

Travel Salesman Problem

Discente(s):
Pedro ROLDAN
Leandro MOREIRA

 $\begin{array}{c} Docente: \\ Doutor \ Faroq \ AlTAM \end{array}$

Conte'udo

1	Intr	rodução	2											
	1.1	Requisitos Minimos												
	1.2	O circuito main	3											
		1.2.1 Matriz de leds												
	1.3	Display de 7 segmentos	4											
		1.3.1 Mapa Veitch-Karnaugh	5											
		1.3.2 DSP Decoder	7											
	1.4	LED Decoder												
		1.4.1 RGB Decoder	10											
	1.5	ROM	11											
		1.5.1 BCD - Binary Coded Decimal	12											
		1.5.2 ROM Decoder	13											
2	Eng	quadramento	14											
	2.1	Motivação	14											
	2.2	Objectivos	14											
3	Con	nclusões	14											
4	\mathbf{Bib}	liografia	15											
5	Ane	exos	16											

1 Introdução

O travel salesman problem (TSP) é um problema bastante comum largamente encontrado em diversas aplicações tais como: empresas de transporte (e.g. UPS), escalas de tripulação de companhias aéreas, etc.

Em principio, um vendedor necessita de efetuar uma viagem por diversas cidades, onde inicia a viagem numa determinada cidade (Casa), visita todas as cidades para vender os seus produtos, e retorna a casa.

1.1 Requisitos Minimos

O TSP pode ser representado por uma lista de nós, sendo o objectivo descobrir uma serie de caminhos (Edges) entre cada um dos nós.

Sendo que:

- Cada nó (Cidade) pode ser visitado apenas 1 vez.
- Os caminhos formam uma Tour.
- O custo da Tour deve ser o minimo possivel.

A tour TSP é um grafico direcionado, onde cada nó representa uma cidade, e cada edge representa um caminho entre 2 cidades.

Cada edge têm um peso, que é no seu caso mais simples a distancia euclidiana entre os seus nós.

Este peso pode ser composto por diversos fatores, no entanto neste projeto apenas se considera a distancia entre nós.

1.2 O circuito main

Esta é a representação geral do circuito digital.

Conforme podemos observar o circuito encontra-se dividido em 4 circuitos que se interligam de forma a que o sistema funcione como um todo.

- Matriz de Leds 10x10 (300 leds).
- Controlo Geral (Botão de controlo geral on/off e indicador visual).
- Mostrador de padrões do sistema (10 padrões disponíveis).
- Circuito com as ROM do sistema.
- Circuito de controle da matriz de leds.

De salientar que existem diversos pontos no circuito que poderiam ser eliminados, existindo apenas para que seja possível a visualização dos seus valores binarios.

1.2.1 Matriz de leds

A matriz de leds é composta por uma grelha de 10x10, onde em cada posição esta um conjunto de 3 leds, a fim de emular o correto funcionamento de um led RGB. Temos então uma grelha composta por 300 leds conforme a imagem no seu estado desligado.

Cada grupo de RGB Leds é então endereçável através de um conjunto de bits de controlo, processo que é descrito em 1.4.1 e 1.3.2 onde se pode visualizar a implementação realizada no circuito.

Figura 1: Matriz de Leds 10x10

1.3 Display de 7 segmentos

O display de 7 segmentos é um dispositivo bastante usado para indicação de valores numéricos.

Desde que ele pode indicar dígitos de 0 a 9 (10 dígitos), a informação binária precisa ter 4 dígitos binários, pois, com três, só oito valores podem ser exibidos.

Neste circuito, S0-S4 são as quatro entradas binárias e Q0-Q6 são as saídas para os sete segmentos do display.

A notação x indica valor indiferente (pode ser 0 ou 1), uma vez que não há valor a exibir acima da combinação 9.

Conforme referido em 1.5.1, a informação binária não tem necessariamente relação com o número binário que ela representa.

Por exemplo, para a combinação 0, Q0 Q1 Q2 Q3 Q4 Q5 Q6 tem 1111110. Este número binário não é igual ao dígito correspondente no display (0). Isto é, na realidade, um código para o display de 7 segmentos.

