ABSTRACT

Bisphosphite(s) represented by the following general formula (I):

$$R^{1}O$$
 $P^{-}O^{-}CR^{3}R^{4}$
 Ar^{1}
 Ar^{2}
 $CR^{5}R^{6}$
 OR^{8}
(1)

,wherein Ar^1 and Ar^2 are each independently a substituted or unsubstituted arylene group; R^1 , R^2 , R^7 and R^8 are each independently a substituted or an unsubstituted alkyl group, a substituted or an unsubstituted aryl group or a substituted or an unsubstituted heterocyclic group, or R^1 and R^2 or R^7 and R^8 may together form a ring with their associated oxygen atoms and phosphor atom; and R^3 , R^4 , R^5 and R^6 are each independently a hydrogen atom or an alkyl group, with the proviso that the carbon atom bearing R^3 and R^4 and the carbon atom bearing R^5 and R^6 are bound to the respective arylene groups at the ortho position to the Ar^1 - Ar^2 bond. Also provided is a process for producing aldehyde(s) using the bisphosphite and a Group 8 to 10 metal compound is further provided.