Exercice 6

Soient E un ensemble, P(E) l'ensemble des parties de E, A et B deux parties de E. On défont:

*
$$f: \mathcal{P}(E) \longrightarrow \mathcal{P}(A) \times \mathcal{P}(B)$$

 $X \longmapsto (XNA; XNB).$

1. Montrons que f'est injectile (>> AUB=E

$$f(AUB) = (A; B)$$

$$(**)$$
 $f(E) = (ENA; ENB)$

$$f(E) = (A; B)$$

Dapres
$$(*)$$
 et $(**)$, $f(AUB) = f(E)$

(18) et comme f et injective, alors AUB=E.

2. Montrons que f'est surjective (>> ANB=\$ (D) Supposons que of est surjective. Comme $\phi \in \mathcal{P}(A)$ et ANB $\in \mathcal{P}(B)$ alos $(\phi; ANB) \in \mathcal{P}(A) \times \mathcal{P}(B)$ ainsi il existe X eJ(E), tel que: f(x)=(x,ANB) Cest-a-dore, XNA=p et XNB=ANB or ANB = XNB = D ANB C X donc ANB = XNA = \$ d'où $ANB = \phi$ (=) Supposons que ANB=p. Soit (Z;T) un élément de P(A) x P(B); alos ZeP(A) et TeP(B) Clest-à-dire, ZCA et TCB (20) or $ANB = \emptyset$

of st surjective (=) ANB=\$.

3) Donnous une condition nécessaire et suffisante sur A et B pour que f soit bijective

* of est bijective (=) of est ityective et felt burjective

Déterminons dans ce cons la bijection réciproque de f

$$f^{-1}: \mathcal{P}(A) \times \mathcal{P}(B) \longrightarrow \mathcal{P}(E)$$

$$(X; Y) \longmapsto XUY$$