

AMENDMENTS TO THE CLAIMS

The following **Listing of Claims** will replace all prior versions, and listings of claims in the application.

1. **(CURRENTLY AMENDED)** A pharmaceutical composition comprising:
a pharmaceutically acceptable carrier, adjuvant or vehicle; and
a therapeutically effective amount of a compound having the structure:

(I)

or pharmaceutically acceptable salt thereof;

wherein **R₁** and **R₂** are each independently hydrogen, halogen, -CN, -S(O)₁₋₂R^{1A}, -NO₂, -COR^{1A}, -CO₂R^{1A}, -NR^{1A}C(=O)R^{1B}, -NR^{1A}C(=O)OR^{1B}, -CONR^{1A}R^{1B}, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety, or -WR^{1A}; wherein W is independently -O-, -S- or -NR^{1C}-; wherein each occurrence of R^{1A}, R^{1B} and R^{1C} is independently hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; or R₁ and R₂, taken together with the carbon atoms to which they are attached, form an alicyclic, heteroalicyclic, aryl or heteroaryl moiety;

R₃ is hydrogen, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; or a prodrug moiety or an oxygen protecting group;

R₄ is halogen, -OR^{4A}, -OC(=O)R^{4A} or -NR^{4A}R^{4B}; wherein R^{4A} and R^{4B} are independently hydrogen, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; a prodrug moiety, a nitrogen protecting group or an oxygen protecting group; or R^{4A} and R^{4B}, taken together with the nitrogen atom to which they are attached, form a heterocyclic or heteroaryl moiety;

R₅ is hydrogen, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety;

R₆ is hydrogen, halogen, -CN, -S(O)₁₋₂R^{6A}, -NO₂, -COR^{6A}, -CO₂R^{6A}, -NR^{6A}C(=O)R^{6B}, -NR^{6A}C(=O)OR^{6B}, -CONR^{6A}R^{6B}, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety, or -WR^{6A}; wherein W is independently -O-, -S- or -NR^{6C}-; wherein each occurrence of R^{6A}, R^{6B} and R^{6C} is independently hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or

heteroaryl moiety; or R₆ and R_c, taken together with the carbon atoms to which they are attached, form an alicyclic, heteroalicyclic, aryl or heteroaryl moiety;

R_a and each occurrence of R_b are independently hydrogen, halogen, -CN, -S(O)₁₋₂R^{a1}, -NO₂, -COR^{a1}, -CO₂R^{a1}, -NR^{a1}C(=O)R^{a2}, -NR^{a1}C(=O)OR^{a2}, -CONR^{a1}R^{a2}, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety, or -WR^{a1}; wherein W is independently -O-, -S- or -NR^{a3}-; wherein each occurrence of R^{a1}, R^{a2} and R^{a3} is independently hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; or R_a and the adjacent occurrence of R_b, taken together with the carbon atoms to which they are attached, form an alicyclic, heteroalicyclic, aryl or heteroaryl moiety;

R_c is hydrogen, halogen, -CN, -S(O)₁₋₂R^{c1}, -NO₂, -COR^{c1}, -CO₂R^{c1}, -NR^{c1}C(=O)R^{c2}, -NR^{c1}C(=O)OR^{c2}, -CONR^{c1}R^{c2}; an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety, or -WR^{c1}; wherein W is independently -O-, -S- or -NR^{c3}-; wherein each occurrence of R^{c1}, R^{c2} and R^{c3} is independently hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; or R_c and R₆, taken together with the carbon atoms to which they are attached, form an alicyclic, heteroalicyclic, aryl or heteroaryl moiety;

n is an integer from 1 to 5;

X₁ is O, S, NR^{X1} or CR^{X1}R^{X2}; wherein R^{X1} and R^{X2} are independently hydrogen, halogen, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety, or a nitrogen protecting group;

