Data Findings:

Table	#Customers	#Orders	Sales	
Sales	33,751	33,751	49,159,193.52	
Returns	15,828	15,828	12,772,338.60	

- 1) SALES TABLE HAS NO DUPLICATES PRESENT WHILE RETURNS TABLE HAS **54** DUPLICATE RECORDS.
- 2) SALES TABLE HAS **29,141** UNIQUE CUSTOMER ID'S WHILE RETURNS TABLE HAS **13,487** UNIQUE CUSTOMER ID'S.
- 3) SALES TABLE HAS **33,751** UNIQUE ORDER ID'S WHILE RETURNS TABLE HAS **14,417** UNIQUE ORDER ID'S.
- 4) TRANSACTION DATE RANGES FROM **JAN-1-2015 TO JAN-15-2015**. RETURN DATE RANGES FROM **DEC-30-2014 TO SEPT-9-2016**.
- 5) 3,798 CUSTOMERS PLACED MORE THAN 1 ORDER. 1,851 CUSTOMERS RETURNED MORE THAN 1 ORDER.
- 6) RETURN DATE HAS NO TIME CONSTRAINT. **602** ORDERS ARE RETURNED MORE THAN 30 DAYS AFTER PURCHASING.
- 7) 2 ORDERS HAVE RETURN SALES > SALES.

Data Anomalies:

	#RECORDS
1) ORDER ID IS NOT UNIQUE IN RETURNS TABLE, FEW CUSTOMERS	
ARE ASSIGNED SAME ORDER ID	47
2) CUSTOMERS RETURNED SAME ORDER ID MORE THAN ONCE.	1203
3) RECORDS WITH RETURNED DATE < TRANSACTION DATE.	3
4) RECORDS WITH DIFFERENT CUSTOMER ID FOR SAME ORDERS IN SALES	
AND RETURNS TABLE RESPECTIVELY.	4
5) RETURN DATE HAS NULL VALUES.	20
6) RECORDS WITH MULTIPLE RETURN SALES FOR SAME CUSTOMER IDS	
AND ORDER IDs. ASSUMING THESE AS PARTIAL RETURNS.	1310

```
--SOLUTION CONSIDERING ANOMALIES
--A)What % of sales result in a return?
   --% OF RETURNED SALES = RETURNED SALES/TOTAL SALES
WITH TOTAL RETURNS AS(
   SELECT R.CustomerID, R.OrderID, R.ReturnDate, SUM(R.ReturnSales) AS TOTAL RETURN SALES
   FROM Returns1 R
   GROUP BY R.CustomerID, R.OrderID, R.ReturnDate
SELECT COUNT(DISTINCT T.OrderID)*100.0/ COUNT(DISTINCT S.OrderID) AS PERCENTAGE_RETURN_SALES
FROM Sales1 S
LEFT JOIN TOTAL RETURNS T
                                                                      PERCENTAGE_RETURN_SALES
ON S.CustomerID=T.CustomerID AND S.OrderID=T.OrderID
                                                                       4.225310379566
WHERE S.TransactionDate<=T.ReturnDate OR T.ReturnDate IS NULL
--SOLUTION WITHOUT CONSIDERING ANOMALIES
SELECT COUNT(DISTINCT R.OrderID) *100.0/ COUNT(DISTINCT S.OrderID) AS PERCENT_OF_RETURNED_SALES
FROM Sales1 S
LEFT JOIN Returns1 R
                                                                     PERCENT_OF_RETURNED_SALES
                                                                     4.230985748570
ON S.OrderID=R.OrderID
```

```
--SOLUTION CONSIDERING ANOMALIES
--B) What % of returns are full returns?
   -- % FULL RETURNS = TOTAL FULL RETURN SALES / TOTAL RETURNED SALES
WITH TOTAL_RETURNS AS(
   SELECT R.CustomerID, R.OrderID, R.ReturnDate, SUM(R.ReturnSales) AS TOTAL_RETURN_SALES
   FROM Returns1 R
   GROUP BY R.CustomerID, R.OrderID, R.ReturnDate
SELECT SUM(CASE WHEN S.sales= T.TOTAL_RETURN_SALES THEN 1 ELSE 0 END)*100.0/ COUNT(T.OrderID) AS PERCENTAGE_FULL_RETURN_SALES
FROM Sales1 S
                                                                                     PERCENTAGE_FULL_RETURN_SALES
                                                                                      18.981481481481
INNER JOIN TOTAL RETURNS T
ON S.CustomerID=T.CustomerID AND S.OrderID=T.OrderID AND S.TransactionDate<=T.ReturnDate
 --SOLUTION WITHOUT CONSIDERING ANOMALIES
SELECT SUM(CASE WHEN S.sales= R.Returnsales THEN 1 ELSE 0 END) *100.0/COUNT(R.OrderID) AS PERCENTAGE FULL RETURN SALES
FROM Sales1 S
                                                                                     PERCENTAGE_FULL_RETURN_SALES
INNER JOIN Returns1 R
                                                                                      18.141025641025
ON S.OrderID=R.OrderID
```

```
--SOLUTION CONSIDERING ANOMALIES
```

