# A statistical model for predicting flight cancellations or delays

A Data-Driven Approach

Shuo Li, Xinrui Zhong, Yunze Wang

Data Science Project University of Wisconsin-Madison November 2024



## Outline



1 Data Preprocessing

2 Model Selection

**3** Conclusion

## Data Preprocessing



- Dataset: LCD\_{station id}\_{year}.csv, Airport\_Selected.csv
- Imputed missing values using mean value to retain dataset consistency without losing significant data.
- Matched each airport to the nearest weather station using the Haversine distance method based on latitude and longitude coordinates.

$$d = 2r \cdot \arcsin\left(\sqrt{\sin^2\left(\frac{\Delta \mathsf{lat}}{2}\right) + \cos(\mathsf{lat}_1) \cdot \cos(\mathsf{lat}_2) \cdot \sin^2\left(\frac{\Delta \mathsf{lon}}{2}\right)}\right)$$

Converted all the time points to UTC.

## Data Preprocessing



- Extracted weather data from the nearest time point to the scheduled departure, integrating it into the main dataset.
  - Time-consuming(Vectorized Operations and Apply) ONLY 2h!
- Created a clean and comprehensive dataset by handling and restructuring columns.

| Airport ID | Nearest Station ID | FlightDate | HourlyWindSpeed |  |
|------------|--------------------|------------|-----------------|--|
| LAX        | ST001              | 2018-01-01 | 15 mph          |  |
| JFK        | ST002              | 2018-01-01 | 10 mph          |  |
| ORD        | ST003              | 2018-01-01 | 20 mph          |  |
| ATL        | ST004              | 2018-01-01 | 12 mph          |  |

## Feature Selection



• One-hot encoder applied to each object type.

| Year                      | Object  |
|---------------------------|---------|
| Month                     | Object  |
| DayofMonth                | Object  |
| DayOfWeek                 | Object  |
| Marketing_Airline_Network | Object  |
| Origin                    | Object  |
| Dest                      | Object  |
| CRSDepTime                | Numeric |
| CRSArrTime                | Numeric |
| HourlyDewPointTemperature | Numeric |
| HourlyDryBulbTemperature  | Numeric |
| HourlyPrecipitation       | Numeric |
| HourlyPressureChange      | Numeric |
| HourlyRelativeHumidity    | Numeric |
| HourlySeaLevelPressure    | Numeric |
| HourlyVisibility          | Numeric |
| HourlyWindSpeed           | Numeric |
|                           |         |

## Model Performance



- Canceling Analysis: Logistic Regression
  - SGD Optimizer
  - I2 penalty
- Delay Analysis: Ordinary Linear Regression
  - subsampling

|                  | Canceling Analysis  | Delay Analysis             |
|------------------|---------------------|----------------------------|
| Model type       | Logistic Regression | Ordinary Linear Regression |
| MSE(in a subset) | 0.04477             | 1810                       |
| F-test (p-value) | NA                  | 0(very small)              |

Table: Comparison of different models

## Overview of Findings



- Flights in the later days of the month show a lower likelihood of cancellation.
- Higher wind speeds may indicate extreme weather, increasing cancellation risks.
- Visibility significantly impacts flight delay durations.
- Transition days between workdays and weekends (Friday, Sunday, and Monday) are prone to delays.
- Humidity affects both cancellations and delays, often indicating increased probability of severe weather.

## Flight Cancellation Analysis



#### Key Dates and Days of the Month

• Later Days of the Month: Decreased probability of flight cancellations.(coeff=-0.5)

#### Weather Factors

- Wind Speed: Higher wind speeds correlate with a higher likelihood of extreme weather and increased cancellations. (coeff=0.38)
- Humidity: Higher humidity levels often lead to more cancellations due to severe weather.(coeff=0.36)

## Flight Delay Analysis



#### Key Days of the Week

• Friday, Sunday, and Monday: These days, linking weekends and weekdays, are more prone to delays.

#### Weather Factors

- **Visibility:** Lower visibility is a significant factor, as it can slow down flight operations.(coeff=-3.447)
- Humidity: Higher humidity can indicate rain, contributing to delays.(coeff=4.989)

## Summary



- **Flight Cancellations:** Strongly influenced by the time of the month, wind speed, and humidity.
- **Flight Delays:** Commonly impacted by visibility, high humidity, and certain days (Friday, Sunday, and Monday).
- Weather Impact: Humidity plays a significant role in both cancellations and delays, indicating a potential increase in severe weather conditions.

# Shiny APP



Shiny App link: click here



Thank you!