

Introduction

- Coastal flooding posts increasing risk to the coastal community
- Compound flooding
 - -storm surge
 - -heavy precipitation
 - -river discharge
- Goal: Produce a coupled modeling strategy that will provide total water level prediction for the Nation Water Model (NWM)

Coupling Framework

Coastal Model Domain for CONUS

Unstructured mesh generated using a sizing function (poster: H45N-1332)

Hurricane Florence (2018)

Model vs. USGS Gage Obs.

Hurricane Maria (2017)

Model vs. NOAA water level Obs.

Hurricane Laura (2020)

2020-08-26 14:00:00

Storm Surge 3.6 - 5.4 m early on the 27th along the coast east of Cameron, LA

After (Aug 29, 2020)

Credit: NASA earth observatory, Joshua Stevens

Conclusion

- Prototyped the total water forecast capability for NWM V3.0
- Generated SCHISM grid for CONUS, PR-VI, and Hawaii
- The initial results show that our model performance well in coastal compound flooding forecast

