대표적인 CNN 모델 분석

김준영

분석 모델

- AlexNet (ILSVRC2012)
- VGGNet (ILSVRC2014)
- GoogLeNet (ILSVRC2014)
- ResNet (ILSVRC2015)
- MobileNet (2017)
- ShuffleNet (2018)

모델의 발전 과정

- AlexNet -> GoogLeNet, VGG -> ResNet
 - 분류 정확도를 높이기 위해 모델을 대형화 하는 방향으로 연구
- MobileNet -> ShuffleNet
 - 충분한 정확도를 확보하면서도 연산 복잡도를 줄이는 방향으로 연구

AlexNet (1/6)

- ILSVRC2012에서 압도적인 성능으로 1위를 차지한 모델
 - Top-5 classification error
 - SuperVision(AlexNet): 15.3%
 - ISI: 26.1% / OXFORD_VGG: 26% / XRCE/INRIA: 27% / Univ. Amsterdam: 29.5%
- 대회 참가 팀 중 유일하게 CNN을 이용한 모델을 사용
- 뿐만 아니라 GPU를 연산에 활용한 유일한 모델

AlexNet (2/6)

- 5개의 Convolutional layer와 3개의 FC layer로 구성
 - 당시 GPU(GTX580)의 한계로 레이어의 채널을 둘로 나누어 연산

• Conv. 1 레이어와 Conv. 2 레이어에서 11x11, 5x5 라는 비교적 큰 커널을 사용해 컨볼루션 연산을 진행

AlexNet (3/6)

- AlexNet은 모델의 성능을 향상시키기 위해 여러 방법을 사용
 - ReLU activation function
 - Overrapped pooling
 - Local Response Normalization
 - Data augmentation
 - Dropout
 - Using GPU (GTX580 x2)

AlexNet (4/6)

- 활성화 함수로 ReLU 함수를 사용
 - 당시 보편화된 활성화 함수는 tanh 함수와 sigmoid 함수
 - 두 함수 역시 잘 작동한다는 주장이 있었지만 이러한 주장은 대개 학습 속도보다는 overfitting 방지에 초점이 맞춰져 있음
 - ReLU 함수는 기존 활성화함수보다 빠른 학습 속도를 보장
 - 따라서 ReLU 함수를 사용하면 기존에는 불가능했던 대형 데이터셋을 이용한 대형 모델을 학습하는 것을 가능하게 함

AlexNet (5/6)

Data augmentation

- Overfitting 문제를 해결하기 위한 대표적인 방법은 학습에 사용할 데이터의 양을 늘리는 것
- AlexNet은 이미지를 256x256 크기로 축소한 후, 무작위로 224x224 이미지를 추출
- 추출된 이미지를 상하 반전하거나 RGB 채널의 값을 변화시켜 한정된 이미지에서 다양한 데이터를 확보

AlexNet (6/6)

- 히든 레이어의 개수가 많으면 일반적으로 학습 능력이 좋아짐
- 그러나 망의 크기가 커지면 커질 수록 Overfitting에 빠질 가능성이 높아짐

Dropout

- 망의 크기가 커져 Overfitting에 빠지는 문제를 피하기 위해 무작위로 일부 뉴런을 생략한 후 학습을 수행
- 무작위로 뉴런이 생략되기 때문에 가중치가 큰 뉴런에 신경망이 받는 영향이 줄어 뉴런들이 동조화되는 경향을 피할 수 있음
- 이 과정을 무작위로 반복하면 여러 신경망을 통한 평균 효과를 얻을 수 있음

(a) Standard Neural Net

(b) After applying dropout.

