ECEN 689 Materials Informatics Unsupervised Learning

Ulisses Braga-Neto

ECE Department

Texas A&M University

Unsupervised Learning

- In some situations, training data are available without labeling (or it is only partially labeled, a case we will not consider here).
- This could be because of the expense of labeling the data, or the unavailability of reliable labels, or because the data are perceived to come from a single group.
- The data could still be valuable for identifying the structure of the underlying data distribution. Namely, we are interested in:
 - Finding subgroups ("clusters")
 - Building a hierarchical data representation.
 - Discovering new classes.
 - Visualization in low-dimensional spaces.

Example: Finding Groups

Unspupervised learning is used to organize the data into groups.

(Adapted from James et al. "Introduction to Statistical Learning")

Example: Hierarchical Representation

Unspupervised learning is used to build a hierarchical representation of the information.

Example: Class Discovery

 Unspupervised learning is used to discover previously unknown classes.

Two new cancer subtypes discovered by clustering

Example: Vizualization

 Unspupervised learning is used to project high-dimensional data into low-dimensional spaces.

(Adapted from Nascimento et al. "Gene Expression Profiling during Early Acute Febrile Stage of Dengue Infection Can Predict the Disease Outcome," PLoS ONE, 4(11), 2009)

K-Means Clustering

- Given data $S_n = \{X_1, \dots, X_n\}$, the objective is
 - Finding K cluster centers μ_1, \ldots, μ_K (K is given).
 - For each point X_i , finding an assignment to one of the K clusters.
- Cluster assignment is made by vectors $\mathbf{r}_1, \dots, \mathbf{r}_n$ where each \mathbf{r}_i is a vector of size K with

$$\mathbf{r}_i = (0, 0, \dots, 1, \dots, 0, 0), \text{ for } i = 1, \dots, n$$

such that $\mathbf{r}_i(k) = 1$ if \mathbf{X}_i belongs to cluster k, for $k = 1, \dots, K$ (each point can belong to only one cluster).

For example, with K=3 and n=4, we might have $\mathbf{r}_1=(1,0,0), \, \mathbf{r}_2=(0,0,1), \, \mathbf{r}_3=(1,0,0), \, \mathbf{r}_4=(0,1,0), \, \mathbf{in}$ which case $\mathbf{X}_1,\mathbf{X}_3$ are assigned to cluster 1, \mathbf{X}_2 is assigned to cluster 3, while \mathbf{X}_4 is assigned to cluster 2.

K-Means Problem Formulation

• The K-means algorithm seeks for the vectors $\{\mu_i\}_{i=1}^n$ and $\{\mathbf{r}_i\}_{k=1}^K$ that minimize the distance criterion

$$J = \sum_{i=1}^{n} \sum_{k=1}^{K} \mathbf{r}_i(k) ||\mathbf{X}_i - \boldsymbol{\mu}_k||^2$$

- The solution can be obtained iteratively with two optimizations at each step:
 - Hold current values $\{\mu_k\}_{k=1}^K$ fixed, find $\{\mathbf{r}_i\}_{i=1}^n$ that minimizes J ("E-Step").
 - Hold current values $\{\mathbf{r}_i\}_{i=1}^n$ fixed, find $\{\boldsymbol{\mu}_k\}_{k=1}^K$ that minimizes J ("M-Step").
- The nomenclature "E-step" and "M-step" is due to an analogy with the EM ("Expectation-Maximization") algorithm for Gaussian mixtures (more on this later).

K-Means "E-Step"

• With the current values $\{\mu_k\}_{k=1}^K$ fixed, the values $\{\mathbf{r}_i\}_{i=1}^n$ that minimize J can be found by inspection.

$$\mathbf{r}_i(k) = \begin{cases} 1, & \text{if } k = \arg\min_{j=1,\dots,K} ||\mathbf{X}_i - \boldsymbol{\mu}_j||^2, \\ 0 & \text{otherwise.} \end{cases}$$

for
$$i = 1, ..., n$$
.

In other words, we simply assign each point to the closest cluster mean.