Q is hydrogen, halogen, -CN, -S(O)₁₋₂R^{Q1}, -NO₂, -COR^{Q1}, -CO₂R^{Q1}, -NR^{Q1}C(=O)R^{Q2}, -NR^{Q1}C(=O)OR^{Q2}, -CONR^{Q1}R^{Q2}; an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety, or -WR^{Q1}; wherein W is independently -O-, -S- or -NR^{Q3}-; wherein each occurrence of R^{Q1}, R^{Q2} and R^{Q3} is independently hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; and

Y₁ and Y₂ are independently hydrogen, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; or -WR^{Y1}; wherein W is independently -O-, -S- or -NR^{Y2}-; wherein each occurrence of R^{Y1} and R^{Y2} is independently hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; or Y₁ and Y₂ together with the carbon atom to which they are attached form a moiety having the structure:

whereby the composition is formulated for administration to a subject at a dosage between about 0.1 mg/kg to about 50 mg/kg of body weight.

with the proviso that the compound does not have the following structure:

2. **(ORIGINAL)** The composition of claim 1, wherein the dosage is between about 1 mg/kg to about 50 mg/kg of body weight.
3. **(ORIGINAL)** The composition of claim 1, wherein the dosage is between about 0.1 mg/kg to about 40 mg/kg of body weight.
4. **(ORIGINAL)** The composition of claim 1, wherein the dosage is between about 1 mg/kg to about 40 mg/kg of body weight.
5. **(ORIGINAL)** The composition of claim 1, wherein the dosage is between about 0.1 mg/kg to about 30 mg/kg of body weight.
6. **(ORIGINAL)** The composition of claim 1, wherein the dosage is between about 5 mg/kg to about 30 mg/kg of body weight.
7. **(ORIGINAL)** The composition of claim 1, wherein the dosage is between about 1 mg/kg to about 30 mg/kg of body weight.
8. **(ORIGINAL)** The composition of claim 1, wherein the dosage is between about 0.1 mg/kg to about 20 mg/kg of body weight.

9. (ORIGINAL) The composition of claim 1, wherein the dosage is between about 1 mg/kg to about 20 mg/kg of body weight.

10. (ORIGINAL) The composition of claim 1, wherein the dosage is 10 mg/kg or greater of body weight.

11. (ORIGINAL) The composition of claim 1, wherein:

R₁ and **R**₂ are each independently hydrogen or substituted or unsubstituted lower alkyl; or **R**₁ and **R**₂, taken together with the carbon atoms to which they are attached, form an epoxide, an aziridine or a substituted or unsubstituted cyclopropyl moiety;

R₃ is hydrogen, or substituted or unsubstituted lower alkyl or aryl; a prodrug moiety or an oxygen protecting group;

R₄ is halogen, -OR^{4A}, -OC(=O)R^{4A} or -NR^{4A}R^{4B}; wherein R^{4A} and R^{4B} are independently hydrogen, or substituted or unsubstituted lower alkyl; a prodrug moiety, a nitrogen protecting group or an oxygen protecting group; or R^{4A} and R^{4B}, taken together with the nitrogen atom to which they are attached, form a heterocyclic or heteroaryl moiety; or R₄, taken together with the carbon atom to which it

is attached forms a moiety having the structure:

R₅ and **R**₆ are each independently hydrogen or substituted or unsubstituted lower alkyl; or R₆ and R_c, taken together with the carbon atoms to which they are attached, form an epoxide, an aziridine or a substituted or unsubstituted cyclopropyl moiety;

R_a and each occurrence of **R**_b are independently hydrogen, halogen, alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl moiety, or -WR^{a1}; wherein W is independently -O-, -S- or -NR^{a3}-; wherein each occurrence of R^{a1}, and R^{a3} is independently hydrogen, or an alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl moiety; or R_a and the adjacent occurrence of R_b, taken together, form an epoxide, an aziridine or a substituted or unsubstituted cyclopropyl moiety;

