TreeSync

Nicole

August 4, 2025

Contents

1	For	mal Languages	2			
	1.1	Words	3			
	1.2	Alphabets	3			
2	Cor	nmunicating Automata	5			
	2.1	Messages and Actions	5			
	2.2	Projections Languages	5			
	2.3	Shuffled Language	7			
	2.4	Network of Communicating Automata	9			
	2.5	Synchronous System	11			
	2.6	Mailbox System	11			
		2.6.1 Semantics and Language	11			
		2.6.2 mbox run	13			
		2.6.3 mbox traces	13			
3	Synchronisability 13					
	3.1	Synchronisability is Deciable for Tree Topology in Mailbox				
		Communication	14			
		3.1.1 Topology is a Tree	14			
		3.1.2 parent-child relationship in tree	14			
		3.1.3 path to root and path related lemmas	15			
	3.2	Influenced Language	15			
		3.2.1 simulate sync with mbox word	16			
		3.2.2 Lemma 4.4 and preparations	16			
4	new	formalization	16			
	4.1	=> 1	17			
	4.2	=> 2.	17			

5	Con	nmunicating Automata	18			
		5.0.1 projection simplifications on words/general cases	18			
	5.1	Shuffled Language	21			
		5.1.1 rightmost shuffle related	24			
	5.2	A Communicating Automaton	28			
	5.3	Network of Communicating Automata	33			
	5.4	helpful conclusions about language/ runs / etc. in concrete				
		cases and peer runs	34			
	5.5	Synchronous System	40			
	5.6	Mailbox System	45			
		5.6.1 Semantics and Language	45			
		5.6.2 mbox step conversions to from	50			
		5.6.3 mbox run	52			
		5.6.4 mbox traces	54			
		5.6.5 Language Hierarchy	54			
6	Synchronisability 58					
	6.1	Synchronisability is Deciable for Tree Topology in Mailbox				
		Communication	59			
		6.1.1 Topology is a Tree	59			
		6.1.2 root node specifications and more tree related lemmas	64			
		6.1.3 parent-child relationship in tree	68			
		6.1.4 path to root and path related lemmas	71			
		6.1.5 path from root downwards to a node	76			
	6.2	Influenced Language	82			
		6.2.1 influenced language and its shuffles	84			
		6.2.2 simulate sync with mbox word	90			
		6.2.3 Lemma 4.4 and preparations	94			
		6.2.4 sync and infl lang relations	97			
7	new	formalization	97			
	7.1	theorem $4.5 = >2.$	101			
8	Syn	chronizability of Trees	101			

 ${\bf theory} \ {\it Formal Languages}$

 ${\bf imports}\ Main\ HOL-Library. La TeX sugar\ HOL-Library. Optional Sugar\ {\bf begin}$

1 Formal Languages

type-synonym 'a word = 'a list type-synonym 'a language = 'a word set

1.1 Words

```
abbreviation emptyWord :: 'a word (\varepsilon) where
abbreviation concat :: 'a word \Rightarrow 'a word \Rightarrow 'a word (infixl \cdot 60) where
  v \cdot w \equiv v @ w
abbreviation length-of-word :: 'a word \Rightarrow nat (|-| [90] 60) where
  |w| \equiv length w
        Alphabets
1.2
locale Alphabet =
  fixes Letters :: 'a set (\Sigma)
  assumes not-empty: \Sigma \neq \{\}
      and finite-letters: finite \Sigma
begin
inductive-set WordsOverAlphabet :: 'a word set \ (\Sigma^* \ 100) where
EmptyWord: \varepsilon \in \Sigma^*
Composed: [a \in \Sigma; w \in \Sigma^*] \Longrightarrow (a\#w) \in \Sigma^*
\mathbf{lemma}\ \textit{word-over-alphabet-rev}\colon
  fixes a :: 'a
    and w :: 'a \ word
  assumes ([a] \cdot w) \in \Sigma^*
  shows a \in \Sigma and w \in \Sigma^*
  using assms WordsOverAlphabet.cases[of a # w]
  by auto
\mathbf{lemma}\ concat\text{-}words\text{-}over\text{-}an\text{-}alphabet:
  fixes v w :: 'a word
  assumes v \in \Sigma^*
      and w \in \Sigma^*
    \mathbf{shows}\ (v \mathrel{\boldsymbol{\cdot}} w) \in \Sigma^*
  using assms
proof (induct\ v)
  case EmptyWord
  assume w \in \Sigma^*
  thus (\varepsilon \cdot w) \in \Sigma^*
    \mathbf{by} \ simp
\mathbf{next}
  case (Composed\ a\ v)
  assume a \in \Sigma
  moreover assume w \in \Sigma^* \Longrightarrow (v \cdot w) \in \Sigma^* and w \in \Sigma^*
  hence (v \cdot w) \in \Sigma^*.
  ultimately show ((a\#v) \cdot w) \in \Sigma^*
    using WordsOverAlphabet.Composed[of a v \cdot w]
    by simp
```

```
\mathbf{qed}
```

```
\mathbf{lemma}\ split-a\text{-}word\text{-}over\text{-}an\text{-}alphabet:
  fixes v w :: 'a word
  assumes (v \cdot w) \in \Sigma^*
  shows v \in \Sigma^* and w \in \Sigma^*
  using assms
proof (induct v)
  {\bf case}\ {\it Nil}
  {
     case 1
    \mathbf{show}\ \varepsilon \in \Sigma^*
       \mathbf{using}\ \mathit{EmptyWord}
       \mathbf{by} \ simp
  next
     case 2
     \mathbf{assume}\ \varepsilon \boldsymbol{\cdot} w \in \Sigma^*
    thus w \in \Sigma^*
       by simp
  }
\mathbf{next}
  case (Cons \ a \ v)
  assume a\#v \cdot w \in \Sigma^*
  hence A1: a \in \Sigma and A2: v \cdot w \in \Sigma^*
     using word-over-alphabet-rev[of a v \cdot w]
    \mathbf{by}\ simp\text{-}all
  assume IH1: v \cdot w \in \Sigma^* \Longrightarrow v \in \Sigma^* and IH2: v \cdot w \in \Sigma^* \Longrightarrow w \in \Sigma^*
  {
    from A1 A2 IH1 show a#v \in \Sigma^*
       using Composed[of \ a \ v]
       by simp
  \mathbf{next}
     case 2
    from A2 IH2 show w \in \Sigma^*
       \mathbf{by} \ simp
qed
\quad \text{end} \quad
end
    {\bf imports}\ HOL-Library. Sublist\ Formal Languages
begin
```

2 Communicating Automata

2.1Messages and Actions

```
datatype ('information, 'peer) message =
  Message 'information 'peer 'peer (\stackrel{-}{\longrightarrow} [120, 120, 120] 100)
primrec get-information :: ('information, 'peer) message ⇒ 'information where
  qet-information (i^{p \to q}) = i
primrec get-sender :: ('information, 'peer') message ⇒ 'peer where
 get\text{-}sender\ (i^{p\rightarrow q})=p
primrec get-receiver :: ('information, 'peer) message ⇒ 'peer where
  get-receiver (i^{p \to q}) = q
datatype ('information, 'peer) action =
  Output ('information, 'peer) message (!\langle - \rangle [120] \ 100)
  Input ('information, 'peer) message (?\langle - \rangle [120] 100)
primrec is-output :: ('information, 'peer) action \Rightarrow bool where
  is-output (!\langle m \rangle) = True
  is\text{-}output\ (?\langle m\rangle) = False
abbreviation is-input :: ('information, 'peer) action \Rightarrow bool where
  is-input a \equiv \neg(is-output a)
primrec get-message :: ('information, 'peer) action \Rightarrow ('information, 'peer) mes-
sage where
  get\text{-}message\ (!\langle m\rangle)=m\mid
  get\text{-}message \ (?\langle m \rangle) = m
primrec get-actor :: ('information, 'peer) action \Rightarrow 'peer where
  get-actor (!\langle m \rangle) = get-sender m \mid
  get-actor (?\langle m \rangle) = get-receiver m
primrec get-object :: ('information, 'peer) action \Rightarrow 'peer where
  get\text{-}object\ (!\langle m\rangle) = get\text{-}receiver\ m\ |
  get-object (?\langle m \rangle) = get-sender m
abbreviation get-info :: ('information, 'peer) action \Rightarrow 'information where
  qet-info a \equiv qet-information (qet-message a)
2.2
        Projections Languages
```

```
abbreviation projection-on-outputs
 :: ('information, 'peer) \ action \ word \Rightarrow ('information, 'peer) \ action \ word \ (\downarrow_! [90])
110)
```

```
where
```

 $w\downarrow_! \equiv filter is\text{-}output w$

abbreviation projection-on-outputs-language

:: ('information, 'peer) action language \Rightarrow ('information, 'peer) action language (-]! [120] 100)

where

 $L|_! \equiv \{w\downarrow_! \mid w.\ w \in L\}$

abbreviation projection-on-inputs

:: ('information, 'peer) action word \Rightarrow ('information, 'peer) action word $(-\downarrow_? [90] \ 110)$

where

 $w\downarrow_? \equiv \mathit{filter is-input } w$

abbreviation projection-on-inputs-language

:: ('information, 'peer) action language \Rightarrow ('information, 'peer) action language (-\|.? [120] 100)

where

 $L \downarrow_? \equiv \{ w \downarrow_? \mid w. \ w \in L \}$

${\bf abbreviation}\ ignore\text{-}signs$

:: ('information, 'peer) action word \Rightarrow ('information, 'peer) message word (- \downarrow !? [90] 110)

where

 $w\downarrow_{!?} \equiv map \ get\text{-}message \ w$

abbreviation ignore-signs-in-language

— projection on receives towards p and sends from p

abbreviation projection-on-single-peer :: ('information, 'peer) action word \Rightarrow 'peer \Rightarrow ('information, 'peer) action word (-\frac{1}{2} [90, 90] 110)

where

 $w\downarrow_p \equiv filter (\lambda x. get-actor x = p) w$

abbreviation projection-on-single-peer-language

 $:: ('information, 'peer) \ action \ language \Rightarrow 'peer \Rightarrow ('information, 'peer) \ action \ language$

(-_ [90, 90] 110) where
$$(L|_p) \equiv \{(w\downarrow_p) \mid w.\ w \in L\}$$

abbreviation projection-on-peer-pair

:: ('information, 'peer) action word \Rightarrow 'peer \Rightarrow 'peer \Rightarrow ('information, 'peer) action word (-\$\psi_{-,-}\$ [90, 90, 90] 110)

where

 $w \downarrow_{\{p,q\}} \ \equiv \mathit{filter} \ (\lambda x. \ (\mathit{get-object} \ x = q \ \land \ \mathit{get-actor} \ x = p) \ \lor \ (\mathit{get-object} \ x = p$

```
\land get\text{-}actor\ x = q))\ w
{\bf abbreviation}\ projection\hbox{-} on\hbox{-} peer\hbox{-} pair\hbox{-} language
  :: ('information, 'peer) \ action \ language \Rightarrow 'peer \Rightarrow 'peer \Rightarrow ('information, 'peer)
action language
  (-|_{\{-,-\}} [90, 90, 90] 110) where
  (L|_{\{p,q\}}) \equiv \{(w\downarrow_{\{p,q\}}) \mid w.\ w \in L\}
2.3
         Shuffled Language
inductive shuffled ::('information, 'peer) action word \Rightarrow ('information, 'peer) ac-
tion \ word \Rightarrow bool \ \mathbf{where}
  refl: shuffled w w |
  swap: \llbracket is\text{-}output \ a; is\text{-}input \ b; \ w = (xs @ a \# b \# ys) \rrbracket
          \implies shuffled w (xs @ b # a # ys) |
  trans: \llbracket \text{ shuffled } w \text{ } w'; \text{ shuffled } w' \text{ } w'' \rrbracket \implies \text{shuffled } w \text{ } w''
abbreviation valid-input-shuffles-of-w :: ('information, 'peer) action word \Rightarrow ('information,
'peer) action language where
  valid-input-shuffles-of-w \ w \equiv \{w'. \ shuffled \ w \ w'\}
\textbf{abbreviation} \ \textit{valid-input-shuffle} ::
  ('information, 'peer) \ action \ word \Rightarrow ('information, 'peer) \ action \ word \Rightarrow bool
(infixl \sqcup \sqcup_? 6\theta) where
  w' \sqcup \sqcup_? w \equiv shuffled \ w \ w'
definition all-shuffles :: ('information, 'peer) action word \Rightarrow ('information, 'peer)
action word set where
  all-shuffles w = \{w'. \text{ shuffled } w w'\}
definition shuffled-lang :: ('information, 'peer) action language \Rightarrow ('information,
'peer) action language where
  shuffled-lang L = (\bigcup w \in L. \ all\text{-shuffles} \ w)
abbreviation shuffling-possible :: ('information, 'peer') action word \Rightarrow bool where
  shuffling-possible w \equiv (\exists xs \ a \ b \ ys. \ is-output \ a \land is-input \ b \land w = (xs @ a \# b)
\# ys))
abbreviation shuffling-occurred :: ('information, 'peer) action word \Rightarrow bool where
  shuffling-occurred w \equiv (\exists xs \ a \ b \ ys. \ is-output \ a \land is-input \ b \land w = (xs @ b \# a
\# ys))
```

abbreviation rightmost-shuffle :: ('information, 'peer') action word \Rightarrow ('information,

```
'peer) action word \Rightarrow bool where
 rightmost-shuffle w w' \equiv (\exists xs \ a \ b \ ys. \ is-output \ a \land is-input \ b \land w = (xs @ a \# b )
b \# ys \land (\neg shuffling\text{-}possible \ ys) \land w' = (xs @ b \# a \# ys))
{f locale}\ Communicating Automaton =
  fixes peer
                     :: 'peer
   and States
                      :: 'state set
                     :: 'state
   and initial
   and Messages :: ('information, 'peer) message set
   and Transitions :: ('state \times ('information, 'peer) action \times 'state) set
  assumes finite-states:
                                      finite States
   and initial-state:
                                  initial \in States
                                      Alphabet Messages
   and message-alphabet:
   and well-formed-transition: \bigwedge s1 a s2. (s1, a, s2) \in Transitions \Longrightarrow
                                 s1 \in States \land get\text{-}message \ a \in Messages \land get\text{-}actor \ a
= peer \land
                                  qet-object a \neq peer \land s2 \in States
begin
inductive-set ActionsOverMessages :: ('information, 'peer) action set where
  AOMOutput: m \in Messages \Longrightarrow !\langle m \rangle \in ActionsOverMessages \mid
  AOMInput: m \in Messages \Longrightarrow ?\langle m \rangle \in ActionsOverMessages
inductive-set Actions :: ('information, 'peer) action set (Act) where
  ActOfTrans: (s1, a, s2) \in Transitions \implies a \in Act
inductive-set CommunicationPartners :: 'peer set where
  CPAction: (s1, a, s2) \in Transitions \implies get\text{-}object \ a \in CommunicationPartners
inductive-set SendingToPeers :: 'peer set where
 SPSend: [(s1, a, s2) \in Transitions; is-output \ a]] \Longrightarrow get-object \ a \in Sending To Peers
inductive-set ReceivingFromPeers :: 'peer set where
 RPRecv: [(s1, a, s2) \in Transitions; is-input \ a]] \Longrightarrow get-object \ a \in ReceivingFromPeers
abbreviation step
 :: 'state \Rightarrow ('information, 'peer) \ action \Rightarrow 'state \Rightarrow bool \ (-----)_{\mathcal{C}} - [90, 90, 90]
110)
  where
   s1 - a \rightarrow_{\mathcal{C}} s2 \equiv (s1, a, s2) \in Transitions
inductive run :: 'state \Rightarrow ('information, 'peer) action word \Rightarrow 'state list \Rightarrow bool
where
  REmpty2:
                 run \ s \ \varepsilon \ ([]) \ |
  RComposed2: [run \ s1 \ w \ xs; \ s0 \ -a \rightarrow_{\mathcal{C}} \ s1] \implies run \ s0 \ (a \ \# \ w) \ (s1 \ \# \ xs)
inductive-set Traces::('information, 'peer) action word set where
```

```
STRun: run initial w xs \implies w \in Traces
abbreviation Lang :: ('information, 'peer) action language where
  Lang \equiv Traces
abbreviation LangSend :: ('information, 'peer) action language where
  LangSend \equiv Lang \lfloor 1 \rfloor
abbreviation LangRecv :: ('information, 'peer) action language where
  LangRecv \equiv Lang \mid_?
end
2.4
        Network of Communicating Automata
locale NetworkOfCA =
  fixes automata :: 'peer \Rightarrow ('state set \times 'state \times
                    ('state \times ('information, 'peer) \ action \times 'state) \ set) \ (A \ 1000)
   and messages :: ('information, 'peer) message set
                                                                                       (M 1000)
                                  finite (UNIV :: 'peer set)
  assumes finite-peers:
   and automaton-of-peer: \bigwedge p. Communicating Automaton p (fst (A p)) (fst (snd)
(\mathcal{A} p))) \mathcal{M}
                                   (snd\ (snd\ (\mathcal{A}\ p)))
   and message-alphabet: Alphabet M
   and peers-of-message: \bigwedge m. m \in \mathcal{M} \Longrightarrow get-sender m \neq get-receiver m
   and messages-used:
                                \forall m \in \mathcal{M}. \exists s1 \ a \ s2 \ p. \ (s1, \ a, \ s2) \in snd \ (snd \ (\mathcal{A} \ p)) \land 
                             m = get\text{-}message \ a
begin
— all peers in network
abbreviation get-peers :: 'peer set (P 110) where
 \mathcal{P} \equiv (\mathit{UNIV} :: 'peer \ set)
abbreviation get-states :: 'peer \Rightarrow 'state set (S - [90] 110) where
  S(p) \equiv fst (A p)
abbreviation get-initial-state :: 'peer \Rightarrow 'state (\mathcal{I} - [90] 110) where
 \mathcal{I}(p) \equiv fst \ (snd \ (\mathcal{A} \ p))
abbreviation get-transitions
  :: 'peer \Rightarrow ('state \times ('information, 'peer) \ action \times 'state) \ set \ (\mathcal{R} - [90] \ 110)
where
 \mathcal{R}(p) \equiv snd \; (snd \; (\mathcal{A} \; p))
abbreviation Words OverMessages :: ('information, 'peer) message word set (\mathcal{M}^*)
100) where
 \mathcal{M}^* \equiv Alphabet.WordsOverAlphabet \mathcal{M}
```

— all q that p sends to in Ap (for which there is a transition !p->q in Ap)

```
abbreviation sending ToPeers-of-peer :: 'peer \Rightarrow 'peer set (\mathcal{P}_! - [90] 110) where
  \mathcal{P}_{!}(p) \equiv CommunicatingAutomaton.SendingToPeers (snd (snd (A p)))
— all q that p receives from in Ap (for which there is a transition ?q->p in Ap)
abbreviation receivingFromPeers-of-peer :: 'peer \Rightarrow 'peer set (\mathcal{P}_7 - [90] 110)
where
 \mathcal{P}_{?}(p) \equiv CommunicatingAutomaton.ReceivingFromPeers (snd (snd (A p)))
abbreviation Peers-of :: 'peer \Rightarrow 'peer set where
  Peers-of p \equiv CommunicatingAutomaton.CommunicationPartners (snd (A))
p)))
abbreviation step-of-peer
  :: 'state \Rightarrow ('information, 'peer) \ action \Rightarrow 'peer \Rightarrow 'state \Rightarrow bool
  (----)_{C} - [90, 90, 90, 90] 110) where
  s1 - a \rightarrow_{\mathcal{C}} p \ s2 \equiv (s1, a, s2) \in snd \ (snd \ (\mathcal{A} \ p))
abbreviation language-of-peer
  :: 'peer \Rightarrow ('information, 'peer) action language (\mathcal{L} - [90] 110) where
  \mathcal{L}(p) \equiv CommunicatingAutomaton.Lang (fst (snd (A p))) (snd (snd (A p)))
abbreviation output-language-of-peer
  :: 'peer \Rightarrow ('information, 'peer) action language (\mathcal{L}_! - [90] 110) where
  \mathcal{L}_{!}(p) \equiv CommunicatingAutomaton.LangSend (fst (snd (A p))) (snd (snd (A
p)))
abbreviation input-language-of-peer
  :: 'peer \Rightarrow ('information, 'peer) action language (\mathcal{L}_? - [90] 110) where
  \mathcal{L}_{?}(p) \equiv CommunicatingAutomaton.LangRecv (fst (snd (A p))) (snd (snd (A
p)))
  — start in s1, read w (in 0 or more steps) and end in s2
abbreviation path-of-peer
  :: 'state \Rightarrow ('information, 'peer) \ action \ word \Rightarrow 'peer \Rightarrow 'state \Rightarrow bool
  (----)^* - [90, 90, 90, 90] 110) where
 s1 - w \rightarrow^* p \ s2 \equiv (s1 = s2 \land w = \varepsilon \land s1 \in \mathcal{S} \ p) \lor (\exists xs. \ Communicating Automa-
ton.run (\mathcal{R} p) s1 w xs \wedge last xs = s2)
abbreviation run-of-peer
  :: 'peer \Rightarrow ('information, 'peer) \ action \ word \Rightarrow 'state \ list \Rightarrow bool \ where
  run-of-peer p w xs \equiv (CommunicatingAutomaton.run (\mathcal{R} p) (\mathcal{I} p) w xs)
abbreviation run-of-peer-from-state
  "":" 'peer \Rightarrow 'state \Rightarrow ('information, 'peer) action word \Rightarrow 'state list \Rightarrow bool
where
  run-of-peer-from-state p \ s \ w \ xs \equiv (CommunicatingAutomaton.run \ (\mathcal{R} \ p) \ s \ w \ xs)
fun get-trans-of-run :: 'state \Rightarrow ('information, 'peer) action word \Rightarrow 'state list \Rightarrow
```

 $('state \times ('information, 'peer) \ action \times 'state) \ list \ \mathbf{where}$

```
\begin{array}{l} \textit{get-trans-of-run } s0 \ \ \varepsilon \ [] = [] \ | \\ \textit{get-trans-of-run } s0 \ [a] \ [s1] = [(s0,\ a,\ s1)] \ | \\ \textit{get-trans-of-run } s0 \ (a \ \# \ as) \ (s1 \ \# \ xs) = (s0,\ a,\ s1) \ \# \ \textit{get-trans-of-run } s1 \ \textit{as } xs \end{array}
```

2.5 Synchronous System

```
definition is-sync-config :: ('peer \Rightarrow 'state) \Rightarrow bool where is-sync-config C \equiv (\forall p. \ C \ p \in \mathcal{S}(p))
```

```
abbreviation initial-sync-config :: 'peer \Rightarrow 'state (C_{\mathcal{I}\mathbf{0}}) where C_{\mathcal{I}\mathbf{0}} \equiv \lambda p. \mathcal{I}(p)
```

inductive sync-step

$$\begin{array}{l} :: ('peer \Rightarrow 'state) \Rightarrow ('information, 'peer) \ action \Rightarrow ('peer \Rightarrow 'state) \Rightarrow bool \\ (- -\langle -, \mathbf{0} \rangle \rightarrow - [90, \ 90, \ 90] \ 110) \ \mathbf{where} \\ SynchStep: \llbracket is-sync-config \ C1; \ a = !\langle (i^{p \rightarrow q}) \rangle; \ C1 \ p - !\langle (i^{p \rightarrow q}) \rangle \rightarrow_{\mathcal{C}} p \ (C2 \ p); \\ C1 \ q - ?\langle (i^{p \rightarrow q}) \rangle \rightarrow_{\mathcal{C}} q \ (C2 \ q); \ \forall \ x. \ x \notin \{p, \ q\} \longrightarrow C1(x) = C2(x) \rrbracket \Longrightarrow \\ C1 \ -\langle a, \mathbf{0} \rangle \rightarrow C2 \end{aligned}$$

inductive sync-run

```
:: ('peer \Rightarrow 'state) \Rightarrow ('information, 'peer) \ action \ word \Rightarrow ('peer \Rightarrow 'state) \ list \Rightarrow bool
```

where

```
SREmpty: sync-run C \in ([]) \mid
SRComposed: [sync-run \ C0 \ w \ xc; \ last \ (C0\#xc) - \langle a, \mathbf{0} \rangle \rightarrow C] \implies sync-run \ C0 \ (w \cdot [a]) \ (xc@[C])
```

— E(Nsync)

inductive-set SyncTraces :: ('information, 'peer) action language ($\mathcal{T}_{\mathbf{0}}$ 120) where STRun: sync-run $\mathcal{C}_{\mathcal{I}\mathbf{0}}$ w $xc \Longrightarrow w \in \mathcal{T}_{\mathbf{0}}$

— T(Nsync)

abbreviation SyncLang :: ('information, 'peer) action language (\mathcal{L}_0 120) where $\mathcal{L}_0 \equiv \mathcal{T}_0$

2.6 Mailbox System

2.6.1 Semantics and Language

definition is-mbox-config

```
:: ('peer \Rightarrow ('state \times ('information, 'peer) message word)) \Rightarrow bool where is-mbox-config C \equiv (\forall p. fst \ (C \ p) \in \mathcal{S}(p) \land snd \ (C \ p) \in \mathcal{M}^*)
```

— all mbox configurations of system

abbreviation mbox-configs

```
:: ('peer \Rightarrow 'state \times ('information, 'peer) message list) set (\mathcal{C}_{\mathfrak{m}}) where \mathcal{C}_{\mathfrak{m}} \equiv \{ \textit{C} \mid \textit{C. is-mbox-config C} \}
```

abbreviation initial-mbox-config

```
:: 'peer \Rightarrow ('state \times ('information, 'peer) \ message \ word) \ (\mathcal{C}_{Im}) \ \mathbf{where}
```

```
\mathcal{C}_{\mathcal{I}\mathfrak{m}} \equiv \lambda p. \ (\mathcal{I} \ p, \, \varepsilon)
```


:: ('peer \Rightarrow ('state \times ('information, 'peer) message word)) \Rightarrow bool where is-stable $C \equiv is$ -mbox-config $C \land (\forall p. snd (C p) = \varepsilon)$

type-synonym $bound = nat \ option$

abbreviation nat-bound :: nat \Rightarrow bound (\mathcal{B} - [90] 110) where \mathcal{B} $k \equiv Some$ k

abbreviation $unbounded :: bound \ (\infty \ 100)$ where

 $\infty \equiv None$

primrec is-bounded :: $nat \Rightarrow bound \Rightarrow bool \ (-<_{\mathcal{B}} - [90, 90] \ 110)$ where $n<_{\mathcal{B}} \infty = True \mid n<_{\mathcal{B}} \mathcal{B} \ k = (n < k)$

inductive mbox-step

 $:: ('peer \Rightarrow ('state \times ('information, 'peer) \ message \ word)) \Rightarrow ('information, 'peer) \ action \Rightarrow$

 $bound \Rightarrow ('peer \Rightarrow ('state \times ('information, 'peer) \ message \ word)) \Rightarrow bool$ where

MboxSend: [is-mbox-config C1; $a = !\langle (i^{p \to q}) \rangle$; fst (C1 p) $-!\langle (i^{p \to q}) \rangle \to_{\mathcal{C}} p$ (fst (C2 p));

 $snd\ (C1\ p) = snd\ (C2\ p);\ (\mid (snd\ (C1\ q))\mid) <_{\mathcal{B}} k;$ $C2\ q = (fst\ (C1\ q),\ (snd\ (C1\ q))\cdot [(i^{p\to q})]);\ \forall\ x.\ x\notin \{p,\ q\}\longrightarrow C1(x)$ $= C2(x) \parallel \Longrightarrow$

mbox-step C1 a k C2 |

MboxRecv: [is-mbox-config C1; $a = ?\langle (i^{p \to q}) \rangle$; fst (C1 q) $-?\langle (i^{p \to q}) \rangle \to_{\mathcal{C}} q$ (fst (C2 q));

 $(snd\ (C1\ q)) = [(i^{p \to q})] \cdot snd\ (C2\ q); \ \forall x.\ x \neq q \longrightarrow C1(x) = C2(x)]$

mbox-step C1 a k C2

abbreviation mbox-step-bounded

 $:: (\textit{'peer} \Rightarrow (\textit{'state} \times (\textit{'information}, \textit{'peer}) \ \textit{message word})) \Rightarrow (\textit{'information}, \textit{'peer}) \ \textit{action} \Rightarrow$

 $nat \Rightarrow ('peer \Rightarrow ('state \times ('information, 'peer) \ message \ word)) \Rightarrow bool (--\langle -, -\rangle \rightarrow -[90, 90, 90] \ 110)$ where $C1 -\langle a, n \rangle \rightarrow C2 \equiv mbox\text{-step } C1 \ a \ (Some \ n) \ C2$

abbreviation mbox-step-unbounded

 $:: ('peer \Rightarrow ('state \times ('information, 'peer) \ message \ word)) \Rightarrow ('information, 'peer) \ action \Rightarrow$

 $('peer \Rightarrow ('state \times ('information, 'peer) message word)) \Rightarrow bool (--\langle -, \infty \rangle \rightarrow -[90, 90, 90] 110)$ where $C1 - \langle a, \infty \rangle \rightarrow C2 \equiv mbox\text{-}step C1 \ a \ None \ C2$

2.6.2mbox run

```
inductive mbox-run
  :: ('peer \Rightarrow ('state \times ('information, 'peer) \ message \ word)) \Rightarrow bound \Rightarrow
       ('information, 'peer) action word \Rightarrow
      ('peer \Rightarrow ('state \times ('information, 'peer) message word)) list \Rightarrow bool where
                        mbox-run C k \varepsilon ([]) |
  MRComposedNat: [mbox-run\ C0\ (Some\ k)\ w\ xc;\ last\ (C0\#xc)\ -\langle\ a,\ k\rangle \rightarrow\ C] \Longrightarrow
                  mbox-run\ CO\ (Some\ k)\ (w•[a])\ (xc@[C])
  MRComposedInf: [mbox-run\ C0\ None\ w\ xc;\ last\ (C0\#xc)\ -\langle a,\infty\rangle \rightarrow \ C]] \Longrightarrow
                  mbox-run\ C0\ None\ (w\cdot[a])\ (xc@[C])
2.6.3
           mbox traces
inductive-set MboxTraces
  :: nat option \Rightarrow ('information, 'peer) action language (\mathcal{T}_{-} [100] 120)
  for k :: nat option where
    MTRun: mbox-run \mathcal{C}_{\mathcal{I}\mathfrak{m}} k w xc \Longrightarrow w \in \mathcal{T}_k
— T(mbox)
abbreviation MboxLang :: bound \Rightarrow ('information, 'peer) action language (<math>\mathcal{L}_{-}
[100] 120
  where
    \mathcal{L}_k \equiv \{ w \downarrow_! \mid w. \ w \in \mathcal{T}_k \}
abbreviation MboxLang-bounded-by-one :: ('information, 'peer) action language
(\mathcal{L}_1 \ 120) where
  \mathcal{L}_{\mathbf{1}} \equiv \mathcal{L}_{\mathcal{B} \ 1}
abbreviation MboxLang-unbounded :: ('information, 'peer) action language (\mathcal{L}_{\infty}
120) where
 \mathcal{L}_{\infty} \equiv \mathcal{L}_{\infty}
abbreviation MboxLanqSend :: bound \Rightarrow ('information, 'peer) action language
(\mathcal{L}_{!-} [100] 120)
  where
    \mathcal{L}_{!k} \equiv (\mathcal{L}_k) |_{!}
abbreviation MboxLangRecv :: bound \Rightarrow ('information, 'peer) action language
(\mathcal{L}_{?-}[100] 120)
  where
    \mathcal{L}_{?k} \equiv (\mathcal{L}_k) |_?
       Synchronisability
```

3

```
abbreviation is-synchronisable :: bool where
  is-synchronisable \equiv \mathcal{L}_{\infty} = \mathcal{L}_{\mathbf{0}}
```

type-synonym 'a topology = $('a \times 'a)$ set

```
— the topology graph of all peers
inductive-set Edges :: 'peer \ topology \ (\mathcal{G} \ 110) where
  TEdge: i^{p \to q} \in \mathcal{M} \Longrightarrow (p, q) \in \mathcal{G}
abbreviation Successors :: 'peer topology \Rightarrow 'peer \Rightarrow 'peer set (-\langle - \rightarrow \rangle \ [90, 90]
110) where
  E\langle p \rightarrow \rangle \equiv \{q. (p, q) \in E\}
abbreviation Predecessors :: 'peer topology \Rightarrow 'peer \Rightarrow 'peer set (-\langle \rightarrow - \rangle [90, 90]
110) where
  E\langle \rightarrow q \rangle \equiv \{p. (p, q) \in E\}
3.1
         Synchronisability is Deciable for Tree Topology in Mail-
         box Communication
           Topology is a Tree
3.1.1
inductive is-tree :: 'peer set \Rightarrow 'peer topology \Rightarrow bool where
  ITRoot: is-tree \{p\} \{\} \}
  ITNode: \llbracket is\text{-tree } P \ E; \ p \in P; \ q \notin P \rrbracket \implies is\text{-tree (insert } q \ P) \ (insert \ (p, \ q) \ E)
abbreviation tree-topology :: bool where
  tree-topology \equiv is-tree \ (UNIV :: 'peer \ set) \ (\mathcal{G})
abbreviation is-root-from-topology :: 'peer \Rightarrow bool where
  is-root-from-topology p \equiv (tree-topology \land \mathcal{G}(\rightarrow p) = \{\})
abbreviation is-root-from-local :: 'peer \Rightarrow bool where
  is-root-from-local p \equiv tree-topology \land \mathcal{P}_?(p) = \{\} \land (\forall q. p \notin \mathcal{P}_!(q))
abbreviation is-root :: 'peer \Rightarrow bool where
  is-root p \equiv is-root-from-local p \lor is-root-from-topology p
abbreviation is-node-from-topology :: 'peer \Rightarrow bool where
  is-node-from-topology p \equiv (tree-topology \land (\exists q. \ \mathcal{G}\langle \rightarrow p \rangle = \{q\}))
abbreviation is-node-from-local :: 'peer \Rightarrow bool where
  is-node-from-local p \equiv tree-topology \land (\exists q. \mathcal{P}_?(p) = \{q\} \lor p \in \mathcal{P}_!(q))
abbreviation is-node :: 'peer \Rightarrow bool where
  is-node p \equiv is-node-from-topology p \lor is-node-from-local p
```

3.1.2 parent-child relationship in tree

```
inductive is-parent-of :: 'peer \Rightarrow 'peer \Rightarrow bool where node-parent : [is\text{-node }p; \mathcal{G}\langle \rightarrow p \rangle = \{q\}]] \Longrightarrow is\text{-parent-of }p \ q
```

3.1.3 path to root and path related lemmas

```
inductive path-to-root :: 'peer \Rightarrow 'peer list \Rightarrow bool where
  PTRRoot: [is-root \ p] \implies path-to-root \ p \ [p]
  PTRNode: [tree-topology; is-parent-of p q; path-to-root q as; distinct (p \# as)]
\implies path\text{-to-root }p\ (p\ \#\ as)
definition get-root :: 'peer topology \Rightarrow 'peer where get-root E = (THE \ x. \ is-root
x)
abbreviation get-path-to-root :: 'peer \Rightarrow 'peer list where
  qet-path-to-root p \equiv (THE \ ps. \ path-to-root p \ ps)
inductive path-from-root :: 'peer \Rightarrow 'peer list \Rightarrow bool where
  PFRRoot: [is-root \ p] \implies path-from-root \ p \ [p]
  PFRNode: [tree-topology; is-parent-of p q; path-from-root q as; distinct (as @
[p] \implies path-from-root p (as @ [p])
inductive path-from-to :: 'peer \Rightarrow 'peer \Rightarrow 'peer list \Rightarrow bool where
  path-refl: \llbracket tree\text{-topology}; p \in \mathcal{P} \rrbracket \implies path\text{-from-to } p \ [p] \ |
 path-step: [tree-topology; is-parent-of p q; path-from-to r q as; distinct (as @[p])]
\implies path-from-to r p (as @ [p])
3.2
         Influenced Language
inductive is-in-infl-lang: 'peer \Rightarrow ('information, 'peer) action word \Rightarrow bool where
  IL-root: [is-root\ r;\ w\in\mathcal{L}(r)] \implies is-in-infl-lang\ r\ w \mid - influenced language of
root r is language of r
 IL-node: [tree-topology; is-parent-of p q; w \in \mathcal{L}(p); is-in-infl-lang q w'; ((w\downarrow_?)\downarrow_!?)]
=(((w'\downarrow_{\{p,q\}})\downarrow_!)\downarrow_!?)] \Longrightarrow is-in-infl-lang p w — p is any node and q its parent has
a matching send for each of p's receives
abbreviation InfluencedLanguage :: 'peer \Rightarrow ('information, 'peer) action language
(\mathcal{L}^* - [90] \ 100) where
  \mathcal{L}^* p \equiv \{w. \text{ is-in-infl-lang } p w\}
abbreviation InfluencedLanguageSend: 'peer \Rightarrow ('information, 'peer) action lan-
guage (\mathcal{L}_{!}^{*} - [90] 100) where
 \mathcal{L}_!^* p \equiv (\mathcal{L}^* p)|_!
abbreviation InfluencedLanguageRecv :: 'peer \Rightarrow ('information, 'peer) action lan-
guage (\mathcal{L}_?^* - [90] \ 100) where
 \mathcal{L}_{?}^* p \equiv (\mathcal{L}^* p)|_{?}
abbreviation ShuffledInfluencedLanguage:: 'peer \Rightarrow ('information, 'peer) action
language (\mathcal{L}^*_{\sqcup\sqcup} - [90] 100) where
  \mathcal{L}^*_{\sqcup\sqcup} p \equiv shuffled\text{-}lang (\mathcal{L}^* p)
— p receives from no one and there is no q that sends to p
abbreviation no-sends-to-or-recvs-in :: 'peer \Rightarrow bool where
```

```
no-sends-to-or-recvs-in p \equiv (\mathcal{P}_?(p) = \{\} \land (\forall q. p \notin \mathcal{P}_!(q)))
```

3.2.1 simulate sync with mbox word

```
fun add-matching-recvs :: ('information, 'peer) action word \Rightarrow ('information, 'peer) action word where add-matching-recvs [] = [] | add-matching-recvs (a \# w) = (if is-output a then a \# (?\(\frac{2}{9}\)et-message a\)) \# add-matching-recvs we else a \# add-matching-recvs w)
```

3.2.2 Lemma 4.4 and preparations

inductive acc-infl-lang-word :: 'peer \Rightarrow ('information, 'peer) action word \Rightarrow bool where

ACC-root: [is-root $r; w \in \mathcal{L}^*(r)] \implies acc$ -infl-lang-word $r w \mid -$ influenced language of root r is language of r

ACC-node: [tree-topology; is-parent-of $p \ q; \ w \in \mathcal{L}^*(p);$ acc-infl-lang-word $q \ w';$ $((w\downarrow_?)\downarrow_{!?}) = (((w'\downarrow_{\{p,q\}})\downarrow_!)\downarrow_{!?})] \Longrightarrow acc$ -infl-lang-word $p \ (w' @ w)$ — p is any node and q its parent has a matching send for each of p's receives

inductive concat-infl :: 'peer \Rightarrow ('information, 'peer) action word \Rightarrow 'peer list \Rightarrow ('information, 'peer) action word \Rightarrow bool for p::'peer and w:: ('information, 'peer) action word where

```
at\text{-}p: \llbracket tree\text{-}topology; \ w \in \mathcal{L}^*(p); \ path\text{-}to\text{-}root \ p \ ps \rrbracket \implies concat\text{-}infl \ p \ w \ ps \ w \ | \\ reach\text{-}root: \ \llbracket is\text{-}root \ q; \ qw \in \mathcal{L}^*(q); \ path\text{-}to\text{-}root \ x \ (x \ \# \ [q]); \ (\forall \ g. \ w\text{-}acc \downarrow_g \in \mathcal{L}^*(g)); \ concat\text{-}infl \ p \ w \ (x \ \# \ [q]) \ w\text{-}acc; \ (((w\text{-}acc \downarrow_x) \downarrow_?) \downarrow_!?) = (((qw \downarrow_{\{x,q\}}) \downarrow_!) \downarrow_!?) \rrbracket \\ \implies concat\text{-}infl \ p \ w \ [q] \ (qw \cdot w\text{-}acc) \ | \\ node\text{-}step: \ \llbracket tree\text{-}topology; \ \mathcal{P}_?(x) = \{q\}; \ (\forall \ g. \ w\text{-}acc \downarrow_g \in \mathcal{L}^*(g)); \ path\text{-}to\text{-}root \ x \ (x \ \# \ q \ \# \ ps); \ qw \in \mathcal{L}^*(q); \ concat\text{-}infl \ p \ w \ (x \ \# \ q \ \# \ ps) \ w\text{-}acc; \ (((w\text{-}acc \downarrow_x) \downarrow_?) \downarrow_!?) = \\ (((qw \downarrow_{\{x,q\}}) \downarrow_!) \downarrow_!?) \rrbracket \implies concat\text{-}infl \ p \ w \ (q\# ps) \ (qw \cdot w\text{-}acc)
```

4 new formalization

```
abbreviation possible-send-suffixes-to-peer :: 'peer \Rightarrow ('information, 'peer) action word \Rightarrow 'peer \Rightarrow ('information, 'peer) action language (-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-\daggerup-
```

```
_{q} \ddagger w \ddagger_{p} \equiv \{(x \downarrow_{!}) \downarrow_{\{p,q\}} \mid x. \ (w \cdot x) \in \mathcal{L}^{*}(q) \}
```

```
definition subset-condition :: 'peer \Rightarrow 'peer \Rightarrow bool where subset-condition p \ q \longleftrightarrow (\forall \ w \in \mathcal{L}^*(p). \ \forall \ w' \in \mathcal{L}^*(q).
```

```
(((w'\downarrow!)\downarrow_{\{p,q\}})\downarrow_{!?}=((w\downarrow?)\downarrow_{!?}))\longrightarrow ((_{q}\ddagger w'\ddagger_{p})\downharpoonright_{!?}\subseteq (\ddagger w\ddagger_{p})\downharpoonright_{!?}))
```

 $\mathbf{definition}$ theorem-rightside :: bool

where theorem-rightside \longleftrightarrow $(\forall p \in \mathcal{P}. \forall q \in \mathcal{P}. ((is\text{-parent-of } p \ q) \longrightarrow ((subset\text{-condition } p \ q) \land ((\mathcal{L}^*(p)) = (\mathcal{L}^*_{\sqcup \sqcup \sqcup}(p)))))$

4.1 = > 1.

fun mix-pair :: ('information, 'peer) action word \Rightarrow ('information, 'peer) action word \Rightarrow ('information, 'peer) action word \Rightarrow ('information, 'peer) action word where

```
\begin{array}{l} \textit{mix-pair} \ [] \ [] \ \textit{acc} = \textit{acc} \ | \\ \textit{mix-pair} \ (\textit{a} \# \textit{w'}) \ [] \ \textit{acc} = \textit{mix-pair} \textit{w'} \ [] \ (\textit{a} \# \textit{acc}) \ | \\ \textit{mix-pair} \ [] \ (\textit{a} \# \textit{w}) \ \textit{acc} = \textit{mix-pair} \ [] \ \textit{w} \ (\textit{a} \# \textit{acc}) \ | \\ \textit{mix-pair} \ (\textit{a} \# \textit{w'}) \ (\textit{b} \# \textit{w}) \ \textit{acc} = (\textit{if} \ \textit{a} = ! \langle \textit{get-message} \ \textit{b} \rangle \\ \textit{then} \ (\textit{if} \ \textit{b} = ? \langle \textit{get-message} \ \textit{a} \rangle \ \textit{then} \ \textit{mix-pair} \ \textit{w'} \ \textit{w} \ (\textit{a} \# \textit{b} \# \textit{acc}) \ \textit{else} \ \textit{mix-pair} \\ (\textit{a} \# \textit{w'}) \ \textit{w} \ (\textit{b} \# \textit{acc})) \\ \textit{else} \ \textit{mix-pair} \ \textit{w'} \ (\textit{b} \# \textit{w}) \ (\textit{a} \# \textit{acc})) \end{array}
```

