Series de potencias y ecuaciones diferenciales

Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

27 de julio de 2022

Agenda Series y Ecuaciones Diferenciales

- Método de diferenciaciones sucesiva
- Coeficientes indeterminados
- Puntos y Estrategias
- 4 La ecuación de Legendre
- Recapitulando

Dada una ecuación diferencial inhomogénea

$$a_0(x)y + a_1(x)y' + \cdots + a_n(x)y^{(n)}(x) = \sum_{i=0}^n a_i(x) \ y^{(i)} = \mathcal{F}(x)$$
, con las condiciones iniciales

$$y(x_0) = C_1$$
; $y'(x_0) = C_2$; $y''(x_0) = C_3$; ... $y^{(n-1)}(x_0) = C_n$.
Los coeficientes $a_0(x) \cdots a_n(x)$ son funciones analíticas en $x = x_0$.

- Dada una ecuación diferencial inhomogénea $a_0(x)y + a_1(x)y' + \cdots + a_n(x)y^{(n)}(x) = \sum_{i=0}^n a_i(x) \ y^{(i)} = \mathcal{F}(x)$, con las condiciones iniciales $y(x_0) = C_1$; $y'(x_0) = C_2$; $y''(x_0) = C_3$; $\dots y^{(n-1)}(x_0) = C_n$. Los coeficientes $a_0(x) \cdots a_n(x)$ son **funciones analíticas** en $x = x_0$.
- Tendrá como única solución de la ecuación homogénea y = y(x), una serie de potencias que satisface las n condiciones iniciales: $y_h(x) = y(x_0) + y'(x_0)(x x_0) + y''(x_0)\frac{(x x_0)^2}{2!} + y'''(x_0)\frac{(x x_0)^3}{2!} + \cdots$

- Dada una ecuación diferencial inhomogénea $a_0(x)y + a_1(x)y' + \cdots + a_n(x)y^{(n)}(x) = \sum_{i=0}^n a_i(x) \ y^{(i)} = \mathcal{F}(x)$, con las condiciones iniciales $y(x_0) = C_1$; $y'(x_0) = C_2$; $y''(x_0) = C_3$; $\dots y^{(n-1)}(x_0) = C_n$. Los coeficientes $a_0(x) \cdots a_n(x)$ son **funciones analíticas** en $x = x_0$.
- Tendrá como única solución de la ecuación homogénea y = y(x), una serie de potencias que satisface las n condiciones iniciales: $y_h(x) = y(x_0) + y'(x_0)(x x_0) + y''(x_0)\frac{(x x_0)^2}{2!} + y'''(x_0)\frac{(x x_0)^3}{3!} + \cdots$.
- La solución de la inhomogénea proviene de expandir en Taylor la función inhomogénea, esto es: $\mathcal{F}(x) = \sum_{i=0}^n \mathcal{F}^{(i)}(x_0) \frac{(x-x_0)^i}{i!}$, y proponer una solución de la inhomogénea de la forma $y_{ih}(x) = \sum_{i=0}^{\infty} b_j x^j$.

- Dada una ecuación diferencial inhomogénea $a_0(x)y + a_1(x)y' + \cdots + a_n(x)y^{(n)}(x) = \sum_{i=0}^n a_i(x) \ y^{(i)} = \mathcal{F}(x)$, con las condiciones iniciales $y(x_0) = C_1$; $y'(x_0) = C_2$; $y''(x_0) = C_3$; $\dots y^{(n-1)}(x_0) = C_n$. Los coeficientes $a_0(x) \cdots a_n(x)$ son **funciones analíticas** en $x = x_0$.
- Tendrá como única solución de la ecuación homogénea y = y(x), una serie de potencias que satisface las n condiciones iniciales: $y_h(x) = y(x_0) + y'(x_0)(x x_0) + y''(x_0)\frac{(x x_0)^2}{2!} + y'''(x_0)\frac{(x x_0)^3}{3!} + \cdots$
- La solución de la inhomogénea proviene de expandir en Taylor la función inhomogénea, esto es: $\mathcal{F}(x) = \sum_{i=0}^n \mathcal{F}^{(i)}(x_0) \frac{(x-x_0)^i}{i!}$, y proponer una solución de la inhomogénea de la forma $y_{ih}(x) = \sum_{j=0}^{\infty} b_j x^j$.
- Finalmente, la solución general será $y(x) = y_h(x) + y_{ih}(x)$

