Information Retrieval and Organisation

Dell Zhang

Birkbeck, University of London

2015/16

Computing Scores in a Complete Search System

Inexact Top-k Retrieval

- We now consider schemes which produce k documents that are likely to be among the k highest scoring documents
 - We hope to dramatically lower the cost of computing the top-k documents
 - Obviously, we don't want to alter the user's perceived relevance of the top-k results significantly
- May not be such a bad thing as it sounds like
 - Cosine similarity is also only a proxy for the user's perceived relevance

Inexact Top-k Retrieval

- We'll now look at some ideas designed to eliminate a large number of documents without computing their cosine scores
- ▶ These heuristics follow a two-step scheme:
 - 1. Find a set A of documents that are contenders, where $k < |A| \ll N$
 - A does not necessarily contain all the k top-scoring documents for the query, but there should be a large overlap
 - 2. Return the *k* top-scoring documents in *A*

Index Elimination

- We could only consider the terms whose idf exceeds a certain threshold
 - ▶ Low idf means that terms are not very relevant
 - ▶ These terms tend to have very long postings lists
- We could only consider the documents that contain many (or all) query terms
 - Only compute cosine values for these documents
 - ► The danger is that we could end up with |A| < k (we'll come back to this in a moment)

Champion Lists

- Pre-compute, for each term t in the dictionary, the set of the r documents with the highest tf-values for t. We call this set of r documents the champion list for term t (sometimes also called fancy list or top docs).
- We create A by combining the champion lists of all terms in query q.
- Determining the parameter r is crucial
 - ► As *r* is determined when constructing the index, we might not know *k* then
 - So we might choose an r that is too small (ending up with |A| < k again)

Static Quality Scores

- ► In many search engines, a query-independent measure of quality is available
- The scores calculated based on such measures are called static quality scores
 - For example, the number of favourable reviews of news stories
- The matching-score is computed by combining the static quality g(d) of a document d with other query-dependent scores
 - A simple way to do this would be to add g(d) to the cosine measure
- Such static quality scores can be used to build champion lists based on g(d)

- The algorithm COSINESCORE in the last chapter applied a document-at-a-time processing
 - ► That means, for each d, $tf_{t,d}$ pair we calculated the cosine measure
 - We have to accumulate the score for each document while the algorithm is running
- This is very inefficient:
 - We have to store scores for millions or even billions of documents
 - Most of those documents will never make it into the top-k

- Naturally, we only want to compute cosine measures for serious contenders (the set A)
- ▶ So we allocate space for computing |A| scores
- ► How do we make sure that we process the most important documents first?

- Up to now we have implicitly assumed that postings lists are ordered by docIDs
- ▶ However, if we add term frequencies (or other scores such as g(d)) and want to do inexact top-k retrieval, other orders might be better
- Let's assume that we have postings lists with term frequency values (each entry consists of (docID, tf-value)
 - e.g., information, 3: ((1,3),(2,1),(5,2));
- We could order the postings lists in decreasing order of tf-values:
 - e.g., information, 3: ((1,3),(5,2),(2,1));

- We access the postings lists of all the terms contained in the query
- ► Then we process the items in the lists in decreasing tf-value order
 - ► Heuristic: documents in the top-*k* are likely to occur early in these ordered lists
- We can also extend this scheme with idf-values, i.e. multiply each tf-value with the idf-value of the term before deciding on the order
- ► The first |A| documents encountered get their total scores computed

- Here's an example for three postings lists (and simplified tf-idf-values):
 - ▶ information, idf=1; 3: $\langle (1,3), (5,2), (2,1) \rangle$;
 - ▶ line, idf=3; 2: $\langle (2,6), (1,2) \rangle$;
 - computer, idf=2; 5: ((3,7), (5,4), (2,3), (1,2),
 (4,1));
- Start with document 2, term line
 - $(3 \times 6 = 18; largest tf-idf value)$
- Continue with document 3, term computer
 - $(2 \times 7 = 14; \text{ second-larges tf-idf value})$
- and so on . . .

