

(19) 日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11) 特許出願公開番号

特開2000-51367

(P2000-51367A)

(43) 公開日 平成12年2月22日 (2000.2.22)

(51) Int.Cl.¹

識別記号

F I

テバコト² (参考)

A 61 M 29/02

A 61 M 29/02

審査請求 未請求 請求項の数2 OL (全16頁)

(21) 出願番号	特願平11-184278	(71) 出願人	591286579 エシコン・インコーポレイテッド ETHICON, INCORPORATED ED アメリカ合衆国、ニュージャージー州、サ マービル、ユー・エス・ルート22
(22) 出願日	平成11年6月29日(1999.6.29)	(72) 発明者	シェッド、エフ・エイ・ホセイニー アメリカ合衆国、08820 ニュージャージ イ州、エディソン、ミッショナル・サークル 347
(31) 優先権主張番号	0 9 1 2 1 7	(74) 代理人	100066474 弁理士 田辺 博昭 (外1名)
(32) 優先日	平成10年6月30日(1998.6.30)		
(33) 優先権主張国	米国(US)		
(31) 優先権主張番号	2 9 4 1 6 4		
(32) 優先日	平成11年4月18日(1999.4.19)		
(33) 優先権主張国	米国(US)		

最終頁に続く

(54) 【発明の名称】 ステントコーティング方法

(57) 【要約】

【課題】 通路にブリッジが形成されないステントのコーティング方法を提供する。

【解決手段】 第一の面及び第二の面とそれらの間にあ
る通路とを有するステント2を、通路のブロックとブリ
ッジを避けてコートする方法を提供する。この方法は、
ステント2をフィルム形成生物学的適合性ポリマーを含
む液体コーティング液に、フィルム形成生物学的適合
性ポリマーがステント2の少なくとも1つの面をコート
できる条件下で接触させ、このとき、通路を通過する流体流
を維持してフィルム形成生物学的適合性ポリマーが通路
をブロックするのを実質的に防ぐ。この方法によりコー
トされたステントも示される。

(2)

【特許請求の範囲】

【請求項1】 外面と内面と、前記外面と前記内面の間に
ある通路とを有するステントのコーティング方法であ
って、前記方法は、

(a) 前記ステントを、フィルム形成生物学的適合性ポリマーを含む液体コーティング溶液に、前記フィルム形
成生物学的適合性ポリマーが前記ステントの少なくとも
1つの面をコートできる条件下で接触させ、

(b) 前記コーティング溶液が乾燥する前に、前記ステ
ントの通路からの流体の動きを形成し、前記フィルム形
成生物学的適合性ポリマーが前記通路をブロックするの
を実質的に防ぐ、

(c) 前記ステントを乾燥して、第一のコーティングに
より少なくとも1部がコートされたステントを提供する
方法。

【請求項2】 第一の面と第二の面と、前記第一の面と
前記第二の面の間にある通路とを有するチューブ状ステ
ントのコーティング方法であって、前記方法は、

(a) 前記チューブ状ステントを心棒上に置き、その
後、

(b) 前記ステントと前記心棒を、前記フィルム形成生
物学的適合性ポリマーを含む液体コーティング溶液に、
前記フィルム形成生物学的適合性ポリマーが前記ステン
トの少なくとも1つの面をコートできる条件下で接触させ、
このとき、前記ステントと前記心棒に対して動かし
前記通路を通過する流体流を形成し、フィルム形成生物
学的適合性ポリマーが前記通路をブロックするのを実質的に
防ぎ、

(c) 前記ステントを乾燥して、第一のコーティングに
より少なくとも1部がコートされたチューブ状ステントを
提供する方法。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】 本発明は、一般に外科用器具
のコーティング方法に関する。特に、本発明はステント
及びその類似物の改善されたコーティング方法に関する。

【0002】

【従来の技術および発明が解決しようとする課題】 ステ
ントは一般に開いた管状の構造体であり、身体管腔の機
能を回復させる医療方法においてますます重要になって
いる。ステントは、今日通常心臓への十分な血流を回復
させるための血管形成術のような経管方法に使われてい
る。しかしながら、ステントは血栓症又は再狭窄を生じる
異物反応を刺激する場合がある。このような合併症を
避けるために、このような合併症又は他の合併症の危
険を減らし、組織自身によって又は管腔へ治療化合物を送
り込むことによって組織機能を回復するために、様々な
ステントのコーティング及び組成物が文献で提示され
てきた。

特開2000-51367

2

【0003】ステントは、一般にポリマー又はポリマー

及び医薬/治療薬又は医薬品で、ステントを単純に漫
濫して又はスプレイコーティングしてコートする。これら
の方法は、ワイヤ (Wtakorステント) 又はリボン (Gia
nturco) から製造された開口構造をした初期ステントデ
ザインに受け入れられている。比較的低いコーティング

量 (約4%ポリマー) の漫濫コーティングは、器具の
構造部材間のオープンスペースを過剰コーティング、ブ
リッジする (即ち、横切ってフィルムが形成されるこ
と) ような問題ではなく、このようなステントをうまくコ
ートできる。このブリッジが特に懸念されるのは、あま
り開いていない製造をしているPalma-Schatz, Crown,

Multilink又はGF-Xステントのようなより現代的なス
テントをコートする場合である。オープンスペース (spa
ce) のブリッジが好ましくないのは管腔内配置の間の拡
張など、ステントの機械的機能に干渉するからである。
ブリッジは腫瘍時に破裂して近隣の血行動態環境におけ
る血流妨害を生じることによって、血小板の沈積を活性化
させる部位を提供する恐れがあり、また、ブリッジフ

20 ルムの破片が裂けて更なる合併症を引き起こす恐れ
がある。また、オープンスロットのブリッジは内皮細胞
の移行を阻み、内皮細胞によるステントの被包をもたら
す場合もある。

【0004】同様に、スプレイコーティングも工程の間
に多量のスプレーが失われ、器具に取り込ませる薬剤の
多くが凝結して高価である点で問題となり得る。さらには、

幾つかの場合では、高濃度のコーティング及び薬剤でコ
ートされたステントを提供することが望まれる。高濃度
コーティング (追加の薬剤を含む~1.5%のポリマー)
30 は、高濃度薬剤 (コード) を達成するのに好ましい手
段である。文献には、多重漫濫コーティングがステント
により厚いコーティングをする手段として記載されてい
る。しかし、薬剤の組成及び相分散は持続性放出に影響
を及ぼす。さらに、低濃度溶液から多重漫濫コーティン
グを適用すると薬剤の有無に関わらず、溶液濃度とステ
ントに付着するコーティングの量との間で平衡に達する
ため、しばしば負荷レベルが限定される。

【0005】

【課題を解決するための手段】 ブリッジを避けてステ
ントに好ましいコーティングを可能とするステントのコ
ーティング方法を揭示する。この方法は、第一の面及び
第二の面とそれらの間にある通路とを有するステントを
フィルム形成生物学的適合性ポリマーを含む液体コーテ
ィング溶液に、フィルム形成生物学的適合性ポリマーが
ステントの少なくとも1つの面をコートできる条件下で
接触させ、このとき、通路を通過する液体流を維持してフィ
ルム形成生物学的適合性ポリマーが通路をブロックする
のを実質的に防ぐことを含むものである。

【0006】本発明の好ましい実施形態では、第一の面
50 及び第二の面とそれらの間にある通路とを有するチュー

(3)

特開2000-51367

3

ブ状ステントを心棒(mandrel)上に置き、ステントと心棒を、フィルム形成生物学的適合性ポリマーを含む液体コーティング溶液に、フィルム形成生物学的適合性ポリマーがステントの少なくとも1つの面をコートできる条件下で接触させ、このときステントを心棒に対して動かし通路を通過する液体流を形成し、フィルム形成生物学的適合性ポリマーが直路をブロックするのを実質的に防ぐことを含む。

【0007】本発明の他の実施形態では、第一の面及び第二の面とそれらの間にある通路とを有するフィルム形成生物学的適合性ポリマーでコートされているチューブ状ステントが提供される。ここでポリマーコーティングは、コートされたステントの重量で0.5%より重く、通路はポリマーコーティングのブリッジで実質的にブロックされていない。

【0008】

【発明の実施の形態】本発明は医療器具のコーティング方法を提供する。ここに示す方法は、従来の浸漬コーティングではブロックされたブリッジが形成される恐れるある通路を有する医療器具をコートするのによく適する。前述したように、ブリッジの形成を避けることはステントなどの穴のある構造体のコーティングでは特に重要である。ブリッジは約1.25ミル未満の小さな寸法の通路、特に約5ミル未満の小さな寸法の通路を有するステントでは、重大な問題である。

【0009】ステントは一般に円筒形で、スロット、卵形、円形又は他の形状の通路が穿孔されている。また、ステントはらせん状に巻いた又は曲がりくねったワイヤから構成されていてもよく、ワイヤ間の空間が通路を形成する。ステントは、平らで穿孔した構造体を巻いてチューブ状又は円筒状構造体を形成したものでもよく、これを縦り、巻き、穴をあけ、エッチング又は切って通路を形成する。本発明の方法でコートできるステントの例として、限定しないが、米国特許第4,733,665号(以後、Palmazステントと呼ぶ、図1に示す)、同第4,800,882号(以後、Gianturcoステントと呼ぶ)、同第4,886,062号(以後、Wiktorステントと呼ぶ)及び同第5,154,154号(以後、Guidant RX Multilink(商標)ステントと呼ぶ)に示すステントが挙げられる。これらのステントは、生物学的適合性物質(生物学的安定性で生物学的吸収性の物質を含む)から製造できる。適当な生物学的適合性金属の例として、限定しないがステンレス鋼、タンタル、チタン合金(ニチロールを含む)及びコバルト合金(コバルト-クロム-ニッケル合金を含む)が挙げられる。適当な非金属生物学的適合性物質の例として、限定しないが、ポリアミド、ポリオレフィン(即ち、ポリプロピレン、ポリエチレンなど)、非吸収性ポリエチル(即ち、ポリエチレンテレフタレートなど)及び生物学的吸収性脂肪族ポリエチル(即ち、乳酸、グリコール酸、

