

## UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE INFORMÁTICA ENGENHARIA DE COMPUTAÇÃO

Análise e Projeto de Algoritmos Problema de Otimização Combinatória

> Gabriel Gonçalves - 11318331 Thiago Gonzaga - 11504760

Orientador: Prof. Dr. Gilberto Farias

#### Resumo

Este artigo propõe uma heurística gulosa chamada "heurística gulosa de grandes passos" e investiga sua aplicação para computar uma solução aproximada para o problema de cobertura máxima. Algoritmos gulosos constroem a solução em múltiplos passos, o algoritmo guloso clássico para o problema de cobertura máxima, em cada etapa seleciona um conjunto que contém o maior número de elementos descobertos. A heurística gulosa de grandes passos, em cada passo seleciona p (1 <= p <= k) conjuntos de tal forma que a união de p conjuntos selecionados contenham o maior número de elementos descobertos, avaliando todas as possíveis combinações p de conjuntos dados. Quando p = k o algoritmo guloso de grandes passos se comporta como um algoritmo exato que calcula a solução ideal avaliando todas as combinações k possíveis dos conjuntos dados. Quando p = 1, ele se comporta como o algoritmo guloso clássico. A heurística gulosa de grandes passos pode ser combinada com métodos de pesquisa local para calcular a melhor solução aproximada.

### Introdução

O problema da cobertura máxima é selecionar k conjuntos  $\{Sx_1, Sx_2, Sx_3, ..., Sx_k\}$  da coleção de conjuntos  $S = \{S_1, S_2, ..., S_n\}$  de forma que o número de elementos na união de k conjuntos selecionados  $|Sx_1 \cup Sx_2 \cup ... \cup Sx_k|$  seja o máximo possível. O problema de cobertura máxima é um problema NP-difícil [1]. Algoritmos gulosos constroem a solução em várias etapas, tomando uma decisão ótima localmente em cada etapa. O algoritmo guloso clássico para o problema de cobertura máxima, em cada etapa, seleciona um conjunto que contém o maior número de elementos descobertos. O algoritmo proposto chamado algoritmo guloso de grandes passos, em cada passo seleciona conjuntos p (1 <= p <= k) de tal forma que a união de p conjuntos selecionados contenha o maior número de elementos descobertos, avaliando todas as possíveis combinações entre os dados conjuntos. Algoritmos de aproximação para o problema da cobertura máxima e problema de cobertura de conjuntos usam técnicas similares. *Grossman* e *Wool* [1] conduziram uma comparação de desempenho de nove algoritmos de aproximação para o problema de cobertura de conjuntos, e descobriram que o algoritmo guloso randomizado é o melhor algoritmo geral entre os nove algoritmos de aproximação.

## Algoritmos de aproximação existentes

O algoritmo guloso clássico para o problema de cobertura máxima é mostrado abaixo. O algoritmo guloso clássico começa com um conjunto vazio, e em cada etapa seleciona um conjunto que contém o maior número de elementos remanescentes descobertos pela solução parcial atual e adiciona o conjunto selecionado para solução parcial.

#### Algoritmo GulosoCoberturaMaxima (S,k)

```
\begin{array}{l} S: \text{Coleção de conjuntos } \{S_1, S_2, \dots S_n\} \\ k: \text{Número de conjuntos a serem selecionados de S} \\ \textbf{begin} \\ C \leftarrow \varphi \\ W \leftarrow S1 \ U \ S2 \ U \ \dots \dots \ U \ Sn \\ S' \leftarrow S \\ & \textbf{while } (|C| < k) \\ & \text{Select T} \in S' \ \text{que maximiza } |T \cap W| \\ & S' \leftarrow S' \setminus \{T\} \\ & C \leftarrow C \ U \ \{T\} \\ & W \leftarrow W \setminus T \\ & \textbf{end while} \\ \\ \text{return C} \\ \textbf{end} \end{array}
```

O processo de adicionar um conjunto à solução parcial é repetido k vezes para selecionar k conjuntos. Hochbaum e Pathria<sup>[3]</sup> fornecem uma análise do algoritmo guloso clássico para o problema de cobertura máxima. Os algoritmos de aproximação anteriores<sup>[4,5,6]</sup> usaram a heurística gulosa para o problema de cobertura de conjuntos. O **exemplo 1** (abaixo) explica o método guloso com a ajuda de uma coleção de conjuntos pequenos e a mesma coleção de conjuntos é usada no **exemplo 2** (abaixo) para explicar o *algoritmo guloso de grandes passos*.

