA	2353	CB	THR	330		25.410	-0.524	58.691	1.00 25.12	В
	MOTA	2354		THR	330		24.526	0.549	59.019	1.00 23.09	
	MOTA	2355		THR	330	•	26.760	-0.291	59.351		В
20	MOTA	2356	C	THR	330		26.723	-1.516	56.820	1.00 27.27	В
30	MOTA	2357	0	THR	330		26.602	-2.732	56.748	1.00 27.57	В
	MOTA	2358	N	SER	331		27.868	-0.878	56.618	1.00 26.82	В
	MOTA	2359	CA	SER	331		29.104	-1.567	56.308	1.00 26.67	В
	MOTA	2360	СB	SER	331		29.442	-1.446	54.830	1.00 26.29	В
	MOTA	2361	OG	SER	331		28.444	-2.072	54.052	1.00 31.25	₿
35	MOTA	2362	С	SER	331		30.191	-0.907	57.125	1.00 26.05	В
	ATOM	2363	0	SER	331		30.210	0.304	57.272	1.00 29.07	В
	ATOM	2364	N	ILE	332		31.086	-1.712	57.677	1.00 24.35	В
	ATOM	2365	CA	ILE	332		32.179	-1.190	58.472	1.00 20.58	В
	ATOM	2366	CB	ILE	332		32.119	-1.704	59.917	1.00 16.78	В
40	ATOM	2367		ILE	332		33.367	-1.290	60.656	1.00 15.30	В
	ATOM	2368		ILE	332		30.849	-1.195	60.605	1.00 14.73	В
	MOTA	2369		ILE	332		30.641	-1.735	62.018	1.00 11.20	В
	ATOM	2370	c	ILE	332		33.484	-1.646	57.855	1.00 22.60	В
	MOTA	2371	ŏ	ILE	332		33.635	-2.809	57.495	1.00 22.21	В
45	ATOM	2372	N	ILE	333		34.421	-0.718	57.713	1.00 23.08	В
43	MOTA	2373	CA	ILE	333		35.718	-1.046	57.148	1.00 21.26	В
			CB	ILE	333		36.096	-0.086	56.011	1.00 20.77	В
	MOTA	2374						-0.530	55.375	1.00 20.19	B
	ATOM	2375		ILE	333		37.401		54.950	1.00 22.76	В
50	ATOM	2376		ILE	333		34.993	-0.065			В
30	ATOM	2377		ILE	333		35.297	0.826	53.738	1.00 19.77	В
	MOTA	2378	С	ILE	333		36.736	-0.927	58.267	1.00 22.44	
	MOTA	2379	0	ILE		٠.	37.015	0.170	58.740	1.00 25.05	. B
	MOTA	2380	N	ALA	334		37.269	-2.061	58.708	1.00 22.25	В
	MOTA	2381	CA	ALA	334		38.252	-2.080	59.783	1.00 21.24	В
55	MOTA	2382	CB	ALA	334		38.088	-3.351	60.605	1.00 21.16	В
	MOTA	2383	С	ALA	334		39.667	-1.998	59.212	1.00 20.54	₿
	MOTA	2384	0	ALA	334		40.070	-2.850	58.452	1.00 21.75	В
	ATOM	2385	N	THR	335		40.405	-0.952	59.582	1.00 18.02	В
	MOTA	2386	CA	THR	335		41.772	-0.771	59.102	1.00 15.52	В
60 ·	MOTA	2387	CB	THR	335		42.052	0.701	58.752	1.00 14.93	В
••	ATOM	2388		THR	335		41.551	1.558	59.794	1.00 16.56	В
	ATOM	2389		THR	335		41.394	1.051	57.447	1.00 13.76	В
	MOTA	2390	c c	THR	335		42.780	-1.257	60.132	1.00 14.40	В
					335		42.586	-1.096	61.340	1.00 13.68	В
65	MOTA	2391	0	THR					59.641	1.00 15.75	В
03	MOTA	2392	N	ILE	336		43.863	-1.849			В
	MOTA	2393	CA	ILE	336		44.893	-2.409	60.506		
	MOTA	2394	CB	ILE	336		44.671	-3.936			В
	MOTA	2395		ILE	336		43.346	-4.185			В
70	MOTA	2396		LILE	336		44.678	-4.662			В
70	MOTA	2397		LILE	336		44.726	-6.215			В
	MOTA	2398	С	ILE	336		46.317	-2.186			В
	MOTA	2399	0	ILE	336		46.534	-1.816			В
	MOTA	2400	N	SER	337		47.280	-2.407	60.889	1.00 20.83	В

										_
	MOTA	2401		SER	337	48.694	-2.250 -1.491	60.570 61.685	1.00 23.58 1.00 22.57	B B ·
	MOTA MOTA	2402 2403		SER SER	337. 337	49.399 50.792	-1.737	61.645	1.00 21.86	В
	ATOM	2404		SER	337	49.395	-3.600	60.389	1.00 27.32	В
5	MOTA	2405	Ō	SER	337	49.123	-4.548	61.122	1.00 27.36	В
	MOTA	2406	N.	PRO	338	50.320	-3.688	59.416	1.00 28.03	В
	MOTA	2407	CD	PRO	338	50.612	-2.678	58.383	1.00 29.38	B B
	MOTA	2408	CA CB	PRO PRO	338 338	51.063 51.485	-4.919 -4.743	59.147 57.698	1.00 30.56 1.00 29.47	В
10	ATOM ATOM	2409 2410	CG	PRO	338	51.804	-3.283	57.657	1.00 28.25	В
10	MOTA	2411	c	PRO	338	52.274	-5.047	60.074	1.00 31.99	В
	ATOM	2412	ō	PRO	338	52.903	-6.083	60.131	1.00 32.55	В
	MOTA	2413	N	ALA	339	52.586	-3.972	60.790	1.00 33.15	В
15	MOTA	2414	CA	ALA	339	53.732	-3.955	61.690	1.00 34.44	B B
15	MOTA	2415	СВ	ALA	339 339	54.051 53.505	-2.518 -4.816	62.109 62.918	1.00 35.58 1.00 35.05	В
	MOTA MOTA	2416 2417	С 0	ALA ALA	339	52.391	-4.956	63.386	1.00 35.58	B
	ATOM	2418	N	SER	340	54.585	-5.380	63.447	1.00 36.34	В
	ATOM	2419	CA	SER	340	54.479	-6.236	64.615	1.00 36.42	В
20	MOTA	2420	CB	SER	340	55.694	-7.162	64.717	1.00 36.55	В
	MOTA	2421	OG	SER	340	56.891	-6.431	64.909	1.00 37.23 1.00 36.18	B B
	MOTA	2422	C	SER SER	340 340	54.324 53.769	-5.457 -5.969	65.914 66.871	1.00 36.18	В
	MOTA MOTA	2423 2424	N O	LEU	341	54.803	-4.220	65.957	1.00 36.13	В
25	ATOM	2425	CA	LEU	341	54.664	-3.453	67.190	1.00 38.21	В
	MOTA	2426	CB	LEU	341	55.663	-2.296	67.239	1.00 40.75	В
	MOTA	2427	CG	LEU	341	55.293	-1.011	66.500	1.00 44.27	В
	MOTA	2428		LEU	341	56.054	0.160	67.121 65.011	1.00 44.94 1.00 45.97	B B
30	MOTA MOTA	2429 2430	CDS	LEU	341 341	55.597 53.244	-1.158 -2.912	67.337	1.00 36.82	В
50	MOTA	2431	ò	LEU	341	52.944	-2.185	68.259	1.00 37.65	В
•	MOTA	2432	Ň	ASN	342	52.376	-3.288	66.408	1.00 36.59	В
	MOTA	2433	CA	ASN	342	50.983	-2.856	66.416	1.00 35.71	В
25	MOTA	2434	СВ	ASN	342	50.636	-2.219	65.071	1.00 34.64	В
35	ATOM	2435	CG	ASN	342	51.343	-0.903 -0.649	64.865 63.808	1.00 34 11 1.00 32.85	B .
	MOTA MOTA	2436 2437		ASN ASN	342 342	51.904 51.315	-0.052	65.888	1.00 32.94	В
	ATOM	2438	C	ASN	342	50.084	-4.048	66.661	1.00 35.91	B
5.2	MOTA	2439	ō	ASN	342	48.860	-3.958	66.561	1.00 37.26	В
40	MOTA	2440	N	LEU	343	50.720	-5.164	66.993	1.00 34.56	В
	MOTA	2441	CA	LEU	343	50.033	-6.419	67.244	1.00 32.49	B B
	MOTA	2442 2443	CB CG	LEU	343 343	51.019 50.546	-7.433 -8.858	67.836 68.135	1.00 31.23 1.00 31.25	В
	MOTA MOTA	2444		LEU	343	50.001	-8.944	69.548	1.00 32.82	B
45	MOTA	2445		LEU	343	49.504	-9.286	67.101	1.00 30.64	В
	MOTA	2446	C	LEU	343	48.817	-6.295	68.140	1.00 30.37	В
	MOTA	2447	0	LEU	343	47.714	-6.608	67.732	1.00 29.24	В
	MOTA	2448	N	GLU	344	49.023	-5.831	69.364 70.307	1.00 30.64	B B
50	MOTA MOTA	2449 2450	CA CB	GLU	344 344	47.922 48.442	-5.710 -5.121	71.619	1.00 34.78	В
50	MOTA	2451	CG	GLU	344	47.460	-5.189	72.761	1.00 42.18	В
	ATOM	2452	CD	GLU	344	48.107	-4.861	74.099	1.00 47.80	В
	MOTA	2453		GLU	344	48.743	-3.785	74.209	1.00 48.41	В
55	MOTA	2454		GLU	344	47.982	-5.686	75.036	1.00 49.00	B
55	MOTA	2455	C	GLU	344	46.736	-4.899 -5.355	69.760 69.802	1.00 30.46 1.00 29.53	B B
	MOTA MOTA	2456 2457	N O	GLU	344 345	45.600 46.991	-3.707	69.234	1.00 29.30	В
	MOTA	2458	CA	GLU	345	45.901	-2.891	68.703	1.00 29.30	В
	MOTA	2459	CB	GLU	345	46.393		68.349		. В
60	MOTA	2460	CG	GLU	345	46.618	-0.581	69.565	1.00 29.72	В
	MOTA	2461	CD	GĽU	345	45.337	-0.285	70.330	1.00 30.47	В
	MOTA	2462		GLU	345	45.429	0.193	71.482	1.00 33.09	В
	MOTA	2463		GLU	345 345	44.241 45.277	-0.521 -3.556	69.786 67.476	1.00 30.71	B B
65	MOTA MOTA	2464 2465	С О	GLU	345	44.082	-3.423	67.233	1.00 28.53	В
UJ	ATOM	2466		THR	346	46.084	-4.283	66.711	1.00 24.59	В
	MOTA	2467		THR	346	45.576	-4.979			В
	ATOM	2468	CB	THR	346	46.717	-5.588		1.00 22.82	В
70	MOTA	2469		THR	346	47.503	-4.534			В
70	MOTA	2470		THR	346	46.173	-6.473			B B
	MOTA	2471		THR THR	346 346	44.597 43.617	-6.083 -6.343			В
	MOTA MOTA	2472 2473		LEU	347	44.873	-6.732			В
	0.1	24.3			- • ·					

					242	44 000	2 700	ca sca	1 00 22 19	В
•	MOTA MOTA	2474 2475	CA CB	LEU	347 347	44.002 44.678	-7.790 -8.568	67.561 68.696	1.00 23.19	В
	MOTA	2475	CG	LEU	347	45.955	-9.346	68.374	1.00 22.14	В
_	ATOM	2477	CD1		347		-10.118	69.613	1.00 20.42	В
5	MOTA	2478	CD2	LEU	347		-10.293	67.210	1.00 22.20	В
	MOTA	2479	С	LEU	347	42.679	-7.203	68.063	1.00 23.83	В
	MOTA	2480	0	LEU	347	41.617	-7.712	67.732	1.00 25.14	B B
	MOTA	2481 2482	N CA	SER SER	348 348	42.743 41.518	-6.135 -5.530	68.854 69.368	1.00 21.32	В
10	MOTA MOTA	2482	CB	SER	348	41.839	-4.306	70.215	1.00 21.23	В
	ATOM		· OG	SER	348	42.491	-4.707	71.402	1.00 27.13	В
	MOTA	2485	C	SER	348	40.582	-5.144	68.238	1.00 22.86	В
	MOTA	2486	0	SER	348	39.384	-5.348	68.331	1.00 22.12	В
15	MOTA	2487	N	THR	349	41.156	-4.596	67.172	1.00 23.05	B B
13	MOTA MOTA	2488 2489	CA CB	THR THR	349 349	40.391 41.309	-4.186 -3.483	66.005 64.988	1.00 25.38 1.00 25.69	B
•	MOTA	2490		THR	349	41.656	-2.185	65.495	1.00 28.94	В
	MOTA	2491		THR	349	40.627	-3.334	63.639	1.00 26.37	B
	MOTA	2492	С	THR	349	39.714	-5.387	65.344	1.00 27.04	В
20	MOTA	2493	0	THR	349	38.502	-5.396	65.164	1.00 25.10	В
	MOTA	2494	N	LEU	350	40.505	-6.399	64.988	1.00 29.73	B B
	MOTA MOTA	2495 2496	CA CB	LEU	350 350	39.971 41.112	-7.610 -8.602	64.352 64.087	1.00 32.43 1.00 32.67	В.
	MOTA	2497	CG	LEU	350	41.782	-8.523	62.709	1.00 33.86	· B
25	ATOM	2498		LEU	350	41.867	-7.089	62.243	1.00 35.72	В
	ATOM	2499	CD2	LEU	350	43.160	-9.140	62.777	1.00 34.30	В
	MOTA	2500	C	LEU	350	38.880	-8.268	65.203	1.00 32.13	В
	MOTA	2501	0	LEU	350	37.869 39.104	-8.736 -8.286	64.693 66.510	1.00 31.89 1.00 32.99	. В . В
30	ATOM ATOM	2502 2503	N CA	GLU	351 351	38.163	-8.869	67.452	1.00 33.24	В
20	MOTA	2504	CB	GLU	351	38.807	-8.951	68.837	1.00 36.70	В
	MOTA	2505	CG	GLU	351	38.014	-9.772	69.821	1.00 44.06	В
	MOTA	2506	.CD	GLU	351	37.791	-11.179	69.309	1.00 47.54	В
25	ATOM	2507		GLU	351	38.805	-11.848	68.982	1.00 48.67	В
35	ATOM.	2508		GLU	351 351	36.610 36.901	-11.599 -8.009	69.228 67.519	1.00 48.07 1.00 31.83	B B
· ·	MOTA MOTA	2509 2510	C O	GLU	351	35.778	-8.532	67.584	1.00 32.55	В
	MOTA	2511	N	TYR	352	37.097	-6.690	67.503	1.00 29.09	В
	ATOM	2512	CA	TYR	352	35.997	-5.727	67.550	1.00 25.10	В
40	MOTA	2513	CB	TYR	352	36.561	-4.318	67.758	1.00 23.54	В
	MOTA	2514	CG	TYR	352	35.537	-3.220	67.970	1.00 23.52	B B
	ATOM ATOM	2515 2516	CEI	TYR TYR	352 352	34.862 33.952	-2.642 -1.601	66.893 67.086	1.00 21.07 1.00 22.50	В
	MOTA	2517		TYR	352	35.271	-2.734	69.254	1.00 23.10	В
45	MOTA	2518	CE2		352	34.366	-1.699	69.464	1.00 22.61	В
	MOTA	2519	CZ	TYR	352	33.712	-1.134	68.377	1.00 25.05	В
	MOTA	2520	OH	TYR	352	32.840	-0.085	68.577	1.00 29.15	В
	ATOM	2521	C	TYR	352	35.169	-5.790	66.262	1.00 23.04	B B
50	MOTA MOTA	2522 2523	O N	TYR ALA	352 353	33.957 35.841	-5.819 -5.821	66.309 65.117	1.00 21.90	В
50	ATOM	2524	CA	ALA	353	35.155	-5.883	63.826	1.00 24.73	B
	MOTA	2525	СВ	ALA	353 .	36.163	-5.732	62.692	1.00 21.20	В
	MOTA	2526	С	ALA	353	34.380	-7.192	63.663	1.00 26.52	В
55	ATOM	2527	0	ALA	353	33.283	-7.210	63.119	1.00 25.94	В
23	MOTA	2528 2529	N CA	HIS HIS	354 354	34.978 34.375	-8.282 -9.607	64.138 64.052	1.00 30.11 1.00 32.42	B B
	MOTA MOTA	2530	CB	HIS	354	35.334	-10.660	64.626	1.00 35.26	В
	MOTA	2531	CG	HIS	354	34.939	-12.073	64.317	1.00 38.11	В.
	MOTA	2532	CD2	HIS	354	34.416	-13.045	65.103	1.00 38.24	В
60	MOTA	2533	ND1	HIS	354	35.045	-12.614	63.053	1.00 39.29	В
	MOTA	2534		HIS	354		-13.858	63.072	1.00 38.94	В
	MOTA	2535		HIS	354	34.213		64.303	1.00 39.79 1.00 33.09	B B
	MOTA MOTA	2536 2537	0	HIS	354 354	33.050 32.048	-9.642 -10.127	.64.811 64.297	1.00 33.09	В
65	MOTA	2538	N	ARG	355	33.053	-9.122	66.034	1.00 33.22	В
	MOTA	2539	CA	ARG	355	31.847	-9.091	66.852	1.00 35.31	В
	MOTA	2540	CB	ARG	355	32.145	-8.470	68.220	1.00 38.27	В
	MOTA	2541	CG	ARG	355	32.976	-9.320	69.155	1.00 41.93	В
70	MOTA	2542	CD	ARG	355	33.322	-8.539	70.416	1.00 44.68 1.00 46.84	8 B
, 0	MOTA MOTA	2543 2544	NE CZ	ARG ARG	355 355	32.132 31.299	-8.099 -8.915	71.142 71.781	1.00 48.76	В
	MOTA	2545		ARG	355	31.523		71.785	1.00 48.40	В
	ATOM	2546		ARG	355	30.243		72.420	1.00 47.82	В

	ATOM	2547	С	ARG	355	30	.740	-8.281	66.173	1.00 35.52	В
	MOTA	2548	0	ARG	355	29	. 564	-8.610	66.297	1.00 36.07	В .
	MOTA	2549	N	ALA	356	31	.124	-7.228	65.454	1.00 33.02	В
- .	MOTA	2550	CA	ALA	356	30	.146	-6.374	64.789	1.00 31.19	В
5	ATOM	2551	CB	ALA	356		. 837	-5.156	64.206	1.00 31.50	В
	MOTA	2552	С	ALA	356		.342	-7.089	63.704	1.00 31.06	В
	MOTA	2553	0	ALA	356		. 259	-6.645	63.343	1.00 28.55	В
	MOTA	2554	N	LYS	357		. 880	-8.197	63.194	1.00 31.69	B B
10	MOTA	2555	CA	LYS	357		. 215 -		62.144	1.00 33.26 1.00 35.45	В
10	MOTA	2556	CB	LYS	357			-10.198	61.768 61.350	1.00 36.26	. B
	MOTA	2557	CG	LYS LYS	357 357			-9.906 -10.458	59.956	1.00 39.94	В
	MOTA	2558 2559	CE	LYS	357 357			-11.968	59.851	1.00 40.54	В
	MOTA MOTA	2560	NZ	LYS	357			-12.795	60.666	1.00 40.76	B
15	ATOM	2561	C	LYS	357		.816	-9.447	62.552	1.00 33.43	В
~~	ATOM	2562	ŏ	LYS	357		.911	-9.512	61.724	1.00 33.00	В
	ATOM	2563	N	ASN	358		. 654	-9.773	63.833	1.00 34.87	. В
	MOTA	2564	CA	ASN	358	26	.381	-10.253	64.379	1.00 36.60	В
	ATOM	2565	СB	ASN	358	26	.621	-10.942	65.724	1.00 37.20	В
20	MOTA	2566	CG	ASN	358			-12.159	65.606	1.00 38.73	В
	MOTA	2567		ASN	358			-12.602	66.589	1.00 40.28	В
	ATOM	2568		ASN	358			-12.713	64.404	1.00 38.63	В
	MOTA	2569	C	ASN	358		.320	-9.170	64.574	1.00 37.65	В
25	ATOM	2570	0	ASN	358		.431	-9.322	65.406	1.00 38.18	B B
25	MOTA	2571	N	ILE	359		.413	-8.076 -7.003	63.825 63.951	1.00 40.85	, B
	ATOM ATOM	2572 2573	CA CB	ILE	359 359		.088	-5.608	63.869	1.00 40.68	. В
	ATOM	2574		ILE	359		.014	-4.529	63.858	1.00 40.16	В
	ATOM	2575		ILE	359		.019	-5.402	65.066	1.00 40.61	В
30	ATOM	2576		ILE	359		.871	-4.161	64.970	1.00 39.58	В
	MOTA	2577	С	ILE	359	23	.391	-7.132	62.847	1.00 41.96	В
	ATOM	2578	0	ILE	359	23	.729	-7.227	61.671	1.00 42.22	В
	MOTA	2579	N	LEU	360.		.122	-7.140	63.241	1.00 43.88	В
25	MOTA	2580	CA	LEU	360		.024	-7.276	62.293	1.00 46.61	В
35	MOTA	2581	CB	LEU	360		.952	-8.212	62.864	1.00 48.74	В
	MOTA	2582	CG	LEU	360		.660	-9.524	62.123	1.00 52.19	В
	MOTA	2583		LEU	360		.886	-10.456	63.043 60.836	1.00 51.91 1.00 53.68	B B
	MOTA	2584		LEU	360		.870	-9.248 -5.927	61.966	1.00 33.00	В
40	MOTA	2585 2586	0	LEU	360 360		.406	-5.211	62.854	1.00 46.77	B
40	MOTA MOTA	2587	N	ASN	361		.380	-5.586	60.681	1.00 47.32	В
	MOTA	2588	CA	ASN	361		.805	-4.320	60.242	1.00 48.31	В
	MOTA	2589	CB	ASN	361		.834	-3.502	59.458	1.00 47.61	В
	MOTA	2590	CG	ASN	361		.795	-2.743	60.360	1.00 48.03	B
45	MOTA	2591	OD1	ASN	361	22	.423	-1.777	59.933	1.00 48.30	В
	ATOM	2592	ND2	ASN	361		.913	-3.175	61.609	1.00 47.01	В
	MOTA	2593	C	ASN	361		.563	-4.526	59.387	1.00 49.65	B
	MOTA	2594	0	ASN	361		. 294	-5.627	58.919	1.00 51.43	В
50	ATOM	2595	N	LYS	362		.821	-3.443	59.180	1.00 51.11	B B
30	MOTA	2596	CA	LYS	362		. 586	-3.452 -3.545	58.400 56.896	1.00 50.99 1.00 50.83	В
	MOTA	2597 2598	CB	LYS LYS	362 362		.883 .289	-2.229	56.253	1.00 49.23	В
	MOTA MOTA	2599	CD	LYS	362		1.117	-2.268	54.740	1.00 48.73	B
	ATOM	2600	CE	LYS	362		.643	-2.244	54.329	1.00 47.35	В
.55	MOTA	2601	NZ	LYS	362		.989	-0.914	54.515	1.00 44.68	В
	MOTA	2602	C	LYS	362		659	-4.588	58.814	1.00 51.66	В
	ATOM	2603	0	LYS	362	19	.211	-5.329	57.913	1.00 52.28	В
	MOTA	2604	OXT	LYS	362	1	3.387	-4.712	60.031	1.00 50.87	В
	MOTA	2605	MG	MG	2602		3.651		59.419	1.00 27.37	
60	MOTA	2606	PB	ADP	2600		.241	7.165	60.136	1.00 25.05	ADP
	MOTA	2607		3 ADP	2600		1.666		61.419	1.00 26.27	ADP
	MOTA	2608		3 ADP	2600		3.842		60.325	1.00 30.28	ADP
	ATOM	2609		ADP	2600		3.097		59.552	1.00 28.27	ADP ADP
65	MOTA	2610	PA	ADP	2600		608		57.697 56.772	1.00 39.43	ADP
05	MOTA	2611		A ADP	2600 2600		4.613 5.462		57.778	1.00 38.84	ADP
	MOTA MOTA	2612 2613		A ADP	2600		5.426		59.121	1.00 32.30	ADP
	MOTA	2614		ADP	2600		7.084		57.187	1.00 39.41	ADP
	MOTA	2615		ADP	2600		B.157		57.828	1.00 42.82	ADP
70	MOTA	2616		ADP	2600		9.374		56.825	1.00 45.97	ADP
-	MOTA	2617		ADP	2600		9.399		56.137	1.00 46.62	ADP
	MOTA	2618	C31	* ADP	2600	4	9.266	8.021	55. 7 15	1.00 46.20	ADP
	MOTA	2619	O3 '	ADP	2600	5	0.512	8.717	55.502	1.00 49.03	ADP

	ATOM	2620	C2*	ADP	2600	48.810	7.296	54.462	1.00 46.75	ADP
	MOTA	2621		ADP	2600	49.235	7.921	53.240	1.00 48.13	ADP
									1.00 47.35	ADP
	MOTA	2622		ADP	2600	49.328	5.886	54.701		
_	MOTA	2623	N9	ADP	2600	48.435	4.815	54.144	1.00 48.03	ADP
5	MOTA	2624	C8	ADP	2600	47.417	4.221	54.811	1.00 47.72	ADP
-	MOTA	2625	N7	ADP	2600	46.839	3.328	54.046	1.00 48.56	ADP
							3.316	52.892	1.00 49.10	ADP
	MOTA	2626	C5	ADP	2600	47.454				
	ATOM	2627	C6	ADP	2600	47.308	2.603	51.707	1.00 49.07	ADP
	MOTA	2628	N6	ADP	2600	46.350	1.680	51.610	1.00 49.43	ADP
10	ATOM	2629	N1	ADP	2600	48.159	2.844	50.628	1.00 50.04	ADP
10									1.00 48.98	ADP
	MOTA	2630	C2	ADP	2600	49.152	3.776	50.684		
	MOTA	2631	N3	ADP	2600	49.301	4.478	51.842	1.00 50.49	ADP
	ATOM	2632	C4	ADP	2600	48.491	4.283	52.944	1.00 4B.96	ADP
•	MOTA	2633	C1	2-7	1	37.376	16.487	53.441	1.00 31.12	2-7
15		2634	C2	2-7	ī	38.554	16.442	52.639	1.00 31.01	2-7
13	MOTA									2-7
	MOTA	2635	C3	2-7	1	38.554	15.433	51.622	1.00 31.01	
	ATOM	2636	C4	2-7	1	37.388	14.559	51.530	1.00 29.91	2-7
	MOTA	2637	C5	2-7	1	36.248	14.570	52.396	1.00 29.25	2-7
	MOTA	2638	C6	2-7	1	36.296	15.546	53.415	1.00 30.61	2-7
20								-	1.00 30.99	2-7
20	MOTA	2639		2-7	1	39.708	15.357	50.686		
	MOTA	2640	C11	2-7	1	40.272	16.598	50.056	1.00 33.35	2-7
	MOTA	2641	N12	2-7	1	41.446	16.158	49.317	1.00 33.73	2-7
	ATOM	2642		2-7	1	41.189	14.730	49.013	1.00 31.60	2-7
								50.202	1.00 30.03	2-7
25	MOTA	2643		2-7	1	40.419	14.175			
25	MOTA	2644	C17	2-7	1	41.032	14.136	47.645	1.00 28.72	2-7
	MOTA	2645	C19	2-7	1	42.014	13.131	47.164	1.00 27.73	2-7
	MOTA	2646		2-7	1	41.952	12.752	45.765	1.00 26.29	2-7
		2647		2-7	ī	40.984	13.380	44.878	1.00 26.40	2-7
	MOTA									2-7
~~	MOTA	2648		2-7	1	39.931	14.256	45.351	1.00 27.79	
30	MOTA	2649	C23	2-7	1	39.958	14.694	46.762	1.00 27.64	2-7
	MOTA	2650	C29	2-7	1	42.438	17.110	49.102	1.00 34.81	2-7
		2651		2-7	ī	43.717	16.767	49.283	1.00 35.06	2-7
	MOTA									2-7
	MOTA	2652		2-7	1	44.603	17.929	49.086	1.00 31.67	
	MOTA	2653	C35	2-7	1	44.177	15.446	49.734	1.00 32.58	2-7
35	MOTA	.2654	039	2-7	1	42.187	18.279	48.762	1.00 35.09	2-7
	MOTA	2655		2-7	1	37.369	13.692	50.535	1.00 32.42	2-7
										2-7
	MOTA	2656		2-7	1_	37.291	17.497	54.277	1.00 33.09	
	MOTA	2657	0	нон	2	38.630	10.603	62.535	1.00 3.96	S
	ATOM	2658	0	нон	3	28.064	20.853	56.798	1.00 15.26	S
40	ATOM	2659	0	HOH	4	43.423	-1.052	63.682	1.00 6.84	s
					5	41.471	9.650		1.00 28.56	s
	MOTA	2660	0	нон						
	MOTA	2661	0	HOH	6	53.043	-17.874	61.146	1.00 22.21	s
	ATOM	2662	0	HOH	8	43.351	23.546	43.947	1.00 14.88	S
	MOTA	2663	0	HOH	11	31.538	6.420	79.791	1.00 20.07	S
45			ŏ		12	44.364	1.570		1.00 33.76	S
73	MOTA	2664		нон						
	MOTA	2665	0	HOH	13	42.141	-0.803	71.483	1.00 23.37	S
	MOTA	2666	Ο.	HOH	17	50.048	-0.508	68.644	1.00 38.33	S
	MOTA	2667	0	HOH	18	42.525	8.183	64.075	1.00 31.71	S
	ATOM	2668	ŏ	нон	20	49.961	-5.304			s
50										S
JU	ATOM	2669	0	нон	21	52.974			1.00 27.37	
	MOTA	2670	0	нон	23	44.880	17.208	64.490		S
	MOTA	2671	0	нон	25	33.865	11.390	57.228	1.00 14.50	S
	MOTA	2672	ō	нон	26	42.746				s
				нон	27					s
55	MOTA	2673	0			43.217				
55	MOTA	2674	0	нон	28	47.542				s
	MOTA	2675	0	нон	29	29.606	-8.997	58.639	1.00 41.51	S
	MOTA	2676	0	нон	30	38.143	15.249	61.346	1.00 12.36	S
		2677			31	47.769				S
	MOTA		0	нон						
	MOTA	2678	0	HOH	32	22.227				S
60	MOTA	2679	0	HOH	34	38.077	4.715	80.434	1.00 19.14	S
	MOTA	2680	ŏ	нон	35	27.208				s
										s
	MOTA	2681	0	нон	40	45.874				2
	MOTA	2682	0	нон	42	37.931				s
	MOTA	2683	0	HOH	44	33.173	12.293	71.900	1.00 38.67	s
65	ATOM	2684	ō	нон	45	38.986				s s
5 5										Š
	MOTA	2685	0	нон	46	35.162				3
	MOTA	2686	0	нон	52	22.755				S
	MOTA	2687	0	нон	53	27.917	6.206	79.432		s
	MOTA	2688	0	нон	55	37.862				S
70	MOTA	2689	ŏ	нон	57	31.462				Š
, ,										2
	ATOM	2690	0	нон	59	38.826			1.00 18.34	s
	MOTA	2691	0	нон	60	27.879		76.644	1.00 24.90	s
	MOTA	2692	0	нон		45.041				S
			-							

	MOTA	2693	0	нон	62	28.763 26.533 62.454 1.00 35.09	S
	MOTA	2694	ŏ	нон	66	38.448 -0.512 37.739 1.00 44.71	S
	MOTA	2695	ŏ	нон	67	31,394 24.733 63.775 1.00 40.50	S
	ATOM	2696	ŏ	нон	68	40.487 5.787 72.041 1.00 37.21	s
5	MOTA	2697	ŏ	нон	69	52.548 19.976 38.009 1.00 24.27	s
•	ATOM	2698	ŏ	нон	70	40.043 -1.641 68.804 1.00 21.10	S
	MOTA	2699	ŏ	нон	71	21.370 18.117 39.097 1.00 47.89	S
	MOTA	2700	ŏ	нон	73	45.431 -1.388 51.309 1.00 36.21	S
	MOTA	2701	ō	нон	74	12.109 0.216 54.870 1.00 45.32	S
10	ATOM	2702	ŏ	нон	78	41.390 5.467 40.236 1.00 31.36	Š
10	MOTA	2702	ŏ	нон	79	38.398 -10.202 49.709 1.00 28.25	s
	ATOM	2704	ŏ	нон	84	46.457 -1.971 63.989 1.00 20.69	s
	ATOM	2705	ŏ	нон	87	2.291 6.433 36.064 1.00 27.27	s
	ATOM	2705	ŏ	нон	88	46.187 3.359 74.292 1.00 30.60	s
15	MOTA	2707	ö	нон	89	51.911 4.577 56.634 1.00 44.94	s
13	MOTA	2708	Ö	нон	90	45.811 18.580 66.703 1.00 26.87	s
	MOTA	2709	Ö	нон	91	47.734 13.013 72.702 1.00 32.94	s
	ATOM	2710	0	нон	92	23.555 15.386 53.064 1.00 29.56	S
	ATOM	2711	Ö	нон	93	43.670 -2.643 73.172 1.00 27.18	S
20	ATOM	2711	Ö	нон	94	27.978 20.947 70.487 1.00 41.48	s
20	ATOM	2712	ŏ	нон	95	44.678 -7.048 71.862 1.00 24.48	s
	ATOM	2713	ö	нон	97	37.124 2.776 73.009 1.00 36.39	s
		2715	٥	нон	98	32.730 25.500 47.607 1.00 42.43	s
	MOTA MOTA	2715	0	нон	101	46.793 22.739 62.116 1.00 28.62	s
25	ATOM	2717	0	нон	104	20.079 21.304 46.635 1.00 44.83	s
23		2718	0	нон	104	30.653 -3.670 75.744 1.00 35.11	s
	MOTA	2718	0	нон	105	46.987 13.182 34.815 1.00 16.99	S
	ATOM ATOM	2719	0	НОН	109	43.794 0.066 55.803 1.00 30.02	s
		2721		нон	111	25.208 9.102 28.662 1.00 32.86	S
30	ATOM ATOM	2722	0	нон	113	44.655 15.401 59.741 1.00 25.68	S
20	MOTA	2723	_	нон	115	18.285 12.456 33.587 1.00 30.40	s
	ATOM	2724	0	нон	116	47.999 -0.217 48.915 1.00 36.92	S
	MOTA	2725	ŏ	нон	117 .	23.508 25.313 66.864 1.00 47.95	s
	ATOM	2726	Ö	нон	119	27.220 -14.904 55.904 1.00 35.41	S
35	ATOM	2727	0	HOH	120	47.343 8.255 68.520 1.00 37.89	s
33	ATOM	2728	-	нон	128	28.608 -6.298 48.882 1.00 26.00	S
		2728	0	HOH	132	6.107 15.208 42.672 1.00 30.09	S
	ATOM ATOM	2729	0	HOH	133	26.812 14.766 57.900 1.00 17.88	S
		2731	0	нон	135	46.950 10.746 67.779 1.00 31.59	3
40	MOTA		0		136	24.332 1.606 79.565 1.00 28.86	S
40	MOTA	2732 2733	0	нон	138	50.215 2.473 62.680 1.00 35.95	s
	ATOM		0	нон		22.069 24.748 54.683 1.00 25.56	S
	MOTA	2734	0	нон	139	44.497 -18.491 58.486 1.00 49.65	S
	MOTA	2735	0	нон	140	15.900 -4.594 62.687 1.00 33.93	S
45	MOTA	2736	0	нон	141		S
4)	MOTA	2737	0	нон	143	14.793 -3.866 47.507 1.00 45.81	3
	END				•		

50

TABLE 4

	D. 200 D. 10		. we - 1			in Jan nai				
	! CRYST		AME=.			la_2dpb.pdl 59.200 90.	.00 90.0	0 90.00	P212121	
5	ATOM	2605	CB	LYS	17		-12.132	60.197	1.00 50.92	В
	MOTA	2606	CG	LYS	17		-12.714	59.720	1.00 53.46	В
	MOTA	2607	CD	LYS	17		-12.276	58.298	1.00 55.17	В
	MOTA	2608	CE	LYS	17		-13.129	57.240	1.00 56.45	В
10	ATOM	2609	.NZ	LYS	17		-13.074	57.341	1.00 55.91	В
10	MOTA	2610 2611	C	LYS	17	24.464	-9.793	59.322 58.525	1.00 46.31	В
	MOTA MOTA	2612	O N	LYS	17 17	25.371 23.273	-9.870 -10.326	61.434	1.00 47.38	B B
	MOTA	2613	CA	LYS	17		-10.640	60.578	1.00 48.39	В
	MOTA	2614	N	ASN	18	23.441	-8.969	59.167	1.00 44.08	В
15	MOTA	2615	CA	ASN	18	23.346	-8.128	57.990	1.00 42.08	В
	MOTA	2616	CB	ASN	18	22.016	-7.375	58.014	1.00 42.87	В
	MOTA	2617	CG	ASN	18	21.059	-7.856	56.934	1.00 45.64	В
	MOTA	2618 2619		ASN ASN	18 18	21.222 20.068	-7.538 -8.642	55.748 57.331	1.00 47.65	B B
20	MOTA MOTA	2620	C	ASN	18	24.508	-7.150	57.750	1.00 40.28	В
	MOTA	2621	ŏ	ASN	18	24.895	-6.921	56.596	1.00 42.10	В.
	ATOM	2622	N	ILE	19	25.077	-6.584	58.810	1.00 36.30	· B
	MOTA	2623	CA	ILE	19	26.171	-5.618	58.668	1.00 32.31	В
25	MOTA	2624	CB	ILE	19	26.495	-4.982	60.043	1.00 33.05	В
25	ATOM	2625		ILE	19	26.959	-6.042	61.012	1.00 34.85	В
	MOTA MOTA	2626 2627		ILE	19 19	27.599 27.845	-3.938 -3.169	59.905 61.165	1.00 33.89	B B
	ATOM	2628	C	ILE	19	27.464	-6.184	58.058	1.00 28.41	В
	ATOM	2629	ŏ	ILE	19	28.021	-7.161	58.574	1.00 29.07	В
30	MOTA	2630	N	GLN	20	27.934	-5.566	56.967	1.00 22.29	В
	MOTA	2631	CA	GLN	20	29.174	-5.986	56.285	1.00 15.95	В
	ATOM	2632	CB	GLN	20	29.216	-5.493	54.839	1.00 14.82	B
		.2633	CG	GLN	20	30.526	-5.834 -5.290	54.127 52.715	1.00 14.68	B B
35	ATOM ATOM	2634 2635	CD OE1	GLN GLN	20 20	30.589 30.540	-4.089	52.514	1.00 13.60	В
55	MOTA	2636		GLN	20	30.720	-6.173	51.737	1.00 13.04	B
	MOTA	2637	c	GLN	20	30.450	-5.437	56.952	1.00 13.25	В
	MOTA	2638	0	GLN	20	30.566	-4.239	57.180	1.00 12.33	В
40	MOTA	2639	N	VAL	21	31.394	-6.328	57.254	1.00 9.34	В
40	MOTA	2640	CA	VAL	21	32.656	-5.941	57.880	1.00 6.24	В
	MOTA MOTA	2641 2642	CB	VAL VAL	21 21	32.775 34.094	-6.537 -6.144	59.296 59.934	1.00 5.92 1.00 3.44	B B
	MOTA	2643		VAL	21	31.616	-6.056	60.138	1.00 7.73	В
	ATOM	2644	c	VAL	21	33.868	-6.396	57.052	1.00 5.09	В
45	MOTA	2645	0	VAL	21	34.031	-7.569	56.766	1.00 4.24	В
	MOTA	2646	N	VAL	22	34.715	-5.454	56.659	1.00 3.75	В
	MOTA	2647	CA	VAL	22	35.893	-5.805	55.879	1.00 4.12	В
	MOTA MOTA	2648 2649	CB CG1	VAL VAL	22 22	35.819 34.566	-5.226 -5.731	54.420 53.703	1.00 3.36 1.00 3.16	B B
50	MOTA	2650		VAL	22	35.823	-3.717	54.452	1.00 2.87	В
	ATOM	2651	c	VAL	22	37.157	-5.305	56.553	1.00 6.20	В
	MOTA	2652	0	VAL	22	37.122	-4.365	57.352	1.00 6.79	В
	ATOM	2653	N	VAL	23	38.271	-5.946	56.223	1.00 4.46	В
55	MOTA	2654	CA	VAL	23	39.559	-5.585	56.785	1.00 4.23	В
22	MOTA MOTA	2655 2656	CB CG1	VAL VAL	23 23	40.195 41.555	-6.830 -6.511	57.477 58.081	1.00 4.02 1.00 1.86	B B
	ATOM	2657		VAL	23	39.268		58.550	1.00 5.77	В.
	ATOM	2658	c	VAL	23	40.505	-5.037	55.710	1.00 4.46	В
	ATOM	2659	ō	VAL	23	40.553		54.586	1.00 4.66	В
60	MOTA	2660	N	ARG	24	41.251	-3.998	56.057	1.00 7.29	В
	MOTA	2661	CA	ARG	24	42.228		55.128	1.00 9.87	В
	MOTA	2662	CB	ARG	24	41.793	-2.092	54.531	1.00 6.53	В
	MOTA MOTA	2663 2664	CG	ARG ARG	24 24	42.744 42.401		53.425 52.837	1.00 6.89 1.00 7.91	B B
65	ATOM	2665	CD NE	ARG	24	42.401		51.603	1.00 4.86	В
JJ	MOTA	2666	CZ	ARG	24	43.041	1.095	50.909	1.00 3.46	В
	ATOM	2667	NH1		24	42.228		51.329	1.00 1.00	В
	MOTA	2668		ARG	24	43.773	1.287	49.814	1.00 1.00	В
70	MOTA	2669	C	ARG	24	43.541		55.856	1.00 13.03	В
70	MOTA	2670	0 .	ARG	24	43.586	-2.374	56.791	1.00 13.45	В
	MOTA	2671	N	CYS	25	44.593	-3.873	55.421	1.00 13.86	В

	MOTA	2672	CA	CYS	25	45.928	-3.742	55.996	1.00 16.78	В
	MOTA	2673	CB	CYS	25	46.646	-5.088	55.932	1.00 14.53	В .
	MOTA	2674	SG	CYS	25 25	48.149	-5.147 -2.706	56.865 55.216	1.00 15.92 1.00 17.93	B B
5	MOTA MOTA	2675 2676	С 0	CYS	25 25	46.743 46.793	-2.743	53.991	1.00 17.93	В
,	MOTA	2677	N	ARG	26	47.369	-1.774	55.922	1.00 20.13	В
	MOTA	2678	CA	ARG	26	48.186	-0.779	55.242	1.00 23.56	В
	MOTA	2679	СВ	ARG	26	48.410	0.441	56.122	1.00 23.04	В
	MOTA	2680	CC	ARG	26	49.018	0.108	57.480	1.00 25.34	В
10	MOTA	2681	CD	ARG	26	49.478	1.335	58.248	1.00 25.85	В
	MOTA	2682	NE	ARG	26	50.882	1.635	57.970	1.00 27.66	• В
	MOTA	2683	CZ	ARG	26	51.876	1.425 0.914	58.830 60.030	1.00 29.35 1.00 28.00	B B
	MOTA	2684		ARG ARG	26 26	51.620 53.126	1.729	58.494	1.00 29.65	В
15	MOTA MOTA	2685 2686	C	ARG	26	49.566	-1.360	54.924	1.00 26.17	В
~~	ATOM	2687	ŏ	ARG	26	49.965	-2.367	55.500	1.00 27.47	В
	MOTA	2688	N	PRO	27	50.296	-0.748	53.976	1.00 28.46	В
	MOTA	2689	CD	PRO	27	49.815	0.221	52.972	1.00 28.96	В
αń	MOTA	2690	CA	PRO	27	51.634	-1.225	53.617	1.00 30.05	В
20	MOTA	2691	CB	PRO	27	51.757	-0.791	52.157	1.00 29.21	В
	MOTA	2692	CG	PRO		51.081	0.508 -0.565	52.153 54.551	1.00 27.78 1.00 30.74	B B
	MOTA MOTA	2693 2694	С 0	PRO PRO	27 27	52.652 52.315	0.387	55.255	1.00 30.74	В
	MOTA	2695	N	PHE	28	53.888	-1.065	54.559	1.00 33.00	В
25	MOTA	2696	CA	PHE	28	54.946	-0.488	55.397	1.00 35.47	В
	MOTA	2697	CB	PHE	28	56.197	-1.349	55.423	1.00 34.78	В
	MOTA	2698		PHE	28	56.043	-2.621	56.180	1.00 34.30	В
	MOTA	2699		PHE	28	55.970	-3.848	55.506	1.00 33.11	В
30	MOTA	2700		PHE	28	55.975	-2.598	57.566 56.204	1.00 34.50 1.00 32.04	B B
30	MOTA MOTA	2701 2702		PHE PHE	28 28	55.831 55.833	-5.030 -3.779	58.283	1.00 34.83	В
	MOTA	2702	CZ	PHE	28	55.762	-5.002	57.594	1.00 34.76	В
	ATOM	2704	c	PHE	28	55.432	0.848	54.837	1.00 37.44	В
	MOTA	2705	0	PHE	28	55.529	1.019	53.640	1.00 37.96	В
35	MOTA	2706	N	ASN	29	55.724	1.797	55.719	1.00 41.21	В
	MOTA	2707	CA	ASN	29	56.195	3.114	55.288	1.00 43.97	В
	MOTA	2708	CB	ASN	29	55.731	4.190	56.280 57.724	1.00 42.30	B B
	MOTA MOTA	2709 2710	CG	ASN ASN	29 29	56.080 57.230	3.843 3.554	58.038	1.00 40.87	В
40	MOTA	2711		ASN	29	55.080	3.866	58.604	1.00 40.16	В
	ATOM	2712	c	ASN	29	57.718	3.112	55.190	1.00 47.03	В
	MOTA	2713	0	ASN	29	58.361	2.179	55.651	1.00 48.57	В
	MOTA	2714	N	LEU	30	58.290	4.156	54.594	1.00 49.85	, B
15	MOTA	2715	CA	LEU	30	59.745	4.258	54.442	1.00 52.56	В
45	ATOM	2716	CB	LEU	30	60.125	5.641 5.735	53.928 52.409	1.00 52.63 1.00 53.20	В В
	MOTA MOTA	2717 2718	CC	LEU	30 30	60.214 60.395	7.194	51.973	1.00 53.20	8
	ATOM	2719		LEU	30	61.378	4.862	51.935	1.00 54.30	В
	ATOM	2720	c	LEU	30	60.579	3.978	55.695	1.00 54.36	В
50	MOTA	2721	0	LEU	30	61.623	3.347	55.619	1.00 54:97	В
	MOTA	2722	N	ALA	31	60.121	4.453	56.847	1.00 56.36	В
	ATOM	2723	CA	ALA	31	60.843	4.228	58.097	1.00 58.76	В
	MOTA	2724	CB	ALA	31	60.214	5.057 2.742	59.202 58.487	1.00 58.55	B B
55	MOTA MOTA	2725 2726	С 0	ALA ALA	31 31	60.842 61.749	2.266	59.167	1.00 60.67	В
55	ATOM	2727	N	GLU	. 32	59.819	2.016	58.045	1.00 61.95	B
	MOTA	2728	CA	GLU	32	59.692	0.594	58.350	1.00 63.39	В
	MOTA	2729	СВ	GLU	. 32	58.215	0.187	58.322	1.00 62.91	В
~	MOTA	2730	CG	GLU	32	57.429	0.683		1.00 62.16	В
60	ATOM	2731	CD	GLU	32	55.933	0.669	59.299	1.00 61.37	В
	MOTA	2732		GLU	32	55.191	0.841	60.289	1.00 60.97	В
	ATOM	2733		GLU	32 32	55.504 60.487	0.497 -0.318	58.138 57.414	1.00 60.36 1.00 64.76	B B
	MOTA MOTA	2734 2735	C O	GLU GLU	32	61.130	-1.261	57.860	1.00 64.21	B
65	MOTA	2736	N	ARG	33	60.436	-0.039	56.116	1.00 66.90	В
0.5	MOTA	2737	CA	ARG	33	61.150	-0.855	55.141	1.00 69.19	В
	MOTA	2738	СВ	ARG	33	60.690	-0.503	53.719	1.00 70.74	В
	MOTA	2739	CG	ARG	33	60.911	0.953	53.310	1.00 73.78	B
70	MOTA	2740	CD	ARG	33	60.238	1.267	51.977	1.00 75.17	В
70	MOTA	2741	NE	ARG	33	60.663	0.349	50.920	1.00 76.52	В
	MOTA	2742	CZ	ARG	33	61.889 62.838	0.301 1.122	50.400 50.829	1.00 76.92 1.00 76.57	B B
	MOTA MOTA	2743 2744		ARG ARG	33 33	62.168	-0.569	49.441	1.00 78.04	В
	0.1									

	ATOM	2745	С	ARG	33	62.650	-0.654	55.297	1.00 70.11	В
	MOTA	2746		ARG	33	63.439	-1.524	54.943	1.00 70.36	В
	MOTA	2747	N	LYS	34	63.038	0.500	55.832	1.00 71.13	В
_	MOTA	2748		LYS	34	64.447	0.798	56.053	1.00 72.18	В
5	MOTA	2749		LYS	34	64.623	2.254	56.498	1.00 73.21 1.00 74.27	B B
	MOTA	2750	CG	LYS	34	64.611	3.267	55.363 54.921	1.00 74.27	В
	MOTA	2751		LYS	34 34	66.023 66.769	3.637 2.463	54.306	1.00 74.88	В
	MOTA MOTA	2752 2753	CE NZ	LYS LYS	34	68.154	2.852	53.916	1.00 75.81	В
10	MOTA	2754	C	LYS	34	65.006	-0.137	57.123	1.00 72.12	В
10	MOTA		ō	LYS	34	66.207	-0.424	57.142	1.00 72.82	В
	MOTA	2756	N	ALA	35	64.130	-0.612	58.007	1.00 71.37	В
	MOTA	2757	ÇA	ALA	35	64.522	-1.526	59.077	1.00 69.94	В
	MOTA	2758	CB	ALA	35	63.780	-1.177	60.361	1.00 69.77	В
15	MOTA	2759	С	ALA	35	64.223	-2.970	58.685	1.00 69.24	В
	MOTA	2760	0	ALλ	35	64.198	-3.854	59.542	1.00 69.32 1.00 68.43	B B
	MOTA	2761	N	SER	36	64.001 63.689	-3.194 -4.519	57.388 56.848	1.00 66.99	В
	MOTA MOTA	2762 2763	CA CB	SER SER	36 36	64.937	-5.405	56.860	1.00 67.27	В
20	MOTA	2764	OG	SER	36	65.906	-4.912	55.959	1.00 67.40	В
20	MOTA	2765	Č	SER	36	62.579	-5.159	57.674	1.00 65.70	В
	MOTA	2766	ō	SER	36	62.721	-6.270	58.185	1.00 65.65	В,
	MOTA	2767	N	ALA	37	61.469	-4.435	57.791	1.00 64.41	В
~-	MOTA	2768	ÇA	ALA	37	60.320	-4.880	58.568	1.00 62.00	В
25	MOTA	2769	CB	ALA	37	59.256	-3.784	58.601	1.00 62.35	В
	MOTA	2770	C	ALA	37	59.699	-6.185	58.093 56.909	1.00 59.79 1.00 58.90	B B
	MOTA	2771	0	ALA	37	59.490 59.400	-6.404 -7.042	59.061	1.00 58.16	В
	MOTA MOTA	2772 2773	N CA	HIS HIS	38 . 38	58.795	-8.347	58.828	1.00 55.57	В
30	MOTA	2774	CB	HIS	38	59.420	-9.381	59.785	1.00 57.59	В
50	MOTA	2775	CG	HIS	38	59.426	-8.963	61.233	1.00 58.97	В
	ATOM	2776		HIS	38	58.878	-9.543	62.328	1.00 58.78	В
	MOTA	2777	ND1	HIS	38	60.083	-7.837	61.689	1.00 58.86	В
0.5	MOTA	2778		HIS	38	59.939	-7.744	63.000	1.00 58.84	В
35	MOTA	. 2779		HIS	38	59.211	-8.766	63.412	1.00 58.91	В
	MOTA	2780	C	HIS	38	57.296	-8.223	59.086 60.163	1.00 53.05 1.00 54.10	B
	MOTA	2781	0	HIS	38	56.890 56.472	-7.787 -8.605	58.114	1.00 48.25	В
	MOTA MOTA	2782 2783	N CA	SER SER	39 39	55.026	-8.500	58.290	1.00 42.98	В
40	MOTA	2784	CB	SER	39	54.295	-8.575	56.970	1.00 42.55	В
	MOTA	2785	OG	SER	39	52.903	-8.490	57.201	1.00 39.13	В
	ATOM	2786	C	SER	39	54.444	-9.616	59.130	1.00 40.52	В
•	MOTA	2787	0	SER	39	54.750	-10.773	58.919	1.00 39.58	В
4.5	MOTA	2788	N	ILE	40	53.603	-9.247	60.092	1.00 38.79	В
45	MOTA	2789	CA	ILE	40		-10.222	60.979	1.00 36.32	B B
	MOTA	2790	CB	ILE	40	53.039	-9.786	62.478 62.925	1.00 37.00 1.00 37.72	В
	MOTA	2791 2792		ILE	40 40	54.493 52.307	-9.677 -8.458	62.692	1.00 37.72	B
	MOTA MOTA	2793		ILE	40	52.102	-8.097	64.161	1.00 37.35	В
50	MOTA	2794	C	ILE	40		-10.426	60.611	1.00 34.00	В
	ATOM	2795	ō	ILE	40		-11.084	61.319	1.00 32.93	В
	MOTA	2796	N	VAL	41 .	51.097	-9.863	59.482	1.00 33.39	В
	MOTA	2797	CA	VAL	41	49.720	-9.986	59.028	1.00 32.21	В
	MOTA	2798	CB	VAL	41	48.982	-8.617	59.042	1.00 31.99	В
55	MOTA	2799		VAL	41	47.559	-8.778	58.536	1.00 30.52	B
	MOTA	2800		VAL	41	48.964	-8.048	60.445 57.610	1.00 32.73	В
	MOTA	2801	С.	VAL	41 41		-10.526 -10.022	56.728	1.00 32.33	₿.
	MOTA MOTA	2802 2803		VAL GLU	42		-11.565			В
60	MOTA	2804	CA	GLU	42		-12.189	56.112	1.00 34.79	В
-	MOTA	2805	СВ	GLU	42		-13.626	56.142	1.00 34.88	В
	MOTA	2806	CG	GLU	42		-13.762	55.882	1.00 35.91	В
	MOTA	2807	CD	GLU	42		-15.139	56.222	1.00 36.62	В
	MOTA	2808		GLU	42		-16.105	55.996	1.00 35.55	В
65	MOTA	2809		GLU	42		-15.262	56.704	1.00 36.67	В
	MOTA	2810		GLU	42		-12.207	55.689	1.00 34.67	В
	MOTA	2811	0	GLU	42		-12.745	56.388	1.00 35.11	B B
	MOTA	2812	N	CYS	43		-11.615	54.540 54.074	1.00 33.53	В
70	MOTA	2813	CA	CYS	43		-11.575 -10.172		1.00 33.04	В
70	MOTA MOTA	2814 2815	CB SG	CYS	43 43	45.241			1.00 30.24	В
	MOTA	2816		CYS	43		-12.597			В
	MOTA	2817		CYS	43		-12.722			В
			-		· =					

										_
	MOTA	2818	N	ASP	44		-13.335	53.160	1.00 34.51	В
	MOTA	2819	CA	ASP	44		-14.347 -15.710	52.196 52.875	1.00 35.72 1.00 37.74	B B
	MOTA MOTA	2820 2821	CB CG	ASP ASP	44 44		-16.858	51.880	1.00 39.14	В
5	ATOM	2822	OD1		44		-16.681	50.787	1.00 38.15	В
,	ATOM	2823	OD2		44		-17.941	52.206	1.00 40.23	В
	ATOM	2824	Ç	ASP	44		-13.949	51.662	1.00 36.02	В
	MOTA	2825	ō	ASP	44		-14.323	52.228	1.00 34.41	В
	ATOM	2826	N	PRO	45	42.415	·-13.177	50.566	1.00 36.48	В
10	MOTA	2827	CD	PRO	45		-12.792	49.725	1.00 37.08	В
	MOTA	2828	CA	PRO	45		-12.727	49.962	1.00 36.44	В
	MOTA	2829	CB	PRO	45		-11.834	48.828	1.00 36.90	В
	MOTA	2830	CC	PRO	45		-12.518	48.398	1.00 37.61 1.00 36.95	B B
15	MOTA	2831	C	PRO	45		-13.872 -13.805	49.518 49.685	1.00 36.93	В
13	MOTA MOTA	2832 2833	O N	PRO VAL	45 46		-14.912	48.930	1.00 37.39	В
	ATOM	2834	CA	VAL	46		-16.057	48.479	1.00 37.62	. В
	MOTA	2835	CB	VAL	46		-17.087	47.773	1.00 38.49	В
	MOTA	2836		VAL	46		-18.269	47.334	1.00 39.31	В
20	MOTA	2837		VAL	46		-16.436	46.584	1.00 38.33	В
	MOTA	2838	С	VAL	46	39.354	-16.728	49.665	1.00 37.65	В
	MOTA	2839	0	VAL	46		-17.082	49.606	1.00 38.03	В
	MOTA	2840	N	ARG	47		-16.902	50.752	1.00 37.10	В
25	MOTA	2841	CA	ARG	47		-17.512	51.947	1.00 37.76	В
23	MOTA	2842	CB	ARG	47		-18.142	52.797 53.811	1.00 40.98 1.00 45.53	B B
	MOTA	2843 2844	CG CD	ARG ARG	47 47	40.136	3 -19.170 3 -20.569	53.205	1.00 48.08	В
	ATOM ATOM	2845	NE	ARG	47		-21.065	52.905	1.00 51.05	В
	MOTA	2846	cz	ARG	47		-21.291	53.826	1.00 53.04	В
30	ATOM	2847		ARG	47		-21.066	55.108	1.00 53.32	В
	MOTA	2848		ARG	47		-21.744	53.467	1.00 53.55	В
	MOTA	2849	С	ARG	47		7 -16.436	52.774	1.00 35.87	В
	MOTA	2850	0	ARG	47	38.091		53.702	1.00 35.14	В
25	MOTA	2851	N	LYS	48		-15.178	52.420	1.00 34.57	В
35	MOTA	2852	CA	LYS	48		-14.051	53.125	1.00 32.91	B B
	MOTA	2853	CB	LYS	48		3 -14.158 L -14.145	53.092 51.693	1.00 34.16 1.00 36.73	В
	MOTA MOTA	2854 2855	CD	LYS LYS	48 48		1 -14.249	51.706	1.00 37.41	В
	ATOM	2856	CE	LYS	48		3 -14.550	50.314	1.00 38.70	В
40	MOTA	2857	NZ	LYS	48		-13.479	49.344	1.00 36.20	В
. •	ATOM	2858	c	LYS	48		3 -13.978	54.578	1.00 31.33	В
	MOTA	2859	0	LYS	48		-13.593	55.440	1.00 31.50	В
	MOTA	2860	N	GLU	49	40.15	L -14.352	54.836	1.00 29.95	В
4.5	MOTA	2861	ÇA	GĽU	49		2 -14.330	56.193	1.00 27.26	В
45	ATOM	2862	CB	GLU	49	41.16		56.633	1.00 28.44	В
	MOTA	2863	CG	GLU	49		5 -16.815	56.656	1.00 28.64	В
	MOTA	2864	CD	GLU	49		-18.160	56.980 56.992	1.00 29.46 1.00 29.37	B B
	MOTA MOTA	2865 2866		GLU	49 49		8 -19.168 6 -18.211	57.220	1.00 29.95	В
50	MOTA	2867	C	GLU	49		4 -13.438	56.344	1.00 24:62	В
-	MOTA	2868	ŏ	GLU	49		8 -13.164	55.395	1.00 23.41	В
	MOTA	2869	N	VAL	50		3 -12.973	57.565	1.00 23.85	В
	ATOM	2870	CA	VAL	50	43.27	6 -12.164	57.915	1.00 22.58	В
~ ~	MOTA	2871	CB	VAL	50		2 -10.738	58.417	1.00 21.03	В
55	MOTA	2872		VAL	50	41.86		59.540	1.00 20.58	В
	MOTA	2873		VAL	50	44.04		58.884	1.00 19.55	В
	MOTA	2874	C	VAL	50		9 -12.995	59.036	1.00 23.21	В
	MOTA	2875	0	VAL	50		4 -13.410	59.959	1.00 22.47 1.00 24.22	B B
60	MOTA	2876	N	SER	51 51		7 -13.286 7 -14.078	58.923 59.950	1.00 26.05	В
00	MOTA MOTA	2877 2878	CA CB	SER SER	51		8 -15.380	59.352	1.00 26.43	В
	ATOM	2879	OG	SER	51		5 -16.299	60.383	1.00 26.88	В
	ATOM	2880	c	SER	51		3 -13.293	60.579	1.00 26.62	В
	ATOM	2881	ŏ	SER	51		3 -12.781	59.868	1.00 26.40	В
65	ATOM	2882	N	VAL	52		8 -13.213		1.00 27.16	В
	MOTA	2883	CA	VAL	52		0 -12.463		1.00 29.10	В
	MOTA	2884	СВ	VAL	52		1 -11.480		1.00 28.02	В
	ATOM -	2885		VAL	52		6 -10.624		1.00 27.20	В
70	MOTA	2886		VAL	52		1 -10.607		1.00 27.34	В
70	MOTA	2887	c	VAL	52		4 -13.331		1.00 30.28	. В
	MOTA	2888	0	VAL	52		7 -14.267		1.00 30.72 1.00 31.46	B
	MOTA	2889	N CA	ARG	53 53		5 -13.018 6 -13.778			В
	MOTA	2890	CA	ARG		J1.21	· -43.770	04.070	1.00 32.33	

	MOTA	2891	СВ	ARG	53	52.6	15 -	-13.750	63.336	1.00 33.14	В
	MOTA	2892	CG	ARG	53	53.63	36 -	-14.706	63.926	1.00 32.63	В
	MOTA	2893	CD	ARG	53	54.5	75 -	-15.197	62.851	1.00 33.53	В
	ATOM	2894	NE	ARG	53	55.48	82 -	-14.163	62.378	1.00 34.35	В
5	ATOM	2895	CZ	ARG	53	56.0	17 -	-14.140	61.161	1.00 35.36	В
-	MOTA	2896	NH1		53			-15.089	60.272	1.00 35.11	В
	ATOM	2897	NH2		53			-13.162	60.838	1.00 36.70	В
	ATOM	2898	C	ARG	53			-13.182	65.458	1.00 34.27	В
	MOTA	2899	ŏ	ARG	53			-12.088	65.632	1.00 34.80	В
10	MOTA	2900	Ň	THR	54			-13.915	66.446	1.00 35.04	В
10	ATOM	2901	·CA	THR	54			-13.458	67.815	1.00 37.72	В
	MOTA	2902	CB	THR	54	49.6		-13.823	68.540	1.00 37.47	В
	MOTA	2903		THR	54 .			-15.244	68.581	1.00 36.02	В
	ATOM	2904	CG2	THR	54			-13.260	67.804	1.00 37.61	В
15	ATOM	2905	C	THR	54			-14.056	68.586	1.00 39.85	В
13	MOTA	2906	ŏ	THR	54	52.5		-13.554	69.633	1.00 39.10	В
	MOTA	2907	N	GLY	55	52.7		-15.121	68.043	1.00 43.17	В
		2908	CA	GLY	55			-15.791	68.727	1.00 48.23	В
	MOTA		C	GLY	55	55.2		-15.667	68.165	1.00 51.61	• В
20	MOTA MOTA	2909 2910	Ö	GLY	55	55.7		-14.562	67.926	1.00 52.45	В
20		2911	N	GLY	56	55.8		-16.820	67.962	1.00 53.22	В
	MOTA		CA	GLY	56			-16.864	67.464	1.00 54.95	В.
	MOTA	2912			56			-16.365	66.052	1.00 56.66	В.
	MOTA	2913	C	GLY	56	56.7		-15.450	65.611	1.00 57.44	В
25	MOTA	2914	O N		57	58.3		-16.980	65.346	1.00 57.72	В
23	MOTA	2915 2916	N CA	LEU	57			-16.600	63.972	1.00 58.30	В
	MOTA	2917	CB	LEU	57			-16.608	63.777	1.00 58.78	В
	MOTA MOTA	2918	CG	LEU	57			-17.384	64.790	1.00 59.20	В
		2919		LEU	57			-18.870	64.762	1.00 59.75	В
30	MOTA	2920		LEU	57			-17.175	64.472	1.00 59.20	В
50	MOTA	2921		LEU	57			-17.493	62.921	1.00 58.10	В
	MOTA		0	LEU	57			-18.289	63.245	1.00 58.57	'В
	MOTA	2922		ALA	58			-17.343	61.665	1.00 57.02	В
	MOTA	2923	N		58			-18.126	60.555	1.00 55.81	В
35°	MOTA	2924	CA	ALA	58			-17.615	59.235	1.00 55.75	В
رر	MOTA	·2925 2926	CB	ALA	58			-19.622	60.705	1.00 54.88	В
	MOTA		C	ALA				-20.460	60.375	1.00 54.40	В
	MOTA	2927	0	ALA	58			-19.937	61.211	1.00 53.60	В
	MOTA	2928	N	ASP	59 59			-21.316	61.431	1.00 51.49	В
40	MOTA	2929	CA	ASP					62.050	1.00 51.99	В
40	MOTA	2930	CB	ASP	59 50			-21.290 -22.681	62.338	1.00 52.10	В
	MOTA	2931	CG	ASP	59 50			-23.464	61.385	1.00 51.56	В
	MOTA	2932		ASP	59 50			-22.987	63.525	1.00 52.60	В
	MOTA	2933		ASP	59 50			-22.110	62.338	1.00 49.40	В
45	MOTA	2934	c	ASP	59 59			-23.315	62.197	1.00 48.84	В
47	MOTA	2935	0	ASP	60			-21.404	63.256	1.00 47.59	В
	MOTA	2936 2937	N	LYS	60	57.3		-22.021	64.208	1.00 46.47	В
	MOTA		CA	LYS				-22.949	65.114	1.00 45.88	В
	MOTA	2938	CB	LYS	60 60	57.4		-23.470	66.345	1.00 44.88	В
50	MOTA	2939	CG	LYS	60 60			-24.217	67.209	1.00 45.79	В
,50	MOTA MOTA	2940 2941	CD	LYS	60 60	57.8		-24.729	68.503	1.00 47.18	В
	MOTA	2942	NZ	LYS	~~			-25.298	69.384	1.00 48.54	В
	MOTA	2943	C	LYS	60			-20.862	64.977	1.00 45.74	B
	MOTA	2944	ŏ	LYS	60			-20.017	65.532	1.00 45.66	В
55	MOTA	2945	N	SER	61			-20.802	64.999	1.00 44.14	В
33	MOTA	2946	CA	SER	61			-19.718	65.697	1.00 42.32	В
	MOTA	2947	CB	SER	61			-18.419	64.892	1.00 43.45	В
	MOTA	2948	OG	SER	61			-18.594	63.545	1.00 42.02	В
								-19.931	65.980	1.00 40.98	В
60	MOTA	2949	_	SER	61			-20.939	65.613	1.00 40.30	В
00	MOTA	2950	0	SER	61				66.669	1.00 40.63	В
	MOTA	2951	N	SER	62			-18.954 -18.944	66.992	1.00 38.79	В
	MOTA	2952	CA	SER	62				68.445	1.00 38.80	В
	ATOM	2953	CB	SER	62			-18.549	69.325	1.00 38.30	B
65	MOTA	2954	OG	SER	62			-19.441	66.115	1.00 35.30	В
05	MOTA	2955	C	SER	62			-17.862	65.728	1.00 37.14	В
	MOTA	2956	0	SER	62			-16.906	65.783	1.00 37.14	В
	MOTA	2957	N	ARG	63			-18.018		1.00 35.86	В
	MOTA	2958	CA	ARG	63			-17.017	64.959	1.00 35.76	В
70	MOTA	2959	CB	ARG	63			-17.318	63.453	1.00 35.76	В
70	MOTA	2960	CG	ARG	63			-17.378	62.918 61.418	1.00 38.47	В
	MOTA	2961	CD	ARG				-17.660		1.00 38.47	• В
	MOTA	2962		ARG				-16.499	60.608		B
	MOTA	2963	CZ	ARG	63	50.	063	-15.428	60.393	1.00 40.83	

	MOTA	2964	NH1 AR			-15.353	60.928	1.00 41.75	В
	MOTA	2965	NH2 AR			-14.433	59.629	1.00 40.58	В
	MOTA	2966	C AR			-16.982	65.296	1.00 34.60 1.00 33.92	B B
5	MOTA	2967	O AR			-17.920 -15.865	65.855 64.968	1.00 33.48	В
5	MOTA	2968 2969	N LY			-15.676	65.193	1.00 31.00	В
	MOTA MOTA	2970	CB LY			-14.444	66.056	1.00 34.47	В
	MOTA	2971	CG LY			-14.581	67.508	1.00 36.74	В
	ATOM	2972	CD LY			-15.378	68.279	1.00 38.57	В
10	MOTA	2973	CE LY			-15.324	69.773	1.00 39.71	₿
	MOTA	2974	NZ LY		43.520	-15.964	70.596	1.00 40.02	В
	MOTA	2975	C LY			-15.428	63.805	1.00 29.35	В
	MOTA	2976	O LY			-14.604	63.045	1.00 29.23	В
15	MOTA	2977	n th			-16.156	63.470	1.00 27.29	В
15	MOTA	2978	CA TH			-16.020	62.165	1.00 24.96 1.00 24.86	8 B
	MOTA	2979	CB TH			-17.321 -17.701	61.338 61.294	1.00 24.88	В
	MOTA	2980	OG1 TH			-17.120	59.912	1.00 25.70	В
	MOTA MOTA	2981 2982	C TH			-15.688	62.319	1.00 22.74	В
20	MOTA	2983	O TH			-16.313	63.095	1.00 23.83	В
	ATOM	2984	N TY			-14.677	61.579	1.00 21.85	В
	MOTA	2985	CA TY		39.601	-14.232	61.612	1.00 20.45	В
	MOTA	2986	CB TY	R 66	39.480	-12.844	62.234	1.00 18.74	В
0.5	MOTA	2987	CG TY			-12.695	63.581	1.00 19.02	В
25	MOTA	2988	CD1 TY			-12.584	63.695	1.00 18.23	В
	ATOM	2989	CE1 TY			-12.420	64.946	1.00 19.22 1.00 20.12	· B B
	MOTA	2990	CD2 TY			-12.641 -12.474	64.748 66.009	1.00 20.12	В
	MOTA	2991 2992	CE2 TY			-12.367	66.109	1.00 20.40	В
30	ATOM ATOM	2993	OH TY			-12.234	67.382	1.00 20.35	В
50	ATOM	2994	C TY			-14.136	60.195	1.00 22.62	В
	ATOM	2995	O TY			-13.786	59.237	1.00 22.83	В
	ATOM	2996	N TH		37.747	-14.464	60.058	1.00 22.62	В
	MOTA	2997	CA TH	R 67		-14.424	58.755	1.00 23.36	В
35	MOTA	2998	CB TF			-15.723	58.489	1.00 24.24	В.
	MOTA	2999	OG1 TH			-16.854	58.576	1.00 26.83	В
	ATOM	3000	CG2 TH			-15.702	57.115	1.00 25.09	B B
	MOTA	3001	C Ti			-13.241 -12.979	58.669 59.598	1.00 23.25 1.00 23.74	В
40	MOTA MOTA	3002 3003	O TH			-12.521	57.556	1.00 22.27	В
40	MOTA	3004	CA PI			-11.379	57.354	1.00 23.47	В
	MOTA	3005	CB Pi			-10.068	57.414	1.00 25.18	В
	ATOM	3006	CG PI		36.688		58.758	1.00 28.91	В
	ATOM	3007	CD1 P	E 68	37.872	-10.407	59.162	1.00 31.76	В
45	ATOM	3008	CD2 PI	ie 68	36.028		59.655	1.00 30.45	. В
	MOTA	3009	CE1 P			-10.211	60.444	1.00 33.13	В
	MOTA	3010	CE2 PI				60.947	1.00 32.68	В
	MOTA	3011	CZ PI				61.346	1.00 34.40	B B
50	MOTA	3012	C Pi				56.001 55.318	1.00 23.18 1.00 23.09	В
50	ATOM ATOM	3013 3014	O PI	IE 68 SP 69			55.625	1.00 22.35	В
	ATOM	3014	CA A				54.350	1.00 23.38	В
	ATOM	3016	CB A				54.386	1.00 23.05	В
	ATOM	3017		SP 69			55.427	1.00 23.94	В
55	MOTA	3018	OD1 A			-9.341	56.538	1.00 21.68	В
	MOTA	3019	OD2 A	SP 69	30.106	-10.812	55.138	1.00 25.46	В
	MOTA	3020	C A	SP 69		L -10.363	53.173	1.00 24.90	В
	MOTA	3021		SP 69		-10.931	52.082	1.00 25.83	В
60	MOTA	3022		er 70		-9.539	53.405	1.00 25.78	В
60	MOTA	3023		ET 70			52.412 51.517	1.00 26.18	B B
	MOTA	3024		er 70			50.564	1.00 27.89	B
	MOTA MOTA	3025		er 70 er 70			49.495	1.00 29.08	В
	MOTA	3026 3027		er 70 er 70			49.126	1.00 32.58	· .B
65	MOTA	3028		ET 70			53.150		В
33	MOTA	3029		ET 70			54.206	1.00 26.04	В
	MOTA	3030		AL 71			52.596	1.00 24.01	B
	MOTA	3031		AL 71			53.228	1.00 23.48	В
	MOTA	3032		AL 71			53.902	1.00 24.24	В
70	MOTA	3033			39.66	8 -10.429	55.086		В
	MOTA	3034	CG2 V				52.882		В
	MOTA	3035		AL 71			52.181		В
	MOTA	3036	o v	AL 71	40.84	1 -8.641	51.068	1.00 22.79	В

	MOTA	3037	N	PHE	72	41.356	-7.025	52.551	1.00 22.62	В
	MOTA	3038	CA	PHE	72	42.229	-6.344	51.628	1.00 22.70	В
	ATOM	3039	СВ	PHE	72	41.710	-4.936	51.321	1.00 20.63	B
	MOTA	3040	CG	PHE	72	40.318	-4.910	50.753	1.00 18.35	В
5	MOTA	3041	CD1	PHE	72	40.056	-5.419	49.493	1.00 15.95	В
	MOTA	3042	CD2		72	39.261	-4.409	51.495	1.00 17.50	B
	ATOM	3043	CEl	PHE	72	38.771	-5.435	48.986	1.00 16.14	В
	MOTA	3044	CE2	PHE	72	37.976	-4.425	50.985	1.00 17.48	В
_	MOTA	3045	CZ	PHE	72	37.732	-4.939	49.729	1.00 16.21	B
10	MOTA	3046	С	PHE	72	43.626	-6.197	52.178	1.00 22.69	В
	MOTA	3047	۰0	PHE	72	43.836	-5.523	53.181	1.00 22.50	В
	MOTA	3048	N	GLY	73	44.578	-6.837	51.508	1.00 22.82	В
	MOTA	3049	CA	GLY	73 .	45.965	-6.741	51.920	1.00 23.34	В
	MOTA	3050	С	GLY	73	46.584	-5.398	51.571	1.00 23.29	В
15	ATOM	3051	0	GLY	73	45.982	-4.561	50.885	1.00 22.64	В
	MOTA	3052	N	ALA	74	47.809	-5.199	52.037	1.00 23.40	В
	MOTA	3053	CA	ALA	74	48.531	-3.960	51.808	1.00 25.70	В
	MOTA	3054	CB	ALA	74	49.891	~4.016	52.523	1.00 25.78	В
ΔA :	MOTA	3055	С	ALA	74	48.725	-3.639	50.328	1.00 26.16	В
20	MOTA	3056	0	ALA	74	49.129	-2.556	49.978	1.00 27.50	В
	MOTA	3057	N	SER	.75	48.406	-4.584	49.459	1.00 27.00	В
	MOTA	3058	CA	SER	75	48.590	-4.358	48.031	1.00 28.47	В.
	MOTA	3059	СВ	SER	75	48.982	-5.679	47.335	1.00 28.85	В
25	MOTA	3060	OG	SER	75	48.019	-6.709	47.507	1.00 27.19	·B B
23	MOTA	3061	C	SER	75	47.389	-3.728	47.319	1.00 27.90 1.00 29.21	В
	ATOM	3062	0	SER	75 76	47.542	-3.123	46.243	1.00 25.21	B
	MOTA	3063	N	THR	76 76	46.206	-3.853 -3.315	47.320	1.00 25.45	В
	MOTA	3064	CA	THR THR	76 . 76	44.984 43.746	-3.663	48.183	1.00 23.54	В
30	MOTA	3065 3066	CB	THR	76	44.015	-3.345	49.545	1.00 23.44	В
50	MOTA MOTA	3067		THR	76	43.436	-5.132	48.116	1.00 24.38	В
	MOTA	3068	C	THR	76	45.034	-1.803	47.087	1.00 25.69	В
	ATOM	3069	ò	THR	. 76	45.543	-1.041	47.922	1.00 27.74	В
	MOTA	3070	N	LYS	77	44.507	-1.372	45.948	1.00 24.67	В
35	MOTA	3071	CA	LYS	77	44.496	0.044	45.619	1.00 23.51	В
-	MOTA	3072	СВ	LYS	77	44.804	0.234	44.133	1.00 25.56	В
	ATOM	3073	CG	LYS	77	46.192	-0.249	43.719	1.00 28.23	В
	ATOM	3074	CD	LYS	77	46.373	-0.132	42.209	1.00 31.78	В
	MOTA	3075	CE	LYS	77	47.770	-0.560	41.784	1.00 33.69	В
40	ATOM	3076	NZ	LYS	77	47.942	-0.449	40.311	1.00 35.35	В
	ATOM	3077	C	LYS	77	43.150	0.677	45.956	1.00 21.23	В
	MOTA	3078	Ó	LYS	77	42.175	-0.023	46.154	1.00 19.65	В
	ATOM	3079	N	GLN	78	43.105	2.008	46.021	1.00 20.16	В
	ATOM	3080	CA	GLN	78	41.853	2.714	46.335	1.00 18.91	В
45	MOTA	3081	CB	GLN	78	42.004	4.226	46.179	1.00 18.69	В
	MOTA	3082	CG	GLN	78	43.063	4.851	47.064	1.00 18.42	В
	MOTA	3083	CD	GLN	78	42.618	4.962	48.498	1.00 17.41	В
	MOTA	3084		GLN	78	42.152	3.997	49.085	1.00 20.11	В
50	MOTA	3085	NE2		78	42.756	6.143	49.066	1.00 14.62	В
50	MOTA	3086	С	GLN	78	40.743	2.294	45.377	1.00 19.40	В
	ATOM	3087	0	GLN	78	39.609	2.059	45.788	1.00 20.13	В
	MOTA	3088	Ŋ	ILE	. 79	41.074	2.208	44.092	1.00 17.68	В
	MOTA	3089	CA	ILE	79	40.089	1.815	43.094	1.00 15.86	В
66	MOTA	3090	CB	ILE	79	40.727	1,.779	41.678	1.00 15.34	
55	MOTA	3091		ILE	79	41.709	0.597	41.561	1.00 16.93	
	MOTA	3092		ILE	79	39.640	1.641	40.612	1.00 14.82	В
	MOTA	3093		ILE	79	38.766	2.868	40.410	1.00 13.32	B B
	MOTA	3094	C	ILE	79 70	39.463	0.440	43.399	1.00 14.38	В
60	MOTA	3095	0	ILE	79	38.304	0.217	43.130		В
60	MOTA	3096	N	ASP	80 80	40.231 39.683	-0.479 -1.802	44.258	1.00 13.09 1.00 12.77	В
	MOTA	3097	CA	ASP		40.800		44.435	1.00 14.43	В
	MOTA	3098 3099	CB	ASP	80		-2.818 -2.953	43.204	1.00 14.43	В
	MOTA		CG	ASP	80 80	41.645 41.072	-2.882	42.088	1.00 18.91	В
65	MOTA MOTA	3100		ASP	80	42.874	-3.140	43.363	1.00 21.75	В
05		3101		ASP		38.787	-1.829	45.487	1.00 12.00	В
	MOTA MOTA	3102 3103	C	ASP ASP	80 80	37.878	-2.638	45.590	1.00 10.17	В
	ATOM	3103	N	VAL	81	39.063	-0.938	46.430	1.00 10.17	В
	MOTA	3104	CA	VAL	81	38.261	-0.841	47.638	1.00 10.20	8
70	MOTA	3105	CB	VAL	81	38.881	0.128	48.642	1.00 9.09	В
, 5	MOTA	3100		VAL	81	37.857	0.529	49.689	1.00 7.52	В
	MOTA	3107		VAL	81	40.071	-0.534	49.299	1.00 11.81	В
	ATOM	3109	C	VAL	81	36.915	-0.292	47.224	1.00 10.85	В
	0.1	2103	-	•••	~*					_