K-Means "M-Step"

• With the current values $\{\mathbf{r}_i\}_{i=1}^n$ fixed, the values $\{\boldsymbol{\mu}_k\}_{k=1}^K$ that minimize J can be found by simple differentiation:

$$\frac{\partial J}{\partial \boldsymbol{\mu}_k} = 2 \sum_{i=1}^n \mathbf{r}_i(k) ||\mathbf{X}_i - \boldsymbol{\mu}_k|| = 0,$$

which gives

$$\mu_k = \frac{\sum_{i=1}^n \mathbf{r}_i(k)\mathbf{X}_i}{\sum_{i=1}^n \mathbf{r}_i(k)},$$

for k = 1, ..., K.

• In other words, we simply assign to μ_k the mean value of all training points assigned to cluster k in the previous "E-Step".

K-Means Algorithm

K-Means Clustering Algorithm

1: Initialize K and $\{\boldsymbol{\mu}_k\}_{k=1}^K$.

2: repeat

3: E-Step: Assign each point to closest cluster mean.

4: M-Step: Update cluster means.

5: **until** there is no signficant change to the criterion J.

K-Means Algorithm Example

"Old Faithful" data set (C. Bishop).

K-Means Algorithm Example

ullet Plot of cost function J as function of iteration number for previous example.

E-step: red circle; M-step: blue circle.

It is clear that the algorithm has converged after only two iterations.

Random Restarts

By restarting the algorithm with multiple random initial values, local minima may be avoided.

(Source: James, Witten, Hastie, Tibshirani, 2009.

Fuzzy K-Means Clustering

- Also known as the "fuzzy c-means algorithm."
- ▶ Here, each vector \mathbf{r}_i can assume nonnegative values such that $\sum_{k=1}^K \mathbf{r}_i(k) = 1$. The value $0 \le \mathbf{r}_i(k) \le 1$ gives the *degree of membership* of point \mathbf{X}_i to cluster k.
- The algorithm seeks vectors $\{\mu_i\}_{i=1}^n$ and $\{\mathbf{r}_i\}_{k=1}^K$ that minimize the distance criterion

$$J = \sum_{i=1}^{n} \sum_{k=1}^{K} \mathbf{r}_i(k)^s ||\mathbf{X}_i - \boldsymbol{\mu}_k||^2$$

where $s \ge 1$ is a parameter that controls the "fuzziness" of the resulting clusters.

This can be solved by a similar process to the usual K-means algorithm, with E and M steps.

Model-Based Clustering

- The K-means algorithm makes no assumption about the distribution of the data.
- A different approach is to assume a particular parametric shape for the distribution and estimate the parameters from the data (this is similar to parametric classification rules).
- The appropriate assumption for clustering is a mixture of probability densities.
- We will consider here the Gaussian Mixture Model (GMM) and maximum-likelihood parameter estimation.

Gaussian Mixture Model

The GMM for the overall data distribution is:

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \Sigma_k)$$

where K is the desired number of clusters and π_1, \ldots, π_K are nonnegative numbers, with $\sum_{i=1}^K \pi_k = 1$, called the *mixing parameters*.

• The mixing parameter π_k is simply the *a-priori* probability that a given random point X belongs to cluster C_k :

$$\pi_k = P(\mathbf{X} \in C_k),$$

for
$$k = 1, ..., K$$
.

Cluster "Responsibilities"

Bayes' theorem allows one to write:

$$\gamma_{k}(\mathbf{x}) = P(\mathbf{X} \in C_{k} \mid \mathbf{X} = \mathbf{x})$$

$$= \frac{p(\mathbf{X} = \mathbf{x} \mid \mathbf{X} \in C_{k})P(\mathbf{X} \in C_{k})}{\sum_{k=1}^{K} p(\mathbf{X} = \mathbf{x} \mid \mathbf{X} \in C_{k})P(\mathbf{X} \in C_{k})}$$

$$= \frac{\pi_{k}\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_{k}, \Sigma_{k})}{\sum_{k=1}^{K} \pi_{k}\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_{k}, \Sigma_{k})},$$

for k = 1, ..., K.