**Exemplo 1**. Seja S =  $\{\{a, b, c, d, e, f\}, \{a, b, c, g, h\}, \{d, e, f, i, j\}, \{g, h, i\}, \{k, l\}\}$  seja a coleção dada de conjuntos e K = 3.

Suponha rótulos para os dados conjuntos  $\mathbf{S}_1 = \{a, b, c, d, e, f\}, \mathbf{S}_2 = \{a, b, c, g, h\}, \mathbf{S}_3 = \{d, e, f, i, j\}, \mathbf{S}_4 = \{g, h, i\}, \mathbf{S}_5 = \{k, l\}.$  Cobertura inicialmente parcial  $C = \{\}$ .

No **primeiro pass**o do algoritmo, entre os cinco conjuntos,  $S_1$  tem seis elementos descobertos {a, b, c, d, e, f} e é melhor que a cobertura dos conjuntos  $S_2$ ,  $S_3$ ,  $S_4$  e  $S_5$ . Então o primeiro passo seleciona  $S_1$  e agora, a cobertura parcial  $C = \{\{a, b, c, d, e, f\}\}$ .

No **segundo passo**,  $S_4$  tem três elementos descobertos  $\{g, h, i\}$ ,  $S_2$  tem dois elementos descobertos  $\{g, h\}$ ,  $S_3$  tem dois elementos descobertos  $\{i, j\}$  e  $S_5$  tem dois elementos descobertos  $\{k, l\}$ . Então, o segundo passo seleciona  $S_4$ , e agora a cobertura parcial  $C = \{\{a, b, c, d, e, f\} \{g, h, i\}\}$ 

No **terceiro passo**,  $S_5$  tem dois elementos descobertos  $\{k, l\}$ ,  $S_2$  não tem elementos descobertos e  $S_3$  tem um elemento  $\{j\}$ . Então, o terceiro passo seleciona  $S_5$ , e a cobertura parcial  $C = \{\{a, b, c, d, e, f\}, \{g, h, i\}, \{k, l\}\}$ .

Agora |C| = 3 e C cobre 11 elementos. *Algoritmos gulosos aleatórios e probabilísticos aproximados*<sup>[7,8,9]</sup> produzem soluções melhores do que o algoritmo guloso clássico para o problema de cobertura de conjuntos. O algoritmo guloso randomizado Grossman e Wool<sup>[2]</sup> é o mesmo que o algoritmo guloso clássico, exceto que os laços são quebrados aleatoriamente e o algoritmo básico é repetido **N** vezes, retornando a melhor solução entre as soluções N. O estudo computacional de Grossman e Wool<sup>[2]</sup> mostrou que o algoritmo guloso randomizado é o melhor algoritmo de aproximação entre os nove algoritmos para o problema de cobertura de conjuntos.

Aickelin<sup>[10]</sup>, Beasley e Chu<sup>[11]</sup> usaram algoritmos genéticos para problemas de cobertura de conjuntos. Gomes<sup>[12]</sup> comparou quatro algoritmos: *Round*, *Dual-LP*, *Primal-Dual* e *Guloso* e concluiu que o algoritmo guloso tem um bom desempenho entre os quatro algoritmos para problemas de cobertura de conjuntos.

O procedimento de busca adaptativa aleatória gulosa (*GRASP*)<sup>[13]</sup> é uma metaheurística iterativa que pode ser aplicada a muitos problemas de otimização combinatória. O *GRASP* em cada iteração constrói uma solução viável usando o método adaptativo guloso randomizado e aplica a pesquisa local para encontrar a solução localmente ideal na vizinhança da solução construída.

