Is L^2 Physics-Informed Loss Always Suitable for **Training Physics-Informed Neural Network?**

Di He Liwei Wang

Background

Partial Differential Equation (PDE)

$$\begin{cases} \mathcal{L}u(x) = \varphi(x) & x \in \Omega \subset \mathbb{R}^n \\ \mathcal{B}u(x) = \psi(x) & x \in \partial\Omega, \end{cases}$$

£: PDE operator

B: boundary/initial conditions

x: spatiotemporal-dependent variable

Physics-Informed Neural Network (PINN)

Train an NN, u_{θ} , to represent the PDE solution by minimizing the Physics-Informed Loss:

$$\ell_{\Omega,p}(u) = \|\mathcal{L}u(x) - \varphi(x)\|_{L^p(\Omega)}^p,$$

$$\ell_{\partial\Omega,p}(u) = \|\mathcal{B}u(x) - \psi(x)\|_{L^p(\partial\Omega)}^p.$$

 $\triangleright p = 2$ for vanilla PINN.

Probing PINN training

- ➤ Zero training loss ⇔ Learned solution is exactly accurate
- ➤ Small but non-zero loss ⇒ ? (This work)

Does a learned solution with a small Physics-Informed Loss always corresponds to a good approximator of the exact solution?

No!

Hamilton-Bellman-Jacobi (HJB) Equation

$$\begin{cases} \mathcal{L}_{\text{HJB}}u := \partial_t u(x,t) + \frac{1}{2}\sigma^2 \Delta u(x,t) - \sum_{i=1}^n A_i |\partial_{x_i} u|^{c_i} = \varphi(x,t) \\ \mathcal{B}_{\text{HJB}}u := u(x,T) = g(x) \end{cases}$$

- Most important PDE in stochastic control.
- Representative of high-dimensional nonlinear PDE.

Empirical finding: Relative error remains large in spite of the small training loss.

Iteration	1000	2000	3000	4000	5000
L^2 Loss	0.098	0.088	0.070	0.584	0.041
L^1 Relative Error	6.18%	5.36%	3.86%	3.94%	3.47%
$W^{1,1}$ Relative Error	17.53%	17.67%	14.83%	14.40%	11.319

PINN through the lens of stability

Stability of PDE

[Definition] A PDE is (Z_1, Z_2, Z_3) -stable, if $||u^*(x) - u(x)||_{Z_3} = O(||\mathcal{L}u(x) - \varphi(x)||_{Z_1} + ||\mathcal{B}u(x) - \psi(x)||_{Z_2})$ as $\|\mathcal{L}u(x) - \varphi(x)\|_{Z_1}$, $\|\mathcal{B}u(x) - \psi(x)\|_{Z_2} \to 0$, where Z_1, Z_2, Z_3 are three Banach spaces and u^* is the exact solution.

➤ Physics-Informed loss functions corresponding to $||\cdot||_{Z_1}$ and $||\cdot||_{Z_2}$ help to obtain u_{θ} which is provably close to the exact solution.

► PINN training with L² Physics-Informed Loss is suitable only when a PDE is (L^2, L^2, Z) -stable for some Banach space Z.

Stability property of HJB Equation

[Theorem 1] (Stability of HJB equations) A large class of *n*-dimensional HJB Equation is $(L^p, L^q, W^{1,1})$ -stable if p > n, q > kn (k depends on the equation).

[Theorem 2] (Instability of HJB equations) There exists an instance of HJB Equation. whose exact solution is u^* , such that for any $\varepsilon > 0, A > 0, r \ge 1, m \in \mathbb{N}$ and $p \in [1, n/4]$, there exists a smooth function u which satisfies

- $\|\mathcal{L}_{HJB}u \varphi\|_{L^p(\mathbb{R}^n \times [0,T])} < \varepsilon$, $\mathcal{B}_{HJB}u = \mathcal{B}_{HJB}u^*$, and $supp(u - u^*)$ is compact,
- $\bullet \|u u^*\|_{W^{m,r}(\mathbb{R}^n \times [0,T])} > A.$
- > We characterize the error using Sobolev norm as the gradient of the solution is also important for HJB Equation.

