BST02: Using R for Statistics in Medical Research

Part D: Statistics with R

Nicole Erler

Department of Biostatistics, Erasmus Medical Center

✓ n.erler@erasmusmc.nl

24 - 28 February 2020

In this Section

- Common statistical tests
 - for continuous data
 - ► for categorical data
- ► (Generalized) linear regression
- Useful functions for regression models
- ► Modelling non-linear effects

t-test: t.test()

One-sample t-test

ightharpoonup compares the **mean of one sample** with a fixed value μ

t-test: t.test()

One-sample t-test

ightharpoonup compares the **mean of one sample** with a fixed value μ

Two sample / independent samples t-test

ightharpoonup compares the **difference between the means** of two samples with a fixed value μ

t-test: t.test()

One-sample t-test

 \blacktriangleright compares the **mean of one sample** with a fixed value μ

Two sample / independent samples t-test

ightharpoonup compares the **difference between the means** of two samples with a fixed value μ

Related samples t-test

ightharpoonup compares the **mean of the difference** between related observations with a fixed value μ (same as one-sample t-test)

Wilcoxon Test: wilcox.test()

Wilcoxon Signed Rank Test

 \blacktriangleright tests if **one sample** (or the difference between two paired samples) is **symmetric about** μ

Wilcoxon Test: wilcox.test()

Wilcoxon Signed Rank Test

 \blacktriangleright tests if **one sample** (or the difference between two paired samples) is **symmetric about** μ

Wilcoxon Rank Sum Test / Mann-Whitney test

test for a location shift between the distributions of two independent samples

See also BBR Sections 7.2 & 7.3 (http://hbiostat.org/doc/bbr.pdf)

Kruskal-Wallis Rank Sum Test: kruskal.test()

- extension of the Wilcoxon rank sum test for more than two groups
- test for a difference in location of a continuous variable between multiple groups
- ▶ the Wilcoxon rank sum test is a special case of the Kruskal-Wallis rank sum test

Other tests for continuous data

- ► Kolmogorov-Smirnov Test: ks.test() tests if two samples are drawn from the same continuous distribution
- ► Shapiro-Wilk Normality Test: shapiro.test()
- ► Friedman Rank Sum Test: friedman.test()
 non-parametric test for two or more related samples

▶ ..

Tests for Continuous Data

Demo

► Tests for Continuous Data

One-sample Proportion Test

- ▶ tests if the **proportion in one sample** is equal to a fixed value p
- prop.test() and binom.test()

One-sample Proportion Test

- ▶ tests if the **proportion in one sample** is equal to a fixed value p
- prop.test() and binom.test()

Tests for Proportions in Multiple (independent) Groups

- ▶ tests if the **proportions in several samples** are equal
- chisq.test() and fisher.test() (when there are cells with 0)

See also BBR Sections 5.7 & 6 (http://hbiostat.org/doc/bbr.pdf)

Related Samples: McNemar Test

- ▶ Tests for **symmetry** in a 2×2 table
- mcnemar.test()

Related Samples: McNemar Test

- ▶ Tests for **symmetry** in a 2×2 table
- mcnemar.test()

3-Dimensional Contingency Table

- Cochrane-Mantel-Haenszel Test
- $ightharpoonup \chi^2$ test for **independence** of two nominal variables **within each** stratum
- mantelhaen.test()

Tests for Categorical Data

Demo

► Tests for Categorical Data

R html

Practical

Statistical Tests

html

Useful Functions: Statistical Tests

Continuous Outcomes

- ▶ t.test()
- ▶ wilcox.test()
- kruskal.test()
- ks.test()
- ► friedman.test()
- shapiro.test()

Categorical Outcomes

- prop.test()
- binom.test()
- ► chisq.test()
- ▶ fisher.test()
- mcnemar.test()
- ▶ mantelhaen.test()

Pairwise tests

- pairwise.prop.test()
- pairwise.t.test()
- pairwise.wilcox.test()

Variance and Correlation

- cor.test()
- ▶ bartlett.test()
- var.test()

Multiple Testing Adjustment

p.adjust()

Linear Regression

A standard linear regression model has the form

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p + \varepsilon$$
 with $\varepsilon \sim N(0, \sigma^2)$

where

- ▶ y is the **outcome** variable ("dependent variable")
- \blacktriangleright x_1, \dots, x_p are the **covariates** ("independent variables")
- $ightharpoonup eta_0, \dots, eta_p$ are the **regression coefficients**
 - \triangleright β_0 is the intercept
 - \triangleright β_1, \ldots, β_p estimate the effects of the covariates
- \triangleright ε is a vector of **residuals**, which we assume to be (approximately) normally distributed.

Linear Regression

To fit a **linear regression** in R we use the function lm().

The most important arguments are

- formula: a formula object
- data:
 a data.frame (optional, but usually needed)
- subset: a vector specifying which observations should be used (optional) (works like the subset argument of the function subset())

Model Formula

A formula object has the form

outcome ~ linear predictor

for example

$$y \sim x1 + x2 + x3$$

Model Formula

A formula object has the form

```
outcome ~ linear predictor
```

for example

$$y \sim x1 + x2 + x3$$

- ► Variables are separated by "+" signs.
- ► An intercept is automatically included.
- ► One-sided formulas (omitting the outcome) are possible (used for random effects specification).

