程序设计基础与实验

关于浮点数

刘新国

浙江大学计算机学院 浙江大学 CAD&CG 国家重点实验室

November 10, 2021

内容提要

数据类型 浮点数表示格式

位运算 解析浮点数

运算符和优先级

内容提要

数据类型

浮点数表示格式

位运算

解析浮点数

运算符和优先级

内容提要

数据类型 浮点数表示格式

位运算

解析浮点数

运算符和优先级

将 6.625 转化成二进制

▶ 首先将整数部分转化成二进制: 6 = 110 (除以2取余数)

- ▶ 首先将整数部分转化成二进制: 6 = 110 (除以 2 取余数)
- ► 然后将小数部分 0.625 转化为二进制: (乘以 2 取整数)

- ▶ 首先将整数部分转化成二进制: 6 = 110 (除以 2 取余数)
- 然后将小数部分 0.625 转化为二进制: (乘以 2 取整数)
 - ▶ 0.625 * 2 = 1.25, 将整数部分 1 添加到小数后面, 得到 110.1

- ▶ 首先将整数部分转化成二进制: 6 = 110 (除以 2 取余数)
- 然后将小数部分 0.625 转化为二进制: (乘以 2 取整数)
 - ▶ 0.625 * 2 = 1.25, 将整数部分 1 添加到小数后面, 得到 110.1
 - ▶ 0.25 * 2 = 0.5, 将整数部分 0 添加到小数后面, 得到 110.10

- ▶ 首先将整数部分转化成二进制: 6 = 110 (除以 2 取余数)
- ▶ 然后将小数部分 0.625 转化为二进制: (乘以 2 取整数)
 - ▶ 0.625 * 2 = 1.25, 将整数部分 1 添加到小数后面, 得到 110.1
 - ▶ 0.25 * 2 = 0.5, 将整数部分 0 添加到小数后面, 得到 110.10
 - ▶ 0.5 * 2 = 1.0, 将整数部分 1 添加到小数后面, 得到 110.101

- ▶ 首先将整数部分转化成二进制: 6 = 110 (除以 2 取余数)
- 然后将小数部分 0.625 转化为二进制: (乘以 2 取整数)
 - ▶ 0.625 * 2 = 1.25, 将整数部分 1 添加到小数后面, 得到 110.1
 - ▶ 0.25 * 2 = 0.5, 将整数部分 0 添加到小数后面, 得到 110.10
 - 0.5 * 2 = 1.0, 将整数部分 1 添加到小数后面, 得到 110.101
 - ▶ 小数部分为 0, 结束。

- ▶ 首先将整数部分转化成二进制: 6 = 110 (除以 2 取余数)
- 然后将小数部分 0.625 转化为二进制: (乘以 2 取整数)
 - ▶ 0.625 * 2 = 1.25, 将整数部分 1 添加到小数后面, 得到 110.1
 - ▶ 0.25 * 2 = 0.5, 将整数部分 0 添加到小数后面, 得到 110.10
 - 0.5 * 2 = 1.0, 将整数部分 1 添加到小数后面, 得到 110.101
 - 小数部分为 0, 结束。

将 6.625 转化成二进制

- ▶ 首先将整数部分转化成二进制: 6 = 110 (除以 2 取余数)
- 然后将小数部分 0.625 转化为二进制: (乘以 2 取整数)
 - > 0.625 * 2 = 1.25, 将整数部分 1 添加到小数后面,得到 110.1
 - ▶ 0.25 * 2 = 0.5, 将整数部分 0 添加到小数后面, 得到 110.10
 - ▶ 0.5 * 2 = 1.0, 将整数部分 1 添加到小数后面, 得到 110.101
 - 小数部分为 0, 结束。

将 0.7 转化成二进制

▶ 0.7 * 2 = 1.4, 将整数部分 1 添加到小数后面, 得到 0.1

将 6.625 转化成二进制

- ▶ 首先将整数部分转化成二进制: 6 = 110 (除以 2 取余数)
- 然后将小数部分 0.625 转化为二进制: (乘以 2 取整数)
 - ▶ 0.625 * 2 = 1.25, 将整数部分 1 添加到小数后面, 得到 110.1
 - ▶ 0.25 * 2 = 0.5, 将整数部分 0 添加到小数后面, 得到 110.10
 - ▶ 0.5 * 2 = 1.0, 将整数部分 1 添加到小数后面, 得到 110.101
 - 小数部分为 0, 结束。

- ▶ 0.7 * 2 = 1.4, 将整数部分 1 添加到小数后面, 得到 0.1
- ▶ 0.4 * 2 = 0.8, 将整数部分 0 添加到小数后面, 得到 0.10

将 6.625 转化成二进制

- ▶ 首先将整数部分转化成二进制: 6 = 110 (除以 2 取余数)
- 然后将小数部分 0.625 转化为二进制: (乘以 2 取整数)
 - ▶ 0.625 * 2 = 1.25, 将整数部分 1 添加到小数后面, 得到 110.1
 - ▶ 0.25 * 2 = 0.5, 将整数部分 0 添加到小数后面, 得到 110.10
 - ▶ 0.5 * 2 = 1.0, 将整数部分 1 添加到小数后面, 得到 110.101
 - 小数部分为 0, 结束。

- ▶ 0.7 * 2 = 1.4, 将整数部分 1 添加到小数后面, 得到 0.1
- ▶ 0.4 * 2 = 0.8, 将整数部分 0 添加到小数后面, 得到 0.10
- ▶ 0.8 * 2 = 1.6, 将整数部分 1 添加到小数后面, 得到 0.101

将 6.625 转化成二进制

- ▶ 首先将整数部分转化成二进制: 6 = 110 (除以 2 取余数)
- 然后将小数部分 0.625 转化为二进制: (乘以 2 取整数)
 - ▶ 0.625 * 2 = 1.25, 将整数部分 1 添加到小数后面, 得到 110.1
 - ▶ 0.25 * 2 = 0.5, 将整数部分 0 添加到小数后面, 得到 110.10
 - ▶ 0.5 * 2 = 1.0, 将整数部分 1 添加到小数后面, 得到 110.101
 - 小数部分为 0, 结束。

- ▶ 0.7 * 2 = 1.4, 将整数部分 1 添加到小数后面, 得到 0.1
- ▶ 0.4 * 2 = 0.8, 将整数部分 0 添加到小数后面, 得到 0.10
- ▶ 0.8 * 2 = 1.6, 将整数部分 1 添加到小数后面, 得到 0.101
- ▶ 0.6 * 2 = 1.2, 将整数部分 1 添加到小数后面, 得到 0.1011

将 6.625 转化成二进制

- ▶ 首先将整数部分转化成二进制: 6 = 110 (除以 2 取余数)
- 然后将小数部分 0.625 转化为二进制: (乘以 2 取整数)
 - ▶ 0.625 * 2 = 1.25, 将整数部分 1 添加到小数后面, 得到 110.1
 - ▶ 0.25 * 2 = 0.5, 将整数部分 0 添加到小数后面, 得到 110.10
 - ▶ 0.5 * 2 = 1.0, 将整数部分 1 添加到小数后面, 得到 110.101
 - 小数部分为 0, 结束。

