

CR-171 742
C.1

(NASA-CR-171742) SPACE SHUTTLE ICE
SUPPRESSION SYSTEM VALIDATION, VOLUME 3
Final report (Texas A&M Univ.) 171 p
HC A08/A A01

N84-17246

CSC1 22B

Unclassified

G3/16 18331

TEXAS ENGINEERING EXPERIMENT STATION
The Texas A&M University System
COLLEGE STATION, TEXAS 77843

SPACE SHUTTLE ICE SUPPRESSION
SYSTEM VALIDATION
TEES-TR-4587-82-01
VOLUME III

J.L.F. PORTEIRO, D.J. NORTON
AEROSPACE ENGINEERING DEPARTMENT
AND
T.C. POLLOCK
ENGINEERING DESIGN AND GRAPHICS DEPARTMENT

Prepared for
NASA Lyndon B. Johnson Space Center
Thermal Technology Branch
Houston, Texas 77058
Under Contract NAS 9-16443

Prepared by
Texas Engineering Experiment Station
Texas A&M University
College Station, Texas 77843

PRESSURE DATA

NOMINAL CONFIGURATION

GROUP I

INFLUENCE OF NOZZLE SIZE, NO WIND

RUNS 11, 12.1 and 13

P = 32 psia

V = 0 KNOTS

ϕ = 0°

ORIGINAL PAGE IS
OF POOR QUALITY

ORIGINAL PAGE IS
OF POOR QUALITY

□-RUN11.SMALL ○-RUN12(NOMINAL) △-RUN13,LARGE

ORIGINAL PAGE IS
OF POOR QUALITY

NOMINAL CONFIGURATION
GROUP II
INFLUENCE OF NOZZLE SIZE ON WIND PENETRATION
RUNS 7, 9.1, 5 and 8

P = 32 psia

V = 20 KNOTS

β = 338°

ϕ = -30°

ORIGINAL PAPER
OF POOR QUALITY

ORIGINAL PAGE IS
OF POOR QUALITY

X1 = 1669
□-RUN7, NO NOZZLE FLOW ○-RUN9(1), SMALL △-RUN9(1), NOMINAL
×-RUN9, LARGE

ORIGINAL PAGE IS
OF POOR QUALITY

□-RUN7, NO NOZZLE FLOW O-RUN9(1), SMALL Δ-RUN8, NOMINAL

×-RUN5, LARGE

NOMINAL CONFIGURATION
GROUP III
INFLUENCE OF NOZZLE PRESSURE ON WIND PENETRATION
RUNS 6.1, 6.2 and 6.3

$V = 30$ KNOTS

$\beta = 338^\circ$

$\phi = 0^\circ$

Nominal Nozzles

ORIGINAL PAGE IS
OF POOR QUALITY

ORIGINAL PAGE IS
OF POOR QUALITY

X1 = 1669
□-RUN6(1), P=32 psia ○-RUN6(2), P=27 psia △-RUN6(3), P=26 psia

ORIGINAL PAGE IS
OF POOR QUALITY

NOMINAL CONFIGURATION

GROUP IV

WIND VELOCITY EFFECTS AT 338°

RUNS 12.1, 3, 1 and 2

P = 32 psia

β = 338°

ϕ = 0°

Nominal Nozzles

ORIGINAL PAGE IS
OF POOR QUALITY

θ=40 & 45
 $X_T \times 10^{-2}$
□-RUN12(j), V=0 KTS ○-RUN3, V=10 KTS △-RUN1(j), V=20 KTS
×-RUN2, V=30 KTS

