

SEQUENCE LISTING

- (1) GENERAL INFORMATION
- (i) APPLICANT: Neuhold, Lisa Killar, Loran
- (ii) TITLE OF THE INVENTION: TRANSGENIC ANIMAL MODEL FOR DEGENERATIVE DISEASES OF CARTILAGE
- (iii) NUMBER OF SEQUENCES: 21
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Darby & Darby PC
 - (B) STREET: 805 Third Avenue
 - (C) CITY: New York
 - (D) STATE: NY
 - (E) COUNTRY: USA
 - (F) ZIP: 10022
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette
 - (B) COMPUTER: IBM Compatible
 - (C) OPERATING SYSTEM: DOS
 - (D) SOFTWARE: FastSEQ for Windows Version 2.0
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: 08/994,689
 - (B) FILING DATE: 1997-12-19
 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Green, Reza
 - (B) REGISTRATION NUMBER: 38,475
 - (C) REFERENCE/DOCKET NUMBER: 0630/0D532
- (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 212-527-7700
 - (B) TELEFAX: 212-753-6237
 - (C) TELEX: 236687
 - (2) INFORMATION FOR SEQ ID NO:1:
- (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 471 amino acids
- (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

1				5	Leu				10					15	
Cys	Arg	Ala	Leu 20	Pro	Leu	Pro	Ser	Gly 25	Gly	Asp	Glu	Asp	Asp 30	Leu	Ser
		35			Phe		40					45			
	50				Gly	55					60				
65					Glu 70					75					80
Gly				85					90					95	
7-1			100		Gly			105					110		
7.		115			Leu		120				•	125			
-Met U	130					135					140				
☐Trp ≈ 145					150					155					160
⊭Ala				165					170					175	
Pro			180					185					190		
Pro		195					200					205			
	210				Tyr	215					220				
225					Leu 230					235					240
				245	Tyr				250					255	
_	_		260		Ile			265					270		
		275			Pro		280					285			
	290				Thr	295					300				
305					310					315					Leu 320
Phe	Leu	Thr	Lys	Ser 325	Phe	Trp	Pro	Glu	Leu 330	Pro	Asn	Arg	Ile	Asp 335	Ala

```
Ala Tyr Glu His Pro Ser His Asp Leu Ile Phe Ile Phe Arg Gly Arg
                                345
            340
Lys Phe Trp Ala Leu Asn Gly Tyr Asp Ile Leu Glu Gly Tyr Pro Lys
                            360
Lys Ile Ser Glu Leu Gly Leu Pro Lys Glu Val Lys Lys Ile Ser Ala
                        375
                                             380
Ala Val His Phe Glu Asp Thr Gly Lys Thr Leu Leu Phe Ser Gly Asn
                                         395
                    390
Gln Val Trp Arg Tyr Asp Asp Thr Asn His Ile Met Asp Lys Asp Tyr
                                     410
                405
Pro Arg Leu Ile Glu Glu Asp Phe Pro Gly Ile Gly Asp Lys Val Asp
                                 425
Ala Val Tyr Glu Lys Asn Gly Tyr Ile Tyr Phe Phe Asn Gly Pro Ile
                            440
Gln Phe Glu Tyr Ser Ile Trp Ser Asn Arg Ile Val Arg Val Met Pro
                                             460
                        455
Ala Asn Ser Ile Leu Trp Cys
                    470
465
```

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 470 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

╝

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

£						
		TCAGTGATAG				60
TATCAGTGAT	AGAGAAAAGT	GAAAGTCGAG	TTTACCACTC	CCTATCAGTG	ATAGAGAAAA	120
GTGAAAGTCG	AGTTTACCAC	TCCCTATCAG	TGATAGAGAA	AAGTGAAAGT	CGAGTTTACC	180
ACTCCCTATC	AGTGATAGAG	AAAAGTGAAA	GTCGAGTTTA	CCACTCCCTA	TCAGTGATAG	240
		TACCACTCCC				300
		GGCGTGTACG				360
		GGAGACGCCA				420
		GCGGCCCCGA				470
CCGGGACCGA	TCCAGCCTCC	GCGGCCCCGA	ATTAGCTTGA	TATCGAATTC		4/0

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3479 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEOUENCE DESCRIPTION: SEQ ID NO:3:

