

Please amend the application filed on even date herewith prior to proceeding with its examination.

IN THE CLAIMS

1. (Previously Presented) Segment copolymers comprising segments "A" having polyvinylpyrrolidone (PVP) structure and segments "B" having a polyester structure wherein the PVP segments have a weight average molecular weight between 600 and 15,000.
2. (Original) Segment copolymers as claimed in claim 1 in the form of linear A-B type copolymers.
- 10 3. (Currently Amended) Segment copolymers as claimed in claim 2 ~~wherein the~~ having a structure is of the type
PVP-COO-(R³-COO)_nH,
or of the type:
PVP-(OOC-R³)_nOH,
15 where n is a number between 5 and 500, and R is a linear or branched hydrocarbon chain containing from 1 to 12 carbon atoms.
4. (Original) Segment copolymers as claimed in claim 3 wherein n is comprised between 15 and 150, R³ has from 1 to 6 carbon atoms.
5. (Original) Segment copolymers as claimed in claim 1 in the form of linear copolymers of A-B-A type.
- 20 6. (Currently Amended) Copolymers as claimed in claim 5 ~~wherein the~~ 5, having a structure is of the type
PVP-COO-(R¹-OOCR²COO)_n-R¹-OOC-PVP,
or of the type:

PVP-(OOC-R¹-COOR²)_nOOCR¹COO-PVP

where n is a number between 5 and 300, and R¹ and R² can be equal or different, and are linear or branched hydrocarbon chains having from 1 to 25 carbon atoms.

7. (Original) Segment copolymers as claimed in claim 6 wherein n is

5 comprised between 10 and 100 and R¹ and R² have from 1 to 8 carbon atoms.

8. (Currently Amended) Segment copolymers as claimed in claim 1 being branched or hyperbranched, wherein thecomprising PVP segments are located at the terminal ends ofthe branches.

9. (Currently Amended) Segment copolymers as claimed in claim 8,

10 having the formula represented in Figure 1, wherein A is polyvinylpyrrolidone, D is a the residue deriving from a polycarboxylic or polyol, wherein the hydroxy or carboxy functions are at least 3, (BC) indicate the repeating unit of the B polyester segment and n is comprised between 2 and 200.

10. (Currently Amended) Copolymers as claimed in claim 48 being in the

15 form of branched or hyperbranched copolymers having located at the ends of the branches;

- PVP segments and residues derived from monocarboxylic acids R-COOH, or monohydroxylated alcohols of the R-OH type where R is a linear or branched hydrocarbon chain containing from 1 to 25 carbon atoms,

20 - PVP segments or residues derived from dicarboxylic acids HOOC-R-COOH or dihydroxylic alcohols of the HO-R-OH type where R is a linear or branched hydrocarbon chain as aforedefined.

11. (Original) Segment copolymers as claimed in claim 10, wherein R has from 1 to 8 atoms.

12. (Currently Amended) Segment copolymers as claimed in anyone of
claimsclaim 10 and 11 as represented in Figure 2, wherein the A indicates the
polyvinylpyrrolidone chains D is thea residue deriving from a polycarboxylic or
polyol, wherein the hydroxy or carboxy functions are at least 3, (BC) indicate the
repeating unit of the B polyester segment n is comprised between 2 and 200, and
E is thea residue of a monofunctional alcohol.

13. (Currently Amended) Segment copolymers as claimed in anyone of
claims 8 to 13, claim 8, wherein the branching sites consist of polyol or
polycarboxylic acid residues having a number of functions (hydroxyl or carboxyl
respectively) between 3 and 12.

14. (Currently Amended) Segment copolymers as claimed in claim 13
wherein said number of functions of the polyol or polycarboxylic acid is comprised
between 3 and 6.

15. (Currently Amended) Segment copolymers as claimed in any one of
claims 8-14, wherein theclaim 8, having a molar ratio between the number of
branching sitesbranches and polyester fragments is comprised between 0.01 and
2,2.

