# COM6521: Parallel Computing with GPUs (2019/20) Assignment 2

User Name: elt18sx

Student Registration Number: 190186546

#### **Implement**

The structure of the program includes standardized data preprocessing and Nbodies simulation. Preprocessing is mainly to read parameters, generate data and apply for CUDA memory space. The simulation part is processed by the step function, which contains different versions of the kernel functions, compute\_volocity\_CUDA and updata\_location\_CUDA. The step function also decides whether to update the heat map according to the parameters. As shown in the pseudo-code below,

```
function main(argc, argv)
   args <- load args(argc, argv)</pre>
   if args.input_file then
       h bodies <- read file(args)
       h bodies <- generate data(args)</pre>
   end if
   cudaMemcpy(d bodies,h bodies,...)
   if args.visualisation then
       initViewer(args,step)
       setNBodyPositions(d_bodies)
       setActivityMapData(heat map)
       startVisualisationLoop()
       cudaEventRecord(start)
       step()
       cudaEventRecord(stop)
       print(toc-tic)
   end if
   free(h bodies)
   free(heat map)
   free(d bodies)
   free(d heat map)
   return 0
end function
function step()
   for i = 0 to args.iter do
       compute_volocity_CUDA<<<block,thread>>>(d_bodies)
updata_location_CUDA<<<block,thread>>>(d_bodies)
       if args.visualisation then
           cudaMemset(d_heat_map,...)
           update_heat_map_CUDA(d_bodies,d_heat_map)
       end if
   end for
end function
```

In the code execution stage, the program will execute the corresponding CUDA kernel function according to the configuration, such as the AoS or SoA structure of the data, or different CUDA memory storage methods. (The methods will be discussed later).

#### **Experiment Environment**

The experimental code has already been tested on Instance Hub. The experimental data to be discussed below was generated by a local computer with a 6-core and 12-thread i7-9750H CPU and RTX 2060 GPU with Turing architecture.

#### Parallelizing Method

I used N thread to execute the program, which mainly contains 2 advantages. The first is that the code is easy to transplant, you can simply transplant the original CPU code, only a small amount of changes to the variables. The second is to use fewer threads to achieve good results. As you can see in the benchmark test later, it can be completed in about 1 second even when with N=16384 and 200 iterations. And pseudo-code is shown as below,

```
function compute_volocity_CUDA(bodies)
 i <- blockIdx * blockDim + threadIdx</pre>
 acceleration <- {0,0}
 target_body <- bodies[index]</pre>
 for i = 0 to N do
   external body <- bodies[i]</pre>
   acceleration.x <- acceleration.x + acceleration from external_body</pre>
   acceleration.y <- acceleration.x + acceleration from external_body</pre>
 end for
 bodies[i].vx <- acceleration.x * dt</pre>
 bodies[i].vy <- acceleration.y * dt</pre>
end function
function updata_location_CUDA(bodies)
 i <- blockIdx * blockDim + threadIdx</pre>
 bodies[i].x <- bodies[i].x + bodies[i].vx * dt
 bodies[i].y <- bodies[i].y + bodies[i].vy * dt</pre>
end function
function uodate_heat_map_CUDA(bodies,heat_map)
       i <- blockIdx * blockDim + threadIdx
       row<-bodies[i].x/D
       line<-bodies[i].y/D
       atomicAdd(&heat map[row][line],1/N)
end function
```

## Overall performance comparison

Observing the experimental effects of CPU, OPENMP and GPU, we found that GPU is the best, followed by OPENMP. In the polyline above, the X axis is an N variable from 256 to 4096, which increases 4 times each time, while the Y axis is the time spent in the simulation. When the parameter D is 50 and the number of iterations is 200, the polyline in the figure will be generated. (Detailed data can be seen in the benchmark)



We can observe that when N is increased, the simulation time of CPU, OPENMP and GPU almost all increase linearly. But the growth rate of the GPU model is very low.

| Ν    | D  | Iter | М      | Time(s) |
|------|----|------|--------|---------|
|      |    | CPU  | 19.045 |         |
| 4096 | 50 | 200  | OPENMP | 2.905   |
|      |    |      | CUDA   | 0.237   |

