Lab9 Q1&Q2

YAO ZHAO

Lab9 Q1 Solution

Observe the Sample Input:

```
5
100 100
90 90
60 60
70 70
80 80
```

- If all pairs (Ai, Bi) and (Aj, Bj) satisfie Ai <= Aj while Bi <= Bj, we know that the sum of the satisfaction of all students = $N^*(N-1)/2$
- ▶ Let **Total** = N*(N-1)/2

Lab9 Q1 Solution

▶ But actually, if student i and student j, their scores are the following:

(Ai, Bi) and (Aj, Bj) satisfies Ai <= Aj but Bi > Bj

Student i can't give student j satisfaction.

If we can count how many these like student i fail to contribute to student j's satisfaction, let the number = x, then we can figure out the final satisfaction sum = Total - x

Lab9 Q1 Solution

- How to count how many pairs (Ai, Bi) and (Aj, Bj), satisfie Ai <= Aj but Bi > Bj?
- 1. Sort pairs by Ai, generate a new permutation (A1, B1) (A2, B2)..(An, Bn) A1<=A2<=A3<=A4....<=An
- 2. Counting Inversions on sequence B1, B2,B3..Bn
- 3. x is the count of inversions. Answer = Total-x

```
Sort-and-Count(L) {
   if list L has one element
      return 0 and the list L

Divide the list into two halves A and B
   (r<sub>A</sub>, A) ← Sort-and-Count(A)
   (r<sub>B</sub>, B) ← Sort-and-Count(B)
   (r , L) ← Merge-and-Count(A, B)

return r = r<sub>A</sub> + r<sub>B</sub> + r and the sorted list L
}
```

Lab9 Q2 Hint

VC	len	V number
1	1	1
2	1*2+1=3	1+1=2
3	3*2+1=7	3+1=4
4	7*2+1=15	7+1=8

$$VC(1) = V$$

$$VC(2) = VVC$$

$$VC(3) = VVCVVCC$$