

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.

PATENT
Docket No.: KCC-16,291

**IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
APPLICATION FOR UNITED STATES LETTERS PATENT**

INVENTOR:

Michael Tod MORMAN

TITLE:

**NECK BONDED AND STRETCH
BONDED LAMINATES WITH
PERFORATED NONWOVENS**

ATTORNEYS:

Roland W. Norris
Pauley Petersen Kinne & Erickson
2800 W. Higgins Road, Suite 365
Hoffman Estates, Illinois 60195
(847) 490-1400

EXPRESS MAIL NO.: EL859244804US

MAILED: 28 December 2001

J.C. 23/02
H

NECK BONDED AND STRETCH BONDED LAMINATES WITH PERFORATED NONWOVENS

BACKGROUND

In the field of nonwoven web/elastic material laminates (hereinafter referred to as "elastic laminates" for simplicity) garment panels for disposable or limited use garments, some desirable qualities may include light weight, good skin feel, exterior abrasion resistance, and good flexibility dependent upon the application.

5 Generally such elastic laminates may be made with a first nonwoven facing of desired characteristics laminated to an elastic film.

However, in the past, the ability of the nonwoven to stretch has limited the suitability of such elastic laminates for various applications because a laminate will only stretch to the extent of its least extendible layer. Various techniques have been utilized in the art in order to overcome such limitations.

10 For example, perforations have been applied to the nonwovens in either the machine direction or the cross direction of the nonwoven in order to try and increase the range of extendibility of the nonwovens in the elastic film laminates. US Patent 5,804,021 issued September 8, 1998 to Abuto et al. illustrates one such teaching. It is also known to perforate the entire elastic film laminate. However, this 15 technique leads to a great reduction in the retractive force of the elastic film.

As an alternative to perforating, necked nonwoven webs are also known wherein the nonwoven is extended in the machine direction to decrease its cross direction dimension in a process known as necking. The necked nonwoven is then

laminated to an elastic material which holds the necked nonwoven at the reduced cross direction dimension until force is applied whereby the nonwoven may extend out to its pre-necked dimension. US Patent 4,981,747 issued January 1, 1991 to Morman illustrates one such teaching, and is incorporated herein by reference in its entirety.

Both the perforating methods and the necking methods may have limitations for the making of elastic laminates in terms of degree or direction of stretchability of the laminate, or the economy of manufacture of the elastic laminates, or both, thereby limiting the applications to which such laminates may be put.

Thus, there is need to provide further alternative methods for the production of economical elastic laminates having superior stretching abilities.

SUMMARY

The present invention solves the above-stated needs in the art by elastic laminates made, in one aspect of the invention, from necked and perforated nonwoven facings and not-perforated, or un-perforated, elastic films, i.e. films substantially devoid of perforations. Thus an elastic laminate according to the present invention may utilize both the extensibility gained from the necking of its component parts, as well as providing increased ability of the necked nonwoven to extend due to the perforations, cumulatively resulting in a high extensibility of the elastic laminate in one or more directions. For example, a hypothetical nonwoven web which has been necked from four inches to two inches in its transverse dimension would normally

have an extensibility back the original four inch width, or extensibility of one hundred percent. However, when the nonwoven is first perforated at its four inch width so that, e.g., it may achieve an extensibility up to six inches, and then necked, e.g. down to two inches, the necked and perforated two inch web may expand to six inches,
5 thereby resulting in a two hundred percent extensibility of the necked and perforated two inch web. It will be appreciated that the total percentage of extensibility may be varied by adjusting the values of the above example, which are used only for illustration of the principles of the present invention. Thus, a laminate according to the present invention may be used in applications such as, e.g., disposable training
10 pant side panels or diaper fastening panels where the degree of stretch required previously prohibited use of such elastic laminates.