	D	С	В	Α	Q0	Q1	Q2	Q3	Q4	Q5	Q6
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	1	0	1	1
	1	0	1	0	X	X	X	X	X	X	x
	1	0	1	1	X	X	X	X	X	X	x
	1	1	0	0	X	X	X	X	X	X	x
	1	1	0	1	x	X	X	X	X	X	x
	1	1	1	0	x	X	X	X	X	X	x
	1	1	1	1	X	X	X	X	X	X	x

Tabela 1: Tabela de verdade

1.3.1 Mapa Veitch-Karnaugh

A partir da tabela de verdade, temos quatro entradas S0-S4 e 7 saidas Q0-Q6, que são eletricamente independentes, considera-se que cada saída é um circuito e foi elaborado um mapa para cada.

Obtemos então uma expressão POS simplificada a partir do seu respetivo mapa para cada uma das saídas.

Tabela 2: $Q0 = \overline{S2S0} + S1 + S2S0 + S3$

Tabela 3: $Q1 = \overline{S2} + \overline{S1S0} + S1S0$

Tabela 4: $Q2=\overline{S1}+S0+S2$

∖ab)				0.4
cd	00	01	11	10	\angle^{Q4}
00	1	1	1	1	
01	1	0	1	0	
11	X	X	X	X	
10	1	1	X	X	

Tabela 6: $Q4 = \overline{S2S0} + S1\overline{S0}$

Tabela 8: Q6= $\overline{S2}S1+S2\overline{S1}+S2$ $\overline{S0}+S3$

∖ab)				Ω^2
cd	00	01	11	10	\angle^{Q3}
00	1	1	1	1	
01	1	0	1	0	
11	X	X	X	Х	
10	1	1	X	X	

 $\begin{array}{llll} \textbf{Tabela 5:} & \mathrm{Q3} \!=\! \overline{S2S0} & \!+\! \overline{S2}S1 + S1\overline{S0} + \\ & S2\overline{S1}S0 + \!S3 \end{array}$

∖ab)				05
cd	00	01	11	10	$\angle^{\mathrm{Q}5}$
00	1	1	1	1	
01	1	0	1	0	
11	X	х	x	х	
10	1	1	X	X	

Tabela 7: Q5= $\overline{S1S0}+S2\overline{S1}+S2$ $\overline{S0}+S3$

Os valores indiferentes (X) devem ser inseridos. Como podem ser 0 ou 1, supõem-se valores convenientes para formar grupos os maiores possíveis. Quanto maior o grupo, menor o número de variáveis e o circuito é mais simples.

1.3.2 DSP Decoder

De forma a que fosse possível implementar um display de 7 segmentos foi necessário efetuar diversas operações, de forma a obter o resultado implementado que mostra os 10 padrões disponíveis no sistema.

Tendo a expressão simplificada para cada uma das saídas Q0-Q7, podemos então implementar o respetivo circuito de forma a que cada digito binário recebido tenha a sua correspondência em **código BCD** na saída.

Figura 2: DSP Decoder

EN: Bit de controlo enable/disable

S0-S3: Conjunto binário de 4 bits correspondendo ao seu valor decimal

Q0-Q7: Conjunto binário para ligação ao display 7-segmentos conforme

indicado em 1.3.

De forma a exemplificar o valor 7_{10} tem a sua correspondência ao binário 0111_{BCD}

Figura 3: Display 7-Segmentos

1.4 LED Decoder

Este é o circuito que controla a matriz de leds.

Contendo 3 entradas, recebe em S0 um conjunto de 3 bits que definem a cor do led, em S1 e S2, recebem um conjunto de 10 bits que definem as linhas e as colunas respetivamente, indicando o led a ser usado na grelha.

Figura 4: Circuito LED Decoder

 ${\bf S0\text{-}S3}\colon$ Conjunto binário de 4 bits correspondendo ao seu valor decimal

Q0-Q99: Conjunto de saída para ligação ao led RGB

1.4.1 RGB Decoder

A função deste circuito é a de ao receber a indicação de posição através do grupo binário de S0 e S1, efetuar a correspondência de cor para a saída do led correspondente, através da separação do grupo de 3 bits.

Figura 5: RGB Decoder

S0-S3: Conjunto binário de 4 bits correspondendo ao seu valor decimal

1.5 ROM

A ROM (read-only memory), é um tipo de memória que permite apenas a leitura, ou seja, as suas informações são gravadas uma única vez e após isso não podem ser alteradas ou apagadas, somente acedidas. São memórias cujo conteúdo é gravado permanentemente.