- ▶ 0.7 * 2 = 1.4, 将整数部分 1 添加到小数后面, 得到 0.1
- ▶ 0.4 * 2 = 0.8, 将整数部分 0 添加到小数后面, 得到 0.10
- ▶ 0.8 * 2 = 1.6, 将整数部分 1 添加到小数后面, 得到 0.101
- ▶ 0.6 * 2 = 1.2, 将整数部分 1 添加到小数后面, 得到 0.1011
- ▶ 0.2 * 2 = 0.4, 将整数部分 0 添加到小数后面, 得到 0.10110

将 6.625 转化成二进制

- ▶ 首先将整数部分转化成二进制: 6 = 110 (除以 2 取余数)
- 然后将小数部分 0.625 转化为二进制: (乘以 2 取整数)
 - ▶ 0.625 * 2 = 1.25, 将整数部分 1 添加到小数后面, 得到 110.1
 - ▶ 0.25 * 2 = 0.5, 将整数部分 0 添加到小数后面, 得到 110.10
 - 0.5 * 2 = 1.0, 将整数部分 1 添加到小数后面, 得到 110.101
 - 小数部分为 0, 结束。

- ▶ 0.7 * 2 = 1.4, 将整数部分 1 添加到小数后面, 得到 0.1
- ▶ 0.4 * 2 = 0.8, 将整数部分 0 添加到小数后面, 得到 0.10
- ▶ 0.8 * 2 = 1.6, 将整数部分 1 添加到小数后面, 得到 0.101
- ▶ 0.6 * 2 = 1.2, 将整数部分 1 添加到小数后面, 得到 0.1011
- ▶ 0.2 * 2 = 0.4, 将整数部分 0 添加到小数后面, 得到 0.10110
- ▶ 一直进行下去,直到小数为 0. 或者达到指定的位数。

S	E	М
符号	阶码	尾数
1	8/11	23/52

5	E	М
符号	阶码	尾数
1	8/11	23/52

IEEE 浮点数表示: $S \times 2^E \times 1.M$ 或者 $S \times 2^E \times 0.M$

▶ 符号: 1 个 bit, 0-正数, 1-负数

5	E	М
符号	阶码	尾数
1	8/11	23/52

IEEE 浮点数表示: $S \times 2^E \times 1.M$ 或者 $S \times 2^E \times 0.M$

▶ 符号: 1 个 bit, 0-正数, 1-负数

▶ 阶码: 浮点数的指数,采用移码表示法(无符号的指数)

5	E	М
符号	阶码	尾数
1	8/11	23/52

IEEE 浮点数表示: $S \times 2^E \times 1.M$ 或者 $S \times 2^E \times 0.M$

▶ 符号: 1 个 bit, 0-正数, 1-负数

阶码: 浮点数的指数,采用移码表示法(无符号的指数)

▶ float 浮点数: 8 bits, 指数 = 阶码 - 127

S	E	М
符号	阶码	尾数
1	8/11	23/52

IEEE 浮点数表示: $S \times 2^E \times 1.M$ 或者 $S \times 2^E \times 0.M$

▶ 符号: 1 个 bit, 0-正数, 1-负数

阶码: 浮点数的指数,采用移码表示法(无符号的指数)

▶ float 浮点数: 8 bits, 指数 = 阶码 - 127

 $E_{\min} = -127, E_{\max} = 128$

5	E	М
符号	阶码	尾数
1	8/11	23/52

- ▶ 符号: 1 个 bit, 0-正数, 1-负数
- 阶码: 浮点数的指数,采用移码表示法(无符号的指数)
 - ▶ float 浮点数: 8 bits, 指数 = 阶码 127 $E_{min} = -127, E_{max} = 128$
 - ▶ double 浮点数: 11 bits, 指数 = 阶码 1023

5	E	М
符号	阶码	尾数
1	8/11	23/52

- ▶ 符号: 1 个 bit, 0-正数, 1-负数
- 阶码: 浮点数的指数,采用移码表示法(无符号的指数)
 - ▶ float 浮点数: 8 bits, 指数 = 阶码 127 $E_{min} = -127, E_{max} = 128$
 - ▶ double 浮点数: 11 bits, 指数 = 阶码 1023 $E_{min} = -1023$, $E_{max} = 1024$

5	E	М
符号	阶码	尾数
1	8/11	23/52

- ▶ 符号: 1 个 bit, 0-正数, 1-负数
- 阶码: 浮点数的指数,采用移码表示法(无符号的指数)
 - ▶ float 浮点数: 8 bits, 指数 = 阶码 127 $E_{min} = -127, E_{max} = 128$
 - ▶ double 浮点数: 11 bits, 指数 = 阶码 1023 $E_{min} = -1023$, $E_{max} = 1024$
- ▶ 尾数: 二进制的小数

5	E	М
符号	阶码	尾数
1	8/11	23/52

- ▶ 符号: 1 个 bit, 0-正数, 1-负数
- 阶码: 浮点数的指数,采用移码表示法(无符号的指数)
 - ▶ float 浮点数: 8 bits, 指数 = 阶码 127 $E_{min} = -127, E_{max} = 128$
 - ▶ double 浮点数: 11 bits, 指数 = 阶码 1023 $E_{min} = -1023, E_{max} = 1024$
- ▶ 尾数: 二进制的小数
 - ▶ 尾数 = 1.M, 当指数段不全为 0 (格式化值)

5	E	М
符号	阶码	尾数
1	8/11	23/52

- ▶ 符号: 1 个 bit, 0-正数, 1-负数
- 阶码: 浮点数的指数,采用移码表示法(无符号的指数)
 - ▶ float 浮点数: 8 bits, 指数 = 阶码 127 $E_{min} = -127, E_{max} = 128$
 - ▶ double 浮点数: 11 bits, 指数 = 阶码 1023 $E_{min} = -1023, E_{max} = 1024$
- ▶ 尾数: 二进制的小数
 - ▶ 尾数 = 1.M, 当指数段不全为 0 (格式化值)
 - ▶ 尾数 = 0.M, 当指数段全为 0 (非格式化值)

特殊的浮点数

指数段	尾数段	数值	注解
有0有1	_	$1.M \times 2^E$	一般情况
全 0	全 0	0	符号位除外,所有 bit 为 0
全 0	不全为 0	$0.M \times 2^{E_{min}}$	非常接近 0 的小数
全 1	全 0	∞	无穷大
全 1	不全为 0	NaN	(Not any Number) 非数值

详细可参考 IEEE_754 浮点数标准

► float 具有 4 个字节 (32 个 bit)

特殊的浮点数

指数段	尾数段	数值	注解
有 0 有 1	_	$1.M \times 2^E$	一般情况
全 0	全 0	0	符号位除外,所有 bit 为 0
全 0	不全为 0	$0.M \times 2^{E_{min}}$	非常接近 0 的小数
全 1	全 0	∞	无穷大
全 1	不全为 0	NaN	(Not any Number) 非数值

详细可参考 IEEE_754 浮点数标准

- ▶ float 具有 4 个字节 (32 个 bit)
- ► double 具有 8 个字节 (64 个 bit)

