Дипломна робота на тему

Оцінювання характеристик частково спостережуваного ланцюга Маркова на двійкових послідовностях

Виконав

студент 4 курсу, групи ФІ-91 113 «Прикладна математика» Цибульник А.В.

Науковий керівник

ст. викл. Наказной П. О.

Консультант

к.ф.-м.н., доцент Ніщенко І. І.

Актуальність та мета дослідження

Актуальність: вивчення еволюції систем за частковою інформацією про динаміку їхніх станів, які, своєю чергою, є наборами символів певної довжини (ДНК, мова жестів).

Мета дослідження: за зміною в часі набору функціоналів від двійкових послідовностей побудувати оцінки невідомих параметрів моделі.

План доповіді

🚺 Моделювання об'єкта дослідження

- Побудова оцінок параметрів моделі
- Результати чисельного експерименту

Моделювання об'єкта дослідження

Стан системи — двійкова послідовність довжини N.

Еволюція станів системи за узагальненою моделлю Еренфестів: навмання обраний символ стану X^t з імовірністю p не змінюється, а з імовірністю (1-p) — змінюється.

Наприклад, при N=12

$$x^{t}$$
 $t = 1$ 01**0**011011101
 $t = 2$ 01**1**0110**1**1101
 $t = 3$ 0110110**0**11**0**1
 $t = 4$ 0110110011**0**1

Моделювання об'єкта дослідження

Спостерігаємо набір функціоналів

$$Y^{t} = (Y_{1}^{t}, \dots, Y_{L}^{t}) = \left(\sum_{i \in I_{1}} X_{i}^{t}, \dots, \sum_{i \in I_{L}} X_{i}^{t}\right),$$

де I_1, \ldots, I_L є заданими підмножинами $\{1, 2, \ldots, N\}$.

Наприклад, при
$$N=12$$
, $I_1=(1,2,3)$, $I_2=(6,7,10,11,12)$

$$x^{t}$$
 y^{t}
 $t = 1$ 010011011101 (1,3)
 $t = 2$ 011011011101 (2,3)
 $t = 3$ 011011001101 (2,3)
 $t = 4$ 011011001101 (2,3)

① За наявними частковими спостереженнями $\{Y^t\}_{t=\overline{1,T}}$ про динаміку бінарних послідовностей оцінити керуючий параметр p заданої марковської моделі.

Метод максимальної правдоподібності:

$$\widehat{p} = \underset{p}{\operatorname{argmax}} \sum_{x \in E^T} P(X = x, Y = y | p) \equiv \underset{p}{\operatorname{argmax}} \sum_{x \in E^T} L_{p,x,y}$$

Ітераційний алгоритм Баума-Велша:

$$p^{(n+1)} = \underset{p}{\operatorname{argmax}} Q(p^{(n)}, p) = \underset{p}{\operatorname{argmax}} \sum_{x \in E^{T}} L_{p^{(n)}, x, y} \ln L_{p, x, y}$$

Формула переоцінки параметра p, починаючи з деякого $p^{(0)}$:

$$p^{(n+1)} = p^{(n)} \cdot \frac{\sum_{t=1}^{T-1} \sum_{x \in E} \alpha_t(x) B_{xy^{t+1}} \beta_{t+1}(x)}{\sum_{t=1}^{T-1} \sum_{x \in E} \alpha_t(x) \beta_t(x)},$$

де

$$\alpha_t(x) = P(Y^1 = y^1, \dots, Y^t = y^t, X^t = x \mid p^{(n)})$$

 $\beta_t(x) = P(Y^{t+1} = y^{t+1}, \dots, Y^T = y^T \mid X^t = x, p^{(n)})$

Крім того, побудовано змістовну та незміщену точкову оцінку параметра p за допомогою методу моментів:

$$\widehat{p} = 1 - \frac{N}{\left| \bigcup_{k=1}^{L} I_k \right|} \left(1 - \frac{1}{T-1} \sum_{t=1}^{T-1} \mathbb{1} \left(Y^t = Y^{t+1} \right) \right)$$

② За наявними спостереженнями $\{Y^t\}_{t=\overline{1,T}}$ та оцінкою керуючого параметра $p^{(n)}$ відновити послідовність двійкових наборів.

Алгоритм Вітербі: пошук такої послідовності станів $\widehat{X}^1, \widehat{X}^2, \dots, \widehat{X}^T$, яка найкращим чином описує наявні спостереження:

$$\widehat{X} = \underset{x \in E^{T}}{\operatorname{argmax}} P\left(X = x \mid Y = y, p^{(n)}\right)$$

 $oldsymbol{3}$ За відомими значеннями набору функціоналів від деякої невідомої підмножини I_* стану прихованого ланцюга, оцінити потужність та набір елементів цієї підмножини.