• The number $\gamma_k(\mathbf{x})$ is the "responsibility" that cluster k takes for explaining the given point \mathbf{x} . Note the similarity with the posterior probability $\eta_k(\mathbf{x}) = P(Y = k \mid \mathbf{X} = \mathbf{x})$ in classification.

Gaussian Mixture Example

Synthetic data, K = 3 (C. Bishop).

Just like in classification, "hard" cluster membership can be obtained by assigning to a point the cluster with the largest responsibility. Thus, clustering can be performed by estimating the cluster responsibilities.

Maximum-Likelihood Estimation

- Since $\{\gamma_k(\mathbf{X}_n)\}_{i=1}^n$ is a function of $\{\pi_k, \boldsymbol{\mu}_k, \Sigma_k\}_{i=1}^K$, we need to find estimates of these parameters.
- Given independence, the likelihood function is

$$p(S_n \mid \{\pi_k, \boldsymbol{\mu}_k, \Sigma_k\}_{i=1}^K) = \prod_{i=1}^n \left(\sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{X}_i \mid \boldsymbol{\mu}_k, \Sigma_k) \right).$$

Therefore, the log-likelihood function can be written as:

$$L = \ln p(S_n | \{\pi_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\}_{i=1}^K) = \sum_{i=1}^n \ln \left(\sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{X}_i | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right).$$

The maximum-likelihood parameter estimates are:

$$\{\hat{\pi}_k, \hat{\boldsymbol{\mu}}_k, \hat{\Sigma}_k\}_{i=1}^K = \arg\max \ln p(S_n \mid \{\pi_k, \boldsymbol{\mu}_k, \Sigma_k\}_{i=1}^K).$$

M-step for Gausian Means

• The values $\{\mu_k\}_{k=1}^K$ that maximize the log-likelihood L can be found by simple differentiation:

$$\frac{\partial L}{\partial \boldsymbol{\mu}_{k}} = \sum_{i=1}^{n} \frac{\pi_{k} \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})}{\sum_{k=1}^{K} \pi_{k} \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})} \Sigma_{k}^{-1} (\mathbf{X}_{i} - \boldsymbol{\mu}_{k}) = 0$$

$$\gamma_{k}(\mathbf{X}_{i})!$$

which gives (by plugging in current estimates):

$$\hat{\boldsymbol{\mu}}_k = \frac{\sum_{i=1}^n \hat{\gamma}_k(\mathbf{X}_i)\mathbf{X}_i}{\sum_{i=1}^n \hat{\gamma}_k(\mathbf{X}_i)}.$$

for
$$k = 1, ..., K$$
.

M-step for Gausian Covariance

• The values $\{\Sigma_k\}_{k=1}^K$ that maximize the log-likelihood L can be found as in the previous slide, by setting $\frac{\partial L}{\partial \Sigma_k} = 0$, which gives (by plugging in current estimates):

$$\hat{\Sigma}_k = \frac{\sum_{i=1}^n \hat{\gamma}_k(\mathbf{X}_i)(\mathbf{X}_i - \hat{\boldsymbol{\mu}}_k)(\mathbf{X}_i - \hat{\boldsymbol{\mu}}_k)^T}{\sum_{i=1}^n \hat{\gamma}_k(\mathbf{X}_i)},$$

for k = 1, ..., K.

M-step for Mixing Parameters

• The values $\{\pi_k\}_{k=1}^K$ that maximize the log-likelihood L can be found by a slightly more complex optimization process, using Lagrance multipliers (due to the constraints $\pi_k \geq 0$ and $\sum_k \pi_k = 1$. The solution turns out to be simply (by plugging in current estimates):

$$\hat{\pi}_k = \frac{1}{n} \sum_{i=1}^n \hat{\gamma}_k(\mathbf{X}_i)$$

for
$$k = 1, ..., K$$
.