• Sea $y'' - (x+1)y' + x^2y = \sqrt{x+1} \operatorname{con} y(0) = 1 \operatorname{y} y'(0) = 1$

- Sea $y'' (x+1)y' + x^2y = \sqrt{x+1}$ con y(0) = 1 y y'(0) = 1
- La solución de la homogénea será $y_h(x) = 1 + x + \frac{1}{2}x^2 + \frac{1}{3}x^3 + \frac{1}{12}x^4 + \frac{1}{60}x^5 \dots$

- Sea $y'' (x+1)y' + x^2y = \sqrt{x+1}$ con y(0) = 1 y y'(0) = 1
- La solución de la homogénea será $y_h(x) = 1 + x + \frac{1}{2}x^2 + \frac{1}{3}x^3 + \frac{1}{12}x^4 + \frac{1}{60}x^5 \dots$
- Donde y(0) = 1, y'(0) = 1 $y''(0) = (x+1)y' - x^2y|_{x=0} = y'(0) = 1$ $y'''(0) = \frac{dy(x)}{dx} + (x+1)\frac{d^2y(x)}{dx^2} - 2xy(x) - x^2\frac{dy(x)}{dx}|_{x=0} = 1 + 1 = 2$

- Sea $y'' (x+1)y' + x^2y = \sqrt{x+1}$ con y(0) = 1 y y'(0) = 1
- La solución de la homogénea será $y_h(x) = 1 + x + \frac{1}{2}x^2 + \frac{1}{3}x^3 + \frac{1}{12}x^4 + \frac{1}{60}x^5 \dots$
- Donde y(0) = 1, y'(0) = 1 $y''(0) = (x+1)y' - x^2y|_{x=0} = y'(0) = 1$ $y'''(0) = \frac{dy(x)}{dx} + (x+1)\frac{d^2y(x)}{dx^2} - 2xy(x) - x^2\frac{dy(x)}{dx}\Big|_{x=0} = 1 + 1 = 2$
- La expansión en Taylor de la parte inhomogénea será $\sqrt(x+1) = 1 + \frac{1}{2}x \frac{1}{8}x^2 + \frac{1}{16}x^3 \frac{5}{128}x^4 + \frac{7}{256}x^5 + \dots$

- Sea $y'' (x+1)y' + x^2y = \sqrt{x+1}$ con y(0) = 1 y y'(0) = 1
- La solución de la homogénea será $y_h(x) = 1 + x + \frac{1}{2}x^2 + \frac{1}{3}x^3 + \frac{1}{12}x^4 + \frac{1}{60}x^5 \dots$
- Donde y(0) = 1, y'(0) = 1 $y''(0) = (x+1)y' - x^2y|_{x=0} = y'(0) = 1$ $y'''(0) = \frac{dy(x)}{dx} + (x+1)\frac{d^2y(x)}{dx^2} - 2xy(x) - x^2\frac{dy(x)}{dx}|_{x=0} = 1 + 1 = 2$
- La expansión en Taylor de la parte inhomogénea será $\sqrt(x+1)=1+\frac{1}{2}x-\frac{1}{8}x^2+\frac{1}{16}x^3-\frac{5}{128}x^4+\frac{7}{256}x^5+\dots$
- La solución particular inhomogénea será $y_{ih}(x) = \sum_{j=0}^{\infty} b_j x^j$, entonces $\left(\sum_{j=0}^{\infty} b_j x^j\right)'' (x+1) \left(\sum_{j=0}^{\infty} b_j x^j\right)' + x^2 \left(\sum_{j=0}^{\infty} b_j x^j\right) = \sqrt{x+1} = 1 + \frac{1}{2}x \frac{1}{8}x^2 + \frac{1}{16}x^3 \frac{5}{128}x^4 + \frac{7}{256}x^5 + \dots$ igualando se tienen b_j

