Applied Stochastic Processes

Exercise sheet 1

Exercise 1.1

- (a) Let T_1, \ldots, T_k be i.i.d. random variables with $T_1 \sim \text{Exp}(\lambda)$ and $S_k = \sum_{i=1}^k T_i$. Show that $S_k \sim \text{Gamma}(k, \lambda)$.
- (b) A real and positive random variable X is said to have the *memoryless* property if $P[X \ge x] > 0$ for all x > 0 and

$$P[X \ge x + y \mid X \ge x] = P[X \ge y] \text{ for all } x, y > 0.$$

Prove that a continuous and positive random variable X has the memoryless property if and only if $X \sim \text{Exp}(\lambda)$ for some $\lambda > 0$.

Exercise 1.2 Wald's Equation.

Let $(X_i)_{i\in\mathbb{N}}$ be a sequence of i.i.d. random variables with $\mathrm{E}[X_i] = \mu$ and $\mathrm{Var}(X_i) = \sigma^2 < \infty$ and $(S_n)_{n\in\mathbb{N}}$ the sequence of partial sums defined by $S_0 := 0$ and $S_n := \sum_{i=1}^n X_i$.

For a non-negative, integer-valued random variable N, which is independent of $(X_i)_{i\in\mathbb{N}}$, let S_N denote the random sum defined by $S_N := \sum_{i=1}^N X_i$.

(a) Suppose that $E[N] < \infty$. Prove

$$E[S_N|N] = \mu N$$

and

$$E[S_N] = \mu E[N].$$

Hint: Do not forget to argue that S_N is integrable.

(b) Suppose that $E[N^2] < \infty$. Show that

$$E[S_N^2|N] = \sigma^2 N + \mu^2 N^2$$

and

$$Var(S_N) = \sigma^2 E[N] + \mu^2 Var(N).$$

Exercise 1.3 Spatial Poisson process.

Let countably many points be distributed in \mathbb{R}^2 according to the following rule:

- 1. For a bounded set $A \in \mathcal{B}(\mathbb{R}^2)$ the number of points N(A) lying in the set A is Poisson-distributed with parameter $\mu(A)$ where $\mu(A) := \lambda |A|$ with $\lambda > 0$ and $|\cdot|$ denotes the Lebesgue measure on \mathbb{R}^2 .
- 2. $N(A_1), \ldots, N(A_k)$ are independent for disjoint bounded sets $A_1, \ldots, A_k \in \mathcal{B}(\mathbb{R}^2)$.
- (a) For fixed r > 0 we define $B_r := \{x \in \mathbb{R}^2 : ||x|| \le r\}$ (where $||\cdot||$ denotes the Euclidean norm on \mathbb{R}^2) and $D := \inf\{r > 0 \mid N(B_r) > 0\}$. Determine the distribution function and the density of D.
- (b) Compute for u > r the limit $\lim_{r \to 0} P[N(B_u) = 1 \mid N(B_r) = 1]$.

Solution 1.1

(a) For a given random variable $X \sim \operatorname{Gamma}(k, \lambda)$ we know that its density function is given by

$$f_X(t) = \lambda^k \frac{t^{k-1}}{(k-1)!} e^{-\lambda t}$$
 for $t > 0$.

We prove by induction that this is the density of $S_k \ \forall k \in \mathbb{N}$. First note that $S_1 = T_1 \sim \text{Exp}(\lambda)$ has density $g(t) = \lambda e^{-\lambda t}$, so $S_1 \sim \text{Gamma}(1,\lambda)$. Now, suppose that $S_k \sim \text{Gamma}(k,\lambda)$ and calculate the density for S_{k+1} (using independence of T_{k+1} and S_k , and convolution):

$$g^{*(k+1)}(t) = g * g^{*k}(t) = \int_0^t \lambda e^{-\lambda(t-s)} \lambda^k \frac{s^{k-1}}{(k-1)!} e^{-\lambda s} ds$$
$$= \lambda^{k+1} e^{-\lambda t} \int_0^t \frac{s^{k-1}}{(k-1)!} ds = \lambda^{k+1} \frac{t^k}{k!} e^{-\lambda t}.$$

Hence $S_{k+1} \sim \text{Gamma}(k+1,\lambda)$ and the induction is complete.

