MIDWEST RESEARCH INST KANSAS CITY MO AD-A072 244 F/G 12/1 FURTHER RATIONAL APPROXIMATIONS FOR THE INCOMPLETE GAMMA FUNCTI--ETC(U) NONR-2638(00) JUL 63 Y L LUKE, W G FAIR UNCLASSIFIED NL AD A072244 E44 ille. Ills. 41 A1 All All dii dii Al All inan saes isusi saasi isusi saesi 1959) SERR 20051 BEER! BEER 1 85801 DESS SEED 38801 88801 28801 88801 38801 88801 1888 EBB ien om 1235 GM END DATE 9 79

AD A 072244

799-217

COLUMBIA UNIVERSITY
HYDSEN LABORATORIES
CONTRACT Monr-266(24)

FURTHER RATIONAL APPROXIMATIONS FOR THE INCOMPLETE GAMMA FUNCTION

TECHNICAL REPORT July 31, 1963

Contract No. Nonr-2638(00)(X)

M.R.I. Project No. 2229-P

DOC FILE COPY

DISTRIBUTION STATEMENT A

Approved for public release

Distribution Unlimited

For

Applied Mathematics Laboratory David W. Taylor Model Basin Washington, D.C. 79 08 03 119 78 03 07 095

MRI

MIDWEST RESEARCH INSTITUTE

SECURITY C	LASSIFICATION	OF THIS PAGE	(When Data Entered)

REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM	
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER	
4. TITLE (and Subtitio) FURTHER RATIONAL APPROXIMATIONS FOR THE INCOMPLETE GAMMA FUNCTION		5. TYPE OF REPORT & PERIOD COVERED Technical Report 6. PERFORMING ORG. REPORT NUMBER	
7. AUTHOR(*) Luke, Yudell L. and Fair, Wyman G.		NOnr-2638(00)(X)	
9. PERFORMING ORGANIZATION NAME AND ADDRESS MIDWEST RESEARCH INSTITUTE		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
11. CONTROLLING OFFICE NAME AND ADDRESS	220	12. REPORT DATE	
Office of Naval Research, Code 3	220	13. NUMBER OF PAGES	
Arlington, VA 22217 14. MONITORING AGENCY NAME & ADDRESS(II dittered)	nt from Controlling Office)	15. SECURITY CLASS. (of this report) UNCLASSIFIED	
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)			
18. SUPPLEMENTARY NOTES			
19. KEY WORDS (Continue on reverse side if necessary a	nd identify by block number)		
20. ABSTRACT (Continue on reverse side if necessary an	d identify by block number)		

COLUMBIA UNIVERSITY HUDSON LABORATORIES MIDWEST RESEARCH INSTIT GONFRACT Nonr-266(84)

FURTHER RATIONAL APPROXIMATIONS FOR THE INCOMPLETE GAMMA FUNCTION

by Technical repty

Yudell L. Luke
Wyman G. Fair

TECHNICAL REPORT

31 July 263

Contract No. Nonr-2638(00)(X)

M.R.I. Project No. 2929-P

For

Applied Mathematics Laboratory David W. Taylor Model Basin Washington, D.C.

> 23\$35\$ 79 08 03 119

PREFACE

This report covers research initiated by the Applied Mathematics Laboratory, David Taylor Model Basin, Washington 7, D.C. The research work upon which this report is based was accomplished at Midwest Research Institute under Contract Nonr-2638(00)(X).

The authors acknowledge with thanks the assistance of Messrs. Jet Wimp and Dean Lawrence, Mrs. Wanda Chinnery, Miss Rosemary Moran and Mrs. Anna Keene for the development of the numerical results.

Y.L.L. and W.F.

Approved for:

MIDWEST RESEARCH INSTITUTE

Sheldon L. Levy, Director

Sfery

Mathematics and Physics Division

August 5, 1963

Acces	sion For
NTIS	GRAMET /
DOG I	Land .
	ounced
Julia	rication
By	
Liner	ibution/
Avei	lability Codes
	Avail and/or
Dist	special
Λ	
1	
\Box	

TABLE OF CONTENTS

	Page No
Introduction	1
I. The Incomplete Gamma Function	1
II. Rational Approximations to $\gamma(ze^{i\pi}, v)$	3
III. Error Function and Related Integrals	9
IV. The Exponential Function	10
V. Rational Approximations for $E(z) = z^{-1} \int_{0}^{z} t^{-1} (1-e^{-t}) dt$	12
References	18
Appendix A - Coefficients for Rational Approximations to the	
Error Function, Exponential Function and Circular Functions	19
Appendix B - Coefficients of Rational Approximations to E(z) and Related Integrals	45
Appendix C - FORTRAN Program for Computing Rational Approximations	65
Appendix D - FORTRAN Program for Computation of the Exponential and Circular Functions	72
Appendix E - FORTRAN Program for Computing Rational Approximations to E(z)	74

INTRODUCTION

In a previous report [1] we studied rational approximations to the incomplete gamma function. These were based on the asymptotic expansion of the latter function. In the present study, a similar analysis is done for the same function based on one of its ascending series representations. The work is related to the developments in [2] and [3], but there are numerous improvements and some new features.

I. THE INCOMPLETE GAMMA FUNCTION

We consider

$$\gamma(z,v) = \int_{0}^{z} t^{v-1} e^{-t} dt$$
, $R(v) > 0$, (1.1)

$$\Gamma(z,v) = \Gamma(v) - \gamma(z,v) \tag{1.2}$$

where

$$\Gamma(z,v) = \int_{z}^{\infty} t^{v-1}e^{-t}dt , z = x+iy, x, y \text{ and } \omega \text{ are real},$$

$$|\omega| < \pi/2, R(v) > 0; |\omega| = \pi/2, 0 < R(v) < 1.$$
 (1.3)

In (1.3) the path of integration lies in the z plane cut along the negative real axis and is the ray $\eta \exp(i\omega)$, $\eta \to \infty$ except for an initial finite path. If $z \neq 0$, $|\omega| < \pi/2$, the integral in (1.3) exists without the restriction on ν .

The connection of these functions to the confluent hypergeometric functions is given by

$$\gamma(z,v) = v^{-1}z^{v}e^{-z}\phi(1,1+v;z) = v^{-1}z^{v}\phi(v,1+v;-z) , \qquad (1.4)$$

$$\Phi(a,c;z) = {}_{1}F_{1}(a;c;z)$$
 , (1.5)

$$\Gamma(z,v) = z^v e^{-z} \psi(1,1+v;z) = e^{-z} \psi(1-v,1-v;z)$$
, (1.6)

$$\psi(a,c;z) = \frac{\Gamma(1-c)}{\Gamma(a-c+1)} \, \phi(a,c;z) + \frac{\Gamma(c-1)}{\Gamma(a)} \, z^{1-c} \phi(a-c+1,2-c;z) \quad . \quad (1.7)$$

The statement (1.4) is

$$\gamma(z,v) = z^{v}e^{-z} \sum_{k=0}^{\infty} \frac{z^{k}}{(v)_{k+1}} = z^{v} \sum_{k=0}^{\infty} \frac{(-)^{k}z^{k}}{k!(v+k)}$$
 (1.8)

In the above formulas, standard generalized hypergeometric notation is used. Thus

$$p^{F_{q}} \binom{a_{1}, a_{2}, \dots, a_{p}}{b_{1}, b_{2}, \dots, b_{q}} | z = p^{F_{q}} (a_{1}, a_{2}, \dots, a_{p}; b_{1}, b_{2}, \dots, b_{q}; z)$$

$$= \sum_{k=0}^{\infty} \frac{\prod_{i=1}^{p} (a_{i})_{k} z^{k}}{\prod_{i=1}^{q} (b_{i})_{k} k!}, \quad (a)_{k} = \frac{\Gamma(a+k)}{\Gamma(a)} \quad . \quad (1.9)$$

For further discussion of the hypergeometric functions, confluent hypergeometric functions and the incomplete gamma function, see [4, Chs. 2,4,6], [5, Ch. 9], [6], [7], and [8].

II. RATIONAL APPROXIMATIONS TO $\gamma(ze^{i\pi}, v)$

In [2] we proved that

$$vz^{-\nu}e^{-z-i\pi\nu}\gamma(ze^{i\pi},\nu) = V_{n}(z,\nu) + R_{n}(z,\nu) ,$$

$$V_{n}(z,\nu) = \frac{A_{n}(z,\nu)}{B_{n}(z,\nu)} , R_{n}(z,\nu) = \frac{P_{n}(z,\nu)}{B_{n}(z,\nu)} ,$$
(2.1)

where

$$A_{n}(z,v) = \sum_{k=0}^{n} \frac{(-n)_{k}(n+v+1)_{k}}{(v+1)_{k}k!} z^{n} {}_{3}F_{1}\left(\begin{array}{c} -n+k, n+v+1+k, 1 \\ 1+k \end{array}\right) - 1/z , \qquad (2.2)$$

and $B_n(z,v)$ is the k=0 term in (2.2). In this event, the ${}_3F_1$ becomes a ${}_2F_0$. Thus

$$B_{n}(z,v) = z^{n} 2^{F_{0}(-n,n+v+1;-1/z)} = (n+1+v)_{n} 1^{F_{1}(-n,-2n-v;z)} . \qquad (2.3)$$

Also,

$$P_{n}(z,v) = \frac{(-)^{n+1}e^{-z}}{z^{\nu}(v+1)_{n}} \int_{0}^{z} (z-t)^{n}t^{n+\nu}e^{t}dt$$

$$= \frac{(-)^{n+1}n!e^{-z}z^{2n+1}}{(v+1)_{2n+1}} {}_{1}F_{1}(n+v+1;2n+v+2;z) , \qquad (2.4)$$

$$R_{n}(z,v) = \frac{(-)^{n+1}n!\Gamma(v+1)\Gamma(n+v+1)z^{2n+1}{}_{1}F_{1}(n+1;2n+v+2;-z)}{\Gamma(2n+v+1)\Gamma(2n+v+2){}_{1}F_{1}(-n;-2n-v;z)} . \quad (2.5)$$

Both $A_n(z, v)$ and $B_n(z, v)$ satisfy the same recurrence equation

$$\frac{(n+\nu+1)}{(2n+\nu+1)(2n+\nu+2)} A_{n+1}(z,\nu) = \left[1 + \frac{\nu z}{(2n+\nu)(2n+\nu+2)}\right] A_{n}(z,\nu)$$

$$+ \frac{nz^{2}}{(2n+\nu)(2n+\nu+1)} A_{n-1}(z,\nu) . \qquad (2.6)$$

We list some other useful relations:

$$(2n+v)DB_n(z,v) - nB_n(z,v) + nB_{n-1}(z,v) = 0$$
, (2.7)

$$(2n+v)DA_{n}(z,v)+(n+v)A_{n}(z,v)+nzA_{n-1}(z,v)+z^{-1}v(2n+v)\Big[A_{n}(z,v)-B_{n}(z,v)\Big] = 0 , (2.8)$$

and

$$\left[zD^{2}-(z+2n+v)D+n\right]B_{n}(z,v)=0, D=\frac{d}{dz}. \qquad (2.9)$$

We now develop a useful estimate of the remainder $\,R_n(z,\upsilon)$. Consider

$$y = e^{-z/2} {}_{1}F_{1}(a,c;z)$$
, $zy'' + cy' + (K-z/4)y = 0$, $K = c/2 - a$. (2.10)

Assume

$$y = \sum_{k=0}^{\infty} \frac{a_k(z)}{u^k}$$
, $a_0(z) = 1$, $u = \frac{1}{2}(c-1)$. (2.11)

Then the a's can be generated by the expression

$$a_{k+1}(z) = -\frac{1}{2}z \ a_k'(z) + \frac{1}{2} \int_0^z (t/4-K)a_k(t)dt$$
 (2.12)

Thus, for example,

$$a_1(z) = z^2/16 - Kz/2$$
, $a_2(z) = z^4/512 - Kz^3/32 + z^2(2K^2-1)/16 + Kz/4$, and

$$a_3(z) = \frac{z^6}{24576} - \frac{Kz^5}{1024} + \frac{z^4(4K^2-3)}{512} - \frac{K(4K^2-13)z^3}{192} - \frac{z^2(3K^2-1)}{16} - \frac{Kz}{8} . \quad (2.13)$$

Clearly the series (2.11) is absolutely convergent for all z as it can be found by multiplication of the series $_1F_1(a;c;z)$ by the series for $e^{-z/2}$. However, if z is fixed, c is large and K << c, then (2.11) is a useful representation of y for large c. The expressions (2.6)-(2.8) can also be deduced from some general results of Olver, see the discussion in [8, p. 76].

Apply (2.10)-(2.13) to the confluent functions in (2.5). Then, with the aid of the duplication formula for gamma functions, we get

$$R_{n}(z,v) = \frac{(-)^{n+1} n! \pi \Gamma(v+1) \Gamma(n+v+1) z^{2n+1} e^{-z} \sum_{k=0}^{\infty} \frac{a_{k}(z)}{u^{k}}}{2^{4n+2v} (2n+v+1) \left[\Gamma\left(n+\frac{v+1}{2}\right) \Gamma\left(n+\frac{v}{2}+1\right)\right]^{2} \sum_{k=0}^{\infty} \frac{(-)^{k} a_{k}(z)}{u^{k}}}, \quad (2.14)$$

or

$$R_{n}(z,v) = \frac{(-)^{n+1}\pi n! \Gamma(v+1)\Gamma(n+v+1)z^{2n+1}e^{-z}}{2^{4n+2v}(2n+v+1)\left[\Gamma\left(n+\frac{v+1}{2}\right)\Gamma\left(n+\frac{v}{2}+1\right)\right]^{2}} e^{\frac{2a_{1}(z)}{u}} \times \left\{1 + O(1/n^{3})\right\}, \qquad (2.15)$$

where $u = n + \frac{1}{2}(v+1)$, K = -v/2 and the a_k 's are given by (2.12). It follows that for z and v fixed,

$$\lim_{n \to \infty} R_n(z, v) = 0 . (2.16)$$

Since $\Gamma(n+a)/\Gamma(n+b) = n^{a-b}[1+O(1/n)]$, it is convenient to write

$$R_{n}(z,v) = \frac{(-)^{n+1} \pi \Gamma(v+1) z^{2n+1} e^{-z}}{2^{4n+2v+1} n^{v} (n!)^{2}} \left\{ 1 + O(1/n) \right\} . \qquad (2.17)$$

Concerning the use of (2.1), it is important to know the nature of $z_{n,i}$, $i=1,2,\ldots,n$, the zeros of $B_n(z,\nu)$. It is clear from (2.9) that the zeros are simple. If $\nu=0$, $B_n(z,\nu)$ is essentially the modified Bessel function of half-odd order (see (4.2)). In this instance the zeros can be deduced from the work of Olver[9]. See also Grosswald [12]. The zeros lie in the left half plane and are always complex except when n is odd in which case there is a single real root. If $z_n^{(\nu)}$ is the magnitude of the smallest root(s) of $B_n(z,\nu)$, then from the work of Olver [9] $z_n^{(\nu)} \sim 1.32548n$. Here $2(t_0^2-1)\overline{z}=1.32548$ where t_0 is the real zero of $t=\coth t$. Thomson [10] and Kublanovskaia and Smirnova [11] have tabulated $\frac{1}{2}z_{1,0}$, the former for n=1(1)9 to 4d , and the latter for n=1(1)21 to 5d . Salzer [13] has tabulated $z_{n,1}^{(-1)}$ for n=1(1)16 to 15d . We have prepared some tables of $z_n^{(\nu)}$ for $\nu=-3/2,1/2,1$. For all the ν values mentioned above, the roots lie in the left half plane. If n is odd, there is a single real root, otherwise the roots are complex. On the basis of the data, we conjecture that $z_n^{(\nu)} \sim 1.32548n + \nu + 1 - 1/\pi$. An alternative conjecture is that $z_n^{(\nu)} \sim \frac{1}{2}\pi^{\frac{1}{2}}(3n+\nu+1)$, $z_{2n+1}^{(\nu)} \sim 3/2$ $n\pi^{\frac{1}{2}} + \nu + 2$. Thus as n increases, the magnitude of the smallest zero(s) of $B_n(z,\nu)$ increases linearly with n. We see from (2.17) that to achieve high accuracy, n must be considerably larger than z, and so the value of $z_n^{(\nu)}$ is not critical.

