A fast spectrally-accurate Poisson solver on rectangular domains

Alex Townsend

Dan Fortunato
Harvard

SIAM CSE, February 28th 2017

A long-standing question

Consider Poisson's equation on $[-1, 1]^2$ with homogeneous Dirichlet conditions,

$$u_{xx} + u_{yy} = f$$
, $(x, y) \in [-1, 1]^2$, $u(\pm 1, \cdot) = u(\cdot, \pm 1) = 0$.

The classic fast Poisson solver using finite differences:

$$KX + XK = F,$$

$$K = \frac{1}{h^2} \begin{bmatrix} 2 & -1 \\ -1 & \ddots & \ddots \\ & \ddots & \ddots & -1 \\ & & -1 & 2 \end{bmatrix}$$
where K is a sum of K and K is a sum of K is a sum of K and K is a sum of K in K is a sum of K in K is a sum of K in K in K is a sum of K in K i

[Buzbee et al, 1970]

- Based on structured eigenvectors
- Complexity increases with order of accuracy

Can we make a spectrally-accurate Poisson solver with $O(n^2 \log n)$ complexity

A long-standing question

Consider Poisson's equation on $[-1, 1]^2$ with homogeneous Dirichlet conditions,

$$u_{xx} + u_{yy} = f$$
, $(x, y) \in [-1, 1]^2$, $u(\pm 1, \cdot) = u(\cdot, \pm 1) = 0$.

The classic fast Poisson solver using finite differences:

$$\underbrace{KX + XK = F}_{\text{solve with FFT, } O(n^2 \log n)} \qquad K = \frac{1}{h^2} \begin{bmatrix} 2 & -1 \\ -1 & \ddots & \ddots \\ & \ddots & \ddots & -1 \\ & & -1 & 2 \end{bmatrix}$$

[Buzbee et al, 1970]

- Based on structured eigenvectors
- Complexity increases with order of accuracy

Can we make a spectrally-accurate Poisson solver with $O(n^2 \log n)$ complexity

A long-standing question

Consider Poisson's equation on $[-1, 1]^2$ with homogeneous Dirichlet conditions,

$$u_{xx} + u_{yy} = f$$
, $(x, y) \in [-1, 1]^2$, $u(\pm 1, \cdot) = u(\cdot, \pm 1) = 0$.

The classic fast Poisson solver using finite differences:

$$\underbrace{KX + XK = F}_{\text{solve with FFT, } O(n^2 \log n)} K = \frac{1}{h^2} \begin{bmatrix} 2 & -1 & & \\ -1 & \ddots & \ddots & \\ & \ddots & \ddots & -1 \\ & & -1 & 2 \end{bmatrix}$$

[Buzbee et al, 1970]

- Based on structured eigenvectors
- Complexity increases with order of accuracy

Can we make a spectrally-accurate Poisson solver with $O(n^2 \log n)$ complexity?

A long-standing question

Consider Poisson's equation on $[-1, 1]^2$ with homogeneous Dirichlet conditions,

$$u_{xx} + u_{yy} = f$$
, $(x, y) \in [-1, 1]^2$, $u(\pm 1, \cdot) = u(\cdot, \pm 1) = 0$.

The classic fast Poisson solver using finite differences:

$$KX + XK = F, \qquad K = \frac{1}{h^2} \begin{bmatrix} 2 & -1 \\ -1 & \ddots & \ddots \\ & \ddots & \ddots & -1 \\ & & -1 & 2 \end{bmatrix}$$
Solve with FFT, $O(n^2 \log n)$
on **structured eigenvectors**
exity increases with order of accuracy

- Based on **structured eigenvectors**
- Complexity increases with order of accuracy

A long-standing question

Consider Poisson's equation on $[-1, 1]^2$ with homogeneous Dirichlet conditions,

$$u_{xx} + u_{yy} = f$$
, $(x, y) \in [-1, 1]^2$, $u(\pm 1, \cdot) = u(\cdot, \pm 1) = 0$.

