

DECLARATION

I, Nae MATSUDA, Patent Attorney, of NAKAMURA & PARTNERS, 3-1, Marunouchi 3-chome, Chiyoda-ku, Tokyo, Japan, hereby certify that I am the translator of the basic Japanese Patent Application No. 2002-14387(14387/2002) filed on January 23, 2002 and that the following is a true and correct translation to the best of my knowledge and belief.

Nae MATSUDA Patent Attorney

Dated: September 4, 2008

-

JAPAN PATENT OFFICE

This is to certify that the annexed is a true copy of the following application as filed with this office.

Date of Application: January 23, 2002

Application Number: JP2002-014387 [ST. 10/C]: JP2002-014387

Applicant(s): AJINOMOTO CO., INC.

March 11, 2004

Commissioner, Japan Patent Office

Yasuo IMAI

Application Identification Number: Shusshoutoku2004-3019226

Patent Application [Name of Document] [File Reference] Y111211 [Filing Date] January 23, 2002 [Address] Commissioner, Patent Office [Inventor] [Address] c/o Central Research Laboratories, Ajinomoto Co., Inc., No.1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa-ken [Name] Takashi YAMAMOTO [Inventor] [Address] c/o Central Research Laboratories, Ajinomoto Co., Inc., No.1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa-ken [Name] Seiji NIWA [inventor] [Address] c/o Central Research Laboratories, Ajinomoto Co., Inc., No.1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa-ken [Name] Kayo OTANI [Inventor] [Address] c/o Central Research Laboratories, Ajinomoto Co., Inc., No.1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa-ken [Name] Seiji OHNO [Inventor] Central Research Laboratories, Ajinomoto Co., Inc., No.1-1 [Address] c/o Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa-ken [Name] Hajime KOGANEI [Inventor] [Address] c/o Central Research Laboratories, Ajinomoto Co., Inc., No.1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa-ken [Name] Satoshi IWAYAMA [Inventor] [Address] c/o Central Research Laboratories, Ajinomoto Co., Inc., No.1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa-ken [Name] Akira TAKAHARA [Inventor] [Address] c/o Central Research Laboratories, Ajinomoto Co., Inc., No.1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa-ken [Name] Yukitsugu ONO [Inventor] [Address] c/o Central Research Laboratories, Ajinomoto Co., Inc., No.1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa-ken [Name] Tomoko TAKEDA [Inventor] [Address] c/o Central Research Laboratories, Ajinomoto Co., Inc., No.1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa-ken

٦

[Name] Shinichi FUJITA

[Inventor] [Address] c/o Central Research Laboratories, Ajinomoto Co., Inc., No.1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa-ken [Name] Keiko MOKI [Applicant] [Discrimination Number] 000000066 [Name] Ajinomoto Co., Inc. [Agent] [Discrimination Number] 100059959 [Patent Attorney] [Name] Minoru NAKAMURA [Agent] [Discrimination Number] 100067013 [Patent Attorney] [Name] Fumiaki OHTSUKA [Agent] [Discrimination Number] 100082005 [Patent Attorney] [Name] Yoshio KUMAKURA [Agent] [Discrimination Number] 100065189 [Patent Attorney] [Name] Kaichi SHISHIDO [Agent] [Discrimination Number] 100096194 [Patent Attorney] · 【Name】 Hideto TAKEUCHI [Agent] [Discrimination Number] 100074228 [Patent Attorney] [Name] Toshio IMASHIRO [Agent] [Discrimination Number] 100084009 [Patent Attorney] [Name] Nobuo OGAWA (Agent) [Discrimination Number] 100082821 [Patent Attorney] [Name] Hiroo MURAKOSO [Agent] [Discrimination Number] 100086771 [Patent Attorney] [Name] Takaki NISHIJIMA

[Agent] [Discrimination Number] 100084663 [Patent Attorney] [Name] Atsushi HAKODA [Priority claim based on the earlier application] [Application Number] Patent Application No. 263718/2001 [Date of Application] August 31, 2001 [Indication of Fee] [Prepayment Ledger Number] 008604 [Amount of Payment] 21,000 Yen [List of the attached materials] Specification [Name of Material] 1 [Name of Material] Abstract [Number of General Power of Attorney] 9911474

[Proof Required or Not]

Yes

[Name of Document] SPECIFICATION

[Title of the Invention] Novel Diarylalkene Derivatives and Novel Diarylalkyl Derivatives

[What is claimed is]

5 [Claim 1] Diarylalkene derivatives or diarylalkyl derivatives of the following general formula (1), (2), (3) or (4), or pharmaceutically acceptable salts thereof:

wherein A represents -CH=CH-, -CH₂-CH₂-, -S-, -CH₂-S-, -S-CH₂-, -O-, -CH₂-O-, -O-CH₂-, -N(R¹⁷)-CH₂-, -CH₂-N(R¹⁷)-, -CH=CH-CH₂-, -CH₂-CH=CH-, -CH₂-CH₂-CH₂-, -N(R¹⁷)-(CO)-, -(CO)-N(R¹⁷)-, -(CO)-,

-(SO)- or -C(R¹⁸R¹⁹)- wherein R¹⁷ represents H, a lower alkyl or an aryl, and R¹⁸ and R¹⁹ are each independently selected from the group consisting of H, a lower alkyl, an aryl and -C(O)OR¹⁵ wherein R¹⁵ represents a lower alkyl or an aryl;

5 a, b, c and d are each selected from the group consisting of CR1 and CR2; or one of a, b, c and d is N;

 R^1 , R^2 and R^4 each independently represent H, a halogen, ${}^{\cdot}CF_3$, ${}^{\cdot}OR^{14}$, ${}^{\cdot}COR^{14}$, ${}^{\cdot}SR^{14}$, ${}^{\cdot}S(O)_tR^{15}$, ${}^{\cdot}N(R^{14})_2$, ${}^{\cdot}NO_2$, ${}^{\cdot}OC(O)R^{14}$, ${}^{\cdot}CO_2R^{14}$, ${}^{\cdot}OCO_2R^{14}$, ${}^{\cdot}CN$, ${}^{\cdot}NR^{14}COOR^{15}$, ${}^{\cdot}SR^{15}C(O)OR^{15}$ or ${}^{\cdot}SR^{15}N(R^{16})_2$ wherein R^{14} represents H, a lower alkyl, an aryl or an aryl-lower alkyl group, R^{15} represents a lower alkyl or an aryl group, R^{16} is independently selected from the group consisting of H and ${}^{\cdot}C(O)OR^{15}$, and t represents 1 or 2; R^3 represents H;

V-W represents C=C, CH-CH, CH-N or N-CH;

Is z is selected from the group consisting of C, CH and N (with the proviso that when z is C, the bond represented by a dotted line represents a double bond and when z is CH or N, the bond represented by the dotted line represents a single bond;

n represents 0 to 3;

10

20 R⁵ and R⁶ each independently represent H, a halogen, ·CF₃, a lower alkyl or an aryl;

or R⁵ and R⁶ together form =O or =S;

Y¹ represents O or S;

B represents NR^{17a}, -NR^{17a}(CH₂) _vCHR²¹-, -(CH₂)_vCHR²¹- wherein v 25 represents 0 to 3, R^{17a} represents H, a lower alkyl or an aryl, R²¹ represents H, a lower alkyl, an aryl, a hydroxyl·lower alkyl, -CH₂SH, -CH₂CH₂SCH₃, -CH₂(CO)NH₂, -CH₂CH₂(CO)NH₂, -(CH₂)_w-COOR²⁹. -(CH₂)_w-NR²⁹R³⁰ wherein R²⁹ and R³⁰ each independently represent hydrogen atom or a lower alkyl group, and w represents 0 to 4, -(CH₂)₃NHC(NH₂)=NH, benzyl, 4-hydroxybenzyl, 3-indoylmethyl or 5-imidazoylmethyl;

G represents -(CO)-, -(SO)-, -(SO₂)- or a covalent bond;

5 m represents 0 to 6;

10

15

Y² represents C or S;

p and q are each independently selected from the group consisting of 1, 2 and 3;

R⁷ and R⁸ each independently represent H, a lower alkyl, an aryl, -(CO)R^{18a}, -(CS)R^{18a}, -(CO)NR^{18a}R^{19a}, -(CS)NR^{18a}R^{19a} wherein R^{18a} represents H, a lower alkyl, an aryl or a cycloalkyl group which may have a hetero atom in the ring, R^{19a} represents H, a lower alkyl or an aryl; or R^{18a} and R^{19a} together form a cycloalkyl which may have a halogen, -CF₃, a lower alkyl or an aryl as a substituent, -(CO)OR²⁰ or -(CS)OR²⁰ wherein R²⁰ represents an alkyl group having 1 to 12 carbon atoms, an aryl group or a cycloalkyl group which may have a hetero atom in the ring, or a group of the following general formula (5):

wherein Y⁴ and Y³ each represent O or S; s represents 0 to 6;

E represents NR²² or CHR²³ wherein R²² represents H, a lower alkyl or aryl; and R²³ represents H, a lower alkyl, an aryl, a hydroxyl·lower alkyl, -CH₂SH, -CH₂CH₂SCH₃, -CH₂(CO)NH₂, -CH₂CH₂(CO)NH₂, -CH₂COOH,

-CH₂CH₂COOH, -(CH₂)₄NH₂, -(CH₂)₃NHC(NH₂)=NH, benzyl, 4-hydroxybenzyl, 3-indoylmethyl or 5-imidazoylmethyl;

R²⁴ represents H, a lower alkyl or an aryl;

 R^{25} represents H, a lower alkyl, an aryl, $-OR^{18a}$, $-(CO)R^{18a}$, $-(CS)R^{18a}$, $-(CO)NR^{18a}R^{19a}$, $-(CS)NR^{18a}R^{19a}$, $-(CO)OR^{20}$ or $-(CS)OR^{20}$ wherein R^{18a} , R^{19a} and R^{20} are as defined above,

 R^9 represents H, a lower alkyl, an aryl, -(CO) R^{18a} , -(CS) R^{18a} , -(CO) $NR^{18a}R^{19a}$, -(CS) $NR^{18a}R^{19a}$, -(CO) OR^{20} or -(CS) OR^{20} wherein R^{18a} , R^{19a} and R^{20} are as defined above;

10 R¹⁰ represents H, a lower alkyl or an aryl;

R11 represents H, a lower alkyl or an aryl;

R¹² represents H, a lower alkyl, an aryl, -(CO)R^{18a}, -(CS)R^{18a}, -(CO)NR^{18a}R^{19a}, -(CS)NR^{18a}R^{19a}, -(CO)OR²⁰ or -(CS)OR²⁰ wherein R^{18a}, R^{19a} and R²⁰ are as defined above, or a substituent represented by the following general formula (6):

5

wherein s represents 1 to 6;

 Y^3 represents O or S,

 R^{26} represents H, a lower alkyl or an aryl;

20 R^{27} represents H, a lower alkyl, an aryl, $-OR^{18a}$, $-(CO)R^{18a}$, $-(CS)R^{18a}$, $-(CO)NR^{18a}R^{19a}$, $-(CS)NR^{18a}R^{19a}$, $-(CO)OR^{20}$ or $-(CS)OR^{20}$ wherein R^{18a} , R^{19a} and R^{20} are as defined above;

or R^{11} and R^{12} form a substituent represented by the following general formula (7) together with the nitrogen atom:

5

10

15

20

wherein Y³ represents O or S, and R²⁷ is as defined above.

[Claim 2] Diarylalkene derivatives or diarylalkyl derivatives, or pharmaceutically acceptable salts according to claim 1, wherein in the above general formulae (1), (2), (3) and (4), the group represented by V-W is C=C, CH-CH or N-CH;

Z is selected from the group consisting of C, CH and N (with the proviso that when Z is C, the bond represented by a dotted line represents a double bond and when Z is CH or N, the bond represented by the dotted line represents a single bond);

B represents NR^{17a}, CHR²¹ and CH₂CHR²¹ wherein R^{17a} represents H, a lower alkyl or an aryl, R²¹ represents H, a lower alkyl, an aryl, a hydroxyl-lower alkyl, -CH₂SH, -CH₂CH₂SCH₃, -CH₂(CO)NH₂, -CH₂CH₂COOH, -CH₂CH₂COOH, -(CH₂)₄NH₂, -(CH₂)₃NHC(NH₂)=NH, benzyl, 4-hydroxybenzyl, 3-indoylmethyl or 5-imidazoylmethyl; and

 R^{18a} represents H, a lower alkyl or an aryl, and R^{19a} represents H, a lower alkyl or aryl; or R^{18a} and R^{19a} together form a cycloalkyl group which may have a halogen, ·CF₃, a lower alkyl or an aryl as a substituent, and R^{25} and R^{27} each represent H, a lower alkyl, an aryl, -(CO) R^{18a} , -(CS) R^{18a} , -(CO) R^{18a} , -(CS) R^{18a} , -(CO) R^{18a}

[Claim 3] Diarylalkene derivatives or diarylalkyl derivatives, or

pharmaceutically acceptable salts according to claim 2, wherein in the above general formulae (1), (2), (3) and (4),

A represents -CH=CH-, -CH₂-CH₂-, -S-, -CH₂-S- or -S-CH₂-;

a, b, c and d each represent CH;

5 R³ and R⁴ each represent hydrogen atom;

R⁵ and R⁶ each represent hydrogen atom;

or R^5 and R^6 together form =0;

n represents 1 or 2;

Y¹ represents O;

B represents NR^{17a}, CHR²¹⁻ or, CH₂CHR²¹ wherein R²¹ represents H, a lower alkyl, an aryl or ·CH₂OH;

G represents -(CO)- or a covalent bond;

m represents 0 to 6;

p and q are each 1;

15 R⁷ and R⁸ each independently represent H, a lower alkyl, an aryl, -(CO)R^{18a} wherein R^{18a} represents H, a lower alkyl or an aryl, -(CO)NR^{18a}R^{19a} wherein R^{19a} represents H, a lower alkyl or an aryl; or R^{18a} and R^{19a} together form a cycloalkyl which may have a halogen, -CF₃, a lower alkyl or an aryl as a substituent, -(CO)OR²⁰ wherein R²⁰

20 represents an alkyl group having 1 to 12 carbon atoms, an aryl group or a cycloalkyl group which may contain a hetero atom in the ring, or a group of the following general formula (8):

[wherein Y4 and Y3 each represent O;

s represents 1 or 2;

E represents CHR23 wherein R23 represents H,

5 R²⁴ represents H;

 R^{25} represents -(CO)OR²⁰;]

R9 represents -(CO)OR20;

R¹⁰ represents H;

R11 represents H;

10 R¹² represents a substituent represented by the following general formula (9);

wherein s represents 2 or 3;

15 Y³ represents O;

R²⁶ represents H;

and R^{27} represents -(CO)OR 20 ,

or R^{11} and R^{12} form a substituent represented by the following general

formula (10) together with the nitrogen atom.

[Claim 4] Diarylalkene derivatives or diarylalkyl derivatives, or pharmaceutically acceptable salts thereof according to claim 3, wherein in the above general formula (1),

A represents -CH=CH- or -CH₂-CH₂-,

a, b, c and d each represent CH;

R1 and R2 each represent H;

10 R³ and R⁴ each represent H;

V-W represents C=C;

n represents 2;

R⁵ and R⁶ each represent H; and

Y¹ represents O.

[Claim 5] Diarylalkene derivatives or diarylalkyl derivatives, or pharmaceutically acceptable salts thereof according to claim 1, wherein in the above general formulae (1), (2), (3) and (4),

V-W represents C=C, CH-CH or N-CH;

Z is selected from the group consisting of C, CH and N (with the proviso that when Z is C, the bond represented by a dotted line represents a double bond and when Z is CH or N, the bond represented by the dotted line represents a single bond);

B represents $-(CH_2)_v$ - CHR^{21} wherein v represents 2 or 3, R^{21} represents H,

a lower alkyl, an aryl, a hydroxyl-lower alkyl, -CH₂SH, -CH₂CH₂SCH₃, -CH₂(CO)NH₂, -CH₂CH₂(CO)NH₂, benzyl, 4-hydroxybenzyl, 3-indoylmethyl or 5-imidazoylmethyl; and

R^{18a} represents H, a lower alkyl or an aryl, and R^{19a} represents H, a lower alkyl or aryl; or R^{18a} and R^{19a} together form a cycloalkyl group which may have a halogen, ·CF₃, a lower alkyl or an aryl as a substituent.

[Claim 6] Diarylalkene derivatives or diarylalkyl derivatives, or pharmaceutically acceptable salts thereof according to claim 5, wherein in the above general formula (1),

A represents -CH=CH- or -CH2-CH2-;

a, b, c and d each represent CH;

R1, R2, R3, R4, R5 and R6 each represent H;

V-W represents C=C;

5

10

m represents 0 and n represents 2;

Y1 represents O, G represents a covalent bond, and

 R^7 and R^8 each independently represent H, a lower alkyl, -(CO) R^{18a} wherein R^{18a} represents H, a lower alkyl or an aryl, -(CO) OR^{20} wherein R^{20} represents an alkyl group having 1 to 12 carbon atoms or an aryl.

20 [Claim 7] Diarylalkene derivatives or diarylalkyl derivatives represented by the following general formula (11), or pharmaceutically acceptable salts thereof:

wherein R²⁸ represents an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 1 to 12 carbon atoms or a cycloalkyl group which may have a hetero atom in the ring.

5 [Claim 8] Diarylalkene derivatives or diarylalkyl derivatives of the following general formulae, or pharmaceutically acceptable salts thereof:

[Claim 9] Diarylalkene derivatives or diarylalkyl derivatives of the following general formulae, or pharmaceutically acceptable salts thereof:

10

[Claim 10] A therapeutic agent for treating diseases selected from brain injury caused by ischemia at the acute stage after the onset of cerebral infarction or cerebral hemorrhage, Alzheimer's disease, AIDS related dementia, Parkinson's disease, progressive neurodegenerative diseases, neuropathy caused by head injury, pain caused by spinal injury or diabetes, neuropathic pain, migraine, visceral pain, cancer pain, bronchial asthma, unstable angina, irritable colitis or withdrawal symptoms after addiction to drugs, which comprises a diarylalkene derivative or a diarylalkyl derivative of the following general formula (1), (2), (3) or (4), or a pharmaceutically acceptable salt thereof as the active ingredient:

5

10

wherein A represents -CH=CH-, -CH₂-CH₂-, -S-, -CH₂-S-, -S-CH₂-, -O-, -CH₂-O-, -O-CH₂-, -N(R¹⁷)-CH₂-, -CH₂-N(R¹⁷)-, -CH=CH-CH₂-, -CH₂-CH=CH-, - CH₂-CH₂-CH₂-, -N(R¹⁷)-(CO)-, -(CO)-N(R¹⁷)-, -(CO)-, -(SO)-, -C(R¹⁸R¹⁹)- wherein R¹⁷ represents H, a lower alkyl or an aryl, and R¹⁸ and R¹⁹ are each independently selected from the group consisting of H, a lower alkyl, an aryl and -C(O)OR¹⁵ wherein R¹⁵ represents a lower alkyl or an aryl;

a, b, c and d are each independently selected from the group consisting of CR^1 and CR^2 ;

or one of a, b, c and d is N;

5

15

 R^1 , R^2 , R^3 and R^4 each independently represent H, a halogen, ${}^{\circ}CF_3$, ${}^{\circ}OR^{14}$, ${}^{\circ}COR^{14}$, ${}^{\circ}SR^{14}$, ${}^{\circ}S(O)_t$ R^{15} , ${}^{\circ}N(R^{14})_2$, ${}^{\circ}NO_2$, ${}^{\circ}OC(O)R^{14}$, ${}^{\circ}CO_2R^{14}$, ${}^{\circ}CO_2R^{14}$, ${}^{\circ}CN$, ${}^{\circ}NR^{14}COOR^{15}$, ${}^{\circ}SR^{15}C(O)OR^{15}$ or ${}^{\circ}SR^{15}N(R^{16})_2$ wherein R^{14} represents H, a lower alkyl, an aryl or an aryl-lower alkyl group, R^{15} represents a lower alkyl or an aryl group, R^{16} is independently selected from the group consisting of H and ${}^{\circ}C(O)OR^{15}$, and t represents 1 or 2; V-W represents C=C, CH-CH, CH-N or N-CH;

Z is selected from the group consisting of C, CH and N (with the proviso

that when Z is C, the bond represented by a dotted line represents a double bond and when Z is CH or N, the bond represented by the dotted line represents a single bond;

n represents 0 to 3;

5 R⁵ and R⁶ each represent H, a halogen, ·CF₃, a lower alkyl or an aryl; or R⁵ and R⁶ together represent =O or =S;

Y¹ represents O or S;

10

15

20

25

B represents NR^{17a}, -NR^{17a}(CH₂) _vCHR²¹⁻, -(CH₂)_vCHR²¹⁻ wherein v represents 0 to 3, R^{17a} represents H, a lower alkyl or an aryl, R²¹ represents H, a lower alkyl, an aryl, a hydroxyl-lower alkyl, -CH₂SH, -CH₂CH₂SCH₃, -CH₂(CO)NH₂, -CH₂CH₂(CO)NH₂, -(CH₂)_w-COOR²⁹. -(CH₂)_w-NR²⁹R³⁰ wherein R²⁹ and R³⁰ each independently represent hydrogen atom or a lower alkyl group, and w represents 0 to 4, -(CH₂)₃NHC(NH₂)=NH, benzyl, 4-hydroxybenzyl, 3-indoylmethyl or 5-imidazoylmethyl;

G represents -(CO)-, -(SO)-, -(SO₂)- or a covalent bond; m represents 0 to 6;

Y² represents C or S;

p and q are each independently selected from the group consisting of 1, 2 and 3;

 R^7 and R^8 each independently represent H, a lower alkyl, an aryl, $\cdot(CO)R^{18a}$, $\cdot(CS)R^{18a}$, $\cdot(CS)R^{18a}R^{19a}$, $\cdot(CS)NR^{18a}R^{19a}$ wherein R^{18a} represents H, a lower alkyl, an aryl or a cycloalkyl group which may have a hetero atom in the ring, R^{19a} represents H, a lower alkyl or an aryl; or R^{18a} and R^{19a} together form a cycloalkyl which may have a halogen, $\cdot CF_3$, a lower alkyl or an aryl as a substituent, $\cdot(CO)OR^{20}$ or $\cdot(CS)OR^{20}$ wherein R^{20} represents an alkyl group having 1 to 12 carbon atoms, an aryl, a cycloalkyl group which may have a hetero atom in the

ring, an aryl-lower alkyl group, or a group of the following general formula (5):

5 wherein Y⁴ and Y³ each represent O or S; s represents 0 to 6;

E represents NR²² or CHR²³ wherein R²² represents H, a lower alkyl or an aryl; and R²³ represents H, a lower alkyl, an aryl, a hydroxyl·lower alkyl, -CH₂SH, -CH₂CH₂SCH₃, -CH₂(CO)NH₂, -CH₂CH₂(CO)NH₂, -CH₂COOH, -CH₂CH₂COOH, -(CH₂)₄NH₂, -(CH₂)₃NHC(NH₂)=NH, benzyl,

10 4-hydroxybenzyl, 3-indoylmethyl or 5-imidazoylmethyl;

R²⁴ represents H, a lower alkyl or an aryl;

 R^{25} represents H, a lower alkyl, an aryl, $-OR^{18a}$, $-(CO)R^{18a}$, $-(CS)R^{18a}$, $-(CO)NR^{18a}R^{19a}$, $-(CS)NR^{18a}R^{19a}$, $-(CO)OR^{20}$ or $-(CS)OR^{20}$ wherein R^{18a} , R^{19a} and R^{20} are as defined above,

15 R^9 represents H, a lower alkyl, an aryl, -(CO)R^{18a}, -(CS)R^{18a}, -(CO)NR^{18a}R^{19a}, -(CS)NR^{18a}R^{19a}, -(CO)OR²⁰ or -(CS)OR²⁰ wherein R^{18a} , R^{19a} and R^{20} are as defined above;

 R^{10} represents H, a lower alkyl or an aryl;

 $R^{11}\ represents\ H,$ a lower alkyl or an aryl;

20 R^{12} represents H, a lower alkyl, an aryl, $-(CO)R^{18a}$, $-(CS)R^{18a}$, $-(CO)NR^{18a}R^{19a}$, $-(CS)NR^{18a}R^{19a}$, $-(CO)OR^{20}$ or $-(CS)OR^{20}$ wherein R^{18a} , R^{19a} and R^{20} are as defined above, or a substituent represented by the

following general formula (6):

wherein s represents 1 to 6;

5 Y³ represents O or S,

R²⁶ represents H, a lower alkyl or an aryl;

 R^{27} represents H, a lower alkyl, an aryl, $-OR^{18a}$, $-(CO)R^{18a}$, $-(CS)R^{18a}$, $-(CO)NR^{18a}R^{19a}$, $-(CS)NR^{18a}R^{19a}$, $-(CO)OR^{20}$ or $-(CS)OR^{20}$ wherein R^{18a} , R^{19a} and R^{20} are as defined above;

or R¹¹ and R¹² form a substituent represented by the following general formula (7) together with the nitrogen atom:

15

wherein R^{27} represents a group described above.

[Claim 11] The therapeutic agent for treating diseases selected from brain injury caused by ischemia at the acute stage after the onset of cerebral infarction or cerebral hemorrhage, Alzheimer's disease, AIDS related dementia, Parkinson's disease, progressive neurodegenerative diseases, neuropathy caused by head injury, pain caused by spinal injury or diabetes, neuropathic pain, migraine, visceral pain, cancer pain,

bronchial asthma, unstable angina, irritable colitis or withdrawal symptoms after addiction to drugs, which comprises the diarylalkene derivative or diarylalkyl derivative of the general formula (1), (2), (3) or (4), or pharmaceutically acceptable salt thereof as the active ingredient according to claim 10:

5

10

15

20

25

wherein the group represented by V-W is C=C, CH-CH or N-CH; Z is selected from the group consisting of C, CH and N (with the proviso that when Z is C, the bond represented by a dotted line represents a double bond and when Z is CH or N, the bond represented by the dotted line represents a single bond);

B represents NR^{17a}, CHR²¹ or CH₂CHR²¹ wherein R^{17a} represents H, a lower alkyl or an aryl, R²¹ represents H, a lower alkyl, an aryl, a hydroxyl·lower alkyl, -CH₂SH, -CH₂CH₂SCH₃, -CH₂(CO)NH₂, -CH₂CH₂COOH, -CH₂CH₂COOH, -(CH₂)₄NH₂, -(CH₂)₃NHC(NH₂)=NH, benzyl, 4-hydroxybenzyl, 3-indoylmethyl or 5-imidazoylmethyl; and

R^{18a} represents H, a lower alkyl or an aryl, and R^{19a} represents H, a lower alkyl or an aryl; or R^{18a} and R^{19a} together form a cycloalkyl group which may have a halogen, -CF₃, a lower alkyl or an aryl as a substituent, and R²⁵ and R²⁷ each represent H, a lower alkyl, an aryl, -(CO)R^{18a}, -(CS)R^{18a}, -(CO)NR^{18a}R^{19a}, -(CS)NR^{18a}R^{19a}, -(CO)OR²⁰ or -(CS)OR²⁰.