4.2 => 2.

inductive mix-shuf :: ('information, 'peer) action word \Rightarrow bool where

mix-shuf-constr: $\llbracket vq\downarrow_!\downarrow_{\{p,q\}}\downarrow_{!?} = v\downarrow_?\downarrow_{!?}; v'\in \mathcal{L}^*_{\sqcup\sqcup}(p); v'\sqcup\sqcup_? v; v\in \mathcal{L}^*(p); vq\in \mathcal{L}^*(q);$

 $vq = (as \cdot a\text{-send} \# bs); \ v = xs \cdot b \# a\text{-recv} \# ys; \ get\text{-message } a\text{-recv} = get\text{-message } a\text{-send}; \ is\text{-input } a\text{-recv}; \ is\text{-output } a\text{-send}; \ is\text{-output } b] \implies mix\text{-shuf } vq \ v \ v' \ ((mix\text{-pair } as \ xs \ []) \cdot a\text{-send} \# b \# a\text{-recv} \# (mix\text{-pair } bs \ ys \ []))$

end end

theory CommunicatingAutomaton imports Defs

begin

declare [[quick-and-dirty=true]]

5 Communicating Automata

5.0.1 projection simplifications on words/general cases

```
lemma proj-trio-inv:
  shows ((w\downarrow_q)\downarrow_!)\downarrow_{\{p,q\}} = ((w\downarrow_!)\downarrow_q)\downarrow_{\{p,q\}}
proof (induct w)
  case Nil
  then show ?case by simp
next
  case (Cons\ a\ w)
  then show ?case by fastforce
qed
lemma proj-trio-inv2:
  shows (((w'\!\!\downarrow!)\!\!\downarrow_q)\!\!\downarrow_{\{p,q\}})=(((w'\!\!\downarrow_{\{p,q\}})\!\!\downarrow_!)\!\!\downarrow_q)
proof (induct w')
  case Nil
  then show ?case by simp
\mathbf{next}
  case (Cons\ a\ w)
  then show ?case by (metis (no-types, lifting) filter.simps(2))
lemma filter-recursion: filter f (filter f xs) = filter f xs by simp
lemma filter-head-helper:
  assumes x \# (filter f xs) = (filter f (x \# xs))
  shows f x
proof (induction xs)
  case Nil
  then show ?case by (meson Cons-eq-filterD assms)
next
  case (Cons a xs)
  then show ?case by simp
\mathbf{qed}
\mathbf{lemma}\ \mathit{output-proj-input-yields-eps}\ :
  assumes (w\downarrow_!) = w
  shows (w\downarrow_?) = \varepsilon
  by (metis assms filter-False filter-id-conv)
\mathbf{lemma}\ input\text{-}proj\text{-}output\text{-}yields\text{-}eps:
  assumes (w\downarrow_?) = w
  shows (w\downarrow_!) = \varepsilon
  by (metis assms filter-False filter-id-conv)
\mathbf{lemma}\ input\text{-}proj\text{-}nonempty\text{-}impl\text{-}input\text{-}act:}
```

```
assumes (w\downarrow_?) \neq \varepsilon
  shows \exists xs \ a \ ys. \ ((w\downarrow_?) = (xs @ [a] @ ys)) \land is-input \ a
 by (metis append.left-neutral append-Cons assms filter.simps(2) filter-recursion
      input-proj-output-yields-eps list.distinct(1) list.exhaust)
lemma output-proj-nonempty-impl-input-act:
 assumes (w\downarrow_!) \neq \varepsilon
 shows \exists xs \ a \ ys. ((w\downarrow_!) = (xs @ [a] @ ys)) \land is\text{-}output \ a
 by (metis append.left-neutral append-Cons assms filter-empty-conv filter-recursion
split-list)
lemma decompose-send:
  assumes (w\downarrow_!) \neq \varepsilon
 shows \exists v \ a \ q \ p. \ (w\downarrow_!) = v \cdot [!\langle (a^{q \to p})\rangle]
proof -
  have \exists v x. (w\downarrow) = v \cdot [x] by (metis assms rev-exhaust)
  then obtain v x where (w\downarrow_!) = v \cdot [x] by auto
  then have is-output x by (metis assms filter-id-conv filter-recursion last-in-set
last-snoc)
 then obtain a q p where x = !\langle (a^{q \to p}) \rangle by (metis action.exhaust is-output.simps(2))
message.exhaust)
  then show ?thesis by (simp add: \langle w \downarrow_! = v \cdot x \# \varepsilon \rangle)
qed
lemma only-one-actor-proj:
  assumes w = w \downarrow_q and p \neq q
  shows w\downarrow_p = \varepsilon
  \mathbf{by}\ (\mathit{metis}\ (\mathit{mono-tags},\ \mathit{lifting})\ \mathit{assms}(1,2)\ \mathit{filter-False}\ \mathit{filter-id-conv})
lemma filter-pair-commutative:
  shows filter g (filter f xs) = filter f (filter g xs)
proof (induction xs)
  case Nil
  then show ?case by simp
next
  case (Cons \ x \ xs)
 then show ?case
    by (simp add: conj-commute)
qed
lemma pair-proj-to-object-proj:
  assumes (w\downarrow_p) = w
  shows w\downarrow_{\{p,q\}} = (filter\ (\lambda x.\ get-object\ x=q)\ w)
 by (smt (verit, del-insts) assms filter-cong filter-id-conv)
lemma actor-proj-app-inv:
  assumes (u@v)\downarrow_p = (u@v)
  shows u = u \downarrow_p \land v = v \downarrow_p
  using assms
```

```
proof -
  from assms have (u@v)\downarrow_p = u @ v
    by simp
  moreover have (u@v)\downarrow_p = (u)\downarrow_p @ (v)\downarrow_p
    by (rule filter-append)
  ultimately have eq: (u)\downarrow_p @ (v)\downarrow_p = u @ v by argo
  have u-len: length (u\downarrow_p) \leq length u using length-filter-le by blast
  have v-len: length (v\downarrow_p) \leq length \ v \ using \ length-filter-le \ by \ blast
  have t1: (u) \downarrow_p = u
  proof (rule ccontr)
    assume u\downarrow_p \neq u
     then have length (u\downarrow_p) < length u by (metis u-len \langle (u \cdot v) \downarrow_p = u\downarrow_p \cdot v\downarrow_p \rangle
 \langle u \downarrow_p \neq u \rangle \ append-eq-append-conv \ assms \ le-neq-implies-less) 
     then have length ((u)\downarrow_p @ (v)\downarrow_p) \leq length ((u@v)) by (metis \langle (u \cdot v)\downarrow_p =
u\downarrow_p \cdot v\downarrow_p \rightarrow length-filter-le)
    have length ((u)\downarrow_p @ (v)\downarrow_p) = length (u\downarrow_p) + length (v\downarrow_p) by simp
     have length (u\downarrow_p) + length (v\downarrow_p) < length (u) + length (v) by (simp add:
\langle |u\downarrow_p| < |u| \rangle \ add\text{-less-le-mono}
    then show False using eq length-append less-not-refl by metis
  qed
  have t2: (v) \downarrow_p = v
  proof (rule ccontr)
    assume v\downarrow_p \neq v
     then have length (v\downarrow_p) < length v by (metis v-len \langle (u \cdot v) \downarrow_p = u\downarrow_p \cdot v\downarrow_p \rangle
\langle v \downarrow_p \neq v \rangle append-eq-append-conv assms le-neq-implies-less)
     then have length ((u)\downarrow_p @ (v)\downarrow_p) \leq length ((u@v)) by (metis \langle (u \cdot v)\downarrow_p =
u\downarrow_p \cdot v\downarrow_p > length-filter-le)
    have length ((u)\downarrow_p @ (v)\downarrow_p) = length (u\downarrow_p) + length (v\downarrow_p) by simp
     then show False using \langle (u \cdot v) \downarrow_p = u \downarrow_p \cdot v \downarrow_p \rangle \langle u \downarrow_p = u \rangle \langle v \downarrow_p \neq v \rangle assms
same-append-eq by metis
  qed
  show ?thesis using t1 t2 by simp
qed
lemma actors-4-proj-app-inv:
  assumes (a @ b @ c @ d) \downarrow_p = (a @ b @ c @ d)
  shows a\downarrow_p = a \land b\downarrow_p = b \land c\downarrow_p = c \land d\downarrow_p = d
  by (metis actor-proj-app-inv assms)
\mathbf{lemma}\ not\text{-}only\text{-}sends\text{-}impl\text{-}recv:
  assumes w \neq w \downarrow_!
  shows \exists x. \ x \in set \ w \land is\text{-}input \ x
  by (metis assms filter-True)
lemma orderings-inv-for-prepend:
  assumes w\downarrow_? = w'\downarrow_? and w\downarrow_! = w'\downarrow_!
  shows (a \# w)\downarrow_? = (a \# w')\downarrow_? \land (a \# w)\downarrow_! = (a \# w')\downarrow_!
  by (simp\ add:\ assms(1,2))
```

```
{\bf lemma} \ orderings-inv-for-prepend-rev:
  assumes (a \# w)\downarrow_? = (a \# w')\downarrow_? and (a \# w)\downarrow_! = (a \# w')\downarrow_!
  shows w\downarrow_? = w'\downarrow_? \land w\downarrow_! = w'\downarrow_!
 by (metis (no-types, lifting) assms(1,2) filter.simps(2) list.inject)
lemma prefix-trans:
  assumes prefix x z
  shows \exists y. prefix y z \land x = y
 by (simp add: assms)
lemma prefix-inv-no-signs:
 assumes prefix w w'
shows prefix (w\downarrow_{!?}) (w'\downarrow_{!?})
 using map-mono-prefix assms by auto
5.1
        Shuffled Language
\mathbf{lemma} \ \mathit{shuffled-rev} \colon
 assumes shuffled w w'
 shows w = w' \lor (\exists \ a \ b \ xs \ ys. \ w = (xs @ a \# b \# ys) \land is\text{-}output \ a \land is\text{-}input
b \wedge w' = (xs \otimes b \# a \# ys)) \vee (\exists tmp. shuffled w tmp \wedge shuffled tmp w')
  using assms shuffled.refl by blast
\mathbf{lemma} \ \mathit{shuffled-prepend-inductive} \colon
  assumes shuffled w w'
 shows shuffled (a \# w) (a \# w')
 using assms
proof (induct)
  case (refl w)
  then show ?case using shuffled.refl by auto
  case (swap \ a \ b \ w \ xs \ ys)
  then show ?case by (metis (no-types, lifting) Cons-eq-appendI shuffled.simps)
  case (trans w w' w'')
  then show ?case using shuffled.trans by auto
qed
lemma fully-shuffled-gen:
  assumes xs = xs\downarrow_!
 shows shuffled (xs @ [?\langle (a^{q \to p})\rangle]) ([?\langle (a^{q \to p})\rangle] @ xs)
  using assms
proof (induct xs)
  case Nil
  then show ?case by (simp add: shuffled.refl)
\mathbf{next}
  case (Cons \ y \ ys)
```

```
then have ys = ys \downarrow! by (metis filter.simps(2) impossible-Cons length-filter-le
list.inject)
 then have shuffled (ys \cdot ?\langle (a^{q \to p}) \rangle \# \varepsilon) (?\langle (a^{q \to p}) \rangle \# \varepsilon \cdot ys) using Cons.hyps
\mathbf{by} blast
 have is-output y by (meson Cons.prems Cons-eq-filterD)
  then have last-step: shuffled (y \# ?\langle (a^{q \to p}) \rangle \# ys) (?\langle (a^{q \to p}) \rangle \# \varepsilon \cdot y \# ys)
by (metis\ Cons-eq-appendI\ eq-Nil-appendI\ is-output.simps(2)\ shuffled.swap)
 have shuffled (y \# ys \cdot ?\langle (a^{q \to p})\rangle \# \varepsilon) (y \# ?\langle (a^{q \to p})\rangle \# ys) using \langle shuffled \rangle
(ys \cdot ?\langle (a^{q \to p}) \rangle \# \varepsilon) (?\langle (a^{q \to p}) \rangle \# \varepsilon \cdot ys) \rangle \text{ shuffled-prepend-inductive by } fastforce
  then show ?case by (meson last-step shuffled.trans)
qed
lemma fully-shuffled-w-prepend:
  assumes xs = xs\downarrow_!
 shows shuffled (w @ xs @ [?\langle (a^{q \to p})\rangle]) (w @ [?\langle (a^{q \to p})\rangle] @ xs)
  using assms
proof (induct w)
  case Nil
  then show ?case by (metis append-Nil fully-shuffled-gen)
next
  case (Cons\ a\ w)
  then show ?case using shuffled-prepend-inductive by auto
qed
lemma shuffle-preserves-length:
  shuffled w w' \Longrightarrow length w = length w'
  by (induction rule: shuffled.induct) auto
\mathbf{lemma} shuffled-lang-subset-lang:
  assumes w \in L
 shows valid-input-shuffles-of-w w \subseteq shuffled-lang L
  using all-shuffles-def assms shuffled-lang-def by fastforce
lemma input-shuffle-implies-shuffled-lang:
  assumes w \in L and w' \in valid\text{-}input\text{-}shuffles\text{-}of\text{-}w w
 shows w' \in shuffled\text{-}lang L
  using assms(1,2) shuffled-lang-subset-lang by auto
{\bf lemma} shuffled-lang-not-empty:
  shows (valid-input-shuffles-of-w w) \neq {}
  using shuffled.refl by auto
\mathbf{lemma}\ \mathit{valid-input-shuffles-of-lang}\ :
  assumes w \in L
  shows \exists w'. (w' \sqcup \sqcup_? w \land w' \in shuffled\text{-}lang L)
  by (metis assms input-shuffle-implies-shuffled-lang mem-Collect-eq shuffled.reft)
```

```
lemma valid-input-shuffle-partner:
 assumes \{\} \neq valid-input-shuffles-of-w w
 shows \exists w'. w' \sqcup \sqcup_? w
 using assms by auto
\mathbf{lemma} \mathit{shuffle-id}:
 assumes w \in L
 shows w \in shuffled-lang L
 using assms by (simp add: input-shuffle-implies-shuffled-lang shuffled.reft)
lemma shuffled-prepend:
 assumes w' \sqcup \sqcup_? w
 shows a \# w' \sqcup \sqcup_? a \# w
 using assms
proof (induct rule: shuffled.induct)
 case (refl w)
 then show ?case using shuffled.refl by blast
next
  case (swap \ a \ b \ w \ xs \ ys)
 then show ?case by (metis append-Cons shuffled.swap)
  case (trans w w' w'')
  then show ?case using shuffled.trans by auto
qed
\mathbf{lemma}\ \mathit{fully-shuffled-implies-output-right}\ :
 assumes xs = xs\downarrow_? and is-output a
 shows shuffled ([a] @ xs) (xs @ [a])
 using assms
proof (induct xs)
  case Nil
  then show ?case by (simp add: shuffled.refl)
next
  case (Cons \ y \ ys)
 then have ys @ [a] \sqcup \sqcup_? (a \# ys)
    by (metis append-Cons append-eq-append-conv-if drop-eq-Nil2 filter.simps(2)
impossible-Cons length-filter-le list.sel(3))
 have is-input y by (metis Cons.prems(1) filter-id-conv list.set-intros(1))
  then have y \# [a] \sqcup \sqcup_? (a \# [y]) using append.assoc append.right-neutral
assms(2)\ same-append-eq\ shuffled.simps\ \mathbf{by}\ fastforce
 then have y \# a \# ys \sqcup \sqcup_? a \# y \# ys by (metis \langle is\text{-input } y \rangle append-self-conv2
assms(2) shuffled.swap)
  then have y \# ys @ [a] \sqcup \sqcup_? y \# a \# ys using \langle ys \cdot a \# \varepsilon \sqcup \sqcup_? a \# ys \rangle
shuffled-prepend by auto
 then show ?case using \langle y \# a \# ys \sqcup \sqcup \sqcup ? a \# y \# ys \rangle shuffled.trans by auto
qed
{\bf lemma}\ shuffle-keeps-outputs-right-shuffled:
 assumes shuffled w w' and is-output (last w)
```

```
shows is-output (last w')
using assms
proof (induct rule: shuffled.induct)
  case (refl\ w)
  then show ?case by simp
next
  case (swap \ a \ b \ w \ xs \ ys)
  then show ?case by auto
next
  case (trans w w' w'')
  then show ?case by simp
qed
lemma all-shuffles-rev:
  assumes w' \in all-shuffles w
 shows shuffled w w'
  using all-shuffles-def assms by auto
lemma shuffled-lang-rev:
  assumes w \in shuffled-lang L
  shows \exists w'. w' \in L \land w \in all\text{-shuffles } w'
 using assms shuffled-lang-def by auto
\mathbf{lemma} \ \mathit{shuffled-lang-impl-valid-shuffle} \ :
  assumes v \in shuffled-lang L
  shows \exists v'. (v \sqcup \sqcup_? v' \land v' \in L)
 by (meson all-shuffles-rev assms shuffled-lang-rev)
\mathbf{lemma}\ \mathit{fully-shuffled-valid-gen}\colon
  assumes (xs @ [?\langle (a^{q \to p})\rangle]) \in L \text{ and } xs = xs\downarrow_!
  shows (\lceil ?\langle (a^{q \to p}) \rangle \rceil \otimes xs) \sqcup \sqcup_? (xs \otimes \lceil ?\langle (a^{q \to p}) \rangle \rceil)
  by (meson \ assms(2) \ fully-shuffled-gen)
lemma shuffling-possible-to-existing-shuffle:
  assumes shuffling-possible w
 shows \exists w'. shuffled w w' \land w \neq w' using assms shuffled.swap by fastforce
5.1.1
         rightmost shuffle related
lemma rightmost-shuffle-exists:
  assumes v \in shuffled-lang L and shuffling-occurred v
 shows \exists xs \ a \ b \ ys. \ v = (xs @ b \# a \# ys) \land v \sqcup \sqcup_? (xs @ a \# b \# ys)
 using assms(2) shuffled.swap by blast
lemma length-index-bound:
  shows Suc (length xs) < length (xs @ a # b # ys)
proof -
  have length (xs @ a \# b \# ys) = length xs + length (a \# b \# ys)
```

```
by simp
 also have length (a \# b \# ys) = 2 + length ys
   by simp
 finally show ?thesis
   by simp
\mathbf{qed}
lemma shuffle-index-exists:
 assumes shuffling-possible v
 shows \exists i. is-output (v!i) \land is-input (v!(Suc\ i)) \land (Suc\ i) < length\ v
proof -
  obtain xs \ a \ b \ ys where is-output a and is-input b and v = (xs @ a \# b \# b \# b)
ys) using assms by auto
 have t1: v!(length \ xs) = a by (simp \ add: \langle v = xs \cdot a \# b \# ys \rangle)
 then have t2: v!(Suc\ (length\ xs)) = b by (metis\ Cons-nth-drop-Suc\ \langle v = xs - v | v)
a # b # ys> append-eq-conv-conj drop-all linorder-le-less-linear
       list.distinct(1) list.inject)
 have t3: (Suc\ (length\ xs)) < length\ v\ by (simp\ add: \langle v = xs \cdot a \# b \# ys \rangle)
  from t1 t2 t3 have is-output (v!(length\ xs)) \land is-input (v!(Suc\ (length\ xs))) \land
(Suc\ (length\ xs)) < length\ v
   by (simp\ add: \langle is\text{-}input\ b\rangle \langle is\text{-}output\ a\rangle)
  then show ?thesis by auto
qed
lemma rightmost-shuffle-index-exists:
 assumes shuffling-possible v
  shows \exists i. is-output (v!i) \land is-input (v!(Suc\ i)) \land (Suc\ i) < length\ v \land \neg
(shuffling-possible (drop (Suc i) v))
 using assms
proof (induct v)
 case Nil
 then show ?case by simp
next
 case (Cons a w)
 then show ?case
 proof (cases shuffling-possible w)
   case True
   then obtain xs \ ys \ x \ y where w-decomp: is-output x \land is-input y \land w = xs
x \# y \# ys by blast
   then obtain i where i-def: is-output (w ! i) \land
       is-input (w ! Suc i) \land
       Suc i < |w| \land (\nexists xs \ a \ b \ ys. \ is-output \ a \land is-input \ b \land drop \ (Suc \ i) \ w = xs
a \# b \# ys
     using Cons.hyps by blast
   have (a \# w) = a \# (xs \cdot x \# y \# ys) by (simp \ add: w\text{-}decomp)
   have t1: is\text{-}output ((a \# w) ! (Suc i)) by (simp \ add: i\text{-}def)
```

```
have t2: is\text{-}input ((a \# w) ! (Suc (Suc i))) by (simp \ add: i\text{-}def)
        have t3: (Suc\ (Suc\ i)) < |(a \# w)| by (simp\ add:\ i\text{-}def)
     have t_4: \neg (shuffling-possible (drop (Suc (Suc i)) (a#w))) by (metis drop-Suc-Cons
        show ?thesis using t1 t2 t3 t4 by blast
    next
        {\bf case}\ \mathit{False}
        then have \exists b \ ys. \ (a \# w) = (a \# b \# ys) \land is\text{-input } b \land is\text{-output } a \ \text{by}
(metis Cons.prems list.sel(1,3) self-append-conv2 tl-append2)
        then obtain b ys where (a \# w) = (a \# b \# ys) \land is-input b \land is-output a
by blast
        then have \neg shuffling-possible (b#ys) using False by blast
        have is-output ((a \# w) ! \theta) \land
                is\text{-}input\ ((a \# w) ! Suc\ \theta) \land
                Suc 0 < |(a \# w)| by (simp add: \langle a \# w = a \# b \# ys \land is\text{-input } b \land
is-output \ a > )
     then show ?thesis by (metis Cons-nth-drop-Suc False Suc-lessD drop0 list.inject)
    qed
qed
lemma rightmost-shuffle-concrete:
    assumes shuffling-possible v
    shows \exists xs \ a \ b \ ys. \ is-output \ a \land is-input \ b \land v = (xs @ a \# b \# ys) \land \neg
(shuffling-possible\ ys)
    using assms
proof (induct v)
    case Nil
    then show ?case by simp
next
    case (Cons\ a\ w)
    then show ?case using Cons assms
    proof (cases shuffling-possible w)
        case True
       then have \exists xs \ a \ b \ ys. is-output a \land is-input b \land w = xs \cdot a \# b \# ys by blast
        then have \exists xs \ a \ b \ ys.
              is-output a \land
             is-input b \wedge w = xs \cdot a \# b \# ys \wedge (\nexists xs \ a \ b \ ysa. is-output a \wedge is-input b \wedge is-i
ys = xs \cdot a \# b \# ysa) using Cons by blast
        then obtain xs \ ys \ x \ y where w-decomp: is-output x \land is-input y \land w = xs.
x \# y \# ys \land \neg (shuffling\text{-}possible ys) by blast
        have (a \# w) = a \# (xs \cdot x \# y \# ys) by (simp \ add: w\text{-}decomp)
         then have is-output x \wedge is-input y \wedge (a\#w) = (a\#xs) \cdot x \# y \# ys \wedge \neg
(shuffling-possible ys)
           using w-decomp by auto
        then show ?thesis by blast
    \mathbf{next}
        case False
        then have \exists b \ ys. \ (a \# w) = (a \# b \# ys) \land is\text{-input } b \land is\text{-output } a \ \text{by}
```

```
(metis\ Cons.prems\ list.sel(1,3)\ self-append-conv2\ tl-append2)
   then obtain b ys where (a \# w) = (a \# b \# ys) \land is\text{-input } b \land is\text{-output } a
by blast
   then have \neg shuffling-possible (b#ys) using False by blast
  then have is-output a \wedge is-input b \wedge (a\#w) = [] \cdot a \# b \# ys \wedge \neg (shuffling-possible)
ys) by (metis Cons-eq-appendI \langle a \# w = a \# b \# ys \wedge is-input b \wedge is-output
a \rightarrow append-self-conv2)
   then show ?thesis by blast
  qed
qed
lemma rightmost-shuffle-is-shuffle:
  assumes rightmost-shuffle v w
 shows w \sqcup \sqcup_{?} v
  using assms
proof -
  have rightmost-shuffle v w using assms by simp
 then have (\exists xs \ a \ b \ ys. \ is\text{-output} \ a \land is\text{-input} \ b \land v = (xs @ a \# b \# ys) \land (\neg
shuffling-possible ys) \land w = (xs @ b \# a \# ys)) by blast
  then obtain xs a b ys where shuf-decomp: is-output a \wedge is-input b \wedge v = (xs)
@ a \# b \# ys) \land (\neg shuffling-possible ys) <math>\land w = (xs @ b \# a \# ys) by blast
  have (xs @ b \# a \# ys) \sqcup \sqcup_? (xs @ a \# b \# ys) by (simp \ add: \ shuf-decomp
shuffled.swap)
  then show ?thesis by (simp add: shuf-decomp)
qed
lemma rightmost-shuffle-exists-2:
  assumes shuffling-possible v
 shows \exists w. rightmost-shuffle v w
 using assms
proof -
  have shuffling\text{-}possible\ v\ \mathbf{using}\ assms\ \mathbf{by}\ blast
  then have \exists xs \ a \ b \ ys. is-output a \land is-input b \land v = (xs @ a \# b \# ys) \land \neg
(shuffling-possible\ ys)\ using\ rightmost-shuffle-concrete[of\ v]\ by\ blast
 then obtain xs a b ys where is-output a \wedge is-input b \wedge v = (xs @ a \# b \# ys)
\land (\neg shuffling\text{-}possible ys) by blast
  then have rightmost-shuffle v (xs @ b \# a \# ys) by blast
  then show \exists w. rightmost-shuffle v w by blast
qed
lemma fully-shuffled-valid-w-prepend:
  assumes (w @ [?\langle (a^{q \to p})\rangle] @ xs) \in L \text{ and } xs = xs\downarrow_!
  \mathbf{shows} \ (w \ @ \ [?\langle (a^{q \to p})\rangle] \ @ \ xs) \ \sqcup \sqcup_? \ (w \ @ \ xs \ @ \ [?\langle (a^{q \to p})\rangle])
  by (meson assms(2) fully-shuffled-w-prepend)
lemma shuffled-keeps-send-order:
  assumes shuffled v v'
  shows v\downarrow_! = v'\downarrow_!
```

```
using assms
\mathbf{proof}\ (induct\ )
  case (refl w)
  then show ?case by simp
  case (swap \ a \ b \ w \ xs \ ys)
 have w-decomp: w\downarrow_! = xs\downarrow_! \cdot [a,b]\downarrow_! \otimes ys\downarrow_! by (simp\ add:\ swap.hyps(3))
 have pair-decomp: [a,b]\downarrow_! = [b,a]\downarrow_! by (simp\ add:\ swap.hyps(2))
  then show ?case by (simp add: w-decomp)
next
  case (trans w w' w'')
  then show ?case by simp
qed
{f lemma}\ shuffle-keeps-send-order:
 assumes v' \sqcup \sqcup_? v
 shows v\downarrow_1 = v'\downarrow_1
 by (simp add: assms shuffled-keeps-send-order)
lemma shuffled-keeps-recv-order:
  assumes shuffled v v'
 shows v\downarrow_? = v'\downarrow_?
  using assms
proof (induct )
  case (refl\ w)
  then show ?case by simp
next
  case (swap \ a \ b \ w \ xs \ ys)
 have w-decomp: w\downarrow_? = xs\downarrow_? \cdot [a,b]\downarrow_? @ ys\downarrow_? by (simp\ add:\ swap.hyps(3))
 have pair-decomp: [a,b]\downarrow_? = [b,a]\downarrow_? by (simp\ add:\ swap.hyps(1))
  then show ?case by (simp add: w-decomp)
  case (trans w w' w'')
  then show ?case by simp
qed
\mathbf{lemma}\ \mathit{shuffle-keeps-recv-order}\colon
  assumes v' \sqcup \sqcup_? v
 shows v\downarrow_? = v'\downarrow_?
 by (simp add: assms shuffled-keeps-recv-order)
5.2
        A Communicating Automaton
context CommunicatingAutomaton begin
{\bf lemma}~ Actions Over Messages\text{-}rev:
 \mathbf{assumes}\ a \in \mathit{ActionsOverMessages}
 shows get-message a \in Messages
  using ActionsOverMessages.simps assms by force
```

```
{\bf lemma}\ Actions Over Messages-is-finite:
 {\bf shows} \ finite \ Actions Over Messages
 using message-alphabet Alphabet finite-letters [of Messages]
 by (simp add: ActionsOverMessages-def ActionsOverMessagesp.simps)
lemma action-is-action-over-message:
  fixes s1 s2 :: 'state
              :: ('information, 'peer) action
 assumes (s1, a, s2) \in Transitions
 shows a \in ActionsOverMessages
 using assms
proof (induct a)
 case (Output \ m)
 assume (s1, !\langle m \rangle, s2) \in Transitions
 thus !\langle m \rangle \in ActionsOverMessages
   using well-formed-transition[of s1 !\langle m \rangle s2] AOMOutput[of m]
   by simp
next
 case (Input m)
 assume (s1, ?\langle m \rangle, s2) \in Transitions
 thus ?\langle m \rangle \in ActionsOverMessages
   using well-formed-transition[of s1 ?\langle m \rangle s2] AOMInput[of m]
   by simp
qed
lemma transition-set-is-finite:
 shows finite Transitions
proof -
 have Transitions \subseteq \{(s1, a, s2), s1 \in States \land a \in ActionsOverMessages \land s2\}
\in States
   \mathbf{using} \ well\text{-} formed\text{-}transition \ action\text{-}is\text{-}action\text{-}over\text{-}message
   by blast
 moreover have finite \{(s1, a, s2). s1 \in States \land a \in ActionsOverMessages \land a\}
s2 \in States
   using finite-states ActionsOverMessages-is-finite
   by simp
 ultimately show finite Transitions
   using finite-subset[of Transitions
       \{(s1, a, s2). \ s1 \in States \land a \in ActionsOverMessages \land s2 \in States\}\}
   by simp
\mathbf{qed}
\mathbf{lemma}\ \mathit{Actions-rev}:
 assumes a \in Act
 shows \exists s1 s2. (s1, a, s2) \in Transitions
 by (meson Actions.cases assms)
```

```
lemma Act-is-subset-of-ActionsOverMessages:
 shows Act \subseteq ActionsOverMessages
proof
 fix a :: ('information, 'peer) action
 assume a \in Act
 then obtain s1 \ s2 where (s1, a, s2) \in Transitions
   by (auto simp add: Actions-def Actionsp.simps)
  hence get-message a \in Messages
   using well-formed-transition[of s1 a s2]
   \mathbf{by} \ simp
  thus a \in ActionsOverMessages
 proof (induct a)
   case (Output \ m)
   assume get-message (!\langle m \rangle) \in Messages
   thus !\langle m \rangle \in ActionsOverMessages
     using AOMOutput[of m]
     by simp
 next
   case (Input m)
   assume get-message (?\langle m \rangle) \in Messages
   thus ?\langle m \rangle \in ActionsOverMessages
     using AOMInput[of m]
     by simp
 qed
qed
lemma Act-is-finite:
 shows finite Act
 {\bf using} \ Actions Over Messages-is-finite \ Act-is-subset-of-Actions Over Messages
   finite-subset [of Act ActionsOverMessages]
 by simp
lemma ComunicationPartners-is-finite:
 {\bf shows} \ \mathit{finite} \ \mathit{CommunicationPartners}
proof -
  have CommunicationPartners \subseteq \{p. \exists a. a \in ActionsOverMessages \land p = a \}
get-object a}
   using action-is-action-over-message
  by (auto simp add: CommunicationPartners-def CommunicationPartnersp.simps)
  moreover have finite \{p. \exists a. a \in ActionsOverMessages \land p = get-object a\}
   {\bf using} \ {\it ActionsOverMessages-is-finite}
   by simp
  ultimately show finite CommunicationPartners
   using finite-subset [of CommunicationPartners]
       \{p. \exists a. \ a \in ActionsOverMessages \land p = get\text{-}object \ a\}]
   by simp
qed
\mathbf{lemma} \ \mathit{SendingToPeers-rev} \colon
```

```
fixes p :: 'peer
 assumes p \in SendingToPeers
 shows \exists s1 \ a \ s2. \ (s1, \ a, \ s2) \in Transitions \land is-output \ a \land get-object \ a = p
 using assms
 by (induct, blast)
\mathbf{lemma}\ Sending To Peers-is-subset-of-Communication Partners:
 shows SendingToPeers \subseteq CommunicationPartners
 {f using}\ Communication Partners. intros\ Sending To Peersp. simps\ Sending To Peersp-Sending To Peers-eq
 by auto
lemma ReceivingFromPeers-rev:
 fixes p :: 'peer
 \mathbf{assumes}\ p \in \textit{ReceivingFromPeers}
 shows \exists s1 \ a \ s2. \ (s1, \ a, \ s2) \in Transitions \land is-input \ a \land get-object \ a = p
 using assms
 by (induct, blast)
{\bf lemma}\ Receiving From Peers-is-subset-of-Communication Partners:
 shows ReceivingFromPeers \subseteq CommunicationPartners
 {f using}\ Communication Partners.intros\ Receiving From Peersp.simps
    ReceivingFromPeersp-ReceivingFromPeers-eq
 by auto
— this is to show that if p receives from no one, then there is no transition where
p is the receiver
\mathbf{lemma}\ \mathit{empty-receiving-from-peers}\ :
 fixes p :: 'peer
 assumes p \notin ReceivingFromPeers and (s1, a, s2) \in Transitions and is-input a
 shows get-object a \neq p
proof (rule ccontr)
 \mathbf{assume} \, \neg \, \textit{get-object} \, \, a \neq p
  then show False
 proof
   have qet\text{-}object\ a = p\ \mathbf{using}\ \langle \neg\ qet\text{-}object\ a \neq p \rangle\ \mathbf{by}\ auto
   moreover have p \in ReceivingFromPeers
     using ReceivingFromPeers.intros \langle \neg get\text{-object } a \neq p \rangle assms(2,3) by auto
   moreover have False
     using assms(1) calculation by auto
   ultimately show get-object a \neq p using assms(1) by auto
 qed
qed
lemma run-rev:
 assumes run \ s\theta \ (a \# w) \ (s1 \# xs)
 shows run s1 w xs \wedge s0 -a \rightarrow_{\mathcal{C}} s1
```

by (smt (verit, best) assms list.discI list.inject run.simps)

```
lemma run-rev2:
   assumes run s0 (w) (xs) and w \neq \varepsilon
  shows \exists v vs \ a \ s1. \ run \ s1 \ vvs \land s0 \ -a \rightarrow_{\mathcal{C}} s1 \land w = (a \# v) \land xs = (s1 \# vs)
   using assms(1,2) run.cases by fastforce
lemma run-app :
   assumes run s0 (u @ v) xs and u \neq \varepsilon
   shows \exists us \ vs. \ run \ s0 \ u \ us \land run \ (last \ us) \ v \ vs \land xs = us \ @ \ vs
   using assms
proof (induct u@v xs arbitrary: u v rule: run.induct)
   case (REmpty2 \ s)
   then show ?case by simp
next
   case (RComposed2 \ s1 \ w \ xs \ s0 \ a)
   then have a \# w = u \cdot v by simp
   then have \exists u'. w = u' \cdot v \wedge u = a \# u'
      by (metis RComposed2.prems append-eq-Cons-conv)
   then obtain u' where w-decomp: w = u' @ v and u-decomp: u = a \# u' by
   then have run s1 (u' @ v) xs using RComposed2.hyps(1) by auto
   then show ?case
   proof (cases u' = \varepsilon)
      case True
      then have run s1 v xs using RComposed2.hyps(1) w-decomp by auto
      then have run \ s\theta \ [a] \ [s1]
           by (metis\ Communicating Automaton.RComposed 2\ Communicating Automaton.RComposed 2
ton.REmpty2
                 Communicating Automaton-axioms\ RComposed 2.hyps(3))
       then have run s0 (a \# v) (s1 \# xs) by (simp \ add: RComposed2.hyps(3)
\langle run \ s1 \ v \ xs \rangle \ run.RComposed2)
        then show ?thesis using True \langle run \ s0 \ (a \# \varepsilon) \ (s1 \# \varepsilon) \rangle \langle run \ s1 \ v \ xs \rangle
u-decomp by auto
   next
      case False
      then obtain us'vs where xs-decomp: run s1 u'us' \wedge run (last us') v vs \wedge xs
= us' \cdot vs
          using RComposed2.hyps(2) w-decomp by blast
        then have run s0 (a # w) (s1 # us' @ vs) using RComposed2.hyps(1,3)
run.RComposed2 by auto
       then have full-run-decomp: run s0 (a \# u' @ v) (s1 \# us' @ vs) by (simp
add: w-decomp)
      then have run s1 u' us' by (simp add: xs-decomp)
         then have run s0 [a] [s1] by (simp add: RComposed2.hyps(3) REmpty2
run.RComposed2)
      then have run (last us') v vs by (simp add: xs-decomp)
    then have run s0 u (s1 \# us') by (simp add: RComposed2.hyps(3) run.RComposed2
u-decomp xs-decomp)
      then have run s0 u (s1 \# us') \land run (last (s1 \# us')) v vs \land s1 \# xs = (s1
```

```
# us') • vs
     using False run.cases xs-decomp by force
   then show ?thesis by blast
 qed
qed
lemma run-second:
 assumes run \ s\theta \ (u \ @ \ v) \ (us@vs) and u \neq \varepsilon and run \ s\theta \ u \ us
 shows run (last us) v vs
 using assms
proof (induct \ u@v \ us@vs \ arbitrary: u \ v \ us \ vs \ rule: run.induct)
 case (REmpty2 \ s)
 then show ?case by simp
next
  case (RComposed2 \ s1 \ w \ xs \ s0 \ a)
 then show ?case by (smt (verit) append-eq-Cons-conv append-self-conv2 last-ConsL
last	ext{-}ConsR\ list	ext{.}discI
       list.inject run.simps)
qed
\mathbf{lemma}\ \mathit{Traces-rev}:
 fixes w :: ('information, 'peer) action word
 assumes w \in Traces
 shows \exists xs. run initial w xs
 using assms
 by (induct, blast)
— since all states are final, if u sqdot> v is valid then u must also be valid otherwise
some transition for u is missing and hence u sqdot> v would be invalid
lemma Traces-app:
 assumes (u @ v) \in Traces
 shows u \in \mathit{Traces}
 \mathbf{by}\ (metis\ Communicating Automaton. REmpty 2\ Communicating Automaton-axioms
Traces.cases
     Traces.intros assms run-app)
{f lemma} Traces-second:
 assumes (u @ v) \in Traces and u \neq \varepsilon
 shows \exists s\theta \ us \ vs. \ run \ s\theta \ (u @ v) \ (us@vs) \land run \ (last \ us) \ v \ vs
 using Traces-rev assms(1,2) run-app by blast
end
5.3
       Network of Communicating Automata
```

context NetworkOfCA

begin

```
lemma peer-trans-to-message-in-network:

assumes (s1, a, s2) \in \mathcal{R}(p)

shows get-message a \in \mathcal{M}

by (meson CommunicatingAutomaton.ActionsOverMessages-rev CommunicatingAutomaton.action-is-action-over-message

assms automaton-of-peer)
```

