AMBA 介紹

目錄

- 1. APB
- 2. AHB
- 3. AXI

Chapter 1 APB

APB 訊號

• PCLK : clock

PADDR : address

• PWRITE : 讀寫控制訊號

寫為1,讀為0

• PSEL : SELECT

• PENABLE : master 就緒

(必須比 PSEL 晚一個週期)

• PWDATA : write時的BUS

• PRDATA : read時的 BUS

• PREADY : slave就緒

Write trans without wait state

· 當write時, 紅色框為 master 控制訊號 藍色框為 slave 控制訊號

• 當 PSEL, PENABLE, PREADY 三者同時為 1 時開始進行寫入操作

Write trans with wait state

• 當write時, 紅色框為slave還未就緒 (wait state)

• 等到 PREADY 為 1 時, 才開始寫入

Figure 2-2 Write transfer with wait states

Write trans with wait state

• 當write時, 紅色框為slave還未就緒 (wait state)

• 等到 PREADY 為 1 時, 才開始寫入

Figure 2-2 Write transfer with wait states

Read trans with wait state

- · 當Read時, 紅色框為 master 控制訊號 藍色框為 slave 控制訊號
- 綠色框為slave還未就緒 (wait state)
- 當 PSEL, PENABLE, PREADY 三者同時為 1 時開始進行讀取操作

Read Trans With Wait State

Figure 2-4 Read transfer with wait states

Chapter 2 AHB

AHB introduction (1/4)

- AHB-lite block diagram
 - 1. AHB-Lite master
 - 2. AHB-Lite slave
 - 3. Decoder
 - 4. Multiplexor

AHB introduction (2/4)

1. AHB-Lite master

- 分成
 - 1) Global: clk & reset
 - 2) Address phase: 由 address & control 組成
 - 3) Data phase: 由 data & transfer response 組成

AHB introduction (3/4)

2. AHB-Lite slave

- 分成
 - 1) Global: clk & reset
 - 2) Address phase: 由 address & control 組成
 - 3) Data phase: 由 data & transfer response 組成

AHB introduction (4/4)

3. Decoder

• 將 HADDR 解碼,產生各 slave 的 HSEL 信號

4. Multiplexor (MUX)

- 1) 單 master 多 slave
 - MUX 把各 slave 的 HRDATA, HRESP 選擇後輸出到 master
 - MUX 把各 slave 的 HREADY_OUT 選擇後輸出到 master / slave
- 2) 多 master 多 slave
 - ① 單層(Single-Layer,匯流排仲裁器 bus arbiter)
 - MUX 將每個 master 的 address/control 訊號輸出到 slave
 - MUX 將每個 slave 的 hrdata、hresp 選擇後輸出到 master
 - MUX 將每個 slave 的 hready_out 選擇後輸出到 master/slave
 - ② 多層(Multi-Layer,匯流排矩陣 bus matrix)

AHB Signal Descriptions (1/7)

- 1. Global signal
- 2. Master signal
- 3. Slave signal
- 4. Decoder signal
- 5. Multiplexor signal

AHB Signal Descriptions (2/7)

1. Global signal

Name	Source	Description
HCLK	Clock source	整個系統的 Clock
HRESETn	Reset controller	重置訊號

AHB Signal Descriptions (3/7)

2. Master signal

Name	Destination	Description		
HADDR[31:0]	Slave and decoder	32 bit 的 system address bus		
HBURST[2:0]	Slave	burst type 表示此次傳輸是單次傳輸還是屬於burst傳輸。 系統支援固定長度的突發傳輸,包含 4、8 和 16 個 beats。 burst傳輸可以是遞增(incr)或循環(wrap)方式。 也支援長度不定的遞增式burst傳輸。		
HMASTLOCK	Slave	當此訊號為高電位(HIGH)時, 表示目前的傳輸是屬於一個 locked sequence 的一部分。 不能讓其他master來存取此slave。 表示目前的傳輸序列是不可分割的, 因此必須在處理其他傳輸之前優先完成。		
HPROT[3:0]	Slave			
HSIZE[2:0]	Slave			

AHB Signal Descriptions (4/7)

2. Master signal

Name	Destination	Description		
HTRANS[1:0]	Slave	表示目前傳輸的類型(transfer type),可能的類型包括: • IDLE(閒置) • BUSY(忙碌) • NONSEQUENTIAL(非連續傳輸) • SEQUENTIAL(連續傳輸)		
HWDATA[31:0]	Slave	寫入的data		
HWRITE	Slave	此訊號表示傳輸的類別。 當為高電位(HIGH)時,表示為寫入傳輸 當為低電位(LOW)時,則表示為讀取傳輸		

AHB Signal Descriptions (5/7)

