Bundelsturing met een vloeibaar kristal

Enes Lievens – Nathan Sennesael – Roeland Van Haecke

Inleiding

- Doelstelling van dit project:
 - Inkomende vlakke lichtbundel deflecteren
 - Hoek exact elektronisch sturen
 - Hoek zo groot mogelijk
 - Device zo klein mogelijk

Principe

- Typische waarden:
 - $\Delta n = 0.2$
 - $L = 50-100 \mu m$
 - d= 5-20 μm
- $\Theta \approx \Delta n d/L = 4.5^{\circ}$

Problemen met het 1e ontwerp

- 20µm vloeibaar kristal
- 5nm laag germanium

$$x_0^c = \sqrt{\frac{\sigma d d_1}{\omega \varepsilon_\perp}}$$

d = dikte LC $d_1 = dikte germanium$

De oplossing: dikker germanium

Dikte germanium: 5nm -> 50nm

Karakteristieke lengte: $x_c \rightarrow \sqrt{10} x_c$

IV metingen

Capactieve effecten treden op bij het te dun germanium

Microscopie - Theorie

$$I = sin^2 \left(\frac{\pi \Delta nd}{\lambda} \right)$$

$$n_e(x) = n_o + Cx \Rightarrow I \propto sin^2 \left(\frac{C\pi d}{\lambda}x\right)$$

Microscopie - Praktisch

Microscopie - Praktisch

$$n_e(x) = n_0 + \frac{\lambda}{\pi d} \arcsin(\sqrt{I(x)})$$

 $=> n_e(x) = n_0 + \frac{2\lambda}{Td}x$
 $I(x) \propto \sin^2(\frac{2\pi}{T}x)$

1D simulatie

$$d \ll L \implies \vec{E} \approx E \vec{u}_z$$

$$\frac{\mathrm{d}^2 V}{\mathrm{d}x^2} = j \frac{\omega \varepsilon_{eff}}{d_1 d\sigma} V$$

1D: conclusie

Meerdere frequenties:

$$\frac{\mathrm{d}^2 V_1}{\mathrm{d}x^2} = j \frac{\omega_1 \varepsilon_{eff}}{d_1 d\sigma} V_1$$
$$\frac{\mathrm{d}^2 V_2}{\mathrm{d}x^2} = j \frac{\omega_2 \varepsilon_{eff}}{d_1 d\sigma} V_2$$

Eén frequentie:

$\theta(deg)$	$V_1(0)(V)$	$V_1(L)(V)$	x_{c1}/L	$V_2(0)(V)$	$V_2(L)(V)$	x_{c2}/L
0.5	1.06	1.32	1.00	0.00	0.00	0.97
1.0	1.06	1.57	1.00	0.00	0.01	1.04
1.5	1.03	1.88	1.00	0.00	0.03	1.07
2.0	1.00	2.22	1.00	0.00	0.02	1.47
2.2	0.98	2.21	1.00	0.00	0.03	1.44

2D simulatie

z - afhankelijkheid

Complex microscopisch gedrag

$$-\nabla\cdot(\overline{\overline{\varepsilon}}\,\nabla V)=0$$

$$-K\nabla^2\theta = \frac{1}{2}\Delta\varepsilon \left(-\sin(2\theta)E_x^2 + \cos(2\theta)E_xE_z + \sin(2\theta)E_z^2\right)$$

2D: Conclusie

Rekenkundig veel intensiever

Trend gelijkaardig aan 1D simulatie

Algemeen: hogere brekingsindex

Experimentatie

Experimentele resultaten

Experimentele resultaten

 $\Delta V = 0.2 \ Volt \ RMS$

 $\Delta V = 1.5 \ Volt \ RMS$

Filmpjes

Filmpjes

Extra Slides

(Gemiddelde) brekingsindex

- Duidelijk niet lineair
- Mogelijke oplossing:
 - Invoeren extra parameters en optimaliseren

Optimalisatie

- Aanleggen meerdere frequenties
- Minimaliseren kostenfunctie: divergentie/stuurhoek
 - Moeilijk algoritmisch
 - Voorlopig trial and error
- Slechts beperkt gebied lineair

Productie Sample

- 1. Glassubstraat met geleidende ITO-laag
- 2. Elektrodes: lithografie
- 3. Zwak geleidende laag: sputtering germanium
- 4. Uitlijningslaag: spincoating nylon
- 5. Vloeibaar kristal: capillaire werking

MICROSCOOP

Planning toekomst

- Moeilijkheden sample oplossen
 - Lijm, UV-lamp kapot?
 - Tussentijd: optimalisatie, 2D
- Experiment vergelijken met theorie
 - Revisie
 - Gegeven sturing realiseren

Filmpje

Extra slides (voor eventuele vragen toe te lichten)

