

IEEE 802.11 Study

Yeon Hee Lee

Contents

- 1. Introduction
- 2. Distributed Coordination Function
- 3. Future Work

Introduction

IEEE 802.11

- Wireless Local Area Network (WLAN)을 위한 표준 기술
- Medium access control (MAC)과 Physical layer (PHY)를 표준화
- 흔히 무선 랜, Wi-Fi 라고 부르는 무선 근거리 통신망을 위한 컴퓨터 무선 네트워크 표준기술

IEEE 802.11 MAC

- 여러 단말이 공유 매체를 사용할 때 단말 간 충돌 및 경합 발생을 제어
- IEEE 802.11 MAC은 DCF와 PCF로 구성
 - Distributed coordination function (DCF): default
 - ✓ Random Access기법 CSMA/CA를 통한 Access control
 - Point coordination function (PCF): optional
 - ✓ Controller가 station들의 전송 순서를 scheduling하는 Centralized MAC protocol

- DCF(Distributed Coordination Function)
 - 802.11 프로토콜에서 매체에 접근하기 위한 기본 메커니즘
 - CSMA/CA (Carrier Sense Multiple Access / Collision Avoidance)를 사용하여 무선기기 간 매체공유를 가능하게 함
- CSMA/CA(Carrier Sense Multiple Access / Collision Avoidance)
 - 두 개 이상의 Station이 하나의 매체를 통해 동시에 전송을 시작하는 경우 충돌(Collision) 발생
 - 무선 환경에서는 Collision Detection이 불가능하기 때문에, Collision을 사전에 회피하는 기법
 (CSMA/CA) 사용

CSMA/CA 동작 방식

- ① 일정 시간 대기
- ② 채널의 Idle 여부 확인
- ③ 매체 접근을 위한 경쟁
- ④ 패킷 전송 (충돌 발생시 1번부터 반복)

Immediate access when medium is free >= DIFS

Interframe Space (IFS)

- 충돌 회피를 위해 데이터 전송 전, 일정 대기 하는 매체 접근 연기 시간간격
- 우선 순위에 따라 4가지의 IFS가 정의되어 있음

DIFS	SIFS	PIFS	EIFS
(DCF Interframe Space)	(Short Interframe Space)	(PCF Interframe Space)	(Extended Interframe Space)
 Contention 기반의 서비스에서 매체 비사용(Idle)시간 가장 낮은 우선순위와 가장 큰 대기시간을 가짐 	가장 짧은 대기시간과 가장 높은 우선순위를 가짐 ACK,RTS,CTS 같은 제어 프레임 을 전송할 때 사용	 PCF 기능에서 사용 Point Coordinator(혹은 AP)가 채 널을 점유하는 것에 다른 STA보 다 우선순위를 주기 위해서 PIFS 는 DIFS보다 짧고 SIFS보다는 김 	 DCF를 통한 medium access 중 이전에 감지된 frame이 오류가 있 다면 DIFS가 아닌 좀 더 긴 EIFS 동안 대기

Immediate access when medium is free >= DIFS

Random Backoff Time

- 데이터프레임을 전송하기 위해서 statio은 DIFS를 대기한 후, Random backoff time을 수행
- Binary Exponential Backoff(BEB)를 통해 결정
 - ✓ 첫 번째 전송 시도의 CW는 $[0, CW_{min}]$ 사이의 정수값으로 설정
 - ✓ 전송 실패할 경우, 다음 전송 시도(next stage)에서 CW 선택범위가 2배씩 늘어남
 - ✓ 전송 실패시 CW 선택범위의 최대 값은 CW_{max} 까지 증가될 수 있음
 - ✓ CW 최대 선택범위가 CWmax를 초과하면 유지

Random Backoff Time

- Contention Window(CW)
 - ✓ Carrier sensing을 통한 채널 유휴 상태 확인 구간, 매체 접근을 위해 Station이 기다리는 임의의 시간
 - Carrier Sensing(CS): 채널 사용 여부를 감지하는 것
 - ✓ 하나의 CW는 slot time단위로 표현
 - ✓ Station은 임의의 slot을 선택하고, 한 slot time마다 CS를 수행함
 - ✓ CS를 한번 수행했을 때
 - Busy상태 : Backoff 값을 유지함
 - Idle상태: Backoff 값을 하나 감소시킴
 - Backoff
 - Backoff Time은 전송이 실패할 때 마다 더 큰 범위에서 선택됨
 - Backoff Time은 [0, CW-1]에서 결정

