

## UNIVERSIDADE FEDERAL DA GRANDE DOURADOS

## Cálculo Diferencial e Integral — Lista 13 Prof. Adriano Barbosa

(1) Encontre a antiderivada mais geral para as funções abaixo:

(a) 
$$f(x) = x - 3$$

Encourte a all the rivada man  
(a) 
$$f(x) = x - 3$$
  
(b)  $f(x) = \frac{1}{2} + \frac{3}{4}x^2 - \frac{4}{5}x^3$   
(c)  $f(x) = (x+1)(2x-1)$   
(d)  $f(x) = \frac{1+x+x^2}{\sqrt{x}}$   
(e)  $f(x) = 2 \sin x - \sec^2 x$ 

(c) 
$$f(x) = (x+1)(2x-1)$$

(d) 
$$f(x) = \frac{1 + x + x^2}{\sqrt{1 + x^2}}$$

(e) 
$$f(x) = 2 \sin x - \sec^2 x$$

(2) Encontre f tal que:

(a) 
$$f''(x) = 20x^3 - 12x^2 + 6x$$

(b) 
$$f'(x) = 1 + 3\sqrt{x}$$
,  $f(4) = 25$ 

(c) 
$$f'(x) = \sqrt{x(6+5x)}$$
,  $f(1) = 10$ 

(d) 
$$f''(x) = 2 + \cos x$$
,  $f(0) = -1$ ,  $f(\pi/2) = 0$ 

(3) O gráfico de uma função f é dado em cada item. Determine qual dos gráficos a, b ou c é a antiderivada de f.



(4) Como deve ser o gráfico de uma antiderivada de f se o gráfico de f for



- (5) Estime a área abaixo do gráfico de  $f(x) = \cos x$  de x = 0 até  $x = \frac{\pi}{2}$  usando quatro retângulos aproximantes usando os extremos direitos dos subintervalos. Repita o cálculo usando os extremos esquerdos dos subintervalos.
- (6) A velocidade de um corredor aumenta regularmente durante os três primeiros segundos de uma corrida. Sua velocidade em intervalos de meio segundo é dada pela tabela abaixo. Encontre as estimativas superior e inferior para a distância que ele percorreu durante esses três segundos.

| 7 | t (s) | 0 | 0,5 | 1,0 | 1,5 | 2,0 | 2,5 | 3,0 |
|---|-------|---|-----|-----|-----|-----|-----|-----|
| v | (m/s) | 0 | 1,9 | 3,3 | 4,5 | 5,5 | 5,9 | 6,2 |