The classic fast Poisson solver using finite differences:

$$KX + XK = F, \qquad K = \frac{1}{h^2} \begin{bmatrix} 2 & -1 \\ -1 & \ddots & \ddots \\ & \ddots & \ddots & -1 \\ & & -1 & 2 \end{bmatrix}$$
Based on **structured eigenvectors**
Complexity increases with order of accuracy

- Complexity increases with order of accuracy

Can we make a spectrally-accurate Poisson solver with $O(n^2 \log n)$ complexity?

The ultraspherical polynomials

Dirichlet on $[-1,1] \longleftrightarrow Pick$ a basis that vanishes at ± 1

The classical orthogonal polynomials, f_k , satisfy

$$A(x)f_k''(x) + B(x)f_k'(x) = q_k f_k(x), \qquad x \in [-1, 1]$$

The second derivative of $(1 - x^2)C_k^{(\lambda)}(x)$ is given by

$$\frac{\partial^2}{\partial x^2} \left[(1 - x^2) C_k^{(\lambda)}(x) \right] = (1 - x^2) C_k^{(\lambda)''}(x) - 4x C_k^{(\lambda)'}(x) - 2C_k^{(\lambda)}(x).$$

Idea: Choose $\lambda = \frac{3}{2}$

The ultraspherical polynomials

Dirichlet on $[-1,1] \longleftrightarrow Pick$ a basis that vanishes at ± 1

The classical orthogonal polynomials, f_k , satisfy

$$A(x)f_k''(x) + B(x)f_k'(x) = q_kf_k(x), \qquad x \in [-1,1].$$

The second derivative of $(1 - x^2)C_k^{(\lambda)}(x)$ is given by

$$\frac{\partial^2}{\partial x^2} \left[(1 - x^2) C_k^{(\lambda)}(x) \right] = (1 - x^2) C_k^{(\lambda)''}(x) - 4x C_k^{(\lambda)'}(x) - 2C_k^{(\lambda)}(x).$$

Idea: Choose $\lambda = \frac{3}{2}$

The ultraspherical polynomials

Dirichlet on $[-1,1] \longleftrightarrow Pick$ a basis that vanishes at ± 1

The ultraspherical polynomials of parameter λ , $C_k^{(\lambda)}$, satisfy [NIST DLMF, 18.8.1]

$$(1-x^2)C_k^{(\lambda)''}(x)-(2\lambda+1)xC_k^{(\lambda)'}(x)=-k(k+2\lambda)C_k^{(\lambda)}(x), \qquad x\in[-1,1].$$

The second derivative of $(1 - x^2)C_k^{(\lambda)}(x)$ is given by

$$\frac{\partial^2}{\partial x^2} \left[(1 - x^2) C_k^{(\lambda)}(x) \right] = (1 - x^2) C_k^{(\lambda)''}(x) - 4x C_k^{(\lambda)'}(x) - 2C_k^{(\lambda)}(x).$$

Idea: Choose $\lambda = \frac{3}{2}$

The ultraspherical polynomials

Dirichlet on $[-1,1] \longleftrightarrow Pick$ a basis that vanishes at ± 1

The ultraspherical polynomials of parameter λ , $C_k^{(\lambda)}$, satisfy [NIST DLMF, 18.8.1]

$$(1-x^2)C_k^{(\lambda)''}(x)-(2\lambda+1)xC_k^{(\lambda)'}(x)=-k(k+2\lambda)C_k^{(\lambda)}(x), \qquad x\in[-1,1].$$

The second derivative of $(1 - x^2)C_k^{(\lambda)}(x)$ is given by

$$\frac{\partial^2}{\partial x^2} \left[(1 - x^2) C_k^{(\lambda)}(x) \right] = (1 - x^2) C_k^{(\lambda)''}(x) - 4x C_k^{(\lambda)'}(x) - 2C_k^{(\lambda)}(x).$$

