УДК 517.2

В. Л. Рвачев, О. Н. Бобылева

О построении обобщенной формулы Тейлора разностного типа

Предположим, что $\Gamma = \{x \in R^t : \omega(x) = 0\}$ — гладкое H-реализуемое многообразие, а H — алгоритмически полная система

$$H = \{x_1 + x_2, x_1x_2, \sqrt{x}; \varphi_1, \varphi_2, \dots; a \in R^1\},$$
 (1)

замкнутая по отношению к операции дифференцирования [1], $\mathfrak{M}(H)$ — множество H-реализуемых функций. Предлагается новый метод разложения функции $f(x) \in C^{m+1}$, $x \in R^t$, в окрестности Γ по степеням $\omega(x) \in C^{m+1} \cap \mathfrak{M}(H)$, если на Γ известны принадлежащие $\mathfrak{M}(H)$ значения f(x) и ее нормальных производных до некоторого порядка. В построении переменных коэффициентов разложения (п.2) используется функция $\omega(x)$, нормализованная до 1-го порядка (в [2] требовалась нормализованность $\omega(x)$ до (m+1)-го порядка). Это разложение (п.3) принадлежит $\mathfrak{M}(H)$ и представляет обобщение, в некотором смысле, известной формулы Тейлора. С помощью полученного разложения и результатов работы [3] строятся структуры решения краевых задач [4], имеющие разностный характер, в которые не входят операторы дифференцирования, что существенно влияет на качество структуры.

1. Пусть одним и тем же граничным условиям краевой задачи отвечают две структуры решения

$$u = B(\psi), \qquad (2) \qquad v = Q(\psi), \qquad (3)$$

где $\varphi = (\varphi_1, \dots, \varphi_n) \in (\Phi_1, \dots, \Phi_n) = \Phi;$ $(\psi_1, \dots, \psi_m) \in (\Psi_1, \dots, \Psi_m) = \Psi;$ $u, v \in P;$ P, Φ, Ψ — некоторые метрические пространства функций, φ_i , ψ_j : $R^t \to R^q$, $1 \le i \le n$, $1 \le j \le m$.

Будем говорить, что структура Q подчинена (подчинена в смысле метрики $\rho_{_{D}}^{*}$) структуре B, если

$$\forall \psi \in \Psi \ \exists \varphi \in \Phi \ B(\varphi) \equiv Q(\psi) \ (\forall \varepsilon > 0 \ \forall \psi \in \Psi \ \exists \varphi \in \Phi \ \rho_P[B(\varphi), \ Q(\psi)] < \varepsilon).$$

Если структура B подчинена (подчинена в смысле метрики ρ_P) структуре Q, а структура Q — структуре B, то структуры B и Q назовем эквивалентными (эквивалентными в смысле метрики ρ_P).

Примеры эквивалентных структур можно найти в [5]. Структуру (1) назовем k-корректной, k < n, если

$$\forall \epsilon > 0 \ \forall \phi \in \Phi \ \tilde{\forall \phi_{i_1}} \in \Phi_{i_1} \dots \tilde{\forall \phi_{i_k}} \in \Phi_{i_k} [\rho_{i_1}(\tilde{\phi}_{i_1}, \phi_{i_1}) < \epsilon \wedge \dots$$

$$\dots \bigwedge \rho_{i_k}(\tilde{\varphi}_{i_k}, \varphi_{i_k}) < \varepsilon] \rightarrow \exists \hat{\varphi}_{i_{k+1}} \in \Phi_{i_{k+1}} \quad \dots \quad \tilde{\varphi}_{i_n} \in \Phi_{i_n} \rho \left[B\left(\tilde{\varphi}\right), B\left(\varphi\right) \right] < A\varepsilon,$$

где $\tilde{\phi} = (\tilde{\phi}_1, \dots, \tilde{\phi}_n)$, коэффициент A зависит только от вида структуры,

^{*} ρ_P — метрика в пространстве P.

 ho_i — метрика в пространстве Φ_i . n-Корректные структуры назовем корректными.

Если в построении структуры участвуют операторы дифференцирования, то такие структуры k-корректные, структуры (п. 9), рассматриваемые

в данной работе, - корректные.

В данной работе понадобятся следующие обозначения: $U(\Gamma; \varepsilon) = \{x \in R^t : \rho(x, \Gamma) < \varepsilon\}$, т. е. ε -окрестность множества Γ заданного метрического пространства; $O(\omega^\alpha)$ — скалярная бесконечно малая величина порядка α при $\omega \to 0$; $\overline{O}(\omega^\alpha) = (O_1(\omega^\alpha), \ldots, O_t(\omega^\alpha)) - t$ -мерная векторная бесконечно малая величина порядка α относительно $\omega \to 0$; A, C—скалярные постоянные; $\overline{A}, \overline{C} - t$ -мерные векторные постоянные.

2. Рассмотрим гладкое H-реализуемое (t-1)-мерное многообразие $\Gamma \subset \mathbb{R}^t$, где H— алгоритмически полная система (1). Через $N(x) = (N_1(x), \dots$

..., $N_t(x)$) обозначим нормаль в точке $x \in \Gamma$. Пусть $\omega(x) \in \mathfrak{M}(H)$

$$\omega(x)|_{\Gamma} = 0,$$
 (4) $\frac{\partial \omega(x)}{\partial v}|_{\Gamma} = 1,$ (4')

последнее условие — условие нормализованности функции $\omega(x)$ до 1-го

порядка.

В дальнейшем потребуются операторы D_k и T_k , введенные в [2], которые определены в некоторой окрестности Γ , а на Γ совпадают с производными соответственно по нормали и касательной. В силу условий (4) и (4') вектор $\nabla \omega$ (x) является на Γ единичным вектором нормали и естественным образом продолжается в U (Γ ; ϵ), следовательно

$$D_{k} = (\nabla \omega(x), \nabla)^{k} \tag{5}$$

определен в окрестности Г и

$$D_h f(x)|_{\Gamma} = (\nabla \omega(x), \nabla)^h f(x)|_{\Gamma} = \frac{\partial^h f(x)}{\partial v^h}|_{\Gamma}.$$

Выражение $(\nabla \omega(x), \nabla)^k$ понимается как формальное произведение k раз

дифференциальных операторов ($\nabla \omega(x)$, ∇).