Отже, спостерігаємо значення $Y_{I_*}^t = \sum\limits_{i \in I_*} X_i^t.$

Наприклад, N=12, $I_1=(1,2,3)$, $I_2=(6,7,10,11,12)$, $I_*=?$

$$x^{t}$$
 y^{t} $y_{I_{*}}^{t}$
 $t = 1$ 010011011101 (1,3) 3
 $t = 2$ 011011011101 (2,3) 3
 $t = 3$ 011011001101 (2,3) 2
 $t = 4$ 011011001101 (2,3) 2

За набором спостережуваних «сигналів» $Y_{I_*}^1,\dots,Y_{I_*}^T$, оцінкою параметра $p^{(n)}$ та декодованим ланцюгом станів $\left\{\widehat{X}^t\right\}_{t=\overline{1.T}}$:

• побудовано змістовну та незміщену точкову оцінку потужності множини I_{st} :

$$|\widehat{I_*}| = \frac{N}{1-p} \left(1 - \frac{1}{T-1} \sum_{t=1}^{T-1} \mathbb{1} \left(Y_{I_*}^t = Y_{I_*}^{t+1} \right) \right)$$

ullet розроблено алгоритм визначення компонент множини I_* .

© Спостереження на множинах I_1, \ldots, I_L спотворюються з імовірностями q_1, \ldots, q_L :

$$Y^{t} = \left(Y_{k}^{t}\right)_{k = \overline{1,L}} = \left(\sum_{i \in I_{k}} \widetilde{X}_{i}^{t}\right)_{k = \overline{1,L}}$$

де для $i \in I_k$

$$\widetilde{X}_i^t = egin{cases} 1 - X_i^t, & ext{3 імовірністю } q_k \ X_i^t, & ext{3 імовірністю } 1 - q_k \end{cases}$$

Наприклад, при N=12, $I_1=(1,2,3)$, $I_2=(6,7,10,11,12)$

$$x^{t}$$
 \widetilde{x}^{t} y^{t} q
 $t=1$ 010011011101 000011011101 (0,3) (q_{1},q_{2})
 $t=2$ 011011011101 010011011101 (1,3) (q_{1},q_{2})
 $t=3$ 011011001101 111011001111 (3,4) (q_{1},q_{2})
 $t=4$ 011011001101 011011001000 (2,1) (q_{1},q_{2})

Задача: за спотвореними спостереженнями оцінити керуючий параметр моделі p та вектор ймовірностей спотворення q, використовуючи ітераційний алгоритм Баума-Велша.

Починаючи з деякого наближення $p^{(0)}$ та $q^{(0)}$, формула переоцінки параметра p :

$$p^{(n+1)} = p^{(n)} \cdot \frac{\sum_{t=1}^{T-1} \sum_{x \in E} \alpha_t(x) B_{xy^{t+1}}^{q^{(n)}} \beta_{t+1}(x)}{\sum_{t=1}^{T-1} \sum_{x \in E} \alpha_t(x) \beta_t(x)}$$

Формула переоцінки компонент вектора q:

$$q_k^{(n+1)} = q_k^{(n)} \cdot \frac{\sum_{t=1}^T \sum_{x \in E} \sum_{x' \in E} \alpha_{t-1}(x') A_{x'x}^{(n)} \beta_t(x) \sum_{i \in I_k} P_{x,i,1}^{q^{(n)}}}{|I_k| \sum_{t=1}^T \sum_{x \in E} \alpha_t(x) \beta_t(x)}$$

Було згенеровано прихований ланцюг Маркова протягом T=200 моментів часу, N=5 та p=0.2. Множина спостережуваних індексів $I=\{I_1,I_2\}=\{(2,3),(1,4)\}$:

 За наявними частковими спостереженнями про динаміку бінарних послідовностей оцінено керуючий параметр р :

p	$p^{(12)}$	$ p - p^{(12)} $
0.2	0.1959	0.0041

Для спостережуваних множин I_1, I_2 згенерованого ланцюга було задано такі коефіцієнти спотворення:

• За спотвореними спостереженнями оцінено керуючий параметр моделі p та вектор ймовірностей q :

p	$p^{(53)}$	$ p - p^{(53)} $
0.2	0.2559	0.0559

• За спотвореними спостереженнями оцінено керуючий параметр моделі p та вектор ймовірностей q :

q_1	$q_1^{(53)}$	$ q_1 - q_1^{(53)} $
0.05	0.0454	0.0046

q_2	$q_2^{(53)}$	$ q_2 - q_2^{(53)} $
0.1	0.1184	0.0184

Висновки

Невідомі параметри заданої моделі були оцінені

- або шляхом побудови змістовних та незміщених оцінок за допомогою методу моментів;
- або за допомогою ітераційного алгоритму Баума-Велша.

Результати чисельного експерименту продемонстрували ефективність використаних методів, зокрема збіжність побудованих оцінок до істинних значень параметрів при збільшенні кількості спостережень.

Апробація результатів та публікації

• Цибульник А. В., Ніщенко І. І., XXI Всеукраїнська науково-практична конференція студентів, аспірантів та молодих вчених «Теоретичні і прикладні проблеми фізики, математики та інформатики».

Секція «Математичне моделювання та аналіз даних» (стр. 419—432).

11-12 травня 2023 р., м. Київ.