Random Backoff Time

- Ex)
 - ✓ 1번째 시도에서 CW 선택 범위: 0 ≤ CW ≤ 7
 - ✓ 2번째 시도에서 CW 선택 범위: 0 ≤ CW ≤ 15

전송 실패로 CW 선택 범위가 두배가 됨

Hidden station problem

 무선 네트워크에서 자신의 전송 범위 내의 station은 보이지만 전송 밖의 station이 전송 범위 안의 station과 통신하는 것을 보지 못하는 문제

Example

- B는 C에 의해 전송되는 신호 감지 못함
- C도 B에 의해 전송되는 신호 감지 못함
- A는 각각 B, C와의 전송 신호 감지 가능
- Ex)
 - ① B는 A로 전송 시작, C도 A로 전송을 시도
 - ② B의 신호는 범위 밖의 C에 전달되지 않음
 - ③ 따라서 C도 전송을 시작함
 - ④ B와 C는 충돌하게 됨
- ✓ IEEE 802.11 에서는 RTS/CTS를 통해서 해결 가능

RTS/CTS mechanism

- ✔ RTS: Request to Send(송신 요구)
- ✓ CTS: Clear to Send(송신 가능)

- IEEE 802.11의 전송 옵션
- 4 way Handshaking (RTS-CTS-Data-ACK)
- RTS/CTS는 빠른 Collision inference와 transmission path check가 가능한 것이 장점
- Hidden station problem을 해결할 수 있지만, Exposed station problem을 발생시킴

동작방식

- 송신 노드는 채널 idle 상태를 알고난 후, DIFS만큼 기다린 후 RTS 전송
- 수신 노드는 RTS 수신 후, SIFS만큼 기다린 후 CTS 전송
- 송신 노드는 CTS를 받으면 SIFS만큼 기다린 후, Data 전송
- − 수신 노드는 Data를 받으면 SIFS만큼 대기 후, ACK 전송

RTS/CTS Access Mechanism

Solution

- ✓ RTS: Request to Send
- ✓ CTS: Clear to Send

- RTS/CTS를 받은 모든 Station은 NAV동안 대기
- NAV (Network allocation vector)
 - ✓ Data를 전송하는 station은 RTS/CTS 프레임 혹은 실제 Data frame의 Duration/ID field를 통해서 다른 station들에게 시간정보를 전달하고 medium사용을 예약, 일종의 매체 사용 예약 타이머 역할을 하는 값
 - ✓ 시간정보를 전달받은 다른 station들은 그 시간만큼 대기함
 - ✓ NAV 값이 0이 될 때까지 무선 매체로의 접근 연기
 - ✔ NAV는 Data frame의 길이와 ACK frame의 길이 그리고 경우에 따라서 쓰이는 IFS의 길이를 포함하여 설정됨

RTS/CTS Access Mechanism

RTS/CTS access를 통한 Hidden station problem 해결

- ① B에서 A로 데이터 전송을 위해서 RTS 전송
- ② A는 RTS를 받으면 SIFS 대기 후 B로 CTS 전송
- ③ C는 A에서 전송한 CTS를 감지하여 NAV를 업데이트
- ④ B는 A에서 CTS를 받으면 SIFS 대기 후 A로 Data 전송
- ⑤ A에서 Data를 받으면 SIFS 대기 후 B로 ACK 전송

Exposed station problem

- 무선 네트워크에서 자신의 전송 범위 내의 station이 다른 station의 전송 범위에 노출되어 데이터 전송을 시도할 때 서로 방해 받는 문제
 - ① B는 C에 의해 전송되는 신호 감지 못함
 - ② C는 B에 의해 전송되는 신호 감지 못함
 - ③ B에서 A로 데이터를 전송할 때, B의 신호가 C에 전달되지 않아 C는 A에게 전송을 시작하고 충돌 발생

- MACAW(Multiple Access with Collision Avoidance for Wireless)
 - BEB algorithm 적용
 - − 4 way Handshaking(RTS-CTS-Data-ACK)에 DS를 추가
 - ✓ DS (Data sending)
 - Sender는 RTS/CTS 교환 성공과 Data 전송을 할 것 이라는 정보를 전송
 - DS를 받은 station들은 Data/ACK의 slot이 끝날 때까지 기다림

Future work

Markov chain model of IEEE 802.11 Study

 Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on selected areas in communications, 18(3), 535-547.Ideal channel condition