Numbers and Representations CS 0447

Thumrongsak Kosiyatrakul tkosiyat@cs.pitt.edu

Numbers in Electronic Circuits

- How can we represent a number using electricity?
- Consider an outlet (DO NOT TRY THIS ANYWHERE)
- If you stick your finger in one of the hole of an electricity outlet, you either
 - get an electric shock, or
 - not get an electric shock.
- How to translate the electric shock feeling into a number?
 - getting an electric shock represents the number 1 (one), and
 - not getting an electric shock represents the number 0 (zero).
- An outlet can represent a number between 0 and 1.

Numbers in Electronics Circuits

- Some may interpret using the level of hurt when he/she get shock
 - not at all: 0.
 - hurt a little bit: 1,
 - hurt quite a lot: 2, or
 - hurt a lot: 3.
- Possible but hard to judge the level of hurt.
- Using volt meter may help but to get to 3, it has to go pass 1 and 2.
- Need to wait until the reading is stable before translating into a number.
- Not suitable if you want to translate to a number very very fast.
- 0 and 1 are simple to translate in electronic circuit.

Numbers

• Examples of Numbers:

- A number consists of a series of digits (can have one digit)
- Each digit can be 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9.
- The following examples are not numbers:
 - 1r2: The second digit (from right) is not a number between 0 to 9.
 - 12_45: The third digit (from right) is not a number.

Range of a Number

- Range of a number depends on the number of digits.
- Consider a three-digit number:
 - the smallest value is 000,
 - the largest value is 999.
- A three-digit number can be used to represent a value from 0 to 999.
- There are 1000 values.
- The range can be calculated by

$$Range = Highest Value - Lowest Value + 1.$$

• For example: a three-digit number:

$$999 - 0 + 1 = 1000.$$

• For example: a five-digit number:

$$99999 - 0 + 1 = 100000.$$

Value of a Number

- Consider a number 2013
- Its value is 2013 (two thousand and thirteen)
- Its value can be calculated as follows:

$$(2 \times 1000) + (0 \times 100) + (1 \times 10) + (3 \times 1) = 2013.$$

- Position of each digit effects the value (positional number system)
- Recalculating the value of 2013:

$$(2 \times 10^3) + (0 \times 10^2) + (1 \times 10^1) + (3 \times 10^0) = 2013.$$

- Consider the right most digit to be the digit 0
- The value of digit x is the number on that digit multiply by 10^x.
- We call this number system base 10 or decimal.

Other Bases

- A base can be any number
- Base 10 (decimal):
 - The value of digit x is the number on that digit multiply by 10^x.
 - Each digit can be a number between 0 to 9.
 - For example: 2013₁₀
- Base 8 (octal):
 - The value of digit x is the number on that digit multiply by 8^x .
 - Each digit can be a number between 0 to 7.
 - For example: 2135₈
 - **NOTE**: 283₈ is not an octal number (the second digit cannot be the number 8).

Other Bases

- Base 16 (hexadecimal):
 - The value of digit x is the number on that digit multiply by 16^x.
 - Each digit can be a number between 0 to 15 where a represents 10, b represents 11, and so on.
 - For example: $1a7c_{16}$
- Base 2 (binary):
 - The value of digit x is the number on that digit multiply by 2^x .
 - Each digit can be either 0 or 1.
 - For example: 1011₂
- Use subscript to represent the base of the number (generally ignore when the number is base 10)

Binary Numbers

- The value of digit x is the number on that digit multiply by 2^x .
- Each digit can be either 0 or 1.
- A binary digit is called a bit.
- Start from the bit zero (the right most bit).
- Examples:

Decimal	Binary	Decimal	Binary		
0	00002	8	10002		
1	00012	9	1001 ₂		
2	00102	10	1010 ₂		
3	00112	11	1011 ₂		
4	01002	12	1100_{2}		
5	01012	13	1101_{2}		
6	01102	14	1110_{2}		
7	01112	15	1111_{2}		

Bits, Bytes, and Words

- A binary digit is called a bit.
- A series of four binary digits is called a nibble.
- A series of eight binary digits is called a **byte**.
- A series of 16 or 32 binary digits is called a word.
- What is the range of a byte?
 - A byte consists of 8 bits.
 - Smallest value is $00000000_2 (0_{10})$,
 - Largest value is 11111111₂ (255₁₀).
 - Thus, the range is 255 0 + 1 = 256.

