

Curso: Engenharia Elétrica - Semestre: 2023.2 Disciplina: Sistemas Elétricos de Potência Professor: Raphael Paulo Braga Poubel

Campus Nova Gameleira - Belo Horizonte

Trabalho 1 – Sistemas Elétricos de Potência

Implementação de computacional do cálculo do fluxo linear de carga

Nome: Victor Daniel Oliveira Gaete

1. Implementação

Foi usado o MATLAB para a implementação, utilizando as notas de aula e ajuda de recursos externos. O código pode ser encontrado no apêndice, bem como todas as referências para a criação do algoritmo implementado,

2. Resultados

a. IEEE 14 Barras

Resultados utilizando a referência para a barra 1

i. Theta

	IEEE 14 Barras						
Barra	Pd =80%	Pd = 100%	Pd = 120%				
1	0.0000	0	0				
2	-0.0660	-0.0875	-0.109				
3	-0.1774	-0.2262	-0.2749				
4	-0.1447	-0.1849	-0.225				
5	-0.124	-0.1586	-0.1932				
6	-0.2088	-0.2647	-0.3206				
7	-0.1933	-0.2455	-0.2977				
8	-0.1933	-0.2455	-0.2977				
9	-0.2188	-0.2774	-0.3359				
10	-0.223	-0.2826	-0.3422				
11	-0.2188	-0.2772	-0.3357				
12	-0.2242	-0.284	-0.3438				
13	-0.2265	-0.2869	-0.3472				
14	-0.2403	-0.3042	-0.3681				

Tabela 1 – Valores de theta para cada barramento e em cada nível de carga para sistema de 14 barras.

ii. Pkm

IEEE 14 Barras								
Linhas	Pd =80% Pd = 100% Pd = 120%							
1	1.116	1.4788	1.8416					
2	0.556	0.7112	0.8664					
3	0.5626	0.7005	0.8384					
4	0.4464	0.5523	0.6581					
5	0.3334	0.409	0.4847					
6	-0.191	-0.2415	-0.292					
7	-0.4923	-0.6234	-0.7545					
8	0.2321	0.2899	0.3476					
9	0.1332	0.1663	0.1994					
10	0.3363	0.4208	0.5054					
11	0.0502	0.063	0.0759					
12	0.0603	0.0755	0.0906					
13	0.1362	0.1703	0.2045					
14	0	0	0					
15	0.2321	0.2899	0.3476					
16	0.0498	0.062	0.0741					
17	0.0795	0.0992	0.1189					
18	-0.0222	-0.028	-0.0339					
19	0.0115	0.0145	0.0174					
20	0.0397	0.0498	0.0599					

Tabela 2 – Valores de Pkm para cada barramento e em cada nível de carga para sistema de 14 barras. iii. Discussão

Curso: Engenharia Elétrica - Semestre: 2023.2 Disciplina: Sistemas Elétricos de Potência Professor: Raphael Paulo Braga Poubel

Campus Nova Gameleira - Belo Horizonte

Figura 2 – Gráfico de dispersão do Fluxo de potência em relação a variação da carga

Observa-se que o aumento e a diminuição da carga causam um deslocamento da mediana do theta, em sistemas com a carga mais leve tendem a ter um defasamento menor, bem como uma concentração maior dos valores, como se pode observar no primeiro e terceiro quartil. De forma análoga para cargas mais altas, há um defasamento maior e uma maior amplitude dos valores distribuídos. Semelhantemente para o gráfico de fluxo de potência, em menores cargas a mediana se aproxima mais para o zero, e a amplitude entre os quartis diminui, e para cargas maiores a mediana se eleva ligeiramente mas o efeito mais visível é a amplitude de valores entre os quartis.

b. IEEE 33 Barrasi. Theta

IEEE 33 Barras							
Barra	Pd =90%	Pd = 100%	Pd = 110%				
1	-0.001	-0.0011	-0.0012				
2	-0.0056	-0.0062	-0.0068				
3	-0.0079	-0.0088	-0.0097				
4	-0.0102	-0.0113	-0.0125				
5	-0.0184	-0.0204	-0.0225				
6	-0.0221	-0.0246	-0.027				
7	-0.0233	-0.0258	-0.0284				
8	-0.0261	-0.029	-0.0319				
9	-0.0286	-0.0318	-0.035				
10	-0.0288	-0.032	-0.0352				
11	-0.0292	-0.0324	-0.0357				
12	-0.0321	-0.0357	-0.0392				

Curso: Engenharia Elétrica - Semestre: 2023.2 Disciplina: Sistemas Elétricos de Potência Professor: Raphael Paulo Braga Poubel

