

May 06, 2020

© Footprint-Free Genome Editing of iPSC Using Alt-R CRISPR/Cas9

Jacob Marsh¹, Rj Martinez², Celeste Karch²

¹Washington University in Saint Louis - WUSTL (MO), ²Washington University in St Louis

1 Works for me dx.doi.org/10.17504/protocols.io.bfmmjk46

Neurodegeneration Method Development Community Tech. support email: ndcn-help@chanzuckerberg.com

Preparing iPSCs fo	r Nucleofection
--------------------	-----------------

- 1 Coat 1 well of a 6-well plate with □1 ml of Matrigel for ⊙ 01:00:00 at § 37 °C
- 2 Add **5 ml** of DMEM/F12 to a 15ml conical tue
- 3 Thaw vial of cells in § 37 °C water bath for approximately © 00:01:00
- 4 Wipe off excess water from tube and spray with 70% Ethanol before placing vial into biosafety cabinet
- 5 Transfer thawed cells into conical tube containing **5 ml** DMEM/F12
 - If some cells remain in vial use **1 ml** DMEM/F12 to rinse vial clean and transfer into the 15ml conical
- 6 Swirl to mix cells in the DMEM/F12 and **3750 rpm 00:03:00**
 - Avoid rough mixing or suspension of cells; this helps to keep the cells clustered
- 7 After centrifugation, aspirate off most supernatant, leaving a small amount in the tube. Do not try to aspirate all the way down to the pellet (may or may not visible)
- 8 Add 🖫 4 μl of Rock Inhibitor to cell pellet and resuspend in 🖫 2 ml of mTesR1 in order to achieve a

Avoid rough mixing or suspension of cells; this helps to keep the cells clustered

- 9 Aspirate Matrigel from coated 6-well plate, and pipet cell mixture into well.
- 10 Incuate overnight at § 37 °C
- 11 After **24:00:00** change media and allow cells to recover
- 12 Once cells have reached 80-90% confluency, split culture as single cells into 3 wells of a 6 well tissue culture plate.
 - 12.1 Coat 3 wells of a 6-well plate with 11 ml of Matrigel for 001:00:00 at 8 37 °C
 - 12.2 Aspirate media from well containing cells
 - 12.3 Wash cells with **2 ml** of PBS
 - 12.4 Add 11 ml of Accutase per well
 - 12.5 Incubate cells and Accutase at § 37 °C for © 00:10:00 . Gently tap plate upon removal from incubator to help dislodge cells from Matrigel
 - 12.6 Collect cells in **5 ml** of PBS and transfer to 15ml conical tube
 - 12.7 **3750 rpm 00:03:00**

- 12.8 Resuspend cell pellet in **G** ml mTesR1 + [M]5 Micromolar (μM) Rock Inhibitor and plate **G** ml into each freshly coated Matrigel well
- 13 Perform the single cell passage (Step 12) at least two additional times prior to using cells for Nucleofection

Continuing iPSC Culture

14 Perform a single cell passage approximately **§ 48:00:00** prior to nucleofection

You will need three million cells per nucleofection and one million cells per GFP control. Therefore, three wells of a confluent of a 6-well tissue culture plate are sufficient

- Coat three wells of a 6-well plate for nucleofection using Matrigel and incubate at § 37 °C for © 01:00:00 prior to splitting cells
 - 15.1 Just prior to splitting cells for nucleofection, aspirate Matrigel from coated wells and add 3 ml of DMEM/F12 + 10% FBS supplemented with [M]10 Micromolar (μM) Rock Inhibitor per well

RNP Complex

16 Gather the following reagents for Alt-R Reactions and let them thaw on ice

Reagent	Stability and Storage
Alt-R crRNA	6 months stability at -80°C
Alt-R tracrRNA	6 months stability at -80°C
Alt-R Cas9	6 months stability at -80°C
Electroporation Enhancer (IDT - Catalog # 1075915)	6 months stability at -80°C
sgRNA (if needed)	6 months stability at -80°C

- 17 Prepare Alt-R Reactions
 - 17.1 Prepare fresh Alt-R gRNA by adding 2.5 μl of [M]200 Micromolar (μM) Alt-R crRNA and 2.5 μl of [M]200 Micromolar (μM) Alt-R tracrRNA in equal volumes. Heat mixture at § 95 °C for © 00:05:00 . Let cool to § Room temperature
 - The Alt-R gRNA should be prepared fresh before each use