[Claim 12] A therapeutic agent for treating diseases selected from brain injury caused by ischemia at the acute stage after the onset of cerebral infarction or cerebral hemorrhage, Alzheimer's disease, AIDS related dementia, Parkinson's disease, progressive neurodegenerative diseases, neuropathy caused by head injury, pain caused by spinal injury or diabetes, neuropathic pain, migraine, visceral pain, cancer pain,

bronchial asthma, unstable angina, irritable colitis or withdrawal symptoms after addiction to drugs, which comprises the diarylalkene derivative or diarylalkyl derivative, or pharmaceutically acceptable salt thereof according to any one of claims 2 to 4, 7 and 8 as the active ingredient.

5

10

15

20

25

[Claim 13] A therapeutic agent for treating diseases selected from brain injury caused by ischemia at the acute stage after the onset of cerebral infarction or cerebral hemorrhage, Alzheimer's disease, AIDS related dementia, Parkinson's disease, progressive neurodegenerative diseases, neuropathy caused by head injury, pain caused by spinal injury or diabetes, neuropathic pain, migraine, visceral pain, cancer pain, bronchial asthma, unstable angina, irritable colitis or withdrawal symptoms after addiction to drugs, which comprises the diarylalkene derivative or diarylalkyl derivative, or pharmaceutically acceptable salt thereof according to any one of claims 5, 6 and 9 as the active ingredient. [Claim 14] N-type calcium channel antagonist, which comprises the diarylalkene derivatives or diarylalkyl derivatives, or pharmaceutically acceptable salts thereof according to claim 10 as the active ingredient.

[Claim 15] N-type calcium channel antagonist, which comprises the diarylalkene derivatives or diarylalkyl derivatives, or pharmaceutically acceptable salts thereof according to claim 11 as the active ingredient.

[Claim 16] N-type calcium channel antagonist, which comprises the diarylalkene derivatives or diarylalkyl derivatives, or pharmaceutically acceptable salts thereof according to any one of claims 2 to 4, 7 and 8 as the active ingredient.

[Claim 17] N-type calcium channel antagonist, which comprises the diarylalkene derivatives or diarylalkyl derivatives, or pharmaceutically acceptable salts thereof according to any one of claims 5, 6 and 9 as the

active ingredient.

10

20

25

[Claim 18] A pharmaceutical composition comprising one of the diarylalkene derivatives, diarylalkyl derivatives and pharmaceutically acceptable salts thereof according to claim 1 as the active ingredient.

5 [Claim 19] A pharmaceutical composition comprising one of the diarylalkene derivatives, diarylalkyl derivatives and pharmaceutically acceptable salts thereof according to any one of claims 2 to 4, 7 and 8 as the active ingredient.

[Claim 20] A pharmaceutical composition comprising one of the diarylalkene derivatives, diarylalkyl derivatives and pharmaceutically acceptable salts thereof according to claim any one of claims 5, 6 and 9 as the active ingredient.

[Detailed Description of the Invention]

15 [Technical Field of the Invention]

The present invention relates to novel diarylalkene derivatives and the use of the diarylalkene derivatives as medicines. The present invention also relates to novel diarylalkyl derivatives and the use of the diarylalkyl derivatives as medicines. It was suggested that an activation of N-type calcium channel is concerned with various diseases, for example, cerebrovascular disorders caused by ischemia at the acute stage after the onset of cerebral infarction or intracerebral bleeding (including subarachnoidal hemorrhage) or the like; progressive neurodegenerative diseases such as Alzheimer's disease, AIDS related dementia and Parkinson's disease, dementia due to cerebrovascular disorder and ALS; neuropathy caused by head injury; various pains such as pain caused by spinal injury, diabetes or thromboangitis obliterans, neuropathic pain, migraine, visceral pain and cancerous pain; various

diseases associated with psychogenic stress such as bronchial asthma, unstable angina and irritable colitis; emotional disorder and withdrawal symptoms after addiction to drugs such as ethanol addiction withdrawal symptoms. The compounds of the present invention shows an inhibitory action on the activation of the N-type calcium channel and, therefore the invention relates to the compounds usable as therapeutic agents for these diseases.

[Prior Art]

5

10

15

20

25

Calcium channels are now classified into subtypes of L, N, P, Q, R and T. Each subtype of calcium channels is organ-specifically distributed. It is known that particularly N-type calcium channel is widely distributed in central nerves, peripheral nerves and adrenomedullary cells and participates in neuronal cell death, regulation of blood catecholamine level and control of senses such as perception.

Omega conotoxin GVIA and omega conotoxin MVIIA, which are peptides selectively inhibiting N-type calcium channel, inhibit the release of excitatory neurotransmitter from brain slice preparation. It was confirmed in animal tests that Omega conotoxin GVIA and omega conotoxin MVIIA inhibit the progress of neuronal necrosis associated with cerebrovascular disorders. It is generally considered that compounds antagonistic to the N-type calcium channel are clinically effective in the treatment of cerebrovascular disorders caused by ischemia at the acute stage after the onset of cerebral infarction or intracerebral bleeding (including subarachnoidal hemorrhage); progressive neurodegenerative diseases such as Alzheimer's disease, AIDS related dementia and Parkinson's disease, dementia due to cerebrovascular disorder and ALS; and neuropathy caused by head injury. It was confirmed in animal tests that omega conotoxin MVIIA relieves a

pain induced by formaldehyde, hot plate and peripheral neuropathy (J. Pharmacol. Exp. Ther. 269(3) 1117-1123, 1994; J. Pharmacol. Exp. Ther. 274(2) 666-672, 1995). Accordingly, omega conotoxin MVIIA is considered to be clinically effective against various pains such as pain spinal injury, diabetes or thromboangitis obliterans, neuropathic pain (e.g. post-herpetic neuralgia, diabetic neuropathy, complex regional pain syndrome, branchial plexus avulsion, trigeminal neuralgia, pain caused by spinal injury, restrictive neuropathy, central pain, postoperative pain), migraine, visceral pain and cancerous pain. In addition, because omega conotoxin GVIA inhibits the release of catecholamine from cultured sympathetic ganglion cells, the contraction of the isolated blood vessel by electric stimulation of the perivascular nerve and catecholamine secretion from canine adrenal medulla, it is considered that compounds having inhibitory effect on N-type calcium channel are clinically effective against various diseases related to psychogenic stress such as bronchial asthma, unstable angina and irritable colitis [Neuropharmacol., 32, 1141 (1993)].

10

15

20

25

Some peptidergic and non-peptidergic compounds which selectively affect N-type calcium channels have been ever disclosed (see, for example, WO 9313128, WO 9849144, WO 9901438 and WO 9932446). However, none of them was actually used as a medicine. Some of the compounds which affect N-type calcium channels are also effective against various types of calcium channels of other than N-type (Br. J. Pharmacol., 122(1) 37-42, 1997). For example, compounds having an antagonistic effect on L-type calcium channels, which are very closely related to hypotensive effect, could not be used for assumed diseases for which N-type antagonists will be used (such as cerebral stroke, neuralgia, terminal cancer pain and pain of spinal injury). Under these

circumstances, the development of a highly active antagonist selective toward N-type calcium channels has been eagerly demanded. In addition, an improvement in QOL (quality of life) of patients is demanded and the development of oral medicines is considered to be necessary. In particular, considering the application of the antagonist to terminal cancer patients or spinal injury patients, QOL can be expected to be much improved provided that the number of times for the patients to take medicines and dose thereof for patients could be reduced.

5

10

15

20

25

However, well-known N-type calcium channel antagonists are yet insufficient for solving this problem for the following reasons: they cannot be absorbed in the gastrointestinal tracts because they are peptides and they are decomposed in the gastrointestinal tracts because they are chemically unstable.

On the other hand, various diarylalkene derivatives and diarylalkyl derivatives have been reported (WO 8803138, WO 9510516, WO 9630363, WO 95631478, US 5994364 and Japanese Patent Kokai No. Hei 8-291142/1996). However, no literature disclosed that the compounds reported hereinbefore and also diarylalkene derivatives and diarylalkyl derivatives analogous to them have a selective inhibitoryeffect on N-type calcium channel.

Piperidine derivatives having structures similar to those of the compounds of the present invention are reported in Japanese Patent Kokai No. Hei 8-3135/1996. However, it is also described therein that they are antithrombocytic agents which powerfully inhibit serotonin receptor 2, that because of the antagonistic effect on serotonin, they are effective in the treatment of ischemic diseases, migraine, etc. and that because of the antithrombocytic effect, they are effective in the

treatment of a pain caused by various ischemic diseases and chronic arterial occlusive disease. However, they are essentially different, in the mechanism of the effects, from the N-type calcium channel antagonists directly effective on the neurons to exert the effects on the above-described diseases.

Further, piperidine derivatives having structures similar to those of the compounds of the present invention and effective in the treatment of diseases such as asthma, allergic rhinitis, allergic dermatitis and hives are reported in Japanese Patent Kokai No. Hei 8-291142/1996. However, they are antihistaminic agents or antileukotrienes and essentially different, in the mechanism of the effects, from the N-type calcium channel antagonists directly effective on the neurons to exert the effects on the above-described diseases.

15 [Problems to be Solved by the Invention]

5

10

20

25

The object of the present invention is to provide new compounds having a selective antagonistic effect on N-type calcium channels.

Another object of the present invention is to provide antagonists to N-type calcium channels.

Still another object of the present invention is to provide a method for treating any diseases of cerebrovascular disorders caused by ischemia at the acute stage after the onset of cerebral infarction or intracerebral bleeding, Alzheimer's disease, AIDS related dementia, Parkinson's disease, progressive neurodegenerative diseases, neuropathy caused by head injury, pain caused by spinal injury or diabetes, neuropathic pain, migraine, visceral pain and cancerous pain, bronchial asthma, unstable angina, irritable colitis and withdrawal symptoms after addiction to drugs.

[Means for Solution of the Problems]

After synthesizing various novel diarylalkene derivatives and diarylalkyl derivatives and examining the N-type calcium channel inhibitory effect (determined by fluorescent dye method) and L-type calcium channel inhibitory effect (relaxation reaction on the KCl-induced contraction of isolated rat thoracic aorta) for the purpose of solving the above described problems, the inventors have found that specified diarylalkene derivatives and diarylalkyl derivatives have an excellent effect of selectively antagonizing to N-type calcium channels. The present invention has been completed on the basis of this finding. The compounds of the present invention are orally absorbed and have the long-lasting efficacy and thus, they are usable as therapeutic agents for the above-described diseases.

Namely, the present invention provides diarylalkene derivatives or diarylalkyl derivatives of the following general formula (1), (2), (3) or (4), or pharmaceutically acceptable salts thereof, and N-type calcium channel antagonists and a pharmaceutical composition comprising one of them as an active ingredient:

20

5

10

15

wherein A represents -CH=CH-, -CH₂-CH₂-, -S-, -CH₂-S-, -S-CH₂-, -O-, -CH₂-O-, -O-CH₂-, -N(R¹⁷)-CH₂-, -CH₂-N(R¹⁷)-, -CH=CH-CH₂-, -CH₂-CH=CH-, -CH₂-CH₂-CH₂-, -N(R¹⁷)-(CO)-, -(CO)-N(R¹⁷)-, -(CO)-, -(SO)- or -C(R¹⁸R¹⁹)- wherein R¹⁷ represents H, a lower alkyl or an aryl, and R¹⁸ and R¹⁹ are each independently selected from the group consisting of H, a lower alkyl, an aryl and -C(O)OR¹⁵ wherein R¹⁵ represents a lower alkyl or an aryl;

a, b, c and d are each independently selected from the group consisting of CR^1 and CR^2 ;

or one of a, b, c and d is N;

5

10

15

 R^1 , R^2 and R^4 each independently represent H, a halogen, ${}^{\cdot}CF_3$, ${}^{\cdot}OR^{14}$, ${}^{\cdot}COR^{14}$, ${}^{\cdot}SR^{14}$, ${}^{\cdot}S(O)_t$ R^{15} , ${}^{\cdot}N(R^{14})_2$, ${}^{\cdot}NO_2$, ${}^{\cdot}OC(O)R^{14}$, ${}^{\cdot}CO_2R^{14}$, ${}^{\cdot}OCO_2R^{14}$, ${}^{\cdot}CN^{\cdot}$, ${}^{\cdot}NR^{14}COOR^{15}$, ${}^{\cdot}SR^{15}C(O)OR^{15}$ or ${}^{\cdot}SR^{15}N(R^{16})_2$ wherein R^{14} represents H, a lower alkyl, an aryl or an aryl-lower alkyl group, R^{15} represents a lower alkyl or an aryl group, R^{16} is independently selected from the group consisting of H and ${}^{\cdot}C(O)OR^{15}$, and t represents 1 or 2;

R³ represents H;

V-W represents C=C, CH-CH, CH-N or N-CH;

Z is selected from the group consisting of C, CH and N (with the proviso that when Z is C, the bond represented by a dotted line represents a double bond and when Z is CH or N, the bond represented by the dotted line represents a single bond;

n represents 0 to 3;

5

R⁵ and R⁶ each independently represent H, a halogen, ·CF₃, a lower alkyl or an aryl;

or R^5 and R^6 together form =0 or =S;

Y¹ represents O or S;

B represents NR^{17a}, -NR^{17a}(CH₂) _vCHR²¹⁻, -(CH₂)_vCHR²¹⁻ wherein v represents 0 to 3, R^{17a} represents H, a lower alkyl or an aryl, R²¹ represents H, a lower alkyl, an aryl, a hydroxyl·lower alkyl, -CH₂SH, -CH₂CH₂SCH₃, -CH₂(CO)NH₂, -CH₂CH₂(CO)NH₂, -(CH₂)_w·COOR²⁹, -(CH₂)_w·NR²⁹R³⁰ wherein R²⁹ and R³⁰ each independently represent hydrogen atom or a lower alkyl group, and w represents 0 to 4, -(CH₂)₃NHC(NH₂)=NH, benzyl, 4-hydroxybenzyl, 3-indoylmethyl or 5-imidazoylmethyl;

20 G represents ·(CO)·, ·(SO)·, ·(SO₂)· or a covalent bond;

Y² represents C or S;

m represents 0 to 6;

p and q are each independently selected from the group consisting of 1, 2 and 3;

R⁷ and R⁸ each represent H, a lower alkyl, an aryl, -(CO)R^{18a}, -(CS)R^{18a}, -(CO)NR^{18a}R^{19a}, -(CS)NR^{18a}R^{19a} wherein R^{18a} represents H, a lower alkyl, an aryl or a cycloalkyl group which may have a hetero atom in the ring, R^{19a} represents H, a lower alkyl or an aryl; or R^{18a} and R^{19a} together form

a cycloalkyl which may have a halogen, -CF₃, a lower alkyl or an aryl as a substituent, -(CO)OR²⁰ -(CS)OR²⁰ or wherein R²⁰ represents an alkyl group having 1 to 12 carbon atoms, an aryl group or a cycloalkyl group which may have a hetero atom in the ring, or a group of the following general formula (5):

5

10

wherein Y⁴ and Y³ each represent O or S; s represents 0 to 6;

E represents NR²² or CHR²³ wherein R²² represents H, a lower alkyl or aryl; and R²³ represents H, a lower alkyl, an aryl, a hydroxyl-lower alkyl, -CH₂SH, -CH₂CH₂SCH₃, -CH₂(CO)NH₂, -CH₂CH₂(CO)NH₂, -CH₂COOH, -(CH₂)₄NH₂, -(CH₂)₃NHC(NH₂)=NH, benzyl, 4-hydroxybenzyl, 3-indoylmethyl or 5-imidazoylmethyl;

 R^{24} represents H, a lower alkyl or an aryl;

15 R^{25} represents H, a lower alkyl, an aryl, $-OR^{18a}$, $-(CO)R^{18a}$, $-(CS)R^{18a}$, $-(CO)NR^{18a}R^{19a}$, $-(CS)NR^{18a}R^{19a}$, $-(CO)OR^{20}$ or $-(CS)OR^{20}$ wherein R^{18a} , R^{19a} and R^{20} are as defined above.

 R^9 represents H, a lower alkyl, an aryl, $-(CO)R^{18a}$, $-(CS)R^{18a}$, $-(CO)NR^{18a}R^{19a}$, $-(CS)NR^{18a}R^{19a}$, $-(CO)OR^{20}$ or $-(CS)OR^{20}$ wherein R^{18a} ,

20 R^{19a} and R^{20} are as defined above;

R10 represents H, a lower alkyl or an aryl;

R¹¹ represents H, a lower alkyl or an aryl;

 R^{12} represents H, a lower alkyl, an aryl, -(CO) R^{18a} , -(CS) R^{18a} , -(CO) $NR^{18a}R^{19a}$, -(CO) $NR^{18a}R^{19a}$, -(CO) OR^{20} or -(CS) OR^{20} wherein R^{18a} , R^{19a} and R^{20} are as defined above, or a substituent represented by the following general formula (6):

5

wherein s represents 1 to 6;

Y³ represents O or S,

10 R²⁶ represents H, a lower alkyl or an aryl;

 R^{27} represents H, a lower alkyl, an aryl, $-OR^{18a}$, $-(CO)R^{18a}$, $-(CS)R^{18a}$, $-(CO)NR^{18a}R^{19a}$, $-(CS)NR^{18a}R^{19a}$, $-(CO)OR^{20}$ or $-(CS)OR^{20}$ wherein R^{18a} , R^{19a} and R^{20} are as defined above;

or R¹¹ and R¹² form a substituent represented by the following general formula (7) together with the nitrogen atom:

$$\begin{array}{c} N \\ N \\ N \\ Y_3 \\ (7) \end{array}$$

wherein R^{27} is as defined above.

The present invention also provides a therapeutic agent for any

diseases of pain, cerebrovascular disorders caused by ischemia at the acute stage after the onset of cerebral infarction or intracerebral bleeding, Alzheimer's disease, AIDS related dementia, Parkinson's disease, progressive neurodegenerative diseases, neuropathy caused by head injury, pain caused by spinal injury or diabetes, neuropathic pain, migraine, visceral pain and cancerous pain, bronchial asthma, unstable angina, irritable colitis and withdrawal symptoms after addiction to drugs, comprising, as the active ingredient, the above-described diarylalkene derivative or diarylalkyl derivative of formula (1), (2), (3) or (4) wherein R³ represents the same group as that defined in R⁴, and R²⁰ represents an alkyl group having 1 to 12 carbon atoms, an aryl group, a cycloalkyl group which may have a hetero atom in the ring or an aryl-lower alkyl group, or a pharmaceutically acceptable salt thereof. The present invention also provides N·type calcium channel antagonist comprising the above-described derivative as the active ingredient.

[Embodiment of the Invention]

5

10

15

20

25

The term "lower" herein indicates that the group has 1 to 6 carbon atoms. Alkyl groups themselves and also alkyl groups in alkenyl groups, alkinyl groups, alkoxy groups, alkylamino groups, alkylthio groups, alkanoyl groups may be either linear or branched. Examples of these alkyl groups are methyl group, ethyl group, propyl group, isopropyl group, butyl group, pentyl group, hexyl group, and secondary and tertiary butyl groups. In them, those having 1 to 4 carbon atoms are preferred. The aryl-lower alkyl groups include, for example, benzyl groups. The hetero atoms include nitrogen, oxygen, sulfur, etc. The halogen atoms include fluorine, chlorine, bromine and iodine. In the present specification, the aryl groups are both substituted and

unsubstituted aryl groups. They are preferably phenyl or substituted phenyl and, in particular, halogens, alkyl and alkoxy can be considered to be substituents therefor. The cycloalkyl groups include, for example, cyclopentyl group and cyclohexyl group. The cycloalkyl groups which may have a hetero atom in the chain include tetrahydropyranyl group, piperidyl group, pyrrolidinyl group and piperazinyl group

In the above general formulae (1), (2), (3) and (4), groups represented by A are preferably -CH=CH-, -CH₂-CH₂-, -S-, -CH₂-S- and -S-CH₂-. They are particularly preferably -CH=CH-.

Each of a, b, c and d is independently preferably CH.

Each of R¹ to R⁴ is preferably hydrogen atom.

5

10

15

20

The group represented by V-W is preferably selected from the group consisting of C=C, CH-CH and N-CH. It is particularly preferably C=C.

The group represented by Z is preferably selected from the group consisting of C, CH and N (with the proviso that when Z is C, the bond represented by a dotted line represents a double bond and when Z is CH or N, the bond represented by the dotted line represents a single bond). Z is particularly preferably C.

n preferably represents 1 or 2. It is particularly preferably 2.

Preferably, R^5 and R^6 are each hydrogen atom or they together form =0.

 Y^1 preferably represents oxygen atom.

R¹⁷ in NR^{17a} and -NR^{17a}(CH₂)_vCHR²¹- represented by B is preferably hydrogen atom, and R²¹ in -NR^{17a}(CH₂)_vCHR²¹- and -(CH₂)_vCHR²¹- is preferably hydrogen atom or hydroxymethyl group. B is particularly preferably -(CH₂)_vCHR²¹-. "v" is preferably 0 to 3, particularly 2 or 3.

The group represented by G is preferably -(CO)- or a covalent bond.

m represents 0 to 6, preferably 0 to 3.

Preferably p and q each represent 1, and Y² represents carbon atom or sulfur atom.

 R^7 and R^8 are preferably hydrogen atom, a lower alkyl, an aryl, $\cdot(CO)R^{18a}$, $\cdot(CO)NR^{18a}R^{19a}$ or $\cdot(CO)OR^{20}$. R^{18a} is preferably a lower alkyl, particularly preferably methyl group, ethyl group, isopropyl group or secondary or tertiary butyl group. R^{19a} is preferably hydrogen atom or a lower alkyl group. It is also preferred that R^{18a} and R^{19a} together form a cycloalkyl group. R^{20} is preferably a lower alkyl group, particularly preferably methyl group, ethyl group, isopropyl group or secondary or tertiary butyl group.

Further, R⁷ and R⁸ are preferably a group represented by the above general formula (5) wherein s is preferably 0 to 2, E is preferably CHR²³ wherein R²³ preferably represents H, and Y³ and Y⁴ each represent O; R²⁴ preferably represents H, and R²⁵ preferably represents -OR^{18a} or -(CO)OR²⁰;

R⁹ preferably represents -(CO)OR²⁰;

20 R10 preferably represents H;

5

10

R11 preferably represents H;

R12 preferably represents a substituent represented by the above general formula (6) wherein s preferably represents 2 or 3; Y³ preferably represents O;

25 R26 preferably represents H; and R27 preferably represents -OR²⁰ or -(CO)OR²⁰;

or R11 and R12 preferably represent a substituent represented by the above general formula (7) together with nitrogen atom, wherein Y3

preferably represents O and R27 preferably represents $-OR^{18a}$ or $-(CO)OR^{20}$.

Further, if asymmetric carbon atoms are provided therewith, configurations thereof are preferably selected from (R) and (S) materials or mixture thereof.

In the present invention, particularly preferred compounds are those wherein:

A represents -CH=CH- or -CH2-CH2-;

a, b, c and d each represent CH;

10 R^1 , R^2 , R^3 , R^4 , R^5 and R^6 each represent H;

V-W represents C=C;

Z represents C, and the bond represented by a dotted line represents a double bond;

n represents 2; and

15 Y¹ represents O.

5

In the compounds of the general formulae (1) to (4) in the present invention, preferred compounds are those of general formula (1) and more preferred compounds are those having the above-described preferred groups.

In the compounds of the present invention, diarylalkene derivatives, and diarylalkyl derivatives of the following general formula (11) and pharmaceutically acceptable salts thereof are further preferred:

wherein R^{28} represents an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 1 to 12 carbon atoms or a cycloalkyl group which may have a hetero atom in the ring. R^{28} is preferably a branched alkyl group, particularly a branched alkyl group having 3 to 8 carbon atoms.

In the present invention, diarylalkene derivatives and diarylalkane derivatives of the following formula and pharmaceutically acceptable salts of them are also preferred.

10

5

The diarylalkene derivatives and diarylalkyl derivatives (1), (2), (3) and (4) of the present invention can be produced by processes described below.

5

10

For example, diarylalkene derivatives and diarylalkyl derivatives (1-1) and (3-1) of the general formulae (1) and (3) wherein Y_1 represents oxygen atom, B represents $\cdot(CH_2)_v\cdot CHR^{21}$ and R^5 and R^6 do not together form oxygen atom or sulfur atom and also diarylalkene derivatives and diarylalkyl derivatives (2-1) of the general formula (2) wherein Y_1 represents oxygen atom, and R^5 and R^6 do not together form oxygen atom or sulfur atom can be produced as follows:

The intended diarylalkene derivatives and diarylalkyl derivatives can be obtained by condensing an amine (13) or (16) with a carboxylic acid (14) or (15) in the presence of a base such as triethylamine and a condensing agent such as

1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide

5

or

1,3-dicyclohexylcarbodiimide.

3-(10,11-Dihydro-5H-dibenzo[a,d][7]-annulen-5-ylidene)pyrrolidinie was synthesized according to [Patent: Fr1522934]. Compounds (1-1) and (1-3) wherein R²¹ is a hydroxyalkyl group can be obtained by, for example, condensing a compound (14) having an ester corresponding to R²¹ or a compound (14) having protected hydroxyl group and then reducing the ester with a reducing agent such as lithium borohydride or removing the protecting group. Compounds (1-1) and (1-3) having carboxyl group in R²¹ can also be obtained by condensing a compound (14) having a corresponding ester as R²¹ and then hydrolyzing the ester with a base such as sodium hydroxide. Compounds (1-1) and (1-3) having a primary or secondary amino group in R²¹ can be obtained by condensing a compound (14) having an amino group protected with, for example, tert-butoxycarbonyl group and then removing the protecting group with an acid or the like.

Diarylalkene derivatives and diarylalkyl derivatives (1-2), (1-2'), (3-2) and (3-2') of the general formulae (1) and (3) wherein Y₁ represents oxygen atom, B represents NR^{17a} or -NR^{17a}(CH₂)_vCHR²¹⁻ and R⁵ and R⁶ do not together form oxygen atom or sulfur atom can be produced as follows:

5

10

15

The intended diarylalkene derivatives and diarylalkylderivatives can be obtained by reacting an amine (13) or (16) and an amine (17) or

(17') with 1,1'-carbonylbis-1H-imidazole (CDI) in the presence of a base such as triethylamine. Compounds (1-2') and (3-2') wherein R²¹ is a hydroxyalkyl group can be obtained by condensing a compound (17') having a corresponding ester as R²¹ or a compound (17') having protected hydroxyl group and then reducing the ester with a reducing agent such as lithium borohydride or removing the protecting group.

