5 de mayo del 2004 Total: 31 puntos Tiempo: 2 h. 15 min.

SEGUNDO EXAMEN PARCIAL

Este es un examen de desarrollo, por tanto deben aparecer todos los pasos que sean necesarios para obtener su respuesta.

1. Sea $A = \{a, b, c, d, e, f\}$, sea \mathcal{R} una relación definida en A, cuyo gráfico H viene dado por $H = \{(a, a), (a, b), (b, a), (b, b), (c, e), (d, d), (c, c), (e, c), (e, e), (f, f)\}$. Si se sabe que \mathcal{R} es una relación de equivalencia sobre A, determine la clase de equivalencia de a y determine el conjunto cociente A/\mathcal{R} .

(2 puntos)

2. Sea $A = \{0, 2, 3, 4\}$, sea \mathcal{R} una relación sobre A, definida por

$$a\mathcal{R}b \Leftrightarrow (a-b)^2 \in A$$

y sea \mathcal{S} otra relación sobre A, definida por

$$aSb \Leftrightarrow [a = b \lor b = a + 1]$$

- (a) Determine los gráficos de \mathcal{R} , de \mathcal{S} y de $\mathcal{S} \circ \mathcal{R}$ (3 puntos)
- (b) Determine la matriz de $\overline{\mathcal{R}} \cup \mathcal{S}^{-1}$ (3 puntos)
- 3. Sobre $\mathbb Z$ se define la relación $\mathcal R$ de la siguiente manera:

$$a\mathcal{R}b \Leftrightarrow [a=b \lor a+b=5]$$

- (a) Demuestre que \mathcal{R} es una relación de equivalencia. (3 puntos)
- (b) Determine la clase de equivalencia de -3 y el conjunto cociente. (2 puntos)
- 4. Si f(x) = -3x + 1 y g(x) = 2x + 3, calcule $(f \circ f \circ g)^{-1}(x)$. (2 puntos)
- 5. Considere la función $f: \mathbb{R} \{3\} \longrightarrow \mathbb{R} \{1\}$ definida por $f(x) = \frac{x-4}{x-3}$.
 - (a) Pruebe que f es una función biyectiva. (4 puntos)
 - (b) Determine el criterio de $f^{-1}(x)$. (1 punto)

6. Sea $A=\{1,2,4,6\}\ \ {\rm y}\ \ B=\{2,3,4\},$ considere la función

$$f: A \times B \to \{2, 3, 4, 5, 6, 7, 8\}$$

definida por

$$f((a,b)) = \begin{cases} ab & \text{si } a \le 2\\ a+1 & \text{si } a > 2 \end{cases}$$

- (a) Determine si f es inyectiva y si f es sobreyectiva.
- (b) Calcule $f(\{(2,3),(6,3)\}), f^{-1}(\{4\}), f^{-1}(\{2,3,5\})$
- (c) Si $C = \{(a, b) \in A \times B \ / \ a + b = 6\}$, calcule $f^{-1}(f(C))$

(5 puntos)

7. Sean A, B y C conjuntos no vacíos, suponga que f es una función de A en B y g una función de B en C.

Pruebe que si $g \circ f$ es inyectiva y f es sobreyectiva, entonces g es inyectiva.

(3 puntos)

8. Sean A y B conjuntos no vacíos, suponga que f es una función de A en B y sea $D \subseteq A$. Si f es sobreyectiva, pruebe que $B - f(D) \subseteq f(A - D)$. (3 puntos)

NOTA: Este es un examen de desarrollo, por tanto deben aparecer todos los pasos que sean necesarios para obtener su respuesta.