#### Modelagem e Otimização Algorítmica Visão Geral da Disciplina

Prof. Dr. Ademir Aparecido Constantino
Departamento de Informática
Universidade Estadual de Maringá

http://www.din.uem.br/~ademir

ademir@din.uem.br

#### Moodlep

Senha: MOA2020

Não está autorizada a gravação das aulas desta disciplina.

#### Introdução

Apresentar casos reais usando programação matemática e algoritmos heurísticos

Ilustrar casos de automação operacional por software

Programação matemática e modelos baseados em grafos

Ilustrar casos

Programação Matemática

Modelagem de problemas (formulação)

Resolução computacional de problemas de programação linear

Algoritmo para resolução de programação linear (introdução ao método simplex)

Formulação e resolução de problemas de programação linear inteira

Introdução ao método branch-and-bound

Problema de transporte

Problema de designação

Problema do caixeiro viajante

Problema da mochila

Problema de cobertura de conjuntos

Outros problemas

Apresentar ferramentas comerciais e software livre para programação matemática

Programação Dinâmica (projeto de algoritmos)

Programação Dinâmica

Elementos da programação multi-estágios

Modelos recursivos

O paradigma para projeto de algoritmo

Complexidade computacional do paradigma de programação dinâmica

#### Algoritmos Heurísticos

Definição de algoritmo heurístico

Representação computacional de soluções

Vizinhanças, espaço de busca, ótimo global e ótimo local

Classificação heurísticas

Algoritmos heurísticos construtivos (algoritmo guloso)

Algoritmos de busca local (hill climbing)

Algoritmo A\*

Meta-heurística (projeto de algoritmos heurísticos)

Introdução, definições e taxinomia

Busca na Vizinhança Variável (VNS)

Estrutura de vizinhança

Estrutura de um algoritmo VNS e VND

Aplicações

GRASP: Greedy Randomized Adaptive Search Procedures

Algoritmos semi-greedy

Escolha de candidatos: restricted candidate list (RCL)

Busca local a partir da solução semi-greedy

Calibragem da RCL (método reativo e método bias)

Aplicações

#### Simulated Annealing

Componentes principais

Parâmetros do algoritmo: temperatura (inicial e final), taxa de resfriamento, etc

Esquemas de arrefecimento e sua implicação no desempenho do algoritmo

Sistemas Fórmicos (ACO – Ant Colony Optimization))

Analogia com o comportamento das formigas

Analogia com o paradigma guloso

Elementos de algoritmos baseados em ACO

Aplicações

Algoritmos Genéticos (AG) e Algoritmos Meméticos

Elementos de algoritmos baseados em AG

Representação das soluções (indivíduos)

Operadores genéticos

Aplicações

#### Busca Tabu

Conceito de intensificação e diversificação

Elementos de algoritmos baseados em Busca Tabu

## AVALIAÇÃO

Avaliação 1 – Prova escrita (Peso 1)

Avaliação 2 – Trabalho Prático (Peso 1)

Avaliação 3 – Trabalho Prático(Peso 1)

### Contextualização

- Algoritmos I Fundamentos de Algoritmos
- Algoritmos II Estrutura de Dados
- Algoritmos III Projeto e Análise de Algoritmos
- Algoritmos IV Algoritmos em Grafos
- Algoritmos V Modelagem e Otimização Algoritmica

O que é Programação?

O que é Codificação?

## **Coding Vs Programming**

#### Problema X Algoritmo

- ■Quantos tipos de problemas podem ser resolvidos por algoritmos?
  - Resposta: a literatura classifica os problemas existentes em apenas 3 (três) tipos.
- ■Tipos de problemas existentes:
  - Problema de Decisão;
  - Problemas de Localização;
  - Problemas de Otimização

#### Distribuição do Conteúdo no Curso



#### Tópicos

- ■Modelagem de Problemas
- ■Programação Matemática
  - -Programação Linear
  - -Programação Dinâmica
- ■Algoritmos Heurísticos
  - -Algoritmo A\*
  - -Meta-heurísticas:
    - •Algoritmos Genéticos
    - •GRASP
    - •Simulated Annealing
    - Ant System
    - •Busca Tabu

#### Disciplinas Introdutória de Algoritmos

■O que você aprende?