VGG (1/4)

- ILSVRC2014에서는 AlexNet보다 더 깊어진 모델이 나타나기 시작
- GoogLeNet은 22개의 레이어 층으로, VGG는 19개의 레이어 층으로 구성
 - Error rate: GoogLeNet 6.65% / VGG19 7.32%
- CNN의 성능을 향상시키는 가장 직접적인 방법은 망의 크기를 키우는 것
 - 하지만 레이어의 수가 증가할 수록 파라미터의 수가 증가하게 되면서 Overfitting에 빠질 가능성이 높아짐
 - 또한 망의 크기가 커질 수록 연산량이 증가함
 - 8개의 레이어를 사용한 AlexNet도 학습에 일주일을 소모

VGG (2/4)

- VGG는 다른 모델들이 사용한 11x11, 7x7, 5x5와 같은 컨볼루션 연산 대신 3x3 컨볼루션 연산을 중첩해 이를 구현
 - 3x3 컨볼루션 연산 두 번은 5x5 영역에 컨볼루션을 한 것과 같은 효과
 - 3x3 컨볼루션 연산 세 번은 7x7 영역에 컨볼루션을 한 것과 같은 효과
- (3x3 Conv.)x2:5x5 Conv. = 18:25
- (3x3 Conv.)x3: 7x7 Conv. = 27: 49
- 3x3 컨볼루션의 중첩이 큰 컨볼루션 연산 한 번보다 더 높은 효율을 얻음

VGG (3/4)

- VGG는 Conv. Layer에 패딩을 적용했고 max pooling을 이용해 feature map의 크기를 줄임
- VGG는 비교적 간단한 방식으로 깊은 신경망을 구성할 수 있지만
- 파라미터의 수가 매우 많은(144M) 문제가 있음

VGG16 VGG19

		onfiguration			
A	A-LRN	В	С	D	E
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
layers	layers	1ayers	layers	layers	layers
	i	24 RGB imag	e)		
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	LRN	conv3-64	conv3-64 conv3-64		conv3-64
		max	pool		
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
			pool		
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
					conv3-256
			pool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
			pool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
			pool		
			4096		
			4096		
		FC-	1000		
		soft-	-max		

VGG (4/4)

- VGG는 입력 feature를 생성하기 위해 single-scale, 또는 multi-scale 기법을 이용
- Multi-scale
 - 이미지를 384x384로 축소시킨 후 224x224 영역을 추출하여 학습
 - 256~512 범위 내에서 무작위로 축소시킨 이미지에서 feature를 추출해 fine tuning을 수행

GoogLeNet (1/6)

- AlexNet과 VGG는 단순한 레이어 구조로 구성
- GoogLeNet은 더 많은 레이어를 이용하기 위해 복잡한 모듈 구조로 구성
 - 망의 깊이는 훨씬 깊지만 파라미터의 수는 훨씬 적음
 - AlexNet (8 layers): 60M
 - VGG19 (19 layers): 144M
 - GoogLeNet (22 layers): 5M

GoogLeNet (2/6)

- GoogLeNet은 단순히 Conv. Layer를 이어 붙인 구조가 모델을 확장하기에 적합하지 않다는 가정을 세움
- 다양한 크기의 Conv. Layer가 병렬적으로 연결된 inception 모듈을 제작

• Min Lin 등이 발표한 Network in Network 구조를 발전시킨 형태

GoogLeNet (3/6)

NiN

- 컨볼루션 연산이 feature 추출 능력은 우수하지만
- 컨볼루션의 linear한 특성 때문에 non-linear한 성질을 갖는 feature까지 추출하기에는 어려움이 있음
- 그래서 micro neural network를 제안

(a) Linear convolution layer

(b) Mlpconv layer

- 컨볼루션 대신 MLP를 사용해 feature를 추출한 다음 1x1 컨볼루션을 이용해 channel 크기를 축소
- 또, 효과적으로 feature를 추출했기 때문에 fc layer 없이 global average pooling만으로도 분류를 할 수 있음

GoogLeNet (4/6)

Inception Module

- GoogLeNet은 MLP 대신 다양한 크기의 컨볼루션 연산을 병렬적으로 두어 다양한 feature를 추출하는 방법을 선택
- 이는 컨볼루션 연산의 막대한 비용 문제로 인해 신경망을 확장하기 힘듬
- 연산량을 줄이기 위해 1x1 컨볼루션 연산으로 feature map의 차원의 줄인 후
- 3x3, 5x5 컨볼루션 연산을 진행

(a) Inception module, naïve version

(b) Inception module with dimensionality reduction

GoogLeNet (5/6)