	MOTA	3110	O VAL	81	35.879	-0.728	47.697	1.00 11.76	В
	MOTA	3111	N TYR	82	36.948	0.681	46.326	1.00 12.12	В.
	MOTA	3112	CA TYR	82	35.735	1.304	45.845	1.00 13.85	В
5	MOTA	3113	CB TYR	82	36.090	2.534 3.259	45.015 44.530	1.00 15.89 1.00 18.66	B B
, ,	MOTA MOTA	3114 3115	CG TYR	82 82	34.870 34.364	3.029	43.256	1.00 20.38	В
	MOTA	3116	CE1 TYR	82	33.201	3.645	42.824	1.00 22.59	B
	ATOM	3117	CD2 TYR	82	34.184	4.132	45.369	1.00 19.71	В
	MOTA	3118	CE2 TYR	82	33.019.	4.755	44.953	1.00 22.44	В
10	MOTA	3119	CZ TYR	82	32.531	4.508	43.675	1.00 23.44	В
	MOTA	3120	OH TYR		31.372	5.125	43.254	1.00 25.79	В
	MOTA	3121	C TYR		34.840	0.350	45.044	1.00 14.77	В
	MOTA	3122	O TYR		33.635	0.211	45.331 44.035	1.00 13.77 1.00 15.58	B B
15	ATOM ATOM	3123 3124	N ARG		35.408 34.632	-0.299 -1.236	43.220	1.00 13.30	В
13	ATOM	3125	CB ARG		35.517	-1.815	42.103	1.00 20.58	В
	MOTA	3126	CG ARG		35.715	-0.868	40.915	1.00 23.85	В
	MOTA	3127	CD ARG		36.998	-1.162	40.161	1.00 26.52	В
-	MOTA	3128	NE ARG	83	36.971	-2.428	39.436	1.00 30.77	В
20	ATOM	3129	CZ ARG		36.255	-2.656	38.335	1.00 33.35	В
	ATOM	3130	NH1 ARG		35.485	-1.703	37.818	1.00 33.79	В
	MOTA	3131	NH2 ARG		36.339	-3.833	37.727 44.045	1.00 33.17 1.00 18.55	B B
	ATOM ATOM	3132 3133	C ARG		34.009 32.867	-2.382 -2.765	43.834	1.00 19.46	В
25	MOTA	3134	N SER		34.764	-2.930	44.985	1.00 17.88	В
23	ATOM	3135	CA SER		34.248	-4.009	45.809	1.00 17.71	. В
	MOTA	3136	CB . SER		35.380	-4.764	46.509	1.00 20.38	В
	MOTA	3137	OG SER	. 84	36.282	-5.324	45.575	1.00 25.36	В
20	MOTA	3138	C SER		33.298	-3.551	46.913	1.00 16.07	В
30	MOTA	3139	O SER		32.241	-4.113	47.073	1.00 15.35	В
	MOTA	3140	N VAL		33.685	-2.526 -2.048	47.673 48.795	1.00 15.30 1.00 14.98	B B
	MOTA MOTA	3141 3142	CA VAL		32.865 33.738	-1.521	49.963	1.00 15.00	В
	ATOM	3143	CG1 VAL		32.849	-1.183	51.129	1.00 15.00	В
35	MOTA	3144	CG2 VAL		34.775	-2.556	50.383	1:00 15.18	В -
	MOTA	3145	C VAL		31.828	-0.960	48.509	1.00 14.85	В
	MOTA	3146	O VAL	85	30.652	-1.162		1.00 13.96	В
	MOTA	3147	n val		32.283	0.184	48.008	1.00 16.21	В
40	MOTA	3148	CA VAL		31.409	1.313	47.740	1.00 15.47	В
40	MOTA	3149	CB VAL		32.205 31.296	2.597° 3.776	47.571 47.800	1.00 15.27 1.00 15.63	B B
	MOTA MOTA	3150 3151	CG1 VAL		33.379	2.614	48.541	1.00 16.09	В
	MOTA	3152	C VAL		30.478	1.191	46.548	1.00 15.77	В
	MOTA	3153	O VAL		29.295	1.506	46.680	1.00 15.71	В
45	ATOM	3154	N CYS		30.976	0.734	45.399	1.00 15.31	В
	MOTA	3155	CA CYS		30.121	0.629	44.218	1.00 17.14	В
	ATOM	3156	CB CYS		30.787	-0.168	43.108	1.00 16.23	В
	MOTA	3157	SG CYS		30.003	0.173	41.511	1.00 22.71	B B
50	ATOM ATOM	3158 3159	C CYS		28.753 27.752	-0.001 0.494	44.488	1.00 18.54 1.00 19.06	В
50	MOTA	3160	N PRO		28.707	-1.117	45.207	1.00 20.44	В
	ATOM	3161	CD PRO		29.827	-2.005	45.536	1.00 22.48	В
	MOTA	3162	CA PRO		27.422	-1.759	45.507	1.00 21.26	В
	MOTA	3163	CB PRO	88	27.847	-3.060	46.157	1.00 21.76	В
55	MOTA	3164	CG PRO		29.168	-3.337	45.512	1.00 22.69	В
	MOTA	3165	C PRO		26.542	-0.890	46.434	1.00 22.59	В
	MOTA	3166	O PRO		25.333 27.151	-0.797 -0.273	46.254 47.446	1.00 22.78 1.00 22.51	B B
	MOTA MOTA	3167 3168	N ILE					1.00 22.44	В
60	MOTA	3169	CB IL		27.298	1.003	49.579	1.00 22.87	В
	ATOM	3170	CG2 ILE		26.592	2.040	50.408	1.00 22.27	В
	MOTA	3171	CG1 ILE		27.607	-0.227	50.439	1.00 24.48	В
	ATOM	3172	CD1 ILE		28.465	0.041	51.641	1.00 26.67	В
25	MOTA	3173	C IL		25.843	1.841	47.727	1.00 22.09	. в
65	MOTA	3174	O ILI		24.734	2.264	48.035	1.00 21.69	В
	MOTA	3175	N LEU		26.607	2.450	46.829	1.00 21.87	В
	MOTA	3176 3177	CA LET		26.122 27.195	3.640 4.228	46.157 45.243	1.00 23.17	B B
	MOTA MOTA	3178	CG LET		26.773		44.498	1.00 18.97	В
70	MOTA	3179	CD1 LE		26.169	6.492	45.446	1.00 18.16	В
	ATOM	3180	CD2 LET		27.987	6.053	43.822	1.00 20.13	В
	MOTA	3181	C LET	J 90	24.891	3.282	45.334	1.00 24.49	В
	MOTA	3182	O LET	J 90	23.963	4.091	45.207	1.00 24.70	В

	АТОМ	3183	N	ASP	91	24.887	2.068	44.781	1.00 25.50	B B
	MOTA MOTA	3184 3185	CA CB	ASP ASP	91 91	23.765 24.042	1.617 0.258	43.975 43.331	1.00 26.54 1.00 27.25	В
	MOTA	3186	CG	ASP	91	24.841	0.373	42.045	1.00 29.15	В
5	ATOM	3187		ASP	91	24.725	1.424	41.365	1.00 28.90	В
	MOTA	3188	OD2	ASP	91	25.559	-0.601	41.701	1.00 29.60	В
	MOTA	3189	С	ASP	91	22.537	1.512	44.848	1.00 27.48	В
	MOTA	3190	0	ASP	91	21.427 22.736	1.740 1.185	44.399 46.115	1.00 28.35 1.00 28.27	B B
10	MOTA MOTA	3191 3192	N CA	GLU	92 92	21.603	1.065	47.018	1.00 28.89	В
10	MOTA	3193	СВ	GLU	92	22.008	0.214	48.219	1.00 30.33	В
	MOTA	3194	CG	GLU	92	20.839	-0.266	49.057	1.00 33.34	В
	MOTA	3195	CD	GLU	92	21.141	-1.578	49.772	1.00 35.27	В
15	MOTA	3196		GLU	92 .	20.340	-2.000	50.633	1.00 36.65 1.00 35.05	B B
15	MOTA	3197 3198		GLU	92 92	22.181 21.106	-2.200 2.459	49.469	1.00 28.34	В
	MOTA MOTA	3199	C	GLU	92	19.897	2.685	47.581	1.00 27.53	В
	MOTA	3200	N	VAL	93	22.037	3.395	47.585	1.00 27.17	В
••	MOTA	3201	CA	VAL	93	21.663	4.757	47.938	1.00 26.25	В
20	MOTA	3202	CB	VAL	93	22.902	5.681	48.072	1.00 27.41	. В
	MOTA	3203		VAL	93	22.455	7.125	48.357	1.00 27.55 1.00 29.02	B B
	MOTA MOTA	3204 3205	CG2	VAL	93 93	23.807 20.771	5.170 5.339	49.178 46.843	1.00 24.60	₿.
	MOTA	3205	Ö	VAL	93	19.759	5.955	47.110	1.00 24.17	·B
25	MOTA	3207	N	ILE	94	21.175	5.150	45.596	1.00 22.93	В
	MOTA	3208	CA	ILE	94	20.398	5.657	44.466	1.00 23.06	В
	MOTA	3209	CB	ILE	94	21.193	5.441	43.130	1.00 22.09	В
	MOTA MOTA	3210 3211		ILE ILE	94 . 94	20.367 22.498	5.867 6.262	41.905 43.205	1.00 18.23 1.00 20.00	. B
30	ATOM	3212		ILE	94	23.382	6.115	42.021	1.00 18.08	В
-	ATOM	3213	c	ILE	94	18.984	5.036	44.384	1.00 23.71	В
	MOTA	3214	0	ILE	94	18.079	5.630	43.845	1.00 24.46	В
	MOTA	3215	N	MET	95	18.787	3.839	44.924	1.00 25.14	В
35 ⁻	MOTA	3216	CA	MET	95	17.451 17.511	3.234	44.893 45.167	1.00 25.03 1.00 24.81	B B
JJ	MOTA MOTA	3217 3218	CB CG	MET	95 95	17.896	1.735 0.898	43.107	1.00 24.81	В
	MOTA	3219	SD	MET	95	17.840	-0.821	44.434	1.00 28.44	В
	ATOM	3220	CE	MET	95	19.568	-1.182	44.778	1.00 27.32	В
40	MOTA	3221	С	MET	95	16.585	3.864	45.977	1.00 25.84	В
40	MOTA	3222	0	MET	95	15.407	3.606	46.068	1.00 26.55	В
	MOTA	3223 3224	N	GLY GLY	96 96	17.193 16.417	4.694° 5.335	46.811 47.854	1.00 26.29 1.00 26.67	B B
	MOTA MOTA	3225	CA	GLY	96	16.650	4.824	49.264	1.00 28.04	В
	MOTA	3226	ō	GLY	96	15.864	5.121	50.170	1.00 29.08	В.
45	ATOM	3227	N	TYR	97	17.733	4.075	49.454	1.00 28.81	В
	ATOM	3228	CA	TYR	97	18.081	3.524	50.760	1.00 29.52	В
	MOTA	3229	CB	TYR	97 97	18.680 17.674	2.117 1.041	50.591 50.230	1.00 31.73 1.00 34.37	B B
	MOTA MOTA	3230 3231	CG CD1	TYR TYR	97	17.016	0.310	51.223	1.00 35.37	В
50	ATOM	3232		TYR	97	16.087	-0.663	50.904	1.00 36.70	В
	ATOM	3233		TYR	97	17.370	0.769	48.901	1.00 35.61	В
	MOTA	3234		TYR	97	16.439	-0.198	48.569	1.00 37.43	В
	ATOM	3235	CZ	TYR	97	15.800	-0.909	49.575	1.00 38.91 1.00 40.43	.B
55	MOTA MOTA	3236 3237	OH C	TYR TYR	97 97	14.858 19.090	-1.862 4.391	49.257 51.528	1.00 28.25	B B
"	MOTA	3238	Ö	TYR	97	19.819	5.172	50.943	1.00 29.03	В
	ATOM	3239	N	ASN	98	19.107	4.266	52.850	1.00 26.29	В
	MOTA	3240	CA	ASN	98	20.087	4.993	53.646	1.00 24.16	В
60	MOTA	3241	CB	ASN	98	19.520	5.396		1.00 23.70	В
60	MOTA	3242	CG	ASN	98	18.552	6.526	54.883	1.00 21.81	В
	MOTA MOTA	3243 3244		ASN ASN	98 98	18.764 17.483	7.475 6.442	54.138 55.642	1.00 20.22	B B
	ATOM	3245	C	ASN	98	21.262	4.051	53.883	1.00 22.53	В
	MOTA	3246	ŏ	ASN	98	21.076	2.860	54.149	1.00 23.91	В
65	MOTA	3247	N	CYS	99	22.475	4.573	53.770	1.00 20.08	В
	MOTA	3248	CA	CYS	99	23.652	3.741	53.976	1.00 16.35	В
	MOTA	3249	CB	CYS	99	24.239	3.318	52.641	1.00 16.30	В
	MOTA MOTA	3250	SG	CYS	99 99	23.128 24.717	2.271 4.437	51.748 54.786	1.00 16.76 1.00 13.97	B B
70	MOTA	3251 3252	C	CYS	99	24.717	5.664	54.867	1.00 13.48	В
	ATOM	3253	N	THR	100	25.584	3.631	55.374	1.00 12.82	В
	MOTA	3254	CA	THR	100	26.646	4.149	56.209	1.00 10.88	В
	MOTA	3255	СВ	THR	100 -	26.177	4.209	57.660	1.00 9.58	В

	MOTA	3256	OG1	THR	100	25.155	5.204	57.768	1.00 6.29	В
	MOTA	3257	CG2		100	27.327	4.524	58.590	1.00 10.26	В
								56.104	1.00 10.53	В
	MOTA	3258	С	THR	100	27.874	3.264			
-	MOTA	3259	0	THR	100	27.764	2.056	56.040	1.00 10.24	В
5	MOTA	3260	N	ILE	101	29.044	3.890	56.059	1.00 10.89	В
	MOTA	3261	CA	ILE	101	30.303	3.156	55.993	1.00 12.11	В
	MOTA	3262	СВ	ILE	101	31.004	3.297	54.642	1.00 13.63	В
	MOTA	3263	CG2		101	32.258	2.424	54.623	1.00 13.65	В
					101	30.057	2.935	53.504	1.00 15.35	В
10	MOTA	3264	CG1							
10	MOTA	3265	CD1		101	30.607	3.332	52.135	1.00 15.19	В
	MOTA	3266	C	ILE	101	31.226	3.776	57.027	1.00 11.10	· B
	MOTA	3267	0	ILE	101	31.518	4.944	56.962	1.00 13.95	В
	MOTA	3268	N	PHE	102	31.690	2.961	57.960	1.00 8.97	В
	MOTA	3269	CA	PHE	102	32.569	3.412	59.024	1.00 5.36	В
15	MOTA	3270	СВ	PHE	102	32.254	2.693	60.337	1.00 5.27	В
13						30.964	3.097	60.979	1.00 3.08	В
	MOTA	3271	CC	PHE	102					
	MOTA	3272	CD1		102	30.912	4.233	61.785	1.00 3.17	В
	MOTA	3273	CD2		102	29.821	2.315	60.839	1.00 1.92	В
	MOTA	3274	CE1	PHE	102	29.737	4.591	62.458	1.00 2.33	В
20	MOTA	3275	CE2	PHE	102	28.648	2.667	61.505	1.00 1.69	В
	ATOM	3276	cz	PHE	102	28.608	3.812	62.323	1.00 1.17	В
	ATOM	3277	c	PHE	102	33.974	2.937	58.708	1.00 4.97	В
		3278	ō	PHE	102	34.160	1.984	57.997	1.00 6.23	В
	MOTA									В
25	MOTA	3279	N	ALA	103	34.956	3.641	59.244	1.00 5.31	
25	MOTA	3280	CA	ALA	103	36.345	3.256	59.091	1.00 3.70	• В
	MOTA	3281	CB	ALA	103	37.115	4.337	58.408	1.00 2.97	В
	ATOM	3282	С	ALA	103	36.781	3.126	60.546	1.00 3.79	В
	MOTA	3283	0	ALA	103	36.811	4.105	61.266	1.00 4.80	В
	MOTA	3284	N	TYR	104	37.086	1.908	60.981	1.00 3.80	В
30	MOTA	3285	CA	TYR	104	37.503	1.670	62.366	1.00 3.56	В
50							0.751		1.00 2.47	B
	MOTA	3286	CB	TYR	104	36.507		63.061		
	MOTA	3287	CG	TYR	104	36.842	0.498	64.507	1.00 1.59	В
	MOTA	3288		TYR	104	37.780	-0.465	64.875	1.00 1.99	В
	MOTA	3289	CE1	TYR	104	38.079	-0.706	66.227	1.00 1.00	В
35	MOTA	3290	CD2	TYR	104	36.211	1.215	65.510	1.00 3.23	В.
	MOTA	3291			104	36.492	0.988	66.863	1.00 1.00	В
	MOTA	3292	cz	TYR	104	37.419	0.031	67.217	1.00 1.00	В
		3293	ОН	TYR	104	37.667	-0.164	68.555	1.00 1.00	В
	MOTA									
40	MOTA	3294	С.	TYR	104	38.893	1.046	62.517	1.00 3.38	В
40	MOTA	3295	0	TYR	104	39.225	0.087	61.843	1.00 3.35	В
	MOTA	3296	N	GLY	105	39.680	1.586	63.440	1.00 4.31	В
	MOTA	3297	CA	GLY	105	41.024	1.088	63.646	1.00 5.04	В
	MOTA	3298	С	GLY	105	41.931	2.086	64.335	1.00 5.61	В
	ATOM	3299	õ	GLY	105	41.560	3.226	64.565	1.00 5.55	В
45	MOTA	3300	N	GLN	106	43.132	1.627	64.657	1.00 7.21	В
73									1.00 9.77	В
	MOTA	3301	CA	GLN	106	44.154	2.414	65.338		
	MOTA	3302	CB	GLN	106	45.303	1.473	65.701	1.00 11.84	В
	MOTA	3303	CG	GLN	106	46.625	2.127	65.977	1.00 18.02	В
	ATOM	3304	CD	GLN	106	47.651	1.110	66.407	1.00 20.93	В
50	MOTA	3305	OE1	GLN	106	47.887	0.126	65.707	1.00 20.58	В
	MOTA	3306	NE2		106	48.265	1.333	67.569	1.00 24.16	В
	MOTA	3307	C	GLN	106	44.684	3.603	64.525	1.00 9.05	В
	ATOM	3308	ŏ	GLN	106	44.759	3.535	63.318	1.00 8.64	В
								65.206		
66	MOTA	3309	N	THR	107	45.040	4.693		1.00 9.25	В
55	MOTA	3310	CA	THR	107	45.589	5.863	64.537	1.00 9.91	В
	MOTA	3311	CB	THR	107	46.090	6.935	65.545	1.00 11.30	В
	MOTA	3312	OG1	THR	107	44.998	7.433	66.328	1.00 12.57	₿
	MOTA	3313	CG2	THR	107	46.715	8.089	64.807	1.00 11.37	В
	MOTA	3314	C	THR	107	46.784	5.384	63.720	1.00 9.43	В
60		3315			107	47.631	4.615	64.226	1.00 6.62	В
oo	MOTA		0	THR						
	MOTA	3316	N	GLY	108	46.836	5.797	62.455	1.00 7.40	В
	MOTA	3317	CA	GLY	108	47.956	5.419	61.613	1.00 7.87	В
	MOTA	3318	С	GLY	108	47.801	4.136	60.815	1.00 7.55	В
	MOTA	3319	0	GLY	108	48.771	3.609	60.263	1.00 10.21	. B
65	MOTA	3320	N	THR	109	46.581	3.624	60.748	1.00 5.82	В
	MOTA	3321	CA	THR		46.349	2.400	59.992	1.00 4.83	В
								60.827	1.00 3.30	В
	MOTA	3322	CB	THR	109	45.588	1.329			
	MOTA	3323		THR	109	44.316	1.824	61.248	1.00 2.94	В
70	MOTA	3324		THR	109	46.388	0.954	62.027	1.00 4.86	В
70	MOTA	3325	С	THR	109	45.611	2.616	58.675	1.00 5.10	В
	MOTA	3326	0	THR	109	45.305	1.648	57.954	1.00 5.03	В
	ATOM	3327	N	GLY	110	45.298	3.871	58.364	1.00 3.29	В
	ATOM	3328	CA	GLY	110	44.613	4.141	57.122	1.00 1.90	В
		3320	~n	-01				J	2	_

ATOM 3330 O CLV 110 A705 3340 N LYS 111 A1.117 S.282 S8.221 1.00 A A705 3331 C LYS 111 A1.117 S.282 S8.221 1.00 A A705 3332 C LYS 111 A0.588 A.463 60.630 1.00 A A705 3335 C LYS 111 A0.588 A.463 60.630 1.00 A A705 3335 C LYS 111 A0.588 A.463 60.630 1.00 A A705 3335 C LYS 111 A0.770 S.978 62.652 1.00 1 A705 3338 C LYS 111 A0.770 S.978 62.652 1.00 A A705 3338 C LYS 111 A0.876 6.516 57.319 1.00 3 A705 3339 O LYS 111 A0.876 6.516 57.319 1.00 3 A705 3334 O LYS 111 A0.876 6.516 57.319 1.00 3 A705 3340 N THR 112 A1.738 7.515 57.421 1.00 2 A705 3340 N THR 112 A1.738 7.515 57.421 1.00 2 A705 3340 N THR 112 A1.738 7.515 57.421 1.00 2 A705 3340 N THR 112 A1.738 7.515 57.421 1.00 A705 A705 3340 N THR 112 A1.738 7.515 57.421 1.00 A705 A705 3340 N THR 112 A1.738 7.515 57.421 1.00 A705 A7											
NOW 3331 N LYS 111 42,539 4,885 58,227 1.00 4 1.00 2 1.00 2 1.00 3 1.00 2 1.00 3 1.00 2 1.00 3 1.00 3 3 3 3 3 3 3 3 3	•					110	43.131	4:484	57.097	1.00 2.61	В
NOW 3332 CA											B B
5 ATOM 3313 CB LYS 111 40.636 5.636 59.651 1.00 2 ATOM 3315 CD LYS 111 40.588 4.636 60.630 1.00 4 ATOM 3335 CD LYS 111 40.770 5.978 62.652 1.00 1 ATOM 3336 CC LYS 111 40.770 5.978 62.652 1.00 1 ATOM 3337 NZ LYS 111 42.112 5.563 66.731 1.00 1 ATOM 3338 C LYS 111 42.112 5.563 67.319 1.00 1 ATOM 3339 O LYS 111 49.876 5.516 57.319 1.00 3 ATOM 3339 O LYS 111 49.876 5.515 55.634 1.00 2 ATOM 3340 CA THR 112 41.536 8.697 56.607 1.00 4 ATOM 3340 CA THR 112 41.536 8.697 56.607 1.00 4 ATOM 3341 CA THR 112 41.536 8.697 57.209 1.00 3 ATOM 3340 CG THR 112 42.245 9.927 57.209 1.00 3 ATOM 3345 C THR 112 42.245 9.927 57.209 1.00 3 ATOM 3346 C THR 112 42.049 11.122 56.306 1.00 5 ATOM 3346 C THR 112 42.049 11.122 56.306 1.00 5 ATOM 3347 N PHE 113 42.974 7.556 55.013 1.00 7 ATOM 3348 CA PHE 113 42.974 7.556 55.013 1.00 7 ATOM 3349 CB PHE 113 42.974 7.556 55.013 1.00 7 ATOM 3350 CG PHE 113 44.699 0.77 54.223 1.00 5 ATOM 3351 CD PHE 113 42.9974 7.556 55.013 1.00 7 ATOM 3351 CD PHE 113 42.9974 7.556 55.013 1.00 7 ATOM 3351 CD PHE 113 42.9974 7.556 55.013 1.00 7 ATOM 3351 CD PHE 113 45.606 6.342 53.705 1.00 11 ATOM 3355 CD PHE 113 45.606 6.342 53.705 1.00 11 ATOM 3355 CD PHE 113 45.606 6.597 59.497 51.624 1.00 13 ATOM 3355 CD PHE 113 46.066 6.927 50.496 1.00 13 ATOM 3355 CD PHE 113 46.626 6.927 50.496 1.00 13 ATOM 3355 CD PHE 113 45.502 4.906 50.345 1.00 14 ATOM 3355 CD PHE 113 45.502 4.906 50.345 1.00 14 ATOM 3355 CD PHE 113 45.502 4.906 50.345 1.00 14 ATOM 3355 CD PHE 113 45.502 4.906 50.345 1.00 14 ATOM 3355 CD PHE 113 45.502 4.906 50.345 1.00 14 ATOM 3355 CD PHE 113 45.502 4.906 50.345 1.00 14 ATOM 3355 CD PHE 113 45.502 4.906 50.345 1.00 14 ATOM 3355 CD PHE 113 45.502 4.906 50.345 1.00 14 ATOM 3355 CD PHE 113 45.502 4.906 50.345 1.00 14 ATOM 3355 CD PHE 113 45.502 4.906 50.345 1.00 14 ATOM 3355 CD PHE 113 45.502 4.906 50.345 1.00 14 ATOM 3355 CD PHE 113 45.502 4.906 50.345 1.00 14 ATOM 3355 CD PHE 113 45.502 4.906 50.345 1.00 14 ATOM 3355 CD PHE 113 45.502 4.906 50.345 1.00 14 ATOM 3355 CD PHE 113 45.502 4.906 50.345 1.00 14 ATOM											В
ATOM 3334 CG LYS 111 40.588 4.463 60.630 1.00 4 ATOM 3335 CD LYS 111 40.770 5.978 62.652 1.00 1 ATOM 3336 CE LYS 111 40.770 5.978 62.652 1.00 1 ATOM 3337 NZ LYS 111 40.770 5.978 62.652 1.00 1 ATOM 3338 C LYS 111 40.876 6.516 57.319 1.00 3 ATOM 3339 O LYS 111 40.876 6.516 57.319 1.00 3 ATOM 3339 O LYS 111 39.940 6.553 56.504 1.00 1 ATOM 3339 O LYS 111 39.940 6.553 56.504 1.00 1 ATOM 3340 N THR 112 41.738 7.515 57.421 1.00 2 ATOM 3340 O THR 112 41.738 7.515 57.421 1.00 2 ATOM 3340 CG THR 112 42.245 9.927 57.209 1.00 3 ATOM 3344 CG THR 112 42.245 9.927 57.209 1.00 3 ATOM 3346 C THR 112 42.049 11.122 56.306 1.00 5 ATOM 3346 O THR 112 42.049 11.122 56.306 1.00 5 ATOM 3346 O THR 112 41.699 10.219 58.500 1.00 2 ATOM 3346 C THR 112 42.049 1.7556 55.036 1.00 5 ATOM 3346 C THR 112 41.499 9.074 54.223 1.00 5 ATOM 3346 C THR 112 41.499 9.074 54.223 1.00 5 ATOM 3346 C THR 112 41.499 9.074 54.223 1.00 5 ATOM 3350 CG PHE 113 41.844 7.556 55.013 1.00 7 ATOM 3350 CG PHE 113 41.844 7.556 55.013 1.00 7 ATOM 3355 CC PHE 113 45.299 6.119 52.344 1.00 13 ATOM 3355 CC PHE 113 45.299 6.119 52.344 1.00 13 ATOM 3355 CC PHE 113 45.299 6.119 52.344 1.00 13 ATOM 3355 CC PHE 113 45.299 6.119 52.344 1.00 13 ATOM 3355 CC PHE 113 45.299 6.119 52.344 1.00 13 ATOM 3355 CC PHE 113 45.346 5.792 49.784 1.00 13 ATOM 3355 CC PHE 113 45.346 5.792 49.784 1.00 13 ATOM 3356 C PHE 113 45.346 5.792 59.51 1.00 6 ATOM 3356 C PHE 113 45.346 5.792 59.51 1.00 13 ATOM 3356 C PHE 113 45.346 5.792 59.51 1.00 13 ATOM 3356 C PHE 113 45.346 5.792 59.51 1.00 13 ATOM 3356 C PHE 113 45.346 5.792 59.51 1.00 13 ATOM 3356 C PHE 113 45.466 5.568 53.519 1.00 14 ATOM 3356 C PHE 113 42.935 6.066 53.317 1.00 13 ATOM 3360 C PHE 113 42.955 6.966 50.345 1.00 14 ATOM 3356 C PHE 113 42.955 6.966 50.345 1.00 14 ATOM 3356 C PHE 113 42.955 6.966 50.345 1.00 14 ATOM 3357 C PHE 113 42.936 6.00 50.345 1.00 14 ATOM 3358 C PHE 113 42.936 6.00 50.345 1.00 14 ATOM 3356 C PHE 113 42.936 6.00 50.345 1.00 14 ATOM 3357 C PHE 113 42.639 5.969 50.00 1.00 16 ATOM 3360 C PHE 115 37.790 5.944 59.668 1.	5										В
ATOM 3335 CD LYS 111 39.990 4.860 61.974 1.00 1	5										В
NTOM 3336 CE LVS 111											B
10 ATOM 3138 C LVS 111 42.112 5.563 63.122 1.00 3 ATOM 3139 C LVS 111 39.940 6.553 56.564 1.00 3 ATOM 3139 O LVS 111 39.940 6.553 56.564 1.00 3 ATOM 3340 N THR 112 41.738 7.515 57.2421 1.00 2 ATOM 3341 CA THR 112 41.738 7.515 57.2421 1.00 2 ATOM 3342 CB THR 112 42.245 9.927 57.209 1.00 3 ATOM 3343 CG1 THR 112 42.245 9.927 57.209 1.00 3 ATOM 3343 CG1 THR 112 42.049 11.122 56.306 1.00 2 ATOM 3345 C THR 112 42.049 11.122 56.306 1.00 5 ATOM 3346 C THR 112 42.049 11.122 56.306 1.00 5 ATOM 3346 C THR 112 42.049 11.122 56.306 1.00 5 ATOM 3346 C THR 112 42.049 11.122 56.306 1.00 5 ATOM 3348 CA PHE 113 43.444 7.275 53.680 1.00 5 ATOM 3348 CA PHE 113 43.444 7.275 53.680 1.00 9 ATOM 3350 CG PHE 113 44.699 6.014 53.253 1.00 5 ATOM 3350 CG PHE 113 45.299 6.119 52.344 1.00 13 ATOM 3351 CT PHE 113 45.299 6.119 52.344 1.00 13 ATOM 3355 CT PHE 113 45.021 4.974 51.624 1.00 13 ATOM 3355 CT PHE 113 45.021 4.974 51.624 1.00 13 ATOM 3355 C PHE 113 45.021 4.974 51.624 1.00 13 ATOM 3355 C PHE 113 45.529 6.119 52.344 1.00 13 ATOM 3356 C PHE 113 45.529 6.119 52.344 1.00 13 ATOM 3356 C PHE 113 42.393 6.604 52.866 1.00 14 ATOM 3355 C PHE 113 42.393 6.604 52.866 1.00 14 ATOM 3356 C PHE 113 42.393 6.604 52.866 1.00 14 ATOM 3356 C PHE 113 42.393 6.604 52.866 1.00 14 ATOM 3356 C PHE 113 42.393 6.604 52.866 1.00 14 ATOM 3356 C PHE 113 42.393 6.604 52.866 1.00 14 ATOM 3360 CB THR 114 41.686 5.686 53.519 1.00 9 ATOM 3360 CB THR 114 41.686 5.686 53.519 1.00 9 ATOM 3360 CB THR 114 41.686 5.686 53.519 1.00 9 ATOM 3360 CB THR 114 41.686 5.686 53.519 1.00 9 ATOM 3360 CB THR 114 41.686 5.886 53.519 1.00 9 ATOM 3360 CB THR 114 41.686 5.886 53.519 1.00 9 ATOM 3360 CB THR 114 41.686 5.886 53.519 1.00 9 ATOM 3360 CB THR 114 41.686 5.886 53.519 1.00 9 ATOM 3360 CB THR 114 41.686 5.886 53.519 1.00 9 ATOM 3360 CB THR 114 41.686 5.886 53.519 1.00 9 ATOM 3360 CB THR 114 41.686 5.886 53.519 1.00 13 ATOM 3360 CB THR 114 41.686 5.886 53.519 1.00 13 ATOM 3360 CB THR 114 41.686 5.886 53.519 1.00 13 ATOM 3360 CB THR 114 41.686 5.886 53.519 1.00 13 ATOM 3360 CB THR 1											В
NTOM 3339 C											В
ATOM 3339 O LYS 111 39,940 6.553 56.504 1.00 3 ATOM 3341 CA THR 112 41.738 7.515 57.421 1.00 2 ATOM 3342 CB THR 112 41.536 8.697 56.607 1.00 4 ATOM 3343 OG1 THR 112 41.699 10.219 58.500 1.00 5 ATOM 3344 CC THR 112 42.049 11.122 56.306 1.00 5 ATOM 3345 C THR 112 41.699 10.219 58.500 1.00 5 ATOM 3346 C THR 112 41.499 9.074 54.223 1.00 5 ATOM 3346 C THR 112 41.499 9.074 54.223 1.00 5 ATOM 3346 C THR 113 41.449 9.074 54.223 1.00 5 ATOM 3346 C THR 113 41.449 9.074 54.223 1.00 5 ATOM 3346 C PHE 113 41.449 7.275 53.580 1.00 5 ATOM 3350 CG PHE 113 44.690 6.342 53.755 1.00 14 ATOM 3351 CD PHE 113 45.299 6.119 52.344 1.00 13 ATOM 3352 CD PHE 113 45.021 4.974 51.624 1.00 13 ATOM 3355 C PHE 113 45.529 6.119 52.344 1.00 13 ATOM 3355 C PHE 113 45.542 4.806 50.345 1.00 4 ATOM 3355 C PHE 113 45.542 4.806 50.345 1.00 4 ATOM 3355 C PHE 113 42.393 6.604 52.866 1.00 10 ATOM 3355 C PHE 113 42.393 6.604 52.866 1.00 10 ATOM 3350 C THR 114 41.685 5.686 53.519 1.00 9 ATOM 3350 C THR 114 41.686 5.686 53.519 1.00 9 ATOM 3350 C THR 114 41.686 5.686 53.519 1.00 9 ATOM 3360 C THR 114 41.686 5.686 53.519 1.00 9 ATOM 3360 C THR 114 41.686 5.686 53.519 1.00 9 ATOM 3360 C THR 114 41.686 5.886 53.519 1.00 9 ATOM 3360 C THR 114 41.256 2.900 54.000 1.	10										В
ATOM 3340 N THR 112											В
ATOM 3341 CA THR 112									57.421	1.00 2.71	В
15 ATOM 3343 GG1 THR 112 ATOM 3344 CG2 THR 112 ATOM 3345 C THR 112 A2 0.49 11.122 56.306 1.00 2 ATOM 3345 C THR 112 A2 0.09 11.122 56.306 1.00 2 ATOM 3346 C THR 112 A2 0.10 8.459 55.175 1.00 6 ATOM 3346 N PHE 113 A2 974 7.556 55.013 1.00 7 ATOM 3347 N PHE 113 A2 974 7.556 55.013 1.00 7 ATOM 3348 CA PHE 113 A3.484 7.275 53.680 1.00 9 ATOM 3348 CB PHE 113 A4.690 6.342 53.705 1.00 1.00 ATOM 3350 CB PHE 113 A5.299 6.119 52.344 1.00 13 ATOM 3350 CD PHE 113 A5.299 6.119 52.344 1.00 13 ATOM 3351 CD1 PHE 113 A5.021 4.974 51.624 1.00 13 ATOM 3355 CD2 PHE 113 A5.021 4.974 51.624 1.00 13 ATOM 3355 C PHE 113 A5.542 4.806 50.345 1.00 14 ATOM 3355 C PHE 113 A5.542 4.806 50.345 1.00 14 ATOM 3355 C PHE 113 A5.542 4.806 50.345 1.00 14 ATOM 3355 C PHE 113 A5.542 4.806 50.345 1.00 14 ATOM 3355 C PHE 113 A5.542 4.806 50.345 1.00 14 ATOM 3355 C PHE 113 A5.542 4.806 50.345 1.00 14 ATOM 3355 C PHE 113 A5.542 4.806 50.345 1.00 14 ATOM 3355 C PHE 113 A5.542 4.806 50.345 1.00 14 ATOM 3355 C PHE 113 A5.542 4.806 50.345 1.00 14 ATOM 3355 C PHE 113 A5.542 4.806 50.345 1.00 14 ATOM 3355 C PHE 113 A5.542 4.806 50.345 1.00 14 ATOM 3355 N THR 114 A0.601 4.946 52.905 1.00 8 ATOM 3355 N THR 114 A0.601 4.946 52.905 1.00 8 ATOM 3365 N THR 114 A0.557 3.792 53.812 1.00 15 ATOM 3366 N THR 114 A0.557 3.792 53.812 1.00 16 ATOM 3365 N THR 114 A0.557 3.792 53.812 1.00 16 ATOM 3366 N THR 114 A9.393 5.875 51.496 1.00 E ATOM 3366 N THR 114 A9.393 5.875 51.496 1.00 E ATOM 3366 N THR 115 37.730 7.365 53.422 1.00 6 ATOM 3366 N THR 115 37.730 7.365 53.422 1.00 6 ATOM 3368 N THR 115 37.793 8.998 8.933 51.837 1.00 16 ATOM 3367 C B MET 115 37.793 8.998 8.933 51.837 1.00 16 ATOM 3370 N GUU 116 39.091 13.216 54.722 1.00 16 ATOM 3373 N GUU 116 39.091 13.216 54.722 1.00 16 ATOM 3370 N GUU 116 39.091 13.216 54.722 1.00 16 ATOM 3370 N GUU 116 40.342 10.311 50.843 1.00 16 ATOM 3370 N GUU 116 40.342 10.311 50.843 1.00 16 ATOM 3370 N GUU 116 40.342 10.311 50.843 1.00 16 ATOM 3380 N GUU 116 40.342 10.311 50.843 1.00 16 ATOM 3380 N GUU 118 46.686 10.822 49.466 1.00 ATOM 3380				CA	THR	112	41.536	8.697	56.607	1.00 4.38	В
ATOM 3346 CC THR 112 42.049 11.122 56.306 1.00 5 ATOM 3346 C THR 112 42.010 8.459 55.175 1.00 15 ATOM 3346 CA PHE 113 42.974 7.556 55.013 1.00 5 ATOM 3347 N PHE 113 42.974 7.556 55.013 1.00 5 ATOM 3349 CB PHE 113 44.690 6.342 53.705 1.00 13 ATOM 3350 CG PHE 113 44.690 6.342 53.705 1.00 13 ATOM 3355 CD2 PHE 113 46.906 6.342 53.705 1.00 13 ATOM 3355 CD2 PHE 113 46.066 7.088 51.763 1.00 13 ATOM 3355 CD2 PHE 113 46.066 7.088 51.763 1.00 13 ATOM 3355 CD2 PHE 113 46.066 6.927 50.496 1.00 13 ATOM 3355 CP PHE 113 46.346 5.792 49.784 1.00 13 ATOM 3355 C PHE 113 46.346 5.792 49.784 1.00 13 ATOM 3355 C PHE 113 46.346 5.792 49.784 1.00 13 ATOM 3355 C PHE 113 46.346 5.792 49.784 1.00 13 ATOM 3355 C PHE 113 46.346 5.792 49.784 1.00 13 ATOM 3355 C PHE 113 46.346 5.792 49.784 1.00 13 ATOM 3356 C PHE 113 42.993 6.604 52.866 1.00 13 ATOM 3356 C PHE 113 42.993 6.604 52.866 1.00 13 ATOM 3356 C PHE 113 42.993 6.604 52.866 1.00 13 ATOM 3360 CB THR 114 40.601 4.946 52.905 1.00 9 ATOM 3361 CG THR 114 40.505 2.900 54.000 1.00 13 ATOM 3362 CG THR 114 40.505 2.900 54.000 1.00 13 ATOM 3366 C THR 114 40.505 2.900 54.000 1.00 13 ATOM 3366 C THR 114 39.397 5.824 52.608 1.00 16 ATOM 3366 C THR 114 39.397 5.824 52.608 1.00 16 ATOM 3366 C THR 114 39.397 5.824 52.608 1.00 16 ATOM 3366 C MET 115 37.730 7.365 53.422 1.00 6 ATOM 3367 C MET 115 37.730 7.365 53.422 1.00 6 ATOM 3368 C MET 115 37.749 7.844 54.920 1.00 17 ATOM 3367 C MET 115 36.761 6.723 55.717 1.00 16 ATOM 3373 N GUU 116 39.061 9.244 52.660 1.00 6 ATOM 3373 N GUU 116 39.091 13.216 54.722 1.00 6 ATOM 3373 N GUU 116 39.091 13.216 54.722 1.00 6 ATOM 3377 C MET 115 37.730 7.365 53.422 1.00 6 ATOM 3378 C GUU 116 39.091 13.216 54.722 1.00 6 ATOM 3379 C MET 115 37.730 7.365 53.422 1.00 6 ATOM 3379 C MET 115 37.730 7.365 53.422 1.00 6 ATOM 3379 C MET 115 37.730 7.365 53.422 1.00 6 ATOM 3379 C MET 115 37.730 7.365 53.422 1.00 6 ATOM 3379 C MET 115 37.730 7.365 53.422 1.00 6 ATOM 3379 C MET 115 37.730 7.365 53.422 1.00 6 ATOM 3379 C MET 115 37.730 7.365 53.422 1.00 6 ATOM 3379 C MET 115 37.730 7		MOTA	3342	CB	THR	112	42.245	9.927			В
ATOM 3346 C THR 112 42.010 8.459 55.175 1.00 6 ATOM 3347 N PHE 113 42.974 7.556 55.013 1.00 7 ATOM 3348 CA PHE 113 42.974 7.556 55.013 1.00 7 ATOM 3348 CA PHE 113 42.974 7.556 55.013 1.00 7 ATOM 3348 CB PHE 113 44.690 6.342 53.705 1.00 11 ATOM 3350 CG PHE 113 45.299 6.119 52.344 1.00 13 ATOM 3351 CD1 PHE 113 45.299 6.119 52.344 1.00 13 ATOM 3352 CD2 PHE 113 45.021 4.974 51.624 1.00 13 ATOM 3355 CE1 PHE 113 45.021 4.974 51.624 1.00 13 ATOM 3355 CE PHE 113 45.621 4.974 51.624 1.00 13 ATOM 3355 CE PHE 113 45.542 4.806 50.345 1.00 14 ATOM 3355 C PHE 113 45.542 4.806 50.345 1.00 14 ATOM 3355 C PHE 113 42.393 6.604 52.866 1.00 10 ATOM 3355 N THR 114 42.393 6.604 52.866 1.00 10 ATOM 3355 C PHE 113 42.393 6.604 52.866 1.00 10 ATOM 3355 C PHE 113 42.393 6.604 52.866 1.00 10 ATOM 3355 N THR 114 40.601 4.946 52.905 1.00 8 ATOM 3356 C PHE 113 42.393 6.504 52.866 1.00 10 ATOM 3361 OG1 THR 114 40.501 4.946 52.905 1.00 8 ATOM 3363 N THR 114 40.557 3.792 53.812 1.00 12 ATOM 3366 N BET 115 37.730 7.365 53.422 1.00 6 ATOM 3366 CA MET 115 38.908 6.538 53.612 1.00 6 ATOM 3366 CB MET 115 37.730 7.365 53.422 1.00 6 ATOM 3367 CB MET 115 37.730 7.365 53.422 1.00 6 ATOM 3368 N BET 115 37.730 7.365 53.422 1.00 6 ATOM 3369 SD MET 115 37.730 7.365 53.422 1.00 6 ATOM 3370 CB MET 115 37.730 7.365 53.422 1.00 6 ATOM 3371 C MET 115 37.730 7.365 53.422 1.00 6 ATOM 3373 C B MET 115 37.730 7.365 53.422 1.00 6 ATOM 3371 C MET 115 37.730 7.365 53.422 1.00 6 ATOM 3373 C B MET 115 36.998 8.943 51.837 1.00 16 ATOM 3370 C B MET 115 37.730 7.365 53.422 1.00 6 ATOM 3371 C MET 115 37.730 7.365 53.422 1.00 6 ATOM 3373 C B MET 115 37.730 7.365 53.422 1.00 6 ATOM 3376 C B MET 115 37.730 7.365 53.422 1.00 6 ATOM 3377 C B GU 116 39.991 13.216 54.722 1.00 6 ATOM 3378 C G GU 116 39.991 13.216 54.722 1.00 6 ATOM 3379 C G GU 116 38.233 13.866 55.626 1.00 1.00 6 ATOM 3380 C G U 116 40.342 10.311 5.00 5.065 1.00 1.00 6 ATOM 3381 C G U 116 40.342 10.311 5.00 5.065 1.00 1.00 6.00 6.00 6.00 6.00 6.00 6.00	15	MOTA	3343			112					В
ATOM 3346 O THR 112 41.499 9.074 54.223 1.00 5 ATOM 3347 N PHE 113 42.974 7.556 55.013 1.00 7 ATOM 3348 CA PHE 113 42.974 7.556 55.013 1.00 7 ATOM 3349 CB PHE 113 44.690 6.342 53.705 1.00 13 ATOM 3350 CG PHE 113 44.690 6.342 53.705 1.00 13 ATOM 3351 CD1 PHE 113 46.906 6.342 53.705 1.00 13 ATOM 3351 CD1 PHE 113 46.106 7.088 51.763 1.00 13 ATOM 3355 CD2 PHE 113 46.066 7.088 51.763 1.00 13 ATOM 3355 CD2 PHE 113 46.066 6.927 50.496 1.00 13 ATOM 3355 CD PHE 113 46.346 5.792 49.784 1.00 13 ATOM 3355 C PHE 113 46.346 5.792 49.784 1.00 13 ATOM 3355 C PHE 113 42.393 6.604 52.866 1.00 10 ATOM 3355 C PHE 113 42.393 6.604 52.866 1.00 10 ATOM 3355 C T RH 114 41.686 5.686 53.519 1.00 19 ATOM 3355 C THR 114 40.601 4.946 52.905 1.00 19 ATOM 3356 C THR 114 40.601 4.946 52.905 1.00 19 ATOM 3360 CB THR 114 40.573 3.792 53.812 1.00 9 ATOM 3363 C THR 114 40.573 3.792 53.812 1.00 13 ATOM 3366 CB THR 114 40.573 3.792 53.812 1.00 10 ATOM 3365 N MET 115 38.908 6.538 53.612 1.00 6 ATOM 3366 CA MET 115 37.730 7.365 53.422 1.00 6 ATOM 3366 CB MET 115 37.149 7.844 54.760 1.00 16 ATOM 3366 CB MET 115 37.149 7.844 54.760 1.00 16 ATOM 3366 CB MET 115 37.149 7.844 54.760 1.00 16 ATOM 3367 CB MET 115 36.791 5.494 54.920 1.00 17 ATOM 3377 CB GLU 116 39.021 1.3216 54.722 1.00 1.00 17 ATOM 3377 CB GLU 116 39.021 1.3216 54.722 1.00 1.00 17 ATOM 3378 CB GLU 116 39.021 1.3216 54.722 1.00 1.00 17 ATOM 3379 CB GLU 116 39.021 1.3216 54.722 1.00 1.00 17 ATOM 3379 CB GLU 116 39.021 1.3216 54.722 1.00 1.00 17 ATOM 3380 C GLU 116 38.737 11.962 53.924 1.00 1.00 17 ATOM 3381 CA GLU 116 38.737 11.962 53.924 1.00 1.00 17 ATOM 3380 C GLU 116 38.737 11.962 53.924 1.00 1.00 17 ATOM 3381 CA GLU 116 38.737 11.962 53.924 1.00 1.00 17 ATOM 3380 C GLU 116 38.737 11.962 53.924 1.00 1.00 17 ATOM 3380 C GLU 116 40.707 10.587 49.695 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0				CG2							В
20 ATOM 3349 CA PHE 113											В
ATOM 3348 CA PHE 113 43.484 7.275 53.680 1.00 9											B B
ATOM 3349 CB PHE 113 44.690 6.342 53.705 1.00.11 ATOM 3350 CG PHE 113 45.021 4.704 52.344 1.00 13 ATOM 3351 CD1 PHE 113 46.106 7.088 51.763 1.00 13 ATOM 3352 CD2 PHE 113 46.021 4.704 51.624 1.00 13 ATOM 3355 CC2 PHE 113 46.626 6.927 50.496 1.00 13 ATOM 3355 CC PHE 113 46.542 4.806 50.345 1.00 14 ATOM 3355 CC PHE 113 46.346 5.792 49.784 1.00 13 ATOM 3355 CC PHE 113 42.393 6.604 52.866 1.00 10 ATOM 3358 N THR 114 41.686 5.6604 52.866 1.00 10 ATOM 3358 N THR 114 41.686 5.6604 52.866 1.00 10 ATOM 3350 CB THR 114 40.601 4.946 52.905 1.00 8 ATOM 3350 CB THR 114 40.601 4.946 52.905 1.00 8 ATOM 3360 CB THR 114 40.617 3.792 53.812 1.00 9 ATOM 3360 CB THR 114 39.026 3.006 53.174 1.00 12 ATOM 3360 CB THR 114 39.026 3.006 53.174 1.00 12 ATOM 3360 CB THR 114 39.026 3.006 53.174 1.00 12 ATOM 3360 CB THR 114 39.026 3.006 53.174 1.00 12 ATOM 3360 CB THR 114 39.026 3.006 53.174 1.00 12 ATOM 3367 CB ET 115 37.730 7.365 53.422 1.00 8 ATOM 3367 CB ET 115 37.730 7.365 53.422 1.00 8 ATOM 3367 CB ET 115 37.149 7.844 54.760 1.00 E ATOM 3367 CB ET 115 35.709 5.494 54.920 1.00 17 ATOM 3370 CE ET 115 35.709 5.494 54.920 1.00 17 ATOM 3371 C ET 115 36.761 6.723 55.717 1.00 12 ATOM 3373 N GE T 115 36.761 6.723 55.717 1.00 12 ATOM 3371 C ET 115 37.149 7.844 54.760 1.00 E ATOM 3373 N GE T 115 36.798 8.943 52.570 1.00 E ATOM 3370 CE ET 115 36.761 6.723 55.717 1.00 12 ATOM 3371 C ET 115 36.988 8.943 52.570 1.00 E ATOM 3373 N GEU 116 39.091 13.216 54.722 1.00 E ATOM 3373 N GEU 116 39.991 13.216 54.722 1.00 E ATOM 3378 OE GUU 116 39.991 13.216 54.722 1.00 E ATOM 3380 C GUU 116 39.991 13.216 54.722 1.00 E ATOM 3380 C GUU 116 40.070 10.587 49.695 1.00 ATOM 3380 C GUU 118 45.562 11.897 49.412 1.00 ATOM 3380 C GUU 118 45.562 11.897 49.412 1.00 ATOM 3380 C GUU 118 45.562 11.897 49.412 1.00 ATOM 3380 C GUU 118 46.687 11.225 47.965 1.00 ATOM 3380 C GUU 118 46.687 11.427 50.051 1.00 ATOM 3390 C GUU 118 45.961 11.504 45.961 1.00 1.00 E ATOM 3391 C GUU 118 45.961 11.504 45.961 1.00 1.00 E ATOM 3399 C GA RG 119 46.696 13.544 45.631 1.00 1.00 E	20										В
ATOM 3350 CG PHE 113 46.299 6.119 52.344 1.00 13 ATOM 3351 CD1 PHE 113 46.106 7.088 51.763 1.00 13 ATOM 3352 CD2 PHE 113 46.021 4.974 51.624 1.00 13 ATOM 3353 CEI PHE 113 45.021 4.974 51.624 1.00 13 ATOM 3353 CEI PHE 113 45.021 4.974 51.624 1.00 13 ATOM 3355 CZ PHE 113 45.542 4.806 50.345 1.00 14 ATOM 3355 CZ PHE 113 45.542 4.806 50.345 1.00 14 ATOM 3355 CZ PHE 113 42.393 6.604 52.866 1.00 10 ATOM 3357 O PHE 113 42.393 6.604 52.866 1.00 10 ATOM 3359 CA THR 114 41.686 5.686 53.519 1.00 9 ATOM 3359 CA THR 114 40.601 4.946 52.905 1.00 8 ATOM 3360 CB THR 114 40.601 4.946 52.905 64.000 1.00 10 ATOM 3361 OGI THR 114 41.256 2.900 54.000 1.00 10 ATOM 3361 OGI THR 114 41.256 2.900 54.000 1.00 10 ATOM 3362 CG2 THR 114 39.026 3.006 53.174 1.00 10 10 ATOM 3363 C THR 114 39.397 5.824 52.608 1.00 10 ATOM 3365 C MET 115 38.908 6.538 53.612 1.00 6 ATOM 3366 CA MET 115 37.730 7.365 53.422 1.00 6 ATOM 3366 CA MET 115 37.730 7.365 53.422 1.00 6 ATOM 3369 SD MET 115 36.761 6.723 55.717 1.00 12 ATOM 3370 CE MET 115 36.761 6.723 55.717 1.00 12 ATOM 3371 C MET 115 36.998 8.943 51.837 1.00 16 ATOM 3371 C MET 115 36.998 8.943 51.837 1.00 16 ATOM 3373 N GUU 116 39.051 1.00 52.494 54.920 1.00 17 ATOM 3373 N GUU 116 39.051 1.265 54.922 1.00 6 ATOM 3373 N GUU 116 39.955 1.00 476 51.909 1.00 10 ATOM 3378 CB GUU 116 39.955 1.00 476 51.909 1.00 10 ATOM 3379 OE2 GUU 116 39.743 11.607 52.838 1.00 2 ATOM 3379 OE2 GUU 116 39.951 13.216 54.722 1.00 10 ATOM 3380 C GUU 116 39.951 13.216 54.722 1.00 10 ATOM 3380 C GUU 116 38.323 13.586 54.464 1.00 1.00 ATOM 3380 C GUU 116 40.342 10.311 50.843 1.00 1.00 ATOM 3380 C GUU 116 40.342 10.311 50.843 1.00 1.00 ATOM 3380 C GUU 116 40.040 70 10.587 49.695 1.00 ATOM 3380 C GUU 118 47.593 11.00 10 ATOM 3380 C GUU 118 47.593 11.00 10 52.595 1.389 1.00 ATOM 3380 C GUU 118 46.685 1.00 52.595 1.389 1.00 ATOM 3380 C GUU 118 46.685 1.00 52.595 51.389 1.00 ATOM 3380 C GUU 118 46.685 1.00 52.506 1.00 ATOM 3380 C GUU 118 46.686 1.322 1.00 52.506 1.00 ATOM 3380 C GUU 118 46.686 1.322 1.00 52.506 1.00 ATOM 3399 C D ARG 119	20										В
ATOM 3351 CD1 PHE 113 45.021 4.974 51.624 1.00 13 ATOM 3352 CD2 PHE 113 45.021 4.974 51.624 1.00 13 ATOM 3353 CE1 PHE 113 46.626 6.927 50.496 1.00 13 ATOM 3355 CZ PHE 113 45.542 4.806 50.345 1.00 14 ATOM 3355 CZ PHE 113 46.542 4.806 50.345 1.00 14 ATOM 3355 CZ PHE 113 46.346 5.792 49.784 1.00 13 ATOM 3355 CZ PHE 113 46.346 5.792 49.784 1.00 13 ATOM 3358 N THR 114 42.393 6.604 52.866 1.00 10 ATOM 3358 N THR 114 41.686 5.666 53.519 1.00 9 ATOM 3359 CA THR 114 40.601 4.946 52.905 1.00 8 ATOM 3360 CB THR 114 40.617 3.792 53.812 1.00 9 ATOM 3361 OG1 THR 114 41.256 2.900 54.000 1.00 10 ATOM 3362 CG THR 114 39.397 5.824 52.608 1.00 8 ATOM 3363 C THR 114 39.397 5.824 52.608 1.00 8 ATOM 3363 C THR 114 39.397 5.824 52.608 1.00 8 ATOM 3366 CA MET 115 37.730 7.365 53.422 1.00 6 ATOM 3368 CG MET 115 37.149 7.844 54.760 1.00 8 ATOM 3368 CG MET 115 37.149 7.844 54.760 1.00 8 ATOM 3369 SD MET 115 37.790 7.844 54.760 1.00 8 ATOM 3370 CE MET 115 37.790 8.949 54.920 1.00 17 ATOM 3371 C MET 115 37.903 8.594 52.570 1.00 6 ATOM 3372 O MET 115 37.903 8.594 52.570 1.00 6 ATOM 3373 N GUU 116 39.061 9.244 52.660 1.00 6 ATOM 3376 CG GUU 116 39.061 9.244 52.660 1.00 6 ATOM 3377 CD GUU 116 39.091 13.216 54.722 1.00 6 ATOM 3378 CG GUU 116 39.091 13.216 54.722 1.00 6 ATOM 3379 OE2 GUU 116 39.091 13.216 54.722 1.00 6 ATOM 3380 CG GUU 116 39.091 13.216 54.722 1.00 6 ATOM 3380 CG GUU 116 39.091 13.216 54.722 1.00 6 ATOM 3380 CG GUU 116 39.091 13.216 54.722 1.00 6 ATOM 3380 CG GUU 116 39.091 13.216 54.722 1.00 6 ATOM 3380 CG GUU 116 39.091 13.216 54.722 1.00 6 ATOM 3380 CG GUU 116 40.322 10.311 10.842 50.294 1.00 1 ATOM 3380 CG GUU 116 40.522 1.00 57 49.695 1.00 1 ATOM 3380 CG GUU 118 45.562 11.897 49.412 1.00 1 ATOM 3380 CG GUU 118 45.562 11.897 49.412 1.00 1 ATOM 3380 CG GUU 118 45.562 11.897 49.412 1.00 1 ATOM 3380 CG GUU 118 45.562 11.897 49.412 1.00 1 ATOM 3380 CG GUU 118 45.562 11.897 49.412 1.00 1 ATOM 3391 CE GUU 118 45.562 11.897 49.412 1.00 1 ATOM 3393 CG GUU 118 45.661 10.529 53.317 1.00 1 ATOM 3399 CD ARG 119 44.705 15.414 45.637 1.0										1.00 13.48	В
25 ATOM 3352 CD2 PHE 113 45.021 4.974 51.624 1.00 13 ATOM 3353 CE1 PHE 113 46.626 6.927 50.496 1.00 13 ATOM 3355 CZ PHE 113 45.542 4.806 50.345 1.00 14 ATOM 3355 CZ PHE 113 46.346 5.792 49.784 1.00 13 ATOM 3356 C PHE 113 42.393 6.604 52.866 1.00 10 ATOM 3357 O PHE 113 42.195 6.916 51.689 1.00 9 ATOM 3358 N THR 114 41.686 5.686 53.519 1.00 9 ATOM 3359 CA THR 114 40.601 4.946 52.905 1.00 8 ATOM 3360 CB THR 114 40.157 3.792 53.812 1.00 9 ATOM 3361 OG1 THR 114 41.256 2.900 54.000 1.00 10 ATOM 3363 C THR 114 39.026 3.006 53.174 1.00 10 ATOM 3364 O THR 114 39.026 3.006 53.174 1.00 10 ATOM 3366 CA MET 115 38.908 6.538 53.612 1.00 8 ATOM 3366 CA MET 115 38.908 6.538 53.612 1.00 8 ATOM 3366 CA MET 115 37.730 7.365 53.422 1.00 6 ATOM 3369 SD MET 115 35.709 5.494 54.760 1.00 10 ATOM 3369 SD MET 115 35.709 5.494 54.920 1.00 17 ATOM 3371 C MET 115 36.761 6.723 55.711 1.00 12 ATOM 3373 N GLU 116 39.061 9.244 52.660 1.00 10 ATOM 3376 CG GLU 116 39.021 9.244 52.660 1.00 10 ATOM 3376 CG GLU 116 39.021 9.244 52.660 1.00 10 ATOM 3376 CG GLU 116 39.091 9.244 52.660 1.00 10 ATOM 3378 OEI GLU 116 39.091 9.244 52.660 1.00 10 ATOM 3379 OE GLU 116 39.091 9.244 52.660 1.00 10 ATOM 3379 OE GLU 116 39.091 9.244 52.660 1.00 10 ATOM 3379 OE GLU 116 39.731 11.607 52.838 1.00 10 ATOM 3379 OE GLU 116 39.091 13.216 54.722 1.00 10 ATOM 3379 OE GLU 116 39.091 9.244 52.660 1.00 10 ATOM 3380 O GLU 116 39.091 13.216 54.722 1.00 10 ATOM 3381 O GLU 116 40.070 10.587 49.695 1.00 10 ATOM 3388 O GLU 118 46.687 11.427 50.051 1.00 10 ATOM 3388 O GLU 118 46.687 11.427 50.051 1.00 10 ATOM 3389 C GLU 118 46.681 13.221 47.713 1.00 10 ATOM 3399 CD GLU 118 46.681 13.221 47.713 1.00 10 ATOM 3399 CD ARG 119 46.706 15.944 45.807 1.00 10 ATOM 3399 CD ARG 119 46.706 15.944 45.807 1.00 10 ATOM 3399 CD ARG 119 46.707 15.44 45.807 1.00 10 ATOM 3399 CD ARG 119 46.707 15.44 45.807 1.00 10 ATOM 3399 CD ARG 119 46.705 15.44 45.807 1.00 10										1.00 13.42	B
255 ATOM 3353 CEI PHE 113 46.626 6.927 50.496 1.00 13 ATOM 3355 CZ PHE 113 45.542 4.806 50.345 1.00 14 ATOM 3355 CZ PHE 113 46.346 5.792 49.784 1.00 13 ATOM 3356 C PHE 113 42.195 6.916 51.689 1.00 9 ATOM 3357 O PHE 113 42.195 6.916 51.689 1.00 9 ATOM 3358 N THR 114 41.686 5.686 53.519 1.00 9 ATOM 3359 CA THR 114 40.601 4.946 52.905 1.00 9 ATOM 3360 CB THR 114 40.601 4.946 52.905 1.00 9 ATOM 3361 CG1 THR 114 41.256 2.900 54.000 1.00 16 ATOM 3362 CG2 THR 114 39.397 5.824 52.608 1.00 18 ATOM 3363 C THR 114 39.397 5.824 52.608 1.00 8 ATOM 3365 N MET 115 38.908 6.538 53.612 1.00 8 ATOM 3366 CA MET 115 38.908 6.538 53.612 1.00 8 ATOM 3367 CB MET 115 37.730 7.365 53.422 1.00 8 ATOM 3368 CG MET 115 37.730 7.365 53.422 1.00 8 ATOM 3368 CG MET 115 36.761 6.723 55.717 1.00 12 ATOM 3370 CE MET 115 36.761 6.723 55.717 1.00 12 ATOM 3371 C MET 115 36.761 6.723 55.717 1.00 12 ATOM 3371 C MET 115 37.903 8.594 52.570 1.00 6 ATOM 3371 C MET 115 37.903 8.594 52.570 1.00 6 ATOM 3371 C MET 115 37.903 8.594 52.570 1.00 6 ATOM 3375 CB GU 116 39.295 10.476 51.909 1.00 10 ATOM 3376 CB GU 116 39.295 10.476 51.909 1.00 10 ATOM 3377 CD GUU 116 39.061 9.244 52.660 1.00 6 ATOM 3378 OEI GU 116 39.295 10.476 51.909 1.00 10 ATOM 3378 OEI GU 116 39.295 10.476 51.909 1.00 10 ATOM 3378 OEI GU 116 39.295 10.476 51.909 1.00 10 ATOM 3380 CG GU 116 38.737 11.962 53.924 1.00 10 ATOM 3380 CG GU 116 38.323 13.586 55.626 1.00 ATOM 3380 CG GU 116 38.323 13.586 55.626 1.00 ATOM 3380 CG GU 116 40.070 10.587 49.695 1.00 ATOM 3380 CG GU 116 40.070 10.587 49.695 1.00 ATOM 3388 CG GU 118 46.662 10.690 51.389 1.00 ATOM 3386 CG GU 118 46.662 10.690 51.389 1.00 ATOM 3388 CG GU 118 46.662 10.690 51.389 1.00 ATOM 3388 CG GU 118 46.662 10.690 51.389 1.00 ATOM 3399 CG GU 118 46.661 13.221 47.713 1.00 10 ATOM 3399 CG GU 118 46.661 13.221 47.713 1.00 10 ATOM 3399 CG ARG 119 46.661 13.221 47.713 1.00 10 ATOM 3399 CG ARG 119 46.976 13.564 46.329 1.00 1 ATOM 3399 CG ARG 119 46.976 13.564 46.329 1.00 1 ATOM 3399 CD ARG 119 46.976 13.564 46.329 1.00 1 ATOM 3399 CD ARG 119 46.										1.00 13.65	В
ATOM 3354 CE2 PHE 113 45.542 4.806 50.345 1.00 10 ATOM 3355 CZ PHE 113 46.346 5.792 49.784 1.00 13 ATOM 3356 C PHE 113 42.393 6.604 52.866 1.00 10 ATOM 3357 O PHE 113 42.393 6.604 52.866 1.00 10 ATOM 3358 N THR 114 41.686 5.686 53.519 1.00 9 ATOM 3358 N THR 114 41.686 5.686 53.519 1.00 9 ATOM 3358 CA THR 114 40.601 4.946 52.905 1.00 8 ATOM 3360 CB THR 114 40.57 3.792 53.812 1.00 9 ATOM 3361 OCI THR 114 41.256 2.900 54.000 1.00 10 ATOM 3363 C THR 114 39.026 3.006 53.174 1.00 10 ATOM 3364 O THR 114 39.026 3.006 53.174 1.00 10 ATOM 3366 CA MET 115 38.908 6.538 53.612 1.00 8 ATOM 3366 CA MET 115 38.908 6.538 53.612 1.00 8 ATOM 3366 CA MET 115 37.730 7.365 53.422 1.00 6 ATOM 3369 SD MET 115 37.149 7.844 54.760 1.00 8 ATOM 3370 CE MET 115 35.709 5.494 54.920 1.00 10 ATOM 3371 C MET 115 37.903 8.594 52.500 1.00 10 ATOM 3371 C MET 115 36.791 6.734 54.973 1.00 10 ATOM 3371 C MET 115 36.791 6.734 54.973 1.00 10 ATOM 3371 C MET 115 36.998 8.943 51.837 1.00 10 ATOM 3371 C MET 115 36.998 8.943 51.837 1.00 10 ATOM 3371 C MET 115 36.998 8.943 51.837 1.00 10 ATOM 3371 C MET 115 36.998 8.943 51.837 1.00 10 ATOM 3371 C MET 115 36.998 8.943 51.837 1.00 10 ATOM 3377 CD GLU 116 39.061 9.244 52.660 1.00 6 ATOM 3377 CD GLU 116 39.061 9.244 52.660 1.00 6 ATOM 3377 CD GLU 116 39.091 13.216 54.722 1.00 5 ATOM 3379 OE2 GLU 116 38.323 13.586 55.626 1.00 ATOM 3380 C GLU 116 38.323 13.586 55.626 1.00 ATOM 3380 C GLU 116 38.323 13.586 55.626 1.00 ATOM 3381 C GLU 116 38.323 13.586 55.626 1.00 ATOM 3380 C GLU 116 40.342 10.311 55.843 1.00 ATOM 3381 C GLU 116 40.342 10.311 55.843 1.00 ATOM 3388 CB GLU 118 46.652 10.690 51.389 1.00 ATOM 3388 CB GLU 118 46.652 10.690 51.389 1.00 ATOM 3390 CD GLU 118 46.681 19.224 47.765 11.00 12.40 ATOM 3391 CG GLU 118 46.681 19.224 47.765 11.00 12.40 ATOM 3399 CD GLU 118 46.681 19.224 47.765 11.00 12.40 ATOM 3399 CD GLU 118 46.681 19.224 47.765 11.00 12.40 ATOM 3399 CD GLU 118 46.681 19.225 47.939 1.00 12.40 ATOM 3399 CD GLU 118 46.681 19.225 47.793 1.00 12.40 ATOM 3399 CD GLU 118 46.681 19.221 47.713 1.00 12.40	25									1.00 13.19	В
ATOM 3355 CZ PHE 113 46.346 5.792 49.784 1.00 10 10 10 10 10 10										1.00 14.93	В
ATOM 3356 C PHE 113 42.393 6.604 52.866 1.00 10 ATOM 3358 N THR 114 41.686 5.686 53.519 1.00 9 ATOM 3358 N THR 114 41.686 5.686 53.519 1.00 9 ATOM 3350 CA THR 114 40.601 4.946 52.905 1.00 8 ATOM 3360 CB THR 114 40.601 4.946 52.905 1.00 8 ATOM 3361 OGI THR 114 41.256 2.900 54.000 1.00 10 ATOM 3362 CG2 THR 114 39.026 3.006 53.174 1.00 10 ATOM 3363 C THR 114 39.026 3.006 53.174 1.00 10 ATOM 3363 C THR 114 39.97 5.824 52.608 1.00 8 ATOM 3366 C MET 115 39.97 5.824 52.608 1.00 8 ATOM 3366 C MET 115 37.730 7.365 53.422 1.00 6 ATOM 3366 C MET 115 37.730 7.365 53.422 1.00 6 ATOM 3368 C MET 115 37.149 7.844 54.760 1.00 8 ATOM 3369 SD MET 115 35.709 5.494 54.920 1.00 17 ATOM 3370 CE MET 115 36.761 6.723 55.717 1.00 12 ATOM 3371 C MET 115 36.998 8.943 51.837 1.00 16 ATOM 3373 N GLU 116 39.295 10.476 51.999 1.00 6 ATOM 3375 CB GLU 116 39.295 10.476 51.999 1.00 6 ATOM 3377 CD GLU 116 39.743 11.607 52.838 1.00 6 ATOM 3380 C GLU 116 39.743 11.607 52.838 1.00 6 ATOM 3380 C GLU 116 39.743 11.607 52.838 1.00 6 ATOM 3380 C GLU 116 39.911 3.216 54.722 1.00 6 ATOM 3380 C GLU 116 38.231 13.586 55.626 1.00 6 ATOM 3380 C GLU 116 38.231 13.586 55.626 1.00 6 ATOM 3381 C GLU 116 40.342 10.311 50.843 1.00 6 ATOM 3380 C GLU 116 40.342 10.311 50.843 1.00 6 ATOM 3380 C GLU 116 40.74 13.850 54.464 1.00 6 ATOM 3380 C GLU 116 40.74 13.850 54.656 1.00 6 ATOM 3380 C GLU 118 46.652 10.690 51.389 1.00 6 ATOM 3380 C GLU 118 46.652 10.690 51.389 1.00 6 ATOM 3380 C GLU 118 46.652 10.690 51.389 1.00 6 ATOM 3380 C GLU 118 46.652 10.690 51.389 1.00 6 ATOM 3380 C GLU 118 46.652 10.690 51.389 1.00 10.00 60 60 60 60 60 60 60 60 60 60 60 60 6				CZ	PHE		46.346	5.792	49.784	1.00 13.30	В
ATOM 3358 N THR 114 41.686 5.686 53.519 1.00 9		MOTA	3356	С	PHE	113	42.393			1.00 10.02	В
ATOM 3359 CA THR 114 40.601 4.946 52.905 1.00 8 ATOM 3361 CG THR 114 40.57 3.792 53.812 1.00 9 ATOM 3361 CG THR 114 41.256 2.900 54.000 1.00 10 ATOM 3362 CG2 THR 114 39.026 3.006 53.174 1.00 10 ATOM 3363 C THR 114 39.397 5.824 52.608 1.00 8 ATOM 3364 O THR 114 38.935 5.875 51.496 1.00 8 ATOM 3365 N MET 115 38.908 6.538 53.612 1.00 6 ATOM 3366 CA MET 115 37.730 7.365 53.422 1.00 6 ATOM 3366 CA MET 115 37.149 7.844 54.760 1.00 8 ATOM 3368 CG MET 115 37.149 7.844 54.760 1.00 8 ATOM 3369 SD MET 115 35.709 5.494 54.920 1.00 17 ATOM 3370 CE MET 115 35.709 5.494 54.920 1.00 17 ATOM 3371 C MET 115 37.903 8.594 52.570 1.00 16 ATOM 3373 N GLU 116 39.061 9.244 52.660 1.00 6 ATOM 3375 CB GLU 116 39.061 9.244 52.660 1.00 6 ATOM 3376 CG GLU 116 39.091 13.216 54.722 1.00 ATOM 3377 CD GLU 116 39.091 13.216 54.722 1.00 1.00 17 ATOM 3379 OE2 GLU 116 39.091 13.216 54.722 1.00 1.00 17 ATOM 3379 OE2 GLU 116 39.091 13.216 54.722 1.00 1.00 17 ATOM 3379 OE2 GLU 116 39.091 13.216 54.722 1.00 1.00 17 ATOM 3380 C GLU 116 39.091 13.216 54.722 1.00 1.00 17 ATOM 3380 C GLU 116 39.091 13.216 54.722 1.00 1.00 17 ATOM 3380 C GLU 116 39.091 13.216 54.722 1.00 1.00 10 10 10 10 10 10 10 10 10 10 10 10 1	~~	MOTA		0							· В
ATOM 3360 CB THR 114 40.157 3.792 53.812 1.00 9 ATOM 3361 CG THR 114 41.256 2.900 54.000 1.00 10 35 ATOM 3362 CG2 THR 114 39.026 3.006 53.174 1.00 10 36 ATOM 3363 C THR 114 39.397 5.824 52.608 1.00 8 ATOM 3365 N MET 115 38.908 6.538 53.612 1.00 6 ATOM 3366 CA MET 115 37.730 7.365 53.422 1.00 6 ATOM 3366 CB MET 115 37.730 7.365 53.422 1.00 6 ATOM 3368 CG MET 115 37.149 7.844 54.760 1.00 8 ATOM 3369 SD MET 115 36.761 6.723 55.717 1.00 12 ATOM 3369 CG MET 115 35.709 5.494 54.920 1.00 17 ATOM 3371 C MET 115 35.709 5.494 54.920 1.00 17 ATOM 3371 C MET 115 37.903 8.594 52.570 1.00 16 ATOM 3373 N GLU 116 39.061 9.244 52.600 1.00 6 ATOM 3375 CB GLU 116 39.061 9.244 52.600 1.00 6 ATOM 3376 CG GLU 116 39.743 11.607 52.838 1.00 1 ATOM 3377 CD GLU 116 39.743 11.607 52.838 1.00 1 ATOM 3379 OE2 GLU 116 39.991 13.216 54.722 1.00 1 ATOM 3379 OE2 GLU 116 38.323 13.586 55.626 1.00 6 ATOM 3380 C GLU 116 38.323 13.586 55.626 1.00 6 ATOM 3380 C GLU 116 39.991 13.216 54.722 1.00 1 ATOM 3380 C GLU 116 39.991 13.216 54.722 1.00 1 ATOM 3380 C GLU 116 39.991 13.216 54.722 1.00 1 ATOM 3380 C GLU 116 38.323 13.586 55.626 1.00 6 ATOM 3380 C GLU 116 39.991 13.216 54.722 1.00 1 ATOM 3380 C GLU 116 40.342 10.311 50.843 1.00 1 ATOM 3380 C GLU 116 40.342 10.311 50.843 1.00 1 ATOM 3380 C GLU 118 40.687 91.627 99.695 1.00 ATOM 3380 C GLU 118 40.687 91.627 99.665 50.266 1.00 ATOM 3380 C GLU 118 46.687 91.427 50.051 1.00 ATOM 3380 C GLU 118 46.687 91.627 50.051 1.00 ATOM 3390 CD GLU 118 46.681 9.748 51.317 1.00 1 ATOM 3390 CD GLU 118 46.681 9.748 51.317 1.00 1 ATOM 3391 CE GLU 118 46.681 9.748 51.317 1.00 1 ATOM 3391 CE GLU 118 46.681 13.221 47.713 1.00 1 ATOM 3395 CA ARG 119 46.681 3.221 47.713 1.00 1 ATOM 3396 CA ARG 119 46.681 3.221 47.713 1.00 1 ATOM 3399 CD ARG 119 45.961 15.541 45.837 1.00 1	30										В
ATOM 3361 OG1 THR 114											В
35 ATOM 3362 CG2 THR 114 39.026 3.006 53.174 1.00 10 ATOM 3363 C THR 114 39.397 5.824 52.608 1.00 6 ATOM 3364 O THR 114 39.397 5.824 52.608 1.00 6 ATOM 3365 N MET 115 38.936 5.875 51.496 1.00 6 ATOM 3366 CA MET 115 37.730 7.365 53.422 1.00 6 ATOM 3366 CB MET 115 37.130 7.365 53.422 1.00 6 ATOM 3367 CB MET 115 37.149 7.844 54.760 1.00 6 ATOM 3368 CG MET 115 36.761 6.723 55.717 1.00 12 ATOM 3369 SD MET 115 35.709 5.494 54.920 1.00 12 ATOM 3370 CE MET 115 34.142 6.334 54.973 1.00 16 ATOM 3371 C MET 115 37.903 8.594 52.570 1.00 6 ATOM 3372 O MET 115 36.998 8.943 51.837 1.00 16 ATOM 3373 N GLU 116 39.061 9.244 52.660 1.00 6 ATOM 3376 CG GLU 116 39.295 10.476 51.909 1.00 2 ATOM 3376 CG GLU 116 39.743 11.607 52.838 1.00 2 ATOM 3377 CD GLU 116 39.091 13.216 54.722 1.00 2 ATOM 3378 OEI GLU 116 39.091 13.216 54.722 1.00 2 ATOM 3379 OE2 GLU 116 39.091 13.216 54.722 1.00 2 ATOM 3380 C GLU 116 39.091 13.216 54.722 1.00 2 ATOM 3381 O GLU 116 39.091 13.216 54.722 1.00 2 ATOM 3380 C GLU 116 39.091 13.216 54.722 1.00 2 ATOM 3380 C GLU 116 39.091 13.216 54.722 1.00 2 ATOM 3380 C GLU 116 39.091 13.216 54.722 1.00 2 ATOM 3380 C GLU 116 39.091 13.216 54.722 1.00 2 ATOM 3380 C GLU 116 39.091 13.216 54.722 1.00 2 ATOM 3380 C GLU 116 39.091 13.216 54.722 1.00 2 ATOM 3380 C GLU 116 39.091 13.216 54.722 1.00 2 ATOM 3380 C GLU 116 39.091 13.216 54.722 1.00 2 ATOM 3380 C GLU 116 39.091 13.216 54.722 1.00 2 ATOM 3380 C GLU 116 39.091 13.216 54.722 1.00 2 ATOM 3380 C GLU 116 39.091 13.216 54.722 1.00 2 ATOM 3380 C GLU 116 39.091 13.216 54.722 1.00 2 ATOM 3381 O GLU 116 39.091 13.216 54.722 1.00 2 ATOM 3380 C GLU 116 39.091 13.216 54.722 1.00 2 ATOM 3381 O GLU 116 39.091 13.216 54.722 1.00 2 ATOM 3380 C GLU 118 40.822 10.311 50.843 1.00 2 ATOM 3380 C GLU 118 45.823 10.822 49.466 1.00 2 ATOM 3380 C GLU 118 45.823 10.822 49.466 1.00 2 ATOM 3390 CD GLU 118 45.813 12.253 47.959 1.00 2 ATOM 3391 OEI GLU 118 45.813 12.253 47.959 1.00 2 ATOM 3396 CA ARG 119 46.976 13.564 46.329 1.00 1 ATOM 3399 CD ARG 119 46.976 13.564 46.329 1.00 1											B B
35 ATOM 3363 C THR 114 39.397 5.824 52.608 1.00 8 ATOM 3364 O THR 114 38.935 5.875 51.496 1.00 8 ATOM 3365 N MET 115 38.908 6.538 53.612 1.00 6 ATOM 3366 CA MET 115 37.730 7.365 53.422 1.00 6 ATOM 3366 CA MET 115 37.730 7.365 53.422 1.00 6 ATOM 3368 CG MET 115 37.149 7.844 54.760 1.00 8 ATOM 3369 SD MET 115 36.761 6.723 55.717 1.00 12 ATOM 3370 CE MET 115 35.709 5.494 54.920 1.00 17 ATOM 3371 C MET 115 37.903 8.594 52.570 1.00 6 ATOM 3371 C MET 115 36.998 8.943 51.837 1.00 16 ATOM 3372 O MET 115 36.998 8.943 51.837 1.00 16 ATOM 3374 CA GLU 116 39.061 9.244 52.660 1.00 8 ATOM 3375 CB GLU 116 39.061 9.244 52.660 1.00 8 ATOM 3375 CB GLU 116 39.743 11.607 52.838 1.00 10 ATOM 3377 CD GLU 116 39.743 11.607 52.838 1.00 10 ATOM 3378 OEI GLU 116 38.737 11.962 53.924 1.00 10 ATOM 3378 OEI GLU 116 38.323 13.586 55.626 1.00 ATOM 3380 C GLU 116 38.323 13.586 55.626 1.00 ATOM 3381 O GLU 116 40.124 13.850 54.464 1.00 ATOM 3381 O GLU 116 40.342 10.311 50.843 1.00 ATOM 3381 O GLU 116 40.342 10.311 50.843 1.00 ATOM 3381 O GLU 116 40.342 10.311 50.843 1.00 ATOM 3383 CA GLY 117 41.539 9.869 51.235 1.00 ATOM 3386 C GLY 117 42.603 9.663 50.263 1.00 ATOM 3386 C GLY 117 43.531 10.842 50.294 1.00 ATOM 3386 C GLY 117 43.531 10.842 50.294 1.00 ATOM 3388 CB GLU 118 46.879 11.427 50.051 1.00 ATOM 3389 CG GLU 118 46.687 11.897 49.466 1.00 ATOM 3389 CG GLU 118 46.687 11.427 50.051 1.00 ATOM 3399 CD GLU 118 45.868 10.822 49.466 1.00 ATOM 3399 CD GLU 118 45.801 10.255 53.317 1.00 1.00 ATOM 3391 OEI GLU 118 46.899 11.427 50.051 1.00 ATOM 3397 CB GLU 118 45.801 10.255 53.317 1.00 1.00 ATOM 3399 CD GLU 118 45.803 10.255 53.317 1.00 1.00 ATOM 3399 CD GLU 118 45.801 10.255 53.317 1.00 1.00 ATOM 3399 CD GLU 118 45.901 11.600 46.906 11.500 11.00 ATOM 3399 CD GLU 118 45.901 11.600 46.906 11.00 ATOM 3399 CD GLU 118 45.901 11.600 46.906 11.00 ATOM 3399 CD GLU 118 45.801 10.255 53.317 1.00 1.00 ATOM 3399 CD ARG 119 46.681 13.221 47.713 1.00 1.00 ATOM 3399 CD ARG 119 45.901 15.5414 45.837 1.00 1.00 ATOM 3399 CD ARG 119 46.906 13.564 46.329 1.00 1.00 ATOM											В
ATOM 3365 N MET 115 38.935 5.875 51.496 1.00 8 ATOM 3365 N MET 115 38.908 6.538 53.612 1.00 6 ATOM 3366 CA MET 115 37.730 7.365 53.422 1.00 6 ATOM 3368 CG MET 115 37.149 7.844 54.760 1.00 8 ATOM 3369 SD MET 115 36.761 6.723 55.717 1.00 12 ATOM 3370 CE MET 115 35.709 5.494 54.920 1.00 12 ATOM 3371 C MET 115 35.709 5.494 54.920 1.00 12 ATOM 3372 O MET 115 36.988 8.943 51.837 1.00 16 ATOM 3373 N GLU 116 39.061 9.244 52.660 1.00 6 ATOM 3374 CA GLU 116 39.061 9.244 52.660 1.00 6 ATOM 3375 CB GLU 116 39.743 11.607 52.838 1.00 6 ATOM 3377 CD GLU 116 39.743 11.607 52.838 1.00 6 ATOM 3377 CD GLU 116 39.743 11.607 52.838 1.00 6 ATOM 3378 OEI GLU 116 39.991 13.216 54.722 1.00 1 ATOM 3379 OE2 GLU 116 39.991 13.216 54.722 1.00 1 ATOM 3378 OEI GLU 116 40.342 10.311 50.843 1.00 6 ATOM 3380 C GLU 116 40.342 10.311 50.843 1.00 6 ATOM 3381 O GLU 116 40.342 10.311 50.843 1.00 6 ATOM 3383 CA GLY 117 42.603 9.663 50.263 1.00 6 ATOM 3386 N GLY 117 43.531 10.842 50.294 1.00 6 ATOM 3386 N GLY 117 43.531 10.842 50.294 1.00 6 ATOM 3387 CA GLU 118 45.562 11.897 49.466 1.00 6 ATOM 3388 CB GLU 118 46.652 10.690 51.338 1.00 6 ATOM 3389 CG GLU 118 46.652 10.690 51.338 1.00 6 ATOM 3391 OEI GLU 118 48.831 9.748 51.317 1.00 1 ATOM 3391 C GLU 118 48.831 9.748 51.317 1.00 1 ATOM 3393 C GLU 118 45.861 10.822 49.466 1.00 6 ATOM 3391 OEI GLU 118 46.652 10.690 51.389 1.00 6 ATOM 3393 C GLU 118 46.652 10.690 51.389 1.00 6 ATOM 3391 OEI GLU 118 48.831 9.748 51.317 1.00 1 ATOM 3393 C GLU 118 45.861 13.221 47.713 1.00 ATOM 3395 C GLU 118 45.861 13.221 47.713 1.00 1 ATOM 3395 C GLU 118 45.861 13.221 47.713 1.00 1 ATOM 3397 CB ARG 119 46.976 13.564 46.329 1.00 1 ATOM 3399 CD ARG 119 45.961 15.941 46.462 1.00 1	35										B
ATOM 3365 N MET 115 38.908 6.538 53.612 1.00 6 ATOM 3366 CA MET 115 37.730 7.365 53.622 1.00 6 ATOM 3367 CB MET 115 37.149 7.844 54.760 1.00 6 ATOM 3368 CG MET 115 36.761 6.723 55.717 1.00 12 ATOM 3369 SD MET 115 36.761 6.723 55.717 1.00 12 ATOM 3370 CE MET 115 34.142 6.334 54.973 1.00 16 ATOM 3371 C MET 115 34.142 6.334 54.973 1.00 16 ATOM 3372 O MET 115 36.998 8.943 51.837 1.00 16 ATOM 3373 N GLU 116 39.061 9.244 52.660 1.00 6 ATOM 3374 CA GLU 116 39.961 9.244 52.660 1.00 6 ATOM 3375 CB GLU 116 39.743 11.607 52.838 1.00 6 ATOM 3376 CG GLU 116 39.743 11.607 52.838 1.00 6 ATOM 3377 CD GLU 116 39.091 13.216 54.722 1.00 15 ATOM 3378 OEI GLU 116 39.091 13.216 54.722 1.00 15 ATOM 3379 OE2 GLU 116 39.091 13.216 54.722 1.00 15 ATOM 3380 C GLU 116 39.091 13.216 54.722 1.00 15 ATOM 3380 C GLU 116 38.323 13.586 55.626 1.00 6 ATOM 3380 C GLU 116 40.342 10.311 50.843 1.00 6 ATOM 3381 O GLU 116 40.070 10.587 49.695 1.00 6 ATOM 3383 CA GLY 117 41.539 9.869 51.235 1.00 6 ATOM 3384 C GLY 117 42.603 9.663 50.263 1.00 6 ATOM 3386 N GLU 118 40.542 10.311 50.843 1.00 6 ATOM 3386 N GLU 118 45.562 11.897 49.695 1.00 6 ATOM 3388 CB GLU 118 45.562 11.897 49.412 1.00 6 ATOM 3388 CB GLU 118 45.562 11.897 49.412 1.00 6 ATOM 3389 CG GLU 118 46.652 10.690 51.389 1.00 60 60 ATOM 3390 CD GLU 118 48.831 9.748 51.317 1.00 1 ATOM 3391 OEI GLU 118 48.831 9.748 51.317 1.00 1 ATOM 3393 C GLU 118 48.831 9.748 51.317 1.00 1 ATOM 3393 C GLU 118 48.831 9.748 51.317 1.00 1 ATOM 3395 C GLU 118 45.813 12.253 47.959 1.00 ATOM 3395 N ARG 119 46.661 13.564 46.329 1.00 1 ATOM 3396 CA ARG 119 46.976 13.564 46.329 1.00 1 ATOM 3397 CB ARG 119 47.717 15.067 46.311 1.00 1 ATOM 3398 CG ARG 119 46.976 13.564 46.329 1.00 1	55										В
ATOM 3366 CA MET 115 37.730 7.365 53.422 1.00 6 ATOM 3367 CB MET 115 37.149 7.844 54.760 1.00 6 ATOM 3368 CG MET 115 36.761 6.723 55.717 1.00 12 ATOM 3369 SD MET 115 35.709 5.494 54.920 1.00 17 ATOM 3370 CE MET 115 35.709 5.494 54.920 1.00 17 ATOM 3371 C MET 115 37.903 8.594 52.570 1.00 6 ATOM 3372 O MET 115 36.998 8.943 51.837 1.00 16 ATOM 3373 N GLU 116 39.061 9.244 52.660 1.00 6 ATOM 3374 CA GLU 116 39.061 9.244 52.660 1.00 6 ATOM 3375 CB GLU 116 39.743 11.607 52.838 1.00 2 ATOM 3376 CG GLU 116 39.743 11.607 52.838 1.00 2 ATOM 3377 CD GLU 116 39.743 11.607 52.838 1.00 2 ATOM 3378 OEI GLU 116 39.091 13.216 54.722 1.00 1 ATOM 3378 OEI GLU 116 39.091 13.216 54.722 1.00 1 ATOM 3379 OE2 GLU 116 38.737 11.962 53.924 1.00 1 ATOM 3380 C GLU 116 38.323 13.586 55.626 1.00 ATOM 3380 C GLU 116 40.342 10.311 50.843 1.00 2 ATOM 3380 C GLU 116 40.342 10.311 50.843 1.00 2 ATOM 3380 C GLU 116 40.342 10.311 50.843 1.00 2 ATOM 3380 C GLU 116 40.342 10.311 50.843 1.00 2 ATOM 3380 C GLU 116 40.342 10.311 50.843 1.00 2 ATOM 3381 C GLU 116 40.372 10.311 50.843 1.00 2 ATOM 3383 C GLU 117 41.539 9.869 51.00 2 ATOM 3384 C GLY 117 43.531 10.842 50.294 1.00 2 ATOM 3385 C GLU 118 44.568 10.822 49.466 1.00 2 ATOM 3386 N GLU 118 44.568 10.822 49.466 1.00 2 ATOM 3389 CG GLU 118 45.562 11.897 49.412 1.00 2 ATOM 3389 CG GLU 118 46.652 11.897 49.412 1.00 2 ATOM 3389 CG GLU 118 47.933 10.200 52.062 1.00 2 ATOM 3391 CO GLU 118 48.831 9.748 51.317 1.00 1 ATOM 3393 C GLU 118 47.933 10.200 52.062 1.00 2 ATOM 3393 C GLU 118 48.831 9.748 51.317 1.00 1 ATOM 3395 N ARG 119 46.661 13.221 47.713 1.00 ATOM 3396 CA ARG 119 46.661 13.221 47.713 1.00 1 ATOM 3397 CB ARG 119 46.976 13.564 46.329 1.00 1 ATOM 3398 CG ARG 119 45.961 15.941 46.462 1.00 1 ATOM 3399 CD ARG 119 45.961 15.941 45.837 1.00 1											В
40 ATOM 3367 CB MET 115 37.149 7.844 54.760 1.00 8 ATOM 3368 CG MET 115 36.761 6.723 55.717 1.00 12 ATOM 3369 SD MET 115 35.709 5.494 54.920 1.00 17 ATOM 3370 CE MET 115 34.142 6.334 54.973 1.00 16 ATOM 3371 C MET 115 37.903 8.594 52.570 1.00 6 ATOM 3371 C MET 115 36.998 8.943 51.837 1.00 16 ATOM 3373 N GLU 116 39.061 9.244 52.660 1.00 6 ATOM 3375 CB GLU 116 39.061 9.244 52.660 1.00 6 ATOM 3375 CB GLU 116 39.743 11.607 52.838 1.00 17 ATOM 3376 CG GLU 116 39.743 11.607 52.838 1.00 17 ATOM 3377 CD GLU 116 39.743 11.607 52.838 1.00 17 ATOM 3377 CD GLU 116 39.091 13.216 54.722 1.00 18 ATOM 3378 0E1 GLU 116 39.091 13.216 54.722 1.00 18 ATOM 3379 0E2 GLU 116 38.737 11.962 53.924 1.00 18 ATOM 3380 C GLU 116 38.323 13.586 55.626 1.00 ATOM 3381 O GLU 116 40.124 13.850 54.464 1.00 18 ATOM 3380 C GLU 116 40.342 10.311 50.843 1.00 18 ATOM 3381 O GLU 116 40.342 10.311 50.843 1.00 18 ATOM 3383 CA GLY 117 42.603 9.663 50.263 1.00 ATOM 3384 C GLY 117 42.603 9.663 50.263 1.00 ATOM 3386 C GLU 118 40.070 10.587 49.695 1.00 ATOM 3386 C GLU 118 44.568 10.822 49.466 1.00 ATOM 3386 C GLU 118 44.568 10.822 49.466 1.00 ATOM 3388 CB GLU 118 45.562 11.897 49.412 1.00 ATOM 3389 CG GLU 118 45.813 12.253 47.959 1.00 ATOM 3391 OE1 GLU 118 46.652 10.690 51.389 1.00 ATOM 3393 C GLU 118 47.933 10.205 52.062 1.00 ATOM 3393 C GLU 118 48.831 9.748 51.317 1.00 ATOM 3393 C GLU 118 48.831 9.748 51.317 1.00 ATOM 3393 C GLU 118 48.831 9.748 51.317 1.00 ATOM 3393 C GLU 118 45.813 12.253 47.959 1.00 ATOM 3393 C GLU 118 45.813 12.253 47.959 1.00 ATOM 3395 C GLU 118 45.813 12.253 47.959 1.00 ATOM 3396 CA ARG 119 46.676 13.564 46.329 1.00 ATOM 3397 CB ARG 119 46.676 13.564 46.329 1.00 ATOM 3397 CB ARG 119 46.676 13.564 46.329 1.00 ATOM 3399 CD ARG 119 47.711 15.067 46.311 1.00 1 ATOM 3399 CD ARG 119 45.961 15.941 45.837 1.00 1											В
40 ATOM 3368 CG MET 115 36.761 6.723 55.717 1.00 12 ATOM 3369 SD MET 115 35.709 5.494 54.920 1.00 17 ATOM 3370 CE MET 115 34.142 6.334 54.973 1.00 16 ATOM 3371 C MET 115 37.903 8.594 52.570 1.00 6 ATOM 3372 O MET 115 36.998 8.943 51.837 1.00 16 ATOM 3373 N GLU 116 39.061 9.244 52.660 1.00 6 ATOM 3375 CB GLU 116 39.295 10.476 51.909 1.00 6 ATOM 3375 CB GLU 116 39.743 11.607 52.838 1.00 7 ATOM 3377 CD GLU 116 39.743 11.607 52.838 1.00 7 ATOM 3377 CD GLU 116 39.091 13.216 54.722 1.00 15 ATOM 3378 OE1 GLU 116 39.091 13.216 54.722 1.00 15 ATOM 3379 OE2 GLU 116 38.323 13.586 55.626 1.00 ATOM 3380 C GLU 116 38.323 13.586 55.626 1.00 ATOM 3381 O GLU 116 40.070 10.587 49.695 1.00 10 ATOM 3381 O GLU 116 40.070 10.587 49.695 1.00 10 ATOM 3384 C GLY 117 41.539 9.869 51.235 1.00 ATOM 3385 O GLY 117 42.603 9.663 50.263 1.00 ATOM 3386 N GLY 117 43.531 10.842 50.294 1.00 ATOM 3386 N GLU 118 44.568 10.822 49.466 1.00 ATOM 3386 N GLU 118 44.568 10.822 49.466 1.00 ATOM 3388 CB GLU 118 45.562 11.897 49.412 1.00 ATOM 3389 CG GLU 118 46.652 11.897 49.412 1.00 ATOM 3389 CG GLU 118 46.6879 11.427 50.051 1.00 ATOM 3390 CD GLU 118 46.6879 11.427 50.051 1.00 ATOM 3391 OE1 GLU 118 48.831 9.748 51.317 1.00 1 ATOM 3392 OE2 GLU 118 45.813 12.253 47.959 1.00 ATOM 3393 C GLU 118 46.652 10.690 51.389 1.00 ATOM 3393 C GLU 118 45.813 12.253 47.959 1.00 ATOM 3395 N ARG 119 46.681 13.221 47.713 1.00 ATOM 3396 CA ARG 119 46.681 13.221 47.713 1.00 ATOM 3397 CB ARG 119 46.681 13.544 45.837 1.00 1 ATOM 3398 CG ARG 119 45.961 15.941 46.462 1.00 1 ATOM 3399 CD ARG 119 47.711 15.067 47.063 1.00 ATOM 3399 CD ARG 119 45.961 15.941 46.462 1.00 1 ATOM 3399 CD ARG 119 47.711 15.067 47.063 1.00 ATOM 3399 CD ARG 119 47.711 15.067 47.063 1.00 ATOM 3399 CD ARG 119 47.711 15.067 47.063 1.00 ATOM 3399 CD ARG 119 45.961 15.941 46.462 1.00 1 ATOM 3399 CD ARG 119 47.711 15.067 47.063 1.00 ATOM 3399 CD ARG 119 47.711 15.067 47.063 1.00 ATOM 3399 CD ARG 119 45.961 15.941 46.462 1.00 1 ATOM 3399 CD ARG 119 47.711 15.067 47.063 1.00 ATOM 3399 CD ARG 119 47.711 15.067 47.06											В
ATOM 3370 CE MET 115 35.709 5.494 54.920 1.00 17 ATOM 3370 CE MET 115 34.142 6.334 54.973 1.00 16 ATOM 3371 C MET 115 37.903 8.594 52.570 1.00 6 ATOM 3372 O MET 115 36.998 8.943 51.837 1.00 10 ATOM 3373 N GLU 116 39.061 9.244 52.660 1.00 6 ATOM 3375 CB GLU 116 39.295 10.476 51.909 1.00 6 ATOM 3376 CG GLU 116 39.743 11.607 52.838 1.00 6 ATOM 3377 CD GLU 116 38.737 11.962 53.924 1.00 1 ATOM 3377 CD GLU 116 38.737 11.962 53.924 1.00 1 ATOM 3378 OEI GLU 116 39.091 13.216 54.722 1.00 1 ATOM 3379 OE2 GLU 116 38.323 13.586 55.626 1.00 6 ATOM 3380 C GLU 116 40.124 13.850 54.464 1.00 1 ATOM 3381 OG GLU 116 40.342 10.311 50.843 1.00 6 ATOM 3381 C GLU 116 40.070 10.587 49.695 1.00 6 ATOM 3383 CA GLY 117 41.539 9.869 51.235 1.00 6 ATOM 3384 C GLY 117 42.603 9.663 50.263 1.00 6 ATOM 3385 O GLY 117 43.531 10.842 50.294 1.00 6 ATOM 3386 N GLU 118 44.568 10.822 49.466 1.00 6 ATOM 3387 CA GLU 118 45.562 11.897 49.412 1.00 6 ATOM 3389 CG GLU 118 45.562 11.897 49.412 1.00 6 ATOM 3389 CG GLU 118 46.652 10.690 51.389 1.00 6 ATOM 3390 CD GLU 118 46.652 10.690 51.389 1.00 6 ATOM 3391 OEI GLU 118 48.831 9.748 51.317 1.00 1 ATOM 3392 OE2 GLU 118 48.831 9.748 51.317 1.00 1 ATOM 3393 C GLU 118 48.831 9.748 51.317 1.00 1 ATOM 3394 O GLU 118 45.813 12.253 47.959 1.00 ATOM 3395 C GLU 118 45.813 12.253 47.959 1.00 ATOM 3396 CA ARG 119 46.681 13.221 47.713 1.00 ATOM 3397 CB ARG 119 46.681 13.221 47.713 1.00 1 ATOM 3397 CB ARG 119 46.681 13.221 47.713 1.00 1 ATOM 3398 CG ARG 119 45.961 15.941 46.462 1.00 1	40					115	36.761	6.723	55.717	1.00 12.31	В
ATOM 3371 C MET 115 37.903 8.594 52.570 1.00 6 ATOM 3372 O MET 115 36.998 8.943 51.837 1.00 10 6 ATOM 3373 N GLU 116 39.061 9.244 52.660 1.00 6 ATOM 3374 CA GLU 116 39.295 10.476 51.909 1.00 6 ATOM 3375 CB GLU 116 39.295 10.476 51.909 1.00 6 ATOM 3376 CG GLU 116 39.743 11.607 52.838 1.00 6 ATOM 3377 CD GLU 116 39.91 13.216 54.722 1.00 1 ATOM 3378 0E1 GLU 116 39.091 13.216 54.722 1.00 1 ATOM 3378 0E1 GLU 116 40.124 13.850 54.464 1.00 1 ATOM 3379 0E2 GLU 116 38.737 11.962 53.924 1.00 1 ATOM 3380 C GLU 116 40.342 10.311 50.843 1.00 ATOM 3381 O GLU 116 40.342 10.311 50.843 1.00 ATOM 3381 O GLU 116 40.070 10.587 49.695 1.00 ATOM 3382 N GLY 117 41.539 9.869 51.235 1.00 ATOM 3384 C GLY 117 42.603 9.663 50.263 1.00 ATOM 3386 N GLY 117 42.603 9.663 50.263 1.00 ATOM 3386 N GLY 117 43.531 10.842 50.294 1.00 ATOM 3386 N GLU 118 44.568 10.822 49.466 1.00 ATOM 3388 CB GLU 118 45.562 11.897 49.412 1.00 ATOM 3388 CB GLU 118 45.562 11.897 49.412 1.00 ATOM 3388 CB GLU 118 46.879 11.427 50.051 1.00 ATOM 3390 CD GLU 118 46.879 11.427 50.051 1.00 ATOM 3391 OE1 GLU 118 46.879 11.427 50.051 1.00 ATOM 3393 C GLU 118 46.8879 11.427 50.051 1.00 ATOM 3393 C GLU 118 48.831 9.748 51.317 1.00 ATOM 3393 C GLU 118 48.831 9.748 51.317 1.00 ATOM 3393 C GLU 118 45.813 12.253 47.959 1.00 ATOM 3393 C GLU 118 45.813 12.253 47.959 1.00 ATOM 3394 O GLU 118 45.813 12.253 47.959 1.00 ATOM 3395 N ARG 119 46.661 13.564 46.329 1.00 1 ATOM 3395 N ARG 119 46.661 13.564 46.329 1.00 1 ATOM 3395 C ARG 119 47.711 15.067 46.311 1.00 1 ATOM 3396 CA ARG 119 47.711 15.067 46.311 1.00 1 ATOM 3397 CB ARG 119 47.711 15.067 46.321 1.00 1 ATOM 3399 CD ARG 119 45.961 15.941 46.462 1.00 1		ATOM	3369	SD	MET	115	35.709	5.494		1.00 17.76	В
45 ATOM 3372 O MET 115 36.998 8.943 51.837 1.00 10 ATOM 3373 N GLU 116 39.061 9.244 52.660 1.00 6 ATOM 3374 CA GLU 116 39.295 10.476 51.909 1.00 6 ATOM 3375 CB GLU 116 39.743 11.607 52.838 1.00 6 ATOM 3376 CG GLU 116 38.737 11.962 53.924 1.00 1 ATOM 3377 CD GLU 116 38.737 11.962 53.924 1.00 1 ATOM 3378 OEI GLU 116 39.091 13.216 54.722 1.00 1 ATOM 3379 OE2 GLU 116 38.323 13.586 55.626 1.00 6 ATOM 3380 C GLU 116 40.124 13.850 54.464 1.00 1 ATOM 3380 C GLU 116 40.342 10.311 50.843 1.00 6 ATOM 3381 O GLU 116 40.070 10.587 49.695 1.00 6 ATOM 3382 N GLY 117 41.539 9.869 51.235 1.00 6 ATOM 3383 CA GLY 117 42.603 9.663 50.263 1.00 6 ATOM 3384 C GLY 117 43.531 10.842 50.294 1.00 6 ATOM 3385 O GLY 117 43.531 10.842 50.294 1.00 6 ATOM 3386 N GLU 118 44.568 10.822 49.466 1.00 6 ATOM 3387 CA GLU 118 45.562 11.897 49.412 1.00 6 ATOM 3389 CG GLU 118 46.652 10.690 51.389 1.00 6 ATOM 3390 CD GLU 118 46.652 10.690 51.389 1.00 6 ATOM 3391 OEI GLU 118 48.831 9.748 51.317 1.00 1 ATOM 3392 OE2 GLU 118 48.831 9.748 51.317 1.00 1 ATOM 3393 C GLU 118 48.831 9.748 51.317 1.00 1 ATOM 3394 O GLU 118 48.831 9.748 51.317 1.00 1 ATOM 3395 N ARG 119 46.661 13.221 47.713 1.00 ATOM 3396 CA ARG 119 46.661 13.564 46.329 1.00 1 ATOM 3396 CA ARG 119 46.676 13.564 46.329 1.00 1 ATOM 3397 CB ARG 119 47.717 15.067 46.462 1.00 1 ATOM 3398 CG ARG 119 45.961 15.941 46.462 1.00 1 ATOM 3399 CD ARG 119 44.705 15.414 45.837 1.00 1		MOTA	3370	CE						1.00 16.39	В
45 ATOM 3373 N GLU 116 39.061 9.244 52.660 1.00 6 ATOM 3374 CA GLU 116 39.295 10.476 51.909 1.00 6 ATOM 3375 CB GLU 116 39.743 11.607 52.838 1.00 7 ATOM 3376 CG GLU 116 39.743 11.607 52.838 1.00 7 ATOM 3377 CD GLU 116 39.091 13.216 54.722 1.00 1 ATOM 3378 OE1 GLU 116 39.091 13.216 54.722 1.00 1 ATOM 3379 OE2 GLU 116 38.323 13.586 55.626 1.00 ATOM 3380 C GLU 116 40.124 13.850 55.626 1.00 ATOM 3381 O GLU 116 40.342 10.311 50.843 1.00 ATOM 3381 O GLU 116 40.342 10.311 50.843 1.00 ATOM 3383 CA GLY 117 41.539 9.869 51.235 1.00 ATOM 3383 CA GLY 117 42.603 9.663 50.263 1.00 ATOM 3385 CA GLY 117 43.531 10.842 50.294 1.00 ATOM 3385 O GLY 117 43.531 10.842 50.294 1.00 ATOM 3385 O GLY 117 43.531 10.842 50.294 1.00 ATOM 3386 N GLU 118 44.568 10.822 49.466 1.00 ATOM 3387 CA GLU 118 44.568 10.822 49.466 1.00 ATOM 3388 CB GLU 118 45.562 11.897 49.412 1.00 ATOM 3389 CG GLU 118 46.652 10.690 51.389 1.00 ATOM 3390 CD GLU 118 47.933 10.200 52.062 1.00 ATOM 3391 OE1 GLU 118 48.831 9.748 51.317 1.00 1 ATOM 3392 OE2 GLU 118 48.831 9.748 51.317 1.00 1 ATOM 3393 C GLU 118 48.831 9.748 51.317 1.00 1 ATOM 3395 N ARG 119 46.661 13.221 47.713 1.00 ATOM 3395 N ARG 119 46.661 13.564 46.329 1.00 ATOM 3397 CB ARG 119 46.661 13.564 46.329 1.00 1 ATOM 3398 CG ARG 119 47.717 15.067 46.131 1.00 1 ATOM 3398 CG ARG 119 47.717 15.067 46.131 1.00 1 ATOM 3398 CG ARG 119 47.717 15.067 46.131 1.00 1 ATOM 3399 CD ARG 119 47.717 15.067 46.131 1.00 1											В
ATOM 3375 CB GLU 116 39.295 10.476 51.909 1.00 2 ATOM 3375 CB GLU 116 39.743 11.607 52.838 1.00 2 ATOM 3376 CG GLU 116 38.737 11.962 53.924 1.00 1 ATOM 3377 CD GLU 116 39.091 13.216 54.722 1.00 1 ATOM 3378 0E1 GLU 116 39.091 13.216 54.722 1.00 1 ATOM 3379 0E2 GLU 116 38.323 13.586 55.626 1.00 2 ATOM 3380 C GLU 116 40.124 13.850 54.464 1.00 1 ATOM 3381 0 GLU 116 40.342 10.311 50.843 1.00 2 ATOM 3382 N GLY 117 41.539 9.869 51.235 1.00 2 ATOM 3383 CA GLY 117 42.603 9.663 50.263 1.00 2 ATOM 3384 C GLY 117 42.603 9.663 50.263 1.00 2 ATOM 3385 O GLY 117 43.531 10.842 50.294 1.00 2 ATOM 3386 N GLU 118 44.568 10.822 49.466 1.00 2 ATOM 3386 N GLU 118 44.568 10.822 49.466 1.00 2 ATOM 3388 CB GLU 118 46.879 11.427 50.051 1.00 2 ATOM 3389 CG GLU 118 46.652 10.690 51.389 1.00 2 ATOM 3390 CD GLU 118 48.831 9.748 51.317 1.00 1 ATOM 3391 OE1 GLU 118 48.831 9.748 51.317 1.00 1 ATOM 3393 C GLU 118 45.561 11.897 49.412 1.00 2 ATOM 3391 OE1 GLU 118 48.831 9.748 51.317 1.00 1 ATOM 3393 C GLU 118 45.813 12.253 47.959 1.00 2 ATOM 3394 O GLU 118 45.813 12.253 47.959 1.00 2 ATOM 3395 N ARG 119 46.676 13.564 46.329 1.00 1 ATOM 3396 CA ARG 119 46.976 13.564 46.329 1.00 1 ATOM 3397 CB ARG 119 45.961 15.941 46.462 1.00 1 ATOM 3398 CG ARG 119 47.717 15.067 46.131 1.00 1 ATOM 3398 CG ARG 119 45.961 15.941 46.462 1.00 1 ATOM 3399 CD ARG 119 44.705 15.414 45.837 1.00 1	45 .									1.00 10.20	B B
ATOM 3375 CB GLU 116 39.743 11.607 52.838 1.00 2 ATOM 3376 CG GLU 116 39.071 11.962 53.924 1.00 1 ATOM 3377 CD GLU 116 39.091 13.216 54.722 1.00 1 ATOM 3378 OE1 GLU 116 39.091 13.216 54.722 1.00 1 ATOM 3379 OE2 GLU 116 38.323 13.586 55.626 1.00 1 ATOM 3380 C GLU 116 40.124 13.850 54.464 1.00 1 ATOM 3381 O GLU 116 40.070 10.587 49.695 1.00 1 ATOM 3382 N GLY 117 41.539 9.869 51.235 1.00 1 ATOM 3383 CA GLY 117 42.603 9.663 50.263 1.00 1 ATOM 3384 C GLY 117 43.531 10.842 50.294 1.00 1 ATOM 3385 O GLY 117 43.531 10.842 50.294 1.00 1 ATOM 3386 N GLU 118 44.568 10.822 49.466 1.00 1 ATOM 3387 CA GLU 118 45.562 11.897 49.412 1.00 1 ATOM 3389 CG GLU 118 46.879 11.427 50.051 1.00 1 ATOM 3389 CG GLU 118 46.879 11.427 50.051 1.00 1 ATOM 3391 OE1 GLU 118 48.831 9.748 51.317 1.00 1 ATOM 3392 OE2 GLU 118 48.831 9.748 51.317 1.00 1 ATOM 3393 C GLU 118 48.831 9.748 51.317 1.00 1 ATOM 3394 O GLU 118 45.813 12.253 47.959 1.00 1 ATOM 3395 N ARG 119 46.681 13.221 47.713 1.00 1 ATOM 3396 CA ARG 119 46.681 13.221 47.713 1.00 1 ATOM 3397 CB ARG 119 46.976 13.564 46.329 1.00 1 ATOM 3398 CG ARG 119 45.961 15.941 46.462 1.00 1 ATOM 3399 CD ARG 119 45.961 15.941 46.462 1.00 1	43										В
ATOM 3376 CG GLU 116 38.737 11.962 53.924 1.00 1 ATOM 3377 CD GLU 116 39.091 13.216 54.722 1.00 1 ATOM 3378 0E1 GLU 116 40.124 13.850 54.464 1.00 1 ATOM 3379 0E2 GLU 116 38.323 13.586 55.626 1.00 1 ATOM 3380 C GLU 116 40.342 10.311 50.843 1.00 1 ATOM 3381 O GLU 116 40.070 10.587 49.695 1.00 1 ATOM 3382 N GLY 117 41.539 9.869 51.235 1.00 1 ATOM 3383 CA GLY 117 42.603 9.663 50.263 1.00 1 ATOM 3385 C GLY 117 43.531 10.842 50.294 1.00 1 ATOM 3385 O GLY 117 43.531 10.842 50.294 1.00 1 ATOM 3386 N GLU 118 44.568 10.822 49.466 1.00 1 ATOM 3387 CA GLU 118 45.562 11.897 49.412 1.00 1 ATOM 3388 CB GLU 118 46.879 11.427 50.051 1.00 1 ATOM 3389 CG GLU 118 46.652 10.690 51.389 1.00 1 ATOM 3390 CD GLU 118 48.831 9.748 51.317 1.00 1 ATOM 3391 OE1 GLU 118 48.831 9.748 51.317 1.00 1 ATOM 3393 C GLU 118 45.813 12.253 47.959 1.00 1 ATOM 3395 N ARG 119 46.661 13.221 47.713 1.00 1 ATOM 3396 CA ARG 119 46.976 13.564 46.329 1.00 1 ATOM 3397 CB ARG 119 45.961 15.941 45.837 1.00 1											В
50 ATOM 3377 CD GLU 116 39.091 13.216 54.722 1.00 1 ATOM 3378 OE1 GLU 116 40.124 13.850 54.464 1.00 1 ATOM 3379 OE2 GLU 116 38.323 13.586 55.626 1.00 ATOM 3380 C GLU 116 40.342 10.311 50.843 1.00 ATOM 3381 O GLU 116 40.070 10.587 49.695 1.00 ATOM 3382 N GLY 117 41.539 9.869 51.235 1.00 ATOM 3383 CA GLY 117 42.603 9.663 50.263 1.00 ATOM 3385 C GLU 117 43.531 10.842 50.294 1.00 ATOM 3385 O GLY 117 43.531 10.842 50.294 1.00 ATOM 3385 O GLY 117 43.531 10.842 50.294 1.00 ATOM 3385 CA GLU 118 44.568 10.822 49.466 1.00 ATOM 3387 CA GLU 118 45.562 11.897 49.412 1.00 ATOM 3388 CB GLU 118 45.562 11.897 49.412 1.00 ATOM 3389 CG GLU 118 46.652 10.690 51.389 1.00 ATOM 3390 CD GLU 118 47.933 10.200 52.062 1.00 ATOM 3391 OE1 GLU 118 48.831 9.748 51.317 1.00 1 ATOM 3393 C GLU 118 47.933 10.200 52.062 1.00 ATOM 3393 C GLU 118 48.831 9.748 51.317 1.00 1 ATOM 3393 C GLU 118 45.561 13.221 47.713 1.00 ATOM 3395 N ARG 119 46.661 13.221 47.713 1.00 ATOM 3395 N ARG 119 46.676 13.564 46.329 1.00 ATOM 3396 CA ARG 119 46.976 13.564 46.329 1.00 ATOM 3397 CB ARG 119 46.976 13.564 46.329 1.00 1 ATOM 3398 CG ARG 119 47.717 15.067 46.131 1.00 1 ATOM 3398 CG ARG 119 47.717 15.067 46.131 1.00 1 ATOM 3398 CG ARG 119 47.717 15.067 46.461 1.00 1 ATOM 3398 CG ARG 119 47.717 15.067 46.462 1.00 1 ATOM 3398 CG ARG 119 47.717 15.067 46.461 1.00 1 ATOM 3398 CG ARG 119 47.717 15.067 46.461 1.00 1 ATOM 3398 CG ARG 119 47.717 15.067 46.461 1.00 1 ATOM 3399 CD ARG 119 44.705 15.414 45.837 1.00 1											В
50 ATOM 3378 OEI GLU 116 40.124 13.850 54.464 1.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>В</td></t<>											В
ATOM 3379 OE2 GLU 116 38.323 13.586 55.626 1.00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50										В
ATOM 3381 O GLU 116 40.070 10.587 49.695 1.00 ATOM 3382 N GLY 117 42.603 9.869 51.235 1.00 ATOM 3383 CA GLY 117 42.603 9.869 51.235 1.00 ATOM 3384 C GLY 117 43.531 10.842 50.294 1.00 ATOM 3385 O GLY 117 43.531 10.842 50.294 1.00 ATOM 3386 N GLU 118 44.568 10.822 49.466 1.00 ATOM 3387 CA GLU 118 44.568 10.822 49.466 1.00 ATOM 3388 CB GLU 118 45.562 11.897 49.412 1.00 ATOM 3388 CB GLU 118 46.879 11.427 50.051 1.00 ATOM 3389 CG GLU 118 46.652 10.690 51.389 1.00 ATOM 3390 CD GLU 118 47.933 10.200 52.062 1.00 ATOM 3391 0E1 GLU 118 48.881 9.748 51.317 1.00 ATOM 3392 0E2 GLU 118 48.881 9.748 51.317 1.00 ATOM 3393 C GLU 118 48.831 9.748 51.317 1.00 ATOM 3393 C GLU 118 48.831 9.748 51.317 1.00 ATOM 3393 C GLU 118 45.813 12.253 47.959 1.00 ATOM 3394 O GLU 118 45.813 12.253 47.959 1.00 ATOM 3395 N ARG 119 46.661 13.564 46.329 1.00 ATOM 3396 CA ARG 119 46.676 13.564 46.329 1.00 1 ATOM 3397 CB ARG 119 46.976 13.564 46.329 1.00 1 ATOM 3397 CB ARG 119 47.711 15.067 46.131 1.00 1 ATOM 3398 CG ARG 119 47.711 15.067 46.131 1.00 1 ATOM 3399 CD ARG 119 45.961 15.941 46.462 1.00 1 ATOM 3399 CD ARG 119 44.705 15.414 45.837 1.00 1										1.00 1.00	В
55 ATOM 3382 N GLY 117 41.539 9.869 51.235 1.00 ATOM 3383 CA GLY 117 42.603 9.663 50.263 1.00 ATOM 3386 N GLU 118 44.568 10.822 49.466 1.00 ATOM 3386 N GLU 118 44.568 10.822 49.466 1.00 ATOM 3387 CA GLU 118 45.562 11.897 49.412 1.00 ATOM 3388 CB GLU 118 46.679 11.427 50.051 1.00 ATOM 3389 CG GLU 118 46.652 10.690 51.389 1.00 ATOM 3390 CD GLU 118 47.933 10.200 52.062 1.00 ATOM 3391 0E1 GLU 118 48.831 9.748 51.317 1.00 1 ATOM 3392 0E2 GLU 118 48.831 9.748 51.317 1.00 1 ATOM 3393 C GLU 118 45.813 12.253 47.959 1.00 ATOM 3394 O GLU 118 45.813 12.253 47.959 1.00 ATOM 3395 N ARG 119 46.681 13.221 47.713 1.00 ATOM 3396 CA ARG 119 46.681 13.221 47.713 1.00 ATOM 3397 CB ARG 119 46.681 13.564 46.329 1.00 ATOM 3397 CB ARG 119 47.171 15.067 46.131 1.00 1 ATOM 3398 CG ARG 119 47.171 15.067 46.131 1.00 1 ATOM 3398 CG ARG 119 47.171 15.067 46.131 1.00 1 ATOM 3398 CG ARG 119 47.171 15.067 46.131 1.00 1 ATOM 3398 CG ARG 119 47.171 15.067 46.131 1.00 1 ATOM 3398 CG ARG 119 47.171 15.067 46.131 1.00 1 ATOM 3398 CG ARG 119 47.171 15.067 46.131 1.00 1 ATOM 3399 CD ARG 119 44.705 15.414 45.837 1.00 1		MOTA	3380	С	GLU	116	40.342	10.311	50.843		В
55 ATOM 3383 CA GLY 117 42.603 9.663 50.263 1.00 ATOM 3384 C GLY 117 43.531 10.842 50.294 1.00 ATOM 3385 O GLY 117 43.531 10.842 50.294 1.00 ATOM 3386 N GLU 118 44.568 10.822 49.466 1.00 ATOM 3387 CA GLU 118 45.562 11.897 49.412 1.00 ATOM 3388 CB GLU 118 46.879 11.427 50.051 1.00 ATOM 3389 CG GLU 118 46.879 11.427 50.051 1.00 ATOM 3390 CD GLU 118 46.652 10.690 51.389 1.00 ATOM 3391 OE1 GLU 118 48.831 9.748 51.317 1.00 1 ATOM 3392 OE2 GLU 118 48.831 9.748 51.317 1.00 1 ATOM 3393 C GLU 118 48.030 10.259 53.317 1.00 1 ATOM 3393 C GLU 118 45.813 12.253 47.959 1.00 ATOM 3394 O GLU 118 45.813 12.253 47.959 1.00 ATOM 3395 N ARG 119 46.681 13.221 47.713 1.00 ATOM 3396 CA ARG 119 46.681 13.221 47.713 1.00 ATOM 3397 CB ARG 119 46.976 13.564 46.329 1.00 1 ATOM 3398 CG ARG 119 47.171 15.067 46.462 1.00 1 ATOM 3398 CG ARG 119 47.717 15.067 46.462 1.00 1 ATOM 3399 CD ARG 119 45.961 15.941 46.462 1.00 1 ATOM 3399 CD ARG 119 45.961 15.941 46.462 1.00 1		MOTA	3381	0		116					В
ATOM 3384 C GLY 117 43.531 10.842 50.294 1.00 ATOM 3385 O GLY 117 43.293 11.739 51.033 1.00 ATOM 3386 N GLU 118 44.568 10.822 49.466 1.00 ATOM 3387 CA GLU 118 45.562 11.897 49.412 1.00 ATOM 3388 CB GLU 118 45.562 11.897 49.412 1.00 ATOM 3389 CG GLU 118 46.879 11.427 50.051 1.00 ATOM 3390 CD GLU 118 46.652 10.690 51.389 1.00 ATOM 3391 OE1 GLU 118 47.933 10.200 52.062 1.00 ATOM 3391 OE1 GLU 118 48.831 9.748 51.317 1.00 1 ATOM 3392 OE2 GLU 118 48.831 9.748 51.317 1.00 1 ATOM 3393 C GLU 118 48.831 10.259 53.317 1.00 ATOM 3394 O GLU 118 45.813 12.253 47.959 1.00 ATOM 3395 N ARG 119 46.681 13.221 47.713 1.00 ATOM 3396 CA ARG 119 46.681 13.221 47.713 1.00 ATOM 3397 CB ARG 119 46.976 13.564 46.329 1.00 1 ATOM 3398 CG ARG 119 47.171 15.067 46.462 1.00 1 ATOM 3398 CG ARG 119 47.715 15.067 46.462 1.00 1 ATOM 3398 CG ARG 119 47.705 15.414 45.837 1.00 1											В
ATOM 3385 O GLY 117 43.293 11.739 51.033 1.00 1 ATOM 3386 N GLU 118 44.568 10.822 49.466 1.00 ATOM 3387 CA GLU 118 45.562 11.897 49.412 1.00 ATOM 3388 CB GLU 118 46.879 11.427 50.051 1.00 ATOM 3389 CG GLU 118 46.652 10.690 51.389 1.00 ATOM 3390 CD GLU 118 47.933 10.200 52.062 1.00 ATOM 3391 0E1 GLU 118 47.933 10.200 52.062 1.00 ATOM 3391 0E1 GLU 118 48.831 9.748 51.317 1.00 1 ATOM 3392 0E2 GLU 118 48.831 9.748 51.317 1.00 1 ATOM 3393 C GLU 118 45.813 12.253 47.959 1.00 ATOM 3394 O GLU 118 45.813 12.253 47.959 1.00 ATOM 3395 N ARG 119 46.661 13.221 47.713 1.00 ATOM 3395 N ARG 119 46.681 13.221 47.713 1.00 ATOM 3397 CB ARG 119 46.976 13.564 46.329 1.00 1 ATOM 3397 CB ARG 119 47.171 15.067 46.131 1.00 1 ATOM 3398 CG ARG 119 47.171 15.067 46.131 1.00 1 ATOM 3398 CG ARG 119 47.961 15.941 46.462 1.00 1 ATOM 3399 CD ARG 119 44.705 15.414 45.837 1.00 1	22										В
ATOM 3386 N GLU 118 44.568 10.822 49.466 1.00 ATOM 3387 CA GLU 118 45.562 11.897 49.412 1.00 ATOM 3388 CB GLU 118 46.879 11.427 50.051 1.00 ATOM 3390 CD GLU 118 46.652 10.690 51.389 1.00 ATOM 3391 OEI GLU 118 47.933 10.200 52.062 1.00 ATOM 3391 OEI GLU 118 47.933 10.200 52.062 1.00 ATOM 3392 OE2 GLU 118 48.831 9.748 51.317 1.00 1 ATOM 3393 C GLU 118 48.030 10.259 53.317 1.00 ATOM 3393 C GLU 118 45.813 12.253 47.959 1.00 ATOM 3394 O GLU 118 45.813 12.253 47.959 1.00 ATOM 3395 N ARG 119 46.681 13.221 47.713 1.00 ATOM 3396 CA ARG 119 46.681 13.221 47.713 1.00 ATOM 3397 CB ARG 119 46.976 13.564 46.329 1.00 1 ATOM 3398 CG ARG 119 47.171 15.067 46.131 1.00 1 ATOM 3398 CG ARG 119 47.171 15.067 46.131 1.00 1 ATOM 3399 CD ARG 119 44.705 15.414 45.837 1.00 1											В
60 ATOM 3387 CA GLU 118 45.562 11.897 49.412 1.00 ATOM 3388 CB GLU 118 46.879 11.427 50.051 1.00 ATOM 3389 CG GLU 118 46.652 10.690 51.389 1.00 ATOM 3390 CD GLU 118 47.933 10.200 52.062 1.00 ATOM 3391 0E1 GLU 118 48.831 9.748 51.317 1.00 1 ATOM 3392 0E2 GLU 118 48.030 10.259 53.317 1.00 1 ATOM 3393 C GLU 118 48.030 10.259 53.317 1.00 ATOM 3394 0 GLU 118 45.813 12.253 47.959 1.00 ATOM 3395 N ARG 119 46.681 13.221 47.713 1.00 ATOM 3396 CA ARG 119 46.681 13.221 47.713 1.00 ATOM 3397 CB ARG 119 46.976 13.564 46.329 1.00 1 ATOM 3398 CG ARG 119 47.171 15.067 46.462 1.00 1 ATOM 3399 CD ARG 119 44.705 15.414 45.837 1.00 1											B B
60 ATOM 3388 CB GLU 118 46.879 11.427 50.051 1.00 ATOM 3389 CG GLU 118 46.652 10.690 51.389 1.00 ATOM 3390 CD GLU 118 47.933 10.200 52.062 1.00 ATOM 3391 0E1 GLU 118 48.831 9.748 51.317 1.00 1 ATOM 3392 0E2 GLU 118 48.831 9.748 51.317 1.00 1 ATOM 3393 C GLU 118 48.831 10.259 53.317 1.00 ATOM 3394 0 GLU 118 45.813 12.253 47.959 1.00 ATOM 3395 N ARG 119 45.861 13.221 47.713 1.00 ATOM 3396 CA ARG 119 46.681 13.221 47.713 1.00 ATOM 3397 CB ARG 119 46.976 13.564 46.329 1.00 1 ATOM 3398 CG ARG 119 47.717 15.067 46.462 1.00 1 ATOM 3398 CG ARG 119 47.961 15.941 46.462 1.00 1 ATOM 3399 CD ARG 119 44.705 15.414 45.837 1.00 1											В
ATOM 3389 CG GLU 118 46.652 10.690 51.389 1.00 ATOM 3391 OE1 GLU 118 47.933 10.200 52.062 1.00 ATOM 3391 OE1 GLU 118 48.831 9.748 51.317 1.00 1 ATOM 3392 OE2 GLU 118 48.030 10.259 53.317 1.00 1 ATOM 3393 C GLU 118 45.813 12.253 47.959 1.00 ATOM 3394 O GLU 118 45.813 12.253 47.959 1.00 ATOM 3395 N ARG 119 46.661 13.221 47.713 1.00 ATOM 3396 CA ARG 119 46.661 13.221 47.713 1.00 ATOM 3397 CB ARG 119 47.771 15.067 46.329 1.00 1 ATOM 3398 CG ARG 119 47.771 15.067 46.462 1.00 1 ATOM 3399 CD ARG 119 44.705 15.414 45.837 1.00 1	60										В
ATOM 3390 CD GLU 118 47.933 10.200 52.062 1.00 ATOM 3391 0E1 GLU 118 48.831 9.748 51.317 1.00 1 ATOM 3392 0E2 GLU 118 48.030 10.259 53.317 1.00 ATOM 3393 C GLU 118 45.813 12.253 47.959 1.00 ATOM 3394 0 GLU 118 45.209 11.670 47.063 1.00 ATOM 3395 N ARG 119 46.681 13.221 47.713 1.00 ATOM 3396 CA ARG 119 46.681 13.221 47.713 1.00 ATOM 3397 CB ARG 119 47.171 15.067 46.131 1.00 1 ATOM 3398 CG ARG 119 47.171 15.067 46.131 1.00 1 ATOM 3399 CD ARG 119 44.705 15.414 45.837 1.00 1	00										В
65 ATOM 3391 OE1 GLU 118 48.831 9.748 51.317 1.00 1 ATOM 3392 OE2 GLU 118 48.030 10.259 53.317 1.00 1 ATOM 3393 C GLU 118 45.813 12.253 47.959 1.00 ATOM 3394 O GLU 118 45.813 12.253 47.959 1.00 ATOM 3395 N ARG 119 46.681 13.221 47.713 1.00 ATOM 3396 CA ARG 119 46.681 13.221 47.713 1.00 1 ATOM 3397 CB ARG 119 47.171 15.067 46.131 1.00 1 ATOM 3398 CG ARG 119 47.171 15.067 46.131 1.00 1 ATOM 3399 CD ARG 119 44.705 15.414 45.837 1.00 1											В
65 ATOM 3392 OE2 GLU 118 48.030 10.259 53.317 1.00 ATOM 3393 C GLU 118 45.813 12.253 47.959 1.00 ATOM 3394 O GLU 118 45.209 11.670 47.063 1.00 ATOM 3395 N ARG 119 46.681 13.221 47.713 1.00 ATOM 3396 CA ARG 119 46.976 13.564 46.329 1.00 1 ATOM 3397 CB ARG 119 47.171 15.067 46.131 1.00 1 ATOM 3398 CG ARG 119 47.171 15.067 46.462 1.00 1 ATOM 3399 CD ARG 119 44.705 15.414 45.837 1.00 1										1.00 11.82	В
65 ATOM 3393 C GLU 118 45.813 12.253 47.959 1.00 ATOM 3394 O GLU 118 45.209 11.670 47.063 1.00 ATOM 3395 N ARG 119 46.681 13.221 47.713 1.00 ATOM 3396 CA ARG 119 46.976 13.564 46.329 1.00 1 ATOM 3397 CB ARG 119 47.171 15.067 46.131 1.00 1 ATOM 3398 CG ARG 119 45.961 15.941 46.462 1.00 1 ATOM 3399 CD ARG 119 44.705 15.414 45.837 1.00 1											В
ATOM 3394 O GLU 118 45.209 11.670 47.063 1.00 ATOM 3395 N ARG 119 46.681 13.221 47.713 1.00 1 ATOM 3396 CA ARG 119 46.976 13.564 46.329 1.00 1 ATOM 3397 CB ARG 119 47.171 15.067 46.131 1.00 1 ATOM 3398 CG ARG 119 45.961 15.941 46.462 1.00 1 ATOM 3399 CD ARG 119 44.705 15.414 45.837 1.00 1	65										В
70 ATOM 3399 CD ARG 119 46.681 13.221 47.713 1.00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										1.00 4.23	В
70 ATOM 3397 CB ARG 119 47.171 15.067 46.131 1.00 1 ATOM 3398 CG ARG 119 45.961 15.941 46.462 1.00 1 ATOM 3399 CD ARG 119 44.705 15.414 45.837 1.00 1							46.681	13.221	47.713		В
70 ATOM 3398 CG ARG 119 45.961 15.941 46.462 1.00 1 ATOM 3399 CD ARG 119 44.705 15.414 45.837 1.00 1										1.00 10.62	В
ATOM 3399 CD ARG 119 44.705 15.414 45.837 1.00 1	70									1.00 10.38	В
	70									1.00 13.02	В
3004 3400 tm 300 310 44 030 16 003 44 400 1 00 1										1.00 13.25	В
										1.00 13.98 1.00 11.43	B B
ATOM 3401 CZ ARG 119 · 44.759 15.955 43.411 1.00 1		ATOM	3401	CZ.	AKG	119	44./39	10.700	43.411	1.00 11.43	

