Math 341 Homework 4

Theo Koss

September 2020

1 Practice problems

1.1 Problem 1

Let $a \in \mathbb{Z}$, $b \in \mathbb{N}$. Suppose a is divided by b with remainder r and quotient q. Divide a + 1 by b with remainder.

Proof. By definition of divisibility with remainder,

$$a = bq + r$$
 and $0 \le r < b$

Also by theorem 4.1, $q, r \in \mathbb{Z}$ are unique $\forall a$. So

$$a + 1 = ba' + r'$$

There are 2 cases:

- 1. $r \in \{0, 1, ...b 2\}$: In this case r' = r + 1, and since $r \le b 2$ we know $r' \le b 1$ and thus r' < b. Also because we haven't "overflowed*" so to speak, q' = q.
 - (* By this I mean since r' < b, q remains the same, whereas if r' = b, then q' = q + 1.)
- 2. r = b 1: In this case, r' = b, since r' = r + 1 = (b 1) + 1 = b. And since r' = b, this is division with remainder 0, (or normal division). Also since r' = b, q' = q + 1.

So
$$a + 1 = bq + r + 1$$
 when $r \in \{0, 1, ...b - 2\}$.
And $a + 1 = b(q + 1) + 0$ when $r = b - 1$. QED

1.2 Problem 3

Let $b \in \mathbb{N}$ and let $a \in \mathbb{Z}^{<}$. Prove the existence of $q, r \in \mathbb{Z}$, such that a = bq + r and $0 \le r < b$.

Proof. By definition, a = bq + r, and $0 \le r < b$, then -a = bq' + r', $0 \le r < b$. q' = -q, however r' can be one of two things, either:

- 1. r' = b r: In this case, -a = bq' + r' = -bq + b r = -b(q 1) r. Therefore $q, r \in \mathbb{Z}$ exist for -a.
- 2. r' = b + r: In this case, -a = bq' + r' = -bq + b + r = -b(q 1) + r. Therefore q, r exist, and are unique, for -a.

QED

1.3 Problem 4

Let $b \in \mathbb{N}$ and suppose -b < r < b. Prove that if r : b, then r = 0.

Proof. Recall that by definition of divisibility, $r : b \implies r = bn$, for some $n \in \mathbb{Z}$. Also since -b < r < b, then

$$-b < bn < b$$

again where $n \in \mathbb{Z}$. We can divide everything by b to get:

$$-1 < n < 1, n \in \mathbb{Z}$$

There are no integers n between -1 and 1, except 0. Thus n=0 and since $r=bn,\,r=0$.