Chapitre 6.2: Optimalité et équilibre général

Gaëtan LE FLOCH

Précédent cours

- Lors de la précédente séance, nous avons défini la notion d'équilibre. Nous avons notamment vu qu'une différence est faite entre l'équilibre **partiel** et l'équilibre **général**.
- Nous avons étudié l'équilibre partiel, détaillant le fonctionnement d'un seul marché.
- Nous avons également vu comment définir le "bien-être" des agents présents sur le marché, à travers la notion de surplus.
- Il a été montré que les politiques économiques peuvent influencer le marché. Elles entraînent une perte d'efficience, ainsi que (potentiellement) des transferts de surplus ou des pertes pures (cf. pertes sèches).

De l'équilibre partiel à l'équilibre général

- Aujourd'hui, nous étudions l'équilibre général, qui prend en compte les interdépendances des marchés.
 - Cette interdépendance est représentative de la réalité. Par exemple, le marché du pétrole affecte le marché de l'essence, des objets produits à base de plastique ect..
- La question centrale de ce chapitre est de savoir si il existe un système de prix, égalisant offre et demande, commun à tous les marchés lorsque les agents font des choix optimaux.

Méthodologie

- Pour analyser un équilibre général, il convient de respecter plusieurs étapes:
 - Partir d'un équilibre décentralisé, définissant le comportement de l'agent individuel.
 - 2 En déduire l'équilibre partiel, les conditions de chaque marché pris individuellement.
 - Connecter ces marchés pour obtenir l'équilibre général, où cet équilibre est généralisé et simultané sur tous les marchés.

Modèle d'une économie simplifiée

 Imaginons une économie (très) simplifiée avec un agent A et un agent B. Il existe également un bien 1 et un bien 2. Les préférences des agents sont indiquées par la fonction d'utilité suivante:

$$U_i = c_{1,i} c_{2,i}$$

 Nous considérons que l'agent A possède 10 unités du bien 1 ainsi que 30 unités du bien 2 (et inversement pour l'agent B).

$$w_A(10,30)$$
 et $w_B(30,10)$

 Alors, cette économie est sans production: nous considérons que les agents n'ont que des dotations apparues "par magie".

Maximisation

 Comme vu au semestre 1, l'agent individuel maximise son utilité en prenant en compte la contrainte budgétaire. Nous avons alors:

$$\begin{cases} \max_{c_{1,i},c_{2,i}\in\mathbb{R}^{+2}} U_i = c_{1,i}c_{2,i} \\ s.c.p_1c_{1,i} + p_2c_{2,i} = p_1w_{1,i} + p_2w_{2,i} \end{cases}$$

 Nous savons (cf. semestre 1) que la solution dépend du TMSⁱ₂₋₁, avec:

$$TMS_{2-1}^i = \frac{Um_1}{Um_2} = \frac{c_{2,i}}{c_{1,i}}$$

Maximisation II

 Nous obtenons alors, avec la condition d'optimalité liée au TMS:

$$\begin{cases} \frac{c_{2,i}}{c_{1,i}} = \frac{p_1}{p_2} \\ p_1 c_{1,i} + p_2 c_{2,i} = p_1 w_{1,i} + p_2 w_{2,i} \end{cases}$$

Alors, en combinant les deux équations:

$$2p_1c_{1,i} = p_1w_{1,i} + p_2w_{2,i}$$

Nous avons alors les demandes marshalliennes:

$$\begin{cases} c_{1,i}^{dm} = \frac{p_1 w_{1,i} + p_2 w_{2,i}}{2p_1} \\ c_{2,i}^{dm} = \frac{p_1 w_{1,i} + p_2 w_{2,i}}{2p_2} \end{cases}$$

Conditions finales - consommateurs

 En reprenant les dotations initiales, nous avons les demandes des agents A et B:

$$\begin{cases} c_{1,A}^{dm} = \frac{p_1 30 + p_2 10}{2p_1} \\ c_{2,A}^{dm} = \frac{p_1 30 + p_2 10}{2p_2} \end{cases}$$
$$\begin{cases} c_{1,B}^{dm} = \frac{p_1 10 + p_2 30}{2p_1} \\ c_{2,B}^{dm} = \frac{p_1 10 + p_2 30}{2p_2} \end{cases}$$

Agregation

 Comme nous connaissons les demandes et les offres (dotations) individuelles, nous pouvons agréger pour construire OG et DG sur les marchés des biens 1 et 2:

$$OG_1 = DG_1 \Longrightarrow \underbrace{10 + 30}_{Dotations} = \frac{p_1 30 + p_2 10}{2p_1} + \frac{p_1 10 + p_2 30}{2p_1}$$

$$OG_2 = DG_2 \Longrightarrow \underbrace{10 + 30}_{Dotations} = \frac{p_1 30 + p_2 10}{2p_2} + \frac{p_1 10 + p_2 30}{2p_2}$$

Principe

- Nous avons désormais OG et DG, nous retombons donc sur le principe de l'équilibre partiel.
- Nous avons défini ces fonctions sur les deux marchés, le passage à l'équilibre général consiste alors à faire la connection entre eux.
- Pour cela, nous utilisons la Loi de Wallras ainsi que son corollaire.

Loi de Walras

Loi de Walras: la somme des demandes nettes de marché est égale à 0 en valeur.

 Celà signifie que l'addition de ce qui est effectivement demandé par chaque agent finit par annuler ces demandes.

Corollaire de la Loi de Walras: dans une économie à n marchés, si n-1 d'entre eux sont à l'équilibre alors le $n^{\text{è}me}$ l'est également.

 Cette loi nous facilite grandement la vie! Comme nous avons deux marchés, nous n'avons en réalité qu'à utiliser un seul d'entre eux pour obtenir les prix d'équilibre.

Calcul de l'équilibre général

 Si nous prenons le marché du bien 1, le système de prix est solution de :

$$40 = \frac{p_1 30 + p_2 10}{2p_1} + \frac{p_1 10 + p_2 30}{2p_1}$$

$$\implies$$
 40 = $\frac{40p_1 + 40p_2}{2p_1} \implies$ 40 = $\frac{40(p_1 + p_2)}{2p_1} \implies p_1 = p_2$

• Pour simplifier le calcul, posons désormais $p_1 = p_2 = 1$. Connaissant les demandes des agents, nous avons alors:

$$c_{1,A}^{dm} = c_{2,A}^{dm} = c_{1,B}^{dm} = c_{2,B}^{dm} = 20$$

Conclusion

- Vu les utilités, les agents échangeront entre eux les biens 1 et 2 pour maximiser leur bien-être. Il y a bien une interconnexion des marchés.
- Avant l'échange, les utilités sont:

$$\begin{cases} U_A = 10 \times 30 = 300 \\ U_B = 30 \times 10 = 300 \end{cases}$$

Après l'échange, nous avons:

$$\begin{cases} U_B = 20 \times 20 = 400 \\ U_A = 20 \times 20 = 400 \end{cases}$$

• L'échange est **mutuellement avantageux** car les satisfactions augmentent pour tous les agents après l'échange.