# Applications of Spatially Coupled-LDPC codes & Sparse Graph Codes for Sparse Recovery

#### Avinash Vem

Department of Electrical and Computer Engineering Texas A&M University



## Outline

- Spatial Coupling
- SC-LDPC Lattices
  - Introduction
  - Proposed Lattice Construction
  - Poltyrev Goodness
  - Application to Symmetric Interference Channel
- Side-Information Problems
  - Introduction
  - Compound Codes
  - Spatial Coupling
- 4 Write-Once Memory

## Outline

- Spatial Coupling
- SC-LDPC Lattices
  - Introduction
  - Proposed Lattice Construction
  - Poltyrev Goodness
  - Application to Symmetric Interference Channel
- Side-Information Problems
  - Introduction
  - Compound Codes
  - Spatial Coupling
- 4 Write-Once Memory

## Lattices and Lattice Codes

- Efficient structures for packing, covering, channel coding & quantization
- · Single user Gaussian channel Erez and Zamir
- Coding with side information Wyner-Ziv and Costa, Zamir, Erez and Shamai
- Secrecy He and Yener
- Dirty multiple access channel Philosof, Khisti, Erez and Zamir

"Lattices are everywhere" by Ram Zamir

New perspectives for dealing with interference:

• Interference alignment - Sridharan, Jafarian, Vishwanath and Jafar



## New perspectives for dealing with interference:

- Interference alignment Sridharan, Jafarian, Vishwanath and Jafar
- Compute-and-forward Nazer & Gastpar
- Physical layer network coding Wilson et al, Nam et al



## Lattices and Lattice Codes

- Above schemes are all based on good lattice codes.
- Poltyrev-good lattices are at the core of such lattice coding schemes

## Lattices and Lattice Codes

- Above schemes are all based on good lattice codes.
- Poltyrev-good lattices are at the core of such lattice coding schemes

#### Motivating questions

- These results are all based on Construction-A.
- Is this construction fundamental to good lattices?
- Can we work with just binary codes under practical decoding schemes?

## Main Results in this Talk

#### Codes over $\mathbb{F}_2$ and BP decoding suffice

- Recall Forney et al's result based on nested random binary linear codes
- Propose capacity-achieving nested SC LDPC ensemble
- Construct lattices using Construction-D, based on the above ensemble
- Show existence of sequence of lattices that are Poltyrev-good under BP

## Main Results in this Talk

#### Codes over $\mathbb{F}_2$ and BP decoding suffice

- Recall Forney et al's result based on nested random binary linear codes
- Propose capacity-achieving nested SC LDPC ensemble
- Construct lattices using Construction-D, based on the above ensemble
- Show existence of sequence of lattices that are Poltyrev-good under BP

#### **Applications**

- As an application, propose Symmetric Interference Channel
- Can be applied to other problems which adopt Construction A lattices

## Construction D with L levels

- Barnes and Sloane '83, Forney, Chung and Trott '00, Yan, Ling, Wu ' 13
- Choose  $G_1 \subseteq \ldots \subseteq G_L$  where  $G_l$  is a gen matrix of code  $C_l$  over  $\mathbb{F}_2$ .



## Construction D with L levels

- Barnes and Sloane '83, Forney, Chung and Trott '00, Yan, Ling, Wu ' 13
- Choose  $G_1 \subseteq \ldots \subseteq G_L$  where  $G_l$  is a gen matrix of code  $C_l$  over  $\mathbb{F}_2$ .
- $\underline{\lambda} = \underline{w}_1 \mathbf{G}_1 + 2\underline{w}_2 \mathbf{G}_2 \dots + 2^{L-1} \underline{w}_{L-1} \mathbf{G}_{L-1} + 2^L \mathbb{Z}^N \in \Lambda$



# Multi-Level Decoding(Successive Decoding)

• 
$$\underline{y} = \left[\underline{w}_1 \mathbf{G}_1 + 2\underline{w}_2 \mathbf{G}_2 \dots + 2^{L-1} \underline{w}_{L-1} \mathbf{G}_{L-1} + 2^L \mathbb{Z}^N\right] + \underline{n}$$

- $\underline{y} \mod 2 = [\underline{w}_1 \mathbf{G}_1 + \underline{n}] \mod 2 = \underline{w}_1 \odot \mathbf{G}_1 + \underline{n} \mod 2$
- ullet Decode  $\underline{w}_1$ , reconstruct  $\underline{w}_1 \mathbf{G}_1$  and subtract from  $\underline{y}$



## Theorem (Forney, Trott & Chung)

There exists a sequence of Construction D lattices based on  $C_1 \subseteq C_2 \ldots \subseteq C_L$  such that the VNR  $\to 1$  and the  $Pr(\lambda, \sigma^2) \to 0$ .

- Take L large enough.
- It's sufficient that C<sub>i</sub> at each level is capacity achieving for the mod-2 AWGN channel.

