COMP 3721

Tutorial 3

• NFA

• NFA = DFA = Regular Language

- In a DFA,
 - each symbol read causes a transition to the next state, which is completely determined by the current state and current symbol (i.e., there is exactly one next state).
- In an NFA,
 - some state may have more than one outgoing edge labeled with the same symbol
 - some edges may be labeled with e, the empty word.

- 1) Draw state diagrams for NFAs that accepts the following languages.
 - a) $(ab)^*(ba)^* \cup aa^*$
 - **b)** $((ab \cup aab)^*a^*)^*$

Hints: Use ideas from the proof which shows that every regular language is accepted by some NFA.

- 1) Draw state diagrams for NFAs that accepts the following languages.
 - a) $(ab)^*(ba)^* \cup aa^*$

- 1) Draw state diagrams for NFAs that accepts the following languages.
 - a) $(ab)^*(ba)^* \cup aa^*$

1) Draw state diagrams for NFAs that accepts the following languages.

b)
$$((ab \cup aab)^*a^*)^*$$

1) Draw state diagrams for NFAs that accepts the following languages.

b)
$$((ab \cup aab)^*a^*)^*$$

Given an NFA $M = \{K, \Sigma, \Delta, s, F\}$.

We want to construct an equivalent DFA that accepts the same language:

$$M' = \{K', \Sigma, \delta', s', F'\}$$

- $K' = 2^K$
- s' = E(s)
- $F' = \{Q \in K' \mid Q \cap F \neq \emptyset\}$
- for all $Q \in K'$, $\sigma \in \Sigma$, $\delta'(Q, \sigma) = \bigcup_{q \in Q} \{ E(p) : (q, \sigma, p) \in \Delta \}.$

2)

- a) Find a simple NFA accepting $(ab \cup aab \cup aba)^*$.
- b) Convert the NFA of (a) to DFA.

2)

- a) Find a simple NFA accepting $(ab \cup aab \cup aba)^*$.
- b) Convert the NFA of (a) to DFA.

2)

- a) Find a simple NFA accepting $(ab \cup aab \cup aba)^*$.
- b) Convert the NFA of (a) to DFA.

Then, the states in the corresponding DFA are found as follows:

States in the DFA Qi	$\boldsymbol{\delta}'(\boldsymbol{Qi},\boldsymbol{a})$	$oldsymbol{\delta'(Qi,b)}$
Q0=E(q0)={q0}	{q1}	Ø
Q1={q1}	{q3}	{q0,q2}
Q2={q3}	Ø	{q0}
Q3={q0,q2}	{q0,q1}	Ø
Q4={q0,q1}	{q1,q3}	{q0,q2}
Q5={q1,q3}	{q3}	{q0,q2}
Q6=Ø	Ø	Ø

2)

- a) Find a simple NFA accepting $(ab \cup aab \cup aba)^*$.
- b) Convert the NFA of (a) to DFA.

The start state is E(q0) = Q0.

The accepting states are those contains q0. {Q0, Q3, Q4}

2)

- a) Find a simple NFA accepting $(ab \cup aab \cup aba)^*$.
- b) Convert the NFA of (a) to DFA.

DFA = NFA = Regular Expression

3) Prove that if *L* is regular, then so is

$$Pref(L) = \{w : wu \in L \text{ for some string } u\}$$

Hints:

Construct NFA/DFA accepting *Pref(L)* from that accepting *L*

DFA = NFA = Regular Expression

3) Prove that if *L* is regular, then so is

$$Pref(L) = \{w : wu \in L \text{ for some string } u\}$$

Proof: Since L is regular, it is accepted by some NFA.

 $M = \{K, \Sigma, \Delta, s, F\}$. Next we will construct a NFA M' that accepts Pref(L). We let M' = $(K, \Sigma, \Delta, s, F')$ where

 $F' = \{q \in K : \text{in } M, \text{ there is a path from } q \text{ to } f \text{ for some } f \in F\}.$

We claim that M' accepts Pref(L) and hence Pref(L) is regular.

DFA = NFA = Regular Expression

3) Prove that if *L* is regular, then so is

```
Pref(L) = \{w : wu \in L \text{ for some string } u\} Proof(\mathsf{cont'd}): \mathsf{To see why M' accepts Pref(L) , \mathsf{consider any string } w. \mathsf{w} \in \mathsf{Pref}(\mathsf{L}) \text{ iff} \mathsf{wy} \in \mathsf{L} \text{ for some } \mathsf{y} \in \mathsf{\Sigma}^*, \mathsf{iff} \mathsf{wy is accepted by M, iff} \mathsf{for some } \mathsf{q} \in \mathsf{K} \text{ and } \mathsf{f} \in \mathsf{F}, \ (s, wy) \vdash_M^* (q, y)) \vdash_M^* (f, e) \mathsf{iff for some } \mathsf{q} \in \mathsf{F'} \quad (s', w) \vdash_{M'} (q, e) \mathsf{iff w is accepted by M'}
```