Concord: Homogeneous Programming for Heterogeneous Architectures

Rajkishore Barik, Intel Labs Brian T. Lewis, Intel Labs

Presenters

- Rajkishore Barik, Intel Labs
 - Research Scientist, Programming Systems Lab
 - Interests: Compilers and runtimes for heterogeneous architectures
 - Ph.D: Rice University
- Brian T. Lewis, Intel Labs
 - Senior Research Scientist, Programming Systems Lab
 - Interests: Programming languages, runtimes, VM for modern heterogeneous architectures
 - Ph.D: University of Washington

Tutorial Motivation & Goals

Motivation

- GPUs should be programmed the same way as multi-core CPUs
 - · No new language invention
- How can we enable existing multi-core software stack to take advantage of GPU with minimal effort?

Goals

- Introduction to GPGPU programming model
- Concord C++ programming model
 - · Compiler and runtime framework
 - Implementation of software based SVM
 - · Implementation of virtual functions and reductions on GPU
 - Compiler optimizations

What this tutorial will cover

- GPGPU architectures
 - Discrete devices
 - Integrated devices
- Existing GPGPU programming models
 - CUDA, OpenCL, C++ AMP, RenderScript
- Concord C++ programming model
 - Language constructs and restrictions
 - Compiler and runtime framework
 - · Virtual Functions and Reductions on GPUs
 - Compiler optimizations
 - Experimental evaluation
- Demonstration
- Q&A

Tutorial Slides

Available at ...

 Research compiler is available at <u>https://github.com/IntelLabs/iHRC/</u>

Recap: Heterogeneous Platforms

- Heterogeneity is ubiquitous: mobile devices, laptops, servers, & supercomputers
- Emerging hardware trend: CPU & GPU cores integrated on same die, share physical memory & even last-level cache

Intel 4th generation core processors

AMD Trinity

Source: http://www.hardwarezone.com.mv/feature-amd-trinity-apu-look-inside-2nd-generation-apu/conclusion-118

How do we program these integrated GPU systems?

Motivation: GPU Programming

- Existing work: regular data-parallel applications using arraybased data structures map well to the GPUs
 - OpenCL 1.x, CUDA, OpenACC, C++ AMP, ...
- Enable other existing multi-core applications to quickly take advantage of the integrated GPUs
 - Often use object-oriented design, pointers
 - Enable pointer-based data structures on the GPU
 - Irregular applications on GPU: benefits are not well-understood
 - Data-dependent control flow
 - Graph-based algorithms such as BFS, SSSP, etc.

Widen the set of applications that target GPUs

Contributions

- <u>Concord</u>: a seamless C++ heterogeneous programming framework for integrated CPU and GPU processors
 - Shared Virtual Memory (SVM) in software
 - · share pointer-containing data structures like trees
 - Adapts existing data-parallel C++ constructs to heterogeneous computing: TBB, OpenMP
 - Supports most C++ features including virtual functions
 - Demonstrates programmability, performance, and energy benefits of SVM

 Available open source at <u>https://github.com/IntelLabs/iHRC/</u>

Concord Framework

Concord C++ programming constructs

Concord extends TBB APIs:

bool device):

Existing TBB APIs:

template <typename Index, typename Body> parallel_for (Index first, Index last, const Body& B)

template <typename Index, typename Body>
parallel_reduce (Index first, Index last, const Body& B)

Supported C++ features:

- Classes
- Namespaces
- Multiple inheritance
- Templates
- Operator and function overloading
- Virtual functions

Concord C++ Example: Parallel LinkedList Search

```
...
void operator()(int tid) const{
    ... list->key...
};
...
ListSearch *list_object = new ListSearch(...);

parallel_for_hetero (num_keys, *list_object, GPU);
```

TBB Version

Concord Version

Minimal differences between two versions

class ListSearch {

Run on CPU or GPU

Example: parallel_for_hetero

Example: parallel_reduce_hetero

```
class Body {
   float *A, sum;
   public:
      Body(float *aa): A(aa), sum(0.0f) { }
      void operator()(int i) { // execute in parallel
          sum = f(A[i]); // compute local sum
      void join(Body &rhs) {
          sum += rhs.sum; // perform reduction
}:
Body *body = new Body(A);
parallel_reduce_hetero (1024, *body);
```