Пусть вектор $\tau_0(x)$ определен на Γ и $|\tau_0(x)||_{\Gamma}=1$. Продолжим этот вектор (обозначим получаемый вектор через $\tau(x)$) в $U(\Gamma; \epsilon)$ каким-нибудь способом, не обязательно с сохранением свойства $|\tau(x)|=1$ (см. [1, 4]). Определим оператор T_k в $U(\Gamma; \epsilon)$ следующим образом:

$$T_{k} = (\tau(x), \nabla)^{k}, \tag{5'}$$

вричем
$$T_k f(x) \big|_{\Gamma} = (\tau(x), \nabla)^k f(x) \big|_{\Gamma} = \frac{\partial^k f(x)}{\partial \tau^k} \Big|_{\Gamma}.$$

Замечание 1. Известно, что на поверхностях, диффеоморфных сфере, кроме сфер размерности 0, 1, 3, 7, не существуют непрерывные касательные векторные поля. В этих случаях постановки краевых задач также содержат вырожденные точки, что, естественно, вынуждает предусматривать именно в них вырождение операторов T_k . Простейший пример такого рода — задача об обтекании тела, диффеоморфного сфере, жидкостыю. В такой постановке на поверхности есть неизбежно точки с неопределенным направлением скорости (для сферы это точки на концах диаметра, параллельного потоку жидкости). В дальнейшем вся теория переносится на кусочно-гладкие многообразия, для которых касательные векторные поля не существуют на многообразиях меньших размерностей. В этих случаях единичный вектор касательной продолжается внутрь области с помощью «склейки» (см. [1, 6]). Тогда операторы T_k существуют всюду в области, а на поверхности терпят разрыв на множестве меры нуль в тех точках, где не существует векторное поле касательных.

В [1] описаны многие свойства операторов D_k и T_k , из которых в дальнейшем понадобятся следующие:

$$(\nabla \omega(x), \ D_k \nabla \omega(x)) = D_{k+1} \omega(x), \tag{6}$$

$$\nabla D_1 \omega(x) = 2D_1 \nabla \omega(x), \tag{7}$$

$$D_1 x = \nabla \omega(x), \tag{8}$$

а также формулы для оператора D_h над сложной функцией $F(g(x)) = F(g_1(x), \dots, g_t(x))$

$$D_{\mathbf{i}}F(g) = \left[\sum_{i=1}^{t} (D_{\mathbf{i}}g_i) \frac{\partial}{\partial g_i}\right] F(g), \tag{9}$$

$$D_2F(g) = \left[\sum_{i=1}^t (D_1g_i) \frac{\partial}{\partial g_i}\right]^2 F(g) + \left[\sum_{i=1}^t (D_2g_i) \frac{\partial}{\partial g_i}\right] F(g), \tag{10}$$

$$D_3F(g) = \left[\sum_{t=1}^t (D_1g_t) \frac{\partial}{\partial g_t}\right]^3 F(g) +$$

$$+3\left[\left(\sum_{i=1}^{t}(D_{2}g_{i})\frac{\partial}{\partial g_{i}}\right)\left(\sum_{j=1}^{t}(D_{1}g_{j})\frac{\partial}{\partial g_{j}}\right)\right]F(g)+\left[\sum_{i=1}^{t}(D_{3}g_{i})\frac{\partial}{\partial g_{i}}\right]F(g) \quad (11)$$

и т. д.

Полагаем, следуя [2],

$$x_{\pm}^{i} = \left(x_{1}, \dots, x_{i-1}, x_{i} \pm \frac{1}{2} \omega(x), x_{i+1}, \dots, x_{t}\right),$$

$$h_{i}(x) = \omega(x_{-}^{i}) - \omega(x_{+}^{i}), \qquad h(x) = (h_{1}(x), \dots, h_{t}(x)). \tag{12}$$

В дальнейшем потребуются некоторые формулы из [3]

$$(Q_h - 1)^k f(x) = (-1)^k \omega^k(x) D_h f(x) + O(\omega^{k+1}(x)),$$
(13)

$$(Q_{\tau} - 1)^{k} f(x) = (-1)^{k} \omega^{k}(x) T_{k} f(x) + O(\omega^{k+1}(x)), \tag{14}$$

где $Q_l^i f(x) = f(x+il)$, $\tau(x) = \tau_0(x) \omega(x)$, $\tau_0(x)$ — единичный вектор касательной в точке $x \in \Gamma$, который с помощью функции $\omega(x)$ продолжен на $U(\Gamma; \varepsilon)$. В случае $t = 2 - \tau(x) = (-h_2(x), h_1(x))$.

Введем в рассмотрение функцию

$$u(x) = x + h(x) \tag{15}$$

и определим с помощью рекуррентных соотношений

$$v_1(x) = u(x), \quad v_2(x) = v_1(u(x)), \dots, v_m = v_{m-1}(u(x)), \dots$$
 (16)

Нормализантой m-го уровня, $m=1,2,\dots$, функции f(x) по функции $\omega(x)$ назовем функцию $f^{(*m)}(x)$, определяемую соотношением

$$f^{(*m)}(x) = f(v_m(x)). \tag{17}$$

Если f(x) и $\omega(x) \in \mathfrak{M}(H)$, где базисная система H определена формулой (1), то $f^{(*m)}(x) \in \mathfrak{M}(H)$.