Idea: Choose $\lambda = \frac{3}{2}$

The ultraspherical polynomials

Dirichlet on $[-1,1] \longleftrightarrow Pick$ a basis that vanishes at ± 1

The ultraspherical polynomials of parameter λ , $C_k^{(\lambda)}$, satisfy [NIST DLMF, 18.8.1]

$$(1-x^2)C_k^{(\lambda)''}(x)-(2\lambda+1)xC_k^{(\lambda)'}(x)=-k(k+2\lambda)C_k^{(\lambda)}(x), \qquad x\in[-1,1].$$

The second derivative of $(1 - x^2)C_k^{(\lambda)}(x)$ is given by

$$\frac{\partial^2}{\partial x^2} \left[(1 - x^2) C_k^{(\lambda)}(x) \right] = (1 - x^2) C_k^{(\lambda)''}(x) - 4x C_k^{(\lambda)'}(x) - 2C_k^{(\lambda)}(x).$$

Idea: Choose $\lambda = \frac{3}{2}$

The ultraspherical polynomials

Dirichlet on $[-1,1] \longleftrightarrow Pick$ a basis that vanishes at ± 1

The ultraspherical polynomials of parameter λ , $C_k^{(\lambda)}$, satisfy [NIST DLMF, 18.8.1]

$$(1-x^2)C_k^{(\lambda)''}(x)-(2\lambda+1)xC_k^{(\lambda)'}(x)=-k(k+2\lambda)C_k^{(\lambda)}(x), \qquad x\in[-1,1].$$

The second derivative of $(1 - x^2)C_k^{(\lambda)}(x)$ is given by

$$\frac{\partial^2}{\partial x^2} \left[(1 - x^2) C_k^{(\lambda)}(x) \right] = (1 - x^2) C_k^{(\lambda)''}(x) - 4x C_k^{(\lambda)'}(x) - 2C_k^{(\lambda)}(x).$$

Idea: Choose $\lambda = \frac{3}{2}$

The ultraspherical polynomials

$$\frac{\partial^2}{\partial x^2} \left[(1-x^2) C_k^{(3/2)}(x) \right] = -(k(k+3)+2) C_k^{(3/2)}(x).$$

 $C_k^{(3/2)}(x)$ is an eigenfunction of the differential operator $u\mapsto \frac{\partial^2}{\partial x^2}(1-x^2)u$

$$\nabla^{2} \left[(1 - x^{2})(1 - y^{2})C_{j}^{(3/2)}(x)C_{k}^{(3/2)}(y) \right] = -(j(j+3) + 2)(1 - y^{2})C_{j}^{(3/2)}(x)C_{k}^{(3/2)}(y) - (k(k+3) + 2)(1 - x^{2})C_{j}^{(3/2)}(x)C_{k}^{(3/2)}(y)$$

Therefore, represent the solution in the basis

$$u(x,y) \approx \sum_{j=0}^{m-1} \sum_{k=0}^{n-1} X_{jk} (1-x^2) (1-y^2) C_j^{(3/2)}(x) C_k^{(3/2)}(y), \qquad (x,y) \in [-1,1]^2.$$

The ultraspherical polynomials

$$\frac{\partial^2}{\partial x^2} \left[(1-x^2) C_k^{(3/2)}(x) \right] = -(k(k+3)+2) C_k^{(3/2)}(x).$$

 $C_k^{(3/2)}(x)$ is an eigenfunction of the differential operator $u\mapsto \frac{\partial^2}{\partial x^2}(1-x^2)u$

$$\nabla^{2} \left[(1 - x^{2})(1 - y^{2})C_{j}^{(3/2)}(x)C_{k}^{(3/2)}(y) \right] = -(j(j+3)+2)(1-y^{2})C_{j}^{(3/2)}(x)C_{k}^{(3/2)}(y) - (k(k+3)+2)(1-x^{2})C_{j}^{(3/2)}(x)C_{k}^{(3/2)}(y) \right]$$

Therefore, represent the solution in the basis

$$u(x,y) \approx \sum_{j=0}^{m-1} \sum_{k=0}^{n-1} X_{jk} (1-x^2) (1-y^2) C_j^{(3/2)}(x) C_k^{(3/2)}(y), \qquad (x,y) \in [-1,1]^2.$$

The ultraspherical polynomials

$$\frac{\partial^2}{\partial x^2} \left[(1-x^2) C_k^{(3/2)}(x) \right] = -(k(k+3)+2) C_k^{(3/2)}(x).$$

 $C_k^{(3/2)}(x)$ is an eigenfunction of the differential operator $u\mapsto rac{\partial^2}{\partial x^2}(1-x^2)u$

$$\begin{split} \nabla^2 \left[(1-x^2)(1-y^2) C_j^{(3/2)}(x) C_k^{(3/2)}(y) \right] &= -(j(j+3)+2)(1-y^2) C_j^{(3/2)}(x) C_k^{(3/2)}(y) \\ &- (k(k+3)+2)(1-x^2) C_j^{(3/2)}(x) C_k^{(3/2)}(y). \end{split}$$

Therefore, represent the solution in the basis

$$u(x,y) \approx \sum_{i=0}^{m-1} \sum_{k=0}^{n-1} X_{jk} (1-x^2) (1-y^2) C_j^{(3/2)}(x) C_k^{(3/2)}(y), \qquad (x,y) \in [-1,1]^2.$$

The ultraspherical polynomials

$$\frac{\partial^2}{\partial x^2} \left[(1 - x^2) C_k^{(3/2)}(x) \right] = -(k(k+3) + 2) C_k^{(3/2)}(x).$$

 $C_k^{(3/2)}(x)$ is an eigenfunction of the differential operator $u\mapsto rac{\partial^2}{\partial x^2}(1-x^2)u$

$$\begin{split} \nabla^2 \left[(1-x^2)(1-y^2) C_j^{(3/2)}(x) C_k^{(3/2)}(y) \right] &= -(j(j+3)+2)(1-y^2) C_j^{(3/2)}(x) C_k^{(3/2)}(y) \\ &- (k(k+3)+2)(1-x^2) C_j^{(3/2)}(x) C_k^{(3/2)}(y). \end{split}$$

Therefore, represent the solution in the basis

$$u(x,y) \approx \sum_{i=0}^{m-1} \sum_{k=0}^{n-1} X_{jk} (1-x^2) (1-y^2) C_j^{(3/2)}(x) C_k^{(3/2)}(y), \qquad (x,y) \in [-1,1]^2.$$

$$\nabla^2 u = f$$

We know the action of ∇^2 on this basis:

$$\begin{split} \nabla^2 \left[(1-x^2)(1-y^2) C_j^{(3/2)}(x) C_k^{(3/2)}(y) \right] &= -(j(j+3)+2) \left(1-y^2\right) C_j^{(3/2)}(x) C_k^{(3/2)}(y) \\ &- (k(k+3)+2) \left(1-x^2\right) C_j^{(3/2)}(x) C_k^{(3/2)}(y) \end{split}$$

$$\nabla^2 \left[\sum_{j,k} X_{jk} (1 - x^2) (1 - y^2) C_j^{(3/2)}(x) C_k^{(3/2)}(y) \right] = \sum_{j,k} F_{jk} C_j^{(3/2)}(x) C_k^{(3/2)}(y)$$

We know the action of $abla^2$ on this basis:

$$\begin{split} \nabla^2 \left[(1-x^2)(1-y^2) C_j^{(3/2)}(x) C_k^{(3/2)}(y) \right] &= -(j(j+3)+2) \left(1-y^2\right) C_j^{(3/2)}(x) C_k^{(3/2)}(y) \\ &- (k(k+3)+2) \left(1-x^2\right) C_j^{(3/2)}(x) C_k^{(3/2)}(y) \end{split}$$

$$\nabla^2 \left[\sum_{j,k} X_{jk} (1 - x^2) (1 - y^2) C_j^{(3/2)}(x) C_k^{(3/2)}(y) \right] = \sum_{j,k} F_{jk} C_j^{(3/2)}(x) C_k^{(3/2)}(y)$$

We know the action of ∇^2 on this basis:

$$\begin{split} \nabla^2 \left[(1-x^2)(1-y^2) C_j^{(3/2)}(x) C_k^{(3/2)}(y) \right] &= -(j(j+3)+2) \left(1-y^2\right) C_j^{(3/2)}(x) C_k^{(3/2)}(y) \\ &- (k(k+3)+2) \left(1-x^2\right) C_j^{(3/2)}(x) C_k^{(3/2)}(y). \end{split}$$

$$MXD^T + DXM^T = F$$

We know the action of ∇^2 on this basis:

$$\begin{split} \nabla^2 \left[(1-x^2)(1-y^2) C_j^{(3/2)}(x) C_k^{(3/2)}(y) \right] &= -(j(j+3)+2) \left(1-y^2\right) C_j^{(3/2)}(x) C_k^{(3/2)}(y) \\ &- (k(k+3)+2) \left(1-x^2\right) C_j^{(3/2)}(x) C_k^{(3/2)}(y). \end{split}$$

$$MXD^{\mathsf{T}} + DXM^{\mathsf{T}} = F$$

We know the action of ∇^2 on this basis:

$$\nabla^{2}\left[(1-x^{2})(1-y^{2})C_{j}^{(3/2)}(x)C_{k}^{(3/2)}(y)\right] = \underbrace{-(j(j+3)+2)}_{SCale}(1-y^{2})C_{j}^{(3/2)}(x)C_{k}^{(3/2)}(y) \\ -(k(k+3)+2)(1-x^{2})C_{j}^{(3/2)}(x)C_{k}^{(3/2)}(y).$$

$$MXD^T + DXM^T = F$$

We know the action of ∇^2 on this basis:

$$\nabla^{2}\left[(1-x^{2})(1-y^{2})C_{j}^{(3/2)}(x)C_{k}^{(3/2)}(y)\right] = -(j(j+3)+2)\underbrace{(1-y^{2})}_{(1-y^{2})}C_{j}^{(3/2)}(x)C_{k}^{(3/2)}(y) \\ -(k(k+3)+2)(1-x^{2})C_{j}^{(3/2)}(x)C_{k}^{(3/2)}(y).$$

$$MXD^T + DXM^T = F$$

We know the action of ∇^2 on this basis:

$$\begin{split} \nabla^2 \left[(1-x^2)(1-y^2) C_j^{(3/2)}(x) C_k^{(3/2)}(y) \right] &= -(j(j+3)+2) \left(1-y^2\right) C_j^{(3/2)}(x) C_k^{(3/2)}(y) \\ &\underbrace{-(k(k+3)+2)}_{\text{scale}} \left(1-x^2\right) C_j^{(3/2)}(x) C_k^{(3/2)}(y). \end{split}$$

$$MXD^{\mathsf{T}} + DXM^{\mathsf{T}} = F$$

We know the action of ∇^2 on this basis:

$$\begin{split} \nabla^2 \left[(1-x^2)(1-y^2) C_j^{(3/2)}(x) C_k^{(3/2)}(y) \right] &= -(j(j+3)+2) \left(1-y^2\right) C_j^{(3/2)}(x) C_k^{(3/2)}(y) \\ &- (k(k+3)+2) \underbrace{(1-x^2)}_{\text{multiply}} C_j^{(3/2)}(x) C_k^{(3/2)}(y). \end{split}$$

Can we "diagonalize" Poisson?

