Mat 354

Homework 15

Kenny Roffo

Due December 2, 2015

- 1. **EXC3** Y_1 and Y_2 are jointly distributed with density $0 \le y_1 \le y_2 \le 1$
- $f(y_1, y_2) = 4y_2^2$

i. Determine $P(\max\{Y_1, Y_2\} < 1/2)$

This probability is found by integrating the density as y_1 goes from 0 to y_2 and y_2 goes from 0 to 1/2:

$$P(\max\{Y_1, Y_2\} < 1/2) = \int_0^{1/2} \int_0^{y_2} 4y_2^2 dy_1 dy_2$$
$$= \int_0^{1/2} 4y_2^3 dy_2$$
$$= [y_2^4]_0^{1/2}$$
$$= \frac{1}{16}$$

ii. Determine $P(Y_1 + Y_2 < 1/2)$

This is really the probability that the max of the two is less than 1/4. If that is not obvious to you, think about it. The only way for their sum to be 1/2 is for one to be at least 1/4. Thus we find this probability in the exact same manner as the first problem, just with different bounds:

$$P(Y_1 + Y_2 < 1/2) = \int_0^{1/4} \int_0^{y_2} 4y_2^2 dy_1 dy_2$$
$$= \int_0^{1/4} 4y_2^3 dy_2$$
$$= [y_2^4]_0^{1/4}$$
$$= \frac{1}{256}$$

iii. Determine $P(Y_1Y_2 < 1/2)$

This is the probability that that max of the two is, you guessed it, the square root of 1/2. Same problem. Different bounds. (Gee, I really hope I'm not wrong because I'm getting awfully cocky)

$$P(Y_1Y_2 < 1/2) = \int_0^{\sqrt{1/2}} \int_0^{y_2} 4y_2^2 dy_1 dy_2$$
$$= \int_0^{\sqrt{1/2}} 4y_2^3 dy_2$$
$$= [y_2^4]_0^{\sqrt{1/2}}$$
$$= \frac{1}{1/4}$$

iv. Determine $P(Y_1/Y_2 < 1/2)$

Now we have something interesting! Y_1/Y_2 is less than 1/2 if $Y_1 < Y_2/2$. Of course, this will work for any values of Y_1 and Y_2 that satisfy this inequality, and so Y_2 can go anywhere from 0 to 1. Technically we should remove the case where $Y_2 = 0$, but the probability of that happening is basically 0 since we are dealing with continous variables, so we don't have to worry about it:

$$P(Y_1/Y_2 < 1/2) = \int_0^1 \int_0^{y_2/2} 4y_2^2 dy_1 dy_2$$
$$= \int_0^1 2y_2^3 dy_2$$
$$= \left[\frac{1}{2}y_2^4\right]_0^1$$
$$= \frac{1}{2}$$

v. Determine $P(Y_2 - Y_1 < 1/2)$

Just isolate Y_1 to get the upper bound:

$$P(Y_1 - Y_2 < 1/2) = \int_0^1 \int_0^{y_2 - 2} 4y_2^2 dy_1 dy_2$$
$$= \int_0^1 4y_2^3 - 2y_2^2 dy_2$$
$$= \left[y_2^4 - \frac{2}{3} y_2^3 \right]_0^1$$
$$= \frac{1}{3}$$

I do wonder if this is actually right versus using 1/2 to 1 for the bounds of the outer integral. Y_2 cannot be less than 1/2 for this outcome, but perhaps the inner integral takes care of that? The probability then is 17/48 which is just a little bit higher than 1/3.

vi. Determine $P(\min\{Y_1, Y_2\} < 1/2)$

Since $Y_2 \ge Y_1$, this is really the $P(Y_1 < 1/2)$:

$$P(\min\{Y_1, Y_2\} < 1/2) = \int_0^1 \int_0^{1/2} 4y_2^2 dy_1 dy_2$$
$$= \int_0^1 2y_2^2 dy_2$$
$$= \left[\frac{2}{3}y_2^3\right]_0^1$$
$$= \frac{2}{3}$$

I apologize for the next three being wrong. If I had had more time maybe I could figure them out, but I did not have more time.

vii. Determine the marginal distribution for Y_1

Well, in this case Y_1 can be anywhere from 0 up to a given y_1 , and Y_2 can be anywhere from y_1 to 1. So the marginal distribution must be:

$$F_1(y_1) = \int_{y_1}^1 \int_0^{y_1} 4y_2^2 dy_1 dy_2$$

$$= \int_{y_1}^1 4y_2^2 y_1 dy_2$$

$$= \left[\frac{4}{3} y_2^3 y_1 \right]_{y_1}^1$$

$$= \frac{4}{3} y_1 - \frac{4}{3} y_1^4$$

viii. Determine $P(Y_1 < 1/2)$

According to my answer in the previous problem, this probability is:

$$P(Y_1 < 1/2) = F_1(1/2)$$

$$= \frac{4}{3} [1/2 - 1/16]$$

$$= \frac{7}{12}$$

ix. Determine the marginal distribution for Y_2 Here Y_2 ranges from 0 to y_2 , and Y_1 ranges from 0 to Y_2 :

$$F_2(y_2) = \int_0^{y_2} \int_0^{y_2} 4y_2^2 dy_1 dy_2$$
$$= \int_0^{y_2} 4y_2^3 dy_2$$
$$= y_2^4$$