The Krein-Milman theorem and elementary results in convex analysis

lynne homann cure '27

University of Maryland, College Park

Directed Reading Program, Spring 2025

Introduction

We will prove today this statement (Minkowski's theorem, or the finite case of the Krein-Milman theorem):

Theorem

Let C be compact and convex in \mathbb{R}^n . Then C is equal to the convex hull of its extreme points.

- Based on Fundamentals of Convex Analysis by Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal
- Thank you to Rémi Barritault for his mentorship this semester!

Contents

- Convexity
- 2 Combinations
 - Affine combinations
 - Convex hulls
- 3 Extreme points
- Relative sets

- 5 Faces
 - Faces
 - Supporting hyperplanes
 - Exposed faces
- 6 Krein-Milman
 - Statement
 - Proof

Convexity

For our purposes, we are working within the real vector (affine) space \mathbb{R}^n equipped with the standard dot product as our scalar product $\langle \cdot, \cdot \rangle$ and the usual norm $\|x\| = \sqrt{\langle x, x \rangle}$.

Convexity

For our purposes, we are working within the real vector (affine) space \mathbb{R}^n equipped with the standard dot product as our scalar product $\langle \cdot, \cdot \rangle$ and the usual norm $\|x\| = \sqrt{\langle x, x \rangle}$.

Formal definition

The set $C \subset \mathbb{R}^n$ is **convex** if $\alpha x + (1 - \alpha)x'$ is in C for all $x, x' \in C$ and $\alpha \in (0, 1)$.

Convexity

For our purposes, we are working within the real vector (affine) space \mathbb{R}^n equipped with the standard dot product as our scalar product $\langle \cdot, \cdot \rangle$ and the usual norm $\|x\| = \sqrt{\langle x, x \rangle}$.

Formal definition

The set $C \subset \mathbb{R}^n$ is **convex** if $\alpha x + (1 - \alpha)x'$ is in C for all $x, x' \in C$ and $\alpha \in (0, 1)$.

Intuitive definition

C is convex if the line segment [x,x'] is entirely contained in C whenever its endpoints x,x' are in C.

Affine combinations

Definition

An **affine combination** of elements x_1, \ldots, x_k of \mathbb{R}^n is an element $\sum_{i=1}^k \alpha_i x_i$ where the coefficients α_i satisfy $\sum_{i=1}^k \alpha_i = 1$.

Affine combinations

Definition

An **affine combination** of elements x_1, \ldots, x_k of \mathbb{R}^n is an element $\sum_{i=1}^k \alpha_i x_i$ where the coefficients α_i satisfy $\sum_{i=1}^k \alpha_i = 1$.

Definition

The **affine hull** of a set S, denoted aff S, is the set of all affine combinations of S.

Affine combinations

Definition

An **affine combination** of elements x_1, \ldots, x_k of \mathbb{R}^n is an element $\sum_{i=1}^k \alpha_i x_i$ where the coefficients α_i satisfy $\sum_{i=1}^k \alpha_i = 1$.

Definition

The **affine hull** of a set S, denoted aff S, is the set of all affine combinations of S.

Definition

The k+1 points x_0, x_1, \ldots, x_k are said to be **affinely independent** if dim aff $\{x_0, \ldots, x_k\} = k$. Up to n+1 points can be affinely independent in \mathbb{R}^n .

Simplices

Definition

We define the **unit simplex** Δ_k in \mathbb{R}^k as

$$\Delta_k := \left\{ \alpha \in \mathbb{R}^k : \sum_{i=1}^k \alpha_i = 1, \alpha_i \ge 0 \right\}$$

Simplices are closely related to affine combinations – in fact, they are used to construct the most important kind of affine combination for our purposes.

Complex combinations and hulls

Definition

A **convex combination** of elements x_1, \ldots, x_k in \mathbb{R}^n is an affine combination where all the coefficients are nonnegative – that is, $\alpha = (\alpha_1, \ldots, \alpha_k) \in \Delta_k$.

Complex combinations and hulls

Definition

A **convex combination** of elements x_1, \ldots, x_k in \mathbb{R}^n is an affine combination where all the coefficients are nonnegative – that is, $\alpha = (\alpha_1, \ldots, \alpha_k) \in \Delta_k$.

Definition

The **convex hull** of a nonempty set S, denoted co S, is the intersection of all convex sets containing S.

Complex combinations and hulls

Definition

A **convex combination** of elements x_1, \ldots, x_k in \mathbb{R}^n is an affine combination where all the coefficients are nonnegative – that is, $\alpha = (\alpha_1, \ldots, \alpha_k) \in \Delta_k$.

Definition

The **convex hull** of a nonempty set S, denoted co S, is the intersection of all convex sets containing S.

Proposition

co S is equal to the set of all convex combinations of elements of S.

Extreme points

Definition

We say that $x \in C$ is an **extreme point** of C if there are no two distinct points $x_1, x_2 \in C$ such that x lies in the line segment between x_1 and x_2 .