5

10

When compounds (1-3) and (3-3) have t-butoxycarbonyl group (Boc group) as shown below, they can be converted into amines (1-4) and (3-4) by using an acid such as trifluoroacetic acid or hydrochloric acid. Also, they can be acylated with an acylating agent such as an acid chloride, an acid anhydride, a chloroformic ester or carbamoyl chloride in the presence of a base such as triethylamine to obtain diarylalkene derivatives and diarylalkyl derivatives of formulae (1-5) and (3-5):

Diarylalkyl derivatives (1-6) of the general formula (1) wherein Y_1 represents oxygen atom, B represents $\cdot(CH_2)_v\cdot CHR^{21}$, V=W represents N-C, n represents 2 and R^5 and R^6 do not together form oxygen atom or sulfur atom can be produced as shown in the following reaction scheme wherein X represents a halogen such as I, Br or Cl, or a sulfonyloxyl group such as methanesulfonyloxyl group, trifluoromethanesulfonyloxyl group or p-toluenesulfonyloxyl group:

Tertiary aniline derivatives such as those represented by formula (20) can be obtained by reacting an aniline derivative (18) with (19) a sulfonic acid ester or a halide in the presence of a base such as sodium hydride or lithium diisopropylamide. Secondary amines (21) can be obtained by removing benzyl from the compounds (20) in the presence of a catalyst such as palladium carbon, palladium hydroxide carbon or By condensing the secondary amines (21) with a Raney nickel. carboxylic acid (14) in the presence of a base such as triethylamine and a condensing such agent as 1.ethyl-3.(3'-dimethylaminopropyl)carbodiimide \mathbf{or} 1,3-dicyclohexylcarbodi-imide, the intended diarylalkene derivatives and diarylalkyl derivatives can be obtained. The compounds (1-6) wherein R²¹ represents a hydroxyalkyl group can be produced by condensing a compound (14) having an ester corresponding to R²¹ or a compound (14) having protected hydroxyl group and then reducing the ester with a reducing agent such as lithium borohydride or removing the protecting

5

10

15

group.

5

15

When Y₁ in (4) is oxygen atom, the intended diarylalkene derivatives and diarylalkyl derivatives (4-1) can be obtained by, for example, condensing a carboxylic acid (22) with an amine (23) in the presence of a base such as triethylamine and a condensing agent such as 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide or 1,3-dicyclohexylcarbodiimide.

R1
$$R2$$
 $R3$ $R4$ $R4$ $R11$ $R2$ $R11$ $R2$ $R12$ $R12$ $R11$ $R12$ $R12$ $R12$ $R12$ $R12$ $R12$ $R13$ $R14$ $R15$ R

In the compounds (22), those (24) wherein Z is C and n is 0 can be synthesized by, for example, the following reaction scheme:

The intended compounds (24) can be obtained by, for example, condensing a ketone (25) with ethyl diethylphosphonoacetate (26) in the presence of a base such as sodium hydride or lithium diisopropylamide.

When the compounds of general formulae (1), (2), (3) and (4) of the present invention can form salts thereof, the salts are pharmaceutically acceptable salts such as ammonium salts, salts thereof with alkali metals, e. g. sodium and potassium, salts thereof with alkaline earth metals, e. g. calcium and magnesium, salts thereof with aluminum or zinc, salts thereof with organic amines, e. g. morpholine and piperidine and, salts thereof with basic amino acids, e. g. arginine and lysine, salts thereof with inorganic acids, e. g. hydrochloric acid, and salts thereof with organic acids, e. g. oxalic acid, maleic acid and tartaric acid.

5

10

15

20

25

The compounds of the general formulae (1), (2), (3) and (4) and salts thereof are administered as they are or in the form of various medicinal compositions thereof to the patients. The dosage forms of the medicinal compositions are, for example, tablets, powders, pills, granules, capsules, suppositories, solutions, sugar-coated tablets and depots. They can be prepared with ordinary preparation assistants by an ordinary method. For example, the tablets are prepared by mixing the diarylalkene derivative or diarylalkane derivative, the active ingredient of the present invention, with any of known adjuvants such as inert diluents, e. g. lactose, calcium carbonate and calcium phosphate; binders, e. g. acacia, corn starch and gelatin; extending agents, e. g. alginic acid, corn starch and pre-gelatinized starch; sweetening agents, e. g. sucrose, lactose and saccharin; corrigents, e. g. peppermint, gaultheria leaves oil and cherry; and lubricants, e. g. magnesium stearate, talc and carboxymethyl cellulose.

The N-type calcium channel antagonist containing one of the compounds of the above general formulae (1), (2), (3) and (4) or one of salts thereof as active ingredient is usable as a therapeutic agent for various diseases, for example, cerebrovascular disorders caused by ischemia at the acute stage after the onset of cerebral infarction or

intracerebral bleeding (including subarachnoidal hemorrhage); progressive neurodegenerative diseases such as Alzheimer's disease, AIDS related dementia and Parkinson's disease, dementia due to cerebrovascular disorder and ALS; neuropathy caused by head injury; various pains such as pain caused by spinal injury, diabetes or thromboangitis obliterans, neuropathic pain, migraine, visceral pain and cancerous pain, various diseases associated with psychogenic stress such as bronchial asthma, unstable angina and irritable colitis; emotional disorder and withdrawal symptoms after addiction to drugs such as ethanol addiction withdrawal symptoms.

The dose of the compounds or salts thereof used for the above-described purpose varies depending on the intended therapeutic effect, administration method, period of the treatment, and age and body weight of the patient. The dose is usually 1 μ g to 5 g a day for adults in the oral administration, and 0.01 μ g to 1 g a day for adults in the parenteral administration.

Examples

5

10

15

20

25

The following Examples will further illustrate the present invention, which by no means limit the invention.

Example 1

Synthesis of t-butyl 2-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-2-oxoethylcarbamate:

3.00 g (10.9 mmol) of 4-(5H-dibenzo[a,d][7]annulen-5-ylidene)1-piperidine, 2.29 g (13.2 mmol) of N-t-butoxycarbonylglycine, 3.14 g
(16.4 mmol) of 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide
hydrochloride and 122 mg (1.00 mmol) of 4-dimethylaminopyridine were
dissolved in 50 ml of dichloromethane. 2.20 g (3.04 mmol) of

triethylamine was added to the obtained solution, and they were stirred overnight. Saturated aqueous sodium hydrogencarbonate solution was added to the obtained mixture. After extracting with dichloromethane 3 times, the organic layer was washed with saturated aqueous sodium chloride solution. After drying over anhydrous sodium sulfate, the solvent was evaporated under reduced pressure, and the residue was purified by the silica gel chromatography (hexane: ethyl acetate = 4:1 to 2:1) to obtain the title compound.

Yield: 4.29 g (10.2 mmol), 94 %

10 MS (ESI, m/z) 431 (M+H)⁺

¹ H-NMR (CDCl₃): 1.44 (9H, s), 2.15-2.35 (4H, m), 3.02 (2H, m), 3.42 (1H, m), 3.81-4.01 (3H, m), 5.51 (1H, br s), 6.92 (2H, s), 7.15-7.38 (8H, m).

Example 2

15 Synthesis

20

25

5

 \mathbf{of}

2-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-2-oxo-ethanamine hydrochloride:

1.40 g (3.25 mmol) of t-butyl 2-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-2-oxoethylcarbamate was dissolved in 20 ml of 1,4-dioxane. 12 ml of 4 N hydrochloric acid / 1,4-dioxane solution was added to the obtained solution, and they were stirred overnight. After the neutralization with 4 N aqueous sodium hydroxide solution, the solvent was evaporated under reduced pressure. Saturated aqueous sodium chloride solution was added to the reaction mixture. After the extraction with ethyl acetate 3 times, the extract was dried over anhydrous sodium sulfate and then the solvent was evaporated under reduced pressure. 10 ml of a solution of ethyl acetate: hexane (1:2) and

then 2 ml of 4 N hydrochloric acid / 1,4-dioxane solution were added to the residue. The resultant precipitates were taken by the filtration, washed with a solution of ethyl acetate: hexane (1:2) and air-dried. After further drying under reduced pressure, the title compound was obtained.

Yield: 1.15 g (3.06 mmol), 94 %

MS (ESI, m/z) 415 (M+H+DMSO- d_6)+

¹ H-NMR (CDCl₃) (free): 2.12-2.36 (4H, m), 2.36 (2H, s), 2.76-3.12 (2H, m), 3.13-3.50 (3H, m), 3.88-4.00 (1H, m), 6.92 (2H, s), 7.12-7.38 (8H, m).

10 Example 3

5

20

25

Synthesis of ethyl

2-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-

2-oxoethylcarbamate:

375 mg (1.00 mmol) of

15 $2\cdot[4\cdot(5H-dibenzo[a,d][7]annulen\cdot5\cdotylidene)\cdot1$

piperidinyl-2-oxoethanamine hydrochloride was dissolved in 3 ml of dichloromethane. 303 mg (3.00 mmol) of triethylamine was added to the obtained solution. Then a solution of 130 mg (1.20 mmol) of ethyl chloroformate in 3 ml of dichloromethane was slowly added to the reaction mixture. After stirring overnight, saturated aqueous sodium hydrogencarbonate solution was added thereto. After extracting with ethyl acetate twice followed by drying under anhydrous sodium sulfate, the solvent was evaporated under reduced pressure. The residue was roughly purified by the silica gel chromatography (dichloromethane: methanol = 98:2) and then purified by the silica gel chromatography (hexane: ethyl acetate = 1:2) to obtain the title compound.

Yield: 213 mg (0.528 mmol), 53 %

MS (ESI, m/z) 403(M+H)+

¹ H-NMR (CDCl₃): 1.24 (3H, t), 2.12-2.36 (4H, m), 2.97-3.10 (2H, m), 3.38-3.50 (2H, m), 3.86-4.02 (3H, m), 4.13 (2H, q), 5.65 (1H, br s), 6.92 (2H, s), 7.14-7.20 (2H, m), 7.23-7.38 (6H, m).

5 Example 4

10

15

20

25

Synthesis of t-butyl (1S)-1-{[4-(5H-dibenzo[a,d]annulen-5-ylidene)-1-piperidinyl]carbonyl}-3-methylbutylcarbamate:

100 mg (0.366 mmol) of 4-(5H-dibenzo[a,d]annulen-5-ylidene)1-piperidine, 109 mg (0.439 mmol) of N-t-butoxycarbonyl-(L)-leucine, 105 mg (0.549 mmol) of 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide hydrochloride and 5 mg (0.04 mmol) of 4-dimethylaminopyridine were dissolved in 2 ml of dichloromethane. 74 mg (0.73 mmol) of triethylamine was added to the obtained solution, and they were stirred overnight. Saturated aqueous sodium hydrogencarbonate solution was added to the obtained mixture. After extracting with ethyl acetate 3 times, the organic layer was washed with saturated aqueous sodium chloride solution. After drying over anhydrous sodium sulfate, the solvent was evaporated under reduced pressure, and the residue was purified by the silica gel chromatography (hexane: ethyl acetate = 84: 16 to 75:25) to obtain the title compound.

Yield: 29.5 mg (0.065 mmol), 17 %

MS (ESI, m/z) 487(M+H)+

¹ H-NMR (CDCl₃): 0.84-0.99 (6H, m), 1.23-1.31 (2H, m), 1.41 (9H, d), 1.70 (1H, m), 2.10-2.40 (4H, m), 2.90-3.20 (2H, m), 3.61 (1H, m), 3.94 (1H, m), 4.62 (1H, m), 5.28 (1H, d), 6.92 (2H, d), 7.14-7.38 (8H, m). Example 5

Synthesis of (1R)-N-{2-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-

piperidinyl]-2-oxoethyl}-2,2-dimethylcyclopropane carboxyamide:

200 mg (0.542 mmol) of

2-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-

1-piperidinyl]-2-oxoethanamine hydrochloride was dissolved in 1.5 ml of dichloromethane. 137 mg (1.36 mmol) of triethylamine was added to the obtained solution. Then a solution of 86.1 mg (0.650 mmol) of (S)-2,2-dimethylcyclopropanecarboxylic acid chloride in 0.5 ml of dichloromethane was slowly added to the obtained mixture. After stirring for 1 hour, the obtained mixture was roughly purified by the silica gel chromatography (dichloromethane: methanol = 98:2) and then purified by the silica gel chromatography (ChromatorexTM NH, Fuji Silysia Chemical LTD., hexane: ethyl acetate = 92:8 to 1:4) to obtain the title compound.

Yield: 154 mg (0.362 mmol), 67 %

15 MS (ESI, m/z) 427 (M+H)+

5

10

¹H-NMR (CDCl₃): 0.73 (1H, m), 1.04-1.19 (7H, m), 1.36 (1H, m), 2.12-2.36 (4H, m), 2.96-3.12 (2H, m), 3.40-3.52 (1H, m), 3.80-4.16 (3H, m), 6.65 (1H, bs), 6.92 (2H, s), 7.13-7.20 (2H, m), 7.21-7.40 (6H, m). Example 6

20 Synthesis of (1R)-N-{2-[4-(10,11-dihydro-5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-2-oxoethyl}-2,2-dimethylcyclopropane carboxyamide:

72.8 mg of palladium carbon (10 % w/v) was added to 72.8 mg (0.171 mmol) of

25 (1R)-N-{2-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]2-oxoethyl}-2,2-dimethylcyclopropanecarboxyamide in 10 ml of ethanol,
and they were stirred at 4.0 MPa in hydrogen gas atmosphere overnight.

After the filtration, the solvent was evaporated under reduced pressure to obtain the title compound.

Yield: 67.1 mg (0.157 mmol), 92 %

MS (ESI, m/z) 429(M+H)+

5 1H-NMR (CDCl₃): 0.75 (1H, dd), 1.05-1.41 (7H, m), 1.37 (1H, dd), 2.30-2.51 (4H, m), 2.35-2.82 (2H, m), 3.09-3.24 (2H, m), 3.31-3.46 (2H, m), 3.48-3.60 (1H, m), 4.00-4.19 (3H, m), 6.68 (1H, br s), 7.00-7.04 (2H, m), 7.04-7.18 (6H, m).

Example 8

10 Synthesis of

N-{2-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-2-oxoethyl}-2,2-dimethylpropanamide:

100 mg (0.271 mmol) of

2-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-

piperidinyl]-2-oxoethanamine hydrochloride was dissolved in 1 ml of dichloromethane. 82.3 mg (0.813 mmol) of triethylamine was added to the obtained solution. A solution of 39.2 mg (0.325 mmol) of pivaloyl chloride in 0.5 ml of dichloromethane was slowly added to the obtained mixture. After stirring for 30 minutes, the obtained product was purified by the silica gel chromatography (hexane: ethyl acetate = 9:1 to 3:1).

Yield: 62.9 mg (0.152 mmol) (56 %)

MS (ESI, m/z) 415(M+H)+

¹ H-NMR (CDCl₃): 1.21 (9H, s), 2.14-2.35 (4H, m), 2.98-3.12 (2H, m), 3.40-3.53 (1H, m), 3.88-4.09 (3H, m), 6.83 (1H, br s), 6.92 (2H, s), 7.12-7.22 (2H, m), 7.22-7.40 (6H, m).

Example 9

Synthesis of N-(t-butyl)-4-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-4-oxobutanamide:

of 100 (0.268)mmol) mg 4-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)- 1-piperidinyl]-4-oxobutanoic acid, 23.5 mg (0.321 mmol) of t-butylamine, 3 mg (0.03 mmol) of (0.402)of 4-dimethylaminopyridine and 77.1 mg mmol) 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide hydrochloride were dissolved in 1 ml of dichloromethane. 35.2 mg (0.348 mmol) of triethylamine was added to the obtained solution, and they were stirred overnight. The obtained product was purified by the silica gel chromatography (hexane: ethyl acetate = 2:1 to 4:6) to obtain the title compound.

Yield: 33.3 mg (0.078 mmol), 29 %

MS (ESI, m/z) 429 (M+H)+

1H-NMR (CDCl₃): 1.32 (9H, s), 2.08-2.36 (4H, m), 2.41 (2H, t),
2.50-2.71 (2H, m), 2.24-2.96 (2H, m), 3.58 (1H, m), 3.93 (1H, m), 5.77 (1H, br s), 6.92 (2H, s), 7.14-7.38 (8H, m).

Example 10

5

10

25

Synthesis of

20 N-{2-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-2-oxoethyl}-2-methyl-1-propanamine hydrochloride:

128.5 mg (0.264 mmol) of t-butyl 2-[4-(5H-dibenzo[a,d][7]annulen-5-

ylidene)-1-piperidinyl]-2-oxoethyl(isobutyl)carbamate was dissolved in 1 ml of 1,4-dioxane. 0.5 ml of 4 N hydrochloric acid / 1,4-dioxane solution was added to the obtained solution, and they were stirred overnight. Saturated aqueous sodium hydrogencarbonate solution was added to the

reaction mixture. After the extraction with ethyl acetate 3 times, the extract was dried over anhydrous sodium sulfate and then the solvent was evaporated under reduced pressure. The residue was purified by the silica gel chromatography (hexane: ethyl acetate = 89:11 to 65:35). The solvent was evaporated under reduced pressure, and the residue was dissolved in 2 ml of diethyl ether. 4 N hydrochloric acid / ethyl acetate solution was added to the obtained solution. The precipitates thus formed were taken by the filtration and then washed with diethyl ether. After drying under reduced pressure, the title compound was obtained.

10 Yield: 102.6 mg (0.242 mmol) 92 %

MS (ESI, m/z) 387 (M+H)+

¹H-NMR (CDCl₃): 1.08 (6H, d), 2.10-2.40 (5h, m), 2.70-3.10 (4H, m), 3.41 (1H, br s), 3.69-4.10 (3H, m), 6.92 (2H, s), 7.10-7.21 (2H, m), 7.23-7.39 (6H, m), 9.03 (1H, br s), 9.68 (1H, br s).

15 Example 11

5

Synthesis of

N-{3-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-3-oxopropyl}-2,2-dimethylpropanamide:

Step 1

25

20 Synthesis of N-(2,2-dimethylpropanoyl)-\(\theta\)-alanine:

558 mg (4.03 mmol) of methyl 3-aminopropionate was dissolved in 20 ml of 1 N aqueous sodium hydroxide solution. 362 mg (3.00 mmol) of pivaloyl chloride was immediately added to the obtained solution, and they were stirred for 4 hours. 15 ml of 2 N aqueous hydrochloric acid was added to the reaction mixture. After extracting with ethyl acetate 3 times followed by drying under anhydrous sodium sulfate, the solvent was evaporated under reduced pressure to obtain the title compound.

Yield: 173 mg (0.929 mmol), 23 %

¹ H-NMR (CDCl₃): 1.18 (9H, s), 2.60 (2H, t), 3.51 (2H, q), 6.34 (1H, br s). Step 2

5 Synthesis

 \mathbf{of}

N-{3-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-3-oxopropyl}-2,2-dimethylpropanamide:

275

mg

(1.01)

mmol)

of

[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-

piperidine, 90.0 mg (0.480 mmol) of N-(2,2-dimethylpropanoyl)-\(\theta\)-alanine, 193 mg (1.01 mmol) of 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide hydrochloride and 6 mg (0.05 mmol) of 4-dimethylaminopyridine were dissolved in 3 ml of dichloromethane. 152 mg (1.50 mmol) of triethylamine was added to the obtained solution. After stirring for 3 hours, the obtained mixture was roughly purified by the silica gel chromatography (ChromatorexTM NH, Fuji Silysia Chemical LTD., hexane: ethyl acetate = 89:11 to 7:3) and then purified by the silica gel chromatography (hexane: ethyl acetate = 2:3 to 1:4) to obtain the title compound.

20 Yield: 147 mg (0.343 mmol), 72 %

MS (ESI, m/z) 429 (M+H)+

¹ H-NMR (CDCl₃): 1.16 (9H, s), 2.11-2.36 (4H, m), 2.48 (2H, q), 2.94-3.12 (2H, m), 3.52 (3H, q), 3.84-4.00 (1H, m), 6.62 (1H, t), 6.92 (2H, s), 7.13-7.20 (2H, m), 7.22-7.38 (6H, m).

25 Example 12

Synthesis of

N-{2-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-2-

oxoethyl}-3,3-dimethylbutanamide:

80.0 mg (0.217 mmol) of

2-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-

1-piperidinyl]-2-oxoethanamine hydrochloride was dissolved in 1 ml of dichloromethane. 75.9 mg (0.750 mmol) of triethylamine was added to the obtained solution. Then a solution of 35.1 mg (0.260 mmol) of 3,3-dimethylbutanoyl chloride in 0.5 ml of dichloromethane was slowly added to the obtained mixture. After stirring for 30 minutes, the product was purified by the silica gel chromatography (hexane: ethyl acetate = 93:7 to 3:1) to obtain the title compound.

Yield: 80.1 mg (0.187 mmol), 86 %

MS (ESI, m/z) 429 (M+H)+

¹ H-NMR (CDCl₃): 1.03 (9H, s), 2.12 (2H, s), 2.15-2.39 (4H, m), 2.96-3.11 (2H, m), 3.40-3.54 (1H, m), 3.88-4.13 (3H, m), 6.49 (1H, br s), 6.92 (2H, s), 7.14-7.21 (2H, m), 7.21-7.41 (6H, m).

Example 13

5

10

15

25

Synthesis of isopropyl 2-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-2-oxoethylcarbamate:

80.0 mg (0.217 mmol) of

20 2-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-

1-piperidinyl]-2-oxoethanamine hydrochloride was dissolved in 1 ml of dichloromethane. 75.9 mg (0.750 mmol) of triethylamine was added to the obtained solution. Then a solution of 31.9 mg (0.260 mmol) of isopropyl chloroformate in 0.5 ml of dichloromethane was slowly added to the obtained mixture. After stirring for 30 minutes, the obtained product was purified by the silica gel chromatography (hexane: ethyl acetate = 93:7 to 3:1) to obtain the title compound.

Yield: 38.6 mg (0.093 mmol), 43 %

MS (ESI, m/z) 417 (M+H)+

¹ H-NMR (CDCl₃): 1.23 (6H, d), 2.12-2.48 (4H, m), 2.92-3.11 (2H, m), 3.36-3.53 (1H, m), 3.83-4.09 (3H, m), 4.90 (1H, m), 5.59 (1H, br s), 6.92 (2H, s), 7.14-7.20 (2H, m), 7.23-7.38 (6H, m).

Example 14

5

15

Synthesis of

N-{3-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-3-

oxopropyl}-2,2-dimethyl-1-propanamine hydrochloride:

5ml of 4 N hydrochloric acid / 1,4-dioxane solution was added to
184.1 mg (0.357 mmol) of t-butyl
3-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-

piperidinyl]-3-oxopropyl(neopentyl)carbamate, and they were stirred for 1 hour. The solvent was evaporated under reduced pressure. 5 ml of diethyl ether was added to the residue, and then 1 ml of 4 N hydrochloric acid / ethyl acetate solution was added thereto. The precipitates thus formed were taken by the filtration, washed with diethyl ether and dried under reduced pressure to obtain the title compound.

Yield: 149 mg (0.357 mmol), 100 %

20 MS (ESI, m/z) 415 (M+H)+

¹H·NMR (CDCl₃): 1.24 (9H, s), 2.14-2.43 (4H, m), 2.52 (2H, s), 2.62-3.37 (6H, m), 3.52 (1H, m), 3.95 (1H, m), 6.92 (2H, s), 7.12-7.24 (2H, m), 7.26-7.40 (6H, m), 9.05 (1H, br s), 9.55 (1H, br s).

Example 15

25 Synthesis of

N-((1S)-1-{[4-(5H-dibenzo[a,d]annulen-5-ylidene)-1-piperidinyl]-carbonyl}-3-methylbutyl)-1-azepanecarboxyamide:

100 mg (0.366 mmol) of 4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidine, 124 (0.439)mmol) of mg N-t-azepanecarboxyamido-(L)-leucine, 105 (0.549)mmol) of 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide hydrochloride and 5 mg (0.04 mmol) of 4-dimethylaminopyridine were dissolved in 2 ml of 5 dichloromethane. 74 mg (0.73 mmol) of triethylamine was added to the obtained solution, and they were stirred overnight. Saturated aqueous sodium hydrogencarbonate solution was added to the obtained mixture. After extracting with ethyl acetate 3 times, the organic layer was washed 10 with saturated aqueous sodium chloride solution. After drying over anhydrous sodium sulfate, the solvent was evaporated under reduced pressure, and the residue was roughly purified by the silica gel chromatography (hexane : ethyl acetate = 4:1 to 65:35) and then purified by the silica gel chromatography (hexane: ethyl acetate = 3:1) to obtain 15 the title compound.

Yield: 98.9 mg (0.194 mmol), 53 %

MS (ESI, m/z) 512 (M+H)+

¹ H-NMR (CDCl₃): 0.54-1.02 (6H, m), 1.23-1.82 (11H, m), 2.10-2.25 (4H, m), 3.00 (1H, m), 3.16 (1H, m), 3.39 (4H, m), 3.65 (1H, m), 3.3 (1H, m),

20 4.90 (1H, m), 5.21 (1H, m), 6.92 (2H, s), 7.15-7.39 (8H, m).

Example 16

Synthesis of t-butyl 2-[4-(10,11-dihydro-5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-2-oxoethyl carbamate:

400 mg of palladium carbon (10 % w/v) was added to 400 mg
25 (0.930 mmol) of t-butyl
2-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-2oxoethylcarbamate in 5 ml of ethanol, and they were stirred at 3.9 MPa

in hydrogen gas atmosphere overnight. After the filtration, the solvent was evaporated under reduced pressure to obtain the title compound.

Yield: 397 g (0.918 mmol), 99 %

MS (ESI, m/z) 433 (M+H)+

¹ H-NMR (CDCl₃): 1.46 (9H, s), 2.29-2.50 (4H, m), 2.77-2.92 (2H, m), 3.08-3.21 (2H, m), 3.31-3.45 (2H, m), 3.45-3.56 (1H, m), 3.87-4.10 (3H, m), 5.56 (1H, br s), 7.00-7.07 (2H, m), 7.09-7.20 (6H, m).

Example 17

15

20

Synthesis of t-butyl 2-oxo-2-[4-(9H-thioxanthen-9-ylidene)-1-10 piperidinyl]ethylcarbamate:

500 mg (1.79 mmol) of 4-(9H-thioxanthen-9-ylidene)-1-piperidine of (2.69)mmol) 515 mg and 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide hydrochloride were suspended in 5 ml of dichloromethane. 415 mg (2.15 mmol) of N-t-butoxycarbonylglycine, 362 mg (3.58 mmol) of triethylamine and 22 mg (0.18 mmol) of 4-dimethylaminopyridine were added to the obtained suspension, and they were stirred overnight. Saturated aqueous sodium hydrogencarbonate solution was added to the obtained mixture. After extracting with ethyl acetate twice and drying over anhydrous sodium sulfate, the solvent was evaporated under reduced pressure, and the residue was roughly purified by the silica gel chromatography (dichloromethane: methanol = 98:2) and then purified by the thin-layer silica gel chromatography (dichloromethane: methanol = 15:1) to obtain the title compound.

