Семинар 15

Задачи:

- 1. Задачник. §39, задача 39.15 (и). Матричными единицами называются матрицы заполненные нулями, а в одном месте единичкой.
- 2. Пусть $\phi \colon \mathbb{R}^3 \to \mathbb{R}^2$ линейное отображение, заданное в стандартном базисе матрицей $A = \begin{pmatrix} 1 & 2 & 0 \\ -1 & 0 & 2 \end{pmatrix}$. Пусть

$$f_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \ f_2 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \ f_3 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \ x = \begin{pmatrix} 6 \\ 9 \\ 14 \end{pmatrix}$$
 вектора в \mathbb{R}^3 , $g_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \ g_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ вектора в \mathbb{R}^2

- (a) Показать, что f_1, f_2, f_3 образуют базис в \mathbb{R}^3 и найти координаты вектора x в этом базисе.
- (b) Показать, что g_1, g_2 образуют базис в \mathbb{R}^2 и найти координаты вектора $\phi(x)$ в этом базисе.
- (c) Найти матрицу отображения ϕ в базисах f_1, f_2, f_3 и g_1, g_2 .
- 3. Пусть линейной отображение $\varphi \colon \mathbb{R}^3 \to \mathbb{R}^2$ задано по правилу $x \mapsto Ax$, где

$$A = \left(\begin{array}{ccc} 1 & -1 & 3 \\ 2 & 3 & -2 \end{array}\right)$$

Можно ли найти линейное отображение $\phi \colon \mathbb{R}^2 \to \mathbb{R}^3$ такое, что $\operatorname{Im} \phi = \ker \varphi$ и $\ker \phi = \operatorname{Im} \varphi$?

- 4. Найти матрицу какого-нибудь линейного отображения $\phi \colon \mathbb{R}^3 \to \mathbb{R}^2$ такого, что $\ker \phi = \langle \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix}, \begin{pmatrix} -1 \\ -2 \\ -4 \end{pmatrix} \rangle$ и $\operatorname{Im} \phi = \langle \begin{pmatrix} 2 \\ 3 \end{pmatrix} \rangle$
- 5. Пусть в \mathbb{R}^3 заданы следующие векторы:

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, v_3 = \begin{pmatrix} 5 \\ 8 \\ 2 \end{pmatrix}, v_4 = \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix}, v_5 = \begin{pmatrix} 3 \\ 5 \\ -1 \end{pmatrix}$$

Существует ли линейное отображение $\phi \colon \mathbb{R}^3 \to \mathbb{R}^2$ такое, что $\phi(v_i) = u_i$, где

(a)
$$u_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $u_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $u_3 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$, $u_4 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $u_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

(b)
$$u_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
, $u_2 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $u_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $u_4 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $u_5 = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$

- 6. Пусть $\mathbb{R}[x]_n$ множество всех многочленов с вещественными коэффициентами степени не больше n. Пусть $\frac{d}{dx} \colon \mathbb{R}[x]_n \to \mathbb{R}[x]_n$ отображение дифференцирования многочлена по переменной x.
 - (a) Найти матрицу этого отображения в базисе $1, x, ..., x^n$.
 - (b) Пусть $p \in \mathbb{R}[x]$ и $a, b \in \mathbb{R}$. Докажите, что уравнение af'' + bf' + f = p имеет единственное решение.

1

(c) Пусть $p \in \mathbb{R}[x]$ и $a \in \mathbb{R}$. Докажите, что уравнение af'' + f' = p имеет решение.