■ 효과적으로 feature를 추출하였기 때문에 별도의 fc layer 연산 없이 average pooling 후 이미지 분류

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution	7×7/2	112×112×64	1							2.7K	34M
max pool	3×3/2	56×56×64	0								
convolution	3×3/1	56×56×192	2		64	192				112K	360M
max pool	3×3/2	28×28×192	0								
inception (3a)		28×28×256	2	64	96	128	16	32	32	159K	128M
inception (3b)		28×28×480	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	14×14×480	0								
inception (4a)		14×14×512	2	192	96	208	16	48	64	364K	73M
inception (4b)		14×14×512	2	160	112	224	24	64	64	437K	88M
inception (4c)		14×14×512	2	128	128	256	24	64	64	463K	100M
inception (4d)		14×14×528	2	112	144	288	32	64	64	580K	119M
inception (4e)		14×14×832	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	7×7×832	0								
inception (5a)		7×7×832	2	256	160	320	32	128	128	1072K	54M
inception (5b)		7×7×1024	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	1×1×1024	0								
dropout (40%)		1×1×1024	0								
linear		1×1×1000	1							1000K	1 M
softmax		1×1×1000	0								

GoogLeNet (6/6)

- Auxiliary Classifier
 - Vanishing gradient 문제를 해결하기 위해 두 개의 auxiliary classifier를 학습 과정에서 사용
 - Auxiliary classifier와의 분기점에서는 auxiliary classifier와 최종 출력의 back-propagation 결과를 결합해 학습

ResNet (1/7)

- ResNet은 152개의 레이어로 구성
- Top-5 error rate 3.56%라는 높은 정확도 달성

ImageNet Classification top-5 error (%)

ResNet (2/7)

- 망이 깊어질 수록 모델의 정확도가 증가하는 것은 VGG와 GoogLeNet이 보여줌
- 하지만 망이 깊어지면 깊어질 수록 제대로 학습시키는 것은 어려움
 - 56개의 레이어를 이용한 모델의 정확도가 20개의 레이어를 이용한 모델보다 낮음

Vanishing/exploding gradient 문제가 발생함

ResNet (3/7)

- ResNet은 Residual learning 기법을 통해 이러한 문제를 해결
- 기존 CNN 모델은 입력 x가 레이어를 거치면서 H(x)를 얻어내는 방식
- Residual learning은 레이어를 거친 결과를 F(x)라고 하고 이에 입력 x를 더해 "H(x) = F(x) + x"를 얻어내는 방식으로 구조를 변경

Figure 2. Residual learning: a building block.

ResNet (4/7)

- 기존의 학습 과정이 H(x)를 얻는 과정이었다면 Residual learning의 학습 과정은 F(x) = H(x) - x 를 얻는 과정
- 최적의 경우 F(x) = 0이 되어야 하기 때문에 학습 방향이 미리 결정되어 있는 상태에서 학습이 진행됨
- 입력과 출력의 잔차(residual)를 학습하고 나면,
 입력 값의 작은 변화에도 민감하게 반응할 수 있음

Figure 2. Residual learning: a building block.

ResNet (5/7)

- ResNet은 연산 복잡도를 줄이기 위해 fc layer와 dropout 등은 사용하지 않고 max pooling 또한 한 번만 사용
 - Feature map의 크기를 줄일 때는 stride를 2로 바꾼 컨볼루션 연산을 수행
- 덕분에 신경망이 깊어져도 기존 모델처럼 error가 증가하지 않음

ResNet (6/7)

 레이어가 깊어질 수록 학습 시간이 증가하는 문제를 해결하기 위해 50개 이상의 레이어를 사용하는 대형 모델을 구성할 때는 연산량을 줄이기 위해 1x1 컨볼루션을 이용

• 1x1 컨볼루션을 통해 차원을 축소하고 3x3 컨볼루션을 수행한 후 1x1 컨볼루션으로 차원을 증가시키는 방법을 사용

ResNet (7/7)

