

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	<u>ИНФОРМАТИКА</u>	. И СИСТЕМЫ УПРАВЈ	<u>ТЕНИЯ</u>
КАФЕДРА <u>КО</u>	<u>ЭМПЬЮТЕРНЫЕ</u>	СИСТЕМЫ И СЕТИ (И	<u>Y6)</u>
НАПРАВЛЕНИЕ ПОДГС	товки 09.03.01 I	Информатика и вычис	лительная техника
	O	тчет	
	по лаборатор	рной работе № 1	
Название: <u>Тр</u> и	<u>иггеры</u>		
Цисциплина: <u>Арх</u>	<u>xЭВМ</u>		
Студент г	гр. <u>ИУ7-43Б</u>		А.А. Дьяченко
- 7/1-	r	(Подпись, дата)	(И.О. Фамилия)
Преподава	тель		А.Ю. Попов
•		(Подпись, дата)	—————————————————————————————————————

Цель работы: исследование триггеров RS, D, T, DV и их статических и динамических характеристик.

1) RS – триггер. Используется как запоминающая ячейка. Имеет
--

S	R	Q(n)	Q(n+1)	$\overline{Q}(n+1)$	
0	0	0	0	0	Хранение
0	0	1	1	1	значения
0	1	0	0	1	Установка
0	1	1	0	1	нуля
1	0	0	1	0	Установка
1	0	1	1	0	единицы
1	1	0	-	-	Запрещенное
1	1	1	-	-	состояние

Запрещенное состояние — состояние, при котором состояние триггера является неопределенным. Главное условие нормальной работы RS триггера: S*R=0.

Рис.1 RS-триггер

2) RSC – триггер. Имеет 3 входа.

S	R	Q(n)	С	Q(n+1)	$\overline{Q}(n+1)$	
			0	0	1	
0	0	0	1	0	1	
			0	0	1	Vnouguu
			0	1	0	Хранение
0	0	1	1	1	0	
			0	1	0	
			0	0	1	
0	1	0	1	0	1	
			0	0	1	Установка
		1 1	0	1	0	нуля
0	1		1	0	1	
			0	0	1	
			0	0	1	
1	0	0	1	1	0	
			0	1	0	Установка
			0	1	0	единицы
1	0	1	1	1	0	
			0	1	0	
	1 1	1 0	0	-	-	
1 1			1 0 _	1	-	-
			0	-	-	Запрещенное
			0	-	-	состояние
1	1	1	1	-	-	
			0			

Рис.2 RSC-триггер

При C = 0 хранит значение, при C = 1 работает как асинхронный RS-триггер.

3) D – триггер в статическом режиме.

D(n)	С	Q(n+1)	$\overline{Q}(n+1)$
	0	0	1
0	1	0	1
	0	0	1
	0	1	0
0	1	0	1
	0	0	1
	0	0	1
1	1	1	0
	0	1	0
1	0	1	0
	1	1	0
	0	1	0

Рис.3 D-триггер в статическом режиме

Синхронный D-триггер имеет один информационный вход D, состояние которого с каждым синхронизирующим импульсом передается на выход, т. е. выходные сигналы представляют собой задержанные входные сигналы.

4) **D** – триггер с динамическим управлением записью.

Рис.4 Временные диаграммы

Рис.5 D-триггер в динамическом режиме

Синхронный D-триггер имеет один информационный вход D, состояние которого с каждым синхронизирующим импульсом передается на выход, т. е. выходные сигналы представляют собой задержанные входные сигналы.

5) DV – триггер.

Рис.6 Временные диаграммы

Рис.7 DV-триггер

Синхронный D-триггер имеет один информационный вход D, состояние которого с каждым синхронизирующим импульсом передается на выход. При C=1 и V=1 работает как асинхронный D-триггер. В других случаях сохраняет состояние.

6) Т – триггер.

Рис. 8 Временные диаграммы

Рис.9 Т-триггер

При T=1 и C=1 меняет состояние на противоположное, то есть происходит счет по модулю 2.

Ответы на контрольные вопросы

1. Что называется триггером?

Триггер является запоминающим элементом с двумя устойчивыми состояниями, которые кодируются цифрами 0 и 1.

2. Какова структурная схема триггера?

Структурную схему триггера можно представить в виде запоминающей ячейки (ЗЯ) и схемы управления (СУ).

- 3. По каким основным признакам классифицируют триггеры?
- 1) По способу организации логических связей, т.е. по виду логического уравнения, характеризующего состояние входов и выходов триггера в момент времени tn до его срабатывания и в момент tn+1 после его срабатывания, различают триггеры:
 - о с раздельной установкой состояний "0" и "1" (RS-триггеры);
 - о со счетным входом (Т-триггеры);
 - о универсальные с раздельной установкой состояний "0" и "1" (JK-триггеры);
 - о с приемом информации по одному входу (D триггеры); * универсальные с управляемым приемом информации по одному входу (DV триггеры);
 - о комбинированные (например, RST-, JKRS, DRS триггеры) и т.д.
- 2) По способу запаси информации различают триггеры:
 - о асинхронные (не синхронизируемые);
 - о синхронные (синхронизируемые), или тактируемые.
- 3) По способу синхронизации различают триггеры: синхронные со статическим управлением записью; синхронные с динамическим управлением записью.

4) По способу передачи информации с входов на выход различают триггеры о одноступенчатым и двухступенчатым запоминанием информации.

4. Каково функциональное назначение входов триггеров?

S-вход — вход для раздельной установки триггера в состояние "1" (Set – установка)

R-вход — вход для раздельной установки триггера в состояние "0" (Reset — сброс, очистка)

J-вход — вход для установки состояния "1" в универсальном JK-триггере (Jerk — внезапное включение)

K-вход — вход для установки состояния "0" в универсальном

JK-триггере (Kill – внезапное отключение)

D-вход —информационный вход для установки триггера в состояния "1" или "0" (Data — данные, Delay — задержка)

V-вход — подготовительный управляющий вход для разрешения приема информации (Valve –клапан, вентиль)

С-вход - исполнительный управляющий (командный) вход для осуществления приема информации, вход синхронизации (Clock – источник синхросигналов)

5. Что такое асинхронный и синхронный триггеры?

Асинхронный RS -триггер - это простейший триггер, который используется как запоминающая ячейка.

Синхронный RS-триггер имеет два информационных входа R и S и вход синхронизации C.

6. Что такое таблица переходов?

Таблица переходов отражает зависимость выходного сигнала триггера в момент времени tn+1 от входных сигналов и от состояния триггера в предыдущий момент времени tn.

7. Как работает асинхронный RS-триггер?

При S=0 и R=I триггер устанавливается в состояние "0", а при S=1 и R=0 - в состояние "1"). Если =0 и R=0, то в триггере сохраняется предыдущее внутреннее состояние). При S=R=1 состояние триггера является неопределенным (после снятия входных сигналов S и R). Такая комбинация входных сигналов S=R=1 является недопустимой (запрещенной). Для нормальной работы триггера необходимо выполнение запрещающего условия SR=0.

8. Как работает синхронный RS -триггер?

Какова его таблица переходов? Как и все синхронные триггеры, синхронный RS - триггер при C=0 сохраняет предыдущее внутреннее состояние, т.е. Qn+1=Qn . Сигналы по входам S и R переключают синхронный RS-триггер только с поступлением импульса на вход синхронизации C. При C=1 синхронный триггер переключается как асинхронный (табл.2). Одновременная подача сигналов C=S=R=1 запрещена. При S=R=0 триггер не изменяет своего состояния.

C	S	R	\mathbf{Q}_{t-}	Q_{t}	Поясне ние
0	٧	٧	Q_{t-}	Q_t	Хранен ие
1	0	0	0	0	Хранен ие
1	0	0	1	1	

1	0	1	0	0	Установ ка
1	0	1	1	0	0
1	1	0	0	1	Установ ка
1	1	0	1	1	1
1	1	1	0	X	Запреще нная
1	1	1	1	X	операци я

9. Что такое D-триггер?

Синхронный D -триггер имеет один информационный вход D, состояние которого с каждым синхронизирующим импульсом передается на выход, т.е. выходные сигналы представляют собой задержанные входные сигналы. Поэтому D - триггер — элемент задержки (хранения) входных сигналов на один такт.

10. Объясните работу синхронного D-триггера.

Схему синхронного D -триггера можно получить из схемы синхронного RS — триггера, подавая сигнал D на вход S, а сигнал \overline{D} , т.е. с выхода инвертора сигнала D, на вход R. В результате на входах RS-триггера возможны только наборы сигналов SR =01 при D=0 или SR =10 при D=1, что соответствует записи в триггер логического 0 или 1. Путем логических преобразований инвертор можно исключить и получить схему синхронного D —триггера. Синхронный D-триггер имеет один информационный вход D, состояние которого с каждым синхронизирующим импульсом передается на выход, т. е. выходные сигналы представляют собой задержанные входные сигналы.

11. Что такое DV –триггер?

Синхронный DV-триггер имеет один информационный вход D и один подготовительный разрешающий вход V для разрешения приема информации.

12. Объясните работу DV-триггера.

При C=0 DV-триггер, как и синхронные триггеры всех типов, сохраняет предыдущее внутреннее состояние, т.е. Qn+1=Qn . При C=1 и при наличии сигнала V=1 разрешения приема информации DV-триггер принимает информационный сигнал, действующий на входе D, т.е. работает как асинхронный DV-триггер. При C=1 и V=0 DV-триггер сохраняет предыдущее внутреннее состояние, т.е. Qn+1=Qn .

13. Что такое Т-триггер? Какова его таблица переходов?

Т-триггер имеет один информационный вход Т, называемый счетным входом. Асинхронный Т-триггер переходит в противоположное состояние каждый раз при подаче на Т-вход единичного сигнала. Таким образом Ттриггер реализует счет по модулю 2: $Qt = Tt - 1 \oplus Qt - 1$. Синхронный Ттриггер имеет вход С и вход Т. Синхронный Т-триггер переключается в противоположное состояние сигналом С, если на счетном входе Т действует сигнал логической 1

14. Объясните работу схемы синхронного RS-триггера со статическим управлением.

При С=0 триггеры переходят в режим хранения, запоминая последнее состояние

15. Какова характерная особенность переключения синхронных триггеров с динамическим управлением записью?

Характерной особенностью синхронных триггеров с динамическим управлением записью является то, что прием информационных сигналов и передача на выход принятой информации выполняются в момент изменения синхросигнала на С -входе из "0" в "I" или из "I" в "0", т.е. перепадом синхросигнала.

16. Как работает схема синхронного D -триггера с динамическим управлением записью на основе трех RS -триггеров?

Триггер имеет асинхронные входы Sa и Ra начальной установки в состояния 1 и 0. Если схему D -триггера дополнить входом V, то получим структуру DV-триггера. Временные диаграммы D -триггера соответствуют временным диаграммам DV- триггера при V= 1

17. Составьте временные диаграммы работы синхронного D-триггера с динамическим управлением записью.

Выполнено в задании.

18. Какова структура и принцип действия синхронного DV-триггера с динамическим управлением записью?

Синхронный DV-триггер имеет один информационный вход D и один подготовительный разрешающий вход V для разрешения приема информации. Qt = DV + VQt - 1 = DVC + (V + C)Qt - 1 При C=0 DV-триггер, как и синхронные триггеры всех типов, сохраняет предыдущее внутреннее состояние, т.е. Qt = Qt - 1. При C=1 и при наличии сигнала V=1 разрешения приема информации DV-триггер принимает информационный сигнал, действующий на входе D, т.е. работает как асинхронный DV-триггер. При C=1 и V=0 DV-триггер сохраняет предыдущее внутреннее состояние.

19. Составьте временные диаграммы синхронного DV-триггера.

Выполнено в задании.

20. Объясните режимы работы D-триггера.

Синхронный D-триггер имеет один информационный вход D, состояние которого с каждым синхронизирующим импульсом передается на выход, т. е. выходные сигналы представляют собой задержанные входные сигналы.