#### Theorem (Forney, Trott & Chung)

There exists a sequence of Construction D lattices based on  $C_1 \subseteq C_2 \ldots \subseteq C_L$  such that the VNR  $\to 1$  and the  $Pr(\lambda, \sigma^2) \to 0$ .

- Take L large enough.
- It's sufficient that  $C_i$  at each level is capacity achieving for the mod-2 AWGN channel.

#### Objective:

• Capacity achieving nested code constructions, preferably under BP decoding.

# Proposed Nested Spatially-Coupled LDPC Ensemble

- **a** Begin with a  $(d_v^1, d_c)$  SC LDPC code. For ex,  $(d_v^1 = 3, d_c = 6, L = 3, w = 2)$ .
- ② Group check nodes into type  $\mathcal{T}_k$ ,  $k \in \{1, \ldots, d_v^1\}$



# Proposed Nested Spatially-Coupled LDPC Ensemble

- **1** Begin with a  $(d_v^1, d_c)$  SC LDPC code. For ex,  $(d_v^1 = 3, d_c = 6, L = 3, w = 2)$ .
- ② Group check nodes into type  $\mathcal{T}_k$ ,  $k \in \{1, \ldots, d_v^1\}$
- **3** Remove all check nodes of type  $\mathcal{T}_1, \ldots, \mathcal{T}_{d_v^1 d_v^2}$ . Ex:  $(d_v^2 = 2, 6)$  sup-code.



# Proposed Nested Spatially-Coupled LDPC Ensemble

- **a** Begin with a  $(d_v^1, d_c)$  SC LDPC code. For ex,  $(d_v^1 = 3, d_c = 6, L = 3, w = 2)$ .
- ② Group check nodes into type  $\mathcal{T}_k$ ,  $k \in \{1, \ldots, d_v^1\}$
- **3** Remove all check nodes of type  $\mathcal{T}_1, \ldots, \mathcal{T}_{d_v^1 d_v^2}$ . Ex:  $(d_v^2 = 2, 6)$  sup-code.
- Results in a super-code that is a  $(d_v^2, d_c)$  SC LDPC code.



# Lattice Design based on the proposed Nested SC LDPC ensemble

**⑤** For a given  $\sigma$ , compute the capacity of the mod-2 AWGN channel at each level:

$$\underline{y_i} = \underline{w_i} \mathbf{G}_i + \frac{1}{2^{i-1}} \underline{n} \mod 2 = \underline{w_i} \odot \mathbf{G}_i + \boxed{\frac{1}{2^{i-1}} \underline{n} \mod 2}$$

**②** Fix check node degree  $d_c$ . Choose  $d_v^1, \ldots, d_v^r$  such that the rate of the code at each level is arbitrarily close to the capacity at the respective level.

# Lattice Design based on the proposed Nested SC LDPC ensemble

lacktriangle For a given  $\sigma$ , compute the capacity of the mod-2 AWGN channel at each level:

$$\underline{y_i} = \underline{w_i} \mathbf{G}_i + \frac{1}{2^{i-1}} \underline{n} \mod 2 = \underline{w_i} \odot \mathbf{G}_i + \boxed{\frac{1}{2^{i-1}} \underline{n} \mod 2}$$

**②** Fix check node degree  $d_c$ . Choose  $d_v^1, \ldots, d_v^r$  such that the rate of the code at each level is arbitrarily close to the capacity at the respective level.

#### Lemma

Given nested binary linear codes  $C_1 \subseteq C_2 \subseteq \ldots \subseteq C_r$  there exists nested generator matrices for these codes.

# Proposed Ensemble is Capacity achieving

#### Theorem

Each code ensemble in the proposed nested Spatially-Coupled LDPC ensemble is capacity achieving.

#### Proof.

- Show that the mod 2 AWGN channel is BMS.
- Each derived protograph has the same spatially coupled structure.
- The proof follows from Kudekar & Urbanke, Kumar & Pfister's results.



# Proposed Lattices are Poltyrev-Good

#### **Theorem**

There exists a sequence of SC LDPC lattices with  $VNR(\Lambda, \sigma^2) \to 1$  for which, under multistage BP decoding,  $\mathbb{E}\left[P(\lambda, \sigma^2)\right] \to 0$  as  $w, L, M \to \infty$ .

#### Proof.

- The proposed nested ensemble achieve capacity.
- Follows from Forney's result.



# Proposed Lattices are Poltyrev-Good

#### Theorem

There exists a sequence of SC LDPC lattices with  $VNR(\Lambda, \sigma^2) \to 1$  for which, under multistage BP decoding,  $\mathbb{E}\left[P(\lambda, \sigma^2)\right] \to 0$  as  $w, L, M \to \infty$ .

#### Proof.

- The proposed nested ensemble achieve capacity.
- Follows from Forney's result.



- Binary codes and more importantly practical BP decoding suffices.
- Practically we observe that two levels of coding gets you lattices very close to Poltyrev limit.