Another rational approximation for $\gamma(ze^{i\pi}, v)$ is

$$vz^{-v}e^{-z-iv\pi}\gamma(ze^{i\pi},v) = S_n(z,v) + T_n(z,v)$$
,

$$S_n(z,v) = \frac{C_n(z,v)}{D_n(z,v)}, T_n(z,v) = \frac{Q_n(z,v)}{D_n(z,v)},$$
 (2.18)

where

$$C_{n}(z,v) = -\frac{v}{z} \sum_{k=0}^{n-1} \frac{(-n)_{k+1}(n+v)_{k+1}}{(v)_{k+1}(k+1)!} z^{n} {}_{3}F_{1}\left(-n+1+k,n+v+1+k,1 - \frac{1}{z}\right) , \qquad (2.19)$$

and $D_n(z,v)$ is z^n times the ${}_3F_1$ in (2.19) with k+l set equal to zero. Thus $D_n(z,v)$ is $B_n(z,v)$ if in the latter we replace v by v-l. Also

$$Q_{n}(z,v) = \frac{(-)^{n}vz^{-v}e^{-z}}{(v)_{n}} \int_{0}^{z} (z-t)^{n}t^{n+v-1}e^{t}dt$$

$$= \frac{(-)^{n}n!e^{-z}z^{2n}}{(v+1)_{2n}} {}_{1}F_{1}(n+v;2n+v+1;z) \qquad (2.20)$$

Both $C_n(z,v)$ and $D_n(z,v)$ satisfy (2.6) if v is replaced by v-1. Also, $D_n(z,v)$ satisfies (2.7) and (2.9) with v replaced by v-1. The relation analogous to (2.8) reads

$$(2n+v-1)DC_{n}(z,v) + (n+v-1)C_{n}(z,v) + nzC_{n-1}(z,v)$$

$$+ z^{-1}v(2n+v-1)[C_{n}(z,v)-D_{n}(z,v)] = 0 .$$
(2.21)

After the manner of deriving (2.15) and (2.17) we have

$$T_{n}(z,v) = \frac{(-)^{n}\pi n! \Gamma(v+1)\Gamma(n+v)z^{2n}e^{-z}e^{2a_{1}^{*}(z)/u^{*}}}{2^{4n+2v-2}(2n+v)\left[\Gamma\left(n+\frac{v}{2}\right)\Gamma\left(n+\frac{v+1}{2}\right)\right]^{2}} \left\{1+o(1/n^{3})\right\}$$

$$= \frac{(-)^{n}\pi\Gamma(v+1)z^{2n}e^{-z}e^{2a_{1}^{*}(z)/u^{*}}}{2^{4n+2v-1}n^{v-1}(n!)^{2}} \left\{1+o(1/n)\right\} , \qquad (2.22)$$

where $u^* = n + v/2$, $a_1^*(z) = z(z + 4v - 4)/16$, whence for z and v fixed, $\lim_{n \to \infty} T_n(z, v) = 0$.

If z and v are positive and fixed, then for a given n , it is clear that $R_n(z,v)$ and $T_n(z,v)$ are of opposite sign. This leads to the inequalities

$$\frac{C_{n}(z,v)}{D_{n}(z,v)} >_{<} vz^{-v}e^{-z} \int_{0}^{z} t^{v-1}e^{t}dt >_{<} \frac{A_{n}(z,v)}{B_{n}(z,v)}, \qquad (2.23)$$

where > or < sign is chosen according as n is odd or even, respectively. For example,

$$\frac{(v+1)(v+2)-z}{(v+1)(v+2)+z} < vz^{-v}e^{-z} \int_{0}^{z} t^{v-1}e^{t}dt < \frac{v+1}{v+1+z}, z > 0, v > 0, \qquad (2.24)$$

$$\frac{2-z}{2+z} < e^{-z} < \frac{1}{z+1}$$
 , $z > 0$, (2.25)

$$\frac{15-4z^2}{15+6z^2} < z^{-1}e^{-z^2} \int_0^z e^{t^2} dt < \frac{3}{2z^2+3}, z > 0 . \qquad (2.26)$$

In the last three equations, equality prevails if $z \rightarrow 0$.

At this juncture, we present a summary of the material in the remaining sections of the report. If $v = \frac{1}{2}$, (2.1) yields approximations for the error function and related integrals which is the subject of Section III. Approximations for the exponential function and the circular functions which come from (2.1) when v = 0 are discussed in Section IV. Tables of the polynominals in the approximations of the functions discussed in Sections III and IV, and related data, are found in Appendix A. If v = 0, (1.3) is the exponential integral and in [1], we developed rational approximations for this function based on its asymptotic representation. Though $\Gamma(z,0)$ is defined by (1.3), clearly $\gamma(z,0)$ is not. However, we can give an ascending series representation for a function closely related to $\Gamma(z,0)$. We show in Section V how rational approximations to this related function may be derived, and tables of the polynomials in these approximations and related data are given in Appendix B. FORTRAN codes for computing rational approximations to the incomplete gamma function and its special cases are presented in Appendices C, D and E.

III. ERROR FUNCTION AND RELATED INTEGRALS

We list below formulae useful for the approximation of the error functions and the Fresnel integrals. These are based on (2.1) for $v=\frac{1}{2}$. It is clear from (2.1) and (2.18) that $V_n(z,\frac{1}{2})$ and $R_n(z,\frac{1}{2})$ can be replaced by $S_n(z,\frac{1}{2})$ and $T_n(z,\frac{1}{2})$, respectively.

$$\gamma(z,\frac{1}{2}) = \int_{0}^{z} t^{-\frac{1}{2}} e^{-t} dt = 2z^{\frac{1}{2}} e^{-z} \left\{ V_{n}(ze^{-i\pi},\frac{1}{2}) + R_{n}(ze^{-i\pi},\frac{1}{2}) \right\} . \quad (3.1)$$

$$\operatorname{Erf}(z) = \frac{1}{2} \gamma(z^2, \frac{1}{2}) = \int_0^z e^{-t^2} dt = (\pi/4)^{\frac{1}{2}} - \operatorname{Erfc}(z)$$
, (3.2)

$$\operatorname{Erfc}(z) = \int_{z}^{\infty} e^{-t^{2}} dt , \qquad (3.3)$$

$$\operatorname{Erf}(z) = \int_{0}^{z} e^{-t^{2}} dt = z e^{-z^{2}} \left\{ V_{n}(z^{2} e^{-i\pi}, \frac{1}{2}) + R_{n}(z^{2} e^{-i\pi}, \frac{1}{2}) \right\} , \quad (3.4)$$

$$Erfi(z) = \int_0^z e^{t^2} dt = -iErf(iz) , \qquad (3.5)$$

$$\gamma(ze^{\frac{i3\pi}{2}}, \frac{13\pi}{2}) = e^{\frac{i3\pi}{4}} \int_{0}^{z} t^{-\frac{1}{2}} e^{it} dt = 2z^{\frac{1}{2}} e^{iz+i3\pi/4} \left\{ V_{n}(ze^{\frac{i\pi}{2}}, \frac{1}{2}) + R_{n}(ze^{\frac{i\pi}{2}}, \frac{1}{2}) \right\}, \quad (3.6)$$

$$C(z) + iS(z) = (2\pi)^{-\frac{1}{2}} \int_{0}^{z} t^{-\frac{1}{2}} e^{it} dt$$
 (3.7)

The exact coefficients of polynomials simply related to $A_n(z,\frac{1}{2})$, $B_n(z,\frac{1}{2})$, $C_n(z,\frac{1}{2})$ and $D_n(z,\frac{1}{2})$ are given in Appendix A for n=0(1)10. For n=2(1)10, we also record values of $R_n^*(z,\frac{1}{2})=\left|2z^{\frac{1}{2}}e^zR_n(z,\frac{1}{2})\right|$, see (2.15), for $z=re^{i\theta}$, r=1(1)10, $\theta=0$, $\pi/2$, π . Error tables for other values of ν and for $T_n(z,\nu)$ are easily derived from the latter table. See the discussion in Appendix A. See Appendix C for FORTRAN codes.

To illustrate the utility of (2.15), we present the numerics below. The tables give $e^{-i\pi/2}\gamma(ze^{i\pi},\frac{1}{2})$, its rational approximation (2.1), the exact error, and the approximate error according to (2.15). The data are developed for $z=2e^{i\theta}$, n=4.

IV. THE EXPONENTIAL FUNCTION

If $v \rightarrow 0$, (2.1) becomes

$$e^{-z} = \frac{G_n(-z)}{G_n(z)} + R_n(z,0)$$
, (4.1)

$$G_n(z) = z^n 2^n (-n, n+1; -\frac{1}{2}) = (2/\pi)^{\frac{1}{2}} z^n K_{n+\frac{1}{2}}(z/2)$$
, (4.2)

$$R_{n}(z,0) = \frac{(-)^{n+1} \pi I_{n+\frac{1}{2}}(z/2)}{e^{z} K_{n+\frac{1}{2}}(z/2)} = \frac{2(-)^{n+1} (z/4)^{2n+1} e^{-z+z^{2}/(8n+4)}}{n \left[\left(\frac{1}{2} \right)_{n} \right]^{2}} \left\{ 1 + O(1/n^{3}) \right\}$$

$$= \frac{(-)^{n+1}\pi z^{2n+1}e^{-z}}{2^{4n+1}(n!)^2} \left\{1+0(1/n)\right\} . \tag{4.3}$$

Here $I_n(z)$ and $K_n(z)$ are the familiar notations for the modified Bessel functions.

It is of interest to show how (4.1) can be used to compute the exponential and circular functions in an efficient manner. Let

$$G_n(z) = M_n(z^2) + zN_n(z^2)$$
 (4.4)

where $M_n(z^2)$ and $N_n(z^2)$ are even polynomials in z . Clearly

$$e_n^{-z} = \frac{G_n(-z)}{G_n(z)} = \frac{M_n(z^2) - zN_n(z^2)}{M_n(z^2) + zN_n(z^2)}$$
, (4.5)

and one readily verifies that $\,{\tt G}_n(z)\,\,,\,\,{\tt M}_n(z^2)\,\,$ and $\,{\tt N}_n(z^2)\,\,$ all satisfy the recurrence formula

$$G_{n+1}(z) = 2(2n+1)G_n(z) + z^2G_{n-1}(z)$$
 (4.6)

Let the approximation to the circular functions be denoted by

$$e_n^{-iz} = \cos_n z - i \sin_n z$$
 (4.7)

Then

$$\cos_{n} z = \frac{U_{n}(z^{2})}{W_{n}(z^{2})}, \quad \sin_{n} z = \frac{zV_{n}(z^{2})}{W_{n}(z^{2})},$$

$$U_{n}(z^{2}) = \left[M_{n}(-z^{2})\right]^{2} - z^{2}\left[N_{n}(-z^{2})\right]^{2}, \quad V_{n}(z^{2}) = 2M_{n}(-z^{2})N_{n}(-z^{2}),$$

$$W_{n}(z^{2}) = \left[M_{n}(-z^{2})\right]^{2} + z^{2}\left[N_{n}(-z^{2})\right]^{2}. \tag{4.8}$$

It can be shown that* ${\rm U_n(z^2)}$, ${\rm V_n(z^2)}$ and ${\rm W_n(z^2)}$ all satisfy the recurrence formula

$$(2n-1)U_{n+1}(z^2) = \left[-z^2+4(4n^2-1)\right] \left[(2n+1)U_n(z^2)-z^2(2n-1)U_{n-1}(z^2) \right]$$

$$+ z^6(2n+1)U_{n-2}(z^2) . \qquad (4.9)$$

The exact coefficients of the polynomials $G_n(z)$, $U_n(z^2)$, $V_n(z^2)$ and $W_n(z^2)$ are given in Appendix A for n=1(1)10. See also the introduction to Table A.III in Appendix A for the evaluation of $R_n(z,0)$. Appendix D gives FORTRAN codes for the computation of e_n^{-z} , $\cos_n z$, $\sin_n z$ and $\tan_n z$ for z real only. We conclude this section with an example to indicate the effectiveness of (4.1)-(4.3).

If n=4 and z=1, (4.5) gives the value $e_4^{-1}=0.36787$ 94561. The error is -1.5×10^{-8} whereas the last of (4.3) gives the value -1.6×10^{-8} . For n=4 and z=i, (4.5) yields $e_4^{-1}=0.54030$ 23380 + 0.8414709642i. The true error is -3.2×10^{-8} - $i2.1 \times 10^{-8}$ as compared with the estimated error from the last of (4.3), -3.4×10^{-8} - $i2.2 \times 10^{-8}$.

V. RATIONAL APPROXIMATIONS FOR
$$E(z) = z^{-1} \int_{0}^{z} t^{-1}(1-e^{-t})dt$$

In this section we develop some rational approximations for E(z). It is of interest to first list some functions related to E(z). We have

$$E(z) = z^{-1} \int_{0}^{z} t^{-1} (1-e^{-t}) dt = z^{-1} [-Ei(-z)+\gamma+ln z], -Ei(-z) = \Gamma(z,0), (5.1)$$

where y is Euler's constant.

^{*} We are indebted to Mr. Jet Wimp for proof of this statement and other helpful suggestions.

$$\frac{1}{2} \left[E(ze^{i\pi/2}) + E(ze^{-i\pi/2}) \right] = z^{-1} Si(z) = z^{-1} \int_{0}^{z} t^{-1} sin t dt$$

$$= z^{-1} \left[\pi/2 + si(z) \right], \quad si(z) = \int_{\infty}^{z} t^{-1} sin t dt, \quad (5.2)$$

$$2i \left[E(ze^{i\pi/2}) - E(ze^{-i\pi/2}) \right] = 4z^{-2} H(z) = 4z^{-2} \int_{0}^{z} t^{-1} (1 - cos t) dt$$

$$= 4z^{-2} \left[Ci(z) - \gamma - \ln z \right], \quad Ci(z) = \int_{\infty}^{z} t^{-1} cos t dt. \quad (5.3)$$

Approximations for E(z) can be derived on the basis of the results given in Section II. Clearly from (1.1) and (2.1),

$$zE(z) = \lim_{\nu \to 0} \int_{0}^{z} t^{\nu-1} (1-e^{-t}) dt = \lim_{\nu \to 0} \left[\frac{z^{\nu}}{\nu} - \gamma(z,\nu) \right]$$

$$= \frac{\lambda}{\partial \nu} \left\{ z^{\nu} - e^{-z} z^{\nu} \left[V_{n}(ze^{-i\pi},\nu) + R_{n}(ze^{-i\pi},\nu) \right] \right\}_{\nu=0}$$

$$= \frac{-e^{-z}}{\left[B_{n}(ze^{-i\pi},0) \right]^{2}} \left\{ B_{n}(ze^{-i\pi},0) \frac{\partial A_{n}(ze^{-i\pi},0)}{\partial \nu} - A_{n}(ze^{-i\pi},0) \frac{\partial B_{n}(ze^{-i\pi},0)}{\partial \nu} \right\}$$

$$= e^{-z} \frac{\partial R_{n}(ze^{-i\pi},0)}{\partial \nu} . \quad (5.4)$$

This approach is not satisfactory since the numerator and denominator polynomials of the rational approximation are now each of degree 2n.

It calls for remark that the rational approximations given in Section II are of the Pade type. Let

$$E(z) = \sum_{k=0}^{\infty} a_k z^k \qquad (5.5)$$

be approximated by

$$E_{p,q}(z) = \frac{f_p(z)}{g_q(z)}$$
, (5.6)

where $f_{\,p}(z\,)$ and $g_{\,q}(z\,)$ are polynomials in $z\,$ of degree $\,p\,$ and $\,q\,$, respectively. If

$$g_q(z)E(z) - f_p(z) = z^{p+q+1}h(z), h(0) \neq 0,$$
 (5.7)

then (5.6) is the Padé approximant of E(z). Thus (2.1) is of the type (5.6) where p=q=n, and (2.18) is also of the same type with q=p+1=n. The approximation (5.6) is called the main diagonal Padé approximation if p=q=n.

The numerator and denominator polynomials in the Pade approximants to transcendental functions are known in closed form, as for the functions in Section II, only in very few cases. However, the Pade approximant to a Taylor series expansion can always be found by solving systems of linear equations. Thus, if

$$f(z) = \sum_{k=0}^{p} f_k z^k$$
, $g(z) = \sum_{k=0}^{q} g_k z^k$, (5.8)

then

$$\sum_{j=0}^{r} a_{j}g_{r-j} = 0 , r = p+1, p+2, ..., p+q ,$$

$$f_k = \sum_{j=0}^k a_j g_{k-j}$$
, $k = 0,1,...p$,

$$h(z) = \sum_{k=0}^{\infty} h_k z^k$$
, $h_k = \sum_{j=0}^{p+q+1+k} a_j g_{p+q+1+k-j}$ (5.9)

The coefficients f_k , g_k and h_k must be determined anew for each choice of p and q.

As remarked previously, it is inconvenient to use (5.4) as a rational approximation for E(z). To circumvent this difficulty, we have computed the coefficients of the main diagonal Pade approximants of the functions E(z) for n = O(1)10 and $z^{-1}Si(z)$ and $4z^{-2}H(z)$ for n = O(2)10. These are tabulated in Appendix B.