3. Вычислим $D_i h_i(x), \ i=1,\dots,t$ (см. п. 2), используя (9) и свойст во (8)

$$D_{1}h_{i}(x) = D_{1}\omega(x_{-}^{i}) - D_{1}\omega(x)_{+}^{i}) =$$

$$= \sum_{\substack{j=1\\j\neq i}}^{t} \left[\frac{\partial \omega(x_{-}^{i})}{\partial x_{j}} - \frac{\partial \omega(x_{+}^{i})}{\partial x_{j}} \right] D_{1}x_{j} + \frac{\partial \omega(x_{-}^{i})}{\partial x_{i}} D_{1} \left[x_{i} - \frac{1}{2} \omega(x) \right] -$$

$$- \frac{\partial \omega(x_{+}^{i})}{\partial x_{i}} D_{1} \left[x_{i} + \frac{1}{2} \omega(x) \right] = \sum_{\substack{l=1\\l\neq i}}^{t} \left[\frac{\partial \omega(x_{-}^{i})}{\partial x_{j}} - \frac{\partial \omega(x_{+}^{i})}{\partial x_{j}} \right] \frac{\partial \omega(x)}{\partial x_{j}} +$$

$$+ \frac{\partial \omega(x_{-}^{i})}{\partial x_{i}} \left[\frac{\partial \omega(x)}{\partial x_{i}} - \frac{1}{2} D_{1}\omega(x) \right] - \frac{\partial \omega(x_{+}^{i})}{\partial x_{i}} \left[\frac{\partial \omega(x)}{\partial x_{i}} + \frac{1}{2} D_{1}\omega(x) \right] =$$

$$= \sum_{\substack{i=1\\j\neq i}}^{t} \left[\frac{\partial \omega(x_{-}^{i})}{\partial x_{j}} - \frac{\partial \omega(x_{+}^{i})}{\partial x_{j}} \right] \frac{\partial \omega(x)}{\partial x_{j}} + \left[\frac{\partial \omega(x_{-}^{i})}{\partial x_{i}} - \frac{\partial \omega(x_{+}^{i})}{\partial x_{i}} \right] \frac{\partial \omega(x)}{\partial x_{i}} -$$

$$- \frac{1}{2} \left[\frac{\partial \omega(x_{-}^{i})}{\partial x_{i}} + \frac{\partial \omega(x_{+}^{i})}{\partial x_{i}} \right] D_{1}\omega(x). \tag{18}$$

Путем аналогичных вычислений, используя (10) и свойство $D_2x_j=0$, $j=1,\ldots,t$, получаем

$$D_{2}h_{i}(x) = \left[\left(\sum_{\substack{j=1\\j\neq i}}^{t} \frac{\partial \omega\left(x\right)}{\partial x_{j}} \frac{\partial}{\partial x_{j}} \right)^{2} + 2 \sum_{\substack{j=1\\j\neq i}}^{t} \frac{\partial \omega\left(x\right)}{\partial x_{j}} \frac{\partial \omega\left(x\right)}{\partial x_{i}} \frac{\partial^{2}}{\partial x_{j}\partial x_{i}} + \left(\frac{\partial \omega\left(x\right)}{\partial x_{i}} \right)^{2} \frac{\partial^{2}}{\partial x_{i}^{2}} + \frac{1}{4} \left(D_{i}\omega\left(x\right) \right)^{2} \frac{\partial^{2}}{\partial x_{i}^{2}} \right] \left(\omega\left(x_{-}^{i}\right) - \omega\left(x_{+}^{i}\right) \right) - \left(D_{i}\omega\left(x\right) \right) \left[\sum_{j=1}^{t} \frac{\partial \omega\left(x\right)}{\partial x_{j}} \frac{\partial^{2}}{\partial x_{i}\partial x_{j}} \right] \left(\omega\left(x_{-}^{i}\right) + \omega\left(x_{+}^{i}\right) \right) - \left(D_{i}\omega\left(x\right) \right)^{2} \frac{\partial}{\partial x_{i}} \left[\omega\left(x_{-}^{i}\right) + \omega\left(x_{+}^{i}\right) \right].$$

$$(19)$$

В равенствах (18) и (19) под производными $\frac{\partial \omega (x_{\pm}^i)}{\partial x_j}$. $j=1,\ldots,t$, подразумеваются соответствующие частные производные от $\omega(x)$ в точках x_{\pm}^i .

4. Лемма 1. Пусть $\omega(x) \in C^2(U(\Gamma; e))$ удовлетворяет условиям (4) u (4'), тогда

a) $D_1 h(x)|_{\Gamma} = -\nabla \omega(x)|_{\Gamma};$ (20)

b) если $N(x) = D_2 h(x)|_{\Gamma}$, то скалярное произведение $(N(x), \tau_0(x)) = 0$ (см. (14)).

Доказательство. a) Переходя в (18) к пределу при $\omega(x) \to 0$. учитывая (4') и непрерывность производных от $\omega(x)$, получаем

$$D_{\mathbf{t}}h_{i}\left(x\right)|_{\Gamma}=rac{\partial\omega\left(x\right)}{\partial x_{i}}\Big|_{\Gamma},\qquad i=1,\ldots,t, \qquad$$
 или $\left.D_{\mathbf{t}}h\left(x\right)\right|_{\Gamma}=-\left.
abla\omega\left(x\right)\right|_{\Gamma}$

b) Переходя в (19) к пределу при $\omega(x) \to 0$, учитывая (4') и непрерывность производных функции $\omega(x)$, получаем

$$\begin{split} D_{2}h_{i}\left(x\right)|_{\Gamma} &= -2\left(\sum_{j=1}^{t} \frac{\partial \omega\left(x\right)}{\partial x_{j}} \frac{\partial}{\partial x_{j}}\right) \frac{\partial \omega\left(x\right)}{\partial x_{i}} - \frac{\partial \omega\left(x\right)}{\partial x_{i}} D_{2}\omega\left(x\right)|_{\Gamma} = \\ &= -2D_{1}\left(\frac{\partial \omega\left(x\right)}{\partial x_{i}}\right) - \frac{\partial \omega\left(x\right)}{\partial x_{i}} D_{2}\omega\left(x\right)|_{\Gamma}, \qquad i = 1, \dots, t, \end{split}$$

