Mechanism Design with Transfers
Social Chrice 7 motion $F: \bigcirc \rightarrow \chi$
X: space of all ontcomes
In this domain, an outcome χ has two components allocation α and payment vector $\pi=(\pi_1,\ldots,\pi_n)$, $\pi_i\in\mathbb{R}$
examples of allocations
DA public decision of building a bridge, park, or museum.
$a \in A = \{park, bridge, \dots \}$
2) Allocation of a divisible good, e.g., a shared spectrum
$a = (a_1, a_2,, a_n), a_i \in [0, 1], \sum_{i \in N} a_i = 1$
a: fraction of the resource i gets.
3) Single indivisible object allocation
$a = (a_1, \dots, a_n), a_i \in \{0,1\}, \sum_{i \in N} a_i \leq 1$
4) Partition of indivisible objects.
S = set of objects
$A = \{(A_1,, A_n) : A_i \subseteq S \ \forall i \in N, A_i \cap A_j = \emptyset \ \forall i \neq j\}$
Type of an agent i is $\theta_i \in \Theta_i$, this is a private information
of i.

Agents' benefit from an allocation is defined via the valuation function Valuation depends on the allocation and type of the player $\mathcal{V}_i: A \times \Theta_i \to \mathbb{R}$ [independent private values]

E.g., if i has a type "environment saver." θ_i^{env} and $a \in \{\{\{B, \theta_i^{env}\}\}\}$ $\{\{\{P, \theta_i^{env}\}\}\}$ the value can change if the type changes to "business friendly" $\{\{P, \theta_i^{env}\}\}\}$ $\{\{P, \theta_i^{env}\}\}$ $\{\{P, \theta_i^{env}\}\}$ $\{\{P, \theta_i^{env}\}\}\}$ $\{\{P, \theta_i^{env}\}\}$

Payments π; ∈R, Vi∈N

Payment vector $\underline{\pi} = (\pi_1, \pi_2, \dots, \pi_n)$

Utility of player i, when its type is θ_i and the ontcome is (a, π) is given by $u_i((a, \pi), \theta_i) = v_i(a, \theta_i) - \pi_i$ \tag{inear in possibly non-linear payment}

Quasi-linear payoffs

Q: Why is this a domain nestruction?

Consider two alternatives (a, π) and (a, π')

Suppose $\pi_i' < \pi_i$, there cannot be any preference profile in the quasi-linear domain where (α,π) is more preferred than (α,π') for agent i.

The utilities are $v_i(a, \theta_i) - \pi_i' > v_i(a, \theta_i) - \pi_i$

In the complete domain both orders would have been feasible. This simple testriction opens up the opportunity for a lot of SCFA to satisfy interesting properties