

発表の流れ

- 背景知識の紹介
- どんなものを作ったか
- 結果の検討

量子コンピュータとは何か

量子の状態を利用して数値計算を行う計算機。

 $\rightarrow n$ qubitで 2^n 個の数値を扱うことが可能

0

$$q_1 \quad \alpha_1 |0\rangle + \beta_1 |1\rangle$$

$$q_2 \quad \alpha_2 |0\rangle + \beta_2 |1\rangle$$

4 qubit

$$q_3 \quad \alpha_3 |0\rangle + \beta_3 |1\rangle$$

$$q_4 \quad \alpha_4 |0\rangle + \beta_4 |1\rangle$$

|0000}

|0001}

16 states

|1110}

|1111)

量子機械学習とは何か

図1:量子ニューラルネットワークの例

シュミレーションの困難さ

各ビットの状態を掛け合わせた 2^n の 状態をすべて追跡

メモリ使用量:

 $O((2^n)^2)$

計算量:

 $O((2^n)^3 * gate num)$

図2:作成したシュミレータの計算方法

計算量の比較

─IBMQ(×10**-4)

━提案手法

結果

- 1層の量子NN作成に成功○→画像の2値分類タスクで精度84%
- CNOTゲートの実装に失敗 →CNOTゲートを追加すると 学習不可

