

Ministério da Educação

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

Campus Curitiba
Elementos de Máquinas 2

FREIOS E EMBREAGENS MÓDULO 1

Prof. Marcos Takahama marcostakahama@alunos.utfpr.edu.br

REVISÃO E RECADOS

Prova Lista de exercício

REVISÃO

- Classificação de embreagens e freios
- Materiais utilizados (Tab μ e Pmax) para embreagem
- Critérios para dimensionamento de embreagem a disco:
 - Pressão Uniforme
 - Desgaste uniforme

Mandíbula

3 de 28

FREIOS E EMBREAGENS A DISCO

Formulário:

Tabela 17-1 Propriedades de materiais comuns de forração para embreagens/freios

	Coeficiente de atrito dinâmico		Pressão máxima		Temperatura máxima	
Material de atrito contra aço ou CI	Seco	Em óleo	psi	kPa	°F	°C
Moldado	0,25-0,45	0,06-0,09	150–300	1030–2070	400–500	204–260
Tecido	0,25-0,45	0,08-0,10	50-100	345-690	400-500	204–260
Metal sinterizado	0,15-0,45	0,05-0,08	150-300	1030-2070	450-1250	232-677
Ferro fundido ou aço endurecido	0,15–0,25	0,03–0,06	100–250	690–720	500	260

$$P.\,K=T.\,\omega$$
 P - Potência K - Fator de Serviço T - Torque ou Momento ω - Velocidade angular

Pressão uniforme x Desgaste uniforme

$$p = cte$$
 - Pressão

$$F_n = p. (\alpha_2 - \alpha_1). \frac{(r_e^2 - r_i^2)}{2}$$
 - Força Axial

$$F_n = p. \ (lpha_2 - lpha_1). \frac{(r_e^2 - r_i^2)}{2}$$
 - Força Axial $F_n = p_{m\acute{a}x}. r_i. \ (lpha_2 - lpha_1). \ (r_e - r_i)$ - Força Axial $F_f = \mu. \ p. \ (lpha_2 - lpha_1). \frac{(r_e^2 - r_i^2)}{2}$ - Força de atrito (tangencial) $F_f = \mu. \ p_{m\acute{a}x}. \ (lpha_2 - lpha_1). \ (r_e - r_i)$ - Força de atrito (tangencial) $M = z. \ F_n. \ \mu. \ (r_e + r_i)$ - Torque

$$M = z. \mu. p. (\alpha_2 - \alpha_1). \frac{(r_e^3 - r_i^3)}{3}$$
 - Torque

$$M = z. F_n. \mu. \frac{2}{3} \frac{(r_e^3 - r_i^3)}{(r_e^2 - r_i^2)}$$
 - Torque

$$p(r) = p_{m\acute{a}x}.\left(\frac{r_i}{r}\right)$$

$$F_n = p_{m\acute{a}x}. r_i. (\alpha_2 - \alpha_1). (r_e - r_i)$$

$$F_f = \mu. p_{m\acute{a}x}. (\alpha_2 - \alpha_1). r_i. (r_e - r_i)$$

$$M = z. F_n. \mu. (r_e + r_i)$$

$$M = z. \mu. p_{m\acute{a}x}. (\alpha_2 - \alpha_1). r_i. \frac{(r_e^2 - r_i^2)}{2}$$

$$r_i = \sqrt{\frac{1}{3}}r_e = 0,577.r_e$$

(Máximo Torque)

FREIOS DE TAMBOR COM SAPATAS EXTERNAS CURTAS:

Formulário:

Sapata Curta

$$F_n = p_{m\acute{a}x}.r.\theta.w$$

$$F_f = \mu . F_n$$

$$M = \mu . F_n . r$$

$$F_a = F_n \frac{b \pm c\mu}{a}$$

$$F_a = \frac{M}{\mu R} \frac{b \pm c\mu}{a}$$

- Pressão
- Força Normal (Radial)
 - Força Tangencial
 - Torque de frenagem
 - Força de frenagem
 - Força de frenagem

(Menor solicitação de frenagem = autoenergizante)