# Design Example of Poltyrev-Good Lattice

A target block error probability of  $10^{-4}$  in the uncoded level gives  $\sigma_L=0.08$ 

• Capacities for the mod 2 AWGN channel for respective levels:

|                | Level L-1 | Level L-2 | Level L-3 |
|----------------|-----------|-----------|-----------|
| $\sigma_{eff}$ | 0.16      | 0.32      | 0.64      |
| Cap            | 0.99      | 0.57      | 0.02      |
| (14,30) (3,30) | 0.9       | 0.533     | 0         |

# Design Example of Poltyrev-Good Lattice

A target block error probability of  $10^{-4}$  in the uncoded level gives  $\sigma_L=0.08$ 

Capacities for the mod 2 AWGN channel for respective levels:

|                | Level L-1 | Level L-2 | Level L-3 |
|----------------|-----------|-----------|-----------|
| $\sigma_{eff}$ | 0.16      | 0.32      | 0.64      |
| Сар            | 0.99      | 0.57      | 0.02      |
| (14,30) (3,30) | 0.9       | 0.533     | 0         |

 $\bullet$  Fix L=3 and use (3,30), (14,30) nested SC LDPC codes.

| $(d_c, d_v^1, d_v^2)$ | (L,w)  | $P(\mathbb{Z}_4, \sigma^2)$ | $\sigma_{\sf max}$ | VNR    | VNR <sub>rate-loss</sub> |
|-----------------------|--------|-----------------------------|--------------------|--------|--------------------------|
| (30,14,3)             | (32,4) | $5 	imes 10^{-10}$          | 0.3184             | 1.02dB | 1.347dB                  |

# Design Example of Poltyrev-Good Lattice

A target block error probability of  $10^{-4}$  in the uncoded level gives  $\sigma_L=0.08$ 

• Capacities for the mod 2 AWGN channel for respective levels:

|                | Level L-1 | Level L-2 | Level L-3 |
|----------------|-----------|-----------|-----------|
| $\sigma_{eff}$ | 0.16      | 0.32      | 0.64      |
| Сар            | 0.99      | 0.57      | 0.02      |
| (14,30) (3,30) | 0.9       | 0.533     | 0         |

Fix L=3 and use (3,30), (14,30) nested SC LDPC codes.

| $(d_c, d_v^1, d_v^2)$ | (L,w)    | $P(\mathbb{Z}_4, \sigma^2)$ | $\sigma_{\sf max}$ | VNR     | $VNR_{rate-loss}$ |
|-----------------------|----------|-----------------------------|--------------------|---------|-------------------|
| (30,14,3)             | (32,4)   | $5 	imes 10^{-10}$          | 0.3184             | 1.02dB  | 1.347dB           |
| (60, 26, 3)           | (72, 12) | $5 	imes 10^{-10}$          | 0.3200             | 0.482dB | 0.927dB           |
| (60, 27, 3)           | (64, 9)  | $5 	imes 10^{-10}$          | 0.3203             | 0.57dB  | 0.951dB           |

## Alternate Nested SC LDPC ensemble

- Derive a lower rate code by "splitting the checks"
- Consider a (3,8) code



## Alternate Nested SC LDPC ensemble

- Derive a lower rate code by "splitting the checks"
- Consider a (3,8) code
- Split each check into "two" checks to derive a (3,4) sub-code
- Easy to prove that resulting code is from the (3,4) SC LDPC ensemble



## Simulation Results



## Simulation Results



Note that the Block Error Probability is  $10^{-4}$  at uncoded level.



# 3-User Symmetric Interference Channel



# 3-User Symmetric Interference Channel



•  $\mathbf{x}_i \in \Lambda_C \triangleq \Lambda \cap \mathbb{Z}_4^N$  is transmitted.

# Symmetric Interference Channel - Decoding Sums

SC-LDPC Lattices

Interference at Destination 1:

$$\begin{aligned} \mathbf{x}_2 + \mathbf{x}_3 &= (\underline{w}_2^1 + \underline{w}_3^1)\mathbf{G}_1 + 2(\underline{w}_2^2 + \underline{w}_3^2)\mathbf{G}_2 + 4\mathbf{k}_{23} \\ &= (\underline{w}_2^1 \oplus \underline{w}_3^1)\mathbf{G}_1 + 2(\underline{c}_{23}^1 \oplus \underline{w}_2^2 \oplus \underline{w}_3^2)\mathbf{G}_2 + 4(\underline{c}_{23}^2 + \mathbf{k}_{23})\mathbf{Z} \end{aligned}$$

where the carry overs are

$$\begin{array}{l} \underline{c_{13}} = 0.5 \left( \underline{w_1^1} + \underline{w_1^2} - \underline{w_1^1} \oplus \underline{w_1^2} \right), \\ \underline{c_{23}} = 0.5 \left( \underline{c_{23}} + \underline{w_1^2} + \underline{w_2^2} - \underline{c_{23}} \oplus \underline{w_2^1} \oplus \underline{w_2^2} \right) \end{array}$$