Campus Nova Gameleira – Belo Horizonte

13	-0.0337	-0.0374	-0.0411
14	-0.0345	-0.0383	-0.0421
15	-0.0351	-0.039	-0.0429
16	-0.0366	-0.0406	-0.0447
17	-0.0368	-0.0409	-0.045
18	-0.0013	-0.0014	-0.0016
19	-0.0034	-0.0037	-0.0041
20	-0.0038	-0.0043	-0.0047
21	-0.0043	-0.0048	-0.0053
22	-0.0072	-0.008	-0.0088
23	-0.0105	-0.0117	-0.0129
24	-0.0122	-0.0135	-0.0149
25	-0.0189	-0.021	-0.0231
26	-0.0196	-0.0218	-0.024
27	-0.0238	-0.0264	-0.0291
28	-0.0267	-0.0297	-0.0326
29	-0.0276	-0.0307	-0.0337
30	-0.0299	-0.0332	-0.0365
31	-0.0304	-0.0338	-0.0372
32	-0.0306	-0.034	-0.0374
33	0	0	0

Tabela 3 – Valores de theta para cada barramento e em cada nível de carga para sistema de 33 barra

ii. Pkm

IEEE 33 Barras							
Linha	Pd =90%	Pd = 100%	Pd = 110%				
1	3.3435	3.715	4.0865				
2	2.9295	3.255	3.5805				
3	2.0115	2.235	2.4585				
4	1.9035	2.115	2.3265				
5	1.8495	2.055	2.2605				
6	0.9675	1.075	1.1825				
7	0.7875	0.875	0.9625				
8	0.6075	0.675	0.7425				
9	0.5535	0.615	0.6765				
10	0.4995	0.555	0.6105				
11	0.459	0.51	0.561				
12	0.405	0.45	0.495				
13	0.351	0.39	0.429				
14	0.243	0.27	0.297				
15	0.189	0.21	0.231				
16	0.135	0.15	0.165				
17	0.081	0.09	0.099				
18	0.324	0.36	0.396				
19	0.243	0.27	0.297				

Curso: Engenharia Elétrica - Semestre: 2023.2 Disciplina: Sistemas Elétricos de Potência Professor: Raphael Paulo Braga Poubel

Campus Nova Gameleira – Belo Horizonte

20	0.162	0.18	0.198
21	0.081	0.09	0.099
22	0.837	0.93	1.023
23	0.756	0.84	0.924
24	0.378	0.42	0.462
25	0.828	0.92	1.012
26	0.774	0.86	0.946
27	0.72	0.8	0.88
28	0.666	0.74	0.814
29	0.558	0.62	0.682
30	0.378	0.42	0.462
31	0.243	0.27	0.297
32	0.054	0.06	0.066

Tabela 4 – Valores de Pkm para cada barramento e em cada nível de carga para sistema de 33 barras.

iii. Discussão

Figura 3 – Gráfico de dispersão do Theta em relação a variação da carga

Unidade de Ensino Superior

Departamento de Engenharia Elétrica

Curso: Engenharia Elétrica - Semestre: 2023.2 Disciplina: Sistemas Elétricos de Potência Professor: Raphael Paulo Braga Poubel

Campus Nova Gameleira - Belo Horizonte

Figura 4 – Gráfico de dispersão do Theta em relação a variação da carga

Para o sistema de 33 barras, as análises feitas para o sistema de 14 barras também valem. Os comportamentos foram semelhantes, o que confirma a robustez da análise e da implementação do sistema de carga linear.

3. Conclusão

A implementação do fluxo de carga linear pode ser uma ferramenta muito útil para suporte de outras ferramentas mais complexas, o fato de não precisar de um sistema iterativo diminui o gasto computacional e pode ser o ponto de partida para sistemas de simulação mais complexos. Sua simplicidade computacional, uma vez que o grau de complexidade máxima do algoritmo é n, permite a sua utilização em sistemas com número de barras e linhas elevados.

4. Apêndice

a. Código

```
clc
clear all
% Dados:
 IEEE 14 barras
% [
                                                                                          GSH
           NUM
                    TIPO
                                       TETA
                                                  PG
                                                         QG
                                                                  PD
                                                                               QD
                                                                                                  BSH ]
barras = [
                                                                              0.000
              1
                  2
                       1.060 0.0
                                    232.4 -16.9
                                                   0.0
                                                             0.0
                                                                      0.0
              2
                  1
                                    40.0
                                                  21.70
                                                          12.70
                                                                     0.0
                                                                             0.0 -40
                                                                                       50
                       1.045 0.0
                                           42.4
                                                                   0.0
                                                                            0.0\overline{0}
              3
                                          23.4
                                                 94.20
                                                         19.00
                                                                                      40
                  1
                       1.010 0.0
                                    0.0
                                                                            0.00
                                                                                      0
              4
                  0
                       1.000 0.0
                                    0.0
                                           0.0
                                                 47.80
                                                          -3.90
                                                                   0.0
              5
                  0
                       1.000 0.0
                                    0.0
                                           0.0
                                                 7.60
                                                         1.600
                                                                   0.0
                                                                            0.00
                                                                                      0
                  1
                       1.070 0.0
                                    0.0
                                           12.2
                                                  11.20
                                                          7.500
                                                                     0.0
                                                                             0.0 -6
                                                                                       24
              6
                  0
                                           0.0
                                                  0.0
                                                          0.0
                                                                   0.0
                                                                            0.00
              7
                       1.000 0.0
                                    0.0
                                                                                      0
```


