大数据算法-2025 春

Lecture 19: Manifold Learning

2024.6.3

Lecturer: 丁虎 Scribe: 王运韬, 莫官霖

1 动机与基本概念

多维尺度分析(MDS)是一种非线性降维技术,旨在将高维数据投影到低维空间,同时尽可能保留数据点之间的相似性或距离关系。

核心思想: 给定一组对象间的相异度(距离)矩阵 $D \in \mathbb{R}^{n \times n}$,其中 $D_{ij} = \operatorname{dist}(x_i, x_j)$,MDS 寻找低维表示 $\{y_1, \dots, y_n\} \in \mathbb{R}^{n \times k}$ (通常 k = 2 或 3),使得这些点之间的欧氏距离尽可能接近原始距离。

2 经典 MDS 算法

2.1 输入与输出

• 输入: 距离矩阵 $D \in \mathbb{R}^{n \times n}$, 其中 $D_{ij} = \operatorname{dist}(x_i, x_j)$

• **输出**: 低维表示 $Y = \{y_1, \dots, y_n\} \in \mathbb{R}^{n \times k}$

2.2 算法步骤

1. 计算平方距离矩阵:

$$D^{(2)} = D \odot D$$

2. 构造双中心化矩阵:

$$B = -\frac{1}{2}JD^{(2)}J$$

其中 $J = I_n - \frac{1}{n}11^T$ 为中心化矩阵,1 为全 1 向量

3. 特征分解:

$$B = V\Lambda V^T$$

其中 $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n), \ \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$

4. 选择前 k 个特征值及对应特征向量:

$$Y = V_k \Lambda_k^{1/2}$$

其中 V_k 为前 k 个特征向量组成的矩阵, $\Lambda_k = \operatorname{diag}(\lambda_1, \dots, \lambda_k)$

可以看到,MDS 算法实质上就是 PCA 的一种等价形式.

从距离矩阵 D 重建内积矩阵 B:

$$B_{ij} = \frac{1}{2}(\|x_i\|^2 + \|x_j\|^2 - D_{ij}^2)$$

3 ISOMAP 算法

ISOMAP (等距映射) 是 MDS 的扩展,适用于非线性流形数据。

3.1 算法原理

- 1. 构建邻域图:
 - 对每个点 x_i ,找到其 k 近邻或 ϵ -邻域
 - 构建邻接图 G, 边权重为欧氏距离.
- 2. **计算最短路径距离**: 使用 Dijkstra 或 Floyd-Warshall 算法计算图上所有点对之间的最短路径距离 \tilde{D} , 从而近似测地距离, 如图 **??**. $\tilde{D}_{ij} = \begin{cases} D_{ij} & \text{如果} j \in \mathcal{N}(i) \\ \text{最短路径距离} & \text{否则.} \end{cases}$
- 3. **应用经典 MDS**: 对 \tilde{D} 应用 MDS 得到低维嵌入.

缺点:复杂度太高.

4 局部线性嵌入 (Locally Linear Embedding, LLE)

LLE 是另一种非线性降维方法,强调局部线性结构的保持。

Figure 1: Isomap 算法中的距离为红线长度,相比蓝线的欧氏距离更能体现内蕴性质.

4.1 算法步骤

- 1. **选择邻域**:对每个点 $x_i \in \mathbb{R}^n$,找到 k 近邻 $\mathcal{N}(i)$
- 2. **计算局部重建权重**, 其中 W_{ij} 为希望找到的权重:

$$\min_{W} \sum_{i=1}^{n} \|x_i - \sum_{j \in \mathcal{N}(i)} W_{ij} x_j\|^2$$
s.t.
$$\sum_{j \in \mathcal{N}(i)} W_{ij} = 1$$

这里的约束项, 从几何上看, 保证了在变换 $x \mapsto x + c$ 下目标函数的不变性.

3. **计算低维嵌人**. 求降维后的数据点矩阵 $Y \in \mathbb{R}^{n \times k}$, 使用一个简单的凸优化:

$$\min_{Y} \sum_{i=1}^{n} \|y_i - \sum_{j \in \mathcal{N}(i)} W_{ij} y_j \|^2$$
s.t. $\frac{1}{n} Y^T Y = I$, $\sum_{i=1}^{n} y_i = 0$

Remark 4.1. 权重矩阵 W 的求解:

$$W_i = \frac{C^{-1}1}{1^T C^{-1}1}$$

其中 $C_{jk} = (x_i - x_j)^T (x_i - x_k)$ 为局部协方差矩阵.

5 Doubling Dimension and R-Net

在各种计算几何领域的算法中,我们常常要反复搜索一个点的邻居。在先前的课程中我们提到了可以用 LSH 来加速这一过程。进一步地,当数据处于一个流形上,我们是否可以使用其他方法来加速这一近邻搜索的过程?