25 Yield: 43.1 mg (0.100 mmol), 5.6 %

MS (ESI, m/z) 437 (M+H)+

¹ H-NMR (CDCl₃): 1.45 (9H, s), 2.50-2.64 (2H, m), 2.68-2.81 (2H, m),

2.92-3.14 (2H, m), 3.52-3.62 (1H, m), 3.85-4.10 (2H, m), 4.13-4.24 (1H, m), 5.53 (1H, br s), 7.16-7.32 (6H, m), 7.48-7.54 (2H, d).

Example 18

Synthesis

 \mathbf{of}

ethyl

5 2-[4-(10,11-dihydro-5H-dibenzo[a,d][7]annulen-5-ylidene)-

1-piperidinyl]-2-oxoethyl carbamate:

100 mg of palladium carbon (10 % w/v) was added to 105 mg (0.261 mmol) of ethyl 2-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-2-

oxoethylcarbamate in 3 ml of ethanol, and they were stirred at 3.6 MPa in hydrogen gas atmosphere overnight. After the filtration, the solvent was evaporated under reduced pressure to obtain the title compound.

Yield: 101.8 mg (0.252 mmol), 97 %

MS (ESI, m/z) 405 (M+H)+

1H-NMR (CDCl₃): 1.26 (3H, t), 2.30-2.52 (4H, m), 2.75-2.92 (2H, m),
3.08-3.23 (2H, m), 3.30-3.45 (2H, m), 3.45-3.58 (1H, m), 3.90-4.20 (5h, m), 5.68(1H, br s), 6.98-7.07 (2H, m), 7.07-7.21 (6H, m).

Example 19

Synthesis of ethyl 2-oxo-2-[4-(9H-thioxanthen-9-ylidene)-1-

20 piperidinyl]ethylcarbamate:

Step 1

Synthesis

 \mathbf{of}

2-[4-(9H-thioxanthen-9-ylidene)-1-piperidinyl]-2-oxoethanamine hydrochloride:

25 mg (0.297 mmol) of t-butyl 2-oxo-2-[4-(9H-thioxanthen-9-ylidene)-1-piperidinyl]ethylcarbamate was dissolved in 2 ml of dioxane. After adding 2 ml of 4 N hydrochloric acid

/ 1,4-dioxane solution, they were stirred overnight. The obtained mixture was neutralized with saturated aqueous sodium hydrogencarbonate solution. After extracting with ethyl acetate twice and drying over anhydrous sodium sulfate, the solvent was evaporated under reduced pressure. 2 ml of dichloromethane and then 2 ml of 4 N hydrochloric acid / 1,4-dioxane solution were added to the residue. The resultant precipitates were taken by the filtration, washed with dichloromethane and air-dried. After further drying under reduced pressure, the title compound was obtained.

10 Yield: 72.4 mg (0.195 mmol), 66 %

¹ H-NMR (DMSO-d₆): 2.40-2.54 (2H, m), 2.57-2.80 (2H, m), 3.20 (2H, m), 3.34-3.75 (1H, m), 3.80-3.96 (3H, m), 7.22-7.48 (6H, m), 7.57 (2H, d), 8.16 (3H, br s).

Step 2

20

25

5

15 Synthesis of ethyl 2-oxo-2-[4-(9H-thioxanthen-9-ylidene)-1-piperidinyl]ethylcarbamate:

50 mg (0.134 mmol) of 2-[4-(9H-thioxanthen-9-ylidene)-1-piperidinyl]-

2-oxoethanamine hydrochloride was dissolved in dichloroethane. 41 mg (0.405 mmol) of triethylamine was added to the obtained solution. A solution of 17.5 mg (0.161 mmol) of ethyl chloroformate in 0.5 ml of dichloromethane was added to the resultant mixture. After stirring for 15 minutes, the product was purified by the thin-layer silica gel chromatography (hexane: ethyl acetate = 85:100) to obtain the title compound.

Yield: 36.7 mg (0.0897 mmol), 67 %

MS (ESI, m/z) 409 (M+H)+

¹ H-NMR (CDCl₃): 1.26 (3H, t), 2.48-2.64 (2H, m), 2.68-2.82 (2H, m), 2.92-3.16 (2H, m), 3.51-3.64 (1H, m), 3.90-4.24 (5h, m), 5.67 (1H, br s), 7.22-7.33 (6H, m), 7.51 (2H, d).

Example 20

10

15

20

Synthesis of t-butyl 3-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-3-oxopropylcarbamate:

50 mg (0.183 mmol) of 4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidine was dissolved in 1 ml of dichloromethane. 41.5 mg (0.219 mmol) of N-t-butoxycarbonyl-3-aminopropionic acid, 2 mg (0.018 mmol) of 4-dimethylaminopyridine, 37 mg (0.366 mmol) of triethylamine and 52.6 mg (0.274 mmol) of 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide hydrochloride were added to the obtained solution, and they were stirred overnight. After the purification by the thin-layer silica gel chromatography (hexane: ethyl acetate = 2:3), the title compound was obtained.

Yield: 72.3 mg (0.163 mmol), 89 %

MS (ESI, m/z) 445 (M+H)+

¹ H-NMR (CDCl₃): 1,49 (3H, s), 2.12-2.36 (4H, m), 3.86-3.36 (4H, m), 3.52-3.28 (1H, m), 3.85-4.08 (1H, m), 4.40-4.58 (1H, d), 4.69-4.83 (1H, d), 5.16 (1H, br s), 6.92 (2H, s), 7.13-7.22 (2H, m), 7.22-7.39 (6H, m).

Example 21

Synthesis of t-butyl (4S)-4-{[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]carbonyl}-1,3-thiazolidine-3-carboxylate:

The reaction and the purification were conducted in the same that ofExample 20 except that 25 manner as with replaced N-t-butoxycarbonyl-3-aminopropionic acid was 3-(t-butoxycarbonyl)-1,3-thiazolidine-4-carboxyilc acid.

Yield: 70.8 mg (0.145 mmol), 79 %

MS (ESI, m/z) 489 (M+H)+

¹H-NMR (CDCl₃): 1.29-1.52 (9H, m), 2.10-2.50 (4H, m), 2.70-3.45 (4H, m), 3.51-3.76 (1H, m), 3.82-4.07 (1H, m), 4.47 (1H, d), 4.75 (1H, d), 4.82-5.23 (1H, m), 6.92 (2H, s), 7.17 (2H, d), 7.20-7.40 (6H, m).

Example 22

10

15

Synthesis of t-butyl (2R)-2-{[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]carbonyl}-1-pyrrolidinecarboxylate:

1-piperidine, 94.0 mg (0.439 mmol) of N-t-butoxycarbonyl-(L)-proline, 4 mg (0.036 mmol) of 4-dimethylaminopyridine and 105.2 mg (0.548 mmol) of 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide hydrochloride were dissolved in 1 ml of dichloromethane. 74 mg (0.731 mmol) of triethylamine was added to the obtained solution, and they were stirred for 3 hours. After the purification by the silica gel chromatography (hexane: ethyl acetate = 1:1), the title compound was obtained.

Yield: 155.8 mg (0.331 mmol), 91%

MS (ESI, m/z) 471(M+H)+

¹ H-NMR (CDCl₃): 1.26-1.52 (9H, m), 1.60-2.53 (8H, m), 2.80-3.26 (2H, 20 m), 3.28-3.71 (3H, m), 3.77-4.10 (1H, m), 4.46-4.72 (1H, m), 6.92 (2H, s), 7.11-7.40 (8H, m).

Example 23

Synthesis of t-butyl 2-[3-(10,11-dihydro-5H-dibenzo[a,d][7]annulen-5-ylidene)-1-pyrrolidinyl]-2-oxoethylcarbamate:

25 94.0 mg (0.36 mmol) of 3-(10,11-dihydro-5H-dibenzo[a,d][7]-annulen-5-vlidene)-1-pyrrolidine, 83.7 ml (0.44 mmol) of

N-t-butoxycarbonylglycine, 103.8 mg (0.54 mmol) of 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide hydrochloride and 4.4 mg (0.04 mmol) of 4-dimethylaminopyridine were dissolved in 1 ml of dichloromethane. 72.8 mg (0.72 mmol) of triethylamine was added to the obtained solution. They were stirred overnight and then purified by the silica gel chromatography (hexane: ethyl acetate = 88:12 to 5:1) to obtain the title compound.

Yield: 97.9 g (0.217 mmol), 72 %

MS (ESI, m/z) 419 (M+H)+

10 1 H-NMR (CDCl₃): 1.43 (9H, s), 2.48-2.67 (1H, m), 2.70-3.00 (3H, m), 3.20-3.39 (3H, m), 3.58-4.00 (4H, m), 4.30 (1H, t), 5.45 (1H, br s), 7.00-7.24 (8H, m).

Example 24

5

20

Synthesis of t-butyl 2-(4-dibenzo[b,e]thiepin-11(6H)-ylidene-1-15 piperidinyl)-2-oxoethylcarboxylate:

88.0 mg (0.30 mmol) of 4-dibenzo[b,e]thiepin-11(6H)-ylidene-1-piperidine, 69.6 mg (0.36 mmol) of N-t-butoxycarbonylglycine, 86.3 g (0.45 mmol) of 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide hydrochloride and 3.7 mg (0.03 mmol) of 4-dimethylaminopyridine were dissolved in 1 ml of dichloromethane. 60.7 mg (0.60 mmol) of triethylamine was added to the obtained solution. They were stirred overnight and then purified by the silica gel chromatography (hexane: ethyl acetate = 88:12 to 5:1) to obtain the title compound.

Yield: 115.8 g (0.257 mmol), 86 %

25 MS (ESI, m/z) 451 (M+H)+

¹ H-NMR (CDCl₃): 1.45 (9H, s), 2.09-2.20 (2H, m), 2.38-2.61 (2H, m), 3.10-3.52 (4H, m), 3.34-4.08 (3H, m), 4.86 (1H, d), 5.52 (1H, br s),

6.96-7.16 (5 h, m), 7.20-7.35 (3H, m).

Example 25

5

10

Synthesis of 2-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1- piperidinyl]-2-oxoethylformamide:

150 mg (0.406 mmol) of

2-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-

piperidinyl]-2-oxoethanamine hydrochloride, 80.5 mg (0.406 mmol) of 2,2-dimethyl-1-iodopropane and 84.3 mg (0.610 mmol) of potassium carbonate were dissolved in 1 ml of N,N-dimethylformamide, and the obtained solution was stirred at 120°C overnight. The product was purified by the silica gel chromatography (hexane: ethyl acetate = 9:1 to 2:3) to obtain the title compound.

Yield: 18.8 mg (0.052 mmol), 13 %

MS (ESI, m/z) 359 (M+H)+

Example 26

Synthesis of t-butyl 2-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-

20 piperidinyl]-2-oxoethyl(isobutyl)carbamate:

Step 1:

25

Synthesis of N-(t-butoxycarbonyl)-N-isobutylglycine:

366 mg (5.01 mmol) of isobutylamine and 1.52 g (15.0 mmol) of triethylamine were dissolved in 10 ml of water. 695 mg (5.00 mmol) of bromoacetic acid was added to the obtained solution, and they were stirred for 1 hour. A solution of 1.63 g (7.50 mmol) of di(t-butyl) dicarbonate in 5 ml of 1,4-dioxane was added to the resultant mixture,

and they were stirred for additional 1 hour. 10 ml of 1 N aqueous sodium hydroxide solution was added to the reaction mixture. After extracting with dichloromethane twice, 11 ml of 1 N aqueous hydrochloric acid solution was added to the aqueous layer. After extracting with dichloromethane 3 times, the obtained organic layer was dried over anhydrous sodium sulfate and then the solvent was evaporated under reduced pressure to obtain the title compound.

Yield: 829.1 mg (3.58 mmol), 72 %

¹H-NMR (CDCl₃): 0.89 (6H, d), 1.45 (9H, d), 1.83 (1H, m), 3.09 (2H, t), 3.93 (2H, d).

Step 2:

5

10

Synthesis of t-butyl 2-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-2-oxoethyl(isobutyl)carbamate:

178 mg (0.768 mmol) of N-(t-butoxycarbonyl)-N-isobutylglycine,
15 150 mg (0.549 mmol) of
4-(5H-dibenzo[a,d]annulen-5-ylidene)-1-piperidine, 210 mg (1.10 mmol)
of 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide hydrochloride and 6
mg (0.05 mmol) of 4-dimethylaminopyridine were dissolved in 2 ml of
dichloromethane. 139 mg (1.37 mmol) of triethylamine was added to
20 the resultant solution and they were stirred for 1 hour. After the
purification by the silica gel chromatography (hexane: ethyl acetate =
95:5 to 4:1), the title compound was obtained.

Yield: 222.1 mg (0.456 mmol) (83 %)

MS (ESI, m/z) 487 (M+H)+

¹ H-NMR (CDCl₃): 0.87 (6H, d), 1.44 (9H, d), 1.85 (1H, m), 2.10-2.48 (4H, m), 3.42-3.40 (4H, m), 3.49 (1H, br s), 3.72-4.34 (3H, m), 6.92 (2H, s), 7.12-7.38 (8H, m).

Example 27

5

10

20

25

Synthesis of t-butyl 2-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-2-oxoethyl(methyl)carbamate:

83.1 mg (0.439 mmol) of N-(t-butoxycarbonyl)-N-methylglycine, 100 mg (0.366 mmol) of 4-(5H-dibeno[a,d]annulen-5-ylidene)-1-piperidine, 105 mg (0.549 mmol) of 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide hydrochloride and 5 mg (0.04 mmol) of 4-dimethylaminopyridine were dissolved in 1.5 ml of dichloromethane. 74.0 mg (0.732 mmol) of triethylamine was added to the resultant solution and they were stirred for 1 hour. After the purification by the silica gel chromatography (hexane: ethyl acetate = 89:11 to 65:35), the title compound was obtained.

Yield: 102 mg (0.229 mmol) (63 %)

MS (ESI, m/z) 445 (M+H)+

15 1H-NMR (CDCl₃): 1.45 (9H, d), 2.12-2.37 (4H, m), 2.91 (3H, s), 2.95-3.12 (2H, m), 3.49 (1H, br s), 3.82-4.18 (3H, m), 6.93 (2H, s), 7.14-7.36 (8H, m).

Example 28

Synthesis of N·(t·butyl)·N'-{2·[4·(5H·dibenzo[a,d][7]annulen-5·ylidene)-1-piperidinyl]·2·oxoethyl}urea:

89.2 mg (0.55 mmol) of 1,1'-carbonylbis-1H-imidazole and 25.3 mg (0.25 mmol) of triethylamine were dissolved in 2.5 ml of tetrahydrofuran. A solution of 36.6 mg (0.50 mmol) of t-butylamine in 1 ml of tetrahydrofuran was slowly added to the resultant solution at 0°C in argon stream. After stirring for 1 hour, a solution of 110.7 mg (0.30 mmol)

 $2\cdot [4\cdot (5H-dibenzo[a,d][7]annulen\cdot 5\cdot ylidene)\cdot 1\cdot piperidinyl]\cdot 2\cdot oxoethanami$

ne hydrochloride and 30.3 mg (0.30 mmol) of triethylamine in 1 ml of tetrahydrofuran was slowly added thereto. After stirring for 2 hours, the solvent was evaporated and the product was purified by the silica gel chromatography (hexane: ethyl acetate = 85:15 to 3:2) to obtain the title compound.

Yield: 70.7 mg (0.165 mmol), 66 %

MS (ESI, m/z) 430(M+H)+

¹ H-NMR (CDCl₃): 1.31 (9H, s), 2.10-2.35 (4H, m), 2.03-3.10 (2H, m), 3.40-3.52 (1H, m), 3.84-4.10 (3H, m), 4.56 (1H, br s), 5.30 (1H, s), 6.92 (2H, s), 7.14-7.24 (2H, m), 7.27-7.7.27 (6H, m).

Example 29

5

10

20

Synthesis of t-butyl 2-({2-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-2-oxoethyl}amino)-2-oxoethylcarbamate:

35.0 mg (0.095 mmol) of

15 2-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-

1-piperidinyl]-2-oxoethanamine hydrochloride, 19.7 mg (0.114 mmol) of N-t-butoxycarbonylglycine, 27.2 mg (0.142 mmol) of 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide hydrochloride and 1 mg (0.01 mmol) of 4-dimethylaminopyridine were dissolved in 1 ml of dichloromethane. 19.2 mg (0.190 mmol) of triethylamine was added to the obtained solution, and they were stirred for 1 hour. The product was purified by the silica gel chromatography (hexane: ethyl acetate = 7:3 to 3:7) to obtain the title compound.

Yield: 31.8 mg (0.065 mmol), 69 %

25 MS (ESI, m/z) 488 (M+H)+

¹ H-NMR (CDCl₃): 1.45 (9H, s), 2.12-2.38 (4H, m), 2.94-3.11 (2H, m), 3.38-3.52 (2H, m), 3.85 (2H, d), 3.91-4.10 (3H, m), 5.06 (1H, br s), 6.92

(2H, s), 7.00 (1H, br s), 7.13-7.22 (2H, m), 7.22-7.39 (6H, m).

Example 30

5

10

Synthesis of t-butyl 3-({2-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-2-oxoethyl}amino)-3-oxopropylcarbamate:

35.0 mg (0.095 mmol) of $2\cdot[4\cdot(5H\cdot dibenzo[a,d][7]annulen\cdot 5\cdot ylidene)\cdot$

1-piperidinyl]-2-oxoethanamine hydrochloride, 21.5 mg (0.114 mmol) of N-t-butoxycarbonylalanine, 27.2 mg (0.142 mmol) of 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide hydrochloride and 1 mg (0.01 mmol) of 4-dimethylaminopyridine were dissolved in 1 ml of dichloromethane. 19.2 mg (0.190 mmol) of triethylamine was added to the obtained solution, and they were stirred for 1 hour. The product was purified by the silica gel chromatography (hexane: ethyl acetate = 7:3 to 3:7) to obtain the title compound.

15 Yield: 32.5 mg (0.065 mmol), 68 %

MS (ESI, m/z) 502 (M+H)+

¹ H-NMR (CDCl₃): 1.42 (9H, s), 2.12-2.38 (4H, m), 2.45 (2H, t), 3.04 (2H, m), 3.32-3.51 (3H, m), 3.87-4.10 (3H, m), 5.14 (1H, br s), 6.59 (1H, br s), 6.92 (2H, s), 7.13-7.40 (8H, m).

20 Example 31

25

Synthesis of t-butyl 3-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-3-oxopropyl(neopentyl)carbamate:

872 mg (10.0 mmol) of 2,2-dimethylpropylamine was dissolved in 10 ml of ethanol. 34.0 mg (0.50 mmol) of sodium ethoxide and 1.00 g (10.0 mmol) of ethylacrylic acid were added to the obtained solution, and they were stirred overnight. 1 ml of water was added to the reaction mixture and the organic solvent was evaporated under reduced pressure.

2.62 g (12.0 mmol) of di(t-butyl) dicarbonate and 25 ml of 1 N aqueous sodium hydroxide solution were added to the residue, and they were stirred for 3.5 hours. After extracting with dichloromethane twice, the aqueous layer was neutralized with 1 N aqueous hydrochloric acid solution. After extracting with dichloromethane 3 times, the extract was dried over anhydrous sodium sulfate and then the solvent was The obtained product was evaporated under reduced pressure. 145 mg (0.531 mmol) of dissolved in 2 ml of dichloromethane. 4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidine, 122 mg (0.637 mmol) of 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide hydrochloride and 6 mg (0.05 mmol) of 4-dimethylaminopyridine were added to the obtained solution. 107.5 mg (1.06 mmol) of triethylamine was further added to the reaction mixture, and they were stirred for 2 hour. The product was purified by the silica gel chromatography (hexane : ethyl acetate = 89:11 to 4:1) to obtain the title compound.

Yield: 233 mg (0.452 mmol), 85 %

MS (ESI, m/z) 515 (M+H)+

¹H-NMR (CDCl₃): 0.91 (9H, s), 1.43 (9H, s), 2.10-2.40 (4H, m), 2.48-2.71 (2H, m), 2.94-3.21 (4H, m), 3,49 (2H, t), 3.62 (1H, m), 3.85-3.98 (1H, m), 6.92 (2H, s), 7.14-7.23 (2H, m), 7.23-7.38 (6H, m).

Example 32

5

10

15

20

Synthesis of t-butyl 2-[4-(10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl)-1-piperidinyl]-2-oxoethylcarbamate:

60.0 mg (0.216 mmol) of

25 5-(4-piperidinyl)-10,11-dihydro-5H-dibenzo-

[b,f]azepine, 50.0 mg (0.258 mmol) of N-t-butoxycarbonylglycine, 62.1 mg (0.324 mmol) of 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide

hydrochloride and 3 mg (0.03 mmol) of 4-dimethylaminopyridine were dissolved in 1 ml of dichloromethane. 43.7 mg (0.432 mmol) of triethylamine was added to the obtained solution, and they were stirred for 1 hour. The product was purified by the silica gel chromatography (hexane: ethyl acetate = 89:11 to 65:35) to obtain the title compound.

Yield: 81.1 mg (0.186 mmol), 86 %

MS (ESI, m/z) 436 (M+H)+

¹ H-NMR (CDCl₃): 1.43 (9H, s), 1.60-1.77 (2H, m), 1.98-2.10 (2H, m), 2.77 (2H, br s), 3.15 (1H, m), 3.28 (1H, m), 3.38-3.60 (3H, m), 3.80-4.02 (3H, m), 4.20 (1H, m), 5.50(1H, br s), 6.93-7.00 (2H, m), 7.05-7.15 (6H, m).

Example 33

5

10

15

20

25

Synthesis of t-butyl (1S)-1-{[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]carbonyl}-3-methylbutyl(methyl)carbamate:

389 mg (1.59 mmol) of t-butoxycarbonyl-N-methyl-L-leucine, 311 of 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide $(1.62 \, \text{mmol})$ (1.52)mmol) ofhydrochloride, 416 mg4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidine and 0.22 ml (1.59 mmol) of triethylamine were stirred at room temperature overnight. Saturated aqueous sodium hydrogencarbonate solution was added to the reaction mixture. After extracting with dichloromethane, the organic layer was dried over anhydrous sodium sulfate and then concentrated The residue was purified by the silica gel under reduced pressure. chromatography (hexane : ethyl acetate = 3:1) to obtain the title compound.

Yield: 368 mg (0.74 mmol), 48 %

MS (ESI, m/z) 501 (M+H)+

¹ H-NMR (CDCl₃): 0.86-0.98 (6H, dd), 1.34-1.65 (10H, m), 2.03-2.38 (4H, m), 2.64-2.84 (3H, m), 2.88-4.18 (6H, m), 4.78-5.12 (1H, m), 6.90-6.94 (2H, m), 7.11-7.38 (8H, m).

Example 34

5 Synthesis of N-((1S)-1-{[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]carbonyl}-3-methylbutyl)-N-methylamine hydrochloride:

344 mg (0.69 mmol) of t-butyl (1S)-1- $\{[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]carbonyl\}-3-$

methylbutyl(methyl)carbamate was dissolved in 2 ml of 1,4-dioxane. 4 ml of 4 N hydrochloric acid / 1,4-dioxane solution was added to the obtained solution, and they were stirred at room temperature for 5 hours and then concentrated under reduced pressure to obtain the title compound.

15 Yield: 301 mg (0.69 mmol), 100 %

MS (ESI, m/z) 401 (M+H)+

¹ H-NMR (CDCl₃): 0.86-1.04 (6H, m), 1.66-2.01 (5 H, m), 2.16-2.56 (4H, m), 2.72 (3H, d), 2.94-3.26 (2H, m), 3.54-3.72 (1H, m), 3.94-4.08 (1H, m), 4.24-4.35 (1H, m), 6.89-6.93 (2H, m), 7.14-7.20 (2H, m), 7.22-7.38 (6H, m).

Example 35

20

Synthesis of t-butyl

2-[[3-(5H-dibenzo[a,d][7]annulen-5-yl)propyl](methyl)-

amino]-2-oxoethylcarbamate:

25 134 mg (0.70 mmol) of 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide hydrochloride, 176 mg (0.59 mmol) of protriptyline hydrochloride and 0.176 ml (1.26 mmol) of

added 129 (0.74)mmol) triethylamine were to mg of t-butoxycarbonylglydine in 5 ml of dichloromethane, and they were stirred at room temperature overnight. Saturated aqueous sodium hydrogencarbonate solution was added to the reaction mixture. After extracting with dichloromethane, the organic layer was dried over anhydrous sodium sulfate and then concentrated under reduced pressure. The residue was purified by the silica gel chromatography (hexane: ethyl acetate = 3:1) to obtain the title compound.

Yield: 228 mg (0.54 mmol), 92 %

10 MS (ESI, m/z) 421 (M+H)+

¹ H-NMR (CDCl₃): 1.13-1.30 (2H, m), 1.44 (9H, s), 1.64-1.76 (2H, m), 2.73 (3H, d), 3.27-3.42 (1H, m), 4.36 (1H, s), 5.31 (1H, s), 5.98 (1H, s), 6.49 (2H, s), 7.29-7.50 (8H, m).

Example 36

Synthesis of t-butyl 2·[[3·(5H-dibenzo[a,d][7]annulen·5·ylidene)propyl](methyl)amino]-2-oxoethylcarbamate:

Step 1

20

25

5

Synthesis of 3-(5H-dibenzo[a,d][7]annulen:5-ylidene)-N-methyl-1-propanamine:

20 ml of saturated aqueous sodium hydrogencarbonate solution was added to 2.467 g (7.91 mmol) of cyclobenzaprine hydrochloride in 20 ml of chloroform, and they were stirred at room temperature for 10 minutes. After extracting with chloroform, the organic layer was dried over anhydrous sodium sulfate and then concentrated under reduced pressure. 15 ml of toluene was added to the residue, and they were heated at 80°C. 4.0 ml (41.8 mmol) of ethyl chloroformate was added thereto, and they were stirred at 80°C overnight. 4.0 ml (41.8 mmol) of

ethyl chloroformate was added to the reaction mixture, and they were stirred under heating for 2 days. Water was added to the reaction mixture. After extracting with ethyl acetate, the organic layer was dried over anhydrous sodium sulfate and then concentrated under reduced pressure. The residue was purified by the silica gel chromatography (hexane: ethyl acetate = 1:1). 11.4 ml of 1-butanol and 1.97 g (35.1 mmol) of powdery potassium hydroxide were added to the obtained product, and they were stirred under heating at 120°C for 4 hours. The reaction mixture was poured in water at room temperature. After the extraction with chloroform, the organic layer was dried over anhydrous sodium sulfate and then concentrated under reduce pressure to obtain the title compound.

