Experiment No - 1

Aim: To study and implement Finite Automata and validate strings using it.

Date: // Write date of experiment here

Competency and Practical Skills: Understanding and implementing Finite Automata, string validation

Relevant CO: CO1

Objectives:

To understand the concept of Finite Automata.
 To implement Finite Automata using programming language.

3. To validate strings using Finite Automata.

Software/Equipment: Computer system, Text editor, Programming language.

Theory:

Finite Automata is a mathematical model that consists of a finite set of states and a set of transitions between these states. It is used to recognize patterns or validate strings. In a Finite Automata, there are five components:

- 1. A set of states
- 2. An input alphabet
- 3. A transition function
- 4. A start state
- 5. A set of final (or accepting) states

In the implementation of Finite Automata and string validation, we need to create a Finite Automata that recognizes a specific pattern or set of patterns. The Finite Automata consists of states, transitions between the states, and a set of accepting states. The input string is then validated by passing it through the Finite Automata, starting at the initial state, and following the transitions until the string is either accepted or rejected.

String validation using Finite Automata is useful in a variety of applications, including pattern matching, text processing, and lexical analysis in programming languages. It is an efficient method for validating strings and can handle large inputs with minimal memory and time complexity.

Example: Suppose a finite automaton which accepts even number of a's where $\Sigma = \{a, b, c\}$

Solution:

 q_0 is the initial state.

 q_2 is the accepting or final state, and transition function δ is defined as

$$\delta(q_0, a) = q_1$$
 $\delta(q_1, c) = q_1$ $\delta(q_0, b) = q_0$ $\delta(q_2, a) = q_1$ $\delta(q_0, c) = q_0$ $\delta(q_2, b) = q_2$ $\delta(q_1, a) = q_2$ $\delta(q_1, b) = q_1$ $\delta(q_1, c) = q_1$

Suppose w is a string such as

Thus, given finite automation accepts w.

= $\delta(q_1, b, c)$ = $\delta(q_2, c)$ = $q_2(Accepting State)$

Enrollment No: 200200107017 **Suggested Reference:**

- 1. Introduction to Automata Theory, Languages and Computation by John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman.
- 2. https://www.youtube.com/watch?v=58N2N7zJGrQ&list=PLBlnK6fEyqRgp46KUv4ZY69yX mpwKOIev
- 3. GeeksforGeeks: Finite Automata Introduction https://www.geeksforgeeks.org/introduction- of-finite-automata/

Enrollment No: 200200107017

References used by the students:

// Write references used by you here

Rubric wise marks obtained:

Rubrics	Knowledge (2)		Problem Recognition (2)		Implementat ion (2)		Testing & Debugging (2)		Creativity in logic/code (2)		Total
	Good (2)	Avg. (1)	Good (2)	Avg. (1)	Good (2)	Avg. (1)	Good (2)	Avg. (1)	Good (2)	Avg. (1)	
Marks											