Inteligência Computacional para Otimização

Marcone Jamilson Freitas Souza

Departamento de Computação

Universidade Federal de Ouro Preto

http://www.iceb.ufop.br/prof/marcone

Classificação dos métodos heurísticos

Construtivos

Constroem uma solução passo a passo, elemento por elemento

✓ de refinamento

Consistem em melhorar uma solução, através de modificações em seus elementos

Heurística de construção gulosa (Heurística clássica)

- Funcionamento:
 - Constrói uma solução, elemento por elemento
 - A cada passo é adicionado um único elemento candidato
 - O candidato escolhido é o "melhor" segundo um certo critério
 - O método se encerra quando todos os elementos candidatos foram analisados

Uma heurística construtiva gulosa para o Problema da Mochila

1º Passo: Calcular a relação benefício/peso

Pessoa	Peso (Kg)	Benefício	Benefício/ Peso
cruzeirense	140	0	0
Recém-graduado	60	1	0,017
ATLETICANO	100	3	0,030
Professor de geografia	80	4	0,050
Morena "olhos verdes"	75	3	0,040
Loira	60	2	0,030
Marcone	90	10	0,111

Uma heurística construtiva gulosa para o Problema da Mochila

2º Passo: Ordenar os elementos

Pessoa	Peso (Kg)	Benefício	Benefício/ Peso
Marcone	90	10	0,111
Professor de geografia	80	4	0,050
Morena "olhos verdes"	75	3	0,040
Loira	60	2	0,030
ATLETICANO	100	3	0,030
Recém-graduado	60	1	0,017
cruzeirense	140	0	0

Uma heurística construtiva gulosa para o Problema da Mochila

3º Passo: Escolher o elemento que produzir a maior relação benefício/peso, e que respeite a capacidade do barco

Pessoa	Peso (K	g) Benefício	Benefício/	
ressoa	reso (R	g) Bellelicio	Peso	
Marcone	90	10	0,111	
Professor de geografia	80	4	0,050	
Morena "olhos verdes"	75	3	0,040	
Loira	60	2	0,030	
ATLETICANO	100) 3	0,030	
Recém-graduado	60	1	0,017	
cruzeirense	140	0	0	

Uma heurística construtiva gulosa para o Problema da Mochila

4º Passo: Repetir o passo anterior até que nenhum elemento possa ser colocado no barco sem ultrapassar a capacidade deste.

Pessoa	Peso (Kg)	Benefício	Benefício/
PESSOA	Peso (Rg)	Belleficio	Peso
Marcone	90	10	0,111
Professor de geografia	80	4	0,050
Morena "olhos verdes"	75	3	0,040
Loira	60	2	0,030
ATLETICANO	100	3	0,030
Recém-graduado	60	1	0,017
cruzeirense	140	0	0

Uma heurística construtiva gulosa para o Problema da Mochila

4º Passo: Repetir o passo anterior até que nenhum elemento possa ser colocado no barco sem ultrapassar a capacidade deste.

Pessoa	Peso (Kg)	Benefício	Benefício/	
ressoa	reso (kg)	Belleficio	Peso	
Marcone	90	10	0,111	
Professor de geografia	80	4	0,050	
Morena "olhos verdes"	75	3	0,040	
Loira	60	2	0,030	
ATLETICANO	100	3	0,030	
Recém-graduado	60	1	0,017	
cruzeirense	140	0	0	

Heurística de construção gulosa

```
procedimento ConstrucaoGulosa(g(.), s);
    s \leftarrow \emptyset;
    Inicialize o conjunto C de elementos candidatos;
    enquanto (C \neq \emptyset) faça
3
        \overline{g(t_{max})} = \max\{\overline{g(t)} \mid t \in C\};
        s \leftarrow s \cup \{t_{max}\};
        Atualize o conjunto C de elementos candidatos;
    fim-enquanto;
   Retorne s;
fim ConstrucaoGulosa;
```

* Considera-se um problema de maximização

Exemplificando a aplicação da heurística construtiva gulosa

Seja, então, uma mochila de capacidade b=23 e os 5 objetos da tabela abaixo, com os respectivos pesos e benefícios.

