PRELIMINARY AMENDMENT

APPLICANT:

Andreas Berg

DOCKET NO .:

112740-306

SERIAL NO:

GROUP ART UNIT:

FILED:

EXAMINER:

INTERNATIONAL APPLICATION NO::

PCT/DE01/00967

INTERNATIONAL FILING DATE

14 March 2001

INVENTION:

METHOD FOR PROVIDING LOCATION INFORMATION

Assistant Commissioner for Patents, Washington, D.C. 20231

10 Sir:

ij.

},å:

4.

Please amend the above-identified International Application before entry into the National stage before the U.S. Patent and Trademark Office under 35 U.S.C. §371 as follows:

In the Specification:

15

Please replace the Specification of the present application, including the Abstract, with the following Substitute Specification:

SPECIFICATION

TITLE OF THE INVENTION

METHOD FOR PROVIDING LOCATION INFORMATION

BACKGROUND OF THE INVENTION

20

25

Location-dependent IN services are becoming increasingly important. For MTC IN services (MTC - Mobile Terminating Call, calls to a subscriber of a mobile telephone network, IN - Intelligent Network), which evaluate the location of the called B-subscriber, maximum accuracy may be required in determining the location of the IN customer. The precise location information, e.g. in the form of a

10

15

20

25

30

"location area" and a "serving cell ID" (i.e., the cell of the cellular-structure telephone network in which a subscriber is currently located) of the B-subscriber is intended to be determined for the IN service process.

To date, only the VLR (Visitor Location Register) number has been available to the Service Control Point (SCP) of an intelligent network IN for MTCs via an "AnyTimeInterrogation" (ATI, which is described in the GSM 03.78 standard) or a "StandardInterrogation". This location information is too inaccurate from most IN applications, since one VLR number represents the entire coverage area of an MSC (Mobile Switching Center, switching station in a mobile radio network).

If the Visitor Location Register VLR is also interrogated, for example with the "ProvideRoamingNumber" or "ProvideSubscriberInfo" commands, more accurate location information, e.g. the "Cell ID" and/or "Location Area Identity" (LAI), "Location Number" (LN), is available, but it originates from the last contact with the mobile telephone.

The age of this information is stored in the parameter set under "AgeOfLocationInformation". This value can be used in an IN service to decide whether the location can still be used, or is already too old. However, this information cannot be used to obtain more up-to-date location information.

The current "Cell ID" and "Location Number" for the MTC service currently can be evaluated in the post-processing of charge tickets only, but not by the IN service, directly before the telephone call.

In MTCs, it may be necessary to identify the location of the B-subscriber as precisely as possible. If the "Service Cell ID" information and the "Location Area" can be precisely defined and reported to the Service Control Point SCP, location-dependent MTC-IN services can respond with maximum granularity to the location of the B-subscriber. Thus, new telecommunications services can be offered for which precise location information is necessary.

Further, very costly, solutions are under consideration for location definition. However, these require that the network operator equip the network

10

15

20

25

30

with a high-cost infrastructure (for example, "Time of Arrival" or "Enhanced Observed Time Difference"), or must adapt the terminals, i.e. the mobile telephones, for example with a "SIM Application Toolkit" or with other known location information systems such as the Global Positioning System GPS. These methods can locate a terminal in a telecommunications network more accurately, but the financial and technical outlay required in order to obtain this more accurate information is considerable.

An object of the present invention is to determine more accurate location information with minimal outlay. A further object of the present invention is to make more accurate location information available to an IN service.

SUMMARY OF THE INVENTION

This object is achieved by determining this location information in the following steps:

- a) A first message is addressed by the SCP and dispatched to the required terminal. This first message is forwarded by the Visitor Location Register and simultaneously initiates an update of the location information contained in the Visitor Location Register, insofar as a subscriber identification was successful. The location information includes an indication of when this location information was identified/created. This age information is similarly updated.
- b) A second message is then likewise dispatched by the Service Control Point. Via this message, the Service Control Point then interrogates the stored location information and age information in the Visitor Location Register. The age information indicates whether the supplied location information is up-to-date.
- c) If the determined location information is identified as up-to-date, it is evaluated by the Service Control Point and used for further purposes; for example, a location-dependent MTC-IN service.
- d) Otherwise, it can be inferred that the called mobile radio subscriber is not currently available. This may trigger different responses from the service.