или

$$D_{2}h(x)|_{\Gamma} = -2D_{1}\nabla\omega(x) - D_{2}\omega(x)\nabla\omega(x)|_{\Gamma} = -\nabla D_{1}\omega(x) - D_{2}\omega(x)\nabla\omega(x),$$
(21)

последнее равенство записано на основе свойства (7). Рассмотрим

$$\begin{aligned} \left(\mathbf{N}(x), \tau^{0}(x) \right) &= \left(D_{2}h(x), \tau^{0}(x) \right) |_{\Gamma} = - \left(\tau^{0}(x), \nabla D_{1}\omega(x) \right) - \\ &- D_{2}\omega(x) \left(\tau^{0}(x), \nabla \omega(x) \right) |_{\Gamma} = - \left[\left(\tau^{0}(x), \nabla \right) D_{1}\omega(x) + \right. \\ &+ \left. D_{2}\omega(x) \left(\tau^{0}(x), \nabla \right) \omega(x) |_{\Gamma} = - \left[T_{1}(D_{1}\omega(x)) + D_{2}\omega(x) T_{1}\omega(x) \right]_{\Gamma}, \end{aligned}$$

последнее равенство получено на основе (5'). Многообразие Γ для функций $D_1\omega(x)$ и $\omega(x)$ является линией уровня (на основании (4) и (4')), поэтому $(N(x), \tau^0(x)) = -\frac{\partial}{\partial \tau} \left(D_1\omega(x)\right) + D_2\omega(x) \frac{\partial \omega(x)}{\partial \tau} \bigg|_{\Gamma} = 0$. Лемма доказана.

Следствие. Пусть $x^0 \in \Gamma$ и $\omega(x)$ удовлетворяет условиям леммы 1. Тогда для достаточно малых $\varepsilon > 0$ и для точек $x \in N(x^0) \cap U(\Gamma; \varepsilon)$ и меют место эквивалентные представления

$$u(x) = x + h(x) = x^{0} + \frac{\rho^{2}}{2} D_{2}h(x^{0}) + \overline{O}(\rho^{3}),$$
 (22)

$$u(x) = v_1(x) = x^0 + \frac{1}{2} \omega^2(x) D_2 h(x^0) + \overline{O}(\omega^3(x)),$$
 (22')

в первом равенстве ρ — расстояние между точками x и x^0 .

Действительно, разложим функцию u(x) в ряд Тейлора на $N(x^0)$ в окрестности точки x^0

$$u(x) = u(x^{0}) \pm \rho D_{1}u(x^{0}) + \frac{1}{2!}\rho^{2}D_{2}u(x^{0}) + \overline{O}(\rho^{3}).$$

В силу того, что $x^0 \in \Gamma$, равенств (12) и (15) получаем $u(x^0) = x^0$. На основании (8) и части а) леммы 1 $D_1u(x^0) = (D_1x + D_1h(x))|_{x=x^0 \in \Gamma} = 0$. Так как $D_2x = 0$, то $D_2u(x)|_{x=x^0 \in \Gamma} = D_2h(x^0)$. На основании этих вычислений получаем разложение (22). Так как $\omega(x)$ удовлетворяет условию (4) и (4′), то $\rho = \omega(x) + O(\omega^2(x))$, $x \in U(\Gamma; \varepsilon)$ (см. [1]), следовательно, равенство (22) можно записать в виде (22′), что и требовалось доказать.

5. Π е м м а 2. Π усть ω (x) \in C^n (U (Γ ; ϵ)) и удовлетворяет условиям (4) и (4'), а вектор-функция v_h (x) определяется соотношениями (16), тогда

$$D_{j}v_{k}(x)|_{\Gamma} = 0$$
 $(j = 1, ..., 2^{k-1}),$ (23)

 $e\partial e \ n = 2^k - 1.$

Доказательство. Рассмотрим разложение (22') и вспомогательную функцию $\hat{u}(x) = x^0 + \omega^2(x) D_2 h(x^0)$, $x \in N(x^0) \cap U(\Gamma; \varepsilon)$ (см. п. 4). В силу утверждения b) леммы $\hat{u}(x) \in N(x^0)$. Исходя из того, что $\omega(x) \to 0$, когда $x \to x^0$, соотношений (4) и (4'), можно найти такое $\varepsilon_1 < \varepsilon$, при ко-

тором для всех $x \in \mathbb{N}$ $(x^0) \cap U$ $(\Gamma; \varepsilon_1)$ $\hat{u}(x) \in \mathbb{N}$ $(x^0) \cap U$ $(\Gamma; \varepsilon)$. Кроме того, из (22') следует, что

$$u(x) = \hat{u}(x) + \overline{O}(\omega^3(x)). \tag{24}$$

Покажем, что $\omega(\hat{u}(x)) = O(\omega^2(x))$. Для этого применим формулу Тейлора к функции $\omega(x)$ в окрестности точки x^0

$$\omega(\hat{u}(x)) = \omega(x^{0} + \frac{1}{2}\omega^{2}(x)D_{2}h(x^{0})) = \omega(x^{0}) + \frac{1}{2}\omega^{2}(x)(\nabla\omega(x^{0}), D_{2}h(x^{0})) + O(\omega^{4}(x)) = C\omega^{2}(x) + O(\omega^{4}(x));$$
(25)

здесь $\omega(x^0) = 0$, так как $x^0 \in \Gamma$, а $C = \frac{1}{2} (\nabla \omega, D_2 h(x))$.

Установим справедливость следующих равенств:

$$v_k(x) = x^0 + \overline{A}_k \omega^{2^k}(x) + \overline{O}(\omega^{2^{k+1}}(x)), \qquad k = 1, 2, ...,$$
 (26)

где $x \in N(x^0) \cap U(\Gamma; \varepsilon_1)$. При k = 1 равенство (26) имеет место на основании следствия п. 4 (равенство (22')). Пусть (26) верно при k = r, докажем, что это равенство имеет место и при k = r + 1.