We notate the set of extreme points of C as ext C.

Extreme points

Definition

We say that $x \in C$ is an **extreme point** of C if there are no two distinct points $x_1, x_2 \in C$ such that x lies in the line segment between x_1 and x_2 .

We notate the set of extreme points of C as ext C.

Examples

- Every x in the unit ball B(0,1) such that ||x||=1 is an extreme point of B(0,1)
- ullet The vertices of a triangle (or any convex polygon in \mathbb{R}^2) are its extreme points

Interior, closure, boundary

Definition

- The interior of a set X, notated int X, is the union of all open subsets of X.
- The closure of X, notated cl X, is the intersection of all closed sets containing X. Observe that int X ⊂ X ⊂ cl X.
- The **boundary** of X, notated bd X, is cl $X \setminus \text{int } X$.

Note that int X is open, cl X is closed, and cl $X = (\operatorname{int} X)^C$.

Interior, closure, boundary

Definition

- The interior of a set X, notated int X, is the union of all open subsets of X.
- The closure of X, notated cl X, is the intersection of all closed sets containing X. Observe that int X ⊂ X ⊂ cl X.
- The **boundary** of X, notated bd X, is cl $X \setminus \text{int } X$.

Note that int X is open, cl X is closed, and cl $X = (\operatorname{int} X)^C$.

Proposition

If C is convex, so are int C and cl C.

Relative interior

Definition

The **relative interior** of a set X, notated ri X, is the interior of X with respect to its affine hull:

$$\mathsf{ri}\, X \mathrel{\mathop:}= \{x \in X : \exists \delta \; \mathsf{s.t.} B(\delta,x) \cap \mathsf{aff} \; X \subset X\}$$

Relative interior

Definition

The **relative interior** of a set X, notated ri X, is the interior of X with respect to its affine hull:

$$\mathsf{ri}\,X := \{x \in X : \exists \delta \; \mathsf{s.t.} B(\delta, x) \cap \mathsf{aff} \; X \subset X\}$$

Examples

- ullet The interior of a sheet of paper w.r.t. \mathbb{R}^3 is empty, but its relative interior is the whole sheet without the edge
- The interior of a point is empty, but its relative interior is the point itself

Relative boundary

Definition

The **relative boundary** of a set X, notated rbd X, is equal to $cl X \setminus ri X$.

Observe that the closure of a lower-dimensional set doesn't encounter the same usefulness issue as the interior does; that is, the "relative closure" of a set is equal to its ordinary closure.

Relative boundary

Definition

The **relative boundary** of a set X, notated rbd X, is equal to cl $X \setminus ri X$.

Observe that the closure of a lower-dimensional set doesn't encounter the same usefulness issue as the interior does; that is, the "relative closure" of a set is equal to its ordinary closure.

Lemma

Let $x \in \operatorname{cl} C$ and $x' \in \operatorname{ri} C$. Then the half-open segment

$$(x, x'] = \{\alpha x + (1 - \alpha)x' : 0 \le \alpha < 1\}$$

is contained in ri C.

An important consequence of this result is that the half-line issued from $x' \in ri \ C$ cannot intersect rbd C more than once; consequently, any affine line meeting ri C cannot intersect rbd C more than twice.

Faces

Definition

A nonempty convex subset F of a convex set C is a **face** of C if every segment in C which contains an element of F is entirely contained within F.

That is, if a segment between two points in \mathcal{C} is inside \mathcal{F} anywhere, the entire segment is contained within \mathcal{F} .

Faces

Definition

A nonempty convex subset F of a convex set C is a **face** of C if every segment in C which contains an element of F is entirely contained within F.

That is, if a segment between two points in C is inside F anywhere, the entire segment is contained within F.

Proposition

Let F be a face of C. Then any extreme point of F is an extreme point of C.

This property is known as the "transmission of extremality."

Hyperplanes and half-spaces

Definition

An **affine hyperplane** (or just **hyperplane**) in \mathbb{R}^n is a set $H_{s,r}$ associated with an ordered pair $(s,r) \in \mathbb{R}^n \times \mathbb{R}$:

$$H_{s,r} := \{x \in \mathbb{R}^n : \langle s, x \rangle = r\}$$

Hyperplanes and half-spaces

Definition

An **affine hyperplane** (or just **hyperplane**) in \mathbb{R}^n is a set $H_{s,r}$ associated with an ordered pair $(s,r) \in \mathbb{R}^n \times \mathbb{R}$:

$$H_{s,r} := \{x \in \mathbb{R}^n : \langle s, x \rangle = r\}$$

Definition

The **closed half-space** delineated by a hyperplane $H_{s,r}$ in \mathbb{R}^n is the set $\{x \in \mathbb{R}^n : \langle s, x \rangle \leq r\}$. When the inequality is instead strict inequality, this is instead the **open half-space**.