ORIGINAL PAGE IS
OF POOR QUALITY

X₁ = 1669
□-RUN1(1), V=0 KTS ○-RUN3, V=10 KTS △-RUN1(1), V=20 KTS
×-RUN2, V=30 KTS

ORIGINAL SOURCE
OF POOR QUALITY

NOMINAL CONFIGURATION

GROUP V

NOZZLE PRESSURE EFFECTS, NO WIND

RUNS 12.1, 12.2 and 12.3

$V = 0$ KNOTS

$\phi = 0^\circ$

Nominal Nozzles

ORIGINAL PAGE IS
OF POOR QUALITY

□-RUN12(1), P=32 psi ○-RUN12(2), P=27 psi △-RUN12(3), P=20 psi

ORIGINAL DATA
OF POOR QUALITY

□-RUNJ2(1), P=32 psia O-RUNJ2(2), P=27 psia △-RUNJ2(3), P=20 psia

NOMINAL CONFIGURATION

GROUP VI

WIND VELOCITY EFFECTS AT 112°

RUNS 12.1, 17.1, 17.2, 17.3 and 17.4

P = 32 psia

β = 112°

ϕ = 0°

Nominal Nozzles

ORIGINAL PAGE IS
OF POOR QUALITY

ORIGINAL PAGE IS
OF POOR QUALITY

ORIGIN & PAGE IV
OF POOR QUALITY

□-RUN12(1), V=0 KTS O-RUN17(1), V=20 KTS P=0 psf Δ-RUN17(3), V=30 KTS
 ×-RUN17(2), V=20 KTS +-RUN17(4), V=10 KTS

NOMINAL CONFIGURATION

GROUP VII

NOMINAL VELOCITY EFFECTS AT 202°

RUNS 12.1, 14, 16.1, 15 and 16.2

P = 32 psia

β = 202°

ϕ = 0°

Nominal Nozzles

ORIGINAL PAGE IS
OF POOR QUALITY

Legend:
□ - RUN12(1), V=0 KTS ○ - RUN14, V=20 KTS P=0 Δ - RUN16(1), V=30 KTS
× - RUN15, V=20 KTS + - RUN16(2), V=10 KTS

ORIGINAL PAGE IS
OF POOR QUALITY

$X_1 = 1669$
■ - RUN12(1), V=0 KTS ○ - RUN14, V=20 KTS, P=0 △ - RUN16(1), V=30 KTS
△ - RUN15, V=20 KTS + - RUN16(2), V=10 KTS

ORIGINAL PAGE IS
OF POOR QUALITY

□-RUN12(1), V=0 KTS ○-RUN14, V=20 KTS P=0 Δ-RUN16(1), V=30 KTS
X-RUN15, V=20 KTS +-RUN16(2), V=10 KTS

(4)

