

Extras:

Bash Normalization, Dropout y Cross Entropy Aprendizaje profundo

Dr. Juan Bekios Calfa

Magister en *Data Science*Facultad de Ingeniería y Ciencias

Información de Contacto

- Juan Bekios Calfa
 - email: juan.bekios@edu.uai.cl
 - Web page: http://jbekios.ucn.cl
 - Teléfono: 235(5162) 235(5125)

Contenidos

Introducción

Batch normalization

Definición

Pytorch

Regularización

Definición

Dropout

Pytorch

Clasificación multiclase

Tipos de clasificación

Funciones de activación: Softmax

Funciones de pérdida

(Asuma que X [$N \times D$] es una matriz de datos, cada fila es un ejemplo)

Consideremos lo que sucede cuando la entrada a una neurona es siempre positiva

$$f(\sum_{i} w_i x_i + b)$$

¿Que podemos decir de los gradientes en w? ¿Siempre positivos o negativos?

En la práctica, es posible ver el uso de ACP (**PCA**) y blanqueamiento (**Whitening**) de los datos.

Antes de la normalización: pérdida de clasificación muy sensible a cambios en la matriz de peso, difícil de optimizar **Después de la normalización**: menos sensible a pequeños cambios de peso, más fácil de optimizar

Resumen: En la práctica para imágenes

Por ejemplo: Consideremos CIFAR-10 con imágenes de [32,32,3]

- Restar la imagen promedio (arreglo de [32,32,3])
- Restar el promedio por canal (3 números)
- Restar el promedio por canal y dividirlo por la desviacion estandar por canal (3 números)

Batch normalization

¿Quieres activaciones de varianza unitaria de media cero?

Consideremos un *batch* de activaciones en alguna capa. Para hacer que cada dimensión varíe la unidad de media cero, aplique:

$$\widehat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$$

Batch normalization

Input: $x: N \times D$

$$\begin{array}{l} \mu_j = \frac{1}{N} \sum_{i=1}^N x_{i,j} \text{ Promedio por canal,} \\ \text{[D]} \\ \sigma_j^2 = \frac{1}{N} \sum_{i=1}^N (x_{i,j} - \mu_j)^2 \text{ Varianza por canal [D]} \\ \hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \epsilon}} \text{ x normalizado, [N,D]} \end{array}$$

¿Qué pasaría si el uso de media cero y variancia unitaria es una restricción demasiada fuerte?

Batch normalization

Input: $x: N \times D$ Parámetros de cambio y escala que se pueden aprender: $\gamma, \beta: D$ Aprendiendo los parámetros $\gamma = \sigma, \beta = \mu$ permitirá recuperar la

función identidad $\mu_j = \frac{1}{N} \sum_{i=1}^N x_{i,j} \text{ Promedio por canal, [D]}$ $\sigma_j^2 = \frac{1}{N} \sum_{i=1}^N (x_{i,j} - \mu_j)^2 \text{ Var por canal [D]}$ $\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \epsilon}} \text{ x normalizado, [N,D]}$ $y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j \text{ Salida, [N,D]}$

Batch normalization - durante evaluación

Input: $x: N \times D$ Parámetros de cambio y escala que se pueden aprender: $\gamma, \beta: D$ Durante la evaluación de la red batchnorm se transforma en un operador lineal μ_j =Promedio de los

valores vistos durante el entrenamiento Promedio por canal, [D] σ_j^2 =Promedio de los valores vistos durante el entrenamiento Var por canal [D] $\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \epsilon}}$ x normalizado, [N,D] $y_{i,j} = \gamma_i \hat{x}_{i,j} + \beta_j$ Salida, [N,D]

Batch Normalization: Pytorch

```
class Multilaverpercepron(nn.Module):
 def init (self):
    super(). init ()
    self.layers = nn.Sequential(
      nn.Flatten(),
      nn.Linear(32 * 32 * 3, 64),
      nn.BatchNorm1d(64),
     nn.ReLU(),
      nn.Linear(64, 32),
      nn.BatchNorm1d(32),
     nn.ReLU(),
      nn.Linear(32, 10)
```


Dropout

Dropout es un algoritmo para entrenar redes neuronales mediante la eliminación aleatoria de unidades durante el entrenamiento para evitar su coadaptación.

Dropout (I)

Dropout (II)

Dropout (III)

Dropout (IV)

Dropout (V)

Dropout (VI)

Dropout (VII)

Dropout (VIII)

Dropout (IX)

Dropout (X)

Dropout: Pytorch

Regularization 1: Dropout

Dropout: in pytorch is implemented as torch.nn.Dropout

```
If we have a network:
model = torch.nn.Sequential(
    torch.nn.Linear(1,100), torch.nn.ReLU(),
    torch.nn.Linear(50,2))

We can simply add dropout layers:
model = torch.nn.Sequential(
    torch.nn.Linear(1,100), torch.nn.ReLU(),
    torch.nn.Linear(1,100), torch.nn.ReLU(),
    torch.nn.Dropout()
    torch.nn.Dropout()
    torch.nn.Dropout()
    torch.nn.Linear(50,2))
```

Note: A model using dropout has to be set in train or eval model.

Clasificación multiclase

https://www.researchgate.net/publication/276240631_A_Taxonomy_of_Label_Ranking_Algorithms

Shape: (3,)

Función de activación: Softmax

Shape: (3,)

https://ogunlao.github.io/2020/04/26/you_dont_really_know_softmax.html

Shape: (3, 32, 32)

Función de activación: Softmax

https://towardsdatascience.com/softmax-activation-function-explained-a7e1bc3ad60

Función de pérdida: Cross Entropy

https://towardsdatascience.com/softmax-activation-function-explained-a7e1bc3ad60

Función de pérdida: Cross Entropy

https://towardsdatascience.com/cross-entropy-loss-function-f38c4ec8643e

Función de pérdida: Cross Entropy

https://gombru.github.io/2018/05/23/cross_entropy_loss/

Función de pérdida: Binary Cross-Entropy

https://gombru.github.io/2018/05/23/cross_entropy_loss/

¿Preguntas?