We also include tables of the absolute values of the errors incurred by using the Padé approximation of E(z) for n = 2(1)10, r = 1(1)10, and θ = 0, π /2, π , where z = re^{i θ}, and the Padé approximants of Si(z) and H(z) for z real, z = 1(1)10 and for n = 4(2)10. These tables may be used as a guide in selecting the order of approximation necessary to obtain a desired accuracy. For example, if six decimal accuracy is desired for E(z) for z = $2\frac{1}{2}e^{i\pi/4}$, i.e., |error| < 0.5 x 10⁻⁶, interpolation of Table B.II indicates that a third order approximation should be sufficient. The third order approximation gives 0.76507 22371 - 0.15899 83867i and the true value is 0.76507 22539 - 0.15899 86256i. Thus |error| < 2.41 x 10⁻⁷.

Now

$$E(iz) = z^{-1}Si(z) - iz^{-1}H(z)$$
 (5.10)

Select n . It is readily deduced from the error tables that the Pade' values for E(iz) are better than the values deduced from (5.10) by using the Pade' approximants for S(z) and H(z) for z real . Thus, if both Si(z) and H(z) are needed, it is better to use the Pade for E(iz). However, if only H(z), say, is needed, it is more economical to use the Pade for H(z).

An examination of the zeros of the denominators of the Pade approximations of E(z), Si(z) and H(z) indicates that the magnitudes of the smallest zeros of the denominator increase linearly with n . Since n must be significantly larger than the argument to attain good accuracy, the location of these zeros is not important.

As noted above, the Pade approximants for E(z) are not known in closed form, and it is necessary to solve systems of linear equations for each selection of p and q (see (5.8)). We now give another rational approximation of E(z) which is of the form (5.8) with p = q = n. In over-all accuracy, it is somewhat inferior to the corresponding Pade approximant, see Tables B.II and B.VIII. However, it has the desirable advantage that the numerator and denominator polynomials can be computed by recurrence formulas. Following [14], it can be shown that

$$E(z) = {}_{2}F_{2}(\frac{1}{2},\frac{1}{2}|-z) = \varphi_{n}(z)/f_{n}(z) + \varepsilon_{n}(z), \quad \varepsilon_{n}(z) = F_{n}(z)/f_{n}(z), \quad (5.11)$$

$$\varphi_{n}(z) = \sum_{r=0}^{m} \frac{(-)^{r} {n \choose r} (n+1)_{r}}{(2)_{r}} {}_{4}^{F_{2}} \left({}^{-n+r,n+1+r,1,2+r} | -1/z \right) , \quad (5.12)$$

and $f_n(z)$ is the ${}_4F_2$ in (5.12) with r=0 whence it becomes a ${}_3F_1$, see (5.13). The nature of $F_n(z)$ will not be discussed here in detail. Suffice it to remark, it will be shown elsewhere that for z fixed $\lim_{n\to\infty} F_n(z) = 0$.

Now

$$f_{n}(z) = {}_{3}F_{1}\left(\begin{array}{c} -n, n+1, 2 \\ 1 \end{array}\right) - 1/z$$

$$= \frac{(n+1)(2n)!}{n!z^{n}} {}_{2}F_{2}\left(\begin{array}{c} -n, -n \\ -2n, -n-1 \end{array}\right) z$$
, (5.13)

where it is to be understood that in the 2F2 only the first (n+1) terms of the series are retained. Thus

$$f_n(z) = \frac{(n+1)(2n)!}{n!z^n} \exp\left\{\frac{nz}{2(n+1)}\right\} \left\{1 - \frac{z^2(n^2+2n-2)}{8(n+1)^2(2n-1)} + O(z^3/n^3)\right\}$$
 (5.14)

and so for z fixed,

$$\lim_{n\to\infty} \varepsilon_n(z) = 0 , \qquad (5.15)$$

whence the rational approximants converge. It will also be demonstrated elsewhere that both $\varphi_n(z)$ and $f_n(z)$ satisfy the recurrence formula

$$f_{n}(z) = (B_{1}z + A_{1})f_{n-1}(z) + (B_{2}z + A_{2})f_{n-2}(z) + A_{3}f_{n-3}(z) ,$$

$$A_{1} = -A_{3} = \frac{(n-2)(2n-1)}{n(2n-3)} , A_{2} = 1 ,$$

$$B_{1} = \frac{2(2n-1)(n+1)}{n} , \text{ and } B_{2} = \frac{-2(2n-1)(n-3)}{n} .$$
 (5.16)

To illustrate the power of (5.14), take $z = \frac{1}{2}$ and n = 4. The true value (from (5.12)) is 1101 and the value using (5.14) is 1098.5.

From the preceding development and the last remark, it is obvious that all that is needed for a useful expression for the error $|\epsilon_n(z)|$ is an approximation of $F_n(z)$ (see (5.11)) for large n. This is not available at the present time. If z is real and positive, we can show that

$$\left|\epsilon_{n}(z)\right| \leq \left|\frac{5(2z)^{\frac{1}{2}}}{f_{n}(z)}\right|.$$
 (5.17)

This bound, however, is very conservative.

The coefficients of the polynomials $\varphi_n(z)$ and $f_n(z)$ are given in Appendix B for n=0(1)10. Also presented are values of $|\varepsilon_n(z)|$ for n=3(1)10 and for $z=re^{i\theta}$ where r=1(1)10, $\theta=0,\pi/2,\pi$.

The approximation (5.11) has the same properties as the Pade approximation in that the magnitude of the smallest zeros of the denominator polynomials increase linearly with n, the order of approximation. Again since the order of approximation must be significantly larger than the argument, the location of zeros of the denominator polynomials is not critical.

REFERENCES

- 1. Luke, Y.L., "Rational Approximations for the Incomplete Gamma Function," Summary Report, 31 July 1961-31 July 1962, Contract No. Nonr-2638(00)(X), MRI Project No. 2229-P.
- Luke, Y.L., "The Pade Table and the τ-Method," <u>Journal of Mathematics</u> and <u>Physics</u>, 37, 110-127, July 1958.
- Luke, Y.L., "Economization of Integrals of Transcendental Functions," Technical Report, March 15, 1961 (revised June 1, 1962), Contract No. Nonr-2638(00)(X), MRI Project No. 2229-P.
- 4. Erdélyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F.G., <u>Higher Transcendental Functions</u>, McGraw-Hill, Vol. I, 1953.
- 5. Erdélyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F.G., <u>Higher</u> Transcendental Functions, McGraw-Hill, Vol. II, 1953.
- 6. Buchholz, H., Die Konfluente Hypergeometrische Funktion, Springer-Verlag, 1953.
- Tricomi, F.G., <u>Funzioni Ipergeometrische Confluenti</u>, <u>Edizioni Cremonese</u>, 1954.
- 8. Slater, L.J., Confluent Hypergeometric Functions, Cambridge University Press, 1960.
- 9. Olver, F.W.J., "The Asymptotic Expansion of Bessel Functions of Large Order," Philos. Trans. Roy. Soc. London, 247, 328-368 (1954).
- 10. Thomson, W.E., "Networks with Maximally-Flat Delay," Wireless Engineer 29, 256-263, 309 (1952).
- 11. Kublanovskaia, V.N. and F.N. Smirnova, "Zeros of Hankel Functions and Some Related Functions," Trudy Steklov Math. Inst. AN USSR, 186-192 (1959). English translation by Morris D. Friedman, Air Force Cambridge Research Laboratories TN-60-1128, 1960, Cambridge, Mass.
- 12. Grosswald, E., "On Some Algebraic Properties of Bessel Polynomials," Trans. Amer. Math. Soc., 71, 197-210 (1951).
- Salzer, H.E., "Additional Formulas and Tables for Orthogonal Polynomials Originating from Inversion Integrals," Jour. Math. Phys. 40, 72-86(1961).
- 14. Luke, Y.L., "On Economic Representations of Transcendental Functions," Jour. Math. Phys. 38, 279-294 (1960).

APPENDIX A

COEFFICIENTS FOR RATIONAL APPROXIMATIONS TO THE ERROR FUNCTION, EXPONENTIAL FUNCTION AND CIRCULAR FUNCTIONS

We first show how the exact coefficients in the approximations (2.1) and (2.18) can be generated when ν is rational. Suppose $\nu = p/q$, $q \neq 0$ and p,q are co-prime integers.

Let

$$A_{n}^{*}(z,v) = q^{2n} \frac{\Gamma(v+n+1)}{\Gamma(v+1)} A_{n}(z,v) = \sum_{k=0}^{n} a_{n,k} z^{k} ,$$

$$B_{n}^{*}(z,v) = q^{2n} \frac{\Gamma(v+n+1)}{\Gamma(v+1)} B_{n}(z,v) = \sum_{k=0}^{n} b_{n,k} z^{k} ,$$
(A.1)

where $A_n(z,\nu)$ and $B_n(z,\nu)$ are defined in (2.2) and (2.3), respectively. Note that

$$\frac{A_{n}^{*}(z,v)}{B_{n}^{*}(z,v)} = \frac{A_{n}(z,v)}{B_{n}(z,v)}, \qquad (A.2)$$

and the transformation (A.1) insures that the coefficients $a_{n,k}$ and $b_{n,k}$ are integers if p and q are co-prime integers. If v=0, set p=0 and q=1. From (2.6) it is seen that

$$\Lambda_{n+1} = \frac{(2nq+p+q)}{(2nq+p)} \left[(2nq+p)(2nq+p+2q)+pqz \right] \Lambda_{n} + \frac{q^{3}nz^{2}(2nq+p+2q)(nq+p)}{(2nq+p)} \Lambda_{n-1} ,$$

$$\Lambda_{n} = \Lambda_{n}^{*}(z,v) \text{ or } B_{n}^{*}(z,v) , \qquad (A.3)$$

and

$$A_{O}^{*}(z,v) = 1 , A_{1}^{*}(z,v) = (p+q)(p+2q) - q^{2}z ,$$

$$B_{O}^{*}(z,v) = 1 , B_{1}^{*}(z,v) = (p+q)(p+2q) + q(p+q)z .$$
(A.4)

Using (A.3) and (A.1), we get the recurrence formula

$$\lambda_{n+1,k} = (2nq+p+q)(2nq+p+2q)\lambda_{n,k} + \frac{pq(2nq+p+q)}{(2nq+p)} \lambda_{n,k-1} + \frac{q^{3}n(2nq+p+2q)(nq+p)}{(2nq+p)} \lambda_{n-1,k-2},$$

$$\lambda_{n,k} = a_{n,k} \text{ or } b_{n,k} ; k = 0,1,2,...,n$$
and $\lambda_{n,k} = 0 \text{ if } k < 0 \text{ or } k > n$.

The initial values are

$$a_{0,0} = 1$$
 ,
 $a_{1,0} = (p+q)(p+2q)$, $a_{1,1} = -q^2$,
 $b_{0,0} = 1$,
 $b_{1,0} = (p+q)(p+2q)$, $b_{1,1} = q(p+q)$.

(A.6)

Using a similar argument we find the following relations.

$$C_{n}^{*}(z,v) = \frac{q^{2n}\Gamma(v+n+1)}{\Gamma(v+1)} C_{n}(z,v) = \sum_{k=0}^{n} c_{n,k}z^{k} ,$$

$$D_{n}^{*}(z,v) = \frac{q^{2n}\Gamma(v+n+1)}{\Gamma(v+1)} D_{n}(z,v) = \sum_{k=0}^{n} d_{n,k}z^{k} ,$$
(A.7)

where $C_n(z,v)$ and $D_n(z,v)$ are defined in (2.19).

$$\Omega_{n+1} = \frac{(2nq+p)}{(2nq+p-q)} \left[(2nq+p-q)(2nq+p+q) + q(p-q)z \right] \Omega_{n} \\
+ \frac{q^{3}nz^{2}(2nq+p+q)(p+nq-q)}{(2nq+p-q)} \Omega_{n-1} , \\
\Omega_{n} = C_{n}^{*}(z,v) \text{ or } D_{n}^{*}(z,v) ,$$
(A.8)

$$C_{0}^{*}(z,v) = 0$$
, $C_{1}^{*}(z,v) = (p+q)$,
 $D_{0}^{*}(z,v) = 1/p$, $D_{1}^{*}(z,v) = (p+q) + qz$, (A.9)

$$\gamma_{n+1,k} = (2nq+p)(2nq+p+q)\gamma_{n,k} + \frac{q(p-q)(2nq+p)}{(2nq+p-q)} \gamma_{n,k-1} + \frac{q^{3}n(2nq+p+q)(p+nq-q)}{(2nq+p-q)} \gamma_{n-1,k-2} ,$$

$$\gamma_{n,k} = c_{n,k} \text{ or } d_{n,k} ; k = 0,1,...,n$$
(A.10)

and $\gamma_{n,k} = 0$ if k < 0 or k > n,

$$c_{0,0} = 0$$
 ,
 $c_{1,1} = 0$, $c_{1,0} = (p+q)$,
 $d_{0,0} = 1/p$,
 $d_{1,0} = (p+q)$, $d_{1,1} = q$. (A.11)

Tables A.I and A.II give the coefficients of the polynomials in the rational approximations to the error function, see (2.1), (2.18), (3.2) and (3.3). Table A.III gives the error associated with the approximation (2.1) for $\nu=\frac{1}{2}$. The introduction to Table A.III shows how the table may be used to get $R_n(z,\nu)$ for other values of ν and $T_n(z,\nu)$. Table A.IV gives coefficients of the polynomials in the rational approximation to the exponential function, see (4.1). Tables A.V, A.VI and A.VII list the coefficients of $U_n(z^2)$, $W_n(z^2)$ and $V_n(z^2)$, respectively, see (4.7) and (4.8). These coefficients are pertinent to the evaluation of the circular functions.

Most of the tables in the Appendices were typed by the IBM 1620 computer directly on stencils, while the balance of the report was done on an ordinary typewriter. The typewriters have different type sizes. The computer has no lower case characters, etc., and so a slight variance in notation N is introduced. For example, in Table A.I,AN*(Z,1/2) corresponds to $A_{\rm n}(z,\frac{1}{2})$, etc. Also in Table A.V.UN(Z**2) corresponds to $U_{\rm n}(z^2)$, etc.

TABLE A.I

TABLES OF THE COEFFICIENTS OF THE POLYNOMIALS $A_n^*(z,\frac{1}{2})$ AND $B_n^*(z,\frac{1}{2})$

Note: For the definition of $A_n^*(z,\frac{1}{2})$ and $B_n^*(z,\frac{1}{2})$, see (2.1) and (A.1). The sequence of numbers given is for the highest power to the lowest power, respectively.

e.g., $A_3^*(z,\frac{1}{2}) = -128z^3 + 1932z^2 - 9240z + 45045$

BN*(Z, 1/2) AN*(Z, 1/2) N = 001 1 N = 01- !: 15 15 N = 0232 -210 945 60 420 945 N = 03280 3780 20790 -128 1932 - 9240 45045

45045

TABLE A.I (Continued)

	AN*(Z, 1/2)	BN*(7,1/2)
N = 04	2048 -43560 5 40540 -22 52250 114 86475	5040 1 10880 10 81080 54 05400 114 86475
N = 05	-8192 2 81424 - 38 91888 453 33288 - 1745 94420 9166 20705	22176 7 20720 108 10800 918 91800 4364 86050 9166 20705
N = 06	65536 -28 85792 699 73904 -7914 94704 89625 13560 -3 27946 51890 17 56856 35125	1 92192 86 48640 1837 83600 23279 25600 1 83324 14100 8 43291 04860 17 56856 35125
N = 07	-2 62144 161 40480 -4353 52320 91454 22000 -9 17867 80800 102 39962 73300 -361 41044 94000 1965 16931 86125	8 23680 490 08960 13967 55360 2 44432 18800 28 10970 16200 210 82276 21500 948 70242 96750 1965 16931 86125

TABLE A.I (Concluded)

AN*(Z, 1/2)	BN*(Z, 1/2)
N = 08 83 88608 -6277 25952 2 51360 15040 -53 38931 08320 1038 33795 78000 -9618 68096 04600 1 06381 16578 08900 -3 65521 49326 19250 20 10368 21294 05875	280 05120 21283 89120 7 82183 00160 179 90209 03680 2810 97016 20000 30358 47774 96000 2 20098 96368 46000 9 74723 98203 18000 20 10368 21294 05875
N = 09 -335 54432 32467 92960 -14 34070 38720 473 05494 72000 -8681 49968 40000 1 61017 72510 82400 -14 07934 64071 26000 154 87281 04783 86000 -521 20657 37253 37500 2892 69648 41756 23125	1182 43840 1 11740 42880 51 40059 72480 1499 18408 64000 30358 47774 96000 4 40197 92736 92000 45 48711 91614 84000 321 65891 40704 94000 1407 25774 90584 11250 2892 69648 41756 23125
N = 10 2684 35456 -3 05076 71040 182 46049 11200 -6185 20520 21760 1 82600 62172 35200 -30 32474 61076 56000 544 83460 50675 52800 -4560 40860 39327 81600 49985 79524 65547 67600 -1 65462 23889 48456 42750 9 25084 33563 93642 75375	9932 48256 11 42235 49400 642 50746 50000 23130 26876 16000 58693 05698 25600 109 16908 59875 61600 1501 07493 23289 72000 15010 74932 32897 20000 1 04137 07343 03224 32500 4 51260 65153 13972 07500 9 25084 33563 93642 75375

