Complex Methods

IB

1 Analytic function

- Complex differentiability: same limit definition but quantify δx over all of $\mathbb C$
- Analytic (regular/holomorphic) function: f is analytic at z if \exists open neighbourhood of z where f' exists (not just differentiable at a point)
- Entire function: analytic throughout \mathbb{C} (analytic implies infinitely diffable; bounded entire implies constant)
- Complex diffable at $z \implies$ Cauchy-Riemann eqns (converse holds if u, v diffable at z)
- f = u + iv analytic $\implies u(x, y)$ and v(x, y) harmonic
- Harmonic conjugates: u, v are harmonic conjugates if they satisfy C-R equations
- Multivalued functions have branch point, introduce branch cut to make single valued and continuous
- Mobius maps
- Conformal map: $f: U \to V$, both U, V open subsets of \mathbb{C} f is conformal if analytic with non-zero derivative \iff angles preserved (i.e. amplitwist)