E-step

• The E-step corresponds simply to updating the responsibility estimates given the estimates $\{\pi_k, \boldsymbol{\mu}_k, \Sigma_k\}_{i=1}^K$ obtained in the M-step:

$$\hat{\gamma}_k(\mathbf{X}_i) = \frac{\hat{\pi}_k \mathcal{N}(\mathbf{X}_i \mid \hat{\boldsymbol{\mu}}_k, \hat{\Sigma}_k)}{\sum_{k=1}^K \hat{\pi}_k \mathcal{N}(\mathbf{X}_i \mid \hat{\boldsymbol{\mu}}_k, \hat{\Sigma}_k)},$$

for $i = 1, \ldots, n$ and $k = 1, \ldots, K$.

GMM Clustering Algorithm

GMM Clustering Algorithm

1: Initialize K and $\{\pi_k, \boldsymbol{\mu}_k, \Sigma_k\}_{i=1}^K$.

2: repeat

3: E-Step: Update $\hat{\gamma}_k(\mathbf{X}_i)$, for i = 1, ..., n.

4: M-Step: Update $\{\pi_k, \boldsymbol{\mu}_k, \Sigma_k\}_{i=1}^K$.

5: **until** there is no significant change in the log-likelihood L.

6: Assign X_i to the cluster with the largest responsibility $\hat{\gamma}_k(X_i)$, for $i=1,\ldots,n$.

Estimation Singularities

- If covariance matrices need to be estimated, then singularities may occur.
- To see this, assume that one of the mean estimates coincides with training point X₁. The the log-likelihood becomes

$$L = \frac{1}{(2\pi)^{d/2}|\hat{\Sigma}_1|^{1/2}} + \sum_{i=2}^n \ln \left(\sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{X}_i | \hat{\boldsymbol{\mu}}_k, \hat{\Sigma}_k) \right).$$

By letting $|\hat{\Sigma}_1| \to \infty$, one can increase L without bound, so that no meaningful estimate of Σ_1 results.

Estimation Singularities - II

- In order to avoid that, the GMM algorithm needs to check whether any of the cluster covariances is "collapsing" and if so, reinitialize the mean and covariance means of that cluster.
- Graphical Example (C. Bishop).

GMM Fitting Example

"Old Faithful" data set (C. Bishop).

Relationship to K-Means Algorithm

- The relationship can be revealed by considering the case where $\Sigma_k = \sigma^2 I$ (spherical covariance matrices).
- In this case, the cluster reponsibilities for X_i become:

$$\gamma_k(\mathbf{X}_i) = \frac{\pi_k \exp(-||\mathbf{x} - \boldsymbol{\mu}_k||^2 / 2\sigma^2)}{\sum_{k=1}^K \pi_k \exp(-||\mathbf{x} - \boldsymbol{\mu}_k||^2 / 2\sigma^2)},$$

for k = 1, ..., K.

- Let μ_j be the mean vector closest to \mathbf{X}_i . Then it is easy to see that, if one lets $\sigma \to 0$, then $\gamma_j(\mathbf{X}_i) \to 1$, while all other responsibilities go to zero.
- In other words, $\gamma_k(\mathbf{X}_i) \to \mathbf{r}_i(k)$, and cluster assignment is done as in the K-means algorithm.

Hierachical Clustering

- Here different levels of clustering are obtained by adopting an iterative process of cluster creation.
- The process could be
 - Agglomerative (Bottom-up): start with each point in a separate cluster and iteratively merge clusters based on a pairwise similarity metric.
 - Divisive (Top-down): start with all the data in a single cluster and iteratively split clusters.
- Agglomerative clustering is far more common, and so we will concentrate on it.

Hierachical Clustering Example

(Source: wikipedia).

Hierarchical Clustering and "Heatmaps"

Toxicology gene expression (Zollanvari et al. 2009).

Linkage Types

- According to the type of similarity metric, one may have:
 - Single-Linkage Hierarchical Clustering:

$$d_s(C_i, C_j) = \min\{d(x, y) \mid x \in C_i, y \in C_j\}$$

Complete-Linkage Hierarchical Clustering:

$$d_c(C_i, C_j) = \max\{d(x, y) \mid x \in C_i, y \in C_j\}$$

Average-Linkage Hierarchical Clustering:

$$d_c(C_i, C_j) = \frac{1}{|C_i||C_j|} \sum_{x \in C_i} \sum_{y \in C_j} d(x, y)$$

(Graphics from Murphy, 2012).

