COMP90051

Elimination Algorithm

Nuclear power plant

- Alarm sounds; meltdown?!
- $\Pr(HT|AS = t) = \frac{\Pr(HT, AS = t)}{\Pr(AS = t)}$ = $\frac{\sum_{FG, HG, FA} \Pr(AS = t, FA, HG, FG, HT)}{\sum_{FG, HG, FA, HT'} \Pr(AS = t, FA, HR, FG, HT')}$

Numerator (denominator similar)

expanding out sums, joint summing once over 25 table

$$= \sum_{FG} \sum_{HG} \sum_{FA} \Pr(HT) \Pr(HG|HT,FG) \Pr(FG) \Pr(AS = t|FA,HG) \Pr(FA)$$

distributing the sums as far down as possible summing over several smaller tables

$$= \Pr(HT) \sum_{FG} \Pr(FG) \sum_{HG} \Pr(HG|HT, FG) \sum_{FA} \Pr(FA) \Pr(AS = t|FA, HG)$$

To calculate P(HT|AS = 1)

Joint

P(AS, FA, HG, HT, FG) = P(AS|FA, HG)P(FA)P(HG|HT, FG)P(HT)P(FG)

- $\square \text{ Step 1. } P(HT|AS=1) \propto P(AS=1,HT)$
- \square Step 2. $P(AS = 1, HT) = \sum_{FG, HG, FA} P(AS = 1, FA, HG, HT, FG)$
- ☐ Step 3. Normalize $P(AS = 1, HT) \rightarrow P(HT|AS = 1)$

FG FG 0 1

FG	P(FG)
0	0.9
1	0.1

FA	P(FA)
0	0.7
1	0.3

FA) (HG

AS	FA	HG	P(AS FA,HG)
0	0	0	0.9
0	0	1	0.1
0	1	0	0.6
0	1	1	0.4
1	0	0	0.1
1	0	1	0.9
1	1	0	0.4
1	1	1	0.6

AS	

HG	НТ	FG	P(HG HT,FG)
0	0	0	0.8
0	0	1	0.6
0	1	0	0.1
0	1	1	0.3
1	0	0	0.2
1	0	1	0.4
1	1	0	0.9
1	1	1	0.7

4

P(HT=1|AS=1): Numerator =

$$\Pr(HT = 1) \sum_{FG} \Pr(FG) \sum_{HG} \Pr(HG|HT,FG) \sum_{FA} \Pr(FA) \Pr(AS = t|FA,HG)$$

KEY: FA is a random variable which can be either 0 or 1; P(fa) is P(FA = 1); $p(\sim fa)$ is P(FA = 0)

P(HT=1|AS=1): Numerator =

$$\Pr(HT=1)\sum_{FG}\Pr(FG)\sum_{HG}\Pr(HG|HT,FG)\sum_{FA}\Pr(FA)\Pr(AS=t|FA,HG)$$

KEY: FA is a random variable which can be either 0 or 1; P(fa) is P(FA = 1); $p(\sim fa)$ is P(FA = 0)

Elimination Algorithm

- ☐ This is the case with multiple other calculations
- ☐ Instead of computing them again and again, we compute individual calculations in tables, and lookup values.

FG HT

FG	P(FG)
0	0.9
1	0.1

FA	P(FA)
0	0.7
1	0.3

FA HG

AS

HG	HT	FG	P(H
0	0	0	0.8
0	0	1	0.6
0	1	0	0.1
0	1	1	0.3

AS	FA	HG	P(AS FA,HG)
0	0	0	0.9
0	0	1	0.1
0	1	0	0.6
0	1	1	0.4
1	0	0	0.1
1	0	1	0.9
1	1	0	0.4
1	1	1	0.6

HG	ні	FG	P(HG H1,FG)
0	0	0	0.8
0	0	1	0.6
0	1	0	0.1
0	1	1	0.3
1	0	0	0.2
1	0	1	0.4
1	1	0	0.9
1	1	1	0.7

FG	P(FG)
0	0.9
1	0.1

FA	P(FA)
0	0.7
1	0.3

FA)