Supporting hyperplanes

Definition

A hyperplane $H_{s,r}$ is said to **support** the convex set C when C is entirely contained in one of the two closed half-spaces delineated by $H_{s,r}$:

$$\langle s, y \rangle \leq r \quad \forall y \in C$$

 $H_{s,r}$ supports C at $x \in C$ when the above holds and $\langle s, x \rangle = r$ (that is, $x \in H_{s,r}$)

Supporting hyperplanes

Definition

A hyperplane $H_{s,r}$ is said to **support** the convex set C when C is entirely contained in one of the two closed half-spaces delineated by $H_{s,r}$:

$$\langle s, y \rangle \le r \quad \forall y \in C$$

 $H_{s,r}$ supports C at $x \in C$ when the above holds and $\langle s, x \rangle = r$ (that is, $x \in H_{s,r}$)

Lemma

Let $x \in \text{bd } C$, where $C \neq \emptyset$ is convex in \mathbb{R}^n . There exists a hyperplane supporting C at x.

Exposed faces

Definition

The set $F \subset C$ is an **exposed face** of C if there is a supporting hyperplane $H_{s,r}$ of C such that $F = C \cap H_{s,r}$

Proposition

An exposed face is a face.

Krein-Milman theorem

The Krein-Milman theorem applies to any locally convex Hausdorff topological space, but we will prove only the finite-dimensional case today.

Theorem

Let C be compact and convex (in \mathbb{R}^n). Then C is the convex hull of its extreme points – that is, $C = \operatorname{co}(\operatorname{ext} C)$.

Recall that a set is compact in \mathbb{R}^n iff it is closed and bounded.

Proof

Theorem

Let C be compact and convex (in \mathbb{R}^n). Then C is the convex hull of its extreme points – that is, $C = \operatorname{co}(\operatorname{ext} C)$.

We will prove this by induction on dim C (= dim aff C). This is trivial when dim C = 0 – i.e., C is a singleton.

Proof

Theorem

Let C be compact and convex (in \mathbb{R}^n). Then C is the convex hull of its extreme points – that is, $C = \operatorname{co}(\operatorname{ext} C)$.

We will prove this by induction on dim C (= dim aff C).

This is trivial when dim C = 0 – i.e., C is a singleton. Now suppose that dim C = k and for all dim C < k, the result is true.

Take $x \in C$.

- Case 1: $x \in \operatorname{rbd} C$
- Case 2: $x \in ri C (= C \setminus rbd C)$

Case 1: $x \in \text{rbd } C$

Theorem

Let C be compact and convex (in \mathbb{R}^n). Then C is the convex hull of its extreme points – that is, $C = \operatorname{co}(\operatorname{ext} C)$.

• Since $x \in \text{rbd } C \subset \text{bd } C$, we have a hyperplane H supporting C at x. Then the set $C \cap H$ is nonempty (as it contains x), compact, and an exposed face of C.

Case 1: $x \in \text{rbd } C$

Theorem

- Since $x \in \text{rbd } C \subset \text{bd } C$, we have a hyperplane H supporting C at x. Then the set $C \cap H$ is nonempty (as it contains x), compact, and an exposed face of C.
- $C \cap H$ has at most dimension k-1, and since it is compact and convex, our induction hypothesis tells us that $C \cap H = \operatorname{co} \operatorname{ext}(C \cap H)$.

Case 1: $x \in \text{rbd } C$

Theorem

- Since $x \in \text{rbd } C \subset \text{bd } C$, we have a hyperplane H supporting C at x. Then the set $C \cap H$ is nonempty (as it contains x), compact, and an exposed face of C.
- $C \cap H$ has at most dimension k-1, and since it is compact and convex, our induction hypothesis tells us that $C \cap H = \operatorname{co} \operatorname{ext}(C \cap H)$.
- Then x is a convex combination of extreme points of $C \cap H$. By transmission of extremality, those points are also extreme in C.

Theorem

Let C be compact and convex (in \mathbb{R}^n). Then C is the convex hull of its extreme points – that is, $C = \operatorname{co}(\operatorname{ext} C)$.

• Since dim C > 0, we can take some $x' \neq x$ in C.

Theorem

- Since dim C > 0, we can take some $x' \neq x$ in C.
- The affine line generated by x' and x cuts rbd C in two points (since C is compact) y and z.

Theorem

- Since dim C > 0, we can take some $x' \neq x$ in C.
- The affine line generated by x' and x cuts rbd C in two points (since C is compact) y and z.
- Then from Case 1, y and z are convex combinations of extreme points of C.

Theorem

- Since dim C > 0, we can take some $x' \neq x$ in C.
- The affine line generated by x' and x cuts rbd C in two points (since C is compact) y and z.
- Then from Case 1, y and z are convex combinations of extreme points of C.
- Since x is a convex combination of y and z, it is also a convex combination of extreme points of C.

Questions?