Curso: Engenharia Elétrica - Semestre: 2023.2 Disciplina: Sistemas Elétricos de Potência Professor: Raphael Paulo Braga Poubel

```
8
                  1
                      1.090 0.0
                                  0.0
                                         17.4
                                                 0.0
                                                        0.0
                                                                 0.0
                                                                         0.0 -6
                                                                                   24
             9
                  0
                      1.000 0.0
                                  0.0
                                         0.0
                                              29.50
                                                       16.60
                                                                0.0
                                                                       19.0 0
                                                                                  0
                                                       5.800
                                                                                  0
             10
                  0
                      1.000 0.0
                                  0.0
                                         0.0
                                               9.00
                                                                0.0
                                                                        0.00
                      1.000 0.0
                                         0.0
                                               3.50
                                                       1.800
                                                                        0.00
                                                                                  0
             11
                  0
                                  0.0
                                                                0.0
             12
                      1.000 0.0
                                  0.0
                                         0.0
                                               6.10
                                                       1.600
                                                                0.0
                                                                        0.00
                                                                                  0
                  0
             13
                  0
                      1.000 0.0
                                  0.0
                                         0.0
                                               13.50
                                                       5.800
                                                                        0.00
                                                                                  0
                                                                0.0
                      1.000 0.0
                                  0.0
                                               14.90
             14
                  0
                                         0.0
                                                       5.000
                                                                0.0
                                                                        0.00
                                                                                  0];
%
              [FR
                                  R
                                              Χ
                      TO
                                                      BSHtotal
                                                                        ]
                                                                   Tap
linhas = [
1
    2
         0.01938
                  0.05917
                               0.05280
                                           0
                               0.04920
    5
1
         0.05403
                   0.22304
                                           0
2
    3
         0.04699
                  0.19797
                               0.04380
                                           0
2
        0.05811
                  0.17632
                               0.03400
                                           0
    4
2
    5
        0.05695
                  0.17388
                               0.03460
                                           0
3
                               0.01280
    4
        0.06701
                   0.17103
                                           0
4
    5
                                           0
        0.01335
                  0.04211
                               0
4
    7
                                        0.978
         0.0
                   0.20912
                               0
4
    9
        0.0
                   0.55618
                               0
                                        0.969
5
    6
         0.0
                   0.25202
                               0
                                        0.932
6
    11
        0.09498
                  0.19890
                               0
                                           0
6
                                           0
    12
        0.12291
                   0.25581
                               0
6
    13
        0.06615
                  0.13027
                               0
                                           0
7
    8
         0.0
                   0.17615
                               0
                                           0
7
                                           0
    9
        0.0
                   0.11001
                               0
9
    10
        0.03181
                  0.08450
                               0
                                           0
9
                  0.27038
    14
        0.12711
                               0
                                           0
10
    11
         0.08205
                  0.19207
                               0
                                           0
12
    13
                                           0
        0.22092
                  0.19988
                               0
13
    14
        0.17093
                  0.34802
                               0
                                           0
                                                      ];
Custo = [1 1 2 4 4];
     = [250 40 15 15 15];
MaxP
MaxQ
     = [50 50 50 50 50];
MinP
     = [0 0 0 0 0];
MinQ = [-50 -50 -50 -50 -50];
Ref= 1;
% ============
% Leitura dos dados de entrada
[NumBarras,NumBCol] = size(barras);
[NumLinhas,NumLCol] = size(linhas);
% Linhas
% Init das variaveis
```


Curso: Engenharia Elétrica - Semestre: 2023.2 Disciplina: Sistemas Elétricos de Potência Professor: Raphael Paulo Braga Poubel

```
de = zeros(NumLinhas,1);
para = zeros(NumLinhas,1);
R = zeros(NumLinhas,1);
X = zeros(NumLinhas,1);
B = zeros(NumLinhas,1);
Tap = zeros(NumLinhas,1);
for i=1:NumLinhas
    de(i) = linhas(i,1);
    para(i) = linhas(i,2);
    R(i) = linhas(i,3);
    X(i) = linhas(i,4);
    B(i) = 1/X(i);
    Tap(i) = linhas(i,6);
end
% Desconsiderando taps
Tap = ones(NumLinhas,1);
% Barras
% Init das variaveis
Tipo = zeros(NumBarras,1);
V = zeros(NumBarras,1);
Teta = zeros(NumBarras,1);
Pg = zeros(NumBarras,1);
Qg = zeros(NumBarras,1);
Pd = zeros(NumBarras,1);
Qd = zeros(NumBarras,1);
Gsh = zeros(NumBarras,1);
Bsh = zeros(NumBarras,1);
for i=1:NumBarras
    Tipo(i) = barras(i,2);
    V(i) = barras(i,3);
    Teta(i) = barras(i,4);
    Pg(i) = barras(i,5);
    Qg(i) = barras(i,6);
    Pd(i) = barras(i,7);
    Qd(i) = barras(i,8);
    Gsh(i) = barras(i,9);
    Bsh(i) = barras(i,10);
end
% Potencias em PU
Pg = Pg/100;
Qg = Qg/100;
Pd = Pd/100;
```


