CA1 BS 113 70 D07

CANADA

DOMINION BUREAU OF STATISTICS Canada

CENSUS DIVISION

Canada (5)

REPORTING OF DATES IN THE 1967 LONDON TEST

Ъу

Mercedes Rivera

Working Paper (Demographic and Socio-Economic Series) No. 7

Digitized by the Internet Archive in 2023 with funding from University of Toronto

CAI BS 113 -70807

CANADA

DOMINION BUREAU OF STATISTICS

CENSUS DIVISION

(5)

REPORTING OF DATES IN THE 1967 LONDON TEST

Ъу

Mercedes Rivera

Working Paper (Demographic and Socio-Economic Series) No. 7

CA1 BS 100

Data on age collected from census questionnaires or any other survey are subject to certain types of error. In every population there are persons who give inconsistent answers about their age or date of birth. Certain dates or ages may be preferred by some people. In the United States, for example, there has been heaping at ages 21 and 65. Over and under-reporting has also been found on data re: age at first marriage. There are several methods to find what the errors are and how to graduate or smooth the data. Given the importance of age, misreporting may affect many cross-tabulations where age is an important element.

Age at census or at first marriage for the London Test, 1967, was calculated from answers to the question on month and year of birth or of first marriage. Data from questions on date of first marriage and date of birth of the last born child were collected for women ever married and on a sample basis. All the data used in this analysis related to marriage or fertility represent about 1/10 of the data collected from the London Test and about 1/3 of the data for women ever married collected from other tests.

Innovations such as self-enumeration, self-coding, sampling and reporting of date of an event rather than completed age were tested during the 1967 census test.

Reporting of age has improved from census to census. Heaping at ages ending in 0, 5 and 2 has declined.(1)

Some assumptions that we will attempt to prove using census test data can be made about age reporting:

1. Age heaping is in general less pronounced when date of birth is asked rather than actual age at last birthday. Heaping has been shifted, however, and

⁽¹⁾ For a complete account see Tetlock, G. (1969) Canada and Zelnik (1964, 439) and Myers (1940, 395-415) U.S.

- 3 -

preferred digits have to be measured either in terms of preferred digits in which years end or in terms of individual years of age.

- 2. The year when the census is taken may create heaping at certain ages. These ages would not have been over or under-reported if age at last birthday had been asked.(2)
- 3. Recent events may be remembered better, mainly when the event is fixed in time. A corollary of this could be that non-response increases as the person gets older.
- 4. When asking for a date it may be better to provide for the exact decade and year of birth and for the exact month of birth rather than groups of months.
- 5. If date of birth is misreported as a consequence, other dates are likely to be misreported as well. Date of birth forms the basis for deriving age at first marriage and age of last born child. Age at first marriage, for example, is calculated in terms of the years elapsed between date of birth of the person and month and year of marriage. Misreportings of date of birth will necessarily lessen the accuracy of derived data.

Once the errors are located, techniques should be developed to eliminate or reduce the errors.

The data we shall analyse were derived from answers to questions in the 1967 London Test schedule. Reference will be made to data from other census tests such as the Toronto Test and the 1968 Fall Tests. Age at census was derived from responses to a question on date of birth. These data were collected on a 100 per cent basis and were computer processed after the edit programme was completed. Date of first marriage and date of birth of the last born child were collected on a sample basis. From this sample data another sample was drawn and data were

⁽²⁾ The biases introduced when age at last birthday rather than date of birth is asked are of different nature. This paper is not an attempt to show the advantages of alternative wordings of the questions on age.

tallied manually.

There are two evaluation studies related to age reporting. Gower's (1968) study on Comparative Rates of Partial Non-Response, Mail Returns on the London and Toronto Tests deals with response rates from a sample of documents. The study covers all the census questions. Tetlock's study (1969) deals specifically with the reporting of age in London, 1967. Tetlock analyses and compares reporting of age in 1961, 1966 and 1967 for the population of London by means of several techniques one of them being Myers' Blended Method. The latter study is helpful to clarify and expand points 1, 2 and 3 above. Gower's study provides some data that may clarify point 4. The present evaluation will cover points 1, 2, 3 and 4 mentioned above.

New patterns in Age Reporting

In order to test the assumption that heaping patterns have changed, the blending technique developed by Myers will be applied.

Briefly, this technique derives a "blended" population which is a weighted sum of the persons who reported ages ending in digits 0 to 9. Table V shows the age distribution by single years of age used for this analysis.

The underlying assumption made by Myers (1942) is that the "blended" sum at each terminal digit should be very close to 10 per cent. Data from several U.S. Censuses and age distributions from Life Tables were employed by Myers in testing the accuracy of his assumption. (Myers 1942, 412-415). Deviations from 10 per cent indicate preference or avoidance of certain digits.