特殊的浮点数

指数段	尾数段	数值	注解
有 0 有 1	_	$1.M \times 2^E$	一般情况
全 0	全 0	0	符号位除外,所有 bit 为 0
全 0	不全为 0	$0.M \times 2^{E_{min}}$	非常接近 0 的小数
全 1	全 0	∞	无穷大
全 1	不全为 0	NaN	(Not any Number) 非数值

详细可参考 IEEE_754 浮点数标准

- ▶ float 具有 4 个字节 (32 个 bit)
- ▶ double 具有 8 个字节 (64 个 bit)
- ▶ double 具有更高的精度和更大的表示范围

float

▶ float 只具有 7~8 个有效数字

double

float

- ▶ float 只具有 7~8 个有效数字
- ▶ float 的表示范围约: $\pm (10^{-38} \sim 10^{38})$

double

float

- ▶ float 只具有 7~8 个有效数字
- ▶ float 的表示范围约: $\pm (10^{-38} \sim 10^{38})$

double

► double 具有 15~16 个有效数字

float

- ▶ float 只具有 7~8 个有效数字
- ▶ float 的表示范围约: $\pm (10^{-38} \sim 10^{38})$

double

- ▶ double 具有 15~16 个有效数字
- ▶ double 的表示范围约: $\pm (10^{-308} \sim 10^{308})$

数值精度和取值范围

数值精度和取值范围是两个不同的概念

• float x = 1234567.89;

数值精度和取值范围

数值精度和取值范围是两个不同的概念

- ightharpoonup float x = 1234567.89;
 - ▶ 虽在取值范围内,但无法精确表达。

- ightharpoonup float x = 1234567.89;
 - ▶ 虽在取值范围内,但无法精确表达。
 - ▶ 因为 float 只有 7 个有效数字

- ► float x = 1234567.89;
 - ▶ 虽在取值范围内,但无法精确表达。
 - ▶ 因为 float 只有 7 个有效数字
- ► float y = 1.2e55;

- ightharpoonup float x = 1234567.89;
 - ▶ 虽在取值范围内,但无法精确表达。
 - ▶ 因为 float 只有 7 个有效数字
- ▶ float y = 1.2e55;
 - ▶ y 的精度要求不高,但超出取值范围。

- ightharpoonup float x = 1234567.89;
 - ▶ 虽在取值范围内,但无法精确表达。
 - ▶ 因为 float 只有 7 个有效数字
- ▶ float y = 1.2e55;
 - ▶ y 的精度要求不高,但超出取值范围。
 - ▶ 因为 float 最大数约为 10^{38}

- ightharpoonup float x = 1234567.89;
 - ▶ 虽在取值范围内,但无法精确表达。
 - ▶ 因为 float 只有 7 个有效数字
- ▶ float y = 1.2e55;
 - ▶ y 的精度要求不高,但超出取值范围。
 - ▶ 因为 float 最大数约为 10^{38}
- ▶ 并非所有实数都能在计算机中精确表示

- ightharpoonup float x = 1234567.89;
 - ▶ 虽在取值范围内,但无法精确表达。
 - ▶ 因为 float 只有 7 个有效数字
- ▶ float y = 1.2e55;
 - ▶ y 的精度要求不高, 但超出取值范围。
 - ▶ 因为 float 最大数约为 10^{38}
- ▶ 并非所有实数都能在计算机中精确表示
 - ▶ 最多表示 2³² 个 float

- ightharpoonup float x = 1234567.89;
 - ▶ 虽在取值范围内,但无法精确表达。
 - ▶ 因为 float 只有 7 个有效数字
- ▶ float y = 1.2e55;
 - ▶ y 的精度要求不高, 但超出取值范围。
 - ▶ 因为 float 最大数约为 10³⁸
- ▶ 并非所有实数都能在计算机中精确表示
 - ▶ 最多表示 2³² 个 float
 - ▶ 最多表示 2⁶⁴ 个 double

▶ 普通表示: 符号 + 整数部分 + 小数点 + 小数部分

▶ 普通表示: 符号 + 整数部分 + 小数点 + 小数部分

▶ 例如: -12345.678

▶ 普通表示: 符号 + 整数部分 + 小数点 + 小数部分

▶ 例如: -12345.678

▶ 科学计数法表示: 符号 + 尾数 e/E 指数

▶ 普通表示: 符号 + 整数部分 + 小数点 + 小数部分

▶ 例如: -12345.678

▶ 科学计数法表示: 符号 + 尾数 e/E 指数

► 例如: -1.2345678*E*5

▶ 普通表示: 符号 + 整数部分 + 小数点 + 小数部分

▶ 例如: -12345.678

▶ 科学计数法表示: 符号 + 尾数 e/E 指数

▶ 例如: -1.2345678*E*5

▶ 一般表示数值很大,或者很小的数。

▶ 普通表示: 符号 + 整数部分 + 小数点 + 小数部分

▶ 例如: −12345.678

▶ 科学计数法表示: 符号 + 尾数 e/E 指数

▶ 例如: -1.2345678*E*5

一般表示数值很大,或者很小的数。

▶ 例如普朗克常量 6.026 × 10⁻²⁷ 可表示为: 6.026E-27, 或者 60.26E-28

▶ 普通表示: 符号 + 整数部分 + 小数点 + 小数部分

▶ 例如: −12345.678

▶ 科学计数法表示: 符号 + 尾数 e/E 指数

▶ 例如: -1.2345678*E*5

一般表示数值很大,或者很小的数。

▶ 例如普朗克常量 6.026×10^{-27} 可表示为: 6.026E-27, 或者 60.26E-28

▶ 实型常量的类型都是 double

▶ 普通表示: 符号 + 整数部分 + 小数点 + 小数部分

▶ 例如: -12345.678

▶ 科学计数法表示: 符号 + 尾数 e/E 指数

▶ 例如: -1.2345678*E*5

一般表示数值很大,或者很小的数。

▶ 例如普朗克常量 6.026×10^{-27} 可表示为: 6.026E-27, 或者 60.26E-28

▶ 实型常量的类型都是 double

▶ 如需表示 float 类型常量,可用 f 作为后缀。

▶ 普通表示: 符号 + 整数部分 + 小数点 + 小数部分

▶ 例如: −12345.678

▶ 科学计数法表示: 符号 + 尾数 e/E 指数

▶ 例如: -1.2345678*E*5

一般表示数值很大,或者很小的数。

▶ 例如普朗克常量 6.026×10^{-27} 可表示为: 6.026E-27, 或者 60.26E-28

▶ 实型常量的类型都是 double

如需表示 float 类型常量,可用 f 作为后缀。

► 例如: 3.14f, 5f

内容提要

数据类型

浮点数表示格式

位运算

解析浮点数

运算符和优先级

位运算是定义在整数类型数据上的一种运算,包括:

位运算是定义在整数类型数据上的一种运算,包括:

位逻辑运算 - 在数据的每一位 bit 上独立进行运算

▶ 按位反 ~

位运算是定义在整数类型数据上的一种运算,包括:

- ▶ 按位反 ~
- ▶ 按位与 &

位运算是定义在整数类型数据上的一种运算,包括:

- ▶ 按位反 ~
- ▶ 按位与 &
- ▶ 按位或 |

位运算是定义在整数类型数据上的一种运算,包括:

