Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Основы дискретной математики Домашняя работа №7 Умножение чисел с плавающей запятой Вариант №11

Выполнил: студент группы Р3108 Васильев Никита

Проверил: Поляков Владимир Иванович, доцент факультета ПИиКТ, кандидат технических наук

Nº	A	В
11	2,6	0,033

Задание 1. Выполнить операцию умножения операндов в формате Φ 1, используя метод ускоренного умножения мантисс на два разряда множителя.

Ф1:

$$A = (2,6)_{10} = (2,(9))_{16} = (0,2(9))_{16} \times 16^{1}$$

 $SignC = SignA \oplus SignB.$

$$X_A = P_A + d; X_B = P_B + d;$$

$$X_C = X_A + X_B - d;$$

$$\mathbf{P}_C + d = \mathbf{\underline{P}_A} + d + \mathbf{\underline{P}_B} + d - d.$$

$$P_C = 0$$

N	Операнды					СЧ	П (с	стар	ши	e pa	зря	ды)	1							Признак коррекции									
0	СЧП	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	1	0	0	1	1	0
	$[-M_A]_{\text{доп}}$	1	1	1	1	1	0	1	0	1	1	0	0	1	1	0	$-M_A$												
1	СЧП	1	1	1	1	1	0	1	0	1	1	0	0	1	1	0	1	0	0	0	0	1	1	1	0	0	1	1	1
	СЧП→2	1	1	1	1	1	1	1	0	1	0	1	1	0	0	1	1	0	1	0	0	0	0	1	1	1	0	0	
	$[M_A]_{\pi p}$	0	0	0	0	0	1	0	1	0	0	1	1	0	1	0								•	•	•	l	M_A	
2	СЧП	0	0	0	0	0	0	1	1	1	1	1	0	0	1	1	1	0	1	0	0	0	0	1	1	1	0	0	0
	СЧП→2	0	0	0	0	0	0	0	0	1	1	1	1	1	0	0	1	1	1	0	1	0	0	0	0	1	1	1	
3	$[-M_A]_{ ext{доп}}$	1	1	1	1	1	0	1	0	1	1	0	0	1	1	0									•	•	-]	M_A	1

	СЧП	1	1	1	1	1	0	1	0	1	1	0	0	1	1	0	1	1	1	0	1	0	0	0	0	1	1	1	
	СЧП→2	1	1	1	1	1	1	1	0	1	0	1	1	0	0	1	1	0	1	1	1	0	1	0	0	0	0	1	
	$[2M_A]_{np}$	0	0	0	0	1	0	1	0	0	1	1	0	1	0	0											21	M_A	
4	СЧП	0	0	0	0	1	0	0	1	0	1	0	1	1	0	0	1	0	1	1	1	0	1	0	0	0	0	1	0
	СЧП→2	0	0	0	0	0	0	1	0	0	1	0	1	0	1	1	0	0	1	0	1	1	1	0	1	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0												-	
5	СЧП	0	0	0	0	0	0	1	0	0	1	0	1	0	1	1	0	0	1	0	1	1	1	0	1	0	0	0	0
	СЧП→2	0	0	0	0	0	0	0	0	1	0	0	1	0	1	0	1	1	0	0	1	0	1	1	1	0	1	0	
	$[2M_A]_{np}$	0	0	0	0	1	0	1	0	0	1	1	0	1	0	0											21	M_A	
6	СЧП	0	0	0	0	1	0	1	0	1	1	1	1	1	1	0	1	1	0	0	1	0	1	1	1	0	1	0	0
	СЧП→2	0	0	0	0	0	0	1	0	1	0	1	1	1	1	1	1	0	1	1	0	0	1	0	1	1	1	0	
7	СЧП	0	0	0	0	0	0	1	0	1	0	1	1	1	1	1	1	0	1	1	0	0	1	0	1	1	1	0	0
,	$M_{\rm C}$	0	0	0	0	0	0	1	0	1	0	1	1	1	1	1	1	0	1	1	0	0	1	0	1	1	1	0	

$$C^* = (0.15F)_{16} \times 16^0 = 0.085693359375.$$

$$C_{\rm T} = 0.0858$$
.

$$\Delta C = C_{\rm T} - C^* = 0.0858 - 0.085693359375 = 0.000106640625,$$

$$\delta C = \left| \frac{\Delta C}{C_T} \right| \times 100\% = \left| \frac{0,000106640625}{0,0858} \right| \times 100\% = 0,1242897727\%.$$

Задание 2. Выполнить операцию умножения операндов в формате Φ 2, используя метод ускоренного умножения мантисс на четыре разряда множителя.

Ф2:

$$A = (2,6)_{10} = (2,(9))_{16} = (10,100110011001101)_2 = (0,10100110011001101)_2 \times 2^2$$

$$X_C = 0 \ 1 \ 1 \ 1 \ 1 \ 1 \ 0$$

$$P_C = -2$$

N	Операн ды					(СЧІ	I (c	гар	ши	e pa	азря	нды	1)								Призна к коррекц ии														
	СЧП	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	1	0	0	1	1						
0	$[-M_A]_{\text{доп}}$	1	1	1	1	1	0	1	0	1	1	0	0	1	1	0	1	0	$-M_A$ $4M_A$								0									
	$[4M_A]_{np}$	0	0	0	1	0	1	0	0	1	1	0	0	1	1	0	0	0																		
	СЧП	0	0	0	0	1	1	1	1	1	0	0	1	1	0	0	1	0	1	0	0	0	0	1	1	1	0	0	1	1						
1	СЧП→4	0	0	0	0	0	0	0	0	1	1	1	1	1	0	0	1	1	0	0	1	0	1	0	0	0	0	1	1	1	0					
1	$[-M_A]_{\text{доп}}$	1	1	1	1	1	0	1	0	1	1	0	0	1	1	0	1	0	$-M_A = 8M_A$											U						
	$[8M_A]_{\pi p}$	0	0	1	0	1	0	0	1	1	0	0	1	1	0	0	0	0																		
	СЧП	0	0	1	0	0	1	0	1	0	1	0	1	1	1	1	0	1	0	0	1	0	1	0	0	0	0	1	1	1						
2	СЧП→4	0	0	0	0	0	0	1	0	0	1	0	1	0	1	0	1	1	1	1	0	1	0	0	1	0	1	0	0	0						
-	$[8M_A]_{\pi p}$	0	0	1	0	1	0	0	1	1	0	0	1	1	0	0	0	0							1	1	81	Λ_A	01	M_A	0					
	$[0M_A]_{\pi p}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0																		
3	СЧП	0	0	1	0	1	0	1	1	1	1	1	0	1	1	0	1	1	1	1	0	1	0	0	1	0	1	0	0	0						
3	СЧП→4	0	0	0	0	0	0	1	0	1	0	1	1	1	1	1	0	1	1	0	1	1	1	1	0	1	0	0	1	0						

$$X_C = X_C - 1$$

$$C^* = (0,101011111011)_2 \times 2^{-3} = (0,000101011111011)_2 = 0,085784912109375,$$

$$C_{\rm T} = 0.0858.$$

$$\Delta C = C_{\rm T} - C^* = 0.0858 - 0.085784912109375 = 0.0000150878906,$$

$$\delta C = \left| \frac{\Delta C}{C_T} \right| \times 100\% = \left| \frac{0,0000150878906}{0,0858} \right| \times 100\% = 0,01758495408\%.$$