5.4 helpful conclusions about language/ runs / etc. in concrete cases and peer runs

```
\mathbf{lemma}\ empty\text{-}receiving\text{-}from\text{-}peers2\ :
  fixes p :: 'peer
 assumes p \notin ReceivingFromPeers and (s1, a, s2) \in \mathcal{R}(p) and is-input a
  shows get-object a \neq p
proof (rule ccontr)
  assume \neg get\text{-}object \ a \neq p
  then show False
  proof
    have get\text{-}object\ a = p\ \mathbf{using}\ \langle \neg\ get\text{-}object\ a \neq p \rangle\ \mathbf{by}\ auto
    moreover have False
     by (metis CommunicatingAutomaton.well-formed-transition \langle \neg get\text{-object } a \neq a \rangle
p \mapsto assms(2)
          automaton-of-peer)
    ultimately show get-object a \neq p using assms(1) by auto
 qed
qed
\mathbf{lemma}\ empty\text{-}receiving\text{-}from\text{-}peers3:
  fixes p :: 'peer
  assumes \mathcal{P}_{?}(p) = \{\} and (s1, a, s2) \in \mathcal{R}(p) and is-input a
  shows get-object a \neq p
proof (rule ccontr)
  assume \neg get-object a \neq p
  then show False
  proof
    have get-object a = p using \langle \neg get-object \ a \neq p \rangle by auto
    moreover have False
     by (metis CommunicatingAutomaton.well-formed-transition \langle \neg get\text{-object } a \neq a \rangle
p \rightarrow assms(2)
          automaton-of-peer)
    ultimately show get-object a \neq p using assms(1) by auto
 qed
qed
lemma empty-receiving-from-peers4 :
 fixes p :: 'peer
 assumes \mathcal{P}_{?}(p) = \{\} and (s1, a, s2) \in \mathcal{R}(p)
```

```
shows is-output a
 \textbf{by} \ (metis\ Communicating Automaton. Receiving From Peers. intros\ assms (1,2)\ automaton-of-peer
      empty-iff)
lemma no-input-trans-root :
  fixes p :: 'peer
  assumes is-input a and \mathcal{P}_{?}(p) = \{\}
  shows (s1, a, s2) \notin \mathcal{R}(p)
  using assms(1,2) empty-receiving-from-peers4 by auto
{f lemma}\ act\mbox{-}in\mbox{-}lang\mbox{-}means\mbox{-}trans\mbox{-}exists :
  fixes p :: 'peer
  assumes [a] \in \mathcal{L}(p)
  shows \exists s1 \ s2. \ (s1, \ a, \ s2) \in \mathcal{R}(p)
  by (smt (verit) CommunicatingAutomaton.Traces-rev CommunicatingAutoma-
ton.run.cases assms automaton-of-peer list.distinct(1)
      list.inject)
{f lemma} act	entit{-}not	entit{-}in	entit{-}lang	entit{-}no	entit{-}trans :
  fixes p :: 'peer
  assumes \forall s1 \ s2. \ (s1, \ a, \ s2) \notin \mathcal{R}(p)
 shows [a] \notin \mathcal{L}(p)
  using act-in-lang-means-trans-exists assms by auto
lemma no-input-trans-no-word-in-lang:
  fixes p :: 'peer
  assumes (a \# w) \in \mathcal{L}(p)
  shows \exists s1 \ s2. \ (s1, \ a, \ s2) \in \mathcal{R}(p)
  by (smt (verit, ccfv-SIG) CommunicatingAutomaton. Traces-rev Communicatin-
gAutomaton.run.cases assms automaton-of-peer
      list.distinct(1) \ list.inject)
\mathbf{lemma} \ \textit{no-word-no-trans} :
  fixes p :: 'peer
  assumes \forall s1 \ s2. \ (s1, \ a, \ s2) \notin \mathcal{R}(p)
 shows (a \# w) \notin \mathcal{L}(p)
 using assms no-input-trans-no-word-in-lang by blast
\mathbf{lemma} root-head-is-output:
  fixes p :: 'peer
  assumes \mathcal{P}_{?}(p) = \{\} and (a \# w) \in \mathcal{L}(p)
  shows is-output a
  using assms(1,2) no-input-trans-root no-word-no-trans by blast
\mathbf{lemma}\ \textit{root-head-is-not-input}\ :
  fixes p :: 'peer
  assumes \mathcal{P}_{?}(p) = \{\} and is-input a
  shows (a \# w) \notin \mathcal{L}(p)
  using assms(1,2) root-head-is-output by auto
```

```
{f lemma}\ eps-always-in-lang:
  fixes p :: 'peer
  assumes \mathcal{L}(p) \neq \{\}
 shows \varepsilon \in \mathcal{L}(p)
 \textbf{by} \ (meson \ Communicating Automaton. Traces. simps \ Communicating Automaton. run. simps
automaton-of-peer)
{f lemma} no-recvs-no-input-trans:
  fixes p :: 'peer
  assumes \mathcal{P}_{?}(p) = \{\}
 shows \forall s1 \ a \ s2. \ (is\text{-input} \ a \longrightarrow (s1, \ a, \ s2) \notin \mathcal{R}(p))
  by (simp add: assms no-input-trans-root)
{f lemma} no-input-trans-no-recvs:
  fixes p :: 'peer
  assumes \forall s1 \ as 2. \ (is\text{-input} \ a \longrightarrow (s1, \ a, \ s2) \notin \mathcal{R}(p))
 shows \mathcal{P}_{?}(p) = \{\}
 \mathbf{by}\ (meson\ Communicating Automaton.\ Receiving From Peers.simps\ assms\ automaton-of-peer
subsetI subset-empty)
lemma Lang-app :
  assumes (u @ v) \in \mathcal{L}(p)
  shows u \in \mathcal{L}(p)
 by (meson CommunicatingAutomaton. Traces-app assms automaton-of-peer)
lemma lang-implies-run:
  assumes w \in \mathcal{L}(p)
  shows \exists xs. Communicating Automaton.run (<math>\mathcal{R} p) (\mathcal{I} p) w xs
  by (meson CommunicatingAutomaton. Traces. simps assms automaton-of-peer)
{f lemma}\ lang-implies-prepend-run:
 assumes (a \# w) \in \mathcal{L}(p)
 shows \exists xs \ s1. Communicating Automaton.run (\mathcal{R} \ p) \ (s1) \ w \ xs \land Communicatin
gAutomaton.run (\mathcal{R} p) (\mathcal{I} p) [a] [s1]
 by (smt (verit) CommunicatingAutomaton.RComposed2 CommunicatingAutoma-
ton.REmpty2
    Communicating Automaton.run. cases \ assms \ automaton-of-peer \ concat. simps (1)
list.distinct(1)
      list.inject lang-implies-run)
\mathbf{lemma}\ trans-to-edge:
  assumes (s1, a, s2) \in \mathcal{R}(p)
 shows get-message a \in \mathcal{M}
 \mathbf{by}\ (meson\ Communicating Automaton. well-formed-transition\ assms\ automaton-of-peer)
\mathbf{lemma}\ valid	ext{-}message	ext{-}to	ext{-}valid	ext{-}act:
  assumes get-message a \in \mathcal{M}
  shows \exists i p q. i^{p \to q} \in \mathcal{M} \land (i^{p \to q}) = get\text{-message } a
```

```
by (metis assms message.exhaust)
\mathbf{lemma}\ input\text{-}message\text{-}to\text{-}act:
  assumes get-message a \in \mathcal{M} and is-input a and get-actor a = p
  shows \exists i \ q. \ i^{q \to p} \in \mathcal{M} \land (i^{q \to p}) = \text{get-message } a
 by (metis action.exhaust assms(1,2,3) get-actor.simps(2) get-message.simps(2)
get-receiver.simps is-output.simps(1)
      valid-message-to-valid-act)
{f lemma}\ output	ext{-}message	ext{-}to	ext{-}act:
  assumes get-message a \in \mathcal{M} and is-output a and get-actor a = p
  shows \exists i \ q. \ i^{p \to q} \in \mathcal{M} \land (i^{p \to q}) = get\text{-message } a
 by (metis action.exhaust assms(1,2,3) get-actor.simps(1) get-message.simps(1)
get-sender.simps is-output.simps(2)
      valid-message-to-valid-act)
lemma input-message-to-act-both-known:
 assumes get-message a \in \mathcal{M} and is-input a and get-actor a = p and get-object
 shows \exists i. i^{q \to p} \in \mathcal{M} \land (i^{q \to p}) = \text{get-message } a
 by (metis action.exhaust assms(1,2,3,4) get-message.simps(2) get-object.simps(2)
get\text{-}sender.simps
      input-message-to-act is-output.simps(1))
\mathbf{lemma}\ output\text{-}message\text{-}to\text{-}act\text{-}both\text{-}known:
 assumes qet-message a \in \mathcal{M} and is-output a and get-actor a = p and get-object
 shows \exists i. i^{p \to q} \in \mathcal{M} \land (i^{p \to q}) = \text{qet-message } a
 \mathbf{by}\ (metis\ action.exhaust\ assms(1,2,3,4)\ get-message.simps(1)\ get-object.simps(1)
get-receiver.simps
      is-output.simps(2) output-message-to-act)
\mathbf{lemma}\ trans-to-act-in-lang:
  fixes p :: 'peer
 assumes (\mathcal{I} p, a, s2) \in \mathcal{R}(p)
  shows [a] \in \mathcal{L}(p)
proof -
  have CommunicatingAutomaton.run\ (\mathcal{R}\ p)\ (\mathcal{I}\ p)\ [a]\ [s2] by (meson\ Communi-
catingAutomaton.run.simps assms automaton-of-peer concat.simps(1))
 then show ?thesis by (meson CommunicatingAutomaton. Traces.intros automaton-of-peer)
qed
{f lemma}\ lang\mbox{-}implies\mbox{-}run\mbox{-}alt :
  assumes w \in \mathcal{L}(p)
  shows \exists s2. (\mathcal{I} p) - w \rightarrow^* p s2
  using assms lang-implies-run by blast
```

```
\mathbf{lemma}\ \mathit{Lang-app-both}:
  assumes (u @ v) \in \mathcal{L}(p)
 shows \exists s2 \ s3. \ (\mathcal{I} \ p) \ -u \rightarrow^* p \ s2 \ \land \ s2 \ -v \rightarrow^* p \ s3
 \mathbf{by}\ (metis\ Communicating Automaton.initial\text{-}state\ Communicating Automaton.run-app}
assms
     automaton-of-peer lang-implies-run self-append-conv2)
lemma lang-implies-trans:
  assumes s1 - [a] \rightarrow^* p \ s2
 shows s1 - a \rightarrow_{\mathcal{C}} p \ s2
 by (smt (verit, best) CommunicatingAutomaton.run.cases assms automaton-of-peer
last.simps
     list.distinct(1) list.inject)
lemma Lang-last-act-app :
  assumes (u @ [a]) \in \mathcal{L}(p)
 shows \exists s1 \ s2. \ s1 \ -a \rightarrow_{\mathcal{C}} p \ s2
  by (meson Lang-app-both assms lang-implies-trans)
lemma Lang-last-act-trans:
  assumes (u @ [a]) \in \mathcal{L}(p)
 shows \exists s1 \ s2. \ (s1, \ a, \ s2) \in \mathcal{R} \ p
  using Lang-last-act-app assms by auto
lemma act-in-word-has-trans:
  assumes w \in \mathcal{L}(p) and a \in set w
  shows \exists s1 \ s2. \ (s1, \ a, \ s2) \in \mathcal{R} \ p
proof -
 have \exists xs \ ys. \ (xs @ [a] @ ys) = w \ by \ (metis \ Cons-eq-appendI \ append-self-conv2
assms(2) in-set-conv-decomp-first)
  then obtain xs \ ys \ where (xs \ @ [a] \ @ \ ys) = w \ by blast
  then have (xs @ [a] @ ys) \in \mathcal{L}(p) by (simp \ add: \ assms(1))
  then have (xs @ [a]) \in \mathcal{L}(p) by (metis \ Lang-app \ append-assoc)
  then show ?thesis by (simp add: Lang-last-act-trans)
qed
lemma recv-proj-w-prepend-is-in-w:
  assumes (w\downarrow_?) = (x \# xs) and w \in \mathcal{L}(p)
  shows \exists ys zs. w = ys @ [x] @ zs
  using assms
proof (induct length (w\downarrow_?) arbitrary: w x xs)
  then show ?case by simp
next
  case (Suc \ n)
  then show ?case by (metis Cons-eq-filterD append-Cons append-Nil)
qed
```

```
lemma recv-proj-w-prepend-has-trans:
 assumes (w\downarrow_?) = (x \# xs) and w \in \mathcal{L}(p)
 shows \exists s1 \ s2. \ (s1, \ x, \ s2) \in \mathcal{R} \ p
 using assms
proof (induct length (w\downarrow_?) arbitrary: w \times xs)
 case \theta
 then show ?case by simp
next
 case (Suc \ n)
 then obtain ys\ zs where w-def: w = ys\ @[x]\ @zs using recv-proj-w-prepend-is-in-w
by blast
 then have (ys @ [x] @ zs) \in \mathcal{L}(p) using Suc.prems(2) by blast
 then have (ys @ [x]) \in \mathcal{L}(p) by (metis \ Lang-app \ append-assoc)
  then have \exists s1 \ s2. \ (s1, \ x, \ s2) \in \mathcal{R} \ p \ using \ Lang-app-both \ lang-implies-trans
by blast
 then show ?case by simp
qed
lemma send-proj-w-prepend-is-in-w:
 assumes (w\downarrow_!) = (x \# xs) and w \in \mathcal{L}(p)
 shows \exists ys zs. w = ys @ [x] @ zs
 using assms
proof (induct length (w\downarrow_!) arbitrary: w x xs)
  then show ?case by simp
next
  case (Suc \ n)
 then show ?case by (metis Cons-eq-filterD append-Cons append-Nil)
qed
lemma send-proj-w-prepend-has-trans:
 assumes (w\downarrow_!) = (x \# xs) and w \in \mathcal{L}(p)
 shows \exists s1 \ s2. \ (s1, \ x, \ s2) \in \mathcal{R} \ p
 using assms
proof (induct length (w\downarrow_!) arbitrary: w \times xs)
 case \theta
 then show ?case by simp
\mathbf{next}
 case (Suc \ n)
 then obtain ys zs where w-def: w = ys @ [x] @ zs using send-proj-w-prepend-is-in-w
\mathbf{by} blast
 then have (ys @ [x] @ zs) \in \mathcal{L}(p) using Suc.prems(2) by blast
 then have (ys @ [x]) \in \mathcal{L}(p) by (metis\ Lang-app\ append-assoc)
  then have \exists s1 \ s2. \ (s1, \ x, \ s2) \in \mathcal{R} \ p \ using \ Lang-app-both \ lang-implies-trans
\mathbf{by} blast
 then show ?case by simp
```

 ${f lemma}$ no-inputs-implies-only-sends:

```
assumes \mathcal{P}_{?}(p) = \{\}
  shows \forall w.\ w \in \mathcal{L}(p) \longrightarrow (w = w\downarrow_!)
  using assms
proof auto
  show \mathcal{P}_{?} p = \{\} \Longrightarrow w \in \mathcal{L} p \Longrightarrow w = w \downarrow_{!}
  proof -
    assume w \in \mathcal{L} p
    then show w = w \downarrow_!
    proof (induct length w arbitrary: w)
      case \theta
      then show ?case by simp
    next
      case (Suc \ x)
       then obtain v a where w-def: w = v \otimes [a] and v-len: length v = x by
(metis length-Suc-conv-rev)
      then have v \in \mathcal{L} p using Lang-app Suc.prems by blast
      then have v = v \downarrow_! by (simp add: Suc.hyps(1) v-len)
      then obtain s2 s3 where v-run: (\mathcal{I} p) - v \rightarrow^* p s2 and a-run: s2 - [a] \rightarrow^* p
s3
        using Lang-app-both Suc.prems w-def by blast
         then have \forall s1 \ s2. \ (s1, \ a, \ s2) \in \mathcal{R}(p) \longrightarrow is\text{-}output \ a \ \mathbf{using} \ assms
no-recvs-no-input-trans by blast
      then have (s2, a, s3) \in \mathcal{R}(p) using a-run lang-implies-trans by force
      then have is-output a by (simp add: \forall s1 \ s2. \ s1 \ -a \rightarrow_{\mathcal{C}} p \ s2 \longrightarrow is-output
a > )
      then show ?case using \langle v = v \downarrow_! \rangle w-def by auto
    qed
  qed
qed
{f lemma} no-inputs-implies-only-sends-alt:
  assumes \mathcal{P}_{?}(p) = \{\} and w \in \mathcal{L}(p)
  shows w = w \downarrow_!
  using assms(1,2) no-inputs-implies-only-sends by auto
{f lemma} no-inputs-implies-send-lang:
  assumes \mathcal{P}_{?}(p) = \{\}
  shows \mathcal{L}(p) = (\mathcal{L}(p)) |_{!}
proof
  show \mathcal{L} \ p \subseteq (\mathcal{L} \ p)|_! using assms no-inputs-implies-only-sends-alt by auto
  show (\mathcal{L} p)|_{!} \subseteq \mathcal{L} p using assms no-inputs-implies-only-sends-alt by auto
qed
```

5.5 Synchronous System

lemma initial-configuration-is-synchronous-configuration: shows is-sync-config $C_{\mathcal{I},\mathbf{0}}$

```
unfolding is-sync-config-def
proof clarify
  fix p :: 'peer
  show \mathcal{C}_{\mathcal{I}\mathbf{0}}(p) \in \mathcal{S}(p)
    using automaton-of-peer[of p]
       Communicating Automaton.initial-state [of p \ \mathcal{S} \ p \ \mathcal{C}_{\mathcal{I}\mathbf{0}} \ p \ \mathcal{M} \ \mathcal{R} \ p]
    by simp
qed
lemma sync-step-rev:
  fixes C1 C2 :: 'peer \Rightarrow 'state
                   :: ('information, 'peer) action
  assumes C1 - \langle a, \mathbf{0} \rangle \rightarrow C2
  shows is-sync-config C1 and is-sync-config C2 and \exists i \ p \ q. \ a = ! \langle (i^{p \to q}) \rangle
     and get-actor a \neq get-object a and C1 (get-actor a) -a \rightarrow_{\mathcal{C}} (get-actor a) (C2)
(get\text{-}actor\ a))
   and \exists m. \ a = !\langle m \rangle \land C1 \ (get\text{-}object \ a) - (?\langle m \rangle) \rightarrow_{\mathcal{C}} (get\text{-}object \ a) \ (C2 \ (get\text{-}object \ a))
    and \forall x. x \notin \{get\text{-}actor\ a,\ get\text{-}object\ a\} \longrightarrow C1(x) = C2(x)
  using assms
proof induct
  case (SynchStep C1 a i p q C2)
  assume A1: is-sync-config C1
  thus is-sync-config C1.
  assume A2: a = !\langle (i^{p \to q}) \rangle
  thus \exists i \ p \ q. \ a = !\langle (i^{p \to q}) \rangle
    by blast
  assume A3: C1 p -(!\langle (i^{p \to q})\rangle) \to_{\mathcal{C}} p (C2 p)
  with A2 show C1 (get-actor a) -a \rightarrow_{\mathcal{C}} (get\text{-actor } a) (C2 (get-actor a))
  have A_4: Communicating Automaton p (S p) (I p) M (R p)
    using automaton-of-peer[of p]
    by simp
  with A2 A3 show get-actor a \neq get-object a
     using Communicating Automaton. well-formed-transition [of p \ S \ p \ I \ p \ \mathcal{M} \ \mathcal{R} \ p
C1 p a C2 p
    by auto
  assume A5: C1 q - (?\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} q (C2 q)
  with A2 show \exists m. \ a = !\langle m \rangle \land C1 \ (get\text{-object } a) - (?\langle m \rangle) \rightarrow_{\mathcal{C}} (get\text{-object } a) \ (C2)
(get\text{-}object\ a))
    by auto
  assume A6: \forall x. \ x \notin \{p, q\} \longrightarrow C1 \ x = C2 \ x
  with A2 show \forall x. x \notin \{get\text{-}actor\ a,\ get\text{-}object\ a\} \longrightarrow C1(x) = C2(x)
    by simp
  show is-sync-config C2
    unfolding is-sync-config-def
  proof clarify
    \mathbf{fix} \ x :: 'peer
```

```
show C2(x) \in \mathcal{S}(x)
    proof (cases \ x = p)
      assume x = p
      with A3 A4 show C2(x) \in S(x)
        using Communicating Automaton.well-formed-transition[of p S p I p M R]
p C1 p
             !\langle (i^{p\to q})\rangle \ C2\ p]
        by simp
    \mathbf{next}
      assume B: x \neq p
      show C2(x) \in \mathcal{S}(x)
      proof (cases \ x = q)
        assume x = q
        with A5 show C2(x) \in S(x)
           using automaton-of-peer[of q]
              Communicating Automaton.well-formed-transition[of\ q\ \mathcal{S}\ q\ \mathcal{I}\ q\ \mathcal{M}\ \mathcal{R}\ q
C1 q
               ?\langle (i^{p \to q}) \rangle \ C2 \ q
           by simp
      next
        assume x \neq q
        with A1 A6 B show C2(x) \in S(x)
           unfolding is-sync-config-def
           by (metis empty-iff insertE)
      \mathbf{qed}
    qed
  qed
qed
\mathbf{lemma}\ sync\text{-}step\text{-}output\text{-}rev:
  fixes C1 C2 :: 'peer \Rightarrow 'state
               :: 'information
    and i
    and p \ q :: 'peer
  assumes C1 - \langle !\langle (i^{p \to q}) \rangle, \mathbf{0} \rangle \to C2
 shows is-sync-config C1 and is-sync-config C2 and p \neq q and C1 p - (!\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} p
    and C1 \ q - (?\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} q \ (C2 \ q) and \forall x. \ x \notin \{p, q\} \longrightarrow C1(x) = C2(x)
  using assms sync-step-rev[of C1 !\langle (i^{p \to q}) \rangle C2]
  by simp-all
\mathbf{lemma}\ sync\text{-}run\text{-}rev:
  assumes sync-run C0 (w \cdot [a]) (xc@[C])
  shows sync-run C0 w xc \wedge last (C0 \# xc) - \langle a, \mathbf{0} \rangle \rightarrow C
  \mathbf{using}\ \textit{NetworkOfCA}. \textit{sync-run. cases}\ \textit{NetworkOfCA-axioms}\ \textit{assms}\ \mathbf{by}\ \textit{blast}
{f lemma}\ run\mbox{-}produces\mbox{-}synchronous\mbox{-}configurations:
  fixes C C' :: 'peer \Rightarrow 'state
    and w :: ('information, 'peer) action word
```

```
and xc :: ('peer \Rightarrow 'state) \ list
  assumes sync-run \ C \ w \ xc
   and C' \in set xc
  shows is-sync-config C'
  using assms
{f proof}\ induct
  case (SREmpty\ C)
  assume C' \in set
  hence False
   \mathbf{by} \ simp
  thus is-sync-config C'
   by simp
\mathbf{next}
  case (SRComposed\ C0\ w\ xc\ a\ C)
 assume A1: C' \in set \ xc \implies is\text{-sync-config} \ C' \ \text{and} \ A2: last \ (C0 \# xc) - \langle a, \mathbf{0} \rangle \rightarrow
   and A3: C' \in set (xc \cdot [C])
  show is-sync-config C'
 proof (cases C = C')
   assume C = C'
   with A2 show is-sync-config C'
      using sync-step-rev(2)[of last (C0 \# xc) a C]
     by simp
  next
   assume C \neq C'
   with A1 A3 show is-sync-config C'
     by simp
 qed
qed
lemma run-produces-no-inputs:
 fixes C C' :: 'peer \Rightarrow 'state
   and w :: ('information, 'peer) action word
   and xc :: ('peer \Rightarrow 'state) list
  assumes sync-run C w xc
 shows w\downarrow_1 = w and w\downarrow_2 = \varepsilon
  using assms
proof induct
  case (SREmpty\ C)
  show \varepsilon \downarrow_! = \varepsilon and \varepsilon \downarrow_? = \varepsilon
   by simp-all
\mathbf{next}
  case (SRComposed\ C0\ w\ xc\ a\ C)
  assume w\downarrow_! = w
  moreover assume last (C0 \# xc) - \langle a, \mathbf{0} \rangle \rightarrow C
 hence A: is-output a
   using sync-step-rev(3)[of last (C0 \# xc) a C]
   by auto
  ultimately show (w \cdot [a]) \downarrow_! = w \cdot [a]
```

```
by simp
        assume w\downarrow_? = \varepsilon
         with A show (w \cdot [a]) \downarrow_? = \varepsilon
                by simp
\mathbf{qed}
\mathbf{lemma}\ \mathit{SyncTraces-rev}:
        assumes w \in \mathcal{T}_0
       shows \exists xc. sync-run \ \mathcal{C}_{\mathcal{I}\mathbf{0}} \ w \ xc
        using SyncTraces.simps assms by auto
{f lemma} no-inputs-in-synchronous-communication:
        shows \mathcal{L}_0|_! = \mathcal{L}_0 and \mathcal{L}_0|_? \subseteq \{\varepsilon\}
proof -
        have \forall w \in \mathcal{L}_0. \ w\downarrow_! = w
                using SyncTraces.simps run-produces-no-inputs(1)
        thus \mathcal{L}_0|_! = \mathcal{L}_0
               by force
        have \forall w \in \mathcal{L}_0. w\downarrow_? = \varepsilon
                using SyncTraces.simps run-produces-no-inputs(2)
                by blast
        thus \mathcal{L}_0|_? \subseteq \{\varepsilon\}
                by auto
qed
\mathbf{lemma}\ sync\text{-}send\text{-}step\text{-}to\text{-}recv\text{-}step:
        assumes C1 - \langle ! \langle (i^{p \to q}) \rangle, \mathbf{0} \rangle \to C2
       shows C1 \ q \ -(?\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} q \ (C2 \ q)
       using assms sync-step-output-rev(5) by auto
lemma act-in-sync-word-to-sync-step:
        assumes w \in \mathcal{L}_0 and a \in set w
       shows \exists C1 C2. C1 - \langle a, \mathbf{0} \rangle \rightarrow C2
       sorry
\mathbf{lemma}\ \mathit{act-in-sync-word-to-matching-peer-steps}:
        assumes w \in \mathcal{L}_0 and (!\langle (i^{p \to q}) \rangle) \in set \ w
       \mathbf{shows} \; \exists \; C1 \; C2. \; C1 \; p \; -(!\langle (i^p \rightarrow q)\rangle) \rightarrow_{\mathcal{C}} p \; (C2 \; p) \; \wedge \; C1 \; q \; -(?\langle (i^p \rightarrow q)\rangle) \rightarrow_{\mathcal{C}} q \; (C2 \; p) \; \wedge \; C1 \; q \; -(?\langle (i^p \rightarrow q)\rangle) \rightarrow_{\mathcal{C}} q \; (C2 \; p) \; \wedge \; C1 \; q \; -(?\langle (i^p \rightarrow q)\rangle) \rightarrow_{\mathcal{C}} q \; (C2 \; p) \; \wedge \; C1 \; q \; -(?\langle (i^p \rightarrow q)\rangle) \rightarrow_{\mathcal{C}} q \; (C2 \; p) \; \wedge \; C1 \; q \; -(?\langle (i^p \rightarrow q)\rangle) \rightarrow_{\mathcal{C}} q \; (C2 \; p) \; \wedge \; C1 \; q \; -(?\langle (i^p \rightarrow q)\rangle) \rightarrow_{\mathcal{C}} q \; (C2 \; p) \; \wedge \; C1 \; q \; -(?\langle (i^p \rightarrow q)\rangle) \rightarrow_{\mathcal{C}} q \; (C2 \; p) \; \wedge \; C1 \; q \; -(?\langle (i^p \rightarrow q)\rangle) \rightarrow_{\mathcal{C}} q \; (C2 \; p) \; \wedge \; C1 \; q \; -(?\langle (i^p \rightarrow q)\rangle) \rightarrow_{\mathcal{C}} q \; (C2 \; p) \; \wedge \; C1 \; q \; -(?\langle (i^p \rightarrow q)\rangle) \rightarrow_{\mathcal{C}} q \; (C2 \; p) \; \wedge \; C1 \; q \; -(?\langle (i^p \rightarrow q)\rangle) \rightarrow_{\mathcal{C}} q \; (C2 \; p) \; \wedge \; C1 \; q \; -(?\langle (i^p \rightarrow q)\rangle) \rightarrow_{\mathcal{C}} q \; (C2 \; p) \; \wedge \; C1 \; q \; -(?\langle (i^p \rightarrow q)\rangle) \rightarrow_{\mathcal{C}} q \; (C2 \; p) \; \wedge \; C1 \; q \; -(?\langle (i^p \rightarrow q)\rangle) \rightarrow_{\mathcal{C}} q \; (C2 \; p) \; \wedge \; C1 \; q \; -(?\langle (i^p \rightarrow q)\rangle) \rightarrow_{\mathcal{C}} q \; (C2 \; p) \; \wedge \; C1 \; q \; -(?\langle (i^p \rightarrow q)\rangle) \rightarrow_{\mathcal{C}} q \; (C2 \; p) \; \wedge \; C1 \; q \; -(?\langle (i^p \rightarrow q)\rangle) \rightarrow_{\mathcal{C}} q \; (C2 \; p) \; \wedge \; C1 \; q \; -(?\langle (i^p \rightarrow q)\rangle) \rightarrow_{\mathcal{C}} q \; (C2 \; p) \; \wedge \; C1 \; q \; -(?\langle (i^p \rightarrow q)\rangle) \rightarrow_{\mathcal{C}} q \; (C2 \; p) \; \wedge \; C1 \; q \; -(?\langle (i^p \rightarrow q)\rangle) \rightarrow_{\mathcal{C}} q \; (C2 \; p) \; \wedge \; C1 \; q \; -(?\langle (i^p \rightarrow q)\rangle) \rightarrow_{\mathcal{C}} q \; (C2 \; p) \; \wedge \; C1 \; q \; -(?\langle (i^p \rightarrow q)\rangle) \rightarrow_{\mathcal{C}} q \; (C2 \; p) \; \wedge \; C1 \; q \; -(?\langle (i^p \rightarrow q)\rangle) \rightarrow_{\mathcal{C}} q \; -(?\langle (i^p \rightarrow q)\rangle) 
q)
      using act-in-sync-word-to-sync-step assms(1,2) sync-send-step-to-recv-step sync-step-output-rev(4)
      \mathbf{by} blast
lemma sync-lang-app:
        assumes (u @ v) \in \mathcal{L}_0
        shows u \in \mathcal{L}_0
        sorry
lemma sync-lang-sends-app:
```

```
assumes (u@v)\downarrow_! \in \mathcal{L}_0
  shows u\downarrow_! \in \mathcal{L}_0
  by (metis assms filter-append sync-lang-app)
lemma sync-run-word-configs-len-eq:
  assumes sync-run C0 w xc
  shows length w = length xc
  using assms proof (induct rule: sync-run.induct)
  case (SREmpty\ C)
  then show ?case by simp
next
  case (SRComposed\ C0\ w\ xc\ a\ C)
  then show ?case by simp
qed
          Mailbox System
5.6
5.6.1
            Semantics and Language
\mathbf{lemma} initial-mbox-alt:
  shows (\forall p. \ \mathcal{C}_{\mathcal{I}\mathfrak{m}} \ p = (\mathcal{C}_{\mathcal{I}\mathbf{0}} \ p, \varepsilon))
  by simp
\mathbf{lemma}\ initial\text{-}configuration\text{-}is\text{-}mailbox\text{-}configuration\text{:}}
  shows is-mbox-config \mathcal{C}_{\mathcal{I}\mathfrak{m}}
  unfolding is-mbox-config-def
proof clarify
  fix p :: 'peer
  show fst (\mathcal{C}_{\mathcal{I}\mathbf{0}} \ p, \, \varepsilon) \in \mathcal{S} \ p \wedge snd \ (\mathcal{C}_{\mathcal{I}\mathbf{0}} \ p, \, \varepsilon) \in \mathcal{M}^*
    using automaton-of-peer[of\ p] message-alphabet\ Alphabet\ EmptyWord[of\ \mathcal{M}]
       Communicating Automaton.initial-state[of p \ \mathcal{S} \ p \ \mathcal{I} \ p \ \mathcal{M} \ \mathcal{R} \ p]
    by simp
\mathbf{qed}
{\bf lemma}\ initial\hbox{-} configuration\hbox{-} is\hbox{-} stable\colon
  shows is-stable \mathcal{C}_{\mathcal{I}\mathfrak{m}}
  {\bf unfolding} \ is\mbox{-} stable\mbox{-} def \ {\bf using} \ initial\mbox{-} configuration\mbox{-} is\mbox{-} mailbox\mbox{-} configuration
  \mathbf{by} \ simp
lemma sync-config-to-mbox :
  assumes is-sync-config C
  shows \exists C'. is-mbox-config C' \land C' = (\lambda p. (C p, \varepsilon))
  using assms initial-configuration-is-mailbox-configuration is-mbox-config-def
     is-sync-config-def by auto
lemma mbox-step-rev:
  fixes C1 C2 :: 'peer \Rightarrow ('state \times ('information, 'peer) message word)
```

```
and a
                 :: ('information, 'peer) action
    and k
                 :: bound
  assumes mbox-step C1 a k C2
  shows is-mbox-config C1 and is-mbox-config C2
    and \exists i \ p \ q. \ a = ! \langle (i^{p \to q}) \rangle \lor a = ? \langle (i^{p \to q}) \rangle and get\text{-}actor \ a \neq get\text{-}object \ a
    and fst (C1 (get\text{-}actor a)) - a \rightarrow_{\mathcal{C}} (get\text{-}actor a) (fst (C2 (get\text{-}actor a)))
    and is-output a \Longrightarrow snd (C1 (get-actor a)) = snd (C2 (get-actor a))
    and is-output a \Longrightarrow (|(snd (C1 (get-object a)))|) <_{\mathcal{B}} k
    and is-output a \Longrightarrow C2 (get-object a) =
                       (fst (C1 (get-object a)), (snd (C1 (get-object a))) • [get-message
a])
     and is-input a \implies (snd \ (C1 \ (get\text{-}actor \ a))) = [get\text{-}message \ a] \cdot snd \ (C2)
(get\text{-}actor\ a))
    and is-output a \Longrightarrow \forall x. \ x \notin \{get\text{-}actor \ a, \ get\text{-}object \ a\} \longrightarrow C1(x) = C2(x)
    and is-input a \Longrightarrow \forall x. \ x \neq get\text{-}actor \ a \longrightarrow C1(x) = C2(x)
  using assms
proof induct
  case (MboxSend\ C1\ a\ i\ p\ q\ C2\ k)
  assume A1: is-mbox-config\ C1
  thus is-mbox-config C1.
  assume A2: a = !\langle (i^{p \to q}) \rangle
  thus \exists i \ p \ q. \ a = !\langle (i^{p \to q}) \rangle \lor a = ?\langle (i^{p \to q}) \rangle
  assume A3: fst (C1 p) -(!\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} p (fst (C2 p))
  with A2 show fst (C1 (get-actor a)) -a \rightarrow_{\mathcal{C}} (get\text{-actor a}) (fst (C2 (get-actor
a)))
    by simp
  have A4: Communicating Automaton p (S p) (I p) M (R p)
    using automaton-of-peer[of p]
    by simp
  with A2 A3 show get-actor a \neq get-object a
    using Communicating Automaton. well-formed-transition [of p S p I p \mathcal{M} R p
fst (C1 p) a
        fst (C2 p)
    by auto
  assume A5: snd(C1 p) = snd(C2 p)
  with A2 show is-output a \Longrightarrow snd (C1 (get\text{-}actor a)) = snd (C2 (get\text{-}actor a))
  assume (|snd(C1 q)|) <_{\mathcal{B}} k
  with A2 show is-output a \Longrightarrow (|(snd (C1 (get-object a)))|) <_{\mathcal{B}} k
    by simp
  assume A6: C2 q = (fst (C1 q), snd (C1 q) \cdot [i^{p \to q}])
  with A2 show is-output a \Longrightarrow C2 (get-object a) =
                 (fst\ (C1\ (get\text{-}object\ a)),\ (snd\ (C1\ (get\text{-}object\ a))) \bullet [get\text{-}message\ a])
    by simp
  from A2 show is-input a \Longrightarrow (snd (C1 (get\text{-}actor a))) = [get\text{-}message a] \cdot snd
(C2 (get-actor a))
    by simp
  assume A7: \forall x. x \notin \{p, q\} \longrightarrow C1 \ x = C2 \ x
```

```
with A2 show is-output a \Longrightarrow \forall x. \ x \notin \{get\text{-}actor \ a, \ get\text{-}object \ a\} \longrightarrow C1(x)
= C2(x)
   by simp
  from A2 show is-input a \Longrightarrow \forall x. \ x \neq get\text{-}actor \ a \longrightarrow C1(x) = C2(x)
   by simp
  show is-mbox-config C2
    unfolding is-mbox-config-def
  proof clarify
   \mathbf{fix} \ x :: 'peer
   show fst (C2 \ x) \in \mathcal{S}(x) \land snd (C2 \ x) \in \mathcal{M}^*
   proof (cases x = p)
      assume B: x = p
      with A3 A4 have fst (C2 x) \in S(x)
       using CommunicatingAutomaton.well-formed-transition[of p S p I p M R]
p fst (C1 p)
           !\langle (i^{p \to q}) \rangle \text{ fst } (C2 p)]
       by simp
      moreover from A1 A5 B have snd (C2 x) \in \mathcal{M}^*
       unfolding is-mbox-config-def
       by metis
      ultimately show fst (C2 x) \in S(x) \land snd (C2 x) \in \mathcal{M}^*
       by simp
   \mathbf{next}
      assume B: x \neq p
      show fst (C2 x) \in S(x) \land snd (C2 x) \in \mathcal{M}^*
      proof (cases x = q)
       assume x = q
       moreover from A1 A6 have fst (C2 \ q) \in \mathcal{S}(q)
         unfolding is-mbox-config-def
         by simp
       moreover from A3 A4 have i^{p \to q} \in \mathcal{M}
          using CommunicatingAutomaton.well-formed-transition[of p \ S \ p \ I \ p \ M
\mathcal{R} p
             fst (C1 p) !\langle (i^{p \to q}) \rangle fst (C2 p)]
         by simp
       with A1 A6 have snd (C2 q) \in \mathcal{M}^*
         unfolding is-mbox-config-def
        using message-alphabet Alphabet. EmptyWord[of \mathcal{M}] Alphabet. Composed[of \mathcal{M}]
\mathcal{M} i^{p \to q} \varepsilon
            Alphabet.concat-words-over-an-alphabet[of \mathcal{M} snd (C1 q) [i^{p \to q}]]
         by simp
       ultimately show fst (C2 x) \in S(x) \land snd (C2 x) \in \mathcal{M}^*
         by simp
      next
       assume x \neq q
       with A1 A7 B show fst (C2 x) \in S(x) \land snd (C2 x) \in \mathcal{M}^*
         unfolding is-mbox-config-def
         by (metis insertE singletonD)
      qed
```

```
qed
  qed
next
  case (MboxRecv\ C1\ a\ i\ p\ q\ C2\ k)
  assume A1: is-mbox-config C1
  thus is-mbox-config C1 .
  assume A2: a = ?\langle (i^{p \to q}) \rangle
  thus \exists i \ p \ q. \ a = !\langle (i^{p \to q}) \rangle \lor a = ?\langle (i^{p \to q}) \rangle
    by blast
  assume A3: fst (C1 q) -(?\langle(i^{p\rightarrow q})\rangle)\rightarrow_{\mathcal{C}}q (fst (C2 q))
  with A2 show fst (C1 (get-actor a)) -a \rightarrow_{\mathcal{C}} (get\text{-actor a}) (fst (C2 (get-actor
a)))
    by simp
  have A4: Communicating Automaton q (\mathcal{S} q) (\mathcal{I} q) \mathcal{M} (\mathcal{R} q)
    using automaton-of-peer[of q]
    by simp
  with A2 A3 show get-actor a \neq get-object a
    using CommunicatingAutomaton.well-formed-transition[of q S q I q M R q]
fst (C1 q) a
        fst (C2 q)
    by auto
 from A2 show is-output a \Longrightarrow snd (C1 (get-actor a)) = snd (C2 (get-actor a))
    by simp
  from A2 show is-output a \Longrightarrow ( \mid (snd \ (C1 \ (get-object \ a))) \mid ) <_{\mathcal{B}} k
   by simp
  from A2 show is-output a \Longrightarrow C2 (get-object a) =
                (fst (C1 (get-object a)), (snd (C1 (get-object a))) • [get-message a])
    by simp
  assume A5: snd (C1 q) = [i^{p \to q}] \cdot snd (C2 q)
  with A2 show is-input a \Longrightarrow (snd \ (C1 \ (get\text{-}actor \ a))) = [get\text{-}message \ a] \cdot snd
(C2 (get-actor a))
    by simp
  from A2 show is-output a \Longrightarrow \forall x. \ x \notin \{get\text{-actor } a, \ get\text{-object } a\} \longrightarrow C1(x)
= C2(x)
    by simp
  assume A6: \forall x. \ x \neq q \longrightarrow C1 \ x = C2 \ x
  with A2 show is-input a \Longrightarrow \forall x. \ x \neq get\text{-}actor \ a \longrightarrow C1(x) = C2(x)
    by simp
  show is-mbox-config C2
    unfolding is-mbox-config-def
  proof clarify
    \mathbf{fix} \ x :: 'peer
    show fst (C2 \ x) \in \mathcal{S}(x) \land snd \ (C2 \ x) \in \mathcal{M}^*
    proof (cases \ x = q)
      assume B: x = q
      with A3 A4 have fst (C2 x) \in S(x)
        using CommunicatingAutomaton.well-formed-transition[of q S q I q M R]
q fst (C1 q)
            ?\langle (i^{p\rightarrow q})\rangle fst (C2 q)]
```

```
by simp
      moreover from A3\ A4 have i^{p \to q} \in \mathcal{M}
        using CommunicatingAutomaton.well-formed-transition[of q S q I q M R]
q fst (C1 q)
            ?\langle (i^{p \to q}) \rangle \text{ fst } (C2 q)]
        by simp
      with A1 A5 B have snd (C2 x) \in \mathcal{M}^*
        unfolding is-mbox-config-def
        using message-alphabet
          Alphabet.split-a-word-over-an-alphabet(2)[of \mathcal{M} [i^{p \to q}] snd (C2 q)]
        by metis
      ultimately show fst (C2 x) \in S(x) \land snd (C2 x) \in \mathcal{M}^*
        by simp
    \mathbf{next}
      assume x \neq q
      with A1 A6 show fst (C2 x) \in S(x) \land snd (C2 x) \in \mathcal{M}^*
        unfolding is-mbox-config-def
        by metis
    qed
 qed
qed
lemma mbox-step-output-rev:
  fixes C1 C2 :: 'peer \Rightarrow ('state \times ('information, 'peer) message word)
    and i
                :: 'information
    and p \ q :: 'peer
    and k
                :: bound
  assumes mbox-step C1 (!\langle (i^{p \to q})\rangle \rangle) k C2
  shows is-mbox-config C1 and is-mbox-config C2 and p \neq q
   and fst\ (C1\ p)\ -(!\langle(i^{p\rightarrow q})\rangle)\rightarrow_{\mathcal{C}} p\ (fst\ (C2\ p)) and snd\ (C1\ p)=snd\ (C2\ p)
    and ( | (snd (C1 q)) | ) <_{\mathcal{B}} k
   and C2 q = (\mathit{fst}\ (\mathit{C1}\ q),\ (\mathit{snd}\ (\mathit{C1}\ q)) \bullet [\mathit{get-message}\ (!\langle (i^{p \to q}) \rangle)])
    and \forall x. \ x \notin \{p, q\} \longrightarrow C1(x) = C2(x)
proof -
  show is-mbox-config C1
    using assms mbox-step-rev(1)[of C1 !\langle (i^{p \to q}) \rangle k C2]
    by simp
  show is-mbox-confiq C2
    using assms mbox-step-rev(2)[of C1 !\langle (i^{p \to q}) \rangle k C2]
    by simp
  show p \neq q
    using assms mbox-step-rev(4)[of C1 !\langle (i^{p \to q}) \rangle k C2]
  show fst (C1\ p)\ -(!\langle (i^{p\rightarrow q})\rangle) \rightarrow_{\mathcal{C}} p\ (fst\ (C2\ p))
    using assms mbox-step-rev(5)[of C1 !\langle (i^{p \to q}) \rangle k C2]
    by simp
  show snd (C1 p) = snd (C2 p)
    using assms mbox-step-rev(6)[of C1 !\langle (i^{p \to q}) \rangle k C2]
    by simp
```

```
show ( \mid (snd (C1 q)) \mid ) <_{\mathcal{B}} k
   using assms mbox-step-rev(7)[of C1 !\langle (i^{p \to q}) \rangle k C2]
   by fastforce
  show C2 q = (fst\ (C1\ q),\ (snd\ (C1\ q)) \cdot [get\text{-}message\ (!\langle (i^{p \to q})\rangle)])
   using assms mbox-step-rev(8)[of C1 !\langle (i^{p \to q}) \rangle k C2]
  show \forall x. \ x \notin \{p, q\} \longrightarrow C1(x) = C2(x)
   using assms mbox-step-rev(10)[of C1 !\langle (i^{p \to q}) \rangle k C2]
   \mathbf{by} \ simp
\mathbf{qed}
lemma mbox-step-input-rev:
 fixes C1 C2 :: 'peer \Rightarrow ('state \times ('information, 'peer) message word)
   and i
             :: 'information
   and p \ q :: 'peer
   and k
               :: bound
  assumes mbox-step C1 (?\langle (i^{p \to q}) \rangle) k C2
  shows is-mbox-config C1 and is-mbox-config C2 and p \neq q
    and fst (C1 q) - (?\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} q (fst (C2 q)) and (snd (C1 q)) = [i^{p \to q}]
snd (C2 q)
   and \forall x. \ x \neq q \longrightarrow C1(x) = C2(x)
  using assms mbox-step-rev[of C1 ?\langle (i^{p \to q}) \rangle k C2]
  by simp-all
— if mbox can take a bounded step, it can also take an unbounded step
lemma mbox-step-inclusion:
  assumes mbox-step C1 a (Some k) C2
 shows mbox-step C1 a None C2
 by (smt (verit) MboxRecv MboxSend NetworkOfCA.mbox-step-input-rev(6) NetworkOfCA-axioms
    get-actor.simps(1,2) get-message.simps(1,2) get-object.simps(1) get-receiver.simps
    get-sender.simps is-bounded.simps(1) is-output.simps(1,2) mbox-step-output-rev(5)
     mbox-step-rev(1,10,3,5,8,9) these-empty)
5.6.2
          mbox step conversions to from
lemma send-step-to-mbox-step:
  assumes [a] \in \mathcal{L} \ p and is-output a
 shows \exists C. \mathcal{C}_{\mathcal{I}\mathfrak{m}} - \langle a, \infty \rangle \rightarrow C
  using assms
proof -
 obtain s2 where s2-def: (\mathcal{I} p, a, s2) \in \mathcal{R} p by (meson \ assms(1) \ lang-implies-run
lang-implies-trans)
  then obtain q i where a-def: a = !\langle (i^{p \to q}) \rangle
  by (metis Communicating Automaton-def action.exhaust assms(2) automaton-of-peer
       get-actor.simps(1) get-sender.simps is-output.simps(2) message.exhaust)
  then have p \neq q by (metis Communicating Automaton. well-formed-transition
```

```
\langle \wedge thesis. \ (\wedge s2. \ \mathcal{C}_{\mathcal{I}\mathbf{0}} \ p - a \rightarrow_{\mathcal{C}} p \ s2 \Longrightarrow thesis \rangle \Longrightarrow thesis \rangle \ automaton-of-peer
         get-object.simps(1) get-receiver.simps)
  let ?C0 = (\mathcal{C}_{\mathcal{Im}})(p := (s2, \varepsilon))
  let ?C = (?C0)(q := (\mathcal{I} \ q, \lceil (i^{p \to q}) \rceil))
  have is-mbox-config ?C by (smt (verit) Alphabet.WordsOverAlphabet.simps Com-
municating Automaton.well-formed-transition
          a-def automaton-of-peer fun-upd-apply get-message.simps(1)
       initial\-configuration\-is\-sync\-ronous\-configuration\ is\-mbox-config-def\ is\-sync\-config-def
          message-alphabet s2-def snd-conv split-pairs)
  then have C-prop: \forall x. \ x \notin \{p, q\} \longrightarrow \mathcal{C}_{\mathcal{Im}}(x) = ?C(x) by simp
  then have fst (\mathcal{C}_{\mathcal{I}\mathfrak{m}} p) = \mathcal{I} p by auto
  then have fst (?C p) = s2 by (simp \ add: \langle p \neq q \rangle)
  have (\mathcal{I} p) - (!\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} p \ s2 using a-def s2-def by auto
  have is-mbox-config \mathcal{C}_{\mathcal{I}\mathfrak{m}} by (simp add: initial-configuration-is-mailbox-configuration)
  have fst (\mathcal{C}_{\mathcal{I}\mathfrak{m}} p) - (!\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} p (fst (?\mathcal{C} p))
    using \langle fst (((\lambda p. (\mathcal{C}_{\mathcal{I}\mathbf{0}} p, \varepsilon)) (p := (s2, \varepsilon), q := (\mathcal{C}_{\mathcal{I}\mathbf{0}} q, i^{p \to q} \# \varepsilon))) p) = s2 \rangle
a-def
       s2-def by auto
  then have C-prop2: snd (\mathcal{C}_{Im} p) = snd (?C p) by (simp add: \langle p \neq q \rangle)
  then have C-prop3: ?C \ q = (fst \ (\mathcal{C}_{Im} \ q), \ (snd \ (\mathcal{C}_{Im} \ q)) \cdot [(i^{p \to q})]) by simp
  then have mbox-step C_{Im} a None ?C
    using C-prop2 MboxSend
       \langle fst \ (((\lambda p. \ (\mathcal{C}_{\mathcal{I}\mathbf{0}} \ p, \, \varepsilon)) \ (p := (s2, \, \varepsilon), \ q := (\mathcal{C}_{\mathcal{I}\mathbf{0}} \ q, \ i^{p \to q} \# \varepsilon))) \ p) = s2 \rangle \ a\text{-def}
       initial-configuration-is-mailbox-configuration s2-def by force
  then show ?thesis by auto
qed
\mathbf{lemma}\ \textit{gen-send-step-to-mbox-step}\colon
  assumes (s1, !\langle (i^{p\to q})\rangle, s2) \in \mathcal{R} p and fst (C0 p) = s1 and fst (C1 p) = s2
      and snd (C0 p) = snd (C1 p) and C1 q = (fst (C0 q), (snd (C0 q)).
[(i^{p \to q})] and is-mbox-config C0
    and \forall x. \ x \notin \{p, q\} \longrightarrow C\theta(x) = C1(x)
  shows C\theta - \langle !\langle (i^{p \to q})\rangle, \infty \rangle \to C1
  using assms
proof auto
  have fst (C0 \ p) - (!\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} p (fst (C1 \ p)) by (simp \ add: \ assms(1,2,3))
  have all: is-mbox-config C0 \land fst\ (C0\ p)\ -(!\langle (i^{p\rightarrow q})\rangle) \rightarrow_{\mathcal{C}} p\ (fst\ (C1\ p))\ \land
               snd\ (C0\ p) = snd\ (C1\ p) \land (\mid (snd\ (C0\ q))\mid) <_{\mathcal{B}} None \land
                 C1 \ q = (fst \ (C0 \ q), \ (snd \ (C0 \ q)) \cdot [(i^{p \to q})]) \land (\forall x. \ x \notin \{p, q\} \longrightarrow \{p, q\})
C\theta(x) = C1(x)
    using assms by auto
  show ?thesis by (simp add: NetworkOfCA.MboxSend NetworkOfCA-axioms all)
qed
\mathbf{lemma}\ valid\text{-}send\text{-}to\text{-}p\text{-}not\text{-}q:
  assumes (s1, !\langle (i^{p \to q})\rangle, s2) \in \mathcal{R} p
  shows p \neq q
  \mathbf{by}\ (metis\ Communicating Automaton. well-formed-transition\ assms\ automaton-of-peer
```

```
get-object.simps(1) get-receiver.simps(1)
\mathbf{lemma}\ valid	ext{-}recv	ext{-}to	ext{-}p	ext{-}not	ext{-}q:
  assumes (s1, ?\langle (i^{p \to q})\rangle, s2) \in \mathcal{R} p
 shows p \neq q
 \textbf{by} \ (metis \ Communicating Automaton-def \ Network Of CA. automaton-of-peer \ Network Of CA-axioms
assms
     get-object.simps(2) get-sender.simps)
— define the mbox step for a given send step (of e.g. a root)
\mathbf{lemma}\ send-trans-to-mbox-step:
 assumes (s1, !\langle (i^{p \to q})\rangle, s2) \in \mathcal{R} p and is-mbox-config C0 and fst (C0 p) = s1
 shows let p-buf = snd (C0 p); C1 = (C0)(p := (s2, p-buf)); q0 = fst (C0 q);
q-buf = snd (C0 q);
  C2 = (C1)(q := (q0, q\text{-buf} \cdot [(i^{p \to q})])) in
mbox-step C0 (!\langle (i^{p \to q})\rangle) None C2
  using assms
proof -
  let ?p-buf = snd (C0 p)
 let ?C1 = (C0)(p := (s2, ?p-buf))
 let ?q\theta = fst (C\theta q)
 let ?q-buf = snd (C0 q)
 let ?C2 = (?C1)(q := (?q0, ?q-buf \cdot [(i^{p \to q})]))
  have q \neq p using assms(1) valid-send-to-p-not-q by blast
  have m1: snd (C0 p) = snd (?C2 p) using \langle q \neq p \rangle by auto
 have m2: fst\ (C0\ p)\ -(!\langle(i^{p\rightarrow q})\rangle)\rightarrow_{\mathcal{C}} p\ (fst\ (?C2\ p)) using \langle q\neq p\rangle\ assms(1,3)
by fastforce
  have m3: ?C2 \ q = (fst \ (C0 \ q), \ (snd \ (C0 \ q)) \cdot [(i^{p \to q})]) by simp
 have m4: (\forall x. x \notin \{p, q\} \longrightarrow CO(x) = ?C2(x)) by simp
 have m5: (|(snd(C0 q))|) <_{\mathcal{B}} None by simp
 have mbox-step C0 (!\langle (i^{p \to q}) \rangle) None ?C2 using assms(2) gen-send-step-to-mbox-step
m1 m2 m3 m4 by blast
  then show ?thesis by auto
qed
5.6.3
          mbox run
lemma mbox-run-rev-unbound:
  assumes mbox-run C0 None (w \cdot [a]) (xc@[C])
  shows mbox-run C0 None w xc \wedge last (C0 \# xc) - \langle a, \infty \rangle \rightarrow C
 by (smt (verit) Nil-is-append-conv append1-eq-conv assms mbox-run.simps
     not-Cons-self2)
\mathbf{lemma}\ mbox{-}run{-}rev{-}bound:
  assumes mbox-run C0 (Some k) (w \cdot [a]) (xc@[C])
  shows mbox-run C0 (Some k) w xc \wedge last (C0 \# xc) - \langle a, k \rangle \rightarrow C
  by (smt (verit) Nil-is-append-conv append1-eq-conv assms mbox-run.simps
     not-Cons-self2)
```

```
lemma run-produces-mailbox-configurations:
 fixes C\ C' :: 'peer \Rightarrow ('state \times ('information, 'peer) \ message \ word)
   and k :: bound
   and w :: ('information, 'peer) action word
   and xc :: ('peer \Rightarrow ('state \times ('information, 'peer) message word)) list
 assumes mbox-run \ C \ k \ w \ xc
   and C' \in set xc
 shows is-mbox-config C'
 using assms
{f proof}\ induct
 case (MREmpty\ C\ k)
 assume C' \in set
 hence False
   \mathbf{by} \ simp
 thus is-mbox-config C'
   by simp
next
 case (MRComposedNat\ C0\ k\ w\ xc\ a\ C)
 assume A1: C' \in set \ xc \implies is\text{-mbox-config} \ C' \ \text{and} \ A2: last \ (C0 \# xc) - \langle a, k \rangle \rightarrow
   and A3: C' \in set (xc \cdot [C])
 show is-mbox-config C'
 proof (cases C = C')
   assume C = C'
   with A2 show is-mbox-config C'
     using mbox-step-rev(2)[of last (C0\#xc) a Some k C]
     by simp
 \mathbf{next}
   assume C \neq C'
   with A1 A3 show is-mbox-config C'
     by simp
 qed
next
 \mathbf{case}\ (\mathit{MRComposedInf}\ \mathit{C0}\ w\ \mathit{xc}\ a\ \mathit{C})
  assume A1: C' \in set \ xc \implies is\text{-mbox-config} \ C' \ \text{and} \ A2: \ last \ (C0 \# xc) \ -\langle a, a, c \rangle
   and A3: C' \in set (xc \cdot [C])
 show is-mbox-config C'
 proof (cases C = C')
   assume C = C'
   with A2 show is-mbox-config C'
     using mbox-step-rev(2)[of last (C0\#xc) a None C]
     by simp
 next
   assume C \neq C'
   with A1 A3 show is-mbox-config C'
     \mathbf{by} \ simp
 \mathbf{qed}
qed
```

```
\mathbf{lemma}\ mbox\text{-}step\text{-}to\text{-}run\text{:}
  assumes mbox-step C0 a None C
  shows mbox-run C0 None [a] [C]
 by (metis MRComposedInf MREmpty append.left-neutral assms last-ConsL)
5.6.4 mbox traces
\mathbf{lemma}\ \mathit{Mbox-Traces-rev}:
  assumes w \in \mathcal{T}_k
 shows \exists xc. mbox-run \mathcal{C}_{Im} k w xc
  by (metis MboxTraces.cases assms)
lemma mbox-run-inclusion:
  assumes mbox-run C_{Im} (Some k) w xc
  shows mbox-run \mathcal{C}_{\mathcal{I}\mathfrak{m}} None w xc
 using assms
proof (induct rule: mbox-run.induct)
  case (MREmpty\ C\ k)
  then show ?case by (simp add: mbox-run.MREmpty)
  case (MRComposedNat\ C0\ k\ w\ xc\ a\ C)
  then show ?case by (simp add: MRComposedInf mbox-step-inclusion)
next
  case (MRComposedInf\ C0\ w\ xc\ a\ C)
  then show ?case by (simp add: mbox-run.MRComposedInf)
qed
\mathbf{lemma}\ mbox-bounded\text{-}lang\text{-}inclusion:
  shows \mathcal{T}_{(Some\ k)} \subseteq \mathcal{T}_{None}
  using MboxTraces-def MboxTracesp.simps mbox-run-inclusion by fastforce
{\bf lemma}\ execution\mbox{-}implies\mbox{-}mbox\mbox{-}trace:
  assumes w \in \mathcal{T}_k
 shows w\downarrow_! \in \mathcal{L}_k
  using assms by blast
{\bf lemma}\ mbox-trace-implies-execution:
  assumes w \in \mathcal{L}_k
 shows \exists w'. \ w' \downarrow_! = w \land w' \in \mathcal{T}_k
  using assms by blast
5.6.5 Language Hierarchy
theorem sync\text{-}word\text{-}in\text{-}mbox\text{-}size\text{-}one:
 shows \mathcal{L}_0 \subseteq \mathcal{L}_1
proof clarify
  \mathbf{fix} \ v :: ('information, 'peer) \ action \ word
  assume v \in \mathcal{L}_0
  then obtain xcs C0 where sync-run C0 v xcs and C0 = \mathcal{C}_{\mathcal{I}0}
```

```
using SyncTracesp.simps SyncTracesp-SyncTraces-eq
            by auto
      (\forall p. \ last \ (\mathcal{C}_{\mathcal{I}\mathfrak{m}} \# xcm) \ p = (last \ (\mathcal{C}_{\mathcal{I}\mathfrak{0}} \# xcs) \ p, \varepsilon))
       proof induct
            case (SREmpty\ C)
            have mbox-run \mathcal{C}_{\mathcal{I}\mathfrak{m}} (\mathcal{B} 1) \varepsilon []
                   using MREmpty[of \ \mathcal{C}_{Im} \ \mathcal{B} \ 1]
                   by simp
            moreover have \varepsilon = \varepsilon \downarrow_!
                   by simp
            moreover have \forall p. \ \mathcal{C}_{\mathcal{I}\mathfrak{m}} \ p = (\mathcal{C}_{\mathcal{I}\mathbf{0}} \ p, \ \varepsilon)
                   by simp
            ultimately show \exists w \ xcm. \ mbox{-run} \ \mathcal{C}_{\mathcal{I}\mathfrak{m}} \ (\mathcal{B} \ 1) \ w \ xcm \ \land \ \varepsilon = w \downarrow_! \ \land
                                                                  (\forall p. \ last \ (\mathcal{C}_{\mathcal{I}\mathfrak{m}} \# xcm) \ p = (last \ [\mathcal{C}_{\mathcal{I}\mathbf{0}}] \ p, \varepsilon))
                   by fastforce
       next
            case (SRComposed\ C0\ v\ xc\ a\ C)
            assume C0 = \mathcal{C}_{\mathcal{I}\mathbf{0}} \Longrightarrow \exists w \ xcm. \ mbox-run \ \mathcal{C}_{\mathcal{I}\mathfrak{m}} \ (\mathcal{B} \ 1) \ w \ xcm \land v = w \downarrow_! \land v = w
                                      (\forall p. \ last \ (\mathcal{C}_{\mathcal{I}\mathfrak{m}} \# xcm) \ p = (last \ (\mathcal{C}_{\mathcal{I}\mathbf{0}} \# xc) \ p, \ \varepsilon))
                   and B1: C\theta = \mathcal{C}_{\mathcal{I}\mathbf{0}}
            then obtain w xcm where B2: mbox-run C_{Im} (B 1) w xcm and B3: v = w \downarrow_!
                   and B4: \forall p. \ last \ (\mathcal{C}_{Im} \# xcm) \ p = (last \ (\mathcal{C}_{I0} \# xc) \ p, \ \varepsilon)
                   by blast
            assume last (C0 \# xc) - \langle a, \mathbf{0} \rangle \rightarrow C
             with B1 obtain C1 where B5: C1 = last (C_{\mathcal{I}\mathbf{0}}\#xc) and B6: C1 -\langle a, \mathbf{0} \rangle \rightarrow
C
                   by blast
            from B6 obtain i p q where B7: a = !\langle (i^{p \to q}) \rangle and B8: C1 p - a \to_{\mathcal{C}} p (C p)
                   and B9: C1 q - (?\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} q \ (C \ q) and B10: p \neq q
                   and B11: \forall x. \ x \notin \{p, q\} \longrightarrow C1 \ x = C \ x
                   using sync-step-rev[of C1 a C]
                   by auto
            define C2::'peer \Rightarrow ('state \times ('information, 'peer) message word) where
                      C2-def: C2 \equiv \lambda x. if x = p then (C p, \varepsilon) else (C1 x, if x = q then [i^{p \to q}]
            define C3::'peer \Rightarrow ('state \times ('information, 'peer) message word) where
                   C3-def: C3 \equiv \lambda x. (C x, \varepsilon)
            from B2 have is-mbox-config (last (C_{Im}\#xcm))
                   using run-produces-mailbox-configurations [of \mathcal{C}_{\mathcal{I}\mathfrak{m}} \mathcal{B} 1 \text{ w xcm last xcm}]
                          initial\-configuration\-is\-mailbox\-configuration
                   by simp
           moreover from B4 B5 B7 B8 have fst (last (C_{Im}\#xcm) p) -(!\langle (i^{p\rightarrow q})\rangle)\rightarrow_{\mathcal{C}} p
(fst (C2 p))
                   unfolding C2-def
            moreover from B4 have snd (last (C_{Im}\#xcm) p) = snd (C2 p)
                   unfolding C2-def
                   by simp
```

```
moreover from B_4 have (|snd(last(C_{Im}\#xcm)q)|) <_{B} B_1
       by simp
     moreover from B4 B5 B10
     have C2\ q = (fst\ (last\ (\mathcal{C}_{Im}\#xcm)\ q),\ snd\ (last\ (\mathcal{C}_{Im}\#xcm)\ q) \cdot [i^{p \to q}])
       unfolding C2-def
       by simp
     moreover from B4 B5 have \forall x. x \notin \{p, q\} \longrightarrow last (\mathcal{C}_{Im} \# xcm) x = C2 x
       unfolding C2-def
       by simp
     ultimately have B12: last (C_{Im}\#xcm) - \langle a, 1 \rangle \rightarrow C2
       using B7 MboxSend[of last (C_{Im}\#xcm)!\langle (i^{p \to q}) \rangle i p q C2 B 1]
     hence is-mbox-config C2
       using mbox-step-rev(2)[of last (C_{Im}\#xcm) a \mathcal{B} 1 C2]
     \textbf{moreover from} \ B9 \ B10 \ \textbf{have} \ fst \ (C2 \ q) \ -(? \! \langle (i^{p \to q}) \rangle) \! \to_{\mathcal{C}} \! q \ (fst \ (C3 \ q))
       unfolding C2-def C3-def
       by simp
     moreover from B10 have snd (C2 \ q) = [i^{p \to q}] \cdot snd (C3 \ q)
       unfolding C2-def C3-def
       by simp
     moreover from B11 have \forall x. \ x \neq q \longrightarrow C2 \ x = C3 \ x
       unfolding C2-def C3-def
       by simp
     ultimately have C2 - \langle ?\langle (i^{p \to q}) \rangle, 1 \rangle \to C3
       using MboxRecv[of\ C2\ ?\langle (i^{p \to q}) \rangle\ i\ p\ q\ C3\ \mathcal{B}\ 1]
     with B2 B12 have mbox-run \mathcal{C}_{\mathcal{I}\mathfrak{m}} (\mathcal{B} 1) (w \cdot [a, ?\langle (i^{p \to q}) \rangle]) (xcm \cdot [C2, C3])
       using MRComposedNat[of \ \mathcal{C}_{Im} \ 1 \ w \ xcm \ a \ C2]
          MRComposedNat[of \ \mathcal{C}_{Im} \ 1 \ w \cdot [a] \ xcm \cdot [C2] \ ?\langle (i^{p \to q}) \rangle \ C3]
     moreover from B3 B7 have v \cdot [a] = (w \cdot [a, ?\langle (i^{p \to q})\rangle]) \downarrow_!
       using filter-append[of is-output w [a, ?\langle (i^{p \to q})\rangle]]
     moreover have \forall p. \ last \ (\mathcal{C}_{\mathcal{I}\mathfrak{m}}\#(xcm\cdot[C2,\ C3])) \ p = (last \ (\mathcal{C}_{\mathcal{I}\mathbf{0}}\#(xc\cdot[C])) \ p,
\varepsilon)
       unfolding C3-def
       by simp
     ultimately show \exists w \ xcm. \ mbox{-run} \ \mathcal{C}_{\mathcal{I}\mathfrak{m}} \ (\mathcal{B} \ 1) \ w \ xcm \wedge v \cdot [a] = w \downarrow_! \wedge v \cdot [a]
                          (\forall p. \ last \ (\mathcal{C}_{\mathcal{I}\mathfrak{m}} \# xcm) \ p = (last \ (\mathcal{C}_{\mathcal{I}\mathfrak{0}} \# (xc \cdot [C])) \ p, \varepsilon))
       by blast
  qed
   then obtain w \ xcm where A1: \ mbox{-run} \ \mathcal{C}_{\mathcal{I}\mathfrak{m}} \ (\mathcal{B} \ 1) \ w \ xcm and A2: \ v = w \downarrow_!
     by blast
  from A1 have w \in \mathcal{T}_{\mathcal{B}, 1}
     by (simp add: MboxTraces.intros)
   with A2 show \exists w. \ v = w \downarrow_! \land w \in \mathcal{T}_{\mathcal{B}, 1}
     by blast
qed
```

```
{f lemma}\ mbox-sync-lang-unbounded-inclusion:
   shows \mathcal{L}_{\mathbf{0}} \subseteq \mathcal{L}_{\infty}
   {\bf using} \ Network Of CA. mbox-bounded-lang-inclusion \ Network Of CA-axioms \ sync-word-in-mbox-size-one \ and \ an arrow of the property of the property
   by force
— C1 ->send-> C1(p:= (C2 p)) ->recvrightarrow> C2
— shows that a sync step can be simulated with two Mbox steps
lemma \ sync-step-to-mbox-steps:
   assumes C1 - \langle !\langle (i^{p \to q})\rangle, \mathbf{0}\rangle \to C2
    shows let c1 = \lambda x. (C1 x, \varepsilon); c3 = \lambda x. (C2 x, \varepsilon); c2 = (c3)(q := (C1 q,
[(i^{p\rightarrow q})]) in
   mbox-step c1 (!\langle (i^{p \to q}) \rangle) None c2 \wedge mbox-step c2 (?\langle (i^{p \to q}) \rangle) None c3
proof - C1 \rightarrow C2 in sync means we have c1 \rightarrow c2 \rightarrow c3 in mbox, where in
c2 the message is in the mbox of the respective peer
   let ?c1 = \lambda x. (C1 \ x, \varepsilon) — C1 as mbox config
   let ?c3 = \lambda x. (C2 x, \varepsilon) — C2 as mbox config
  let 2c^2 = (2c^3)(q := (C1 \ q, [(i^{p \to q})])) — additional step in mbox that isnt there
in sync (sequential vs synchronously)
   let ?a = !\langle (i^{p \to q}) \rangle
  have O1: (C1\ p) - (!\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} p \ (C2\ p) by (simp\ add: assms\ sync\text{-step-output-rev}(4))
  then have (C1 \ q) - (?\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} q \ (C2 \ q) by (simp \ add: assms \ sync-step-output-rev(5))
  then have \forall x. x \notin \{p, q\} \longrightarrow C1(x) = C2(x) using assms sync-step-output-rev(6)
by blast
   then have S0: fst (?c2 p) = C2 p using assms sync-step-output-rev(3) by auto
  then have S1: is-mbox-config ?c1 using assms sync-config-to-mbox sync-step-rev(1)
   then have S2: fst (?c1 \ p) - (!\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} p (fst (?c2 \ p)) using O1 S0 by auto
   then have S3: snd (?c1 p) = snd (?c2 p) using assms sync-step-output-rev(3)
by auto
   then have S4: ( | (snd (?c1 q)) | ) <_{\mathcal{B}} None by simp
   then have S5: ?c2 \ q = (fst \ (?c1 \ q), \ (snd \ (?c1 \ q)) \cdot [(i^{p \to q})]) by simp
   then have S6: (\forall x. \ x \notin \{p, q\} \longrightarrow ?c1(x) = ?c2(x)) by (simp \ add: \forall x. \ x \notin add)
\{p, q\} \longrightarrow C1 \ x = C2 \ x > 0
   then have is-mbox-config ?c1 \land ?a = !\langle (i^{p \to q}) \rangle \land fst \ (?c1 \ p) \ -(!\langle (i^{p \to q}) \rangle) \to_{\mathcal{C}} p
(fst \ (?c2 \ p)) \land
                    snd \ (?c1 \ p) = snd \ (?c2 \ p) \land ( \ | \ (snd \ (?c1 \ q)) \ | \ ) <_{\mathcal{B}} None \land
                      ?c2 \ q = (fst \ (?c1 \ q), \ (snd \ (?c1 \ q)) \cdot [(i^{p \to q})]) \land (\forall x. \ x \notin \{p, q\} \longrightarrow (snd) )
 ?c1(x) = ?c2(x)
       using S1 S2 S3 S4 S5 by blast
   then have mbox-step-1: mbox-step?c1 (!\langle (i^{p 	o q}) \rangle) None?c2 using MboxSend
by blast
                we have shown that mbox takes a send step from ?c1 to ?c2, now we need
to show the receive step
   have R1: is\text{-mbox-config } ?c2 \text{ using } mbox\text{-step-1 } mbox\text{-step-rev}(2) \text{ by } auto
   then have R2: fst\ (?c2\ q) = C1\ q by simp
   then have R3: fst\ (?c3\ q) = C2\ q by simp
   then have R4: fst (?c2 q) - (?((i^{p \rightarrow q}))) \rightarrow_{\mathcal{C}} q (fst (?c3 q)) using R2 R3 < (C1)
```

```
q) - (?\langle (i^{p \to q})\rangle) \to_{\mathcal{C}} q \ (C2 \ q) \mapsto \mathbf{by} \ simp
      then have R5: (snd\ (?c2\ q)) = [(i^{p \to q})] \cdot snd\ (?c3\ q) by simp
      then have R6: \forall x. \ x \neq q \longrightarrow ?c2(x) = ?c3(x) by simp
      then have is-mbox-config ?c2 \land fst \ (?c2 \ q) - (?\langle (ip \rightarrow q) \rangle) \rightarrow_{\mathcal{C}} q \ (fst \ (?c3 \ q)) \land
                                      (snd\ (?c2\ q)) = [(i^{p \to q})] \cdot snd\ (?c3\ q) \land (\forall x.\ x \neq q \longrightarrow ?c2(x) =
 ?c3(x)
          using R1 R4 by auto
      then have mbox-step-2: mbox-step ?c2 (?((i^{p \to q}))) None ?c3 by (simp add:
MboxRecv)
      then have mbox-step ?c1 (!\langle (i^{p \to q}) \rangle) None ?c2 \land mbox-step ?c2 (?\langle (i^{p \to q}) \rangle)
None ?c3 by (simp add: mbox-step-1)
     then have ?c1 - \langle !\langle (i^{p \to q})\rangle, \infty \rangle \to ?c2 \land ?c2 - \langle ?\langle (i^{p \to q})\rangle, \infty \rangle \to ?c3 by simp
     then show ?thesis by auto
qed
 — shows that sync step means mbox steps exist in general
lemma sync-step-to-mbox-steps-existence:
     assumes C1 - \langle !\langle (i^{p \to q}) \rangle, \mathbf{0} \rangle \to C2
   shows \exists c1 c2 c3. mbox-step c1 (!\langle (i^{p \to q}) \rangle) None c2 \land mbox-step c2 (?\langle (i^{p \to q}) \rangle)
None c3
     by (meson assms sync-step-to-mbox-steps)
\mathbf{lemma}\ sync\text{-}step\text{-}to\text{-}mbox\text{-}steps\text{-}alt:
      assumes C1 - \langle ! \langle (i^{p \to q}) \rangle, \mathbf{0} \rangle \to C2 and c1 = (\lambda x. (C1 \ x, \varepsilon)) and c3 = (\lambda x.
(C2 \ x, \ \varepsilon)) and c2 = (c3)(q := (C1 \ q, [(i^{p \to q})]))
     shows mbox-step c1 (!\langle (i^{p \to q}) \rangle) None c2 \wedge mbox-step c2 (?\langle (i^{p \to q}) \rangle) None c3
     using assms
proof auto
       have let c1 = \lambda x. (C1 \ x, \ \varepsilon); c3 = \lambda x. (C2 \ x, \ \varepsilon); c2 = (c3)(q := (C1 \ q, \ \varepsilon))
[(i^{p\rightarrow q})]) in
      mbox-step c1 (!\langle (i^{p \to q}) \rangle) None c2 \wedge mbox-step c2 (?\langle (i^{p \to q}) \rangle) None c3
          by (simp add: assms(1) sync-step-to-mbox-steps)
     then show (\lambda x. (C1 \ x, \varepsilon)) - \langle ! \langle (i^{p \to q}) \rangle, \infty \rangle \to (\lambda x. (C2 \ x, \varepsilon)) (q := (C1 \ q, i^{p \to q}))
\# \varepsilon)) by meson
\mathbf{next}
       have let c1 = \lambda x. (C1 \ x, \ \varepsilon); c3 = \lambda x. (C2 \ x, \ \varepsilon); c2 = (c3)(q := (C1 \ q, \ e))
[(i^{p\rightarrow q})]) in
      mbox-step c1 (!\langle (i^{p \to q}) \rangle) None c2 \wedge mbox-step c2 (?\langle (i^{p \to q}) \rangle) None c3
          by (simp add: assms(1) sync-step-to-mbox-steps)
      \textbf{then show } (\lambda x. \ (\mathit{C2} \ x, \ \varepsilon))(q := (\mathit{C1} \ q, \ i^{p \to q} \ \# \ \varepsilon)) \ - \langle ? \langle (i^{p \to q}) \rangle, \ \infty \rangle \to (\lambda x. \ (\mathit{C2} \ x, \ \varepsilon))(q := (\mathit{C1} \ q, \ i^{p \to q} \ \# \ \varepsilon)) \ - \langle ? \langle (i^{p \to q}) \rangle, \ \infty \rangle \to (\lambda x. \ (\mathit{C2} \ x, \ \varepsilon))(q := (\mathit{C1} \ q, \ i^{p \to q} \ \# \ \varepsilon)) \ - \langle ? \langle (i^{p \to q}) \rangle, \ \infty \rangle \to (\lambda x. \ (\mathit{C2} \ x, \ \varepsilon))(q := (\mathit{C1} \ q, \ i^{p \to q} \ \# \ \varepsilon)) \ - \langle ? \langle (i^{p \to q}) \rangle, \ \infty \rangle \to (\lambda x. \ (\mathit{C2} \ x, \ \varepsilon))(q := (\mathit{C1} \ q, \ i^{p \to q} \ \# \ \varepsilon)) \ - \langle ? \langle (i^{p \to q}) \rangle, \ \infty \rangle \to (\lambda x. \ (\mathit{C2} \ x, \ \varepsilon))(q := (\mathit{C1} \ q, \ i^{p \to q} \ \# \ \varepsilon)) \ - \langle ? \langle (i^{p \to q}) \rangle, \ \infty \rangle \to (\lambda x. \ (\mathit{C2} \ x, \ \varepsilon))(q := (\mathit{C1} \ q, \ i^{p \to q} \ \# \ \varepsilon)) \ - \langle ? \langle (i^{p \to q}) \rangle, \ \infty \rangle \to (\lambda x. \ (\mathit{C2} \ x, \ \varepsilon))(q := (\mathit{C1} \ q, \ i^{p \to q} \ \# \ \varepsilon)) \ - \langle ? \langle (i^{p \to q}) \rangle, \ \infty \rangle \to (\lambda x. \ (\mathit{C2} \ x, \ \varepsilon))(q := (\mathit{C1} \ q, \ i^{p \to q} \ \# \ \varepsilon)) \ - \langle ? \langle (i^{p \to q}) \rangle, \ \infty \rangle \to (\lambda x. \ (\mathit{C2} \ x, \ \varepsilon))(q := (\mathit{C1} \ q, \ i^{p \to q} \ \# \ \varepsilon)) \ - \langle ? \langle (i^{p \to q}) \rangle, \ \infty \rangle \to (\lambda x. \ (\mathit{C2} \ x, \ \varepsilon))(q := (\mathit{C1} \ q, \ i^{p \to q} \ \# \ \varepsilon)) \ - \langle ? \langle (i^{p \to q}) \rangle, \ \infty \rangle \to (\lambda x. \ (\mathit{C2} \ x, \ \varepsilon))(q := (\mathit{C1} \ q, \ i^{p \to q} \ \# \ \varepsilon)) \ - \langle ? \langle (i^{p \to q}) \rangle, \ \infty \rangle \to (\lambda x. \ (\mathit{C2} \ x, \ \varepsilon))(q := (\mathit{C1} \ q, \ i^{p \to q} \ \# \ \varepsilon)) \ - \langle ? \langle (i^{p \to q}) \rangle, \ \infty \rangle \to (\lambda x. \ (\mathit{C2} \ x, \ \varepsilon))(q := (\mathit{C1} \ q, \ i^{p \to q} \ \# \ \varepsilon)) \ - \langle ? \langle (i^{p \to q}) \rangle, \ \infty \rangle \to (\lambda x. \ (\mathit{C2} \ x, \ \varepsilon))(q := (\mathit{C1} \ q, \ i^{p \to q} \ \# \ \varepsilon)) \ - \langle ? \langle (i^{p \to q}) \rangle, \ \infty \rangle \to (\lambda x. \ (\mathit{C2} \ x, \ \varepsilon))(q := (\mathit{C1} \ q, \ i^{p \to q} \ \# \ \varepsilon)) \ - \langle ? \langle (i^{p \to q}) \rangle, \ \infty \rangle \to (\lambda x. \ (\mathit{C2} \ x, \ \varepsilon))(q := (\mathit{C1} \ q, \ i^{p \to q} \ \# \ \varepsilon)) \ - \langle ? \langle (i^{p \to q}) \rangle, \ \infty \rangle \to (\lambda x. \ (\mathit{C2} \ x, \ \varepsilon))(q := (\mathit{C1} \ q, \ i^{p \to q} \ \# \ \varepsilon)) \ + \langle (i^{p \to q}) \rangle \to (\lambda x. \ (\mathit{C2} \ x, \ i^{p \to q} \ \# \ \varepsilon))(q := (\mathit{C1} \ q, \ i^{p \to q} \ \# \ \varepsilon))(q := (\mathit{C1} \ q, \ i^{p \to q} \ \# \ \varepsilon))(q := (\mathit{C1} \ q, \ i^{p \to q} \ \# \ \varepsilon))(q := (\mathit{C1} \ q, \ i^{p \to q} \ \# \ \varepsilon))(q := (\mathit{C1} \ q, \ i^{p \to q} \ \# \ \varepsilon))(q := (\mathit{C1} \ q, \ i^{p \to q} \ \# \ \varepsilon))(q
(C2 \ x, \ \varepsilon)) by meson
qed
```

lemma eps-in-mbox-execs: $\varepsilon \in \mathcal{T}_{None}$ using MREmpty MboxTraces.intros by blast

6 Synchronisability

lemma Edges-rev:

```
fixes e :: 'peer \times 'peer
  assumes e \in \mathcal{G}
  shows \exists i \ p \ q. \ i^{p \to q} \in \mathcal{M} \land e = (p, q)
proof -
  obtain p q where A: e = (p, q)
   by fastforce
  with assms have (p, q) \in \mathcal{G}
  from this A show \exists i \ p \ q. \ i^{p \to q} \in \mathcal{M} \land e = (p, q)
   by (induct, blast)
qed
{f lemma} w-in-peer-lang-impl-p-actor:
 assumes w \in \mathcal{L}(p)
 shows w = w \downarrow_p
  using assms
proof (induct length w arbitrary: w)
  case \theta
  then show ?case by simp
\mathbf{next}
  case (Suc \ x)
 then obtain v a where w-def: w = v @ [a] and v-len: length v = x and v-def
   by (metis (no-types, lifting) Lang-app length-Suc-conv-rev)
  then have v\downarrow_p = v using Suc.hyps(1) Suc.prems by auto
  then obtain s2 s3 where v-run: (\mathcal{I} p) - v \rightarrow^* p s2 and a-run: s2 - [a] \rightarrow^* p s3
   using Lang-app-both Suc.prems(1) w-def by blast
  then have s2 - a \rightarrow_{\mathcal{C}} p \ s3 by (simp add: lang-implies-trans)
  then have (s2, a, s3) \in \mathcal{R} p by simp
 then have get-actor a = p using CommunicatingAutomaton.well-formed-transition
     automaton-of-peer by fastforce
  then show ?case
   by (simp \ add: \langle v \downarrow_p = v \rangle \ w\text{-}def)
qed
```

