1 BİR İŞLEMLİ SİSTEMLER

Bu bölümde cebirsel yapıların temelini oluşturan Grup ve özelliklerini inceleyeceğiz.

1.1 İŞLEMLER

Bir kümeden kendisine tanımlı olan her fonksiyona birli işlem denir. Örneğin \mathbb{Z} tamsayılar kümesini göstermek üzere, \mathbb{Z} den \mathbb{Z} ye $f(x) = x^3$ ile tanımlı f fonksiyonu birli bir işlemdir.

x ve y verilen bir A kümesinin elemanları olmak üzere

$$x \circ y$$

ifadesi \circ işlem kuralına göre x ve y elemanlarının birleşimini göstermektedir. Bu ifade x işlem y diye okunur. Burada \circ işlemi alışık olduğumuz toplama, çıkarma, çarpma , bölme gibi elemanter cebirsel işlemlerden biri olmayabilir. Hatta x ve y elemanlarının da birer sayı olma zorunluluğu yoktur. Aşağıda işlemlerle ilgili örnekler verelim.

Example 1 $A = \{x, y, z\}$ kümesi verilsin. Bu küme üzerinde bir işlemi aşağıdaki tablo yardımıyla verebiliriz.

0	\boldsymbol{x}	y	z
x	\boldsymbol{x}	y	z
y	y	z	\boldsymbol{x}
z	z	y	\boldsymbol{x}

Example 2 A kümesi çift doğal sayıların kümesi olsun. Bir o işlemini

$$x \circ y = x^2 + 2y$$
, $x, y \in A$

olarak tanımlayalım. Buradaki verilen toplama ve çarpma işlemleri bilinen anlamdaki işlemlerdir. Örnek verilecek olursa

$$2 \circ 4 = 2^2 + 2.4 = 12$$

elde edilir.

1.2 İKİLİ İŞLEMLER

Definition 3 $A \times A$ kartezyen çarpım kümesinden A kümesine tanımlı her fonksiyona A kümesi üzerinde bir ikili işlem denir.

Example 4 Pozitif tamsayılar kümesini \mathbb{Z}_+ ile gösterelim $\mathbb{Z}_+ \times \mathbb{Z}_+$ kümesinden \mathbb{Z}_+ kümesine

$$x \circ y = \max\{x, y\}$$

işlemini tanımlayalım. Örneğin bu kural yardımıyla $5 \circ 78 = 78$, $6 \circ 4 = 6$ olur.

Definition 5 A kümesi üzerinde " \circ " işlemi tanımlansın. Her $x, y \in A$ için $x \circ y \in A$ ise, A kümesine \circ işlemine göre kapalıdır denir.

Example 6 \mathbb{Z} tamsayılar kümesi bildiğimiz "-" işlemine göre kapalı olduğu halde pozitif tamsayılar kümesi olan \mathbb{Z}_+ "-" işlemine göre kapalı değildir. Gerçekten 2, $4 \in \mathbb{Z}_+$ olduğu halde $2-4=-2 \notin \mathbb{Z}_+$ olur.

Definition 7 Bir küme ile bu küme üzerinde tanımlanmış bir veya daha çok ikili işlemin topluluğuna bir Matematiksel Sistem veya Cebirsel Sistem denir.

Definition 8 Boş olmayan bir A kümesi üzerinde tanmlanmış bir tek " \circ " ikili işlem içeren (A, \circ) matematiksel sistemine Grupoid denir.

Definition 9 A kümesi üzerinde " \circ " işlemi tanımlansın. Her $x, y, z \in A$ için

$$x \circ (y \circ z) = (x \circ y) \circ z$$

eşitliği sağlanıyorsa A kümesine o işlemine göre birleşme özelliği vardır denir.

Example 10 \mathbb{Z} üzerinde tanımlanan çıkarma işlemi birleşme özelliğine sahip değildir. Gerçekten

$$x - (y - z) \neq (x - y) - z$$

olur.

Example 11 $\mathbb Z$ üzerinde tanımlanan çarpma ve toplam işlemleri birleşme özelliğine sahiptir.

Skümesi üzerinde tanımlanan bir "o" işlemini aşağıdaki gibi tablo yardımıylada gösterebiliriz.

Example 12 $S = \{x, y, z\}$ kümesi üzerinde \circ işlemini aşağıdaki tablo yardımıyla ele alalım.

0	x	y	z
x	x	y	z
y	z	x	y
z	y	z	\boldsymbol{x}

Bu tabloya göre

$$y \circ (x \circ z) = y \circ z = y$$

ve

$$(y \circ x) \circ z = z \circ z = x$$

yani

$$y \circ (x \circ z) \neq (y \circ x) \circ z$$

olup S kümesi üzerinde tanımlanan \circ işlemi birleşme özelliğine sahip değildir.

Definition 13 Birleşme özelliğine sahip olan grupoide Yarıgrup denir.

Example 14 $(\mathbb{R}, +)$ ve $(\mathbb{R}, .)$ birer yarıgrup olduğu halde $(\mathbb{R}, -)$ bir yarıgrup değildir.