By comparing the above figure with the table, OPENMP is about 6 times faster than in CPU mode, and in GPU mode it can reach an amazing 80 times. This is perfectly reasonable because the number of threads running the simulation is 1 in CPU mode and 12 in OPENMP mode, and the GPU will have N threads, which is 4096. The speed increase is directly related to the number of running threads. However, because the core of the CPU is different from the CUDA core, such as architecture, frequency, and the running speed of a single core, the rate of speed increase will also be different. Secondly, due to the constraints of Amdahl 's Law, the speed increase after parallelization will also be limited.

#### **Data Structures**

Different data structures also have different performance impacts on the program. Here I mainly discuss two data structures, one is AoS, and the second is SoA.



The above figure was completed with 200 iterations. It can be observed that when the amount of data

is small, the execution speed of the two data structures is almost the same. As N increases, there is a slight difference, and it takes less time in the AoS data format.

However, the trend of the difference is not obvious under the current data standard. This difference may be constant (fixed value) or cumulative (increasing with N). Therefore, it is necessary to compare when N is large.

| D  | М                   | Iter | file               | N     | Time(s) |
|----|---------------------|------|--------------------|-------|---------|
|    | App. global Pologgo |      | 28672              | 4.524 |         |
| E0 | 50 CUDA 400         | 400  | Aos_global_Release | 32768 | 8.976   |
| 30 |                     | 400  | CoA global Dologo  | 28672 | 5.648   |
|    |                     |      | SoA_global_Release | 32768 | 11.017  |

Through data comparison, when N is 28672, the time difference is 1.124s, and when N is 32768, the time difference is 2.041s. Therefore, the time difference between two different data structures to execute code will increase with the increase of N.

The difference between the two is caused by the speed of accessing memory.

**AoS:** In AoS mode, all data x, y, vx, vy, and m of the same star are continuously stored in the global memory. For example, the storage distance between the data of the i-th star x and y in memory is 0 bytes, 4 bytes from vx, 8 bytes from vy, and 12 bytes from m. In parallel computing, the corresponding x, y, vx, vy, m data needs to be obtained for each star, and the difference between each data is constant because they are stored continuously.

**SoA:** However, in the SoA mode, the x of all stars is stored continuously, rather than all data of each star being stored continuously. For example, the storage distance between the data of the i-th star x and y in memory is (1x4)N bytes, (2x4)N bytes from vx, and (3x4)N bytes from vy, and (4x4)N bytes from m. The gap between all data of the same star is not fixed as in the AoS mode, the gap in the SoA structure will continue to increase with N.

The storage differences of different data structures in memory can also be observed through the following table. And this can also explain why the SoA structure takes more and more time as N increases.

| Structure | Body | x Address | y Address     | vx Address    | vy Address     | m Address      |
|-----------|------|-----------|---------------|---------------|----------------|----------------|
|           | 0th  | 0x000     | 0x0···04      | 0x008         | 0x0···12       | 0x0···16       |
| AoS       | 1th  | 0x0···20  | 0x0···24      | 0x0···28      | 0x0···32       | 0x0···36       |
|           | 2th  | 0x0···40  | 0x0···44      | 0x0···48      | 0x0···52       | 0x0···56       |
|           | 0th  | 0x000     | 0x0···00 + 4N | 0x0···00 + 8N | 0x0···00 + 12N | 0x0···00 + 16N |
| SoA       | 1th  | 0x0···04  | 0x0···04 + 4N | 0x0···04 + 8N | 0x0···04 + 12N | 0x0···04 + 16N |
|           | 2th  | 0x0···08  | 0x0···08 + 4N | 0x008 + 8N    | 0x0···08 + 12N | 0x0···08 + 16N |

#### **Memory Caches**

The way data is cached in the GPU will also have different effects on program efficiency. Here, I mainly discuss the global, constant and shared cache methods.

