Safety and Reliability of Embedded Systems SRES (WS 19/20) Problem Set 2

Problem 1: Definition of "risk"

1. Complete the graphic by filling in the gray boxes with the following concepts: Safety, Danger, Residual Risk, Required Risk Reduction and Actual Risk Reduction.

2. How is risk defined mathematically? Please depict your results from 1. by using a frequency vs. severity plot

Definition of risk: R = H * S

H: Expected frequency of the occurrence of an event that leads to a particular harm.

S: Expected severity of the harm

Problem 2: Railroad crossing

summary: MTTR = 12 hours MTBF = 6 months

Every 100 th crossing accident killing all passengers

Driver: 300 railroads crossings per year 5 seconds per crossing

1. calculate the individual risk of fatality for the driver of the car.

NP =
$$\frac{300}{v} = \frac{300}{8760h} = \frac{5}{146h} = 3.42 \times 10^{-2} h^{-1}$$

HR =
$$\frac{2}{y} = \frac{2}{8760h} = \frac{1}{4380h} = 2.28 \times 10^{-4} h^{-1}$$

$$D = 12h$$

$$E = 5 \sec = \frac{5}{3600h} = 0.001388 << D = 0$$

$$C = \frac{1}{100} = 0.01$$

$$IRF_i = \sum_{hazard_j} NP_i \cdot \left[HR_j \cdot (D_j + E_{ij}) \cdot \sum_{accidents_k} A_{jk} \cdot F_{jk} \right]$$

$$F = 1_death$$

So, Individual Risk of Fatality (IRF) = NP. [HR(D+E).C.F]
$$= (3.42 \times 10^{-2} h^{-1}) * (2.28 \times 10^{-4} h^{-1}) * 12h * 0.01 \text{ death}$$

$$= 9.35*10^{-7} \text{ deaths/h}$$

$$= 8.2*10^{-3} \text{ deaths/year}$$

2. is the "Minimal Endogenous Mortality" criterion (MEM) satisfied?

"minimal endogenous mortality" MEM considers 10-5 deaths per person and year to be the upper limit of the (additional) mortality caused by technical systems:

$$\left(10^{-5} \frac{deaths}{person.year}\right) * 1 \ person = \frac{10^{-5} \ deaths}{8760h} = 1.142 * 10^{-9} \ \frac{death}{h}$$

IRF =
$$9.35*10^{-7} \frac{death}{h} > 1.142 * 10^{-9} \frac{death}{h}$$

So, the MEM criterion is not fulfilled.

3. calculate also the availability a_c of the safe guarding controller.

$$a_c = \frac{MTBF}{MTBF + MTTR} = \frac{4380}{4380 + 12} = 0.99727$$

Problem 3: Adaptive Cruise Control System

- 1. Please give a C, F, P, W value for the hazards based on the values <u>described in Chapter 3</u> and on the following assumptions (notice that they are not based on real data):
 - Acceleration is too high
 - Deceleration is too high

Consequence C = C ₃	If an accident occurs due to these hazards, at least 2 people are
	killed and at most 10 people are killed. (C₃: Death of several
	people)
Frequency of and exposure time in the	The ACC vehicle's passengers (including driver) sit inside the
hazardous zone F = F ₂	vehicle two hours per day in average. (F2:Frequent to permanent)
Possibility of failing to avoid the	There is a high possibility to avoid these hazards by the
hazardous event $P = P_1$	deactivating the ACC system and giving the full control of the
	vehicle to the driver. (P1: Possible under certain conditions)
Probability of the unwanted	• It is known that each hazard might occur once in 10 years.
occurrence $W = W_2$	(few unwanted occurrences -> $1/87600 \approx 1.141 \times 10^{-5}$
	 According to a safety analysis, the likelihood that the ACC system is in a hazardous state is 0.02% (Slight probability)

2. Assign a SIL level for the ACC system by ranking the Hazards using the risk graph example provided in chapter

Necessary minimal risk reduction	Safety integrity level
•	No safety requirements
a	No special safety requirements
b, c	1
d	2
e, f	3
g	4
h	An E/E/PE SRS* is not sufficient

*Bectrical/Bectronic/Programmable Bectronic safety-related system

3. What is the necessary risk reduction to be applied?

-Minimum

Minimum required risk reduction: f