

MAGIS: Memory Optimization via Coordinated Graph Transformation and Scheduling for DNN

Renze Chen¹, Zijian Ding², Size Zheng¹, Chengrui Zhang¹, Jingwen Leng³, Xuanzhe Liu¹, Yun Liang¹

¹Peking University ²University of California, Los Angeles ³Shanghai Jiao Tong University

I. MotivationII. TechniquesIII. Eval-Results

Memory Pressure in DNNs

Large Tensor Sizes

Large Model

Large Hidden-dimensions, ...

e.g. recent models often hold billions of parameters

Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM

Large Data

Large Batch-size, Long Text, ...

e.g. recent LLMs provide text-length in the thousands

Model	Text-length	#English-pages
GPT 3.5	4,096	6
GPT 4	8,192	12
GPT 4-32k	32,768	49
Llama 1	2,048	3
Llama 2	4,096	6

https://agi-sphere.com/context-length/

Memory Pressure in DNNs

Long Life-times of Tensors

Forward Activation Reused in Backward

Efficient Combination of Re-materialization and Offloading for Training DNNs

Tensor Reused After Long Skip-Connections

e.g. DenseNet, UNet, Diffusion, ...

UNet 3+: A Full-scale Connected UNet for Medical Image Segmentation

Memory Optimization for DNNs

Model Compression

- Pruning
- Quantization
- Decomposition

Compress tensor-sizes at the cost of model accuracy

Graph Scheduling

- Re-ordering
- Re-materialization
- Swapping

Manage tensor-lifetimes to reduce peak memory usage

PS: The goal of optimizing memory is to reduce *peak memory usage*

Graph Scheduling

Graph Transformation

Graph scheduling only affects tensors lifetimes

Graph transformation can change tensor sizes

Interim Transformation (I-Trans)e.g. algebraic properties

Aggregation Transformation (A-Trans)
 e.g. merge parallel MatMuls into larger one

Aggregation Transformation

Intermediate Node

- Peak-mem=5

 Lifetimes

 A

 Y₂

 Y₁

 Time

 Exec. Seq. A

 B

 Y₁ Y₂
- Lower Execution Latency
- Larger Memory Footprint

Trade **memory** for **latency**

Fission Transformation (F-Trans)

Input Node Intermediate Node Output Node

The **dual** of Aggregation Transform

Fission Transformation (F-Trans)

e.g. split some operators into multiple smaller ones

- Higher Execution Latency
- Smaller Memory Footprint

Trade **latency** for **memory**

With the aid of <u>Fission Transformation (F-Trans)</u>, Graph Transformation can extend the <u>memory & latency trade-off space</u>, enhancing the capability of Graph Scheduling for memory optimization.

I. MotivationII. TechniquesIII. Eval-Results

Optimize memory/latency under a given latency/memory constraint

M-Analyzer: Dimension Graph (D-Graph)

To define a Fission Transformation, we need to represent graph-level dimensions

M-Analyzer: Fission Transformation Definition

$$f = (S, D, n)$$

- S: Sub-graph to split
- D: D-Graph (connected component) to split along
- *n*: Number of partitions

Split sub-graph S (of G) along dimension graph D into n partitions

- ightharpoonup 0, 2 have dims in $D \Rightarrow$ sliced into sub-inputs
- \triangleright **6, 7** have spatial-dims in $D \Rightarrow$ merged from sub-outputs
- \blacktriangleright 1 has no dim in $D \Rightarrow$ shared by sub-parts
- \triangleright 8 has reduce-dim in $D \Rightarrow$ summed-up from sub-outputs
- Input of S Output of S Spatial Dim \boxtimes Reduce Dim
- b: batch-size h: hidden-size
- S Slice C Concat + Add

M-Analyzer: Fission Hierarchy Tree (F-Tree)

Graph complexity greatly grows after applying Fission Transformation

Record only the transformation itself instead of directly rewriting graph

Graph with Fission Transformation

Fission Hierarchy Tree

M-Analyzer: Estimate Peak Memory Reduction

Almost every sub-graph can be a candidate of Fission Transformation Select sub-graph based on <u>expected (minimum) peak memory reduction</u>

Only consider the sub-graph <u>dominated by a single input node</u> to minimize the total size of input nodes.