5.1 Doubling Dimension

倍增维数 (Doubling Dimension) 是数据内蕴维度的一种。 若对于任意的 $p \in P$, r > 0, 有

$$\frac{|Ball(p,2r)|}{|Ball(p,r)|} \leq 2^{\lambda}$$

则 λ 称为 P 的倍增维数. 一般地, \mathbb{R}^d 的倍增维数为 $\Theta(d)$,但如果数据集 P 分布在一个低维流形上,那么 P 的 Doubling Dimension 为 $\Theta(1)$ 。对于这样的 P,我们可以构造一个 r-net Q 来近似。

Definition 5.1 (r-net). 给定度量空间 (X,d) 和半径 r>0,子集 $N\subseteq X$ 称为 r-net 如果满足:

- 1. (**覆盖性**) 对所有 $x \in X$,存在 $y \in N$ 使得 $d(x,y) \le r$
- 2. (**分离性**) 对所有 $y, z \in N$, d(y, z) > r

由定义和三角不等式,有如下结论:

Lemma 5.2. 对于集合 P 和它的 r-net Q

$$Ball(P,r) \subseteq \bigcup_{\substack{q' \in Ball(q,3r) \\ q' \in Q}} Ball(q',r)$$

根据上述的结论, 我们可以将近邻的搜索范围降低到 $Q \cap Ball(q',r)$. 我们有重要的推论:

Lemma 5.3. 设度量空间 $M = (X, dist), S \subset X$, 其中 (S, dist) 仍然是一个度量空间。令 N 为 S 的一个 r-net, 并设 S 的直径为 D, 则:

$$|N| \le (\frac{2D}{r})^{\operatorname{ddim}(M)}$$

Proof. 由于 $S \subset X$,我们至少需要 $\lambda(M)$ 个直径为 D/2 的集合覆盖 S。每个这样的子集 $S_i \subset S$ 仍然是 M 的子集,因此根据相同的定义,我们可以用 $\lambda(M)$ 个直径为 D/4 的集合 覆盖每个 S_i 。由于有 $\lambda(M)$ 个 S_i ,总共需要 $\lambda(M)^2$ 个直径为 D/4 的集合覆盖 S。

重复这一过程, 我们可以覆盖 S 使用:

- $\lambda(M)$ 个直径为 D/2 的集合;
- $\lambda(M)^2$ 个直径为 D/4 的集合;
- $\lambda(M)^3$ 个直径为 D/8 的集合;
- ...
- $\lambda(M)^{\log_2(\frac{2D}{\lambda})}$ 个直径为 $D/2^{\log_2(\frac{2D}{\lambda})} = \frac{r}{2}$ 。

由于 $\frac{r}{2}$ 直径的集合最多只能包含一个 r-net 中的点,因此 N 的大小受到以下限制:

$$|N| \le \lambda(M)^{\log_2(\frac{2D}{r})} = (\frac{2D}{r})^{\operatorname{ddim}(M)}.$$

r-net 的建立方法: Gonzalez 算法.

- 1. 从 P 中任取一个点 $p_1, S = \{p_1\}$
- 2. Do $p_j = \arg \max d(p_j, S), S = S \cup \{p_j\}.$ While $d(p_j, S) > r$
- 3. Return S

根据引理 5.3, $|S| < (\frac{D}{r})^{\lambda}$. 时间复杂度为 $\Theta((\frac{D}{r})^{\lambda}nd)$.

问题:如何降低建立 r-net 的复杂度?

Friend List 方法 by Sariel Har-Peled & Manor Mendel, "Fast Construction of Nets in Low Dimensional Metrics, and Their Applications"。

核心思想: 只在 "局部" 更新距离,而不是全局扫描。每次加入一个新的 center 时,那些"距离当前 center 集合的距离"会产生变化的数据点,只会存在于一些"可能受影响的簇"内。我们用 friend list 把"可能受影响的簇"限定在常数个 (与度量的倍增维度 λ 有关),从而把一次迭代的代价降到 $\lambda^{O(1)}$,而非朴素 Gonzalez 中的 O(nd).

数据结构:

- 1.Max heap H_{α} : 维护每个数据点 q 到类中心集合 S 的距离 α_{q} 。(大小为 n)
- $2.C(p_i)$: 维护每个类中心 p_i 负责的点集。(总大小为 n)
- 3.Friend list $F(p_i)$: 与类中心 p_i 距离 $\leq 4r_k$ 的其他**类中心**。

单次迭代流程:

- 1. 从 H_{α} 弹出距离当前类中心集合 S 距离最远的点 p_i ,设其原本所属的类中心是 c。
- 2. 建立新的类中心 p_j 。

- 3. 局部更新:只扫描两类簇中的所有数据点:c 负责的所有点、和c 的 friend list 中的 那些类中心负责的所有点。对每个需要更新的点q,我们重新计算 α_q ,并在需要时把q 迁入新的簇 $C(p_j)$ 。
 - 4. 生成 p_j 的 friend list。

时间复杂度改进:

由于每个类中心的 friend list 规模最多不超过 $O(c'^{\lambda})(c'$ 为常数),总的时间复杂度不超过 $O(c'^{\lambda}n\log n\log \frac{D}{r})$,进一步地,可以将这个复杂度降低至 $O(c'^{\lambda}n\log n)$ 。