4

ラクチド、グリコリド、パラジオキサン、トリメチレンカルボネート、ε-カプロラクトンなど及びこれらの混合物のホモポリマー及びコポリマー)が挙げられる。

【0010】本発明は、ブロック又はブリッジの形成を避けるために、穿孔医療器具の通路を通る流体の流れ又は動きを用いる。流体流は、ステントに挿入される穿孔マニホールドなどのアクティブフローシステムにより形成でき、通路を通してコーティング流体を循環させることにより形成できる。又は流体流は、コーティングプロセスの間ステントに対して動く心棒上又は小さなチューブ内にステントを配置することにより形成できる。これにより、通路を通過する流体流を十分に形成して、ブロック又はブリッジの形成を防ぐ。

【0011】図2に示すように、本発明の一実施形態では、ステント2を、ステントの管内通路1.2の内径dよりも小さな心棒6の上に置き、コーティング液浴に浸す。コーティング液浴はから取り出した後、コートされたステントを心棒に対して(好ましくは一方向)に動かす。図3は、バスから取り出した後のステント2の心棒6に対する動きを示す図である。心棒の外径とステントの内径の相対的関係により浸漬した後、コーティングがまだ湿っている間、ステントの心棒の長さに沿った動きにより通路(slots)1.0が一掃され、乾燥してもその状態が残る。ステントと心棒との相対的な動きは、ステントと心棒の間の既定された隙間(clearance)により、高い剪断速度を生じ、それがスロットを満たしているコーティングフィルムの表面張力を破り、ステント上に溶らかで欠陥のないコーティングを付与する。好ましくはステントが、コーティング液浴と接触しない心棒の部位の方へ動く。図3は、コーティング1.4でコートした後のステント2の剥離型である。以下のさらなる利点がある高い選択性のコーティングが可能であり、ステント直徑に対する心棒直徑(the clearance)を適当に選択することにより、ステントの内側と外側コーティングの相対的厚みをコントロールできる。例えば、ステントコーティングを外面で厚くして審観と接触させることができるとし、また内部で薄くして流体流と相互作用させることができる。

【0012】心棒は種々のデザインが可能である(即ち、テーパ付円錐形、円錐形、スロット付き円錐形、卵形、三角形又は多角形の断面を介する心棒、管又はパドルの付いた軸を含む)。さらに、ステントに対する心棒の動きは横方向だけでなく回転も含む。通路に対し十分な剪断流を確保する心棒デザインの目的は、通路が確実にブロックされないことである。

【0013】本出願においてコーティングに使用できるフィルム形成ポリマーは、吸収可能又は非吸収可能でもよいが、脈管壁への刺激を最小にするため生物学的適合性でなければならない。ポリマーは所望の放出速度又は

50

(4)

5

所望のポリマー安定性の程度により、生物学的に安定でも生物学的吸収性でもないが、生物学的吸収性ポリマーは生物学的安定性ポリマーと異なり、堆み込んだ後長く存在して好ましくない慢性的な局部反応を引き起こさないので好ましい。さらに生物学的吸収性ポリマーには、長期間に亘ってステントとコーティングの間に接触ロスが存在する危険がない。このようなロスは生物学的環境応力(stress)により引き起こされ、ステントを組織内で被包した後ですらコーティングをはずし、他の問題を生じるので、このようなロスがない生物学的吸収ポリマーは有利である。

【0014】使用可能な適当なフィルム形成生物学的吸収性ポリマーの例には、脂肪族ポリエチル、ポリ(アミノ酸)、コポリ(エーテルーエステル)、ポリアルキレンオキサレート、ポリアミド、ポリ(イミノカルボネート)、ポリオルトエステル、ポリオキサエステル、ポリアミドエステル、アミド基含有ポリオキサエステル、ポリ(無水物)、ポリホスファゼン、生体分子及びこれらの混合物から選択されたポリマーがある。本発明のために合う脂肪族ポリエチルの例には、ラクチド(乳酸、D-、L-及びメソラクチドを含む)、 ϵ -カプロラクトン、グリコリド(グリコール酸を含む)、ヒドロキシブチレート、ヒドロキシパレレート、パラジオキサン、トリメチレンカルボネート(及びそのアルキル導体)、1, 4-ジオキセパン-2-オーン、1, 5-ジオキセパン-2-オーン、6, 6-ジメチル-1, 4-ジオキサン-2-オーン、のホモポリマーとコポリマー及びこれらのポリマー混合物がある。本発明の目的に合うポリ(イミノカルボネート)には、「生分解性ポリマー・ハンドブック」、Domb, Kost 及び Wiessner 編集、Hardwood Academic Press 発行、1997 年、第 251 頁乃至第 272 頁に Kenntzner と Kohn により示されているものが含まれる。本発明の目的に合うコポリ(エーテルーエステル)には、「ジャーナル・オブ・バイオマテリアルズ・リサーチ」、第 22 巻、第 9 93 頁乃至第 10 09 頁、1998 年に Cohn 和 Younes により示される、及び、Polymer Preprints (A C S ポリマー・ケミストリー部)、第 30 (1) 卷、第 49-88 頁、1998 年(例えば、PEO/P LA) に Cohn により示されるコポリエスチル-エーテルを含む。本発明の目的に合うポリアルキレンオキサレートには、米国特許第 4, 208, 511 号、同第 4, 141, 087 号、同第 4, 130, 639 号、同第 4, 140, 678 号、同第 4, 105, 034 号及び同第 4, 205, 399 号が含まれる(これらはここに援用する)。ポリホスファゼン: L-ラクチド、D-ラクチド、乳酸、グリコリド、グリコール酸、パラジオキサン、トリメチレンカルボネート及び ϵ -カプロラクトンから製造されるポリマー、ターポリマー及び高次混合モノマーに基づくポリマーなどが、「ポリマーサインス辞典」、第 13 巻、第 31 頁乃至

特開 2000-51367

6

第 41 頁、Wiley Intersciences, John Wiley & Sons, 1988 年、Allcock、及び「生分解性ポリマー・ハンドブック」、Domb, Kost 及び Wiessner 編集、Hardwood Academic Press 発行、1997 年、第 161 頁乃至第 182 頁に、Vandorp, Schacht, Dejardin 及び Lemouchi により示されている(これらはここに援用する)。HOOC- $\text{C}_m\text{H}_2-\text{O}-\text{C}_m\text{H}_2-$ 、 $-\text{O}-\text{C}_m\text{H}_2-\text{COO}$ H(ここで、m は 2 乃至 8 の整数)の形の二酸から形成されるポリ無水物、及び炭素数 1~2 までの脂肪族アルファーオメガ二酸とのコポリマーである。アミン及び/又はアミド端を含むポリオキサエステル、ポリオキサアミド及びポリオキサエスチルは、以下の 1 以上の米国特許に示されている、米国特許第 5, 464, 929 号、同第 5, 595, 751 号、同第 5, 597, 579 号、同第 5, 607, 687 号、同第 5, 618, 552 号、同第 5, 620, 698 号、同第 5, 645, 850 号、同第 5, 648, 088 号、同第 5, 698, 213 号及び同第 5, 700, 583 号(これらはここに援用する)。「生分解性ポリマー・ハンドブック」、Domb, Kost 及び Wiessner 編集、Hardwood Academic Press 発行、1997 年、第 99 頁乃至第 118 号(ここに援用する)に、Heller により示されるようなポリオルトエステルである。本発明のために合うフィルム形成ポリマー生分子には、人体で酵素分解される可能性のある、又は人体で加水分解により不安定である天然物質が含まれる。例えば、フィブリン、フィブリノーゲン、コラーゲン、エラスチン及びキトサン、スターチ、脂肪酸(及びそのエステル)、グルコソーグリカン(glucosidglycan)及びヒアルロン酸などの吸収性生物学的適合性多糖類などがある。

【0015】ポリウレタン、シリコーン、ポリメタクリレート、ポリエチル、ポリアルキレンオキサイド(例えばポリエチレンオキサイドなど)、ポリビニルアルコール、ポリエチレングリコール及びポリビニルヒドロゲルなどの慢性的組織反応が比較的低い適当なフィルム形成生物学的安定性ポリマー、さらに、架橋ポリビニルヒドロゲル及びポリエスチルから形成されるものなどのヒドロゲルも、使用できる。他のポリマーも溶解し、ステントに硬化又は重合できるものなら使用できる。これらの例として、ポリオレフィン、ポリイソブチレン及びエチレン-アルファオレフィンコポリマー；アクリル酸ポリマー(メタクリレートを含む)とコポリマー、ポリビニルクロライドなどのビニルハイドロポリマーとコポリマー；ポリビニルメチルエーテルなどのポリビニルエーテル；ポリビニリデンフルオライドとポリビニルデンクロライドなどのポリビニリデンハイド；ポリアクリロニトリル、ポリビニルケトン；ポリスチレンなどのポリビニル芳香族；ポリビニルアセテートなどのポリビニルエスチル；エチレン-メチルメタクリレートコポリマー、アクロニトリル-スチレンコポリマー、ABS 树脂、