## Achievable Information Rates



## Concluding Remarks

- Multilevel constructions efficient ways to decode integer combinations
- Need capacity achieving nested codes
- Multilevel construction is provably good under message passing decoding

# Concluding Remarks

- Multilevel constructions efficient ways to decode integer combinations
- Need capacity achieving nested codes
- Multilevel construction is provably good under message passing decoding
- Coding schemes based on Binary LDPC codes and iterative decoding suffice

## Outline

- Spatial Coupling
- SC-LDPC Lattices
  - Introduction
  - Proposed Lattice Construction
  - Poltyrev Goodness
  - Application to Symmetric Interference Channel
- Side-Information Problems
  - Introduction
  - Compound Codes
  - Spatial Coupling
- 4 Write-Once Memory

## Lossy Source Coding Problem

$$X^n = (X_1, \cdots, X_n), X_i \sim \mathsf{Bernoulli}(\frac{1}{2})$$

Binary code 
$$C = (n, k)$$
, rate  $R = k/n$ 

## Lossy Source Coding Problem

$$X^n = (X_1, \dots, X_n), X_i \sim \mathsf{Bernoulli}(\frac{1}{2})$$

Binary code 
$$C = (n, k)$$
, rate  $R = k/n$ 

#### Lossy Source Coding

- Compress  $X^n$  to  $\hat{X}^n \in \mathcal{C}$
- Min. Hamming distortion

$$D = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}|X_i - \hat{X}_i|$$

## Lossy Source Coding Problem

$$X^n = (X_1, \dots, X_n), X_i \sim \text{Bernoulli}(\frac{1}{2})$$

Binary code C = (n, k), rate R = k/n

### Lossy Source Coding

- Compress  $X^n$  to  $\hat{X}^n \in \mathcal{C}$
- Min. Hamming distortion

$$D = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}|X_i - \hat{X}_i|$$

• Rate-Distortion theory:

$$R > 1 - h(D)$$

•  $h(\cdot)$  is binary entropy function

$$h(D) = -D \log_2 D - (1-D) \log_2 (1-D)$$



## Side-Information Problems: Wyner-Ziv



### Wyner-Ziv Formulation

- Side-information Z<sup>n</sup> about X<sup>n</sup>
- Decoder additionally has  $Z^n$
- Say  $Z_i = X_i \oplus \operatorname{Ber}(\delta)$

## Side-Information Problems: Wyner-Ziv



### Wyner-Ziv Formulation

- Side-information Z<sup>n</sup> about X<sup>n</sup>
- Decoder additionally has  $Z^n$
- Say  $Z_i = X_i \oplus Ber(\delta)$
- Wyner-Ziv theory:

$$R > I.c.e\{h(D*\delta) - h(D), (\delta, 0)\}$$

•  $D * \delta = D(1 - \delta) + \delta(1 - D)$ 







#### Gelfand-Pinsker Formulation

- Message  $M^k$  encoded to  $X^n \in \mathcal{C}$  with  $\frac{1}{n} \sum_{i=1}^n \mathbb{E}[X_i] \leq p \leq \frac{1}{2}$
- Side-information  $Z^n$  is available only at the encoder



#### Gelfand-Pinsker Formulation

- Message  $M^k$  encoded to  $X^n \in \mathcal{C}$  with  $\frac{1}{n} \sum_{i=1}^n \mathbb{E}[X_i] \leq p \leq \frac{1}{2}$
- Side-information Z<sup>n</sup> is available only at the encoder
- The output at the decoder is

$$Y^n = X^n \oplus Z^n \oplus W^n$$
,  $\{W_i\} \sim \text{Ber}(\delta)$ 



#### Gelfand-Pinsker Formulation

- Message  $M^k$  encoded to  $X^n \in \mathcal{C}$  with  $\frac{1}{n} \sum_{i=1}^n \mathbb{E}[X_i] \leq p \leq \frac{1}{2}$
- Side-information  $Z^n$  is available only at the encoder
- The output at the decoder is

$$Y^n = X^n \oplus Z^n \oplus W^n$$
,  $\{W_i\} \sim \text{Ber}(\delta)$ 

• Capacity region by Gelfand-Pinsker:

$$R < h(p) - h(\delta)$$

### Main Result

### Objective

- Construct low-complexity coding schemes that achieve the complete rate regions of Wyner-Ziv and Gelfand-Pinsker
  - Low-complexity encoding and decoding

### Main Result

### Objective

- Construct low-complexity coding schemes that achieve the complete rate regions of Wyner-Ziv and Gelfand-Pinsker
  - Low-complexity encoding and decoding

#### Idea

- Wainwright et al. used compound LDGM/LDPC codes with optimal encoding/decoding
- Message-passing algorithms have non-negligible gap

### Main Result

### Objective

- Construct low-complexity coding schemes that achieve the complete rate regions of Wyner-Ziv and Gelfand-Pinsker
  - Low-complexity encoding and decoding