Objeto (j)	1	2	3	4	5
Peso (w_j)	4	5	7	9	6
Benefício (p_j)	2	2	3	4	4

Construamos uma solução para esse problema usando a seguinte idéia: adicionemos à mochila a cada passo, o objeto mais valioso por unidade de peso e que não ultrapasse a capacidade da mochila. Reordenando os objetos de acordo com a relação p_i/w_i , obtemos:

Objeto (j)	5	1	4	3	2
Peso (w_j)	6	4	9	7	5
Benefício (p_j)	4	2	4	3	2
(p_j/w_j)	0.67	0.50	0.44	0.43	0.40

Representemos uma solução s por um vetor binário de n posições.

Exemplificando a aplicação da heurística construtiva gulosa

Passo 1 : Adicionemos, primeiramente, o objeto 5, que tem a maior relação p_j/w_j $s=(00001)^t$ f(s)=4 Peso corrente da mochila =6< b =23

 $\bf Passo~2:$ Adicionemos, agora, o objeto 1, que tem a segunda maior relação p_j/w_j $s=(10001)^t$ f(s)=6 Peso corrente da mochila = 10 < b = 23

Passo 3 : Adicionemos, agora, o objeto 4, que tem a terceira maior relação p_j/w_j $s=(10011)^t$ f(s)=10 Peso corrente da mochila =19 < b=23

Passo 4: O objeto a ser alocado agora seria o terceiro. No entanto, esta alocação faria superar a capacidade da mochila. Neste caso, devemos tentar alocar o próximo objeto com a maior relação p_j/w_j , que é o objeto 1. Como também a alocação desse objeto faria superar a capacidade da mochila e não há mais objetos candidatos, concluímos que a solução anterior é a solução final, isto é: $s^* = (10011)^t$ com $f(s^*) = 10$.

Um modelo de programação matemática para o Problema da Mochila

Sejam:

n elementos

c = capacidade da mochila

 b_i = benefício do elemento i

 $p_i = peso do elemento i$

Variável de decisão:

 $x_i = 1$ se o elemento *i* for colocado na mochila $\stackrel{\cdot}{\iota}0$ caso contrário

Um modelo de programação matemática para o Problema da Mochila

$$\max \sum_{i=1}^{n} b_{i} x_{i}$$

$$\sum_{i=1}^{n} p_{i} x_{i} \leq c$$

$$i=1$$

$$x_{i} \in \{0,1\} \ \forall i=1,...,n$$

Problema do Caixeiro Viajante

- Dado um conjunto de cidades e uma matriz de distâncias entre elas
- PCV consiste em encontrar uma rota para um Caixeiro Viajante tal que este:
 - parta de uma cidade origem
 - passe por todas as demais cidades uma única vez
 - retorne à cidade origem ao final do percurso
 - percorra a menor distância possível
- Rota conhecida como ciclo hamiltoniano

Formulação Matemática para o Problema do Caixeiro Viajante

- Dados de entrada:
 - Cidades: Conjunto de cidades
 - d_{ii} = distância entre as cidades i e j
- Variáveis de decisão:
 - $x_{ij} = 1$ se a aresta (i,j) será usada; 0, caso contrário
 - f_{ii} = quantidade de fluxo de i para j
- Função objetivo:

$$\min \sum_{i \in Cidades} \sum_{j \in Cidades} d_{ij} x_{ij}$$

Formulação Matemática para o Problema do Caixeiro Viajante

Restrições:

1. De cada cidade i só sai uma aresta:

$$\sum_{j \in Cidades} x_{ij} = 1 \quad \forall i \in Cidades$$

2. A cada cidade j só chega uma aresta:

$$\sum_{i \in Cidades} x_{ij} = 1 \quad \forall j \in Cidades$$

Formulação Matemática para o Problema do Caixeiro Viajante

3. O fluxo que chega a uma cidade i menos o que sai é igual a uma unidade:

$$\sum_{j \in Cidades} f_{ji} - \sum_{j \in Cidades} f_{ij} = 1 \quad \forall i \in Cidades \quad i \neq 1$$