	MOTA	3402	NH1	ARG	119	44.543	17.247	43.614	1.00 9.13	В
	ATOM	3403		ARG	119	44.890	15.498	42.175	1.00 10.86	в.
	MOTA	3404	c	ARG	119	48.274	12.907	45.912	1.00 12.67	В
	MOTA	3405	ò	ARG	119	49.210	12.823	46.712	1.00 12.43	В
. 5	MOTA	3406	N	SER	120	48.328	12.416	44.675	1.00 15.44	В
٠. ح					120	49.563	11.812	44.182	1.00 17.48	B
	MOTA	3407	CA	SER			11.272	42.755	1.00 18.24	В
	MOTA	3408	CB	SER	120	49.392	10.090	42.735	1.00 19.78	В
	MOTA	3409	OG	SER	120	48.605				В
10	MOTA	3410	С	SER	120	50.519	12.978	44.185	1.00 18.56	
10	MOTA	3411	0	SER	120	50.161	14.050	43.772	1.00 20.75	В
	MOTA	3412	N	PRO	121	51.748	12.782	44.660	1.00 20.06	В
	MOTA	3413	CD	PRO	121	52.403	11.508	45.013	1.00 20.52	В
	MOTA	3414	CA	PRO	121	52.700	13.896	44.686	1.00 20.89	В
	MOTA	3415	CB	PRO	121	53.912	13.275	45.385	1.00 21.27	В
15	MOTA	3416	CG	PRO	121	53.881	11.834	44.872	1.00 21.35	В
	MOTA	3417	С	PRO	121 .	53.028	14.538	43.332	1.00 21.75	В
	ATOM	3418	Ō	PRO	121	52.835	13.918	42.270	1.00 21.17	В
	MOTA	3419	N	ASN	122	53.514	15.785	43.393	1.00 21.50	В
	MOTA	3420	CA	ASN	122	53.957	16.561	42.227	1.00 22.52	В
20	MOTA	3421	СВ	ASN	122	55.199	15.865	41.632	1.00 24.29	В
	MOTA	3422	CG	ASN	122	. 56.137	16.828	40.956	1.00 26.30	В
	MOTA	3423		ASN	122	56.538	17.815	41.553	1.00 28.88	В
	MOTA	3424		ASN	122	56.488	16.552	39.705	1.00 26.63	В
				ASN	122	52.917	16.852	41.126	1.00 22.37	B
25	MOTA	3425	C			53.271	16.962	39.930	1.00 20.20	В
45	MOTA	3426	0	ASN	122	51.651	16.999	41.518	1.00 22.38	. В
	ATOM	3427	N	GLU	123		17.294	40.561	1.00 22.86	. B
	MOTA	3428		GLU	123	50.573	18.735	40.072	1.00 21.58	В
	MOTA	3429	CB	GLU	123	50.664	19.754	41.110	1.00 21.60	В
30	MOTA	3430	CG	GLU	123	50.338	21.112	40.506	1.00 23.71	В
30	MOTA	3431	CD	GLU	123	50.218			1.00 24.05	В
	MOTA	3432		GLU	123	51.124	21.512	39.736		В
	MOTA	3433		GLU	123	49.220	21.789	40.808	1.00 24.70 1.00 23.43	В
	MOTA	3434	C	GLU	123	50.573	16.401	39.319		
25	MOTA	3435	0	GLU	123	50.357	16.856	38.189	1.00 22.15	В
35	MOTA	3436	N	GLU	124	50.809	15.116	39.538	1.00 25.66	В
	MOTA	3437	CA	GLU	124	50.840	14.186	38.435	1.00 27.17	В
	MOTA	3438	CB	GLU	124	51.320	12.816	38.905	1.00 28.99	В
	MOTA	3439	CG	GLU	124	51.698	11.884	37.763		В
40	MOTA	3440	CD	GLU	124	52.179	10.531	38.247	1.00 36.81	В
40	MOTA	3441		GLU	124	52.681	10.475	39.395	1.00 37.60	В
	MOTA	3442		GLU	124	52.061	9.543	37.476	1.00 36.71	В
	MOTA	3443	C	GLU	124	49.466	14.045	37.791	1.00 26.54	В
	MOTA	3444	0	GLU	124	49.351	13.966	36.571	1.00 28.04	В
40	MOTA	3445	N	TYR	125	48.425	14.023	38.616	1.00 24.51	В
45	MOTA	3446	CA	TYR	125	47.065	13.864	38.117	1.00 22.37	В
	MOTA	3447	CB		. 125	46.424	12.570	38.618	1.00 24.02	В
	MOTA	3448	CG	TYR	125	47.232	11.305	38.445	1.00 24.34	В
	MOTA	3449		TYR	125	48.215	10.951	39.372	1.00 24.16	В
5 0	MOTA	3450		TYR	125	48.938	9.770	39.238	1.00 24.97	В
50	MOTA	3451	CD2	TYR	125	46.994	10.440	37.368	1.00 23.29	В
	MOTA	3452	CE2		125	47.715	9.257	37.224	1.00 23.28	В
	MOTA	3453	CZ	TYR	125	48.685	8.927	38.165	1.00 25.16	В
	MOTA	3454	ОН	TYR	125	49.395	7.750	38.059	1.00 24.88	В
	MOTA	3455	С	TYR	125	46.089	14.936	38.586	1.00 22.58	В
55	MOTA	3456	0	TYR	125	46.366	15.703	39.516	1.00 24.23	В
	ATOM	3457	N	THR	126	44.941	14.984	37.920	1.00 21.47	В
	MOTA	3458	CA	THR	126	43.889	15.919	38.280	1.00 20.00	В
	MOTA	3459	CB	THR	126	42.913	16.147	37.140	1.00 20.72	В
	ATOM	3460	OG1	THR	126	42.379	14.888	36.723	1.00 21.10	. В
60	ATOM	3461	CG2	THR	126	43.598	16.837	35.984	1.00 20.85	В
	MOTA	3462	C	THR	126	43.158	15.142	39.353	1.00 17.64	В
	MOTA	3463	Ō	THR	126	43.223	13.940	39.359	1.00 16.55	В
	MOTA	3464	N	TRP	127	42.441	15.820	40.241	1.00 16.83	В
	ATOM	3465	CA	TRP	127	41.749	15.118	41.332	1.00 15.87	. в
65	MOTA	3466	CB	TRP	127	40.927	16.080	42.213	1.00 14.78	В
55	MOTA	3467	CG	TRP	127	39.645	16.561	41.596	1.00 12.27	В
	MOTA	3468		TRP	127	38.379	15.935	41.708	1.00 9.16	B
	MOTA	3469		TRP	127	37.467	16.702	40.951	1.00 9.12	В
	MOTA	3470		TRP	127	37.925	14.802	42.375	1.00 7.09	В
70	MOTA	3471		TRP	127	39.462	17.662	40.795	1.00 11.95	В
, 5	ATOM	3472		TRP	127	38.150	17.749	40.405	1.00 11.09	В
	MOTA	3472		TRP	127	36.142	16.366	40.845	1.00 8.67	В
				TRP	127	36.606	14.472	42.271	1.00 7.96	В
	MOTA	3474	L 23	IRP	141	20.000	44.414		1.00 7.70	

	MOTA	3475	CHS	TRP	127	35.724	15.251	41.511	1.00 9.12	В
				TRP	127	40.824	13.969	40.917	1.00 15.77	В
	MOTA	3476	C						1.00 16.78	В
	MOTA	3477	0	TRP	127	40.807	12.907	41.536		
_	MOTA	3478	N	GLU	128	40.065	14.145	39.855	1.00 16.83	В
5	MOTA	3479	CA	GLU	128	39.168	13.073	39.465	1.00 16.42	В
	MOTA	3480	CB	GLU	128	38.092	13.631	38.537	1.00 15.75	В
	ATOM '	3481	ÇG	GLU	128	38.578	14.230	37.234	1.00 14.47	В
	MOTA	3482	CD	GLU	128	37.432	14.890	36.478	1.00 17.33	В
	MOTA	3483		GLU	128	36.986	15.975	36.897	1.00 18.91	В
10						36.954	14.324	35.477	1.00 17.86	В
10	MOTA	3484		GLU	128					В
	MOTA	3485	C	GLU	128	39.828	11.828	38.847	1.00 17.44	
	MOTA	3486	0	GLU	128	39.142	10.851	38.564	1.00 17.96	В
	MOTA	3487	N	GLU	129	41.147	11.846	38.653	1.00 18.02	В
_	MOTA	3488	CA	GLU	129	41.836	10.692	38.078	1.00 19.12	B
- 15	MOTA	3489	CB	GLU	129	42.509	11.020	36.740	1.00 20.74	В
	ATOM	3490	CG	GLU	129	41.574	11.402	35.595	1.00 26.16	В
	ATOM	3491	CD	GLU	129	42.324	11.739	34.299	1.00 30.95	В
	MOTA	3492		GLU	129	41.711	12.357	33.393	1.00 32.49	В
								34.178	1.00 32.69	В
20	MOTA	3493		GLU	129	43.521	11.385			В
20	MOTA	3494	Ç	GLU	129	42.945	10.219	38.990	1.00 18.40	
	MOTA	3495	0	GLU	129	43.677	9.331	38.637	1.00 18.01	В
	MOTA	3496	N	ASP	130	43.051	10.816	40.173	1.00 17.65	В.
	MOTA	3497	CA	ASP	130	44.115	10.465	41.113	1.00 17.80	В
	MOTA	3498	CB	ASP	130	44.200	11.536	42.211	1.00 17.64	·B
25	ATOM	3499	CG	ASP	130	45.540	11.556	42.908	1.00 19.83	В
	MOTA	3500		ASP	130	46.026	10.466	43.291	1.00 20.74	В
						46.097	12.661	43.070	1.00 20.64	В
	MOTA	3501		ASP	130					В
	ATOM	3502	С	ASP	130	43.843	9.091	41.704	1.00 17.66	
20	MOTA	3503	0	ASP	130	42.792	8.867	42.302	1.00 18.25	В
30	MOTA	3504	N	PRO	131	44.778	8.141	41.521	1.00 17.22	В
	MOTA	3505	CD	PRO	131	46.046	8.282	40.780	1.00 17.06	В
	MOTA	3506	CA	PRO	131	44.617	6.778	42.052	1.00 16.05	В
	MOTA	3507	CB	PRO	131	45.716	5.994	41.316	1.00 14.70	В
	ATOM	3508	CG	PRO	131	46.802	7.019	41.154	1.00 17.48	В
35	MOTA	3509	c	PRO	131	44.668	6.713	43.589	1.00 15.30	В
23							5.697	44.187	1.00 14.37	В
	ATOM	3510	0	PRO	131	44.318				
	MOTA	3511	N	LEU	132	45.114	7.797	44.226	1.00 15.18	В
	MOTA	3512	CA	LEU	132		7.841	45.683	1.00 13.57	В
	MOTA	3513	CB	LEU	132	46.380	8.644	46.165	1.00 12.21	В
40	MOTA	3514	CG	LEU	132	47.741	8.012	45.842	1.00 12.83	В
	MOTA	3515	CD1	LEU	132	48.850	8.803	46.511	1.00 7.88	В
	MOTA	3516		LEU	132	47.773	6.553	46.317	1.00 13.99	В
	MOTA	3517	c	LEU	132	43.882	8.393	46.295	1.00 14.28	В
	MOTA	3518	ŏ	LEU	132	43.737	8.410	47.526	1.00 13.98	В
45								45.443	1.00 13.83	В
40	ATOM	3519	N	ALA	133	42.947	8.832			
	MOTA	3520	CA	ALA	133	41.651	.9.342	45.909	1.00 12.82	В
	MOTA	3521	CB	ALA	133	40.796	9.805	44.733	1.00 12.54	В
	MOTA	3522	С	ALA	133	40.875	8.291	46.717	1.00 13.00	В
	MOTA	3523	0	ALA	133	40.840	7.092	46.371	1.00 14.00	В
50	MOTA	3524	N	GLY	134	40.226	8.760	47.780	1.00 13.17	В
	MOTA	3525	CA	GLY	134	39.470	7.884	48.653	1.00 10.45	В
	ATOM	3526	C	GLY	134	37.996	7.819	48.324	1.00 9.48	. В
	MOTA	3527	ō	GLY	134	37.546	8.422	47.385	1.00 8.50	В
	ATOM			ILE	135	37.254	7.094	49.158	1.00 10.67	В
55		3528	N							В
23	MOTA	3529	CA	ILE	135	35.820	6.874	48.981	1.00 9.46	
	MOTA	3530	СB	ILE	135	35.237	6.087	50.180	1.00 9.70	В
	MOTA	3531	CG2	? ILE	135	33.709	5.990	50.079	1.00 10.21	B
	MOTA	3532	CG1	ILE	135	35.837	4.686	50.214	1.00 8.19	В
	ATOM	3533	CDI	ILE	135	35,426	3.864	51.452	1.00 8.61	В
60	MOTA	3534	Ċ	ILE	135	34.968	8.115	48.739	1.00 9.92	В
00		3535	ŏ		135	34.135	8.150	47.812	1.00 7.51	В
	MOTA			ILE					1.00 9.63	В
	MOTA	3536	N	ILE	136	35.157	9.136	49.560		
	MOTA	3537	CA	ILE	136	34.379	10.340	49.371	1.00 8.14	В
	MOTA	3538	CB	ILE	136	34.671	11.371	50.500	1.00 6.28	B
65	MOTA	3539	CG2	ILE	136	33.997	12.691	50.166	1.00 6.74	В
	ATOM	3540		ILE	136	34.125	10.825	51.831	1.00 5.22	В
	ATOM	3541		ILE	136	34.553	11.574	53.070	1.00 1.00	В
	MOTA	3542	c c	TLE	136	34.538	10.992	47.978	1.00 9.33	В
							11.242	47.274	1.00 10.23	В
70	MOTA	3543	0	ILE	136	33.569				В
70	MOTA	3544	N	PRO	137	35.767	11.252	47.552	1.00 7.86	
	MOTA	3545	CD	PRO	137	37.096	11.215	48.163	1.00 7.00	B
	MOTA	3546	CA	PRO	137	35.816	11.874	46.234	1.00 7.00	В
	MOTA	3547	CB	PRO	137	37.243	12.398	46.174	1.00 5.68	В

	MOTA	3548	CG	PRO	137	37.968	11.448	46.976	1.00 7.36	В .
	MOTA	3549	C	PRO	137	35.370	10.967	45.098	1.00 7.27	
	MOTA	3550	0	PRO	137	34.857	11.434	44.120 45.233	1.00 9.92 1.00 7.38	B B
5	MOTA MOTA	3551 3552	N CA	ARG ARG	138 138	35.547 . 35.132	9.661 8.765	44.157	1.00 4.69	В
,	MOTA	3553	CB	ARG	138	35.761	7.375	44.314	1.00 5.18	В
	MOTA	3554	CG	ARG	138	37.257	7.373	44.145	1.00 4.97	В
	MOTA	3555	CD	ARG	138	37.858	6.057	44.522	1.00 8.61	В
	MOTA	3556	NE	ARG	138	39.307	6.094	44.387	1.00 9.73	В
10	MOTA	3557	CZ	ARG	138	39.954	5.973	43.235	1.00 12.02	В
	MOTA	3558		ARG	138	39.279	5.799	42.102	1.00 12.04	B B
	MOTA	3559		ARG	138	41.280 33.623	6.028 8.667	43.216 44.131	1.00 13.69 1.00 4.18	В
	MOTA MOTA	3560 3561	0	ARG ARG	138 138	33.023	8.611	43.094	1.00 7.46	В
15	MOTA	3562	N	THR	139	33.013	8.666	45.295	1.00 3.72	В
	MOTA	3563	CA	THR	139	31.578	8.581	45.339	1.00 3.48	В
	MOTA	3564	CB	THR	139	31.103	8.436	46.792	1.00 2.17	В
•	MOTA	3565		THR	139	31.647	7.220	47.321	1.00 4.08	В
20	MOTA	3566		THR	139	29:586	8.366	46.872	1.00 1.00	В
20	MOTA	3567	c	THR	139	30.956	9.798 9.666	44.677 43.727	1.00 4.20 1.00 5.38	B B
	MOTA MOTA	3568 3569	O N	THR LEU	139 140	30.178 31.313	10.983	45.148	1.00 4.85	В
	MOTA	3570	CA	LEU	140	30.740	12.187	44.582	1.00 5.86	В
	MOTA	3571	CB	LEU	140	31.374	13.423	45.207	1.00 4.02	В
25	ATOM	3572	CG	LEU	140	30.995	13.484	46.692	1.00 4.42	В
	MOTA	3573	CD1	LEU	140	31.695	14.631	47.363	1.00 6.86	В
	MOTA	3574		LEU	140	29.511	13.617	46.827	1.00 2.19	В
	MOTA	3575	C	LEU	140	30.902	12.211	43.091 42.378	1.00 8.32 1.00 10.70	B B
30	MOTA MOTA	3576 3577	о и	LEU HIS	140 141	29.958 32.085	12.523 11.853	42.611	1.00 9.41	В
50	ATOM	3578	CA	HIS	141	32.315	11.876	41.180	1.00 11.42	B
	MOTA	3579	CB	HIS	141	33.753	11.465	40.836	1.00 12.95	В
	MOTA	3580	CG	HIS	141	34.064	11.523	39.364	1.00 15.31	В
~=	MOTA	3581	CD2	HIS	141	34.074	10.555	38.413	1.00 14.59	В
35	MOTA	3582		HIS	141	34.404	12.693	38.713	1.00 17.05	₿.
	MOTA	3583		HIS	141	34.612	12.445	37.432	1.00 15.66	B B
	MOTA	3584	NE2 C	HIS	141 141	34.418 31.362	11.154 10.910	37.225 40.495	1.00 15.55 1.00 11.46	В
	MOTA MOTA	3585 3586	0	HIS	141	30.727	11.239	39.499	1.00 12.67	В
40	MOTA	3587	N	GLN	142	31.251	9.714	41.054	1.00 12.56	В
	ATOM	3588	CA	GLN	142	30.405	8.694	40.464	1.00 12.86	В
	MOTA	3589	CB	GLN	142	30.707	7.336	41.103	1.00 14.29	В
	MOTA	3590	CG	GLN	142	32.000	6.739	40.590	1.00 18.45	В
45	MOTA	3591	CD	GLN	142	32.012	6.628	39.068	1.00 21.75	B B
40	MOTA MOTA	3592 3593		GLN	142 142	31.349 32.743	5.751 7.535	38.489 38.408	1.00 23.11 1.00 20.86	В
	MOTA	3594	C	GLN	142	28.915	8.984	40.473	1.00 12.11	В
	ATOM	3595	ŏ	GLN	142	28.206	8.585	39.560	1.00 11.87	В
	ATOM	3596	N	ILE	143	2B.434	9.664	41.506	1.00 11.12	В
50	MOTA	3597	CA	ILE	143	27.018	10.010	41.573	1.00 12.39	В
	MOTA	3598	СВ	ILE	143	26.722	10.953	42.788	1.00 12.55	В
	ATOM	3599		ILE	143	25.341 26.784	11.608 10.147	42.650 44.093	1.00 12.75 1.00 13.10	B B
	MOTA MOTA	3600 3601		ILE	143 143	26.532	10.147	45.338	1.00 10.72	В
55	MOTA	3602	C	ILE	143	26.587	10.710	40.275	1.00 13.82	В
	ATOM	3603	ō	ILE	143	25.541	10.391	39.705	1.00 14.18	В
	MOTA	3604	N	PHE	144	27.397	11.666	39.816	1.00 14.48	В
	MOTA	3605	CA	PHE	144	27.099	12.430	38.605	1.00 15.02	В
40	MOTA	3606		PHE	144	28.023	13.646	38.513	1.00 14.03	В
60	MOTA	3607		PHE	144	27.773	14.676	39.585 39.510	1.00 12.67	B B
	MOTA	3608		PHE	144 144	26.680 28.623	15.527 14.796	40.678	1.00 10.36 1.00 13.84	В.
	MOTA MOTA	3609 3610		PHE PHE	144	26.442	16.473	40.498	1.00 9.69	В
	ATOM	3611		PHE	144	28.375	15.761	41.680	1.00 13.70	В
65	ATOM	3612		PHE	144	27.286	16.591	41.578		В
	MOTA	3613		PHE	144	27.223	11.586	37.348	1.00 16.57	В
	MOTA	3614	0	PHE	144	26.516	11.835	36.384	1.00 16.66	В
	MOTA	3615	N	GLU	145	28.123	10.593	37.364	1.00 20.10	В
70	MOTA	3616		GLU	145	28.335	9.691	36.210	1.00 22.03 1.00 26.12	B B
70	MOTA MOTA	3617 3618		GLU	145 145	29.597 30.902	8.825 9.538	36.352 36.044	1.00 26.12	В
	MOTA	3619		GLU	145	31.004	9.949	34.595	1.00 36.87	. в
	MOTA	3620		I GLU	145	31.965	10.666		1.00 39.57	В

	MOTA	3621	OE2	CLII	145	30.121	9.549	33.807	1.00 40.00	- в
							8.705	36.029	1.00 21.04	B
	MOTA	3622	C	GLU	145	27.194				
	MOTA	3623	0	GLU	145	26.750	8.470	34.943	1.00 20.94	В
_	MOTA	3624	N	LYS	146	26.728	8.129	37.127	1.00 22.01	В
5	MOTA	3625	CA	LYS	146	25.628	7.166	37.072	1.00 22.94	В
	MOTA	3626	СВ	LYS	146	25.489	6.433	38.423	1.00 24.69	В
	ATOM		CG	LYS	146 .	26.725	5.599	38.799	1.00 27.30	В
	ATOM			LYS	146	26.480	4.519	39.854	1.00 24.53	В
		3628	CD					39.715	1.00 25.61	В
10	ATOM	3629	CE	LYS	146	27.560	3.447			
10	ATOM	3630	NZ	LYS	146	27.404	2.262	40.595	1.00 24.71	В
	ATOM	3631	С	LYS	146	24.281	7.799	36.702	1.00 24.00	В
	MOTA	3632	0	LYS	146	23.472	7.178	36.020	1.00 24.07	В
	ATOM	3633	N	LEU	147	24.049	9.035	37.138	1.00 23.75	В
	ATOM	3634	CA	LEU	147	22.788	9.720	36.850	1.00 24.08	В
15						22.247	10.365	38.123	1.00 24.33	В
13	MOTA	3635	CB	LEU	147					В
	ATOM	3636	CG	LEU	147	21.976	9.460	39.325	1.00 24.88	
	ATOM	3637	CD1	LEU	147	21.607	10.299	40.537	1.00 24.59	В
	MOTA	3638	CD2	LEU	147	20.847	8.493	39.014	1.00 24.04	В
	MOTA	3639	С	LEU	147	22.895	10.796	35.762	1.00 25.02	В
20	ATOM	3640	0	LEU	147	22.110	11.755	35.736	1.00 22.56	В
	ATOM	3641	N	THR	148	23.857	10.627	34.857	1.00 27.04	В
			CA		148	24.073	11.585	33.774	1.00 28.40	В.
	MOTA	3642		THR						
	MOTA	3643	CB	THR	148	25.296	11.194	32.905	1.00 28.80	В
25	MOTA	3644		THR	148	25.479	12.150	31.850	1.00 29.27	.В
25	MOTA	3645	CG2	THR	148	25.108	9.794	32.318	1.00 30.26	В
	MOTA	3646	С	THR	148	22.855	11.738	32.865	1.00 28.70	В
	MOTA	3647	٥	THR	148	22.466	12.848	32.580	1.00 29.54	В
	ATOM	3648	N	ASP	149	22.253	10.638	32.413	1.00 27.95	В
	MOTA	3649	CA	ASP	149	21.087	10.749	31.533	1.00 28.50	В
30	ATOM	3650	СВ	ASP	149	21.500	11.014	30.067	1.00 28.76	В
50								29.522	1.00 29.99	В
	MOTA	3651	CG	ASP	149	22.520	10.010			
	MOTA	3652		ASP	149	22.501	8.830	29.939	1.00 29.75	В
	MOTA	3653	OD2	ASP	149	23.332	10.408	28.646	1.00 29.41	В
	MOTA	3654	С	ASP	149	20.148	9:551	31.576	1.00 28.84	В
35 ·	ATOM	-3655	0	ASP	149	19.636	9.096	30.555	1.00 27.84	В
	ATOM	3656	N	ASN	150	19.899	9.055	32.778	1.00 29.57	В
	ATOM	3657	CA	ASN	150	19.008	7.912	32.928	1.00 31.21	В
	ATOM	3658	CB	ASN	150	19.483	7.010	34.080	1.00 29.55	В
		3659	CG	ASN	150	19.259	7.641	35.459	1.00 28.21	В
40	MOTA									В
40	MOTA	3660		ASN	150	19.347	8.859	35.618	1.00 27.26	
	ATOM	3661	ND2		150	18.969	6.804	36.458	1.00 25.05	В
	ATOM	3662	С	ASN	150	17.550	8.345	33.175	1.00 31.80	В
	ATOM	3663	0	ASN	150	16.693	7.501	33.485	1.00 32.95	В
	MOTA	3664	N	GLY	151	17.279	9.648	33.043	1.00 30.56	В
45	MOTA	3665	CA	GLY	151	15.939	10.169	33.247	1.00 29.70	В
	MOTA	3666	C	GLY	151	15.601	10.387	34.701	1.00 29.38	B
		3667	ŏ	GLY	151	14.462	10.518	35.052	1.00 29.95	B
	MOTA									
	ATOM	3668	N	THR	152	16.616	10.412	35.549	1.00 29.90	В
50	MOTA	3669	CA	THR	152	16.386	10.634	36.964	1.00 30.17	В
50	MOTA	3670	CB	THR	152	17.082	9.552	37.805	1.00 29.93	В
	MOTA	3671	OG1	THR	152	16.662	8.249	37.373	1.00 29.92	В
	MOTA	3672	CG2	THR	152	. 16.739	9,730	39.272	1.00 31.14	В
	MOTA	3673	С	THR	152	16.902	12.022	37.384	1.00 31.11	В
	ATOM	3674	ō	THR	152	18.104	12.232	37.543	1.00 32.13	В
55	ATOM	3675	N	GLU	153	15.977	12.968	37.531	1.00 30.29	B
55									1.00 28.58	В
	MOTA	3676	CA	GLU	153	16.310	14.325	37.948		
	MOTA	3677	CB	GLU	153	15.041	15.174	37.977	1.00 31.74	В
	MOTA	3678	CC	GLU	153	15.257	16.669	37.853	1.00 35.57	В.
	MOTA	3679	CD	GLU	153	15.641	17.082	36.438	1.00 38.01	В
60	MOTA	3680	OE1	GLU	153	15:923	18.281	36.200	1.00 38.59	В
• -	MOTA	3681		GLU	153	15.655	16.201	35.551	1.00 39.17	В
							14.173	39.366	1.00 25.90	В
	MOTA	3682	C	GLU	153	16.861				В
	MOTA	3683	0	GLU	153	16.382	13.346	40.114	1.00 25.18	
65	ATOM	3684	N	PHE	154	17.852	14.978	39.738	1.00 24.45	В
65	MOTA	3685	CA	PHE	154	18.447	14.852	41.074	1.00 21.39	В
	MOTA	3686	CB	PHE	154	19.411	13.651	41.115	1.00 20.65	В
	MOTA	3687	CG	PHE	154	20.679	13.846	40.306	1.00 20.31	В
	ATOM	3688		PHE	154	21.853	14.284	40.904	1.00 19.86	В
	MOTA	3689		PHE	154	20.698	13.570	38.945	1.00 19.64	В
70								40.142	1.00 21.56	
70	MOTA	3690		PHE	154	23.021	14.435			В
	MOTA	3691		PHE	154	21.856	13.720	38.194	1.00 20.70	В
	MOTA	3692	CZ	PHE	154	23.017	14.149	38.786	1.00 19.85	В
	MOTA	3693	С	PHE	154	19.224	16.073	41.567	1.00 19.03	В