GGTACCACTA GTAAGCTTAG ATCCACTGTC TGGGATTATA TCAGGACAAC CGAAGCCTGG

60

			COMOMETECCO	ርእ ርርጥጥጥርርር	ACAGCTAGGA	120
AAAGTGTATT	AGGTAGAGCA	TTTTCTTCCA	CGIGIIIGGG	CCCACCTCAA	ACACCTACCA ACTCTTTCCA	180
TTCCAGCTCT	GTCTTTGTAT	GTTACAGACT	CTCACACTCT	ACCCCCTTTC	CCCTCCCACC	240
CAGTAGGTGG	GGATCAAAGA	CCCTCCGCCC	GIGAGACICI	AGGCGCTTTC CCCCTCTTTC	TCCTCTTTAC	300
AGCCTGTCTC	CAGAGATGCT	CTGGAAGGAG	CCACCACACA	CCCCCCCCCCCC	CATACAACTT	360
CGTGGCGGAC	GCGGCGGCGG	GGGCAGGGCT	GGAGCAGAGA	ACCCTCCCCA	CCTAACCCAC	420
	CTGCGCAGGG	CGGCAGGGTG	GCAGGGTGGC	AGGG I GGCGA	CACATCCCCC	
	TGGAGCTCTG	GGAGGAACAT	CGAAGGTTTG	TATGTGGTCT	CAGATCGGCC	480
TGACTATATT	TTTTTGTCCT	AAATTTGCAA	GCACACACCC	ACAAAGCTGC	GGICIIGACC	540
GGTATTCTTT	ATAGAGCGCA	ATGGAGTGAG	CTGAGTGTCT	AAACGATTTC	CCIAAIICAI	600
		CTAATTGGCG	AAGAGC'I'GCC	TCATGTCCGC	AACTTTTTGG	660
CAGAGTGAAT	TCCACAGCTT	TGTGTGTGTG	TGTGGGGGGG	GGTGTAAGGG	GTGTCTAAAA	720
CTTTCGGTCT	CCTACTATTC	TGTATCTCGA	CCGGTTGGTT	TTACACCCCG	GCTCATCTCA	780
TCAACGCAAA	CACCCCCACT	CTCCTATGGA	CCCAAGGACC	TGACGTGGGG	GAAGGTGGAC	840
ATTAGGAATG	TCAGAAACCT	AGAGTCCACG	CTCCTCCTCT	CCATCTTTCC	ACGAGTTTTGG	900
GAAACTTCTT	GGCTGCGAAG	ACTTTGACCC	ACATCTGCAT	TTCTCAGCCC	CAGCTTCCAA	960
AAGTGCTGCA	GGTTCGGGAG	GGGAGACCTC	AGTCCTCCTT	TGTGAGGCTT	GTTTGCGTTG	1020
ACCCATTCCC	AGCGATGGCT	TCCAGATGGG	CTGAAACCCT	GCCCGTATTT	ATTTAAACTG	1080
GTTCCTCGTG	GAGAGCTGTG	AATCGGGCTC	TGTATGCGCT	CGAGAAAAGC	CCCATTCATG	1140
AGAGGCAAGG	CCCAGTGGGT	CCCCCGACT	CCCCGACCCC	CCTCTCCCAC	AATATATCCC	1200
₽CCTCCCTGT	GCCCGCCTGC	CGCCACCTCC	CGGGCTCCGG	CCCCGCGCGC	AGCGGCGACG	1260
AAGCAACACA	GTTCCCCGAA	AGAGGTAGCT	TTTTAATTGG	CCAGCCACAA	AGAATCACTT	1320
TGCCGCACG	GCGGTAACGA	GGGGAACCGG	ATCGGGCGGC	CAGGATGCTA	TCTGTGTAGC	1380
ᢆᠿᢗ᠇᠇᠇ᠬ᠇ᢕᢗ᠇ᢗ	CCACAATTAG	GGTGGTGCTG	GCTTCCTCCG	ACCGCACCTA	GGCGATCTGG	1440
ТТАСАСТСТТ	GGCTCCTTTC	TTGGGCAGTC	ATTTAATCCT	ACTTTTTACT	CTACGAATGT	1500
CTCTCTCATG	GAGGGCTGTG	TCCGGAGCCC	CATCCACAAA	GAGTCAGCCA	GCAGCTCTCA	1560
EACCCGCTG	CATCTCATAT	GGTGCACTCT	CAGTACAATC	TGCTCTGATG	CCGCATAGTT	1620
AGCCAGCCA	AGCTAGCTTG	CGCAAGCTAG	CTTGCGATCC	GTAAAAATGT	GTGAGAGTTA	1680
EN N N N TICTOT	TCCGGGCTAA	GATCCGACAG	CCATGGTCCA	AAGAAGACTT	CGGCACTGCA	1740
CAAAAIGICI CACTTAAAAC	CACCTTTCTA	GCAGAGGCAG	AAGGATCTAG	AGCCAAAGGC	AAAGACTTGA	1800
TT CCCTCCC	AACATCCAAC	AATGGCATTT	TACATAAAGA	ACACTCTCTC	CTTTTCCAGC	1860
	GCATAGAAAT		ACTTGAAGTT	CTTTGTTTCC	ATCCTGAGAA	1920
TIJAJCACACII	CTCACCTCCT	GTGGTATGCT	GGGTAATTCT	CCCCACCCC	CAACATTCCC	1980
TORRAGOOT OF	ATGGGGGGTAG	CTTCTCCCAA	GGACTTCCAG	CGGCAACACA	GAAATCCCAC	2040
TIGGGGGTICC	ACCACTTACT	GCTTAAATCA	GGCCCTAATT	TCCAAGGTTC	CCTTTGCTTA	2100
	GAGGACCATC		AGAAAAGGTG		CCCATCCTCA	2160
ACCTCCTTGT		GACTTCGGGA				2220
ACCICCIIGI	TAIGGAAGGA	GGGAGCAAGG	AAGGCAAGTG	AGGCTGGAGG	_	2280
GGGGIAAGGI	TGGGGTTGGG	TGTGTGTGTG	TGTGTGTGTG	TGTGTGTGTC	TCGGGGATGG	2340
GGGGAAGA1G	CAACTACCAA	ACTCTGGCGC	でででででででで	CCTCACAAAA	CTGAGTCCAG	2400
TGGTGGTGGA	CAACIAGGAA	TCTGGCCAGG	CCCTCAGAGT	CCTCAACAGT	CCCTGGCCAG	2460
CTGGAGCCGC	TOCAGACIC	GGGCACCCAC	TCCCCTGGAG	ATTCCTGAAC	CTGGGCCAGG	2520
CGTTGCTCTC	TCCAGGCTAA	GTCTCCAATC	CCCCTGCGTG	CCCATTTCT	TGCGGTGTCC	2580
AAGAGCCGAA	TTAGACAAGT	TTAGTCCCTT	CCCTCCCCTC	CCCCTTACAC	CTCCACACAG	2640
CTCGGTTGTC	TGCAGTTCCT	ACACCAGACC	CCCIGGCCIG	CACACACACAC	TCCAGTCCCC	2700
GTCCCCCTCT	GTGTAGGAAT	ACACCAGACC	CICICITAGC	TCCCTTACCC	NGCCTCCCTT	2760
CGTCTACCTA	GATTTTTTC	ATAGCTAGTT	ADDDDDTADD	TOGGITAGGG	AGGCTGGGTT	2820
TGCGAGCCTC	CAGGTGGGAG	TTCACCGACA	MCCCC COMM	AAAGGAGCIG	GAAGGCAGGT	2880
CTGGAAAACT	GTCCCCCAGA	TTTAGGATTC	TGGGCAGCTT	CCATCAGCTT	ATACTTTGGC	2940
TCCCCCGCCC	CCTAAACTCC	CCATCCCCAC	CTTCCTTTCT	TOTO TACTT	CGTCCTCCCT	3000
CGCCTTTCCA	GCCTTGAGTC	TAAAGCTCCA	TGCTTATGCC	TUTGCAAACA	ACCCCCTCCC	3060
TTCTAACCCC	AGCAGAACTC	CGAGGAAAGG	GGCCGGAGGC	CCCCCTTCTC	GCCTGTGGTT	3120
AGAGGGGGCA	GTGTGGCAGT	CCCAAGTGGG	GGCGACCGGA	GGCCGTCTCG	GTGCCCCGCC	3120

CGATCAGGCC ACTGGGCACA TCGGGGGCGG GAAGCTGGGC TCACCAAAGG GGCGACTGGC CTTGGCAGGT GTGGGCTCTG GTCCGGCCTG GGCAGGCTCC GGGGGCGGGG TCTCAGGTTA CAGCCCCGCG GGGGGCTGGG GGGCGCCCG CGGTTTGGGC TGGTTTGCCA GCCTTTGGAG CGACCGGGAG CATATAACCG GAGCCTCTGC TGGGAGAAGA CGCAGAGCGC CGCTGGGCTG CCGGGTCTCC TGCCTCCTC TCCTGCTCCT AGAGCCTCCT GCATGAGGGC GCGGTAGAGA CCCGGGACCCG CTCCGTGCTC TGCCGCCTCG CCGAGCTTCG CCCGCAAGCT GGGGAATTC	3180 3240 3300 3360 3420 3479
(2) INFORMATION FOR SEQ ID NO:4:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 8 amino acids(B) TYPE: amino acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: peptide	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	
Pro Arg Cys Gly Val Pro Asp Val	
(2) INFORMATION FOR SEQ ID NO:5:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:	
AAGCCAAGAT GCGGGGTTGT CGATGTGGGT GAATACAAT	39
(2) INFORMATION FOR SEQ ID NO:6:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 40 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	·
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:	
GAAAAAGCCA AGATGCGGGG GTCCTGATGT GGGTGAATAC	40
(2) INFORMATION FOR SEQ ID NO:7:	
(i) SEQUENCE CHARACTERISTICS:	

