Chapter 2 Summary

Tina Wang, Paul Luo, Jackson Cong

Investigation 2.4: Population Mean

· Sampling from Finite Population applet (Normal Population)

(1 Number of samples, 47 Sample size)

(1000 Number of samples, 47 Sample size)

Non-normal Population

One Variable with Sampling

(Uniform)

- The sample data come from a well-designed random population or randomized experiment of size n with mean μ and standard deviation, the sampling distribution of sample means has following characters:
 - **Shape**: If the population distribution is **normal**, then so is the sampling distribution of \bar{x} ; If the population distribution **isn't normal**, the sampling distribution of \bar{x} will be approximately **normal** if the sample size is large enough by the central limit theorem (CLT).
 - \circ **Center**: $\mu_{ar{x}}=\mu$ (The sampling mean equals to the population mean)
 - **Spread**: $\sigma_{ar{x}}=rac{\sigma}{\sqrt{n}}$ (The sampling standard deviation equal to $rac{\sigma}{\sqrt{n}}$ of the population SD)
- Central Limit Theorem: The population has a normal distribution or the sample size is large (n ≥ 30), the shape of sampling distribution will be normal. If the population distribution has unknown shape and n < 30, use a graph of the sample data to assess the Normality of the population. Do not use t procedures if the graph shows strong skewness or outliers.

Investigation 2.5: t-test

• Standard deviation of statistic: $SE(\bar{x}) = \frac{s}{\sqrt{n}}$

- To test the hypothesis $H_0: \mu=\mu_0$, compute the one-sample t statistic.

$$t = \frac{\bar{x} - \mu_0}{s_x / \sqrt{n}}$$

• When we perform inference about a population mean m using a t distribution, the appropriate degrees of freedom are found by subtracting 1 from the sample size n, making df (degrees of freedom) = n − 1.

(t distribution with 2 and 9 degrees of freedom, and all are symmetric with center 0)

• Then find the P-value by calculating the probability of getting a t statistic this large or larger in the direction specified by the alternative hypothesis H_a in a t distribution with df= n - 1:

- **P-Value**: The P-value is based on a t-distribution with n 1 degrees of freedom. This value can be estimated in R.
- In R:
 - t.test(x, mu = μ_0 , alternative = "two.sided", conf.level = .95)
 - iscamonesamplet(xbar, sample standard deviation(s), n, hypothesized, alternative, conf.level)

```
is camone samplet (xbar = 98.249, sd = .733, n = 130, hypothesized = 98.6, alternative = "two.si ded", conf.level = .95)
```

```
##
## One Sample t test
##
## mean = 98.249, sd = 0.733, sample size = 130
## Null hypothesis : mu = 98.6
## Alternative hypothesis: mu <> 98.6
## t-statistic: -5.46
```


95 % Confidence interval for mu: (98.1218 , 98.3762) ## p-value: 2.35666e-07

- If P<lpha , then Reject the H_0 , otherwise Fail to Reject H_0 .
- Confidence Interval for μ . (Check the percentage of confidence interval to corresponding t-value) $\bar{x}\pm t^*_{n-1} imes (\frac{s}{\sqrt{n}})$