Adatbázis-kezelés

alapfogalmak

Témakörök

Alapfogalmak

Adatmodellek

Relációalgebra

Normalizálás

VÉGE

Adatbázis-kezelő rendszer

Database Management System - DBMS

Integrált programcsomag, melynek funkciói:

- Adatbázisok létrehozása
- Adatok karbantartása
- Információ visszakeresése

3 előnye van a fájlkezelő rendszerekkel szemben:

- Redundanciamentesség
- Adatintegritás biztosítása
- Program és adat függetlenség

Az adatkezelés szintjei

Alkalmazói programok lekérdező nyelvek

Logikai adatszerkezet

Fizikai adatszerkezet

Fogalmak

- Redundancia
- Anomália

- Inkonzisztencia
- Adatintegritás
- Szinonima
- Homononima

Fölösleges adatismétlés

Hiba, rendellenesség (bővítési, módosítási, törlési)

- Ellentmondásmentesség
- Adatérvényesség
 - Rokon értelmű szó
 - Azonos alakú, de különböző jelentésű szó

Az adatmodellek elemei

Egyed

Tulajdonság

Kapcsolat

Adatmodell típusok

Konkrét dolgok adott nézőpontból tekintett halmaza

DIÁK TANÁR

Tulajdonság (attributum)

Az egyedek jellemzőinek halmaza.

DIÁK(dkód, név, lakcím, tanulmányi átlag, tandíj)

Attributumok

Egyed Egyedi azonosító

Egyedek közti viszony. 3 fajtája van

Egy az egyhez

Egy a többhöz

Több a többhöz

Egy az egyhez (1:1)

Házastársi kapcsolat

Egy a többhöz (1:N)

Több a többhöz (N: M)

DIÁK TANTÁRGY

Adatmodell típusok

Hálós

Hierarchikus

Relációs

Adatmodell = Egyedek, tulajdonságaik és a köztük lévő kapcsolatok logikai sémája

Hálós adatmodell

Adatmodell = gráf
Csomópont = egyed
Él = kapcsolat

Hierarchikus adatmodell

Adatmodell = fa

Relációs adatmodell


```
Egyed = Tábla (reláció)
```

Tulajdonság = Oszlop (mező)

Egyedelőfordulás = Sor (rekord)

Kapcsolat = kulcsokkal (1:1 és 1:N) kapcsolótáblával (N:M)

Példa

(E. F. CODD - 1970)

A kulcs fogalma

- Egyedi kulcs = Egy vagy több tulajdonság, amely egyértelműen azonosít egy rekordot. Ennek alapján beszélhetünk egyszerű vagy összetett kulcsról.
- Elsődleges kulcs = A lehetséges egyedi kulcsok közül az, amelyet azonosítóként megjelölünk.
- Idegen kulcs = Mező, amely egy másik tábla elsődleges kulcsára hivatkozik.

Adatbázis = Az adatmodell fizikai megvalósítása.

Példa a relációs adatmodellre

RENDELÉSEK

Rendelésszám	Cégkód	Termékkód
0125	024	003
0136	019	001
0159	020	003

CÉGEK

Cégkód	Név	Cím
019	Micro BT	Budapest
020	Mega KFT	Vác
021	Super RT	Pécs

TERMÉKEK

Termékkód	Megnevezés	Ár
002	PC	160000
003	Notebook	520000

Tulajdonsághalmazok

```
Kód = {1,2,3,4}
Név = {Bea, Ede, Pál, Ida}
Nyelv = {an, né}
```

Direkt szorzat

```
Név x Nyelv = { (Bea,an), (Bea,né),
 (Ede,an), (Ede,né),
 (Pál,an), (Pál,né),
 (Ida,an), (Ida,né) }
```

Relációk

$$DIAK = \{(1,Bea),(2,Ede),(3,Pai),(4,Ida)\} \subset Kod \times Nev$$

DIÁK

Dkód	Név
1	Bea
2	Ede
3	Pál
4	Ida

Műveletek

- unió: R1 ∪ R2 = (Bea,an),(Ede,an),(Ede,né),(Pál,né)}
- **metszet**: R1 ∩ R3 = {(Ede,an)}
- különbség: R1 \ R3 = {(Bea,an)}
- összekapcsolás: R1 JOIN R2 ⊂ R1 x R2
- projekció: vetítés R oszlopainak részhalmaza
- szelekció: kiválasztás R sorainak részhalmaza
- dekompozíció: táblák szétbontása

Normalizálás

Az adatmodell magasabb normálformára hozása a táblák dekompozíciója révén

- Elsődleges tulajdonság = Az egyed olyan tulajdonsága, amely része az elsődleges kulcsnak.
- Másodlagos tulajdonság = Az egyed olyan tulajdonsága, amely nem része az elsődleges kulcsnak.