#### Idea

- Wainwright et al. used compound LDGM/LDPC codes with optimal encoding/decoding
- Message-passing algorithms have non-negligible gap
- Remedy via Spatial-Coupling
  - Channel coding in coupled compound codes (Kasai et al.)
  - Lossy source coding with spatially-coupled LDGM (Aref et al.)
  - Encoding with compound codes has additional challenges

## Compound LDGM/LDPC Codes



- Codebook C(n, m k k')
- Message constraints

$$u_1 \oplus u_2 \oplus u_5 = s_1, \quad u_1 \oplus u_3 \oplus u_6 = 0$$

• Codeword  $(x_1, \dots, x_9)$ :

$$x_1 = u_1 \oplus u_4, \qquad x_2 = \cdots$$

## Compound LDGM/LDPC Codes



- Codebook C(n, m k k')
- Message constraints

$$u_1 \oplus u_2 \oplus u_5 = s_1, \quad u_1 \oplus u_3 \oplus u_6 = 0$$

• Codeword  $(x_1, \dots, x_9)$ :

$$x_1=u_1\oplus u_4, \qquad x_2=\cdots$$

#### **Key Properties**

- · Compound code is
  - a good source code under optimal encoding
  - a good channel code under optimal decoding
- LDGM code is
  - a good source code under optimal encoding
  - (side note) LDGM code is not a good channel code

### Good Code

#### "Good" source code

- Rate of the code is  $R = 1 h(D) + \varepsilon$
- When this code is used to optimally encode  $Ber(\frac{1}{2})$
- The average Hamming distortion is at most D

#### "Good" channel code

- Rate of the code is  $R = 1 h(\delta) \varepsilon$
- ullet When this code is used for channel coding on BSC( $\delta$ )
- Message est. under optimal decoding with error at most  $\varepsilon$







- With message  $M^k$ , encode  $Z^n$  to  $\hat{Z}^n$  (Distortion  $\approx p$ )
- Transmit  $X^n = Z^n \oplus \hat{Z}^n$

$$rac{m-k-k'}{n}pprox 1-h(
ho)+arepsilon \qquad rac{m-k'}{n}pprox 1-h(\delta)+arepsilon$$

 $\mathcal{P}_2$ ,  $|\mathcal{P}_2| = k'$ 

 $\mathcal{P}_1$ ,  $|\mathcal{P}_1| = k$ 





 $\frac{m-k'}{n} \approx 1 - h(\delta) + \varepsilon$ 

- With message  $M^k$ , encode  $Z^n$  to  $\hat{Z}^n$  (Distortion  $\approx p$ )
- Transmit  $X^n = Z^n \oplus \hat{Z}^n$
- Decoder has

$$Y^{n} = X^{n} \oplus Z^{n} \oplus W^{n}$$
$$= \hat{Z}^{n} \oplus W^{n}$$

• Decode  $\hat{Z}^n$  and compute  $M^k$ 





$$\frac{m-k-k'}{n} \approx 1 - h(p) + \varepsilon$$
  $\frac{m-k'}{n} \approx 1 - h(\delta) + \varepsilon$ 

- With message  $M^k$ , encode  $Z^n$  to  $\hat{Z}^n$  (Distortion  $\approx p$ )
- Transmit  $X^n = Z^n \oplus \hat{Z}^n$
- Decoder has

$$Y^n = X^n \oplus Z^n \oplus W^n$$
$$= \hat{Z}^n \oplus W^n$$

- Decode  $\hat{Z}^n$  and compute  $M^k$
- $R = \frac{k}{n} \approx h(p) h(\delta)$

### Remarks

- Need codes that are simultaneously good for channel and source coding
- Use message-passing algorithms instead of optimal
- Use spatial-coupling for goodness of codes under message-passing









## Decoding in Spatially-Coupled Compound Codes



Channel LLR
$$y_i \bigoplus L = L_1 + \cdots + L_k$$

$$\vdots \bigoplus tanh L = (-1)^s \cdot tanh L_1 \cdots tanh L_k$$

#### Remarks

- · Standard message-passing algorithm
- Threshold saturation proven for SC compound codes on BEC
- Empirically observed for BMS channels

## Encoding in Spatially-Coupled Compound Codes



$$(-1)^{x_i} \tanh \beta$$

$$x_i \quad \bigoplus$$

$$L = L_1 + \cdots + L_k$$

$$tanh L = (-1)^{s} \cdot tanh L_{1} \cdots tanh L_{k}$$

$$\vdots$$

#### Remarks

- Inverse temperature parameter  $\beta$
- Message-passing rules are the same
- However, a crucial decimation step is needed

## Encoding in SC Compound Codes: BPGD Algorithm

## Encoding in SC Compound Codes: Remarks

- Randomization in setting  $u_{i*}$  is crucial
- BPGD applied to uncoupled code always failed
- Spatially-coupled structure is crucial for successful encoding
  - In addition, distortion is close to optimal thresholds
  - Does not encode if decimated from both left and right
  - Does not encode if both left and right boundary is set to 0