6.1 Synchronisability is Deciable for Tree Topology in Mailbox Communication

6.1.1 Topology is a Tree

```
lemma is-tree-rev:
assumes is-tree P E
shows (\exists p. P = \{p\} \land E = \{\}) \lor (\exists P' E' p \ q. is-tree P' E' \land p \in P' \land q \notin P' \land P = insert \ q \ P' \land E = insert \ (p, \ q) \ E')
using assms
proof (induction \ P \ E \ rule: is-tree.induct)
case (ITRoot \ p)
then show ?case by simp
next
case (ITNode \ P \ E \ p \ q)
```

```
then show ?case
   by (intro disjI2, auto simp: insert-commute)
qed
lemma is-tree-rev-nonempty:
 assumes is-tree P E and E \neq \{\}
  shows (\exists P' \ E' \ p \ q. \ is\text{-tree} \ P' \ E' \land p \in P' \land q \notin P' \land P = insert \ q \ P' \land E =
insert (p, q) E'
  using assms(1,2) is-tree-rev by auto
\mathbf{lemma}\ edge\text{-}on\text{-}peers\text{-}in\text{-}tree:
  fixes P :: 'peer set
   and E :: 'peer topology
   and p \ q :: 'peer
  assumes is-tree P E
   and (p, q) \in E
  shows p \in P and q \in P
  using assms
proof induct
  case (ITRoot \ x)
  assume (p, q) \in \{\}
  thus p \in \{x\} and q \in \{x\}
   by simp-all
next
  case (ITNode\ P\ E\ x\ y)
 assume (p, q) \in E \Longrightarrow p \in P and (p, q) \in E \Longrightarrow q \in P and x \in P
   and (p, q) \in insert(x, y) E
  thus p \in insert \ y \ P and q \in insert \ y \ P
   by auto
qed
lemma at-most-one-parent-in-tree:
 fixes P :: 'peer set
   and E :: 'peer topology
   and p :: 'peer
  assumes is-tree P E
 shows card (E\langle \rightarrow p \rangle) \leq 1
  using assms
proof induct
  case (ITRoot x)
  have \{\}\langle \rightarrow p \rangle = \{\}
   by simp
  thus card (\{\}\langle \rightarrow p \rangle) \leq 1
   by simp
\mathbf{next}
  case (ITNode\ P\ E\ x\ y)
  assume A1: is-tree P E and A2: card (E\langle \rightarrow p \rangle) \leq 1 and A3: y \notin P
  show card (insert (x, y) E(\rightarrow p) \le 1
 proof (cases \ y = p)
```

```
assume B: y = p
    with A1 A3 have E\langle \rightarrow p \rangle = \{\}
     using edge-on-peers-in-tree(2)[of P E - p]
    with B have insert (x, y) E\langle \rightarrow p \rangle = \{x\}
      by simp
    thus card (insert (x, y) E(\rightarrow p)) \leq 1
      by simp
  next
    assume y \neq p
    hence insert (x, y) E\langle \rightarrow p \rangle = E\langle \rightarrow p \rangle
    with A2 show card (insert (x, y) E(\rightarrow p)) \leq 1
     \mathbf{by} \ simp
  qed
qed
{f lemma}\ edge\mbox{-}doesnt\mbox{-}vanish\mbox{-}in\mbox{-}growing\mbox{-}tree:
  assumes is-tree P E and qa \in P and card (E \langle \rightarrow qa \rangle) = 1 and is-tree (insert
(q P) (insert (p, q) E)
    and qa \neq p and qa \neq q
  shows card (insert (p, q) E\langle \rightarrow qa \rangle) = 1
  \mathbf{using}\ \mathit{assms}
proof -
 have before-le-1 : card (E\langle \rightarrow qa \rangle) \leq 1 by (simp\ add:\ assms(3))
 have after-le-1: card (insert (p, q) E(\rightarrow qa)) \leq 1 using assms(4) at-most-one-parent-in-tree
by presburger
 have at-least-1 : card (E\langle \rightarrow qa \rangle) = 1 by (simp\ add:\ assms(3))
 then show card (insert (p, q) E(\rightarrow qa)) = 1 using assms(6) by auto
qed
lemma edge-doesnt-vanish-in-growing-tree 2:
 assumes card (E\langle \rightarrow qa \rangle) = 1 and p \neq qa and q \neq qa
 shows card (insert (p, q) E\langle \rightarrow qa \rangle) = 1
 using assms(1,3) by auto
lemma tree-acyclic:
  fixes P :: 'peer set
    and E :: 'peer topology
 assumes is-tree P E and (p,q) \in E
 shows (q,p) \notin E
  using assms
proof(induct rule: is-tree.induct)
  case (ITRoot \ p)
  then show ?case by simp
\mathbf{next}
  case (ITNode\ P\ E\ p\ q)
  then show ?case using edge-on-peers-in-tree(1) by blast
qed
```

```
lemma tree-acyclic-gen:
  fixes P :: 'peer set
   and E :: 'peer topology
  assumes is-tree P E and (p,q) \in E and E\langle \rightarrow p \rangle = \{\} \lor E\langle \rightarrow p \rangle = \{x\} and x
  shows (y,p) \notin E
  using assms(3,4) by fastforce
lemma root-exists:
  fixes P :: 'peer set
   and E :: 'peer topology
  assumes is-tree P E
 shows \exists p. p \in P \land E \langle \rightarrow p \rangle = \{\}
 using assms
proof (induct)
  case (ITRoot p)
  then show ?case by simp
  case (ITNode\ P\ E\ p\ q)
  then obtain p' where p'-def: p' \in P \land E(\rightarrow p') = \{\} by blast
  then have new-tree: is-tree (insert q P) (insert (p, q) E) by (simp add: ITN-
ode.hyps(1,3,4) is-tree.ITNode)
  then have p'-not-q: p' \neq q using ITNode.hyps(4) p'-def by auto
 then have is-tree (insert qP) (insert (p', q)E) by (simp add: ITNode.hyps(1,4)
is-tree.ITNode p'-def)
  then have t2: (insert (p', q) E) \langle \rightarrow p' \rangle = \{\} by (simp add: p'-def p'-not-q)
  then have t1: p' \in (insert \ q \ P) using p'-def by auto
  then have p' \in (insert \ q \ P) \land (insert \ (p', \ q) \ E) \langle \rightarrow p' \rangle = \{\}  using t2 by auto
  then have p' \in (insert \ q \ P) \land (insert \ (p, \ q) \ E) \langle \rightarrow p' \rangle = \{\} by blast
  then show ?case by blast
qed
lemma at-most-one-parent:
 assumes is-tree P E
 shows card (E\langle \rightarrow q \rangle) < 1
 using assms at-most-one-parent-in-tree by auto
lemma unique-root:
  fixes P :: 'peer set
   and E :: 'peer topology
  assumes is-tree P E and p \in P and E \langle \rightarrow p \rangle = \{\} and q \neq p and q \in P
  shows (card\ (E\langle \rightarrow q\rangle)) = 1
  using assms
proof (induct P E rule: is-tree.induct)
  case (ITRoot \ p)
  then show ?case by simp
next
  case (ITNode P E p' q')
```

```
then have p \in insert \ q' \ P \land insert \ (p', \ q') \ E \langle \rightarrow p \rangle = \{\} \ by \ blast
  then have E\langle \rightarrow p \rangle = \{\} by simp
  then show card (insert (p', q') \ E(\rightarrow q)) = 1
  proof (cases card (E\langle \rightarrow q \rangle) = 1)
    \mathbf{case} \ \mathit{True}
    then show ?thesis
    by (smt (verit) Collect-cong ITNode.hyps(1,4) card-1-singletonE edge-on-peers-in-tree(2)
           empty-def insert-iff insert-not-empty prod.inject)
  next
    case False
    have is-tree P E by (simp \ add: ITNode.hyps(1))
   then have q-le-1: card (E\langle \rightarrow q \rangle) \leq 1 by (metis \langle is\text{-tree } P E \rangle \text{ at-most-one-parent})
    then have q-0: card (E\langle \rightarrow q \rangle) = 0 using False by linarith
    then have q \notin P
      using False\ ITNode.hyps(2)\ ITNode.prems(1,2)\ assms(4) by blast
    then have p \in P using ITNode.prems(1,4) assms(4) by auto
    then have q = q'
      using ITNode.prems(4) \langle q \notin P \rangle by auto
    then have (insert (p', q') E(\rightarrow q)) = (insert (p', q) E(\rightarrow q)) by auto
    then have (\{(p', q)\}\langle \rightarrow q \rangle) = \{p'\} by auto
    then have card (insert (p', q) E(\rightarrow q)) = card (E(\rightarrow q)) + card \{p'\}
        by (smt\ (verit,\ ccfv\text{-}SIG)\ Collect\text{-}cong\ ITNode.hyps(1,4)\ \langle q=q'\rangle\ add\text{-}0
edge-on-peers-in-tree(2)
          insert-iff q-0 singleton-iff)
    then have card (insert (p', q) E(\rightarrow q)) = 1
      by (simp\ add:\ q-\theta)
    then show ?thesis
      using \langle insert\ (p',\ q')\ E\langle \rightarrow q\rangle = insert\ (p',\ q)\ E\langle \rightarrow q\rangle \rangle by fastforce
  qed
qed
— P? is defined on each automaton p, G is the topology graph
— This means there may be P?(p) = \text{but } p \text{ in} > P!(q), thus (q,p) \text{ in} > G > \text{ and } q
in> G>langle>rightarrow>prangle>, but q notin>
lemma sends-of-peer-subset-of-predecessors-in-topology:
 fixes p :: 'peer
  shows \mathcal{P}_{?}(p) \subseteq \mathcal{G}\langle \to p \rangle
proof (cases \mathcal{P}_?(p) = \{\})
  case True
  then show ?thesis by simp
next
  case False
  show ?thesis
  proof
    \mathbf{fix} \ q
    assume q \in \mathcal{P}_7(p)
   then have \exists s1 \ as2. (s1, a, s2) \in \mathcal{R}(p) \land is\text{-input a using no-input-trans-no-recvs}
by blast
```

```
then have \exists s1 \ as2. (s1, a, s2) \in \mathcal{R}(p) \land is\text{-input } a \land get\text{-object } a = q
    using CommunicatingAutomaton.ReceivingFromPeers-rev \langle q \in \mathcal{P}_? p \rangle automaton-of-peer
by fastforce
    then obtain s1 s2 a where (s1, a, s2) \in \mathcal{R}(p) \land is\text{-input } a \land get\text{-object } a =
q \wedge qet-actor a = p
    by (metis CommunicatingAutomaton.well-formed-transition automaton-of-peer)
    then have get-message a \in \mathcal{M}
      by (metis trans-to-edge)
    then have \exists i. i^{q \to p} = get\text{-}message \ a
       using \langle s1 - a \rightarrow_{\mathcal{C}} p \ s2 \land is\text{-input } a \land get\text{-object } a = q \land get\text{-actor } a = p \rangle
input-message-to-act-both-known
      by blast
    then obtain i where a = (?\langle (i^{q \to p}) \rangle)
     by (metis \langle s1 - a \rightarrow_{\mathcal{C}} p \ s2 \land is\text{-input } a \land get\text{-object } a = q \land get\text{-actor } a = p \rangle
action.exhaust\ qet-message.simps(2)
          is-output.simps(1)
    then have (q, p) \in \mathcal{G}
      using Edges.intros \langle get\text{-}message \ a \in \mathcal{M} \rangle by force
    then show q \in \mathcal{G}\langle \to p \rangle
      by simp
  qed
qed
          root node specifications and more tree related lemmas
\mathbf{lemma}\ local\text{-}to\text{-}global\text{-}root:
  assumes \mathcal{P}_{?}(p) = \{\} and (\forall q. p \notin \mathcal{P}_{!}(q)) and tree-topology
  shows \mathcal{G}\langle \to p \rangle = \{\}
  using assms
proof auto
  \mathbf{fix} \ q
  assume (q, p) \in \mathcal{G}
  then show False
  proof -
    have (q, p) \in \mathcal{G} by (simp \ add: \langle (q, p) \in \mathcal{G} \rangle)
    then obtain i where i-def: i^{q \to p} \in \mathcal{M} by (metis Edges.cases)
    then obtain s1 a s2 x where trans: (s1, a, s2) \in snd (snd (A x)) \land
                             (i^{q \to p}) = qet-message a using messages-used by blast
   then have x = p \lor x = q by (metis Communicating Automaton. well-formed-transition
NetworkOfCA.automaton-of-peer
       NetworkOfCA.output-message-to-act\ NetworkOfCA-axioms\ input-message-to-act-both-known
          message.inject)
    then have x = q by (metis CommunicatingAutomaton.SendingToPeers.intros
assms(1,2) automaton-of-peer i-def
       local.trans\ message.inject\ no-recvs-no-input-trans\ output-message-to-act-both-known)
   then have a = !\langle (i^{q \to p}) \rangle by (metis Communicating Automaton. well-formed-transition
action.exhaust\ automaton-of-peer
          get\text{-}message.simps(1,2)\ get\text{-}object.simps(2)\ get\text{-}sender.simps\ local.trans)
   then have \neg (\forall q. p \notin \mathcal{P}_1(q)) using CommunicatingAutomaton.SendingToPeers.intros
```

```
automaton-of-peer local.trans
      by fastforce
    then show ?thesis by (simp \ add: assms(2))
  qed
ged
lemma global-to-local-root:
  assumes \mathcal{G}\langle \rightarrow p \rangle = \{\} and tree-topology
  shows \mathcal{P}_{?}(p) = \{\} \land (\forall q. \ p \notin \mathcal{P}_{!}(q))
proof auto
  \mathbf{fix} \ q
  assume q \in \mathcal{P}_{?} p
  then obtain s1 i a s2 where trans-def:(s1, a, s2) \in snd (snd (A p))
   and a = ?\langle (i^{q \to p}) \rangle by (metis (mono-tags, lifting) Collect-mem-eq Collect-mono-iff
assms(1) empty-Collect-eq
         sends-of-peer-subset-of-predecessors-in-topology)
 then show False using \langle q \in \mathcal{P}_? p \rangle assms(1) sends-of-peer-subset-of-predecessors-in-topology
by force
next
  \mathbf{fix} \ q
  assume p \in \mathcal{P}_! q
  then have \exists s1 \ a \ s2. \ (s1, \ a, \ s2) \in snd \ (snd \ (\mathcal{A} \ q)) \land is\text{-}output \ a \land get\text{-}object \ a
   by (metis CommunicatingAutomaton.SendingToPeers.simps automaton-of-peer)
  then obtain s1 i a s2 where trans-def: (s1, a, s2) \in snd (snd (\mathcal{A} q))
    and a = !\langle (i^{q \to p}) \rangle
   by (metis Edges.intros assms(1) empty-Collect-eq output-message-to-act-both-known
         trans-to-edge)
  then show False using Edges.simps assms(1) trans-to-edge by fastforce
qed
\mathbf{lemma}\ edge\text{-}impl\text{-}psend\text{-}or\text{-}qrecv\text{:}
  assumes \mathcal{G}\langle \rightarrow p \rangle = \{q\} and tree-topology
  shows (\mathcal{P}_? p = \{q\} \lor p \in \mathcal{P}_!(q))
proof (rule ccontr)
  assume \neg (\mathcal{P}_? p = \{q\} \lor p \in \mathcal{P}_!(q))
  then show False
  proof -
    have \mathcal{P}_{?} p \neq \{q\} using \langle \neg (\mathcal{P}_{?} p = \{q\} \lor p \in \mathcal{P}_{!} q) \rangle by auto
    have p \notin \mathcal{P}_!(q) using \langle \neg (\mathcal{P}_? p = \{q\} \lor p \in \mathcal{P}_! q) \rangle by auto
    have \exists i. i^{q \to p} \in \mathcal{M} using Edges.simps assms(1) by auto
    then obtain i where m: i^{q \to p} \in \mathcal{M} by auto
    then have \exists s1 \ a \ s2 \ pp. \ (s1, \ a, \ s2) \in snd \ (snd \ (\mathcal{A} \ pp)) \land
                                 (i^{q \to p}) = get\text{-}message \ a \ using \ messages\text{-}used \ by \ auto
    then have \exists s1 \ a \ s2. \ ((s1, a, s2) \in \mathcal{R} \ p \lor (s1, a, s2) \in \mathcal{R} \ q) \land
                                   (i^{q \to p}) = get\text{-}message \ a \ \mathbf{by} \ (metis \ (mono\text{-}tags, \ lifting)
Communicating Automaton. well-formed-transition\\
```

```
message.inject
    output-message-to-act-both-known)
    then obtain s1 a s2 where ((s1, a, s2) \in \mathcal{R} \ p \lor (s1, a, s2) \in \mathcal{R} \ q) \land (i^{q \to p})
= get\text{-}message \ a \ \mathbf{by} \ blast
    then show ?thesis
    proof (cases is-output a)
      case True
         then have (s1, a, s2) \in \mathcal{R} q by (metis\ CommunicatingAutomaton-def
Network Of CA. \, automaton-of-peer \,\, Network Of CA. \, output-message-to-act-both-known
                 NetworkOfCA-axioms \langle (s1 - a \rightarrow_{\mathcal{C}} p \ s2 \lor s1 - a \rightarrow_{\mathcal{C}} q \ s2) \land i^{q \rightarrow p} =
get-message a> message.inject)
     then show ?thesis by (metis CommunicatingAutomaton.SendingToPeers.intros
True
             \langle (s1 - a \rightarrow_{\mathcal{C}} p \ s2 \lor s1 - a \rightarrow_{\mathcal{C}} q \ s2) \land i^{q \rightarrow p} = qet\text{-message } a \lor \langle p \notin \mathcal{P}_1 \ q \lor a \rangle
automaton-of-peer m message.inject
             output-message-to-act-both-known)
    next
      case False
      then have (s1, a, s2) \in \mathcal{R} p by (metis \langle (s1 - a \rightarrow_{\mathcal{C}} p \ s2 \lor s1 - a \rightarrow_{\mathcal{C}} q \ s2) \land
i^{q \to p} = get\text{-}message \ a \mapsto empty\text{-}receiving\text{-}from\text{-}peers2
              input-message-to-act-both-known insert-absorb insert-not-empty m mes-
sage.inject)
      then have is-input a by (simp add: False)
     then have q \in \mathcal{P}_{?}(p) by (metis CommunicatingAutomaton.ReceivingFromPeers.intros
             \langle (s1 - a \rightarrow_{\mathcal{C}} p \ s2 \lor s1 - a \rightarrow_{\mathcal{C}} q \ s2) \land i^{q \rightarrow p} = \text{get-message } a \lor \langle s1 - a \rightarrow_{\mathcal{C}} p \rangle
s2 automaton-of-peer
             input-message-to-act-both-known m message.inject)
      have (\mathcal{P}_?(p)) = \{q\}
      proof
         show \{q\} \subseteq \mathcal{P}_? \ p \ \text{by} \ (simp \ add: \langle q \in \mathcal{P}_? \ p \rangle)
        show \mathcal{P}_? p \subseteq \{q\}
         proof (rule ccontr)
           assume \neg \mathcal{P}_? \ p \subseteq \{q\}
           then obtain pp where pp \in \mathcal{P}_{?} p and pp \neq q by auto
        then have pp \in \mathcal{G}(\rightarrow p) using sends-of-peer-subset-of-predecessors-in-topology
by auto
           then show False by (simp add: \langle pp \neq q \rangle assms(1))
         qed
      then show ?thesis by (simp add: \langle \mathcal{P}_? p \neq \{q\} \rangle)
    qed
  qed
qed
lemma root-or-node:
  assumes tree-topology
```

 $NetworkOfCA.input-message-to-act-both-known\ NetworkOfCA-axioms\ automaton-of-peer$

```
shows is-root p \vee (\exists q. \mathcal{P}_?(p) = \{q\} \vee p \in \mathcal{P}_!(q))
  using assms
proof (cases \mathcal{G}\langle \rightarrow p \rangle = \{\})
  case True
  then show ?thesis by (simp add: assms)
next
  case False
   then have card (\mathcal{G}(\rightarrow p)) \neq 0 by (metis card-0-eq finite-peers finite-subset
top-greatest)
  have card (\mathcal{G}(\rightarrow p)) \leq 1 using assms at-most-one-parent by auto
  then have card (\mathcal{G}\langle \to p \rangle) = 1 using \langle card (\mathcal{G}\langle \to p \rangle) \neq 0 \rangle by linarith
  then obtain q where \mathcal{G}\langle \rightarrow p \rangle = \{q\} using card-1-singletonE by blast
  then show ?thesis using assms edge-impl-psend-or-greev by blast
qed
lemma root-defs-eq:
 shows is-root-from-topology p = is-root-from-local p
 using global-to-local-root local-to-global-root by blast
lemma local-global-eq-node:
  assumes is-node-from-topology p
  shows is-node-from-local p
  using assms edge-impl-psend-or-qrecv by auto
lemma global-local-eq-node:
  assumes is-node-from-local p
  shows is-node-from-topology p
proof -
  have local-p: tree-topology \land (\exists q. \mathcal{P}_?(p) = \{q\} \lor p \in \mathcal{P}_!(q)) by (simp add:
assms)
  then have t1: tree-topology by simp
  then show ?thesis using assms
  proof (cases \exists q. \mathcal{P}_?(p) = \{q\})
    case True
    then obtain q where \mathcal{P}_{?}(p) = \{q\} by auto
    then have q \in \mathcal{G}(\rightarrow p) using sends-of-peer-subset-of-predecessors-in-topology
    have \neg (is-root p) using \langle \mathcal{P}_? p = \{q\} \rangle \langle q \in \mathcal{G} \langle \rightarrow p \rangle \rangle by blast
    have card (\mathcal{G}(\rightarrow p)) \leq 1 using at-most-one-parent t1 by auto
     then have card (\mathcal{G}(\rightarrow p)) = 1 by (smt\ (verit)\ Collect\text{-}cong\ \langle q \in \mathcal{G}(\rightarrow p)\rangle
edge-on-peers-in-tree(2) empty-Collect-eq empty-iff root-exists t1
          unique-root)
    then show ?thesis by (meson is-singleton-altdef is-singleton-the-elem t1)
  next
    case False
    then obtain q where p \in \mathcal{P}_{!}(q) using local-p by auto
    then obtain s1 a s2 where is-output a and get-actor a = q and get-object a
= p \text{ and } (s1,a,s2) \in \mathcal{R} q
```

```
by (meson\ Communicating Automaton. Sending To Peers-rev\ Communicating Au-
to mat on. well-formed-transition\\
         automaton-of-peer)
  then have q \in \mathcal{G}(\rightarrow p) by (metis Edges.intros mem-Collect-eq output-message-to-act-both-known
trans-to-edge)
   have card (\mathcal{G}\langle \rightarrow p \rangle) \leq 1 using at-most-one-parent t1 by auto
     then have card (\mathcal{G}\langle \rightarrow p \rangle) = 1 by (smt\ (verit)\ Collect\text{-}cong\ \langle q \in \mathcal{G}\langle \rightarrow p \rangle)
edge-on-peers-in-tree(2) empty-Collect-eq empty-iff root-exists t1
         unique-root)
   then show ?thesis by (meson is-singleton-altdef is-singleton-the-elem t1)
  qed
qed
lemma node-defs-eq:
  shows is-node-from-topology p = is-node-from-local p
 using edge-impl-psend-or-greev global-local-eg-node by blast
6.1.3
         parent-child relationship in tree
lemma is-parent-of-rev:
 assumes is-parent-of p q
 shows is-node p and \mathcal{G}\langle \rightarrow p \rangle = \{q\}
  using assms
proof (cases rule: is-parent-of.cases)
  case node-parent
  then show is-node p by simp
  have is-node p by (metis assms is-parent-of.cases)
  then show \mathcal{G}\langle \rightarrow p \rangle = \{q\} by (metis assms is-parent-of.cases)
lemma is-parent-of-rev2:
 assumes is-parent-of p q
 shows is-node p and \mathcal{P}_{?}(p) = \{q\} \lor p \in \mathcal{P}_{!}(q)
  using assms
proof (cases rule: is-parent-of.cases)
  {f case}\ node	ext{-}parent
  then show is-node p by simp
next
  have is-node p by (metis assms is-parent-of.cases)
  then show \mathcal{P}_{?}(p) = \{q\} \lor p \in \mathcal{P}_{!}(q) using assms edge-impl-psend-or-qrecv
is-parent-of-rev(2) by blast
qed
lemma local-parent-to-global:
  assumes tree-topology and \mathcal{P}_{?}(p) = \{q\} \lor p \in \mathcal{P}_{!}(q)
 shows \mathcal{G}\langle \to p \rangle = \{q\}
proof -
  show ?thesis using assms
```

```
proof (cases \mathcal{P}_?(p) = \{q\})
    {\bf case}\ {\it True}
    then have q \in \mathcal{G}(\rightarrow p) using sends-of-peer-subset-of-predecessors-in-topology
    have \neg (is-root p) using \langle \mathcal{P}_? p = \{q\} \rangle \langle q \in \mathcal{G} \langle \rightarrow p \rangle \rangle by blast
    have card (\mathcal{G}(\rightarrow p)) \leq 1 using at-most-one-parent assms by auto
     then have card (\mathcal{G}\langle \rightarrow p \rangle) = 1 by (smt\ (verit)\ Collect\text{-}cong\ \langle q \in \mathcal{G}\langle \rightarrow p \rangle)
edge-on-peers-in-tree(2) empty-Collect-eq empty-iff root-exists assms
          unique-root)
    then show ?thesis by (metis \langle q \in \mathcal{G}(\rightarrow p) \rangle card-1-singletonE singletonD)
  next
    then have p \in \mathcal{P}_!(q) using assms by auto
    then obtain s1 a s2 where is-output a and get-actor a = q and get-object a
= p \text{ and } (s1,a,s2) \in \mathcal{R} q
    by (meson\ Communicating Automaton. Sending To Peers-rev\ Communicating Au-
tomaton.well\mbox{-}formed\mbox{-}transition
          automaton-of-peer)
  then have c1: q \in \mathcal{G}(\rightarrow p) by (metis Edges.intros mem-Collect-eq output-message-to-act-both-known
trans-to-edge)
    have c2: card (\mathcal{G}(\rightarrow p)) \leq 1 using at-most-one-parent assms by auto
    have c3: finite (\mathcal{G}\langle \to p \rangle) using finite-peers rev-finite-subset by fastforce
   from c3 c1 c2 have card (\mathcal{G}(\rightarrow p)) = 1 using assms(1) root-exists unique-root
by force
    then show ?thesis by (metis c1 card-1-singletonE singleton-iff)
  qed
qed
lemma parent-child-diff:
 assumes is-parent-of p q
 shows p \neq q
proof (rule ccontr)
  assume \neg p \neq q
  then have is-parent-of p p using assms by auto
 then have is-node p \land \mathcal{G}(\rightarrow p) = \{p\} using is-parent-of-rev(2) is-parent-of-rev2(1)
by force
 then show False by (metis insert-iff mem-Collect-eq tree-acyclic)
qed
lemma child-word-filters-unique-parent:
  assumes is-parent-of p q and w \in \mathcal{L}(p)
  shows (filter (\lambda x. \ get\text{-}object \ x = q) \ (w\downarrow_?)) = (w\downarrow_?)
  using assms
proof (induct length w arbitrary: w)
  case \theta
  then show ?case by simp
next
  case (Suc \ x)
  then obtain a v where w-def: w = v @ [a] and length v = x by (metis
```

```
length-Suc-conv-rev)
  then have v \in \mathcal{L}(p) using Lang-app Suc.prems(2) by blast
  then have filter (\lambda x. \ get\text{-}object \ x = q) \ (v\downarrow_?) = v\downarrow_? \ \ using \ Suc.hyps(1) \ |v| =
x \mapsto assms(1) by blast
  have (v @ [a]) \in \mathcal{L} \ p \ using Suc.prems(2) \ w\text{-def by } auto
  then have \exists s1 \ s2. \ (s1, a, s2) \in \mathcal{R} \ p \ using Lang-app-both lang-implies-trans
by blast
  then obtain s1 s2 where (s1, a, s2) \in \mathcal{R} p by blast
 then have get-actor a = p by (meson\ CommunicatingAutomaton.well-formed-transition
NetworkOfCA.automaton-of-peer
         NetworkOfCA-axioms)
  then show ?case using Suc
  proof (cases is-input a)
    \mathbf{case} \ \mathit{True}
    then have [a]\downarrow_? = [a] by simp
    then show ?thesis using True
    proof (cases qet-object a = q)
      case True
      have (w\downarrow_?) = (v @ [a])\downarrow_? by (simp \ add: w-def)
      then have (v \otimes [a])\downarrow_? = (v\downarrow_?) \otimes [a] using \langle (a \# \varepsilon)\downarrow_? = a \# \varepsilon \rangle by force
     then have obj-proj-decomp: (filter (\lambda x. \ get-object \ x = q) \ (w\downarrow_?)) = (filter \ (\lambda x. \ get-object \ x = q))
get\text{-}object\ x=q)\ (v\downarrow_?))\ @\ (filter\ (\lambda x.\ get\text{-}object\ x=q)\ ([a]))
        using w-def by force
       then show ?thesis using True \langle filter\ (\lambda x.\ get\text{-object}\ x=q)\ (v\downarrow_?)=v\downarrow_?\rangle
w-def by fastforce
    next
      case False
      then obtain qq where get-object a = qq and qq \neq q by simp
      then have qq \in \mathcal{G}(\rightarrow p) by (metis Edges.intros True \langle get\text{-}actor\ a=p \rangle \langle s1\rangle
-a \rightarrow_{\mathcal{C}} p \ s2 \rightarrow input\text{-}message\text{-}to\text{-}act\text{-}both\text{-}known mem\text{-}Collect\text{-}eq}
             trans-to-edge)
      then have qq \in \mathcal{P} by auto
      have q \in \mathcal{G}(\rightarrow p) using assms(1) is-parent-of-rev(2) by auto
      then have \mathcal{G}\langle \rightarrow p \rangle \neq \{q\} using \langle qq \in \mathcal{G}\langle \rightarrow p \rangle \rangle \langle qq \neq q \rangle by blast
      then show ?thesis using assms(1) is-parent-of-rev(2) by auto
    qed
  next
    case False
    then have is-output a by auto
    then have [a]\downarrow_? = \varepsilon by simp
    then have (w\downarrow_?) = (v\downarrow_?) using w-def by fastforce
      then show ?thesis using \langle filter\ (\lambda x.\ get-object\ x=q)\ (v\downarrow_?)=v\downarrow_?\rangle by
presburger
  qed
qed
lemma pair-proj-recv-for-unique-parent:
  assumes is-parent-of p q and w \in \mathcal{L}(p)
  shows (w\downarrow_?)\downarrow_{\{p,q\}} = (w\downarrow_?)
```

```
proof -
    have ((w)\downarrow_p) = w using assms(2) w-in-peer-lang-impl-p-actor by auto
    then have ((w\downarrow_p)\downarrow_?)=(w\downarrow_?) by presburger
    then have ((w\downarrow_?)\downarrow_p) = (w\downarrow_?) by (metis filter-pair-commutative)
   then have (w\downarrow_?)\downarrow_{\{p,q\}} = (filter\ (\lambda x.\ get-object\ x=q)\ (w\downarrow_?)) using pair-proj-to-object-proj
by fastforce
  have (filter (\lambda x.\ get-object x=q) ((w\downarrow_?)) = ((w\downarrow_?)) using assms child-word-filters-unique-parent
by auto
    then show ?thesis using \langle w \downarrow_? \downarrow_{\{p,q\}} = filter \ (\lambda x. \ get\text{-object} \ x = q) \ (w \downarrow_?) \rangle by
presburger
qed
lemma filter-ignore-false-prop:
    assumes filter (\lambda x. False) w = \varepsilon
    shows filter (\lambda x. \ False \lor B) \ w = filter \ (\lambda x. \ B) \ w
    by (metis assms filter-False filter-True)
lemma recv-lang-child-pair-proj-subset1:
    assumes is-parent-of p q
    shows (((\mathcal{L}(p))|_?)) \subseteq ((((\mathcal{L}(p))|_?)|_{\{p,q\}}))
proof auto
    \mathbf{fix} \ w
     show w \in \mathcal{L} p \Longrightarrow \exists wa. \ w\downarrow_? = wa\downarrow_{\{p,q\}} \land (\exists w. \ wa = w\downarrow_? \land w \in \mathcal{L} \ p) by
(metis (no-types, lifting) assms pair-proj-recv-for-unique-parent)
qed
lemma child-recv-lang-inv-to-proj-with-parent:
    assumes is-parent-of p q
    shows (((\mathcal{L}(p))|_?)) = ((((\mathcal{L}(p))|_?)|_{\{p,q\}}))
proof -
  have t1: (((\mathcal{L}(p))|_?)) \subseteq ((((\mathcal{L}(p))|_?)|_{\{p,q\}})) using assms recv-lang-child-pair-proj-subset1
      \mathbf{have} \ \ t2 \colon \left( (((\mathcal{L}(p)) {\mid}_?) {\mid}_{\{p,q\}}) \right) \ \subseteq \ (((\mathcal{L}(p)) {\mid}_?)) \quad \mathbf{by} \ \ (smt \ \ (z3) \ \ Collect-mono-iff
filter-recursion mem-Collect-eq t1)
    from t1 t2 show ?thesis by blast
qed
6.1.4
                       path to root and path related lemmas
lemma path-to-root-rev:
    assumes path-to-root p ps and ps \neq [p]
    shows \exists q \ as. \ is-parent-of \ p \ q \land path-to-root \ q \ as \land ps = (p \# as) \land distinct \ (p \# as) \land dis
\# as
    using assms
    by (meson path-to-root.simps)
```

```
lemma path-to-root-rev-empty:
 assumes path-to-root p ps and ps = [p]
 shows is-root p
 by (metis (no-types, lifting) assms(1,2) list.distinct(1) list.inject path-to-root.simps)
lemma path-ends-at-root:
 assumes path-to-root p ps
 shows is-root (last ps)
 using assms
proof (induct rule: path-to-root.induct)
 case (PTRRoot p)
 then show ?case by auto
next
 case (PTRNode \ p \ q \ as)
 then show ?case by (metis last-ConsR list.discI path-to-root.cases)
qed
lemma single-path-impl-root:
 assumes path-to-root p [p]
 shows is-root p
 using assms path-to-root-rev-empty by blast
lemma path-to-root-first-elem-is-peer:
 assumes path-to-root p (x \# ps)
 shows p = x
 using assms path-to-root-rev by auto
{f lemma}\ path-to-root-stepback:
 assumes path-to-root p (p \# ps)
 shows ps = [] \lor (\exists q. is-parent-of p q \land path-to-root q ps)
 using assms path-to-root-rev by auto
lemma path-to-root-unique:
 assumes path-to-root p ps and path-to-root p qs
 shows qs = ps
 using assms
proof (induct p ps arbitrary: qs rule: path-to-root.induct)
 case (PTRRoot p)
 then show ?case by (metis (mono-tags, lifting) ITRoot empty-iff is-parent-of.cases
local\-to\-global\-root path\-to\-root.simps
      root-exists)
next
 case (PTRNode \ p \ q \ as)
 then have path-to-root p (p \# as) using path-to-root.PTRNode by blast
 then have \forall ys. (path-to-root \ q \ ys) \longrightarrow as = ys \ using PTRNode.hyps(4) by
 then have pq: is-parent-of p q by (simp add: PTRNode.hyps(2))
 then have as \neq qs by (metis PTRNode.hyps(3) PTRNode.prems \forall ys. path-to-root
```

```
q\ ys \longrightarrow as = ys \land \langle path\text{-to-root}\ p\ (p\ \#\ as) \rangle
        list.inject not-Cons-self2 path-to-root-rev)
  have qs \neq [] using path-to-root.cases PTRNode.prems by auto
  then obtain x qqs where qs-decomp: qs = x \# qqs using list.exhaust by auto
  then have path-to-root p (x \# qqs) using PTRNode.prems by auto
  then have x = p using path-to-root-first-elem-is-peer by auto
  then have qs = p \# qqs by (simp \ add: \ qs\text{-}decomp)
 \textbf{then have} \ qqs = \lceil \mid \vee \ (\exists \ y. \ \textit{is-parent-of} \ p \ y \ \wedge \ \textit{path-to-root} \ y \ \textit{qqs}) \ \textbf{using} \ \langle \textit{path-to-root} \ \rangle
p (x \# qqs) \land \langle x = p \rangle path-to-root-stepback by auto
 then have qqs \neq [] using pq using \langle path-to-root\ p\ (x \# qqs) \rangle \langle x = p \rangle is-parent-of-rev(2)
root-defs-eq single-path-impl-root
    by fastforce
  then have (\exists y. is\text{-parent-of } p \ y \land path\text{-to-root } y \ qqs) using \langle qqs = \varepsilon \lor (\exists y. is\text{-parent-of } p \ y \land path\text{-to-root } y \ qqs)
is-parent-of p \ y \land path-to-root \ y \ qqs) \rightarrow \mathbf{by} \ auto
  then obtain y where is-parent-of p y \wedge path-to-root y qqs by auto
  then have is-parent-of p q \wedge is-parent-of p y by (simp add: pq)
  then have \mathcal{G}\langle \to p \rangle = \{q\} \land \mathcal{G}\langle \to p \rangle = \{y\} using is-parent-of-rev(2) by auto
  then have q = y by blast
  then have is-parent-of p q \land path-to-root q qqs by (simp\ add: \langle is-parent-of\ p\ y
\land path-to-root \ y \ qqs > )
  then show ?case by (simp add: PTRNode.hyps(4) \langle qs = p \# qqs \rangle)
\mathbf{qed}
lemma peer-on-path-unique:
  assumes path-to-root p ps
  shows distinct ps
  using assms distinct-singleton path-to-root-rev by fastforce
lemma only-peer-impl-root:
  assumes is-tree (\mathcal{P}) (\mathcal{G}) and (\mathcal{P}) = \{p\}
  shows is-root p
  by (metis\ assms(1,2)\ root-exists\ singleton-iff)
lemma leaf-exists:
  assumes tree-topology
  shows \exists q. \ q \in \mathcal{P} \land \mathcal{G}\langle q \rightarrow \rangle = \{\}
  using assms
proof (induct)
  case (ITRoot \ p)
  then show ?case by simp
next
  case (ITNode\ P\ E\ p\ q)
  then show ?case using edge-on-peers-in-tree(1) prod.inject by fastforce
qed
lemma leaf-root-or-child:
  assumes tree-topology and q \in \mathcal{P} \land \mathcal{G}\langle q \rightarrow \rangle = \{\}
  shows is-root q \lor (\exists p. is-parent-of q p)
  using assms(1) is-parent-of.simps node-defs-eq root-or-node by presburger
```

```
{f lemma}\ finite\text{-}set\text{-}card\text{-}union\text{-}with\text{-}singleton:
  assumes finite A and a \in A and card A \leq 1
  shows A = \{a\}
proof (rule ccontr)
  assume A \neq \{a\}
  have A \neq \{\} using assms(2) by auto
  then show False by (metis One-nat-def \langle A \neq \{a\} \rangle assms(1,2,3) card-0-eq
card	ext{-}1	ext{-}singleton	ext{-}iff\ less-Suc0\ linorder-le-less-linear
        order-antisym-conv singletonD)
qed
{f lemma}\ tree\mbox{-}impl\mbox{-}finite\mbox{-}sets:
  assumes tree-topology
  shows finite (P) and finite (G)
proof -
  show finite (P) by (simp \ add: finite-peers)
  show finite (G) by (meson\ UNIV-I\ finite-peers\ finite-prod\ finite-subset\ subset I)
lemma leaf-ingoing-edge:
  assumes tree-topology and card (\mathcal{P}) \geq 2 and q \in \mathcal{P} \land \mathcal{G}(q \rightarrow) = \{\}
  shows \exists p. \ \mathcal{G}\langle \rightarrow q \rangle = \{p\}
  using assms
proof (induct arbitrary: q)
  case (ITRoot \ p)
  then show ?case by simp
next
  case (ITNode\ P\ E\ x\ y)
  then show ?case using ITNode
  proof (cases q \in P \land E\langle q \rightarrow \rangle = \{\})
    then have IH-q: 2 \leq card \ P \Longrightarrow q \in P \land E\langle q \rightarrow \rangle = \{\} \Longrightarrow \exists \ p. \ E\langle \rightarrow q \rangle = \{\}
\{p\} using ITNode.hyps(2) by presburger
    have y \neq q using ITNode.hyps(4) True by auto
    then show ?thesis
    proof (cases 2 \leq card P)
      case True
     then have \exists p. \ E \langle \rightarrow q \rangle = \{p\} \text{ using } IH\text{-}q \ ITNode.prems(2) \ \langle y \neq q \rangle \text{ by } auto
      have insert (x, y) E\langle \rightarrow q \rangle = E\langle \rightarrow q \rangle using \langle y \neq q \rangle by blast
      then show ?thesis by (simp add: \langle \exists p. E \langle \rightarrow q \rangle = \{p\} \rangle)
    next
      case False
      then have 1 \ge card P by simp
      have q \in P by (simp \ add: True)
      have is-tree P E by (simp add: ITNode.hyps(1))
        then have finite P \wedge finite E by (metis UNIV-I finite-peers finite-prod
finite-subset subsetI)
      then have finite P by blast
```

```
then have cq: card P = 1 by (metis\ ITNode.hyps(3) \land card\ P \leq 1)
finite\text{-}set\text{-}card\text{-}union\text{-}with\text{-}singleton\ is\text{-}singletonI
            is-singleton-altdef)
      then have card P = 1 \land q \in P by (simp \ add: \langle q \in P \rangle)
    then have \{q\} = P by (metis \langle card P \leq 1 \rangle \langle finite P \rangle finite-set-card-union-with-singleton)
      then show ?thesis using ITNode.hyps(3) ITNode.prems(2) by blast
    qed
  next
    case False
    then have y = q using ITNode.prems(2) by auto
    then have E\langle \rightarrow q \rangle = \{\} using ITNode.hyps(1,4) edge-on-peers-in-tree(2) by
    then have \forall g. (g, q) \notin E by simp
    then have insert (x, q) E\langle \rightarrow q \rangle = E\langle \rightarrow q \rangle \cup \{x\} by simp
    then have insert (x, q) E\langle \rightarrow q \rangle = \{x\} by (simp \ add: \langle E\langle \rightarrow q \rangle = \{\}\rangle)
    then show ?thesis using \langle y = q \rangle by auto
  qed
qed
lemma app-path-peer-is-parent-or-root:
  assumes path-to-root p (xs @ [q] @ ys) and xs \neq []
 shows is-root q \lor (\exists qq. is-parent-of qq q)
  using assms
\mathbf{proof}\ (\mathit{induct}\ p\ \mathit{xs}\ @\ [q]\ @\ \mathit{ys}\ \mathit{arbitrary:}\ \mathit{xs}\ \mathit{q}\ \mathit{ys})
  case (PTRRoot p)
 then have p = q by (metis (no-types, lifting) Nil-is-append-conv append-eq-Cons-conv
list.distinct(1)
  then have is-root q using PTRRoot.hyps(1) by auto
  then show ?case by blast
\mathbf{next}
  case (PTRNode \ x \ y \ as)
  then show ?case
 proof (cases \exists xs \ ys. \ as = (xs \cdot (q \# \varepsilon \cdot ys)))
    \mathbf{case} \ \mathit{True}
     then show ?thesis by (metis Cons-eq-appendI[of q \varepsilon q \# \varepsilon \varepsilon -] PTRN-
ode.hyps(2,3) \ PTRNode.hyps(4)[of - q]
          list.inject[of\ q\ -\ y]\ path-to-root.cases[of\ y\ as]\ self-append-conv2[of\ -\ \varepsilon])
  next
    {f case} False
    then have \forall xs \ ys. \ as \neq (xs \cdot (q \# \varepsilon \cdot ys)) by simp
  then have q \neq x by (metis PTRNode.hyps(6) PTRNode.prems append-eq-Cons-conv)
   then have q \neq y by (metis Cons-eq-appendI False PTRNode.hyps(3) eq-Nil-appendI
path-to-root-rev)
   then have \forall xs \ ys. \ (x\#as) \neq (xs \cdot (q \# \varepsilon \cdot ys)) by (metis\ PTRNode.hyps(6)
PTRNode.prems \ \langle \forall \ xs \ ys. \ as \neq xs \cdot (q \# \varepsilon \cdot ys) \rangle \ append-eq-Cons-conv)
    then show ?thesis using PTRNode.hyps(6) by auto
  ged
qed
```

```
lemma app-path-peer-is-parent-or-root2:
 assumes path-to-root p ps and ps!i = q and i < length ps
 shows is-root q \vee is-parent-of q (ps!(Suc i))
 using assms
proof (induct p ps arbitrary: i q)
 case (PTRRoot p)
 then show ?case using Suc-length-conv append-self-conv2 by auto
 case (PTRNode \ x \ y \ as)
 then show ?case
 proof (cases i = 0)
   case True
   then have x = q using PTRNode.prems(1) by auto
   then have is-parent-of q y using PTRNode.hyps(2) by auto
  then show ?thesis by (metis PTRNode.hyps(3) True nth-Cons-0 nth-Cons-Suc
path-to-root.simps)
 next
   case False
   then have i \geq 1 by auto
   then have as!(i-1) = q using PTRNode.prems(1) by auto
    then have (i-1) < length as by (metis\ One-nat-def\ PTRNode.prems(2))
Suc\text{-}pred \land 1 \leq i \land le\text{-}less\text{-}Suc\text{-}eq \ length\text{-}Cons \ less\text{-}imp\text{-}diff\text{-}less
        less-numeral-extra(1) linorder-le-less-linear order.strict-trans2)
    then have is-root q \lor is-parent-of q (as!i) by (metis One-nat-def PTRN-
ode.hyps(4) Suc-pred UNIV-def \langle 1 \leq i \rangle \langle as! (i-1) = q \rangle less-eq-Suc-le
        root-defs-eq)
   then show ?thesis by simp
 ged
qed
lemma path-to-root-of-root-exists:
 assumes is-root p
 shows path-to-root p [p]
 using PTRRoot assms by auto
lemma adj-in-path-parent-child:
 assumes path-to-root p (x \# y \# ps)
 shows \mathcal{P}_{?}(x) = \{y\} \lor x \in \mathcal{P}_{!}(y)
 by (metis assms is-parent-of-rev2(2) neq-Nil-conv path-to-root-first-elem-is-peer
     path-to-root-stepback)
        path from root downwards to a node
{f lemma}\ path-to-root-downwards:
 assumes path-to-root q qs and is-parent-of p q
 shows path-to-root p (p \# qs)
 using assms
proof (induct q qs arbitrary: p)
 case (PTRRoot p)
```

```
then show ?case by (metis (lifting) NetworkOfCA.PTRNode NetworkOfCA-axioms
distinct-length-2-or-more
          distinct-singleton\ empty-iff\ is-parent-of\ . simps\ local-to-global-root\ path-to-root-of-root-exists
              singletonI)
next
    case (PTRNode \ x \ y \ as)
   then have path-to-root x (x \# as) by blast
  then have tree-topology \wedge is-parent-of p \times path-to-root p \times path
ode.hyps(1) PTRNode.prems by auto
  have p \neq x by (metis PTRNode.hyps(2,3,5) PTRNode.prems distinct-length-2-or-more
is-parent-of-rev(2) path-to-root-rev
              singleton-inject)
   have distinct (p\#x\#as)
   {f proof} (rule ccontr)
       assume \neg distinct (p \# x \# as)
       then have \neg distinct (p \# as) using PTRNode.hyps(5) \langle p \neq x \rangle by auto
        then have \exists i. \ as! i = p \land i < length \ as \ by \ (meson\ PTRNode.hyps(5) \ dis-
tinct.simps(2) in-set-conv-nth)
       then obtain i where as!i = p and i < length as by blast
       then show False
       proof (cases\ last\ as = p)
          case True
          then have is-root p using PTRNode.hyps(3) path-ends-at-root by auto
       then show ?thesis using PTRNode.prems is-parent-of-rev(2) local-to-global-root
by force
       next
          case False
             then have path-to-root y as \land as!i = p \land i < length as by (simp add:
PTRNode.hyps(3) \langle as ! i = p \rangle \langle i < |as| \rangle
       then have is-root p \vee is-parent-of p (as!(Suc i)) using app-path-peer-is-parent-or-root2
by blast
       then have is-parent-of p (as!(Suc i)) by (metis PTRNode.prems insert-not-empty
is-parent-of.simps is-parent-of-rev2(2))
         then have c1: is-node p \land \mathcal{G}(\rightarrow p) = \{(as!(Suc\ i))\} using PTRNode.hyps(1)
is-parent-of-rev(2) by auto
          have x \notin set \ as \ using \ PTRNode.hyps(5) by auto
          have \forall j. j < length \ as \longrightarrow as! j \neq x \ using \langle x \notin set \ as \rangle by auto
           have c3: (as!(Suc\ i)) \neq x by (metis\ False\ Suc\ lessI \ \langle \forall j < |as|.\ as\ !\ j \neq x \rangle
\langle \neg distinct (p \# as) \rangle \langle as ! i = p \rangle \langle i < |as| \rangle append1-eq-conv
               append-butlast-last-id distinct-singleton length-Suc-conv-rev nth-append-length)
          have is-parent-of p \times y (simp add: PTRNode.prems)
       then have c2: is-node p \land \mathcal{G}(\rightarrow p) = \{x\} using PTRNode.hyps(1) is-parent-of-rev(2)
          then show ?thesis using c1 c2 c3 by simp
       qed
   qed
    then show ?case using \langle is-tree (\mathcal{P}) (\mathcal{G}) \wedge is-parent-of p \ x \wedge path-to-root x \ (x + y)
\# as)> path-to-root.PTRNode by blast
qed
```

```
{f lemma}\ path-from	ext{-}root	ext{-}rev:
 assumes path-from-root p ps
 shows is-root p \lor (\exists q \ as. \ tree-topology \land is-parent-of p \ q \land path-from-root q \ as
\land distinct (as @ [p]))
 by (metis assms path-from-root.cases)
lemma path-to-from:
 \mathbf{assumes}\ \mathit{path}\text{-}\mathit{to}\text{-}\mathit{root}\ \mathit{p}\ \mathit{ps}
 shows path-from-root p (rev ps)
 using assms
proof (induct)
 case (PTRRoot p)
 then show ?case using PFRRoot by force
 case (PTRNode \ p \ q \ as)
 then show ?case using PFRNode PTRNode.hyps(1,2,4,5) by force
lemma path-from-to:
 assumes path-from-root p ps
 shows path-to-root p (rev ps)
 using assms
proof (induct)
 case (PFRRoot p)
 then show ?case using PTRRoot by force
next
  case (PFRNode \ p \ q \ as)
 then show ?case using PTRNode PFRNode.hyps(1,2,4,5) by force
qed
lemma paths-eq:
 shows (\exists ps. path-from-root p ps) = (\exists qs. path-to-root p qs)
 using path-from-to path-to-from by blast
lemma path-from-to-rev:
 assumes path-from-to r p r2p
 shows (r = p) \lor (\exists q \ qs. \ path-from-to \ r \ q \ qs \land r2p = (qs@[p]) \land is-parent-of \ p
q)
 by (metis assms path-from-to.simps)
lemma path-from-root-2-path-from-to:
 assumes path-from-root p ps and is-root r
 shows path-from-to r p ps
 using assms
proof (induct p ps)
 case (PFRRoot p)
```

```
then have is-root p by auto
  then have \mathcal{G}\langle \rightarrow p \rangle = \{\} using root-defs-eq by auto
  have is-root r using PFRRoot.prems by auto
  then have \mathcal{G}\langle \rightarrow r \rangle = \{\} using root-defs-eq by auto
  have r \in \mathcal{P} by simp
  have p \in \mathcal{P} by simp
  have r = p
  proof (rule ccontr)
    assume r \neq p
    then have is-tree (\mathcal{P}) (\mathcal{G}) \land p \in \mathcal{P} \land \mathcal{G}\langle \rightarrow p \rangle = \{\} \land r \neq p \land r \in \mathcal{P} \text{ using }
PFRRoot.hyps \langle \mathcal{G} \langle \rightarrow p \rangle = \{\} \rangle  by auto
    then have card (\mathcal{G}(\rightarrow r)) = 1 using unique-root by blast
    then show False by (simp add: \langle \mathcal{G} \langle \rightarrow r \rangle = \{\} \rangle)
 then show ?case by (metis NetworkOfCA.path-from-to.simps NetworkOfCA-axioms
PFRRoot.prems \langle p \in \mathcal{P} \rangle
next
  case (PFRNode \ p \ q \ as)
  then have path-from-to r q as by simp
  then have tree-topology \land is-parent-of p \neq \land path-from-to r \neq as \land distinct (as
@ [p]) using PFRNode.hyps(1,2,5) by auto
  then show ?case using path-step by blast
qed
lemma p2root-down-step:
  (is\text{-}parent\text{-}of\ p\ q \land path\text{-}to\text{-}root\ q\ qs) \implies path\text{-}to\text{-}root\ p\ (p\#qs)
  using path-to-root-downwards by auto
lemma path-to-root-exists:
  assumes tree-topology and p \in \mathcal{P}
  shows \exists ps. path-to-root p ps
\mathbf{using} \ assms \ \mathbf{proof} \ (induct \ )
  case (ITRoot \ r)
  hence p = r
    \mathbf{by} \ simp
  hence path-to-root p [p] sorry
  then show ?case by blast
next
  case (ITNode\ P\ E\ x\ q)
  assume IH: p \in P \Longrightarrow \exists a. path-to-root p a
  assume a: p \in insert \ q \ P
  then show ?case
    proof (cases p = q)
      case True
      then show ?thesis sorry
    next
      case False
```

```
with IH a show ?thesis by blast
    qed
qed
lemma edge-elem-to-edge:
  assumes q \in \mathcal{G}\langle \to p \rangle
  shows (q, p) \in \mathcal{G}
  using assms by (meson Set.CollectD Set.CollectE)
lemma matching-words-to-peer-sets:
  assumes tree-topology and ((w\downarrow_?)\downarrow_!?)=((w'\downarrow_!)\downarrow_!?) and w\in\mathcal{L}(p) and w'\in\mathcal{L}(p)
\mathcal{L}(q) and is-node p and is-parent-of p q and (w\downarrow_?)\neq\varepsilon
  shows \mathcal{P}_{?}(p) = \{q\} and p \in \mathcal{P}_{!}(q)
  using assms
proof -
  have t1: tree-topology using assms by simp
  have pq: is-parent-of p q using assms by simp
  have is-node p using assms(5) by blast
  then have \mathcal{G}\langle \rightarrow p \rangle = \{q\} by (metis is-parent-of.cases pq)
 then have local-node: is-node-from-local p using edge-impl-psend-or-qrecv using
t1 by blast
 then have \mathcal{P}_{?}(p) = \{q\} \lor p \in \mathcal{P}_{!}(q) using pq by (meson edge-impl-psend-or-qrecv
is-parent-of.cases)
  then have (q,p) \in \mathcal{G} using is-parent-of-rev(2) pq by auto
  then have qintop: q \in \mathcal{G}\langle \rightarrow p \rangle by blast
  then have (\mathcal{G}\langle \rightarrow p \rangle) \neq \{\} by blast
  then have no0: card (\mathcal{G}\langle \to p \rangle) \neq 0 by (meson card-0-eq finite-peers finite-subset
top-greatest)
  have le1: card (\mathcal{G}(\rightarrow p)) \leq 1 using at-most-one-parent t1 by auto
  then have card\ (\mathcal{G}\langle \rightarrow p \rangle) \neq 0 \land card\ (\mathcal{G}\langle \rightarrow p \rangle) \leq 1 by (simp\ add:\ no0)
  have card (\{q\}) = 1 by simp
  have (\forall pp. (pp \neq q) \longrightarrow (pp,p) \notin \mathcal{G}) using \langle \mathcal{G} \langle \rightarrow p \rangle = \{q\} \rangle by auto
  have \exists a \ as \ b \ bs. \ (a\#as) = (w\downarrow_?) \land (b\#bs) = (w'\downarrow_!) by (metis \ assms(2,7))
list.map-disc-iff neg-Nil-conv)
  then have \exists a \ as \ b \ bs. \ (a\#as) = (w\downarrow_?) \land (b\#bs) = (w'\downarrow_!) \land ((a\#as)\downarrow_!?) =
((b\#bs)\downarrow_{1?}) by (metis\ assms(2))
  then obtain a as b bs where as-def: (a\#as) = (w\downarrow_?) and bs-def: (b\#bs) =
(w'\downarrow_!) and newt: ((a\#as)\downarrow_{!?}) = ((b\#bs)\downarrow_{!?})
    by blast
 then have (([a]\downarrow_{!?}) \otimes (as\downarrow_{!?})) = (([b]\downarrow_{!?}) \otimes (bs\downarrow_{!?})) by (metis\ Cons-eq\ append\ I
append-self-conv2 map-append)
  then have ([a]\downarrow_{!?}) = ([b]\downarrow_{!?}) by simp
  have (w\downarrow_?) = [a] @ (as) by (simp \ add: \ as-def)
  have (w'\downarrow_!) = [b] @ (bs) by (simp \ add: \ bs-def)
  then have is-input a
  proof auto
    assume a-out: is-output a
```

```
then show False
              proof -
                    have (w\downarrow_?) = [a] @ as by (simp add: \langle w\downarrow_? = a \# \varepsilon \cdot as \rangle)
                         have (a\#as)\downarrow_? = ([a]\downarrow_?) @ (as)\downarrow_? by (metis \langle w\downarrow_? = a \# \varepsilon \cdot as \rangle as-def
filter-append)
                     then have ([a]\downarrow_?) = [] using a-out by auto
                     then show False by (metis Cons-eq-filterD as-def filter.simps(1,2))
              qed
       qed
       have is-output b
        proof (rule ccontr)
              assume b-out: is-input b
              then show False
              proof -
                     have (w'\downarrow_!) = [b] @ bs by (simp \ add: \langle w'\downarrow_! = b \# \varepsilon \cdot bs \rangle)
                            have (b\#bs)\downarrow_! = ([b]\downarrow_!) \otimes (bs)\downarrow_! by (metis \langle w'\downarrow_! = b \# \varepsilon \cdot bs \rangle bs\text{-}def
filter-append)
                     then have c1:([b]\downarrow_!)=[] using b-out by auto
                     have (w'\downarrow_!)\downarrow_! = (w'\downarrow_!) by fastforce
                     then have ([b] @ bs)\downarrow_! = [b] @ bs using \langle w'\downarrow_! = b \# \varepsilon \cdot bs \rangle by auto
                      \mathbf{have}\ ([b]\ @\ bs) \downarrow_! = ([b] \downarrow_!)\ @\ (bs) \downarrow_! \ \mathbf{using}\ \lang(b\ \#\ bs) \downarrow_! = (b\ \#\ \varepsilon) \downarrow_! \bullet bs \downarrow_! \gt
\langle w' \downarrow_! = b \# \varepsilon \cdot bs \rangle bs - def  by argo
                     then have ([b]\downarrow_!) @ (bs)\downarrow_! = [] @ (bs)\downarrow_! using c1 by blast
                    have (w'\downarrow_!)\downarrow_! = ([b] @ bs)\downarrow_! using \langle (b \# \varepsilon \cdot bs)\downarrow_! = (b \# \varepsilon)\downarrow_! \cdot bs\downarrow_! \rangle \langle (b \# \varepsilon)\downarrow_! 
(bs)\downarrow_! = (b \# \varepsilon)\downarrow_! \cdot bs\downarrow_! \rightarrow bs\text{-}def  by argo
                      then have (w'\downarrow_!)\downarrow_! = ([] @ bs)\downarrow_! using \langle (b \# bs)\downarrow_! = (b \# \varepsilon)\downarrow_! \cdot bs\downarrow_! \rangle c1
               then have ([] @ bs) \neq (w'\downarrow_1) by (metis append.left-neutral bs-def not-Cons-self2)
                     have (([b] @ bs)\downarrow!)\downarrow! = (([b] @ bs)\downarrow!) by auto
                    have \forall c. \ length \ (c\downarrow_!) = length \ ((c\downarrow_!)\downarrow_!) by simp
               then show False by (metis \langle w' \downarrow_! \downarrow_! = (\varepsilon \cdot bs) \downarrow_! \rangle append-Nil bs-def impossible-Cons
length-filter-le)
             \mathbf{qed}
       qed
      then have is-input a \wedge is-output b \wedge get-message a = get-message b using \langle (a + b) \rangle = get-message b using b
\# \varepsilon )\downarrow_{1?} = (b \# \varepsilon )\downarrow_{1?} \langle is\text{-input } a \rangle \text{ by } auto
     then have \exists s1 \ s2. \ (s1, a, s2) \in \mathcal{R} \ p by (metis NetworkOfCA.recv-proj-w-prepend-has-trans
NetworkOfCA-axioms as-def assms(3))
        then have \mathcal{P}_{?}(p) = \{q\}
              by (metis \ \langle is\text{-}input \ a \rangle \ is\text{-}parent\text{-}of\text{-}rev(2) \ no\text{-}recvs\text{-}no\text{-}input\text{-}trans \ pq)
                             sends-of-peer-subset-of-predecessors-in-topology subset-singletonD)
      then show \mathcal{P}_{?}(p) = \{q\} by blast
     have \exists q1 \ q2. \ (q1, b, q2) \in \mathcal{R} \ q \ by \ (metis \ assms(4) \ bs-def \ send-proj-w-prepend-has-trans)
     then have p \in \mathcal{P}_1(q) by (metis CommunicatingAutomaton.SendingToPeers.simps
  Communicating Automaton. well-formed-transition
                                      \langle \exists s1 \ s2. \ s1 \ -a \rightarrow_{\mathcal{C}} p \ s2 \rangle \langle is\text{-input } a \land is\text{-output } b \land get\text{-message } a =
qet-message b> automaton-of-peer
                     input-message-to-act-both-known message.inject output-message-to-act-both-known)
       then show p \in \mathcal{P}_!(q) by simp
```

6.2 Influenced Language

```
lemma is-in-infl-lang-rev-tree:
  assumes is-in-infl-lang p w
  shows tree-topology
  using assms is-in-infl-lang.simps by blast
lemma is-in-infl-lang-rev-root:
  assumes is-in-infl-lang p w and is-root p
  shows w \in \mathcal{L}(p)
  using assms(1) is-in-infl-lang.simps by blast
\mathbf{lemma}\ \textit{is-in-infl-lang-rev-node}\colon
  assumes is-in-infl-lang p w and is-node p
  shows \exists q \ w'. is-parent-of p \ q \land w \in \mathcal{L}(p) \land is-in-infl-lang \ q \ w' \land ((w\downarrow_?)\downarrow_{!?}) =
(((w'\downarrow_{\{p,q\}})\downarrow_!)\downarrow_{!?})
  using assms
proof induct
  case (IL\text{-}root\ r\ w)
  then show ?case using root-defs-eq by fastforce
  case (IL-node p \ q \ w \ w')
  then show ?case by blast
qed
lemma w-in-infl-lang: is-in-infl-lang p w \Longrightarrow w \in \mathcal{L}(p) using is-in-infl-lang.simps
\textbf{lemma} \ \textit{recv-has-matching-send} \ : \ \llbracket \mathcal{P}_?(p) \ = \ \{q\}; \ \textit{$w \in \mathcal{L}(p)$; is-in-infl-lang $q$ $w'$;}
((w\downarrow_?)\downarrow_!?) = (((w'\downarrow_{\{p,q\}})\downarrow_!)\downarrow_!?)] \Longrightarrow ((w\downarrow_?)\downarrow_!?) \in ((((\mathcal{L}(q))|_{\{p,q\}})\downarrow_!)\downarrow_!?)
  using w-in-infl-lang by blast
lemma child-matching-word-impl-in-infl-lang:
  assumes tree-topology and is-parent-of p q and w \in \mathcal{L}(q) and is-in-infl-lang q
w and ((w'\downarrow_?)\downarrow_!?) = (((w\downarrow_{\{p,q\}})\downarrow_!)\downarrow_!?) and w' \in \mathcal{L}(p)
  shows is-in-infl-lang p w'
  using IL-node assms(1,2,4,5,6) by blast
lemma is-in-infl-lang-rev2:
  assumes w \in \mathcal{L}^* p and is-node p
 shows w \in \mathcal{L}(p) and \exists q w'. is-parent-of p \neq w \in \mathcal{L}(p) \land w' \in \mathcal{L}^* \neq w \land ((w\downarrow_?)\downarrow_!?)
=(((w'\!\!\downarrow_{\{p,q\}})\!\!\downarrow_!)\!\!\downarrow_{!?})
  using assms
proof -
  show w \in \mathcal{L}(p) using assms(1) is-in-infl-lang.simps by blast
  have is-in-infl-lang p w \wedge is-node p using assms(1,2) by auto
 then have \exists q \ w'. is-parent-of p \ q \land w \in \mathcal{L}(p) \land is-in-infl-lang \ q \ w' \land ((w\downarrow_?)\downarrow_{!?})
=(((w'\downarrow_{\{p,q\}})\downarrow_!)\downarrow_!?) using is-in-infl-lang-rev-node by auto
```

```
then show \exists q \ w'. is-parent-of p \ q \land w \in \mathcal{L}(p) \land w' \in \mathcal{L}^* \ q \land ((w\downarrow_?)\downarrow_!?) =
(((w'\downarrow_{\{p,q\}})\downarrow_!)\downarrow_!?) by blast
qed
lemma infl-lang-subset-of-lang:
  shows (\mathcal{L}^* p) \subseteq (\mathcal{L} p)
  using w-in-infl-lang by fastforce
lemma lang-subset-infl-lang:
  assumes is-root p
  shows (\mathcal{L} \ p) \subseteq (\mathcal{L}^* \ p)
proof auto
  \mathbf{fix} \ x
  assume x \in \mathcal{L} p
  show is-in-infl-lang p x using IL-root \langle x \in \mathcal{L} p \rangle assms by presburger
lemma root-lang-is-infl-lang:
  assumes is-root p and w \in \mathcal{L}(p)
  shows w \in \mathcal{L}^*(p)
  using IL-root assms(1,2) by blast
lemma eps-in-infl:
  assumes tree-topology and p \in \mathcal{P}
  shows \varepsilon \in \mathcal{L}^*(p)
proof -
  have a1: \forall q. ((\varepsilon\downarrow_?)\downarrow_!?) = (((\varepsilon\downarrow_{\{p,q\}})\downarrow_!)\downarrow_!?) by simp
  have a2: \varepsilon \in \mathcal{L}(p) by (meson CommunicatingAutomaton.REmpty2 Communi-
catingAutomaton. Traces. simps automaton-of-peer)
  have \exists ps. path-to-root p ps by (simp add: assms(1) path-to-root-exists)
  then obtain ps where path-to-root p ps by blast
  from this a2 show ?thesis
  proof (induct arbitrary: ps)
    case (PTRRoot p)
    then show ?case using root-lang-is-infl-lang by blast
  next
    case (PTRNode \ p \ q \ as)
   have \varepsilon \in \mathcal{L} q by (meson Communicating Automaton. REmpty 2 Communicatin-
gAutomaton. Traces. simps automaton-of-peer)
    then have \varepsilon \in \mathcal{L}^* q using PTRNode.hyps(4) by auto
     then have is-parent-of p \neq 0 \land \varepsilon \in \mathcal{L}(p) \land is-in-infl-lang \neq \varepsilon \land ((\varepsilon\downarrow_?)\downarrow_!?) =
(((\varepsilon\downarrow_{\{p,q\}})\downarrow_!)\downarrow_!?) by (simp\ add:\ PTRNode.hyps(2)\ PTRNode.prems)
    then show ?case using IL-node assms(1) by blast
  qed
qed
lemma infl-lang-has-tree-topology:
  assumes w \in \mathcal{L}^*(p)
```

```
shows tree-topology
  using assms is-in-infl-lang.simps by blast
lemma infl-parent-child-matching-ws:
  fixes w :: ('information, 'peer) action word
  assumes w \in \mathcal{L}^*(p) and is-parent-of p q
  shows \exists w'. \ w' \in \mathcal{L}^*(q) \land ((w\downarrow_?)\downarrow_{!?}) = (((w'\downarrow_{\{p,q\}})\downarrow_!)\downarrow_{!?})
proof -
 have \exists q \ w'. is-parent-of p \ q \land w \in \mathcal{L}(p) \land w' \in \mathcal{L}^* \ q \land ((w \downarrow_?) \downarrow_!?) = (((w' \downarrow_{\{p,q\}}) \downarrow_!) \downarrow_!?)
using assms(1,2) is-in-infl-lang-rev2(2) is-parent-of.simps by blast
  then show ?thesis by (metis (mono-tags, lifting) assms(2) is-parent-of-rev(2)
mem-Collect-eq singleton-conv)
qed
lemma infl-parent-child-matching-ws2:
  fixes w :: ('information, 'peer) action word
  assumes w \in \mathcal{L}^*(q) and is-parent-of p q and ((w'\downarrow_?)\downarrow_{!?}) = (((w\downarrow_{\{p,q\}})\downarrow_!)\downarrow_{!?})
and w' \in \mathcal{L}(p)
  shows w' \in \mathcal{L}^*(p)
  using IL-node assms(1,2,3,4) is-parent-of-rev2(1) by blast
           influenced language and its shuffles
lemma word-in-shuffled-infl-lang:
  fixes w :: ('information, 'peer) action word
  assumes w \in \mathcal{L}^*(p)
  shows w \in \mathcal{L}^*_{\sqcup \sqcup}(p)
  by (meson assms shuffle-id)
\mathbf{lemma}\ language\text{-}shuffle\text{-}subset:
  shows \mathcal{L}^*(p) \subseteq \mathcal{L}^*_{\sqcup \sqcup}(p)
  using word-in-shuffled-infl-lang by auto
\mathbf{lemma} \ \mathit{shuffled-infl-lang-rev} \ :
  assumes v \in \mathcal{L}^*(p)
  shows \exists v'. (v' \sqcup \sqcup v \wedge v' \in \mathcal{L}^*_{\sqcup \sqcup}(p))
  using assms by (rule valid-input-shuffles-of-lang)
\mathbf{lemma} \ \mathit{shuffled-infl-lang-impl-valid-shuffle} \ :
  assumes v \in \mathcal{L}^*_{\sqcup \sqcup}(p)
  shows \exists v'. (v \sqcup \sqcup_{?} v' \land v' \in \mathcal{L}^*(p))
  using assms shuffled-lang-impl-valid-shuffle by auto
lemma shuffle-prepend:
  assumes y \sqcup \sqcup_? x
  shows (w \cdot y) \sqcup \sqcup_? (w \cdot x)
  using assms proof (induct x y rule: shuffled.induct)
```

```
case (refl w)
  then show ?case using shuffled.refl by blast
\mathbf{next}
  case (swap \ a \ b \ w \ xs \ ys)
  then show ?case by (metis append.assoc shuffled.swap)
  case (trans w w' w'')
  then show ?case using shuffled.trans by blast
qed
lemma shuffle-append:
  assumes y \sqcup \sqcup_? x
 shows (y \cdot w) \sqcup \sqcup_? (x \cdot w)
 using assms proof (induct x y rule: shuffled.induct)
  case (refl w)
  then show ?case using shuffled.refl by blast
next
  case (swap \ a \ b \ w \ xs \ ys)
  then show ?case by (simp add: shuffled.swap)
  case (trans w w' w'')
  then show ?case using shuffled.trans by blast
qed
lemma full-shuffle-of:
 shows \exists xs ys. (xs \cdot ys) \sqcup \sqcup_? x \wedge xs \downarrow_? = xs \wedge ys \downarrow_! = ys
proof (induct \ x)
  case Nil
  then show ?case by (metis append.right-neutral filter.simps(1) shuffled.reft)
next
  case (Cons a as)
  then obtain xs ys where shuf: xs • ys \sqcup \sqcup_{?} as and xs-def: xs\downarrow_{?} = xs and
ys\text{-}def: ys\downarrow_1 = ys by blast
  then show ?case proof (cases is-input a)
   \mathbf{case} \ \mathit{True}
   then have ([a] \cdot xs)\downarrow_? = ([a] \cdot xs) by (simp \ add: xs-def)
  have new-shuf: [a] \cdot xs \cdot ys \sqcup \sqcup_? ([a] \cdot as) by (simp\ add:\ shuf\ shuffled\ -prepend\ -inductive)
   then show ?thesis by (metis \langle (a \# \varepsilon \cdot xs) \downarrow_? = a \# \varepsilon \cdot xs \rangle append-eq-Cons-conv
self-append-conv2 ys-def)
  next
   then have a-ys-def: ([a] \cdot ys) \downarrow_! = ([a] \cdot ys) by (simp \ add: \ ys-def)
   have xs \cdot [a] \sqcup \sqcup_? ([a] \cdot xs) using fully-shuffled-implies-output-right by (metis
False xs-def)
   then have xs \cdot [a] \cdot ys \sqcup \sqcup_? ([a] \cdot xs \cdot ys) using shuffle-append by blast
    then have new-shuf: xs \cdot [a] \cdot ys \sqcup \sqcup_? ([a] \cdot as) by (metis (no-types, lifting)
```

```
append.assoc shuf shuffle-prepend shuffled.trans)
   then show ?thesis using a-ys-def xs-def by fastforce
 qed
qed
\mathbf{lemma}\ \mathit{full-shuffle-of-concrete}\colon
 shows ((x\downarrow_?) \cdot (x\downarrow_!)) \sqcup \sqcup_? x
proof (induct \ x)
 case Nil
 then show ?case by (metis append.right-neutral filter.simps(1) shuffled.reft)
next
 case (Cons a as)
 then show ?case using Cons proof (cases is-input a)
   \mathbf{case} \ \mathit{True}
   have (a \# as)\downarrow_? = ([a]\downarrow_? \cdot as\downarrow_?) by simp
   moreover have [a]\downarrow_? = [a] by (simp \ add: \ True)
  then show ?thesis by (metis Cons-eq-appendI filter.simps(1,2) filter-head-helper
local. Cons shuffled-prepend-inductive)
 next
   {\bf case}\ \mathit{False}
   have (a \# as)\downarrow_! = ([a]\downarrow_! \cdot as\downarrow_!) by simp
   moreover have [a]\downarrow_! = [a] by (simp \ add: False)
   moreover have (a \# as)\downarrow_? = as\downarrow_? using False by auto
   moreover have is-output a using False by auto
   ultimately show ?thesis by (metis (mono-tags, lifting) append.right-neutral
append-Nil filter-append full-shuffle-of
      input-proj-output-yields-eps\ output-proj-input-yields-eps\ shuffled-keeps-recv-order
         shuffled-keeps-send-order)
 qed
qed
lemma shuffle-keeps-outputs-right:
 assumes w' \sqcup \sqcup_? (w) and is-output (last w)
 shows is-output (last w')
 using assms shuffle-keeps-outputs-right-shuffled by metis
lemma root-graph:
 assumes P = \{p\} and tree-topology
 shows \mathcal{G}\langle \rightarrow p \rangle = \{\}
  by (metis (full-types, lifting) UNIV-I assms(1,2) empty-Collect-eq singleton-iff
tree-acyclic)
lemma p-root:
```

```
assumes path-to-root p [p] and tree-topology
  shows \mathcal{G}\langle \rightarrow p \rangle = \{\}
proof auto
  \mathbf{fix} \ q
  assume (q, p) \in \mathcal{G}
  then show False
  by (smt (verit, ccfv-threshold) CommunicatingAutomaton.SendingToPeers.intros
      Communicating Automaton. well-formed-transition\ Edges-rev\ Network Of CA. no-input-trans-root
NetworkOfCA-axioms
      assms(1) automaton-of-peer\ get-receiver.simps\ global-to-local-root\ input-message-to-act
messages-used
        output-message-to-act-both-known prod.inject single-path-impl-root)
qed
lemma root-lang-word-facts:
  assumes \mathcal{P}_{?}(q) = \{\} and (\forall p. q \notin \mathcal{P}_{!}(p)) and w \in \mathcal{L}^{*}(q) and tree-topology
 shows w = w \downarrow_q \land w = w \downarrow_! \land w \in \mathcal{L}(q)
 \textbf{using} \ assms(1,3) \ no\text{-}inputs\text{-}implies\text{-}only\text{-}sends\text{-}alt \ w\text{-}in\text{-}infl\text{-}lang \ w\text{-}in\text{-}peer\text{-}lang\text{-}impl\text{-}p\text{-}actor}
by auto
lemma root-lang-is-mbox:
  assumes is-root p and w \in \mathcal{L}(p)
  shows w \in \mathcal{T}_{None}
 sorry
lemma parent-in-infl-has-matching-sends:
  assumes w \in \mathcal{L}^*(p) and path-to-root p (p \# q \# ps)
 shows \exists w'. w' \in \mathcal{L}^*(q) \land ((w\downarrow_?)\downarrow_!?) = (((w'\downarrow_{\{p,q\}})\downarrow_!)\downarrow_!?)
 {f using} \ assms(1,2) \ infl-parent-child-matching-ws \ path-to-root-first-elem-is-peer \ path-to-root-stepback
 by blast
lemma send-proj-on-infl-word:
  assumes v \in ((\mathcal{L}_!^*(p)))
 shows v = v \downarrow_!
  using assms
proof (induct v)
  {f case} Nil
  then show ?case by simp
next
  case (Cons a as)
  then show ?case by force
qed
lemma v-in-send-infl-to-send-L:
  assumes v \in (\mathcal{L}_!^*(p))
  shows v \in (\mathcal{L}_!(p))
  using assms w-in-infl-lang by (induct, auto)
lemma send-infl-subset-send-lang: (\mathcal{L}_!^*(p)) \subseteq (\mathcal{L}_!(p)) using v-in-send-infl-to-send-L
```

```
by blast
lemma pair-proj-comm: v\downarrow_{\{p,q\}} = v\downarrow_{\{q,p\}} by meson
lemma pair-proj-inv-with-send-proj:
  assumes v = v \downarrow_!
  shows (v\downarrow_{\{p,q\}})=(v\downarrow_{\{p,q\}})\downarrow_!
  using assms
proof (induct v)
  case Nil
  then show ?case using eps-always-in-lang by auto
next
  case (Cons a as)
  then show ?case by (metis (no-types, lifting) filter.simps(2) list.distinct(1)
list.inject
         output-proj-input-yields-eps)
qed
lemma send-infl-lang-pair-proj-inv-with-send:
  assumes v \in ((\mathcal{L}_!^*(q))|_{\{p,q\}})
  shows v = v \downarrow_!
  using assms
proof (induct v)
  case Nil
  then show ?case by simp
next
  case (Cons a as)
  obtain v' where (a\#as) = (v'\downarrow_{\{p,q\}}) and v' \in (\mathcal{L}_!^*(q)) using Cons.prems by
blast
  then have (v') = (v')\downarrow_! by force
 then have (v'\downarrow_{\{p,q\}}) = (v'\downarrow_{\{p,q\}})\downarrow_! using pair-proj-inv-with-send-proj by fastforce
  then show ?case using \langle a \# as = v' \downarrow_{\{p,q\}} \rangle by presburger
qed
lemma projs-on-peer-eq-if-in-peer-lang:
  assumes v \in ((\mathcal{L}_!^*(q))|_{\{p,q\}}) and is-parent-of p q
  shows v = (v) \downarrow_a
  have v \in ((\mathcal{L}_!(q))|_{\{p,q\}}) using assms(1) w-in-infl-lang by auto
  then have v \in (((\mathcal{L}(q))|_!)|_{\{p,q\}}) by blast
 have \forall x. (x \in (\mathcal{L}(q))) \longrightarrow (x = (x \downarrow_q)) by (simp add: w-in-peer-lang-impl-p-actor)
  then have \forall v'. ((((v')\downarrow!)\downarrow_{\{p,q\}}) = v \land v' \in (\mathcal{L}(q))) \longrightarrow (v' = (v'\downarrow_q)) by simp
  then have \forall v'. ((((v')\downarrow_!)\downarrow_{\{p,q\}}) = v \land v' \in (\mathcal{L}(q))) \longrightarrow (((((v')\downarrow_!)\downarrow_{\{p,q\}})) =
((((((v')\downarrow_!)\downarrow_{\{p,q\}}))\downarrow_q)) by (metis\ (mono-tags,\ lifting)\ filter-recursion\ proj-trio-inv
proj-trio-inv2)
```

then show ?thesis using $\langle v \in (\mathcal{L} q)|_{!}|_{\{p,q\}} \rightarrow$ by blast