(5)

7

エチレン-ビニルアセテートコポリマーなどの各種ビニルモノマー同士及びオレフィンとのコポリマー；ナイロング6、ポリカブロタクタムなどのポリアミド；アルキド(alkyd)強塑：ポリカルボボネット＝ポリオキシメチレン；ポリイミド；ポリエーテル；エボキシ樹脂、ポリウレタン；レーヨン；レーヨントリアセテート、セルロース、セルロースアセテート、セルロースアセテートブチレート；セロファン；セルローストリート＝セルロースブロビオネート；セルロースエーテル（即ち、カルボキシメチルセルロースとヒドロキシアルキルセルロース）；及びこれらの中組み合わせがある。また、本出版物のIに於いては「**ポリアミド**」の例には、 $\text{NH} - (\text{CH}_2)_n - \text{CO} - \text{O} - \text{NH} - (\text{CH}_2)_m - \text{NH} - \text{CO} - (\text{CH}_2)_l$ 、 $-\text{CO}$ （ここで、 n は好ましくは6乃至13の整数、 m は0乃至2の整数、及び l は4乃至6の整数である）の形のポリアミドがある。上記の列挙は例であって限界するものではない。

【0016】コーティングに使用するポリマーは、蠍性又は粘着性でないほど十分に高い分子量を有するフィルム形成ポリマーでなければならぬ。また、ポリマーはステントに接着しなければならないが、ステントに付着した後は容易に変形して血流力学上の応力によりずれてはならない。ポリマーの分子量は十分な強度を有する程十分に高くなくてはならず、ステントを取り扱い展開する間にすり切れたり、ステントを抵抗する間にひび割れしてはならない。本発明に使用するポリマーの融点は40.0℃、好ましくは約45℃、より好ましくは50℃、最も好ましくは55℃より高くなければならない。

【0017】本公司に使用する好ましいコーティング用ボリマーは、生物学的吸収性エラストマーであり、より好ましくは脂肪族ポリエチステルエラストマーである。適当な割合の脂肪族ポリエチステルボリマーはエラストマーである。エラストマーには、金属ステントに良く接着しやすく、ひび割れすることなくなりの変形にも耐えるという利点がある。コートされたステントが弛緩するとき、高い伸びと良好な接着により、他のボリマーコーティングに比べ良好な性質が付与される。適当な生物学的吸収性エラストマーの例は、ここに援用する米国特許第5,468,253号に記載されている。好ましくは、脂肪族ポリエチステル系の生物学的吸収性生物学的適合性エラストマーには、以下のエラストマーボリマーカーなる群から選択されるものが含まれるが、それらには既定されない。すなわち、ε-カプロラクトンとグリコリドのエラストマー型ボリマー（好ましくはε-カプロラクトンのグリコリドに対するモル比は約3.5：6.5乃至約6.5：3.5、より好ましくは4.5：5.5乃至3.5：6.5）、L-ラクチド、D-ラクチド、これらの混合物又は乳酸ボリマーを含むε-カプロラクトンとランチドのエラストマー型ボリマー（好ましくはε-カプロラクトンのランチドに対するモル比は約3.5：5.5乃至

10

20

30

40

50

特開2000-51367

8

至約90：10、より好ましくは約35：65乃至65：35、最も好ましくは約45：55乃至30：70（又は約90：10乃至80：20）、p-ジオキサノン（1、4-ジオキサノン-2-オニ）とL-ラクチド、D-ラクチド及び乳酸を含むラクチドのエラストマー共重合体（好ましくは、p-ジオキサノンのラクチドに対するモル比が約40：60乃至60：40）、ε-カプロラクトンとp-ジオキサノンのエラストマー共重合体（好ましくはε-カプロラクトンとp-ジオキサノンのモル比が約30：70乃至70：30）、p-ジオキサノンとトリメチレンカルボネートのエラストマー共重合体（好ましくはp-ジオキサノンのトリメチレンカルボネートに対するモル比が約30：70乃至70：30）、トリメチレンカルボネートとグリコリドのエラストマー共重合体（好ましくはトリメチレンカルボネートのグリコリドに対するモル比が約30：70乃至70：30）、L-ラクチド、D-ラクチド、これらの混合物又は乳酸共重合体を含むトリメチレンカルボネートとラクチドのエラストマー共重合体（好ましくはトリメチレンカルボネートのラクチドに対するモル比は約30：70乃至70：30）及びこれらの混合物から選択されるものが好ましい。この技術分野でよく知られているように、これらの脂肪族ポリエチレンコポリマーは異なる加水分解速度を有するため、エラストマーの選択はコーティング吸着の必要性に一部に基づく場合がある。たとえば、ε-カプロラクトン-ニーコリド共重合体（各々45：55モルパーセント）フィルムは、類似生割的緩衝液中で2週間後に最初の90%が失われ、ε-カプロラクトン-ニーコラクチド共重合体（各々40：60モルパーセント）は同じ緩衝液中で12週間乃至16週間で強度の全てが失われる。加水分解の速いポリマーと一緒にポリマーの混合物を使用して強度保持時間を延長できる。

【0018】好ましい生物学的吸収性エラストマーポリマーは、25°Cで1デシリトル当たり0.1グラム(g/dL)のヘキサフルオロイソプロパノール(HFP)中のポリマー溶液で測定して、約1.0dL/g乃至約4dL/g、好ましくは約1.0dL/g乃至約2dL/g、最も最好是約1.2dL/g乃至約2dL/gの粘性を有していないなければならない。

【0019】ステントを適切にコートするために粘性、ボリマーの付着レベル、薬剤の溶解性、ステントの湿潤性、油媒の蒸発速度に適切なバランスが存在するように油媒を選択する。好ましい実施形態では、薬剤とボリマーの両方が油媒に溶けるような溶液で選択される。幾つかの場合では、コーティングボリマーが油媒に溶け、薬剤が油媒のボリマー溶液に分散するように、油媒が選択されなければならない。この場合、選択された油媒は薬剤の小粒子が凝集又は集まって粒子集合体となり使用しないに至る。また、油媒に油溶性の薬剤を含む場合に於ては、スリットのスポットを重ねることなく、薬剤小

(6)

9

粒子を懸濁できなければならぬ。処理中に溶媒をコーティングから完全に乾燥させることが目的であるが溶媒が無毒で発癌性ではなく、環境に優しいことは大きな利点である。粘性と溶解速度をコントロールするために、混合した溶媒システムも使用できる。全ての場合で、溶媒は薬剤と反応してはならず又は薬剤に対し不活性でなければならない。好ましい溶媒の例には、限定されないが、アセトン、N-メチルピロリドン(NMP)、ジメチルスルホキシド(DMSO)、トルエン、塩化メチレン、クロロハム、1, 1, 2-トリクロロエタン(TCE)、利々のフレオン、ジオキサン、酢酸エチル、テトラヒドロフラン(THF)、ジメチルホルムアミド(DMF)及びジメチルアセトアミド(DMAC)がある。

【0020】一般にフィルム形成生物学的適合性ポリマー一コーティングを使用して、ステントを流れる血液の局所的乱流と悪い組織反応を減らす。また、コーティングは薬学的に活性な物質をステントの配置部位に投与するためにも使用できる。一般に、ステントにあるポリマーコーティング量はポリマーとステントのデザイン及びコーティングの所望の効果によって変わる。コーティング量のガイドラインは、コーティング後のステントの全重量のパーセントとして約0.5%乃至約2%の範囲でよく、好みとしては約1%乃至約1.5%の範囲である。ポリマーコーティングは、使用的するポリマー量により1以上のコーティング工程で付着してよい。また、異なるポリマーを用いて、ステントコーティングに異なる層を形成してもよい。事実、希釈した第一のコーティング浴液を下塗り(primer)として用いて、後に続くコーティング層の付着を促進することは、非常に好ましい。後に続くコーティング層は薬学的に活性な物質を含んでよい。

【0021】さらに、トップコーティングを用いて薬剤の放出を遅らせることができ、また、異なる薬学的活性物質の伝達(delivery)ためのマトリックスとして使用できる。ステント上のトップコーティングの量を変えることができるが、一般に約2000μgより少なく、好みとしてはトップコーティングの量は約10μg乃至約170μgであり、最も好ましくは約300μg乃至約1600μgである。加水分解の速い及び加水分解の速いポリマーからなるコーティングの緩慢は、薬物を段階的に放出するためには用いることができ、又は異なる層にある異なる薬剤の放出をコントロールするために用いることができる。また、ポリマー複合物を異なる薬剤の放出速度をコントロールするため、又は望ましいコーティングのバランス(即ち、選択性、強度など)及びドラッグデリバリー特性(放出プロファイル)を付与するためには用いることができる。溶媒の溶解性の異なるポリマーを用いて異なるポリマー層を構築でき、異なる薬剤を伝達し、又は薬剤の放出プロファイルをコントロールでき

