Theory of Computation, Fall 2023 Quiz 3

Q1.	Show that	the	following	language is	decidable.	You	may	use	any	${\rm conclusion}$	that	we	have
	proved in class.												

 $S = \{$ "M" is a DFA and M accepts w^R whenever it accepts $w\}$

Q2. Prove that the following language is not recursive. You may reduce from any language that has been proved to be non-recursive in class.

 $A = \{ \text{``}M_1\text{'``}M_2\text{''}: \, M_1 \text{ and } M_2 \text{ are two Turing machines with } L(M_1) \cap L(M_2) \neq \emptyset \}$

Q3. Show that the following language is recursively enumerable.

 $A = \{\text{``M"}: M \text{ is a TM, and } L(M) \text{ contains at least 2023 palindromes}\}$

Recall that a string w is a palindrome if $w = w^R$.

Bonus

Q4. Let $A=\{0^n1^n:\,n\geq 0\}.$ Let B be any language. Show that B is recursive if and only if $B\leq A$