- Sea $y'' (x+1)y' + x^2y = \sqrt{x+1} \text{ con } y(0) = 1 \text{ y } y'(0) = 1$
- La solución de la homogénea será $y_h(x) = 1 + x + \frac{1}{2}x^2 + \frac{1}{3}x^3 + \frac{1}{12}x^4 + \frac{1}{60}x^5 \dots$
- Donde y(0) = 1, y'(0) = 1 $y''(0) = (x+1)y' - x^2y|_{x=0} = y'(0) = 1$ $y'''(0) = \frac{dy(x)}{dx} + (x+1)\frac{d^2y(x)}{dx^2} - 2xy(x) - x^2\frac{dy(x)}{dx}|_{x=0} = 1 + 1 = 2$
- La expansión en Taylor de la parte inhomogénea será $\sqrt(x+1)=1+\tfrac12x-\tfrac18x^2+\tfrac1{16}x^3-\tfrac{5}{128}x^4+\tfrac{7}{256}x^5+\dots$
- La solución particular inhomogénea será $y_{ih}(x) = \sum_{j=0}^{\infty} b_j x^j$, entonces $\left(\sum_{j=0}^{\infty} b_j x^j\right)'' (x+1) \left(\sum_{j=0}^{\infty} b_j x^j\right)' + x^2 \left(\sum_{j=0}^{\infty} b_j x^j\right) = \sqrt{x+1} = 1 + \frac{1}{2}x \frac{1}{8}x^2 + \frac{1}{16}x^3 \frac{5}{128}x^4 + \frac{7}{256}x^5 + \dots$ igualando se tienen b_j
- La solución general será $y(x) = y_h + y_{ih} = 1 + x + x^2 + \frac{7}{12}x^3 + \frac{7}{32}x^4 + \frac{27}{320}x^5 + \dots$

• Dada una ecuación inhomogénea $\sum_{i=0}^{n} a_i(x) \ y^{(i)}(x) = \mathcal{F}(x)$,

- Dada una ecuación inhomogénea $\sum_{i=0}^{n} a_i(x) \ y^{(i)}(x) = \mathcal{F}(x)$,
- Se expande por Taylor $\mathcal{F}(x)$ alrededor de un punto $x = x_0$ donde estén definidas las condiciones iniciales

- Dada una ecuación inhomogénea $\sum_{i=0}^{n} a_i(x) \ y^{(i)}(x) = \mathcal{F}(x)$,
- Se expande por Taylor $\mathcal{F}(x)$ alrededor de un punto $x = x_0$ donde estén definidas las condiciones iniciales
- Se propone como solución general de la forma
 y = ∑_{n=0}[∞] c_n (x x₀)ⁿ, donde los coeficientes a_i(x) tienen que ser
 funciones analíticas alrededor de los puntos x = x₀.

- Dada una ecuación inhomogénea $\sum_{i=0}^{n} a_i(x) \ y^{(i)}(x) = \mathcal{F}(x)$,
- Se expande por Taylor $\mathcal{F}(x)$ alrededor de un punto $x = x_0$ donde estén definidas las condiciones iniciales
- Se propone como solución general de la forma
 y = ∑_{n=0}[∞] c_n (x x₀)ⁿ, donde los coeficientes a_i(x) tienen que ser
 funciones analíticas alrededor de los puntos x = x₀.
- Sea $y'' (x+1)y' + x^2y = x$ con y(0) = 1 y y'(0) = 1

- Dada una ecuación inhomogénea $\sum_{i=0}^{n} a_i(x) \ y^{(i)}(x) = \mathcal{F}(x)$,
- Se expande por Taylor $\mathcal{F}(x)$ alrededor de un punto $x = x_0$ donde estén definidas las condiciones iniciales
- Se propone como solución general de la forma $y = \sum_{n=0}^{\infty} c_n (x x_0)^n$, donde los coeficientes $a_i(x)$ tienen que ser funciones analíticas alrededor de los puntos $x = x_0$.
- Sea $y'' (x+1)y' + x^2y = x \text{ con } y(0) = 1 \text{ y } y'(0) = 1$
- Proponemos una solución

$$y(x) = \sum_{n=0}^{\infty} c_n x^n \quad \Rightarrow \quad \begin{cases} y'(x) = \sum_{n=1}^{\infty} n c_n x^{n-1} \\ y''(x) = \sum_{n=2}^{\infty} n (n-1) c_n x^{n-2} \end{cases}$$