特開2000-51367

10

る。例えば、ε-カプロラクトン-コーグリコドエラストマーは酢酸エチルに溶けるが、ε-カプロラクトン-コーグリコドエラストマーは酢酸エチルに溶けない。薬剤を含むε-カプロラクトン-コーグリコドエラストマーの第一層を、溶媒として酢酸エチルを用いて製造したコーティング溶液を用いて、ε-カプロラクトン-コーグリコドエラストマーと共にコートしてもよい。さらにコポリマー、ポリマー構造又は分子量において異なるモノマー比を用いると異なる溶解性が得られる。たとえば、4.5/5.5ε-カプロラクトン-コーグリコドは脂溶性でアセトンに溶解するが、3.5/6.5ε-カプロラクトン-コーグリコドの同様の分子量のコポリマーは4重量%溶液に実質的に溶解しない。第二のコーティング(又は、多数の追加コーティング)をトップコーティングとして用いて、第一の層に含まれる薬剤のドラッグデリバリーを遅らせることができる。別の方法では、第二の層に別の薬剤を含ませて遮蔽したドラッグデリバリーを提供できる。異なる薬剤を含む多数の層は、最初の1つのポリマー層と他のものを交互に重ねて形成できる。当業者は容易に理解できるように、所望のドラッグデリバリーを提供するために数多くの種類の方法を使用できる。

【0022】コーティングを、限定しないが以下のようないくつかの方法で行う。薬剤を伝達するために使用できる。ビンカンタルカロイド(即ち、ビンクリスチン、ビンクリスチン及びビンオレルビンなど)、パクリタクセル、エピディボドフィロトキシン(即ち、エトポシド、テニポシド)などの天然物を含む抗増殖/抗有糸分裂剤; ダクチノマイシン(アクテノマイシンD)、ダウノルビシン、ドキソルビシン及びイガビシン、アントラサイクリン、ミトザントロン(mitoxantalone)、ブレオマイシン、ブリカマイシン(ミトラマイシン)及びマイトイマイシンなどの抗生菌質; 酢素(L-アスパラギン)を系統的に代謝し、アスパラギン合成能力のない細胞にはないL-アスパラギナーゼなど); ナイトロジェンマスターード(メクロルエタミン、シクロホスファミド)とその類似物、メルファラン、クロラムプロバンなど)、エチレンイミン及びメチルメラミン(ヘキサメチルメラミン及びオチオテバなど)、アルキル硫酸ブルスルファン、ニトロソウレア(カルムスチン(BCNU)及び類似物、ストレプトゾシンなど)、トラゼンダカルバジニ(DTIC)などの抗増殖/抗有糸分裂アルキル化剤; 薬酸類似物(メトトレキセートなど)、ビリミジン類似物(フルオロウラシル、フロクスウラジン及びシタラビンなど)、プリン類似物及び関連化合物(メルカブトプリン、チオグアニン、ペントスタチン及び2-クロロデオキシアデノシン(クラドリビン)などの抗増殖/抗有糸分裂剤; 抗増殖剤; 白金位錯体(シスプラチン、カルボプラチナなど)、プロカルバジン、ヒドロキシウレア、ミトタン、50 アミノグルテミド; ホルモン(即ち、エストロゲンな

(7)

特開2000-51367

12

11
ど) ; 抗凝固剤 (ヘパリン、合成ヘパリン塩及び他のトロンキン阻害剤など) ; フィブリノーゲン分解剤 (組織プラスミノーゲンアクチベーター、ストレプトキナーゼ及びウロカーニーゼなど) ; 抗血小板剤 (アスピリン、ジビリダモール、チクロピジン、クロビドグレル、アスピキマブなど) ; 移行抑制剤 (分泌抑制剤 (プレベルジンなど) ; 副腎皮質ステロイド (コルチゾール、コルチゾン、フルドロコルチゾン、ブレドニゾン、ブレドニゾン、 6α -メチルブレドニゾン) ; トリアムシノロン、ペータメタゾン及びデキサメタゾンなど) ; 非ステロイド剤 (サリチル酸誘導体、即ち、アスピリンなど) などの抗炎症薬 ; パラーアミノフェノール誘導体、即ち、アセトアミノフェン ; インドール及びインダン衍生物 (インドメタシン、スリンダク及びエトドラクなど) ; ヘテロアリール衍生物 (トルメチン、ジクロフナック及びケトロラクなど) ; アリールプロピオニ酸 (イブプロフェン及び類導体など) ; アントラニル酸 (メフェナミン酸及びメクロフェナミン酸など) ; エノール酸 (ピロキシカム、テノキシカム、フェニルバタゾン及びオキシファンタラゾンなど) ; ナブメトシン、金化合物 (オーラノフイン、オーロチオガロコース、金チオランゴ酸ナトリウムなど) ; 免疫抑制剤 (シクロスボリン、タクロリムス (FK-506) 、シロリムス (ラバマイシン) 、アザチオブリン、マイコフェノレートモフェチルなど) ; 胚胎形成剤 : 脳管内皮成長因子 (VEGF) ; 雜種芽胞桿形成因子 (FGF) ; 雜化空素ドナー ; アンチセンソオリゴヌクレオチド及びこれらの組み合わせなどである。

【0023】コーティングは、コーティング混合物において、1以上の治療薬をコーティングポリマーと混合して形成できる。治療薬は液体として、細かく分散した固体として又は他の適当な物理的形態で存在できる。所望により、混合物は1以上の添加物、例えば希釈剤、キャリア、賦形剤、安定化剤などの非毒性補助物を含んでもよい。他の適当な添加剤を、ポリマー及び薬学的活性剤又は化合物と共に処方してもよい。例えば、前記の生物学的適合性フィルム形成ポリマーから選択される親水性ポリマーを、生物学的適合性疎水性コーティングに添加して放出プロファイルを変えてよい (又は、疎水性ポリマーを親水性コーティングに添加して放出プロファイルを変えてよい)。一例として、ポリエチレンオキサイド、ポリビニルビロドン、ポリエチレンジゴークル、カルボキシメチルセルロース、ヒドロキシメチルセルロース及びこれらの組み合わせからなる群から選択される親水性ポリマーを脂肪族ポリエチルコーティングに添加して放出プロファイルを変えることが挙げられる。適切な相対的な量は、治療薬についてインピトロ及び/又はインピボにおける放出プロファイルをモニタして決定できる。

【0024】コーティング塗布に最もよい条件は、ポリマーと薬剤が共通の溶媒を有する場合である。このこと

10

により一つの正真正銘の溶媒である湿ったコーティングが得られる。溶媒中のポリマー溶液に薬剤が固体分散として含まれるコーティングも使用できるが好ましくない。分散状態では分散する薬学的粉の粒の大きさ (最初の粉の大きさ及び凝集体及び集合体の両方) が、確実にコーティング面を剥離的にしないように又是コーティング無しに維持する必要のあるステントのスロットを塞がないように、十分小さくことに注意しなければならない。分散液をステントに適用したとき、コーティング面の滑らかさを改善すること、又は薬剤の全ての粒子が確実にポリマー内に十分に包まれることを望む場合、又は分散液又は溶液のいずれからも薬剤の放出速度を遅くすることを望む場合、使用した同じポリマーの純粋な (ポリマーのみ) トップコーティングを用いて薬剤の放出を抑制し、また、他のポリマーで薬剤のコーティングからの放散をさらに制限できる。トップコーティングは、前述のように、心導管を用いた浸漬コーティングにより、又はスプレイコーティングにより適用できる (純粋なトップコートについては、高価な薬剤が含まれていないのでスプレイ中のコーティングロスはほとんど問題にならない)。トップコートの浸漬コーティングは、薬剤がポリマーによりコーティング溶媒により溶け、純粋なコーティングが既に付着している薬剤を再び溶かすのなら問題はないが危険がある。浸漬バスに費やす時間は、薬剤が薬剤の無いバスの中に抽出されないように限定する必要がある場合がある。乾燥は、既に付着した薬剤が完全にトップコートに放散しないように速やかに実施しなければならない。

【0025】治療薬の量は、使用する特定の薬剤と処置30 対象の医療疾患により決まる。一般に、薬剤の量はコーティングの重量で約0.001%乃至約7.0%であり、より一般には約0.001%乃至約6.0%であり、最も一般的には約0.001%乃至約4.5%である。

【0026】薬剤を含むコーティング層に使用するポリマーの量と種類は、所望の放出プロファイルと用いる薬剤の量により変わる。製品は異なる分子量を有する同じ又は異なるポリマーの混合物を含むことができ、所量の放出プロファイル又は所定の処方にに対する一貫性が得られる。

40 【0027】吸収性ポリマーが血液などを含む体液と接触すると、(主に加水分解によって) 徐々に分解し、分散した薬剤が (等張生理溶液からの放出と比べて) 持続して長期間放出する。非吸収性及び吸収性ポリマーは分散している薬剤を放散により放出できる。これにより、有効量 ($0.001 \mu\text{g}/\text{cm}^2 \cdot \text{分}$ 乃至 $100 \mu\text{g}/\text{cm}^2 \cdot \text{分}$) の薬剤を長期間 (1時間乃至2,000時間、好ましくは2時間乃至800時間) 連続できる。この用意は治療する患者、苦痛の深刻さ、処方する医者の判断などにより調整できる。

【0028】薬剤とポリマーの個々の処方を適当なイン

50

(8)

特許 2000-51367

14

13

ビボとインピトロモデルでテストし、所望の薬剤放出プロファイルを得ることができる。例えば、薬剤をステントをコートするポリマー（又は混合物）と共に処方し、搅拌又は循環する流体システム（P B S 4 %ウアシリブミンなど）に入れることができる。循環流体のサンプルを取り出し（HPLCなどにより）放出プロファイルを測定できる。ステントコーティングから管の内壁への薬学的化合物の放出は、適当なバタシスムでモデル化できる。その後、薬剤放出プロファイルを適当な手段でモニタできる。例えば、特定の時間にサンプルを取りサンプルについて薬剤濃度をアップセッタ（HPLCを用いて薬剤濃度を検出す）。血栓形成は、RansonとHarker, Proc. Natl. Acad. Sci., USA 85 : 3184-3188 (1988年) に記載される "In-vitro小板造影方法を用いて動物モデルでモデル化できる。當業者は、この方法又は同様の方法に従い、様々なステントコーティング処方を調節できるであろう。