qed

```
lemma is-in-infl-lang-app:
  assumes is-in-infl-lang p (u @ v)
  shows is-in-infl-lang p u
  using assms
proof (induct p (u @ v) arbitrary: u v)
  case (IL\text{-}root\ r\ w)
  then show ?case using Lang-app is-in-infl-lang.IL-root by blast
next
  case (IL-node p \ q \ w \ w')
  then have is-in-infl-lang p (w' \cdot v) using is-in-infl-lang.IL-node by blast
 then have w \in \mathcal{L}^*(q) \wedge (((w' \cdot v)\downarrow_?)\downarrow_!?) = (((w\downarrow_{\{p,q\}})\downarrow_!)\downarrow_!?) using IL-node.hyps(4,6)
by blast
  then have p-w-match: (((w' \cdot v)\downarrow_?)\downarrow_!?) = (((w\downarrow_{\{p,q\}})\downarrow_!)\downarrow_!?) by blast
  have p-decomp: (((w' \cdot v)\downarrow_?)\downarrow_!?) = (((w')\downarrow_?)\downarrow_!?) @ (((v)\downarrow_?)\downarrow_!?) by simp
  have \exists w'' \ w'''. w = (w'' @ w''') \land (((w')\downarrow_?)\downarrow_!?) = (((w''\downarrow_{\{p,q\}})\downarrow_!)\downarrow_!?)
  proof (induct length w' arbitrary: w')
    case \theta
    then show ?case by fastforce
  next
    case (Suc \ x)
   then obtain a as where x = |as| and w' = as @ [a] by (metis length-Suc-conv-rev)
      then have \exists w'' \ w'''. w = w'' \cdot w''' \land as \downarrow_? \downarrow_!? = w'' \downarrow_{\{p,q\}} \downarrow_! \downarrow_!? using
Suc.hyps(1) by presburger
    then obtain w'' w''' where w = w'' \cdot w''' and as \downarrow_? \downarrow_!? = w'' \downarrow_{\{p,q\}} \downarrow_! \downarrow_!? by
    then have is-in-infl-lang q(w'') using IL-node.hyps(5) by blast
    then show ?case sorry
  qed
 then obtain w'' w''' where w = (w'' @ w''') and (((w')\downarrow_?)\downarrow_!?) = (((w''\downarrow_{\{p,q\}})\downarrow_!)\downarrow_!?)
by blast
  then have is-in-infl-lang q w'' by (meson IL-node.hyps(5))
  have w' \in \mathcal{L} p using IL-node.hyps(3) Lang-app by blast
  then have tree-topology \land is-parent-of p \ q \land w' \in \mathcal{L}(p) \land is-in-infl-lang q \ w''
\wedge ((w'\downarrow_?)\downarrow_!?) = (((w''\downarrow_{\{p,q\}})\downarrow_!)\downarrow_!?)
    using IL-node.hyps(1,2) \langle is-in-infl-lang q \ w'' \rangle \langle w' \downarrow_? \downarrow_{!?} = w'' \downarrow_{\{p,q\}} \downarrow_! \downarrow_{!?} \rangle by
   then have is-in-infl-lang p w' using is-in-infl-lang.IL-node[of p q w' w''] by
blast
  then show ?case by simp
qed
\mathbf{lemma} \ \mathit{infl-word-impl-prefix-valid} \colon
  assumes (u @ v) \in \mathcal{L}^* p
  shows u \in \mathcal{L}^* p
  using assms is-in-infl-lang-app by blast
```

```
lemma peer-pair-infl-send-nosymb-comm: (((\mathcal{L}_!^*(q))|_{\{q,p\}})|_{!?}) = (((\mathcal{L}_!^*(q))|_{\{p,q\}})|_{!?})
proof -
 have (((\mathcal{L}_!^*(q))|_{\{q,p\}})) = (((\mathcal{L}_!^*(q))|_{\{p,q\}})) by (simp\ add:\ pair-proj-comm)
 then show ?thesis by presburger
qed
lemma child-send-is-from-parent:
 assumes is-input a and is-parent-of p q and get-actor a = p and (s1, a, s2) \in
(\mathcal{R} p)
 shows get-object a = q
proof (rule ccontr)
 assume get-object a \neq q
 then obtain qq where qq \neq q and get-object a = qq and qq \in \mathcal{P} by simp
 then have qq \in \mathcal{P}_{?} p by (metis Communicating Automaton. empty-receiving-from-peers
assms(1,4) automaton-of-peer)
  have card(\mathcal{P}_{?} p) \leq 1 using \langle get\text{-}object \ a = qq \rangle \langle get\text{-}object \ a \neq q \rangle \langle qq \in \mathcal{P}_{?}
p \mapsto assms(2) is-parent-of-rev(2)
     sends-of-peer-subset-of-predecessors-in-topology by fastforce
 then have P_? p = \{qq\} by (meson \langle qq \in P_? p> finite-peers finite-set-card-union-with-singleton
finite-subset subset-UNIV)
 then show False using \langle \mathcal{P}_? | p = \{qq\} \rangle \langle qq \neq q \rangle \ assms(2) \ insert-subset is-parent-of-rev(2)
sends-of-peer-subset-of-predecessors-in-topology singleton-iff by metis
qed
lemma infl-word-actor-app:
 assumes (w @ xs) \in (\mathcal{L}^*(q))
 shows (w\downarrow_q = w) \land (xs\downarrow_q = xs)
 using assms proof -
 have (w @ xs) \in (\mathcal{L}(q)) using assms w-in-infl-lang by auto
  then have (w @ xs)\downarrow_q = (w @ xs) using w-in-peer-lang-impl-p-actor by
presburger
 then show ?thesis by (metis actor-proj-app-inv)
qed
         simulate sync with mbox word
6.2.2
lemma \ add-matching-recvs-app :
shows add-matching-recvs (xs \cdot ys) = (add-matching-recvs xs) \cdot (add-matching-recvs
ys)
proof (induct xs arbitrary: ys rule: add-matching-recvs.induct)
 case 1
 then show ?case by simp
next
 case (2 \ a \ w)
 then show ?case by simp
qed
```

```
lemma adding-recvs-keeps-send-order:
  shows w\downarrow_! = (add\text{-}matching\text{-}recvs\ w)\downarrow_!
proof (induct w)
  case Nil
  then show ?case by simp
\mathbf{next}
  case (Cons a w')
  then show ?case using Cons
  proof (cases is-input a)
    case True
    then show ?thesis by (simp add: local.Cons)
  next
    case False
    then show ?thesis by (simp add: local.Cons)
  qed
qed
{\bf lemma}\ simulate\text{-}sync\text{-}step\text{-}with\text{-}matching\text{-}recvs\text{-}helper2:
  assumes c1 - \langle (!\langle (i^{p \to q}) \rangle), \infty \rangle \to c2 \land c2 - \langle ?\langle (i^{p \to q}) \rangle, \infty \rangle \to c3
  shows mbox-run c1 None [!\langle (i^{p\rightarrow q})\rangle, ?\langle (i^{p\rightarrow q})\rangle] [c2,c3]
  using assms
proof -
  \# \varepsilon) -\langle !\langle (i^{p\to q})\rangle, \infty\rangle \to c2\rangle \land mbox-run\ c1\ None\ \varepsilon \varepsilon\rangle
         self-append-conv2)
  have last (c1 \# [c2]) - \langle ? \langle (i^{p \to q}) \rangle, \infty \rangle \to c3 by (simp \ add: \ assms)
 have mbox-run c1 None [!\langle (i^{p\to q})\rangle, ?\langle (i^{p\to q})\rangle] [c2, c3] using MRComposedInf
\langle last\ (c1\ \#\ c2\ \#\ \varepsilon)\ -\langle ?\langle (i^{p\to q})\rangle,\ \infty\rangle \to\ c3\rangle
       \langle mbox\text{-}run\ c1\ None\ (!\langle (i^{p\rightarrow q})\rangle\ \#\ \varepsilon)\ (c2\ \#\ \varepsilon)\rangle\ \mathbf{by}\ fastforce
  show ?thesis by (simp add: \langle mbox\text{-run } c1 \text{ None } (!\langle (i^{p \to q}) \rangle \# ?\langle (i^{p \to q}) \rangle \# \varepsilon)
(c2 \# c3 \# \varepsilon))
qed
\mathbf{lemma}\ simulate\text{-}sync\text{-}step\text{-}with\text{-}matching\text{-}recvs\text{:}
  assumes c1 - \langle (!\langle (i^{p \to q}) \rangle), \infty \rangle \to c2 \wedge c2 - \langle ?\langle (i^{p \to q}) \rangle, \infty \rangle \to c3
  shows mbox-run c1 None (add-matching-recvs [!\langle (i^{p\to q})\rangle]) [c2,c3]
  by (simp add: assms simulate-sync-step-with-matching-recvs-helper2)
— shows that we can simulate a synchronous run by adding the matching receives
after each send
  - this also shows that both the first config and the last config of the mbox run are
the same as in sync run
\mathbf{lemma}\ sync	ext{-}run	ext{-}to	ext{-}mbox	ext{-}run:
  assumes sync-run C_{\mathcal{I},\mathbf{0}} w xcs and xcs \neq []
 shows \exists xcm. mbox-run \mathcal{C}_{\mathcal{I}\mathfrak{m}} None (add-matching-recvs w) xcm \land (\forall p. (last xcm))
p ) = ((last xcs) p, \varepsilon))
```

```
using assms
proof (induct length w arbitrary: w xcs)
  case \theta
  then have sync\text{-}run\ \mathcal{C}_{\mathcal{I}\mathbf{0}}\ w\ xcs = sync\text{-}run\ \mathcal{C}_{\mathcal{I}\mathbf{0}}\ []\ xcs\ \mathbf{by}\ simp
  then have sync\text{-}run\ \mathcal{C}_{\mathcal{I}\mathbf{0}}\ w\ xcs = sync\text{-}run\ \mathcal{C}_{\mathcal{I}\mathbf{0}}\ []\ []
    by (simp add: 0.prems(1) SREmpty)
  then show ?case
   by (metis 0.prems(2) \langle sync\text{-run } \mathcal{C}_{\mathcal{I}\mathbf{0}} \text{ w } xcs = sync\text{-run } \mathcal{C}_{\mathcal{I}\mathbf{0}} \in xcs \rangle append-is-Nil-conv
         not-Cons-self2 \ sync-run.simps)
next
  case (Suc \ x)
  then have fact1: sync-run C_{\mathcal{I}\mathbf{0}} w xcs by auto
  then have fact2: Suc \ x = |w| using Suc.hyps(2) by auto
  then obtain v a xc s-a where w = v @ [a] and v-sync: sync-run \mathcal{C}_{\mathcal{I}\mathbf{0}} v xc and
xc\text{-}def: xcs = xc @ [s\text{-}a]
    by (metis Suc.prems(2) fact1 sync-run.simps)
  then have length v = x
    by (simp add: Suc-inject fact2)
  then show ?case using assms Suc
  proof (cases xc \neq \varepsilon)
    case True
    have \exists xcm. mbox-run \ \mathcal{C}_{\mathcal{I}\mathfrak{m}} \ None \ (add-matching-recvs \ v) \ xcm \ \land \ (\forall \ p. \ (last \ xcm
p ) = ((last xc) p, \varepsilon))
      by (simp add: Suc.hyps(1) True \langle |v| = x \rangle v-sync)
     then obtain xcm where v-mbox: mbox-run C_{Im} None (add-matching-recvs
v) xcm
      and v-state : (\forall p. (last \ xcm \ p) = ((last \ xc) \ p, \ \varepsilon)) by auto
    then obtain s-1 where s-1-1: sync-step s-1 a s-a and s-1-2: s-1 = last xc
      by (metis \ \forall w = v \cdot a \# \varepsilon ) \ \forall xc \neq \varepsilon ) \ fact1 \ last-ConsR \ sync-run-rev \ xc-def)
    then obtain i p q where a-decomp: a = !\langle (i^{p \to q}) \rangle using sync-step-rev(3) by
blast
    let ?c1 = (\lambda x. (s-1 x, \varepsilon))
    let ?c3 = (\lambda x. (s-a x, \varepsilon))
    let ?c2 = (?c3)(q := ((s-1) \ q, [(i^{p \to q})]))
    have c1-def: ?c1 = (\lambda x. (s-1 \ x, \varepsilon)) by simp
    have c3-def: ?c3 = (\lambda x. (s-a x, \varepsilon)) by simp
    have c2\text{-}def: ?c2 = (?c3)(q := ((s-1) \ q, \lceil (i^{p \to q}) \rceil)) by simp
    have sync-step s-1 (!\langle (i^{p\rightarrow q})\rangle) s-a using a-decomp s-1-1 by auto
    then have sync-abb: s-1 - \langle ! \langle (i^{p \to q}) \rangle, \mathbf{0} \rangle \to s-a \text{ by } simp
   then have mbox-steps: let c1 = \lambda x. (s-1 \ x, \ \varepsilon); c3 = \lambda x. (s-a \ x, \ \varepsilon); c2 = (c3)(q
:= (s-1 \ q, \ [(i^{p \to q})])) \ in
   mbox-step c1 (!\langle (i^{p \to q}) \rangle) None c2 \wedge mbox-step c2 (?\langle (i^{p \to q}) \rangle) None c3 by
(simp\ add:\ sync-step-to-mbox-steps)
    then have mbox-steps-init: mbox-step ?c1 (!\langle (i^{p \to q}) \rangle) None ?c2 \wedge mbox-step
?c2 (?\langle (i^{p \to q}) \rangle) None ?c3 by metis
    then have a-mbox-run: mbox-run?c1 None (add-matching-recvs ([a])) ([?c2,
?c3]) using a-decomp simulate-sync-step-with-matching-recvs by blast
    then have (\forall p. fst (last xcm p) = (s-1) p) by (simp add: s-1-2 v-state)
```

```
then have (\forall p. (last xcm p) = ?c1 p) by (simp add: v-state)
    then have last-config-xcm: last xcm = ?c1 by auto
    then have (last\ xcm) - \langle !\langle (i^{p\to q})\rangle, \infty\rangle \rightarrow ?c2 by (metis\ mbox-steps)
     then have mbox-run \mathcal{C}_{\mathcal{I}_m} None (add-matching-recvs v) xcm by (simp add:
v-mbox)
   then have mbox-inter: mbox-run \mathcal{C}_{\mathcal{I}\mathfrak{m}} None ((add-matching-recvs v)@ [!\langle (i^{p \to q})\rangle])
(xcm@[?c2])
       by (smt (verit) Nil-is-append-conv
             \langle last \ xcm \ - \langle ! \langle (i^{p \to q}) \rangle, \ \infty \rangle \to (\lambda x. \ (s-a \ x, \ \varepsilon)) \ (q := (s-1 \ q, \ i^{p \to q} \ \# \ \varepsilon)) \rangle
\langle xc \neq \varepsilon \rangle
                  add-matching-recvs.elims last-ConsR list.distinct(1) mbox-run.simps
sync-run.cases
           v-sync)
   then have (last (xcm@[?c2])) - \langle ?\langle (i^{p \to q})\rangle, \infty \rangle \to ?c3 by (simp \ add: mbox-steps-init)
   then have mbox-inter2: mbox-run \mathcal{C}_{\mathcal{I}\mathfrak{m}} None ((add-matching-recvs v)@[!\langle(i^{p\to q})\rangle]@[?\langle(i^{p\to q})\rangle])
(xcm@[?c2]@[?c3])
       using MRComposedInf mbox-inter by fastforce
          — found existing run when xc not empty
   then have mbox-run-final: mbox-run \mathcal{C}_{Im} None ((add-matching-recvs (v@[a])))
(xcm@[?c2,?c3])
       using NetworkOfCA.add-matching-recvs-app NetworkOfCA-axioms a-decomp
append-Cons by fastforce
      then have xc-nonempty-thesis: mbox-run C_{Im} None ((add-matching-recvs
(v@[a]))) (xcm@[?c2,?c3]) \land (\forall p. (last (xcm@[?c2,?c3]) p) = ((last xcs) p, \varepsilon))
       by (simp \ add: xc\text{-}def)
    then show ?thesis using \langle w = v \cdot a \# \varepsilon \rangle by blast
  next
    case False
    then have xc\text{-}empty: xc = \varepsilon by simp
   then have w-a: w = [a] using NetworkOfCA.sync-run.cases NetworkOfCA-axioms
\langle w = v \cdot a \# \varepsilon \rangle \ v\text{-sync by } blast
   then have sync-run \ \mathcal{C}_{\mathcal{I}\mathbf{0}} \ w \ xcs = sync-run \ \mathcal{C}_{\mathcal{I}\mathbf{0}} \ [a] \ xcs \ \mathbf{by} \ (simp \ add: SREmpty
fact1)
     then obtain i \ p \ q \ C where C-def: sync-run C_{\mathcal{I}\mathbf{0}} [a] [C] and C-def2: xcs =
[C] and a-def: a = !\langle (i^{p \to q}) \rangle
     by (metis fact1 self-append-conv2 sync-run-rev sync-step-rev(3) xc-def xc-empty)
    let ?c1 = (\lambda p. (\mathcal{C}_{\mathcal{I}\mathbf{0}} p, \varepsilon))
    let ?c3 = (\lambda x. (C x, \varepsilon))
    let ?c2 = (?c3)(q := ((\mathcal{C}_{\mathcal{I}\mathbf{0}}) \ q, [(i^{p \to q})]))
    have c1-def: ?c1 = (\lambda x. (\mathcal{C}_{\mathcal{I}\mathbf{0}} x, \varepsilon)) by simp
    have c3-def: ?c3 = (\lambda x. (C x, \varepsilon)) by simp
    have c2-def : ?c2 = (?c3)(q := ((\mathcal{C}_{\mathcal{I}\mathbf{0}}) q, [(i^{p \to q})])) by simp
    have (\forall p. \ \mathcal{C}_{\mathcal{I}\mathfrak{m}} \ p = (\mathcal{C}_{\mathcal{I}\mathbf{0}} \ p, \, \varepsilon)) by simp
    then have \mathcal{C}_{\mathcal{I}\mathfrak{m}} = (\lambda p. \; (\mathcal{C}_{\mathcal{I}\mathbf{0}} \; p, \, \varepsilon)) by simp
    then have ?c1 = \mathcal{C}_{Im} by simp
    have sync-step C_{\mathcal{I}\mathbf{0}} a C by (metis C-def2 \langle w = v \cdot a \# \varepsilon \rangle fact1 last-ConsL
self-append-conv2 sync-run-rev)
    then have C_{\mathcal{I}\mathbf{0}} - \langle ! \langle (i^{p \to q}) \rangle, \mathbf{0} \rangle \to C by (simp \ add: \ a\text{-}def)
      then have steps: mbox-step ?c1 (!\langle (i^{p \to q}) \rangle) None ?c2 \land mbox-step ?c2
```

```
(?\langle (i^{p\rightarrow q})\rangle) None ?c3
     by (metis sync-step-to-mbox-steps)
   then have mbox-run ?c1 None (add-matching-recvs ([a])) [?c2, ?c3]
     using a-def simulate-sync-step-with-matching-recvs by blast
    then have mbox-run ?c1 None (add-matching-recvs w) [?c2, ?c3] by (simp
add: w-a
   then have mbox-run ?c1 None (add-matching-recvs w) [?c2, ?c3] by simp
   then have mbox-run (\lambda p. (\mathcal{C}_{\mathcal{I}\mathbf{0}} p, \varepsilon)) None (add-matching-recvs w) [?c2, ?c3]
by simp
   then show ?thesis using C-def2 by auto
 qed
qed
\mathbf{lemma}\ empty\text{-}sync\text{-}run\text{-}to\text{-}mbox\text{-}run:
 assumes sync\text{-}run \ \mathcal{C}_{\mathcal{I}\mathbf{0}} \ w \ xcs \ \mathbf{and} \ xcs = []
 shows mbox-run \mathcal{C}_{\mathcal{I}\mathfrak{m}} None (add-matching-recvs w) []
 using assms by (metis (no-types, lifting) MREmpty Nil-is-append-conv add-matching-recvs.simps(1)
     not-Cons-self2 sync-run.simps)
6.2.3
         Lemma 4.4 and preparations
lemma concat-infl-path-rev:
 assumes concat-infl p w (q \# ps) w'
 shows path-to-root q (q \# ps)
 using assms
\mathbf{proof}(induct\ (q \# ps)\ w'\ arbitrary:\ q\ ps\ rule:\ concat-infl.induct)
 case at-p
  then show ?case using path-to-root-first-elem-is-peer by blast
\mathbf{next}
  case (reach-root q qw x w-acc)
  then show ?case using path-to-root-first-elem-is-peer path-to-root-stepback by
blast
next
 case (node\text{-}step \ x \ q \ ps \ qw \ w\text{-}acc)
 then show ?case by (metis list .discI path-to-root-first-elem-is-peer path-to-root-stepback)
qed
lemma concat-infl-tree-rev:
 assumes concat-infl p w ps w'
 shows tree-topology
 using assms concat-infl.cases by blast
lemma concat-infl-p-first-or-not-exists:
 assumes concat-infl p w ps w'
 shows (\exists qs. ps = p \# qs) \lor (\forall xs ys. ps \neq xs @ [p] @ ys)
 using assms
 sorry
```

```
lemma concat-infl-actor-consistent:
  assumes concat-infl p w ps w-acc
  shows w-acc \downarrow_p = w
  using assms
proof (induct ps w-acc rule: concat-infl.induct)
  case (at-p ps)
  then show ?case using w-in-infl-lang w-in-peer-lang-impl-p-actor by force
  case (reach-root q qw x w-acc')
  then have qw \in \mathcal{L} \ q by (simp \ add: w-in-infl-lang)
  then have qw\downarrow_q=qw using w-in-peer-lang-impl-p-actor by fastforce
  then show ?case
  proof (cases q = p) — can't be the case because then \operatorname{concat}_{i} nfl_{i} \operatorname{snottrue}
   case True
   then have qw\downarrow_p = qw using \langle qw\downarrow_q = qw\rangle by blast
   then have qw \in \mathcal{L} p using True \langle qw \in \mathcal{L} | q \rangle by blast
   then have is-root p using True reach-root.hyps(1) by auto
  then have \neg path-to-root p (x # q # \varepsilon) by (metis True list.distinct(1) list.inject
path-to-root-first-elem-is-peer path-to-root-stepback
        path-to-root-unique)
   have concat-infl p w (x # q # \varepsilon) w-acc' by (simp add: reach-root.hyps(5))
   then have path-to-root x (x # q # \varepsilon) by (simp add: reach-root.hyps(3))
   then have x \neq q using True \langle \neg path-to-root p (x \# q \# \varepsilon) \rangle by auto
  have (\forall xs ys. (x \# q \# \varepsilon) \neq xs @ [p] @ ys) using True \langle x \neq q \rangle concat-infl-p-first-or-not-exists
reach-root.hyps(5) by blast
   have (x \# q \# \varepsilon) = [x] @ [p] @ [] using True by auto
   then show ?thesis using \langle \forall xs \ ys. \ x \# q \# \varepsilon \neq xs \cdot (p \# \varepsilon \cdot ys) \rangle by blast
 next
   case False
   then have qw\downarrow_p = \varepsilon by (metis \langle qw\downarrow_q = qw\rangle only-one-actor-proj)
   then show ?thesis by (simp add: reach-root.hyps(6))
  qed
next
  case (node-step x q w-acc' ps qw)
 then have qw \in \mathcal{L} q by (meson mem-Collect-eq w-in-infl-lang)
 then have qw\downarrow_q = qw using w-in-peer-lang-impl-p-actor by fastforce
 then show ?case
 proof (cases q = p) — can't be the case because then concat_i nfl_{isnottrue}
   case True
   then have qw\downarrow_p = qw using \langle qw\downarrow_q = qw\rangle by blast
   then have qw \in \mathcal{L} p using True \langle qw \in \mathcal{L} q \rangle by blast
   have concat-infl p w (x \# q \# ps) w-acc' by (simp add: node-step.hyps(6))
   then have path-to-root x (x \# q \# ps) by (simp add: node-step.hyps(4))
   then have x \neq q by (metis insert-subset mem-Collect-eq node-step.hyps(1,2)
sends-of-peer-subset-of-predecessors-in-topology
        tree-acyclic)
     have (\forall xs \ ys. \ (x \# q \# ps) \neq xs @ [p] @ ys)
                                                                      using True \langle x \neq q \rangle
concat-infl-p-first-or-not-exists node-step.hyps(6) by blast
   have (x \# q \# ps) = [x] @ [p] @ ps using True by auto
```

```
then show ?thesis using \langle \forall xs \ ys. \ x \# q \# ps \neq xs \cdot (p \# \varepsilon \cdot ys) \rangle by blast
 next
   \mathbf{case} \ \mathrm{False}
   then have qw\downarrow_p = \varepsilon by (metis \langle qw\downarrow_q = qw\rangle only-one-actor-proj)
   then show ?thesis by (simp add: node-step.hyps(7))
 qed
\mathbf{qed}
lemma concat-infl-word-exists:
 assumes concat-infl p w ps w and is-root r
 shows \exists w'. concat-infl p w [r] w'
 sorry
lemma concat-infl-mbox:
 assumes concat-infl p w [q] w-acc
 shows w-acc \in \mathcal{T}_{None}
proof -
 define xp where xp-def: xp = [q]
 with assms have concat-infl p w xp w-acc
   by simp
 from this xp-def show w-acc \in \mathcal{T}_{None}
 proof (induct)
   case (at-p ps)
   then show ?case sorry
 next
   case (reach-root q qw x w-acc)
   then show ?case sorry
 next
   case (node-step x q w-acc ps qw)
   then show ?case sorry
 qed
\mathbf{qed}
lemma concat-infl-children-not-included:
 assumes concat-infl p w ps w-acc and is-parent-of q p
 shows w-acc\downarrow_q = \varepsilon
 using assms
proof (induct)
 case (at-p ps)
 then show ?case sorry
 case (reach-root q qw x w-acc)
 then show ?case sorry
 case (node-step x q w-acc ps qw)
 then show ?case sorry
```

```
lemma concat-infl-w-in-w-acc:
  assumes concat-infl p w ps w-acc
  shows \exists xs. w-acc = xs @ w
  using assms
proof induct
  case (at-p ps)
  then show ?case by simp
next
  case (reach-root q qw x w-acc)
  then show ?case by (metis append.assoc)
  case (node-step x q w-acc ps qw)
  then show ?case by (metis append.assoc)
6.2.4 sync and infl lang relations
        new formalization
lemma prefix-mbox-trace-valid:
  assumes (w@v) \in \mathcal{L}_{\infty}
  shows w \in \mathcal{L}_{\infty}
  sorry
lemma mbox-exec-to-peer-act:
 assumes w \in \mathcal{T}_{None} | and (!\langle (i^{q \to p}) \rangle) \in \text{set } w and tree-topology shows \exists \ s1 \ s2 \ . \ (s1, !\langle (i^{q \to p}) \rangle, \ s2) \in \mathcal{R} \ q
  sorry
{\bf lemma}\ {\bf mbox\text{-}exec\text{-}to\text{-}infl\text{-}peer\text{-}word\text{:}}
  \begin{array}{l} \textbf{assumes} \ \mathbf{w} \in \mathcal{T}_{None} \\ \textbf{shows} \ \mathbf{w} \downarrow_p \in \mathcal{L}^* \ \mathbf{p} \end{array}
  sorry
lemma peer-recvs-in-exec-is-prefix-of-parent-sends:
  assumes e \in \mathcal{T}_{None} and is-parent-of p q
  shows prefix (((e\downarrow_p)\downarrow_?)\downarrow_{!?}) ((((e\downarrow_q)\downarrow_!)\downarrow_{\{p,q\}})\downarrow_{!?})
  sorry
```

lemma root-infl-word-no-recvs: assumes is-root p and $w \in \mathcal{L}^*$ p

```
shows w\downarrow_! = w
proof (rule ccontr)
    \mathbf{assume}\ w{\downarrow}_! \neq w
    then have \exists x. x \in \text{set } w \land \text{is-input } x by (simp add: not-only-sends-impl-recv)
    then obtain x where x \in set w and is-input x by auto
    with assms show False sorry
qed
lemma matching-recvs-word-matches-sends-explicit:
    assumes e \in \mathcal{T}_{None} and is-parent-of p q
   shows (((e\downarrow!)\downarrow_q)\downarrow_{\{p,q\}})\downarrow_{!?} = (((add-matching-recvs (e\downarrow!)\downarrow_?)\downarrow_p)\downarrow_{!?})
lemma mbox-exec-recv-append:
 \begin{array}{l} \textbf{assumes} \; (\mathbf{w} \boldsymbol{\cdot} [! \langle (\mathbf{i}^{q \to p}) \rangle]) \in \mathcal{T}_{None} \; \textbf{and} \; \mathbf{w} \downarrow_p \boldsymbol{\cdot} [? \langle (\mathbf{i}^{q \to p}) \rangle] \in \mathcal{L}^* \; \mathbf{p} \\ \textbf{and} \; (((((\mathbf{w}) \downarrow_q) \downarrow_!) \downarrow_{\{p,q\}}) \downarrow_{!?}) = ((((\mathbf{w}) \downarrow_p) \downarrow_?) \downarrow_{!?}) \; \textbf{and} \; \text{is-parent-of} \; \mathbf{p} \; \mathbf{q} \\ \textbf{shows} \; \mathbf{w} \boldsymbol{\cdot} [! \langle (\mathbf{i}^{q \to p}) \rangle] \boldsymbol{\cdot} [? \langle (\mathbf{i}^{q \to p}) \rangle] \in \mathcal{T}_{None} \\ \end{array} 
lemma no-sign-recv-prefix-to-sign-inv:
    assumes prefix (w\downarrow_{!?}) (w'\downarrow_{!?}) and w\downarrow_{?} = w and w'\downarrow_{?} = w'
   shows prefix w w'
   using assms
    apply (induct w)
     apply auto
   sorry
lemma match-exec-and-child-prefix-to-parent-match:
  assumes ((((((\mathbf{v}')\downarrow_r)\downarrow_!)\downarrow_{\{q,r\}})\downarrow_!?) = ((((\mathbf{v}')\downarrow_q)\downarrow_?)\downarrow_!?) and prefix (\mathbf{wq}\downarrow_?)(((\mathbf{v}')\downarrow_q)\downarrow_?)
{\bf and} is-parent-of q r
and v' \in \mathcal{T}_{None}
shows \exists \operatorname{wr}'. prefix \operatorname{wr}'((\operatorname{v}')\downarrow_r) \wedge (((\operatorname{wr}'\downarrow_!)\downarrow_{\{q,r\}})\downarrow_{!?}) = (((\operatorname{wq})\downarrow_?)\downarrow_{!?}) \wedge \operatorname{wr}' \in \mathcal{L}^*
   sorry
lemma subset-cond-from-child-prefix-and-parent:
  assumes subset-condition q r and wq \in \mathcal{L}^* q and wr' • x' \in \mathcal{L}^* r and (((\text{wr}'\downarrow_!)\downarrow_{\{q,r\}})\downarrow_{!?})
```

```
= (((wq)\downarrow?)\downarrow!?)
   shows \exists x. (wq \cdot x) \in \mathcal{L}^* q \wedge (((wq \cdot x)\downarrow_?)\downarrow_!?) = ((((wr' \cdot x')\downarrow_!)\downarrow_{\{q,r\}})\downarrow_!?)
   apply (rule ccontr)
   sorry
lemma mbox-exec-app-send:
   assumes (e \downarrow_q \cdot [a]) \in (\mathcal{L}^*(q)) and (e) \in \mathcal{T}_{None} and is-output a
   shows (e • [a]) \in \mathcal{T}_{None}
   sorry
lemma mbox-trace-to-root-word:
  \begin{array}{l} \textbf{assumes} \ (\mathbf{v} \boldsymbol{\cdot} [!\langle (\mathbf{i}^{q \to p}) \rangle]) \in \mathcal{T}_{None}|_! \ \textbf{and} \ \mathrm{is\text{-}root} \ \mathbf{q} \\ \textbf{shows} \ (\mathbf{v} \downarrow_q \boldsymbol{\cdot} [!\langle (\mathbf{i}^{q \to p}) \rangle]) \in (\mathcal{L}^*(\mathbf{q})) \end{array}
   sorry
lemma no-shuffle-implies-output-input-exists:
   assumes \neg(w' \sqcup \sqcup_? w) and w\downarrow_? = w'\downarrow_? and w\downarrow_! = w'\downarrow_!
   shows \exists xs a ys b zs xs' ys' zs'. is-input a \land is-output b \land w = (xs @ [a] @ ys @
[b] @ zs) ∧
w' = (xs' @ [b] @ ys' @ [a] @ zs')
   sorry
lemma exec-append-missing-recvs:
   assumes (((\text{wq} \cdot \text{xs})\downarrow_?)\downarrow_!?) = (((((\text{v} \cdot [\text{a}])\downarrow_!)\downarrow_r)\downarrow_{\{q,r\}})\downarrow_!?)
\mathbf{and}\ (\mathrm{wq} \boldsymbol{\cdot} \mathrm{xs}) \in \mathcal{L}^*\ \mathbf{q}\ \mathbf{and}\ (\mathrm{v}\boldsymbol{\cdot} [\mathrm{a}]) \in \mathcal{T}_{None} \! \mid_! \mathbf{and}\ \mathbf{e} \in \mathcal{T}_{None}\ \mathbf{and}\ \mathbf{e} \! \downarrow_q = \mathrm{wq}
and e \downarrow_! = (v \cdot [a])
shows (e · xs) \in \mathcal{T}_{None}
   sorry
lemma diff-peer-word-impl-diff-trace:
   assumes \text{wq}\downarrow_? = (\text{v}'\downarrow_q \cdot [\text{a}])\downarrow_? and \text{wq}\downarrow_! = (\text{v}'\downarrow_q \cdot [\text{a}])\downarrow_!
and \neg((v'\downarrow_q \cdot [a]) \sqcup \sqcup_? wq) and wq \neq (v'\downarrow_q \cdot [a])
and e \in \mathcal{T}_{None} and e \downarrow_q = wq and v' \in \mathcal{T}_{None} and (v \cdot [a]) \in \mathcal{T}_{None} \downarrow_! and v' = vq
(add-matching-recvs v)
and v' \downarrow_q \in \mathcal{L}^* q and wq \in \mathcal{L}^* q
```

```
shows e_{\downarrow!} \neq (v' \cdot [a])_{\downarrow!} sorry
```

sorry

```
lemma subset-cond-from-child-prefix-and-parent-act:
  assumes subset-condition q r and wq \in \mathcal{L}^* q and wr' • [!\langle (i^{r \to q}) \rangle] \in \mathcal{L}^* r and
(((\mathbf{wr'}\downarrow_!)\downarrow_{\{q,r\}})\downarrow_{!?}) = (((\mathbf{wq})\downarrow_?)\downarrow_{!?})
and is-parent-of q r and ((\mathcal{L}^*(q)) = (\mathcal{L}^*_{\sqcup \sqcup}(q)))
 \mathbf{shows} (\mathbf{wq} \cdot [?\langle (\mathbf{i}^{r \to q}) \rangle]) \in \mathcal{L}^* \neq \bigwedge (((\mathbf{wq} \cdot [?\langle (\mathbf{i}^{r \to q}) \rangle]) \downarrow_?) \downarrow_!?) = ((((\mathbf{wr}' \cdot [!\langle (\mathbf{i}^{r \to q}) \rangle]) \downarrow_!) \downarrow_{\{q,r\}}) \downarrow_!?)
  have \exists x. (wq \cdot x) \in \mathcal{L}^* q \wedge (((wq \cdot x)\downarrow_?)\downarrow_{!?}) = ((((wr' \cdot [!\langle (i^{r \to q})\rangle])\downarrow_!)\downarrow_{\{q,r\}})\downarrow_{!?})
using
subset-cond-from-child-prefix-and-parent assms by blast
  then obtain x where wqx-def: (wq \cdot x) \in \mathcal{L}^* \ q \ \text{and} \ wqx-match: (((wq \cdot x)\downarrow_?)\downarrow_{!?})
=((((\operatorname{wr}' \cdot [!\langle (i^{r \to q})\rangle])\downarrow_!)\downarrow_{\{q,r\}})\downarrow_{!?}) by auto
     then obtain xs ys where x-shuf: (xs \cdot ys) \sqcup \sqcup_? x and xs \downarrow_? = xs and ys \downarrow_! = ys
using full-shuffle-of by blast
   then have xsys-recvs: (((\text{wq} \cdot (\text{xs} \cdot \text{ys}))\downarrow_?)\downarrow_!?) = ((((\text{wr}' \cdot [!((i^r \rightarrow q))])\downarrow_!)\downarrow_{\{q,r\}})\downarrow_!?)
        using shuffled-keeps-recv-order wqx-match by force
     have (wq \cdot xs \cdot ys) \sqcup \sqcup_? (wq \cdot x) using x-shuf shuffle-prepend by auto
   then have wq \cdot xs \cdot ys \in \mathcal{L}^* \neq by (metis assms(6) input-shuffle-implies-shuffled-lang
mem-Collect-eq wqx-def)
      then have wqxs-L: wq • xs \in \mathcal{L}^* q using local.infl-word-impl-prefix-valid by
simp
   have (wq \cdot xs)\downarrow_! = wq\downarrow_! by (simp add: \langle xs\downarrow_? = xs\rangle input-proj-output-yields-eps)
    have xs\downarrow_? = (xs \cdot ys)\downarrow_? by (simp add: \langle ys\downarrow_! = ys \rangle output-proj-input-yields-eps)
     have (xs \cdot ys)\downarrow_? = (x)\downarrow_? using x-shuf by (metis shuffled-keeps-recv-order)
     then have xs\downarrow_? = (x)\downarrow_? using \langle xs\downarrow_? = (xs \cdot ys)\downarrow_? \rangle by presburger
     have (((wq \cdot x)\downarrow_?)\downarrow_!?) = (((wq \cdot xs)\downarrow_?)\downarrow_!?) by (simp add: \langle xs\downarrow_? = x\downarrow_?\rangle)
      then have t0: ((((\operatorname{wr}' \cdot [!\langle (i^{r \to q})\rangle])\downarrow!)\downarrow_{\{q,r\}})\downarrow!?) = (((\operatorname{wq} \cdot \operatorname{xs})\downarrow?)\downarrow!?) using
wqx-match by presburger
   then have t1: (\text{wq} \cdot \text{xs}) \in \mathcal{L}^* \neq (((\text{wq} \cdot \text{xs})\downarrow_?)\downarrow_!?) = ((((\text{wr}' \cdot [!\langle (i^{r \to q})\rangle])\downarrow_!)\downarrow_{\{q,r\}})\downarrow_!?)
using wqxs-L by presburger
     have xs = [?\langle (i^{r \to q}) \rangle] sorry
     then show? thesis using t0 wqxs-L by argo
  qed
lemma matched-mbox-run-to-sync-run:
  assumes mbox-run \mathcal{C}_{\mathcal{I}\mathfrak{m}} None (add-matching-recvs w) xcm and w \in \mathcal{T}_{None}!
  shows sync-run \mathcal{C}_{\mathcal{I}\mathbf{0}} w xcs
```

7.1 theorem 4.5 = >2.

```
lemma decompose-vq-given-decomposed-vp: assumes vq\plui\{p,q}\plui!? = v\plui\plui!? and v' \in \mathcal{L}^*\pu|(p) and v' \in \mu' \in
```

8 Synchronizability of Trees

```
lemma lemma 4-4:
  fixes w :: ('information, 'peer) action word
    and q :: 'peer
  assumes tree-topology and w \in \mathcal{L}^*(q) and q \in \mathcal{P}
  \mathbf{shows} \; \exists \; w'. \; (w' \in \mathcal{T}_{None} \wedge w' \downarrow_q = w \wedge ((\mathit{is-parent-of} \; p \; q) \longrightarrow \; w' \downarrow_p = \varepsilon))
  using assms
proof (cases is-root q)
  case True - q = r
  then have w \in \mathcal{L}(q) using assms(2) is-in-infl-lang.cases by blast
  then have w = w \downarrow_! by (meson NetworkOfCA.no-inputs-implies-only-sends-alt
NetworkOfCA-axioms True\ assms(1)\ global-to-local-root
        p-root)
  then have w\downarrow_? = \varepsilon by (simp add: output-proj-input-yields-eps)
  then have t2: w = w \downarrow_q  by (simp \ add: \langle w \in \mathcal{L} \ q \rangle \ w-in-peer-lang-impl-p-actor)
  then have \forall p. p \neq q \longrightarrow w \downarrow_p = \varepsilon by (metis only-one-actor-proj)
  then have t3: (\forall p. (p \in \mathcal{P} \land \mathcal{P}_?(p) = \{q\}) \longrightarrow w \downarrow_p = \varepsilon) by (\textit{metis True}
assms(1) global-to-local-root insert-not-empty)
        - need to prove lemma that if w is w of root r, then mbox (unbounded) has
a run for it basically construct the configs, where it starts with (I>(r), epsilon>)
and each step appends a send to the buffer of the respective receiver
  then have w \in \mathcal{L}(q) by (simp \ add: \langle w \in \mathcal{L} \ q \rangle)
  then have is-root q using True by auto
  then have w \in \mathcal{T}_{None} using \langle w \in \mathcal{L} | q \rangle root-lang-is-mbox by auto
  have w\downarrow_q = w using t2 by auto
```

```
then have (is-parent-of p \ q \longrightarrow w \downarrow_p = \varepsilon) by (metis True is-parent-of-rev(2)
iso-tuple-UNIV-I only-one-actor-proj root-defs-eq t3)
     then show ?thesis by (metis \langle w \in \mathcal{T}_{None} \rangle t2)
     case False
      then obtain p where q-parent: is-parent-of q p by (metis\ UNIV-I\ assms(1)
path-to-root.cases path-to-root-exists)
        then obtain ps where p2root: path-to-root p (p \# ps) by (metis UNIV-I)
assms(1) path-to-root-exists path-to-root-rev)
     then have is-node q by (metis is-parent-of.cases q-parent)
     have w \in \mathcal{L}^*(q) using assms(2) by auto
     then have is-parent-of q p by (simp add: q-parent)
     then have \exists w'. w' \in \mathcal{L}^* p \land ((w\downarrow_?)\downarrow_!?) = (((w'\downarrow_{\{q,p\}})\downarrow_!)\downarrow_!?) using assms(2)
infl-parent-child-matching-ws by blast
    then obtain w' where w'-w: ((w\downarrow_?)\downarrow_!?) = (((w'\downarrow_{\{q,p\}})\downarrow_!)\downarrow_!?) and w'-Lp: w' \in
\mathcal{L}^* p by blast
     then have w' \in \mathcal{L} p by (meson mem-Collect-eq w-in-infl-lang)
     have tree-topology using assms(1) by auto
     have c1: ((w\downarrow_?)\downarrow_!?) = (((w'\downarrow_{\{q,p\}})\downarrow_!?) \land w \in \mathcal{L}(q) \land w' \in \mathcal{L}(p) \land \textit{is-node } q
using \langle is\text{-}parent\text{-}of \ q \ p \rangle
                  \textit{ (is-tree } (\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{G} \langle \rightarrow q \rangle \ = \ \{qa\}) \ \lor \ \textit{ is-tree } \ (\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q \ = \ (\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q \ = \ (\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q \ = \ (\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q \ = \ (\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q \ = \ (\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q \ = \ (\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q \ = \ (\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q \ = \ (\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q \ = \ (\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q \ = \ (\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q \ = \ (\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q \ = \ (\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q \ = \ (\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q \ = \ (\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q \ = \ (\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q \ = \ (\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q \ = \ (\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q \ = \ (\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q \ = \ (\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q \ = \ (\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q \ = \ (\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q \ = \ (\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q \ = \ (\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q \ = \ (\mathcal{P}) \ (\mathcal{G}) \ (\mathcal{
\{qa\} \lor q \in \mathcal{P}_! \ qa) \lor \lessdot w' \in \mathcal{L} \ p \gt
                assms(2) is-in-infl-lang-rev2(1) w'-w by blast
     obtain r where is-root r using assms(1) root-exists by blast
     have path-to-root q (q \# p \# ps) using p2root p2root-down-step q-parent by
auto
     then have concat-infl q w (q \# p \# ps) w using assms(1,2) at-p by auto
     have w \in \mathcal{L}(q) by (simp \ add: c1)
     then have w\downarrow_q = w using w-in-peer-lang-impl-p-actor by auto
    obtain w-acc where concat-infl q w [r] w-acc by (meson < concat-infl q w (q #
p \# ps) w
                     \langle is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \land \mathcal{P}_? \ r = \{\} \land (\forall q. \ r \notin \mathcal{P}_! \ q) \lor is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \land \mathcal{G} \langle \rightarrow r \rangle
= \{\}
                     concat-infl-word-exists)
     then have w\text{-}acc \in \mathcal{T}_{None} by (simp \ add: \ concat\text{-}infl\text{-}mbox)
   have w-acc \downarrow_q = w using \langle concat-infl q \ w \ (r \# \varepsilon) \ w-acc \rangle \ concat-infl-actor-consistent
by blast
```

then have $(\forall p. (is\text{-parent-of } p \ q) \longrightarrow w\text{-}acc\downarrow_p = \varepsilon)$ using $\langle concat\text{-}infl \ q \ w \ (r) \rangle$

then show ?thesis using $\langle w \text{-}acc \in \mathcal{T}_{None} \rangle \langle w \text{-}acc \downarrow_q = w \rangle$ by blast

 $\# \ \varepsilon$) w-acc> concat-infl-children-not-included by blast

qed

```
lemma lemm4-4-extra:
  fixes w :: ('information, 'peer) action word
    and q :: 'peer
  assumes tree-topology and w \in \mathcal{L}^*(q) and q \in \mathcal{P}
  shows \exists w'. (w' \in \mathcal{T}_{None} \land w' \downarrow_q = w \land ((is\text{-parent-of } p \ q) \longrightarrow w' \downarrow_p = \varepsilon)) \land
(\exists xs. (xs @ w) = w')
  using assms
proof (cases is-root q)
  \mathbf{case} \ \mathit{True} - \mathbf{q} = \mathbf{r}
  then have w \in \mathcal{L}(q) using assms(2) is-in-infl-lang.cases by blast
  then have w = w\downarrow_! by (meson NetworkOfCA.no-inputs-implies-only-sends-alt
NetworkOfCA-axioms True\ assms(1)\ global-to-local-root
         p-root)
  then have w\downarrow_? = \varepsilon by (simp add: output-proj-input-yields-eps)
  then have t2: w = w \downarrow_q  by (simp \ add: \langle w \in \mathcal{L} \ q \rangle \ w-in-peer-lang-impl-p-actor)
  then have \forall p. p \neq q \longrightarrow w \downarrow_p = \varepsilon by (metis only-one-actor-proj)
  then have t3: (\forall p. (p \in \mathcal{P} \land \mathcal{P}_?(p) = \{q\}) \longrightarrow w \downarrow_p = \varepsilon) by (metis True
assms(1) global-to-local-root insert-not-empty)
        — need to prove lemma that if w is w of root r, then mbox (unbounded) has
a run for it basically construct the configs, where it starts with (I>(r), epsilon>)
and each step appends a send to the buffer of the respective receiver
  then have w \in \mathcal{L}(q) by (simp \ add: \langle w \in \mathcal{L} \ q \rangle)
  then have is-root q using True by auto
  then have w \in \mathcal{T}_{None} using \langle w \in \mathcal{L} | q \rangle root-lang-is-mbox by auto
  have w\downarrow_q = w using t2 by auto
  then have (is-parent-of p \ q \longrightarrow w \downarrow_p = \varepsilon) by (metis True is-parent-of-rev(2)
iso-tuple-UNIV-I only-one-actor-proj root-defs-eq t3)
  then show ?thesis by (metis \langle w \in \mathcal{T}_{None} \rangle append-self-conv2 t2)
next
  case False
  then obtain p where q-parent: is-parent-of q p by (metis\ UNIV-I\ assms(1)
path-to-root.cases path-to-root-exists)
   then obtain ps where p2root: path-to-root p (p \# ps) by (metis \ UNIV-I)
assms(1) path-to-root-exists path-to-root-rev)
  then have is-node q by (metis is-parent-of.cases q-parent)
  have w \in \mathcal{L}^*(q) using assms(2) by auto
  then have is-parent-of q p by (simp add: q-parent)
  then have \exists w'. w' \in \mathcal{L}^* p \land ((w\downarrow_?)\downarrow_!?) = (((w'\downarrow_{\{q,p\}})\downarrow_!)\downarrow_!?) using assms(2)
infl-parent-child-matching-ws by blast
  then obtain w' where w'-w: ((w\downarrow_?)\downarrow_!?) = (((w'\downarrow_{\{q,p\}})\downarrow_!)\downarrow_!?) and w'-Lp: w' \in
\mathcal{L}^* p by blast
  then have w' \in \mathcal{L} p by (meson mem-Collect-eq w-in-infl-lang)
  have tree-topology using assms(1) by auto
  \mathbf{have} \ c1{:}\ ((w\downarrow_?)\downarrow_{!?}) = (((w'\downarrow_{\{q,p\}})\downarrow_!)\downarrow_{!?})\ \land\ w\in\mathcal{L}(q)\ \land\ w'\in\mathcal{L}(p)\ \land\ is\text{-node}\ q
using \langle is\text{-}parent\text{-}of \ q \ p \rangle
       \langle is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{G}\langle \rightarrow q \rangle = \{qa\}) \ \lor \ is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \ \land \ (\exists \ qa. \ \mathcal{P}_? \ q = qa\}
\{qa\} \lor q \in \mathcal{P}_! \ qa) \lor \lessdot w' \in \mathcal{L} \ p \lor
```

```
obtain r where is-root r using assms(1) root-exists by blast
  have path-to-root q (q \# p \# ps) using p2root-down-step q-parent by
  then have concat-infl q w (q \# p \# ps) w using assms(1,2) at-p by auto
  have w \in \mathcal{L}(q) by (simp \ add: c1)
  then have w\downarrow_q = w using w-in-peer-lang-impl-p-actor by auto
  obtain w-acc where concat: concat-infl q w [r] w-acc by (meson < concat-infl q
w (q \# p \# ps) w
          \langle is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \land \mathcal{P}_? \ r = \{\} \land (\forall q. \ r \notin \mathcal{P}_! \ q) \lor is\text{-tree }(\mathcal{P}) \ (\mathcal{G}) \land \mathcal{G} \langle \rightarrow r \rangle
= \{\}
          concat-infl-word-exists)
  then have w-acc \in \mathcal{T}_{None} by (simp \ add: \ concat-infl-mbox)
 \mathbf{have} \ w\text{-}acc\downarrow_q = w \ \mathbf{using} \ \langle \mathit{concat}\text{-}\mathit{infl}\ q\ w\ (r\ \#\ \varepsilon)\ w\text{-}\mathit{acc}\rangle\ \mathit{concat}\text{-}\mathit{infl}\text{-}\mathit{actor}\text{-}\mathit{consistent}
  then have (\forall p. (is\text{-parent-of } p \ q) \longrightarrow w\text{-}acc\downarrow_p = \varepsilon) using \langle concat\text{-}infl \ q \ w \ (r) \rangle
\# \varepsilon) w-acc> concat-infl-children-not-included by blast
  then have t1: w\text{-}acc \in \mathcal{T}_{None} \land w\text{-}acc\downarrow_q = w \land ((is\text{-}parent\text{-}of\ p\ q) \longrightarrow w\text{-}acc\downarrow_p
= \varepsilon) using \langle w \text{-}acc \in \mathcal{T}_{None} \rangle \langle w \text{-}acc \downarrow_q = w \rangle by blast
  have \exists es. w-acc = es @ w using concat by (simp add: concat-infl-w-in-w-acc)
  then show ?thesis using t1 using \forall p. is-parent-of p \ q \longrightarrow w\text{-}acc\downarrow_p = \varepsilon \rightarrow by
blast
qed
```

assms(2) is-in-infl-lang-rev2(1) w'-w by blast

```
lemma mbox-trace-with-matching-recvs-is-mbox-exec: assumes w \in \mathcal{T}_{None} \mid_! and tree-topology and theorem-rightside shows (add-matching-recvs w) \in \mathcal{T}_{None} using assms proof (induct\ length\ w\ arbitrary:\ w) case \theta then show ?case by (simp\ add:\ eps-in-mbox-execs) next case (Suc\ n) then obtain v\ a where w-def: w=v\cdot [a] and v-len: length v=n by (metis\ length-Suc-conv-rev) then have v\in \mathcal{T}_{None} \mid_! using Suc.prems(1) prefix-mbox-trace-valid by blast then have v-IH-prems: n=|v|\land v\in \mathcal{T}_{None} \mid_! \land is-tree (\mathcal{P})\ (\mathcal{G}) \land theorem-rightside using Suc.prems(3) assms(2)\ v-len by blast
```

```
let ?v' = add-matching-recvs v
  have v\text{-}\mathit{IH}: ?v' \in \mathcal{T}_{None} using v\text{-}\mathit{IH}\text{-}\mathit{prems} \mathit{Suc} by \mathit{blast}
  have (v \cdot [a]) = (v \cdot [a]) \downarrow_! using Suc.prems(1) w-def by fastforce
  then obtain i p q where a-def: a = (!\langle (i^{q \to p}) \rangle) by (metis Nil-is-append-conv
append1-eq-conv decompose-send neq-Nil-conv)
  then have \exists s1 \ s2 \ . \ (s1, !\langle (i^{q \to p})\rangle, \ s2) \in \mathcal{R} \ q \ using \ Suc.prems(1) \ assms(2)
mbox-exec-to-peer-act w-def by auto
 then have p \in \mathcal{P}_1(q) by (metis CommunicatingAutomaton.SendingToPeers.intros
automaton-of-peer get-message.simps(1)
       is-output.simps(1) message.inject output-message-to-act-both-known trans-to-edge)
  then have \mathcal{G}\langle \rightarrow p \rangle = \{q\} by (simp\ add:\ assms(2)\ local-parent-to-global)
  then have pq: is-parent-of p q using assms by (simp add: node-parent)
  have (?v')\downarrow_q \in \mathcal{L}^* q using mbox-exec-to-infl-peer-word v-IH by auto
  have w-sends-0: w = ((?v') \cdot [a])\downarrow_! by (metis \langle v \cdot a \# \varepsilon = (v \cdot a \# \varepsilon)\downarrow_!\rangle
adding-recvs-keeps-send-order filter-append w-def)
 then have w-sends-1: w = (?v') \downarrow_! \cdot [a] using \forall v \in \mathcal{T}_{None} \downarrow_! \rightarrow adding\text{-}recvs\text{-}keeps\text{-}send\text{-}order
w-def by fastforce
  have a-facts: is-output a \land get-actor a = q \land get-object a = p \land p \neq q using
a-def is-output.simps(1) by (simp add: <is-parent-of p q> parent-child-diff)
  then have [a]\downarrow_q = [a] by simp
  have [a]\downarrow_? = \varepsilon using a-def a-facts by simp
  have v'-q-recvs-inv-to-a: (?v'\downarrow_q)\downarrow_? = ((?v'\cdot [a])\downarrow_q)\downarrow_? using \langle (a\#\varepsilon)\downarrow_? = \varepsilon\rangle by
auto
  have p \in \mathcal{P} \land q \in \mathcal{P} by simp
 then have (is-parent-of p \ q) \longrightarrow ((subset-condition p \ q) \land ((\mathcal{L}^*(p)) = (\mathcal{L}^*_{\sqcup \sqcup}(p))))
using assms(3) theorem-rightside-def by blast
  then have theorem-right-pq: ((subset-condition\ p\ q) \land ((\mathcal{L}^*(p)) = (\mathcal{L}^*_{\sqcup\sqcup}(p))))
using pq by auto
  then have a-send-ok: (?v' \cdot [a]) \in \mathcal{T}_{None} using a-def Suc assms
  proof (cases is-root q)
    case True
     then have (v\downarrow_q \cdot [!\langle (i^{q\to p})\rangle]) \in (\mathcal{L}^*(q)) using mbox-trace-to-root-word [of v i
q p using Suc.prems(1) a-def w-def by fastforce
     have ?v'\downarrow_q = (?v'\downarrow_q)\downarrow_! using root-infl-word-no-recvs[of q ?v'\downarrow_q] using True
\langle add\text{-}matching\text{-}recvs\ v\downarrow_q\in\mathcal{L}^*\ q\rangle\ \mathbf{by}\ presburger
then have ?v'\downarrow_q\cdot[a]\in\mathcal{L}^*\ q\ \mathbf{by}\ (metis\ (no\text{-}types,\ lifting)\ \langle v\downarrow_q\cdot!\langle(i^{q\to p})\rangle\ \#
\varepsilon \in \mathcal{L}^* \ q \lor \lor w = add\text{-}matching\text{-}recvs \ v \downarrow_! \bullet a \# \varepsilon \lor a\text{-}def
            append1-eq-conv filter-pair-commutative w-def)
    show ?thesis using mbox-exec-app-send[of q ?v' a] using \langle add-matching-recvs
v\downarrow_q \cdot a \# \varepsilon \in \mathcal{L}^* \ q \rightarrow a\text{-facts } v\text{-IH } \mathbf{by } linarith
  next
    case False
    obtain e where e-def: e \in \mathcal{T}_{None} and e-trace: e \downarrow_! = w using Suc.prems(1)
by blast
     then obtain wq where wq-def: wq = e \downarrow_q and wq-in-q: wq \in \mathcal{L}^* q using
```

