

Algorithms for Scientific Computing

Hierarchical Methods and Sparse Grids: Archimedes' Quadrature in 1D

Felix Dietrich

Technische Universität München

Department of Informatics 5

Chair of Scientific Computing in Computer Science (SCCS)

Summer 2020

Why Numerical Quadrature?

Integration integral part in many applications, e.g.:

- Determine volumes (e.g. of beer/wine barrels)
- Option pricing (expectation values)
- Defuzzification for fuzzy controller
- Radiosity (accumulating light)
- discretization: Finite Volume/Finite Elements

Why Numerical Quadrature?

Integration integral part in many applications, e.g.:

- Determine volumes (e.g. of beer/wine barrels)
- Option pricing (expectation values)
- Defuzzification for fuzzy controller
- Radiosity (accumulating light)
- discretization: Finite Volume/Finite Elements

Often no analytical solution available

- ⇒ Approximate solution: "numerical quadrature"
 - Typical approach: approximate/interpolate, then integrate

Why Numerical Quadrature?

Integration integral part in many applications, e.g.:

- Determine volumes (e.g. of beer/wine barrels)
- Option pricing (expectation values)
- Defuzzification for fuzzy controller
- Radiosity (accumulating light)
- discretization: Finite Volume/Finite Elements

Often no analytical solution available

- ⇒ Approximate solution: "numerical quadrature"
 - Typical approach: approximate/interpolate, then integrate

Core-problem: representation of functions in several variables

- In higher-dimensional settings only stochastic ("Monte Carlo", etc.) or hierarchical methods available
- Here: focus on hierarchical methods

One-Dimensional Quadrature

Approximations for the definite integral

$$F_1(f,a,b) := \int_a^b f(x) \, dx$$

for $f:[a,b] \to \mathbb{R}$

- We first consider classical methods
 - → Trapezoidal Rule
- Then hierarchical approach
- Assumption in the following: "f is sufficiently smooth"
 (i.e., all desired derivatives of f exist and are continuous)

Trapezoidal Rule, Simpson Rule

Classical methods for numerical quadrature: Newton-Cotes formulas

- $f(x_i)$ at equally spaced points $x_i = a + ih$
- Integrate

$$\int_a^b f(x) \approx \sum w_i f(x_i)$$

- choose weights w_i such that integration is exact for polynomials up to a certain degree
- typically result from an interpolation problem

Trapezoidal Rule, Simpson Rule

Trapezoidal rule

Interpolate at interval boundaries with linear function

$$F_1 \approx T := (b-a)\frac{f(a)+f(b)}{2}$$

Simpson rule

Interpolate at interval boundaries and midpoint with quadratic function

$$F_1 \approx S := (b-a) \frac{f(a) + 4f\left(\frac{a+b}{2}\right) + f(b)}{6}$$

Quadrature Error

Error terms are known for the two methods:

$$|T-F_1| \le \frac{M_2}{12}(b-a)^3$$

 $|S-F_1| \le \frac{M_4}{2880}(b-a)^5$

• M_2 and M_4 are bounds for the second, resp. fourth, derivative:

$$M_2 := \sup_{x \in [a,b]} |f''(x)|,$$

 $M_4 := \sup_{x \in [a,b]} |f^{(4)}(x)|.$

⇒ assumes that these derivatives and such bounds exist!

Composite Quadrature Rules

- Error bounds suggest the following improvement:
 - Split interval [a,b] into smaller subintervals
 - Apply simple quadrature rule in each of them
- Simplest case: choose uniform grid with n intervals and mesh-width h = (b-a)/n
- Composite trapezoidal rule

$$CT := h \cdot \left[\frac{f(a)}{2} + \sum_{i=1}^{n-1} f(a+ih) + \frac{f(b)}{2} \right]$$

• Composite Simpson's rule

$$CS := \frac{h}{6} \left[f(a) + 4f\left(a + \frac{h}{2}\right) + 2f(a+h) + 4f\left(a + \frac{3h}{2}\right) + \dots + 4f\left(b - \frac{h}{2}\right) + f(b) \right]$$

Composite Quadrature Rules – Error

- To measure the error: sum up n = (b-a)/h terms (one for each interval)
- Terms are in $\mathcal{O}(h^3)$ and $\mathcal{O}(h^5)$ resp.

$$|CT - F_1| \le \frac{M_2}{12}(b-a) \cdot h^2,$$

 $|CS - F_1| \le \frac{M_4}{2880}(b-a) \cdot h^4.$

- Accuracy increases with n
- Doubling the computational effort ($h \rightsquigarrow h/2$) reduces error bound to 1/4 (CT) and 1/16 (CS), if f is sufficiently smooth

Composite Quadrature Rules – Summary

Typical non-hierarchical methods

- Summands have (more or less) same weight
- To store: use array
- To implement: use for-loop
- To increase accuracy: discard old result, start all over once again

Composite Quadrature Rules – Summary

Typical non-hierarchical methods

- Summands have (more or less) same weight
- To store: use array
- To implement: use for-loop
- To increase accuracy: discard old result, start all over once again

What we desire:

- Allow "adaptive" choice of h: fine where required, coarse where possible
- Availability of an "error indicator": where do we need fine resolution?