In the polyline below, the X axis is the variable for the number of iterations from 50 to 200, and the Y axis is the time spent in the simulation. When the parameter D is 50 and N is 16384, the graph on the left will be generated.



**Shared vs Global:** From the leftmost diagram, you can observe that the shared cache method is faster than the global and constant methods. This is mainly because programs accessing shared data is faster than accessing global data. This is determined by the GPU architecture, each block has its own shared cache, and global is accessible to all threads. Shared cache under this architecture is like L1 cache, and read and write will be faster.

**Constant vs Global:** As for the constant cache method, its speed is similar to the global speed. Theoretically, the access speed of constant data will be much faster than that of the global cache, but because the constant cache is read-only data, and because of the particularity of the data in the experiment, the constant data can be used is limited, so the speed is not much different. Unlike the shared cache, which can be read and written, the constant cache only has 64k of read-only storage space, so the constant approach also has certain limitations.



#### Discussion1: is global always faster than global?

In the polyline above, the X axis is the N variable from 256 to 16384, and the Y axis is the time spent in the simulation. When the parameter D is 50 and the number of iterations is 200, the graph on the left will be generated.

We can find that the shared cache mode is not always faster than the global cache mode. Specifically, we can observe that when N is smaller than 1024, global is faster. When N is 1024, the two are about

the same speed. When N is greater than 1024, the speed of shared is obviously improved.

But why is this so? This is because the shared cache method is to store data in each block for the threads in each block to read. In other words, the greater the number of blocks used for shared cache, the faster the shared cache method will execute. In the current program, I set the number of threads in each block to 1024 (this is also the maximum number of threads in a single block). Therefore, when N is less than or equal to 1024, only one block of shared cache is used to store data. In this case, compared to the global cache, additional operations are required to transfer data to the shared cache. It also needs to wait for the synchronization signal. So the shared cache mode is slower when N is less than 1024 (the number of threads in a single block), and When N is greater than 1024, the shared cache is faster.

#### Discussion2: ThreadsPerBlock influences shared cache performance

In order to explore more about the content mentioned above, I will set a different number of threads per block for the shared cache method.



Here, we need to compare setting different threads per block in the shared cache method with the global method.

In the figure above, the X axis is different from N, and the Y axis is the time it takes to run the program. Observed from the above figure, the green line represents the performance of global under different N. We first observe the orange line segment, which means setting 256 threads per block. It can be observed that when N is less than 256, the shared speed is faster than global. Dark green indicates that 512 threads per block is set. It can be observed that when N is 512, the shared speed is faster than global. The remaining data also basically conforms to this pattern.

In general, when N is greater than the number of threads per block, shared cache can improve the performance of the program.

#### Improvement in Stimulation

- 1. Data Structure: As discussed above, using AoS will be faster than SoA.
- **2. Memory Caches:** Similarly, as discussed above, the use of shared cache with a reasonable number of threads per block can improve the performance of the code.

In addition, using constant cache to cache commonly used data, such as the values of N and D, can also slightly improve code efficiency. Although the effect is minimal in the current experiment, in the future when a large number of parameters or a large number of fixed values are used, the use of constant cache may bring good benefits.

**3. Release and Debug:** By changing the code from debug to release mode, the execution efficiency can also be improved.



It can be seen from the above figure that the execution efficiency of Release is about 10 times that of Debug.

## **Other Interesting Aspects**

1. sqrt is faster than pow: In the part of calculating the acceleration between the stars. It requires to solved the following formula:

$$\vec{F}_{i} = Gm_{i} \sum_{1 \leq j \leq N} \frac{m_{j}(\vec{x_{j}} - \vec{x_{i}})}{(\|\vec{x_{j}} - \vec{x_{i}}\|^{2} + \varepsilon^{2})^{\frac{3}{2}}}$$

The most intuitive way is to use pow (x, 3/2), but when sqrt (x) \* x is used instead, the speed becomes surprisingly fast. By observing the line chart below, it can increase the code speed by 2 times.

**2. float is faster than double:** In the formula of the calculation formula, I initially used the double variable to store the acceleration data, the purpose is to retain the accuracy, but when I changed the double to the float type, the speed increased by 6 times. This is because when a double variable is used, when it is stored in a float variable, a forced data conversion is required.