Figura 6: Circuito de controle de ROMS

EN: Bit de controlo de enable/disable

S0-S9: Bit de entrada para seleção de ROM

Q0: Conjunto de 3 bits para seleção de cor RGB

Cada ROM é controlada por um contador exclusivo e um clock partilhado.

Figura 7: ROM Individual

Cada ROM tem uma estrutura dimensionada para cada conjunto de sequencias ..

A ROM é controlada por um contador associado a um clock, que permite que, em cada ciclo o contador avançe para uma nova posição (index) da ROM e efetue a leitura da sequencia de bits armazenada, que por sua vez define o endereço do led na matriz, assim como a sua cor e estado.

1.5.1 BCD - Binary Coded Decimal

O [1]código BCD foi criado para codificar os números decimais de 0 a 9, com 4 bits para cada dígito, ou seja, o BCD é a conversão dos decimais em um número binário de 4 bits e representa-se da seguinte forma:

Tabela 9: Tabela BCD

Digito Decimal	Codigo BCD
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Desta forma foi realizada a codificação segundo cada palavra do código BCD, que corresponde ao digito decimal correspondente a cada ROM utilizada.

1.5.2 ROM Decoder

Figura 8: Circuito ROM Decoder

EN: Bit de controlo de enable/disable

 ${\bf S0\text{-}S3}\colon$ Conjunto de 4 bits de entra que determina a escolha da ${\bf ROM}$ a ser

utilizada

 $\mathrm{Q0}\text{-}\mathrm{Q9}\text{:}$ Bit de controlo de saída com escolha de ROM

Tabela 10: Tabela de Seleção de ROM

	S3	S2	S1	S0	Q0	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9
0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	1	0	0	0	0	0	0	0	0
2	0	0	1	0	0	0	1	0	0	0	0	0	0	0
3	0	0	1	1	0	0	0	1	0	0	0	0	0	0
4	0	1	0	0	0	0	0	0	1	0	0	0	0	0
5	0	1	0	1	0	0	0	0	0	1	0	0	0	0
6	0	1	1	0	0	0	0	0	0	0	1	0	0	0
7	0	1	1	1	0	0	0	0	0	0	0	1	0	0
8	1	0	0	0	0	0	0	0	0	0	0	0	1	0
9	1	0	0	1	0	0	0	0	0	0	0	0	0	1

2 Enquadramento

O trabalho descrito neste relatório foi realizado recorrendo à linguagem de programação C, assim como os recursos disponibilizados na unidade curricular.

2.1 Motivação

A principal motivação para a realização deste trabalho, resulta da importância em criar e otimizar um sistema digital, assim como demonstrar os conhecimentos alcançados na disciplina de sistemas digitais.

2.2 Objectivos

Pretende-se através deste trabalho, criar um sistema de luzes como [2]Sistema Digital que implementa um sistema de luzes de acordo com um ou mais padrões.

Em ultima analise o sistema digital é um sistema eletrónico onde os níveis de tensão elétrica são mapeados como "0" e "1".

Na saída do circuito encontram-se ligados LEDs que estarão acesos ou apagados com "1" ou "0", respetivamente.

3 Conclusões

A matriz de leds desenvolvida, para além de permitir os requisitos pedidos no enunciado do trabalho prático, permite também o uso de animações com leds mais complexas, mais padrões disponíveis e sendo modular torna-se mais escalável, entre outras funcionalidades.

De frisar que devido à liberdade proporcionada para a construção dos circuitos, quer na sua forma de desenvolvimento quer na implementação permitiu desta forma aguçar a curiosidade para o uso de diversos componentes do simulador Logisim.

Foi sem duvida um desafio interessante, mas que por limitação de tempo, deixa ainda uma larga margem para melhoramentos.

4 Bibliografia

Referências

- [1] Carlos Sêrro Guilherme Arroz. Sistemas Digitais-Apontamentos das aulas teóricas Instituto Superior Técnico Departamento de Engenharia Electrotécnica e de Computadores. IST, 2005.
- [2] Doutor Cristiano Soares. Aulas Teórico-Práticas Sistemas Digitais 1º ano, 1º semestre da Licenciatura em Engenharia Informática do Instituto Superior Manuel Teixeira Gomes. ISMAT, 2016-2017.

5 Anexos

Ficheiro "relatorio. pdf"
e "ledmatrix.circ"
compactado num ficheiro "trabalho.zip".

Não existem quaisquer códigos ou listagens adicionais.