Curso: Engenharia Elétrica - Semestre: 2023.2 Disciplina: Sistemas Elétricos de Potência Professor: Raphael Paulo Braga Poubel

```
Qd = Qd/100;
% Matriz B_linha
B_linha = zeros(NumBarras,NumBarras);
for i=1:NumLinhas
   K = de(i);
   M = para(i);
   B_{inha}(K,K) = B_{inha}(K,K) + B(i)/(Tap(i)^2); % diagonal principal considerando tap
   B_linha(M,M) = B_linha(M,M) + B(i); % diagonal principal
    B_linha(K,M) = B_linha(K,M) - B(i)/Tap(i); % Fora da diagonal principal
    B_linha(M,K) = B_linha(M,K) - B(i)/Tap(i); % Fora da diagonal principal
end
% ==============
% Fluxo de potencia linearizado
B REF = Ref;
B_linha(B_REF,B_REF) = 10^20; % Infinito
Teta= B_linha\(-Pd+Pg); % inv
Pkm = zeros(NumLinhas,1);
for i=1:NumLinhas
   K = de(i);
   M = para(i);
    Pkm(i) = (Teta(K)-Teta(M))*B(i)/Tap(i); % Pkm = Pk - Pm
end
% Variaveis de saida
disp('Fluxo de potencia linearizado - IEEE 14 Barras - Pd = 100%')
disp([Teta])
disp([Pkm])
Pd1 = Pd*0.8;
Teta1= B_linha\(-Pd1+Pg);
Pkm1 = zeros(NumLinhas,1);
for i=1:NumLinhas
   K = de(i);
```


Curso: Engenharia Elétrica - Semestre: 2023.2 Disciplina: Sistemas Elétricos de Potência Professor: Raphael Paulo Braga Poubel

```
M = para(i);
    Pkm1(i) = (Teta1(K)-Teta1(M))*B(i)/Tap(i); % Pkm = Pk - Pm
end
% Variaveis de saida
disp('Fluxo de potencia linearizado - IEEE 14 Barras - Pd = 80%')
disp([Teta1])
disp([Pkm1])
Pd2 = Pd*1.2;
Teta2= B_linha\(-Pd2+Pg);
Pkm2 = zeros(NumLinhas,1);
for i=1:NumLinhas
   K = de(i);
   M = para(i);
    Pkm2(i) = (Teta2(K)-Teta2(M))*B(i)/Tap(i); % Pkm = Pk - Pm
end
% Variaveis de saida
disp('Fluxo de potencia linearizado - IEEE 14 Barras - Pd = 120%')
disp([Teta2])
disp([Pkm2])
% Box Plot
figure(1)
boxplot([Teta Teta1 Teta2], Labels',{'Pd = 100%','Pd = 80%','Pd = 120%'})
title('Fluxo de potencia linearizado - IEEE 14 Barras - Teta')
ylabel('Teta (rad)')
xlabel('Pd (%)')
% Box Plot Pkm
figure(2)
boxplot([Pkm Pkm1 Pkm2],'Labels',{'Pd = 100%','Pd = 80%','Pd = 120%'})
title('Fluxo de potencia linearizado - IEEE 14 Barras - Pkm')
ylabel('Pkm (pu)')
xlabel('Pd (%)')
%% IEEE 33 Barras
% Dados:
```


Curso: Engenharia Elétrica - Semestre: 2023.2 Disciplina: Sistemas Elétricos de Potência Professor: Raphael Paulo Braga Poubel

