Amendments to the Claims:

Listing of the Claims:

Claim 1 (currently amended): A method for the treatment and/or prevention of neurological and vascular disorders related to beta-amyloid generation and/or aggregation comprising administering. Use of a an inhibitor of one or more of protein kinases PKC alpha, PKC beta, PKC gamma, PKC epsilon, PKC theta, CDK-1, KDR, PKA, Flt-1, Flt-2, Flt-3 and Flt-4, for the treatment and/or prevention of neurological and vascular disorders related to beta-amyloid generation and/or aggregation.

Claim 2 (currently amended): The use method according to claim 1 wherein the inhibitor is a compound of formula I

wherein

 R_a is H; C_{1-4} alkyl; or C_{1-4} alkyl substituted by OH, NH₂, NHC₁₋₄alkyl or N(di-C₁₋₄alkyl)₂;

R_b is H; or C₁₋₄alkyl;

R is a radical of formula (a), (b), (c), (d), (e) or (f)

wherein

each of R₁, R₄, R₇, R₈, R₁₁ and R₁₄ is OH; SH; a heterocyclic residue; $NR_{16}R_{17}$ wherein each of R₁₆ and R₁₇, independently, is H or C₁₋₄alkyl or R₁₆ and R₁₇ form together with the nitrogen atom to which they are bound a heterocyclic residue; or a radical of formula α

$$-X-R_c-Y$$
 (a)

wherein X is a direct bond, O, S or NR₁₈ wherein R₁₈ is H or C₁₋₄alkyl,

 R_c is C_{1-4} alkylene or C_{1-4} alkylene wherein one CH_2 is replaced by CR_xR_y wherein one of R_x and R_y is H and the other is CH_3 , each of R_x and R_y is CH_3 or R_x and R_y form together – CH_2 - CH_2 -, and

Y is bound to the terminal carbon atom and is selected from OH, a heterocyclic residue and $-NR_{19}R_{20}$ wherein each of R_{19} and R_{20} independently is H, C_{3-6} cycloalkyl, C_{3-6} cycloalkyl- C_{1-4} alkyl, aryl- C_{1-4} alkyl or C_{1-4} alkyl optionally substituted on the terminal carbon atom by OH, or R_{19} and R_{20} form together with the nitrogen atom to which they are bound a heterocyclic residue;

each of R₂, R₃, R₅, R₆, R₉, R₁₀, R₁₂, R₁₃, R₁₅ and R'₁₅, independently, is H, halogen, C₁₋₄alkyl, CF₃, OH, SH, NH₂, C₁₋₄alkoxy, C₁₋₄alkylthio, NHC₁₋₄alkyl, N(di-C₁₋₄alkyl)₂ or CN; either E is –N= and G is –CH= or E is –CH= and G is –N=; and or a salt thereof.

Claim 3 (currently amended): Use <u>A method</u> according to claim $\underline{2}$ 1-or-2-wherein the inhibitor is a compound according to claim 2, wherein the heterocyclic residue as R₁, R₄, R₇, R₈, R₁₁, R₁₄ or Y or formed, respectively, by NR₁₆R₁₇ or NR₁₉R₂₀, is a three to eight membered saturated, unsaturated or aromatic heterocyclic ring comprising 1 or 2 heteroatoms, and optionally substituted on one or more ring carbon atoms and/or on a ring nitrogen atom when present.

Claim 4 (currently amended): Use A method according to claim $\underline{2}$ 1 or 2 wherein the inhibitor is a compound according to claim 2, wherein the heterocyclic residue as R₁, R₄, R₇, R₈, R₁₁, R₁₄ or Y or formed, respectively, by NR₁₆R₁₇ or NR₁₉R₂₀, is a residue of formula (γ)

wherein

the ring D is a 5, 6 or 7 membered saturated, unsaturated or aromatic ring;

 X_b is $-N_-$, -C= or $-CH_-$;

 X_c is -N=, -NR_r, -CR_f'= or -CHR_f'- wherein R_f is a substituent for a ring nitrogen atom and is selected from C₁₋₆alkyl; acyl; C₃₋₆cycloalkyl; C₃₋₆cycloalkyl-C₁₋₄alkyl; phenyl; phenyl-C₁₋₄alkyl; a heterocyclic residue; and a residue of formula β

$$-R_{2t}-Y'$$
 (β)

wherein R_{21} is C_{1-4} alkylene or C_{2-4} alkylene interrupted by O and Y' is OH, NH₂, NH(C_{1-4} alkyl) or N(C_{1-4} alkyl)₂; and R_f' is a substituent for a ring carbon atom and is selected from C_{1-4} alkyl; C_{3} .