	ATOM	3694	0	PHE	154	19.579	16.970	40.805	1.00 18.07	В
	ATOM	3695	N	SER	155	19.470	16.107	42.865	1.00 17.25	В.
								43.451	1.00 17.56	В
	MOTA	3696	CA	SER	155	20.234	17.200			
	MOTA	3697	CB	SER	155	19.310	18.302	44.043	1.00 18.40	В
5	MOTA	3698	OG	SER	155	18.744	17.999	45.315	1.00 19.07	В
	MOTA	3699	С	SER	155	21.072	16.536	44.521	1.00 16.97	В
	MOTA	3700	0	SER	155	20.629	15.587	45.157	1.00 15.32	В
	MOTA	3701	N	VAL	156	22.286	17.034	44.708	1.00 17.21	В
	MOTA	3702	CA	VAL	156	23.181	16.479	45.709	1.00 15.73	В
10	MOTA		СВ	VAL	156	24.452	15.964	45.066	1.00 16.35	В
10		3703						46.089	1.00 16.70	В
	MOTA	3704		VAL	156	25.307	15.319			
	MOTA	3705	CG2	VAL	156	24.117	14.993	43.973	1.00 18.36	. В
	MOTA	3706	С	VAL	156	23.577	17.503	46.762	1.00 14.63	В
	MOTA	3707	0	VAL	156	24.031	18.595	46.441	1.00 12.84	В
15	MOTA	3708	N	LYS	157	23.394	17.138	48.024	1.00 15.08	В
	MOTA	3709	CA	LYS	157	23.739	18.019	49.139	1.00 16.33	В
	MOTA	3710	СВ	LYS	157	22.485	18.370	49.962	1.00 17.27	В
	MOTA	3711	CG	LYS	157	21.640	19.492	49.381	1.00 19.38	В
		3712	CD	LYS	157	20.323	19.704	50.121	1.00 19.23	В
20	MOTA						20.911	49.535	1.00 20.48	B
20	MOTA	3713	CE	LYS		19.563				В
	MOTA	3714	NZ	LYS	157	20.216	22.239	49.815	1.00 19.89	
	MOTA	3715	С	LYS	157	24.738	17.288	50.025	1.00 15.63	В
	MOTA	3716	0	LYS	157	24.568	16.118	50.305	1.00 17.71	В
	MOTA	3717	N	VAL	158	25.789	17.979	50.447	1.00 14.09	В
25	MOTA	3718	CA	VAL	158	26.782	17.350	51.313	1.00 12.31	· B
	MOTA	3719	СВ	VAL	158	28.184	17.314	50.670	1.00 11.69	В
	MOTA	3720		VAL	158	28.150	16.490	49.405	1.00 12.25	В
	MOTA	3721		VAL	158	28.657	18.731	50.367	1.00 11.55	В
		3722	C	VAL	158	26.911	18.070	52.636	1.00 11.94	В
30	MOTA							52.726	1.00 11.97	В
30	MOTA	3723	0	VAL	158	26.668	19.270			
	MOTA	3724	N	SER	159	27.301	17.321	53.659	1.00 10.91	В
	MOTA	3725	CA	SER	159	27.490	17.876	54.992	1.00 11.22	В
	MOTA	3726	CB	SER	159	26.245	17.662	55.846	1.00 11.02	В
	MOTA	3727	OG	SER	159	25.184	18.476	55.385	1.00 17.68	В
35	MOTA	3728	С	SER	159	28.677	17.212	55.667	1.00 11.18	В
	MOTA	3729	ō	SER	159	28.925	16.002	55.499	1.00 10.26	В
	MOTA	3730	N	LEU	160	29.431	18.011	56.405	1.00 11.19	В
		3731	CA		160	30.583	17.495	57.115	1.00 11.64	В
	MOTA							56.498	1.00 11.99	В
40	MOTA	3732	CB	LEU	160	31.875	18.043			
40	MOTA	3733	CG	LEU	160	33.168	17.440	57.061	1.00 12.29	В
	MOTA	3734	CD1		160	33.088	15.915	57.170	1.00 12.16	В
	MOTA	3735	CD2	LEU	160	34.307	17.848	56.170	1.00 13.02	В
	MOTA	3736	С	LEU	160	30.476	17.836	58.606	1.00 12.31	В
	MOTA	3737	0	LEU	160	30.894	18.913	59.056	1.00 13.72	В
45	MOTA	3738	N	LEU	161	29.921	16.899	59.365	1.00 11.68	В
	ATOM	3739	CA	LEU	161	29.728	17.056	60.794	1.00 11.73	В
	ATOM	3740	CB	LEU	161	28.387	16.462	61.184	1.00 10.86	В
		3741	CG			28.069	16.373	62.667	1.00 11.21	В
	MOTA			LEU	161				1.00 14.64	В
50	MOTA	3742		LEU	161	28.038	17.772	63.257		
50	MOTA	3743		LEU	161	26.735	15.687	62.849	1.00 11:87	В
	MOTA	3744	С	LEU	161	30.805	16.318	61.565	1.00 11.76	В
	ATOM	3745	0	LEU	161	31.023	15.148	61.353	1.00 14.92	В
	MOTA	3746	N	GLU	162	31.493	17.005	62.461	1.00 11.26	В
	MOTA	3747	CA	GLU	162	32.536	16.335	63.230	1.00 10:12	В
55	ATOM	3748	CB	GLU	162	33.914	16.845	62.829	1.00 9.47	В
-	MOTA	3749	CG	GLU	162	34.143	16.845	61.353	1.00 9.35	В
	MOTA	3750	CD	GLU	162	35.607	16.813	61.008	1.00 9.38	В
						36.443	17.239	61.829	1.00 9.19	В
	ATOM	3751		GLU	162					В
4 0	MOTA	3752		GLU	162	35.929	16.357	59.901	1.00 8.99	
60	ATOM	3753	С	GLU	162	32.339	16.498	64.729	1.00 10.38	В
	MOTA	3754	0	GLU	162	31.849	17.527	65.222	1.00 7.96	В
	MOTA	3755	N	ILE	163	32.734	15.456	65.444	1.00 10.66	В
	MOTA	3756	CA	ILE	163	32.581	15.414	66.879	1.00 10.98	В
	MOTA	3757	CB	ILE	163	31.782	14.160	67.293	1.00 11.27	В
65	MOTA	3758		ILE	163	31.505	14.192	68.793	1.00 11.05	В
0.5						30.504	14.066	66.462	1.00 11.37	В
	MOTA	3759		ILE	163					
	MOTA	3760		ILE	163	29.804	12.728	66.528	1.00 12.73	В
	MOTA	3761	С	ILE	163	33.941	15.387	67.559	1.00 10.94	В
~ ^	MOTA	3762	0	ILE	163	34.849	14.680	67.127	1.00 11.24	В
70	MOTA	3763	N	TYR	164	34.071	16.177	68.619	1.00 10.16	В
	MOTA	3764	CA	TYR	164	35.303	16.245	69.376	1.00 8.14	В
	ATOM	3765	СВ	TYR	164	36.254	17.270	68.759	1.00 5.82	В
	ATOM	3766	CG	TYR	164	37.517	17.425	69.533	1.00 3.86	В
	ATOM	2700	-0		207	37.317			2.00	_

	MOTA .	3767	CD1	TYR	164	37.560	18.215	70.682	1.00	5.62	В
	ATOM	3768	CE1		164	38.709	18.292	71.465	1.00	4.56	В
	ATOM	3769	CD2		164	38.651	16.719	69.177	1.00	3.71	В
	MOTA	3770	CE2		164	39.811	16.786	69.955	1.00	5.19	В
5	MOTA	3771		TYR	164	39.827	17.577	71.094	1.00	4.77	В
~	MOTA	3772		TYR	164	40.976	17.675	71.832	1.00	5.42	В
		3773		TYR	164	34.937	16.617	70.802	1.00	8.94	В
	ATOM'					34.299	17.627	71.061	1.00	9.91	В
	MOTA	3774		TYR	164		15.775	71.731	1.00		В
10	MOTA	3775		ASN	165	35.346			1.00		В
10	MOTA	3776		ASN	165	35.050	16.003	73.134			
	MOTA	3777		ASN	165	35.847	17.192	73.674	1.00		В
	MOTA	3778		ASN	165	35.722	17.336	75.190	1.00		В
	MOTA	3779	OD1		165	35.971	16.385	75.936	1.00		В
	ATOM	3780	ND2	ASN	165	35.345	18.528	75.651	1.00		. В
15	MOTA	3781	· C	ASN	165	33.562	16.262	73.308	1.00		В
	MOTA	3782	0	ASN	165	33.160	17.158	74.000	1.00	10.80	В
	ATOM	3783	N	GLU	166	32.767	15.430	72.646	1.00	16.33	В
	MOTA	3784	CA	GLU	166	31.304	15.495	72.656	1.00	18.28	B
_	ATOM	3785		GLU	166	30.739	15.101	74.031	1.00	17.10	В
20	ATOM	3786		GLU	166	30.887	13.610	74.353	1.00	16.82	В
	MOTA	3787		GLU	166	30.175	12.693	73.357	1.00	16.06	В
	ATOM	3788	0E1		166	28.928	12.606	73.360	1.00		В.
	MOTA	3789	OE2		166	30.880	12.055	72.559	1.00		B.
	MOTA	3790	C	GLU	166	30.697	16.825	72.201		19.60	· B
25			ō	GLU	166	29.604	17.192	72.606		19.36	В
25	MOTA	3791			167	31.427	17.546	71.357		21.89	В
	MOTA	3792	N	GLU		30.956	18.818	70.823		22.41	В
	MOTA	3793	CA	GLU	167		19.947	71.208		24.57	В
	MOTA	3794	CB	GLU	167	31.910		72.701		28.83	В
20	MOTA	3795	ÇG	GLU	167	31.998	20.181	73.044		31.70	В
30	MOTA	3796	CD	GLU	167	32.847	21.376				
	MOTA	3797	OE1		167	33.985	21.472	72.521		32.58	В
	MOTA	3798		GLU	167	32.373	22.214	73.840		33.47	В
	MOTA	3799	C	GLU	167	30.874	18.683	69.314		21.24	В
00.	MOTA	3800	0	GLU	167	31.689	17.997	68.700		20.64	В
35	MOTA	-3801	N	LEU	168	29.879	19.328	68.717		20.17	В
	MOTA	3802	CA	LEU	168	29.712	19.254	67.269		19.71	В
	MOTA	3803	CB	LEU	168	28.240	19.110	66.887		19.82	В
	MOTA	3804	CG	LEU	168	27.430	17.954	67.457		19.46	₽
	MOTA	3805	CD1	LEU	168	28.198	16.653	67.320	1.00	19.39	В
40	MOTA	3806	CD2	LEU	168	27.113	18.236	68.903	1.00	20.70	В
	MOTA	3807	С	LEU	168	30.251	20.477	66.524	1.00	19.80	В
	MOTA.	3808	0	LEU	168	30.055	21.611	66.939	1.00	20.40	В
	MOTA	3809	N	PHE	169	30.928	20.229	65.411	1.00	19.38	В
	ATOM	3810	CA	PHE	169	31.478	21.306	64.612	1.00	17.82	В
45	ATOM	3811	CB	PHE	169	33.004	21.327	64.706	1.00	17.88	В
	MOTA	3812	CG	PHE	169	33.513	21.530	66.097	1.00	16.09	В
	MOTA	3813		PHE	169	33.737	20.445	66.928	1.00	15.76	В
	ATOM	3814		PHE	169	33.695	22.810	66.600		16.92	В
	ATOM	3815		PHE	169	34.130	20.621	68.235		16.10	В
50	MOTA	3816		PHE	169	34.090	23.001	67.907		17.09	В
. 50	MOTA	3817	CZ	PHE	169	34.308	21.901	68.731		16.73	В
		3818	c	PHE	169	31.068	21.102	63.166		18.77	. В
	MOTA	3819		PHE	169	30.929	19.980	62.704		18.62	В
	MOTA		0					62.459		20.24	В
55	MOTA	3820	N	ASP	170	30.871	22.206			21.83	В
22	MOTA	3821	CA	ASP	170	30.476	22.171	61.055			В
	MOTA	3822	CB	ASP	170	29.387	23.216	60.785	1.00	20.71	
	MOTA	3823	CG ·	ASP	170	28.832	23.135	59.382	1.00		В
	MOTA	3824		ASP	170	29.510	22.563	58.493		23.50	В
	MOTA	3825	OD2	ASP	170	27.724	23.658	59.158		24.44	В
60	MOTA	3826	С	ASP	170	31.714	22.545	60.269		22.03	В
	MOTA	3827	0	ASP	170	32.119	23.693	60.281		23.16	В
	MOTA	3828	N	LEU	171	32.320	21.577	59.593	1.00	21.95	В
	MOTA	3829	CA	LEU	171	33.514	21.878	.58.828	1.00	22.12	В
	ATOM	3830	CB	LEU	171	34.449	20.674	58.827		20.38	В
65	MOTA	3831	CG	LEU	171	35.422	20.605	60.013		21.16	В
55	MOTA	3832		LEU	171	36.359	21.824	60.018		20.44	В
	MOTA	3833		LEU	171	34.645	20.544	61.307		18.78	В
	MOTA	3834	C	LEU	171	33.271	22.356	57.402		24.20	В
					171	34.201	22.357	56.582		24.74	В
70	MOTA	3835	0	LEU			22.357	57.108		26.40	В
70	MOTA	3836	N	LEU	172	32.034		55.776		28.39	В
	MOTA	3837	CA	LEU	172	31.686	23.266			28.49	В
	MOTA	3838	CB	LEU	172	30.802	22.283	55.004			
	MOTA	3839	CG	LEU	172	31.536	21.056	54.448	1.00	29.54	В

	ATOM	3840	CD1	LEU	172	30.562	20.216	53.633	1.00 30.71	В
									1.00 28.53	В
	MOTA	3841	CD2		172	32.730	21.477	53.583		
	MOTA	3842	С	LEU	172	30.979	24.607	55.797	1.00 28.89	В
	MOTA	3843	0	LEU	172	30.416	25.030	54.823	1.00 30.09	В
5							25.264	56.941	1.00 31.10	В
J	MOTA	3844	N	ASN	173	31.007				
	ATOM	3845	CA	ASN	173	30.403	26.580	57.043	1.00 34.00	В
	MOTA	3846	CB	ASN	173	29.606	26.708	58.347	1.00 33.23	В
								58.473	1.00 32.72	В
	MOTA	3847	CG	ASN	173	28.903	28.053			
	MOTA	3848	OD1	ASN	173	28.108	28.268	59.381	1.00 33.30	В
10	MOTA	3849	ND2	ASN	173	29.205	28.967	57.551	1.00 31.17	В
10									1.00 35.93	В
	ATOM	3850	С	ASN	173	31.554	27.579	56.982		
	ATOM	3851	0	ASN	173	32.402	27.627	57.861	1.00 35.47	В
	ATOM	3852	N	PRO	174	31.609	28.372	55.908	1.00 38.25	В
	ATOM			PRO	174	30.799	28.283	54.681	1.00 38.57	В
1.5		3853	CD							
15	MOTA	3854	CA	PRO	174	32.674	29.362	55.753	1.00 40.38	В
	MOTA	3855	CB	PRO	174	32.702	29.569	54.242	1.00 39.65	В
	MOTA	3856	CG	PRO	174	31.264	29.478	53.900	1.00 38.79	В
	MOTA	3857	С	PRO	174	32.445	30.632	56.582	1.00 42.95	В
	ATOM	3858	0	PRO	174	33.356	31.450	56.743	1.00 43.55	В
20	MOTA	3859	N	SER	175	31.234	30.794	57.108	1.00 45.10	В
									1.00 47.15	В
	MOTA	3860	CA	SER	175	30.906	31.974	57.913		
	MOTA	3861	CB	SER	175	29.395	32.227	57.889	1.00 47.30	В
	ATOM	3862	OG	SER	175	28.906	32.331	56.559	1.00 49.37	В
			Ċ	SER	175	31.369	31.882	59.376	1.00 47.57	В
25	MOTA	3863								
25	MOTA	3864	0	SER	175	31.800	32.872	59.970	1.00 48.25	В
	ATOM	3865	N	SER	176	31.280	30.690	59.953	1.00 47.97	В
	MOTA	3866	CA	SER	176	31.677	30.487	61.340	1.00 47.64	В
	MOTA	3867	СВ	SER	176	30.720	29.520	62.034	1.00 46.90	В
	ATOM	3868	0G	SER	176	30.794	28.230	61.447	1.00 46.36	В
30	MOTA	3869	C	SER	176	33.083	29.917	61.451	1.00 48.54	В
50										
	ATOM	3870	0	SER	176	33.650	29.434	60.484	1.00 48.78	В
	MOTA	3871	N	ASP	177	33.646	29.989	62.648	1.00 49.43	В
	ATOM	3872	CA	ASP	177	34.979	29.467	62.874	1.00 50.07	В
					177		30.521	63.591	1.00 51.58	В
25	MOTA	3873	CB	ASP		35.843				
35	MOTA	3874	CG	ASP	177	35.342	30.852	64.996	1.00 53.37	В
	MOTA	3875	OD1	ASP	177	35.948	31.723	65.658	1.00 54.70	В
	ATOM	3876		ASP	177	34.353	30.246	65.452	1.00 54.61	В
	MOTA	3877	С	ASP	177	34.880	28.160	63.669	1.00 49.81	В
	MOTA	3878	0	ASP	177	33.833	27.830	64.235	1.00 48.89	В
40	ATOM	3879	N	VAL	178	35.980	27.422	63.707	1.00 49.42	B
10										
	MOTA	3880	CA	VAL	178	36.030	26.146	64.409	1.00 50.03	В
	MOTA	3881	ÇВ	VAL	178	37.385	25.452	64.150	1.00 50.76	В
	MOTA	3882	CG1	VAL	178	37.528	25.131	62.665	1.00 49.77	В
								64.629	1.00 50.93	В
AE	ATOM	3883		VAL	178	38.538	26.353			
45	MOTA	3884	С	VAL	178	35.791	26.203	65.927	1.00 49.82	В
	MOTA	3885	0	VAL	178	35.912	25.194	66.623	1.00 50.17	В
			N	SER	179	35.451	27.372	66.447	1.00 48.85	В
	MOTA	3886								
	ATOM	3887	CA	SER	179	35.225	27.491	67.877	1.00 47.91	В
	MOTA	3888	CB	SER	179	35.912	28.749	68.397	1.00 48.14	В
50	ATOM	3889	OG	SER	179	35.472	29.884	67.667	1.00 47.90	В
50										В
	MOTA	3890	С	SER	179	33.739	27.541	68.211	1.00 47.46	
	MOTA	3891	0	SER	179	33.357	27.618	69.376	1.00 47.10	В
	MOTA	3892	N	GLU	180	32.900	27.495	67.182	1.00 46.50	В
		3893	CA		180	31.458	27.542	67.383	1.00 45.18	В
55	MOTA			GLU						
JJ	MOTA	3894	CB	GLU	180	30.835	28.527	66.383	1.00 44.47	В
	ATOM	3895	CG	GLU	180	31.026	29.983	66.788	1.00 44.05	В
	ATOM	3896	CD	GLU	180	30.595	30.971	65.724	1.00 43.63	В
	MOTA	3897		GLU	180	31.354	31.176	64.751	1.00 43.67	В
	MOTA	3898	OE2	GLU	180	29.495	31.542	65.860	1.00 42.55	₿
60	ATOM	3899	С	GLU	180	30.813	26.156	67.295	1.00 44.60	В
50										В
	MOTA	3900	0	GLU	180	30.714	25.570	66.228	1.00 44.37	
	MOTA	3901	N	ARG	181	30.373	25.650	68.445	1.00 44.01	В
	MOTA	3902	CA	ARG	181	29.739	24.342	68.529	1.00 42.83	В
					181				1.00 45.18	В
45	ATOM	3903	CB	ARG		29.775	23.806	69.958		
65	MOTA	3904	CG	ARG	181	28.755	24.439	70.895	1.00 47.37	В
	MOTA	3905	CD	ARG	181	28.693	23.644	72.187	1.00 51.45	В
							23.972	73.034	1.00 54.79	В
	MOTA	3906	NE	ARG	181	27.541				
	MOTA	3907	CZ	ARG	181	26.267	23.753	72.706	1.00 56.32	В
	ATOM	3908	NH1	ARG	181	25.969	23.205	71.539	1.00 57.53	В
70					181	25.286	24.065	73.548	1.00 56.18	В
, ,	MOTA	3909	NH2							
	MOTA	3910	C	ARG	181	28.278	24.404	68.121	1.00 40.59	В
	ATOM	3911	0	ARG	181	27.632	25.414	68.254	1.00 41.20	В
			N		182	27.759	23.293	67.632	1.00 38.61	В
	MOTA	3912	14	LEU	104	21.133	23.233	57.032	1.00 30.01	ם

•	ATOM	3913	CA	LEU	182	26.370	23.253	67.219	1.00 35.94	В
	MOTA	3914	CB	LEU	182	26.259	22.490	65.897	1.00 34.47	₿
	MOTA	3915	CG	LEU	182	27.018	23.098	64.718	1.00 31.55	В
_	MOTA	3916	CD1		182	26.951	22.179	63.525	1.00 30.32	В
5	MOTA	3917	CD2		182	26.417	24.440	64.382	1.00 29.89	В
	MOTA	3918	С	LEU	182	25.532	22.579	68.300	1.00 35.46	В
	MOTA	3919	0	LEU	182	26.057	21.845	69.139	1.00 35.35	В
	MOTA	3920	N	GLN	183	24.227	22.839	68.270	1.00 35.14	B
	MOTA	3921	CA	GLN	183	23.290	22.256	69.228	1.00 33.43	В
10	MOTA	3922	CB	GLN	183	22.261	23.284	69.688	1.00 36.19	В
	MOTA	3923	·CG	GLN	183	22.844	24.463	70.456	1.00 40.60	В
	MOTA	3924	CD	GLN	183	21.781	25.458	70.916	1.00 43.17	В
	MOTA	3925	OE1	GLN	183	20.902	25.122	71.711	1.00 45.10	В
	MOTA	3926	NE2	GLN	183	21.856	26.687	70.408	1.00 42.17	В
15	MOTA	3927	С	GLN	183	22.513	21.122	68.578	1.00 30.84	В
	MOTA	3928	0	GLN	183	22.098	21.224	67.436	1.00 29.43	В
	MOTA	3929	N	MET	184	22.311	20.047	69.325	1.00 29.11	В
	MOTA	3930	CA	MET	184	21.603	18.884	68.821	1.00 28.51	В
	MOTA	3931	CB	MET	184	22.549	17.698	68.930	1.00 27.68	В
20	MOTA	3932	CG	MET	184	21.997	16.385	68.443	1.00 30.34	В
	MOTA	3933	SD	MET	184	23.142	15.021	68.745	1.00 30.67	В
	MOTA	3934	CE	MET	184	22.841	14.793	70.448	1.00 30.06	В.
	MOTA	3935	С	MET	184	20.298	18.650	69.595	1.00 29.09	В
~-	ATOM	3936	0	MET	184	20.280	18.737	70.806	1.00 29.05	- 18
25	MOTA	3937	N	PHE	185	19.213	18.342	68.887	1.00 30.68	В
	ATOM	3938	CA	PHE	185	17.921	18.112	69.537	1.00 31.83	В
	MOTA	3939	CB	PHE	185	16.953	19.277	69.291	1.00 31.45	В
	MOTA	3940	CG	PHE	185	17.520	20.626	69.637	1.00 30.24	В
20	MOTA	3941		PHE	185	18.381	21.275	68.763	1.00 29.12	В
30	MOTA	3942		PHE	185	17.215	21.234	70.850	1.00 28.98	В
	MOTA	3943		PHE	185	18.929	22.500	69.082	1.00 28.97	В
	MOTA	3944	CE2		185	17.762	22.461	71.180	1.00 29.87	. В
	MOTA	3945	CZ	PHE	185	18.624	23.098	70.289	1.00 29.79	В
25.	MOTA	3946	C	PHE	185	17.236	16.883	68.976	1.00 33.71	В
35	MOTA	3947	0	PHE	185	17.473	16.515	67.845	1.00 33.43	В
•	MOTA	3948	N	ASP	186	16.393	16.245	69.782	1.00 37.53	В
	MOTA	3949	CA	ASP	186	15.667	15.071	69.310	1.00 40.98	В
	MOTA	3950	CB	ASP	186	14.857	14.413	70.431	1.00 43.17	В
40	ATOM	3951	CG	ASP	186	15.721	13.931	71.575	1.00 45.72	В
40	MOTA	3952		ASP	186	16.691	13.190	71.316	1.00 48.29	В
	MOTA	3953		ASP	186	15.413	14.291	72.734	1.00 46.64	В
	ATOM	3954	C	ASP	186	14.676	15.587	68.284	1.00 42.58	В
	ATOM	3955	0	ASP	186	14.123	16.666	68.453	1.00 42.55	В
15	ATOM	3956	N	ASP	187	14.457	14.835	67.214	1.00 44.89	В
45	MOTA	3957	CA	ASP	187	13.528	15.287	66.188	1.00 46.96	В
	ATOM	3958	СВ	ASP	187	13.921	14.695	64.840	1.00 46.66	В
	ATOM	3959	CG	ASP	187	13.090	15.232	63.718	1.00 46.68	В В
	ATOM	3960		ASP	187	13.381	14.891	62.555	1.00 47.95	
50	ATOM	3961		ASP	187	12.144	15.996	64.008	1.00 45.37 1.00 48.78	В
50	MOTA	3962	c	ASP	187	12.127	14.881	66.604	1.00 49.04	B B
	ATOM	3963	0	ASP	187	11.844	13.696	66.773	1.00 50.85	В
	MOTA	3964	N	PRO	188	11.235	15.870 17.310	66.799 66.716	1.00 50.78	В
	MOTA	3965	CD	PRO	188	11.546			1.00 52.07	В
55	MOTA	3966 3967	CA	PRO	188 188	9.838 9.280	15.660 17.085	67.209 67.240	1.00 51.41	В
55	MOTA		CB	PRO		10.496			1.00 50.84	В
	ATOM	3968 3969	CG	PRO	188		17.916	67.605	1.00 53.79	В
	MOTA		C	PRO	188	9.071	14.705	66.302		В
	MOTA	3970	0	PRO	188	8.249	13.900	66.753	1.00 52.56	В
60	MOTA	3971	N	ARG	189	9.340	14.817	65.011	1.00 56.26	
00	MOTA	3972	CA	ARG	189	8.691	13.979	64.033	1.00 59.28 1.00 60.03	В В
	MOTA	3973	CB	ARG	189	9.218	14.349	62.649		
	MOTA	3974	CG	ARG	189	8.875	15.774	62.238	1.00 61.54	В
	MOTA	3975	CD	ARG	189	9.366	16.081	60.833	1.00 62.62	В
65	MOTA	3976	NE	ARG	189	10.813	16.277	60.790	1.00 63.59	В
05	MOTA	3977	CZ	ARG	189	11.407	17.465	60.837	1.00 64.36	В
	ATOM	3978		ARG	189	10.680	18.575	60.925	1.00 64.67	В
	MOTA	3979		ARG	189	12.729	17.545	60.794	1.00 64.73	В
	MOTA	3980	C	ARG	189	8.905	12.499	64.357	1.00 61.00	В
70	MOTA	3981	0	ARG	189	7.952	11.725	64.399	1.00 61.27	В
70	MOTA	3982	N	ASN	190	10.159	12.118	64.590	1.00 63.40	B B
	MOTA	3983	CA	ASN	190	10.516	10.735	64.914	1.00 65.21 1.00 65.05	B
	MOTA	3984	CB.	ASN	190	10.752	9.935	63.625 62.692	1.00 64.67	В
	MOTA	3985	CG	ASN	190	11.750	10.604	02.072	1.00 04.07	D

	MOTA	3986	OD1 ASN	190	12.954	10.474	62.861	1.00 64.77	В
	MOTA	3987	ND2 ASN	190	11.242	11.332	61.707	1.00 63.52	В -
	MOTA	3988	C ASN	190	11.757	10.684	65.807	1.00 66.41	. В
5	MOTA	3989	O ASN	190	12.850	11.038	65.381	1.00 66.57	В
5	ATOM	3990	N LYS	191	11.575	10.241 10.158	67.051 68.017	1.00 67.89 1.00 68.02	B B
	MOTA	3991	CA LYS	191	12.676 12.151	9.687	69.378	1.00 69.77	В
	MOTA MOTA	3992 3993	CB LYS	191 191	11.151	10.636	70.012	1.00 71.09	В
	MOTA	3994	CD LYS	191	11.787	11.982	70.297	1.00 72.77	B
10	MOTA	3995	CE LYS	191	10.771	12.963	70.860	1.00 74.00	В
10	MOTA	3996	NZ LYS	191	9.657	13.210	69.902	1.00 75.27	В
	MOTA	3997	C LYS	191	13.826	9.251	67.571	1.00 66.64	В
	MOTA	3998	O LYS	191	14.852	9.149	68.253	1.00 66.18	В
_	MOTA	3999	N ARG	192	13.641	8.587	66.434	1.00 64.41	В
15	MOTA	4000	CA ARG	192	14.668	7.720	65.878	1.00 62.32	В
	ATOM	4001	CB ARG	192	14.101	6.946	64.685	1.00 64.84	В
	MOTA	4002	CG ARG	192	15.134	6.138	63.909	1.00 68.49	В
	MOTA	4003	CD ARG	192	14.582	5.584	62.578	1.00 71.52	В
20	MOTA	4004	NE ARG	192	14.312	6.616	61.569	1.00 73.79	В
20	ATOM	4005	CZ ARG	192	13.207	7.359	61.506 62.393	1.00 74.82 1.00 75.36	B B
	MOTA	4006	NH1 ARG	192	12.232 13.079	7.201 8.275	60.555	1.00 75.53	В
	MOTA MOTA	4007 4008	NH2 ARG C ARG	192 192	15.822	8.612	65.403	1.00 59.33	В
	MOTA	4009	O ARG	192	16.991	8.235	65.479	1.00 58.48	B
25	MOTA	4010	N GLY	193	15.468	9.805	64.927	1.00 55.93	В
	ATOM	4011	CA GLY	193	16.453	10.747	64.429	1.00 50.05	. В
	MOTA	4012	C GLY	193	16.778	11.895	65.364	1.00 45.96	В
	MOTA	4013	O GLY	193	16.345	11.933	66.518	1.00 44.90	В
••	MOTA	4014	N VAL	194	17.547	12.842	64.839	1.00 42.75	В
30	MOTA	4015	CA VAL	194	17.968	14.006	65.596	1.00 39.18	В
	MOTA	4016	CB VAL	194	19.328	13.743	66.269	1.00 39.02	В
	MOTA	4017	CG1 VAL	194	20.450	13.925	65.262	1.00 38.70	В
	MOTA	4018	CG2 VAL	194	19.504	14.653 15.209	67.456 64.666	1.00 38.46 1.00 37.27	B B
35	MOTA	4019	C VAL	194 194	18.096 18.181	15.057	63.456	1.00 36.48	B -
33	MOTA MOTA	4020 4021	O VAL N ILE	195	18.108	16.400	65.254	1.00 35.15	В
	MOTA	4022	CA ILE	195	18.230	17.645	64.501	1.00 33.17	В
	MOTA	4023	CB ILE	195	17.002	18.543	64.702	1.00 34.99	В
	MOTA	4024	CG2 ILE	195	17.185	19.842	63.916	1.00 36.47	В
40	ATOM	4025	CG1 ILE	195	15.731	17.803	64.280	1.00 36.88	В
	MOTA	4026	CD1 ILE	195	15.658	17.513	62.784	1.00 38.32	В
	MOTA	4027	C ILE	195	19.452	18.465	64.917	1.00 30.37	В
	MOTA	4028	O ILE	195	19.575	18.870	66.063	1.00 28.47	В
45	MOTA	4029	N ILE	196	20.353	18.711	63.975	1.00 28.58	В
45	MOTA	4030	CA ILE	196	21.538	19.503	64.270	1.00 27.51 1.00 26.71	B B
	MOTA	4031	CB ILE	196	22.810 24.024	18.928 19.795	63.572 63.884	1.00 25.48	В
	MOTA MOTA	4032 4033	CG2 ILE	196 196	23.107	17.515	64.078	1.00 25.19	В
	MOTA	4034	CD1 ILE	196	22.263	16.456	63.472	1.00 25.37	В
50	MOTA	4035	C ILE	196	21.284	20.931	63.787	1.00 27.55	В
	ATOM	4036	O ILE	196	21.307	21.212	62.601	1.00 27.49	В
	MOTA	4037	N LYS	197	21.045	21.832	64.730	1.00 28.27	В
	MOTA	4038	CA LYS	197	20.765	23.229	64.418	1.00 27.24	• В
ے ہے	MOTA	4039	CB LYS	197	20.328	23.973	65.688	1.00 28.18	В
55	MOTA	4040	CG LYS	197	19.970	25.451	65.508	1.00 26.93	В
	MOTA	4041	CD LYS	197	19.665	26.075	66.853	1.00 27.21	В
	MOTA	4042	CE LYS	197	19.417	27.563	66.750	1.00 26.28 1.00 26.63	B B
	MOTA	4043	NZ LYS	197	19.153 21.961	28.144 23.947	68.104 63.821	1.00 26.63	В
60	MOTA	4044 4045	C LYS	197 197	23.039	23.974	64.406	1.00 27.65	В
00	ATOM ATOM	4045	O LYS N GLY	198	21.762	24.513	62.637	1.00 26.31	В
	ATOM	4047	CA GLY	198	22.826	25.266	61.998	1.00 25.56	В
	MOTA	4048		198	23.747	24.536	61.044	1.00 24.60	В
	MOTA	4049	O GLY	198	24.518	25.162	60.335	1.00 24.69	В
65	MOTA	4050	N LEU	199	23.680		61.029	1.00 25.09	В
	ATOM	4051	CA LEU	199	24.523	22.433	60.130		В
	MOTA	4052	CB LEU	199	24.357	20.927	60.411	1.00 24.64	В
	MOTA	4053	CG LEU	199	25.219	19.950	59.597		В
70	MOTA	4054	CD1 LEU	199	26.699		59.742		В
70	MOTA	4055		199	24.942		60.068		В
	MOTA	4056			24.235		58.648		В
	MOTA	4057			23.160		58.114		B B
	MOTA	4058	N GLU	200	25.225	23.350	57.991	1.00 20.00	Đ

	MOTA	4059	CA	GLU	200	25.087	23.722	56.598	1.00 26.47	В
	MOTA	4060	CB	GLU	200	26.274	24.568	56.143	1.00 27.75	В
	MOTA	4061	CG	GLU	200	26.324	25.971	56.724	1.00 32.47	В
	MOTA	4062	CD	GLU	200	25.112	26.821	56.339	1.00 35.25	В
5	ATOM	4063	OE1	GLU	200	24.061	26.700	57.004	1.00 38.07	· в
•	ATOM	4064	OE2		200	25.196	27.600	55.363	1.00 35.41	В
	ATOM	4065	C	GLU	200	25.029	22.508	55.686	1.00 27.12	В
		4066	ò	GLU	200	25.586	21.457	55.972	1.00 26.69	В
	MOTA		N	GLU	201	24.327	22.678	54.579	1.00 27.51	В
10	MOTA	4067				24.327	21.646	53.574	1.00 26.72	В
10	MOTA	4068	CA	GLU	201			53.468	1.00 27.33	В
	MOTA	4069	CB	GLU	201	22.790	21.135			B
	MOTA	4070	cc	GLU	201	22.239	20.532	54.722	1.00 30.03	
	MOTA	4071	CD	GLU	201	20.954	19.773	54.457	1.00 32.95	В
1.5	MOTA	4072	OE1		201	20.075	19.784	55.345	1.00 34.01	В
15	MOTA	4073		GLU	201	20.817	19.167	53.367	1.00 33.38	В
	MOTA	4074	С	GLU	201	24.581	22.363	52.278	1.00 26.18	В
	MOTA	4075	0	GLU	201	23.866	23.259	51.853	1.00 25.94	В
	MOTA	4076	N	ILE	202	25.707	21.996	51.674	1.00 25.78	В
00	MOTA	4077	CA	ILE	202	26.116	22.631	50.433	1.00 25.80	В
20	MOTA	4078	CB	ILE	202	27.636	22.813	50.360	1.00 25.61	. В
	MOTA	4079	CG2	ILE	202	28.022	23.102	48.914	1.00 25.19	В
	MOTA	4080	CG1	ILE	202	28.089	23.969	51.258	1.00 26.32	В.
	MOTA	4081	CD1	ILE	202	27.704	23.871	52.722	1.00 25.98	В
	MOTA	4082	С	ILE	202	25.655	21.820	49.231	1.00 26.76	∙ B
25	ATOM	4083	0	ILE	202	25.798	20.597	49.195	1.00 26.87	В
	MOTA	4084	N	THR	203	25.089	22.508	48.248	1.00 26.89	В
	MOTA	4085	CA	THR	203	24.610	21.817	47.070	1.00 28.63	В
	ATOM	4086	СВ	THR	203	23:463	22.606	46.329	1.00 28.93	В
	ATOM	4087	OG1		203	22.297	22.683	47.167	1.00 28.96	В
30	ATOM	4088	CG2		203	23.103	21.922	44.987	1.00 25.61	В
	MOTA	4089	C	THR	203	25.774	21.634	46.120	1.00 29.69	В
	MOTA	4090	ŏ	THR	203	26.546	22.547	45.906	1.00 31.36	В
•	MOTA	4091	N	VAL	204	25.919	20.428	45.589	1.00 30.40	В
	ATOM	4092	CA	VAL	204	26.967	20.168	44.620	1.00 30.44	В
35	ATOM	4093	СВ	VAL	204	27.656	18.798	44.876	1.00 29.19	В
J J	MOTA	4094	CG1		204	28.839	18.609	43.930	1.00 28.81	B
	ATOM	4095	CG2		204	28.142	18.733	46.292	1.00 29.07	В
	MOTA	4096	C	VAL	204	26.225	20.159	43.277	1.00 31.43	В
	ATOM	4097	Ö	VAL	204	25.536	19.180	42.956	1.00 31.70	В
40			N		205	26.354	21.255	42.521	1.00 31.11	В
70	MOTA	4098		HIS		25.709	21.420	41.214	1.00 30.37	В
	ATOM	4099	CA	HIS	205				1.00 30.37	В
	ATOM	4100	CB	HIS	205	25.803	22.869	40.792		В
	MOTA	4101	CG	HIS	205	25.131	23.788	41.747	1.00 29.35	В
45	MOTA	4102		HIS	205	25.631	24.594	42.712	1.00 29.07	
43	ATOM	4103		HIS	205	23.760	23.890	41.831	1.00 29.17	В
	MOTA	4104		HIS	205	23.444	24.721	42.806	1.00 29.14	В
	MOTA	4105		HIS	205	24.561	25.161	43.357	1.00 29.64	В
	ATOM	4106	C	HIS	205	26.252	20.533	40.100	1.00 30.88	В
50	MOTA	4107	0	HIS	205	25.508	20.130	39.216	1.00 31.82	В
50	MOTA	4108	N	ASN	206	27.544	20.238	40.138	1.00 29.74	В
	MOTA	4109	CA	ASN	206	28.127	19.370	39.141	1.00 29.11	В
	MOTA	4110	CB	ASN	206	28.377	20.158	37.852	1.00 28.48	. В
	MOTA	4111	CG	ASN	206	29.156	21.438	38.091	1.00 29.29	В
	MOTA	4112		ASN	206	30.252	21.412	38.645	1.00 28.71	В
55	MOTA	4113	ND2	ASN	206	28.594	22.562	37.673	1.00 28.54	В
	MOTA	4114	С	ASN	206	29.387	18.760	39.729	1.00 28.47	В
	MOTA	4115	0	ASN	206	29.740	19.032	40.852	1.00 27.98	В
	MOTA	4116	N	LYS	207	30.063	17.924	38.957	1.00 29.11	В.
	MOTA	4117	CA	LYS	207	31.274	17.291	39.445	1.00 30.00	В
60	MOTA	4118	CB	LYS	207	31.662	16.107	38.553	1.00 30.11	В
	MOTA	4119	CG	LYS	207	32.257	16.495	37.222	1.00 32.75	B
	MOTA	4120	CD	LYS	207	32.719	15.270	36.441	1.00 33.95	B
	ATOM	4121	CE	LYS	207	33.466	15.669	35.164	1.00 34.56	В
	ATOM	4122	NZ	LYS	207	34.775	16.370	35.404	1.00 33.30	В
65	MOTA	4123	c	LYS	207	32.425	18.293	39.488	1.00 30.73	В
	MOTA	4124	ō	LYS	207	33.458	18.026	40.089	1.00 32.12	В
	MOTA	4125	N	ASP	208	32.241	19.451	38.863	1.00 29.02	В
	MOTA	4126	CA	ASP	208	33.301	20.453	38.850	1.00 28.26	В
			CB	ASP	208	33.234	21.261	37.556	1.00 28.28	В
70	MOTA	4127				33.702	20.463	36.354	1.00 32.65	В
70	MOTA	4128	CG	ASP	208	33.702	20.463	35.233	1.00 32.85	В
	MOTA	4129		ASP	208				1.00 33.84	В
	MOTA	4130		ASP	208	34.567	19.570	36.523		
	MOTA	4131	С	ASP	208	33.277	21.374	40.065	1.00 26.42	В

	MOTA	4132	0	ASP	208	33.989	22.372	40.117	1.00 24.98	В
	MOTA	4133		GLU	209	32.462	21.032	41.052	1.00 25.24	В
				GLU	209	32.388	21.831	42.272	1.00 25.22	В
	MOTA	4134								
_	ATOM	- 4135		GLU	209	30.958	22.278	42.595	1.00 27.01	В
5	MOTA	4136	CG	GLU	209	30.306	23.237	41.602	1.00 30.48	В
	MOTA	4137	CD	GLU	209	29.069	23.926	42.167	1.00 32.55	B
	MOTA	4138	OE1		209	28.371	24.610	41.385	1.00 34.80	В
	MOTA	4139	OE2		209	28.804	23.793	43.382	1.00 33.17	В
10	MOTA	4140	С	GLU	209	32.832	21.030	43.490	1.00 24.23	В
10	MOTA	4141	0	GLU	209	33.194	21.596	44.513	1.00 25.15	В
	MOTA	4142	N	VAL	210	32.835	19.708	43.373	1.00 21.99	В
	ATOM	4143	CA	VAL	210	33.205	18.882	44.514	1.00 18.98	В
	MOTA	4144	CB	VAL	210	32.987	17.360	44.217	1.00 17.62	В
15	MOTA	4145	CG1		210	32.238	17.180	42.928	1.00 17.92	В
15	MOTA	4146	CG2	VAL	210	34.290	16.638	44.159	1.00 17.49	В
	MOTA	4147	C	VAL	210	34.609	19.093	45.082	1.00 18.13	В
	ATOM	4148	. 0	VAL	210	34.775	19.138	46.289	1.00 19.29	·В
	ATOM	4149	N	TYR	211	35.620	19.238	44.232	1.00 17.72	В
						36.968	19.401	44.770	1.00 15.84	В
20	MOTA	4150	CA	TYR	211					
20	MOTA	4151	CB	TYR	211	38.030	19.361	43.656	1.00 14.23	В
	MOTA	4152	CG	TYR	211	. 39.441	19.224	44.196	1.00 13.57	В
	MOTA	4153	CD1	TYR	211	39.807	18.110	44.937	1.00 12.81	В
	MOTA	4154	CE1	TYR	211	41.062	18.018	45.528	1.00 12.54	В
	MOTA	4155		TYR	211	40.379	20.246	44.048	1.00 14.65	В
25						41.651	20.166	44.642	1.00 13.74	В
23	MOTA	4156	CE2	TYR	211					
	MOTA	4157	CZ	TYR	211	41.987	19.048	45.386	1.00 14.45	. В
	MOTA	4158	ОН	TYR	211	43.235	18.972	45.997	1.00 10.15	В
	ATOM	4159	С	TYR	211	37.083	20.665	45.608	1.00 15.70	В
	MOTA	4160	ō	TYR	211	37.626	20.620	46.696	1.00 14.92	В
30	ATOM	4161	N	GLN	212	36.557	21.781	45.101	1.00 17.75	В
50										
	MOTA	4162	CA	GLN	212	36.582	23.064	45.819	1.00 18.64	В
	MOTA	4163	CB	GLN	212	35.897	24.154	44.983	1.00 19.40	В
	MOTA	4164	CG	GLN	212	35.962	25.543	45.607	1.00 24.51	В
	MOTA	4165	CD	GLN	212	35.764	26.672	44.587	1.00 26.82	В
35	ATOM	4166		GLN	212	35.046	26.508	43.594	1.00 25.33	В
55										
	MOTA	4167		GLN	212	36.391	27.832	44.844	1.00 26.86	В
	MOTA	4168	С	GLN	212	35.909	22.923	47.192	1.00 18.53	В
	MOTA	4169	0	GLN	212	36.420	23.374	48.193	1.00 19.69	В
_	MOTA	4170	N	ILE	213	34.759	22.265	47.230	1.00 19.83	В
40	ATOM	4171	CA	ILE	213	34.031	22.048	48.485	1.00 19.97	B
	ATOM	4172	CB	ILE	213	32.664	21.350	48.237	1.00 20.59	В
	MOTA	4173		ILE	213	32.022	20.933	49.579	1.00 19.77	В
	MOTA	4174	CG1	ILE	213	31.758	22.285	47.441	1.00 20.66	В
	MOTA	4175	CD1	ILE	213	30.505	21.626	46.928	1.00 22.87	В
45	MOTA	4176	С	ILE	213	34.831	21.189	49.461	1.00 20.10	В
	ATOM	4177	ō	ILE	213	34.822	21.446	50.672	1.00 20.46	B
	MOTA	4178	N	LEU	214	35.489	20.156	48.937	1.00 19.00	В
	MOTA	4179	CA	LEU	214	36.310	19.282	49.759	1.00 18.96	В
	MOTA	4180	CB	LEU	214	36.829	18.100	48.950	1.00 18.27	В
50	MOTA	4181	CG	LEU	214	36.013	16.826	49.015	1.00 18.28	В
	MOTA	4182	CD1	LEU	214	34.547	17.179	48.926	1.00 22.38	В
	ATOM	4183		LEU	214	36.443	15.908	47.895	1.00 17.95	В
	ATOM	4184	c	LEU	214	37.507	20.048	50.316	1.00 19.17	В
								51.443	1.00 20.21	В
55	MOTA	4185	0	LEU	214	37.920	19.821			
55	MOTA	4186	N	GLU	215	38.055	20.967	49.523	1.00 19.88	₿
	MOTA	4187	CA	GLU	215	39.208	21.768	49.953	1.00 19.18	В
	MOTA	4188	CB	GLU	215	39.748	22.628	48.797	1.00 19.26	В
	MOTA	4189	CG	GLU	215	40.496	21.863	47.699	1.00 20.08	В
	MOTA	4190	CD	GLU	215	41.103	22.786	46.630	1.00 20.78	В
60										
60	MOTA	4191		GLU	215	42.352	22.898	46.580	1.00 16.87	В
	MOTA	4192	·OE2	GLU	215	40.337	23.399	45.842	1.00 19.38	В
	MOTA	4193	С	GLU	215	38.855	22.700	51.110	1.00 18.78	В
	ATOM	4194	0	GLU	215	39.592	22.798	52.092	1.00 17.36	В
	MOTA	4195	N	LYS	216	37.732	23.397	50.988	1.00 19.53	В
65		4196	CA	LYS	216	37.293	24.300	52.042	1.00 20.63	В
05	MOTA									
	MOTA	4197	CB	LYS		35.993	24.988	51.620	1.00 22.77	В
	MOTA	4198	CG	LYS	216	36.240	26.094	50.602	1.00 29.39	В
	MOTA	4199	CD	LYS	216	34.962	26.743	50.069	1.00 33.26	В
	ATOM	4200	CE	LYS	216	35.281	27.963	49.187	1.00 35.91	В
70	MOTA	4201	NZ	LYS	216	36.198	27.671	48.028	1.00 37.67	В
, ,								53.361	1.00 20.03	
	MOTA	4202	C	LYS	216	37.144	23.547			В
	MOTA	4203	0	LYS	216	37.501	24.057	54.416	1.00 21.40	В
	MOTA	4204	N	GLY	217	36.628	22.329	53.309	1.00 18.86	В

	MOTA	4205	CA	GLY	217		36.492	21.587	54.543	1.00	18.29	В
	MOTA	4206	C	GLY	217		37.869	21.334	55.128	1.00	18.39	В
	MOTA	4207	0	GLY	217		38.103	21.531	56.307	1.00	18.74	В
_	MOTA	4208	N	ALA	218		38.792	20.895	54.282	1.00	19.27	В
5	MOTA	4209	CA	ALA	218		40.148	20.607	54.737		19.03	В
	MOTA	4210	CB	ALA	218		40.996	20.061	53.580		18.52	В
	MOTA	4211	С	ALA	218		40.827	21.818	55.363		18.17	В
•	MOTA	4212	0	ALA	218		41.470	21.706	56.403		19.12	В
10	MOTA	4213	N	ALA	219		40.691	22.980	54.735		17.99	В
10	MOTA	4214	CA	ALA	219		41.315	24.203	55.266		16.17	В
	MOTA	4215	·CB	ALA	219		41.044	25.404	54.323		14.07	B B
	MOTA	4216	C	ALA	219		40.792	24.505 24.760	56.671 57.599		14.78 15.56	B
,	MOTA	4217	0	ALA	219 220		41.552 39.479	24.450	56.823		14.00	В
15	MOTA MOTA	4218 4219	N CA	LYS LYS	220		38.859	24.729	58.110		13.80	В
13	MOTA	4220	CB	LYS	220		37.338	24.667	57.978		11.84	В
	MOTA	4221	CG	LYS	220		36.603	25.222	59.177		12.63	В
	ATOM	4222	CD	LYS	220		35.130	25.462	58.884		11.67	В
	MOTA	4223	CE	LYS	220		34.464	26.087	60.092	1.00	13.88	В
20	MOTA	4224	NZ	LYS	220		32.993	26.287	59.939		12.51	. В
	MOTA	4225	C	LYS	220		39.303	23.734	59.173	1.00	14.26	В
	MOTA	4226	0	LYS	220		39.442	24.067	60.350	1.00	15.25	В.
	MOTA	4227	N	ARG	221		39.513	22.498	58.748	1.00	14.19	В
25	MOTA	4228	CA	ARG	221		39.936	21.438	59.647		11.64	В
25	MOTA	4229	CB	ARG	221		39.878	20.111	58.889		13.12	18
	MOTA	4230	CG	ARG	221		40.038	18.857	59.751		13.06	В
	MOTA	4231	CD	ARG	221		39.999	17.586	58.902		11.48	В
	MOTA	4232	NE	ARG	221		38.638	17.093	58.691	1.00	8.87	В
30	MOTA	4233	CZ	ARG	221		38.317	16.184 15.687	57.774 56.976	1.00	8.38 5.16	B B
50	MOTA MOTA	4234 4235		ARG ARG	221 221		39.255 37.074	15.732	57.687	1.00	8.15	В
	MOTA	4236	C	ARG	221		41.345	21.737	60.174		10.67	В
	MOTA	4237	ŏ	ARG	221		41.686	21.394	61.314		10.15	B
	ATOM	4238	N	THR	222		42.167	22.372	59.342		10.52	В
35	MOTA	. 4239	CA	THR	222		43.515	22.747	59.752	1.00	7.37	В
	ATOM	4240	CB	THR	222		44.277	23.438	58.634	1.00	6.75	В
	MOTA	4241	OG1	THR	222		44.586	22.466	57.637	1.00	9.09	В
	MOTA	4242	CG2	THR	222		45.573	24.026	59.136	1.00	5.92	В
40	MOTA	4243	С	THR	222		43.475	23.692	60.916	1.00	5.52	В
40	MOTA	4244	0	THR	222		44.265	23.598	61.797	1.00	6.41	В
	MOTA	4245	N	THR	223		42.527	24.607	60.906	1.00	5.73	В
	MOTA	4246	CA	THR	223		42.443	25.550	61.990	1.00	7.41	В
	MOTA	4247	CB	THR	223		41.481	26.706	61.654	1.00	9.80	B B
45	MOTA	4248		THR	223		40.126	26.260	61.807 60.212	1.00	13.96 11.03	В
73	MOTA MOTA	4249 4250	C	THR THR	223 223		41.716 41.941	27.205 24.801	63.206	1.00	8.79	В
	ATOM	4251	Õ.	THR	223		42.353	25.101	64.337		11.00	В
	MOTA	4252	N.	ALA	224		41.093	23.796	62.970	1.00	9.46	В
	ATOM	4253	CA:	ALA	224		40.537	23.001	64.069	1.00	9.41	В
50	ATOM	4254	СВ	ALA	224		39.514	21.966	63.570	1.00	8.72	В
	MOTA	4255	С	ALA	224		41.645	22.288	64.798	1.00	10.87	В
	MOTA	4256	0	ALA	224		41.693	22.258	66.041	1.00	10.92	В
	MOTA	4257	N	ALA	225		42.526	21.678	64.020		11.03	В
	MOTA	425B	CA	ALA	225		. 43.647	20.977	64.608		10.24	В
55	MOTA	4259	CB	ALA	225		44.484	20.347	63.517	1.00	9.24	В
	MOTA	4260	C	ALA	225		44.502	21.942	65.446		11.63	В
	MOTA	4261	0	ALA	225		44.983	21.592	66.516		12.58	В
	MOTA	4262	N	THR	226		44.676	23.164	64.957 65.650		13.45 15.18	В.
60	MOTA	4263	CA	THR	226		45.490		64.868		14.69	B B
OU	MOTA	4264 4265	CB	THR THR	226 226		45.557 46.323	25.470 25.286	63.670		16.29	В
	MOTA MOTA	4266		THR	226		46.186	26.534	65.716		15.17	В
	MOTA	4267	C	THR	226		44.901	24.452	67.007		16.64	В
	ATOM	4268	ŏ	THR	226		45.617	24.553	67.998		16.41	В
65	ATOM	4269	N	LEU	227		43.575	24.575	67.025		18.18	В
	ATOM	4270	CA	LEU	227		42.805	24.875	68.238		18.74	В
	ATOM	4271	CB	LEU	227		41.367	25.310	67.899		19.87	В
	MOTA	4272	CG	LEU	227		40.955	26.772	68.051		21.86	В
	MOTA	4273		LEU	227		41.103	27.134	69.518		21.93	В
70	MOTA	4274		LEU	227		41.786	27.693	67.155		21.51	В
	MOTA	4275	С	LEU	227		42.651	23.733	69.239		18.17	В
	MOTA	4276	0.	LEU	227		42.783	23.928	70.435		18.61	В
	MOTA	4277	N	MET	228	•	42.380	22.536	68.742	1.00	18.27	В

	MOTA	4278	CA	MET	228	42.160	21.404	69.634	1.00 17.51	В
	ATOM	4279	CB	MET	228	40.800	20.772	69.302	1.00 16.30	В
	MOTA	4280	CG	MET	228	39.649	21.745	69.495	1.00 16.20	В
						38.056	21.201	68.874	1.00 19.18	В
5	MOTA	4281	SD	MET	228					В
J	MOTA	4282	-	MET	228	38.092	22.153	67.250	1.00 17.21	
	MOTA	4283	С	MET	228	43.250	20.342	69.614	1.00 18.14	В
	ATOM '	4284	0	MET	228	43.769	19.990	68.549	1.00 20.11	. В
	MOTA	4285	N	ASN	229	43.571	19.834	70.807	1.00 16.66	В
	ATOM	4286	CA	ASN	229	44.589	18.799	70.992	1.00 16.35	В
10	ATOM	4287	СВ	ASN	229	44.824	18.543	72.485	1.00 15.94	В
1.0				ASN	229	45.350	19.764	73.209	1.00 16.33	В
	MOTA	4288	CG.							B
	MOTA	4289	OD1		229	45.764	20.739	72.588	1.00 17.78	
	MOTA	4290	ND2		229	45.340	19.711	74.534	1.00 14.68	В
	MOTA	4291	С	ASN	229	44.311	17.448	70.313	1.00 15.68	В
15	MOTA	4292	0	ASN	229	43.228	16.873	70.460	1.00 15.38	В
	MOTA	4293	N	ALA	230	45.300	16.950	69.569	1.00 14.15	8
•	MOTA	4294	CA	ALA	230	45.171	15.679	68.863	1.00 12.00	В
	MOTA	4295	CB	ALA	230	45.241	14.546	69.847	1.00 11.64	В
		4296		ALA	230	43.869	15.595	68.079	1.00 11.58	В
20	MOTA		C					67.977	1.00 10.16	B
20	MOTA	4297	0	ALA	230	43.269	14.519			В
	MOTA	4298	N	TYR	231	43.443	16.725	67.519	1.00 11.27	
	MOTA	4299	CA	TYR	231	42.200	16.775	66.761	1.00 12.69	В,
	MOTA	4300	CB	TYR	231	42.047	18.119	66.029	1.00 11.10	В
	MOTA	4301	CG	TYR	231	40.667	18.312	65.435	1.00 10.24	·B
25	ATOM	4302		TYR	231	40.404	17.998	64.112	1.00 9.88	В
	ATOM	4303	CE1		231	39.121	18.122	63.598	1.00 10.11	В
		4304		TYR	231	39.606	18.760	66.229	1.00 11.37	В
	MOTA						18.886	65.716	1.00 10.13	В
	MOTA	4305	CE2	TYR	231					В
20	MOTA	4306	CZ	TYR	231	38.079	18.559	64.402	1.00 9.90	
30	MOTA	4307	ОН	TYR	231	36.780	18.623	63.936	1.00 7.41	В
	MOTA	4308	С	TYR	231	41.988	15.645	65.748	1.00 13.47	В
	MOTA	4309	0	TYR	231	41.016	14.916	65.837	1.00 14.47	В
	MOTA	4310	N	SER	232	42.904	15.481	64.800	1.00 15.55	В
	MOTA	4311	ÇA	SER	232	42.744	14:446	63.777	1.00 15.70	В
35	MOTA	4312	СВ	SER	232	43.907	14.490	62.779	1.00 17.08	В
55					232	45.145	14.290	63.419	1.00 20.92	В
•	MOTA	4313	OG	SER				64.308		В
	MOTA	4314	C	SER	232	42.608	13.020		1.00 15.28	
	MOTA	4315	0	SER	232	41.898	12.203	63.726	1.00 16.22	В
	MOTA	4316	N	SER	233	43.260	12.711	65.417	1.00 12.45	B
40	MOTA	4317	CA	SER	233	43.173	11.352	65.919	1.00 12.60	В
	MOTA	4318	CB	SER	233	44.477	10.942	66.596	1.00 13.54	В
	MOTA	4319	OG	SER	233	44.662	11.602	67.838	1.00 15.82	В
	ATOM	4320	č	SER	233	42.057	11.167	66.921	1.00 12.47	В
		4321	ŏ	SER	233	41.604	10.047	67.155	1.00 12.18	В
45	ATOM								1.00 11.28	В
43	MOTA	4322	N	ARG	234	41.612	12.265	67.523		
	MOTA	4323	CA	ARG	234	40.558	12.168	68.532	1.00 9.69	В
	MOTA	4324	CB	ARG	234	40.919	12.961	69.784	1.00 10.96	В
	MOTA	4325	CG	ARG	234	41.315	12.112	70.975	1.00 13.22	В
	MOTA	4326	CD.	ARG	234	42.707	12.435	71.494	1.00 16.77	В
50	MOTA	4327	NE	ARG	234	42.755	13.676	72.263	1.00 20.42	В
	MOTA	4328	CZ	ARG	234	43.751	14.005	73.083	1.00 22.86	В
	MOTA	4329		ARG	234	44.791	13.186	73.242	1.00 22.37	В
				ARG	234	43.690	15.140	73.767	1.00 25.64	В
	MOTA	4330								В
E C	MOTA	4331	,C	ARG	234	39.168	12.617	68.118	1.00 7.73	
55	MOTA	4332	.o	ARG	234	38.258	12.599	68.924	1.00 8.22	В
	MOTA	4333	N	SER	235	39.006	13.014	66.862	1.00 6.52	В
	MOTA	4334	CA	SER	235	37.697	13.455	66.394	1.00 4.31	В
	MOTA	4335	CB	SER	235	37.785	14.801	65.647	1.00 2.24	В.
	ATOM	4336	OG:	SER	235	38.745	14.780	64.602	1.00 1.00	В
60	MOTA	4337	Č	SER	235	37.048	12.437	65.488	1.00 2.58	В
00						37.704		64.854	1.00 3.58	В
	MOTA	4338	0	SER	235		11.648		1.00 3.30	
	MOTA	4339	N	HIS	236	35.725	12.465	65.472	1.00 4.87	В
	MOTA	4340	CA	HIS	236	34.911	11.587	64.631	1.00 5.05	В
	MOTA	4341	CB	HIS	236	33.691	11.087	65.386	1.00 4.65	В
65	ATOM	4342	CG	HIS	236	34.032	10.280	66.586	1.00 4.01	В
	MOTA	4343		HIS	236	34.066	10.607	67.899	1.00 3.63	В
	ATOM	4344		HIS	236	34.437	8.965	66.504	1.00 3.84	В
										В
	MOTA	4345		HIS	236	34.704	8.517	67.717		
70	MOTA	4346		HIS	236	34.487	9.494	68.582	1.00 4.72	В
70	MOTA	4347	С	HIS	236	34.347	12.498	63.556	1.00 6.99	. В
	MOTA	4348	0	HIS	236	33.810	13.556	63.878	1.00 9.70	В
	MOTA	4349	N	SER	237	34.475	12.108	62.291	1.00 7.23	В
	MOTA	4350	CA	SER	237	33.951	12.933	61.208	1.00 6.69	В
						- 3				

	MOTA	4351	CB	SER	237	35.058	13.406	60.253	1.00 5.37	В
	MOTA	4352	OG	SER	237	35.464	12.358	59.380	1.00 3.60	B
	MOTA	4353	c	SER	237	32.946	12.157	60.393	1.00 7.89	В
									1.00 9.95	В
5	MOTA	4354	0	SER	237	33.196	11.040	59.976		
ر	MOTA	4355	N	VAL	238	31.787	12.753	60.180	1.00 7.91	В
	MOTA	4356	CA	VAL	238	30.787	12.078	59.392	1.00 7.74	В
	MOTA	4357	CB	VAL	238	29.560	11.740	60.282	1.00 8.04	В
	MOTA	4358	CG1	VAL	238	29.413	12.787	61.328	1.00 7.80	В
	MOTA	4359	CG2		238	28.307		59.460	1.00 8.71	В
10							12.935	58.182	1.00 8.25	В
10	MOTA	4360	C	VAL	238	30.421				
	MOTA	4361	0	VAL	238	29.776	13.952	58.323	1.00 9.09	В
	MOTA	4362	N	PHE	239	30.883	12.511	57.002	1.00 8.31	В
	MOTA	4363	CA	PHE	239	30.609	13.198	55.732	1.00 8.81	В
	ATOM	4364	СВ	PHE	239	31.793	13.036	54.759	1.00 6.73	В
15	MOTA	4365	CG	PHE	239	31.693	13.893	53.525	1.00 6.12	В
10								52.500		В
•	MOTA	4366		PHE	239	30.815	13.557			
	MOTA	4367		PHE	239	32.462	15.046	53.394	1.00 5.95	В
	MOTA	4368	CEl	PHE	239	30.705	14.364	51.348	1.00 5.30	В
	MOTA	4369	CE2	PHE	239	32.354	15.854	52.247	1.00 5.11	В
20	MOTA	4370	CZ	PHE	239	31.475	15.511	51.224	1.00 3.58	В
	MOTA	4371	c	PHE	239	29.350	12.553	55.148	1.00 9.90	В
		4372	ŏ	PHE	239	29.327	11.356	54.859	1.00 9.81	В
	MOTA									
	MOTA	4373	N	SER	240	28.305	13.359	54.982	1.00 10.63	В
25	MOTA	4374	CA	SER	240	27.039	12.B71	54.466	1.00 9.05	B
25	MOTA	4375	CB	SER	240	25.926	13.194	55.467	1.00 9.24	В
	MOTA	4376	OG	SER	240	26.182	12.631	56.742	1.00 8.98	. В
	MOTA	4377	С	SER	240	26.678	13.462	53.105	1.00 10.23	В
	MOTA	4378	ŏ	SER	240	26.809	14.668	52.877	1.00 10.82	В
								52.198		В
20	MOTA	4379	N	VAL	241	26.230	12.601		1.00 10.77	
30	MOTA	4380	CA	VAL	241	25.813	13.044	50.874	1.00 12.14	В
	MOTA	4381	CB	VAL	241	26.748	12.492	49.775	1.00 12.12	В
	MOTA	4382	CG1	VAL	241	26.981	11.008	50.002	1.00 13.27	В
	ATOM	4383	CG2	VAL	241	26.143	12.736	48.394	1.00 11.17	В
	MOTA	4384	c	VAL	241	24.379	12.565	50.649	1.00 13.61	В
35								50.700	1.00 13.01	В
55	ATOM	4385	0	VAL	241	24.092	11.365			
	MOTA	4386	N	THR	242	23.478	13.513	50.422	1.00 14.36	В
	MOTA	4387	CA	THR	242	22.078	13.203	50.217	1.00 16.18	В
	MOTA	4388	CB	THR	242	21.198	14.104	51.118	1.00 17.52	В
	ATOM	4389	OG1	THR	242	21.546	13.897	52.496	1.00 19.73	В
40	MOTA	4390		THR	242	19.738	13.766	50.954	1.00 20.46	В
	MOTA	4391	c	THR	242	21.746	13.418	48.741	1.00 18.15	В
	MOTA	4392	0	THR	242	22.212	14.357	48.128	1.00 19.20	В
	MOTA	4393	N	ILE	243	20.945	12.521	48.180	1.00 20.44	В
4.5	MOTA	4394	CA	ILE	243	20.560	12.619	46.785	1.00 23.13	В
45	MOTA	4395	CB	ILE	243	21.178	11.477	45.941	1.00 22.27	В
	ATOM	4396	CG2	ILE	243	20.962	11.770	44.475	1.00 18.06	В
	MOTA	4397		ILE	243	22.663	11.310	46.270	1.00 21.29	В
	ATOM	4398		ILE	243	23.247	10.072	45.722	1.00 21.09	В
50	MOTA	4399	C	ILE	243	19.043	12.555	46.628	1.00 26.42	В
50	MOTA	4400	0	ILE	243	18.442	11.488	46.790	1.00 27.92	В
	MOTA	4401	N	HIS	244	18.437	13.707	46.340	1.00 29.29	В
	MOTA	4402	CA	HIS	244	17.001	13.808	46.117	1.00 30.50	В
	MOTA	4403	СВ	HIS	244	16.486	15.226	46.393	1.00 31.87	В
	MOTA	4404	CG	HIS	244	16.375	15.565	47.845	1.00 34.67	В
55	ATOM	4405		HIS	244	15.341	15.441	48.712	1.00 35.28	В
55										
	ATOM	4406		HIS	244	17.424	16.087	48.577	1.00 36.67	В
	MOTA	4407		HIS	244	17.040	16.267	49.828	1.00 35.69	В
	MOTA	4408	NE2	HIS	244	15.778	15.881	49.936	1.00 35.59	В
	MOTA	4409	C	HIS	244	16.803	13.494	44.637	1.00 32.12	В
60	ATOM	4410	0	HIS	244	17.277	14.228	43.755	1.00 32.44	В
	MOTA	4411	N	MET	245	16.122	12.388	44.368	1.00 32.37	В
	MOTA	4412	CA	MET	245	15.877	11.968	42.998	1.00 32.37	В
	MOTA	4413	CB	MET	245	16.475	10.578	42.791	1.00 31.86	В
,-	MOTA	4414	CG	MET	245	17.968	10.548	43.055	1.00 31.73	В
65	MOTA	4415	SD	MET	245	18.589	8.875	43.225	1.00 33.02	В
	MOTA	4416	CE	MET	245	18.034	8.477	44.892	1.00 31.10	В
	MOTA	4417	Ç	MET	245	14.401	12.002	42.601	1.00 31.83	В
									1.00 31.83	
	MOTA	4418	0	MET	245	13.509	11.738	43.415		В
70	MOTA	4419	N	LYS	246	14.159	12.334	41.337	1.00 31.84	В
70	MOTA	4420	CA	LYS	246	12.811	12.428	40.804	1.00 31.99	В
	MOTA	4421	CB	LYS	246	12.350	13.895	40.781	1.00 32.10	В
	MOTA	4422	CG	LYS		10.922	14.087	40.292	1.00 34.26	В
	MOTA	4423	CD	LYS		10.606	15.539	39.946	1.00 34.52	В
						_5.000				-

	MOTA	4424	CE	LYS	246	10.646	16.433	41.173	1.00 36.15	В
	MOTA	4425	NZ	LYS	246	10.457	17.872	40.836	1.00 35.42	В
	ATOM	4426	c	LYS	246	12.761	11.870	39.382	1.00 31.58	В
	MOTA	4427	õ	LYS	246	13.439	12.358	38.480	1.00 30.24	В
5	ATOM	4428	N	GLU	247	11.967	10.824	39.196	1.00 31.71	В
3	MOTA	4429	CA	GLU	247	11.808	10.238	37.874	1.00 30.99	В
	MOTA	4430	CB	GLU	247	12.337	8.801	37.855	1.00 32.21	В
•				GLU		11.815	7.897	38.961	1.00 33.61	В
	MOTA	4431	CG		247		6.647	39.115	1.00 35.27	В
10	MOTA	4432	CD	GLU	247	12.672		40.037	1.00 35.63	В
10	MOTA	4433	OE1		247	12.420	5.841			
	MOTA	4434	-0E2		247	13.609	6.469	38.307	1.00 35.39	В
	MOTA	4435	C	GLU	247	10.338	10.298	37.479	1.00 30.04	В
	MOTA	4436	0	GLU	247	9.448	10.169	38.317	1.00 29.68	В
4.5	MOTA	4437	N	THR	248	10.083	10.513	36.197	1.00 28.13	В
15	MOTA	4438	CA	THR	248	8.716	10.591	35.720	1.00 26.83	В
	MOTA	4439	CB	THR	248	8.506	11.895	34.942	1.00 25.80	В
	MOTA	4440		THR	248	8.937	12.995	35.750	1.00 24.67	В
	MOTA	4441	CG2	THR	248	7.046	12.096	34.617	1.00 25.62	В
	MOTA	4442	С	THR	248	8.406	9.395	34.822	1.00 26.77	В
20	MOTA	4443	0	THR	248	9.168	9.077	33.914	1.00 27.38	В
	MOTA	4444	N	THR	249	7.288	8.732	35.092	1.00 26.76	В
	MOTA	4445	CA	THR	249	6.877	7.580	34.302	1.00 26.72	В.
	MOTA	4446	CB	THR	249	5.759	6.784	35.011	1.00 26.45	В
	MOTA	4447	OG1	THR	249	4.575	7.587	35.088	1.00 27.92	· B
25	MOTA	4448	CG2	THR	249	6.180	6.404	36.423	1.00 25.26	B
	MOTA	4449	C	THR	249	6.353	8.040	32.938	1.00 27.55	В
	ATOM	4450	ō	THR	249	6.316	9.226	32.638	1.00 27.26	В
	MOTA	4451	N	ILE	250	5.956	7.078	32.113	1.00 29.51	В
	MOTA	4452	CA	ILE	250	5.434	7.353	30.774	1.00 30.16	. в
30	MOTA	4453	ĊB	ILE	250	5.444	6.074	29.901	1.00 29.03	В
	MOTA	4454		ILE	250	4.410	5.082	30.421	1.00 27.86	В
	ATOM	4455		ILE	250	5.157	6.431	28.443	1.00 28.33	В
	MOTA	4456		ILE	250	5.425	5.295	27.476	1.00 26.91	В
	MOTA	4457	C	ILE	250	4.005	7.884	30.877	1.00 31.97	В
35	MOTA	4458	ò	ILE	250	3.400	8.286	29.891	1.00 31.50	В
22						3.477	7.875	32.095	1.00 34.02	В
•	MOTA	4459	N	ASP	251	2.132	8.368	32.359	1.00 36.26	В
	MOTA	4460	CA	ASP	251		7.469			В
	MOTA	4461	CB	ASP	251	1.425		33.381	1.00 36.12	
40	MOTA	4462	CG	ASP	251	0.789	6.242	32.750	1.00 36.40	B B
40	MOTA	4463		ASP	251	0.223	5.420	33.509	1.00 34.19	
	MOTA	4464		ASP	251	0.854	6.119	31.504	1.00 36.03	В
	MOTA	4465	C	ASP	251	2.164	9.804	32.910	1.00 37.47	В
	MOTA	4466	0	ASP	251	1.140	10.468	32.990	1.00 38.11	В
15	MOTA	4467	N	GLY	252	3.350	10.273	33.284	1.00 37.77	В
45	MOTA	4468	CA	GLY	252	3.471	11.613	33.822	1.00 37.41	В
	MOTA	4469	С	GLY	252	3.566	11.662	35.338	1.00 38.71	В
	MOTA	4470	Ο.	GLY	252	3.747	12.734	35.912	1.00 38.78	В
	MOTA	4471	N	GLU	253	3.440	10.516	36.003	1.00 38.85	В
	MOTA	4472	CA	GLU	253	3.533	10.511	37.459	1.00 39.67	В
50	MOTA	4473	CB	GLU	253	3.020	9.200	38.052	1.00 41.37	В
	ATOM	4474	CG	GLU	253	3.181	9.143	39.573	1.00 43.75	В
	MOTA	4475	CD	GLU	253 .	2.814	7.803	40.188	1.00 44.31	В
	MOTA	4476	OE1	GLU	253	3.083	7.612	41.398	1.00 44.42	В
	MOTA	4477	OE2	GLU	253	2.256	6.945	39.470	1.00 45.10	В
55	MOTA	4478	С	GLU	253	4.988	10.668	37.883	1.00 39.49	В
	MOTA	4479	0	GLU	253	5.890	10.286	37.149	1.00 39.20	В
	MOTA	4480	N	GLU	254	5.210	11.239	39.064	1.00 39.27	В
	MOTA	4481	CA	GLU	254	6.568	11.426	39.567	1.00 40.50	В.
	MOTA	4482	CB	GLU	254	6.793	12.875	39.978	1.00 41.13	В
60	ATOM	4483	CG	GLU	254	6.621	13.842	38.836	1.00 44.09	В
-	ATOM	4484	CD	GLU	254	7.073	15.233	39.189	1.00 45.25	В
	MOTA	4485		GLU	254	6.665	15.737	40.256	1.00 45.35	В
						7.828	15.825	38.391	1.00 46.38	В
	MOTA	4486		GLU	254	6.926		40.756	1.00 39.50	В
65	ATOM	4487	c	GLU	254		10.539		1.00 40.75	В
O)	ATOM	4488	0	GLU	254	6.242	10.540	41.769		
	MOTA	4489	N	LEU	255	8.008	9.779	40.614	1.00 37.82	В
	MOTA	4490	CA	LEU	255	8.484	8.894	41.676	1.00 36.11	В
	MOTA	4491	CB	LEU	255	8.895	7.543	41.087	1.00 35.93	В
70	MOTA	4492	CG	LEU	255	7.950	6.910	40.062	1.00 35.67	В
70	MOTA	4493		LEU	255	8.538	5.614	39.590	1.00 35.24	В
	MOTA	4494	CD2	LEU	255	6.601	6.663	40.668	1.00 35.26	В
	MOTA	4495	С.	LEU	255	9.710	9.551	42.322	1.00 35.19	В
	MOTA	4496	0	LEU	255	10.722	9.754	41.644	1.00 35.09	В

	MOTA	4497	N	VAL	256	9.612	9.888	43.615	1.00 33.29	В
	ATOM	4498	CA	VAL	256	10.719	10.528	44.350	1.00 31.53	В
	MOTA	4499	CB	VAL	256	10.237	11.748	45.143	1.00 31.44	В
	MOTA	4500	CG1	VAL	256	9.719	12.800	44.188	1.00 30.73	В
5	ATOM	4501	CG2	VAL	256	9.165	11.322	46.141	1.00 33.02	B
,	MOTA	4502	C	VAL	256	11.494	9.622	45.319	1.00 29.50	В
		4503	ŏ	VAL	256	10.928	8.958	46.189	1.00 29.05	В
	MOTA	4504		LYS	257	12.809	9.604	45.148	1.00 27.07	В
	MOTA		N	LYS			8.790	45.985	1.00 24.38	В
10	ATOM	4505	CA		257	13.676			1.00 21.73	В
10	MOTA	4506	CB	LYS	257	14.530	7.832	45.134		
	MOTA	4507	CG	LYS	257	13.742	6.776	44.369	1.00 18.70	В
	MOTA	4508	CD	LYS	257	14.637	5.862	43.566	1.00 13.96	В
	MOTA	4509	CE	LYS	257	15.316	6.632	42.460	1.00 12.43	В
15	MOTA	4510	ΝZ	LYS	257	16.093	5.743	41.576	1.00 10.28	В
15	MOTA	4511	C	LYS	257	14.627	9.701	46.731	1.00 23.77	В
	MOTA	4512	0	LYS	257	15.062	10.708	46.215	1.00 24.31	В
	MOTA	4513	N	ILE	258	14.928	9.357	47.970	1.00 22.97	В
	MOTA	4514	CA	ILE	258	15.882	10.138	48.741	1.00 20.65	В
20	MOTA	4515	СВ	ILE	258	15.226	10.866	49.913	1.00 22.22	В
20	MOTA	4516	CG2		258	16.246	11.747	50.591	1.00 22.81	В
	MOTA	4517	CG1	ILE	258	14.080	11.734	49.407	1.00 24.53	В
	MOTA	4518	CD1	ILE	258	13.276	12.417	50.518	1.00 24.98	В
	ATOM	4519	С	ILE	258	16.891	9.136	49.271	1.00 18.47	В
~~	MOTA	4520	0	ILE	258	16.554	8.243	50.049	1.00 16.24	В
25	MOTA	4521	N	GLY	259	18.123	9.256	48.805	1.00 17.79	• В
	MOTA	4522	CA	GLY	259	19.144	8.342	49.262	1.00 18.70	В
	MOTA	4523	C .	GLY	. 259	20.205	9.094	50.030	1.00 17.80	В
	MOTA	4524	0	GLY	259	20.684	10.110	49.555	1.00 18.70	В
	ATOM	4525	N	LYS	260	20.565	8.606	51.215	1.00 16.12	В
30	MOTA	4526	CA	LYS	260	21.598	9.263	52.011	1.00 15.58	В
	MOTA	4527	CB	LYS	260	21.034	9.800	53.335	1.00 15.55	В
	ATOM	4528	CG	LYS	260	21.889	10.844	54.046	1.00 14.21	В
	MOTA	4529	CD	LYS	260	21.173	11.288	55.341	1.00 15.40	В
	MOTA	4530	CE	LYS	260	21.989	12.289	56.170	1.00 13.76	В
35	MOTA	4531	NZ	LYS	260	21.311	12.687	57.451	1.00 8.49	В .
	MOTA	4532	C	LYS	260	22.729	8.309	52.335	1.00 13.87	В
	MOTA	4533	0	LYS	260	22.531	7.185	52.741	1.00 13.84	В
	ATOM	4534	N	LEU	261	23.937	8.788	52.141	1.00 13.07	В
	ATOM	4535	CA	LEU	261	25.107	7.996	52.430	1.00 11.82	В
40	MOTA	4536	CB	LEU	261	25.890	7.772	51.130	1.00 10.77	B
	MOTA	4537	CG	LEU	261	27.276	7.138	51.238	1.00 8.89	В
	ATOM	4538		LEU	261	27.189	5.799	51.975	1.00 7.84	В
	MOTA	4539		LEU	261	27.847	6.973	49.840	1.00 7.48	В
	MOTA	4540	c	LEU	261	25.993	8.696	53.465	1.00 11.44	В
45	MOTA	4541	ŏ	LEU	261	26.424	9.819	53.247	1.00 13.74	В
	ATOM	4542	N	ASN	262	26.245	8.024	54.586	1.00 10.57	В
	ATOM	4543	CA	ASN	262	27.142	8.548	55.615	1.00 8.04	В
	MOTA	4544	CB	ASN	262	26.494	8.386	56.985	1.00 5.60	B
	MOTA	4545	CG	ASN	262	25.111	8.980	57.011	1.00 8.99	В
50	MOTA	4546		ASN	262	24.100	8.263	56.971	1.00 9.21	В
20	MOTA	4547		ASN	262	25.050	10.307	57.024	1.00 7.62	В
	ATOM	4548	C	ASN	262	28.526	7.879	55.554	1.00 6.87	В
	MOTA	4549	ŏ	ASN	262	28.640	6.653	55.523	1.00 7.74	В
	MOTA	4550	N	LEU	263	29.566	8.705	55.487	1.00 5.79	В
55	MOTA	4551	CA	LEU	263	30.938	8.225	55.438	1.00 5.65	В
55	MOTA	4552	CB	LEU	263	31.596	8.741	54.165	1.00 4.90	В
							8.279	52.998	1.00 6.08	В
	ATOM	4553	CG	LEU	263	30.735				
	ATOM	4554		LEU	263	31.131	9.012	51.752	1.00 5.33	B B
60	MOTA	4555		LEU	263	30.853	6.748	52.877	1.00 6.04	
60	MOTA	4556	C	LEU	263	31.634	8.694	56.710	1.00 6.26	В
	MOTA	4557	0	LEU	263	32.017	9.853	56.842	1.00 8.01	В
	MOTA	4558	N	VAL	264	31.795	7.778	57.653	1.00 6.21	В
	MOTA	4559	CA	VAL	264	32.406	8.079	58.943	1.00 6.25	В
40	ATOM	4560	CB	VAL	264	31.600	7.410	60.037	1.00 7.30	В
65	MOTA	4561		VAL	264	32.081	7.848	61.406	1.00 6.21	В
	MOTA	4562		VAL	264	30.140	7.709	59.802	1.00 9.51	В
	MOTA	4563	С	VAL	264	33.863	7.677	59.150	1.00 7.28	В
	MOTA	4564	0	VAL	264	34.221	6.532	58.978	1.00 7.31	₿
	MOTA	4565	N	ASP	265	34.685	8.652	59.533	1.00 9.79	В
70	ATOM	4566	CA	ASP	265	36.105	8.441	59.841	1.00 11.34	В
	MOTA	4567	CB	ASP	265	36.978	9.564	59.262	1.00 12.62	В
	ATOM	4568	CG	ASP	265	38.473	9.346	59.520	1.00 16.17	В
	MOTA	4569	OD1	ASP	265	38.801	8.748	60.562	1.00 17.08	В

