

UNIVERSIDADE FEDERAL DE SERGIPE - UFS DEPARTAMENTO DE MATEMÁTICA - DMA

ANTHONY DOS ANJOS MARQUES JÉSSICA MONTALVÃO ETINGER ALVES

Disciplina: Tópicos de Matemática Aplicada

Classificação de Tumores Mamários com CNN

1 Introdução

Este trabalho visa desenvolver um classificador binário para tumores mamários em mamografias utilizando **Redes Neurais Convolucionais (CNNs)**. O conjunto de dados, préprocessado e balanceado, é ideal para explorar técnicas de aprendizado profundo aplicadas ao diagnóstico médico.

2 Fundamentação Teórica

2.1 Redes Neurais Convolucionais (CNNs)

As CNNs são arquiteturas de aprendizado profundo projetadas para processar dados com estrutura espacial, como imagens. Sua eficácia em tarefas de visão computacional deve-se a três propriedades principais:

- Convolução: Operação local que aplica filtros (kernels) para extrair características hierárquicas.
- Pooling: Redução dimensional que preserva características dominantes.
- Invariância a translações: Capacidade de reconhecer padrões independentemente de sua posição na imagem.

2.2 Operações Matemáticas

2.2.1 Convolução 2D

Para uma imagem $I \in \mathbb{R}^{H \times W}$ e um kernel $K \in \mathbb{R}^{m \times n}$, a saída S(i,j) é calculada por:

$$S(i,j) = (I * K)(i,j) = \sum_{x=0}^{m-1} \sum_{y=0}^{m-1} I(i+x,j+y) \cdot K(x,y)$$
 (1)

2.2.2 Função de Ativação (ReLU)

Introduz não-linearidade ao modelo:

$$ReLU(x) = \max(0, x) \tag{2}$$

2.2.3 Max Pooling

Seleciona o valor máximo em janelas 2×2 :

$$\text{MaxPool}(i, j) = \max_{\substack{0 \le x < 2 \\ 0 \le y < 2}} I(2i + x, 2j + y)$$
 (3)

2.3 Treinamento da Rede

A otimização é realizada via backpropagation com:

• Função de perda (Cross-Entropy):

$$\mathcal{L} = -\frac{1}{N} \sum_{k=1}^{N} (y_k \log(\hat{y}_k) + (1 - y_k) \log(1 - \hat{y}_k))$$
(4)

• Atualização de pesos (Gradiente Descendente):

$$W \leftarrow W - \eta \frac{\partial \mathcal{L}}{\partial W} \tag{5}$$

3 Definição do Problema

3.1 Objetivo

Construir um modelo de CNN capaz de classificar imagens de mamografias em duas categorias:

- Classe 0: Tumores benignos (pastas '0')
- Classe 1: Tumores malignos (pastas '1')

4 Distribuição dos Dados

Tabela 1: Quantidade de Imagens por Classe

Conjunto	Benignos (0)	Malignos (1)
Treino	1569 (66.1%)	803 (33.9%)
Validação	448 (66.4%)	227 (33.6%)
Teste	208 (61.9%)	128 (38.1%)

5 Pré-processamento

- Normalização: Pixels escalonados para [0, 1].
- Redimensionamento: Imagens fixadas em 222×222 pixels (Originialmente 640×640).
- Data Augmentation: Técnicas aplicadas apenas ao conjunto de treino:
 - Rotação aleatória (20 graus)
 - Flip horizontal

6 Metodologia

6.1 CNN (Convolutional Neural Network)

6.1.1 Fundamentação Teórica

A arquitetura implementada consiste em:

- Blocos Convolucionais: A rede conta com três camadas convolucionais sequenciais, responsáveis por extrair padrões espaciais progressivamente mais complexos das imagens:
 - Conv2D: Utiliza filtros (kernels) 3x3, que percorrem a imagem realizando a operação de convolução. Essa operação permite detectar padrões locais, como bordas, texturas e formas. A função de ativação ReLU (Rectified Linear Unit) é aplicada em seguida, introduzindo não linearidade no modelo, essencial para lidar com relações complexas nos dados.
 - Número de filtros: Os filtros aumentam progressivamente (32, 64 e 128), o que permite que a rede aprenda representações mais abstratas à medida que se aprofunda.

- MaxPooling2D: Após cada convolução, aplica-se uma operação de MaxPooling 2x2, que reduz as dimensões espaciais da imagem (height e width), mantendo apenas os valores máximos em janelas deslizantes. Essa etapa tem como função: reduzir o custo computacional, tornar a rede mais robusta a variações de posição dos padrões e evitar o overfitting por meio da simplificação da representação.

• Camadas de Regularização:

Dropout: Durante o treinamento, aleatoriamente 30% dos neurônios são desativados em cada batch. Isso força a rede a não depender de caminhos específicos, promovendo generalização e tornando o modelo mais robusto para novos dados.