$$j \in Cidades \quad f \quad f = 1$$

4. O fluxo máximo em cada aresta é igual a n-1, onde n é o número de cidades:

$$f_{ii} \leq (n-1)x_{ii} \ \forall i \in Cidades, \ \forall j \in Cidades$$

5. Integralidade e não negatividade:

$$f_{ij} \ge 0 \ \forall i \in Cidades, \ \forall j \in Cidades$$

$$x_{ij} \in \{0,1\} \ \forall i \in Cidades, \ \forall j \in Cidades$$

Problema do Caixeiro Viajante: Complexidade

- Considerando PCV simétrico $(d_{ij} = d_{ji})$, para n cidades há (n-1)!/2 rotas possíveis
- Para n = 20 cidades, há 10¹6 rotas possíveis. Um computador que avalia uma rota em 10⁻8 segundos gastaria cerca de 19 anos para encontrar a melhor solução por enumeração completa
- Métodos de enumeração implícita, tais como branch-and-bound, embutidos em solvers, podem reduzir significativamente este tempo
- Não há garantia de que isso sempre ocorra

Problema do Caixeiro Viajante Complexidade

- Para dimensões mais elevadas, a resolução por métodos de programação matemática é proibitiva em termos de tempos computacionais
- PCV é da classe NP-difícil: não existem algoritmos exatos que o resolvam em tempo polinomial
- A medida que *n* cresce, o tempo cresce exponencialmente
- PCV é resolvido por meio de heurísticas:
 - Procedimentos que seguem uma intuição para resolver o problema (forma humana de resolver o problema, fenômenos naturais, processos biológicos, etc.)
 - Não garantem a otimalidade da solução final
 - Em geral, produzem soluções finais de boa qualidade rapidamente

Heurísticas construtivas para o Problema do Caixeiro Viajante

- Vizinho mais próximo
 - Idéia central: Construir uma rota passo a passo, adicionando à solução corrente a cidade mais próxima (e ainda não visitada) da última cidade inserida
- Inserção mais barata
 - Idéia central: Construir uma rota passo a passo, partindo de rota inicial envolvendo 3 cidades e adicionar a cada passo, a cidade k (ainda não visitada) entre a ligação (i, j) de cidades já visitadas, cujo custo de inserção seja o mais barato

7	Cid.	1	2	3	4	5	6	
	1	0	2	1	4	9	1]
	2	2	0	5	9	7	2	
	3	1	5	0	3	8	6	
-	4	4	9	3	0	2	6	1
-	5	9	7	8	2	0	2	1
-[6	1	2	6	6	2	0	

i	j	d_{ij}
6	1	1
6	2	2
6	3	6
6	4	6
6	5	2

1 2

3

♦ Distância Total = 1

5

4

Cid.		1	2	3	4	5	6	
1		0	2	1	4	9	1	
2		2	0	5	9	7	2	
3		1	5	0	3	8	6	7
4		4	9	3	0	2	6	
5		9	7	8	2	0	2	
6		1	2	6	6	2	0	
	_							_

i	j	d_{ij}
1	2	2
1	3	1
1	4	4
1	5	9

1 1 2

♦ Distância Total = 1 + 1 = 2

5

4

Cid.		1	2	3	4	5	6	
1		0	2	1	4	9	1	
2		2	0	5	9	7	2	1
3		1	5	0	3	8	6	7
4		4	9	3	0	2	6	1
5		9	7	8	2	0	2	1
6		1	2	6	6	2	0	1
	_			•				_

i	j	d_{ij}	
3	2	5	
3	4	3	>
3	5	8	

1 2

◆ Distância Total = 2 + 3 = 5

5

4

Cid.	1	2	3	4	5	6	
1	0	2	1	4	9	1	
2	2	0	5	9	7	2	1
3	1	5	0	3	8	6	7
4	4	9	3	0	2	6	7
5	9	7	8	2	0	2	7
6	1	2	6	6	2	0	1
			•				_

◆ Distância Total = 5 + 2 = 7

Cid	l .	1	2	3	4	5	6	
1		0	2	1	4	9	1	
2		2	0	5	9	7	2	1
3		1	5	0	3	8	6	7
4		4	9	3	0	2	6	7
5		9	7	8	2	0	2	7
6		1	2	6	6	2	0	1
			•		-	•		_

i	j	d _{ij}
5	2	7

♦ Distância Total = 7 + 7 = 14

PCV – Vizinho mais Próximo Exemplo – Passo final: "Inserção forçada"

