This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 09064820 A

(43) Date of publication of application: 07 . 03 . 97

(51) Int. CI

H04B 10/08 G02B 6/293 H04L 12/44

(21) Application number: 07243756

(22) Date of filing: 29 . 08 . 95

(71) Applicant:

FURUKAWA ELECTRIC CO

LTD:THE

(72) Inventor:

YANAGAWA HISAHARU MATSUBARA KUNIHIRO

(54) OPTICAL TERMINATION COMPONENT

(57) Abstract:

PROBLEM TO BE SOLVED: To provide an optical termination component by which a signal light with an objective wavelength is made incident onto each of plural optical reception terminals provided to an optical communication system independently.

SOLUTION: An optical communication system is configured by interconnecting, via each optical termination component, subscriber terminals 3a, 3b of an optical subscriber system to plural branches branched from an intra-station terminal 1 via optical fiber lines 2. The optical termination component 5 is provided with multiplexer/demultiplexer demultiplexes a signal light with a wavelength of 1.31µm and a wavelength of 1.55 µm sent from the intra-station terminal 1 to the subscriber terminals 3a, 3b into lights of the respective wavelength sets to make the signal light with an objective wavelength incident only each of the subscriber terminals 3a, 3b independently. Furthermore, the location of the subscriber terminals 3a, 3b is informed to the intra-station terminal 1 by reflecting each of the monitor lights with wavelength sets of λ_1 , λ_2 sent from the intra-station terminal 1 to the subscriber terminals 3a, 3b in filters 13, 14 for reflecting the $\lambda_1,\ \lambda_2$ signals and returning the reflected

signal to the intra-station terminal 1 respectively.

COPYRIGHT: (C)1997,JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-64820

(43)公開日 平成9年(1997)3月7日

(51) Int.Cl. ⁶		酸別記号	庁内整理番号	FΙ			技術表示箇所
H04B	10/08			H 0 4 B	9/00	K	
G 0 2 B	6/293			G 0 2 B	6/28	С	
H04L	12/44			H04L	11/00	3 4 0	

(21)出願番号 特願平7-243756 (71)出願人 000005290 古河電気工業株式会社 東京都千代田区丸の内2丁目6番1号 (72)発明者 柳川 久治 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (72)発明者 松原 邦弘 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (74)代理人 弁理士 五十嵐 清			審査請求	未請求 請求項の数3 FD (全 9 頁)
(72)発明者 柳川 久治 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (72)発明者 松原 邦弘 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (74)代理人 弁理士 五十嵐 清	(21)出願番号	特顧平7-243756	(71)出顧人	
東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (72)発明者 松原 邦弘 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (74)代理人 弁理士 五十嵐 清	(22)出顧日	平成7年(1995)8月29日	, , , , , , , , , , , , , , , , , , ,	
東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (74)代理人 弁理士 五十嵐 清				東京都千代田区丸の内2丁目6番1号 古
(74)代理人 弁理士 五十嵐 清			(72)発明者	東京都千代田区丸の内2丁目6番1号 古
			(74)代理人	

(54)【発明の名称】 光ターミネーション部品

(57)【要約】

【課題】 光通信システムに複数設けられる各光受信端 末毎に1つの波長の信号光を独立して入射させることが できる光ターミネーション部品を提供する。

【解決手段】 局内端末1から光ファイバ線路2を介して分岐された複数の分岐端側に光ターミネーション部品5を介して光加入者系の加入者端末3a,3bを接続して光通信システムを構成する。光ターミネーション部品5には、局内端末1から加入者端末3a,3bに伝送される波長1.31 μ mの信号光と波長1.55 μ mの信号光をそれぞれの波長の光に分波する光合分波器12を設けて、各波長の信号光を各加入者端末3a,3bに独立して入射させ、かつ、局内端末1側から加入者端末3a,3b側に伝送される波長 λ_1 , λ_2 の各監視光を λ_1 反射用フィルタ13、 λ_2 反射用フィルタ14で反射して局内端末1側に戻し、加入者端末3a,3bの位置を知らせる。

【特許請求の範囲】

【請求項1】 局内の通信端末から各光線路を介して分 岐された複数の分岐端側にそれぞれ光加入者の少なくと も光受信可能な光受信端末が接続されて成る通信システ ムの前記光線路の分岐端と前記光受信端末との間に介設 され、前記局内から光受信端末側に伝送される信号光を 透過する光ターミネーション部品であって、前記局内に 設けられる検査装置から前記光受信端末側に伝送される 監視光を反射してこの反射光を前記検査装置側に戻すマ ーカー機能部と、前記局内から前記光受信端末側に伝送 される互いに波長の異なる少なくとも2つの信号光をそ れぞれの波長の光に分波する光合分波部とが設けられて いることを特徴とする光ターミネーション部品。

