Skyler MacDougall

Homework 2: Due 1/29/2020

7. Consider the circuit below, with $R=1k\Omega$.

1. Determine the transconductance.

$$g = \frac{1}{R} = \frac{1}{1k\Omega} = 100\mu S \tag{1}$$

2. For $V_1=10V$ determine i_L for $R_L=500\Omega$.

$$i_L=i_i=rac{V_i}{R}=rac{10V}{1k\Omega}$$
 $i_L=1mA$ (2)

3. Repeat (2.) for $R_L=1k\Omega$.

$$i_i=i_L\mathrel{::} i_L=1mA$$

4. Determine the maximum value for ${\it R}_{\it L}$ for linear operation.

$$i_i R_L < V_{sat}; i_i = 1mA; V_{sat} = 13V$$
 (3)
 $R_L = 1.3k\Omega$

8. Consider the circuit below.

1. Determine the transconductance.

$$g = \frac{1}{R} = \frac{1}{2k\Omega} = 500\mu S \tag{4}$$

2. For $V_i=6V$ and $R_L=1.2k\Omega$, determine i_L .

$$i_{L} = \frac{V_{i}}{R} = \frac{6V}{2k\Omega}$$

$$i_{L} = 3mA$$
(5)

3. Determine the maximum value for R_L for linear operation.

$$R_L i_L < rac{V_{sat}}{2}$$
 (6)

9. Consider the circuit below.

1. Determine the value of β .

$$\beta = 1 + \frac{R_2}{R_1} = 1 + \frac{8k\Omega}{2k\Omega}$$

$$\beta = 5$$
(7)

2. For $i_i=0.6mA$ and $R_L=1k\Omega$, verify linear operation.

$$(R_2 + \beta R_L)(i_i) < V_{sat}$$
 (8)
 $(8k\Omega + 5(1k\Omega))(0.6mA) < 13V$
 $13 \cancel{K} \Omega * 0.6 \cancel{m} A < 13V$
 $7.8V < 13V$

3. Determine i_L for the conditions in (2.)

$$i_L = \beta i_i$$

$$i_L = 3mA$$
(9)

15. Consider the circuit below.

1. Write an equation for V_O in terms of the three input voltages.

$$V_O = -(V_1 + 2V_2 + 4V_3) \tag{10}$$

2. Determine V_O given $V_1=10V; V_2=3V; V_3=-7V.$

$$V_O = -(10V + 2(3V) + 4(-7V)) = 28V - 16V$$
 (11)
 $V_O = 12V$

3. Determine V_O given $V_1=8V; V_2=-4V; V_3=5V$.

$$V_O = -(8V + 2(4V) + 4(5V))$$
 (12)
 $V_O = -20V$

35. Design a current controlled voltage source to have a transresistance of $2k\Omega$. Then determine the peak value $i_{i_{pk}}$ permitted for the input current for linear operation.

$$egin{aligned} V_O &= -Ri_i < V_{sat} \ 2k\Omega * i_i < 13V \ i_i &= 6.5mA \end{aligned}$$

39. Design a linear combination circuit to combine two signals as follows:

$$v_o = -4v_1 - 8v_2 \tag{14}$$

Using the following specifications:

- 1. $R_{in} \geq 10 k \Omega$ at both inputs
- 2. All resistance values $\leq 100k\Omega$

41. Design a balanced closed-loop differential circuit to combine two signals as follows:

$$v_o = 3(v_1 - v_2) (15)$$

Use resistances in the range of $10k\Omega-100k\Omega$.

