Exercices de révision

16 et 19 octobre 2019

Exercice 1. Résoudre les systèmes d'équations linéaires suivants.

1.
$$\begin{pmatrix} 2 & -2 & 4 & 6 \\ 0 & 3 & -5 & -12 \\ 2 & 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -2 \\ 3 \\ 1 \end{pmatrix}$$

$$2. \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ 4 \end{pmatrix}$$

3.
$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & -1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 9 \\ 1 \\ 4 \end{pmatrix}$$

$$4. \left(\begin{array}{rrr} 1 & 2 & 3 \\ -2 & -4 & -6 \\ 4 & 8 & 12 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right) = \left(\begin{array}{c} 1 \\ -1 \\ 2 \end{array}\right)$$

Exercice 2. On a le repère $\langle O; \mathcal{B} = \{\vec{u}, \vec{v}\} \rangle$ et les points et vecteurs suivants.

- 1. Donner les coordonnées des points $A,\,B,\,C,\,G$ et H.
- 2. Placer sur la figure les points suivants D = (1, -3), E = (-2, -1) et F = (-2, 2).
- 3. Donner les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{AC} .
- 4. Tracer les vecteurs \overrightarrow{FG} , \overrightarrow{DH} et \overrightarrow{DE} .

- 5. Déterminer les coordonnées du vecteur \overrightarrow{FI} de longueur 2, de même sens que \overrightarrow{DH} mais de direction opposé. Tracer ce vecteur.
- 6. Déterminer l'angle entre les vecteur \overrightarrow{AB} et \overrightarrow{AC} .
- 7. Calculer l'aide du parallélogramme engendré par les vecteur \overrightarrow{FG} et \overrightarrow{FI} .

Exercice 3. On donne les points suivants de l'espace.

$$A = (3, 1, 0)$$
 $C = (1, 0, 1)$ $E = (0, 0, 3)$
 $B = (-1, 2, 5)$ $D = (-2, 4, 1)$ $F = (6, 7, -2)$

- 1. Calculer l'aire du parallélogramme engendré par les vecteurs \overrightarrow{AC} et \overrightarrow{AD} .
- 2. Calculer l'aire du parallélogramme engendré par les vecteurs \overrightarrow{BC} et \overrightarrow{BD} .
- 3. Calculer le volume du parallélipipè de engendré par les vecteurs $\overrightarrow{BC}, \overrightarrow{BD}$ et \overrightarrow{BE} .
- 4. Calculer le volume du parallélipipè de engendré par les vecteurs \overrightarrow{CD} , \overrightarrow{DE} et \overrightarrow{DF} .
- 5. Donner une équation vectorielle de la droite \mathcal{D}_1 passant par E et de vecteur directeur \overrightarrow{AB} .
- 6. Donner les équations paramétriques de la droite \mathcal{D}_1 .
- 7. Donner des équations paramétriques de la droite \mathcal{D}_2 passant par F et de vecteur directeur \overrightarrow{CD} .
- 8. Les droites \mathcal{D}_1 et \mathcal{D}_2 sont-elles parallèles, sécantes ou gauches? Si elles sont sécantes, donner leur point d'intersection.

Exercice 4. On donne les points suivants de l'espace.

$$A = (-2, 0, -2)$$
 $C = (-1, 5, 3)$ $E = (0, 0, 3)$
 $B = (1, 2, 0)$ $D = (0, 1, -1)$ $F = (-1, 4, 7)$

- 1. Donner des équations paramétriques de la droite \mathcal{D}_1 passant par C et de vecteur directeur \overrightarrow{AB} .
- 2. Donner des équations paramétriques de la droite \mathcal{D}_2 passant par F et de vecteur directeur \overrightarrow{DE} .
- 3. Calculer la distance du point D à la droite \mathcal{D}_1 .
- 4. Calculer la distance du point E à la droite \mathcal{D}_2 .
- 5. Calculer un vecteur orthogonal aux vecteurs \overrightarrow{AB} et \overrightarrow{DE} .
- 6. Donner des équations paramétriques de la droite \mathcal{D}_3 passant par A et perpendiculaire au vecteur \overrightarrow{AB} .
- 7. Les droites \mathcal{D}_1 et \mathcal{D}_2 sont-elles parallèles, sécantes ou gauches? Si elles sont sécantes, donner leur point d'intersection.
- 8. Calculer la distance entre les droites \mathcal{D}_2 et \mathcal{D}_3 .