Hierarchical Clustering Computation

- Example: Single-linkage with six points (Webb).
- Dissimilarity Matrix:

	1	2	3	4	5	6
1	0	4	13	24	12	8
2		0	10	22	11	10
3			0	7	3	9
4				0	6	18
5					0	8.5
6						0

Hierarchical Clustering Computation

First iteration.

	1	2	(3,5)	4	6
1	0	4	12	24	8
2		0	10	22	10
(3,5)			0	6	8.5
4				0	18
6					0

Second iteration.

	(1,2)	(3,5)	4	6
(1,2)	0	10	22	8
(3,5)		0	6	8.5
4			0	18
6				0

Hierarchical Clustering Computation

Third iteration.

	(1,2)	(3,4,5)	6
(1,2)	0	10	8
(3,4,5)		0	8.5
6			0

Fourth (last) iteration.

Hierachical Clustering Computation

Resulting Dendrogram.

Dendrogram Cutting

Cutting the dendrogram produces multiple clusterings. Example with complete linkage and Euclidean distance (James at al.).

Issue with Single Linkage

Single linkage produces "chaining," resulting in elongated clusters. Example (Webb):

Original Data

Clusters

Dendrogram Comparison

(Figure from James et al., 2009).

Caveat on Reading Dendrogram

A common mistake is to think two points are similar because they are near on the dendrogram. Example (James at al.).

Self-Organizing Maps (SOM)

- SOM is a popular algorithm, which itereatively adapts a grid of nodes to the data.
- It can be seen as a neural network where each node of the grid is a neuron. Each node is supposed to "respond" similarly to its neighbors.
- Graphical representation (wikipedia):

SOM Example

SOM with 2x2 grid (Toxicology data):

SOM Example

SOM with 5x6 grid (Toxicology data):

Cluster Validity

- In addition to $J = \sum_{i=1}^{n} \sum_{k=1}^{K} \mathbf{r}_i(k) ||\mathbf{X}_i \boldsymbol{\mu}_k||^2$ (the within-cluster error metric), there are many other validity metrics: Dunn index, Davis-Bouldin index, the root mean-square standard deviation (RMSSTD), and more.
- How to pick the number of clusters K?

One could use validity indices to compare the results, or use a Bayesian approach.

Principal Component Analysis (PCA)

- PCA is based on the previously-mentioned heuristic according to which low-variance features should be avoided. Here, an extra step of feature decorrelation is applied first.
- After the decorrelation step, the first d individual (transformed) features with the largest variance are retained.
- Therefore, PCA uses the best individual features approach, with uncorrelated features.
- ♠ As with K-means clustering, we will discuss the basic (deterministic) version of PCA, and then extend it to a probabilistic setting based on a Latent Variable model (this is imilar to the Gaussian Mixture model).

Discrete Karhunen-Loève Transform

- Given $\mathbf{X} \in R^d$, we can always find a set of d orthonormal eigenvectors $\mathbf{u}_1, \dots, \mathbf{u}_d$ for the covariance matrix $\Sigma_{\mathbf{X}}$, corresponding to nonnegative eigenvalues $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_p \geq 0$.
- Let $\mathbf{Z} = (Z_1, \dots, Z_d)$ be given by the linear transformation

$$\mathbf{Z} = U^T(\mathbf{X} - \boldsymbol{\mu})$$

where $U = [\mathbf{u}_1 \dots \mathbf{u}_d]$ and $\boldsymbol{\mu} = E[\mathbf{X}]$.

Clearly,

$$E[\mathbf{Z}] = E\left[\mathbf{U}^{T}(\mathbf{X} - \boldsymbol{\mu})\right] = U^{T}\left(E[\mathbf{X}] - \boldsymbol{\mu}\right) = 0$$

so that the Z_i are all zero-mean, for $i = 1, \ldots, d$.