DePuy<sup>[14]</sup> propôs uma metaheurística chamada *Meta-RaPS* para resolver problemas combinatórios e DePuyet<sup>[15]</sup> investigou diferenças entre *Meta-RaPS* e *GRASP*. O *Meta-RaPS* foi aplicado para problemas de cobertura de conjuntos e compara-se com os cinco melhores algoritmos usados por Grossman e Wool<sup>[2]</sup>.

Resende<sup>[17]</sup> aplicou o *GRASP* para o problema de cobertura máxima e mostrou que o *GRASP* encontra soluções quase ideais para a maioria dos problemas testados.

## Heurística gulosa de grandes passos

A heurística gulosa de grandes passos começa com uma coleção de conjuntos vazios, em cada passo que ela seleciona p (1 <= p <= k) se estabelece que a união dos conjuntos selecionados contém o maior número de elementos descobertos, avaliando todas as possíveis p combinações de conjuntos restantes e adiciona os p conjuntos selecionados à cobertura de conjunto parcial.

O processo de adicionar p subconjuntos é repetido em k/p vezes. O último passo do algoritmo seleciona menos de p conjuntos quando k não é um múltiplo de p. O algoritmo guloso de grandes passos é mostrado abaixo.

Quando  $\mathbf{p} = \mathbf{k}$ , o algoritmo guloso de grandes passos se comporta como um algoritmo exato que calcula a solução ótima, avaliando todas as combinações k possíveis de conjuntos dados. Quando  $\mathbf{p} = \mathbf{1}$ , ele se comporta como o algoritmo guloso clássico. Quando o tamanho do passo é p, o algoritmo guloso de grandes passos é executado no tempo  $\mathbf{O}$  ( $(k/p) * |S|^p$ ). O **exemplo 2** (abaixo) explica o **algoritmo guloso de grandes passos** com ajuda da coleção de conjuntos usada no **exemplo 1** (acima).

#### **Algoritmo** GulosoDeGrandesPassos (S, k, p)

```
S: Coleção de conjuntos {S<sub>1</sub>, S<sub>2</sub>, ..., S<sub>n</sub>}
k : Número de conjuntos a serem selecionados
p: Passo atual do algoritmo
begin
C \leftarrow \phi
W \leftarrow S_1 U S_2 U ... U S_n
         while (|C| < k)
        if ((k - |C|) < p) then
            q \leftarrow k - |C|
        else
           q \leftarrow p
        end if
Select T = \{T_1, T_2, ..., T_n\}, T \subseteq S\setminus C que maximiza |W \cap (T_1 \cup T_2 \cup ... \cup T_n)|
W \leftarrow W \setminus (T_1 \cup T_2 \cup ... \cup T_n)
C \leftarrow C \cup \{T_1, T_2, ..., T_q\}
  end while
    return C
end
```

**Exemplo 2**. Seja S = {{a, b, c, d, e, f}, {a, b, c, g, h}, {d, e, f, i, j}, {g, h, i}, {k, l}} a coleção de conjuntos, K = 3 e o tamanho do passo do algoritmo é p = 2. E determinam-se os conjuntos  $S_1 = \{a, b, c, d, e, f\}$ ,  $S_2 = \{a, b, c, g, h\}$ ,  $S_3 = \{d, e, f, i, j\}$ ,  $S_4 = \{g, h, i\}$  e  $S_5 = \{k, l\}$ .

Como p = 2, cada etapa do algoritmo escolhe dois conjuntos de modo que a união deles contenha o maior número de elementos descobertos.

Cobertura parcial inicial C = {}.

No **primeiro passo** do algoritmo, os candidatos são  $(S_1, S_2)$ ,  $(S_1, S_3)$ ,  $(S_1, S_4)$   $(S_1, S_5)$ ,  $(S_2, S_3)$ ,  $(S_2, S_4)$ ,  $(S_3, S_4)$ ,  $(S_3, S_5)$  e  $(S_4, S_5)$ ; entre os dez candidatos  $(S_2, S_3)$  é melhor que todos os outros candidatos, pois  $S_2$  U  $S_3$  tem dez elementos descobertos e é maior que o dos outros candidatos. Assim, o **primeiro passo** seleciona  $(S_2, S_3)$  e agora a cobertura parcial  $C = \{\{a, b, c, g, h\} \{d, e, f, i, j\}\}$ .