In various aspects of the invention the nonwoven laminates may be perforated before or after necking. In other aspects of the invention the nonwovens may be a necked spunbond or other nonwoven. In some aspects of the invention the nonwoven will have various degrees and orientations of extensibility before being applied to the elastic film. In other aspects of the invention various patterns and orientations of perforations are made in the nonwoven layer. Further, the elastic film may be utilized as the strength-providing member of the laminate resulting in a wide range of nonwoven choices for the designer, such as lighter nonwoven facings. Also,
15 by freeing certain areas of elastic from contact with the perforated area of the nonwoven web, overall elasticity may be improved over that of known laminates.
20

DEFINITIONS

Conventionally, "stretch bonded" refers to an elastic member being bonded to another member while the elastic member is extended at least about 25 percent of its relaxed length. "Stretch bonded laminate" refers to a composite material having at least two layers in which one layer is a gatherable layer and the other layer is an elastic layer. The layers are joined together when the elastic layer is in an extended condition so that upon relaxing the layers, the gatherable layer is gathered. Such a multilayer composite elastic material may be stretched to the extent that the nonelastic material gathered between the bond locations allows the elastic material to elongate. One type of stretch bonded laminate is disclosed, for example, by US Patent 4,720,415 to Vander Wielen et al. Other composite elastic materials are disclosed in US Patent 4,789,699 to Kieffer et al. and US Patent 4,781,966 to Taylor. Further reference will be had to US Patents 4,652,487 and 4,657,802 to Morman and 4,655,760 to Morman et al., which are incorporated herein by reference in their entirety.

Conventionally, "neck bonded" refers to an elastic member being bonded to a non-elastic member while the non-elastic member is extended and necked. "Neck bonded laminate" refers to a composite material having at least two layers in which one layer is a necked, non-elastic layer and the other layer is an elastic layer. The layers are joined together when the non-elastic layer is in an extended and necked condition. Examples of neck-bonded laminates are such as those described

in US Patents 5,226,992; 4,981,747; 4,965,122 and 5,336,545 to Morman, all of which are incorporated herein by reference in their entirety.

Conventionally, "necked stretch bonded" refers to an elastic member being bonded to a non-elastic member while the non-elastic member is extended and necked and the elastic member is at least extended. "Necked stretch bonded laminate" refers to a composite material having at least two layers in which one layer is a necked, non-elastic layer and the other layer is a stretched, and sometimes necked, elastic layer. The layers are joined together when in their extended (and necked) conditions. Examples of necked stretch bonded laminates are described in US Patents 5,114,781 and 5,116,662 to Morman, which are incorporated herein by reference in their entirety.

The term "bicomponent filaments" or "bicomponent fibers" refers to fibers which have been formed from at least two polymers extruded from at least two separate extruders but spun together to form one fiber and may also be referred to herein as "conjugate" or "multicomponent" fibers. "Bicomponent" is not meant to be limiting to only two constituent polymers unless otherwise specifically indicated. The polymers are arranged in substantially constantly positioned distinct zones across the cross-section of the bicomponent fibers and extend continuously along the length of the bicomponent fibers. The configuration of such a bicomponent fiber may be, for example, a sheath-core arrangement wherein one polymer is surrounded by another, or may be a side-by-side, A/B, arrangement or an A/B/A, side-by-side(-by-side),

arrangement. Bicomponent fibers are generally taught in US Patent 5,108,820 to Kaneko et al., US Patent 5,336,552 to Strack et al., and US Patent 5,382,400 to Pike et al. For two component fibers, the polymers may be present in ratios of 75/25, 50/50, 25/75 or any other desired ratios. Conventional additives, such as pigments and surfactants, may be incorporated into one or both polymer streams, or applied to the filament surfaces.

As used herein, the terms “elastic”, “elastomeric”, and forms thereof, mean any material which, upon application of a biasing force, is stretchable, that is, elongatable or extensible, and which will substantially return to its original shape upon release of the stretching, elongating force. The term may include precursor elastomerics which are heat activated or otherwise subsequently treated after application to a precursor diaper structure to induce elasticity. The term “extendable” refers to a material which is stretchable in at least one direction but which does not necessarily have sufficient recovery to be considered elastic.

The term “perforate” or “perforated” refers to cuts or holes in a web which are contained within the boundaries of the web and do not extend between and through the cross direction or the machine direction margins of the web.