- Dada una ecuación inhomogénea $\sum_{i=0}^{n} a_i(x) \ y^{(i)}(x) = \mathcal{F}(x)$,
- Se expande por Taylor $\mathcal{F}(x)$ alrededor de un punto $x = x_0$ donde estén definidas las condiciones iniciales
- Se propone como solución general de la forma $y = \sum_{n=0}^{\infty} c_n (x x_0)^n$, donde los coeficientes $a_i(x)$ tienen que ser funciones analíticas alrededor de los puntos $x = x_0$.
- Sea $y'' (x+1)y' + x^2y = x \text{ con } y(0) = 1 \text{ y } y'(0) = 1$
- Proponemos una solución

$$y(x) = \sum_{n=0}^{\infty} c_n x^n \quad \Rightarrow \quad \begin{cases} y'(x) = \sum_{n=1}^{\infty} n c_n x^{n-1} \\ y''(x) = \sum_{n=2}^{\infty} n (n-1) c_n x^{n-2} \end{cases}$$

• Con lo cual $y(0) = 1 = c_0$ y $y'(0) = 1 = c_1$

Entonces

$$\sum_{n=2}^{\infty} n(n-1)c_n x^{n-2} - (x+1) \sum_{n=1}^{\infty} nc_n x^{n-1} + x^2 \sum_{n=0}^{\infty} c_n x^n = x$$

$$\sum_{n=2}^{\infty} n(n-1)c_n x^{n-2} - \sum_{n=1}^{\infty} nc_n x^n - \sum_{n=1}^{\infty} nc_n x^{n-1} + \sum_{n=0}^{\infty} c_n x^{n+2} = x$$

$$\sum_{l=0}^{\infty} (l+2)(l+1)c_{l+2} x^l - \sum_{n=0}^{\infty} nc_n x^n - \sum_{k=0}^{\infty} (k+1)c_{k+1} x^k + \sum_{m=2}^{\infty} c_{m-2} x^m = x$$

Entonces

$$\sum_{n=2}^{\infty} n(n-1)c_n x^{n-2} - (x+1) \sum_{n=1}^{\infty} nc_n x^{n-1} + x^2 \sum_{n=0}^{\infty} c_n x^n = x$$

$$\sum_{n=2}^{\infty} n(n-1)c_n x^{n-2} - \sum_{n=1}^{\infty} nc_n x^n - \sum_{n=1}^{\infty} nc_n x^{n-1} + \sum_{n=0}^{\infty} c_n x^{n+2} = x$$

$$\sum_{l=0}^{\infty} (l+2)(l+1)c_{l+2} x^l - \sum_{n=0}^{\infty} nc_n x^n - \sum_{k=0}^{\infty} (k+1)c_{k+1} x^k + \sum_{m=2}^{\infty} c_{m-2} x^m = x$$

Al renombrar nuevamente los índices y factorizar se tiene:

$$\sum_{n=0}^{\infty} \left[(n+2)(n+1) c_{n+2} - n c_n - (n+1) c_{n+1} \right] x^n + \sum_{n=2}^{\infty} c_{n-2} x^n =$$

Entonces

$$\sum_{n=2}^{\infty} n(n-1)c_n x^{n-2} - (x+1) \sum_{n=1}^{\infty} nc_n x^{n-1} + x^2 \sum_{n=0}^{\infty} c_n x^n = x$$

$$\sum_{n=2}^{\infty} n(n-1)c_n x^{n-2} - \sum_{n=1}^{\infty} nc_n x^n - \sum_{n=1}^{\infty} nc_n x^{n-1} + \sum_{n=0}^{\infty} c_n x^{n+2} = x$$

$$\sum_{l=0}^{\infty} (l+2)(l+1)c_{l+2} x^l - \sum_{n=0}^{\infty} nc_n x^n - \sum_{k=0}^{\infty} (k+1)c_{k+1} x^k + \sum_{m=2}^{\infty} c_{m-2} x^m = x$$