# **Experimental Data Table**

## **Benchmark Results table**

| file                 | N     | D  | М    | Iter | Time(s) |
|----------------------|-------|----|------|------|---------|
| AoS_constant_Release | 256   | 50 | CUDA | 50   | 0.005   |
| AoS_constant_Release | 256   | 50 | CUDA | 100  | 0.01    |
| AoS_constant_Release | 256   | 50 | CUDA | 150  | 0.015   |
| AoS_constant_Release | 256   | 50 | CUDA | 200  | 0.02    |
| AoS_constant_Release | 1024  | 50 | CUDA | 50   | 0.03    |
| AoS_constant_Release | 1024  | 50 | CUDA | 100  | 0.061   |
| AoS_constant_Release | 1024  | 50 | CUDA | 150  | 0.092   |
| AoS_constant_Release | 1024  | 50 | CUDA | 200  | 0.102   |
| AoS_constant_Release | 4096  | 50 | CUDA | 50   | 0.085   |
| AoS_constant_Release | 4096  | 50 | CUDA | 100  | 0.169   |
| AoS_constant_Release | 4096  | 50 | CUDA | 150  | 0.193   |
| AoS_constant_Release | 4096  | 50 | CUDA | 200  | 0.242   |
| AoS_constant_Release | 16384 | 50 | CUDA | 50   | 0.267   |
| AoS_constant_Release | 16384 | 50 | CUDA | 100  | 0.555   |
| AoS_constant_Release | 16384 | 50 | CUDA | 150  | 0.818   |
| AoS_constant_Release | 16384 | 50 | CUDA | 200  | 1.086   |
| Aos_global_Release   | 256   | 50 | CUDA | 50   | 0.002   |
| Aos_global_Release   | 256   | 50 | CUDA | 100  | 0.005   |
| Aos_global_Release   | 256   | 50 | CUDA | 150  | 0.007   |
| Aos_global_Release   | 256   | 50 | CUDA | 200  | 0.01    |
| Aos_global_Release   | 1024  | 50 | CUDA | 50   | 0.014   |
| Aos_global_Release   | 1024  | 50 | CUDA | 100  | 0.029   |
| Aos_global_Release   | 1024  | 50 | CUDA | 150  | 0.082   |
| Aos_global_Release   | 1024  | 50 | CUDA | 200  | 0.118   |
| Aos_global_Release   | 4096  | 50 | CUDA | 50   | 0.091   |
| Aos_global_Release   | 4096  | 50 | CUDA | 100  | 0.152   |
| Aos_global_Release   | 4096  | 50 | CUDA | 150  | 0.178   |
| Aos_global_Release   | 4096  | 50 | CUDA | 200  | 0.237   |

| Aos_global_Release   | 16384 | 50 | CUDA | 50  | 0.269 |
|----------------------|-------|----|------|-----|-------|
| Aos_global_Release   | 16384 | 50 | CUDA | 100 | 0.541 |
| Aos_global_Release   | 16384 | 50 | CUDA | 150 | 0.818 |
| Aos_global_Release   | 16384 | 50 | CUDA | 200 | 1.096 |
| AoS_shared_Release   | 256   | 50 | CUDA | 50  | 0.019 |
| AoS_shared_Release   | 256   | 50 | CUDA | 100 | 0.039 |
| AoS_shared_Release   | 256   |    | CUDA | 150 | 0.058 |
| AoS_shared_Release   | 256   | 50 | CUDA | 200 | 0.077 |
| AoS_shared_Release   | 1024  | 50 | CUDA | 50  | 0.013 |
| AoS_shared_Release   | 1024  | 50 | CUDA | 100 | 0.037 |
| AoS_shared_Release   | 1024  | 50 | CUDA | 150 | 0.065 |
| AoS_shared_Release   | 1024  | 50 | CUDA | 200 | 0.097 |
| AoS_shared_Release   | 4096  | 50 | CUDA | 50  | 0.1   |
| AoS_shared_Release   | 4096  | 50 |      | 100 | 0.157 |
| AoS_shared_Release   | 4096  | 50 |      | 150 | 0.161 |
| AoS_shared_Release   | 4096  | 50 | CUDA | 200 | 0.214 |
| AoS_shared_Release   | 16384 | 50 | CUDA | 50  | 0.237 |
| AoS_shared_Release   | 16384 | 50 |      | 100 | 0.479 |
| AoS_shared_Release   | 16384 | 50 | CUDA | 150 | 0.721 |
| AoS_shared_Release   | 16384 | 50 | CUDA | 200 | 0.967 |
| SoA_constant_Release | 256   | 50 | CUDA | 50  | 0.003 |
| SoA_constant_Release | 256   | 50 | CUDA | 100 | 0.006 |
| SoA_constant_Release | 256   | 50 | CUDA | 150 | 0.009 |
| SoA_constant_Release | 256   | 50 | CUDA | 200 | 0.012 |
| SoA_constant_Release | 1024  | 50 | CUDA | 50  | 0.017 |
| SoA_constant_Release | 1024  | 50 | CUDA | 100 | 0.035 |
| SoA_constant_Release | 1024  | 50 | CUDA | 150 | 0.097 |
| SoA_constant_Release | 1024  | 50 | CUDA | 200 | 0.137 |
| SoA_constant_Release | 4096  | 50 | CUDA | 50  | 0.134 |
| SoA_constant_Release | 4096  | 50 | CUDA | 100 | 0.259 |
| SoA_constant_Release | 4096  | 50 | CUDA | 150 | 0.208 |
| SoA_constant_Release | 4096  | 50 | CUDA | 200 | 0.277 |
| SoA_constant_Release | 16384 | 50 | CUDA | 50  | 0.309 |
| SoA_constant_Release | 16384 | 50 | CUDA | 100 | 0.621 |
| SoA_constant_Release | 16384 | 50 | CUDA | 150 | 0.938 |
| SoA_constant_Release | 16384 | 50 | CUDA | 200 | 1.252 |
| SoA_global_Release   | 256   | 50 | CUDA | 50  | 0.003 |
| SoA_global_Release   | 256   | 50 | CUDA | 100 | 0.006 |
| SoA_global_Release   | 256   | 50 | CUDA | 150 | 0.009 |
| SoA_global_Release   | 256   | 50 | CUDA | 200 | 0.012 |
| SoA_global_Release   | 1024  | 50 | CUDA | 50  | 0.017 |
| SoA_global_Release   | 1024  | 50 | CUDA | 100 | 0.035 |
| SoA_global_Release   | 1024  | 50 | CUDA | 150 | 0.096 |
| SoA_global_Release   | 1024  | 50 | CUDA | 200 | 0.122 |

| SoA_global_Release | 4096  | 50 | CUDA | 50  | 0.076 |
|--------------------|-------|----|------|-----|-------|
| SoA_global_Release | 4096  | 50 | CUDA | 100 | 0.153 |
| SoA_global_Release | 4096  | 50 | CUDA | 150 | 0.209 |
| SoA_global_Release | 4096  | 50 | CUDA | 200 | 0.279 |
| SoA_global_Release | 16384 | 50 | CUDA | 50  | 0.331 |
| SoA_global_Release | 16384 | 50 | CUDA | 100 | 0.663 |
| SoA_global_Release | 16384 | 50 | CUDA | 150 | 1.008 |
| SoA_global_Release | 16384 | 50 | CUDA | 200 | 1.343 |
| SoA_shared_Release | 256   | 50 | CUDA | 50  | 0.026 |
| SoA_shared_Release | 256   | 50 | CUDA | 100 | 0.052 |
| SoA_shared_Release | 256   | 50 | CUDA | 150 | 0.079 |
| SoA_shared_Release | 256   | 50 | CUDA | 200 | 0.105 |
| SoA_shared_Release | 1024  | 50 | CUDA | 50  | 0.013 |
| SoA_shared_Release | 1024  | 50 | CUDA | 100 | 0.027 |
| SoA_shared_Release | 1024  | 50 | CUDA | 150 | 0.04  |
| SoA_shared_Release | 1024  | 50 | CUDA | 200 | 0.054 |
| SoA_shared_Release | 4096  | 50 | CUDA | 50  | 0.053 |
| SoA_shared_Release | 4096  | 50 | CUDA | 100 | 0.12  |
| SoA_shared_Release | 4096  | 50 | CUDA | 150 | 0.21  |
| SoA_shared_Release | 4096  | 50 | CUDA | 200 | 0.213 |
| SoA_shared_Release | 16384 | 50 | CUDA | 50  | 0.229 |
| SoA_shared_Release | 16384 | 50 | CUDA | 100 | 0.458 |
| SoA_shared_Release | 16384 | 50 | CUDA | 150 | 0.688 |
| SoA_shared_Release | 16384 | 50 | CUDA | 200 | 0.926 |

