

ETC5521: Exploratory Data Analysis

Using computational tools to determine whether what is seen in the data can be assumed to apply more broadly

Lecturer: Emi Tanaka

ETC5521.Clayton-x@monash.edu

Week 11 - Session 1

Revisiting hypothesis testing

Testing coin bias Part 1/2

• Suppose I have a coin that I'm going to flip (

- If the coin is unbiased, what is the probability it will show heads?
- Yup, the probability should be 0.5.
- So how would I test if a coin is biased or unbiased?
- We'll collect some data.
- **Experiment 1**: I flipped the coin 10 times and this is the result:

- The result is 7 head and 3 tails. So 70% are heads.
- Do you believe the coin is biased based on this data?

Testing coin bias Part 2/2

• **Experiment 2**: Suppose now I flip the coin 100 times and this is the outcome:

- We observe 70 heads and 30 tails. So again 70% are heads.
- Based on this data, do you think the coin is biased?

(Frequentist) hypotheses testing framework

- Suppose *X* is the number of heads out of *n* independent tosses.
- Let *p* be the probability of getting a head for this coin.

$H_0: p = 0.5 \text{ vs. } H_1: p \neq 0.5$
Each toss is independent with equal chance of getting a head.
$X \sim B(n, p)$. Recall $E(X) = np$. The observed test statistic is denoted x .
$P(\mid X - np \mid \geq \mid x - np \mid)$
Reject null hypothesis when the p -value is less than some significance level α . Usually $\alpha=0.05$.

- The p-value for experiment 1 is $P(|X 5| \ge 2) \approx 0.34$.
- The p-value for experiment 2 is $P(|X 50| \ge 20) \approx 0.00008$.

Judicial system

Jury's verdict

- Q Evidence by test statistic
- Judgement by p-value, critical value or confidence interval

Does the test statistic have to be a *numerical* summary statistics?

Visual inference

Visual inference

- Hypothesis testing in visual inference framework is where:
 - Q the test statistic is a plot and
 - judgement is by human perceptions.
- You (and many other people) actually do visual inference many times but generally in an informal fashion.
- Here, we are making an inference on whether the residual plot has any patterns based on a single data plot.

From Exercise 4 in week 9 tutorial: a residual plot after modelling high-density lipoprotein in human blood.

☐ Data plots tend to be over-interpreted

Reading data plots require calibration

Visual inference more formally

- 1. State your null and alternate hypotheses.
- 2. Define a **visual test statistic**, V(.), i.e. a function of a sample to a plot.
- 3. Define a method to generate **null data**, y_0 .
- 4. V(y) maps the actual data, y, to the plot. We call this the **data** plot.
- 5. $V(y_0)$ maps a null data to a plot of the same form. We call this the **null plot**. We repeat this m-1 times to generate m-1 null plots.
- 6. A **lineup** displays these m plots in a random order.
- 7. Ask *n* human viewers to select a plot in the lineup that looks different to others without any context given.

Suppose x out of n people detected the data plot from a lineup, then

 the visual inference p-value is given as

$$P(X \ge x)$$

where $X \sim B(n, 1/m)$, and

• the **power of a lineup** is estimated as x/n.

Lineup 1 In which plot is the pink group higher than the blue group?

• Note: there is no correct answer here.

Visual inference p-value (or "see"-value)

- So x out of n of you chose the data plot.
- So the visual inference p-value is $P(X \ge x)$ where $X \sim B(n, 1/10)$.
- In R, this is

```
1 - pbinom(x - 1, n, 1/10)
# OR
nullabor::pvisual(x, n, 10)
```

Case study 1 Weight loss by diet

This is actually Plot 4 in the previous lineup.

Is weight loss greater with diet after 1 month?

Group	N	Mean	Std. Dev
Control	12	4.50	1.00
Diet	12	5.33	1.37

Null data generation method

- We are testing $H_0: \mu_{diet} = \mu_{control}$ vs. $H_1: \mu_{diet} > \mu_{control}$ where μ_{diet} and $\mu_{control}$ are the average weight loss for population on diet and no diet, respectively.
- There are a number of ways to generate null data under H_0 , e.g.
 - we could assume a parametric distribution of the data and estimate the parameters from the data, or
 - we could permute the labels for the diet and control group.

Lineup 2 In which plot is the pink group higher than the blue group?

Case study Weight loss by diet and exercise

ii data R

• Is weight loss greater with diet and exercise after 2 months?

Group	Ν	Mean	Std. Dev
Control	12	3.33	1.07
DietEx	10	6.10	1.45

What about if we change the visual test statistic?

Lineup 3 In which plot is the pink group higher than the blue group?

geom_point()

Lineup 4 In which plot is the pink group higher than the blue group?

geom_boxplot()

Lineup 5 In which plot is the pink group higher than the blue group?

geom_violin()

Lineup 6 In which plot is the pink group higher than the blue group?

ggbeeswarm::geom_quasirandom()

Case study 1 Weight loss by exercise

i data R

• Is weight loss greater with exercise after 2 months?

Group	N	Mean	Std. Dev
Diet	12	3.92	1.38
DietEx	10	6.10	1.45

Power of a lineup

• The power of a lineup is calculated as x/n where x is the number of people who detected the data plot out of n people

Plot type	х	n	Power
geom_point	x_1	n_1	x_1/n_1
<pre>geom_boxplot</pre>	x_2	n_2	x_2/n_2
<pre>geom_violin</pre>	x_3	n_3	x_3/n_3
ggbeeswarm::geom_quasirandom	x_4	n_4	x_4/n_4

- The plot type with a higher power is preferable
- You can use this framework to find the optimal plot design

Some considerations in visual inference

- In practice you don't want to bias the judgement of the human viewers so for a proper visual inference:
 - you should not show the data plot before the lineup
 - you should not give the context of the data
 - you should remove labels in plots
- You can crowd source these by paying for services like:
 - Amazon Mechanical Turk,
 - Appen (formerly Figure Eight) and
 - LABVANCED.
- If the data is for research purposes, then you may need ethics approval for publication.

Resources and Acknowledgement

- Buja, Andreas, Dianne Cook, Heike Hofmann, Michael Lawrence, Eun-Kyung Lee, Deborah F. Swayne, and Hadley Wickham. 2009. "Statistical Inference for Exploratory Data Analysis and Model Diagnostics." Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences 367 (1906): 4361–83.
- Wickham, Hadley, Dianne Cook, Heike Hofmann, and Andreas Buja. 2010. "Graphical Inference for Infovis." IEEE Transactions on Visualization and Computer Graphics 16 (6): 973–79.
- Hofmann, H., L. Follett, M. Majumder, and D. Cook. 2012. "Graphical Tests for Power Comparison of Competing Designs." IEEE Transactions on Visualization and Computer Graphics 18 (12): 2441–48.
- Majumder, M., Heiki Hofmann, and Dianne Cook. 2013. "Validation of Visual Statistical Inference, Applied to Linear Models." Journal of the American Statistical Association 108 (503): 942–56.
- Data coding using tidyverse suite of R packages
- Slides constructed with xaringan, remark.js, knitr, and R Markdown.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Lecturer: Emi Tanaka

■ ETC5521.Clayton-x@monash.edu

₩eek 11 - Session 1