- ▶ 按位反 ~
- ▶ 按位与 &
- ▶ 按位或 |
- ► 按位异或 ^

位运算是定义在整数类型数据上的一种运算,包括:

位逻辑运算 - 在数据的每一位 bit 上独立进行运算

- ▶ 按位反 ~
- ▶ 按位与 &
- ▶ 按位或 |
- ▶ 按位异或 [^]

移位运算 - 在数据的所有的 bit 位依次进行移位

位运算是定义在整数类型数据上的一种运算,包括:

位逻辑运算 - 在数据的每一位 bit 上独立进行运算

- ▶ 按位反 ~
- ▶ 按位与 &
- ▶ 按位或 |
- ▶ 按位异或 [^]

移位运算 - 在数据的所有的 bit 位依次进行移位

▶ 左移位 <<

位运算是定义在整数类型数据上的一种运算,包括:

位逻辑运算 - 在数据的每一位 bit 上独立进行运算

- ▶ 按位反 ~
- ▶ 按位与 &
- ▶ 按位或 |
- ▶ 按位异或 ^

移位运算 - 在数据的所有的 bit 位依次进行移位

- ▶ 左移位 <<
- ▶ 右移位 >>

考虑两个 8 位整数 (16 位和 32 位整数也一样):

$$\begin{array}{l} a = 0 \; 0 \; 0 \; 0 \; 1 \; 0 \; 1 \; 1 \\ b = 0 \; 1 \; 1 \; 0 \; 1 \; 1 \; 0 \; 1 \end{array}$$

► 按位反: ~ a = 11110100

考虑两个 8 位整数 (16 位和 32 位整数也一样):

$$\begin{array}{l} a = 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1 \\ b = 0 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1 \end{array}$$

- ▶ 按位反: ~ a = 11110100
- ► 按位与: a & b = 00001001

考虑两个 8 位整数 (16 位和 32 位整数也一样):

$$\begin{array}{l} a = 0 \; 0 \; 0 \; 0 \; 1 \; 0 \; 1 \; 1 \\ b = 0 \; 1 \; 1 \; 0 \; 1 \; 1 \; 0 \; 1 \end{array}$$

▶ 按位反: ~ a = 11110100

▶ 按位与: a & b = 00001001

► 按位或: a | b = 01101111

考虑两个 8 位整数 (16 位和 32 位整数也一样):

$$\begin{array}{l} \mathsf{a} = \mathsf{0} \; \mathsf{0} \; \mathsf{0} \; \mathsf{0} \; \mathsf{1} \; \mathsf{0} \; \mathsf{1} \; \mathsf{1} \\ \mathsf{b} = \mathsf{0} \; \mathsf{1} \; \mathsf{1} \; \mathsf{0} \; \mathsf{1} \; \mathsf{1} \; \mathsf{0} \; \mathsf{1} \end{array}$$

▶ 按位反: ~ a = 11110100

▶ 按位与: a & b = 00001001

▶ 按位或: a | b = 01101111

▶ 按位异或: a ^ b = 01100110

考虑两个 8 位整数 (16 位和 32 位整数也一样):

$$a = 0 0 0 0 1 0 1 1$$

 $b = 0 1 1 0 1 1 0 1$

- ▶ 按位反: ~ a = 11110100
- ▶ 按位与: a & b = 00001001
- ▶ 按位或: a | b = 01101111
- ▶ 按位异或: a^b = 01100110
 - ▶ 互异为真

- ^ 可以理解为抛弃进位的加法。例如:
- $1 \oplus 1 = 0;$
- $0 \oplus 0 = 0$;
- $1\oplus 0=1;$
- $0 \oplus 1 = 1;$
- $a \oplus b =$ 末位 (a + b)

- ^ 可以理解为抛弃进位的加法。例如:
- $1 \oplus 1 = 0$;
- $0 \oplus 0 = 0$;
- $1\oplus 0=1;$
- $0\oplus 1=1;$
- $a \oplus b =$ 末位 (a + b)

异或运算个具有可结合性,证明:

► a ^ b ^ c = 末位 (a + b) ^ c

- ^ 可以理解为抛弃进位的加法。例如:
- $1 \oplus 1 = 0;$
- $0 \oplus 0 = 0$;
- $1\oplus 0=1;$
- $0 \oplus 1 = 1$;
- $a \oplus b =$ 末位 (a + b)

异或运算 ^ 具有可结合性, 证明:

► a ^ b ^ c = 末位 (a + b) ^ c = 末位 (a + b + c)

- ^ 可以理解为抛弃进位的加法。例如:
- $1 \oplus 1 = 0$;
- $0 \oplus 0 = 0$:
- $1\oplus 0=1;$
- $0 \oplus 1 = 1;$ a \oplus b = 末位 (a + b)

异或运算 ^ 具有可结合性, 证明:

- ► a ^ b ^ c = 末位 (a + b) ^ c = 末位 (a + b + c)
- ► a ^ (b ^ c) = a ^ 末位 (b + c)

- ^ 可以理解为抛弃进位的加法。例如:
- $1 \oplus 1 = 0;$
- $0 \oplus 0 = 0$;
- $1\oplus 0=1;$
- $0 \oplus 1 = 1;$
- $a \oplus b =$ **末位** (a + b)

异或运算 ^ 具有可结合性, 证明:

- ▶ $a \hat{b} c =$ 末位 (a + b) c = 末位 (a + b + c)
- ► a ^ (b ^ c) = a ^ 末位 (b + c) = 末位 (a + b + c)

[^] 可以理解为抛弃进位的加法。例如:

- $1\oplus 1=0;$
- $0 \oplus 0 = 0;$
- $1\oplus 0=1;$
- $0 \oplus 1 = 1;$ a \oplus b = 末位 (a + b)

异或运算个具有可结合性,证明:

- ► a ^ b ^ c = 末位 (a + b) ^ c = 末位 (a + b + c)
- ► a ^ (b ^ c) = a ^ 末位 (b + c) = 末位 (a + b + c) 因此 a ^ b ^ c = a ^ (b ^ c)

异或运算(^)

^ 可以理解为抛弃进位的加法。例如:

- $1 \oplus 1 = 0;$
- $0 \oplus 0 = 0;$
- $1 \oplus 0 = 1$;
- $0 \oplus 1 = 1;$ a \oplus b = 末位 (a + b)

异或运算个具有可结合性,证明:

- ▶ a ^ b ^ c = 末位 (a + b) ^ c = 末位 (a + b + c)
- ► a^(b^c) = a^ 末位 (b + c) = 末位 (a + b + c) 因此 a^b^c = a^(b^c)

异或运算(^)

[^] 可以理解为<mark>抛弃进位的</mark>加法。例如:

- $1\oplus 1=0;$
- $0 \oplus 0 = 0;$
- $1\oplus 0=1;$
- $0 \oplus 1 = 1$;
- $a \oplus b =$ **末位** (a + b)

异或运算 ^ 具有可结合性, 证明:

- ▶ a ^ b ^ c = 末位 (a + b) ^ c = 末位 (a + b + c)
- ▶ a^(b^c) = a^ 末位 (b + c) = 末位 (a + b + c) 因此 a^b^c = a^(b^c)