【請求項2】 マーカー機能部は光合分波部の分岐端側 に設けられて該光合分波部と光受信端末との間に介設さ れており、光合分波部は局内から光受信端末側に伝送さ れる互いに波長の異なる少なくとも2つの監視光をそれ ぞれの波長の光に分波して各波長の監視光を各マーカー 機能部に入射させる構成としたことを特徴とする請求項 1 記載の光ターミネーション部品。

【請求項3】 マーカー機能部と光合分波部は共に光フ ァイバ内又は平面光導波路内に一体的に形成されて共通 の保護匡体内に収容されていることを特徴とする請求項 1又は請求項2記載の光ターミネーション部品。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、主に、例えば電話 通信等の光加入者系の光ファイバ通信システムで用いら れる光ターミネーション部品に関するものである。

[0002]

【従来の技術】図12には、一般家庭を対象とする光加入 者系の光通信システム(伝送システム)の一例が示され ている。同図において、局内の通信端末としての局内端 末1からスターカプラ4および、光線路としての各光フ ァイバ線路2を介して分岐された複数の分岐端側に、屋 外に設けられた光ターミネーション部品5を介して、光 加入者宅内の加入者端末3a,3bが接続されて伝送シ ステムが形成されている。各加入者端末3a,3bは、 光ファイバ25およびコネクタ11を介して、光ターミネー ション部品5に接続されており、加入者端末3a,3b は、少なくとも光受信可能な光受信端末として機能し、 加入者端末3 a は、光受信と共に、光発信も可能となっ ている。

【0003】同図に示す伝送システムは、波長1.31 µ m の信号光を用いた電話・データ等の通信サービスと、波 長1.55μmの信号光を用いた画像ビデオ等の放送サービ ス等を同時提供できるようにするものであり、局内端末 1 からは、波長1.31 μ mの信号光と波長1.55 μ mの信号 光とが共に光ファイバ線路2aを介してスターカプラ4

ーミネーション部品5に加えられる。光ターミネーショ ン部品5は、局内端末1から加入者端末3a側に伝送さ れる信号光を透過するようになっており、波長1.31μm の信号光と波長1.55 μmの信号光とは共に加入者端末3 a 側に伝送される。

【0004】加入者端末3aには、加入者端末3aに加 えられる波長1.31μmの信号光と波長1.55μmの信号光 をそれぞれの波長の光に分波する光合分波器が設けられ ており、加入者端末3aは波長1.31μmの光を分波して 受信すると共に、波長1.55 µmの信号光を分波して加入 者端末3b側に加える。また、加入者端末3aは、波長 1.31μ mの信号光を発信し、光ターミネーション部品 5、光ファイバ線路2, 2 a を介して局内端末1側に伝 送することも行う。そして、このようにすることで、波 長1.31 μmの信号光を用いた電話・データ等の通信サー ビスは、上り・下りの両信号による局内端末1と加入者 端末3aとの相互通信となり、一方、波長1.55μmの信 号光は、局内端末1から加入者端末3aを介しての加入 者端末3bへの伝送といった下り信号のみの一方向の光 20 伝送となる。

【0005】前記光ターミネーション部品5は、光ファ イバ線路2の監視・保守のために設けられているもので あり、図13に示すように、2心単位の屋外線接続用の2 心光コネクタ6と、2心テープファイバ心線9、ファン アウト7、単心ファイバ10、フィルタ入り単心コネクタ 8を有して構成されている。

【0006】ファンアウト7は、2心テープファイバ心 線9を2本の単心ファイバ10に変換する2心/単心変換 機能を有しており、フィルタ入り単心コネクタ8には、 光ファイバ線路2の終端側の位置を特定するための終端 位置特定用フィルタ44が埋め込まれている。この終端位 置特定用フィルタ44は、局内端末1から伝送される波長 1.31 µ mと波長1.55 µ mの信号光を共に透過し、一方、 局内に設けられる検査装置としてのOTDR (Optical Time Domain Reflectmeter) 等から加入者端末3a, 3 b側に伝送される監視光を反射して、この反射光をOT DR側に戻すマーカー機能部として機能するようになっ ている。

【0007】なお、OTDR等の反射光モニタ装置は、 光ファイバ線路2に監視光を入射させてからその光が反 射して戻ってくるまでの時間により、光ターミネーショ ン部品5の位置を検出し、それにより、光ファイバ線路 2の終端側の位置を特定することができるようになって いる。

[0008]