16. (Original) Segment copolymers as claimed in claim 15, wherein said
ratio is comprised between 0.1 and 1.5.

20 17. (Currently Amended) Segment copolymers as claimed in anyone of
claims 8-15, claim 8, wherein the molar ratio between the number of branching
sites and PVP fragments is comprised between 0.01 and 100, 100.

18. (Original) Segment copolymers as claimed in claim 17, wherein said
molar ratio is comprised between 0.1 and 10.

19. (Currently Amended) Segment copolymers as claimed in ~~any one of~~
claims ~~8-18~~ 18 in cross-linked form.
20. (Original) Segment copolymers as claimed in claim 1 wherein the PVP
segments are comb-grafted at one end onto polyester chains.
- 5 21. (Currently Amended) Segment copolymers as claimed in ~~any one of~~
claims ~~1-20~~claim 1 wherein said A (PVP) segment has a weight average
molecular weight comprised between 1,000 and 6,000.
22. (Currently Amended) Segment copolymers as claimed in ~~any one of~~
claims ~~1-21~~claim 1, having a PVP content by weight between 5% and 95%.
- 10 23. (Previously Presented) Segment copolymers as claimed in claim 22
wherein said PVP content is comprised between 10% and 50%.
24. (Currently Amended) Segment copolymers as claimed in ~~any one of~~
claims ~~1-23~~claim 1, having a weight average molecular comprised between
10,000 and 1,000,000.
- 15 25. (Previously Presented) Segment copolymers as claimed in claim 24,
wherein said average molecular weight is comprised between 20,000 and
200,000.
26. (Currently Amended) A process for preparing segment copolymers,
comprising segments "A" having polyvinylpyrrolidone (PVP) structure and
20 segments "B" having a polyester structure wherein the PVP segments have a
weight average molecular weight between 600 and 15,000, in the form of linear
A-B type the copolymer as claimed in claim 2, copolymers, said process
comprising carrying out a polycondensation reaction on PVP terminated at one
end with a hydroxy or carboxy function with respectively:

-a biacid or a bialcohol in the presence of a monoalcohol or a monocarboxylic acid
or in alternative

-a hydroxy carboxylic acid optionally a cyclic derivative thereof,
with the proviso that ratio of total moles of OH function /total moles of COOH

5 functions is =1.

27. (Currently Amended) The process according to claim 26 for preparing
the segment copolymers, having a structure of the type:

~~copolymers of claim 3, PVP-COO-(R³-COO)_nH,~~

or of the type:

10 PVP-(OOC-R³)_nOH,

where n is a number between 5 and 500, and R is a linear or branched

hydrocarbon chain containing from 1 to 12 carbon atoms,

comprising effecting polycondensation between PVPs monofunctionalized at one
end with hydroxyl or carboxyl groups optionally in the form of methyl or ethyl

15 esters, in the presence of hydroxycarboxylic acids of type

HO-R³-COOH

where R³ is a linear or branched hydrocarbon chain with between 1 and 12 carbon
atoms.

28. (Previously Presented) The process according to claim 27, wherein R³
20 has from 1 to 6 carbon atoms.

29. (Currently Amended) The process according to claim 27 for preparing
the copolymers having the structure
~~of claims 3, PVP-COO-(R³-COO)_nH,~~

comprising effecting ring-opening polycondensation on PVP monofunctionalised at one end with hydroxyl or carboxyl groups optionally in the form of methyl or ethyl esters with cyclic derivatives selected from lactones, glycolides or lactides of the hydroxy acids of formula

5 HO-R³- COOH

where R³ is a linear or branched hydrocarbon chain with between 1 and 12 carbon atoms.

30. (Previously Presented) The process as claimed in claim 29, where R³ has from 1 to 6 carbon atoms.

10 31. (Currently Amended) A process for preparing thesesegment copolymers comprising segments "A" having polyvinylpyrrolidone (PVP) structure and segments "B" having a polyester structure, wherein the PVP segments have a weight average molecular weight between 600 and 15,000 in the form of linear copolymers of as claimed in claim 5-A-B-A type:

15 comprising carrying out a polycondensation reaction on PVP terminated at one end with a hydroxy or carboxy function with a biacid or a bialcohol with the proviso that the ratio of total moles of OH function/total moles of COOH functions is =1.