NOMINAL CONFIGURATION

GROUP VIII

WIND VELOCITY EFFECTS ON WIND PENETRATION

RUNS 5 and 6.1

P = 32 psia

β = 338°

ϕ = -30°

Nominal Nozzles

ORIGINAL PAGE IS
OF POOR QUALITY

NOMINAL CONFIGURATION

GROUP IX

NOZZLE AZIMUTH ANGLE EFFECTS

RUNS 1.1, 4 and 5

P = 32 psia

V = 20 KNOTS

β = 338°

Nominal Nozzles

ORIGINAL PAGE IS
OF POOR QUALITY

ORIGINAL
OF POOR QUALITY

X1 = 1669
□-RUN1, 0=0 O-RUN4, 0=-15 △-RUN5, 0=-30

ORIGINAL PAGE IS
OF POOR QUALITY

□-RUN1, 0=0 ○-RUN4, 0=-15 △-RUN5, 0=-30

VARIABLE NOZZLE SIZE CONFIGURATION

GROUP X

NOZZLE PRESSURE EFFECTS

RUNS 28.1, 28.2 and 28.3

$V = 20$ KNOTS

$\beta = 338^\circ$

$\phi = 0$

ORIGINAL PAGE IS
OF POOR QUALITY

VARIABLE NOZZLE SIZE CONFIGURATION

GROUP XI

NOZZLE AZIMUTH ANGLE EFFECTS

RUNS 28.1, 29.1 and 30.1

P = 32 psia

V = 20 KNOTS

β = 338°

ORIGINAL PAGE IS
OF POOR QUALITY

VARIABLE NOZZLE SIZE CONFIGURATION

GROUP XII

INFLUENCE OF NOZZLE PRESSURE ON WIND PENETRATION

FOR A -15° NOZZLE AZIMUTH ANGLE

RUNS 29.1, 29.2 and 29.3

$V = 20$ KNOTS

$\beta = 338^\circ$

$\phi = -15^\circ$

ORIGINAL PAGE IS
OF POOR QUALITY

VARIABLE NOZZLE SIZE CONFIGURATION

GROUP XIII

INFLUENCE OF NOZZLE PRESSURE ON WIND PENETRATION

FOR A -30° NOZZLE AZIMUTH ANGLE

RUNS 30.1, 30.2 and 30.3

$V = 20$ KNOTS

$\beta = 338^\circ$

$\phi = -30^\circ$

MARSHALL SPACE FLIGHT CENTER CONFIGURATION

GROUP XIV

WIND VELOCITY EFFECTS AT 0°, LOW FLOWRATE

RUNS 33.1 and 33.2

$\beta = 0^\circ$

Low Flowrate

(+)

ORIGINAL PAGE IS
OF POOR QUALITY

MARSHALL SPACE FLIGHT CENTER CONFIGURATION

GROUP XV

WIND VELOCITY EFFECTS AT 338°, LOW FLOWRATE

RUNS 34.1 and 34.2

$\beta = 338^\circ$

Low Flowrate

(a)

ORIGINAL PAGE IS
OF POOR QUALITY

MARSHALL SPACE FLIGHT CENTER CONFIGURATION

GROUP XVI

WIND VELOCITY EFFECTS AT 180°, LOW FLOWRATE

RUNS 35.1 and 35.2

$\beta = 180^\circ$

Low Flowrate

ORIGIN OF WINDS
OF POOR QUALITY

□-RUN32(2), V=0 KTS ○-RUN35(1), V=7 KTS △-RUN35(2), V=20 KTS

ORIGINAL PAGE IS
OF POOR QUALITY

□-RUN32(2),V=8 KTS O-RUN35(1),V=7 KTS Δ-RUN35(2),V=20 KTS

MARSHALL SPACE FLIGHT CENTER CONFIGURATION

GROUP XVII

WIND VELOCITY EFFECTS AT 90°, LOW FLOWRATE

RUNS 36.1 and 36.2

$\beta = 90^\circ$

Low Flowrate

ORIGINAL PAGE IS
OF POOR QUALITY

\square -RUN32(2), V=0 KTS \circ -RUN36(1), V=7 KTS \triangle -RUN36(2), V=20 KTS

ORIGINAL PAGE IS
OF POOR QUALITY.

