Tutorial of ST5215

AY2020/2021 Semester 1

22 Oct 2020

- Exercise 1. Let $X_1, X_2,...$ be random variables. Show that $\{|X_n|\}$ is uniformly integrable if one of the following condition holds:
 - (i) $\sup_{n} E |X_n|^{1+\delta} < \infty$ for a $\delta > 0$
 - (ii) $P(|X_n| \ge c) \le P(|X| \ge c)$ for all n and c > 0, where X is an integrable random variable.
- Exercise 2. Let X_1, \ldots, X_n, \ldots be i.i.d. observations. Suppose that $T_n = T(X_{1:n})$ is an unbiased estimator of ϑ based on X_1, \ldots, X_n such that for any n,
 - (a) $Var(T_n) < \infty$,
 - (b) $Var(T_n) \leq Var(U_n)$ for any other unbiased estimator U_n of ϑ based on X_1, \ldots, X_n .

Then T_n is consistent in mse.

Hint. Here $X_{1:n}$ is defined as (X_1, \ldots, X_n) . Consider $T(X_{1:n})$ and $T(X_{(n+1):(2n)})$.

- Exercise 3. Let (X_1, \ldots, X_n) be a random sample of random variables from a population P with $EX_1^2 < \infty$ and \bar{X} be the sample mean. Consider the estimation of $\mu = EX_1$.
 - (i) Let $T_n = \bar{X} + \xi_n$, where ξ_n is a random variable satisfying $\xi_n = 0$ with probability $1 n^{-1}$ and $\xi_n = n$ with probability n^{-1} . Show

- that the bias of T_n is not the same as the asymptotic bias of T_n for any P.
- (ii) Let $T_n = \bar{X} + \eta_n$, where η_n is a random variable that is independent of X_1, \ldots, X_n and equals 0 with probability $1 2n^{-1}$ and ± 1 with probability n^{-1} . Show that the asymptotic mean squared error of T_n , the asymptotic mean squared error of \bar{X} , and the mean squared error of \bar{X} are the same, but the mean squared error of T_n is larger than the mean squared error of \bar{X} for any P.