Introducción a Álgebra Lineal

4.1 Operaciones con matrices y determinantes

1. Encuentre la inversa de la siguiente matriz y verifique su resultado:

$$F = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0 \end{bmatrix}$$

2. Demuestre la propiedad de que el determinante de un producto de matrices es igual al producto de los determinantes.

4.2 Sistemas de ecuaciones lineales

3. Resuelva el siguiente sistema por el método de Gauss-Seidel:

$$\begin{cases} 4x - y + z = 7 \\ -2x + 4y - 2z = 1 \\ x - y + 3z = 5 \end{cases}$$

4. Encuentre todas las soluciones del sistema homogéneo:

$$\begin{cases} x + 2y + 3z = 0 \\ 2x + 4y + 6z = 0 \\ 3x + 6y + 9z = 0 \end{cases}$$

4.3 Espacios vectoriales y auto-valores/auto-vectores

- 5. Encuentre la base y la dimensión del subespacio generado por los vectores $\{(1,2,3),(2,4,6),(3,6,9)\}.$
- 6. Determine los autovalores y autovectores de la matriz:

$$G = \begin{bmatrix} 5 & -2 \\ -2 & 5 \end{bmatrix}$$

4.4 Aplicaciones en IA: reducción de dimensionalidad

- 7. Explique cómo el PCA (Análisis de Componentes Principales) utiliza el álgebra lineal para reducir dimensiones.
- 8. Calcule la descomposición en valores singulares (SVD) de la matriz:

$$H = \begin{bmatrix} 3 & 1 \\ 2 & 2 \end{bmatrix}$$

- 9. Analice el uso de álgebra lineal en el aprendizaje profundo con redes neuronales.
- 10. Explique el impacto de los espacios vectoriales en la representación de datos en IA.