3. Slave signal

Name	Destination	Description
HRDATA[31:0]	Multiplexor	在讀取操作期間,讀取資料匯流排(read data bus)將資料從 選定的slave傳送到多工器(multiplexor)。 多工器接著再將該資料傳送給master
HREADYOUT	Multiplexor	當 HREADYOUT 訊號為高電位(HIGH)時,表示匯流排上的一筆傳輸已經完成。 此訊號也可以被拉低(LOW)以延長傳輸的時間。
HRESP	Multiplexor	傳輸回應訊號(transfer response)在經過多工器後,會提供master關於傳輸狀態的額外資訊。當 HRESP 訊號為低電位(LOW)時,表示傳輸狀態為 OKAY(正常)。當 HRESP 訊號為高電位(HIGH)時,表示傳輸狀態為 ERROR(錯誤)。

AHB Signal Descriptions (6/7)

4. Decoder signal

Name	Destination	Description
HSELx	Slave	每個 AHB-Lite slave 都有自己的slave選擇訊號 HSELx,此訊號用來表示當前的傳輸是針對該被選取的slave。當slave初次被選中時,它也必須監控 HREADY 的狀態,以確保前一筆匯流排傳輸已經完成,才能對當前傳輸作出回應。HSELx 訊號是由位址匯流排進行組合邏輯解碼(combinatorial decode)後產生的。

AHB Signal Descriptions (7/7)

5. Multiplexor signal

Name	Destination	Description	
HRDATA[31:0]	Master	Read data bus, selected by the decoder.	
HREADY	Master and slave	當 HREADY 訊號為高電位時,表示先前的傳輸已完成 這個訊號會通知master和所有slave。	
HRESP	Master	Transfer response, selected by the decoder.	

AHB Transfers (1/)

- 1. Basic transfers
- 2. Transfer types
- 3. Locked transfers
- 4. Transfer size
- 5. Burst operation
- 6. Waited transfers
- 7. Protection control

AHB Transfers (2/)

- 1. Basic transfers Read
 - Master 發 Read CMD 給 slave (Master 對 Slave 做讀取)
 - HWRITE = LOW
 - Address Phase
 - 當 HREADY = 1 時, HADDR (A) 被接收
 - Data Phase
 - 當下一個週期 HREADY = 1 時,
 - A的 Data 放上 HRDATA 回傳給 master

AHB Transfers (3/)

- 1. Basic transfers Write
 - Master 發 Write CMD 給 slave (Master 對 slave 做寫入)
 - HWRITE = HIGH
 - Address Phase
 - 當 HREADY = 1 時, HADDR (A) 被接收
 - Data Phase
 - 當下一個週期 HREADY = 1 時,
 - A的 Data 放上 HWDATA 傳給 slave

AHB Transfers (4/)

- 1. Basic transfers wait state
 - Slave 如果還沒準備好可以使用 HREADY_OUT 拉 LOW,來達成 wait 效果

AHB Transfers (5/)

1. Basic transfers – seq transfer

AHB Transfers (6/)

2. Transfer types

• 傳輸類型可根據 HTRANS 訊號的控制,分為四種類型

HTRANS[1:0]	Туре	Description
b00	IDLE	表示不需要進行資料傳輸。 當master不想執行資料傳輸時,會使用 IDLE 傳輸。 建議主裝置在結束一個 locked 傳輸時,以 IDLE 傳輸作為終止。slave在接收到 IDLE 傳輸時,必須提供 0 wait state 的 OKAY 回應,並且忽略該次傳輸。
b01	BUSY	BUSY 傳輸類型允許master在burst過程中插入idle cycles。這種傳輸表示master將繼續進行突發傳輸,但下一次的傳輸無法立即開始。當主裝置使用 BUSY 傳輸類型時,位址和控制訊號必須反映突發中下一筆傳輸的內容。只有長度未定義(ex: INCR)的burst才允許以 BUSY 傳輸作為突發的最後一個週期。slave在接收到 BUSY 傳輸時,必須始終提供 0 wait state 的 OKAY 回應,並且忽略該次傳輸。
B10	NONSEQ	表示單筆傳輸或是burst的第一筆資料傳輸。 此時的位址與控制訊號與前一次傳輸無關。 在匯流排(bus)上的單筆傳輸會被視為長度為1的burst,因此其傳輸類型為 NONSEQUENTIAL。
b11	SEQ	burst中其餘的傳輸為 SEQUENTIAL 類型,這些傳輸的位址與前一次傳輸有關聯。

AHB Transfers (7/)

- 2. Transfer types example waveform
 - T0 T1: 一個 burst 的第一個 CMD 的 HTRANS 一定是 NONSEQ
 - T4-T5: 由於 slave 還沒準備好,所以HREADY 拉 LOW,來做 wait state
 - 如果 master 還沒準備好的話,
 在 NONSEQ SEQ 與 SEQ SEQ 之間可以加入任意個 BUSY

AHB Transfers (8/)

- 2. Transfer types 整理
 - 一個 beat RW 操作,分為 address phase & data phase
 - HREADY 驅動總線週期推進
 - Slave 靠拉低 HREADY_OUT 在 data phase 插入 wait state
 - Master 靠 HTRANS = BUSY 來插入 wait cycle

AHB Transfers (9/)

3. Locked transfers

- 如果master 需要進行 locked 存取,則必須同時拉高 HMASTLOCK 訊號。 此訊號告知所有slave,目前的<mark>傳輸序列是不可分割</mark>的,因此必須在處理任何指令之前 優先完成。
- Lock 開始:
 - 1. master: HMASTERLOCK = 1 && HREADY = 1
 - 2. Slave: HMASTERLOCK = 0 && HSEL = 1 && HREADY = 1
- Lock 結束:
 - 1. HMASTERLOCK = 0 && HREADY = 1
 - 2. locked transfer 結束時,建議在最後插入一個 IDLE

AHB Transfers (10/)

4. Transfer size

- HSIZE[2:0] 表示資料傳輸的大小
- 代表每一 beat 傳輸的數據量為多少 bit
 (ex: 當 HSIZE[2:0] = 1,代表此次傳輸,一次傳 16 bits 換句話說 DATA bus (32bits) 上的資料有 16 bits 是有效的)

		Table 3-2 Transfer size encoding		
HSIZE[2]	HSIZE[1]	HSIZE[0]	Size (bits)	Description
0	0	0	8	Byte
0	0	1	16	Halfword
0	1	0	32	Word
0	1	1	64	Doubleword
1	0	0	128	4-word line
1	0	1	256	8-word line
1	1	0	512	-
1	1	1	1024	-

AHB Transfers (11/)

5. Burst operation

- Burst 筆數由 HBURST 控制,傳輸大小由 HSIZE 控制
- 支援以下Burst類型
 - 1) 單筆 (SINGLE)
 - 2) 遞增不定長Burst (INCR):
 - 1. 存取的是連續的位址位置,突發中每次傳輸的位址會比前一次遞增。
 - 3) 遞增定長 Burst (INCR 4, 8, 16)
 - 4) 包裝式Burst (WRAP 4, 8, 16):
 - 1. 當跨越某個位址邊界時,位址會自動回繞(wrap around)。
 - 2. 位址邊界的計算方式為:beats * HSIZE

AHB Transfers (12/)

5. Burst operation – example

- WRAP4
 - 因為是 HBURST = 4 beat 且 HSIZE = 4 bytes (WORD), 位址邊界為 4*4 = 16 bytes,所以 HADDR 在 0x3C 之後會繞回 0x30

AHB Transfers (13/)

- 5. Burst operation example
 - INCR4

AHB Transfers (14/)

- 5. Burst operation example
 - WRAP8
 - 因為是 HBURST = 8 beat 且 HSIZE = 4 bytes (WORD), 位址邊界為 8 *4 = 32 bytes,所以 HADDR 在 0x3C 之後會繞回 0x20

AHB Transfers (15/)

- 5. Burst operation example
 - INCR8
 - 因為HSIZE = 2 bytes (Half WORD),所以HADDR 每筆加 2

AHB Transfers (16/)

- 5. Burst operation example
 - INCR
 - 在每筆新的 Burst 開頭, HTRANS 需要下 NONSEQ 來區分不同筆 BURST

AHB Transfers (17/)

5. Burst operation

- Burst termination after a BUSY transfer
 - 當Burst開始後,若master繼續下一筆傳輸前需要更多時間,則可以插入BUSY傳輸。
 - 在不定長度Burst (INCR)中, master可能插入BUSY 傳輸,然後決定不再進行後續資料傳輸。
 在這種情況下,主裝置可以接著發出NONSEQ或IDLE 傳輸,藉此有效地終止該不定長度突發傳輸。
 - 禁止master在下列固定長度突發傳輸結尾時使用 BUSY 傳輸
 - 遞增式:INCR4、INCR8、INCR16
 - 包裝式: WRAP4、WRAP8、WRAP16
 - 這些固定長度的Burst必須以SEQ傳輸作為結束
 - 此外,在 SINGLE Burst之後,master不得立即發出 BUSY 傳輸,而應該接著發出 IDLE 或 NONSEQ 傳輸

AHB Transfers (18/)

5. Burst operation

- Early burst termination
 - 如果slave回傳 ERROR 回應,master可以選擇取消該Burst中剩下的傳輸筆數。
 - 但這不是強制要求, master也可以選擇繼續執行剩下的傳輸。
 - 若master未完成該次Burst,也不需要在下次存取該slave時重新建立或補齊該Burst。 (ex: 如果master只完成了一個 8 筆Burst中的前三筆,那麼在下次對該slave進行存取時,不需要補完剩下的五筆傳輸)

AHB Transfers (19/)

6. Waited transfers

- 當Slave需要更多時間來提供資料或取樣資料時,會利用 HREADY 訊號 插入等待狀態 (wait states)
- Transfer type (HTRANS) changes during wait states
 - 當slave正在要求插入等待狀態 (wait states) 時,master不得改變傳輸類型 (HTRANS),除非符合以下情況
 - 1. IDI F transfer
 - 2. BUSY transfer (固定長度burst)
 - 3. BUSY transfer (不固定長度burst)
- Address (HADDR) changes during wait states
 - 當slave正在要求插入等待狀態 (wait states) 時,master只能變更位址一次,除非符合以下情況的說明
 - 1. During an IDLE transfer
 - 2. After an ERROR response