CS 346 Class Notes

Mark Lindberg

Apr 4, 2016

This Time:

Upcoming exam:

Study problem sets 3 and 4.

Authenticated encryption, up to and including Chinese Remainder Theorem.

The factoring assumption:

First attempt:

Pick a random n-bit number N. Adversary \mathcal{A} gets N, outputs x. \mathcal{A} wins if x is a nontrivial factor of N. We'd like to say that \mathcal{A} has $\leq \text{negl}$ probability of success. This fails because, for example, 2 is a factor of 50% of numbers, and this gives way better than negligible success.

Actual factoring experiment:

Three parameters: n, GenModulus.

GenModulus on input 1^n , generates distinct n-bit primes p, q and their product N, where N is the modulus. (Note: GenModulus is allowed to fail with negl(n) probability.)

Invert_{A,GenModulus}(n): Run GenModulus(1ⁿ) to get N, p, q. Gives N, n to A. A outputs x. A wins if x = p or x = q.

The factoring assumption:

 \exists PPT GenModulus such that \forall PPT \mathcal{A} , $\Pr[\mathsf{Invert}_{\mathcal{A},\mathsf{GenModulus}}(n) = 1] \leq \mathsf{negl}(n)$. It is believed that the above holds for "basic" GenModulus.

RSA assumption: GenRSA(1ⁿ) produces N, e, d. Run GenModulus(1ⁿ), to get N, p, q. Determine an e relatively prime to $\phi(N) = (p-1)(q-1)$. Determine d as $e^{-1} \pmod{\phi(N)}$.

The experiment: Invert_{A,GenRSA}(n): Run GenRSA to get N, e, d. Select a uniform random $y \in \mathbb{Z}_n^*$.

Give A n, N, e, y, A outputs x.

 \mathcal{A} succeeds if $x^e = y \pmod{N}$.

 $f_e(x) = x^e$, f_e corresponds to a permutation on \mathbb{Z}_n^* .

RSA Assumption:

 $\exists \mathsf{GenRSA} \text{ such that } \forall \text{ PPT } \mathcal{A}, \Pr[\mathsf{Invert}_{\mathcal{A},\mathsf{GenRSA}}(n) = 1] \leq \mathsf{negl}(n).$

We do have, 8.2.5, that if factoring is polynomial time solvable, then the RSA problem is polynomial time solvable.

He then goes over "textbook" RSA. Sorry, but I completely zoned out because I've taught this subject before.

Cryptographic assumption in cyclic groups.

G is a finite group. Let $g \in G$. $\langle g \rangle = \{g^0, g^1, \dots, g^{i-1}\}$, where i is the least positive integer such that $g^i = 1$. Note that $\forall g, g^{|G|} = 1$.

 $\langle g \rangle$ is the subgroup of G generated by g, and it is a group of order i.

We say that g has order i in the group G.

Proposition 8.52: $g^x = g^{x \pmod{i}}$. Easy because $g^i = 1$.

Proposition 8.53: $g^x = g^y \Rightarrow x \equiv y \pmod{i}$. Easy.

Proposition 8.54: $i \mid |G|$.

Proof is in theorem 8.14.

Corollary 8.55: If |G| is a prime p, every element $g \in G$ except the identity element is a generator.

A generator is an element such that $\langle g \rangle = G$.

Caution: \mathbb{Z}_N^* does not have prime order.

Theorem 8.56: For any prime p, \mathbb{Z}_p^* is a cyclic group of order p-1.

Residues and subgroups. Again, I had an entire class on algebraic structures, so I'm having a hard time concentrating today.