 $_6$ cycloalkyl optionally further substituted by C_{1-4} alkyl; $(CH_2)_p$ wherein p is 1, 2 or 3; CF_3 ; halogen; OH; NH_2 ; $-CH_2$ - NH_2 ; $-CH_2$ -OH; piperidin-1-yl; and pyrrolidinyl; the bond between C_1 and C_2 is either saturated or unsaturated; each of C_1 and C_2 , independently, is a carbon atom which is optionally substituted by one or two substituents selected among those indicated above for a ring carbon atom; and the line between C_3 and C_4 and between C_4 and C_5 , respectively, represents the number of carbon atoms as required to obtain a 5, 6 or 7 membered ring C_4 .

Claim 5 (currently amended): A method according to Claim 4 use according to claim 1 to 4 wherein the inhibitor is a compound according to claim 2, wherein D is a piperazinyl ring optionally C- and/or N-substituted as specified in claim 4.

Claim 6 (currently amended): Use according to claim 1 or 2 A method according to Claim 2 wherein the inhibitor is a compound according to claim 2, wherein

Ra is H; CH₃; CH₂-CH₃; or isopropyl,

Rb is H; halogen; C₁₋₆alkoxy; or C₁₋₆alkyl, and either

I. R is a radical of formula (a)

wherein

R1 is piperazin-1-yl optionally substituted by CH₃ in position 3 or 4; or 4,7-diaza-spiro [2.5] oct-7-yl;

R2 is Cl; Br; CF₃; or CH₃; and

R3 is H; CH_3 ; or CF_3 ; R_3 being other than H when Ra is H or CH_3 , Rb is H and R_1 is 4-methyl-1-piperazinyl; or

II. R is a radical of formula (b)

wherein

 R_4 is piperazin-1-yl substituted in positions 3 and/or 4 by CH_3 ; or 4,7-diaza-spiro [2.5] oct-7-yl; R_4 being other than H or CH_3 when R_4 is 4-methyl-1-piperazinyl; or

III. R is a residue of formula (c)

wherein

R₁₄ is piperazin-1-yl optionally substituted by CH₃ in position 3 and/or 4 or in position 3 by ethyl, phenyl-C₁₋₄alkyl, C₁₋₄alkoxy-C₁₋₄alkyl or halogeno—C₁₋₄alkyl; or 4,7-diaza-spiro [2.5] oct-7-yl;

 R_{15} is halogen; CF_3 ; or CH_3 ; R_{15} being other than CH_3 when R_3 is H or CH_3 , R_4 is 4-methyl-1-piperazinyl; and

 R_{16} is H; CH_3 ; or CF_3 ; R_{16} being other than H when R_{15} is CI, Ra is H or CH_3 , Rb is H and R_{14} is 4-methyl-1-piperazinyl; or

IV. R is a radical of formula (d)

wherein R_8 is piperazin-1-yl, 3-methyl-piperazin-1-yl or 4-benzyl-piperazin-1-yl; or

V. R is a radical of formula (e)

wherein R₉ is 4,7-diaza-spiro [2.5] oct-7-yl; or piperazin-1-yl substituted in position 3 by methyl or ethyl and optionally in position 4 by methyl; or a pharmaceutically acceptable salt thereof.

Claim 7 (currently amended): A method according to Claim 1 Use according to claim 1 or 2 wherein the inhibitor is a compound according to claim 1, wherein

when R is of formula (a)

 R_1 is -(4-methyl-piperazin-1-yl), 1-piperazinyl, 3-methyl-piperazin-1-yl or-(4,7-diaza spiro[2.5]oct-7-yl)

R₂ is 2-CI or 2-CH₃

R₃ is 3-CH₃, 3-CF₃or H

Ra is H or CH3

And when,

R is of formula (b)

 R_4 is -(4,7-diaza-spiro[2.5]oct-7-yl), 3-methyl-piperazin-1-yl or 4-methyl-3-methyl-piperazin-1-yl R_a is H or CH_3

And when

R is of formula (c)

R₁₄ is -4-methyl-piperazin-1-yl, 3-methyl-piperazin-1-yl, -4,7-diaza-spiro[2.5]oct-7-yl, 1-piperazinyl, 4-methyl-3-methyl-piperazin-yl, 3-methoxyethyl-piperazin-1-yl, 3-ethyl-piperazin-1-yl, 3-benzyl-piperazin-1-yl or 3-CH₂F-piperazin-1-yl

R₁₅ is Cl, Br, CF₃, F

R₁₆ is CH₃, H, CH₂-CH₃

Ra is H or CH3

R_b is H, CH₂-CH₂-CH₃, F, CH(CH₃)₂, CI, OCH₃, CH₃ or CH₂-CH₃

And when

R is of formula (d)

R₈ is 3-methyl-piperazin-1-yl, 4-benzyl-1-piperazinyl or 1-piperazinyl

Ra is CH3 or H

And when

R is of formula (e)

R₉ is -4,7-diaza-spiro[2.5]oct-7-yl, 3-ethyl-piperazin-1-yl, 3-methyl-piperazin-1-yl, 4-methyl-3-methyl-piperazin-1-yl or 3-ethyl-piperazin-1-yl

 R_a is H, CH_2 - CH_3 or $CH(CH_3)_2$

R_b is CH₃, F, CH(CH₃)₂, OCH₃, CH₂-CH₃ or Cl or a pharmaceutically acceptable salt thereof.