Interaction terms are written using ":" or "*".

"*" includes the main effects and interaction terms, i.e.,

$$y \sim x1 * x2$$

is equivalent to

$$y \sim x1 + x2 + x1:x2$$

Interaction terms are written using ":" or "*".

"*" includes the main effects and interaction terms, i.e.,

$$y \sim x1 * x2$$

is equivalent to

$$y \sim x1 + x2 + x1:x2$$

Interactions between multiple variables can be written using "()", i.e.,

$$y \sim x1 * (x2 + x3)$$

is equivalent to

$$y \sim x1 * x2 + x1 * x3$$

To specify a **higher level interaction** "^" is used.

For example:

$$y \sim (x1 + x2 + x3)^3$$

will create all interactions up to 3-way and is equivalent to

and equivalent to

$$y \sim x1 + x2 + x3 + x1:x2 + x1:x3 + x2:x3 + x1:x2:x3$$

To specify a **higher level interaction** "^" is used.

For example:

$$y \sim (x1 + x2 + x3)^3$$

will create all interactions up to 3-way and is equivalent to

$$y \sim x1 * x2 * x3$$

and equivalent to

$$y \sim x1 + x2 + x3 + x1:x2 + x1:x3 + x2:x3 + x1:x2:x3$$

and

$$y \sim (x1 + x2 + x3)^2$$

will create all two-way interactions and is equivalent to

$$y \sim x1 + x2 + x3 + x1:x2 + x1:x3 + x2:x3$$

Model Formula: Removing terms

The "-" sign can be used to remove terms from a model formula.

For example

```
y ~ x1 * x2 * x3 - x2 - x1:x3
```

is equivalent to

```
y \sim x1 + x3 + x1:x2 + x2:x3 + x1:x2:x3
```

Model Formula: Removing terms

The "-" sign can be used to remove terms from a model formula.

For example

```
y ~ x1 * x2 * x3 - x2 - x1:x3
```

is equivalent to

```
y \sim x1 + x3 + x1:x2 + x2:x3 + x1:x2:x3
```

The **intercept** can be removed from a formula by using "-1" or "+0", i.e.

```
y \sim x1 + x2 - 1

y \sim x1 + x2 + 0
```

Generalized Linear Regression (GLM)

A **generalized linear regression** model has the form

$$g(\mathbb{E}(y)) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

where g() is a link function and y is from the exponential family.

Generalized Linear Regression (GLM)

A generalized linear regression model has the form

$$g(\mathbb{E}(y)) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

where g() is a link function and y is from the exponential family.

For example **logistic regression** for binary *y*:

$$\log\left(\frac{P(y=1)}{1 - P(y=1)}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

 $\log\left(\frac{p}{1-p}\right)$ is the **logit** link.

Generalized Linear Regression (GLM)

To fit a **GLM** in R we use the function glm().

The most important arguments are

- formula:
 a formula object
- family: a family object or name of the family function, describing the error distribution and link function
- data: a data.frame (optional, but usually needed)
- subset: a vector specifying which observations should be used (optional)

Families and Link Functions

Common families & available links in R:

(see also ?family)

family	link
binomial	logit, probit, cauchit, log, cloglog
gaussian	identity, log, inverse
Gamma	inverse, identity, log
poisson	log, identity, sqrt

Families and Link Functions

Common families & available links in R:

(see also ?family)

family	link
binomial	logit, probit, cauchit, log, cloglog
gaussian	identity, log, inverse
Gamma	inverse, identity, log
poisson	log, identity, sqrt

The family argument in glm() can be specified in the following ways:

- ▶ binomial(link = "logit")
- binomial()
- ▶ binomial
- ▶ "binomial"

Families and Link Functions

Common families & available links in R:

(see also ?family)

family	link
binomial	logit, probit, cauchit, log, cloglog
gaussian	identity, log, inverse
Gamma	inverse, identity, log
poisson	log, identity, sqrt

The family argument in glm() can be specified in the following ways:

- binomial(link = "logit")
- binomial()
- ▶ binomial
- ▶ "binomial"

Note:

When the link is not explicitly specified (i.e. options 2-4), the default link is used.

Regression

Demo

► Regression Basics

R html

Practical

► Linear Regression html

Model Evaluation

Linear model:

Evaluate the **assumptions** of a linear regression model visually, for example:

- ► Histogram of residuals
- Normal QQ-plot of residuals
- Scatterplot residuals vs fitted values

Model Comparison

Nested models:

- model is a special case of the other, i.e.,
- model B is a special case of model A when B can be obtained by setting some regression coefficients in A to zero

Comparison using a **likelihood ratio (LR) test**, for example:

```
anova(modelA, modelB)
anova(modelA, modelB, test = "LRT") # for a glm
```

Model Comparison

Nested models:

- model is a special case of the other, i.e.,
- model B is a special case of model A when B can be obtained by setting some regression coefficients in A to zero

Comparison using a likelihood ratio (LR) test, for example:

```
anova(modelA, modelB)
anova(modelA, modelB, test = "LRT") # for a glm
```

Non-nested models:

Comparison using information criteria, e.g.

```
AIC(modelA, modelB)
BIC(modelA, modelB)
```

The model with the **smaller** AIC (or BIC) has the **better** fit.