No **segundo passo**, ele seleciona apenas um conjunto ao invés de dois, pois K = 3 e dois conjuntos  $(S_2, S_3)$  já estão selecionados pelo primeiro passo. Os candidatos são  $S_1$ ,  $S_4$  e  $S_5$ .  $S_5$  tem dois elementos descobertos  $\{k, l\}$ , e  $S_1$  e  $S_2$  não têm nenhum elemento descoberto.

#### **Algoritmo** MelhorDosGrandesPassos-1-2-3-4(S, k)

```
\begin{array}{l} S: \text{Uma coleção de conjuntos } \{S_1, S_2, \dots S_n\} \\ \text{k}: \text{Número de conjuntos a serem selecionados de } S \\ \textbf{begin} \\ \textit{Melhor} \leftarrow \varphi \\ \textbf{for } (p=1 \text{ to } 4) \\ \text{C} \leftarrow \text{GulosoDeGrandesPassos } (S,k,p) \\ \textbf{if } (\mid \text{U Melhor} \mid < \mid \text{U C} \mid) \textbf{ then} \\ \textit{Melhor} \leftarrow \text{C} \\ \textbf{end if} \\ \textbf{end for} \\ \textbf{return Melhor} \\ \textbf{end} \end{array}
```

Então o **segundo passo** seleciona  $S_5$  e agora, finalmente, solução  $C = \{\{a, b, c, g, h\} \{d, e, f, i, j\} \{k, l\}\}$  e C cobre 12 elementos. Isto é melhor que a cobertura dos conjuntos selecionados pelo algoritmo guloso clássico no **Exemplo 1** (acima).

O melhor do *algoritmo dos grandes passos* 1,2,3,4 (BBS-1,2,3,4) mostrado acima calcula quatro soluções aproximadas usando o *algoritmo guloso dos grandes passos* com tamanhos de passo p = 1, 2, 3, 4 e retorna a melhor solução entre as quatro computadas.

A heurística do *algoritmo guloso de grandes passos* não usa pesquisa local e ela pode ser usada na primeira fase das iterações do *GRASP* para construir soluções mais viáveis.

# Resultados experimentais

A heurística gulosa de grandes passos foi comparada ao *algoritmo guloso randomizado*, o melhor algoritmo entre os nove algoritmos testados por Grossman e Wool<sup>[2]</sup>.

A Tabela abaixo fornece a comparação do algoritmo *BS-2* (tamanho de passo p = 2) com o algoritmo guloso clássico e a comparação do algoritmo *BS-4* (tamanho de passo p = 4) com o algoritmo guloso clássico. [*BS = Big Step = Grande Passo*].