, ,	Cid.	1	2	3	4	5	6
	1	0	2	1	4	9	1
	2	2	0	5	9	7	2
	3	1	5	0	3	8	6
	4	4	9	3	0	2	6
	5	9	7	8	2	0	2
	6	1	2	6	6	2	0

♦ Distância Total = 14 + 2 = 16

Complexidade da heurística construtiva do vizinho mais próximo aplicada ao PCV

Heurística da Inserção Mais Barata para o Problema do Caixeiro Viajante

- Inserção mais barata
 - Idéia central: Construir uma rota passo a passo, partindo de rota inicial envolvendo 3 cidades (obtidas por um método qualquer) e adicionar a cada passo, a cidade k (ainda não visitada) entre a ligação (i, j) de cidades já visitadas, cujo custo de inserção seja o mais barato

Heurística da Inserção Mais Barata para o Problema do Caixeiro Viajante

1							
	Cid.	1	2	3	4	5	6
	1	0	2	1	4	9	1
	2	2	0	5	9	7	2
	3	1	5	0	3	8	6
	4	4	9	3	0	2	6
	5	9	7	8	2	0	2
	6	1	2	6	6	2	0
- 1							

Heurística da Inserção Mais Barata para o Problema do Caixeiro Viajante

					V		
Ī	Cid.	1	2	3	4	5	6
İ	1	0	2	1	4	9	1
l	2	2	0	5	9	7	2
	3	1	5	0	3	8	6
	4	4	9	3	0	2	6
	5	9	7	8	2	0	2
	6	1	2	6	6	2	0

Custo da inserção = $d_{ik} + d_{kj} - d_{ij}$

PCV - Inserção mais Barata Exemplo - Passo 1

Cid.	1	2	3	4	5	6
1	0	2	1	4	9	1
2	2	0	5	9	7	2
3	1	5	0	3	8	6
4	4	9	3	0	2	6
5	9	7	8	2	0	2
6	1	2	6	6	2	0

♦ Distância Total = 11

PCV – Inserção mais Barata Exemplo - Passo 2

Cid.	1	2	3	4	5	6
1	0	2	1	4	9	1
2	2	0	5	9	7	2
3	1	5	0	3	8	6
4	4	9	3	0	2	6
5	9	7	8	2	0	2
6	1	2	6	6	2	0

i	k	j	$d_{ik}+d_{kj}-d_{ij}$
6	1	2	1 + 2 - 2 = 1
6	3	2	6 + 5 - 2 = 9
6	4	2	6 + 9 - 2 = 3
2	1	5	2 + 9 - 7 = 4
2	3	5	5 + 8 - 7 = 6
2	4	5	9 + 2 - 7 = 4
5	1	6	9+1-2=8
5	3	6	8 + 6 - 2 = 12
5	4	6	2 + 6 - 2 = 6

♦ Distância Total = 11 + 1 = 12

PCV – Inserção mais Barata Exemplo - Passo 3

,	Cid.	1	2	3	4	5	6
	1	0	2	1	4	9	1
	2	2	0	5	9	7	2
	3	1	5	0	3	8	6
	4	4	9	3	0	2	6
	5	9	7	8	2	0	2
	6	1	2	6	6	2	0

i	k	j	$d_{ik} + d_{kj} - d_{ij}$		
6	3	1	6 + 1 - 1 = 6		
6	4	1	6 + 4 - 1 = 9		
1	3	2	1 + 5 - 2 = 4		
1	4	2	4+9-2=11		
2	3	5	5 + 8 – 7 = 6		
2	4	5	9 + 2 - 7 = 4		
5	3	6	8 + 6 - 2 = 12		
5	4	6	2 + 6 - 2 = 6		

◆ Distância Total = 12 + 4 = 16

PCV – Inserção mais Barata Exemplo – Passo final

Cid.	1	2	3	4	5	6	
1	0	2	1	4	9	1	
2	2	0	5	9	7	2	
3	1	5	0	3	8	6	7
4	4	9	3	0	2	6	7
5	9	7	8	2	0	2	7
6	1	2	6	6	2	0	1
							_

i	k	j	$d_{ik} + d_{kj} - d_{ij}$
6	4	1	6 + 4 - 1 = 9
1	4	3	4+3-1=6
3	4	2	3 + 9 – 5 = 7
2	4	5	9 + 2 - 7 = 4
5	4	6	2 + 6 - 2 = 6

♦ Distância Total = 16 + 4 = 20

PCV – Inserção mais Barata Exemplo – Solução final

Cid.	1	2	3	4	5	6
1	0	2	1	4	9	1
2	2	0	5	9	7	2
3	1	5	0	3	8	6
4	4	9	3	0	2	6
5	9	7	8	2	0	2
6	1	2	6	6	2	0

♦ Distância Total = 16 + 4 = 20

$$s = (6 1 3 2 4 5)$$

Complexidade da heurística construtiva da inserção mais barata aplicada ao PCV

Iteraçã	Número de
0	avaliações
1	3(N - 3)
2	4(N - 4)
i-2	i(N-i)
	•••
N-3	(N - 1)(N-(N-1))
Total	$\sum_{i=3}^{n-1} i(n-i)$

$$\sum_{i=3}^{n-1} i(n-i) = \frac{1}{6}n^3 - n^2 - \frac{5}{6}n - 3$$

Comparação entre as heurísticas construtivas para

o PCV Exemplo para n = 20 cidades

Métod	0	Complexidade	

Vizinho mais próximo

Inserção mais barata

$$\frac{1}{2}n^2 - n + 1$$

$$\frac{1}{6}n^3 - n^2 - \frac{5}{6}n - 3$$

Supor uma avaliação executada em 10⁻⁸ segundos

Comparação entre as heurísticas construtivas para

OPCV Exemplo para n = 1000 cidades

	s)
n^2-n+1 0,0	005
2 5 2	
	$-n^2 - \frac{5}{6}n - 3$ 1,

Supor uma avaliação executada em 10-8 segundos

Comparação entre as heurísticas construtivas para

O PCV Exemplo para n = 10000 cidades

Método	Complexidade	Tempo (s)
Vizinho mais próximo	$\frac{1}{2}n^2 - n + 1$	0,5
Inserção mais barata	$\frac{1}{6}n^3 - n^2 - \frac{5}{6}n - 3$	1665

Supor uma avaliação executada em 10-8 segundos

Problema de Roteamento de Veículos

- Dados de entrada:
 - Um depósito
 - Uma frota de veículos, com base no depósito
 - Um conjunto de clientes
 - A demanda dos clientes
 - Uma matriz de distâncias D = (d_{ij}) entre depósito e clientes
 e entre pares de clientes
 - Cidades = depósito U Clientes
- PRV consiste em encontrar um conjunto de rotas para os veículos tal que:
 - Cada rota comece e termine no depósito
 - Cada cliente seja atendido por um único veículo
 - A capacidade (capVeic) dos veículos seja respeitada
 - A distância total percorrida seja a menor possível

Problema de Roteamento de Veículos

Problema de Roteamento de Veículos Demanda [6] [9] capacidade C dos veículos dep [7] [5]

Formulação Matemática para o Problema de Roteamento de Veículos

- Dados de entrada:
 - Cidades: Conjunto formado por Depósito e Clientes
 - d_{ii} = distância entre as cidades i e j
 - demanda_i = demanda da cidade i (demanda_{dep} = 0)
- Variáveis de decisão:
 - x_{ii} = 1 se a aresta (i,j) será usada; 0, caso contrário
 - f_{ij} = quantidade de fluxo de i para j
- Função objetivo:

$$\min \sum_{i \in Cidades} \sum_{j \in Cidades} d_{ij} x_{ij}$$

Formulação Matemática para o Problema de Roteamento de Veículos

Restrições:

1. De cada cidade i, exceto o depósito (1), só sai um veículo:

$$\sum_{j \in Cidades} x_{ij} = 1 \quad \forall i \in Cidades, i \neq 1$$

$$\sum_{i \in Cidades} x_{ij} = 1 \quad \forall j \in Cidades, j \neq 1$$

$$\sum_{j \in Cidades} x_{1j} = \sum_{j \in Cidades} x_{j1}$$

Formulação Matemática para o Problema de Roteamento de Veículos

4. Ao passar por uma cidade j, exceto o depósito, o veículo deve atender a demanda dessa cidade, isto é, deve deixar demanda(j) unidades de produto na cidade j;

$$\sum_{i \in Cidades} f_{ij} - \sum_{i \in Cidades} f_{ji} = demanda_j \quad \forall j \in Cidades \mid j \neq 1$$

$$f = demanda_j \quad \forall j \in Cidades \mid j \neq 1$$

5. O fluxo máximo em cada aresta não pode superar a capacidade do veículo:

$$f_{ij} \le (capVeic) x_{ij} \ \forall i \in Cidades, \ \forall j \in Cidades$$

6. Integralidade e não negatividade:

$$f_{ij} \ge 0 \quad \forall i \in Cidades, \quad \forall j \in Cidades$$

$$x_{ii} \in \{0,1\} \ \forall i \in Cidades, \ \forall j \in Cidades$$

Adaptação da Heurística do Vizinho mais próximo para o Problema de Roteamento de Veículos com frota homogênea

- Idéia básica:
 - Passo 1: Partir do depósito com um novo veículo e ir até a cidade mais próxima ainda não visitada;
 - Passo 2: Determinar a cidade mais próxima da última cidade inserida na rota e verificar se é possível atender sua demanda;
 - Passo 3: Se for possível atender a demanda dessa cidade, adicioná-la à rota.
 Caso contrário, retornar ao depósito e voltar ao Passo 1.

Heurística Construtiva do Vizinho mais Próximo Aplicada ao PRV

Heurística Construtiva de Clark & Wright para o Problema de Roteamento de Veículos com frota • Idéia básica:

- - Colocar um veículo atendendo cada cliente, isto é, considerar n veículos saindo do depósito, atendendo cada qual a um único cliente e retornando ao depósito;
 - Unir as rotas de cada veículo com base no conceito de economia
- A medida que se reduz a distância total percorrida, o número de veículos necessários também é reduzido

Heurística Construtiva de Clark & Wright para o Problema de Roteamento de Veículos com frota homogênea

Economia (saving) $s_{ij} = d_{i0} + d_{0j} - d_{ij}$

i e j devem ser clientes das extremidades das rotas

Cidades	1	2	3	4	5	CAP
Demanda	15	17	27	12	23	50

 $S_{ij} = d_{i0} + d_{j0} - d_{ij}$

									1
	Cida	ades	1	2	3	4	5	CAP	9 .
	Dem	anda	15	17	27	12	23	50	
			-				-		34/ 28
· ;							5		24 27 2
	i	i	d	d	d	C	Dem	·	
┡	4	J	$\mathbf{d}_{\mathbf{i}0}$	d _{j0}	d _{ij}	S_{ij}		2	/ / / / / / = /
	1	2	28	27	52	3	44		
	1	3	28	13	32	9	54		13
	1	5	28	24	52	0	50		38 13
	2	3	27	13	20	20	44		
	2	4	27	38	43	22	44		
	2	5	27	24	27	24	40	4	3
	3	4	13	38	28	23	54		
	3	5	13	24	32	5	50		
	4	5	38	24	43	19	50		

Total percorrido:	228
Nº de caminhões:	4

									1
	Cida	ides	1	2	3	4	5	CAP	
	Dem	anda	15	17	27	12	23	50	1 / /
									34/ 28
									27
+							5		2
	i	j	\mathbf{d}_{i0}	d _{i0}	d _{ii}	S_{ii}	Dem	24	27
	1	2	28	27	52	3	67		
	1	3	28	13	32	9	54		13
	1	5	28	24	52	0	67		38 13
	2	3	27	13	20	20	67		15
	2	4	27	38	43	22	67		3
	3	4	13	38	28	23	54	4	3
	3	5	13	24	32	5	67		
	4	5	38	24	43	19	67		

Total percorrido:	204
Nº de caminhões:	3