- 17.2 Resuspend Alt-R Cas9 and Electroporation Enhancer in PBS to a final concentration of [M]100 Micromolar (µM)
- 17.3 Combine Alt-R gRNA solution and Alt-R Cas9 + Electroporation Enhancer solution together and incubate at 8 Room temperature for © 00:15:00

Component	Final Concentration
PBS	-
Alt-R gRNA	120 pmol
Alt-R Cas9	104 pmol
Enhancer	100 μΜ
Donor ssODN or GFP*	100 μΜ

^{*}GFP = pMax GFP control in a separate tube

Split Cells for Nucleofection

- 18 Split cells for nucleofection
 - 18.1 Aspirate media from cells
 - 18.2 Wash each well with 2 ml of PBS and aspirate
 - 18.3 Add 11 ml of Accutase per well
 - 18.4 Incubate at § 37 °C for © 00:10:00
 - 18.5 Collect cells in $\,\,\,\overline{\hspace{-1em}}_{\hspace{-1em}5}\,\,$ mI $\,$ of PBS and transfer to a 15ml conical tube
 - 18.6 **3750 rpm 00:03:00**

Count	Calla for Nucleaf	potion
	Cells for Nucleof	
19		l pellet in 1 ml of PBS in the 15ml conical tube, then dilute cells 1:10 (10 μl of cell suspension +
	□90 μl of Pl	BS) in a 1.7ml tube
20	Use ⊒10 µl	of diluted cells for cell counts
	20.1	Using all four corners of the countess slide, calculate the average number of cells
	20.2	Multiply the average by 10,000 (10 ⁴)
		manply the area age by reject (rely
	20.3	Multiply product from step 20.2 by 3 to get the total number of cells
	20.0	
		[Average # of Cells x 10,000 x 3] = Total Number of Cells
	20.4	Take total number of cells calculated in step 20.3 and divide by three million
	20.4	Take total hamber of conditated in otop 20.0 and arriad by timee himmon
	20.5	Take answer from step 20.4 and divide by three to get the volume of cells necessary for nucleofection
	20.5	rake answer from step 20.4 and divide by three to get the volume of cells necessary for hiddeorection
Centrif	uge Cells for Nuc	eleofection
21	Transfer the de	esired volume of cells (calculated in step 20.5) to microcentrifuge tube
21		
22	@00 00-	05-00
22	◎90 x g 00:	U3:UU
00	Appirate DDC f	rom cell pollet
23	Aspirate PBS f	Torri cell pellet
Prepar	e Lonza Kit Read	ents for Nucleofection
24		
∠ 4	reaction mix.	mix from Lonza Kit: P3 Primary Cell 4D (V4XP-3024). Each reaction requires a total of □100 μl of
	TOGOTION TIMA.	
	L If perfe	orming more than one reaction, it is best to make a Master Mix

፩ protocols.io 5 05/06/2020

	24.1 Combine 82 μl of P3 Solution and 18 μl of Supplement into a 1.7ml microcentrifuge tube
Combin	ing Lonza Kit Reagents and DNA for Nucleofection
25	Combine reaction mix from step 24 ($\overline{}$ 100 μI) with previously complexed DNA from step 17
26	Mix reaction mix and DNA with cell pellets (step 23) by pipetting up and down with p200 pipette
	Try to pipette as little as possible. Pipette only until mixed
27	Transfer ■100 µl of reaction mix + DNA + cells to a cuvette
	Ensure no bubbles are in the transferred mixture of cells in the cuvette. This can interfere with the nucleofection's success
Nucleof	fection
28	Nucleofect with Lonza Program CA-137 in P3 Solution
29	Let cuvette and cells incubate for $©$ 00:10:00 at $§$ Room temperature
30	Transfer cells/DNA solution to approproate pre-coated well containing 2 ml of DMEM/F12 + 10% FBS + [M] 10 Micromolar (μM) Rock Inhibitor
31	Incubate at § 37 °C overnight
Post Nu	ucleofection
32	Continue culturing the iPSC in 1 well of a 6 well plate for 5-7 days post nucleofection, changing mTesR1 daily.
	32.1 © 24:00:00 post-nucleofection - add mTesR1 with [M] 5 Micromolar (μM) Rock Inhibitor

፩ protocols.io 6 05/06/2020

- 32.2 **32.2 48:00:00** post-nucleofection add mTesR1 with [M]**2.5 Micromolar (μM)** Rock Inhibitor
- 32.3 ©72:00:00 post-nucleofection add mTesR1 with [M]1 Micromolar (µM) Rock Inhibitor
- 33 Continue culturing cells in mTesR1 until confluent (\sim 5 days)