2.1 Syntax of Predicate Logic

Dienstag, 25. April 2017 08:30
2. Basics of Redicate Logic
2.1. Syntax of Predicate Logic
Signature: Alphabet for Predicate Logic
Def 2.1.1 (Signature)
A signature (\(\S_{\text{, }}\)) is a pair with \(\S=\)\(\S_{\text{n}}\)
and $\Delta = U \Delta_n$ where all Σ_n and Λ_n are
and $A = U A_n$, where all Σ_n and A_n are pairwise disjoint. Every $f \in \Sigma_n$ is a function symbol of axity u , every $p \in A_n$ is a predicate symbol of with u U and U v
of arity u, every p & In is a predicate symbol
of arity n. We always require \$ \$ + 0.
the set of constants
Ex. 2.1.2
Example program uses the following signature (E,1)
Example program uses the following signature (Σ , Δ) $\Sigma = \Sigma_0 \cup \Sigma_3$, $\Delta = \Delta_1 \cup \Delta_2$ see slide 9
Terms are the objects of pred. logic.
Def 2.1.3 (Terms)
Let (\(\(\int\)\) be a signature, let \(\mathcal{V}\) be a set of

Let (Ξ, Δ) be a signature, let V be a set of variables with $V \cap \Xi = \emptyset$. Then $S(\Xi, V)$ is the set of terms (over Ξ and V). Here, $\Upsilon(\Xi, V)$ is the smallest set with: • $V \subseteq \Upsilon(\Xi, V)$ and • $f(t_1, ..., t_n) \in \mathcal{F}(\Sigma, v)$ if $f \in \Sigma_n$ and $t_n,...,t_n \in \mathcal{I}(\bar{z}, v)$ for some $n \in \mathbb{N}$. $\Upsilon(\Sigma)$ stands for $\Upsilon(\Sigma, \emptyset)$, i.e., the set of ground terms. For any term t, v(t) is the set of all variables in t. Ex 214 We use the Signature of Ex. 2.12. If V= (X, Y, Z, Grandma, Mom, ...), then we have the following terms in $\mathcal{F}(\Sigma, \mathcal{D})$: X, Y, monika, 5, = ground terms date (Mom, monika, 5), date (25, 4, 2017) date (date (X,7,2), monika, 7),... Formulas represent statements about terms. Def 215 (Formulas)

Def 215 (Formulas) Let (Z, A) be a signature, let V be a set of variables. The set of atomic formulas over (Z, 1) and V is defined as: $\mathcal{A}t(\Xi, \Delta, \mathcal{V}) = [p(t_n, ..., t_n) | p \in \Delta_n \text{ for }$ Some μ , $t_n \in \mathcal{I}(\Sigma, \mathcal{V})$. $\mathcal{F}(\Sigma, \Lambda, \mathcal{V})$ is the set of formulas over (Σ, Λ) and \mathcal{V} Here, $\mathcal{F}(\Sigma, \Delta, v)$ is the smallest set with: • $\mathcal{A}t(\Xi, \Delta, v) \subseteq \mathcal{F}(\Xi, \Delta, v)$ "not" • if $\varphi \in \mathcal{F}(\Sigma, \Delta, \mathcal{V})$, then $\mathcal{F}(\varphi \in \mathcal{F}(\Sigma, \Delta, \mathcal{V}))$ • if $\varphi_1, \varphi_2 \in \mathcal{F}(\Sigma, \Delta, \mathcal{V})$, then "implies" is (P, 192), (P, v P2), (P, -> P2), (P, -> P2) equi-valent" "and" $E \mathcal{F}(\mathcal{Z}, \Delta, \mathcal{D})$ • if $X \in V$, $\varphi \in \mathcal{F}(\Sigma, \Lambda, V)$ then $(\forall x \varphi), (\exists x \varphi) \in \mathcal{F}(\Sigma, \Delta, \mathcal{P})$ "there exists" existential universal 9 cantifier quantifier

For a formula 4, U(4) is the set of variables	in C.
A variable X is free in a formula 4 if	
· 4 is an atomic formula and X & V(4)	OY
· 4=7 9, and X is free in 9,	or
· 9=(9, · 92) with · e/1, v, -, e)	
and X is free in for in fz	or
· 9=(Q / 4) with Q e { 4, 3},	
X is free in G, and X + Y	
A formula is closed if it has no free varia	565,
A formula is quantifier-free if it does a	not contain
Notation;	/
· We omit brackets if this does not	Create

Confusion: $\forall x \text{ female}(X)$

· We write variables with upper-case letters and function + pred. Symbols with lower-case letters.

Ex. 2.1.6 Formulas over the signature of Ex. 2.1.2. female (monika) $EAt(\Xi, 1, v)$

Lemale (monika) EAt (E, 1, v) mother of (X, susanne) = X is free $\in At(\Sigma, \Delta, v)$ born (monika, date (25, 4, 2017)) $\in At(\Sigma, 1, v)$ $\forall W (married(gard, W)_{\Lambda} mother of(W, C))^{-1}$ free $\in \mathcal{F}(\Sigma, \Lambda, v)$ $\in At(\overline{z}, \underline{A}, \underline{v})$ $\in \mathcal{F}(\mathcal{Z}, \Delta, \mathcal{V})$ married (gerd, W), 7 (WW mother Of (W, C)) Wand Care We abbreviate $\forall X_{n} (... (\forall X_{n} \ \varphi)...)$ by ∀ X1, ..., Xn q 3 X1 (... (3 X4 4) ...) by 3 X1, 1, Xn q Ex2.1.7 Every logic program can be translated into a set of formulas. All variables in the prog. are universally quantified. sec slide 10 Del 218 (Substitution) A mapping U: V->) (E, V) is a substitution if T(X) +X for finitely many X ∈ V. DOM (T) = { X eV | T(X) + X y is the domain of T. RANGE(T) = { T(X) | X ∈ DOM(T) } is the range of T.

Since Dom (o) is finite, a substitution or can be repre-Sented as a finite set of pairs $\{X/\sigma(X) \mid X \in Dom(\sigma)\}.$ A subst. σ is a ground substitution if σ $\mathcal{O}(\sigma(X)) = \sigma$ for all $X \in \mathcal{D} \circ \mathcal{M}(\sigma)$. Ex: T = { X / monika, Y / date (X, Y, Z) } is not a ground subst. $DOM(\sigma) = \{x,y\}$ RANGE(0) = { monika, date(KY, 2)} $\nabla(Y) = date(X,Y,Z)$ r(2) = 2A subst. T is a variable renaming if T is injective and $\sigma(X) \in \mathcal{V}$ for all $X \in \mathcal{V}$.

Ex: C = (X/Y, Y/Z) ho variable renaming $\sigma(X)=\gamma$, $\sigma(Y)=7$, $\sigma(Y)=7$ not injective But T= LX/Y, Y/Z, Z/Xy is a var. renaming Substitutions are also applied to terms, i.e., $T: \Upsilon(\Xi, V) \to \Upsilon(\Xi, V)$ by defining

I P 2017 Seite

19/-161) - A /.... no/

$$V(\sigma(t)) = \emptyset$$
 (resp. $V(\sigma(\varphi)) = \emptyset$).