Так как $\hat{u}(x) \in N(x^0) \cap U(\Gamma; \varepsilon)$ при $x \in N(x^0) \cap U(\Gamma; \varepsilon_1)$, то равенство (26) при k = r можно рассмотреть в точке $\hat{u}(x)$

$$v_r(\hat{u}(x)) = x^0 + \overline{A}_r \omega^{2r}(\hat{u}(x)) + \overline{O}(\omega^{2r+1}(x)).$$

С помощью (25) полученное выражение приводится к виду

$$v_{r}(\hat{u}(x)) = x^{0} + \overline{A}_{r}C^{2r}\omega^{2r+1}(x) + \overline{O}(\omega^{2r+1}+2}(x)) =$$

$$= x_{0} + \overline{A}_{r+1}\omega^{2r+1}(x) + \overline{O}(\omega^{2r+1}+2}(x)). \tag{27}$$

Теперь рассмотрим $v_{r+1}(x) = v_r(u(x)) = v_r(\hat{u}(x) + \overline{O}(\omega^3(x)))$ (на основании (24)) и применим формулу Тейлора к функции $v_r(x)$ в окрестности точки $\hat{u}(x)$

$$v_{r+1}(x) = v_r(\hat{u}(x) + \overline{O}(\omega^3(x))) = v_r(\hat{u}(x)) +$$

$$+ (\overline{O}(\omega^3(x)), \nabla) v_r(\hat{u}(x)) + \overline{O}((\overline{O}(\omega^3(x)), \nabla)^2 v_r(\hat{u}(x))).$$

Рассмотрим

$$(\overline{O}(\omega^{3}(x)), \nabla) v_{r}(\widehat{u}(x)) = (\overline{O}(\omega^{3}(x)), \nabla) [x^{0} + \overline{A}_{r+1}\omega^{2^{r+1}}(x) + \overline{O}(\omega^{2^{r+1}+2}(x))] = \overline{A}_{r+1}(\overline{O}(\omega^{3}(x)), \nabla) \omega^{2^{r+1}}(x) + \overline{O}(\omega^{2^{r+1}+4}(x)) = \overline{A}_{r+1}O(\omega^{2^{r+1}+2}(x)) + \overline{O}(\omega^{2^{r+1}+4}(x)) = \overline{O}(\omega^{2^{r+1}+2}(x)).$$

Аналогично $\overline{O}((\overline{O}(\omega^3(x)), \nabla)^2 v_r(\hat{u}(x))) = \overline{O}(\omega^{2^{r+1}+4}(x)).$

Таким образом, получаем $v_{r+1}(x) = v_r(\hat{\boldsymbol{u}}(x)) + \bar{O}(\omega^{2^{r+1}+2}(x))$, а применив формулу (27) $v_{r+1}(x) = x^0 + \bar{A}_{r+1}\omega^{2^{r+1}}(x) + \bar{O}(\omega^{2^{r+1}+2}(x))$, получим (26) при k = r + 1.

Справедливость (26) доказана. Отсюда легко вытекает утверждение леммы

$$D_{j}v_{k}(x)|_{\Gamma} = D_{j}[x^{0} + \overline{A}_{k}\omega^{2^{k}}(x) + \overline{O}(\omega^{2^{k}+1}(x))]|_{\Gamma} = [\overline{A}_{k} \cdot 2^{k} \cdot (2^{k}-1) \cdot ...$$
... $\cdot (2^{k}-j+1)\omega^{2^{k}-j}(x)D_{j}\omega(x) + \overline{O}(\omega^{2^{k}+1-j}(x))]|_{\Gamma} = 0$ ($j=1,\ldots,2^{k}-1$). Лемма доказана.

6. Теорема 1. Если f(x) **и** $\omega(x) \in C^n(U(\Gamma; \varepsilon))$ и $\omega(x)$ удовлетворяет условиям (4) и (4'), то нормализанта $f^{(*m)}(x)$ т-го уровня функции f(x) по функции $\omega(x)$, определенная формулой (17), удовлетворяет условиям

$$f^{(*m)}(x)|_{\Gamma} = f(x)|_{\Gamma}, \quad \frac{\partial^k f^{(*m)}(x)}{\partial v^k}|_{\Gamma} = 0,$$
 (28)

 $e \partial e \quad 1 \leqslant k \leqslant 2^m - 1 = n.$

Доказательство. В силу определения (см. п. 2, формула (12)) $h(x)|_{\Gamma} = 0$, поэтому $v_k(x)|_{\Gamma} = x$ для любых натуральных k. Следовательно $f^{(sm)}(x)|_{\Gamma} = f(v_m(x))|_{\Gamma} = f(x)|_{\Gamma}$.

Применяя операторы D_k к $f^{(\bullet m)}(x)$, используя формулы (9) — (11) и (23), получаем

$$D_k f^{(*m)}(x)|_{\Gamma} = \frac{\partial^k}{\partial v^k} f^{(*m)}(x)|_{\Gamma} = 0 \qquad (k = 1, ..., 2^m - 1).$$

Теорема доказана.

Замечание 2. Если равенство (28) требуется выполнить при $k=1,\ldots,p$, то уровень нормализанты f(x) по функции $\omega(x)$ определяется соотношением

 $m = \lceil \log_2 p \rceil + 1, \tag{29}$

где [a] — целая часть числа a. Это легко вытекает из формулы (23).

7. В этом пункте указан один из способов построения функции $P_m(x)$, приближающей известную функцию f(x) в окрестности некоторого (t-1)-мерного гладкого многообразия Γ , на котором известны значения функции $f(x)-f_0(x)$ и ее нормальных производных $-f_k(x)$ до m-го порядка. $\Gamma-H$ -реализованное многообразие (см. п. 2), $f_k\in\mathfrak{M}(H)$ ($k=0,1,\ldots,m$), причем $\mathfrak{M}(H)$ — замкнутое по отношению к операции дифференцирования множество функций.