32. (Currently Amended) The process as claimed in claim 31 for preparing the linear copolymers having the structure PVP-COO-(R¹-OOCR²COO)_n-R¹-OOC-
20 PVP, or
ef claims 6 and 7, PVP-(OOC-R¹-COOR²)_nOOCR¹COO-PVP where n is a number
between 5 and 300, and R¹ and R² can be equal or different, and are linear or
branched hydrocarbon chains having from 1 to 25 carbon atoms,

comprising effecting polycondensation reaction between PVPs monofunctionalized at one end with hydroxyl or carboxyl groups optionally in the form of methyl or ethyl esters, and mixtures of dicarboxylic acids and diols of respectively general formula HOOC-R¹-COOH and HO-R²-OH where R¹ and R², equal or different, are linear or branched hydrocarbon chains containing from 1 to 25 carbon atoms.

5 33. (Previously Presented) The process according to claim 32 wherein R¹ and R² have from 1 to 8 carbon atoms.

34. (Currently Amended) A process for preparing the segment copolymers comprising segments "A" having polyvinylpyrrolidone (PVP) structure and 10 segments "B" having a polyester structure wherein the PVP segments have a weight average molecular weight between 600 and 15,000, said copolymers being branched of claims 8 and 9, or hyperbranched comprising PVP segments located at the terminal ends of the branches, having the formula represented in Figure 1, wherein A is polyvinylpyrrolidone, D is the residue deriving from a 15 polycarboxylic or polyol, wherein the hydroxy or carboxy functions are at least 3, (BC) indicate the repeating unit of the B polyester segment and n is comprised between 2 and 200,

comprising effecting polycondensation of the mixtures in variable proportions of:

- a) PVPs monofunctionalized at one end with hydroxyl or carboxyl groups 20 optionally in the form of methyl or ethyl esters;
- b) dicarboxylic acids and diols;
- c) polyols or polycarboxylic acids having at least 3 hydroxyl or carboxyl functions, provided that:
 - i), when said copolymers are not crosslinked

"r" is < r_c

ii) when said copolymers are crosslinked

"r" is > r_c

$r = Na_0/Nb_0$, Na_0 indicates the initial total number of hydroxy or carboxy function in

5 defect, Nb_0 indicates the total initial number of carboxy or hydroxy functions in excess,

$$r_c = \frac{1}{(f_{w,A}-1)(f_{w,B}-1)}$$

where $f_{w,A}$ and $f_{w,B}$ are the "weight" averages of the functionalities of the monomers present, including monoalcohol or monocarboxylic acid.

10 35. (Previously Presented) The process according to claim 34, wherein the diols and the diacids are of respectively general formula HOOC-R¹-COOH and HO-R²-OH, where R¹ and R², equal or different, are linear or branched hydrocarbon chains containing from 1 to 25 carbon atoms.

15 36. (Previously Presented) The process according to claim 35 wherein R¹ and R² have from 1 to 8 carbon atoms.

37. (Currently Amended) The process according to ~~any one~~ of claims 34-36, wherein the polyols or polycarboxylic acids have respectively per molecule between 3 and 12 hydroxy or carboxy functions.

20 38. (Previously Presented) The process according to claim 37, wherein the polyols or polycarboxylic acids have respectively per molecule between 3 and 6 hydroxy or carboxy functions.