Funkcionális függőség

Az egyed B tulajdonsága funkcionálisan függ A-tól, ha A egy értékéhez pontosan egy érték tartozik B-ből, vagyis A funkcionálisan meghatározza B-t.

jelölések:

A → B B funkcionálisan függ A-tól

A → B,C B és C funkcionálisan függ A-tól

A+B → C C funkcionálisan függ A és B-től

Függőségtípusok

 Teljes funkcionális függőség = B funkcionálisan függ az A={A1,A2,...,An} tulajdonsághalmaztól, de nincs egyetlen olyan részhalmaza sem A-nak, amely funkcionálisan meghatározná B-t.

pl.
$$A+B \rightarrow C$$
, de sem $A \rightarrow C$ sem $B \rightarrow C$

 Részleges funkcionális függőség = B funkcionálisan függ az A={A1,A2,...,An} tulajdonsághalmaztól, de van olyan részhalmaza A-nak, amely funkcionálisan meghatározza B-t.

pl.
$$A+B \rightarrow C$$
 , de $A \rightarrow C$ vagy $B \rightarrow C$

 Tranzitív funkcionális függőség = Ha B funkcionálisan függ az Atól, és C funkcionálisan függ B-től, akkor C tranzitíven függ A-tól

pl.
$$A \rightarrow C$$
 , de $\exists B$, hogy $A \rightarrow B$ és $B \rightarrow C$

Normálformák

ONF

1NF

2NF

3NF

0. normálforma

Ez nem is normálforma. Az ilyen tábla nem tekinthető relációnak. Többértékű mezők vannak benne, azaz van olyan másodlagos tulajdonsága, ami funkcionálisan nem függ a kulcstól.

Rszám	Dátum	Cikkszám	Cikk	Ár	Egység	Vevőkód	Vevő	Mennyiség
1	5.8	3	DVD	3000	db	2	Cora	2
2	6.2	1	VC	600	db	2	Tesco	10
2	0.2	2	CD	2000	doboz	3	Tesco	5
3	6.5	2	CD	2200	doboz	1	Metro	10
4	7.0	1	VC	800	415	2	Cara	3
4	7.9	3	DVD	2000	db	2	Cora	1

1. normálforma

Egy tábla (reláció) akkor van 1. normálformában, ha nincsenek benne többértékű mezők, azaz minden másodlagos tulajdonsága funkcionálisan függ a kulcstól. Általában sok redundanciát tartalmaz.

Rszám	Dátum	Cikkszám	Cikk	Ár	Egység	Vevőkód	Vevő	Mennyiség
1	5.8	3	DVD	3000	db	2	Cora	2
2	6.2	1	VC	600	db	3	Tesco	10
2	6.2	2	CD	2000	doboz	3	Tesco	5
3	6.5	2	CD	2200	doboz	1	Metro	10
4	7.9	1	VC	800	db	2	Cora	3
4	7.9	3	DVD	2000	db	2	Cora	1

Funkcionális függőségi diagram

2. normálforma

CIKK

Cikkszám	Cikk	Egység
1	VC	db
2	CD	doboz
3	DVD	db

RENDELĖS

Rszám	Dátum	Vevőkód	Vevő
1	5.8	2	Cora
2	6.2	3	Tesco
3	6.5	1	Metro
4	7.9	2	Cora

TÉTEL

1171111			
Rszám	Cikkszám	Ár	Mennyiség
1	3	3000	2
2	1	600	10
2	2	2000	5
3	2	2200	10
4	1	800	3
4	3	2000	1

Egy tábla (reláció) akkor van 2. normálformában, ha 1. normálformában van, és minden másodlagos tulajdonsága teljesen függ a kulcstól, vagyis nincs benne részleges funkcionális függőség.

3. normálforma

C1	$\mathbb{K}^{\mathbb{K}}$	7
\sim	r_{TZT}	_

Cikkszám	Cikk	Egység
1	VC	db
2	CD	doboz
3	DVD	db

RENDELÉS

Rszám	Dátum	Vevőkód				
1	5.8	2				
2	6.2	3				
3	6.5	1				
4	7.9	2				

TÉTEL

Rszám	Cikkszám	Ár	Mennyiség
1	3	3000	2
2	1	600	10
2	2	2000	5
3	2	2200	10
4	1	800	3
4	3	2000	1

VEVÖ

Vevőkód	Vevő	
1	Metro	
2	Cora	
3	Tesco	

Egy tábla akkor van 3NF-ban, ha 2NF-ban van, és minden másodlagos tulajdonsága csakis a kulcstól függ. Ez azt jelenti, hogy nincs benne tranzitív függőség.