R_c is hydrogen, halogen, alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl moiety, or -WR^{c1}; wherein W is independently -O-, -S- or -NR^{c3}-; wherein each occurrence of R^{c1} and R^{c3} is independently hydrogen, or an alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl

moiety; or R_c and R₆, taken together with the carbon atoms to which they are attached, form an epoxide, an aziridine or a substituted or unsubstituted cyclopropyl moiety;

n is an integer from 1 to 5;

X₁ is O, S, NR^{X1} or CR^{X1}R^{X2}; wherein R^{X1} and R^{X2} are independently hydrogen, halogen, substituted or unsubstituted alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl, or a nitrogen protecting group;

Q is hydrogen, halogen, -CN, -S(O)₁₋₂R^{Q1}, -NO₂, -COR^{Q1}, -CO₂R^{Q1}, -NR^{Q1}C(=O)R^{Q2}, -NR^{Q1}C(=O)OR^{Q2}, -CONR^{Q1}R^{Q2}, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety, or -WR^{Q1}; wherein W is independently -O-, -S- or -NR^{Q3}-; wherein each occurrence of R^{Q1}, R^{Q2} and R^{Q3} is independently hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety;

Y₁ and Y₂ are independently hydrogen, an alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl moiety; or -WR^{Y1}; wherein W is independently -O-, -S- or -NR^{Y2}-; wherein each occurrence of R^{Y1} and R^{Y2} is independently hydrogen, or an alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl moiety; or Y₁ and Y₂ together with the carbon atom to which they are attached form a moiety

12. (ORIGINAL) The composition of claim 1, wherein R_a, R_b and R_c are each hydrogen, and the compound has one of the following structures:

wherein R₁-R₆, Y₂, X₁, n and Q are as defined in claim 1; W is O or NH; and R^{Y1} is hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety.

13. (ORIGINAL) The composition of claim 1, wherein R_a, R_b and R_c are each hydrogen, Q is a carbonyl-containing moiety and the compound has one of the following structures:

wherein R₁-R₆, Y₂, X₁, and n are as defined in claim 1; W is O or NH; and R^{Z1} is hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; R₇ is a substituted or unsubstituted lower alkyl or heteroalkyl moiety; R₈ is a substituted or unsubstituted alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl moiety; and Alk is a substituted or unsubstituted C₀-alkylidene or C₀₋₆alkenylidene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl.

14. **(ORIGINAL)** The composition of claim 1, wherein R_a, R_b and R_c are each hydrogen, n is 3 and the compound has one of the following structures:

wherein R₁-R₆, Y₂, Q and X₁ are as defined in claim 1; W is O or NH; and R^{Z1} is hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety.

15. **(ORIGINAL)** The composition of claim 1, wherein R_a, R_b and R_c are each hydrogen, n is 3, Q is a carbonyl-containing moiety, and the compound has one of the following structures:

wherein R₁-R₆, X₁ and Y₂ are as defined in claim 1; W is O or NH; R^{Z1} is hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; R₇ is a substituted or unsubstituted lower alkyl or heteroalkyl moiety; R₈ is a substituted or unsubstituted alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl moiety; and Alk is a substituted or unsubstituted C₀-alkylidene or C₀₋₆alkenylidene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl; and R₈ is a substituted or unsubstituted alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl moiety.

16. **(PREVIOUSLY PRESENTED)** The composition of claim 1, wherein R₁ and R₂ are each hydrogen.
17. **(PREVIOUSLY PRESENTED)** The composition of claim 1, wherein R₅ and R₆ are each methyl.
18. **(PREVIOUSLY PRESENTED)** The composition of claim 1, wherein R₃ is lower alkyl.
19. **(ORIGINAL)** The composition of claim 18, wherein R₃ is methyl.
20. **(PREVIOUSLY PRESENTED)** The composition of claim 1, wherein R₄ is OH, NH₂ or halogen.
21. **(ORIGINAL)** The composition of claim 13 or 15, wherein R₇ is lower alkyl.
22. **(ORIGINAL)** The composition of claim 21, wherein R₇ is methyl.
23. **(PREVIOUSLY PRESENTED)** The composition of claim 1, wherein Q has the structure:

wherein R₇ is a substituted or unsubstituted, linear or branched, cyclic or acyclic lower alkyl moiety; R₈ is a substituted or unsubstituted carbocyclic, heterocyclic, aryl or heteroaryl moiety; and X, Y and Z are independently a bond, -O-, -S-, -C(=O)-, -NR^{Z1}-, -CHOR^{Z1}, -CHNR^{Z1}R^{Z2}, C=S, C=N(R^{Y1}) or -CH(Hal); or a substituted or unsubstituted C₀₋₆alkylidene or C₀₋₆alkenylidene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein Hal is a halogen selected from F, Cl, Br and I; and each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl; or R^{Z1} and R^{Z2}, taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety; and pharmaceutically acceptable derivatives thereof.

24. **(ORIGINAL)** The composition of claim 23, wherein Q has the structure:

wherein R₇ is a substituted or unsubstituted, linear or branched, cyclic or acyclic lower alkyl moiety; R₈ is a substituted or unsubstituted carbocyclic, heterocyclic, aryl or heteroaryl moiety; and R^Y is hydrogen, halogen, -OR^{Y1} or -NR^{Y1}NR^{Y2}; wherein R^{Y1} and R^{Y2} are independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl, or R^{Y1} and R^{Y2}, taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety.

25. **(PREVIOUSLY PRESENTED)** The composition of claim 13, wherein R₈ is one of:

wherein p is an integer from 0 to 5; q is 1 or 2, r is an integer from 1 to 6; each occurrence of R^{8A} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl, -(alkyl)aryl or -(alkyl)heteroaryl, -OR^{8C}, -SR^{8C}, -N(R^{8C})₂, -SO₂N(R^{8C})₂, -(C=O)N(R^{8C})₂, halogen, -CN, -NO₂, -(C=O)OR^{8C}, -N(R^{8C})(C=O)R^{8D}, wherein each occurrence of R^{8C} and R^{8D} is independently hydrogen, lower alkyl, lower heteroalkyl, aryl, heteroaryl, -(alkyl)aryl or -(alkyl)heteroaryl; and each occurrence of R^{8B} is independently hydrogen or lower alkyl.

26. (ORIGINAL) The composition of claim 25, wherein R₈ has the structure:

wherein R^{8B} is hydrogen or lower alkyl.

27. (PREVIOUSLY PRESENTED) The composition of claim 1 wherein n is 3.

28. (PREVIOUSLY PRESENTED) The composition of claim 12 wherein Y₁ is OR^{Y1} and Y₂ is lower alkyl; wherein R^{Y1} is hydrogen or lower alkyl.

29. (ORIGINAL) The composition of claim 28, wherein Y₁ is OH and Y₂ is CF₃.

30. **(ORIGINAL)** The composition of claim 11 wherein R_a, R_b and R_c are each hydrogen, and the compound has one of the structures:

or pharmaceutically acceptable derivative thereof;

wherein R₃-R₆, n and Q are as defined in claim 1; and Y₂ and R^{Y1} are independently hydrogen or lower alkyl.

31. **(ORIGINAL)** The composition of claim 1 wherein the compound has the structure:

or pharmaceutically acceptable derivative thereof;

wherein R₃-R₆ and Q are as defined in claim 11; and Y₂ and R^{Y1} are independently hydrogen or lower alkyl.

32. **(ORIGINAL)** The composition of claim 11 wherein the compound has the structure:

or pharmaceutically acceptable derivative thereof;

wherein R₃-R₆ and n are as defined in claim 11; Y₂ and R^{Y1} are independently hydrogen or lower alkyl; R₇ is a substituted or unsubstituted, linear or branched, cyclic or acyclic lower alkyl moiety; R^{8B} is hydrogen or lower alkyl; and X, Y and Z are independently a bond, -O-, -S-, -C(=O)-, -NR^{Z1}-, -CHOR^{Z1}, -CHNR^{Z1}R^{Z2}, C=S, C=N(R^{Y1}) or -CH(Hal); or a substituted or unsubstituted C₀₋₆alkylidene or C₀₋₆alkenylidene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein Hal is a halogen selected from F, Cl, Br and I; and each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl; or R^{Z1} and R^{Z2}, taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety.

