IE5

Ben Kaufman Vic Chan Ziwei Zhang

Models 1 and 2

$$M1: E(Wage|Education, Sex) = \beta_{0,1} + \beta_{1,1}Education + \beta_{2,1}Sex$$
(1)

$$M2: E(Wage|Education, Sex) = \beta_{0,2} + \beta_{1,2}Education + \beta_{2,2}Sex + \beta_{3,2}Sex : Education$$
 (2)

Throw out M2 because interaction term is not significant and hardly changes \mathbb{R}^2

Fitted vs Residuals for M1

THIS PLOT SUGGESTS NON-CONSTANT VARIANCE, WITHHOLDING TRANSFORMATION UNTIL MORE VARIABLES ADDED TO THE MODEL

Plot of Residuals vs Fitted Values for M1

Inverse fitted values plot for M1

THIS SUGGESTS A LOG TRANSFORM

```
fitted_M1 <- fitted(M1)
inv_fitt_df <- data.frame(fitted_M1, wages$WAGE)
inv_fitt_value_M1 <- ggplot( inv_fitt_df, aes ( x =wages.WAGE , y = fitted_M1) )
inv_fitt_value_M1 +
  geom_jitter(height=0.2,width=0) +
  xlab("y") + ylab(expression(hat(y))) + ggtitle("Inverse Fitted Value Plot of M1")</pre>
```

Inverse Fitted Value Plot of M1

Adding Experience to Our Model

 $M3: E(Wage|Education, Sex, Experience) = \beta_{0,3} + \beta_{1,3}Education + \beta_{2,3}Sex + \beta_{3,3}Experience$ (3)

ADDED VARIABLE PLOT

LOOKS PRETTY LINEAR, R^2 SUGGESTS 8% OF REMAINING VARIANCE EXPLAINED

Added Variable Plot for Experience


```
## R squared value of regression on AVP for experience: 0.0798
##
## Call:
## lm(formula = resid_M1 ~ resid_M3, data = avp_df)
##
## Residuals:
##
     Min
             1Q Median
                           3Q
                                 Max
  -9.571 -2.746 -0.653 1.893 37.724
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.739e-17 1.924e-01
                                     0.000
                                    6.794 2.93e-11 ***
## resid_M3
               1.133e-01 1.668e-02
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 4.445 on 532 degrees of freedom
## Multiple R-squared: 0.07983,
                                   Adjusted R-squared: 0.07811
## F-statistic: 46.16 on 1 and 532 DF, p-value: 2.931e-11
```

CREATING MODEL 4

```
M4: E(Wage|Education, Sex, Experience) = \beta_{0,4} + \beta_{1,4}Education + \beta_{2,4}Sex + \beta_{3,4}Experience
```

(4)(5)

Age and Collinearity

 ${\tt LOOK\ AT\ CORRELATION\ BETWEEN\ EXPERIENCE\ AND\ AGE,\ EXP+EDU\ AND\ AGE,\ explain\ why\ education\ alone}$

```
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```


FROM THIS WE SEE THAT AGE =6+(EDUCATION+EXPERIENCE) THIS MAKES SENSE BECAUSE ALMOST EVERYONE STARTS FIRST GRADE AT AGE 6 IN THE US

```
##
## Call:
## lm(formula = AGE ~ ED_PLUS_EX, data = wages)
##
## Residuals:
##
      Min
                1Q Median
                                3Q
                                       Max
## -3.9805 0.0017 0.0090 0.0147 0.0228
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.9674844 0.0210985
                                      282.8
                                              <2e-16 ***
## ED PLUS EX 1.0008114 0.0006396 1564.8
                                              <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
##
## Residual standard error: 0.173 on 532 degrees of freedom
## Multiple R-squared: 0.9998, Adjusted R-squared: 0.9998
## F-statistic: 2.448e+06 on 1 and 532 DF, p-value: < 2.2e-16</pre>
```

Variable Transformation

STILL HAVE CONE SHAPE WHICH IMPLIES NONCONSTANT VARIANCE

THIS SUGGESTS A LOG TRANSFORM

USING MODEL 4 IT IS SUGGESTED BY THE BOX COX METHOD THAT WE TRANSFORM OUR RESPONSE VARIABLE USING LOG

summary(powerTransform(M4,family="bcPower"))

NEW LOG MODEL

Now that we have properly justified our usage of modeling log(WAGE) rather than wage let's now define a new model:

$$M5: E(log(Wage)|Education, Sex, Experience) = \beta_{0.5} + \beta_{1.5}Education + \beta_{2.5}Sex + \beta_{3.5}Experience$$
 (6)

Adding Occupation M6

$$M6: E[log(Wage)|...Occupation] = \beta_{0,6} + \beta_{1,6}Education + \beta_{2,6}Sex + \beta_{3,6}Experience + \beta_{4,6}Management + \beta_{5,6}Sales + \beta_{6,6}Clerical + \beta_{7,6}Service + \beta_{8,6}Professional$$

 $\beta_{2,6}$ is the wage gap between men and women in occupation other

OCCUPATION INTERACTION

$$\begin{split} M7: E[log(Wage)|...Occupation] &= \beta_{0,7} + \beta_{1,7} Education + \beta_{2,7} Sex + \beta_{3,7} Experience + \\ & \beta_{4,7} Management + \beta_{5,7} Sales + \beta_{6,7} Clerical + \beta_{7,7} Service + \\ & \beta_{8,7} Professional + \beta_{9,7} Sex : Management + \beta_{10,7} Sex : Sales \\ & \beta_{11,7} Sex : Clerical + \beta_{12,7} Sex : Service + \beta_{13,7} Sex : Professional \end{split}$$

 $\beta_{2,7}$ is the average difference in wage in occupation other $\beta_{4:8,7}$ are the differences in wages for each occupation for men $\beta_{9:13,7}$ are the differences in M/F wages compared to difference in occupation other