Обозначим через $\omega_m(x)$ функцию, удовлетворяющую условиям (4), (4') и $\frac{\partial^k \omega(x)}{\partial v^k}\Big|_{\Gamma} = 0$ ($k=2,\ldots,m$) (т. е. $\omega_m(x) = 0$ — уравнение Γ , нормализованное до m-го порядка [2]), а через κ — величину, определяемую формулой (29) при p=m.

Теорема 2. Если $\omega_1(x)$, $\omega_m(x)$ и $f_k(x) \in C^m(U(\Gamma; \varepsilon))$ ($k=0,1,\ldots,m$), то функция

$$P_m(x) = f_0^{(\bullet \times)}(x) + \sum_{i=1}^m \frac{1}{i!} f_i^{(\bullet \times)}(x) \omega_m^i(x)$$
 (30)

удовлетворяет условиям

$$P_m(x)|_{\Gamma} = f_0(x)|_{\Gamma}, \quad \frac{\partial^k P_m(x)}{\partial y^k}|_{\Gamma} = f_k(x)|_{\Gamma} \quad (k = 1, \dots, m). \quad (31)$$

Доказательство. В силу теоремы 1 и того, что $\omega(x)|_{\Gamma}=0$, получаем $P_m(x)|_{\Gamma}=f_0(x)|_{\Gamma}$. Рассмотрим

$$\frac{\partial^{k} P_{m}(x)}{\partial v^{k}}\Big|_{\Gamma} = D_{k} P_{m}(x)\Big|_{\Gamma} = D_{k} f^{(\bullet \times)}(x) + \sum_{i=1}^{m} \frac{1}{i!} \sum_{j=0}^{k} C_{k}^{j} D_{k-j} f_{i}^{(\bullet \times)}(x) D_{j} \omega_{m}^{i}(x)\Big|_{\Gamma}.$$

В силу нормализованности $\omega_m(x)$ до m-го порядка

$$D_{j}\omega_{m}^{i}(x) = \begin{cases} 0 & \text{при } j \neq i, j < m, \\ i! & \text{при } j = i. \end{cases}$$

В силу теоремы 1

$$D_{k-j}f_i^{(\bullet \times)}(x)|_{\Gamma} = \begin{cases} f_i(x)|_{\Gamma} & \text{при } k = i, \\ 0 & \text{при } k \neq j, \ m \geqslant k > j. \end{cases}$$

Следовательно, отличным от нуля получится член при i=j=k, т. е. $D_k P_m(x)|_{\Gamma} = \frac{1}{k!} f_k(x) \, k! \,|_{\Gamma} = f_k(x)|_{\Gamma}$. Теорема доказана.

Замечание 3. Если рассматривать $\omega_i=0$ как уравнения Γ , нормализованные до i-го порядка, а через \varkappa_i обозначать число, равное $[\log_2{(m-i)}]+1$ $(i=0,1,\dots,m-1)$, то формулу (28) можно записать в виде

$$P_m(x) = f_0^{(\bullet \kappa_0)}(x) + \sum_{i=1}^{m-1} \frac{1}{i!} f_i^{(\bullet \kappa_i)}(x) \omega_{m-i+1}^i(x) + \frac{1}{m!} f_m(x) \omega_1^m(x). \tag{32}$$

Теорема 3. Пусть $f(x) \in C^{m+1}$ и такова, что $f(x)|_{\Gamma} = f_0(x)|_{\Gamma}$, $\frac{\partial^k f(x)}{\partial v^k}|_{\Gamma} = f_k(x)|_{\Gamma}$ (k = 1, ..., m), тогда при выполнении условий теоремы 2 имеет место равенство $f(x) = P_m(x) + O(\omega^{m+1}(x))$.

Доказательство. Пусть $x^0 \in \Gamma$, рассмотрим поведение f(x) на нормали $N(x^0)$ (см. п. 2). В силу условия (4') любую точку $x \in N(x^0) \cap U(\Gamma; \varepsilon)$ можно представить в виде $x = x^0 \pm \rho \nabla \omega_1(x)$, где ρ — расстояние между x и x^0 и $\rho < \varepsilon$. Разложим функцию $f(x) = f(x^0 + \rho \nabla \omega_1(x^0))$ по степеням ρ в окрестности x^0

$$f(x^{0} + \rho \nabla \omega_{1}(x^{0})) = f(x^{0}) + \rho (\nabla \omega_{1}(x^{0}), \nabla) f(x^{0}) + \frac{1}{2!} (\nabla \omega_{1}(x^{0}), \nabla)^{2} f(x^{0}) \rho^{2} + \dots + \frac{1}{m!} \rho^{m} (\nabla \omega_{1}(x^{0}), \nabla)^{m} f(x^{0}) + \frac{1}{(m+1)!} (\nabla \omega_{1}(x^{0}), \nabla)^{m+1} f(x^{0} + \Theta \rho \nabla \omega_{1}(x_{0})) \rho^{m+1} =$$

$$= f(x^{0}) + \sum_{k=1}^{m} \frac{1}{k!} \frac{\partial^{k} f(x^{0})}{\partial v^{k}} \rho^{k} + \frac{\rho^{m+1}}{(m+1)!} \frac{\partial^{m+1} f(x^{0} + \Theta \rho \nabla \omega_{1}(x^{0}))}{\partial v^{m+1}}.$$
(33)

В силу (28), (29) и условия теоремы имеем

$$\frac{\partial^{k} f(x^{0})}{\partial y^{k}} = f_{k}(x^{0}) = f_{k}^{(\bullet \times)}(x) + O(\rho^{m+1}) \qquad (k = 0, 1, ..., m).$$
 (34)

