

Fortune Cookie Text Generation

Dora Dong Brianna Brown Thomas George Tony Tao

About Us

- Deep Learning Group (Jan, 2019 Dec, 2019)
 - Weekly events to learn DL techniques and discuss applications.
 - Small projects to enhance our understanding of the algorithms.

Team

- Dora Dong, Data Scientist @Fred Hutch
- Brianna Brown, Salesforce Administrator @Optimum Energy
- Thomas George, Software Developer @Optimum Energy
- Tony Tao, Technical Product Manager @Accolade, Inc.

Our Fortune Cookie Project Goals

- Learn some things about natural language processing

 Get some hands on experience working in a group environment on a machine learning project

- Generate some rad fortunes

Be calm when confronting an emergency crisis

What we did:

We tried 3 different text generation models with varying degrees of success

 Baseline model: GRU RNN with Embedding Layer trained on training data

2. GloVe model: GRU RNN with using a GloVe Embedding Layer

3. **GPT-2 model:** Open AI released project

Overview

Word representation

x: "you will be successful in your work".

	<i>x</i> <1>	<i>x</i> <2>	x<3>	 <i>x</i> <7>
Vocabulary a arron : be : in : work	you 0 0 0 0 0 0 1 0 1 0 1 0	will 0 0	be 0 0 0 1 1 1 1 1 1 1	 work 0 0 : 0 : 0 : 0 : 1
you : zulu				

Eyes love you will have a bright future

The GRU model

tanh

pointwise multiplication

pointwise addition

vector concatenation

Who who climbs a ladder must begin at

Our models used a memory state to track which words were important for predicting the next word.

Model Comparison

Models	Embedding Layer	Output	Thoughts	
Baseline Model	Based on corpus (2087 unique words)	Fortune Smiles Upon You Today To Be Tomorrow	 No stopping point. Not a complete sentence. 	
GloVe Embedding Layer	GloVe 6B tokens, 400K vocab	Be Calm When Confronting An Emergency To Be		
GPT2 Embedding Layer	GPT2 8 million web pages	You seek to understand those who are turning you away, you will be successful in your work,	 It learns the punctuation. Still requires a random prefix, and predefined length. 	

Challenges

- Really small data set (~2,000 sentences)
 - With GloVe and Baseline models it was a challenge to get our model to come up with new fortunes rather than regurgitating existings ones
- It is really difficult to determine metrics for how "fortuney" our generated fortunes were
 - Difficult to determine how well our model is performing
 - Would require human interaction to measure performance
 - There is inherent human bias in that fortune cookies can be both positive or negative
- We were unable to have our model determine a stopping point by itself.

Takeaways

- Through meeting in this study group we gained a more grounded understanding of the math that drives deep learning
- While our class focused on data modeling, much of our time was spent on data engineering
- We learned that AI projects is a ongoing cycle of failing and trying again
- The black box of deep learning is real. We found some success from using open source tools but our results were not production ready

And always remember...

THANK YOU!

Contact Info

- Contributions
 - Dora Dong, <u>doradong7@gmail.com</u>
 - Brianna Brown, <u>Brianna.t.brown@gmail.com</u>
 - Thomas George, jorge0136@gmail.com
 - Tony Tao, tonyt.00@outlook.com
- Project Link:
 - https://github.com/WomenInDataScience-Seattle/FortuneCookie
- Data Circle Webpage
 - www.datacircle.org