33. (ORIGINAL) The composition of claim 11 wherein the compound has the structure:

or pharmaceutically acceptable derivative thereof;

wherein R₃-R₆ are as defined in claim 11; Y₂ and R^{Y1} are independently hydrogen or lower alkyl; R₇ is a substituted or unsubstituted, linear or branched, cyclic or acyclic lower alkyl moiety; R^{8B} is hydrogen or lower alkyl; and X, Y and Z are independently a bond, -O-, -S-, -C(=O)-, -NR^{Z1}-, -CHOR^{Z1}, -CHNR^{Z1}R^{Z2}, C=S, C=N(R^{Y1}) or -CH(Hal); or a substituted or unsubstituted C₀₋₆alkylidene or C₀₋₆alkenylidene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein Hal is a halogen selected from F, Cl, Br and I; and each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl; or R^{Z1} and R^{Z2}, taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety.

34. (ORIGINAL) The composition of claim 32 or 33, wherein -X-Y-Z together represents the moiety -CH₂-Y-CH₂-; wherein Y is -CHOR^{Y1}, -CHNR^{Y1}R^{Y2}, C=O, C=S, C=N(R^{Y1}) or -CH(Hal); wherein Hal is

a halogen selected from F, Cl, Br and I; and R^{Y1} and R^{Y2} are independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl, or R^{Y1} and R^{Y2}, taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety.

35. (ORIGINAL) The composition of claim 11 wherein the compound has the structure:

wherein R₃-R₆ and n are as defined in claim 11; Y₂ and R^{Y1} are independently hydrogen or lower alkyl; R₇ is a substituted or unsubstituted, linear or branched, cyclic or acyclic lower alkyl moiety; R^{8B} is hydrogen or lower alkyl; and Y is -CHOR^{Y1}, -CHNR^{Y1}R^{Y2}, C=O, C=S, C=N(R^{Y1}) or -CH(Hal); wherein Hal is a halogen selected from F, Cl, Br and I; and R^{Y1} and R^{Y2} are independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl, or R^{Y1} and R^{Y2}, taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety.

36. (ORIGINAL) The composition of claim 11 wherein the compound has the structure:

wherein R₃-R₆ are as defined in claim 11; Y₂ and R^{Y1} are independently hydrogen or lower alkyl; R₇ is a substituted or unsubstituted, linear or branched, cyclic or acyclic lower alkyl moiety; R^{8B} is hydrogen or lower alkyl; and Y is -CHOR^{Y1}, -CHNR^{Y1}R^{Y2}, C=O, C=S, C=N(R^{Y1}) or -CH(Hal); wherein Hal is a halogen selected from F, Cl, Br and I; and R^{Y1} and R^{Y2} are independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl, or R^{Y1} and R^{Y2}, taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety.

37. (ORIGINAL) The composition of claim 11 wherein the compound has the structure:

wherein n, R₃ and R₄ are as defined in claim 11; Y₂ and R^{Y1} are independently hydrogen or lower alkyl; R^{8B} is hydrogen or lower alkyl; and R^Y is hydrogen, halogen, -OR^{Y1} or -NR^{Y1}NR^{Y2}; wherein R^{Y1} and R^{Y2} are independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl, or R^{Y1} and R^{Y2}, taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety.

38. (ORIGINAL) The composition of claim 11 wherein the compound has the structure:

wherein R₃ and R₄ are as defined in claim 11; Y₂ and R^{Y₁} are independently hydrogen or lower alkyl; R^{8B} is hydrogen or lower alkyl; and R^Y is hydrogen, halogen, -OR^{Y₁} or -NR^{Y₁}NR^{Y₂}; wherein R^{Y₁} and R^{Y₂} are independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl, or R^{Y₁} and R^{Y₂}, taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety.