Al renombrar nuevamente los índices y factorizar se tiene:

$$\sum_{n=0}^{\infty} \left[(n+2)(n+1) c_{n+2} - n c_n - (n+1) c_{n+1} \right] x^n + \sum_{n=2}^{\infty} c_{n-2} x^n = x$$

• Por lo tanto
$$n = 0 \Rightarrow 2c_2 - c_1 = 0 \Rightarrow c_2 = \frac{1}{2}$$

y $n = 1 \Rightarrow 3 \cdot 2$ $c_3 - c_1 - 2$ $c_2 = 1 \Rightarrow c_3 = \frac{1}{2}$

Entonces

$$\sum_{n=2}^{\infty} n(n-1)c_n x^{n-2} - (x+1) \sum_{n=1}^{\infty} nc_n x^{n-1} + x^2 \sum_{n=0}^{\infty} c_n x^n = x$$

$$\sum_{n=2}^{\infty} n(n-1)c_n x^{n-2} - \sum_{n=1}^{\infty} nc_n x^n - \sum_{n=1}^{\infty} nc_n x^{n-1} + \sum_{n=0}^{\infty} c_n x^{n+2} = x$$

$$\sum_{l=0}^{\infty} (l+2)(l+1)c_{l+2} x^l - \sum_{n=0}^{\infty} nc_n x^n - \sum_{k=0}^{\infty} (k+1)c_{k+1} x^k + \sum_{m=2}^{\infty} c_{m-2} x^m = x$$

Al renombrar nuevamente los índices y factorizar se tiene:

$$\sum_{n=0}^{\infty} \left[(n+2)(n+1) c_{n+2} - n c_n - (n+1) c_{n+1} \right] x^n + \sum_{n=2}^{\infty} c_{n-2} x^n =$$

- Por lo tanto $n = 0 \Rightarrow 2c_2 c_1 = 0 \Rightarrow c_2 = \frac{1}{2}$ y $n = 1 \Rightarrow 3 \cdot 2$ $c_3 - c_1 - 2$ $c_2 = 1 \Rightarrow c_3 = \frac{1}{2}$
- la relación de recurrencia para $n \ge 2$ es $(n+2)(n+1)c_{n+2} nc_n (n+1)c_{n+1} c_{n-2} = 0$

Dada una ecuación diferencial del tipo

$$P(x)y'' + Q(x)y' + R(x) y = 0$$
 $\Rightarrow y'' + \frac{Q(x)}{P(x)}y' + \frac{R(x)}{P(x)} y = 0$

- Dada una ecuación diferencial del tipo $P(x)y'' + Q(x)y' + R(x) y = 0 \Rightarrow y'' + \frac{Q(x)}{P(x)}y' + \frac{R(x)}{P(x)} y = 0$
- Un **punto ordinario** $x=x_0$ será aquel alrededor del cual $p(x)=\frac{Q(x)}{P(x)}$ y $q(x)=\frac{R(x)}{P(x)}$ son analíticas. Esto es: $\lim_{x\to x_0} p(x)\equiv \lim_{x\to x_0} \frac{Q(x)}{P(x)}=L_1$, con L_1 finito $\lim_{x\to x_0} q(x)\equiv \lim_{x\to x_0} \frac{R(x)}{P(x)}=L_2$, con L_2 finito