Remarks:

• The Gamma(ν, λ) distribution is defined for general parameters $\nu, \lambda > 0$ and has density

$$g(t) = \lambda^{\nu} \frac{t^{\nu-1}}{\Gamma(\nu)} e^{-\lambda t}, \quad t > 0,$$

where $\Gamma(\nu) = \int_{0}^{\infty} t^{\nu-1} e^{-t} dt$ is the gamma function.

- For $\nu = k \in \mathbb{N}$ this is also called the Erlang-k distribution, which represents the law of the time spent up to the k-th arrival in a Poisson process with intensity λ .
- We can calculate the characteristic function of the $Gamma(k,\lambda)$ distribution via the characteristic function of $\text{Exp}(\lambda)$:

$$\varphi_{T_1}(u) = \mathbf{E}\left[e^{\mathrm{i}uT_1}\right] = \int_0^\infty \lambda e^{-(\lambda - \mathrm{i}u)t} dt = \frac{\lambda}{\lambda - \mathrm{i}u},$$

$$\varphi_{S_k}(u) = \mathbf{E}\left[e^{\mathrm{i}u\sum_{j=1}^k T_j}\right] = \mathbf{E}\left[\prod_{j=1}^k e^{\mathrm{i}uT_j}\right] \stackrel{\text{iid}}{=} \mathbf{E}\left[e^{\mathrm{i}uT_1}\right]^k = \left(\frac{\lambda}{\lambda - \mathrm{i}u}\right)^k.$$

(b) First, note that we can rewrite the memoryless condition as

$$P[X \ge x + y] = P[X \ge x]P[X \ge y]$$
 for any $x, y > 0$.

Let us define for x > 0 the function $h(x) = P[X \ge x]$. \rightleftharpoons We know that if $X \sim \text{Exp}(\lambda)$, we have $h(x) = e^{-\lambda x}$. Then

$$h(x)h(y) = e^{-\lambda x}e^{-\lambda y} = e^{-\lambda(x+y)} = h(x+y).$$

 \Rightarrow Suppose that X is a positive and continuous random variable. Then, h is a continuous decreasing function which satisfies h(x+y) = h(x)h(y) for all x,y>0. Since X is positive we know that $\lim_{x\to 0^+} h(x) = 1$. Also, since X is not ∞ a.s., we have $\lim_{x\to\infty} h(x) = 0$. Thus, let us consider $x_0 > 0$ such that $1 > h(x_0) > 0$. It is easy to check that for any n natural number $h(nx_0) = h(x_0)^n$ and $h(x_0/n) = h(x_0)^{1/n}$. This implies that $h(px_0/q) = h(x_0)^{p/q}$ for any p, q natural numbers and thus $h(rx_0) = h(x_0)^r$ for every r positive rational number. Since \mathbb{Q} is dense in \mathbb{R} and h is continuous, we conclude that $h(yx_0) = h(x_0)^y$ for all y positive real number. Taking $x = yx_0$ and $\lambda = -\log(h(x_0))/x_0 > 0$ we conclude that $h(x) = e^{-\lambda x}$ for every x > 0. Therefore $X \sim \text{Exp}(\lambda)$.

