

-123-

WE CLAIM:

1. The compounds of Formula I:

5

I

where:

A is -CHR¹³- or a bond;

R is hydrogen, halo, cyano, -C(O)NR⁶R⁷, C₁-C₆ alkyl,
10 C₁-C₄ alkoxy carbonyl, carboxy, or phenyl optionally
substituted with one or two substituents selected from the
group consisting of halo, C₁-C₄ alkyl, and C₁-C₄ alkoxy;

R¹ is hydrogen, halo, cyano, carboxamido, formyl,
trimethylsilyl, trifluoromethyl, pentafluoroethyl, or C₁-C₆
15 alkyl;

R² and R³ are independently hydrogen, halo, amino,
nitro, C₁-C₄ alkoxy, cyano, carboxamido, -C(O)NR⁸R⁹,
-NR¹⁰R¹¹, -NHC(O)NHR¹⁴, C₁-C₄ alkoxy carbonyl, carboxyl,
trifluoromethyl, or C₁-C₆ alkyl optionally substituted with
20 a substituent selected from the group consisting of C₁-C₄
alkoxy, hydroxy, phenoxy, and phenyl;

R⁴ and R^{4'} are independently hydrogen, C₁-C₄ alkyl, or
benzyl; or R⁴ and R^{4'} together with the carbon atom to which
they are attached form a cyclopropyl moiety;

25 R⁵ is hydrogen, C₁-C₄ alkyl, or benzyl;

R^{5'} is hydrogen, or R⁵ and R^{5'} together with the carbon
atom to which they are attached form a cyclopropyl moiety;

R⁶ and R⁷ are independently hydrogen or C₁-C₄ alkyl;

-124-

R⁸ is hydrogen or C₁-C₄ alkyl;

R⁹ is C₁-C₈ alkyl where the alkyl chain is optionally substituted with a substituent selected from the group consisting of carboxy, phenyl, or pyridyl, said phenyl or 5 pyridyl substituent optionally substituted with one or two substituents selected from the group consisting of halo, C₁-C₄ alkyl, or C₁-C₄ alkoxy;

R¹⁰ is hydrogen or C₁-C₄ alkyl;

R¹¹ is C₁-C₄ alkyl or C₁-C₄ acyl;

10 R¹² is hydrogen, halo, or C₁-C₄ alkyl;

R¹³ is hydrogen, C₁-C₄ alkyl, or benzyl;

R¹⁴ is hydrogen, C₁-C₄ alkyl, or phenyl optionally substituted with a substituent selected from the group consisting of halo, C₁-C₄ alkyl, and C₁-C₄ alkoxy;

15 or pharmaceutically acceptable acid addition salts thereof.

2. A pharmaceutical formulation which comprises, in association with a pharmaceutically acceptable carrier, diluent or excipient, a compound of Formula I:

I

where:

A is -CHR¹³- or a bond;

25 R is hydrogen, halo, cyano, -C(O)NR⁶R⁷, C₁-C₆ alkyl, C₁-C₄ alkoxy carbonyl, carboxy, or phenyl optionally substituted with one or two substituents selected from the group consisting of halo, C₁-C₄ alkyl, and C₁-C₄ alkoxy;

-125-

R¹ is hydrogen, halo, cyano, carboxamido, formyl, trimethylsilyl, trifluoromethyl, pentafluoroethyl, or C₁-C₆ alkyl;

R² and R³ are independently hydrogen, halo, amino, 5 nitro, C₁-C₄ alkoxy, cyano, carboxamido, -C(O)NR⁸R⁹, -NR¹⁰R¹¹, -NHC(O)NHR¹⁴, C₁-C₄ alkoxycarbonyl, carboxyl, trifluoromethyl, or C₁-C₆ alkyl optionally substituted with a substituent selected from the group consisting of C₁-C₄ alkoxy, hydroxy, phenoxy, and phenyl;

10 R⁴ and R^{4'} are independently hydrogen, C₁-C₄ alkyl, or benzyl; or R⁴ and R^{4'} together with the carbon atom to which they are attached form a cyclopropyl moiety;

R⁵ is hydrogen, C₁-C₄ alkyl, or benzyl;

15 R^{5'} is hydrogen, or R⁵ and R^{5'} together with the carbon atom to which they are attached form a cyclopropyl moiety;

R⁶ and R⁷ are independently hydrogen or C₁-C₄ alkyl;

R⁸ is hydrogen or C₁-C₄ alkyl;

