Càlcul amb vàries variables

Feb. 2008

1. Donada la funció:

$$f(x,y) = \begin{cases} (\sqrt{x+y})^n \cos\left(\frac{1}{x^2+y^2}\right) & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Demostreu per a quins valor de $n \in \mathbb{N}$ es verifica que

- f(x,y) és contínua a tot \mathbb{R}^2
- f(x,y) és diferenciable a tot \mathbb{R}^2

(2 punts)

2. Determina si la funció x = f(y, z) definida implícitament per l'equació:

$$\pi + x^2 - 2y + z + exp[x + y - z^2 - \pi/2] - sin(z - (x + y) + \pi/2) = 1$$

té, en el punt $(0, \pi/2, 0)$, un màxim, mínim o punt d'enforcadura.

(3 punts)

3. Donat el camp vectorial $\overrightarrow{F}(x,y,z)=(2z,0,x)$, calculeu les integrals de superfície

$$\int_{S} \left(\nabla \times \overrightarrow{F} \right) \cdot d\overrightarrow{S}$$

per els següents casos:

- quan la superfície S és $x^2 + z^2 = a y$, $0 \le y \le L$, a, L > 0.
- quan S és $x^2 + z^2 \le a L$, y = L, a, L > 0.

Hi ha alguna raó perquè les dues integrals anteriors siguin iguals?

(3 punts)

4. Calculeu l'àrea de la regió del pla R tancada entre la corba $y=x^2$ i la corba y=x(1-x), a partir d'una integral doble de la forma $\int \int_R dx dy \ f(x,y)$, per una certa funció f(x,y).

Fent el canvi de variable $u = x^2 + y$, $v = x^2 - y$, verifiqueu el resultat anterior a partir de la corresponent integral doble en les noves variables u, v.

(2 punts)