Discrete Karhunen-Loève Transform

It follows that

$$\Sigma_{\mathbf{Z}} = E[\mathbf{Z}\mathbf{Z}^T] = E\left[U^T(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})^T U\right]$$
$$= U^T E\left[(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})^T\right] U = U^T \Sigma_{\mathbf{X}} U = \Lambda$$

where Λ is the diagonal matrix of eigenvalues $\lambda_1, \ldots, \lambda_d$.

Therefore,

$$E[Z_i Z_j] = 0, \text{ for } i \neq j$$

that is, the Z_i are uncorrelated, and

$$\sigma_i^2 = \operatorname{Var}(Z_i) = E[Z_i^2] = \lambda_i$$

so the variance of Z_i is given by the corresponding eigenvalue λ_i .

Discrete Karhunen-Loève Transform

The equations

$$Z_i = \mathbf{u}_i^T(\mathbf{X} - \boldsymbol{\mu}), \ i = 1, \dots, d$$

subject to

$$\Sigma_{\mathbf{X}} \mathbf{u}_i = \sigma_i^2 \mathbf{u}_i, \ i = 1, \dots, d$$

define the discrete Karhunen-Loève transform.

The discrete KL transform produces zero-mean, uncorrelated transformed features. This is similar to the whitening transformation:

$$\mathbf{Z} = \Lambda^{-\frac{1}{2}} U^T (\mathbf{X} - \boldsymbol{\mu})$$

except that the whitening transformation also normalizes all variances to unity.

PCA Transform - Maximum Variance

- The component Z_i is the *i*-th *principal component*.
- The first PC Z_1 has the maximal variance λ_1 , and the eigenvector u_1 points to the direction of maximal variation. The second PC Z_2 has the maximal variance in a direction perpendicular to u_1 , while Z_3 has the maximal variance perpendicular to u_1 and u_2 , and so on.
- The PCA transform $\mathbf{Z} = T(\mathbf{X})$ consists of applying the discrete KL transform and then keeping the first p principal components $\mathbf{Z} = (Z_1, \dots, Z_p)$. In other words

$$\mathbf{Z} = W^T(\mathbf{X} - \boldsymbol{\mu})$$

where $W = [\mathbf{u}_1 \cdots \mathbf{u}_p]$ is a rank-p matrix (therefore PCA is not in general invertible and lossy with respect to the Bayes error criterion).

PCA Graphical Example

PCA Transform - Minimum Error

• An alternative interpretation of the PCA transform is that it is the linear projection $T: \mathbb{R}^d \to \mathbb{R}^p$ that minimizes

$$J = \frac{1}{N} \sum_{i=1}^{N} ||\mathbf{X}_i - T(\mathbf{X}_i)||^2$$

In fact, it can be shown that $J = \sum_{i=p+1}^{d} \lambda_i$ (the sum of discarded eigenvalues). Example (James et al., 2009):

PCA - Group Structure

The first principal component Z_1 alone contains most of the discrimination information.

PCA - Group Structure

Here, the discrimination information is contained in the second principal component \mathbb{Z}_2 !

Real-Data 2-D PCA Example

- Cancer chemotherapy study
- Gene expression data with 12 samples.
- Reduction from 12,573 initial genes to 2 features.
- Three groupings:
 - Cell type: Epithelial cells (8) vs. fibroblasts (4)
 - p53 status: "Healthy" patients (4) vs. p53-mutant patients (8)
 - Treatment: 4-HPR (3) vs. Tamoxifen (3) vs.
 Celecoxib (3) vs. none (3)
- Data produced by Louise Strong's group, processed by Kevin Coombes – MD Anderson Cancer Center.

Real-Data 2-D PCA Example - II

First PC (x axis) vs. Second PC (y axis)

Second PC (x axis) vs. Third PC (y axis)

PCA Computation Issues

- In practice, the mean vector μ and covariance matrix $\Sigma_{\mathbf{X}}$ are approximated respectively by the sample mean and sample covariance matrix computed from data.
- In small-sample cases, the sample covariance matrix is a poor estimator of the true $\Sigma_{\mathbf{X}}$.
- In high-dimensional spaces, calculating the sample covariance matrix and diagonalizing is an intractable computational problem.
- Algorithms that try to avoid dealing directly with the sample covariance matrix can be beneficial, such as Probabilistic PCA (next).

