In this lecture, we define and study  $stable \, \infty\text{-}categories$ , which are exactly  $\infty$ -categories of the form  $\mathsf{Sptr}(\mathsf{C})$ .

### 1. Stability

**Definition 1.1.** Let C be a pointed  $\infty$ -category. A **triangle** in C is a diagram  $\Delta^1 \times \Delta^1 \to C$  depicted as

$$(1.1) \qquad X \xrightarrow{f} Y \\ \downarrow \qquad \qquad \downarrow g \\ 0 \longrightarrow Z$$

where  $0 \in C$  is the zero object. We say such a triangle is a **fiber sequence** if it is a pullback square, and a **cofiber sequence** if it is a pushout square.

For a morphism  $f: X \to Y$ , a **cofiber of** f is a fiber sequence (1.1). Dually, for a morphism  $g: Y \to Z$ , a **fiber of** g is a cofiber sequence (1.1).

1.2. We often abuse notation and write a triangle as  $X \xrightarrow{f} Y \xrightarrow{g} Z$ .

**Warning 1.3.** The datum of a triangle (1.1) is not determined by the chain  $X \xrightarrow{f} Y \xrightarrow{g} Z$ , even up to homotopy. Indeed, knowing such a triangle is equivalent to knowing a null-homotopy of  $g \circ f$ , which is not unique even up to homotopy.

1.4. Note however that a fiber sequence (1.1) is essentially uniquely determined by the morphism g. Dually, a cofiber sequence (1.1) is essentially uniquely determined by the morphism f. Hence we can use the notations

$$Fib(g)$$
,  $Cofib(f) \in C$ 

as long as we incorporate (1.1) as data in their definitions.

**Definition 1.5.** An  $\infty$ -category C is **stable** if it satisfies the following conditions:

- it is pointed
- any morphism in C admits a fiber and a cofiber
- ullet a triangle in C is a fiber sequence iff it is a cofiber sequence.
- 1.6. For stable  $\infty$ -categories, we can use the words fiber-cofiber sequences.

**Exercise 1.7.** Find all ordinary categories that are stable when viewed as  $\infty$ -categories.

**Proposition 1.8.** Let C be a pointed  $\infty$ -category admitting both finite limits and colimits. Then the following conditions are equivalent.

- (i) The functor  $\Sigma : \mathsf{C} \to \mathsf{C}$  is fully faithful.
- (ii) Any cofiber sequence in C of the form  $X \to 0 \to Z$  is also a fiber sequence.

Date: Nov. 12, 2024.

2

- (iii) Any cofiber sequence in C is a fiber sequence.
- (iv) Any pushout square in C is a pullback square.

**Corollary 1.9.** Let C be a pointed  $\infty$ -category admitting both finite limits and colimits. Then the following conditions are equivalent.

- (i) The functors  $\Sigma : \mathsf{C} \Longrightarrow \mathsf{C} : \Omega$  are equivalences.
- (ii) A triangle in C of the form  $X \to 0 \to Z$  is a cofiber sequence iff it is a fiber sequence.
- (iii) A triangle in C is a cofiber sequence iff it is a fiber sequence.
- (iv) A square in C is a pushout iff it is a pullback.

Proof of Proposition 1.8. The implications (ii)  $\Leftarrow$  (iii)  $\Leftarrow$  (iv) are obvious. It remains to show (i)  $\Rightarrow$  (iv). Suppose  $\Sigma$  is fully faithful. Since  $\Omega$  is a right adjoint of  $\Sigma$ , we have  $\mathsf{Id}_{\mathsf{C}} \simeq \Omega \circ \Sigma$ . For a pushout square

$$\begin{array}{ccc} W \longrightarrow X \\ \downarrow & & \downarrow \\ Y \longrightarrow Z, \end{array}$$

we need to show  $W \to X \times_Z Y$  is invertible. Consider the following commutative diagram



Here both the inner and outer squares are pushout squares, hence there exists an essentially unique dotted arrow  $Z \to \Sigma W$  making the above diagram commute. By functoriality of pullbacks, we obtain a morphism  $X \times_Z Y \to 0 \times_{\Sigma W} 0 \simeq \Omega \Sigma W$  fitting into the following commutative diagram

$$W \longrightarrow X \times_Z Y$$

$$\downarrow^{\simeq} \qquad \qquad \downarrow^{\simeq}$$

$$\Omega \Sigma W \longrightarrow \Omega \Sigma X \times_{\Omega \Sigma Z} \Omega \Sigma Y.$$

where the vertical morphisms are isomorphisms because of  $\mathsf{Id}_{\mathsf{C}} \simeq \Omega \circ \Sigma$ . By the 2-out-of-6 property of isomorphisms, we obtain  $X \xrightarrow{\simeq} X \times_Z Y$  as desired.  $\square$ 

**Proposition 1.10.** Let C be a pointed  $\infty$ -category. The following conditions are equivalent.

- (a) The  $\infty$ -category C is stable.
- (b) The  $\infty$ -category  $C^{op}$  is stable.
- (c) The  $\infty$ -category C admits finite colimits and  $\Sigma: C \to C$  is an equivalence.
- (d) The  $\infty$ -category C admits finite limits and  $\Omega: C \to C$  is an equivalence.
- (e) The ∞-category C admits finite colimits and limits, and a square in C is a pushout square iff it is a pullback square.

LECTURE 15 3

(f) The  $\infty$ -category C admits finite limits and  $\Omega^{\infty}: \mathsf{Sptr}(\mathsf{C}) \to \mathsf{C}$  is an equivalence.

*Proof.* The equivalence (a) $\Leftrightarrow$ (b) is obvious. The equivalence (d) $\Leftrightarrow$ (f) was proved last time. It remains to show (c) $\Leftrightarrow$ (e) because (d) $\Leftrightarrow$ (b) would follow by passing to the opposite  $\infty$ -category.

Suppose C admits finite colimits and limits, then  $(c) \Leftrightarrow (a) \Leftrightarrow (e)$  follow from  $(i) \Leftrightarrow (iii) \Leftrightarrow (iv)$  in Proposition 1.8 (and its dual version). Hence it remains to show (a) or (c) implies C admits finite colimits and limits.

For (a), we only need to show a stable  $\infty$ -category admits coequalizers. This follows from Exercise 2.13 below.

For (c), we can use  $\iota: C \to \mathsf{Ind}(C)$  to embed C into a presentable  $\infty$ -category. Note that  $\mathsf{Ind}(C)$  is pointed because  $\iota$  perserves and detects both finite colimits and limits. Moreover,  $\Sigma_{\mathsf{Ind}(C)}$  can be identified with  $\mathsf{Ind}(\Sigma_C): \mathsf{Ind}(C) \to \mathsf{Ind}(C)$  and thereby is also an equivalence. It follows from the previous discussion that  $\mathsf{Ind}(C)$  satisfies all the properties in the proposition. In particular, any pushout square in  $\mathsf{Ind}(C)$  is a pullback square. Since  $\iota$  perserves and detects both finite colimits and limits, we see the same holds for C. In particular, it admits pullbacks and therefore all finite limits as desired.

**Corollary 1.11.** Let C be a pointed  $\infty$ -category that admits finite limits. The  $\infty$ -category Sptr(C) is stable.

**Exercise 1.12.** Let C be a stable  $\infty$ -category. Then  $f: X \to Y$  is an isomorphism iff Fib(f) is a zero object iff Cofib(f) is a zero object.

**Exercise 1.13.** Let  $f: X \to Y$  be a morphism in a stable  $\infty$ -category C. Show that  $\Sigma \mathsf{Fib}(f) \simeq \mathsf{Cofib}(f)$ .

- 2. Homotopy category of stable ∞-category
- 2.1. In this section, let C be a stable ∞-category.