20 R⁹ is C₁-C₈ alkyl where the alkyl chain is optionally substituted with a substituent selected from the group consisting of carboxy, phenyl, or pyridyl, said phenyl or pyridyl substituent optionally substituted with one or two substituents selected from the group consisting of halo, C₁-C₄ alkyl, or C₁-C₄ alkoxy;

R¹⁰ is hydrogen or C₁-C₄ alkyl;

25 R¹¹ is C₁-C₄ alkyl or C₁-C₄ acyl;

R¹² is hydrogen, halo, or C₁-C₄ alkyl;

R¹³ is hydrogen, C₁-C₄ alkyl, or benzyl;

30 R¹⁴ is hydrogen, C₁-C₄ alkyl, or phenyl optionally substituted with a substituent selected from the group consisting of halo, C₁-C₄ alkyl, and C₁-C₄ alkoxy; or pharmaceutically acceptable acid addition salts thereof.

3. A method for increasing activation of the 5-HT_{2C} receptor in mammals, comprising administering to a mammal in

-126-

need of such activation a pharmaceutically effective amount of a compound of Formula I:

I

5 where:

A is -CHR¹³- or a bond;

R is hydrogen, halo, cyano, -C(O)NR⁶R⁷, C₁-C₆ alkyl, C₁-C₄ alkoxy carbonyl, carboxy, or phenyl optionally substituted with one or two substituents selected from the 10 group consisting of halo, C₁-C₄ alkyl, and C₁-C₄ alkoxy;

R¹ is hydrogen, halo, cyano, carboxamido, formyl, trimethylsilyl, trifluoromethyl, pentafluoroethyl, or C₁-C₆ alkyl;

R² and R³ are independently hydrogen, halo, amino, 15 nitro, C₁-C₄ alkoxy, cyano, carboxamido, -C(O)NR⁸R⁹, -NR¹⁰R¹¹, -NHC(O)NHR¹⁴, C₁-C₄ alkoxy carbonyl, carboxyl, trifluoromethyl, or C₁-C₆ alkyl optionally substituted with a substituent selected from the group consisting of C₁-C₄ alkoxy, hydroxy, phenoxy, and phenyl;

R⁴ and R^{4'} are independently hydrogen, C₁-C₄ alkyl, or 20 benzyl; or R⁴ and R^{4'} together with the carbon atom to which they are attached form a cyclopropyl moiety;

R⁵ is hydrogen, C₁-C₄ alkyl, or benzyl;

R^{5'} is hydrogen, or R⁵ and R^{5'} together with the carbon 25 atom to which they are attached form a cyclopropyl moiety;

R⁶ and R⁷ are independently hydrogen or C₁-C₄ alkyl;

R⁸ is hydrogen or C₁-C₄ alkyl;

-127-

R⁹ is C₁-C₈ alkyl where the alkyl chain is optionally substituted with a substituent selected from the group consisting of carboxy, phenyl, or pyridyl, said phenyl or pyridyl substituent optionally substituted with one or two substituents selected from the group consisting of halo, C₁-C₄ alkyl, or C₁-C₄ alkoxy;

- 5 R¹⁰ is hydrogen or C₁-C₄ alkyl;
- 10 R¹¹ is C₁-C₄ alkyl or C₁-C₄ acyl;
- R¹² is hydrogen, halo, or C₁-C₄ alkyl;
- 15 R¹³ is hydrogen, C₁-C₄ alkyl, or benzyl;
- R¹⁴ is hydrogen, C₁-C₄ alkyl, or phenyl optionally substituted with a substituent selected from the group consisting of halo, C₁-C₄ alkyl, and C₁-C₄ alkoxy; or pharmaceutically acceptable acid addition salts thereof.

15

4. A method for the treatment of obesity in mammals, comprising administering to a mammal in need of such treatment an effective amount of a compound of Formula I:

I

where:

- A is -CHR¹³- or a bond;
- R is hydrogen, halo, cyano, -C(O)NR⁶R⁷, C₁-C₆ alkyl, C₁-C₄ alkoxy carbonyl, carboxy, or phenyl optionally substituted with one or two substituents selected from the group consisting of halo, C₁-C₄ alkyl, and C₁-C₄ alkoxy;

-128-

R¹ is hydrogen, halo, cyano, carboxamido, formyl, trimethylsilyl, trifluoromethyl, pentafluoroethyl, or C₁-C₆ alkyl;