#### Modelagem e Otimização Algorítmica

■O que você aprende?



### Por que modelar problemas?

- ■Para muitos problemas de otimização a obtenção de algoritmos eficientes é extremamente difícil.
- ■Uma alternativa viável e importante é a modelagem desses problemas.
- A modelagem facilita a obtenção de algoritmos mais eficientes para os problemas de otimização.

#### Como modelar um problema real

- ■Desenvolver (criar) um modelo baseado em alguma técnica conhecida, como programação matemática, grafos, etc.
  - -Técnica + arte + treinamento
- ■Utilizar algum modelo "teórico/análogo" já conhecido na literatura.
  - Exemplo:
    - Problema de coloração para construção de horário escolar;
    - Problema de cobertura de conjunto para escalonamento de trabalho.

#### Exemplos de modelagem por grafos

■Localização de *backbone* em rede *ad hoc* sem fio.



Localização de *backbone* de tamanho mínimo:

### Aplicações em Pesquisa Operacional

#### ■Corte de Materiais

© Corte de peças regulares:



© Corte de peças irregulares:



# Aplicações em Pesquisa Operacional (cont.)

■Distribuição física de produtos (logística)



# Aplicações em Pesquisa Operacional (cont.)

- ■Escalonamento de mão-de-obra e tarefas
  - Dados: um conjunto de tarefas a ser realizado e um conjunto de funcionários
  - Objetivo: encontrar a melhor maneira de alocar os funcionários às tarefas de forma que todas as tarefas sejam cumpridas e os gastos com mão-de-obra sejam minimizados.
  - Restrições:
    - Pleis trabalhistas
    - restrições operacionais da empresa.

Conhecem um algoritmo exato para resolver o

Problema do Caixeiro Viajante?

#### Exemplo: Problema do Caixeiro Viajante

min 
$$\left(\sum_{i=1}^{n}\sum_{j=1}^{n}d_{ij}\cdot X_{ij}\right)$$
  $\rightarrow$  minimizar o percurso total  $X_{ij}=1$  se a aresta (*i,j*) for utilizada, 0 caso contrário.

#### suj. a:

(1) cada uma das cidades é visitada uma e só uma vez, ou seja, cada vértice é entrado uma só vez e saído uma só vez:

$$\sum_{j}^{n} X_{ij} = 1, \quad \forall_{\mathbf{i}: \ \mathbf{i}=1,\dots,\mathbf{n}}$$

$$\sum_{j}^{n} X_{ij} = 1, \quad \forall_{\mathbf{j}: \ \mathbf{j}=1,\dots,\mathbf{n}}$$

(2) entre dois quaisquer subconjuntos complementares de cidades ( $S \in \overline{S}$ ) há pelo menos um arco de ligação:

$$\sum_{i \in S} \sum_{i \in \overline{S}} X_{ij} \ge 1$$
,  $\forall_{S \subset \text{ conjunto total das cidades a visitar}}$ 

## Restrição 1 não garante a solução



## Restrição 2 não permite a formação de sub-circuitos disjuntos.



#### Desafios da área:

- 1. Modelagem de problemas;
- 2.Implementar algoritmos eficientes para resolver problemas em tempo computacional aceitável.

## Como resolver os problemas de Otimização?



## Exemplos de aplicações reais, usando técnicas que serão vistas durante este curso:

- 1 Alocação automatizada de alunos em turmas em instituição de ensino superior.
- 2 Geração automatizada de escalas de trabalho em empresas:
  - Escalonamento de Veículos em Empresas de Transporte Coletivo Urbano
  - 2 Escalonamento de Motoristas em Transporte Coletivo Urbano
- 3 Escalonamento de Maquinistas em uma Empresa Transporte Ferroviário de Carga.

#### 1° Caso:

Alocação automatizada de alunos em turmas em instituição de ensino superior

#### Descrição do Problema

- ■Estudantes de graduação em regime seriado.
- ■Dois tipos de disciplinas são consideradas: a regular e a dependente.
- ■A disciplina regular é a disciplina programada na grade curricular vinculada à série que o aluno for se matricular.
- ■A disciplina em dependência é uma disciplina que o aluno não obteve aprovação em séries anteriores.

