Zara Uses Operations Research to Reengineer Its Global Distribution Process

Aubrey Lin | Yingzi Ma 5/3/2018

Agenda

— Introduction —

(1) Company Overview

2 Distribution Process

3 Problem: Legacy Distribution Process

4 Solution: The New Process

— The Model —

5 Optimization Model

— Conclusion —

6 Benefit

Company Overview

Inditex Group

- One of the world's largest fashion retailers
- 7,475 stores in 96 markets worldwide
- Eight brands

Zara

The Most Successul Brand of Inditex Group

One of The Biggest International Fashion Companies

Zara Store

Zara Distribution Center

Distribution Process

Zara's Global Distribution Process

remaining action sizes Keep on display M L M L Keep on display Keep on display М Keep on display M S S Move to backroom Move to backroom Move to backroom

Zara's Inventory Display Policy

- "Major Size" VS "Minor Size"
- Based on customers' feeling
- Goal: promote sales; reduce excess shipment requests

The Problem

(a) Legacy Process

Legacy Distribution Process

- Can't support the fast-growing distribution network effectively
- Shipment request exceed true needs
- Significant time pressures

Solution

assortment decisions past sales data store managers input forecasting model inventory demand warehouse in stores forecasts inventory optimization model shipments

(b) New Process

The New Process

- Demand forecasts: shipment requests and past historical sales
- Optimization model: 1)
 forecasts; 2)warehouses' and
 stores' inventory; 3)assortment
 decisions

Optimization Model

High-level Representation of the Model Formulation

Maximize

P*NetworkStoreSales + K*FinalWarehouseStock

Subject to

Shipments <= InitialWarehouseStock

NetworkStoreSales = Inv-to-Sales(StoreInventory + Shipments)

FinalWarehouseStock = InitialWarehouseStock - Shipments

Decision Variables & Objective Function

j = each store

J = set of stores

P = selling price in store j

Z = approximate expected sales across all sizes in each store j

K = aggressiveness factor

S = set of sizes

W = inventory size s available in the warehouse

Decision Variables

 $x_{sj} \in N$: Shipment quantity of each size $s \in S$ to each store $j \in J$ for the current replenishment period;

 Z_j : The approximate expected sales across all sizes in each store j for the current period under consideration;

$$Max \sum_{j \in J} P_j Z_j + K(\sum_{s \in S} (W_s - \sum_{j \in J} x_{sj}))$$

Constraints

 $\Sigma_{j \in J} x_{Sj} \leq w_S$ for all $s \in S$ (warehouse inventory availability)

 $z_j \le (\Sigma_{s \in S} + \lambda_{sj})y_j + \Sigma_{s \in S} - \lambda_{sj} v_{sj}$ for all $j \in J$ (primary inventory-to-sales function implementation constraint)

 $y_j \le a_i (\lambda_{sj}) (I_{sj} + x_{sj} - i) + b_i (\lambda_{sj})$ for all $j \in J$, $s \in S^+$, and $i \in N(\lambda_{sj})$ (secondary inventory-to-sales function implementation constraint)

 $v_{sj} \leq \{a_i (\lambda_{sj})(I_{sj} + x_{sj} - i) + b_i (\lambda_{sj}) \text{ for all } j \in J, s \in S^-, \text{ and } i \in N(\lambda_{sj}) \text{ (secondary inventory-to-sales function implementation constraint)}$

 $v_{sj} \le y_j$ for all $j \in J$, $s \in S^-$ (secondary inventory-to-sales function implementation constraint) $x_{sj} \in N$; z_j , $y_j \ge 0$; $v_{sj} \ge 0$ (nonnegativity and integer constraints)

Input Data

Set of sizes: $S = S^+ \cup S^-$ partitioned into major sizes S^+ and regular sizes S^- (index s);

Set of stores: J (index j);

 W_s : Inventory of size s available in the warehouse;

 I_{sj} : Inventory of size s available in store j;

 P_j : Selling price in store j;

K: Aggressiveness factor (value of inventory remaining in the warehouse after the current shipments);

 λ_{sj} : Demand rate for size s in store j;

 $N(\lambda_{sj})$: Approximation set for size s in the inventory-to-sales function approximation for store j.

Impact/Benefits

Two-dimension Experiment

Experiment Design

- A live pilot implementation experiment
- Test group: 10 articles of clothing
- Control group: 10 similar articles of clothing

The 1st Dimension

- To Explore the impact brought by the optimization model
- Distribute products to all stores from Zara's warehouse in Arteixo only
- Test group: new model (optimization)
- Control group: legacy process

The 2nd Dimension

- To eliminate the estimation errors
- Both test and control group: legacy process
- Distributing products from another warehouse in Zaragoza to all stores

Impacts

Positive impact on Zara's financial performance

- Sales: increase 3-4 percent
- Additional revenue: \$310 million (2007) and \$353 million (2008)
- Additional net income: \$37.2 million (2007) and \$42.4 million (2008)

Better organizational structure and higher efficiency

- Employees: focus on more complex and professional responsibilities
- Employees: gain more enthusiasm and sense of accomplishment

More attention to analytical methods

- Decision making: data analytics replace judgement
- Two additional optimization projects for purchasing and pricing

Thank You!