МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по учебной практике

Тема: Новые языки программирования

Студент гр. 2383	 Сериков М.
Студент гр. 2303	 Мышкин Н.В
Руководитель	Фирсов М.А.

Санкт-Петербург 2024

ЗАДАНИЕ НА УЧЕБНУЮ ПРАКТИКУ

Студент Сериков М. группы 2383	
Студент Мышкин Н.В. группы 23	03
Тема практики: Алгоритм Дейкст	ры поиска кратчайших путей в графе.
2	
Задание на практику:	
Командная итеративная разработы	ка визуализатора алгоритма на Java с
графическим интерфейсом.	
Алгоритм: Алгоритм Дейкстры по	оиска кратчайших путей в графе.
Сроки прохождения практики: 26	0.06.2024 - 09.07.2024
Дата сдачи отчета: 00.07.2024	
Дата защиты отчета: 00.07.2024	
Студент	Сериков М.
Студент	Мышкин Н.В.
Руководитель	Фирсов М.А.

АННОТАЦИЯ

Цель практики — создание программы с поддержкой графического интерфейса для нахождения кратчайшего пути с помощью алгоритма Дейкстры на графе с неторицательными весами ребер. Перед выполнением основного задания был составлен план разработки и спецификация программы согласно которым производилась работа.

SUMMARY

The goal of the practice is to create a program with graphical interface support to find the shortest path using Dijkstra's algorithm on a graph with non-negative edge weights. Before completing the main task, a development plan and program specification were drawn up according to which the work was carried out.

СОДЕРЖАНИЕ

	Введение	5
1.	Требования к программе	6
1.1.	Исходные требования к программе*	6
1.1.1.	Требования к вводу исходных данных	6
1.1.2	Требования к визуализации	6
1.2.	Уточнение требований после сдачи прототипа	0
1.3.	Уточнение требований после сдачи 1-ой версии	0
1.4	Уточнение требований после сдачи 2-ой версии	0
2.	План разработки и распределение ролей в бригаде	8
2.1.	План разработки	8
2.2.	Распределение ролей в бригаде	8
3.	Особенности реализации	0
3.1.	Структуры данных	0
3.2.	Основные методы	0
4.	Тестирование	9
4.1	Тестирование графического интерфейса	9
4.2	Тестирование кода алгоритма	9
4.3	Тестирование кода графа	9
	Заключение	0
	Список использованных источников	0
	Приложение А. Исходный код	0

ВВЕДЕНИЕ

Главная цель практической работы — реализация графического представления работы алгоритма Дейкстры поиска кратчайших путей в графе. Для достижения поставленной цели необходимо реализовать рассматриваемый алгоритм, пользовательский интерфейс и визуализировать работу алгоритма, после чего произвести тестирование всех компонент проекта.

1. ТРЕБОВАНИЯ К ПРОГРАММЕ

1.1. Исходные Требования к программе

1.1.1. Требования к вводу исходных данных

На вход программе должен подаваться неотрицательно взвешенный ориентированный граф и исходная вершина. Название вершин состоят из одного символа латинского алфавита. Ввод начальных данных осуществляется двумя возможностями в зависимости от выбора пользователя: непосредственно в рабочей пространстве программы или посредством файла.

1.1.2. Требования к визуализации

Интерфейс программы предоставляет собой диалоговое окно с кнопками для взаимодействия с пользователем. Состав диалогового окна:

- 1. Рабочая область внутри которой пользователь имеет возможность построить взвешенный граф и внутри которой демонстрируется пошаговая работа алгоритма
- 2. "Добавить вершину": Добавляет вершину графа в рабочую область по клику мыши. "Удалить": Удаляет выбранный элемент графа (ребро или вершину с инцидентными ребрами) при клике мышью. "Соединить вершины": Создает ребро между вершинами. "Перемещение": Перемещает объекты внутри рабочей области при помощи мыши. "Загрузить": Загружает граф в рабочую область при помощи файла. "Запустить основной алгоритм": Запускает выполнение алгоритма Дейкстры на графе, пользователь выбирает стартовую вершину. "Вперед": Переходит к следующей итерации алгоритма. "Назад": Возвращается к предыдущей итерации алгоритма. "Сброс": Очищает рабочую область.

За основу рассматриваемого алгоритма взят следующий псевдокод:

```
function Dijkstra(Graph, source):

dist[source] \leftarrow 0

for each vertex v in Graph:

if v \neq source:

dist[v] \leftarrow \infty
```

```
prev[v] ← undefined

Q ← the set of all nodes in Graph
while Q is not empty:
    u ← vertex in Q with min dist[u]
    remove u from Q
    for each neighbor v of u:
        alt ← dist[u] + length(u, v)
        if alt < dist[v]:
            dist[v] ← alt
            prev[v] ← u

return dist[], prev[]</pre>
```

2. ПЛАН РАЗРАБОТКИ И РАСПРЕДЕЛЕНИЕ РОЛЕЙ В БРИГАДЕ

2.1. План разработки

Дата	Этап проекта	Реализованные	Выполнено
		возможности	
27.06.24	Согласование		
	спецификации		
30.06.24	Сдача прототипа		
03.07.24	Сдача версии 1		
05.07.24	Сдача версии 2		
08.09.24	Сдача отчёта		
08.09.24	Защита отчёта		

2.2. Распределение ролей в бригаде

Сериков М. - пользовательский интерфейс программы, алгоритм Дейкстры, визуализация алгоритма

Мышкин Н.В. - тестирование

3. ОСОБЕННОСТИ РЕАЛИЗАЦИИ

- 3.1. Структуры данных
- 3.2. Основные методы

4. ТЕСТИРОВАНИЕ

- 4.1. Первый подраздел четвёртого раздела
- 4.2. Второй подраздел четвёртого раздела

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

ПРИЛОЖЕНИЕ А НАЗВАНИЕ ПРИЛОЖЕНИЯ