Table I shows the measures of digit preference and avoidance as a result of applying the "blending" technique. The overall measure of over and under selection of particular digits in the Test census age distribution is the Index of Preference. This index is one half of the absolute sum of the deviations for each of the terminal digits.

TABLE I. Deviations from Ten Percent and Index of Preference

		Total						
Truminol digit	Blended population							
Terminal digit	Total Percentage distribu-		Deviation from 10%					
0	146,141 141,942 142,652 145,452 147,465 146,056 145,969 150,068 138,114 144,150	10.1 9.8 9.8 10.0 10.2 10.1 10.4 9.5 10.0	+ 0.1 - 0.2 - 0.2 + 0.2 + 0.1 + 0.1 + 0.4 - 0.5					
Total	1,448,009	100.0	Index of preference 0.9					

Source: Table I was computed from Table V "Population by single years of age, London Census Test, 1967".

Preference for certain digits in Table I is shown by a positive deviation from 10 per cent. Avoidance of a digit is represented in terms of a negative deviation from 10%. The greater the positive deviation from 10 per cent, the greater the heaping for the given digit.

If digit preferences were manifested in terms of terminal digits of years reported, we would expect that years ending in 0, 2 and 5 will be preferred.(3)

Since the London Test took place at the end of 1967 (September) we assume that the digit preferred in terms of age would be 7 because people born in 1960, let us say,

⁽³⁾ Turner (1958) pointed out that since the most familiar way of counting is with the base ten, heaping should occur at ages ending in multiples of ten, the next largest at multiples of five Refer to Stanley H. Turner's work on "Patterns of Heaping in the Reporting of numerical Data".

will be 7 years old if born between January and September 1960. Preference for years ending in 2 would be manifested at ages ending in 5. Preference for years ending in 5 would be manifested by heaping at ages ending in 2.

This, at least for heaping at ages ending in 7, is evident from Table I.

The subject, however, as we will see later, is still open to discussion.

The index of preference for London, 1967, is only 0.9. This indicates that heaping is not a serious problem in this case. The "blending" technique has been used widely and the results presented here may be compared to the heaping shown in data from other censuses. In Table VII (appendix) some measures of digit preference for different countries are given. It should be noted that in obtaining the indices of preference shown in Table VII ages under 10 were excluded, as well as ages 90 and over.

It is clear from Table I that heaping occurred at ages ending in 7. To counter-balance preference for digit 7 under-reporting or avoidance of ages ending in 8 is also shown. No other significant patterns can be determined from this measure of heaping. Heaping at ages ending in 5 is minimal.

Differences in "heaping" by sex were also found. The steps followed to find the index of preference are given in the appendix, Tables VI and VIII. Although heaping is more pronounced for males than for females this is not very meaningful because we cannot determine the sex of the person who filled the questionnaire.

The age distribution of the population by sex is illustrated in the attached age pyramid, fig. 1. It is difficult to make even general assumptions from this pyramid about age reporting. Intervening variables such as migration, mortality or actually smaller or bigger cohorts must be taken into account in a more detailed analysis of age misreporting. The possible effect of migration can be seen by examining the age distribution in Table V.

It would be useful to find heaping or preference at individual ages, that is to analyse the heaping patterns by single years of age. This would permit us to know whether some ages ending in 7 are more affected than others. There are several techniques which could be used such as graduation, frequency distributions, etc. We could thus determine whether or not heaping occurred mainly at certain key ages, such as ages over 50, i.e., 57, 67, 77, 87 and so on.

Zelnik, for example, in his analysis of the 1960 U.S. Census figures on age found that (Zelnik, 1964, 439-442):

The major exception to the general improvement in age heaping occurred at age 59 for both sexes. In fact, heaping at age 59, not characteristic of earlier censuses, is the outstanding example of age preference in 1960. Age heaping errors at 59 are three times greater than at any earlier age among females, and four times greater than at any earlier age among males. The very pronounced heaping on age 59 is undoubtedly the result of the different age question asked in the 1960 census. Persons tabulated at age 59 in 1960 were those reporting their year of birth as 1900. The preference for the double-zero year apparently resulted in an overstatement of 1900 as year of birth which, when translated into age, resulted in the strong preference for age 59.

The argument of "year heaping" rather than "age heaping" cannot explain all of the changes in age preferences between 1950 and 1960, as illustrated by the avoidance in 1960 of most of the ages ending in 9 (i.e., for years of birth ending in 0, a digit which, in the past, has been heavily preferred). The preference on the average for 9 in 1960 indicated by Myers' "blended method" is almost solely a result of the heavy heaping on age 59. The phenomenon of age heaping and its measurement reflect more than the simple choosing of one digit and the avoidance of another. In general, however, apparent changes in age preferences between 1950 and 1960 presumably arise mainly from the change in age question and are, in effect, the result of continuations of past digital preferences.