■ ResNet 레이어 구성

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer				
conv1	112×112		7×7, 64, stride 2							
			3×3 max pool, stride 2							
conv2_x	56×56	\[\begin{array}{c} 3 \times 3, 64 \ 3 \times 3, 64 \end{array} \] \times 2	[3×3,64]×3	\[\begin{array}{c} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{array} \times 3	1×1, 64 3×3, 64 1×1, 256	1×1, 64 3×3, 64 1×1, 256				
conv3,x		. ,	3×3, 128 3×3, 128 ×4	[1×1, 512]	\[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array} \] \times 4	\[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array} \] \times 8				
conv4.x	14×14	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times2$	3×3, 256 3×3, 256 ×6	\[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array} \times 6	\[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array} \] \times 23	\[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array} \] \times 36				
conv5.x				\[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array} \times 3	F 1 1 512 7	\[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array} \] \times 3				
	1×1		av	erage pool, 1000-d fc,	softmax					
FLO	OPs	1.8×10 ⁹	3.6×10 ⁹	3.8×10^{9}	7.6×10^{9}	11.3×10 ⁹				

MobileNet (1/8)

- 지금까지 CNN 모델은 정확도 향상을 위해 모델의 크기를 키우는 방향으로 연구가 진행됨
- 이러한 모델은 모바일 장치에서 사용할 수 없음
- 모바일 장치에서 사용하기 위한 모델은
 - 충분한 정확도를 확보하면서
 - 낮은 연산 복잡도와
 - 낮은 에너지 소모량을 만족시키는
 - 작은 모델이어야 함

MobileNet (2/8)

■ MobileNet은 작은 모델을 만들기 위해 Depthwise Separable Convolution 연산을 이용

Depthwise Separable Convolution

Depthwise Convolution + Pointwise Convolution(1x1 convolution)

MobileNet (3/8)

■ 기존 Convolution 연산은 Spatial한 부분과 depth 부분을 한 번에 처리

Standard Convolution

MobileNet (4/8)

■ Depthwise Separable Convolution 연산은 Spatial한 부분과 depth 부분을 나누어 처리함

Depthwise Separable Convolution

Depthwise Convolution + Pointwise Convolution(1x1 convolution)

MobileNet (5/8)

- 기존 Convolution 연산이 $"D_k \times D_k \times M \times N \times D_f \times D_f"$ 의 연산 복잡도를 갖는다면
- Depthwise Separable Convolution 연산은 ${}^{\prime\prime}D_k \times D_k \times M \times D_f \times D_f + M \times N \times D_f \times D_f {}^{\prime\prime}$ 의 연산 복잡도를 가짐
 - D_k : 커널 크기 / D_f : feature map 크기 / M: 입력 채널 수 / N: 출력 채널 수
- Depthwise Separable Convolution 연산이 동일한 영역을 처리하면서도 기존 연산의 1/N + 1/(Dk^2) 만큼의 연산 복잡도를 가짐

MobileNet (6/8)

■ Depthwise Separable Convolution은 컨볼루션 연산 중간에 Batch normalization과 ReLU를 넣을 수 있음

MobileNet (7/8)

■ MobileNet 레이어 구성

Table 1. MobileNet Body Architecture

Table 1. MobileNet Body Architecture				
Type / Stride	Filter Shape	Input Size		
Conv / s2	$3 \times 3 \times 3 \times 32$	$224 \times 224 \times 3$		
Conv dw / s1	$3 \times 3 \times 32$ dw	$112 \times 112 \times 32$		
Conv / s1	$1 \times 1 \times 32 \times 64$	$112 \times 112 \times 32$		
Conv dw / s2	$3 \times 3 \times 64$ dw	$112 \times 112 \times 64$		
Conv / s1	$1 \times 1 \times 64 \times 128$	$56 \times 56 \times 64$		
Conv dw / s1	$3 \times 3 \times 128 \text{ dw}$	$56 \times 56 \times 128$		
Conv / s1	$1 \times 1 \times 128 \times 128$	$56 \times 56 \times 128$		
Conv dw / s2	$3 \times 3 \times 128 \text{ dw}$	$56 \times 56 \times 128$		
Conv / s1	$1 \times 1 \times 128 \times 256$	$28 \times 28 \times 128$		
Conv dw / s1	$3 \times 3 \times 256 \text{ dw}$	$28 \times 28 \times 256$		
Conv / s1	$1 \times 1 \times 256 \times 256$	$28 \times 28 \times 256$		
Conv dw / s2	$3 \times 3 \times 256 \text{ dw}$	$28 \times 28 \times 256$		
Conv / s1	$1 \times 1 \times 256 \times 512$	$14 \times 14 \times 256$		
Conv dw / s1	$3 \times 3 \times 512 \text{ dw}$	$14 \times 14 \times 512$		
Conv / s1	$1 \times 1 \times 512 \times 512$	$14 \times 14 \times 512$		
Conv dw / s2	$3 \times 3 \times 512 \text{ dw}$	$14 \times 14 \times 512$		
Conv / s1	$1 \times 1 \times 512 \times 1024$	$7 \times 7 \times 512$		
Conv dw / s2	$3 \times 3 \times 1024 \text{ dw}$	$7 \times 7 \times 1024$		
Conv / s1	$1 \times 1 \times 1024 \times 1024$	$7 \times 7 \times 1024$		
Avg Pool / s1	Pool 7 × 7	$7 \times 7 \times 1024$		
FC/s1	1024×1000	$1 \times 1 \times 1024$		
Softmax / s1	Classifier	$1 \times 1 \times 1000$		

