Venn Diagram

- The events A and B are such that P(A) = 0.5, P(B) = 0.7 and $P(A \cap B) = 0.2$. Find
 - (a) $P(A \cup B)$
- (b) P(B')
- (c) $P(A' \cap B)$

- The events A and B are such that p(A) = 0.35, p(B) = 0.5 and $p(A \cap B) = 0.15$. Using a Venn diagram (where appropriate) find:
 - (a) p(A')
- (b) $p(A \cup B)$
- (c) $p(A \cup B')$.

- The events A and B are such that p(A) = 0.45, p(B) = 0.7 and $p(A \cap B) = 0.20$. Using a Venn diagram (where appropriate) find:
 - (a) $p(A \cup B)$
- (b) $p(A' \cap B')$
- (c) $p((A \cap B)')$.

Tree Diagram & Conditional Probability

Conditional Probability

Draw Tree Diagram:

The weather forecast says that there is 2% chance of raining. If it rains, the chance of me going to play tennis is 10%. If it does not rain, the chance of me going to play tennis is 80%

Conditional Probability

If A and B are two events, then the conditional probability of event A given event B is

found using

 $\mathrm{P}(A|B) = \frac{\mathrm{P}(A\cap B)}{\mathrm{P}(B)} \ , \, \mathrm{P}(B) \neq 0 \, .$

A and B are independent if, and only if $P(A \cap B) = P(A) \times P(B)$

Given!!!!

Consequence Condition

P(Play Tennis | Rain) =

- Two events A and B are such that p(A) = 0.6, p(B) = 0.4 and $p(A \cap B) = 0.3$. Find the probability of the following events:
 - (a) $A \cup B$
- (b) A|B
- (c) B|A
- (d) A|B'

- A and B are two events such that p(A) = 0.3, p(B) = 0.5 and $p(A \cup B) = 0.55$ Find the probability of the following events:
 - (a) A|B
- (b) B|A
- (c) A|B'
- (d) A'|B'

- 3. Urn A contains 9 cubes of which 4 are red. Urn B contains 5 cubes of which 2 are red. A cube is drawn at random and in succession from each urn.
 - (a) Draw a tree diagram representing this process.
 - (b) Find the probability that both cubes are red.
 - (c) Find the probability that only 1 cube is red.
 - (d) If only 1 cube is red, find the probability that it came from urn A.

- 4. A box contains 5 red, 3 black, and 2 white cubes. A cube is randomly drawn and has its colour noted. The cube is then replaced, together with 2 more of the same colour. A second cube is then drawn.
 - (a) Find the probability that the first cube selected is red.
 - (b) Find the probability that the second cube selected is black.
 - (c) Given that the first cube selected was red, what is the probability that the second cube selected is black?

Probability Distribution

Probability Distribution

List all the possibility you toss a coin 3 times. x = number of heads observed in 3 tosses of a coin.

What can be the value of x?

X		
P(X=x)		

Probability Distribution

1. Find the value of k, so that the random variable X describes a probability distribution.

x	1	2	3	4	5
P(X=x)	0.25	0.20	0.15	k	0.10

Probability Distribution

2. The discrete random variable *Y* has the following probability distribution

у	1	2	3	4
P(Y=y)	β	2β	3β	4β

- (a) Find the value of β .
- (b) Find i. P(Y = 2)

ii. P(Y > 2)

Binomial Distribution

Binomial Distribution

A manufacturer finds that 30% of the items produced from one of the assembly lines are defective. During a floor inspection, the manufacturer selects 6 items from this assembly line. Find the probability that the manufacturer finds

(a) two defectives. (b) at least two defectives.