

FINAL JEE-MAIN EXAMINATION - JANUARY, 2024

(Held On Thursday 01st February, 2024)

TIME: 3:00 PM to 06:00 PM

MATHEMATICS

SECTION-A

- 1. Let $f(x) = |2x^2+5|x|-3|, x \in \mathbb{R}$. If m and n denote the number of points where f is not continuous and not differentiable respectively, then m + n is equal to:
 - (1) 5

(2) 2

(3) 0

(4) 3

Ans. (4)

Sol.
$$f(x) = |2x^2+5|x|-3|$$

Graph of $y = |2x^2+5x-3|$

Graph of f(x)

Number of points of discontinuity = 0 = mNumber of points of non-differentiability = 3 = n

2. Let α and β be the roots of the equation $px^2 + qx - r = 0$, where $p \neq 0$. If p, q and r be the consecutive terms of a non-constant G.P and $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{3}{4}$, then

the value of $(\alpha - \beta)^2$ is:

- (1) $\frac{80}{9}$
- (2) 9
- (3) $\frac{20}{3}$
- (4) 8

Ans. (1)

TEST PAPER WITH SOLUTION

Sol.
$$px^2 + qx - r = 0$$

$$p = A$$
, $q = AR$, $r = AR^2$

$$Ax^2 + ARx - AR^2 = 0$$

$$x^2 + Rx - R^2 = 0 < \alpha$$

$$\therefore \frac{1}{\alpha} + \frac{1}{\beta} = \frac{3}{4}$$

$$\therefore \frac{\alpha + \beta}{\alpha \beta} = \frac{3}{4} \Rightarrow \frac{-R}{-R^2} = \frac{3}{4} \Rightarrow R = \frac{4}{3}$$

$$(\alpha - \beta)^2 = (\alpha + \beta)^2 - 4 \alpha \beta = R^2 - 4(-R^2) = 5\left(\frac{16}{9}\right)$$

= 80/9

- The number of solutions of the equation $4 \sin^2 x 4 \cos^3 x + 9 4 \cos x = 0$; $x \in [-2\pi, 2\pi]$ is:
 - (1) 1
 - (2) 3
 - (3)2
 - (4) 0

Ans. (4)

Sol. $4\sin^2 x - 4\cos^3 x + 9 - 4\cos x = 0$; $x \in [-2\pi, 2\pi]$

$$4 - 4\cos^2 x - 4\cos^3 x + 9 - 4\cos x = 0$$

$$4\cos^3 x + 4\cos^2 x + 4\cos x - 13 = 0$$
$$4\cos^3 x + 4\cos^2 x + 4\cos x = 13$$

L.H.S.
$$\leq 12$$
 can't be equal to 13.

- 4. The value of $\int_0^1 (2x^3 3x^2 x + 1)^{\frac{1}{3}} dx$ is equal to:
 - (1) 0
 - (2) 1
 - (3) 2
 - (4) -1

Ans. (1)

Sol.
$$I = \int_{0}^{1} (2x^3 - 3x^2 - x + 1)^{\frac{1}{3}} dx$$

Using
$$\int_{0}^{2a} f(x) dx = 0 \text{ where } f(2a-x) = -f(x)$$

Here
$$f(1-x) = -f(x)$$

$$\therefore$$
 I = 0

ALLEN AI POWERED APP

Free Crash Courses for Class 10th | NEET | JEE

CLICK HERE TO DOWNLOAD

Let P be a point on the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$. Let the 5.

> line passing through P and parallel to y-axis meet the circle $x^2 + y^2 = 9$ at point Q such that P and Q are on the same side of the x-axis. Then, the eccentricity of the locus of the point R on PQ such that PR : RQ = 4 : 3 as P moves on the ellipse, is :

- $(1) \frac{11}{10}$
- $(3) \frac{\sqrt{139}}{23}$
- $(4) \frac{\sqrt{13}}{7}$

Ans. (4)

Sol.

 $h = 3\cos\theta;$

$$k = \frac{18}{7}\sin\theta$$

$$\therefore \text{ locus} = \frac{x^2}{9} + \frac{49y^2}{324} = 1$$

$$e = \sqrt{1 - \frac{324}{49 \times 9}} = \frac{\sqrt{117}}{21} = \frac{\sqrt{13}}{7}$$

6. Let m and n be the coefficients of seventh and thirteenth terms respectively in the expansion of

$$\left(\frac{1}{3}x^{\frac{1}{3}} + \frac{1}{2x^{\frac{2}{3}}}\right)^{18}. \text{ Then } \left(\frac{n}{m}\right)^{\frac{1}{3}} \text{ is :}$$

