Robotic Systems & COVID-19

Megan Pham

Problem

- focus on hardships to provide sufficient mechanical ventilation in ICU rooms
- limited amount of PPE and medical staff but rising cases of COVID-19
- taking time to adjust patient ventilators
- simple adjustments to medical equipment would require
 - o staff help
 - risk of staff getting infected
 - o use of PPE
- takes away time and effort from taking care of patients

Food for thought

- putting on and removing equipment and gear takes an additional six minutes, while routine adjustments should be short and just take about 3-5 minutes
- changing gear 10 times takes away an entire hour that could've been spent on delivering patient care

Solution

- decided to build a robotic system to remotely control ventilators
- collab between Hopkins Hospital, Laboratory for Computational Sensing and Robotics and the University of Maryland

- idea came from Dr. Sarah Murthi from the University of Maryland Medical System
- complained about how staff constantly had to enter high-risk infection areas just to make small changes to ventilators

How it works

- attached to ventilator on a horizontal bar
- stylus on arm is able to move across the screen
- camera is attached to robotic system
 - takes picture of screen and sends it to operating tablet

 staff taps tablet screen and robot will move to requested position on the ventilator screen

Quick Demo

System Designs

prioritizing efficiency, weight, and cost

- Six degrees of freedom robotic arm
 - similar to a human hand operating ventilator
- cartesian robot fixed on the screen
 - 6-DOF concept is more challenging to implement

First Prototype

- due to COVID-19 restrictions
 - first prototype was built in the basement of Mikhail Khrenoc (UoM CS grad student) with limited materials including a 3D printer

- Balazs Vagvolgyi (Hopkins research scientist) worked on controller
- initial greathing to reasoure correction for robot's possible errors
 - o again, phase was restricted by the pandemic
 - limited ventilation systems

- testing was successful
- even though it is in testing phase, it has the potential to become very successful in the future and to battle against COVID-19 effects
- still working on making robot more robust and adaptable to ventilators but will soon be tested with real patients

Review

real-life solutions through a mix of computer science and medical technology

- great use of technology in making a change in the world
- obvious that technology is a big part of our lives and will continue to constantly improve and solve solutions