The term “nonwoven fabric” or “nonwoven web” means a web having a structure of individual fibers or threads which are interlaid, but not in a regular or identifiable manner as in a knitted fabric. Nonwoven fabrics or webs have been formed from many processes such as, for example, meltblowing processes,

spunbonding processes, air-laying processes, and bonded carded web processes. The basis weight of nonwoven fabrics is usually expressed in ounces of material per square yard (osy) or grams per square meter (gsm) and the fiber diameters are usually expressed in microns. (Note that to convert from osy to gsm, multiply osy by 33.91).

5 As used herein the term "elastic material" or "elastic film" will include such materials as films, fibers, scrims, foams, or other layers of elastic material,

10 As used herein, the term "machine direction" or MD means the length of a fabric in the direction in which it is produced. The term "cross direction" or "cross machine direction" or CD means the width of fabric, i.e. a direction generally perpendicular to the machine direction.

15 The term "meltblown fibers" means fibers formed by extruding a molten thermoplastic material through a plurality of fine, usually circular, die capillaries as molten threads or filaments into converging high velocity heated gas (e.g., air) streams which attenuate the filaments of molten thermoplastic material to reduce their diameter, which may be microfiber diameter. Thereafter, the meltblown fibers are carried by the high velocity gas stream and are deposited on a collecting surface to form a web of randomly dispersed meltblown fibers. Such a process is disclosed for example, in US Patent Number 3,849,241 to Butin et al. Meltblown fibers are microfibers which may be continuous or discontinuous, are generally smaller than 10 microns in diameter, and are generally self bonding when deposited onto a collecting surface.

X

As used herein, the term "neck" or "neck stretch" interchangeably means
that the fabric is extended under conditions reducing its width or its transverse
dimension. The controlled extension may take place under cool temperatures, room
temperature or greater temperatures and is limited to an increase in overall dimension
5 in the direction being extended up to the elongation required to break the fabric. The
necking process typically involves unwinding a sheet from a supply roll and passing
it through a brake nip roll assembly driven at a given linear speed. A take-up roll or
nip, operating at a linear speed higher than the brake nip roll, extends the fabric and
generates the tension needed to elongate and neck the fabric. US Patent No.
10 4,965,122, issued October 23, 1990 to Morman, which discloses a process for
providing a reversibly necked nonwoven material which may include necking the
material, then heating the necked material, followed by cooling.

As used herein, the term "neckable material or layer" means any
material which can be necked such as a nonwoven, woven, or knitted material. As
15 used herein, the term "necked material" refers to any material which has been
extended in at least one dimension, (e.g. lengthwise), reducing the transverse
dimension, (e.g. width), such that when the extending force is removed, the material
can be pulled back, or relax, to its original width. The necked material typically has
a higher basis weight per unit area than the un-necked material. When the necked
20 material returns to its original un-necked width, it should have about the same basis

weight as the un-necked material. This differs from stretching/orienting a material layer, during which the layer is thinned and the basis weight is permanently reduced.

Typically, such necked nonwoven fabric materials are capable of being necked up to about 80 percent. For example, the neckable backsheet 30 of the various aspects of the present invention may be provided by a material that has been necked from about 10 to about 80 percent, desirably from about 20 to about 60 percent, and more desirably from about 30 to about 50 percent for improved performance. For the purposes of the present disclosure, the term “percent necked” or “percent neckdown” refers to a ratio or percentage determined by measuring the difference between the pre-necked dimension and the necked dimension of a neckable material, and then dividing that difference by the pre-necked dimension of the neckable material and multiplying by 100 for percentage. The percentage of necking (percent neck) can be determined in accordance with the description in the above-mentioned US Patent No. 4,965,122.

The term “polymer” generally includes without limitation homopolymers, copolymers (including, for example, block, graft, random and alternating copolymers), terpolymers, etc., and blends and modifications thereof. Furthermore, unless otherwise specifically limited, the term “polymer” shall include all possible geometrical configurations of the material. These configurations include, but are not limited to isotactic, syndiotactic and atactic symmetries.