## CPU, OPENMP, GPU Results

| N    | D  | М      | Iter | Time(s) |
|------|----|--------|------|---------|
| 256  | 50 | CPU    | 200  | 0.073   |
| 1024 | 50 | CPU    | 200  | 1.19    |
| 4096 | 50 | CPU    | 200  | 19.045  |
| 256  | 50 | CUDA   | 200  | 0.01    |
| 1024 | 50 | CUDA   | 200  | 0.118   |
| 4096 | 50 | CUDA   | 200  | 0.237   |
| 256  | 50 | OPENMP | 200  | 0.025   |
| 1024 | 50 | OPENMP | 200  | 0.216   |
| 4096 | 50 | OPENMP | 200  | 2.905   |

#### AoS and SoA Results table

| file               | N     | D  | М    | Iter | Time(s) |
|--------------------|-------|----|------|------|---------|
| Aos_global_Release | 4096  | 50 | CUDA | 400  | 0.472   |
| Aos_global_Release | 8192  | 50 | CUDA | 400  | 0.963   |
| Aos_global_Release | 12288 | 50 | CUDA | 400  | 1.52    |
| Aos_global_Release | 16384 | 50 | CUDA | 400  | 2.201   |
| Aos_global_Release | 20480 | 50 | CUDA | 400  | 2.921   |
| Aos_global_Release | 24576 | 50 | CUDA | 400  | 3.702   |
| Aos_global_Release | 28672 | 50 | CUDA | 400  | 4.524   |
| Aos_global_Release | 32768 | 50 | CUDA | 400  | 8.976   |
| SoA_global_Release | 4096  | 50 | CUDA | 400  | 0.572   |
| SoA_global_Release | 8192  | 50 | CUDA | 400  | 1.17    |
| SoA_global_Release | 12288 | 50 | CUDA | 400  | 1.859   |
| SoA_global_Release | 16384 | 50 | CUDA | 400  | 2.769   |
| SoA_global_Release | 20480 | 50 | CUDA | 400  | 3.657   |
| SoA_global_Release | 24576 | 50 | CUDA | 400  | 4.619   |
| SoA_global_Release | 28672 | 50 | CUDA | 400  | 5.648   |
| SoA_global_Release | 32768 | 50 | CUDA | 400  | 11.017  |

# Debug and Release Results table

| file    | N     | D  | М    | Iter | Time(s) |
|---------|-------|----|------|------|---------|
| Debug   | 256   | 50 | CUDA | 200  | 0.114   |
| Debug   | 1024  | 50 | CUDA | 200  | 0.592   |
| Debug   | 4096  | 50 | CUDA | 200  | 2.395   |
| Debug   | 16384 | 50 | CUDA | 200  | 10.628  |
| Release | 256   | 50 | CUDA | 200  | 0.01    |
| Release | 1024  | 50 | CUDA | 200  | 0.118   |
| Release | 4096  | 50 | CUDA | 200  | 0.237   |
| Release | 16384 | 50 | CUDA | 200  | 1.096   |

