Homework 1

1. Suppose relation R(A, B, C) has tuples:

A	В	С
3	2	1
4	2	3
4	5	6
2	5	3
1	2	6

and relation S(A, B, C) has the tuples:

Α	В	C
2	5	3
2	5	4
4	2	3
3	2	1

Compute $(R - S) \cup (S - R)$, often called the "symmetric difference" of R and S. List all the tuples in the result relation.

$$\begin{array}{c|cc}
(S - R) = \\
\hline
A & B & C \\
\hline
2 & 5 & 4
\end{array}$$

$$\begin{array}{c|cccc}
(R - S) \cup (S - R) = & \\
\hline
A & B & C \\
4 & 5 & 6 \\
1 & 2 & 6 \\
2 & 5 & 4
\end{array}$$

2. Suppose relation R(A, B) has the tuples:

Α	В
1	2
3	4
5	6

and relation S(B, C, D) has the tuples:

В	С	D
2	4	6
8	6	8
7	5	9

Compute $R \bowtie_{R.A < S.C \land R.B < S.D} S$ and list all the result tuples.

$$R \bowtie_{R.A < S.C \land R.B < S.D} S = \sigma_{R.A < S.C \land R.B < S.D}(R \times S)$$

Homework 1

$(R \times S) =$				
Α	B_R	B_{S}	С	D
1		2	4	6 8
1	2	8	6	
1	2	7	5	9
3	4	2	4	6
3	4	8	6	8
3	4	7	5	9
1 3 3 5 5	2 2 2 4 4 4 6 6	2 8 7 2 8 7 2 8 7	4 6 5 4 6 5 4 6 5	9 6 8 9 6 8
5	6	8	6	8
5	6	7	5	9

 $(R \times S)$ $C.A < S.C \land R.B < S.D$ B_R 2 2 6 2 8 6 8 2 7 5 9 1 3 6 3 4 8 8 3 4 7 5 9 8

3.

Customer(<u>customer-name</u>, street, city) =

<u>Customer-name</u>	Street	city

Branch(branch-name, city) =

Branch-name	city

Account(customer-name, branch-name, account-number) =

Customer-name	Branch-name	Account-number

a) Find the names of all customers who have an account in the 'Region12' branch.

 $\textstyle\prod_{customer-name}(\sigma_{branch-name='Region12'}(Customer\bowtie Branch\bowtie Account))$

b) Find the names of all customers who have an account in a branch NOT located in the same city that they live in.

 $\prod_{customer-name}(\sigma_{branch.city \neq customer.city}(Customer \times Branch) \bowtie Account)$

c) Find branches that do not have any accounts.

 $\prod_{branch-name}(Branch) - \prod_{branch-name}(\sigma_{account.branch-name} = branch.branch-name}(Branch \times Account))$

d) Find the customer names who do not have any account in the 'Region12' branch.

 $\prod_{customer-name}(Customer) - \prod_{customer-name}(\sigma_{branch-name='Region12'}(Customer \bowtie Account))$

e) Find the customer names who have accounts in all the branches located in 'Los Angeles'.

 $\textstyle\prod_{customer-name}(\sigma_{Branch.city='LosAngeles'}(Customer\times Branch)\bowtie Account)$

f) Find the customer names who have only one account.

 $\Pi_{customer-name}(Customer)$

 $-\prod_{customer-name}(Account \bowtie_{Account.customer-name=Y.customer-name} \land_{Account.account-number\neq Y.account-number} \rho_Y(Account))$

Homework 1

4. The relation Student(sid, GPA) captures the student-GPA information, where sid is the id of a student and GPA is the student's GPA. Write a relational algebra that finds the ids of the students with the lowest GPA.

 $\Pi_{Student.sid}(Student) - \Pi_{Student.sid}(\sigma_{Student.GPA>Y.GPA}(Student \times \rho_Y(Student)))$