Binary to Decimal Conversion

- Use the same method as in base 10.
- Recall that the value of bit (digit) x is the number on that bit (digit) multiply by 2^x .
- What is the value of 10110101₂ in decimal?

Bit	7	6	5	4	3	2	1	0
Bit Value	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2^3	2 ²	2^1	2 ⁰
Bit Value in Decimal	128	64	32	16	8	4	2	1

• Thus, the value of 10110101₂ is

$$(1\times2^7)+(0\times2^6)+(1\times2^5)+(1\times2^4)+(0\times2^3)+(1\times2^2)+(0\times2^1)+(1\times2^0)$$
 or
$$(1\times128)+(0\times64)+(1\times32)+(1\times16)+(0\times8)+(1\times4)+(0\times2)+(1\times1)$$

or

$$128 + 32 + 16 + 4 + 1 = 181$$

Binary to Decimal Conversion

How about 10011011₂?

$$(1 \times 2^7) + (1 \times 2^4) + (1 \times 2^3) + (1 \times 2^1) + (1 \times 2^0)$$

or

$$128 + 16 + 8 + 2 + 1 = 155$$

• How about 10011010₂?

$$(1 \times 2^7) + (1 \times 2^4) + (1 \times 2^3) + (1 \times 2^1)$$

or

$$128 + 16 + 8 + 2 = 154$$

- Note: If bit 0 is 0, it is an even number.
- How about 10110110101000111000000111110110₂?
- We better write a program to do the conversion.

Powers of Two

• It will be good for you if you can remember some of powers of two at least up to 2^{10}

2 ^x	Decimal Value	2 ^x	Decimal Value
2 ⁰	1	2 ¹¹	2048
2 ¹	2	2^{12}	4096
2 ²	4	2^{13}	8192
2 ³	8	214	16384
2 ⁴	16	2^{15}	32768
2 ⁵	32	2^{16}	65536
2 ⁶	64	2 ¹⁷	131072
2 ⁷	128	2 ¹⁸	262144
2 ⁸	256	2 ¹⁹	524288
2 ⁹	512	2^{20}	1048576
2 ¹⁰	1024	2 ²¹	2097152

Powers of Two

- Kilo, Mega, and Giga
 - 2¹⁰ is called Kilo,
 - 2²⁰ is called Mega,
 - 2³⁰ is called Giga.
- For example 4 kilobyte is $4 \times 2^{10} = 4096$ bytes.
- **Note**: Sometime people use Kilo, Mega, and Giga to represent 10³, 10⁶, and 10⁹ respectively.
- ullet For example 1 Terabyte harddrive means 1×10^{12} bytes
- When you check the property of your harddrive in your computer, it may say that the capacity is 932 Gigabyte $(932 \times 2^30 = 1000727379968 \text{ bytes})$
- In exams, we will use Kibi (2¹⁰), Mebi (2²⁰), Gibi (2³⁰) for binary prefix multipliers.

• Convert 345₁₀ to binary.

- Suppose we have a four-bit binary number $x_3x_2x_1x_0$, where x_n is either 0 or 1.
- The value of $x_3x_2x_1x_0$ in base 10 is

$$(x_3 \times 2^3) + (x_2 \times 2^2) + (x_1 \times 2^1) + (x_0 \times 2^0).$$

• The above value is equal to

$$(x_3 \times 2^3) + (x_2 \times 2^2) + (x_1 \times 2^1) + x_0.$$

• The above value is also equal to

$$\left[2\times ((x_3\times 2^2)+(x_2\times 2^1)+x_1)\right]+x_0.$$

- What is the remainder of the above value divided by 2?
- Obviously the left term of the above equation is divisible by 2. (two times anything is divisible by 2)
- Thus, the remainder of the above value divided by 2 is x_0 .

• The result of the above value divided by 2 (without decimal places) is

$$(x_3 \times 2^2) + (x_2 \times 2^1) + x_1.$$

• The above value is equal to

$$\left[2\times\left(\left(x_3\times 2^1\right)+x_2\right)\right]+x_1.$$

- Again, the remainder of the above value divided by 2 is x_1 .
- The result of the above value divided by 2 (without decimal places) is

$$(x_3\times 2^1)+x_2.$$

- Note that:
 - x_0 is the remainder of the decimal value divided by 2
 - x₁ is the remainder of the result of the decimal value divided by 2, divided by 2.
 - X₂ is

- To convert a decimal value to binary, start with value be a decimal value and x be 0.
 - 1 Bit x is the remainder of value divided by 2.
 - 2 Replace value by value/2 without decimal places.
 - \bigcirc Increase x by 1.
 - Go back to step 1 until value is 0.
- Let's work on some examples and verify the result.
 - \bullet 24₁₀= 11000₂
 - $\bullet \ \ 351_{10} = 101011111_2$

Representations

How to represent numbers/data in a computer?

