Tehnici de Optimizare

Facultatea de Matematica si Informatica
Universitatea Bucuresti

Department Informatica-2021

Proiect

- Alegere 1-2 lucrari; maxim 2 alegeri per lucrare
- Documentatie (rezultate ale lucrarii); limita pagini: 5-20
- Simulari (algoritmi din lucrare); grafice de analiza
- Echipa: maxim 2 3 studenti
- Pondere nota: 60%
- Termen: in sesiune
- Evaluare: online fata-in-fata

Cursul de azi

Problema de fezabilitate convexa

- Probleme de optimizare cu constrangeri de egalitate
 - Functia Lagrange
 - Multiplicatori Lagrange
 - Conditii de optimalitate

Problema de fezabilitate convexa

Fie
$$C_1$$
 si C_2 multimi simple convexe, calculati $x \in Q = C_1 \cap C_2$

Algoritmul proiectiilor alternative:

1.
$$x^k = \pi_{C_1}(y^k)$$

2.
$$y^{k+1} = \pi_{C_2}(x^k)$$

Daca $Q \neq \emptyset$, se arata ca $x^k \rightarrow x^* \in Q$

Problema de fezabilitate convexa

Problema de fezabilitate convexa

• Daca C_1 si C_2 sunt subspatii/poligoane liniare, atunci APA are convergenta liniara

• Convergenta este strict legata de unghiul de la intersectia celor doua: $\theta \approx 0$ implica un nr. mare de iteratii.

Cursul de azi

$$\min f(x)$$
 s.l. $x \in Q$

• Problema de fezabilitate convexa

- Probleme de optimizare cu constrangeri de egalitate
 - Functia Lagrange
 - Multiplicatori Lagrange
 - Conditii de optimalitate

Optimizare cu constrangeri de egalitate

$$\min_{\mathbf{x}} f(\mathbf{x}) \quad s. l. \ g_i(\mathbf{x}) = 0, \qquad i = 1, \dots, m$$

- f, g_i functii diferentiabile, notam $g(x) = \begin{bmatrix} g_1(x) \\ \dots \\ g_m(x) \end{bmatrix}$
- Pentru g(x) = Ax b avem $Q = \{x : g(x) = 0\}$ convexa (altfel neconvexa!)
- Exemplu: $Q = \{x \in R^2: x_1^2 + x_2^2 = 1\}$

Optimizare cu constrangeri de egalitate

$$\min_{\mathbf{x}} f(\mathbf{x})$$
 s.l. $g_i(\mathbf{x}) = 0$, $i = 1, \dots, m$

• In forma de mai sus, nu se intrevad conditii de optimalitate

Functia Lagrangian: L:
$$\mathbb{R}^n \times \mathbb{R}^m \to R$$
, $L(x, \lambda) = f(x) + \sum_i \lambda_i g_i(x)$

• Vom folosi functia Lagrange pentru a exprima conditii de optimalitate!

Optimizare cu constrangeri de egalitate

$$\min_{\mathbf{x}} f(\mathbf{x}) \quad s. l. \quad g_i(\mathbf{x}) = 0, \qquad i = 1, \dots, m$$

Vecinatate
$$V(x) = \{s: ||x - s|| \le r\}$$

Pct. de minim:
$$x^* \in Q$$
, $a.i.$ $f(x^*) \le f(x)$ $\forall x \in Q \cap V(x^*)$

Pct. de minim regulat :
$$x^* \in Q$$
, $a.i.$ $f(x^*) \le f(x)$ $\forall x \in Q \cap V(x^*)$

 $\nabla g_i(x^*)$ liniar independenti

+

$$v_1, \cdots, v_m \ l. \ d. \ daca \ exista \ \alpha \neq 0 \ a. \ i. \sum \alpha_i v_i = 0$$

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 $l.i., \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \end{bmatrix}$ $l.d.$

Exemplu minim regulat

$$\min x_2$$
s.l. $(x_1 - 1)^2 + x_2^2 = 1$

$$x_1^2 + (x_2 - 1)^2 = 1$$

$$\nabla \mathbf{g_1}(\mathbf{0},\mathbf{0}) = \begin{bmatrix} -2\\ \mathbf{0} \end{bmatrix}$$

$$\nabla \mathbf{g}_2(\mathbf{0},\mathbf{0}) = \begin{bmatrix} \mathbf{0} \\ -2 \end{bmatrix}$$

Concluzie: minim regulat $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$!

Exemplu minim neregulat

$$\min x_2$$
s.l. $(x_1 - 1)^2 + x_2^2 = 1$
 $(x_1 + 1)^2 + x_2^2 = 1$

$$\nabla \mathbf{g_1}(\mathbf{0},\mathbf{0}) = \begin{bmatrix} -2\\ \mathbf{0} \end{bmatrix}$$

$$\nabla g_2(0,0) = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$

Concluzie: minim neregulat $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$!

Conditii necesare de ordin I

THEOREM 2 (The rule of Lagrange multipliers). If x^* is a regular minimum point, then we can find y_1^* , ..., y_m^* such that

$$\nabla f(x^*) + \sum_{i=1}^m y_i^* \nabla g_i(x^*) = 0.$$
 (2)

Echivalent cu $\nabla_x L(x^*, \lambda^*) = 0$ (conditii de optimalitate, caz neconstrans!) λ^* se numesc Multiplicatori Lagrange!

Pentru simplitate pp. ca x^* minim unic si global in vecinatatea $V(x^*)$.

Formam functia penalitate: $f_{\rho}(x) = f(x) + \frac{\rho}{2} ||g(x)||^2$ (param. ρ de penalitate); O noua problema:

$$\min_{\mathbf{x} \in V(x^*)} f_{\rho}(x) = f(x) + \frac{\rho}{2} ||g(x)||^2$$

cu solutia x^{ρ} . Observam ca:

$$f(x^{\rho}) + \frac{\rho}{2} ||g(x^{\rho})||^{2} = f_{\rho}(x^{\rho}) \le f_{\rho}(x^{*}) = f(x^{*}) + \frac{\rho}{2} ||g(x^{*})||^{2} = f(x^{*})$$
$$||g(x^{\rho})||^{2} \le \frac{2}{\rho} (f(x^{*}) - f(x^{\rho}))$$

Termenul $\frac{2}{\rho} (f(x^*) - f(x^\rho)) \to 0$ cand $\rho \to \infty$ $(x^\rho \in V(x^*))$

$$\min_{\mathbf{x} \in V(x^*)} f_{\rho} (\mathbf{x}) = f(\mathbf{x}) + \frac{\rho}{2} ||g(\mathbf{x})||^2$$

cu solutia x^{ρ} . Observam ca:

$$f(x^{\rho}) + \frac{\rho}{2} ||g(x^{\rho})||^{2} = f_{\rho}(x^{\rho}) \le f_{\rho}(x^{*}) = f(x^{*}) + \frac{\rho}{2} ||g(x^{*})||^{2} = f(x^{*})$$
$$||g(x^{\rho})||^{2} \le \frac{2}{\rho} (f(x^{*}) - f(x^{\rho}))$$

Termenul $\frac{2}{\rho} (f(x^*) - f(x^\rho)) \to 0$ cand $\rho \to \infty$ $(x^\rho \in V(x^*))$

Deci $g(x^{\rho}) \to 0$ cand $\rho \to \infty$. Orice pct. limita $x^{\rho_k} \to \bar{x}$ are $g(\bar{x}) = 0$.

Din inegalitatea de mai sus: $f(\bar{x}) \le f(x^*)$, dar si $f(\bar{x}) \ge f(x^*)$, deci $\bar{x} = x^*$

$$\min_{\mathbf{x} \in V(x^*)} f_{\rho}(\mathbf{x}) = f(\mathbf{x}) + \frac{\rho}{2} ||g(\mathbf{x})||^2$$

cu solutia x^{ρ} .

Cand $\rho \to \infty$, $x^{\rho} = x^*$, deci pt ρ suf. de mare avem x^{ρ} in interiorul lui $V(x^*)$

Pe de alta parte x^{ρ} satisfice $\nabla f_{\rho}(x^{\rho}) = 0$, echivalent

$$\nabla f(x^{\rho}) + \rho \sum_{i} g_{i}(x^{\rho}) \nabla g_{i}(x^{\rho}) = 0$$

Impartim prin $1 + \rho \sum_{i} g_{i}(x^{\rho})$ (suma tuturor ponderilor) si obtinem:

$$\lambda_0^{\rho} \nabla f(x^{\rho}) + \sum_i \lambda_i^{\rho} \nabla g_i(x^{\rho}) = 0$$

Pentru ca $\sum_i (\lambda_i^{\rho})^2 = 1$, deci λ^{ρ} marginit, are un pct limita λ^* , care confirma:

$$\lambda_0^* \nabla f(x^*) + \sum_i \lambda_i^* \nabla g_i(x^*) = 0$$

$$\nabla f(x^*) + \sum_{i} \frac{\lambda_i^*}{\lambda_0^*} \nabla g_i(x^*) = 0$$

Metoda penalitate

$$x^{k} = \arg\min f_{\rho_{k}}(x) = f(x) + \frac{\rho_{k}}{2} ||g(x)||^{2}$$

 $\rho_{k+1} = 2\rho_{k}$

C.N. ordin I sugereaza: $x^k \rightarrow x^*$ (punct stationar)