• Classificador:

- Flatten: Converte a matriz multidimensional de saída das camadas convolucionais em um vetor unidimensional, permitindo a entrada em camadas densas.
- Dense (64 neurônios: Camada totalmente conectada que aprende combinações das características extraídas anteriormente.
- Dense (2 neurônios + softmax): A camada de saída possui 2 neurônios, um para cada classe (Benigno ou Maligno), com a função softmax, que gera probabilidades normalizadas para a classificação.

6.1.2 Hiperparâmetros

• Função de Perda: Binary Crossentropy

• Otimizador: Adam ($\alpha = 0.001$)

• Métricas: Acurácia e Recall

• **Épocas**: 10

6.1.3 Implementação

Listing 1: Implementação da Arquitetura CNN

```
model = tf.keras.models.Sequential([
       # Bloco 1: 32 filtros + max pooling
2
       tf.keras.layers.Conv2D(32, (3,3), activation='relu', input_shape
3
           =(222,222,1)),
       tf.keras.layers.MaxPooling2D((2,2)),
4
5
       # Bloco 2: 64 filtros + max pooling
6
       tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
       tf.keras.layers.MaxPooling2D((2,2)),
       # Bloco 3: 128 filtros + max pooling
10
       tf.keras.layers.Conv2D(128, (3,3), activation='relu'),
11
       tf.keras.layers.MaxPooling2D((2,2)),
12
13
       # Regularização
14
       tf.keras.layers.Dropout(0.3),
15
16
       # Classificador
17
       tf.keras.layers.Flatten(),
18
       tf.keras.layers.Dense(64, activation='relu'),
19
       tf.keras.layers.Dropout(0.3),
       tf.keras.layers.Dense(2, activation='softmax')
   ])
```

Disponibilização do código: O projeto completo, incluindo datasets de treino e scripts auxiliares, está disponível em https://github.com/jessicaetinger/Classificacao_de_Tumores_Mamarios_com_CNN/tree/main.

7 Avaliação

7.1 Métricas de Desempenho

- Recall/Sensibilidade:
 - Métrica prioritária para detecção de casos malignos
 - Calculado como: $Recall = \frac{TP}{TP+FN}$
- Acurácia Balanceada:
 - Média aritmética dos recalls por classe
 - Evita viés em conjuntos desbalanceados
 - Calculado como: $\frac{Recall_{classe\ 0} + Recall_{classe\ 1}}{2}$
- Matriz de Confusão:
 - Análise detalhada dos tipos de erro:
 - * Falsos Positivos (FP): Diagnósticos incorretos de malignidade
 - * Falsos Negativos (FN): Casos malignos não detectados

8 Resultados

8.1 Resultados Esperados

Espera-se que o modelo proposto apresente um desempenho satisfatório na tarefa de classificação das imagens de câncer de mama, distinguindo corretamente entre casos benignos e malignos. Através da aplicação de redes neurais convolucionais (CNN), é previsto que o sistema atinja uma alta acurácia, bem como métricas relevantes como precisão, sensibilidade (recall) e especificidade.

Além disso, espera-se que o modelo apresente boa capacidade de generalização, mantendo seu desempenho ao ser testado com dados não vistos durante o treinamento. A utilização de técnicas de normalização, regularização e ajuste de hiperparâmetros visa reduzir o risco de overfitting, aumentando assim a robustez da rede.

Por fim, os resultados esperados incluem uma análise detalhada das métricas de desempenho, como matriz de confusão, curva ROC e valores de F1-score, de modo a oferecer uma visão abrangente sobre a efetividade do modelo na detecção automatizada de câncer de mama.

Tabela 2: Desempenho Esperado no Conjunto de Teste

Métrica	Valor Esperado
Acurácia	$\geq 85\%$
Recall (Classe 1)	$\geq 80\%$
F1-score	$\geq 82\%$

8.2 Resultados Obtidos

Conforme apresentado na Tabela 3, o modelo atingiu uma acurácia geral de 63% no conjunto de teste, o que está abaixo dos resultados esperados estabelecidos anteriormente (ver Tabela 2). A classe "Benigno" apresentou desempenho superior à classe "Maligno", com um F1-score de 0,72 contra 0,43, respectivamente. A maior taxa de acerto na classe "Benigno" indica que o modelo teve maior facilidade em reconhecer padrões não cancerígenos, mas teve dificuldades consideráveis em identificar corretamente os casos malignos, o que é particularmente preocupante em aplicações médicas.

O recall para a classe "Maligno" foi de apenas 38%, revelando que o modelo deixou de identificar corretamente uma quantidade significativa de casos de câncer. Isso pode comprometer a aplicabilidade clínica do sistema, uma vez que falsos negativos (malignos classificados como benignos) representam um risco elevado para os pacientes.

A discrepância entre os resultados esperados e os obtidos sugere que o modelo atual necessita de ajustes. Possíveis melhorias incluem o balanceamento do conjunto de dados, o aumento da complexidade da arquitetura, a aplicação de técnicas de aumento de dados (data augmentation) e uma melhor calibração dos hiperparâmetros. Além disso, é essencial revisar o pré-processamento das imagens e investigar possíveis vieses nos dados de treino.

Tabela 3: Resultados Obtidos no Conjunto de Teste

Classe	Precision	Recall	F1-score
Benigno (0)	0,67	0,78	0,72
Maligno (1) Acurácia geral	0,52	$\frac{0,38}{0.63}$	0,43

Figura 1: Matriz de Confusão

Figura 2: Curva de Acurácia

Por outro lado, analisaremos o modelo baseado na arquitetura Conv1D, aplicado ao conjunto de dados numéricos do load_breast_cancer via sklearn, apresentou um desempenho elevado no conjunto de teste. Conforme o relatório de classificação a seguir, a acurácia geral atingiu 96%, com resultados consistentes para ambas as classes:

Tabela 4: Relatório de Classificação do Modelo com sklearn (Conv1D)

Classe	Precisão	Recall	F1-score
Benigno (0) Maligno (1)	$1,00 \\ 0,95$	$0,90 \\ 1,00$	$0,95 \\ 0,97$
		0,96	

Figura 3: Matriz de Confusão Conv1D

Figura 4: Curva de Acurácia Conv1D

Esses resultados indicam que o modelo foi capaz de identificar praticamente todos os casos malignos, com baixo número de falsos negativos — o que é essencial em contextos médicos. O valor elevado de F1-score para ambas as classes demonstra equilíbrio entre precisão e sensibilidade, tornando o modelo robusto mesmo com um conjunto de teste relativamente pequeno (57 amostras).

8.3 Comparação com o Modelo Baseado em Imagens

Ao comparar com o modelo baseado em imagens reais (arquitetura Conv2D), observam-se algumas diferenças importantes:

- Fonte dos dados: o modelo com *Conv1D* utiliza atributos tabulares prontos e já padronizados, enquanto o modelo com *Conv2D* trabalha diretamente com imagens brutas, o que exige maior capacidade de generalização.
- **Desempenho**: embora o modelo com imagens ainda não tenha atingido um desempenho ideal, ele possui potencial para superar a abordagem numérica, uma vez que utiliza mais informações visuais.
- Facilidade de implementação: o modelo com dados do *sklearn* é mais rápido de treinar, consome menos memória e permite avaliação mais direta com ferramentas clássicas como matrizes de confusão e curvas ROC.
- Escalabilidade: modelos baseados em imagens requerem maior volume de dados e técnicas como data augmentation para atingir sua capacidade total.

8.4 Considerações Finais

Os resultados com o modelo baseado em *sklearn* mostram que, mesmo com uma rede relativamente simples, é possível alcançar uma performance elevada com dados tabulares bem

estruturados. Contudo, para problemas mais complexos ou com dados de imagem, o uso de redes convolucionais profundas e bem ajustadas ainda se mostra uma abordagem promissora, desde que acompanhada de estratégias adequadas de pré-processamento, balanceamento e aumento de dados.

9 Conclusão

Neste trabalho, foi possível desenvolver e comparar duas abordagens distintas de classificação para o diagnóstico de câncer de mama: uma baseada em dados tabulares com redes convolucionais unidimensionais (Conv1D) utilizando a biblioteca sklearn, e outra baseada em imagens com redes convolucionais bidimensionais (Conv2D) aplicadas a mamografias digitalizadas.

Os resultados obtidos mostram que o modelo treinado com dados tabulares apresentou desempenho superior em termos de acurácia (96%), precisão, recall e f1-score, superando a rede baseada em imagens, que apresentou acurácia de aproximadamente 63%. Essa diferença pode ser atribuída a fatores como a maior limpeza e organização dos dados tabulares, o tamanho reduzido do conjunto de imagens disponíveis e a complexidade intrínseca da análise visual automatizada.

A análise evidenciou que, embora redes convolucionais sejam extremamente eficazes na extração de padrões em imagens, a qualidade e a quantidade de dados disponíveis são fatores determinantes para o sucesso do modelo. Assim, para cenários onde há escassez de imagens bem anotadas ou computacionalmente custosas, modelos baseados em atributos clínicos seguem sendo uma alternativa viável e altamente eficiente.

10 Referências

Repositório do projeto:

https://github.com/jessicaetinger/Classificacao_de_Tumores_Mamarios_com_CNN/tree/main

(código completo deste trabalho)

Banco de dados:

 $\verb|https://www.kaggle.com/datasets/hayder17/breast-cancer-detection| (conjunto de imagens original)|$

Base teórica adaptada:

https://www.kaggle.com/code/mustafahafiz/breast-cancer-cnn/notebook (implementação que serviu como ponto de partida, com modificações em nossa abordagem)

Baseline comparativo:

https://www.kaggle.com/code/krutarthhd/breast-cancer-detection-using-cnn-98-accuracy (modelo de referência para análise de desempenho, sem modificações)