TABLE A.II

TABLES OF THE COEFFICIENTS OF THE POLYNOMIALS $C_n^*(z,\frac{1}{2})$ AND $D_n^*(z,\frac{1}{2})$

Note: For the definition of $C_n^*(z,\frac{1}{2})$ and $D_n^*(z,\frac{1}{2})$, see (2.18) and (A.7). The sequence of numbers given is for the highest power to the lowest power, respectively.

e.g., $C_3^*(z,\frac{1}{2}) = 84z^2 - 420z + 3465$

	CN*(Z, 1/2)	DN*(Z, 1/2)
N = 00	0	1
N = 01	0 3	2 3
N = 02	0 -10 105	12 60 105
N = 03	0 84 -420 3465	40 420 1890 3465

TABLE A.II (Continued)

	CN*(Z, 1/2)	DN*(Z, 1/2)
N = 04		560
	-744 23100 -90090 6 75675	10080 83160 3 60360 6 75675
N = 05		
	0 5104 -82368 17 29728 -61 26120 436 48605	2016 55440 7 20720 54 05400 229 72950 436 48605
N = 06		
	-25376 15 53552 -171 53136 3026 30328 -10184 67450 70274 25405	14784 5 76576 108 10800 1225 22400 8729 72100 36664 82820 70274 25405
N = 07		
	1 58528 -53 60576 2061 87696 -19288 52640 3 07868 16060 -10 03917 91500 67 76445 92625	54912 28 82880 735 13440 11639 62800 1 22216 09400 8 43291 04860 35 13712 70250 67 76445 92625

TABLE A.II (Concluded)

	CN*(Z, 1/2)	DN*(Z,1/2)
N =	08 -33 70624 3395 37600 -73102 91040 22 56425 02800 -192 17857 23000 2873 21307 27300 -9170 79015 35250 60920 24887 69875	16 47360 1120 20480 37246 80960 7 82183 00160 112 43880 64800 1124 38806 48000 7589 61943 74000 31442 70909 78000 60920 24887 69875
N =	09 198 88896 -11584 58880 7 01345 14560 -122 38237 44000 3311 97300 72000 -26551 62101 59200 3 79059 32634 57000 -11 91329 31137 22000 78 18098 60588 00625	62 23360 5320 97280 2 23480 85760 59 96736 34560 1124 38806 48000 15179 23887 48000 1 46732 64245 64000 9 74723 98203 18000 40 20736 42588 11750 78 18098 60588 00625
N =	0 -1105 68960 1 65206 97600 -58 55525 91360 2759 72254 27200 -42544 70268 04800 10 54145 93612 32800 -81 01039 31733 09600 1117 46689 40671 23600 -3471 23578 10107 47750 22563 03257 65698 60375	472 97536 49662 41280 25 70029 86240 856 67662 80000 20238 98516 64000 3 52158 34189 53600 45 48711 91614 84000 428 87855 20939 92000 2814 51549 81168 22500 11570 78593 67024 92500 22563 03257 65698 60375

TABLE A.III

TABLES OF THE ERROR FOR THE ERROR FUNCTION

Here we give the values of $R_n^*(z,\frac{1}{2}) = |2z^{\frac{1}{2}}e^zR_n(z,\frac{1}{2})|$, see (2.15), for n = 2(1)10, r = 1(1)10 and $\theta = 0$, $\pi/2$, π where $z = re^{\frac{1}{2}\theta}$.

It is pertinent to point out that $R_n^*(z,v)$, see (2.15), and $T_n^*(z,v)=|v^{-1}z^{\nu}e^{z}T_n(z,v)|$, see (2.22), can both be obtained from $R_n^*(z,\frac{1}{2})$ since

$$R_{n}(z,v) = 2^{2-v}\Gamma(v+1)n^{\frac{1}{2}-v}\pi^{-\frac{1}{2}}R_{n}(z,\frac{1}{2})\left\{1+O(1/n)\right\} ,$$

and

$$T_n(z,v) = -2^{4-2v}\Gamma(v+1)n^{3/2-v}z^{-1}\pi^{-\frac{1}{2}}R_n(z,\frac{1}{2})\left\{1+0(1/n)\right\} \ .$$

Hence, the tables given here essentially include the values of $R_n^*(z,\nu)$ and $T_n^*(z,\nu)$ for admissible ν fixed, but otherwise arbitrary and the values of n, r and θ mentioned above.

$rac{r}{2}$	<u>o</u>	11√5	п
n = 2			
1	0.896 (-3)	0.747 (-3)	0.747 (-3)
2	0.509 (-1)	0.295 (-1)	0.354 (-1)
3	0.651 (0.219	0.377
4	0.477 (1)	0.774	0.230 (1)
5	0.268 (2)	0.175 (1)	0.108 (2)
6	0.132 (3)	0.290 (1)	0.443 (2)
7	0.609 (3)	0.375 (1)	0.171 (3)
8	0.275 (4)	0.395 (1)	0.642 (3)
9	0.125 (5)	0.349 (1)	0.243 (4)
10	0.578 (5)	0.262 (1)	0.938 (4)

TABLE A.III (Continued)

<u>r</u> 9	<u>o</u>	π/2	π
<u>n = 3</u>			
1 2 3 4 5 6 7 8 9	0.521 (- 5) 0.111 (- 2) 0.294 (- 1) 0.344 0.264 (1) 0.160 (2) 0.838 (2) 0.402 (3) 0.183 (4) 0.813 (4)	0.456 (- 5) 0.746 (- 3) 0.132 (- 1) 0.905 (- 1) 0.358 0.973 0.200 (1) 0.331 (1) 0.454 (1) 0.531 (1)	0.456 (- 5) 0.853 (- 3) 0.197 (- 1) 0.202 0.136 (1) 0.719 (1) 0.330 (2) 0.138 (3) 0.552 (3) 0.214 (4)
10	0.813 (4)	0.551 (1)	0.214 (4)
$\underline{n=4}$			
1 2 3 4 5 6 7 8 9 10	0.178 (- 7) 0.147 (- 4) 0.833 (- 3) 0.162 (- 1) 0.181 0.144 (1) 0.923 (1) 0.513 (2) 0.259 (3) 0.123 (4)	0.160 (- 7) 0.107 (- 4) 0.443 (- 3) 0.567 (- 2) 0.373 (- 1) 0.158 0.484 0.116 (1) 0.227 (1) 0.375 (1)	0.160 (- 7) 0.119 (- 4) 0.608 (- 3) 0.107 (- 1) 0.108 0.765 0.442 (1) 0.221 (2) 0.100 (3) 0.428 (3)
1 2 3 4 5 6 7 8 9	0.401 (-10) 0.130 (-6) 0.160 (-4) 0.532 (-3) 0.879 (-2) 0.949 (-1) 0.774 0.520 (1) 0.305 (2) 0.161 (3)	0.368 (-10) 0.998 (- 7) 0.949 (- 5) 0.223 (- 3) 0.238 (- 2) 0.153 (- 1) 0.678 (- 1) 0.227 0.609 0.135 (1)	0.368 (-10) 0.109 (-6) 0.123 (-4) 0.375 (-3) 0.569 (-2) 0.563 (-1) 0.421 0.259 (1) 0.139 (2) 0.677 (2)

TABLE A.III (Continued)

$\frac{1}{2}$	<u>o</u>	<u>11/5</u>	<u>π</u>
n = 6			
1 2 3 4 5 6 7 8 9	0.639 (-13) 0.812 (- 9) 0.220 (- 6) 0.127 (- 4) 0.316 (- 3) 0.470 (- 2) 0.498 (- 1) 0.414 0.288 (1) 0.176 (2)	0.593 (-13) 0.650 (- 9) 0.141 (- 6) 0.603 (- 5) 0.104 (- 3) 0.993 (- 3) 0.625 (- 2) 0.287 (- 1) 0.103 0.300	0.593 (-13) 0.700 (- 9) 0.176 (- 6) 0.941 (- 5) 0.218 (- 3) 0.302 (- 2) 0.296 (- 1) 0.229 0.148 (1) 0.841 (1)
n = 7			
1 2 3 4 5 6 7 8 9	0.757 (-16) 0.380 (-11) 0.228 (- 8) 0.228 (- 6) 0.866 (- 5) 0.180 (- 3) 0.250 (- 2) 0.261 (- 1) 0.220 0.158 (1)	0.710 (-16) 0.313 (-11) 0.155 (- 8) 0.120 (- 6) 0.329 (- 5) 0.465 (- 4) 0.411 (- 3) 0.256 (- 2) 0.121 (- 1) 0.455 (- 1)	0.710 (-16) 0.334 (-11) 0.188 (- 8) 0.176 (- 6) 0.627 (- 5) 0.122 (- 3) 0.159 (- 2) 0.156 (- 1) 0.123 0.829
n = 8			
1 2 3 4 5 6 7 8 9	0.693 (-19) 0.138 (-13) 0.184 (-10) 0.322 (- 8) 0.187 (-6) 0.547 (- 5) 0.101 (- 3) 0.133 (- 2) 0.138 (- 1) 0.117	0.655 (-19) 0.116 (-13) 0.131 (-10) 0.182 (- 8) 0.793 (- 7) 0.165 (- 5) 0.203 (- 4) 0.170 (- 3) 0.104 (- 2) 0.503 (- 2)	0.655 (-19) 0.123 (-13) 0.155 (-10) 0.256 (- 8) 0.140 (- 6) 0.388 (- 5) 0.674 (- 4) 0.840 (- 3) 0.817 (- 2) 0.659 (- 1)

TABLE A.III (Concluded)

$\frac{1}{r}$	<u>o</u>	π/2	<u>π</u>
n = 9			
1 2 3 4 5 6 7 8 9	0.505 (-22) 0.400 (-16) 0.119 (-12) 0.364 (-10) 0.325 (-8) 0.134 (-6) 0.329 (-5) 0.553 (-4) 0.701 (-3) 0.716 (-2)	0.480 (-22) 0.343 (-16) 0.872 (-13) 0.218 (-10) 0.151 (- 8) 0.458 (- 7) 0.783 (- 6) 0.873 (- 5) 0.698 (- 4) 0.427 (- 3)	0.480 (-22) 0.361 (-16) 0.102 (-12) 0.296 (-10) 0.251 (- 8) 0.987 (- 7) 0.230 (- 5) 0.367 (- 4) 0.442 (- 3) 0.429 (- 2)
n = 10			
1 2 3 4 5 6 7 8 9	0.300 (-25) 0.943 (-19) 0.625 (-15) 0.337 (-12) 0.464 (-10) 0.272 (-8) 0.891 (-7) 0.192 (-5) 0.301 (-4) 0.370 (-3)	0.286 (-25) 0.820 (-19) 0.473 (-15) 0.217 (-12) 0.231 (-10) 0.102 (-8) 0.242 (-7) 0.359 (-6) 0.371 (-5) 0.287 (-4)	0.286 (-25) 0.860 (-19) 0.544 (-15) 0.280 (-12) 0.368 (-10) 0.206 (-8) 0.643 (-7) 0.132 (-5) 0.198 (-4) 0.232 (-3)

TABLE A.IV

TABLE OF THE COEFFICIENTS OF THE POLYNOMIAL Gn(z)

Note: For the definition of $G_n(z)$, see (4.1). The sequence of numbers given is for the highest power to the lowest power, respectively.

e.g., $G_4(z) = z^4 + 20z^3 + 180z^2 + 840z + 1680$

GN(Z)

N = 00		
	e 1	
N = 01		
	1	2
N = 02		
	1 12	6
N = 03		
	60	12 120
$N = O^{l}$		
	1 180 1680	20 840

TABLE A.IV (Continued)

GN(Z)

N = 05		
	1 420 15120	30 3360 30240
N = 06		
	1 840 75600 6 65280	10080 3 32640
N = 07		
	1 1512 2 77200 86 48640	56 25200 19 95840 172 97280
N = 08		
	1 2520 8 31600 605 40480 5189 18400	72 55440 86 48640 2594 59200
N = 09		
	1 3960 21 62160 3027 02400 88216 12800	90 1 10880 302 70240 20756 73600 1 76432 25600

TABLE A.IV (Concluded)

GN(Z)

		1			110
		5940		2	05920
	50	45040		908	10720
	12108	09600	1	17621	
7	93945	15200		52212	
	04425				

TABLE A.V

TABLE OF THE COEFFICIENTS OF THE POLYNOMIAL $U_n(z^2)$

Note: For the definition of $U_n(z^2)$, see (4.8). The sequence of numbers given is for the lowest power to the highest power, respectively.

e.g., $U_3(z) = -z^6 + 264z^4 - 6480z^2 + 14400$

UN(Z**2)

N = 00

.10000 00000 00000 00000 +01

N = 01

.40000 00000 00000 00000 +01 -.10000 00000 00000 00000 +01

N = 02

.14400 00000 00000 00000 +03 -.60000 00000 00000 00000 +02

N = 03

.14400 00000 00000 00000 +05 .26400 00000 00000 00000 +03 -.64800 00000 00000 00000 +04 -.10000 00000 00000 00000 +01

N = 04

.28224 00000 00000 00000 +07 .69360 00000 00000 00000 +05 .10000 00000 00000 00000 +01

TABLE A.V (Continued)

UN(7**2)

N = 05									
. 25804	76000 80000 00000	00000	00000	+08	43182 40824 10000	00000	00000	00000	+06
N = 06									
. 13539	74784 05280 20000 00000	00000		+11+07	21123 25788 34440	67200	00000	00000	+09
N = 07									
. 17141	58953 66233 24160 00000	60000	00000	+13	14384 20552 56629 10000	09587 44000	20000 00000	00000	+12
N = 08									
.90161 .19940 .15996	63058 53232 43744 96000 00000	48640 00000 00000	00000 00000	+16 +13 +08	13015 20687 86313 10224	40850 42720	17600 00000	00000	+15
N = 09									
. 10717 . 27586 . 35472	34095 19697 13803 72960 00000	31706 54560 00000	88000 00000 00000	+20 +16 +11	15106 25935 14176 39964 10000	10574 33176 32000	05440 96000 00000	00000 00000	+18 +14 +08

TABLE A.V (Concluded)

UN(7.**2)

44949	32434	22683	29984	+24	-, 21883	22369	29464	23808	+24
. 15812	89202	64694	57920	+23	39825	96563	64810	24000	+21
45494	37982	88179	20000	+19	26326	17302	51520	00000	+17
. 79982	79569	28000	00000	+14	12473				
.90676	08000	00000	00000	+08	23980	00000	00000	00000	+05
10000	00000	00000	00000	+01					

TABLE A.VI

TABLES OF THE COEFFICIENTS OF THE POLYNOMIAL Wn(z2)

Note: For the definition of $W_n(z^2)$, see (4.8). The sequence of numbers given is for the lowest power to the highest power, respectively.

e.g., $W_3(z^2) = z^6 + 24z^4 + 720z^2 + 14400$

WN(Z**2)

N = 00

10000 00000 00000 00000 +01

N = 01

40000 00000 00000 00000 +01 , 10000 00000 00000 00000 +01

N = 02

.14400 00000 00000 00000 +03 .10000 00000 00000 00000 +01

N = 03

.14400 00000 00000 00000 +05 .24000 00000 00000 00000 +02 .72000 00000 00000 00000 +03

N = 04

.28224 00000 00000 00000 +07 .21600 00000 00000 00000 +04 .10000 00000 00000 00000 +01

TABLE A.VI (Continued)

WN(Z**2)

N	= 05									
	.91445 .40320 .60000	00000	00000	00000	+06	. 25401 . 50400 . 10000	00000	00000	00000	+04
N	= 06									
	. 44259 . 12700 . 10080 . 10000	00000	00000	00000	+09 +05	.10059 .12096 .84000	00000	00000	00000	+07
N	= 07									
	. 29919 . 60354 . 30240 . 11200	20160	00000	00000	+11	.57537 .46569 .18144 .10000	60000	00000	00000	+09
N	= 08									
	. 26927 . 40276 . 13970 . 30240 . 10000	37053 88000 00000	44000 00000 00000	00000 00000	+14 +10 +05	. 44879 . 26153 . 66528 . 14400	48736 00000	00000	00000	+12
N	= 09									
	.31128 .35903 .91537 .13305 .18000	50744 20576 60000	78080 00000 00000	00000 00000 00000	+17 +12 +08	. 36324	18526 28800 00000	72000 00000 00000	00000 00000 00000 00000	+15 +10 +05

TABLE A.VI (Concluded)

WN(Z**2)

44949	32434	22683	29984	+24	. 59143	84781	87741	18400	+22
41199	27479	63596	80000	+20	. 20345	32088	70912	00000	+18
.80552					. 27461				
84756					24710				
. 71280	00000	00000	00000	+05	, 22000	00000	00000	00000	+03
10000	00000	00000	00000	+01					

TABLE A.VII

TABLES OF THE COEFFICIENTS OF THE POLYNOMIAL $V_n(z^2)$

Note: For the definition of $V_n(z^2)$, see (4.8). The sequence of numbers given is for the lowest power to the highest power, respectively.

e.g., $V_3(z^2) = 24z^4 - 1680z^2 + 14400$

VN(Z**?)

