

# **PSG COLLEGE OF TECHNOLOGY**

DEPARTMENT OF MECHANICAL ENGINEERING

# DESIGN AND DEVELOPMENT OF HIGH SPEED EPOXY GRANITE MICRO-MILLING MACHINE FOR TOOL AND DIE APPLICATIONS

| STUDENT DETAILS   |        |  |
|-------------------|--------|--|
| NAME ROLL NO.     |        |  |
| ADITYA ANIRUDH K  | 22M501 |  |
| KARTHI S          | 22M124 |  |
| DHIVYADHARSHINI S | 22M112 |  |

**GUIDE**: DR. P R THYLA (PROFESSOR AND HEAD OF DEPT.)

**CO-GUIDE**: DR. MAHENDRAKUMAR N ( ASSISTANT PROFESSOR )

#### MICRO MILLING MACHINE



- A machining tool used for precision milling operations.
- Advantages:
  - Great precision with tight tolerances
  - High-speed machining
  - > Excellent surface finishes







Fig.1 CNC Micro Milling Machine

















https://www.basilius.com/blog/graphite-milling-101/





shutterstock.com · 2274524839



#### HOW TO INCREASE THE PRECISION IN MICRO MILLING MACHINES?



#### PROPOSED SOLUTION

- 1. Epoxy Granite
- 2. Active Magnetic Bearing



Fig.x Tooltech NP series Micro Milling Machine

| Specification                  | BR5535 NP                              |
|--------------------------------|----------------------------------------|
| Spindle Speed- MAX (RPM)       | 24000                                  |
| Spindle Power (KW)             | 2.2                                    |
| Construction material          | Cast iron                              |
| Gantry Construction            | Table Clamping Area (mm)               |
| XYZ Movement (mm)              | 450 x 300 x 160                        |
| Guideways                      | All axes with Linear Motion Guide ways |
| Ball Screws                    | C5 Class Ground Ball Screws            |
| Feed Rate (m/min)              | 0-5                                    |
| Axes Motors                    | AC Servo motors on all axes            |
| Axes Motor Torque (Nm)         | 1.2                                    |
| Repeatability (Microns)        | 0.01                                   |
| Positioning Accuracy (Microns) | 0.02                                   |
| Spindle Drive Type             | AC Vector                              |



| Specification            | Values           |
|--------------------------|------------------|
| Model                    | PREMIUM 5030-3   |
| Spindle Speed- MAX (RPM) | 50000            |
| Spindle Power (KW)       | 2                |
| Construction material    | Polished granite |
| XYZ Movement (mm)        | 450 x 300 x 160  |





Fig.x Micro CNC Milling Machine

| Parameter                                        | Value                                |
|--------------------------------------------------|--------------------------------------|
| Spindle Speed                                    | 24000 rpm                            |
| Power (kW)                                       | 1.49                                 |
| Construction material                            | Steel / Aluminium                    |
| Material of Rack                                 | Aluminium Alloys 6061+6063           |
| Automation Grade                                 | Automatic                            |
| Machine Type                                     | CNC Milling Machine                  |
| Drive Unit                                       | Trapezoidal Screw 1204               |
| Max Distance from Spindle<br>Nose to Countertops | 60mm                                 |
| Table Dimensions                                 | 240 x 450 mm                         |
| Spindle Motor                                    | 110V 240W DC motor (Runout ≤ 0.03mm) |
| Software                                         | Mach3 System                         |

#### ASSEMBLY DRAWING OF EG MICRO-MILLING MACHINE



| Fig. xx Assembly drawing of EG |
|--------------------------------|
| micro-milling machine Design-2 |

| Item no. | Part number          |
|----------|----------------------|
| 1        | Base                 |
| 2        | Gantry               |
| 3        | Hiwin LM rail        |
| 4        | Bearing              |
| 5        | Leadscrew            |
| 6        | X – axis lead screw  |
| 7        | Flexible coupling    |
| 8        | Motor                |
| 9        | Table                |
| 10       | Z - axis assembly    |
| 11       | M6 bush              |
| 12       | Gantry M12 bush      |
| 13       | M12 bush             |
| 14       | Spindle sub assembly |

Table x Bill of Materials of EG micro-milling machine

## **SPECIFICATIONS OF CI & EP MICRO-MILLING MACHINE**

| Material                           | Cast iron     | Epoxy granite                         |
|------------------------------------|---------------|---------------------------------------|
| Machine Size                       | 600*600*575mm | 500*400*375mm                         |
| Working area (X, Y, Z)             | 480*520*75mm  | 250*200*100mm                         |
| Spindle                            | 9000r/min     | 9000r/min                             |
| Step motor                         | 1.3A 0.25 Nm  | 1.3A 0.25 Nm                          |
| Power supply                       | 24V 5.6A      | 24V 5.6A                              |
| Machine Weight                     | 122.5kg       | 75kg                                  |
| Spindle                            |               | 775 spindle motor,<br>36V : 9000r/min |
| Ball nose end-mill cutter diameter | 6mm           | 6mm                                   |

# **MODAL ANALYSIS**

| Mode   | Natural frequencies of |  |
|--------|------------------------|--|
| number | micro-milling machine  |  |
|        | made of EG(Hz)         |  |
| 1      | 232.55                 |  |
| 2      | 243.21                 |  |
| 3      | 400.33                 |  |
| 4      | 517.61                 |  |
| 5      | 517.75                 |  |
| 6      | 625.87                 |  |



Table 3 Natural frequencies of EG micro-milling machine

# Introduction to Active Magnetic Bearing

#### **ROLE OF BEARINGS**

- ☐ Reduce the **friction**
- Support the spindle and the cutting tool
- ☐ Absorb the vibrations during machining
- Provide a long service life



## DISADVANTAGES OF CONVENTIONAL BEARINGS

- Need for lubrication
- Susceptible to wear and tear
- ☐ Cannot operate in harsh environments
- ☐ Require more power





Fig.4 Roller bearing

#### **INTRODUCTION-WHY MAGNETIC BEARING?**

- High-speed applications-Frictionless
- Variable speed operations
- Low energy consumption



#### **Working Principle**: Electromagnetic forces –

Levitation of shaft

Suspending rotor in air with controlled magnetic force (Cushioning)



# CONSTRUCTION DETAILS-AXIAL AND RADIAL MAGNETIC BEARINGS



SPINDLE SPEED: 50,000rpm APPLICATIONS:

- Aerospace Gas Turbines
- Manufacturing High-Speed Machine Tools
- Energy Flywheel Energy Storage Systems
- Medical Magnetic Resonance Imaging (MRI) Machines
- Oil & Gas Compressors
- Renewable Energy Wind Turbines
- Semiconductor Manufacturing Wafer Handling Systems
- Rail Transportation Maglev Trains
- Marine Shipboard Cooling Compressors

| Features               | Conventional Bearing                       | Magnetic Bearing                                |
|------------------------|--------------------------------------------|-------------------------------------------------|
| Type of bearing        | Contact bearing                            | Non-contact bearing                             |
| Principle of operation | Friction between the bearing and the shaft | Magnetic levitation                             |
| Lubrication            | Required                                   | Not required                                    |
| Wear and tear          | Subjected to wear and tear                 | Not subjected to wear and tear                  |
| Lifespan               | Shorter                                    | Longer                                          |
| Efficiency             | Lower                                      | Higher                                          |
| Cost                   | Lower                                      | Higher                                          |
| Applications           | General-purpose applications               | High-precision applications, harsh environments |

# **DESIGN ASPECT OF MAGNETIC ACTUATOR**



# FREE BODY DIAGRAM OF SPINDLE UNIT AND FORCE ANALYSIS $\varphi_{c} = 0$ **Feed direction** $-\delta(x)$ Cross feed direction (a) (b)

## FREE BODY DIAGRAM OF SPINDLE UNIT AND FORCE ANALYSIS



#### FREE BODY DIAGRAM OF SPINDLE UNIT AND FORCE ANALYSIS

**INFERENCE**: The force analysis confirms that the primary load exerted on the spindle unit is predominantly in the radial direction.

The force analysis conducted on the spindle unit of our micro milling machine reveals a predominant prevalence of radial forces over axial forces. Radial forces are notably more significant, indicating that the spindle unit experiences the majority of its load in the radial direction during operation.

## **SELECTION OF BEARINGS**

- 1. TYPE OF LOAD: Radial force dominating Axial Force
- 2. SPEED OF SHAFT: 50000 rpm
- 3. CONDITIONS OF LOADING: Steady and continuous radial load

#### **BEARINGS SELECTED**







**AUXILIARY BEARING** 

## **CONSTRUCTION OF RADIAL MAGNETIC BEARINGS**







## **FUTURE WORK-STAGES**

- 1. Modelling and Simulation of Radial Active Magnetic Bearing: Our first step involves the intricate design and optimization of radial active magnetic bearings, emphasizing their load-carrying capacity and precision to meet the exacting demands of micro milling applications.
- **2. Precision Control System**: We will develop a sophisticated control system equipped with sensors and advanced control algorithms, ensuring that the magnetic bearings can precisely position and manage the applied forces.
- **3. Validation through Testing**: Rigorous vibration analysis and testing protocols will be employed to rigorously validate the efficacy of our magnetic bearing system in significantly reducing the unwanted chatter during micro milling operations.
- **4. Enhancing Sensing Technology**: Investigating the enhancement of sensor technologies and feedback systems will further refine our precision and control, ultimately leading to exceptional performance.
- **5. Safety, Efficiency, and Documentation**: Concurrently, we'll be implementing robust safety measures, exploring energy-efficient strategies, and maintaining meticulous documentation to ensure the smooth progress and transparency of this vital project.

# FUTURE WORK-STAGE-1-MODELLING AND SIMULATION OF RADIAL ACTIVE MAGNETIC BEARING