STANDARD FORM
100-105
100-106
100-107
100-108
100-109
100-110
100-111
100-112
100-113
100-114
100-115
100-116
100-117
100-118
100-119
100-120
100-121
100-122
100-123
100-124
100-125
100-126
100-127
100-128
100-129
100-130
100-131
100-132
100-133
100-134
100-135
100-136
100-137
100-138
100-139
100-140
100-141
100-142
100-143
100-144
100-145
100-146
100-147
100-148
100-149
100-150
100-151
100-152
100-153
100-154
100-155
100-156
100-157
100-158
100-159
100-160
100-161
100-162
100-163
100-164
100-165
100-166
100-167
100-168
100-169
100-170
100-171
100-172
100-173
100-174
100-175
100-176
100-177
100-178
100-179
100-180
100-181
100-182
100-183
100-184
100-185
100-186
100-187
100-188
100-189
100-190
100-191
100-192
100-193
100-194
100-195
100-196
100-197
100-198
100-199
100-200
100-201
100-202
100-203
100-204
100-205
100-206
100-207
100-208
100-209
100-210
100-211
100-212
100-213
100-214
100-215
100-216
100-217
100-218
100-219
100-220
100-221
100-222
100-223
100-224
100-225
100-226
100-227
100-228
100-229
100-230
100-231
100-232
100-233
100-234
100-235
100-236
100-237
100-238
100-239
100-240
100-241
100-242
100-243
100-244
100-245
100-246
100-247
100-248
100-249
100-250
100-251
100-252
100-253
100-254
100-255
100-256
100-257
100-258
100-259
100-260
100-261
100-262
100-263
100-264
100-265
100-266
100-267
100-268
100-269
100-270
100-271
100-272
100-273
100-274
100-275
100-276
100-277
100-278
100-279
100-280
100-281
100-282
100-283
100-284
100-285
100-286
100-287
100-288
100-289
100-290
100-291
100-292
100-293
100-294
100-295
100-296
100-297
100-298
100-299
100-300
100-301
100-302
100-303
100-304
100-305
100-306
100-307
100-308
100-309
100-310
100-311
100-312
100-313
100-314
100-315
100-316
100-317
100-318
100-319
100-320
100-321
100-322
100-323
100-324
100-325
100-326
100-327
100-328
100-329
100-330
100-331
100-332
100-333
100-334
100-335
100-336
100-337
100-338
100-339
100-340
100-341
100-342
100-343
100-344
100-345
100-346
100-347
100-348
100-349
100-350
100-351
100-352
100-353
100-354
100-355
100-356
100-357
100-358
100-359
100-360
100-361
100-362
100-363
100-364
100-365
100-366
100-367
100-368
100-369
100-370
100-371
100-372
100-373
100-374
100-375
100-376
100-377
100-378
100-379
100-380
100-381
100-382
100-383
100-384
100-385
100-386
100-387
100-388
100-389
100-390
100-391
100-392
100-393
100-394
100-395
100-396
100-397
100-398
100-399
100-400
100-401
100-402
100-403
100-404
100-405
100-406
100-407
100-408
100-409
100-410
100-411
100-412
100-413
100-414
100-415
100-416
100-417
100-418
100-419
100-420
100-421
100-422
100-423
100-424
100-425
100-426
100-427
100-428
100-429
100-430
100-431
100-432
100-433
100-434
100-435
100-436
100-437
100-438
100-439
100-440
100-441
100-442
100-443
100-444
100-445
100-446
100-447
100-448
100-449
100-450
100-451
100-452
100-453
100-454
100-455
100-456
100-457
100-458
100-459
100-460
100-461
100-462
100-463
100-464
100-465
100-466
100-467
100-468
100-469
100-470
100-471
100-472
100-473
100-474
100-475
100-476
100-477
100-478
100-479
100-480
100-481
100-482
100-483
100-484
100-485
100-486
100-487
100-488
100-489
100-490
100-491
100-492
100-493
100-494
100-495
100-496
100-497
100-498
100-499
100-500
100-501
100-502
100-503
100-504
100-505
100-506
100-507
100-508
100-509
100-510
100-511
100-512
100-513
100-514
100-515
100-516
100-517
100-518
100-519
100-520
100-521
100-522
100-523
100-524
100-525
100-526
100-527
100-528
100-529
100-530
100-531
100-532
100-533
100-534
100-535
100-536
100-537
100-538
100-539
100-540
100-541
100-542
100-543
100-544
100-545
100-546
100-547
100-548
100-549
100-550
100-551