| X    | Tamanho da<br>Coleção | Tamanho médio dos<br>subconjuntos | k  | Número de problemas | Guloso | Vs BS-2 | Guloso | Vs BS-4 |
|------|-----------------------|-----------------------------------|----|---------------------|--------|---------|--------|---------|
| 1000 | 100                   | 70                                | 10 | 100                 | 9      | 31      | 9      | 49      |
| 1000 | 100                   | 80                                | 10 | 100                 | 18     | 30      | 16     | 47      |
| 1000 | 150                   | 60                                | 15 | 100                 | 18     | 36      | 17     | 59      |
| 1000 | 150                   | 25                                | 5  | 100                 | 2      | 11      | 5      | 20      |
| 1000 | 150                   | 30                                | 5  | 100                 | 3      | 3       | 3      | 4       |
| 1000 | 150                   | 40                                | 5  | 100                 | 3      | 11      | 3      | 18      |
| 1000 | 150                   | 50                                | 5  | 100                 | 3      | 12      | 1      | 26      |
| 1000 | 150                   | 25                                | 5  | 100                 | 1      | 1       | 3      | 10      |
| 1000 | 150                   | 30                                | 5  | 100                 | 0      | 9       | 0      | 18      |
| 1000 | 150                   | 40                                | 5  | 100                 | 5      | 5       | 4      | 15      |
| 1000 | 150                   | 50                                | 5  | 100                 | 3      | 19      | 1      | 36      |
| 1000 | 150                   | 25                                | 10 | 100                 | 6      | 10      | 9      | 29      |
| 1000 | 150                   | 30                                | 10 | 100                 | 4      | 19      | 1      | 29      |
| 1000 | 150                   | 40                                | 10 | 100                 | 5      | 19      | 8      | 33      |
| 1000 | 150                   | 50                                | 10 | 100                 | 10     | 27      | 3      | 50      |
| 1000 | 150                   | 25                                | 15 | 100                 | 10     | 21      | 8      | 33      |
| 1000 | 150                   | 30                                | 15 | 100                 | 10     | 26      | 14     | 45      |
| 1000 | 150                   | 40                                | 15 | 100                 | 12     | 31      | 12     | 53      |

| 1000 | 150 | 60 | 15 | 100 | 16 | 27 | 10 | 57 |
|------|-----|----|----|-----|----|----|----|----|
| 1000 | 150 | 35 | 20 | 100 | 9  | 29 | 6  | 53 |
| 1000 | 150 | 40 | 20 | 100 | 17 | 21 | 22 | 39 |
| 1000 | 150 | 60 | 20 | 100 | 15 | 35 | 13 | 51 |
| 1000 | 150 | 70 | 5  | 100 | 2  | 14 | 1  | 25 |
| 1000 | 150 | 80 | 5  | 100 | 3  | 12 | 4  | 31 |
| 1000 | 150 | 60 | 5  | 100 | 6  | 12 | 6  | 26 |
| 1000 | 150 | 70 | 10 | 100 | 11 | 29 | 13 | 38 |
| 1000 | 150 | 80 | 10 | 100 | 15 | 30 | 10 | 46 |
| 1000 | 150 | 90 | 10 | 100 | 10 | 26 | 10 | 43 |
| 1000 | 150 | 90 | 5  | 100 | 8  | 23 | 9  | 40 |

Tabela: Guloso vs Guloso de grandes passos em instâncias de problemas randômicos

Na tabela acima,

- "|X|" é o número de elementos no conjunto universal;
- "**Tamanho da Coleção**" é o número de conjuntos na coleção definida *S* da instância do problema;
- "k" é o número de conjuntos a serem selecionados da coleção de conjuntos;
- "**Número de problemas**" é o número de problemas usados para comparação de desempenho;
- "Vs BS-2" ao lado de "Guloso Vs BS-2" é o número de ocorrências de problemas para qual a *heurística gulosa de grandes passos* com p = 2 está computando soluções aproximadas melhores do que o algoritmo guloso clássico;
- "**Guloso**" ao lado de "**Guloso Vs BS-2**" representa o número de instâncias de problema que o algoritmo guloso clássico está computando melhores soluções do que a *heurística* gulosa de grandes passos com p = 2.
- As duas colunas em "Greedy Vs BS-4" têm um significado semelhante às colunas em "Greedy Vs BS-2".

| X    | Tamanho<br>da Coleção | Tamanho<br>médio dos<br>subconjuntos | k  | Número de problemas | Guloso-R | Vs BS-3 | Guloso-R | Vs BS-4 |
|------|-----------------------|--------------------------------------|----|---------------------|----------|---------|----------|---------|
| 1000 | 100                   | 70                                   | 10 | 100                 | 16       | 32      | 19       | 39      |
| 1000 | 100                   | 80                                   | 10 | 100                 | 34       | 27      | 30       | 28      |

