Mathematics Class Slides Bronx Early College Academy

Chris Huson

5-21 September 2018

GQ: How do we define functions?

CCSS: HSF.IF.C.7 Analyze functions

1.1 Thursday 5 Sept

Do Now Handout: Algebra skills check

- 1. Welcome back to school!
- 2. Assigned seating: arrange yourself alphabetically by last name, left to right, front to back.
- 3. Take out notebooks (or blank paper) & calculator
- 4. Complete handout problem set

Lesson: Linear functions, slope, solving; vertical line test p 4-6 Homework: Problem set: Function identification 1A & 1B p. 6-7

GQ: What are domain and range?

CCSS: HSF.IF.C.7 Analyze functions

1.2 Friday 6 Sept

Do Now: Substitution notation

- 1. Handout, IB exam problem
- 2. Challenge: Verify the following Pythagorean identity for all values of *x* and *y*:

$$(x^2 + y^2)^2 = (x^2 - y^2)^2 + (2xy)^2$$

Homework review

Lesson: Domain, range, function review

Calculator deposits \$20

Homework: Polynomial simplification, graphing linear functions

Due: notebook, folder, calculator

GQ: What is the appropriate precision for a calculation?

CCSS: MP5 Attend to precision 1.3 Monday 9 Sept

Do Now: Textbook chapter warmup, use looseleaf paper

1. Skills check #1-3 p. 3

Lesson: Rounding, significant figures, error bars pp. 1-5 Exercise 1A, #1-2, p. 5

Homework: Calculation and rounding practice

GQ: How do we measure the bounds of errors?

CCSS: MP5 attend to precision 1.4 Tuesday 10 Sept

Do Now: Calculator practice

- 1. Chapter review #1 p. 39
- Pay careful attention to saving calculator values, rather than copying to paper and reentering.
- 3. Check your answers in back of book, p. 766

Lesson: Bounds and errors pp. 6-8

Practice exercises 1B p. 8-9

Homework: Function substitution, domain and range

GQ: How do we write very large or small numbers?

CCSS: MP5 attend to precision 1.5 Wednesday 11 Sept

Do Now: Precision practice

- 1. Practice exercises 1B p. 8-9
- Pay careful attention to saving calculator values, rather than copying to paper and reentering.
- 3. Check your answers in back of book, p. 765

Lesson: Exponents & scientific notation pp. 9-12

Note exponent rules top of page 11

Homework: Practice exercises 1C p. 12-13

GQ: How do we calculate the side lengths of a right triangle?

CCSS: MP5 attend to precision 1.6 Thursday 11 Sept

Do Now: Precision practice

- 1. Chapter review #2 p. 39
- 2. Which will be easier to use, scientific notation or the fully expanded number?
- 3. Use proper notation to display your answer clearly

Homework review

Lesson: Right triangle trigonometry pp. 13-15

Angle of elevation and depression page 11

Homework: Practice exercises 1D p. 16-17

GQ: How do we calculate the side lengths of a non-right triangle?

1.7 Friday 13 Sept

CCSS: MP5 attend to precision

Do Now: Precision practice

- 1. Chapter review #3 p. 39
- Learn how to use the calculator to solve an equation. (multiple methods)

Lesson: Non-right triangles and the sine rule pp. 17-21

The ambiguous case page 21

Homework: Practice exercises 1E p. 21-22

GQ: How do we calculate the area of a triangle?

CCSS: MP5 attend to precision

1.8 Monday 16 Sept

Do Now: Precision practice

- 1. Chapter review #4b p. 39
- 2. Note that both $\frac{15}{\sin 31} = \frac{13.4}{\sin R}$ and $\frac{\sin 31}{15} = \frac{\sin R}{13.4}$.

Which is easier to solve?

Lesson: Practicing applying the sine rule pp. 17-21

The ambiguous case page 21

The sine formula for the area of a triangle page 22

Homework: Practice exercises 1E p. 21-22

GQ: How do we practice the law of sines?