Restrictions

- No guarantee that the parallel loop iterations will be executed in parallel
- No ordering among different paralleliterations
 - Floatingpoint determinismis not guaranteed
- Features not yet supported on the GPU
 - Recursion (except tail recursion which can be converted to loop)
 - Exception
 - Address of local variable
 - Memory allocation and deallocation
 - Function calls via function pointers

Silently execute on CPU if these features are present in GPU code

Key Implementation Challenges

- Shared Virtual Memory (SVM) support to enable pointersharing between CPU and GPU
 - Compiler optimization to reduce SVM translation overheads
- Virtual functions on GPU
- Parallel reduction on GPU
- Compiler optimizations to reduce cache line contention

SVM Implementation on x86

SVM Translation in OpenCL code

```
class ListSearch {
...
void operator()(int tid) const{
... list->key...
}};
...
ListSearch *list_object = new ListSearch(...);
parallel_for_hetero (num_keys, *list_object, GPU);
```

Concord C++

Generated OpenCL

- svm_const is a runtime constant and is computed once
- Every CPU pointer before dereference on the GPU is converted into GPU addressspace using AS_GPU_PTR

Compiler Optimization of SVM Translations

```
int **a = data->a:
                                               for ( int i=0; i<N; i++)
                                                 \dots = \alpha[i];
                                               // a[i] is not used after this
                          Eager
                                                                                        Best
int **a = AS_GPU_PTR(int *, data->a);
                                             int **a = data->a;
                                                                                      int **a = AS GPU_PTR(int *, data->a);
for ( int i=0; i<N; i++)
                                             for ( int i=0; i<N; i++)
                                                                                      for ( int i=0; i<N; i++)
  ... = AS_CPU_PTR(int,
                                                ... = AS_GPU_PTR(int *, a)[i];
                                                                                        ... = a[i];
      AS_GPU_PTR(int, a[i]));
                                                                                               Overhead: 1
      Overhead: 2N + 1
                                                    Overhead: N
```

Best strategy:

- Eagerly convert to GPU addressspace & keep both CPU & GPU representations
- If a store is encountered, use CPU representation
- Additional optimizations
 - · Dead-code elimination
 - · Optimal code motion to perform redundancy elimination and place the translations

Virtual Functions on GPU

Original hierarchy: class Shape { virtual void intersect() {...} virtual void compute() {...} }; class Triangle : Shape { virtual void intersect() {...} }; Virtual Function call: void foo(Shape *s) { s->compute(); }

```
Object layout with vtable:
                           Shape::vtable
   Shape
     vtableptr
                             intersect
                             compute
                                                       Copy to
                                                       shared
   Triangle
                           Triangle::vtable
                                                       memory
     vtableptr
                             intersect
                             Shape:compute
  CPU Virtual Function call:
                                  GPU Virtual Function call:
  void foo(Shape *s) {
                                  void foo(Shape *s, void *gCtx) {
   (s->vtableptr[1])();
                                   if (s->vtableptr[1] == gCtx->
                                              Shape::compute)
                                     Shape::compute();
                      Generated code
```

Original code

- Copy necessary metadata into shared memory for GPU access
- Translate virtual function calls into if-then-else statements

Parallel Reduction on GPU

Compiler Optimization for Cache Contention

- Integrated GPUs use a unified cache among all GPU cores
 - Contention among GPU cores to access same cache line
 - number of simultaneous read and write ports to a cache line may not be same as the number of GPU cores

Each GPU core accesses different data

 Key idea: Ensure that the j loop is accessed in a different order for each GPU core

Compiler Details

HeteroTBB pass:

- identify and lower Concord constructs
- Handles virtual functions
- Hetero pass:
 - Check restrictions
 - Generates a list of kernels
- HeteroGPU pass:
 - Perform compiler optimizations
 - Generate OpenCL code
- HeteroCPU pass:
 - Generates x86 executable with embedded OpenCL code