Messages which can be used in this way are already individually known in mobile radio networks, but no combination of the type according to the present

10

15

20

25

30

invention has, to date, been carried out in order to obtain location information of the B-subscriber for the Service Control Point (or the Visitor Location Register).

In an embodiment, the second message is initiated by the first message at a definable time interval (for example, in seconds) in order to ensure that the first message had enough time to be delivered to the recipient and, above all, to initiate the required updates of the location information in the Visitor Location Register.

In a further advantageous embodiment of the present invention, the content of the first message is empty. As such, no content is transferred to the B-subscriber addressed in this way, but this message is used purely to determine the location information which is normally required by the service provider.

Furthermore, the Service Control Point, following the evaluation of the location information and, above all, its age, can decide that the procedure needs to the repeated, and can first repeat the first message and then interrogate the location information again via the second message.

Additional features and advantages of the present invention are described in, and will be apparent from, the following Detailed Description of the Invention and the Figures.

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 shows a schematic representation of the network elements affected by the interrogation initiated by the Service Control Point SCP, and the information flow of messages between these network elements.

Figure 2 shows a flow chart of the method according to the present invention.

Figure 3 shows a second flow chart associated with the method of the present invention..

DETAILED DESCRIPTION OF THE INVENTION

Figure 1 shows those elements of a mobile radio network which are required for the performance of an MTC-IN service. In this embodiment, the underlying cellular mobile radio network is based on the GSM standards, but this does not represent a restriction to the method according to the present invention.

15

20

In this example, the service program (referred to as the service logic) MTC is available in executable form in a Service Control Point SCP. The tasks to be performed by the Service Control Point SCP in an intelligent network include fast conversion of a first telephone number into a destination telephone number (address), running of applications, reception (from the SSP) and forwarding of connection information and the charge recording system.

The Mobile Switching Centre MSC serves as the connection controller to and from the mobile subscriber MS located in the MSC area. The integrated MSC functions correspond to those of the Service Switching Point SSP and the processing functions of the Service Control Point SCP in an intelligent network IN.

The database facilities HLR and VLR are location registers which contain all the individual subscriber data which are relevant to service usage. These location registers are similarly also used for ISDN, PSTN, PCN or UMTS.

The Home Location Register HLR contains all semi-permanent and temporary data: subscriber information and operational features which are important for a connection. They include the database for system control of the service processes and their administration, providing the central master database. The data in the HLR are relevant above all to the connection set-up. The address of the current Visitor Location Register VLR is also stored in the HLR.

The Visitor Location Register VLR is a local database which contains the subset of the data relating to subscribers located in its area, including the current location LocInfo, which are important for call-processing functions (i.e., connection processing). The data are dynamically updated by the terminals (MS) and by the HLR, particularly during roaming.

The HLR and VLR can exchange data with the aid of the MAP protocol (Mobile Application Part, see also the GSM 09.02), also for the MSCs.

In order to send the first message with the aim of updating the location information LocInfo in the Visitor Location Register VLR, a USSD message, which may be an empty "dummy" message, for example "**666#", is transmitted by the

15

20

25

30

SCP. Here, "666" is the service code for the dummy string, and this is not followed by any further information.

A description of USSD messages can be found in the GSM 03.90 specification. In particular, it is possible for the USSD message to be initiated by the SCP ("Network initiated unstructured supplementary service"), without a mobile radio subscriber having previously transmitted a corresponding USSD message.

The HLR forwards the USSD to the VLR/MSC in which the mobile radio subscriber MS had its last contact with the network. There, the network attempts to forward the USSD to the mobile radio subscriber; i.e., it performs a paging operation. If the location is successfully determined, the location information LocInfo is updated in the Visitor Location Register VLR. In the event of failure, the dispatch of the USSD message can be repeated. If the USSD message cannot be delivered, this step is omitted, and the location information is not updated.