Sapata Curta (Simplex)

$$F_{1,a} = F_{2,a} = F_a$$

$$M = M_1 + M_2$$

 $M = M_1 + M_2$ - Torque frenagem

$$M_1 = F_{1,a} \mu R \frac{a}{b \pm c\mu}$$

$$M_2 = F_{2a} \mu R \frac{a}{b \mp c\mu}$$

$$M_2 = F_{2a} \mu R \frac{\overline{a}}{h \mp c \mu}$$

$$\sum F = 0$$

$$\sum M = 0$$

INÉRCIA

Formulário:

Inercia

$$T = I_m. \alpha = mk^2 \frac{\Delta \omega}{t}$$

 $I_m = mk^2$ $k^2 = \frac{I_m}{I_m}$

- Momento de inércia
- Aceleração angular
- Raio equivalente

$$mK_e^2 = mK^2 \left(\frac{n}{n_c}\right)^2$$
$$mK_e^2 = m\left(\frac{V}{2\pi f_m}\right)^2$$

R y	Cilindro mociço $Ix = \frac{m.R^2}{2}$ $Iy = \frac{m}{12} (3R^2 + L^2)$
* 0 -	Cilindro ôco $Ix = \frac{m}{2} \left(R^2 + r^2 \right)$
	Esfera $I = \frac{2}{5} m.R^2$
× 6	Prisma Retangular $Ix = \frac{m}{12} (b^2 + c^2)$ $Iy = \frac{m}{12} (c^2 + \sigma^2)$ $Iz = \frac{m}{12} (\sigma^2 + b^2)$
x Da	Disco fino $Ix = \frac{mR^2}{2}$ $Iy = Iz = \frac{m.R^2}{4}$

EXERCÍCIO 4 (AULA 02)

FREIOS DE TAMBOR COM *DUAS* SAPATAS EXTERNAS CURTAS:

EXERCÍCIO: Encontre a capacidade de torque e a força atuante requerida do freio de tambor com duas sapatas curtas mostrados abaixo. Considere a=375, b=200, e=75, r=120 mm e $\theta=25^{\circ}$. Que valor de c o tornará autotravante? Pressuponha $p_{max}=p_{sapata\ superior}=10$ MPa, w=50mm e $\mu=0,28$.

Dica: Calcule o efeito de cada uma das sapatas separadamente e depois suporponha-os.

FREIOS TIPO TAMBOR DIMENSIONAMENTO SAPATA LONGA

FREIOS DE TAMBOR

Se a sapata contata apenas uma pequena porção angular do tambor, o arranjo é conhecido como um <u>freio de sapata</u> curto. Caso contrário, é um <u>freio de sapata longo</u>.

A maior parte dos freios de sapata possuem um ângulo de contato de 90º ou mais, de maneira que a distribuição de esforços no contato da sapata não pode ser considerada pontual.

$$p \propto bsen\theta \propto sen\theta$$

FREIOS DE TAMBOR COM SAPATAS EXTERNAS LONGAS:

Porém, para dimensionar um tambor de sapatas longas devemos considerar a distribuição de pressão

Para
$$\theta = 0$$
 e $\theta = 180$ \rightarrow Pressão de Contato = 0
Sapatas pouco eficientes para $10 < \theta < 170$

Para $\theta = 90 \rightarrow$ Pressão de Contato = máxima

$$p = \frac{p_{\text{max}}}{\sin \theta_{\text{max}}} \sin \theta; \qquad \theta_{1} \le \theta \le \theta_{2}$$

 $y = \sin x$

Função distribuição de pressão

FREIOS DE TAMBOR COM SAPATAS EXTERNAS LONGAS:

Força normal x Força de atrito

FREIOS DE TAMBOR COM SAPATAS EXTERNAS LONGAS:

$$dF_{n,y} = p_{\perp}(\theta). dA$$
 (Pastilha)

$$\int dF_{n,y} = \int p(\theta). sen(\theta). dA$$

 $F_{n,v} = \int p(\theta) . sen(\theta) . dA$

- Força infinitesimal, desde que $p(\theta) \to \perp$ eixo x
- Somatório das Forças infinitesimais
- Força equivalente

$$F_{n,y} = \int_{\theta_1}^{\theta_2} \frac{p_{m\acute{a}x}}{\sin\theta_{m\acute{a}x}} . sen(\theta) . sen(\theta) . w.r. d\theta$$

$$F_{n,y} = w.r. \frac{p_{m\acute{a}x}}{\sin\theta_{m\acute{a}x}} \int_{\theta_1}^{\theta_2} sen^2(\theta). d\theta$$

$$F_{n,y} = w.r. \frac{p_{máx}}{\sin \theta_{máx}} \left[\left(\frac{1}{2} (\theta_2 - \theta_1) - \frac{1}{4} (\sin 2\theta_2 - \sin 2\theta_1) \right) \right]$$

$$dF_{f,y} = \mu. \, dF_{n,x}$$
 (Pastilha) – Força infinitesimal

$$dF_{f,v} = \mu. p_{\parallel}(\theta). dA$$

 $dF_{f,v} = \mu. p_{\parallel}(\theta). dA$ — Força infinitesimal, desde que $p(\theta) \rightarrow \parallel$ eixo x

$$F_{f,y} = \int \mu \cdot p(\theta) \cdot \cos(\theta) \cdot dA$$
 – Somatório das Forças infinitesimais

$$F_{f,y} = \mu.w.r.\frac{p_{m\acute{a}x}}{\sin\theta_{m\acute{a}x}} \int_{\theta_1}^{\theta_2} \frac{sen(\theta).cos(\theta)}{d\theta}$$

$$F_{f,y} = \mu.w.r.\frac{p_{m\acute{a}x}}{\sin\theta_{m\acute{a}x}} \left[-\left(\frac{sen^2(\theta_2)}{2} - \frac{sen^2(\theta_1)}{2}\right) \right]$$

Hipótese: Pressão variável ($\Theta > 45$)

FREIOS DE TAMBOR COM SAPATAS EXTERNAS LONGAS:

$$dF_{n,x} = p_{\parallel}(\theta). dA \text{ (Pastilha)}$$

– Força infinitesimal, desde que $p(\theta) \rightarrow \parallel$ eixo x

$$\int dF_{n,x} = \int p(\theta) . \cos(\theta) . dA$$

Somatório das Forças infinitesimais

$$F_{n,x} = \int p(\theta) . \cos(\theta) . dA$$

Força equivalente

$$F_{n,x} = \int_{\theta_1}^{\theta_2} \frac{p_{m\acute{a}x}}{\sin\theta_{m\acute{a}x}} \cdot sen(\theta) \cdot cos(\theta) \cdot w \cdot r \cdot d\theta$$

$$F_{n,x} = w.r. \frac{p_{m\acute{a}x}}{\sin\theta_{m\acute{a}x}} \int_{\theta_1}^{\theta_2} .sen(\theta).cos(\theta).d\theta$$

$$F_{n,x} = w.r. \frac{p_{m\acute{a}x}}{\sin\theta_{m\acute{a}x}} \left[-\left(\frac{sen^2(\theta_2)}{2} - \frac{sen^2(\theta_1)}{2}\right) \right]$$

$$dF_{f,x} = \mu. dF_{n,y}$$
 (Pastilha)

Força infinitesimal

$$dF_{f,x} = \mu. \, p_{\perp}(\theta). \, dA$$

– Força infinitesimal, desde que $p(\theta) \rightarrow \perp$ eixo x

$$F_{f,x} = \int \mu. p(\theta). sen(\theta). dA$$

$$F_{f,x} = \int_{\theta_1}^{\theta_2} \mu \cdot \frac{p_{m\acute{a}x}}{\sin \theta_{m\acute{a}x}} \cdot sen(\theta) \cdot sen(\theta) \cdot w \cdot r \cdot d\theta$$

$$F_{f,x} = \mu. w. r. \frac{p_{max}}{\sin \theta_{max}} \left[\left(\frac{1}{2} (\theta_2 - \theta_1) - \frac{1}{4} (\sin 2\theta_2 - \sin 2\theta_1) \right) \right]$$

