Indefinite Integrals P-Set

Determine if the function F is the general antiderivative of the function f.

1.
$$F(x) = 6x + C$$
; $f(x) = 6$

2.
$$F(x) = \frac{1}{2}x^3 + C$$
; $f(x) = x^2$

2.
$$F(x) = \frac{1}{2}x^3 + C$$
; $f(x) = x^2$ 3. $F(x) = 7x + ex + C$; $f(x) = 7 + e$

Determine each indefinite integral. Don't forget to include the +C at the end!

4.
$$\int x^4 \, dx$$

5.
$$\int x^{2.31} dx$$

$$6. \int \frac{1}{x^3} \, \mathrm{d}x$$

7.
$$\int \sqrt[4]{x^5} \, dx$$

8.
$$\int 0.4x^6 \, dx$$

9.
$$\int (2x+3) dx$$

10.
$$\int (3x^2 + 2x + 10) \, dx$$

8.
$$\int 0.4x^6 dx$$
 9. $\int (2x+3) dx$ 10. $\int (3x^2 + 2x + 10) dx$ 11. $\int \left(\frac{1}{x^2} - \frac{3}{x^3}\right) dx$

12.
$$\int (3x^{-4} + 6x^5) dx$$

13.
$$\int (3+2\sqrt{x}) dx$$

12.
$$\int (3x^{-4} + 6x^5) dx$$
 13. $\int (3 + 2\sqrt{x}) dx$ 14. $\int (\sqrt{x} - 3x^{3/2}) dx$ 15. $\int (2x^{0.13} + 5) dx$

15.
$$\int (2x^{0.13} + 5) dx$$

Key

1. Yes

2. No

6. $-\frac{1}{2x^2} + C$ 7. $\frac{4}{9}x^{9/4} + C$

3. Yes

8. $\frac{2}{35}x^7 + C$

9. $x^2 + 3x + C$

4. $\frac{1}{5}x^5 + C$ 5. $\frac{1}{3.31}x^{3.31} + C$

10. $x^3 + x^2 + 10x + C$ 11. $-\frac{1}{x} + \frac{3}{2x^2} + C$

12. $-x^{-3} + x^6 + C$

13. $3x + \frac{4}{3}x^{3/2} + C$

14. $\frac{2}{3}x^{3/2} - \frac{6}{5}x^{5/2} + C$ 15. $\frac{2}{1.13}x^{1.13} + 5x + C$