§1 Lecture 11-25

Definition 1.1. Let $A \subseteq \mathbb{R}$ and let $c := \{U_i : i \in I\}$, where I is an index set, U_i is open for all $i \in I$.

Then c i scalled an open cover of A if $A \subseteq U_{i \in I}U_i$. i.e. every $x \in A$ is contained.

If $y \subseteq I$ such that $\{U_j : j \in J\}$ coloneq $q\varphi$ is still a cover of A, we say that φ' is a finite subcover of φ .

Example 1.2

Let
$$A = [0,1]$$
 and let $\varphi \coloneqq \{V_{1/2}(x) : x \in [0,1]\}.$

Then φ is an open cover of [0,1] because

$$[0,1] \subseteq \cup_{x \in [0,1]} V_{1/2}(x) : x \in [0,1] \subseteq]-1/2, 3/2[$$

Theorem 1.3 (Heine-Borel)

 $A \subseteq \mathbb{R}$ is compact (closed and bounded) if and only if <u>every</u> open cover of A has a finite subcover.

Proof.

 \Rightarrow Special Case: A is a closed and bounded interval $[a,b] := I_0$. Assume that c is an open cover of I_0 that doesn't have a finite subcover. Divide I_0 into two closed subintervals of equal width [a,c] and [c,b] where $c=\frac{a+b}{2}$.

For at least one of these subintervals, φ does not have a finite subcover. Otherwise, φ would have a finite subcover φ' of $[a,\varphi]$ and φ'' of $[\varphi,b]$. Then $\varphi' \cup \varphi''$ would be a finite open cover of I_0 , which doesn't exist.

Let I_1 be (one of) the subinterval(s) without finite subcover. Divide I_1 into 2 closed subintervals of equal width. At least one of them doesn't have A.

We obtain a nested sequence $I_0 \supseteq I_1 \supseteq I_2 \supseteq \cdots$ of closed and bounded intervals. Then

$$\cap_{n\in\mathbb{N}_0}I_n\neq\varnothing$$

by the nested interval property.

Let $x_0 \in \bigcap_{n \in \mathbb{N}_0} I_n$. Then $x_0 \in I_0$, thus $\exists i \in I$ such that $x_0 \in U_i$ which is open. Thus, $\exists \epsilon > 0 : V_{\epsilon}(x_0) \subseteq U_i$.

Claim: $\exists n \in \mathbb{N}_0 : I_n \subseteq V_{\epsilon}(x_0).$

Proof. $|I_n| = 1/2^n |I_0|$. Let $n \in \mathbb{N}_0$ such that $1/2^n |I_0| < \epsilon$.

Let $x \in I_n$ be arbitrary. Then $|\underbrace{x}_{\in I_n} - \underbrace{x_0}_{\in I_n}| \le 1/2^n |I_0| < \epsilon \Rightarrow x \in V_{\epsilon}(x_0)$.

 $\Rightarrow I_n \subseteq V_{\epsilon}(x_0)$. Now we have:

$$I_n \subseteq V_{\epsilon}(x_0) \subseteq U_i$$

i.e. $\{U_i\}$ covers I_n

 φ has a finite (of length 1) subcover for I_n . CONTRADICTION.

 $\Rightarrow \varphi$ does have a finite subcover.

General Case; $A \subseteq \mathbb{R}$ compact. φ open cover. Since A is bounded, $\exists M > 0$ such that $A \subseteq [-M, M]$. Let $U := \mathbb{R}/A$ which is open.

Consider $\varphi' := \varphi \cap \{U\}$. Then φ' covers \mathbb{R} . Thus φ' covers [-M, M] which is closed and bounded interval by special case.

By special case, φ' has a finite subcover φ'' . φ'' may not be a subcover of φ because φ'' may contain U. However, if φ'' should contain U, we can simply remove it.

i.e. if $U \in \varphi''$, let $\varphi''' = \varphi''/\{U\}$. If $U \notin \varphi''$, let $\varphi''' \coloneqq \varphi''$.

Since $U = \mathbb{R}/A$, φ''' will still cover A. Thus we've obtained a finite subcover of A.

Theorem 1.4

 $A \subseteq \mathbb{R}$ is compact (closed and bounded) if and only if <u>every</u> open cover of A has a finite subcover.

Proof.

 \Leftarrow Let A not be compact. We need to find an open cover of A without a finite subcover. A not closed: assignment 12.

A unbounded

Let $\varphi := \{U_n : n \in \mathbb{N}\}$ where $U_n :=]-n, n[$. Then φ covers \mathbb{R} and thus A. Consider any finite subset $m\{U_{n_1}, \cdots, U_{n_k}\}$.

Remark 1.5. THe "classical" definition of compacness is closed and bounded, however this definition doesn't generalize will beyond \mathbb{R}^n since there isn't even a notion of boundedness on general "topological spaces" However, open covers still make perfect sense on topological spaces. Thus, the <u>def</u> of compactness was revised to

Definition 1.6 (Modern definition of compactness). A is called compact if every open cover of A has a finite subcover.

"Modern" heine borel becomes:

Definition 1.7. $A \subseteq \mathbb{R}$ is compact if and only if A is closed and bounded.

Applications of heine borel: It can often be useful to generalize "local" properties of functions to "global" properties if the domain is compact.

Definition 1.8. $f: A \to \mathbb{R}$ is called <u>locally bounded</u> if $\forall x_0 \in A, \exists \epsilon > 0 : f$ is bounded on the domain $V_{\epsilon}(x_0)$.

Example 1.9

 $f:]0, \infty[\to \mathbb{R}, x \to 1/x.$

f is bounded on any neighborhood about x_0 that does not contain 0 is in its boundary. Thus f is locally bounded, but <u>not</u> (globally) bounded!

However, this can't happen if the domain is compact

Theorem 1.10

Let $A \subseteq \mathbb{R}$ be compact. $f: A \to \mathbb{R}$ be locall bounded. Then f is bounded (on A).

Proof. Let $x \in A$ be arbitrary. f locally bounded $\Rightarrow \exists \epsilon_x > 0$ such that f is bounded on interval $V_{\epsilon_x}(x)$.

Then $\varphi := \{V_{\epsilon_x} : x \in A \text{ is an open cover of } A. \text{ Since } A \text{ is compact, } \varphi \text{ has a finite subcover } \{V_{\epsilon_{x_1}}, \cdots, V_{\epsilon_{x_n}}(x_n)\}.$

On each of these n neighborhoods, f is bounded.

$$\Rightarrow \exists M_1, \cdots, M_n \geq 0$$

such that $|f|(x) \leq M_1, \dots, |f|(x) \leq M_n$ bounded on $V_{\epsilon_n}(x_n)$.

Let
$$M := \max\{M_1, \dots, M_n\}$$
. Then $|f|(x) \leq M, \dots, |f| \leq M$.