(B) TYPE: nucleic acid (C) STRANDEDNESS: sind (D) TOPOLOGY: linear	l ¡le			
(xi) SEQUENCE DESCRIPTION	ON: SEQ ID NO:	7:		
GGTACCACTA GTAAGCTTAG ATCTCATA	rg GTCGACCCCG	GGGAATTCCT	GCAGGGATCC	60
TCTAGAAGTA CTCCATGGGT ATACATCGA	AT GCGGCCGC			98
icindmoin ciconicot management				
(2) INFORMATION FOR S	SEQ ID NO:8:	,		
(i) SEQUENCE CHARACTERIS	STICS:			
(A) LENGTH: 2792 base	pairs			
(B) TYPE: nucleic acid				
(C) STRANDEDNESS: sing	gle			
(D) TOPOLOGY: linear				
/''' WOT DOWN D. WOE. COM	,			
(ii) MOLECULE TYPE: cDNA	1			
	ON. SEO ID NO:	:8:		
(XI) SEQUENCE DESCRIPTION	JN. 520 25 110	. • .		
TCGAGTTTA CCACTCCCTA TCAGTGAT	AG AGAAAAGTGA	AAGTCGAGTT	TACCACTCCC	60
TATCACTGAT AGAGAAAAGT GAAAGTCG	AG TTTACCACTC	CCTATCAGTG	ATAGAGAAAA	120
GTCAAACTCC ACTTTACCAC TCCCTATC	AG TGATAGAGAA	AAGTGAAAGT	CGAGTTTACC	180
TOTOCOTATO AGTGATAGAG AAAAGTGA	AA GTCGAGTTTA	CCACTCCCTA	TCAGTGATAG	240
ACABABCTCA ABCTCGAGTT TACCACTC	CC TATCAGTGAT	AGAGAAAAG'I'	GAAAGTCGAG	300
TTCCCTACCC CCCTCGAGTA GGCGTGTA	CG GTGGGAGGCC	TATATAAGCA	GAGCTCGTTT	360
[®] オスᢗͲᢗオスアᢗᢗᢗͲ╶ᢗᡘᢗᡘͲᢗᢗᢗᢗͲͺʹĞĠᡘĠᡘᢗĠᢗ	CA TCCACGCTGT	TTTGACCTCC	ATAGAAGACA	420
CCGGGACCGA TCCAGCCTCC GCGGCCCC	GA ATTAGCTTGA	TATCGAATTC	GAGCTCGGTA	480 540
CCCGGGGATC CTCTAGACAA GATGCATC	CA GGGGTCCTGG	CTGCCTTCCT	TTCTTGAGC	600
TGGACTCATT GTCGGGCCCT GCCCCTTC	C AGIGGIGGIG	AIGAAGAIGA	N N N T C T C C C C	660
GAAGACCTCC AGTTTGCAGA GCGCTACC GGAATCCTGA AGGAGAATGC AGCAAGCT	TG AGAICAIACI	CCCTCCCACA	AAATCICGCG	720
GGAATCCTGA AGGAGAATGC AGCAAGCT TTCTTCGGCT TAGAGGTGAC TGGCAAAC	TT CACCATAACA	CCTTAGATGT	CATGAAAAAG	780
CCAAGATGCG GGGTTGTCGA TGTGGGTG	AA TACAATGTTT	TCCCTCGAAC	TCTTAAATGG	840
TCCAAAATGA ATTTAACCTA CAGAATTG	TG AATTACACCC	CTGATATGAC	TCATTCTGAA	900
GTCGAAAAGG CATTCAAAAA AGCCTTCA	AA GTTTGGTCCG	ATGTAACTCC	TCTGAATTTT	960
ACCAGACTTC ACGATGGCAT TGCTGACA	TC ATGATCTCTT	TTGGAATTAA	GGAGCATGGC	1020
GACTTCTACC CATTTGATGG GCCCTCTG	GC CTGCTGGCTC	ATGCTTTTCC	TCCTGGGCCA	1080
AATTATGGAG GAGATGCCCA TTTTGATG	AT GATGAAACCT	GGACAAGTAG	TTCCAAAGGC	1140
TACAACTTGT TTCTTGTTGC TGCGCATG	AG TTCGGCCACT	CCTTAGGTCT	TGACCACTCC	1200
AAGGACCCTG GAGCACTCAT GTTTCCTA	TC TACACCTACA	CCGGCAAAAG	CCACTTTATG	1260
CTTCCTGATG ACGATGTACA AGGGATCC	AG TCTCTCTATG	GTCCAGGAGA	TGAAGACCCC	1320 1380
AACCCTAAAC ATCCAAAAAC GCCAGACA	AA TGTGACCCTT	TOTTATCCCT	CCTCCATC	1440
ACCAGTCTCC GAGGAGAAC AATGATCT	TT AAAGACAGAT	TCTTCTGGCG	TCCCATCCT	150
CAGCAGGTTG ATGCGGAGCT GTTTTTAA	NT CACCTCATTTT	TCDMCMACI	ACCTACCGI	156
ATTGATGCTG CATATGAGCA CCCTTCTC TTTTGGGCTC TTAATGGTTA TGACATTC	TO CANCIDATE!		ATCTGAACTG	162
TITTGGGCTC TTAATGGTTA TGACATTC	IG GWAGGIIWIC	CCHUMANA		1.00

(A) LENGTH: 98 base pairs

GGTCTTCCAA AAGAAGTTAA GAAGATAAGT GCAGCTGTTC ACTTTGAGGA TACAGGCAAG

1620

1680

ACTCTCCTGT	TCTCAGGAAA	CCAGGTCTGG	AGATATGATG	ATACTAACCA	TATTATGGAT	1740
AAAGACTATC	CGAGACTAAT	AGAAGAAGAC	TTCCCAGGAA	TTGGTGATAA	AGTAGATGCT	1800
GTCTATGAGA	AAAATGGTTA	TATCTATTTT	TTCAACGGAC	CCATACAGTT	TGAATACAGC	1860
ATCTGGAGTA	ACCGTATTGT	TCGCGTCATG	CCAGCAAATT	CCATTTTGTG	GTGTTAAGTG	1920
TCTTTTTAAA	AATTGTTATT	TAAATCCTGA	AGAGCATTTG	GGGTAATACT	TCCAGAAGTG	1980
CGGGGTAGGG	GAAGAAGAGC	TATCAGGAGA	AAGCTCTAGT	TCTAGAGGGC	CCTATTCTAT	2040
AGTGTCACCT	AAATGCTAGA	GGATCTTTGT	GAAGGAACCT	TACTTCTGTG	GTGTGACATA	2100
ATTGGACAAA	CTACCTACAG	AGATTTAAAG	CTCTAAGGTA	AATATAAAAT	TTTTAAGTGT	2160
ATAATGTGTT	AAACTACTGA	TTCTAATTGT	TTGTGTATTT	TAGATTCCAA	CCTATGGAAC	2220
TGATGAATGG	GAGCAGTGGT	GGAATGCCTT	TAATGAGGAA	AACCTGTTTT	GCTCAGAAGA	2280
AATGCCATCT	AGTGATGATG	AGGCTACTGC	TGACTCTCAA	CATTCTACTC	CTCCAAAAAA	2340
GAAGAGAAAG	GTAGAAGACC	CCAAGGACTT	TCCTTCAGAA	TTGCTAAGTT	TTTTGAGTCA	2400
TGCTGTGTTT	AGTAATAGAA	CTCTTGCTTG	CTTTGCTATT	TACACCACAA	AGGAAAAAGC	2460
TGCACTGCTA	TACAAGAAAA	TTATGGAAAA	ATATTTGATG	TATAGTGCCT	TGACTAGAGA	2520
TCATAATCAG	CCATACCACA	TTTGTAGAGG	TTTTACTTGC	TTTAAAAAAC	CTCCCACACC	2580
TCCCCCTGAA	CCTGAAACAT	AAAATGAATG	CAATTGTTGT	TGTTAACTTG	TTTATTGCAG	2640
CTTATAATGG	TTACAAATAA	AGCAATAGCA	TCACAAATTT	CACAAATAAA	GCATTTTTTT	2700
CACTGCATTC	TAGTTGTGGT	TTGTCCAAAC	TCATCAATGT	ATCTTATCAT	GTCTGGATCA	2760
TCCCGCCATG	GGTATACATC	GATGCGGCCG	CC			2792