100-552
100-553
100-554
100-555
100-556
100-557
100-558
100-559
100-560
100-561
100-562
100-563
100-564
100-565
100-566
100-567
100-568
100-569
100-570
100-571
100-572
100-573
100-574
100-575
100-576
100-577
100-578
100-579
100-580
100-581
100-582
100-583
100-584
100-585
100-586
100-587
100-588
100-589
100-590
100-591
100-592
100-593
100-594
100-595
100-596
100-597
100-598
100-599
100-600
100-601
100-602
100-603
100-604
100-605
100-606
100-607
100-608
100-609
100-610
100-611
100-612
100-613
100-614
100-615
100-616
100-617
100-618
100-619
100-620
100-621
100-622
100-623
100-624
100-625
100-626
100-627
100-628
100-629
100-630
100-631
100-632
100-633
100-634
100-635
100-636
100-637
100-638
100-639
100-640
100-641
100-642
100-643
100-644
100-645
100-646
100-647
100-648
100-649
100-650
100-651
100-652
100-653
100-654
100-655
100-656
100-657
100-658
100-659
100-660
100-661
100-662
100-663
100-664
100-665
100-666
100-667
100-668
100-669
100-670
100-671
100-672
100-673
100-674
100-675
100-676
100-677
100-678
100-679
100-680
100-681
100-682
100-683
100-684
100-685
100-686
100-687
100-688
100-689
100-690
100-691
100-692
100-693
100-694
100-695
100-696
100-697
100-698
100-699
100-700
100-701
100-702
100-703
100-704
100-705
100-706
100-707
100-708
100-709
100-710
100-711
100-712
100-713
100-714
100-715
100-716
100-717
100-718
100-719
100-720
100-721
100-722
100-723
100-724
100-725
100-726
100-727
100-728
100-729
100-730
100-731
100-732
100-733
100-734
100-735
100-736
100-737
100-738
100-739
100-740
100-741
100-742
100-743
100-744
100-745
100-746
100-747
100-748
100-749
100-750
100-751
100-752
100-753
100-754
100-755
100-756
100-757
100-758
100-759
100-760
100-761
100-762
100-763
100-764
100-765
100-766
100-767
100-768
100-769
100-770
100-771
100-772
100-773
100-774
100-775
100-776
100-777
100-778
100-779
100-780
100-781
100-782
100-783
100-784
100-785
100-786
100-787
100-788
100-789
100-790
100-791
100-792
100-793
100-794
100-795
100-796
100-797
100-798
100-799
100-800
100-801
100-802
100-803
100-804
100-805
100-806
100-807
100-808
100-809
100-810
100-811
100-812
100-813
100-814
100-815
100-816
100-817
100-818
100-819
100-820
100-821
100-822
100-823
100-824
100-825
100-826
100-827
100-828
100-829
100-830
100-831
100-832
100-833
100-834
100-835
100-836
100-837
100-838
100-839
100-840
100-841
100-842
100-843
100-844
100-845
100-846
100-847
100-848
100-849
100-850
100-851
100-852
100-853
100-854
100-855
100-856
100-857
100-858
100-859
100-860
100-861
100-862
100-863
100-864
100-865
100-866
100-867
100-868
100-869
100-870
100-871
100-872
100-873
100-874
100-875
100-876
100-877
100-878
100-879
100-880
100-881
100-882
100-883
100-884
100-885
100-886
100-887
100-888
100-889
100-890
100-891
100-892
100-893
100-894
100-895
100-896
100-897
100-898
100-899
100-900
100-901
100-902
100-903
100-904
100-905
100-906
100-907
100-908
100-909
100-910
100-911
100-912
100-913
100-914
100-915
100-916
100-917
100-918
100-919
100-920
100-921
100-922
100-923
100-924
100-925
100-926
100-927
100-928
100-929
100-930
100-931
100-932
100-933
100-934
100-935
100-936
100-937
100-938
100-939
100-940
100-941
100-942
100-943
100-944
100-945
100-946
100-947
100-948
100-949
100-950
100-951
100-952
100-953
100-954
100-955
100-956
100-957
100-958
100-959
100-960
100-961
100-962
100-963
100-964
100-965
100-966
100-967
100-968
100-969
100-970
100-971
100-972
100-973
100-974
100-975
100-976
100-977
100-978
100-979
100-980
100-981
100-982
100-983
100-984
100-985
100-986
100-987
100-988
100-989
100-990
100-991
100-992
100-993
100-994
100-995
100-996
100-997
100-998
100-999
100-1000