а в силу нормализованности функций $\omega_1(x)$ и $\omega_m(x)$ (см. (4') и п. 7) получаем соотношения $\rho = \omega_1(x) + O(\omega_1(x))$, $\rho = \omega_m(x) + O(\omega_1^{m+1}(x))$, поэтому (34) преобразуем в равенство

$$\frac{\partial^k f(x^0)}{\partial y^k} = f_k(x^0) = f_k^{(**)}(x) + O(\omega_1^{m+1}(x)) \qquad (k = 0, 1, ..., m).$$

Вследствие полученных соотношений разложение (33) принимает вид

$$f(x^{0} + \rho \nabla \omega_{1}(x^{0})) = f_{0}^{(**)}(x) + O(\omega_{1}^{m+1}(x)) + \sum_{k=1}^{m} \frac{1}{k!} (f_{k}^{(**)}(x) + O(\omega_{1}^{m+1}(x))) (\omega_{m}^{k}(x) + O(\omega_{1}^{m+k}(x))) + \dots$$

$$+ \frac{1}{(m+1)!} \frac{\partial^{m+1}}{\partial v^{m+1}} f(x^{0} + \Theta \rho \nabla \omega_{1}(x^{0})) (\omega_{m}^{m+1}(x) + O(\omega_{m}^{2m+1}(x))) =$$

$$= P_{m}(x) + O(\omega_{1}^{m+1}(x)),$$

что и требовалось доказать.

Замечание 4. Проводя аналогичные рассуждения, можно показать, что такая же оценка остаточного члена получается для разложения (32).

8. В этом пункте будет указан способ построения нормализованной до 2-го порядка функции ω (x) (x) без применения оператора D_2 (см. [1]).

Лемма 3. Пусть функция $\omega_1(x)$ удовлетворяет условиям (4) и (4'), т. е. $\omega_1(x)$ нормализована до 1-го порядка, тогда функция

$$\omega_2(x) = \omega_1(x) + \frac{1}{3} \omega_1(x + h(x))$$
 (35)

удовлетворяет условиям (4), (4'), а также условию $\frac{\partial^2 \omega(\mathbf{x})}{\partial \mathbf{v}^2}\Big|_{\Gamma} = 0$, т. е. $\omega_0(\mathbf{x})$ нормализована на Γ до 2-го порядка.

Доказательство. $h(x)|_{\Gamma} = 0$, поэтому $\omega_2(x)|_{\Gamma} = 0$.

Рассмотрим $D_1\omega_2(x)|_{\Gamma}$, используя формулы (9), (23) при j=k=1:

$$D_{i}\omega_{2}(x)|_{\Gamma} = D_{i}\omega_{i}(x) + \frac{1}{3} D_{i}\omega_{i}(x+h(x))|_{\Gamma} =$$

$$= D_{i}\omega_{i}(x) + \frac{1}{3} \sum_{i}^{t} \frac{\partial \omega_{i}(x+h(x))}{\partial x_{i}} D_{i}(x_{i}+h_{i}(x))|_{\Gamma} = 1.$$

Докажем, что $D_2\omega_2(x)|_{\Gamma}=0$. Для этого воспользуемся формулами (10), (23) при j=k=1, (6), (7) и (21)

$$\begin{aligned} D_{2}\omega_{2}(x)|_{\Gamma} &= D_{2}\omega_{1}(x) + \frac{1}{3} D_{2}\omega_{1}(x + h(x))|_{\Gamma} = \\ &= D_{2}\omega_{1}(x) + \frac{1}{3} \left[\sum_{i=1}^{t} D_{1}(x_{i} + h_{i}(x)) \frac{\partial}{\partial x_{i}} \right]^{2} \omega_{1}(x + h(x)) + \\ &+ \frac{1}{3} \left[\sum_{i=1}^{t} D_{2}(x_{i} + h_{i}(x)) \frac{\partial}{\partial x_{i}} \right] \omega_{1}(x + h(x))|_{\Gamma} = D_{2}\omega_{1}(x) - \\ &- \frac{1}{3} \left(\nabla \omega_{1}(x), \nabla D_{1}\omega_{1}(x) \right) - \frac{1}{3} D_{2}\omega_{1}(x) \left(\nabla \omega_{1}(x), \nabla \omega_{1}(x) \right)|_{\Gamma} = D_{2}\omega_{1}(x) - \\ &- \frac{2}{3} \left(\nabla \omega_{1}(x), D_{1}\nabla \omega_{1}(x) \right) - \frac{1}{3} D_{2}\omega_{1}(x)|_{\Gamma} = D_{2}\omega_{1}(x) - \\ &- \frac{2}{3} D_{2}\omega_{1}(x) - \frac{1}{3} D_{2}\omega_{1}(x)|_{\Gamma} = 0. \end{aligned}$$

Лемма доказана.

9. Приведенные выше результаты могут быть использованы при построении координатных последовательностей для задач с различными типами краевых условий, а опираясь на результаты работы [3], можно заменить разностными формами операторы T_k и D_k , тем самым исключив из структуры решения краевой задачи производные.

Рассмотрим следующую задачу. Пусть функция прогибов W(x, y) на границе $\partial \Omega$ области Ω удовлетворяет условиям упругого закрепления

$$W(x,y)|_{\partial\Omega} = 0, \tag{36}$$

$$\frac{\partial^2 W}{\partial n^2} + \frac{\partial^2 W}{\partial \tau^2} + \left(\frac{1 - v}{\rho} + k\right) \frac{\partial W}{\partial n} \Big|_{\partial \Omega} = 0, \tag{37}$$

где \mathbf{v} — коэффициент Пуассона; k — величина, характеризующая жесткость заделки; ρ — радиус границы $\partial\Omega$ [5]. При составлении структуры решения используем формулу (32) при m=2:

$$W(x,y) = f_0^{(*2)} + f_1^{(*1)} \omega_2 + \frac{1}{2!} f_2 \omega_1^2 + \psi_0 \omega_1^3.$$
 (38)