Hipótese: Pressão variável ($\Theta > 45$)

FREIOS DE TAMBOR COM SAPATAS EXTERNAS LONGAS:

As forças reativas Rx e Ry são encontradas a partir da soma das forças nas direções x e y:

$$\sum F_x = 0$$
 (Alavanca)

$$F_{n,x} + F_{f,x} - R_x = 0$$

$$R_x = F_{n,x} + F_{f,x}$$

$$R_x = \int p(\theta) \cdot \cos(\theta) \cdot dA + \int \mu \cdot p(\theta) \cdot \sin(\theta) \cdot dA$$

$$R_{x} = \int_{\theta_{1}}^{\theta_{2}} \frac{p_{m\acute{a}x}}{\sin\theta_{m\acute{a}x}} \cdot sen(\theta) \cdot cos(\theta) \cdot w \cdot r \cdot d\theta + \int_{\theta_{1}}^{\theta_{2}} \mu \cdot \frac{p_{m\acute{a}x}}{\sin\theta_{m\acute{a}x}} \cdot sen(\theta) \cdot sen(\theta) \cdot w \cdot r \cdot d\theta$$

$$R_{x} = w.r. \frac{p_{m\acute{a}x}}{\sin\theta_{m\acute{a}x}} \left[-\left(\frac{sen^{2}(\theta_{2})}{2} - \frac{sen^{2}(\theta_{2})}{2}\right) \right] + \mu.w.r. \frac{p_{m\acute{a}x}}{\sin\theta_{m\acute{a}x}} \left[\left(\frac{1}{2}(\theta_{2} - \theta_{1}) - \frac{1}{4}(\sin2\theta_{2} - \sin2\theta_{1})\right) \right]$$

FREIOS DE TAMBOR COM SAPATAS EXTERNAS LONGAS:

As forças reativas Rx e Ry são encontradas a partir da soma das forças nas direções x e y:

$$\sum F_{y} = 0$$
 (Alavanca)

$$\begin{split} R_{y} - F_{n,y} - F_{f,y} + F_{a} = 0 \\ R_{y} = F_{n,y} + F_{f,y} - F_{a} \\ R_{y} = \int p(\theta) \cdot sen(\theta) \cdot dA + \int \mu \cdot p(\theta) \cdot cos(\theta) \cdot dA - F_{a} \end{split}$$

$$R_{y} = \int_{\theta_{1}}^{\theta_{2}} \frac{p_{m\acute{a}x}}{\sin\theta_{m\acute{a}x}} \cdot sen(\theta) \cdot sen(\theta) \cdot w \cdot r \cdot d\theta + \mu \cdot w \cdot r \cdot \frac{p_{m\acute{a}x}}{\sin\theta_{m\acute{a}x}} \int_{\theta_{1}}^{\theta_{2}} sen(\theta) \cdot cos(\theta) \cdot d\theta - F_{a}$$

$$R_{y} = J_{\theta_{1}} \frac{1}{\sin \theta_{max}} \cdot Sen(\theta) \cdot Sen(\theta) \cdot W \cdot T \cdot d\theta + \mu \cdot W \cdot T \cdot \frac{1}{\sin \theta_{max}} J_{\theta_{1}} Sen(\theta) \cdot Cos(\theta) \cdot d\theta - F_{a}$$