## Encoding in SC Compound Codes: Numerical Example

| Block length (n) | 4-cycles | Attempts $1/2/3/4/ \geq 5$ |
|------------------|----------|----------------------------|
| 9000             | yes      | 5/3/5/2/35                 |
| 9000             | no       | 21/12/5/3/9                |
| 27000            | no       | 35/15/0/0/0                |
| 45000            | no       | 40/9/0/0/1                 |
| 63000            | no       | 44/6/0/0/0                 |
| 81000            | no       | 50/0/0/0/0                 |

#### Remarks

- # Attempts to encode 50 seq. in (6,3) LDGM / (3,6) LDPC
- L = 20, w = 4,  $\beta = 0.65$ , T = 10
- Removing 4-cycles dramatically improves success
- How much do 6-cycles matter?

## Numerical Results: Wyner-Ziv

| LDGM        | LDPC                              | (L, w) | $(D_*,\delta_*)$ | $(D,\delta)$    |
|-------------|-----------------------------------|--------|------------------|-----------------|
| $(d_v,d_c)$ | $(d_{v}^{\prime},d_{c}^{\prime})$ |        |                  |                 |
| (6,3)       | (3,6)                             | (20,4) | (0.111,0.134)    | (0.1174, 0.122) |
| (8,4)       | (3,6)                             | (20,4) | (0.111, 0.134)   | (0.1149, 0.120) |
| (10,5)      | (3,6)                             | (20,4) | (0.111,0.134)    | (0.1139, 0.122) |

#### Remarks

•  $D_*$  and  $\delta_*$  are calculated based on the rate of the respective code:

$$D_* = h^{-1}(1 - R1)$$
  $\delta_* = h^{-1}(1 - R2)$ 

•  $n \approx 140000$ ,  $\beta = 1.04$ , T = 10

## Numerical Results: Gelfand-Pinsker

| LDGM        | LDPC                              | (L, w) | $(p_*, \delta_*)$ | $(p,\delta)$    |
|-------------|-----------------------------------|--------|-------------------|-----------------|
| $(d_v,d_c)$ | $(d_{v}^{\prime},d_{c}^{\prime})$ |        |                   |                 |
| (6,3)       | (3,6)                             | (20,4) | (0.215, 0.157)    | (0.2200, 0.152) |
| (8,4)       | (3,6)                             | (20,4) | (0.215, 0.157)    | (0.2230, 0.151) |
| (10,5)      | (3,6)                             | (20,4) | (0.215, 0.157)    | (0.2200, 0.151) |

#### Remarks

•  $p_*$  and  $\delta_*$  are calculated based on the rate of the respective code:

$$p_* = h^{-1}(1 - R1)$$
  $\delta_* = h^{-1}(1 - R2)$ 

•  $n \approx 140000$ ,  $\beta = 0.65$ , T = 10

## Concluding Remarks

#### Conclusion

- Spatially-coupled codes achieve the rate regions of Wyner-Ziv and Gelfand-Pinsker problems
- Coupling structure is also crucial
  - to achieve optimum thresholds
  - for encoding to succeed with decimation

#### **Open Questions**

- · Effect of degree profiles, short-cycles on encoding success
- Precise trade-offs with polar codes

## Outline

- Spatial Coupling
- 2 SC-LDPC Lattices
  - Introduction
  - Proposed Lattice Construction
  - Poltyrev Goodness
  - Application to Symmetric Interference Channel
- Side-Information Problems
  - Introduction
  - Compound Codes
  - Spatial Coupling
- Write-Once Memory

### Write-Once Memories



### Flash Memory

- ullet In typical flash memory, changing from 0 to 1 is easy
- Resetting 1 to 0 requires rewriting whole block
- Write-once memories model such storage systems

### Write-Once Memories



#### Flash Memory

- In typical flash memory, changing from 0 to 1 is easy
- Resetting 1 to 0 requires rewriting whole block
- Write-once memories model such storage systems

#### Binary Write-Once Memories

•  $0 \longrightarrow 1$  is allowed

### Write-Once Memories



#### Flash Memory

- In typical flash memory, changing from 0 to 1 is easy
- Resetting 1 to 0 requires rewriting whole block
- Write-once memories model such storage systems

#### Binary Write-Once Memories

- $0 \longrightarrow 1$  is allowed
- $1 \longrightarrow 0$  is forbidden

# Capacity Region (I) - Noiseless



#### Write-Once Memory without Noise

- In 1982, Rivest and Shamir gave first WOM codes
  - 2 bits in 2 writes with only 3 cells
- Only about  $nt/\log(t)$  cells required to store n bits for t writes