Definition 15 Boş olmayan bir A kümesi üzerinde tanımlı \circ işlemi verilsin. Eğer her $x, y \in A$ için

$$x \circ y = y \circ x$$

özelliği sağlanıyorsa \circ işlemine Değişmeli işlem yada Değişme özelliğine Sahip işlem denir.

Example 16 Örneğin \mathbb{R} üzerinde tanımlanan + (toplama) işlemi değişmeli olduğu halde - (çıkarma) işlemi değişmeli değildir. Gerçekten

$$4+5 = 5+4$$

 $9 = 9$

olduğu halde

$$\begin{array}{rcl}
4 - 5 & \neq & 5 - 4 \\
-1 & \neq & 1
\end{array}$$

elde edilir.

Definition 17 Boş olmayan bir A kümesi üzerinde tanımlı \circ işlemi verilsin. Eğer her $x \in A$ için

$$x \circ e_1 = x$$

olacak şekilde bir $e_1 \in A$ elemanına \circ işlemininin Sağ Birim elemanı denir. Benzer olarak Eğer her $x \in A$ için

$$e_2 \circ x = x$$

olacak şekilde bir $e_2 \in A$ elemanına \circ işlemininin Sol Birim elemanı denir. Eğer A kümesi hem sağ hem de sol birim elemana sahip ise aşağıdaki işlemlerden de anlaşılacağı üzere sağ ve sol birim elemanlar aynı olur.

 $e_2 \circ x = x$ işleminde $x = e_1$ alınırsa

$$e_2 \circ e_1 = e_1 \tag{1}$$

bulunur. $x \circ e_1 = x$ işleminde ise $x = e_2$ alınırsa

$$e_2 \circ e_1 = e_2 \tag{2}$$

bulunur. O halde (1) ve (2) eşitliklerinden

$$e_2 \circ e_1 = e_1 = e_2$$

elde edilir.

Definition 18 (A, \circ) grupoidi "e" birim elemanına sahip ise bu grupoide \circ işlemine göre Birim elemanlıdır denir. Birim eleman yerine etkisiz eleman ya da özdeslik elemanı da denir.

Theorem 19 Bir grupoidinin varsa birim elemanı tektir.

İspat: Kabul edelimki (A, \circ) grupoidinin e den başka f birim elemanı olsun. Her $x \in A$ için

$$x \circ e = x$$

olduğundan özel olarak x=f alınırsa

$$f \circ e = f \tag{3}$$

bulunur. f bir birim eleman olduğundan her $x \in A$ için

$$f \circ x = x$$

olup x = e alınırsa

$$f \circ e = e \tag{4}$$

bulunur. (3) ve (4) eşitliklerinden

$$f \circ e = f = e$$

elde edilir. Dolayısıyla e = f bulunur.

Definition 20 Boş olmayan bir A kümesi üzerinde tanımlanan \circ işlemi, kapalılık, birleşme ve birim eleman özelliğine ise (A, \circ) ikilisine Monoid adı verilir.

Example 21 Tamsayılar kümesi üzerinde tanımlanan toplama işlemi kapalı, birleşmeli ve birim elemana sahip olduğundan bir monoiddir. Fakat Çift tamsayılar kümesi bilinen çarpma işlemine göre bir monoid değildir. Gerçekten \mathbb{Z}_{ς} kümesi çift tamsayılar kümesi olmak üzere $1 \notin \mathbb{Z}_{\varsigma}$ olup birim eleman özelliği gerçeklenmez.

Definition 22 Boş olmayan bir A kümesi üzerinde tanımlı \circ işlemi verilsin. e sağ birim eleman olmak üzere eğer her $x \in A$ için

$$x \circ y = e$$

olacak şekilde bir $y \in A$ elemanına \circ işlemininin Sağ Ters elemanı denir. Benzer olarak Eğer her $x \in A$ için

$$z \circ x = e$$

olacak şekilde bir $z \in A$ elemanına \circ işlemininin Sol Ters elemanı denir.

Definition 23 (A, \circ) birim elemana sahip bir grupoid olsun. Eğer bu grupoid aynı sağ ve sol ters elemana sahip ise bu elemana $x \in A$ elemanının \circ işlemine göre tersi denir ve x^{-1} ile gösterilir.

 (A,\circ) grupoidinin birim elemanıeolmak üzere

$$e \circ e = e$$

olacağından $e^{-1} = e$ bulunur.

Example 24 (\mathbb{Z} , .) grupoidinin birim elemanı 1 olmak üzere $2 \in \mathbb{Z}$ in çarpma işlemine göre tersi yoktur.

Example 25 (\mathbb{Z} , +) grupoidinin birim elemanı 0 olmak üzere \mathbb{Z} den alınan her elemanın + işlemine göre tersi vardır. $x \in \mathbb{Z}$ nin tersi x^{-1} olmak üzere

$$x + x^{-1} = 0$$

 $olaca reve{g} indan$

$$x^{-1} = -x$$

elemanidir.