| 1000       150       60       15       100       49       15       37         1000       150       25       5       100       11       6       11         1000       150       30       5       100       4       2       10         1000       150       40       5       100       8       5       8         1000       150       50       5       100       6       16       4         1000       150       25       5       100       6       1       9         1000       150       30       5       100       9       1       4         1000       150       40       5       100       7       6       8         1000       150       50       5       100       3       11       1 | 32<br>10<br>3<br>9<br>16<br>5<br>5<br>8<br>26 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| 1000       150       30       5       100       4       2       10         1000       150       40       5       100       8       5       8         1000       150       50       5       100       6       16       4         1000       150       25       5       100       6       1       9         1000       150       30       5       100       9       1       4         1000       150       40       5       100       7       6       8                                                                                                                                                                                                                                      | 3<br>9<br>16<br>5<br>5                        |
| 1000     150     40     5     100     8     5     8       1000     150     50     5     100     6     16     4       1000     150     25     5     100     6     1     9       1000     150     30     5     100     9     1     4       1000     150     40     5     100     7     6     8                                                                                                                                                                                                                                                                                                                                                                                               | 9<br>16<br>5<br>5                             |
| 1000     150     50     5     100     6     16     4       1000     150     25     5     100     6     1     9       1000     150     30     5     100     9     1     4       1000     150     40     5     100     7     6     8                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16<br>5<br>5                                  |
| 1000         150         25         5         100         6         1         9           1000         150         30         5         100         9         1         4           1000         150         40         5         100         7         6         8                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 5 8                                         |
| 1000     150     30     5     100     9     1     4       1000     150     40     5     100     7     6     8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                             |
| 1000 150 40 5 100 7 6 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                               |
| 1000 150 50 5 100 3 11 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 26                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                               |
| 1000     150     25     10     100     26     2     26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6                                             |
| 1000 150 30 10 100 23 7 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7                                             |
| 1000 150 40 10 100 26 15 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12                                            |
| 1000 150 50 10 100 27 15 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23                                            |
| 1000 150 25 15 100 49 5 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9                                             |
| 1000 150 30 15 100 38 7 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                                             |
| 1000 150 40 15 100 42 14 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17                                            |
| 1000 150 60 15 100 45 14 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23                                            |
| 1000 150 35 20 100 52 6 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11                                            |
| 1000 150 40 20 100 55 8 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                                            |
| 1000 150 60 20 100 62 10 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14                                            |
| 1000 150 70 5 100 9 11 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17                                            |
| 1000 150 80 5 100 8 19 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25                                            |
| 1000 150 60 5 100 9 14 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17                                            |
| 1000 150 70 10 100 23 19 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17                                            |
| 1000 150 80 10 100 21 25 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28                                            |
| 1000 150 90 10 100 32 20 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27                                            |

| 1000         150         90         5         100         17         26         15 |
|------------------------------------------------------------------------------------|
|------------------------------------------------------------------------------------|

Tabela 2: Guloso randomizado vs Guloso de grandes passos

Entre o **BS-2** (grandes passos com p = 2) e o algoritmo guloso clássico, o **BS-2** computou melhores soluções aproximadas do que o **algoritmo guloso clássico** para 21% dos problemas, e o **algoritmo guloso clássico** apresentou melhor desempenho que o **BS-2** para 8 % dos problemas.

Entre o **BS-4** (grande passo com p = 4) e o **algoritmo guloso clássico**, o **BS-4** computou melhores soluções aproximadas do que o **algoritmo guloso clássico** para 36% dos problemas, e o **algoritmo guloso clássico** apresentou melhor desempenho que o **BS-4** para 8 % dos problemas.

A **Tabela 2** (abaixo) fornece a comparação de desempenho do **algoritmo guloso randomizado** com N = 20 e o algoritmo guloso de grandes passos **BS-3** (com tamanho de passo p = 3) e o grande algoritmo **BS-4** (com tamanho de passo p = 4) em 3000 problemas gerados aleatoriamente instâncias.

Entre o **BS-3** (grande passo com p = 3) e o **algoritmo guloso randomizado**, o **BS-3** calculou melhores soluções aproximadas do que o **algoritmo guloso randomizado** para 13% dos problemas, e o **algoritmo guloso randomizado** foi melhoro que o **BS-3** para 25% dos problemas.