“Personal care product” or “personal care absorbent article” means diapers, wipes, training pants, absorbent underpants, adult incontinence products, feminine hygiene products, wound care items like bandages, and other like articles.

The term “spunbond fibers” refers to small diameter fibers which are formed by extruding molten thermoplastic material as filaments from a plurality of fine capillaries of a spinneret having a circular or other configuration, with the diameter of the extruded filaments then being rapidly reduced as by, for example, in US Patent 4,340,563 to Appel et al., and US Patent 3,692,618 to Dorschner et al., US Patent 3,802,817 to Matsuki et al., US Patent 3,338,992 and 3,341,394 to Kinney, US Patent 3,502,763 to Hartman, US Patent 3,502,538 to Petersen, and US Patent 3,542,615 to Dobo et al. Spunbond fibers are quenched and generally not tacky when they are deposited onto a collecting surface. Spunbond fibers are generally continuous and usually have average diameters larger than meltblown fibers, and more particularly, generally between about 10 and 30 microns.

The term “substantially continuous filaments” or “substantially continuous fibers” refers to filaments or fibers prepared by extrusion from a spinneret, including without limitation spunbond and meltblown fibers, which are not cut from their original length prior to being formed into a nonwoven web or fabric. Substantially continuous filaments or fibers may have average lengths ranging from greater than about 15 cm to more than one meter, and up to, or greater than, the length of the nonwoven web or fabric being formed. The definition of “substantially continuous filaments” or “substantially continuous fibers” includes substantially continuous filaments or fibers which are cut from their original length prior to being formed into a nonwoven web or fabric, provided that the length of the substantially continuous filaments or fibers is greater than about 15 cm to more than one meter, and up to, or greater than, the length of the nonwoven web or fabric being formed.

continuous filaments" (or fibers) includes those filaments or fibers which are not cut prior to being formed into a nonwoven web or fabric, but which are later cut when the nonwoven web or fabric is cut.

Words of degree, such as "about", "substantially", and the like are used
5 herein in the sense of "at, or nearly at, when given the manufacturing and material tolerances inherent in the stated circumstances" and are used to prevent the unscrupulous infringer from unfairly taking advantage of the invention disclosure where exact or absolute figures are stated as an aid to understanding the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

10 The accompanying drawings are presented as an aid to explanation and understanding of various aspects of the present invention only and are not to be taken as limiting the present invention. The drawings are not necessarily to scale, nor should they be taken as photographically accurate depictions of real objects unless otherwise stated.

15 Fig. 1 illustrates a training pant/swim pant which may utilize the elastic laminate of the present invention.

Fig. 2 illustrates a process for making an elastic laminate of the present invention wherein the elastic film layer is not stretched prior to lamination to the nonwoven.

Fig. 3 illustrates a process for making an elastic laminate of the present invention wherein the elastic film layer is stretched prior to lamination to the nonwoven.

Fig. 4 illustrates a possible perforation pattern in the nonwoven using both machine direction and cross direction oriented perforations.

Fig. 5 illustrates the effect on the perforations of the fabric of Fig. 4 after tension is applied.

Fig. 6 illustrates a necked nonwoven having perforations placed in selected areas and being left unperforated in other areas.

