1.	Which observ	of the following are the three variables with the highest number of missing ations?	1/1 point
	Ом	sc.Feature, Fence, Pool.QC	
	Мі	sc.Feature, Alley, Pool.QC	
	O Po	ol.QC, Alley, Fence	
	O Fin	replace.Qu, Pool.QC, Lot.Frontage	
	✓	Correct This question refers to the following learning objective(s): Use frequency tables and bar plots to describe the distribution of a variable.	
2.		any categorical variables are coded in R as having type <i>int</i> ? Change them to factors onducting your analysis.	0 / 1 point
	0		
	1		
	O 2		
	3		
	×	Incorrect Examine the type of each variable using the <i>summary</i> or <i>str</i> functions. Are there any variables that are coded as <i>int</i> that can only take on a finite number of values (i.e. the magnitude of the number does not matter)? Count them.	
		This question refers to the following learning objective(s):	
		Identify variables as numerical and categorical.	
3.		os of price, which neighborhood has the highest standard deviation?	1 / 1 point
	\sim		

Log-transform price but not area

Log-transform area but not price

Log-tranform both price and area

✓ Correct

This question refers to the following learning objective(s):

- Recognize when transformations (e.g. log) can make the distribution of data more symmetric, and hence easier to model.
- Use scatterplots for describing the relationship between two numerical variables
 making sure to note the direction (positive or negative), form (linear or non-linear)
 and the strength of the relationship as well as any unusual observations that stand
 out.

6.	Suppose that your prior for the proportion of houses that have at least one garage is Beta(9, 1). What is your posterior? Assume a beta-binomial model for this proportion.	1/1 point		
	Beta(954, 46)			
	Beta(963, 46)			
O Beta(954, 47)				
	Beta(963, 47)			
	 Correct This question refers to the following learning objective(s): Make inferences about a proportion using a conjugate Beta prior. 			
7.	Which of the following statements is true about the dataset?	1 / 1 point		
	Over 30 percent of houses were built after the year 1999.			
	The median housing price is greater than the mean housing price.			
	21 houses do not have a basement.			
	4 houses are located on gravel streets.			

6/17/2021 EDA Quiz | Coursera

This question refers to the following learning objective(s):

Describe the distribution of a single variable.

8. Test, at the lpha=0.05 level, whether homes with a garage have larger square footage than those without a garage.

1 / 1 point

With a p-value near 0.000, we reject the null hypothesis of no difference.

With a p-value of approximately 0.032, we reject the null hypothesis of no difference.

With a p-value of approximately 0.135, we fail to reject the null hypothesis of no difference.

With a p-value of approximately 0.343, we fail to reject the null hypothesis of no difference.

Correct

This question refers to the following learning objective(s):

Use the t-distribution for inference on a single mean, difference of paired (dependent) means, and difference of independent means.

9. For homes with square footage greater than 2000, assume that the number of bedrooms above ground follows a Poisson distribution with rate λ . Your prior on λ follows a Gamma distribution with mean 3 and standard deviation 1. What is your posterior mean and standard deviation for the average number of bedrooms in houses with square footage greater than 2000 square feet?

1 / 1 point

Mean: 3.61, SD: 0.11

Mean: 3.62, SD: 0.16

Mean: 3.63, SD: 0.09

Mean: 3.63, SD: 0.91

Correct

6/17/2021 EDA Quiz | Coursera

This question refers to the following learning objective(s):

- Make inferences about data coming from a Poisson likelihood using a conjugate Gamma prior.
- Elicit prior beliefs about a parameter in terms of a Beta, Gamma, or Normal distribution.

10.	When regressing $\log(extit{price})$ on $\log(extit{area})$, there are some outliers. Which of the following do	1/1 point
	the three most outlying points have in common?	
	They had abnormal sale conditions.	
	They have only two bedrooms.	
	They have an overall quality of less than 3.	
	They were built before 1930.	
	✓ Correct	
	This question refers to the following learning objective(s):	
	Identify outliers and high leverage points in a linear model.	
11.	Which of the following are reasons to log-transform <i>price</i> if used as a dependent variable in a linear regression?	1 / 1 point
	a. <i>price</i> is right-skewed.	
	b. <i>price</i> cannot take on negative values.	
	c. <i>price</i> can only take on integer values.	
	d. Both a and b	
	./ Correct	

to be improved.

This question refers to the following learning objective(s):

Identify the assumptions of linear regression and assess when a model may need

12.	How ma	any neighborhoods consist of only single-family homes? (<i>Bldg.Type</i> = <i>1Fam</i>)	1/1 point
	0		
	1		
	O 2		
	3		
	/	Correct This question refers to the following learning objective(s):	
		Use contingency tables and segmented bar plots or mosaic plots to assess the relationship between two categorical variables.	
13.	_	olor, different plotting symbols, conditioning plots, etc., does there appear to be an tion between $\log(area)$ and the number of bedrooms above ground	1 / 1 point
	(Bedroo	om.AbvGr)?	
	Yes	5	
	O No		
	/	Correct This question refers to the following learning objective(s):	
		Use scatterplots and other graphical devices to describe the relationship between two numerical variables.	
14.		people who have unfinished basements, what is the average square footage of the ned basement?	1/1 point
	590	0.36	
	6 595	5.25	
	O 614	4.37	
	O 68°	1.94	

6/17/2021 EDA Quiz | Coursera

This question refers to the following learning objective(s):

Describe the distribution of a single variable.