Runtime Details

- OpenCL host program
 - Setup shared region and map to an OpenCL buffer
- Extract OpenCL code and JIT to GPU binary
 - Vendor OpenCL compiler
- Compile all the kernels at once
 - Cache the binary per function for future invocations
 - Amortizes the cost
- Allows heterogeneous CPU+GPU execution

Experimental setup

- Experimental Platform:
 - Intel Core 4th Generation Ultrabook
 - · CPU: 2 cores, hyper-threaded, 1.7GHz
 - GPU: Intel HD Graphics 5000 with 40 cores, 200MHz-1.1GHz
 - · Power envelope 15W
 - Intel Core 4th Generation Desktop
 - · CPU: 4 cores, hyper-threaded, 3.4GHz
 - GPU: Intel HD Graphics 4600 with 20 cores, 350MHz-1.25GHz
 - Power envelope 84W
- Energy measurements: MSR_PKG_ENERGY_STATUS
- Comparison with multi-core CPU:
 - 1. GPU-SPEEDUP: speedup using GPU execution
 - 2. GPU-ENERGY-SAVINGS: energy savings using GPU execution

Workloads

Benchmarks	Origin	Input	LoC	Device LoC	Data Structure	Parallel Construct
BarnesHut	In-house	1M bodies	828	105	Tree	Parallel_for
BFS	Galois	V =6.2M E =15M	866	19	Graph	Parallel_for
Btree	Rodinia	Command.txt	3111	84	Tree	Parallel_for
ClothPhysics	Intel	V =50K E =200K	9234	411	Graph	Parallel_reduce
ConnComp	Galois	V =6.2M E =15M	473	36	Graph	Parallel_for
FaceDetect	OpenCV	3000×2171	3691	378	Cascade	Parallel_for
Raytracer* *uses virtua	In-house function	sphere=256, material=3, light=5	843	134	Graph	Parallel_for
Skip_List	In-house	50M keys	467	21	Linked-list	Parallel_for
SSSP	Galois	V =6.2M E =15M	1196	19	graph	Parallel_for

Dynamic estimates of irregularity

- BFS, Btree, ConnComp, FaceDetect, SkipList & SSSP exhibit a lot of irregularities (>50%)
- FaceDetect exhibits maximum percentage of memory irregularities

Ultrabook: Speedup & Energy savings compared to multicore CPU

Average speedup of 2.5x and energy savings of 2x vs. multicore CPU

Desktop: Speedup & Energy savings compared to multicore CPU

Average speedup of 1.01x and energy savings of 1.7x vs. multicore CPU

Overheads

- Compile-time is 1.03% of total execution time
- Other overheads (excluding compile-time) is ~90 microseconds

Overhead of SW-based SVM implementation

SW-based SVM overhead is negligible for smaller images and is ~6% for the largest image

Regular Workloads on Desktop: Speedup compared to multi-core CPU

Comparison with Manual code

 BTree from Rodinia: Concord takes 2.68s vs. 3.26s for hand-coded OpenCL on the Desktop Haswell system

Conclusions & Future work

- Runs out-of-the-box C++ applications on GPU
- Demonstrates that SVM is a key enabler in programmer productivity of heterogeneous systems
- Implements SVM in software with low-overhead
- Implements virtual functions and parallel reductions on GPU
- Saves energy of 2.04x on Ultrabook and 1.7x on Desktop compared to multi-core CPU for irregular applications

Future work:

- Support advanced features on GPU: exceptions, memory allocation, locks, etc.
- Support combined CPU+GPU heterogeneous execution

Cloth Physics demo using Concord:

Questions?

Please try it out:

https://github.com/IntelLabs/iHRC/

Backup

Ultrabook: Speedup compared to multicore CPU

Average speedup of 2.5x vs. multicore CPU

Ultrabook: Energy savings compared to multi-core CPU

Average energy savings of 2.04x vs. multicore CPU

Desktop: Speedup compared to multi-core CPU

Desktop: Energy savings compared to multi-core CPU

Average energy savings of 1.7x vs. multicore CPU