Assumption 2 has been partly proven. Since the 1971 census will be taken in June this may eliminate part of the effect of heaping.

The Effect of Non-Response

There is no evidence from the results of Gower's study (1968) that recent events are reported better (date of first marriage as opposed to date of birth). We must keep in mind, however, that due to the importance of the question on date of birth follow-up is more strict for this question.

TABLE II. Partial Non-Response on Mail Returns, Tests Documents

	Quest.	Size of								
Question description				I	nitial	Follow- up	Fail or			
	•	base	Total	Total	Resp.	Edit	Total	blank		
	London									
Written birth date Coded month of birth Coded decade of birth Written date of marriage Coded month of marriage Coded decade of marriage Coded decade of marriage Coded year of marriage Number of births Written birthdate of child Coded month of birth Coded decade of birth Coded year of birth	P4 P5 P6 (1) P49 P50 (2) (2) P51 P52 P53 (3) (3)	533 533 533 156 156 156	99.4 99.2 99.4 97.4 96.8 95.5 95.6 94.8	98.5 98.5 98.3 87.1 88.5 85.9 85.9 86.7	98.5 91.6 92.7 87.1 87.2 84.6 85.2 83.7	- 6.9 5.6 - 1.3 0.7 3.0	1.1 1.1 10.3 9.0 10.3 9.6 8.1	2.6 3.2 4.5 4.4 5.2		
	Mini Toronto Form 2A									
Written birth date Coded month of birth Coded decade of birth Written date of marriage Coded month of marriage Coded decade of marriage Coded year of marriage Number of births Written birthdate of child Coded month of birth Coded decade of birth Coded year of birth	P4 P4 P4 P48 P48 P48 P48 P49 P50 P50 P50	1096 1096 1096 1096 320 320 319 319 320 286 286 286	1	97.4 98.2 98.4 98.5 90.6 90.9 90.6 90.3 90.6 89.9 89.9 89.9	94.7 94.0 93.5 91.6 84.1 82.8 82.1 80.2 83.4 82.5 81.5 80.8 79.8	2.6 4.2 4.9 6.9 6.6 8.1 8.5 10.0 7.2 7.3 8.4 9.1 10.1	5.2	4.1 4.1 3.8 4.9 4.9		

⁽¹⁾ Included in P6.

⁽²⁾ Included in P50.

⁽³⁾ Included in P53.

Source: This is part of Table 1 in Gower's (1968, 4) study.

It is difficult to draw conclusions from Table II. The conditions and the populations enumerated were different in both London and Toronto. Gower (1968, 2) made the remark that "since we are only studying mail returns, and since the rate of mail response was much lower in Toronto than in London, the Toronto returns probably represent a more select (co-operative) group than do the London". On the other hand the questions on age and on the other two dates are very similar in both tests.

Making some internal comparisons of Gower's data we find that in London the manual editing of data was higher for questions P5 and P6 than for P50 or P52 which are the other two questions on age. This means that the respondent coded better P50 and P52. This could be explained because the later questions are answered at the end of the questionnaire and presumably the respondent knows better how to code at this stage, in other words, the practice effect is being felt. However, we could assume that non-response is higher by the end of the questionnaire because of the fatigue inherent to such a long task. It is possible that the reason for better self coding in questions P50 and P52 is due to the way the coding positions were set up. Every month of the year was preceded by an entry while for the coding of date of birth months were grouped. This pattern under the column Edit is not observed for Toronto. The 1969 Trial Census will allow for the respondent to code his exact month of birth as well as the decade and the year and this aspect could be explored further.

It seems that response rates are sensitive to the way the question is worded. In Toronto for example in form 2B (maxi Toronto) the respondent was asked to first code the date of birth and at the end of the question to write the date. In form 2A (mini Toronto) and the 1967 London Test form the question was reversed, first the write-in and second the coded entry.

Gover's study shows a better response rate for the London Test and the Mini Toronto (Form 2A) where the initial success rate (Resp.) for P5 and P6 was over 90%. In the case of Maxi Toronto the initial success rate (Resp.) for P4 fluctuated between 89% and 91.6% (Gower, 1968, Table 1, 4).

The figures are small and the differences in percentage do not permit generalizations.