mbox-exec-to-infl-peer-word by presburger

```
have v'a\theta: ((?v')\downarrow_q \cdot [a])\downarrow_! = ((?v')\downarrow_q)\downarrow_! \cdot [a]\downarrow_! by simp
     have v'a1: ((?v')\downarrow_a)\downarrow_! \cdot [a]\downarrow_! = ((?v')\downarrow_a)\downarrow_! \cdot [a] using a-facts by simp
    then have v'a2: ((?v')\downarrow_q)\downarrow_! \cdot [a] = v\downarrow_q \cdot [a] by (smt\ (verit,\ ccfv\text{-threshold}) \ \langle v \cdot
a \# \varepsilon = (v \cdot a \# \varepsilon)\downarrow_! \land adding\text{-}recvs\text{-}keeps\text{-}send\text{-}order append1\text{-}eq\text{-}conv filter\text{-}append}
filter-pair-commutative same-append-eq)
     have wq\downarrow_! = w\downarrow_q using e-trace filter-pair-commutative wq-def by blast
     have wq \cdot v'-sends: wq \downarrow_! = ((?v')\downarrow_! \cdot [a])\downarrow_q  using \forall w = add-matching-recvs v\downarrow_!
• a \# \varepsilon \lor \langle wq \downarrow_! = w \downarrow_q \lor \mathbf{by} \ fastforce
    have v'a3: ((?v')\downarrow_! \cdot [a])\downarrow_q = ((?v')\downarrow_!)\downarrow_q \cdot [a]\downarrow_q by simp have v'a4: ((?v')\downarrow_!)\downarrow_q \cdot [a]\downarrow_q = ((?v')\downarrow_q)\downarrow_! \cdot [a]\downarrow_q using filter-pair-commutative
by blast
     have [a]\downarrow_q = [a] using a-def by simp
     have wq\text{-}to\text{-}v'a\text{-}trace: wq\downarrow_! = ((?v')\downarrow_q)\downarrow_! \cdot [a] using \langle (a \# \varepsilon)\downarrow_q = a \# \varepsilon \rangle \ v'a3
v'a4 wq-v'-sends by argo
   have is-node q by (metis False NetworkOfCA.root-or-node NetworkOfCA-axioms
    then obtain r where is-parent-of q r by (metis False UNIV-I path-to-root.cases
path-to-root-exists)
   have v'-recvs-match: (((?v'\downarrow!)\downarrow_r)\downarrow_{\{q,r\}})\downarrow_{!?} = (((add\text{-matching-recvs}((?v'\downarrow!))\downarrow_?)\downarrow_q)\downarrow_{!?})
using matching-recvs-word-matches-sends-explicit of v' \neq r using is-parent-of q
r \rightarrow v-IH by simp
    then have (((?v'\downarrow!)\downarrow_r)\downarrow_{\{q,r\}})\downarrow_{!?} = (((?v'\downarrow?)\downarrow_q)\downarrow_{!?}) using \forall w = add-matching-recvs
v\downarrow_! \cdot a \# \varepsilon \rightarrow w\text{-}def  by fastforce
    then have wr-0: (((?v'\downarrow_!)\downarrow_r)\downarrow_{\{q,r\}})\downarrow_{!?} = (((?v'\downarrow_q)\downarrow_?)\downarrow_{!?}) by (metis\ filter\ pair\ commutative)
    then have e-pref: prefix (((e\downarrow_q)\downarrow_?)\downarrow_!?) ((((e\downarrow_r)\downarrow_!)\downarrow_{\{q,r\}})\downarrow_!?) using peer-recvs-in-exec-is-prefix-of-parent-send
e \ q \ r] using (is-parent-of q r) e-def by linarith
      then have wq\text{-}e\text{-}pref: prefix (((wq)\downarrow?)\downarrow!?) ((((e\downarrow_r)\downarrow!)\downarrow_{\{q,r\}})\downarrow!?) using wq\text{-}def
by fastforce
     have e-trace2: (e\downarrow_!) = ((?v' \cdot [a])\downarrow_!) using \forall w = (add\text{-matching-recvs } v \cdot a \#
\varepsilon)\downarrow_! \rightarrow e\text{-trace by blast}
    then have prefix (((wq)\downarrow?)\downarrow!?) (((((?v'\cdot [a])\downarrow_r)\downarrow!)\downarrow_{\{q,r\}})\downarrow!?) by (metis (no-types,
lifting) e-pref filter-pair-commutative
              wq-def)
      have ((((?v' \cdot [a])\downarrow_!)\downarrow_{\{q,r\}})\downarrow_!?) = ((((?v')\downarrow_!)\downarrow_{\{q,r\}})\downarrow_!?) \cdot (((([a])\downarrow_!)\downarrow_{\{q,r\}})\downarrow_!?)
by simp
     have (((([a])\downarrow_!)\downarrow_{\{q,r\}})\downarrow_!?) = ((([a])\downarrow_{\{q,r\}})\downarrow_!?) using a-facts by simp
     have r \neq q using (is-parent-of q \rightarrow parent-child-diff by blast
     have p \neq q by (simp add: a-facts)
     have r \neq p proof (rule ccontr)
        assume \neg r \neq p
        then have r = p by simp
        then have is-parent-of q p using \langle is-parent-of q r \rangle by auto
        then have g1: \mathcal{G}\langle \rightarrow q \rangle = \{p\} using is-parent-of-rev by simp
        then have e1:(p, q) \in \mathcal{G} by auto
        have g2: \mathcal{G}\langle \rightarrow p \rangle = \{q\} using pq is-parent-of-rev by simp
```

```
then have e2: (q, p) \in \mathcal{G} by auto
        show False using tree-acyclic[of P G p q] using assms(2) e1 e2 by auto
     qed
     have [a]\downarrow_{\{q,r\}} = \varepsilon using a-facts using \langle r \neq p \rangle by auto
     then have ((([a])\downarrow_{\{q,r\}})\downarrow_{!?})=(\varepsilon)\downarrow_{!?} using a-facts by simp
     then have ((((?v' \cdot [a])\downarrow_!)\downarrow_{\{q,r\}})\downarrow_!?) = ((((?v')\downarrow_!)\downarrow_{\{q,r\}})\downarrow_!?) by simp
   \mathbf{have}\;((((?v'\bullet[a])\downarrow_!)\downarrow_{\{q,r\}})\downarrow_!?)=(((e\downarrow_!)\downarrow_{\{q,r\}})\downarrow_!?)\;\mathbf{using}\; \langle e\downarrow_!=(add\text{-}matching\text{-}recvs)
v \cdot a \# \varepsilon)\downarrow_! \rightarrow \mathbf{by} \ presburger
   then have (((e\downarrow!)\downarrow_{\{q,r\}})\downarrow_{!?}) = ((((?v')\downarrow!)\downarrow_{\{q,r\}})\downarrow_{!?}) using \langle (add\text{-}matching\text{-}recvs)\rangle
v \cdot a \# \varepsilon) \downarrow_! \downarrow_{\{q,r\}} \downarrow_! ? = add\text{-}matching\text{-}recvs \ v \downarrow_! \downarrow_{\{q,r\}} \downarrow_! ? >
        by argo
       add-matching-recvs v\downarrow_! • a \# \varepsilon > v'-recvs-match w-def by force
     then have e-v'-match:((((e\downarrow!)\downarrow_r)\downarrow_{\{q,r\}})\downarrow_{!?})=((((?v')\downarrow_?)\downarrow_q)\downarrow_{!?}) using \langle (a \# e) \downarrow_{!?} \rangle
\varepsilon)\downarrow_{\{q,r\}} = \varepsilon \wedge \langle w = add\text{-matching-recvs } v\downarrow_! \cdot a \# \varepsilon \rangle \text{ e-trace by force}
        then have wq-recvs-pref: prefix (((wq)\downarrow_?)\downarrow_!?) ((((?v')\downarrow_?)\downarrow_q)\downarrow_!?) by (metis
filter-pair-commutative wq-e-pref)
   have v'-proj-inv: ((((?v')\downarrow_?)\downarrow_q)\downarrow_!?) = ((((?v')\downarrow_q)\downarrow_?)\downarrow_!?) by (metis\ filter\ pair\ commutative)
     then have wq-recvs-prefix: prefix (wq\downarrow_?) (((?v')\downarrow_q)\downarrow_?) by (metis\ wq-recvs-pref
filter-recursion no-sign-recv-prefix-to-sign-inv)
   have (((((?v' \cdot [a])\downarrow_!)\downarrow_r)\downarrow_{\{q,r\}})\downarrow_!?) = ((((?v' \cdot [a])\downarrow_?)\downarrow_q)\downarrow_!?) by (metis\ (no-types,
lifting) e-trace2 e-v'-match filter-pair-commutative v'-q-recvs-inv-to-a)
     have prefix (wq\downarrow?) (((?v'\cdot [a])\downarrow_q)\downarrow?) using v'-q-recvs-inv-to-a wq-recvs-prefix
by presburger
     have wq-pref-of-rq-sends: prefix (((wq)\downarrow_?)\downarrow_!?) (((((?v')\downarrow_!)\downarrow_r)\downarrow_{\{q,r\}})\downarrow_!?) using
v'-match wq-recvs-pref by argo
   \textbf{then have} \ \textit{prefix} \ (((wq)\downarrow_?)\downarrow_!?) \ ((((?v'\downarrow_r)\downarrow_!)\downarrow_{\{q,r\}})\downarrow_!?) \ \textbf{by} \ (\textit{metis filter-pair-commutative})
       \mathbf{have} \ v'\text{-}match\text{-}alt: \ (((((?v')\downarrow_r)\downarrow_!)\downarrow_{\{q,r\}})\downarrow_!?) \ = \ ((((?v')\downarrow_q)\downarrow_!?)\downarrow_!?) \ \mathbf{by} \ (\textit{metis}
(no-types, lifting) filter-pair-commutative v'-match)
     then have \exists wr'. prefix wr'((?v')\downarrow_r) \land (((wr'\downarrow_!)\downarrow_{\{q,r\}})\downarrow_{!?}) = (((wq)\downarrow_?)\downarrow_{!?}) \land
wr' \in \mathcal{L}^* r
      using match-exec-and-child-prefix-to-parent-match[of r q ?v'wq] < is-parent-of
q \mapsto v-IH wq-recvs-prefix by blast
       then obtain wr' x' where v'r-def: ((?v')\downarrow_r) = wr' \cdot x' and wr'-match:
(((wr'\downarrow_!)\downarrow_{\{q,r\}})\downarrow_{!?})=(((wq)\downarrow_?)\downarrow_{!?}) and wr'\in\mathcal{L}^* r by (meson\ prefixE)
     have ((?v')\downarrow_r) \in \mathcal{L}^* r using mbox-exec-to-infl-peer-word [of ?v' r] using v-IH
by blast
     then have wr' \cdot x' \in \mathcal{L}^* \ r \ \text{by} \ (simp \ add: \ v'r-def)
     have q \in \mathcal{P} \land r \in \mathcal{P} by simp
   then have (is-parent-of q r) \longrightarrow ((subset-condition q r) \land ((\mathcal{L}^*(q)) = (\mathcal{L}^*_{\sqcup \sqcup}(q))))
using assms(3) theorem-rightside-def by blast
     then have theorem-right-qr: ((subset-condition\ q\ r) \land ((\mathcal{L}^*(q)) = (\mathcal{L}^*_{\sqcup\sqcup}(q))))
by (simp\ add: \langle is-parent-of\ q\ r \rangle)
    have \exists x. (wq \cdot x) \in \mathcal{L}^* \ q \land (((wq \cdot x)\downarrow_?)\downarrow_!?) = ((((wr' \cdot x')\downarrow_!)\downarrow_{\{q,r\}})\downarrow_!?) using
subset-cond-from-child-prefix-and-parent[
```

```
of q r wq wr' x' using \langle wr' \cdot x' \in \mathcal{L}^* r \rangle theorem-right-qr wq-in-q wr'-match
by fastforce
       then obtain x where wqx-def: (wq \cdot x) \in \mathcal{L}^* q and wqx-match: (((wq \cdot x) \cdot x) \cdot x) \cdot x
(x)\downarrow_?)\downarrow_!?) = ((((wr' \cdot x')\downarrow_!)\downarrow_{\{q,r\}})\downarrow_!?) by auto
      then have wqx-match-v': (((wq \cdot x)\downarrow_?)\downarrow_!?) = (((((?v' \cdot [a])\downarrow_!)\downarrow_r)\downarrow_{\{q,r\}})\downarrow_!?)
using e-trace2 e-v'-match v'-match-alt v'-proj-inv v'r-def by argo
     then obtain xs ys where x-shuf: (xs \cdot ys) \sqcup \sqcup_{?} x and xs \downarrow_{?} = xs and ys \downarrow_{!} = xs
ys using full-shuffle-of by blast
     then have xsys-recvs: (((wq \cdot (xs \cdot ys))\downarrow_?)\downarrow_!?) = (((((?v' \cdot [a])\downarrow_!)\downarrow_r)\downarrow_{\{q,r\}})\downarrow_!?)
by (metis (mono-tags, lifting) filter-append shuffled-keeps-recv-order wqx-match-v')
     have (wq \cdot xs \cdot ys) \sqcup \sqcup_? (wq \cdot x) using x-shuf shuffle-prepend by auto
     then have wq \cdot xs \cdot ys \in \mathcal{L}^* \ q \ \text{by} \ (\textit{metis UNIV-def} \ \langle \textit{is-parent-of} \ q \ r \rangle \ \langle \textit{wq} \cdot \textit{x}
\in \mathcal{L}^* q> assms(3) input-shuffle-implies-shuffled-lang
             mem-Collect-eq theorem-rightside-def)
     then have wqxs-L: wq \cdot xs \in \mathcal{L}^* q using local.infl-word-impl-prefix-valid by
simp
    have (wq \cdot xs)\downarrow_! = wq\downarrow_! by (simp\ add: \langle xs\downarrow_? = xs\rangle\ input\text{-}proj\text{-}output\text{-}yields\text{-}eps)
    have wqx-match-v'a: ((((?v' \cdot [a])\downarrow_q)\downarrow_?)\downarrow_!?) = (((wq \cdot x)\downarrow_?)\downarrow_!?) using e-trace2
e-v'-match v'-proj-inv v'-q-recvs-inv-to-a wqx-match-v' by presburger
    have xs\downarrow_? = (xs \cdot ys)\downarrow_? by (simp\ add: \langle ys\downarrow_! = ys\rangle\ output\text{-}proj\text{-}input\text{-}yields\text{-}eps)
     have (xs \cdot ys)\downarrow_? = (x)\downarrow_? using x-shuf by (metis shuffled-keeps-recv-order)
     then have xs\downarrow_? = (x)\downarrow_? using \langle xs\downarrow_? = (xs \cdot ys)\downarrow_? \rangle by presburger
     have (((wq \cdot x)\downarrow_?)\downarrow_{!?}) = (((wq \cdot xs)\downarrow_?)\downarrow_{!?}) by (simp\ add: \langle xs\downarrow_? = x\downarrow_?\rangle)
     then have xs-recvs: (((wq \cdot xs)\downarrow_?)\downarrow_!?) = (((((?v'\cdot [a])\downarrow_!)\downarrow_r)\downarrow_{\{q,r\}})\downarrow_!?) using
wqx-match-v' wqx-match-v'a by argo
    have v'-eq: (((((?v' \cdot [a])\downarrow_!)\downarrow_r)\downarrow_{\{q,r\}})\downarrow_!?) = (((?v' \cdot [a])\downarrow_q)\downarrow_?)\downarrow_!? using e-trace2
e-v'-match v'-proj-inv v'-q-recvs-inv-to-a by presburger
   then have (((wq \cdot xs)\downarrow_?)\downarrow_!?) = (((?v' \cdot [a])\downarrow_q)\downarrow_?)\downarrow_!? using xs-recvs by presburger
   then have (wq \cdot xs)\downarrow_? = (((?v' \cdot [a])\downarrow_a)\downarrow_?) using no-sign-recv-prefix-to-sign-inv[of
(wq \cdot xs)\downarrow_? (((?v' \cdot [a])\downarrow_q)\downarrow_?)] by (metis\ filter-recursion\ no-sign-recv-prefix-to-sign-inv)
pre {\it fix-order.dual-order.antisym}
             prefix-order.dual-order.refl)
     then have wqxs-order:(wq \cdot xs)\downarrow_? = (((?v' \cdot [a])\downarrow_q)\downarrow_?) \land (wq \cdot xs)\downarrow_! = ((?v'))
• [a]\downarrow_a\downarrow_! using \langle (a \# \varepsilon)\downarrow_a = a \# \varepsilon \rangle \langle (wq \bullet xs)\downarrow_! = wq\downarrow_! \rangle w-sends-0 w-sends-1
wq-to-v'a-trace by force
    have wqxs-trace-match: (((wq \cdot xs)\downarrow_?)\downarrow_!?) = (((((v \cdot [a])\downarrow_!)\downarrow_r)\downarrow_{\{q,r\}})\downarrow_!?) using
\langle v \cdot a \# \varepsilon = (v \cdot a \# \varepsilon) \downarrow_! \rangle e-trace e-trace2 w-def xs-recvs by presburger
     let ?wq = wq \cdot xs
     {f show} ?thesis using wqxs-order
     proof (cases (?v'\downarrow_q \cdot [a]) \sqcup \sqcup_? (?wq))
       case True
```

then have $(?v'\downarrow_q \cdot [a]) \in (\mathcal{L}^*(q))$ using theorem-right-qr by simp

then have $(?v'\downarrow_q \cdot [a]) \in (\mathcal{L}^*_{\sqcup\sqcup}(q))$ using input-shuffle-implies-shuffled-lang

then show ?thesis using mbox-exec-app-send[of q ?v' a] using a-facts v-IH

wqxs-L by blast

by blast next

```
case False
                                  then have (?v'\downarrow_q \cdot [a]) \neq (?wq) by (metis shuffled.refl)
                                  then have \neg ((?v'\downarrow_q \cdot [a]) \sqcup \sqcup_? (?wq)) using False by blast
                                  then have \neg ((?v'\downarrow_q \cdot [a]) \sqcup \sqcup_? (?wq)) \land (wq \cdot xs)\downarrow_? = (((?v' \cdot [a])\downarrow_q)\downarrow_?) \land
(wq \cdot xs)\downarrow_! = ((?v' \cdot [a])\downarrow_q)\downarrow_!
                                            using waxs-order by blast
                                  then have \exists xs' a'ys' b'zs'xs''ys''zs''. is-input a' \land is-output b' \land (?wq)
= (xs' @ [a'] @ ys' @ [b'] @ zs') \land
(?v'\downarrow_q \cdot [a]) = (xs'' @ [b'] @ ys'' @ [a'] @ zs'') using no-shuffle-implies-output-input-exists [of
                                               ?wq \ (?v'\downarrow_q \cdot [a])] by (metis \langle (a \# \varepsilon)\downarrow_q = a \# \varepsilon \rangle \ filter-append)
                                  have diff-trace-prems: ?wq\downarrow_? = (?v'\downarrow_q \cdot [a])\downarrow_? \land ?wq\downarrow_! = (?v'\downarrow_q \cdot [a])\downarrow_! \land ?vq\downarrow_! = (?v'\downarrow_q \cdot [a])
 \neg((?v'\downarrow_q \bullet [a]) \sqcup \sqcup_? ?wq) \land ?wq \neq (?v'\downarrow_q \bullet [a])
\land \ e \in \mathcal{T}_{None} \land ?v' \in \mathcal{T}_{None} \land (v \cdot [a]) \in \mathcal{T}_{None} \ | \ ! \land ?v' = (add\text{-}matching\text{-}recvs) \land (v \cdot [a]) \land (v \cdot 
v) \land ?v' \downarrow_q \in \mathcal{L}^* q
 \land ?wq \in \mathcal{L}^* q
                                           by (metis (no-types, lifting) False Suc.prems(1) \langle (a \# \varepsilon) \downarrow_q = a \# \varepsilon \rangle \langle (wq) \rangle
 • xs)\downarrow_! = wq\downarrow_! >
                                                   \langle ((wq \cdot xs)\downarrow_?) = ((add\text{-}matching\text{-}recvs\ v \cdot a\ \#\ \varepsilon)\downarrow_q)\downarrow_? \rangle \langle add\text{-}matching\text{-}recvs\ v \cdot a\ \#\ \varepsilon)\downarrow_q)\downarrow_? \rangle \langle add\text{-}recvs\ v \cdot a\ \#\ \varepsilon)\downarrow_q)\downarrow_q \rangle \langle add\text{-}recvs\ v \cdot a\ \#\ \varepsilon)\downarrow_q \rangle \langle ad\text
v\downarrow_q \cdot a \# \varepsilon \neq wq \cdot xs
                                                                                   \langle add\text{-}matching\text{-}recvs\ v \downarrow_q \in \mathcal{L}^*\ q \rangle\ e\text{-}def\ filter\text{-}append\ v'a1\ v\text{-}IH\ w\text{-}def
 wq-to-v'a-trace wqxs-L)
                                     have (e \cdot xs) \in \mathcal{T}_{None} using exec-append-missing-recvs[of wq xs r q v a e]
using diff-trace-prems wq-def wqxs-trace-match
                                                          e-trace w-def by blast
                                  have (e \cdot xs)\downarrow_q = e\downarrow_q \cdot xs\downarrow_q by simp
                                  have xs\downarrow_q = xs using infl-word-actor-app by (meson wqxs-L)
                                          then have (e \cdot xs)\downarrow_q = ?wq using \langle (e \cdot xs)\downarrow_q = e\downarrow_q \cdot xs\downarrow_q \rangle wq-def by
presburger
                              \mathbf{have}\ (e \boldsymbol{\cdot} xs) \downarrow_! = e \downarrow_! \ \mathbf{by}\ (simp\ add: \langle xs \downarrow_? = xs \rangle\ input\text{-}proj\text{-}output\text{-}yields\text{-}eps)
                                have diff-trace-prems2: ?wq\downarrow_? = (?v'\downarrow_q \cdot [a])\downarrow_? \land ?wq\downarrow_! = (?v'\downarrow_q \cdot [a])\downarrow_! \land
\neg ((?v' \downarrow_q \bullet [a]) \sqcup \sqcup_? ?wq) \land ?wq \neq (?v' \downarrow_q \bullet [a])
\land ?wq \in \mathcal{L}^* \ q \ \mathbf{using} \ \langle (e \cdot xs) \downarrow_q = wq \cdot xs \rangle \ \langle e \cdot xs \in \mathcal{T}_{None} \rangle \ diff\text{-trace-prems by}
 blast
                                  then have (e \cdot xs)\downarrow_! \neq (?v' \cdot [a])\downarrow_! using diff-peer-word-impl-diff-trace
                                                        [of ?wq q ?v' a (e \cdot xs) v] by simp
                                  then show ?thesis using \langle (e \cdot xs) \downarrow_! = e \downarrow_! \rangle e-trace2 by argo
                       qed
           qed
```

```
then have ((add\text{-}matching\text{-}recvs\ v)\downarrow_q @ [a]\downarrow_q) \in \mathcal{L}^*\ q\ \text{using}\ mbox\text{-}exec\text{-}to\text{-}infl\text{-}peer\text{-}word
by fastforce
  then have q-full: ((add\text{-}matching\text{-}recvs\ v)\downarrow_q @\ [!\langle (i^{q\to p})\rangle])\in \mathcal{L}^*\ q using a-def
by simp
 have v'p-in-L: (add-matching-recvs v)\downarrow_p \in \mathcal{L}^* p using mbox-exec-to-infl-peer-word
v-IH by blast
 have v'-recvs-match-pq: (((?v'\downarrow_!)\downarrow_q)\downarrow_{\{p,q\}})\downarrow_{!?} = (((add\text{-matching-recvs}((?v'\downarrow_!))\downarrow_?)\downarrow_p)\downarrow_{!?})
   using matching-recvs-word-matches-sends-explicit[of?v'pq] using <is-parent-of
p \not q \rightarrow v-IH by simp
   then have v'-recvs-match-pq2: (((?v'\downarrow!)\downarrow_q)\downarrow_{\{p,q\}})\downarrow_{!?} = (((?v'\downarrow?)\downarrow_p)\downarrow_{!?}) using
\langle w = add\text{-}matching\text{-}recvs\ v\downarrow_! \bullet a\ \#\ arepsilon 
angle\ w\text{-}def\ \mathbf{by}\ fastforce
  let ?wp = (?v'\downarrow_p)
  let ?wq\text{-}full = ((add\text{-}matching\text{-}recvs\ v)\downarrow_q @ [!\langle (i^{q \to p})\rangle])
  \mathbf{have}\;(\,?wp\,\boldsymbol{\cdot}\,[\,?\langle(i^{q\to p})\rangle])\in\mathcal{L}^*\;p\;\wedge\;(((\,?wp\,\boldsymbol{\cdot}\,[\,?\langle(i^{q\to p})\rangle])\downarrow_?)\downarrow_!?)=((((\,?wq\text{-}full)\downarrow_!)\downarrow_{\{\,p,\,q\,\}})\downarrow_!?)
    using subset-cond-from-child-prefix-and-parent-act [of p q ?wp (?v'\downarrow_q) i] by (smt
(verit, ccfv-SIG) filter-pair-commutative pq q-full theorem-right-pq v'-recvs-match-pq2
          v'p-in-L)
   then have (((?v')\downarrow_p \cdot [(?\langle (i^{q\rightarrow p})\rangle)])) \in \mathcal{L}^* \ p \ \text{by} \ simp
  then have a\text{-}ok\theta: (?v' \cdot ([!\langle (i^{q \to p})\rangle] \cdot [?\langle (i^{q \to p})\rangle])) \in \mathcal{T}_{None}
      using mbox-exec-recv-append[of ?v' i q p] using a-def a-send-ok by (metis
(no-types, lifting) append1-eq-conv append-assoc filter-pair-commutative pq v'-recvs-match-pq
w-def
   have a-match: (add\text{-matching-recvs }[a]) = ([!\langle (i^{q \to p})\rangle] \cdot [?\langle (i^{q \to p})\rangle]) using
a-def by force
   then have a-ok: ((add\text{-}matching\text{-}recvs\ v) \cdot (add\text{-}matching\text{-}recvs\ [a])) \in \mathcal{T}_{None}
using a-ok\theta by auto
  then show ?case by (simp add: add-matching-recvs-app w-def)
qed
theorem synchronisability-for-trees:
  assumes tree-topology
 shows is-synchronisable \longleftrightarrow ((\forall p \in \mathcal{P}. \forall q \in \mathcal{P}. ((is\text{-parent-of } p \ q) \longrightarrow ((subset\text{-condition})))))
p \ q) \wedge ((\mathcal{L}^*(p)) = (\mathcal{L}^*_{\sqcup \sqcup}(p))))))) (is ?L \longleftrightarrow ?R)
proof
```

assume ?L

```
proof clarify
    fix p q
    assume q-parent: is-parent-of p q
    have sync\text{-}def: \mathcal{T}_{None}|_{!} = \mathcal{L}_{\mathbf{0}} using \langle ?L \rangle by simp
    show subset-condition p \ q \land \mathcal{L}^* \ p = \mathcal{L}^*_{\sqcup \sqcup} \ p
    proof (rule conjI)
      show subset-condition p q unfolding subset-condition-def
      proof auto
         fix w w' x'
         assume w-Lp: is-in-infl-lang <math>p w
           and w'-Lq: is-in-infl-lang q w'
           and w'-w-match: filter (\lambda x. is-output x \wedge (get\text{-object } x = q \wedge get\text{-actor } x
= p
                     \vee get-object x = p \wedge get-actor x = q)) w' \downarrow_{!?} = w \downarrow_{?} \downarrow_{!?}
           and w'x'-Lq: is-in-infl-lang q (w' \cdot x')
        then show \exists wa. filter (\lambda x. is-output x \land (get-object x = q \land get-actor x = q)
p \lor get\text{-}object \ x = p \land
                   get\text{-}actor\ x=q))\ x'\downarrow_{!?}=\ wa\downarrow_{!?}\wedge\ (\exists\ x.\ wa=x\downarrow_?\wedge is\text{-}in\text{-}infl\text{-}lang)
p((w \cdot x))
           using w-Lp w'-Lq w'-w-match w'x'-Lq
         proof (cases is-root q)
           {\bf case}\ {\it True}
           then have (w' \cdot x') \in \mathcal{L} q using w'x'-Lq w-in-infl-lang by auto
           then have (w' \cdot x') \in \mathcal{T}_{None} using root-lang-is-mbox True by blast
           have w'\downarrow_!\downarrow_{\{p,q\}}\downarrow_!?=w\downarrow_!\downarrow_!? using w'-w-match by force
           let ?mix = (mix\text{-}pair\ w'\ w\ [])
           have ?mix \cdot x' \in \mathcal{T}_{None} sorry
           then obtain t where t \in \mathcal{L}_0 \land t \in \mathcal{T}_{None}|_! \land t = (?mix \cdot x')\downarrow_! using
sync-def by fastforce
              then obtain xc where t-sync-run : sync-run C_{I0} t xc using Sync-
Traces.simps by auto
          then have \exists xcm. mbox-run \mathcal{C}_{\mathcal{I}\mathfrak{m}} None (add-matching-recvs t) xcm using
empty-sync-run-to-mbox-run sync-run-to-mbox-run by blast
               then have sync-exec: (add\text{-}matching\text{-}recvs\ t) \in \mathcal{T}_{None} using Mbox-
Traces.intros by auto
           then have \exists x. (add\text{-}matching\text{-}recvs\ t) \downarrow_p = w \cdot x \text{ sorry}
           then obtain x where x-def: (add-matching-recvs t)\downarrow_p = w \cdot x by blast
           then have w'x'-wx-match: (w' \cdot x') \downarrow_! \downarrow_{\{p,q\}} \downarrow_! ? = (w \cdot x) \downarrow_! \downarrow_! ? sorry
```

show ?R

```
have (w \cdot x) \in \mathcal{L}^* p using sync-exec x-def by (metis mbox-exec-to-infl-peer-word)
            have \exists wa. x' \downarrow ! \downarrow_{\{p,q\}} \downarrow !? = wa \downarrow_{!?} \land (\exists x. wa = x \downarrow_? \land \textit{is-in-infl-lang } p (way)
• x)) using \langle w \cdot x \in \mathcal{L}^* p \rangle \langle w' \downarrow_! \downarrow_{\{p,q\}} \downarrow_! ? = w \downarrow_? \downarrow_! ? \rangle w' x' - wx - match by auto
            then show ?thesis by simp
          next
            case False
         then have is-node q by (metis NetworkOfCA.root-or-node NetworkOfCA-axioms
assms)
                 then obtain r where qr: is-parent-of q r by (metis False UNIV-I
path-from-root.simps path-to-root-exists paths-eq)
            have (w' \cdot x') \in \mathcal{L}^* \ q  by (simp \ add: w'x'-Lq)
            then have \exists w''. w'' \in \mathcal{L}^*(r) \land (((w' \cdot x') \downarrow_?) \downarrow_!?) = (((w'' \downarrow_{\{q,r\}}) \downarrow_!) \downarrow_!?)
               using infl-parent-child-matching-ws[of (w' \cdot x') \ q \ r] using qr by blast
           then obtain w'' where w''-w'-match: w'' \downarrow_! \downarrow_{\{q,r\}} \downarrow_! ? = (w' \cdot x') \downarrow_! \downarrow_! ? and
w''-def: w'' \in \mathcal{L}^* r by (metis (no-types, lifting) filter-pair-commutative)
             have \exists e. (e \in \mathcal{T}_{None} \land e \downarrow_r = w'' \land ((is\text{-parent-of } q r) \longrightarrow e \downarrow_q = \varepsilon))
using lemma4-4[of
                    w^{\prime\prime} \ r \ q] using \langle w^{\prime\prime} \in \mathcal{L}^* \ r \rangle assms by blast
            then obtain e where e-def: e \in \mathcal{T}_{None} and e-proj-r: e \downarrow_r = w''
               and e-proj-q: e \downarrow_q = \varepsilon using qr by blast
            let ?mix = (mix\text{-}pair\ w'\ w\ [])
            have e \cdot ?mix \cdot x' \in \mathcal{T}_{None} sorry
           then obtain t where t \in \mathcal{L}_0 \land t \in \mathcal{T}_{None} | \cdot \land t = (e \cdot ?mix \cdot x') | \cdot \cdot using
sync-def by fastforce
                then obtain xc where t-sync-run : sync-run C_{\mathcal{I}\mathbf{0}} t xc using Sync-
 Traces.simps by auto
            then have \exists xcm. \ mbox{-run} \ \mathcal{C}_{\mathcal{I}\mathfrak{m}} \ None \ (add-matching-recvs \ t) \ xcm \ using
empty-sync-run-to-mbox-run sync-run-to-mbox-run by blast
                 then have sync-exec: (add-matching-recvs\ t) \in \mathcal{T}_{None} using Mbox-
 Traces.intros by auto
            then have \exists x. (add\text{-}matching\text{-}recvs\ t) \downarrow_p = w \cdot x \text{ sorry}
            then obtain x where x-def: (add\text{-}matching\text{-}recvs\ t)\downarrow_p = w \cdot x \text{ by } blast
            then have w'x'-wx-match: (w' \cdot x') \downarrow_! \downarrow_{\{p,q\}} \downarrow_! ? = (w \cdot x) \downarrow_! ? \downarrow_! ? sorry
         have (w \cdot x) \in \mathcal{L}^* p using sync-exec x-def by (metis mbox-exec-to-infl-peer-word)
            have w'\downarrow_!\downarrow_{\{p,q\}}\downarrow_!?=w\downarrow_?\downarrow_!? using w'-w-match by force
            have \exists wa. x' \downarrow_! \downarrow_{\{p,q\}} \downarrow_!? = wa \downarrow_!? \land (\exists x. wa = x \downarrow_!? \land is-in-infl-lang p (w)
• x)) using \langle w \cdot x \in \mathcal{L}^* p \rangle \langle w' \downarrow_! \downarrow_{\{p,q\}} \downarrow_{!?} = w \downarrow_? \downarrow_! \rangle w'x'-wx-match by auto
            then show ?thesis by simp
          qed
       qed
```

```
show \mathcal{L}^*(p) = \mathcal{L}^*_{\sqcup \sqcup}(p)
      proof
        show \mathcal{L}^*(p) \subseteq \mathcal{L}^*_{\sqcup \sqcup}(p) using language-shuffle-subset by auto
        show \mathcal{L}^*_{\sqcup\sqcup}(p)\subseteq\mathcal{L}^*(p)
        proof
          fix v'
          assume v' \in \mathcal{L}^*_{\sqcup \sqcup}(p)
           then obtain v where v-orig: v' \sqcup \sqcup_{?} v and orig-in-L: v \in \mathcal{L}^*(p) using
shuffled-infl-lang-impl-valid-shuffle by auto
          then show v' \in \mathcal{L}^*(p)
          proof (induct v v')
            case (refl\ w)
            then show ?case by simp
          next
            case (swap \ b \ a \ w \ xs \ ys)
            then have \exists vq. vq \in \mathcal{L}^*(q) \land ((w\downarrow_?)\downarrow_!?) = (((vq\downarrow_{\{p,q\}})\downarrow_!)\downarrow_!?)
                 using infl-parent-child-matching-ws[of w p q] orig-in-L q-parent by
blast
           then obtain vq where vq-v-match: ((w\downarrow_?)\downarrow_!?) = (((vq\downarrow_{\{p,q\}})\downarrow_!)\downarrow_!?) and
vq\text{-}def: vq \in \mathcal{L}^* \ q \ \mathbf{by} \ auto
              have lem4-4-prems: tree-topology \land w \in \mathcal{L}^*(p) \land p \in \mathcal{P} using assms
swap.prems by auto
            then show ?case using assms swap vq-v-match vq-def lem4-4-prems
            proof (cases is-root q)
              {f case} True
              have vq \in \mathcal{L} q using vq-def w-in-infl-lang by auto
              then have vq \in \mathcal{T}_{None} using root-lang-is-mbox True by simp
              let ?w' = xs \cdot a \# b \# ys
              have \exists acc. mix-shuf vq v v' acc sorry
              then obtain mix where mix-shuf vq v v' mix by blast
              let ?mix = mix
              have ?mix \in \mathcal{T}_{None} sorry
               then obtain t where t \in \mathcal{L}_0 \land t \in \mathcal{T}_{None}|_{!} \land t = (?mix)\downarrow_! using
sync-def by fastforce
                then obtain xc where t-sync-run : sync-run C_{I0} t xc using Sync-
Traces.simps by auto
                 then have \exists xcm. mbox-run C_{Im} None (add-matching-recvs t) xcm
using empty-sync-run-to-mbox-run sync-run-to-mbox-run by blast
```

113

Traces.intros by auto

then have sync-exec: $(add\text{-}matching\text{-}recvs\ t) \in \mathcal{T}_{None}$ using Mbox-

```
then have (add\text{-}matching\text{-}recvs\ t)\downarrow_p = ?w' sorry
             then have ?w' \in \mathcal{L}^* p using sync-exec mbox-exec-to-infl-peer-word by
metis
              then show ?thesis by simp
            next
              case False
          then have is-node q by (metis NetworkOfCA.root-or-node NetworkOfCA-axioms
assms)
                then obtain r where qr: is-parent-of q r by (metis False UNIV-I
path-from-root.simps path-to-root-exists paths-eq)
              then have \exists vr. vr \in \mathcal{L}^*(r) \land ((vq\downarrow_?)\downarrow_!?) = (((vr\downarrow_{\{q,r\}})\downarrow_!)\downarrow_!?)
                   using infl-parent-child-matching-ws[of vq q r] orig-in-L vq-def by
blast
            then obtain vr where vr-def: vr \in \mathcal{L}^*(r) and vr-vq-match: ((vq\downarrow_?)\downarrow_{!?})
=(((vr\downarrow_{\{q,r\}})\downarrow_!)\downarrow_{!?}) by blast
             have \exists e. (e \in \mathcal{T}_{None} \land e \downarrow_r = vr \land ((is\text{-parent-of } q \ r) \longrightarrow e \downarrow_q = \varepsilon))
using lemma4-4 of
                    vr \ r \ q] using \langle vr \in \mathcal{L}^* \ r \rangle assms by blast
              then obtain e where e-def: e \in \mathcal{T}_{None} and e-proj-r: e \downarrow_r = vr
                and e-proj-q: e \downarrow_q = \varepsilon using qr by blast
              let ?w' = xs \cdot a \# b \# ys
              have \exists acc. mix-shuf vq v v' acc sorry
              then obtain mix where mix-shuf vq v v' mix by blast
              let ?mix = mix
              have e \cdot ?mix \in \mathcal{T}_{None} sorry
             then obtain t where t \in \mathcal{L}_0 \land t \in \mathcal{T}_{None}|_{!} \land t = (e \cdot ?mix)\downarrow_! using
sync-def by fastforce
                then obtain xc where t-sync-run : sync-run C_{\mathcal{I}\mathbf{0}} t xc using Sync-
Traces.simps by auto
                then have \exists xcm. mbox-run C_{Im} None (add-matching-recvs t) xcm
using empty-sync-run-to-mbox-run sync-run-to-mbox-run by blast
                then have sync-exec: (add\text{-}matching\text{-}recvs\ t) \in \mathcal{T}_{None} using Mbox-
Traces.intros by auto
              then have (add\text{-}matching\text{-}recvs\ t)\downarrow_p = ?w' sorry
             then have ?w' \in \mathcal{L}^* p using sync-exec mbox-exec-to-infl-peer-word by
metis
              then show ?thesis by simp
            qed
            \mathbf{case} \ (\mathit{trans} \ w \ w' \ w'')
            then show ?case by simp
```

```
qed
        qed
      qed
    qed
  qed
next
  assume ?R
  show ?L — show that TMbox = TSync, i.e. L > = (i.e. the sends are equal
  proof auto — cases: w in TMbox, w in TSync
    show w \in \mathcal{T}_{None} \Longrightarrow w \downarrow_! \in \mathcal{L}_0
    proof -
      assume w \in \mathcal{T}_{None}
      then have (w\downarrow_!)\in \mathcal{T}_{None} \mid_! by blast
      then have match-exec: add-matching-recvs (w\downarrow_!) \in \mathcal{T}_{None}
      using mbox-trace-with-matching-recvs-is-mbox-exec \forall p \in \mathcal{P}. \forall q \in \mathcal{P}. is-parent-of
p \ q \longrightarrow subset\text{-}condition \ p \ q \land \mathcal{L}^* \ p = \mathcal{L}^*_{\sqcup \sqcup} \ p \gt assms \ theorem\text{-}rightside\text{-}def
       then obtain xcm where mbox-run \mathcal{C}_{\mathcal{I}\mathfrak{m}} None (add-matching-recvs (w\downarrow_!))
xcm by (metis MboxTraces.cases)
    then show (w\downarrow_!) \in \mathcal{L}_0 using SyncTraces.simps \langle w\downarrow_! \in \mathcal{T}_{None} \downarrow_! \rangle matched-mbox-run-to-sync-run
by blast
    qed
  next — w in TSync -> show that w' (= w with recvs added) is in EMbox
    show w \in \mathcal{L}_0 \Longrightarrow \exists w'. \ w = w' \downarrow_! \land w' \in \mathcal{T}_{None}
    proof -
      assume w \in \mathcal{L}_0
        — For every output in w, Nsync was able to send the respective message and
directly receive it
      then have w = w \downarrow_! by (metis\ SyncTraces.cases\ run-produces-no-inputs(1))
         then obtain xc where w-sync-run : sync-run C_{\mathcal{I}\mathbf{0}} w xc using Sync-
Traces.simps \langle w \in \mathcal{L}_0 \rangle by auto
       then have w \in \mathcal{L}_{\infty} using \langle w \in \mathcal{L}_{\mathbf{0}} \rangle mbox-sync-lang-unbounded-inclusion
by blast
      obtain w' where w' = add-matching-recvs w by simp
            - then Nmbox can simulate the run of w in Nsync by sending every mes-
sage first to the mailbox of the receiver and then receiving this message
      then show ?thesis
      proof (cases xc = []) — this case distinction isn't in the paper but i need it
here to properly get the simulated run
        case True
         then have mbox-run \mathcal{C}_{\mathcal{I}\mathfrak{m}} None (w') [] using \langle w' = add-matching-recvs
w 
ightharpoonup empty-sync-run-to-mbox-run w-sync-run by auto
        then show ?thesis using \langle w \in \mathcal{T}_{None} | : \rangle by blast
      next
```

```
then obtain xcm where sim-run: mbox-run \mathcal{C}_{\mathcal{I}\mathfrak{m}} None w' xcm \land (\forall p. (last xcm p) = ((last xc) p, \varepsilon))

using \langle w' = add-matching-recvs w \rangle sync-run-to-mbox-run w-sync-run by blast

then have w' \in \mathcal{T}_{None} using MboxTraces.intros by auto

then have w = w' \downarrow_! using \langle w = w \downarrow_! \rangle \langle w' = add-matching-recvs w \rangle adding-recvs-keeps-send-order by auto

then have (w' \downarrow_!) \in \mathcal{L}_{\infty} using \langle w' \in \mathcal{T}_{None} \rangle by blast then show ?thesis using \langle w = w' \downarrow_! \rangle \langle w' \in \mathcal{T}_{None} \rangle by blast qed qed qed
```

 $\begin{array}{c} \text{end} \\ \text{end} \end{array}$