

BLE 透传模块 HM-BT220X 应用指南

HM-BT220X

目录

1	串口透	5传协议说明	2
2			
3		系统参数以及模块复位	
4	串口A	T 指令	4
	4.1	恢复出厂设置	4
	4.2	获取模块名称	4
	4.3	模块重命名	4
	4.4	获取波特率	5
	4.5	波特率设定	5
	4.6	获取物理地址 MAC	5
	4.7	设置模块 MAC 地址	5
	4.8	模块复位	6
	4.9	模块进入深度睡眠模式指令	6

	4.10	模块连接时间获取	6
	4.11	模块连接时间设置	6
	4. 12	模块 TX UUID 修改	7
	4. 13	模块 RX UUID 修改	7
	4. 14	获取发送功率	7
	4. 15	发射功率设定	7
	4. 16	AT 指令表	8
5	BLE 切	办议说明(APP 接口)	9
	5. 1	透传数据通道【服务 UUID: OXAOO1】	9
	5.2	防劫持密钥【服务 UUID:OXaOOA】	10
	5.3	模块参数设置【服务 UUID: OXaOO1】	11
	5.4	OTA 服务 UUID	13
	[F7E	BF3564-FB6D-4E53-88A4-5E37E0326063】	13
	5. 5	设备信息【服务 UUID:0x1800】	13
	5.6	GPIO 输出服务【服务 UUID: OxAOO8】	13

1 串口透传协议说明

模块通过串口和用户MCU相连,建立用户MCU和移动设备之间的双向通讯。用户可以通过串口,使用指定的AT 指令对串口波特率、BLE 连接间隔进行重设置(详见后面《串口AT 指令》章节)。针对不同的串口波特率以及BLE 连接间隔,以及不同的发包间隔,模块将会有不同的数据吞吐能力。默认串口波特率为115200bps。这里就在电平使能模式下,这种配置为例,对透传协议做详细介绍。模块可以从串口一次性最多传输244 字节数据包,模块会根据蓝牙协议协商情况进行分包或者发送完整包。移动设备方发往模块的数据包,必须根据协议进行发

- 送。模块收到无线包后,会实时转发到主机串口接收端。
- 1. 串口硬件协议: 115200bps, 8, 无校验位, 1 停止位。
- 2. 在模块连接成功后,会从UART TX 给出"TTM:CONNECT\r\n"字符串,可以根据此字符串来确定是否可以进行正常转发操作。也可以通过手机发送一个特定的确认字符串到模块,主机收到后即可确认已经连接。当连接被APP 端主动断开后,会从TX给出"connectedConn. parameters: interval 36 units\r\n"字符串提示,如果是连接断开,会从TX 给出"DISCONNECT\r\n"字符串提示。
- 3. 串口数据包的大小可以不定长,长度可以是244 字节以下的任意值,同样满足以上条件即可。但为最大效率地使用通讯的有效载荷,同时又避免通讯满负荷运行,推荐使用100,200,240 字节长度的串口数据包,包间间隔取大于20ms。注意: MCU发送完AT指令后需要等待模块回应,然后才能发下一个命令。透传数据和AT指令请勿长时间混合发送。

2 PB01 引脚操作时序

1. HM-BT220X 模块在 RESET 时检测 PB01 为高电平时进入 AT 模式,否则进入 数据透传模式。

3 恢复系统参数以及模块复位

1 使用AT指令复位模块或恢复默认系统参数(详见《串口AT 指令》章节);

恢复系统参数后,被声明为掉电保存的参数将被复位为默认值,另外防劫持密码,恢复到"123456",默认不使用密码。

所有参数都恢复出厂默认设置状态,包括:

a) 串口波特率,恢复到115200bps;

- b) 设备名称,恢复到"bly-001";
- d) 广播周期, 恢复到 200ms;
- e) 连接间隔,恢复到100ms;
- f) 模块MAC地址恢复到原厂默认;
- g) 发射功率,恢复到0dBm:

4 串口AT 指令

HM-BT220X模块在 RESET 时检测 PB01 为高电平时进入 AT 模式,否则进入数据 透传模式。在AT模式下,指令分为"set"和"get"两大类。所有设置指令在reboot 后生效。

4.1 恢复出厂设置

向串口RX 输入以下字串,重置模块配置参数,并重启: "reset\r\n"

4.2 获取模块名称

向串口RX 输入以下字串: "get name\r\n"

会从TX 收到: "name: xxxxxxx\n",字串后面"xxxxxxxx"为蓝牙模块名称。

4.3 模块重命名

向串口RX 输入以下字串,其中"xxxxxxx"为模块名称,长度为8个字节以内,ASCII 码20格式,

"set name xxxxxxxx\r\n "

如 "set name ABC123"表示将模块重命名为 "ABC123"。

若修改成功则会从TX 收到"success\n"确认。

4.4 获取波特率

向串口RX 输入以下字串, 获取波特率:

"get bdr\r\n "

会从TX 收到:

"baudrate:X\n"

其中X="9600","19200","38400","57600","115200",(以上数据格式都为ASCII码)。

4.5 波特率设定

向串口RX 输入以下字串,设定波特率:

" set bdr X\r\n "

其中X="9600","19200","38400","57600","115200",(以上数据格式都为ASCII码)。如 "set bdr 115200\r\n"表示设定波特率为115200bps。在执行完此指令之后会从TX 收到"baudrate:X\n"确认。如果设置值不在选项中,或者指令格式不对,则返回:"command parameter is mistake.\n"。

4.6 获取物理地址 MAC

向串口RX 输入以下字串:

" get address\r\n "

会从TX 收到:

字串后面"xxxxxxxxxxxxx"为6字节模块蓝牙地址。

4.7 设置模块 MAC 地址

向串口RX 输入以下字串:

会从TX 脚收到"success\n"确认,如果指令格式不对,则会返回:

"the address is valid. \n"

设定掉电保存,重启模块后,模块将按照新的MAC 地址进行工作。

4.8 模块复位

向串口RX 输入以下字串:

" reboot\r\n "

会迫使模块软复位一次。

4.9 模块进入深度睡眠模式指令

向串口RX 输入以下字串:

" g2s1eep\r\n "

会迫使模块进度深度睡眠

4.10 模块连接时间获取

向串口RX 输入以下字串:

" get conit\r\n "

会从TX 收到:

" conit: X\n"

字串后面"X"为2字节无符号整数

4.11 模块连接时间设置

向串口RX 输入以下字串:

" set conit $X\r\n$ "

会从TX 收到:

" conit: X\n"

字串后面"X"为2字节无符号整数

4.12 模块 TX UUID 修改

向串口RX 输入以下字串:

" set txuuid xxxx\r\n "

会从TX 收到:

" txuuid: xxxx\n"

字串后面"xxxx"为2字节无符号整数

4.13 模块 RX UUID 修改

向串口RX 输入以下字串:

" set rxuuid xxxx\r\n "

会从TX 收到:

" rxuuid: xxxx\n"

字串后面"xxxx"为2字节无符号整数

4.14 获取发送功率

向串口RX 输入以下字串, 自定义产品识别码;

"get txp\r\n"

例如向串口RX 输入"get txp\r\n",会从TX 脚收到"txp: Xdbm\n",其中X属于-20.0到+6之间的实数,精度到小数点后一位,asscii码表示。

4.15 发射功率设定

向串口RX 输入以下字串,设置相应的发射功率,单位dBm。

"set $txp X\r\n$ "

其中X属于-20.0到+6之间的实数,精度到小数点后一位,asscii码表示。之后会从TX 脚收到"txp: XdBm\n"。

4.16 AT 指令表

命令类型	命令格式	响应
查询指令	get name\r\n	name: x\n
设置指令	set name <x>\r\n</x>	success\n
参数说明	<x>: 要设定的新名字,长度为</x>	1-13 个字符
返回值说明	x: 模块名称	
示例	set name module\r\n	
	success\n	

表1 AT指令表

命令类型	命令格式	响应
查询指令	get txp\r\n	txp: xdBm \n
设置指令	set txp <x>\r\n</x>	txp: xdBm \n
参数说明	<x>: 要设置的功率值,2个字</x>	节长度,数值再-20.0 到+6.0dBm 的实数
返回值说明	x: 设定的功率值	
示例	set txp 5.3\r\n	
	txp: 5.3dBm\n	

表2 AT指令表

命令类型	命令格式	响应
查询指令	get bdr\r\n	baudrate: x\n
设置指令	set bdr <x>\r\n</x>	baudrate: x\n
参数说明	<x>: 要设置的波特率, 4 个字</x>	节长度,数值为【9600,19200,38400,
返回值说明	57600, 115200, 230400】 x: 设置的波特率	
示例	set bdr 115200\r\n baudrate: 115200\n	

表3 AT指令表

命令类型	命令格式	响应	
查询指令	get address\r\n	address: x\n	
设置指令	set address <x>\r\n</x>	address: x\n	
参数说明	<x>: 要设置的 mac, 6 个字节长度, 12 个字符形式, 其中字符范围是:</x>		
	0-9, a/A-f/F		
返回值说明	x: 设置的 mac, 格式为 XX:XX:>	(X:XX:XX:XX	
示例	set address 1122334455aa\r\n		
	address: 11:22:33:44:55:	AA\n	

表4 AT指令表

A A M2	A A I L I	
命令类型	命令格式	响应
nn '' <u><!-----> / \</u> '		
	HD 4 10 T/	

设置指令	reboot\r\n	模块重启
示例	reboot\r\n	

表5 AT指令表

命令类型	命令格式	响应
设置指令	reset\r\n	重置配置参数并重启模块
示例	reset\r\n	

表6 AT指令表

命令类型	命令格式	响应
查询指令	get conit\r\n	conit: x\n
设置指令	set conit <x>\r\n</x>	conit: x\n
参数说明	<x>设置连接周期,数值有效范</x>	围: 6~3200 的无符号整数, 对应时间从
	7.5 ms - 4 s, 2 个字节	
返回值说明	x: 设置的连接间隔	
示例	set conit 300\r\n	
	conit: 300\n	

表7 AT指令表

命令类型	命令格式	响应	
设置指令	set txuuid <x>\r\n</x>	txuuid: x\n	
设置指令	set rxuuid <x>\r\n</x>	rxuuid: x\n	
参数说明	<x>: 要设置的 uuid, 2 个字节长度, 4 个字符形式, 其中字符范围是:</x>		
	0-9, a/A-f/F		
返回值说明	x:设置的 uuid,格式为 XXXX		
示例	set txuuid aa01\r\n		
	txuuid: aa01\n		

表8 AT指令表

命令类型	命令格式	响应
设置指令	g2sleep\r\n	强制模块进入深度睡眠模式
示例	g2sleep\r\n	

表9 AT指令表

5 BLE 协议说明(APP 接口)

5.1 透传数据通道【服务 UUID: 0XA001】

特征值UUID	可执行的操作	字节数	默认值	备注	

A003	Write	20	无	写入的数据将会从串口TX 输出
A002	not: 6	20	工	从串口RX 输入的数据将会在此通道
	notify	20	无	产生通知发给移动设备

表2 透传数据通道服务

说明:蓝牙输入转发到串口输出。APP 通过BLE API 接口向此通道写操作后,数据将会从串口TX 输出。详细操作规则见《串口透传协议说明(桥接模式)》章节。串口输入转发到蓝牙输出。如果打开了FFE4 通道的通知使能开关,主CPU 通过串口向模块RX 发送的合法数据后,将会在此通道产生一个notify 通知事件,APP可以直接在回调函数中进行处理和使用。详细操作规则见《串口透传协议说明(桥接模式)》章节。