WO 2004/004652 PCT/US2003/021145

	MOTA	4570	OD2	Q24	265	39.310	9.783	58.694	1.00 16.43	В
									1.00 11.75	В
	MOTA	4571	С	ASP	265	36.179	8.527	61.374		
	MOTA	4572	0	ASP	265	36.356	9.601	61.928	1.00 11.74	В
	MOTA	4573	N	LEU	266	36.032	7.389	62.051	1.00 12.21	В
5										
J	MOTA	4574	CA	LEU	266	36.054	7.367	63.519	1.00 13.54	В
	MOTA	4575	CB	LEU	266	35.692	5.986	64.068	1.00 13.06	В
	MOTA	4576	CG	LEU	266	34.327	5.426	63.711	1.00 14.69	В
	MOTA	4577	CD1	LEU	266	34.190	3.979	64.232	1.00 13.37	В
	MOTA	4578	CD2	LEU	266	33.266	6.350	64.285	1.00 14.29	В
10							7.763	64.193	1.00 14.66	В
10	MOTA	4579	С	LEU	266	37.366				
	MOTA	4580	0	LEU	266	38.437	7.776	63.580	1.00 16.77	В
	MOTA	4581	N	ALA	267	37.267	8.097	65.474	1.00 15.57	В
	MOTA	4582	CA	ALA	267	38.435	8.494	66.237	1.00 15.49	В
	MOTA	4583	CB	ALA	2 6 7	38.015	9.063	67.584	1.00 15.66	В
15	ATOM	4584	С	ALA	267	39.281	7.256	66.427	1.00 16.90	В
13										
	MOTA	4585	0	ALA	267 .	38.752	6.166	66.492	1.00 17.09	В
	MOTA	4586	N	GLY	268	40.594	7.432	66.535	1.00 18.45	В
	ATOM	4587	CA	GLY	268	41.470	6.286	66.684	1.00 19.06	В
~~	ATOM	4588	С	GLY	268	40.979	5.375	67.779	1.00 20.29	В
20	MOTA	4589	0	GLY	268	40.476	5.846	68.778	1.00 22.63	В
	MOTA	4590	N	SER	269	41.153	4.070	67.608	1.00 21.30	В
	ATOM .	4591	CA	SER	269	40.683	3.127	68.611	1.00 21.55	В
	ATOM	4592	CB	SER	269	40.151	1.869	67.940	1.00 19.85	В
	ATOM	4593	OG	SER	269	41.174	1.230	67.206	1.00 19.77	В
25										
25	ATOM	4594	С	SER	269	41.696	2.703	69.666	1.00 23.07	В
	ATOM	4595	0	SER	269	41.415	1.832	70.461	1.00 23.77	. В
		4596			270		3.336	69.682	1.00 24.72	. B
	MOTA		N	.GLU		42.863				
	MOTA	4597	CA	GLU	270	43.889	2.997	70.666	1.00 26.45	В
	MOTA	4598	CB	GLU	270	45.255	3.538	70.212	1.00 26.88	В
30									1.00 26.65	
50	MOTA	4599	CG.	GLU	270	45.365	5.074	70.179		В
	MOTA	4600	CD	GLU	270	44.769	5.716	68.938	1.00 25.63	В
	MOTA	4601	OF1	GLU	270	44.782	6.966	68.848	1.00 25.90	В
	MOTA	4602		GLU	270	44.299	4.966	68.063	1.00 25.37	В
	MOTA	4603	С	GLU	270	43.595	3.501	72.096	1.00 28.21	В
35	ATOM	4604	0	GLU	270	43.182	4.646	72.317	1.00 27.82	В.
	ATOM	4605	N	ASN	271	43.804	2.619	73.066	1.00 31.11	В
	MOTA ·	4606	CA	ASN	271	43.590	2.932	74.483	1.00 33.53	В
	MOTA	4607	CB	ASN	271	42.239	3.620	74.720	1.00 35.28	В
4.0	MOTA	4608	CG	ASN	271	41.046	2.755	74.319	1.00 37.15	В
40	MOTA	4609	OD1	ASN	271	39.892	3.159	74.481	1.00 37.89	В
	MOTA	4610		ASN	271	41.319	1.569	73.789	1.00 38.13	В
	MOTA	4611	С	ASN	271	43.617	1.669	75.326	1.00 34.61	В
	ATOM	4612	0	ASN	271	43.637	0.561	74.789	1.00 35.03	8
	ATOM	4613	N		287			79.742	1.00 41.72	В
15				ASN		41.713	11.898			
45	MOTA	4614	CA	ASN	287	40.726	12.291	78.737	1.00 42.10	В
	MOTA	4615	CB	ASN	. 287	41.389	13.166	77.666	1.00 43.36	В
	MOTA	4616	CG	ASN	287	42.137	14.334	78.263	1.00 44.01	В
	ATOM	4617	OD1	ASN	287	43.107	14.144	78.990	1.00 44.40	В
	ATOM	4618	ND2	ASN	287	41.688	15.548	77.967	1.00 44.56	В
50										
50	MOTA	4619	С	ASN	287	40.094	11.054	78.083	1.00 41.01	В
	ATOM	4620	0	ASN	287	40.802	10.130	77.661	1.00 42.34	В
	ATOM	4621	N	ILE	288	38.764	11.039	77.994	1.00 37.53	В
	MOTA							77.397	1.00 33.20	В
		4622	CA	ILE	288	38.053	9.905			
	MOTA	4623	СB	ILE	288	37.119	9.256	78.433	1.00 33.55	В
55	MOTA	4624	CG2	ILE	288	37.940	8.681	79.575	1.00 32.67	В
								78.967	1.00 33.79	
	MOTA	4625		ILE	288	36.142	10.308			В
	ATOM	4626	CD1	ILE	288	35.028	9.764	79.828	1.00 33.58	В
	MOTA	4627	С	ILE	288	37.221	10.255	76.147	1.00 29.09	В
~ ^	MOTA	4628	0	ILE	288	36.810	11.410	75.946	1.00 28.30	В
60	MOTA	4629	N	ASN	289	36.975	9.258	75.303	1.00 23.27	В
	ATOM	4630	CA	ASN	289	36.172	9.492	74.116	1.00 19.88	В
	MOTA	4631	CB	ASN	289	36.898	B.993	72.871	1.00 18.84	₿
	MOTA	4632	CG	ASN	289	36.379	9.622	71.601	1.00 19.35	В
	ATOM	4633		ASN	289	37.155	10.094	70.786	1.00 21.16	В
65										
65	MOTA	4634	ND2	ASN	289	35.065	9.612	71.415	1.00 18.98	В
	MOTA	4635	С	ASN		34.829	8.805	74.326	1.00 18.28	В
	MOTA	4636	0	ASN	289	34.628	7.609	74.013	1.00 16.89	В
	MOTA	4637	N	GLN	290	33.906	9.579	74.884	1.00 16.97	В
	MOTA	4638	CA	CLN	290	32.560	9.115	75.178	1.00 14.08	В
70										
70	MOTA	4639	CB	GLN	290	31.741	10.277	75.738	1.00 15.20	В
	ATOM	4640	CG	GLN	290	30.328	9.905	76.161	1.00 16.32	В
	MOTA	4641	CD	GLN	290	30.274	8.855	77.266	1.00 16.30	В
	MOTA	4642	OE1	GLN	290	29.232	8.273	77.512	1.00 16.57	В

	MOTA	4643	NE2	CI N	290	31.401	8.621	77.934	1.00 17.40	В
									1.00 12.46	В
	MOTA	4644		GLN	290	31.856	8.520	73.959		
	MOTA	4645	0	GLN	290	31.207	7.500	74.055	1.00 12.26	В
	MOTA	4646	N	SER	291	31.971	9.174	72.814	1.00 11.04	В
5	MOTA	4647	CA	SER	291	31.333	8.627	71.629	1.00 11.96	В
•					291	31.404	9.609	70.466	1.00 11.35	В
	MOTA	4648	СВ	SER						
	MOTA	4649	OG	SER	291	30.393	10.586	70.582	1.00 12.37	В
	MOTA	4650	С	SER	291	31.950	7.299	71.201	1.00 11.18	В
	ATOM	4651	0	SER	291	31.241	6.375	70.783	1.00 11.32	В
10						33.270	7.205	71.294	1.00 11.69	В
10	MOTA	4652	N	LEU	292					
	MOTA	4653	CA	LEU	292	33.965	5.984	70.919	1.00 11.36	В
	MOTA	4654	CB	LEU	292	35.485	6.237	70.902	1.00 9.67	В
	MOTA	4655	CG	LEU	292	36.263	5.054	70.334	1.00 10.97	В
	ATOM	4656	CD1		292	35.817	4.822	68.911	1.00 10.21	В
15			CD2		292	37.750	5.328	70.387	1.00 13.35	В
1,7	MOTA	4657								
	MOTA	4658	С	LEU	292	33.574	4.877	71.914	1.00 11.82	В
	MOTA	4659	0	LEU	292	33.287	3.724	71.527	1.00 11.11	В
	MOTA	4660	N	LEU	293	33.547	5.232	73.194	1.00 8.02	В
	ATOM	4661	CA	LEU	293	33.210	4.295	74.246	1.00 7.35	В
20								75.596	1.00 5.38	В
20	MOTA	4662	СВ	LEU	293	33.313	5.005			
	MOTA	4663	CG	LEU	293	34.410	4.587	76.570	1.00 6.04	В
	MOTA	4664	CD1	LEU	293	35.605	3.981	75.841	1.00 3.22	В.
	MOTA	4665	CD2	LEU	293	34.798	5.808	77.389	1.00 3.25	В
	MOTA	4666		LEU	293	31.802	3.747	74.071	1.00 7.33	·B
25			C							В
25	MOTA	4667	0	LEU	293	31.563	2.550	74.222	1.00 9.04	
	MOTA	4668	N	THR	294	30.874	4.646	73.775	1.00 8.36	В
	ATOM	4669	CA	THR	294	29.481	4.283	73.604	1.00 6.48	В
	ATOM	4670	СВ	THR	294	28.623	5.535	73.600	1.00 5.81	В
			0G1		294	28.889	6.251	74.804	1.00 6.32	В
20	ATOM	4671								
30	MOTA	4672	CG2		294	27.142	5.206	73.570	1.00 4.45	В
	MOTA	4673	С	THR	294	29.237	3.461	72.364	1.00 7.94	В
	MOTA	4674	0	THR	294	28.357	2.602	72.368	1.00 9.76	В
	ATOM	4675	N	LEU	295	30.016	3.706	71.310	1.00 6.67	В
					295	29.896	2.918	70.074	1.00 6.68	B
25	MOTA	4676	CA	LEU						
35	MOTA	-4677	CB	LEU	295	30.931	3.313	69.016	1.00 6.59	В
	MOTA	4678	CG	LEU	295	30.897	2.510	67.708	1.00 5.44	В
	MOTA	4679	CD1	LEU	295	29.555	2.668	67.036	1.00 4.15	В
	MOTA	4680		LEU	295	31.969	2.993	66.786	1.00 5.26	В
										В
40	MOTA	4681	Ç	LEU	295	30.228	1.473	70.403	1.00 8.24	
40	MOTA	4682	0	LEU	295	29.615	0.555	69.887	1.00 9.80	В
	MOTA	4683	N	GLY	296	31.214	1.290	71.276	1.00 9.60	В
	ATOM	4684	CA	GLY	296	31.611	-0.047	71.669	1.00 10.99	В
	ATOM	4685	c	GLY	296	30.551	-0.728	72.518	1.00 12.56	В
									1.00 12.84	В
45	MOTA	4686	0	GLY	296	30.275	-1.924	72.350		
45	MOTA	4687	N	ARG	297	29.954	0.037	73.426	1.00 12.22	В
	MOTA	4688	CA	ARG	297	28.928	-0.486	74.307	1.00 12.41	В
	MOTA	4689	CB	ARG	297	28.692	0.466	75.478	1.00 11.73	В
	MOTA	4690	CG	ARG	297	29.818	0.493	76.498	1.00 10.69	В
50	MOTA	4691	CD	ARG	297	29.767	1.736	77.378	1.00 11.84	В
50	MOTA	4692	NE	ARG	297	30.969	1.856	78.205	1.00 10.74	В
	MOTA	4693	CZ	ARG	297	31.409	2.993	78.734	1.00 10.49	В
	MOTA	4694	NH1	ARG	297	30.743	4.119	78.517	1.00 11.64	В
	ATOM	4695		ARG	297	32.504	3.003	79.486	1.00 9.73	В
	MOTA	4696	С	ARG	297	27.622	-0.708	73.569	1.00 13.86	В
55	MOTA	4697	0	ARG	297	26.798	-1.514	74.009	1.00 13.06	В
	MOTA	4698	N	VAL	298	27.426	0.014	72.464	1.00 14.33	В
	MOTA	4699	CA	VAL	298	26.216	-0.134	71.659	1.00 16.21	В
								70.696	1.00 16.05	В.
	MOTA	4700	CB	VAL	298	26.048	1.031			
~~	MOTA	4701	ÇG1	VAL	298	25.021	0.679	69.639	1.00 17.88	В
60	MOTA	4702	CG2	VAL	298	25:605	2.257	71.458	1.00 18.13	В
	MOTA	4703	С	VAL	298	26.281	-1.426	70.853	1.00 17.16	В
	ATOM	4704	ŏ	VAL	298	25.305	-2.173	70.774	1.00 18.74	В
	MOTA	4705	N	ILE	299	27.441	-1.691	70.262	1.00 18.24	В
	MOTA	4706	CA	ILE	299	27.645	-2.910	69.486	1.00 18.96	В
65	MOTA	4707	CB	ILE	299	29.019	-2.868	68.770	1.00 19.68	В
	MOTA	4708		ILE	299	29.368	-4.245	68.184	1.00 17.64	В
	MOTA	4709		ILE	299	28.983	-1.791	67.674	1.00 19.70	В
	MOTA	4710	CD1	ILE	299	30.314	-1.589	66.977	1.00 22.74	В
	MOTA	4711	С	ILE	299	27.551	-4.142	70.400	1.00 19.56	В
70	MOTA	4712	ŏ	ILE	299	27.027	-5.191	70.012	1.00 19.03	В
						28.043	-4.017	71.624	1.00 19.86	В
	MOTA	4713	N	THR	300					
	MOTA	4714	CA	THR	300	27.978	-5.136	72.551	1.00 20.92	В
	MOTA	4715	CB	THR	300	28.770	-4.841	73.824	1.00 20.58	В

WO 2004/004652

	MOTA	4716	0G1	THR	300	30.172	-4.893	73.533	1.00 21.97	В
	MOTA	4717	CG2		300	28.433	-5.845	74.903	1.00 21.65	В
	MOTA	4718	С	THR	300	26.525	-5.450	72.915	1.00 21.71	В
_	ATOM	4719	0	THR	300	26.134	-6.601	72.984	1.00 22.71	В
5	MOTA	4720	N	ALA	301	25.728	-4.413	73.139	1.00 23.13	В
_		4721	CA	ALA	301	24.337	-4.624	73.494	1.00 23.01	В
	MOTA									
	MOTA	4722	CB	ALA	301	23.694	-3.327	73.904	1.00 22.73	В
	MOTA	4723	С	ALA	301	23.589	-5.225	72.323	1.00 23.48	В
	MOTA	4724	0	ALA	301	22.652	-5.982	72.509	1.00 23.63	В
10						24.005	-4.872	71.111	1.00 23.21	В
10	MOTA	4725	N	LEU	302					
	MOTA	4726	CA	LEU	302	23.361	-5.392	69.911	1.00 24.59	В
	MOTA	4727	CB	LEU	302	23.737	-4.526	68.695	1.00 23.93	В
	MOTA	4728	CG	LEU	302	22.774	-3.511	68.059	1.00 22.99	В
	ATOM	4729	CD1		302	21.827	-2.952	69.058	1.00 20.71	В
15								67.440	1.00 21.49	В
IJ	MOTA	4730	CD2		302	23.579	-2.394			
	MOTA	4731	С	LEU	302	23.728	-6.861	69.656	1.00 25.70	В
	MOTA	4732	0	LEU	302	22.847	~7.695	69.406	1.00 24.83	В
	ATOM	4733	N	VAL	303	25.021	-7.170	69.731	1.00 27.74	В
								69.505	1.00 29.35	В
20	ATOM	4734	CA	VAL	303	25.527	-8.521			
20	MOTA	4735	CB	VAL	303	27.054	-8.549	69.593	1.00 29.55	В
	ATOM	4736	CG1	VAL	303	27.545	-9.975	69.439	1.00 30.49	В
	ATOM	4737		VAL	303	27.651	-7.641	68.524	1.00 30.24	В
					303			70.510	1.00 31.00	В
	MOTA	4738	С	VAL		24.985	-9.528			
~-	MOTA	4739	0	VAL	303		-10.631	70.160	1.00 30.43	В
25	MOTA	4740	N	GLU	304	24.927	-9.123	71.770	1.00 33.86	В
	MOTA	4741	CA	GLU	304	24.442	-9.986	72.838	1.00 36.40	В
			CB	GLU	304	25.130	-9.594	74.143	1.00 37.33	В
	MOTA	4742								
	MOTA	4743	CG	GLU	304	26.650	-9.690	74.076	1.00 39.18	В
	ATOM	4744	CD	GLU	304	27.316	-9.437	75.422	1.00 41.19	В
30	ATOM	4745	OE1	GLU	304	28.564	-9.473	75.490	1.00 42.27	В
-	MOTA	4746		GLU	304	26.594	-9.202	76.413	1.00 42.10	В
	MOTA	4747	С	GLU	304	22.922	-9.924	72.985	1.00 38.11	В
	MOTA	4748	0	GLU	304	22.334	-10.552	73.871	1.00 37.60	В
	MOTA	4749	N	ARG	305	22.303	-9.155	72.098	1.00 41.03	В
35	MOTA	4750	CA	ARG	305	20.860	-8.996	72.068	1.00 43.26	В
55									1.00 44.67	В
	MOTA	4751	СВ	ARG	305		-10.302	71.592		
	MOTA	4752	CG	ARG	305	20.602	-10.629	70.151	1.00 46.86	В
	MOTA	4753	CD	ARG	305	20.167	-12.025	69.716	1.00 49.68	В
	MOTA	4754	NE	ARG	305		-12.350	68.373	1.00 50.79	В
40								67.258	1.00 50.97	B
40	ATOM	4755	CZ	ARG	305		-11.753			
	MOTA	4756		ARG	305		-10.797	67.309	1.00 51.47	В.
	MOTA	4757	NH2	ARG	305	20.769	-12.097	66.089	1.00 51.54	В
	ATOM	4758	С	ARG	305	20.237	-8.514	73.367	1.00 43.49	В
		4759		ARG	305	19.142	-8.909	73.718	1.00 44.11	В
15	MOTA		0							
45	MOTA	4760	N	THR	306	20.951	-7.648	74.077	1.00 44.17	В
	MOTA	4761	CA	THR	306	20.444	-7.078	75.319	1.00 43.76	В
	MOTA	4762	CB	THR	306	21.535	-6.267	76.040	1.00 43.72	В
	MOTA	4763		THR	306	22.623	-7.131	76.399	1.00 43.84	В
50	MOTA	4764		THR	306	20.975	-5.602	77.288	1.00 43.30	В
50	MOTA	4765	С	THR	306	19.307	-6.139	74.912	1.00 44.17	В
	MOTA	4766	0	THR	306	19.388	-5.459	73.891	1.00 45.09	В
	MOTA	4767	N	PRO	307	18.226	-6.098	75.700	1.00 43.54	В
								76.846	1.00 43.66	В
	MOTA	4768	CD	PRO	307	17.925	-6.973			
	MOTA	4769	CA	PRO	307	17.080	-5.232	75.390	1.00 42.75	В
55	MOTA	4770	CB	PRO	307	16.101	-5.554	76.518	1.00 43.35	В
	MOTA	4771	CG	PRO	307	16.429	-7.001	76.834	1.00 44.16	В
									1.00 41.65	В
	MOTA	4772	C	PRO	307	17.408	-3.741	75.269		
	MOTA	4773	0	PRO	307	16.903	-3.049	74.384	1.00 41.15	В
	MOTA	4774	N	HIS	308	18.254	-3.247	76.166	1.00 39.72	В
60	MOTA	4775	CA	HIS	308	18.629	-1.839	76.164	1.00 37.51	В
VV										В
	MOTA	4776	CB	HIS	308	18.774	-1.336	77.587	1.00 39.81	
	MOTA	4777	CG	HIS	308	19.193	0.097	77.677	1.00 42.26	В
	MOTA	4778	CD2	HIS	308	20.336	0.664	78.127	1.00 43.26	В
	ATOM	4779		HIS	308	18.391	1.131	77.247	1.00 43.54	В
65										В
0.5	MOTA	4780		HIS	308	19.024	2.278	77.428	1.00 44.49	
	MOTA	4781	NE2	HIS	308	20.205	2.024	77.959	1.00 44.29	В
	MOTA	4782	С	HIS	308	19.937	-1.559	75.446	1.00 35.63	В
	MOTA	4783	ō	HIS	308	20.958	-2.160	75.745	1.00 36.69	В
						19.889	-0.627	74.501	1.00 32.04	В
70	MOTA	4784	N	VAL	309					
70	MOTA	4785	CA	VAL	309	21.071	-0.237	73.731	1.00 27.44	В
	MOTA	4786	CB	VAL	309	20.821	-0.415	72.218	1.00 27.23	В
	ATOM	4787		VAL	309	22.090	-0.111	71.426	1.00 27.83	В
						20.336	-1.823	71.946	1.00 25.00	В
	MOTA	4788	-62	VAL	309	20.330	-1.023	11.340	1.00 23.00	B

	MOTA	4789	С	VAL	309	21.307	1.234	74.059	1.00 26.45	В
	ATOM	4790	ŏ	VAL	309	20.501	2.090	73.724	1.00 26.41	В
	ATOM	4791	N	PRO	310	22.432	1.538	74.715	1.00 25.12	В
	ATOM	4792	CD	PRO	310	23.508	0.587	75.062	1.00 23.57	В
5	MOTA	4793	CA	PRO	310	22.780	2.914	75.107	1.00 22.73	В
•	MOTA	4794	СВ	PRO	310	23.985	2.701	76.007	1.00.23.56	В
	ATOM	4795	œ	PRO	310	24.671	1.504	75.354	1.00 23.96	В
	MOTA	4796	c	PRO	310	23.017	3.958	73.999	1.00 22.22	В
	ATOM	4797	ŏ	PRO	310	23.965	4.735	74.073	1.00 21.14	В
10	ATOM	4798	N	TYR	311	22.147	4.000	72.995	1.00 21.70	В
	ATOM	4799	CA	TYR	311	22.294	4.967	71.899	1.00 22.33	В
	MOTA	4800	СВ	TYR	311	21.083	4.978	70.970	1.00 22.30	В
	MOTA .	4801	cc	TYR	311	20.861	3.721	70.154	1.00 24.68	В
•	ATOM	4802		TYR	311	21.773	3.322	69.177	1.00 25.08	В
- 15	ATOM	4803		TYR	311	21.555	2.171	68.411	1.00 25.18	В
	ATOM	4804		TYR	311	19.717	2.937	70.347	1.00 24.09	В
•	MOTA	4805		TYR	311	19.493	1.786	69.590	1.00 24.09	В
	ATOM	4806	CZ	TYR	311	20.416	1.405	68.623	1.00 24.98	В
	ATOM	4807	ОН	TYR	311	20.211	0.246	67.893	1.00 24.66	В
20	ATOM	4808	c	TYR	311	22.431	6.429	72.338	1.00 21.98	В
	MOTA	4809	õ	TYR	311	23.180	7.188	71.741	1.00 23.57	В
	ATOM	4810	N	ARG	312	21.707	6.813	73.384	1.00 20.49	В.
	MOTA	4811	CA	ARG	312	21.726	8.203	73.861	1.00 19.38	В
	ATOM	4812	CB	ARG	312	20.447	8.544	74.640	1.00 21.56	·B
25	MOTA	4813	CG	ARG	312	19.150	8.149	73.951	1.00 24.98	В
	MOTA	4814	CD	ARG	312	17.949	8.887	74.534	1.00 27.94	В
	MOTA	4815	NE	ARG	312	16.688	8.240	74.175	1.00 31.63	В
	MOTA	4816	CZ	ARG	312	16.262	7.086	74.688	1.00 34.10	В
	MOTA	4817	NH1	ARG	312	16.996	6.445	75.590	1.00 37.15	В
30	MOTA	4818	NH2	ARG	312	15.101	6.566	74.304	1.00 33.60	В
	MOTA	4819	С	ARG	312	22.875	8.612	74.779	1.00 17.27	В
	MOTA	4820	0	ARG	312	22.933	9.756	75.235	1.00 16.64	₿
	MOTA	4821	N	GLU	313	23.786	7.686	75.054	1.00 14.25	В
25	MOTA	4822	CA	GLU	313	24.908	7.986	75.935	1.00 11.55	В
35	ATOM	4823	CB	GLU	313	25.410	6.693	76.590	1.00 11.14	В
•	MOTA	4824	CG	GLU	313	24.416	6.136	77.618	1.00 11.41	В
	MOTA	4825	CD	GLU	313	24.916	4.905	78.379	1.00 12.57	В
	MOTA	4826		GLU	313	26.071		78.834	1.00 11.41	В
40	ATOM	4827		GLU	313	24.149	3.935	78.569	1.00 14.80	В
40	MOTA	4828	C	GLU	313	26.053	8.746	75.271	1.00 10.23	В
	MOTA	4829	0	GLU	313	27.066	8.960	75.891	1.00 10.15	В
	MOTA.	4830	N	SER	314	25.865	9.164	74.017	1.00 10.36	B B
	MOTA	4831	CA	SER	314	26.878	9.912	73.263	1.00 9.41	В
45	ATOM	4832	CB	SER	314	28.000	9.018	72.732	1.00 10.81	В
73	MOTA	4833	OG	SER	314	27.643	8.320 10.511	71.544 72.031	1.00 9.64 1.00 10.05	В.
	ATOM ATOM	4834 4835	0	SER SER	314 314	26.235 25.190	10.052	71.583	1.00 9.18	В
	ATOM	4836	N		. 315	26.887	11.544	71.501	1.00 10.81	В
	ATOM	4837	CA	LYS	315	26.428	12.259	70.320	1.00 9.07	В
50	ATOM	4838	CB	LYS	315	27.254	13.527	70.063	1.00 9.50	В
, 50	ATOM	4839	CG	LYS	315	27.390	14.463	71.236	1.00 9.25	B
	ATOM	4840	CD	LYS	315	26.058	14.973	71.686	1.00 10.89	В
	ATOM	4841	CE	LYS	315	26.244	16.156	72.620	1.00 13.02	В
	MOTA	4842	NZ	LYS	315	26.918	17316	71.937	1.00 14.10	В
55	ATOM	4843	C	LYS	315	26.556	11.414	69.077	1.00 8.68	В
	ATOM	4844	o	LYS	315	25.652	11.383	68.282	1.00 10.14	В
	ATOM	4845	N	LEU	316	27.683	10.721	68.931	1.00 8.28	В
	ATOM	4846	CA	LEU	316	27.928	9.888	67.763	1.00 7.48	В.
	MOTA	4847		LEU	316	29.297	9.205	67.867	1.00 6.90	В
60	MOTA	4848		LEU	316	29.679	8.277	66.713	1.00 8.06	В
	MOTA	4849	CD1	LEU	316	30.018	9.097	65.484	1.00 10.24	В
	MOTA	4850	CD2	LEU	316	30.850	7.452	67.129	1.00 8.22	В
	MOTA	4851	С	LEU	316	26.852	8.821	.67.590	1.00 9.38	В
	ATOM	4852	0	LEU	316	26.241	8.733	66.523	1.00 9.82	В
65	MOTA	4853	N	THR	317	26.588	8.040	68.642	1.00 9.80	В
	MOTA	4854	CA	THR	317	25.599	6.965	68.534	1.00 10.18	В
	MOTA	4855		THR	317	25.672	5.952	69.674	1.00 10.15	В
	MOTA	4856	OG1	THR	317	25.527	6.642	70.909	1.00 10.81	В
	ATOM	4857		THR	317	27.004	5.185	69.661	1.00 9.59	В
70	MOTA	4858	С	THR	317	24.175	7.455	68.484	1.00 10.03	В
	ATOM	4859		THR	317	23.295	6.709	68.146	1.00 11.71	В
	ATOM	4860		ARG	318	23.947	8.703	68.867	1.00 9.69	В
	MOTA	4861	CA	ARG	318	22.607	9.256	68.785	1.00 9.04	В

	MOTA	4862	СВ	ARG	318	22.454	10.464	69.703	1.00 13.23	В
								71.004		B .
	MOTA	4863	CG	ARG	318	21.719	10.147		1.00 19.08	
	MOTA	4864	CD	ARG	318	22.058	11.133	72.115	1.00 22.73	В
_	MOTA	4865	NE	ARG	318	21.617	12.495	71.828	1.00 26.31	В
5	MOTA	4866	CZ	ARG	318	20.345	12.863	71.705	1.00 27.29	В
-	MOTA	4867	NHI		318	19.383	11.963	71.849	1.00 28.67	В
								71.429		В
	ATOM	4868	NH2		318	20.036	14.124			
	MOTA	4869	С	ARG	318	22.434	9.679	67.344	1.00 8.51	B
	MOTA	4870	0	ARG	318	21.418	9.412	66.720	1.00 10.84	В
10	MOTA	4871	N	ILE	319	23.445	10.339	66.799	1.00 5.66	В
						23.352	10.766	65.410	1.00 5.05	• В
	MOTA	4872	CA	ILE	319					
	MOTA	4873	CB	ILE	319	24.591	11.627	65.014	1.00 5.19	В
	MOTA	4874	CG2	ILE	319	24.531	11.976	63.544	1.00 6.51	В
	MOTA	4875	CG1	ILE	319	24.603	12.935	65.826	1.00 5.47	В
15	ATOM	4876	CD1		319	25.833	13.774	65.632	1.00 2.71	В
			c	ILE	319	23.227	9.551	64.460	1.00 3.03	В
	MOTA	4877								
	MOTA	4878	0	ILE	319	22.361	9.511	63.590		В
	MOTA	4879	N	LEU	320	24.067	8.540	64.657	1.00 4.41	В
	MOTA	4880	CA	LEU	320	24.056	7.376	63.767	1.00 5.60	В
20	ATOM	4881	CB	LEU	320	25.490	6.931	63.451	1.00 2.81	В
		4882	CG	LEU	320	26.437	7.964	62.845	1.00 2.57	В
	MOTA									
	MOTA	4883		LEU	320	27.873	7.442	62.786	1.00 2.20	В
	MOTA	4884	CD2	LEU	320	25.955	8.334	61.476	1.00 1.00	В
	ATOM	4885	С	LEU	320	23.313	6.122	64.235	1.00 7.52	В
25	MOTA	4886	0	LEU	320	23.620	5.045	63.776	1.00 7.94	В
	ATOM	4887	N	GLN	321	22.306	6.258	65.094	1.00 10.60	. в
	MOTA	4888		GLN	321	21.629	5.057	65.604	1.00 16.44	В
	MOTA	4889	СВ	GLN	321	20.679	5.362	66.775	1.00 18.94	В
	MOTA	4890	CG	GLN	321	19.433	6.153	66.458	1.00 22.43	В
30	MOTA	4891	CD	GLN	321	18.593	6.391	67.707	1.00 25.16	В
	ATOM	4892		GLN	321	18.121	5.453	68.338	1.00 26.09	В
									1.00 26.05	В
	MOTA	4893		GLN	321	18.418	7.658	68.071		
	ATOM	4894	С	GLN	321	20.882	4.186	64.617	1.00 16.64	В
	MOTA	4895	0	GLN	321	20.700	2.992	64.870	1.00 16.23	В
35	MOTA	4896	N	ASP	322	20.439	4.759	63.505	1.00 17.01	В
	ATOM	4897	CA	ASP	322	19.762	3.931	62.521	1.00 19.03	В
	ATOM								1.00 20.75	B
		4898	CB	ASP	322	18.952	4.755	61.535		
	MOTA	4899	CG	ASP	322	17.983	3.B96	60.727	1.00 22.50	В
: _	MOTA	4900	OD1	ASP	322	17.835	4.125	59.506	1.00 24.17	B
40	MOTA	4901	OD2	ASP	322	17.352	2.997	61.327	1.00 21.00	В
	MOTA	4902	c	ASP	322	20.803	3.139	61.722	1.00 20.46	В
								60.861	1.00 23.04	В
	MOTA	4903	0	ASP	322	20.467	2.335			
	MOTA	4904	N	SER	323	22.076	3.385	62.006	1.00 20.16	В
	MOTA	4905	ÇA	SER	323	23.164	2.670	61.353	1.00 18.88	В
45	MOTA	4906	CB	SER	323	24.299	3.643	61.077	1.00 17.96	В
_	MOTA	4907	OG	SER	323	23.842	4.642	60.187	1.00 18.62	В
	ATOM	4908	Č	SER	323	23.625	1.518	62.259	1.00 18.52	В
	MOTA	4909	0	SER	323	24.368	0.647	61.838	1.00 19.83	В
	ATOM	4910	N	LEU	324	23.168	1.512	63.507	1.00 16.09	В
50	MOTA	4911	CA	LEU	324	23.541	0.449	64.420	1.00 16:61	В
	MOTA	4912	CB	LEU	324	24.257	1.026	65.648	1.00 15.87	В
	ATOM	4913	CG	LEU	324	25.679	1.595	65.539	1.00 14.59	В
								64.722	1.00 13.37	В
	MOTA	4914		LEU	324	26.545	0.643			
~ ~	MOTA	4915		LEU	324	25.649	2.965	64.909	1.00 11.67	В
55	MOTA	4916	С	LEU	324	22.300	-0.343	64.834	1.00 17.48	В
	MOTA	4917	0	LEU	324	21.651	-0.025	65.814	1.00 16.83	В
	ATOM	4918	N	GLY	325	21.983	-1.387	64.071	1.00 17.97	В
•									1.00 18.49	В
	MOTA	4919	CA	GLY	325	20.818	-2.203	64.377		
	MOTA	4920	С	GLY	325	19.498	-1.576	63.939	1.00 19.29	В
60	MOTA	4921	0	GLY	325	18.427	-1.950	64.423	1.00 19.24	В
	ATOM	4922	N	GLY	326	19.573	-0.630	63.007	1.00 19.01	В
	ATOM	4923	CA	GLY	326	18.382	0.052	62.539	1.00 18.79	В
	MOTA	4924	C	GLY	326	17.935	-0.373	61.165	1.00 19.04	В .
	MOTA	4925	0	GLY	326	17.931	-1.550	60.861	1.00 18.81	. В
65	MOTA	4926	N	ARG	327	17.565	0.603	60.341	1.00 19.26	В
	MOTA	4927	CA	ARG	327	17.106	0.336	58.991	1.00 20.71	В
	ATOM	4928	СВ	ARG	327	15.731	0.970	58.761	1.00 22.28	В
						14.591				В
	MOTA	4929	CG	ARG	327		0.225	59.443	1.00 25.87	
70	MOTA	4930	CD	ARG	327	13.233	0.703	58.976	1.00 28.38	В
70	MOTA	4931	NE	ARG	327	12.260	-0.388	58.957	1.00 33.27	В
	MOTA	4932	CZ	ARG	327	12.370	-1.477	58.193	1.00 36.86	В
	MOTA	4933		ARG	327	13.412	-1.639	57.382	1.00 38.23	В
									1.00 38.97	В
	MOTA	4934	NHZ	ARG	327	11.422	-2.399	58.213	1.00 30.37	В

	MOM	4935	_	ARG	327	18.07	,,	0.784	57.899	1.00	20 64	В
	MOTA MOTA	4936	С 0	ARG	327	17.72		0.788	56.718	1.00		В
	MOTA	4937	N	THR	328	19.29		1.127	58.293		19.88	В
	MOTA	4938	CA	THR	328	20.31		1.568	57.349	1.00	18.38	В
5	MOTA	4939	СB	THR	328	21.13	33	2.694	57.948	1.00	16.59	В
	ATOM	4940	OG1	THR	328	20.26		3.780	58.254		15.01	В
	MOTA	4941	CG2		328	22.17		3.171	56.975		16.39	В
	MOTA	4942	С	THR	328	21.27		0.449	56.971		17.88	В
10	MOTA	4943	0	THR	328	21.64		-0.343	57.808		18.85	В
10	MOTA	4944	N	ARG	329	21.69		0.380 -0.648	55.701 55.284		18.85 18.48	B B
	MOTA	4945	·CA	ARG	329 329	22.60 22.64		-0.784	53.756		21.31	В
	MOTA MOTA	4946 4947	CB	ARG ARG	329	23.54		-1.929	53.249		27.66	В
	MOTA	4948	CD	ARG	329	23.8		-1.771	51.748		32.45	В
15	MOTA	4949	NE	ARG	329	24.6		-2.837	51.190		38.68	В
	MOTA	4950	CZ	ARG	329	25.8		-3.147	51.626		43.03	В
	MOTA	4951	NH1	ARG	329	26.4		-2.476	52.641		45.11	В
	MOTA	4952		ARG	329	26.5		-4.122	51.032		45.04	В
20	MOTA	4953	С	ARG	329	23.9		-0.161	55.840		14.99	В
20	MOTA	4954	0	ARG	329	24.3		0.948	55.568		16.21	B B
	MOTA	4955	N	THR	330	24.5		-0.987	56.632 57.235	1.00	12.23	В.
	MOTA	4956	CA	THR	330 330	25.8 25.7		-0.559 -0.515	58.801		11.85	В.
	MOTA MOTA	4957 4958	CB OC1	THR THR	330	24.6		0.378	59.185		12.21	·B
25	ATOM	4959		THR	330	27.0		-0.038	59.432		10.17	В
	MOTA	4960	c	THR	330	27.0		-1.424	56.857		11.32	В
	ATOM	4961	ō	THR	330	26.9		-2.639	56.699	1.00	11.14	В
	ATOM	4962	N	SER	331	28.1	76	-0.760	56.722	1.00	10.11	В
••	MOTA	4963	CA.	SER	331	29.4		-1.390	56.396	1.00	9.70	В
30	MOTA	4964	СВ	SER	331	29.7		-1.121	54.938		10.15	В
	MOTA	4965	OG	SER	331	29.6		-2.305	54.201		16.41	В
	MOTA	4966	C	SER	331	30.5		-0.861	57.292	1.00	8.79	· B
	MOTA	4967	0	SER	331	30.6		0.314	57.575 57.761	1.00	10.25 7.54	B B
35	ATOM	4968 ·4969	N CA	ILE ILE	332 332	31.4 32.5		-1.309	58.580	1.00	5.00	· B
55	MOTA MOTA	4970	CB	ILE	332	32.4		-1.896	59.997	1.00	3.72	В
	MOTA	4971		ILE	332	33.7		-1.623	60.719	1.00	1.00	В
	ATOM	4972		ILE	332	31.2		-1.308	60.755	1.00	1.20	В
	ATOM	4973	CD1		332	31.0		-1.996	62.080	1.00	1.00	В
40	ATOM	4974	С	ILE	332	33.8	25	-1.761	57.915	1.00	6.57	В
	MOTA	4975	0	ILE	332	33.9		-2.921	57.505	1.00	6.08	В
	MOTA	4976	N	ILE	333	34.7		-0.824	57.779	1.00	6.74	В
	MOTA	4977	CA	ILE	333	36.0		-1.110	57.203	1.00	7.94	В
45	MOTA	4978	CB	ILE	333	36.3		-0.134	56.043	1.00	7.86 10.20	B B
40	MOTA	4979	CG2	ILE	333 333	37.7 35.3		-0.446 -0.292	55.482 54.935	1.00	9.26	В
	ATOM ATOM	4980 4981		ILE	333	35.5		0.532	53.743	1.00	9.53	В
	MOTA	4982	C	ILE	333	37.0		-0.961	58.362	1.00		В
	MOTA	4983	ō	ILE	333	37.3		0.139	58.833	1.00		В
50	MOTA	4984	N	ALA	334	37.5		-2.087	58.842	1.00	9.27	В
	MOTA	4985	CA	ALA	334	38.5	10	-2.064	59.950	1.00		В
	MOTA	4986	CB	ALA		38.3		-3.281	60.815	1.00		В
	MOTA	4987	C	ALA	334	39.9		-2.033	59.366	1.00		В
55	MOTA	4988	0	ALA	334	40.2		-2.887	58.558	1.00		B B
33	MOTA	4989	N	THR	335	40.6		-1.039 -0.877	59.780 59.267		10.59 11.33	В
	MOTA MOTA	4990 4991	CA CB	THR THR	335 335	42.0 42.3		0.587	58.833		11.54	В
	MOTA	4992		THR	335	42.1		1.471	59.959		11.31	В.
	ATOM	4993		THR	335	41.3		0.973	57.707		10.89	В
60	MOTA	4994	c	THR	335	43.0		-1.311	60.297		11.80	В
	MOTA	4995	ō	THR	335	42.8		-1.044	61.479		11.91	В
	MOTA	4996	N	ILE	336	44.1		-1.981	59.825	1.00	10.99	В
	MOTA	4997	CA	ILE	336	45.1	150	-2.494	.60.691	1.00		В
~~	MOTA	4998	CB	ILE	336	44.9		-4.002	60.867	1.00		В
65	MOTA	4999		ILE	336	43.7		-4.275	61.631	1.00		В
	MOTA	5000		ILE	336	44.9		-4.688	59.501	1.00		В
	MOTA	5001		ILE	336	44.9		-6.187	59.570	1.00		В
	MOTA	5002	C	ILE	336	46.5		-2.201	60.175 59.054		12.29	В В
70	MOTA	5003	0	ILE	336	46.3 47.9		-1.683 -2.533	61.011		15.10	В
, 0	MOTA MOTA	5004 5005	N CA	SER SER	337 337	48.9		-2.344	60.716		17.38	В
	MOTA	5006	CB.	SER	337	49.6		-1.619	61.848		16.32	В
	MOTA	5007	OG	SER	337	51.0		-1.842	61.757		15.90	В

	MOTA	5008	С	SER	337	49.690	-3.686	60.569	1.00 18.53	В
	MOTA	5009	ŏ	SER	337	49.393	-4.652	61.292	1.00 19.54	В
	MOTA	5010	N	PRO	338	50.643	-3.770	59.618	1.00 17.27	В
						50.949	-2.790	58.555	1.00 15.95	B
5	MOTA	5011	CD	PRO	338					В
,	MOTA	5012	CA	PRO	338	51.398	-5.005	59.403	1.00 15.90	
	MOTA	5013	CB	PRO	338	51.851	-4.868	57.953	1.00 14.63	В
	MOTA	5014	CC	PRO	338	52.158	-3.420	57.858	1.00 15.30	В
	MOTA	5015	С	PRO	338	52.574	-5.124	60.360	1.00 15.45	В
	MOTA	5016	0	PRO	338	53.206	-6.145	60.420	1.00 15.18	В
10	MOTA	5017	N	ALA	339	52.844	-4.053	61.103	1.00 16.79	В
	MOTA	5018	CA	ALA	339	53.986	-3.999	62.025	1.00 19.03	. в
	MOTA	5019	СB	ALA	339	54.296	-2.536	62.409	1.00 17.80	В
	MOTA	5020	C	ALA	339	53.813	-4.824	63.277	1.00 19.74	В
	ATOM	5021	ō	ALA	339	52.727	-4.883	63.824	1.00 21.39	В
15	MOTA	5022	N	SER	340	54.896	-5.452	63.734	1.00 20.20	В
10	ATOM	5023	CA	SER	340	54.825	-6.278	64.940	1.00 20.54	В
	MOTA	5024	CB	SER	340	56.045	-7.193	65.075	1.00 21.46	. В
					340	57.233	-6.430	65.182	1.00 24.93	В
	MOTA	5025	og	SER					1.00 19.22	В
20	MOTA	5026	C	SER	340	54.727	-5.453	66.208		
20	MOTA	5027	0	SER	340	54.293	-5.941	67.224	1.00 17.09	В
	MOTA	5028	N	LEU	341	55.131	-4.191	66.143	1.00 20.29	В
	MOTA	5029	CA	LEU	341	55.048	-3.345	67.328	1.00 21.64	В
	MOTA	5030	CB	LEU	341	56.040	-2.184	67.248	1.00 23.99	В
~-	MOTA	5031	CG	LEU	341	55.610	-0.896	66.546	1.00 27.23	В
25	MOTA	5032	CD1	LEU	341	55.641	0.269	67.554	1.00 26.67	В
	MOTA	5033	CD2	LEU	341	56.542	-0.630	65.357	1.00 28.22	. В
	MOTA	5034	С	LEU	341	53.629	-2.807	67.502	1.00 21.40	В
	MOTA	5035	0	LEU	341	53.350	-2.053	68.424	1.00 21.64	В
	ATOM	5036	N	ASN	342	52.736	-3.227	66.613	1.00 21.16	В
30	ATOM	5037	CA	ASN	342	51.335	-2.815	66.664	1.00 21.98	В
	MOTA	5038	СВ	ASN	342	50.943	-2.165	65.352	1.00 20.54	В
	MOTA	5039	CG	ASN	342	51.586	-0.826	65.172	1.00 21.64	В
		5040		ASN	342	51.897	-0.423	64.046	1.00 19.82	В
	MOTA	5041		ASN	342	51.785	-0.107	66.285	1.00 20.76	В
35	MOTA						-4.011	66.892	1.00 22.33	В.
33	MOTA	5042	C	ASN	342	50.415				В
	ATOM	5043	0	ASN	342	49.201	-3.909	66.761	1.00 22.21	
	MOTA	5044	N	LEU	343	51.023	-5.135	67.254	1.00 23.56	В
	MOTA	5045	CA	LEU	343	50.334	-6.406	67.488	1.00 24.35	В
40	MOTA	5046	СВ	LEU	343	51.360	-7.435	67.992	1.00 25.91	В
40	MOTA	5047	CG	LEU	343	50.986	-8.890	68.316	1.00 28.30	В
	MOTA	5048		LEU	343	50.524	-8.995	69.761	1.00 29.51	В
	MOTA	5049	CD2	LEU	343	49.930	-9.392	67.334	1.00 28.29	В
	ATOM	5050	С	LEU	343	49.119	-6.347	68.412	1.00 22.80	В
	MOTA	5051	0	LEU	343	48.024	-6.756	68.045	1.00 21.40	В
45	MOTA	5052	N	GLU	344	49.305	-5.831	69.614	1.00 23.08	В
	ATOM	5053	CA	GLU	344	48.189	-5.745	70.545	1.00 22.34	В
	MOTA	5054	CB	GLU	344	48.628	-5.122	71.861	1.00 24.68	В
	MOTA	5055	CG	GLU	344	47.491	-4.875	72.821	1.00 30.10	В
	ATOM	5056	CD	GLU	344	47.965	-4.715	74.263	1.00 34.59	В
50	ATOM	5057		GLU	344	48.866	-3.886	74.538	1.00 36.85	В
	MOTA	5058		GLU	344	47.422	-5.428	75.134	1.00 36.33	В
	MOTA	5059	č	GLU	344	47.002	-4.960	70.002	1.00 19.86	В
	MOTA	5060	ŏ	GLU	344	45.894	-5.425	70.097	1.00 20.25	В
		5061	N		345	47.241	-3.770	69.452	1.00 17.13	В
55	MOTA			GLU		46.141		68.907	1.00 16.35	В
23	MOTA	5062	CA	GLU	345		-2.974			. B
	MOTA	5063	CB	GLU	345	46.585	-1.527	68.589	1.00 15.68	
	MOTA	5064	CG	GLU	345	46.803	-0.645	69.824	1.00 13.57	В
	MOTA	5065	CD	GLU	345	45.528	-0.391	70.618	1.00 13.00	В
(0	MOTA	5066	OE1		345	45.623	0.062	71.768	1.00 14.32	В
60	MOTA	5067		GLU	345	44.419	-0.628	70.111	1.00 13.44	В
	MOTA	5068	С	GLU	345	45.528	-3.626	67.659	1.00 14.78	В
	MOTA	5069	0	GLU	345	44.326	-3.544	67.442	1.00 14.79	В
	MOTA	5070	N	THR	346	46.350	-4.284	66.846	1.00 14.54	В
	ATOM	5071	CA	THR	346	45.863	-4.959	65.641	1.00 14.71	В
65	ATOM	5072	СВ	THR	346	47.046	-5.572	64.839		В
-	MOTA	5073		THR	346	47.870	-4.523	64.301	1.00 19.38	В
	ATOM	5074		THR	346	46.520	-6.467	63.721	1.00 15.93	В
	ATOM	5075	C	THR	346	44.888	-6.075	66.057	1.00 14.75	В
	ATOM	5076	ŏ	THR	346	43.863	-6.320	65.403	1.00 12.97	В
70		5077			347	45.210	-6.741	67.165	1.00 15.11	В
70	MOTA		N	LEU					1.00 15.11	B
	MOTA	5078	CA	LEU	347	44.371	-7.819	67.693	1.00 14.94	
	MOTA	5079	CB	LEU	347	45.080	-8.601	68.797		В
	MOTA	5080	CG	LEU	347	46.253	-9.465	68.342	1.00 12.75	В