When tabulations were prepared using date of birth, date of first marriage and date of birth of the last born child the following rates were found for London:

TABLE III. Non-Response to Fertility Questions by Age, London 1967 Test

15 years and over first children of last porn child P52(3												
Age married 15 years and over marriage marriage marriage number of children ever born marriage number of children ever born number of c		Women	Number and percentage(1) of non-response									
15 and over 770 23 3.0 29 3.8 25 3.2 20 15-44 414 5 1.2 6 1.4 4 1.0 3 15-19 20	Age	married 15 years	Date of first		Number of children		Date of birth of last		P50-P51' and P52(3)			
15-44			No.	76	No.	%	No.	%	No.	. %		
45-49 70 2 2.9 4 5.7 3 4.3 2 50-54 62 1 1.6 1 1.6 1 1.6 1 55-59 55 2 3.6 3 5.4 3 5.4 1 60-64 45 4 8.9 4 8.9 4 8.9 4	15-44	414 20 69 88 81 84	5 - 1 2 - 1	1.2 - 1.4 2.3 - 1.2	6 - 1 - 3	1.4 - 1.4 - 3.6	4 - 1 -	1.0 - 1.4 - 2.4	3 - 1 - - 1	2.6 0.7 - 1.4 - 1.2 1.4		
Age not stated 2 1 50.0 2 100.0 2 100.0 1	45-49	70 62 55 45 122	2 1 2 4 8	2.9 1.6 3.6 8.9 6.6	4 1 3 4 9	5.7 1.6 5.4 8.9 7.4	3 1 3 4 8	4.3 1.6 5.4 8.9 6.6	2 1 1 4 8	4.5 2.9 1.6 1.8 8.9 6.6		

⁽¹⁾ The percentage of non-response is equivalent to Column Fail or Blank in Table II.

⁽²⁾ Includes cases when there was an entry in P51 other than none but no entry in P52, it also includes cases when both P51, and P52 were blank, and when the three P50, P51 and P52 were blank.

⁽³⁾ Cases when the 3 questions P50, P51 and P52 were blank.

The results are close to Gower's results. When questions P50, P51 and P52 are compared we note the higher rate of non-response for question P51 on number of children ever born. It is difficult to determine the base for P52 because when the question on number of children is not answered we do not know whether an answer should have been given in P52. The results in Table III show a higher rate of non-response to P52(1). In this case if P51 was blank and P52 was blank both were considered as blank.

The results for women 45 years old and over in a rural area are slightly different, as shown in Table IV which follows:

TABLE IV. Non-Response to Fertility Questions by Age

(Annapolis, Durham, Lethbridge and Napierville, 1968 Fall Tests)

Age	Total women ever married 45 years and over	Dat _fi	f non-r e of	ercentage(1) esponse Date of birth of last born child	
•		No.	%	No.	%
45+	1,237	69	5.6	64	5.2 4.9
45-49	246 245	9	4.1	12	4.9
50-54	212	11	5.2	8	3.8
60-64	185	12	6.5	9	4.9
65÷	349	26	7.4	23	6.6
Age not stated	i.	1	100.0	-	O TOMORY

⁽¹⁾ Percentages are horizontal.

This table shows that non-response increases with age, at least in the case of females ever married, 45 years old and over living in rural areas. This pattern was observed in Table III also. For the group of 1,237 women in rural areas the non-response is lower for the most recent event (date of birth of last born child). A more careful working of P51 could yield better results.

It would have been very useful to have complete data on age at first marriage for London 1967. This would have allowed us to find preferences at certain ages or dates of first marriage. Since the population studied consisted of 770 women ever married, sample variability and sample size in this case do not permit further analysis.

Conclusion:

Data summarized here clarified some of our assumptions. One point to keep in mind is that when age is derived from the date when the event took place "new biases" may be introduced and therefore if the errors are found to be significant new ways of analysing the data could be developed. The type of information requested and the wording of questions also has an effect on response rates.

Assumption 5 could not be evaluated. Nevertheless, it seems obvious that misreporting of age would affect related data and that in the case of age at first marriage any error may well be cumulative. Comparison of Census data on age at first marriage and similar data from Vital Statistics would be a way of evaluating the data.

Mr. Tetlock (1969) investigated how heaping at certain terminal digits has changed over time. We may assume that reporting of age has improved in general. We dealt with census test data only. Tetlock's study dealing with the test census question on age and with comparison of age reporting in different censuses (using the population of London as basis) clarifies other aspects related to the reporting of age and to the techniques employed to measure age heaping.

Digit preference is only one of the errors found in age data. Other studies on age that could be carried out are detailed analysis of heaping by single years of age; response rates to age questions by age; and in the case of date of birth of last born child, by age at first marriage; misreporting of persons (omission)

in certain ages or age groups, etc. Data on age from the 1969 Trial Census could be compared to data from past censuses.

Decisions could be made on how to tabulate and how to graduate the data once the problem of age misreporting and its magnitude is determined.

If assumptions 1 and 2 are correct we may expect that in 1971 the preferred digit in age reporting would be 1, and 2 or 0 would be most avoided among the digits. Analysis of data by single years of age from the 1967 London Test would show whether one particular age ending in 7 was preferred over all other ages and what age or ages are more affected by digit preference.

APPENDIX

TABLE V. Population by Single Years of Age, London Census Test 1967

	·					,		
Age	Total	Male	Female	Age		Total	Male	Female
LONDON CITY	201,176	97,697	103,479					
Under 1	3,342 3,415 3,878 4,016 4,249	1,706 1,800 1,989 2,070 2,235	1,636 1,615 1,889 1,946 2,014	26 27		3,128 3,033 2,921 2,637 2,633	1,482 1,503 1,451 1,329 1,294	1,646 1,530 1,470 1,308 1,339
0-4	18,900	9,800	9,100	25-	29	14,352	7,059	7,293
5	4,282 4,217 4,302 4,070 3,915	2,144 2,151 2,261 2,137 1,992	2,066 2,041 1,933	31 32 33		2,516 2,533 2,541 2,559 2,535	1,237 1,256 1,257 1,258 1,313	1,279 1,277 1,284 1,301 1,222
5-9	20,786	10,685	10,101	30-	34	12,684	6,321	6,363
10 11 12 13 14	3,901 3,806 3,684 3,583 3,515	2,001 1,946 1,941 1,817 1,819	1,900 1,860 1,743 1,766 1,696	36 37 38	• • • • • • • • • • • • • • • • • • • •	2,649 2,638 2,805 2,559 2,634	1,308 1,342 1,432 1,264 1,297	1,341 1,296 1,373 1,295 1,337
10-14	18,489	9,524	8,965	35-	39	13,285	6,643	6,642
15 16 17 18	3,251 3,217 3,156 3,346 3,664	1,604 1,625 1,517 1,545 1,606	1,592 1,639 1,801	41 42 43		2,678 2,618 2,691 2,780 2,714	1,312 1,293 1,317 1,367 1,317	1,366 1,325 1,374 1,413 1,397
15-19	16,634	7,897	8,737	40-	44	13,481	6,606	6,875
20	3,989 3,364 3,043 3,217 3,275	1,809 1,467 1,348 1,534 1,519	1,695 1,683	46 47 48		2,152	1,290 1,373 1,363 1,039 1,013	1,405 1,387 1,459 1,113 1,060
20-24	16,888	7,677	9,211	45-	49	12,502	6,078	6,424

Source: Basic Tabulations, London City Census Test, 1967 "Population", Table A-1, DBS 1969 - pp. 6, 7, 8.

TABLE V. Population by Single Years of Age, London Census Test 1967 - Concluded

Age	Total	Male .	Female	Age .	Total	Male	Female
50	2,094	1,026	1,068	75	792	316	476
51	2,008	1,025	983		7 76	306	470
52	2,085	1,020	1,065		708	263	445
53	2,058	1,030	1,028		637	233	404
54	1,976	1,001	975		602	239	363
50-54	10,221	5,102	5,119	75-79	3,515	1,357	2,158
				00	499	188	311
55	1,907	901	1,006	80	493	187	306
56	1,805	855	950	81	409	159	250
57	1,757	848	909	0.0	352	116	236
58	1,585	770	815	0.1	346	126	220
59	1,636	782	854	84	240	120	220
55-59	8,690	4,156	4,534	80-84	2,099	776	1,323
				85	2 88	92	196
60	1,462	687	775		248	95	153
61	1,468	678	790		250	100	150
62	1,471	673	798		186	62	124
63	1,258	578	680		T06	35	71
64	1,288	585	703				
60-64	6,947	3,201	3,746	85-89	1,078	384	694
00-04	0,547	5,201	3,740	90	1.03	<u>1</u> 9	84
				91	66	20	46
65	1,196	533	663	92	61	14	47
66	1,085	471	614	93	43	10	33
67	1,219	532	687	94	35	10	25
68	1,044	447	597				
69	1,067	443	624	90-94	· 3 08	73	235
65-69	5,611	2,426	3,185				4
				95 ,	22	5	17
				96	16	3	13
70	986	396	590		.19	5	14
71	949	404	545		1	1	_
72	920	392	528		8	2.	6
73	888	360	528				
74	855	347	508	95-99	66	16	50
70-74	4,598	1,899	2,699	100	42	17	2.5

1967 LONDON TEST

TABLE VI. Digit Preference as Shown from Age Data Collected for the Population in the 1967 London Test (For persons 10 years old and over)

۔ بر		10		Υ)	\sim 1	0	0) ~	t •	.	4	0			9	7	C	0 0	7 1	0	0	5	4	0				
Product		000	1	7 + 6 + 7	0,53	78	2.52	5 43		UX, VI	5,10	27,31	44,15			28,0	7.4	0.0	4 C	α, α ο (t,	0,6	37,03	4,9	0,8	·			
Coeffi-	ren	-	٠	7	ണ'	4	10	2	7 0		တ	6	10			6	co	7	, (9 1	2	4	m	2	p	C			
Total	0	0 10	0,14	7,23	6,84	6,69	6.50		0,70	5,56	5.63	4,14	14,415		161,074	4,22	3,43	71 6	0,100	3,11	2,98	12,65	, 12,345	2,48	0,80	0 75		125,951	
	80-89	00%	2	0	0	5	1	r o	\circ	7	5	∞	106		3,177	0	0	1)	5	7	00	24.8	5	∞	\subset	> 1	3,177	
	70-79	C	o.	4	2	-00	15	7 <	2	1	\circ	S.J	602		8,113	- 00	V.	. (V	00	5	0	776	\circ	സ			8,113	
ed ages	69-09	,	,40	94,	47	25	, c	076	, 19	,08	,21	0.4	1,067		12,558	97	4.6	• 1 c	,47,	,25	,28	1.9	1,085	. 21	,04	, ,	5	12,558	
t specifi	50-59		90,	00	.08	7 5	, ,	120	,90	,80	7	22	1,636		18,911	0.0	\ C		, OS	,05	.97	06	1,805	75		, , , ,	,00	118,911	
ersons af	67-05	\	,67	,61	,69	έ. Σ	" 1 ~	, / 1	, 69	,76	82	-	2,073		25,983	1	, C	ر ک	ð,	1.	-	, 6	2.760	, a)	4 (,	25,983	
r of p	30-39		,51	. 53	54	د ا ۱۱	ا ما د	, 53.	,64	,63	. 80	, 7,	2,634		25,969	L.	1 6	ر. ا	,54	,55	.53	64	0,000		ر ا الر الر	د ا ا د	0.	25,969	
Number	20-29		96,	36		500	17;	,27	,12	.03	. 92		2,633		31,240	0	, c	00 %	,04	,21	27	- 6-	2,512	000	2 C	,)) ()	9 63	31,240	
	10-19		06.	000	000	000	, DX	,51	,25	.21		, , c,	3,664		35,123														
Terminal	digit		0			7	3	7	2			• • • • • • • • • • • • • • • • • • • •	•	•	Total		0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2			: :				~	6	Total	

TABLE VI. Digit Preference as Shown from Age Data Collected for the Population in the 1967 London Test (For Persons 10 years old and over) - Continued

MALES

I ar i my o'll		Numb	er of p	ersons at	t specifi	ied ages			Total	Coeffi-	Product
digit	10-19	20-29	30-39	67-07	50-59	69-09	70-79	80-89	10-89	cient	
		α	23	3	.02	687	0	00	,65	e-y-f	8,656
) C	* 1 ここ	200	0.1	678	0	187	8,256	2	,51
:	7 0	, ,	ر ار 7 ر	, E	02	673	0	5	,10	ന	+,32
7	1 O	י. ליני	ر ا ا در	186	03	578	9		,06	4	2,24
· · · · · · · · · · · · · · · · · · ·	10,	ب ب ار	ا در	, c.	00	585	T	2	,02	5	0,13
+	30,0	γ \ \ \ \ \	2000	200	90	533	ļ	0	,52	9	5,15
• • • • • • • • • • • • • • • • • • • •		, t	2,00	37	10	471	0	95	,57	7	2,99
9	, 52) .	, , < , c,	, c.		532	0	100	,50	00	70,0
	, ,	1 6	100	, , , ,		447	\sim	9	,68	6	0,20
	1,606	1,294	1,297	1,013	782	6443	239	35		10	7,09
Total	7.	1 1-	0,	12,684	9,258	5,627	3,256	1,160	77,106		
(α	0	3	.02	CO	0	00	,65	6	9,8
		7	2.5	29	01	678	404	187	6,310	00	00
		د در	25	(7)	102	_	0	5	,16	7	3,16
		ر ا ال	* C C	36	,03	1-	0	-	,24	9	7,45
		e. J	. 6	31	00.	8	V	2	,20	<u>-</u>	1,04
· · · · · · · · · · · · · · · · · · ·		, ~	1 6	500	06	3		0	,92	7	3,68
		e. 12	200	3	· 0	-	\circ	0	,94	m	7,83
		2 (, <u>, , , , , , , , , , , , , , , , , , </u>		1	- $()$	0	100	96,		1,97
		6	2.00	, C		V	6.3	9	,14		,14
000		1,294	1,297	1,013	782	443	(1)	35	,10	0	1
Total		14,736	12,964	12,684	9,258	5,627	3,256	1,160	59,685		
)											

TABLE VI. Digit Preference as Shown from Age Data Collected for the Population in the 1967 London Test (For Persons 10 years old and over) - Continued