$$R_{y} = w.r. \frac{p_{m\acute{a}x}}{\sin\theta_{m\acute{a}x}} \left[\left(\frac{1}{2} (\theta_{2} - \theta_{1}) - \frac{1}{4} (\sin 2\theta_{2} - \sin 2\theta_{1}) \right) \right] + \mu.w.r. \frac{p_{m\acute{a}x}}{\sin\theta_{m\acute{a}x}} \left[-\left(\frac{sen^{2}(\theta_{2})}{2} - \frac{sen^{2}(\theta_{1})}{2} \right) \right] - F_{a} + \frac{1}{4} \left(\sin 2\theta_{2} - \sin 2\theta_{1} \right) \right] + \mu.w.r. \frac{p_{m\acute{a}x}}{\sin\theta_{m\acute{a}x}} \left[-\left(\frac{sen^{2}(\theta_{2})}{2} - \frac{sen^{2}(\theta_{1})}{2} \right) \right] - F_{a} + \frac{1}{4} \left(\sin 2\theta_{2} - \sin 2\theta_{1} \right) \right] + \mu.w.r. \frac{p_{m\acute{a}x}}{\sin\theta_{m\acute{a}x}} \left[-\left(\frac{sen^{2}(\theta_{2})}{2} - \frac{sen^{2}(\theta_{1})}{2} \right) \right] - F_{a} + \frac{1}{4} \left(\sin 2\theta_{1} - \frac{sen^{2}(\theta_{1})}{2} \right) \right] + \mu.w.r. \frac{p_{m\acute{a}x}}{\sin\theta_{m\acute{a}x}} \left[-\left(\frac{sen^{2}(\theta_{2})}{2} - \frac{sen^{2}(\theta_{1})}{2} \right) \right] - F_{a} + \frac{1}{4} \left(\sin 2\theta_{1} - \frac{sen^{2}(\theta_{1})}{2} \right) \right] + \mu.w.r. \frac{p_{m\acute{a}x}}{\sin\theta_{m\acute{a}x}} \left[-\left(\frac{sen^{2}(\theta_{1})}{2} - \frac{sen^{2}(\theta_{1})}{2} \right) \right] - F_{a} + \frac{1}{4} \left(\sin 2\theta_{1} - \frac{sen^{2}(\theta_{1})}{2} \right) + \frac{1}{4} \left(\sin 2\theta_{1} - \frac{sen^{2}(\theta_{1})}{2} \right) \right] - \frac{1}{4} \left(\sin 2\theta_{1} - \frac{sen^{2}(\theta_{1})}{2} \right) + \frac{1}{4} \left(\sin 2\theta_{1} - \frac{sen^{2}(\theta_{1})}{2} \right)$$

 $r-b\cos\theta$

FREIOS DE TAMBOR COM SAPATAS EXTERNAS LONGAS:

O torque de frenagem aplicado ao disco é encontrado integrando a expressão para o produto da força de atrito

F_f e raio r do tambor (**A partir do centro do disco**):

$$d(F_f.r) = \mu. p(\theta). r. dA$$
 (Disco)

$$\int dT = \int_{\theta_1}^{\theta_2} \mu. \frac{p_{m\acute{a}x}}{\sin \theta_{m\acute{a}x}}. sen(\theta). r. w. r. d\theta$$

$$T = \mu.w.r^2 \frac{p_{\text{max}}}{\sin \theta_{\text{max}}}.(\cos \theta_1 - \cos \theta_2)$$

FREIOS DE TAMBOR COM SAPATAS EXTERNAS LONGAS:

Para obter a força total na sapata, a função de pressão deve ser integrada sobre o intervalo angular da mesma considerando o elemento diferencial $d\theta$. Duas forças diferenciais agem neste elemento, dF_n e dF_f , como definido anteriormente. Elas possuem braços de momento com relação ao ponto O de:

FREIOS DE TAMBOR COM SAPATAS EXTERNAS LONGAS:

Ao integrar para obter os momentos referentes a toda a superfície com relação a O, tem-se para o momento

devido à força normal:

$$dF_N(b.sen(\theta)) = p(\theta).(b.sen(\theta)).dA$$
 (Alavanca ponto O)

$$\int dM_N = \int_{\theta_1}^{\theta_2} \frac{p_{m\acute{a}x}}{\sin \theta_{m\acute{a}x}} \cdot sen(\theta) \cdot (b \cdot sen(\theta)) \cdot r \cdot w \cdot d\theta$$

$$M_N = b.w.r.\frac{p_{m\acute{a}x}}{\sin\theta_{m\acute{a}x}} \left[\left(\frac{1}{2} (\theta_2 - \theta_1) - \frac{1}{4} (\sin 2\theta_2 - \sin 2\theta_1) \right) \right]$$