#### Descrição do Problema

- ■O principal objetivo: permitir que cada aluno assista o máximo de disciplinas possíveis dentre todas as disciplinas que lhe foram atribuídas previamente (regulares e dependência).
- ■Prioridades de Alocação:
  - baseada no desempenho e
  - baseada no grupo de pertinência.

#### Notação Matemática Utilizada

- •*K* : número de cursos da instituição;
- • $n_k$ : número de alunos de um curso k, k=1,...,K;
- • $D_a(i)$ : conjunto de disciplinas que o aluno i deve cursar,  $i=1,...,n_k$ :
- • $D_c(k)$  o conjunto de disciplinas de um curso k;
- • $T_d(l)$ : conjunto de turmas associadas a uma disciplina  $l \in D_c(k)$ ;
- • $T_a(i)=\{T_d(l): \forall l\in D_a(i)\}$ : conjunto de todas as turmas que podem ser associadas ao aluno i;
- • $T_c(k)=\{T_d(l): \forall l \in D_c(k)\}$ : o conjunto de todas as turmas de um curso k;
- • $t_{\lambda}(i)$ : conjunto de turmas conflitantes do aluno i,  $\lambda = 1,...,\eta_i$ , onde  $\eta_i$  é o número de conjuntos de turmas conflitantes para o aluno i.

#### MDTC - Modelo para Distribuição de Turmas Baseado no Curso

$$Minimizar \left( p_1 \sum_{i=1}^{n_k} \sum_{j \in T_a(i)} c_{ij} x_{ij} + p_2 \sum_{l \in D_c(k)} g_l \right)$$

s.a. (a) 
$$\sum_{j \in t_{\lambda}(i)} x_{ij} \le 1; \quad \lambda = 1, ..., \eta_i; \quad i = 1, ..., n_k;$$

(b) 
$$\sum_{j \in T_d(l)} x_{ij} = 1; \quad \forall l \in D_a(i); \quad i = 1, ..., n_k;$$

(c) 
$$s_j = \sum_{i=1}^{n_k} x_{ij}; \quad \forall j \in T_c(k);$$

(d) 
$$s_j \le g_l \quad \forall j \in T_d(l); \quad \forall l \in D_c(k);$$

(e) 
$$x_{ij} = \begin{cases} 1 \text{ se a turma } j \text{ for selectionada para o aluno } i; \\ 0 \text{ caso contrário.} \end{cases}$$

#### MDTA - Modelo para Distribuição de Turmas Baseado no Aluno

$$Minimizar \sum_{j \in T_a(i)} c_j x_j$$

s.a. (a) 
$$\sum_{j \in t_{\lambda}(i)} x_j \le 1; \quad \lambda = 1, ..., \eta_i;$$

(b) 
$$\sum_{j \in T_d(l)} x_j = 1; \quad \forall l \in D_a(i)$$

(c)  $x_j = \begin{cases} 1 \text{ se a turma } j \text{ for selecionada} \\ 0 \text{ caso contrário.} \end{cases}$ 

 $c_{j} = \begin{cases} 5000p_{ij} + 10s_{j} \text{ se a turma } j \text{ corresponde a uma disciplina regular;} \\ 250.000p_{ij} + 10s_{j} \text{ se a turma } j \text{ corresponde a uma disciplina em dependência;} \\ 10.000.000 \text{ se a turma } j \text{ for uma turma fictícia.} \end{cases}$ 

### Implementação

- ■Linguagem: C
- ■IBM R50 com um processador PowerPC 200MHz
- ■S.O.: Linux
- ■Resolvedor: **lp-solve** um programa de código aberto baseado na licença Lesser GPL (*Lesser General Public License*).

### Dados utilizados no teste

| Descrição                                        | 2003   | 2004   |
|--------------------------------------------------|--------|--------|
| N° de cursos                                     | 31     | 31     |
| N° total de alunos                               | 7.898  | 8.160  |
| Nº médio de alunos por curso                     | 254,77 | 263,23 |
| Nº médio de disciplinas regulares por aluno      | 6,34   | 6,34   |
| N° médio de disciplinas em dependência por aluno | 0,36   | 0,39   |

#### Resultados

S\_UEM: o sistema da instituição;

S\_MDTA: novo sistema proposto baseado no modelo MDTA.

