

Modeling Resource Allocation of Emergency Response in Arctic Oil Spills

Tanmoy Das, Floris Goerlandt

Department of Industrial Engineering, Dalhousie University, Halifax, NS, Canada

OBJECTIVES

- O1. To better understand the effectiveness of available options to respond to oil spills in Arctic marine environments
- To develop comprehensive modeling for response resources allocation to prepare for potential oil spills in Arctic, in order to support oil spill preparedness and response risk management

RESEARCH QUESTIONS

- RQ1. What is the estimated volume of the oil spills on ship-ship collision accident?
- RQ2. What is the best available technique for oil spill cleanup in a ship-ship collision accident in harsh icy weather conditions?
- RQ3. What is the optimal stockpile improvement policy and what are optimal task completion policy in Arctic Environment?
- RQ4. How to account for uncertainties in spill size, location, and response effectiveness in the resource allocation problem?

COLLABORATORS

Dr. Kristjan Tabri, TalTech, Estonia

Dr. Hassan Sarhadi, AcadiaU, NS, Canada

ENGAGEMENT

Through end-user engagement and involvement of industry experts, the societal relevance and usefulness of research objectives and results will be ensured.

ARCTIC COUNCIL

ACKNOWLEDGEMENTS

This project has received funding the Marine Observation, Prediction, and Response (MEOPAR) Network of Centres of Excellence, and the Nova Scotia Graduate Scholarship. This financial support is gratefully acknowledged.

METHODS AND RESULTS Response Selecting and Weathering **Metamodel to** Forcing Representative Scenarios &Transport ranking estimate oil Recovery velocity_B response Effectiveness length_{damage.oh} spill Atmospheric Environment Sea Ice Environment velocity systems volume_{oo. total} Recovery volume

References

Optimization model for resource

allocation

Minimizing response time

subject to stockpile availability of resources and deadline to reach resource to oil spill location

Maximizing the volume of removed oil

subject to capacities of response methods

Minimizing cost subject to resource and operational limits

Das, T., Goerlandt, F., & Tabri, K. (2021). An optimized metamodel for predicting damage and oil outflow in tanker collision accidents. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment

Lu L., Goerlandt F., Valdez Banda O.A., Kujala P., Höglund A., Arneborg L. 2019. A Bayesian Network risk model for assessing oil spill recovery effectiveness in the ice-covered Northern Baltic Sea. Marine Pollution Bulletin 139:440-458.

Fu, S., Goerlandt, F., & Xi, Y. (2021). Arctic shipping risk management: a bibliometric analysis and a systematic review of risk influencing factors of navigational accidents. Safety science, 139, 105254.