Walchand College of Engineering, Sangli

Department of Computer Science and Engineering

Name: Meet Vipul Gandhi PRN: 2020BTECS00112

Class: Final Year (Computer Science and Engineering)

Year: 2023-24 **Semester:** 1

Course: High Performance Computing Lab

Practical No. 5

Title of practical: Implementation of OpenMP programs.

Problem Statement 1: Implementation of Matrix-Matrix Multiplication.

Screenshots:

```
PS E:\Acad\Sem VII\HPCL\Assignment 5> g++ -fopenmp matrixMultiplicationPara.cpp
 PS E:\Acad\Sem VII\HPCL\Assignment 5> ./a.exe
Size: 200
Threads: 4
Seq Time: 0.021000
 Parallel Time: 0.010000
PS E:\Acad\Sem VII\HPCL\Assignment 5> g++ -fopenmp matrixMultiplicationPara.cpp PS E:\Acad\Sem VII\HPCL\Assignment 5> ./a.exe
Size: 200
Threads: 6
 Seg Time: 0.017000
 Parallel Time: 0.006000
PS E:\Acad\Sem VII\HPCL\Assignment 5> g++ -fopenmp matrixMultiplicationPara.cpp
PS E:\Acad\Sem VII\HPCL\Assignment 5> ./a.exe
Size: 350
Threads: 2
 Seq Time: 0.103000
 Parallel Time: 0.070000
 PS E:\Acad\Sem VII\HPCL\Assignment 5> g++ - fopenmp \ matrix Multiplication Para.cpp
PS E:\Acad\Sem VII\HPCL\Assignment 5> ./a.exe
• Size: 350
Threads: 4
Seq Time: 0.098000
Parallel Time: 0.064000
PS E:\Acad\Sem VII\HPCL\Assignment 5> g++ -fopenmp matrixMultiplicationPara.cpp
PS E:\Acad\Sem VII\HPCL\Assignment 5> ./a.exe
Size: 350
Threads: 6
Seq Time: 0.098000
 Parallel Time: 0.033000
 PS E:\Acad\Sem VII\HPCL\Assignment 5> g++ - fopenmp \ matrix Multiplication Para.cpp
PS E:\Acad\Sem VII\HPCL\Assignment 5> ./a.exe
Threads: 6
 Seq Time: 0.063000
 Parallel Time: 0.027000
PS E:\Acad\Sem VII\HPCL\Assignment 5> ./a.exe
Size: 300
Threads: 4
 Seg Time: 0.063000
 Parallel Time: 0.035000
 PS E:\Acad\Sem VII\HPCL\Assignment 5> g++ -fopenmp matrixMultiplicationPara.cpp
PS E:\Acad\Sem VII\HPCL\Assignment 5> ./a.exe
Size: 300
 Threads: 2
 Seq Time: 0.063000
 Parallel Time: 0.047000
```

Walchand College of Engineering, Sangli Department of Computer Science and Engineering

Information:

- a. Matrix Multiplication has very high complexity of $O(N^3)$ so on parallelizing we can reduce the time by a lot.
- b. Few variables (I, j, k) are shared privately to each thread whereas the matrices A, B and C result matrix are shared.
- c. Sizes are changed along with the number of threads.

Analysis:

Size										
Threads	1	2	3	4	5	6	7	8	9	10
200	0.019	0.012	0.008	0.006	0.009	0.009	0.009	0.009	0.007	0.006
300	0.071	0.047	0.041	0.027	0.032	0.019	0.022	0.026	0.021	0.02
350	0.105	0.079	0.057	0.04	0.039	0.041	0.033	0.036	0.033	0.03
Size										
Threads	11	12	13	14	15	16	17	18	19	20
200	0.007	0.007	0.007	0.007	0.008	0.008	0.007	0.007	0.006	0.006
300	0.019	0.02	0.022	0.02	0.021	0.02	0.02	0.021	0.019	0.019
350	0.03	0.032	0.035	0.034	0.031	0.032	0.035	0.032	0.031	0.03

Speedup:

- a. For matrix size of 200x200 minimum time is 0.006 secs for 10 threads.
- b. For matrix size of 300x300 minimum time is 0.002 secs for 10 threads.
- c. For matrix size of 350x350 minimum time is 0.003 secs for 10 threads.

Matix Size	Serial Time	Parallel Time (10)	Speedup
200	0.019	0.006	3.17
300	0.071	0.02	3.55
350	0.105	0.03	3.50

Walchand College of Engineering, Sangli Department of Computer Science and Engineering

Problem Statement 2: Implementation of sum of two lower triangular matrices.

Screenshots:

```
powershell - Assignment 5 十 v 日 前 ··· ×
PS E:\Acad\Sem VII\HPCL\Assignment 5> g++ -fopenmp lowerTriangularPara.cpp
PS E:\Acad\Sem VII\HPCL\Assignment 5> ./a.exe
 Size: 350
 Threads: 6
 Seq Time: 0.001000
 Parallel Time: 0.001000
PS E:\Acad\Sem VII\HPCL\Assignment 5> g++ -fopenmp lowerTriangularPara.cpp
PS E:\Acad\Sem VII\HPCL\Assignment 5> ./a.exe
 Size: 350
 Threads: 4
 Seq Time: 0.000000
 Parallel Time: 0.001000
PS E:\Acad\Sem VII\HPCL\Assignment 5> g++ -fopenmp lowerTriangularPara.cpp
PS E:\Acad\Sem VII\HPCL\Assignment 5> ./a.exe
 Size: 350
 Threads: 2
 Seq Time: -0.000000
 Parallel Time: 0.001000
PS E:\Acad\Sem VII\HPCL\Assignment 5> g++ -fopenmp lowerTriangularPara.cpp
PS E:\Acad\Sem VII\HPCL\Assignment 5> ./a.exe
 Size: 300
 Threads: 2
 Seq Time: 0.000000
 Parallel Time: 0.001000
PS E:\Acad\Sem VII\HPCL\Assignment 5> g++ -fopenmp lowerTriangularPara.cpp
PS E:\Acad\Sem VII\HPCL\Assignment 5> ./a.exe
 Size: 300
 Threads: 4
 Seq Time: -0.000000
 Parallel Time: 0.001000
● PS E:\Acad\Sem VII\HPCL\Assignment 5> g++ -fopenmp lowerTriangularPara.cpp
PS E:\Acad\Sem VII\HPCL\Assignment 5> ./a.exe
 Size: 300
 Threads: 6
 Sea Time: -0.000000
 Parallel Time: 0.002000
PS E:\Acad\Sem VII\HPCL\Assignment 5>
```

Information:

- a. Lower triangular matrix is a matrix where all the cells above the diagonals are zero.
- b. Cells below the diagonal of matrix can be zero as well as non-zero.
- c. Just like above problem we used private sharing for (i, j, k) and shared for (A, B, C) for all the threads.
- d. Paralleling the above problem doesn't affect much to the execution time.

Analysis: Here we can see that on increasing the matix size and number of threads doesn't result in decrease in execution time. So, for small matrix size parallelizing is not a good option.

GitHub Link: https://github.com/meetgandhi692/HPC-Lab/tree/52fd41746f81d008d559dd997530e81d3f6707d3/Assignment%205