异或运算 ^ 具有可交换性:

$$a \hat{b} = b \hat{a}$$

▶ 按位与、或、异或都是可交换的

- ▶ 按位与、或、异或都是可交换的
 - ► a & b = b & a

- ▶ 按位与、或、异或都是可交换的
 - ▶ a & b = b & a
- ▶ 按位与、或、异或都是可结合的

- ▶ 按位与、或、异或都是可交换的
 - ▶ a & b = b & a
- ▶ 按位与、或、异或都是可结合的
 - ► a & b & c = a & (b & c)

- ▶ 按位与、或、异或都是可交换的
 - ▶ a & b = b & a
- ▶ 按位与、或、异或都是可结合的
 - ► a & b & c = a & (b & c)

- ▶ 按位与、或、异或都是可交换的
 - ▶ a & b = b & a
- ▶ 按位与、或、异或都是可结合的
 - ► a & b & c = a & (b & c)
- ightharpoonup a & 0 = 0;

- ▶ 按位与、或、异或都是可交换的
 - ▶ a & b = b & a
- ▶ 按位与、或、异或都是可结合的
 - ► a & b & c = a & (b & c)
- ► a & 0 = 0; a & $\sim 0 = a$;

- ▶ 按位与、或、异或都是可交换的
 - ► a & b = b & a
- ▶ 按位与、或、异或都是可结合的
 - ► a & b & c = a & (b & c)
- ▶ a & 0 = 0; a & $\sim 0 = a$;
- ▶ $a \mid 0 = a$;

- ▶ 按位与、或、异或都是可交换的
 - ▶ a & b = b & a
- ▶ 按位与、或、异或都是可结合的
 - ► a & b & c = a & (b & c)
- ▶ a & 0 = 0; a & $\sim 0 = a$;

- ▶ 按位与、或、异或都是可交换的
 - ▶ a & b = b & a
- ▶ 按位与、或、异或都是可结合的
 - ► a & b & c = a & (b & c)
- $ightharpoonup \sim 0 = 0 \times \text{FFFFFFFF}$
- ▶ a & 0 = 0; a & $\sim 0 = a$;
- ▶ a | 0 = a; a | \sim 0 = \sim 0;
- ightharpoonup a $^{\circ}$ 0 = a;

- ▶ 按位与、或、异或都是可交换的
 - ▶ a & b = b & a
- ▶ 按位与、或、异或都是可结合的
 - ► a & b & c = a & (b & c)
- ▶ a & 0 = 0; a & $\sim 0 = a$;
- ▶ $a \mid 0 = a;$ $a \mid \sim 0 = \sim 0;$
- ▶ a $\hat{}$ 0 = a; a $\hat{}$ ~0 = ~a;

- ▶ 按位与、或、异或都是可交换的
 - ▶ a & b = b & a
- ▶ 按位与、或、异或都是可结合的
 - ► a & b & c = a & (b & c)
- ▶ a & 0 = 0; a & $\sim 0 = a$;
- ▶ $a \mid 0 = a;$ $a \mid \sim 0 = \sim 0;$
- ▶ $a \hat{\ } 0 = a;$ $a \hat{\ } \sim 0 = \sim a;$
- ► a & a = a;

- ▶ 按位与、或、异或都是可交换的
 - ▶ a & b = b & a
- ▶ 按位与、或、异或都是可结合的
 - ► a & b & c = a & (b & c)
- ightharpoonup a & 0 = 0;
- a & \sim 0 = a;
- ightharpoonup a | 0 = a;
- a $| \sim 0 = \sim 0;$
- ightharpoonup a $\hat{}$ 0 = a;
- a $^{\smallfrown}\sim 0=\sim$ a;
- ► a & a = a;
- a & \sim a = 0;

- ▶ 按位与、或、异或都是可交换的
 - ▶ a & b = b & a
- ▶ 按位与、或、异或都是可结合的
 - ► a & b & c = a & (b & c)
- ightharpoonup a & 0 = 0;
- a & \sim 0 = a;
- ightharpoonup a | 0 = a;

a $| \sim 0 = \sim 0$;

ightharpoonup a $^{\circ}$ 0 = a;

a $\hat{\ }\sim 0=\sim$ a;

- ightharpoonup a & a = a;
- a & \sim a = 0;
- ► a | a = a;

- ▶ 按位与、或、异或都是可交换的
 - ▶ a & b = b & a
- ▶ 按位与、或、异或都是可结合的
 - ► a & b & c = a & (b & c)
- ightharpoonup a & 0 = 0;
 - a & \sim 0 = a;
- ightharpoonup a | 0 = a;

a $| \sim 0 = \sim 0$;

ightharpoonup a $^{\circ}$ 0 = a;

a $\hat{\ }\sim 0=\sim$ a;

- ightharpoonup a & a = a;
- a & \sim a = 0;
- ▶ a | a = a;
- $a \mid \sim a = \sim 0;$

- ▶ 按位与、或、异或都是可交换的
 - ▶ a & b = b & a
- ▶ 按位与、或、异或都是可结合的
 - ► a & b & c = a & (b & c)
- ightharpoonup a & 0 = 0;
- a & \sim 0 = a;
- ightharpoonup a | 0 = a;

 $a \mid \sim 0 = \sim 0;$ $a \land \sim 0 = \sim a;$

- ightharpoonup a $^{\circ}$ 0 = a;
- a & \sim a = 0:
- a & a = a;a | a = a;

 $a \mid \sim a = \sim 0$;

ightharpoonup a $\hat{}$ a = 0;

- ▶ 按位与、或、异或都是可交换的
 - ▶ a & b = b & a
- ▶ 按位与、或、异或都是可结合的
 - ► a & b & c = a & (b & c)
- ightharpoonup a & 0 = 0;
- a & \sim 0 = a;
- ightharpoonup a | 0 = a;

 $a \mid \sim 0 = \sim 0;$ $a \land \sim 0 = \sim a;$

- ightharpoonup a $^{\circ}$ 0 = a;
- a & \sim a = 0;
- a & a = a;a | a = a;
- $a \mid \sim a = \sim 0$;
- ightharpoonup a $\hat{}$ a = 0;

a $^{\smallfrown}\sim$ a $=\sim$ 0;

- ▶ 按位与、或、异或都是可交换的
 - ▶ a & b = b & a
- ▶ 按位与、或、异或都是可结合的
 - ► a & b & c = a & (b & c)
- ightharpoonup a & 0 = 0:
 - a & \sim 0 = a;
- ightharpoonup a | 0 = a;

a | \sim 0 = \sim 0; a $\hat{\ }\sim$ 0 = \sim a:

- a ^ 0 = a;a & a = a;
- a & \sim a = 0;
- ▶ a | a = a;
- $a \mid \sim a = \sim 0$;
- ightharpoonup a $\hat{}$ a = 0;

- a $^{\smallfrown}\sim$ a = \sim 0;
- ightharpoonup a $\hat{}$ b $\hat{}$ b = a;

考虑两个 8 位整数 (16 位和 32 位整数也一样):

$$\begin{array}{l} a = 0 \; 0 \; 0 \; 0 \; 1 \; 0 \; 1 \; 1 \\ b = 0 \; 1 \; 1 \; 0 \; 1 \; 1 \; 0 \; 1 \end{array}$$