Yield: 1.725 g (6.60 mmol), 83 %

MS (ESI, m/z) 262 (M+H)+

15 ¹ H-NMR (CDCl₃): 2.26-2.35 (2H, m), 2.30 (3H, s), 2.53-2.66 (2H, m), 5.53 (1H, t), 6.86 (2H, d), 7.21-7.37 (8H, m).

Step 2

5

10

20

25

Synthesis of t-butyl 2-[[3-(5H-dibenzo[a,d][7]annulen-5-ylidene)propyl]-(methyl)amino]-2-oxoethylcarbamate:

mmol) of 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide hydrochloride, mg (0.51 mmol) of 3-(5H-dibenzo[a,d][7]annulen-5-ylidene)-N-methyl-1-propanamine and 0.08 ml (0.57 mmol) of triethylamine were stirred in 5 ml of dichloromethane at room temperature overnight. Saturated aqueous sodium hydrogencarbonate solution was added to the reaction mixture. After extracting with dichloromethane, the organic layer was dried over

anhydrous sodium sulfate and then concentrated under reduced pressure.

The residue was purified by the silica gel chromatography (hexane: ethyl acetate = 2:1) to obtain the title compound.

Yield: 130 mg (0.31 mmol), 61 %

5 MS (ESI, m/z) 419 (M+H)+

¹ H-NMR (CDCl₃): 1.45 (9H, d), 2.23-2.52 (2H, m), 2.68 (3H, d), 3.10-3.58 (2H, m), 3.72-3.88 (2H, m), 5.40-5.53 (2H, m), 6.84-6.88 (2H, m), 7.15-7.40 (8H, m).

Example 37

10 Synthesis

of

280 mg (1.14 mmol) of t-butoxycarbonyl-N-methyl-L-leucine, 204

t-butyl

(1S)-1-{[[3-(5H-dibenzo[a,d][7]annulen-5-ylidene)propyl]-

(methyl)amino]carbonyl}-3·methylbutyl(methyl)carbamate:

(1.06 mmol) of 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide (1.04)mmol) \mathbf{of} hydrochloride, 271 15 mg 3-(5H-dibenzo[a,d][7]annulen-5-ylidene)-N-methyl-1propanamine and 0.15 ml (1.08 mmol) of triethylamine were stirred in 10 ml of dichloromethane at room temperature overnight. aqueous sodium hydrogencarbonate solution was added to the reaction mixture. After extracting with dichloromethane, the organic layer was 20 dried over anhydrous sodium sulfate and then concentrated under The residue was purified by the silica gel reduced pressure. chromatography (hexane : ethyl acetate = 82:18) to obtain the title compound.

25 Yield: 178 mg (0.37 mmol), 35 %

MS (ESI, m/z) 489 (M+H)+

¹ H-NMR (CDCl₃): 0.63-0.96 (6H, m), 1.24-1.62 (11H, m), 2.22-2.91 (9H,

m), 3.10-3.70 (2H, m), 4.66-5.08 (1H, m), 5.41-5.58 (1H, m), 6.79-6.91 (2H, m), 7.16-7.38 (8H, m).

Example 38

5

10

15

25

Synthesis of (2S)-N-[3-(5H-dibenzo[a,d][7]annulen-5-ylidene)propyl]-N,4-dimethyl-2-(methylamino)pentanamide hydrochloride:

5 ml of dichloromethane and 2.5 ml of trifluoroacetic acid were added to 169 mg (0.35 mmol) of t-butyl (1S)-1-{[[3-(5H-dibenzo[a,d][7]annulen-5-

ylidene)propyl](methyl)amino]carbonyl}-3-methylbutyl(methyl)carbamat e, and they were stirred at room temperature for 2 hours. The reaction mixture was concentrated under reduced pressure. 1 N aqueous sodium hydroxide solution was added thereto to make it basic. After extracting with ethyl acetate, the organic layer was dried over anhydrous sodium sulfate and then concentrated under reduced pressure. The residue was dissolved in 5 ml of 1,4-dioxane. 4 N hydrochloric acid / 1,4-dioxane solution was added to the obtained solution. The resultant mixture was concentrated under reduced pressure to obtain the title compound.

Yield: 145 mg (0.34 mmol) 99 %

MS (ESI, m/z) 389 (M+H)+

¹ H-NMR (CDCl₃): 0.74-0.94 (6H, m), 1.40-1.75 (2H, m), 2.06-2.83 (9H, m), 3.08-3.60 (2H, m), 3.75-4.11 (1H, m), 5.40-5.51 (1H, m), 6.77-6.92 (2H, m), 7.16-7.41 (8H, m).

Example 39

Synthesis of t-butyl 2-[[3-(10,11-dihydro-5H-dibenzo[a,d][7]annulen-5-ylidene)propyl](methyl)amino]-2-oxoethylcarbamate:

281 mg (1.47 mmol) of 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide hydrochloride, 281 mg

(1.47 mmol) of nortriptyline hydrochloride and 0.40 ml (2.87 mmol) of triethylamine were added to 251 mg (1.44)mmol) of t-butoxycarbonylglycine in 10 ml of dichloromethane, and they were stirred at room temperature overnight. Saturated aqueous sodium hydrogencarbonate solution was added to the reaction mixture. After extracting with dichloromethane, the organic layer was dried over anhydrous sodium sulfate and then concentrated under reduced pressure. The residue was purified by the silica gel chromatography (hexane: ethyl acetate = 4:1) to obtain the title compound.

10 Yield: 203 mg (0.48 mmol), 33 %

MS (ESI, m/z) 421 (M+H)+

¹H-NMR (CDCl₃): 1.44 (9H, s), 1.64-1.76 (2H, m), 2.30-2.48 (2H, m), 2.77 (3H, d), 2.85-3.56 (6H, m), 3.83-3.95 (2H, m), 5.43-5.75 (1H, brd), 5.79 (1H, dt), 7.00-7.28 (8H, m).

15 Example 40

5

Synthesis of t-butyl

2-[(5H-dibenzo[a,d][7]annulen-5-ylidenacetyl)amino]ethylcarbamate:

conj rour z uma

Step 1

25

20 Synthesis of 5H-dibenzo[a,d][7]annulen-5-ylidenacetic acid:

890 mg (22.3 mmol) of sodium hydride (60 % oily) was added to 4.99 g (22.3 mmol) of ethyl diethylphosphonoacetate in 55 ml of dimethyl sulfoxide, and they were stirred at room temperature overnight. 4.58 g (22.2 mmol) of 5H-dibenzo[a,d]-5-cycloheptenone was added to the reaction mixture, and they were stirred at room temperature for 1 hour 15 minutes and then stirred under heating at 100°C for 2 days. Dimethyl sulfoxide was evaporated under reduced pressure. 20 ml of

ethanol and 20 ml of 6 N aqueous sodium hydroxide solution were added to the residue, and they were stirred under heating at 100°C for 3 days. The reaction mixture was concentrated under reduced pressure and then acidified with 1 N hydrochloric acid. After extracting with ethyl acetate, the organic layer was dried over anhydrous sodium sulfate and then concentrated under reduced pressure. The residue was purified by the silica gel chromatography (hexane: ethyl acetate = 1:1) to obtain the title compound.

Yield: 1.552 g (6.25 mmol), 28 %

10 MS (ESI, m/z) 247 (M·H).

¹ H-NMR (CDCl₃): 5.90 (1H, s), 6.94 (2H, q), 7.30-7.46 (8H, m).

Step 2

5

20

25

Synthesis of

t-butyl

2-[(5H-dibenzo[a,d][7]annulen-5-ylidenacetyl)amino]-

15 ethylcarbamate:

173 mg (0.70 mmol) of 5H-dibenzo[a,d][7]annulen-5-ylidenacetic acid, 124 mg (0.77 mmol) of t-butyl N-(2-aminoethyl)carbamate, 143 mg (0.75 mmol) of 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide hydrochloride and 0.11 ml (0.79 mmol) of triethylamine were stirred in 5 ml of dichloromethane at room temperature overnight. The reaction mixture was washed with saturated aqueous sodium hydrogencarbonate solution and the organic layer was dried over anhydrous sodium sulfate and then concentrated under reduced pressure. The residue was purified by the silica gel chromatography (hexane: ethyl acetate = 7:3) to obtain the title compound.

Yield: 185 mg (0.47 mmol), 68 %

MS (ESI, m/z) 391 (M+H)+

¹ H-NMR (CDCl₃): 1.44 (9H, s), 2.78-3.08 (3H, m), 3.27-3.42 (1H, m), 4.36 (1H, s), 5.31 (1H, s), 5.98 (1H, s), 6.49 (2H, s), 7.29-7.50 (8H, m). Example 41

Synthesis of t-butyl

3-[(5H-dibenzo[a,d][7]annulen-5-ylidenacetyl)amino]propylcarbamate:

173 mg (0.70 mmol) of 5H-dibenzo[a,d][7]annulen-5-ylidenacetic acid, 130 mg (0.75 mmol) of t-butyl N-(3-aminopropyl)carbamate, 149 mg (0.78 mmol) of 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide hydrochloride and 0.11 ml (0.79 mmol) of triethylamine were stirred in 5 ml of dichloromethane at room temperature overnight. The reaction mixture was washed with 0.5 N aqueous sodium hydroxide solution and the organic layer was dried over anhydrous sodium sulfate and then concentrated under reduced pressure. The residue was purified by the silica gel chromatography (hexane: ethyl acetate = 7:3) to obtain the title compound.

Yield: 232 mg (0.57 mmol), 82 %

MS (ESI, m/z) 403 (M·H).

¹ H·NMR (CDCl₃): 1.24-1.37 (2H, m), 1.42 (9H, s), 2.82 (2H, q), 20 2.90-3.04 (1H, m), 3.15-3.30 (1H, m), 4.77 (1H, s), 5.48 (1H, s), 5.98 (1H, s), 6.93 (2H, d), 7.29-7.50 (8H, m).

Example 42

5

10

15

25

Synthesis of t-butyl 4-(5H-dibenzo[a,d][7]annulen-5-ylidenacetyl)-1-piperazine carboxylate:

172 mg (0.69 mmol) of 5H-dibenzo[a,d][7]annulen-5-ylideneacetic acid, 144 mg (0.78 mmol) of t-butyl 1-piperazinecarboxylate, 148 mg (0.77 mmol) of 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide

hydrochloride and 0.11 ml (0.79 mmol) of triethylamine were stirred in 5 ml of dichloromethane at room temperature overnight. The reaction mixture was washed with 0.5 N aqueous sodium hydroxide solution and the organic layer was dried over anhydrous sodium sulfate and then concentrated under reduced pressure. The residue was purified by the silica gel chromatography (hexane: ethyl acetate = 2:1) to obtain the title compound.

Yield: 273 mg (0.66 mmol), 95 %

MS (ESI, m/z) 417 (M+H)+

¹ H-NMR (CDCl₃): 1.42 (9H, s), 2.01-2.12 (1H, m), 2.71-2.84 (1H, m), 2.96-3.10 (2H, m), 3.11-3.26 (2H, m), 3.35-3.49 (1H, m), 3.55-3.69 (1H, m), 5.94 (1H, s), 6.83-6.96 (2H, m), 7.28-7.57 (8H, m).

Example 43

Synthesis of 1-ethyl-1-methylpropyl 2-[4-[(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-2-oxoethylcarbamate:

Step 1

15

20

25

5

Synthesis of ethyl {[(1-ethyl-1-methylpropoxy)carbonyl]amino}acetate:

0.500 ml (4.01 mmol) of ethyl isocyanatoacetate was dissolved in dichloromethane. 0.05 ml of 4 N hydrochloric acid / 1,4 dioxane solution was added to the obtained solution, and they were stirred at room 5 0.547 \mathbf{ml} (4.41)mmol) of for minutes. temperature 3-methyl-3-pentanol was added to the reaction mixture, and they were After the concentration under reduced pressure, stirred overnight. ethyl acetate was added to the reaction mixture, and they were washed with saturated aqueous sodium hydrogencarbonate solution, dried over anhydrous sodium sulfate and then concentrated under reduced pressure. The filtrate was The residue was washed with diethyl ether.

concentrated under reduced pressure to obtain the title compound.

Yield: 622 mg (2.69 mmol), 67 %

¹H-NMR (CDCl₃): 0.85 (6H, t), 1.26 (3H, t), 1.35 (3H, s), 1.66-1.91 (4H, m), 3.87 (2H, d), 4.19 (2H, q), 5.04 (1H, br s).

5 Step 2

10

15

20

Synthesis of {[(1-ethyl-1-methylpropoxy)carbonyl]amino}acetic acid:

300 mg (1.30 mmol) of ethyl {[(1-ethyl-1-methylpropoxy)carbonyl]-amino}acetate was dissolved in 2.5 ml of a solvent mixture of methanol: water (2.3:1). 1.56 ml of 1 N aqueous lithium hydroxide solution was added to the obtained solution. After stirring at room temperature for 2 hours, "DOWEX" (50W-X2 100 to 200 mesh H form) (an exchange resin of The Dow Chemical Company) was added to the reaction mixture under gentle stirring until pH of the mixture had become 5. The resin was obtained by the filtration under suction and then the filtrate was concentrated under reduced pressure and then dried to obtain the title compound.

Yield: 284 mg (1.40 mmol), 100 %

MS (ESI, m/z) 202 (M·H).

¹H-NMR (CDCl₃): 0.82 (6H, br t), 1.33 (3H, s), 1.67-1.84 (4H, m), 3.69 (2H, br s), 5.86 (1H, br s).

Step 3

Synthesis of 1-ethyl-1-methylpropyl 2-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-2-oxoethylcarbamate:

284 mg (1.40 mmol) of

25 {[(1-ethyl-1-methylpropoxy)carbonyl]-amino}-

acetic acid, 320 mg (1.17 mmol) of 4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-

piperidine 322 (1.68)and mg mmol) of 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide hydrochloride dissolved in a mixed solvent of 15 ml of dichloromethane and 5 ml of dimethylformamide. 0.23 ml (1.68 mmol) of triethylamine and 14.7 mg (0.12 mmol) of dimethylaminopyridine were added to the obtained solution, and they were stirred at room temperature overnight. After the concentration under reduced pressure, ethyl acetate was added to the reaction mixture. The resultant mixture was washed with saturated aqueous sodium chloride solution. The organic layer was dried over anhydrous magnesium sulfate and then concentrated under reduced The obtained residue was purified by the silica gel chromatography (hexane: dichloromethane = 95:5 to 2:3) to obtain the title compound.

Yield: 204 mg (0.445 mmol) (38 %)

15 MS (ESI, m/z) 459 (M+H)+

¹ H-NMR (CDCl₃): 0.85 (6H, t), 1.35 (3H, s), 1.66-1.91 (4H, m), 2.14-2.33 (4H, m), 2.97-3.06 (2H, m), 3.39-3.46 (1H, m), 3.84-4.00 (3H, m), 5.54 (1H, br s), 6.92 (2H, s), 7.15-7.18 (2H, m), 7.23-7.28 (2H, m), 7.31-7.37 (4H, m).

20 Example 44

5

10

Synthesis of

N-(t-butyl)-4-[4-(10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl)-1-piperidinyl]-4-oxobutanamide:

Step 1

25 Synthesis of 4-(t-butylamino)-4-oxobutanoic acid:

3.07 g (30.6 mmol) of succinic anhydride was suspended in 30 ml of dichloromethane. 4.1 ml (34.5 mmol) of t-butylamine was dropped

into the suspension, and the resultant mixture was stirred at room temperature for 1 hour. White crystals thus formed were washed with ethyl acetate and then dissolved in 40 ml of 1 N aqueous sodium hydroxide solution. The resultant solution was stirred at room temperature for 2 hours and then acidified with 1 N aqueous hydrochloric acid solution under cooling with ice. After extracting with ethyl acetate, the organic layer was dried over anhydrous sodium sulfate and then concentrated under reduced pressure to obtain the title compound.

10 Yield: 2.75 g (15.9 mmol), 52 %

MS (ESI, m/z) 172 (M-H).

¹H-NMR (DMSO-d₆): 1.20 (9H, s), 2.21-2.26 (2H, m), 2.32-2.37 (2H, m), 7.39 (1H, br s).

Step 2

5

15 Synthesis

20

25

 \mathbf{of}

N-(t-butyl)-4-[4-(10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl)-1-piperidinyl]-4-oxobutanamide:

83.2 mg (0.299 mmol) of 5-(4-piperidinyl)-10,11-dihydro-5H-dibenzo[b,f]azepine, 62.2 mg (0.359 mmol) of 4-(t-butylamino)-4-oxobutanoic acid and 82.6 mg (0.431 mmol) of 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide hydrochloride were dissolved in 5 ml of dichloromethane. 0.06 ml (0.431 mmol) of triethylamine and 3.67 mg (0.03 mmol) of 4-dimethylaminopyridine were added to the obtained solution, and they were stirred at room temperature overnight. The reaction mixture was concentrated under reduced pressure. Ethyl acetate was added thereto. After washing with 1 N aqueous hydrochloric acid solution, the organic layer was dried

over anhydrous magnesium sulfate and then concentrated under reduced pressure. The residue was purified by the silica gel chromatography (dichloromethane: methanol = 9:1) to obtain the title compound.

Yield: 102 mg (0.236 mmol), 79 %

5 MS (ESI, m/z) 434 (M+H)+

¹H-NMR (CDCl₃): 1.31 (9H, s), 1.58-1.70 (2H, m), 1.96-2.11 (2H, m), 2.37-2.42 (2H, m), 2.50-2.82 (4H, m), 3.14-3.26 (2H, m), 3.49 (2H, br s), 3.62-3.69 (1H, m), 3.92-4.00 (1H, m), 4.14-4.21 (1H, m), 5.78 (1H, br s), 6.92-6.99 (2H, m), 7.08-7.10 (6H, m).

10 Example 45

20

25

Synthesis of

N-{2-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-2-oxoethyl}-N,N-dimethylurea:

200 mg (0.545 mmol) of

15 2-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-

piperidinyl]-2-oxoethanamine hydrochloride was suspended in 2 ml of dichloromethane. 0.19 ml of triethylamine was added to the obtained of 70.3 (0.654)mmol) suspension. Α solution mg N,N-dimethylcarbamoyl chloride in 3 ml of dichloromethane was added dropwise to the resultant mixture under cooling with ice, and they were stirred at room temperature for 30 minutes. Dichloromethane was concentrated under reduced pressure. Ethyl acetate was added to the The resultant mixture was washed with saturated aqueous sodium hydrogenearbonate solution. White crystals precipitated in the organic layer was taken by the filtration to obtain the title compound.

Yield: 158 mg (0.394 mmol), 72 %

MS (ESI, m/z) 430 (M+H)+

¹ H-NMR (CDCl₃): 2.20-2.33 (4H, m), 2.93 (6H, s), 3.01-3.10 (2H, m), 3.44-3.54 (1H, m), 3.92-4.05 (3H, m), 5.51 (1H, br s), 6.92 (2H, s), 7.15-7.19 (2H, m), 7.23-7.28 (2H, m), 7.32-7.36 (4H, m).

Example 46

10

15

20

5 Synthesis of

 $N-\{2-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-2-hannulen-5-ylidene)-1-piperidinyl]-2-hannulen-5-ylidene)-1-piperidinyl]-2-hannulen-5-ylidene)-1-piperidinyl]-2-hannulen-5-ylidene)-1-piperidinyl]-2-hannulen-5-ylidene)-1-piperidinyl]-2-hannulen-5-ylidene)-1-piperidinyl]-2-hannulen-5-ylidene)-1-piperidinyl]-2-hannulen-5-ylidene)-1-piperidinyl]-2-hannulen-5-ylidene)-1-piperidinyl]-2-hannulen-5-ylidene)-1-piperidinyl]-2-hannulen-5-ylidene)-1-piperidinyl]-2-hannulen-5-ylidene)-1-piperidinyl]-2-hannulen-5-ylidene)-1-piperidinyl]-2-hannulen-5-ylidene)-1-piperidinyl]-2-hannulen-5-ylidene)-1-piperidinyl]-2-hannulen-5-ylidene)-1-piperidinyl]-2-hannulen-5-ylidene)-1-piperidinyl]-2-hannulen-5-ylidene)-1-piperidinyl]-2-hannulen-5-ylidene$

oxoethyl}-1-piperidinecarboxamide:

200 mg (0.545 mmol) of

2-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-

piperidinyl]-2-oxoethanamine hydrochloride was suspended in 2 ml of dichloromethane. 0.19 ml of triethylamine was added to the obtained suspension. A solution of 96.5 mg (0.654 mmol) of 1-piperidinecarbonyl chloride in 3 ml of dichloromethane was added dropwise to the resultant mixture under cooling with ice, and they were stirred at room temperature for 30 minutes. Dichloromethane was concentrated under Ethyl acetate was added to the residue. The reduced pressure. resultant mixture was washed with saturated aqueous sodium The organic layer was dried over hydrogencarbonate solution. anhydrous magnesium sulfate and then concentrated under reduced The residue was purified by the basic silica gel pressure. chromatography (hexane: ethyl acetate = 4:1 to 1:4) to obtain the title compound.

Yield: 201 mg (0.455 mmol), 84 %

MS (ESI, m/z) 442 (M+H)+

¹ H-NMR (CDCl₃): 1.49-1.62 (6H, m), 2.15-2.33 (4H, m), 3.02-3.08 (2H, m), 3.34-3.37 (4H, m), 3.45-3.51 (1H, m), 3.90-4.11 (3H, m), 5.58 (1H, br s), 6.92 (2H, s), 7.16-7.18 (2H, m), 7.28-7.35 (6H, m).

Example 47

Synthesis of

N-[2-(t-butylamino)-2-oxoethyl]-4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinecarboxamide:

5 Step 1

Synthesis of t-butyl

({[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-carbonyl}amino)acetate:

475 mg (2.93 mmol) of N,N'-carbonyldiimidazole was dissolved in 10 ml of anhydrous tetrahydrofuran. 0.45 ml (3.29 mmol) of 10 triethylamine was added to the obtained solution, and they were stirred at room temperature for 10 minutes. The reaction mixture was cooled with ice, and 460 mg (2.74 mmol) of t-butyl aminoacetate hydrochloride was added dropwise to the mixture during a period of about 10 minutes, and they were stirred at room temperature for 1 hour. After cooling 15 500 (1.83)mmol) \mathbf{of} with ice, mg 4-(5H-dibenzo[a,d][7]annulen-5-ylidene)piperidine was added to the resultant mixture, and they were stirred at room temperature overnight. Water was added to the reaction mixture. After extracting with ethyl acetate followed by drying over anhydrous magnesium sulfate, the 20 product was concentrated under reduced pressure. The residue thus obtained purified by the silica gel chromatography was (dichloromethane: methanol = 95.5 to 2.3) to obtain the title compound.

Yield: 752 mg (1.75 mmol), 95 %

25 MS (ESI, m/z) 431 (M+H)+

¹ H-NMR (CDCl₃): 1.46 (9H, s), 2.12-2.20 (2H, m), 2.28-2.33 (2H, m), 3.01-3.09 (2H, m), 3.52-3.59 (2H, m), 3.90 (2H, d), 4.91 (1H, br t).

Step 2

5

10

15

25

Synthesis of ({[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-carbonyl}amino)acetic acid:

752 mg (1.75 mmol) of t-butyl ({[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-pipieidinyl]carbonyl}amino)acetate was dissolved in 8 ml of dichloromethane. 2 ml of trifluoroacetic acid was added to the obtained solution under cooling with ice, and they were stirred at room temperature for 1 hour. After the concentration under reduced pressure, the reaction mixture was dissolved in ethyl acetate. Water was added thereto and white crystals thus precipitated were taken by the filtration to obtain the title compound.

Yield: 498 mg (1.33 mmol), 76 %

MS (ESI, m/z) 373 (M-H).

¹ H-NMR (DMSO-d₆): 1.85-1.93 (2H, m), 2.16-2.25 (2H, m), 3.03-3.11 (2H, m), 3.39-3.47 (2H, m), 3.62 (2H, d), 6.82 (1H, br t), 6.96 (2H, s), 7.19-7.30 (4H, m), 7.35-7.40 (4H, m), 12.28 (1H, br s).

Step 3

Synthesis of

N-[2-(t-butylamino)-2-oxoethyl]-4-(5H-dibenzo[a,d][7]annulen-5-

20 ylidene)·1-piperidinecarboxamide:

300 mg (0.801 mmol) of ({[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-

piperidinyl] carbonyl}amino)acetic acid, 1.0 ml (0.961 mmol) of 230 (1.20)mmol) oft-butylamine and mg 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide hydrochloride were The obtained solution was dissolved in 10 ml of dichloromethane. Water was added to the stirred at room temperature for 1 hour.

reaction mixture. After extracting with dichloromethane, the dichloromethane layer was dried over anhydrous magnesium sulfate and then concentrated under reduced pressure. The residue thus obtained was purified by the silica gel chromatography (dichloromethane: methanol = 4:1 to 1:9) to obtain the title compound.

Yield: 198 mg (0.476 mmol), 60 %

MS (ESI, m/z) 430 (M+H)+

¹ H-NMR (CDCl₃): 1.34 (9H, s), 2.11-2.18 (2H, m), 2.27-2.36 (2H, m), 3.00-3.09 (2H, m), 3.52-.3.59 (2H, m), 3.79 (2H, d), 5.28 (1H, br s), 6.01 (1H, br s), 6.91 (2H, s), 7.15-7.18 (2H, m), 7.22-7.27 (2H, m), 7.30-7.35 (4H, m).

Example 48

5

10

20

25

Synthesis

N-[2-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-1-

15 (hydroxymethyl)-2-oxoethyl]-1-piperidinecarboxamide:

Step 1

Synthesis of methyl

3-hydroxy-2-[(1-piperidinylcarbonyl)aminolpropionate:

1.00 g (6.43 mmol) of methyl 2-amino-3-hydroxypropionate hydrochloride and 960 mg (14.1 mmol) of imidazole were dissolved in 10 ml of dichloromethane. 10 ml of a solution of 1.07 g (7.07 mmol) of t-butyldimethylchlorosilane in dichloromethane was added dropwise to the obtained solution under cooling with ice, and they were stirred at room temperature for 1 hour. After concentrating under reduced pressure, ethyl acetate was added to the residue. The reaction mixture was washed with saturated aqueous ammonium chloride solution, then dried over anhydrous magnesium sulfate and concentrated under

dissolved in ml of The residue was 10 reduced pressure. 1.35 ml (9.65 mmol) of triethylamine and 0.97 ml dichloromethane. (7.72 mmol) of 1-piperidinecarbonyl chloride were added dropwise to the obtained solution under cooling with ice, and they were stirred at room temperature overnight. 20 ml of chloroform was added to the reaction mixture, and they were stirred at 50°C for 3 hours and then concentrated The residue was dissolved in 15 ml of under reduced pressure. methanol. 10 ml of 2 N hydrochloric acid was added dropwise to the obtained solution under cooling with ice, and they were stirred at room After the concentration under reduced temperature for 2 hours. pressure, ethyl acetate was added to the residue. The product was washed with 1 N aqueous hydrochloric acid solution, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue thus obtained was purified by the silica gel chromatography (dichloromethane: methanol = 1:0 to 9:1) to obtain the title compound.

