Congratulations! You passed!

Grade received 100% Latest Submission Grade 100% To pass 78% or higher

Go to next item

1.	The transaction Merkle Tree root value in a Bitcoin block is calculated using number of transactions hash of transactions previous block's hash none	1/1 point
2.	Correct. Follow the steps given in the tool at this link to manually calculate the hash of the block #490624. You can obtain the details required in the tool from this link tool. What is the hash of the block #490624? Copy and paste the answer. 000000000000000000000d4c8b9d5388e42bf084e29546357c63cba8324ed4ec8bf	1/1 point
3.	 Correct Correct Follow the guidelines in the encryption tool at this link	1/1 point
	When encrypting a message with the public key, which key is required to decrypt the message? Inverted Public Key Private Key Public Key Both Public key and Private key	
4.	Correct Correct What type of hashing algorithm does Bitcoin blockchain use to determine the hash of a block? SHA-1	1/1 point
	 SHA-512 MD5 SHA-256 ✓ Correct That's correct. Bitcoin uses: SHA256(SHA256(Block_Header)) 	
5.	In Ethereum, which algorithm is applied to the private key in order to get a unique public key. RSA Keccak ECC	1/1 point
	 ○ Correct That's correct. Addresses of account are generated using the public key-private key pair. First, a 256-bit random number is generated and designated as a private key, kept secure and locked using a passphrase. Then an ECC algorithm is applied to the private key to get a unique public key. 	
6.	Which of the following methods can be used to obtain the original message from its generated hash message using SHA-256? Hashing the generated hash again Hashing the reverse of generated hash Original message cannot be retrieved Hashing the generated hash again, twice Correct That's correct. SHA-256 is a one-way hash function, that is a function which is infeasible to invert.	1/1 point
7.	In Ethereum, hashing functions are used for which of the following? 1. Generating state hash. 2. Generating account addresses. 3. Decrypting senders message. 4. Generating block header hash. 1,2,4 1,3,4	1/1 point
	 2,3,4 1,2,3 Correct That's correct. In Ethereum, hashing functions are used for generating account addresses, digital signatures, transaction hash, state hash, receipt hash, and block header hash. 	
8.	What is the purpose of using a digital signature? It supports both user authentication and integrity of messages It supports the integrity of messages None of the above. It supports user authentication Correct That's correct. A valid digital signature gives a recipient reason to believe that the message was created by a known sender (authentication), that the sender cannot deny having sent the message, and that the message was not altered in transit (integrity).	1/1 point
9.	Encryption of a message provides authentication integrity security nonrepudiation	1/1 point
10.	 ✓ Correct Correct. A public key is derived from the a different public key private Key hash of the first transaction by the account 	1/1 point

O genesis block hash

⊘ Correct

Correct!