R² and R³ are independently hydrogen, halo, amino, 5 nitro, C₁-C₄ alkoxy, cyano, carboxamido, -C(O)NR⁸R⁹, -NR¹⁰R¹¹, -NHC(O)NHR¹⁴, C₁-C₄ alkoxycarbonyl, carboxyl, trifluoromethyl, or C₁-C₆ alkyl optionally substituted with a substituent selected from the group consisting of C₁-C₄ alkoxy, hydroxy, phenoxy, and phenyl;

10 R⁴ and R^{4'} are independently hydrogen, C₁-C₄ alkyl, or benzyl; or R⁴ and R^{4'} together with the carbon atom to which they are attached form a cyclopropyl moiety;

R⁵ is hydrogen, C₁-C₄ alkyl, or benzyl;

15 R^{5'} is hydrogen, or R⁵ and R^{5'} together with the carbon atom to which they are attached form a cyclopropyl moiety;

R⁶ and R⁷ are independently hydrogen or C₁-C₄ alkyl;

R⁸ is hydrogen or C₁-C₄ alkyl;

20 R⁹ is C₁-C₈ alkyl where the alkyl chain is optionally substituted with a substituent selected from the group consisting of carboxy, phenyl, or pyridyl, said phenyl or pyridyl substituent optionally substituted with one or two substituents selected from the group consisting of halo, C₁-C₄ alkyl, or C₁-C₄ alkoxy;

R¹⁰ is hydrogen or C₁-C₄ alkyl;

25 R¹¹ is C₁-C₄ alkyl or C₁-C₄ acyl;

R¹² is hydrogen, halo, or C₁-C₄ alkyl;

R¹³ is hydrogen, C₁-C₄ alkyl, or benzyl;

30 R¹⁴ is hydrogen, C₁-C₄ alkyl, or phenyl optionally substituted with a substituent selected from the group consisting of halo, C₁-C₄ alkyl, and C₁-C₄ alkoxy; or pharmaceutically acceptable acid addition salts thereof.

5. A method for the treatment of depression in mammals, comprising administering to a mammal in need of

-129-

such treatment an effective amount of a compound of Formula I:

5

I

where:

A is -CHR¹³- or a bond;

R is hydrogen, halo, cyano, -C(O)NR⁶R⁷, C₁-C₆ alkyl, C₁-C₄ alkoxy carbonyl, carboxy, or phenyl optionally

10 substituted with one or two substituents selected from the group consisting of halo, C₁-C₄ alkyl, and C₁-C₄ alkoxy;

R¹ is hydrogen, halo, cyano, carboxamido, formyl, trimethylsilyl, trifluoromethyl, pentafluoroethyl, or C₁-C₆ alkyl;

15 R² and R³ are independently hydrogen, halo, amino, nitro, C₁-C₄ alkoxy, cyano, carboxamido, -C(O)NR⁸R⁹, -NR¹⁰R¹¹, -NHC(O)NHR¹⁴, C₁-C₄ alkoxy carbonyl, carboxyl, trifluoromethyl, or C₁-C₆ alkyl optionally substituted with a substituent selected from the group consisting of C₁-C₄ alkoxy, hydroxy, phenoxy, and phenyl;

20 R⁴ and R^{4'} are independently hydrogen, C₁-C₄ alkyl, or benzyl; or R⁴ and R^{4'} together with the carbon atom to which they are attached form a cyclopropyl moiety;

R⁵ is hydrogen, C₁-C₄ alkyl, or benzyl;

25 R^{5'} is hydrogen, or R⁵ and R^{5'} together with the carbon atom to which they are attached form a cyclopropyl moiety;

R⁶ and R⁷ are independently hydrogen or C₁-C₄ alkyl;

R⁸ is hydrogen or C₁-C₄ alkyl;

-130-

R⁹ is C₁-C₈ alkyl where the alkyl chain is optionally substituted with a substituent selected from the group consisting of carboxy, phenyl, or pyridyl, said phenyl or pyridyl substituent optionally substituted with one or two substituents selected from the group consisting of halo, C₁-C₄ alkyl, or C₁-C₄ alkoxy;

R¹⁰ is hydrogen or C₁-C₄ alkyl;

R¹¹ is C₁-C₄ alkyl or C₁-C₄ acyl;

R¹² is hydrogen, halo, or C₁-C₄ alkyl;

R¹³ is hydrogen, C₁-C₄ alkyl, or benzyl;

R¹⁴ is hydrogen, C₁-C₄ alkyl, or phenyl optionally substituted with a substituent selected from the group consisting of halo, C₁-C₄ alkyl, and C₁-C₄ alkoxy; or pharmaceutically acceptable acid addition salts thereof.

15

6. A method of any of Claims 3, 4, or 5 where the mammal is human.