► 左移位 a << 1 = 00010110

$$\begin{array}{l} a = 0 \; 0 \; 0 \; 0 \; 1 \; 0 \; 1 \; 1 \\ b = 0 \; 1 \; 1 \; 0 \; 1 \; 1 \; 0 \; 1 \end{array}$$

- ▶ 左移位 a << 1 = 00010110
 - ▶ 右侧补 0

$$\begin{array}{l} a = 0 \; 0 \; 0 \; 0 \; 1 \; 0 \; 1 \; 1 \\ b = 0 \; 1 \; 1 \; 0 \; 1 \; 1 \; 0 \; 1 \end{array}$$

- ► 左移位 a << 1 = 00010110
 - ▶ 右侧补 0
- ► 右移位 a >> 1 = 0 0 0 0 0 1 0 1 b >> 2 = 0 0 0 1 1 0 1 1

$$\begin{array}{l} a = 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1 \\ b = 0 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1 \end{array}$$

- ▶ 左移位 a << 1 = 00010110
 - ▶ 右侧补 0
- ▶ 右移位 a >> 1 = 00000101 b >> 2 = 00011011
 - ▶ 对于无符号的数,左侧补 0

$$\begin{array}{l} a = 0 \; 0 \; 0 \; 0 \; 1 \; 0 \; 1 \; 1 \\ b = 0 \; 1 \; 1 \; 0 \; 1 \; 1 \; 0 \; 1 \end{array}$$

- ▶ 左移位 a << 1 = 00010110
 - ▶ 右侧补 0
- ▶ 右移位 a >> 1 = 00000101 b >> 2 = 00011011
 - ▶ 对于无符号的数,左侧补 0
 - ▶ 对于有符号的数

$$\begin{array}{l} a = 0 \; 0 \; 0 \; 0 \; 1 \; 0 \; 1 \; 1 \\ b = 0 \; 1 \; 1 \; 0 \; 1 \; 1 \; 0 \; 1 \end{array}$$

- ▶ 左移位 a << 1 = 00010110
 - ▶ 右侧补 0
- ▶ 右移位 a >> 1 = 00000101 b >> 2 = 00011011
 - ▶ 对于无符号的数,左侧补 0
 - ▶ 对于有符号的数
 - ▶ 左侧既可以填充 0,

$$a = 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1$$

 $b = 0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 1$

- ▶ 左移位 a << 1 = 00010110</p>
 - ▶ 右侧补 0
- ▶ 右移位 a >> 1 = 00000101 b >> 2 = 00011011
 - ▶ 对于无符号的数,左侧补 0
 - ▶ 对于有符号的数
 - ▶ 左侧既可以填充 0,
 - ▶ 也可以复制符号位上的值。

$$\begin{array}{l} a = 0 \; 0 \; 0 \; 0 \; 1 \; 0 \; 1 \; 1 \\ b = 0 \; 1 \; 1 \; 0 \; 1 \; 1 \; 0 \; 1 \end{array}$$

- ▶ 左移位 a << 1 = 00010110
 - ▶ 右侧补 0
- ▶ 右移位 a >> 1 = 00000101 b >> 2 = 00011011
 - ▶ 对于无符号的数,左侧补 0
 - ▶ 对于有符号的数
 - 左侧既可以填充 0,
 - ▶ 也可以复制符号位上的值。
 - ► C 语言没有规定,取决于编译器的实现。(大部分编译器复制符号位上的值)

$$\begin{array}{l} a = 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1 \\ b = 0 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1 \end{array}$$

- ▶ 左移位 a << 1 = 00010110</p>
 - ▶ 右侧补 0
- ► 右移位 a >> 1 = 0 0 0 0 0 1 0 1 b >> 2 = 0 0 0 1 1 0 1 1
 - ▶ 对于无符号的数, 左侧补 0
 - ▶ 对于有符号的数
 - ▶ 左侧既可以填充 0,
 - ▶ 也可以复制符号位上的值。
 - ► C 语言没有规定,取决于编译器的实现。(大部分编译器复制符号位上的值)
 - ▶ 应该避免对有符号数进行右移运算

对于无符号的整数,移位与2的关系

对于无符号的整数,移位与2的关系

▶ 左移 1 位 $\Longleftrightarrow \times 2$

对于无符号的整数,移位与2的关系

- ▶ 左移 1 位 $\Longleftrightarrow \times 2$
- ▶ 右移 1 位 ⇔ ÷2 (在不发生溢出的时候)

位运算与赋值运算复合

- ▶ &= 例如: a &= b ⇔ a = a & b
- ▶ | = 例如: a |= b ⇔ a = a | b
- ▶ ^= 例如: a ^= b ⇔ a = a ^ b
- ▶ >>= 例如: a >>= n ⇔ a = a >> n
- ► <<= 例如: a <<= n ⇔ a = a << n

位运算与赋值运算复合

- ► &= 例如: a &= b ⇔ a = a & b
- ▶ |= 例如: a |= b ⇔ a = a | b
- ▶ ^= 例如: a ^= b ⇔ a = a ^ b
- ► >>= 例如: a >>= n ⇔ a = a >> n
- ▶ <<= 例如: a <<= n ⇔ a = a << n

这些复合赋值运算符和其它的赋值运算符具有相同的优先级和结 合性

异或运算应用 - 无临时变量的交换

```
int a = 1, b = 2;
```

标准的交换步骤

```
int temp;
temp = a;
a = b;
b = temp;
```

异或运算应用 - 无临时变量的交换

```
int a = 1, b = 2;
```

标准的交换步骤

```
int temp;
temp = a;
a = b;
b = temp;
```

需要定义和使用一 个临时变量 temp

```
int a = 1, b = 2;
```

标准的交换步骤

```
int temp;
temp = a;
a = b;
b = temp;
```

需要定义和使用一 个临时变量 temp

```
a = a ^ b;
b = b ^ a;
a = a ^ b
```

```
int a = 1, b = 2;
```

标准的交换步骤

```
int temp;
temp = a;
a = b;
b = temp;
```

需要定义和使用一 个临时变量 temp

```
a = a ^ b;
b = b ^ a;
a = a ^ b
或
a ^= b; b ^= a; a ^= b;
```

```
int a = 1, b = 2;
```

标准的交换步骤

```
int temp;
temp = a;
a = b;
b = temp;
```

需要定义和使用一 个临时变量 temp

```
a = a ^ b;
b = b ^ a;
a = a ^ b
或
a ^= b; b ^= a; a ^= b;
或
a ^= b ^= a ^= b
```

```
int a = 1, b = 2;
```

标准的交换步骤

```
int temp;
temp = a;
a = b;
b = temp;
```

需要定义和使用一 个临时变量 temp

假设有 N+1 个变量,存放了整数 $1,2,3,\ldots,N$,其中有且只有一个整数重复了 2 次。如何快速确定哪一个整数重复了?

可行的方法:

▶ 逐对比较,检查没有相同的。运算量: N×(N-1)/2

假设有 N+1 个变量,存放了整数 $1,2,3,\ldots,N$,其中有且只有一个整数重复了 2 次。如何快速确定哪一个整数重复了?