【0029】

【実施例】実施例1

IVが1.5% (25°Cでヘキサフルオロイソブロパノール[HFP]中 0.1g/dl) の4.5:5.5モル%のε-カプロラクトン(CAP)とグリコリド(GLY)のコポリマー系吸収性エラストマーを、別々に、アセトンに5重量%、1, 1, 2-トリクロロエタン(以下「1, 1, 2 TCE」と言ふ。)に15重量%溶解した。エラストマーの合成はここに援用する米国特許第5,468,253号に記載されている。種々かに加熱して溶解速度を上げることができる。薬剤の存在の有無に関わらず高い濃度のコーティングが处方できた。Cordis P-S 153ステント(Johnson & Johnsonの一社であるCordis社から市販)を直径が0.032インチ(0.81mm)の心棒に配置しながら、5%溶液に浸漬コーティングして、ステントにポリマーだけの最初の下塗りコートをする。ステントの付いた心棒を浸漬バスから取り出してステントを心棒の長さに沿って一方に向かし、その後コーティングを乾燥する。この拭き(wiping)動作は、ステントと心棒の間に捕えられたコーティングに高い剪断を与える。高い剪断速度により、スロットを通して出てくるコーティングはステントを形成するチューブの中へ切り込まれる。この拭き動作は、コーティングをスロットから出しスロットをきれいに保つ。この「下塗りされたステント(primed stent)」は室温で空気乾燥する。下塗りコートは約1.0マイクログラムのコーティングである。1時間乃至2時間の空気乾燥の後、ステントを0.0355インチ(0.9mm)のきれいな心棒に再び取り付け、第二の濃縮したコート溶液に浸漬する。これは薬剤を含んでなくともよく、また、コーティング溶液に約15重量%のポリマーとさらに約6重量%の薬剤を含んでもよい。浸漬及び拭きプロセスを繰り返す。最終的にコートされた

ステントを12時間空気乾燥した後、60°C真空オーブン(30インチHg真空)に24時間置いて乾燥する。この方法により、約2.70マイクログラムのポリマーと約1.80マイクログラムの薬剤を含むコートされたステントが得られる。

【0030】実施例2

この実施例は、浸漬及び拭きコーティング方法の、生物学的活性薬剤をコートするに取り込む能力と、生物学的活性薬剤がその生物学的活性を保持することを示す実験について説明する。Cordis P-S 153ステントを直径が0.032インチ(0.81mm)の心棒に配置しながら、5重量%溶液に浸漬コーティングして、ステントに実施例1に示したポリマーだけの最初の下塗りコートをした。その後、コートしたステントをポリマーと薬剤のコーティング溶液で2回目のコートをした。コートしたステントを、心棒と高濃度薬剤一ポリマ一溶液(15%ポリマー、1:100 薬剤:ポリマー、及び20000U/mヘパリン-ベンズアルコニウムクロライド[H B A C];全て7.0/3.0アセトン/DMSO中)を用いて、実施例1に示す方法により、浸漬し拭きコートした。H B A Cコートステントは約3.5マイクログラムの全コーティング重量を有する。コートしたステントは北アメリカ科学協会(ノースウッド、オハイオ州、アメリカ合衆国)に送り、標準ラビット全血凝固時間アッセイをした。このアッセイは、ステントを、ネガティブ対照サンプル(ガラスチューブ)とポジティブ対照(H B A Cコートガラスチューブ)と共に、トリプシン消化性大豆凝固(T S A)プレートの表面に置いて実施した。1.5mm×1.5mm T S Aプレートに、安妥死させたラビットの動脈流から得た3.5mlのラビット全血を注いだ。テストプレートを室温で20分間乃至40分間培養した。培養期間の終了後、サンプルをプレートに形成した血栓からビンセットで取り出した。試験及び対照片に取り除いたとき血栓に付着した証拠があるか否か観察した。

【0031】ヘパリンで凝血防止したステントは、ヘパリンで凝血防止しない対照に比べて、凝血しないことが証明された。

【0032】実施例3

この実施例は、浸漬及び拭きコーティング方法の、ステントのスロットにプリッジしないで高いコーティング負荷でステントをコートする能力を示す実験について説明する。Cordis P-S 153ステントを、実施例1で述べた4.5:5.5モル%のε-カプロラクトンとグリコリドのエラストマー(IV=1.5)5重量%溶液に浸漬コートした。このステントを取り出し1-2時間室温で空気乾燥した。ステントに付着したコーティングは約1.00マイクログラム乃至1.50マイクログラムであった。ステントのスロットは乾燥コートイングフィルムでプリッジされていた(図5参

50

(9)

特開2000-51367

15

16

照)。第二のCordis P-S 153を実施例1で述べた15%ボリマーを含むコーティング溶液で浸漬し拭きコートした。ステントのスロットはコーティングがなく、ステントは300マイクログラムのコーティングを負荷していた。同様な実験をCordis Crown(商標)ステント、Guidant RX Nutlinck(商標)ステント、AVE G FX(商標)ステントを用いて実施した。結果は同じであり、心棒上の浸漬と拭きによりスロットをブリッジすることなく高い濃度のコーティングが機械のステントに付着するのを可能にした。

【0033】実施例4

この実施例は、ε-カプロラクトンとグリコリドのエラストマーコポリマーとε-カプロラクトンとラクチドのエラストマーコポリマーの酢酸エチルでの溶解性の違いを示す。0.2gのε-カプロラクトンとグリコリドのコポリマー($4.5/5.5$ 、 $IV=1.5$ 、 $T_m=62^{\circ}\text{C}$)を4gの酢酸エチルと共に平底ガラスバイアルに入れられた。ホットプレートで一晩攪拌棒と共に約50℃まで加熱した。結果は、50℃では濃い溶液と壁に一部透明なボリマー溶液があつたが、温度が低温($\sim 25^{\circ}\text{C}$)に戻るとボリマーが沈殿しバイアルの壁をコートした。同様に、実施例1に記載した方法と同じようにして、0.2gのε-カプロラクトンとラクチドのコポリマー($4.0/6.0$ 、 $IV=1.5$ 、 $T_m=132^{\circ}\text{C}$)を4gの酢酸エチルと共に平底ガラスバイアルに入れられた。ホットプレートで一晩攪拌棒と共に約50℃まで加熱した。最初粒子が膨潤してその後溶液となつた。室温に冷やしても、溶液は透明で均一のままだった。

【0034】実施例5

多重浸漬

実施例1で述べたように、P-Sステントを5%w/w 4.5:5.5ε-カプロラクトンとグリコリド溶液でコートした。最初のコーティングはステントに全部で~1.0マイクログラムの固体をもたらした。ステントを乾燥した後、1.5%w/w 4.5:5.5ε-カプロラクトンとグリコリド及び6%w/w薬剤溶液でコートした。第二の工程は、ステントに、全部で~1.70マイクログラムの固体と~6.0マイクログラムの薬剤をもたらした。ステントを再び同じ第二の溶液でコートし、固体が全体で30マイクログラム増加し(全部で200マイクログラム)、薬剤が2.0マイクログラム増加した(全部で8.0マイクログラム)ことが観察された。しかし、粒状ステントを再び同じ第二の溶液でコートとしても、固体と薬剤の全重量は同じに留まった。

【0035】実施例6

この実施例は、コートしたステントに超音波スプレイ装置を用いてトップコーティングすることを示す。

【0036】5重量%コーティング溶液を、TCE:アセトン(1:1、w/w)溶媒溶液に、実施例1で述べた4.5:5.5ε-カプロラクトンとグリコリドを用いて

作成した。

【0037】超音波スプレイユニットは、ノズル(モデル6-04010)に接続するSonoTek(ニューヨーク、アメリカ合衆国)プロードバンド超音波発生器(モデル60-05108)から構成され、60KHzで振動して平均滴サイズが31ミクロンの滴を発生する。システムを操作した電力は5.8ミリワットであった。流速は約0.3ml/分に調整された。超音波スプレイシステムをプラスチックパック封じ込めシステムに入れ、気流を排除して蒸発を遅らせた。ステントをノズルから1.5cm乃至5cmの距離に置き、スプレイの盆の中に約1.5秒乃至4.0秒と始めた。

【0038】その後、ステントを1時間乃至24時間周囲条件で乾燥して、続いて60℃で24時間真空乾燥した。約1.00マイクログラム乃至1.50マイクログラムのボリマーが1回のトップコーティング操作につき付着した。所望により、心棒を使用してステントの内部のコーティングを防ぐことができる。

【0039】実施例7

この実施例は、インピロ薬剤放出テストのための様々なレベルのラバマイシンを含むコートされたステントの製造について示す。

【0040】0.06gのラバマイシンを、1, 1, 2 TCE中の1.5%CAP/GLY溶液0.8gに溶かした。得られたコーティング溶液は、乾燥固体のみを基準として3.3%w/wの薬剤を含んでいた。ステントを実施例1に述べた方法でコートし、コートされたステントを「Std 33%」と称した。

【0041】0.015gのラバマイシンを、1, 1, 2 TCE中の1.8%CAP/GLY溶液0.5gに溶かした。得られたコーティング溶液は、乾燥固体のみを基準として1.4%w/wの薬剤を含んでいた。ステントを実施例1に述べた方法でコートし、コートされたステントを「14%」と称した。