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5276 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

				mar aar ar r a	CC 3 3 CCCTTCC	60
GGTACCACTA	GTAAGCTTAG	ATCCACTGTC	TGGGATTATA	TCAGGACAAC	CGAAGCCTGG	60
AAAGTGTATT	AGGTAGAGCA	TTTTCTTCCA	CGTGTTTGGG	CACGTTTCCG	ACAGCTAGGA	120
TTCCAGCTCT	GTCTTTGTAT	GTTACAGACT	GTAAATCAAT	CGCAGGTGAA	ACTGTTTGGA	180
CAGTAGGTGG	GGATCAAAGA	CCCTCCGCCC	GTGAGACTCT	AGGCGCTTTC	CCCTGCCACC	240
AGCCTGTCTC	CAGAGATGCT	CTGGAAGGAG	GCGGGCCCGG	GCGGTCTTTC	TGCTCTTTAG	300
CGTGGCGGAC	GCGGCGGCGG	GGGCAGGGCT	GGAGCAGAGA	GCGCTGCAGT	GATAGAACTT	360
TCTGACCCCG	CTGCGCAGGG	CGGCAGGGTG	GCAGGGTGGC	AGGGTGGCGA	GCTAAGCCAG	420
AGCCGAACGC	TGGAGCTCTG	GGAGGAACAT	CGAAGTGTTT	GTATGTGGTC	TGAGATCGGC	480
CTGACTATAT	TTTTTTGTCC	TAAATTTGCA	AGCACACACC	CACAAAGCTG	CGGTCTTGAC	540
CGGTATTCTT	TATAGAGCGC	AATGGAGTGA	GCTGAGTGTC	TAAACGATTT	CCCTAATTCA	600
TCTGATAGCA	GAGGCGCTCT	CCTAATTGGC	GAAGAGCTGC	CTCATGTCCG	CAACTTTTTG	660
GCAGAGTGAA	TTCCACAGCT	TTGTGTGTGT	GTGTGGGGGG	GGGTGTAAGG	GGTGTCTAAA	720
ACTTTCGGTC	TCCTACTATT	CTGTATCTCG	ACCGGTTGGT	TTTACACCCC	GGCTCATCTC	780
ATCAACGCAA	ACACCCCCAC	TCTCCTATGG	ACCCAAGGAC	CTGACGTGGG	GGAAGGTGGA	840
CATTAGGAAT	GTCAGAAACC	TAGAGTCCAC	GCTCCTCCTC	TCCATCTTTC	CACGAGTTTG	900
GGAAACTTCT	TGGCTGCGAA	GACTTTGACC	CACATCTGCA	TTTCTCAGCC	CCAGCTTCCA	960
AAAGTGCTGC	AGGTTCGGGA	GGGGAGACCT	CAGTCCTCCT	TTGTGAGGCT	TGTTTGCGTT	1020
GAGGGATTGG	CAGCGATGGC	TTCCAGATGG	GCTGAAACCC	TGCCCGTATT	TATTTAAACT	1080
GGTTCCTCGT	GGAGAGCTGT	GAATCGGGCT	CTGTATGCGC	TCGAGAAAAG	CCCCATTCAT	1140
COLICCICOI	001101100101	5.2.2.30000				

