- 9.1. Ziel dieser Aufgabe ist eine Beziehung zwischen der linearisierten Stabilität und dem Konzept der Ljapunovfunktion. Genauer: wir zeigen die Äquivalenz der folgenden beiden Aussagen für eine Matrix $A \in \mathbb{R}^{d \times d}$:
 - 1. Die Ruhelage $y^* = 0$ der ODE y' = Ay ist asymptotisch stabil.
 - 2. Es gibt eine symmetrisch positiv definite Lösung der Matrixgleichung ("Ljapunovgleichung")

$$A^{\top}Q + QA = -I. \tag{1}$$

a) Sei die Ruhelage $y^* = 0$ asymptotisch stabil. Definieren Sie die Matrix

$$Q := \int_{t=0}^{\infty} e^{tA^{\top}} e^{tA} dt$$

Zeigen Sie: Q ist symmetrisch positiv definit (insbesondere also $(Qx,x)_2 > 0$ für $x \neq 0$) und erfüllt (1). Wie Teilaufgabe b) zeigen wird, ist die Funktion $V(x) := (Qx,x)_2$ eine strikte Ljapunovfunktion für die obige ODE.

b) Sei Q eine symmetrisch positiv definite Lösung von (1). Zeigen Sie: $V(x) := (Qx, x)_2$ ist eine strikte Ljapunovfunktion für die obige ODE. Zeigen Sie: die Ruhelage $y^* = 0$ ist asymptotisch stabil

9, (1) = (1)" In ole Publicage
$$y^* = 0$$
 der $0DE$ $y' = Ay$ accomplation stabil

 $Q := \int_0^\infty e^{a\tau} e^{a\tau} d\tau$

Weden der Minghert der transpormetrin ert $e^{4\tau} = (e^{4\Lambda})^T$ ernol dole,

 $(e^{4\Lambda} e^{4\Lambda})^T = ((e^{4\Lambda})^T e^{4\Lambda})^T = (e^{4\Lambda})^T ((e^{4\Lambda})^T)^T = (e^{4\Lambda})^T e^{4\Lambda}$ also sin Q ignoredisch.

 $\times^T Q \times = \times^T \int_0^\infty e^{4\Lambda} e^{4\Lambda} dt \times = \int_0^\infty \times^T (e^{4\Lambda})^T e^{4\Lambda} \times dt = \int_0^\infty (e^{4\Lambda} e^{4\Lambda}) dt = \lim_{n \to \infty} e^{4\Lambda} e^{4\Lambda} \int_0^\infty dt \times e^{4\Lambda} \int_0^\infty dt = \int_0^\infty dt (e^{4\Lambda} e^{4\Lambda}) dt = \lim_{n \to \infty} e^{4\Lambda} e^{4\Lambda} - I$
 $I^T Q + Q A + \int_0^\infty \int_0^\infty A^T e^{4\Lambda} e^{4\Lambda} e^{4\Lambda} + e^{4\Lambda} e^{4\Lambda} \int_0^\infty dt = \int_0^\infty dt (e^{4\Lambda} e^{4\Lambda}) dt = \lim_{n \to \infty} e^{4\Lambda} e^{4\Lambda} - I$
 $I^T Q + Q A + \int_0^\infty \int_0^\infty A^T e^{4\Lambda} e^{4\Lambda} e^{4\Lambda} + e^{4\Lambda} e^{4\Lambda} \int_0^\infty dt = \int_0^\infty dt (e^{4\Lambda} e^{4\Lambda}) dt = \lim_{n \to \infty} e^{4\Lambda} e^{4\Lambda} - I$
 $I^T Q + Q A + \int_0^\infty \int_0^\infty A^T e^{4\Lambda} e^{4\Lambda}$