A second message is then transmitted by the service MTC to interrogate the updated location information. The "AnyTimeInterrogation" ATI of the MAP protocol, for example, can be used for this purpose. The HLR forwards the ATI to the VLR (Provide_Subscriber_Information). It then supplies as a reply ATIack the location information LocInfo which is stored in the VLR and also AgeOfLocationInformation, which indicates the age of the information.

Figure 2 and Figure 3 illustrate the process in a flow chart. This is based on a situation in which a requirement exists for up-to-date location information for a subscriber 11. As already explained above, a USSD message is then transmitted to the required subscriber 12. This is followed by a (definable) period, in this example up to 3 seconds 13. After this period, the second message, an ATI interrogation, is initiated 14. The location information contained in the reply is examined for its age, AgeOfLocationInformation AOLI 15. It is, for example, compared with a threshold value 16. If the information is sufficiently up-to-date, the determined location information is recognized as up-to-date location information and is delivered back; for example, to the MTC service 29. Otherwise, an interrogation

15

25

can again be optionally dispatched 18, or in the first instance a second USSD 17. If all this fails, the sought subscriber is marked as currently unavailable.

This method offers the advantage that location information which, in most cases (i.e., for most MTC services), is sufficiently accurate can be obtained even without the implementation of additional expensive technologies. For example, the required "Network Initiated USSD" is available to the SCP as from Siemens Switch Release SR9.

Although the present invention has been described with reference to specific embodiments, those of skill in the art will recognize that changes may be made thereto without departing from the spirit and scope of the invention as set forth in the hereafter appended claims.

ABSTRACT OF THE DISCLOSURE

In MTCs, it may be necessary to identify the location of the B-subscriber as precisely as possible.

The location information is determined in the following steps:

- a) A first message is addressed by the SCP and dispatched to the required terminal. This first message is forwarded by the Visitor Location Register and simultaneously initiates an update of the location information contained in the Visitor Location Register, insofar as the subscriber identification was successful.
- The location information includes an indication of when this location information was identified/created. This age information is similarly updated.
 - b) A second message is then dispatched. Via this message, the Service Control Point then interrogates the stored location information and age information in the Visitor Location Register. The age information indicates whether the supplied location information is up-to-date.
 - c) If the determined location information is identified as up-to-date, it is evaluated by the Service Control Point and used for further purposes, for example a location-dependent MTC-IN service.

15

20

25

In the claims:

On page 9, cancel line 1 and substitute the following left-hand justified heading therefore:

CLAIMS

5 Please cancel claims 1-5 without prejudice and substitute the following claims therefore:

6. A method for providing information on a current location of a terminal for a telecommunications service in a mobile radio network, in which at least one Mobile Switching Center with a Visitor Location Register exists, the method comprising the steps of:

transmitting a first message via a Service Control Point to the terminal;

checking location information in the Visitor Location Register; transmitting a second message via the Service Control Point to the Visitor Location Register;

sending a reply, via the Visitor Location Register, to the Service Control Point, the reply containing location information and an indication of the

age of the location information; and

evaluating the location information contained in the reply via the telecommunications service.

- 7. A method for providing information on a current location of a terminal for a telecommunications service as claimed in claim 6, wherein the second message is transmitted via a definable time after the first message.
- 8. A method for providing information on a current location of a terminal for a telecommunications service as claimed in claim 6, wherein the first message is empty.

10

15

20

25

30

- 9. A method for providing information on a current location of a terminal for a telecommunications service as claimed in claim 6, the method further comprising the steps of:
- forwarding the first message to the Mobile Switching Center with the Visitor Location Register, with which the terminal had the last contact with the telecommunications network;

attempting to forward, via the Mobile Switching Center, the first message to the terminal; and

updating the location information entry in the Visitor Location Register if the forwarding is successful.

10. A method for providing information on a current location of a terminal for a telecommunications service as claimed in claim 6, wherein the location information contained in the reply is not up-to-date, and at least the second message is retransmitted.

REMARKS

The present amendment makes editorial changes and corrects typographical errors in the specification, which includes the Abstract, in order to conform the specification to the requirements of United States Patent Practice. No new matter is added thereby.

Attached hereto is a marked-up version of the changes made to the specification and claims by the current amendment. The attached page is captioned "Versions with Markings to Show Changes Made."

In addition, the present amendment cancels original claims 1-5 in favor of new claims 6-10. Claims 6-10 have been presented solely because the revisions by crossing out underlining which would have been necessary in claims 1-5 in order to present those claims in accordance with preferred United States Patent Practice would have been too extensive, and thus would have been too burdensome. The

10

15

present amendment is intended for clarification purposes only and not for substantial reasons related to patentability pursuant to 35 U.S.C. §§101, 102, 103 or 112. Indeed, the cancellation of claims 1-5 does not constitute an intent on the part of the Applicants to surrender any of the subject matter of claims 1-5.

Early consideration on the merits is respectfully requested.

Respectfully submitted,

(Reg. No. 39,056)

William E. Vaughan Bell, Boyd & Lloyd LLC

P.O. Box 1135

Chicago, Illinois 60690-1135

(312) 807-4292

Attorneys for Applicant

10

VERSIONS WITH MARKINGS TO SHOW CHANGES MADE

SPECIFICATION

TITLE OF THE INVENTION

METHOD FOR PROVIDING LOCATION INFORMATION

Description

5

10

15

30

Method for providing location information

Technical-field of the invention

BACKGROUND OF THE INVENTION

Location-dependent IN services are becoming increasingly important. For MTC IN services (MTC - Mobile Terminating Call, calls to a subscriber of a mobile telephone network, IN - Intelligent Network), which evaluate the location of the called B-subscriber, maximum accuracy may be required in determining the location of the IN customer. The precise location information, e.g. in the form of a "location area" and a "serving cell ID" (i.e., the cell of the cellular-structure telephone network in which a subscriber is currently located) of the B-subscriber is intended to be determined for the IN service process.

State of the art

Hitherto To date, only the VLR (Visitor Location Register) number has been available to the Service Control Point (SCP) of an intelligent network IN for MTCs via an "AnyTimeInterrogation" (ATI, which is described in the GSM 03.78 standard) or a "StandardInterrogation". This location information is too inaccurate from most IN applications, since one VLR number represents the entire coverage area of an MSC (Mobile Switching Center, switching station in a mobile radio network).

If the Visitor Location Register VLR is also interrogated, for example with the "ProvideRoamingNumber" or "ProvideSubscriberInfo" commands, more accurate location information, e.g. the "Cell ID" and/or "Location Area Identity" (LAI), "Location Number" (LN), is available, but it originates from the last contact with the mobile telephone.

10

15

20

25

The age of this information is stored in the parameter set under "AgeOfLocationInformation". This value can be used in an IN service to decide whether the location can still be used, or is already too old. However, this information cannot be used to obtain more up-to-date location information.

The current "Cell ID" and "Location Number" for the MTC service ean currently can be evaluated in the post-processing of charge tickets only, but not by the IN service, directly before the telephone call.

In MTCs, it may be necessary to identify the location of the B-subscriber as precisely as possible. If the "Service Cell ID" information and the "Location Area" can be precisely defined and reported to the Service Control Point SCP, location-dependent MTC-IN services can respond with maximum granularity to the location of the B-subscriber. Thus, new telecommunications services can be offered for which precise location information is necessary.

Further, very costly, solutions are under consideration for location definition. However, these mean require that the network operator must equip the network with a high-cost infrastructure (for example, "Time of Arrival" or "Enhanced Observed Time Difference"), or must adapt the terminals, i.e. the mobile telephones, for example with a "SIM Application Toolkit" or with other known location information systems such as the Global Positioning System GPS. These methods can locate a terminal in a telecommunications network more accurately, but the financial and technical outlay required in order to obtain this more accurate information is considerable.

The An object of the <u>present</u> invention is to determine more accurate location information with minimal outlay. A further object of the <u>present</u> invention is to make more accurate location information available to an IN service.