- ▶ 逐对比较,检查没有相同的。运算量: N×(N-1)/2
- ▶ 计算所有的变量的和,与 1+2+...+N 比较,得到重复的数。 运算量 N+1 次加减法

假设有 N+1 个变量,存放了整数 $1,2,3,\ldots,N$,其中有且只有一个整数重复了 2 次。如何快速确定哪一个整数重复了?

- ▶ 逐对比较,检查没有相同的。运算量: N×(N-1)/2
- ▶ 计算所有的变量的和,与 1+2+...+N 比较,得到重复的数。 运算量 N+1 次加减法
 - ▶ 加法求和可能会溢出(当 N 非常大的时候)

假设有 N+1 个变量,存放了整数 $1,2,3,\ldots,N$,其中有且只有一个整数重复了 2 次。如何快速确定哪一个整数重复了?

- ▶ 逐对比较,检查没有相同的。运算量: N×(N-1)/2
- ▶ 计算所有的变量的和,与 1+2+...+N 比较,得到重复的数。 运算量 N+1 次加减法
 - ▶ 加法求和可能会溢出(当 N 非常大的时候)
- ▶ 把加法换作: 异或

假设有 N+1 个变量,存放了整数 $1,2,3,\ldots,N$,其中有且只有一个整数重复了 2 次。如何快速确定哪一个整数重复了?

- ▶ 逐对比较,检查没有相同的。运算量: N×(N-1)/2
- ▶ 计算所有的变量的和,与 1+2+...+N 比较,得到重复的数。 运算量 N+1 次加减法
 - ▶ 加法求和可能会溢出(当 N 非常大的时候)
- ▶ 把加法换作: 异或

假设有 N+1 个变量,存放了整数 $1,2,3,\ldots,N$,其中有且只有一个整数重复了 2 次。如何快速确定哪一个整数重复了?

可行的方法:

- ▶ 逐对比较,检查没有相同的。运算量: N×(N-1)/2
- ▶ 计算所有的变量的和,与 1+2+...+N 比较,得到重复的数。 运算量 N+1 次加减法
 - ▶ 加法求和可能会溢出(当 N 非常大的时候)
- ▶ 把加法换作: 异或

如何获取第 k 位的值?

如何获取第 k 位的值?

产生一个掩码: 1 << k, (只有第 k 位为 1)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

 0
 1
 1
 1
 0
 0
 1
 0
 1
 0
 1
 0
 1
 1
 1
 1

如何获取第 k 位的值?

产生一个掩码: 1 << k, (只有第 k 位为 1)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

执行按位与运算: n & (1 << k)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


```
void print_bits ( int n, int high, int low )
{
   int k;
   for (k = high; k >= low; k--) {
      int mask = 1<<k; // 生成掩码
      if ( mask & n ) // 掩码对应的bit 值
         putchar('1');
      else
        putchar('0');
```

▶ 应用移位运算,为第 k 位比特位制造一个掩码: mask = 1 << k</p>

将掩码 mask 和整数进行逻辑与,获得 bit 值: mask & n mask & n 非零,代表该比特为 1

```
int main()
{
 int n; float x;
 printf("输入一个整数和实数:");
 scanf("%d %f", &n, &x);
 putchar('\n');
 31, 0); putchar('\n');
 return 0;
```

```
int main()
{
  int n; float x;
  printf("输入一个整数和实数:");
  scanf("%d %f", &n, &x);
  putchar('\n');
  printf("x & %9f = ", x); print_bits(*(int*)&x,
    31, 0); putchar('\n');
  return 0;
```

```
输入一个整数和实数:234 13.567
整数 234 = 000000000000000000000011101010
实数 13.567000 = 010000010110010001001101111
```

```
int main()
{
  int n; float x;
  printf("输入一个整数和实数:");
  scanf("%d %f", &n, &x);
  putchar('\n');
  printf(" \notin  \% \%9f = ", x); print bits(*(int*)&x,
     31, 0); putchar('\n');
  return 0;
```

```
输入一个整数和实数:234 13.567
整数 234 = 000000000000000000000011101010
实数 13.567000 = 010000010110010001001101111
```

这里利用了指针和类型转换: &x 获取了float x 的指针, 然后将其转换 为整数指针 (int*), 在通过整数指针, 将它的 bits 转化为整数, 保存到 变量 n 中。只有整数才可以进行位运算

23 / 37

内容提要

数据类型

浮点数表示格式

位运算

解析浮点数

运算符和优先级

5	E	М
符号	阶码	尾数
1 bit	8 bit	23 bit

```
    S
    E
    M

    符号
    阶码
    尾数

    1 bit
    8 bit
    23 bit
```

获取符号

```
int get_float_sign ( float x )
{
    int n = *(int*)&x; //复制到int变量中
    int mask = 1<<31; //生成符号位的掩码
    return mask & n ? -1 : 1;
}</pre>
```

获取阶码

```
int get_float_exp ( float x )
{
    int n = *(int*)&x; //复制到int变量中
    n = (n >> 23) & 0xFF;
    n = n - 127;
    return n;
}
```

获取阶码

```
int get_float_exp ( float x )
{
    int n = *(int*)&x; //复制到int变量中
    n = (n >> 23) & OxFF;
    n = n - 127;
    return n;
}
```

获取阶码

```
int get_float_exp ( float x )
{
    int n = *(int*)&x; //复制到int变量中
    n = (n >> 23) & 0xFF;
    n = n - 127;
    return n;
}
```

```
? ? ? ? ? ? ? ?
```

▶ 向右移位 (23 位)

获取阶码

```
int get_float_exp ( float x )
{
    int n = *(int*)&x; //复制到int变量中
    n = (n >> 23) & 0xFF;
    n = n - 127;
    return n;
}
```

0

- - ▶ 向右移位(23 位)
 - ▶ 保留低 8 位, 其余清零

```
float get float mantissa (float x)
{
   int n = *(int*)&x; //复制到int变量中
   int e = n & (OXFF << 23); // 阶码段
   n &= ~(0X1FF << 23); // 符号位和阶码段清零
   if(e) {//不全为0
       n |= 0x7F<<23; // 阶码段置为0X7F(0x7F
         =01111111, 代表指数为0)
   return *(float*)&n:
}
```

```
float get float mantissa (float x)
{
   int n = *(int*)&x; //复制到int变量中
   int e = n & (OXFF << 23); // 阶码段
   n &= ~(0X1FF << 23); // 符号位和阶码段清零
   if(e) {//不全为0
       n |= 0x7F<<23; // 阶码段置为0X7F(0x7F
         =011111111, 代表指数为0)
   return *(float*)&n:
}
```

```
float get float mantissa (float x)
{
   int n = *(int*)&x; //复制到int变量中
   int e = n & (OXFF << 23); // 阶码段
   n &= ~(0X1FF<<23); // 符号位和阶码段清零
   if(e) {//不全为0
       n |= 0x7F<<23; // 阶码段置为0X7F(0x7F
         =011111111, 代表指数为0)
   return *(float*)&n:
}
```

```
float get float mantissa (float x)
{
   int n = *(int*)&x; //复制到int变量中
   int e = n & (OXFF << 23); // 阶码段
   n &= ~(0X1FF << 23); // 符号位和阶码段清零
   if(e) {//不全为0
       n |= 0x7F<<23; // 阶码段置为0X7F(0x7F
         =011111111, 代表指数为0)
   return *(float*)&n:
}
```