9.2. Betrachten Sie die ODE

$$x' = -x - 2y + x^2y^2$$

$$y' = x - \frac{1}{2}y - x^3y$$

Konstruieren Sie eine Ljapunovfunktion V von der Form $V(x,y) = ax^2 + by^2$ mit geeigneten a, b. Was können Sie über die Stabilität der Ruhelage (0,0) aussagen?

$$\begin{array}{l} \nabla V(x,y) \cdot f(x,q) = 20x(-x-2y+x^2y^2) + 2by(x-2y-x^2y) \stackrel{!}{=} 0 \Leftrightarrow \\ -20x^2 - 40xy + 20x^3y^2 + 2byx - by^2 - 2bx^2y^2 \neq 0 \Leftrightarrow \\ \Leftrightarrow -70x^2 + (1b-4a)xy - by^2 + 70x^2y^2 - 2bx^2y^2 \neq 0 \\ \Leftrightarrow -70x^2 + (1b-4a)xy - by^2 + 70x^2y^2 - 2bx^2y^2 \neq 0 \\ \Leftrightarrow -8(x^2 + (x^2 + 70x + y^2)) \neq 0 \\ \Leftrightarrow -8(x^2 + (x+y)^2) \Rightarrow 0 \\ \Leftrightarrow -8(x^2 + (x+y)^2) \Rightarrow$$

9.3. Betrachten Sie für λ , μ , γ , a > 0 das System

$$x' = -\lambda xy - \mu x + \mu a$$

$$y' = \lambda xy - \mu y + \gamma y$$

$$z' = \gamma y - \mu z$$

Zeigen Sie, daß das System im Fall $a\lambda > \mu - \gamma > 0$ genau eine nichttriviale Ruhelage $(x^*, y^*, z^*) \in (0, \infty)^3$ hat. Zeigen Sie, daß die Funktion

$$V(x, y, z) = x - x^* \ln x + y - y^* \ln y$$

```
Also handelles sich sogar um eine stribele Sjapune (unperin!
 \nabla V(x,y,t) = \left(7 - \frac{x^*}{x}, 7 - \frac{y^*}{y}, 0\right)^{\top} \stackrel{!}{=} 0 \stackrel{!}{=} ) \times = x^* \wedge y = y^*
 D^{2}V(x_{q_{1}}) = \begin{pmatrix} x^{*}x^{-2} & 0 & 0 \\ 0 & y^{*}y^{-2} & 0 \\ 0 & 0 & 0 \end{pmatrix}, Mw D^{2}V(x_{q_{1}}, y^{*}, z^{*}) = \begin{pmatrix} x^{*-1} & 0 & 0 \\ 0 & y^{*-1} & 0 \\ 0 & 0 & 0 \end{pmatrix}
Df(x,y,z) = \begin{pmatrix} -\lambda y - \mu & -\lambda x & 0 \\ \lambda y & \lambda x - \mu + \nu & 0 \\ 0 & y - \mu \end{pmatrix}; \quad x = \frac{\mu - \nu}{\lambda}
y = \mu \left( + \frac{\mu - \nu}{\lambda} \right)
                                                                                                y^* = \mu \left( \frac{\mu - y}{2} + a \right) \left( \mu - y \right)^{-1} = -\frac{\mu}{2} + \frac{a \mu}{\mu - y} = \frac{\mu(2a - (\mu - y))}{(\mu - y)a}
                                                                                              2^* = \frac{\gamma \cdot (2\alpha - (n-\gamma))}{2 \cdot (n-\gamma)}
\mathcal{D}_{1}\left(x^{*},y^{*},\chi^{*}\right) = \begin{pmatrix} \frac{n(2a-(n-r))}{n-r} & n & y-n & 0\\ \frac{n(2a-(n-r))}{n-r} & n-r-n+r & 0\\ 0 & 1 & -n \end{pmatrix}
\operatorname{chan} \cdot \operatorname{loly} : \chi(d) = \left(-\frac{\mu(2a - (\mu - \gamma))}{\mu - \gamma} - \mu - \sigma\right)(-\sigma)(-\mu - \sigma) + (\mu + \sigma)(\gamma - \mu) \frac{\mu(2a - (\mu - \gamma))}{\mu - \gamma}
       \chi(\delta) = 0 = (\mu + \sigma) \left( \sigma \left( -\frac{\mu 2a}{\mu - \rho} - \sigma \right) - \mu(2a - (\mu - \rho)) \right) = 0 \Theta
                         (3) d = \frac{1}{2} \left( -\frac{n 201}{n-r} + \sqrt{\frac{n^2 n^2 \alpha^2}{(m-r)}} - 4 n 201 + 4 n (n-r) \right) =
                                     =\frac{1}{2}\left(-\frac{n 2 a}{n - v} + \sqrt{u^{2}\left(\frac{2 a}{n - v}\right)^{2}} + 4 m \left((u - v) - 2 a\right)\right)
                          und(\sqrt{\mu^{2}(\frac{20!}{\mu-\mu})^{2}} + 4\mu((\mu-\mu)-2a)^{7} \leq \frac{\mu 2a}{\mu-\mu} \leq)
                         = \frac{\mu^{2} \lambda^{2} \alpha^{2}}{(m-\nu)^{2}} - 4m \left(\lambda_{01} - (\mu-\nu)\right) \leq \frac{m^{2} \lambda^{2} \alpha^{2}}{(\mu-\nu)^{2}} = -4m \left(\lambda_{01} - (\mu-\nu)\right) \leq 0 \Rightarrow 
                      (=) 20 = p - y nowh Voracus.
                    Also EN: S_1 = -\mu < 0 S_{2,3} = \frac{1}{2} \left( -\frac{\mu \lambda u}{\nu - \gamma} + \sqrt{\frac{\mu \lambda u}{\nu - \gamma}} \right)^2 - 4\mu \left( \lambda a - (\nu - \gamma) \right)
                    mil Re(\sigma_{i,3}) (0)
                    > noch sale 5.8 ist (xx, ya, 28) asympholische sholide Duhelage
```