% [NUM	TIPO	V	TETA	PG	QG	PD	QD	GSH	BSH]
barras =	[
	1	0	1.0000	0.0000	0	0	100.0	60.0	0.0	0.0;
	2	0	1.0000	0.0000	0	0	90.0	40.0	0.0	0.0;
	3	0	1.0000	0.0000	0	0	120.0	80.0	0.0	0.0;
	4	0	1.0000	0.0000	0	0	60.0	30.0	0.0	0.0;
	5	0	1.0000	0.0000	0	0	60.0	20.0	0.0	0.0;
	6	0	1.0000	0.0000	0	0	200.0	100.0	0.0	0.0;
	7	0	1.0000	0.0000	0	0	200.0	100.0	0.0	0.0;
	8	0	1.0000	0.0000	0	0	60.0	20.0	0.0	0.0;
	9	0	1.0000	0.0000	0	0	60.0	20.0	0.0	0.0;
	10	0	1.0000	0.0000	0	0	45.0	30.0	0.0	0.0;
	11	0	1.0000	0.0000	0	0	60.0	35.0	0.0	0.0;
	12	0	1.0000	0.0000	0	0	60.0	35.0	0.0	0.0;
	13	0	1.0000	0.0000	0	0	120.0	80.0	0.0	0.0;
	14	0	1.0000	0.0000	0	0	60.0	10.0	0.0	0.0;
	15	0	1.0000	0.0000	0	0	60.0	20.0	0.0	0.0;
	16	0	1.0000	0.0000	0	0	60.0	20.0	0.0	0.0;
	17	0	1.0000	0.0000	0	0	90.0	40.0	0.0	0.0;
	18	0	1.0000	0.0000	0	0	90.0	40.0	0.0	0.0;
	19	0	1.0000	0.0000	0	0	90.0	40.0	0.0	0.0;
	20	0	1.0000	0.0000	0	0	90.0	40.0	0.0	0.0;
	21	0	1.0000	0.0000	0	0	90.0	40.0	0.0	0.0;
	22	0	1.0500	0.0000	0	0	90.0	50.0	0.0	0.0;
	23	0	1.0000	0.0000	0	0	420.0	200.0	0.0	0.0;
	24	0	1.0000	0.0000	0	0	420.0	200.0	0.0	0.0;
	25	0	1.0500	0.0000	0	0	60.0	25.0	0.0	0.0;
	26	0	1.0500	0.0000	0	0	60.0	25.0	0.0	0.0;
	27	0	1.0000	0.0000	0	0	60.0	20.0	0.0	0.0;
	28	0	1.0000		0	0	120.0	70.0	0.0	0.0;
	29	0	1.0000	0.0000	0	0	200.0	600.0	0.0	0.0;
	30	0	1.0000	0.0000	0	0	150.0	70.0	0.0	0.0;
	31	0	1.0000	0.0000	0	0	210.0	100.0	0.0	0.0;
	32	0	1.0000	0.0000	0	0	60.0	40.0	0.0	0.0;
	33	2	1.0000	0.0000	0	0	0.0	0.0	0.0	0.0
];										
%	[FR	то	R		Х	BSHto ⁻	tal Tap	Tapmin	Tapmax]	
	_									
% linhas	= [33 1 2 3 4 5	1 2 3 4 5	0.09 0.49 0.36 0.38 0.81	22 6 30 6 60 6 11 6	7 0.0470 0.2511 0.1864 0.1941 0.7070	85 FLO 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0; 0; 0; 0; 0; 0;	

Curso: Engenharia Elétrica - Semestre: 2023.2 Disciplina: Sistemas Elétricos de Potência Professor: Raphael Paulo Braga Poubel

```
0.7114
                                            0.2351
                 6
                        7
                                                           0
                                                                      0
                                                                            0
                                                                                      0;
                 7
                        8
                                1.0300
                                            0.7400
                                                           0
                                                                      0
                                                                            0
                                                                                     0;
                 8
                        9
                                1.0440
                                                           0
                                                                            0
                                            0.7400
                                                                      0
                                                                                     0;
                 9
                        10
                                0.1966
                                            0.0650
                                                           0
                                                                      0
                                                                            0
                                                                                      0;
                10
                        11
                                0.3744
                                            0.1238
                                                           0
                                                                      0
                                                                            0
                                                                                     0;
                11
                        12
                                1.4680
                                            1.1550
                                                           0
                                                                      0
                                                                            0
                                                                                     0;
                12
                        13
                                0.5416
                                            0.7129
                                                           0
                                                                      0
                                                                            0
                                                                                      0;
                13
                        14
                                0.5910
                                                           0
                                                                      0
                                            0.5260
                                                                            0
                                                                                      0;
                14
                        15
                                0.7463
                                            0.5450
                                                           0
                                                                      0
                                                                            0
                                                                                      0;
                15
                        16
                                1.2890
                                            1.7210
                                                           0
                                                                      0
                                                                            0
                                                                                     0;
                16
                        17
                                0.7320
                                            0.5740
                                                           0
                                                                      0
                                                                            0
                                                                                     0;
                 1
                                                           0
                        18
                                0.1640
                                            0.1565
                                                                      0
                                                                            0
                                                                                     0;
                18
                                1.5042
                        19
                                            1.3554
                                                           0
                                                                      0
                                                                            0
                                                                                     0;
                19
                        20
                                0.4095
                                            0.4784
                                                           0
                                                                      0
                                                                            0
                                                                                     0;
                20
                        21
                                0.7089
                                            0.9373
                                                           0
                                                                      0
                                                                            0
                                                                                      0;
                 2
                        22
                                0.4512
                                            0.3083
                                                           0
                                                                      0
                                                                            0
                                                                                     0;
                22
                        23
                                                           0
                                                                      0
                                                                            0
                                0.8980
                                            0.7091
                                                                                     0;
                23
                        24
                                                           0
                                                                      0
                                                                            0
                                0.8960
                                            0.7011
                                                                                     0;
                 5
                        25
                                                           0
                                                                      0
                                0.2030
                                            0.1034
                                                                            0
                                                                                      0;
                25
                        26
                                0.2842
                                            0.1447
                                                           0
                                                                      0
                                                                            0
                                                                                     0;
                26
                        27
                                1.0590
                                            0.9337
                                                           0
                                                                      0
                                                                            0
                                                                                     0;
                27
                        28
                                0.8042
                                            0.7006
                                                           0
                                                                      0
                                                                            0
                                                                                     0;
                28
                        29
                                0.5075
                                            0.2585
                                                           0
                                                                      0
                                                                            0
                                                                                      0;
                29
                        30
                                0.9744
                                            0.9630
                                                           0
                                                                      0
                                                                            0
                                                                                     0;
                30
                                                           0
                                                                      0
                                                                            0
                        31
                                0.3105
                                            0.3619
                                                                                     0;
                31
                        32
                                0.3410
                                            0.5302
                                                           0
                                                                      0
                                                                            0
                                                                                      0;
               1;
                 % Potencia Base
Sb = 1e6;
Vb = 12.66e3;
                 % Tensão Base
Zb = Vb^2/Sb;
linhas(:,3:4) = linhas(:,3:4)/Zb;
barras(:,7:8) = barras(:,7:8)*1e3/Sb;
ref = 1;
% ============
% Leitura dos dados de entrada
[NumBarras,NumBCol] = size(barras);
[NumLinhas,NumLCol] = size(linhas);
% Linhas
% Init das variaveis
de = zeros(NumLinhas,1);
para = zeros(NumLinhas,1);
```


