Grade received 100% To pass 80% or higher

Go to next item

1.	Identify the correct order of the gates that information flows through in an LSTM unit.	1/1 point
	O Input gate, forget gate, output gate.	
	Forget gate, input gate, output gate.	
	Output gate, forget gate, input gate.	
	O Forget gate, output gate, input gate	
	⊙ Correct Correct.	
	W. J. (1971)	
2.	Which are some applications of LSTMs?	1/1 point
	✓ Music composition	
	⊙ Correct Correct	
	✓ Chatbots	
	⊙ correct Correct	
	✓ Speech recognition	
	✓ Image captioning	
	○ Correct Correct	
	Next character prediction	
	© Correct Correct	
3.	The tanh layer ensures the values in your network stay numerically stable, by squeezing all values between -1 and 1. This prevents any of the values from the current inputs from becoming so large that they make the other values insignificant.	1/1 point
	True	
	○ False	
	© correct Correct.	
4.	What type of architecture is a named entity recognition using?	1/1 point
	One to many	
	Many to many	
	O Many to one	
_		
5.	Extract the named entities from the following sentence:	1/1 point
	Younes, a Moroccan artificial intelligence engineer, travelled to France for a conference.	
	Younes, Moroccan, France.	
	Younes, Moroccan, conference. Younes, Moroccan, engineer.	
	Younes, Moroccan, engineer. Younes, Moroccan engineer, France.	
	© correct Correct.	
6.	In a vectorized representation of your data, equal sequence length allows more efficient batch processing.	1/1 point
	True.	
	○ False	
	Correct	

	Which built-in Python method would you use to iterate over your test set during the evaluation step? Assuming you are using a data generator.	1/1 point
	O list()	
	O enumerate()	
	O slice()	
	next()	
	⊘ Correct Correct.	
8.	Why is it important to mask padded tokens when computing the loss?	1 / 1 point
	We add the loss of the padded tokens independently.	
	Padded tokens are not part of the data and are just used to help us keep the same sequence length for more efficient batch processing. We should not include their loss.	
	⊘ Correct Correct.	
9.	In which of the following orders should we train an Named Entity Recognition with an LSTM?	1/1 point
	1. Create a tensor for each input and its corresponding number	
	2. Put them in a batch => 64, 128, 256, 512	
	3. Run the output through a dense layer	
	4. Predict using a log softmax over K classes	
	5. Feed it into an LSTM unit	
	1. Create a tensor for each input and its corresponding number	
	2. Put them in a batch => 64, 128, 256, 512	
	3. Feed it into an LSTM unit	
	4. Run the output through a dense layer	
	Number output through a dense tayer Predict using a log softmax over K classes	
	Create a tensor for each input and its corresponding number	
	2. Put them in a batch => 64, 128, 256, 512	
	3. Run the output through a dense layer	
	4. Feed it into an LSTM unit	
	5. Predict using a log softmax over K classes	
	○ Correct Correct.	
10.	LSTMS solve vanishing/exploding gradient problems when compared to basic RNNs.	1 / 1 point
	○ False	
	True	