5.1 Direct Products

April 30, 2018

Exercise 5.1.1. Show that the center of a direct product is the direct product of the centers:

$$Z(G_1 \times G_2 \times \cdots G_n) = Z(G_1) \times Z(G_2) \times \cdots Z(G_n)$$

Deduce that a direct product of groups is abelian is abelian iff each of the factors is abelian.

Proof: It follows trivially from the fact that gh = hg iff $g_ih_i = h_ig_i$ for each i where $g, h \in G = G_1 \times G_2 \times \cdots G_n$.

The second part of the proof also follows trivially from the fact that G = Z(G) iff G is abelian.

Exercise 5.1.5. Exhibit a non-normal subgroup of $Q_8 \times Z_4$ (note that every subgroup of each factor is normal).

Example: Take $H = \langle (i, x) \rangle$, we have $(j, x)(i, x)(-j, x^3) = (-i, x) \notin H$.