Curso: Engenharia Elétrica - Semestre: 2023.2 Disciplina: Sistemas Elétricos de Potência Professor: Raphael Paulo Braga Poubel

```
R = zeros(NumLinhas,1);
X = zeros(NumLinhas,1);
B = zeros(NumLinhas,1);
Tap = zeros(NumLinhas,1);
TapMin = zeros(NumLinhas,1);
TapMax = zeros(NumLinhas,1);
for i=1:NumLinhas
    de(i) = linhas(i,1);
    para(i) = linhas(i,2);
    R(i) = linhas(i,3);
    X(i) = linhas(i,4);
    B(i) = 1/X(i);
    Tap(i) = linhas(i,6);
    TapMin(i) = linhas(i,7);
    TapMax(i) = linhas(i,8);
end
% Desconsiderando taps
Tap = ones(NumLinhas,1);
% Barras
% Init das variaveis
Tipo = zeros(NumBarras,1);
V = zeros(NumBarras,1);
Teta = zeros(NumBarras,1);
Pg = zeros(NumBarras,1);
Qg = zeros(NumBarras,1);
Pd = zeros(NumBarras,1);
Qd = zeros(NumBarras,1);
Gsh = zeros(NumBarras,1);
Bsh = zeros(NumBarras,1);
for i=1:NumBarras
    Tipo(i) = barras(i,2);
    V(i) = barras(i,3);
    Teta(i) = barras(i,4);
    Pg(i) = barras(i,5);
    Qg(i) = barras(i,6);
    Pd(i) = barras(i,7);
    Qd(i) = barras(i,8);
    Gsh(i) = barras(i,9);
    Bsh(i) = barras(i,10);
end
% Potencias em PU - já estão em pu
```


Curso: Engenharia Elétrica - Semestre: 2023.2 Disciplina: Sistemas Elétricos de Potência Professor: Raphael Paulo Braga Poubel

```
% ============
% Matriz B linha
B linha = zeros(NumBarras, NumBarras);
for i=1:NumLinhas
   K = de(i);
   M = para(i);
   B_{inha}(K,K) = B_{inha}(K,K) + B(i)/(Tap(i)^2); % diagonal principal considerando tap
   B_linha(M,M) = B_linha(M,M) + B(i); % diagonal principal
    B_{inha}(K,M) = B_{inha}(K,M) - B(i)/Tap(i); % Fora da diagonal principal
    B_linha(M,K) = B_linha(M,K) - B(i)/Tap(i); % Fora da diagonal principal
end
% ============
% Fluxo de potencia linearizado
B REF = ref;
B_linha(B_REF,B_REF) = 10^20; % Infinito
Teta= B_linha\(-Pd+Pg); % inv
Pkm = zeros(NumLinhas,1);
for i=1:NumLinhas
   K = de(i);
   M = para(i);
    Pkm(i) = (Teta(K)-Teta(M))*B(i)/Tap(i); % Pkm = Pk - Pm
end
% Variaveis de saida
disp('Fluxo de potencia linearizado - IEEE 33 Barras - Pd = 100%')
disp([Teta])
disp([Pkm])
Pd1 = Pd*0.9;
Teta1= B_linha\(-Pd1+Pg);
Pkm1 = zeros(NumLinhas,1);
for i=1:NumLinhas
   K = de(i);
   M = para(i);
    Pkm1(i) = (Teta1(K)-Teta1(M))*B(i)/Tap(i); % Pkm = Pk - Pm
end
```