Archimedes' Hierarchical Approach

We now decompose the area F_1 in a hierarchical manner:

• Start with trapezoid as for trapezoidal rule:

$$T_1(f,a,b) = \frac{b-a}{2}(f(a)+f(b)).$$

Let remaining error term (area between trapezoid and curve)
 be S₁:

$$F_1(f,a,b) = T_1(f,a,b) + S_1(f,a,b).$$

- Hierarchical approach if current approximation too inaccurate:
 - Take trapezoid (intermediate solution)
 - Add approximation for S_1

Decomposition of Remainder S_1

• Decompose remainder S_1 into triangle D_1 with (projected) base (b-a) and height

$$f\left(\frac{a+b}{2}\right)-\frac{f(a)+f(b)}{2}$$
:

$$D_1(f,a,b) = \frac{b-a}{2} \left(f\left(\frac{a+b}{2}\right) - \frac{f(a)+f(b)}{2} \right)$$

We obtain two remainders of similar type

$$S_1(f,a,b) = D_1(f,a,b) + S_1(f,a,\frac{a+b}{2}) + S_1(f,\frac{a+b}{2},b)$$

Both are typically much smaller!

Recursive Computation of F_1

- Interprete formulas for F_1 (area below curve), T_1 (trapezoid) and S_1 (remainder) as function definitions
- \Rightarrow Obtain recursive method to compute F_1

Recursive Computation of F_1

- Interprete formulas for F_1 (area below curve), T_1 (trapezoid) and S_1 (remainder) as function definitions
- \Rightarrow Obtain recursive method to compute F_1

Stopping criterion

- Note: recursion does not terminate so far
- As we're only interested in approximation: implement termination criterion in function \mathcal{S}_1 , for example
 - Count recursion depth (t = 0 for whole interval [a, b], t = 1 for the first two subintervals, . . .)
 - Stop recursion for certain t = I
 - Then we exactly compute the composite trapezoidal quadrature for $n = 2^{l}$
 - Alternatively, we could have used $b a \le h$ for some $h = 2^{-l}$ as stopping criterion

Adaptive Stopping Criterion

- Intuitive assumption (look at drawings):
 triangle D₁ comprises most of S₁
- Later, we'll see that D_1 covers 3/4 of the area of S_1 for sufficiently smooth functions and asymptotically for small h
- We can hope (but not be sure!):
 Error for the computation of S₁ is about D₁/3 when stopping the recursion
- Hierarchical approach provides a stopping criterion for free
- ⇒ We can control the error of the quadrature!
 - Even better:
 - Take height of triangle (hierarchical surplus) instead of area
 - Stop if smaller than some ε
 - \Rightarrow We can hope to bound global error (w.r.t. F_1) by $\varepsilon \cdot (b-a)$

Archimedes' Quadrature - Summary

Algorithm:

1. compute area as sum of trapezoid and remaining segment:

$$F_1(f,a,b) = T_1(f,a,b) + S_1(f,a,b) = \frac{b-a}{2}(f(a)+f(b)) + S_1(f,a,b)$$

2. compute area of triangular surplus:

$$D_1(f,a,b) = \frac{b-a}{2} \left(f\left(\frac{a+b}{2}\right) - \frac{f(a)+f(b)}{2} \right)$$

- 3. terminate, if surplus or $D_1(f,a,b)$ is smaller than ε
- 4. otherwise, recursively compute remaining segment:

$$S_1(f, a, b) = D_1(f, a, b) + S_1(f, a, \frac{a+b}{2}) + S_1(f, \frac{a+b}{2}, b)$$

Some Remarks

• For polynomials *f* of degree 2 (i.e., parabolas), we can compute (exactly)

$$D_1 = \frac{3}{4}S_1$$

- When stopping the recursion, we can take $4/3 \cdot D_1$ rather than D_1
 - ⇒ We obtain the integrand exactly
- Without adaptivity: computes the composite Simpson's rule

Some Remarks

• For polynomials *f* of degree 2 (i.e., parabolas), we can compute (exactly)

$$D_1 = \frac{3}{4}S_1$$

- When stopping the recursion, we can take $4/3 \cdot D_1$ rather than D_1
 - ⇒ We obtain the integrand exactly
- Without adaptivity: computes the composite Simpson's rule

Improved Recursive Scheme:

- Currently: 3 evaluations of f to compute the hierarchical surplus
- When calling function S_1 , we have already computed f at the interval boundaries
- \Rightarrow Extend recursive call S(f, a, b) to S(f, a, b, f(a), f(b)) at no extra cost