- Dada una ecuación diferencial del tipo $P(x)y'' + Q(x)y' + R(x) y = 0 \Rightarrow y'' + \frac{Q(x)}{P(x)}y' + \frac{R(x)}{P(x)} y = 0$
- Un **punto ordinario** $x = x_0$ será aquel alrededor del cual $p(x) = \frac{Q(x)}{P(x)}$ y $q(x) = \frac{R(x)}{P(x)}$ son analíticas. Esto es: $\lim_{x \to x_0} p(x) \equiv \lim_{x \to x_0} \frac{Q(x)}{P(x)} = L_1$, con L_1 finito $\lim_{x \to x_0} q(x) \equiv \lim_{x \to x_0} \frac{R(x)}{P(x)} = L_2$, con L_2 finito
- Un punto $x=x_0$ se llamará un **punto singular regular** si $\lim_{x\to x_0} (x-x_0) \, p(x) \equiv \lim_{x\to x_0} (x-x_0) \, \frac{Q(x)}{P(x)} = L_3$, con L_3 finito $\lim_{x\to x_0} (x-x_0)^2 \, q(x) \equiv \lim_{x\to x_0} (x-x_0)^2 \, \frac{R(x)}{P(x)} = L_4$, con L_4 finito

- Dada una ecuación diferencial del tipo $P(x)y'' + Q(x)y' + R(x) y = 0 \quad \Rightarrow y'' + \frac{Q(x)}{P(x)}y' + \frac{R(x)}{P(x)} y = 0$
- Un **punto ordinario** $x = x_0$ será aquel alrededor del cual $p(x) = \frac{Q(x)}{P(x)}$ y $q(x) = \frac{R(x)}{P(x)}$ son analíticas. Esto es: $\lim_{x \to x_0} p(x) \equiv \lim_{x \to x_0} \frac{Q(x)}{P(x)} = L_1$, con L_1 finito $\lim_{x \to x_0} q(x) \equiv \lim_{x \to x_0} \frac{R(x)}{P(x)} = L_2$, con L_2 finito
- Un punto $x = x_0$ se llamará un **punto singular regular** si $\lim_{x \to x_0} (x x_0) p(x) \equiv \lim_{x \to x_0} (x x_0) \frac{Q(x)}{P(x)} = L_3$, con L_3 finito $\lim_{x \to x_0} (x x_0)^2 q(x) \equiv \lim_{x \to x_0} (x x_0)^2 \frac{R(x)}{P(x)} = L_4$, con L_4 finito
- Puntos singulares irregulares: Ninguna de las anteriores.

• La ecuación de Legendre $(1-x^2)$ y''-2x $y'+\lambda(\lambda+1)$ y=0

- La ecuación de Legendre $(1-x^2)$ y''-2x $y'+\lambda(\lambda+1)$ y=0
- Proponemos una solución por series $y(x) = \sum_{n=0}^{\infty} c_n x^n$

- La ecuación de Legendre $(1-x^2)$ y''-2x $y'+\lambda(\lambda+1)$ y=0
- Proponemos una solución por series $y(x) = \sum_{n=0}^{\infty} c_n x^n$
- Al sustituir resulta $(1-x^2)\sum_{n=2}^{\infty} n(n-1)c_nx^{n-2} 2x\sum_{n=1}^{\infty} nc_nx^{n-1} + \lambda(\lambda+1)\sum_{n=0}^{\infty} c_nx^n = 0$

- La ecuación de Legendre $(1-x^2)$ y''-2x $y'+\lambda(\lambda+1)$ y=0
- Proponemos una solución por series $y(x) = \sum_{n=0}^{\infty} c_n x^n$
- Al sustituir resulta $(1-x^2)\sum_{n=2}^{\infty}n(n-1)c_nx^{n-2}-2x\sum_{n=1}^{\infty}nc_nx^{n-1}+\lambda(\lambda+1)\sum_{n=0}^{\infty}c_nx^n=0$
- Acomodando $\sum_{k=0}^{\infty} (k+2)(k+1)c_{k+2}x^k \sum_{n=2}^{\infty} n(n-1)c_nx^n 2\sum_{n=1}^{\infty} nc_nx^n + \lambda(\lambda+1)\sum_{n=0}^{\infty} c_nx^n = 0$

