Modellazione e Simulazione di Sistemi Fisiologici

Docente: Caselli, Federica

Università degli Studi di Roma Tor Vergata

Ingegneria Medica - 2022

Curve fitting e compensazione su segnali di citometria ad impedenza

Mastrofini Alessandro

alessandro.mastrofini@alumni.uniroma2.eu

Abstract

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

1 Introduzione

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo.

Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

2 Background

Il citometro ad impedenza è un dispositivo COM-PLETA COMPLETA

Ovvero n on è altro che un microcanale riempito di un buffer conduttivo al cui interno passano delle correnti elettriche. Nel dispositivo in questione si applica un potenziale all'elettrodo centrale e si misura una corrente differenziale tra i due elettrodi laterali.

METTI CREF FIGURA

FIG. 1

Tramite la misura di corrente differenziale è possibile stimare alcune proprietà della cellula che passa nel canale. In particolare, al passaggio delle cellula, si misura un segnale con una forma d'onda di tipo gaussiana bipolare.

Tramite il segnale di picco è possibile stimare il diametro. Il segnale è proporzionale al volume della cellula per cui il diametro sarà legato all'ampiezza del segnale (a) come:

$$D = Ga^{1/3} \tag{1}$$

Dove G è un guadagno che risente delle proprietà elettriche del citometro.

2.1 Gaussiana bipolare

La gaussiana bipolare è una forma d'onda caratteristica composta da due gaussiane identificata definita proprio come la norma dell'errore:

dalla generica equazione:

$$g(t) = a \left[e^{g_{+}(t)} - e^{g_{-}(t)} \right]$$
 (2)

Ovvero, considerata un'ampiezza di riferimento a (i.e. il valore massimo di picco), è la somma di due gaussiane nel tempo di cui la seconda ribaltata. La distanza picco-picco è pari a δ e si introduce un parametro di centratura t_c . Le due gaussiane condividono la medesima deviazione standard σ e sono identificate dall'equazione:

$$g_{\pm}(t) = \frac{-\left(t - \left(t_c \pm (\delta/2)\right)\right)^2}{2\sigma^2} \tag{3}$$

Dove il segno ± va riferimento alla gaussiana positiva o ribaltata.

2.2 **Procedura di fitting**

Partendo dai dati sperimentali è necessario introdurre una procedura di fitting numerico per identificare la gaussiana, e quindi i suoi quattro parametri descrittivi, tale da rappresentare il segnale analiz-

Tale procedura di fitting viene implmentata secondo un algoritmo di ottimizzazione. Ovvero, si cerca di ridurre la differenza tra il dato misurato $[d]_i$ e il template di fitting (g) allo stesso instante temporale.

Definita la funzione di errore come tale differenza:

$$\underline{e} = [d]_i - g_i \left(t_i, a, t_c, \delta, \sigma \right) \tag{4}$$

Si cerca di minimizzare la funzione obiettivo

$$E(a, t_c, \delta, \sigma) = \frac{1}{2} \sum_{i} \left\| d_i - g\left(t_i, a, t_c, \delta, \sigma\right) \right\|^2$$
 (5)

2.3 Accuratezza

CITA ERRICO QUI

3 Risultati

3.1 Dataset di riferimento

Il dataset di riferimento è un insieme di dati grezzi di citometro ad impedenza.

Per il dispositivo in questione il guadagno è pari a 10.5 μ m / A^{1/3}. I segnali sono campionati con una frequenza $f_s = 115$ kHz con un totale di oltre 50.000 segnali.

PARLA DEL DATASET E DEI PARAMETRI

3.2 Fitting numerico

3.3 Compensazione

4 Conclusioni

Disponibilità dei dati

Il materiale è disponibile alla repository online del progetto: https://github.com/ mastroalex/curve-fitting

Appendice