Yield: 428 mg (1.86 mmol), 29 %

MS (ESI, m/z) 231 (M+H)+

¹ H-NMR (CDCl₃): 1.57-1.59 (6H, m), 2.98 (1H, br s), 3.36-3.39 (4H, m), 3.79 (3H, s), 3.87-3.99 (2H, m), 4.58-4.63 (1H, m), 5.43 (1H, br d).

20 Step 2

5

10

15

25

Synthesis of 3-hydroxy-2-[(1-piperidinylcarbonyl)aminolpropionic acid:

200 mg (0.869 mmol) of methyl 3-hydroxy-2-[(1-piperidinylcarbonyl)-

aminolpropionate was dissolved in 6 ml of a solvent mixture of methanol: tetrahydrofuran (1:1). 1.04 ml (1.04 mmol) of 1 N aqueous lithium hydroxide solution was added to the obtained solution, and they were stirred at room temperature for 30 minutes. The reaction mixture

was concentrated under reduced pressure, and the concentrate was acidified with 1 N aqueous hydrochloric acid solution. After extracting with ethyl acetate, the organic layer was dried over anhydrous magnesium sulfate and then concentrated under reduced pressure to obtain the title compound.

Yield: 64 mg (0.296 mmol) (34 %)

MS (ESI, m/z) 215 (M-H).

¹ H-NMR (CD₃ OD): 1.51-1.69 (6H, m), 3.17-3.20 (1H, m), 3.38-3.42 (4H, m), 3.80-3.94 (2H, m), 4.36 (1H, t).

10 Step 3

5

15

20

25

Synthesis of

N-[2-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-1-

(hydroxymethyl)-2-oxoethyl]-1-piperidinecarboxamide:

64.0 mg (0.296 mmol) of

3-hydroxy-2-[(1-piperidinylcarbonyl)aminolpropionic acid, 80.9 mg (0.296 mmol) of 4-(5H-dibenzo[a,d][7]annulen-5-ylidene)piperidine and 85.1 mg 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide of (0.444)mmol) hydrochloride were dissolved in 10 ml of dichloromethane. 0.091 ml (0.651 mmol) of triethylamine was added to the obtained solution, and they were stirred at room temperature overnight. The reaction mixture was concentrated under reduced pressure. Ethyl acetate was added to the residue. After washing with saturated aqueous sodium chloride solution, the reaction product was dried over anhydrous magnesium then concentrated under reduced pressure. sulfate and resultant product was purified by the silica gel chromatography (dichloromethane : methanol = 9:1) to obtain the title compound.

Yield: 100 mg (0.213 mmol) (72 %)

MS (ESI, m/z) 472 (M+H)+

¹ H-NMR (CDCl₃): 1.49-1.62 (6H, m), 2.26-2.35 (4H, m), 2.92-3.37 (6H, m), 3.65-3.76 (3H, m), 3.83-4.01 (1H, m), 4.08-4.31 (1H, m), 4.76-4.82 (1H, m), 5.87-5.92 (1H, m), 6.92 (2H, d), 7.14-7.18 (2H, m), 7.23-7.28 (2H, m), 7.32-7.37 (4H, m).

Example 49

Synthesis of N-[2-(t-butylamino)-1-(hydroxymethyl)-2-oxoethyl]-4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinecarboxamide:

Step 1

5

15

20

10 Synthesis of 2-{[(benzyloxy)carbonyl]amino}-3-{[t-butyl(dimethyl)silyl]oxy}propionic acid:

1.50 g (6.27 mmol) of N-[(benzyloxy)carbonyl]-(DL)-serine was dissolved in 10 ml of N,N-dimethylformamide. 885 mg (13.2 mmol) of imidazole and 1.98 g (13.2 mmol) of t-butyldimethylchlorosilane were added to the obtained solution at 0°C, and they were stirred overnight. Water was added to the reaction mixture and they were stirred for 10 minutes. After extracting with ethyl acetate 3 times followed by the drying over anhydrous sodium sulfate, the solvent was evaporated under reduced pressure to obtain the title compound.

Yield: 2.21 g (6.27 mmol), 100 %

¹ H-NMR (CDCl₃): -0.01-0.10 (6H, m), 0.62-0.94 (9H, m), 3.60-3.80 (1H, m), 4.05-4.15 (1H, m), 4.32-4.48 (1H, m), 5.05-5.20 (2H, m), 5.59 (1H, s), 7.28-7.40 (5H, m).

25 Step 2

Synthesis of 2-{[(benzyloxy)carbonyl]amino}-N-(t-butyl)-3-{[t-butyl(dimethyl)-

silylloxy}propylamide:

2.21 g (6.27 mmol) of 2-{[(benzyloxy)carbonyl]amino}-3-{[t-butyl] (dimethyl)silyl]oxy}propionic 1.44 (7.52)acid, mmol) of 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide hydrochloride, 79.0 mg (0.63 mmol) of 4-dimethylaminopyridine and 952 mg (9.41 mmol) of triethylamine were dissolved in 10 ml of dichloromethane. 504 mg (6.90 mmol) of t-butylamine was added to the obtained solution, and they were stirred overnight. Saturated aqueous ammonium chloride solution was added to the reaction mixture. After extracting with ethyl acetate 3 times followed by the drying over anhydrous sodium sulfate, the solvent was evaporated under reduced pressure. The residue was purified by the silica gel chromatography (hexane : ethyl acetate = 97:3 to 88:12) to obtain the title compound.

Yield: 1.07 g (2.62 mmol), 42 %

15 ¹H-NMR (CDCl₃): 0.10 (6H, m), 0.90 (9H, s), 1.33 (9H, s), 3.56 (1H, t),
3.94-4.09 (2H, m), 5.12 (2H, m), 5.67 (1H, s), 6.30 (1H, s), 7.28-7.39 (5H, m).

Step 3

5

10

25

Synthesis of

20 2-amino-N-(t-butyl)-3-{[t-butyl(dimethyl)silyl]oxy}propylamide:

500 mg of palladium carbon (10 % w/v) in 5 ml of ethanol was added to 990 mg (2.42 mmol) of 2-{[(benzyloxy)carbonyl]amino}-N-(t-butyl)-3-{[t-butyl-

(dimethyl)silylloxy}propylamide, and they were stirred in hydrogen gas atmosphere overnight. The reaction mixture was filtered, and the solvent was evaporated under reduced pressure to obtain the title compound. After drying on anhydrous sodium sulfate, the solvent was

evaporated under reduced pressure to obtain the title compound.

Yield: 620 mg (2.26 mmol), 93 %

¹H-NMR (CDCl₃): 0.06 (6H, s), 0.89 (9H, s), 1.24 (9H, s), 1.63 (2H, s), 3.30 (1H, t), 3.76 (2H, d), 7.10 (1H, br s).

5 Step 4

15

20

Synthesis of

N-[2-(t-butylamino)-1-({[t-butyl(dimethyl)silyl]oxy}methyl)-2-oxoethyl]-4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinecarboxami de:

10 59.1 mg (0.364 mmol) of 1,1'-carbonylbis-1H-imidazole and 36.9 mg (0.364 mmol) of triethylamine were dissolved in 4 ml of dichloromethane. A solution of 100 mg (0.364 mmol) of 2-amino-N-(t-butyl)-3-{[t-butyl(dimethyl)-

silylloxy}propylamide in 2 ml of dichloromethane was slowly added to the obtained solution. After stirring for 2 hours, a solution of 99.6 mg (0.364 mmol) of 2·[4·(5H-dibenzo[a,d][7]annulen·5·ylidene)·1·piperidinyl]ethylamine and 36.9 mg (0.364 mmol) of triethylamine in 2 ml of dichloromethane was slowly added to the reaction mixture. After stirring them overnight, the solvent was evaporated under reduced pressure and the residue was purified by the silica gel chromatography (hexane: ethyl acetate = 9:1 to 7:3) to obtain the title compound.

Yield: 113 mg (0.197 mmol), 54 %

¹H-NMR (CDCl₃): 0.11 (6H, d), 0.90 (9H, s), 1.24 (9H, s), 2.10-2.20 (2H, m), 2.25-2.40 (2H, m), 3.30-3.12 (2H, m), 3.46 (1H, t), 3.50-3.61 (2H, m), 3.97 (1H, dd), 4.10-4.18 (1H, m), 5.57 (1H, d), 6.60 (1H, s), 6.91 (2H, s), 7.13-7.36 (8H, m).

Step 5

5

10

15

25

Synthesis of N-[2-(t-butylamino)-1-(hydroxymethyl)-2-oxoethyl]-4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinecarboxamide:

113 mg (0.197 mmol) of N-[2-(t-butylamino)-1-({[t-butyl(dimethyl)-silyl]oxy}methyl)-2-oxoethyl]-4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinecarboxamide was dissolved in 3 ml of tetrahydrofuran. 0.22 ml of 1 M tetrabutylammonium fluoride / tetrahydrofuran solution was added to the obtained solution, and they were stirred for 30 minutes. After the purification by the silica gel chromatography (hexane: ethyl acetate = 9:1 to 3:2), the title compound was obtained.

Yield: 66.9 mg (0.146 mmol), 74 %

MS (ESI, m/z) 460(M+H)+

¹ H-NMR (CDCl₃): 1.35 (9H, s), 2.13-2.26 (2H, m), 2.28-2.42 (2H, m), 3.01-3.15 (2H, m), 3.50-3.64 (3H, m), 4.03-4.26 (2H, m), 5.64 (1H, d), 6.77 (1H, br s), 6.94 (2H, s), 7.16-7.40 (8H, m).

Example 50

Synthesis of N-[3-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-1-(hydroxymethyl)-3-oxopropyl]-2,2-dimethylpropanamide:

Step 1

20 Synthesis of 3-[(t-butoxycarbonyl)amino]-4-methoxy-4-oxobutanoic acid:

2.0 g (6.18 mmol) of 4-(benzyloxy)-2-[(t-butoxycarbonyl)amino]-4-oxobutanoic acid was dissolved in a solvent mixture of 6 ml of methanol and 12 ml of toluene. 3.7 ml of 2 M trimethylsilyldiazomethane / hexane solution was added to the obtained solution and they were stirred for 3 hours. Additional 0.5 ml of 2 M trimethylsilyldiazomethane / hexane solution was added to the reaction mixture and they were stirred for 1 hour. The solvent was evaporated under reduced pressure. The

residue was dissolved in 20 ml of ethanol. 2.0 g of palladium carbon (10 % w/v) was added to the obtained solution, and they were stirred in hydrogen gas atmosphere for 19 hours. After the filtration, the solvent was evaporated under reduced pressure to obtain the title compound.

5 Yield: 1.50 g (6.07 mmol), 98 %

¹ H-NMR (DMSO-d₆): 1.38 (9H, s), 2.49-2.70 (2H, m), 3.62 (3H, s), 4.32 (1H, m), 7.23 (1H, d).

Step 2

15

20

Synthesis of methyl

10 2-[(t-butoxycarbonyl)amino]-4-[4-(5H-dibenzo[a,d][7]-

annulen-5-ylidene)-1-piperidinyl]-4-oxobutanoate:

1.10 g (4.04 mmol) of 4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1piperidine, 1.00 g (4.04 mmol) of
3-[(t-butoxycarbonyl)amino]-4-methoxy-4-

oxobutanoic acid, 930 (4.85)mmol) \mathbf{of} mg 1-ethyl-3-(3'-dimethylaminopropyl)hydrochloride carbodiimide 48.9 (0.40)mmol) and mg of 4-dimethylaminopyridine were dissolved in 10 ml of dichloromethane. 532 mg (5.25 mmol) of triethylamine was added to the obtained solution, and they were stirred overnight. Saturated aqueous ammonium chloride solution was added to the reaction mixture. After extracting with ethyl acetate 3 times, the organic layer was washed with saturated sodium hydrogencarbonate solution and then dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure,

25 and the residue was purified by the silica gel chromatography (hexane : ethyl acetate = 89:11) to obtain the title compound.

Yield: 1.17 g (2.32 mmol), 58 %

MS (ESI, m/z) 503 (M+H)+

¹ H-NMR (CDCl₃): 1.43 (9H, d), 2.10-2.38 (4H, m), 2.73 (1H, m), 2.90-3.18 (3H, m), 3.48-3.54 (1H, m), 3.73 (3H, d), 3.83-3.95 (1H, m), 4.49-4.58 (1H, m), 5.77 (1H, t), 6.91 (2H, s), 7.16-7.36 (8H, m).

5 Step 3

10

15

20

Synthesis of methyl 4-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-2-[(2,2-dimethylpropanoyl)amino]-4-oxobutanoate:

600 mg (1.19 mmol) of methyl 2-[(t-butoxycarbonyl)amino]-4-[4-(5H-

dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-4-oxobutanoate was dissolved in 5 ml of ethyl acetate. 0.5 ml of 4 N hydrochloric acid / ethyl acetate solution was added to the obtained solution, and they were stirred at 0°C for 3 hours. After stirring at room temperature overnight, the solvent was evaporated under reduced pressure. The residue was 602 mg (5.95 mmol) of dissolved in 10 ml of dichloromethane. triethylamine and 158 mg (1.31 mmol) of pivaloyl chloride were added to the obtained solution, and they were stirred for 10 minutes. Saturated aqueous sodium hydrogencarbonate solution and water were added to the reaction mixture. After extracting with ethyl acetate 3 times followed by the drying over anhydrous sodium sulfate, the solvent was evaporated under reduced pressure, and the residue was purified by the silica gel chromatography (hexane : ethyl acetate = 89:11 to 65:35) to obtain the title compound.

Yield: 468 mg (0.962 mmol), 81 %

25 MS (ESI, m/z) 487 (M+H)+

¹ H-NMR (CDCl₃): 1.20 (9H, d), 2.10-2.38 (4H, m), 2.60-2.81 (1H, m), 2.85-3.20 (3H, m), 3.42-3.57 (1H, m), 3.74 (3H, d), 3.80-3.98 (1H, m), 4.85

(1H, m), 6.92 (2H, s), 7.03 (1H, d), 7.11-7.38 (8H, m).

Step 4

5

10

Synthesis of N-[3-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-1-(hydroxymethyl)-3-oxopropyl]-2,2-dimethylpropanamide:

106 mg (0.218 mmol) of methyl 4-[4-(5H-dibenzo[a,d][7]annulen-5-

ylidene)-1-piperidinyl]-2-[(2,2-dimethylpropanoyl)amino]-4-oxobutanoate was dissolved in 3 ml of tetrahydrofuran. 5.7 mg (0.261 mmol) of lithium borohydride was added to the obtained solution at 0°C. The reaction mixture was stirred for 1.5 hours and then saturated aqueous ammonium chloride solution was added thereto. After extracting with ethyl acetate 3 times, the extract was dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure to obtain the title compound.

15 Yield: 72.3 mg (0.158 mmol), 72 %

MS (ESI, m/z) 459 (M+H)+

¹ H-NMR (CDCl₃): 1.18 (9H, d), 2.11-2.35 (4H, m), 2.58-2.71 (2H, m), 2.88-3.21 (2H, m), 3.56-3.79 (3H, m), 3.85-4.15 (3H, m), 6.95-7.00 (3H, m), 7.11-7.33 (8H, m).

20 Example 51

Synthesis of cyclohexyl 2-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-2-oxoethylcarbamate:

Step 1

25

Synthesis of {[(cyclohexyloxy)carbonyl]amino}acetic acid:

620 mg (4.80 mmol) of ethyl isocyanatoacetate was dissolved in 5 ml of dichloromethane. 10 ml of a solution of 0.56 ml (5.28 mmol) of cyclohexanol in 10 ml of dichloromethane was added to the obtained

solution under cooling with ice, and they were stirred at room temperature for 15 minutes. The reaction mixture was concentrated under reduced pressure. 5.8 ml of 1 N aqueous lithium hydroxide solution was added to the concentrate, and the obtained mixture was stirred in a solvent mixture of methanol: water = 2:1 at room temperature for 2 hours. The reaction mixture was concentrated under reduced pressure. Water was added to the concentrate and the resultant aqueous layer was washed with ethyl acetate. 0.1 N aqueous hydrochloric acid solution was added to the aqueous layer to control pH at 2 to 3. After extracting with ethyl acetate, the organic layer was dried over anhydrous magnesium sulfate and then concentrated under reduced pressure to obtain the title compound.

Yield: 86.1 mg (0.428 mmol), 8.9 %

MS (ESI, m/z) 200 (M-H).

15 ¹H-NMR (CDCl₃): 1.22-1.56 (6H, m), 1.65-1.76 (2H, m), 1.80-1.92 (2H, m), 3.95-4.02 (2H, m), 4.65 (1H, br s), 5.15 (1H, br s).

Step 2

5

10

20

25

Synthesis of cyclohexyl 2-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-2-oxoethylcarbamate:

86.1 mg (0.428 mmol) of {[(cyclohexyloxy)carbonyl]amino}acetic acid, 176 mg (0.642 mmol) of 4-(5H-dibenzo[a,d][7]annulen-5-ylidene)piperidine and 98.5 mg (0.514 mmol) of 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide hydrochloride were suspended in 10 ml of dichloromethane. 0.086 ml (0.617 mmol) of triethylamine was added to the obtained suspension, and they were stirred at room temperature for 3 hours. The resultant mixture was concentrated under reduced pressure and then ethyl acetate was added

to the residue. The resultant mixture was washed with saturated aqueous sodium hydrogencarbonate solution, dried over anhydrous magnesium sulfate and then concentrated under reduced pressure. The obtained residue was purified by the silica gel chromatography (hexane: ethyl acetate = 95:5 to 1:4) to obtain the title compound.

Yield: 82.9 mg (0.182 mmol), 43 %

MS (ESI, m/z) 457 (M+H)+

¹ H-NMR (CDCl₃): 1.32-1.42 (4H, m), 1.45-1.57 (3H, m), 1.64-1.75 (2H, m), 1.80-1.90 (2H, m), 2.15-2.34 (4H, m), 2.99-3.08 (2H, m), 3.41-3.47 (1H, m), 3.88-3.99 (2H, m), 4.58-4.67 (1H, m), 5.62 (1H, br s), 6.92 (2H, s), 7.15-7.18 (2H, m), 7.23-7.24 (1H, m), 7.28-7.29 (1H, m), 7.32-7.37 (4H, m).

Example 52

Synthesis

5

10

15

20

25

of

1-methylcyclopentyl

2-[4-(5H-dibenzo[a,d][7]annulen-5-vlidene)-

1-piperidinyl]-2-oxoethylcarbamate:

Step 1

Synthesis of ({[(1-methylcyclopentyl)oxy]carbonyl}amino)acetic acid:

500 mg (3.87 mmol) of ethyl isocyanatoacetate was dissolved in 5 ml of dichloromethane. 0.05 ml of 4 N hydrochloric acid / 1,4-dioxane solution was added to the obtained solution. 465 mg (4.64 mmol) of 1-methylcyclopentanol was added to the resultant mixture, and they were stirred for 3 hours 30 minutes. 10 ml of methanol and 12 ml of 1 N aqueous sodium hydroxide solution were added thereto and they were stirred for 15 minutes. The organic solvent was evaporated under reduced pressure. After extracting with dichloromethane twice, the aqueous layer was neutralized with 1 N aqueous hydrochloric acid

solution. The product was extracted with dichloromethane 3 times and then dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure to obtain the title compound. The product was subjected to the next reaction without any purification.

5 Yield: 43.0 mg (0.214 mmol), 5.5 %

¹H-NMR (CDCl₃): (Only the main peaks are shown because the product contained impurities) 1.56 (3H, s), 5.22 (1H, d).

Step 2

15

20

Synthesis

of

1-methylcyclopentyl

10 2-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-

1-piperidinyl]-2-oxoethylcarbamate:

70.2 (0.257)mmol) of mg 4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidine, 43.0 mg (0.214 mmol) of ({[(1-methylcyclopentyl)oxy]carbonyl}amino)acetic acid, 49.3 mg (0.257)mmol) \mathbf{of} 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide hydrochloride and 3.6 mg (0.03 mmol) of 4-dimethylaminopyridine were dissolved in 1 ml of dichloromethane. 26.0 mg (0.257 mmol) of triethylamine was added to the obtained solution, and they were stirred After the purification by the silica gel chromatography overnight. (hexane: ethyl acetate = 9:1 to 3:2), the title compound was obtained.

Yield: 56.7 mg (0.124 mmol), 58 %

MS (ESI, m/z) 457 (M+H)+

¹H-NMR (CDCl₃): 1.48-1.76 (9H, m), 2.00-2.36 (6H, m), 3.02 (2H, m), 3.37-3.50 (1H, m), 3.80-4.05 (3H, m), 5.53 (1H, s), 6.92 (2H, s), 7.13-7.20

25 (2H, m), 7.22-7.37 (6H, m).

Example 53

Synthesis

of

tetrahydro-2H-pyran-4-yl

 $2 \cdot [4 \cdot (5H \cdot dibenzo[a,d)]$ annulen · 5 ·

ylidene)-1-piperidinyl]-2-oxoethylcarbamate:

Step 1

10

Synthesis of ethyl

5 {[(tetrahydro-2H-pyran-4-yloxy)carbonyl]amino}acetate:

0.600 ml (4.80 mmol) of ethyl isocyanatoacetate was dissolved in dichloromethane. 0.06 ml of 4 N hydrochloric acid / 1,4-dioxane solution was added to the obtained solution, and they were stirred at room 0.503(5.28)temperature for 5 minutes. ml mmol) tetrahydro·4H·4-pyranol was added to the reaction mixture, and they were stirred at room temperature overnight. After concentrating the reaction mixture under reduced pressure, the residue was purified by the silica gel chromatography (hexane : ethyl acetate = 9:1 to 1:4), the title compound was obtained.

15 Yield: 584 mg (2.53 mmol), 53 %

¹ H-NMR (CDCl₃): 1.29 (3H, t), 1.61-1.73 (2H, m), 1.89-1.97 (2H, m), 3.49-3.56 (2H, m), 3.87-3.96 (4H, m), 4.22 (2H, q), 4.81-4.90 (1H, m), 5.13-5.20 (1H, br s).

Step 2

20 Synthesis of {[(tetrahydro-2H-pyran-4-yloxy)carbonyl]amino}acetic acid:

The title compound was obtained from 287 mg (1.24 mmol) of ethyl {[(tetrahydro-2H-pyran-4-yloxy)carbonyl]amino}acetate and 1.49 ml of 1 N aqueous lithium hydroxide solution in the same manner as that in Step 2 in Example 43.

25 Yield: 269 mg (1.32 mmol), 100 %

MS (ESI, m/z) 202 (M·H).

¹ H-NMR (DMSO-d₆): 1.40-1.52 (2H, m), 1.77-1.83 (2H, m), 3.28-3.43 (4H,

m), 3.73·3.80 (2H, m), 4.63 (1H, sept), 6.31 (1H, br s).

Step 3

10

15

20

Synthesis of

tetrahydro-2H-pyran-4-yl

2-[4-(5H-dibenzo[a,d][7]annulen-5-

5 ylidene)-1-piperidinyl]-2-oxoethylcarbamate:

Tetrahydro-2H-pyran-4-yloxy)carbonyl]amino}acetic acid, 563 mg (2.06 mmol) of 4-(5H-dibenzo[a,d][7]annulen-5-ylidene) piperide and 563 (1.65 mmol) of 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide hydrochloride were suspended in 10 ml of dichloromethane. 0.23 ml (1.65 mmol) of triethylamine was added to the obtained suspension, and they were stirred at room temperature overnight. 20 ml of dimethylformamide was added to the reaction mixture, and they were mg (1.37)3 263 mmol) 50°C for hours. stirred at 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide hydrochloride, 50 mg (0.41 mmol) of 4-dimethylaminopyridine and 0.19 ml (1.37 mmol) of triethylamine were added to the reaction mixture, and they were stirred at 50°C overnight. The resultant mixture was concentrated under reduced pressure and then ethyl acetate was added to the residue. The resultant mixture was washed with saturated aqueous sodium hydrogencarbonate solution and saturated aqueous sodium chloride The organic layer was dried over anhydrous magnesium sulfate and then concentrated under reduced pressure. The obtained residue was purified by the silica gel chromatography (hexane : ethyl acetate = 3:1 to 1:2) to obtain the title compound.

25 Yield: 32.1 mg (0.0700 mmol), 5.1 %

MS (ESI, m/z) 459 (M+H)+

¹ H-NMR (CDCl₃): 1.62-1.72 (2H, m), 1.87-1.96 (2H, m), 2.15-2.33 (4H,

m), 2.99-3.08 (2H, m), 3.42-3.56 (3H, m), 3.86-4.13 (5 H, m), 4.81-4.86 (1H, m), 5.70 (1H, br t), 6.92 (2H, s), 7.15-7.18 (2H, m), 7.23-7.29 (2H, m), 7.32-7.37 (4H, m).

Example 54

5 Synthesis of methyl 4-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-2-[(2,2-dimethylpropanoyl)amino]-4-oxobutanoate:

The compound synthesized in Step 3 in Example 50.

Example 55

Synthesis of methyl

2-[(t-butoxycarbonyl)amino]-4-[4-(5H-dibenzo[a,d][7]-annulen-5-ylidene)-1-piperidinyl]-4-oxobutanoate:

The compound synthesized in Step 2 in Example 50.

Example 56

20

25

Synthesis of

2-[(t-butoxycarbonyl)amino]-4-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-4-oxobutanoic acid:

dissolved in 2 ml of a solvent mixture of methanol: tetrahydrofuran = 1:1. 0.36 ml of 1 N aqueous lithium hydroxide solution was added to the obtained solution at room temperature. After stirring for 3.5 hours, the solvent was evaporated under reduced pressure. Saturated aqueous sodium hydrogencarbonate solution was added to the residue, and the obtained mixture was washed with diethyl ether. The aqueous layer was adjusted to pH 4 with 1 N hydrochloric acid. After extracting with ethyl acetate, the organic layer was dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure to obtain the title compound.

Yield: 150 mg (0.307 mmol), quantitative.

MS (ESI, m/z) 172 (M+H)+

¹ H-NMR (CDCl3): 1.43 (9H, d), 2.16-2.44 (4H, m), 2.58-2.71 (1H, m), 2.93-3.24 (3H, m), 3.52-3.58 (1H, m), 3.91-4.04 (1H, m), 4.46-4.54 (1H, m),

5.78 (1H, br d), 6.92 (2H, d), 7.14-7.19 (2H, m), 7.23-7.29 (2H, m), 7.30-7.37 (4H, m).