Presentation of the invention

SUMMARY OF THE INVENTION

This object is achieved by determining this location information in the following steps:

10

15

20

25

- a) A first message is addressed by the SCP and dispatched to the required terminal. This first message is forwarded by the Visitor Location Register and simultaneously initiates an update of the location information contained in the Visitor Location Register, insofar as a subscriber identification was successful. The location information includes an indication of when this location information was identified/created. This age information is similarly updated.
- b) A second message is then likewise dispatched by the Service Control Point. By means of Via this message, the Service Control Point then interrogates the stored location information and age information in the Visitor Location Register. The age information indicates whether the supplied location information is up-to-date.
- c) If the determined location information is identified as up-to-date, it is evaluated by the Service Control Point and used for further purposes; for example, a location-dependent MTC-IN service.
- d) Otherwise, it can be inferred that the called mobile radio subscriber is not currently available. This may trigger different responses from the service.

Messages which can be used in this way are already individually known in mobile radio networks, but no combination of the type according to the <u>present</u> invention has <u>hitherto</u>, to date, been carried out in order to thus obtain location information of the B-subscriber for the Service Control Point (or the Visitor Location Register).

Further embodiments of the invention can be found in the subclaims.

In a first an embodiment, the second message is initiated by the first message at a definable time interval (for example, in seconds) in order to ensure that the first message had enough time to be delivered to the recipient and, above all, to initiate the required updates of the location information in the Visitor Location Register.

In a further advantageous embodiment of the <u>present</u> invention, the content of the first message is empty. This means that As such, no content is transferred to

15

25

30

the B-subscriber addressed in this way, but this message is used purely to determine the location information which is normally required by the service provider.

Furthermore, the Service Control Point, following the evaluation of the location information and, above all, its age, can decide that the procedure needs to the repeated, and can first repeat the first message and then interrogate the location information again by means of via the second message.

Additional features and advantages of the present invention are described in, and will be apparent from, the following Detailed Description of the Invention and the Figures.

10 Brief description of the drawings

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 shows a schematic representation of the network elements affected by the interrogation initiated by the Service Control Point SCP, and the information flow of messages between these network elements, and

Figure 2 shows a flow chart of the method according to the <u>present</u> invention, and.

Figure 3 shows a second flow chart <u>associated with the method of the present invention.</u>

DETAILED DESCRIPTION OF THE INVENTION.

20 Description of further embodiments

Figure 1 shows those elements of a mobile radio network which are required for the performance of an MTC-IN service. In this embodiment, the underlying cellular mobile radio network is based on the GSM standards, but this does not represent a restriction to the method according to the <u>present</u> invention.

In this example, the service program (referred to as the service logic) MTC is available in executable form in a Service Control Point SCP. The tasks to be performed by the Service Control Point SCP in an intelligent network include fast conversion of a first telephone number into a destination telephone number (address), running of applications, reception (from the SSP) and forwarding of connection information and the charge recording system.

10

15

20

25

30

The Mobile Switching Centre MSC serves as the connection controller to and from the mobile subscriber MS located in the MSC area. The integrated MSC functions correspond to those of the Service Switching Point SSP and the processing functions of the Service Control Point SCP in an intelligent network IN.

The database facilities HLR and VLR are location registers which contain all the individual subscriber data which are relevant to service usage. These location registers are similarly also used for ISDN, PSTN, PCN or UMTS.

The Home Location Register HLR contains all semi-permanent and temporary data: subscriber information and operational features which are important for a connection. They include the database for system control of the service processes and their administration, providing the central master database. The data in the HLR are relevant above all to the connection set-up. The address of the current Visitor Location Register VLR is also stored in the HLR.

The Visitor Location Register VLR is a local database which contains the subset of the data relating to subscribers located in its area, including the current location LocInfo, which are important for call-processing functions (i.e., connection processing). The data are dynamically updated by the terminals (MS) and by the HLR, particularly during roaming.

The HLR and VLR can exchange data with the aid of the MAP protocol (Mobile Application Part, see also the GSM 09.02), also for the MSCs.

In order to send the first message with the aim of updating the location information LocInfo in the Visitor Location Register VLR, a USSD message, which may be an empty "dummy" message, for example "**666#", is transmitted by the SCP. Here, "666" is the service code for the dummy string, and this is not followed by any further information.

A description of USSD messages can be found in the GSM 03.90 specification. In particular, it is possible for the USSD message to be initiated by the SCP ("Network initiated unstructured supplementary service"), without a mobile radio subscriber having previously transmitted a corresponding USSD message.

