

Departamento de Engenharia Electrotécnica Sistemas de Aquisição de Dados (SAD) - 2º Semestre 2015/2016 Regente: Prof. Ricardo Gonçalves Monitor: José Ferreira

Trabalho Final (Cinco Aulas)

Neste trabalho pretende-se implementar um sistema inteligente com intuito de melhorar a produção numa linha de montagem. Para isso vamos utilizar o Arduino UNO¹ para simular uma PLC que vai controlar a linha de montagem, conjuntamente com vários micro-controladores ATTiny84². Cada micro-controlador tem um sensor/actuador associado. Para o Arduino comunicar com cada dispositivo é usado a comunicação I2C, utilizar para dar instruções ou receber os dados necessários para a monitorização.

O trabalho divide-se em dois principais objectivos: a) assegurar a segurança na fábrica; b) monitorizar a produção.

Para alcançar estes objectivos foram colocados vários sensores e actuadores na fábrica, distribuidos da seguinte forma (Figura 1):

- **Segurança:** Panic Button (PB) usado para parar a produção sempre que ocorrer um problema (actuação manual). Sensor de temperatura (TS) e Sensor de gases (GS) para detectar incêndios.
- Monitorização: <u>Três motores (M1, M2 e M3)</u> para actuarem nos tapetes. <u>Sensor de Cor (CS)</u> para identificar se as peças estão a ser pintadas com cor correcta. <u>Sensor Hall (HS)</u> para fazer contagem das peças produzidas. <u>Sensor</u> <u>RFID (RFS)</u> para registar o produto produzido.
- Aquisição de dados: Ligação à internet para fazer aquisição dos dados e respectivo armezenamento na cloud, através do Middleware.
- LCD para visualização do estado da linha: A linha de produção tem um LCD para mostrar o estado da linha, servindo para mostrar mensagens do estado de sensores e produtos.

A linha de montagem tem uma zona onde um sistema de detecção de defeitos identifica automaticamente se um produto está bem pintado ou não (Sensor de Cor). Este sistema começa a funcionar com activação dos motores que fazem os produtos passar através dos sensores. No caso de estar bem pintado, passa à próxima fase de produção. Caso contrário, o produto é rejeitado e é retirado da linha. Após passar a próxima fase de produção, existe um Sensor de Hall, que é usado para fazer contagem dos produtos sem defeito. A seguir o produto passa através dum Leitor RFID que retira a identificação para fazer o registo.

Da parte do sistema de segurança existem três modos de funcionamento: 1) o primeiro é quando está tudo a funcionar sem problemas, nesta fase acedem-se os <u>Leds</u> verdes; 2) O segundo está relacionado com o botão de pressão, este é activo por um operário sempre que ocorrer uma emergência (<u>Panic Button</u>). Nesta situação a linha de

_

¹ https://www.arduino.cc/en/main/arduinoBoardUno

² http://www.atmel.com/devices/ATTINY84.aspx

produção pára, ou seja todos os motores são desligados e acendem-se os <u>Leds</u> amarelos; 3) O último modo de segurança é a detecção de incêndios, que é constituido por um <u>Sensor de Temperatura</u> e um <u>Sensor de Gases</u>, estes sempre que activados fazem disparar o alarme e acendem os Leds vermelhos.

Figura 1 – Linha de montagem com sistema de monitorização.

Aos alunos será fornecido um Arduino para programarem o controlo dos dispositivos e fazerem a sincronização entre eles. Para poderem dar instruções aos sensores e receberem os dados é usado a comunicação I2C, esta comunicação assenta sobre o modelo de comunicação Master/Slave, em que o Master tem um control unidirecional sobre os Slaves. Nesta situação, o Slave nunca tem autonomia, pois só responde consoante ordens do Master. Para o Master poder comunicar com o Slave que pretende, este tem de ter um endereço único, para não haver engano no destinatário das mensagens. Na Tabela 1 está identificada a lista de dispositivos e dos seus endereços.

Dispositivo	Endereço
Sensor de Cor (CS)	0x01
Sensor de Hall (HS)	0x02
Motor 1 (M1)	0x03
Motor 2 (M2)	0x04
Motor 3 (M3)	0x05
Panic Button (PB)	0x06
Luzes de Sinalização (Leds)	0x06
Sensor de Gases (GS)	0x07
LCD (LCD)	0x08
Middleware (Middleware)	0x09
Sensor de Temperatura (TS)	0x10
Sirene de Alarme (Buzz)	0x10

Table 1: Lista de endereços dos dispositivos.