ATOM 5106 N GLU 351 39.443 -8.254 66.658 1.00 18.22 B ATOM 5107 CA GLU 351 38.514 -8.842 67.609 1.00 19.87 B ATOM 5108 CB GLU 351 38.514 -8.842 67.609 1.00 19.87 B ATOM 5109 CG GLU 351 38.424 -9.791 69.965 1.00 26.42 B ATOM 5110 CD GLU 351 38.420 -11.196 69.403 1.00 30.21 B ATOM 5111 OEI GLU 351 39.481 -11.771 69.051 1.00 30.21 B ATOM 5111 OE2 GLU 351 39.481 -11.772 69.309 1.00 32.89 B ATOM 5113 C GLU 351 37.289 -11.724 69.309 1.00 32.89 B ATOM 5113 C GLU 351 37.289 -11.724 69.309 1.00 19.57 B ATOM 5116 CA TYR 352 36.258 -5.756 67.546 1.00 19.18 B ATOM 5116 CA TYR 352 36.258 -5.756 67.546 1.00 19.55 B ATOM 5116 CA TYR 352 36.816 -4.348 67.891 1.00 14.25 B ATOM 5117 CB TYR 352 35.105 -2.729 66.933 1.00 11.26 B ATOM 5120 CEI TYR 352 35.105 -2.729 66.933 1.00 11.26 B ATOM 5120 CEI TYR 352 35.105 -2.729 66.933 1.00 11.26 B ATOM 5120 CEI TYR 352 35.570 -2.654 69.282 1.00 11.26 B ATOM 5120 CEI TYR 352 34.020 -1.649 67.067 1.00 11.17 B ATOM 5120 CEI TYR 352 34.020 -1.649 69.282 1.00 10.01 5 B ATOM 5120 CEI TYR 352 34.024 -1.078 68.322 1.00 11.62 B ATOM 5120 CEI TYR 352 34.024 -1.078 68.322 1.00 11.62 B ATOM 5120 CEI TYR 352 34.024 -1.078 68.322 1.00 11.62 B ATOM 5120 CEI TYR 352 34.024 -1.078 68.322 1.00 11.62 B ATOM 5120 CEI TYR 352 34.024 -1.078 68.322 1.00 11.62 B ATOM 5120 CEI TYR 352 34.024 -1.078 68.322 1.00 11.62 B ATOM 5120 CEI TYR 352 34.024 -1.078 68.322 1.00 11.62 B ATOM 5120 CEI TYR 352 34.024 -1.078 68.322 1.00 11.62 B ATOM 5120 CEI TYR 352 34.024 -1.078 68.322 1.00 11.62 B ATOM 5120 CEI TYR 352 34.024 -1.078 68.322 1.00 11.62 B ATOM 5120 CEI TYR 352 34.024 -1.078 68.322 1.00 11.62 B ATOM 5120 CEI TYR 352 34.027 -1.584 69.282 1.00 11.62 B ATOM 5120 CEI TYR 352 34.027 -1.584 69.282 1.00 11.62 B ATOM 5120 CEI TYR 352 34.027 -1.078 68.322 1.00 11.62 B ATOM 5120 CEI TYR 352 34.027 -1.078 68.322 1.00 11.62 B ATOM 5120 CEI TYR 352 34.027 -1.078 68.322 1.00 11.62 B ATOM 5120 CEI TYR 352 34.027 -1.078 68.322 1.00 11.62 B ATOM 5120 CEI TYR 352 35.700 -2.654 69.282 1.00 11.62 B ATOM 5130 CEI TYR 352 35.700 -2.654 6											
ATOM 5082 CD2 LEU 347		MOTA	5081	CD1	LEH	347	46.845	-10.156	69.559	1.00 9.82	В
5 ATOM 5084 O LEU 347											
5 ATOM 5089 O LEU 347											
55 ATOM 5085 C SER 348 41,917 -6.107 68.872 1.00 14.94 B ATOM 5086 CA SER 348 41,917 -5.514 69.425 1.00 12.88 B ATOM 5088 OC SER 348 42,286 -4.288 70.204 1.00 11.62 B ATOM 5089 C SER 348 42.841 -4.556 71.416 1.00 11.62 B ATOM 5089 C SER 348 42.841 -4.556 71.416 1.00 11.62 B ATOM 5089 C SER 348 40,974 -5.180 68.303 1.00 12.87 B ATOM 5090 C SER 348 39.809 -5.505 681.305 1.00 12.87 B ATOM 5091 N THR 349 41.494 -4.518 67.281 1.00 12.38 B ATOM 5091 N THR 349 41.697 -4.121 661.515 1.00 11.407 B ATOM 5092 CA THR 349 40.672 -4.121 661.515 1.00 11.407 B ATOM 5093 CR THR 349 41.887 -2.096 65.535 1.00 17.94 B ATOM 5093 CR THR 349 41.887 -2.096 65.535 1.00 17.94 B ATOM 5095 CC2 THR 349 40.672 -5.125 661.515 1.00 11.07 140 B ATOM 5095 CC2 THR 349 40.732 -5.123 661.288 1.00 15.46 B ATOM 5095 CC2 THR 349 40.732 -5.123 661.288 1.00 15.46 B ATOM 5095 CC2 THR 349 40.732 -5.123 661.288 1.00 15.00 B ATOM 5099 CA LEU 350 40.226 -7.518 64.266 1.00 14.08 B ATOM 5099 CA LEU 350 40.226 -7.518 64.266 1.00 14.08 B ATOM 5100 CB LEU 350 40.226 -7.518 64.266 1.00 15.00 B ATOM 5101 CC LEU 350 41.967 -7.518 64.268 1.00 15.00 B ATOM 5101 CC LEU 350 41.967 -9.038 62.214 1.00 10.95 B ATOM 5103 CC LEU 350 41.967 -9.038 62.241 1.00 10.95 B ATOM 5103 CC LEU 350 39.162 -8.172 65.367 1.00 16.48 B ATOM 5101 CC LEU 350 39.162 -8.172 65.367 1.00 16.48 B ATOM 5107 CC LEU 350 39.162 -8.172 65.367 1.00 16.48 B ATOM 5107 CC LEU 350 39.162 -8.172 65.367 1.00 16.48 B ATOM 5107 CC LEU 350 39.162 -8.172 65.367 1.00 16.48 B ATOM 5107 CC LEU 350 39.162 -8.172 65.367 1.00 16.48 B ATOM 5107 CC LEU 350 39.162 -8.172 65.367 1.00 16.48 B ATOM 5107 CC LEU 350 39.162 -8.172 65.367 1.00 16.48 B ATOM 5107 CC LEU 351 39.343 -8.254 66.658 1.00 18.22 B ATOM 5107 CC LEU 351 39.343 -8.254 66.658 1.00 18.22 B ATOM 5107 CC LEU 351 39.343 -8.254 66.658 1.00 18.22 B ATOM 5107 CC LEU 351 39.343 -8.254 66.658 1.00 18.22 B ATOM 5107 CC LEU 351 39.343 -8.254 66.658 1.00 18.22 B ATOM 5107 CC LEU 351 39.343 -8.254 66.658 1.00 19.97 B B ATOM 5107 CC LEU 351 39.343 -8.254 66.658 1.00 19.9											
ATOM 5086 CA SER 148 42.261 -4.288 70.204 1.00 11.62 8 8 ATOM 5087 CB SER 148 42.261 -4.288 70.204 1.00 11.62 9 8 ATOM 5089 C SER 348 40.974 -5.180 68.303 1.00 12.87 8 8 ATOM 5089 C SER 348 40.974 -5.180 68.303 1.00 12.87 8 8 ATOM 5091 N THR 349 41.494 -4.518 67.281 1.00 12.38 B ATOM 5092 CA THR 349 41.494 -4.518 67.281 1.00 12.34 B ATOM 5093 CB THR 349 41.594 -4.518 65.505 68.355 1.00 12.88 B ATOM 5093 CB THR 349 41.594 -4.518 65.505 1.00 12.34 B ATOM 5093 CB THR 349 41.595 -3.400 65.081 1.00 14.07 B ATOM 5093 CB THR 349 41.587 -2.096 65.5081 1.00 14.87 B ATOM 5095 CC THR 349 31.992 -5.321 65.493 1.00 15.48 B ATOM 5095 CC THR 349 40.573 -3.218 65.5081 1.00 15.48 B ATOM 5095 CC THR 349 319.992 -5.321 65.493 1.00 15.48 B ATOM 5097 D THR 349 31.970 -5.325 65.282 1.00 15.48 B ATOM 5097 D THR 349 31.797 -5.325 65.282 1.00 15.48 B ATOM 5098 C LEU 350 40.777 -6.325 65.282 1.00 15.82 B ATOM 5090 CB LEU 350 40.777 -6.325 65.282 1.00 15.82 B ATOM 5090 CB LEU 350 40.776 -6.339 65.157 1.00 15.00 B B ATOM 5000 CB LEU 350 40.776 -6.339 65.157 1.00 15.00 B B ATOM 5102 CD LEU 350 40.077 -6.076 6.20 12 1.00 10.95 B ATOM 5102 CD LEU 350 42.004 -7.141 62.214 1.00 10.95 B ATOM 5102 CD LEU 350 39.162 -8.196 6.596 (1.00 15.02 B ATOM 5104 C LEU 350 39.162 -8.196 6.596 (1.00 15.02 B ATOM 5106 C LEU 350 39.162 -8.196 6.596 (1.00 15.02 B ATOM 5106 C LEU 350 39.162 -8.196 6.596 (1.00 15.02 B ATOM 5106 C LEU 350 39.162 -8.197 6.696 (1.00 15.02 B ATOM 5106 C LEU 350 39.162 -8.197 6.696 (1.00 15.02 B ATOM 5106 C LEU 350 39.162 -8.197 6.696 (1.00 15.02 B ATOM 5106 C LEU 350 39.162 -8.197 6.696 (1.00 15.02 B ATOM 5106 C LEU 350 39.162 -8.197 6.696 (1.00 15.02 B ATOM 5106 C LEU 350 39.162 -8.197 6.696 (1.00 15.02 B ATOM 5106 C LEU 350 39.162 -8.197 6.696 (1.00 15.02 B ATOM 5106 C LEU 350 39.812 -8.197 6.696 (1.00 15.02 B ATOM 5106 C C LEU 350 39.162 -8.197 6.696 (1.00 15.02 B ATOM 5106 C C LEU 350 39.162 -8.197 6.696 (1.00 15.02 B ATOM 5106 C C LEU 350 350 39.162 -8.197 6.696 (1.00 15.02 B ATOM 5106 C C LEU 350 350 39.102 -8.197 6.696 (1.00 1	_	MOTA	5084	0	LEU	347	42.039	-7.935	68.196	1.00 16.59	В
ATOM 5086 CA SER 148 42.261 -4.288 70.204 1.00 11.62 8 8 ATOM 5087 CB SER 148 42.261 -4.288 70.204 1.00 11.62 9 8 ATOM 5089 C SER 348 40.974 -5.180 68.303 1.00 12.87 8 8 ATOM 5089 C SER 348 40.974 -5.180 68.303 1.00 12.87 8 8 ATOM 5091 N THR 349 41.494 -4.518 67.281 1.00 12.38 B ATOM 5092 CA THR 349 41.494 -4.518 67.281 1.00 12.34 B ATOM 5093 CB THR 349 41.594 -4.518 65.505 68.355 1.00 12.88 B ATOM 5093 CB THR 349 41.594 -4.518 65.505 1.00 12.34 B ATOM 5093 CB THR 349 41.595 -3.400 65.081 1.00 14.07 B ATOM 5093 CB THR 349 41.587 -2.096 65.5081 1.00 14.87 B ATOM 5095 CC THR 349 31.992 -5.321 65.493 1.00 15.48 B ATOM 5095 CC THR 349 40.573 -3.218 65.5081 1.00 15.48 B ATOM 5095 CC THR 349 319.992 -5.321 65.493 1.00 15.48 B ATOM 5097 D THR 349 31.970 -5.325 65.282 1.00 15.48 B ATOM 5097 D THR 349 31.797 -5.325 65.282 1.00 15.48 B ATOM 5098 C LEU 350 40.777 -6.325 65.282 1.00 15.82 B ATOM 5090 CB LEU 350 40.777 -6.325 65.282 1.00 15.82 B ATOM 5090 CB LEU 350 40.776 -6.339 65.157 1.00 15.00 B B ATOM 5000 CB LEU 350 40.776 -6.339 65.157 1.00 15.00 B B ATOM 5102 CD LEU 350 40.077 -6.076 6.20 12 1.00 10.95 B ATOM 5102 CD LEU 350 42.004 -7.141 62.214 1.00 10.95 B ATOM 5102 CD LEU 350 39.162 -8.196 6.596 (1.00 15.02 B ATOM 5104 C LEU 350 39.162 -8.196 6.596 (1.00 15.02 B ATOM 5106 C LEU 350 39.162 -8.196 6.596 (1.00 15.02 B ATOM 5106 C LEU 350 39.162 -8.196 6.596 (1.00 15.02 B ATOM 5106 C LEU 350 39.162 -8.197 6.696 (1.00 15.02 B ATOM 5106 C LEU 350 39.162 -8.197 6.696 (1.00 15.02 B ATOM 5106 C LEU 350 39.162 -8.197 6.696 (1.00 15.02 B ATOM 5106 C LEU 350 39.162 -8.197 6.696 (1.00 15.02 B ATOM 5106 C LEU 350 39.162 -8.197 6.696 (1.00 15.02 B ATOM 5106 C LEU 350 39.162 -8.197 6.696 (1.00 15.02 B ATOM 5106 C LEU 350 39.162 -8.197 6.696 (1.00 15.02 B ATOM 5106 C LEU 350 39.812 -8.197 6.696 (1.00 15.02 B ATOM 5106 C C LEU 350 39.162 -8.197 6.696 (1.00 15.02 B ATOM 5106 C C LEU 350 39.162 -8.197 6.696 (1.00 15.02 B ATOM 5106 C C LEU 350 350 39.162 -8.197 6.696 (1.00 15.02 B ATOM 5106 C C LEU 350 350 39.102 -8.197 6.696 (1.00 1	5	MOTA	5085	N	SER	348	43.127	-6.107	68.872	1.00 14.94	• В
ATOM 5088 OS SER 348 42.816 -4.656 71.416 1.00 18.22 B ATOM 5088 OS SER 348 40.974 -5.180 68.303 1.00 12.87 B ATOM 5090 C SER 348 39.809 -5.505 68.355 1.00 12.88 B ATOM 5091 N THR 349 41.974 -4.121 66.151 1.00 12.34 B ATOM 5092 CA THR 349 40.672 -4.121 66.151 1.00 14.07 B ATOM 5093 CB THR 349 41.515 -3.400 65.081 1.00 14.87 B ATOM 5094 OGI THR 349 41.515 -3.400 65.081 1.00 14.87 B ATOM 5095 CC2 THR 349 40.738 -2.036 65.535 1.00 14.97 B ATOM 5096 CC THR 349 319.992 -5.321 65.535 1.00 15.48 B ATOM 5096 CT THR 349 319.992 -5.321 65.535 1.00 15.48 B ATOM 5096 CT THR 349 319.992 -5.321 65.493 1.00 16.16 B ATOM 5096 CD THR 349 319.992 -5.321 65.493 1.00 16.16 B ATOM 5098 N LEU 350 40.777 -6.339 65.282 1.00 15.82 B ATOM 5099 CA LEU 350 40.226 -7.518 64.508 1.00 15.08 B ATOM 5100 CB LEU 350 41.552 -8.496 64.206 1.00 14.08 B ATOM 5100 CB LEU 350 41.552 -8.496 64.206 1.00 14.08 B ATOM 5101 CG LEU 350 41.953 -8.503 62.812 1.00 10.18 B ATOM 5102 CD LEU 350 41.953 -8.503 62.812 1.00 10.18 B ATOM 5102 CD LEU 350 31.162 -8.496 66.206 1.00 14.08 B ATOM 5103 CD2 LEU 350 31.162 -8.196 66.508 1.00 11.995 B ATOM 5104 C LEU 350 31.347 -9.038 62.947 1.00 11.99 B ATOM 5106 CB CLU 350 31.162 -8.172 65.361 1.00 10.18 B ATOM 5106 CB CLU 351 33.144 8.846 66.69 1.00 1.84 B ATOM 5106 CB CLU 351 33.144 8.846 66.69 1.00 1.84 B ATOM 5106 CB CLU 351 33.144 8.846 66.69 1.00 1.84 B ATOM 5106 CB CLU 351 33.344 9-8.255 64.876 1.00 11.99 B ATOM 5106 CB CLU 351 33.344 9-8.256 66.697 1.00 11.99 B ATOM 5106 CB CLU 351 33.344 9-8.256 66.697 1.00 11.99 B ATOM 5110 CD CLU 351 33.444 9-9.781 69.955 1.00 18.87 B ATOM 5110 CD CLU 351 33.444 9-9.781 69.955 1.00 18.97 B ATOM 5110 CD CLU 351 33.444 9-9.781 69.955 1.00 18.97 B ATOM 5110 CD CLU 351 33.444 9-9.781 69.955 1.00 18.97 B ATOM 5111 CD CLU 351 33.444 9-9.781 69.955 1.00 18.97 B ATOM 5112 CD CLU 351 33.444 9-9.781 69.955 1.00 18.97 B ATOM 5116 CB CLU 351 33.444 9-9.781 69.955 1.00 18.97 B ATOM 5117 CB CLU 351 33.444 9-9.781 69.955 1.00 18.95 B ATOM 5118 CC CLU 351 33.445 9-9.751 60.959 1.00 19.95 B ATOM	-										
ATOM 5088 OG SER 348 40.974 -5.180 68.303 1.00 12.87 B ATOM 5099 O SER 348 39.809 -5.505 68.305 1.00 12.87 B ATOM 5099 N THR 349 41.94 -4.518 67.281 1.00 12.34 B ATOM 5091 N THR 349 41.94 -4.518 67.281 1.00 12.34 B ATOM 5093 CR THR 349 41.887 -2.096 65.081 1.00 14.87 B ATOM 5093 CR THR 349 41.887 -2.096 65.081 1.00 14.87 B ATOM 5095 CC THR 349 40.578 -3.281 65.081 1.00 15.48 B ATOM 5095 CC THR 349 40.578 -3.218 65.593 1.00 15.48 B ATOM 5095 CC THR 349 39.992 -5.321 65.493 1.00 15.48 B ATOM 5097 C THR 349 38.770 -5.325 65.282 1.00 15.48 B ATOM 5099 C ALEU 350 40.276 -7.518 64.508 1.00 15.80 B ATOM 5099 C ALEU 350 40.777 -6.339 65.157 1.00 15.00 B ATOM 5099 C ALEU 350 40.276 -7.518 64.508 1.00 15.00 B ATOM 5101 CC LEU 350 41.352 -8.496 64.206 1.00 15.08 B ATOM 5101 CC LEU 350 41.352 -8.496 64.206 1.00 15.08 B ATOM 5103 CC LEU 350 41.352 -8.496 64.206 1.00 10.95 B ATOM 5103 CC LEU 350 41.352 -8.696 64.206 1.00 10.95 B ATOM 5103 CC LEU 350 43.361 -8.503 62.812 1.00 10.95 B ATOM 5103 CC LEU 350 39.162 -8.172 65.367 1.00 11.90 B ATOM 5103 CC LEU 350 39.162 -8.172 65.367 1.00 11.90 B ATOM 5105 C CD LEU 350 39.162 -8.172 65.367 1.00 11.90 B ATOM 5105 C CD LEU 350 39.162 -8.172 65.367 1.00 11.92 B ATOM 5105 C CD LEU 350 39.162 -8.172 65.367 1.00 11.92 B ATOM 5105 C CD LEU 350 39.162 -8.172 65.367 1.00 11.92 B ATOM 5107 C CD LEU 350 39.162 -8.172 65.367 1.00 11.92 B ATOM 5107 C CD LEU 350 39.162 -8.172 65.367 1.00 11.92 B ATOM 5107 C CD LEU 350 39.162 -8.172 65.367 1.00 11.92 B ATOM 5107 C CD LEU 350 39.162 -8.172 65.367 1.00 11.92 B ATOM 5107 C CD LEU 350 39.162 -8.172 65.367 1.00 11.92 B ATOM 5107 C CD LEU 350 39.162 -8.172 65.367 1.00 11.92 B ATOM 5107 C CD LEU 350 39.162 -8.172 65.367 1.00 11.92 B ATOM 5107 C CD LEU 350 39.162 -8.172 65.367 1.00 11.92 B ATOM 5107 C CD LEU 350 39.162 -8.172 65.367 1.00 11.92 B ATOM 5107 C CD LEU 350 39.162 -8.172 66.391 1.00 11.22 B ATOM 5107 C CD LEU 350 39.162 -8.172 66.391 1.00 11.22 B ATOM 5107 C CD LEU 350 39.162 -8.172 66.391 1.00 11.22 B ATOM 5107 C CD LEU 350 39.30 1.00 1.00 1											
10 ATOM 5089 C SER 348 40.974 -5.180 68.303 1.00 12.87 B ATOM 5091 N THR 349 41.494 -4.518 67.281 1.00 12.34 B ATOM 5092 CA THR 349 40.572 -4.121 66.151 1.00 14.07 B ATOM 5092 CA THR 349 40.572 -4.121 66.151 1.00 14.07 B ATOM 5093 CB THR 349 41.515 -3.400 65.081 1.00 14.87 B ATOM 5094 CGI THR 349 41.515 -3.400 65.081 1.00 14.87 B ATOM 5095 CGZ THR 349 40.738 -3.238 63.828 1.00 15.48 B ATOM 5096 CT THR 349 319.992 -5.321 65.535 1.00 15.48 B ATOM 5096 CT THR 349 319.992 -5.321 65.535 1.00 15.48 B ATOM 5096 CT THR 349 319.992 -5.321 65.493 1.00 16.16 B ATOM 5098 N LEU 350 40.777 -6.339 65.282 1.00 15.62 B ATOM 5099 CA LEU 350 40.727 -6.339 65.157 1.00 15.00 S ATOM 5099 CA LEU 350 40.226 -7.518 64.508 1.00 15.08 B ATOM 5100 CB LEU 350 41.952 -8.456 64.206 1.00 14.08 B ATOM 5100 CB LEU 350 41.953 -8.503 62.812 1.00 10.41.08 B ATOM 5102 CDI LEU 350 42.004 -7.143 62.214 1.00 10.955 B ATOM 5102 CDI LEU 350 30 31.162 -8.153 65.361 (1.00 16.16 B ATOM 5102 CDI LEU 350 31.367 -9.18 64.508 1.00 15.00 16.88 B ATOM 5102 CDI LEU 350 31.367 -9.18 66.508 1.00 15.00 16.88 B ATOM 5104 C LEU 350 31.362 -8.172 65.366 1.00 16.18 B ATOM 5104 C LEU 350 31.162 -8.172 65.366 1.00 10.18 B ATOM 5106 CA GLU 351 33 31.44 -8.256 66.666 1.00 11.29 B ATOM 5106 CA GLU 351 33 34.44 -8.256 66.669 1.00 11.29 B ATOM 5106 CA GLU 351 33 34.44 -8.256 66.669 1.00 11.22 B ATOM 5106 CA GLU 351 33 34.44 -8.256 66.669 1.00 11.82 B ATOM 5110 CD GLU 351 33 34.44 -8.256 66.669 1.00 12.88 B ATOM 5110 CD GLU 351 33 34.44 -8.256 66.669 1.00 12.88 B ATOM 5110 CD GLU 351 33 34.44 -8.256 66.669 1.00 12.88 B ATOM 5110 CD GLU 351 33 34.44 -8.256 66.669 1.00 15.87 B B ATOM 5111 CD GLU 351 33 34.44 -8.256 66.670 1.00 15.89 B ATOM 5111 CD GLU 351 33 34.44 -8.256 66.670 1.00 15.89 B ATOM 5111 CD GLU 351 33 34.44 -8.256 66.670 1.00 15.89 B ATOM 5112 CD GLU 351 33 34.44 -8.256 66.670 1.00 15.89 B ATOM 5112 CD GLU 351 33 34.44 -8.256 66.670 1.00 15.89 B ATOM 5116 CD GLU 351 33 34.44 -8.256 66.670 1.00 15.89 B ATOM 5116 CD GLU 351 33 34.44 -8.256 66.670 1.00 15.89 B ATOM 5110		MOTA		CB							
10 ATOM 5099 C SER 348 39.809 -5.505 68.355 1.00 12.87 B ATOM 5091 N THR 349 41.494 -4.518 67.281 1.00 12.34 B ATOM 5091 N THR 349 40.572 -4.121 66.151 1.00 12.34 B ATOM 5092 CA THR 349 40.572 -4.121 66.151 1.00 14.07 B ATOM 5093 CB THR 349 41.515 -3.400 65.081 1.00 14.87 B ATOM 5094 CGI THR 349 41.515 -3.400 65.081 1.00 14.87 B ATOM 5095 CGZ THR 349 40.738 -2.296 65.535 1.00 17.94 B ATOM 5095 CGZ THR 349 40.738 -3.238 63.828 1.00 15.48 B ATOM 5096 CT THR 349 39.992 -5.321 65.535 1.00 16.15 B ATOM 5096 CT THR 349 39.992 -5.321 65.493 1.00 16.15 B ATOM 5098 N LEU 350 40.777 -6.339 65.282 1.00 15.82 B ATOM 5099 CA LEU 350 40.777 -6.339 65.157 1.00 15.00 S B ATOM 5090 CA LEU 350 40.726 -7.518 64.508 1.00 15.08 B ATOM 5100 CB LEU 350 41.352 -8.496 64.206 1.00 14.08 B ATOM 5102 CDL LEU 350 41.352 -8.496 64.206 1.00 14.08 B ATOM 5102 CDL LEU 350 41.352 -8.496 64.206 1.00 14.08 B ATOM 5102 CDL LEU 350 41.363 -8.633 62.812 1.00 10.955 B ATOM 5102 CDL LEU 350 42.004 -7.131 62.214 1.00 10.955 B ATOM 5102 CDL LEU 350 330 16.5 -8.106 64.206 1.00 14.08 B ATOM 5102 CDL LEU 350 330 33.165 -8.106 64.206 1.00 10.61 B B ATOM 5104 C LEU 350 330 33.165 -8.196 66.306 1.00 16.82 B ATOM 5106 C LEU 350 330 33.165 -8.196 66.306 1.00 16.82 B ATOM 5106 C LEU 350 330 33.165 -8.196 66.006 1.00 10.61 B B ATOM 5107 C C LEU 350 330 33.165 -8.196 66.906 1.00 16.82 B ATOM 5107 C C LEU 350 330 33.165 -8.196 66.906 1.00 16.82 B ATOM 5107 C C LEU 350 330 33.165 -8.196 66.906 1.00 16.82 B ATOM 5107 C C LEU 351 38.444 -8.842 66.566 1.00 16.82 B ATOM 5107 C C LEU 351 38.444 -9.791 69.905 1.00 11.87 B ATOM 5107 C C LEU 351 38.444 -9.791 69.905 1.00 11.97 B ATOM 5107 C C LEU 351 38.440 -9.791 69.905 1.00 19.87 B ATOM 5110 C D GLU 351 38.440 -9.791 69.905 1.00 19.87 B ATOM 5111 C C LGU 351 38.440 -9.791 69.905 1.00 26.42 B ATOM 5112 C C LGU 351 38.440 -9.791 69.905 1.00 26.42 B ATOM 5112 C C LGU 351 38.440 -9.791 69.905 1.00 26.42 B ATOM 5112 C C LGU 351 38.440 -9.791 69.905 1.00 26.42 B B ATOM 5112 C C LGU 351 351 39.441 -9.791 69.905 1.00 26.42 B B AT		MOTA	5088	OG	SER	348	42.841	-4.656	71.416	1.00 18.29	В
10 ATOM 5090 O SER 348 39.809 -5.505 68.355 1.00 12.88 B ATOM 5091 N THR 349 41.94 -4.518 67.281 1.00 12.314 ATOM 5092 CA THR 349 41.887 -2.906 65.081 1.00 14.877 B ATOM 5093 CB THR 349 41.887 -2.096 65.081 1.00 14.877 B ATOM 5095 CC THR 349 40.738 -3.228 65.535 1.00 17.94 B ATOM 5095 CC THR 349 40.738 -3.228 65.535 1.00 15.48 B ATOM 5095 CC THR 349 39.992 -5.321 65.493 1.00 15.616 B ATOM 5097 O THR 349 38.770 -5.325 65.282 1.00 15.48 B ATOM 5099 C ALEU 350 40.777 -6.339 65.157 1.00 15.00 B ATOM 5099 CA LEU 350 40.777 -6.339 65.157 1.00 15.00 B ATOM 5099 CA LEU 350 40.777 -6.339 65.157 1.00 15.00 B ATOM 5101 CC LEU 350 41.352 -8.496 64.206 1.00 15.08 B ATOM 5101 CC LEU 350 41.352 -8.496 64.206 1.00 10.95 B ATOM 5103 CC LEU 350 41.953 -8.503 62.812 1.00 10.95 B ATOM 5103 CC LEU 350 41.953 -8.503 62.812 1.00 10.95 B ATOM 5103 CC LEU 350 43.947 -9.038 62.947 1.00 11.90 B ATOM 5103 CC LEU 350 39.162 -8.172 65.367 1.00 11.90 B ATOM 5103 CC LEU 350 39.152 -8.172 65.367 1.00 11.90 B ATOM 5105 C LEU 350 39.152 -8.172 65.367 1.00 11.92 B ATOM 5107 CA GLU 351 39.443 -8.254 66.876 1.00 11.92 B ATOM 5107 CA GLU 351 39.443 -8.254 66.876 1.00 17.28 B ATOM 5107 CA GLU 351 39.443 -8.254 66.876 1.00 17.28 B ATOM 5107 CA GLU 351 39.443 -8.254 66.876 1.00 19.877 B ATOM 5107 CA GLU 351 39.449 -9.781 69.965 1.00 19.877 B ATOM 5107 CA GLU 351 39.449 -9.781 69.965 1.00 19.877 B ATOM 5107 CA GLU 351 39.449 -9.781 69.965 1.00 19.877 B ATOM 5107 CA GLU 351 39.449 -9.781 69.965 1.00 19.877 B ATOM 5110 CD GLU 351 39.449 -9.781 69.965 1.00 19.877 B ATOM 5110 CD GLU 351 39.449 -9.781 69.965 1.00 19.877 B ATOM 5110 CD GLU 351 39.449 -9.781 69.965 1.00 19.877 B ATOM 5116 CA TYR 352 37.368 -6.703 66.939 1.00 13.288 B ATOM 5116 CA TYR 352 37.368 -6.703 67.601 1.00 18.87 B ATOM 5116 CA TYR 352 37.368 -6.703 67.601 1.00 18.87 B ATOM 5116 CA TYR 352 37.368 -6.703 67.601 1.00 18.87 B ATOM 5117 CA TYR 352 37.368 -6.703 67.601 1.00 18.87 B ATOM 5117 CA TYR 352 37.368 -6.703 67.601 1.00 18.80 B ATOM 5117 CA TYR 352 37.368 -6.703 67.601 1.00 18.80 B AT			5089	C	SER	348	40.974	-5.180	.68.303	1.00 12.87	В
ATOM 5091 N THR 349 41.494 -4.518 67.281 1.00 12.34 B ATOM 5092 CA THR 349 40.572 -4.121 66.151 1.00 14.07 B ATOM 5093 CB THR 349 41.515 -3.400 65.081 1.00 14.07 B ATOM 5095 CGZ THR 349 41.515 -3.286 65.285 1.00 15.48 B ATOM 5096 CT THR 349 39.992 -5.321 65.282 1.00 15.48 B ATOM 5096 CT THR 349 39.992 -5.321 65.493 1.00 16.16 B ATOM 5096 N THR 349 39.992 -5.321 65.493 1.00 16.16 B ATOM 5098 N LEU 350 40.777 -6.339 65.157 1.00 15.00 15.00 ATOM 5098 N LEU 350 40.777 -6.339 65.157 1.00 15.00 B ATOM 5099 CA LEU 350 40.226 -7.518 64.508 1.00 15.08 B ATOM 5100 CB LEU 350 41.552 -8.496 64.206 1.00 15.08 B ATOM 5102 CD LEU 350 41.963 -8.603 62.812 1.00 10.95 B ATOM 5102 CD LEU 350 41.963 -8.603 62.812 1.00 10.95 B ATOM 5102 CD LEU 350 30.3162 -8.172 65.367 1.00 10.95 B ATOM 5102 CD LEU 350 39.162 -8.172 65.367 1.00 10.81 B ATOM 5104 C LEU 350 39.162 -8.172 65.367 1.00 10.81 B ATOM 5106 N GU 351 39.443 -8.254 66.558 1.00 15.08 B ATOM 5106 N GU 351 39.443 -8.254 66.558 1.00 15.08 B ATOM 5106 N GU 351 39.443 -8.254 66.658 1.00 12.88 B ATOM 5106 N GU 351 39.443 -8.254 66.658 1.00 12.88 B ATOM 5106 N GU 351 39.443 -8.254 66.658 1.00 12.88 B ATOM 5106 N GU 351 39.444 -8.846 66.558 1.00 12.28 B ATOM 5102 CD GU 351 39.444 -8.846 66.558 1.00 12.28 B ATOM 5110 CD GU 351 39.444 -8.846 66.558 1.00 12.28 B ATOM 5110 CD GU 351 39.441 -8.846 66.568 1.00 30.21 B B ATOM 5111 CD GU 351 39.481 -11.771 69.051 1.00 22.53 B ATOM 5112 CD GU 351 39.481 -11.771 69.051 1.00 22.53 B ATOM 5112 CD GU 351 39.481 -11.771 69.051 1.00 22.53 B ATOM 5112 CD GU 351 351 37.217 -8.024 67.646 1.00 19.18 B ATOM 5112 CD GU 351 351 37.217 -8.024 67.646 1.00 19.18 B ATOM 5112 CD GU 351 351 36.166 -8.559 60.403 1.00 12.184 B ATOM 5112 CD GU 351 351 36.166 -8.559 60.403 1.00 12.184 B ATOM 5112 CD TTR 352 35.750 -2.654 69.303 1.00 12.186 B ATOM 5112 CD TTR 352 35.750 -2.654 69.303 1.00 11.162 B ATOM 5112 CD TTR 352 35.750 -2.654 69.303 1.00 11.162 B ATOM 5112 CD TTR 352 35.750 -2.654 69.303 1.00 11.162 B ATOM 5120 CD TTR 352 35.750 -2.654 69.303 1.00 11.17 B ATOM	10										
ATOM 5092 CA THR 349 41.515 -3.400 65.081 1.00 14.07 B ATOM 5094 OGI THR 349 41.815 -3.400 65.081 1.00 14.07 B ATOM 5095 CCZ THR 349 40.38 -3.238 63.288 1.00 15.48 B ATOM 5095 CCZ THR 349 40.38 -3.238 63.288 1.00 15.48 B ATOM 5096 C THR 349 39.992 -5.321 65.493 1.00 16.16 B ATOM 5097 O THR 349 38.972 -5.325 65.282 1.00 15.00 B ATOM 5098 N LEU 350 40.777 -6.339 65.157 1.00 15.00 B ATOM 5098 N LEU 350 40.777 -6.339 65.157 1.00 15.00 B ATOM 5100 CB LEU 350 40.777 -6.339 65.157 1.00 15.00 B ATOM 5100 CB LEU 350 41.552 -8.496 64.206 1.00 14.08 B ATOM 5100 CB LEU 350 41.552 -8.496 64.206 1.00 14.08 B ATOM 5102 CD LEU 350 41.352 -8.496 64.206 1.00 14.08 B ATOM 5102 CD LEU 350 41.351 -8.495 62.812 1.00 10.95 B ATOM 5102 CD LEU 350 43.347 -9.038 62.947 1.00 10.95 B ATOM 5103 CD LEU 350 43.347 -9.038 62.947 1.00 11.99 B ATOM 5104 C LEU 350 39.162 -8.172 65.367 1.00 16.48 B ATOM 5105 CD LEU 350 38.132 -8.595 64.876 1.00 17.88 B ATOM 5105 CD LEU 350 39.162 -8.172 65.367 1.00 16.48 B ATOM 5105 CD C LEU 351 39.443 -8.254 66.658 1.00 18.22 B ATOM 5105 CD C GLU 351 39.443 -8.254 66.658 1.00 18.22 B ATOM 5105 CD G GLU 351 39.443 -8.254 66.658 1.00 18.22 B ATOM 5105 CD G GLU 351 39.444 -9.791 69.965 1.00 22.84 B ATOM 5110 CD G GLU 351 38.420 -11.196 69.403 1.00 20.21 B ATOM 5110 CD G GLU 351 38.420 -11.196 69.403 1.00 20.21 B ATOM 5110 CD G GLU 351 38.420 -11.196 69.403 1.00 20.21 B ATOM 5110 CD G GLU 351 39.444 -9.791 69.965 1.00 26.28 B ATOM 5110 CD G GLU 351 38.420 -11.196 69.403 1.00 20.21 B ATOM 5110 CD G GLU 351 38.420 -11.196 69.403 1.00 20.21 B ATOM 5110 CD G GLU 351 38.420 -11.196 69.403 1.00 20.21 B ATOM 5110 CD G GLU 351 38.404 -9.791 69.965 1.00 21.00 22.89 B ATOM 5110 CD G GLU 351 38.404 -9.791 69.965 1.00 22.89 B ATOM 5112 CD TYR 352 36.289 -5.756 67.666 1.00 17.00 B ATOM 5112 CD TYR 352 36.289 -5.756 67.666 1.00 17.00 B ATOM 5112 CD TYR 352 36.289 -5.756 67.666 1.00 17.00 B ATOM 5112 CD TYR 352 36.289 -5.756 67.666 1.00 17.00 B ATOM 5112 CD TYR 352 36.289 -5.756 67.666 1.00 17.00 B ATOM 5120 CD TYR 352 36.289 -5.7	10										
ATOM 5093 CB THR 349 41.515 -3.400 65.081 1.00 14.87 B ATOM 5094 CG THR 349 40.738 -3.238 63.288 1.00 15.48 B ATOM 5095 CG2 THR 349 39.92 -5.321 65.493 1.00 15.48 B ATOM 5096 C THR 349 38.770 -5.325 65.282 1.00 15.48 B ATOM 5098 N LEU 350 40.226 -7.518 64.508 1.00 15.08 B ATOM 5099 CA LEU 350 40.226 -7.518 64.508 1.00 15.08 B ATOM 5100 CG LEU 350 40.226 -7.518 64.508 1.00 15.08 B ATOM 5100 CG LEU 350 40.226 -7.518 64.508 1.00 15.08 B ATOM 5100 CG LEU 350 41.953 -8.503 62.812 1.00 10.95 B ATOM 5102 CD LEU 350 41.963 -8.503 62.812 1.00 10.95 B ATOM 5102 CD LEU 350 41.963 -8.503 62.812 1.00 10.95 B ATOM 5102 CD LEU 350 39.162 -8.172 65.367 1.00 15.08 B ATOM 5104 C LEU 350 39.162 -8.172 65.367 1.00 15.08 B ATOM 5104 C LEU 350 39.162 -8.172 65.367 1.00 16.48 B ATOM 5105 C LEU 350 39.162 -8.172 65.367 1.00 17.28 B ATOM 5105 C LEU 350 39.162 -8.172 65.367 1.00 17.28 B ATOM 5105 C LEU 351 39.44 -8.846 66.508 1.00 18.22 B ATOM 5105 C LEU 351 39.144 -8.846 66.508 1.00 18.22 B ATOM 5105 C LEU 351 39.144 -8.846 66.508 1.00 18.22 B ATOM 5105 C LEU 351 39.144 -8.846 66.508 1.00 18.22 B ATOM 5100 C G LU 351 38.514 -8.842 67.609 1.00 19.87 B ATOM 5100 C G LU 351 38.494 -9.791 69.965 1.00 26.42 B ATOM 5110 CC GLU 351 39.481 -11.771 69.051 1.00 26.42 B ATOM 5110 CC GLU 351 39.481 -11.771 69.051 1.00 29.53 B ATOM 5110 CC GLU 351 39.481 -11.771 69.051 1.00 29.53 B ATOM 5110 CC GLU 351 39.481 -11.771 69.051 1.00 29.53 B ATOM 5110 CC GLU 351 39.481 -11.771 69.051 1.00 29.53 B ATOM 5110 CC GLU 351 39.481 -11.771 69.051 1.00 29.53 B ATOM 5110 CC GLU 351 37.227 -8.024 67.666 1.00 19.18 B ATOM 5110 CC GLU 351 37.227 -8.024 67.666 1.00 19.18 B ATOM 5110 CC GLU 351 37.227 -8.024 67.666 1.00 19.18 B ATOM 5110 CC GLU 351 37.227 -8.024 67.666 1.00 19.18 B ATOM 5110 CC GLU 351 37.227 -8.024 67.667 1.00 11.72 B ATOM 5112 CC TYR 352 36.866 67.03 67.603 1.00 18.87 B ATOM 5112 CC TYR 352 36.866 67.03 67.603 1.00 18.87 B ATOM 5112 CC TYR 352 36.866 67.03 67.603 1.00 18.87 B ATOM 5112 CC TYR 352 37.568 67.006 67.001 1.00 19.99 B ATOM 5112 CC TYR 35		MOTA									
15 ATOM 5099 CG2 THR 349 40.738 -3.238 63.288 1.00 17.94 B ATOM 5095 CC2 THR 349 40.738 -3.238 63.288 1.00 15.468 B ATOM 5096 C THR 349 39.992 -5.321 65.493 1.00 16.16 B ATOM 5097 O THR 349 38.770 -5.325 65.282 1.00 15.82 B ATOM 5098 N LEU 350 40.777 -6.339 65.157 1.00 15.00 B ATOM 5099 CA LEU 350 40.777 -6.339 66.5157 1.00 15.00 B ATOM 5100 CB LEU 350 40.266 -7.518 64.508 1.00 16.16 B ATOM 5100 CB LEU 350 41.352 -8.496 64.206 1.00 14.08 B ATOM 5101 CG LEU 350 41.352 -8.496 64.206 1.00 14.08 B ATOM 5102 CD LEU 350 41.352 -8.496 64.206 1.00 14.08 B ATOM 5102 CD LEU 350 41.367 -8.503 62.812 1.00 10.95 B ATOM 5103 CD LEU 350 43.347 -9.038 62.947 1.00 11.99 B ATOM 5103 CD LEU 350 43.347 -9.038 62.947 1.00 11.99 B ATOM 5103 CD LEU 350 38.132 -8.595 64.876 1.00 16.48 B ATOM 5105 CD LEU 350 39.162 -8.172 65.367 1.00 16.48 B ATOM 5105 CD LEU 350 38.132 -8.595 64.876 1.00 17.28 B ATOM 5105 CD LEU 351 39.443 -8.254 66.658 1.00 18.22 B ATOM 5105 CD GUU 351 39.443 -8.254 66.658 1.00 18.22 B ATOM 5105 CD GUU 351 39.443 -8.254 66.658 1.00 18.22 B ATOM 5100 CD GUU 351 39.144 -8.846 69.003 1.00 21.84 B ATOM 5100 CD GUU 351 38.420 -11.196 69.403 1.00 30.21 B ATOM 5110 CD GUU 351 38.420 -11.196 69.403 1.00 30.21 B ATOM 5110 CD GUU 351 38.420 -11.196 69.403 1.00 30.21 B ATOM 5110 CD GUU 351 38.420 -11.196 69.403 1.00 30.21 B ATOM 5111 CD GUU 351 37.289 -11.724 69.309 1.00 22.89 B ATOM 5112 CD CT TR 352 36.858 -5.756 67.646 1.00 17.30 B ATOM 5112 CD CT TR 352 36.259 -5.756 67.646 1.00 17.30 B ATOM 5112 CD TR 352 37.686 6.703 67.603 1.00 12.89 B ATOM 5112 CD TR 352 37.686 6.703 67.603 1.00 12.03 B ATOM 5112 CD TR 352 36.259 -5.756 67.646 1.00 17.30 B ATOM 5112 CD TR 352 36.259 -5.756 67.646 1.00 17.30 B ATOM 5112 CD TR 352 36.259 -5.756 67.646 1.00 17.30 B ATOM 5112 CD TR 352 36.269 1.00 36.45 1.00 11.72 B ATOM 5112 CD TR 352 36.259 -5.756 67.646 1.00 17.30 B ATOM 5112 CD TR 352 36.259 -5.756 67.646 1.00 17.30 B ATOM 5112 CD TR 352 36.259 -5.756 67.646 1.00 17.30 B ATOM 5112 CD TR 352 36.259 -5.756 67.646 1.00 17.30 B ATOM 5112 CD		MOTA	5092	CA	THR	349	40.672	-4.121	66.151	1.00 14.07	В
15 ATOM 5099 CG2 THR 349 40.738 -3.238 63.288 1.00 17.94 B ATOM 5095 CC2 THR 349 40.738 -3.238 63.288 1.00 15.468 B ATOM 5096 C THR 349 39.992 -5.321 65.493 1.00 16.16 B ATOM 5097 O THR 349 38.770 -5.325 65.282 1.00 15.82 B ATOM 5098 N LEU 350 40.777 -6.339 65.157 1.00 15.00 B ATOM 5099 CA LEU 350 40.777 -6.339 66.5157 1.00 15.00 B ATOM 5100 CB LEU 350 40.266 -7.518 64.508 1.00 16.16 B ATOM 5100 CB LEU 350 41.352 -8.496 64.206 1.00 14.08 B ATOM 5101 CG LEU 350 41.352 -8.496 64.206 1.00 14.08 B ATOM 5102 CD LEU 350 41.352 -8.496 64.206 1.00 14.08 B ATOM 5102 CD LEU 350 41.367 -8.503 62.812 1.00 10.95 B ATOM 5103 CD LEU 350 43.347 -9.038 62.947 1.00 11.99 B ATOM 5103 CD LEU 350 43.347 -9.038 62.947 1.00 11.99 B ATOM 5103 CD LEU 350 38.132 -8.595 64.876 1.00 16.48 B ATOM 5105 CD LEU 350 39.162 -8.172 65.367 1.00 16.48 B ATOM 5105 CD LEU 350 38.132 -8.595 64.876 1.00 17.28 B ATOM 5105 CD LEU 351 39.443 -8.254 66.658 1.00 18.22 B ATOM 5105 CD GUU 351 39.443 -8.254 66.658 1.00 18.22 B ATOM 5105 CD GUU 351 39.443 -8.254 66.658 1.00 18.22 B ATOM 5100 CD GUU 351 39.144 -8.846 69.003 1.00 21.84 B ATOM 5100 CD GUU 351 38.420 -11.196 69.403 1.00 30.21 B ATOM 5110 CD GUU 351 38.420 -11.196 69.403 1.00 30.21 B ATOM 5110 CD GUU 351 38.420 -11.196 69.403 1.00 30.21 B ATOM 5110 CD GUU 351 38.420 -11.196 69.403 1.00 30.21 B ATOM 5111 CD GUU 351 37.289 -11.724 69.309 1.00 22.89 B ATOM 5112 CD CT TR 352 36.858 -5.756 67.646 1.00 17.30 B ATOM 5112 CD CT TR 352 36.259 -5.756 67.646 1.00 17.30 B ATOM 5112 CD TR 352 37.686 6.703 67.603 1.00 12.89 B ATOM 5112 CD TR 352 37.686 6.703 67.603 1.00 12.03 B ATOM 5112 CD TR 352 36.259 -5.756 67.646 1.00 17.30 B ATOM 5112 CD TR 352 36.259 -5.756 67.646 1.00 17.30 B ATOM 5112 CD TR 352 36.259 -5.756 67.646 1.00 17.30 B ATOM 5112 CD TR 352 36.269 1.00 36.45 1.00 11.72 B ATOM 5112 CD TR 352 36.259 -5.756 67.646 1.00 17.30 B ATOM 5112 CD TR 352 36.259 -5.756 67.646 1.00 17.30 B ATOM 5112 CD TR 352 36.259 -5.756 67.646 1.00 17.30 B ATOM 5112 CD TR 352 36.259 -5.756 67.646 1.00 17.30 B ATOM 5112 CD		MOTA	5093	CB	THR	349	41.515	-3.400	65.081	1.00 14.87	В
15 ATOM 50995 CG THR 349 39.92 -5.321 65.493 1.00 15.48 B ATOM 5096 C THR 349 39.92 -5.325 65.282 1.00 15.48 B ATOM 5098 N LEU 350 40.777 -6.325 65.282 1.00 15.82 B ATOM 5099 CA LEU 350 40.226 -7.518 64.508 1.00 15.08 B ATOM 5100 CG LEU 350 40.226 -7.518 64.508 1.00 15.08 B ATOM 5100 CG LEU 350 40.226 -7.518 64.508 1.00 15.08 B ATOM 5102 CG LEU 350 41.951 -8.503 62.812 1.00 10.95 B ATOM 5102 CG LEU 350 41.961 -8.503 62.812 1.00 10.95 B ATOM 5102 CG LEU 350 42.004 -7.143 62.214 1.00 10.95 B ATOM 5103 CD LEU 350 42.004 -7.143 62.214 1.00 10.95 B ATOM 5104 C LEU 350 39.162 -8.172 65.367 1.00 15.48 B ATOM 5105 CD LEU 350 39.162 -8.172 65.367 1.00 15.48 B ATOM 5105 CD LEU 350 39.162 -8.172 65.367 1.00 17.28 B ATOM 5106 N GLU 351 39.443 -8.842 67.609 1.00 17.28 B ATOM 5107 CA GLU 351 39.443 -8.842 67.609 1.00 19.87 B ATOM 5108 CB GLU 351 39.443 -8.842 67.609 1.00 19.87 B ATOM 5108 CB GLU 351 39.444 -8.846 67.600 1.00 12.86 B ATOM 5110 CD GLU 351 39.444 -8.846 67.600 1.00 12.86 B ATOM 5110 CD GLU 351 39.444 -9.791 69.965 1.00 26.42 B ATOM 5111 CEI GLU 351 39.444 -9.791 69.965 1.00 26.42 B ATOM 5112 CEZ GLU 351 39.447 1.00 11.96 69.403 1.00 30.21 B ATOM 5113 CG GLU 351 37.289 -11.724 69.031 1.00 19.57 B ATOM 5113 CG GLU 351 37.289 -11.724 69.031 1.00 19.57 B ATOM 5113 CG GLU 351 37.289 -11.724 69.031 1.00 19.57 B ATOM 5116 CA TYR 352 37.368 -6.703 67.603 1.00 19.57 B ATOM 5117 CB TYR 352 37.368 -6.703 67.603 1.00 19.57 B ATOM 5117 CB TYR 352 37.368 -6.703 67.603 1.00 19.57 B ATOM 5117 CB TYR 352 36.258 -5.756 67.646 1.00 17.30 B ATOM 5112 CC CL TYR 352 36.258 -5.756 67.646 1.00 17.30 B ATOM 5112 CC CL TYR 352 36.258 -5.756 67.646 1.00 17.30 B ATOM 5112 CC TYR 352 36.258 -5.756 67.646 1.00 17.30 B ATOM 512 CC TYR 352 36.258 -5.756 67.646 1.00 17.30 B ATOM 512 CC TYR 352 36.258 -5.756 67.646 1.00 17.30 B ATOM 512 CC TYR 352 36.258 -5.756 67.646 1.00 17.30 B ATOM 512 CC TYR 352 36.258 -5.756 67.646 1.00 17.30 B ATOM 512 CC TYR 352 36.258 -5.756 67.646 1.00 17.30 B ATOM 512 CC TYR 352 36.258 -5.756 67.646 1.00 17.30 B ATOM									65 535	1 00 17 94	
ATOM 5099 C THR 349 38.992 -5.321 65.493 1.00 16.16 B ATOM 5099 C THR 349 38.770 -5.325 65.282 1.00 15.82 B ATOM 5099 N LEU 350 40.777 -6.339 65.187 1.00 15.00 B B LEU 350 40.777 -6.339 65.587 1.00 15.00 B B ATOM 5099 CA LEU 350 40.777 -6.339 65.187 1.00 15.00 B B ATOM 5100 CB LEU 350 41.352 -8.496 64.206 1.00 14.08 B ATOM 5101 CC LEU 350 41.351 -8.496 64.206 1.00 14.08 B ATOM 5102 CD1 LEU 350 42.004 -7.143 62.214 1.00 10.95 B ATOM 5103 CD2 LEU 350 42.004 -7.143 62.214 1.00 10.95 B ATOM 5103 CD2 LEU 350 38.132 -8.172 65.367 1.00 11.99 B ATOM 5104 C LEU 350 38.132 -8.172 65.367 1.00 11.99 B ATOM 5106 N GLU 351 38.134 -8.254 66.588 1.00 18.22 B ATOM 5106 N GLU 351 38.144 -8.246 66.588 1.00 18.22 B ATOM 5108 CB GLU 351 38.144 -8.842 67.609 1.00 19.87 B ATOM 5108 CB GLU 351 38.144 -8.842 67.609 1.00 19.87 B ATOM 5110 CD GLU 351 38.443 -8.254 66.588 1.00 26.42 B ATOM 5110 CD GLU 351 38.449 -9.791 69.965 1.00 26.42 B ATOM 5110 CD GLU 351 38.440 -9.791 69.965 1.00 26.42 B ATOM 5110 CD GLU 351 38.440 -9.791 69.965 1.00 26.42 B ATOM 5110 CD GLU 351 39.481 -11.771 69.965 1.00 22.64 B ATOM 5110 CD GLU 351 37.289 -11.724 69.309 1.00 19.57 B ATOM 5114 O GLU 351 37.289 -11.724 69.309 1.00 19.57 B ATOM 5114 O GLU 351 37.289 -11.724 69.309 1.00 19.57 B ATOM 5114 C GLU 351 37.289 -11.724 69.309 1.00 19.57 B ATOM 5114 C GLU 351 37.289 -11.724 69.309 1.00 19.05 28.89 B ATOM 5112 C GLU 351 37.289 -11.724 69.309 1.00 19.05 18 B ATOM 5112 C GLU 351 37.289 -11.724 69.309 1.00 19.05 18 B ATOM 5112 C GLU 351 37.289 -11.724 69.309 1.00 1.00 12.18 B ATOM 5112 C GLU 351 37.289 -11.724 69.309 1.00 19.05 18 B ATOM 5112 C GLU 351 37.289 -11.724 69.309 1.00 19.05 18 B ATOM 5112 C GLU 351 37.289 -11.724 69.309 1.00 19.05 18 B ATOM 5112 C GLU 351 37.289 -11.724 69.309 1.00 19.05 18 B ATOM 5112 C GLU 351 37.289 -11.724 69.309 1.00 19.05 18 B ATOM 5112 C GLU 351 37.289 -11.724 69.309 1.00 19.05 18 B ATOM 5113 C GLU 351 37.289 -11.724 69.309 1.00 19.05 18 B ATOM 5113 C GLU 351 36.364 6.760 6.793 1.00 19.05 18 B ATOM 5114 C GLU 351 36.364 6.793 1.0	15										
ATOM 5099 N LEU 350 40.777 -6.3125 65.282 1.00 15.82 B ATOM 5099 CA LEU 350 40.226 -7.518 64.508 1.00 15.00 B ATOM 5100 CG LEU 350 41.963 -8.503 62.812 1.00 10.50 B ATOM 5101 CG LEU 350 41.963 -8.503 62.812 1.00 10.95 B ATOM 5102 CD1 LEU 350 41.963 -8.503 62.812 1.00 10.95 B ATOM 5103 CD2 LEU 350 41.963 -8.503 62.812 1.00 10.95 B ATOM 5104 C LEU 350 43.347 -9.038 62.947 1.00 11.99 B ATOM 5105 C LEU 350 38.122 -8.595 64.876 1.00 17.28 B ATOM 5106 C LEU 350 38.122 -8.595 64.876 1.00 17.28 B ATOM 5106 C LEU 351 39.461 -8.846 67.609 1.00 19.97 B ATOM 5107 CA GLU 351 39.441 -8.846 67.609 1.00 19.87 B ATOM 5108 CG GLU 351 38.444 -8.846 67.609 1.00 19.87 B ATOM 5110 CD GLU 351 38.444 -8.846 69.003 1.00 19.87 B ATOM 5110 CD GLU 351 38.444 -8.846 69.003 1.00 19.87 B ATOM 5111 CD GLU 351 38.444 -8.846 69.003 1.00 19.87 B ATOM 5111 CD GLU 351 38.444 -8.846 69.003 1.00 20.18 B ATOM 5111 CD GLU 351 38.444 -8.846 69.003 1.00 30.21 B ATOM 5111 CD GLU 351 38.444 -9.791 69.965 1.00 26.42 B ATOM 5111 CD GLU 351 38.441 -8.846 69.403 1.00 30.21 B ATOM 5111 CD GLU 351 39.461 -11.771 69.051 1.00 29.53 B ATOM 5112 CD GLU 351 37.289 -11.724 69.309 1.00 32.89 B ATOM 5116 CA TYR 352 37.586 -6.703 67.646 1.00 19.18 B ATOM 5116 CA TYR 352 36.288 -5.756 67.646 1.00 19.18 B ATOM 5116 CA TYR 352 36.288 -5.756 67.646 1.00 17.30 B ATOM 5118 CG TYR 352 33.594 -3.239 68.039 1.00 11.72 B ATOM 5120 CC TYR 352 34.699 -1.584 69.433 1.00 9.37 B ATOM 5120 CC TYR 352 34.699 -1.584 69.433 1.00 11.73 B ATOM 5120 CC TYR 352 34.699 -1.584 69.433 1.00 11.73 B ATOM 5120 CC TYR 352 34.699 -1.584 69.433 1.00 11.76 B ATOM 5120 CC TYR 352 34.79 -9.66 63.99 1.00 11.79 B ATOM 5120 CC TYR 352 34.699 -1.584 69.433 1.00 11.70 B ATOM 5120 CC TYR 352 34.797 -9.66 63.99 1.00 11.70 B ATOM 5120 CC TYR 352 34.699 -1.584 69.433 1.00 11.70 B ATOM 5120 CC TYR 352 34.699 -1.584 69.433 1.00 11.70 B ATOM 5130 C ALA 353 36.406 -7.221 63.985 1.00 22.75 B ATOM 5130 C ALA 353 36.406 -7.221 63.985 1.00 22.75 B ATOM 5131 C ALA 353 36.406 -7.221 66.399 1.00 12.77 B ATOM 5146 C D ARG 35	IJ										
ATOM 5098 N LEU 350 40.777 -6.339 65.157 1.00 15.00 B ATOM 5099 CA LEU 350 41.352 -8.496 64.206 1.00 14.08 B ATOM 5100 CB LEU 350 41.352 -8.496 64.206 1.00 14.08 B ATOM 5100 CC LEU 350 42.004 -7.143 62.214 1.00 10.95 B ATOM 5102 CD1 LEU 350 42.004 -7.143 62.214 1.00 10.95 B ATOM 5105 CD2 LEU 350 43.147 -9.038 62.947 1.00 11.99 B ATOM 5105 CD2 LEU 350 38.132 -8.595 64.876 1.00 16.48 B ATOM 5105 CD2 LEU 350 38.132 -8.595 64.876 1.00 17.98 B ATOM 5106 CD2 C		MOTA	5096	С	THR	349	39.992	-5.321			
20 ATOM 5099 CA LEU 350 40.777 -6.339 65.157 1.00 15.00 B ATOM 5099 CA LEU 350 41.352 -8.496 64.206 1.00 15.08 B ATOM 5100 CB LEU 350 41.352 -8.496 64.206 1.00 14.08 B ATOM 5101 CG LEU 350 41.963 -8.593 62.812 1.00 10.95 B ATOM 5102 CD1 LEU 350 42.004 -7.143 62.214 1.00 10.95 B ATOM 5103 CD2 LEU 350 43.347 -9.038 62.947 1.00 11.99 B ATOM 5103 CD LEU 350 39.162 -8.172 65.367 1.00 16.48 B ATOM 5105 CD LEU 350 39.162 -8.172 65.367 1.00 16.48 B ATOM 5105 CD LEU 350 39.162 -8.172 65.367 1.00 16.48 B ATOM 5105 CD LEU 351 38.343 -8.254 66.658 1.00 18.22 B ATOM 5106 CD LEU 351 38.443 -8.254 66.658 1.00 18.22 B ATOM 5100 CD LEU 351 38.444 -8.846 69.003 1.00 21.84 B ATOM 5100 CD GLU 351 38.444 -8.846 69.003 1.00 21.84 B ATOM 5100 CD GLU 351 38.440 -9.791 69.965 1.00 26.42 B ATOM 5110 CD GLU 351 38.440 -9.791 69.965 1.00 26.42 B ATOM 5110 CD GLU 351 38.440 -9.791 69.965 1.00 26.42 B ATOM 5111 CD GLU 351 38.440 -11.716 69.051 1.00 29.53 B ATOM 5111 CD GLU 351 37.289 -11.724 69.309 1.00 32.89 B ATOM 5111 CD GLU 351 37.289 -11.724 69.309 1.00 32.89 B ATOM 5112 CD GLU 351 37.289 -11.724 69.309 1.00 32.89 B ATOM 5116 CA TYR 352 37.368 -6.703 67.603 1.00 18.87 B ATOM 5116 CB TYR 352 37.368 -6.703 67.603 1.00 18.87 B ATOM 5116 CB TYR 352 37.368 -6.703 67.603 1.00 18.87 B ATOM 5116 CB TYR 352 36.816 -4.348 67.891 1.00 14.25 B ATOM 5112 CD TYR 352 35.105 -2.729 66.933 1.00 11.72 B ATOM 5120 CD TYR 352 35.500 -2.654 69.282 1.00 10.15 B ATOM 5120 CD TYR 352 35.500 -2.654 69.282 1.00 10.15 B ATOM 5120 CD TYR 352 35.500 -2.654 69.282 1.00 10.15 B ATOM 5120 CD TYR 352 35.500 -2.654 69.282 1.00 10.15 B ATOM 5120 CD TYR 352 35.500 -2.654 69.282 1.00 10.17 B ATOM 5120 CD TYR 352 35.500 -2.654 69.282 1.00 10.17 B ATOM 5120 CD TYR 352 35.500 -2.654 69.282 1.00 10.15 B ATOM 5120 CD TYR 352 35.402 -3.894 60.395 1.00 22.75 B ATOM 5120 CD TYR 352 35.402 -3.894 60.395 1.00 22.75 B ATOM 5130 CA ALA 353 36.466 -7.221 63.785 1.00 22.75 B ATOM 5130 CA ALA 353 36.466 -7.221 66.933 1.00 22.75 B ATOM 5130 CA ALA 353 36.466 -7.221 66.939 1.00 22.75 B AT	•	MOTA	5097	0	THR	349	3B.770	-5.325	65.282	1.00 15.82	В
20 ATOM 5099 CA LEU 350 40.226 -7.518 64.508 1.00 15.08 B ATOM 5100 CG LEU 350 41.963 -8.503 62.812 1.00 10.95 B ATOM 5101 CG LEU 350 41.963 -8.503 62.812 1.00 10.95 B ATOM 5102 CD1 LEU 350 42.004 -7.143 62.214 1.00 10.95 B ATOM 5103 CD2 LEU 350 330.147 -9.038 62.947 1.00 11.99 B ATOM 5103 CD2 LEU 350 330.152 -8.172 65.367 1.00 16.48 B ATOM 5105 O LEU 350 38.132 -8.595 64.876 1.00 17.28 B ATOM 5106 N GLU 351 38.513 -8.595 64.876 1.00 17.28 B ATOM 5107 N GLU 351 38.514 -8.842 67.609 1.00 19.87 B ATOM 5107 C G GLU 351 38.514 -8.842 67.609 1.00 19.87 B ATOM 5100 CG GLU 351 38.514 -8.842 67.609 1.00 19.87 B ATOM 5110 CD GLU 351 38.494 -9.791 69.965 1.00 26.42 B ATOM 5110 CD GLU 351 38.494 -9.791 69.965 1.00 26.42 B ATOM 5111 CD1 GLU 351 39.481 -11.771 69.051 1.00 29.53 B ATOM 5112 CD2 GLU 351 37.289 -11.724 69.309 1.00 32.89 B ATOM 5113 CG GLU 351 37.289 -11.724 69.309 1.00 32.89 B ATOM 5114 CG GLU 351 38.6126 -8.569 67.714 1.00 19.57 B ATOM 5116 CA TYR 352 36.258 -5.756 67.646 1.00 17.30 B ATOM 5116 CA TYR 352 36.258 -5.756 67.646 1.00 17.30 B ATOM 5117 CB TYR 352 36.258 -5.756 67.646 1.00 17.30 B ATOM 5118 CC TYR 352 35.794 -3.239 68.039 1.00 11.72 B ATOM 5120 CC TYR 352 35.794 -3.239 68.039 1.00 11.72 B ATOM 5120 CC TYR 352 35.794 -3.239 68.039 1.00 11.72 B ATOM 5120 CC TYR 352 35.794 -3.239 68.039 1.00 11.72 B ATOM 5120 CC TYR 352 35.794 -3.239 68.039 1.00 11.72 B ATOM 5120 CC TYR 352 35.794 -3.239 68.039 1.00 11.72 B ATOM 5120 CC TYR 352 35.794 -3.239 68.039 1.00 11.72 B ATOM 5120 CC TYR 352 35.794 -3.239 68.039 1.00 11.72 B ATOM 5120 CC TYR 352 36.625 -2.729 68.039 1.00 11.72 B ATOM 5120 CC TYR 352 36.626 -4.896 67.646 1.00 19.39 B ATOM 5120 CC TYR 352 35.794 -3.239 68.039 1.00 11.72 B ATOM 5120 CC TYR 352 36.626 -4.896 67.646 1.00 19.39 B ATOM 5120 CC TYR 352 36.626 -4.896 67.646 1.00 19.39 B ATOM 5120 CC TYR 352 36.626 -2.729 68.039 1.00 11.72 B ATOM 5120 CC TYR 352 36.626 -4.896 67.646 1.00 19.39 B ATOM 5120 CC TYR 352 36.606 -4.896 67.697 1.00 11.77 B ATOM 5120 CC TYR 352 36.606 -4.896 67.697 1.00 11.77 B			5098	N	LEU	350	40.777	-6.339	65.157	1.00 15.00	В
20 ATOM 5100 CB LEU 350 ATOM 5101 CG LEU 350 ATOM 5102 CD1 LEU 350 ATOM 5102 CD1 LEU 350 ATOM 5103 CD2 LEU 350 ATOM 5103 CD2 LEU 350 ATOM 5104 C LEU 350 ATOM 5105 CD LEU 350 ATOM 5106 N GLU 351 ATOM 5107 CA GLU 351 ATOM 5107 CA GLU 351 ATOM 5108 N GLU 351 ATOM 5108 CB GLU 351 ATOM 5109 CG GLU 351 ATOM 5110 CD TYR 352 ATOM 5110 CD TYR 352 ATOM 5120 CD TYR 352 ATOM 5121 CD TYR 352 ATOM 5120 CD TYR 352 ATOM 5120 CD TYR 352 ATOM 5121 CD TYR 352 ATOM 5120 CD T											
ATOM \$100 CG LEU 350 41.963 -8.503 62.812 1.00 10.95 B ATOM \$102 CD1 LEU 350 43.147 -9.038 62.947 1.00 11.99 B ATOM \$105 CD2 LEU 350 43.147 -9.038 62.947 1.00 11.99 B ATOM \$105 CD2 LEU 350 38.132 -8.595 64.876 1.00 17.28 B ATOM \$106 N GLU 351 38.142 -8.595 64.876 1.00 17.28 B ATOM \$107 CA GLU 351 38.143 -8.254 66.558 1.00 18.22 B ATOM \$108 CB GLU 351 38.514 -8.842 67.609 1.00 19.87 B ATOM \$108 CB GLU 351 38.444 -8.846 69.003 1.00 21.84 B ATOM \$108 CB GLU 351 38.444 -8.846 69.003 1.00 21.84 B ATOM \$110 CD GLU 351 38.494 -9.791 69.965 1.00 26.42 B ATOM \$110 CD GLU 351 38.494 -9.791 69.965 1.00 26.42 B ATOM \$1110 CD GLU 351 38.494 -9.791 69.965 1.00 20.64 B ATOM \$1110 CD GLU 351 38.494 -9.791 69.965 1.00 20.64 B ATOM \$1110 CD GLU 351 37.289 -11.724 69.309 1.00 32.89 B ATOM \$1110 CD GLU 351 37.289 -11.724 69.309 1.00 32.89 B ATOM \$1110 CD GLU 351 37.289 -11.724 69.309 1.00 32.89 B ATOM \$1110 CD GLU 351 37.289 -11.724 69.309 1.00 32.89 B ATOM \$1110 CD GLU 351 37.289 -11.724 69.309 1.00 32.89 B ATOM \$1110 CD GLU 351 37.289 -11.724 69.309 1.00 32.89 B ATOM \$1110 CD GLU 351 37.289 -11.724 69.309 1.00 32.89 B ATOM \$1110 CD GLU 351 37.289 -11.724 69.309 1.00 32.89 B ATOM \$1110 CD TYR 352 36.258 -5.756 67.646 1.00 17.30 B ATOM \$1120 CD TYR 352 36.258 -5.756 67.646 1.00 17.30 B ATOM \$1120 CD TYR 352 36.258 -5.756 67.646 1.00 17.30 B ATOM \$1120 CD TYR 352 34.220 -1.649 67.967 1.00 11.72 B ATOM \$120 CD TYR 352 34.220 -1.649 67.967 1.00 11.72 B ATOM \$120 CD TYR 352 34.220 -1.649 67.967 1.00 11.73 B ATOM \$120 CD TYR 352 34.220 -1.649 67.067 1.00 11.74 B ATOM \$120 CD TYR 352 34.220 -1.649 67.067 1.00 11.70 B ATOM \$120 CD TYR 352 34.220 -1.649 67.067 1.00 11.70 B ATOM \$120 CD TYR 352 34.220 -1.649 67.067 1.00 10.17 B ATOM \$120 CD TYR 352 34.220 -1.649 67.067 1.00 10.17 B ATOM \$120 CD TYR 352 34.220 -1.649 67.067 1.00 10.17 B ATOM \$120 CD TYR 352 36.505 -2.254 66.32 1.00 1.10 B ATOM \$120 CD TYR 352 36.30 0.00 0.00 0.00 0.00 0.00 0.00 0.0	20										
ATOM \$100 CD LEU 350 42.004 -7.143 62.214 1.00 10.81 B ATOM \$104 C LEU 350 39.162 -8.172 65.367 1.00 16.48 B ATOM \$105 CD LEU 350 39.162 -8.172 65.367 1.00 16.48 B ATOM \$106 N GLU 351 39.443 -8.254 66.658 1.00 17.28 B ATOM \$107 CA GLU 351 39.443 -8.254 66.658 1.00 17.28 B ATOM \$108 CB GLU 351 39.144 -8.846 69.003 1.00 21.84 B ATOM \$109 CG GLU 351 39.144 -8.846 69.003 1.00 21.84 B ATOM \$109 CG GLU 351 39.144 -9.791 69.965 1.00 22.88 B ATOM \$110 CD GLU 351 38.494 -9.791 69.965 1.00 22.88 B ATOM \$111 OEI GLU 351 39.449 -9.791 69.965 1.00 22.88 B ATOM \$111 OEI GLU 351 39.449 1.1196 69.051 1.00 29.53 B ATOM \$111 OEI GLU 351 39.481 1.1771 69.051 1.00 29.53 B ATOM \$111 OEI GLU 351 39.481 1.1771 69.051 1.00 29.53 B ATOM \$111 OEI GLU 351 37.217 -8.024 67.646 1.00 19.18 B ATOM \$112 C GLU 351 37.217 -8.024 67.646 1.00 19.18 B ATOM \$113 C GLU 351 37.217 -8.024 67.646 1.00 19.18 B ATOM \$113 C GLU 351 37.217 -8.024 67.646 1.00 19.18 B ATOM \$115 CA TYR 352 37.368 -6.703 67.603 1.00 18.87 B ATOM \$115 CA TYR 352 37.368 -6.703 67.603 1.00 18.87 B ATOM \$118 CG TYR 352 36.259 -5.756 67.646 1.00 11.73 B ATOM \$118 CG TYR 352 35.195 -2.729 66.393 1.00 11.72 B ATOM \$112 CDI TYR 352 35.105 -2.729 69.393 1.00 11.26 B ATOM \$120 CEI TYR 352 36.816 -4.348 67.891 1.00 14.25 B ATOM \$120 CEI TYR 352 36.926 -5.756 67.646 1.00 11.75 B ATOM \$120 CEI TYR 352 36.926 -5.756 67.647 1.00 11.75 B ATOM \$120 CEI TYR 352 36.926 -5.756 67.646 1.00 11.76 B ATOM \$120 CEI TYR 352 36.926 -5.756 67.646 1.00 11.76 B ATOM \$120 CEI TYR 352 36.926 -5.756 67.646 1.00 11.76 B ATOM \$120 CEI TYR 352 36.926 -5.756 67.646 1.00 11.76 B ATOM \$120 CEI TYR 352 36.926 -5.756 67.646 1.00 11.76 B ATOM \$120 CEI TYR 352 36.926 -5.756 67.646 1.00 11.76 B ATOM \$120 CEI TYR 352 36.926 -5.756 67.646 1.00 11.76 B ATOM \$120 CEI TYR 352 36.259 -5.756 67.646 1.00 11.76 B ATOM \$120 CEI TYR 352 36.259 -5.756 67.646 1.00 11.76 B ATOM \$120 CEI TYR 352 36.259 -5.756 67.646 1.00 11.76 B ATOM \$120 CEI TYR 352 36.259 -5.756 67.646 1.00 11.76 B ATOM \$120 CEI TYR 352 36.259 -5.756 67.646 1.00 11.	20	MOTA	5100	CB			41.352				
25 ATOM 5103 CD2 LEU 350 43.347 -9.038 62.947 1.00 11.99 B ATOM 5106 N C LEU 350 38.132 -8.595 64.876 1.00 16.48 B ATOM 5106 N GLU 351 38.143 -8.254 66.658 1.00 17.28 B ATOM 5106 N GLU 351 39.443 -8.254 66.658 1.00 19.87 B ATOM 5108 CB GLU 351 39.444 -8.846 67.609 1.00 19.87 B ATOM 5108 CB GLU 351 38.144 -8.846 67.609 1.00 19.87 B ATOM 5108 CB GLU 351 38.494 -9.791 65.965 1.00 21.84 B ATOM 5110 CD GLU 351 38.494 -9.791 65.965 1.00 22.642 B ATOM 5110 CD GLU 351 38.494 -9.791 65.965 1.00 22.642 B ATOM 5110 CD GLU 351 38.494 -9.791 65.965 1.00 30.21 B ATOM 5110 CD GLU 351 37.289 -11.772 69.309 1.00 30.21 B ATOM 5112 022 GLU 351 37.289 -11.772 69.309 1.00 32.89 B ATOM 5113 C GLU 351 37.289 -11.772 69.309 1.00 32.89 B ATOM 5114 O GLU 351 37.217 -8.024 67.646 1.00 19.18 B ATOM 5116 CA TYR 352 37.368 -6.703 67.603 1.00 19.18 B ATOM 5116 CA TYR 352 37.368 -6.703 67.664 1.00 19.17 B ATOM 5117 CB TYR 352 35.816 -4.348 67.891 1.00 14.25 B ATOM 5118 CG TYR 352 35.816 -4.348 67.891 1.00 14.25 B ATOM 5119 CDI TYR 352 35.094 -1.299 66.933 1.00 11.72 B ATOM 5120 CCE TYR 352 35.105 -2.729 66.933 1.00 11.72 B ATOM 5120 CCE TYR 352 35.105 -2.729 66.933 1.00 11.72 B ATOM 5120 CCE TYR 352 35.105 -2.729 66.933 1.00 11.72 B ATOM 5120 CCE TYR 352 35.5794 -1.584 69.431 1.00 9.97 B ATOM 5120 CCE TYR 352 35.5794 -1.584 69.431 1.00 19.37 B ATOM 5120 CCE TYR 352 33.175 0.010 68.445 1.00 10.15 B ATOM 5120 CCE TYR 352 33.175 0.010 68.445 1.00 10.15 B ATOM 5120 CCE TYR 352 33.175 0.010 68.445 1.00 11.62 B ATOM 5120 CC TYR 352 33.075 -6.98 62.22 1.00 10.15 B ATOM 5120 CC TYR 352 33.075 -6.98 62.22 1.00 10.15 B ATOM 5120 CC ALA 353 35.442 -5.814 66.99 1.00 19.39 B ATOM 5120 CC ALA 353 35.442 -5.814 66.65.00 10.00 18.36 B ATOM 5120 CC ALA 353 35.442 -5.814 66.65.00 10.00 18.36 B ATOM 5120 CC ALA 353 35.442 -5.814 66.65.00 10.00 18.36 B ATOM 5130 CC ALA 353 35.544 -8.819 64.19 1.00 19.39 B ATOM 5130 CC ALA 353 35.544 -8.819 64.19 1.00 19.39 B ATOM 5130 CC ALA 353 35.442 -8.819 64.19 1.00 19.39 B ATOM 5130 CC ALA 353 35.30 0.00 8.81 1.00 1.00 1.00		ATOM	5101	CG	LEU	350	41.963	-8.503	62.812	1.00 10.95	В
25 ATOM 5103 CD2 LEU 350 43.347 -9.038 62.947 1.00 11.99 B ATOM 5106 N C LEU 350 38.132 -8.595 64.876 1.00 16.48 B ATOM 5106 N GLU 351 38.143 -8.254 66.658 1.00 17.28 B ATOM 5106 N GLU 351 39.443 -8.254 66.658 1.00 19.87 B ATOM 5108 CB GLU 351 39.444 -8.846 67.609 1.00 19.87 B ATOM 5108 CB GLU 351 38.144 -8.846 67.609 1.00 19.87 B ATOM 5108 CB GLU 351 38.494 -9.791 65.965 1.00 21.84 B ATOM 5110 CD GLU 351 38.494 -9.791 65.965 1.00 22.642 B ATOM 5110 CD GLU 351 38.494 -9.791 65.965 1.00 22.642 B ATOM 5110 CD GLU 351 38.494 -9.791 65.965 1.00 30.21 B ATOM 5110 CD GLU 351 37.289 -11.772 69.309 1.00 30.21 B ATOM 5112 022 GLU 351 37.289 -11.772 69.309 1.00 32.89 B ATOM 5113 C GLU 351 37.289 -11.772 69.309 1.00 32.89 B ATOM 5114 O GLU 351 37.217 -8.024 67.646 1.00 19.18 B ATOM 5116 CA TYR 352 37.368 -6.703 67.603 1.00 19.18 B ATOM 5116 CA TYR 352 37.368 -6.703 67.664 1.00 19.17 B ATOM 5117 CB TYR 352 35.816 -4.348 67.891 1.00 14.25 B ATOM 5118 CG TYR 352 35.816 -4.348 67.891 1.00 14.25 B ATOM 5119 CDI TYR 352 35.094 -1.299 66.933 1.00 11.72 B ATOM 5120 CCE TYR 352 35.105 -2.729 66.933 1.00 11.72 B ATOM 5120 CCE TYR 352 35.105 -2.729 66.933 1.00 11.72 B ATOM 5120 CCE TYR 352 35.105 -2.729 66.933 1.00 11.72 B ATOM 5120 CCE TYR 352 35.5794 -1.584 69.431 1.00 9.97 B ATOM 5120 CCE TYR 352 35.5794 -1.584 69.431 1.00 19.37 B ATOM 5120 CCE TYR 352 33.175 0.010 68.445 1.00 10.15 B ATOM 5120 CCE TYR 352 33.175 0.010 68.445 1.00 10.15 B ATOM 5120 CCE TYR 352 33.175 0.010 68.445 1.00 11.62 B ATOM 5120 CC TYR 352 33.075 -6.98 62.22 1.00 10.15 B ATOM 5120 CC TYR 352 33.075 -6.98 62.22 1.00 10.15 B ATOM 5120 CC ALA 353 35.442 -5.814 66.99 1.00 19.39 B ATOM 5120 CC ALA 353 35.442 -5.814 66.65.00 10.00 18.36 B ATOM 5120 CC ALA 353 35.442 -5.814 66.65.00 10.00 18.36 B ATOM 5120 CC ALA 353 35.442 -5.814 66.65.00 10.00 18.36 B ATOM 5130 CC ALA 353 35.544 -8.819 64.19 1.00 19.39 B ATOM 5130 CC ALA 353 35.544 -8.819 64.19 1.00 19.39 B ATOM 5130 CC ALA 353 35.442 -8.819 64.19 1.00 19.39 B ATOM 5130 CC ALA 353 35.30 0.00 8.81 1.00 1.00 1.00			5102	CD1	LEU	350	42.004	-7.143	62.214	1.00 10.81	В
25 ATOM 5106 C LEU 350 39.162 -8.172 65.367 1.00 16.48 B ATOM 5106 N GLU 351 39.443 -8.254 66.658 1.00 17.28 B ATOM 5107 CA GLU 351 39.443 -8.254 66.658 1.00 18.22 B ATOM 5108 CB GLU 351 39.443 -8.254 66.658 1.00 19.27 B ATOM 5109 CG GLU 351 39.144 -8.842 67.600 1.00 19.87 B ATOM 5109 CG GLU 351 38.144 -8.846 69.003 1.00 21.84 B ATOM 5109 CG GLU 351 38.494 -9.791 69.965 1.00 26.42 B ATOM 5110 CD GLU 351 38.494 -9.791 69.965 1.00 26.42 B ATOM 5110 CD GLU 351 38.494 -9.791 69.965 1.00 26.42 B ATOM 5111 OEI GLU 351 39.481 -11.771 69.051 1.00 29.53 B ATOM 5112 OEZ GLU 351 37.289 -11.724 69.309 1.00 32.89 B ATOM 5113 C GLU 351 37.29 -11.724 69.309 1.00 32.89 B ATOM 5116 CA TYR 352 37.368 -6.703 67.646 1.00 19.18 B ATOM 5116 CA TYR 352 37.368 -6.703 67.646 1.00 19.18 B ATOM 5116 CA TYR 352 36.816 -4.348 67.891 1.00 14.25 B ATOM 5118 CG TYR 352 35.5794 -3.239 68.039 1.00 14.25 B ATOM 5110 CD1 TYR 352 35.105 -2.729 66.933 1.00 11.26 B ATOM 5120 CE1 TYR 352 35.105 -2.729 66.933 1.00 11.26 B ATOM 5121 CD2 TYR 352 34.620 -1.649 67.067 1.00 11.17 B ATOM 5121 CD2 TYR 352 34.620 -1.649 67.067 1.00 11.17 B ATOM 5122 CE2 TYR 352 34.620 -1.649 67.067 1.00 11.17 B ATOM 5123 CZ TYR 352 34.620 -1.649 67.067 1.00 11.17 B ATOM 5126 C TYR 352 34.620 -1.649 67.067 1.00 11.17 B ATOM 5127 N ALA 353 36.115 -5.822 66.407 1.00 18.83 B ATOM 5128 CA ALA 353 36.115 -5.822 66.407 1.00 18.93 B ATOM 5130 C ALA 353 36.155 -5.891 63.951 1.00 17.31 B ATOM 5130 C ALA 353 36.155 -9.265 68.891 1.00 18.03 B ATOM 5131 C B HIS 354 34.779 -9.661 63.994 1.00 25.57 B ATOM 5130 C ALA 353 36.151 -1.272 68.994 1.00 18.00 18.03 B ATOM 5130 C ALA 353 36.151 -1.072 64.599 1.00 25.57 B ATOM 5130 C ALA 353 36.359 -5.698 62.821 1.00 18.03 B ATOM 5130 C ALA 353 36.359 -5.698 62.821 1.00 18.03 B ATOM 5130 C ALA 353 36.151 -1.072 64.599 1.00 25.57 B ATOM 5130 C ALA 353 36.250 -9.255 65.995 1.00 20.04 B ATOM 5130 C ALA 353 36.250 -9.255 65.995 1.00 20.70 B ATOM 5130 C ALA 353 36.250 -9.255 66.891 1.00 20.70 B ATOM 5130 C ALA 353 36.250 -9.255 66.891 1.00 20.70 B ATOM 51											
25 ATOM 5105 O LEU 350 38.132 -8.595 64.876 1.00 17.28 B ATOM 5106 N GLU 351 38.434 -8.234 66.658 1.00 18.22 B ATOM 5107 CA GLU 351 38.514 -8.842 67.609 1.00 18.27 B ATOM 5108 CB GLU 351 38.434 -9.791 69.965 1.00 21.84 B ATOM 5100 CC GLU 351 38.494 -9.791 69.965 1.00 22.42 B ATOM 5110 CD GLU 351 38.494 -9.791 69.965 1.00 22.42 B ATOM 5110 CD GLU 351 38.494 -9.791 69.965 1.00 30.21 B ATOM 5110 CD GLU 351 38.494 -9.791 69.965 1.00 22.53 B ATOM 5112 0E2 GLU 351 37.289 -11.771 69.051 1.00 29.53 B ATOM 5113 C GLU 351 37.289 -11.772 69.309 1.00 32.89 B ATOM 5114 O GLU 351 37.299 -11.772 69.309 1.00 32.89 B ATOM 5116 CA TYR 352 37.368 -6.703 67.646 1.00 19.18 B ATOM 5116 CA TYR 352 36.258 -5.756 67.646 1.00 19.18 B ATOM 5117 CB TYR 352 36.258 -5.756 67.646 1.00 17.30 B ATOM 5118 CG TYR 352 36.258 -5.756 67.646 1.00 17.30 B ATOM 5118 CG TYR 352 36.258 -5.756 67.646 1.00 17.70 B ATOM 5119 CDI TYR 352 36.166 -4.348 67.891 1.00 14.25 B ATOM 5119 CDI TYR 352 35.105 -2.729 66.933 1.00 11.72 B ATOM 5120 CCE TYR 352 35.105 -2.729 66.933 1.00 11.72 B ATOM 5121 CD2 TYR 352 35.105 -2.729 66.933 1.00 11.72 B ATOM 5122 CC TYR 352 35.579 -2.654 69.282 1.00 10.17 B ATOM 5123 CC TYR 352 33.420 -1.649 67.067 1.00 11.17 B ATOM 5124 CD2 TYR 352 33.406 -1.584 69.431 1.00 9.37 B ATOM 5125 C TYR 352 33.175 0.010 68.455 1.00 11.62 B ATOM 5126 O TYR 352 33.175 0.010 68.455 1.00 11.62 B ATOM 5127 N ALA 353 35.406 -5.891 63.991 1.00 11.73 B ATOM 5128 CA ALA 353 35.406 -5.891 63.991 1.00 11.73 B ATOM 5129 CB ALA 353 35.406 -5.891 63.991 1.00 10.15 B ATOM 5130 C ALA 353 35.406 -5.891 63.991 1.00 18.30 B ATOM 5131 CA ARG 355 33.422 -1.01 64.991 1.00 18.30 B ATOM 5130 C ALA 353 35.406 -5.891 63.991 1.00 18.30 B ATOM 5130 C ALA 353 35.406 -5.891 63.991 1.00 18.30 B ATOM 5130 C ALA 353 35.406 -5.891 63.991 1.00 18.30 B ATOM 5130 C ALA 353 35.406 -7.221 63.785 1.00 18.30 B ATOM 5130 C ALA 353 35.406 -7.221 63.785 1.00 18.30 B ATOM 5130 C ALA 353 35.406 -7.221 63.991 1.00 20.75 B ATOM 5130 C BARG 355 30.806 -8.894 72.281 1.00 18.53 B ATOM 5130 C ALA 3											
ATOM 5106 N GLU 351 39.443 -8.254 66.658 1.00 18.22 B ATOM 5107 CA GLU 351 38.514 -8.842 67.609 1.00 19.87 B ATOM 5108 CB GLU 351 38.514 -8.842 67.609 1.00 19.87 B ATOM 5109 CG GLU 351 38.424 -9.791 69.965 1.00 26.42 B ATOM 5110 CD GLU 351 38.420 -11.196 69.403 1.00 30.21 B ATOM 5111 OEI GLU 351 39.481 -11.771 69.051 1.00 30.21 B ATOM 5111 OE2 GLU 351 39.481 -11.772 69.309 1.00 32.89 B ATOM 5113 C GLU 351 37.289 -11.724 69.309 1.00 32.89 B ATOM 5113 C GLU 351 37.289 -11.724 69.309 1.00 19.57 B ATOM 5116 CA TYR 352 36.258 -5.756 67.546 1.00 19.18 B ATOM 5116 CA TYR 352 36.258 -5.756 67.546 1.00 19.55 B ATOM 5116 CA TYR 352 36.816 -4.348 67.891 1.00 14.25 B ATOM 5117 CB TYR 352 35.105 -2.729 66.933 1.00 11.26 B ATOM 5120 CEI TYR 352 35.105 -2.729 66.933 1.00 11.26 B ATOM 5120 CEI TYR 352 35.105 -2.729 66.933 1.00 11.26 B ATOM 5120 CEI TYR 352 35.570 -2.654 69.282 1.00 11.26 B ATOM 5120 CEI TYR 352 34.020 -1.649 67.067 1.00 11.17 B ATOM 5120 CEI TYR 352 34.020 -1.649 69.282 1.00 10.01 5 B ATOM 5120 CEI TYR 352 34.024 -1.078 68.322 1.00 11.62 B ATOM 5120 CEI TYR 352 34.024 -1.078 68.322 1.00 11.62 B ATOM 5120 CEI TYR 352 34.024 -1.078 68.322 1.00 11.62 B ATOM 5120 CEI TYR 352 34.024 -1.078 68.322 1.00 11.62 B ATOM 5120 CEI TYR 352 34.024 -1.078 68.322 1.00 11.62 B ATOM 5120 CEI TYR 352 34.024 -1.078 68.322 1.00 11.62 B ATOM 5120 CEI TYR 352 34.024 -1.078 68.322 1.00 11.62 B ATOM 5120 CEI TYR 352 34.024 -1.078 68.322 1.00 11.62 B ATOM 5120 CEI TYR 352 34.024 -1.078 68.322 1.00 11.62 B ATOM 5120 CEI TYR 352 34.024 -1.078 68.322 1.00 11.62 B ATOM 5120 CEI TYR 352 34.024 -1.078 68.322 1.00 11.62 B ATOM 5120 CEI TYR 352 34.027 -1.584 69.282 1.00 11.62 B ATOM 5120 CEI TYR 352 34.027 -1.584 69.282 1.00 11.62 B ATOM 5120 CEI TYR 352 34.027 -1.078 68.322 1.00 11.62 B ATOM 5120 CEI TYR 352 34.027 -1.078 68.322 1.00 11.62 B ATOM 5120 CEI TYR 352 34.027 -1.078 68.322 1.00 11.62 B ATOM 5120 CEI TYR 352 34.027 -1.078 68.322 1.00 11.62 B ATOM 5120 CEI TYR 352 35.700 -2.654 69.282 1.00 11.62 B ATOM 5130 CEI TYR 352 35.700 -2.654 6	25										
ATOM 5107 CA GLU 351 38.514 -8.842 67.609 1.00 19.87 B ATOM 5108 CB GLU 351 39.144 -8.846 69.003 1.00 21.84 B ATOM 5100 CD GLU 351 38.494 -9.791 69.965 1.00 26.42 B ATOM 5110 CD GLU 351 38.420 -11.196 69.403 1.00 26.42 B ATOM 5111 CBI GLU 351 38.420 -11.716 69.403 1.00 20.21 B ATOM 5112 OE2 GLU 351 37.289 -11.771 69.051 1.00 29.53 B ATOM 5112 OE2 GLU 351 37.289 -11.772 69.309 1.00 32.89 B ATOM 5114 O GLU 351 37.217 -8.024 67.646 1.00 19.18 B ATOM 5115 N TYR 352 37.368 -6.703 67.603 1.00 19.57 B ATOM 5116 CA TYR 352 37.368 -6.703 67.603 1.00 18.87 B ATOM 5116 CA TYR 352 36.258 -5.756 67.646 1.00 17.30 B ATOM 5117 CB TYR 352 36.816 -4.348 67.891 1.00 17.30 B ATOM 5118 CG TYR 352 35.794 -3.239 68.039 1.00 11.72 B ATOM 5119 CDI TYR 352 35.794 -3.239 68.039 1.00 11.72 B ATOM 5120 CEI TYR 352 34.220 -1.649 67.067 1.00 11.17 B ATOM 5121 CDZ TYR 352 34.220 -1.649 67.067 1.00 11.17 B ATOM 5122 CEZ TYR 352 34.629 -1.584 69.433 1.00 11.26 B ATOM 5123 CZ TYR 352 34.629 -1.584 69.433 1.00 10.15 B ATOM 5124 OH TYR 352 33.175 0.010 68.445 1.00 11.62 B ATOM 5126 O TYR 352 34.220 -1.078 68.322 1.00 10.15 B ATOM 5127 N ALA 353 36.115 -5.822 65.216 1.00 18.80 B ATOM 5128 CA ALA 353 36.315 -5.822 66.407 1.00 19.93 B ATOM 5131 C ALA 353 36.359 -5.698 62.821 1.00 18.33 B ATOM 5132 C B ALA 353 36.359 -5.698 62.821 1.00 18.33 B ATOM 5133 CA HIS 354 34.779 -9.661 63.994 1.00 22.75 B ATOM 5134 CB HIS 354 34.779 -9.661 63.994 1.00 20.34 B ATOM 5135 C B HIS 354 34.779 -9.661 63.994 1.00 20.34 B ATOM 5134 CB HIS 354 34.779 -9.661 63.994 1.00 20.34 B ATOM 5135 CG HIS 354 34.779 -9.661 63.994 1.00 20.34 B ATOM 5134 CB HIS 354 34.779 -9.661 63.994 1.00 20.75 B ATOM 5136 CD ARG 355 31.789 -8.672 69.339 1.00 22.75 B ATOM 5136 CD ARG 355 31.789 -8.672 69.339 1.00 22.76 B ATOM 5136 CD ARG 355 32.433 -8.121 70.598 1.00 22.76 B ATOM 5136 CD ARG 355 32.433 -8.121 70.598 1.00 22.76 B ATOM 5140 O HIS 354 34.797 -13.031 65.156 1.00 20.90 B ATOM 5141 O HIS 354 34.797 -13.031 65.156 1.00 20.20 B ATOM 5146 CD ARG 355 32.433 -8.121 70.598 1.00 22.76 B ATOM	23	MOTA	5105	0	LEU	350	38.132	-8.595	64.876	1.00 17.28	8
ATOM 5107 CA GLU 351 38.514 -8.842 67.609 1.00 19.87 B ATOM 5108 CB GLU 351 39.144 -8.846 69.003 1.00 21.84 B ATOM 5100 CD GLU 351 38.494 -9.791 69.965 1.00 26.42 B ATOM 5110 CD GLU 351 38.420 -11.196 69.403 1.00 26.42 B ATOM 5111 CBI GLU 351 38.420 -11.716 69.403 1.00 20.21 B ATOM 5112 OE2 GLU 351 37.289 -11.771 69.051 1.00 29.53 B ATOM 5112 OE2 GLU 351 37.289 -11.772 69.309 1.00 32.89 B ATOM 5114 O GLU 351 37.217 -8.024 67.646 1.00 19.18 B ATOM 5115 N TYR 352 37.368 -6.703 67.603 1.00 19.57 B ATOM 5116 CA TYR 352 37.368 -6.703 67.603 1.00 18.87 B ATOM 5116 CA TYR 352 36.258 -5.756 67.646 1.00 17.30 B ATOM 5117 CB TYR 352 36.816 -4.348 67.891 1.00 17.30 B ATOM 5118 CG TYR 352 35.794 -3.239 68.039 1.00 11.72 B ATOM 5119 CDI TYR 352 35.794 -3.239 68.039 1.00 11.72 B ATOM 5120 CEI TYR 352 34.220 -1.649 67.067 1.00 11.17 B ATOM 5121 CDZ TYR 352 34.220 -1.649 67.067 1.00 11.17 B ATOM 5122 CEZ TYR 352 34.629 -1.584 69.433 1.00 11.26 B ATOM 5123 CZ TYR 352 34.629 -1.584 69.433 1.00 10.15 B ATOM 5124 OH TYR 352 33.175 0.010 68.445 1.00 11.62 B ATOM 5126 O TYR 352 34.220 -1.078 68.322 1.00 10.15 B ATOM 5127 N ALA 353 36.115 -5.822 65.216 1.00 18.80 B ATOM 5128 CA ALA 353 36.315 -5.822 66.407 1.00 19.93 B ATOM 5131 C ALA 353 36.359 -5.698 62.821 1.00 18.33 B ATOM 5132 C B ALA 353 36.359 -5.698 62.821 1.00 18.33 B ATOM 5133 CA HIS 354 34.779 -9.661 63.994 1.00 22.75 B ATOM 5134 CB HIS 354 34.779 -9.661 63.994 1.00 20.34 B ATOM 5135 C B HIS 354 34.779 -9.661 63.994 1.00 20.34 B ATOM 5134 CB HIS 354 34.779 -9.661 63.994 1.00 20.34 B ATOM 5135 CG HIS 354 34.779 -9.661 63.994 1.00 20.34 B ATOM 5134 CB HIS 354 34.779 -9.661 63.994 1.00 20.75 B ATOM 5136 CD ARG 355 31.789 -8.672 69.339 1.00 22.75 B ATOM 5136 CD ARG 355 31.789 -8.672 69.339 1.00 22.76 B ATOM 5136 CD ARG 355 32.433 -8.121 70.598 1.00 22.76 B ATOM 5136 CD ARG 355 32.433 -8.121 70.598 1.00 22.76 B ATOM 5140 O HIS 354 34.797 -13.031 65.156 1.00 20.90 B ATOM 5141 O HIS 354 34.797 -13.031 65.156 1.00 20.20 B ATOM 5146 CD ARG 355 32.433 -8.121 70.598 1.00 22.76 B ATOM		MOTA	5106	N	GLU	351	39.443	-8.254	66.658	1.00 18.22	В
ATOM											
30 ATOM 5109 CG CLU 351 38.494 -9.791 69.965 1.00 26.42 B ATOM 5110 CD GLU 351 38.420 -11.196 69.403 1.00 30.21 B ATOM 5111 OEI GLU 351 39.481 -11.771 69.051 1.00 29.53 B ATOM 5112 OE2 GLU 351 37.289 -11.724 69.309 1.00 32.289 B ATOM 5113 C GLU 351 37.217 -8.024 67.646 1.00 19.18 B ATOM 5115 N TYR 352 37.368 6-703 67.603 1.00 19.57 B ATOM 5115 N TYR 352 37.368 6-703 67.603 1.00 19.57 B ATOM 5116 CA TYR 352 36.258 -5.756 67.646 1.00 19.18 B ATOM 5117 CB TYR 352 36.258 -5.756 67.646 1.00 17.30 B ATOM 5117 CB TYR 352 36.258 -5.756 67.646 1.00 17.30 B ATOM 5118 CG TYR 352 35.794 -3.239 68.039 1.00 11.72 B ATOM 5119 CDI TYR 352 35.105 -2.729 66.933 1.00 11.26 B ATOM 5120 CEI TYR 352 34.220 -1.649 67.067 1.00 11.17 B ATOM 5121 CD2 TYR 352 34.220 -1.649 67.067 1.00 11.17 B ATOM 5122 CZ TYR 352 34.629 -1.584 69.433 1.00 11.26 B ATOM 5122 CZ TYR 352 34.024 -1.078 68.322 1.00 10.15 B ATOM 5122 CZ TYR 352 34.024 -1.078 68.322 1.00 11.62 B ATOM 5126 O TYR 352 33.175 0.010 68.445 1.00 14.22 B ATOM 5126 O TYR 352 33.175 0.010 68.445 1.00 14.22 B ATOM 5127 N ALA 353 36.115 -5.822 65.216 1.00 18.80 B ATOM 5129 CB ALA 353 36.115 -5.822 65.216 1.00 11.62 B ATOM 5129 CB ALA 353 36.115 -5.822 65.216 1.00 18.80 B ATOM 5123 N HIS 354 34.600 -7.221 63.785 1.00 18.30 B ATOM 5131 O ALA 353 36.315 -5.698 62.821 1.00 16.33 B ATOM 5133 CA HIS 354 34.600 -7.221 63.785 1.00 18.30 B ATOM 5134 CB HIS 354 35.544 36.799 -13.646 63.994 1.00 20.34 B ATOM 5134 CB HIS 354 33.5406 -5.891 63.991 1.00 17.31 B ATOM 5134 CB HIS 354 33.5406 -5.891 63.991 1.00 17.31 B ATOM 5134 CB HIS 354 34.680 -7.221 63.785 1.00 18.30 B ATOM 5134 CB HIS 354 34.680 -7.221 63.785 1.00 18.30 B ATOM 5134 CB HIS 354 34.680 -7.221 63.785 1.00 18.30 B ATOM 5134 CB HIS 354 34.680 -7.221 64.294 1.00 20.34 B ATOM 5134 CB HIS 354 34.591 -1.00 17.31 B ATOM 5134 CB HIS 354 34.591 -1.00 17.31 CB B ATOM 5134 CB HIS 354 34.591 -1.00 12.275 B ATOM 5136 CB HIS 354 34.591 -1.00 12.275 B ATOM 5136 CB HIS 354 34.591 -1.00 12.276 B ATOM 5134 CB ARG 355 31.460 -7.221 68.399 1.00 22.775 B ATOM											
30 ATOM 5110 CD GLU 351 38.420 -11.196 69.403 1.00 30.21 B ATOM 5111 0E1 GLU 351 39.481 -11.771 69.051 1.00 29.53 B ATOM 5112 0E2 GLU 351 37.289 -11.724 69.309 1.00 32.89 B ATOM 5113 C GLU 351 37.289 -11.724 69.309 1.00 32.89 B ATOM 5114 0 GLU 351 37.217 -8.024 67.646 1.00 19.18 B ATOM 5115 N TYR 352 37.368 -6.703 67.603 1.00 18.87 B ATOM 5116 CA TYR 352 36.258 -5.756 67.646 1.00 17.30 B ATOM 5116 CA TYR 352 36.258 -5.756 67.646 1.00 17.30 B ATOM 5117 CB TYR 352 36.258 -5.756 67.646 1.00 17.30 B ATOM 5118 CG TYR 352 35.794 -3.239 68.039 1.00 11.72 B ATOM 5119 CD1 TYR 352 35.794 -3.239 68.039 1.00 11.26 B ATOM 5120 CE1 TYR 352 35.105 -2.729 66.933 1.00 11.26 B ATOM 5120 CE1 TYR 352 35.105 -2.729 66.933 1.00 11.26 B ATOM 5122 CE2 TYR 352 34.629 -1.584 69.433 1.00 9.37 B ATOM 5122 CE2 TYR 352 34.629 -1.584 69.433 1.00 9.37 B ATOM 5122 CE2 TYR 352 34.629 -1.584 69.433 1.00 9.37 B ATOM 5123 CZ TYR 352 33.175 0.010 68.445 1.00 14.22 B ATOM 5126 O TYR 352 33.175 0.010 68.445 1.00 14.22 B ATOM 5126 O TYR 352 33.422 -1.078 68.322 1.00 11.62 B ATOM 5128 CA ALA 353 36.115 -5.822 66.407 1.00 19.93 B ATOM 5129 CB ALA 353 36.115 -5.822 66.407 1.00 19.93 B ATOM 5129 CB ALA 353 36.115 -5.822 66.407 1.00 19.93 B ATOM 5130 C ALA 353 36.155 -5.891 63.951 1.00 17.31 B ATOM 5131 N HIS 354 35.344 -7.249 63.365 1.00 18.36 B ATOM 5132 N HIS 354 35.344 -7.249 63.365 1.00 18.36 B ATOM 5131 C ALA 353 36.406 -7.221 63.785 1.00 18.36 B ATOM 5131 C ALA 353 35.406 -5.891 63.951 1.00 17.31 B ATOM 5131 C ALA 353 36.406 -7.221 63.785 1.00 18.36 B ATOM 5130 C ALA 353 35.406 -5.891 63.951 1.00 17.31 B ATOM 5131 C ALA 353 33.5406 -5.891 63.951 1.00 17.31 B ATOM 5131 C ALA 353 35.406 -5.891 63.951 1.00 18.33 B ATOM 5131 C ALA 353 35.406 -5.891 63.951 1.00 18.33 B ATOM 5130 C ALA 353 35.406 -5.891 63.951 1.00 18.33 B ATOM 5130 C ALA 353 35.406 -5.891 63.951 1.00 18.36 B ATOM 5131 C ALA 353 35.406 -5.891 63.951 1.00 18.36 B ATOM 5130 C ALA 353 35.406 -5.891 63.951 1.00 18.36 B ATOM 5130 C ALA 353 35.406 -5.891 63.951 1.00 18.36 B ATOM 5130 C ALA 353											
ATOM 5112 OE2 GLU 351 39.481 -11.771 69.051 1.00 29.53 B ATOM 5113 C GLU 351 37.289 -11.724 69.309 1.00 32.89 B ATOM 5114 O GLU 351 37.289 -11.724 69.309 1.00 32.89 B ATOM 5115 N TYR 352 37.368 -6.703 67.603 1.00 18.87 B ATOM 5116 CA TYR 352 37.368 -6.703 67.603 1.00 18.87 B ATOM 5116 CA TYR 352 36.816 -4.348 67.891 1.00 11.30 B ATOM 5117 CB TYR 352 35.794 -3.239 68.039 1.00 11.72 B ATOM 5118 CG TYR 352 35.794 -3.239 68.039 1.00 11.72 B ATOM 5119 CD1 TYR 352 35.704 -3.239 68.039 1.00 11.72 B ATOM 5110 CE1 TYR 352 35.570 -2.654 69.282 1.00 10.15 B ATOM 5120 CE1 TYR 352 34.699 -1.584 69.433 1.00 9.37 B ATOM 5122 CE2 TYR 352 34.699 -1.584 69.433 1.00 10.15 B ATOM 5123 CZ TYR 352 34.699 -1.584 69.433 1.00 11.62 B ATOM 5124 OH TYR 352 33.175 0.010 68.445 1.00 11.62 B ATOM 5125 C TYR 352 34.429 -1.584 69.431 1.00 11.62 B ATOM 5126 O TYR 352 33.275 0.010 68.445 1.00 11.62 B ATOM 5127 N ALA 353 36.115 -5.822 65.216 1.00 18.80 B ATOM 5128 CA ALA 353 35.442 -5.814 66.362 1.00 18.83 B ATOM 5129 CB ALA 353 36.415 -5.822 65.216 1.00 18.33 B ATOM 5130 C ALA 353 35.442 -7.249 63.365 1.00 17.31 B ATOM 5131 O ALA 353 36.459 -7.249 63.365 1.00 17.31 B ATOM 5131 O ALA 353 36.359 -5.698 62.821 1.00 16.39 B ATOM 5130 C ALA 353 36.359 -5.698 62.821 1.00 16.39 B ATOM 5131 O ALA 353 36.415 -5.822 65.216 1.00 18.36 B ATOM 5131 O ALA 353 36.359 -5.698 62.821 1.00 18.36 B ATOM 5131 O ALA 353 36.359 -5.698 62.821 1.00 18.36 B ATOM 5131 O ALA 353 36.359 -5.698 62.821 1.00 18.36 B ATOM 5131 O ALA 353 36.359 -5.698 62.821 1.00 18.36 B ATOM 5130 C ALA 353 36.359 -5.698 62.821 1.00 18.36 B ATOM 5131 O ALA 353 36.359 -5.698 62.821 1.00 18.36 B ATOM 5131 O ALA 353 36.359 -5.698 62.821 1.00 18.36 B ATOM 5130 C ALA 353 36.359 -5.698 62.821 1.00 18.36 B ATOM 5130 C ALA 353 36.359 -5.698 62.821 1.00 18.36 B ATOM 5130 C ALA 353 36.359 -5.698 62.821 1.00 18.36 B ATOM 5130 C ALA 353 36.359 -5.698 62.821 1.00 18.36 B ATOM 5130 C ALA 353 36.359 -5.698 62.821 1.00 18.36 B ATOM 5130 C ALA 353 36.400 -5.891 64.799 1.00 22.75 B ATOM 5130 C ALA 353 36.359 -5.		MOTA	5109	CG	GLU	351	38.494	-9.791	69.965	1.00 26.42	В
ATOM 5112 OE2 GLU 351 39.481 -11.771 69.051 1.00 29.53 B ATOM 5113 C GLU 351 37.289 -11.724 69.309 1.00 32.89 B ATOM 5114 O GLU 351 37.289 -11.724 69.309 1.00 32.89 B ATOM 5115 N TYR 352 37.368 -6.703 67.603 1.00 18.87 B ATOM 5116 CA TYR 352 37.368 -6.703 67.603 1.00 18.87 B ATOM 5116 CA TYR 352 36.816 -4.348 67.891 1.00 11.30 B ATOM 5117 CB TYR 352 35.794 -3.239 68.039 1.00 11.72 B ATOM 5118 CG TYR 352 35.794 -3.239 68.039 1.00 11.72 B ATOM 5119 CD1 TYR 352 35.704 -3.239 68.039 1.00 11.72 B ATOM 5120 CE1 TYR 352 35.570 -2.654 69.282 1.00 10.15 B ATOM 5121 CD2 TYR 352 34.699 -1.584 69.433 1.00 9.37 B ATOM 5122 CE2 TYR 352 34.699 -1.584 69.433 1.00 10.15 B ATOM 5123 CZ TYR 352 34.699 -1.584 69.433 1.00 11.62 B ATOM 5124 OH TYR 352 33.175 0.010 68.445 1.00 11.62 B ATOM 5125 C TYR 352 34.422 -5.814 66.362 1.00 18.80 B ATOM 5127 N ALA 353 36.115 -5.822 65.216 1.00 18.83 B ATOM 5128 CA ALA 353 35.442 -5.814 66.362 1.00 18.83 B ATOM 5129 CB ALA 353 36.415 -5.822 65.216 1.00 18.33 B ATOM 5130 C ALA 353 36.459 -7.249 63.365 1.00 17.31 B ATOM 5131 O ALA 353 36.459 -5.698 62.821 1.00 16.39 B ATOM 5130 C ALA 353 36.359 -5.698 62.821 1.00 17.31 B ATOM 5130 C ALA 353 36.359 -5.698 62.821 1.00 18.36 B ATOM 5131 O ALA 353 36.115 -5.822 65.216 1.00 18.36 B ATOM 5131 O ALA 353 36.459 -7.249 63.365 1.00 18.36 B ATOM 5131 O ALA 353 36.359 -5.698 62.821 1.00 18.36 B ATOM 5131 O ALA 353 36.359 -5.698 62.821 1.00 18.36 B ATOM 5131 O ALA 353 36.359 -5.698 62.821 1.00 18.36 B ATOM 5131 O ALA 353 36.359 -5.698 62.821 1.00 18.36 B ATOM 5131 O ALA 353 36.359 -5.698 62.821 1.00 18.36 B ATOM 5131 O ALA 353 36.359 -5.698 62.821 1.00 18.36 B ATOM 5131 O ALA 353 36.359 -5.698 62.821 1.00 18.36 B ATOM 5130 C ALA 353 36.359 -5.698 62.821 1.00 18.36 B ATOM 5130 C ALA 353 36.359 -5.698 62.821 1.00 18.36 B ATOM 5130 C ALA 353 36.359 -5.698 62.821 1.00 18.36 B ATOM 5130 C ALA 353 36.359 -5.698 62.821 1.00 18.36 B ATOM 5130 C ALA 353 36.359 -5.698 62.821 1.00 18.36 B ATOM 5130 C ALA 353 36.359 -5.698 62.821 1.00 18.36 B ATOM 5130 C ALA 353 36.359 -5	30	ATOM	5110	CD	GLU	351	38.420	-11.196	69.403	1.00 30.21	В
ATOM 5112 OBC GLU 351 37.289 -11.724 69.309 1.00 12.88 B ATOM 5114 O GLU 351 37.217 -8.024 67.646 1.00 19.18 B ATOM 5115 N TYR 352 37.368 -6.703 67.603 1.00 18.87 B ATOM 5116 CA TYR 352 37.368 -6.703 67.603 1.00 18.87 B ATOM 5116 CA TYR 352 36.258 -5.756 67.646 1.00 17.30 B ATOM 5117 CB TYR 352 36.816 -4.348 67.891 1.00 14.25 B ATOM 5118 CG TYR 352 36.816 -4.348 67.891 1.00 14.25 B ATOM 5119 CD1 TYR 352 35.794 -3.239 68.039 1.00 11.72 B ATOM 5120 CEI TYR 352 35.105 -2.729 66.933 1.00 11.26 B ATOM 5120 CEI TYR 352 35.105 -2.729 66.933 1.00 11.26 B ATOM 5120 CEI TYR 352 34.220 -1.649 67.067 1.00 11.17 B ATOM 5122 CZ TYR 352 34.699 -1.584 69.433 1.00 9.37 B ATOM 5123 CZ TYR 352 34.699 -1.584 69.433 1.00 9.37 B ATOM 5124 OH TYR 352 33.175 0.010 68.445 1.00 14.22 B ATOM 5125 C TYR 352 33.175 0.010 68.445 1.00 14.22 B ATOM 5126 O TYR 352 33.442 -5.814 66.362 1.00 18.80 B ATOM 5127 N ALA 353 36.115 -5.822 66.407 1.00 19.93 B ATOM 5128 CA ALA 353 36.415 -5.821 66.407 1.00 19.93 B ATOM 5129 CB ALA 353 36.415 -5.891 63.951 1.00 17.31 B ATOM 5130 C ALA 353 36.460 -7.221 63.785 1.00 18.36 B ATOM 5131 C ALA 353 36.467 -9.661 63.994 1.00 20.34 B ATOM 5131 C ALA 353 36.4680 -7.221 63.785 1.00 18.36 B ATOM 5132 N HIS 354 35.354 -8.319 64.119 1.00 19.39 B ATOM 5131 C ALA 353 36.4680 -7.221 63.785 1.00 18.36 B ATOM 5130 C ALA 353 33.4680 -7.221 63.785 1.00 18.36 B ATOM 5131 C ALA 353 33.546 -9.966 63.994 1.00 20.34 B ATOM 5131 C ALA 353 33.4680 -9.221 63.655 1.00 18.10 B ATOM 5130 C ALA 353 33.4680 -9.221 63.655 1.00 18.36 B ATOM 5131 C ALA 353 33.4680 -9.221 63.655 1.00 18.36 B ATOM 5131 C ALA 353 33.4680 -9.221 63.655 1.00 18.36 B ATOM 5131 C ALA 353 33.4680 -7.221 63.785 1.00 18.36 B ATOM 5131 C ALA 353 33.4680 -7.221 63.785 1.00 18.36 B ATOM 5131 C ALA 353 33.486 -9.811 64.796 1.00 22.75 B ATOM 5134 CB HIS 354 35.302 -12.121 64.294 1.00 22.75 B ATOM 5136 CD2 HIS 354 33.177 -8.626 60.907 1.00 22.75 B ATOM 5136 CD2 ATOM 535 33.486 -9.811 64.796 1.00 22.75 B ATOM 5140 N ARG 355 33.590 -9.255 65.995 1.00 20.24 B ATOM 5141 O HIS											R
ATOM 5113 C GLU 351 36.126 -8.569 67.646 1.00 19.18 B ATOM 5114 O GLU 351 36.126 -8.569 67.714 1.00 19.57 B ATOM 5115 N TYR 352 37.368 -6.703 67.603 1.00 18.87 B ATOM 5116 CA TYR 352 36.258 -5.756 67.646 1.00 17.30 B ATOM 5117 CB TYR 352 36.258 -5.756 67.646 1.00 17.30 B ATOM 5118 CG TYR 352 35.794 -3.239 68.039 1.00 11.72 B ATOM 5119 CDI TYR 352 35.105 -2.729 66.933 1.00 11.26 B ATOM 5120 CEI TYR 352 35.105 -2.729 66.933 1.00 11.17 B ATOM 5121 CD2 TYR 352 34.629 -1.649 67.067 1.00 11.17 B ATOM 5123 CZ TYR 352 34.699 -1.584 69.282 1.00 10.15 B ATOM 5123 CZ TYR 352 34.699 -1.584 69.433 1.00 9.37 B ATOM 5123 CZ TYR 352 33.175 0.010 68.445 1.00 14.22 B ATOM 5126 O TYR 352 33.175 0.010 68.445 1.00 14.22 B ATOM 5126 O TYR 352 33.175 0.010 68.445 1.00 14.22 B ATOM 5128 CA ALA 353 36.115 -5.822 66.407 1.00 19.93 B ATOM 5128 CA ALA 353 36.115 -5.822 66.407 1.00 19.93 B ATOM 5128 CA ALA 353 34.680 -7.221 63.785 1.00 16.39 B ATOM 5131 O ALA 353 34.686 -7.221 63.785 1.00 16.39 B ATOM 5131 O ALA 353 34.686 -7.221 63.785 1.00 18.36 B ATOM 5132 CB ALA 353 34.686 -7.221 63.785 1.00 18.36 B ATOM 5137 NI IS 354 34.797 -3.661 63.991 1.00 22.75 B ATOM 5136 CD2 HIS 354 34.797 -3.031 65.156 1.00 25.57 B ATOM 5136 CD2 HIS 354 34.797 -3.031 65.156 1.00 25.57 B ATOM 5136 CD2 HIS 354 34.797 -3.031 65.156 1.00 25.57 B ATOM 5136 CD2 HIS 354 34.579 -3.225 66.891 1.00 20.275 B ATOM 5140 CD ARG 355 32.433 -8.721 68.239 1.00 20.70 B ATOM 5140 CD ARG 355 32.433 -8.721											
35 ATOM 5114 O GLU 351 36.126 -8.569 67.714 1.00 19.57 B ATOM 5115 N TYR 352 37.368 -6.703 67.603 1.00 18.87 B ATOM 5116 CA TYR 352 36.258 -5.756 67.646 1.00 17.30 B ATOM 5117 CB TYR 352 36.816 -4.348 67.891 1.00 14.25 B ATOM 5118 CG TYR 352 35.794 -3.239 68.033 1.00 11.72 B ATOM 5119 CD1 TYR 352 35.105 -2.729 66.933 1.00 11.72 B ATOM 5120 CE1 TYR 352 35.105 -2.729 66.933 1.00 11.72 B ATOM 5121 CD2 TYR 352 35.757 -2.654 69.282 1.00 10.15 B ATOM 5122 CE2 TYR 352 34.220 -1.649 67.067 1.00 11.17 B ATOM 5122 CE2 TYR 352 34.699 -1.584 69.433 1.00 9.37 B ATOM 5122 CE2 TYR 352 34.024 -1.078 68.322 1.00 10.15 B ATOM 5122 CE2 TYR 352 34.024 -1.078 68.322 1.00 11.62 B ATOM 5125 C TYR 352 33.175 0.010 68.455 1.00 14.22 B ATOM 5126 OT TYR 352 33.175 0.010 68.455 1.00 14.22 B ATOM 5126 OT TYR 352 34.217 -5.852 66.407 1.00 18.80 B ATOM 5126 O TYR 352 34.217 -5.852 66.407 1.00 18.80 B ATOM 5128 CA ALA 353 36.115 -5.822 65.216 1.00 18.33 B ATOM 5128 CA ALA 353 36.406 -5.891 63.951 1.00 17.31 B ATOM 5130 C ALA 353 36.406 -5.891 63.951 1.00 17.31 B ATOM 5131 O ALA 353 36.406 -5.891 63.951 1.00 17.31 B ATOM 5131 O ALA 353 36.406 -5.891 63.951 1.00 17.31 B ATOM 5131 O ALA 353 36.406 -7.221 63.785 1.00 18.36 B ATOM 5132 N HIS 354 35.545 -8.319 64.119 1.00 19.39 B ATOM 5131 O ALA 353 35.406 -5.891 63.951 1.00 18.36 B ATOM 5131 O ALA 353 35.406 -5.891 63.951 1.00 18.36 B ATOM 5131 O ALA 353 35.406 -5.891 64.509 1.00 22.75 B ATOM 5136 CD2 HIS 354 35.354 -8.319 64.119 1.00 19.39 B ATOM 5137 ND1 HIS 354 35.761 -10.712 64.509 1.00 22.75 B ATOM 5137 ND1 HIS 354 35.761 -10.712 64.509 1.00 22.75 B ATOM 5137 ND1 HIS 354 35.761 -10.712 64.509 1.00 22.75 B ATOM 5140 C HIS 354 34.797 -31.001 65.156 1.00 25.57 B ATOM 5140 C HIS 354 34.797 -9.661 63.994 1.00 20.34 B ATOM 5141 O HIS 354 35.761 -10.712 64.509 1.00 22.76 B ATOM 5147 ND ATOM 5154 C ARG 355 32.433 -8.721 68.239 1.00 20.70 B ATOM 5140 C HIS 354 34.797 -9.266 64.907 1.00 20.24 B ATOM 5140 C ARG 355 32.433 -8.721 68.239 1.00 20.70 B ATOM 5144 CB ARG 355 32.433 -8.721 68.239 1.00 20.70 B											
35 ATOM 5115 N TYR 352 36.258 -6.703 67.603 1.00 18.87 B ATOM 5116 CA TYR 352 36.258 -5.756 67.646 1.00 17.30 B ATOM 5117 CB TYR 352 36.258 -5.756 67.646 1.00 17.30 B ATOM 5118 CG TYR 352 36.258 -7.329 68.039 1.00 11.72 B ATOM 5119 CD1 TYR 352 35.794 -3.239 68.039 1.00 11.72 B ATOM 5120 CE1 TYR 352 35.794 -3.239 68.039 1.00 11.72 B ATOM 5121 CD2 TYR 352 35.794 -7.2564 69.282 1.00 10.15 B ATOM 5121 CD2 TYR 352 34.220 -1.649 67.067 1.00 11.17 B ATOM 5121 CD2 TYR 352 34.220 -1.649 67.067 1.00 11.17 B ATOM 5122 CE2 TYR 352 34.699 -1.584 69.483 1.00 9.37 B ATOM 5123 CZ TYR 352 34.024 -1.078 68.322 1.00 11.62 B ATOM 5125 C TYR 352 34.024 -1.078 68.322 1.00 11.62 B ATOM 5125 C TYR 352 34.217 -5.852 66.407 1.00 18.80 B ATOM 5126 O TYR 352 34.217 -5.852 66.407 1.00 19.93 B ATOM 5126 O TYR 352 34.217 -5.852 66.407 1.00 19.93 B ATOM 5127 N ALA 353 36.135 -5.822 65.216 1.00 18.33 B ATOM 5128 CA ALA 353 36.359 -5.698 62.821 1.00 17.31 B ATOM 5129 CB ALA 353 34.680 -7.221 63.785 1.00 17.31 B ATOM 5132 N HIS 353 34.680 -7.221 63.785 1.00 18.36 B ATOM 5131 O ALA 353 34.680 -7.221 63.785 1.00 18.36 B ATOM 5131 O ALA 353 34.680 -7.221 63.785 1.00 18.36 B ATOM 5132 N HIS 354 34.779 -9.661 63.994 1.00 20.34 B ATOM 5133 CA HIS 354 34.779 -9.661 63.994 1.00 20.34 B ATOM 5136 CD HIS 354 35.761 -10.712 64.599 1.00 22.75 B ATOM 5137 ND HIS 354 35.302 -12.121 64.294 1.00 25.57 B ATOM 5137 ND HIS 354 35.761 -10.712 64.599 1.00 22.75 B ATOM 5137 ND HIS 354 34.779 -9.661 63.994 1.00 22.75 B ATOM 5137 ND HIS 354 34.779 -9.2661 63.994 1.00 20.34 B ATOM 5137 ND HIS 354 35.311 -12.725 63.053 1.00 22.75 B ATOM 5140 C HIS 354 34.779 -9.2661 63.994 1.00 20.70 B B ATOM 5140 C HIS 354 34.779 -9.2661 63.994 1.00 22.75 B ATOM 5140 C HIS 354 34.779 -9.2661 63.994 1.00 22.75 B ATOM 5140 C HIS 354 34.779 -9.2661 63.994 1.00 22.75 B ATOM 5140 C HIS 354 34.779 -9.2661 63.994 1.00 22.76 B ATOM 5140 C HIS 354 34.779 -9.2661 63.994 1.00 22.76 B ATOM 5140 C HIS 354 34.779 -9.2661 63.994 1.00 22.76 B ATOM 5140 C HIS 354 32.512 -10.417 64.352 1.00 18.53 B ATOM			5113	С	GLU	351		-8.024		1.00 19.18	В
ATOM 5116 CA TYR 352 36.258 -5.756 67.646 1.00 17.30 B ATOM 5117 CB TYR 352 36.816 -4.348 67.891 1.00 14.25 B ATOM 5118 CG TYR 352 35.794 -3.239 68.039 1.00 11.72 B ATOM 5119 CD1 TYR 352 35.794 -3.239 68.039 1.00 11.72 B ATOM 5120 CE1 TYR 352 35.105 -2.729 66.933 1.00 11.26 B ATOM 5121 CD2 TYR 352 34.220 -1.649 67.067 1.00 11.17 B ATOM 5122 CE2 TYR 352 34.689 -1.584 69.482 1.00 10.15 B ATOM 5123 CZ TYR 352 34.699 -1.584 69.433 1.00 93.7 B ATOM 5123 CZ TYR 352 34.024 -1.078 68.322 1.00 11.62 B ATOM 5124 OH TYR 352 33.175 0.010 68.445 1.00 14.22 B ATOM 5126 C TYR 352 35.442 -5.814 66.362 1.00 18.80 B ATOM 5127 N ALA 353 36.115 -5.852 66.407 1.00 19.93 B ATOM 5128 CA ALA 353 36.359 -5.852 66.407 1.00 19.93 B ATOM 5129 CB ALA 353 36.359 -5.869 62.821 1.00 16.39 B ATOM 5131 O ALA 353 33.4680 -7.221 63.785 1.00 16.39 B ATOM 5132 N HIS 354 35.354 -7.249 63.365 1.00 18.36 B ATOM 5132 N HIS 354 35.354 -7.249 63.365 1.00 18.36 B ATOM 5134 CB HIS 354 35.761 -10.712 64.509 1.00 22.75 B ATOM 5135 CG HIS 354 34.797 -9.661 63.994 1.00 20.34 B ATOM 5136 CD2 HIS 354 35.302 -12.121 64.294 1.00 22.75 B ATOM 5138 CEI HIS 354 34.81 -13.948 63.164 1.00 25.37 B ATOM 5138 CEI HIS 354 34.81 -13.948 63.164 1.00 25.57 B ATOM 5138 CEI HIS 354 34.81 -13.948 63.164 1.00 25.57 B ATOM 5130 C ARG 355 32.823 -8.721 68.239 1.00 21.77 B ATOM 5131 O ALA 353 33.505 -9.255 66.991 1.00 21.77 B ATOM 5134 CB ARG 355 32.823 -8.721 68.239 1.00 21.77 B ATOM 5136 CD2 HIS 354 34.797 -13.031 65.156 1.00 25.57 B ATOM 5137 NDI HIS 354 34.831 -13.948 63.164 1.00 26.03 B ATOM 5140 C HIS 354 34.511 -14.162 64.427 1.00 26.67 B ATOM 5140 C ARG 355 32.823 -8.721 68.239 1.00 21.77 B ATOM 5147 NE ARG 355 32.823 -8.721 68.239 1.00 21.77 B ATOM 5148 CZ ARG 355 32.823 -8.721 68.239 1.00 21.77 B ATOM 5149 NH1 ARG 355 31.461 -7.943 71.673 1.00 21.66 B ATOM 5149 NH1 ARG 355 31.462 -7.943 71.673 1.00 21.66 B ATOM 5149 NH1 ARG 355 31.461 -7.943 71.673 1.00 21.66 B ATOM 5150 NH2 ARG 355 30.040 -8.932 66.453 1.00 23.53		MOTA	5114	0	GLU	351	36.126	-8.569	67.714	1.00 19.57	В
ATOM 5116 CA TYR 352 36.258 -5.756 67.646 1.00 17.30 B ATOM 5117 CB TYR 352 36.816 -4.348 67.891 1.00 14.25 B ATOM 5118 CG TYR 352 35.794 -3.239 68.039 1.00 11.72 B ATOM 5119 CD1 TYR 352 35.794 -3.239 68.039 1.00 11.72 B ATOM 5120 CE1 TYR 352 35.105 -2.729 66.933 1.00 11.26 B ATOM 5121 CD2 TYR 352 34.220 -1.649 67.067 1.00 11.17 B ATOM 5122 CE2 TYR 352 34.689 -1.584 69.482 1.00 10.15 B ATOM 5123 CZ TYR 352 34.699 -1.584 69.433 1.00 93.7 B ATOM 5123 CZ TYR 352 34.024 -1.078 68.322 1.00 11.62 B ATOM 5124 OH TYR 352 33.175 0.010 68.445 1.00 14.22 B ATOM 5126 C TYR 352 35.442 -5.814 66.362 1.00 18.80 B ATOM 5127 N ALA 353 36.115 -5.852 66.407 1.00 19.93 B ATOM 5128 CA ALA 353 36.359 -5.852 66.407 1.00 19.93 B ATOM 5129 CB ALA 353 36.359 -5.869 62.821 1.00 16.39 B ATOM 5131 O ALA 353 33.4680 -7.221 63.785 1.00 16.39 B ATOM 5132 N HIS 354 35.354 -7.249 63.365 1.00 18.36 B ATOM 5132 N HIS 354 35.354 -7.249 63.365 1.00 18.36 B ATOM 5134 CB HIS 354 35.761 -10.712 64.509 1.00 22.75 B ATOM 5135 CG HIS 354 34.797 -9.661 63.994 1.00 20.34 B ATOM 5136 CD2 HIS 354 35.302 -12.121 64.294 1.00 22.75 B ATOM 5138 CEI HIS 354 34.81 -13.948 63.164 1.00 25.37 B ATOM 5138 CEI HIS 354 34.81 -13.948 63.164 1.00 25.57 B ATOM 5138 CEI HIS 354 34.81 -13.948 63.164 1.00 25.57 B ATOM 5130 C ARG 355 32.823 -8.721 68.239 1.00 21.77 B ATOM 5131 O ALA 353 33.505 -9.255 66.991 1.00 21.77 B ATOM 5134 CB ARG 355 32.823 -8.721 68.239 1.00 21.77 B ATOM 5136 CD2 HIS 354 34.797 -13.031 65.156 1.00 25.57 B ATOM 5137 NDI HIS 354 34.831 -13.948 63.164 1.00 26.03 B ATOM 5140 C HIS 354 34.511 -14.162 64.427 1.00 26.67 B ATOM 5140 C ARG 355 32.823 -8.721 68.239 1.00 21.77 B ATOM 5147 NE ARG 355 32.823 -8.721 68.239 1.00 21.77 B ATOM 5148 CZ ARG 355 32.823 -8.721 68.239 1.00 21.77 B ATOM 5149 NH1 ARG 355 31.461 -7.943 71.673 1.00 21.66 B ATOM 5149 NH1 ARG 355 31.462 -7.943 71.673 1.00 21.66 B ATOM 5149 NH1 ARG 355 31.461 -7.943 71.673 1.00 21.66 B ATOM 5150 NH2 ARG 355 30.040 -8.932 66.453 1.00 23.53	35	ATOM .	.5115	N	TYR	352	37.368	-6.703	67.603	1.00 18.87	В
ATOM 5117 CB TYR 352 36.816 -4.348 67.891 1.00 14.25 B ATOM 5118 CG TYR 352 35.794 -3.239 68.039 1.00 11.26 B ATOM 5119 CD1 TYR 352 35.105 -2.729 66.933 1.00 11.26 B ATOM 5120 CE1 TYR 352 34.220 -1.649 67.067 1.00 11.17 B ATOM 5121 CD2 TYR 352 35.570 -2.654 69.282 1.00 10.15 B ATOM 5122 CE2 TYR 352 34.699 -1.584 69.313 1.00 9.37 B ATOM 5123 CZ TYR 352 34.699 -1.584 69.313 1.00 9.37 B ATOM 5124 OH TYR 352 33.175 0.010 68.445 1.00 14.22 B ATOM 5125 C TYR 352 33.175 0.010 68.445 1.00 14.22 B ATOM 5126 O TYR 352 33.422 -5.814 66.362 1.00 18.80 B ATOM 5127 N ALA 353 36.115 -5.852 66.407 1.00 19.93 B ATOM 5128 CA ALA 353 36.115 -5.852 65.216 1.00 18.33 B ATOM 5128 CA ALA 353 36.359 -5.698 62.821 1.00 17.31 B ATOM 5130 C ALA 353 33.5406 -5.891 63.951 1.00 17.31 B ATOM 5131 O ALA 353 33.5406 -7.221 63.785 1.00 18.36 B ATOM 5131 O ALA 353 33.5406 -7.221 63.785 1.00 18.36 B ATOM 5131 O ALA 353 33.540 -7.221 63.785 1.00 18.36 B ATOM 5131 O ALA 353 33.540 -7.221 63.785 1.00 18.36 B ATOM 5131 CA HIS 354 34.779 -9.661 63.99 1.00 22.75 B ATOM 5136 CD HIS 354 34.779 -9.661 63.99 1.00 22.75 B ATOM 5137 NDI HIS 354 35.761 -10.712 64.509 1.00 22.75 B ATOM 5138 NDI HIS 354 34.779 -9.661 63.99 1.00 22.75 B ATOM 5139 NE2 HIS 354 34.777 -13.031 65.156 1.00 25.57 B ATOM 5130 NDI HIS 354 34.777 -13.031 65.156 1.00 25.57 B ATOM 5130 NDI HIS 354 34.777 -13.031 65.156 1.00 25.57 B ATOM 5131 CA ARG 355 32.823 -8.721 68.239 1.00 20.24 B ATOM 5140 C HIS 354 33.486 -9.811 64.796 1.00 26.03 B ATOM 5140 C HIS 354 33.486 -9.811 64.796 1.00 20.24 B ATOM 5140 C ARG 355 32.823 -8.721 68.239 1.00 21.77 B ATOM 5140 CB ARG 355 32.823 -8.721 68.239 1.00 21.77 B ATOM 5140 CB ARG 355 32.833 -8.721 68.239 1.00 21.77 B ATOM 5140 CB ARG 355 31.461 -7.943 71.673 1.00 27.66 B ATOM 5149 NH1 ARG 355 31.042 -10.206 71.921 1.00 31.11 B ATOM 5150 NH2 ARG 355 30.040 -8.932 66.453 1.00 23.53 B											
40 ATOM 5118 CG TYR 352 35.794 -3.239 68.039 1.00 11.72 B ATOM 5120 CD1 TYR 352 35.105 -2.729 66.933 1.00 11.72 B ATOM 5120 CD1 TYR 352 34.220 -1.649 67.067 1.00 11.17 B ATOM 5121 CD2 TYR 352 34.220 -1.649 67.067 1.00 11.17 B ATOM 5122 CD2 TYR 352 35.570 -2.654 69.282 1.00 10.15 B ATOM 5123 CZ TYR 352 34.099 -1.584 69.433 1.00 9.37 B ATOM 5123 CZ TYR 352 34.099 -1.584 69.433 1.00 9.37 B ATOM 5124 OH TYR 352 34.024 -1.078 68.322 1.00 11.62 B ATOM 5125 C TYR 352 33.175 0.010 68.445 1.00 14.22 B ATOM 5126 O TYR 352 35.442 -5.814 66.362 1.00 18.80 B ATOM 5126 O TYR 352 35.442 -5.814 66.362 1.00 19.93 B ATOM 5126 O TYR 352 35.442 -5.826 66.407 1.00 19.93 B ATOM 5127 N ALA 353 36.115 -5.822 65.216 1.00 18.33 B ATOM 5128 CA ALA 353 35.406 -5.891 63.951 1.00 17.31 B ATOM 5129 CB ALA 353 35.406 -5.891 63.951 1.00 17.31 B ATOM 5130 C ALA 353 36.359 -5.698 62.821 1.00 16.39 B ATOM 5130 C ALA 353 34.680 -7.221 63.785 1.00 18.36 B ATOM 5131 O ALA 353 33.542 -7.249 63.365 1.00 18.36 B ATOM 5132 N HIS 354 35.354 -8.319 64.119 1.00 19.39 B ATOM 5133 CA HIS 354 35.354 -8.319 64.119 1.00 19.39 B ATOM 5134 CB HIS 354 35.364 -7.249 63.365 1.00 18.10 B ATOM 5137 ND1 HIS 354 35.361 -10.712 64.599 1.00 22.75 B ATOM 5137 ND1 HIS 354 35.361 -10.712 64.599 1.00 22.75 B ATOM 5138 CD2 HIS 354 34.797 -13.031 65.156 1.00 25.57 B ATOM 5138 CD2 HIS 354 34.797 -13.031 65.156 1.00 25.57 B ATOM 5137 ND1 HIS 354 34.831 -13.948 63.164 1.00 25.34 B ATOM 5140 C HIS 354 34.831 -12.725 63.053 1.00 25.77 B ATOM 5140 C HIS 354 34.831 -13.948 63.164 1.00 26.03 B ATOM 5140 C HIS 354 34.831 -13.948 63.164 1.00 26.03 B ATOM 5140 C BARG 355 32.370 -9.285 66.891 1.00 20.70 B B ATOM 5140 C BARG 355 32.370 -9.285 66.891 1.00 20.70 B B ATOM 5140 C BARG 355 32.370 -9.285 66.891 1.00 20.70 B B ATOM 5143 CA ARG 355 32.370 -9.285 66.891 1.00 21.77 B ATOM 5144 CB ARG 355 32.370 -9.285 66.891 1.00 21.77 B ATOM 5149 NH1 ARG 355 31.461 -7.943 71.673 1.00 27.66 B ATOM 5149 NH1 ARG 355 31.461 -7.943 71.673 1.00 27.66 B ATOM 5149 NH1 ARG 355 31.461 -7.943 71.673 1.00 27.66											
40 ATOM 5119 CD1 TYR 352 35.105 -2.729 66.933 1.00 11.26 B ATOM 5120 CE1 TYR 352 34.220 -1.649 67.067 1.00 11.17 B ATOM 5121 CD2 TYR 352 35.570 -2.654 69.282 1.00 10.15 B ATOM 5122 CE2 TYR 352 34.699 -1.584 69.282 1.00 10.15 B ATOM 5123 CZ TYR 352 34.699 -1.584 69.433 1.00 9.37 B ATOM 5124 OH TYR 352 33.175 0.010 68.445 1.00 14.22 B ATOM 5125 C TYR 352 34.024 -1.078 68.322 1.00 11.62 B ATOM 5126 OH TYR 352 33.175 0.010 68.445 1.00 14.22 B ATOM 5126 O TYR 352 34.217 -5.852 66.407 1.00 18.80 B ATOM 5127 N ALA 353 36.115 -5.822 65.216 1.00 18.33 B ATOM 5128 CA ALA 353 35.406 -5.891 63.951 1.00 17.31 B ATOM 5129 CB ALA 353 36.155 -5.822 65.216 1.00 18.33 B ATOM 5130 C ALA 353 34.680 -7.221 63.785 1.00 18.36 B ATOM 5131 O ALA 353 33.5406 -5.891 63.951 1.00 17.31 B ATOM 5131 O ALA 353 33.542 -7.249 63.365 1.00 18.36 B ATOM 5131 CA ALB 353 33.542 -7.249 63.365 1.00 18.36 B ATOM 5131 CA ALB 353 33.542 -7.249 63.365 1.00 18.36 B ATOM 5131 CA ALB 353 34.679 -9.661 63.994 1.00 20.34 B ATOM 5136 CD ALB 354 34.779 -9.661 63.994 1.00 20.34 B ATOM 5136 CD ALB 354 34.779 -9.661 63.994 1.00 20.34 B ATOM 5136 CD ALB 354 34.779 -9.661 63.994 1.00 22.75 B ATOM 5137 NDI HIS 354 34.797 -13.031 64.294 1.00 25.37 B ATOM 5138 CB HIS 354 34.797 -13.031 64.294 1.00 25.37 B ATOM 5137 NDI HIS 354 34.797 -13.031 64.294 1.00 25.77 B ATOM 5138 CB HIS 354 34.797 -13.031 64.294 1.00 25.77 B ATOM 5136 CD ATOM 5137 NDI HIS 354 34.831 -13.948 63.164 1.00 20.23 B ATOM 5136 CD ATOM 5140 C ARG 355 32.823 -8.721 68.299 1.00 20.70 B ATOM 5140 CB ARG 355 32.823 -8.721 68.299 1.00 20.70 B ATOM 5140 CB ARG 355 31.789 -8.672 69.339 1.00 20.70 B ATOM 5140 CB ARG 355 31.789 -8.672 69.339 1.00 20.70 B ATOM 5140 CB ARG 355 31.404 -10.206 71.921 1.00 31.17 B ATOM 5150 NH2 ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5150 NH2 ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 51510 CARG 355 31.177 -8.513 66.305 1.00 21.80											
40 ATOM 5120 CE1 TYR 352 34.220 -1.649 67.067 1.00 11.17 B ATOM 5121 CD2 TYR 352 35.570 -2.654 69.282 1.00 10.15 B ATOM 5122 CE2 TYR 352 34.699 -1.584 69.433 1.00 9.37 B ATOM 5123 CZ TYR 352 34.024 -1.078 68.322 1.00 11.62 B ATOM 5124 OH TYR 352 33.175 0.010 68.445 1.00 14.22 B ATOM 5126 O TYR 352 35.442 -5.814 66.362 1.00 18.80 B ATOM 5126 O TYR 352 35.442 -5.814 66.362 1.00 18.80 B ATOM 5127 N ALA 353 36.115 -5.822 66.407 1.00 19.93 B ATOM 5128 CA ALA 353 35.406 -5.891 63.951 1.00 17.31 B ATOM 5129 CB ALA 353 36.155 -5.698 62.821 1.00 16.39 B ATOM 5120 C ALA 353 34.680 -7.221 63.785 1.00 18.36 B ATOM 5131 C ALA 353 34.680 -7.221 63.785 1.00 18.36 B ATOM 5131 C ALA 353 34.680 -7.221 63.785 1.00 18.36 B ATOM 5131 C ALA 353 34.680 -7.221 63.785 1.00 18.36 B ATOM 5131 C ALA 353 34.680 -7.221 63.785 1.00 18.36 B ATOM 5131 C ALA 353 34.680 -7.221 63.785 1.00 18.36 B ATOM 5131 C ALA 353 34.680 -7.221 63.785 1.00 18.36 B ATOM 5131 C ALA 353 34.680 -7.221 63.785 1.00 18.36 B ATOM 5131 C ALA 353 34.680 -7.221 63.785 1.00 18.36 B ATOM 5131 CA HIS 354 35.354 -8.319 64.119 1.00 19.39 B ATOM 5133 CA HIS 354 35.361 -10.712 64.509 1.00 22.75 B ATOM 5138 CE HIS 354 35.761 -10.712 64.509 1.00 22.75 B ATOM 5136 CD2 HIS 354 35.302 -12.121 64.294 1.00 25.34 B ATOM 5136 CD2 HIS 354 34.779 -9.661 63.994 1.00 25.57 B ATOM 5138 CE1 HIS 354 34.779 -13.031 65.156 1.00 25.57 B ATOM 5137 ND1 HIS 354 34.779 -13.031 65.156 1.00 25.77 B ATOM 5138 CE1 HIS 354 34.831 -13.948 63.164 1.00 26.03 B ATOM 5140 C HIS 354 34.831 -13.948 63.164 1.00 26.03 B ATOM 5140 C HIS 354 34.831 -13.948 63.164 1.00 26.03 B ATOM 5140 C HIS 354 34.831 -13.948 69.811 64.796 1.00 20.24 B ATOM 5140 C HIS 354 34.831 -13.948 69.811 64.796 1.00 20.24 B ATOM 5140 C HIS 354 34.831 -13.948 69.811 64.796 1.00 20.24 B ATOM 5140 C HIS 354 34.831 -13.948 69.811 64.796 1.00 20.24 B ATOM 5140 C HIS 354 34.831 -13.948 69.811 64.796 1.00 20.24 B ATOM 5140 C HIS 354 34.831 -13.948 69.811 60.20 20.24 B ATOM 5140 C ARG 355 32.833 -8.721 68.239 1.00 20.70 B ATOM 5145 CA ARG 355 32.833		MOTA	5118	CG	TYR	352	35.794	-3.239	68.039	1.00 11.72	В
40 ATOM 5120 CE1 TYR 352 34.220 -1.649 67.067 1.00 11.17 B ATOM 5121 CD2 TYR 352 35.570 -2.654 69.282 1.00 10.15 B ATOM 5122 CE2 TYR 352 34.699 -1.584 69.433 1.00 9.37 B ATOM 5123 CZ TYR 352 34.024 -1.078 68.322 1.00 11.62 B ATOM 5124 OH TYR 352 33.175 0.010 68.445 1.00 14.22 B ATOM 5125 C TYR 352 33.175 0.010 68.445 1.00 14.22 B ATOM 5126 O TYR 352 35.442 -5.814 66.362 1.00 18.80 B ATOM 5127 N ALA 353 36.115 -5.822 65.216 1.00 18.80 B ATOM 5128 CA ALA 353 36.115 -5.822 65.216 1.00 18.33 B ATOM 5129 CB ALA 353 35.406 -5.891 63.951 1.00 17.31 B ATOM 5129 CB ALA 353 36.359 -5.698 62.821 1.00 16.39 B ATOM 5130 C ALA 353 34.680 -7.221 63.785 1.00 18.36 B ATOM 5131 O ALA 353 33.542 -7.249 63.365 1.00 18.36 B ATOM 5131 CA ALA 353 33.542 -7.249 63.365 1.00 18.36 B ATOM 5132 N HIS 354 35.354 -8.319 64.119 1.00 19.39 B ATOM 5133 CA HIS 354 35.354 -8.319 64.119 1.00 19.39 B ATOM 5136 CB HIS 354 35.354 -8.319 64.119 1.00 20.34 B ATOM 5136 CB HIS 354 35.302 -12.121 64.294 1.00 22.75 B ATOM 5137 CB HIS 354 35.302 -12.121 64.294 1.00 25.34 B ATOM 5138 CE1 HIS 354 35.302 -12.121 64.294 1.00 25.57 B ATOM 5137 ND1 HIS 354 35.311 -12.725 63.053 1.00 25.77 B ATOM 5138 CE1 HIS 354 34.797 -13.031 65.156 1.00 25.57 B ATOM 5137 ND1 HIS 354 35.311 -12.725 63.053 1.00 25.77 B ATOM 5137 ND1 HIS 354 35.311 -12.725 63.053 1.00 25.77 B ATOM 5140 C HIS 354 34.511 -14.162 64.427 1.00 26.67 B ATOM 5140 C HIS 354 34.511 -14.162 64.427 1.00 26.67 B ATOM 5140 C HIS 354 32.512 -10.417 64.352 1.00 18.53 B ATOM 5142 N ARG 355 32.823 -8.721 68.239 1.00 20.70 B ATOM 5145 CC ARG 355 32.823 -8.721 68.239 1.00 20.70 B ATOM 5145 CC ARG 355 32.833 -8.121 70.598 1.00 22.76 B ATOM 5146 CD ARG 355 31.789 -8.672 69.339 1.00 22.76 B ATOM 5147 NE ARG 355 31.789 -8.672 69.339 1.00 22.76 B ATOM 5147 NE ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5151 C ARG 355 31.777 -8.513 66.453 1.00 31.26 B ATOM 5151 C ARG 355 31.777 -8.513 66.453 1.00 23.53		MOTA	5119	CD1	TYR	352	35.105	-2.729	66.933	1.00 11.26	В
ATOM 5121 CD2 TYR 352 35.570 -2.654 69.282 1.00 10.15 B ATOM 5122 CE2 TYR 352 34.699 -1.584 69.433 1.00 9.37 B ATOM 5123 CZ TYR 352 34.024 -1.078 68.322 1.00 11.62 B ATOM 5124 OH TYR 352 33.175 0.010 68.445 1.00 14.22 B ATOM 5125 C TYR 352 33.175 0.010 68.445 1.00 14.22 B ATOM 5126 O TYR 352 33.424 -5.814 66.362 1.00 18.80 B ATOM 5127 N ALA 353 36.115 -5.822 65.216 1.00 18.33 B ATOM 5128 CA ALA 353 36.115 -5.822 65.216 1.00 18.33 B ATOM 5129 CB ALA 353 36.406 -5.891 63.951 1.00 17.31 B ATOM 5130 C ALA 353 36.406 -5.891 63.951 1.00 17.31 B ATOM 5131 O ALA 353 36.599 -7.221 63.785 1.00 18.36 B ATOM 5131 O ALA 353 33.5406 -7.221 63.785 1.00 18.36 B ATOM 5131 C ALA 353 33.542 -7.249 63.365 1.00 18.10 B ATOM 5132 N HIS 354 35.354 -8.319 64.119 1.00 19.39 B ATOM 5133 CA HIS 354 34.779 -9.661 63.994 1.00 22.75 B ATOM 5136 CD2 HIS 354 34.779 -9.661 63.994 1.00 22.75 B ATOM 5136 CD2 HIS 354 35.302 -12.121 64.294 1.00 25.34 B ATOM 5137 ND1 HIS 354 35.302 -12.121 64.294 1.00 25.34 B ATOM 5137 ND1 HIS 354 34.797 -13.031 65.156 1.00 25.57 B ATOM 5138 CE1 HIS 354 34.797 -13.031 65.156 1.00 25.57 B ATOM 5138 CE1 HIS 354 34.797 -13.031 65.156 1.00 25.77 B ATOM 5138 CE1 HIS 354 34.797 -13.031 65.156 1.00 25.77 B ATOM 5138 CE1 HIS 354 34.797 -13.031 65.156 1.00 25.77 B ATOM 5138 CE1 HIS 354 34.831 -13.948 63.164 1.00 26.03 B ATOM 5140 C HIS 354 34.831 -13.948 63.164 1.00 26.03 B ATOM 5140 C HIS 354 34.831 -13.948 63.164 1.00 26.03 B ATOM 5140 C HIS 354 34.831 -13.948 63.164 1.00 20.23 B ATOM 5140 C HIS 354 34.831 -13.948 63.164 1.00 20.20 B ATOM 5140 C HIS 354 32.370 -9.285 66.891 1.00 22.76 B ATOM 5140 C BARG 355 32.823 -8.721 68.239 1.00 22.76 B ATOM 5140 C BARG 355 32.823 -8.721 69.339 1.00 22.76 B ATOM 5140 NH ARG 355 33.0820 -8.942 72.281 1.00 31.26 B ATOM 5149 NH1 ARG 355 33.0820 -8.942 72.281 1.00 31.17 B ATOM 5140 C BARG 355 31.461 -7.943 71.673 1.00 27.66 B ATOM 5149 NH1 ARG 355 30.820 -8.942 72.281 1.00 31.17 B ATOM 5150 NH2 ARG 355 31.479 -8.679 73.262 1.00 31.12 B ATOM 5151 C ARG 355 31.1779 -8.6513 66.453 1.00 23.53	40									1 00 11 17	P.
ATOM 5122 CE2 TYR 352 34.699 -1.584 69.433 1.00 9.37 B ATOM 5123 CZ TYR 352 34.024 -1.078 68.322 1.00 11.62 B ATOM 5124 OH TYR 352 33.175 0.010 68.445 1.00 14.22 B ATOM 5125 C TYR 352 35.442 -5.814 66.362 1.00 18.80 B ATOM 5126 O TYR 352 35.442 -5.814 66.362 1.00 18.80 B ATOM 5127 N ALA 353 36.115 -5.822 66.407 1.00 19.93 B ATOM 5128 CA ALA 353 36.115 -5.822 65.216 1.00 18.33 B ATOM 5129 CB ALA 353 36.155 -5.891 63.951 1.00 17.31 B ATOM 5129 CB ALA 353 36.359 -5.698 62.821 1.00 16.39 B ATOM 5131 O ALA 353 33.5406 -7.221 63.785 1.00 18.36 B ATOM 5131 O ALA 353 33.542 -7.229 63.365 1.00 18.36 B ATOM 5132 N HIS 354 35.354 -8.319 64.119 1.00 19.39 B ATOM 5133 CA HIS 354 35.354 -8.319 64.119 1.00 20.34 B ATOM 5135 CG HIS 354 35.761 -10.712 64.509 1.00 22.75 B ATOM 5136 CD2 HIS 354 35.302 -12.121 64.294 1.00 25.34 B ATOM 5136 CD2 HIS 354 35.302 -12.121 64.294 1.00 25.577 B ATOM 5138 CE1 HIS 354 34.797 -13.031 65.156 1.00 25.77 B ATOM 5138 CE1 HIS 354 34.831 -13.948 63.164 1.00 26.67 B ATOM 5140 C HIS 354 34.831 -13.948 63.164 1.00 20.23 B ATOM 5139 NE2 HIS 354 34.831 -13.948 63.164 1.00 26.67 B ATOM 5140 C HIS 354 34.831 -13.948 63.164 1.00 20.23 B ATOM 5140 C HIS 354 34.831 -13.948 63.164 1.00 20.23 B ATOM 5140 C HIS 354 34.831 -13.948 63.164 1.00 20.23 B ATOM 5140 C HIS 354 34.831 -13.948 63.164 1.00 20.23 B ATOM 5140 C HIS 354 34.831 -13.948 63.164 1.00 20.23 B ATOM 5140 C HIS 354 34.831 -13.948 63.164 1.00 20.20 B ATOM 5140 C HIS 354 34.831 -13.948 63.164 1.00 20.20 B ATOM 5140 C HIS 354 34.831 -13.948 63.164 1.00 20.20 B ATOM 5140 C HIS 354 34.831 -13.948 63.164 1.00 20.20 B ATOM 5140 C HIS 354 34.831 -13.948 63.164 1.00 20.20 B ATOM 5140 C HIS 354 34.831 -13.948 63.164 1.00 20.20 B ATOM 5140 C HIS 354 34.831 -13.948 63.164 1.00 20.20 B ATOM 5140 C HIS 354 34.831 -13.948 63.164 1.00 20.20 B ATOM 5140 C HIS 354 34.831 -13.948 63.164 1.00 20.20 B ATOM 5140 C HIS 354 34.831 -13.948 63.164 1.00 20.20 B ATOM 5140 C HIS 354 34.831 -13.948 63.164 1.00 20.20 B ATOM 5140 C HIS 354 34.831 -13.948 63.164 1.00 20.20 B ATOM	••										
ATOM 5123 CZ TYR 352 34.024 -1.078 68.322 1.00 11.62 B ATOM 5124 OH TYR 352 33.175 0.010 68.445 1.00 14.22 B ATOM 5125 C TYR 352 33.175 0.010 68.445 1.00 14.22 B ATOM 5126 O TYR 352 34.217 -5.852 66.407 1.00 19.93 B ATOM 5127 N ALA 353 36.115 -5.822 66.216 1.00 18.33 B ATOM 5128 CA ALA 353 35.406 -5.891 63.951 1.00 17.31 B ATOM 5129 CB ALA 353 36.359 -5.698 62.821 1.00 16.39 B ATOM 5130 C ALA 353 34.680 -7.221 63.785 1.00 18.36 B ATOM 5131 O ALA 353 33.542 -7.249 63.365 1.00 18.36 B ATOM 5131 O ALA 353 33.542 -7.249 63.365 1.00 18.10 B ATOM 5131 CA HIS 354 35.354 -8.319 64.119 1.00 19.39 B ATOM 5133 CA HIS 354 35.761 -10.712 64.509 1.00 22.35 B ATOM 5135 CG HIS 354 35.761 -10.712 64.509 1.00 22.35 B ATOM 5136 CD2 HIS 354 35.302 -12.121 64.294 1.00 25.34 B ATOM 5137 ND1 HIS 354 35.311 -12.725 63.053 1.00 25.57 B ATOM 5138 CE1 HIS 354 34.797 -13.031 65.156 1.00 25.57 B ATOM 5139 NE2 HIS 354 34.511 -14.162 64.427 1.00 26.03 B ATOM 5140 C HIS 354 34.511 -14.162 64.427 1.00 26.03 B ATOM 5140 C HIS 354 34.511 -14.162 64.427 1.00 26.03 B ATOM 5141 O HIS 354 33.505 -9.285 65.995 1.00 20.224 B ATOM 5142 N ARG 355 32.823 -8.721 68.239 1.00 20.70 B ATOM 5144 CB ARG 355 32.823 -8.721 68.239 1.00 20.70 B ATOM 5146 CD ARG 355 32.433 -8.721 68.239 1.00 20.76 B ATOM 5147 NE ARG 355 32.433 -8.721 68.239 1.00 20.76 B ATOM 5148 CZ ARG 355 32.433 -8.721 68.239 1.00 20.76 B ATOM 5148 CZ ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5149 NH1 ARG 355 30.020 -8.942 72.281 1.00 31.17 B ATOM 5149 NH1 ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5140 C ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5141 C ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5151 C ARG 355 30.040 -8.932 66.453 1.00 23.53											
45 ATOM 5124 OH TYR 352 33.175 0.010 68.445 1.00 14.22 B ATOM 5125 C TYR 352 35.442 -5.814 66.362 1.00 18.80 B ATOM 5126 O TYR 352 34.217 -5.852 66.407 1.00 19.93 B ATOM 5127 N ALA 353 36.115 -5.822 65.216 1.00 18.33 B ATOM 5128 CA ALA 353 35.406 -5.891 63.951 1.00 17.31 B ATOM 5129 CB ALA 353 36.359 -5.698 62.821 1.00 16.39 B ATOM 5130 C ALA 353 34.680 -7.221 63.785 1.00 18.36 B ATOM 5131 O ALA 353 34.680 -7.221 63.785 1.00 18.36 B ATOM 5132 N HIS 354 35.354 -8.319 64.119 1.00 19.39 B ATOM 5133 CA HIS 354 34.779 -9.661 63.994 1.00 20.34 B ATOM 5135 CG HIS 354 35.761 -10.712 64.509 1.00 22.75 B ATOM 5136 CD2 HIS 354 34.797 -13.031 65.156 1.00 25.34 B ATOM 5137 ND1 HIS 354 35.311 -12.725 63.053 1.00 25.77 B ATOM 5139 NE2 HIS 354 34.831 -13.948 63.164 1.00 26.03 B ATOM 5139 NE2 HIS 354 34.831 -13.948 63.164 1.00 26.03 B ATOM 5140 C HIS 354 34.831 -13.948 63.164 1.00 26.03 B ATOM 5140 C HIS 354 34.831 -14.725 63.053 1.00 25.77 B ATOM 5140 C HIS 354 34.831 -13.948 63.164 1.00 26.03 B ATOM 5140 C HIS 354 34.831 -13.948 63.164 1.00 26.03 B ATOM 5140 C HIS 354 34.831 -13.948 63.164 1.00 26.03 B ATOM 5140 C HIS 354 34.831 -13.948 63.164 1.00 26.03 B ATOM 5140 C HIS 354 34.831 -13.948 63.164 1.00 26.03 B ATOM 5140 C HIS 354 34.831 -13.948 63.164 1.00 26.03 B ATOM 5140 C HIS 354 32.512 -10.417 64.352 1.00 18.53 B ATOM 5142 N ARG 355 32.823 -8.721 68.239 1.00 20.70 B ATOM 5144 CB ARG 355 32.823 -8.721 68.239 1.00 20.70 B ATOM 5146 CD ARG 355 32.433 -8.121 70.598 1.00 20.70 B ATOM 5146 CD ARG 355 32.433 -8.121 70.598 1.00 20.70 B ATOM 5146 CD ARG 355 31.461 -7.943 71.673 1.00 27.66 B ATOM 5148 CZ ARG 355 31.461 -7.943 71.673 1.00 27.66 B ATOM 5148 CZ ARG 355 31.461 -7.943 71.673 1.00 27.66 B ATOM 5148 CZ ARG 355 31.461 -7.943 71.673 1.00 27.66 B ATOM 5148 CZ ARG 355 31.461 -7.943 71.673 1.00 21.77 B ATOM 5146 CD ARG 355 31.461 -7.943 71.673 1.00 21.77 B ATOM 5146 CD ARG 355 31.461 -7.943 71.673 1.00 31.17 B ATOM 5150 NH2 ARG 355 31.461 -7.943 71.673 1.00 21.70 E ATOM 5140 CD ARG 355 31.461 -7.943 71.603 31.00 22.76 B ATOM		MOTA	5122	CE2	TYR	352		-1.584	69.433	1.00 9.37	В
45 ATOM 5125 C TYR 352 35.442 -5.814 66.362 1.00 18.80 B ATOM 5126 O TYR 352 34.217 -5.852 66.407 1.00 19.93 B ATOM 5127 N ALA 353 36.115 -5.822 65.216 1.00 18.33 B ATOM 5128 CA ALA 353 35.406 -5.891 63.951 1.00 17.31 B ATOM 5129 CB ALA 353 36.359 -5.698 62.821 1.00 16.39 B ATOM 5130 C ALA 353 36.359 -5.698 62.821 1.00 16.39 B ATOM 5131 O ALA 353 33.542 -7.249 63.365 1.00 18.36 B ATOM 5132 N HIS 354 35.354 -8.319 64.119 1.00 19.39 B ATOM 5132 N HIS 354 35.354 -8.319 64.119 1.00 19.39 B ATOM 5134 CB HIS 354 35.761 -10.712 64.509 1.00 20.34 B ATOM 5136 CD2 HIS 354 35.302 -12.121 64.509 1.00 22.75 B ATOM 5136 CD2 HIS 354 34.779 -9.661 63.994 1.00 25.37 B ATOM 5137 ND1 HIS 354 35.302 -12.121 64.294 1.00 25.37 B ATOM 5138 CE1 HIS 354 34.797 -13.031 65.156 1.00 25.57 B ATOM 5138 CE1 HIS 354 34.831 -13.948 63.164 1.00 26.03 B ATOM 5139 NE2 HIS 354 34.511 -14.162 64.427 1.00 26.67 B ATOM 5140 C HIS 354 34.511 -14.162 64.427 1.00 26.67 B ATOM 5140 C HIS 354 32.512 -10.417 64.352 1.00 18.53 B ATOM 5142 N ARG 355 33.505 -9.255 66.891 1.00 20.23 B ATOM 5142 N ARG 355 32.823 -8.721 68.239 1.00 20.70 B ATOM 5144 CB ARG 355 32.433 -8.121 70.598 1.00 20.70 B ATOM 5144 CB ARG 355 32.433 -8.121 70.598 1.00 27.76 B ATOM 5146 CD ARG 355 32.433 -8.721 68.239 1.00 27.76 B ATOM 5148 CZ ARG 355 32.433 -8.721 68.239 1.00 27.76 B ATOM 5149 NH1 ARG 355 31.042 -70.206 71.921 1.00 31.17 B ATOM 5149 NH1 ARG 355 31.042 -70.206 71.921 1.00 31.17 B ATOM 5149 NH1 ARG 355 30.820 -8.942 72.281 1.00 31.26 B ATOM 5149 NH1 ARG 355 30.820 -8.942 72.281 1.00 31.26 B ATOM 5149 NH1 ARG 355 30.820 -8.942 72.281 1.00 31.26 B ATOM 5149 NH1 ARG 355 30.820 -8.942 72.281 1.00 31.26 B ATOM 5149 NH1 ARG 355 30.820 -8.942 72.281 1.00 31.17 B ATOM 5150 NH2 ARG 355 30.820 -8.942 72.281 1.00 31.26 B ATOM 5149 NH1 ARG 355 30.820 -8.942 72.281 1.00 31.26 B ATOM 5149 NH1 ARG 355 30.820 -8.942 72.281 1.00 31.26 B ATOM 5149 NH1 ARG 355 30.820 -8.942 72.281 1.00 31.26 B ATOM 5150 NH2 ARG 355 30.040 -8.932 66.453 1.00 23.53		MOTA	5123	CZ	TYR	352	34.024	-1.078	68.322	1.00 11.62	В
45 ATOM 5125 C TYR 352 35.442 -5.814 66.362 1.00 18.80 B ATOM 5126 O TYR 352 34.217 -5.852 66.407 1.00 19.93 B ATOM 5127 N ALA 353 36.115 -5.822 65.216 1.00 18.33 B ATOM 5128 CA ALA 353 35.406 -5.891 63.951 1.00 17.31 B ATOM 5129 CB ALA 353 36.359 -5.698 62.821 1.00 16.39 B ATOM 5130 C ALA 353 36.359 -5.698 62.821 1.00 16.39 B ATOM 5131 O ALA 353 33.542 -7.249 63.365 1.00 18.36 B ATOM 5132 N HIS 354 35.354 -8.319 64.119 1.00 19.39 B ATOM 5132 N HIS 354 35.354 -8.319 64.119 1.00 19.39 B ATOM 5134 CB HIS 354 35.761 -10.712 64.509 1.00 20.34 B ATOM 5136 CD2 HIS 354 35.302 -12.121 64.509 1.00 22.75 B ATOM 5136 CD2 HIS 354 34.779 -9.661 63.994 1.00 25.37 B ATOM 5137 ND1 HIS 354 35.302 -12.121 64.294 1.00 25.37 B ATOM 5138 CE1 HIS 354 34.797 -13.031 65.156 1.00 25.57 B ATOM 5138 CE1 HIS 354 34.831 -13.948 63.164 1.00 26.03 B ATOM 5139 NE2 HIS 354 34.511 -14.162 64.427 1.00 26.67 B ATOM 5140 C HIS 354 34.511 -14.162 64.427 1.00 26.67 B ATOM 5140 C HIS 354 32.512 -10.417 64.352 1.00 18.53 B ATOM 5142 N ARG 355 33.505 -9.255 66.891 1.00 20.23 B ATOM 5142 N ARG 355 32.823 -8.721 68.239 1.00 20.70 B ATOM 5144 CB ARG 355 32.433 -8.121 70.598 1.00 20.70 B ATOM 5144 CB ARG 355 32.433 -8.121 70.598 1.00 27.76 B ATOM 5146 CD ARG 355 32.433 -8.721 68.239 1.00 27.76 B ATOM 5148 CZ ARG 355 32.433 -8.721 68.239 1.00 27.76 B ATOM 5149 NH1 ARG 355 31.042 -70.206 71.921 1.00 31.17 B ATOM 5149 NH1 ARG 355 31.042 -70.206 71.921 1.00 31.17 B ATOM 5149 NH1 ARG 355 30.820 -8.942 72.281 1.00 31.26 B ATOM 5149 NH1 ARG 355 30.820 -8.942 72.281 1.00 31.26 B ATOM 5149 NH1 ARG 355 30.820 -8.942 72.281 1.00 31.26 B ATOM 5149 NH1 ARG 355 30.820 -8.942 72.281 1.00 31.26 B ATOM 5149 NH1 ARG 355 30.820 -8.942 72.281 1.00 31.17 B ATOM 5150 NH2 ARG 355 30.820 -8.942 72.281 1.00 31.26 B ATOM 5149 NH1 ARG 355 30.820 -8.942 72.281 1.00 31.26 B ATOM 5149 NH1 ARG 355 30.820 -8.942 72.281 1.00 31.26 B ATOM 5149 NH1 ARG 355 30.820 -8.942 72.281 1.00 31.26 B ATOM 5150 NH2 ARG 355 30.040 -8.932 66.453 1.00 23.53		MOTA	5124	OH	TYR	352	33.175	0.010	68.445	1.00 14.22	В
ATOM 5126 O TYR 352 34.217 -5.852 66.407 1.00 19.93 B ATOM 5127 N ALA 353 36.115 -5.822 65.216 1.00 18.33 B ATOM 5128 CA ALA 353 36.155 -5.822 65.216 1.00 18.33 B ATOM 5128 CA ALA 353 36.359 -5.698 62.821 1.00 17.31 B ATOM 5129 CB ALA 353 36.359 -5.698 62.821 1.00 16.39 B ATOM 5130 C ALA 353 34.680 -7.221 63.785 1.00 18.36 B ATOM 5131 O ALA 353 33.542 -7.249 63.365 1.00 18.36 B ATOM 5132 N HIS 354 35.354 -8.319 64.119 1.00 19.39 B ATOM 5133 CA HIS 354 34.779 -9.661 63.994 1.00 20.34 B ATOM 5134 CB HIS 354 35.761 -10.712 64.509 1.00 22.75 B ATOM 5135 CG HIS 354 35.302 -12.121 64.294 1.00 25.34 B ATOM 5136 CD2 HIS 354 35.302 -12.121 64.294 1.00 25.34 B ATOM 5138 CE1 HIS 354 34.797 -13.031 65.156 1.00 25.57 B ATOM 5138 CE1 HIS 354 34.831 -13.948 63.164 1.00 26.03 B ATOM 5139 NE2 HIS 354 34.511 -14.162 64.427 1.00 26.67 B ATOM 5140 C HIS 354 34.511 -14.162 64.427 1.00 26.67 B ATOM 5140 C HIS 354 34.511 -14.162 64.427 1.00 26.23 B ATOM 5140 C HIS 354 32.512 -10.417 64.352 1.00 18.53 B ATOM 5140 C HIS 354 32.512 -10.417 64.352 1.00 18.53 B ATOM 5142 N ARG 355 32.823 -8.721 68.239 1.00 20.224 B ATOM 5142 N ARG 355 32.823 -8.721 68.239 1.00 20.276 B ATOM 5144 CB ARG 355 32.823 -8.721 68.239 1.00 20.70 B ATOM 5146 CD ARG 355 32.433 -8.721 68.239 1.00 20.70 B ATOM 5146 CD ARG 355 32.433 -8.721 68.239 1.00 20.70 B ATOM 5147 NE ARG 355 32.433 -8.721 68.239 1.00 20.70 B ATOM 5148 CZ ARG 355 32.433 -8.721 69.339 1.00 21.77 B ATOM 5146 CD ARG 355 32.433 -8.721 69.339 1.00 21.77 B ATOM 5147 NE ARG 355 32.433 -8.721 69.339 1.00 21.77 B ATOM 5148 CZ ARG 355 32.433 -8.721 69.339 1.00 21.77 B ATOM 5149 NH1 ARG 355 32.433 -8.721 69.339 1.00 21.77 B ATOM 5149 NH1 ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5149 NH1 ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5149 NH1 ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5151 C ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5151 C ARG 355 30.040 -8.932 66.453 1.00 23.53	45										
ATOM 5127 N ALA 353 36.115 -5.822 65.216 1.00 18.33 B ATOM 5128 CA ALA 353 35.406 -5.891 63.951 1.00 17.31 B ATOM 5129 CB ALA 353 36.359 -5.698 62.821 1.00 16.39 B ATOM 5130 C ALA 353 34.680 -7.221 63.785 1.00 18.36 B ATOM 5131 O ALA 353 33.542 -7.249 63.365 1.00 18.10 B ATOM 5132 N HIS 354 35.354 -8.319 64.119 1.00 19.39 B ATOM 5133 CA HIS 354 34.797 -9.661 63.994 1.00 20.34 B ATOM 5135 CG HIS 354 35.761 -10.712 64.509 1.00 22.75 B ATOM 5135 CG HIS 354 35.302 -12.121 64.294 1.00 25.34 B ATOM 5136 CD2 HIS 354 35.302 -12.121 64.294 1.00 25.34 B ATOM 5136 CD2 HIS 354 35.31 -12.725 63.053 1.00 25.77 B ATOM 5137 ND1 HIS 354 35.311 -12.725 63.053 1.00 25.77 B ATOM 5139 NE2 HIS 354 34.831 -13.948 63.164 1.00 26.03 B ATOM 5130 C HIS 354 34.831 -13.948 63.164 1.00 26.03 B ATOM 5130 C HIS 354 34.831 -13.948 63.164 1.00 26.03 B ATOM 5140 C HIS 354 34.511 -14.162 64.427 1.00 26.67 B ATOM 5140 C HIS 354 32.512 -10.417 64.352 1.00 18.53 B ATOM 5142 N ARG 355 32.370 -9.255 65.995 1.00 20.24 B ATOM 5142 C HIS 354 32.512 -10.417 64.352 1.00 18.53 B ATOM 5142 C ARG 355 32.370 -9.255 66.891 1.00 20.70 B ATOM 5146 CD ARG 355 32.433 -8.721 68.239 1.00 20.70 B ATOM 5146 CD ARG 355 32.433 -8.721 68.239 1.00 20.70 B ATOM 5146 CD ARG 355 32.433 -8.721 68.239 1.00 20.70 B ATOM 5146 CD ARG 355 32.433 -8.721 68.239 1.00 20.70 B ATOM 5146 CD ARG 355 32.433 -8.721 68.239 1.00 20.70 B ATOM 5146 CD ARG 355 32.433 -8.721 68.239 1.00 20.70 B ATOM 5146 CD ARG 355 32.433 -8.721 68.239 1.00 20.70 B ATOM 5146 CD ARG 355 32.433 -8.721 68.239 1.00 20.70 B ATOM 5146 CD ARG 355 32.433 -8.721 69.339 1.00 21.77 B ATOM 5146 CD ARG 355 30.820 -8.942 72.281 1.00 31.17 B ATOM 5146 CD ARG 355 30.820 -8.942 72.281 1.00 31.17 B ATOM 5150 NH2 ARG 355 30.820 -8.942 72.281 1.00 31.17 B ATOM 5151 C ARG 355 30.040 -8.932 66.453 1.00 23.53	43										
ATOM 5128 CA ALA 353 36.359 -5.698 62.821 1.00 17.31 B ATOM 5129 CB ALA 353 36.359 -5.698 62.821 1.00 16.39 B ATOM 5130 C ALA 353 34.680 -7.221 63.785 1.00 18.36 B ATOM 5131 O ALA 353 33.542 -7.249 63.365 1.00 18.10 B ATOM 5132 N HIS 354 35.354 -8.319 64.119 1.00 19.39 B ATOM 5133 CA HIS 354 35.756 -10.712 64.509 1.00 22.75 B ATOM 5135 CG HIS 354 35.761 -10.712 64.509 1.00 22.75 B ATOM 5136 CD2 HIS 354 35.302 -12.121 64.294 1.00 25.34 B ATOM 5137 ND1 HIS 354 35.302 -12.121 64.294 1.00 25.77 B ATOM 5138 CE1 HIS 354 34.797 -13.031 65.156 1.00 25.77 B ATOM 5138 CE1 HIS 354 34.831 -13.948 63.164 1.00 26.03 B ATOM 5139 NE2 HIS 354 34.831 -13.948 63.164 1.00 26.67 B ATOM 5140 C HIS 354 33.486 -9.811 64.796 1.00 20.23 B ATOM 5141 O HIS 354 32.512 -10.417 64.352 1.00 18.53 B ATOM 5142 N ARG 355 32.370 -9.255 65.995 1.00 20.24 B ATOM 5143 CA ARG 355 32.370 -9.255 66.891 1.00 20.70 B ATOM 5146 CD ARG 355 32.433 -8.121 70.598 1.00 20.70 B ATOM 5146 CD ARG 355 31.789 -8.672 69.339 1.00 22.76 B ATOM 5147 NE ARG 355 31.461 -7.943 71.673 1.00 27.66 B ATOM 5148 CZ ARG 355 31.461 -7.943 71.673 1.00 27.66 B ATOM 5148 CZ ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5148 CZ ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5150 NH2 ARG 355 30.040 -8.942 72.281 1.00 31.26 B ATOM 5151 C ARG 355 30.040 -8.932 66.453 1.00 23.53											
50 ATOM 5129 CB ALA 353 36.359 -5.698 62.821 1.00 16.39 B ATOM 5130 C ALA 353 34.680 -7.221 63.785 1.00 18.36 B ATOM 5131 O ALA 353 33.542 -7.249 63.365 1.00 18.10 B ATOM 5132 N HIS 354 35.354 -8.319 64.119 1.00 19.39 B ATOM 5133 CA HIS 354 35.354 -8.319 64.119 1.00 19.39 B ATOM 5134 CB HIS 354 35.761 -10.712 64.509 1.00 22.75 B ATOM 5135 CG HIS 354 35.302 -12.121 64.509 1.00 22.75 B ATOM 5136 CD2 HIS 354 34.779 -9.661 63.994 1.00 25.34 B ATOM 5136 CD2 HIS 354 35.302 -12.121 64.294 1.00 25.34 B ATOM 5137 ND1 HIS 354 34.797 -13.031 65.156 1.00 25.57 B ATOM 5138 CE1 HIS 354 34.831 -13.948 63.164 1.00 25.57 B ATOM 5139 NE2 HIS 354 34.831 -13.948 63.164 1.00 26.03 B ATOM 5139 NE2 HIS 354 34.511 -14.162 64.427 1.00 26.67 B ATOM 5140 C HIS 354 33.486 -9.811 64.796 1.00 20.23 B ATOM 5141 O HIS 354 32.512 -10.417 64.352 1.00 18.53 B ATOM 5142 N ARG 355 33.505 -9.255 66.891 1.00 20.24 B ATOM 5143 CA ARG 355 32.870 -9.285 66.891 1.00 20.70 B ATOM 5144 CB ARG 355 32.370 -9.285 66.891 1.00 20.70 B ATOM 5144 CB ARG 355 32.433 -8.721 68.239 1.00 20.70 B ATOM 5146 CD ARG 355 32.433 -8.721 68.239 1.00 20.70 B ATOM 5146 CD ARG 355 32.433 -8.721 69.339 1.00 27.76 B ATOM 5148 CZ ARG 355 31.620 -8.942 72.281 1.00 31.26 B ATOM 5149 NH1 ARG 355 30.820 -8.942 72.281 1.00 31.26 B ATOM 5149 NH1 ARG 355 30.820 -8.942 72.281 1.00 31.26 B ATOM 5149 NH1 ARG 355 30.820 -8.942 72.281 1.00 31.17 B ATOM 5150 NH2 ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5151 C ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5151 C ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5151 C ARG 355 30.040 -8.932 66.453 1.00 23.53		MOTA	5127	N	ALA	353	36.115	~5.822	65.216	-1.00 18.33	В
50 ATOM 5129 CB ALA 353 36.359 -5.698 62.821 1.00 16.39 B ATOM 5130 C ALA 353 34.680 -7.221 63.785 1.00 18.36 B ATOM 5131 O ALA 353 33.542 -7.249 63.365 1.00 18.10 B ATOM 5132 N HIS 354 35.354 -8.319 64.119 1.00 19.39 B ATOM 5133 CA HIS 354 35.354 -8.319 64.119 1.00 19.39 B ATOM 5134 CB HIS 354 35.761 -10.712 64.509 1.00 22.75 B ATOM 5135 CG HIS 354 35.302 -12.121 64.509 1.00 22.75 B ATOM 5136 CD2 HIS 354 34.779 -9.661 63.994 1.00 25.34 B ATOM 5136 CD2 HIS 354 35.302 -12.121 64.294 1.00 25.34 B ATOM 5137 ND1 HIS 354 34.797 -13.031 65.156 1.00 25.57 B ATOM 5138 CE1 HIS 354 34.831 -13.948 63.164 1.00 25.57 B ATOM 5139 NE2 HIS 354 34.831 -13.948 63.164 1.00 26.03 B ATOM 5139 NE2 HIS 354 34.511 -14.162 64.427 1.00 26.67 B ATOM 5140 C HIS 354 33.486 -9.811 64.796 1.00 20.23 B ATOM 5141 O HIS 354 32.512 -10.417 64.352 1.00 18.53 B ATOM 5142 N ARG 355 33.505 -9.255 66.891 1.00 20.24 B ATOM 5143 CA ARG 355 32.870 -9.285 66.891 1.00 20.70 B ATOM 5144 CB ARG 355 32.370 -9.285 66.891 1.00 20.70 B ATOM 5144 CB ARG 355 32.433 -8.721 68.239 1.00 20.70 B ATOM 5146 CD ARG 355 32.433 -8.721 68.239 1.00 20.70 B ATOM 5146 CD ARG 355 32.433 -8.721 69.339 1.00 27.76 B ATOM 5148 CZ ARG 355 31.620 -8.942 72.281 1.00 31.26 B ATOM 5149 NH1 ARG 355 30.820 -8.942 72.281 1.00 31.26 B ATOM 5149 NH1 ARG 355 30.820 -8.942 72.281 1.00 31.26 B ATOM 5149 NH1 ARG 355 30.820 -8.942 72.281 1.00 31.17 B ATOM 5150 NH2 ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5151 C ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5151 C ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5151 C ARG 355 30.040 -8.932 66.453 1.00 23.53		MOTA	5128	CA	ALA	353	35.406	-5.891	63.951	1.00 17.31	В
50 ATOM 5130 C ALA 353 34.680 -7.221 63.785 1.00 18.36 B ATOM 5131 O ALA 353 33.542 -7.249 63.365 1.00 18.10 B ATOM 5132 N HIS 354 35.354 -8.319 64.119 1.00 19.39 B ATOM 5133 CA HIS 354 34.779 -9.661 63.994 1.00 20.34 B ATOM 5134 CB HIS 354 35.761 -10.712 64.509 1.00 22.75 B ATOM 5135 CG HIS 354 35.302 -12.121 64.294 1.00 25.34 B ATOM 5136 CD2 HIS 354 35.302 -12.121 64.294 1.00 25.57 B ATOM 5137 ND1 HIS 354 35.302 -12.121 64.294 1.00 25.57 B ATOM 5138 CE1 HIS 354 35.311 -12.725 63.053 1.00 25.77 B ATOM 5138 CE1 HIS 354 34.591 -13.031 65.156 1.00 25.57 B ATOM 5139 NE2 HIS 354 34.511 -14.162 64.427 1.00 26.03 B ATOM 5140 C HIS 354 34.511 -14.162 64.427 1.00 26.67 B ATOM 5140 C HIS 354 33.486 -9.811 64.796 1.00 20.23 B ATOM 5142 N ARG 355 33.505 -9.255 65.995 1.00 18.53 B ATOM 5142 N ARG 355 32.823 -8.721 68.239 1.00 20.70 B ATOM 5144 CB ARG 355 32.823 -8.721 68.239 1.00 20.70 B ATOM 5146 CD ARG 355 32.823 -8.721 68.239 1.00 20.70 B ATOM 5146 CD ARG 355 32.433 -8.721 68.239 1.00 20.70 B ATOM 5146 CD ARG 355 32.433 -8.721 69.339 1.00 22.76 B ATOM 5148 CZ ARG 355 32.433 -8.721 69.339 1.00 22.76 B ATOM 5148 CZ ARG 355 32.433 -8.721 69.339 1.00 22.76 B ATOM 5148 CZ ARG 355 30.820 -8.942 72.281 1.00 31.17 B ATOM 5149 NH1 ARG 355 30.820 -8.942 72.281 1.00 31.17 B ATOM 5149 NH1 ARG 355 30.820 -8.942 72.281 1.00 31.17 B ATOM 5151 C ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5151 C ARG 355 30.040 -8.932 66.453 1.00 23.53										1 00 16 39	P.
ATOM 5131 O ALA 353 33.542 -7.249 63.365 1.00 18.10 B ATOM 5132 N HIS 354 35.354 -8.319 64.119 1.00 19.39 B ATOM 5133 CA HIS 354 35.761 -10.712 64.509 1.00 22.75 B ATOM 5135 CG HIS 354 35.761 -10.712 64.509 1.00 22.75 B ATOM 5136 CD2 HIS 354 35.302 -12.121 64.294 1.00 25.34 B ATOM 5136 CD2 HIS 354 34.779 -13.031 65.156 1.00 25.57 B ATOM 5137 ND1 HIS 354 35.311 -12.725 63.053 1.00 25.77 B ATOM 5138 CE1 HIS 354 34.831 -13.948 63.164 1.00 26.03 B ATOM 5139 NE2 HIS 354 34.831 -13.948 63.164 1.00 26.03 B ATOM 5140 C HIS 354 34.511 -14.162 64.427 1.00 26.67 B ATOM 5140 C HIS 354 32.512 -10.417 64.352 1.00 18.53 B ATOM 5141 O HIS 354 32.512 -10.417 64.352 1.00 18.53 B ATOM 5142 N ARG 355 32.823 -8.721 68.239 1.00 20.24 B ATOM 5144 CB ARG 355 32.823 -8.721 68.239 1.00 20.70 B ATOM 5146 CD ARG 355 32.823 -8.721 68.239 1.00 20.70 B ATOM 5146 CD ARG 355 32.433 -8.121 70.598 1.00 22.76 B ATOM 5148 CZ ARG 355 31.461 -7.943 71.673 1.00 27.66 B ATOM 5148 CZ ARG 355 30.820 -8.942 72.281 1.00 31.26 B ATOM 5148 CZ ARG 355 30.820 -8.942 72.281 1.00 31.26 B ATOM 5148 CZ ARG 355 30.820 -8.942 72.281 1.00 31.17 B ATOM 5150 NH2 ARG 355 30.820 -8.942 72.281 1.00 31.17 B ATOM 5151 C ARG 355 30.040 -8.932 66.453 1.00 23.53 B ATOM 5151 C ARG 355 30.040 -8.932 66.453 1.00 23.53	50										
ATOM 5132 N HIS 354 35.354 -8.319 64.119 1.00 19.39 B ATOM 5133 CA HIS 354 34.779 -9.661 63.994 1.00 20.34 B ATOM 5134 CB HIS 354 35.761 -10.712 64.509 1.00 22.75 B ATOM 5135 CG HIS 354 35.302 -12.121 64.294 1.00 25.34 B ATOM 5136 CD2 HIS 354 35.302 -12.121 64.294 1.00 25.34 B ATOM 5137 ND1 HIS 354 35.301 -12.725 63.053 1.00 25.77 B ATOM 5138 CE1 HIS 354 34.831 -13.948 63.164 1.00 26.03 B ATOM 5139 NE2 HIS 354 34.831 -13.948 63.164 1.00 26.667 B ATOM 5139 NE2 HIS 354 33.486 -9.811 64.796 1.00 26.67 B ATOM 5141 O HIS 354 32.512 -10.417 64.352 1.00 18.53 B ATOM 5142 N ARG 355 33.505 -9.285 66.891 1.00 20.22 B ATOM 5142 N ARG 355 33.505 -9.285 66.891 1.00 20.90 B ATOM 5144 CB ARG 355 32.870 -9.285 66.891 1.00 20.90 B ATOM 5145 CG ARG 355 32.823 -8.721 68.239 1.00 20.70 B ATOM 5146 CD ARG 355 32.433 -8.721 69.339 1.00 21.77 B ATOM 5147 NE ARG 355 31.789 -8.672 69.339 1.00 27.76 B ATOM 5148 CZ ARG 355 31.802 -8.942 72.281 1.00 31.26 B ATOM 5149 NH1 ARG 355 31.661 -7.943 71.673 1.00 27.66 B ATOM 5149 NH1 ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5149 NH1 ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5150 NH2 ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5150 NH2 ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5151 C ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5151 C ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5151 C ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5151 C ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5151 C ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5151 C ARG 355 31.042 -10.206 71.921 1.00 31.26 B ATOM 5151 C ARG 355 30.040 -8.932 66.453 1.00 23.53	20										
ATOM 5133 CA HIS 354 34.779 -9.661 63.994 1.00 20.34 B ATOM 5134 CB HIS 354 35.761 -10.712 64.509 1.00 22.75 B ATOM 5135 CG HIS 354 35.302 -12.121 64.294 1.00 25.34 B ATOM 5136 CD2 HIS 354 34.797 -13.031 65.156 1.00 25.57 B ATOM 5137 ND1 HIS 354 35.311 -12.725 63.053 1.00 25.77 B ATOM 5138 CE1 HIS 354 34.831 -13.948 63.164 1.00 26.03 B ATOM 5139 NE2 HIS 354 34.511 -14.162 64.427 1.00 26.67 B ATOM 5140 C HIS 354 33.486 -9.811 64.796 1.00 20.23 B ATOM 5141 O HIS 354 32.512 -10.417 64.352 1.00 18.53 B ATOM 5142 N ARG 355 33.505 -9.255 66.891 1.00 20.24 B ATOM 5143 CA ARG 355 32.370 -9.285 66.891 1.00 20.70 B ATOM 5144 CB ARG 355 32.823 -8.721 68.239 1.00 20.70 B ATOM 5146 CD ARG 355 32.433 -8.121 70.598 1.00 20.70 B ATOM 5146 CD ARG 355 32.433 -8.121 70.598 1.00 27.76 B ATOM 5148 CZ ARG 355 31.461 -7.943 71.673 1.00 27.66 B ATOM 5149 NH1 ARG 355 30.820 -8.942 72.281 1.00 31.26 B ATOM 5149 NH1 ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5150 NH2 ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5151 C ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5151 C ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5151 C ARG 355 31.042 -10.206 71.921 1.00 31.12 B ATOM 5151 C ARG 355 30.040 -8.932 66.453 1.00 23.53		MOTA		0							
55 ATOM 5134 CB HIS 354 35.761 -10.712 64.509 1.00 22.75 B ATOM 5135 CG HIS 354 35.302 -12.121 64.294 1.00 25.34 B ATOM 5136 CD2 HIS 354 34.797 -13.031 65.156 1.00 25.57 B ATOM 5137 ND1 HIS 354 35.311 -12.725 63.053 1.00 25.77 B ATOM 5138 CE1 HIS 354 34.831 -13.948 63.164 1.00 26.03 B ATOM 5139 NE2 HIS 354 34.511 -14.162 64.427 1.00 26.67 B ATOM 5140 C HIS 354 34.511 -14.162 64.427 1.00 26.67 B ATOM 5140 C HIS 354 32.512 -10.417 64.352 1.00 18.53 B ATOM 5142 N ARG 355 33.505 -9.255 65.995 1.00 20.24 B ATOM 5143 CA ARG 355 32.823 -8.721 68.239 1.00 20.70 B ATOM 5144 CB ARG 355 32.823 -8.721 68.239 1.00 20.70 B ATOM 5146 CD ARG 355 32.433 -8.721 68.239 1.00 20.70 B ATOM 5146 CD ARG 355 32.433 -8.721 69.339 1.00 20.70 B ATOM 5146 CD ARG 355 32.433 -8.721 70.598 1.00 20.76 B ATOM 5146 CD ARG 355 32.433 -8.721 70.598 1.00 22.76 B ATOM 5147 NE ARG 355 30.820 -8.942 72.281 1.00 31.26 B ATOM 5148 CZ ARG 355 30.820 -8.942 72.281 1.00 31.26 B ATOM 5149 NH1 ARG 355 30.820 -8.942 72.281 1.00 31.26 B ATOM 5149 NH1 ARG 355 30.820 -8.942 72.281 1.00 31.17 B ATOM 5150 NH2 ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5151 C ARG 355 31.042 -10.206 71.921 1.00 31.12 B ATOM 5151 C ARG 355 30.040 -8.932 66.453 1.00 23.53		ATOM	5132	N	HIS	354	35.354	-8.319	64.119	1.00 19.39	В
55 ATOM 5134 CB HIS 354 35.761 -10.712 64.509 1.00 22.75 B ATOM 5135 CG HIS 354 35.302 -12.121 64.294 1.00 25.34 B ATOM 5136 CD2 HIS 354 34.797 -13.031 65.156 1.00 25.57 B ATOM 5137 ND1 HIS 354 35.311 -12.725 63.053 1.00 25.77 B ATOM 5138 CE1 HIS 354 34.831 -13.948 63.164 1.00 26.03 B ATOM 5139 NE2 HIS 354 34.511 -14.162 64.427 1.00 26.67 B ATOM 5140 C HIS 354 34.511 -14.162 64.427 1.00 26.67 B ATOM 5140 C HIS 354 32.512 -10.417 64.352 1.00 18.53 B ATOM 5142 N ARG 355 33.505 -9.255 65.995 1.00 20.24 B ATOM 5143 CA ARG 355 32.823 -8.721 68.239 1.00 20.70 B ATOM 5144 CB ARG 355 32.823 -8.721 68.239 1.00 20.70 B ATOM 5146 CD ARG 355 32.433 -8.721 68.239 1.00 20.70 B ATOM 5146 CD ARG 355 32.433 -8.721 69.339 1.00 20.70 B ATOM 5146 CD ARG 355 32.433 -8.721 70.598 1.00 20.76 B ATOM 5146 CD ARG 355 32.433 -8.721 70.598 1.00 22.76 B ATOM 5147 NE ARG 355 30.820 -8.942 72.281 1.00 31.26 B ATOM 5148 CZ ARG 355 30.820 -8.942 72.281 1.00 31.26 B ATOM 5149 NH1 ARG 355 30.820 -8.942 72.281 1.00 31.26 B ATOM 5149 NH1 ARG 355 30.820 -8.942 72.281 1.00 31.17 B ATOM 5150 NH2 ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5151 C ARG 355 31.042 -10.206 71.921 1.00 31.12 B ATOM 5151 C ARG 355 30.040 -8.932 66.453 1.00 23.53		MOTA	5133	CA	HIS	354	34.779	-9.661	63.994	1.00 20.34	В
555 ATOM 5135 CG HIS 354 35.302 -12.121 64.294 1.00 25.34 B ATOM 5136 CD2 HIS 354 34.797 -13.031 65.156 1.00 25.57 B ATOM 5137 ND1 HIS 354 35.311 -12.725 63.053 1.00 25.77 B ATOM 5138 CE1 HIS 354 34.831 -13.948 63.164 1.00 26.03 B ATOM 5139 NE2 HIS 354 34.511 -14.162 64.427 1.00 26.67 B ATOM 5140 C HIS 354 32.512 -10.417 64.352 1.00 18.53 B ATOM 5141 O HIS 354 32.512 -10.417 64.352 1.00 18.53 B ATOM 5142 N ARG 355 33.505 -9.255 65.995 1.00 20.24 B ATOM 5143 CA ARG 355 32.370 -9.285 66.891 1.00 20.90 B ATOM 5144 CB ARG 355 32.823 -8.721 68.239 1.00 20.70 B ATOM 5145 CG ARG 355 31.789 -8.672 69.339 1.00 21.77 B ATOM 5146 CD ARG 355 32.433 -8.721 68.239 1.00 21.77 B ATOM 5147 NE ARG 355 31.461 -7.943 71.673 1.00 27.66 B ATOM 5149 NH1 ARG 355 31.461 -7.943 71.673 1.00 27.66 B ATOM 5149 NH1 ARG 355 31.461 -7.943 71.673 1.00 27.66 B ATOM 5149 NH1 ARG 355 31.042 -10.206 71.921 1.00 31.26 B ATOM 5150 NH2 ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5151 C ARG 355 31.042 -10.206 71.921 1.00 31.12 B ATOM 5151 C ARG 355 31.042 -10.206 71.921 1.00 31.12 B ATOM 5151 C ARG 355 31.047 -8.513 66.305 1.00 21.80 B ATOM 5151 C ARG 355 31.177 -8.513 66.305 1.00 23.53											
ATOM 5136 CD2 HIS 354 34.797 -13.031 65.156 1.00 25.57 B ATOM 5137 ND1 HIS 354 35.311 -12.725 63.053 1.00 25.77 B ATOM 5138 CE1 HIS 354 34.831 -13.948 63.164 1.00 26.03 B ATOM 5139 NE2 HIS 354 34.831 -14.162 64.427 1.00 26.67 B ATOM 5140 C HIS 354 33.486 -9.811 64.796 1.00 20.23 B ATOM 5141 0 HIS 354 32.512 -10.417 64.352 1.00 18.53 B ATOM 5142 N ARG 355 33.505 -9.285 65.995 1.00 20.24 B ATOM 5143 CA ARG 355 32.512 -10.417 64.352 1.00 18.53 B ATOM 5144 CB ARG 355 32.805 -9.285 66.891 1.00 20.90 B ATOM 5145 CG ARG 355 32.823 -8.721 68.239 1.00 20.70 B ATOM 5145 CG ARG 355 32.433 -8.721 68.239 1.00 20.70 B ATOM 5146 CD ARG 355 32.433 -8.121 70.598 1.00 22.76 B ATOM 5147 NE ARG 355 31.789 -8.672 69.339 1.00 27.76 B ATOM 5147 NE ARG 355 31.461 -7.943 71.673 1.00 27.66 B ATOM 5149 NH1 ARG 355 31.461 -7.943 71.673 1.00 27.66 B ATOM 5149 NH1 ARG 355 31.042 -10.206 71.921 1.00 31.26 B ATOM 5149 NH1 ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5150 NH2 ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5151 C ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5151 C ARG 355 31.042 -10.206 71.921 1.00 31.12 B ATOM 5151 C ARG 355 30.040 -8.932 66.453 1.00 23.53	55										
ATOM 5137 ND1 HIS 354 35.311 -12.725 63.053 1.00 25.77 B ATOM 5138 CE1 HIS 354 34.831 -13.948 63.164 1.00 26.03 B ATOM 5139 NE2 HIS 354 34.511 -14.162 64.427 1.00 26.67 B ATOM 5140 C HIS 354 33.486 -9.811 64.796 1.00 20.23 B ATOM 5141 O HIS 354 32.512 -10.417 64.352 1.00 18.53 B ATOM 5142 N ARG 355 33.505 -9.255 65.995 1.00 20.24 B ATOM 5143 CA ARG 355 32.370 -9.285 66.891 1.00 20.70 B ATOM 5144 CB ARG 355 32.823 -8.721 68.239 1.00 20.70 B ATOM 5145 CG ARG 355 32.823 -8.721 68.239 1.00 20.70 B ATOM 5146 CD ARG 355 32.433 -8.121 70.598 1.00 22.76 B ATOM 5147 NE ARG 355 32.433 -8.121 70.598 1.00 27.66 B ATOM 5148 CZ ARG 355 30.820 -8.942 72.281 1.00 31.26 B ATOM 5149 NH1 ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5149 NH1 ARG 355 39.965 -8.679 73.262 1.00 31.17 B ATOM 5150 NH2 ARG 355 39.965 -8.679 73.262 1.00 31.12 B ATOM 5151 C ARG 355 30.040 -8.932 66.453 1.00 23.53	JJ										
ATOM 5138 CE1 HIS 354 34.831 -13.948 63.164 1.00 26.03 B ATOM 5139 NE2 HIS 354 34.511 -14.162 64.427 1.00 26.67 B ATOM 5140 C HIS 354 32.512 -10.417 64.352 1.00 18.53 B ATOM 5141 O HIS 354 32.512 -10.417 64.352 1.00 18.53 B ATOM 5142 N ARG 355 33.505 -9.255 65.995 1.00 20.24 B ATOM 5143 CA ARG 355 32.370 -9.285 66.891 1.00 20.70 B ATOM 5144 CB ARG 355 32.823 -8.721 68.239 1.00 20.70 B ATOM 5146 CD ARG 355 32.433 -8.721 68.239 1.00 20.70 B ATOM 5146 CD ARG 355 32.433 -8.121 70.598 1.00 22.76 B ATOM 5147 NE ARG 355 32.433 -8.121 70.598 1.00 22.76 B ATOM 5148 CZ ARG 355 31.461 -7.943 71.673 1.00 27.66 B ATOM 5148 CZ ARG 355 30.820 -8.942 72.281 1.00 31.26 B ATOM 5149 NH1 ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5150 NH2 ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5151 C ARG 355 31.042 -10.206 71.921 1.00 31.12 B ATOM 5151 C ARG 355 30.040 -8.932 66.453 1.00 23.53		MOTA	5136	CD2	HIS	354	34.797	-13.031	65.156	1.00 25.57	В
ATOM 5138 CE1 HIS 354 34.831 -13.948 63.164 1.00 26.03 B ATOM 5139 NE2 HIS 354 34.511 -14.162 64.427 1.00 26.67 B ATOM 5140 C HIS 354 32.512 -10.417 64.352 1.00 18.53 B ATOM 5141 O HIS 354 32.512 -10.417 64.352 1.00 18.53 B ATOM 5142 N ARG 355 33.505 -9.255 65.995 1.00 20.24 B ATOM 5143 CA ARG 355 32.370 -9.285 66.891 1.00 20.70 B ATOM 5144 CB ARG 355 32.823 -8.721 68.239 1.00 20.70 B ATOM 5146 CD ARG 355 32.433 -8.721 68.239 1.00 20.70 B ATOM 5146 CD ARG 355 32.433 -8.121 70.598 1.00 22.76 B ATOM 5147 NE ARG 355 32.433 -8.121 70.598 1.00 22.76 B ATOM 5148 CZ ARG 355 31.461 -7.943 71.673 1.00 27.66 B ATOM 5148 CZ ARG 355 30.820 -8.942 72.281 1.00 31.26 B ATOM 5149 NH1 ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5150 NH2 ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5151 C ARG 355 31.042 -10.206 71.921 1.00 31.12 B ATOM 5151 C ARG 355 30.040 -8.932 66.453 1.00 23.53		MOTA	5137	ND1	HIS	354	35.311	-12.725	63.053	1.00 25.77	В
60 ATOM 5139 NE2 HIS 354 34.511 -14.162 64.427 1.00 26.67 B ATOM 5140 C HIS 354 32.512 -10.417 64.796 1.00 20.23 B ATOM 5141 O HIS 354 32.512 -10.417 64.352 1.00 18.53 B ATOM 5142 N ARG 355 33.505 -9.255 65.995 1.00 20.24 B ATOM 5143 CA ARG 355 32.370 -9.285 66.891 1.00 20.20 B ATOM 5144 CB ARG 355 32.370 -9.285 66.891 1.00 20.70 B ATOM 5145 CG ARG 355 31.789 -8.672 69.339 1.00 20.70 B ATOM 5146 CD ARG 355 31.789 -8.672 69.339 1.00 21.77 B ATOM 5146 CD ARG 355 32.433 -8.121 70.598 1.00 22.76 B ATOM 5147 NE ARG 355 31.461 -7.943 71.673 1.00 27.66 B ATOM 5149 NH1 ARG 355 31.461 -7.943 71.673 1.00 27.66 B ATOM 5149 NH1 ARG 355 31.042 -10.206 71.921 1.00 31.26 B ATOM 5150 NH2 ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5151 C ARG 355 31.177 -8.513 66.305 1.00 21.80 B ATOM 5151 C ARG 355 30.040 -8.932 66.453 1.00 23.53 B ATOM 5152 O ARG 355 30.040 -8.932 66.453 1.00 23.53											
60 ATOM 5140 C HIS 354 33.486 -9.811 64.796 1.00 20.23 B ATOM 5141 O HIS 354 32.512 -10.417 64.352 1.00 18.53 B ATOM 5142 N ARG 355 33.505 -9.255 65.995 1.00 20.24 B ATOM 5143 CA ARG 355 32.807 -9.285 66.891 1.00 20.90 B ATOM 5144 CB ARG 355 32.803 -8.721 68.239 1.00 20.70 B ATOM 5145 CG ARG 355 32.823 -8.721 68.239 1.00 20.70 B ATOM 5146 CD ARG 355 32.433 -8.721 69.339 1.00 21.77 B ATOM 5146 CD ARG 355 32.433 -8.121 70.598 1.00 22.76 B ATOM 5147 NE ARG 355 32.433 -8.121 70.598 1.00 27.66 B ATOM 5148 CZ ARG 355 31.646 -7.943 71.673 1.00 27.66 B ATOM 5149 NH1 ARG 355 30.820 -8.942 72.281 1.00 31.26 B ATOM 5149 NH1 ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5150 NH2 ARG 355 39.965 -8.679 73.262 1.00 31.12 B ATOM 5151 C ARG 355 31.047 -8.513 66.305 1.00 21.80 B ATOM 5152 O ARG 355 30.040 -8.932 66.453 1.00 23.53						_					
ATOM 5141 O HIS 354 32.512 -10.417 64.352 1.00 18.53 B ATOM 5142 N ARG 355 33.505 -9.255 65.995 1.00 20.24 B ATOM 5143 CA ARG 355 32.370 -9.285 66.891 1.00 20.70 B ATOM 5144 CB ARG 355 32.823 -8.721 68.239 1.00 20.70 B ATOM 5145 CG ARG 355 32.823 -8.721 68.239 1.00 20.70 B ATOM 5146 CD ARG 355 32.433 -8.121 70.598 1.00 21.77 B ATOM 5146 CD ARG 355 32.433 -8.121 70.598 1.00 22.76 B ATOM 5147 NE ARG 355 31.461 -7.943 71.673 1.00 27.66 B ATOM 5148 CZ ARG 355 30.820 -8.942 72.281 1.00 31.26 B ATOM 5149 NH1 ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5150 NH2 ARG 355 29.965 -8.679 73.262 1.00 31.17 B ATOM 5151 C ARG 355 31.047 -8.513 66.305 1.00 21.80 B ATOM 5152 O ARG 355 30.040 -8.932 66.453 1.00 23.53	6 0										
ATOM 5142 N ARG 355 33.505 -9.255 65.995 1.00 20.24 B ATOM 5143 CA ARG 355 32.370 -9.285 66.891 1.00 20.90 B ATOM 5144 CB ARG 355 32.823 -8.721 68.239 1.00 20.70 B ATOM 5145 CG ARG 355 31.789 -8.672 69.339 1.00 21.77 B ATOM 5146 CD ARG 355 32.433 -8.121 70.598 1.00 22.76 B ATOM 5147 NE ARG 355 31.461 -7.943 71.673 1.00 27.66 B ATOM 5148 CZ ARG 355 30.820 -8.942 72.281 1.00 31.26 B ATOM 5149 NH1 ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5150 NH2 ARG 355 29.965 -8.679 73.262 1.00 31.17 B ATOM 5151 C ARG 355 31.177 -8.513 66.305 1.00 21.80 B ATOM 5152 O ARG 355 30.040 -8.932 66.453 1.00 23.53	OU	MOTA	5140	С	HIS	354	33.486	-9.811	64.796	1.00 20.23	В
ATOM 5142 N ARG 355 33.505 -9.255 65.995 1.00 20.24 B ATOM 5143 CA ARG 355 32.370 -9.285 66.891 1.00 20.90 B ATOM 5144 CB ARG 355 32.823 -8.721 68.239 1.00 20.70 B ATOM 5145 CG ARG 355 31.789 -8.672 69.339 1.00 21.77 B ATOM 5146 CD ARG 355 32.433 -8.121 70.598 1.00 22.76 B ATOM 5147 NE ARG 355 31.461 -7.943 71.673 1.00 27.66 B ATOM 5148 CZ ARG 355 30.820 -8.942 72.281 1.00 31.26 B ATOM 5149 NH1 ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5150 NH2 ARG 355 29.965 -8.679 73.262 1.00 31.17 B ATOM 5151 C ARG 355 31.177 -8.513 66.305 1.00 21.80 B ATOM 5152 O ARG 355 30.040 -8.932 66.453 1.00 23.53		ATOM	5141	0	HIS	354	32.512	-10.417	64.352	1.00 18.53	В
ATOM 5144 CB ARG 355 32.823 -8.721 68.239 1.00 20.90 B ATOM 5144 CB ARG 355 32.823 -8.721 68.239 1.00 20.70 B ATOM 5145 CG ARG 355 31.789 -8.672 69.339 1.00 21.77 B ATOM 5146 CD ARG 355 31.789 -8.672 69.339 1.00 21.77 B ATOM 5147 NE ARG 355 31.461 -7.943 71.673 1.00 27.66 B ATOM 5147 NE ARG 355 31.461 -7.943 71.673 1.00 27.66 B ATOM 5148 CZ ARG 355 30.820 -8.942 72.281 1.00 31.26 B ATOM 5149 NH1 ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5150 NH2 ARG 355 29.965 -8.679 73.262 1.00 31.12 B ATOM 5151 C ARG 355 31.17 -8.513 66.305 1.00 21.80 B ATOM 5152 O ARG 355 30.040 -8.932 66.453 1.00 23.53											
65 ATOM 5144 CB ARG 355 32.823 -8.721 68.239 1.00 20.70 B ATOM 5145 CG ARG 355 31.789 -8.672 69.339 1.00 21.77 B ATOM 5146 CD ARG 355 32.433 -8.121 70.598 1.00 22.766 B ATOM 5147 NE ARG 355 31.461 -7.943 71.673 1.00 27.66 B ATOM 5148 CZ ARG 355 30.820 -8.942 72.281 1.00 31.26 B ATOM 5149 NH1 ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5150 NH2 ARG 355 29.965 -8.679 73.262 1.00 31.12 B ATOM 5151 C ARG 355 31.177 -8.513 66.305 1.00 21.80 B ATOM 5152 O ARG 355 30.040 -8.932 66.453 1.00 23.53											
65 ATOM 5145 CG ARG 355 31.789 -8.672 69.339 1.00 21.77 B ATOM 5146 CD ARG 355 32.433 -8.121 70.598 1.00 22.76 B ATOM 5147 NE ARG 355 31.461 -7.943 71.673 1.00 27.66 B ATOM 5148 CZ ARG 355 30.820 -8.942 72.281 1.00 31.26 B ATOM 5149 NH1 ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5150 NH2 ARG 355 29.965 -8.679 73.262 1.00 31.12 B ATOM 5151 C ARG 355 31.042 -7.891 66.305 1.00 21.80 B ATOM 5152 O ARG 355 30.040 -8.932 66.453 1.00 23.53											
65 ATOM 5145 CG ARG 355 31.789 -8.672 69.339 1.00 21.77 B ATOM 5146 CD ARG 355 32.433 -8.121 70.598 1.00 22.76 B ATOM 5147 NE ARG 355 31.461 -7.943 71.673 1.00 27.66 B ATOM 5148 CZ ARG 355 30.820 -8.942 72.281 1.00 31.26 B ATOM 5149 NH1 ARG 355 31.042 -10.206 71.921 1.00 31.17 B 70 ATOM 5150 NH2 ARG 355 29.965 -8.679 73.262 1.00 31.12 B ATOM 5151 C ARG 355 31.177 -8.513 66.305 1.00 21.80 ATOM 5152 O ARG 355 30.040 -8.932 66.453		ATOM	5144	CB	ARG	355	32.823	-8.721	68.239	1.00 20.70	В
70 ATOM 5150 RPG 355 32.433 -8.121 70.598 1.00 22.76 BATOM 5147 NE ARG 355 31.461 -7.943 71.673 1.00 27.66 BATOM 5148 CZ ARG 355 30.820 -8.942 72.281 1.00 31.26 BATOM 5149 NH1 ARG 355 31.042 -10.206 71.921 1.00 31.17 BATOM 5150 NH2 ARG 355 29.965 -8.679 73.262 1.00 31.12 BATOM 5151 C ARG 355 31.177 -8.513 66.305 1.00 21.80 BATOM 5152 O ARG 355 30.040 -8.932 66.453 1.00 23.53 BATOM 5152 O ARG 355 30.040 -8.932 66.453 1.00 23.53	65	ATOM	5145	CG	ARG	355			69.339	1.00 21.77	В
70 ATOM 5151 C ARG 355 31.461 -7.943 71.673 1.00 27.66 B ATOM 5149 NH1 ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5151 C ARG 355 29.965 -8.679 73.262 1.00 31.12 B ATOM 5151 C ARG 355 31.177 -8.513 66.305 1.00 21.80 B ATOM 5152 O ARG 355 30.040 -8.932 66.453 1.00 23.53 B ATOM 5152 O ARG 355 30.040 -8.932 66.453 1.00 23.53											
70 ATOM 5148 CZ ARG 355 30.820 -8.942 72.281 1.00 31.26 E ATOM 5149 NH1 ARG 355 31.042 -10.206 71.921 1.00 31.17 E ATOM 5150 NH2 ARG 355 29.965 -8.679 73.262 1.00 31.12 E ATOM 5151 C ARG 355 31.177 -8.513 66.305 1.00 21.80 E ATOM 5152 O ARG 355 30.040 -8.932 66.453 1.00 23.53											
70 ATOM 5149 NH1 ARG 355 31.042 -10.206 71.921 1.00 31.17 B ATOM 5150 NH2 ARG 355 29.965 -8.679 73.262 1.00 31.12 B ATOM 5151 C ARG 355 31.177 -8.513 66.305 1.00 21.80 B ATOM 5152 O ARG 355 30.040 -8.932 66.453 1.00 23.53											
70 ATOM 5150 NH2 ARG 355 29.965 -8.679 73.262 1.00 31.12 B ATOM 5151 C ARG 355 31.177 -8.513 66.305 1.00 21.80 B ATOM 5152 O ARG 355 30.040 -8.932 66.453 1.00 23.53 B		MOTA	5148	CZ	ARG	355	30.820	-8.942	72.281		₿
70 ATOM 5150 NH2 ARG 355 29.965 -8.679 73.262 1.00 31.12 B ATOM 5151 C ARG 355 31.177 -8.513 66.305 1.00 21.80 B ATOM 5152 O ARG 355 30.040 -8.932 66.453 1.00 23.53 B		ATOM	5149	NH1	ARG	355	31.042	-10.206	71.921	1.00 31.17	В
ATOM 5151 C ARG 355 31.177 -8.513 66.305 1.00 21.80 E ATOM 5152 O ARG 355 30.040 -8.932 66.453 1.00 23.53 E	70										
ATOM 5152 O ARG 355 30.040 -8.932 66.453 1.00 23.53 E	, ,										
											В
		MOTA	5152	0	ARG	355	30.040	-8.932	66.453	1.00 23.53	B
				N	ALA				65.634	1.00 21.31	В
		•••						•			_

