Suites Numériques

Première Spécialité Mathématiques

1 Définition d'une suite

Définition 1. Une suite numérique réelle est une fonction u définie sur \mathbb{N} à valeurs dans \mathbb{R} . Pour tout $n \in \mathbb{N}$, on note l'image u(n) sous le format u_n , qui se lit « u indice n ». Cette image est appellée terme de rang n de u.

Exemple. De nombreux phénomènes ne présentent pas de continuité, et peuvent être modélisés par des suites.

- Le chiffre d'affaire d'une entreprise n mois après sa création.
- Le nombre de façons de ranger n figurines sur une étagère.
- L'aire de la figure suivante après la n-ième étape.

Remarque. Une suite peut-être présentée sous la forme d'une séquence de nombres. Dans ce cas, le premier nombre de cette liste correspond au terme d'indice 0.

Pour parler d'une suite u en toute généralité, on la note $(u_n)_{n\in\mathbb{N}}$.

Remarque. Ainsi, on ne confondra pas les notations $(u_n)_{n\in\mathbb{N}}$ (la suite en toute généralite) et u_n (le n^e terme de la suite).

Définition 2. Si l'on connait f(n) une expression dépendant de n telle que pour tout n, $u_n = f(n)$, alors on dit que la suite $(u_n)_{n \in \mathbb{N}}$ est définie de façon **explicite**.

Exemple. Pour chacune des définitions explicites de $(u_n)_{n\in\mathbb{N}}$ données ci-dessous, donner les 4 premiers termes u_0 ; u_1 ; u_2 et u_3 .

- $u_n = 3n + 1$ pour tout $n \in \mathbb{N}$:
- $u_n = 5 \times 2^n$ pour tout $n \in \mathbb{N}$:
- $u_n=$ « Le nombre de lettres dans l'écriture en français de n », pour tout $n\in\mathbb{N}$:

Définition 3. Soit $(u_n)_{n\in\mathbb{N}}$ une suite numérique. On dit que u_n est définie **par récurrence** si u_0 est connue, et si pour tout $n\in\mathbb{N}$, le terme u_{n+1} est obtenu en fonction de u_n .

Exemple. Pour chacune des définition par récurrence de $(v_n)_{n\in\mathbb{N}}$, calculer les 4 premiers termes v_0 ; v_1 ; v_2 et v_3 .

- $v_0 = 6$ et $v_{n+1} = v_n + 4$:
- $v_0 = 2$ et $v_{n+1} = 5 \times v_n$:

2 Étude de suites

2.1 Représentation graphique

Soit $(u_n)_{n\in\mathbb{N}}$ une suite numérique. Pour représenter $(u_n)_{n\in\mathbb{N}}$ sur un repère orthonormé, on y fait figurer les points de coordonnées $(n;u_n)$.

2.2 Variation de suites

Définition 4. Soit $(u_n)_{n\in\mathbb{N}}$ une suite numérique.

- On dit que $(u_n)_{n\in\mathbb{N}}$ est **croissante** si et seulement si pour tout $n\in\mathbb{N}$, on a $u_n\leq u_{n+1}$.
- On dit que $(u_n)_{n\in\mathbb{N}}$ est décroissante si et seulement si pour tout $n\in\mathbb{N}$, on a $u_{n+1}\leq u_n$.

Proposition 1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite numérique.

- La suite $(u_n)_{n\in\mathbb{N}}$ est croissante si et seulement si, pour tout $n\in\mathbb{N}$, $u_{n+1}-u_n\geq 0$.
- La suite $(u_n)_{n\in\mathbb{N}}$ est décroissante si et seulement si, pour tout $n\in\mathbb{N}$, $u_{n+1}-u_n\leq 0$.

Exemple. Étudier les variations des suites suivantes :

- a) $(u_n)_{n\in\mathbb{N}}$ définie par $u_n=8+4n$ pour tout $n\in\mathbb{N}$.
- b) $(v_n)_{n\in\mathbb{N}}$ définie par $v_0=64$ et $v_{n+1}=\frac{v_n}{2}$ pour tout $n\in\mathbb{N}$.
- c) $(w_n)_{n\in\mathbb{N}}$ définie par $w_n=\frac{n}{n+1}$ pour tout $n\in\mathbb{N}$.
- d) $(z_n)_{n\in\mathbb{N}}$ définie par $z_n=(-1)^n$ pour tout $n\in\mathbb{N}$.

3 Suites arithmétiques

Définition 5. Soit $(u_n)_{n\in\mathbb{N}}$ une suite numérique. On dit que la suite est **arithmétique** si et seulement il existe $r\in\mathbb{R}$ tel que

$$u_{n+1} = u_n + r$$

Dans ce cas, on dit que $(u_n)_{n\in\mathbb{N}}$ est la suite arithmétique de **premier terme** u_0 et de **raison** r.

