Question 1 [10 marks]

A real-time company develops software that is guaranteed to be "time-able". More precisely, the company developed a programming language for which software can be timed in the following way: ahead of executing the software, the worst-case running time of this software can be determined by analyzing the code. The language developed by the company is not as powerful as Java. It can only compute a subset of the problems that Java can compute. Can the company create a language that is as powerful as Java for their safety-critical applications such that this language still has the same property, i.e. the worst-case time of all software can be determined? Justify your answer.

Answer

No, but I'm not sure why.

Question 2 [20 marks]

Construct the decision tree for the algorithm described by the following pseudo-code:

Note that this code does not determine a sorting algorithm. However, on lists of size 3, the code does sort these lists. Produce the decision tree of this algorithm for lists of size 3.

Answer

See figure 1.

Question 3 [10 marks]

a) (5 marks)

State a semi-modularity inequality that holds for the best-case time for the sequential composition of programs P and Q.

Figure 1: Decision Tree Diagram

Answer

The best-case time for the composition is if the best-case input for P produces an output that is a best-case input for Q, but this won't always happen.

This inequality describes that:

$$T_{P:Q}^B(A) \neq T_P^B(A) + T_Q^B(O_P(A))$$

(Here A is a set of possible inputs, and ${\cal O}_{\cal P}(A)$ is the output that ${\cal P}$ produces on that set.)

b) (5 marks)

When does equality hold? State a condition on P or Q that guarantees equality to hold for the inequality you stated under a). Justify your answer.

Answer

If either P or Q is a constant-time algorithm, then equality will hold.

If P is a constant-time algorithm, then the running time for the composition only varies with the running time of Q. So, the worst-case time for the composition will be the worst-case time of Q when run on the outputs of P.

Here is an equality that describes that:

$$T_{P:Q}^B(A) = T_P(A) + T_Q^B(O_P(A)) \label{eq:TPQ}$$

The same argument can be made for if Q is a constant time algorithm.