

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani **Hyderabad Campus**

SECOND SEMESTER 2022 -2023 Course Handout (Part II)

Date: 16/01/2023

Sec 8.1-8.3

In addition to Part I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : MATH F341

Course Title : INTRODUCTION TO FUNCTIONAL ANALYSIS

Instructor-in-Charge: Jhuma Sen Gupta

Name of other Instructor: Anshid Aboobacker and Debarati Mondal

1. Scope and Objective of the Course:

Objective of the course is to present some basic tools of Functional Analysis in a form suitable for Engineers Scientists & Mathematicians. Ideas are not always generated by logical processes. An engineer may have a feeling for a problem which may lead him in a method of solution but justifying part of that needs Analysis. In this course we give such motivation and also cover the analysis part. Several concepts of Functional Analysis were invented as there were needs from other areas such as differential equations, optimization, Integral equations etc. Modern theory of partial differential equations relies heavily on the fundamental tools of Functional Analysis.

2. **Text-book:** Erwin Kreyszig, *Introductory Functional Analysis with Applications*, Reprinted 2010, John Wiley

3.. Reference Books:

- ▶ Bryan P. Rynne et al., Linear Functional Analysis, Springer Undergraduate Mathematics series, 2nd ed. 2008
- S. Kesavan, Functional Analysis, TRIM (52), 2017.
- ▶ John B. Conway., A course in Functional Analysis, John B. Conway, GTM, 2nd ed, 2010.

transformations defined on infinite

dimensional spaces

4. Course Plan:

		12 – 16 Studying continuity of linear		-	Chapter 2:		
Lecture	Le	arner's ol	jæns formations on n	orrogicsite are	chiel appeas, reflexivity	Chapter in	Sec 2.6 -
no.			spaces	_		the Text	2.10
		17 – 18	How a continuous line		Hahn-Banach Theorem and its application	_S Book	Chapter 4:
1-2		view of	defined on a cultispace	careletor spaces	s, dimension, finite dimensional vector	Chapter 1 &	Sec 4.1- 4.3,
	lin	ear Algebi	aextended to the yshole	SBPA€es, Metri	c spaces, space of continuous functions,	Chapter 2:	4.6
		19 – 25			Category theorem, uniform boundedne		Chapter 4:
3-6		roduction	Gontinuoms dinenntan	\$f propations _inc	aftr 9p& ce s ,n b arwehksp &eeverse nescampl@p	ercha Maan ping	Sec 4.7 –
					ூர்ச் இந்த Closed graph theorem	Sec 2.2	4.13
7 – 9	St	idving ni	-continuous linear map operties of mormed homeomorphism	a Properties of	normed linear spaces	Chapter 2 :	1
, ,	lin	ear spaces	Monteomorphism	1 Toperties of	normed inical spaces	Sec 2.3	
	1111	26 - 30	How concept of dot p	roduct can be	Inner Product spaces, Hilbert spaces, ort		Chapter 3
10 – 11	In	vestigating	the equivalence tal	Finite-Dimen	sinnal normed breat spaces and compact.	nichapter 2:	Sec 3.1 –
		rms on	spaces dimensional	sets	functionals on Hilbert space	Sec 2.4 and	3.6
	no	rmed linea	r space		1	2.5	
		31 – 35	Dual of a Hilbert space		Riesz Representation theorem, Symmetric	and self	Chapter 3:
			transpose of a matrix l		adjoint operators		Sec 3.8 -3.10
			generalization to conti	inuous linear]
			transformations in Hil	bert spaces			
		36 - 40	Are there finite rank		Compact linear operators and their spectra	al properties	Chapter 8:

5. Evaluation Scheme:

Sl. No.	Evaluation Component	Duration	Weightage (%)	Date and Time	Nature of Component
1	Mid Semester Test	90 mins	30	15/03 4.00 - 5.30PM	Closed
2	Assignments		10 + 10	There will be two components, one before the mid-semester and one after the mid-semester exam	Open
3	Surprise Quiz		10	One quiz will be conducted at tutorial/lecture hours and will be of surprise nature	Open
4	Comprehensive Exam	180 mins	40	06/05 FN	Closed

- **6. Announcements:** All the announcements in relation to the above course will be put up on CMS.
- 7. Total Marks: 100
- **8. Make up policy:** Make up for the mid-semester/comprehensive examination will be given to the genuine cases.
- **9. Chamber consultation hours:** To be announced in the class.
- **10. Academic Honesty and Integrity Policy**: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

INSTRUCTOR-IN-CHARGE MATH F341