Remarque. Le calcul des termes d'une suite arithmétique de raison $r \in \mathbb{R}$ peut être schématisé comme suit :

Exemple. Calculer les termes u_1 , u_2 et u_3 pour chaque définition suivante :

- a) $(u_n)_{n\in\mathbb{N}}$ est la suite arithmétique de premier terme 0 et de raison 1:
- b) $(u_n)_{n\in\mathbb{N}}$ est la suite arithmétique de premier terme 1 et de raison 2 :
- c) $(u_n)_{n\in\mathbb{N}}$ est la suite arithmétique de premier terme 10 et de raison $-\frac{1}{2}$:

Proposition 2 (Variation d'une suite arithmétique). *Soit* $(u_n)_{n\in\mathbb{N}}$ *une suite arithmétique de raison* $r\in\mathbb{R}$.

- La suite $(u_n)_{n\in\mathbb{N}}$ est croissante si et seulement si $r\geq 0$.
- La suite $(u_n)_{n\in\mathbb{N}}$ est décroissante si et seulement si $r\leq 0$.

Remarque. Dans le cas particulier où r = 0, on dit que la suite $(u_n)_{n \in \mathbb{N}}$ est constante.

Proposition 3 (Formule explicite d'une suite arithmétique). *Soit* $(u_n)_{n\in\mathbb{N}}$ *une suite arithmétique de raison* $r\in\mathbb{R}$. *Alors, pour tout* $n\in\mathbb{N}$ *, on observe*

$$u_n = u_0 + n \times r$$

Remarque. On peut résumer cette formule à l'aide du schéma suivant :

Exemple. Pour chacune des définitions suivantes de $(u_n)_{n\in\mathbb{N}}$, calculer u_{10} :

- a) $(u_n)_{n\in\mathbb{N}}$ est la suite arithmétique de premier terme 6 et de raison 5 :
- b) $(u_n)_{n\in\mathbb{N}}$ est la suite arithmétique de premier terme 0 et de raison -2:
- c) $(u_n)_{n\in\mathbb{N}}$ est la suite arithmétique de premier terme 1 et de raison $\frac{1}{5}$:

Proposition 4. Si $(u_n)_{n\in\mathbb{N}}$ est une suite arithmétique, alors les points de sa représentation graphique sont alignés sur la droite d'équation $y=rx+u_0$:

On dit que les suites arithmétiques permettent de modéliser des évolutions linéaires.

4 Suites géométriques

Définition 6. Soit $(u_n)_{n\in\mathbb{N}}$ une suite numérique. On dit que la suite est **géométrique** si et seulement il existe $q\in\mathbb{R}$ tel que

$$u_{n+1} = u_n \times q$$

Dans ce cas, on dit que $(u_n)_{n\in\mathbb{N}}$ est la suite géométrique de **premier terme** u_0 et de **raison** q.

Remarque. Le calcul des termes d'une suite géométrique de raison $q \in \mathbb{R}$ peut être schématisé comme suit :

Exemple. Calculer les termes u_1 , u_2 et u_3 pour chaque définition suivante :

- a) $(u_n)_{n\in\mathbb{N}}$ est la suite géométrique de premier terme 1 et de raison 2 :
- b) $(u_n)_{n\in\mathbb{N}}$ est la suite arithmétique de premier terme 64 et de raison $\frac{1}{2}$:
- c) $(u_n)_{n\in\mathbb{N}}$ est la suite arithmétique de premier terme 1000 et de raison -0,1:

Proposition 5 (Variation d'une suite géométrique). Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de raison $q\in\mathbb{R}$. On suppose que son premier terme u_0 est non nul.

- Si q > 1:
 - Si $u_0 > 0$, alors $(u_n)_{n \in \mathbb{N}}$ est strictement croissante.
 - Si $u_0 < 0$, alors $(u_n)_{n \in \mathbb{N}}$ est strictement décroissante.
- $Si \ 0 < q < 1$:
 - Si $u_0 > 0$, alors $(u_n)_{n \in \mathbb{N}}$ est strictement décroissante.
 - Si $u_0 < 0$, alors $(u_n)_{n \in \mathbb{N}}$ est strictement croissante.
- Si q = 0 ou q = 1, alors $(u_n)_{n \in \mathbb{N}}$ est constante à partir du terme u_1 .
- $Si \ q < 0$, alors la suite n'est pas **monotone** (elle n'est ni croissante, ni décroissante).

Proposition 6 (Formule explicite d'une suite arithmétique). *Soit* $(u_n)_{n\in\mathbb{N}}$ *une suite géométrique de raison* $q\in\mathbb{R}$. *Alors, pour tout* $n\in\mathbb{N}$ *, on observe*

$$u_n = u_0 \times q^n$$

Remarque. On peut résumer cette formule à l'aide du schéma suivant :

Exemple. Pour chacune des définitions suivantes de $(u_n)_{n\in\mathbb{N}}$, calculer u_{10} :

- a) $(u_n)_{n\in\mathbb{N}}$ est la suite géométrique de premier terme 1 et de raison -2:
- b) $(u_n)_{n\in\mathbb{N}}$ est la suite arithmétique de premier terme $5^{10}=9\,765\,625$ et de raison $\frac{1}{5}$:

Définition 7. Les suites géométriques permettent de modéliser des évolutions dites **exponentielles**.