5.2 防劫持密钥【服务 UUID: 0Xa00A】

模块支持防劫持加密,此服务可以有效防止被非授权移动设备(手机)连接到此模块。模块的初始密码为"123456"(ASCII),此情况下APP 无需提交密码,视为不使用密码,任何安装指定APP 的移动设备可以对其发起连接。新密码(非"123456")的设置和备份保存由APP 完成,如果设置了新密码(非"123456"),开始启用防劫持密码。在APP 对此模块进行连接后,必须在蓝牙连接后的20 秒内向模块提交一次曾经设置的连接密码,否则模块会断开连接。在APP 提交正确密码到模块之前,无法对服务通道进行任何除提交密码之外的写操作。如果想恢复密码,需先复位模块。为了安全起见,模块不提供密码读操作,密码的记忆由APP 来负责。协议提供了密码通道来实现密码的提交,修改,和取消密码服务。同样也提供了密码事件通知服务来通知APP 对密码操作的结果,其中包括密码正确,密码错误,密码修改成功,取消使用密码四个事件。

特征值UUID	可执行的操作	字节数	举例	备注
AOOA	read/write	4	"654321" (长整型)	设置密码为654321

(掉电保存)	"999999" (长整型)	设置密码为999999
	"888888" (长整型)	设置密码为 888888

表3 密钥数据服务

说明:

- 1. 密码结构为4字节长整型,有效范围从100000~999999;
- 2. 当前密码在被APP 修改之前,默认为"123456";
- 3. 读取通道A00A,可以获取密码。

5.3 模块参数设置【服务 UUID: 0Xa001】

特征值UUID	可执行的操作	是否保存	字节数	默认值	备注
A004	Read/write	是	2	0 (有符号16位整数值)	读取/设置发射功率,数值有效范围: -200~+60的有符号整数,对应功率从 -20~+6dBm,2个字节
A005	Read/write	是	4	115200 (无符号32位 整数值)	读取/设置串口波特率: 常用值为: 9600、19200、38400、57600、115200、230400
A006	Read	_	4	_	获取固件版本号
A007	Read/write	是	2	160 (无符号16位整 数值)	读取/设置adv周期,数值有效范围: 32~16384的无符号整数,对应时间从 20 ms - 40.96 s, 2个字节

A008	Read/write	是	3	0x000000	读取/设定PC0、PC1、PC2口高低电平, 0xFFFFFF为高电平,0x0000000为低电 平
A009	Read/write	是	4	123456 (无符号32 位整数值)	读取/设置绑定密码,范围 100000 [~] 999999
2A00	Read/write	是	1~13	"bly-001" (1-~13 字节符号)	读取/设置设备名称,范围1~13字节

表4 参数设置服务

模块信息配置通道说明:

2A00 为设备名称设置通道

可以通过对此通道进行读写操作,来获取和设定模块名称。设置的名称长度L,必须满足0<L<13。默认为"bly-001"(7 byte)。

A005 为模块串口波特率设置通道

可以通过对此通道进行读写操作,来设定模块通用串口波特率,重启后有效,掉电保存。出厂设置默认为115200。

A007 为模块广播周期设置通道

可以通过对此通道进行读写操作,来设定模块广播周期。此参数掉电保存,出厂设置默认为200ms。

A004 为模块发射功率设置通道

可以通过对此通道进行写操作,来设定模块发射功率,此参数掉电保存。出厂设置默认为 0 dBm 。

5.4 OTA 服务 UUID

[F7BF3564-FB6D-4E53-88A4-5E37E0326063]

特征值 UUID	可执行的操	字节数	默认值	备注
	作			
F7BF3564-FB6D-4E53-88A4-5E37E0326063	write	20	NULL	Firmare

表5 OTA服务

5.5 设备信息【服务 UUID: 0x1800】

特征值 UUID	可执行的操作	字节数	默认值	备注
2A00	Read /Write	13	"bly-001"	模块名称
2A01	Read	2	00-00	Appearance

表6 设备信息服务

5.6 GPIO 输出服务【服务 UUID: 0xA008】

特征值 UUID	可执行的操作	字节数	默认值	备注
A008	Read /Write	3	0x000000	GPIOs 输出配置

表7 GPIO输出服务

模块3路GPIO功能说明:

GPIO 顺序依次为: PCO, PC1, PC2。