【0042】0.028gのラバマイシンを、1, 1, 2 TCE中の1.8%CAP/GLY溶液0.5gに溶かした。得られたコーティング溶液は、乾燥固体のみを基準として2.3%w/wの薬剤を含んでいた。ステントを実施例1に述べた方法でコートした。浸漬コートされたステントを、実施例6に記載したように、ボリマーのみの溶液でスプレイコートした。最終のコートされたステントを「24-T C%」と称した。

【0043】0.028gのラバマイシンを、1, 1, 2 TCE中の1.8%CAP/GLY溶液0.5gに溶かした。得られたコーティング溶液は、乾燥固体のみを基準として2.3%w/wの薬剤を含んでいた。ステントを実施例1に述べた方法でコートした。浸漬コートされたステントを、実施例6に記載したようにボリマーのみの溶液でスプレイコートした。しかし、この場合に、全体積が200マイクロリットルのスプレイ溶液を

30

20 この実施例は、インピロ薬剤放出テストのための様々なレベルのラバマイシンを含むコートされたステントの製造について示す。

【0044】0.015gのラバマイシンを、1, 1,

2 TCE中の1.8%CAP/GLY溶液0.5gに溶

かした。得られたコーティング溶液は、乾燥固体のみを

基準として1.4%w/wの薬剤を含んでいた。ステ

ントを実施例1に述べた方法でコートし、コートされた

ステントを「14%」と称した。

【0045】0.028gのラバマイシンを、1, 1, 2 TCE中の1.8%CAP/GLY溶液0.5gに溶かした。得られたコーティング溶液は、乾燥固体のみを基準として2.3%w/wの薬剤を含んでいた。ステントを実施例1に述べた方法でコートした。浸漬コートされたステントを、実施例6に記載したようにボリマーのみの溶液でスプレイコートした。最終のコートされたステントを「24-T C%」と称した。

【0046】0.028gのラバマイシンを、1, 1, 2 TCE中の1.8%CAP/GLY溶液0.5gに溶かした。得られたコーティング溶液は、乾燥固体のみを基準として2.3%w/wの薬剤を含んでいた。ステントを実施例1に述べた方法でコートした。浸漬コートされたステントを、実施例6に記載したようにボリマーのみの溶液でスプレイコートした。しかし、この場合に、全体積が200マイクロリットルのスプレイ溶液を

40

40 実施例6に記載したように、ボリマーのみの溶液でスプレイコートした。最終のコートされたステントを「24-T C%」と称した。

【0047】0.028gのラバマイシンを、1, 1, 2 TCE中の1.8%CAP/GLY溶液0.5gに溶かした。得られたコーティング溶液は、乾燥固体のみを基準として2.3%w/wの薬剤を含んでいた。ステントを実施例1に述べた方法でコートした。浸漬コートされたステントを、実施例6に記載したようにボリマーのみの溶液でスプレイコートした。しかし、この場合に、全体積が200マイクロリットルのスプレイ溶液を

50

(10)

特開2000-51367

18

用いた。最終のコートされたステントを「24-T h i c k T E %」と称した。

[0044] 0.06 g のラバマイシンを、1, 1, 2 TCE 中の 1.5% CAP/GLY 溶液 0.8 g に溶かした。得られたコーティング溶液は、乾燥固体のみを基準として 3.3, 3% w/w の薬剤を含んでいた。ステントを実施例 1 に述べた方法でコートした。浸漬コートされたステントを、実施例 4 に記載したように、ε-カーバロラクトン-コララクチド (Cap/Lac) 溶液で 2 回スプレイコートした。最終のコートされたステントを

TCE中の1.5%CAP/LAC溶液0.8gに溶かした。得られたコーティング溶液は、乾燥固体のみを基準として3.3、3.3%w/wの範囲を含んでいた。ステントを実施例1に述べた方法でコートした。漫透コートされたステントを(コポリマーとしてe-カプロラクトン-コラクチドを用いたことを除いて)実施例6に記載したように、ポリマーのみの溶液を2回スプレイコートした。最終のコートされたステントを「33-C/L TEC」と称した。

〔0046〕審施例8

この実験例は、コートされたスチントからのラバマイシンのインピクト薬剤放出試験の結果を示す。様々な濃度のラバマイシンを含むコートされたスチントが実験例7で製造され、薬剤の水性エタノール溶液へのインピクト放出について試験した。図7に示すように、ダイヤmond形で示されるスチントは、下塗りコーティングとラバマイシンを含むベースコーティングとを有していた。各スチントのコーティングとラバマイシンの全重量は約4.50 μgであり3.3重量%のラバマイシンを含んでいた。コーティングは、浸漬コーティングによるε-カプロラクトン-コーグリコリドのコポリマー(4.5:5.5モル%)であった。四角形は、下塗りコーティングとラバマイシンを含むベースコーティングとを有するスチントのデータ点を示す。コーティングとラバマイシンの全重量は約4.50 μgであり1.4重量%のラバマイシンを含んでいた。コーティング物質は、同じく浸漬コーティングによるε-カプロラクトン-コーグリコリドのコポリマー(4.5:5.5モル%)であった。三角形は、下塗りコーティングとラバマイシンを含むベースコーティングとを有するスチントのデータ点を示す。下塗りコーティングとベースコーティング(ε-カプロラクトン-コーグリコリド4.5:5.5モル%)をステンレスに浸漬コーティングして付着した。その後、2.00 μgのトップコーティング(ε-カプロラクトン-コーグリコリド4.5:5.5モル%)を超音波スプレイ器を用いて付着した。コーティングとラバマイシンの全重量は6.50 μg乃至7.00 μgであり2.4重量%のラバマイシンを含んでいた。Xは、下塗りコーティングとラバマイシンを含んでいた。

10

ントのデータ点を示す。下塗りコーティングとベースコートティング(ϵ -カプロラクトン-ゴーグリコド45:55モル%)をステントを浸漬コートティングして付着した。その後、 $1000\mu\text{g}$ のトップコートティング(ϵ -カプロラクトン-ゴーグリコド:45:55モル%)を超音波スプレイ器を用いて付着した。コーティングとラバマイシンの全重量は約550 μg であり33重量%のラバマイシンを含んでいた。円形は、 ϵ -カプロラクトン-ゴーグリコド(40:60モル%)を浸漬コート²⁰したステントのデータ点を示す。その後、ステントを、約 $1000\mu\text{g}$ の ϵ -カプロラクトン-ゴーグリコドで超音波スプレイによりトップコートした。コーティングの全重量は約550 μg であり33重量%のラバマイシンを含んでいた。

【0047】各ステントを、 $13\text{mm} \times 100\text{mm}$ の培養チューブに含まれる2、5mLの放出媒体(水溶エタノール；室温で15体積%)に入れた。周囲条件を維持しながら、チューブを水バス(INKNOVA(液槽)3100；New Brunswick Scientific)で200r.p.mで振とうした。所定の間隔期間(15分から1日の範囲)の後、チューブを振とう器から取り出し、各ステントを注記録用新しいHPLCミルアートコート(Agilent)の放出媒体に移した。新しいチューブを振とう器に入れ操作再開した。サンプルを、既にステントを含んでいたアリコートから取り出し、HPLCバイアルに入れ、HPLCによりラババインの含有量を測定した。

【0048】サンプルの分析に使用したHPLCシステムは、PDA 996付きWaters Allianceであった。このシステムは、フォトダイオードアレイディテクタを備えている。20 μLの各サンプルを引き出し、C₁₈一逆相カラム(Waters Symmetry(商標)カラム: 4.6 mm×100 mmRP、3.5 μm、マッティングガードカラム付き)で分析した。移動相として、流速1.2 mL/分のアセトニトリル/メタノール/water(3 : 8 : 34 : 4.28 v/v)を用いた。分析の妨げカラムを60 °Cに維持した。これらの分析条件でラバマイシンは4.75±0.1分の保持時間に有した。濃度は、50 ng/mL-50 μg/mLの標準ラバマイシンからの濃度と反応の標準曲線(曲線の下の面積)で決定した。

上記のコートしたスティントンの試験結果を図7に示す。

(11)

19

特開2000-51367

20

【0049】実施例9

この研究の目的は、インビポでヨークシャーブタの冠動脈に導入したポリマーコートステントからのラバマイシンの放出速度を調べることであった。ステント導入後の様々な時間に、ブタを安楽死させ冠動脈を取り出し、ステントを動脈から切り離し、前述した負荷アッセイを用いてラバマイシン含有量を分析した。対照の埋め込まれていないステントに含まれるラバマイシンの量と比較して、ポリマーコーティングからのインビポラバマイシン放出速度を測定した。

【0050】尖端方法：雄のヨークシャーブタをこの実験に使用した。動物はキシラジン（2 mg/kg、1 M）、ケタミン（1.7 mg/kg、1 M）及びアトロビン（0.02 mg/kg、1 M）で麻酔した。その後、ブタを標準の方法を用いて拘置し、酸素と共に1%乃至2.5%揮発性イソフルランを混じて、気管内チューブを通して麻酔を維持した。2.0 g/kg 血管カテーテル（angiocath）を耳介血管に挿入して末梢静脈内アクセスした。2.0 g/kg 動脈カテーテルも耳に配置して継続して血圧と心拍数をモニタした。