30

【発明が解決しようとする課題】ところで、図12に示し た従来の通信システムにおいては、各光ターミネーショ ン部品5に接続されている各加入者端末3 a 内の光合分 波器によって波長1.31 µ mの信号光と波長1.55 µ mの信 側に伝送され、複数の各光ファイバ線路2を介して光タ 50 号光の分波を行うように構成されているために、加入者

(3)

10

4

端末3bを直接光ターミネーション部品5に接続することはできず、必ず、加入者端末3aを介して光ターミネーション部品5と加入者端末3bとを接続しなければならなかった。

【0009】そのため、上記従来の光通信システムにおいては、たとえ加入者側が通信サービスの提供を必要とせずに放送サービスの提供のみを望んだとしても、通信サービス用の光受信端末3aを介さずに加入者端末3bを用いた放送サービスを提供することは困難であり、通信サービスと放送サービスとを分離分担して別々に提供可能な光通信システムの構築ができなかった。

【0010】本発明は上記課題を解決するためになされたものであり、その目的は、電話等の通信サービスと画像等の放送サービスとを分離分担して別々に提供可能な光通信システムの構築を図ることができる光ターミネーション部品を提供することにある。

[0011]

【課題を解決するための手段】上記目的を達成するために、本発明は次のような構成により課題を解決するための手段としている。すなわち、本発明は、局内の通信端末から各光線路を介して分岐された複数の分岐端側にそれぞれ光加入者の少なくとも光受信可能な光受信端末が接続されて成る通信システムの前記光線路の分岐端と前記光受信端末との間に介設され、前記局内から光受信端末側に伝送される信号光を透過する光ターミネーション部品であって、前記局内に設けられる検査装置から前記光受信端末側に伝送される監視光を反射してこの反射光を前記検査装置側に戻すマーカー機能部と、前記局内から前記光受信端末側に伝送される互いに波長の異なる少なくとも2つの信号光をそれぞれの波長の光に分波する光合分波部とが設けられていることを特徴として構成されている。

【0012】また、前記マーカー機能部は光合分波部の分岐端側に設けられて該光合分波部と光受信端末との間に介設されており、光合分波部は局内から光受信端末側に伝送される互いに波長の異なる少なくとも2つの監視光をそれぞれの波長の光に分波して各波長の監視光を各マーカー機能部に入射させる構成としたこと、前記マーカー機能部と光合分波部は共に光ファイバ内又は平面光導波路内に一体的に形成されて共通の保護国体内に収容40されていることも本発明の特徴的な構成とされている。

【0013】上記構成の本発明において、局内端末と光加入者系の光受信端末との間に介設される光ターミネーション部品には、マーカー機能部と共に、局内から光受信端末側に伝送される互いに波長の異なる少なくとも2つの信号光をそれぞれの波長の光に分波する光合分波部が設けられているために、局内端末から光受信端末側に伝送される信号光はそれぞれの波長の光に分波されてから光受信端末側に伝送される。

【0014】そのため、例えば通信サービス提供用の信 50

号光(例えば波長 1.31μ m)と放送サービス提供用の信号光(例えば波長 1.55μ m)とが局内の通信端末から各光加入者系の光受信端末側に伝送されたときに、光加入者側が通信サービスのみを使用するときには、光ターミネーション部品を介して通信サービス受信用の光受信端末を接続して通信サービスのみを使用し、放送サービスのみを使用するときには、光ターミネーション部品を介して放送サービス受信用の光受信端末を接続して放送サービスのみを受けることができるようになり、光加入者が放送サービスのみを使用するときに、従来のように、通信サービス受信用の光受信端末を介して放送サービス 受信用の光受信端末を接続しなければならないといったことはなくなる。

【0015】このように、本発明の光ターミネーション 部品によって、局内から光受信端末側に伝送される互い に波長の異なる少なくとも2つの信号光をそれぞれの波 長に分波して光受信端末側に伝送することにより、従来 のように光受信端末側で信号光の分波を行わなくてもよ いために、通信サービスと放送サービスとを分離分担し て別々に提供することができる光通信システムの構築が 可能となり、上記課題が解決される。

[0016]

【発明の実施の形態】以下、本発明の実施の形態を図面に基づいて説明する。なお、本実施形態例の説明において、従来例と同一名称部分には同一符号を付し、その重複説明は省略する。図1には、本発明に係る光ターミネーション部品の第1の実施形態例が光通信システムに組み込み状態で示されている。この光通信システムは、図1、2に示すように、局内端末1から各光ファイバ線路2を介して分岐された複数の分岐端側に、光ターミネーション部品5を介して加入者端末3a、3bが接続されており、このように、図1、2に示すシステムにおいては、光ターミネーション部品5の出射端側の各光ファイバ25に1つずつ加入者端末3a、3bが接続されており、このように、図1、2に示すシステムにおいては、加入者端末3bが加入者端末3aを介さずに光ターミネーション部品5に接続されている。