Solution 1.2

(a) For $n \in \mathbb{N}$ set $Y_n := \sum_{i=1}^n |X_i|$ and note that the $|X_i|$ are i.i.d. and independent of N. Hence, we have by the monotone convergence theorem and independence of the X_i and N

$$E[|S_N|] = E\left[\sum_{k=0}^{\infty} |S_k| 1_{\{N=k\}}\right] \le E\left[\sum_{k=0}^{\infty} Y_k 1_{\{N=k\}}\right]$$
$$= \sum_{k=0}^{\infty} E[Y_k 1_{\{N=k\}}] = \sum_{k=0}^{\infty} E[Y_k] E[1_{\{N=k\}}]$$
$$= E[Y_1] \left(\sum_{k=0}^{\infty} k P[N=k]\right) = E[Y_1] E[N] < \infty.$$

We have $E[S_n] = \mu n$ for all $n \in \mathbb{N}$. As N is independent of $(X_i)_{i \in \mathbb{N}}$, it follows for all $n \in \mathbb{N}_0$

$$\mathrm{E}[S_N \mathbf{1}_{\{N=n\}}] = \mathrm{E}[S_n \mathbf{1}_{\{N=n\}}] = \mathrm{E}[S_n] \mathrm{E}[\mathbf{1}_{\{N=n\}}] = \mu n \mathrm{E}[\mathbf{1}_{\{N=n\}}] = \mathrm{E}[\mu N \mathbf{1}_{\{N=n\}}] \,.$$

Hence, as N takes values in \mathbb{N}_0 so that $\sigma(N)$ is generated by the sets $\{N=n\}$, we have $\mathbb{E}[S_N \mid N] = \mu N$. This implies

$$E[S_N] = E[E[S_N|N]] = E[\mu N] = \mu E[N].$$

(b) We have $E[S_n^2] = \sigma^2 n + \mu^2 n^2$ for all $n \in \mathbb{N}$. Since $(S_N)^2 \geq 0$, the conditional expectation $E[(S_N)^2|N]$ is well-defined. As N is independent of $(X_i)_{i\in\mathbb{N}}$, it follows for all $n\in\mathbb{N}$

$$\begin{split} \mathbf{E}[S_N^2 \mathbf{1}_{\{N=n\}}] &=& \mathbf{E}[S_n^2 \mathbf{1}_{\{N=n\}}] \\ &=& \mathbf{E}[S_n^2] \mathbf{E}[\mathbf{1}_{\{N=n\}}] \\ &=& (\sigma^2 n + \mu^2 n^2) \mathbf{E}[\mathbf{1}_{\{N=n\}}] \\ &=& \mathbf{E}[(\sigma^2 N + \mu^2 N^2) \mathbf{1}_{\{N=n\}}] \,. \end{split}$$

This implies $E[S_N^2 \mid N] = \sigma^2 N + \mu^2 N^2$. This leads to

$$Var(S_N) = E[S_N^2] - E[S_N]^2$$

$$= E[E[S_N^2 | N]] - E[S_N]^2$$

$$= \sigma^2 E[N] + \mu^2 E[N^2] - \mu^2 E[N]^2$$

$$= \sigma^2 E[N] + \mu^2 Var(N).$$

Solution 1.3

(a) For all $r \geq 0$:

$$P[D > r] = P[N(B_r) = 0] = \exp(-\lambda \pi r^2).$$

Hence, the distribution function F and the density function f of D are given by

$$F(r) = (1 - \exp(-\lambda \pi r^2)) 1_{\{r > 0\}}, \quad f(r) = 2\lambda \pi r \exp(-\lambda \pi r^2) 1_{\{r > 0\}}.$$

(b) For all u > r:

$$P[N(B_u) = 1 | N(B_r) = 1] = \frac{P[N(B_u \setminus B_r) = 0, N(B_r) = 1]}{P[N(B_r) = 1]}$$

$$= \frac{P[N(B_u \setminus B_r) = 0]P[N(B_r) = 1]}{P[N(B_r) = 1]}$$

$$= \exp(-\lambda \pi (u^2 - r^2))$$

Hence, as $r \to 0$ we obtain

$$P[N(B_u) = 1|N(B_r) = 1] \to \exp(-\lambda \pi u^2).$$