						24 225	6 506	CT 040		•
	ATOM	5154	CA	ALA	356	30.375	-6.586	65.049	1.00 20.41	В
	MOTA	5155	CB	ALA	`356	30.924	~5.282	64.583	1.00 20.58	В
	MOTA	5156	С	ALA	356	29.618	-7.256	63.902	1.00 20.99	В
	ATOM	5157	0	ALA	356	28.531	-6.796	63.543	1.00 19.69	В
5	MOTA	5158	N	LYS	357	30.195	-8.328	63.340	1.00 22.58	В
	ATOM	5159	CA	LYS	357	29.590	-9.081	62.225	1.00 22.82	В
	MOTA	5160	СВ	LYS	357	30.347		61.911	1.00 23.14	В
	MOTA	5161	CG	LYS	357		-10.194	61.443	1.00 25.46	B
	MOTA	5162			357		-10.597	59.983	1.00 27.85	В
10			CD	LYS					1.00 27.26	В
10	MOTA	5163	CE	LYS	357		-12.104	59.763		
	ATOM	5164	NZ	LYS	357	32.648		60.485	1.00 27.32	• В
	MOTA	5165	C	LYS	357	28.198	-9.551	62.594	1.00 23.74	В
	MOTA	5166	0	LYS	357	27.315	-9.635	61.755	1.00 22.43	В
	MOTA	5167	N	ASN	358	28.016	-9.845	63.876	1.00 25.58	В
15	ATOM	5168	CA	ASN	358	26.730	-10.306	64.388	1.00 28.23	В
	ATOM	5169	CB	ASN	358	26.914	-10.928	65.766	1.00 28.39	В
	MOTA	5170	CG	ASN	358	27.852	-12.105	65.742	1.00 29.97	В
	ATOM	5171	OD1	ASN	358	28.203	-12.649	66.778	1.00 31.69	В
	ATOM	5172		ASN	358	28.267		64.551	1.00 29.57	В
20	ATOM	5173	С	ASN	358	25.606	-9.270	64.476	1.00 30.00	В
	MOTA	5174	ō	ASN	358	24.487	-9.619	64.845	1.00 30.93	В
	ATOM	5175	N	ILE	359	25.892	-8.011	64.152	1.00 31.11	В
	ATOM	5176	CA	ILE	359	24.855	-6.986	64.176	1.00 32.09	В
		5177		ILE	359	25.465	-5.604	64.142	1.00 31.91	. B
25	MOTA		CB		359	24.367	-4.569	64.136	1.00 30.39	B
23	MOTA	5178		ILE						. B
	MOTA	5179		ILE	359	26.375	-5.433	65.361	1.00 32.12	
	MOTA	5180		ILE	359	27.169	-4.134	65.382	1.00 34.29	В
	ATOM	5181	C	ILE	359	23.903	-7.152	62.984	1.00 33.89	В
20	ATOM	5182	0	ILE	359	24.326		61.843	1.00 32.B3	В
30	MOTA	5183	N	LEU	360	22.605		63.256	1.00 36.27	В
	MOTA	5184	CA	LEU	360	21.597		62.211	1.00 39.23	В
	MOTA	5185	CB	LEU	360	20.630		62.583	1.00 42.29	В
	MOTA	5186	CG	LEU	360	19.497	-8.742	61.609	1.00 44.94	В
	MOTA	5187	CD1	LEU	360	20.073	-9.122	60.240	1.00 44.70	В
35	MOTA	5188	CD2	LEU	360	18.676	-9.901	62.188	1.00 45.24	В
	MOTA	5189	С	LEU	360	20.800	-5.970	62.028	1.00 39.70	В
	MOTA	5190	0	LEU	360	20.286	-5.429	62.994	1.00 39.55	В
	ATOM	5191	N	ASN	361	20.710		60.777	1.00 40.33	В
	MOTA	5192	CA	ASN	361	19.989		60.413	1.00 39.80	В
40	ATOM	5193	CB	ASN	361	20.865		59.573	1.00 40.62	В
	ATOM	5194	CG	ASN	361	22.050		60.350	1.00 41.69	В
	ATOM	5195		ASN	361	22.893		59.792	1.00 41.21	В
	ATOM	5196		ASN	361	22.119		61.633	1.00 41.78	В
	ATOM	5197	C	ASN	361	18.748		59.575	1.00 40.40	В
45	MOTA	5198	õ	ASN	361	18.630		58.974	1.00 41.33	В
7.5	ATOM	5199	N	LYS	362	17.838		59.535	1.00 40.64	В
	ATOM	5200	CA	LYS	362	16.572		58.795	1.00 40.39	В
		5201		LYS	362	16.811		57.283	1.00 38.42	. B
	MOTA		CB					56.664	1.00 37.04	В
50	ATOM	5202	CG	LYS	362	17.283				
50	MOTA	5203	CD	LYS	362	17.312		55.151	1.00 35.58	В
	ATOM	5204	CE	LYS	362	15.919		54.570	1.00 35.06	В
	ATOM	5205	NZ	LYS	362	15.248		54.828	1.00 33.80	В
	ATOM	5206	С	LYS	362	15.654		59.222	1.00 40.02	В
	MOTA	5207	0	LYS	362	15.341		58.378	1.00 41.01	В
55	MOTA	5208	OXT	LYS	362	15.244		60.404	1.00 38.46	В
	MOTA	5209	MG	MG	2602	43.447	10.556	59.883	1.00 1.46	
	MOTA	5238	PB	ADP	2600	44.598	7.110	60.307	1.00 12.39	ADP
	MOTA	5239	018	ADP	2600	45.189	7.724	61.540	1.00 6.06	ADP
	MOTA	5240		ADP	2600	44.098	5.627	60.595	1.00 9.47	ADP
60	MOTA	5241		ADP	2600	43.494		59.799	1.00 9.32	ADP
	ATOM	5242		ADP	2600	45.933		57.885	1.00 15.76	ADP
	ATOM	5243		ADP	2600	44.91		56.926	1.00 19.46	ADP
	MOTA	5244		ADP	2600	45.886		58.130	1.00 18.59	ADP
		5245		ADP	2600	45.669		59.185	1.00 14.04	· ADP
65	ATOM							57.328	1.00 19.34	ADP
UJ	MOTA	5246		ADP	2600	47.412				
	ATOM	5247		ADP	2600	48.489		57.824	1.00 22.53	ADP
	MOTA	5248		ADP	2600	49.69		56.820	1.00 24.49	ADP
	MOTA	5249		ADP	2600	49.78		56.098	1.00 26.34	ADP
70	MOTA	5250		ADP	2600	49.50		55.757	1.00 24.13	ADP
70	ATOM	5251		ADP	2600	50.67		55.611	1.00 26.52	ADP
	MOTA	5252		ADP	2600	49.15		54.456	1.00 25.11	ADP
	MOTA	5253		ADP	2600	49.69		53.303	1.00 27.28	ADP
	MOTA	5254	C1*	ADP	2600	49.65	2 5.829	54.676	1.00 26.94	ADP

```
1.00 27.64
1.00 26.96
                                                   4.765 54.191
                                                                                      ADP
                                          48.736
      MOTA
              5255
                   N9
                        ADP
                              2600
                                                   4.193
                                                           54.941
                                                                                      ADP
                                         47.767
47.150
                              2600
      ATOM
              5256
                    C8
                         ADP
                                                   3.292
                                                           54.228
                                                                    1.00 29.21
              5257
      ATOM
                    N7
                         ADP
                              2600
                                                                    1.00 29.55
      ATOM
              5258
                    C5
                         ADP
                              2600
                                          47.690
                                                   3.269
                                                           53.027
 5
                    C6
                                          47.466
                                                   2.525
                                                           51.857
                                                                    1.00 29.68
      MOTA
              5259
                         ADP
                              2600
                                                                                      ADP
              5260
                    N6
                                          46.495
                                                   1.606
                                                           51.861
                                                                    1.00 29.43
                                                                                      ADP
      ATOM
                         ADP
                              2600
      MOTA
              5261
                    N1
                         ADP
                              2600
                                          48.250
                                                   2.751
                                                           50.704
                                                                    1.00 30.06
                                                                                      ADP
                                                           50.678
                                                                    1.00 29.27
      ATOM
              5262
                    C2
                         ADP
                              2600
                                          49.252
                                                   3.696
                                                                                      ADP
                                                           51.827
                                                                    1.00 29.94
                                                                                      ADP
                              2600
                                         49.466
48.711
                                                   4.411
      MOTA
              5263
                    N3
                         ADP
10
                                                   4.230
                                                                    1.00 28.23
                                                           52.991
                                                                                      ADP
              5264
                              2600
      ATOM
                    C4
                        ADP
                                          42.197
                                                  14.937
              5291
                        4-2A
                                                           49.097
                                                                    1.00 25.59
                                                                                      4-2A
      MOTA
                    C1
              5292
                        4-2A
                                          41.920
                                                  14.433
                                                           47.714
                                                                    1.00 25.74
      ATOM
                    C2
              5293
                    C3 4-2A
                                          41.044
                                                  15.120
                                                           46.829
                                                                    1.00 26.03
                                                                                      4-2A
      MOTA
      MOTA
              5294
                    C4 4-2A
                                          40.929
                                                  14.774
                                                           45.500
                                                                    1.00 26.67
                                                                                      4-2A
15
                                                           44.991
                                                                    1.00 25.62
                                                                                      4-2A
      MOTA
              5295
                    C5 · 4-2A
                                  1
                                          41.663
                                                  13.715
                                                                    1.00 25.53
                                          42.514
42.617
                                                  12.931
13.291
                                                           45.817
                                                                                      4-2A
                    C6 4-2A
C7 4-2A
      MOTA
              5296
                                  1
                                                           47.201
                                                                    1.00 25.82
                                                                                      4-2A
      MOTA
              5297
                    012 4-2A
                                                  11.914
                                                           45.291
              5298
                                          43.246
                                                                    1.00 25.59
                                                                                      4-2A
      ATOM
              5299
                    C14 4-2A
                                          40.974
                                                  14.917
                                                           49.926
                                                                    1.00 26.54
                                                                                      4-2A
      ATOM
20
              5300
                    C15 4-2A
                                          40.461
                                                  16.085
                                                           50.528
                                                                    1.00 26.66
                                                                                      4-2A
      ATOM
                                                           50.551
49.404
49.355
                                                  17.420
17.452
      ATOM
              5301
                    C16 4-2A
                                          41.255
                                                                    1.00 26.17
                                                                                      4-2A
                                                                    1.00 26.31
                                                                                      4-2A
      ATOM
              5302
                    C17 4-2A
                                  1
                                          42.265
                                          42.979
                                                  16.179
                                                                    1.00 26.30
                                                                                      4-2A
                    N18 4-2A
              5303
      MOTA
              5304
                                                           49.565
                                                                    1.00 25.84
                    C22 4-2A
                                          43.422
                                                  18.425
                                                                                      4-2A
      ATOM
25
      MOTA
              5305
                    N23 4-2A
                                          44.551
                                                  17.713
                                                           49.505
                                                                    1.00 25.90
                                                                                      4-2A
      ATOM
              5306
                     C24 4-2A
                                          44.289
                                                  16.370
                                                           49.394
                                                                    1.00 26.52
                                                                                      4-2A
                                                           50.027
50.732
51.093
                                                                    1.00 26.97
      MOTA
              5307
                    N26-4-2A
                                  1
                                          40.109
                                                  13.877
                                                                                      4-2A
                                                                    1.00 26.51
                                                                                      4-2A
              5308
5309
                                          38.991
                                                  14.325
      MOTA
                    C27 4-2A
                                  1
                                          39.211
                                                  15.740
                                                                    1.00 27.62
                    C28 4-2A
                                                                                      4-2A
      ATOM
30
              5310
                     C29 4-2A
                                          37.745
                                                  13.725
                                                           51.140
                                                                    1.00 26.04
                                                                                      4-2A
      MOTA
              5311
                     C30 4-2A
                                          36.783
                                                           51.909
                                                                    1.00 26.80
                                                                                      4-2A
      MOTA
                                                  14.431
       MOTA
              5312
                     C31 4-2A
                                          37.035
                                                  15.782
                                                           52.312
                                                                    1.00 27.44
                                                                                      4-2A
      ATOM
              5313
                     C32 4-2A
                                          38.217
                                                  16.439
                                                           51.892
                                                                    1.00 27.46
                                                                                      4-2A
                                                                    1.00 24.48
                                                  19.647
15.436
                                                           49.683
49.375
                                                                                      4-2A
              5314
5315
                     037 4-2A
      АТОМ
                                  1
                                          43.236
35
                                                                    1.00 27.32
                                          45.096
                                                                                      4-2A
                     038 4-2A
       ATOM
                                                                    1.00 25.80
      MOTA
              5316
                     C39 4-2A
                                          45.831 18.372
                                                           49.744
```

