GIẢI BÀI TẬP TOÁN RỜI RẠC 2 – CHƯƠNG 4

Câu hỏi 1

Cho đồ thị G = <V, E> gồm 7 đỉnh được biểu diễn dưới dạng ma trận trọng số như sau

	1	2	3	<mark>4</mark>	<mark>5</mark>	<mark>6</mark>	<mark>7</mark>
1	0	20	5	17	8	8	8
2 3	20	0	8	1	8	8	1
3	5	8	0	25	3	10	8
<mark>4</mark>	17	1	25	0	15	8	8
4 5 6	8	8	3	15	0	1	8
<mark>6</mark>	8	8	10	8	1	0	1
<mark>7</mark>	8	1	8	8	8	1	0

- a) Sử dụng thuật toán Dijkstra, tìm đường đi ngắn nhất xuất phát từ đỉnh 1 của đồ thị G đã cho, chỉ rõ kết quả tại mỗi bước thực hiện theo thuật toán.
- b) Dựa trên kết quả a), tìm đường đi ngắn nhất từ đỉnh 1 đến đỉnh 7 của đồ thị G đã cho.

Giải

a) Sử dụng thuật toán Dijkstra, tìm đường đi ngắn nhất xuất phát từ đỉnh 1:

Số đỉnh n = 7; s = 1.

Lập bảng:

Bước	d[1] e[1]	d[2] e[2]	d[3] e[3]	d[4] e[4]	d[5] e[5]	d[6] e[6]	d[7] e[7]	Đỉnh được gán nhãn
1	0 0	20 1	5 1	17 1	<u>∞ 1</u>	<mark>∞ 1</mark>	<mark>∞ 1</mark>	1
2		20 1	5 1	17 3	8 3	15 3	∞ 1	3
3		20 1		17 1	8 3	<mark>9 5</mark>	∞ 1	5
4		20 1		17 1		9 5	10 6	6
5		11 7		17 1			10 6	7
6		11 7		12 2				2
7				12 2				4

b) Tìm đường đi ngắn nhất từ đỉnh 1 đến đỉnh 7

$$s = 1; t = 7:$$

Đường đi ngắn nhất từ 1 đến 7: $7 \leftarrow 6 \leftarrow 5 \leftarrow 3 \leftarrow 1$ với độ dài d[7]= 10.

c) Tìm đường đi ngắn nhất từ đỉnh 1 đến đỉnh 4:

$$s = 1; t = 4:$$

Đường đi ngắn nhất từ 1 đến 4: $4 \leftarrow 2 \leftarrow 7 \leftarrow 6 \leftarrow 5 \leftarrow 3 \leftarrow 1$ với độ dài d[4]= 12.

	1	2	3	<mark>4</mark>	<mark>5</mark>	<mark>6</mark>	<mark>7</mark>
1	0	10	15	20	60	1	8
2	8	0	3	8	8	8	30
<mark>3</mark>	8	8	0	25	1	8	45
4	8	10	25	0	35	8	8
5 6	8	2	3	8	0	1	3
<mark>6</mark>	8	8	1	1	8	0	25
<mark>7</mark>	8	1	8	30	8	1	0

- a) Sử dụng dụng thuật toán Dijkstra, tìm đường đi ngắn nhất từ đỉnh 7 đến đỉnh 4 của đồ thị G đã cho, chỉ rõ kết quả tại mỗi bước thực hiện theo thuật toán.
- b) Sử dụng dụng thuật toán Dijkstra, tìm đường đi ngắn nhất từ đỉnh 1 đến đỉnh 5 của đồ thị G đã cho, chỉ rõ kết quả tại mỗi bước thực hiện theo thuật toán.

<u>Câu hỏi 3</u> Cho đồ thị G = <V, E> gồm 7 đỉnh được biểu diễn dưới dạng ma trận trọng số như sau

	1	2	3	<mark>4</mark>	<mark>5</mark>	<mark>6</mark>	<mark>7</mark>
1	0	15	8	8	8	1	39
2	8	0	2	8	8	8	8
3	8	8	0	2	10	8	8
<mark>4</mark>	8	7	8	0	8	8	5
<mark>5</mark>	8	-2	8	4	0	8	8
<mark>6</mark>	8	14	8	8	-5	0	20
<mark>7</mark>	2	2	8	8	8	8	0

- a) Sử dụng thuật toán Bellman-Ford, tìm đường đi ngắn nhất xuất phát từ đỉnh 1 của đồ thị G đã cho, chỉ rõ kết quả tại mỗi bước thực hiện theo thuật toán
- b) Dựa trên kết quả a), tìm đường đi ngắn nhất từ đỉnh 1 đến đỉnh 7 của đồ thị G đã cho.

Giải

a) Sử dụng thuật toán Bellman-Ford, tìm đường đi ngắn nhất xuất phát từ đỉnh 1: Số đỉnh n = 7; s = 1.

Liệt kê cạnh nối đến các đỉnh:

1	2	3	4	5	6	7
$7 \rightarrow 1 (2)$	$1 \rightarrow 2 (15)$	$2 \rightarrow 3 (2)$	$3 \rightarrow 4(2)$	$3 \rightarrow 5 (10)$	$1 \rightarrow 6 (1)$	$1 \rightarrow 7 (39)$
	$4 \rightarrow 2 (7)$		$5 \rightarrow 4 (4)$	$6 \rightarrow 5 (-5)$		$4 \rightarrow 7 (5)$
	$5 \rightarrow 2 (-2)$					$6 \to 7 (20)$
	$6 \rightarrow 2 (14)$					
	$7 \rightarrow 2(2)$					

Lập bảng:

Bước	d[1] e[1]	d[2] e[2]	d[3] e[3]	d[4] e[4]	d[5] e[5]	d[6] e[6]	d[7] e[7]	ok?
Khởi tạo	0 0	15 1	<mark>∞ 1</mark>	<mark>∞ 1</mark>	<mark>∞ 1</mark>	1 1	39 1	<mark>O</mark>
1	0 0	15 1	17 2	19 3	-4 6	1 1	21 6	0
2	0 0	-6 5	-4 2	-2 3	-4 6	1 1	3 4	0
3	0 0	-6 5	-4 2	-2 3	-4 6	1 1	3 4	1

b) Tìm đường đi ngắn nhất từ đỉnh 1 đến đỉnh 7 $s=1;\,t=7:$

Đường đi ngắn nhất từ 1 đến 7: $7 \leftarrow 4 \leftarrow 3 \leftarrow 2 \leftarrow 5 \leftarrow 6 \leftarrow 1$ với độ dài d[7]= 3.

<u>Câu hỏi 4</u> Cho đồ thị G = <V, E> gồm 7 đỉnh được biểu diễn dưới dạng ma trận trọng số như sau

	1	2	3	<mark>4</mark>	<mark>5</mark>	<mark>6</mark>	<mark>7</mark>
1	0	25	8	27	8	30	8
2	25	0	8	8	1	8	15
3	8	8	0	15	3	1	8
<mark>4</mark>	27	8	15	0	25	8	8
<u>5</u>	8	1	3	25	0	8	8
<mark>6</mark>	8	∞	1	8	8	0	1
<mark>7</mark>	8	15	8	8	8	1	0

- a) Sử dụng thuật toán Bellman-Ford, tìm đường đi ngắn nhất xuất phat từ đỉnh 2 của đồ thị G đã cho, chỉ rõ kết quả tại mỗi bước thực hiện theo thuật toán
- b) Dựa trên kết quả a), tìm đường đi ngắn nhất từ đỉnh 2 đến đỉnh 6 của đồ thị G đã cho.

Giải

a) Sử dụng thuật toán Bellman-Ford, tìm đường đi ngắn nhất xuất phát từ đỉnh 2: Số đỉnh n = 7; s = 2.

Liệt kê cạnh nối đến các đỉnh:

1	2	3	4	5	6	7
$2 \rightarrow 1 (25)$	$1 \rightarrow 2 (25)$	$4 \rightarrow 3 (15)$	$1 \rightarrow 4 (27)$	$2 \rightarrow 5 (1)$	$1 \rightarrow 6 (30)$	$2 \rightarrow 7 (15)$
$4 \rightarrow 1 (27)$	$5 \rightarrow 2 (1)$	$5 \rightarrow 3 (3)$	$3 \rightarrow 4 (15)$	$3 \rightarrow 5 (3)$	$3 \rightarrow 6 (1)$	$6 \rightarrow 7 (1)$
	$7 \rightarrow 2 (15)$	$6 \rightarrow 3 (1)$	$5 \rightarrow 4 (25)$	$4 \rightarrow 5 (25)$	$7 \rightarrow 6 (1)$	

Lập bảng:

Bước	d[1] e[1]	d[2] e[2]	d[3] e[3]	d[4] e[4]	d[5] e[5]	d[6] e[6]	d[7] e[7]	ok?
Khởi tạo	25 2	0 0	<mark>∞ 2</mark>	$\infty \mid 2$	1 2	<mark>∞ 2</mark>	15 2	0
1	<mark>25 2</mark>	0 0	<u>4 5</u>	<mark>19 3</mark>	1 2	<mark>5 3</mark>	<mark>6 6</mark>	0
2	<mark>25 2</mark>	0 0	<u>4 5</u>	<mark>19 3</mark>	1 2	5 3	<mark>6 6</mark>	1

b) Tìm đường đi ngắn nhất từ đỉnh 2 đến đỉnh 7

s=2; t=7:

Đường đi ngắn nhất từ 2 đến 7: $7 \leftarrow 6 \leftarrow 3 \leftarrow 5 \leftarrow 2$ với độ dài d[7]= 6.

	1	2	<mark>3</mark>	<mark>4</mark>	<mark>5</mark>	<mark>6</mark>
1	0	15	5	20	∞	∞
2	1	0	∞	17	10	∞
3	∞	∞	0	2	∞	50
4	15	1	∞	0	∞	70
<u>5</u>	20	30	∞	10	0	10
<mark>6</mark>	∞	18	∞	23	20	0

- a) Sử dụng thuật toán Floyd, tìm đường đi ngắn nhất giữa các đỉnh của đồ thị G đã cho, chỉ rõ kết quả tại mỗi bước thực hiện theo thuật toán
- b) Dựa trên kết quả a), tìm đường đi ngắn nhất giữa các cặp đỉnh (1, 2), (2, 1) và (3, 4) của đồ thị G đã cho.

Giải

a) Sử dụng thuật toán Floyd, tìm đường đi ngắn nhất giữa các đỉnh của đồ thị G: $S\hat{o}$ đỉnh n = 6.

Lập bảng:

Khởi tạo:

	1	2	3	4	5	6
1	0 1	15 1	5 1	20 1	$\infty 1$	$\infty 1$
2	1 2	0 2	$\infty 2$	17 2	10 2	$\infty 2$
3	$\infty 3$	$\infty 3$	0 3	2 3	$\infty 3$	50 3
4	15 4	1 4	$\infty 4$	0 4	<mark>∞ 4</mark>	<mark>70 4</mark>
<u>5</u>	20 5	30 5	∞ 5	10 5	0 5	10 5
6	<mark>∞ 6</mark>	18 6	<mark>∞ 6</mark>	23 6	<mark>20 6</mark>	<mark>0 6</mark>

gi nguyên hàng 1, ct 1

	1	2	3	4	5	6
1	0 1	15 1	5 1	20 1	$\infty 1$	$\infty 1$
2	1 2	0 2	<mark>6 1</mark>	17 2	10 2	$\infty 2$
3	$\infty 3$	$\infty 3$	0 3	2 3	$\infty 3$	50 3
4	15 4	1 4	20 1	0 4	$\infty 4$	70 4
5	20 5	30 5	25 1	10 5	0 5	10 5
<mark>6</mark>	∞ 6	18 6	∞ 6	23 6	20 6	0 6

k = 2:	1 2 3 4 5 6	$ \begin{array}{c c} 1 \\ 0 1 \\ 1 2 \\ \infty 3 \\ 2 2 \\ 20 5 \\ 19 2 \end{array} $	2 15 1 0 2 ∞ 3 1 4 30 5 18 6	3 5 1 6 1 0 3 7 2 25 1 24 2	4 20 1 17 2 2 3 0 4 10 5 23 6	5 25 2 10 2 ∞ 3 11 2 0 5 20 6	6 ∞ 1 ∞ 2 50 3 70 4 10 5 0 6
k = 3:	1 2 3 4 5 6	1 0 1 1 2 ∞ 3 2 2 20 5 19 2	2 15 1 0 2 ∞ 3 1 4 30 5 18 6	3 5 1 6 1 0 3 7 2 25 1 24 2	4 7 3 8 3 2 3 0 4 10 5 23 6	5 25 2 10 2 ∞ 3 11 2 0 5 20 6	6 55 3 56 3 50 3 57 3 10 5 0 6
k = 4:	1 2 3 4 5 6	1 0 1 1 2 4 4 2 2 12 4 19 2	2 8 4 0 2 3 4 1 4 11 4 18 6	3 5 1 6 1 0 3 7 2 17 4 24 2	4 7 3 8 3 2 3 0 4 10 5 23 6	5 18 4 10 2 13 4 11 2 0 5 20 6	6 55 3 56 3 50 3 57 3 10 5 0 6

k = 5:

	1	2	3	4	5	6
1	0 1	8 4	5 1	7 3	18 4	<mark>28 5</mark>
2	1 2	0 2	6 1	8 3	10 2	<mark>20 5</mark>
<mark>3</mark>	4 4	3 4	0 3	2 3	13 4	<mark>23 5</mark>
<mark>4</mark>	2 2	1 4	6 2	0 4	11 2	<mark>21 5</mark>
<mark>5</mark>	12 4	11 4	17 4	10 5	0 5	10 5
<mark>6</mark>	19 2	18 6	24 2	23 6	20 6	0 6

k = 6:

	1	2	3	4	5	6
1	0 1	8 4	5 1	7 3	19 4	28 5
2	1 2	0 2	6 1	8 3	10 2	20 5
3	4 4	3 4	0 3	2 3	13 4	23 5
4	2 2	1 4	6 2	0 4	11 2	21 5
<u>5</u>	12 4	11 4	17 4	10 5	0 5	10 5
<u>6</u>	19 2	18 6	24 2	23 6	20 6	0 6

b) Dựa trên kết quả a), tìm đường đi ngắn nhất giữa các cặp đỉnh (1, 2), (2, 1) và (3, 4) của đồ thị G đã cho:

Đường đi ngắn nhất từ i=1 đến j=2: $2 \leftarrow 4 \leftarrow 3 \leftarrow 1$ với độ dài d[1][2] = 8. Đường đi ngắn nhất từ i=2 đến j=1: $1 \leftarrow 2$ với độ dài d[2][1] = 1. Đường đi ngắn nhất từ i=3 đến j=4: $4 \leftarrow 3$ với độ dài d[3][4] = 2.

	1	2	3	<mark>4</mark>	<mark>5</mark>	<mark>6</mark>	<mark>7</mark>
1	0	15	8	8	8	1	39
2	8	0	2	8	8	8	8
3	8	8	0	2	10	8	8
4	8	7	8	0	8	8	5
<mark>5</mark>	8	-2	8	4	0	8	8
<mark>6</mark>	8	14	8	8	-5	0	20
<mark>7</mark>	2	2	8	8	8	8	0

- a) Sử dụng thuật toán Floyd, tìm đường đi ngắn nhất giữa các đỉnh của đồ thị G đã cho, chỉ rõ kết quả tại mỗi bước thực hiện theo thuật toán
- b) Dựa trên kết quả a), tìm đường đi ngắn nhất giữa các cặp đỉnh (1, 2), (1, 6) và (5, 6) của đồ thị G đã cho.