N = 00

.00000 00000 00000 00000 00

N = 01

.40000 00000 00000 00000 01

N = 02

.14400 00000 00000 00000 03 -.12000 00000 00000 02

N = 03

. 14400 00000 00000 00000 +05 -. 16800 00000 00000 00000 +04 . 24000 00000 00000 00000 +02

N = 04

- 36960 00000 00000 00000 +06 - 40000 00000 00000 +09

TABLE A.VII (Continued)

```
N = 05
                                      -. 12700 80000 00000 00000 +09
  .91445 76000 00000 00000 +09
  .37900 80000 00000 00000 +07
                                      - 31920 00000 00000 00000 +05
  60000 00000 00000 00000 +02
N = 06
  .44259 74784 00000 00000 +12
                                      -.63707 21280 00000 00000 +11
                                      -.23950 08000 00000 00000 +08
-.84000 00000 00000 00000 +02
  .21388 14720 00000 00000 +10
  90720 00000 00000 00000 +05
N = 07
  .29919 58953 98400 00000 +15
.15946 92126 72000 00000 +13
                                      -.44112 21534 72000 00000 +14
                                      -. 21009 54240 00000 00000 +11
  . 11124 28800 00000 00000 +09
                                      -. 21974 40000 00000 00000 +06
  , 11200 00000 00000 00000 +03
N = 08
  . 26927 63058 58560 00000 +18
                                      -.40391 44587 87840 00000 +17
  .15362 55847 52640 00000 +16
                                      -, 22479 54508 80000 00000 +14
  .14503 37011 20000 00000 +12
                                      -. 41646 52800 00000 00000 +09
  47376 00000 00000 00000 +06
                                      -. 14400 00000 00000 00000 +03
N = 09
  .31128 34095 72495 36000 +21
.18669 82387 28601 60000 +19
                                      -.47302 87106 24870 40000 +20
                                      -. 29397 64065 63840 00000 +17
  .21608 80001 28000 00000 +15
                                      -. 77785 86816 00000 00000 +12
  .13278 98880 00000 00000 +10
                                      -.93456 00000 00000 00000 +06
  18000 00000 00000 00000 +03
```

TABLE A.VII (Concluded)

. 44949 . 28012					69001 46561				
. 37541	77850	14272	00000	+18	15728	18837	99040	00000	+16
. 34464					37378 22000				

APPENDIX B

COEFFICIENTS OF RATIONAL APPROXIMATIONS TO E(z) AND RELATED INTEGRALS

Table B.I gives the coefficients of the polynomials of the main diagonal Pade approximants of E(z), see (5.1). Displayed in Table B.II is the absolute value of the errors associated with the approximations listed in B.I. Similar coefficients for the main diagonal Pade approximants to $z^{-1}\mathrm{Si}(z)$, see (5.2), are given for n even in Table B.III. Table B.IV gives the error associated with the approximations listed in B.III. Table B.V lists the coefficients of the polynomials of the main diagonal Pade approximants to $4z^{-2}\mathrm{H}(z)$, see (5.3), for even n. Table B.VI lists the errors associated with the approximants in B.V. Tables B.VII and B.VIII give the coefficients which define the approximations (5.11) to E(z), and the corresponding error tables, respectively.

TABLE B.I

COEFFICIENTS OF PADE APPROXIMATION TO E(z)

Note: For the definition of E(z) and its Pade approximants, see Section V. The coefficients are given for n=1(1)10. The expression attached to the numbers on the right indicates the power of 10 by which the number is multiplied.

e.g., $E_2(z) = \frac{1 + 0.086z + 0.04555...z^2}{1 + 0.336Z + 0.0333...z^2}$

NUMERATOR

DENOMINATOR

N = 01

.10000 00000 00000 00000 +01 27777 77777 77777 77778 -01	.10000 0000 .22222 2222			
---	----------------------------	--	--	--

N = 02

. 10000	00000	00000	00000	+01	.10000 00000 00000 00000 +	01
.86000	00000	00000	00000	-01	"33600 00000 00000 00000 +	
. 45555	55555	55555	55556	-02	.33000 00000 00000 00000 -	

N = 03

	00000				. 10000	00000	00000	00000	+01
. 11548					. 36548				
	35259				. 50803	30004	34216	23969	-01
- 85008	16740	06988	81376	-04	27277	05063	78843	33065	-02

. 10000					. 10000				
, 22174	10124	06340	46892	-01	.67076	12256	02161	78840	-01
.71679	22995	44767	84505	-03 -04	. 55785 . 19778	97186	99680	05926 64309	-02 -03

TABLE B.I (Continued)

		NUME	ERATOR				DENOMI	NATOR	
N = 05									
. 16204 . 26595 . 12747	00000 16009 51845 83272 80145 42296	62342 22923 48448 04733	70975 74506	+00 -01 -02 -04	. 41204 . 74050 . 73128	16009 36313 40670 22491	73224 01829 28200	00000 70975 96387 36777 19535 17832	+00 -01 -02 -03
N = 06									
	76037 39014	82301 59549 46735 94841 69150	29344 31654	+00 -01 -02 -03 -05	. 42964 . 82762 . 92024	76037 73553 26823 69030 59209	82301 59746 88873 34069 97727	00000 29344 99458 61206 87432 45364 03704	+00 -01 -02 -03 -04
N = 07									
.10000 .18480 .33261 .23552 .16377 .43980 .11014	11227 21378 22731 94153 12290 77035	26475 35356 54871 15153 60812 81094	81023 62215 76423 96938 99224	+00 -01 -02 -03 -05 -06	. 43480 . 86405 . 10217 . 78040 . 38719 . 11633	11227 93890 75619 02200 75252 17088	26475 95990 63664 52063 89419 02093	00000 81023 59216 92989 61676 77095 24466 73556	+00 -01 -01 -03 -04 -05

TABLE B.I (Concluded)

NUMERATOR

DENOMINATOR

N = 08

. 10000					. 10000				
. 19513	36973	48381	21416	+00	. 44513	36973	48381	21416	+00
. 36028	72455	48033	66895	-01	.91756	59333	63431	14880	-01
28530	41423	63713	82221	-02	. 11479				
. 21463	38297	93936	23562	-03	. 95698				
.77757	97235	47219	15163	-05	. 54679	34064	85047	10025	-04
. 25482	33856	33725	45105	-06	. 21015	17140	91386	35547	-05
. 27089	12491	61763	77927	-08	.49960	40804	95845	41259	-07
.97825	79525	95621	99712	-11	. 56629	36991	72465	57055	-09

N = 09

.10000 00000 .19823 84189 .37482 24827 .31215 54261 .25168 68581 .10438 66937 .41779 89027 .72282 10040 .11156 38762	19627 19265 32679 61682 10534 67154 42141 13445 29114 63287 92798 76366 34696 94233 07900 30289	+00 -01 -02 -03 -04 -06 -08 -09	.10000 .44823 .93986 .12132 .10658 .66311 .29328 .89307 .17075	84189 29744 66090 74645 99549 17107 30009 36697	19627 76192 52530 55601 82139 87334 59419 26887	19265 04289 81529 67575 94997 24422 32977 18576	+00 -01 -01 -02 -04 -05 -07 -08
78469 72732			. 17075				

. 10000	00000	00000	00000	+01	. 10000	00000	00000	00000	+01
. 20502	08456	77917	06628	+00		08456			
39390	75193	16296	55245	-01	97590	40779	55533	66258	-01
. 34858						15639			
. 29317	75506	14266	48946	-03		11137			
. 13754						09559			
, 60964	46174	77455	80030	-06		83073			
14447	18655	00891	74805	-07		62118			
. 30430	04327	31332	24684	-09		41348			
. 22059						89453			
. 49848	28058	16872	88340	-14		33901			

TABLE B.II

ERROR OF PADE APPROXIMATIONS TO E(z)

Let $E_n(z)$ be the nth order main diagonal Padé approximation to E(z), see B.I, and define $\varepsilon_n(z)=|E(z)-E_n(z)|$. The tables give $\varepsilon_n(z)$ for n=2(1)10, r=1(1)10 and $\theta=0$, $\pi/2$, π where $z=re^{i\theta}$. The expression in parentheses to the right of each number indicates the power of 10 by which the number is multiplied.

$\frac{r}{r}$	<u>o</u>	π/2	<u>π</u>	Π (Relative Error)
1 2 3 4 5 6 7 8 9	0.782 (- 5) 0.137 (- 3) 0.599 (- 3) 0.152 (- 2) 0.292 (- 2) 0.473 (- 2) 0.686 (- 2) 0.922 (- 2) 0.117 (- 1) 0.143 (- 1)	0.107 (- 4) 0.418 (- 3) 0.267 (- 2) 0.849 (- 2) 0.202 (- 1) 0.361 (- 1) 0.542 (- 1) 0.713 (- 1) 0.845 (- 1) 0.825	0.320 (- 4) 0.232 (- 2) 0.433 (- 1) 0.455 0.288 (1) 0.102 (1) 0.247 (2) 0.533 (2) 0.114 (3) 0.248 (3)	0.243 (- 4) 0.126 (- 2) 0.157 (- 1) 0.103 0.379 0.732 0.915 0.974 0.991 0.996
$\underline{n=3}$				
1 2 3 4 5 6 7 8 9	0.217 (- 7) 0.139 (- 5) 0.125 (- 4) 0.510 (- 4) 0.138 (- 3) 0.291 (- 3) 0.519 (- 3) 0.823 (- 3) 0.120 (- 2) 0.164 (- 2)	0.443 (- 7) 0.523 (- 5) 0.780 (- 4) 0.482 (- 3) 0.179 (- 2) 0.474 (- 2) 0.985 (- 2) 0.170 (- 1) 0.255 (- 1) 0.340 (- 1)	0.101 (- 6) 0.302 (- 4) 0.128 (- 2) 0.252 (- 1) 0.345 0.454 (1) 0.233 (3) 0.703 (2) 0.123 (3) 0.254 (3)	0.776 (- 7) 0.164 (- 4) 0.465 (- 3) 0.571 (- 2) 0.454 (- 1) 0.326 0.863 0.128 (1) 0.107 (1) 0.102 (1)

TABLE B.II (Continued)

\underline{r}^{0}	<u>o</u>	π/2	π	π (Relative Error)
n = 4				
1 2 3 4 5 6 7 8 9	0.593 (-10) 0.144 (- 7) 0.273 (- 6) 0.186 (- 5) 0.738 (- 5) 0.209 (- 4) 0.474 (- 4) 0.920 (- 4) 0.159 (- 3) 0.251 (- 3)	0.128 (- 9) 0.610 (- 7) 0.209 (- 5) 0.236 (- 4) 0.141 (- 3) 0.558 (- 3) 0.162 (- 2) 0.375 (- 2) 0.720 (- 2) 0.119 (- 1)	0.302 (- 9) 0.375 (- 6) 0.366 (- 4) 0.130 (- 2) 0.271 (- 1) 0.401 0.428 (1) 0.273 (2) 0.945 (2) 0.237 (3)	0.229 (- 9) 0.204 (- 6) 0.133 (- 4) 0.294 (- 3) 0.366 (- 2) 0.288 (- 1) 0.159 0.499 0.822 0.952
10 n = 5	0.231 (- 3)	0.113 (- 1)	0.237 (3)	0.932
1 2 3 4 5 6 7	0.837 (-13) 0.781 (-10) 0.319 (-8) 0.368 (-7) 0.206 (-6) 0.834 (-6) 0.243 (-5)	0.187 (-12) 0.362 (- 9) 0.284 (- 7) 0.588 (- 6) 0.574 (- 5) 0.342 (- 4) 0.143 (- 3)	0.451 (-12) 0.227 (- 8) 0.502 (- 6) 0.316 (- 4) 0.102 (- 2) 0.217 (- 1) 0.355	0.342 (-12) 0.123 (- 8) 0.182 (- 6) 0.715 (- 5) 0.134 (- 3) 0.156 (- 2) 0.131 (- 1)
8 9 10	0.579 (- 5) 0.119 (- 4) 0.218 (- 4)	0.457 (- 3) 0.117 (- 2) 0.250 (- 2)	0.513 (1) 0.104 (3) 0.442 (3)	0.937 (- 1) 0.904 0.178 (1)
n = 6				
1 2 3 4 5 6 7 8 9	0.134 (- 6) 0.399 (- 6)	0.113 (- 4) 0.489 (- 4)	0.658 (-15) 0.135 (-10) 0.677 (- 8) 0.763 (- 6) 0.384 (- 4) 0.118 (- 2) 0.258 (- 1) 0.445 0.620 (1) 0.627 (2)	0.499 (-15) 0.733 (-11) 0.246 (-6) 0.173 (-6) 0.505 (-5) 0.847 (-4) 0.956 (-3) 0.813 (-2) 0.539 (-1) 0.252

TABLE B.II (Continued)

<u>r</u> 0	<u>o</u>	<u>π/2</u>	π	π (Relative Error)
n = 7				
1 2	0.900 (-19) 0.140 (-14)	0.233 (-18) 0.722 (-14)	0.580 (-18) 0.472 (-13)	0.440 (-18) 0.256 (-13)
3	0.272 (-12)	0.294 (-11)	0.536 (-10)	0.195 (-10)
4	0.932 (-11)	0.198 (- 9)	0.107 (- 7)	0.242 (- 8)
5	0.125 (- 9)	0.493 (- 8)	0.840 (- 6)	0.110 (- 6)
6	0.925 (- 9)	0.644 (- 7)	0.367 (- 4)	0.263 (- 4)
7	0.462 (- 8)	0.534 (- 6)	0.108 (- 2)	0.400 (- 3)
8	0.173 (- 7)	0.314 (- 5)	0.241 (- 1)	0.440 (- 3)
9	0.524 (- 7)	0.141 (- 4)	0.436	0.379 (- 2)
10	0.134 (- 6)	0.336	0.686 (1)	0.276 (- 1)
<u>n = 8</u>				
1	0.370 (-20)	0.100 (-19)	0.100 (-19)	0.759 (-20)
2	0.459 (-17)	0.246 (-16)	0.164 (-15)	0.890 (-16)
3	0.197 (-14)	0.227 (-13)	0.421 (-12)	0.153 (-12)
4	0.118 (-12)	0.275 (-11)	0.150 (- 9)	0.340 (-10)
5	0.239 (-11)	0.108 (- 9)	0.184 (- 7)	0.242 (- 8)
6	0.249 (-10)	0.207 (- 8)	0.115 (- 5)	0.825 (- 7)
7	0.165 (- 9)	0.238 (- 7)	0.461 (- 4)	0.171 (- 5)
8	0.784 (- 9)	0.187 (- 6)	0.133 (- 2)	0.243 (- 4)
9	0.291 (- 8)	0.109 (- 5)	0.301 (- 1)	0.262 (- 3)
10	0.895 (- 8)	0.500 (- 5)	0.565	0.227 (- 2)
<u>n = 9</u>				
1	0.367 (-20)	0.100 (-19)	0.100 (-19)	0.758 (-20)
2	0.500 (-20)	0.500 (-19)	0.377 (-18)	0.205 (-18)
3	0.950 (-17)	0.117 (-15)	0.217 (-14)	0.788 (-15)
4	0.998 (-15)	0.254 (-13)	0.138 (-11)	0.312 (-12)
5	0.311 (-13)	0.106 (-10)	0.263 (- 9)	0.346 (-10)
6	0.456 (-12)	0.442 (-10)	0.236 (- 7)	0.169 (- 8)
7	0.400 (-11)	0.707 (- 9)		0.470 (- 7)
8		0.743 (- 8)	0.474 (- 4)	0.866 (- 6)
9	0.111 (- 9)	0.564 (- 7)	0.134 (- 2)	0.117 (- 4)
10	0.408 (- 9)	0.329 (- 6)	0.306 (- 1)	0.123 (- 3)

A A STATE OF THE S

TABLE B.II (Concluded)