ON S.OrderID= R.OrderID

```
--C) What is the average return % amount (return % of original sale)?
WITH TOTAL RETURNS AS(
   SELECT R.CustomerID, R.OrderID, R.ReturnDate, SUM(R.ReturnSales) AS TOTAL RETURN SALES
   FROM Returns1 R
   GROUP BY R.CustomerID, R.OrderID, R.ReturnDate
SELECT AVG((T.TOTAL_RETURN_SALES)*100.0/S.Sales) AS AVG_PERCENT_RETURN
                                                                                   AVG_PERCENT_RETURN
FROM SALES1 S
                                                                                    54.493566
INNER JOIN TOTAL RETURNS T
ON S.CustomerID=T.CustomerID AND S.OrderID= T.OrderID AND S.TransactionDate<=T.ReturnDate
--SOLUTION WITHOUT CONSIDERING ANOMALIES
SELECT AVG((ReturnSales)*100.0/Sales) AS AVG_PERCENT_RETURN
                                                                                   AVG_PERCENT_RETURN
FROM SALES1 S
                                                                                   52.88086516869200
INNER JOIN RETURNS1 R
```

```
--D) What % of returns occur within 7 days of the original sale?
    -- = NO.OF RETURNS WITHIN 7 DAYS/ TOTAL RETURNED ORDERS
WITH TOTAL RETURNS AS(
   SELECT R.CustomerID, R.OrderID, R.ReturnDate, SUM(R.ReturnSales) AS TOTAL RETURN SALES
   FROM Returns1 R
   GROUP BY R.CustomerID, R.OrderID, R.ReturnDate
SELECT SUM(CASE
   WHEN T.ReturnDate BETWEEN S.TransactionDate AND DATEADD(DAY, 7,S.TransactionDate) THEN 1 ELSE 0
   END)*100.0/ COUNT(T.OrderID) AS PERCENTAGE SALES RETURNED WITHIN 7DAYS
FROM Sales1 S
                                                                PERCENTAGE_SALES_RETURNED_WITHIN_7DAYS
INNER JOIN TOTAL RETURNS T
                                                                40.726072607260
ON S.CustomerID=T.CustomerID AND S.OrderID=T.OrderID
 --SOLUTION WITHOUT CONSIDERING ANOMALIES
SELECT SUM(CASE
WHEN R.ReturnDate BETWEEN S.TransactionDate AND DATEADD(DAY, 7,S.TransactionDate) THEN 1 ELSE 0
END)*100.0/ COUNT(R.OrderID) AS PERCENTAGE_SALES_RETURNED_WITHIN_7DAYS
FROM Sales1 S
INNER JOIN Returns1 R
                                                                PERCENTAGE_SALES_RETURNED_WITHIN_7DAYS
                                                                39.935897435897
ON S.OrderID=R.OrderID
```