- La ecuación de Legendre $(1-x^2)$ y''-2x $y'+\lambda(\lambda+1)$ y=0
- Proponemos una solución por series $y(x) = \sum_{n=0}^{\infty} c_n x^n$
- Al sustituir resulta $(1-x^2)\sum_{n=2}^{\infty}n(n-1)c_nx^{n-2}-2x\sum_{n=1}^{\infty}nc_nx^{n-1}+\lambda(\lambda+1)\sum_{n=0}^{\infty}c_nx^n=0$
- Acomodando $\sum_{k=0}^{\infty} (k+2)(k+1)c_{k+2}x^k \sum_{n=2}^{\infty} n(n-1)c_nx^n 2\sum_{n=1}^{\infty} nc_nx^n + \lambda(\lambda+1)\sum_{n=0}^{\infty} c_nx^n = 0$
- Expandiendo $2a_2 + \lambda(\lambda + 1)a_0 [(\lambda + 2)(\lambda 1)a_1 + (3 \cdot 2)a_3]x + \sum_{n=2}^{\infty} [(n+2)(n+1)a_{n+2} + (\lambda + n+1)(\lambda n)a_n]x^n = 0$

- La ecuación de Legendre $(1-x^2)$ y''-2x $y'+\lambda(\lambda+1)$ y=0
- Proponemos una solución por series $y(x) = \sum_{n=0}^{\infty} c_n x^n$
- Al sustituir resulta $(1-x^2)\sum_{n=2}^{\infty} n(n-1)c_n x^{n-2} 2x\sum_{n=1}^{\infty} nc_n x^{n-1} + \lambda(\lambda+1)\sum_{n=0}^{\infty} c_n x^n = 0$
- Acomodando $\sum_{k=0}^{\infty} (k+2)(k+1)c_{k+2}x^k \sum_{n=2}^{\infty} n(n-1)c_nx^n 2\sum_{n=1}^{\infty} nc_nx^n + \lambda(\lambda+1)\sum_{n=0}^{\infty} c_nx^n = 0$
- Expandiendo $2a_2 + \lambda(\lambda + 1)a_0 [(\lambda + 2)(\lambda 1)a_1 + (3 \cdot 2)a_3]x + \sum_{n=2}^{\infty} [(n+2)(n+1)a_{n+2} + (\lambda + n+1)(\lambda n)a_n]x^n = 0$
- Los coeficientes pares serán $a_2 = -\frac{(\lambda+1)\lambda}{2} a_0$, $a_4 = \frac{(\lambda+3)(\lambda+1)\lambda(\lambda-2)}{4!} a_0$, $a_4 = \frac{(\lambda+3)(\lambda+1)\lambda(\lambda-2)}{4!} a_0$, ... $a_{2n} = (-1)^n \frac{(\lambda+2n-1)(\lambda+2n-3)\cdots(\lambda+1)\lambda(\lambda-2)\cdots(\lambda-2n+2)}{(2n)!} a_0$

- La ecuación de Legendre $(1-x^2)$ y''-2x $y'+\lambda(\lambda+1)$ y=0
- Proponemos una solución por series $y(x) = \sum_{n=0}^{\infty} c_n x^n$
- Al sustituir resulta $(1-x^2)\sum_{n=2}^{\infty}n(n-1)c_nx^{n-2}-2x\sum_{n=1}^{\infty}nc_nx^{n-1}+\lambda(\lambda+1)\sum_{n=0}^{\infty}c_nx^n=0$
- Acomodando $\sum_{k=0}^{\infty} (k+2)(k+1)c_{k+2}x^k \sum_{n=2}^{\infty} n(n-1)c_nx^n 2\sum_{n=1}^{\infty} nc_nx^n + \lambda(\lambda+1)\sum_{n=0}^{\infty} c_nx^n = 0$
- Expandiendo $2a_2 + \lambda(\lambda + 1)a_0 [(\lambda + 2)(\lambda 1)a_1 + (3 \cdot 2)a_3]x + \sum_{n=2}^{\infty} [(n+2)(n+1)a_{n+2} + (\lambda + n+1)(\lambda n)a_n]x^n = 0$
- Los coeficientes pares serán $a_2 = -\frac{(\lambda+1)\lambda}{2} a_0$, $a_4 = \frac{(\lambda+3)(\lambda+1)\lambda(\lambda-2)}{4!} a_0$, $a_4 = \frac{(\lambda+3)(\lambda+1)\lambda(\lambda-2)}{4!} a_0$, ... $a_{2n} = (-1)^n \frac{(\lambda+2n-1)(\lambda+2n-3)\cdots(\lambda+1)\lambda(\lambda-2)\cdots(\lambda-2n+2)}{(2n)!} a_0$
- Los coeficientes impares serán $a_3 = -\frac{(\lambda+2)(\lambda-1)}{3!} a_1$, $a_5 = \frac{(\lambda+4)(\lambda+2)(\lambda-1)(\lambda-3)}{5!} a_1$, $a_{2n+1} = (-1)^n \frac{(\lambda+2n)(\lambda+2n-2)\cdots(\lambda+2)(\lambda-1)\cdots(\lambda-2n+1)}{(2n+1)!} a_1$