<u>~</u> °	<u>o</u>	π/2	<u>π</u>	π (Relative Error)
1	0.367 (-20)	0.100 (-19)	0.100 (-19)	0.759 (-20)
2	0.551 (-20)	0.141 (-19)	0.200 (-20)	0.109 (-20)
3	0.145 (-18)	0.578 (-18)	0.111 (-16)	0.403 (-17)
4	0.850 (-17)	0.231 (-15)	0.126 (-13)	0.285 (-14)
5	0.407 (-15)	0.227 (-13)	0.375 (-11)	0.493 (-12)
6	0.845 (-14)	0.923 (-12)	0.485 (- 9)	0.341 (-10)
7	0.989 (-13)	0.203 (-10)	0.354 (- 7)	0.131 (- 8)
8	0.766 (-12)	0.284 (- 9)	0.172 (- 5)	0.314 (- 7)
9	0.434 (-11)	0.277 (-8)	0.610 (- 4)	0.530 (- 6)
10	0.193 (-10)	0.204 (- 7)	0.170 (- 2)	0.683 (- 5)

TABLE B.III

COEFFICIENTS OF PADE APPROXIMATIONS TO z-1Si(z)

Note: For the definition of Si(z) and its Pade approximants, see Section V. The coefficients are given for n = 2(2)10. The expression attached to the numbers on the right indicates the power of 10 by which the numbers are multiplied.

e.g.,
$$z^{-1}Si_2(z) = \frac{1 - 0.02555...z^2}{1 + 0.03z^2}$$

		NUME	RATOR				DENOMI	NATOR	
N = 02 .10000 25555					.10000 .30000				
N = 04 - 10000 - 30427 - 51431	89735	63441	27723	-01	.10000 .25127 .24362	65819	92114	27833	-01
35595	23630	83526 09289	52167	-01 -03	. 10000 . 19960 . 18254 . 80396	37866 56222	72029 98339	03389 34660	-01 -03
39097 . 88244 75392	03534	47744 29201 91062	00193 16961 85582	-01 -03 -05	. 10000 . 16458 . 13011 . 60370	08848 19356 25148	07811 94820 69333	55363 91197	-01 -03 -06

TABLE B.III (Concluded)

. 10000 000	00 00000 00000	+01	. 10000	00000	00000	00000	+01
41604 566	09 13051 18594	-01	. 13950	98946	42504	36962	-01
.98695 055	91 58116 83815	-03	.95338				
99826 039	83 42126 42340	-05	. 40702				
.48154 249	11 89950 63472	-07	.11122	28953	69313	70588	-08
89943 23/	24 44804 92329	-10	. 16036	02483	25839	25315	-11

TABLE B.IV

ERROR OF PADE APPROXIMATION TO z-1Si(z)

Let $z^{-1}\mathrm{Si}_n(z)$ be the n^{th} order main diagonal (see B.III) Pade approximant to $z^{-1}\mathrm{Si}(z)$ and define $\varepsilon_n(z) = |z^{-1}\mathrm{Si}(z) - z^{-1}\mathrm{Si}_n(z)|$. The tables give $\varepsilon_n(z)$ for n=2(2)10 and z=1(1)10, z real. The expression in parentheses to the right of each number indicates the power of 10 by which the number is multiplied.

$\frac{1}{2}$	2	4	<u>6</u>	8	10
1	0.210 (-4)	0.142 (-8)	0.251 (-13)	0.170 (-18)	0.100 (-20)
2	0.112 (-2)	0.127 (-5)	0.369 (- 9)	0.392 (-13)	0.186 (-17)
3	0.990 (-2)	0.590 (-4)	0.898 (- 7)	0.498 (-10)	0.122 (-13)
4	0.401 (-1)	0.775 (-3)	0.392 (- 5)	0.714 (- 8)	0.570 (-11)
5	0.104	0.496 (-2)	0.647 (- 4)	0.302 (- 6)	0.616 (- 9)
6	0.234	0.198 (-1)	0.565 (- 3)	0.579 (- 5)	0.254 (- 7)
7	0.310	0.563 (-1)	0.313 (- 2)	0.630 (- 4)	0.539 (- 6)
8	0.415	0.125	0.123 (- 1)	0.449 (- 3)	0.692 (- 5)
9	0.497	0.227	0.370 (- 1)	0.229 (- 2)	0.599 (- 4)
10	0.555	0.335	0.896 (- 1)	0.889 (- 2)	0.376 (- 3)

1

TABLE B.V

COEFFICIENTS OF PADE APPROXIMATIONS TO 4z-2H(z)

Note: For the definition of H(z) and its Pade approximants, see Section V. The coefficients are given for n=2(2)10. The expression attached to the numbers on the right indicates the power of 10 by which the numbers are multiplied.

e.g.,
$$4z^{-2}H_2(z) = \frac{1 - 0.019444...z^2}{1 + 0.0222...z^2}$$

NUMERATOR

DENOMINATOR

N = 02

. 10	000 00	000	00000	00000	+01	10000	00000	00000	00000	+01
	444 44					22222	22222	22222	22222	-01

N = 04

.10000 00000 00000 00000 +01	10000 00000 00000 00000 +01
21441 94756 55430 71161 -01	20224 71910 11235 95506 -01
. 23504 84513 40586 17205 -03	. 15181 91546 28143 39219 -03

N = 06

.10000 00000 00000 00000 +01	.10000 00000 00000 00000 +01
-, 24662 60143 38362 60391 -01	.17004 06523 28304 06275 -01
. 34682 10542 75433 98340 -03	. 12939 78463 84108 31895 -03
-, 15875 89095 57136 15182 -05	.46027 66426 80130 08786 -06

N = 08

, 10000	00000	00000	00000	+01	. 10000	00000	00000	00000	+01
-, 27191	18247	38415	96633	-01	. 14475	48419	28250	70034	-01
. 42197	89824	50745	02333	-03	.99198	23122	58636	82145	-04
- 27389					. 39189	01649	14937	85289	-06
. 70221					, 77891				

A STATE OF THE STA

TABLE B.V (Concluded)

NUMERATOR

DENOMINATOR

. 10000	00000	00000	00000	+01	, 10000	00000	00000	00000	+01
29128	03421	36361	44413	-01	, 12538	63245	30305	22254	-01
. 47973					, 76240				
36817	31277	22802	06720	-05	. 28627				
. 14091					.67825				
-, 21678	54057	76489	52502	-10	.83325				

TABLE B.VI

ERROR OF PADE APPROXIMATION TO 4z-2H(z)

Let $4z^{-2}H_n(z)$ be the n^{th} order main diagonal (see B.V) Pade approximant to $4z^{-2}H(z)$ and define $\varepsilon_n(z)=|4z^{-2}||H(z)-H_n(z)|$. The tables give $\varepsilon_n(z)$ for n=2(2)10 and z=1(1)10. The expression in parentheses to the right of each number indicates the power of 10 by which the number is multiplied.

$\frac{\sqrt{n}}{z}$	2	4	<u>6</u>	<u>8</u>	<u>10</u>
1	0.584 (-5)	0.336 (-9)	0.433 (-14)	1.000 (-20)	1.000 (-20)
2	0.443 (-3)	0.308 (-6)	0.646 (-10)	0.535 (-14)	0.210 (-18)
3	0.414 (-2)	0.148 (-4)	0.161 (- 7)	0.691 (-11)	0.138 (-14)
4	0.179 (-1)	0.205 (-3)	0.728 (- 6)	0.102 (- 8)	0.657 (-12)
5	0.599 (-1)	0.140 (-2)	0.126 (- 4)	0.443 (- 7)	0.721 (-10)
6	0.104	0.597 (-2)	0.116 (- 3)	0.881 (- 6)	0.308 (- 8)
7	0.177	0.184 (-1)	0.680 (- 3)	0.100 (- 4)	0.675 (- 7)
8	0.341	0.441 (-1)	0.286 (- 2)	0.751 (- 4)	0.900 (- 6)
9	0.339	0.873 (-1)	0.920 (- 2)	0.404 (- 3)	0.812 (- 5)
10	0.410	0.149	0.240 (- 1)	0.167 (- 2)	0.535 (- 4)

TABLE B.VII

COEFFICIENTS OF RATIONAL APPROXIMATIONS TO E(z)

Here we present coefficients of the numerator and denominator polynomials of the rational approximation to E(z) defined in (5.11). We give coefficients for n=0(1)10. The sequence of numbers given is for the lowest power to the highest power, respectively. The expression to the right of each number is the power of 10 by which it is multiplied.

e.g.,
$$E_2(z) = \frac{3z + 36}{z^2 + 12z + 36}$$

	NUMERATOR			DENOMINATOR	
N = 00 .10000 00000	00000 00000	01	.10000 00000	00000 00000	01
N = 01 .40000 00000 .00000 00000	00000 00000	01	.40000 00000 .10000 00000		01 01
N = 02 .36000 00000 .30000 00000 .00000 00000	00000 00000 00000 00000 00000 00000	02 01 00	.36000 00000 .12000 00000 .10000 00000	00000 00000	02 02 01
N = 03 .48000 00000 .60000 00000 .56666 66666 .00000 00000	00000 00000 00000 00000 66666 66667 00000 00000	03 02 01	.48000 00000 .18000 00000 .24000 00000	00000 00000 00000 00000 00000 00000 00000 00000	03 03 02 01

TABLE B.VII (Continued)

	NUMERATOR		DENOMINATOR
N = 04			
, 12600 00000 0 , 16666 66666 6	66666 66667 +01	.33600 00000	00000 00000 +03 00000 00000 +02
N = 05			
.30240 00000 0 .46200 00000 0		.75600 00000	00000 00000 +05 00000 00000 +04 00000 00000 +02
N = 06			
83160 00000 0 13776 00000 0 81900 00000 0 41160 00000 0 49000 00000 0	00000 00000 +07 00000 00000 +06 00000 00000 +06 00000 00000 +04 00000 00000 +03 00000 00000 +01		00000 00000 +07
N = 07			
.25945 92000 0 .45276 00000 0 .31416 00000 0 .19580 40000 0 .46480 00000 0	00000 00000 +03 11428 57143 +01	.60540 48000 .11975 04000 .13860 00000 .10080 00000 .45360 00000 .11200 00000	

TABLE B.VII (Concluded)

<u>NUI</u>	MERATOR		DENOMINATOR	
N = 08				
46702 65600 00000 90810 72000 00000 16432 41600 00000 12612 60000 00000 89073 60000 00000 29106 00000 00000 78274 28571 4285 54357 14285 71428 00000 00000 00000	0 00000 +09 0 00000 +09 0 00000 +08 0 00000 +06 0 00000 +05 7 14286 +03 8 57143 +01	. 20756 73600	00000 00000 00000 00000 00000 00000 0000	+10 +10 +09 +08 +07 +06 +04 +03 +01
N = 09				
. 17643 22560 00000 .35286 45120 00000 .65585 52000 00000 .54054 00000 00000 .41441 40000 00000 .16336 32000 00000 .57052 28571 42857 .83442 85714 2857 .76579 36507 93650	0 00000 +11 0 00000 +10 0 00000 +09 0 00000 +08 0 00000 +07 7 14286 +05 42857 +03 0 79365 +01	.79394 51520 .16605 38880 .21189 16800 .18162 14400 .10810 80000 .44352 00000 .11880 00000	00000 00000 00000 00000 00000 00000 0000	+11 +11 +10 +09 +08 +06 +05
N = 10				
. 28621 23264 00000	0 00000 +13 0 00000 +12 0 00000 +11 0 00000 +10 0 00000 +08 4 28571 +07 5 71429 +05 8 17460 +04 0 79365 +01	.33522 12864 .71455 06368 .94097 20320 .84756 67200	00000 00000 00000 00000 00000 00000 0000	+13 +12 +11 +10 +09 +08 +06 +05 +03

TABLE B.VIII

ERROR OF RATIONAL APPROXIMATION TO E(z)

Let $E_n(z)$ be the n^{th} order rational approximation to E(z) as defined in (5.11) and Table B.VII. Set $\epsilon_n(z) = |E(z)-E_n(z)|$. The tables give $\epsilon_n(z)$ for n=3(1)10, r=1(1)10 and $\theta=0,\pi/2,\pi$ where $z=re^{i\theta}$. The expression in parentheses to the right of each number indicates the power of 10 by which the number is multiplied.

$\frac{1}{r}$	<u>o</u>	<u>π/2</u>	п	π (Relative Error)
<u>n = :</u>	<u>3</u>			
1 2 3 4 5 6 7 8 9	0.134 (-4) 0.870 (-4) 0.286 (-3) 0.566 (-3) 0.895 (-3)	0.177 (-4) 0.291 (-3) 0.148 (-2) 0.444 (-2) 0.975 (-2) 0.172 (-1) 0.259 (-1) 0.345 (-1) 0.413 (-1) 0.454 (-1)	0.487 (-4) 0.219 (-2) 0.317 (-1) 0.284 0.175 (1) 0.719 (1) 0.206 (2) 0.490 (2) 0.110 (3) 0.243 (3)	0.369 (-4) 0.119 (-2) 0.115 (-1) 0.643 (-1) 0.230 0.517 0.762 0.896 0.957 0.976
n = .	<u>4</u>			
1 2 3 4 5 6 7 8 9	0.188 (-6) 0.407 (-5) 0.226 (-4) 0.716 (-4) 0.166 (-3) 0.315 (-3) 0.524 (-3) 0.787 (-3) 0.110 (-2) 0.145 (-2)	0.287 (-6) 0.543 (-5) 0.155 (-4) 0.198 (-3) 0.102 (-2) 0.317 (-2) 0.724 (-2) 0.133 (-1) 0.209 (-1) 0.288 (-1)	0.754 (-6) 0.703 (-4) 0.180 (-2) 0.276 (-1) 0.326 0.374 (1) 0.274 (3) 0.773 (2) 0.126 (3) 0.256 (3)	0.571 (-6) 0.382 (-4) 0.655 (-3) 0.624 (-2) 0.429 (-1) 0.269 0.101 (2) 0.141 (1) 0.110 (1) 0.103 (1)

TABLE B.VIII (Continued)

$\frac{\sqrt{2}}{2}$	<u>o</u>	<u>π/2</u>	п	π (Relative Error)			
n = 5	0						
1 2 3 4 5 6 7 8 9	0.918 (-6) 0.290 (-5) 0.598 (-5) 0.916 (-5) 0.107 (-4) 0.860 (-5) 0.117 (-5)	0.632 (-8) 0.379 (-6) 0.449 (-5) 0.306 (-4) 0.145 (-3) 0.504 (-3) 0.136 (-2) 0.298 (-2) 0.553 (-2) 0.895 (-2)	0.125 (-7) 0.188 (-5) 0.674 (-4) 0.148 (-2) 0.242 (-1) 0.314 0.318 (1) 0.216 (2) 0.848 (2) 0.228 (3)	0.947 (-8) 0.102 (-5) 0.245 (-4) 0.335 (-3) 0.318 (-2) 0.226 (-1) 0.118 0.395 0.737 0.916			
$\frac{\mathbf{n} = 6}{\mathbf{n}}$							
1 2 3 4 5 6 7 8 9	0.760 (-10) 0.602 (-8) 0.665 (-7) 0.337 (-6) 0.113 (-5) 0.295 (-5) 0.649 (-5) 0.126 (-4) 0.221 (-4) 0.360 (-4)	0.125 (-9) 0.154 (-7) 0.253 (-6) 0.184 (-5) 0.883 (-5) 0.290 (-4) 0.936 (-4) 0.288 (-3) 0.778 (-3) 0.178 (-2)	0.225 (-9) 0.559 (-7) 0.233 (-5) 0.603 (-4) 0.129 (-2) 0.229 (-1) 0.343 0.465 (1) 0.825 (2) 0.508 (3)	0.170 (-9) 0.304 (-7) 0.847 (-6) 0.136 (-4) 0.170 (-3) 0.165 (-2) 0.127 (-1) 0.850 0.717 0.204			
$\underline{\mathbf{n}} = 7$							
1 2 3 4 5 6 7 8 9	0.144 (-11) 0.229 (- 9) 0.370 (- 8) 0.236 (- 7) 0.905 (- 7) 0.251 (- 6) 0.558 (- 6) 0.105 (- 5) 0.172 (- 5) 0.255 (- 5)	0.236 (-11) 0.579 (- 9) 0.137 (- 7) 0.113 (- 6) 0.526 (- 6) 0.142 (- 5) 0.627 (- 5) 0.341 (- 4) 0.130 (- 3) 0.380 (- 3)	0.407 (-11) 0.185 (- 8) 0.936 (- 7) 0.240 (- 5) 0.551 (- 4) 0.120 (- 2) 0.229 (- 1) 0.367 0.493 (1) 0.506 (2)	0.308 (-11) 0.101 (- 8) 0.340 (- 7) 0.543 (- 6) 0.725 (- 5) 0.863 (- 4) 0.848 (- 3) 0.671 (- 2) 0.429 (- 1) 0.203			

TABLE B.VIII (Concluded)

٥							
$\frac{\mathbf{r}}{\mathbf{r}}$	<u>o</u>	π/2	π	π (Relative Error)			
$\underline{n} = 8$							
1 2 3 4 5 6 7 8 9	0.259 (-13) 0.825 (-11) 0.201 (- 9) 0.173 (- 8) 0.853 (- 8) 0.297 (- 7) 0.820 (- 7) 0.192 (- 6) 0.399 (- 6) 0.754 (- 6)	0.420 (-13) 0.208 (-10) 0.759 (- 9) 0.939 (- 8) 0.648 (- 7) 0.327 (- 6) 0.142 (- 5) 0.555 (- 5) 0.189 (- 4) 0.558 (- 4)	0.712 (-13) 0.626 (-10) 0.431 (-8) 0.116 (-6) 0.237 (-5) 0.528 (-4) 0.120 (-2) 0.242 (-1) 0.418 0.638 (1)	0.539 (-13) 0.340 (-10) 0.157 (- 8) 0.262 (- 7) 0.312 (- 6) 0.380 (- 5) 0.444 (- 4) 0.442 (- 2) 0.363 (- 2) 0.256 (- 1)			
$\underline{n} = 9$							
1 2 3 4 5 6 7 8 9	0.439 (-15) 0.280 (-12) 0.102 (-10) 0.117 (- 9) 0.710 (- 9) 0.290 (- 8) 0.904 (- 8) 0.231 (- 7) 0.509 (- 7) 0.995 (- 7)	0.709 (-15) 0.708 (-12) 0.391 (-10) 0.655 (- 9) 0.571 (- 8) 0.330 (- 7) 0.142 (- 6) 0.474 (- 6) 0.124 (- 5) 0.283 (- 5)	0.119 (-14) 0.206 (-11) 0.205 (- 9) 0.657 (- 8) 0.127 (- 6) 0.235 (- 5) 0.535 (- 4) 0.126 (- 2) 0.266 (- 1) 0.484	0.902 (-15) 0.112 (-11) 0.745 (-10) 0.149 (- 8) 0.167 (- 7) 0.169 (- 6) 0.198 (- 5) 0.230 (- 4) 0.231 (- 3) 0.194 (- 2)			
$\underline{n} = \underline{10}$							
	0.658 (-17) 0.898 (-14) 0.492 (-12) 0.747 (-11) 0.566 (-10) 0.267 (- 9) 0.101 (- 8) 0.296 (- 8) 0.742 (- 8) 0.164 (- 7)	0.114 (-16) 0.227 (-13) 0.189 (-11) 0.425 (-10) 0.463 (- 9) 0.315 (- 8) 0.151 (- 7) 0.546 (- 7) 0.154 (- 6) 0.426 (- 6)	0.188 (-16) 0.646 (-13) 0.952 (-11) 0.392 (- 9) 0.831 (- 8) 0.133 (- 6) 0.241 (- 5) 0.569 (- 4) 0.139 (- 2) 0.256 (- 1)	0.142 (-16) 0.351 (-13) 0.346 (-11) 0.887 (-10) 0.109 (- 8) 0.956 (- 8) 0.893 (- 7) 0.104 (- 5) 0.121 (- 4) 0.103 (- 3)			

APPENDIX C

FORTRAN PROGRAM FOR COMPUTING RATIONAL APPROXIMATIONS

Here we describe a FORTRAN program which computes the rational approximations (2.1) and (2.18) for the incomplete gamma function and its special cases. The selection of input data determines the function to be approximated. We also include a description of input data, operating procedures, output, and a listing of the FORTRAN program.

The input data are read in the order r, θ , A, B, NCODE, IOPT, LOPT, and $\begin{cases} or \\ Error \end{cases}.$

The value IOPT determines which value in the braces $\{0\}$ Error $\{0\}$ should be read. If the nth approximant is desired, IOPT = 7 is entered and the corresponding value in braces, n, is entered. IOPT $\neq 7$ instructs the computer to iterate until an integer m is found such that $|v^{-1}| |v^{-1}| |v^{-1}|$

For $z=re^{i\theta}$ (& in degrees) and v=A+iB, the following table indicates the values of v and NCODE to select to compute the approximations to the designated functions. A listing of the FORTRAN program concludes this Appendix.

approximate is $V_n(z, v)$ and if LOPT $\neq 9$, the approximate is $S_n(z, v)$.

$\frac{\text{Output}}{\text{Re}\left[V_{n}^{*}(z,\upsilon)\right],\text{Im}\left[V_{n}^{*}(z,\upsilon)\right]}$	Re[Erf(z)], Im[Erf(z)] Re[Erfc(z)], Im[Erfc(z)]	Re [a(z)], Im [a(z)] Re [a*(z)], Im [a*(z)]	$Re\left[\mathbb{C}^*(z)\right]$, $Im\left[\mathbb{C}^*(z)\right]$	$\operatorname{Re}\left[\mathscr{L}^{\!$	$Re\left[C^*(z)\right]$, $Im\left[C^*(z)\right]$	$Re[S^*(z)]$, $Im[S^*(z)]$
Expressions Computed $V_n^*(z, v) = v^{-1}z^{v}e^{+z}V_n(z, v)$	$\text{Erf}(z) = ze^{-z^2} v_n(z^2 e^{-i\pi, \frac{1}{2}})$ and $\text{Erfc}(z) = \frac{1}{2}\pi^{\frac{1}{2}} - \text{Erf}(z)$	$a(z) = ze^{-z^2/2}V_n(z^2e^{-1\pi/2}, \frac{1}{2})$ and $a^*(z) = (\pi/2)^{\frac{1}{2}} - a(z)$	$J_1^* = 2z^{\frac{1}{2}}e^{iz}V_n(\frac{1}{2},iz),$	$J_2^* = 2z^{\frac{1}{2}}e^{-1z}V_n(\frac{1}{2}, -iz)$,	$G^*(z) = \frac{1}{2}(J_1^* + J_2^*)$,	$\lambda^*(z) = \frac{1}{21} (J_1^* - J_2^*),$
Function $\int_0^z t^{\nu-1}e^{t} dt = v^{-1}z^{\nu}e^{z} \left\{ v_n(z, \nu) + R_n(z, \nu) \right\},$ $Re(\nu) > 0$	0 e-t ²	0.5 0 $\int_0^z e^{-t^2/2} dt = ze^{-z^2/2} \left\{ v_n(z^2 e^{-1\pi/2}, \frac{1}{2}) + R_n(z^2 e^{-1\pi/2}, \frac{1}{2}) \right\}$	0.5 0 $\mathcal{C}(z) = \int_0^z t^{-\frac{1}{2}} \cos t dt = \frac{1}{2} (J_1 + J_2)$,	$A(z) = \int_0^z t^{-\frac{1}{2}} \sin t dt = \frac{1}{2i} (J_1 - J_2)$,	$C(z) = \int_{z}^{\infty} t^{-\frac{1}{2}} \cos t dt = (\pi/2)^{\frac{1}{2}} - C(z)$,	and $S(z) = \int_{z}^{\infty} t^{-\frac{1}{2}} \sin t dt = (\pi/2)^{\frac{1}{2}} - \mathcal{J}(z)$
ମ୍ମା ମ	0.5					
41 4	0.5	0.0	0.5			
NCODE 1	α	 10 	4			

Output

(concluded) $J_1 = 2z^{\frac{1}{2}}e^{iz}\left\{V_n(ze^{i\pi/2}, \frac{1}{2}) + R_n(ze^{i\pi/2}, \frac{1}{2})\right\}$ $C^*(z) = (\pi/2)^{\frac{1}{2}} - \ell^*(z)$

 $J_2 = 2z^{\frac{1}{2}}e^{-1z}\left\{V_n(ze^{-1\pi/2},\frac{1}{2})+R_n(ze^{-1\pi/2},\frac{1}{2})\right\} S^*(z) = (\pi/2)^{\frac{1}{2}} - \mathcal{J}^*(z)$

 $K_1^* = ze^{1z^2} V_n(ze^{1\pi/2}, \frac{1}{2})$,

 $Re\left[\mathfrak{J}^*(z)\right]$, $Im\left[\mathfrak{J}^*(z)\right]$

 $\text{Re}\left[\mathfrak{L}^*(z)\right]$, $\text{Im}\left[\mathfrak{L}^*(z)\right]$

 $K_2^* = ze^{-1z^2}V_n(ze^{-i\pi/2,\frac{1}{2}})$,

 $\tilde{c}^*(z) = \frac{1}{2}(K_1^* + K_2^*)$,

Re $\left[L^*(z)\right]$, Im $\left[L^*(z)\right]$

 $Re[F^*(z)]$, $Im[F^*(z)]$

 $L(z) = \int_{-\infty}^{\infty} \sin t^2 dt = \frac{1}{2} (\pi/2)^{\frac{1}{2}} - \varepsilon(z)$

 $F^*(z) = \frac{1}{2}(\pi/2)^{\frac{1}{2}} - 3^*(z)$, and

 $f'(z) = \frac{1}{2i} (K_1^* - K_2^*),$

 $L^*(z) = \frac{1}{2}(\pi/2)^{\frac{1}{2}} - L^*(z)$ $K_1 = ze^{1z^2} \left\{ V_n(z^2e^{1\pi/2}, \frac{1}{2}) + R_n(z^2e^{1\pi/2}, \frac{1}{2}) \right\}$

 $K_2 = ze^{-1z^2} \left\{ V_n(z^2e^{-1\pi/2}, \frac{1}{2}) + R_n(z^2e^{-1\pi/2}, \frac{1}{2}) \right\}$

 $F(z) = \int_{z}^{\infty} \cos t^2 dt = \frac{1}{2} (\pi/2)^{\frac{1}{2}} - \mathfrak{J}(z)$,

 $\mathcal{L}(z) = \int_0^z \sin t^2 dt = \frac{1}{2i} (K_1 - K_2)$,

0.5 0 $3(z) = \int_{0}^{z} \cos t^{2} dt = \frac{1}{2} (K_{1} + K_{2})$,

```
RATIONAL APPROX., ASCENDING SERIES DIMENSION VR(40), VI(40)
C
      READ 400, R, TH, A, B, NCODE, IOPT, KOPT, LOPT, PRINT 403, R, TH, A, B
PI=3. 1415926
 1
       THA=TH*PI/180
       HP1=.5*P1
       RTP1=1,7724538
       NN=1
       X=R*COSF(THA)
       Y=R*SINF(THA)
       RO=LOGF(R)
 203
       IF (IOPT-7) 101, 102, 101
 101
       READ 401 ERROR
       ERROR=ERROR*ERROR
       GO TO 103
       READ 402, NT
 102
       MT=NT+1
 103
       GO TO (70,80,90,100,110), NCODE
 90
       CM=. 5
       GO TO 81
 80
       CM=1.0
 81
       RZ=(Y*Y-X*X)*CM
       RZI=-2.*X*Y*CM
       TH=THA+RZI
       C=COSF(TH)
       D=SINF(TH)
       DEN=R*EXPF(RZ)
       CR=C*DEN
       CI=D*DEN
       X=RZ
       Y=RZI
       GO TO 300
 70
       C=A*RO-B*THA+X
       DN=1./(A*A+B*B)
       TH=B*RO+A*THA+Y
       DN=EXPF(C)*DN
       CR=DN*(A*COSF(TH)+B*SINF(TH))
       CI=DN*(A*SINF(TH)-B*COSF(TH))
       GO TO 300
 100
       THA= 5*THA
       C=X
       X=-Y
       Y=C
 105
       DN=SQRTF(R)*EXPF(X)
       CR=DN*COSF(THA+Y)
       CI=DN*SINF(THA+Y)
       GO TO 300
 110
       C=X*X-Y*Y
       D=-2. *X*Y
```

```
Y=C
     X=D
106
     DN=R*EXPF(X)
     CR=DN*COSF(THA+Y)
     CI=DN*SINF(THA+Y)
     GO TO 300
60
      IF (NN-2) 61,62,62
61
     NN=2
     X=-X
     Y=-Y
     CC=C
     DD=D
     IF(NCODE-4)106,105,106
IF (LOPT-9) 202,205,202
300
202
     A=A-1.
205
     AI = (A+1, )*(A+1, )+B*B
     AI=1, /AI
      IF(LOPT-9)11,10,11
10
      P1=1.
      S2=A+2. +X
     $1=1.
     P2=(A+2.)-((A+1.)*X+B*Y)*A1
     01=0,
     Q2=B+(B*X-Y*(A+1,))*AI
     T1=0.
     T2=B+Y
     GO TO 301
11
     P1=0, 0
     P2=A+2.
     Q1=0.0
     Q2=B
      S1=1,0
      S2=X+A+2.
     T1=0.0
     T2=Y+B
301
      J=1
     VR(1)=(P2*S2+Q2*T2)/(S2*S2+T2*T2)
     VI(1)=(Q2*S2-P2*T2)/(S2*S2+T2*T2)
302
     K=J+1
     F=J
     G=K
     H=2. *F+A
     AL=H*(G+A)-B*B
      BL=B*(H+G+A)
      C = (H+1, )*(H*(H+2, )-B*B+A*X-B*Y)
     C=C-B*(B*X+A*Y+B*(2,*H+2,))
     D=B*(H*(H+2,)-B*B+A*X-B*Y)
D=D+(H+1,)*(B*X+A*Y+B*(2,*H+2,))
      E=F*((X*X-Y*Y)*(H+2, )-2, *B*X*Y)
      FE=F*(2.*X*Y*(H+2.)+B*(X*X-Y*Y))
      DIN=1, /(AL*AL+BL*BL)
```

12 25 WHY 18 YE

```
ACPBD=AL*C+BL*D
      BCMAD=BL*C-AL*D
      AEPBF=AL*E+BL*FE
      BEMAF=BL*E-AL*FE
      P3=Dil*(P2*ACPBD+Q2*BCMAD+P1*AEPBF+Q1*BEMAF)
      Q3=DN*(-P2*BCMAD+Q2*ACPBD-P1*BEMAF+Q1*AEPBF)
      S3=DN*(S2*ACPBD+T2*BCMAD+S1*AEPBF+T1*BEMAF)
      T3=DN*(-S2*BCMAD+T2*ACPBD-S1*BEMAF+T1*AEPBF)
     Q1 = Q2
     Q2 = Q3
     P1=P2
     P2=P3
     S1=S2
     S2=S3
     T1=T2
     T2=T3
     L=K+1
     IF (IOPT-7) 304, 303, 304
      IF (NT-L) 304, 304, 305
303
305
      J=J+1
     GO TO 302
     DEN=1./(S2*S2+T2*T2)
304
     VR(K)=(P2*S2+Q2*T2)*DEN
     VI(K)=(Q2*S2-P2*T2)*DEN
306
     IF (IOPT-7) 308,307,308
     IF (NT-K) 308,308,305
RER=VR(K)-VR(K-1)
307
308
     REI=VI(K)-VI(K-1)
      IF (10PT-7) 309,310,309
309
     C=CR*RER-CI*REI
     D=CI*RER+CR*REI
     ERT=C*C+D*D
      IF (ERT-ERROR) 310,310,305
310
     C=CR*VR(K)-CI*VI(K)
     D=CI*VR(K)+CR*VI(K)
     GO TO (30,40,50,60,60),NCODE
     PRINT 500,
30
     PRINT 501, K, C, D
     GO TO 68
     PRINT 502,
PRINT 501, K, C, D
C=. 88622692-C
40
     D=-D
     PRINT 501,K,C,D
     GO TO 68
     PRINT 502,
PRINT 501, K, C, D
C=1, 2533141-C
50
     D=-1)
     PRINT 501,K,C,D
     GO TO 68
```

CONTRACTOR OF THE PARTY OF THE

```
62
       CM=1.
IF (NCODE-1:) 64,65,64
64
       CM=. 5
65
       SIZR=CM*(DD-D)
       SIZI=CM*(C-CC)
       CIZR=CM*(C+CC)
       CIZI=CM*(D+DD)
      PRINT 505,
PRINT 506, K, SIZR, SIZI, CIZR, CIZI
DN=1, 2533141
       IF (NCODE-5) 66,67,66
       DN=. 5*DN
67
66
       CIZR=DN-CIZR
       SIZR=DN-SIZR
       CIZI=-CIZI
       SIZI=-SIZI
PRINT 506, K, SIZR, SIZI, CIZR, CIZI
IF (SENSE SWITCH 1) 69,1
68
69
       PRINT 501,K,VR(K),VI(K)
       GO TO 1
       FORMAT (4F12.0,413)
400
       FORMAT(E14.7)
401
402
       FORMAT(13)
      FORMAT(4(E14.7,2X)/)
FORMAT(15H INC. GAMMA FN./)
FORMAT(13,1X,2(E14.7,2X)/)
FORMAT(15H ERROR FUNCTION/)
403
500
501
502
505
       FORMAT (18H FRESNEL INTEGRALS/)
506
       FORMAT(13, 2X, 4(E14, 7, 2X)/)
       END
```

and the North Section

APPENDIX D

FORTRAN PROGRAM FOR COMPUTATION OF THE EXPONENTIAL AND CIRCULAR FUNCTIONS

The following FORTRAN program is based on the results of Section IV.

