

CSC 384 Introduction to Artificial Intelligence

CSP₂

Alice Gao and Randy Hickey
Winter 2023

Learning Goals

By the end of this lecture, you should be able to

Arc Consistency

- Determine whether a binary constraint is arc-consistent.
- Explain why the arc consistency of a binary constraint is not symmetric.

Forward Checking

- Explain the idea of Forward Checking and
- Explain how to combine Backtracking Search and Forward Checking.
- Explain how Forward Checking can reduce the size of the search tree.
- Trace the execution of Backtracking Search and Forward Checking.

Outline

- 1. Arc Consistency
- 2. Backtracking Search with Forward Checking

ARC CONSISTENCY

Motivating Arc Consistency

• $x_0 = 0$ and $x_1 = 2$ do not lead to a solution. Why?

Notation for an Arc

- X and Y are two random variables.
- D_X and D_Y are their respective domains.
- c(X,Y) is a binary constraint.

Arc Consistency Definition

```
< X, c(X, Y) > is arc-consistent if and only if for every value v in D_X, there exists a value w in D_Y, such that (v, w) satisfies the constraint c(X, Y).
```

Question 1: Checking Arc Consistency

Assume that $D_X = \{1\}$ and $D_Y = \{1,2\}$.

Consider the constraint c(X, Y): X < Y.

Is the arc $\langle X, c(X, Y) \rangle$ consistent?

- A. Yes.
- B. No.
- C. I don't know.

Question 2: Checking Arc Consistency

Assume that $D_X = \{1\}$ and $D_Y = \{1,2\}$.

Consider the constraint c(X, Y): X < Y.

Is the arc $\langle Y, c(X, Y) \rangle$ consistent?

- A. Yes.
- B. No.
- C. I don't know.

Arc Consistency is not Symmetric

$$< X, c(X, Y) > is consistent$$

 \Leftrightarrow
 $< Y, c(X, Y) > is consistent$

$$\langle X, c(X,Y) \rangle$$
 $\langle Y, c(X,Y) \rangle$ $\langle Y, c(X,Y) \rangle$ $\langle Y, c(X,Y) \rangle$

Restore Arc Consistency

- Suppose that $\langle X, c(X, Y) \rangle$ is not consistent.
- At least one value $v \in D_x$ is causing the inconsistency.
 - For every $w \in D_{v}$, (v, w) violates the constraint c(X, Y).
- Restore arc consistency by removing every value in D_{χ} causing the inconsistency.

Revise Domain to Restore Arc-Consistency

- 1. function REVISE(csp, X, Y)
- 2. for each v in D_x do
- 3. if no value w in D_y allows (v,w) to satisfy the constraint between X and Y then
- 4. delete v from D_x

BACKTRACKING SEARCH WITH FORWARD CHECKING

Forward Checking (for binary constraints)

After assigning variable X to a value

For each unassigned variable Y connected to X by a constraint c(X,Y)

make $\langle Y, c(X, Y) \rangle$ arc-consistent. (remove any value w in D_y violating the constraint c.)

Q1: Forward Checking for Binary Constraints

After assigning X = 0, which arcs do we need to check for consistency?

(A)
$$<$$
 Y, $c(X, Y) >$

(B)
$$\langle Z, c(X, Z) \rangle$$

(C)
$$< A, c(X, A) >$$

(D)
$$< B, c(X, B) >$$

Forward Checking (for all constraints)

After assigning variable X to a value

For every constraint c involving X

If c has exactly one unassigned variable Y in its scope

make $\langle Y, c \rangle$ arc-consistent.

(remove any value w in D_y violating the constraint c.)

Q2: Forward Checking for All Constraints

After assigning X = 0, which arcs do we need to check for consistency?

(A)
$$< Y, c1 >$$

(B)
$$< A, c1 >$$

(C)
$$< Z, c2 >$$

(D)
$$< B, c2 >$$

Backtracking Search w/ Forward Checking

 x_2 's domain is empty!

x₃'s domain is empty! backtrack!

Extra Example 1

Consider the CSP below. Each variable's domain is {1, 2, 3, 4}. Solve the CSP using Backtracking Search and Forward Checking. For each variable, consider the values in increasing order.

Step	Assigning a \	What Next?		
	A	В	С	
1				
2				
3				

Extra Example 2

Consider the CSP below. Each variable's domain is {1, 2, 3, 4}. Solve the CSP using Backtracking Search and Forward Checking. For each variable, consider the values in decreasing order.

Step	Assigning a \	What Next?		
	A	В	С	
1				
2				
3				
4				
5				
6				