The distance between u_{θ} and u^* , ∇u_{θ} and ∇u^* can be arbitrarily large even though the L^2 loss is small!

Minimizing L^{∞} loss using adversarial training

New training objective for PINN

Theoretical results inspires us to minimize L^{∞} Physics-Informed Loss

$$\ell_{\infty}(u) = \sup_{x \in \Omega} |\mathcal{L}u(x) - \varphi(x)| + \lambda \sup_{x \in \partial\Omega} |\mathcal{B}u(x) - \psi(x)|$$

Algorithm 1 L^{∞} Training for Physics-Informed Neural Networks

Input: Target PDE (Eq. (1)); neural network u_{θ} ; initial model parameters θ

Output: Learned PDE solution u_{θ}

Hyper-parameters: Number of total training iterations M; number of iterations and step size of inner loop K, η ; weight for combining the two loss term λ

1: **for**
$$i=1,\cdots,M$$
 do
2: Sample $x^{(1)},\cdots,x^{(N_1)}\in\Omega$ and $\tilde{x}^{(1)},\cdots,\tilde{x}^{(N_2)}\in\partial\Omega$
3: **for** $j=1,\cdots,K$ **do**
4: **for** $k=1,\cdots,N_1$ **do**
5: $x^{(k)}\leftarrow\operatorname{Project}_{\Omega}\left(x^{(k)}+\eta\operatorname{sign}\nabla_x\left(\mathcal{L}u_{\theta}(x^{(k)})-\varphi(x^{(k)})\right)^2\right)$ Inner loop:
6: **for** $k=1,\cdots,N_2$ **do**
7: $\tilde{x}^{(k)}\leftarrow\operatorname{Project}_{\partial\Omega}\left(\tilde{x}^{(k)}+\eta\operatorname{sign}\nabla_x\left(\mathcal{B}u_{\theta}(\tilde{x}^{(k)})-\psi(\tilde{x}^{(k)})\right)^2\right)$
8: $g\leftarrow\nabla_{\theta}\left(\frac{1}{N_1}\sum_{i=1}^{N_1}\left(\mathcal{L}u_{\theta}(x^{(i)})-\varphi(x^{(i)})\right)^2+\lambda\cdot\frac{1}{N_2}\sum_{i=1}^{N_2}\left(\mathcal{B}u_{\theta}(\tilde{x}^{(i)})-\psi(\tilde{x}^{(i)})\right)^2\right)$
9: $\theta\leftarrow\operatorname{Optimizer}(\theta,g)$
Outer loop: Gradient descend for NN parameters

Experiments

High-dimensional LQG Problem

10: return ua

$$\begin{cases} \partial_t u(x,t) + \Delta u(x,t) - \mu \|\nabla_x u(x,t)\|^2 = 0\\ u(x,T) = g(x) \end{cases}$$

Method	Relative error for $n = 100$			
Method	L^1	L^2	$W^{1,1}$	
Original PINN [28]	3.47%	4.25%	11.31%	
Adaptive time sampling [35]	3.05%	3.67%	13.63%	
Learning rate annealing [34]	11.09%	11.82%	33.61%	
Curriculum regularization [17]	3.40%	3.91%	9.53%	
Adversarial training (ours)	0.27%	0.33%	2.22%	

More HJB Equation variants

Method	c = 1.25	c = 1.5	c = 1.75	
Original PINN [28]	1.11%	3.82%	2.73%	
Adaptive time sampling [35]	1.18%	2.34%	7.94%	
Learning rate annealing [34]	0.98%	1.13%	1.06%	
Curriculum regularization [17]	6.27%	0.37%	3.51%	
Adversarial training (ours)	0.61%	0.15%	0.29%	

Solution visualization