MobileNet (8/8)

■ Depthwise Separable convolution 모델은 convolution 모델보다 정확도는 1% 떨어지지만 연산량은 8.5배, 파라미터의 수는 7배 감소함

Table 4. Depthwise Separable vs Full Convolution MobileNet

Model	ImageNet Million		Million
	Accuracy	Mult-Adds	Parameters
Conv MobileNet	71.7%	4866	29.3
MobileNet	70.6%	569	4.2

■ MobileNet은 연산량과 파라미터의 수가 작은 모델이지만 VGG, GoogLeNet과 비교해도 떨어지지 않는 정확도를 보여줌

Table 8. MobileNet Comparison to Popular Models

Model	ImageNet Million		Million	
	Accuracy	Mult-Adds	Parameters	
1.0 MobileNet-224	70.6%	569	4.2	
GoogleNet	69.8%	1550	6.8	
VGG 16	71.5%	15300	138	

ShuffleNet (1/10)

- MobileNet은 Depthwise Separable Convolution을 이용해 연산량과 파라미터의 수를 대폭 줄임
- MobileNet을 분석해보면 1x1 컨볼루션이 연산량과 파라미터의 대부분을 차지함
 - 이를 줄이기 위한 연구가 시작

Table 2. Resource Per Layer Type

94.86%	74.59%
3.06%	1.06%
1.19%	0.02%
0.18%	24.33%
	.19%

■ ShuffleNet은 1x1 컨볼루션의 부하를 줄이기 위해 Grouped Convolution 기법을 사용

ShuffleNet (2/10)

- Grouped Convolution은 AlexNet에서 처음 사용
 - AlexNet은 당시 GPU(GTX580) 성능의 한계로 인해 layer의 채널을 각 GPU가 절반씩 나누어 처리함

ShuffleNet (3/10)

■ 2016년 Yani Ioannou 등은 Grouped Convolution이 단순히 성능이 떨어지는 장치에서 대형 컨볼루션 연산을 진행하기 위한 Engineering Hack이 아님을 보여줌

20% 4 groups no groups
19% 2 groups
18% 0.6 0.8 1 1.2

Model Parameters (# floats) ·109

ShuffleNet (4/10)

- Grouped Convolution을 적극적으로 이용한 모델로 ResNeXt가 있음
 - ResNet과 Inception을 조합해 모델을 만든 후, Grouped Convolution을 사용

ShuffleNet (5/10)

■ ResNeXt는 이를 통해 효율적으로 ResNet보다 높은 성능을 확보

ShuffleNet (6/10)

- ShuffleNet은 ResNeXt에 영감을 얻어
 Grouped Convolution을 MobileNet에 적용
- 동시에 연산 중간에 Group된 채널을 섞어주어 각 Grouped Convolution이 줄어든 채널에 overfitting 되는 것을 방지

ShuffleNet (7/10)

Grouped Convolution 연산 구조

ShuffleNet (8/10)

