Congratulations! You passed!

Next Item

1. Let two matrices be

$$A = egin{bmatrix} 4 & 3 \ 6 & 9 \end{bmatrix}, \qquad B = egin{bmatrix} -2 & 9 \ -5 & 2 \end{bmatrix}$$

What is A + B?

$$\begin{bmatrix} 2 & 12 \\ 1 & 11 \end{bmatrix}$$

Correct

To add two matrices, add them element-wise.

$$\begin{bmatrix} 6 & 12 \\ 11 & 11 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 9 \\ 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 6 & -6 \\ 11 & 7 \end{bmatrix}$$

2. Let
$$x = \begin{bmatrix} 8 \\ 2 \\ 5 \\ 1 \end{bmatrix}$$

1/1 point

What is 2 * x?

Correct

To multiply the vector x by 2, take each element of x and multiply that element by 2.

 $\begin{bmatrix} 4 \\ 1 \\ \frac{5}{2} \\ \frac{1}{2} \end{bmatrix}$

3. Let u be a 3-dimensional vector, where specifically

1/1 point

$$u = egin{bmatrix} 8 \ 1 \ 4 \end{bmatrix}$$

What is u^{T} ?

 $\begin{bmatrix} 8 & 1 & 4 \end{bmatrix}$

Correct

 $\begin{bmatrix} 8 \\ 1 \\ 4 \end{bmatrix}$

[4 1 8]

 $\begin{bmatrix} 4 \\ 1 \\ 8 \end{bmatrix}$

4. Let u and v be 3-dimensional vectors, where specifically

point

$$u = \begin{bmatrix} 3 \\ -5 \\ 4 \end{bmatrix}$$

and

$$v = egin{bmatrix} 1 \ 2 \ 5 \end{bmatrix}$$

What is $u^T v$?

(Hint: u^T is a

1x3 dimensional matrix, and v can also be seen as a 3x1 matrix. The answer you want can be obtained by taking the matrix product of u^T and v.) Do not add brackets to your answer.

13

Correct Response

5. Let A and B be 3x3 (square) matrices. Which of the following

1/1 point

must necessarily hold true? Check all that apply.

If v is a 3 dimensional vector, then A*B*v is a 3 dimensional vector.

Correct

Since A and B are both 3x3 matrices, A*B is 3x3 matrix. Thus, (A*B)*v is a 3x3 matrix times a 3×1 matrix (since v is a 3 dimensional

vector, and thus also a 3x1 matrix), and the result gives a 3x1 vector.

If
$$C = A st B$$
, then C is a 6x6 matrix.

Un-selected is correct

Correct

We add matrices element-wise. So, this must be true.

Un-selected is correct