FREIOS DE TAMBOR COM SAPATAS EXTERNAS LONGAS:

Para o momento devido a força de atrito: $dF_f(r-b.cos(\theta)) = p(\theta).(r-b.cos(\theta)).dA$

$$\int dM_F = \int_{\theta_1}^{\theta_2} \frac{p_{m\acute{a}x}}{\sin\theta_{m\acute{a}x}} \cdot sen(\theta) \cdot (r - b \cdot cos(\theta)) \cdot r \cdot w \cdot d\theta$$

$$M_f = \mu.w.r.\frac{p_{m\acute{a}x}}{\sin\theta_{m\acute{a}x}} \left[-r(\cos\theta_2 - \cos\theta_1) - \frac{b}{2} \left(sen^2(\theta_2) - sen^2(\theta_1) \right) \right]$$

O somatório dos momentos em relação ao ponto O

$$F_a = \frac{M_N \mp M_f}{a}$$

(+) horário

(-) anti-horário

Autodesenergizante

Autoenergizante

Se autoenergizante e $M_F \ge M_N$ Autotravante

FREIOS DE TAMBOR COM SAPATAS EXTERNAS LONGAS:

Exercício 5: para o arranjo de freio de tambor mostrado na figura, determine o torque de frenagem T, a força máxima aplicada F_a.

Dados: as dimensões são a = 180 mm, b = 90 mm, r = 100 mm, w = 30 mm, θ_1 = 30°, θ_2 = 120°.

hipóteses: coeficiente de atrito μ = 0,35, máxima pressão admissível na forração p_{max} = 1,5 MPa.

FREIOS DE TAMBOR COM SAPATAS EXTERNAS LONGAS:

Solução:

- 1) Converta os ângulos θ_1 e θ_2 em radianos;
- 2) Calcule o momento M_N com relação a O devido a força normal;
- 3) Calcule o momento M_f com relação a O devido a força de atrito;
- 4) Usando os momentos calculados, determine a força a ser aplica F_a ;
- 5) Determine o torque de atrito;
- 6) Determine as força reativas.

FREIOS DE TAMBOR COM SAPATAS LONGAS:

Formulário:

Sapata Longa

$$p = \frac{p_{m \pm x}}{\sin \theta_{m \pm x}} \cdot sen(\theta)$$

$$F_{n,y} = w.r. \frac{p_{máx}}{\sin \theta_{máx}} \left[\left(\frac{1}{2} (\theta_2 - \theta_1) - \frac{1}{4} (\sin 2\theta_2 - \sin 2\theta_1) \right) \right]$$

$$F_{n,x} = w.r. \frac{p_{m\acute{a}x}}{\sin\theta_{m\acute{a}x}} \left[-\left(\frac{sen^2(\theta_2)}{2} - \frac{sen^2(\theta_1)}{2}\right) \right]$$

$$F_{f,y} = \mu.w.r.\frac{p_{m\acute{a}x}}{\sin\theta_{m\acute{a}x}} \left[-\left(\frac{sen^2(\theta_2)}{2} - \frac{sen^2(\theta_1)}{2}\right) \right]$$

$$F_{f,x} = \mu. w. r. \frac{p_{m\acute{a}x}}{\sin \theta_{m\acute{a}x}} \left[\left(\frac{1}{2} (\theta_2 - \theta_1) - \frac{1}{4} (\sin 2\theta_2 - \sin 2\theta_1) \right) \right]$$

$$T = \mu. w. r^2. \frac{p_{max}}{\sin \theta_{max}} [\cos \theta_1 - \cos \theta_2]$$

$$F_a = \frac{M_N + M_f}{a}$$
 (Menor solicitação de frenagem = autoenergizante) - Força de frenagem (Do somatório de momento em

$$\begin{split} M_N &= b.w.r.\frac{p_{m\acute{a}x}}{\sin\theta_{m\acute{a}x}} \left[\left(\frac{1}{2} (\theta_2 - \theta_1) - \frac{1}{4} (\sin 2\theta_2 - \sin 2\theta_1) \right) \right] \\ M_f &= \mu.w.r.\frac{p_{m\acute{a}x}}{\sin\theta_{m\acute{a}x}} \left[-r(\cos\theta_2 - \cos\theta_1) - \frac{b}{2} \left(sen^2(\theta_2) - sen^2(\theta_1) \right) \right] \end{split}$$