39. (ORIGINAL) The composition of claim 11 wherein the compound has the structure:

wherein R₃-R₆ and n are as defined in claim 11; Y₂ and R^{Y1} are independently hydrogen or lower alkyl; R₇ is a substituted or unsubstituted, linear or branched, cyclic or acyclic lower alkyl moiety; and R^{8B} is hydrogen or lower alkyl.

40. (ORIGINAL) The composition of claim 11 wherein the compound has the structure:

wherein R₃-R₆ are as defined in claim 11; Y₂ and R^{Y1} are independently hydrogen or lower alkyl; R₇ is a substituted or unsubstituted, linear or branched, cyclic or acyclic lower alkyl moiety; and R^{8B} is hydrogen or lower alkyl.

41. (ORIGINAL) The composition of claim 11 wherein the compound has the following structure:

or a pharmaceutically acceptable salt thereof;

wherein X₁ is CH₂, NH or O;

Y₁ and Y₂ are independently OH, C(R^{Y1})₃ or Y₁ and Y₂ taken together with the carbon atom to which they are attached are -C=O, wherein R^{Y1} is halo;

R₆ is H or lower alkyl;

R₅ is H or lower alkyl;

R₄ is OH; and

R₃ is alkyl.

42. **(ORIGINAL)** The composition of claim 41 wherein the compound has one of the following structures:

43. **(ORIGINAL)** The composition of claim 1, wherein the compound is present in an amount effective to inhibit metastasis of tumor cells.

44. **(ORIGINAL)** The composition of claim 1, wherein the compound is present in an amount effective to inhibit angiogenesis.

45. **(ORIGINAL)** The composition of claim 1, further comprising a cytotoxic agent.

46. **(ORIGINAL)** The composition of claim 45, wherein the cytotoxic agent is an anticancer agent.

47. **(ORIGINAL)** The composition of claim 1, further comprising a palliative agent.

48. **(ORIGINAL)** A method for treating breast tumor metastasis in a subject comprising:
administering to a subject in need thereof a therapeutically effective amount of the composition of claim 1.

49. (ORIGINAL) The method of claim 48, wherein the dosage is between about 1 mg/kg to about 50 mg/kg of body weight.

50. (ORIGINAL) The method of claim 48, wherein the dosage is between about 0.1 mg/kg to about 40 mg/kg of body weight.

51. (ORIGINAL) The method of claim 48, wherein the dosage is between about 1 mg/kg to about 40 mg/kg of body weight.

52. (ORIGINAL) The method of claim 48, wherein the dosage is between about 0.1 mg/kg to about 30 mg/kg of body weight.

53. (ORIGINAL) The method of claim 48, wherein the dosage is between about 1 mg/kg to about 30 mg/kg of body weight.

54. (ORIGINAL) The method of claim 48, wherein the dosage is between about 5 mg/kg to about 30 mg/kg of body weight.

55. (ORIGINAL) The method of claim 48, wherein the dosage is between about 0.1 mg/kg to about 20 mg/kg of body weight.

56. (ORIGINAL) The method of claim 48, wherein the dosage is between about 1 mg/kg to about 20 mg/kg of body weight.

57. (ORIGINAL) The method of claim 48, wherein the dosage is 10 mg/kg or greater of body weight.

58. (ORIGINAL) The method of claim 48 wherein in the composition, the compound has one of the following structures:

59. **(ORIGINAL)** The method of claim 58, wherein the composition is administered at a dosage between about 10 mg/kg to about 20 mg/kg of body weight.
60. **(ORIGINAL)** The method of claim 48, further comprising administering a cytotoxic agent.
61. **(ORIGINAL)** The method of claim 60, wherein the cytotoxic agent is an anticancer agent.
62. **(ORIGINAL)** The method of claim 48, further comprising administering a palliative agent.