GAGAGGCAAG	GCCCAGTGGG	TCCCCCGAC	TCCCCGACCC	CCCTCTCCCA	CAATATATCC	1200
CCCCTCCCTC	TCCCCCCCTG	CCGCCACCTC	CCGGGCTCCG	GCCCCGCGCG	CAGCGGCGAC	1260
CVVCCVVCV	ACTTCCCCGA	AAGAGGTAGC	TTTTTAATTG	GCCAGCCACA	AAGAATCACT	1320
ጥአጥርርርርር እር	CCCCCTAACG	AGGGGAACCG	GATCGGGCGG	CCAGGATGCT	ATCTGTGTAG	1380
CCCTTTTTCCT	CCCACAATTA	GGGTGGTGCT	GGCTTCCTCC	GACCGCACCT	AGGCGATCTG	1440
ርጥጥ እ ር እ ርጥርጥ	TCCCTCCTTT	CTTGGGCAGT	CATTTAATCC	TACTTTTTAC	TCTACGAATG	1500
ጥርጥርጥርጥርልጥ	CCACCCCTGT	GTCCGGAGCC	CCATCCACAA	AGAGTCAGCC	AGCAGCTCTC	1560
A CA CCCCCCT	CCATCTCATA	TGGTGCACTC	TCAGTACAAT	CTGCTCTGAT	GCCGCATAGT	1620
ጥ ስ አርርር አርርር	$\Delta \Delta C C T \Delta C C T T$	GCGCAAGCTA	GCTTGCGATC	CGTAAAAATG	TGTGAGAGTT	1680
ልሮልልልልፐርፕሮ	TTCCGGGCTA	AGATCCGACA	GCCATGGTCC	AAAGAAGAC'I'	TCGGCACTGC	1740
አርኔሮፕፕልልል	CCAGCTTTCT	AGCAGAGGCA	GAAGGATCTA	GAGCCAAAGG	CAAAGACTTG	1800
እ እጥእርርር ር ፕርር	GAAGATGCAA	GAATGGCATT	TTACATAAAG	AACACTCTCT	CCTTTTCCAG	1860
CCACCACACT	TCCATAGAAA	TTAAGTTTTA	CACTTGAAGT	TCTTTGTTTC	CATCCTGAGA	1920
አርርጥርርእእእር	TCTGAGGTGG	TGTGGTATGC	TGGGTAATTC	TCCCCACCCC	CCAACATTCC	1980
CTCCCCCTTC	CATGGGGGTA	GCTTCTCCCA	AGGACTTCCA	GCGGCAACAC	AGAAATCCCA	2040
ርጥጥርርልርልርል	AAGGAGTTAC	TGCTTAAATC	AGGCCCTAAT	TTCCAAGGTT	CCCTTTGCTT	2100
<u>እ እ እርጥጥሮሮሮጥ</u>	AGAGGACCAT	CTCACTTCTA	AAGAAAAGGT	GTATTCGGGG	ACCCATCCTC	2160
አ አ ሮርጥሮርጥጥር	$TT\Delta TCC\Delta \Delta CC$	AGACTTCGGG	AACAGAGCAA	GGGCTGAGCC	TCCGGCAGTT	2220
TCCCCTDDCC	TTCCCCCTTCC	GGGGAGCAAG	GAAGGCAAGT	GAGGCTGGAG	GCCCAGGGAT	2280
FXCCCCAACAT	CTCTCTCTCT	GTGTGTGTGT	GTGTGTGTGT	GTGTGTGT	CTCGGGGATG	2340
· ATCCTCCTCC	$\Delta C \Delta \Delta C T \Delta C C \Delta$	AACTCTGGCG	CTTTCTCCTC	CCCTCACAAA	ACTGAGTCCA	2400
*CCTCCACCCC	CCTCCDGDCT	CTCTGGCCAG	GGCCTCAGAG	TGGTCAACAG	TCCCTGGCCA	2460
*GCTGGAGCCG	CTCCAGGCTA	AGGGCACCCA	CTCCCCTGGA	GATTCCTGAA	CCTGGGCCAG	2520
GANGACCCGA	ATTAGACAAG	TGTCTCCAAT	CCGGCTGCGT	GCGGATTTTG	TTGCGGTGTC	2580
ECTCCCTTCT	CTCCACTTCC	TTTAGTCCCT	TCCCTGGCCT	GCCCCTTACA	CCTCCACACA	2640
ECTCGG11G1	TCTCTACCAA	TACACCAGAC	CCTCTCTTAG	CCACACACAC	CTCCAGTCCC	2700
CCCTCTACCT	ACATTTTTTTT	CATAGCTAGT	TGGATGGGGG	ATGGGTTAGG	GAGGCTGGGT	2760
TTCCCACCCT	CCAGGTGGGA	GTTCACCGAC	AGGTACTCCG	CAAAGGAGCT	GGAAGGCAGG	2820
TIGCGAGCCI	TCTCCCCCAG	ATTTAGGATT	CTGGGCAGCT	TCCATCAGCT	TATACTTTGG	2880
TOTOCOCCCC	CCCTD A A CTC	CCCATCCCCA	CCTTCCTTTC	TCCCGTTACT	TCGTCCTCCC	2940
THOCCCCTTTTCC	ACCCTTCACT	CTAAAGCTCC	ATGCTTATGC	CTCTGCAAAC	AACCCCCTCC	3000
ETTCTA ACCC	CACCAGAACT	CCGAGGAAAG	GGGCCGGAGG	CCCCCCTTCT	CGCCTGTGGT	3060
TO COCCCCC	ACTCTCCCAC	TCCCAAGTGG	GGGCGACCGG	AGGCCGTCTC	GGTGCCCCGC	3120
GCCATCACCC	CACTCCCCAC	ATCGGGGGGCG	GGAAGCTGGG	CTCACCAAAG	GGGCGACTGG	3180
CCTTGGCAGG	TCTCCCCTCT	GGTCCGGCCT	GGGCAGGCTC	CGGGGGCGGG	GTCTCAGGTT	3240
A CACCCCCCC	CCCCCCCTCC	GGGGCGGCCC	GCGGTTTGGG	CTGGTTTGCC	AGCCTTTGGA	3300
CCCACCCCCA	CCATATAACC	GGAGCCTCTG	CTGGGAGAAG	ACGCAGAGCG	CCGCTGGGCT	3360
CCCCCCTCTC	CTCCCTCCTC	CTCCTGCTCC	TAGAGCCTCC	TGCATGAGGG	CGCGGTAGAG	3420
ACCCCCACCC	CTGCCTCCTC	CTGCCGCCTC	GCCGAGCTTC	GCCCGCAAGC	TGGGGAATTC	3480
ACCCGGACCC	ATTACATAAA	AGTAAAGTGA	TTAACAGCGC	ATTAGAGCTG	CTTAATGAGG	3540
TOCCANTOCA	ACCTTTAACA	ACCCGTAAAC	TCGCCCAGAA	GCTAGGTGTA	GAGCAGCCTA	3600
CATTCTATTC	CCATCTAAAA	AATAAGCGGG	CTTTGCTCGA	CGCCTTAGCC	ATTGAGATGT	3660
TACATACCCA	CCATACTCAC	TTTTTCCCCC	TAGAAGGGGA	AAGCTGGCAA	GATTTTTTAC	3720
CTANTAGGCA	TAAAACTUTT	ACATCTCCTT	TACTAAGTCA	TCGCGATGGA	GCAAAAGTAC	3780
A THAIRACGC	ACCCCCTACA	CAAAAACAGT	ATGAAACTCT	CGAAAATCAA	TTAGCCTTTT	3840
TITAGGIAC ATTITAGGIAC	ACCOUCTACA	СТАСАСААТС	CATTATATGC	ACTCAGCGCT	GTGGGGCATT	3900
TATACCAACA	TOGITITO	CAACATCAAC	AGCATCAAGT	CGCTAAAGAA	GAAAGGGAAA	3960
TIACTITAGG	TIGCGINIIG		TACGACAAGC	TATCGAATTA	TTTGATCACC	4020
CACCIACIAC	CCCACCCATC	T	TTGAATTGAT	CATATGCGGA	TTAGAAAAAC	4080
ADAJULUUAA Amarramarramarramarramarramarramarram	TCAACCIIC	TCCCCCTACA	GCCGCGCGCG	TACGAAAAAC	AATTACGGGT	4140
AACTIAAAIG	CCCCCACCAC	CATCTCCCC	ACGACGACGC	CCCCGAAGAG	GCGGGGCTGG	4200
CIACCATCGA	GGGCCIGCIC	GAICICCGG	.100,100,1000	50000		

