

Fuente: Bengio, Goodfellow y Courville (2016)

0	0	0	0
0	1	1	0
0	0	1	0
0	0	1	0

Input (4x4)

0	0	0	0
0	1	1	0
0	0	1	0
0	0	1	0

Kernel (2x2)

1	1
0	1

0	0	0	0
0	1	1	0
0	0	1	0
0	0	1	0

0	0	0	0
0	1	1	0
0	0	1	0
0	0	1	0

0	0	0	0
0	1	1	0
0	0	1	0
0	0	1	0

0	0	0	0
0	1	1	0
0	0	1	0
0	0	1	0

0	0	0	0
0	1	1	0
0	0	1	0
0	0	1	0

0	0	0	0
0	1	1	0
0	0	1	0
0	0	1	0

0	0	0	0
0	1	1	0
0	0	1	0
0	0	1	0

0	0	0	0
0	1	1	0
0	0	1	0
0	0	1	0

0	0	0	0
0	1	1	0
0	0	1	0
0	0	1	0

Input (4x4)

0	0	0	0
0	1	1	0
0	0	1	0
0	0	1	0

Kernel (2x2)

1	1
0	1

Output (3x3)

1	1	0
1	3	1
0	2	1

Input (3x3)

1	1	0
1	3	1
0	2	1

Output (2x2)

Input (4x4)

0	0	0	0
0	1	1	0
0	0	1	0
0	0	1	0

Kernel (2x2)

1	1
0	1

Conv.

Max-Pooling (2x2)

Output (2x2)

3	3
3	3

https://adamharley.com/nn vis/cnn/2d.html

Padding

0	0	0	0	0	0	0
0	60	113	56	139	85	0
0	73	121	54	84	128	0
0	131	99	70	129	127	0
0	80	57	115	69	134	0
0	104	126	123	95	130	0
0	0	0	0	0	0	0

Kernel

0	-1	0
-1	5	-1
0	-1	0

114			e e
	0		

Stride = 2

RGB Convolution

RGB Convolution

RGB Convolution

Inspired in LeNet-5

Fuente: LeCun y col. (1989)

Famous CNN architectures

Model name	Number of parameters [Millions]	ImageNet Top 1 Accuracy	Year
AlexNet	60 M	63.3 %	2012
Inception V1	5 M	69.8 %	2014
VGG 16	138 M	74.4 %	2014
VGG 19	144 M	74.5 %	2014
Inception V2	11.2 M	74.8 %	2015
ResNet-50	26 M	77.15 %	2015
ResNet-152	60 M	78.57 %	2015
Inception V3	27 M	78.8 %	2015
DenseNet-121	8 M	74.98 %	2016
DenseNet-264	22M	77.85 %	2016
BiT-L (ResNet)	928 M	87.54 %	2019
NoisyStudent EfficientNet-L2	480 M	88.4 %	2020
Meta Pseudo Labels	480 M	90.2 %	2021

Famous CNN architectures

https://theaisummer.com/cnn-architectures/

https://keras.io/api/applications/

224 x 224

3x3 Conv + Relu 64 3x3 Conv + Relu 64

Max-Pool 64

112 x 112 3x3 C

3x3 Conv + Relu 128

x3 Conv + Relu 128

2 Max-Pool 128

56 x 56

3x3 Conv + Relu 256

3x3 Conv + Relu 256

3x3 Conv + Relu 256

2x2 Max-Pool 256

28 x 28

3x3 Conv + Relu 512

VGG-16

x3 Conv + Relu 512

2x2 Max-Pool 512

512

Conv + Relu

3x3 Conv + Relu 512

14 x 14

3x3 Conv + Relu 512

3x3 Conv + Relu 512

2x2 Max-Pool 512

FC 4096

7 X 7

FC 4096

⇒

FC OUTPUT 1000

DUTPUT

VGG-16

- Number of kernels
 - Small number in the first layers and increase it as you go deeper.
 - Early layers capture simple patterns and then you combine these in deeper layers.
 - Starting with 32 or 64 filters is common.

- Kernel sizes
 - o 3x3 and 5x5 are common options.
 - Smaller are usually preferred for capturing more specific details.
 - \circ Sometimes, large kernels (e.g. 7x7) in the first layers for capturing general patterns.

- Pooling layers
 - Generally used for reducing dimensions.
 - Using too many can imply losing valuable information.
 - 2x2 is very common, with greater poolings you risk losing valuable information.

- Stride
 - A stride of 1 is common in convolutional layers.
 - A stride of 2 is common in pooling layers for reducing the dimensions of the image.

Interpretability

Misleading classification

"panda" 57.7% confidence

Misleading classification

 $+.007 \times$

"gibbon" 99.3% confidence

"panda" 57.7% confidence

Misleading classification

 $+.007 \times$

"panda" 57.7% confidence

"gibbon" 99.3% confidence

Resources

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks