Univerzita Hradec Králové Fakulta informatiky a managementu Katedra informačních technologií

Aplikovaná teorie her Párovací problém přijímání studentů do školy Gale-Shapley algoritmus

Autor: Martin Malíř

Hradec Králové 04. 2025

Obsah

1.	Uvod	4
2.	Teoretický popis použitého algoritmu	5
	Princip algoritmu	5
	Využití v modelu	5
	Výhoda tohoto přístupu	6
3.	Přehled proměnných	7
	Globální proměnné	7
	Vlastnosti studentů – turtles	7
	Vlastnosti škol – patches	7
4.	Popis procedur	8
	setup	8
	setup-schools	8
	setup-students	8
	go	8
	assign-students	8
	calculate-satisfaction	8
	move-students	8
	color-schools	8
	current-matches	9
	calculate-preference-satisfaction	9
	update-monitors	9
	update-score-histogram	9
5.	Vizualizace a sledování výsledků	10
6.	Experimenty	.12
	Minimální počet přijímaných studentů	.12
	Poloviční počet přijímaných studentů	.13

N	laximální počet přijímaných studentů	13
7.	Zdroje	14

1. Úvod

Tento simulační model vytvořený v prostředí NetLogo simuluje proces přidělování studentů do škol na základě jejich preferencí, dosažených bodů a kapacit jednotlivých škol. Model umožňuje sledovat spokojenost studentů i škol, vizualizovat výsledky výběrového řízení a analyzovat distribuci skóre studentů.

2. Teoretický popis použitého algoritmu

Model přidělování studentů do škol je inspirován principy Gale-Shapley algoritmu, známého také jako algoritmus stabilního párování. Tento algoritmus byl představen v roce 1962 matematiky Davidem Galeem a Lloydem Shapleym a jeho cílem je nalezení stabilního přiřazení mezi dvěma skupinami, například studenty a školami.

Princip algoritmu

Každý účastník jedné skupiny (např. student) má seřazený seznam preferencí druhé skupiny (např. škol). Párování probíhá iterativně tak, že:

- Studenti (žadatelé) si vybírají školy podle svých preferencí.
- Školy (příjemci) přijímají žadatele, kteří splňují jejich kritéria (např. bodový limit), dokud nenaplní kapacitu.
- Pokud škola již má plno a přijde lepší uchazeč, může "odmítnout" méně vhodného kandidáta.
- Tento proces pokračuje, dokud nedojde ke stabilnímu párování, kde žádný student ani škola nemají motivaci změnit rozhodnutí.

Využití v modelu

V našem modelu není Gale-Shapley algoritmus implementován doslova, ale jeho základní principy jsou použity:

- Studenti mají seřazený seznam preferovaných škol (preferences).
- Při přiřazení student prochází své volby v pořadí a pokouší se o přijetí.
- Škola přijme studenta, pokud má volnou kapacitu a pokud student splňuje minimální požadované skóre.
- Jakmile student najde školu, která jej přijme, přestává hledat což napodobuje stabilní stav.

Rozdíl oproti klasickému Gale-Shapley algoritmu je v tom, že školy v našem modelu neodmítají méně vhodné studenty ve prospěch lepších, jakmile už mají plno. Přijetí je pouze "první kdo přijde a splní podmínky". Tím pádem model nevede vždy k optimálnímu stabilnímu párování, ale spíše k realistickému, jednosměrnému výběrovému řízení.

Výhoda tohoto přístupu

Tato forma přidělování je výpočetně jednodušší a vhodná pro simulace. Umožňuje pozorovat, jak změny v parametrech (např. skóre, kapacitách, preferencích) ovlivňují výsledky, aniž by bylo nutné implementovat plnou rekurzivní logiku klasického algoritmu.

3. Přehled proměnných

Globální proměnné

students	Seznam všech studentů (turtles)
schools	Seznam všech škol (patches)
students-with-school	Počet studentů, kteří byli přiřazeni do
	školy
students-without-school	Počet studentů bez přiřazené školy
first-choice-count	Počet studentů, kteří byli přiřazeni na 1.
	volbu
second-choice-count	Počet studentů, kteří byli přiřazeni na 2.
	volbu
third-choice-count	Počet studentů, kteří byli přiřazeni na 3. volbu

Vlastnosti studentů – turtles

preferences	Seznam preferovaných škol
score	Bodové ohodnocení studenta
assigned-school	Škola, do které byl student přiřazen
satisfaction	Spokojenost studenta podle přiřazené
	volby

Vlastnosti škol – patches

capacity	Maximální kapacita školy
requirements	Minimální bodová hranice pro přijetí
assigned-students	Seznam přiřazených studentů
school-satisfaction	Hodnocení školy na základě naplnění a
	spokojenosti studentů

4. Popis procedur

setup

Inicializuje celý model: vyčistí plátno, nastaví školy a studenty a resetuje čas (tick).

setup-schools

Náhodně vybere určitý počet patchů, které budou představovat školy. Každé škole nastaví kapacitu, minimální požadované body a barvu (černou).

setup-students

Vytvoří požadovaný počet studentů, náhodně jim nastaví skóre, umístění na plátně a seznam tří preferovaných škol.

go

Hlavní simulační cyklus. Postupně provádí přiřazení studentů, výpočet spokojenosti, pohyb studentů, aktualizace barev škol, aktualizace statistik a vykreslení grafů.

assign-students

Pro každý nepřiřazený student kontroluje, zda má preferovaná škola volnou kapacitu a jestli student splňuje požadavky. Pokud ano, student je do školy přiřazen.

calculate-satisfaction

Určuje spokojenost studenta podle toho, na kolikátou preferenci byl přijat (1. – 100 %, 2. – 70 %, 3. – 40 %, žádná – 0 %). Také počítá průměrné skóre a spokojenost škol.

move-students

Studenti, kteří byli přiřazeni do školy, se k ní začnou přibližovat na plátně.

color-schools

Vizuálně označí školy změnou barvy.

current-matches

Funkce, která vrací seznam škol, do kterých byli studenti přiřazeni. Slouží pro export nebo sledování přiřazení.

calculate-preference-satisfaction

Počítá, kolik studentů se dostalo na svou 1., 2., 3. volbu nebo vůbec žádnou, a vykreslí tyto hodnoty do grafu "Preference Satisfaction".

update-monitors

Aktualizuje počítadla a monitory v uživatelském rozhraní (počet studentů se školou, bez školy, rozdělení dle preferencí).

update-score-histogram

Vykreslí histogram bodového hodnocení studentů podle intervalů po 10 bodech.

5. Vizualizace a sledování výsledků

Model využívá dvě základní vizualizace:

- Pozice studentů a škol na plátně
 - Studenti (modré postavičky) se pohybují směrem ke školám (černé čtverce).
- Grafy
 - o Preference Satisfaction: rozdělení podle toho, jakou volbu studenti získali.
 - O Student Scores: histogram bodového ohodnocení studentů.

6. Experimenty

Jak moc jsou školy schopny uspokojit preference studentů?

Minimální počet přijímaných studentů

Poloviční počet přijímaných studentů

Maximální počet přijímaných studentů

7. Zdroje

[1] SINGH, Anmolika. Online. BuiltIn. 2024. Dostupné z: https://builtin.com/articles/gale-shapley-algorithm. [cit. 2025-04-09].

[2] BHARGAV, Nikhil. *The Stable Marriage Problem*. Online. Baeldung. 2024. Dostupné z: https://www.baeldung.com/cs/stable-marriage-problem. [cit. 2025-04-09].