Example 57

10

20

Synthesis of 4-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-2-[(2,2-dimethylpropanoyl)amino]-4-oxobutanoic acid:

The title compound was obtained from the compound synthesized in Example 54 in the same manner as that of Example 56.

Yield: 133 mg (0.281 mmol), quantitative.

MS (ESI, m/z) 471 (M-H).

¹H-NMR (CDCl3): 1.20 (9H, d), 2.21-2.34 (3H, m), 2.42-2.61 (2H, m), 2.98-3.30 (3H, m), 3.54-3.63 (1H, m), 3.97-4.13 (1H, m), 4.59-4.67 (1H, m), 6.92 (2H, d), 7.07 (1H, br d), 7.13-7.19 (2H, m), 7.23-7.30 (2H, m), 7.32-7.37 (4H, m).

Example 58

Synthesis of (S)-N-[3-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-1-(hydroxymethyl)-3-oxopropyl]-2,2-dimethylpropanamide:

The title compound was obtained from (S)-4-(benzyloxy)-2-[(t-butoxycarbonyl)amino]-4-oxobutanoic acid in the same manner as that of Example 50.

MS (ESI, m/z) 459 (M+H)+

25 ¹ H-NMR (CDCl3): 1.18 (9H, d), 2.11-2.37 (4H, m), 2.57-2.82 (2H, m), 2.89-3.22 (2H, m), 3.58-3.80 (3H, m), 3.87-4.13 (3H, m), 6.92 (2H, s),

6.89-6.99 (1H, m), 7.13-7.20 (2H, m), 7.23-7.38 (6H, m).

Example 59

5

15

Synthesis of (R)-N-[3-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-1-(hydroxymethyl)-3-oxopropyl]-2,2-dimethylpropanamide:

The title compound was obtained from (R)-4-(benzyloxy)-2-[(t-butoxycarbonyl)amino]-4-oxobutanoic acid in the same manner as that in Example 50.

MS (ESI, m/z) 459 (M+H)+

¹ H-NMR (CDCl3): 1.18 (9H, d), 2.12-2.37 (4H, m), 2.59-2.82 (2H, m),

10 2.91-3.22 (2H, m), 3.57-3.82 (3H, m), 3.86-4.13 (3H, m), 6.92 (2H, s), 6.89-6.97 (1H, m), 7.14-7.19 (2H, m), 7.22-7.37 (6H, m).

Example 60

Synthesis of t-butyl 3-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-1-(hydroxymethyl)-3-oxopropylcarbamate:

The title compound was obtained from the compound in step 2 in Example 50 in the same manner as that in Step 4 in Example 50.

Yield: 56.3 mg (0.119 mmol), 55 %

MS (ESI, m/z) 475 (M+H)+

¹ H-NMR (CDCl3): 1.42 (9H, d), 2.16-2.35 (4H, m), 2.62-2.80 (2H, m), 2.93-3.02 (1H, m), 3.07-3.16 (1H, m), 3.58-3.75 (4H, m), 3.88-3.98 (2H, m), 5.49 (1H, br s), 6.92 (2H, s), 7.14-7.19 (2H, m), 7.23-7.28 (2H, m), 7.31-7.37 (4H, m).

Example 61

Synthesis of t-butyl

25 3-[4-(5H-dibenzo[a,d][7]annulen-5-yl)-1-piperazinyl]-3-oxopropylcarbamate:

Step 1

5

15

20

25

Synthesis of 5H-dibenzo[a,d][7]annulen-5-ol:

4 ml of water, 0.45 ml of 1 N aqueous sodium hydroxide solution and 20 ml of a suspension of 1.50 g (7.27 mmol) of dibenzosuberenone in methanol were added to 200 mg (5.29 mmol) of sodium borohydride, and they were stirred overnight. Crystals thus precipitated were taken by the filtration, washed with water and dissolved in ethyl acetate. After drying over anhydrous magnesium sulfate, the solvent was evaporated under reduced pressure to obtain the title compound.

10 Yield: 1.48 g (7.11 mmol), 98 %

¹H-NMR (CDCl3): 2.41 (1H, d), 5.43 (1H, d), 7.11 (2H, s), 7.25-7.31 (2H, m), 7.36-7.44 (4H, m), 7.66 (2H, d).

Step 2

Synthesis of t-butyl 4-(5H-dibenzo[a,d][7]annulen-5-yl)-1-piperazine carboxylate:

above was dissolved in 8 ml of benzene. 0.02 ml of pyridine was added to the obtained solution, and 3.5 ml (48.2 mmol) of thionyl chloride was added to the obtained mixture under cooling with ice. After stirring the reaction mixture at 0°C for 1 hour and then at room temperature for 2 hours, the solvent was evaporated under reduced pressure. 10 ml of tetrahydrofuran was added to the residue. 2.5 ml (18 mmol) of triethylamine and 805 mg (4.32 mmol) of t-butyl piperazinecarboxylate were added to reaction mixture under cooling with ice. The temperature of the mixture was slowly elevated to room temperature, and it was stirred overnight. The solvent was evaporated under reduced pressure. Dichloromethane was added to the residue. After

washing with water and saturated aqueous sodium chloride solution, the organic layer was dried over anhydrous magnesium sulfate. The solvent was evaporated under reduce pressure, and the residue was purified by the basic silica gel chromatography (hexane: dichloromethane = 9:1) to obtain the title compound.

Yield: 1.25 g (3.31 mmol), 92 %

MS (ESI, m/z) 377 (M+H)+

¹H-NMR (CDCl3): 1.39 (9H, s), 1.92 (4H, br t), 3.13 (4H, br t), 4.26 (1H, s), 6.96 (2H, s), 7.27-7.39 (8H, m).

10 Step 3

15

20

25

5

Synthesis of t-butyl

3-[4-(5H-dibenzo[a,d][7]annulen-5-yl)-1-piperazinyl]-3-oxopropylcarbamate:

300 mg (0.797 mmol) of the compound obtained in the above-described step 2 was dissolved in 5 ml of 1,4-dioxane. 1 ml of 4 N hydrochloric acid / 1,4-dioxane was added to the obtained solution under cooling with ice, and they were stirred at room temperature for 7.5 hours. The solvent was evaporated under reduced pressure. Ethyl acetate was added to the residue. After washing with 1 N aqueous sodium hydroxide solution, the organic layer was dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure. 175 mg (0.925 mmol) of 3-[(t-butoxycarbonyl)amino]propanoic acid and 191 mg (0.925)mmol) of1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide hydrochloride were added to the residue, and the resultant mixture was dissolved in 15 ml of dichloromethane. Then 0.13 ml (0.925 mmol) of triethylamine and 10 mg (0.08 mmol) of dimethylaminopyridine were added to the obtained solution, and they were stirred at room

temperature overnight. The solvent was evaporated under reduced pressure. Ethyl acetate was added to the residue. After washing with saturated aqueous sodium hydrogencarbonate solution and saturated aqueous sodium chloride solution, the organic layer was dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure. The residue was purified by the silica gel chromatography (hexane: ethyl acetate = 19:1 to 1:4) to obtain the title compound.

Yield: 181 mg (0.404 mmol), 52 %

10 MS (ESI, m/z) 448 (M+H)+

¹H-NMR (CDCl3): 1.41 (9H, s), 1.95 (4H, br t), 2.38 (2H, br t), 3.13 (2H, br t), 3.30-3.38 (4H, m), 4.27 (1H, s), 5.26 (1H, br s), 6.96 (2H, s), 7.28-7.40 (8H, m).

Example 62

5

20

25

15 Synthesis of

(S)-N-{2-amino-3-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-3-oxopropyl}-2,2-dimethylpropanamide hydrochloride:
Step 1

Synthesis of t-butyl (S)-2-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-1-{[(2,2-dimethylpropanoyl)amino]methyl}-2-oxoethylcarbamate:

1.70 g (8.09 mmol) of (S)-3-amino-2-[(t-butoxycarbonyl)amino]propanoic acid 0.3 hydrate was dissolved in 40 ml of dichloromethane.
2.74 ml (19.6 mmol) of triethylamine and 1.20 ml (9.71 mmol) of pivaloyl chloride were added to the obtained solution under cooling with ice, and they were stirred for 4 hours while the temperature was elevated to room temperature. An aqueous ammonium chloride solution was added to

the reaction mixture under cooling with ice, and the solvent was evaporated under reduced pressure. Ethyl acetate was added to the residue. After washing with 0.1 N hydrochloric acid, the organic layer was dried over anhydrous magnesium sulfate and then the solvent was evaporated under reduced pressure. 2.03g (10.6 mmol) of 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide hydrochloride was added to the residue, and the resultant mixture was dissolved in 70 ml of dichloromethane. 1.48 ml (10.6 mmol) of triethylamine, 2.00 g (7.33 mmol) of 4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidine and 86 mg (0.7 mmol) of dimethylaminopyridine were added to the obtained solution under cooling with ice, and they were stirred at room The solvent was evaporated under reduced temperature overnight. pressure, and ethyl acetate was added to the residue. After washing with saturated sodium hydrogencarbonate solution, the organic layer was dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure, and the residue was purified by the silica gel chromatography (hexane : ethyl acetate = 9:1 to 1:3) to obtain the title compound.

Yield: 1.40 g (2.57 mmol), 32 %

20 MS (ESI, m/z) 544 (M+H)+

5

10

15

¹ H-NMR (CDCl3): 1.17 (9H, d), 1.42 (9H, d), 2.15-2.46 (4H, m), 2.90-3.25 (3H, m), 3.52-4.00 (3H, m), 4.68-4.78 (1H, m), 5.72 (1H, br t), 6.38 (1H, br d), 6.91 (2H, s), 7.13-7.19 (2H, m), 7.23-7.28 (2H, m), 7.32-7.37 (4H, m). Step 2

25 Synthesis of

(S)-N-{2-amino-3-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-3-oxopropyl}-2,2-dimethylpropanamide hydrochloride:

1.40 g (2.57 mmol) of the compound obtained in step 1 described above was dissolved in 12 ml of ethyl acetate. 10 ml of 4 N hydrochloric acid / ethyl acetate was added to the obtained solution under cooling with ice. The temperature was gradually elevated to room temperature.

5 After stirring for 3.5 hours, the solvent was evaporated under reduced pressure to obtain the title compound.

Yield: 1.08 g (2.26 mmol), 88 %

MS (ESI, m/z) 444 (M+H)+

¹ H-NMR (CDCl3): 1.14 (9H, d), 2.04-2.46 (4H, m), 2.81-3.02 (1H, m),

10 3.20-3.43 (2H, m), 3.58-3.89 (3H, m), 4.41 (1H, br s), 6.88 (2H, d), 7.07-7.16 (2H, m), 7.22-7.34 (6H, m), 7.70 (1H, br s), 8.42 (2H, br s).

Example 63

Synthesis

 $(R)-N-\{2-amino-3-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-$

piperidinyl]-3-oxopropyl}-2,2-dimethylpropanamide hydrochloride:

The title compound was obtained in the same manner as that in Example 62.

MS (ESI, m/z) 444 (M+H)+

¹ H-NMR (CDCl3): 1.14 (9H, d), 1.82-2.50 (4H, m), 2.80-3.04 (1H, m),

3.16-3.94 (5H, m), 4.41 (1H, br s), 6.88 (2H, d), 7.05-7.17 (2H, m), 7.21-7.36 (6H, m), 7.72 (1H, br s), 8.40 (2H, br s).

Example 64

Synthesis of N-[3-[4-(5H-dibenzo[a,d][7]annulen-5-yl)-1-piperazinyl]-1-(hydroxymethyl)-3-oxopropyl]-2,2-dimethylpropanamide hydrochloride:

25 Step 1

20

Synthesis of methyl

2-[(t-butoxycarbonyl)amino]-4-[4-(5H-dibenzo[a,d][7]-

annulen-5-yl)-1-piperazinyl]-4-oxobutanoate:

5

10

15

20

25

442 mg (1.17 mmol) of the compound obtained in Step 2 in Example 61 was dissolved in 10 ml of 1,4-dioxane. 1.5 ml of 4 N hydrochloric acid / 1,4-dioxane was added to the obtained solution under cooling with ice, and they were stirred at room temperature overnight. 0.1 ml of 4 N hydrochloric acid / 1,4 dioxane was added to the resultant mixture under cooling with ice, and they were stirred at room temperature for 3 hours. The solvent was evaporated under reduced Ethyl acetate was added to the residue. After washing with 1 N aqueous sodium hydroxide solution, the organic layer was dried over anhydrous sodium sulfate and then the solvent was evaporated under of (1.40)mmol) reduced pressure. 347 mg 3-[(t-butoxycarbonyl)amino]-4-methoxy-4-butanoic acid and 314 mg (1.64 mmol) of 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide hydrochloride were added to the residue, and the resultant mixture was dissolved in 10 ml of dichloromethane. 0.20 ml (1.64 mmol) of triethylamine and 17 mg (0.12 mmol) of dimethylaminopyridine were added to the obtained solution, and they were stirred at room temperature overnight. solvent was evaporated under reduced pressure, and ethyl acetate was After washing with saturated sodium added to the residue. hydrogencarbonate solution, the organic layer was dried over anhydrous The solvent was evaporated under reduced magnesium sulfate. pressure, and the residue was purified by the silica gel column chromatography (hexane: ethyl acetate = 100:1 to 65:35) to obtain the title compound.

Yield: 524 mg (1.04 mmol), 89 %

MS (ESI, m/z) 506 (M+H)+

¹ H-NMR (CDCl3): 1.43 (9H, s), 1.93-1.98 (4H, m), 2.64 (1H, dd), 3.00 (1H, dd), 3.12 (2H, br t), 3.28 (2H, br t), 3.71 (3H, s), 4.27 (1H, s), 4.50 (1H, dt), 5.73 (1H, d), 6.95 (2H, s), 7.27-7.40 (8H, m).

Step 2

10

15

20

5 Synthesis of

f methyl

4·[4·(5H-dibenzo[a,d][7]annulen-5·yl)-1·piperazinyl]-2·

[(2,2-dimethylpropanoyl)amino]-4-oxobutanoate:

The title compound was obtained from 522 mg (1.32 mmol) of the compound obtained in step 1 described above in the same manner as that in Step 3 in Example 50.

Yield: 406 mg (0.829 mmol), 63 %

MS (ESI, m/z) 490 (M+H)+

¹ H-NMR (CDCl3): 1.19 (9H, s), 1.92-1.99 (4H, m), 2.62 (1H, dd), 3.02 (1H, dd), 3.13 (2H, br t), 3.28 (2H, br t), 3.71 (3H, s), 4.27 (1H, s), 4.80 (1H, dt), 6.95 (2H, s), 6.99 (1H, br d), 7.28-7.40 (8H, m).

Step 3

Synthesis of N-[3-[4-(5H-dibenzo[a,d][7]annulen-5-yl)-1-piperazinyl]-1-(hydroxymethyl)-3-oxopropyl]-2,2-dimethylpropanamide hydrochloride:

The title compound was obtained from 405 mg (0.827 mmol) of the compound obtained in step 2 described above by the same method as that in Step 4 in Example 50 and then converting the product into its hydrochloride.

Yield: 307 mg (0.665 mmol), 81 %

MS (ESI, m/z) 462 (M+H)+

25 ¹H-NMR (CDCl3): 1.16 (9H, s), 1.93-2.00 (4H, m), 2.61 (2H, qd), 3.23-3.40 (4H, m), 3.58-3.74 (2H, m), 3.93-4.03 (2H, m), 4.27 (1H, s), 6.88

(1H, dd), 6.95 (2H, s), 7.28-7.40 (8H, m). (free)

Example 65

Synthesis of

 $(R)-N-\{2-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-$

5 2-oxoethyl}-2-pyrrolidinecarboxamide hydrochloride:

Step 1

10

15

20

Synthesis of t-butyl 2-[({2-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-2-oxoethyl}amino)carbonyl]-1-pyrrolidinecarboxylate:

mmol) of (R)·1·(t·butoxycarbonyl)·2·pyrrolidinecarboxylic acid and 512 mg (2.67 mmol) of 1·ethyl·3·(3'-dimethylaminopropyl)carbodiimide hydrochloride were dissolved in 20 ml of dichloromethane. 0.77 ml (5.59 mmol) of triethylamine and 24 mg (0.2 mmol) of dimethylaminopyridine were added to the obtained solution under cooling with ice, and they were stirred at room temperature overnight. The solvent was evaporated under reduced pressure. Ethyl acetate was added to the residue, and they were washed with water. The organic layer was dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure, and the residue was purified by the silica gel chromatography (hexane: ethyl acetate = 9:1 to 1:4) to obtain the title compound.

Yield: 856 mg (1.62 mmol), 85 %

MS (ESI, m/z) 528 (M+H)+

¹ H-NMR (CDCl3): 1.45 (9H, br s), 1.57-1.92 (3H, m), 2.04-2.33 (6H, m), 2.97-3.09 (2H, m), 3.14-3.54 (3H, m), 3.89-4.36 (4H, m), 6.92 (2H, s), 7.15-7.18 (2H, m), 7.24-7.29 (3H, m), 7.32-7.37 (3H, m). Step 2

Synthesis of

(R)-N-{2-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-2-oxoethyl}-2-pyrrolidinecarboxamide hydrochloride:

above was dissolved in 20 ml of 1,4-dioxane. 2 ml of 4 N hydrochloric acid / 1,4-dioxane was added to the obtained solution under cooling with ice, and they were stirred at room temperature for 2.5 hours. The reaction mixture was cooled with ice, 5 ml of 4 N hydrochloric acid / 1,4-dioxane was added thereto, and they were stirred at room temperature for 2 hours. 2.5 ml of 4 N hydrochloric acid / 1,4-dioxane was added to the reaction mixture under cooling with ice. After stirring at room temperature for 1 hour, 7.5 ml of 4 N hydrochloric acid / 1,4-dioxane was added to the reaction mixture, and they were stirred at room temperature for 2 hours. The solvent was concentrated under reduced pressure. Diethyl ether was added to the residue, and crystals thus formed were taken by the filtration to obtain the title compound.

Yield: 747 mg (1.61 mmol) 99 %

MS (ESI, m/z) 428 (M+H)+

¹ H-NMR (CDCl3): 2.05 (4H, m), 2.18-2.27 (4H, m), 2.48 (1H, m), 3.04 (2H, m), 3.30-3.52 (3H, m), 3.81-3.95 (2H, m), 4.29 (1H, brd), 4.72 (1H, brd), 6.91 (2H, d), 7.15-7.18 (2H, m), 7.23-7.28 (2H, m), 7.32-7.34 (4H, m), 8.60 (1H, d).

Example 66

5

10

15

20

Synthesis of

25 (S)·N·{2·[4·(5H·dibenzo[a,d][7]annulen·5·ylidene)·1·piperidinyl]·
2·oxoethyl}-2·pyrrolidinecarboxamide hydrochloride:

The title compound was obtained from

(S)-1-(t-butoxycarbonyl)-2-pyrrolidinecarboxylic acid in the same manner as that in Example 65.

MS (ESI, m/z) 428 (M+H)+

¹ H-NMR (CDCl3): 1.78-2.32 (8H, m), 2.33-2.51 (1H, m), 2.88-3.15 (2H, m), 3.28-3.55 (3H, m), 3.78-3.98 (2H, m), 4.36 (1H, dt), 4.70 (1H, brd), 6.91 (2H, d), 7.13-7.19 (2H, m), 7.22-7.37 (6H, m), 8.76 (1H, d).

Example 67

5

20

Synthesis of (S)-t-butyl 3-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-1-(hydroxymethyl)-3-oxopropylcarbamate:

10 The title compound was obtained from (S)-4-(benzyloxy)-2-[(t-butoxycarbonyl)amino]-4-oxobutanoic acid in the same manner as that in Example 60.

MS (ESI, m/z) 475 (M+H)+

¹ H-NMR (CDCl3): 1.42 (9H, d), 2.15-2.38 (4H, m), 2.60-2.83 (2H, m),

2.93-3.04 (1H, m), 3.06-3.18 (1H, m), 3.53-3.82 (4H, m), 3.83-4.02 (2H, m),

5.50 (1H, br s), 6.92 (2H, s), 7.14-7.20 (2H, m), 7.23-7.38 (6H, m).

Example 68

Synthesis of (R)-t-butyl 3-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-1-(hydroxymethyl)-3-oxopropylcarbamate:

The title compound was obtained from (R)-4-(benzyloxy)-2-[(t-butoxycarbonyl)amino]-4-oxobutanoic acid in the same manner as that in Example 60.

MS (ESI, m/z) 475 (M+H)+

¹ H-NMR (CDCl3): 1.42 (9H, d), 2.14-2.35 (4H, m), 2.62-2.80 (2H, m), 25 2.93-3.01 (1H, m), 3.09-3.16 (1H, m), 3.58-3.79 (4H, m), 3.86-3.99 (2H, m), 5.50 (1H, br s), 6.92 (2H, s), 7.14-7.19 (2H, m), 7.23-7.28 (2H, m), 7.31-7.37 (4H, m).

Example 69

10

15

20

25

Synthesis of

(R)-N-[3-[4-(10,11-dihydro-5H-dibenzo[a,d][7]annulen-5-ylidene)-

5 1-piperidinyl]-1-(hydroxymethyl)-3-oxopropyl]-2.2-dimethylpropanamide:

745 mg (1.48 mmol) of methyl

(R)-2-[(t-butoxycarbonyl)amino]-4-[4-

(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-4-oxobutanoate was dissolved in 70 ml of ethanol. 1.49 g of palladium carbon (10 % w/v) was added to the obtained solution, and they were stirred at room temperature in hydrogen gas atmosphere under 4.4 atm. for 3.5 hours. The catalyst was filtered out, and the filtrate was concentrated under reduced pressure. The intended product was obtained from the resultant residue in the same manner as that in steps 3 and 4 in Example 50.

Yield: 567 mg (1.23 mmol), 83 %

MS (ESI, m/z) 461 (M+H)+

¹ H-NMR (CDCl3): 1.19 (9H, d), 2.29-2.50 (4H, m), 2.65-2.90 (4H, m), 3.03-3.42 (4H, m), 3.68-3.80 (3H, m), 3.72-4.15 (3H, m), 6.95-6.99 (1H, m), 7.01-7.05 (2H, m), 7.08-7.19 (6H, m).

Example 70

Synthesis of

(S)-N-[3-[4-(10,11-dihydro-5H-dibenzo[a,d][7]annulen-5-ylidene)-

1-piperidinyl]-1-(hydroxymethyl)-3-oxopropyl]-2.2-dimethylpropanamide:

The title compound was obtained in the same manner as that in Example 69.

MS (ESI, m/z) 461 (M+H)+

¹ H-NMR (CDCl3): 1.19 (9H, d), 2.28-2.51 (4H, m), 2.63-2.90 (4H, m), 3.02-3.44 (4H, m), 3.64-3.83 (3H, m), 3.95-4.17 (3H, m), 6.94-7.07 (3H, m), 7.08-7.20 (6H, m).

Example 71

5 Synthesis

of

- (S)-N-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-
- 1-(hydroxylmethyl)-4-oxobutyl]-2.2-dimethylpropanamide:

Step 1

10

Synthesis of (S)-4-[(t-butoxycarbonyl)amino]-5-methoxy-5-oxopentanoic acid:

The title compound was obtained from (S)-5-(benzyloxy)-2-[(t-butoxy-

carbonyl)amino]-5-oxopentanoic acid in the same manner as that in Step 1 in Example 50.

15 Yield: 7.44 g (28.5 mmol), quantitative

MS (ESI, m/z) 430 (M-H).

¹H-NMR (CDCl3): 1.44 (9H, s), 1.90-2.01 (1H, m), 2.15-2.25 (1H, m), 2.38-2.55 (2H, m), 3.75 (3H, s), 4.33-4.40 (1H, m), 5.16 (1H, br d).

Step 2

20 Synthesis

25

of

methyl

(S)-2-[(t-butoxycarbonyl)amino]-5-[4-(5H-dibenzo[a,d][7]-

annulen-5-ylidene)-1-piperidinyl]-5-oxopentanoate:

The title compound was obtained from 5.20 g (17.5 mmol) of the compound obtained in step 1 described above in the same manner as that in step 2 in Example 50.

Yield: 8.35 g (16.2 mmol), 93 %

MS (ESI, m/z) 517 (M+H)+

¹H-NMR (CDCl3): 1.42 (9H, s), 1.92-2.04 (1H, m), 2.11-2.43 (7H, m), 2.96-3.11 (2H, m), 3.51 (1H, dt), 3.72 (3H, d), 3.89-3.98 (1H, m), 4.27 (1H, br s), 5.29 (1H, br d), 6.92 (2H, s), 7.14-7.19 (2H, m), 7.23-7.28 (2H, m), 7.30-7.35 (4H, m).

5 Step 3

Synthesis of methyl (S)-2-[(t-butoxycarbonyl)amino]-5-[4-(5H-dibenzo [a,d][7]annulen-5-ylidene)-1-piperidinyl]-2-[(2,2-dimethylpropanoyl)amin o]-5-oxopentanoate:

The title compound was obtained from 850 mg (1.65 mmol) of the compound obtained in step 2 described above in the same manner as that in Step 3 in Example 50.

Yield: 840 mg (1.68 mmol), quantitative.

MS (ESI, m/z) 501 (M+H)+

¹ H-NMR (CDCl3): 1.18 (9H, d), 2.07-2.49 (8H, m), 2.96-3.12 (2H, m), 3.46-3.55 (1H, m), 3.71 (3H, d), 3.88-3.98 (1H, m), 4.38-4.46 (1H, m), 6.92 (2H, s), 7.06 (1H, br t), 7.16-7.18 (2H, m), 7.23-7.28 (2H, m), 7.32-7.36 (4H, m).

Step 4

25

Synthesis of

20 (S)·N-[4-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-

1-(hydroxylmethyl)-4-oxobutyl]-2,2-dimethylpropanamide:

840 mg (1.68 mmol) of the compound obtained in step 3 described above was dissolved in 15 ml of tetrahydrofuran. 0.83 ml of 2 M lithium borohydride / tetrahydrofuran solution was added to the obtained solution at 0°C in argon atmosphere, and they were stirred at room temperature for 3 hours. Saturated aqueous ammonium chloride solution was added to the reaction mixture under cooling with ice and

they were stirred for 10 minutes. The solvent was evaporated under reduced pressure. Ethyl acetate was added to the residue. The resultant mixture was washed with saturated aqueous sodium hydrogencarbonate solution. The organic layer was dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by the silica gel chromatography (dichloromethane: methanol = 100:1 to 20:1) to obtain the title compound.

