CALCULUS I	Dept. or School	Year	proctor
2013 Spring Final Exam	Student ID	Name	
₩ Your answer must be provided with descriptions how to get the answ			
1. (4 points) Evaluate improper integral $\int_{-1}^{\infty} \left(\frac{x^4}{1+x^6}\right)^2 dx$	if it 2 . (6 points) Let $f($	$(x) = 2x - \frac{4}{(x+1)^2}$	
converges. $\delta = 1(1+x)$	(1)(3 points) Find	the nonnegative number	
	average value of	f on the interval $[0,b]$	is 2.
	(2)(3 points) Find the	ne average value of the	derivative f' on the
	interval $[0,2]$.		,

3. (5 points) Find the volume common to two circular cylinders, each with radius a if the axes of the cylinders intersect at right angles.

- 4. (6 points) Let $L(a)=\int_{-1}^a g(t)dt$ be a form of the length of the curve $y=x+\sqrt{x}$ from the point (1,2) to the point $(a,a+\sqrt{a})$.
- (1) (3 points) Find the function g(t) in L(a).

(2)(3 points) By using Simpsons's Rule with n=2, estimate the length L(2) of the curve from (1,2) to the point $(2,2+\sqrt{2})$.

CALCULUS I 2013 Spring Final Exam	Dept. or School		Year		proctor	
	Student ID		Name			
5. (6 points) A curve called the folium of Descartes is defined by the parametric equations $x = \frac{3t}{1+t^3}$, $y = \frac{3t^2}{1+t^3}$. (1)(3 points) Show that the polar equation of the curve can be written in the form $r = \frac{3\sec\theta\tan\theta}{1+\tan^3\theta}$.	$\sum_{i=1}^{\infty} a^2$	s) Prove or disprovis convergent.	ve that if	$\sum_{n=1}^{\infty} a_n \text{ is}$	s converg	ent then
(2)(3 points) Find the area enclosed by the loop of the curve.						

7.(8 points) Let $f(x) = \sinh^{-1}x$. (1)(2 points) Find the Maclaurin series for $f(x)$.	(3)(3 points) Find the value of $\frac{1}{\sqrt{2}} + \sum_{n=1}^{\infty} (-1)^n \frac{f^{(2n+1)}(0)}{(2n+1)!} \left(\frac{1}{\sqrt{2}}\right)^{2n+1}$
(2)(3 points) Determine the radius of convergence of the series in (1).	