【0017】図1に示すように、本実施形態例の光ターミネーション部品5も、従来例と同様に、2心光コネクタ6、ファンアウト7、フィルタ入り単心コネクタ8を有して構成されており、本実施形態例が従来例と異なる特徴的なことは、ファンアウト7とフィルタ入り単心コネクタ8との間に、波長1.31μm帯の光と波長1.55μm帯の光を合成分離する光合分波器12を設けたことである。

【0018】この光合分波器12は、波長 1.31μ m帯の光と波長1.55帯の光とを合成分離することにより、局内端末 1 側から加入者端末 3 b 側に伝送される互いに波長の異なる 2 つの信号光(波長 1.31μ mの信号光と波長 1.55μ mの信号光)をそれぞれの波長の光に分波する

10

20

30

6

光合分波部として機能するようになっている。また、光合分波器12は、局内に設けられるOTDRから加入者端末3a,3b側に伝送される互いに波長の異なる監視光(波長1.36 μ mの監視光と波長1.60 μ mの監視光)をそれぞれの波長の光に分波して、波長1.36 μ mの光はフィルタ入り単心コネクタ8a側に、波長1.60 μ mの監視光はフィルタ入り単心コネクタ8b側にそれぞれ入射させる機能も有している。

【0019】光合分波器12は、図3に示すように、入出カリードファイバ15と保護匡体としての溶融テーパ保護ケース16とを有しており、溶融テーパ保護ケース16内には、波長 1.31μ m帯の光と波長 1.55μ m帯の光を合成分離するために、2本の光ファイバを近接させて溶融させた溶融テーパ部30が形成されており、光合分波器12は溶融テーパファイバ型の光合分波器である。

【0020】前記フィルタ入り単心コネクタ8a, 8bには、それぞれ、 λ_1 反射用フィルタ13と λ_2 反射用フィルタ14が設けられており、 λ_1 反射用フィルタ13は、波長 1.31μ mの信号光を透過させ、波長 1.36μ m (λ_1) の監視光を反射し、 λ_2 反射用フィルタ14は、

波長 1.55μ mの信号光を透過させ、波長 1.60μ m (λ_2) の監視光を反射させるようになっている。

【0021】この各フィルタ入り単心コネクタ8は、図4に示すように、単心ファイバ10の先端側のファイバ被覆部20を除去して裸ファイバ21を露出させた状態で単心コネクタフェルール17に挿入固定し、さらに、この単心コネクタフェルール17に設けたスリット19内に、誘電体多層膜薄板によって形成した λ_1 反射用フィルタ13又は λ_2 反射用フィルタ14を光学接着剤等により埋め込み固定して形成されている。この λ_1 反射用フィルタ13および λ_2 反射用フィルタ14はそれぞれ、局内に設けられたOTDRからの波長 λ_1 の監視光、波長 λ_2 の監視光をOTDR側に反射するマーカー機能部として機能する。

【0022】本実施形態例は以上のように構成されており、本実施形態例の光ターミネーション部品5を図1に示す光通信システムに設け、局内端末1から波長1.31μmの信号光と波長1.55μmの信号光とを光ファイバ線路2を介して光ターミネーション部品5に入射させると、これらの各波長の光は、2心光コネクタ6、ファンアウト7を介して2つの各光合分波器12に入射する。

【0023】そして、各光合分波器12によって波長1.31 μ mの信号光と波長1.55 μ mの信号光とに分波され、波長1.31 μ mの信号光はフィルタ入り単心コネクタ8a側に入射させられ、波長1.55 μ mの信号光はフィルタ入り単心コネクタ8b側に入射させられる。そして、波長1.31 μ mの信号光は、フィルタ入り単心コネクタ8aを透過し、光ファイバ25を介して加入者端末3a側に伝送され、一方、波長1.55 μ mの信号光は、フィルタ入り単心コネクタ8bを透過し、光ファイバ25を介してフィルタ入り単心コネクタ8bを透過し、光ファイバ25を介してフィルタ入り単心コネクタ3b側に伝送する。

【0024】また、局内にOTDRを設け、局内端末1から波長1.36 μ m(λ_1)の監視光と波長1.60 μ m(λ_2)の監視光を光ファイバ線路2を介して光ターミネーション部品5に入射させると、これらの監視光は、2心光コネクタ6、ファンアウト7を介して各光合分波器12に入射し、光合分波器12で波長 λ_1 の監視光と波長 λ_2 の監視光とに分波され、波長 λ_1 の監視光はフィルタ入り単心コネクタ8aに入射し、波長 λ_2 の監視光はフィルタ入り単心コネクタ8bに入射する。

【0025】その後、波長 λ_1 の監視光はフィルタ入り 単心コネクタ8 a の λ_1 反射用フィルタ13で反射して光 合分波器12に戻り、ファンアウト7、2心光コネクタ6 を逆行し、光ファイバ線路2を介して局内端末1側に戻 る。また、波長 λ_2 の監視光は、フィルタ入り単心コネ クタ8 b の λ_2 反射用フィルタ14で反射して光合分波器 12側に戻り、ファンアウト7、2心光コネクタ6を逆行 し、光ファイバ線路2を介して局内端末1に戻る。

【0026】そして、以上のように、波長 λ_1 の監視光と波長 λ_2 の監視光とが各フィルタ入り単心コネクタ8 a,8 bによって別々に反射されてOTDRに戻されることにより、加入者端末3 a と加入者端末3 b の各位置が別々に局内に知らされる。

【0027】本実施形態例の光ターミネーション部品5によれば、上記動作により、光合分波器12をマーカー機能部としてのフィルタ入り単心コネクタ8a,8bの入射側に設け、加入者端末3a,3b側に伝送される互いに波長の異なる2つの信号光をそれぞれの波長の光に分波するようにしたために、加入者端末3a,3bにそれぞれ1つの波長を有する信号光を入射させることができる。

【0028】そのため、光加入者が例えば波長1.31 µ m の信号光を用いた通信サービスのみを使用したいときに は、加入者端末3aのみを光ターミネーション部品5の フィルタ入り単心コネクタ8a側に接続すればよく、そ の逆に、波長1.55μmの信号光を用いた放送サービスの みを使用したいときには、光ターミネーション部品5の フィルタ入り単心コネクタ8b側にのみ加入者端末3b を接続することができる。また、通信サービスと放送サ ービスの両方を使用したいときには、加入者端末3a, 3 bをそれぞれ光ターミネーション部品5のフィルタ入 り単心コネクタ8a,8b側に接続することもできる。 【0029】以上のように、本実施形態例の光ターミネ ーション部品5を光通信システムに適用することによ り、波長1.31μ mの信号光を用いた通信サービスと波長 1.55μmの信号光を用いた放送サービスとを分離分担し て別々に提供することが可能な光通信システムを構築す ることができる。

【0030】また、本実施形態例によれば、マーカー機能部としての1、反射用フィルタ13および1、反射用フ

50

10

20

30

Q

ィルタ14は光合分波器12の分岐端側に設けられており、 λ 、反射用フィルタ13と λ 、反射用フィルタ14とによって、波長1.36 μ mの監視光と波長1.60 μ mの監視光とを別々に反射するようにしたために、加入者端末3a,3bの各位置を別々に局内に知らせることが可能となり、各加入者端末3a,3bの位置を独立に監視可能とすることができる。

【0031】図5には、本発明に係る光ターミネーション部品の第2の実施形態例が示されている。本実施形態例も上記第1の実施形態例と同様に、図1、2に示したような光通信システムに適用されるものであり、本実施形態例が上記第1の実施形態例と異なる特徴的なことは、ファンアウト7内に λ_1 、 λ_2 反射用フィルタ40を設けてファンアウト7をフィルタ入りファンアウトとしたことと、フィルタ入り単心コネクタ8a、8bの代わりに単心コネクタフェルール23a、23bを設けたことである。なお、本実施形態例の上記以外の構成は上記第1の実施形態例と同様であるので、その重複説明は省略する。

【0032】 λ_1 , λ_2 反射用フィルタ40は、局内端末 1 (図 1) 側から伝送される波長 1.36μ m (λ_1) と波長 1.60μ m (λ_2) の監視光を共に2心光コネクタ6側に反射して、その反射光を局内端末1のOTDR側に戻すマーカー機能部として機能するものであり、誘電体多層膜フィルタ薄板によって形成されており、図6に示すように、ファンアウト基板26に形成されたスリット27内に挿入固定されている。

【0033】本実施形態例は以上のように構成されており、本実施形態例でも上記第1の実施形態例と同様に、光ターミネーション部品5内に光合分波器12を設けて、波長1.31μmの信号光と波長1.55μmの信号光とに分波して、それぞれの波長の光を加入者端末3a,3bに入射させるようにしたために、光加入者側で使用するサービスに応じて、加入者端末3aを介さずに、加入者端末3bを光ターミネーション部品5に接続することが可能となり、上記第1の実施形態例と同様の効果を奏することができる。

【0034】なお、本実施形態例では、マーカー機能部としての λ_1 , λ_2 反射用フィルタ40を光合分波器12の合流端側に設けたために、局内のOTDRから波長 λ_1 と波長 λ_2 の監視光を各加入者端末3a,3b側に伝送したときに、それらの各監視光は λ_1 , λ_2 反射用フィルタ40によって共に反射されて、局内のOTDR側に戻る。そのため、本実施形態例の光ターミネーション部品5を適用した光通信システムにおいては、各加入者端末3a,3bの位置を独立に監視するのではなく、各加入者端末3a,3bが接続されている光ファイバ線路2の終端位置を特定して、局内に知らせることになる。

【0035】図7には、本発明に係る光ターミネーション部品の第3の実施形態例が示されている。本実施形態 50

例の光ターミネーション部品5も上記第1、第2の実施 形態例と同様に、図1,2に示したような光通信システムに適用されるものであり、本実施形態が上記第1の実 施形態例と異なる特徴的なことは、光合分波器12の代わりにフィルタ機能付光合分波器29を設け、フィルタ入り 単心コネクタ8a,8bの代わりに単心コネクタフェル ール23a,23bを設けて構成したことである。なお、本 実施形態例の上記以外の構成は上記第1の実施形態例と 同様であるので、その重複説明は省略する。

【0036】フィルタ機能付光合分波器29は、上記第1の実施形態例における光合分波器と同様に、図8に示すように、溶融テーパ保護ケース16内に、光ファイバを溶融させた溶融テーパ部30を設けて構成された溶融テーパファイバ型の光合分波器であり、このフィルタ機能付光合分波器29の出射端(分岐端B, C)側には前記マーカー機能部としてのブラッググレーティング部31a, 31bが形成されている。ブラッググレーティング部31aは、波長 1.31μ mの信号光の出射端側に設けられており、波長 1.36μ m(λ_1)の監視光を反射する機能を有しており、ブラッググレーティング部31bは、波長 1.55μ mの信号光の出射端側に設けられ、波長 1.60μ m(λ_2)の監視光を反射する機能を有している。

【0037】このように、本実施形態例では、光合分波器をフィルタ機能付光合分波器29とすることにより、フィルタ機能付光合分波器29内に、局内のOTDRからの監視光を反射するマーカー機能部と、波長 1.31μ mと波長 1.55μ mの各信号光をそれぞれの波長の光に分波し、かつ、波長 1.36μ mと波長 1.60μ mの監視光を各波長の光に分波する光合分波部としての機能の両方が、フィルタ機能付光合分波器29を形成する光ファイバ内に一体的に形成されて、共通の保護匡体としての溶融テーパ保護ケース16内に収容されている。

【0038】本実施形態例は以上のように構成されており、本実施形態例も上記第1の実施形態例と同様の動作を行い、同様の効果を奏することができる。

【0039】また、本実施形態例では、マーカー機能部と光合分波部を共にフィルタ機能付光合分波器29の光ファイバ内に一体的に形成し、共通の溶融テーパ保護ケース16内に収容したために、上記第1の実施形態例と異なり、単心コネクタフェルール内にえ」反射用フィルタ13やえ。反射用フィルタ14を設けてフィルタ入り単心コネクタ8a,8bを形成する手間を省くことが可能となり、光通信用として一般的に用いられている単心コネクタフェルール23a,23bやファンアウト7、2心光コネクタ6を用いて、容易に光ターミネーション部品5を形成することができる。

【0040】図9には、本発明に係る光ターミネーション部品の第4の実施形態例が示されている。本実施形態例が上記第3の実施形態例と異なる特徴的なことは、ファンアウト7とフィルタ機能付光合分波器29を設ける代

10

20

30

特開平 9 10

わりに、フィルタ機能・光合分波機能付ファンアウト32 を設けて構成したことである。

【0041】フィルタ機能・光合分波機能付ファンアウト32は、図10に示すように、2心テープファイバ心線9を1本固定したファイバブロック34と、光導波路チップ35と単心ファイバ10を4本固定したファイバブロック36とを固定した光複合部品であり、導波路チップ35に形成された光導波路24の光軸と2心テープファイバ心線9の各光ファイバの光軸および各単心ファイバ10の光軸とが調心された状態で固定され、図示されていない保護ケース内に収容されている。