TABLE 5

807

MOTA

OE2 GLU

118

```
40
         REMARK
                     1 kin_16dpb molecule B
        REMARK 1 Kin_16dpb molecule B

REMARK r= 0.2114 free_r= 0.2639

REMARK rmsd bonds= 0.006712 rmsd angles= 1.32262

REMARK B rmsd for bonded mainchain atoms= 1.570 target= 1.5

REMARK B rmsd for bonded sidechain atoms= 2.570 target= 2.0

REMARK B rmsd for angle mainchain atoms= 2.729 target= 2.0

REMARK B rmsd for angle sidechain atoms= 3.936 target= 2.5

REMARK sg= P2(1)2(1)2(1) a= 69.48 b= 79.54 c= 158.98 alpha= 90. beta= 90. gamma= 90.

REMARK reflection file= k2a.cv
45
50
         REMARK B-correction resolution: 6.0 - 2.5
         REMARK FILENAME="kin_16dpb.pdb"
                    788 N GLU
789 CA GLU
         MOTA
                                        116
                                                     .39.151
                                                                  9.227
                                                                             52.663
                                                                                         1.00 8.87
                                                                                                                R
         MOTA
                                         116
                                                      39.430 10.450
                                                                             51.915
                                                                                         1.00
                                                                                                 8.17
                                                                                                                R
                                                      39.921
38.920
                                                                  11.534
         MOTA
                    790
791
                           CB GLU
                                         116
                                                                             52.868
53.939
                                                                                         1.00
                                                                                                  8.92
                                                                                                                В
55
                                                                  11.894
                                                                                         1.00 12.15
         ATOM
                                         116
                    792
         ATOM
                           CD GLU
                                                       39.349
                                                                  13.091
                                                                             54.738
                                                                                         1.00 15.35
                                          116
                           OE1 GLU
                    793
                                                       40.362
                                                                  13.717
                                                                              54.354
         MOTA
                                          116
         MOTA
                    794
                           OE2 GLU
                                          116
                                                       38.678
                                                                  13.410
                                                                              55.737
                                                                                         1.00 15.94
         MOTA
                    795
                           С
                                 GLU
                                          116
                                                       40.426
                                                                  10.321
                                                                              50.784
                                                                                         1.00
                                                                                                 8.20
60
                                                                  10.736
9.744
9.608
         MOTA
                    796
                           0
                                 GLU
                                          116
                                                       40.163
                                                                              49.657
                                                                                         1.00
                                                                                                  4.89
                                                                                                                В
                                                                             51.097
50.104
                                                                                         1.00 9.09
1.00 10.26
         MOTA
                    797
                           N
                                 GLY
                                          117
                                                       41.577
                    798
                           CA GLY
         MOTA
                                         117
                                                       42.619
                                                                              50.183
         ATOM
                    799
                           С
                                 GLY
                                          117
                                                       43.531
                                                                  10.819
                                                                                         1.00 11.18
                                          117
                                                       43.289
                                                                  11.751
                                                                              50.951
                                                                                         1.00 10.98
         MOTA
                    800
                                 GLY
65
         MOTA
                    801
                                 GLU
                                          118
                                                       44.590
                                                                  10.813
                                                                              49.389
                                                                                         1.00 13.18
                                                       45.531
         ATOM
                    802
                                GLU
                                          118
                                                                  11.922
                                                                              49.386
                                                                                         1.00 14.36
         MOTA
                    803
                           CB GLU
                                          118
                                                       46.849
                                                                  11.498
                                                                              50.043
                                                                                         1.00 15.18
                                                                                                                 R
                                                                                         1.00 21.23
         MOTA
                    804
                           CG
                                 GLU
                                          118
                                                       46.685
                                                                  10.756
                                                                              51.363
                                                                                                                 В
                                                                             51.970
51.215
                                                                  10.310
                    805
                                                       48.014
                                                                                         1.00
                                                                                                 24.46
         MOTA
                           CD
                                GLD
                                          118
                                                                                                                 В
70
                                                                    9.845
                    806
                           OE1 GLU
                                                                                          1.00
                                                                                                 27.49
                                                                                                                 В
         MOTA
                                          118
                                                       48.894
```

48.177

10.413

53.205

1.00 26.10

			_			45 330		42 022	1 00 12 00	
•	MOTA	808	C	GLU	118	45.770	12.281	47.933	1.00 13.80	В
	MOTA	809	0	CLU	118	45.126	11.734	47.041	1.00 14.44	В
	MOTA	810	N	ARG	119	46.689	13.201	47.685	1.00 13.24	В
_	HOTA	811	CA	ARG	119	46.984	13.568	46.315	1.00 14.66	В
5	MOTA	812	CB .	ARG	119	47.120	15.088	46.167	1.00 12.36	В
	MOTA	813	CG	ARG	119	45.879	15.905	46.518	1.00 11.10	В
	MOTA	814	CD	ARG	119	44.628	15.371	45.842	1.00 12.06	В
	MOTA	815	NE	ARG	119	44.829	15.087	44.422	1.00 13.81	В
• ^	MOTA	816	ÇZ	ARG	119	44.750	15.992	43.451	1.00 14.81	В
10	MOTA	817	NH1	ARG	119	44.464	17.257	43.742	1.00 13.37	В
	MOTA	818	NH2	ARG	119	44.964	15.632	42.189	1.00 11.75	В
	MOTA	819	С	ARG	119	48.288	12.911	45.889	1.00 16.73	В
	ATOM	820	0	ARG	119	49.253	12.857	46.662	1.00 17.59	В
	MOTA	879	N	TRP	127	42.371	15.847	40.233	1.00 18.06	В
15	MOTA	880	CA	TRP	127	41.717	15.171	41.335	1.00 16.78	В
	MOTA	881	CB	TRP	127	40.912	16.167	42.178	1.00 14.46	В
	MOTA	882	CC	TRP	127	39.646	16.618	41.539	1.00 10.93	В
	MOTA	883	CD2	TRP	127	38.365	15.996	41.664	1.00 8.71	В
	MOTA	884	CE2	TRP	127	37.452	16.770	40.915	1.00 9.40	В
20	MOTA	885	CE3	TRP	127	37.901	14.857	42.334	1.00 7.23	В
	MOTA	886	CD1	TRP	127	39.474	17.709	40.738	1.00 10.58	В
	MOTA	887	NE1	TRP	127	38.153	17.810	40.361	1.00 8.88	В.
	MOTA	888	CZ2	TRP	127	36.095	16.446	40.820	1.00 9.55	В
	MOTA	889	CZ3	TRP	127	36.545	14.526	42.242	1.00 9.73	В
25	MOTA	890	CH2	TRP	127	35.659	15.324	41.488	1.00 11.69	В
	ATOM	891	С	TRP	127	40.828	14.002	40.941	1.00 17.94	В
	ATOM	892	0	TRP	127	40.817	12.978	41.621	1.00 18.94	В
	ATOM	911	N	ASP	130	43.130	10.872	40.183	1.00 18.67	В
••	MOTA	912	CA	ASP	130	44.174	10.489	41.121	1.00 17.72	В
30	MOTA	913	CB	ASP	130	44.298	11.534	42.229	1.00 15.27	В
	MOTA	914	CG	ASP	130	45.675	11.545	42.859	1.00 16.56	В
	MOTA	915	OD1	ASP	130	46.157	10.473	43.285	1.00 15.04	В
	MOTA	916	OD2	ASP	130	46.277	12.634	42.930	1.00 16.73	В
	MOTA	917	С	ASP	130	43.921	9.115	41.733	1.00 16.61	В
35	MOTA	· 918	0	ASP	130	42.931	8.905	42.430	1.00 19.40	В
	MOTA	926	N	LEU	132	45.069	7.791	44.240	1.00 15.09	B
	MOTA	927	CA	LEU	132	45.118	7.772	45.703	1.00 13.40	В
•	MOTA	928	CB	LEU	132	46.379	8.487	46.227	1.00 10.29	В
	MOTA	929	CG	LEU	132	47.765	7.870	45.930	1.00 14.23	В
40	MOTA	930	CD1	LEU	132	48.877	8.709	46.609	1.00 8.52	В
	MOTA	931	CD2	LEU	132	47.829	6.414	46.429	1.00 11.00	В
	MOTA	932	С	LEU	132	43.858	8.395	46.310	1.00 12.82	В
	ATOM	933	0	LEU	132	43.719	8.473	47.534	1.00 11.90	B
	MOTA	934	N	ALA	133	42.936	8.833	45.457	1.00 12.47	В
45	MOTA	935	CA	ALA	133	41.681	9.414	45.936	1.00 12.78	В'
	MOTA	936	CB	ALA	133	40.826	9.884	44.755	1.00 11.66	В
	MOTA	937	С	ALA	133	40.928	8.356	46.742	1.00 13.76	В
	MOTA	938	0	ALA	133	40.991	7.163	46.431	1.00 13.92	В
~ 0	MOTA	939	N	GLY	134	40.217	8.798	47.776	1.00 14.68	В
50	MOTA	940	CA	GLY	134	39.483	7.870	48.619	1.00 13.15	В
	MOTA	941	С	GLY	134	38.016	7.752	48.262	1.00 14.05	В
	MOTA	942	0	GLY	134	37.574	8.262	47.228	1.00 12.84	В
	MOTA	951	N	ILE	136	35.223	9.141	49.530	1.00 10.60	В
	MOTA	952	CA	ILE	136	34.466	10.377	49.379	1.00 10.62	В
55	Mota	953	CB	ILE	136	34.843	11.386	50.482	1.00 10.47	В
	MOTA	954		ILE	136	34.175	12.721	50.231	1.00 8.18	В
	MOTA	955	CG1	ILE	136	34.382	10.847	51.839	1.00 10.73	. B
	MOTA	956	CD1	ILE	136	34.760	11.746	53.047	1.00 13.23	В
~ 0	MOTA	957	С	ILE	136	34.553	11.030	47.995	1.00 11.05	В
60	ATOM	958	0	ILE	136	33.531	11.296	47.373	1.00 10.67	В
	MOTA	959	N	PRO	137	35.765	11.303	47.492	1.00 11.64	В
	MOTA	960	CD	PRO	137	37.100	11.313	48.114	1.00 11.30	В
	MOTA	961	CA	PRO	137	35.793	11.924	46.162	1.00 11.06	В
	MOTA	962	CB	PRO	137	37.237	12.410	46.031	1.00 10.03	В
65	MOTA	963	CG	PRO	137	38.002	11.469	46.911	1.00 11.65	В
	MOTA	964	С	PRO	137	35.369	10.997	45.019	1.00 11.97	B
	MOTA	965	0	PRO	137	34.867	11.455	43.989	1.00 11.71	В
	MOTA	1145	N	LEU	160	29.446	18.027	56.397	1.00 13.49	В
	MOTA	1146	CA	LEU	160	30.595	17.478	57.077	1.00 13.18	В
70	MOTA	11:47	CB	LEU	160	31.883	18.025	56.470	1.00 14.21	В
	MOTA	1148	CG	LEU	160	33.175	17.477	57.068	1.00 13.62	В
	MOTA	1149		LEU	160	33.056	15.961	57.243	1.00 13.33	В
	MOTA	1150	CD2	LEU	160	34.343	17.846	56.166	1.00 13.39	В

	MOTA	1151	С	LEU	160	30.492	17.857	58.543	1.00 13.90	В
	MOTA	1152	0	LEU	160	30.883	18.956	58.947	1.00 11.88	₿ .
	MOTA	1564	N	TYR	211	35.581	19.271	44.173	1.00 18.55	В
	MOTA	1565	CA	TYR	211	36.924	19.418	44.731	1.00 18.51	В
5	ATOM	1566	СВ	TYR	211	37.994	19.405	43.637	1.00 15.05	В
-	ATOM	1567	CG	TYR	211	39.385	19.255	44.201	1.00 14.52	В
	ATOM	1568		TYR	211	39.721	18.153	44.981	1.00 15.06	В
	MOTA	1569	CEI		211	40.989	18.023	45.540	1.00 14.43	B
				TYR		40.359	20.232	43.988	1.00 13.72	B
10	MOTA	1570			211					
10	MOTA	1571		TYR	211	41.629	20.112	44.541	1.00 12.86	В
	MOTA	1572	CZ	TYR	211	41.937	19.003	45.316	1.00 13.41	В
	MOTA	1573	ОН	TYR	211	43.192	18.863	45.864	1.00 13.57	B
	MOTA	1574	С	TYR	211	37.044	20.683	45.575	1.00 19.47	В
	MOTA	1575	0	TYR	211	37.567	20.640	46.688	1.00 21.09	В
15	MOTA	1593	N	LEU	214	35.512	20.128	48.935	1.00 13.24	В
	MOTA	1594	CA	LEU	214	36.304	19.274	49.805	1.00 13.61	, B
	MOTA	1595	CB	LEU	214	36.778	18.022	49.055	1.00 11.20	В
	MOTA	1596	CG	LEU	214	35.695	17.141	48.423	1.00 12.16	В
	MOTA	1597		LEU	214	36.340	15.933	47.756	1.00 10.83	В
20	MOTA	1598		LEU	214	34.703	16.686	49.485	1.00 11.84	В
	MOTA	1599	c	LEU	214	37.503	20.063	50.332	1.00 14.64	В
	ATOM	1600	ō	LEU	214	37.903	19.885	51.476	1.00 16.56	В
	MOTA	1601	N	GLU	215	38.065	20.946	49.506	1.00 16.42	В
	MOTA	1602	CA	GLU	215	39.216	21.748	49.930	1.00 18.40	В
25	ATOM	1603	CB	GLU	215	39.764	22.595	48.781	1.00 18.89	• В
25			CG	GLU		40.428	21.819	47.673	1.00 21.62	. В
	ATOM	1604			215			46.598	1.00 25.34	В
	ATOM	1605	CD	CLU	215	40.989	22.739			В
	MOTA	1606		GLU	215	42.227	22.957	46.572 45.788	1.00 24.25 1.00 24.35	В
30	MOTA	1607		GLU	215	40.182	23.256			
30	MOTA	1608	C	GLU	215	38.856	22.676	51.077	1.00 17.37	В
	MOTA	1609	0	GLU	215	39.600	22.779	52.053	1.00 17.62	В
	MOTA	1619	N	GLY	217	36.574	22.385	53.343	1.00 17.13	В
	MOTA	1620	CA	GLY	217	36.448	21.651	54.586	1.00 16.36	В
25	MOTA	1621	C	GLY	217	37.821	21.367	55.173	1.00 16.18	B .
35	MOTA	1622	0	GLY	217	38.044	21.542	56.378	1.00 15.76	В
	MOTA	1623	N	ALA	218	38.746	20.934	54.322	1.00 15.35	B
	MOTA	1624	CA	ALA	218	40.105	20.629	54.763	1.00 15.51	В
	MOTA	1625	CB	ALA	218	40.923	20.071	53.596	1.00 14.52	В
40	MOTA	1626	С	ALA	218	40.806	21.849	55.356	1.00 14.85	В
40	MOTA	1627	0	ALA	218	41.470	21.745	56.386	1.00 15.80	В
	ATOM	1642	N	ARG	221	39.496	22.571	58.714	1.00 13.46	В
	MOTA	1643	CA	ARG	221	39.917	21.498	59.606	1.00 14.10	В
	MOTA	1644	CB	ARG	221	39.866	20.171	58.853	1.00 13.82	В
. ~	ATOM	1645	CG	ARG	221	39.982	18.949	59.723	1.00 18.08	В
45	MOTA	1646	CD	ARG	221	39.939	17.690	58.874	1.00 19.00	В
	ATOM	1647	NE	ARG	221	38.585	17.167	58.725	1.00 18.62	В
	MOTA	1648	CZ	ARG	221	38.226	16.296	57.788	1.00 20.44	В
	MOTA	1649	NH1	ARG	221	39.122	15.860	56.905	1.00 20.22	В
	MOTA	1650	NH2	ARG	221	36.980	15.839	57.751	1.00 16.95	В
50	MOTA	1651	С	ARG	221	41.331	21.780	60.137	1.00 14.31	В
	MOTA	1652	0	ARG	221	41.669	21.408	61.271	1.00 14.60	В
	MOTA	1777	N	PHE	239	30.844	12.531	56.963	1.00 10.36	В
	ATOM	1778	CA	PHE	239	30.590	13.199	55.695	1.00 10.45	В
	. ATOM	1779	CB	PHE	239	31.785	13.041	54.753	1.00 10.20	В
55	ATOM	1780	CG	PHE	239	31.691	13.879	53.513	1.00 7.76	В
	MOTA	1781		PHE	239	30.822	13.533	52.479	1.00 7.06	В
	MOTA	1782		PHE	239	32.466	15.026	53.386	1.00 6.02	В
	MOTA	1783		PHE	239	30.729	14.329	51.327	1.00 7.31	В
	ATOM	1784		PHE	239	32.384	15.829	52.242	1.00 6.13	В
60	MOTA	1785	CZ	PHE	239	31.516	15.483	51.210	1.00 5.13	В
VV		1786	c		239	29.350	12.555	55.085	1.00 12.53	В
	MOTA			PHE			11.369	54.734	1.00 12.06	В
	MOTA	1787	0	PHE	239	29.360				5
	MOTA	2624	MG	MG	2602	43.714	10.353	59.884	1.00 13.44	NDP
65	MOTA	2625	PB	ADP	2600	44.677	7.176	60.125	1.00 9.41	ADP
U)	MOTA	2626		ADP	2600	45.207	7.814	61.350		ADP
	ATOM	2627		ADP	2600	44.169	5.685	60.429	1.00 12.45	ADP
	ATOM	2628		ADP	2600	43.584	7.969	59.545	1.00 8.39	ADP
	MOTA	2629	PA	ADP	2600	46.112	7.788	57.787	1.00 12.25	ADP
70	MOTA	2630		ADP	2600	45.124	7.466	56.774	1.00 14.66	ADP
70	MOTA	2631		ADP	2600	46.054	9.225	58.059	1.00 14.40	ADP
	MOTA	2632		ADP	2600	45.825	7.002	59.093	1.00 9.50	ADP
	MOTA	2633		ADP	2600	47.568	7.490	57.279	1.00 16.91	ADP
	MOTA	2634	C5 •	ADP	2600	48.603	6.677	57.812	1.00 18.22	ADP

	ATOM	2635	C4 *	NDD.	2600	49.807	6.826	56.807	1.00 21.00	ADP
	ATOM	2636		ADP	2600	49.837	5.609	56.073	1.00 23.65	ADP
	MOTA	2637	C3.	ADP	2600	49.662	7.936	55.733	1.00 20.88	ADP
	MOTA	2638	03+	ADP	2600	50.883	8.668	55.538	1.00 23.91	ADP
5	MOTA	2639	C2*	ADP	2600	49.227	7.250	54.452	1.00 21.72	ADP
•	ATOM	2640	02*	ADP	2600	49.726	7.910	53.286	1.00 24.74	ADP
	MOTA	2641	C1*	ADP	2600	49.720	5.835	54.648	1.00 22.48	ADP
	ATOM	2642	N9	ADP	2600	48.789	4.775	54.145	1.00 22.01	ADP
	MOTA	2643	C8	ADP	2600	47.775	4.231	54.861	1.00 22.26	ADP
10	MOTA	2644	N7	ADP	2600	47.163	3.322	54.140	1.00 24.15	ADP
	ATOM	2645	·C5	ADP	2600	47.742	3.257	52.980	1.00 24.22	ADP
	MOTA	2646	C6	ADP	2600	47.552	2.498	51.838	1.00 25.28	ADP
	MOTA	2647	N6	ADP	2600	46.577	1.596	51.801	1.00 26.60	ADP
	ATOM	2648	N1	ADP	2600	48.372	2.684	50.738	1.00 28.22	ADP
15	ATOM	2649	C2	ADP	2600	49.388	3.599	50.736	1.00 27.91	ADP
	ATOM	2650	N3	ADP	2600	49.583	4.338	51.852	1.00 25.85	ADP
	MOTA	2651	C4	ADP	2600	48.803	4.199	52.972	1.00 23.75	ADP
	MOTA	2879	C1	5-2b	1	40.179	14.530	46.990	1.00 27.45	5-2b
	ATOM	2880	C2	5-2b	1	41.169	13.921	47.825	1.00 31.74	5-2b
20	MOTA	2881	C3	5-2b	1	42.197	13.109	47.246	1.00 26.68	5-2b
	MOTA	2882	C4	5-2b	1	42.197	12.949	45.832	1.00 25.21	5-2b
	MOTA	2883	C5	5-2b	1	41.213	13.549	44.997	1.00 25.57	5-2b
	MOTA	2884	C6	5~2b	1	40.174	14.358	45.564	1.00 26.52	5-2b
05	MOTA	2885	C7	5-2b	1	41.159	14.149	49.287	1.00 39.17	5-2b
25	MOTA	2886	И8	5-2b	1	40.043	13.644	50.068	1.00 32.24	5-2b
	MOTA	2887	C9	5-2b		39.077	14.446	50.550	1.00 31.10	5-2b
	MOTA	2888		5-2b	_	39.335	15.753	50.627	1.00 35.90	5-2b
	. ATOM	2889		5-2b		40.586	16.353	50.204	1.00 43.34	5-2b
20	ATOM	2890		5-2b		41.575	15.550	49.725	1.00 51.84	5-2b
30	MOTA	2891		5-2b		43.103	12.325	45.318	1.00 22.27	5-2b
	MOTA	2892		5-2b	_	43.049	15.950	49.559	1.00 69.59	5-2b
	MOTA	2893		5-2b		43.510	17.255	49.536	1.00102.78	5-2b
	MOTA	2894		5~2b		44.900	17.802	49.405	1.00 94.24	5-2b
25.	MOTA	2895		5-2b		44.910	19.338	49.209	1.00 96.86	5-2b
35	MOTA	2896		5-2b		40.562	17.864	50.356	1.00 41.39 1.00 72.75	5-2b 5-2b
	MOTA	2897		5-2b		43.806	15.026	49.427	1.00 /2./3	5-2b
	MOTA	2898	520	5-2b	1	37.588	13.867	51.069	1.00 10.03	3-2D
	END									•

WHAT IS CLAIMED IS:

5

10

15

1. A crystallized complex of KSP and a ligand thereof, wherein the relative structural coordinates of the amino acid residues of KSP are as set forth in Table 1 ± the root mean square deviation from the conserved backbone atoms of not more than about 2 Å.

- 2. The crystallized complex of Claim 1, wherein the relative structural coordinates of the amino acid residues are as set forth in Table 1 ± the root mean square deviation from the conserved backbone atoms of said amino acids of not more than about 0.5 Å.
- 3. The crystallized complex of Claim 1, wherein said ligand binds said KSP at a ligand binding site comprising the KSP amino acid residues 115 (M), 116(E), 117(G), 118(E), 119(R), 127(W), 130(D), 132(L), 133(A), 134(G), 136(I), 137(P), 160(L) 211(Y), 214(L), 215(E), 217(G), 218(A), 221(R) and 239(F).
- A crystallized complex of KSP and a ligand thereof,
 wherein the relative structural coordinates of the amino acid residues of KSP are as set forth in Table 2 ± the root mean square deviation from the conserved backbone atoms of said amino acids of not more than about 2 Å.
- 5. The crystallized complex of Claim 4, wherein the relative structural coordinates of the amino acid residues are as set forth in Table 2 ± the root mean square deviation from the conserved backbone atoms of said amino acids of not more than about 0.5 Å.
- 6. The crystallized complex of Claim 4, wherein said ligand binds said KSP at a ligand binding site comprising the KSP amino acid residues 115 (M), 116(E), 117(G), 118(E), 119(R), 127(W), 130(D), 132(L), 133(A), 134(G), 136(I), 137(P), 160(L) 211(Y), 214(L), 215(E), 217(G), 218(A), 221(R) and 239(F).

7. A crystallized complex of KSP and a ligand thereof, wherein the relative structural coordinates of the amino acid residues of KSP are as set forth in Table 3 ± the root mean square deviation from the conserved backbone atoms of said amino acids of not more than about 2 Å.

5

8. The crystallized complex of Claim 7, wherein the relative structural coordinates of the amino acid residues are as set forth in Table 3 ± the root mean square deviation from the conserved backbone atoms of said amino acids of not more than about 0.5 Å.

10

15

20

25

- 9. The crystallized complex of Claim 7, wherein said ligand binds said KSP at a ligand binding site comprising the KSP amino acid residues 115 (M), 116(E), 117(G), 118(E), 119(R), 127(W), 130(D), 132(L), 133(A), 134(G), 136(I), 137(P), 160(L) 211(Y), 214(L), 215(E), 217(G), 218(A), 221(R) and 239(F).
- 10. A crystallized complex of KSP and a ligand thereof, wherein the relative structural coordinates of the amino acid residues of KSP are as set forth in Table $4 \pm$ the root mean square deviation from the conserved backbone atoms of said amino acids of not more than about 2 Å.
- The crystallized complex of Claim 10, wherein the relative structural coordinates of the amino acid residues are as set forth in Table $4 \pm$ the root mean square deviation from the conserved backbone atoms of said amino acids of not more than about 0.5 Å.
- 12. The crystallized complex of Claim 10, wherein said ligand binds said KSP at a ligand binding site comprising the KSP amino acid residues 115 (M), 116(E), 117(G), 118(E), 119(R), 127(W), 130(D), 132(L), 133(A), 134(G), 136(I), 137(P), 160(L) 211(Y), 214(L), 215(E), 217(G), 218(A), 221(R) and 239(F).
- 13. A ligand binding site of a KSP protein comprising the relative structural coordinates set forth in Table $5 \pm$ the root mean square

deviation from the backbone atoms of said amino acids is not more than about 2 Å.

- 14. The ligand binding site of a KSP protein according to
 5 Claim 13 comprising the relative structural coordinates set forth in Table 5 ± the root mean square deviation from the backbone atoms of said amino acids is not more than about 0.5 Å.
- 15. The ligand binding site of a KSP protein according to
 10 Claim 13 comprising the relative structural coordinates of the KSP amino
 acid residues 115 (M), 116(E), 117(G), 118(E), 119(R), 127(W), 130(D),
 132(L), 133(A), 134(G), 136(I), 137(P), 160(L) 211(Y), 214(L), 215(E),
 217(G), 218(A), 221(R) and 239(F) as set forth in a table selected from a
 group consisting of Tables 1, 2, 3 and 4, ± the root mean square deviation
 15 from the backbone atoms of said amino acids is not more than about 2 Å.
 - 16. An agent which binds to the ligand binding site of Claim 13, wherein said agent is an inhibitor of KSP function, or a pharmaceutically acceptable salt thereof.

20

- 17. A composition comprising: (a) an agent according to Claim 16; and (b) a pharmaceutically acceptable carrier.
- 18. An agent, or a pharmaceutically acceptable salt

 25 thereof, which binds to five or more of the KSP amino acid residues selected from the group consisting of 115 (M), 116(E), 117(G), 118(E), 119(R), 127(W), 130(D), 132(L), 133(A), 134(G), 136(I), 137(P), 160(L) 211(Y), 214(L), 215(E), 217(G), 218(A), 221(R) and 239(F), wherein said agent is an inhibitor of KSP function.

- 19. A method for identifying an agent that interacts with a ligand binding site of human KSP, comprising the steps of:
 - (a) determining a ligand binding site of KSP from a threedimensional model of the KSP binding site as set forth in

Table 5, \pm the root mean square deviation from the backbone atoms of said amino acids of not more than about 2.0 Å; and

(b) performing computer fitting analysis to identify an agent which interacts with said ligand binding site.

5

10

15

25

30

- 20. A method for identifying an agent that interacts with a ligand binding site of human KSP, comprising the steps of:
- determining a ligand binding site of KSP from a three-dimensional model of KSP using the relative structural coordinates of the KSP amino acid residues 115 (M), 116(E), 117(G), 118(E), 119(R), 127(W), 130(D), 132(L), 133(A), 134(G), 136(I), 137(P), 160(L) 211(Y), 214(L), 215(E), 217(G), 218(A), 221(R) and 239(F) as set forth in a Table selected from the group of Tables 1, 2, 3 and 4, ± the root mean square deviation from the backbone atoms of said amino acids of not more than about 2.0 Å; and
 - (b) performing computer fitting analysis to identify an agent which interacts with said ligand binding site.
- 20 21. A method for identifying a potential inhibitor of KSP function, comprising the steps of:
 - (a) obtaining a three-dimensional model of a KSP binding site wherein said model contains the relative structural coordinates of the ligand binding site of KSP from a threedimensional model of the ligand binding site as set forth in Table 5, ± the root mean square deviation from the backbone atoms of said amino acids of not more than about 2.0 Å;
 - (b) employing said three-dimensional model to design or select a potential inhibitor; and
 - (c) synthesizing or obtaining said potential inhibitor.
 - 22. The method according to Claim 21 wherein the potential inhibitor is designed *de novo*.
 - 23. The method of Claim 21, further comprising the steps of:

(d) contacting said potential inhibitor with KSP in the presence of a KSP binding molecule, and

(e) determining the effect the potential inhibitor has on binding between KSP and the KSP binding molecule.

5

10

- 24. A method for identifying a potential inhibitor of KSP function, comprising the steps of:
 - (a) generating a three-dimensional model of KSP using the relative structural coordinates as set forth in a table selected from Tables 1, 2, 3 and 4, ± a root mean square deviation from the backbone atoms of said amino acids of not more than about 2.0 Å;
 - (b) employing said three-dimensional model to design or select a potential inhibitor; and
 - (c) synthesizing or obtaining said potential inhibitor.
- 25. The method according to Claim 24 wherein the potential inhibitor is designed *de novo*.

20

15

- 26. The method of Claim 24, further comprising the steps of:(d) contacting said potential inhibitor with KSP in the presence of a KSP binding molecule, and
- (e) determining the effect the potential inhibitor has on binding between KSP and the KSP binding molecule.

25

27. The method of Claim 21, further comprising contacting the potential inhibitor with KSP in the presence of a KSP binding molecule, and determining the effect the potential inhibitor has on binding between KSP and the KSP binding molecule.

30

28. The method of Claim 21, further comprising contacting the potential inhibitor with KSP in the presence of one or two

KSP substrates selected from ATP and microtubules, and determining the effect the potential inhibitor has on KSP ATPase activity.

A potential inhibitor identified by the method of
 Claim 21, or a pharmaceutically acceptable salt thereof.

10

15

- 30. A method of identifying an inhibitor compound capable of binding to kinesin spindle protein (KSP), said method comprising:
- (a) introducing protein coordinates selected from the protein coordinates provided in a table selected from Tables 1, 2, 3 and 4, ± a root mean square deviation from the backbone atoms of said amino acids of not more than about 2.0 Å, into a suitable computer program so as to define a (+)-monastrol ligand binding site conformation, wherein said program displays the three- dimensional structure of the (+)-monastrol ligand binding site;
 - (b) creating a three dimensional representation of the (+)-monastrol ligand binding site in said computer program;
 - (c) displaying and superimposing a three dimensional representation of a
 test compound on the three dimensional representation of the
 (+)-monastrol ligand binding site;
 - (d) assessing whether said test compound fits spatially into the(+)-monastrol ligand binding site;
 - (e) preparing said test compound that fits spatially into the (+)-monastrol ligand binding site;
- 25 (f) using said test compound in a biological assay for KSP function; and
 - (g) determining whether said test compound inhibits KSP function in said assay.
- 31. A process for identifying a potential anti-mitotic agent which upon binding to a human KSP inhibits cell proliferation, the process comprising the steps of:

(a) obtaining an X-ray diffraction pattern of a human kinesin spindle protein (KSP) crystal, wherein said KSP has been crystallized in the presence of a mixture of at least two potential ligands;

5

(d) determining whether a ligand/KSP complex is formed by comparing the electron density map calculated from the X-ray diffraction pattern of said KSP crystal to the electron density map calculated from an X-ray diffraction pattern set forth in a table selected from Table 1, 2, 3 and 4; and

10

(c) determining whether said ligand from said ligand/KSP complex binds to the ligand binding site of said KSP according to Claim 15, such that upon binding to KSP said ligand inhibits cell proliferation.

1 /

- 32. An anti-mitotic agent identified by the process according to Claim 31, or a pharmaceutically acceptable salt thereof.
- 15
- 33. A composition comprising: (a) an anti-mitotic agent identified according to Claim 32; and (b) a pharmaceutically acceptable carrier.

20

25

30

34. A method of identifying a compound that modulates the binding of a ligand to a ligand binding site of a human KSP, said method comprising: modeling test compounds that fit spatially into a KSP ligand binding site using an atomic structural model of a KSP binding site having the relative structural coordinates as set forth in a table selected from the group consisting of Tables 1, 2, 3 and 4 for the KSP amino acid residues 115 (M), 116(E), 117(G), 118(E), 119(R), 127(W), 130(D), 132(L), 133(A), 134(G), 136(I), 137(P), 160(L) 211(Y), 214(L), 215(E), 217(G), 218(A), 221(R) and 239(F), ± the root mean square deviation from the backbone atoms of said amino acids of not more than about 2.0 Å; screening the test compounds in an assay characterized by binding of a ligand to the ligand binding site; and identifying a test compound that modulates binding of said ligand to the KSP at its binding site.

a data storage material encoded with machine readable data which, when using a machine programmed with instructions for using said data, is capable of displaying a graphical three-dimensional representation of a molecular complex of a compound bound to the ligand binding site of human KSP, said three-dimensional representation comprising the structural coordinates of the KSP as set forth in a table selected from Tables 1-4 or a homologue of said molecular complex, wherein said homologue comprises a binding site that has a root mean square deviation from the backbone atoms of said KSP of not more than about 2.0 Å.

5

10

- 36. A method for identifying an anti-mitotic agent which upon binding to a target human KSP inhibits cell proliferation, the method comprising the steps of:
 - (a) obtaining a crystal of KSP, where said KSP has been crystallized while exposed to a mixture of at least two potential ligands;
 - (b) determining whether a ligand/KSP complex is formed in said crystal; and
- (c) identifying a potential anti-mitotic agent as one that binds to said KSP at a ligand binding site having the relative structural coordinates as set forth in Table 5 ± the root mean square deviation of not more than about 2.0 Å.
- 37. An anti-mitotic agent identified by the methodaccording to Claim 36, or a pharmaceutically acceptable salt thereof.
 - 38. A composition comprising: (a) an anti-mitotic agent according to Claim 37; and (b) a pharmaceutically acceptable carrier.
- 39. A method for determining the three-dimensional structure of a complex of KSP with a ligand thereof, which comprises obtaining X-ray diffraction data for crystals of the complex comprising the

ligand bound to KSP at a ligand binding site; and utilizing said data to define the three-dimensional structure of the complex.

- 40. A method for evaluating the ability of a chemical
 5 entity to associate with a ligand binding site of human KSP or with at least a portion of the site or a complex comprising the KSP binding site; said method comprising the steps of:
 - (a) employing computational or experimental means to perform a fitting operation between the chemical entity and said ligand binding site of KSP having the relative structural coordinates as set forth in Table $5 \pm$ the root mean square deviation of not more than about 2.0 Å, thereby obtaining data related to said association; and

10

15

20

25

30

35

- (b) analyzing the data obtained in step (a) to determine the characteristics of the association between the chemical entity and said KSP or complex.
- 41. A chemical entity identified by the method of Claim 37, wherein the chemical entity is capable of interfering with the *in vivo* or *in vitro* motor activity of KSP, or a pharmaceutically acceptable salt thereof.

42. A composition comprising: (a) a chemical entity identified according to Claim 38; and (b) a pharmaceutically acceptable carrier.

- 43. A method for identifying a potential inhibitor of human kinesin spindle protein (KSP), the method comprising the steps of:
 - (a) providing a three-dimensional structure of a ligand-bound KSP as defined by atomic coordinates set forth in a table selected from a group consisting of Tables 1, 2, 3 and 4 \pm the root mean square deviation of not more than about 2.0 Å;
 - (b) comparing the three-dimensional coordinates of the ligand when it is bound to KSP as set forth in Table 1, 2, 3 or $4 \pm$ the root mean square deviation of not more than about 2.0 Å to the three-dimensional coordinates of a compound in a database of compound structures; and

(c) selecting from said database at least one compound that is structurally similar to said ligand when it is bound to said KSP, wherein the selected compound is a potential inhibitor of said KSP.

- 5 44. The method of Claim 43, wherein the structural similarity is determined based on the root mean square deviation in the backbone atoms of the kinesin peptide and the kinesin inhibitor.
- 45. A method for identifying a potential inhibitor of a human kinesin spindle protein (KSP), the method comprising the steps of:
 - (a) providing a three-dimensional structure of said KSP as defined by atomic coordinates set forth in a table selected from Tables 1-4 ± the root mean square deviation of not more than about 2.0 Å;
 - (b) employing the three-dimensional structures to design or select a potential inhibitor;
 - (c) synthesizing the potential inhibitor; and
 - (d) contacting the potential inhibitor with KSP to determine the ability of the potential inhibitor to arrest mitosis or inhibit cell proliferation.

20

30

- 46. A potential inhibitor identified by the method of Claim 45 or a pharmaceutically acceptable salt thereof.
- 47. A composition comprising: (a) the potential inhibitor identified according to Claim 46; and (b) a pharmaceutically acceptable carrier.
 - 48. A method of identifying an inhibitor of KSP wherein the inhibitor binds to the ligand binding site according to Claim 13 which comprises determining the shift in the fluorescence of an amino acid residue at position 127 of KSP, wherein said amino acid residue is tryptophan.
 - 49. The method according to Claim 48 which comprises the steps of:

(a) contacting KSP with the test compound and a
 nucleotide and measuring the fluorescence of the
 mixture at the peak emission wavelength for W127 in
 KSP;

5

(b) contacting KSP with a nucleotide and measuring the fluorescence of the mixture at the peak emission wavelength for W127 in KSP; and

(c) comparing the fluorescence of the mixture of KSP, the test compound and the nucleotide with the fluorescence of the mixture of KSP with the nucleotide alone.

10

15

50. An anti-mitotic agent characterized as:

(a) specifically binding to the target KSP or an analogue thereof at a ligand binding site comprising the relative structural coordinates of the KSP amino acid residues 115 (M), 116(E), 117(G), 118(E), 119(R), 127(W), 130(D), 132(L), 133(A), 134(G), 136(I), 137(P), 160(L) 211(Y), 214(L), 215(E), 217(G), 218(A), 221(R) and 239(F) according to Tables 1, 2, 3 or 4 ± a root mean square deviation from the conserved backbone atoms of said amino acids of not more than about 2.0Å; and

20

(b) which, upon binding to said KSP or an analogue thereof specifically inhibits said KSP or analogs biological activities.

25

- 51. A method of causing the alteration of the structural conformation of a KSP protein which comprises exposing the protein to a ligand that binds to the KSP ligand binding site as set forth in Table $5 \pm$ the root mean square deviation from the backbone atoms of said amino acids of not more than about 2.0 Å.
- 52. The method according to Claim 51 wherein the KSP protein is additionally bound to a nucleotide.

53. A method of treating or preventing hyper-proliferative diseases which comprises administering to a mammal a therapeutically effective amount of a compound that binds to the KSP ligand binding site as set forth in Table $5 \pm$ the root mean square deviation from the backbone atoms of said amino acids of not more than about 2.0 Å.

- 54. The method according to Claim 53 which is a method of treating or preventing cancer.
- The method according to Claim 54 which is a method of treating cancer.
- 56. An isolated and substantially pure polypeptide or a fragment thereof comprising the amino acid sequence as set forth in SEQ ID NO:1.
- 57. The isolated polypeptide of Claim 56, wherein the polypeptide adopts the conformation of the ligand binding pocket as set forth in Table 5, ± the root mean square deviation of not more than about 2.0

 20 Å.
 - 58. A variant of the isolated polypeptide according to Claim 57 having at least about 80% amino acid sequence identity with the polypeptide of Claim 57, wherein the percentage identity is determined with the algorithm Gap, BASEFIT or FASTA in the Wisconsin Genetics Software Package release 7.0, using default Gap weights.
 - 59. An active structural motif designated herein as pharmacophore model, which refers to the three-dimensional orientation of a set of features describing the physical, chemical and/or electronic environment of the active site of the human KSP, said features comprising either a hydrophobic region feature, a hydrogen bond acceptor feature and a hydrogen bond donor feature (pharmacophore model in FIG. 14A) or two hydrophobic region features and a hydrogen bond acceptor feature (pharmacophore model in FIG. 14B).

25

30

60. A method for screening and identifying potential KSP inhibitor compounds by evaluating the fit of the screened compounds to the pharmacophore models of claim 59.

- 5 61. The method of claim 60 wherein evaluating the fit is carried out via the use of a computer and a computer-readable medium.
 - 62. A compound, comprising two hydrophobic region features and a hydrogen bond acceptor feature, wherein said features are oriented as illustrated in Figure 14B and wherein said compound inhibits the mitotic kinesin KSP; or a pharmaceutically acceptable salt thereof.
- A compound, comprising two hydrophobic region features and a hydrogen bond acceptor feature, wherein said features are oriented as illustrated in
 Figure 14B and wherein said compound fits within a ligand binding site of a kinesin spindle protein (KSP) protein, said ligand binding site comprising the relative structural coordinates set forth in Table 5 ± the root mean square deviation from the backbone atoms of said amino acids of not more than about 2 Å;

or a pharmaceutically acceptable salt thereof.

20

- 64. The compound according to Claim 63 wherein the two hydrophobic region features are independently selected from an aryl, heteroaryl and C₃-C₇-cycloalkyl, optionally substituted.
- 25 65. The compound according to Claim 63 wherein the two hydrophobic region features are independently selected from an optionally substituted phenyl.
- 66. The compound according to Claim 63 wherein the compound has a binding affinity for KSP of about 0.1nM to about 100nM.
 - 67. A compound, comprising one hydrophobic region feature, a hydrogen bond donor feature and a hydrogen bond acceptor feature, wherein said

features are oriented as illustrated in Figure 14A and wherein said compound inhibits the mitotic kinesin KSP;

or a pharmaceutically acceptable salt thereof.

5 68. A compound, comprising one hydrophobic region feature, a hydrogen bond donor feature and a hydrogen bond acceptor feature, wherein said features are oriented as illustrated in Figure 14A and wherein said compound fits within a ligand binding site of a kinesin spindle protein (KSP) protein, said ligand binding site comprising the relative structural coordinates set forth in Table 5 ± the root mean square deviation from the backbone atoms of said amino acids of not more than about 2 Å;

or a pharmaceutically acceptable salt thereof.

- 69. The compound according to Claim 68 wherein the hydrophobic region feature is selected from an aryl, heteroaryl and C₃-C₇-cycloalkyl, optionally substituted.
 - 70. The compound according to Claim 68 wherein the hydrophobic region feature is selected from an optionally substituted phenyl.
 - 71. The compound according to Claim 68 wherein the compound has a binding affinity for KSP of about 0.1nM to about 100nM.

- 72. The compound according to Claim 68 wherein the compound does not comprise a 2-thioxo-1,2,3,4-tetrahydopyrimidine moiety, a dihydropyrimidine moiety or a 5,6,11,11a-tetrahydro-1H-imidazo[1',5':1,6]-pyrido[3.4-b]indole-1,3(2H)-dione moiety.
- 73. A compound, comprising three hydrophobic region features and a hydrogen bond acceptor feature, wherein said features are spatially oriented as illustrated in Figure 16 and have the distances in Å between the features as follows

	1	2	3	4
1	-			
2	5.1±0.6	-		
3	8.5±0.7	6.9±0.7	-	
4	3.7±0.5	5.8±0.6	5.7±0.7	-

and wherein said compound inhibits the mitotic kinesin KSP; or a pharmaceutically acceptable salt thereof.

The compound according to Claim 73 wherein the compound does not comprise a quinazolinone, phenothiazine, thienopyrimidinone, furanopyrimidinone, azolopyrimidinone, thiazolopyrimidine, cycloalkylpyrimidinone or triphenylmethane moiety.

FIG.1

FIG.2

FIG.3

FIG.4

FIG.5

FIG.6

FIG.7

FIG.8

Seq. ID #1

MASQPNSSAK KKEEKGKNIQ VVVRCRPFNL AERKASAHSI VECDPVRKEV SVRTGGLADK SSRKTYTFDM VFGASTKQID VYRSVVCPIL DEVIMGYNCT IFAYGQTGTG KTFTMEGERS PNEEYTWEED PLAGIIPRTL HQIFEKLTDN GTEFSVKVSL LEIYNEELFD LLNPSSDVSE RLQMFDDPRN KRGVIIKGLE EITVHNKDEV YQILEKGAAK RTTAATLMNA YSSRSHSVFS VTIHMKETTI DGEELVKIGK LNLVDLAGSE NIGRSGAVDK RAREAGNINQ SLLTLGRVIT ALVERTPHVP YRESKLTRIL QDSLGGRTRT SIIATISPAS LNLEETLSTL EYAHRAKNIL NKPEVNQK

FIG.9

115(M), 116(E), 117(G), 118(E), 119(R);

127(W), 130(D), 132(L), 133(A), 134(G), 136(I), 137(P);

160(L); and

211(Y), 214(L), 215(E), 217(G), 218(A), 221(R), 239(F).

FIG.10

FIG. 14A

FIG. 14B

FIG. 15

FIG. 16

SEQUENCE LISTING

<110> Merck & Co., Inc.
Buser-Doepner, Carolyn A.
Coleman, Paul J.
Cox. Christopher D.
Fraley, Mark E.
Garbaccio, Robert M.
Hartman, George D.
Heimbrook, David C.
Huber, Hans E.
Kuo, Lawrence C.
Sardana, Vinod V.
Torrent, Maricel
Youwei, Yan

<120> MITOTIC KINESIN BINDING SITE

<130> 21125Y

<150> 60/394,313

<151> 2002-07-08

<160> 1

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 368

<212> PRT

<213> human

<400> 1

 Met Ala Ser Gln Pro Asn Ser Ser Ala Lys Lys Lys Glu Glu Lys Gly

 1
 5

 Lys Asn Ile Gln Val Val Val Arg Cys Arg Pro Phe Asn Leu Ala Glu

 20
 25

 Arg Lys Ala Ser Ala His Ser Ile Val Glu Cys Asp Pro Val Arg Lys

 35
 40

Glu Val Ser Val Arg Thr Gly Gly Leu Ala Asp Lys Ser Ser Arg Lys 50 60 Thr Tyr Thr Phe Asp Met Val Phe Gly Ala Ser Thr Lys Gln Ile Asp

65 70 75 80 Val Tyr Arg Ser Val Val Cys Pro Ile Leu Asp Glu Val Ile Met Gly

85 90 95
Tyr Asn Cys Thr Ile Phe Ala Tyr Gly Gln Thr Gly Thr Gly Lys Thr
100 105 110

Phe Thr Met Glu Gly Glu Arg Ser Pro Asn Glu Glu Tyr Thr Trp Glu
115 120 125

Glu Asp Pro Leu Ala Gly Ile Ile Pro Arg Thr Leu His Gln Ile Phe 130 135 140

Glu Lys Leu Thr Asp Asn Gly Thr Glu Phe Ser Val Lys Val Ser Leu 145 150 155 160

Leu Glu Ile Tyr Asn Glu Glu Leu Phe Asp Leu Leu Asn Pro Ser Ser 165 170 175

Asp Val Ser Glu Arg Leu Gln Met Phe Asp Asp Pro Arg Asn Lys Arg

			180					185					190		
Gly	Val	Ile 195	Ile	Lys	Gly	Leu	Glu 200	Glu	Ile	Thr	Val	His 205	Asn	Lys	Asp
Glu	Val 210	Tyr	Gln	Ile	Leu	Glu 215	rys	Gly	Ala	Ala	Lys 220	Arg	Thr	Thr	Ala
Ala 225	Thr	Leu	Met	Asn	Ala 230	Tyr	Ser	Ser	Arg	Ser 235	His	Ser	Val	Phe	Ser 240
Val	Thr	Ile	His	Met 245	Lys	Glu	Thr	Thr	Ile 250	Asp	Gly	Glu	Glu	Leu 255	Val
Lys	Ile	Gly	Lys 260	Leu	Asn	Leu	Val	Asp 265	Leu	Ala	Gly	Ser	Glu 270	Asn	Ile
Gly	Arg	Ser 275	Gly	Ala	Val	Asp	Lys 280	Arg	Ala	Arg	Glu	Ala 285	Gly	Asn	Ile
Asn	Gln 290	Ser	Leu	Leu	Thr	Leu 295	Gly	Arg	Val	Ile	Thr 300	Ala	Leu	Val	Glu
Arg 305	Thr	Pro	His	Val	Pro 310	Tyr	Arg	Glu	Ser	Lys 315	Leu	Thr	Arg	Ile	Leu 320
Gln	Asp	Ser	Leu	Gly 325	Gly	Arg	Thr	Arg	Thr 330	Ser	Ile	Ile	Ala	Thr 335	Ile
Ser	Pro	Ala	Ser 340	Leu	Asn	Leu	Glu	Glu 345	Thr		Ser	Thr	Leu 350	Glu	Tyr
Ala	His	Arg 355	Ala	Lys	Asn	Ile	Leu 360	Asn	Lys	Pro	Glu	Val 365	Asn	Gln	Lys

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.