Implementação - O trabalho divide-se da seguinte forma:

- **Segurança:** Na segurança os alunos tem de actuar de três formas diferentes, reflectindo-se nos leds que vão ser actuados:
 - 1. A produção está ocorrer normalmente, nesta situação acende-se os Leds Verdes;

- 2. Ocorre um problema na produção e um dos trabalhadores carrega no Panic Button, assim a produção pára (motores todos desligados) e os Leds Amarelos acendem, indicando que um problema ocorreu;
- 3. Existe um incêndio que é indicado pela subida de temperatura (indicado no Sensor de Temperatura) e pelo excesso de CO2 (indicado no Sensor de Gases). O alarme actua (liga-se a Sirene de Emergência e acendem-se os Leds Vermelhos) indicando que ocorreu um problema.
- Monitorização de produção: Aqui o Arduino vai controlar os sensores e actuadores com intuito de identificar produtos que estejam mal pintados, e contar e registar os que estão em condições de serem distribuidos. Este objectivo divide-se em duas situações que podem ocorrer:
 - Produto Rejeitado O produto passa através do Sensor de Cor, em que identifica uma cor diferente e rejeita o produto. Ao ser rejeitado o Motor 2 é desligado e o Motor 3 é ligado com intuito de retirar o produto da linha de produção;
 - 2. Produto Final O produto passa através do Sensor de Cor, e a cor esta correcta. Nesta situação o Motor 2 é ligado e o produto segue na linha, pasando pelo Sensor de Hall que faz a contagem e depois pelo leitor de RFID para retirar a sua identificação que é registada.
- Aquisição de dados: Ápos fazer aquisição de dados, invoca-se o serviço para guardar os dados na base de dados. Este serviço é activado sempre que se envia os dados por I2C para o Middleware. Este sempre que recebe os dados correctamente trata de os enviar para a Cloud.
- LCD para visualização do estado da linha: Este LCD serve para mostrar o estado da linha, envio de mensagens de aviso de emergência, dos produtos rejeitados, ou quantos ja foram aceites.

Este trabalho deverá ser desenvolvido em grupos de máximo 3 alunos durante quatro aulas (de 5 de Maio a 27 de Maio). Os trabalhos serão depois apresentados e discutidos individualmente de acordo com um calendário a publicar na página da cadeira.

Notas Gerais:

Sensor de Cor:

Envia um pedido ao sensor (com valor 66) para devolver o valor da cor no momento, este devolve uma mensagem a zero se for preto, e diferente de zero se for branco.

Sensor de Hall:

Envia-se um pedido ao sensor para devolver o valor que esta a retirar no momento, este devolve uma mensagem com 2 bytes.

Motor 1, 2 e 3:

Para actuar sobre os motores envia-se uma mensagem com um dos comandos representados na Tabela 2.

Table 2: Comando dos Motores.

Comando	Acção
1	Anda para lado da produção

2	Anda lado contrario à produção
3	Para os motores

Panic Button e Leds de Sinalização:

Para actuar sobre o botão envia-se uma mensagem a perguntar ao controlador se o alarme foi activo ou não, este responde com 1 ou 0. No caso dos leds actua-se para acende-los ou apaga-los com um dos comandos representados na Tabela 3.

Table 3: Comandos para Panic Buttons e Leds.

Comando	Acção	F	Resposta
1	Pedir se o alarme foi actuado	0	Desligado
	ou não	1	Ligado
2	Liga os Leds Verdes		
3	Liga os Leds Vermelhos		
4	Liga os Leds Amarelos		
5	Desliga os Leds		
6	Desliga Alarme do Botão		

Sensor de Gases:

Envia-se um pedido ao sensor para devolver o valor dos gases no momento, este devolve uma mensagem com 2 bytes.

LCD:

Envia-se mensagem para o LCD com o que se pretende que apareça.

Sensor de Temperatura e Sirene de Alarme:

Neste caso actua-se sobre a Sirene de alarme para ligar ou desligar. No caso do Sensor de temperatura, faz-se pedido do valor que esta retirar do ambiente. Os comandos a usar estão representados na Tabela 4.

Table 4: Tabela com comandos do Sensor de Temperatura e da Sirene de Alarme.

Comando	Acção	Resposta
1	Desliga Alarme	
2	Liga Alarme	
3	Pede o valor da temperatura	Mensagem com 2 bytes