39. (Currently Amended) A process for preparing segment copolymers comprising segments "A" having polyvinylpyrrolidone (PVP) structure and

segments "B" having a polyester structure wherein the PVP segments have a weight average molecular weight between 600 and 15,000, in the form of branched or hyperbranched copolymers having located at the ends of the branches;

- 5 - PVP segments and residues derived from monocarboxylic acids R-COOH, or monohydroxylated alcohols of the R-OH type where R is a linear or branched hydrocarbon chain containing from 1 to 25 carbon atoms,
- PVP segments or residues derived from dicarboxylic acids HOOC-R-COOH or dihydroxylic alcohols of the HO-R-OH type where R is a linear or branched hydrocarbon chain as aforedefined,
- 10 ~~the copolymers as claimed in anyone of claims 10-12, comprising effecting a polycondensation of mixtures in various proportions of:~~
 - a) PVPs monofunctionalized at one end with hydroxyl or carboxyl groups optionally in the form of methyl or ethyl esters;
 - 15 b) dicarboxylic acids and diols;
 - c) polyols or polycarboxylic acids having least 3 hydroxyl or carboxy functions
 - d) monocarboxylic acids of type R-COOH or monohydroxylated alcohols of type ROH, where R has the aforementioned meanings

provided that:

 - 20 i), when said copolymers are not crosslinked
"r" is $< r_c$
 - ii) when said copolymers are crosslinked
"r" is $> r_c$

$r=Na_0/Nb_0$, Na_0 indicates the initial total number of hydroxy or carboxy function in defect, Nb_0 indicates the total initial number of carboxy or hydroxy functions in excess,

$$r_c = \frac{1}{(f_{w,A}-1)(f_{w,B}-1)}$$

- 5 where $f_{w,A}$ and $f_{w,B}$ are the "weight" averages of the functionalities of the monomers present, including monoalcohol or monocarboxylic acid.

40. (Previously Presented) The process according to claim 39 wherein the diols and the diacids are of respectively general formula HOOC-R¹-COOH and HO-R²-OH, where R¹ and R², equal or different, are linear or branched 10 hydrocarbon chains containing from 1 to 25 carbon atoms.

41. (Previously Presented) The process according to claim 40, wherein R¹ and R² have from 1 to 8 carbon atoms.

42. (Currently Amended) The process according to ~~anyone of claims 40 and 41, claim 40~~, wherein the polyols or polycarboxylic acids have respectively per 15 molecule between 3 and 12 hydroxy or carboxy functions.

43. (Previously Presented) The process as claimed in claim 42, wherein the polyols or polycarboxylic acids have respectively per molecule between 3 and 6 hydroxy or carboxy functions.

44. (Currently Amended) Process for preparing thesegment copolymers 20 comprising segments "A" having polyvinylpyrrolidone (PVP) structure and segments "B" having a polyester structure wherein the PVP segments have a weight average molecular weight between 600 and 15,000, wherein the PVP segments are of claim 20, comb-grafted at one end onto polyester chains,

comprising effecting ring-opening polymerisation of mixtures of PVP terminating at one end with a lactone, alone or optionally with the same or a different lactone from the previous one.

45. (Currently Amended) The process as claimed in claim 46,~~44~~, carried
5 out on PVP terminating with γ -butyrolactone, in the presence of γ -butyrolactone.

46. (Currently Amended) A process for preparing ~~the~~segment copolymers
for preparing segment copolymers comprising segments "A" having
polyvinylpyrrolidone (PVP) structure and segments "B" having a polyester
structure wherein the PVP segments have a weight average molecular weight
10 between 600 and 15,000, according to claim 20 wherein the PVP segments are
comb-grafted at one end,

comprising effecting a chain transfer polymerization reaction with N-vinyl pyrrolidone in the presence of PLGA as the chain transfer agent.

47. (Previously Presented) The process according to claim 46, further
15 comprising a second chain transfer polymerization, wherein the chain transfer agent is methyl isobutyrate.

48. (Currently Amended) A composition comprising the segment copolymers according to ~~anyone of claims 1-20, claim 1~~, and an ingredient having therapeutic or cosmetic activity, or a dietary supplement.

20 ~~49. Use of copolymers claimed in claims 1-26 for preparing blends with~~
~~copolymers~~⁴⁹. Polymeric blends comprising the segment copolymers of claim 1
and at least one copolymer of poly(lactic-glycolic) acid (PLGA) of various average
molecular weight.