【0051】ステント部位に瘢痕が形成する可能性を最小にするために、計画する処置の3日前に、動物にアスピリン325 mg/日の経口投与を開始した。麻酔の深さが適当であることを確認した後、右脇骨部を剥り滅菌し、滅菌しながら覆った。残りの皮膚を通して無菌技術を用いた。大臍部血管と腸状切跡がなされ、皮下組織を動脈まで切り開いた。適当に露出した後、大臍部動脈を近位は勝格で遠位は3.0網結びで分離して止血した。外科用鉄を用いて動脈を切開し、8フレンチ（Fr）鞘を動脈に挿入した。鞘の挿入後、ヘパリン4,000ユニックとブレチリウム7.5 mgを静脈内投与した。心電図、呼吸パターン及び血行動態を継続してモニタした。

【0052】ホッケースティックガイドカテーテルを大臍部縫に挿入し、左冠動脈血管映像撮影をして左冠動脈口まで進めた。予め特定されているバルーン：動脈の比が約1.1-1.2:1となるようにバルーンステント組立体の大きさを定めるため、シングルフレーム前後方向X線写真を撮像し、左前下行動脈と弓状溝前動脈の管内直径を測定した。ガイドカテーテル支持体と光学透視鏡ガイドスコープを用いて、0.014インチ（'）ガイドワイヤを左前下行動脈の管内に前進させた。従来の血管形成バルーンに取り付けられたステントを、左前下行動脈の中央部位に前進させて、冠動脈内ステントを実施した。取り付いているバルーンを3.0秒で8気圧まで膨張させて、ステントを展張した。血管が引いたことを確認したら、バルーンとガイドワイヤを左前下行（LA）動脈から除いて、同じ処置を左弓状溝（LCX）動脈に実施した。左弓状溝動脈でステントを送るのが完了したら、バルーンとガイドワイヤを引き出す。

【0053】その後、ガイドカテーテルと大臍部動脈鞘を取り出し、大臍部動脈を近位で3-0綱縫合で結んで止血し、剥けい部切開を閉じた。麻酔が切れた後、集團ハウジングに帰した。毎日のアスピリン325 mgの投与を安楽死まで続けた。

【0054】ステントを埋め込んだ後様々な時期に、過剰量のフェノバルビタールを1V投与して安楽死させた。胸骨中央で切り胸を開いて、心臓を取り出した。LADとLCXの両方を周囲の組織から注意深く切り取った。その後、ステントを動脈組織から切り取り、バイアルに入れた。動脈組織を凍結し、後のHPLCの分析のために保存した。

【0055】図7は、ポリカプロラクトン-コーグリコリド中に33%ラバマイシンを含むステントコーティングについての、典型的なインピトロの放出曲線を示す図である。

【0056】実施例10

この実施例は、コートされたステントのブタ冠動脈モデルにおけるインビポ試験について説明する。

【0057】この予備研究は、ε-カプロラクトン-コーグリコリドコドロボリマーコートステントから放出されたラバマイシンが、インビポで管内膜形成を阻害する能力について調べる。ラバマイシン含有ボリマー又は対照ボリマーでコートされたステントを受け入れてから14日後には、雄のヨークシャーブタを安楽死させ、冠動脈を取り出し、組織学的評価のために血管を準備し、管内膜の成長量を分析した。対照金属ステントとボリマーミのものを含むステントと比較して、ラバマイシンの新管内膜の成長を防ぐインビポでの能力が測定できた。

【0058】エチレンオキサイド-滅菌Palmaz-Schwarzステントを、滅菌状態で麻酔した体重3.8 kg乃至4.8 kgのファームブタに埋め込んだ。ステントを埋め込む24時間前に、慢性的血栓症をコントロールするために、動物にアスピリン（325 mg, p.o., q.d）とチクロビジン（250 mg, p.o., q.d）を投与した。アスピリンとチクロビジンは両方も屠殺まで毎日続けた。ケタミン（20 mg/kg, i.m.）、キシラジン（2 mg/kg, i.m.）及びベンタバルビタルナトリウム（必要により10 mg/kg）を用いて麻酔を誘導し、酸素中1%乃至2%イソフロランで維持した。8Fr鞘を単離した左頸動脈に配置し、繋いで使用して8Fr JLS 3.5ガイドカテーテルを冠動脈血管形成のために導き、又は0.014インチガイドワイヤをステントのバルーン輸送のために適当な運動系へ配列する。急性血栓症を防ぐためにヘパリン（1.50ユニック/kg）を投与した。4つの実験群を使用した；1) 金属ステント対照；2) 4.5/5.5(w/w) ε-カプロラクトン-グリコリドボリマー(CAP/GLY)でコートされた金属ステント；3) CAP/GLYに処方された3.2 μgラバマイシン/ス

(12)

總閱2000-51367

22

テント；4) CAP/GLYに迎刃された1.66 μgラバマイシン/ステント。ステントをLADとLCXの冠動脈両方に展開した。バルーン直径(3.0mm、3.5mm又は4.0mm)を選択するに管の大きさを測るため、及びバルーン/動脈比を決定するのに測定するために、ステント使用の前、及びその後に血管形成を実施した。伝達バルーンを30秒で8ATM乃至10ATMまで膨張してステントを展開した。また、埋め込み後14日目に血管形成を実施し最終的な血管直徑を得た。処置した群をランダム化し、個々のステントを処置について目的的な研究者により割り込んだ。しかし、どのブタも1つの処置だけはなされた。埋め込み後14日目に、動物を殺し、10分間100 mmHgで10%ホル

*マリンで血管を灌流固定し、その後10%福尔马林で保存した。

【0059】組織学的評価のために、ステントされた血管をグリコルメタクリレートに入れた。厚みが3 µm乃至5 µmの断面切片をステントの長さに沿って等間隔で取り、ガラススライドに置き、ミラー-エラスチシングルーラー (Miller's Elastolin) で準備した。組織形態計測が各切片について顕微鏡とコンピュータ化イメージ分析により測定された。各血管について得られた個々の値は、測定した4つの切片の平均を表す。処置間の違いはANOVAとDunnett試験で調べた。

表 1

组织学与胚胎学 血管造影

如圖	內膜／中膜比	內壁面積 (mm ²)	%直徑改變	B/A比
金屬對照 (n=10)	0.90± 0.05	3.65± 0.82	24.8± 3.9 [†]	1.27± 0.05
CAP/GLY (n=8)	0.91± 0.11	4.15± 0.23	38.0± 4.0	1.32± 0.04
CAP/GLY+ 32μgラバマイシン (n=10)	0.75± 0.04	3.27± 0.16	21.6± 3.6 [†]	1.23± 0.03
CAP/GLY+ 166μgラバマイシン (n=8)	0.65± 0.04 [‡]	2.87± 0.31	23.9± 2.3 [†]	1.27± 0.05

$p < 0.05$ (CAP/GLPから)

$\beta \leq 0, 0.5$ (金属コントロールから)

全ての値は平均±s.e.m.。B/A比=バルーン:動脈比(群から群へのステンシト膨張一定性の指標)。

【0061】表1に示すように、ラバマイシンの損傷した冠動脈への局所伝達は、ボリマーと鋼金属コート群と比べると、 $1.6 \mu\text{g}$ 処置群では、内膜：中膜における有意な減少($p < 0.05$)を、 $3.2 \mu\text{g}$ 処置群では少しの、但し有意ではない減少をもたらした。GAP/GLYコーティングから伝達されるラバマイシンも、 $3.2 \mu\text{g}$ 及び $1.6 \mu\text{g}$ 処置群の両方で、断面隔壁横ににおける非有意な用途間減少をもたらした。血管造影により剖れた狭窄症 \pm も、2つのラバマイシン処置群では、CAP/GLY群と比較すると、金属性封鎖群からのこのパラメータにおける減少は小さく非有意であるが、有意に減少した。やはり、この14日予備研究では、これらのデータは、生分解性疎水性ポリマー-コーティングからのラバマイシンの局所放出が、ストップ闘争の結果

生じる新内膜増殖の量を限定できる可能性を示している。

【0062】实施例1-1

- 40 グローブボックスで、 $100\text{ }\mu\text{L}$ ($33\text{ }\mu\text{mol}$) のジルエン中の 0.33M オクタジメチルズズ溶液、 $10\text{ }\mu\text{L}$ (1.2 mmol) のジエチレングリコール、2.4 g (170 mmol) のレーラクチド及び 4.57 g (400 mmol) の ϵ -カプロラクトンを、2.50 mL のシリаниз(silanized)、フレーム乾燥、2.首丸底フランスコに入れた。このフランスコには、ステンレス試験の機械的スターラーと窒素ガスブランケットが備えられていた。この反応フランスコを、既に 190°C にセットされていたオイルバスに入れ、そこに保持した。その後、クローバーポップスで、 6.2 mL (4.30 mmol) の

(13)

23

ーラクチドを、フレーム乾燥、圧力均一化追加漏斗に入れた。漏斗をヒートテープで包み、反応フラスコの第二の首に接続した。190℃で6時間後、融解しーラクチドを反応フラスコに5分かけて添加した。この反応を190℃で一晩維持し、全反応時間は24時間であった。一晩度を室温まで冷やした。コポリマーを、液体窒素で凍結しガラスを壊して、反応フラスコから分離した。残存するガラス瓶片をベンチグラウンドを用いてコポリマーから取り除いた。再び、コポリマーを液体窒素で凍結し機械的攪拌パドルで碎いた。コポリマーを、Wiley MillTM粉碎機にガラスジャーに入れ、真空オーブンで一晩室温まで暖めた。103.13gの40:60ボリ(ε-カプロラクトン-ε-ラクチド)をアルミニウム皿に入れ、その後54時間かけて110℃真空で揮発分を除去した。揮発分を除去した後、98.7g(95.7重量%)のコポリマーが回収された。