STEP 1: \	We know	that $AS = 1$	
-----------	---------	---------------	--

AS	FA	HG	P(AS FA,HG)
0	0	0	0.9
0	0	1	0.1
0	1	0	0.6
0	1	1	0.4
1	0	0	0.1
1	0	1	0.9
1	1	0	0.4
1	1	1	0.6

AS

HG	HT	FG	P(HG HT,FG)
0	0	0	0.8
0	0	1	0.6
0	1	0	0.1
0	1	1	0.3
1	0	0	0.2
1	0	1	0.4
1	1	0	0.9
1	1	1	0.7

FG	P(FG)
0	0.9
1	0.1

FG

FA	P(FA)
0	0.7
1	0.3

STEP 1: We know that AS = 1. So m_AS(FA,HG) = P(AS|FA,HG) with AS = 1

M_AS(FA,HG)

FA	HG	M_AS(FA,HG)
0	0	0.1
0	1	0.9
1	0	0.4
1	1	0.6

HG	HT	FG	P(HG HT,FG)
0	0	0	0.8
0	0	1	0.6
0	1	0	0.1
0	1	1	0.3
1	0	0	0.2
1	0	1	0.4
1	1	0	0.9
1	1	1	0.7

10

STEP 2: Eliminating FA

Nuclear Power Plant

FG	P(FG)
0	0.9
1	0.1

FG

FA	P(FA)
0	0.7
1	0.3

STEP 2: Eliminating FA, and defining

 $M_FA(HG) = \sum_{FA} p(FA) * m_AS(FA,HG)$

FA	HG	M_AS(FA,HG)
0	0	0.1
0	1	0.9
1	0	0.4
1	1	0.6

HG	HT	FG	P(HG HT,FG)
0	0	0	0.8
0	0	1	0.6
0	1	0	0.1
0	1	1	0.3
1	0	0	0.2
1	0	1	0.4
1	1	0	0.9
1	1	1	0.7

11

p(FA) * m_AS(FA,HG)

	<u> </u>	1	FA	HG	M_AS(FA,HG)
FA	P(FA)		0	0	0.1
0	0.7	*	0	1	0.9
1	0.3		1	0	0.4
	•				0.4
			1	1	0.6

FA	HG	p(FA) * M_AS(FA,HG)
0	0	0.1 * 0.7 = 0.07
0	1	0.9 * 0.7 = 0.63
1	0	0.4 * 0.3 = 0.12
1	1	0.6 * 0.3 = 0.24

$M_FA(HG) = \sum_{FA} p(FA) * m_AS(FA,HG)$

FA	HG	p(FA) * M_AS(FA,HG)
0	0	0.1 * 0.7 = 0.07
0	1	0.9 * 0.7 = 0.63
1	0	0.4 * 0.3 = 0.12
1	1	0.6 * 0.3 = 0.24

HG	M_FA(HG)		
0	0.07 + 0.12 = 0.19		
1	0.63 + 0.24 = 0.81		

Calculating the same thing in one step

$M_FA(HG) = \sum_{FA} p(FA) * m_AS(FA,HG)$

	Ι	1	FA	HG	M_AS(FA,HG)
FA	P(FA)		0	0	0.1
0	0.7		0	1	0.9
1	0.3	*			
			1	0	0.4
			1	1	0.6

HG	M_FA(HG)		
0	0.1 * 0.7 + 0.4 * 0.3 = 0.19		
1	0.9 * 0.7 + 0.6 * 0.3 = 0.81		

M_FA(HG)

HG	M_FA(HG)
0	0.19
1	0.81

HG	НТ	FG	P(HG HT,FG)
0	0	0	0.8
0	0	1	0.6
0	1	0	0.1
0	1	1	0.3
1	0	0	0.2
1	0	1	0.4
1	1	0	0.9
1	1	1	0.7

HG

FG	P(FG)
0	0.9
1	0.1

STEP 3: Eliminating HG: Define

 $M_HG(HT,FG) = \sum_{HG} P(HG|HT,FG) * M_FA(HG)$

HG	M_FA(HG)
0	0.19
1	0.81

HG	НТ	FG	P(HG HT,FG)
0	0	0	0.8
0	0	1	0.6
0	1	0	0.1
0	1	1	0.3
1	0	0	0.2
1	0	1	0.4
1	1	0	0.9
1	1	1	0.7

P(HG|HT,FG) * M_FA(HG)

