Keishin Nishida, Martin C. Frith and Kenta Nakai

Pseudocounts for transcription factor binding sites

DNA Motifs

- A pattern of nucleotide sequences.
- Standard, palindromes and gapped.
- Associated to DNA-protein binding sites.

Positional Matrices

Set of sequences

T A C G A T A A G
T A T A A T A G G
T A T A A T A A C
T A T A C T A A C
T A T G A T A A T

Position Frequency Matrix (PFM)

Position Probability Matrix (PPM)

	1	2	3	4	5	6	7	8	9
Α	0	1	0	0.5	0.67	0	1	0.83	0.17
С	0	0	0.17	0	0.17	0	0	0	0.34
G	0	0	0	0.5	0 0.17	0	0	0.17	0.34
Т	1	0	0.83	0	0.17	1	0	0	0.17

$$M_{k,j} = \frac{1}{N} \sum_{i=1}^{N} I(X_{i,j} = k)$$

Position Weight Matrix (PWM)

$$M_{k,j} = \ln (M_{k,j}/b_k)$$

S: TAT**A**ATAAT Score = 1*1*0.83*0.5*0.67*1*1*0.83*0.17= 0.03

S: TAT**C**ATAAT Score = 0

Motif matching with pseudocounts

	1	2	3	4	5	6	7	8	9
Α	1	7	1	4	5	1	7	6	2
С	1	1	2	1	2	1	1	1	3
								2	
Т	7	1	6	1	2	7	1	1	2

S: TAT**A**ATAAT Score = 0.7*0.7*0.6*0.4*0.5*0.7*0.7*0.6*0.2= 0.00345

S: TATCATAAT Score = 0.7*0.7*0.6*0.1*0.5*0.7*0.7*0.6*0.2= 0.00086

MATERIALS AND METHODS

JASPAR dataset

- JASPAR 2008
- Motifs for multicellular Eukaryotes
- 122 PFM

Sampled PFM from original PFM

Pseudocount addition

$$p'_{a,i} = \frac{c'_{a,i} + B/4}{m+B}$$

- For every sample PFM built up to 61 new "sample" PPM with pseudocount B have been created.
- Pseudocounts exponentially bigger. $B = 10^{\left(\frac{x}{y}\right)-2}$

Operations recap

- From PFM to PPM
- From PPM to set of sequences
- From set of sequences to PFM
- From PFM with the addition of pseudocounts to PPM

Comparison procedures

Seven methods divided in two categories

Matrix-based comparison:

 Compare JASPAR PPM matrices and Sampled PPM matrices.

Sequence-based comparison:

- Enumeration of all possible w-mers*.
- Compute the probability s that a PPM generates a w-mers.
- $s = \prod_i p_{a_i,i}$
- Compare the probabilities of the sequences

Comparison functions

Matrix-based comparison:

- Euclidian distance (ED)
- Cosine distance (COS)
- Total variation (TVD)

Sequence-based comparison:

- Euclidian distance (ED)
- Cosine distance (COS)
- Total variation (TVD)
- Spearman's Rank Correlation (SRC)*

RESULTS

Differences between the seven comparison methods

Effects on sample size

Table 1. Percentage of optimal pseudocount existence

Sample size	Matrix-based			Sequence-based					
	ED (%)	COS (%)	TVD (%)	ED (%)	COS (%)	TVD (%)	SRC (%)		
10	99.2	100.0	28.7	100.0	95.9	54.1	45.9		
20	99.2	100.0	16.4	99.2	95.9	26.2	34.4		
30	100.0	100.0	13.1	100.0	94.3	13.1	20.5		
40	100.0	100.0	9.0	99.2	95.1	11.5	14.8		
50	100.0	99.2	10.7	99.2	95.1	9.0	5.7		

Existence of an optimal pseudocount

Dependence of optimal pseudocount on sample size and entropy

CONCLUSIONS

Conclusions

- All pseudocounts much above 1 are a poor choice
- ED and COS comparison functions suggest values close to 1
- SRC and TVD comparison functions suggest values much smaller than 1
- Depending on the comparison method, pseudocounts are either around 1 or very low.

Thank you for the attention

Comparison functions

Euclidian distance (ED)

$$ED = \frac{1}{w} \sqrt{\sum_{a} \sum_{i} (p_{a,i} - p'_{a,i})^{2}}$$

Cosine distance (COS)

Total variation (TVD)