~~~Ignore Below This Point~~

Exploring Occupation

Now that we are accounting for a person's education and experience we can now try to explore the effect of a person's occupation on wage. Intuitively you can think to yourself, does a hamburger flipper make as much as a CEO of a major company; the answer is definitely not. We can apply at least some level of reasoning to this claim. Considering our current model, which accounts for education and experience, it is insufficient to claim that the CEO makes more than the hamburger flipper because the CEO has a PHD and the hamburger flipper didn't graduate high school nor is it sufficient to say that the CEO has had more experience nor is any combination of the prior two arguments. At this point we claim that the occupation you are in can determine your wage independently (enough) of education and experience. Some reasons may include the level of physical risk involved in job, for example, if there are two jobs that require the same level of education and experience and one job has a higher level of risk than the other, say a tree logger (one of the most dangerous jobs) and a cashier, we would expect the tree logger to earn more because his wage will compensate him for the additional risk he takes on.

OCCUPATION	SECTOR	Total	Male	Female	MeanWage	se
Other	Other	68	62	6	8.5006	4.601049
Other	Manufacturing	68	44	24	8.0360	4.117607
Other	Construction	20	20	0	9.5020	3.343877
Management	Other	49	31	18	12.5990	7.950997

OCCUPATION	SECTOR	Total	Male	Female	MeanWage	se
Management	Manufacturing	6	3	3	13.5617	3.378878
Sales	Other	34	18	16	7.2874	4.294022
Sales	Manufacturing	4	3	1	10.1875	2.838537
Clerical	Other	88	21	67	7.2270	2.641008
Clerical	Manufacturing	7	0	7	9.6786	2.139217
Clerical	Construction	2	0	2	8.1300	5.006316
Service	Other	81	33	48	6.5351	3.716362
Service	Manufacturing	2	1	1	6.6350	1.223295
Professional	Other	91	42	49	11.4091	5.308922
Professional	Manufacturing	12	9	3	16.7708	5.037080
Professional	Construction	2	2	0	7.5000	3.535534

A tibble: 15 x 8

##	## # A tibble: 15 x 8								
##	# (Groups: OCC	UPATION [?]						
##		OCCUPATION	SECTOR	${\tt Total}$	Male	${\tt Female}$	${\tt MeanWage}$	se	OCC_SEC
##		<fct></fct>	<fct></fct>	<int></int>	<int></int>	<int></int>	<dbl></dbl>	<dbl></dbl>	<chr></chr>
##	1	Other	Other	68	62	6	8.50	4.60	Othe Othe
##	2	Other	Manufacturing	68	44	24	8.04	4.12	Othe Manu
##	3	Other	Construction	20	20	0	9.50	3.34	Othe Cons
##	4	Management	Other	49	31	18	12.6	7.95	Mana Othe
##	5	Management	Manufacturing	6	3	3	13.6	3.38	Mana Manu
##	6	Sales	Other	34	18	16	7.29	4.29	Sale Othe
##	7	Sales	Manufacturing	4	3	1	10.2	2.84	Sale Manu
##	8	Clerical	Other	88	21	67	7.23	2.64	Cler Othe
##	9	Clerical	Manufacturing	7	0	7	9.68	2.14	Cler Manu
##	10	Clerical	Construction	2	0	2	8.13	5.01	Cler Cons
##	11	Service	Other	81	33	48	6.54	3.72	Serv Othe
##	12	Service	Manufacturing	2	1	1	6.64	1.22	Serv Manu
##	13	${\tt Professional}$	Other	91	42	49	11.4	5.31	Prof Othe
##	14	${\tt Professional}$	Manufacturing	12	9	3	16.8	5.04	Prof Manu
##	15	${\tt Professional}$	Construction	2	2	0	7.50	3.54	Prof Cons

 $E(log(Wage)|\mathbf{X}) = \beta_0 + \beta_1 Education + \beta_2 Age + \beta_3 Sex + \beta_4 Management + \beta_5 Sales + \beta_6 Clerical + \beta_7 Service + \beta_8 Profesor (7)$