MARSHALL SPACE FLIGHT CENTER CONFIGURATION

GROUP XVIII

WIND VELOCITY EFFECTS AT 90°, HIGH FLOWRATE

RUNS 37.1 and 37.2

$\beta = 90^\circ$

High Flowrate

ORIGINAL PAGE 17
OF POOR QUALITY

ORIGINAL PAGE IS
OF POOR QUALITY

MARSHALL SPACE FLIGHT CENTER CONFIGURATION

GROUP XIX

WIND VELOCITY EFFECTS AT 180°, HIGH FLOWRATE

RUNS 38.1 and 38.2

$\beta = 180^\circ$

High Flowrate

ORIGINAL PAGE IS
OF POOR QUALITY

ORIGINAL PAGES
OF POOR QUALITY

MARSHALL SPACE FLIGHT CENTER CONFIGURATION

GROUP XX

WIND VELOCITY EFFECTS AT 338°, HIGH FLOWRATE

RUNS 39.1 and 39.2

$\theta = 338^\circ$

High Flowrate

ORIGINAL PAGE IS
OF POOR QUALITY

□-RUN32(1),V=0 KTS ○-RUN39(1),V=7 KTS △-RUN39(2),V=20 KTS

MARSHALL SPACE FLIGHT CENTER CONFIGURATION

GROUP XXI

WIND VELOCITY EFFECTS AT 0°, HIGH FLOWRATE

RUNS 40.1 and 40.2

$\beta = 0^\circ$

High Flowrate

ORIGINAL POSITION OF PODS

□-RUN32(1), V=0 KTS ○-RUN40(1), V=7 KTS △-RUN40(2), V=20 KTS

ORIGINAL PAGE IS
OF POOR QUALITY

X₁ = 1669 □ - RUN32(1), V=0 KTS ○ - RUN40(1), V=7 KTS △ - RUN40(2), V=20 KTS

ORIGINAL PAGE IS
OF POOR QUALITY

□-RUN32(1), V=0 KTS ○-RUN40(1), V=7 KTS △-RUN40(2), V=20 KTS

MARSHALL SPACE FLIGHT CENTER CONFIGURATION

GROUP XXII

FLOWRATE EFFECTS AT 7 KT

RUNS 34.1 and 39.1

$V = 7$ KNOTS

$\beta = 338^\circ$

ORIGINAL PAGE IS
OF POOR QUALITY

RUN34(1), SMALL NOZZLE RUN39(1), LARGE NOZZLE V=7KTS

ORIGINAL PAGE IS
OF POOR QUALITY

ORIGINAL PLOT
OF POOR QUALITY

MARSHALL SPACE FLIGHT CENTER CONFIGURATION

GROUP XXIII

FLOWRATE EFFECTS AT 20 KT

RUNS 34.2 and 39.2

$V = 20$ KNOTS

$\beta = 338^\circ$

ORIGINAL PAGE IS
OF POOR QUALITY

□-RUN34(2), SMALL NOZZLE ○-RUN39(2), LARGE NOZZLE V=20 KTS

□-RUN34121, SMALL NOZZLE ○-RUN39121, LARGE NOZZLE V=20 KTS

ORIGINAL DRAWING
OF POOR QUALITY

MARSHALL SPACE FLIGHT CENTER CONFIGURATION

GROUP XXIV

WIND DIRECTION EFFECTS AT 7 KT, LOW FLOWRATE

RUNS 33.1, 36.1, 35.1 and 34.1

V = 7 KNOTS

Low Flowrate

(+) (4)

□-RUN33(1), $\beta=0.000$ ○-RUN36(1), $\beta=0.900$ △-RUN35(1), $\beta=1.000$
 ×-RUN34(1), $\beta=3.000$ ▽-7KTS SMALL NOZZLE

ORIGINAL PAGE IS
OF POOR QUALITY

□-RUN33(1),BETA=0.00 ○-RUN36(1),BETA=0.90 Δ-RUN35(1),BETA~1.00
X-RUN34(1),BETA=3.00 V=7K15 SMALL NOZZLE

C-2

MARSHALL SPACE FLIGHT CENTER CONFIGURATION

GROUP XXV

WIND DIRECTION EFFECTS AT 7 KT, HIGH FLOWRATE

RUNS 40.1, 37.1, 38.1 and 39.1

V = 7 KNOTS

High Flowrate

□-RUN40(1), BETA=000 O-RUN37(1), BETA=090 Δ-RUN38(1), BETA=180
 ×-RUN39(1), BETA=330 V=7KTS LARGE NOZZLE

MARSHALL SPACE FLIGHT CENTER CONFIGURATION

GROUP XXVI

WIND DIRECTION EFFECTS AT 20 KT, LOW FLOWRATE

RUNS 33.2, 36.2, 35.2 and 34.2

V = 20 KNOTS

Low Flowrate

ORIGINAL PAGE F6
OF POOR QUALITY

$X_1 = 1669$
□-RUN33(2),BETA=000 ○-RUN36(2),BETA=090 △-RUN35(2),BETA=180
×-RUN34(2),BETA=330 V=20KTS SMP1 NOZZLE

MARSHALL SPACE FLIGHT CENTER CONFIGURATION
GROUP XXVII
WIND DIRECTION EFFECTS AT 20 KT, HIGH FLOWRATE
RUNS 40.2, 37.2, 38.2 and 39.2

