ТМВ ДЗ №1

Каменев Руслан А-05-19

8 апреля 2022 г.

1 Построить конечный автомат, распознающий язык

1. $L = \{w \in \{a, b, c\}^* \mid |w|_c = 1\}$

2. $L = \{w \in \{a, b\}^* \mid |w|_a \le 2, |w|_b \ge 2\}$

3.
$$L = \{w \in \{a, b\}^* \mid |w|_a \neq |w|_b\}$$

Для данного языка нельзя построить конечный автомат, т.к. нужно запомнимать количество символов a и b - чего конечные автоматы делать не умеют, но, кажется, конечные автоматы с магазинной памятью такое могут ... (но это неточно)

4. $L=\{w\in\{a,b\}^*\mid ww=www\}$ Этот язык будет состоят только из пустых цепочек (|w|=0), т.к. при |w|>0 $ww\neq www$.

2 Построить KA, используя прямое произведение

1. $L_1 = \{w \in \{a,b\}^* \mid |w|_a \ge 2 \land |w|_b \ge 2\}$ Разобьем на 2 автомата:

$$L_{11} = \{ w \in \{a, b\}^* \mid |w|_a \ge 2 \}, \quad L_{12} = \{ w \in \{a, b\}^* \mid |w|_b \ge 2 \}$$

$$L_{11}=(\Sigma_1=\{a,b\};\ Q_1=\{s_1,q_1,t_1\};\ s_1;\ T_1=\{q_1\};\delta_1)$$
 $L_{12}=(\Sigma_2=\{a,b\};\ Q_2=\{s_2,q_2,t_2\};\ s_2;\ T_2=\{q_2\};\delta_1)$ $A=L_{11}\wedge L_{12},$ по определению прямого произведения:

$$A = (\Sigma; Q; s; T; \delta)$$
, где:
 $\Sigma = \Sigma_1 \wedge \Sigma_2 = (a, b)$
 $Q = Q_1 \times Q_2$
 $s = (s_1, s_2)$
 $T = T_1 \times T_2 = (q_1, q_2)$
 $\delta((s_1, s_2), a) = (\delta_1(s_1, a), \delta_2(s_2, a))$

Новые пвершины и переходы между ними:

Сочетания точек	Переход по а	Переход по b
s_1s_2	q_1s_2	s_1q_2
s_1q_2	q_1q_2	s_1t_2
$\mathbf{s}_1 t_2$	q_1t_2	s_1t_2
q_1s_2	t_1s_2	q_1q_2
q_1q_2	t_1q_2	q_1t_2
q_1t_2	$\mathbf{t}_1 t_2$	q_1t_2
t_1s_2	t_1s_2	t_1q_2
t_1q_2	t_1q_2	$\mathrm{t}_1 t_2$
12	12	12

Получим:

2.
$$L_2 = \{w \in \{a,b\}^* \mid |w| \geq 3 \wedge |w|$$
 — нечёт $\}$ Разобьем на 2 автомата:

$$L_{21} = \{ w \in \{a, b\}^* \mid |w| \ge 3 \}, \quad L_{22} = \{ w \in \{a, b\}^* \mid |w| \quad odd \}$$

$$L_{21}=(\Sigma_1=\{a,b\};\ Q_1=\{s_1,q_1,t_1,k_1\};\ s_1;\ T_1=\{k_1\};\delta_1)$$
 $L_{22}=(\Sigma_2=\{a,b\};\ Q_2=\{s_2,q_2\};\ s_2;\ T_2=\{q_2\};\delta_2)$ $A=L_{21}\wedge L_{22},$ по определению прямого произведения:

$$\begin{split} A &= (\Sigma;Q;s;T;\delta), \text{ где:} \\ \Sigma &= \Sigma_1 \wedge \Sigma_2 = (a,b) \\ Q &= Q_1 \times Q_2 \\ s &= (s_1,s_2) \\ T &= T_1 \times T_2 = (q_1,q_2) \\ \delta((s_1,s_2),a) &= (\delta_1(s_1,a),\delta_2(s_2,a)) \end{split}$$

Новые пвершины и переходы между ними:

Сочетания точек	Переход по а	Переход по b
$s_1 s_2$	q_1q_2	q_1q_2
s_1q_2	q_1s_2	q_1s_2
q_1s_2	t_1q_2	t_1q_2
q_1q_2	t_1s_2	t_1s_2
t_1s_2	k_1q_2	k_1q_2
t_1q_2	k_1s_2	k_1s_2
k_2s_2	k_1q_2	k_1q_2
k_1q_2	k_1s_2	k_1s_2