<u>Input</u>: (Cards) Let n be the order of the rational approximations to the exponential and circular functions, and suppose that these approximations are desired for $n = n_1(1)n_k$ and $x = x_1(\Delta x)x_m$. The data are entered in the order n_1 , n_k , x_1 , x_m , Δx .

Switch settings: None.

Output: (Printed) The output is of the following form for x_1, x_2, \dots, x_m .

$$\begin{array}{l} e_{n_{1}}^{(x_{1})} \text{ , } \sin_{n_{1}}(x_{1}) \text{ , } \cos_{n_{1}}(x_{1}) \text{ , } \tan_{n_{1}}(x_{1}) \\ \\ e_{n_{2}}^{(x_{1})} \text{ , } \sin_{n_{2}}(x_{1}) \text{ , } \cos_{n_{2}}(x_{1}) \text{ , } \tan_{n_{2}}(x_{1}) \\ \\ \\ \vdots \\ e_{n_{k}}^{(x_{1})} \text{ , } \sin_{n_{k}}(x_{1}) \text{ , } \cos_{n_{k}}(x_{1}) \text{ , } \tan_{n_{k}}(x_{1}) \end{array}$$

```
C
       RATIONAL APPROX. TO EXP(-Z), COS(Z), SIN(Z), TAN(Z)
       READ 100, NI, NF, ZI, ZF, ZD
       PRINT 200
       7=71
 2
       ZP=7.*Z
       Z14=-ZP
       N=2
       FM=2.0
       CM=2.*(2.*FM+1.)
A1P=2.0
       A2P=12, 0+ZP
       B1P=1.0
       B2P=6, 0
       A1M=2. 0
       A2M=12, 0+ZM
       B1M=1, 0
       B2M=6, 0
 3
       N=N+1
       A3P=CM*A2P+ZP*A1P
       A3M=CM*A2M+ZM*A1M
       B3P=CM*B2P+ZP*B1P
       B3M=CM*B2M+ZM*B1M
       A1P=A2P
       A2P=A3P
       B1P=B2P
       B2P=B3P
       AIM=A2M
       A2M=A3M
       B1M=B2M
       B2M=B3M
       FM=FM+1.0
       CM=2.*(2.*FM+1.0)
       IF (NI-N) 4,4,3
EZ=(A3P-Z*B3P)/(A3P+Z*B3P)
 L.
       D=A3M*A3M+ZP*B3M*B3M
       CZ=(A3M*A3M+ZM*B3M*B3M)/D
       SZ=2. *Z*A3M*B3M/D
       D=SZ/CZ
       PRINT 300, N, 7, EZ, SZ, CZ, D
IF (NF-N) 1, 5, 3
IF (ZF-Z) 1, 1, 6
       Z=7.+ZD
       GO TO 2
      FORMAT(2(13), 3(E15.7))
FORMAT(//2H N, 7X1HZ, 13X7HEXP(-Z), 9X6HSIN(Z), 10X6HCOS(Z)
1, 10X6HTAN(Z)/)
 100
       FORMAT(12,5(2XE14,7))
 300
       END
```

APPENDIX E

FORTRAN PROGRAM FOR COMPUTING RATIONAL APPROXIMATIONS TO E(z)

Here we give a brief description of a FORTRAN program which computes the rational approximations to E(z) defined by (5.11). A listing of the program follows the description of input and output data.

Let $z=re^{i\theta}$ and suppose we wish to compute the n^{th} order rational approximation to E(z) as defined by (5.11) for $r_{I}(\Delta r)r_{F}$ and $\theta_{I}(\Delta \theta)\theta_{F}$ where I and F subscripts denote initial and final values, respectively.

<u>Input</u>: (Cards) The values r_I , r_F , Δr , θ_I , θ_F and $\Delta \theta$ are entered in this order (θ in degrees), three numbers per card.

Output: (Typed) For each pair of values of r and θ , the nth order rational approximation is printed, real part and then the imaginary part.

Switch settings: None.

```
C
         RATIONAL APPROXIMATIONS TO E(Z)
        DIMENSION F1(30), F2(30), F3(30), F4(30), P1(30), P2(30), P3(30), P4(30) READ 100, RI, RF, RD, THI, THF, THD CF=3, 141592653589793238462643/180,
 1
         DO 2 J=1,30
         F1(J)=0, Ò
         F2(J)=0.0
        F3(J)=0,0
F4(J)=0,0
P1(J)=0,0
P2(J)=0,0
         P3(J)=0,0
         P4(J)=0.0
 2
         F3(1)=1,0
         F3(2)=24.0
         F3(3)=180,0
         F3(4)=480.0
        F2(1)=1, 0
F2(2)=12, 0
F2(3)=36, 0
         F1(1)=1,0
         F1(2)=4.0
         P3(1)=0.0
         P3(2)=17./3.
         P3(3)=60.0
         P3(4)=480.0
         P2(1)=0.0
P2(2)=3.0
         P2(3)=36.0
         P1(1)=0.0
         P1(2)=4,0
         N=4
         M=N+1
 3
         H=N
         TWH=2. *H
         A1=(H-2.)*(TWH-1.)/(H*(TWH-3.))
         A2=1.0
         A3=-A1
         B1=2,*(TWH-1,)*(H+1,)/H
         B2=-2,*(TWH-1,)*(H-3,)/H
F4(1)=A1*F3(1)+A2*F2(1)+A3*F1(1)
         P4(1)=A1*P3(1)+A2*P2(1)+A3*P1(1)
         DO 4 J=2,M
F4(J)=A1*F3(J)+B1*F3(J-1)+A2*F2(J)+B2*F2(J-1)+A3*F1(J)
P4(J)=A1*P3(J)+B1*P3(J-1)+A2*P2(J)+B2*P2(J-1)+A3*P1(J)
         DO 5 J=1, M
         F1(J)=F2(J)
         F2(J)=F3(J)
         F3(J)=F4(J)
         P1(J)=P2(J)
```

CAN WAR

```
P2(J)=P3(J)
P3(J)=P4(J)
567
      RO=RI
      R=1, /RO
      TH=THI
      PRINT 101, RO, TH
8
      T=TH*CF
      RE=R*COSF(T)
      RIM=-R*SINF(T)
      SRN=P4(M)*RE+P4(M-1)
      SIN=P4(M)*RIM
      SRD=F4(M)*RE+F4(M-1)
      SID=F4(M)*RIM
      DO 9 J=3,M
L=M-J+1
      S=RE*SRN-RIM*SIN+P4(L)
      SIN=RE*SIN+RIM*SRN
      S=RE*SRD-RIM*SID+F4(L)
      SID=RE*SID+RIM*SRD
0
      DEN=SRD*SRD+SID*SID
      QR=(SRN*SRD+SIN*SID)/DEN
QI=(SIN*SRD-SRN*SID)/DEN
      PRINT 104, QR, QI
      TH=TH+THD
      IF (THF-TH)10,8,8
10
      RO=RO+RD
      IF (RF-RO)12,7,7
12
      CONTINUE
13
      N=N+1
      GO TO 3
FORMAT (3E15.7)
100
      FORMAT(E14, 7, 2X, E14, 7)
FORMAT(2(E32, 24))
104
      END
```

DISTRIBUTION LIST

Contract No. Nonr-2638(00)(X)

No. of Copies	Recipient
10	Chief, Bureau of Ships Washington 25, D. C. 3 Tech. Info Br (Code 335) 1 Tech. Asst. to Chief (Code 106) 3 Computer Systems and Applications Br (Code 732) 1 Asst. Chief for Field Activities (Code 700) 1 Asst. Chief for Nuclear Propulsion (Code 1500) 1 Lab Mgt. (Code 320)
1	Chief, Bureau of Weapons 18th and Constitution Avenue Washington 25, D. C.
1	Chief, Bureau of Supplies and Accounts 18th and Constitution Avenue Washington 25, D. C.
1	Chief, Bureau of Census Washington 25, D. C.
1	Chief, Office of Naval Research Washington 25, D. C.
1	Naval Shipyard Boston, Massachusetts
1	Naval Shipyard Charleston, South Carolina
ı	Naval Shipyard Long Beach, California
l	Naval Shipyard Attn: Shipyard Tech. Library Bldg. 746, Code 370a Mare Island, California

No. of Copies	Recipient
1	Naval Shipyard New York, New York
1	Naval Shipyard Norfolk, Virginia
1	Naval Shipyard San Francisco, California
1	Naval Shipyard Philadelphia, Pennsylvania
1	Naval Shipyard Portsmouth, New Hampshire
1	Naval Shipyard Puget Sound, Washington
1	Naval Shipyard Pearl Harbor, Hawaii
1	CO & DIR, USNBTL Philadelphia, Pennsylvania
1	CO & DIR, U. S. Naval Electronics Lab San Diego, California
1	CO & DIR, U. S. Naval Research and Development Lab San Francisco, California
1	CO & DIR, U. S. Naval Training Device Center Computer Branch Port Washington, New York
1	CO, USNCML St. Paul, Minnesota
1	CDR, U. S. Naval Proving Ground Dahlgren, Virginia

No. of Copies	Recipient
3	CDR, U. S. Naval Ordnance Test Station China Lake, California 1 Pasadena Annex 1 Tech. Library 1 Michelson Lab (Code 5038)
1	CDR, U. S. Naval Ordnance Lab White Oak, Silver Spring, Maryland
1	Director, United States Naval Academy Annapolis, Maryland
1	DIR, U. S. Naval Research Lab 18th and Constitution Avenue Washington 25, D. C.
1	SUPT, U. S. Naval Postgraduate School Monterey, California Attn: Library, Technical Reports Section
1	SUPT, U. S. Naval Academy Department of Math Annapolis, Maryland
1	CG, Aberdeen Proving Ground Aberdeen, Maryland
1	DIR, National Bureau of Standards Washington 25, D. C.
1	G. C. Marshall Flight Center NASA Huntsville, Alabama
1	DIR, Langley Aero Lab NASA Langley Field, Virginia
1	DIR, Lewis Flight Propulsion Lab NASA Cleveland 11, Ohio

No. of Copies	Recipient
1	Commander Aeronautical Systems Division Attn: Applied Mathematics Laboratory Wright-Patterson Air Force Base, Ohio
1	CG, Frankford Arsenal Head, Math Section Pitman-Dunn Laboratories Philadelphia 37, Pennsylvania
1	CG, White Sands Proving Ground Flight Determination Lab Las Cruces, New Mexico
1	USAEC, Technical Information Service Oak Ridge, Tennessee
2	U. S. Atomic Energy Commission Washington 25, D. C. Attn: Tech. Library
1	CO, Diamond Ordnance Fuze Laboratory Washington 25, D. C. Attn: Library
1	George Washington University Logistics Research Washington, D. C.
1	Johns Hopkins University Applied Physics Laboratory Silver Spring, Maryland
1	University of California Librarian, Numerical Analysis Los Angeles 24, California
1	Carnegie Institute of Technology Pittsburgh, Pennsylvania

No. of Copies	Recipient
1	Hudson Laboratory
	Columbia University
	Dobbs Ferry, New York
2	Harvard University
	Cambridge, Massachusetts
	1 Department of Math
	Attn: Prof. J. S. Walsh
	1 Computation Laboratory
1	Institute for Advanced Study
	Princeton, New Jersey
2	Massachusetts Institute of Technology
	Cambridge, Massachusetts
	Attn: Computation Center
2	New York University
	New York, New York
	l Inst. of Math Sciences
	1 AEC Computing Facility
1	DIR, Research Center
	Ohio State University
	Columbus, Ohio
1	Pennsylvania State University
	Department of Math
	University Park, Pennsylvania
1	Princeton University
	Princeton, New Jersey
	Attn: Library
1	University of California
	Berkeley, California
2	University of Illinois
	Urbana, Illinois
	1 Department of Math
	l Electronic Digital Computer Lab

No.	of	Copies	Recipient
	1		University of Kansas Department of Mathematics Lawrence, Kansas
	3		University of Maryland College Park, Maryland
			l Department of Math l Inst. for Fluid Dynamics and Applied Math
			1 Attn: Professor Burt Hubbard
	1		Willow Run Research Center
			University of Michigan
			Ypsilanti, Michigan
	1		University of Michigan
			Ann Arbor, Michigan
	1		University of Missouri
			Department of Mathematics
			Columbia, Missouri
	1		University of Washington
			Department of Mathematics
			Seattle, Washington
	1		Yale University
			New Haven, Connecticut
	1		State College of Washington
			Department of Mathematics
			Pullman, Washington
	1		Stanford University
			Palo Alto, California
			Attn: Dr. G. E. Forsythe
	1		Johns Hopkins University
			Charles and 34th Streets
			Baltimore 18, Maryland

No. of Copies	Recipient
1	Rutgers University New Brunswick, New Jersey Attn: Professor E. P. Starke
1	Brown University Division of Engineering Providence, Rhode Island Attn: Dr. R. D. Kodis
1	University of Rochester Department of Mathematics Rochester, New York
1	The Scripps Institute of Oceanography University of California LaJolla, California Attn: Dr. Walter Munk
1	Dr. Werner C. Rheinboldt, Director Computing Center, 112 Hinds Hall Syracuse University Syracuse 10, New York
1	DIR, Combustion Engineering, Inc. Windsor, Connecticut
1	DIR, Westinghouse Electric Corporation Bettis Atomic Power Division P. O. Box 1468 Pittsburgh 30, Pennsylvania
2	Argonne National Laboratory P. O. Box 299 Lemont, Illinois
1	Armour Research Foundation 35 West 33rd Street Chicago 16, Illinois
1	Battelle Memorial Institute 505 King Avenue Columbus, Ohio

No. of Copies	Recipient
1	Brookhaven National Laboratory Upton, Long Island, New York
1	Cornell Aero Laboratory, Inc. Buffalo, New York
1	Douglas Aircraft Company, Inc. Santa Monica Division
	3000 Ocean Park Boulevard Santa Monica, California
1	Engineering Research Associates St. Paul 4, Minnesota
1	IBM Corporation 590 Madison Avenue New York 22, New York
1	Knolls Atomic Power Laboratory General Electric Company Math Analysis Unit Schenectady, New York
1	Lincoln Lab B-125 Lexington, Massachusetts
1	Lockheed Aircraft Corporation Missile Systems Division Sunnyvale, California
1	Lockheed Aircraft Corporation Van Nuys, California
ı	Los Alamos Scientific Lab Los Alamos, New Mexico
1	Remington Rand Division of Sperry Rand Electronic Computer Department 315 Fourth Avenue New York 10, New York

No. of Copies	Recipient
1	Ramo Wooldridge Corporation, a Division of Thompson Ramo-Wooldridge, Inc. 8433 Fallbrook Avenue Canoga Park, California
1	Rand Corporation Santa Monica, California
l	Sandia Corporation Albuquerque, New Mexico Attn: Library
1	United Aircraft Corporation 400 Main Street East Hartford 8, Connecticut
1	Division of Vitro Labs Vitro Corporation of America Silver Spring, Maryland
1	Oregon State College Covallis, Oregon Attn: Professor W. Milne
2	Mathematics Research Center University of Wisconsin Madison 6, Wisconsin 1 Professor R. E. Langer 1 Professor P. C. Hammer
1	Professor Wallace Givens Department of Mathematics Northwestern University Evanston, Illinois
1	Dr. A. S. Householder Oak Ridge National Laboratories Oak Ridge, Tennessee

No. of Copies	Recipient
1	Professor John Todd Department of Mathematics California Institute of Technology Pasadena, California
1	Dr. Franz Alt Mathematical Computation Laboratory National Bureau of Standards Washington 25, D. C.
1	Dr. E. W. Cannon Applied Mathematics Division National Bureau of Standards Washington 25, D. C.
1	Miss Irene Stegun Mathematical Computation Laboratory National Bureau of Standards Washington 25, D. C.
1	Professor John W. Carr, III Director Research Computation Center University of North Carolina Chapel Hill, North Carolina
1	Professor J. B. Rosser Department of Mathematics Cornell University Ithaca, New York
1	Professor Richard S. Varga Department of Mathematics Case Institute of Technology Cleveland, Ohio
1	Professor D. H. Lehmer Department of Mathematics University of California Berkeley 4, California

DISTRIBUTION LIST (Concluded)

No. of Copies	Recipient
1	Professor Arthur Erdélyi Department of Mathematics California Institute of Technology Pasadena, California
5	Navy Department David W. Taylor Model Basin Washington, D. C. Attn: Dr. John W. Wrench, Jr.
1	Professor Bertram Bussell Department of Engineering University of California Los Angeles 24, California
1	Department of Mathematics University of Queensland St. Lucia, Brisbane Australia Attn: Dr. M. N. Oguztoreli
25	Midwest Research Institute Attn: Yudell L. Luke
1	Midwest Research Institute Attn: Mathematics and Physics Division
1	Midwest Research Institute Attn: Mr. Kenneth Halleck
1	Midwest Research Institute Attn: Library