## ThreadsPerBlock Results table

| file               | N    | D  | М    | Iter | Time(s) |
|--------------------|------|----|------|------|---------|
| global             | 128  | 50 | CUDA | 1000 | 0.053   |
| global             | 256  | 50 | CUDA | 1000 | 0.102   |
| global             | 512  | 50 | CUDA | 1000 | 0.17    |
| global             | 768  | 50 | CUDA | 1000 | 0.182   |
| global             | 1024 | 50 | CUDA | 1000 | 0.284   |
| global             | 4096 | 50 | CUDA | 1000 | 1.171   |
| 1024 threads/block | 128  | 50 | CUDA | 1000 | 0.391   |
| 1025 threads/block | 256  | 50 | CUDA | 1000 | 0.373   |
| 1026 threads/block | 512  | 50 | CUDA | 1000 | 0.339   |
| 1027 threads/block | 768  | 50 | CUDA | 1000 | 0.304   |
| 1028 threads/block | 1024 | 50 | CUDA | 1000 | 0.27    |
| 1029 threads/block | 4096 | 50 | CUDA | 1000 | 1.065   |
| 256 threads/block  | 128  | 50 | CUDA | 1000 | 0.048   |
| 257 threads/block  | 256  | 50 | CUDA | 1000 | 0.048   |
| 258 threads/block  | 512  | 50 | CUDA | 1000 | 0.092   |
| 259 threads/block  | 768  | 50 | CUDA | 1000 | 0.136   |
| 260 threads/block  | 1024 | 50 | CUDA | 1000 | 0.18    |
| 261 threads/block  | 4096 | 50 | CUDA | 1000 | 0.71    |
| 512 threads/block  | 128  | 50 | CUDA | 1000 | 0.102   |
| 513 threads/block  | 256  | 50 | CUDA | 1000 | 0.102   |
| 514 threads/block  | 512  | 50 | CUDA | 1000 | 0.103   |
| 515 threads/block  | 768  | 50 | CUDA | 1000 | 0.201   |
| 516 threads/block  | 1024 | 50 | CUDA | 1000 | 0.201   |
| 517 threads/block  | 4096 | 50 | CUDA | 1000 | 0.792   |
| 768 threads/block  | 128  | 50 | CUDA | 1000 | 0.175   |
| 769 threads/block  | 256  | 50 | CUDA | 1000 | 0.176   |
| 770 threads/block  | 512  | 50 | CUDA | 1000 | 0.176   |
| 771 threads/block  | 768  | 50 | CUDA | 1000 | 0.177   |
| 772 threads/block  | 1024 | 50 | CUDA | 1000 | 0.348   |
| 773 threads/block  | 4096 | 50 | CUDA | 1000 | 1.038   |

# Math: pow and sqrt Results table

| file | N     | D  | М    | lter | Time(s) |
|------|-------|----|------|------|---------|
| pow  | 256   | 50 | CUDA | 200  | 0.016   |
| pow  | 1024  | 50 | CUDA | 200  | 0.133   |
| pow  | 4096  | 50 | CUDA | 200  | 0.529   |
| pow  | 16384 | 50 | CUDA | 200  | 2.307   |
| sqrt | 256   | 50 | CUDA | 200  | 0.01    |
| sqrt | 1024  | 50 | CUDA | 200  | 0.057   |
| sqrt | 4096  | 50 | CUDA | 200  | 0.237   |
| sqrt | 16384 | 50 | CUDA | 200  | 1.086   |

## Math: double and float Results table

| file   | N     | D  | М    | Iter | Time(s) |
|--------|-------|----|------|------|---------|
| double | 256   | 50 | CUDA | 200  | 0.05    |
| double | 1024  | 50 | CUDA | 200  | 0.461   |
| double | 4096  | 50 | CUDA | 200  | 1.49    |
| double | 16384 | 50 | CUDA | 200  | 6.019   |
| float  | 256   | 50 | CUDA | 200  | 0.01    |
| float  | 1024  | 50 | CUDA | 200  | 0.057   |
| float  | 4096  | 50 | CUDA | 200  | 0.237   |
| float  | 16384 | 50 | CUDA | 200  | 1.078   |