**Tempo de processamento (em segundos)** 

|        |         | 2003   | 2004    |        |  |
|--------|---------|--------|---------|--------|--|
| Tempo  | S_UEM   | S_MDTA | S_UEM   | S_MDTA |  |
| Máximo | 9.655   | 226    | 11.293  | 290    |  |
| Mínimo | 53      | 64     | 62      | 54     |  |
| Médio  | 1202,06 | 113,03 | 1258,50 | 122,91 |  |
| Total  | 37.262  | 3.504  | 39.014  | 3.810  |  |

### Resultados

#### Número de alunos com conflito de horário em dependência

|           | 20    | 003    | 2004  |        |  |
|-----------|-------|--------|-------|--------|--|
| Nº alunos | S_UEM | S_MDTA | S_UEM | S_MDTA |  |
| Máximo    | 167   | 160    | 193   | 185    |  |
| Mínimo    | 1     | 1      | 2     | 0      |  |
| Médio     | 48,42 | 40,35  | 58,87 | 46,32  |  |
| Total     | 1.501 | 1.251  | 1.825 | 1.436  |  |

### Resultados

#### Número de alunos não alocados a turmas

| N°     | 2     | 003    | 2004  |        |  |
|--------|-------|--------|-------|--------|--|
| Alunos | S_UEM | S_MDTA | S_UEM | S_MDTA |  |
| Máximo | 58    | 23     | 58    | 6      |  |
| Mínimo | 0     | 0      | 0     | 0      |  |
| Médio  | 14,10 | 3,42   | 8,19  | 0,58   |  |
| Total  | 437   | 106    | 254   | 18     |  |

#### Conclusões

- ■Redução no tempo de processamento em aproximadamente 90%;
- ■Redução de trabalho manual (centenas de casos);
- ■Novas oportunidades de aulas aos alunos em dependência;
- ■Novo sistema passou a ser executado em horário de expediente;
- ■Mais agilidades nas tomadas de decisões.

### Nova abordagem sendo estudada

### ■Modelagem baseada em grafos

- Aresta: Conflito de horário ou turmas da mesma disciplina;
- Vértice: uma turma que o aluno pode ser alocado parte.



## Modelagem baseada em grafos

### ■Solução:

Conjunto estável ou conjunto independente.



# Modelagem baseada em grafos

### ■Solução:

Conjunto estável ou conjunto independente: é um subconjunto de vértice de tal maneira que não exista aresta entre eles.



#### 2° Caso:

Geração automatizada de escalas de trabalho em empresas:

2.1. Escalonamento de Veículos em Empresas de Transporte Coletivo Urbano

#### Problema

#### ■Dados:

- a tabela de horários com as viagens que a empresa deve cumprir;
- a rede viária com os pontos de troca de condutor, as garagens e os estacionamentos;

#### Problema

#### ■Dados:

- a escala de viagens para os veículos;
- as restrições trabalhistas;
  - **Exemplos:** 
    - •trabalho contínuo ≤ 5 horas
    - •descanso mínimo = 1 hora
    - •turno normal  $\leq 8$  horas

#### ■Objetivo:

• gerar sequências de trabalho para os condutores de tal maneira que todas as viagens sejam cobertas, utilizando o número mínimo de condutores.

#### Distribuição das Viagens Durante um Dia Útil



### Resolução do Problema

- ■Tendo em vista a complexidade computacional do problema, adotou-se um modelo heurístico.
- ■Estratégia utilizada:
  - Dividir o conjunto de viagens em camadas;
  - Resolver o emparelhamento entre as camadas.

### Algoritmo Proposto

•O algoritmo proposto está dividido em duas fases:

-construtiva e

-melhoramento.