【0063】好適な実施態様を以下に示す。

(1) 前記ステントを前記コーティング溶液に浸漬させて、前記ステントを前記コーティング溶液に接触させる請求項1に記載の方法。

(2) 前記コーティング溶液を前記ステントにスプレーして、前記ステントを前記コーティング溶液に接触させる請求項1に記載の方法。

(3) 心棒を前記ステントの内面に接触させ前記心棒を前記ステントに対して動かして流体の動きを形成し、ブリッジが前記通路に形成するのを防ぐ実施態様(1)に記載の方法。

(4) 心棒を前記ステントの内面に接触させ前記心棒を前記ステントに対して動かして流体の動きを形成し、ブリッジが前記通路に形成するのを防ぐ実施態様(2)に記載の方法。

(5) 前記ステントの外表面をチューブの内面に接触させ前記チューブを前記ステントに対して動かして流体の動きを形成し、ブリッジが前記通路に形成するのを防ぐ実施態様(1)に記載の方法。

【0064】(6) 前記ステントの外表面をチューブの内面に接触させ前記チューブを前記ステントに対して動かして流体の動きを形成し、ブリッジが前記通路に形成するのを防ぐ実施態様(2)に記載の方法。

(7) 前記フィルム形成生物学的適合性ポリマーは、脂肪族ポリエチレン、ポリ(アミノ酸)、コポリ(ε-テルーエチレン)、ポリアルキレンオキサレート、ポリアミド、ポリ(イミノカルボネート)、ポリオルトエスチル、ポリオキサエチル、ポリアミドエスチル、アミド基含有ポリオキサエチル、ポリ(無水物)、ポリホスファゼン、生分子及びこれらの混合物からなる群から選択される請求項1に記載の方法。

(8) 前記フィルム形成ポリマーは、生物学的適合性脂肪族ポリエチレンである請求項1に記載の方法。

(9) 前記フィルム形成ポリマーは、エラストマー生物

特開2000-51367

24

学的適合性脂肪族ポリエチレンである実施態様(8)に記載の方法。

(10) 前記エラストマー生物学的適合性脂肪族ポリエチレンは、ε-カプロラクトンとグリコリドのエラストマーコポリマー、ε-カプロラクトンとラクチドのエラストマーコポリマー、p-ジオキサンとラクチドのエラストマーコポリマー、ε-カプロラクトンとp-ジオキサンのエラストマーコポリマー、p-ジオキサンとトリメチレンカルボネートのエラストマーコポリマー、トリメチレンカルボネートとグリコリドのエラストマーコポリマー及びこれらの化合物からなる群から選択される実施態様(9)に記載の方法。

【0065】(11) さらに、前記コーティング液に生物学的活性化合物が含まれる請求項1に記載の方法。

(12) 前記薬学的活性化合物が、抗増殖/抗有糸分裂剤、抗生物質、酵素、抗増殖/抗有糸分裂アルキル化剤、抗増殖/抗有糸分裂代謝拮抗剤、ホルモン、抗凝固剤、フィブリノーゲン分解剤、抗血小板剤、移行抑制剤、分泌抑制剤、抗炎症薬、免疫抑制剤、新管形成剤、醣化蛋白ドナー、アンチセンスオリゴヌクレオチド及びこれらの組み合わせからなる群から選択される実施態様(11)に記載の方法。

(13) 前記薬学的活性化合物がラバマイシンである実施態様(12)に記載の方法。

(14) 前記ステントが乾燥した後第二のコーティングを付与する請求項1に記載の方法。

(15) フィルム形成生物学的適合性ポリマーを含む溶液を前記ステントの少なくとも1つの面上にスプレーして、前記第二のコーティングを付与する実施態様(14)に記載の方法。

【0066】(16) 前記第二のコーティングは、前記第一のコーティングに含まれていないフィルム形成生物学的適合性ポリマーを含む実施態様(14)に記載の方法。

(17) 前記フィルム形成生物学的適合性ポリマーは、脂肪族ポリエチレン、ポリ(アミノ酸)、コポリ(ε-テルーエチレン)、ポリアルキレンオキサレート、ポリアミド、ポリ(イミノカルボネート)、ポリオルトエスチル、ポリオキサエチル、ポリアミドエスチル、アミド基含有ポリオキサエチル、ポリ(無水物)、ポリホスファゼン、生分子及びこれらの混合物からなる群から選択される請求項2に記載の方法。

(18) 前記ステントは、エラストマー脂肪族ポリエチレンでコートされる請求項2に記載の方法。

(19) 前記エラストマー生物学的適合性脂肪族ポリエチレンは、ε-カプロラクトンとグリコリドのエラストマーコポリマー、ε-カプロラクトンとラクチドのエラストマーコポリマー、p-ジオキサンとラクチドのエラストマーコポリマー、ε-カプロラクトンとp-ジオ

10

20

30

40

50

(14)

特開2000-51367

26

25

キサンのエラストマーコポリマー、 ρ -ジオキサンノンとトリメチレンカルボネートのエラストマーコポリマー、トリメチレンカルボネートとグリコリドのエラストマーコポリマー、トリメチレンカルボネートとラクチドのエラストマーコポリマー及びこれらの混合物からなる群から選択される実施態様(18)に記載の方法。

(20) 前記エラストマーコポリエスチルが ϵ -カプロラクトン-ゴーグリコリドである実施態様(19)に記載の方法。

【0067】(21) 第二のコーティングが付与される実施態様(20)に記載の方法。

(22) 前記第一のコーティングが ϵ -カプロラクトン-ゴーグリコリドであり、前記第二のコーティングが ϵ -カプロラクトン-ゴーグリコリドである実施態様(21)に記載の方法。

(23) 前記第一のコーティングが薬学的活性化合物を含む実施態様(22)に記載の方法。

(24) 前記エラストマーコポリエスチルが ϵ -カプロラクトン-ゴーグリコリドである実施態様(19)に記載の方法。

(25) 第二のコーティングが付与される実施態様(24)に記載の方法。

【0068】(26) 前記第一のコーティングが ϵ -カプロラクトン-ゴーグリコリドであり、前記第二のコーティングが ϵ -カプロラクトン-ゴーグリコリドである実施態様(25)に記載の方法。

(27) 前記第一のコーティングが ϵ -カプロラクトン-ゴーグリコリドであり、前記第二のコーティングが ϵ -カプロラクトン-ゴーグリコリドである実施態様(25)に記載の方法。

(28) 前記第一のコーティングが薬学的活性化合物を含む実施態様(26)に記載の方法。

(29) 前記第一のコーティングが薬学的活性化合物を含む実施態様(27)に記載の方法。

(30) 前記薬学的活性化合物がラバマイシンである実施態様(26)に記載の方法。

【0069】(31) 前記薬学的活性化合物がラバマイシンである実施態様(27)に記載の方法。

(32) さらに、生物学的適合性疎水性ポリマーが存在する請求項2に記載の方法。

(33) さらに、生物学的適合性疎水性ポリマーが存在する請求項2に記載の方法。

(34) 前記生物学的適合性親水性ポリマーは、ポリエチレンオキサイド、ポリビニルピロリドン、ポリエチ

ングリコール、カルボキシメチルセルロース、ヒドロキシメチルセルロース及びこれらの組み合わせからなる群から選択される実施態様(33)に記載の方法。

(35) 前記第二のコーティングは、前記第一のコーティング内の前記薬剤の放出速度を調整するために付与するコーティングである実施態様(25)に記載の方法。

【0070】(36) 前記第二のコーティングは、約10マイクログラムと約2000マイクログラムの間の重量である実施態様(35)に記載の方法。

【37】前記第二のコーティングは、約100マイクログラムと約1700マイクログラムの間の重量である実施態様(35)に記載の方法。

(38) さらに、少なくとも2つのトップコートがある実施態様(21)に記載の方法。

(39) さらに、少なくとも3つのトップコートがある実施態様(21)に記載の方法。

【0071】

【発明の効果】以上述べたように、本発明によれば、通常にブロック又はブリッジが形成されないステントのコーティング方法を提供できる効果がある。

【図面の簡単な説明】

【図1】コーティング前のステントの斜視図である。

【図2】コーティング前の心棒上のステントの配置を示す斜視図である。

【図3】コーティング方法において、コーティングバスから取り出した後の心棒に対するステントの動きを示す図である。

【図4】ステントスロット又は道路に実質的にブリッジが無いことを示すコートされたステントの部分拡大図である。

【図5】約4重量%のコーティング溶液を用いて従来の浸漬コーティング方法によりコートされたステントを示す顕微鏡写真である。

【図6】約1.3重量%のコーティング溶液を用いて本発明のコーティング方法によりコートされたステントを示す顕微鏡写真である。

【図7】コートされたステントのインピトロ放出プロファイルを示すグラフ図である。

【図8】コートされたステントのインピトロ放出プロファイルを示すグラフ図である。

【符号の説明】

2 ステント

6 心棒

30

40

(15)

特開2000-51367

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図8】

(16)

特許 2000-51367

【図7】

フロントページの続き

(72)発明者 マーク・ビー・ロラー
アメリカ合衆国、08802 ニュージャージ
イ州、ノース・ブランズウイック、クイン
ス・ブレイス 9

(72)発明者 ジェラード・エイチ・ラーノス
アメリカ合衆国、08886 ニュージャージ
イ州、シュワーツビル、ミーガン・サー
クル 1514

(72)発明者 グレゴリー・エイ・コピア
アメリカ合衆国、08853 ニュージャージ
イ州、ネシャニック、ロングフィールド・
ドライブ 58