查看浮点数

```
void print_float(float x)
{
    print_bits( *(int*)&x, 31, 31 );
    printf("<%c> ", get_float_sign(x)>0?'+':'-');
    print_bits(*(int*)&x, 30, 23 ); print_space(1);
    printf("<%-4d> ", get_float_exp(x));
    print_bits(*(int*)&x, 22, 0 );
    printf(" <%f>\n", get_float_mantissa(x));
}
```

内容提要

数据类型

浮点数表示格式

位运算

解析浮点数

运算符和优先级

长度运算符 sizeof

一个计算常量、变量、以及数据类型的长度的运算符。长 度以字节为单位

▶ 单目运算符

- ▶ 单目运算符
- ▶ 用 sizeof 表示

- ▶ 单目运算符
- ▶ 用 sizeof 表示
- ▶ 运算对象可以是

- ▶ 单目运算符
- ▶ 用 sizeof 表示
- ▶ 运算对象可以是
 - ▶ 常量,例如 sizeof(5)

- ▶ 单目运算符
- ▶ 用 sizeof 表示
- ▶ 运算对象可以是
 - ▶ 常量, 例如 sizeof(5)
 - ▶ 变量,例如 sizeof(x)

- ▶ 单目运算符
- ▶ 用 sizeof 表示
- ▶ 运算对象可以是
 - ▶ 常量, 例如 sizeof(5)
 - ▶ 变量,例如 sizeof(x)
 - ▶ 数据类型名, 例如 sizeof(float)

一个计算常量、变量、以及数据类型的长度的运算符。长 度以字节为单位

- ▶ 单目运算符
- ▶ 用 sizeof 表示
- ▶ 运算对象可以是
 - ▶ 常量,例如 sizeof(5)
 - ▶ 变量,例如 sizeof(x)
 - ▶ 数据类型名, 例如 sizeof(float)

假设定义了: int a; 那么:

一个计算常量、变量、以及数据类型的长度的运算符。长 度以字节为单位

- ▶ 单目运算符
- ▶ 用 sizeof 表示
- ▶ 运算对象可以是
 - ▶ 常量,例如 sizeof(5)
 - ▶ 变量,例如 sizeof(x)
 - ▶ 数据类型名, 例如 sizeof(float)

|假设定义了: int a; 那么:

▶ 表达式 sizeof(a) 的值为变量 a 的长度, 等于 4

一个计算常量、变量、以及数据类型的长度的运算符。长 度以字节为单位

- ▶ 单目运算符
- ▶ 用 sizeof 表示
- ▶ 运算对象可以是
 - ▶ 常量,例如 sizeof(5)
 - ▶ 变量,例如 sizeof(x)
 - ▶ 数据类型名, 例如 sizeof(float)

假设定义了: int a; 那么:

- ▶ 表达式 sizeof(a) 的值为变量 a 的长度, 等于 4
- ▶ 表达式 sizeof(int) 表示整型 int 的长度, 等于 4

一个计算常量、变量、以及数据类型的长度的运算符。长 度以字节为单位

- ▶ 单目运算符
- ▶ 用 sizeof 表示
- ▶ 运算对象可以是
 - ▶ 常量, 例如 sizeof(5)
 - ▶ 变量,例如 sizeof(x)
 - ▶ 数据类型名, 例如 sizeof(float)

假设定义了: int a; 那么:

- ▶ 表达式 sizeof(a) 的值为变量 a 的长度, 等于 4
- ▶ 表达式 sizeof(int) 表示整型 int 的长度,等于 4
- ▶ 表达式 sizeof(double) 表示 doulbe 类型数据的长度,等于 8

优先级	名称	运算符	功能和特点
1. 初等类	括号	()	可改变优先级顺序
	下标	[]	数组下标
	指针	->	结构指针引用成员
	指针		结构体引用成员

优先级	名称	运算符	功能和特点
1. 初等类	括号	()	可改变优先级顺序
	下标	[]	数组下标
	指针	->	结构指针引用成员
	指针		结构体引用成员
2. 单目类 右 → 左结合	逻辑非	!	逻辑取反
	按位反	~	按位取反
	正号	+	指定符号为正
	负号	_	取相反值
	类型转换	(类型名)	强制转换类型
	地址	&	去变量地址
	自增	++	自增
	自减		自减
	长度	sizeof	取长度/字节数

优先级	名称	运算符	功能和特点	
	乘号	*		
3. 算术乘除	除号	/		
	余数	%	算数运算	
4. 算术加减	加号	+		
^{4.} 异小川帆	减号	_		
5. 移位类	左移	<<	向左移位	
9. 惨世央	右移	>>	向右移位	
	大于	>		
6. 关系比较	小于	<	结果为逻辑值	
0. 大宗儿权	不小于	>=		
	不大于	<=		
7. 相等比较	等于	==		
/ 伯奇比权	不等	! =		

优先级	名称	运算符	功能和特点	
8	按位与	&		
9	按位异或	^	位逻辑运算	
10	按位或			
11	逻辑与	&&	逻辑运算	
12	逻辑或		这 再 以 异	
13	条件运算	?:	右 → 左结合	
		= += -= *=		
14	赋值	/= %= &= ^=	右 → 左结合	
		= >>= <<=		
15	逗号运算符	,	构造逗号表达式	

读入一行字符,统计以空格分隔的单词个数。

```
int cnt = 0, word = 0;
char ch;
printf("输入一行字符:");
while( (ch = getchar()) != '\n'
  if(ch=='')//单词分隔符
     word = 0; //清除单词标志
  else if (word==0) {//开始新的单词
     word = 1; //设置单词标志
     cnt++: //增加单词个数
printf("单词个数=%d\n", cnt);
```

读入一行字符,统计以空格分隔的单词个数。

```
int cnt = 0, word = 0;
char ch;
printf("输入一行字符:");
while ((ch = getchar()) != ' n') {
  if(ch=='')//单词分隔符
     word = 0; //清除单词标志
  else if ( word==0 ) {// 开始新的单词
     word = 1; //设置单词标志
     cnt++: //增加单词个数
printf("单词个数=%d\n", cnt);
```

读入一行字符,统计以空格分隔的单词个数。

```
int cnt = 0, word = 0;
char ch;
printf("输入一行字符:");
while ( (ch = getchar()) != ' n' ) {
  if(ch=='')//单词分隔符
     word = 0; //清除单词标志
  else if( word==0 ) {//开始新的单词
     word = 1; // 设置 里词 标志
     cnt++; // 增加 里 词 个 数
printf("单词个数=%d\n", cnt);
```

```
while((ch = getchar())!= '\n')
能否替换为下面的代码?
while(ch = getchar()!= '\n')
为什么?
```

▶ 小数的二进制

- ▶ 小数的二进制
- ▶ 浮点数表示

- ▶ 小数的二进制
- ▶ 浮点数表示
- ▶ 位运算、位逻辑、移位运算

- ▶ 小数的二进制
- ▶ 浮点数表示
- ▶ 位运算、位逻辑、移位运算
- ▶ 应用位运算,解析浮点数

今天到此为止