Yield: 717 mg (1.52 mmol), 92 %

10 MS (ESI, m/z) 473 (M+H)+

¹H-NMR (CDCl3): 1.16 (9H, d), 1.87-1.96 (2H, m), 2.13-2.50 (6H, m), 2.98-3.12 (2H, m), 3.50-3.57 (3H, m), 3.76-3.92 (2H, m), 3.97 (1H, dt), 6.83-6.89 (1H, m), 6.92 (2H, s), 7.16-7.18 (2H, m), 7.24-7.28 (2H, m), 7.32-7.36 (4H, m).

15 Example 72

5

Synthesis of

(R)-N-[4-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-

1-(hydroxylmethyl)-4-oxobutyl]-2,2-dimethylpropanamide:

The title compound was obtained from 20 (R)-5-(benzyloxy)-2-[(t-butoxy-

carbonyl)amino]-5-oxopentanoic acid in the same manner as that of Example 71.

MS (ESI, m/z) 473 (M+H)+

¹ H-NMR (CDCl3): 1.16 (9H, d), 1.88-1.96 (2H, m), 2.14-2.50 (6H, m), 2.98-3.12 (2H, m), 3.50-3.57 (3H, m), 3.81 (2H, br s), 3.96 (1H, dt), 6.84-6.90 (1H, m), 6.92 (2H, s), 7.15-7.19 (2H, m), 7.23-7.29 (2H, m),

7.31-7.36 (4H, m).

Example 73

Synthesis of (R)-ethyl 3-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-1-(hydroxymethyl)-3-oxopropylcarbamate:

5 Step 1

Synthesis of methyl (R)-4-[4-[(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-2-[(ethoxycarbonyl)amino]-4-oxobutanoate:

2.13 mg (4.23 mmol) of methyl (R)-2-[(t-butoxycarbonyl)amino]-4-[4-

10 (5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-4-oxobutanoate was dissolved in 30 ml of ethyl acetate. 30 ml of 4 N hydrochloric acid / ethyl acetate was added to the obtained solution under cooling with ice for the duration of 10 minutes, and they were stirred at room temperature for 6 hours. The solvent was evaporated under reduced pressure, and the residue was dissolved in 43 ml of dichloromethane. 15 0.94 ml (6.36 mmol) of diethyl pyrocarbonate and 1.19 ml (8.54 mmol) of triethylamine were added to the obtained solution under cooling with ice. The resultant mixture was stirred at room temperature for 2 hours. Aqueous ammonium chloride solution was added to the reaction mixture 20 under cooling with ice. After extracting with dichloromethane, the organic layer was dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure, and the residue was purified by the silica gel chromatography (hexane : ethyl acetate = 3:1 to 1:1) to obtain the title compound.

25 Yield: 1.83 g (3.85 mmol) (91 %)

MS (ESI, m/z) 475 (M+H)+

¹ H-NMR (CDCl3): 1.24 (3H, dt), 2.13-2.34 (4H, m), 2.75 (1H, td),

2.91·3.17 (3H, m), 3.45·3.54 (1H, m), 3.74 (3H, d), 3.89 (1H, dt), 4.06·4.13 (2H, m), 4.56·4 62 (1H, m), 5.92 (1H, br t), 6.92 (2H, s), 7.15·7.18 (2H, m), 7.23·7.28 (2H, m), 7.31·7.36 (4H, m).

Step 2

Synthesis of (R)-ethyl 3-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-1-(hydroxymethyl)-3-oxopropylcarbamate:

The title compound was obtained from 1.82 g (3.84 mmol) of the compound obtained in step 1 described above in the same manner as that in Step 4 in Example 71.

10 Yield: 1.54 g (3.46 mmol), 90 %

MS (ESI, m/z) 447 (M+H)+

¹ H-NMR (CDCl3): 1.19-1.28 (3H, m), 2.14-2.30 (4H, m), 2.70-2.75 (2H, m), 2.93-3.04 (1H, m), 3.07-3.16 (1H, m), 3.45 (1H, br s), 3.58-3.64 (1H, m), 3.69-3.79 (2H, m), 3.90-3.98 (2H, m), 4.04-4.13 (2H, m), 5.64 (1H, br s), 6.92 (2H, s), 7.14-7.19 (2H, m), 7.23-7.37 (6H, m).

Example 74

15

20

Synthesis of (S)-t-butyl 4-[(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-1-(hydroxymethyl)-4-oxobutylcarbamate:

The title compound was obtained from 890 mg (1.72 mmol) of the compound obtained in step 2 in Example 71 in the same manner as that in Step 4 in Example 71.

Yield: 776 mg (1.59 mmol), 92 %

MS (ESI, m/z) 489 (M+H)+

¹H-NMR (CDCl3): 1.42 (9H, d), 1.73-1.86 (1H, m), 1.92-2.00 (1H, m), 25 2.13-2.47 (6H, m), 2.93-3.13 (2H, m), 3.29(1H, br s), 3.51-3.56 (4H, m), 3.89-4.00 (1H, m), 5.09 (1H, br s), 6.92 (2H, s), 7.15-7.19 (2H, m), 7.23-7.28 (2H, m), 7.31-7.37 (4H, m).

Example 75

5

10

20

25

Synthesis of (R)-t-butyl 4-[(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-1-(hydroxymethyl)-4-oxobutylcarbamate:

The title compound was obtained in the same manner as that in Example 74.

MS (ESI, m/z) 489 (M+H)+

¹H-NMR (CDCl3): 1.43 (9H, d), 1.73-1.89 (1H, m), 1.90-2.01 (1H, m), 2.14-2.48 (6H, m), 2.93-3.13 (2H, m), 3.27 (1H, br s), 3.49-3.59 (4H, m), 3.89-4.01 (1H, m), 5.09 (1H, br s), 6.92 (2H, s), 7.14-7.19 (2H, m), 7.23-7.28 (2H, m), 7.31-7.36 (4H, m).

Example 76

Synthesis of tert-butyl

(1R)-1-(hydroxymethyl)-3-oxo-3-[4-(9H-thioxanthen-

15 9-ylidene)-1-piperidinyl]propylcarbamate:

Step 1

Synthesis of methyl (2R)-2-[(t-butoxycarbonyl)amino]-4-oxo-4-[4-(9H-thioxanthen-9-ylidene)-1-piperidinyl]butanoate:

(5.22)1.00 mmol) of 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide hydrochloride, 0.73 ml of triethylamine mmol) and 1.351 (4.84 mmol)(5.24)g 4-(9H-thioxanthen-9-ylidene)piperidine were added to 1.290 g (5.22) mmol) of (S)-3-[(t-butoxycarbonyl)amino]-4-methoxy-4-oxobutanoic acid in 20 ml of dichloromethane in an ice bath, and they were stirred at room temperature overnight. Saturated aqueous ammonium chloride solution was added to the reaction mixture. After extracting with dichloromethane, the organic layer was dried over anhydrous sodium

sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by the silica gel chromatography (hexane : ethyl acetate = 7:3 to 1:1) to obtain the title compound.

Yield: 1.645 g (3.23 mmol), 67 %

5 MS (ESI, m/z) 509 (M+H)+

¹ H-NMR (CDCl3): 1.45 (9H, d), 2.48-3.24 (8H, m), 3.58-4.20 (5H, m), 4.52-4.66 (1H, m), 5.80 (1H, t), 7.17-7.32 (6H, m), 7.51 (2H, d).

Step 2

Synthesis

 \mathbf{of}

tert-butyl

10 (1R)-1-(hydroxymethyl)-3-oxo-3-[4-(9H-thioxanthen-

9-ylidene)-1-piperidinyl]propylcarbamate:

The title compound was obtained from 714 mg (1.40 mmol) of the compound obtained in Step 1 described above in the same manner as that in Step 4 in Example 71.

15 Yield: 554 mg (1.15 mmol), 82 %

MS (ESI, m/z) 481 (M+H)+

¹ H-NMR (CDCl3): 1.44 (9H, d), 2.49-3.22 (8H, m), 3.48-3.98 (5H, m), 4.15-4.26 (1H, m), 5.52 (1H, m), 7.17-7.31 (6H, m), 7.51 (2H, d). Example 77

20 Synthesis of N-{(1R)-1-(hydroxymethyl)-3-oxo-3-[4-(9H-thioxanthen-9-ylidene)-1-piperidinyl]propyl}-2,2-dimethylpropanamide:

Step 1

Synthesis

of

methyl.

(2R) - 2 - [(2, 2 - dimethyl propanoyl) amino] - 4 - oxo - 4 - [4 - (9H - dimethyl propanoyl)] - (4 - (9H

25 thioxanthen-9-ylidene)-1-piperidinyl]butanoate:

The title compound was obtained from 821 mg (1.61 mmol) of the compound obtained in Step 1 in Example 76 in the same manner as that

in Step 3 in Example 50.

MS (ESI, m/z) 493 (M+H)+

¹ H-NMR (CDCl3): 1.22 (9H, d), 2.46-3.26 (8H, m), 3.58-4.20 (5H, m), 4.81-4.96 (1H, m), 7.04-7.10 (1H, m), 7.17-7.32 (6H, m), 7.51 (2H, d).

5 Step 2

10

20

25

Synthesis of N-{(1R)-1-(hydroxymethyl)-3-oxo-3-[4-(9H-thioxanthen-9-ylidene)-1-piperidinyl]propyl}-2,2-dimethylpropanamide:

The title compound was obtained from the whole amount of the compound obtained in Step 1 described above in the same manner as that in Step 4 in Example 71.

Yield: 574 mg (1.24 mmol), 77 % (2steps)

MS (ESI, m/z) 465 (M+H)+

¹ H-NMR (CDCl3): 1.20 (9H, d), 2.47-3.25 (8H, m), 3.62-4.27 (6H, m), 6.91-7.02 (1H, m), 7.17-7.31 (6H, m), 7.51 (2H, d).

15 Example 78

Synthesis

(S)-N-[4-[4-(10,11)-dihydro-5H-dibenzo[a,d][7]annulen-5-ylidene]-1-piperidinyl]-1-(hydroxymethyl)-4-oxobutyl]-2,2-dimethylpropanamide:

1.91 g (4.04 mmol) of the compound obtained in Example 71 was dissolved in 100 ml of ethanol. 2.5 g of palladium carbon (10 % w/v) was added to the obtained solution, and they were stirred at room temperature in hydrogen gas atmosphere under a pressure of 5 atm. for 3.5 hours. The catalyst was filtered out, and the filtrate was concentrated under reduced pressure. The residue was purified by the silica gel chromatography (dichloromethane: methanol = 60:1 to 20:1) to obtain the title compound.

Yield: 1.77 g (3.73 mmol), 92 %

MS (ESI, m/z) 475 (M+H)+

¹H-NMR (CDCl3): 1.18 (9H, d), 1.90-1.99 (2H, m), 2.27-2.48 (6H, m), 2.78-2.90 (2H, m), 3.10-3.25 (2H, m), 3.32-3.42 (2H, m), 3.53-3.64 (3H, m), 3.74-3.88 (2H, m), 4.06 (1H, dt), 6.89 (1H, dd), 7.02-7.04 (2H, m), 7.09-7.17 (6H, m).

Example 79

5

15

25

Synthesis of N-[(1S)-2-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-1-(hydroxymethyl)-2-oxoethyl]-2,2-dimethylpropanamide:

Step 1

10 Synthesis of pivaloyl-L-serine:

5.25 g (50.0 mmol) of L-serine was dissolved in 1 N aqueous sodium hydroxide solution. 50 ml of 1 N aqueous sodium hydroxide solution and a solution of 5 ml (40.6 mmol) of pivaloyl chloride in 12 ml of diethyl ether were simultaneously added dropwise to the obtained solution in ice bath. After stirring for 2.5 hours, 70 ml of 1 N hydrochloric acid was added to the reaction mixture to make it acidic. After extracting with ethyl acetate, the organic layer was dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure to obtain the title compound.

20 Yield: 3.95 g (20.9 mmol), 52 %

¹ H-NMR (DMSO):1.12 (9H, s), 3.61·3.75 (2H, m), 4.19·4.26 (1H, m). Step 2

Synthesis of N-[(1S)-2-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-1-(hydroxymethyl)-2-oxoethyl]-2,2-dimethylpropanamide:

880 mg (4.59 mmol) of 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide hydrochloride, 0.63 ml (4.52 mmol) of triethylamine and 860 mg (4.55 mmol) of pivaloyl-L-serine

(4.50)mmol) of added 1.231 g to were 20 of 4-(5H-dibenzo[a,d][7]annulen-5-ylidene)piperidine dichloromethane in ice bath, and they were stirred at room temperature overnight. 1 N hydrochloric acid was added to the reaction mixture. After extracting with dichloromethane, the organic layer was dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure. The residue was purified by the silica gel chromatography (hexane: ethyl acetate = 7:3 to 1:2) to obtain the title compound.

Yield: 1.032 g (2.32 mmol), 52 %

10 MS (ESI, m/z) 445 (M+H)+

5

15

¹H-NMR (CDCl3): 1.22 (9H, d), 2.14-2.44 (4H, m), 2.90-3.27 (2H, m), 3.61-4.06 (5H, m), 4.80-4.89 (1H, m), 6.92 (2H, s), 7.01-7.38 (8H, m). Example 80

Synthesis of N-[(1R)-2-[4-(5H-dibenzo[a,d][7]annulen-5-ylidene)-1-piperidinyl]-1-(hydroxymethyl)-2-oxoethyl]-2,2-dimethylpropanamide:

The title compound was obtained from D-serine in the same manner as that in Example 79.

MS (ESI, m/z) 445 (M+H)+

¹ H-NMR (CDCl3): 1.22 (9H, d), 2.16-2.44 (4H, m), 2.90-3.26 (2H, m),

20 3.62-4.06 (5H, m), 4.79-4.89 (1H, m), 6.92 (2H, s), 7.01-7.38 (8H, m). Example 81

Synthesis of N-{(1S)-1-(hydroxymethyl)-4-oxo-4-[4-(9H-thioxanthen-9-ylidene)-1-piperidinyl]butyl}-2,2-dimethylpropanamide:

Step 1

25 Synthesis of methyl (2S)-2-[(t-butoxycarbonyl)amino]-5-oxo-5-[4-(9H-thioxanthen-9-ylidene)-1-piperidinyl]pentanoate:

The title compound was obtained from 511 mg (1.96 mmol) of the

compound obtained in Step 1 in Example 71 and 470 mg (1.68 mmol) of 4-(9H-thioxanthen-9-ylidene)piperidine in the same manner as that in Step 2 in Example 50.

Yield: 742 mg (1.42 mmol), 85 %

5 MS (ESI, m/z) 523 (M+H)+

¹H-NMR (CDCl3): 1.44 (9H, d), 1.91-2.79 (8H, m), 2.88-3.18 (2H, m), 3.62-3.74 (1H, m), 3.75 (3H, d), 4.12-4.38 (2H, m), 5.26-5.37 (1H, m), 7.17-7.53 (8H, m).

Step 2

10 Synthesis

15

of

methyl

(2S)-2-[(2,2-dimethylpropanoyl)amino]-5-oxo-5-[4-(9H-

thioxanthen-9-ylidene)-1-piperidinyllpentanoate:

The title compound was obtained from 736 mg (1.41 mmol) of the compound obtained in Step1 described above in the same manner as that in Step 3 in Example 50.

¹ H-NMR (CDCl3): 1.20 (9H, d), 2.04-2.80 (8H, m), 2.88-3.18 (2H, m), 3.60-3.78 (4H, m), 4.11-4.26 (1H, m), 4.41-4.52 (1H, m), 7.04 (1H, t), 7.17-7.33 (6H, m), 7.51 (2H, d).

Step 3

20 Synthesis of N-{(1S)-1-(hydroxymethyl)-4-oxo-4-[4-(9H-thioxanthen-9-vlidene)-1-piperidinyl]butyl}-2,2-dimethylpropanamide:

The title compound was obtained from the whole amount of the compound obtained in Step 2 described above in the same manner as that in Step 4 in Example 71.

25 Yield: 564 mg (1.18 mmol), 84 % (step 2)

MS (ESI, m/z) 479 (M+H)+

¹ H-NMR (CDCl3): 1.18 (9H, d), 1.86-2.02 (2H, m), 2.28-2.82 (6H, m), 2.92-3.18 (2H, m), 3.48-3.88 (5H, m), 4.14-4.26 (1H, m), 6.79-6.92 (1H, m), 7.17-7.31 (6H, m), 7.51 (2H, d).

The structural formulae of the compounds obtained in Examples 1 to 81 are shown in Tables 1 to 10.

Table 1

Ex.	Structural formula	Ex.	Structural formula
1	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	5	chiral NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
2	ON CIH	6	chiral
3	0 N N	8	
4	chiral	9	N-O-N-O-N-O-N-O-N-O-N-O-N-O-N-O-N-O-N-O

Table 2

Ex.	Structural formula	Ex.	Structural formula
10	CIH	14	CIH O
11		15	chiral
12		16	H O N
13	$\begin{array}{c} - \\ 0 \\ N \\ 0 \\ \end{array}$	17	$\begin{array}{c c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$

Table 3

Ex.	Structural formula	Ex.	Structural formula
18	-0 0 0	22	chiral
19	$- \bigvee_{0 \leftarrow 0}^{H} \bigvee_{N \rightarrow \infty}^{0} \bigvee_{N \rightarrow \infty}^{N} S$	23	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
20		24	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
21	ONO NO O	25	$H \xrightarrow{0} N \longrightarrow N$

Table 4

Ex.	Structural formula	Ex.	Structural formula
26	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$	30	
27	$\begin{array}{c} 0 \\ 0 \\ 0 \end{array}$	31	
28		32	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
29		33	10-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N

Table 5

Ex.	Structural formula	Ex.	Structural formula
34	CIH	38	N N N N O CIH
35	TO NO	39	40 N N
36	TO N N N	40	TO H O H
37	40-0 N N N	41	ON H NH

Table 6

Ex.	Structural formula	Ex.	Structural formula
42		46	$N \rightarrow 0$ $N \rightarrow 0$ $N \rightarrow 0$
43	H O N	47	O H N O
44	H O N N	48	O OH N N N N N N N N N N N N N N N N N N
45	$N \rightarrow 0$ $N \rightarrow N$ $N \rightarrow N$	49	OH ON NO

Table 7

Ex	Structural formula	Ex.	Structural formula
50	OH ON H	54	
51	O O H N O N O O O O O O O O O O O O O O	55	
52	H O N	56	
53		57	OH ON H

Table 8

Ex.	Structural formula	Ex.	Structural formula
58	OH ON (S)	62	$0 \\ N \\ NH_2 $ CIH (S)
59	OH ON (R)	63	O N NH ₂ (R)
60	OH O N H	64	OH ON NOTE OF THE CITY
61	$\begin{array}{c} 0 \\ 0 \\ N \end{array}$	65	CIH ON (R)

Table 9

Ex.	Structural formula	Ex.	Structural formula
66	CIH HN O	70	OH O ON H
67	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	71	$ \begin{array}{c} 0 \\ N \\ OH \end{array} $ (S)
68	$0 \\ \downarrow 0 \\ $	72	$ \begin{array}{c c} 0 \\ N \\ OH \end{array} $ (R)
69	OH ON (R)	73	0 H (R)

Table 10

5

Ex.	Structural formula	Ex.	Structural formula
74	$\begin{array}{c} 0 \\ N \\ O \\ O \end{array}$	78	$ \begin{array}{c} $
75	0 N O O O (R)	79	O OH (S)
76	OH ONS (R)	80	H O N (R)
77	OH ON S (R)	81	$\begin{array}{c} 0 \\ N \\ O \\ O \end{array}$

(Test Example) Inhibitory activity on N-type calcium channel (fluorescence dye method):

Human neuroblastoma cells IMR-32 were obtained from ATCC (American Type Culture Collection). The medium used was a Phenol

Red-free Eagle minimum essential medium containing eagle's salts (eagle's salts supplement) (GIBCO) supplemented with 2 mM of L-glutamine (GIBCO), 1 mM of sodium pyruvate (pH 6.5) (GIBCO), antibiotic / antimicotic mixture (GIBCO) and 10 % fetal calf serum (Cell Culture Technologies). Three ml of 1x10⁵ cells/ml IMR-32 cells were spread on the glass bottom of a dish (Iwaki Glsss Co., Ltd.) having a diameter of 35 mm which had been treated with poly-L-lysin (SIGMA) and collagen (COLLAGEN VITROGEN 100; Collagen Co.). After the culture for 1 day, 1 mM (final concentration) of dibutyl cAMP and 2.5 μM (final concentration) of 5-bromodeoxyuridine (SIGMA) were added. After the culture for additional 10 to 14 days, the cells were subjected to the activity determination.

5

10

15

20

25

The medium for IMR-32 cells thus prepared was replaced with 1 ml of Phenol Red-free Eagle minimum essential medium (eagle's salts supplement) (GIBCO) containing 2.5 µM fura-2/AM (Dojin Kagaku, Co.) and earle's salts supplement, and the incubation was conducted at 37°C Then the medium was replaced with a recording for 30 minutes. medium (20 mM of HEPES-KOH, 115 mM of NaCl, 5.4 mM of KCl, 0.8 mM of MgCl₂, 1.8 mM of CaCl₂ and 13.8 mM of D-glucose). Antagonistic activity on N-type calcium channel was determined and analyzed using a fluorescence microscope (Nikon Corporation) and an image analysis device ARGUS 50 (Hamamatsu Photonics). In particular, a recording medium (20 mM of HEPES-KOH, 115 mM of NaCl, 5.4 mM of KCl, 0.8 mM of MgCl₂, 1.8 mM of CaCl₂ and 13.8 mM of D-glucose) containing 1 μM of Nifedipine was given to the cells by reflux by a Y-tube method for 2 Then a stimulating agent containing 60 mM of potassium minutes. chloride was rapidly given by the Y-tube method. The calcium concentration change in the cells in this step was shown as the N-type calcium channel activity. Then stimulating agents containing 60 mM of potassium chloride and 0.1, 1 or 10 μM of the test compound were successively and rapidly given to the cells by the Y-tube method to determine the change in the intracellular calcium concentration. The inhibitory activity on N-type calcium channel was calculated from the inhibition rate (%) at a concentration of 10 μM .

(Test Example) Inhibitory activity on L-type calcium channel:

The inhibitory activity of the new diarylalkene derivatives and diarylalkyl derivatives of the present invention to inhibit L-type calcium channel was determined by the following method in which the relaxation response against the KCl-induced contraction of isolated rat thoracic aorta was employed.

1) Method of preparation of rat thoracic aorta:

5

10

15

20

25

The slips of thoracic aorta isolated from a Wistar rat were used. The aorta was cut to obtain ring-shaped samples having a width of about 3 mm. The endothelial cells of the samples were mechanically removed. The samples were suspended in a strain gage in Tyrode's solution (158.3 mM of NaCl, 4.0 mM of KCl, 1.05 mM of MgCl₂, 0.42 mM of NaH₂PO₄, 10 mM of NaHCO₃, 2 mM of CaCl₂ and 5 mM of glucose) in which a gaseous mixture of O₂ (95 %) and CO₂ (5 %) was introduced. A static tension of 2 g was applied thereto. The tension of the blood vessel was amplified with a transducer and a tension amplifier (EF-601G; Nihon Koden Corporation) and recorded with a multi-pen recorder (Rikadenki Kogyo Co., Ltd.). The experiments were conducted at 37°C.

2) Measurement of relaxation response against KCl-induced contraction:

After the tension had been stabilized, the nutrient solution in the sample tank was replaced with High K+ Tyrode's solution (112.3 mM of

NaCl, 50 mM of KCl, 1.05 mM of MgCl₂, 0.42 mM of NaH₂PO₄, 10 mM of NaHCO₃, 2 mM of CaCl₂ and 5 mM of glucose) to conduct the contraction reaction. Thirty minutes after, the solution in the sample tank was replaced with the normal Tyrode's solution. The solution in the sample tank was again replaced with the High K⁺ Tyrode's solution and the contraction reaction was observed. After attaining the maximum contraction reaction, the test compound was cumulatively added at intervals of 90 minutes to attain concentrations of 10⁻⁹, 10⁻⁸, 10⁻⁷ and 10⁻⁶ M. The inhibitory rate of the test compound against the maximum contraction response was employed as the index of the inhibitory activity on L-type calcium channels.

5

10

15

Table 11 shows the results of the measurement of the inhibitory activities on N-type calcium channels (inhibition rate at 10 μ M: %) and L-type calcium channel (pIC₅₀). The value of pIC₅₀ indicates the inhibitory activity of the test compound, i. e. the negative logarithm of the concentration of the test compound necessitated for the 50 % inhibition.

Table 11

Example	Antagonistic activity on N-type calcium channels at 10 µM	Antagonistic action on L-type calcium channels pIC ₅₀
	inhibition rate (%)	
1	67	6.0
9	83	6.3
11	77	6.4
16	75	5.9
24	78	6.0
41	76	5.9
68	82	6.4
71	74	5.9
72	81	6.1
73	75	5.7
76	85	6.1
78	84	5.6

From the results described above, it was confirmed that the new diarylalkene derivatives and diarylalkyl derivatives have a high, selective inhibitory activity on N-type calcium channels. Thus, the derivatives of the present invention are useful as therapeutic agents for pains and also various diseases related to N-type calcium channels.

10 [Effect of the Invention]

5

15

The new diarylalkene derivatives and diarylalkyl derivatives of the present invention have the selective inhibitory activity on N-type calcium channels. Thus, the new diarylalkene derivatives and diarylalkyl derivatives of the present invention provide a method for treating various diseases, for example, brain injury caused by ischemia at the acute stage after the onset of cerebral infarction, cerebral hemorrhage (including subarachnoidal hemorrhage) or the like; for treating progressive neurodegenerative diseases such as Alzheimer's

disease, AIDS related dementia, Parkinson's disease, cerebrovascular dementia and ALS; for treating neuropathy caused by head injury; and for treating various diseases associated with psychogenic stress such as bronchial asthma, unstable angina and irritable colitis, emotional disorder and withdrawal symptoms after addiction to drugs such as ethanol addiction withdrawal symptoms.

5

[Name of Document] Abstract

[Abstract]

10

15

[Problem] To provide novel compounds having a selective antagonistic effect on N-type calcium channel.

[Means for solving the Problem]

Diarylalkene derivatives represented by the following general formula, its analogue and pharmaceutically acceptable salts thereof have N-type calcium channel antagonistic effect, and they are usable as active ingredients of therapeutic agents for treating diseases selected from brain injury caused by ischemia at the acute stage after the onset of cerebral infarction or cerebral hemorrhage, Alzheimer's disease, AIDS related dementia, Parkinson's disease, progressive neurodegenerative diseases, neuropathy caused by head injury, pain caused by spinal injury or diabetes, neuropathic pain, migraine, visceral pain, cancerous pain, bronchial asthma, unstable angina, irritable colitis or withdrawal symptoms after addiction to drugs.