COMP318 Ontologies and Semantic Web

OWL - Part 2

Dr Valentina Tamma

V.Tamma@liverpool.ac.uk

Where were we

RDF data modelling language & RDFS Schema language

SPARQL query language

Expressive limitations of RDFS as a schema language

Combining OWL with RDF Schema

- Ideally, OWL would extend RDF
 Schema
 - Consistent with the layered architecture of the Semantic Web
- Simply extending RDF schema would not give us expressive power and efficient reasoning at the same time:
 - combining RDF Schema with logics leads to uncontrollable computational properties...

- And there are layering issues:
 - Syntax
 - Only binary relations in RDF
 - Verbose Syntax
 - No limitations on graph in RDF
 - Semantics
 - Malformed graphs
 - Use of vocabulary in language, e.g. <rdfs:Class, rdfs:subClassOf, ex:a>
 - Meta-classes, e.g. ex:a, rdf:type, ex:a
- And what about the inference?

Extending RDFS

- OWL extends RDF Schema:
 - OWL is a KR language for the web
 - OWL Logical expressions (and, or, not)
 - :Woman = :Human and :Female
 - :Person = :Man or :Woman
 - :Man = not (:Woman)
 - local properties
 - :Tenant only :rents :ResidentialUnits
 - (in)equality
 - :john differentFrom :mary
 - :JKRowling sameAs :RobertGalbraith

required/optional properties

• :rents :ResidentialUnit is a required property for :Tenant

required values

- :AmsterdamBuilding :hasLocation = :Amsterdam
 - the value for the :hasLocation property for the class:AmsterdamBuilding can only be:Amsterdam

enumerated classes

- DaysOfTheWeek = {Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday}
- symmetry, inverse and other property characteristics

Reasoning support

- Formal semantics allows the automatic deduction of new facts and possible conflicts between class definitions (consistency):
 - :Mammals and :Fish are disjoint classes
 - i.e. they cannot have any common individuals
 - :dolphin?
- Automatic reasoning allows us to automatically performs checks that aim to detect the correctness of the model + instances (ontology).
 - These checks are extremely valuable for designing large ontologies, for collaborative ontology design and for sharing and integrating ontologies from various sources:
 - check the consistency of the ontology;
 - check for unintended relations between classes;
 - check for the unintended classification of instances.

Reasoning support

• Formal semantics allows the automatic deduction of new facts and possible conflicts between class definitions (consistency):

An ontology language can be provided with formal semantics and reasoning support by mapping it to a known logical formalism and by using the reasoning tools developed for the chosen formalism.

- These checks are extremely valuable for designing large ontologies, for collaborative ontology design and for sharing and integrating ontologies from various sources:
 - check the consistency of the ontology;
 - check for unintended relations between classes;
 - check for the unintended classification of instances.

OWL 1 and OWL 2

• OWL: OWL 1 (http://

www.w3.org/TR/owl-features/) and

OWL 2 (http://www.w3.org/TR/owl2-overview/)

- Rationale for OWL
 - Open world assumption: the absence of a particular statement means that the statement has not been made explicitly yet.
 - Whether the statement is true or not, and whether it is believed that it is (or would be) true or not is irrelevant.

- Thus, from the absence of a statement alone, a deductive reasoner cannot infer that the statement is false.
- Reasonable trade-off between expressivity and scalability
- Fully declarative semantics.

OWL DL

- Fragment of first order predicate logic, decidable
- Known complexity classes
- Reasonably efficient for real ontologies + instances

OWL 1: Three species of OWL

OWL Lite:

- Sublanguage of OWL DL but without nominals and XML datatypes:
- Classification hierarchy
- Simple constraints
- It excludes enumerated classes, disjointness statements, and arbitrary cardinality.
- Reasoning still not tractable.

OWL DL

- Sublanguage of OWL Full, it imposes restrictions on the use of OWL/RDFS constructors
- Application of OWL's constructors to each other not permitted
- Provides reasonably efficient reasoning support.

OWL 1: Three species of OWL

OWL Full

- Very high expressiveness, uses all of the OWL primitives
- Fully upward compatible with RDF
- Losing decidability: no complete or efficient reasoning support
- All syntactic freedom of RDF (self-modifying):

 primitives can be combined in arbitrary ways with RDF(S)

OWL 2 - Profile

- Sublanguages of OWL2 trading expressive power for efficient reasoning
 - Each supports different application scenarios

OWL 2 EL

 very large ontologies, efficient reasoning performance guaranteed at the expenses of expressive power;

OWL 2 RL

- subclass axioms understood as rule like implication, with head superclass and body - subclass
- different restrictions on subclasses and superclasses
- allows the integration of OWL with rules

OWL 2 - Profile

- Sublanguages of OWL2 trading expressive power for efficient reasoning
 - Each supports different application scenarios
- OWL 2 QL
 - useful to query data rich applications

- different restrictions on subclasses and superclasses
- suitable for simple, lightweight ontologies with a large number of individuals and it is necessary to access the data directly via SQL queries
- fast implementation on top of legacy DB systems, relational or RDF

OWL syntax

- RDF
 - Official exchange syntax
 - Hard for humans
 - RDF parsers are hard to write!
- UML
 - Large user base
- XML
 - Not the RDF syntax, it is not based on RDF conventions
 - Better for humans

- More XML than RDF tools available
 - http://www.w3.org/TR/owl-xmlsyntax/
 - http://www.w3.org/TR/owl2-mapping-to-rdf
- Human readable syntax
 - Manchester syntax, used by Protege
 - Functional syntax, more compact and readable
 - http://www.w3.org/2007/OWL/wiki/ ManchesterSyntax
 - http://www.w3.org/TR/owl2-manchestersyntax/
 - Turtle syntax for OWL 2
 - http://www.w3.org/TR/owl2-primer/

OVL 2 structure

COMP318 Ontologies and Semantic Web

Dr Valentina Tamma

V.Tamma@liverpool.ac.uk