# Capacity Region (I) - Noiseless



#### Write-Once Memory without Noise

- In 1982, Rivest and Shamir gave first WOM codes
  - 2 bits in 2 writes with only 3 cells
- Only about  $nt/\log(t)$  cells required to store n bits for t writes
- In 1985, Heegard gave the capacity for t-write system
- For a 2-write system, it is

$$\{(R_1, R_2) \mid 0 \le R_1 < h(\delta), \ 0 \le R_2 < 1 - \delta\}$$

# Capacity Region (II) - Read Errors



#### Write-Once Memory with Read Errors

- · Different from write errors
- $Y = X \oplus Ber(p)$ , where Ber(p) denotes the Bernoulli noise
- Capacity region is unknown

### Objective

- Construct low-complexity coding schemes that achieve the capacity region of the WOM system
  - Low-complexity encoding and decoding

#### Objective

- Construct low-complexity coding schemes that achieve the capacity region of the WOM system
  - · Low-complexity encoding and decoding
- Focus on the 2-write WOM system
  - Achieves the capacity region of the noiseless system
  - For read errors, achieves

$$R_1 < h(\delta) - h(p),$$
  $R_2 < 1 - \delta - h(p).$ 

#### Objective

- Construct low-complexity coding schemes that achieve the capacity region of the WOM system
  - · Low-complexity encoding and decoding
- Focus on the 2-write WOM system
  - Achieves the capacity region of the noiseless system
  - For read errors, achieves

$$R_1 < h(\delta) - h(p),$$
  $R_2 < 1 - \delta - h(p).$ 

Extension to multi-write systems seems possible with BPGD

#### Objective

- Construct low-complexity coding schemes that achieve the capacity region of the WOM system
  - Low-complexity encoding and decoding
- Focus on the 2-write WOM system
  - Achieves the capacity region of the noiseless system
  - For read errors, achieves

$$R_1 < h(\delta) - h(p),$$
  $R_2 < 1 - \delta - h(p).$ 

Extension to multi-write systems seems possible with BPGD

#### Idea

- Use compound LDGM/LDPC codes
- Encoding for second write is erasure quantization
- Use spatial coupling with message-passing

# Compound LDGM/LDPC Codes



- Codebook (n, m k k')
- Message constraints

$$u_1\oplus u_2\oplus u_5=s_1,\quad u_1\oplus u_3\oplus u_6=0$$

• Codeword  $(x_1, \dots, x_9)$ :

$$x_1 = u_1 \oplus u_4, \qquad x_2 = \cdots$$

• Parametrized by  $s^k$ :  $C(s^k)$ 

# Compound LDGM/LDPC Codes



- Codebook (n, m k k')
- Message constraints

$$u_1 \oplus u_2 \oplus u_5 = s_1, \quad u_1 \oplus u_3 \oplus u_6 = 0$$

• Codeword  $(x_1, \dots, x_9)$ :

$$x_1 = u_1 \oplus u_4, \qquad x_2 = \cdots$$

• Parametrized by  $s^k$ :  $C(s^k)$ 

#### Key Properties of Compound Codes

- a natural coset decomposition:  $C = \bigcup_{s^k \in \{0,1\}^k} C(s^k)$
- achieves capacity over eras. chan. under MAP (when m = n)
- a good source code under optimal encoding
- a good channel code under optimal decoding

## Good Code

#### "Good" source code

- Rate of the code is  $R = 1 h(\delta) + \varepsilon$
- When this code is used to optimally encode  $Ber(\frac{1}{2})$
- ullet The average Hamming distortion is at most  $\delta$

#### "Good" channel code

- Rate of the code is  $R = 1 h(p) \varepsilon$
- When this code is used for channel coding on BSC(p)
- Message est. under optimal decoding with error at most  $\varepsilon$

## Coding Scheme for 2-write WOM: First Write

$$R_1 < h(\delta) - h(p)$$



$$\frac{m-k-k'}{n} \approx 1 - h(\delta)$$
  $\frac{m-k'}{n} \approx 1 - h(p)$ 

- With message  $s^k$ , encode  $0^n$  to  $x^n$  (Distortion  $\approx \delta$ )
- Store  $x^n$

## Coding Scheme for 2-write WOM: First Write

$$R_1 < h(\delta) - h(p)$$



- With message  $s^k$ , encode  $0^n$  to  $x^n$  (Distortion  $\approx \delta$ )
  - Store x<sup>n</sup>
- Decoder has

$$y_i = x_i \oplus \mathrm{Ber}(p)$$

## Coding Scheme for 2-write WOM: First Write

$$R_1 < h(\delta) - h(p)$$



- With message  $s^k$ , encode  $0^n$  to  $x^n$  (Distortion  $\approx \delta$ )
- Store  $x^n$
- Decoder has

$$y_i = x_i \oplus \mathrm{Ber}(p)$$

- Dec.  $x^n$  and compute  $s^k$
- $R_1 = \frac{k}{n} \approx h(\delta) h(p)$





• Need to find a consistent codeword in  $C(s^k)$ 





- Need to find a consistent codeword in  $C(s^k)$
- Closely related to Binary Erasure Quantization (BEQ)
- En Gad, Huang, Li and Bruck (ISIT 2015)