M-Analyzer: Construct Fission Hierarchy Tree

node	0	1	2	3
heat	12	11	10	5
score	6	5.5	5	2.5
4	10	11	12	
3	3	3	2	
1.5	1.5	0.5	1	

- 1 Recognize the memory hot-spots in the graph.
- 2 Construct the dominator tree of the graph.
- 3 Get the score of the sub-graph dominated by each node.
- 4 Select sub-graphs with scores in different intervals.
- (5) Construct initial Fission Hierarchy Tree (n=1) with these sub-graphs.

M-Analyzer: Fission Hierarchy Tree Mutation Rules

Fission Hierarchy Tree records the fission states of the sub-graphs in the nodes.

Define rules to apply transformations by mutating Fission Hierarchy Tree.

Apply Fission Transformation (Increase Fission Number from 1)

Increase Fission Number

M-Optimizer: Overview

- Graph scheduling is frequently invoked
- > Graph transformation & scheduling are both multi-objective optimizations.
 - Each transform rule: small-step trade-off
 - Graph scheduling: large-step trade-off

Need to simplify graph scheduling process.

M-Optimizer: Scheduling-based Graph Transform

Re-mat. & Swapping trade memory & latency while Re-ordering does not. Decouple Re-mat. & Swapping into graph transformation + Re-ordering.

M-Optimizer: Scheduling-based Graph Transform

Re-mat. & Swapping trade memory & latency while Re-ordering does not. Decouple Re-mat. & Swapping into graph transformation + Re-ordering.

M-Optimizer: Unified Trade-off Space

- > Each rule makes a **small-step trade-off** for memory & latency.
- Graph scheduling focus on optimizing memory w/o trade-off.

Further alleviate scheduling overhead by incrementally scheduling new graph based on previous schedule and newly mutated sub-graph.

I. BackgroundII. TechniquesIII. Eval-Results

Platform

Intel(R) Xeon(R) Silver 4210R CPUs

NVIDIA GeForce RTX 3090 GPU

Baseline	Method
Torch (v2.1)	Basic Memory Recycling
POFO (NIPS'21)	Re-materialization + Swapping
DTR (ICLR'21)	Dynamic Heuristic Re-materialization
XLA (v2.15.0)	Compilation + Greedy Re-materialization
TVM (v0.14.0)	Compilation + Basic Memory Recycling
Torch-Inductor (v2.1)	Compilation + Basic Memory Recycling

Class	Network	
CNN	ResNet	
Tueneformen	BERT	
Transformer	ViT	
Long-range	UNet	
Skip-links	UNet++	
Large	GPT-Neo	
Transformer	BTLM	

Memory Optimization with Latency Constraints

Latency Overhead < 10%

MAGIS's peak memory is $15\% \sim 85\%$ of baselines:

- $15\%\sim60\%$ of Torch/TVM
- 15%~80% of POFO
- 20%~85% of DTR
- 15%~70% of XLA

Latency Overhead < 5%

MAGIS's peak memory is $25\% \sim 80\%$ of baselines:

- 25%~70% of Torch/TVM
- 25%~80% of POFO
- 35%~80% of DTR
- $25\% \sim 80\%$ of XLA

Latency Optimization with Memory Constraints

Peak Memory Ratio < 80%

- MAGIS: $\leq 5\%$ overhead
- POFO: $\leq 40\%$ overhead or failed
- DTR: $\leq 15\%$ overhead or failed
- XLA: $\leq 20\%$ overhead of failed
- Others: failed

Peak Memory Ratio < 40%

- MAGIS: $\leq 15\%$ overhead
- POFO: $\leq 40\%$ overhead or failed
- DTR: $\leq 70\%$ overhead or failed
- XLA: $\leq 70\%$ overhead of failed
- Others: failed

Comparison to POFO with Fission Transformation

- Compared to simple combination of POFO and Fission Transformation Split the whole graph along batch dimension with different factors
- MAGIS can achieve better memory & latency pareto frontier.

MAGIS: optimizing DNN memory via the coordination of graph transformation (particularly Fission Transformation) and graph scheduling

- ➤ M-Analyzer: build search space for Fission Transformation
- ➤ M-Optimizer: unified trade-off space for memory & latency

MAGIS uses only 15%~85% peak memory compared to SOTA works under the same latency constraint.

Scan to access our code

Our code is now open-sourced at https://github.com/pku-liang/MAGIS

Thanks for listening! E-mail us to ask follow-up questions: crz@pku.edu.cn