BigML Árvores de Decisão

2023

Um modelo ideal para ML

- Grande poder representacional
 - Ajustando uma linha é um exemplo de baixo
 - Deep neural networks é um exemplo de alto
- Facilidade de uso
 - Fácil configuração relativamente poucos parâmetros
 - Fácil interpretação como as decisões são tomadas?
 - Fácil para se colocar em produção
- Habilidade para trabalhar com dados de mundo real
 - Tipos variados: numéricos, categóricos, textos, etc
 - Tratar valores inexistentes (missing values)
 - Resistente a outliers
- E existem muitas possibilidades a escolher, claro...

- Classification and Regression Trees (CART)
 - Proposto por Leo Breiman
 - BigML usa uma extensão do algoritmo
 - Adaptado ao formato de dataset usado

BigML usa mtree (memory) e stree (streaming)

- Funcionamento
 - Split (quebra) de dados em partições
 - Cada partição maximiza o ganho de informação (classificação) ou minimiza o Mean Square Error (regressão)
 - Cada partição é associada a um predicado
 - Baseado em um campo (ex.: saldo < 1000)
 - Processo de partição é recursivo
 - Formando uma hierarquia de partições

- Scoring e splitting
 - Para cada nó, seleciona o melhor split para cada campo, e então seleciona o melhor campo da lista
- Pruning
 - Poda acontece quando um novo ramo não aumenta a confiança ou diminui o erro
 - Pode ser configurado
- Importância de campos
- Confiança e probabilidade
 - Confiança (confidence) penaliza mais um baixo número de instâncias
 - · Medida pessimista
 - · Wilson score formula

$$\frac{\hat{p} + \frac{1}{2n}z^2 - z\sqrt{\frac{\hat{p}(1-\hat{p})}{n} + \frac{z^2}{4n^2}}}{1 + \frac{1}{n}z^2}$$

Minutes Used	Last Month Bill	Support Calls	Website Visits	Churn?
104	\$103.60	0	0	No
124	\$56.33	1	0	No
56	\$214.60	2	0	Yes
2410	\$305.60	0	5	No
536	\$145.70	0	0	No
234	\$122.09	0	1	No
201	\$185.76	1	7	Yes
111	\$83.60	3	2	No

Website Visits > 0

Minutes Used	Last Month Bill	Support Calls	Website Visits	Churn?
104	\$103.60	0	0	No
124	\$56.33	1	0	No
56	\$214.60	2	0	Yes
2410	\$305.60	0	5	No
536	\$145.70	0	0	No
234	\$122.09	0	1	No
201	\$185.76	1	7	Yes
111	\$83.60	3	2	No

Minutes Used > 200

Minutes Used	Last Month Bill	Support Calls	Website Visits	Churn?
104	\$103.60	0	0	No
124	\$56.33	1	0	No
56	\$214.60	2	0	Yes
2410	\$305.60	0	5	No
536	\$145.70	0	0	No
234	\$122.09	0	1	No
201	\$185.76	1	7	Yes
111	\$83.60	3	2	No

• Last Bill > \$180

Minutes Used	Last Month Bill	Support Calls	Website Visits	Churn?
104	\$103.60	0	0	No
124	\$56.33	1	0	No
56	\$214.60	2	0	Yes
2410	\$305.60	0	5	No
536	\$145.70	0	0	No
234	\$122.09	0	1	No
201	\$185.76	1	7	Yes
111	\$83.60	3	2	No

Last Bill > \$180 e Support Calls > 0

Minutes Used	Last Month Bill	Support Calls	Website Visits	Churn?
104	\$103.60	0	0	No
124	\$56.33	1	Ū	No
56	\$214.60	2	0	Yes
2410	\$305.60	0	5	No
536	\$145.70	0	0	No
234	\$122.09	0	1	No
201	\$185.76	1	7	Yes
111	\$83.60	3	2	No

Porque Decision Trees

• Funciona para classificação e regressão

Regressão em DT

Porque Decision Trees

- Funciona para classificação e regressão
- Entendimento simples: splits s\(\tilde{a}\) baseados nas features e nos seus valores
- Leve e muito rápida em tempo de predição

Predições em DT

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

Porque Decision Trees

- Funciona para classificação e regressão
- Entendimento simples: splits s\u00e3o baseados nas features e nos seus valores
- Leve e muito rápida em tempo de predição
- Dados podem estar desorganizados
 - Features inúteis são automaticamente ignoradas pelo algoritmo
 - Trabalha com dados desnormalizados e não nivelados
 - Trabalha com dados "missing" no treinamento e predição

Treinamento com missing

lapti

Predição com missing

Predição com missing

Porque Decision Trees

- Funciona para classificação e regressão
- Entendimento simples: splits s\u00e3o baseados nas features e nos seus valores
- Leve e muito rápida em tempo de predição
- Dados podem estar desorganizados
 - Features inúteis são automaticamente ignoradas pelo algoritmo
 - Trabalha com dados desnormalizados e não nivelados
 - Trabalha com dados "missing" no treinamento e predição
 - Resiliente com outliers
- Alto poder representacional
- Trabalha facilmente com diversos tipos de dados

Porque NÃO Decision Trees

Tem uma mínima tendência a over-fitting

Problemas em aprendizado (fit)

Under-fitting

- Modelo nunca converge
- Não captura as tendências dos dados
- Recomendação: trocar algoritmo ou features

Over-fitting

- Modelo concorda demais com os dados
- Captura ruído ou outliers nos dados
- Recomendação: trocar algoritmo ou filtrar outliers

Porque NÃO Decision Trees

- Tem uma mínima tendência a over-fitting
 - Mas isso pode ser resolvido com ensembles
 - Random forests
- O processo de splitting cria fronteiras de decisão que são perpendiculares aos eixos das features

Splits paralelos aos eixos

Splits paralelos aos eixos

Uma diagonal é eventualmente "descoberta"

Porque NÃO Decision Trees

- Tem uma mínima tendência a over-fitting
 - Mas isso pode ser resolvido com ensembles
 - Random forests
- O processo de splitting cria fronteiras de decisão que são perpendiculares aos eixos das features
 - Acrescente mais dados!
- Predições fora dos dados de treinamento podem ser problemáticas

Outlier prediction

Porque NÃO Decision Trees

- Tem uma mínima tendência a over-fitting
 - Mas isso pode ser resolvido com ensembles
 - Random forests
- O processo de splitting cria fronteiras de decisão que são perpendiculares aos eixos das features
 - Acrescente mais dados!
- Predições fora dos dados de treinamento podem ser problemáticas
 - Pode ser detectado com testes de "model competence"
- Pode ser sensível a pequenas alterações nos dados de treinamento

Outlier prediction

Configuração

- Objective field
- Otimizações automáticas
- Parâmetros do modelo

Configuração

- Pruning
 - 3 Smart
 - Poda mais nós com menos de 1% de instâncias
 - 3 Statistical
 - Considera todos os nós para poda
 - No statistical
 - Desativa poda
- Missing splits
- Limite de nós
 - Default de 512

- Peso de campos
 - Balance objective
 - Balanceado automaticamente baseado no número de instâncias
 - Manual objective
 - Objective weights
 - Weight field
- Ordenação e shuffling
 - Split é aplicado em linhas com ordem aleatória
- API Request Preview

Visualização

Visualização

Visualização

Summary Report

Predições

Obrigado

leandro@utfpr.edu.br http://lapti.ct.utfpr.edu.br