$$\begin{split} \nabla^2 \left[(1-x^2)(1-y^2) C_j^{(3/2)}(x) C_k^{(3/2)}(y) \right] &= -(j(j+3)+2) \left(1-y^2\right) C_j^{(3/2)}(x) C_k^{(3/2)}(y) \\ &- (k(k+3)+2) \left(1-x^2\right) C_j^{(3/2)}(x) C_k^{(3/2)}(y). \end{split}$$

$$TX + XT^T = D^{-1}FD^{-1}, \qquad T = D^{-1}M$$

From this basis:

We know the action of ∇^2 on this basis:

$$\begin{split} \nabla^2 \left[(1-x^2)(1-y^2) C_j^{(3/2)}(x) C_k^{(3/2)}(y) \right] &= -(j(j+3)+2) \left(1-y^2\right) C_j^{(3/2)}(x) C_k^{(3/2)}(y) \\ &- (k(k+3)+2) \left(1-x^2\right) C_j^{(3/2)}(x) C_k^{(3/2)}(y). \end{split}$$

(for solving matrix equations) [Wachspress, 1987]

$$TX + XT^T = F$$

- Based on structured eigenvalues
- Optimal parameters known [Lu & Wachspress, 1991

set $X_0=0$ pick shift parameters p_j for $j=0,\ldots,J$ solve $X_{j+1/2}(T^T+p_jI)=F-(T-p_jI)X_j$ Thomas

(for solving matrix equations) [Wachspress, 1987]

$$TX + XT^T = F$$

- Based on structured eigenvalues
- Optimal parameters known [Lu & Wachspress, 1991]

set
$$X_0=0$$

pick shift parameters p_j
for $j=0,\ldots,J$
solve $X_{j+1/2}(T^T+p_jI)=F-(T-p_jI)X_j$
solve $(T+p_jI)X_{j+1}=F-X_{j+1/2}(T^T-p_jI)$ Thomas algorithm

(for solving matrix equations) [Wachspress, 1987]

$$TX + XT^T = F$$

- Based on structured eigenvalues
- Optimal parameters known [Lu & Wachspress, 1991]

still works for spectral

```
set X_0=0

pick shift parameters p_j

for j=0,\ldots,J

solve X_{j+1/2}(T^T+p_jI)=F-(T-p_jI)X_j

Thomas algorithm O(n^2)
```

(for solving matrix equations) [Wachspress, 1987]

$$TX + XT^T = F$$

- Based on structured eigenvalues
- Optimal parameters known [Lu & Wachspress, 1991]

still works for spectral

set
$$X_0 = 0$$

pick shift parameters p_j
for $j = 0, ..., J$
solve $X_{j+1/2}(T^T + p_j I) = F - (T - p_j I)X_j$
solve $(T + p_j I)X_{j+1} = F - X_{j+1/2}(T^T - p_j I)$

Thomas algorithm $O(n^2)$

(for solving matrix equations) [Wachspress, 1987]

$$TX + XT^T = F$$

- Based on **structured eigenvalues**
- Optimal parameters known [Lu & Wachspress, 1991]

still works for spectral

set
$$X_0 = 0$$

pick shift parameters p_j
for $j = 0, ..., J$
solve $X_{j+1/2}(T^T + p_jI) = F - (T - p_jI)X_j$
solve $(T + p_jI)X_{j+1} = F - X_{j+1/2}(T^T - p_jI)$ Thomas algorithm $O(n^2)$

(for solving matrix equations) [Wachspress, 1987]

$$TX + XT^T = F$$

- Based on **structured eigenvalues**
- Optimal parameters known [Lu & Wachspress, 1991]

still works for spectral

set
$$X_0 = 0$$

pick shift parameters p_j
for $j = 0, \dots, J$?
solve $X_{j+1/2}(T^T + p_jI) = F - (T - p_jI)X_j$
solve $(T + p_jI)X_{j+1} = F - X_{j+1/2}(T^T - p_jI)$ Thomas algorithm $O(n^2)$