FEMALES

Terminal		Nur	Number of p	ersons a	it specif	fied ages			0	4- 4-	
digit	10-19	20-29	30-39	67-07	50-59	69-09	70-79	80-89	10-89	cient	Product
•	90	18	.27	.36	9	1	0	1	77		97
	. a.	00		500	000	- 0	1 ~	1 (e (4 () \ \ \
	0 1	, C.V.	176	, 34	ν Σ	2	t	\circ	, co	7	96.7
•	,74	,69	,28	,37	90	(C)	2	5	,73	n	6,21
•	,76	,68	,30	,41	,02	00	2	3	,63	4	4,54
•	,69	,75	,22	,39	67	0	0	2	,47	5	2,38
•	1,647	1,646	1,341	1,405	1,006	663	476	196	 	9	0,23
•	,59	,53	,29	,38	9.5			5	, 99	7	5.94
•	,63	,47	,37	,45	0	∞	4	5		00	5.05
•	.80	,30	0	**************************************	\leftarrow	0	0	2	,45	6	7.11
•	,05	,33	,33	90,	5	2	363	71	7.706	10	77,060
Total	17,702	16,504	13,005	13,299	9,653	6,931	4,857	2,017	83,968		
6.		,18	,2	,36	10		5		,56	6	8.12
4 0 · · · · · · · · · · · · · · · · · ·		,89	2,	,32	98	6	4	0	,12	00	6,98
•		,69	2,5	,37	90	9	2	1	,99	7	8,95
	-	1,683	1,301	1,413	1,028	.680	528	236		9	41,214
•		,75	, 2	,39	~	0	0	3	,78	7	3,90
•		,64	G.	,40	0	9	1	0	,73	4	6,93
•		.50	7 =	300	5		~	5	,40	n	9,20
•		.47	دع	,45	0	00	1	5	64,	2	2,98
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		,30	1,295	, 11	-	5	0	N	,65	-	5,65
•		,33	3	,06	5	CI	9	71	4	0	
Total		16,504	13,005	13,299	9,653	6,931	4,857	2,017	66,266		
							7	T			

0444410100

08707500

TABLE VI. Digit Preference as Shown from Age Data Collected for the Population in the 1967 London Test (For Persons 10 years old and over) — Concluded

DEVIATIONS FROM TEN PERCENT AND INDEX OF PREFERENCE

	lation	Deviation from 10%	-1		1 0 1		. [+ 0 +		+ 0,3	-0.4	+ 0.1	Index of preference 0.7
Female	Blended population	Per- centage distri-	10.0	0,6	0.0	10.0	10.0	10,1	6.6	10,3	9.6	10.1	100.0
	Ble	Total product	77.590	74,950	75,169	75,754	76.290	77,212	75,144	78,042	72,769	77,060	759,980
	lation	Deviation from 10%	1	- 0,3	- 0.2	+ 0,1	+ 0.3	I	+ 0.3	+ 0.5	10.5	0.2	Index preference 1.2
Male	Blended population	Per- centage distri- bution	10.0	9.7	8.6	10.1	10,3	10.0	10.3	10.5	9.5	9.8	100.0
	Ble	Total product	68,551	66,992	67,483.	69,698	71,175	68,844	70,825	72,026	65,345	060,79	688,029
	ation	Deviation from 10%	+ 0.1	- 0.2	- 0.2	1			+ 0.1	+ 0 +	- 0.5	1	Index of preference 0.9
Total	ded population	Per- centage distri- bution	10.1	9,8	8.6	10.0	10.2	. 10.1	10.1	10°4	9.5	10.0	100.0
	Blended	Total product	146,141	141,942	142,652	145,452	147,465	146,056	145,969	906	38,1	144,150.	1,448,009
	Terimine T	digit	0	* * * * * * * * * * * * * * * * * * *	2		6000000	5	9			6	Totai

TABLE VII. Indices of Preference, for Selected Populations(1)

	Country	Inde
	1880	10.4
		7.8
11	1890	4.7
11	1910	5.6
11	1920	4.5
11	1930	4.3
Ħ	1940	3.0
11	1950	2.2
11	1060	0.8
weden. 1960 .		0.4
- thanlande An	tilles 1960	1.3
1 Talanda	1060	1.4
1	grand 1956	1.
1-1 of Vo	700 1055	1.
. 1057		1.
naco, 1961 .		1.
ermuda, 1960		
estern Samoa,	1961	2.
ong Kong, 196	1	2.
. Pierre and	Miquelo, 1962	2.
nailand, 1960	7	2.
1000		2.
1. 1 0	1057	2.
1 . 2 . 0 . 2 .	and Talanda 1960	2.
1 1056		J.
t - D 1	060	٠.
. 105/		
7 . 1 1 .	. 1060	
1000		2 .
1. 1050		~ *
::: Talanda	1056	Ο,
bollog 10	360	0.
dometica of	No. 1957	~ .
10	-77	0 1
1. 1.1.1	1060	
exico, 1960		
hana, 1960 .		
Turkev. 1960		

⁽¹⁾ These indices were computed by application of the blending technique to Census
data.