DETAILED DESCRIPTION

Certain aspects and embodiments of the invention will be described in the context of disposable absorbent articles, and may more particularly be referred to, without limitation and by way of illustration, as a disposable training pant garment or swim wear garment with elastic side panels. It is, however, readily apparent that aspects of the present invention can also be employed to produce other elasticized areas and for other garment or personal care article types, such as feminine care articles, various incontinence garments, medical garments and any other disposable garments, whether absorbent or not, needing an easily manufactured elasticized area. Typically, such disposable garments are intended for limited use and are not intended to be laundered or otherwise cleaned for reuse. A disposable training pant, for example, is discarded after it has become soiled by the wearer.

With reference to Fig. 1, the garment 20 generally defines a front waist section 22, a rear waist section 24, and a crotch 26 which interconnects the front and rear waist sections. The front and rear waist sections 22 and 24 include the general portions of the garment which are constructed to extend over the wearer's front and rear abdominal regions, respectively, during use. Elasticized side panels 28, 30, as further explained below, connect the front and rear waist sections 22, 24, respectively. The crotch 26 of the garment includes the general portion of the garment that is constructed to extend through the wearer's crotch region between the legs.

To provide improved fit and to help reduce leakage of body exudates from the garment 20, the garment leg cuffs 35 and waist margins 37 may be elasticized with suitable elastic members. For example, as illustrated in Fig. 1, the garment 20 may include leg elastics 36 which are constructed to operably tension the side margins of the garment 20 to provide elasticized leg bands which can closely fit around the legs of the wearer to reduce leakage and provide improved comfort and appearance. Waist elastics 38 may be employed to elasticize the waist margins 37 of the garment 20 to provide elasticity to the waistband. The waist elastics 38 are configured to help provide a resilient, comfortably close fit around the waist of the wearer.

Referencing Fig. 1, the side panels 28, 30 are also elasticized to provide improved fit and conformance to the wearer. Each side panel, e.g., side panel 28, is composed of a first portion 42, and a second portion 44. The first portion 42 is

bonded to the front waist section 22 by any known means such as ultrasonic bonding, adhesives, etc. Likewise the second portion 44 is bonded to the back waist section 24 in similar matter. The free ends of the side panel portions not bonded to the waist sections are then bonded in a standing butt seam 46 to create a side panel area 48. As used herein, the term "standing butt seam" refers to a seam wherein two separate pieces of substrate are bonded together face-to-face or back-to-back in close proximity to an outer edge of each of the pieces of substrate, and the outer edges of the pieces of substrate project outward from the finished product, placing the seam in peel, as opposed to shearing strain. The seam 46 may be substantially permanent or easily separable depending on the garment application.

Referencing Fig. 2, an exemplary material, or laminate, 47 for the side panel portions is made from elastic film and perforated and necked nonwoven web 52 by laminating apparatus 54 in a neck bonded style. The elastic film 50, such as a film of KRATON G-1657 elastic block co-polymer from KRATON Polymers of Houston, TX, is taken from a first supply roll 56 rotating at about the same speed as the calendar rolls 58 so as to not tension the elastic film 50 before lamination to the perforated and necked nonwoven 52. The nonwoven web 59, e.g., a 0.4 osy polypropylene or bicomponent spunbond or meltblown nonwoven web of substantially continuous fibers, is drawn from a supply roll 60 by a first pair of rollers 62, one of which 64 is configured to perforate the nonwoven web 59 in the pattern indicated by Fig. 4. The perforated web 61 is then further tensioned and necked by

a second pair of rollers 66 moving at higher speed than the first pair of tensioning rollers 62. The necking tension on the perforated and necked nonwoven 52 is then maintained by calender rolls 58 as the nonwoven 52 and the nonstretched elastic film 50 are joined by nipping through the calender rolls 58. The calendar rolls may be used to heat fuse the laminate layers by pattern bonding, a heat activated adhesive (not shown) may be applied between the layers, or other such methods as known in the art 5 may be utilized.

