Fisica Computazionale: Esercitazione 1

1 Errori Numerici e Differenze Finite

- 1. trova l'errore macchina ϵ usando un for loop e la seguente comparazione (1.0 + x == 1.0). Utilizza sia singola (float) che doppia (double) precisione (usa 1.f e 1. rispettivamente). Puoi anche provare con quadrupla precisione (long double) usando la costante 1.l.
- 2. calcola numericamente la derivate di $f(x) = e^x$ in x = 1 usando le formule alle differenze finite

$$\frac{df(x)}{dx} = \frac{f(x+h) - f(x)}{h} + \mathcal{O}(h) . \tag{1}$$

- (a) Fai un grafico dell'errore in funzione del passo h. Puoi usare sia singola che doppia precisione.
- (b) Assumi che l'errore numerico nel fare l'operazione * (puó essere $+,-,\times,/$) possa essere descritto come

$$(\widetilde{a*b}) = (a*b)\left(1 \pm \frac{\epsilon}{2}\right)$$
.

Trova una stima dell'errore per la derivata e usa questa stima per spiegare il risultato ottenuto al punto precedente.

3. la soluzione standard per un'equazione quadratica $ax^2 + bx + c = 0$

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 $x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$

puó diventare instabile quando $b^2 \gg 4ac$.

- (a) Cerca di prevedere quale delle due soluzioni e' instabile, scegli parametri appropriati e fai vedere il problema usando variabili in singola precisione (float)
 - suggerimento: confronta con il risultato ottenuto in doppia precisione per ottenere una stima dell'errore relativo

Un'alternativa piu' stabile puó essere ottenuta moltiplicando il numeratore e denominatore di x_1 per $-b-\sqrt{b^2-4ac}$, mentre per la seconda soluzione x_2 usiamo $-b+\sqrt{b^2-4ac}$, ottenendo

$$x_1 = \frac{2c}{-b - \sqrt{b^2 - 4ac}}$$
 $x_2 = \frac{2c}{-b + \sqrt{b^2 - 4ac}}$.

- (b) Implementa la versione stabile della soluzione dell'equazione quadratica in due casi: b>0 e b<0. Confronta la stabilitá numerica con il metodo precedente
- 4. [BONUS] il calcolo di $\log(x)$ quando $x \to 1$ diventa numericamente instabile. La libreria math.h implementa delle versioni accurate con i nomi: $\log 1pf$ (per float) e $\log 1p$ (per double).
 - (a) Usa la versione in double precision come riferimento e guarda all'errore relativo nel calcolo con variabili float in funzione di x facendo un loop in cui $x \to x/2$ partendo da due punti diversi: x = 1.f e x = 0.1f. Commenta le differenze.

Una versione accurata puo' essere costruita usando

$$log(1+x) \rightarrow \begin{cases} x & \text{se } x+1.f == 1.f \\ x\left(\frac{\log(1.f+x)}{(1.f+x)-1.f}\right) & \text{altrimenti} \end{cases}$$

Questa espressione puó essere ottenuta notando che $\log(1+x) \approx x$ quando $x \to 0$ e che l'espressione in parentesi varia poco in quel limite. Quest'ultima osservazione vuol dire che possiamo approssimare la parentesi in modo stabile usando un valore appropriato $y \approx x$.

- (b) Prova a usare questa implementazione e confronta l'errore relativo.
- (c) Cerca di giustificare la scelta di y usando il fatto che $\log(1+x)$ per $x \to 0$ é invece stabile