Computational Eigenvector Simulation

Ali Taqi

Notation

Let $\mathcal{M}_F[M \times N]$ be the set of $M \times N$ matrice over the field F.

- Suppose Q is some $M \times M$ square matrix on a field F. Denote this $Q \in \mathcal{M}_F[M^2]$.
- Suppose v is a row vector on a field F of size M. Denote this by saying $v \in \mathcal{V}_F^{(R)}[M]$.

Note that $\mathcal{V}_F^{(R)}[M]$ is equivalent to $\mathcal{M}_F[1 \times M]$.

• Suppose v is a column vector on a field F of size M. Denote this by saying $v \in \mathcal{V}_F^{(C)}[M]$.

Note that $\mathcal{V}_F^{(C)}[M]$ is equivalent to $\mathcal{M}_F[M \times 1]$.

Definitions

Definition. (ϵ – equivalence) Let F be a field, and $\varepsilon \in \mathbb{R}^+$. Suppose we have vectors $v, v' \in \mathcal{V}_F[M]$. Then, $v \sim_{\epsilon} v'$ if $||v - v'|| < \epsilon$ where $||\cdot||$ is the norm on F.

Definition. (Q – evolution sequence) Let $\pi \in \mathcal{V}[M]$ be a vector of size M. Then, the Q-evolution sequence of π is given by:

$$\operatorname{Seq}(Q,\pi) = \{\pi'_n\}_{n \in \mathbb{N}} \text{ where } \pi'_n = \pi Q^n$$

Definition. (ϵ – convergence) Let $\varepsilon \in \mathbb{R}^+$ Suppose we have a sequence Seq (Q, π) . Then, Seq (Q, π) ε -converges at N if:

$$\exists N \in \mathbb{N} : \forall n \geq N \mid \pi'_N \sim_{\epsilon} \pi'_n$$

Definition. (σ – **perturbance**) Let $\pi \in \mathcal{V}[M]$ be a vector of size M. Then, a σ – perturbance of π with perturbance vector ε is given by the vector $\pi' = \pi + \varepsilon$ where:

$$\varepsilon = (\varepsilon_i)_{i=1}^M$$
 where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$

Definition. (localized σ -perturbance) Let $\pi \in \mathcal{V}[M]$ be a vector of size M. Then, if we have a dimension $d \in \{1, \ldots, M\}$, a localized σ -perturbance of π in d with perturbance vector ε is given by the vector $\pi' = \pi + \varepsilon$ where:

$$\varepsilon = (\varepsilon_j)_{j=1}^M$$
 where $\varepsilon_d \sim \mathcal{N}(0, \sigma^2)$ and $\forall j \neq d : \varepsilon_j = 0$

Monte Carlo Batches

Definition. (Monte Carlo α -Batch) Let $\alpha \in \mathbb{R}^+$. Take a batch \mathcal{B} of B row vectors $\pi \sim \text{Unif}(-\alpha, \alpha)$ and denote it as:

$$\mathcal{B} = \{\pi_i\}_{i=1}^B \text{ where } \pi_i \sim \text{Unif}(-\alpha,\alpha)$$

Definition. (Evolved α -Batch) To simulate the eigenvectors, we will take the Q – evolution sequences on each of our $\pi_i \in \mathcal{B}$. So, our similated batch of evolution sequences is given by:

EvolBatch
$$(Q, \mathcal{B}) = \{ \{ \pi'_{i,n} \}_{n \in \mathbb{N}} \}_{i=1}^B$$

Question: Which α is sufficient to obtain eigenvectors that yield all the eigenvalues λ_i of Q?