← Key concepts on Deep Neural Networks

10/10 points (100%)

Quiz, 10 questions

Co	ngratulations! You passed!	Next Item		
~	1/1 points			
1. What is propag	s the "cache" used for in our implementation of forward propagation and gation?	backward		
0	We use it to pass variables computed during forward propagation to the backward propagation step. It contains useful values for backward propagatives.			
	ect ect, the "cache" records values from the forward propagation units and so sward propagation units because it is needed to compute the chain rule d			
	It is used to cache the intermediate values of the cost function during tra	aining.		
	It is used to keep track of the hyperparameters that we are searching ov computation.	er, to speed up		
	We use it to pass variables computed during backward propagation to the forward propagation step. It contains useful values for forward propagations.			
~	1/1 points			
2. Among	the following, which ones are "hyperparameters"? (Check all that apply.)			
	weight matrices $W^{[I]}$			
Un-s	elected is correct			
	learning rate $lpha$			
Correct				
	number of iterations			

Correct

	Courses From Top Onliversities. John for Prec Feodusera	
	size of the hidden layers $n^{[l]}$	
Key conce	pts on Deep Neural Networks	10/10 points (100%)
Corre Quiz, 10 questions	ect	• ` `
	number of layers L in the neural network	
Corr	ect	
	activation values $a^{[l]}$	
Un-s	elected is correct	
	bias vectors $b^{[l]}$	
Un-s	elected is correct	
	1/1	
	points	
3.		
Which	of the following statements is true?	
\bigcirc	The deeper layers of a neural network are typically computing more complex feature.	res of the
	input than the earlier layers.	
Corr	ect	
	The earlier layers of a neural network are typically computing more complex featur	es of the
	input than the deeper layers.	
	1/1	
	points	
4.		
Vector	ization allows you to compute forward propagation in an L -layer neural network with	nout an
explicit	t for-loop (or any other explicit iterative loop) over the layers l=1, 2,,L. True/False?	
	True	
O	False	
Corr	ert	
	ect vard propagation propagates the input through the layers, although for shallow netw	vorks
we r	may just write all the lines ($a^{[2]}=g^{[2]}(z^{[2]})$, $z^{[2]}=W^{[2]}a^{[1]}+b^{[2]}$,) in a deeper ne	twork,
we o	cannot avoid a for loop iterating over the layers: ($a^{[l]}=g^{[l]}(z^{[l]}),z^{[l]}=W^{[l]}a^{[l-1]}+$	
).		

1/1

5.

Key conscapts on Deep Least all iNatworks $\frac{1}{2}$ declared layers, as follows: layer_dims = $\frac{1}{2}$ and $\frac{1}{2}$ are the parameters for the model?

```
1 for(i in range(1, len(layer_dims)/2)):
2  parameter['W' + str(i)] = np.random.randn(layers[i], layers[i -1])) * 0.01
3  parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```

Correct

1/1 points

6.

Consider the following neural network.

How many layers does this network have?

The number of layers L is 4. The number of hidden layers is 3.

Correct

Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1.

The input and output layers are not counted as hidden layers. Key concepts on Deep Neural Networks

10/10 points (100%)

	The number of layers L is 3. The number of hidden layers is 3.
	The number of layers L is 4. The number of hidden layers is 4.
	The number of layers L is 5. The number of hidden layers is 4.
~	1/1 points
activati backwa	forward propagation, in the forward function for a layer l you need to know what is the forward function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding and function also needs to know what is the activation function for layer l , since the gradient ds on it. True/False?
0	True
back	ect as you've seen in the week 3 each activation has a different derivative. Thus, during propagation you need to know which activation was used in the forward propagation to be to compute the correct derivative.
	False
~	1/1 points
8. There a	
There a	points are certain functions with the following properties: compute the function using a shallow network circuit, you will need a large network (where we
There a	points are certain functions with the following properties: compute the function using a shallow network circuit, you will need a large network (where we re size by the number of logic gates in the network), but (ii) To compute it using a deep network
There a	points are certain functions with the following properties: compute the function using a shallow network circuit, you will need a large network (where we re size by the number of logic gates in the network), but (ii) To compute it using a deep network you need only an exponentially smaller network. True/False? True

Consider the following 2 hidden layer neural network:

Which of the following statements are True? (Check all that apply).

$W^{[1]}$ will have shape (4, 4)			
Correct Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.			
$b^{[1]}$ will have shape (4, 1)			
Correct Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.			
$W^{[1]}$ will have shape (3, 4)			
Un-selected is correct			
$b^{[1]}$ will have shape (3, 1)			
Un-selected is correct			
$W^{[2]}$ will have shape (3, 4)			
Correct Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.			
$b^{[2]}$ will have shape (1, 1)			
Un-selected is correct			

 $W^{[2]}$ will have shape (3, 1)

Un-selected is correct

Key concepts on Deep Neural Networks

10/10 points (100%)

Quiz, 10 questions $b^{[2]}$ will have shape (3, 1)

Correct

Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]}, 1)$.

 $W^{[3]}$ will have shape (3, 1)

Un-selected is correct

 $b^{[3]}$ will have shape (1, 1)

Correct

Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]}, 1)$.

 $W^{[3]}$ will have shape (1, 3)

Correct

Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

 $b^{[3]}$ will have shape (3, 1)

Un-selected is correct

1/1 points

10

Whereas the previous question used a specific network, in the general case what is the dimension of $W^{[l]}$, the weight matrix associated with layer l?

 $W^{[l]}$ has shape $(n^{[l+1]}, n^{[l]})$

 $W^{[l]}$ has shape $(n^{[l]}, n^{[l-1]})$

Correct

True

 $W^{[l]}$ has shape $(n^{[l]}, n^{[l+1]})$

 $W^{[l]}$ has shape $(n^{[l-1]}, n^{[l]})$

