Série 3 du jeudi 6 octobre 2016

Exercice 1.

Montrer que pour tout $x, y \in \mathbb{R}$ et tout entier $n \ge 1$ on a la formule (binôme de Newton):

$$(x+y)^n = \sum_{k=0}^n \frac{n!}{k!(n-k)!} x^k y^{n-k}$$
 (convention $0! = 1$)

Indications:

- 1^{o}) Montrer que la formule est vraie pour n=1.
- 2^{o}) Supposer que la formule est vraie pour $n=1,2,\ldots,N$ et montrer qu'elle reste encore vraie pour n=N+1, où $N\geq 1$ (raisonnement par induction ou par récurrence).

Exercice 2.

On définit $x_n = \left(1 + \frac{1}{n}\right)^n$, $n \in \mathbb{N}^*$. Démontrer que la suite $(x_n)_{n=1}^{\infty}$ est convergente et que $\lim_{n \to \infty} x_n > 2$. (Le nombre $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$ est important en analyse; c'est le nombre e).

Indications:

1°) En utilisant la formule du binôme de Newton, démontrer que

$$\left(1+\frac{1}{n}\right)^n \le \sum_{k=0}^n \frac{1}{k!}.$$
 (rappel: $0!=1$ par convention)

- 2^{o}) Sachant que $\lim_{n\to\infty}\sum_{k=0}^{n}\frac{1}{2^{k}}=2$, en déduire que la suite $(x_{n})_{n=1}^{\infty}$ est bornée.
- 3^{o}) En utilisant la formule du binôme de Newton, démontrer que la suite $(x_{n})_{n=1}^{\infty}$ est croissante et conclure ensuite.

Exercice 3.

Calculer
$$\lim_{n \to +\infty} \frac{\ln n!}{5^n}$$
.

Indication: Utiliser la relation $\ln k \le k, \forall k \in \mathbb{N}^*$.

Exercice 4 (* A rendre).

Montrer que si les deux sous-suites $(x_{2n})_{n=0}^{\infty}$ et $(x_{2n+1})_{n=0}^{\infty}$ convergent vers la même limite ℓ , la suite $(x_n)_{n=0}^{\infty}$ converge vers ℓ .