Curso: Engenharia Elétrica - Semestre: 2023.2 Disciplina: Sistemas Elétricos de Potência Professor: Raphael Paulo Braga Poubel

```
% Variaveis de saida
disp('Fluxo de potencia linearizado - IEEE 33 Barras - Pd = 90%')
disp([Teta1])
disp([Pkm1])
Pd2 = Pd*1.1;
Teta2= B_linha\(-Pd2+Pg);
Pkm2 = zeros(NumLinhas,1);
for i=1:NumLinhas
    K = de(i);
   M = para(i);
    Pkm2(i) = (Teta2(K)-Teta2(M))*B(i)/Tap(i); % Pkm = Pk - Pm
end
% Variaveis de saida
disp('Fluxo de potencia linearizado - IEEE 33 Barras - Pd = 110%')
disp([Teta2])
disp([Pkm2])
% Box Plot Teta
figure(3)
boxplot([Teta Teta1 Teta2], 'Labels', { 'Pd = 100%', 'Pd = 90%', 'Pd = 110%' })
title('Fluxo de potencia linearizado - IEEE 33 Barras - Teta')
ylabel('Teta (rad)')
xlabel('Pd (%)')
% Box Plot Pkm
figure(4)
boxplot([Pkm Pkm1 Pkm2], 'Labels', { 'Pd = 100%', 'Pd = 90%', 'Pd = 110%'})
title('Fluxo de potencia linearizado - IEEE 33 Barras - Pkm')
ylabel('Pkm (pu)')
xlabel('Pd (%)')
%% Com Perdas
% Dados:
% IEEE 14 barras
                                                                                 BSH ]
% [
         NUM
                TIP0
                                 TETA
                                          PG
                                               QG
                                                       PD
                                                                  QD
                                                                           GSH
barras = [
                   1.060 0.0 232.4 -16.9 0.0
                                                          0.0
                                                                 0.000
           1
               2
                                                  0.0
               1 1.045 0.0 40.0 42.4 21.70 12.70
                                                         0.0
                                                                0.0 -40 50
           2
```


Curso: Engenharia Elétrica - Semestre: 2023.2 Disciplina: Sistemas Elétricos de Potência Professor: Raphael Paulo Braga Poubel

```
94.20
              3
                  1
                       1.010 0.0
                                   0.0
                                         23.4
                                                        19.00
                                                                  0.0
                                                                          0.00
                                                                                     40
              4
                  0
                       1.000 0.0
                                   0.0
                                          0.0
                                                47.80
                                                         -3.90
                                                                  0.0
                                                                          0.00
                                                                                     0
              5
                                                                                     0
                  0
                       1.000 0.0
                                   0.0
                                          0.0
                                                7.60
                                                        1.600
                                                                  0.0
                                                                          0.00
                       1.070 0.0
                                          12.2
                                                 11.20
                                                         7.500
                                                                    0.0
                                                                           0.0 -6
                                                                                      24
              6
                  1
                                   0.0
              7
                  0
                       1.000 0.0
                                   0.0
                                          0.0
                                                 0.0
                                                         0.0
                                                                  0.0
                                                                          0.00
                                                                                     0
              8
                  1
                       1.090 0.0
                                   0.0
                                          17.4
                                                  0.0
                                                          0.0
                                                                    0.0
                                                                           0.0 -6
                                                                                      24
              9
                  0
                                   0.0
                       1.000 0.0
                                          0.0
                                                29.50
                                                         16.60
                                                                  0.0
                                                                         19.00
                                                                                     0
              10
                  0
                       1.000 0.0
                                   0.0
                                          0.0
                                                 9.00
                                                         5.800
                                                                  0.0
                                                                          0.00
                                                                                     0
                                                                          0.00
              11
                  0
                       1.000 0.0
                                   0.0
                                          0.0
                                                 3.50
                                                         1.800
                                                                  0.0
                                                                                     0
              12
                  0
                       1.000 0.0
                                   0.0
                                          0.0
                                                 6.10
                                                         1.600
                                                                  0.0
                                                                          0.00
                                                                                     0
                                                                          0.0 0
              13
                  0
                       1.000 0.0
                                   0.0
                                          0.0
                                                 13.50
                                                         5.800
                                                                  0.0
                                                                                     0
              14
                  0
                       1.000 0.0
                                   0.0
                                          0.0
                                                 14.90
                                                         5.000
                                                                  0.0
                                                                          0.00
                                                                                     0];
%
               ΓFR
                                   R
                                                Χ
                       TO
                                                        BSHtotal
                                                                           ]
                                                                     Tap
linhas = [
1
    2
         0.01938
                   0.05917
                                0.05280
                                            0
1
    5
         0.05403
                                0.04920
                                            0
                   0.22304
2
    3
         0.04699
                   0.19797
                                0.04380
                                            0
2
    4
         0.05811
                   0.17632
                                0.03400
                                            0
2
    5
         0.05695
                   0.17388
                                0.03460
                                            0
3
    4
         0.06701
                   0.17103
                                0.01280
                                             0
4
    5
         0.01335
                   0.04211
                                0
                                             0
4
    7
         0.0
                   0.20912
                                0
                                         0.978
4
    9
         0.0
                   0.55618
                                0
                                         0.969
5
    6
         0.0
                   0.25202
                                0
                                         0.932
6
    11
         0.09498
                   0.19890
                                0
                                             0
6
    12
         0.12291
                   0.25581
                                0
                                             0
6
    13
         0.06615
                   0.13027
                                0
                                             0
7
                                            0
    8
         0.0
                   0.17615
                                0
7
    9
         0.0
                                0
                                             0
                   0.11001
9
    10
         0.03181
                   0.08450
                                0
                                             0
9
                                             0
    14
         0.12711
                   0.27038
                                0
10
    11
         0.08205
                   0.19207
                                0
                                             0
                                             0
12
    13
         0.22092
                   0.19988
                                0
                                             0
13
    14
         0.17093
                   0.34802
                                0
                                                        ];
Custo = [1 1 2 4 4];
      = [250 40 15 15 15];
MaxP
                  50 50 50];
MaxQ
      = [50
               50
MinP
      = [0 0 0 0 0];
      = [-50 -50 -50 -50 -50];
MinQ
Ref= 1;
% Leitura dos dados de entrada
```