■ ShuffleNet 레이어 구조

Layer	Output size	KSize	Stride	Repeat	Output channels (g groups))
					g=1	g = 2	g = 3	g = 4	g = 8
Image	224×224				3	3	3	3	3
Conv1	112×112	3×3	2	1	24	24	24	24	24
MaxPool	56×56	3×3	2						
Stage2	28×28		2	1	144	200	240	272	384
	28×28		1	3	144	200	240	272	384
Stage3	14×14		2	1	288	400	480	544	768
	14×14		1	7	288	400	480	544	768
Stage4	7 × 7		2	1	576	800	960	1088	1536
	7×7		1	3	576	800	960	1088	1536
GlobalPool	1×1	7×7							
FC					1000	1000	1000	1000	1000
Complexity					143M	140M	137M	133M	137M

ShuffleNet (9/10)

■ Channel Shuffle은 Grouped Convolution의 성능을 향상시킴

Model	Cls err. (%, no shuffle)	Cls err. (%, shuffle)	Δ err. (%)
ShuffleNet 1x $(g = 3)$	34.5	32.6	1.9
ShuffleNet 1x $(g = 8)$	37.6	32.4	5.2
ShuffleNet $0.5x (g = 3)$	45.7	43.2	2.5
ShuffleNet $0.5x (g = 8)$	48.1	42.3	5.8
ShuffleNet $0.25x (g = 3)$	56.3	55.0	1.3
ShuffleNet $0.25x (g = 8)$	56.5	52.7	3.8

■ 동일한 연산 복잡도를 갖는 MobileNet보다 높은 정확도를 보임

Model	Complexity (MFLOPs)	Cls err. (%)	Δ err. (%)
1.0 MobileNet-224	569	29.4	-
ShuffleNet $2 \times (g = 3)$	524	26.3	3.1
ShuffleNet $2 \times$ (with $SE[13]$, $g = 3$)	527	24.7	4.7
0.75 MobileNet-224	325	31.6	-
ShuffleNet $1.5 \times (g = 3)$	292	28.5	3.1
0.5 MobileNet-224	149	36.3	-
ShuffleNet $1 \times (g = 8)$	140	32.4	3.9
0.25 MobileNet-224	41	49.4	-
ShuffleNet $0.5 \times (g = 4)$	38	41.6	7.8
ShuffleNet $0.5 \times$ (shallow, $g = 3$)	40	42.8	6.6

ShuffleNet (10/10)

- Snapdragon 820 싱글코어를 사용한 성능 비교
 - ShuffleNet이 더 적은 연산을 수행해 더 빠른 처리 속도를 보임

Model	Cls err. (%)	FLOPs	224×224	480×640	720×1280
ShuffleNet $0.5 \times (g = 3)$	43.2	38M	15.2ms	87.4ms	260.1ms
ShuffleNet $1 \times (g = 3)$	32.6	140M	37.8ms	222.2ms	684.5ms
ShuffleNet $2 \times (g = 3)$	26.3	524M	108.8ms	617.0ms	1857.6ms
AlexNet [22]	42.8	720M	184.0ms	1156.7ms	3633.9ms
1.0 MobileNet-224 [12]	29.4	569M	110.0ms	612.0ms	1879.2ms

결론

- 2012년 AlexNet의 등장 이후 CNN에 많은 발전이 일어남
- 성능을 높이기 위해 다양한 Convolution 연산과 다양한 모델 구조가 나타남
 - Inception module
 - Residual Learning
 - Depthwise Separable Convolution
 - Grouped Convolution
- 각 모델에 적합한 경량화, 분할 기법을 고민하고
 계속되는 모델의 변화에 대응할 수 있는 방법에 대해 생각해야 함

References (1/2)

- Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems. 2012.
- Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).
- Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.
- Lin, Min, Qiang Chen, and Shuicheng Yan. "Network in network." *arXiv* preprint arXiv:1312.4400 (2013).
- He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

References (2/2)

- Howard, Andrew G., et al. "Mobilenets: Efficient convolutional neural networks for mobile vision applications." arXiv preprint arXiv:1704.04861 (2017).
- Zhang, Xiangyu, et al. "Shufflenet: An extremely efficient convolutional neural network for mobile devices." *Proceedings of the IEEE Conference* on Computer Vision and Pattern Recognition. 2018.
- loannou, Yani, et al. "Deep roots: Improving cnn efficiency with hierarchical filter groups." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017.
- Xie, Saining, et al. "Aggregated residual transformations for deep neural networks." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.