(for solving matrix equations) [Wachspress, 1987]

$$TX + XT^T = F$$

- Based on structured eigenvalues
- Optimal parameters known [Lu & Wachspress, 1991]

set
$$X_0 = 0$$

pick shift parameters p_j
for $j = 0, ..., J$?
solve $X_{j+1/2}(T^T + p_jI) = F - (T - p_jI)X_j$
solve $(T + p_jI)X_{j+1} = F - X_{j+1/2}(T^T - p_jI)$ Thomas algorithm $O(n^2)$

If eigenvalues of T lie in [a,b], then for $0<\epsilon<1$, $\frac{\|X-X_J\|_2}{\|X\|_2}\leqslant \epsilon$ when $J>\frac{1}{\pi^2}\log\frac{4b}{a}\log\frac{4}{\epsilon}$ [Lu & Wachspress, 1991]

Gershgorin's circle theorem Bounding the eigenvalues

Theorem

Every eigenvalue of a complex $n \times n$ matrix A lies within at least one disc centered at a_{ii} of radius $\sum_{i \neq i} |a_{ij}|$.

Gershgorin's circle theorem

Bounding the eigenvalues

Theorem

Every eigenvalue of a complex $n \times n$ matrix A lies within at least one disc centered at a_{ii} of radius $\sum_{i \neq i} |a_{ij}|$.

Gershgorin's circle theorem

Bounding the eigenvalues

Theorem

Every eigenvalue of a complex $n \times n$ matrix A lies within at least one disc centered at a_{ii} of radius $\sum_{i} |a_{ij}|$.

$$J \sim O\left(\log n \log \frac{1}{\epsilon}\right)$$

A fast spectrally-accurate Poisson solver

For a given error tolerance $0 < \epsilon < 1$:

Cost

- 1. Compute $C^{(3/2)}$ coefficients of f
- 2. Solve matrix equation using ADI
 - $ightharpoonup O(n^2)$ per iteration
 - $O(\log n \log 1/\epsilon)$ iterations
- 3. Convert solution to Chebyshev

 $O(n^2 (\log n)^2 \log 1/\epsilon)$ [Hale & Townsend, 2014]

 $O(n^2 \log n \log 1/\epsilon)$

 $O(n^2(\log n)^2\log 1/\epsilon)$

[Hale & Townsend, 2014]

 $O(n^2(\log n)^2\log 1/\epsilon)$

...but a different conclusion!

"The accurate solution of poisson's equation by expansion in chebyshev polynomials" [Haidvogel & Zang, 1979]

Dale Haidvogel

$$D_2X + XD_2^T = F$$

Chebyshev differentiation

Concluded ADI is too slow to be practical!

...but a different conclusion!

"The accurate solution of poisson's equation by expansion in chebyshev polynomials" [Haidvogel & Zang, 1979]

Dale Haidvogel

Concluded ADI is too slow to be practical!

...but a different conclusion!

"The accurate solution of poisson's equation by expansion in chebyshev polynomials" [Haidvogel & Zang, 1979]

Concluded ADI is too slow to be practical!

...but a different conclusion!

"The accurate solution of poisson's equation by expansion in chebyshev polynomials" [Haidvogel & Zang, 1979]

Dale Haidvogel

Extras

Our fast solver can also...

- exploit low rank right-hand sides using factored ADI
- √ handle arbitrary Dirichlet BCs
- √ handle more complex BCs (e.g. Neumann)
- √ apply to other strongly elliptic PDEs with nice spectra

Extras

Alex Townsend

Heather Wilber

Our fast solver can also...

low-rank RHS ⇒ low-rank solution

- exploit low rank right-hand sides using factored ADI
- √ handle arbitrary Dirichlet BCs
- √ handle more complex BCs (e.g. Neumann)
- √ apply to other strongly elliptic PDEs with nice spectra

Thank you

Thanks for listening!

Thanks also to Chris Rycroft, Sheehan Olver, Heather Wilber, & Grady Wright.