Storing TF values

- Storing the tf-values for all documents will take up considerable space
 - ► The first problem we face is: how do we store the tf-values efficiently?
 - ► As it turns out, unary coding is quite good at this.

\mathtt{method}	b	its per	tf-value	
	Bible	GNUBib	Comact	TREC
Unary	1.27	1.16	1.74	2.49
Gamma	1.38	1.23	1.88	2.13

Storing TF values

- However, when sorting by tf-values we have problems with compressing docIDs (as gap encoding relies on sorted docIDs)
 - ► For example, the list ⟨5: (1,2), (2,2), (3,5), (4,1), (5,2)⟩ would be sorted like this ⟨5: (3,5), (1,2), (2,2), (5,2), (4,1)⟩
- Solution: organize items in "tf-blocks" $(tf, k: d_1, \ldots, d_k)$, where k is the number of documents for a certain tf-value and the d_i s are sorted docIDs
 - So for the above example, we would get: (5:(5,1:3),(2,3:1,2,5),(1,1:4))
 - Needs slightly more memory than a docID-sorted list, but still efficient

Cluster Pruning

- ▶ In *cluster pruning*, we have a preprocessing step during which we cluster the document vectors
 - Pick \sqrt{N} documents at random from the collection, we call these *leaders*.
 - For each document that is not a leader, we compute its nearest leader.
 - We refer to documents that are not leaders as followers.
 - ► The expected number of followers for each leader is roughly $N/\sqrt{N} = \sqrt{N}$
- We'll talk about more advanced text clustering techniques later in the module

Cluster Pruning

- At query time, we only compute cosine measures for a small number of documents
 - Figure 6. Given a query q, find the leader L closest to q (this entails computing cosine similarities from q to each of the \sqrt{N} leaders)
 - ► The candidate set A consists of L together with its followers (this entails computing cosine similarities from q to each of the \sqrt{N} followers)

Cluster Pruning

Tiered Indexes

- Create several tiers of indexes, corresponding to importance of indexing terms
- During query processing, start with the highest-tier index
- If we get $\geq k$ hits: stop and return the results to user
- ▶ If we get < k hits: repeat for the next index in tier cascade

Tiered Indexes

- Example: two-tier system
 - ▶ Tier 1: Index of all titles
 - ▶ Tier 2: Index of the rest of documents
 - As pages containing the search words in the title are usually better hits than pages containing the search words in the body of the text.
- Could be expanded to three-tier system
 - Tier 1: Index of all titles
 - Tier 2: Index of all abstracts
 - ▶ Tier 3: Index of the rest of documents

Tiered Indexes

Putting It All Together

What Have We Covered So Far?

- Document preprocessing
 - linguistic and otherwise
- Positional indexes
- Tiered indexes
- Spelling correction
- k-Gram indexes
 - for wildcard queries and spelling correction
- Query processing
- Document scoring
- ▶ Term-at-a-time processing

What Is Yet To Come?

- Document cache
 - e.g., for generating snippets (dynamic summaries)
- Zone indexes
 - separate the indexes for different zones: the body of the document, all highlighted text in the document, anchor text, text in metadata fields, etc.
- Machine-learned ranking functions
- Proximity ranking
 - e.g., rank documents in which the query terms occur in the same local window higher than documents in which the query terms occur far from each other
- Query Parser
 - see next slide

Query Parser

- ▶ IR systems often guess what the user intended
 - ► The two-term query *London tower* (without quotes) may be interpreted as the phrase query "London tower" or even "Tower of London".
 - ► The query 100 Madison Avenue, New York may be interpreted as a request for a map.
- ► How do we "parse" the query and translate it into a formal specification containing phrase operators, proximity operators, indexes to search etc.?

Summary

- Different variants for computing scores
- How to compute scores efficiently (inexact top-k retrieval)
- ▶ How a complete retrieval system looks like