### Formação das camadas





tempo



tempo



tempo

### Fase de Melhoramento: M1

A solução inicial e os possíveis cortes



### Fase de Melhoramento: M1

Possíveis recombinações de jornadas para o corte 1



### Fase de Melhoramento: M1

Uma possível solução após a resolução do problema de designação do corte 1



# Emparelhamento

■Modelo de Atribuição

## Grafo: camadas de viagens



## Emparelhamento: Matriz de Custo

|          | Viagens                                                                            |                                                                                        |
|----------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Veículos | 1º quadrante posição $[i, j]$ : custo de se alocar a viagem $v_i$ ao veículo $u_i$ | 2º quadrante posição [i, j]: custo de não se alocar nenhuma viagem ao veículo $u_{ii}$ |
|          | 3º quadrante posição [i, j]: custo de não se realizar a viagem $v_i$               | <b>4º quadrante</b> posição [i, j]: valor nulo                                         |

### 3° Caso:

Escalonamento de Maquinistas em uma Empresa de Transporte Ferroviário de Carga.



### Característica do problema

### (Companhia Vale do Rio Doce)

- Um conjunto de *n* atividades que se repetem todos os dias
- Tipos de atividades: Prontidão, Manobra, Help, Trem Cargueiro, Trem de Minério, ...
- Duração das atividades: 30 horas, 6 horas.
- Um conjunto de restrições legais, contratuais e sindicais.

Objetivo: Produzir escalas mensais para os condutores de maneira que a carga de trabalho fique distribuída equitativamente.

### SOLUÇÃO PARA O PROBLEMA

- **★**Construção da Escala Cíclica
  - ☆ Modelo Set Covering
  - O Algoritmo Heurístico
- \*Distribuição das Escalas para os Condutores
  - ☆Algoritmo Heurístico

Heurística 2-opt

Problema de Atribuição com Gargalo

Função Utilidade - Pref. Declarada

### Construção da Escala Cíclica

| DIA 1    | DIA 2    | DIA 3    | DIA 4    | DIA 5    | DIA 6      | DIA 7    |
|----------|----------|----------|----------|----------|------------|----------|
| $a_1$    | $a_2$    |          | $a_3$    | $a_4$    | X          | $a_5$    |
| $a_6$    |          | $a_7$    | $a_8$    | X        | <u>a</u> 9 | $a_{10}$ |
| $a_{11}$ |          | $a_{12}$ | X        | $a_{13}$ |            | $a_{14}$ |
| $a_{15}$ | $a_{16}$ | X        | $a_{17}$ |          | $a_{18}$   | $a_{19}$ |
| $a_{20}$ | X        | $a_{21}$ | $a_{22}$ |          | $a_{23}$   |          |
| X        | $a_{24}$ |          | $a_{25}$ | $a_{26}$ | $a_{27}$   | X        |

Conjunto das atividades  $A=\{a_1, a_2, ..., a_{27}\}$ 

Programação  $P_i$  = um conjunto ordenado de atividades entre folgas

Escala

#### 1- Modelo Set Covering – Cobertura de Conjunto

Min 
$$\overset{n}{\underset{j=1}{\overset{n}{\bigcirc}}} c_j x_j$$
  
sujeito à  $\overset{n}{\underset{j=1}{\overset{n}{\bigcirc}}} a_{ij} x_j$  3 1,  $i=1,...,n$   
 $x_j$  3 0,  $j=1,...,m$ 

#### onde:

```
c_j = custo da programação j;

x_j=1 se a programação j for escolhida e 0 caso contrário;

a_{ij}=1 se a atividade i for executada plea programação j, e 0 caso contrário

m = 0 número de escalas alternativas possíveis;

n = número de atividades.
```

Objetivo: obter um conjunto de programações de custo mínimo.

### Exemplo:

## 2- Algoritmo Heurístico

1°. Estimar o número de programações:

$$s \ge \left(\frac{1}{1440} \frac{z}{\alpha}\right)$$

2°. construir s programação.

