NCERT 11.9.5

ee23btech11223 - Soham Prabhakar More

Question:

Which term of the following sequences:

(a) $2,2\sqrt{2},4...$ is 128(c) $\frac{1}{3},\frac{1}{9},\frac{1}{27}...$ is $\frac{1}{19683}$

(b) $\sqrt{3}, 3, 3, \sqrt{3}$... is 729

Answer: (a) Let $x_1(0) = 2$, $x_1(1) = 2\sqrt{2}$, $x_1(2) = 4$. Since, $\frac{x_1(1)}{x_1(0)} = \frac{x_1(2)}{x_1(1)}$, the sequence $x_1(n)$ is a G.P Series. Let $r_1 = \frac{x_1(1)}{x_1(1)} = \sqrt{2}$, then the general term is $x_1(n) = x_1(0) r^{n-1}$.

Assume n^{th} term is 128, which gives:

$$x_1(n) = x_1(0) r^{n-1} = 128$$
 (1)

$$\implies r_1^{n-1} = \frac{128}{x_1(0)} \tag{2}$$

$$\implies n - 1 = \log_{r_1} \frac{128}{x_1(0)} \tag{3}$$

Using values from Table 1,

$$\implies n - 1 = \log_{\sqrt{2}} \frac{128}{2} \tag{4}$$

$$\implies n - 1 = \log_{\sqrt{2}} 64 \tag{5}$$

$$\implies n - 1 = \log_{\sqrt{2}} \sqrt{2}^{12} \tag{6}$$

$$\implies n - 1 = 12 \tag{7}$$

$$\therefore n = 13 \tag{8}$$

Thus the 13^{th} term of the G.P $x_1(n)$ is 128.

$$x_1(n) = x_1(0)r^n u[n]$$
 (9)

where u[0] = 1. Taking the Z - transform:

$$X(z) = \sum_{n = -\infty}^{\infty} x(n) \cdot z^{-n}$$
 (10)

$$\implies X(z) = \sum_{n=0}^{\infty} x(0) r^n z^{-n}$$
 (11)

$$\implies X(z) = x(0) \sum_{n=0}^{\infty} r^n z^{-n}$$
 (12)

$$\implies X(z) = \frac{x(0)}{r} \left(\frac{1}{1 - \frac{r}{z}}\right) \tag{13}$$

$$\therefore X(z) = \frac{x(0)z}{r(z-r)} \forall |z| > |r| \tag{14}$$

Fig. 1: Plot of $x_1(n)$ from n = -6 to 6

$$\therefore X_1(z) = \frac{\sqrt{2}z}{z - \sqrt{2}} \forall |z| > \sqrt{2}$$
 (15)

with ROC:

$$|z| > \sqrt{2}$$

(b) Let
$$x_2(0) = \sqrt{3}$$
, $x_2(1) = 3$, $x_2(2) = 3\sqrt{3}$.

(b) Let $x_2(0) = \sqrt{3}$, $x_2(1) = 3$, $x_2(2) = 3\sqrt{3}$. Since $\frac{x_2(1)}{x_2(0)} = \frac{x_2(2)}{x_2(1)}$, the sequence $x_2(n)$ is a G.P Series. Let $x_2 = \frac{x_2(1)}{x_2(1)} = \sqrt{3}$, then the general term is $x_2(n) = x_2(0) r^{n-1}$.

Assume n^{th} term is 729, which gives:

$$x_2(n) = x_2(0) r^{n-1} = 729$$
 (16)

$$\implies r_2^{n-1} = \frac{729}{x_2(0)} \tag{17}$$

$$\implies n - 1 = \log_{r_2} \frac{729}{x_2(0)} \tag{18}$$

Using values from Table 1,

$$\implies n - 1 = \log_{\sqrt{3}} \frac{729}{\sqrt{3}} \tag{19}$$

$$\implies n - 1 = \log_{\sqrt{3}} \frac{3^6}{\sqrt{3}} \tag{20}$$

$$\implies n - 1 = \log_{\sqrt{3}} \sqrt{3}^{11} \tag{21}$$

$$\implies n - 1 = 11 \tag{22}$$

$$\therefore n = 12 \tag{23}$$

Thus the 12^{th} term of the G.P $x_2(n)$ is 729.

$$x_2(n) = x_2(0)r_2^n u[n] (24)$$

By 14, the Z-transform of $x_b(n)$:

$$X_2(z) = \frac{z}{z - \sqrt{3}} \tag{25}$$

with ROC:

$$|z| > \sqrt{3}$$

Fig. 2: Plot of $x_b(n)$ from n = -6 to 6

(c) Let $x_3(0) = \frac{1}{3}$, $x_3(1) = \frac{1}{9}$, $x_3(2) = \frac{1}{27}$. Since $\frac{x_3(1)}{x_3(0)} = \frac{x_3(2)}{x_3(1)}$, the sequence $x_3(n)$ is a G.P Series. Let $r_3 = \frac{x_3(1)}{x_3(1)} = \frac{1}{3}$, then the general term is $x_3(n) = x_3(0) r^{n-1}$. Assume n^{th} term is $\frac{1}{19683}$, which gives:

$$x_3(n) = x_3(0) r_3^{n-1} = \frac{1}{19683}$$
 (26)

$$\implies r_3^{n-1} = \frac{1}{19683x_3(0)} \tag{27}$$

$$\implies n - 1 = \log_{r_3} \frac{1}{19683x_3(0)} \tag{28}$$

Using values from Table 1,

$$\implies n - 1 = \log_{\frac{1}{3}} \frac{1}{19683\frac{1}{3}} \tag{29}$$

$$\implies n - 1 = \log_{\frac{1}{3}} \frac{1}{6561} \tag{30}$$

$$\implies n - 1 = \log_{\frac{1}{3}} 3^{-8} \tag{31}$$

$$\implies n - 1 = 8 \tag{32}$$

$$\therefore n = 9 \tag{33}$$

Thus the 9th term of the G.P $x_3(n)$ is $\frac{1}{19683}$.

$$x_3(n) = x_3(0)r_3^n u[n]$$
 (34)

By 14, the Z-transform of $x_3(n)$:

$$X_3(z) = \frac{z}{z - \frac{1}{3}} \implies X_3(z) = \frac{3z}{3z - 1}$$
 (35)

with ROC:

$$|z| > \frac{1}{3}$$

Fig. 3: Plot of $x_3(n)$ from n = -6 to 6

Parameter	Description	Value
r_1	Common ratio of G.P (a)	$\sqrt{2}$
a_n	Sequence	$2, 2\sqrt{2}, 4\dots$
$x_1(n)$	Function equivalent of sequence a_n	_
$x_1(0)$	a_1	2
$X_1(z)$	Transform of $x_1(n)$	_
r_2	Common ratio of G.P (b)	$\sqrt{3}$
b_n	Sequence	$\sqrt{3}$, 3, 3 $\sqrt{3}$
$x_2(n)$	Function equivalent of sequence b_n	_
$x_2(0)$	b_1	$\sqrt{3}$
$X_{2}(z)$	Z-transform of $x_2(n)$	_
r_3	Common ratio of G.P (c)	$\frac{1}{3}$
c_n	Sequence	$\frac{1}{3}, \frac{1}{9}, \frac{1}{27}$
$x_3(n)$	Function equivalent of sequence c_n	
$x_3(0)$	c_1	$\frac{1}{3}$
$X_3(z)$	Z-transform of $x_3(n)$	_

TABLE 1: Table of parameters