# Binary Erasure Quantization

- Quantize a sequence in  $\{0,1,*\}^n$  to  $x^n \in \mathcal{C} \subset \{0,1\}^n$ 
  - 0's and 1's should match exactly
  - \*'s can take either 0 or 1
- Can map the second write of 2-write WOM to BEQ
  - Map 0's to \*'s and keep 1's
  - Quantize to codeword in  $C(s^k)$
- BEQ is the dual of decoding on binary erasure channel
  - Martinian and Yedidia (Allerton 2003)
  - ullet Can quan. all seq. with erasure pattern  $e^n \in \{0,1\}^n$  to  ${\mathcal C}$

Chan. dec. for  $\mathcal{C}^{\perp}$  can correct all vectors with eras.  $1^n \oplus e^n$ 

• Choose a good (dual) code  $\mathcal{C}(s^k)$ 

$$R_2 < 1 - \delta - h(p)$$



- Change 0's to \*'s
- With message  $s^k$ , encode seq. to  $C(s^k)$

$$R_2<1-\delta-h(p)$$



- Change 0's to \*'s
- With message  $s^k$ , encode seq. to  $C(s^k)$
- Decoder has

$$y_i = x_i \oplus \mathrm{Ber}(p)$$

$$R_2<1-\delta-h(p)$$



- Change 0's to \*'s
- With message  $s^k$ , encode seq. to  $C(s^k)$
- Decoder has

$$y_i = x_i \oplus \mathrm{Ber}(p)$$

- Dec.  $x^n$  and compute  $s^k$
- $R_2 = \frac{k}{n} \approx 1 \delta h(p)$

## Iterative Erasure Quantization Algorithm



• Peeling type encoder

- Need codes that are simultaneously good for channel/source coding and erasure quantization
- Use message-passing algorithms instead of optimal
- Use spatial-coupling for goodness of codes under message-passing









# Decoding in Spatially-Coupled Compound Codes





- Standard message-passing algorithm
- Threshold saturation proven for SC compound codes on BEC
- Empirically observed for BMS channels

## Numerical Results: Noiseless WOM

| LDGM/LDPC                | $\delta^*$ | δ     | δ     | δ     |
|--------------------------|------------|-------|-------|-------|
| $(d_v, d_c, d'_v, d'_c)$ |            | w=2   | w = 3 | w=4   |
| (3,3,3,6)                | 0.500      | 0.477 | 0.492 | 0.494 |
| (3, 3, 4, 6)             | 0.333      | 0.294 | 0.324 | 0.326 |
| (3,3,5,6)                | 0.167      | 0.095 | 0.156 | 0.158 |
| (4,4,3,6)                | 0.500      | 0.461 | 0.491 | 0.492 |
| (4, 4, 4, 6)             | 0.333      | 0.278 | 0.323 | 0.325 |
| (4,4,5,6)                | 0.167      | 0.086 | 0.155 | 0.159 |
| (5,5,3,6)                | 0.500      | 0.436 | 0.488 | 0.491 |
| (5,5,4,6)                | 0.333      | 0.260 | 0.320 | 0.324 |
| (5,5,5,6)                | 0.167      | 0.079 | 0.154 | 0.159 |

- ullet  $\delta^*$  is the Shannon threshold
- L = 30, Single system length  $\approx 24000$

## Numerical Results: WOM with Read Errors

| LDGM/LDPC             | W | $(\delta^*, p^*)$ | $(\delta, p)$   |
|-----------------------|---|-------------------|-----------------|
| $(d_v,d_c,d'_v,d'_c)$ |   |                   |                 |
| (3, 3, 4, 6)          | 3 | (0.333, 0.0615)   | (0.321, 0.0585) |
| (3,3,4,8)             | 3 | (0.500, 0.0417)   | (0.490, 0.0387) |
| (3,3,6,8)             | 4 | (0.250, 0.0724)   | (0.239, 0.0684) |
| (4,4,4,6)             | 4 | (0.333, 0.0615)   | (0.324, 0.0585) |
| (4,4,4,8)             | 4 | (0.500, 0.0417)   | (0.492, 0.0387) |
| (4, 4, 6, 8)          | 4 | (0.250, 0.0724)   | (0.241, 0.0694) |

- $\delta^*$  and  $p^*$  are the Shannon thresholds
- L = 30, Single system length  $\approx 30000$

# Numerical Results: Small Blocklength



- (L, w) = (30, 3), Single system length 1200, Shannon threshold of 0.5
- A total of 10<sup>5</sup> were attempted to encode
- No failures for  $\delta < 0.43$

## Concluding Remarks

#### Conclusion

- Spatially-coupled compound codes achieve the capacity of 2-write systems
- Coupling structure is also crucial
  - to achieve optimum thresholds
  - for encoding to succeed

#### Multi-Write Systems

Will BPGD work for multi-write systems?