FREIOS DE TAMBOR COM *DUAS* SAPATAS EXTERNAS LONGAS:

No freio com uma sapata é aplicada ao tambor e ao eixo uma força radial F_n que pode provocar:

- ✓ Tensões elevadas sobre o eixo (Aumento δ)
- ✓ Tensões elevadas nos mancais (Aumento de custo)
- ✓ Alterando sentido de rotação do tambor não altera o momento de frenagem.

Desta forma, muitas vezes se aplica o freio com duas sapatas para evitar estes inconvenientes.

FREIOS DE TAMBOR COM SAPATAS EXTERNAS LONGAS:

Exercício 7: para o arranjo de freio de tambor mostrado na figura, determine o torque de frenagem T, a força máxima aplicada F_a.

Dados: as dimensões são a = 90 mm, bx = 80 mm, by=30, r = 40 mm, w = 30 mm, θ_1 = 35°, θ_2 = 155°.

hipóteses: coeficiente de atrito μ = 0,25, máxima pressão admissível na forração superior $p_{max.superior}$ = 1,5 MPa.

EXERCÍCIOS

EXERCÍCIO 2

Exercício 10: O dispositivo da figura abaixo deve ser freado de 1000 rpm até zero em dois segundos. Determine a pressão atuante durante a frenagem e a potência dissipada em cada pastilha do freio a disco (pressão uniforme), admitindo que o motor elétrico acoplado ao eixo de entrada não desliga durante o processo de frenagem.

Dados:

- Todos os elementos são de aço carbono;
- Todas as dimensões em mm;
- Somente o anel interno dos rolamentos gira;
- 3 jogos de pastilhas de metal sinterizado;
- Admitir que o contato é a seco;
- Rotação do eixo: 1000 rpm
- Raio interno da pastilha = 50 mm
- Raio externo da pastilha = 95 mm
- Ângulo de abertura das pastilhas = 60º
- Raio do disco de freio = 100 mm
- Espessura do disco de freio = 5 mm
- O momento torçor no eixo da engrenagem maciça é de 60 N.m
- A inércia do restante do equipamento (o qual gira a 200 rpm) é de 2,04 Kg.m2

EXERCÍCIO 2

Exercício 9: Calcular o torque requerido para acelerar somente o sistema (redutor – tambor) da figura ao lado, sabendo que a velocidade do motor é 1750 rpm e o tempo necessário para atingir esta velocidade é de 1,5 segundos.

- Desconsiderar a inércia do corpo da embreagem;
- Todos os componentes são fabricados em aço carbono;

Obs.: Todas as dimensões estão em mm

RESPOSTAS DAS LISTA DE EXERCÍCIOS

RESPOSTAS:	
1 - r _e = 106,8 mm r _i = 61, mm F _a = 6031,7 N	8 -Conceitual
2 - p = 931,3 kPa / pastilha	9 T = 138,5Nm T2=497 Nm
3 - Potência = 11.3 kW	10 - T = 91,6 N.m P = 397,7 kPa/pastilha N = 1,6 kW/pastilha Redução de ~65%
4 – Torque= 32,95 ; Potencia 34.5 W	11 - (a) T = 286 N.m ($T_{inércia}$ = 30,1 N.m - WKe $^2_{total}$ = 29,98 N.m 2) (b) F = 1511,9 N.m (c) w = 62 mm
5 - M = 215,1 N.m F _a = 1743 N	12 – 10,08 Nm2
6 - Torque = 133N.m; Fa=2583 N	13 - ?
7 - F _a = 2140,89 N T = 54,01 Nm	