Representations

- Suppose we have 8 outlets, we can represent an 8-bit binary number.
- Right most outlet represents bit 0 (Least Significant Bit)
- Left most outlet represents bit 7 (Most Significant Bit)
- In a small circuit, we can use a series of wires.
 - 8 wires (8-bit binary),
 - 16 wires (16-bit binary),
 - 32 wires (32-bit binary), or
 - 64 wires (64-bit binary).
- Each wire represents one bit of a binary number.
 - If a wire has high voltage, it represents 1.
 - If a wire has no voltage, it represents 0.

Representing Integers in a Computer

- Any positive integer number can be convert to a binary number.
- Simply convert a positive integer into a binary number in a logical way.
- Use series of wires with high/low voltages to represent a binary number.
- How about a negative number?
- A negative integer number (decimal) is represented by a minus sign in front of a number.
- For examples: -135, -2, -199, etc
- Yes, we can put a minus sign in front of a binary number.
- What to do in a computer? Put an extra wire?
- If that wire is 0, it is a positive number, and vice versa.

Sign-Magnitude

- Use the Most Significant Bit to represent a sign
 - if MSB is 0, the number is positive
 - if MSB is 1, the number is negative
- Use the rest of bits to represent a number
- Consider an 8-bit number, 123₁₀ is 01111011₂.
- Using sign-magnitude, -123_{10} can be represented as 11111011_2 .
- Range of an 8-bit sign-magnitude is 255 (from -127 to 127).
- There are two zeros 10000000_2 and 00000000_2 .
- Easy to convert
- But $(-x) + x \neq 0$

One's Complement

- One's complement was implemented to solve $(-x) + x \neq 0$
- Simply perform a bit by bit invert.
- For example: 123_{10} is 01111011_2 , -123_{10} can be represented by 10000100_2 .
- Note that $01111011_2 + 10000100_2 = 111111111_2 = 0_{10}$.
- There are two zeros 00000000₂ and 11111111₂.
- But x + 0 = x only works for positive zero (00000000₂).

Two's Complement

- Two's complement was implemented to solve two zeros.
- Simply perform a bit by bit invert and add 1.
- For example: 123_{10} is 01111011_2 , after bit by bit invert is 10000100_2 , after add 1 is 10000101_2 .
- Note that $01111011_2 + 10000101_2 = 00000000_2 = 0_{10}$
- (-x) + x = 0
- There is only one zero
- x + 0 = x

Convert Two's Complement Number to Decimal

- Method 1:
 - If the MSB is 0, just perform simple translation from binary to decimal
 - If the MSB is 1,
 - perform bit by bit invert
 - add 1
 - perform simple translation from binary to decimal
 - negate the result
- Method 2: same as simple conversion except that the magnitude of MSB is negative.
 - Example (4-bit): 1101₂

$$-(1 \times 2^3) + (1 \times 2^2) + (0 \times 2^1) + (1 \times 2^0)$$

or

$$-8+4+1=-3$$

Summary

• Examples of 3-bit binary numbers and their values in decimal:

Binary Number	Sign-Magnitude	One's Complement	Two's Complement			
000	+0	+0	+0			
001	+1	+1	+1			
010	+2	+2	+2			
011	+3	+3	+3			
100	-0	-3	-4			
101	-1	-2	-3			
110	-2	-1	-2			
111	-3	-0	-1			

Representing Characters

- Simply perform one-to-one conversion (mapping).
- For examples:
 - 1100001_2 (96₁₀) represents the character a
 - 110110_2 (54₁₀) represents the character 6
- Use ASCII table for conversion

	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0000																
0001																
0010	Space	!	"	#	\$	%	&	,	()	*	+	,	-		/
0011	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
0100	@	Α	В	С	D	E	F	G	Н	I	J	K	L	M	N	0
0101	P	Q	R	S	T	U	V	W	Х	Y	Z	[\]	^	-
0110		a	b	С	d	е	f	g	h	i	j	k	I	m	n	0
0111	р	q	r	S	t	u	V	w	×	У	z	{		}	~	
1000																

- From the above table, the left four bits binary representing the character 'A' come from the row heading (0100) and the right four bits come from the column heading (0001).
- From ASCII the character 'A' is represented by 01000001₂.