An Efficient Framework for Learning Sentence Representations (ICLR 2018)

박은환 (20163108)

judepark@kookmin.ac.kr Kookmin University @ Machine Intelligence Lab

Contents

- 1. Background
- 2. Proposed Framework
- 3. Implementation details
- 4. Experimental Results
- 5. Conclusion

Background

- 1. 문장 임베딩이란?
 - 문장 전체를 벡터 공간 상의 표현하는 것임.
 - 이를 통하여, 분류나 클러스터링과 같은 기법 뿐만 아니라, 자동 질의 응답 등의 과업에 응용 가능.

Background: Conventional Approach

1. Conventional Approach

2. Skip Thought (kiros et al.)

문장 임베딩에서 좋은 결과를 보여줬을 뿐만 아니라 구현하기에도 쉬움. Limitation: 문장의 의미를 고려하지만 이와 관련없는 부분도 학습하도록 함. 또한, 디코딩 과정에서 많은 연산을 필요로 함. (단어 사전의 크기로 인한 연산 비용 발생)

Proposed Framework

1. Proposed Approach

현재 문장에 맞는 맥락 문장은 무엇인지 분류하는 것으로 문제를 정의함.

$$\begin{cases} x = given \ sentence \\ x^+ = context \ sentence \\ x^- = noncontext \ sentence \end{cases} \mathbb{E}_{\{x, x^+, x^-\}} \left[-\log \left(\frac{e^{f(x)^T f(x^+)}}{e^{f(x)^T f(x^+)} + e^{f(x)^T f(x^-)}} \right) \right]$$

Implementation Details

Let D be a minibatch of sentences.

$$D = \begin{bmatrix} s_0 \\ \vdots \\ s_n \end{bmatrix} \in R^{n \times \max_seq_len} \ then \begin{cases} encoder \ f = \begin{bmatrix} f(s_0) \\ \vdots \\ f(s_n) \end{bmatrix} \in \mathbb{R}^{n \times h} \\ encoder \ g = \begin{bmatrix} g(s_0) \\ \vdots \\ g(s_n) \end{bmatrix} \in \mathbb{R}^{n \times h} \end{cases}$$

Implementation Details

$$Score = fg^{T} = \begin{bmatrix} f(s_0)g(s_0)^{T} & \cdots & f(s_0)g(s_n)^{T} \\ \vdots & \ddots & \vdots \\ f(s_n)g(s_0)^{T} & \cdots & f(s_n)g(s_n)^{T} \end{bmatrix} \in \mathbb{R}^{n \times n} \quad Target = \begin{bmatrix} 0 & \cdots & 0 \\ 0 & \ddots & 0 \\ \vdots & \ddots & 1 \\ 0 & \cdots & 0 \end{bmatrix} \in \mathbb{R}^{n \times n}$$

$$Masked Score = \begin{bmatrix} 0 & \cdots & f(s_0)^T g(s_n) \\ \vdots & \ddots & \vdots \\ f(s_n)^T g(s_0) & \cdots & 0 \end{bmatrix} \in \mathbb{R}^{n \times n}$$

 $prob = softmax(masked_score)$

$$\mathbb{L} = D_{KL}(target_i||prob_i)$$

Experimental Results

- 1. Model
 - BERT-based Encoder
 - \mathbb{R}^{768}
- 2. Setting
 - Batch Size 50 (RTX 2070)
 - Adam Optimizer (lr=1e-5)
 - Gradient Clipping (max_norm=2.0)
- 3. Dataset
 - BookCorpus (40,000,000 sentences.)

Experimental Results

Model	Dim	Batch Size	MRQA
Combine-QT	4800	400	88.0
BERT-based	768	50	89.6
SBERT-NLI-base	N/A	N/A	89.86

SentEval Task 중 하나인 MRQA(Machine Reading for Question Answering) 로 평가를 진행함.

Quick Thought

- 4800차원의 문장 임베딩 구축, 88.0% 의 정확도를 달성

BERT-based

- 본 논문의 Encoder 를 BERT 로 교체하여 768차원의 문장 임베딩 구축 1.6% 만큼 높은 정확도 달성

SBERT-NLI-base

- 최근 SOTA 인 문장 임베딩. BERT-based 에 비해 정확도 0.26% 높음.

Conclusion

- 1. 문장 임베딩에선 맥락 간 관계성을 보는 것이 중요함.
 - NSP (Next Sentence Prediction, BERT)
 - Text Similarity
- 2. 단순한 접근으로 이전의 성공적이었던 Skip-Thought 보다 더 좋은 문장 임베딩을 구축할 수 있음.

References

- [1]. An Efficient Framework for Learning Sentence Representations
- [2]. Skip-Thought Vectors
- [3]. A Theoretical Analysis of Contrastive Unsupervised Representation Learning
- [4]. SentEval: Evaluation Toolkit for Sentence Embedding (https://github.com/facebookresearch/SentEval)
- [5]. Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks

감사합니다.