Referencing Fig. 3, a second exemplary material, or laminate, 71 for the side panel portions is made from a tensioned elastic film 72 and perforated and necked nonwoven 52 by a laminating apparatus 74 in a stretch bonded style. The elastic film 50, such as a film of KRATON G-1657 elastic block co-polymer is taken from a first supply roll 75 rotating at a slower speed than the first take-up or tensioning rolls 76. The tensioning rolls 76 are moving at a slower speed than the calender rolls 77 so as to tension the elastic film 50 before lamination to the perforated and necked 10 nonwoven 52. The nonwoven web 59, e.g., a 0.4 osy polypropylene spunbond nonwoven web, is drawn from a supply roll 78 by a first pair of rollers 80, one of which 82 is configured to perforate the nonwoven web 59 in the pattern indicated by Fig. 4. The perforated web 61 is then further tensioned and necked by a second pair 15 of rollers 84 moving at higher speed than the first pair of tensioning rollers 62. The necking tension on the perforated and necked nonwoven 52 is then maintained by calender rolls 58 as the perforated and necked nonwoven 52 and the stretched elastic 20

film 50 are joined by nipping through the calender rolls 77. The calendar rolls 77 may be used to heat fuse the laminate layers by pattern bonding, a heat activated adhesive (not shown) may be applied between the layers, or other such methods as known in the art may be utilized. It will of course be possible to produce laminates having more than two webs. It would be further possible to arrange the perforations of a plurality of nonwovens in such a manner as to accommodate various alternative stretching abilities for the elastic laminate.

Referencing Fig. 4, a perforated but unstretched nonwoven 82 such as for example may be had from the perforating roller 64, 82 of Figs. 2 and 3, respectively, has a machine direction MD and a cross (machine) direction CD. Machine direction oriented perforations, collectively 84, are placed in the nonwoven web 82 so as to facilitate extending of the nonwoven in the cross direction. Cross direction oriented perforations, collectively 86, are placed in the nonwoven web 82 so as to facilitate extending of the nonwoven in the machine direction.

Referencing Fig. 5, as tension is applied in the cross direction, the machine direction perforations 84 will expand allowing greater expandability of the web 82 in the cross direction. As tension is applied in the machine direction, the cross direction perforations 86 will expand allowing greater expandability of the web 82 in the machine direction.

In an alternative aspect of the invention, a necked and set spunbond material, having stretch or extensibility in the cross direction, may be creped, i.e. a

form of mechanical gathering, as per the teachings of US Patent 3,668,054 to Stumpf, to also provide machine direction stretch. The setting of the necked material may occur before or during the creping process. The creped and necked material can then be perforated per the apparatus of Figs. 2 or 3 to provide a material with high MD and CD extensibility. Alternatively, a creped material, not previously necked, and therefore having extensibility primarily in the MD, may be used per the teachings of the present invention. Per the above discussion, either of these creped materials may be perforated with MD slits to provide additional CD elongation, CD slits to provide additional MD elongation, or MD and CD slits to provide additional MD and CD extensibility. The perforated creped material may be laminated to an elastic film which is tensioned or untensioned to provide a laminate with elasticity in more than one axis. It will generally be appreciated that dependent upon the amount and direction of the stretchability of the starting web, and the subsequent patterns of perforations applied thereto, various combinations, degrees, and orientations of material stretchability and elasticity may be had according to the teachings of the present invention. Accordingly, the present invention is not to be taken as limited to the illustrative embodiments or exemplary materials set forth herein.

In another alternative aspect of the invention, the perforations may be selectively placed within certain regions of the necked nonwoven to provide for a more uniform elasticity of the laminate while other regions remain non-perforated. Referencing Fig. 6, a necked material 90, prior to any perforation, will generally have

5

an inherently higher extensibility at its transverse margins 92 than in its center region 94. To provide greater extension for the center region 94, machine direction perforations, collectively 96, are selectively placed in the center region 94, while the transverse margin areas 98 are not perforated, thus evening out any non-uniformities in the extensibility of the nonwoven, necked material. Alternatively, variants of this technique may be used to produce deliberately non-uniform areas of extensibility in the nonwoven web.

10

Having thus described a highly expandable elastic laminate containing at least one necked and perforated web and an elastic film, it will be appreciated that many variations thereon may occur to the person having ordinary skill in the art. Thus, the invention is intended to be limited only by the appended claims and not by the exemplary embodiments and aspects put forth herein.