【0042】光導波路チップ35は、石英導波路チップであり、シリコン基板上に火炎堆積法およびドライエッチングの技術により、厚さ50μm、コア寸法8μm角、コアドーパントGeO2の石英導波路を形成したものであり、同図に示す光導波路24のコアチャンネルパターンを2パターン形成したものである。各光導波路24には光合分波器部39が形成されており、この光合分波器部39の合流端A側にはそれぞれ、ブラッググレーティング部31が形成されており、光合分波器部39の分岐端B、C側には、スリット27に挿入されたフィルタ41が光導波路24を横切る方向に設けられている。

【0043】フィルタ41は、図11に示すように、波長1. 31μ mの信号光を透過し、その他の波長の光を反射する 1.31μ m通過フィルタ42と、波長 1.55μ mの信号光を透過し、その他の波長の光を反射する 1.55μ m通過フィルタ43とを交互に設けて形成されており、 1.31μ m透過フィルタ42a 側が図10の上部側に位置するようにして設けられている。また、ブラッググレーティング部31は、 λ 1 および λ 2 の監視光を反射するマーカー機能部として機能するものであり、本実施形態例では、このマーカー機能部と光合分波部とが共に平面光導波路内に一体的に形成されて共通の保護ケース内に収容されている。

【0044】本実施形態例は以上のように構成されており、本実施形態例では、プラッググレーティング部31が上記第2の実施形態例における λ_1 , λ_2 反射用フィルタ40と同様に機能する。また、本実施形態例では、光合分波器部39が上記第2の実施形態例における光合分波器12と同様に機能し、波長 1.31μ mの信号光と波長 1.55μ mの信号光とがそれぞれの波長の光に分波されて光導波路24の分岐端B,C側にそれぞれ伝送し、波長 1.31μ m の信号光は 1.31μ m通過フィルタ42を通過して単心ファイバ10 a 側に伝送し、一方、波長 1.55μ mの信号光は 1.55μ m通過フィルタ43を通過して単心ファイバ10 b 側に伝送する。そして、単心ファイバ10 a に伝送した信号光は加入者端末3 b 側に伝送する。

【0045】また、加入者端末3aから発信された波長 1.31μmの信号光は、単心ファイバ10a、光導波路24、 1.31μm通過フィルタ42、光合分波器部39、ブラッググ 50 レーティング部31を順に通って2心テープファイバ心線 9を通り、局内端末1側に伝送される。

【0046】本実施形態例によれば、上記動作により、 上記第2の実施形態例と同様の効果を奏することができ る。

【0047】また、本実施形態例によれば、マーカー機能部としてのブラッググレーティング部31と光合分波部としての光合分波器部39とが導波路チップ35の平面光導波路内に一体的に形成されており、共通の保護ケース内に収容されているために、フィルタ機能・光合分波機能付ファンアウト32が取り扱い易く、光ターミネーション部品5を構成する部品点数も少なくて済み、光通信用として一般に用いられている2心光コネクタ6と単心コネクタフェルール23とを用いて容易に光ターミネーション部品5を作製することができる。

【0048】 さらに、本実施形態例によれば、 1.31μ m 通過フィルタ $42 \times 1.55 \mu$ m 通過フィルタ 43×6 を交互に配設したフィルタ41を設けて 1.31μ m および 1.55μ m の信号光のみをそれぞれ通過させ、その他の波長の光、すなわち、漏話光成分を反射するようにしたために、信号光以外の漏話光成分が伝送されて光通信を妨げることを防ぐことが可能となり、感度良く光通信を行うことができる

【0049】なお、本発明は上記実施形態例に限定されることはなく、様々な実施の態様を採り得る。例えば、上記第3の実施形態例では、図8に示したように、光合分波器12の各分岐端B,C側にマーカー機能部としてのブラッググレーティング部31a,31bを設ける代わりに、同図の破線に示すように、光合分波器12の合流端A側に波長 λ_1 および λ_2 の監視光を反射するブラッググレーティング部31を設けてもよい。このように構成したときには、光ターミネーション部品は上記第2、第4の実施形態例と同様に動作することになる。

【0050】また、上記第4の実施形態例では、光導波路24の合流端A側にブラッググレーティング部31を設けたが、各監視光を反射するブラッググレーティング部31を光導波路24の分岐端B, C側にそれぞれ設けてもよい。このように構成したときには、上記第3の実施形態例と同様の動作を行うことになる。

【0051】 さらに、上記第4の実施形態例では、1.31 μ m通過フィルタ42と1.55 μ m通過フィルタ43とを交互 に配設したフィルタ41を設けたが、このフィルタ41は省略することもできる。

【0052】さらに、上記実施形態例では、いずれも、本発明の光ターミネーション部品を 1.31μ mおよび 1.55μ mの信号光を用いた光通信システムに適用し、各加入者端末3a, 3bの位置を波長 1.36μ mおよび波長 1.60μ mの監視光によって局内に知らせるようにしたが、本発明の光ターミネーション部品は上記以外の波長の信号

