

FILTER THE OUTLIERS

```
In [22]: 
# Remove rows with 'Cluster' column value equal to -1
df = df[df['Cluster'] != 1]
```


ONCE THE OUTLIERS ARE OUT RE DO THE EXPERIMENT

In [25]: ► df

Out[25]:	QUANTITYORDERED	PRICEEACH	SALES	Cluster	CUSTOMERNAME
0	1778	3975.33	157807.81	0	AV Stores, Co.
1	687	1701.95	70488.44	2	Alpha Cognac
2	843	2218.41	94117.26	2	Amica Models & Co.
3	1469	3843.67	153996.13	0	Anna's Decorations, Ltd
4	270	558.43	24179.96	2	Atelier graphique
87	1078	2713.09	117713.56	0	Vida Sport, Ltd
88	787	2108.11	88041.26	2	Vitachrome Inc.
89	647	1720.14	75754.88	2	Volvo Model Replicas, Co
90	511	1030.99	46084.64	2	West Coast Collectables Co.
91	895	2131.78	78240.84	2	giftsbymail.co.uk

90 rows × 5 columns

```
In [26]: ▶ # Drop columns PRODUCTCODE bc it has the info as PRODUCTLINE
```

columns_to_drop = ['Cluster']
df = df.drop(columns=columns_to_drop)
df

Out[26]:

	QUANTITYORDERED	PRICEEACH	SALES	CUSTOMERNAME
0	1778	3975.33	157807.81	AV Stores, Co.
1	687	1701.95	70488.44	Alpha Cognac
2	843	2218.41	94117.26	Amica Models & Co.
3	1469	3843.67	153996.13	Anna's Decorations, Ltd
4	270	558.43	24179.96	Atelier graphique
87	1078	2713.09	117713.56	Vida Sport, Ltd
88	787	2108.11	88041.26	Vitachrome Inc.
89	647	1720.14	75754.88	Volvo Model Replicas, Co
90	511	1030.99	46084.64	West Coast Collectables Co.
91	895	2131.78	78240.84	giftsbymail.co.uk

90 rows × 4 columns

In [27]: df_result = df.copy()

```
    | columns_to_drop = ['CUSTOMERNAME']

In [28]:
               df = df.drop(columns=columns_to_drop)
           ⋈ df
In [29]:
    Out[29]:
                    QUANTITYORDERED PRICEEACH
                                                       SALES
                 0
                                  1778
                                            3975.33 157807.81
                 1
                                   687
                                            1701.95
                                                      70488.44
                 2
                                   843
                                            2218.41
                                                      94117.26
                 3
                                  1469
                                            3843.67 153996.13
                 4
                                   270
                                             558.43
                                                      24179.96
                 ---
                87
                                  1078
                                            2713.09
                                                    117713.56
                88
                                   787
                                            2108.11
                                                      88041.26
                89
                                   647
                                            1720.14
                                                      75754.88
                90
                                   511
                                            1030.99
                                                      46084.64
                91
                                   895
                                            2131.78
                                                     78240.84
               90 rows × 3 columns
```

FIND THE OPTIMAL NUMBER OF CLUSTERS USING ELBOW METHOD

```
In [30]:
             import warnings
             warnings.filterwarnings("ignore")
             scores = []
             range_values = range(1, 15)
             for i in range values:
               kmeans = KMeans(n_clusters = i)
               kmeans.fit(df)
               scores.append(kmeans.inertia_) # intertia is the Sum of squared distances
             plt.plot(scores, 'bx-')
             plt.title('Finding right number of clusters')
             plt.xlabel('Clusters')
             plt.ylabel('scores')
             plt.show()
             # Kmeans details in Sklearn: https://scikit-learn.org/stable/modules/genera
             # From this we can observe that, 5th cluster seems to be forming the elbow
             # Note that curve will change everytime we run the cell
```


APPLY K-MEANS METHOD

In [32]: # Add 'Value_df2' column from df2 to df1
df['CUSTOMERNAME'] = df_result['CUSTOMERNAME']

In [33]: ► df

Out[33]:	QUANTITYORDERED	PRICEEACH	SALES	Cluster	CUSTOMERNAME
0	1778	3975.33	157807.81	2	AV Stores, Co.
1	687	1701.95	70488.44	0	Alpha Cognac
2	843	2218.41	94117.26	1	Amica Models & Co.
3	1469	3843.67	153996.13	2	Anna's Decorations, Ltd
4	270	558.43	24179.96	0	Atelier graphique
87	1078	2713.09	117713.56	1	Vida Sport, Ltd
88	787	2108.11	88041.26	1	Vitachrome Inc.
89	647	1720.14	75754.88	1	Volvo Model Replicas, Co
90	511	1030.99	46084.64	0	West Coast Collectables Co.
91	895	2131.78	78240.84	1	giftsbymail.co.uk

90 rows × 5 columns

```
In [34]:  M import seaborn as sns

# Scatter plot with hue
sns.scatterplot(x='CUSTOMERNAME', y='SALES', hue='Cluster',palette='Set1',
# Remove X-axis labels
plt.xticks([])
plt.title('Scatter Plot with Hue')
plt.show()
```


In [35]: Import seaborn as sns
import matplotlib.pyplot as plt

Assuming 'hue_column' is the column you want to use as the hue
sns.pairplot(df, hue='Cluster', palette='viridis')
plt.show()

In []: ▶