Получим:

Так как в вершину s_1q_2 попасть нельзя, можно автомат немного упростить:

3. $L_3 = \{w \in \{a,b\}^* \mid |w|_a -$ чёт $\wedge |w|_b -$ кратно $3\}$ Разобьем на 2 автомата:

$$L_{31} = \{w \in \{a,b\}^* \mid |w|_a - \text{чёт}\}, \quad L_{32} = \{w \in \{a,b\}^* \mid |w|_b - \text{кратно } 3\}$$

$$L_{31}=(\Sigma_1=\{a,b\};\ Q_1=\{s_1,q_1\};\ s_1;\ T_1=\{s_1\};\delta_1)$$
 $L_{32}=(\Sigma_2=\{a,b\};\ Q_2=\{s_2,q_2,t_2\};\ s_2;\ T_2=\{s_2\};\delta_2)$ $A=L_{31}\wedge L_{32},$ по определению прямого произведения:

$$\begin{split} A &= (\Sigma; Q; s; T; \delta), \text{ где:} \\ \Sigma &= \Sigma_1 \wedge \Sigma_2 = (a,b) \\ Q &= Q_1 \times Q_2 \\ s &= (s_1,s_2) \\ T &= T_1 \times T_2 = (s_1,s_2) \\ \delta((s_1,s_2),a) &= (\delta_1(s_1,a),\delta_2(s_2,a)) \end{split}$$

Новые пвершины и переходы между ними:

Сочетания точек	Переход по а	Переход по b
s_1s_2	q_1s_2	s_1q_2
s_1q_2	q_1q_2	s_1t_2
s_1t_2	q_1t_2	s_1s_2
q_1s_2	s_1s_2	q_1q_2
$\mathbf{q}_1 q_2$	s_1t_2	q_1t_2
q_1t_2	s_1t_2	q_1s_2

Получим:

4.
$$L_4 = \overline{L_3}$$

Чтобы построить отрицание, нужно инвертировать терминальные и нетерминальные вершины:

5. $L_5 = L_2 \setminus L_3 = L_2 \wedge L_4$ Найдём пересечение двух языков:

Выполнив переобозначение вершин, получим:

 $L_5 = L_2 \wedge L_4$. Имеем $\Sigma = \{a,b\}, s = 11, T = 42$. Новые пвершины и переходы между ними:

Сочетания точек	Переход по а	Переход по b
11	25	22
12	26	23
13	24	21
14	23	25
15	21	26
16	22	24
21	35	32
22	36	33
23	34	31
24	33	35
25	31	36
26	32	34
31	45	42
32	46	43
33	44	41
34	43	45
35	41	46
36	42	44
41	55	52
42	56	53
43	54	51
44	53	55
45	51	56
46	52	54
51	45	62
52	46	43
53	44	41
54	43	45
55	41	46
56	42	44

Получим:

3 Построить минимальный ДКА по регулярному выражению

 $1. (ab + aba)^*a$

Недетерминированный КА по данному выражению:

Сочетания точек	По А	По В
1	3 6 10	
3 6 10		4 7
4 7	8 3 6 10	
8 3 6 10	3 6 10	4 7

Теперь можем нарисовать ДКА:

2. $a(a(ab)^*b)^*(ab)^*$

Недетерминированный КА по данному выражению:

Сочетания точек	По А	По В
1	2	
2	38	
38	4	69 5
4		5
69	38	
5	4	6
8		9
6	38	
9	8	

Теперь можем нарисовать ДКА:

Его можно минимизировать:

3. (a + (a + b)(a + b)b)*

Недетерминированный КА по данному выражению:

Сочетания точек	По А	По В
1	12	2
12	123	23
2	3	3
3		1
123	123	123
23	3	13
13	12	12

Теперь можем нарисовать ДКА:

Он минимален

4.
$$(b+c)((ab)^*c+(ba)^*)^*$$

По счастливому стечению обстоятельств удаётся сразу построить ДКА:

Кажется, он еще и минимальный. Победа!

5.
$$(a+b)^+(aa+bb+abab+baba)(a+b)^+$$

Недетерминированный КА по данному выражению:

	Сочетания точек	По А	По В
Исправить	1	2	2
	2	13	17
	13	26	24
	17	28	26
	26	110	110
	24	15	1
	28	1	19
	110	210	210
	15	2	26
	19	26	2
	210	110	110

Теперь можем нарисовать ДКА: