# **Python Data Science Homework #4**

# NOTICE: PRINT OUT THE ANSWERS DIRECTLY WILL NOT BE SCORED.

- 1. (20%)
  - Create an array ranging from 30 to 1.

```
array([30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1])
```

• Replace all odd numbers in the array with -1 and display the answer in the following form.

- 2. (20%)
  - a = [1, 2, 3, 4, 5]

$$b = [4, 5, 6, 7, 8]$$

- Define functions to calculate the L1 and L2 distance between array a and b.
- 3. Create the data frame shown below.

|   | First_name | Last_name | Gender | Height(inch) | Weight(lbs) |
|---|------------|-----------|--------|--------------|-------------|
| 0 | allen      | lin       | М      | 72           | 130         |
| 1 | johnny     | Lin       | М      | 69           | 205         |
| 2 | Chloe      | Huang     | F      | 63           | 180         |
| 3 | John       | Chen      | М      | 62           | 125         |
| 4 | Alice      | Chang     | F      | 57           | 89          |

### (10%)

- Combine 'First\_name' and 'Last\_name' into 'Name'
- Set 'Name' as index
- Drop 'First\_name' and 'Last\_name'

Hint: pay attention to the capitalization of the name

|             | Gender | Height(inch) | Weight(lbs) |
|-------------|--------|--------------|-------------|
| Name        |        |              |             |
| Allen Lin   | М      | 72           | 130         |
| Johnny Lin  | М      | 69           | 205         |
| Chloe Huang | F      | 63           | 180         |
| John Chen   | М      | 62           | 125         |
| Alice Chang | F      | 57           | 89          |
| Bob Wang    | М      | 69           | 160         |

## (10%)

Calculate the BMI and add it as a new column.

Hint: pay attention to the unit

|             | Gender | Height(m) | Weight(kg) | ВМІ   |
|-------------|--------|-----------|------------|-------|
| Name        |        |           |            |       |
| Allen Lin   | М      | 1.83      | 58.97      | 17.61 |
| Johnny Lin  | М      | 1.75      | 92.99      | 30.36 |
| Chloe Huang | F      | 1.60      | 81.65      | 31.89 |
| John Chen   | М      | 1.57      | 56.70      | 23.00 |
| Alice Chang | F      | 1.45      | 40.37      | 19.20 |
| Bob Wang    | М      | 1.75      | 72.57      | 23.70 |

(15%) Create a new feature to display physical condition based on BMI.

BMI < 18.5 → Light

18.5 <= BMI < 24 → Normal

24 <= BMI → Heavy

|             | Gender | Height(m) | Weight(kg) | ВМІ   | State  |
|-------------|--------|-----------|------------|-------|--------|
| Name        |        |           |            |       |        |
| Allen Lin   | М      | 1.83      | 58.97      | 17.61 | Light  |
| Johnny Lin  | М      | 1.75      | 92.99      | 30.36 | Heavy  |
| Chloe Huang | F      | 1.60      | 81.65      | 31.89 | Heavy  |
| John Chen   | М      | 1.57      | 56.70      | 23.00 | Normal |
| Alice Chang | F      | 1.45      | 40.37      | 19.20 | Normal |
| Bob Wang    | М      | 1.75      | 72.57      | 23.70 | Normal |

(10%) Draw the scatter plot group by gender.

#### Notices:

- The BMI value needs to be marked on the chart
- Color depth is proportional to BMI

BMI (Group by Gender)



(15%) Draw the bar chart of BMI.

#### Notices:

- BMI <  $18.5 \rightarrow \text{Light (green)}$
- 18.5 <= BMI < 24 → Normal (blue)
- 24 <= BMI → Heavy (red)
- Two vertical lines need to be added to indicate different 'State'