E entre o **BS-4** (grande passo com p = 4) e o **algoritmo guloso randomizado**, o **BS-4** calculou melhores soluções aproximadas do que o **algoritmo guloso randomizado** para 17% dos problemas, e o **algoritmo guloso randomizado** foi melhor que o **BS-4** para 22% dos os problemas.

| ΙΧΙ  | Tamanho da<br>Coleção | Tamanho médio<br>dos subconjuntos | k  | Número de problemas | Guloso-R | Vs Melhor<br>de BS-1,2,3,4 |
|------|-----------------------|-----------------------------------|----|---------------------|----------|----------------------------|
| 1000 | 100                   | 70                                | 10 | 100                 | 7        | 47                         |
| 1000 | 100                   | 80                                | 10 | 100                 | 7        | 38                         |
| 1000 | 150                   | 60                                | 15 | 100                 | 18       | 35                         |
| 1000 | 150                   | 25                                | 5  | 100                 | 2        | 10                         |
| 1000 | 150                   | 30                                | 5  | 100                 | 2        | 4                          |
| 1000 | 150                   | 40                                | 5  | 100                 | 2        | 10                         |
| 1000 | 150                   | 50                                | 5  | 100                 | 0        | 22                         |

| 1000 | 150 | 25                           | 5  | 100 | 4  | 6  |
|------|-----|------------------------------|----|-----|----|----|
| 1000 | 150 | 30                           | 5  | 100 | 2  | 5  |
| 1000 | 150 | 40                           | 5  | 100 | 3  | 11 |
| 1000 | 150 | 50                           | 5  | 100 | 0  | 28 |
| 1000 | 150 | 25                           | 10 | 100 | 10 | 7  |
| 1000 | 150 | 30                           | 10 | 100 | 10 | 10 |
| 1000 | 150 | 40                           | 10 | 100 | 12 | 22 |
| 1000 | 150 | 50                           | 10 | 100 | 10 | 28 |
| 1000 | 150 | 25                           | 15 | 100 | 32 | 12 |
| 1000 | 150 | 30                           | 15 | 100 | 23 | 11 |
| 1000 | 150 | 40                           | 15 | 100 | 18 | 23 |
| 1000 | 150 | 60                           | 15 | 100 | 25 | 26 |
| 1000 | 150 | 35                           | 20 | 100 | 30 | 12 |
| 1000 | 150 | 40                           | 20 | 100 | 29 | 16 |
| 1000 | 150 | 60                           | 20 | 100 | 36 | 21 |
| 1000 | 150 | 70                           | 5  | 100 | 3  | 21 |
| 1000 | 150 | 80                           | 5  | 100 | 2  | 31 |
| 1000 | 150 | 60                           | 5  | 100 | 2  | 22 |
| 1000 | 150 | 70                           | 10 | 100 | 9  | 27 |
| 1000 | 150 | 80                           | 10 | 100 | 3  | 36 |
| 1000 | 150 | 90                           | 10 | 100 | 11 | 39 |
| 1000 | 150 | 90                           | 5  | 100 | 3  | 38 |
|      |     | 90<br>vs Melhor de grandes p |    |     | 3  | 38 |

Tabela 3: Guloso randomizado vs Melhor de grandes passos 1,2,3,4

A **Tabela 3** fornece comparação de desempenho do algoritmo **MelhorDosGrandesPassos** (BBS-1,2,3,4) e do **algoritmo guloso randomizado** em 3000 instâncias de problemas gerados aleatoriamente. O algoritmo **BBS-1,2,3,4** computou melhores soluções aproximadas para 22% dos problemas e o **algoritmo guloso randomizado** computou melhores soluções aproximadas para 11% dos problemas.