Curso: Engenharia Elétrica - Semestre: 2023.2 Disciplina: Sistemas Elétricos de Potência Professor: Raphael Paulo Braga Poubel

```
[NumBarras,NumBCol] = size(barras);
[NumLinhas,NumLCol] = size(linhas);
% Linhas
% Init das variaveis
de = zeros(NumLinhas,1);
para = zeros(NumLinhas,1);
R = zeros(NumLinhas,1);
X = zeros(NumLinhas,1);
B = zeros(NumLinhas,1);
Tap = zeros(NumLinhas,1);
for i=1:NumLinhas
    de(i) = linhas(i,1);
    para(i) = linhas(i,2);
    R(i) = linhas(i,3);
    X(i) = linhas(i,4);
    B(i) = 1/(X(i);)
    Tap(i) = linhas(i,6);
end
% Desconsiderando taps
Tap = ones(NumLinhas,1);
% Barras
% Init das variaveis
Tipo = zeros(NumBarras,1);
V = zeros(NumBarras,1);
Teta = zeros(NumBarras,1);
Pg = zeros(NumBarras,1);
Qg = zeros(NumBarras,1);
Pd = zeros(NumBarras,1);
Qd = zeros(NumBarras,1);
Gsh = zeros(NumBarras,1);
Bsh = zeros(NumBarras,1);
for i=1:NumBarras
    Tipo(i) = barras(i,2);
    V(i) = barras(i,3);
    Teta(i) = barras(i,4);
    Pg(i) = barras(i,5);
    Qg(i) = barras(i,6);
    Pd(i) = barras(i,7);
    Qd(i) = barras(i,8);
    Gsh(i) = barras(i,9);
    Bsh(i) = barras(i,10);
end
```


Curso: Engenharia Elétrica - Semestre: 2023.2 Disciplina: Sistemas Elétricos de Potência Professor: Raphael Paulo Braga Poubel

Campus Nova Gameleira - Belo Horizonte

```
% Potencias em PU
Pg = Pg/100;
Qg = Qg/100;
Pd = Pd/100;
Qd = Qd/100;
% ============
% Matriz B_linha
B_linha = zeros(NumBarras, NumBarras);
for i=1:NumLinhas
    K = de(i);
    M = para(i);
    B_{inha}(K,K) = B_{inha}(K,K) + B(i)/(Tap(i)^2); % diagonal principal considerando tap
    B_linha(M,M) = B_linha(M,M) + B(i); % diagonal principal
    B_{inha}(K,M) = B_{inha}(K,M) - B(i)/Tap(i); % Fora da diagonal principal
    B_linha(M,K) = B_linha(M,K) - B(i)/Tap(i); % Fora da diagonal principal
end
% ============
% Fluxo de potencia linearizado
B REF = Ref;
B_linha(B_REF,B_REF) = 10^20; % Infinito
Teta= B_linha\(-Pd+Pg); % inv
Pkm = zeros(NumLinhas,1);
for i=1:NumLinhas
    K = de(i);
    M = para(i);
    Pkm(i) = (Teta(K)-Teta(M))*B(i)/Tap(i); % Pkm = Pk - Pm
end
% Variaveis de saida
disp('Fluxo de potencia linearizado - IEEE 14 Barras - Pd = 100%')
disp([Teta])
disp([Pkm])
```

5. Referências

- a. https://www.nucleodoconhecimento.com.br/engenharia-eletrica/potencia-linearizado
- b. Notas de Aula e slides

Curso: Engenharia Elétrica - Semestre: 2023.2 Disciplina: Sistemas Elétricos de Potência Professor: Raphael Paulo Braga Poubel

Campus Nova Gameleira – Belo Horizonte

c. https://www.youtube.com/watch?v=S6ezIIFmjSs