**Exercise 2.2.** Show that the canonical morphism  $X \sqcup Y \to X \times Y$  is invertible. *Hint:* 

$$\begin{array}{ccc} X \sqcup Y \longrightarrow X \sqcup 0 \\ \downarrow & & \downarrow \\ 0 \sqcup Y \longrightarrow 0 \sqcup 0 \end{array}$$

is a pushout square.

2.3. Since there is a canonical equivalence between  $X \sqcup Y$  and  $X \times Y$ , we use  $X \oplus Y$  to denote both of them.

**Exercise 2.4.** Let  $f, g: X \Rightarrow Y$  be two morphisms. Show that the composition

$$X \to X \oplus X \xrightarrow{(f,g)} Y \oplus Y \to Y$$

gives a well-defined binary operator on  $\pi_0 \mathsf{Hom}_\mathsf{C}(X,Y)$ . We denote the above composition by f+g.

**Exercise 2.5.** Let  $f, g: X \Rightarrow Y$  be two morphisms. Show that the above binary operator coincides with the addition operator on the abelian group

$$\pi_0 \operatorname{\mathsf{Hom}}_{\mathsf{C}}(X,Y) \simeq \pi_0 \operatorname{\mathsf{Hom}}_{\mathsf{C}}(X,\Omega^2 \Sigma^2 Y) \simeq \pi_0 \Omega^2 \operatorname{\mathsf{Hom}}_{\mathsf{C}}(X,\Sigma^2 Y) \simeq \pi_2 \operatorname{\mathsf{Hom}}_{\mathsf{C}}(X,\Sigma^2 Y).$$

**Exercise 2.6.** Let  $\sigma: \Delta^1 \times \Delta^1 \to C$  be a diagram of the form

$$\begin{array}{ccc} X & \longrightarrow 0 \\ \downarrow & & \downarrow \\ 0 & \longrightarrow \Sigma Y \end{array}$$

and  $\sigma'$  be its transpose. By the universal property of pushouts,  $\sigma$  induces a morphism  $\eta_{\sigma}: X \to \Omega \Sigma Y \simeq Y$ , which is an well-defined element in  $\pi_0 \mathsf{Hom}_{\mathsf{C}}(X,Y)$ . Show that  $\eta_{\sigma} + \eta_{\sigma'} = 0$ .

Corollary 2.7. The homotopy category hC is an additive category.

2.8. From now on, we write  $X[n] := \Sigma^n X$ , where for n < 0 we take  $\Sigma^n := \Omega^{-2}$ . Note that these objects are well-defined up to homotopy.

**Definition 2.9.** Let  $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1]$  be a chain in hC. We say it is a distinguished triangle in hC if there exists a diagram  $\Delta^1 \times \Delta^2 \to C$  depicted as

$$\begin{array}{ccc} X & \xrightarrow{\widetilde{f}} & Y & \longrightarrow & 0 \\ \downarrow & & \downarrow & & \downarrow \\ 0' & \longrightarrow & Z & \longrightarrow & W \end{array}$$

such that

4

- ullet the objects 0 and 0' are zero objects
- the morphisms  $\widetilde{f}$  and  $\widetilde{g}$  lift f and g respectively
- the outer square is a fiber-cofiber sequence
- the composition  $Z \to W \xrightarrow{\simeq} X[1]$  (which is well-defined up to homotopy) lifts h.

**Theorem 2.10** (HA.1.1.2.14). The above choice of the translation functor and the distinguished triangles makes hC a triangulated category.