HG	HT	FG	P(HG HT,FG)
0	0	0	0.8
0	0	1	0.6
0	1	0	0.1
0	1	1	0.3
1	0	0	0.2
1	0	1	0.4
1	1	0	0.9
1	1	1	0.7

HG	M_FA(HG)
0	0.19
1	0.81

HG	HT	FG	P(HG HT,FG) *
			M_FA(HG)
0	0	0	3
0	0	1	3
0	1	0	?
0	1	1	?
1	0	0	?
1	0	1	?
1	1	0	?
1	1	1	?

$M_HG(HT,FG) = \sum_{HG} P(HG|HT,FG) * M_FA(HG)$

HG	HT	FG	P(HG HT,FG) * M_FA(HG)
0	0	0	.152
0	0	1	.114
0	1	0	.019
0	1	1	.057
1	0	0	.162
1	0	1	.324
1	1	0	.729
1	1	1	.567

= M_HG(HT,FG)

НТ	FG	M_HG(HT,FG)
0	0	5
0	1	?
1	0	?
1	1	?

M_HG(HT,FG)

НТ	FG	M_HG(HT,FG)
0	0	0.314
0	1	0.438
1	0	0.748
1	1	0.624

M_HG(HT,FG)

HT	FG	M_HG(HT,FG)
0	0	0.314
0	1	0.438
1	0	0.748
1	1	0.624

STEP 4: Eliminating FG: Define

 $M_FG(HT) = \sum_{HT} P(FG) * M_HG(HT,FG)$

P(FG) * M_HG(HT,FG)

FG	P(FG)
0	0.9
1	0.1

HT	FG	M_HG(HT,FG)
0	0	0.314
0	1	0.438
1	0	0.748
1	1	0.624

HT	FG	P(FG) * M_FG(HT)
0	0	?
0	1	?
1	0	?
1	1	?

$M_FG(HT) = \sum_{HT} P(FG) * M_HG(HT,FG)$

HT	M_FG(HT)
0	?
1	?

$M_FG(HT) = P(FG) * M_HG(HT,FG)$

FG	P(FG)
0	0.9
1	0.1

 HT
 FG
 M_HG(HT,FG)

 0
 0.314

 0
 1
 0.438

 1
 0
 0.748

 1
 1
 0.624

= M_FG(HT)

HT	M_FG(HT)
0	0.9 * 0.314 + 0.1 * 0.438
1	?

HT	P(HT)
0	0.8
1	0.2

HT	M_FG(HT)
0	0.3264
1	0.7356

M_FG(HT)

HT	P(HT)
0	0.8
1	0.2

HT	M_FG(HT)
0	0.3264
1	0.7356

M_FG(HT)

STEP 5: Calculating Numerator of P(HT| AS = 1)

Numerator of P(HT =
$$0|AS=1$$
) = P(HT= 0) * M_FG(HT = 0)
= $0.8 * 0.3264 = 0.14712$

Numerator of P(HT = 1|AS=1) = ?

Nuclear power plant:Summary

- = $\Pr(HT) \sum_{FG} \Pr(FG) \sum_{HG} \Pr(HG|HT,FG) \sum_{FA} \Pr(FA) \Pr(AS = t|FA,HG)$ eliminate AS: since AS observed, really a no-op
- = $\Pr(HT) \sum_{FG} \Pr(FG) \sum_{HG} \Pr(HG|HT,FG) \sum_{FA} \Pr(FA) m_{AS} (FA,HG)$ eliminate FA: multiplying 1x2 by 2x2

= $\Pr(HT) \sum_{FG} \Pr(FG) \sum_{HG} \Pr(HG|HT,FG) m_{FA}(HG)$ eliminate HG: multiplying 2x2x2 by 2x1

 $= \Pr(HT) \sum_{FG} \Pr(FG) m_{HG}(HT, FG)$

eliminate FG: multiplying 1x2 by 2x2

$$= \Pr(HT) m_{FG}(HT)$$