Model Evaluation

Demo

► Model Evaluation R html

Default assumption: **linear effect**, i.e., $x \rightarrow y \Rightarrow x + 1 \rightarrow y + \beta$, $\forall x$

Default assumption: **linear effect**, i.e., $x \rightarrow y \Rightarrow x + 1 \rightarrow y + \beta$, $\forall x$

This may not always be the case:

Here, we would like to allow the **effect** of a one-unit increase **of x** to **change with the value of x**:

Sometimes, we can use

- ► a transformation of x, or
- x as well as a polynomial of x (or a transformation).

For example:

$$y \sim x + I(x^2)$$

or

$$y \sim log(x)$$

Non-linear Effects: I()

The function I() is needed to distinguish between operators that need to be interpreted as

- arithmetic operators and
- ► formula operators

Non-linear Effects: I()

The function I() is needed to distinguish between operators that need to be interpreted as

- arithmetic operators and
- ► formula operators

Example:

$$y \sim I(a + b)$$

would be the same as

but not the same as

Complex Non-linear Effects

Non-linear effects may be **more complex** than can be modelled with a simple transformation or polynomial.

Also: the shape may depend on other covariates in the model

- → we do not always know the shape in advance
- **⇒** Regression Splines / B-Splines

A **B-Spline** is a linear combination of a set of **basis functions**.

These basis functions are defined so that they are

- a polynomial functions inside a given interval, and
- zero outside that interval.

The intervals are defined by a set of **knots**.

The polynomial function have a certain **degree** (i.e., constant, linear, quadratic, ...)

A **B-Spline** is a linear combination of a set of **basis functions**.

These basis functions are defined so that they are

- ▶ a polynomial functions inside a given interval, and
- zero outside that interval.

The intervals are defined by a set of knots.

The polynomial function have a certain **degree** (i.e., constant, linear, quadratic, ...)

B-Splines in R

The R package **splines** provides the functions

- ▶ bs(): B-splines
- ▶ ns(): natural cubic (B-)splines

Instead of $y \sim \beta_0 + \beta_1 x + \dots$ we assume $y \sim \beta_0 + \sum_{\ell=1}^d \beta_\ell B_\ell(x) + \dots$

Instead of $y \sim \beta_0 + \beta_1 x + \dots$ we assume $y \sim \beta_0 + \sum_{\ell=1}^d \beta_\ell B_\ell(x) + \dots$

Instead of
$$y \sim \beta_0 + \beta_1 x + \dots$$
 we assume $y \sim \beta_0 + \sum_{\ell=1}^d \beta_\ell B_\ell(x) + \dots$

B-Splines: degree

B-Splines: df

B-Splines: df

Important arguments of ns() and bs() are:

degree

- degree of the polynomial in each of the basis functions
- ▶ in bs(): default is 3
- ▶ in ns(): always 3 ("cubic")

Important arguments of ns() and bs() are:

degree

- degree of the polynomial in each of the basis functions
- ▶ in bs(): default is 3
- ▶ in ns(): always 3 ("cubic")

df

- degrees of freedom, i.e., "number of regression coefficients" used
- ▶ for bs(): has to be ≥ degree

Important arguments of ns() and bs() are:

degree

- degree of the polynomial in each of the basis functions
- ▶ in bs(): default is 3
- ▶ in ns(): always 3 ("cubic")

df

- degrees of freedom, i.e., "number of regression coefficients" used
- ▶ for bs(): has to be ≥ degree

knots

- position of (inner) knots
- ▶ if unspecified:
 - ▶ df-degree knots are used
 - positioned at equally spaced quantiles

Important arguments of ns() and bs() are:

degree

- degree of the polynomial in each of the basis functions
- ▶ in bs(): default is 3
- ▶ in ns(): always 3 ("cubic")

df

- degrees of freedom, i.e., "number of regression coefficients" used
- ▶ for bs(): has to be ≥ degree

knots

- position of (inner) knots
- ▶ if unspecified:
 - df-degree knots are used
 - positioned at equally spaced quantiles

Boundary.knots

- ▶ by default: range(x)
- outside the Boundary.knots the fit is extrapolated

Demo

► Splines R html

Practicals

- ► Logistic Regression & More html
- ► Logistic Regression II html
- Custom Model Summary Functionhtml

Regression

Regression Models

- ► lm()
- **▶** glm()

Regression Results

- summary()
- coef(), confint()
- fitted(), residuals(),
 rstandard()
- ► AIC(), BIC()
- ▶ anova()

Plots

- ▶ plot()
- qqnorm(), qqline(), qqplot()

Formulas

- ► Formula operators: +, -, *, :, ^
- ▶ ns(), bs(), I()
- ▶ all.vars()
- update()
- ▶ as.formula()