WAKISSHA MARKING GUIDE Uganda Certificate of Education MATHEMATICS 456/1

1	(m	Factors
1.	(x+5+x+2)(x+5-x-2)	m_1	1 actors
	=(2x+7)(3)	A_1	C's factors
	=3(2x+7)=9	m_1	C 5 factors
	2x + 7 = 3		= 9
	2x = -4		1
	x = -2		
		4	marks
2.	$2*1=2^2-1-3$	m_1	
	$9*Z = 9^2 - h = 76$	A_1	
	81 - Z = 76		
	Z = 81 - 76	m_1	
	= 5		
		A_1	0
		4	marks
3.	360	m_1	
	Number of sides $=\frac{360}{18}=20$.	A_1	
	Sum of interior angle	1	Accept of alternative
	$=(180-18)\times20$		
	$=162 \times 20 = 3240^{\circ}$	m_1	
	-102/120 3210	A_1	
		4	marks
4.	2x+5y=11 ×1	4	IIIai KS
4.	$3x - y = 8 \qquad \times 5$	m_1	
	2x + 5y = 11	""1	
	15x - 5y = 40	1112	Accept of alternative
		m_1	Treept of uncomme
	17x = 51	1	
	x = 3 $y = 1$	A_1	
	<i>y</i> – 1	A_1	
		4	marks
5.			
	$\left(-4 \right)^{-} \left(b \right)^{-} \left(5 \right)$,	
	2 + a = 4	m_1	Equation
	a = 2	A_1	
	-4 + b = 5	m_1	Equation
	b = 9	A_1	
	(2,9)	71	
-		.4	
		4	marks

	(2 2)	T	Determinant
6.	$m^{-1} = \frac{1}{18 - 16} \begin{pmatrix} 2 & 2 \\ 8 & 9 \end{pmatrix}$	m_1	
		m_1	a found
	$=\frac{1}{2} \begin{pmatrix} 2 & 2 \\ 8 & 9 \end{pmatrix}$	m_1	Simplification
	$= \begin{pmatrix} 1 & 1 \\ 4 & 4.5 \end{pmatrix}$	A_1	
		4	marks
7.	$x = \frac{126}{2} = 63^{\circ}$	m_1	
	1.770	A_1	
	y = 180 - 63	$m_1 \searrow$	C's 63
	$=117^{\circ}$	m_1	
		4	marks
8.	1		
	x/h		
	12cm		
	$\frac{1}{2} x12h = 60$	m_1	
	12 h = 120		
	$h = 10cm$ Hypotonic = x^2	m_1	
	$x = \sqrt{12^2 + 10^2}$		
	$x = \sqrt{12} + 10$ = $\sqrt{244} = 15.62$	m_1	
	= \(\sqrt{244} = 13.02 \)	$A_{\rm l}$	-
. #		4	marks
9.	$\frac{14X2p + 15Xp + 16X10}{12} = 15$	m_1	Expression
	$\frac{2p+p+10}{2p+15p+160}$		
	$\frac{28p+15p+160}{3p+10} = 15$		
	43p + 160 = 15(3p + 15)		Simplification
	43p + 160 = 15(3p + 15) $43p + 160 = 45p + 150$	m_1	
	2p = 10.		Like terms
	p=5	m_1	-
		$\frac{A^1}{4}$	marks
10.		4	marks
10.	+ 1 2 3 4 5 6		
	1 2 3 4 5 6 7		
	2 3 4 5 6 7 8		
	3 4 5 6 7 8 9	B_2	
	4 5 6 7 8 9 10		5 -
	5 6 7 8 9 10 11		
	6 7 8 9 10 11 12	00	

	m(s) 50 12	m_1 A_1				0	
		4	M	arks	7		
	SECTION	В					
1.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 - 6	2 - 2	3 4	4 12	B_2 B_2
	$y = 4 - x - x^2$ - 8 - 2 2 4	4	2	- 2	- 8	-16	
	(b) refer to graph paper (c) $x_1 = 3$ $x_2 = 2$		B_2 B_2 B_2	3			graph
2.	(a) The 4 x 4 matrix is $ \begin{array}{cccc} P & 3 & 5 & 10 & 3 \\ Q & 0 & 0 & 0 & 1 \\ R & 5 & 1 & 0 & 0 \\ S & 4 & 3 & 6 & 1 \end{array} $	B_2					
	(b) (i) The cost matrix B (250,000) M (60,000) P (20,000) MLT (70,000)	B_2					
ě	$ \begin{pmatrix} 3 & 5 & 10 & 3 \\ 0 & 0 & 0 & 1 \\ 5 & 1 & 0 & 0 \\ 4 & 3 & 6 & 1 \end{pmatrix} \begin{pmatrix} 250.000 \\ 60,000 \\ 20.000 \\ 70.000 \end{pmatrix} $	m_1					
	$ \begin{array}{ccc} P & (1,520,000) \\ Q & 90,000 \\ R & (1,310,000) \\ S & (1,390,000) \end{array} $	A_1					
	He spent 1,520,000 at P 90,000 at Q 1,310,000 at R 1,390,000 at S	B_1 B_1 B_1 B_1					
	(c) total spent = 1,525,000 + 90,000 + 1,310,000 + 1,390,000 = 4,310,000	M_1 A_1					

		12	marks	
13.	Sketch	B_1	Sketch	
	SKEICH	B_1	AB = 6cm	
		B_1	BC = 10cm arc seen	
	1000	B_1	$\angle BAC = 105^{\circ} \text{ arc seen}$	
	[101°	B ₁	Perpendicular on BC from A arc seen	
		B_1 B_1	point P AB = 3.9cm ± 0.1	×
	$A = \frac{1}{2} \times 5 \times 3.9$ $= 19.5 = 0.5$	M1 A1 B1 B1 12	Perpendicular Bisectors on ABC Radius = 5.1 ± 0.19 marks	
14.	(a)	B_2	Sketch of PQR (on graph paper)	
	P-1 -3 -3 -1 -1 -3 -3 -1 -1 -3 -3 -1 -1 -3 -3 -1 -1 -3 -3 -1 -1 -3 -3 -1 -1 -3 -3 -1 -1 -3 -3 -1 -3 -1 -3 -1 -3 -1 -3 -1 -3 -3 -1 -3	B_2	P ¹ Q ¹ R ¹ on graph paper	Page 4 of 6

	(b) Rotation through 180 ⁰ (half turn) about the origin.	B_2	
6	(c) Matrix for half turn is $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$	B_2	
	(d) Matrix that maps PQR onto P ^{II} Q ^{II}		
	R^{\parallel} is $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$	M_1	
	$= \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$	$A_{\rm l}$	
	Matrix that maps P ^{II} Q ^{II} R trade on to PQR is	M_1	
	$\frac{1}{-1} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$	$A_{\rm l}$	
15.	(a) Name of Class x-A fill 10-14 5 12 -15 -75 15-19 6 17 -10 -60 16-24 10 22 -5 -50 25-29 20 27 0 0	B_1 B_1 B_1 B_1 B_1	Class mark $x - A$ $\sum f = 50$ Fd $\sum fd = 110$
: 8	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	Mean = $27 + \frac{-110}{50}$ = $27 - 2.2$ = 24.8	M_1 A_1	
	(b) 2°	B_1 B_2	Boundaries Bars (Graph paper)
	(c) Modal mark = 24.9 ⁺ 3.1	B_2	

	*		
16.	(a) (c+d) (c-d) = 60		
	30(c-d) = 60	M_1	Factorization
	(c-d) = 2(1)	M_1	Substitution
	$(c+d) = 30 \dots (1)$	M_1	
	$ \begin{array}{rcl} 2c & = & 32 \\ c & = & 16 \end{array} $		
	16 - d = 2	A_1	
	d = 14	M_1	
	u 14	A_{1}	
	(b) let r = rice, p = posho		
	(o), p p		
	3r + 2p = 10,000 / x2	M_1	
	2r + 3p = 9,500 / x3	M_1	
			*
	6r + 4p = 20,000	M_1	,
	6r + 9p = 28,500		
	5p = 8,500	$A_{\rm l}$	
	= p = 1,700r		
	$6r + 4 \times 1,700 = 20,000$		
	6r + 6.800 = 20,000	M_1	
	6r = 13,200		
	r = 2,200p	A_1	
		12	marks
17.	(a) The inequalities		
	$50x + 75y \ge 600,000$		
	$10x + 15y \ge 120$ (i)	B_1	
	$40,000x + 50,000 \le 600,000$		
	$4x + 5y \le 60 \dots (ii)$	B_1	
	$x \le 7$ (iii)	B_1	
	$y \leq x$ (iv)	B_1	
	(h) graph paper		
	(b) graph paper		
	10x + 15y = 120 line shading	B_1	
	4x + 5y = 60 line shading	B_1	
	Y = x line and shading	B_1	
	Y = 7 line and shading	B_1	
	(a) Minimum et (f. 4)	1	
	(c) Minimum at (6, 4)		
	6 trips of truck A	B_1	
	A Trine of Triley B	1	
	4 trips of truck B	B_1	