10

15

20

25

The HLR forwards the USSD to the VLR/MSC in which the mobile radio subscriber MS had its last contact with the network. There, the network attempts to forward the USSD to the mobile radio subscriber; i.e., it performs a paging operation. If the location is successfully determined, the location information LocInfo is updated in the Visitor Location Register VLR. In the event of failure, the dispatch of the USSD message can be repeated. If the USSD message cannot be delivered, this step is omitted, and the location information is not updated.

A second message is then transmitted by the service MTC to interrogate the updated location information. The "AnyTimeInterrogation" ATI of the MAP protocol, for example, can be used for this purpose. The HLR forwards the ATI to the VLR (Provide_Subscriber_Information). It then supplies as a reply ATIack the location information LocInfo which is stored in the VLR and also AgeOfLocationInformation, which indicates the age of the information.

Figure 2 and Figure 3 illustrate the process in a flow chart. This is based on a situation in which a requirement exists for up-to-date location information for a subscriber; 11. As already explained above, a USSD message is then transmitted to the required subscriber; 12. This is followed by a (definable) period, in this example up to 3 seconds; 13. After this period, the second message, an ATI interrogation, is initiated; 14. The location information contained in the reply is examined for its age, AgeOfLocationInformation AOLI; 15. It is, for example, compared with a threshold value; 16. If the information is sufficiently up-to-date, the determined location information is recognized as up-to-date location information and is delivered back; for example, to the MTC service; 29. Otherwise, an interrogation can again be optionally dispatched; 18, or in the first instance a second USSD; 17. If all this fails, the sought subscriber is marked as currently unavailable.

This method offers the advantage that location information which, in most cases (i.e., for most MTC services), is sufficiently accurate can be obtained even without the implementation of additional expensive technologies. For example, the

required "Network Initiated USSD" is available to the SCP as from Siemens Switch Release SR9.

Although the present invention has been described with reference to specific embodiments, those of skill in the art will recognize that changes may be made thereto without departing from the spirit and scope of the invention as set forth in the hereafter appended claims.

Literature

10 GSM 09.02 (ETSI TS-100-974)

Digital cellular telecommunication system (phase 2+);

Mobile Application Part (MAP) specification

Version 7.1.0 Release 1998

15 GSM 03.90 (ETSI TS-100 549)

Digital cellular telecommunication system (phase 2+);

Unstructured Supplementary Service Data (USSD) Stage 2

Version 7.0.0 Release 1998

20 GSM 03.78 (ETSI TS 101 441)

Digital cellular telecommunication system (phase 2+);

Customized Applications for Mobile network Enhanced Logic (CAMEL) Phase 2;

Stage 2

Version 6.4.0 Release 1997

25

List of abbreviations

ATI AnyTimeInterrogation

HLR Home Location Register

5 IN Intelligent Network

LocInfo Location Information

MAP Mobile Application Part

MS Mobile Station (mobile telephone)

MSC Mobile Switching Center

10 MTC Mobile Terminating Call

PCN Personal Communication Network

SCP Service Control Point

UMTS Universal Mobile Telecommunications System

SSP Service Switching Point

15 USSD Unstructured Supplementary Service Data

VLR Visitor Location Register

15

Abstract

Method for providing location information

ABSTRACT OF THE DISCLOSURE

In MTCs, it may be necessary to identify the location of the B-subscriber as precisely as possible.

The location information is determined in the following steps:

- a) A first message is addressed by the SCP and dispatched to the required terminal. This first message is forwarded by the Visitor Location Register and simultaneously initiates an update of the location information contained in the Visitor Location Register, insofar as the subscriber identification was successful. The location information includes an indication of when this location information was identified/created. This age information is similarly updated.
- b) A second message is then dispatched. By means of Via this message, the Service Control Point then interrogates the stored location information and age information in the Visitor Location Register. The age information indicates whether the supplied location information is up-to-date.
- c) If the determined location information is identified as up-to-date, it is evaluated by the Service Control Point and used for further purposes, for example a location-dependent MTC-IN service.

20 Figure 2