- $(1) \frac{4}{9}$

Ans. (4)

Sol.
$$\left(\frac{x^{\frac{1}{3}}}{3} + 2x^{\frac{-2}{3}}\right)^{18}$$

$$t_7 = {}^{18}c_6 \left(\frac{x^{\frac{1}{3}}}{3}\right)^{12} \left(\frac{x^{\frac{-2}{3}}}{2}\right)^6 = {}^{18}c_6 \frac{1}{\left(3\right)^{12}} \cdot \frac{1}{2^6}$$

$$t_{13} = {}^{18}c_{12} \left(\frac{x^{\frac{1}{3}}}{3}\right)^{6} \left(\frac{x^{\frac{-2}{3}}}{2}\right)^{12} = {}^{18}c_{12} \frac{1}{\left(3\right)^{6}} \cdot \frac{1}{2^{12}} \cdot x^{-6}$$

$$m = {}^{18}c_6.3^{-12}.2^{-6}$$
 : $n = {}^{18}c_{12}.2^{-12}.3^{-6}$

$$\left(\frac{n}{m}\right)^{\frac{1}{3}} = \left(\frac{2^{-12} \cdot 3^{-6}}{3^{-12} \cdot 2^{-6}}\right)^{\frac{1}{3}} = \left(\frac{3}{2}\right)^2 = \frac{9}{4}$$

7. Let α be a non-zero real number. Suppose $f: \mathbb{R} \to \mathbb{R}$ R is a differentiable function such that f(0) = 2 and $\lim_{x \to \infty} f(x) = 1$. If $f'(x) = \alpha f(x) + 3$, for all $x \in \mathbb{R}$,

then $f(-\log_{e}2)$ is equal to____.

- (1) 3
- (3)9(4)7

Ans. (Bonus)

 $f(0) = 2, \lim_{x \to -\infty} f(x) = 1$ Sol.

$$f'(x) - \alpha.f(x) = 3$$

$$I.F = e^{-\alpha x}$$

$$I.F = e^{-\alpha x}$$

$$y(e^{-\alpha x}) = \int 3.e^{-\alpha x} dx$$

$$f(x). (e^{-\alpha x}) = \frac{3e^{-\alpha x}}{-\alpha} + c$$

$$x = 0 \Rightarrow 2 = \frac{-3}{\alpha} + c \Rightarrow \frac{3}{\alpha} = c - 2$$
 (1)

$$f(x) = \frac{-3}{\alpha} + c.e^{\alpha x}$$

Case-I $\alpha > 0$

$$x \to -\infty \Rightarrow 1 = \frac{-3}{\alpha} + c(0)$$

$$\alpha = -3$$
 (rejected)

Case-II α < 0

as
$$\lim_{x \to -\infty} f(x) = 1 \Rightarrow c = 0$$
 and $\frac{-3}{\alpha} = 1 \Rightarrow \alpha = -3$

$$\Rightarrow$$
 f(x) = 1 (rejected)

as
$$f(0) = 2$$

⇒ data is inconsistent

Ans. (Bonus)

2

Final JEE-Main Exam January, 2024/01-02-2024/Evening Session

- 8. Let P and Q be the points on the line $\frac{x+3}{8} = \frac{y-4}{2} = \frac{z+1}{2}$ which are at a distance of 6 units from the point R (1,2,3). If the centroid of the triangle PQR is (α, β, γ) , then $\alpha^2 + \beta^2 + \gamma^2$ is:
 - (1)26
 - (2)36
 - (3) 18
 - (4) 24

Ans. (3)

Sol.

$$P(8 \lambda - 3, 2\lambda + 4, 2\lambda - 1)$$

$$PR = 6$$

$$(8 \lambda - 4)^2 + (2\lambda + 2)^2 + (2\lambda - 4)^2 = 36$$

$$\lambda = 0, 1$$

Hence P(-3, 4, -1) & Q(5, 6, 1)

Centroid of $\triangle PQR = (1, 4, 1) \equiv (\alpha, \beta, \gamma)$

$$\alpha^2 + \beta^2 + \gamma^2 = 18$$

- 9. Consider a $\triangle ABC$ where A(1,3,2), B(-2,8,0) and C(3,6,7). If the angle bisector of $\angle BAC$ meets the line BC at D, then the length of the projection of the vector \overrightarrow{AD} on the vector \overrightarrow{AC} is:
 - $(1) \ \frac{37}{2\sqrt{38}}$
 - (2) $\frac{\sqrt{38}}{2}$
 - (3) $\frac{39}{2\sqrt{38}}$
 - $(4) \sqrt{19}$

Ans. (1)

Sol.

$$\overrightarrow{AC} = 2\hat{i} + 3\hat{j} + 5\hat{k}$$

$$AB = \sqrt{9 + 25 + 4} = \sqrt{38}$$

$$AC = \sqrt{4 + 9 + 25} = \sqrt{38}$$

$$\overrightarrow{AD} = -\frac{1}{2}\hat{i} + 4\hat{j} + \frac{3}{2}\hat{k} = -\frac{1}{2}(\hat{i} + 8\hat{j} + 3\hat{k})$$

Length of projection of \overrightarrow{AD} on \overrightarrow{AC}

$$= \left| \frac{\overrightarrow{AD}.\overrightarrow{AC}}{|\overrightarrow{AC}|} \right| = \frac{37}{2\sqrt{38}}$$

- 10. Let S_n denote the sum of the first n terms of an arithmetic progression. If $S_{10} = 390$ and the ratio of the tenth and the fifth terms is 15 : 7, then $S_{15} S_5$ is equal to:
 - (1)800
 - (2)890
 - (3)790
 - (4) 690

Ans. (3)

Sol.
$$S_{10} = 390$$

$$\frac{10}{2} \left[2a + (10 - 1)d \right] = 390$$

$$\Rightarrow 2a + 9d = 78 \tag{1}$$

$$\frac{t_{10}}{t_5} = \frac{15}{7} \Rightarrow \frac{a+9d}{a+4d} = \frac{15}{7} \Rightarrow 8a = 3d \qquad (2)$$

From (1) & (2)
$$a = 3 & d = 8$$

$$S_{15} - S_5 = \frac{15}{2} (6 + 14 \times 8) - \frac{5}{2} (6 + 4 \times 8)$$

$$=\frac{15\times118-5\times38}{2}=790$$

11. If $\int_{0}^{\frac{\pi}{3}} \cos^4 x \, dx = a\pi + b\sqrt{3}$, where a and b are rational numbers, then 9a + 8b is equal to:

(1)2

(2) 1

(3) 3

 $(4) \frac{3}{2}$

Ans. (1)

Sol.
$$\int_{0}^{\pi/3} \cos^4 x dx$$

$$=\int\limits_0^{\pi/3}\left(\frac{1+\cos 2x}{2}\right)^2\mathrm{d}x$$

$$= \frac{1}{4} \int_{0}^{\pi/3} (1 + 2\cos 2x + \cos^{2} 2x) dx$$

$$= \frac{1}{4} \left[\int_{0}^{\pi/3} dx + 2 \int_{0}^{\pi/3} \cos 2x \, dx + \int_{0}^{\pi/3} \frac{1 + \cos 4x}{2} dx \right]$$

$$= \frac{1}{4} \left[\frac{\pi}{3} + (\sin 2x)_0^{\pi/3} + \frac{1}{2} \left(\frac{\pi}{3} \right) + \frac{1}{8} (\sin 4x)_0^{\pi/3} \right]$$

$$= \frac{1}{4} \left[\frac{\pi}{3} + (\sin 2x)_0^{\pi/3} + \frac{1}{2} \left(\frac{\pi}{3} \right) + \frac{1}{8} (\sin 4x)_0^{\pi/3} \right]$$

$$= \frac{1}{4} \left[\frac{\pi}{2} + \frac{\sqrt{3}}{2} + \frac{1}{8} \times \left(-\frac{\sqrt{3}}{2} \right) \right]$$

$$=\frac{\pi}{8}+\frac{7\sqrt{3}}{64}$$

$$\therefore a = \frac{1}{8}; b = \frac{7}{64}$$

$$\therefore 9a + 8b = \frac{9}{8} + \frac{7}{8} = 2$$

- 12. If z is a complex number such that $|z| \ge 1$, then the minimum value of $\left|z + \frac{1}{2}(3+4i)\right|$ is:
 - $(1) \frac{5}{2}$

(2) 2

(3) 3

 $(4) \frac{3}{2}$

Ans. (Bonus)

Sol. $|z| \ge 1$

Min. value of $\left|z + \frac{3}{2} + 2i\right|$ is actually zero.

- 13. If the domain of the function $f(x) = \frac{\sqrt{x^2 25}}{(4 x^2)}$ +log₁₀ ($x^2 + 2x - 15$) is ($-\infty$, α) U [β , ∞), then $\alpha^2 + \beta^3$ is equal to :
 - (1) 140
- (2) 175
- (3) 150
- (4) 125

Ans. (3)

Sol.
$$f(x) = \frac{\sqrt{x^2 - 25}}{4 - x^2} + \log_{10}(x^2 + 2x - 15)$$

Domain: $x^2 - 25 \ge 0 \implies x \in (-\infty, -5] \cup [5, \infty)$

$$4 - x^2 \neq 0 \Longrightarrow x \neq \{-2, 2\}$$

$$x^2 + 2x - 15 > 0 \Rightarrow (x + 5)(x - 3) > 0$$

$$\Rightarrow$$
 x \in ($-\infty$, -5) \cup (3, ∞)

$$\therefore x \in (-\infty, -5) \cup [5, \infty)$$

$$\alpha = -5$$
: $\beta = 5$

$$\therefore \alpha^2 + \beta^3 = 150$$

- 14. Consider the relations R_1 and R_2 defined as aR_1b $\Leftrightarrow a^2+b^2=1$ for all a, b, $\in R$ and (a,b) $R_2(c,d)$ $\Leftrightarrow a+d=b+c$ for all (a,b), $(c,d)\in N\times N$. Then
 - (1) Only R₁ is an equivalence relation
 - (2) Only R₂ is an equivalence relation
 - (3) R₁ and R₂ both are equivalence relations
 - (4) Neither R_1 nor R_2 is an equivalence relation

Ans. (2)

Sol. $aR_1 b \Leftrightarrow a^2 + b^2 = 1$: $a, b \in R$

 $(a, b) R_2(c, d) \Leftrightarrow a + d = b + c; (a, b), (c, d) \in N$

for R₁: Not reflexive symmetric not transitive

for R_2 : R_2 is reflexive, symmetric and transitive

Hence only R₂ is equivalence relation.

ALLEN
ALPOWERED APP

Free Crash Courses for Class 10th | NEET | JEE

CLICK HERE TO

Final JEE-Main Exam January, 2024/01-02-2024/Evening Session

15. If the mirror image of the point P(3,4,9) in the line

$$\frac{x-1}{3} = \frac{y+1}{2} = \frac{z-2}{1}$$
 is (α, β, γ) , then 14 $(\alpha + \beta + \gamma)$

is:

- (1) 102
- (2) 138
- (3) 108
- (4) 132

Ans. (3)

Sol.

$$\overrightarrow{PN}.\overrightarrow{b} = 0$$
?

$$3(3 \lambda - 2) + 2(2 \lambda - 5) + (\lambda - 7) = 0$$

$$14 \lambda = 23 \Rightarrow \lambda = \frac{23}{14}$$

$$N\left(\frac{83}{14}, \frac{32}{14}, \frac{51}{14}\right)$$

$$\therefore \frac{\alpha+3}{2} = \frac{83}{14} \Rightarrow \alpha = \frac{62}{7}$$

$$\frac{\beta+4}{2} = \frac{32}{14} \Rightarrow \beta = \frac{4}{7}$$

$$\frac{\gamma+9}{2} = \frac{51}{14} \Rightarrow \gamma = \frac{-12}{7}$$

Ans.
$$14 (\alpha + \beta + r) = 108$$

16. Let $f(x) = \begin{cases} x - 1, x \text{ is even,} \\ 2x, x \text{ is odd,} \end{cases} x \in \mathbb{N}$. If for some

$$a \in N$$
, $f(f(f(a))) = 21$, then $\lim_{x \to a^{-}} \left\{ \frac{|x|^{3}}{a} - \left[\frac{x}{a}\right] \right\}$,

where [t] denotes the greatest integer less than or equal to t, is equal to :

- (1) 121
- (2) 144
- (3) 169
- (4)225
- Ans. (2)

Sol.
$$f(x) = \begin{cases} x-1; & x = \text{even} \\ 2x; & x = \text{odd} \end{cases}$$

$$f(f(f(a))) = 21$$

C–1: If
$$a = even$$

$$f(a) = a - 1 = odd$$

$$f(f(a)) = 2(a-1) = even$$

$$f(f(f(a))) = 2a - 3 = 21 \implies a = 12$$

$$\mathbf{C}$$
-2: If $\mathbf{a} = \mathbf{odd}$

$$f(a) = 2a = even$$

$$f(f(a)) = 2a - 1 = \text{odd}$$

$$f(f(f(a))) = 4a - 2 = 21$$
 (Not possible)

Hence
$$a = 12$$

Now

$$\lim_{x\to 12^{-}} \left(\frac{|x|^3}{12} - \left[\frac{x}{12} \right] \right)$$

$$= \lim_{x \to 12^{-}} \frac{|x|^{3}}{12} - \lim_{x \to 12^{-}} \left[\frac{x}{12} \right]$$

$$= 144 - 0 = 144$$
.

17. Let the system of equations x + 2y + 3z = 5, 2x + 3y + z = 9, $4x + 3y + \lambda z = \mu$ have infinite number of solutions. Then $\lambda + 2\mu$ is equal to:

- (1)28
- (2) 17

- (3)22
- (4) 15

Ans. (2)

Sol.
$$x + 2y + 3z = 5$$

$$2x + 3y + z = 9$$

$$4x + 3y + \lambda z = \mu$$

for infinite following $\Delta = \Delta_1 = \Delta_2 = \Delta_3 = 0$

$$\Delta = \begin{vmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 4 & 3 & \lambda \end{vmatrix} = 0 \Rightarrow \lambda = -13$$

$$\Delta_1 = \begin{vmatrix} 5 & 2 & 3 \\ 9 & 3 & 1 \\ \mu & 3 & -13 \end{vmatrix} = 0 \Rightarrow \mu = 15$$

$$\Delta_2 = \begin{vmatrix} 1 & 5 & 3 \\ 2 & 9 & 1 \\ 4 & 15 & -13 \end{vmatrix} = 0$$

$$\Delta_3 = \begin{vmatrix} 1 & 2 & 5 \\ 2 & 3 & 9 \\ 4 & 3 & 15 \end{vmatrix} = 0$$

for λ = -13, μ =15 system of equation has infinite solution hence λ + 2 μ = 17

18. Consider 10 observation x_1 , x_2 ,..., x_{10} . such that $\sum_{i=1}^{10} (x_i - \alpha) = 2 \text{ and } \sum_{i=1}^{10} (x_i - \beta)^2 = 40, \text{ where } \alpha, \beta$ are positive integers. Let the mean and the variance of the observations be $\frac{6}{5}$ and $\frac{84}{25}$ respectively. The

 $\frac{\beta}{\alpha}$ is equal to :

(1) 2

(2) $\frac{3}{2}$

(3) $\frac{5}{2}$

(4) 1

Ans. (1)

Sol. x_1, x_2, \dots, x_{10}

$$\sum_{i=1}^{10} (x_i - \alpha) = 2 \implies \sum_{i=1}^{10} x_i - 10\alpha = 2$$

 $Mean \ \mu = \frac{6}{5} = \frac{\sum x_i}{10}$

 $\Sigma x_i = 12$

$$10\alpha + 2 = 12$$
 : $\alpha = 1$

Now $\sum_{i=1}^{10} (x_i - \beta)^2 = 40$ Let $y_i = x_i - \beta$

$$\therefore \sigma_y^2 = \frac{1}{10} \sum y_i^2 - (\overline{y})^2$$

$$\sigma_{x}^{2} = \frac{1}{10} \sum_{i} (x_{i} - \beta)^{2} - \left(\frac{\sum_{i=1}^{10} (x_{i} - \beta)}{10} \right)^{2}$$

$$\frac{84}{25} = 4 - \left(\frac{12 - 10\beta}{10}\right)^2$$

$$\therefore \left(\frac{6-5\beta}{5}\right)^2 = 4 - \frac{84}{25} = \frac{16}{25}$$

 $6-5 \beta = \pm 4 \implies \beta = \frac{2}{5}$ (not possible) or $\beta = 2$

Hence
$$\frac{\beta}{\alpha} = 2$$

- 19. Let Ajay will not appear in JEE exam with probability $p=\frac{2}{7}$, while both Ajay and Vijay will appear in the exam with probability $q=\frac{1}{5}$. Then the probability, that Ajay will appear in the exam and Vijay will not appear is :
 - $(1) \frac{9}{35}$
 - (2) $\frac{18}{35}$
 - (3) $\frac{24}{35}$
 - $(4) \frac{3}{35}$

Ans. (2)

$$P(\bar{A}) = \frac{2}{7} = p$$

$$P(A \cap V) = \frac{1}{5} = q$$

$$P(A) = \frac{5}{7}$$

Ans.
$$P(A \cap \overline{V}) = \frac{18}{35}$$

- 20. Let the locus of the mid points of the chords of circle $x^2+(y-1)^2=1$ drawn from the origin intersect the line x+y=1 at P and Q. Then, the length of PQ is
 - $(1) \frac{1}{\sqrt{2}}$
 - (2) $\sqrt{2}$
 - (3) $\frac{1}{2}$
 - (4) 1
- Ans. (1)

ALLEN
ALPOWERED APP

Free Crash Courses for Class 10th | NEET | JEE

CLICK HERE TO DOWNLOAD

C(0, 1) (0,0) m(h,k) O

Sol.

$$m_{OM} \cdot m_{CM} = -1$$

$$\frac{\mathbf{k}}{\mathbf{h}} \cdot \frac{\mathbf{k} - 1}{\mathbf{h}} = -1$$

$$\therefore \text{ locus is } x^2 + y(y-1) = 0$$

$$x^2 + y^2 - y = 0$$

$$p = \left| \frac{1/2}{\sqrt{2}} \right| \qquad p = \frac{1}{2\sqrt{2}}$$

$$PQ = 2\sqrt{r^2 - p^2}$$

$$=2\sqrt{\frac{1}{4}-\frac{1}{8}} = \frac{1}{\sqrt{2}}$$

SECTION-B

21. If three successive terms of a G.P. with common ratio r(r > 1) are the lengths of the sides of a triangle and [r] denotes the greatest integer less than or equal to r, then 3[r] + [-r] is equal to:

Ans. (1)

Sol. a, ar,
$$ar^2 \rightarrow G.P.$$

Sum of any two sides > third side

$$a + ar > ar^2$$
, $a + ar^2 > ar$, $ar + ar^2 > a$

$$r^2 - r - 1 < 0$$

$$r \in \left(\frac{1-\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}\right) \tag{1}$$

 $r^2 - r + 1 > 0$

always true

$$r^2 + r - 1 > 0$$

$$r \in \left(-\infty, -\frac{1-\sqrt{5}}{2}\right) \cup \left(\frac{-1+\sqrt{5}}{2}, \infty\right)$$
 (2)

Taking intersection of (1), (2)

$$r \in \left(-\frac{1+\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}\right)$$

As r > 1

$$r \in \left(1, \frac{1+\sqrt{5}}{2}\right)$$

$$[r] = 1 [-r] = -2$$

$$3[r] + [-r] = 1$$

22. Let $A = I_2 - 2MM^T$, where M is real matrix of order 2×1 such that the relation $M^T M = I_1$ holds. If λ is a real number such that the relation $AX = \lambda X$ holds for some non-zero real matrix X of order 2×1 , then the sum of squares of all possible values of λ is equal to :

Ans. (2)

Sol.
$$A = I_2 - 2 MM^T$$

$$A^{2} = (I_{2} - 2MM^{T}) (I_{2}-2MM^{T})$$

$$= I_{2} - 2MM^{T} - 2MM^{T} + 4MM^{T}MM^{T}$$

$$= I_{2} - 4MM^{T} + 4MM^{T}$$

$$= I_{2}$$

$$AX = \lambda X$$

$$A^2X = \lambda AX$$

$$X = \lambda(\lambda X)$$

$$X = \lambda^2 X$$

$$X(\lambda^2-1) = 0$$

$$\lambda^2 = 1$$

$$\lambda = +1$$

Sum of square of all possible values = 2

7

23. Let
$$f:(0, \infty) \to R$$
 and $F(x) = \int_0^x tf(t)dt$. If $F(x^2) = x^4 + x^5$, then $\sum_{i=1}^{12} f(r^2)$ is equal to:

Ans. (219)

Sol.
$$F(x) = \int_{0}^{x} t \cdot f(t) dt$$

Given
$$F^{1}(x) = xf(x)$$

$$F(x^{2}) = x^{4} + x^{5}, let x^{2} = t$$

$$F(t) = t^{2} + t^{5/2}$$

$$F'(t) = 2t + 5/2 t^{3/2}$$

$$t \cdot f(t) = 2t + 5/2 t^{3/2}$$

$$f(t) = 2 + 5/2 t^{1/2}$$

$$\sum_{r=1}^{12} f(r^{2}) = \sum_{r=1}^{12} 2 + \frac{5}{2}r$$

$$= 24 + 5/2 \left[\frac{12(13)}{2} \right]$$

$$= 219$$

24. If
$$y = \frac{(\sqrt{x} + 1)(x^2 - \sqrt{x})}{x\sqrt{x} + x + \sqrt{x}} + \frac{1}{15}(3\cos^2 x - 5)\cos^3 x$$
,
then $96y'(\frac{\pi}{6})$ is equal to:

Ans. (105)

Sol.
$$y = \frac{(\sqrt{x} + 1)(x^2 - \sqrt{x})}{x\sqrt{x} + x + \sqrt{x}} + \frac{1}{15}(3\cos^2 x - 5)\cos^3 x$$

$$y = \frac{(\sqrt{x} + 1)(\sqrt{x})((\sqrt{x})^3 - 1)}{(\sqrt{x})((\sqrt{x})^2 + (\sqrt{x}) + 1)} + \frac{1}{5}\cos^5 x - \frac{1}{3}\cos^3 x$$

$$y = (\sqrt{x} + 1)(\sqrt{x} - 1) + \frac{1}{5}\cos^5 x - \frac{1}{3}\cos^3 x$$

$$y' = 1 - \cos^4 x \cdot (\sin x) + \cos^2 x \cdot (\sin x)$$

$$y'(\frac{\pi}{6}) = 1 - \frac{9}{16} \times \frac{1}{2} + \frac{3}{4} \times \frac{1}{2}$$

$$= \frac{32 - 9 + 12}{32} = \frac{35}{32}$$

$$= 96 \quad y'(\frac{\pi}{6}) = 105$$

25. Let
$$\vec{a} = \hat{i} + \hat{j} + \hat{k}$$
, $\vec{b} = -\hat{i} - 8\hat{j} + 2\hat{k}$ and $\vec{c} = 4\hat{i} + c_2\hat{j} + c_3\hat{k}$ be three vectors such that $\vec{b} \times \vec{a} = \vec{c} \times \vec{a}$. If the angle between the vector \vec{c} and the vector $3\hat{i} + 4\hat{j} + \hat{k}$ is θ , then the greatest integer less than or equal to $\tan^2\theta$ is:

Sol.
$$\vec{a} = \hat{i} + \hat{j} + k$$

 $\vec{b} = -\hat{i} - 8\hat{j} + 2\hat{k}$
 $\vec{c} = 4\hat{i} + c_2\hat{j} + c_3k$

$$\vec{b} \times \vec{a} = \vec{c} \times \vec{a}$$

$$(\vec{b} - \vec{c}) \times \vec{a} = 0$$

$$\vec{b} - \vec{c} = \lambda \vec{\alpha}$$

$$\vec{b} = \vec{c} + \lambda \vec{\alpha}$$

$$-\hat{i} - 8\hat{j} + 2k = (4\hat{i} + c_2\hat{j} + c_3k) + \lambda(\hat{i} + \hat{j} + k)$$

$$\lambda + 4 = -1 \Rightarrow \lambda = -5$$

$$\lambda + c_2 = -8 \Rightarrow c_2 = -3$$

$$\lambda + c_3 = 2 \Rightarrow c_3 = 7$$

$$\vec{c} = 4\hat{i} - 3\hat{j} + 7k$$

$$\cos\theta = \frac{12 - 12 + 7}{\sqrt{26} \cdot \sqrt{74}} = \frac{7}{\sqrt{26} \cdot \sqrt{74}} = \frac{7}{2\sqrt{481}}$$

$$\tan^2\theta = \frac{625 \times 3}{49}$$

$$[\tan^2\theta] = 38$$

ALLEN
AI POWERED APP

Free Crash Courses for Class 10th | NEET | JEE

CLICK HERE TO DOWNLOAD

26. The lines L_1 , L_2 , ..., L_{20} are distinct. For n=1,2,3,...,10 all the lines L_{2n-1} are parallel to each other and all the lines L_{2n} pass through a given point P. The maximum number of points of intersection of pairs of lines from the set $\{L_1,L_2,...,L_{20}\}$ is equal to :

Ans. (101)

- Sol. L_1 , L_3 , L_5 , - L_{19} are Parallel L_2 , L_4 , L_6 , - L_{20} are Concurrent $Total \ points \ of \ intersection = {}^{20}C_2 {}^{10}C_2 {}^{10}C_2 + 1$ = 101
- 27. Three points O(0,0), P(a, a^2), Q(-b, b^2), a > 0, b > 0, are on the parabola $y = x^2$. Let S_1 be the area of the region bounded by the line PQ and the parabola, and S_2 be the area of the triangle OPQ. If the minimum value of $\frac{S_1}{S_2}$ is $\frac{m}{n}$, gcd(m, n) = 1, then m + n is equal to:

Ans. (7)

Sol.

$$S_2 = 1/2 \begin{vmatrix} 0 & 0 & 1 \\ a & a^2 & 1 \\ -b & b^2 & 1 \end{vmatrix} = 1/2(ab^2 + a^2b)$$

PQ:
$$y-a^2 = \frac{a^2-b^2}{a+b}(x-a)$$

$$y - a^2 = (a - b) x - (a - b)a$$

$$y = (a - b) x + ab$$

$$S_l = \int\limits_{-b}^{a} \Bigl(\bigl(a-b\bigr) x + ab - x^2 \Bigr) dx$$

$$=(a-b)\frac{x^2}{2}+(ab)x-\frac{x^3}{3}\Big|_{-b}^a$$

$$= \frac{(a-b)^{2}(a+b)}{2} + ab(a+b) - \frac{(a^{3}+b^{3})}{3}$$

$$\frac{S_1}{S_2} = \frac{\frac{(a-b)^2}{2} + ab - \frac{(a^2 + b^2 - ab)}{3}}{\frac{ab}{2}}$$

$$=\frac{3(a-b)^2+6ab-2(a^2+b^2-ab)}{3ab}$$

$$=\frac{1}{3}\left[\frac{a}{b} + \frac{b}{a} + 2\right]_{\min=2}$$

$$=\frac{4}{3}=\frac{m}{n}$$
 $m+n=7$

28. The sum of squares of all possible values of k, for which area of the region bounded by the parabolas $2y^2 = kx$ and $ky^2 = 2(y - x)$ is maximum, is equal to:

Ans. (8)

Sol.
$$ky^2 = 2(y - x)$$

$$2y^2 = kx$$

Point of intersection \rightarrow

$$ky^2 = 2\left(y - \frac{2y^2}{k}\right)$$

$$y = 0 ky = 2 \left(\frac{1 - 2y}{k} \right)$$

$$ky + \frac{4y}{k} = 2$$

$$y = \frac{2}{k + \frac{4}{k}} = \frac{2k}{k^2 + 4}$$

$$A = \int_{0}^{\frac{2k}{k^{2}+4}} \left(\left(y - \frac{ky^{2}}{2} \right) - \left(\frac{2y^{2}}{k} \right) \right) . dy$$

$$= \frac{y^2}{2} - \left(\frac{k}{2} + \frac{2}{k}\right) \cdot \frac{y^3}{3} \Big|_{0}^{\frac{2k}{k^2 + 4}}$$

$$= \left(\frac{2k}{k^2 + 4}\right)^2 \left[\frac{1}{2} - \frac{k^2 + 4}{2k} \times \frac{1}{3} \times \frac{2k}{k^2 + 4}\right]$$

$$= \frac{1}{6} \times 4 \times \left(\frac{1}{k + \frac{4}{k}}\right)^2$$

$$A \cdot M \ge G \cdot M \frac{\left(k + \frac{4}{k}\right)}{2} \ge 2$$

$$k + \frac{4}{k} \ge 4$$

Area is maximum when $k = \frac{4}{k}$

$$k = 2, -2$$

29. If
$$\frac{dx}{dy} = \frac{1 + x - y^2}{y}$$
, $x(1) = 1$, then $5x(2)$ is equal to :

Ans. (5)

Sol.
$$\frac{dx}{dy} - \frac{x}{y} = \frac{1 - y^2}{y}$$

Integrating factor = $e^{\int -\frac{1}{y} dy} = \frac{1}{y}$

$$x \cdot \frac{1}{y} = \int \frac{1 - y^2}{y^2} \, \mathrm{d}y$$

$$\frac{x}{y} = \frac{-1}{y} - y + c$$

$$x = -1 - y^2 + cy$$

$$\mathbf{x}(1) = 1$$

$$1 = -1 - 1 + c \Rightarrow c = 3$$

$$x = -1 - y^2 + 3y$$

$$5x(2) = 5(-1 - 4 + 6)$$

= 5

30. Let ABC be an isosceles triangle in which A is at (-1, 0), $\angle A = \frac{2\pi}{3}$, AB = AC and B is on the positive x-axis. If BC = $4\sqrt{3}$ and the line BC intersects the line y = x + 3 at (α, β) , then $\frac{\beta^4}{\alpha^2}$ is:

Ans. (36)

Sol.

ALLEN
ALPOWERED APP

Free Crash Courses for Class 10th | NEET | JEE

$$AB = |(b+1)| = 4$$

$$b = 3, m_{AB} = 0$$

$$m_{BC} = \frac{-1}{\sqrt{3}}$$

BC:-
$$y = \frac{-1}{\sqrt{3}}(x-3)$$

$$\sqrt{3}y + x = 3$$

Point of intersection : y = x + 3, $\sqrt{3}y + x = 3$

$$\left(\sqrt{3}+1\right)y=6$$

$$y = \frac{6}{\sqrt{3} + 1}$$

$$x = \frac{6}{\sqrt{3} + 1} - 3$$

$$=\frac{6-3\sqrt{3}-3}{\sqrt{3}+1}$$

$$= 3\frac{(1-\sqrt{3})}{(1+\sqrt{3})} = \frac{-6}{(1+\sqrt{3})^2}$$

$$\frac{\beta^4}{\alpha^2} = 36$$

SCALE UP YOUR SCORE! with ALLEN SCORE TEST PAPERS

Total 10 Full syllabus papers

Paper Analysis of JEE Advanced 2023

By **ALLEN**Subject Experts

Answer key with Solutions

Scan QR to Buy