Exercise 2.11. What would happen if we use diagrams of the form

$$\begin{array}{ccc} X & \longrightarrow 0 \\ \downarrow & & \downarrow \\ Y & \longrightarrow Z \\ \downarrow & & \downarrow \\ 0' & \longrightarrow W \end{array}$$

 $to\ define\ distinguished\ triangles\ in\ \mathsf{hC}?$ 

**Exercise 2.12.** For  $X \in C$ , construct a fiber-cofiber sequence

$$X \xrightarrow{(id,-id)} X \oplus X \xrightarrow{(id,id)} X$$

LECTURE 15 5

**Exercise 2.13.** Show that the coequalizer of  $f, g: X \Rightarrow Y$  is canonically equivalent to  $\mathsf{Cofib}(f-g)$ . Hint:

$$X \xrightarrow{(\mathsf{id}, -\mathsf{id})} X \oplus X \xrightarrow{(f,g)} Y$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

#### 3. Mapping spectra

**Construction 3.1.** Let C be a stable  $\infty$ -category. For  $X, Y \in C$ , define

$$\underline{\mathsf{Hom}}(X,Y)_n \coloneqq \mathsf{Maps}(X,Y[n]).$$

Note that for any  $n \ge 0$ , we have an isomorphism

$$\alpha_n : \mathsf{Maps}(X, Y[n]) \simeq \mathsf{Maps}(X, \Omega Y[n+1]) \simeq \Omega \mathsf{Maps}(X, Y[n+1]).$$

Let  $\underline{\mathsf{Hom}}(X,Y) \in \mathsf{Sptr}$  be the spectrum given by the spaces  $\{\underline{\mathsf{Hom}}(X,Y)_n\}$  and the isomorphisms  $\alpha_n$ . We call it the **mapping spectrum** between X and Y.

**Remark 3.2.** The above spectrum  $\underline{\mathsf{Hom}}(X,Y)$  is well-defined up to homotopy. In future lectures, we will equip  $\mathsf{Sptr}$  with a symmetric monoidal structure such that any stable  $\infty$ -category  $\mathsf{C}$  is canonically enriched over  $\mathsf{Sptr}$ .

**Definition 3.3.** Let C be a stable  $\infty$ -category. For  $X,Y \in C$ , define

$$\operatorname{Ext}^n(X,Y) := \pi_0 \operatorname{Hom}(X,Y)_n \simeq \pi_0 \operatorname{Maps}(X,Y[n])$$

and call it the n-th extension group between X and Y.

3.4. Note that the extension groups only depend on the images of X and Y in the triangulated category hC. It is well-known that for any distinguished triangle  $Y_0 \to Y_1 \to Y_2 \to Y_0[1]$  in hC, we have a long exact sequence

$$\cdots \rightarrow \operatorname{Ext}^n(X, Y_0) \rightarrow \operatorname{Ext}^n(X, Y_1) \rightarrow \operatorname{Ext}^n(X, Y_2) \rightarrow \operatorname{Ext}^{n+1}(X, Y_0) \rightarrow \cdots$$

In the next lecture, we will construct these long exact sequences using the theory of stale  $\infty$ -categories.

#### 4. Exact functors

4.1. Proposition 1.10 and Exercise 2.13 imply the following result.

**Proposition-Definition 4.2.** Let  $F: C \to C'$  be a functor between stable  $\infty$ -category. The following conditions are equivalent.

- The functor F preserves zero objects and fiber-cofiber sequence.
- $\bullet \ \ \textit{The functor} \ F \ \textit{is left exact, i.e., preserves finite limits}.$
- ullet The functor F is right exact, i.e., preserves finite colimits.

We say F is **exact** if it satisfies the above conditions.

**Exercise 4.3.** Let  $F: C \to C'$  be an exact functor between stable  $\infty$ -category. Show that  $hF: hC \to hC'$  has a natural structure of an exact functor<sup>1</sup> between triangulated categories.

<sup>&</sup>lt;sup>1</sup>Also known as a triangulated functor. Warning: being a triangulated functor is a structure rather than property.

**Definition 4.4.** Let  $\mathsf{Cat}_{\infty}^{\mathsf{ex}} \subseteq \mathsf{Cat}_{\infty}$  be the  $\mathit{sub-}\infty\text{-}\mathit{category}$  of small stable  $\infty\text{-}\mathit{categories}$  and exact functors between them.

**Exercise 4.5.** Let C be a stable  $\infty$ -category. Show that  $\Sigma$  and  $\Omega$  are exact. What are the triangulated functors induced by them?

#### 5. Closure properties

**Exercise 5.1.** Let C be a stable  $\infty$ -category and K be a simplicial set. Show that Fun(K,C) is stable.

**Exercise 5.2.** Let C and D be stable  $\infty$ -categories. Show that  $Fun_{ex}(C,D)$  is stable.

**Exercise 5.3.** Let C and D be presentable  $\infty$ -categories such that D is stable. Show that LFun(C,D) is stable.

**Exercise 5.4.** Let C be a small stable  $\infty$ -category, then Ind(C) is stable.

**Exercise 5.5.** Let C be a stable  $\infty$ -category, then  $C^{cpt}$  is stable. In particular,  $Sptr^{fin}$  is stable.

**Exercise 5.6.** Let C be a stable  $\infty$ -category, show that the idempotent completion of C is also stable.

**Exercise 5.7.** *Let* C *be a stable* ∞-*category, is* PShv(C) *stable*?

**Theorem 5.8.** The  $\infty$ -cateogry  $\mathsf{Cat}^\mathsf{ex}_\infty$  admits small limits and the inclusion  $\mathsf{Cat}^\mathsf{ex}_\infty \to \mathsf{Cat}_\infty$  preserves and detects small limits.

Sketch. We only need to show for any small diagram  $K \to \mathsf{Cat}_{\infty}$ ,  $i \mapsto \mathsf{C}_i$  such that each  $\mathsf{C}_i$  is stable and each connecting functor  $\mathsf{C}_i \to \mathsf{C}_j$  is exact, we have

- the limit  $\infty$ -category  $C := \lim_i C_i$  is stable
- the evaluating functors  $C \to C_i$  are exact.

Both claims can be checked using the explicit description of objects and mapping spaces in  $\mathsf{C}$ .

5.9. Similarly, one can prove the following result.

**Theorem 5.10.** The  $\infty$ -cateogry  $\mathsf{Cat}^\mathsf{ex}_\infty$  admits small filtered colimits and the inclusion  $\mathsf{Cat}^\mathsf{ex}_\infty \to \mathsf{Cat}_\infty$  preserves and detects small filtered colimits.

## 6. A UNIVERSAL PROPERTY OF Sptr

6.1. The following result implies  $\mathsf{Sptr}$  is the stable  $\infty$ -category freely generated by one object under small colimits.

**Exercise 6.2.** Let D be a presentable stable  $\infty$ -category. Show that evaluating at  $\mathbb{S} \in \mathsf{Sptr}$  induces an equivalence

LFun(Sptr, D) 
$$\stackrel{\simeq}{\rightarrow}$$
 D.

*Hint:* show RFun(D, Sptr)  $\xrightarrow{\Omega^{\infty} \circ -}$  RFun(D, Spc) is an equivalence.

**Exercise 6.3.** Let D be a presentable stable  $\infty$ -category. Show that evaluating at  $\mathbb{S} \in \mathsf{Sptr}^\mathsf{fin}$  induces an equivalence

$$\operatorname{\mathsf{Fun}}_{\mathsf{ex}}(\operatorname{\mathsf{Sptr}}^{\mathsf{fin}}, \mathsf{D}) \overset{\cong}{\to} \mathsf{D}.$$

LECTURE 15 7

# APPENDIX A. TRIANGULATED CATEGORIES WITHOUT MODELS

- A.1. There are triangulated categories that are not the homotopy category of any stable  $\infty$ -category.
- A.2. There are exact functors between homotopy categories of stable  $\infty$ -categories that do not come from exact functors between the stable  $\infty$ -categories.
- A.3. Suggested readings. [MSS07].

## References

[MSS07] Fernando Muro, Stefan Schwede, and Neil Strickland. Triangulated categories without models. *Inventiones mathematicae*, 170(2):231–241, 2007.