--SOLUTION CONSIDERING ANOMALIES

```
--SOLUTION CONSIDERING ANOMALIES
```

ON S.OrderID=R.OrderID AND S.TransactionDate<=R.ReturnDate

```
-- E) What is the average number of days for a return to occur?
WITH TOTAL_RETURNS AS(
   SELECT R.CustomerID, R.OrderID, R.ReturnDate, SUM(R.ReturnSales) AS TOTAL_RETURN_SALES
   FROM Returns1 R
   GROUP BY R.CustomerID, R.OrderID, R.ReturnDate
SELECT AVG(DATEDIFF(DAY, S. TransactionDate, T. ReturnDate)) AS AVG NO DAYS
FROM SALES1 S
                                                                                             AVG_NO_DAYS
INNER JOIN TOTAL RETURNS T
ON S.CustomerID=T.CustomerID AND S.OrderID=T.OrderID AND S.TransactionDate<=T.ReturnDate
--SOLUTION WITHOUT CONSIDERING ANOMALIES
SELECT AVG(DATEDIFF(DAY, S. TransactionDate, R. ReturnDate)) AS AVG_NO_DAYS
FROM SALES1 S
                                                                                             AVG_NO_DAYS
INNER JOIN RETURNS1 R
```

```
--F) Using this data set, how would you approach and answer the question, who is our most valuable customer?
--APPROACH:
    -- CALCULATE METRICS ( NET SALES, AVERAGE ORDER VALUE, TOTAL ORDERS, RETURN RATE, AVG DAYS BETWEEN EACH ORDER) FOR EACH CUSTOMERS.
    -- CALCULATE AVERAGE OF ALL METRICS FOR EACH CUSTOMER.
    -- CONSIDERED EQUAL WEIGHTS FOR ALL THE METRICS BUT WE CAN ADD DIFFERENT WEIGHTS FOR EACH METRIC BASED ON REQUIREMENT.
    -- CONSIDER CUSTOMERS WHO PLACED ATLEAST 2 ORDERS AND WHO HAVE MULTIPLE TRANSACTION DAYS.
    -- SELECT THE CUSTOMER WITH HIGHEST AVERAGE OF METRICS AS MOST VALUABLE CUSTOMER.
-- SOLUTION CONSIDERING ANOMALIES
| WITH TOTAL RETURNS AS(
    SELECT R.CustomerID, R.OrderID, R.ReturnDate, SUM(R.ReturnSales) AS TOTAL RETURN SALES
    FROM Returns1 R
    GROUP BY R.CustomerID, R.OrderID, R.ReturnDate
 ),CTE1 AS (
    SELECT S.CustomerID, SUM(S.Sales)-SUM(COALESCE(R.TOTAL RETURN SALES,0)) AS NET SALES,
    AVG(S.SALES) AS AOV,
    COUNT(S.OrderID) AS TOTAL ORDERS,
    COUNT(R.OrderID)*1.0/COUNT(S.OrderID) AS RETURN RATE
    FROM Sales1 S
    LEFT JOIN TOTAL RETURNS R
    ON S.CustomerID=R.CustomerID AND S.OrderID=R.OrderID AND S.TransactionDate<=R.ReturnDate
    GROUP BY S.CustomerID
 ),CTE2 AS(
    SELECT CustomerID, SUM(DATEDIFF(DAY, PREV ORDER DATE, TransactionDate))*1.0/ COUNT(*) AS AVG DAYS BTWN ORDER
    FROM
    SELECT CustomerID, TransactionDate, LAG(TransactionDate, 1) OVER(PARTITION BY CustomerID ORDER BY TransactionDate) AS PREV_ORDER_DATE
    FROM Sales1
    ) A
    WHERE PREV_ORDER_DATE IS NOT NULL
    GROUP BY CustomerID
 SELECT TOP 1 C1.CustomerID, C1.NET_SALES, C1.TOTAL_ORDERS, C1.AOV, C1.RETURN_RATE, C2.AVG_DAYS_BTWN_ORDER,
 (C1.NET_SALES + C1.TOTAL_ORDERS + C1.AOV + C1.RETURN_RATE + C2.AVG_DAYS_BTWN_ORDER) / 5.0 AS AVG_OF_METRICS
 FROM CTE1 AS C1
 INNER JOIN CTE2 AS C2
 ON C1.CustomerID=C2.CustomerID
 WHERE AVG DAYS BTWN ORDER !=0 -- CONSIDER CUSTOMERS WHO ORDERS ON MULTIPLE OCCASIONS.
 ORDER BY AVG_OF_METRICS DESC
                                  CustomerID
                                              NET_SALES | TOTAL_ORDERS | AOV
                                                                                      RETURN_RATE
                                                                                                     AVG_DAYS_BTWN_ORDER
                                                                                                                           AVG_OF_METRICS
```

13613.583333 0.33333333333 2.000000000000

10801.932000

HQARS21556 40390.75

--SOLUTION WITHOUT CONSIDERING ANOMALIES

```
WITH CTE1 AS (
   SELECT S.CustomerID, SUM(S.Sales)-SUM(COALESCE(R.ReturnSales,0)) AS NET_SALES,
   AVG(S.SALES) AS AOV,
   COUNT(S.OrderID) AS TOTAL_ORDERS,
   COUNT(R.OrderID)*1.0/COUNT(S.OrderID) AS RETURN_RATE
   FROM Sales1 S
   LEFT JOIN Returns1 R
   ON S.OrderID=R.OrderID
   GROUP BY S.CustomerID
),CTE2 AS(
   SELECT CustomerID, SUM(DATEDIFF(DAY, PREV_ORDER_DATE, TransactionDate))*1.0/ COUNT(*) AS AVG_DAYS_BTWN_ORDER
   FROM
   SELECT CustomerID, TransactionDate, LAG(TransactionDate, 1) OVER(PARTITION BY CustomerID ORDER BY TransactionDate) AS PREV ORDER DATE
   FROM Sales1
   ) A
   WHERE PREV_ORDER_DATE IS NOT NULL
   GROUP BY CustomerID
SELECT TOP 1 C1.CustomerID, C1.NET_SALES, C1.TOTAL_ORDERS, C1.AOV, C1.RETURN_RATE, C2.AVG_DAYS_BTWN_ORDER,
(C1.NET_SALES + C1.TOTAL_ORDERS + C1.AOV + C1.RETURN_RATE + C2.AVG_DAYS_BTWN_ORDER) / 5.0 AS AVG_OF_METRICS
FROM CTE1 AS C1
INNER JOIN CTE2 AS C2
ON C1.CustomerID=C2.CustomerID
WHERE AVG DAYS BTWN ORDER !=0 -- CONSIDER CUSTOMERS WHO ORDERS ON MULTIPLE DAYS.
ORDER BY AVG OF METRICS DESC
```

CustomerID	NET_SALES	TOTAL_ORDERS	AOV	RETURN_RATE	AVG_DAYS_BTWN_ORDER	AVG_OF_METRICS
HQARS21556	40390.75	3	13613.583333	0.333333333333	2.000000000000	10801.932000