Fondamenti di Automatica (Ing. Gestionale) Prof. Fredy Ruiz Appello del 10 settembre 2021

ESERCIZIO 1

Si consideri il sistema dinamico lineare e tempo invariante con ingresso u(t) ed uscita y(t) descritto dalle seguenti equazioni

$$\dot{x}_1(t) = (\alpha + 1)x_1(t) - 2\beta x_2(t)
\dot{x}_2(t) = -2x_2(t) + u(t)
\dot{x}_3(t) = \alpha x_3(t) + 2u(t)
y(t) = x_1(t),$$

con α e β parametri reali.

1.1 Classificare il sistema.

1.2 Studiare la stabilità interna del sistema al variare dei parametri α e β .

1.3 Posto ora $\alpha = -2$ e $\beta = 1$ calcolare la funzione di trasferimento G(s) del sistema e dire, motivando la risposta, se è possibile valutare le proprietà di stabilità interna del sistema dall'analisi della sola G(s).

1.4 Per la funzione di trasferimento trovata al punto precedente determinare analiticamente la risposta allo scalino u(t) = sca(t) e tracciare qualitativamente la risposta, specificando i valori di y(0), y'(0) e $y(\infty)$.

ESERCIZIO 2

Si consideri la funzione di trasferimento

$$G(s) = 20 \frac{3-s}{(s+1)(s+20)}$$

di un sistema lineare tempo invariante senza autovalori nascosti.

2.1 Calcolare guadagno, tipo, poli e zeri di G(s) e studiare la stabilità del sistema con funzione di trasferimento G(s).

2.2 Tracciare i diagrammi di Bode di modulo e fase della risposta in frequenza associata alla funzione di trasferimento G(s).

2.3 Determinale l'ampiezza dell'uscita y(t) a transitorio esaurito a fronte del ingresso $u(t) = 3\sin(10t)$.

2.4 Si supponga ora che il sistema venga retroazionato come in figura 1, con L(s) = kG(s), essendo k un parametro reale. Determinare per quali valori di k il sistema retroazionato risulta asintoticamente stabile.

Figura 1: Esercizio 2 - Sistema retroazionato.

ESERCIZIO 3

Si consideri il sistema a tempo discreto:

$$\begin{cases} v(k+1) = -v(k) - 0.5w(k) + u(k) \\ w(k+1) = 1.5v(k) + w(k) \\ y(k) = v(k) - w(k) \end{cases}$$

3.1 Classificare il sistema

3.2 Calcolare gli stati e l'uscita di equilibrio associati a $u(k) = \bar{u} = 2$.

3.3 Studiare la stabilità del sistema

3.4	Determinare appartiene a	gli autovettori ognuno di essi.	del sister	ma e scrivere	la risposta	libera	quando lo	stato	iniziale

ESERCIZIO 4

Si consideri il sistema di controllo in figura

dove $G(s) = \frac{5}{s(s+20)}$ e R(s) = 4.

4.1 Tracciare i diagrammi di Bode di modulo e fase della risposta in frequenza associata alla funzione di anello L(s)=R(s)G(s).

4.2	Verificare che il sistema in anello chiuso è asintoticamente stabile e determinare la pulsazione critica e il margine di fase.
4.3	Determinale il modulo dell'errore a transitorio esaurito a fronte di $d(t) = \sin(0.1t)$ con $y_o(t) = 0$
4.4	Dire, giustificando la risposta, quanto vale l'ampiezza dell'uscita $y(t)$ di regime associata all'ingresso $y^o(t)=5+2\sin(10t)$ con $d(t)=0$.
4.5	È possibile affermare che al aumentare il guadagno k del controllore $R(s)$ il modulo dell'errore a transitorio esaurito a fronte di un ingresso di riferimento $y_o(t) = sca(t)$ diminuisce, fino ac un valore massimo di k per il quale il sistema in anello chiuso risulta instabile? Giustificare la risposta.