T
, p. 10-11
<u>_</u>
, J.
udjer Em
U
≋

_	~~~~~~	COMOMOCOMM	CTCCCCGCGG	GACACACGCG	CAGACTGTCG	ACGGCCCCC	4260
C	GGCTCCGCG	CCTGTCCTTT	010000000		CGAGGACGTG	GCGATGGCGC	4320
C	GACCGATGT	CAGCCTGGGG	GACGAGCTCC	ACTTAGACGG	00		4380
A'	TGCCGACGC	GCTAGACGAT	TTCGATCTGG	ACATGTTGGG	GGACGGGGAT	TCCCCGGGTC	
C	GGGATTTAC	CCCCCACGAC	TCCGCCCCCT	ACGGCGCTCT	GGATATGGCC	GACTTCGAGT	4440
_	TGAGCAGAT	GTTTACCGAT	GCCCTTGGAA	TTGACGAGTA	CGGTGGGTAG	GGGGCGCGAG	4500
_	ATCCTCTAG	AGGGCCCTAT	TCTATAGTGT	CACCTAAATG	CTAGAGGATC	TTTGTGAAGG	4560
٠.	ACCTTACTT	CTGTGGTGTG	ACATAATTGG	ACAAACTACC	TACAGAGATT	TAAAGCTCTA	4620
	GGTAAATAT	AAAATTTTTA	AGTGTATAAT	GTGTTAAACT	ACTGATTCTA	ATTGTTTGTG	4680
	ATTTTAGAT	TCCAACCTAT	GGAACTGATG	AATGGGAGCA	GTGGTGGAAT	GCCTTTAATG	4740
	GGAAAACCT	GTTTTGCTCA	GAAGAAATGC	CATCTAGTGA	TGATGAGGCT	ACTGCTGACT	4800
	TCAACATTC	TACTCCTCCA	AAAAAGAAGA	GAAAGGTAGA	AGACCCCAAG	GACTTTCCTT	4860
_	AGAATTGCT	AAGTTTTTTG	AGTCATGCTG	TGTTTAGTAA	TAGAACTCTT	GCTTGCTTTG	4920
_		CACAAAGGAA	AAAGCTGCAC	TGCTATACAA	GAAAATTATG	GAAAAATATT	4980
_	TATTTACAC	••••			CCACATTTGT	AGAGGTTTTA	5040
Т	GATGTATAG	TGCCTTGACT	AGAGATCATA	ATCAGCCATA	• • • • • • • • • • • • • • • • • • • •		5100
C	TTGCTTTAA	AAAACCTCCC	ACACCTCCCC	CTGAACCTGA	AACATAAAAT	GAATGCAATT	9-00
G	TTGTTGTTA	ACTTGTTTAT	TGCAGCTTAT	AATGGTTACA	AATAAAGCAA	TAGCATCACA	5160
_	ATTTCACAA	ATAAAGCATT	TTTTTCACTG	CATTCTAGTT	GTGGTTTGTC	CAAACTCATC	5220
	ATGTATCTT	ATCATGTCTG	GATCATCCCG	CCATGGGTAT	ACATCGATGC	GGCCGC	5276
A	WIGIWICII	WICWIGICIG	GRICHICCC				

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7664 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

\$						
GTACCACTA	GTAAGCTTAG	ATCCACTGTC	TGGGATTATA	TCAGGACAAC	CGAAGCCTGG	60
AAAGTGTATT	AGGTAGAGCA	TTTTCTTCCA	CGTGTTTGGG	CACGTTTCCG	ACAGCTAGGA	120
TTCCAGCTCT	GTCTTTGTAT	GTTACAGACT	GTAAATCAAT	CGCAGGTGAA	ACTGTTTGGA	180
CAGTAGGTGG	GGATCAAAGA	CCCTCCGCCC	GTGAGACTCT	AGGCGCTTTC	CCCTGCCACC	240
AGCCTGTCTC	CAGAGATGCT	CTGGAAGGAG	GCGGGCCCGG	GCGGTCTTTC	TGCTCTTTAG	300
CGTGGCGGAC	GCGGCGGCGG	GGGCAGGGCT	GGAGCAGAGA	GCGCTGCAGT	GATAGAACTT	360
TCTGACCCCG	CTGCGCAGGG	CGGCAGGGTG	GCAGGGTGGC	AGGGTGGCGA	GCTAAGCCAG	420
AGCCGAACGC	TGGAGCTCTG	GGAGGAACAT	CGAAGTGTTT	GTATGTGGTC	TGAGATCGGC	480
CTGACTATAT	TTTTTTGTCC	TAAATTTGCA	AGCACACACC	CACAAAGCTG	CGGTCTTGAC	540
CGGTATTCTT	TATAGAGCGC	AATGGAGTGA	GCTGAGTGTC	TAAACGATTT	CCCTAATTCA	600
TCTGATAGCA	GAGGCGCTCT	CCTAATTGGC	GAAGAGCTGC	CTCATGTCCG	CAACTTTTTG	660
GCAGAGTGAA	TTCCACAGCT	TTGTGTGTGT	GTGTGGGGGG	GGGTGTAAGG	GGTGTCTAAA	720
ACTTTCGGTC	TCCTACTATT	CTGTATCTCG	ACCGGTTGGT	TTTACACCCC	GGCTCATCTC	780
ATCAACGCAA	ACACCCCCAC	TCTCCTATGG	ACCCAAGGAC	CTGACGTGGG	GGAAGGTGGA	840
CATTAGGAAT	GTCAGAAACC	TAGAGTCCAC	GCTCCTCCTC	TCCATCTTTC	CACGAGTTTG	900
GGAAACTTCT	TGGCTGCGAA	GACTTTGACC	CACATCTGCA	TTTCTCAGCC	CCAGCTTCCA	960
AAAGTGCTGC	AGGTTCGGGA	GGGGAGACCT	CAGTCCTCCT	TTGTGAGGCT	TGTTTGCGTT	1020
GAGGGATTGG	CAGCGATGGC	TTCCAGATGG	GCTGAAACCC	TGCCCGTATT	TATTTAAACT	1080
GGTTCCTCGT	GGAGAGCTGT	GAATCGGGCT	CTGTATGCGC	TCGAGAAAAG	CCCCATTCAT	1140
GAGAGGCAAG	GCCCAGTGGG	TCCCCCGAC	TCCCCGACCC	CCCTCTCCCA	CAATATATCC	1200