#### Conclusão

Esta pesquisa propôs uma nova heurística gulosa chamada heurística gulosa de grande passo. O algoritmo guloso de grande passo foi comparado com o algoritmo guloso clássico e o algoritmo guloso randomizado [2]. Experimentos em muitos casos de problema de cobertura máxima mostraram que o algoritmo guloso de grande passo com p = 2, p = 3 e p = 4 computa soluções aproximadas melhores que o algoritmo guloso clássico em muitos casos. À medida que o tamanho do passo p é aumentado, o algoritmo guloso de grande passo computou melhores soluções aproximadas do que o algoritmo guloso clássico.

O algoritmo guloso randomizado com 20 repetições calculou melhor solução aproximada do que o algoritmo guloso de grande passo com tamanho de passo p = 3 e com tamanho de passo p = 4 na média. O algoritmo **MelhorDosGrandesPassos** 1,2,3,4 computou melhor solução aproximada do que o algoritmo guloso randomizado com 20 repetições na média. O algoritmo **MelhorDosGrandesPassos** proposto neste trabalho pode ser combinado com métodos de busca local para encontrar uma solução aproximada.

#### Referências

- [1] Karp, R.M., "Reducibility Among Combinatorial Problems", Complexity of Computer Computations, Plenum Press (1972).
- [2] Tal Grossman, Avishai Wool, "Computational experience with approximation algorithms for the set covering problem", European journal of operational research 101, 81-92 (1997).
- [3] Dorit S. Hochbaum, Anu Pathria "Analysis of the Greedy Approach in Problems of Maximum kCoverage", Naval Research Logistics, Vol. 45, 615-627 (1998).
- [4] Chvatal, V. "A Greedy Heuristic for the Set-Covering Problem", Mathematics of Operations Research, 4(3), 223-235 (1979).
- [5] Johnson, D.S., "Approximation algorithms for combinatorial problems", Journal of Computer System Science 9,256-278 (1974).
- [6] Lovasz L, "On the ratio of optimal integral and fractional cover", Discrete Mathematics, 13,383-390 (1975).
- [7] Haouari, M., Chaouachi, J.S., "A probabilistic greedy search algorithm for combinatorial optimization with application to the set covering problem", Journal of the Operational Research Society 53, 792-799 (2002).
- [8] Vasko, F.J., Wilson, G.R., "An efficient heuristic for large set covering problems" Naval Research Logistics Quarterly 31, 163-171 (1984).
- [9] Feo, T., Resende, M.G.C., "A probabilistic heuristic for a computationally difficult set covering problem", Operations Research Letters 8, 67-71 (1989).
- [10] Aickelin, U., "An indirect genetic algorithm for set covering problems", Journal of the Operational Research Society 53, 1118-1126 (2002).
- [11] Beasley, J.E., Chu, P.C., "A genetic algorithm for the set covering problem", European Journal of Operational Research 94, 392-404 (1996).
- [12] J Fernando C. Gomes, Claudio N. Meneses, Panos M. Pardalos, Gerardo Valdisio R. Viana, "Experimental Analysis of Approximation Algorithms for the Vertex Cover and Set Covering Problems", Computers & Operations Research, 33, 3520-3534 (2006).
- [13] T. A. Feo and M. G. C. Resende., "Greedy randomized adaptive search procedures. Journal of Global Optimization", 6, 109-133, (1995).

- [14] DePuy, G.W., Whitehouse, G.E., Moraga, R.J., "Using the meta-raps approach to solve combinatorial problems", In Proceedings of the 2002 Industrial Engineering Research Conference, vol. 19, p. 21 (2002).
- [15] DePuy, G.W., Moraga, R.J., Whitehouse, G., 'MetaRaPS: A simple and effective approach for solving the traveling salesman problem", Transportation Research Part E: Logistics and Transportation Review 41 (2), 115- 130 (2005).
- [16] G. Lan, G. W. DePuy, and G. E.Whitehouse, "An effective and simple heuristic for the set covering problem," European Journal of Operational Research, vol. 176, no. 3, pp. 1387-1403 (2007).
- [17] Mauricio G.C. Resende, "Computing Approximate Solutions of the Maximum Covering Problem with GRASP", Journal of Heuristics, Vol 4, Issue 2, 161-177 (1998).