• La solución general será $y(x) = a_0 \ y_0(x) + a_1 y_1(x)$ $y_0(x) = 1 - \frac{(\lambda+1)\lambda}{2} \ x^2 + \frac{(\lambda+3)(\lambda+1)\lambda(\lambda-2)}{4!} \ x^4 + \cdots$ $y_1(x) = x - \frac{(\lambda+2)(\lambda-1)}{3!} \ x^3 + \frac{(\lambda+4)(\lambda+2)(\lambda-1)(\lambda-3)}{5!} \ x^5 + \cdots$

- La solución general será $y(x) = a_0 \ y_0(x) + a_1 y_1(x)$ $y_0(x) = 1 - \frac{(\lambda+1)\lambda}{2} \ x^2 + \frac{(\lambda+3)(\lambda+1)\lambda(\lambda-2)}{4!} \ x^4 + \cdots$ $y_1(x) = x - \frac{(\lambda+2)(\lambda-1)}{3!} \ x^3 + \frac{(\lambda+4)(\lambda+2)(\lambda-1)(\lambda-3)}{5!} \ x^5 + \cdots$
- si $\lambda = 2n$ la series se corta y es un polinomio de potencias pares,

- La solución general será $y(x) = a_0 \ y_0(x) + a_1 y_1(x)$ $y_0(x) = 1 - \frac{(\lambda+1)\lambda}{2} \ x^2 + \frac{(\lambda+3)(\lambda+1)\lambda(\lambda-2)}{4!} \ x^4 + \cdots$ $y_1(x) = x - \frac{(\lambda+2)(\lambda-1)}{3!} \ x^3 + \frac{(\lambda+4)(\lambda+2)(\lambda-1)(\lambda-3)}{5!} \ x^5 + \cdots$
- si $\lambda = 2n$ la series se corta y es un polinomio de potencias pares,
- si $\lambda = 2n + 1$ la otra se corta en uno de potencias impares.

- La solución general será $y(x) = a_0 \ y_0(x) + a_1 y_1(x)$ $y_0(x) = 1 - \frac{(\lambda+1)\lambda}{2} \ x^2 + \frac{(\lambda+3)(\lambda+1)\lambda(\lambda-2)}{4!} \ x^4 + \cdots$ $y_1(x) = x - \frac{(\lambda+2)(\lambda-1)}{3!} \ x^3 + \frac{(\lambda+4)(\lambda+2)(\lambda-1)(\lambda-3)}{5!} \ x^5 + \cdots$
- si $\lambda = 2n$ la series se corta y es un polinomio de potencias pares,
- si $\lambda = 2n + 1$ la otra se corta en uno de potencias impares.
- Entonces

λ	Ecuación de Legendre	Polinomio Asociado
0	$(1-x^2) y'' - 2x y' = 0$	$y_0(x)=1$
1	$(1-x^2) y'' - 2x y' + 2 y = 0$	$y_1(x) = x$
2	$(1-x^2) y'' - 2x y' + 6 y = 0$	$y_0(x) = 1 - 3x^2$
3	$(1-x^2) y'' - 2x y' + 12 y = 0$	$y_1(x) = x - \frac{5}{3}x^3$
_4	$(1-x^2) y'' - 2x y' + 20 y = 0$	$y_0(x) = 1 - 10x^2 + \frac{35}{3}x^4$

Recapitulando

En presentación consideramos