V = 20 KNOTS

High Flowrate

θ=40 6 45 $x_T \times 10^{-2}$
 □-RUN40(2), $\beta=0.000$ ○-RUN41(2), $\beta=0.91$ Δ-RUN39(2), $\beta=1.00$
 ✕-RUN39(2), $\beta=3.33$ ✕-V=20 ft/s, LARGE NOZZLE

ORIGINAL PAGE IS
OF POOR QUALITY

X₁ = 1669 □-RUN40(2), BETA=0.00 ○-RUN37(2), BETA=0.90 Δ-RUN38(2), BETA=1.00
×-RUN39(2), BETA=3.38 *-V=20KTS LARGE NOZZLE

(4)

MARSHALL SPACE FLIGHT CENTER CONFIGURATION

GROUP XXVIII

FLOWRATE EFFECTS, NO WIND

RUNS 32.1 and 32.2

V = 0 KNOTS

ORIGINAL PAGE IS
OF POOR QUALITY

HOT FILM DATA

MARSHALL SPACE FLIGHT CENTER CONFIGURATION

BASE PRESSURE DATA

∇p (PSF)

∇_F

FEEDLINE AND CABLE TRAY

PRESSURE DATA

ALL CONFIGURATIONS

ALL RUNS

ORIGINAL PAGE IS
OF POOR QUALITY

ORIGINAL PAGE IS
OF POOR QUALITY

ORIGINAL PAGE IS
OF POOR QUALITY

ORIGINAL PAGE IS
OF POOR QUALITY

ORIGINAL PAGE IS
OF POOR QUALITY

ORIGINAL PAGE 17
OF POOR QUALITY

ORIGINAL PAGE IS
OF POOR QUALITY

ORIGINAL PAGE IS
OF POOR QUALITY

ORIGINAL PAGE IS
OF POOR QUALITY

ORIGINAL PAGE IS
OF POOR QUALITY

ORIG.1942. PAPER
OF POOR QUALITY

ORIGINAL PAGE IS
OF POOR QUALITY

ORIGINAL PLOT OF
OF POOR QUALITY

ORIGINAL PAGE IS
OF POOR QUALITY

ORIGINAL PAGE IS
OF POOR QUALITY

ORIGINAL PAGE IS
OF POOR QUALITY

$\theta = -40$ & -45 $X_1 \times 10^{-2}$

\square - RUN32(1), V=0 KTS \circ - RUN40(1), V=7 KTS \triangle - RUN40(2), V=20 KTS

HOT-FILM DATA

NOMINAL CONFIGURATION

WIND ONLY, JETS ONLY, WIND AND JET COMPARISONS

RUNS 19(c), 19(b), 19(a)

P = 32 psia N/A on 19(a)

V = 20 KNOTS N/A on 19(b)

ϕ = 0°

β = 338° N/A on 19(b)

NOMINAL CONFIGURATION

WIND EFFECTS

RUNS 19(b), 24

P = 32 psia

V = 20 KNOTS N/A on 19(b)

ϕ = 0°

β = 112° N/A on 19(b)

NOMINAL CONFIGURATION

VELOCITY SURVEYS

RUN 23

P = 32 psia

V = 20 KNOTS

ϕ = 0°

β = 338°

MARSHALL SPACE FLIGHT CENTER CONFIGURATION
VELOCITY AND TEMPERATURE SURVEYS

RUN 41.2

V = 20 KNOTS

β = 338°

High Flowrate

Nozzle Temp. = 197°F

Test Section Temp.

prior to test start - 75°F

MARSHALL SPACE FLIGHT CENTER CONFIGURATION
WIND VELOCITY EFFECTS
RUNS 42, 43

$\beta = 0^\circ$

High Flowrate

Nozzle Temp. = 197°F

Test Section Temp.

prior to test start = 75°F