На основании (36) получаем $W(x,y)|_{\partial\Omega} = f_0^{(*2)}|_{\partial\Omega} = f_0|_{\partial\Omega} = 0$. Теперь используем граничное условие (37), для чего вычислим

$$\begin{split} D_{1}W\left(x,y\right)|_{\partial\Omega} &= D_{1}\left(f_{1}^{(\star 1)}\omega_{2}\right) + \frac{1}{2!}D_{1}\left(f_{2}\omega_{1}^{2}\right) + D_{1}\left(\psi_{0}\omega_{1}^{3}\right)|_{\partial\Omega} = \\ &= f_{1}^{(\star 1)}D_{1}\omega_{2} + O\left(\omega_{1}\right)|_{\partial\Omega} = f_{1}^{(\star 1)} + \psi_{1}\omega_{1}|_{\partial\Omega}, \\ D_{2}W\left(x,y\right)|_{\partial\Omega} &= D_{2}\left(f_{1}^{(\star 1)}\omega_{2}\right) + \frac{1}{2!}D_{2}\left(f_{2}\omega_{1}^{2}\right) + D_{2}\left(\psi_{0}\omega_{1}^{3}\right)|_{\partial\Omega} = \\ &= O\left(\omega_{1}\right) + \frac{1}{2!}f_{2}D_{2}\omega_{1}^{2} + O\left(\omega_{1}\right)|_{\partial\Omega} = \frac{1}{2!}f_{2}\cdot2! + \psi_{2}\omega_{1}|_{\partial\Omega} = f_{2} + \psi_{2}\omega_{1}|_{\partial\Omega}, \\ T_{2}W\left(x,y\right)|_{\partial\Omega} &= T_{2}\left(f_{1}^{(\star 1)}\omega_{2}\right) + \frac{1}{2!}T_{2}\left(f_{2}\omega_{1}^{2}\right) + T_{2}\left(\psi_{0}\omega_{1}^{3}\right)|_{\partial\Omega} = \\ &= f_{1}^{(\star 1)}T_{2}\omega_{2} + O\left(\omega_{1}\right) + O\left(\omega_{1}\right)|_{\partial\Omega} = f_{1}^{(\star 1)}T_{2}\omega_{2} + \psi_{3}\omega_{1}|_{\partial\Omega}. \end{split}$$

Полученные величины подставим в (37)

$$f_2 + \psi_2 \omega_1 + f_1^{(*1)} T_2 \omega_2 + \psi_3 \omega_1 + \left(\frac{1-\nu}{\rho} + k\right) (f_1^{(*1)} + \psi_1 \omega_1) = \psi_4 \omega_1$$

и определим f_2

$$f_{2} = \omega_{i} \left[\psi_{4} - \psi_{2} - \psi_{3} - \left(\frac{1 - v}{\rho} + k \right) \psi_{i} \right] - f_{1}^{(\bullet 1)} \left(T_{2} \omega_{2} + \frac{1 - v}{\rho} + k \right) = \omega_{1} \psi_{5} - f_{1}^{(\bullet 1)} \left(T_{2} \omega_{2} + \frac{1 - v}{\rho} + k \right),$$

где $\psi_5 = -\left(\frac{1-\nu}{\rho} + k\right)\psi_1 - \psi_2 - \psi_3 + \psi_4$ — произвольная функция Подставим найденные $f_0^{(\bullet 2)}$ и f_2 в (38)

$$W(x,y) = f_1^{(\bullet 1)} \omega_2 + \frac{1}{2!} \omega_1^2 \left[\omega_1 \psi_5 - f_1^{(\bullet 1)} \left(T_2 \omega_2 + \frac{1-\nu}{\rho} + k \right) + \psi_0 \omega_1^3 \right]$$

$$= f_1^{(\bullet 1)} \left[\omega_2 - \frac{1}{2!} \omega_1^2 \left(T_2 \omega_2 + \frac{1-\nu}{\rho} + k \right) \right] + \psi \omega_1^3,$$
(39)

где $\psi = \psi_0 + \frac{1}{2!} \psi_5$ — произвольная функция.

С помощью формулы (35) можно определить ω_2 , а затем $T_2\omega_2(x,y)$ заменить выражением $(Q_\tau-1)^2\,\omega_2(x,y)$, как в (14), тогда в (39) будут отсутствовать операторы дифференцирования. Структура (39) может быть использована для решения задач об изгибе и колебаниях упруго закрепленных пластин.

Структуры решения для данной задачи, построенные в [5], эквивалентны приведенной выше. Структура (39) корректна, что существенно при получении дифференциальных характеристик решения.

ЛИТЕРАТУРА

- 1. Рвачев В. Л. Методы алгебры логики в математической физике. К., «Наук. думка», 1974. 260 c.
- Рвачев В. Л. К вопросу о построении координатных последовательностей. Дифференц. уравнения, 1970, 6, № 6, с. 1034—1047.
 Рвачев В. Л. Метод *R*-функций в краевых задачах. Прикладная механика, 1975, 11, вып. 4, с. 3—14.
 Рвачев В. Л. О понятии структуры решения краевой задачи. Вестник Харьк.
- политехн. ин-та, Краевые задачи мат. физики, 1973, 72, вып. 1, с. 3—9.

 5. Рвачев В. Л., Курпа Л. В., Склепус Н. Г., Учишвили Л. А. Метод *R*-функций в задачах об изгибе и колебаниях пластин сложной формы. К., «Наук.
- думка», 1973. 124 с.
 6. Рвачев В. Л., Слесаренко А. П. Алгебра логики и интегральные преобразования в краевых задачах. К., «Наук. думка», 1976. 288 с.
 7. Литвин О. М., Рвачов В. Л. Класична формула Тейлора, її узагальнення та
- застосування. К., «Наук. думка», 1973. 124 с.

Институт проблем машиностроения АН УССР

Поступила в редакцию 29.VII. 1977 г., после переработки — 10. IV. 1978 г.