光や監視光を用いる光通信システムにも広く適用される ものであり、互いに波長の異なる少なくとも2つの信号 光をそれぞれの波長の光に分波する光合分波機能と、〇 TDR等の検査装置からの監視光を検査装置側に反射す るマーカー機能の両方を有することにより、各波長毎に 行われる別々のサービスをそれぞれ独立して提供できる

光通信システムの構築を図ることができる。

[0053]

【発明の効果】本発明によれば、光ターミネーション部 品に、局内の検査装置からの監視光を反射して検査装置 10 いられる光合分波器を示す構成図である。 に戻すマーカー機能部と、局内から光受信端末側に伝送 される互いに波長の異なる少なくとも2つの信号光をそ れぞれの波長の光に分波する光合分波部とを設けたもの であるから、光受信端末側に光合分波機能を設けなくと も、局内から光加入者側に伝送された信号光を、光ター ミネーション部品によって互いに波長の異なる信号光に 分波して、各波長の光毎に各光加入者の光受信端末側に 伝送することができる。

【0054】そのため、例えば波長1.31 µmの信号光を 用いた通信サービスと波長1.55μmの信号光を用いた放 20 送サービスとを、例えば別々のサービス業者に分離分担 して、各光加入者の選択に対応させて独立に提供するこ とができる光通信システムの構築を図ることができる。

【0055】また、前記マーカー機能部は光合分波部の 分岐端側に設けられて該光合分波部と光受信端末との間 に介設されており、光合分波部は局内から光受信端末側 に伝送される互いに波長の異なる少なくとも2つの監視 光をそれぞれの波長の光に分波して各波長の監視光を各 マーカー機能部に入射させる構成とした本発明によれ ば、光合分波部によって分波した各波長の監視光を各マ ーカー機能部に別々に入射させることにより、各サービ ス毎に設けられたそれぞれの光受信端末の位置を独立に 局内に知らせることが可能となり、各サービス毎に設け られた各光受信端末位置の監視を独立して行えるように することができる。

【0056】さらに、前記マーカー機能部と光合分波部 は共に光ファイバ内又は平面光導波路内に一体的に形成 されて共通の保護匡体内に収容されている本発明によれ ば、マーカー機能部と光合分波部とを共に光ファイバ内 又は平面光導波路内に一体的に形成することにより、光 40 ターミネーション部品を構成する光部品の部品点数を少 なくしたり、例えばマーカー機能部および光合分波部以 外の光部品を光通信用として一般に用いている光部品で 構成することが可能となるために、光ターミネーション*

12

* 部品の作製を容易に行うことができる。

【図面の簡単な説明】

【図1】本発明に係る光ターミネーション部品の第1の 実施形態例を光通信システムに組み込み状態で示すプロ ック構成図である。

【図2】上記実施形態例の光ターミネーション部品5を 適用した光通信システムをプロック図により示す説明図 である。

【図3】上記実施形態例の光ターミネーション部品に用

【図4】上記実施形態例の光ターミネーション部品に用 いられるフィルタ入り単心コネクタを示す構成図であ る。

【図5】本発明に係る光ターミネーション部品の第2の 実施形態例をプロック図により示す構成図である。

【図6】上記第2の実施形態例に用いられるファンアウ トの構成を示す説明図である。

【図7】本発明に係る光ターミネーション部品の第3の 実施形態例をプロック図により示す構成図である。

【図8】上記第3の実施形態例に用いられるフィルタ機 能付光合分波器を示す構成図である。

【図9】本発明に係る光ターミネーション部品の第4の 実施形態例をブロック図により示す構成図である。

【図10】上記第4の実施形態例に用いられるフィルタ機 能・光合分波機能付ファンアウトの構成を示す説明図で ある。

【図11】図10に示したフィルタ機能・光合分波機能付フ ァンアウトの導波路チップに設けられるフィルタの説明 図である。

30 【図12】従来の光ターミネーション部品を適用した光通 信システムをブロック図により示す説明図である。

【図13】従来の光ターミネーション部品の構成を示す説 明図である。

【符号の説明】

- 1 局内端末
- 2 光ファイバ線路
- 3a,3b 加入者端末
- 5 光ターミネーション部品
- 8,8a,8b フィルタ入り単心コネクタ
- 12 光合分波器
 - 29 フィルタ機能付光合分波器
 - 31, 31 a, 31 b ブラッググレーティング部
- 32 フィルタ機能・光合分波機能付ファンアウト
- 39 光合分波器部

【図11】

