Modulcode (1	Modulbezeich	nung	2.	Zuordnung	3.
	Grundkonzepte	Grundkonzepte der Programmierung (GKP)			
BAAI-1140	Studiengang	4.	Bachelor Angewandte Informat	ik	
	Fakultät	5.	Gebäudetechnik und Informatik	ζ	

Modulverantwortlich	6.	Prof. DrIng. Kay Gürtzig
Modulart	7.	Pflicht
Angebotshäufigkeit	8.	ws
Regelbelegung / Empf. Semester	9.	BA1
Credits (ECTS)	10.	5 CP
Leistungsnachweis	11.)	SL (N) + PL (N)
Unterrichtssprache	12.)	Deutsch
Voraussetzungen für dieses Modul	13.)	-
Modul ist Voraussetzung für	14.)	BAAI-1230: Objektorientierte Programmierung BAAI-8420: Geo-Informationssysteme BAAI-8610: Einführung in die KI
Moduldauer	15.	1 Semester
Notwendige Anmeldung	16.	-
Verwendbarkeit des Moduls	17.)	Technische Studiengänge, in denen grundlegende Programmierkompetenzen benötigt werden.

Lehrveranstaltung		Dozent/in	Art	Teilnehmer	Anzahl	SWS	Workload	
18)		19.	20	(maximal)	Gruppen (22)	23.	Präsenz 24	Selbst- studium
1	Grundkonzepte der Programmierung	Gürtzig	V	100	1	2	30	15
2	Grundkonzepte der Programmierung	Gürtzig	Ü	25	4	2	30	50
					Summe	4	60	65
Workload für das Modul					26	125		

Qualifikationsziele 27)	 Die Studierenden codieren Ganzzahlen, Gleitkommazahlen und textuelle Daten in Binärdarstellung oder decodieren sie aus dieser; wählen geeignete Standarddatentypen (C) für Daten vorgegebener Anwendungsbeispiele aus; ordnen Literale der Sprache C sicher den entsprechenden Datentypen zu; beschreiben in eigenen Worten die numerischen Beschränkungen existierender Datentypen an Beispielen; benennen die grundlegenden Kontrollstrukturen strukturierter Programmierung und stellen sie korrekt im Struktogramm und in C-Syntax dar. Die Studierenden entwerfen einfache Algorithmen in Form von Struktogrammen zu vorgegebenen Aufgaben; zerlegen komplexere verbale Aufgabenstellungen hierarchisch in Teilaufgaben (Top-Down-Entwurf), legen die zugehörigen Datentypen, -strukturen und Funktionssignaturen sinnvoll fest und implementieren arbeitsteilig eine Lösung; halten bei der Lösung von Programmierproblemen die Konventionen der Quelldateiorganisation in C ein; begründen die Auswahl geeigneter aggregierender Datenstrukturen (wie Arrays, verkettete Listen, Bäume) an Hand ihres Laufzeitverhaltens entsprechend dem Anforderungsprofil einer Anwendungsaufgabe und passen sie dem konkreten Einsatzfall an. 		
Inhalte 28	 Grundlegende Kontrollstrukturen (Struktogramm) EVA-Prinzip; Umsetzung von Aufgaben einer Turtle-Graphik mittels Struktogramm; Binärsystem, Zahlenkonvertierung, Informationscodierung; C-Datentypen, Literale, Variable, Ausdrücke, Array, Verbund; Klassische numerische Schleifen-Algorithmen (Iterationen, Reihenberechnung, Horner-Schema); Integrierte Entwicklungsumgebungen (VisualStudio); Ein- und Ausgabe, Dateien; Funktionen und Prozeduren; Sortierung und Suche, Rekursion; Schleifeninvarianten; Pointer und dynamische Datenstrukturen (verkettete Listen, Bäume). 		
Vorleistungen und Modulprüfung	Vorleistungen: • keine Modulprüfung: • 25% Hausaufgaben in Teams à 3 Studierende (5-8 Stück) • 75% Klausur (90 min) im Prüfungszeitraum am PC		
Literatur 30	 Hans Peter Gumm, Manfred Sommer: "Einführung in die Informatik". – München: Oldenbourg, 2011 Uwe Schneider, Dieter Werner: "Taschenbuch der Informatik". – Leipzig: Fachbuchverlag / Hanser, 2004 A. V. Aho, J. E. Hopcroft, J. D. Ullman: The Design and 		

- Analysis of Computer Algorithms. Reading: Addison-Wesley, 1974
- Thomas H. CORMEN, Charles E. LEISERSON, Ronald RIVEST: Algorithmen – eine Einführung. – München: Oldenbourg, 2010
- Jürgen WOLF: C von A bis Z. Das umfassende Handbuch für Linux, Unix und Windows. – 3. Aufl. – Bonn: Galileo Computing, 2009
- Ivo OESCH: Eine Einführung in C und die Grundlagen der Programmierung. – Bern: Berner FH, 2003
- http://www.tutorialspoint.com/cprogramming/index.htm
 http://www.tutorialspoint.com/c_standard_library/index.htm
- Kathrin PASSIG, Johannes JANDER: Weniger schlecht programmieren. – 1. Aufl. – Köln: O'Reilly, 2013
- Standard ANSI-C99 n1256 / ISO/IEC 9899:TC3