Factor Analysis

- Probabilistic PCA is a special case of Factor Analysis.
- Suppose one inverts the point of view of PCA, and consider the generation of the data from the components:

$$X = WZ + \mu$$

where $W = [\mathbf{u}_1 \cdots \mathbf{u}_p]$ as before.

Factor Analysis

- In the Factor Analysis model, one considers a general rank- $p\ d \times p$ matrix C, called the "factor loading" matrix.
- To account for uncertainty, one adds a Gaussian error term ∈ and makes Z an isotropic Gaussian vector:

$$\mathbf{X} = C\mathbf{Z} + \boldsymbol{\mu} + \boldsymbol{\varepsilon}$$

where $\mathbf{Z} \sim \mathcal{N}(0, I_p)$ are the vector of factors, and $\boldsymbol{\varepsilon} \sim \mathcal{N}(0, \Psi)$ is a zero-mean error term.

Clearly, the generative model is Gaussian, with

$$\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, CC^T + \Psi)$$

ullet For probabilistic PCA, we assume that $oldsymbol{arepsilon} \sim \mathcal{N}(0,\sigma^2I)$.

EM Algorithm for Probabilistic PCA

- The parameters C, μ , and σ need to be estimated from data.
- It can be shown that the maximum-likelihood solution is similar to the traditional PCA one. In particular, it requires finding the eigenvectors of the sample covariance matrix.
- However, the solution can also be obtained iteratively, using the EM algorithm, which does not require finding the eigenvectors of the sample covariance matrix.

EM Algorithm for Usual PCA

- As $\sigma \to 0$, Probabilistic PCA becomes usual PCA.
- One can use the EM algorithm with $\sigma = 0$ and find the usual PCA solution. Let $\mathbf{X} = [\mathbf{X}_1 \cdots \mathbf{X}_n]$ be the $d \times n$ data matrix (we assume zero mean data for simplicity) and let $\mathbf{Z} = [\mathbf{Z}_1 \cdots \mathbf{Z}_n]$ be a $p \times n$ matrix of projections of the data into the (current) principal subspace.
- Algorithm:
 - Choose an initial value $C_{(0)}$.
 - ("E-step") Project data: $\mathbf{Z}_{(n)} = (C_{(n)}^T C_{(n)})^{-1} C_{(n)}^T \mathbf{X}$
 - ("M-step") Update space: $C_{(n+1)} = \mathbf{Z}_{(n)}\mathbf{X}^T(\mathbf{X}\mathbf{X}^T)^{-1}$
 - End when $||C_{(n+1)} C_{(n)}||_2^2$ is close enough to zero. The PCA matrix is $W = C_{(n+1)}$.

Example

"Spring and Rods" physical simulation (C. Bishop).

Multidimensional Scaling

- The main idea is to find points in \mathbb{R}^d that best approximate pairwise dissimilarities (e.g., Euclidean distances, 1—correlation) in the original space \mathbb{R}^p .
- If δ_{ij} and d_{ij} are the dissimilarities between original and transformed points, respectively, the goodness of fit can be measured by the *stress* (values < 10% are good):

$$S = \sqrt{\frac{\sum_{i,j} (\delta_{ij}^2 - d_{ij}^2)}{\sum_{i,j} d_{ij}^2}}$$

- This is nonlinear feature extraction, which can be advantageous over linear methods such as PCA.
- The main issues are that it is unsupervised, and it is not simple to express T(X) to apply to a new sample point.

Real-Data 2-D MDS Example

- Data from previous cancer study (with 8 new samples).
- Reduction from 904 initial genes to 2 features.
- Processed by our group. Stress = 4.64%

Real-Data 3-D MDS Example

Reduction of same data to 3 features. Stress = 1.83%