	9.4. Die Existenz einer (strikten) Ljapunovfunktion erlaubt es, die Konvergenz einer Lösung gegen die asymptotisch stabile Ruhelage zu quantifizieren. Seien hierzu $V \in C^2(\mathbb{R}^d; \mathbb{R})$ und $f \in C^1(\mathbb{R}^d; \mathbb{R}^d)$, $y^* = 0$ eine Ruhelage für $y' = f(y)$ und ein striktes Minimum von V . Nehmen Sie an, daß für das Spektrum der Matrix $B := (\nabla f(0))^{\top} \nabla^2 V(0) + \nabla^2 V(0) \nabla f(0)$																														
+										B	:=	$(\nabla$	f(0)	0))	∇^2	V(0))) +	$-\nabla$	^{2}V	(0)	$\nabla f(0)$									_	+
		gilt	: ma	ax{]	Re 2	$\lambda \mid \lambda \in$	$= \sigma(1$	B)}	=:	α <	< 0.	Ze	eige	n S	sie:	Es e	exis	tiei	ren	β,	C > 0	0, s	o da	aß f	ür alle	y_0	hir	nrei	che	$_{ m nd}$ $^-$	+
		nal	ne be	ei y	* =	0 gil	t:	/))∥ ≤				<i>i- i</i>		-,				90				_	
		Wo	won	här	nort.	β ab	?																							_	_
			V 011		150		•																								_
																															_
																															+
																															_
																															-
																															+
																															+
																															_
																															_
																															+
																		+													+
+																		+													+
+																		+													+
+																			-												+
																															+
																															+
																															+
																															+
																															+
																															+
																															+
																															+
																															+
																															+
\dagger																															+
																															+
																		1													+
																															\top
																															\top
																															\top
																															\top
																															\top
																															\top
																															\top
																															\top
																															\uparrow
																															\uparrow
																															\top