Source: The indices for the United States were obtained from the U.S. Census of Population: 1960, Detailed Characteristics: United States summary, Bureau of the Census, P C (1) - 1D, Washington, 1963, p. X11. Indices of preference for the other countries were computed by Stockwell, E. (1965, 440-441). Stockwell (1965) employed the same ages that were used for our tables. The figures for the United States are based on ages 23 to 99. Op.Cit U.S. Census of Population, (1963, X11) "the reduction in the degree of age heaping in 1960 may be explained in part by greater accuracy in age reporting as a result of the introduction of year of birth in the question-naire. The use of self-enumeration by means of the Advance Census Report may also have been conducive to more accurate age reporting. Still another factor may have been the higher non-response rate on the age item

23 -

TABLE VIII. Application of Nyers' Method of "Blending" to Age Data Collected for the Total Population in . . the 1960 Gensus of Mexico (Stockwell, 1965, 442)

1 101111111111				Number at	specified	ages			Sum for	r ages
digits	10-19	20-29	30-39	67-07	50-59	69-09	70-79	80-89	10-89	
	1,029,718	741,806	780,796	619,400	521,492	473,450	200,200	88,484	4,455,406	3,425,688
	756,819	449,264	237,792	106,534	94,500	46,045	20,313	7,520	1,718,787	961,968
•	948,976	631,145	407,655	289,035	179,693	89,935	52,712	13,514	2,612,665	1,663,689
	814,823	571,535	333,444	188,088	131,504	69,421	31,757	9,537	2,150,109	1,335,286
•	807,980	553,262	291,948	158,347	136,170	65,859	28,389	9,283	2,051,238	1,243,258
	753,742	706,091	592,958	431,949	283,510	191,430	88,484	26,625	3,074,789	2,321,047
	703,138	474,468	324,719	184,203	145,273	60,826	28,812	8,169	1,947,608	1,244,470
	703,225	443,467	276,213	158,776	99,482	48,671	19,474	6,115	1,755,423	1,052,198
	798,608	533,010	441,177	290,396	165,741	_	36,715	7,616	2,352,141	1,553,533
• • • • • • • • • • • • • • • • • • • •	576,552	357,856	. 267,613	168,284	105,893	34,359	14,288	,89	1,529,736	953,184
Sum	7,893,581	5,461,964	3,972,315	2,595,012	1,863,258	1,158,874	521,144	181,754	23,647,902	15,754,321

0 8 7 9 7 9 7 9 0

									٠			
ion	Deviation from 10%		4.4		1.0	- 1.7	0.4.+	- 1.2	1.9	+ 1.5	- 2.3	
"Blended" population	Per cent distri- bution	17.8	0.0	ω, α			14.0	හ. ග	8.1	11.5	7.7	
"Blended"	Sum	5,286,59	1,133,	ひ、七以い。以	0,012,	6,472,4	27,732,922	7,366,	16,147,780	2,722	5,297	
	Product	831,1	727	,040,0	°TTO6	6,216,290	,284,	3,733,410	39	,553	0	
iges 20-89	Coef- ficient	000	1 00	-	9	<u>ν</u>	7	m	2	posed	0	
A	Sum.	3,425,688	, .	1,325,000	د د	~ ~!	S	1,244,470	1,052,198	,553,53	953,184	
. 6	Product	4,455,406	o t	000 100°	0,000,43	0,256,19	8,448	,633,25	,043,38	1,169	,297,36	
Ages 10-8	Coef. ficient	₩ 0	70	7 ~	J 1	2	9		00	6	10	
	Sum	,455,40	- U	2 C L L) L L 6	,UDL,23	,074	,947,60	42	,352	,529,73	
	Terminai digits	•	, ,		· ·		0 1		· · · · · · · · · · · · · · · · · · ·	6		

26.6

100.0

198,255,896

Sum

13.3

Index of preference

REFERENCES

- Gower, D.E. Comparative Rates of Partial Mon-Response, Mail Returns on the London and Toronto Tests. Evaluation Memoranda (F5). DBS, 1968.
- Myers, Robert J. "Errors and Bias in the Reporting of Ages in Census Data."

 <u>Actuarial Society of America, Transactions</u>, 41 (October, 1940), 395-415.
- Stockwell, Edward G. "Digit Preference and Avoidance in the 1960 Census of Mexico." <u>Estadistica</u>, Vol. XXIII(88) (September, 1965), 438-448.
- Tetlock, George H. An Evaluation of the Accuracy of Age Reporting in the 1967 Census Test London, Evaluation Memoranda (D6). DBS, 1969.
- Turner, Stanley H. "Patterns of Heaping in the Reporting of Numerical Data."
 A.S.A. Proceedings of the Social Statistics Section (1958), 248-251.
- Zelnik, Melvin. "Errors in the 1960 Census Emumeration of Native Whites."

 Journal of the American Statistical Association, 59 (June, 1964), 437-459.