					ar accordance	1260
CCCCTCCCTG	TGCCCGCCTG	CCGCCACCTC	CCGGGCTCCG	GCCCGCGCG	CAGCGGCGAC	1260 1320
GAAGCAACAC	AGTTCCCCGA	AAGAGGTAGC	TTTTTAATTG	GCCAGCCACA	AAGAATCACI	
TATGCCGCAC	GGCGGTAACG	AGGGGAACCG	GATCGGGCGG	CCAGGATGCT	ATCTGTGTAG	1380
CCCTTTTCGT	GCCACAATTA	GGGTGGTGCT	GGCTTCCTCC	GACCGCACCT	AGGCGATCTG	1440
GTTACACTGT	TGGCTCCTTT	CTTGGGCAGT	CATTTAATCC	TACTTTTTAC	TCTACGAATG	1500
TCTGTCTGAT	GGAGGGCTGT	GTCCGGAGCC	CCATCCACAA	AGAGTCAGCC	AGCAGCTCTC	1560
ACACCCGGCT	GGATCTCATA	TGGTGCACTC	TCAGTACAAT	CTGCTCTGAT	GCCGCATAGT	1620
ጥ አርርር አርርር	AAGCTAGCTT	GCGCAAGCTA	GCTTGCGATC	CGTAAAAATG	TGTGAGAGTT	1680
አ <i>ር</i> አ አ አ አጥርጥር	TTCCGGGCTA	AGATCCGACA	GCCATGGTCC	AAAGAAGACT	TCGGCACTGC	1740
አርአርጥጥልልልል	CCAGCTTTCT	AGCAGAGGCA	GAAGGATCTA	GAGCCAAAGG	CAAAGACTTG	1800
<u>አ አጥአርርር</u> ርፕርር	GAAGATGCAA	GAATGGCATT	TTACATAAAG	AACACTCTCT	CCTTTTCCAG	1860
$CC\Delta CC\Delta C\Delta CT$	TGCATAGAAA	TTAAGTTTTA	CACTTGAAGT	TCTTTGTTTC	CATCCTGAGA	1920
ACCTCCAAAG	TCTGAGGTGG	TGTGGTATGC	TGGGTAATTC	TCCCCACCCC	CCAACATTCC	1980
CTCCCCCTTC	CATGGGGGTA	GCTTCTCCCA	AGGACTTCCA	GCGGCAACAC	AGAAATCCCA	2040
ርጥጥርርልርልርል	AAGGAGTTAC	TGCTTAAATC	AGGCCCTAAT	TTCCAAGGTT	CCCTTTGCTT	2100
<u>አ አ አርጥጥ</u> ርርርጥ	AGAGGACCAT	CTCACTTCTA	AAGAAAAGGT	GTATTCGGGG	ACCCATCCTC	2160
<u>አ አ ሮርጥሮሮጥጥር</u>	TTATGGAAGG	AGACTTCGGG	AACAGAGCAA	GGGCTGAGCC	TCCGGCAG'I"I	2220
TCCCCTAACC	ТТССССТТСС	GGGGAGCAAG	GAAGGCAAGT	GAGGCTGGAG	GCCCAGGGAT	2280
ACCCCA ACAT	GTGTGTGTGT	GTGTGTGTGT	GTGTGTGTGT	GTGTGTGT	CTCGGGGATG	2340
CTCCTCCTCC	ACAACTAGGA	AACTCTGGCG	CTTTCTCCTC	CCCTCACAAA	ACTGAGTCCA	2400
TO CTCCACCCC	CCTCCAGACT	CTCTGGCCAG	GGCCTCAGAG	TGGTCAACAG	TCCCTGGCCA	2460
**CTGGAGCCG	CTCCAGGCTA	AGGGCACCCA	CTCCCCTGGA	GATTCCTGAA	CCTGGGCCAG	2520
CAACCCCA	ልጥጥልርልሮልልር	TGTCTCCAAT	CCGGCTGCGT	GCGGATTTTG	TTGCGGTGTC	2580
##CTPCCCTTCT	CTCCACTTCC	TTTAGTCCCT	TCCCTGGCCT	GCCCCTTACA	CCTCCACACA	2640
CCTCGGIIGI	TCTCTACCAA	TACACCAGAC	CCTCTCTTAG	CCACACACAC	CTCCAGTCCC	2700
GCCTCTACCT	אכאיייייייייייייייייייייייייייייייייייי	CATAGCTAGT	TGGATGGGGG	ATGGGTTAGG	GAGGCTGGGT	2760
ECGICIACCI ECGICIACCI	CCACCTCCCA	CTTCACCGAC	AGGTACTCCG	CAAAGGAGCT	GGAAGGCAGG	2820
TIGCGAGCC1	TCTCCCCCAC	ATTUACCATT	CTGGGCAGCT	TCCATCAGCT	TATACTTTGG	2880
TOTOGGAAAAC	CCCTAAACTC	CCCATCCCCA	CCTTCCTTTC	TCCCGTTACT	TCGTCCTCCC	2940
TOCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	ACCOMPGACT	CTAAACCTCC	ATGCTTATGC	CTCTGCAAAC	AACCCCCTCC	3000
TUGUUTITUU ACCC	CACCACAACT	CCCACCAAAC	GGGCCGGAGG	CCCCCTTCT	CGCCTGTGGT	3060
TRACCCO TO	ACTICATORACI	TCCCNNCTCC	CCCCCACCGG	AGGCCGTCTC	GGTGCCCCGC	3120
TAGAGGGGGC	AGIGIGGCAG	ATCCCAAGICC	GGAAGCTGGG	CTCACCAAAG	GGGCGACTGG	3180
CCGATCAGGC	TACTGGGGCAC	CCTCCCCCCT	CCCCACCTC	CGGGGGCGGG	GTCTCAGGTT	3240
*CTTGGCAGG	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CCCCCCCCCC	CCCCTTTCCC	CTGGTTTGCC	AGCCTTTGGA	3300
ACAGCCCCGC	GGGGGGCIGG	CCACCCTCTC	CTCCCACAAC	ACGCAGAGCG	CCGCTGGGCT	3360
*GCGACCGGGA	GCATATAACC	CTCCTCCTCC	TACACCCTCC	TGCATGAGGG	CGCGGTAGAG	3420
GCCGGGTCTC	CIGCCICCIC	CTCCTGCTCC	CCCCACCTTC	GCCCGCAAGC	TGGGGAATTC	3480
ACCCGGACCC	GCTCCGTGCT	CIGCCGCCIC	GCCGAGCIIC	ACTCACCATG	TCGTTTACTT	3540
GGATCCCCGG	GATCGAAAGA	GCCIGCIAAA	CTCTCCCACC	CATTCCTCTC	GACACCAGCA	3600
TGACCAACAA	GAACGIGATI		TACAACCTCC	TCACTCCCAA	AACCCTGGCG	3660
AGGAGCTGCT	CAAGCGCGAT	CCCGICGIII	CCCCTTTCCC		TATAGCGAAG	3720
TTACCCAACT	TAATCGCCTT	TOOCA A CACT	TCCCCTTCGC	CAGCIGGCII	TGGCGCTTTG	3780
AGGCCCGCAC	CGATCGCCCT	TCCCAACAGI	1 GCGCAGCCI	GGAGTGCGAT	CTTCCTGAGG	3840
CCTGGTTTCC	GGCACCAGAA	GCGG1GCCGG	AAAGCIGGCI	TTACCATCCC	CCCATCTACA	3900
CCGATACTGT	CGTCGTCCCC	TCAAACIGGC	AGAIGCACGG	TCCCACCCAC	AATCCGACGG	3960
CCAACGTAAC	CTATTCCATT	ACGGTCAATC	7 7 7 CCCCGIIIGI	TCCCACGAGG	AATCCGACGG	4020
GTTGTTACTC	GCTCACATTT	AATGTTGATG	AAAGCIGGCI	CA A COTTOCO	CAGACGCGAA	4080
TTATTTTTGA	TGGCGTTAAC	TIGGCGTTTC	ATCIGIGGIG		TGGGTCGGTT	4140
ACGGCCAGGA	CAGTCGTTTG	CCGTCTGAAT	TIGACCIGAG	CACMITITIES COCKITITIES	CGCGCCGGAG	4200
AAAACCGCCT	CGCGGTGATG	GTGCTGCGTT	DDJADTDADD	CAGITAICIG	GAAGATCAGG	4260
ATATGTGGCG	GATGAGCGGC	ATTTTCCGTG	ACGTCTCGTT	GCIGCATAAA	CCGACTACAC	7200