- **9.5.** a) Sei $V \in C(G; \mathbb{R})$ eine Ljapunovfunktion für y' = f(y). Nehmen Sie an, daß für jedes $y_0 \in G$ die Lösung y_{0,y_0} auf $(0,\infty)$ existiert. Zeigen Sie: Für jedes $\alpha \in \mathbb{R}$ ist die Menge $V^{-1}((-\infty,\alpha])$ eine invariante Menge für die ODE y' = f(y).
 - b) Sei $f \in C^1(\mathbb{R}^d; \mathbb{R}^d)$ mit $f_i(y) \leq 0$ für alle $y \in \mathbb{R}^d$ und ein $i \in \{1, ..., d\}$. Geben Sie eine Ljapunovfunktion für die ODE y' = f(y) an.

a) Let $\alpha \in \mathbb{R}$ bel. $und(y_0 \in V^{-1}(J-\infty,\alpha J) \subseteq G$ sourie $z \in J^{e+}(y_0) := \{y_{0,y_0}(t) \mid t \geq 0\}$ 2.2.: $z \in V^{-1}(J-\infty,\alpha J)$

Es ist also V(40) & Als Sjagnenovfunktion ist V wonden fallend entlang von

Löhngen, dechalt ist V(2) = V(y0) = a und damit & e V-7 (J-00, a)

ViR - R: y Hya

 $\nabla V(y) \cdot f(y) = f_i(y) \leq 0$, nach Sah 5. 13 ist V Sjapunov funktion

9.6. Betrachten Sie die folgende Verallgemeinerung eines mathematischen Pendels (ohne Reibung):

$$y'' + g(y) = 0,$$

wobei die Funktion g auf (-a,a) definiert ist und g(0)=0, g(x)>0 für x>0 und g(x)<0 für x<0 erfüllt (d.h., xg(x)>0 für $x\neq 0$). Überführen Sie diese ODE 2. Ordnung in ein System erster Ordnung. Geben Sie eine Ljapunovfunktion an. Zeigen Sie, daß (y,y')=(0,0) eine stabile Ruhelage ist.

 $f: J-\alpha, a[\times R \to R^2: (y_1, y_2)^T \mapsto (y_2, -g(y_1))^T$ Amaline: g higher his section Die neue ODE ist y'= f(y) V: J-a, or [x 12 -) 12: (4, 42) H = y22 + Jg(x) dx (arienhirmy an oler Energie, val. 5.62) Jan ist V(y) - P(y) = y2 9 (y1) - y2 9 (y1) = 0 $\nabla V(y) = (g(y_1), y_2)^T$ Vistollo Sjoynmavfunklion f(0,0)=0, also in (0,0) ruhelage $\nabla V(0,0) = 0$; Num ist $\forall y_1 \in J$ -a, or $\{0\}$: $\begin{cases} y_1 \\ y_2 \\ y_3 \end{cases} = \begin{cases} x_1 \\ y_3 \\ y_4 \end{cases}$ also V(y)=0 & y=0 und soul V(y)>0 In Routh (0,0) had V also in Sinker Minimum, nach Sah 5. 19 wit doubles (0,0) stabil

9.7. Betrachten Sie das System

$$x' = -y + x(1 - x^2 - y^2)$$

 $y' = x + y(1 - x^2 - y^2)$

Zeigen Sie: Die Mengen $M_1 = \{(0,0)\}, M_2 = \{(x,y) \mid x^2 + y^2 = 1\}$ und $M_3 = \{(x,y) \mid x^2 + y^2 < 1\}$ sind invariante Mengen.

M," f(0,0)=0 also is (0,0) Ruhelage und daher Mr invariant.

"M" Sci (a, b) & M2 bel. und y hy ole ODE mil y (0) = (a, b) und 520 bel.