CCSS: MP5 attend to precision 1.9 Tuesday 17 Sept

Deltamath practice: scientific notation, trig

- 1. Laptops, login with Teacher ID 546068
- Do Deltamath sections in order Practice comes first, then new topics
- 3. Work extra problems on the skills you need to practice

New material: The sine formula for the area of a triangle page 22 Radian / degree conversion; law of cosines

Homework: Complete Deltamath problems, 10:00PM deadline

GQ: How do we calculate the angles of a triangle?

CCSS: MP5 attend to precision 1.10 Wednesday 18 Sept

Do Now: Precision practice

1. Chapter review #6 p. 39

Lesson: The cosine rule pp. 23-24

The sine formula for the area of a triangle page 22

Homework: Practice exercises 1F p. 24-25

GQ: How do we "solve" a triangle?

CCSS: MP5 attend to precision 1.11 Thursday 19 Sept

Do Now: IB exam problems

1. Applications of the sine and cosine rules

Lesson: The cosine rule pp. 23-24

The sine formula for the area of a triangle page 22

Homework: Study Arc length and area of sector

Oxford textbook pp. 25-27

Deltamath, practice circle sectors and arc length

Khan Academy, log in and use videos as resource (DrHuson)

GQ: How do we calculate the angles of a triangle?

CCSS: MP5 attend to precision 1.12 Friday 20 Sept

Do Now: Precision practice

1. Chapter review #6 p. 39

Lesson: The cosine rule pp. 23-24

The sine formula for the area of a triangle page 22

Homework: Practice exercises 1F p. 24-25

Domain and range of a function

1.5

1. Write down the domain and range of the function graphed

2. What is the range of this function modeling a bicycle wheel?

Function substitution

1.5

Given
$$f(x) = 3x + 2$$
. What is $f(2x - 1)$?

- 1. Perform the substitution, putting 2x 1 in parenthesis.
- 2. Simplify, beginning each line with a leading equals sign if it is equal to the line above.

GQ: How do we solve quadratic equations?

CCSS: HSF.IF.B.4 Interpret key features of functions and their graphs 1.4 Tuesday 10 Sept

Do Now: Factoring

- 1. Find the intercepts, axis of symmetry, and minimum point of the graph of the function f(x) = (x-1)(x-5)?
- 2. Factor the function $g(x) = x^2 x 12$ to determine the features of its graph.
- 3. Convert the function $h(x) = x^2 + 4x + 3$ to the vertex form, $h(x) = a(x h)^2 + k$. Write down its vertex.

Lesson: Factoring, setting = 0, checking solutions, x- and y-intercepts, vertex, axis of symmetry

Homework: Factoring practice, completing the square, graphing Skip around and do what you can by tomorrow

How do we graph quadratics?

CCSS: HSF.IF.B.4 Interpret key features of functions and their graphs

1.5

Consider the function $f(x) = -x^2 + 2x + 3$

- 1. Factor f and state its zeros.
- 2. Restate *f* in vertex form. Write down the vertex as an ordered pair.
- 3. Over what intervals is the function increasing, decreasing, and neither?
- 4. If f(x) represents the height of a diver over the domain $0 \le x \le 3$, interpret f(0), the vertex, and f(3)
- 5. What does the "slope" of the curve represent?

Lesson: Example 18 p. 54

How do we communicate mathematical results?

CCSS: MP.4 Model with mathematics

1.6

Technical skills needed to communicate mathematics

- 1. Word processing: Microsoft Word and equation editor
- 2. Computer calculators: Desmos; domain restriction, labeling
- 3. Cloud storage: Dropbox
- 4. Technical writing standards: MLA format (Purdue OWL)
- 5. Writing style: declarative
- 6. Assessment criteria: IB exploration criterion *B: Mathematics Presentation*

Lesson: Shared folder structure, graph copy/paste, MLA template

Homework: Pre-test

GQ: How do we simplify exponents?

CCSS: HSN.RN.A.2 Rewrite expressions involving radicals and rational exponents using the properties of exponents 1.7

Do Now: Exponent and radicals practice

- 1. Exponent product, quotient, and power rules
- 2. Fractional exponents
- 3. Negative exponents
- 4. Graphing exponential function

Lesson: Product, quotient, power rules, $\sqrt{x^4}$

Homework: Exponent and radicals practice