### Distribuição das Escalas para os Condutores

$$U(P_j)$$
 = utilidade da programação  $j$   
 $S^*$  = escala ótima  
 $U(S^*)$  =  $U(P_1)$  +  $U(P_2)$  + ... +  $U(P_s)$ 

horizonte de planejamento = 30 dias

| DIA 1    | DIA 2    | DIA 3    | DIA 4    | DIA 5    | DIA 6      | DIA 7                 |
|----------|----------|----------|----------|----------|------------|-----------------------|
| $a_1$    | $a_2$    |          | $a_3$    | $a_4$    | X          | <u>a</u> 5            |
| $a_6$    |          | $a_7$    | $a_8$    | X        | <u>a</u> 9 | <u>a<sub>10</sub></u> |
| $a_{11}$ |          | $a_{12}$ | X        | $a_{13}$ |            | $a_{14}$              |
| $a_{15}$ | $a_{16}$ | X        | $a_{17}$ |          | $a_{18}$   | $a_{19}$              |
| $a_{20}$ | X        | $a_{21}$ | $a_{22}$ |          | $a_{23}$   |                       |
| X        | $a_{24}$ |          | $a_{25}$ | $a_{26}$ | $a_{27}$   | X                     |

$$S_1 = \{a_1, a_2, ..., X, a_{21}\}$$
  $U(S_1)$   
 $S_2 = \{a_2, a_3, ..., X, a_{21}, a'_{22}\}$   $U(S_2)$   
...  
 $S_{42} = \{X, a_1, a_2, ..., a_{20}, X\}$   $U(S_{42})$ 

#### Problema de atribuição com gargalo

onde  $c_{ij}$ =(-1)(U( $H_i$ ) + U( $S_j$ )) se o condutor i pode continuar com a escala truncada  $S_i$ ,  $c_{ij}$ =  $\infty$  caso contrário.

# Ciclo de Programações



#### Ajuste da Função Utilidade - Preferência Declarada

1- Identificação dos atributos e seus níveis HS - total de horas de trabalho na programação

NT - mix de atividades por tipo na programação;

HN -percentual de horas noturnas sobre o total de horas de trabalho;

NP - medida de progressividade;

FG- dia da semana em que a folga é cumprida.

- 2- Projeto do experimento (12 X 8 = 96 cartoes)
- 3- Elaboração dos cartões
- 4- Realização das entrevistas
- 5- Calibração dos parâmetros (Modelo Logit Multinomial)
- 6- Função Utilidade:

 $U = -5.42 T_1 - 5.92 T_5 - 2.15 T_2 - 3.04 T_3 + 7.78 FG - 12.24 HS/10 - 1.78 HN$ 

# O Sistema Computacional



#### 🕍 Construção da Escala Cíclica

|  | 마 | Х |
|--|---|---|
|--|---|---|





Resultado

B

H





|         | DIA 1      | DIA 2      | DIA 3      | DIA 4      | DIA 5      | DIA 6 | DIA 7 |
|---------|------------|------------|------------|------------|------------|-------|-------|
| Prog. 1 | 02 (06:00) | 01 (00:30) | 02 (18:00) | 60         | 03 (05:30) | XXXXX |       |
| Prog. 2 | 02 (06:00) | 01 (20:30) | 90         | 90         | 02 (00:00) | XXXXX |       |
| Prog. 3 | 02 (06:00) | 02 (18:00) | 60         | 02 (00:00) | 02 (12:00) | XXXXX |       |
| Prog. 4 | 02 (06:00) | 02 (18:00) | 60         | 02 (00:00) | 02 (12:00) | XXXXX |       |
| Prog. 5 | 02 (06:00) | 02 (18:00) | 60         | 02 (00:00) | 02 (12:00) | XXXXX |       |
| Prog. 6 | 02 (06:00) | 01 (16:30) | 90         | 03 (12:30) | 02 (12:00) | XXXXX |       |
| Prog. 7 | 02 (06:00) | 05 (16:30) | 90         | 01 (13:30) | 90         | XXXXX |       |
| Prog. 8 | 01 (09:30) | 90         | 60         | 02 (00:00) | 02 (12:00) | XXXXX |       |
| Prog. 9 | 02 (12:00) | 02 (18:00) | 02 (12:00) | 01 (05:30) | 90         | XXXXX |       |







#### Conclusões

- ■Mais agilidade nas tomadas de decisões;
- ■Maior satisfação dos maquinistas;
- ■Redução de custos ativos e passivos.

# Considerações Finais

■ Veremos outras aplicações ao longo do curso.