2.2.: 9(5) E M2

Wis scheilen (1,6) in PolarMorrolinalen (1,4) mil ros (4) = a mo (ais (4) = 6

Die Funkhin $z(t) = (\pi s(\varphi + t))$ virt dann heg, des AWP was (obamit M_2 ineversant

"M3" Da die Funktion z aus "Mi" eine häung ist, die den Einheitelmeis umläst,

Such L'éxemper wicht schneiden und fin 40 € M3 du Funklier

og: Rto me : E > 11 yo, yo (E)1/2 stelig ist, thomas wir mit dem EWS

schlieben, does M3 invariant is

	[9.8.	Ве	trac	cht	en	Sie	für	r d	=	1 6	las	Sys	ster	n y	′ =	f((y),	W	bei	f	$\in C$	$C^1($	$\mathbb{R};\mathbb{I}$	\mathbb{R}) 1	mit	f(0) =	= f	(1)	= 0	0 u	nd	f(i	y) >	> ()	4	
	_		für	$y \in$	= ((), 1). (Geb	en	Sie	e ω	+(y	(0)	für	y_0	∈ [0, 1	[] a	n.	Ве	tra	cht	en	Sie	für	r	$\in \mathbb{R}$	R di	le C	DE							4	
1	1 _	1	, ,	,_	0	(, ,	a l			0.1	<u>'.</u> /	1/1	la.					. :	1	0	. . /.	./.	,		. /_	01,	,)		-		1	. ,		_	_	+		
A	us	Au	lgal	e.	8.	4 (1	, נוט	Vor	1	cer	vu	VI.	νu	rg 1	wy	Wa _l	n u	м	N	w	vu j	ou	W	y	-	119	"	er	nl	اسلا	ny.	ue				+		
			wf																															+				
D,	0 1	f y	€ [0,1	1]	: (f ((y) :	=0	() y	$l \in \mathcal{L}$	0,1	3)	w	nd	Šū	4	ag.	m	W	. u	hni	eide	n	isl		W	(4	0) (⊆ (0,	13					
																			0													_		_		4		
ha	ll'	7://	40	=0) 1	/	bu	rn	1	r	1	ψ	ı (¢	10/	=	ηd	06																	4	_	_		
T	00	1		_ 1	, //	ľ	۱	40.0	ne H	.		1	-		114																			_		+		
19	xe,	1	40	- 1		ل ا	w		n i		ω_{t}	. (9	0)	•	ני)																					+		
To	101	3	, 40	, E	30	11	[
		1/																																		T		
			201	sie	45	rg	. "	id	M	sa	hnl	ide	r i	il	0<	y	tory	, <	1	m	vol ,	weg	er	, 6	γ	ϵJ	2,1	Έ:	y	/ -	40	4)	7 (2 /	in			
			Ye De	0140	2	N	renj	gn	rov	no	lon	w	æ	hse	ml	1	œ	1 (pre.	NW	eN	1	in	, 6	160,0	10 (6	;) (40,	1,	١	e	TV8	lier	1 o	ko		
			/)_	1	11	,		, 1	١, ,	7	. 1	=	1			, ,				7	10	.] =	= 1	13	, ,						+	+		+	+	+		
			W.	vng	M	۳	u	1	W	(9	0)	_		1	1 1	ĸsi	m	n	ш	w	1 (9	0)		- ' J	بمو	М										+		
																																				T		
																																			_	_		
																																		_	_	_		
																																				_		
																																		+	+	+		
																																				\dagger		
																																		_	_	_		
																																		_	_	+		
																																_				+		
																																				+		
																																		\top	+	\top		
																																		_	_	_		
					_				_																							_	-	_	_	_		
					+																											_		+	+	+		
																																		+	+	+		
																																				+		
																																			_	_		
																																		_	_	_		
																																		_		+		
					+	_			-																						+	+	+	+	+	+	+	
																																+		+	+	+		
																																			+	+		
																										J												
																																		_	_	4		