Claim 8 (currently amended): Use according to claim 1, 2 A method according to Claim 1 wherein the inhibitor is 3-[2-Chloro-5- (4-methyl-piperazin-1-yl)-3-trifluoromethyl-phenyl]-4-(1H-indol-3-yl)-pyrrole-2,5-dione or 3-(1H-Indol-3-yl)-4-[2-(4-methyl-piperazin-1-yl)-quinazolin-4-yl]-pyrrole-2,5-dione;

or a pharmaceutically acceptable salt thereof.

Claim 9 (currently amended): A method according to Claim 1 Use according to any one of the claims 1-8 wherein a daily dose of 10 to 800 mg of a compound is administered to an adult human.

Claim 10 (currently amended): Use according to any one of claims 1 – 8 A method according to Claim 1 wherein the disorder to be treated is selected from Down's Syndrome, memory and

cognitive impairment, dementia, amyloid neuropathies, brain inflammation, nerve and brain trauma, vascular amyloidosis, or cerebral hemorrhage with amyloidosis.

Claim 11 (currently amended): A method of treating mammals suffering from neurological and vascular disorders related to beta-amyloid generation and/or aggregation which comprises administering to a said mammal in need of such treatment a pharmaceutical composition comprising

- (a) a dose, effective against neurological and vascular disorders related to beta-amyloid generation and/or aggregation, an inhibitor of formula I according to claim 1 any one of the claims 1-8 or a pharmaceutically acceptable salt thereof and
- (b) a therapeutically effective amount of a second drug selected from drugs used to treat neurological and vascular disorders related to beta-amyloid generation and/or aggregation.

Claim 12 (canceled):

Claim 13 (currently amended): A pharmaceutical composition for use in the treatment of a neurological and vascular disorders related to beta-amyloid generation and/or aggregation comprising an inhibitor of formula I according to claim 1 any one of the claims 1—8.

Claim 14 (currently amended): A method of treating a warm blooded animal having a neurological and vascular disorders related to beta-amyloid generation and/or aggregation comprising administering a therapeutically effective amount of an inhibitor according to any one of claims 1 – 8 claim 1.

Claim 15 (currently amended): A combination comprising an inhibitor according to any one of claims 1–8 claim 1, and a therapeutically effective amount of a second drug selected from drugs used to treat neurological and vascular disorders related to beta-amyloid generation and/or aggregation.

Claim 16 (currently amended): A commercial package A pharmaceutical composition comprising an inhibitor of formula I

wherein

Ra is H; CH3; CH2-CH3; or isopropyl,

R_b is H; halogen; C₁₋₆alkoxy; or C₁₋₆alkyl, and either

I. R is a radical of formula (a)

wherein

R1 is piperazin-1-yl optionally substituted by CH₃ in position 3 or 4; or 4,7-diaza-spiro [2.5] oct-7-yl;

R₂ is CI; Br; CF₃; or CH₃; and

 R_3 is H; CH_3 ; or CF_3 ; R_3 being other than H when Ra is H or CH_3 , Rb is H and R_1 is 4-methyl-1-piperazinyl; or

II. R is a radical of formula (b)

wherein

 R_4 is piperazin-1-yl substituted in positions 3 and/or 4 by CH_3 ; or 4,7-diaza-spiro [2.5] oct-7-yl; Ra being other than H or CH_3 when R_4 is 4-methyl-1-piperazinyl; or R is a residue of formula (c)

wherein

 R_{14} is piperazin-1-yl optionally substituted by CH_3 in position 3 and/or 4 or in position 3 by ethyl, phenyl- C_{1-4} alkyl, C_{1-4} alkoxy- C_{1-4} alkyl or halogeno- C_{1-4} alkyl; or 4,7-diaza-spiro [2.5] oct-7-yl;

 R_{15} is halogen; CF_3 ; or CH_3 ; R_{15} being other than CH_3 when R_3 is H or CH_3 , R_4 is 4-methyl-1-piperazinyl; and

 R_{16} is H; CH_3 ; or CF_3 ; R_{16} being other than H when R_{15} is Cl, Ra is H or CH_3 , Rb is H and R_{14} is 4-methyl-1-piperazinyl; or

IV. R is a radical of formula (d)

wherein R_8 is piperazin-1-yl, 3-methyl-piperazin-1-yl or 4- benzyl-piperazin-1-yl; or

V. R is a radical of formula (e)

wherein R₉ is 4,7-diaza-spiro [2.5] oct-7-yl; or piperazin-1-yl substituted in position 3 by methyl or ethyl and optionally in position 4 by methyl; or a pharmaceutically acceptable salt thereof in the treatment of neurological and vascular disorders related to beta-amyloid generation and/or aggregation, together with instructions for simultaneous, separate or sequential use thereof in the treatment of a proliferative disease.