TATTGGTA ATATACA CCATGTT	TGA TAAGGTAGAA TATTTCTGCA TATAAATTCT GGCTGGCGTG GAAATATTCT AGA AACAACTACA TCCTGGTAAT CATCCTGCCT TTCTCTTTAT GGTTACAATG CTG TTTGAGATGA GGATAAAATA CTCTGAGTCC AAACCGGGCC CCTCTGCTAA CAT GCCTTCTTCT TTTTCCTACA GCTCCTGGGC AACGTGCTGG TTGTTGTGCT CAT TTTGGCAAAG AATTCACTCC TCAGGTGCAG GCTGCCTATC AGAAGGTGGT GTG GCCAATGCCC TGGCTCACAA ATACCACTGA GATC	7380 7440 7500 7560 7620 7664		
	(2) INFORMATION FOR SEQ ID NO:11:			
·	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 			
•	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:			
CGAGGGC	CTG CTCGATCTCC	20		
	(2) INFORMATION FOR SEQ ID NO:12:			
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 			
# <u></u>	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	20		
GGCATTCCAC CACTGCTCCC				
Front Control	(2) INFORMATION FOR SEQ ID NO:13:			
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 21 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear			
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:			
GAGCACCCTT CTCATGACCT C				
	(2) INFORMATION FOR SEQ ID NO:14:			
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: pucleic acid			

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:	
GTTGGTGTAG ATGGGCGCAT CG	2
(2) INFORMATION FOR SEQ ID NO:15:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	
GCGGGICIC AGGIIACAGC C	1
(2) INFORMATION FOR SEQ ID NO:16:	
(2) INFORMATION FOR SEQ ID NO:16: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:	
GCCCTCTGGC CTGCTGGCTC ATG	23
(2) INFORMATION FOR SEQ ID NO:17:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 24 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:	
CAGGAGAGTC TTGCCTGTAT CCTC	24

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(2) INFORMATION FOR SEQ ID NO:18:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1521 base pairs

 - (B) TYPE: nucleic acid(C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

CAAGATGCAT	CCAGGGGTCC	TGGCTGCCTT	CCTCTTCTTG	AGCTGGACTC	ATTGTCGGGC	60
CCTGCCCCTT	CCCAGTGGTG	GTGATGAAGA	TGATTTGTCT	GAGGAAGACC	TCCAGTTTGC	120
AGAGCGCTAC	CTGAGATCAT	ACTACCATCC	TACAAATCTC	GCGGGAATCC	TGAAGGAGAA	180
TGCAGCAAGC	TCCATGACTG	AGAGGCTCCG	AGAAATGCAG	TCTTTCTTCG	GCTTAGAGGT	240
GACTGGCAAA	CTTGACGATA	ACACCTTAGA	TGTCATGAAA	AAGCCAAGAT	GCGGGGTTGT	300
01101000	GAATACAATG	TTTTCCCTCG	AACTCTTAAA	TGGTCCAAAA	TGAATTTAAC	360
CTACAGAATT	GTGAATTACA	CCCCTGATAT	GACTCATTCT	GAAGTCGAAA	AGGCATTCAA	420
AAAAGCCTTC	AAAGTTTGGT	CCGATGTAAC	TCCTCTGAAT	TTTACCAGAC	TTCACGATGG	480
CATTGCTGAC	ATCATGATCT	CTTTTGGAAT	TAAGGAGCAT	GGCGACTTCT	ACCCATTTGA	540
GGGCCCTCT	GGCCTGCTGG	CTCATGCTTT	TCCTCCTGGG	CCAAATTATG	GAGGAGATGC	600
CATTTTGAT	GATGATGAAA	CCTGGACAAG	TAGTTCCAAA	GGCTACAACT	TGTTTCTTGT	660
TGCTGCGCAT	GAGTTCGGCC	ACTCCTTAGG	TCTTGACCAC	TCCAAGGACC	CTGGAGCACT	720
EATGTTTCCT	ATCTACACCT	ACACCGGCAA	AAGCCACTTT	ATGCTTCCTG	ATGACGATGT	780
ACAAGGGATC	CAGTCTCTCT	ATGGTCCAGG	AGATGAAGAC	CCCAACCCTA	AACATCCAAA	840
AACGCCAGAC	AAATGTGACC	CTTCCTTATC	CCTTGATGCC	ATTACCAGTC	TCCGAGGAGA	900
AACAATGATC	TTTAAAGACA	GATTCTTCTG	GCGCCTGCAT	CCTCAGCAGG	TTGATGCGGA	960
GCTGTTTTTA	ACGAAATCAT	TTTGGCCAGA	ACTTCCCAAC	CGTATTGATG	CTGCATATGA	1020
GCACCCTTCT	CATGACCTCA	TCTTCATCTT	CAGAGGTAGA	AAATTTTGGG	CTCTTAATGG	1080
TTATGACATT	CTGGAAGGTT	ATCCCAAAAA	AATATCTGAA	CTGGGTCTTC	CAAAAGAAGT	1140
TAAGAAGATA	AGTGCAGCTG	TTCACTTTGA	GGATACAGGC	AAGACTCTCC	TGTTCTCAGG	1200
AAACCAGGTC	TGGAGATATG	ATGATACTAA	CCATATTATG	GATAAAGACT	ATCCGAGACT	1260
AATAGAAGAA	GACTTCCCAG	GAATTGGTGA	TAAAGTAGAT	GCTGTCTATG	AGAAAATGG	1320
TTATATCTAT	TTTTTCAACG	GACCCATACA	GTTTGAATAC	AGCATCTGGA	GTAACCGTAT	1380
TGTTCGCGTC	ATGCCAGCAA	ATTCCATTTT	GTGGTGTTAA	GTGTCTTTTT	AAAAATTGTT	1440
ATTTAAATCC	TGAAGAGCAT	TTGGGGTAAT	ACTTCCAGAA	GTGCGGGGTA	GGGGAAGAAG	1500
AGCTATCAGG	AGAAAGCTTG	G				1521

- (2) INFORMATION FOR SEQ ID NO:19
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

Pro Arg Cys Gly Xaa Pro Asp

5

1

- (2) INFORMATION FOR SEQ ID NO:20:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 12 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

His Glu Xaa Gly His Xaa Xaa Xaa Xaa His Ser 10

- (2) INFORMATION FOR SEQ ID NO:21:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 471 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

Met His Pro Gly Val Leu Ala Ala Phe Leu Phe Leu Ser Trp Thr His Cys Arg Ala Leu Pro Leu Pro Ser Gly Gly Asp Glu Asp Asp Leu Ser 25 Glu Glu Asp Leu Gln Phe Ala Glu Arg Tyr Leu Arg Ser Tyr Tyr His 40 Pro Thr Asn Leu Ala Gly Ile Leu Lys Glu Asn Ala Ala Ser Ser Met Thr Glu Arg Leu Arg Glu Met Gln Ser Phe Phe Gly Leu Glu Val Thr 75 70 Gly Lys Leu Asp Asp Asn Thr Leu Asp Val Met Lys Lys Pro Arg Cys 90 Gly Gly Val Asp Val Gly Glu Tyr Asn Val Phe Pro Arg Thr Leu Lys 105 Trp Ser Lys Met Asn Leu Thr Tyr Arg Ile Val Asn Tyr Thr Pro Asp 125 120 Met Thr His Ser Glu Val Glu Lys Ala Phe Lys Lys Ala Phe Lys Val 140 135 Trp Ser Asp Val Thr Pro Leu Asn Phe Thr Arg Leu His Asp Gly Ile 155 150 Ala Asp Ile Met Ile Ser Phe Gly Ile Lys Glu His Gly Asp Phe Tyr

