Εργασία 2

Χαράλαμπος Αναστασίου

Οκτώβριος 2024

1 Εισαγωγή

μπλα μπλα μπλα

1.1 Ερώτημα 1

Αν x=[1:8] και $P_{2,4}$ είναι το μητρώο τέλειας αναδιάταξης mod 2, τότε να γράψετε το διάνυσμα $P_{2,4}\cdot x$.

ΑΠΑΝΤΗΣΗ: Το x είναι ένα διάνυσμα-στήλη μεγέθους 8×1 . Το μητρώο τέλειας αναδιάταξης $P_{q,r}=P_{2,4}$ δίνεται από τον ακόλουθο τύπο, ο οποίος έχει αντληθεί από τις διαφάνειες μαθήματος:

$$P_{2,4} = I_8 ([1:4:8,2:4:8,3:4:8,4:4:8])$$

To $P_{2,4}$ έχει μέγεθος 8×8 .

Επομένως, το γινόμενο $P_{2,4} \cdot x$ είναι:

$$P_{2,4} \cdot x = I_8 ([1, 5, 2, 6, 3, 7, 4, 8]) \cdot x = \begin{bmatrix} x(1:4:8) \\ x(2:4:8) \\ x(3:4:8) \\ x(4:4:8) \end{bmatrix}$$

που είναι το τελικό διάνυσμα-στήλη μεγέθους 8×1 .

1.2 Ερώτημα 2

 $(\Sigma \omega \sigma \tau \delta / \Lambda \acute{\alpha} \vartheta \circ \varsigma)$ Αν $P_{2,4}$ είναι το μητρώο τέλειας αναδιάταξης $\mod 2$, τότε ισχύει:

$$P_{2,4} \cdot P_{2,4}^{\top} = I_8$$

ΑΠΑΝΤΗΣΗ: Σωστό.

1.3 Ερώτημα 3

(GvL A1.3.4) Έστω το μητρώο

$$A = \begin{pmatrix} 0 & B \\ B^{\top} & 0 \end{pmatrix}$$

όπου το B είναι άνω διδιαγώνιο. Να περιγράψετε τη δομή του $T=PAP^{\top}$, όπου η $P=P_{2,n}$ είναι η μετάθεση τέλειας αναδιάταξης $\mathrm{mod}\ 2$.

AΠANTHΣH:

```
_{1} m = 4;
4 % Random values for the main diagonal
5 main_diag = randi(10, 1, m);
7 % Random values for the first upper diagonal
s upper_diag = randi(10, 1, m-1);
_{10} % Create the upper bidiagonal matrix B
11 B = diag(main_diag) + diag(upper_diag, 1);
13 % Create the matrix A
_{14} A = [zeros(m), B; B', zeros(m)];
16 % Display the final square matrix A
17 disp('The matrix A is:')
18 disp(A);
_{20} n = size(A,1); % size of A
_{22} % Create the identity matrix I
_{23} I = eye(n);
_{25}\ \% Define the row permutation of I
          % You can change this value to experiment
_{26} r = 3;
_{27} % r=4;
_{28} % r=5;
29 perm = [];
_{30} for i = 1:r
      indices = i:r:n;
      perm = [perm, indices];
зз end
```

```
35 % Row permutation of I
36 P = I(perm, :);
37
38 T = P * A * P';
39 D = T';
40
41 % I notice that for different values of r,
42 % the matrix T remains SYMMETRIC !!!
```

Σχόλια κώδικα: Στον παραπάνω κώδικα για τη δημιουργία της μετάθεσης τέλειας αναδιάταξης χρησιμοποιήθηκε ένας βρόγχος for ο οποίος δημιουργεί την μετάθεση (perm) με βάση τον τύπο από τις διαφάνειες του μαθήματος.

1.4 Ερώτημα 4

(GvL A1.3.7 - προσοχή: στο βιβλίο εκ παραδρομής, αντί του συμβόλου της αναστροφής, γράφτηκε \otimes). Να επαληθεύσετε ότι, αν $x \in \mathbb{R}^m, y \in \mathbb{R}^n$, τότε ισχύει:

$$y \otimes x = \operatorname{vec}(xy^{\top}).$$

ΑΠΑΝΤΗΣΗ:

• Έχουμε:

$$y\otimes x=egin{bmatrix} y_1x \\ y_2x \\ \vdots \\ y_nx \end{bmatrix} \quad \Rightarrow \quad$$
 διάνυσμα-στήλη mn στοιχείων

• Επίσης:

$$(xy^{\top})_{ij} = x_i y_j \quad \Rightarrow \quad \mu$$
ητρώο $m \times n$

και

$$\operatorname{vec}(xy^{\top}) = \begin{pmatrix} x_1 y_1 \\ x_2 y_1 \\ \vdots \\ x_m y_1 \\ x_1 y_2 \\ x_2 y_2 \\ \vdots \\ x_m y_n \end{pmatrix}$$

Είναι εμφανές ότι το $\mathrm{vec}(xy^\top)$ είναι ίσο με το $y\otimes x$, καθώς στους βαθμωτούς ισχύει η αντιμεταθετικότητα $(x_1y_1=y_1x_1$ κ.ο.κ).